Тензорный анализ сингулярного спектра

Хромов Никита Андреевич, гр.20.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: д.ф.-м.н. Голяндина Н.Э. Рецензент: к.ф.-м.н. Усевич К.Д.

> Санкт-Петербург, 2024

Введение

$$\mathsf{X}_q = \left(x_1^{(q)}, x_2^{(q)}, \dots, x_N^{(q)}
ight)^{\mathrm{T}}$$
, $x_i \in \mathbb{R}$ — одномерный временной ряд $\mathsf{X} = \left(\mathsf{X}^{(1)} : \mathsf{X}^{(2)} : \dots : \mathsf{X}^{(Q)}
ight)$ — многомерный временной ряд

$$X = T + P + E$$

Т — медленно меняющаяся компонента (тренд)

Р — периодическая компонента (сезонность)

Е — случайная компонента (шум)

Возможные задачи:

- lacktriangledown Выделение сигнала из ряда: нахождение S = T + P
- 2 Разделение сигнала: нахождение компонент Т и Р

Возможный метод решения: Singular Spectrum Analysis (SSA) [Broomhead, King (1986a)], [Golyandina, Nekrutkin, Zhigljavsky (2001)], и его многомерное расширение Multivariate SSA (MSSA) [Broomhead, King (1986b)]

Цель: реализация тензорных расширений методов SSA и MSSA, исследование их свойств с точки зрения точности выделения сигнала и разделения компонент, сравнение расширений с базовыми методами.

HO-SSA: алгоритм

$$\mathsf{X} = \sum_{m=1}^{M} \mathsf{S}_m + \mathsf{E}$$
 — одномерный временной ряд,

$$\mathsf{S} \stackrel{\mathrm{def}}{=} \sum_{m=1}^{M} \mathsf{S}_m$$
 — сигнал.

Параметры: I,L < N — длины окна, $I+L \leqslant N+1$, J=N-I-L+2, R — число элементов разложения, относимых к сигналу,

 $\mathfrak{I}_1,\ldots,\mathfrak{I}_M\subseteq\{1,2,\ldots,R\},\ \mathfrak{I}_i\cap\mathfrak{I}_j=\varnothing$ — наборы индексов, относимых к компонентам сигнала.

Схема алгоритма HO-SSA для разделения компонент сигнала

- **1** Вложение $X \stackrel{I,L}{\longmapsto} \mathcal{X} \in \mathbb{R}^{I \times L \times J}$ траекторный тензор,
- Разложение

$$\mathcal{X} = \sum_{i=1}^{d_1} \sum_{l=1}^{d_2} \sum_{j=1}^{d_3} \mathcal{Z}_{ilj} U_i^{(1)} \circ U_l^{(2)} \circ U_j^{(3)}, \quad d_1 \leqslant I, \ d_2 \leqslant L, \ d_3 \leqslant J$$

⑤ Группировка

$$\widetilde{\mathcal{S}}_m = \sum_{i \in \mathfrak{I}_m} \sum_{l \in \mathfrak{I}_m} \sum_{j \in \mathfrak{I}_m} \mathcal{Z}_{ilj} U_i^{(1)} \circ U_l^{(2)} \circ U_j^{(3)}, \quad R \leqslant \min(d_1, d_2, d_3)$$

 $oldsymbol{\bullet}$ Восстановление усреднение $\widetilde{\mathcal{S}}_m$ вдоль обобщённых антидиагоналей $i+l+j=\mathrm{const.}$

Результат алгоритма $\widetilde{\mathsf{S}}_m$ — оценки компонент S_m

HO-SSA: траекторный тензор

I,L — параметры длины окна

HO-SSA: разложение и группировка

Определение

n-ранг тензора $\mathcal{X}\left(\mathrm{rank}_n(\mathcal{X})
ight)$ — размерность пространства n-столбцов \mathcal{X} .

Идея выделения сигнала: приближение ${\mathcal X}$ тензором $\widetilde{{\mathcal X}}$ меньших n-рангов.

