

Mathematics

PART - A

SINGLE ANSWER CORRECT:

- Let $f(x) = \begin{cases} 1+x, & x \in [0,2] \\ 3-x, & x \in (2,3] \end{cases}$. Suppose g(x) = f(f(x)) then
 - a) g(x) is discontinuous only at x = 1
 - b) g(x) is discontinuous only at x = 2
 - c) g(x) is discontinuous at both x = 1 and x = 2
 - d) g(x) is continuous everywhere

1. C

CONCEPT CODE: M120402

f(2) = 3, $f(2^+) = 1$ so f(x) is Discontinuous at x = 2. Sol: Now $f(x) = 2 \Rightarrow 1 + x = 2 \Rightarrow \boxed{x = 1} \rightarrow \text{Discontinuous}$.

- 2. Which of the following function is differentiable at x = 0?
 - a) |x|
- b) $|\sin x|$
- c) $\cos |x|$
- d) $\sin |x|$

2. C

CONCEPT CODE: M120405

Sol:

- Let $f(x) = (\sin \pi x)|x-1||x-2|$. Then 3.
 - a) f(x) is Not differentiable at x = 1
- b) f(x) is Not differentiable at x = 2
- c) f(x) is Not differentiable at x = 0,1,2 d) f(x) is Differentiable everywhere

3. D

CONCEPT CODE: M120405

Sol: Since at x = 1 and $2 \sin \pi x = 0$ So Differentiable at all $x \in R$. (Using Def. we can verify).

4.
$$f(x) = \begin{cases} x^2 + ax + 1, & x \text{ is Rational} \\ ax^2 + 2x + b, & x \text{ is Irrational} \end{cases}$$
. If $f(x)$ is continuous at $x = 1$ and $x = 2$. Then a and b equals

a)
$$a = \frac{1}{2}$$
, $b = 0$

b)
$$a = 0, b = \frac{1}{2}$$

c)
$$a = b = \frac{1}{2}$$

a)
$$a = \frac{1}{2}$$
, $b = 0$ b) $a = 0$, $b = \frac{1}{2}$ c) $a = b = \frac{1}{2}$ d) $a = \frac{1}{2}$, $b \in R$

4. A

CONCEPT CODE: M120405

Sol:
$$x^{2} + ax + 1 = ax^{2} + 2x + b$$

$$\Rightarrow (a-1)x^{2} + (2-a)x + (b-1) = 0$$

$$x = 1 \quad x = 2 \text{ (are roots)}$$
So,
$$\frac{b-1}{a-1} = 2 \text{ and } \frac{-(2-a)}{a-1} = 3$$

$$\Rightarrow a = \frac{1}{2}, b = 0$$

5. If a function f(x) is differentiable at x = 2 then which is FALSE?

a)
$$\lim_{h\to 0} \frac{f(2+h)-f(2)}{h}$$
 must exist and is finite

b)
$$\lim_{h\to 0} \frac{f(2+h)-f(2-h)}{h}$$
 must exist and is finite

c)
$$\lim_{h\to 0} f(2+h) - f(2) = 0$$

d)
$$\lim_{h \to 0} f(2+h) - f(2) \neq 0$$

5. D

CONCEPT CODE: M120408

Sol:
$$f(x)$$
 must be continuous at $x = 2$
So, $\lim_{x \to 0} f(2+x) = \lim_{x \to 0} f(2-x) = f(2)$

The number of points of Non-Differentiability of $f(x) = |x^2 + ex + \pi|$ is 6.

a) 4

b) 2

d) 0

6. B

7. If
$$f(x) = \begin{cases} \frac{x - |x|}{x}, & \text{when } x < 0 \\ 5x^2 + a, & \text{when } 0 \le x \le 1 \\ b\left(\frac{x^2 - 1}{x^2 - 3x + 2}\right), & \text{when } 1 < x < 3 \end{cases}$$
 is a continuous function on IR , then $(a, b) = a$ a) $\left(2, -\frac{7}{2}\right)$ b) $\left(2, -14\right)$ c) $\left(-\frac{7}{2}, -14\right)$ d) $\left(2, 7\right)$

7. A

CONCEPT CODE: M120402

f(x) is continuous on $R \Rightarrow f(x)$ is continuous at 0, 3 Sol: $\Rightarrow \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0) \text{ and } \lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = f(3)$ $\Rightarrow \lim_{x \to 0^{-}} \frac{x - |x|}{x} = \lim_{x \to 0^{+}} (5x^{2} + a) \text{ and } \lim_{x \to 3^{-}} \frac{b(x^{2} - 1)}{x^{2} - 3x + 2} = -14$ $\Rightarrow \lim_{x \to 0^{-}} \frac{2x}{x} = a \text{ and } b \lim_{x \to 3^{-}} \frac{x + 1}{x - 2} = -14 \Rightarrow a = 2, b = -7/2 \Rightarrow (a, b) = (2, -7/2).$

8. Let
$$f: IR \to IR$$
 be the function defined by $f(x) = \begin{cases} 5, & \text{if } x \le 1 \\ a + bx, & \text{if } 1 < x < 3 \\ b + 5x, & \text{if } 3 \le x < 5 \\ 30, & \text{if } x \ge 5 \end{cases}$ then f is

