Chapitre 11

Limite d'une fonction

Sommaire

I	Limites
	1) Définition
	2) Premières propriétés
	3) Limite à gauche, limite à droite
II	Propriétés des limites
	1) Limites et opérations
	2) Limite et relation d'ordre
	3) Limite et composition des fonctions
	4) Limite et sens de variation
III	Calculs de limites
	1) Comparaison des fonctions
	2) Les exemples classiques
	3) Propriétés
IV	Extension aux fonctions à valeurs complexes
	1) Définition de la limite
	2) Propriétés
V	Solution des exercices

Dans ce chapitre, les fonctions considérées sont définies sur un intervalle non trivial de \mathbb{R} .

I LIMITES

1) Définition

Soit $f: \mathbb{I} \to \mathbb{R}$ une fonction, soit a un élément de \mathbb{I} ou bien une extrémité de \mathbb{I} ($a \in \mathbb{R}$), et soit $b \in \mathbb{R}$, intuitivement on dira que b est la limite de f(x) quand x tend vers a lorsque f(x) peut être aussi voisin que l'on veut de b pourvu que x soit suffisamment voisin de a, d'où la définition :

🚀 Définition 11.1

On dit que f admet pour limite b en a lorsque : \forall W, voisinage de b, \exists V, voisinage de a, tel que \forall $x \in I$, $x \in I \cap V \implies f(x) \in W$. Si c'est le cas, on notera :

$$\lim_{x \to a} f(x) = b = \lim_a f = b, \, \text{ou encore } f(x) \xrightarrow[x \to a]{} b.$$

```
- Si a = -\infty et b = +\infty: \forall A ∈ \mathbb{R}, \exists B ∈ \mathbb{R}, \forall x \in I, x < B \implies f(x) > A.
- Si a = -\infty et b = -\infty: \forall A ∈ \mathbb{R}, \exists B ∈ \mathbb{R}, \forall x \in I, x < B \Longrightarrow f(x) < A.
```

Exemples:

- Soit $f(x) = x^2$, montrons que $\lim_{x \to \infty} f = +\infty$: soit A ∈ \mathbb{R} , posons B = $\sqrt{|A|}$, si x > B alors $x^2 > B^2 = |A| \ge A$
- Soit $f(x) = x^2$ et soit $a \in \mathbb{R}$, montrons que $\lim_a f = a^2$: soit $\varepsilon > 0$, $|x^2 a^2| = |x a||x + a|$, si $|x a| < \alpha$, alors $|x^2 a^2| < \alpha(\alpha + 2|a|)$, si on prend $\alpha = \min(1; \frac{\varepsilon}{1 + 2|a|})$, alors $\alpha(\alpha + 2|a|) \le \alpha(1 + 2|a|) \le \varepsilon$, donc $\forall x \in \mathbb{R}, |x-a| < \alpha \Longrightarrow |x^2 - a^2| < \varepsilon.$

Remarque 11.1 -

- a) $Si \lim_{a} f = b$ alors $\lim_{a} |f| = |b|$, mais la réciproque est fausse sauf pour b = 0.
- b) Lorsque $b \in \mathbb{R}$, $\lim_{a} f = b \iff \lim_{a} |f(x) b| = 0 \iff \lim_{a} f(x) b = 0$.

La définition de la limite d'une suite, que nous avons vue dans un chapitre précédent, peut s'énoncer ainsi en terme de voisinage:

Définition 11.2 (Retour sur les suites)

On dit que la suite (u_n) admet pour limite $\ell \in \overline{\mathbb{R}}$ lorsque : \forall W, voisinage de ℓ , \exists N \in N, \forall $n \in$ N, $n \geqslant$ N \Longrightarrow $u_n \in$ W.

2) Premières propriétés

🔛 Théorème 11.1

Soit $f: I \to \mathbb{R}$ une fonction et soit a un élément ou une extrémité de I.

- Si f admet une limite en a, alors celle ci est unique.
- Si f admet une limite **finie** en a, alors f est **bornée au voisinage** de a (réciproque fausse).
- $Si \lim_{\alpha} f = b$ et $si \alpha < b$ (respectivement $b < \alpha$), alors au voisinage de a f est strictement supérieure à α (respectivement $f(x) > \alpha$).
- $Si \lim_{a} f = b \text{ avec } a \in I$, alors nécessairement b = f(a).