Способы приближения меньшими рангами:

● Усечение HOSVD:

$$\mathcal{X} = \sum_{i=1}^{d_1} \sum_{l=1}^{d_2} \sum_{j=1}^{d_3} \mathcal{Z}_{ilj} U_i^{(1)} \circ U_l^{(2)} \circ U_j^{(3)} \longmapsto \sum_{i=1}^{R_1} \sum_{l=1}^{R_2} \sum_{j=1}^{R_3} \mathcal{Z}_{ilj} U_i^{(1)} \circ U_l^{(2)} \circ U_j^{(3)} = \widetilde{\mathcal{X}}$$

Wigher-Order Orthogonal Iteration (HOOI):

$$\widetilde{\mathcal{X}} = \text{HOSVD}\left(\arg\min_{\mathcal{Y}} \|\mathcal{X} - \mathcal{Y}\|\right), \quad \operatorname{rank}_n(\mathcal{Y}) = R_n$$

HO-SSA: разделимость и ранги рядов в терминах SSA

ullet Разделимость: пусть $S=S_1+S_2,\,S,\,S_1,\,S_2$ — траекторные матрицы этих сигналов с длиной окна L (траекторные тензоры с I=1)

Определение (Разделимость в терминах SSA)

Сигналы S_1 и S_2 L-разделимы, если существуют такие $\mathfrak{I}_1,\mathfrak{I}_2$, что

$$\mathbf{S} = \sum_{j=1}^{R} \sqrt{\lambda_j} U_j V_j^{\mathrm{T}} = \underbrace{\sum_{j \in \mathfrak{I}_1} \sqrt{\lambda_j} U_j V_j^{\mathrm{T}}}_{\mathbf{S}_1} + \underbrace{\sum_{j \in \mathfrak{I}_2} \sqrt{\lambda_j} U_j V_j^{\mathrm{T}}}_{\mathbf{S}_2}$$

Ранг ряда: нахождение ранга аппроксимации R? $\Lambda^{(L)}(\mathsf{S})$ — пространство столбцов S

Определение (Ранг сигнала в терминах SSA)

S имеет ранг R, если $\forall L : R \leqslant \min(L, N-L+1) \quad \dim \Lambda^{(L)}(\mathsf{S}) = R$

HO-SSA: разделимость

Пусть $S=S_1+S_2$, $\mathcal{S},~\mathcal{S}_1,~\mathcal{S}_2$ — траекторные тензоры этих сигналов с длинами окна I и L

Teopema (О связи разделимости в SSA и HO-SSA)

HOSVD тензора $\mathcal S$ можно представить в виде суммы HOSVD тензоров $\mathcal S_1$ и $\mathcal S_2$ тогда и только тогда, когда сигналы $\mathcal S_1$ и $\mathcal S_2$ слабо I- и L-разделимы в терминах SSA.

Замечание

Теорема позволяет выделить класс сигналов, которые можно разделить методом HO-SSA, а также даёт рекомендации к выбору параметров I и L.

$\mathsf{HO}\text{-}\mathsf{SSA}$: n-ранги траекторного тензора

Теорема (О связи рангов рядов в SSA и HO-SSA)

Пусть сигнал S имеет ранг R в терминах SSA. Тогда для любых значений параметров I и L таких, что

$$R \leqslant \min(I, L, N - I - L + 2),$$

 $\mathrm{rank}_1(\mathcal{S})=\mathrm{rank}_2(\mathcal{S})=\mathrm{rank}_3(\mathcal{S})=R$, где \mathcal{S} — траекторный тензор S , построенный по длинам окна I, L.

Замечание

Теорема позволяет использовать известные результаты о рангах сигналов из теории SSA для аппроксимации траекторного тензора на шагах разложения и группировки в методе HO-SSA.

