Álgebra Linear Aula 11

Josefran de Oliveira Bastos

Universidade Federal do Ceará

Teorema 2.3.4

Se A e B são matrizes quadradas de mesmo tamanho, então

$$\det(AB) = \det(A)\det(B).$$

Teorema 2.3.4

Se A e B são matrizes quadradas de mesmo tamanho, então

$$\det(AB) = \det(A)\det(B).$$

Corolário 2.3.5

Se A for invertível, então

$$\det(A^{-1}) = \frac{1}{\det A}$$

Calcule associando os cofatores de uma linha a linha diferente.

$$\left| \begin{array}{ccc}
0 & 1 & 5 \\
3 & -6 & 9 \\
2 & 6 & 1
\end{array} \right|$$

Calcule associando os cofatores de uma linha a linha diferente.

$$\left| \begin{array}{ccc}
0 & 1 & 5 \\
3 & -6 & 9 \\
2 & 6 & 1
\end{array} \right|$$

Proposição

Sejam A uma matriz $n \times n$. Para todo $i, j \in [n] = \{1, \dots, n\}$, com $i \neq j$, temos

$$\sum_{k=1}^{n} (A)_{ik} C_{jk} = \sum_{k=1}^{n} (A)_{ki} C_{kj} = 0.$$

Definição 8.1

Se A é uma matriz $n \times n$ qualquer então denominamos a matriz

$$\operatorname{adj}(A) = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{bmatrix}^{T}$$

como a matriz adjunta de A.

Teorema 2.3.6

Se A é uma matriz invertível, então

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A).$$

Exemplo 8.8

Calcule a inversa da matriz a seguir:

$$A = \left[\begin{array}{cc} 3 & 2 \\ 1 & 6 \end{array} \right].$$

Teorema 2.3.7

Se Ax=b for um sistema de n equações e n incógnitas tal que $\det(A)\neq 0$ então o sistema tem uma única solução. Essa solução é

$$x_i = \frac{\det(A_i)}{\det(A)}$$

para todo $i \in [n]$, onde A_i é a matriz obtida substituindo a i-ésima coluna de A pela matriz coluna b.

Exemplo 8.9

Resolva o seguinte sistema

Motivação

Quais informações são necessárias para representar os itens a seguir?

- A grandeza física Força;
- O movimento de um objeto;
- Movimento retilíneo de um ponto em um plano;

Vetores

Vetores são grandezas que possuem direção, sentido e magnitude/comprimento.

Vetores

Vetores são grandezas que possuem direção, sentido e magnitude/comprimento.

Notações

Usualmente denotaremos por uma letra minúscula com uma seta em cima para representar vetores (\overrightarrow{v}) e por letras gregas α,β,\ldots para representar escalares.

Sejam $A=(2,2),\ B=(1,1)$ e C=(0,0). Represente os vetores $\overrightarrow{AB},\overrightarrow{BC}$ e $\overrightarrow{AC}.$

Igualdade entre vetores

Dizemos que dois vetores são iguais se possuem mesma direção, sentido e comprimento.

Sejam $A=(2,2),\ B=(1,1)$ e C=(0,0). Represente os vetores $\overrightarrow{AB},\overrightarrow{BC}$ e $\overrightarrow{AC}.$

Igualdade entre vetores

Dizemos que dois vetores são iguais se possuem mesma direção, sentido e comprimento.

Representação de Vetores

Note que se o ponto inicial de um vetor for a origem então o vetor fica unicamente determinado por seu ponto final.

Sejam $A=(2,2),\ B=(1,1)$ e C=(0,0). Represente os vetores $\overrightarrow{AB},\overrightarrow{BC}$ e $\overrightarrow{AC}.$

Igualdade entre vetores

Dizemos que dois vetores são iguais se possuem mesma direção, sentido e comprimento.

Representação de Vetores

Note que se o ponto inicial de um vetor for a origem então o vetor fica unicamente determinado por seu ponto final. Assim, denotaremos por $\overrightarrow{v}=(v_1,\ldots,v_n)$ o vetor de \mathbb{R}^n .

