Национальный исследовательский институт «Высшая школа экономики»

Оптика

Отчёт о выполнении практической работы «Изучение поляризованного света»

Выполнил:

Илюшкин Егор, БФ3224

Оглавление

1. Калибровка поляризаторов	3
1.1. Поляризованный и естественный свет	3
1.2. Поляроиды и поляризаторы	3
1.3. Формулы Френеля, явление Брюстера	4
1.4. Калибровка поляризатора А с использованием чёрного зерка	ла6
1.5. Калибровка поляризатора В по скрещённому положению	7
2. Поляризация источника света	8
2.1. Лазерный источник	
2.2. Измерение степени поляризации источника	8
3. Закон Малюса	10
3.1. Формулировка закона Малюса	10
3.2. Проверка закона Малюса	10
4. Двойное лучепреломление в пластинках	12
4.1. Эллиптическая поляризация	12
4.2. Двулучепреломляющие пластинки	14
4.3. Определение главных направлений двулучепреломляющих и	іластинок15
 Свойства пластинок λ/2 и λ/4 	16
 Исследование пластинки λ/2 	16
5.2. Исследование пластинки $\lambda/4$	19
6. Определение типа неизвестной пластинки	22
 Проверка гипотез λ/2 и λ/4 	22
7. Отражение s- и p-поляризованных волн	25
7.1. Формулы Френеля для энергетических коэффициентов отраж	кения25
7.2. Исследование мощности отражённого s-поляризованного сво	
7.3. Исследование мощности отражённого р-поляризованного св	ета26
7.4. Оценка справедливости формул Френеля	
8. Приложение	30

1. Калибровка поляризаторов

1.1. Поляризованный и естественный свет

Поляризация волн — характеристика *поперечных волн*, описывающая поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны. Свет является поперечной электромагнитной волной, в нём направления векторов **E** и **H** взаимно перпендикулярны и располагаются в плоскости, перпендикулярной направлению распространения волны **N**.

Рисунок 1. Взаимное расположение векторов E, H и N

Если электрический вектор **E** всё время лежит в одной плоскости, в которой также расположена нормаль к фронту волны **N**, волна называется *пинейно поляризованной* или *плоскостью поляризованной*. Упомянутая выше плоскость называется *плоскостью колебаний* или плоскостью поляризации. В отличие от *поляризованного* света, в *естественном* свете векторы **E**, **H** и **N** хотя и остаются всё время взаимно перпендикулярными, но **E** и **H** хаотично меняют своё направление с течением времени, что не позволяет выделить какое-либо направление колебаний. Можно также сказать, что естественный свет в статистическом смысле обладает *осевой симметрией* относительно **N**. Для линейно поляризованного света такой симметрии нет. Нет симметрии и для смеси естественного света с линейно поляризованным – *частично поляризованного* света.

1.2. Поляроиды и поляризаторы

Некоторые кристаллы обладают свойством *линейного дихроизма*. Они поглощают световые лучи, в которых вектор **E** перпендикулярен к оптической оси кристалла, и в то же время пропус-

кают лучи, в которых вектор **E** параллелен оси. Всякая оптическая среда, обладающая такими свойствами, называется *поляроидом*. А любой прибор, служащий для получения поляризованного света (с помощью *дихроического кристалла*, магнитного поля и т.д.) – *поляризатором*. Тот же прибор, применяемый для исследования поляризации света, называется *анализатором*.

Рисунок 2. Прохождение естественного света через поляроид с образованием линейно поляризованного света

1.3. Формулы Френеля, явление Брюстера

При падении света на плоскую границу раздела сред различают два важных случая линейной поляризации света: *s-поляризация* (от нем. *senkrecht* – перпендикулярный) и *p-поляризация* (от англ. *parallel* – параллельный). Они определяются направлением вектора **E** по отношению к *плоскости падения* света (т.е. плоскости, содержащей падающий и отражённый лучи).

На рисунках ниже и далее в тексте n_1 , n_2 – показатели преломления сред; $\mathbf{E_i}$ – амплитудный вектор падающей волны (от англ. *incidence* – падение), $\mathbf{E_r}$ – амплитудный вектор отражённой волны (от англ. *reflection* – отражение), $\mathbf{E_t}$ – амплитудный вектор преломлённой волны (от англ. *transmission* – пропускание); $\theta_i = \theta_r$, θ_t – углы, соответственно, падения/отражения, преломления света (считаем их соотносящимися по *закону Снеллиуса*);

$$n_1 \sin \theta_i = n_2 \sin \theta_t$$

 ${f k}_i,\,{f k}_r,\,{f k}_t$ – волновые векторы соответствующих волн.

Рисунок 3. Отражение света, s-поляризация

Рисунок 4. Отражение света, р-поляризация

Амплитудные коэффициенты отражения и преломления обозначим как:

$$r = E_r/E_i$$

$$t = E_r/E_i$$

Тогда в немагнитной среде ожидаем, что коэффициент интенсивности отражения излучения:

$$R = I_r/I_i = E_r^2/E_i^2 = r^2$$

Из граничных условий, накладываемых *уравнениями Максвелла*, и закона Снеллиуса можно получить в явном виде формулы для коэффициентов r и t для случаев s- и p-поляризованных волн. Выпишем эти формулы для r_s , r_p ($n_{21}=n_2/n_1$):

$$\mathbf{r}_{\mathrm{s}} = -\frac{\sin(\theta_i - \theta_t)}{\sin(\theta_i + \theta_t)} = \frac{\cos\theta_i - \sqrt{\mathbf{n}_{21}^2 - \sin^2\theta_i}}{\cos\theta_i + \sqrt{\mathbf{n}_{21}^2 - \sin^2\theta_i}}$$

$$r_{p} = -\frac{tg(\theta_{i} - \theta_{t})}{tg(\theta_{i} + \theta_{t})} = -\frac{n_{21}^{2} \cos \theta_{i} - \sqrt{n_{21}^{2} - \sin^{2} \theta_{i}}}{n_{21}^{2} \cos \theta_{i} + \sqrt{n_{21}^{2} - \sin^{2} \theta_{i}}}$$

