Copyright: Nedjeljko Perić

Upravljanje elektromotornim pogonima 2009/2010

Prof.dr.sc. Nedjeljko Perić

Zavod za automatiku i računalno inženjerstvo Fakultet elektrotehnike i računarstva

Predavanje 4 – Primjena simetričnog optimuma u digitalnom upravljanju slijednim sustavima

Copyright: Nedjeljko Perić

Primjena simetričnog optimuma u digitalnom upravljanju slijednim sustavima

Sustav upravljanja prikladan za primjenu simetričnog optimuma SI. 4.1.:

SI. 4.1

- Sustav upravljanja brzinom vrtnje istosmjernih elektromotornih pogona s podređenim upravljanjem strujom armature motora.
- Razmotrit će se sinteza diskretnog (digitalnog) regulatora.
- Rezultati provedene sinteze primijenit će se na upravljanje brzinom vrtnje istosmjernog elektromotornog pogona.

Preliminarna analiza sustava upravljanja

 Ekvivalentna diskretna prijenosna funkcija procesa dobiva se iz kontinuiranog procesa uz primjenu ekstrapolatora nultog reda (ZOH):

$$G_s(z) = Z \left\{ \frac{1 - e^{-Ts}}{s} \cdot \frac{K_s}{1 + T_{\Sigma}} \cdot \frac{1}{T_i s} \right\}. \tag{4 - 1}$$

Odavde slijedi prijenosna funkcija u z području:

$$G_{s}(z) = K_{s} \frac{T_{\Sigma}}{T_{i}} \left(\frac{T}{T_{\Sigma}} + e^{-T/T_{\Sigma}} - 1 \right) \frac{z - \frac{1 - T/T_{\Sigma}e^{-T/T_{\Sigma}} - e^{-T/T_{\Sigma}}}{1 - T/T_{\Sigma} - e^{-T/T_{\Sigma}}}}{(z - 1)(z - e^{-T/T_{\Sigma}})}$$
(4 - 2)

- Sinteza vremenski diskretnog regulatora $G_R(z)$ PI djelovanja može se provesti na sljedeća dva načina:
 - Diskretizacijom PI regulatora
 - Primjenom bilinearne transformacije

Copyright: Nedjeljko Perić

Diskretizacija analognog PI regulatora

Prijenosna funkcija PI regulatora u s – području:

$$G_R(s) = K_R \frac{1 + T_I s}{T_I s} = K_R \left(1 + \frac{1}{T_I s} \right)$$
 (4 - 3)

- Uobičajeno se koristi, uz T <<, postupak diskretizacije zasnovan na:
 - Tustinovoj relaciji,
 - Pravokutnoj integraciji.

Tustinova (Trapezna integracija)

• Uz primjenu <u>Tustinove relacije (trapezne integracije)</u> dobije se:

$$\frac{1}{s} = \frac{T}{2} \frac{z+1}{z-1} \tag{4-4}$$

 Primjenom Tustinove relacije dobije se prijenosna funkcija diskretnog Pl regulatora:

$$G_R(z) = K_R \left(1 + \frac{T}{2T_I} \right) \frac{z - \frac{2T_I - T}{2T_I + T}}{z - 1}.$$
 (4 - 5)

Pravokutna integracija

 Uz primjenu <u>pravokutne integracije</u> dobije se sljedeća veza između varijabli s i z:

$$\frac{1}{s} = \frac{Tz}{z - 1} \tag{4 - 6}$$

Uvrštavanjem u prijenosnu funkciju kontinuiranog PI regulatora dobije se:

$$G_{R}(z) = K_{R} \left(1 + \frac{T}{T_{I}} \right) \frac{z - \frac{T_{I}}{T_{I} + T}}{z - 1}$$
 (4 - 7)

U postupku sinteze regulacijskog kruga koriste se razni postupci.