Preuve: Pour les trois premiers points, la preuve est tout à fait analogue à celle faite pour les suites.

Pour le quatrième point : tout voisinage de b doit contenir f(a), on en déduit par l'absurde que b = f(a).

Théorème 11.2 (caractérisation séquentielle de la limite)

 $\lim_{a} f = b \iff pour toute suite (u_n) d'éléments de I qui tend vers a (dans <math>\overline{\mathbb{R}}$), la suite $(f(u_n))$ tend vers b (dans \mathbb{R}).

Preuve : Supposons que $\lim_{a} f = b$ et soit (u_n) une suite d'éléments de I telle que $u_n \to a$. Soit W un voisinage de b, il existe V un voisinage de a tel que $x \in I \cap V \implies f(x) \in W$. Comme $u_n \to a$, il existe un entier $N \in \mathbb{N}$ tel que $n \geqslant N \implies u_n \in V$, or les termes u_n sont dans I donc si $n \geqslant N$ alors $u_n \in I \cap V$ et donc $f(u_n) \in W$, ce qui prouve que $f(u_n) \to b$.

Supposons maintenant que pour toute suite (u_n) d'éléments de I qui tend vers a, la suite $(f(u_n))$ tend vers b. Si la fonction f n'a pas pour limite b en a, alors il existe un voisinage W de b tel que pour tout voisinage V de a, il existe $x \in I \cap V$ tel que $f(x) \notin W$. En prenant pour $n \in \mathbb{N}^*$ des voisinages de la forme $V_n =]a - \frac{1}{n}; a + \frac{1}{n}[$ si $a \in \mathbb{R}, V_n =]n; +\infty[$ si $a=+\infty$, ou $V_n=]-\infty$; -n[si $a=-\infty$, on construit une suite (u_n) d'éléments de I telle que $u_n\in V_n$ et $f(u_n)\notin W$, il est facile de voir que la suite (u_n) tend vers a, donc la suite $(f(u_n))$ tend vers b, à partir d'un certain rang on doit donc avoir $f(u_n) \in W$ ce qui est contradictoire, donc $\lim_{n} f = b$.

Applications:

- Ce théorème peut être utilisé pour montrer qu'une fonction f n'a pas de limite en a. Par exemple, la fonction $f: x \mapsto \sin(x)$ n'a pas de limite en $+\infty$ car la suite u définie par $u_n = \frac{\pi}{2} + n\pi$ tend vers $+\infty$ mais la suite $(f(u_n) = (-1)^n)$ n'a pas de limite.
- Ce théorème peut être également utilisé pour prouver les propriétés de la limite d'une fonction en se ramenant à celles des suites.

Voici un autre lien avec les suites (que l'on utilisait déjà de manière assez naturelle) :

П

🔛 Théorème 11.3

Soit $f: A; +\infty[\to \mathbb{R}$ une fonction telle que $\lim_{t \to \infty} f = b \in \overline{\mathbb{R}}$, alors la suite (u_n) définie (à partir d'un certain rang) par $u_n = f(n)$ a pour limite b.

Preuve: Soit W un voisinage de b, il existe un réel B tel que $\forall x \in I, x > B \implies f(x) \in W$, par conséquent si $n \ge N = 1 + \lfloor B \rfloor$, alors $u_n \in W$, donc $u_n \to b$.

3) Limite à gauche, limite à droite

Définition 11.3

Soit $f: I \to \mathbb{R}$ une fonction, soit a un élément de I ou une extrémité **réelle** de I, et soit $b \in \mathbb{R}$.

- Si I ∩] -∞; $a[\neq \emptyset]$: on dit que b est la limite à gauche en a de f lorsque :

 \forall W, voisinage de b, $\exists \alpha > 0, \forall x \in I, x \in]a - \alpha; a[\implies f(x) \in W$

Notations: $\lim_{a^{-}} f = \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} a f(x) = b$.

 $SiI \cap a$; $+\infty$ [$\neq \emptyset$: on dit que b est la limite à droite en a de f lorsque :

 \forall W, voisinage de b, $\exists \alpha > 0$, $\forall x \in I, x \in]a; a + \alpha[\implies f(x) \in W.$

Notations: $\lim_{a^+} f = \lim_{x \to a^+} f(x) = \lim_{x \to a^+} a f(x) = b$.

