Sommes, produits, systèmes, trigonométrie

Sommes de termes d'une suite arithmétique ou géométrique

Solution 1

Il s'agit bien évidemment à chaque fois d'une somme de termes d'une suite arithmétique.

1. Les termes extrêmes de la somme valent 4 et 3n-5 et le nombre de termes est n-2. Ainsi

$$S_n = \frac{(3n-1)(n-2)}{2}$$

2. Les termes extrêmes de la somme valent -3 et 2n+1 et le nombre de termes est n+3. Ainsi

$$T_n = \frac{(2n-2)(n+3)}{2} = (n-1)(n+3)$$

3. Les termes extrêmes de la somme valent 4 - n et -3 - n et le nombre de termes est 8. Ainsi

$$U_n = \frac{(1-2n) \times 8}{2} = 4(1-2n)$$

4. Les termes extrêmes de la somme valent n-1 et 2n-1 et le nombre de termes est n+1. Ainsi

$$V_n = \frac{(3n-2)(n+1)}{2}$$

Solution 2

Il s'agit à chaque fois d'une somme de termes d'une suite géométrique.

1. La raison vaut 3, le premier terme est 1 et le nombre de termes est n-2. Ainsi

$$S_n = \frac{3^{n-2} - 1}{3 - 1} = \frac{3^{n-2} - 1}{2}$$

2. La raison vaut 2, le premier terme est $\frac{1}{4}$ et le nombre de termes est n+3. Ainsi

$$T_n = \frac{1}{4} \cdot \frac{2^{n+3} - 1}{2 - 1} = \frac{2^{n+3} - 1}{4}$$

3. La raison vaut $\frac{1}{2}$, le premier terme est $\frac{16}{2n}$ et le nombre de termes est 8. Ainsi

$$U_n = \frac{16}{2^n} \cdot \frac{1 - \frac{1}{2^8}}{1 - \frac{1}{2}} = \frac{255}{2^{n+3}}$$

4. La raison vaut $\frac{2}{3}$, le premier terme est $\frac{2^{n-1}}{3^{n+2}}$ et le nombre de termes est n+1. Ainsi

$$V_n = \frac{2^{n-1}}{3^{n+2}} \cdot \frac{1 - \left(\frac{2}{3}\right)^{n+1}}{1 - \frac{2}{3}} = \frac{2^{n-1}(3^{n+1} - 4)}{3^{2n+2}}$$

1

Techniques de calcul

Solution 3

On a

$$S_n = \sum_{k=1}^n \ln\left(\frac{k+1}{k}\right)$$

$$= \sum_{k=1}^n \left(\ln(k+1) - \ln(k)\right)$$

$$= \ln(n+1) - \ln(1) = \ln(n+1)$$

Solution 4

1. Banalissima formula!

$$\sum_{k=p}^{q} (u_{k+1} - u_k) = u_{q+1} - u_p.$$

2. No comment ...

$$\sum_{k=p-3}^{q-1} (u_{k+1} - u_{k-1}) = u_q + u_{q-1} - u_{p-4} - u_{p-3}.$$

Solution 5

1. Soit $n \in \mathbb{N}^*$.

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \frac{(k+1)-k}{k(k+1)}$$
$$= \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$
$$= 1 - \frac{1}{n+1} = \frac{n}{n+1}$$

2. Soit $n \in \mathbb{N}^*$.

$$\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \sum_{k=1}^{n} \frac{(k+2)-k}{2k(k+1)(k+2)}$$

$$= \frac{1}{2} \sum_{k=1}^{n} \left(\frac{1}{k(k+1)} - \frac{1}{(k+1)(k+2)} \right)$$

$$= \frac{1}{2} \left(\frac{1}{1.2} - \frac{1}{(n+1)(n+2)} \right)$$

$$= \frac{n(n+3)}{4(n+1)(n+2)}$$

3. Soit $n \in \mathbb{N}^*$.

$$\sum_{k=1}^{n} k \cdot k! = \sum_{k=1}^{n} (k+1-1) \cdot k!$$

$$= \sum_{k=1}^{n} ((k+1) \cdot k! - 1 \cdot k!)$$

$$= \sum_{k=1}^{n} ((k+1)! - k!) = (n+1)! - 1$$

4. Posons $u_k = (ak + b) 2^k$ et cherchons a et b tels que, pour tout entier k, $u_{k+1} - u_k = (k+2) 2^k$. On remarque que

$$u_{k+1} - u_k = (a(k+1) + b) 2^{k+1} - (ak+b) 2^k$$
$$= 2^k (2(a(k+1) + b) - (ak+b))$$
$$= (ak+2a+b) 2^k$$

En prenant a = 1 puis b = 0 (de sorte que 2a + b = 2), ou encore, en posant $u_k = k 2^k$ pour tout entier k, on a bien $u_{k+1} - u_k = (k+2)2^k$, d'où

$$\sum_{k=0}^{n} (k+2)2^{k} = \sum_{k=0}^{n} (u_{k+1} - u_{k})$$
$$= u_{n+1} - u_{0} = (n+1)2^{n+1}$$

5. Soit $n \in \mathbb{N}^*$.

$$\sum_{k=1}^{n} \ln\left(1 + \frac{1}{k}\right) = \sum_{k=1}^{n} \ln\left(\frac{k+1}{k}\right)$$
$$= \sum_{k=1}^{n} \ln(k+1) - \ln(k)$$
$$= \ln(n+1) - \ln(1) = \ln n$$

6. Soit $n \in \mathbb{N}$. Notons S_n la somme de l'énoncé.

$$S_n = \sum_{k=0}^n \left(\sin(x/2 + kx) + \sin(x/2 - kx) \right)$$

$$= \sum_{k=0}^n \left(\sin((k+1/2)x) - \sin((k-1/2)x) \right)$$

$$= \sin((n+1/2)x) - \sin(-x/2)$$

$$= \sin\left(\frac{(2n+1)x}{2}\right) + \sin\left(\frac{x}{2}\right).$$

Solution 6

L'ensemble $\{1, ..., 2n\}$ est la réunion des parties deux à deux disjointes $\{2p-1, 2p\}$ pour p variant de 1 à n. Or $(-1)^{2p-1}(2p-1)+(-1)^{2p}2p=2p-(2p-1)=1$ pour tout $1 \le p \le n$, donc la somme est égale à n.