- a) continuous if a = 5 and b = 5 b) continuous if a = 0, b = 5
- c) continuous if a = -5, b = 10
 - d) not continuous for any value of a and b

8. D

Sol:
$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (a+bx) = a+3b, \quad \lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} (b+5x) = b+15$$
$$\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{-}} (b+5x) = b+25, \quad \lim_{x \to 5^{+}} f(x) = \lim_{x \to 5^{+}} (30) = 30$$

$$\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{-}} (b+5x) = b+25, \ \lim_{x \to 5^{+}} f(x) = \lim_{x \to 5^{+}} (30) = 30$$

$$\lim_{x \to 1^{-}} f(x) = 5, \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} a + bx = a + b$$

If f is continuous at 1 then a+b=5.

If f is continuous at 5 then $b + 25 = 30 \Rightarrow b = 5$ and hence a = 0

If f is continuous at 3 then $a+3b=b+15 \Rightarrow a+2b=15$ which is not true.

 \therefore f is not continuous at any values of a and b.

9. If
$$f: R \to R$$
 is defined by $f(x) = \begin{cases} \frac{1+3x^2-\cos 2x}{x^2}, & \text{for } x \neq 0 \\ k, & \text{for } x = 0 \end{cases}$ is continuous at $x = 0$, then $k = 0$ a) 1 b) 5 c) 6 d) 0

9. B

CONCEPT CODE: M120402

Sol: f(x) is continuous at 0

$$\Rightarrow f(0) = \lim_{x \to 0} f(x) \Rightarrow k = \lim_{x \to 0} \frac{1 + 3x^2 - \cos 2x}{x^2} = \lim_{x \to 0} \frac{6x + 2\sin 2x}{2x} = 3 + 2 = 5.$$

The value of $f(\pi)$ so that $f(x) = \frac{1 - \cos 7(x - \pi)}{x - \pi}$ is continuous at the point $x = \pi$ is 10.

a) 0

b) 1

10. A

Sol:
$$f(\pi) = \lim_{x \to \pi} f(x) = \lim_{x \to \pi} \frac{1 - \cos 7(x - \pi)}{x - \pi} = \lim_{x \to \pi} 7 \sin(x - \pi) = 7 \sin 0 = 0.$$

11. If
$$f: R \to R$$
 is defined by $f(x) = \begin{cases} \frac{\cos 3x - \cos x}{x^2} & \text{for } x \neq 0 \\ \lambda & \text{for } x = 0 \end{cases}$ and if f is continuous at $x = 0$,

then $\lambda =$

a) -2

c)-6

11. B

Sol:
$$f$$
 is continuous at $x = 0 \Rightarrow \lim_{x \to 0} f(x) = f(0)$

$$\Rightarrow \lambda = \lim_{x \to 0} \frac{\cos 3x - \cos x}{x^2} = \lim_{x \to 0} \frac{-3\sin 3x + \sin x}{2x} = \lim_{x \to 0} \frac{-9\cos 3x + \cos x}{2} = \frac{-9+1}{2} = -4.$$

12. Consider
$$f(x) = \frac{x^2}{|x|}, x \neq 0, f(x) = 0, x = 0$$

- a) f(x) is discontinuous at every $x \in R$ b) f(x) is continuous at every $x \in R$
- c) f'(x) exists in (-1, 1)
- d) f'(x) exists in (-2, 2)

12. B

CONCEPT CODE: M120402

If x > 0, f(x) = x, if x < 0, f(x) = -x is continuous everywhere. Sol:

- The function $f(x) = (x^2 1)|x^2 3x + 2| + \cos|x|$ is not differentiable at a) -1 b) 0 c) 1 d) 2 13.
- 13. D

CONCEPT CODE: M120408

Sol:
$$f(x) = (x+1)(x-1)|x-1||x-2| + \cos|x|$$

- Let $f(x) = \min\{x, x^2\}$, for every real x. Then 14. a) f is continuous for all xb) f is differentiable for all x
 - c) $f'(x) = 0 \ \forall \ x > 1$
- d) f is differentiable at 0, 1

14. A

CONCEPT CODE: M120408

f(x) is not differentiable at x = 0, x = 1Sol: f'(x) = 1, for x > 1.

15. If
$$f(x) = \frac{\sin(e^{x-2} - 1)}{\ln(x-1)}$$
, $x \ne 2$ is continuous at $x = 2$, then $f(2) = a$ a) 0 b) 2 c) 1 d) -2

15. C

Sol: By LH rule,
$$f(2) = \lim_{x \to 2} \frac{\cos(e^{x-2} - 1) \times (e^{x-2})}{\left(\frac{1}{x-1}\right)} = 1$$

If p and q are number of points of discontinuous and non-differentiable respectively, of the function 16. $f(x) = [2 + 3\sin x]$, where $x \in (-\pi, 2\pi)$, then the value of p + q is (where [x] is GIF)

- a) 34
- b) 32
- c) 30
- d) 28

16. C

CONCEPT CODE: M120408

Sol:
$$f(x) = 2 + [3\sin x]$$

 \therefore f is discontinuous whenever $3\sin x$ is an integer.