Primjena bilinearne transformacije

Relacija za <u>bilinearnu transformaciju</u> glasi:

$$\Omega = \frac{2}{T} \frac{z - 1}{z + 1} \Leftrightarrow z = \frac{1 + \Omega T / 2}{1 - \Omega T / 2}, \qquad (4 - 8)$$

odnosno:

$$\Omega = j \frac{2}{T} tg \frac{\omega T}{2}, \qquad (4-9)$$

$$\Omega = j \frac{2}{T} \nu = j \omega^*, \qquad (4 - 10)$$

gdje o predstavlja tzv. kvazifrekvenciju.

Primjena bilinearne transformacije

Pri tome vrijede sljedeće relacije:

$$\omega^* = \frac{2}{T} tg \frac{\omega T}{2}, \Rightarrow \omega = \frac{2}{T} arctg \frac{\omega^* T}{2}.$$
 (4 - 11)

• Uz $T \ll (T \to 0)$, vrijedi $\omega^* \to \omega$, odnosno $\Omega \to s$.

Dokaz:

$$\Omega = \frac{2}{T} \frac{z - 1}{z + 1} \stackrel{z = e^{sT}}{\Longrightarrow} = \frac{2}{T} \frac{e^{sT} - 1}{e^{sT} + 1}.$$
 (4 - 12)

• Razvojem u <u>Taylorov red</u> člana e^{sT} uz $T \rightarrow 0$, slijedi:

$$\lim_{T \to 0} \Omega = \lim_{T \to 0} \frac{2}{T} \frac{Ts + \frac{(Ts)^2}{2} + \cdots}{2 + Ts + \frac{(Ts)^2}{2} + \cdots} = \lim_{T \to 0} 2 \frac{s + \frac{Ts^2}{2} + \cdots}{2 + Ts + \frac{(Ts)^2}{2} + \cdots} = \frac{2}{2} \cdot s, \qquad (4 - 13)$$

$$\lim_{T \to 0} \Omega = s.$$

• Primjenom <u>bilinearne transformacije</u> mogu se koristiti <u>frekvencijske metode</u> <u>sinteze</u> linearnih kontinuiranih sustava (npr. Bodéov postupak sinteze).

Izrazi za parametre diskretnog PI regulatora prema simetričnom optimumu

• U narednim razmatranjima izložit će se postupak određivanja parametara diskrektnog PI regulatora zasnovan na primjeni bilinearne transformacije.

Parametri diskretnog PI regulatora prema simetričnom optimumu (uz primjenu pravokutne integracije)

 Primjena pravokutne integracije daje za prijenosnu funkciju PI regulatora (4 - 5) prema simetričnom optimumu:

$$G_R(z) = \frac{K_R}{a^*} \frac{z - a^*}{z - 1},$$
 (4 - 14)

gdje je:

$$a^* = \frac{T_I}{T_I + T}. ag{4 - 15}$$

- Za diskretni PI regulator (4 14) potrebno je odrediti K_R i T_I koji osiguravaju simetrične frekvencijske karakteristike otvorenog kvazikontinuiranog regulacijskog kruga.
- Za prijenosnu funkciju procesa s <u>astatizmom 1. reda</u> danu izrazom (4 2) dobije se:

$$G_s(z) = \frac{K_z}{T_i} \frac{z - z_0}{(z - 1)(z - p_0)},$$
 (4 - 16)

gdje je:

$$K_z = K_s \left[T + T_{\Sigma} \left(e^{-T/T_{\Sigma}} - 1 \right) \right], \qquad (4 - 17)$$

$$z_0 = \frac{1 - T / T_{\Sigma} e^{-T / T_{\Sigma}} - e^{-T / T_{\Sigma}}}{1 - T / T_{\Sigma} - e^{-T / T_{\Sigma}}},$$
 (4 - 18)

$$p_0 = e^{-T/T_{\Sigma}}$$
 (4 - 19)

