Announcement

- ▶ Homework 4
 - Available in Blackboard -> Homework
 - Due: May 7, 11:59pm

Textbook

- 《动手学自然语言处理》
 - More consistent with this course
 - Contains executable code (Jupyter notebook)

Dependency Parsing

SLP3 Ch 14; INLP Ch 11

Dependency Parse

- A dependency parse is a directed tree where
 - the nodes are the words in a sentence
 - ROOT: a special root node pointing to the root of the tree
 - The links between the words represent their dependency relations
 - Typically drawn as a directed arc from head to dependent
 - Dependency arcs may be typed (labeled)

Dependency Relations

Argument Dependencies	Description
nsubj	nominal subject
csubj	clausal subject
dobj	direct object
iobj	indirect object
pobj	object of preposition
Modifier Dependencies	Description
tmod	temporal modifier
appos	appositional modifier
det	determiner
prep	prepositional modifier

Dependency Parsing

Advantages

- Deals well with free word order languages where the constituent structure is quite fluid
 - ▶ Ex: Czech, Turkish
- Dependency parses of sentences having the same meaning are more similar across languages than constituency parses
- Dependency structure often captures the syntactic relations needed by downstream applications
- Parsing can be faster than CFG-bases parsers
- Disadvantages
 - There is little agreement about what constitutes a dependency relation.
 - In contrast, there are widely agreed-upon tests for constituency.
 - Dependency maps less cleanly to formal semantic representations than constituency

Projectivity

Projective parse: There are no crossing dependency arcs when the words are laid out in their linear order, with all arcs above the words

Projectivity

- Projective parse: There are no crossing dependency arcs when the words are laid out in their linear order, with all arcs above the words
- Most syntactic structures are projective, but some are non-projective.

Projectivity

- Projective parse: There are no crossing dependency arcs when the words are laid out in their linear order, with all arcs above the words
- Most syntactic structures are projective, but some are non-projective.

Dependency to constituency

- A projective dependency parse tree can be converted to a constituency parse tree
 - The subtree rooted at each word corresponds to a constituent

Non-projectivity & Discontinuous Constituent

- From a constituent tree to a dependency tree
 - Constituent tree

- From a constituent tree to a dependency tree
 - Constituent tree with heads

- From a constituent tree to a dependency tree
 - Constituent tree with heads, lexicalized

- From a constituent tree to a dependency tree
 - Constituent tree with heads, lexicalized

- From a constituent tree to a dependency tree
 - (Projective) dependency tree

Parsing

- Parsing: taking a string and returning the (best) parse tree for that string
- Algorithms
 - Graph-based parsing: MST, Eisner, etc.
 - assume independence between different parts of a parse tree
 - find the global optimum
 - Transition-based parsing: arc-standard, arc-eager, archybrid
 - no independence assumption
 - local optimum, fast
 - Parsing as sequence labeling
 - Headed-span-based parsing

Evaluating dependency parsing

Go	Gold		
1	2	nsubj	
2	0	root	
3	5	det	
4	5	nn	
5	2	obj	

Parsed				
1	2	nsubj		
2	0	root		
3	4	det		
4	5	nsubj		
5	2	ccomp		

- Acc = $\frac{\# \ correct \ deps}{\# \ of \ deps}$, UAS = 4/5 = 80%, LAS = 2/5 = 40%
- Evaluation on multiple sentences: macro/micro average

Resource

- Universal Dependencies (UD) Treebanks
 - ▶ As of 2022, nearly 200 treebanks in over 100 languages

Current UD Languages

Information about language families (and genera for families with multiple branches) is mostly taken from WALS Online (IE = Indo-European).

	\geq	Afrikaans	1	49K	₹ 0	IE, Germanic
-	,ia &	Akkadian	2	25K	1	Afro-Asiatic, Semitic
-		Akuntsu	1	<1K	(1)	Tupian, Tupari
-	*	Albanian	1	<1K	W	IE, Albanian
-	一卷	Amharic	1	10K		Afro-Asiatic, Semitic
-		Ancient Greek	2	416K	≜ 20	IE, Greek
-	(Apurina	1	<1K		Arawakan
	©	Arabic	3	1,042K		Afro-Asiatic, Semitic
•		Armenian	2	55K		IE, Armenian
	X	Assyrian	1	<1K	(1)	Afro-Asiatic, Semitic
-		Bambara	1	13K		Mande
	\geq	Basque	1	121K		Basque
-		Beja	1	1K	2	Afro-Asiatic, Cushitic
-		Belarusian	1	305K		IE, Slavic
•		Bengali	1	<1 K	7	IE, Indic

Graph-Based Dependency Parsing

- Parse tree scoring
 - Each arc has a score. The tree score is the sum of arc scores.
 - An arc score is often computed from features of the two words
 - Possible features: neighboring words, their POS tags, contextual word embeddings

- Parsing
 - Independent edge prediction
 - Simply include all the edges with positive scores
 - What might go wrong?

