# Modelo predictivo de días de estancia hospitalaria como herramienta para la optimización de recursos

Proyecto integrador

# Inspira Crea Transforma

Gustavo Rubio Juan Pablo Bertel Gustavo Jerez



# Planteamiento del problema

El objetivo principal del proyecto es estimar la duración de la estancia hospitalaria de los pacientes en función de variables clínicas y operativas. La estancia hospitalaria es un indicador clave de la eficiencia hospitalaria y está asociada a costos, uso de recursos y calidad de atención. Este análisis tiene el potencial de optimizar la gestión hospitalaria y prever necesidades operativas

¿Cómo podemos predecir la duración total de la estancia hospitalaria de un paciente utilizando información clínica y operativa disponible durante las primeras 24 horas de la admisión del paciente?



# Metodología CRISP-DM





# **Arquitectura**



#### **Etapa 1- Asegurar la calidad del dataset**

- Definición de variables de modelación y variable de respuesta
- Separación de variables numéricas y categóricas para análisis
- Limpieza de texto en variables categóricas
- Eliminación de registros nulos y duplicados

|       | estancia_en_uci | edad         | costo_operativo_estimado | peso_ir_estimado |
|-------|-----------------|--------------|--------------------------|------------------|
| count | 78052.000000    | 78052.000000 | 7.805200e+04             | 78052.000000     |
| mean  | 1.458335        | 41.395711    | 1.743718e+07             | 1.820014         |
| std   | 5.720490        | 27.512572    | 2.576580e+07             | 1.777316         |
| min   | 0.000000        | 0.000000     | 2.296900e+02             | 0.000000         |
| 25%   | 0.000000        | 15.000000    | 4.607076e+06             | 0.636500         |
| 50%   | 0.000000        | 41.000000    | 9.537359e+06             | 1.360200         |
| 75%   | 0.000000        | 65.000000    | 1.942217e+07             | 2.404025         |
| max   | 295.000000      | 128.000000   | 6.484755e+08             | 22.457400        |

|                          | estancia_en_uci | edad     | costo_operativo_estimado | peso_ir_estimado | estancia_total |
|--------------------------|-----------------|----------|--------------------------|------------------|----------------|
| estancia_en_uci          | 1.000000        | 0.000672 | 0.674788                 | 0.527176         | 0.594789       |
| edad                     | 0.000672        | 1.000000 | 0.072235                 | 0.069794         | 0.050194       |
| costo_operativo_estimado | 0.674788        | 0.072235 | 1.000000                 | 0.497779         | 0.816013       |
| peso_ir_estimado         | 0.527176        | 0.069794 | 0.497779                 | 1.000000         | 0.424316       |
| estancia_total           | 0.594789        | 0.050194 | 0.816013                 | 0.424316         | 1.000000       |



# **Etapa 2 - Análisis exploratorio de datos Feats numéricas**





# **Etapa 2 - Análisis exploratorio de datos Feats numéricas**



| Frecuencia       | TC y P    | osición      | Dispersión y Forma | Normalidad |
|------------------|-----------|--------------|--------------------|------------|
| Tendencia cent   | ral       | Posición     |                    |            |
|                  | Resultado |              | Resultado          |            |
| Medida           |           | Medida       |                    |            |
| Moda             | 0.23      | Mínimo       | 0.00               |            |
| Media            | 1.83      | Percentil 1  | 0.03               |            |
| Media Armónica   | 0.00      | Percentil 5  | 0.13               |            |
| Media Geométrica | 0.00      | Percentil 10 | 0.25               |            |
| Media Cuadrática | 2.56      | Percentil 25 | 0.64               |            |
| Media Trunc.(5%) | 1.62      | Percentil 50 | 1.37               |            |
| Media IQ         | 1.42      | Percentil 75 | 2.42               |            |
| Media Wins.(5%)  | 1.73      | Percentil 90 | 3.86               |            |
| Trimedia         | 1.45      | Percentil 95 | 5.23               |            |
| Mediana          | 1.37      | Percentil 99 | 8.56               |            |
| Mid Range        | 11.23     | Máximo       | 22.46              |            |
| Mid Hinge        | 1.53      |              |                    |            |



#### Etapa 2 - Análisis exploratorio de datos

#### **Feats categóricas**





#### **Etapa 3 - Ingeniería de características**

#### Remover outliers de feats numéricas



¿Por qué no utilizar la distancia de Mahalanobis?