 Primjenom bilinearne transformacije (4 - 8) na izraz (4 - 14) za disketni Pl regulator prema simetričnom optimumu slijedi::

$$G_{R}(\Omega) = \frac{K_{R}}{a^{*}} \frac{\frac{1 + \frac{T\Omega}{2}}{1 - \frac{T\Omega}{2}} - a^{*}}{\frac{1 + \frac{T\Omega}{2}}{1 - \frac{T\Omega}{2}} - 1} = \frac{K_{R}}{a^{*}} \frac{(1 - a^{*}) + \frac{T\Omega}{2}(1 + a^{*})}{T\Omega}$$

$$(4 - 20)$$

Nakon sređivanja dobije se:

$$G_{R}(\Omega) = \frac{K_{R}(1+a^{*})}{2a^{*}} \frac{1 + \frac{T\Omega}{2} \frac{1+a^{*}}{1-a^{*}}}{\frac{T\Omega}{2} \frac{1+a^{*}}{1-a^{*}}}$$
(4 - 21)

• Izraz (4 - 21) za <u>PI regulator u kvazikontinuiranom</u> području može se još prikazati i kao:

$$G_R(\Omega) = K_R' \frac{1 + T_I'\Omega}{T_I'\Omega}, \qquad (4 - 22)$$

gdje je:

$$K'_{R} = \frac{K_{R}(1+a^{*})}{2a^{*}} \Rightarrow K'_{R} = K_{R}(1+\frac{T/2}{T_{I}}),$$
 (4 - 23)

$$T_I' = \frac{1+a^*}{1-a^*} \frac{T}{2} \Rightarrow T_I' = T_I + \frac{T}{2}.$$
 (4 - 24)

• Izraz (4 - 21) za PI regulator u kvazikontinuiranom području analogan je izrazu (4 - 3) za prijenosnu funkciju PI regulatora u s - području.

 Primjenom bilinearne transformacije (4 – 8) na izraz (4 – 16) za prijenosnu funkciju procesa u z – području slijedi:

$$G_s(\Omega) = \frac{K_z}{T_i} \frac{1 + \frac{T\Omega}{2}}{\left(1 + \frac{T\Omega}{2} - 1\right) \left(\frac{1 + \frac{T\Omega}{2}}{1 - \frac{T\Omega}{2}} - p_0\right)}$$

$$(4 - 25)$$

 Nakon sređivanja, konačni izraz za prijenosnu funkciju u kvazikontinuiranom području:

$$G_s(\Omega) = \frac{K_{z\Omega}}{T_i} \frac{\left(1 + b\frac{T\Omega}{2}\right)\left(1 - \frac{T\Omega}{2}\right)}{\left(1 + c\frac{T\Omega}{2}\right)T\Omega},$$
 (4 - 26)

gdje je:

$$K_{z\Omega} = K_z \frac{1 - z_0}{1 - p_0} = K_s T,$$
 (4 - 27)

$$b = \frac{1+z_0}{1-z_0} = \frac{1+e^{-T/T_{\Sigma}}}{1-e^{-T/T_{\Sigma}}} - \frac{2T_{\Sigma}}{T},$$
 (4 - 28)

$$c = \frac{1 + p_0}{1 - p_0} = \frac{1 + e^{-T/T_{\Sigma}}}{1 - e^{-T/T_{\Sigma}}} = b + \frac{2T_{\Sigma}}{T}.$$
 (4 - 29)

• Izraz (4 – 26) za prijenosnu funkciju procesa može se prikazati i u obliku:

$$G_{s}(\Omega) = \frac{K_{z\Omega}}{\left(1 + c\frac{T\Omega}{2}\right)T_{i}\Omega} \frac{1}{T} \left(1 + b\frac{T\Omega}{2}\right) \left(1 - \frac{T\Omega}{2}\right)$$
analogija s $G_{s}(s)$
(bez ZOH)
$$(4 - 30)$$

