Entrada / Salida I: Módulo de E/S

Componentes básicos de un computador

Módulo genérico de un módulo de E/S

Diagrama de bloques de un dispositivo externo

Diagrama de bloques de un módulo/controlador de E/S Interface to Interface to System Bus **External Device** Data External **Data Registers** Device Data Status Interface Lines Logic Status/Control Registers Control Address ▶ Data Lines External I/O Device Status Logic Interface Control Logic Control Lines

Registros del controlador de entrada/salida

El controlador tiene un conjunto de registros a los cuales la CPU puede acceder mediante instrucciones de Lenguaje Máquina (de la misma forma que accede a registros internos o a memoria).

Estos registros pueden ser, en general de 3 tipos:

Registro de estado:

Mantiene información sobre la situación en la que se encuentra el periférico.

Por ejemplo, si se ha tecleado un dato o no, si ha terminado la escritura de cierta información en el disco, etc.

El contenido de este registro es *leído* por la CPU cuando necesita conocer este tipo de información.

Registro de control:

La CPU *escribe* en él la información que le indica al controlador de qué forma ha de trabajar el periférico, o cuál ha de ser la operación a realizar.

Registro de datos:

El controlador deja aquí la información que recibe del periférico para que sea recogida por la CPU o viceversa. Por ejemplo, el carácter del teclado, o el carácter a escribir en el disco, etc.

Registros visibles e invisibles al lenguaje máquina

Tres técnicas para la entrada de un bloque de datos

Arquitectura de Computadores y Periféricos

E/S mapeada en memoria y mapa de E/S aislado

Suponemos que tenemos un teclado que tiene 2 registros (datos y estado/control)

516 y 517 son posiciones de memoria

ADDRESS	INSTRUCTION	OPERAND	COMMENT
200	Load AC	"1"	Load accumulator
	Store AC	517	Initiate keyboard read
202	Load AC	517	Get status byte
	Branch if Sign = 0	202	Loop until ready
	Load AC	516	Load data byte

(a) Memory-mapped I/O

ADDRESS 201 202 203	INSTRUCTION Load AC OUT IN	OPERAND "1" 517 517	COMMENT Load accumulator AC-> Keyboard status /Control register . Initiate Keyboard read Keyboard status /Control register -> AC
204	Branch if sign = 0	203	Loop until ready
205		516	Keyboard data register -> AC . Load data byte

(b) Isolated I/O

Arquitectura de Computadores y Periféricos

Ejemplo 1: de E/S mapeada en memoria

Supongamos que disponemos de un teclado y de una memoria RAM de 26 palabras

- @ registro datos = 1XXXX11 (lectura)
- @ registro control = 1XXXX11 (escritura)
- @ registro estado = 1XXXX10
- @ RAM = 0XXXXXX

Se dice que los registros del controlador están mapeados en memoria:

- Registro de datos mapeado en 1XXXX11,
- Registro de control mapeado en 1XXXX11,
- Registro de estado mapeado en 1XXXX10,

Ejemplo 2: Mapa de memoria

E/S aislada

RAM

ROM

FFFFh

8000h

7FFFh

0000h

MAPA DE E/S

Registros E/S

00h

FFh

IO/ M = 0

