Problem 2.1. Given a training set $S = \{(\mathbf{x}_i, f(\mathbf{x}_i))\}_{i=1}^m \subset (\mathbb{R}^d \bigotimes \{0, 1\})^m$, show that there exists a polynomial p_s such that $p(\mathbf{x}) = 0$ if and only if $h_s(\mathbf{x}) = 1$.

Solution: Let $\mathbf{z_1}, \mathbf{z_2}, ..., \mathbf{z_k}$ be all of the training examples in S so that $\forall 1 \leq i \leq k$, $h(\mathbf{z_i}) = 1$. Then, we can define the polynomial $p_s : \mathbb{R}^d \to \{0,1\}$ in the following manner:

$$p_s(\mathbf{x}) = p_s(x_1, ..., x_d) = -\prod_{i=1}^k \sum_{j=1}^d (x_j - \mathbf{z_{ij}})^2$$

Now, it's clear that $\forall \mathbf{x} \in \mathbb{R}^d$, $p_s(\mathbf{x}) \leq 0$ since $\prod_{i=1}^k \sum_{j=1}^d (x_j - \mathbf{z_{ij}})^2 \geq 0$, no matter our choice of \mathbf{x} . Next, we must show that $p(\mathbf{x}) = 0$ if and only if $h_s(\mathbf{x}) = 1$. Pick $\mathbf{x} \in \mathbb{R}^d$ arbitrarily. If $p(\mathbf{x})$ then $\prod_{i=1}^k \sum_{j=1}^d (x_j - \mathbf{z_{ij}})^2 = \sum_{j=1}^d (x_j - \mathbf{z_{1j}})^2 \dots \sum_{j=1}^d (x_j - \mathbf{z_{kj}})^2 = 0$. Now, fix a $p \in [k]$. Then, $\sum_{j=1}^d (x_j - \mathbf{z_{pj}})^2 = 0$ iff $x_j = \mathbf{z_{pj}}$, $\forall 1 \leq j \leq d$, as $(x_j - \mathbf{z_{pj}})^2 > 0$ if $x_j \neq \mathbf{z_{pj}}$. Hence, in order for $p_s(\mathbf{x}) = 0$, we must have that $\exists \alpha \in [k]$ so that $\mathbf{z}_\alpha = \mathbf{x}$. Now, if $h_s(\mathbf{x}) = 1$ then $\exists \beta \in [k]$ so that $\mathbf{z}_\beta = \mathbf{x}$ by the construction of $\mathbf{z_1}, \mathbf{z_2}, \dots, \mathbf{z_k}$. Furthermore, $p_s(\beta) = 0$ by construction. So, p_s satisfies our criteria. Thus, the hypothesis class of thresholded polynomials may lead to overfitting.

Problem 2.2. Let \mathcal{H} be a class of binary classifiers over a domain \mathcal{X} . Let \mathcal{D} be an unknown distribution over \mathcal{X} , and let f be the target hypothesis in \mathcal{H} . Fix some $h \in \mathcal{H}$. Show that $\mathbb{E}_{S|_{x} \sim \mathcal{D}^{m}}[L_{S}(h)] = L_{(\mathcal{D},f)}(h)$.

Solution: First, note that for some sample S, $L_S(h) = \frac{|i \in [m]: h(x_i) \neq y_i|}{m}$. It then follows that $\mathbb{E}_{S|_x \sim \mathcal{D}^m}[L_S(h)] = \mathbb{E}_{S|_x \sim \mathcal{D}}[\frac{|i \in [m]: h(x_i) \neq y_i|}{m}]$. Now,

$$\frac{|i \in [m] : h(x_i) \neq y_i|}{m} = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{h(x_i) \neq f(x_i)}$$

which implies that

$$\mathbb{E}_{S|_{x} \sim \mathcal{D}^{m}} \left[\frac{|i \in [m] : h(x_{i}) \neq y_{i}|}{m} \right] = \mathbb{E}_{S|_{x} \sim \mathcal{D}^{m}} \left[\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{h(x_{i}) \neq f(x_{i})} \right]$$

Now, since \mathcal{D} is iid and $S|_x \sim D^m$,

$$\mathbb{E}_{S|_{x} \sim \mathcal{D}^{m}} \left[\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{h(x_{i}) \neq f(x_{i})} \right] = \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{x_{i} \sim \mathcal{D}} \left[\mathbb{1}_{h(x_{i}) \neq f(x_{i})} \right]$$

Furthermore, since since each $x_i \sim \mathcal{D}$ is identical,

$$\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{x_i \sim \mathcal{D}}[\mathbb{1}_{h(x_i) \neq f(x_i)}] = \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{x \sim \mathcal{D}}[\mathbb{1}_{h(x_i) \neq f(x_i)}]$$

Now, by definition,

$$\mathbb{E}_{x \sim \mathcal{D}}[\mathbb{1}_{h(x_i) \neq f(x_i)}] = \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq f(x)] = L_{(\mathcal{D}, f)}(h)$$

so
$$\mathbb{E}_{S|_x \sim \mathcal{D}^m}[L_S(h)] = L_{(\mathcal{D},f)}(h)$$
 as desired.