Exemple: Soit $f(x) = \lfloor x \rfloor$ et soit $a \in \mathbb{Z}$, alors $\lim_{a^+} f = a$ et $\lim_{a^-} f = a - 1$.

Théorème 11.4

On $a \underset{x \neq a}{\varinjlim} a f(x) = b \iff \lim_{a^+} f = \lim_{a^-} f = b$. Et lorsque $a \in I$:

$$\lim_{x \to a} f(x) = b \iff \left(f(a) = b \text{ et } \lim_{x \xrightarrow{x \neq a}} a f(x) = b \right).$$

Preuve : Celle - ci est simple et laissée en exercice.

Exemple: Soit f la fonction définie sur \mathbb{R} par $f(x) = \begin{cases} x+1 & \text{si } x < 0 \\ 0 & \text{si } x = 0 \text{. Il est facile de voir que} : \lim_{x \to 0} f(x) = 1, \\ 1-x^2 & \text{si } x > 0 \end{cases}$ mais la fonction f n'a pas de limite en 0 car $f(0) \neq$

PROPRIÉTÉS DES LIMITES

Limites et opérations

Soient $f,g \in \mathcal{F}(I,\mathbb{R})$ et soit a un élément de I ou une extrémité de I. Si $\lim_{a} f = \ell$ et $\lim_{a} g = \ell'$ (dans $\overline{\mathbb{R}}$), alors:

🔁 Théorème 11.5

- lim $f + g = \ell + \ell'$ sauf si $\ell = +\infty$ et $\ell' = -\infty$ (ou l'inverse) : **forme indéterminée**.
- $\lim_{n} f \times g = \ell \ell'$ sauf si $\ell = 0$ et $\ell' = \pm \infty$ (ou l'inverse) : **forme indéterminée**.
- $Si^{u} \lambda \in \mathbb{R}^{*}, \lim_{a} \lambda f = \lambda \ell.$

Preuve: Pour le premier point : soit (u_n) une suite d'éléments de I qui tend vers a, alors $f(u_n) \to \ell$ et $g(u_n) \to \ell'$ donc (propriétés des suites) $f(u_n) + g(u_n) \rightarrow \ell + \ell'$ car nous ne sommes pas dans le cas d'une forme indéterminée, par conséquent la fonction f+g a pour limite $\ell+\ell'$ en a. Le raisonnement est le même pour tous les autres points jusqu'au dernier.

🚧 Théorème 11.6

Si f ne s'annule pas au voisinage de a alors :

$$\lim_{a} \frac{1}{f} = \begin{cases} \frac{1}{\ell} & \text{si } \ell \in \mathbb{R}^* \\ 0 & \text{si } \ell = \pm \infty \\ +\infty & \text{si } \ell = 0 \text{ et } f > 0 \text{ au voisinage de } a \\ -\infty & \text{si } \ell = 0 \text{ et } f < 0 \text{ au voisinage de } a \\ \text{n'existe pas sinon} \end{cases}$$

Preuve: Dans le dernier cas on a $\ell = 0$ et sur tout voisinage de af prend des valeurs strictement positives et des valeurs strictement négatives (f n'est pas de signe constant), on peut donc construire deux suites (u_n) et (v_n) qui tendent vers a et telles que $f(u_n) > 0$ et $f(v_n) < 0$, mais alors $\frac{1}{f(u_n)} \to +\infty$ et $\frac{1}{f(v_n)} \to -\infty$, donc $\frac{1}{f}$ n'a pas de limite en a.

Exemples:

- Soit $a \in \mathbb{R}$, $\lim_{a} x = a$ d'où $\forall n \in \mathbb{N}^*$, $\lim_{a} x^n = a^n$ (encore vrai pour n = 0). On en déduit que si P est une fonction polynomiale, alors $\lim_{a} P = P(a)$.
- Si R = $\frac{P}{Q}$ est une fraction rationnelle et si Q(a) ≠ 0, alors \lim_{a} R = R(a).

Limite et relation d'ordre 2)

👺 Théorème 11.7

Soient $f, g, h: I \to \mathbb{R}$ trois fonctions et soit a un élément de I ou une extrémité de I.