Solution 7

Par linéarité, on décompose cette somme en une différence de deux sommes égales (changement d'indice $k \leftarrow n + 1 - k$ dans la deuxième somme). La somme est donc nulle.

Solution 8

On calcule la somme double en sommant d'abord sur j:

$$\sum_{1 \le j \le k \le n} 2^k = \sum_{k=1}^n \sum_{j=1}^k 2^k = \sum_{k=1}^n k 2^k.$$

On calcule la même somme en sommant d'abord sur k. D'après la formule de sommation géométrique,

$$\sum_{1 \le j \le k \le n} 2^k = \sum_{j=1}^n \sum_{k=j}^n 2^k = \sum_{j=1}^n (2^{n+1} - 2^j) = n2^{n+1} - (2^{n+1} - 2) = (n-1)2^{n+1} + 2.$$

$$\sum_{k=2}^{n} \log \left(\frac{k^2 - 1}{k^2} \right) = \log \prod_{k=2}^{n} \frac{(k-1)(k+1)}{k^2} = \log \frac{(n-1)!(n+1)!}{2(n!)^2} = \log \frac{n+1}{2n}.$$

Solution 10

1. Puisque pour tout $t \neq \pm 1$,

$$\frac{\alpha}{t-1} + \frac{\beta}{t+1} = \frac{(\alpha+\beta)t + \alpha - \beta}{t^2 - 1},$$

il suffit de choisir α et β tels que

$$\alpha + \beta = 0$$
 et $\alpha - \beta = 1$,

c'est-à-dire $\alpha = -\beta = 1/2$.

2. On a

$$\begin{split} v_n &= \frac{1}{2} \sum_{k=2}^n \frac{1}{k-1} - \frac{1}{2} \sum_{k=2}^n \frac{1}{k+1} \\ &= \frac{1}{2} \sum_{k=1}^{n-1} \frac{1}{k} - \frac{1}{2} \sum_{k=3}^{n+1} \frac{1}{k} \\ &= \frac{1}{2} \left(1 + \frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{n} + \frac{1}{n+1} \right) \end{split}$$

Solution 11

1. En convenant que $A_{-1} = 0$:

$$\begin{split} \sum_{k=0}^{n} a_k \mathbf{B}_k &= \sum_{k=0}^{n} (\mathbf{A}_k - \mathbf{A}_{k-1}) \mathbf{B}_k \\ &= \sum_{k=0}^{n} \mathbf{A}_k \mathbf{B}_k - \sum_{k=0}^{n} \mathbf{A}_{k-1} \mathbf{B}_k \\ &= \sum_{k=0}^{n} \mathbf{A}_k \mathbf{B}_k - \sum_{k=0}^{n-1} \mathbf{A}_k \mathbf{B}_{k+1} \\ &= \mathbf{A}_n \mathbf{B}_n + \sum_{k=0}^{n-1} \mathbf{A}_k (\mathbf{B}_k - \mathbf{B}_{k+1}) \\ &= \mathbf{A}_n \mathbf{B}_n - \sum_{k=0}^{n-1} \mathbf{A}_k b_k \end{split}$$

2. On pose $a_n=2^n$ et $\mathbf{B}_n=n$. Avec les conventions de l'énoncé, on a $\mathbf{A}_n=2^{n+1}-1$ et $b_n=1$. On en déduit que

$$\sum_{k=0}^{n} 2^{k} k = (2^{n+1} - 1)n - \sum_{k=0}^{n-1} (2^{k+1} - 1)$$
$$= (2^{n+1} - 1)n - 2(2^{n} - 1) + n$$
$$= 2^{n+1}(n-1) + 2$$

Solution 12

1. On peut considérer S_n et T_n comme des fonctions d'une variable réelle. Dans ce cas, $S_n(x) = xT_n'(x)$ pour tout $x \in \mathbb{R}$. Pour $x \in \mathbb{R} \setminus \{1\}$,

$$T_n(x) = \frac{x^{n+1} - 1}{x - 1}$$

donc

$$T'_n(x) = \frac{(n+1)x^n(x-1) - (x^{n+1}-1)}{(x-1)^2} = \frac{nx^{n+1} - (n+1)x^n + 1}{(x-1)^2}$$

puis

$$S_n(x) = \frac{x(nx^{n+1} - (n+1)x^n + 1)}{(x-1)^2}$$

De plus, il est clair que $S_n(1) = \frac{n(n+1)}{2}$.

2. L'idée est de faire apparaître un télescopage. Pour $x \in \mathbb{R} \setminus \{1\}$,

$$(x-1)S_n(x) = \sum_{k=0}^n kx^{k+1} - kx^k = \sum_{k=0}^n (k+1)x^{k+1} - kx^k - \sum_{k=0}^n x^{k+1} = (n+1)x^{n+1} - \frac{x(x^{n+1}-1)}{x-1}$$

et on trouve à nouveau

$$S_n(x) = \frac{x(nx^{n+1} - (n+1)x^n + 1)}{(x-1)^2}$$

Comme précédemment, $S_n(1) = \frac{n(n+1)}{2}$.

Formule du binôme

Solution 13

On a

$$S_n = \sum_{k=1}^n 2^{k-1} 3^{n-k+1} \binom{n}{k} = \frac{3}{2} \left[\sum_{k=0}^n 2^k 3^{n-k} \binom{n}{k} - 1 \right] = \frac{3}{2} [(2+3)^n - 1] = \frac{3}{2} [5^n - 1].$$

Solution 14

On fixe $n \in \mathbb{N}$. Cette formule se prouve alors par récurrence sur $p \in \mathbb{N}$. Elle est banale pour p = 0. Si elle est vraie au rang p, on a

$$\sum_{k=0}^{p+1} \binom{n+k}{n} = \sum_{k=0}^{p} \binom{n+k}{n} + \binom{n+p+1}{n} = \binom{n+p+1}{n+1} + \binom{n+p+1}{n} = \binom{n+p+1}{n+1}$$

d'après la relation de Pascal.

