习题. 证明: 唯一没有三角形的 $(p, \lceil \frac{p^2}{4} \rceil)$ 图为 $K(\lceil \frac{p}{2} \rceil, \lceil \frac{p}{2} \rceil)$ 。

证法一. 用数学归纳法证明以下结论:唯一没有三角形的包含p个顶点且边数 $q \geq [\frac{p^2}{4}]$ 的图一定为 $K(\lfloor \frac{p}{2} \rfloor, \lceil \frac{p}{2} \rceil)$ 。施归纳于顶点数p,只证p为奇数的情况,p为偶数的情况是类似的。

- 1) 当p=1时,唯一没有三角形的包含一个顶点且边数 $q\geq 0$ 的图一定为K(0,1),结论显然成立。(注:我们把(1,0)图也称为偶图,并记为K(0,1)或 K(1,0))。
- 2)假设当 $p=2k-1(k\geq 1)$ 时结论成立,往证当p=2k+1时结论也成立。设G为一个没有三角形,顶点数p=2k+1,边数 $q\geq [\frac{p^2}{4}]$ 的图。显然,G中至少有两个邻接的顶点u和v。图 $G'=G-\{u\}-\{v\}$ 中没有三角形,有2k-1个顶点。因为G中没有三角形,如果u与G'的x个顶点邻接,则v至多能与G'中剩余的2k-1-x个顶点邻接,于是G'中的边数

$$q' \ge q - x - (2k - 1 - x) - 1$$

$$= \left[\frac{(2k + 1)^2}{4}\right] - 2k$$

$$= k^2 - k$$

$$= \left[\frac{(2k - 1)^2}{4}\right]$$

由归纳假设,G'为 $K(\lfloor \frac{2k-1}{2} \rfloor, \lceil \frac{2k-1}{2} \rceil)$,即K(k-1,k)。以下证明G必为K(k,k+1)。假设偶图G'的顶点集有一个二划分为 $\{V_1,V_2\}$,使得G'的任意一条边的两个端点一个在 V_1 中,一个在 V_2 中, $|V_1|=k-1$, $|V_2|=k$ 。由G中没有三角形知 V_1 和 V_2 中的每个顶点在G中至多与顶点u和顶点v中的一个邻接。另外, V_1 和 V_2 中的每个顶点在G中必与顶点u和顶点v中的一个邻接,否则,G中的边数 $Q<(k-1)k+(2k-1)+1=k^2+k=[\frac{(2k+1)^2}{4}]$,矛盾。不妨设在G中 V_2 中的某个顶点与v相邻接,由G中没有三角形知v不能与 V_1 中的顶点相邻接,从而u与 V_1 中每个顶点相邻接,u与 V_2 中的每个顶点相邻接。这证明了G为K(k,k+1)。

证法二.