EE1201: Basic Electrical Engineering

Combinational Circuits

Combinational Circuits

- Logic circuits of two types: combinational & sequential
- For combinational circuits, outputs depend on the present values of the inputs
- Sequential circuits have memory elements, outputs depend upon present & past values of the inputs

Design of Combinational Circuits

- The design starts with the verbal outline of the problem & culminates in logic circuit diagram
- 1. Problem statement
- 2. Determination of the no. of input & output variables
- 3. Assignment of letter symbols to variables
- 4. Derivation of the truth table that defines the required relationships between the inputs & the outputs
- 5. Simplification of the Boolean functions
- 6. Logic diagram

- Proper interpretation of the verbal statement
- Algebraic manipulation or map method to simplify the output functions
- Variety of simplified expressions maybe available
- Some constraints like availability of the types of gates, minimum no. of gates, minimum no. of inputs to a gate, propagation time of the circuit etc. may dictate certain things
- Logic diagrams useful for visualizing the gate implementation of the expressions

Adders

- Simplest & most basic arithmetic operation, addition of two binary digits
- Four possible operations:
 - 1. 0 + 0 = 0
 - $2. \quad 0 + 1 = 1$
 - 3. 1 + 0 = 1
 - 4. 1 + 1 = 10
- Two outputs, sum & carry
- The carry obtained from the previous stage needs to be added to the next pair of significant bits
- Addition of two bits: half adder
- Addition of three bits: full adder

- Half adder
- Two inputs (x & y) & two outputs (S for sum & C for carry)
- Truth table

x	у	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1_	1	1	0

Simplified expressions

$$S = x'y + xy' = x \oplus y$$

 $C = xy$

Logic diagram, various implementation

- Full adder
- Three inputs (x, y, z) & two outputs (S for sum & C for carry)
- Truth table

<u>x</u>	у	Z	c	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Simplified expressions

$$S = x'y'z + x'yz' + xy'z' + xyz$$
$$= x \oplus y \oplus z$$

M Mano Digital Design

• Logic diagram

- The carry output C which equals xy + yz + zx can as well be expressed as xy + z(x⊕y)
- Full adder with two half adders & an OR gate

Subtractors

- Subtraction maybe accomplished using complements, conversion to addition
- With logic circuits in a direct manner
- Subtrahend bit subtracted from the corresponding minuend bit
- If minuend bit smaller than the subtrahend bit, 1 borrowed from next significant position
- Two outputs, borrow & difference
- Half subtractor & full subtractor

- Half subtractor
- Subtracts two bits (x-y) & produces two outputs difference (D) & borrow (B)
- Truth table

x	у	В	D
0	0	0	0
0	1	1	1
1	0	0	1
1	ì	0	0
		<u> </u>	

Simplified expressions

$$D = x'y + xy' = x \oplus y$$
$$B = x'y$$

- Full subtractor
- Three inputs (x, y, z) & two outputs (D for difference & B for borrow)
- Truth table

			Т	
<u>x</u>	у	Z	В	
0	0	0	0	0
0.	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Simplified expressions

$$D = x'y'z + x'yz' + xy'z' + xyz$$

$$= x \oplus y \oplus z$$

M Mano Digital Design

Binary Adders

- Full adder forms the sum of two bits & a previous carry
- Two binary numbers of n bits can be added using the full adder

Subscript i	4	3	2	1	
Input carry	0	1	1	0	C_i
Augend	1	0	1	1	A_i
Addend	0	0	1	1	B_i
Sum	1	1	ī	0	S_i
Output carry	0	0	1	1	C_{i+1}

Two ways to do, serially or parallely

Binary Parallel Adder

- Full adders connected in a chain
- Output carry from previous full adder connected to the input carry of the next full adder

Binary Adder-Subtractor

- Subtraction using complements
- A B = A + (2's complement of B)
- Parallel adder with inverters placed between B inputs & full adder inputs, with carry input 1
- Combine addition & subtraction into one circuit

M Mano Digital Design

Carry Propagation

- Parallel addition, all augend & addend bits available at the same time
- Finite time for signal propagation through the gates
- Carry propagation, longest delay time, limiting factor in determining the speed