Из последней формулы можно увидеть, что для случая падения p-поляризованной волны на границу раздела двух сред $n_1 \neq n_2$ существует угол $\theta_B - y$ гол Eрюстера — такой, что амплитуда отражённой волны равна нулю. В самом деле, положим, что $r_p = 0$:

$$r_{p} = -\frac{\operatorname{tg}(\theta_{i} - \theta_{t})}{\operatorname{tg}(\theta_{i} + \theta_{t})} = 0 \iff \operatorname{tg}(\theta_{i} + \theta_{t}) \to \infty \iff \theta_{i} + \theta_{t} = \frac{\pi}{2}$$

$$\sin \theta_{t} = \sin \left(\frac{\pi}{2} - \theta_{i}\right) = \cos \theta_{i} \implies n_{1} \sin \theta_{i} = n_{2} \cos \theta_{i}$$

$$\tan \theta_{B} = n_{21}$$

Рисунок 5. Графики зависимости коэффицентов интенсивности R_s , R_p , T_s , T_p от угла падения θ_i для случая $n_{21}=1$,5

1.4. Калибровка поляризатора А с использованием чёрного зеркала

Для калибровки поляризатора А соберём следующую установку:

Рисунок 6. Схема установки для определения рарешённого направления поляризатора A с использованием чёрного зеркала

Полагая, что коэффициент преломления чёрного зеркала для зелёного света $n_2 \sim 2$ и пренебрегая коэффициентом преломления воздуха ($n_1 \approx 1$), установим чёрное зеркало таким образом, чтобы угол падения θ_i оказался в окрестности угла Брюстера $\theta_B \sim 60^\circ$. Как видно из рис. 5 для случая $n_{21} > 1$, линейно поляризованный свет будет хуже всего отражаться от поверхности, если он р-поляризован относительно неё. Поэтому, медленно вращая поляризатор A, подберём такой угол его поворота φ_0^A , при котором мощность света, приходящая на детектор, будет минимальна.

$$\varphi_0^A = (134 \pm 1)^\circ$$

Это положение соответствует горизонтальному расположению плоскости поляризации прошедшей через поляризатор волны (плоскость падения горизонтальна).

1.5. Калибровка поляризатора В по скрещённому положению

Определив разрешённое направление поляризатора A, можем определить разрешённое положение поляризатора B по иной схеме.

Рисунок 7. Схема установки для определения рарешённого направления поляризатора В с использованием поляризатора А

Так как поляризатор A превращает условно естественный свет источника в линейно поляризованный, можно найти такое положение поляризатора B, при котором его разрешённое направление окажется перпендикулярно направлению поляризации падающего на него света. В таком случае, интенсивность света на выходе из поляризатора B должна стремиться к нулю. Найдём это положение φ_0^B .

$$\varphi_0^B = (98 \pm 1)^\circ$$

Это положение соответствует вертикальному расположению плоскости поляризации прошедшей через поляризатор В волны (полностью поляризованная в горизонтальной плоскости волна поглощается).

2. Поляризация источника света

2.1. Лазерный источник

Источником света в лабораторной работе является зелёный ($\lambda = (532 \pm 1)$ нм) лазер «КLM-A532-5-5» мощностью $P_{out} = 5$ мВт. Излучение света происходит в лазерном полупроводниковом диоде. Лазерное излучение, как правило, частично или полностью поляризовано за счёт механизма вынужденного излучения и/или конструкции резонатора. Будем полагать, что в нашем случае свет является суммой линейно поляризованного и неполяризованного.

2.2. Измерение степени поляризации источника

Ствень поляризации света р характеризует отношение интенсивности линейно поляризованной I_{pol} компоненты к полной интенсивности излучения I_{all} . Оценить степень поляризации можно, измерив соотношение максимальной и минимальной интенсивностей излучения после прохождения им анализатора. В таком случае полагаем, что разница между I_{max} и I_{min} соответствует мощности отфильтрованного линейно поляризованного света ($I_{pol} = I_{max} - I_{min}$), а сумма перпендикулярно ориентированных компонент I_{max} и I_{min} соответствует полной мощности источника I_{all} ($I_{all} = I_{max} + I_{min}$).

$$p = \frac{I_{pol}}{I_{all}} = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

Прямое измерение интенсивности излучения потребовало бы учитывать геометрию установки, поглощение света на пути его следования и точной калибровки измерительного оборудования. Несколько проще измерить отношение не интенсивностей прошедшего поляризатор света, а световых мощностей, приходящих на световой датчик в максимуме и минимуме яркости. Так как мощность P при нормальном падении света равна $P = I \cdot S$, где S – площадь поперечного сечения светового пучка, то соотношение для степени поляризации перепишем в виде:

$$p = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{P_{max} - P_{min}}{P_{max} + P_{min}}$$

При помощи оптического ваттметра «918D-SL-OD3R» измерим мощности света, приходящие на площадку за анализатором, P_{min} , P_{max} и соответствующие экстремумам мощности положения поляризатора А φ^A_{min} , φ^A_{max} . Учтём, что при длинах волн $\lambda = 430-1000$ нм производителем ваттметра заявлена инструментальная погрешность измерения $\varepsilon_{tool} = 1,1\%$.

$$P_{\max}=(3380\pm39)$$
 мкВт, $\varphi_{max}^A=(124\pm1)^\circ$ $P_{\min}=(305\pm5)$ мВт, $\varphi_{min}^A=(34\pm1)^\circ$ $p=(83.4\pm1.6)$ %

Соотнося откалиброванное значение $\varphi_0^A=(134\pm1)^\circ$ (соответствующее горизонтальному разрешённому направлению поляризатора A) и положение поляризатора при максимуме интенсивности проходящего через него света лазера $\varphi_{max}^A=(124\pm1)^\circ$, приходим к выводу, что плоскость поляризации лазерного излучения лежит под углом $\Delta\varphi^A=(10\pm2)^\circ$ к горизонтали, или же под углом $\alpha=(80\pm2)^\circ$ к вертикали.

