

MEAN, MEDIAN AND MODE

PROBLEM 1:

1. Find the mean of the first 10 odd integers.

SOLUTION:

PROBLEM 2:

2. What is the median of the following data set?

32, 6, 21, 10, 8, 11, 12, 36, 17, 16, 15, 18, 40, 24, 21, 23, 24, 24, 29, 16, 32, 31, 10, 30, 35, 32, 18, 39, 12, 20

PROBLEM 3:

3. Identify the mode for the following data set:

21, 19, 62, 21, 66, 28, 66, 48, 79, 59, 28, 62, 63, 63, 48, 66, 59, 66, 94, 79, 19 94

SOLUTION:

PROBLEM 3:

4. Consider the following frequency distribution. Calculate the mean weight of students.

Weight (in kg)	31-	36 -	41 –	46 -	51 -	56 -	61 –	66 –	71 –
	35	40	45	50	55	60	65	70	75
Number of Students	9	6	15	3	1	2	2	1	1

Class Interval	Number of Students	Class Mark by	1,	
30.5-35.5	g (fi)	Cias (accs (x;)	di=xi-a	fid;
35.5 - 40.5		33	-10	-90
	β	38	-5	-25
40.5-45.5	15	43 = a	0	0
45.5 - 50.5	3	48	5	7 300
50.5-55.5				15
55.5-60.5	2	53	10	10
60.5-65.5		58	13	30
	2	63	20	40
65.5-705		68	25	25
70.5-75.5		73	30	
755 - Total	Ifi = 40			30 E fid; =35
Bu	assumed mean	11 1	Him'll ham	27141, -33
Maa	of a of a of the	method.	3318 3518	10
rea	n = 0 + Sfice		(41.48 JA 83)	
		Day Many 5	Mas I was	
	= 43 + 35	= 73.875		
	GY V	4 00	X . NA	

PROBLEM 5:

5. Find the mean for the following distribution.

xi	15	21	27	30	35
f _i	3	5	6	7	8

SOLUTION:

Xi	11	fix;
15	3	45
21	5	105
27	6	162
30	7	210
35	8	280
Total	Sfi = 29	& fin; = 802
M	eon = Ifixi	
	= 802 = 27.655	
	29	

PROBLEM 6

6. Calculate the median marks of students from the following distribution.

Marks	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
Number of Students	7	10	10	20	20	15	8

=		
_ Class Interval	Number of Students	Cumulative frequency
10 -20	7	7
20-30	10	17
30 - 40	16	21 = ct
10-50	20 = f	47
50-60	20	67
60-70	15	82
70-80	8	90
N/2 =	90 /45	
Median clas	s is 40-50	4-71-1-1-6
Lower Lin	n;t = 40	
- Class &	ize = 10	Samuel and a second
frequen	cy = 20	B - Health
_	Hue frequency = 27	
	0 0	My +
Med	dian = 40 + [45-2	-7] ×10
	[20	
20	= 40 + 18	- 49
40	2	0

PROBLEM 7:

8. If the median of a distribution given below is 28.5, then find the value of x and y.

СІ	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	Total
Frequency	5	x	20	15	у	5	60

From the data,
N/2 = 30
Median = 28.5
Midian class = 20-30
cumulative prequency = 25 +x
Jacu limit = 1=20
the beginning = f=20
cumulative frequency of preceding class = 5+n
Class size = h = 10
Median = $l + (N_2 - C_b) \dot{x}h$
\ f
$29.5 = 20 + (30-5-7 \times 10)$
28.5 = 20 + 30 - 5 - 2
2
$2 (8.5) = 25 - \alpha$ $\alpha = 8$
Also
60 = 5 + 20 + 15 + 5 + 7 + 9
y = 60 -53
y=7
V-Superior - Control - Con

PROBABILITY

PROBLEM 1:

Two coins are tossed 500 times, and we get:

Two heads: 105 times

One head: 275 times

No head: 120 times

Find the probability of each event to occur.

- Probability	
1 let's say the event of getling two heads, one has and no head by E, E, E, E, respectively.	rad
$P(F_1) = 105 = 0.21$	7
PIE2) = 275 = 0.55	
P(Es) = 120 = 6.24	
The own of all the propability should be I.	
P(E) + P(E2) + P(E3)	
= 0.21 + 0.55 to .24 = 1.0	

PROBLEM 2:

A tyre manufacturing company kept a record of the distance covered before a tyre needed to be replaced. The table shows the results of 1000 cases.

Distanc	Less	4000	9001	More
e(in	than	to	to	than
km)	4000	9000	14000	14000
Frequen	20	210	325	445

If a tyre is bought from this company, what is the probability that:

- (i) it has to be substituted before 4000 km is covered?
- (ii) it will last more than 9000 km?
- (iii) it has to be replaced after 4000 km and 14000 km is covered by it?