#### Etapa 3 - Ingeniería de características

Remover outliers de feats numéricas

**DBSCAN** 

DBSCAN Clustering (Proyección PCA )

Resultados de DBSCAN:

Coeficiente de Silueta: 0.8264040136567306 Índice de Davies-Bouldin: 0.5889918342636833



**Etapa 3 - Ingeniería de características** 

Remover outliers de feats categóricas

Multiple Correspondence Analysis (MCA)





# **Etapa 3 - Ingeniería de características Remover outliers calculados**

Outliers de variables numéricas - Mahalanobis: 4450

Outliers de variables numéricas - DBSCAN: 406

Outliers de variables categóricas - One Hot: 2092

Outliers de variables categóricas - Factorización: 2561

Registros del dataset inicial: 76258

Registros del dataset sin outliers: 71228

Porcentaje de datos removidos como outliers: 6.6%

|             | estancia_total |
|-------------|----------------|
| count       | 71228.000000   |
| mean        | 9.174426       |
| std         | 9.826989       |
| min         | 0.000000       |
| 1%          | 0.000000       |
| 10%         | 2.000000       |
| 20%         | 3.000000       |
| 25%         | 3.000000       |
| 40%         | 5.000000       |
| 50%         | 6.000000       |
| <b>75</b> % | 11.000000      |
| 90%         | 21.000000      |
| 95%         | 30.000000      |
| 99%         | 54.000000      |
| max         | 54.000000      |

También se acota la variable de respuesta por encima percentil 99 (Winsorizing)



#### **Etapa 4 - Preparación de los datos**

- Particionar el dataset

Porcentaje de datos en partición train: 90.0% - registros: 64105 Porcentaje de datos en partición test: 10.0% - registros: 7123

- Reemplazar moda en categorías con poca frecuencia
- Estandarizar datos de entrenamiento
- Validar multicolinearidad en data de entrenamiento

|   | Variable                 | VIF      |
|---|--------------------------|----------|
| 0 | ir_cdm                   | 1.181699 |
| 1 | ir_grd_base              | 2.939995 |
| 2 | nivel_de_complejidad     | 2.304809 |
| 3 | procedimiento_principal  | 1.592875 |
| 4 | diagnostico_principal    | 1.322133 |
| 5 | estancia_en_uci          | 2.112041 |
| 6 | edad                     | 1.038850 |
| 7 | costo_operativo_estimado | 2.187669 |
| 8 | peso_ir_estimado         | 1.956964 |



#### **Etapa 5 - Entrenamiento del modelo**

Torneo de modelos

Torneo 3: Removiendo outliers en todo el dataset - Mejor torneo

· Feats numéricas: DBSCAN

Feats categoricas: MCA con factorización y One-Hot

· Estandarización: StandardScaler

• Regularización target encoding: 1

Acotación de feat target: Si

|       | Model                   | MAE    | MSE     | RMSE   | R2     | RMSLE  | MAPE   | TT (Sec) |
|-------|-------------------------|--------|---------|--------|--------|--------|--------|----------|
| rf    | Random Forest Regressor | 3.2918 | 24.3708 | 4.9362 | 0.7489 | 0.5008 | 0.6081 | 5.8130   |
| knn   | K Neighbors Regressor   | 3.5773 | 29.2414 | 5.4071 | 0.6987 | 0.5381 | 0.6440 | 0.3620   |
| Ir    | Linear Regression       | 3.6818 | 30.6978 | 5.5400 | 0.6838 | 0.5475 | 0.6930 | 0.3280   |
| ridge | Ridge Regression        | 3.6818 | 30.6978 | 5.5400 | 0.6838 | 0.5475 | 0.6930 | 0.0160   |
| lasso | Lasso Regression        | 3.8024 | 32.5426 | 5.7040 | 0.6648 | 0.5641 | 0.7645 | 0.0160   |
| dt    | Decision Tree Regressor | 4.5544 | 48.4978 | 6.9629 | 0.5006 | 0.6818 | 0.7782 | 0.1380   |