Solution 15

1. Soit $n \ge 2$. Posons, pour tout réel x,

$$P(x) = (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

Pour tout réel x, on a

$$P'(x) = \sum_{k=1}^{n} k \binom{n}{k} x^{k-1}$$
$$= n(1+x)^{n-1}$$

et

$$P''(x) = \sum_{k=2}^{n} k(k-1) \binom{n}{k} x^{k-2}$$
$$= n(n-1)(1+x)^{n-2},$$

de sorte que

$$\sum_{k=1}^{n} k^{2} \binom{n}{k} = P'(1) + P''(1)$$
$$= n(n+1)2^{n-2}.$$

On remarque que cette formule est encore valable pour n = 0 et n = 1.

2. Supposons $n \ge 2$. Adaptons la méthode précédente. Pour tout réel x, posons

$$P(x) = \frac{(1+x)^{2n} + (1-x)^{2n}}{2} = \sum_{k=0}^{n} {2n \choose 2k} x^{2k}.$$

Pour tout réel x, on a

$$P'(x) = \sum_{k=1}^{n} 2k \binom{2n}{2k} x^{2k-1}$$
$$= 2n \frac{(1+x)^{2n-1} - (1-x)^{2n-1}}{2}$$

et

$$P''(x) = \sum_{k=1}^{n} 2k(2k-1) \binom{n}{k} x^{2k-2}$$
$$= 2n(2n-1) \frac{(1+x)^{2n-2} + (1-x)^{2n-2}}{2},$$

de sorte que

$$\sum_{k=1}^{n} k^{2} \binom{n}{k} = \frac{P'(1) + P''(1)}{4}$$
$$= n(2n+1)2^{2n-4}.$$

Pour n = 0, la somme est nulle. Pour n = 1, elle vaut 1.

Solution 16

- 1. D'après la formule du binôme de Newton, $S_1=(1+1)^{2n}=2^{2n}$ et $S_2=(1-1)^{2n}=0$ car $n\neq 0$.
- 2. En séparant les termes d'indices pairs et d'indices impairs, $S_1 = T_1 + T_2$ et $S_2 = T_1 T_2$. On en déduit que $T_1 = \frac{1}{2}(S_1 + S_2) = 2^{2n-1}$ et $T_2 = \frac{1}{2}(S_1 S_2) = 2^{2n-1}$.
- 3. Posons $X_1 = \sum_{k=0}^{2n-1} {2n-1 \choose k}$ et $X_2 = \sum_{k=0}^{2n-1} {2n-1 \choose k}$ (-1)^k. Comme précédemment, $X_1 = (1+1)^{2n-1} = 2^{2n-1}$ et $X_2 = (1-1)^{2n-1} = 0$. Puis $X_1 = U_1 + U_2$ et $X_2 = U_1 U_2$ en séparant termes d'indices pairs et impairs. On en déduit à nouveau que $U_1 = \frac{1}{2}(X_1 + X_2) = 2^{2n-2}$ et $U_2 = \frac{1}{2}(X_1 X_2) = 2^{2n-2}$.
- 4. Via un changement de variable et la symétrie des coefficients binomiaux,

$$V_1 = \sum_{\ell=0}^{n} (n-\ell) \binom{2n}{2n-2\ell} = nT_1 - V_1$$

Ainsi $V_1 = 2^{2n-2}n$.

De la même manière,

$$V_2 = \sum_{\ell=0}^{n-1} (n-1-\ell) \binom{2n}{2n-2\ell-1} = (n-1)T_2 - V_2$$

Ainsi $V_2 = 2^{2n-2}(n-1)$.

5. Tout d'abord, si n = 1, il est clair que $W_1 = W_2 = 0$. Supposons maintenant $n \ge 2$. D'une part,

$$W_1 + W_2 = \sum_{k=0}^{n-1} k \left(\binom{2n-1}{2k} + \binom{2n-1}{2k+1} \right) = \sum_{k=0}^{n-1} k \binom{2n}{2k+1} = V_2 = 2^{2n-2}(n-1)$$

Remarque. On peut également effectuer le changement de variable $\ell = n - 1 - k$ dans W_1 ou W_2 pour aboutir au même résultat.

D'autre part,

$$W_1 = \frac{1}{2} \sum_{k=0}^{n-1} 2k \binom{2n-1}{2k} = \frac{2n-1}{2} \sum_{k=1}^{n-1} \binom{2n-2}{2k-1} = \frac{2n-1}{2} \sum_{k=0}^{n-2} \binom{2n-2}{2k+1}$$

On reconnaît ici la somme T_2 dans laquelle n a été remplacé par n-1. Ainsi

$$W_2 = \frac{2n-1}{2} \cdot 2^{2n-3} = 2^{2n-4}(2n-1)$$

et par conséquent

$$W_1 = 2^{2n-2}(n-1) - 2^{2n-4}(2n-1) = 2^{2n-4}(2n-3)$$

REMARQUE. On peut également remarquer que

$$\sum_{k=0}^{2n-1} k(-1)^k \binom{2n-1}{k} = \sum_{k=0}^{n-1} 2k(-1)^{2k} \binom{2n-1}{2k} + \sum_{k=0}^{n-1} (2k+1)(-1)^{2k+1} \binom{2n-1}{2k+1} = 2W_1 - 2W_2 - U_2$$

et que

$$\sum_{k=0}^{2n-1} k(-1)^k \binom{2n-1}{k} = (2n-1) \sum_{k=1}^{2n-1} (-1)^k \binom{2n-2}{k-1} = -(2n-1) \sum_{k=0}^{2n-2} (-1)^k \binom{2n-2}{k} = -(2n-1)(1-1)^{2n-2} = 0$$

pour aboutir au même résultat.