i.e.,
$$\sin x = -\frac{2}{3}, -\frac{1}{3}, 0, \frac{1}{3}, \frac{2}{3}, \frac{3}{3}$$

If $x \in (-\pi, 2\pi)$ (If $[3\sin x] = -3$, it is continuous).

$$\sin x = -\frac{2}{3} \text{ occurs 4 times}$$
$$= -\frac{1}{3} \text{ occurs 4 times}$$

=0 occurs 2 times

$$=\frac{1}{3}$$
 occurs 2 times

$$=\frac{2}{3}$$
 occurs 2 times

$$=\frac{3}{3}$$
 occurs 1 time

$$\therefore P = 15$$
 also $p = q$

17. If
$$f(x) = \begin{cases} e^x & \text{for } x < 1 \\ a - bx & \text{for } x \ge 1 \end{cases}$$
 is differentiable for $x \in R$, then

a)
$$a=1$$
, $b=e-1$ b) $a=0$, $b=e$ c) $a=0$, $b=-e$ d) $a=e$, $b=1$

b)
$$a=0$$
, $b=\epsilon$

c)
$$a = 0, b = -e$$

d)
$$a = e, b = 1$$

17. C

Sol:
$$f$$
 is continuous at $x = 1 \Rightarrow e' = a - b$
 f is differentiable at $x = 1 \Rightarrow e' = 0 - b \Rightarrow b = -e$
 $\Rightarrow a = 0$

- Which of the following statements are TRUE about a function $f: R \to R$ 18. (where $a \in R$)
 - a) f is continuous at $x = a \Rightarrow f$ is differentiable at x = a
 - b) f is differentiable at $x = a \Rightarrow f$ is continuous at x = a
 - c) f is not differentiable at $x = a \Rightarrow f$ is not continuous at x = a
 - d) f is not continuous at $x = a \Rightarrow f$ is differentiable at x = a

CONCEPT CODE: M120405

19. The number of non-differentiable points of $f(x) = |\sin 2x|$ where $x \in (0, 2\pi)$ is

a) 0

b) 1

c) 3

d) 4

19. C

CONCEPT CODE: M120408

Sol:
$$\sin 2x = 0 \Rightarrow x = \frac{\pi}{2}, \pi, \frac{3\pi}{2}$$

20. f(x) = x + |x|. Then f is

- a) Differentiable at all $x \in R$
- b) Differentiable at all $x \in R$ except at one point
- c) Differentiable at all $x \in R$ except at two points
- d) Differentiable at all $x \in R$ except at three points

20. B

CONCEPT CODE: M120408

Sol:
$$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ 2x & \text{if } x \ge 0 \end{cases}$$

PART - D

NUMERICAL ANSWER TYPE:

1. If the function $f: IR \to IR$ defined by $f(x) = \begin{cases} a\left(\frac{1-\cos 2x}{x^2}\right) & \text{, for } x < 0 \\ b & \text{, for } x = 0 \text{ is continuous at } x = 0, \\ \frac{\sqrt{x}}{\sqrt{4+\sqrt{x}}-2} & \text{, for } x > 0 \end{cases}$

then a+b=k, then the value of $\frac{20k}{9}$ is

1. 13.33

CONCEPT CODE: M120405

Sol: f(x) is continuous at $x = 0 \Rightarrow \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$

$$\Rightarrow \lim_{x \to 0^{-}} \frac{a(1-\cos 2x)}{x^{2}} = \lim_{x \to 0^{+}} \frac{\sqrt{x}}{\sqrt{4+\sqrt{x}}-2} = b \Rightarrow \lim_{x \to 0^{-}} \frac{2a\sin^{2} x}{x^{2}} = \lim_{x \to 0^{-}} \frac{\sqrt{x}(\sqrt{4+\sqrt{x}}+2)}{\sqrt{x}} = b$$
$$\Rightarrow 2a = 4 = b \Rightarrow a = 2, b = 4 \Rightarrow a+b=2+4=6=k.$$

2. The number of points in the interval (0, 2) at which $f(x) = |x - 0.5| + |x - 1| + \tan x$ is not differentiable is p then the value of $\frac{20p}{8}$ is

2.7.5

CONCEPT CODE: M120408

Sol: The function $f(x) = |x - 0.5| + |x - 1| + \tan x$ is not differentiable in (0, 2) at $x = 0.5, 1, \pi/2$. $\therefore p = 3$

- 3. Define $f(x) = \begin{cases} x^2 + bx + c & , x < 1 \\ x & , x \ge 1 \end{cases}$. If f(x) is differentiable at x = 1, then (b c) = -p, then the value of p^5 is
- 3.32

CONCEPT CODE: M120405

Sol:
$$f'(1+) = f'(1-)$$

 $b = -1, c = 1$
 $-p = b - c = -2$.