Рисунок 8. Геометрический смысл угла α

3. Закон Малюса

3.1. Формулировка закона Малюса

Пусть линейно поляризованный свет падает на линейный поляризатор, причём угол между плоскостью поляризации падающего света и *разрешённым направлением* поляризатора составляет $\Delta\theta=\theta_1-\theta_0$, где θ_0 , θ_1 — соответствующие плоскостям углы относительно горизонтальной оси. Геометрически процесс поляризации можно представить как *проекцию* амплитудного вектора набегающей волны ${\bf E_0}$ на единичный вектор разрешённого направления ${\bf a}$ ($|{\bf a}|=1$):

$$\mathbf{E} = (\mathbf{E_0} \cdot \mathbf{a}) \cdot \mathbf{a} = \mathbf{E_0} \cos(\Delta \theta) \cdot \mathbf{a}$$
$$\mathbf{E} = \mathbf{E_0} \cos(\Delta \theta)$$

В немагнитной среде I \sim E 2 , поэтому для интенсивности света после поляризатора имеем:

$$I = I_0 \cos^2(\Delta \theta)$$

Это и есть формулировка закона Малюса.

Рисунок 9. Прохождение линейно поляризованного света через поляризатор

3.2. Проверка закона Малюса

Поляризатор A расположим в положении φ_0^A (прошедший свет поляризован в горизонтальной плоскости, $\theta_0^{ini}=0^\circ$). За ним установим поляризатор В по схеме, аналогичной изображённой на рис. 7. Изначально разрешённое направление В установим вертикально, т.е. в положение φ_0^B

(относительно горизонтальной оси $\theta_1^{ini}=90^\circ$), при этом ожидаемо получим околонулевое значение мощности на датчике освещённости. Затем будем изменять угол θ_1 от 90° до 0° , не меняя θ_0

$$\Delta\theta = \theta_1 - \theta_0 = \theta_1 = 90^\circ - (\varphi^B - \varphi_0^B)$$

Отсчёт, конечно, придётся производить по лимбу поляризатора B, но формула выше выражает линейную зависимость $\Delta\theta(\varphi^B)$.

Мощность Р ¹ , мкВт	Угол поворота В φ^B , \circ	Угол Δ θ, °
$0,270^2$	98	90
4.70	102	86
27.9	108	80
104	118	70
218	128	60
359	138	50
506	148	40
655	158	30
749	168	20
823	178	10
846	188	0

Tаблица 1. Измерение зависимости мощности излучения P от угла $\Delta \theta$

За P_0 примем значение мощности в максимуме $P_{max} = (846 \pm 10)$ мкВт, при $\cos(\Delta\theta) = 1$. Тогда ожидаем, что зависимость $P(\Delta\theta)$ примет вид:

$$P = P_{\text{max}} \cos^2(\Delta \theta)$$

На графике ниже видно, что практически измеренные значения Р лежат, в пределах погрешности, на теоретической кривой.

¹ Аналогично 2.2. считаем, что $P \sim I$, а, следовательно, закон Малюса справедлив и для $P = P_0 \cos^2(\Delta\theta)$

 $^{^2}$ Напомним, что инструментальная погрешность измерения $\varepsilon_{tool}=1.1\%$

Pисунок 10. Сравнение экспериментальной и теоретической зависимостей $P(\Delta\theta)$

4. Двойное лучепреломление в пластинках

4.1. Эллиптическая поляризация

Кроме случаев *линейной поляризации*, когда вектор **E** в каждой точке электромагнитного поля волны лежит в одной и той же плоскости, и *естественной поляризации*, когда вектор **E** изменяется во времени и пространстве хаотически, хотя и статистически симметрично относительно оси распространения волны, выделяют также состояние эллиптической поляризации. Это состояние реализуется при наложении когерентных монохроматических плоскополяризованных в разных направлениях волн.

Вершина вектора **E** в эллиптически поляризованной волне в каждой точке поля описывает эллипс. Если разложить колебания **E** на перпендикулярные компоненты в плоскости фронта волны, получим две плоскополяризованные волны:

$$\begin{cases} E_x = E_0 \cos(kz - \omega t) \\ E_y = E_0^3 \cos(kz - \omega t - \varphi) \end{cases}$$

 $^{^3}$ Всегда можно подобрать оси x, y таким образом, чтобы амплитуда вдоль обеих осей была равна ${\rm E}_0$

Из такого представления понятны условия когерентности и монохроматичности излучения, необходимые для получения эллиптической поляризации, так как для поддержания постоянной эллиптической формы траектории **E**, разность фаз $\varphi \in (-\pi, \pi]$ должна оставаться постоянной.

Излучение лабораторного лазера можно в некотором приближении считать за монохроматическое $\lambda = (532 \pm 1)$ нм. Оно также является когерентным, хотя в процессе работы мы получаем эллиптическую поляризацию таким образом, что когерентность излучения обеспечивалась бы даже для естественного света, прошедшего через фильтр.

В завершение отметим несколько частных случаев эллиптической поляризации:

- $\varphi = 0$, π монохроматический случай линейной поляризации;
- $0 < \varphi < \pi$ левая эллиптическая поляризация (при наблюдении навстречу волне **E** вращается против часовой стрелки);
- $-\pi < \varphi < 0$ *правая* эллиптическая поляризация (при наблюдении навстречу волне **E** вращается по часовой стрелке);
- $\varphi = \pm \pi/2$ левая/правая *круговая* поляризация (большая и малая полуоси эллипса равны).

Рисунок 11. Правая круговая ($\phi = -\pi/2$) и линейная ($\phi = 0$) поляризация света

4.2. Двулучепреломляющие пластинки

Эллиптически поляризованный свет \mathbf{E}_{ell} можно получить из линейно поляризованного $\mathbf{E}_{lin} = \mathbf{E}_0 \cos(kz - \omega t)$ (на рис. 12 \mathbf{E}_0 направлен вдоль оси \mathbf{y} ; $\mathbf{k} = \omega/c = 2\pi/\lambda_0$, где λ_0 – длина волны в вакууме) с помощью *двулучепреломляющих кристаллических пластинок*. Двулучепреломляющая пластинка имеет два взаимно перпендикулярных *главных направления* $\boldsymbol{\xi}$ и $\boldsymbol{\eta}$, совпадающих с осями эллипсоида диэлектрической проницаемости анизотропного кристалла, из которого изготовлена пластинка. Волны, поляризованные вдоль главных направлений, — $\mathbf{E}_{\boldsymbol{\xi}}$ и $\mathbf{E}_{\boldsymbol{\eta}}$ — распространяются в пластинке с разными скоростями, не изменяя характера своей поляризации. Эти волны называются *главными*. Пусть на пластинку падает плоскополяризованная волна \mathbf{E}_{lin} , а главное направление $\boldsymbol{\xi}$ наклонено на угол $\boldsymbol{\beta}$ относительно плоскости поляризации \mathbf{E}_{lin} :

$$\begin{cases} \mathbf{E}_{\xi} = \mathbf{E}_{\xi \mathbf{0}} \cos \left(\frac{\omega \mathbf{n}_{\xi}}{c} \mathbf{z} - \omega \mathbf{t} \right) \\ \mathbf{E}_{\eta} = \mathbf{E}_{\eta \mathbf{0}} \cos \left(\frac{\omega \mathbf{n}_{\eta}}{c} \mathbf{z} - \omega \mathbf{t} \right) \end{cases}$$