HOSVD-MSSA: алгоритм

Пусть
$$\mathsf{X} = \sum_{m=1}^M \mathsf{S}_m + \mathsf{E} - \mathit{Q}$$
-мерный временной ряд

Параметры: L — длина окна, K=N-L+1, R, $\mathfrak{I}_1,\ldots,\mathfrak{I}_M$ — как в HO-SSA, R_3 — число элементов разложения по третьему направлению, $\mathfrak{Q}_1,\ldots,\mathfrak{Q}_M\subseteq\{1,2,\ldots R_3\},\ \mathfrak{Q}_i\cap\mathfrak{Q}_j=\varnothing$ — индексы группировки по третьему направлению

- ullet Вложение X $\stackrel{L}{\longmapsto} \mathcal{X} \in \mathbb{R}^{L imes K imes Q}$ траекторный тензор
- Разложение

$$\mathcal{X} = \sum_{l=1}^{d_1} \sum_{k=1}^{d_2} \sum_{q=1}^{d_3} \mathcal{Z}_{lkp} U_l^{(1)} \circ U_k^{(2)} \circ U_q^{(3)}$$

• Группировка

$$\widetilde{\mathcal{S}}_m = \sum_{l \in \mathfrak{I}_m} \sum_{k \in \mathfrak{I}_m} \sum_{q \in \mathfrak{Q}_m} \mathcal{Z}_{lkp} \mathbf{U}_l^{(1)} \circ \mathbf{U}_k^{(2)} \circ \mathbf{U}_q^{(3)}$$

ullet Восстановление усреднение сечений третьего направления $\widetilde{\mathcal{S}}_m$ по побочным диагоналям

Результат алгоритма: $\widetilde{\mathsf{S}}_m$ — оценка S_m

HOSVD-MSSA: траекторный тензор многомерного ряда

X — многомерный временной ряд длины N L — длина окна, K=N-L+1

HOSVD-MSSA: разделимость

Пусть
$$\widehat{\mathsf{S}} = \mathsf{S}_1 + \mathsf{S}_2$$
, $\mathcal{S}, \, \mathcal{S}_1, \, \mathcal{S}_2$ — траекторные тензоры этих сигналов с длиной окна L $\Lambda^{(I)}(\mathsf{S}) = \mathrm{span}\left\{\left(s_i^{(q)}, s_{i+1}^{(q)}, \ldots, s_{i+I-1}^{(q)}\right)\right\}$

Теорема

HOSVD тензора $\mathcal S$ можно представить в виде суммы HOSVD тензоров $\mathcal S_1$ и $\mathcal S_2$ тогда и только тогда, когда $\Lambda^{(L)}(\mathsf S_1) \perp \Lambda^{(L)}(\mathsf S_2)$ и $\Lambda^{(K)}(\mathsf S_1) \perp \Lambda^{(K)}(\mathsf S_2)$

Замечание

Теорема позволяет выделить класс сигналов, которые можно разделить методом HOSVD-MSSA, а также даёт рекомендации к выбору параметра L.

${\sf HOSVD\text{-}MSSA}$: n-ранги траекторного тензора

Теорема

Пусть $\mathsf{S} = \left(\mathsf{S}^{(1)}: \ldots : \mathsf{S}^{(Q)}\right)$, тогда справедливы следующие утверждения.

• S имеет ранг R в терминах теории MSSA тогда и только тогда, когда для траекторного тензора \mathcal{S} , построенного по любой длине окна L < N такой, что $R \leqslant \min(L,K)$ выполняется

$$\operatorname{rank}_1(\mathcal{S}) = \operatorname{rank}_2(\mathcal{S}) = R.$$

 $oldsymbol{2}$ $\operatorname{rank}_3(\mathcal{S})$ равен рангу матрицы, в строках которой содержатся одномерные сигналы $S^{(q)}$.

Замечание

Теорема позволяет использовать известные результаты о рангах сигналов из теории MSSA для аппроксимации траекторного тензора по первым двум направлениям, а также даёт рекомендации к выбору ранга аппроксимации по третьему направлению на шагах разложения и группировки в методе HOSVD-MSSA.