 $C_{i+1} = G_i + P_i C_i$

Carry look ahead adder

$$\begin{split} &C_2 = G_1 + P_1 C_1 \\ &C_3 = G_2 + P_2 C_2 = G_2 + P_2 \left(G_1 + P_1 C_1 \right) = G_2 + P_2 G_1 + P_2 P_1 C_1 \\ &C_4 = G_3 + P_3 C_3 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 C_1 \end{split}$$

Sum of product form, one level of AND gate followed by one level of OR gate

 Increase complexity to improve speed

4 bit carry look ahead adder

BCD Adder

- Arithmetic addition in decimal system
- Addition of decimal digits in BCD with a possible carry from previous stage
- 9 inputs, truth table with 29=512 entries
- Use of 4 bit binary adders
- Maximum sum 9+9+1=19 & in binary form
- Output required in BCD form, proper conversion from binary to BCD output

• BCD adder table

	Binary Sum						BCD Sun	<u> </u>		Decimal
K	Z_8	Z ₄	Z ₂	Z ₁	C	Sa	S4	S ₂	51	
0	0	0	0	0	0	0	0	0	0	0
ŏ	0	0	0	1	0	0	0	0	1	1
Ö	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1	0	0	0	0	10
o o	i	0	1	1	1	0	0	0	1	11
o o	i	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	ì	1	0	0	0	18
1	0	0	1	1	1	1	0	0	ı	19
										M Mano Digital Desig

- If binary sum less than or equal to 1001 no conversion needed
- If it is greater than 1001, addition of binary 6 (0110) converts it to correct BCD representation
- Condition for correction & output carry

$$C = K + Z_8 Z_4 + Z_8 Z_2$$

- Extra 4-bit binary adder to add 0110
- Decimal parallel adder with n decimal digits will need n such BCD adders with output carry of one stage connected to the input carry of the next higher order stage

BCD adder block diagram

Magnitude Comparators

- Compare two numbers to determine if one number is greater than, less than, or equal to the other number
- Two n bit numbers with 2²ⁿ entries- truth table, well defined inherent regularity- algorithmic approach
- Two numbers $A=A_3A_2A_1A_0$ & $B=B_3B_2B_1B_0$
- XNOR (equivalence) gate, if inputs are same output is 1, otherwise output is 0

$$x_{i} = A_{i}B_{i} + A'_{i}B'_{i}; (A = B) = x_{3}x_{2}x_{1}x_{0}$$

$$(A > B) = A_{3}B'_{3} + x_{3}A_{2}B'_{2} + x_{3}x_{2}A_{1}B'_{1} + x_{3}x_{2}x_{1}A_{0}B'_{0}$$

$$(A < B) = A'_{3}B_{3} + x_{3}A'_{2}B_{2} + x_{3}x_{2}A'_{1}B_{1} + x_{3}x_{2}x_{1}A'_{0}B_{0}$$

Magnitude comparator circuit

Some code converters

- Use of different codes by different systems
- Output of one system as input to the other
- Code converters for making the systems compatible
- Input lines supply the bit combination of elements specified by one code
- Output lines generate the bit combination in another code
- BCD to excess-3 conversion
- Binary to gray and vice versa

BCD to excess-3 conversion

4 bits for representation of decimal digits, 4 inputs
 A, B, C, D & 4 outputs w, x, y, z

	Inpu	t BCD		Out	out Exc	ess-3 (Code
Α	В	c	D	w	x	у	z
0	0	0	0	0	0	1	1
0	0	0	1.	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

• 16 possible combinations, 6 are unused, treated as don't care while simplifying

Logic diagram

D'

$$z = D'$$

$$y = CD + C'D' = CD + (C + D)'$$

$$x = B'C + B'D + BC'D' = B'(C + D) + BC'D'$$

$$= B'(C + D) + B(C + D)'$$

$$w = A + BC + BD = A + B(C + D)$$

Binary to gray code conversion

- A binary code b₃b₂b₁b₀ needs to be converted to the gray code g₃g₂g₁g₀
- Use of XOR gates