- 4. The number non-differentiable points of the function $f(x) = [\sin x]$ in the interval $(0, 4\pi)$ is
- 4. 5

CONCEPT CODE: M120405

Sol:
$$x = \frac{\pi}{2}, \pi, 2\pi, \frac{5\pi}{2}, 3\pi$$

- 5. Number of non-differential points of the function $f(x) = \left\{\frac{x}{2}\right\}$ in the interval (0,100) is
- 5.49

CONCEPT CODE: M120405

Sol: $\frac{x}{2}$ must be an integer $\Rightarrow x = 2, 4, 6, ..., 98$

Physics

PART - A

SINGLE ANSWER CORRECT:

Three rods of identical dimensions have thermal conductivities 3k, 2k and k, their arrangement and temperatures are shown. Temperature at their junction is

a)
$$\frac{200}{3}$$
 °C b) $\frac{200}{4}$ °C c) $\frac{200}{5}$ °C

b)
$$\frac{200}{4}$$
 °C

c)
$$\frac{200}{5}$$
 °C

d)
$$\frac{200}{6}$$
 °C

1. a

CONCEPT CODE: P111207

Sol.
$$\frac{3kA(100-\theta)}{l} = \frac{2kA(\theta-50)}{l} + \frac{kA(\theta-0)}{l}$$
$$\Rightarrow 6\theta = 400$$
$$\Rightarrow \theta = \frac{200}{3} \, ^{\circ}C$$

- A semicircular rod is joined at its ends to a rod of same material and same cross-sectional area. Their 2. junctions are maintained at different temperatures. The ratio of heat current through then is
 - a) $1:\pi$
- b) $\pi:1$
- c) $2:\pi$
- d) $\pi:2$

2. c

CONCEPT CODE: P111207

Sol.
$$i_1 : i_2 = \frac{kA\Delta\theta}{\pi r} : \frac{kA\Delta\theta}{2r}$$

= $\frac{1}{\pi} : \frac{1}{2} = 2 : \pi$

- A rod of length 1 m, cross sectional are $4 cm^2$ and thermal conductivity 42 J/ms °C is used to melt 3. ice. One end of the rod is placed in boiling water and other in ice. The mass of ice melt in one day is a) 216 g b) 432 g d) 864 g c) 648 g
- 3. b

Sol.
$$\frac{dQ}{dt} = \frac{kA\Delta\theta}{l} = \frac{Ldm}{dt}$$

$$\Rightarrow dm = \frac{kA\Delta\theta}{lL}dt \Rightarrow m = \frac{kA\Delta\theta \cdot t}{lL}$$

$$\Rightarrow m = \frac{42 \times 4 \times 10^{-4} \times 100 \times 86400}{1 \times 80 \times 4.2} = 432 g$$

4. Two spheres of same material and radius 1 : 4 has surface temperatures in the ratio 2 : 1. The ratio of their power radiation is

a)
$$\frac{1}{4}$$

b)
$$\frac{1}{2}$$

4. c

CONCEPT CODE: P111208

Sol. $P_1: P_2 = A_1 T_1^4 : A_2 T_2^4 = r_1^2 T_1^4 : r_2^2 T_2^4$ = $(r_1 T_1^2)^2 : (r_2 T_2^2)^2 = (1 \times 2^2)^2 : (4:1^2) = 1:1$

5. A body cools from 50° C to 40° C in 5 min in a surrounding of 20° C. Temperature of the body after another 5 min would be about

a)
$$\frac{100}{6}$$

b)
$$\frac{100}{3}$$

d)
$$\frac{200}{3}$$

5. b

CONCEPT CODE: P111208

Sol. $\frac{50^{\circ}C - 40^{\circ}C}{5\min} = k \left(45^{\circ}C - 20^{\circ}C\right)$ $\Rightarrow k = \frac{2}{25} / \min$ $\frac{40^{\circ}C - \theta^{\circ}C}{5\min} = \frac{2}{25\min} \left[\frac{40^{\circ}C + \theta^{\circ}C}{2} - 20^{\circ}C\right]$ $\Rightarrow 40 - \theta = \frac{2}{5} \times \frac{\theta}{2} \Rightarrow \theta = \frac{100^{\circ}}{3}C$

6. Two stars has maximum spectral emissive power at wavelengths $4000\,\mathrm{A}^\circ$ and $5000\,\mathrm{A}^\circ$. Ratio of their surface temperatures is

6. b

CONCEPT CODE: P111208

Sol. $T_1:T_2 = \frac{1}{\lambda_1}:\frac{1}{\lambda_2} = \frac{1}{4}:\frac{1}{5}$ = 5:4

7. A metal sphere of radius 10 cm, emissivity 0.1 and temperature 127°C is placed in a surrounding of temperature 27°C. The initial rate of loss of heat by the sphere is

7. c

CONCEPT CODE: P111208

Sol. $\frac{dQ}{dt} = e\sigma A \left(T^4 - T_0^4 \right) = 4\pi r^2 e\sigma \left(T^4 - T_0^4 \right)$ $= 4 \times 3.14 \times (0.1)^2 \times 0.1 \times 5.67 \times 10^{-8} \left(400^4 - 300^4 \right)$ = 12.5 W

8. It takes 5 min cool a liquid from $70^{\circ}C$ to $60^{\circ}C$ in a surrounding of $30^{\circ}C$. The additional time taken to cool it to $50^{\circ}C$ is

a) 5 min

b) 6 min

c) 7 min

d) 8 min

8. c

CONCEPT CODE: P111208

Sol.
$$\frac{\frac{70-60}{5}}{\frac{60-50}{t}} = \frac{k(65-30)}{k(55-30)}$$
$$\Rightarrow \frac{t}{5} = \frac{35}{25} = \frac{7}{5}$$
$$\Rightarrow t = 7 \min$$