где n_ξ и n_η – коэффициенты преломления вдоль главных направлений; $k_\xi = \omega n_\xi/c = 2\pi n_\xi/\lambda_0$, $k_\eta = \omega n_\eta/c = 2\pi n_\eta/\lambda_0$ – волновые числа соответствующих волн; $E_{\xi 0} = E_0 \cos \beta$, $E_{\eta 0} = E_0 \sin \beta$.

Pисунок 12. Pазложение линейно поляризованного света по главным направлениям η и ξ

По мере прохождения через кристалл, волны \mathbf{E}_{ξ} и \mathbf{E}_{η} будут накапливать разницу фаз $\Delta \varphi$. И если в начале (z = 0) $\Delta \varphi$ = 0, то далее одна из них будет опережать другую. Пусть для определённости $\mathbf{n}_{\eta} < \mathbf{n}_{\xi}$ и \mathbf{E}_{η} опережает \mathbf{E}_{ξ} , тогда скажем, что η – «быстрое» главное направление.

$$\Delta \varphi(z) = \frac{\omega}{c} (n_{\xi} - n_{\eta}) z = \frac{2\pi}{\lambda_0} (n_{\xi} - n_{\eta}) z$$

Пусть пластинка имеет толщину d и не поглощает энергию электромагнитных колебаний при данной частоте ω . Тогда после её прохождения волны \mathbf{E}_{ξ} и \mathbf{E}_{η} будут задаваться уравнениями:

$$\begin{cases} \mathbf{E}_{\xi} = \mathbf{E}_{\xi 0} \cos(kz - \omega t')^{4} \\ \mathbf{E}_{\eta} = \mathbf{E}_{\eta 0} \cos(kz - \omega t' - \Delta \varphi(d)) \end{cases}$$

Видно, что $\mathbf{E}_{\mathbf{ell}} = \mathbf{E}_{\xi} + \mathbf{E}_{\eta}$ является эллиптически поляризованной волной, так как после прохождения пластинки $\Delta \varphi(\mathbf{d}) = \mathrm{const}$ (т.е. выполнены условия монохроматичности и когерентности).

Если же угол между ξ и плоскостью поляризации $\beta=0^\circ$, то $\mathbf{E}_{\xi 0}=\mathbf{E}_0$, $\mathbf{E}_{\eta 0}=\mathbf{0}$ и на выходе получается, с точностью до сдвига фазы, такая же линейно поляризованная волна $\mathbf{E}_{\mathbf{lin}}=\mathbf{E}_0\cos(\mathbf{kz}-\omega t')$, как и на входе⁵.

Пластинки классифицируют по пространственному сдвигу фаз волн \mathbf{E}_{ξ} и \mathbf{E}_{η} $\Delta\lambda = \frac{\Delta\varphi(\mathrm{d})}{2\pi}\lambda_0 = (n_{\xi} - n_{\eta})\mathrm{d}$ для света определённой частоты. Например, если $\Delta\varphi(\mathrm{d}) = \pi/2 + 2\pi\mathrm{n}$ ($\mathrm{n} \in \mathbb{Z}$) для света частоты $\nu = \mathrm{c}/\lambda_0$, то $\Delta\lambda = \lambda_0/4 + \mathrm{n}\lambda_0$, и такую пластинку принято называть *пластинкой* $\lambda/4$.

4.3. Определение главных направлений двулучепреломляющих пластинок

Расположим поляризаторы A и B в скрещенное положение ($\varphi^A = \varphi_0^A$, $\varphi^B = \varphi_0^B$) и поместим между ними по очереди исследуемые пластинки $\lambda/2$ и $\lambda/4$.

Pисунок 13. Схема установки для определения главных направлений пластинок $\lambda/2$ и $\lambda/4$

 $^{^4}$ Время t' отнормировано таким образом, что вся разность фаз $\varphi({\rm d})$ содержится только в ${\bf E_{\eta}}.$

 $^{^{5}}$ Аналогично если $\beta=90^{\circ},$ $\mathbf{E_{\xi 0}}=\mathbf{0},$ $\mathbf{E_{\eta 0}}=\mathbf{E_{0}},$ и на выходе так же $\mathbf{E_{lin}}=\mathbf{E_{0}}\cos(\mathrm{kz}-\omega\mathrm{t}').$

Если одно из главных направлений пластинки (ξ или η) совпадает с разрешённым направлением A (горизонтальное, y на рис. 12), то плоскополяризованная волна проходит через пластинку без изменений и полностью блокируется поляризатором B (вертикальное разрешённое направление, x на рис. 12). В других случаях волна после пластинки поляризована эллиптически, и на детектор за поляризатором B придёт излучение ненулевой мощности P. Поворачивая пластинку в оправе, найдём положение ψ_{ξ} , при котором достигается минимум $P = P_{min}$. Это положение будет соответствовать горизонтальной ориентации одного из главных направлений пластинки, и, соответственно, вертикальной ориентации второго главного направления. Зафиксируем найденные положения для пластинок $\lambda/2$ и $\lambda/4$:

$$\psi_{main}^{\lambda/2} = (55.0 \pm 2.5)^\circ, \qquad P_{\min}^{\lambda/2} \approx 310 \ \mathrm{MKBT}$$
 $\psi_{main}^{\lambda/4} = (60.0 \pm 2.5)^\circ, \qquad P_{\min}^{\lambda/4} \approx 330 \ \mathrm{MKBT}$