- On suppose qu'au voisinage de $a, f \leq g$, alors :
 - $Si \lim_{a} f = +\infty \ alors \lim_{a} g = +\infty.$
- $Si \lim_{a} g = -\infty$ $alors \lim_{a} f = -\infty$. $Si f \leq h \leq g$ au voisinage de a et $si \lim_{a} f = \lim_{a} g = \ell \in \overline{\mathbb{R}}$, $alors \lim_{a} h = \ell$ (théorème des gendarmes
- $-\textit{ Si } f \leqslant \textit{g au voisinage de } \textit{a et si } f \textit{ et g ont chacune une limite dans } \overline{\mathbb{R}}, \textit{alors } \lim_{a} f \leqslant \lim_{a} \textit{g (th\'eor\`eme)}$ du passage à la limite).
- Si $\lim_{a} f = 0$ et si g est bornée **au voisinage de** a, alors $\lim_{a} f \times g = 0$. Si $\lim_{a} f = +\infty$ (respectivement -∞) et si g est minorée au voisinage de a (respectivement majorée), alors $\lim_{a} f + g = +\infty$ (respectivement $-\infty$).

Preuve: Supposons $\lim_{n} f = +\infty$, soit (u_n) une suite d'éléments de I qui tend vers a, à partir d'un certain rang, on a $f(u_n) \leq g(u_n)$, or $f(u_n) \to +\infty$, donc $g(u_n) \to +\infty$ et par conséquent $\lim_n g = +\infty$. Pour le deuxième cas, on raisonne sur - f et - g.

Pour les autres points on procède de la même façon, en se ramenant aux suites.

Remarque 11.2 -

- Si | f | ≤ g au voisinage de a et $si \lim_{a} g = 0$, alors $\lim_{a} f = 0$.
- On peut avoir f < g au voisinage de a et $\lim_{a} \ddot{f} = \lim_{a} g$. Dans un passage à la limite les inégalités deviennent larges.

Limite et composition des fonctions

Soit $f: I \to \mathbb{R}$ une fonction, soit a un élément de I ou une extrémité de I, et soit $g: J \to \mathbb{R}$ une autre fonction avec $\text{Im}(f) \subset J$.

Si $\lim_{a} f = b$, alors b appartient à J ou b est une extrémité de J.

Preuve: Il suffit de distinguer les cas sur J, par exemple, si $J =]\alpha; \beta[$, alors $\forall x \in I, \alpha < f(x) < \beta$, par passage à la limite, on obtient $\alpha \le b \le \beta$. Les autres cas se traitent de la même façon.

Théorème 11.9 (composition des limites)

 $Si \lim f = b \ et \lim g = \ell \ (dans \mathbb{R}), \ alors \lim g \circ f = \ell.$

Preuve : Soit (u_n) une suite d'éléments de I qui tend vers a, la suite $(f(u_n))$ est une suite d'éléments de J qui tend vers b, donc la suite $(g[f(u_n)])$ tend vers ℓ , ce qui prouve que $\lim_{n} g \circ f = \ell$.

Dans la pratique, ce théorème est parfois appelé changement de variable dans une limite. Il dit en effet que si on pose X = f(x), alors comme $X \to b$, on a $\lim_{x \to a} g(f(x)) = \lim_{x \to a} g(X) = \ell$.

★Exercice 11.1 Calculer $\lim_{0^+} f$ avec $f(x) = \frac{e^{\sin(x)\ln(x)} - 1}{\sin(x)\ln(x)}$.

Limite et sens de variation

🔛 Théorème 11.10

Si $f: I \to \mathbb{R}$ est croissante, en notant a la borne de gauche de I et b la borne de droite :

• si f est majorée, alors f admet une limite finie à gauche en b qui est $\lim f = \sup f(x)$. Si de plus si

 $b \in I$, alors $\lim_{b^{-}} f \leqslant f(b)$.

- si f est non majorée, alors f admet $+\infty$ comme limite à gauche en b.
- si f est minorée, alors f admet une limite finie à droite en a qui est $\lim_{a^+} f = \inf_{x \in]a;b[} f(x)$. Si de plus si $a \in I$, alors $\lim f \geqslant f(a)$.
- si f est non minorée, alors f admet $-\infty$ comme limite à droite en a.

Preuve: Démontrons deux cas:

Si f est majorée, soit $S = \sup f$, soit $\varepsilon > 0$, il existe un réel $x_0 \in A$; f tel que $S - \varepsilon < f(x_0)$. Si f is f, alors f etant croissante, $S - \varepsilon < f(x_0) \le f(x) \le S < S + \varepsilon$ ce qui entraı̂ne $|f(x) - S| < \varepsilon$ et donc $\lim_{x \to \infty} f = S$. Si de plus $b \in I$, alors comme f est croissante, f est majorée sur] a; b[par f(b), donc on a S $\leq f(b)$.

