EXPLORATION AND CORRELATION

Evan Piermont (RHUL) &
Roee Teper (PITT)

3 Oct, 2017

Exploration Problems

Each period a project manager:

- Must choose to invest in project a or b, but not both.
- Observes if the chosen project succeeds or fails.
- Receives utility from the outcome.

Learning via Exploration

The true state of affairs is a joint distribution over

$$S = S_a \times S_b = \{s_a s_b, s_a f_b, f_a s_b, f_a f_b \}.$$

- The optimal strategy depends on the manager's beliefs regarding the true generating process.
 - * Learning: observes outcomes and updates her belief.
 - Tradeoff: immediate "consumption" value / future informational value.

Beliefs

- In applications we specify these beliefs over the outcome space of all projects.
- > Bayes rule determines the dynamic of beliefs.
- > We then (try to) solve for the optimal strategy.

This Paper

We ask different questions.

- 1. What can we learn from the manager's preferences over the different investment strategies?
- 2. Can we identify the beliefs underlying the exploration/exploitation trade off faced by the manager?

Belief Identification

- > We are interested in a manger with exchangeable beliefs.
- Since only one action can be taken in each period, the agent's choices can reveal only the margins of her beliefs.
- We introduce a restriction on marginals, across-arm symmetry, ensuring they arise from an exchangeable process.

Uniqueness?

- We provide a simple example in finite horizon where the marginals determine the process.
- In the infinite horizon, even though across arm symmetry implies more restrictions, marginals do not uniquely determine the process.
- Can always find a (unique) representative for which projects are independent conditional on the true parameter.

A Single Project: Exchangeability

- State space: S, Time Periods: N (finite or countable).
- * A process ζ , over sequences of realizations, S^N , is exchangeable if its distribution is invariant to finite permutations:
 - * ζ is exch if, for every $n \in \mathbb{N}$, history $h \in S^N$ and permutation $\pi: n \to n$.

$$\zeta(h) = \zeta(\pi(h)).$$

It is a mixture of hypergeometric processes in finite horizon, and of i.i.d. in the infinite. (more later)

Updating and Exchangeability

- To discuss Bayesian updating, one needs to observe the evolution of the joint distribution.
- In exploration models, only a single action can be taken in every period; only the margins of the process can be identified.
 - Beliefs about each individual project conditional on the observed history.

Multi-Dimensional Experiments and Limited Observability

▶ Two actions "project a" and "project b":

$$S = S_a \times S_b$$

Let \mathcal{T} be the collection of all sequences of the form $T_1, T_2, T_3, ...$, where $T_i \in \{S_a, S_b\}$ for every $i \in N$

Belief Structures

- * With every $\mathbf{T} = T_1, T_2, ...$ we associate a process $\eta_{\mathbf{T}}$ over $\prod_{i \in N} T_i$.
- * $\eta_{\mathbf{T}}$ conveys the distribution of outcomes from taking action T_{n+1} following every history of outcomes $h_i \in T_i$.
 - For a permutation $\pi: n \to n$,

$$\pi \mathbf{T} = (T_{\pi(1)}, T_{\pi(2)}, ..., T_{\pi(n)}, T_{n+1}, ...)$$

❖ Similarly, for a finite history $h = (h_1, ..., h_n) \in (T_1, ..., T_n)$,

$$\pi h = (h_{\pi(1)}, h_{\pi(2)}, ..., h_{\pi(n)})$$

Example 1A

Let N=2. The agent believes that each project will have exactly one success, equally likely to be in either period, and, moreover, believes the two projects will succeed and fail jointly.

		n = 1			
		s_a, s_b	s_a, f_b	f_a, s_b	f_a, f_b
	s_a, s_b	0	0	0	$\frac{1}{2}$
n = 0	s_a, f_b	0	0	0	0
	f_a, s_b	0	0	0	0
	f_a, f_b	$\frac{1}{2}$	0	0	0

Example 1A

The family of marginal beliefs associated with this joint:

$$\begin{split} \eta_{x,y}(s_x,s_y) &= \eta_{x,y}(f_x,f_y) = 0 \\ \eta_{x,y}(s_x,f_y) &= \eta_{x,y}(f_x,s_y) = \frac{1}{2}. \end{split}$$

where $(x, y) \in \{a, b\} \times \{a, b\}$.