5. Свойства пластинок $\lambda/2$ и $\lambda/4$

5.1. Исследование пластинки λ/2

Пластинка $\lambda/2$ создаёт между ξ - и η -поляризованными компонентами набегающей линейно поляризованной волны $\mathbf{E_{lin}} = \mathbf{E_0} \cos(\mathrm{kz} - \omega \mathrm{t})$ сдвиг $\Delta \varphi = 2\pi \frac{\Delta \lambda}{\lambda_0} = 2\pi \frac{\lambda_0/2}{\lambda_0} = \pi$.

$$\mathbf{E}_{\eta} = \mathbf{E}_{\eta 0} \cos(\varphi - \pi) = -\mathbf{E}_{\eta 0} \cos(\varphi)$$

То есть в каждый момент времени вектор \mathbf{E}_{η} , а, следовательно, и амплитудный вектор выходящей из пластинки волны $\mathbf{E}'_0 = \mathbf{E}_{\xi 0} - \mathbf{E}_{\eta 0}$, зеркально отражены относительно оси $\boldsymbol{\xi}$ по сравнению с направлением электрических векторов до прохождения пластинки. Результирующая волна описывается следующими уравнениями:

$$\begin{cases} \mathbf{E}_{\xi} = \mathbf{E}_{\xi 0} \cos(\mathbf{k} \mathbf{z}' - \omega \mathbf{t}') \\ \mathbf{E}_{\eta} = -\mathbf{E}_{\eta 0} \cos(\mathbf{k} \mathbf{z}' - \omega \mathbf{t}') \end{cases}$$

Рисунок 14. Волна ${m E}_{m lin}$ в фазе $(kz-\omega t)=0$ Рисунок 15. Волна ${m E}'$ в фазе $(kz-\omega t')=0$ заходит в пластинку $\lambda/2$

выходит из пластинки $\lambda/2$

Видно, что ${\bf E}'={\bf E}_\xi+{\bf E}_\eta$ – это линейно поляризованная волна. Причём её плоскость поляризации повернута на угол 2β относительно плоскости поляризации входящей волны.

Отметим также, что у нас нет оборудования, позволяющего определять фазу волны в конкретной точке пространства, поэтому, наблюдая линейно поляризованный свет \mathbf{E}' , мы не сможем различить «быструю» и «медленную» оси в условиях данного опыта⁶. Так что нам безразлично является ли на самом деле ось η быстрой, как мы предположили выше. Плоскость поляризации волны в любом случае повернётся на угол 2β .

Проверим на практике обозначенное свойство пластинки $\lambda/2$ поворачивать плоскость поляризации падающего света на угол 2β при собственном повороте относительно $\psi_{main}^{\lambda/2}$ на угол β . Для этого измерим зависимость угла поворота поляризатора В от вертикальной оси $\alpha = \varphi^B - \varphi_0^B$, при котором достигается минимум яркости на приёмнике светового сигнала (Р_{тіп} ~ 300 мкВт), от β . Угол α соответствует нормали к плоскости поляризации света, прошедшего пластинку.

$$\alpha = \varphi^B - \varphi^B_0, \qquad \varphi^B_0 = (98.0 \pm 1.0)^\circ$$

$$\beta = -\psi^{\lambda/2} + \psi^{\lambda/2}_{main}, \qquad \psi^{\lambda/2}_{main} = (55.0 \pm 2.5)^\circ$$

$$\alpha = 2\beta$$

⁶ Иными словами, мы не можем отличить волну с амплитудным вектором $\mathbf{E'}_0 = \mathbf{E}_{\xi 0} - \mathbf{E}_{n0}$ от волны с амплитудным вектором ${E''}_0 = -E_{\xi 0} + E_{\eta 0}$, которая возникла бы, если бы «быстрым» направлением было ξ .

Измерим зависимость $\varphi^B (\psi^{\lambda/2})$ и занесём результаты в таблицу.

Угол $\psi^{\lambda/2}$, ° $\sigma_{\psi^{\lambda/2}} = 2.5$ °	Угол <i>β</i> , °	Угол φ^B , ° $\sigma_{\varphi^B} = 1.0^\circ$	Угол α, °
$\sigma_{\psi^{\lambda/2}}=2.5^{\circ}$	$\sigma_{\beta}=5.0^{\circ}$	$\sigma_{\varphi^B} = 1.0^{\circ}$	$\sigma_{\alpha}=2.0^{\circ}$
55,0	0,0	98,0	0,0
40,0	15,0	126,0	28,0
25,0	30,0	154,0	56,0
10,0	45,0	186,0	88,0
355,0	60,0	216,0	118,0
340,0	75,0	248,0	150,0
325,0	90,0	276,0	178,0

Таблица 2. Измерение зависимости поворота плоскости поляризации α от поворота главных осей пластинки $\lambda/2$ β

Построим график зависимости $\alpha(\beta)$, чтобы продемонстрировать соответствие наблюдения предсказанному результату.

Pисунок 16. Сравнение экспериментальной и теоретической зависимостей $\alpha(\beta)$

5.2. Исследование пластинки λ/4

Пластинка $\lambda/4$ создаёт между ξ - и η -поляризованными компонентами набегающей линейно поляризованной волны $\mathbf{E_{lin}} = \mathbf{E_0} \cos(\mathrm{kz} - \omega t)$ сдвиг $\Delta \varphi = 2\pi \frac{\Delta \lambda}{\lambda_0} = 2\pi \frac{\lambda_0/4}{\lambda_0} = \pi/2$.

$$\mathbf{E}_{\eta} = \mathbf{E}_{\eta 0} \cos \left(\varphi - \frac{\pi}{2} \right) = \mathbf{E}_{\eta 0} \sin(\varphi)$$

То есть конец вектора выходящей волны $\mathbf{E}' = \mathbf{E}_{\xi} - \mathbf{E}_{\eta}$ в каждой точке на луче после пластинки совершает движение по эллипсу, причём полуоси эллипса равны $\mathbf{E}_{\xi 0}$ и $\mathbf{E}_{\eta 0}$.