Sommes doubles

Solution 17

1. C'est parti!

$$U_{n} = \sum_{1 \le i < j \le n} \max(i, j) + \sum_{1 \le j < i \le n} \max(i, j) + \sum_{i=1}^{n} \max(i, i)$$
$$= \sum_{1 \le i < j \le n} \max(i, j) + \sum_{1 \le j < i \le n} \max(i, j) + \sum_{i=1}^{n} i$$

On remarque alors que

$$\sum_{1 \leq i < j \leq n} \max(i, j) = \sum_{1 \leq j < i \leq n} \max(i, j),$$

pour ceux qui ne sont pas convaincus, on effectué le changement de variables (muettes!)

$$k = i$$
, $l = i$,

en remarquant que

$$1 \le k < l \le n \iff 1 \le j < i \le n \text{ et } \max(k, l) = \max(i, j).$$

Ainsi

$$U_n = 2S_n + \frac{n(n+1)}{2}$$

, et donc :

$$U_n = \frac{n(n+1)(4n-1)}{6}.$$

2. C'est immédiat ...

$$V_n = \sum_{1 \le i, j \le n} ij = \left(\sum_{i=1}^n i\right)^2 = \frac{n^2(n+1)^2}{4}.$$

3. Ca vire à la routine ...

$$W_n = \sum_{i=1}^n \left(\sum_{j=i}^n (j-i) \right) = \sum_{i=1}^n \frac{(n-i)(n-i+1)}{2} = \sum_{i=0}^{n-1} \frac{i(i+1)}{2}$$

où l'on a effectué le changement de variable (muette!)

$$l = n - i$$
.

en remarquant que

$$i \in [1, n] \iff l \in [0, n - 1],$$

ainsi

$$2W_n = \sum_{i=0}^{n-1} i(i+1) = \sum_{i=0}^{n-1} i^2 + \sum_{i=1}^{n-1} i = \frac{(n-1)n(2n-1)}{6} + \frac{n(n-1)}{2}$$

d'où

$$W_n = \frac{n(n^2 - 1)}{6}.$$

4. Une autre bataille ...

$$X_n = \sum_{1 \le i < j \le n} i = \sum_{i=1}^{n-1} \left(i \sum_{j=i+1}^n 1 \right) = \sum_{i=1}^{n-1} i(n-i)$$

$$= n \sum_{i=1}^{n-1} i - \sum_{i=1}^{n-1} i^2 = \frac{n^2(n-1)}{2} - \frac{n(n-1)(2n-1)}{6}$$

$$= \frac{n(n-1)(3n-(2n-1))}{6} = \frac{(n+1)n(n-1)}{6}.$$

5. La cerise sur le gâteau ...

$$Y_n = \sum_{1 \le i, j \le n} ij - \sum_{1 \le j < i \le n} ij - \sum_{i=1}^n i^2 = \sum_{1 \le i, j \le n} ij - Y_n - \sum_{i=1}^n i^2$$

En effet,

$$\sum_{1 \le i < j \le n} ij = \sum_{1 \le i < j \le n} ij,$$

ainsi

$$2Y_n = \sum_{1 \le i, j \le n} ij - \sum_{i=1}^n i^2 = V_n - \frac{n(n+1)(2n+1)}{6} = \left(\frac{n(n+1)}{2}\right)^2 - \frac{n(n+1)(2n+1)}{6}$$
$$= \frac{n^2(n+1)^2}{4} - \frac{n(n+1)(2n+1)}{6}$$

et finalement

$$Y_n = \frac{n(n^2 - 1)(3n + 2)}{24}.$$

$$\sum_{n=0}^{N-1} \sum_{k=n+1}^{N} \frac{(-1)^k}{k^2} = \sum_{0 \leq k, n \leq N} \frac{(-1)^k}{k^2} \mathbbm{1}_{(0 \leq n < k \leq N)} = \sum_{k=1}^{N} \sum_{n=0}^{k-1} \frac{(-1)^k}{k^2} = \sum_{k=1}^{N} \frac{(-1)^k k}{k^2}.$$

Solution 19

1. On décompose la première somme pour obtenir deux sommes simples à calculer,

$$\sum_{1 \le i < j \le n} (i+j) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} i + \sum_{j=2}^{n} \sum_{i=1}^{j-1} j = \sum_{i=1}^{n} i(n-i) + \sum_{j=1}^{n} j(j-1).$$

L'indice de sommation étant une variable muette,

$$\sum_{1 \le i < j \le n} (i+j) = \sum_{i=1}^{n} (i(n-i) + i(i-1)) = \sum_{i=1}^{n} (n-1)i = \frac{(n-1)n(n+1)}{2}.$$

2. On a.

$$\sum_{1 \leq i < j \leq n} ij = \sum_{j=2}^{n} j \binom{j-1}{\sum_{i=1}^{j-1} i} = \sum_{j=1}^{n} \frac{j^2(j-1)}{2} = \frac{1}{2} \left(\sum_{j=1}^{n} j^3 - \sum_{j=1}^{n} j^2 \right) = \frac{n(n-1)(3n+2)(n+1)}{24}$$

puisque
$$\sum_{1 \le k \le n} k^2 = \frac{n(2n+1)(n+1)}{6}$$
 et $\sum_{1 \le k \le n} k^3 = \frac{\left(n(n+1)\right)^2}{4}$.

Solution 20

On a

$$S = \sum_{1 \le i \le j \le n} = \sum_{j=1}^{n} \sum_{i=1}^{j} \frac{i}{j} = \sum_{j=1}^{n} \frac{1}{j} \sum_{i=1}^{j} i = \sum_{j=1}^{n} \frac{j(j+1)}{2j} = \sum_{j=1}^{n} \frac{j+1}{2} = \frac{n(n+3)}{4}$$

Solution 21

Soit $n \ge 1$. On a

$$u_n = \sum_{k=1}^n \sum_{\ell=1}^k \frac{1}{\ell} = \sum_{1 \le \ell \le k \le n} \frac{1}{\ell}$$

$$= \sum_{\ell=1}^n \sum_{k=\ell}^n \frac{1}{\ell} = \sum_{\ell=1}^n \frac{n+1-\ell}{\ell}$$

$$= \sum_{\ell=1}^n \frac{n+1}{\ell} - \sum_{\ell=1}^n 1 = (n+1)S_n - n$$

Solution 22

On calcule la somme double en sommant d'abord sur j:

$$\sum_{1 \le j \le k \le n} 2^k = \sum_{k=1}^n \sum_{j=1}^k 2^k = \sum_{k=1}^n k 2^k.$$