- Parsing
 - Independent edge prediction
 - Head-selection
 - For each word, pick an incoming edge with the highest score
 - Surprise: with a good scorer, very likely to produce a tree!

- Parsing
 - Independent edge prediction
 - Head-selection
 - Maximum spanning tree (more precisely, spanning arborescence)
 - ▶ To be discussed...

- Parsing
 - What about dependency labels?
 - Common practice: for each arc, we simply predict its label from features of the two words

CYK

Projective dependency parsing can be modeled with a CFG

CYK

- Projective dependency parsing can be modeled with a CFG
- We can run CYK for parsing
- ▶ But runtime is $O(n^5)$!
 - CYK is $O(n^3 \cdot |G|)$
 - ▶ There are n^2 rules for a sentence:

$$\forall w_1, w_2 : N_{w_1} \to N_{w_1} N_{w_2} \text{ or } N_{w_2} \to N_{w_1} N_{w_2}$$

Eisner Algorithm (for projective dependency parsing)

Items:

- Triangle denotes a complete span:
 - ightharpoonup a partial tree whose root is x_h and no words except x_h expect more children.
- Trapezoid denotes an incomplete span:
 - $\rightarrow x_c$ is a child of x_h and x_c still expects children on its side.
- In all cases, the words in between are descendants of x_h .

Eisner Algorithm – DP base case

Initialization:

Eisner Algorithm – DP recursion

Attach a left dependent:

Complete a left child:

Eisner Algorithm – DP recursion

Attach a right dependent:

Complete a right child:

Eisner Algorithm - DP recursion

- Ambiguity
 - An item may have multiple valid compositions
 - Pick the highest scoring one (and record its composition)

Eisner Algorithm – DP recursion

- Ambiguity
 - An item may have multiple valid compositions
 - Pick the highest scoring one (and record its composition)

$$I_{2\to 4} = \max \begin{pmatrix} C_{2\to 2} + C_{3\leftarrow 4}, \\ C_{2\to 3} + C_{4\leftarrow 4} \end{pmatrix} + s(x_2 \to x_4)$$

Eisner Algorithm – DP goal state

Goal:

Eisner Algorithm – DP goal state

- Ambiguity
 - There may be multiple goal states
 - Pick the highest scoring one (and record its composition)

Eisner Algorithm – obtain the parse tree

Eisner Algorithm

- Time complexity
 - $ightharpoonup O(n^2)$ items
 - Each item has O(n) possible compositions
 - The run time is $O(n^3)$

- CYK has $O(n^3)$ items, each has $O(n^2)$ possible compositions, hence the run time is $O(n^5)$
- Fisher does head-splitting to eliminate $O(n^2)$ time!

Non-projective dependency parsing

- Eisner algorithm only finds projective dependency parses
- A different algorithm for non-projective dependency parsing:
 - MST parser based on the Chu-Liu-Edmonds algorithm
 - Time complexity
 - ▶ Simple implementation: $O(n^3)$
 - Fast implementation: $O(n^2 + n \log n)$

Second-order graph-based dependency parsing

- Parse tree scoring:
 - Each connected pair of arcs has a score. The tree score is the sum of arc-pair scores.

Second-order graph-based dependency parsing

- Parse tree scoring:
 - Each connected pair of arcs has a score. The tree score is the sum of arc-pair scores.

Second-order graph-based dependency parsing

- Parse tree scoring:
 - Each connected pair of arcs has a score. The tree score is the sum of arc-pair scores.
- Parsing:
 - $O(n^4)$ time for projective dependency parsing
 - NP-hard for non-projective dependency parsing
 - Approximate algorithms exist

Learning a grammar from a corpus

Training Corpus

Grammar / Parser

```
S → NP VP

NP → Det N

VP → Vt NP (0.3)

| Vi PP (0.2)

| rolls (0.2)

| bounces (0.1)

.....
```

- Supervised Methods
 - Rely on a training corpus of sentences annotated with parses (treebank)
- Unsupervised Methods (Grammar Induction)
 - Do not require annotated data

Supervised Learning

- Objective
 - Conditional likelihood: P(gold parse | sentence)

$$P(t|x) = \frac{\exp(s(t))}{Z(x)} = \frac{\exp(\sum_{r \in (t,x)} s(r))}{Z(x)} = \frac{\prod_{r \in (t,x)} \exp(s(r))}{Z(x)}$$

- Problem: how to compute the partition function
 - Impossible to enumerate parse trees

Supervised Learning

- Objective
 - Conditional likelihood: P(gold parse | sentence)
 - Problem: how to compute the partition function
 - Impossible to enumerate parse trees
 - Projective
 - Replace max with sum in Eisner algorithm (similar to inside algorithm)
 - Non-projective: Kirchhoff's matrix tree theorem
 - The determinant of the Kirchoff (aka Laplacian) adjacency matrix of directed graph G without row and column r is equal to the sum of scores of all directed spanning trees of G rooted at node r.
 - Head-selection
 - $P(t|x) = \prod_i P(h_i|x)$

