

Hands-on ML monitoring flow with NannyML

by Wojtek Kuberski

Agenda

ML Monitoring Flow

Issue Resolution

Performance Monitoring

> Root Cause Analysis

The ML Monitoring flow

ML Monitoring Flow

The goals

1. Maintain the business impact of the model

2. Reduce risk of the model

3. Increase visibility of the model

ML Monitoring Flow

The process

Performance Monitoring

ML Monitoring Flow

The process

Performance Monitoring A crucial step in the flow

Proxy for Business Impact

- Identifies potential issues
- Trigger for Root Cause Analysis

However

Not easily possible without target data

Performance **Estimation** is a viable alternative

Realized performance: ROC AUC

Performance Monitoring

Availability of Ground Truth

The two causes of silent model failure The basics

The two causes of silent model failure Covariate shift

The two causes of silent model failure Covariate shift

Change in the joint model input distribution - P(X)

The two causes of silent model failure Covariate shift: Multivariate example

The two causes of silent model failure Concept drift

The two causes of silent model failure Concept drift

Change in the relationship between the target and the model inputs - P(y|X)

CBPE: What can we calculate?

- Confusion Matrix
- Precision, Recall, Accuracy, Specificity, F1.
- ROC AUC

Performance Estimation for Classification CBPE: What does it do?

- Captures the full impact of covariate shift on performance
- Assumes no concept drift
- Assumes there is no covariate shift to previously unseen regions

CBPE: Inputs

```
estimator = nml.CBPE(
   y_pred_proba = 'y_pred_proba',
   y_pred = 'y_pred',
   y_true = 'target',
   metrics = ['roc_auc', 'f1'],
   problem_type = 'classification_binary'
)
```

- Model scores (predicted probabilities)
- Model predictions
- Ground truth / target (fitting only)

CBPE: Results

Estimated performance (CBPE)

- Estimated metric
- Confidence bands
- Thresholds

CBPE: Intuition

Test data

Production data

Performance Estimation for Classification CBPE: Algorithm

- 1. Calibrate probabilities
- 2. Choose a threshold
- 3. Find expected confusion matrix for every point
- 4. Get aggregate confusion matrix
- 5. Compute a metric

Classification with CBPE Calibrate Probabilities

Classification with CBPE Choose a threshold

Classification with CBPE Find expected confusion matrix for every point

Classification with CBPE Find expected confusion matrix for every point

Classification with CBPE Find expected confusion matrix for every point

Classification with CBPE Find expected confusion matrix for every point

Root Cause Analysis

Root Cause Analysis The second step in the monitoring flow

Root Cause Analysis

The framework

Root Cause Analysis Drift Detection and Data Quality Monitoring

Run drift detection and data quality monitoring

Univariate Drift
Detection

Multivariate Drift
Detection

Data Quality

Categorical Methods Continuous Methods Unseen Data Missing Data

Results

- Reconstruction error
- Confidence bands
- Thresholds

Chunk

Characteristics

- Captures any linear change in relationship between features
- Captures changes in single feature distributions
- Requires at least 2 features to work
- Not easily interpretable

Intuition

Algorithm training

- 1. Prepare the data: impute missing values, encode categorical features, scale the data
- 2. Train PCA on reference data
- 3. Compress and decompress the reference data using trained PCA
- 4. Compute the distance between original and reconstructed points
- 5. Compute the reconstruction error: the average of those distances

Multivariate Drift Detection Algorithm drift detection

- 1. Compress and decompress the analysis data using trained PCA
- 2. Compute the distance between original and reconstructed points
- 3. Compute the reconstruction error: the average of those distances
- 4. Compare this reconstruction error with the reconstruction error we got on the reference data

At-a-glance comparison

Name	Categorical	Continuous	Range
Jensen-Shannon Distance	Yes	Yes	[0,1]
Hellinger	Yes	Yes	[0,1]
Wasserstein	No	Yes	[0,+inf]
L-Infinity	Yes	No	[0,1]
Kolmogorov- Smirnov	No	Yes	[0,1]
Chi-squared	Yes	No	[0,+inf]

Univariate Drift Detection Structure of the Overview

- 1. Basics: what the method is
- 2. **Intuition**: how the method works
- 3. Results: example results on the same dataset