Si f est croissante non minorée, soit $A \in \mathbb{R}$ ce n'est pas un minorant de f, donc il existe un réel $x_0 \in A$ (tel que $f(x_0) < A$. Si $x \in]a; x_0[$, alors f étant croissante, $f(x) \le f(x_0) < A$ ce qui entraîne f(x) < A et donc $\lim f = -\infty$.

Remarque 11.3 -

- a) Si f est croissante majorée sur I alors f admet une limite finie en b (limite non atteinte sur] a; b[si la croissance est stricte).
- b) Si f est croissante non majorée sur I alors f a pour limite $+\infty$ en b^- .
- c) Si f est croissante minorée sur I alors f admet une limite finie en a⁺ (limite non atteinte sur] a; b[si la croissance est stricte).
- d) Si f est croissante non minorée sur I alors f a pour limite $-\infty$ en a^+ .
- **Exemple**: Soit $f(x) = \ln(x)$. Pour $n \in \mathbb{N}^*$, $\ln(2^n) = n \ln(2)$, or $\ln(2) > 0$ car 1 < 2 et f est strictement croissante, donc $n\ln(2) \to +\infty$, ce qui prouve que f est non majorée, comme elle est croissante, on a lim $f = +\infty$.

Théorème 11.11 (de la limite monotone)

Si f est croissante sur I, soit a et b les bornes de I (dans $\overline{\mathbb{R}}$), pour tout réel $x_0 \in a$; b[f] admet une limite finie à droite et à gauche en x_0 , de plus on a: $\lim_{n \to \infty} f \leq f(x_0) \leq \lim_{n \to \infty} f$. Et $si \ x_1 \in]a; b[$ avec $x_0 < x_1$, alors: $\lim f \leq \lim f$.

Preuve: Sur l'intervalle] a; x_0 [, la fonction f est croissante et majorée par $f(x_0)$, donc la fonction f a une limite finie à gauche en x_0 et d'après le théorème précédent : $\lim_{x_0^-} f = \sup_{t \in]a; x_0[} f(t) \leq f(x_0)$. Le raisonnement est le même à droite. Si $x_0 < x_1 < b$, on applique le théorème précédent sur l'intervalle $]x_0; x_1[: \lim_{x_0^+} f = \inf_{t \in]x_0; x_1[} f(t) \leqslant \sup_{t \in]x_0; x_1[} f(t) = \lim_{x_1^-} f$.

Remarque 11.4 – En changeant f et -f et en utilisant que pour une partie non vide A de \mathbb{R} : $\inf(A) = -\sup(-A)$, on obtient deux théorèmes analogues aux précédents pour les fonctions décroissantes.

III **CALCULS DE LIMITES**

1) Comparaison des fonctions

Soient $f,g: I \to \mathbb{R}$ deux fonctions, et soit $a \in I$ ou une extrémité de I. On dit que :

- − f est dominée par g au voisinage de a lorsqu'il existe un voisinage V de a, et une fonction $ε: V \to \mathbb{R}$ tels que : $\forall x \in V \cap I$, $f(x) = g(x)\varepsilon(x)$ avec ε **bornée**. Notation : f(x) = O(g(x)).
- $-\ f$ est négligeable devant g au voisinage de a lorsqu'il existe un voisinage V de a, et une fonction $\varepsilon: V \to \mathbb{R}$ tels que: $\forall x \in V \cap I$, $f(x) = g(x)\varepsilon(x)$ avec $\lim_{x \to a} \varepsilon(x) = 0$. Notation: f(x) = o(g(x)).
- − f est équivalente à g au voisinage de a lorsqu'il existe un voisinage V de a, et une fonction $ε: V \to \mathbb{R}$ tels que : $\forall x \in V \cap I$, $f(x) = g(x)\varepsilon(x)$ avec $\lim_{x \to a} \varepsilon(x) = 1$. Notation : $f(x) \sim_a g(x)$.