On calcule la même somme en sommant d'abord sur k. D'après la formule de sommation géométrique,

$$\sum_{1 \le j \le k \le n} 2^k = \sum_{j=1}^n \sum_{k=j}^n 2^k = \sum_{j=1}^n (2^{n+1} - 2^j) = n2^{n+1} - (2^{n+1} - 2) = (n-1)2^{n+1} + 2.$$

$$\sum_{j=0}^{p} \binom{p+1}{j+1} S_j(n) = \sum_{j=0}^{p} \binom{p+1}{j} \sum_{k=0}^{n} k^j$$

$$= \sum_{k=0}^{n} \sum_{j=0}^{p} \binom{p+1}{j} k^j \quad \text{par interversion de l'ordre de sommation}$$

$$= \sum_{k=0}^{n} \left(\left(\sum_{j=0}^{p+1} \binom{p+1}{j} k^j \right) - k^{p+1} \right)$$

$$= \sum_{k=0}^{n} (k+1)^{p+1} - k^{p+1} = (n+1)^{p+1} \quad \text{via la formule du binôme}$$

Produits

Solution 24

On a

$$P = \prod_{k=2}^{n} \left(1 + \frac{1}{k}\right) \left(1 - \frac{1}{k}\right)$$
$$= \prod_{k=2}^{n} \frac{k+1}{k} \prod_{k=2}^{n} \frac{k-1}{k} = \frac{n+1}{2} \frac{1}{n} = \frac{n+1}{2n}$$

Solution 25

On trouve $V = (n!)^{2n}$, $W = (n!)^{2n-2}$. $W = \frac{XY}{(n!)^4}$ et X = Y par symétrie, d'où $X = (n!)^{n-1}(n!)^2 = (n!)^{n+1}$, et enfin $Z = \frac{X}{(n!)^2} = (n!)^{n-1}$.

Solution 26

Pour tout entier naturel $k \ge 1$, $\frac{1}{k(k+1)} = 1/k - 1/(k+1)$, donc

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 - \frac{1}{n+1}$$

et donc

$$\prod_{k=1}^n 2^{1/k(k+1)} = \prod_{k=1}^n \exp\Bigl(\frac{\log 2}{k(k+1)}\Bigr) = \exp\Bigl(\log 2 \sum_{k=1}^n \frac{1}{k(k+1)}\Bigr) = \frac{2}{n+\sqrt{2}}.$$

Solution 27

1. Soit $k \ge 2$. On a

$$\frac{k^3 - 1}{k^3 + 1} = \frac{(k-1)(k^2 + k + 1)}{(k+1)(k^2 - k + 1)} = \frac{k-1}{k+1} \times \frac{v_k}{v_{k-1}}$$

en posant $v_k = k^2 + k + 1$ puisqu'alors $v_{k-1} = (k-1)^2 + k - 1 + 1 = k^2 - k + 1$.

2. On a

$$u_n = \prod_{k=2}^n \frac{k-1}{k+1} \times \prod_{k=2}^n \frac{v_k}{v_{k-1}}$$
$$= \frac{2(n-1)!}{(n+1)!} \frac{v_n}{v_1} = \frac{2(n^2+n+1)}{3n(n+1)}$$

après telescopage.

3. On a

$$u_n = \frac{2}{3} \left[1 + \frac{1}{n(n+1)} \right]$$

et donc

$$\lim_{n \to +\infty} u_n = \frac{2}{3}.$$

Solution 28

On a pour $k \in \mathbb{N}$, $\cos \frac{\alpha}{2^k} = \frac{\sin \frac{\alpha}{2^{k-1}}}{2\sin \frac{\alpha}{2^k}} \cot \frac{\alpha}{2^k} \in]0, \pi[$ et donc le dénominateur de la fraction précédente est non nul. Par conséquent

$$P_n = \prod_{k=0}^n \frac{\sin \frac{\alpha}{2^{k-1}}}{2 \sin \frac{\alpha}{2^k}}$$
$$= \frac{1}{2^{n+1}} \frac{\sin 2\alpha}{\sin \frac{\alpha}{2^n}}$$

en utilisant un télescopage. Pour déterminer la limite, on écrit :

$$P_n = \frac{\sin 2\alpha}{2\alpha} \frac{\frac{\alpha}{2^n}}{\sin \frac{\alpha}{2^n}}$$

Or
$$\lim_{u \to 0} \frac{\sin u}{u} = 1$$
 donc $\lim_{n \to +\infty} P_n = \frac{\sin 2\alpha}{2\alpha}$.

Systèmes linéaires

Solution 29

Par la méthode du pivot de Gauss...

$$\begin{pmatrix} 1 & -1 & 1 & 1 & 0 \\ 1 & -2 & 1 & -1 & 1 \\ 1 & 1 & 2 & 1 & -1 \end{pmatrix} \xrightarrow{-1}_{+}$$

$$\begin{pmatrix} 1 & -1 & 1 & 1 & 0 \\ 0 & -1 & 0 & -2 & 1 \\ 0 & 2 & 1 & 0 & -1 \end{pmatrix} \xrightarrow{2}_{+}$$

$$\begin{pmatrix} 1 & -1 & 1 & 1 & 0 \\ 0 & -1 & 0 & -2 & 1 \\ 0 & 0 & 1 & -4 & 1 \end{pmatrix}$$

Le système de l'énoncé est donc équivalent au système

$$\begin{cases}
 x - y + z + t = 0 \\
 - y - 2t = 1 \\
 z - 4t = 1
\end{cases}$$

qu'on résoud en remontant du bas vers le haut. On trouve

$$\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} -2 - 7t \\ -1 - 2t \\ 1 + 4t \\ t \end{pmatrix} \quad \text{où } t \in \mathbb{R}.$$

Ainsi l'ensemble de solutions est une droite \mathcal{P} dans \mathbb{R}^4 , à savoir

$$\mathcal{D} = \begin{pmatrix} -2 \\ -1 \\ 1 \\ 0 \end{pmatrix} + \mathbb{R} \begin{pmatrix} -7 \\ -2 \\ 4 \\ 1 \end{pmatrix}.$$