Sejam $A=(2,2),\ B=(1,1)$ e C=(0,0). Represente os vetores $\overrightarrow{AB},\overrightarrow{BC}$ e $\overrightarrow{AC}.$

Igualdade entre vetores

Dizemos que dois vetores são iguais se possuem mesma direção, sentido e comprimento.

Representação de Vetores

Note que se o ponto inicial de um vetor for a origem então o vetor fica unicamente determinado por seu ponto final. Assim, denotaremos por $\overrightarrow{v}=(v_1,\ldots,v_n)$ o vetor de \mathbb{R}^n .

• A sequência (v_1, \ldots, v_n) também é chamada de n-upla de \mathbb{R}^n ;

Sejam $A=(2,2),\ B=(1,1)$ e C=(0,0). Represente os vetores $\overrightarrow{AB},\overrightarrow{BC}$ e $\overrightarrow{AC}.$

Igualdade entre vetores

Dizemos que dois vetores são iguais se possuem mesma direção, sentido e comprimento.

Representação de Vetores

Note que se o ponto inicial de um vetor for a origem então o vetor fica unicamente determinado por seu ponto final. Assim, denotaremos por $\overrightarrow{v}=(v_1,\ldots,v_n)$ o vetor de \mathbb{R}^n .

- A sequência (v_1, \ldots, v_n) também é chamada de n-upla de \mathbb{R}^n ;
- Também podemos representar vetores por matrizes colunas ou matrizes linhas.

Dado dois vetores \overrightarrow{v} e \overrightarrow{w} do \mathbb{R}^2 ou \mathbb{R}^3 o vetor soma $\overrightarrow{v}+\overrightarrow{w}$ pode ser obtido da seguinte forma: fixamos o vetor \overrightarrow{v} com início em um ponto A e então o vetor \overrightarrow{w} no "final" do vetor \overrightarrow{v} . Seja B o ponto que está no "final" do vetor \overrightarrow{w} . Assim, temos $\overrightarrow{v}+\overrightarrow{w}=\overrightarrow{AB}$.

Dado dois vetores \overrightarrow{v} e \overrightarrow{w} do \mathbb{R}^2 ou \mathbb{R}^3 o vetor soma $\overrightarrow{v}+\overrightarrow{w}$ pode ser obtido da seguinte forma: fixamos o vetor \overrightarrow{v} com início em um ponto A e então o vetor \overrightarrow{w} no "final" do vetor \overrightarrow{v} . Seja B o ponto que está no "final" do vetor \overrightarrow{w} . Assim, temos $\overrightarrow{v}+\overrightarrow{w}=\overrightarrow{AB}$.

Soma de Vetores

Sejam \overrightarrow{v} e \overrightarrow{w} vetores em \mathbb{R}^n . Temos

$$\overrightarrow{v} + \overrightarrow{w} = (v_1 + w_1, \dots, v_n + w_n).$$

Dado dois vetores \overrightarrow{v} e \overrightarrow{w} do \mathbb{R}^2 ou \mathbb{R}^3 o vetor soma $\overrightarrow{v}+\overrightarrow{w}$ pode ser obtido da seguinte forma: fixamos o vetor \overrightarrow{v} com início em um ponto A e então o vetor \overrightarrow{w} no "final" do vetor \overrightarrow{v} . Seja B o ponto que está no "final" do vetor \overrightarrow{w} . Assim, temos $\overrightarrow{v}+\overrightarrow{w}=\overrightarrow{AB}$.

Soma de Vetores

Sejam \overrightarrow{v} e \overrightarrow{w} vetores em \mathbb{R}^n . Temos

$$\overrightarrow{v} + \overrightarrow{w} = (v_1 + w_1, \dots, v_n + w_n).$$

Propriedades da Soma

Sejam $\overrightarrow{v}, \overrightarrow{w}$ e \overrightarrow{z} vetores do \mathbb{R}^2 ou \mathbb{R}^3 . Temos

Dado dois vetores \overrightarrow{v} e \overrightarrow{w} do \mathbb{R}^2 ou \mathbb{R}^3 o vetor soma $\overrightarrow{v}+\overrightarrow{w}$ pode ser obtido da seguinte forma: fixamos o vetor \overrightarrow{v} com início em um ponto A e então o vetor \overrightarrow{w} no "final" do vetor \overrightarrow{v} . Seja B o ponto que está no "final" do vetor \overrightarrow{w} . Assim, temos $\overrightarrow{v}+\overrightarrow{w}=\overrightarrow{AB}$.