Théorème 11.12 (Caractérisations)

Lorsque la fonction g \mathbf{ne} s'annule \mathbf{pas} au voisinage \mathbf{de} a (sauf peut être en a) :

$$- f(x) = \mathop{\rm O}_a \big(g(x) \big) \text{ si et seulement si } \begin{cases} \frac{f}{g} \text{ est bornée au voisinage de } a \\ \sin a \in I \text{ alors } g(a) = 0 \implies f(a) = 0 \end{cases}$$

$$-f(x) = O(g(x)) \text{ si et seulement si } \begin{cases} \frac{1}{g} \text{ est bornée au voisina} \\ \text{si } a \in I \text{ alors } g(a) = 0 \end{cases} =$$

$$-f(x) = O(g(x)) \text{ si et seulement si } \begin{cases} \lim_{a \to 0} \frac{f}{g} = 0 \\ \text{si } a \in I \text{ alors } f(a) = 0 \end{cases}.$$

$$- f(x) \underset{a}{\sim} g(x) \text{ si et seulement si } \begin{cases} \lim_{a} \frac{f}{g} = 1\\ \sin a \in I \text{ alors } g(a) = f(a) \end{cases}$$

Preuve : Celle - ci est simple et laissée en exercice.

Remarque 11.5 -

- a) $f(x) = \underset{a}{O}(1)$ signifie que la fonction f est bornée au voisinage de a.
- b) f(x) = o(1) signifie que $\lim_{a} f = 0$.
- c) Si f(x) = o(g(x)) alors f(x) = O(g(x)).
- d) $Si f(x) \sim g(x) alors f(x) = O(g(x)).$
- e) $Si\ f(x) = o(g(x))$ et g(x) = o(h(x)), alors f(x) = o(h(x)) (transitivité).
- $f) \ \ Si \ f(x) = \mathop{\rm O}_a \bigl(g(x)\bigr) \ et \ g(x) = \mathop{\rm O}_a(h(x)), \ alors \ f(x) = \mathop{\rm O}_a(h(x)) \ (transitivit\acute{e})$
- $g) f(x) \sim g(x) \iff f(x) = g(x) + o(g(x)).$

П

🛀 Théorème 11.13

La relation « ... est équivalente à ... au voisinage de a » est une relation d'équivalence dans $\mathscr{F}(I,\mathbb{R})$, c'est à dire qu'elle est réflexive, symétrique et transitive. De plus :

- $-Si \ell \in \mathbb{R}^*$ alors $\lim_{x \to a} f = \ell$ équivaut à $f(x) \sim \ell$.
- $Si f(x) = o(g(x)) alors f(x) + g(x) \sim g(x).$

Preuve : Celle - ci est simple et laissée en exercice.

Les exemples classiques 2)

Théorème 11.14 (croissances comparées)

Soient $\alpha, \beta \in]0; +\infty[$:

- $Si \alpha < \beta \ alors : x^{\alpha} = \underset{+\infty}{o} (x^{\beta}) \ et \ x^{\beta} = \underset{n}{o} (x^{\alpha}).$
- $[\ln(x)]^{\alpha} = \underset{+\infty}{o} (x^{\beta}) et |\ln(x)|^{\alpha} = \underset{0}{o} (\frac{1}{x^{\beta}}).$
- $-x^{\alpha} = \underset{+\infty}{o} (e^{x\beta}) \text{ et } x^{\alpha} = \underset{+\infty}{o} (e^{x^{\beta}}).$ $Si \ a > 1 \text{ alors } x^{\alpha} = \underset{+\infty}{o} (a^{x}).$

Preuve : Identique à celle des suites.

🎮 Théorème 11.15 (les équivalents usuels)

- Si f est dérivable en 0 et si $f'(0) \neq 0$, alors $f(x) f(0) \sim f'(0)x$.
- $-\sin(x) \underset{(0)}{\sim} x; e^x 1 \underset{0}{\sim} x; \ln(1+x) \underset{0}{\sim} x; \tan(x) \underset{0}{\sim} x; 1 \cos(x) \underset{0}{\sim} \frac{1}{2}x^2; (1+x)^{\alpha} 1 \underset{0}{\sim} \alpha x.$
- Soit $P(x) = \sum_{k=0}^{r} a_k x^k$ une fonction polynomiale avec $a_p \neq 0$, alors $P(x) \underset{\pm \infty}{\sim} a_p x^p$ (équivalence avec le terme de plus haut degré).
- Soit $Q(x) = \frac{P(x)}{R(x)}$ une fraction rationnelle avec $a_p x^p$ le terme de plus haut degré de $P(a_p \neq 0)$ et $b_r x^r$ celui de R $(b_r \neq 0)$, alors $Q(x) \sim \frac{a_p}{b_r} x^{p-r}$ (équivalence avec le rapport des termes de plus haut degré).