9. Temperature of a metal sphere is maintained at 500 K, in an evacuated chamber at 300 K, with the help of a power source of 210 W. When the metal sphere is completely blackened then it requires a power of 700 W to maintain same temperature. Emissivity of that metal is

a) 0.3

b) 0.4

c) 0.5

d) 0.6

9. a

CONCEPT CODE: P111208

Sol.
$$P = e\sigma A \left(T^4 - T_0^4\right)$$

$$\Rightarrow \frac{210}{700} = \frac{e\sigma A \left(T^4 - T_0^4\right)}{\sigma A \left(T^4 - T_0^4\right)}$$

$$\Rightarrow e = \frac{3}{10} = 0.3$$

10. A body takes 30s to cool down from 60° C to 55° C when weather temperature is 45° C. Time taken by the body to cool down from 55° C to 50° C is about

a) 30 s

b) 40 s

c) 50 s

d) 60 s

10. c

CONCEPT CODE: P111208

Sol.
$$\frac{\Delta\theta}{\Delta t} = k \left(\theta_{av} - \theta_{0}\right)$$

$$\Rightarrow \frac{\frac{50^{\circ} \text{C}}{30 \text{ s}}}{\frac{5^{\circ} \text{C}}{t}} = \frac{k \left(57.5 - 45\right)^{\circ} \text{C}}{k \left(52.5 - 45\right)^{\circ} \text{C}}$$

$$\Rightarrow \frac{t}{30 \text{ s}} = \frac{12.5}{7.5} = \frac{5}{3} \Rightarrow t = 50 \text{ s}$$

11. Two cylindrical rods of same material has ratio of length 2 : 1 and ratio of diameters is 1 : 2. If temperature difference along their lengths is same, then the ratio of heat current through them is

a) 1:1

b) 1:2

c) 1:4

d) 1:8

11. d

CONCEPT CODE: P111207

Sol.
$$i = \frac{dQ}{dt} = \frac{kA\Delta\theta}{l} = \frac{k\pi d^2 \Delta\theta}{l}$$
$$\Rightarrow \frac{i_1}{i_2} = \left(\frac{d_1}{d_2}\right)^2 \cdot \frac{l_2}{l_1} = \left(\frac{1}{2}\right)^2 \cdot \frac{1}{2} = \frac{1}{8}$$

- 12. Two identical rods, when welded in series, carry 20 cal of heat at a particular temperature difference. If they are now welded in parallel, then the time taken to carry same amount of heat at same temperature difference is
 - a) 1 min
- b) 2 min
- c) 4 min
- d) 8 min

12. a

CONCEPT CODE: P111208

Sol.
$$i = \frac{dQ}{dt} = \frac{\Delta\theta}{R_{th}}$$
; in series $R_{th} = 2R$ and in parallel, $R_{th}^1 = \frac{R}{2}$

$$\Rightarrow t = \frac{Q \cdot R_{th}}{\Delta \theta} \Rightarrow \frac{t_2}{t_1} = \frac{R_{th}^1}{R_{th}} = \frac{\frac{R}{2}}{2R} = \frac{1}{4}$$

$$\Rightarrow t_2 = \frac{1}{4}t_1 = 1 \min$$

- 13. A wall of two layers of same thickness has ratio of conductivity 2:1. At steady state, temperature difference across the wall is $36^{\circ}C$, then temperature difference across the layer of higher conductivity is
 - a) 6°C
- b) 12°C
- c) 18°C
- d) 24°C

13. b

CONCEPT CODE: P111207

Sol. As the layers are in series,

$$\frac{2kA\left[\theta_{0}-\left(\theta_{0}-\theta\right)\right]}{l}$$

$$=\frac{kA\left[\left(\theta_{0}-\theta\right)-\left(\theta_{0}-36\right)\right]}{l}$$

$$\Rightarrow 2\theta=36-\theta$$

$$\Rightarrow \theta=\frac{36}{3}=12^{\circ}C$$

- 14. A slab consists of two parallel layers of copper and brass of same thickness having ratio of thermal conductivities 4:1. If free face of copper and brass are kept at 0°C and 100°C respectively then temperature of the interface is
 - a) 20°C
- b) 40°C
- c) 60°C
- d) 80°C

14. a

Sol.

$$\frac{kA(100 - \theta)}{l} = \frac{4kA(\theta - 0)}{l}$$

$$\Rightarrow 100 = 5\theta$$

$$\Rightarrow \theta = 20^{\circ} C$$

It takes 6 h to grow ice from 0 to 1 cm on a lake when atmospheric temperature is -10° C. The time 15. taken to grow thickness of ice from 1 cm to 2 cm is

- a) 6 h
- b) 12 h
- c) 18 h
- d) 24 h

15. c

CONCEPT CODE: P111207

Sol.
$$t_1: t_2 = y_2^2 - y_1^2: y_3^2 - y_2^2$$

= $1^2 - 0^2: 2^2 - 1^2 = 1:3$
 $\Rightarrow t_2 = 3t_1 = 18h$

16. The ratio of lengths of two rods is 1 : 2 and the ratio of coefficient of expansions is 2:3.The first rod is heated through 60°C. Find the temperature through which the second rod is to be heated so that its expansion is twice that of first is