 Prijenosna funkcija <u>otvorenog regulacijskog kruga u Ω - području</u> prema (4 -22) i (4 - 30) glasi:

$$G_0(\Omega) = G_R(\Omega)G_s(\Omega) \tag{4 - 31}$$

$$G_0(\Omega) = K_R' \frac{1 + T_I'\Omega}{T_I'\Omega} \frac{K_{z\Omega}}{T_i} \frac{\left(1 + b\frac{T\Omega}{2}\right) \left(1 - \frac{T\Omega}{2}\right)}{\left(1 + c\frac{T\Omega}{2}\right) T\Omega},$$

$$(4 - 32)$$

Konačni izraz nakon sređivanja glasi:

$$G_0(\Omega) = K_0 \frac{1}{T_I' T_i \Omega^2} \frac{\left(1 + T_I' \Omega\right) \left(1 + b \frac{T\Omega}{2}\right) \left(1 - \frac{T\Omega}{2}\right)}{1 + c \frac{T\Omega}{2}}, \qquad (4 - 33)$$

gdje je:

$$K_0 = \frac{K_R' K_{z\Omega}}{T} = K_R' K_s.$$
 (4 - 34)

• Uz dovoljno malo vrijeme uzorkovanja, prijenosna funkcija procesa u Ω - području može se zapisati kao:

$$G_0(\Omega) = K_0 \frac{1}{T_I T_I \Omega^2} \frac{1 + T_I' \Omega}{1 + T_S^* \Omega}$$
 (4 - 35)

gdje je:

$$T_{\Sigma}^* = (c-b)\frac{T}{2} + \frac{T}{2}.$$
 (4 - 36)

- Izraz je analogan izrazu $G_0(s)$ koji može poprimiti simetrične frekvencijske karakteristike otvorenog sustava.
- Kako je prema (4 26):

$$c - b = \frac{2T_{\Sigma}}{T}$$

(4 - 37)

slijedi:

$$T_{\Sigma}^* = T_{\Sigma} + \frac{T}{2}$$

$$(4 - 38)$$

• U izrazu (4 - 38) $\frac{T}{2}$ predstavlja doprinos ekstrapolatora nultog reda.

Uz sljedeći izbor parametara regulatora:

$$T_I' = a^2 T_{\Sigma}^* \tag{4 - 39}$$

$$K_R' = \frac{1}{a} \frac{1}{K_s} \frac{T_i}{T_{\Sigma}^*}$$
 (4 - 40)

osigurane su simetrične kvazifrekvencijske karakteristike otvorenog sustava.

Pri čemu je:

$$\omega_c^* = \frac{1}{\sqrt{T_L'T_{\Sigma}^*}} = \frac{1}{aT_{\Sigma}^*} i \omega_c^* < \omega_c$$
 (4 - 41)

• Amplitudno-frekvencijska karakteristika prikazana je na slici 4.2.:

SI. 4.2.

Iz izraza (4 – 22), (4 – 39) i (4 – 40) za parametre PI regulatora slijedi:

$$T_I' = T_I + \frac{T}{2} \Rightarrow T_I = T_I' - \frac{T}{2} = a^2 \left(T_{\Sigma} + \frac{T}{2} \right) - \frac{T}{2}$$
 (4 - 42)

$$K_{R} = K_{R}' \frac{T_{I}}{T_{I} + \frac{T}{2}} = \frac{1}{a} \frac{1}{K_{s}} \frac{T_{i}}{T_{\Sigma}^{*}} \frac{a^{2} T_{\Sigma}^{*} - T/2}{a^{2} T_{\Sigma}^{*}}.$$
 (4 - 43)

• Uz izbor a = 2 dobije se:

$$T_{I} = 4T_{\Sigma} + \frac{3}{2}T \tag{4 - 44}$$

$$K_{R} = \frac{1}{2} \frac{1}{K_{s}} \frac{T_{i}}{T_{\Sigma}} \left(\frac{T_{\Sigma}}{T_{\Sigma} + \frac{T}{2}} \frac{4T_{\Sigma} + \frac{3}{2}T}{4T_{\Sigma} + 2T} \right)$$
(4 - 45)

