Note: NOM:

Prénom:

Exercice 1. Préciser si les affirmations suivantes sont exactes ou pas ; donner une démonstration si le résultat est correct, un contre-exemple dans le cas contraire.

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires positives telle que

$$\sum_{n\geq 1} \mathbb{P}\left(\{X_n \geq n\}\right) < +\infty.$$

- 1. Presque sûrement, on a:
 - a. $\limsup_{n\to+\infty} \frac{X_n}{n} \le 1$
- b. $\limsup_{n \to +\infty} \frac{X_n}{n} < 1$ c. $\sup_{n \ge 1} \frac{X_n}{n} \le 1$.
- 2. Si les $(X_n)_{n\geq 1}$ sont identiquement distribuées alors X_1 est intégrable

Exercice 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles ; pour tout $n\geq 1$, X_n a pour densité $x\longmapsto n\,e^{-nx}\,\mathbf{1}_{\mathbb{R}_+}(x)$. Soit N une variable aléatoire à valeurs dans \mathbb{N}^* de loi donnée par : pour tout $k\in\mathbb{N}^*$, $\mathbb{P}(\mathbb{N}=k)=p\,(1-p)^{k-1}$ où $p\in]0,1[$. On supose que pour tout $n\geq 1$, N et X_n sont indépendantes.

On définit la variable aléatoire Y en posant :

$$\forall \omega \in \Omega, \qquad Y(\omega) = X_{N(\omega)}(\omega).$$

Déterminer la loi de la variable aléatoire Y.