2. (i) Total number of trials = 1000
The frequency of a tyre required to be replaced before covering 40 00 km = 20
SO P(F,) = 20 = 0.02
So P(E ₁) = 20 = 0.02
(ii) Frequency that type will last more than 9000km = 325 + 445 = 770
So, P(E2)= 770 2 0.77
. 1006
4000 km and 14000 km. = 210 + 325 = 535
4000 km and 14000 km. = 210+325 = 535
$So, P(E_3) = \frac{S3S}{1000} = 0.535$
1000

PROBLEM 3:

3. The percentage of marks obtained by a student in the monthly tests are given below:

Test	1	2	3	4	5
Percentage of marks obtained	69	71	73	68	74

Based on the above table, find the probability of students getting more than 70% marks in a test.

SOLUTION:

PROBLEM 4:

- 4. One card is drawn from a deck of 52 cards, well-shuffled. Calculate the probability that the card will
- (i) be an ace,
- (ii) not be an ace.

PROBLEM 5:

6. Two coins (a one rupee coin and a two rupee coin) are tossed once. Find a sample space.

SOLUTION:

PROBLEM 6:

10. If
$$P(A) = 7/13$$
, $P(B) = 9/13$ and $P(A \cap B) = 4/13$, evaluate $P(A|B)$.

SOLUTION:

6. If
$$P(A) = \frac{7}{13}$$

 $P(B) = \frac{9}{13}$
 $P(A|B) = \frac{4}{13}$
 $P(A|B) = P(A|B) - \frac{4}{13} \frac{9}{13} = \frac{4}{9}$

PROBLEM 7:

What is the probability of getting a sum of 7 when two dice are thrown?

SOLUTION:

PROBLEM 8:

1 card is drawn at random from the pack of 52 cards.

- (i) Find the Probability that it is an honor card.
- (ii) It is a face card

SOLUTION:

VARIANCE AND STANDARD DEVIATION

PROBLEM 1:

Find the variance and standard deviation of the following scores on an exam:

Valu	ance and Standard Deviation
1. N	1ean = 92+95+85+80+75+50/6
	= 471/6=79.5
hen we fin	ad difference between score and mean (deviation).
lore	Score - Mean
92	. 92 - 79.5 = 12.5
95	95 - 19.5 = 15.5
	85 -79.5 = 5.5
80	80 - 79.5 = 6.5
75	75 - 79.5 = -4.5
50	50 - 79.5 = -29.5
Diffuence	(Difference) and sum them (Difference) 1 156.25 240.25
12.5 15.5 5.5 0.5	30. 25 0. 25 20 .25
12.5 15.5 5.5 0.5 -4.5	0.25 20.25 870.28
12.5 15.5 5.5 0.5	20.25
12.5 15.5 5.5 0.5 -4.5	0.25 20.25 870.28
12.5 15.5 5.5 0.5 -4.5 -29.5 Sum	0.25 20.25 870.28

Variance =
$$1317.50 = 263.5$$

Standard deviation = $\sqrt{263.5}$

= 16.2

PROBLEM 2:

Find the standard deviation of the average temperatures recorded over a five-day period last winter:

18, 22, 19, 25, 12 **SOLUTION**:

Temp	Temp - Mean	Deviation squared.
18	-1.2	1.44
22	2.8	7.84
19	-0.2	0.04
25	5.8	33.64
12	-7.2	51.84
96 15= 19.2		Sum = 94.80
	vi ance = 94.8 = 5	

NORMAL DISTRIBUTION

PROBLEM 1:

 Most graduate schools of business require applicants for admission to take the Graduate Management Admission Council's GMAT examination. Scores on the GMAT are roughly normally distributed with a mean of 527 and a standard deviation of 112. What is the probability of an individual scoring above 500 on the GMAT?

SOLUTION:

PROBLEM 2:

2. How high must an individual score on the GMAT in order to score in the highest 5%?

-U.24

SOLUTION:

2.
$$M = 527$$
 $\delta = 112$
 $P(X > ?) = 0.05$
 $P(X < ?) = 1-0.05 = 0.95$
 $X = 527 + 1.645(112)$
 $X = 527 + 184.24$
 $X = 711.24$

PROBLEM 3:

7. The Edwards's Theater chain has studied its movie customers to determine how much money they spend on concessions. The study revealed that the spending distribution is approximately normally distributed with a mean of \$4.11 and a standard deviation of \$1.37. What percentage of customers will spend less than \$3.00 on concessions?