- a) 60°C
- b) 40°C
- d) 10°C

16. b

CONCEPT CODE: P111201

Sol.
$$\ell_2^1 = 2\ell_1^1$$

$$\ell_2 = (1 + \alpha_2 \Delta t) = 2\ell_1 (1 + \alpha_1 \Delta t)$$

$$3 \cdot \Delta t = 2.60$$

$$\Delta t = 40^{\circ} \text{C}$$

A wire of length 60 cm is bent into a circle with a gap of 1 cm at its ends. On heating it by 100°C, 17. the length of the gap increases to 1.02~cm. α of material of wire is

- a) $2 \times 10^{-4} / {}^{\circ}\text{C}$
- b) 4×10^{-4} /°C c) 6×10^{-4} /°C d) 1×10^{-4} /°C

17. a

CONCEPT CODE: P111201

Sol.
$$\alpha = \frac{\Delta \ell}{\ell \Delta t} = \frac{0.02}{1 \times 10^{+2}}$$
$$\alpha = 2 \times 10^{-4} / {}^{\circ}\text{C}$$

18. A metal metre scale gives correct measurement at 0°C. It is generally used at a temperature of 40° C. The correction to be made for every metre is ($\alpha = 10^{-6} / 1^{\circ}$ C)

a) 4×10^{-5} m

- b) 4×10^{-5} m to be added
- c) 4×10^{-5} m must be deducted
- d) None of the above

18. b

CONCEPT CODE: P111201

Sol.
$$\Delta \ell = \ell \alpha \Delta t$$

= $1 \times 10^{-6} \times 40$
= 4×10^{-5} m.

- A metal rod has a length of 1 m at 30° C. α of metal is $2.5 \times 10^{-5}/^{\circ}$ C. The temperature at which it 19. will be shortened by 1 mm is
 - a) -30° C
- b) -40°C
- c) -10° C d) 10° C

19. c

CONCEPT CODE: P111201

Sol.
$$\alpha = \frac{\Delta \ell}{\ell \Delta t}$$
$$2.5 \times 10^{-5} = \frac{-1 \times 10^{-3}}{1 \times (t - 30)}$$
$$t - 30 = -40$$
$$t = -10^{\circ} \text{C}$$

- 20. Density of a substance at 0°C is 10.6 gm/c.c. and at 100°C is 10 gm/c.c. coefficient of linear expansion of solid is
 - a) 0.0006/°C
- b) 0.0004/°C
- c) 0.0003/°C
- d) 0.0002/°C

20. d

CONCEPT CODE: P111201

Sol.
$$\gamma = \frac{d_0 - d_t}{d_t (\Delta t)}$$

$$\gamma = \frac{10.6 - 10}{10 \times 100}$$

$$\gamma = 0.6 \times 10^{-3} / ^{\circ} \text{C}$$

$$\gamma = 0.0006$$

$$\alpha = 0.0002 / ^{\circ} \text{C}$$

PART - D

NUMERICAL ANSWER TYPE:

- Three metal rods of same lengths and same area of cross section having conductivities 1, 2, 6 units 1. are connected in series. Then their effective conductivity will be x units, the value of x is
- 1.1.80

Sol.
$$\frac{3}{x} = \frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3}$$

 $\frac{3}{x} = \frac{1}{1} + \frac{1}{2} + \frac{1}{6}$ $x = \frac{18}{10} = 1.8$

2. A body takes 8 minutes to cool from $90^{\circ}C$ to $80^{\circ}C$ in a surrounding of temperature $25^{\circ}C$. The time taken by it to cool from $80^{\circ}C$ to $70^{\circ}C$ in the same surroundings is in minutes

2.9.60

CONCEPT CODE: P111208

Sol.
$$\frac{\theta_1 - \theta_2}{t} = k \left(\frac{\theta_1 + \theta_2}{2} - \theta_3 \right)$$

3. If the co-efficient of cubical expansion is x times co-efficient of superficial expansion then the value of x is

3. 1.50

CONCEPT CODE: P111201

Sol. Cubical expansion = x. Superficial expansion $\gamma = x \cdot \beta$ $3\alpha = x \cdot 2\alpha \implies x = \frac{3}{2} = 1.50$

4. Up on heating, the length of the side of a cube changes by 2%. The volume of cube changes by x%, the value of x is

4. 6.00

CONCEPT CODE: P111201

Sol.
$$\frac{\Delta V}{V} \times 100 = 3 \cdot \frac{4\ell}{\ell} \times 100$$
$$= 3 \times 2\% = 6\%$$

5. In steady state condition, the temperatures at the two ends of a metal rod of length 25 cm are 100° C and 0° C. Then temperature at a point 8 cm from the hot end is __ $^{\circ}$ C

5. 68.00

Sol.
$$\frac{100 - \theta}{8} = \frac{\theta}{17}$$

Chemistry

PART - A

SINGLE ANSWER CORRECT:

- 1. How many different alkenes are formed when 2 chlorobutane is treated with ethanolic solution of KOH ?
 - a) 1 b) 2
- c) 3
- d) 4

1. c

Concept code: C111705

Sol:
$$C_2H_5OH$$
 (1) + (Cis+trans)

2. What is the major dehydration product for the following reaction:

a) b)
$$H_3Po_4$$
Heat

b) c) d)

2. d

Sol:
$$H^+$$
 H^+ H^+ H^+

3. Which of the following compounds will lose optical activity after the reaction.

a)
$$+ Pd/BaSO_4 \xrightarrow{H_2}$$

b) $C = C-CH_3 \xrightarrow{Na} NH_3 (I)$

c) $C = C-CH_3 + Pd/BaSO_4 \xrightarrow{H_2}$

d) $CH_3-C = C-CH_2$ $C = C-CH_3 \xrightarrow{Na} (NH_3(I))$

3. b

Concept code: C111705

4. In which of the following reactions only single isomer of alkene is formed?

a)
$$C_6H_5$$
— CH_2 — CH_2 — CH_2 — Br
 $EVACUAL EVACUAL EVACU$

4. a

Concept code: C111705

Sol: It has only one type of β -H and the product alkene does not have stereo isomers

5. Consider the following reaction

Br
$$CH_3$$
 KOH Alkene ethanol

The correct statement concerning product of the above reaction is

- a) only single alkene is formed
- b) a pair of geometrical isomers are formed
- c) a pair of enantiomers in equal amounts is formed
- d) a pair of diastereomers in equal amount is formed

5. c

Concept code: C111705

Sol:
$$I$$
 H H H

(I) and (II) are enantiomers formed in equal amounts

Which of the following reactions cannot produce an alkene 6.

a)
$$CH_3$$
— CH_2 — OH — $Conc. H_2SO_4$ \longrightarrow Δ

b)
$$CH_3$$
— CH_2 — OH — Al_2O_3 Δ

c)
$$CH_3$$
— C — CH_3 $(Ph_3)_3$ P— CH_2

d)
$$E_{H_3C}$$
 $C_2H_2O'Na^+$ Δ

6. d

Concept code: C111705

Sol: Antielimination is favourable in E_2 .

7. What is the major product of the reaction given below:?

meso – 2, 3 – dichlorobutane +
$$NaI_{(aq)}$$
 $\xrightarrow{acetone}$

a)
$$cis - 2$$
 – butene

7. c

Concept code: C111705

Sol: Anti dehalogenation.

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3

Trans-2-butene

8. Which of the following is not the product of dehydration of

a)
$$b$$
 c d

8. a

Concept code: C111705

Possible products.

9. In the reaction below X is

Neopentyl alcohol $\xrightarrow{H_2SO_4} X$

- a) 2 methyl pentane
- c) 2 methylbut 2 ene

- b) 2 methyl pent 2 ene
- d) Neopentane

9. c

Concept code: C111705

2 - methyl But-2-ene

10. Which of the following reactions is incorrect for Kolbe's electrolysis?

$$\begin{array}{c|c}
H_2C \longrightarrow COO^{\mathsf{T}}K^{\mathsf{T}} & \longrightarrow H_2C \Longrightarrow CH_2 \\
A) & \downarrow & \downarrow & \downarrow & \downarrow \\
H_2C \longrightarrow COO^{\mathsf{T}}Na^{\mathsf{T}} & \downarrow & \downarrow \\
COO^{\mathsf{T}}Na^{\mathsf{T}} & \downarrow & \downarrow \\
COO^{\mathsf{T}}Na^{\mathsf{T}} & \downarrow & \downarrow \\
COO^{\mathsf{T}}K^{\mathsf{T}} & \downarrow \\
COO^{\mathsf{T$$

10. d

Concept code: C111705

Sol: Sterically crowded free radical is formed.

11. The main product of the following reaction is $C_6H_5CH_2CH(OH)CH(CH_3)_2 \xrightarrow{Conc. H_2SO_4}$

11. b

12. Trans 2 – Phenyl – 1 – bromo cyclopentane on reaction with alcoholic KOH produces.

a) 4 – phyenyl cyclopentene

b) 2 – phenyl cyclopentene

c) 1 – phenyl cyclopentene

d) 3 – phenyl cyclopentene

12. d

Concept code: C111705

Concept code:

3 – phenyl cyclopentene

13. c

Concept code: C111705

Sol: Debromination

14. Which of the following statements is incorrect?

a) $3^{\circ}R - X > 2^{\circ}R - X > 1^{\circ}(R - X)$ [E₁ (or) E₂]

b) rate $\propto [R - X]$ (Unimolecular elimination)

c) rate $\propto [R - X] [OH^-]$ (Bimolecular elimination)

d) $I^- < Br^- < Cl^-$ (Leaving ability)

14. D

Concept code: C111705

Sol: Leaving ability $I^- > Br^- > Cl^-$

15. CH_3 CH_2 CH_2 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 $CH_$

15. d

Sol:
$$OH^{-}$$
 CH_{3} CH_{2} CH_{3} CH_{3

16. Which of the following reaction is incorrect?

a)
$$CH_3 - CHBr_2 + 2Zn + Br_2CH - CH_3$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$
b)
$$RaNH_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH_3 + H_2 - CH_3 + H_3C$$

$$CH_3 - CH_3 + H_2 - CH_3 + H_3C$$

$$CH_3 - CH_3 + H_2 - CH_3 + H_3C$$

$$CH_3 - CH_3 + H_2 - CH_3 + H_3C$$

$$CH_3 - CH_3 + H_3C$$

$$CH$$

16. c

Concept code: C111705

Sol: Hoffman product is major.