Численные результаты: сравнение HO-SSA с SSA

Пусть временной ряд имеет вид

$$X = (s_1 + \varepsilon_1, s_2 + \varepsilon_2, \dots, s_N + \varepsilon_N),$$

где
$$N=71$$
, $s_n=30\cos(2\pi n/12)$, ε_n — шум.

Table: RMSE оценки сигнала: SSA.

Вид шума	L = 12	L = 24	L = 30	L = 36
Белый, $\sigma^2=25$	1.82	1.42	1.40	1.42
Красный, $\delta^2=5$, $\varphi=0.5$	1.31	1.03	1.01	1.03
Красный, $\delta^2=5$, $\varphi=0.9$	1.88	1.37	1.34	1.36

Table: RMSE оценки сигнала: HO-SSA.

I imes LВид шума	19×30	12×31	7×36	12×37	12×49
Белый, $\sigma^2=25$	1.62	1.56	1.49	1.53	1.63
Красный, $\delta^2=5$, $\varphi=0.5$	1.19	1.14	1.08	1.12	1.17
Красный, $\delta^2=5$, $\varphi=0.9$	1.51	1.44	1.39	1.42	1.56

Численные результаты: сравнение HOSVD-MSSA с MSSA и 2D-SSA

$$\mathsf{X} = (\mathsf{X}_1:\ldots:\mathsf{X}_Q)\,, \quad \mathsf{X}_q = \left(x_1^{(q)},\ldots,x_N^{(q)}\right)^\mathrm{T}\,, \quad x_n^{(q)} = \hat{s}_n^{(q)} + \tilde{s}_n^{(q)} + \varepsilon_n^{(q)},$$
 где $\varepsilon_n^{(q)} \sim \mathrm{N}(0,0.01)$ и независимы, модель: $s_n^{(q)} = C_q \cos(2\pi n \omega_q + \varphi_q)$

Вид сигнала	MSSA	HOSVD-MSSA	2D-SSA
Равные сигналы	0.026	0.019	0.014
	0.025	0.016	0.014
Различие амплитуд	0.029	0.019	0.086
	0.029	0.019	0.083
Линейные фазы	0.026	0.025	0.117
	0.025	0.025	0.114
Произвольные фазы	0.026	0.025	0.034
	0.025	0.025	0.033
Разделимость с const	0.017	0.017	0.023
	0.025	0.019	0.033
Различие частот	0.024	0.018	0.012
	0.024	0.018	0.031
	0.024	0.014	0.026
Ортогональность	0.031	0.023	0.025
по каналам	0.030	0.022	0.024

Численные результаты: смещение и дисперсия

$$\mathbf{X}=\widehat{\mathbf{S}}+\widetilde{\mathbf{S}}+\mathbf{E}$$
, где $\hat{s}_n^{(1)}=3$, $\hat{s}_n^{(2)}=-1.5$, $\tilde{s}_n^{(1)}=\cos(2\pi n/20)$ и $\tilde{s}_n^{(2)}=2\cos(2\pi n/20)$, а $\varepsilon_n^{(p)}\sim \mathrm{N}(0,1)$ и независимы.

Численные результаты: сумма смещения и дисперсии

Оценки методом HOSVD-MSSA имеют меньшую дисперсию, чем методом MSSA, однако могут проигрывать в точности за счёт бо́льшего смещения при некоторых L.

Результаты

- Овойства НО-SSA
 - Критерий разделимости HO-SSA, связь с разделимостью SSA
 - Связь рангов траекторного тензора с SSA-рангом ряда
 - Трудоёмкость алгоритма
- Овойства HOSVD-MSSA
 - Критерий разделимости HOSVD-MSSA
 - Теорема о рангах траекторного тензора, связь с MSSA-рангом и 3-ранг
 - Утверждение о симметричности траекторного тензора относительно замены длины окна L на K
- Численные выводы
 - Отсутствие преимущества HO-SSA над SSA
 - Преимущество HOSVD-MSSA над MSSA в условиях разделимости
 - Возможное преимущество HOSVD-MSSA над MSSA в условиях приближённой разделимости для HOSVD-MSSA в зависимости от соотношения смещения и дисперсии
- Реализация методов HO-SSA и HOSVD-MSSA на языке R в стиле пакета Rssa (исходный код опубликован в репозитории Zenodo)

Список источников

Broomhead D. S., King G. P. Extracting qualitative dynamics from experimental data // Physica D: Nonlinear Phenomena. — 1986. — Vol. 20, no. 2–3. — P. 217–236.