SOLUTION:

3.
$$Z = 3 - 4.11 = 0.81021$$

 1.37
 $U = 4.11$
 $0 = 1.37$
 $P(X < 3.00) = P(Z < -0.81) = 200.2090$

PROBLEM 4:

8. What spending amount corresponds to the top 87th percentile?

y.
$$U = 4.11$$

 $0 = 1.37$
 $P(X > ?) = 0.87$ $P(Z > ?) = 0.87$
 $P(Z > ?) = 0.37$ $P(Z < ?) = 1.13$
 $0 = 4.11 + (-1.13)(1.37)$
 $0 = 4.11 - 1.548$
 $0 = 3.56$

PROBLEM 5:

The average number of acres burned by forest and range fires in a large New Mexico county is 4,300 acres per year, with a standard deviation of 750 acres. The distribution of the number of acres burned is normal. What is the probability that between 2,500 and 4,200 acres will be burned in any given year?

5.
$$Z = 2500 - 4300 / 750 = 2.40$$

 $Z = 4200 - 4300 / 750 = -0.1333$
 $M = 4300$
 $\delta = 750$

$$P(2500 < X < 4200) = P(-2.40 < Z < -0.13)$$

$$P(-2.40 < Z < -0.13) = P(Z < -0.13) - P(Z < -2.40)$$

$$P(-2.40 < Z < -0.13) = 0.4483 - 0.0082$$

$$= 0.4401$$

BINOMIAL DISTRIBUTION

PROBLEM 1:

Find the binomial distribution of getting a six in three tosses of an unbiased dice.

SOLUTION:

Binomial Distribution
Bernoulli's theorom
$P(x=x) = {}^{n}C_{n}P^{n}q^{(n-1)}$
1. Let n be random variable of getting 6.
Then be x can be 0, 1, 2, 3.
Here, n=3
O= probability of acting 6 = 16
I let n be random variable of getting 6. Then & X can be 0, 1, 2, 3. Here, n=3 P= probability of getting 6 = 1/6 Probability of not getting sixn= 9= 5/6.
$\frac{1}{10000000000000000000000000000000000$
216 216
$P(x=1) = {}^{3}C_{1}({}^{1}6)^{1}({}^{5}6)^{3-1} = 3 \times {}^{1}/{}_{6} \times {}^{2}S = {}^{2}S$
- 1(6-)= (6) (76) 36 72
- P(1=2)= 3C2 (16)2 (5/6)32 = 3 x 36 x 5/6 = 5/12
$-\frac{3}{2}$
$-\frac{P(\eta = 3) = {}^{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{3-3}}{3} = \frac{1 \times 1 \times 1}{216} = \frac{1}{216}$

PROBLEM 2:

Find the probability of getting at least 5 times head-on tossing an unbiased coin for 6 times by using the binomial distribution.

PROBLEM 3:

On average, every one out of 10 telephones is found busy. Six telephone numbers are selected at random. Find the probability that four of them will be busy.

SOLUTION:

$$P = 10 \qquad 9 = 910$$

$$P(x = 4) = C_4 P^4 9^{(6-4)}$$

$$= C_4 (10)^4 (90)^{\frac{1}{2}}$$

$$= 15 \times 1 \times 81$$

$$= 10^9 \times 100$$

$$= 0.001215$$

PROBLEM 4:

A bag contains 5 green balls and 3 red balls. If two balls are drawn from the bag randomly with replacement, find the probability distribution of the number of green balls drawn.

$$P = S = S \qquad q = 1 - S = 3$$

$$S+3 = 8 \qquad 8$$

$$P(x=0) = {}^{2}C p^{o}q^{2-o} = 1 \times 1 \times (3)^{2} = q$$

$$P(x=1) = {}^{2}C p^{1}q^{2-1} = 2 \times 5 \times 3 = 15$$

$$P(x=2) = {}^{2}C p^{1}q^{2-2} = 1 \times (5)^{2} \times (3)^{0} = 25$$

$$P(x=2) = {}^{2}C p^{1}q^{2-2} = 1 \times (5)^{2} \times (3)^{0} = 25$$

POISSON'S DISTRIBUTION

PROBLEM 1:

As only 3 students came to attend the class today, find the probability for exactly 4 students to attend the classes tomorrow.

SOLUTION:

Poisson Distribution
$$P(X=x) = e^{-\pi} n^{x}$$

$$1. \quad n = 3$$

$$x = 4$$

$$P(X=4) = e^{-3} 3^{4} = 0.16803$$

PROBLEM 2:

Traffic accidents at a particular intersection follow Poisson distribution with an average rate of 1.4 per week.

- a) What is the probability that the next week is accident-free?
- b) What is the probability that there will be exactly 3 accidents next week?
- c) What is the probability that there will be at most 2 accidents next week?