$$\begin{cases} \mathbf{E}_{\xi} = \mathbf{E}_{\xi \mathbf{0}} \cos(\mathbf{k} \mathbf{z}' - \omega \mathbf{t}') \\ \mathbf{E}_{\eta} = \mathbf{E}_{\eta \mathbf{0}} \sin(\mathbf{k} \mathbf{z}' - \omega \mathbf{t}') \end{cases}$$

Рисунок 17. Волна E_{lin} в фазе $(kz-\omega t)=0$ заходит в пластинку $\lambda/4$

Pисунок 18. Волна ${f E}'$ в фазе ${f \phi}=(kz-\omega t')$ выходит из пластинки $\lambda/4$

Для экспериментальной проверки эллиптической поляризации волны после прохождения пластинки $\lambda/4$ установим пластинку под углом $\beta = -\psi^{\lambda/4} + \psi_{main}^{\lambda/4} = -(45 \pm 5)^\circ$. В таком по-

ложении $E_{\xi 0} \approx E_{\eta 0} \approx E_0/\sqrt{2}$, то есть после пластинки волна имеет поляризацию, близкую к круговой. Следовательно, изменение угла поворота поляризатора В относительно вертикальной оси $\alpha = \varphi^B - \varphi_0^B$ не должно приводить к изменению интенсивности проходящего через него излучения, так как свет с круговой поляризацией в статистическом смысле симметричен.

Угол φ^B , \circ	Угол α, °	Мощность Р, мкВт
$\sigma_{\varphi^B}=1.0^{\circ}$	$\sigma_{\alpha} = 2.0^{\circ}$	$\varepsilon_{tool} = 0.011$
98,0	0,0	1100
113,0	15,0	1123
128,0	30,0	1163
143,0	45,0	1187
158,0	60,0	1204
173,0	75,0	1210
188,0	90,0	1200
203,0	105,0	1168
218,0	120,0	1142
233,0	135,0	1121
248,0	150,0	1108
263,0	165,0	1105
278,0	180,0	1116

Tаблица 3. Измерение мощности света после пластинки $\lambda/4$ и поляризатора B

В действительности видим неидеальную симметрию излучения, так как точность задания ориентации пластинки довольно низкая (погрешность 5°). Учтём этот факт и проанализируем изменение интенсивности излучения I в зависимости от угла поворота анализатора α .

Пусть большая полуось эллипса поляризации $\mathbf{E}_{\max} = \mathbf{E}_{\xi 0}$, а малая $\mathbf{E}_{\min} = \mathbf{E}_{\eta 0}$. Тогда, поворачивая анализатор В вокруг собственной оси на угол α , мы будем отфильтровывать из света плоскую волну с амплитудой $\mathbf{E}_{\mathbf{B}0} = \mathbf{E}_{\max} \sin(\alpha - \alpha_0) + \mathbf{E}_{\min} \cos(\alpha - \alpha_0)$. Угол α_0 определим как такой угол поворота поляризатора В от вертикального положения, при котором $\boldsymbol{\eta} \Leftrightarrow \mathbf{E}_{\min}$ совпадёт с разрешённым направлением поляризатора. Теоретически $\alpha_0 = \beta \approx -45^\circ$.

Pисунок 19. Aмиплитудный вектор E_{B0} после фильтра B при $\beta \approx -45^\circ$.

Интенсивность излучения $I \sim E^2$, поэтому экстремумы величины E_{B0} , достигаемые на полуосях эллипса поляризации, сохранятся и для монотонно зависящей от неё I, и для $P \sim I$.

$$P = P_{\text{max}} \sin^2(\alpha - \alpha_0) + P_{\text{min}} \cos^2(\alpha - \alpha_0)$$

 α_0 , P_{\max} , P_{\min} — параметры модели, оценим их с помощью методов вычислительной оптимизации.

Pисунок 20. График функции $P(\alpha,\alpha_0,P_{max},P_{min},)$, оптимизированной по $(\alpha_0,P_{max},P_{min})$

$$\alpha_0 = -(18.5 \pm 1.3)^\circ$$
, $P_{\rm max} = (1207 \pm 3)~{\rm MkBT}$, $P_{\rm min} = (1099 \pm 3)~{\rm MkBT}$

$$\tan \beta' = \frac{E_{\xi 0}}{E_{\eta 0}} = \frac{E_{\text{max}}}{E_{\text{min}}} = \frac{\sqrt{P_{\text{max}}}}{\sqrt{P_{\text{min}}}} \Longrightarrow \beta' = -\tan^{-1} \sqrt{\frac{P_{\text{max}}}{P_{\text{min}}}} = -(43.7 \pm 0.1)^{\circ}$$

Получен противоречивый результат: с одной стороны, по соотношению полуосей эллипса поляризации мы получили оценку $\beta' = -(43.7 \pm 0.1)^\circ$, что довольно близко к углу, отсчитанному по лимбу пластинки $\lambda/4$ $\beta = -(45 \pm 5)^\circ$. С другой стороны, $\alpha_0 = -(18.5 \pm 1.3)^\circ$, что никак не совпадает с β . Вероятнее всего, в процессе работы калибровка поляризатора В сбилась, и углы α , α_0 в абсолютном значении отсчитаны неверно.

Тем не менее, по характеру изменения мощности света на оптическом датчике можно с уверенностью говорить об эллиптической поляризации света после прохождения пластинки $\lambda/4$ и о выполнении соотношений

$$E_{\text{max}} = E_{\xi 0} = E_0 \cos \beta$$
, $E_{\text{min}} = E_{\eta 0} = E_0 \sin \beta$

для амплитуды электрических векторов, характеризующих полуоси эллипса поляризации.

6. Определение типа неизвестной пластинки

6.1. Проверка гипотез $\lambda/2$ и $\lambda/4$

Как было показано ранее, пластинки типа $\lambda/2$ не меняют характера поляризации подающего на них линейно поляризованного света, но лишь поворачивают плоскость поляризации на некоторый угол вокруг оси распространения. Пластинки типа $\lambda/4$, напротив, меняют поляризацию света на эллиптическую, если только плоскость поляризации падающего на них света не совпадает с главными направлениями пластинки.

