AG 1.1 - 1 Rationale Zahlen - MC - BIFIE

1. Gegeben sind fünf Zahlen.

____/1

Kreuze diejenigen beiden Zahlen an, die aus der Zahlenmenge $\mathbb Q$ sind!

AG 1.1

0,4	\boxtimes
$\sqrt{-8}$	
$\frac{\pi}{5}$	
0	\boxtimes
e^2	

AG 1.1 - 2 Rationale Zahlen - MC - BIFIE

2. Gegeben sind folgende Zahlen: $-\frac{1}{2}$; $\frac{\pi}{5}$; $3, \overline{5}$; $\sqrt{3}$; $-\sqrt{16}$.

/1

Kreuze diejenige(n) Zahl(en) an, die rational ist/sind!

AG 1.1

$-\frac{1}{2}$	\boxtimes
$\frac{\pi}{5}$	
$3, \overline{5}$	\boxtimes
$\sqrt{3}$	
$-\sqrt{16}$	\boxtimes

AG 1.1 - 3 Ganze Zahlen - MC - BIFIE

3. Kreuze diejenige(n) Zahl(en) an, die aus der Zahlenmenge $\mathbb Z$ ist/sind!

 ${\bf AG~1.1}$ - 4 Aussagen über Zahlen - ${\bf MC}$ - ${\bf BIFIE}$

4. Gegeben sind Aussagen über Zahlen.

____/1

____/1
AG 1.1

Welche der im Folgenden angeführten Aussagen gelten? Kreuze die beiden zutreffenden Aussagen an.

Jede reelle Zahl ist eine irrationale Zahl.	
Jede reelle Zahl ist eine komplexe Zahl.	\boxtimes
Jede rationale Zahl ist eine ganze Zahl.	
Jede ganze Zahl ist eine natürliche Zahl.	
Jede natürliche Zahl ist eine reelle Zahl.	\boxtimes

AG 1.1 - 5 Menge von Zahlen - MC - Matura 2015/16 - Haupttermin

5. Die Menge $M = \{x \in \mathbb{Q} \mid 2 < x < 5\}$ ist eine Teilmenge der rationalen Zahlen. _____/1 AG 1.1

Kreuze die beiden zutreffenden Aussagen an.

4,99 ist die größte Zahl, die zur Menge M gehört.	
Es gibt unendlich viele Zahlen in der Menge M , die kleiner als 2,1 sind.	\boxtimes
Jede reelle Zahl, die größer als 2 und kleiner als 5 ist, ist in der Menge M enthalten.	
Alle Elemente der Menge M können in der Form $\frac{a}{b}$ geschrieben werden, wobei a und b ganze Zahlen sind und $b \neq 0$ ist.	×
Die Menge M enthält keine Zahlen aus der Menge der komplexen Zahlen.	

AG 1.1 - 6 Zahlenmengen - MC - MK

6. Welche der unten aufgelisteten Zahlenmengen entspricht jener Zahlenmenge: ____/1 $M = \{x \in \mathbb{N}_g \,|\, 2 < x < 5\}?$ AG 1.1

Kreuze die entsprechende(n) Zahlenmenge(n) an.

{2,3,4,5} {3,4} {4} ⊠ {3} {3,4,5}

AG 1.1 - 7 Anetas Behauptungen - MC - MK

7. Sherif und Aneta haben beim Üben für die Schularbeit fünf Behauptungen _____/1 über die verschiedenen Zahlenmengen aufgestellt, leider sind nicht alle richtig. AG 1.1 Kreuze die beiden richtigen Aussagen an.

Jede natürliche Zahl kann auch als Bruchzahl dargestellt werden.	\boxtimes
Jede Dezimalzahl kann auch als Bruchzahl dargestellt werden.	
Die Zahl π ist eine rationale Zahl.	
Jede nichtnegative ganze Zahl ist auch eine natürliche Zahl.	×
Die rationalen Zahlen bestehen ausschließlich aus positiven Zahlen.	