The joint distribution above was the unique joint consistent with these marginals.

Example 1B

What if the manager believed instead the two projects will succeed and fail independently?

		n = 1			
		s_a, s_b	s_a, f_b	f_a, s_b	f_a, f_b
	s_a, s_b	0	0	0	$\frac{1}{4}$
n = 0	s_a, f_b	0	0	$\frac{1}{4}$	0
	f_a, s_b	0	$\frac{1}{4}$	0	0
	f_a, f_b	$\frac{1}{4}$	0	0	0

Example 1B

The family of marginal beliefs associated with this joint:

$$\eta_{x,x}(s_x, s_x) = \eta_{x,x}(f_x, f_x) = 0
\eta_{x,x}(s_x, f_x) = \eta_{x,x}(f_x, s_x) = \frac{1}{2}
\eta_{x,y}(s_x, f_y) = \eta_{x,y}(f_x, s_y) = \frac{1}{4}$$
if $x \neq y$.

where $(x, y) \in \{a, b\} \times \{a, b\}$.

Example 2

What if the manager believes the projects' intertemporal performance is i.i.d.

$$n = 1$$

		s_a, s_b	s_a, f_b	f_a, s_b	f_a, f_b
	s_a, s_b	$\frac{1}{4}$	0	0	$\frac{1}{4}$
n = 0	s_a, f_b	0	0	0	0
	f_a, s_b	0	0	0	0
	f_a, f_b	$\frac{1}{4}$	0	0	$\frac{1}{4}$

s_a, s_b	s_a, f_b	f_a, s_b	f_a, f_b
$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$
$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$
$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$
$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$

Example 2

Both joint distributions impart the exact same restrictions on marginal beliefs:

$$\eta_{x,y}(s_x, s_y) = \eta_{x,y}(f_x, f_y) = \eta_{x,y}(s_x, f_y) = \eta_{x,y}(f_x, s_y) = \frac{1}{4}$$

In both examples, all joint distributions were exchangeable.

> Only in Example 1 did the marginals determine the joint.

AA-Symmetry

Definition.

 $\{\eta_{\mathbf{T}}\}_{\mathbf{T}\in\mathcal{T}}$ satisfies across arm symmetry if

- 1. If $h \in \mathbf{T} \cap \mathbf{T}'$, then $\eta_{\mathbf{T}}(h) = \eta_{\mathbf{T}'}(h)$.
- 2. For every $\mathbf{T} \in \mathcal{T}$, $h \in \mathbf{T}$, and finite permutation π ,

$$\eta_{\mathbf{T}}(h) = \eta_{\pi\mathbf{T}}(\pi h).$$

A Non-Symmetric $\{\eta_{\mathbf{T}}\}_{\mathbf{T}\in\mathcal{T}}$

- ▶ In Examples 1A/B and 2, the marginals satisfy AASym.
- > When does it fail? Consider the following example:
 - As long as project a is chosen, belief regarding both projects is $\frac{1}{2}$
 - Once project b is chosen, the realized outcome occurs with probability 1 for both

$$\eta_{ab}(s_a, f_b) = \frac{1}{4}$$

$$\eta_{ba}(f_b, s_a) = 0$$

Symmetry and Consistency

Theorem.