2. a)
$$P(X=0) = 1.4^{\circ} \cdot e^{-1.4} \approx 0.2466 \cdot e^{-1.4}$$

b) $1 \text{ week} \Rightarrow 1 = 1.4$
 $P(X=3) = 1.4^{3} \cdot e^{-1.4} = 0.1128$

3!

c) $1 \text{ week} \Rightarrow 1 = 1.4$
 $P(X \le 2) = P(X=0) + P(X=1) + P(X=2)$
 $= 0.2466 + 1.4! \cdot e^{-1.4} + 1.4^{2} \cdot e^{-1.4}$
 $= 0.8335$

PROBLEM 3:

Exam	ble 1: Aclinic deals only with flu vacc	inctions. The number of
	patients arriving every 15 minutes is X with distribution Po(4.2)	Modera by rundom variable
0		he Poisson model to be valid
(i) State two assumptions sequired for to	ent will assive in a
S	15-minute period.	1
		S-10 73 Q10

(i) Patient at assive at constant mean sate.

Patient assive at sandom

Patient assive independently.

Patient assive singly.

(ii) $P(x \ge 1) = P(-P(0))$ $= 1 - e^{-P} \cdot A^{\circ}$ $= 1 - e^{8}$ = 1 - 0.0145 = 0.985

PROBLEM 4:

		1,01 —
Example	2: The number of goals score	d per match by Everly Rovers
	is represented by the sando	n variable X, which has mean 1.8,
(i)	State two conditions for X to be	modelled by a Poisson distribution.
	Assume now that X~ Poli.	d per match by Everly Roress m variable X, which has mean 1.8, modelled by a Poisson distribution. 13.
(ii)	Find P(2 < X < 6)	·[2]
ſiil) The manager promises the te	am a bonus if they score at least
	I goal in each of the next 10	matches. Find the protectility that [5-11/72/23][3]
	they win the bonus.	[5-11/72/23/[3]
	0	r*

UNIFORM DISTRIBUTION

PROBLEM 1:

The average weight gained by a person over the winter months is uniformly distributed and ranges from 0 to 30 lbs. Find the probability of a person that he will gain between 10 and 15lbs in the winter months.

SOLUTION:

PROBLEM 2:

The data that follow are the number of passengers on 35 different charter fishing boats. The sample mean = 7.9 and the sample standard deviation = 4.33. The data follow a uniform distribution where all values between and including zero and 14 are equally likely. State the values of a and b. Write the distribution in proper notation, and calculate the theoretical mean and standard deviation.

			Table 5.3.2			
1	12	4	10	4	14	11
7	11	4	13	2	4	6
3	10	0	12	6	9	10
5	13	4	10	14	12	11
6	10	11	0	11	13	2

SOLUTION:

2.
$$0 = 0$$

$$b = 14$$

$$X \sim U(0, 14)$$

$$u = \frac{14 - 0}{2} = 7$$

$$6 = \sqrt{\frac{14 - 0}{12}} = 4.64$$

PROBLEM 3:

The data in Table 5.3.1 are 55 smiling times, in seconds, of an eight-week-old baby.

10.4	19.6	18.8	13.9	17.8	16.8	21.6	17.9	12.5	11.1	4.9
12.8	14.8	22.8	20.0	15.9	16.3	13.4	17.1	14.5	19.0	22.8
1.3	0.7	8.9	11.9	10.9	7.3	5.9	3.7	17.9	19.2	9.8
5.8	6.9	2.6	5.8	21.7	11.8	3.4	2.1	4.5	6.3	10.7
8.9	9.4	9.4	7.6	10.0	3.3	6.7	7.8	11.6	13.8	18.6

a) What is the probability that a randomly chosen eight-week-old baby smiles between two and 18 seconds?

SOLUTION:

$$P(22 \times 12) = (182)(\frac{1}{23}) = \frac{16}{23}$$

b) Find the 90th percentile for an eight-week-old baby's smiling time.

Ninety percent of smiling times fall below goth percentile, k
P(X < K) = 0.90
P(x < k) = 0.9)
basex height = 0.9
$ (k-0) \left(\frac{1}{23}\right)^{2} = 0.9 $
(23)
k = 20.7
The same of the sa

PROBLEM 4:

The amount of time, in minutes, that a person must wait for a bus is uniformly distributed between zero and 15 minutes, inclusive.

a) What is the probability that a person waits fewer than 12.5 minutes?

SOLUTION:

b) On the average, how long must a person wait? Find the mean, $\,\mu$ and the standard deviation, $\,\sigma$ SOLUTION:

b) U	= 15+0 = 7.5
	2
0	2/(b-9) ⁻ N 12
1 Stans	$= 12^2 = 4.3$
Assem 6	$\frac{12}{12} = 4.5$
· (wait pivat	