AG 1.1 - 8 Abgeschlossene Zahlenmengen - MC - MK

8. Eine Zahlenmenge M heißt abgeschlossen bezüglich der Addition (Multiplikation), wenn die Summe (das Produkt) zweier Zahlen aus M wieder in M AG 1.1 liegt. Welche der folgenden Mengen sind abgeschlossen gegenüber der Addition? Kreuze die entsprechende(n) Zahlenmenge(n) an.

AG 1.1 - 9 Eigenschaften von Zahlen - MC - Matura 2015/16

- Nebentermin 1

9. Nachstehend sind Aussagen über Zahlen und Zahlenmengen angeführt.

AG 1.1

Kreuze die beiden zutreffenden Aussagen an.

Die Quadratwurzel jeder natürlichen Zahl ist eine irrationale Zahl	
Jede natürliche Zahl kann als Bruch in der Form $\frac{a}{b}$ mit $a \in \mathbb{Z}$ und $b \in \mathbb{Z} \setminus \{0\}$ dargestellt werden.	
Das Produkt zweier rationalen Zahlen kann eine natürliche Zahl sein.	
Jede reelle Zahl kann als Bruch in der Form $\frac{a}{b}$ mit $a \in \mathbb{Z}$ und $b \in \mathbb{Z} \setminus \{0\}$ dargestellt werden.	
Es gibt eine kleinste ganze Zahl.	

AG 1.1 - 10 Positive rationale Zahlen - MC - Matura 2013/14 Haupttermin

10. Gegeben ist die Zahlenmenge \mathbb{Q}^+ .

____/1

Kreuze jene beiden Zahlen an, die Elemente dieser Zahlenmenge sind!

mente dieser Zahlenmenge sind!

AG 1.1

$\sqrt{5}$	
$0.9 \cdot 10^{-3}$	\boxtimes
$\sqrt{0,01}$	
$\frac{\pi}{4}$	
$-1,41\cdot10^3$	

AG 1.1 - 11 Aussagen über Zahlenmengen - MC- Matura 2013/14 1. Nebentermin

11. Untenstehend sind fünf Aussagen über Zahlen aus den Zahlenmengen $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ _____/1 und \mathbb{R} angeführt. AG 1.1

Kreuze die beiden Aussagen an, die korrekt sind!

Reelle Zahlen mit periodischer oder endlicher Dezimaldarstellung sind rationale Zahlen.	
Die Differenz zweier natürlicher Zahlen ist stets eine natürliche Zahl.	
Alle Wurzelausdrücke der Form \sqrt{a} für $a \in \mathbb{R}$ und $a > 0$ sind stets irrationale Zahlen.	
Zwischen zwei verschiedenen rationalen Zahlen a,b existiert stets eine weitere rationale Zahl.	
Der Quotient zweier negativer ganzer Zahlen ist stets eine positive ganze Zahl.	

AG 1.1 - 12 Ganze Zahlen - MC - Matura 2016/17 - Haupttermin

12. Es sei a eine positive ganze Zahl.

AG 1.1

Welche der nachstehenden Ausdrücke ergeben für $a \in \mathbb{Z}^+$ stets eine ganze Zahl?

Kreuze die beiden zutreffenden Ausdrücke an.

a^{-1}	
a^2	
$a^{\frac{1}{2}}$	
$3 \cdot a$	\boxtimes
$\frac{a}{2}$	

AG 1.1 - 13 Zahlenmengen - MC - Matura NT 116/17

13. Untenstehend werden Aussagen über Zahlen aus den Zahlenmengen $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ und \mathbb{C} getroffen.

AG 1.1

Kreuze die zutreffende(n) Aussage(n) an!

Jede reelle Zahl ist eine rationale Zahl.	
Jede natürliche Zahl ist eine rationale Zahl.	
Jede ganze Zahl ist eine reelle Zahl.	\boxtimes
Jede rationale Zahl ist eine reelle Zahl.	
Jede komplexe Zahl ist eine reelle Zahl.	