 $\{\eta_{\mathbf{T}}\}_{\mathbf{T}\in\mathcal{T}}$ satisfies across arm symmetry if and only if there exists an exchangeable distribution ζ over S^N such that

$$\mathrm{marg}_{\mathbf{T}}\zeta$$
 = $\eta_{\mathbf{T}}$

for every $\mathbf{T} \in \mathcal{T}$

AA-Symmetry and Strongly Exchangeability

AA-symmetry of $\{\eta_{\mathbf{T}}\}_{\mathbf{T}\in\mathcal{T}}$ does not uniquely determine a consistent exch process. From Example 2:

- When the projects are i.i.d. between periods, their contemporary correlation was not pinned down.
- The marginals were consistent with the projects' being contemporaneously independent.

Strong Exchangeability

Definition.

An exch distribution ζ is **strongly exchangeable** if for every history $h = \prod_{i=1}^{n} (h_{a_i}, h_{b_i})$ and permutations $\pi_a, \pi_b : n \to n$,

$$\zeta(h) = \zeta(\prod_{i=1}^{n} (h_{a_{\pi_a(i)}}, h_{b_{\pi_b(i)}}))$$

> Each dimension can be permuted independently.

de Finetti's Representation

Let $N = \mathbb{N}$: ζ is exch if and only if there exists a prior distribution $\lambda \in \Delta(\Delta(S))$ such that

$$\zeta = \int_{\Delta(S)} \boldsymbol{\mu} \, d\lambda(\mu)$$

- As if:
 - A parameter in $\Delta(S)$ is chosen according to λ .
 - The agent does not know the chosen parameter, but knows (or believes) λ .
 - Each period, updates her prior according to the outcome of the experiment.
- Such a representation is unique

A de Finetti like Representation of Strong Exchangeability

Theorem.

 ζ over $\prod_{\mathbb{N}} S$ is strongly exchangeable if and only if if the support of λ is in $\Delta(S_a) \times \Delta(S_b)$.

- \gt An exch distribution ζ over $S^{\mathbb{N}}$ is a λ-mixture of parameters in Δ(S).
 - In an exch process, the joint distribution of experiments' outcomes is (inter-temporally) independent conditionally on the true parameter.
- $S = S_a \times S_b$.
 - In a strongly exch process, experiments are also conditionally contemporaneously independent.

AA-Symmetry and Strongly Exchangeability

Theorem.

Assume $N=\mathbb{N}$ and $\{\eta_{\mathbf{T}}\}_{\mathbf{T}\in\mathcal{T}}$ satisfies AA-symmetry. There exists a unique strongly exchangeable distribution ζ over $S^{\mathbb{N}}$ such that

$$\mathrm{marg}_{\mathbf{T}}\zeta = \eta_{\mathbf{T}}$$

for every $\mathbf{T} \in \mathcal{T}$

Eliciting $\eta_{\mathbf{T}}$

- The model above assumes the marginal—but not the joint—distributions are observable.
- > We turn to a decision theoretic exercise to understand when and if this is reasonable.

To be shown:

- Assume we have access to the preferences over exploration strategies from a bandit problem.
- > Axiomatization of the representation.
- Only $\{\eta_{\mathbf{T}}\}_{\mathbf{T}\in\mathcal{T}}$ can be (uniquely) elicited from the axioms.

Examples, revisited

- * Recall: N = 2, $A = \{a, b\}$, $X = \{s_a, f_a, s_b, f_b\}$.
- Let $u(s_a) = 9$, $u(f_a) = -9$, $u(s_b) = 18$, and $u(f_b) = -18$.
- > The DM is an EU maximizer
- Total utility is the sum across the two periods.

Examples, revisited

- For $x, y, z \in \{a, b\}$, let (x, (y, z)) denote the strategy:
 - \star x in the first period.
 - y in the second, conditional on x's success, and z on x's failure.
- For example, (a, (a, b)) is the strategy dictating taking action a in the first period, and
 - action a in the second period, if it was a success in the first.
 - and action b in the second in case a failed in the first.