Preuve : Identique à celle des suites.

🎮 Théorème 11.16 (changement de variable)

Soient $f, g : J \to \mathbb{R}$, $\varepsilon : I \to \mathbb{R}$ telle que $\operatorname{Im}(\varepsilon) \subset J$ et soit $a \in I$ ou une extrémité de I. Si $\lim_{\alpha} \varepsilon = b$ et si $f(x) \sim g(x)$, alors: $f(\varepsilon(x)) \sim g(\varepsilon(x))$.

Preuve : Celle - ci découle du théorème de composition des limites.

Remarque 11.6 – Pour la recherche d'un équivalent en a, on peut toujours se ramener en 0 :

- $-Si\ a\in\mathbb{R}$, on pose $u=x-a(=\varepsilon(x))$, on a alors $u\xrightarrow[x\to a]{}0$, on pose h(u)=f(x)=f(u+a). $Si\ h(u)\underset{0}{\sim}g(u)$, alors $f(x) \sim g(x-a)$.
- $Si\ a = \pm \infty$ alors on pose $u = \frac{1}{x} (= \varepsilon(x))$, on a alors $u \xrightarrow[x \to a]{} 0$, on pose $h(u) = f(x) = f(\frac{1}{u})$. $Si\ h(u) \sim g(u)$, alors $f(x) \sim g(\frac{1}{x})$.

3) Propriétés

Il découle de la définition:

阿 Théorème 11.17

Soient f, g : I → \mathbb{R} deux fonctions, et soit $a \in$ I ou une extrémité de I :

- Si $f \sim g$ alors f et g ont le même signe au voisinage de a.
- $Sif \stackrel{\sim}{\sim} g$ et $si \lim_a g = \ell \in \overline{\mathbb{R}}$, alors $\lim_a f = \ell$. $Sif \stackrel{\sim}{\sim} g$ et $sih \stackrel{\sim}{\sim} k$, alors $f \times h \stackrel{\sim}{\sim} g \times k$ (compatibilité avec la multiplication).

- Si $f \sim g$ et si g ne s'annule pas au voisinage de a, alors $\frac{1}{f} \sim \frac{1}{g}$ (compatibilité avec le passage à
- Si $f \sim g$ et si g > 0 au voisinage de a, alors $f^{\alpha} \sim g^{\alpha}$ pour tout réel α .

Remarque 11.7 -

- Il n'y a pas compatibilité avec l'addition en général. Par exemple : $x + \frac{1}{x} \sim x$ et $-x \sim 1 x$, mais $\frac{1}{x}$ n'est pas équivalent à 1 au voisinage de $+\infty$.
- Ces propriétés sont utiles pour les calculs de limites qui ne peuvent pas être faits directement, on essaie de se ramener à un équivalent plus simple (s'il y en a ...) dont on sait calculer la limite.

★Exercice 11.2

1/Limite en $+\infty$ de $(1+\frac{1}{r})^x$. **2/** Calculer $\lim_{x \to 0^+} \frac{\sin(x)^x - 1}{\sqrt{x} \ln(x)}$

EXTENSION AUX FONCTIONS À VALEURS COMPLEXES

Définition de la limite 1)

Les fonctions à valeurs complexes ont été introduites au début du chapitre 6. Soit $f: I \to \mathbb{C}$ une fonction, on note u = Re(f) (partie réelle de f) et v = Im(f) (partie imaginaire de f), on rappelle que u et v sont des fonctions de I vers \mathbb{R} , et $\forall t \in I$, f(t) = u(t) + iv(t).

La fonction **conjuguée** de f et la fonction $f: t \mapsto u(t) - iv(t)$.

La fonction **module** de f est la fonction |f|: $t \mapsto |f(t)| = \sqrt{u(t)^2 + v(t)^2}$.

La fonction f est bornée sur I si et seulement si $\exists M \in \mathbb{R}^+, \forall t \in I, |f(t)| \leq M$. Ceci équivaut à dire que les fonctions *u* et *v* sont bornées.

L'ensemble des fonctions de I vers $\mathbb C$ est notée $\mathscr F(I,\mathbb C)$, pour les opérations usuelles sur les fonctions, c'est un C-espace vectoriel et un anneau commutatif non intègre.