Supervised Learning

- Objective
 - Conditional likelihood: P(gold parse | sentence)
 - Margin-based objective
- Optimization
 - Gradient-based methods

Unsupervised Learning

- Generative method
 - Dependency parser as a PCFG
 - Ex: Dependency Model with Valence (DMV)
 - Run EM algorithm or SGD to maximize likelihood P(sentence)
- Discriminative method
 - CRF-Autoencoder
 - Encoder: a graph-based dependency parser
 - Decoder: predict each word from its head
 - Maximize reconstruction probability using SGD

Transition-Based Dependency Parsing

- A parse tree represented as a linear sequence of transitions.
- Parser configuration
 - ▶ Buffer *B*: unprocessed words of the input sentence
 - Stack S: parse tree under construction
- Transition: executing a simple action to transfer one parser configuration to another.

- Initial Configuration
 - Buffer B contains the complete input sentence and stack S only contains ROOT.
- During parsing
 - Apply a classifier to decide which transition to take next.
 - No backtracking.
- Final Configuration
 - ▶ Buffer *B* is empty and stack *S* contains the entire parse tree.

- Transitions: "arc-standard" transition set (Nivre, 2004)
 - SHIFT: move the word at the front of buffer B onto stack S.
 - ▶ RIGHT-ARC: u = pop(S); v = pop(S); $push(S, v \rightarrow u)$.
 - LEFT-ARC: u = pop(S); v = pop(S); $push(S, v \leftarrow u)$.
- For labeled parsing, add labels to the RIGHT-ARC and LEFT-ARC transitions.
 - ▶ Ex. LEFT-ARC-nSubj
- ▶ There are other transition sets: arc-eager, arc-hybrid, ...

Stack S:

Buffer B:

we
vigorously
wash
our
cats
who
stink

ROOT

Actions:

Stack S:

Buffer B:

we ROOT

vigorously
wash
our
cats
who
stink

Actions: SHIFT

Stack S:

Buffer B:

vigorously
we
ROOT

wash
our
cats
who
stink

Actions: SHIFT SHIFT

Stack S:

Buffer B:

wash
vigorously
we
ROOT

our
cats
who
stink

Actions: SHIFT SHIFT SHIFT

Stack *S*: Buffer *B*:

	οι
vigorously wash	ca
we	W
ROOT	st

our
cats
who
stink

Actions: SHIFT SHIFT LEFT—ARC

Stack *S*: Buffer *B*:

our
cats
who
stink

Actions: SHIFT SHIFT LEFT—ARC LEFT — ARC

Stack *S*: Buffer *B*:

cats who stink

Actions: SHIFT SHIFT LEFT—ARC LEFT—ARC SHIFT

Stack *S*: Buffer *B*:

who stink

Actions: SHIFT SHIFT LEFT—ARC LEFT—ARC SHIFT SHIFT

Stack *S*: Buffer *B*:

who stink

Actions: SHIFT SHIFT LEFT—ARC LEFT—ARC SHIFT SHIFT LEFT—ARC

Stack *S*: Buffer *B*:

stink

Actions: SHIFT SHIFT LEFT—ARC LEFT—ARC SHIFT SHIFT LEFT—ARC SHIFT

Stack S:

Buffer B:

Actions: SHIFT SHIFT LEFT—ARC LEFT—ARC SHIFT SHIFT LEFT—ARC SHIFT SHIFT

Stack S:

Buffer B:

Actions: SHIFT SHIFT LEFT—ARC LEFT—ARC SHIFT SHIFT LEFT—ARC SHIFT RIGHT—ARC

Stack *S*: Buffer *B*:

Actions: SHIFT SHIFT LEFT—ARC LEFT—ARC SHIFT SHIFT LEFT—ARC SHIFT RIGHT—ARC RIGHT—ARC

Stack *S*: Buffer *B*:

Actions: SHIFT SHIFT LEFT—ARC LEFT—ARC SHIFT SHIFT LEFT—ARC SHIFT RIGHT—ARC RIGHT—ARC RIGHT—ARC

Stack *S*: Buffer *B*:

Actions: SHIFT SHIFT LEFT—ARC LEFT—ARC SHIFT SHIFT LEFT—ARC SHIFT RIGHT—ARC RIGHT—ARC RIGHT—ARC RIGHT—ARC

- See Ch.10 for discussion of classifier design, training and inference
- Time complexity
 - Each word gets SHIFTed once and participates as a child in one ARC.
 - Linear time!

Other Methods

Dependency parsing as sequence labeling

- Cast dependency parsing as a sequence labeling task
 - Advantage: faster parsing speed

Headed-Span-Based Dependency Parsing

[exclusive, inclusive] span index

Deduction Rules:

Summary

Dependency Parsing

- Concepts, evaluation
- Relation to constituency parsing
- Graph-based parsing
 - 1st-order: Eisner, Chu-Liu-Edmonds
 - Learning
 - Supervised: discriminative methods
 - Unsupervised: EM, CRF-AE
- Transition-based parsing
 - Arc-standard