Solution 30

Par la méthode du pivot de Gauss...

$$\begin{pmatrix}
-3 & 9 & -2 & 3 & 5 & 4 \\
1 & -3 & 1 & -1 & -2 & 0 \\
8 & -24 & 4 & -12 & -4 & -8 \\
-1 & 3 & 0 & -2 & 7 & 10
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -3 & 1 & -1 & -2 & 0 \\
-3 & 9 & -2 & 3 & 5 & 4 \\
2 & -6 & 1 & -3 & -1 & -2 \\
-1 & 3 & 0 & -2 & 7 & 10
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -3 & 1 & -1 & -2 & 0 \\
-1 & 3 & 0 & -2 & 7 & 10
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -3 & 1 & -1 & -2 & 0 \\
0 & 0 & 1 & 0 & -1 & 4 \\
0 & 0 & -1 & -1 & 3 & -2 \\
0 & 0 & 1 & 0 & -1 & 4 \\
0 & 0 & 0 & -1 & 2 & 2 \\
0 & 0 & 0 & -3 & 6 & 6
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -3 & 1 & -1 & -2 & 0 \\
0 & 0 & 0 & -1 & 2 & 2 \\
0 & 0 & 0 & -3 & 6 & 6
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -3 & 1 & -1 & -2 & 0 \\
0 & 0 & 0 & -3 & 6 & 6
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -3 & 1 & -1 & -2 & 0 \\
0 & 0 & 0 & -1 & 2 & 2 \\
0 & 0 & 0 & -3 & 6 & 6
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -3 & 1 & -1 & -2 & 0 \\
0 & 0 & 0 & -1 & 4 \\
0 & 0 & 0 & -1 & 4 \\
0 & 0 & 0 & 1 & -2 & -2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Le système de l'énoncé est donc équivalent au système

$$\begin{cases} x_1 - 3x_2 + x_3 - x_4 - 2x_5 = 0 \\ x_3 - x_5 = 4 \\ x_4 - 2x_5 = -2 \end{cases}$$

qu'on résout en remontant du bas vers le haut. On trouve

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -6 + 3x_2 + 3x_5 \\ x_2 \\ 4 + x_5 \\ -2 + 2x_5 \\ x_5 \end{pmatrix} \quad \text{où } (x_2, x_5) \in \mathbb{R}^2.$$

Ainsi l'ensemble de solutions est un plan \mathcal{P} dans \mathbb{R}^5 , à savoir

$$\mathcal{P} = \begin{pmatrix} -6 \\ 0 \\ 4 \\ -2 \\ 0 \end{pmatrix} + \mathbb{R} \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \mathbb{R} \begin{pmatrix} 3 \\ 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}.$$

Solution 31

Par la méthode du pivot de Gauss...

$$\begin{pmatrix} 1 & 2 & -1 & a \\ -2 & -3 & 3 & b \\ 1 & 1 & -2 & c \end{pmatrix} \xrightarrow{+}_{+}^{2}_{+}^{-1}$$

$$\begin{pmatrix} 1 & 2 & -1 & a \\ 0 & 1 & 1 & b+2a \\ 0 & -1 & -1 & c-a \end{pmatrix} \xrightarrow{+}_{+}$$

$$\begin{pmatrix} 1 & 2 & -1 & a \\ 0 & 1 & 1 & b+2a \\ 0 & 0 & 0 & a+b+c \end{pmatrix}$$

Le système de l'énoncé est donc équivalent au système

$$\begin{cases} x + 2y - z = a \\ y + z = b + 2a \\ 0 = a + b + c \end{cases}$$

qui admet une solution si et seulement si a + b + c = 0. Géométriquement cela signifie qu'un point de \mathbb{R}^3 est une image par l'application

$$\mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}, \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} x + 2y - z \\ -2x - 3y + 3z \\ x + y - 2z \end{pmatrix}$$

si et seulement si il est dans le plan d'équation x + y + z = 0.

Dans ce cas le système est équivalent à

$$\begin{cases} x + 2y - z = a \\ y + z = a - c \end{cases}$$

qu'on résoud en remontant du bas vers le haut. On trouve

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2c - a + 3z \\ a - c - z \\ z \end{pmatrix} \quad \text{où } z \in \mathbb{R}.$$

Ainsi l'ensemble de solutions est une droite \mathcal{D} dans \mathbb{R}^3 , à savoir

$$\mathcal{D} = \begin{pmatrix} 2c - a \\ a - c \\ 0 \end{pmatrix} + \mathbb{R} \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}.$$

Par la méthode du pivot de Gauss...

Le système de l'énoncé est donc équivalent au système

$$\begin{cases}
-x + 2y - z &= 2 \\
2y - 4z &= 1 \\
(5 + 3a)z &= \frac{3}{2} + a
\end{cases}$$

Si $a = -\frac{5}{3}$, la dernière ligne se lit $0 = -\frac{1}{6}$ et donc $E_{-\frac{5}{3}} = \emptyset$.

Si $a \neq -\frac{5}{3}$, on résout en remontant du bas vers le haut et on trouve une solution unique (dont le calcul n'est pas demandé). Ainsi E_a n'est jamais un ensemble infini.

Solution 33

Méthode du pivot de Gauss:

$$\begin{pmatrix} 1 & -1 & 0 & 2 \\ 2 & 2 & -1 & -2 \\ -1 & -1 & 2 & 4 \end{pmatrix} \xrightarrow{\frac{1}{2}} \overset{-2}{\leftarrow} +$$

$$\left(\begin{array}{cccc}
1 & -1 & 0 & 2 \\
0 & 4 & -1 & -6 \\
0 & 0 & \frac{3}{2} & 3
\end{array}\right)$$

Le système initial est donc équivalent au système

$$\begin{cases} x - y & = 2 \\ 4y - z & = -6 \\ \frac{3}{2}z & = 3 \end{cases}$$

qu'on résoud en remontant. On trouve l'unique solution (1, -1, 2).