Для определения типа неизвестной пластинки, найдём сначала её главные направления методом, описанным в пункте 4.3:

$$\psi_{main}^{x} = (260,0 \pm 2,5)^{\circ}$$

Повернём пластинку вокруг собственной оси на угол $\beta = -\psi^x + \psi^x_{main} \approx 45^\circ$ и при помощи анализатора В проверим тип поляризации света, прошедшего пластинку. Возможны два варианта:

- Тип $\lambda/2$: свет линейно поляризован, при повороте анализатора В на α ожидаем наблюдать изменение мощности излучения в пределах от $P_{min} \approx 0$ до $P_{min} \approx P_0$ с периодом 180° ;
- Тип $\lambda/4$: свет эллиптически поляризован, при повороте анализатора В на α ожидаем наблюдать изменение мощности излучения в пределах от $P_{min} \gg 0$ до $P_{min} < P_0$ с периодом 180° .

Рисунок 21. Возможные состояния поляризации волны ${\bf E}'$ после пластинки

Угол φ^B , \circ	Угол α, °	Мощность Р, мкВт
$\sigma_{arphi^B}=1.0^\circ$	$\sigma_{\alpha} = 2.0^{\circ}$	$ \varepsilon_{tool} = 0.011 $
98,0	0,0	864
113,0	15,0	698
128,0	30,0	645
143,0	45,0	718
158,0	60,0	886
173,0	75,0	1115
188,0	90,0	1403
203,0	105,0	1464
218,0	120,0	1700
233,0	135,0	1666
248,0	150,0	1491
263,0	165,0	1217
278,0	180,0	929

Таблица 4. Измерение мощности света после неизвестной пластинки и поляризатора В

Из данных сразу видно, что $P_{min} \approx P_{max}/2 \gg 0$, то есть свет имеет явно эллиптическую поляризацию. **Установлено, что пластинка имеет тип \lambda/4.** Мощность света на детекторе, как установлено в пункте 5.2, должна изменяться по закону:

$$P = P_{\text{max}} \sin^2(\alpha - \alpha_0) + P_{\text{min}} \cos^2(\alpha - \alpha_0)$$

Причём, так как $\beta \approx 45^\circ$, поляризация должна быть близка к круговой, т.е. $P_{min} \approx P_{max}$. На практике степень эллиптичности заметно выше.

Pисунок 22. График функции $P(\alpha, \alpha_0, P_{max}, P_{min})$, оптимизированной по $(\alpha_0, P_{max}, P_{min})$

$$\alpha_0 = (30.9 \pm 0.7)^\circ$$
, $P_{\text{max}} = (1702 \pm 24) \; \text{мкВт}$, $P_{\text{min}} = (632 \pm 12) \; \text{мкВт}$

$$\beta' = \tan^{-1} \sqrt{\frac{P_{\text{max}}}{P_{\text{min}}}} = (58.6 \pm 0.5)^{\circ}$$

Реальный угол отклонения пластинки от главных направлений β' с уверенностью не попадает в допустимое отклонение $\sigma_{\beta}=5.0^{\circ}$ от $\beta=45^{\circ}$. Вероятно, в процессе поворота пластинки нормировка была сбита. Тем не менее пластинка определённо имеет тип $\lambda/4$.

7. Отражение s- и p-поляризованных волн

7.1. Формулы Френеля для энергетических коэффициентов отражения

Как обсуждалось ранее в пункте 1.3, для s- и p- поляризованных компонент падающего на границу раздела сред света можно аналитически найти отношение амплитуд вектора \mathbf{E} падающей \mathbf{E}_{i} , отражённой \mathbf{E}_{r} и преломлённой \mathbf{E}_{t} волн — формулы Френеля. Там же было показано, что, так как интенсивность падающего света $\mathbf{I} \sim \mathbf{E}^{2}$, а $\mathbf{P} \sim \mathbf{I}$, то для отношения энергий падающей и отражённой волн соответствующих поляризаций будет справедливо:

$$R = I_r/I_i = P_r/P_i = E_r^2/E_i^2 = r^2$$

$$R_{s}(\theta_{i}, n_{21}) = r_{s}^{2} = \left(\frac{\cos \theta_{i} - \sqrt{n_{21}^{2} - \sin^{2} \theta_{i}}}{\cos \theta_{i} + \sqrt{n_{21}^{2} - \sin^{2} \theta_{i}}}\right)^{2}$$

$$R_{p}(\theta_{i}, n_{21}) = r_{p}^{2} = \left(-\frac{n_{21}^{2} \cos \theta_{i} - \sqrt{n_{21}^{2} - \sin^{2} \theta_{i}}}{n_{21}^{2} \cos \theta_{i} + \sqrt{n_{21}^{2} - \sin^{2} \theta_{i}}}\right)^{2}$$

В реальности, однако, нужно учесть, что, из-за неточной настройки поляризаторов, волна, падающая на поверхность диэлектрика, будет представлять из себя суперпозицию s- и p- поляризованных волн. Пусть τ — отношение интенсивности падающего s-поляризованного света I_{is} к полной интенсивности падающего света $I_{i} = I_{is} + I_{ip}$, тогда в общем виде для мощности отражённого света $P_r(\theta_i)$ модельная функция выглядит следующим образом:

$$P_{r}(\theta_{i}, n_{21}, P_{i}, P_{n}, \tau) = \tau P_{i} \cdot R_{s}(\theta_{i}, n_{21}) + (1 - \tau)P_{i} \cdot R_{p}(\theta_{i}, n_{21}) + P_{n}$$

 Γ де P_i — мощность падающего на чёрное зеркало света, P_n — мощность шума, обусловленного излучением, приходящим на датчик из посторонних источников и в результате рассеяния.

7.2. Исследование мощности отражённого ѕ-поляризованного света

Соберём установку, аналогичную изображённой на рис. 6, установив разрешённое направление поляризатора А вертикально (перпендикулярно к плоскости падения света на чёрное зер-

кало) и проведём серию измерений зависимости мощности P_s пришедшего на датчик света от угла падения θ_i . Результаты измерения см. в табл. 5.

Для описания зависимости $P_{rs}(\theta_i)$ используем модель $P_r(\theta_i, n_{21}, P_i, P_n, \tau)$. При помощи численной оптимизации найдём параметры n_{21s} , P_{is} , P_{ns} , τ_s , взяв как начальное приближение $\tau_s \sim 1$. Нанесём измерения и предсказания модели на график.