Gray to binary code conversion

- A gray code $g_3g_2g_1g_0$ needs to be converted to the binary code $b_3b_2b_1b_0$
- Use of XOR gates

Error detection codes

- Parity generation & checking
- XOR gates useful, it is equal to 1 if odd number of variables are equal to 1, odd function
- For 3 variables

$$A \oplus B \oplus C = (AB' + A'B)C' + (AB + A'B')C$$

$$= AB'C' + A'BC' + ABC + A'B'C$$

$$= \sum (1, 2, 4, 7)$$

For 4 variables

$$A \oplus B \oplus C \oplus D = \sum (1,2,4,7,8,11,13,14)$$

(a) Odd function $F = A \oplus B \oplus C \oplus D$

(b) Even function $F = (A \oplus B \oplus C \oplus D)'$

Even parity generator for 3 bit message

Three-	Three-Bit Message		-Bit Message Pari		Parity Bit	
	У	z	P			
0	0	0	0	<u> </u>		
0	0	1	1	×—————————————————————————————————————		
0	1	0	1	$y \longrightarrow P$		
0	1	1	0			
1	0	0	1	z		
1	0	1	0			
1	1	0	0			
1	1	1	1			

• P will be 1 if message has odd no. of 1's

Checking parity of the message

x y z P C 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1	Four	Four Bits Received		ceived	Parity Error Check	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		У	Z	P	С	
0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0		0	0	0		
0 0 1 1 0 0	0	0	0	I	1	
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	1	0	1	
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	1	1	0	x
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	0	0	1	~U
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	. 1	0	1	0	
1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1	0	1	ì	0	0	
1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1	0	1	1	1	1	$z \longrightarrow V$
1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1	1	0	0	0	1	$P \longrightarrow H$
1 0 1 1 1 1 1 0 0 0 1 1 0 1 1	1	0	0	1	0	
1 1 0 0 0 1 1 0 1 1	1	0	l	0	0	
1 1 0 1 1	-1	0	1	1	1	
	1	1	0	0	0	
1 1 1 0 1	1	1	0	1 ·	1	
	1	1	1	0	1	
	1	1	1	1	0	

 Message should have even no. of 1's, odd no. of 1's will indicate error

$$C=x\oplus y\oplus z\oplus P$$

Decoder

 Conversion of binary information from n input lines to a maximum of 2ⁿ unique output lines

- Generation of 2ⁿ minterms of n input variables
- 3 to 8 or 3×8 decoder

Truth table

	Inputs					Ω	utputs			
x	У	z	<i>D</i> ₀	D_1	D ₂		D ₄	<i>D</i> ₅	D_6	
0	0	0	1	0	0	0	0	0	0	0
0	C	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	O	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

- Outputs mutually exclusive i.e. one output variable equal to 1 at a time, minterm equivalent of the binary number
- Decode 3 bit code to provide 8 outputs, binary to octal conversion

- Implementing combinational circuits
- Full adder with a decoder & two OR gates
- $S = \Sigma(1, 2, 4, 7) \& C = \Sigma(3, 5, 6, 7)$

 Instead of F, sum the minterms of F' & use NOR gate to get back F

- NAND gates instead of AND gates to generate decoder minterms in their complemented form
- Enable input to control the circuit operation

- If E = 1, all outputs will be 0 irrespective of the value of A & B
- E = 0 for normal decoder operation

- Decoder with enable pin can be used as demultiplexer (DeMUX)
- DeMUX receives information on one input lines & transfers it to one of the 2ⁿ possible output lines
- For DeMUX, E taken as input & A, B taken as selection lines

- Construction of higher order decoders using lower order decoders
- 4×16 decoder using 3×8 decoders

Encoder

- Inverse operation of decoder
- 2ⁿ input lines & n output lines

Inputs						Outputs				
D_0	D_1	D ₂	D ₃	D ₄	D ₅	D_6	D_7	x	y	_
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	ŏ	o	0	1
0	0	1	0	0	0	0	0	0	1	Ô
0	0	0	1	0	0	0	0	0	1	ì
0	0	0	0	1	0	0	0	1	0	ō
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	Ó	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Implementation with OR gates

$$x = D_4 + D_5 + D_6 + D_7$$
$$y = D_2 + D_3 + D_6 + D_7$$
$$z = D_1 + D_3 + D_5 + D_7$$