Méthode du pivot de Gauss:

$$\begin{pmatrix} 1 & -1 & 0 & 2 \\ 2 & 2 & -1 & -2 \\ -1 & -1 & \frac{1}{2} & 4 \end{pmatrix} \stackrel{-2}{\longleftarrow}_{+}$$

$$\left(\begin{array}{cccc}
1 & -1 & 0 & 2 \\
0 & 4 & -1 & -6 \\
0 & -2 & \frac{1}{2} & 6
\end{array}\right) \xrightarrow{|2 \leftarrow +}$$

$$\left(\begin{array}{ccccc}
1 & -1 & 0 & 2 \\
0 & 4 & -1 & -6 \\
0 & 0 & 0 & 6
\end{array}\right)$$

Le système initial est donc équivalent au système

$$\begin{cases} x - y & = 2 \\ 4y - z & = -6 \\ 0 & = 6. \end{cases}$$

Puisqu'il n'existe pas de x, y, z tels que 0 = 6, le système n'a pas de solution.

Solution 35

Méthode du pivot de Gauss:

$$\begin{pmatrix} 1 & 1 & -1 & 1 \\ 1 & 2 & a & 2 \\ 2 & a & 2 & 3 \end{pmatrix} \xleftarrow{-1}_{+}^{-1}_{+}$$

$$\left(\begin{array}{cccc}
1 & 1 & -1 & 1 \\
0 & 1 & a+1 & 1 \\
0 & a-2 & 4 & 1
\end{array}\right) \xrightarrow{2-a}_{+}$$

$$\left(\begin{array}{cccc}
1 & 1 & -1 & 1 \\
0 & 1 & a+1 & 1 \\
0 & 0 & 6+a-a^2 & 3-a
\end{array}\right)$$

On factorise $6 + a - a^2 = (3 - a)(2 + a)$. Ainsi le système

- 1. a une seule solution si et seulement si $(3-a)(2+a) \neq 0$, ce qui revient à dire que $a \in \mathbb{R} \setminus \{3, -2\}$,
- 2. n'a pas de solution si et seulement si (3-a)(2+a)=0 et $3-a\neq 0$, ce qui revient à dire que a=-2,
- 3. possède une infinité de solutions (3-a)(2+a)=0 et $3-a\neq 0$, ce qui revient à dire que a=3.

1. Pivot de Gauss:

$$\begin{pmatrix} 2 & -1 & 4 & -4 \\ 3 & 2 & -3 & 17 \\ 5 & -3 & 8 & -10 \end{pmatrix} \begin{vmatrix} -3 \\ 2 \leftarrow + \\ 2 \leftarrow + \end{vmatrix}$$

$$\left(\begin{array}{cccc}
2 & -1 & 4 & -4 \\
0 & 7 & -18 & 46 \\
0 & -1 & -4 & 0
\end{array}\right) \xrightarrow[]{7} \leftarrow +$$

$$\left(\begin{array}{ccccc}
2 & -1 & 4 & -4 \\
0 & 7 & -18 & 46 \\
0 & 0 & -46 & 46
\end{array}\right)$$

Le système initial est donc équivalent au système

$$\begin{cases} 2x - y + 4z = -4 \\ 7y - 18z = 46 \\ - 46z = 46 \end{cases}$$

qu'on résout facilement en commençant par le bas. On trouve l'unique solution (2, 4, -1).

2.

$$\begin{pmatrix} 1 & -1 & 2 & 1 \\ 3 & 2 & -3 & 2 \\ -1 & 6 & -11 & -3 \end{pmatrix} \xrightarrow{-3}_{02}$$

$$\begin{pmatrix}
1 & -1 & 2 & 1 \\
0 & 5 & -9 & -1 \\
0 & 5 & -9 & -2
\end{pmatrix}
\xrightarrow{-1}_{+}$$

$$\left(\begin{array}{ccccc}
1 & -1 & 2 & 1 \\
0 & 5 & -9 & -1 \\
0 & 0 & 0 & -1
\end{array}\right)$$

Le système initial est donc équivalent à un système dont une équation est 0x + 0y + 0z = -1, ou encore 0 = -1. Il n'y a pas de (x, y, z) vérifiant cette équation. Par conséquence le système n'a pas de solution.

REMARQUE. On aurait déjà pu le voir une étape plus tôt, car elle contient les équations contradictoires 5y - 9 = -1 et 5y - 9 = -2.

3. On commence par une permutation de lignes pour obtenir un pivot en haut à gauche.

$$\begin{pmatrix} 0 & 2 & -1 & -2 \\ 1 & 1 & 1 & 2 \\ -2 & 4 & -5 & -10 \end{pmatrix} \leftarrow$$

$$\begin{pmatrix} 1 & 1 & 1 & 2 \\ 0 & 2 & -1 & -2 \\ -2 & 4 & -5 & -10 \end{pmatrix} \xrightarrow{2}$$

$$\begin{pmatrix} 1 & 1 & 1 & 2 \\ 0 & 2 & -1 & -2 \\ 0 & 6 & -3 & -6 \end{pmatrix} \xleftarrow{-3}_{+}$$

$$\left(\begin{array}{ccccc}
1 & 1 & 1 & 2 \\
0 & 2 & -1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Le système initial est donc équivalent au système

$$\begin{cases} x + y + z = 2 \\ 2y - z = -2 \\ 0 = 0. \end{cases}$$

La dernière équation est vérifiée pour tout choix de (x, y, z). Elle est donc superflue et peut être omise. En résout les deux équations restantes.

$$\begin{cases} x = 2 - y - z = 2 - y - (2 + 2y) = -3y \\ z = 2 + 2y. \end{cases}$$

Le système admet donc une unfinité de solutions, à savoir tous les triplets (-3y, y, 2 + 2y) avec $y \in \mathbb{R}$. L'ensemble de solutions s'écrit aussi comme

$$\{(0,0,2) + y(-3,1,2) \mid y \in \mathbb{R}\}\$$

ou encore,

$$(0,0,2) + \mathbb{R}(-3,1,2).$$

Il s'agit de la droite passant par le point (0,0,2) est dirigée par le vecteur (-3,1,2).