Soma de Vetores

Sejam \overrightarrow{v} e \overrightarrow{w} vetores em \mathbb{R}^n . Temos

$$\overrightarrow{v} + \overrightarrow{w} = (v_1 + w_1, \dots, v_n + w_n).$$

Propriedades da Soma

Sejam $\overrightarrow{v}, \overrightarrow{w}$ e \overrightarrow{z} vetores do \mathbb{R}^2 ou \mathbb{R}^3 . Temos

1.
$$\overrightarrow{v} + \overrightarrow{w} = \overrightarrow{w} + \overrightarrow{v}$$
;

Dado dois vetores \overrightarrow{v} e \overrightarrow{w} do \mathbb{R}^2 ou \mathbb{R}^3 o vetor soma $\overrightarrow{v}+\overrightarrow{w}$ pode ser obtido da seguinte forma: fixamos o vetor \overrightarrow{v} com início em um ponto A e então o vetor \overrightarrow{w} no "final" do vetor \overrightarrow{v} . Seja B o ponto que está no "final" do vetor \overrightarrow{w} . Assim, temos $\overrightarrow{v}+\overrightarrow{w}=\overrightarrow{AB}$.

Soma de Vetores

Sejam \overrightarrow{v} e \overrightarrow{w} vetores em \mathbb{R}^n . Temos

$$\overrightarrow{v} + \overrightarrow{w} = (v_1 + w_1, \dots, v_n + w_n).$$

Propriedades da Soma

Sejam $\overrightarrow{v}, \overrightarrow{w}$ e \overrightarrow{z} vetores do \mathbb{R}^2 ou \mathbb{R}^3 . Temos

1.
$$\overrightarrow{v} + \overrightarrow{w} = \overrightarrow{w} + \overrightarrow{v}$$
;

2.
$$\overrightarrow{v} + (\overrightarrow{w} + \overrightarrow{z}) = (\overrightarrow{v} + \overrightarrow{w}) + \overrightarrow{z}$$
.

Multiplicação por escalar

Sejam $\alpha \in \mathbb{R}$ um escalar e \overrightarrow{v} em \mathbb{R}^n um vetor. Temos que $\alpha \overrightarrow{v}$ é um vetor com mesma direção de \overrightarrow{v} , comprimento $|\alpha|$ vezes o comprimento de \overrightarrow{v} e, se $\alpha>0$ então possui mesmo sentido que \overrightarrow{v} , se $\alpha<0$ então possui sentido inverso. Caso $\overrightarrow{v}=\overrightarrow{0}$ ou $\alpha=0$ definimos $\alpha \overrightarrow{v}=0$

Multiplicação por escalar

Sejam $\alpha \in \mathbb{R}$ um escalar e \overrightarrow{v} em \mathbb{R}^n um vetor. Temos que $\alpha \overrightarrow{v}$ é um vetor com mesma direção de \overrightarrow{v} , comprimento $|\alpha|$ vezes o comprimento de \overrightarrow{v} e, se $\alpha>0$ então possui mesmo sentido que \overrightarrow{v} , se $\alpha<0$ então possui sentido inverso. Caso $\overrightarrow{v}=\overrightarrow{0}$ ou $\alpha=0$ definimos $\alpha \overrightarrow{v}=0$.

Multiplicação por escalar

Sejam $\alpha \in \mathbb{R}$ um escalar e \overrightarrow{v} em \mathbb{R}^n um vetor. Temos

$$\alpha \overrightarrow{v} = (\alpha v_1, \dots, \alpha v_n).$$