Définition 11.5

Soit $\ell \in \mathbb{C}$, et soit a un élément de I ou une extrémité de I. On dira que la fonction f a pour limite ℓ en a lorsque $\lim |f(t) - \ell| = 0$. C'est à dire :

 $\forall \varepsilon > 0, \exists V$, voisinage de $a, \forall t \in I, t \in V \implies |f(t) - \ell| < \varepsilon$.

★Exercice 11.3 Soit $f(t) = \frac{e^{it}}{i+t}$, déterminer la limite de f en $+\infty$.

2) **Propriétés**

🧺 Théorème 11.18

 $\lim_{t \to a} |f(t) - \ell| = 0 \iff \lim_{t \to a} \operatorname{Re}(f(t)) = \operatorname{Re}(\ell) \text{ } \boldsymbol{et} \lim_{t \to a} \operatorname{Im}(f(t)) = \operatorname{Im}(\ell).$

Preuve : Celle - ci découle de l'inégalité : $\forall t \in I$,

$$\max(|\operatorname{Re}(f(t)) - \operatorname{Re}(\ell)|, |\operatorname{Im}(f(t)) - \operatorname{Im}(\ell)|) \leq |f(t) - \ell| = \sqrt{|\operatorname{Re}(f(t)) - \operatorname{Re}(\ell)|^2 + |\operatorname{Im}(f(t)) - \operatorname{Im}(\ell)|^2}.$$

Connaissant les propriétés des limites (finies) des fonctions à valeurs réelles, on peut déduire celles des fonctions à valeurs complexes en raisonnant sur les parties réelles et imaginaires :

- $\lim_{n} f = \ell$ ∈ \mathbb{C} si et seulement si pour toute suite (u_n) d'éléments de I qui tend vers a, la suite $(f(u_n))$ tend vers ℓ .
- Si $\lim_{x} f = \ell \in \mathbb{C}$, alors f est bornée au voisinage de a.
- $-\operatorname{Si}\lim_{a}^{u} f = \ell, \lim_{a} g = \ell', \operatorname{alors}\lim_{a} f + g = \ell + \ell', \lim_{a} f \times g = \ell \ell', \forall \lambda \in \mathbb{C}, \lim_{a} \lambda f = \lambda \ell.$
- Si lim f = ℓ alors lim f = ℓ et lim |f| = |ℓ|.
 Si lim f = ℓ ∈ ℂ*, alors au voisinage de a f ne s'annule pas et lim 1/f = 1/ℓ.

V SOLUTION DES EXERCICES

Solution 11.1 On pose $X = \sin(x) \ln(x)$, on $aX = \frac{\sin(x)}{x} x \ln(x)$, donc $\lim_{0^+} X = 0$, or $\lim_{X \to 0} \frac{e^X - 1}{X} = 1$, la limite cherchée vaut donc 1.

Solution 11.2

 $1/\operatorname{On} \ a \ f(x) = \exp(x\ln(1+\frac{1}{x})), \ or \ln(1+\frac{1}{x}) \underset{+\infty}{\sim} \frac{1}{x} \ car \ \frac{1}{x} \underset{+\infty}{\longrightarrow} 0, \ donc \ x\ln(1+\frac{1}{x}) \underset{+\infty}{\sim} 1, \ la \ limite \ cherchée \ est \ donc \ égale \ \grave{a} \ 1.$

2/ On $a\sin(x)^x = \exp(x\ln(\sin(x)))$, or $\ln(\sin(x)) = \ln(\frac{\sin(x)}{x}) + \ln(x) = \ln(x) \left[1 + \frac{\ln(\frac{\sin(x)}{x})}{\ln(x)}\right] \frac{1}{0} \ln(x)$ et $donc \ x \ln(\sin(x)) \approx x \ln(x) \xrightarrow{0} 0$, $d'où : \exp(x\ln(\sin(x))) - 1 \approx x \ln(\sin(x)) \approx x \ln(x)$, $par \ conséquent \ f(x) \approx \frac{x}{0} = \sqrt{x}$, et $donc \ la \ limite \ cherchée \ est \ égale \ à \ 0$.

Solution 11.3 *On* $a|f(t)| = \frac{1}{\sqrt{1+t^2}} \xrightarrow[t \to +\infty]{} 0$, $donc \lim_{t \to +\infty} f(t) = 0$.