#### Regresión lineal

#### OLS Regression Results

\_\_\_\_\_ Dep. Variable: estancia total R-squared: Model: 0LS Adj. R-squared: 0.683 Method: F-statistic: Least Squares 1.537e+04 Date: Sun, 01 Dec 2024 Prob (F-statistic): 0.00 Time: 17:17:54 Log-Likelihood: -2.0060e+05 No. Observations: 64105 AIC: 4.012e+05 Df Residuals: 64095 BIC: 4.013e+05

Df Model: 9
Covariance Type: nonrobust

|          | coef    | std err | t          | P> t     | [0.025 | 0.975] |  |  |
|----------|---------|---------|------------|----------|--------|--------|--|--|
|          |         |         |            |          |        |        |  |  |
| const    | 9.1748  | 0.022   | 419.998    | 0.000    | 9.132  | 9.218  |  |  |
| x1       | 0.2947  | 0.032   | 9.283      | 0.000    | 0.232  | 0.357  |  |  |
| x2       | -0.1826 | 0.022   | -8.202     | 0.000    | -0.226 | -0.139 |  |  |
| x3       | 6.6736  | 0.032   | 206.548    | 0.000    | 6.610  | 6.737  |  |  |
| x4       | -0.2395 | 0.031   | -7.836     | 0.000    | -0.299 | -0.180 |  |  |
| x5       | -0.1745 | 0.024   | -7.347     | 0.000    | -0.221 | -0.128 |  |  |
| х6       | 0.4636  | 0.037   | 12.377     | 0.000    | 0.390  | 0.537  |  |  |
| x7       | 0.0004  | 0.033   | 0.012      | 0.991    | -0.065 | 0.065  |  |  |
| x8       | 1.0777  | 0.028   | 39.088     | 0.000    | 1.024  | 1.132  |  |  |
| x9       | 1.3475  | 0.025   | 53.647     | 0.000    | 1.298  | 1.397  |  |  |
| ======== |         |         |            |          |        |        |  |  |
| Omnibus: |         | 13791.  | 735 Durbin | -Watson: |        | 2.000  |  |  |

 Omnibus.
 13/91.733
 Darlin-Watson.
 2.000

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 130949.994

 Skew:
 0.766
 Prob(JB):
 0.00

 Kurtosis:
 9.832
 Cond. No.
 4.11

Mean Squared Error: 5.528730935339455

R^2 Score: 0.6812341378235647

Mean Squared Error Traim: 5.506468327398332

R^2 Score: 0.6831368000142211



#### Regresión polinómica x255 0.017 -0.746 0.456 -0.0125 x256 -0.0407 -4.012 0.000 0.010 x257 -0.0723 0.028 -2.5600.010 Cross-Validation RMSE para polinomio de grado: 3: [5.08447335 5.12517997 4.99600152 5.05107016 5.05102584] x258 0.0843 0.020 4.279 0.000 RMSE promedio: 5.0616 x259 0.0414 0.025 1.656 0.098 x260 -0.11430.029 -4.005 0.000 Desviación estandar de RMSE: 0.0426 x261 0.0786 0.028 2.767 0.006 x262 -0.0136 0.034 -0.402 0.687 x263 -0.13510.011 -12.7270.000 Test MAE: 3.4588 x264 -0.0042 0.028 -0.1530.878 Test RMSE: 5.1448 x265 -0.0094 0.023 -0.403 0.687 Test R-squared: 0.7255 x266 -0.0509 0.005 -10.4440.000 x267 0.0199 0.017 1.200 0.230 OLS Regression Results x268 -0.0519 0.012 -4.414 0.000 \_\_\_\_\_ x269 -0.0049 0.012 -0.4190.675 Dep. Variable: estancia total R-squared: x270 0.1334 0.037 3.623 0.000 Model: Adj. R-squared: 0.739 x271 0.0464 0.029 1.617 0.106 Method: Least Squares F-statistic: 834.6 x272 0.0189 0.034 0.550 0.582 Date: Sun, 01 Dec 2024 Prob (F-statistic): x273 0.1076 0.012 9.039 0.000 x274 -0.0267 0.025 -1.086 0.278 Time: 23:43:30 Log-Likelihood: -1.9432e+05 x275 0.0658 0.017 3.823 0.000 No. Observations: 64105 AIC: 3.891e+05 x276 -0.0773 0.023 -3.4140.001 Df Residuals: 63886 BIC: 3.911e+05 x277 0.0044 0.037 0.119 0.905 Df Model: 218 x278 -0.0265 0.033 -0.806 0.420 Covariance Type: nonrobust x279 -0.0491 0.016 -2.990 0.003 x280 0.0542 0.038 1.423 0.155 P>|t| [0.025 x281 -0.0422 0.024 -1.7610.078 x282 -0.0002 0.006 -0.044 0.965 x283 0.0349 0.034 const 2.1688 0.017 126.109 0.000 2.135 2.203 0.016 2.122 x284 -0.0283 -1.2180.223 126,109 2.135 2.203 0.023 x1 2.1688 0.017 0.000 -0.0420 -4.3120.000 x285 0.010 -0.085 0.010 x2 -0.03740.024 -1.5370.124\_\_\_\_\_\_ x3 -0.27920.033 -8.407 0.000 -0.344-0.21414004,260 0.0066 0.027 0.244 0.807 -0.046 0.060 x4 Prob(Omnibus): Jarque-Bera (JB): x5 0.3785 0.023 16.475 0.000 0.333 0.423 Skew: Prob(JB): 0.849 0.5996 0.021 28.461 0.000 0.558 0.641 х6 Cond. No. -0.6599 0.043 -15.4260.000 -0.744 -0.576x7 x8 -0.0153 0.021 -0.7120.477 -0.057 0.027 x9 2.7756 0.029 95.459 0.000 2.719 2.833