Рисунок 23. График функции $P_{rs}(\theta_i,n_{21s},P_{is},P_{ns},\tau_s)$, оптимизированной по $(n_{21s},P_{is},P_{ns},\tau_s)$

$$n_{21s}=(1.83\pm0.09), \qquad P_{is}=(773\pm26)$$
 мкВт,
$$P_{ns}=(0\pm12)$$
 мкВт, $\qquad au_s=(0.86\pm0.05)$

Видим, что модель крайне правдоподобно описывает данные, полученные в эксперименте.

7.3. Исследование мощности отражённого р-поляризованного света

Аналогичным образом произведём измерение и моделирование зависимости $P_p(\theta_i)$. Для этого установим поляризатор A в горизонтальное положение и повторим серию измерений P_p . Результаты см. в табл. 6.

Для описания зависимости $P_p(\theta_i)$ используем ту же модель $P_r(\theta_i, n_{21}, P_i, P_n, \tau)$. Так же помощи численной оптимизации найдём параметры n_{21p} , P_{ip} , P_{np} , τ_p , взяв на этот раз начальное приближение $\tau_p \sim 0$. Нанесём измерения и предсказания модели на график.

Pисунок 24. График функции $P_p(\theta_i, n_{21p}, P_{ip}, P_{np}, au_p)$, оптимизированной по $(n_{21p}, P_{ip}, P_{np}, au_p)$

$${\rm n_{21p}} = (2{,}03 \pm 0{,}08), \qquad {\rm P_{ip}} = (1215 \pm 20)$$
мкВт,

$$P_{\rm np} = (0 \pm 16)$$
 мкВт, $au_{\rm p} = (0.01 \pm 0.04)$

Опять же, модель крайне хорошо совместима с экспериментом, однако полученная оценка $\mathbf{n_{21p}}$ расходится с полученной ранее $\mathbf{n_{21s}} = (1.83 \pm 0.09)$ приблизительно на два σ , что является не вполне достоверным, но всё же, при определённых допущениях, возможным результатом.

По положению экстремума функции $P_p(\theta_i)$ можем оценить угол Брюстера чёрного зеркала:

$$\theta_{R} = (63.4 \pm 0.1)^{\circ}$$

7.4. Оценка справедливости формул Френеля

Приведя модельные функции $P_s(\theta_i)$, $P_p(\theta_i)$ и данные измерений в безразмерный вид, нанесём их на один график зависимости коэффициента отражения R от угла падения θ_i .

Рисунок 25. Графики функций $R_s(\theta_i)$ и $R_s(\theta_i)$

Понятно, что при нормальном падении ($\theta_i = 0^\circ$), разницы между R_s и R_p не должно быть, если только зеркало не состоит из оптически анизотропного материала. На графике, основанном на модельных функциях $P_s(\theta_i)$, $P_p(\theta_i)$ видим существенное различие. Попробуем устранить это различие, допустив, что реальный коэффициент преломления материала чёрного зеркала $n_2 = n_{21} \cdot n_1 \approx n_{21}$ (коэффициент преломления воздуха $n_1 \approx 1$) равен среднему арифметическому оценок n_{21s} и n_{21p} :

$$n_2 \approx (1.93 \pm 0.09)$$

Заново оптимизируем $P_s(\theta_i)$, $P_p(\theta_i)$, на этот раз с фиксированным параметром $n_{21}=n_2$, а в случае с $P_s(\theta_i)$ зафиксируем также и $P_{ns}=P_{np}$, полагая, что от серии к серии измерений он изменяться не должен (измерения проводились на одной и той же установке при одних и тех же усло-

виях освещённости). Приведя оптимизированные функции в безразмерный вид, снова нанесём их на график $R(\theta_i)$, также для удобства отметим погрешности измерения.

Рисунок 26. Графики функций $R_s(\theta_i)$ и $R_s(\theta_i)$ при едином $n_{21}=n_2$

Тип	n ₂₁	P _i , мкВт	P _n , мкВт	τ
р-поляризация	102 000	667 <u>+</u> 26	7 + 14	0.00 ± 0.04
s-поляризация	1,93 ± 0,09	1207 <u>+</u> 18	7 <u>±</u> 14	0,91 ± 0,05

Обновлённая оценка угла Брюстера составляет:

$$\theta_R = (62.6 \pm 0.1)^\circ$$

Как можно заметить, сравнив рис. 25 и рис. 26, унифицированные по n_{21} модели $P_s(\theta_i)$ и $P_p(\theta_i)$ дают худшие предсказания интенсивности отражённого света, чем модели, построенные для изначально различных оценок n_{21} . Хотя, с учётом инструментальной погрешности, расхождение не выглядит критично. Есть все основания полагать, что более удачно поставленный эксперимент позволит окончательно подтвердить актуальность использованных моделей. Вместе с тем, в случаях рассмотрения s- и p-поляризаций по отдельности (рис. 23, рис. 24), формулы Френеля дают точное предсказание зависимости $R(\theta_i)$.

8. Приложение

Угол θ_i , $^{\circ}$	Мощность Р _s , мкВт	Угол θ_i , $^{\circ}$	Мощность Р _s , мкВт
15	70.2	70	280.1
30	84.9	71	288.4
35	93.9	72	302
40	98.5	73	320
45	111.9	74	337
50	136.1	75	351
55	158.5	76	368
60	190.2	77	383
61	192.8	78	401
62	198.2	79	426
63	211.4	80	439
64	215.2	81	477
65	220.0	82	499
66	234.8	83	519
67	245.1	84	552
68	254.7	85	581
69	263.3		

Таблица 5. Измерение мощности отражённого s-поляризованного света

Угол θ_i , \circ	Мощность Р _р , мкВт	Угол θ_i , $^{\circ}$	Мощность Рр, мкВт
15	127	62	6.86
30	103.5	63	6.55
45	57.3	64	6.71
50	39.1	65	7.47
55	21.38	66	9.66
56	19.25	67	13.14
57	16.78	68	14.36
58	13.94	69	19.19
59	11.44	70	24.66
60	9.91	80	236.1
61	7.97		

Таблица 6. Измерение мощности отражённого р-поляризованного света