This study is divided into two type of models:

Classifcation models
Naïve bayes
Decision tree
Random forest
Support vector machine (SVM)
K- Nearest neigber (KNN)

💠 في code non- linear regression ممكن نشتغل على polynomial (اذا بزبط .)

Objectives of the study:

- 1. To make a comparative study between different machine learning methods and determine which one is most accurate in predicting the safety factor for slope stability.
- **2.** To do sensitivity analysis to determine the effect of each input parameter.
- **3.** To do a parametric test based on the dataset.

النتائج المطلوبة

. کو د data.

actual output for training data and predict output for training .1

- actual output for testing data and predict output for testing .2 . اظهار data.
 - Training , لكل من statical criteria such as RMSE, MAE, R2 , ايجاد .3 testing .

مثال على ذلك:

Table 1. Total ranking of training dataset in predicting the factor of safety.

Proposed Models	Network Results						Ranking the Predicted Models					
	R ²	MAE	RMSE	RAE (%)	RRSE (%)	\mathbb{R}^2	MAE	RMSE	RAE (%)	RRSE (%)	Ranking Score	Rank
Gaussian Processes	0.9467	1.5598	1.9957	31.1929	32.7404	2	2	2	2	2	10	4
Multiple Linear Regression	0.9586	1.2527	12366	25.0515	28.4887	4	3	4	3	4	18	2
Multi-layer Peneptron	0.9937	0.494	0.7131	9.8796	11.6985	5	5	5	5	5	25	1
Simple Linear Regression	0.9019	12013	2.6334	34.0224	43.2016	1	1	1	1	1	5	5
Support Vector Regression	0.9529	1.161	1.9183	23.2182	31.4703	3	4	3	4	3	17	3

Table 2. Total ranking of the testing dataset in predicting the factor of safety.

Proposed Models	Network Results						Ranking the Predicted Models					
	R ²	MAE	RMSE	RAE (%)	RRSE (%)	R ²	MAE	RMSE	RAE (%)	RRSE (%)	Ranking Score	Rank
Gaussian Processes	0.9509	1.5291	1.9447	30.9081	32,3841	2	2	2	2	2	10	4
Multiple Linear Regression	0.9649	1.1949	1.5891	24.1272	26.4613	3	3	4	3	4	17	3
Multi-layer Peneptron	0.9939	0.5155	0.7039	10.4047	11.8116	5	5	5	5	5	25	1
Simple Linear Regression	0.9265	1.5387	2.2618	31.0892	27 6639	1	1	1	1	1	5	5
Support Vector Regression	0.9653	1.0364	1.6362	20.9366	27.247	4	4	3	4	3	18	2

4. ايجاد معادلة من كود regression توضح الصيغة المستخدمة في ايجاد safety

مثال على ذلك:

$$FS_{MLR} = (0.042 \times C_u) + (-0.0525 \times \beta) + (0.1718 \times \frac{b}{B}) + (-0.0395 \times w) + 5.9289$$
 (19)

$$FS_{MLP} = (-1.12353500504828 \times Y_1) - (2.38866337313669 \times Y_2) + 1.77734928298793 \tag{20}$$

5. اظهار رسمه توضح مدى دقة factor of safety بين actual وذلك لكل من testing وذلك لكل كود .

مثال على ذلك:

Figure 3. Results of the FS prediction in the training set by machine learning-based models.