Encoder construction

- Only one input can be active at a given time
- Establish priority to avoid ambiguities
- All outputs 0 if $D_0=0$ or all inputs 0, additional output to specify this condition

4 input priority encoder

Multiplexers

- Multiplexing means transmitting a large number of information units over a smaller number of channels or lines
- Transfer of binary information from one of many input lines to a single output line
- Selection lines to select a particular input value
- 2ⁿ input lines & n selection lines, 2ⁿ×1 MUX
- Also known as data selector as it selects one of many inputs & steers the binary information to the output

• 4 ×1 MUX

Boolean function implementation

- Kind of a decoder with OR gates
- Possible to implement Boolean functions with the help of MUX
- A Boolean function of n+1 variables can be implemented with a 2ⁿ×1 MUX
- n variables connected to the selection lines
- The remaining 1 variable (x) in appropriate form (x, x', 1, 0) connected to the input lines

- $F(A, B, C) = \Sigma(1, 3, 5, 6)$ with 4×1 MUX
- Variables B & C connected to the selection lines & A needs to be appropriately connected to the input lines

- Using implementation table:
 - Most significant bit (MSB) to input lines & remaining variables to selection lines
 - Order is (A, B, C, D,), A is MSB, connected to input lines, B to higher order selection line, C to next lower selection line & so on
 - List the MUX inputs & under them all the minterms in two rows, first row with minterms having A in complemented form & second row with minterms having A in direct form
 - Circle the minterms of the function & inspect each column. If no minterm selected, apply 0 to the corresponding input; if both minterms selected, apply 1; if only top is circled, apply A'; if only bottom is circled apply A

• $F(A, B, C) = \Sigma(1, 3, 5, 6) \& F(A, B, C) = \Sigma(1, 2, 4, 5)$

Minterm	A	В	C	F
0	0	0	0	0
1	0	0	1	1
2	0	Ì	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	l	1	0

Any other variable can also be chosen for the inputs

M Mano Digital Design

Read Only Memory (ROM)

- Decoder generates minterms & OR gates can sum them for implementing a Boolean function
- ROM includes both the decoder & OR gates in a single IC package
- Can be used as a memory for storing binary information or can be used to implement Boolean functions

- n inputs, m outputs, size 2ⁿ×m
- Bit combination of the input variables 'address'
- Bit combination of the output lines 'word'
- 32×4 ROM, 5 inputs & 4 outputs, 32 words each of 4 bits stored inside
- Selection of the word done by input lines
- Input 00000, word 0 will be selected; input 11111, word 31 will be selected & will appear at the output
- Decoder outputs connected by special fuses to the OR gate inputs
- Fuses are like switches & can be programmed
- Information stored in the condition of the fuse

Internal construction of a 32×4 ROM

 Combinational logic with ROM, n input & m output circuit with 2ⁿ×m ROM

A_1	A_0	F_1	F_2
0	0	0	1
0	1	l I	0
1	0	1	1
1	1	1	0

Types of ROM

 The programming in ROM can be done by the manufacturer (mask programming) or the user

PROM

- Programmable Read Only Memory
- Fuses blown by application of current pulses
- Commercially available programmers

EPROM

- Erasable Programmable Read Only Memory
- Exposure to UV light for erasing & then reprogram

EEPROM

- Electrically Erasable Programmable Read Only Memory
- Electrical signals instead of UV light for erasing & then reprogram

Programmable Logic Array (PLA)

- Similar to ROM in construction
- Instead of decoder, array of AND gates to have only the required minterms
- Combinational circuit with excessive don't care conditions
- n inputs, m outputs, k product terms & m sum terms

Necessary to simplify the function to reduce the no.

of gates required

A	В	С	F_1	F_2
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	1	1
1	1	0	0	0
1	. 1	1	1	1

	Product	"	Inpu	Ou	Outputs		
	term	A	В	C	F_1	F_2	
AB'	1	1	0		1	_	7
AC	2	1	_	1	1	1	
BC	3		1	1		1	
					T	T	T

