

Quadcopter Modelling and simulation

- a case study for encouraging deeper learning engagements with students.

Brad Horton Engineer MathWorks

Does it fly ?

Today's Agenda:

- Review Student learning styles
 - Surface learning versus Deep learning
- The MATLAB Technical Computing Environment
 - How can it support/encourage Deep Learning?
- Where can you find teaching resources?
- Q/A
 - How can you download ALL of the demonstrations shown today?

Student Learning styles - Surface versus Deep

Deep approach:

- A desire to understand
- Will take ownership of learning.

- Wants to Link concepts and apply to problem solving.
- Regards learning as a pleasant thing to do

Surface approach

- Learning to pass an exam
- Rote learning

 Disinterest in seeking connections that link concepts

Learning is UNpleasant

Fostering a Deep Learning approach:

Deep Learning:

- A desire to understand
- Will take ownership of learning.

- Wants to Link concepts and apply to problem solving.
- Regards learning as a pleasant thing to do

Enhancement of Understanding

- Decompose BIG problems into several smaller problems.
- Provide choices on how to solve.
- Build upon existing skills and experiences
- Provide self serve support

Quadcopter case study

Enhancement Of Understanding:

- Decompose 1 BIG problem into several smaller problems.
- Build upon existing skills and experiences

- Choices on how to solve
- Provide self serve support

Demo
these
tasks

Task: Principal moments of Inertia

$$^{P}L = ^{P}I \times ^{P}\omega$$
 where $^{P}I = \begin{pmatrix} I_{1} & 0 & 0 \\ 0 & I_{2} & 0 \\ 0 & 0 & I_{3} \end{pmatrix}$

■ Live Script

bh_task_principal_I.mlx

- >> doc eig
- >> doc Linear Algebra

Free MATLAB Courseware

Numerical Computing with MATLAB

Applied Numerical Methods with MATLAB

Task: Passive Rotations and Euler rates

```
euler_rates = A \ [p; q; r];
euler_rates = simplify(euler_rates)
```

```
euler rates =
```

$$\begin{pmatrix} \frac{r\cos(\psi) + q\sin(\psi)}{\cos(\theta)} \\ q\cos(\psi) - r\sin(\psi) \\ \frac{p\cos(\theta) + r\cos(\psi)\sin(\theta) + q\sin(\psi)\sin(\theta)}{\cos(\theta)} \end{pmatrix}$$

Live Script

bh_task_explore_euler_rates_CONCEPT.mlx

- >> doc live scripts
- >> doc matlabFunction
- >> doc matlabFunctionBlock

Free MATLAB Courseware

Introduction to MATLAB

Aeronautical Systems-Guidance and Control

Task: Solving ODEs

$${}^{B}F = m.({}^{B}\dot{v} + {}^{B}\omega \times {}^{B}v)$$

$${}^{B}M = {}^{B}I.{}^{B}\dot{\omega} + {}^{B}\omega \times ({}^{B}I.{}^{B}\omega)$$

```
% F = m*(vDOT + w_x_v)
vDOT = F/m - cross(w, vB);

% M = I*wDOT + w_x_(I*w)
wDOT = inv(I) * (M - cross(w, I*w));
```


□ Live Script

bh_task_integrate_6dof_MATLAB.mlx

- >> doc ODE solver
- >> doc ode45
- >> doc table
- >> doc readtable

Free MATLAB Courseware

Numerical Computing with MATLAB

Applied Numerical Methods with MATLAB

Differential Equations and Linear Algebra

Task: calibrate Thrust, Torque with speed

$$THRUST = k_F \times \omega^2$$
$$TORQUE = k_M \times \omega^2$$

- □ Live Script
 - fask_do_F_and_TQ_calibration.mlx

- >> doc curve fitting
- >> doc cvfit
- >> doc linear equations
- >> doc readtable

Free MATLAB Courseware

Numerical Computing with MATLAB

Engineering Models I

Engineering Models II

Introduction to Engineering Analysis

Task: Linearise and Control design

- bh_task_find_trim_and_linearise.mlx
- bh_task_siso_control_design.mlx

- >> doc findop
- >> doc linearize
- >> doc pidTuner
- >> doc controlSystemDesigner

Free MATLAB Courseware

Control Tutorials for MATLAB and Simulink

Aeronautical Systems-Guidance and Control

Embedded Control and Mechatronics

Fostering a Deep Learning approach:

Deep Learning:

- A desire to understand
- Will take ownership of learning.

- Wants to Link concepts and apply to problem solving.
- Regards learning as a pleasant thing to do

Enhancement of Understanding

- Decompose BIG problems into several smaller problems.
- Provide choices on how to solve.
- Build upon existing skills and experiences
- Provide self serve support

Teaching and Learning Resources.

Earth Sciences

Related Books

http://www.mathworks.com/academia/courseware

Curriculum materials:

MATLAB Courseware

Cody Coursework™

Online automated grading system for MATLAB assignments

- Create online private courses and assignments
- Students execute MATLAB code on the web
- Control the visibility of the test suites from students.
- Visualize solution results using MATLAB graphics
- Download all student attempts and report on grading data

http://mathworks.com/help/coursework/
cody-coursework-for-instructors.html

The 1st Stop: For students

- MATLAB ACADEMY (the portal)
 - Access a free interactive training course called MATLAB Onramp

The 1st Stop: For students

- MATLAB Onramp
 - Provided through your web browser
 - Introduction of programming concepts
 - Students answer questions ... and get IMMEDIATE feedback

Connecting to Hardware

http://www.mathworks.com/hardware-support/home.html

Wrap up

Q/A:

 Are there some questions please?

 Download the examples that you saw today ... and more that you didn't!

>> bh_startup_6dof