Example 1A, revisited

- The agent believes that each project will have exactly one success, equally likely to be in either period, and, moreover, believes the two projects will succeed and fail jointly.
- * The agent's valuations for investment plans are given as follows: V(x, (y, z)) = 0 if y = z, and

$$V(a, (a, b)) = V(b, (a, b)) = \frac{9}{2}$$
$$V(a, (b, a)) = V(b, (b, a)) = -\frac{9}{2}.$$

Example 1B, revisited

If on the other hand, the 2 projects were uncorrelated: V(x, (y, z)) = 0 if y = z, and

$$V(a, (a, b)) = -\frac{9}{2}$$

$$V(b, (a, b)) = 9$$

$$V(a, (b, a)) = \frac{9}{2}$$

$$V(b, (b, a)) = -9.$$

Examples, revisited

- In Example 2: all strategies have value of 0.
- Marginals dictate behavior!
- > Preference for strategies in bandit problems can identify:
 - Marginals, $\{\eta_{\mathbf{T}}\}_{\mathbf{T}\in\mathcal{T}}$ —always.
 - Joint, ζ —only insofar as given by previous discussion (when $N = \mathbb{N}$, upto strong exch).

Framework

- Let X denote a set of outcomes.
- Let A denote a set of actions; think, the arms of a bandit problem.
- **>** Each action, a, is associated with a set of possible outcomes, $S_a ⊆ X$.

Histories.

A history of length n is a sequence of action/outcome realizations.

- That is, let $h = (a_1, x_1) \dots (a_n, x_n)$.
- > Let \mathcal{H} and \mathcal{H}^{∞} denote all finite and infinite histories, respectively.

Strategies.

A (mixed) **strategy** is a mapping from finite histories into randomizations (lotteries) of actions:

$$p:\mathcal{H}\to\Delta(\mathcal{A})$$

- Specifies the action to be taken after each history (including the trivial Ø).
- Let p_h denote the lottery taken after h with $p_h(a)$ the probably of choosing a.
- Our decision theoretic primitive is a preference relation over all strategies.

Evaluations of Histories

If the manager has a utility index $u: X \to \mathbb{R}$ and discount factor δ , assume she values $h \in \mathcal{H}^{\infty}$ as

$$U(h) = \sum_{n \in \mathbb{N}} \delta^n u(x_n)$$

Subjective Expected Experimentation

- Let $\mu_{h,a} \in \Delta(S_a)$ denote the manager's belief about action a after having observed history h.
- * $\{\mu_{h,a}\}_{h\in\mathcal{H},a\in\mathcal{A}}$ and p induce a unique measure over \mathcal{H} :

$$\operatorname{pr}(h,(a,x)) = \operatorname{pr}(h) \cdot p_h(a) \cdot \mu_{h,a}(x)$$

Assume $U(p) = \mathbb{E} U(h)$.

Subjective Expected Experimentation

Equivalently:

$$U_h(p) = \mathbb{E}_{p_h} \left[\mathbb{E}_{\mu_{h,a}} \left[u(x) + \delta U_{h,(a,x)}(p) \right] \right]$$
 (SEE)

• We show $\langle u, \{\mu_{h,a}\}_{h\in\mathcal{H}, a\in\mathcal{A}}, \delta \rangle$ can be uniquely identified from preferences.

Belief Structures

The family $\{\mu_{h,a}\}_{h\in\mathcal{H},a\in\mathcal{A}}$ is identified with $\{\eta_{\mathbf{T}}\}_{\mathbf{T}\in\mathcal{T}}$

- **▶** Consider $\mathbf{T} = S_{a_1}, S_{a_2}, \ldots$ and $h \in \mathbf{T}$.
- Given $\{\mu_{h,a}\}_{h\in\mathcal{H},a\in\mathcal{A}}$

$$\eta_{\mathbf{T}}(x_1 \dots x_{n+1}) = \prod_{i \le n} \mu_{h_{i-1,a_i}}(x_i)$$

- **There exists a unique (** σ **-addative) extension.**
- This mapping is bijective with the set of processes that satisfy (1) of AA-sym.