17. The major product obtained in acid catalyzed dehydration

 H_3C

CH₂OH

is

17. c

18. Which of the following reaction cannot produce propene as one of the important organic product?

a)
$$H_3C$$
— $CH_3 + Zn(Hg)$ \xrightarrow{HCl}
b) H_3C — CH_2 — CH_2 — $N(CH_3)_3Br$ — \xrightarrow{AgOH}
c) H_3C — CH — CH_2 — $COOK(aq)$ $\xrightarrow{Electrolysis}$
 $COOK$
d) H_3C — $CHO + (C_6H_5)_3P$ = CH_2 $\xrightarrow{\Delta}$

18. a

Concept code: C111705

Sol:
$$H_3C$$
— C — $CH_3 + Zn(Hg)$ — HCl H_3C — CH_2 — CH_3

19. Which of the following reaction produce saytzeff product as major?

19. d

Sol:
$$CH_3 - CH_2 - CH_2 - Br \xrightarrow{C_2H_5O^-Na^+} CH_3 - CH = CH_2$$

- 20. Correct statement for E₂ reaction is
 - a) It is two step process

- b) Rearrangement is possible
- c) Weak base is favourable
- d) It is one step concerted process

20. D

Concept code: C111705

Sol: It is one step concerted process

PART - D

NUMERICAL ANSWER TYPE:

How many of the following alcohols can undergo dehydration faster than $C_2H_5O\!H$. 1.

1.5.00

Concept code: C111705

Sol: All react faster.

How many of the following reactions are produce alkene? 2.

1)
$$H_3C$$
— CH_3 Conc. H_2SO_4
 CH_3

2)
$$H_3C$$
— CH_2 — CH_2 — CH_2 — OH — OH — Δ

3)
$$H_3C$$
— CH_2 — OH — $Conc. H_2SO_4$ \longrightarrow Δ

3)
$$H_3C$$
— CH_2 — OH Δ

$$CH_3$$

$$COnc. H_2SO_4$$

$$CH_3$$

$$H_2C$$
— OH

$$COnc. H_2SO_4$$

$$\Delta$$

$$Conc. H_2SO_4$$

$$\Delta$$

$$Conc. H_2SO_4$$

$$\Delta$$

$$H_3C$$
 CH_3 CH_3 $Conc. H_2SO_4$ Δ

7)
$$H_3C$$
— CH_2 — CH_2 — CH — CH_3
 CH_3

2.8.00

Concept code: C111705

Sol:
$$H_3C$$
— CH_3 H_3C — CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 $NO-\beta-Hydrogen$

3. How many of the following statements is/are correct?

a)
$$\bigcirc$$
OH \bigcirc OH \bigcirc OH \bigcirc OH \bigcirc OH \bigcirc P \bigcirc Q) \bigcirc (R) \bigcirc (S) \bigcirc P \bigcirc Q \bigcirc R \bigcirc S [Dehydration rate] \bigcirc OH

Δ

e)
$$H_3C$$
— C —OH $= \frac{20\% \text{ Conc. } H_2SO_4}{85 - 90^{\circ}C}$ $= H_3C$ — C = $= CH_2 + H_2O$

f)
$$H_3C$$
— CH — CH_3 $\xrightarrow{Conc. H_2SO_4}$ $\to H_3C$ — CH = CH_2 + H_2O OH

3.4.00

Concept code: C111705

Sol: a, d, e, f are correct.

c, b are incorrect

$$\begin{array}{c|c} OH \\ \hline \\ H_2SO_4 \\ \hline \\ OH \\ \end{array} \begin{array}{c} (Conjugated \\ system) \\ \hline \\ OH \\ \end{array}$$

4.
$$H_3C - CH_2 \xrightarrow{\bigoplus_{O \ominus}} CH_3 \xrightarrow{\Delta} X$$
 is alkene. Find $Y = \frac{M.W \text{ of } X}{7} + 11.28$.

4. 15.28

Concept code: C111705

Sol:
$$H_3C \longrightarrow CH \longrightarrow N \longrightarrow CH_3 \longrightarrow H_2C \longrightarrow CH_2 + HONMe_2$$

$$M.W = 28$$

$$Y = \frac{28}{7} + 11.28 = 15.28$$

5.
$$H_3C$$
— CH — CH_3 $Conc. H_2SO_4$ X + H_2O (alkene)

Br
$$CH_3$$

alcoholic KOH Y + KBr + H_2O (major)

No. of α H hydrogen in X (major) + No. of α hydrogen in Y (major) + 0.58

5. 10.58

$$0.58 + X(\alpha H) + Y(\alpha H) = 0.58 + 7 + 3 = 10.58$$