Golyandina N., Nekrutkin V., Zhigljavsky A. Analysis of time series structure: SSA and related techiques. — Chapman & Hall/CRC, 2001.

Broomhead D. S., King G. P. On the Qualitative Analysis of Experimental Dynamical Systems // Nonlinear Phenomena and Chaos. — 1986. — P. 113-144.

Трудоёмкости алгоритмов

• HOSVD-SSA: вычисление HOSVD тензора размерности $I \times L \times J$ имеет трудоёмкость порядка

$$O(ILJ(\min(I,LJ) + \min(L,IJ) + \min(J,IL))).$$

Если требуется вычислить только усечение HOSVD с n-рангами (r_1, r_2, r_3) , то трудоёмкость можно уменьшить до порядка

$$O(ILJ(r_1+r_2+r_3)).$$

 HOOI-SSA: HOOI — итеративный алгоритм. Начальное приближение: усечение HOSVD. Трудоёмкость каждой итерации имеет порядок

$$O(r_1r_2r_3(I+L+J)),$$

а скорость сходимости алгоритма линейная. Итого:

$$O\left(ILJ(r_1+r_2+r_3)+\frac{1}{\varepsilon}r_1r_2r_3(I+L+J)\right)$$

Варианты сигналов в сравнении HOSVD-MSSA с MSSA и 2D-SSA

1 Равные сигналы: N = 44, P = 12,

$$\hat{s}_n^{(p)} = 2\cos(2\pi n/5), \quad \tilde{s}_n^{(p)} = \cos(2\pi n/3).$$

2 Различие амплитуд: N = 44, P = 12,

$$\hat{s}_n^{(p)} = 2c_1^{(p)}\cos(2\pi n/5), \quad \tilde{s}_n^{(p)} = c_2^{(p)}\cos(2\pi n/3).$$

3 Линейные фазы: N = 44, P = 12,

$$\hat{s}_n^{(p)} = 2c_1^{(p)}\cos(2\pi n/5 + p\pi/6), \quad \tilde{s}_n^{(p)} = c_2^{(p)}\cos(2\pi n/3 + p\pi/9).$$

④ Произвольные фазы: N = 44, P = 12,

$$\hat{s}_n^{(p)} = 2c_1^{(p)}\cos(2\pi n/5 + \varphi_1^{(p)}), \quad \tilde{s}_n^{(p)} = c_2^{(p)}\cos(2\pi n/3 + \varphi_2^{(p)}).$$

5 Разделимость с константой: N = 44, P = 12,

$$\hat{s}_n^{(p)} = 3c_1^{(p)}, \quad \tilde{s}_n^{(p)} = c_2^{(p)}\cos(2\pi n/3).$$

6 Различие частот: N = 59, P = 12,

$$\hat{s}_n^{(p)} = 2\cos(2\pi n/5), \quad \tilde{s}_n^{(p)} = \begin{cases} \cos(2\pi n/3), & 1 \leqslant p \leqslant 10, \\ 0.4\cos(2\pi n/6), & 11 \leqslant p \leqslant 12. \end{cases}$$

 $m{0}$ Ортогональность по каналам: N=29, P=12,

$$\hat{s}_n^{(p)} = 2\cos(2\pi n/5)\cos(2\pi p/3), \quad \tilde{s}_n^{(p)} = 0.5\cos(2\pi n/3)\cos(2\pi p/6).$$