Variables iniciales del modelo

Variables asociadas a términos cuadráticos, cúbicos e interacciones.



-0.045

-0.061

-0.128

-0.008

-0.170

0.023

-0.080

-0.156

-0.058

-0.055

-0.060

-0.013

-0.075

-0.028

0.061

-0.010

-0.049

0.084

-0.075

0.032

-0.122

-0.068

-0.091

-0.081

-0.020

-0.089

-0.011

0.003

-0.074

-0.061

0.046

0.020

-0.021

-0.017

0.123

0.090

-0.058

0.134

0.053

-0.114

0.050

0.036

-0.041

0.052

-0.029

0.018

0.206

0.103

0.086

0.131

0.022

0.100

-0.033

0.077

0.038

-0.017

0.129

0.005

0.011

0.067

0.017

-0.023

0.00

106406.344



Se utilizó un enfoque de validación cruzada con cinco pliegues para evaluar diferentes combinaciones de hiperparámetros clave:

- weights: 'distance' (ponderación basada en la distancia de los vecinos).
- n\_neighbors: 18 (cantidad óptima de vecinos).
- metric: 'euclidean' (distancia euclidiana como métrica principal).
- algorithm: 'auto' (selección automática del algoritmo más eficiente según el tamaño y estructura de los datos).

MAE: 3.4886 RMSE: 5.2528

R-squared: 0.7139









#### Análisis de residuos







## **Conclusiones**

- El modelo proporciona predicciones confiables, mejorando la planificación de recursos como camas y personal médico. Al incluir variables clave como diagnósticos y costos operativos, refuerza la eficiencia hospitalaria y la calidad de atención al paciente.
- El modelo K-Nearest Neighbors (KNN) se destacó por su simplicidad, interpretabilidad y facilidad de implementación, lo que lo hace adecuado para entornos hospitalarios. Aunque no es el modelo más avanzado, equilibra rendimiento técnico y usabilidad.
- El tratamiento meticuloso de los datos (eliminación de valores atípicos, normalización y transformación de variables) garantizó un modelo representativo y generalizable, resaltando la importancia de la ingeniería de datos para el éxito del proyecto.
- El uso de tecnologías como AWS Glue y PostgreSQL permite procesar grandes volúmenes de datos de manera escalable y eficiente. Herramientas de visualización y notificaciones automatizadas facilitan la integración de los resultados en los flujos operativos del hospital.
- El modelo no solo contribuye a la sostenibilidad financiera del hospital, sino también a mejorar la
  experiencia del paciente. A futuro, se recomienda combinar la simplicidad de KNN con modelos
  avanzados como Random Forest, realizar pruebas en tiempo real y considerar nuevas fuentes de datos
  para incrementar su precisión y alcance.



## Interacción con el usuario





# Interacción con el usuario





# GRACIAS

