

CÁCH TRÌNH BÀY TỰ LUẬN CÁC THUẬT TOÁN MÔN: CẤU TRÚC DỮ LIỆU VÀ GIẢI THUẬT

Quang D. C.

dcquang@it.tdt.edu.vn

1) Sắp xếp

Selection Sort, **Bubble Sort**, **Insertion Sort** trình bày theo từng pass (kết quả khi kết thúc mỗi vòng lặp ngoài)

VD: Sắp xếp tăng dần dãy số {6, 9, 5, 8, 1} bằng thuật toán Insertion Sort

pass	a[0]	a[1]	a[2]	a[3]	a[4]	a[5]
-	6	9	5	8	1	3
1	6	9	5	8	1	3
2	5	6	9	8	1	3
3	5	6	8	9	1	3
4	1	5	6	8	9	3
5	1	3	5	6	8	9

Ghi chú:

- Pass "-" là dòng ghi lại dãy số ban đầu.
- Mỗi pass là kết quả của một vòng lặp ngoài.

Các thuật toán Merge Sort và Quick Sort trình bày theo slide lý thuyết.

2) Hashing

Trình bày từng bước tính toán và bảng băm kết quả.

VD: Xây dựng bảng băm từ dãy số sau thông qua hàm băm hash(k) = k % m với m = 11. Giải quyết đụng độ bằng Quadratic Probing

	13	11	20	16	27	38	22	47	8		
13 % 11 = 2											11
11 % 11 = 0										0 1	22
20 % 11 = 9										2	13
16 % 11 = 5									3	38	
27 % 11 = 5 → Đụng độ/Collision									4	47	
((27 % 11) + 1) % 11 = 6									5	16	
38 % 11 = 5 → Đụng độ/Collision									6	27	
((38 % 11) + 1)	% 11 :	= 6 >	Đụng	độ/Co	llision					7	
((38 % 11) + 4)	% 11 :	= 9 >	Đụng	độ/Co	llision					8	8
((38 % 11) + 9)	% 11 :	= 3								9	20
22 % 11 = 0 >	Đụng	độ/Col	lision							10	
((22 % 11) + 1) % 11 = 1											
47 % 11 = 3 → Đụng độ/Collision											
((47 % 11) + 1) % 11 = 4											
8 % 11 = 8											

3) Binary Search Tree

VD: Cho dãy số [33, 96, 14, 29, 78, 94, 34, 42, 93, 99]

a. Xây dựng cây/thêm nút

b. Duyệt cây NLR, LNR, LRN

NLR: 33, 14, 29, 96, 78, 34, 42, 94, 93, 99

LNR: 14, 29, 33, 34, 42, 78, 93, 94, 96, 99

LRN: 29, 14, 42, 34, 93, 94, 78, 99, 96, 33

c. Xóa nút 42

d. Xóa nút 94

e. Xóa nút 33 dùng successor

4) **AVL**

VD: Cho dãy số [33, 96, 14, 29, 78, 94, 34, 42, 93, 99]

a. Xây dựng cây/thêm nút và xoay cây

Thêm 33, 96, 14, 29, 78, 94

Xoay trái-phải / Left-right rotation

Thêm 34, 42

Xoay trái-phải / Left-right rotation

Thêm 93

Xoay trái-phải / Left-right rotation

Thêm 99

Xoay trái / Left rotation

Faculty of Information Technology

b. Xóa nút 78 dùng successor

Xoay trái / Left rotation

5) Heap

Cho dãy số:

33 96 14 29 78 94 34 42 93 99

a. Xây dựng Binary Min Heap

Step	1	2	3	4	5	6	7	8	9	10
1.	33									
2.	33	96								
3.	14	96	33							
4.	14	29	33	96						
5.	14	29	33	96	78					
6.	14	29	33	96	78	94				
7.	14	29	33	96	78	94	34			
8.	14	29	33	42	78	94	34	96		
9.	14	29	33	42	78	94	34	96	93	
10.	14	29	33	42	78	94	34	96	93	99

b. Extract Min

	29	42	33	93	78	94	34	96	99	I
--	----	----	----	----	----	----	----	----	----	---

6) Graph

a. Biểu diễn đồ thị trên máy tính

		, ,	Adjacen	cy Mati	rix			Adjacency List			Edge List				
	0	1	2	3	4	5	6	0.	Aujacency	LIST		0:	0	1	
0	0	1	1	0	0	0	0	0:	1	2	-	1:	0	2	1
1	1	0	1	1	0	0	0	1:	0	2	5	2:	1	2	1
2	1	1	0	0	1	0	0	2:	0	1	4	3:	1	3	1
3	0	1	0	0	1	0	0	3:	1	4		4:	2	4	1
4	0	0	1	1	0	1	0	4:	2	3	5	5:	3	4	1
5	0	0	0	0	1	0	1	5:	4	6		6:	4	5	1
6	0	0	0	0	0	1	0	6:	5			7:	5	6	

