Atividade 4

Dados sobre o consumo de combustível

Paulo Ricardo Seganfredo Campana

11 de agosto de 2023

Os dados da Tabela B.3 do livro do Montgomery podem ser encontrados no pacote MPV do R como o nome table.b3. Estes dados consistem de 32 obsevações sobre sobre o consumo de combustível de diferentes automóveis, com variáveis sobre o desempenho da quilometragem da gasolina e características físicas e/ou de performance. Considerando estes dados e fixando o nível de significância em 5%, responda as questões abaixo:

- a) Estime um modelo de regressão linear que relaciona o consumo de combustível em milhas/galão, y, com o volume de deslocamento do motor (cilindrada), x1 (in³). Expresse o modelo estimado e interprete os parâmetros destes modelos.
- b) Construa a tabela ANOVA para o modelo estimado e explique cada um dos resultados da tabela e conclua sobre a significância da regressão.
- c) Qual o percentual da variabilidade total do consumo de combustível é explicado por esse modelo?
- d) Construa um intervalo de confiança para o consumo médio de combustível se a cilindrada é de 275 in³.
- e) Suponha que desejamos prever o consumo de combustível obtidos de carros com 275 in³ cilindradas. Qual a estimativa pontual para este consumo? Calcule o intervalo de predição para o consumo de combustível, com 95% de confiança.
- f) Compare os dois intervalos obtidos em (d) e (e). Explique a diferença entre eles. Qual deles é o maior, e por quê?
- g) Ajuste agora um modelo de regressão linear que relaciona a variável consumo de combustível em milhas/galão, y, com o peso do carro, x10.
- h) Considere agora o modelo de regressão linear que relaciona o consumo de combustível, y, com o comprimento total do veículo, x8, e o seu peso, x10. Baseado na comparação dos dois modelos, qual das variáveis regressoras podemos concluir que é a melhor? Justifique, apresentando os resultados.

```
data <- MPV::table.b3
fit1 <- lm(y ~ x1, data)
summary(fit1)</pre>
```

1: Termos do modelo de regressão linear

Termo	Estimativa	Erro padrão	Estatística	p-valor
(Intercept)	33.723	1.444	23.355	8.4559e-21
x1	-0.047	0.005	-10.086	3.7430 e-11

Temos um modelo de regressão linear expresso pela reta $\hat{y}=33.723-0.047\times x1$, isso significa que, para cada polegada cúbica extra na cilindrada do motor, o consumo de combustível cai em 0.047 milhas por galão (veículos de maior cilindrada são menos eficientes). O intercepto não tem interpretação pois não temos observações com cilindrada 0.

```
anova(fit1)
```

2: Análise de variância

Termo	gl	SS	MS	Estatística	p-valor
x1	1	955.72	955.720	101.736	4e-11
Residuals	30	281.82	9.394		

A tabela ANOVA nos mostra a contribuição das variáveis da regressão na variação do consumo de combustível, a soma dos quadrados explicada pela cilindrada é de 955.72, enquanto pelos resíduos é 281.82, o teste F mostra que a regressão é significante, com p-valor muito baixo.

```
summary(fit1)$r.squared
## [1] 0.77227
```

O coeficiente de determinação R^2 traz a informação sobre o quanto da variância do consumo de combustível é explicada pelo modelo, nesse caso 77%, enquanto o resto é explicada pelos resíduos.

```
predict(fit1, newdata = data.frame(x1 = 275), interval = "confidence")
predict(fit1, newdata = data.frame(x1 = 275), interval = "prediction")
```

3: Consumo médio de combustível

4: Consumo de combustível previsto

Estimativa	IC inferior	IC superior
20.699	19.588	21.81

E	stimativa	IC inferior	IC superior
	20.699	14.341	27.056

O primeiro intervalo de confiança é sobre o valor esperado para o consumo de combustível de um carro com $275~\rm in^3$ cilindradas segundo o modelo, enquanto o segundo intervalo refere aos possíveis valores previstos do consumo de combustível para uma observação com 95% de confiança.

O intervalo de predição é maior, pois é um intervalo para a variável aleatória Y enquanto o primeiro intervalo é sobre a média da mesma, \bar{Y} .

5: Termos do modelo de regressão linear

Termo	Estimativa	Erro padrão	Estatística	p-valor
(Intercept) x10	40.852 -0.006	2.279 0.001		1.4092e-17 2.1207e-10

```
fit3 <- lm(y ~ x8 + x10, data)
summary(fit3)</pre>
```

6: Termos do modelo de regressão linear

Termo	Estimativa	Erro padrão	Estatística	p-valor
(Intercept)	18.38	10.062	1.827	7.8056e-02
x8	0.19	0.083	2.285	2.9782e-02
x10	-0.01	0.002	-5.357	9.3946e-06

A variável x10 referente ao peso do veículo é mais significativa, pois o teste de hipótese mostra menos evidencias em relação ao seu coeficiente ser igual a 0.