Jensen-Shannon distance: Basics

Data Type	Intuition	Range
continuous and categorical	Based on KL-divergence	[0,1]

Jensen-Shannon distance: Intuition

- Captures the "amount of overlap"
- "bi-directional" KL divergence
- Categorical: an average of all changes in relative frequencies of categories

Jensen-Shannon distance: Results

Hellinger distance: Basics

Data Type	Intuition	Range	
continuous and categorical	Similar to Bhattacharyya Coefficient	[0,1]	
	$H^2(P,Q)=2(1-BC(P,Q))$		

Hellinger distance: Intuition

- Overlap between the probabilities assigned to the same event by two distributions
- Doesn't differentiate between very strong shifts
- Qualitatively similar to Jensen-Shannon

Wasserstein distance: Basics

Data Type	Intuition	Range
continuous	Also known as earth mover distance	[0,+inf]

Wasserstein distance: Intuition

- Amount of work needed to transform one distribution into the other
- Area between cumulative distribution functions (CDFs)
- Sensitive to outliers

Kolmogorov-Smirnov Test: Basics

Data Type	Intuition	Range
continuous	Statistical measure, not a distance	[0,1]

Kolmogorov-Smirnov Test: Intuition

- Maximum distance of the cumulative distribution functions (CDFs)
- Prone to false positives, especially in bigger samples
- Outputs d-statistic and p-value

Chi-squared Test: Basics

Data Type	Intuition	Range
categorical	Statistical measure, not a distance	[0,+inf]

Chi-squared Test: Intuition

- Sample size influences the statistic for the same drift magnitude
- Sensitive to changes in low-frequency categories
- Outputs chi-squared statistic and p-value

L-Infinity Distance: Basics

Data Type	Intuition	Range
categorical	Similar to Euclidean Distance	[0,1]

L-Infinity Distance: Intuition

- Maximum of the absolute difference between the relative frequencies
- Robust to noise in features with many categories
- Sensitive to changes to just one category

At-a-glance comparison

Name	Categorical	Continuous	Range	Distance	Recommended use	Characteristics
Jensen-Shannon Distance	Yes	Yes	[0,1]	Yes	Versatile	Doesn't differentiate between very strong and extreme drifts
Hellinger	Yes	Yes	[0,1]	Yes	Medium-strength shifts	Breaks down in extreme shifts
Wasserstein	No	Yes	[0,+inf]	Yes	Work as a shift measure is relevant	Sensitive to outliers
L-Infinity	Yes	No	[0,1]	Yes	Works well with many categories	Sensitive to big changes to one category
Kolmogorov-Smir nov	No	Yes	[0,1]	Statistical Test	Statistical significance	False positives, insensitive to changes in tails
Chi-squared	Yes	No	[0,+inf]	Statistical Test	Statistical significance	False positives, function of sample size

Issue resolution

Issue Resolution

The final step in the monitoring flow

Issue Resolution

5 possible solutions

Retrain the model

Adjust downstream processes

Revert to a previous model

Refactor the use case

Do nothing

Issue Resolution

Comparison of methods

	MOSTLY USED	WORKS WHEN	BE MINDFUL
Retrain the model	Default first step	There is no concept drift	Will not resolve problems due to covariate shift. Might make matters worse if root cause is data quality issue.
Adjust downstream processes	To minimize business impact of the performance drop	Performance degradation cannot be fixed	Generally involves human checks or adjustments to actions done based on predictions
Revert to a previous model	If you automatically retrain models	Need quick fix that works well enough	Check if the previous model is still performant
Refactor the use case	Last-resort, due to cost	In most cases	Ideally more labelled data should be gathered Might not work if the main cause was covariate shift
Do nothing	Important to consider it a real option	Fixing costs higher than leaving the problem as is	Sometimes it's not possible to fix issues due to covariate shift Important to consider it a real option

ML Monitoring Flow Key Takeaways

- 3-step monitoring flow ensures continued performance of your models
- Performance **monitoring and estimation** are crucial and cannot be replaced with just data drift detection
- Data Drift detection is mainly a root cause analysis tool
- Retraining won't always fix your problems and can even be a source of an **issue**

Thanks for Listening!

Give NannyML a try (and a star):

https://github.com/NannyML/nannyml

