### CS 222 Computer Organization & Architecture

Lecture 29 [09.04.2019]

## **Main Memory-Introduction**



John Jose

**Assistant Professor** 

Department of Computer Science & Engineering Indian Institute of Technology Guwahati, Assam.

## **Components of a Modern Computer**



# Components of a Modern Computer



# SRAM (Static Random Access Memory)





### Read Sequence

- 1. address decode
- 2. drive row select, Tx on
- 3. bit and \_bitbar read by a sense amplifier
- 4. Based on difference identify the value
- 5. precharge both bit lines to high for next read or write

# DRAM (Dynamic Random Access Memory)



- Bits stored as charges on node capacitance
- ❖ B cell loses charge when read
- ❖ B cell loses charge over time

#### Read Sequence

- Initial steps same as SRAM
- A"flip-flopping" sense amplifier amplifies and regenerates the bitline, data bit is mux' ed out
- Precharge all bit lines to midlevel
- ❖Refresh: A DRAM controller must periodically read all rows within refresh time such that charge is restored in cells

# DRAM (Dynamic Random Access Memory)



#### DRAM vs SRAM

#### **\* DRAM**

- Slower access (capacitor)
- ❖ Higher density (1T, 1C cell); Lower cost
- Requires refresh (power, performance, circuitry)
- Manufacturing requires putting capacitor and logic together

#### \* SRAM

- Faster access (no capacitor)
- Lower density (6T cell); Higher cost
- ❖No need for refresh
- Manufacturing compatible with logic process (no capacitor)



johnjose@iitg.ac.in http://www.iitg.ac.in/johnjose/