b. BFS/DFS từ đỉnh 0, ưu tiên đỉnh có số thứ tự nhỏ

BFS: 0 1 2 3 4 5 6 DFS: 0 1 2 4 3 5 6

- c. Minimum Spanning Tree (MST)
 - Trình bày bảng theo giải thuật:

i. Kruskal's

TET GENERAL B		
Edge	Selected?	Vertices of MST
5, 0-3	Yes	{0, 3}
5, 2-4	Yes	{0, 2, 3, 4}
6, 3-5	Yes	{0, 2, 3, 4, 5}
7, 0-1	Yes	{0, 1, 2, 3, 4, 5}
7, 1-4	Yes	{0, 1, 2, 3, 4, 5}
8, 1-2	No	{0, 1, 2, 3, 4, 5}
8, 4-5	No	{0, 1, 2, 3, 4, 5}
9, 1-3	No	{0, 1, 2, 3, 4, 5}
9, 4-6	Yes	{0, 1, 2, 3, 4, 5, 6}
11, 5-6	No	{0, 1, 2, 3, 4, 5, 6}
15, 3-4	No	{0, 1, 2, 3, 4, 5, 6}

ii. Prim's

Xuất phát từ đỉnh 0

Priority Queue	Dequeued item	Added edge to MST
(5, 0-3), (7, 0-1)	5, 0-3	5, 0-3
(6, 3-5), (7, 0-1), (9, 3-1), (15, 3-4)	6, 3-5	6, 3-5
(7, 0-1), (8, 5-4), (9, 3-1), (11, 5-6), (15, 3-4)	7, 0-1	7, 0-1
(7, 1-4), (8, 1-2), (8, 5-4), (9, 3-1), (11, 5-6), (15, 3-4)	7, 1-4	7, 1-4
(5, 4-2), (8, 1-2), (8, 5-4), (9, 3-1), (9, 4-6), (11, 5-6), (15, 3-4)	5, 4-2	5, 4-2
(8, 1-2), (8, 5-4), (9, 3-1), (9, 4-6), (11, 5-6), (15, 3-4)	8, 1-2	-
(8, 5-4), (9, 3-1), (9, 4-6), (11, 5-6), (15, 3-4)	8, 5-4	-

(9, 3-1), (9, 4-6), (11, 5-6), (15, 3-4)	9, 3-1	-
(9, 4-6), (11, 5-6), (15, 3-4)	9, 4-6	9, 4-6
(11, 5-6), (15, 3-4)	11, 5-6	-
(15, 3-4)	15, 3-4	-

Vẽ lại cây khung nhỏ nhất

- Tính tổng trọng số W = 5 + 5 + 6 + 7 + 7 + 9 = 39

d. Tìm đường đi ngắn nhất xuất phát từ một đỉnh (SSSP)

- Trình bày bảng theo giải thuật

Xuất phát từ đỉnh 0

i. Bellman-Ford's

Liệt kê thứ tự cạnh chạy giải thuật, nên xếp theo thứ tự đã được hướng dẫn trên lớp lý thuyết (liệt kê cạnh theo thứ tự tăng dần đỉnh source tăng dần đỉnh destination)

	0	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>
-	0, 0	-1, ∞	-1, ∞	-1, ∞	-1, ∞	-1, ∞	-1,∞
Pass 1	0, 0	0, 7	1, 15	0, 5	1, 14	3, 11	5, 22
Pass 2	0, 0	0, 7	1, 15	0, 5	1, 14	3, 11	5, 22
Pass 3	0, 0	0, 7	1, 15	0, 5	1, 14	3, 11	5, 22
Pass 4	0, 0	0, 7	1, 15	0, 5	1, 14	3, 11	5, 22
Pass 5	0, 0	0, 7	1, 15	0, 5	1, 14	3, 11	5, 22
Pass 6	0, 0	0, 7	1, 15	0, 5	1, 14	3, 11	5, 22

Lưu ý:

- Chỉ dừng sớm khi đã thể hiện 2 pass liên tiếp giống nhau hoặc có thể ghi đủ V-1 pass.
- Mỗi pass chỉ cần thể hiện kết quả ở cuối mỗi pass (đã relax sau khi xét hết tất cả cạnh).

ii. <u>Djikstra's</u>

	<u>0</u>	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>
-	0, 0	-1, ∞	-1, ∞	-1, ∞	-1, ∞	-1, ∞	-1, ∞
Step 1				<u>0, 5</u>			
Step 2		<u>0, 7</u>					
Step 3						3, 11	
Step 4					<u>1, 14</u>		
Step 5 Step 6			<u>1, 15</u>				
Step 6							<u>5, 22</u>

Lưu ý:

- Chú ý cẩn thận các bước có relax những đỉnh chưa được chọn.
- Vẽ lại đường đi ngắn nhất đến các đỉnh và ghi đường đi

$$0 - 1 - 2$$

$$0 - 1 - 4$$

$$0 - 3 - 5 - 6$$

- Vẽ bảng thể hiện khoảng cách từ đỉnh xuất phát đến các đỉnh còn lại

V	D
0	0
1	7
2	15
3	5
4	14
5	11
6	22