 Primjenom bilinearne transformacije (4 – 8) na izraz (4 – 5) za prijenosnu funkciju diskretnog PI regulatora dobivenog prema Tustinovoj relaciji dobije se:

$$G_R(\Omega) = K_R \frac{1 + T_I \Omega}{T_I \Omega}, \qquad (4 - 46)$$

Izraz je analogan prijenosnoj funkciji PI regulatora u s - području.
 Prema tome slijedi:

$$T_I = a^2 T_{\Sigma}^*,$$
 (4 - 47)

$$K_R = \frac{1}{a} \frac{1}{K_s} \frac{T_i}{T_s^*}.$$
 (4 - 48)

Uz izbor a = 2 dobije se:

$$T_I = 4T_{\Sigma} + 2T,$$
 (4 - 49)

$$K_R = \frac{1}{2} \frac{1}{K_s} \frac{T_i}{T_{\Sigma}} \left(\frac{T_{\Sigma}}{T_{\Sigma} + T/2} \right)$$
 (4 - 50)

Copyright: Nedjeljko Perić

Upravljanje brzinom vrtnje istosmjernog elektromotornog pogona

- Pretpostavlja se da je armaturni krug motora napajan iz trofaznog punoupravljivog mosnog spoja tiristora.
- Sinteza sustava upravljanja brzinom vrtnje istosmjernog elektromotornog pogona provedena je uz sljedeće uvjete:
 - upravljanje strujom armature vremenski je optimalno;
 - mjerenje brzine vrtnje obavlja se pomoću inkrementalnog davača impulsa sinkronizirano s impulsima propaljivanja tiristora.

SI. 4.3.

Copyright: Nedjeljko Perić

Upravljanje brzinom vrtnje istosmjernog elektromotornog pogona

- Pokazuje se da je (Sl. 4.3.):
 - nadomjesno mrtvo vrijeme vremenski optimalnog sustava upravljanja strujom armature $T_{zi} = T$,
 - nadomjesno mrtvo vrijeme digitalnog mjernog člana brzine vrtnje zasnovanog na P/T postupku $T_{mb} = T_b / 2 = T / 2$.

Upravljanje brzinom vrtnje istosmjernog elektromotornog pogona

Prema tome, slijedi da je:

$$T_{\Sigma} = \frac{3}{2}T,$$
 (4 - 51)

• Odnosno za vremensku konstantu T_{Σ}^{*} dobije se:

$$T_{\Sigma}^* = \frac{3}{2}T + \frac{T}{2} = 2T.$$
 (4 - 52)

Primjena pravokutne integracije

• Parametri PI regulatora, prema (4 - 42), (4 - 44) i (4 - 51) i prema slici 4.3:

$$T_I = a^2 2T - \frac{T}{2}. (4 - 53)$$

$$K_{R} = \frac{1}{a} \frac{K_{a}K}{K_{zi}K_{b}} \frac{T_{m}}{2T} \frac{a^{2}2T - T/2}{a^{2}2T}.$$
 (4 - 54)

• Uz izbor a = 2, dobije se:

$$T_I = 7.5T,$$
 (4 - 55)

$$K_R = \frac{1}{2} \frac{K_a K}{K_{zi} K_b} \frac{T_m}{2T} \frac{7.5}{8}.$$
 (4 - 56)

Primjena trapezne integracije

• Parametri PI regulatora, prema (4 - 47), (4 - 48) i (4 - 51) i prema slici 4.3:

$$T_I = a^2 2T.$$
 (4 - 57)

$$K_{R} = \frac{1}{a} \frac{K_{a}K}{K_{zi}K_{b}} \frac{T_{m}}{2T}.$$
 (4 - 58)

• Uz izbor a = 2, dobije se:

$$T_I = 8T,$$
 (4 - 59)

$$K_R = \frac{1}{2} \frac{K_a K}{K_{zi} K_b} \frac{T_m}{2T}.$$
 (4 - 60)