4. On commence par une permutation de lignes puisque le pivot le plus simple à manipuler est 1.

$$\begin{pmatrix} 1 & 1 & -7 & 2 \\ 3 & 2 & -3 & 0 \\ 2 & 1 & -5 & 3 \\ 2 & -3 & 8 & 5 \end{pmatrix} \xleftarrow{-3} -2 -2$$

$$\begin{pmatrix} 1 & 1 & -7 & 2 \\ 0 & -1 & 18 & -6 \\ 0 & -1 & 9 & -1 \\ 0 & -5 & 22 & 1 \end{pmatrix} \leftarrow \begin{pmatrix} -1 \\ + \\ + \end{pmatrix} +$$

$$\left(\begin{array}{ccccc}
1 & 1 & -7 & 2 \\
0 & -1 & 18 & -6 \\
0 & 0 & -9 & 5 \\
0 & 0 & -68 & 31
\end{array}\right)$$

La troisième équation donne z=-5/9 tandis que la quatrième donne $z=-68/31\neq -5/9$. Par conséquence le système n'a pas de solution.

Trigonométrie

Solution 37

En utilisant en cascade la fomule de duplication du sinus,

$$p\cos\left(\frac{\pi}{14}\right) = \cos\left(\frac{\pi}{14}\right)\sin\left(\frac{\pi}{14}\right)\sin\left(\frac{3\pi}{14}\right)\sin\left(\frac{5\pi}{14}\right)$$
$$= \frac{1}{2}\sin\left(\frac{\pi}{7}\right)\sin\left(\frac{3\pi}{14}\right)\sin\left(\frac{5\pi}{14}\right)$$

et puisque $\pi/7 + 5\pi/14 = \pi/2$,

$$p\cos\left(\frac{\pi}{14}\right) = \frac{1}{2}\sin\left(\frac{\pi}{7}\right)\cos\left(\frac{\pi}{7}\right)\sin\left(\frac{3\pi}{14}\right)$$
$$= \frac{1}{4}\sin\left(\frac{2\pi}{7}\right)\sin\left(\frac{3\pi}{14}\right)$$

et puisque $2\pi/7 + 3\pi/14 = \pi/2$,

$$p\cos\left(\frac{\pi}{14}\right) = \frac{1}{4}\cos\left(\frac{3\pi}{14}\right)\sin\left(\frac{3\pi}{14}\right) = \frac{1}{8}\sin\left(\frac{3\pi}{7}\right)$$

et puisque $\frac{3\pi}{7} + \frac{\pi}{14} = \frac{\pi}{2}$,

$$p\cos\left(\frac{\pi}{14}\right) = \frac{1}{8}\cos\left(\frac{\pi}{14}\right).$$

Comme $\pi/14 \not\equiv \pi/2[\pi]$, $\cos(\pi/14) \not= 0$ d'où $p = \frac{1}{8}$.

Solution 38

1. L'équation est équivalente à $\cos(3x) = \cos(\pi/2 - 2x)$. Un réel x est donc solution si et seulement si $3x \equiv \pi/2 - 2x[2\pi]$ ou $3x \equiv 2x - \pi/2[2\pi]$, ie $5x \equiv \pi/2[2\pi]$ ou $x \equiv -\pi/2[2\pi]$, c'est-à-dire $x \equiv \pi/10[2\pi/5]$ ou $x \equiv -\pi/2[2\pi]$. L'ensemble des solutions est donc

$$\mathcal{S} = \frac{\pi}{10} + \frac{2\pi}{5} \mathbb{Z} \cup -\frac{\pi}{2} + 2\pi \mathbb{Z}.$$

REMARQUE. Voici la représentation géométrique de l'ensemble des solutions.

2. Posons $\alpha = \cos(\pi/10)$ et $\beta = \sin(\pi/10)$. On sait que pour tout réel x,

$$cos(3x) = 4cos^3(x) - 3cos(x)$$
 et $sin(2x) = 2sin(x)cos(x)$.

Puisque le nombre $\frac{\pi}{10}$ est une solution de l'équation étudiée à la question $\mathbf{1}$, on a $4\alpha^3-3\alpha=2\beta\alpha$, et comme α est non nul et $\alpha^2=1-\beta^2$, on a $4(1-\beta^2)-3=2\beta$, ie $4\beta^2+2\beta-1=0$. Ainsi $\beta=\frac{-1\pm\sqrt{5}}{4}$. Puisque $0<\frac{\pi}{10}<\pi$, on a $\beta>0$ et donc $\beta=\sin(\pi/10)=\frac{-1+\sqrt{5}}{4}$. Comme $\alpha^2=1-\beta^2=\frac{5+\sqrt{5}}{\circ}$, on a

$$\cos(\pi/5) = 2\cos^2(\pi/10) - 1 = 2\alpha^2 - 1 = \frac{1 + \sqrt{5}}{4},$$

puis

$$\sin(\pi/5) = \sqrt{1 - \cos^2(\pi/5)} = \sqrt{\frac{5 - \sqrt{5}}{8}}$$

Solution 39

Ô formulaire ...

$$\frac{\alpha}{2} = \frac{\frac{1}{2}\cos(\pi/18) - \frac{\sqrt{3}}{2}\sin(\pi/18)}{\sin(\pi/18)\sin(\pi/18)}$$

$$= \frac{\cos(\pi/3)\cos(\pi/18) - \sin(\pi/3)\sin(\pi/18)}{\frac{1}{2}\sin(2 \times \pi/18)}$$

$$= \frac{\cos(\pi/3 + \pi/18)}{\frac{1}{2}\sin(\pi/9)} = \frac{\cos(7\pi/18)}{\frac{1}{2}\sin(\pi/9)}$$

$$= \frac{\sin(\pi/2 - 7\pi/18)}{\frac{1}{2}\sin(\pi/9)} = \frac{\sin(\pi/9)}{\frac{1}{2}\sin(\pi/9)} = 2$$

Ainsi $\alpha = 4$.

Solution 40

1.

$$p\sin\left(\frac{\pi}{7}\right) = \sin\left(\frac{\pi}{7}\right)\cos\left(\frac{\pi}{7}\right)\cos\left(\frac{2\pi}{7}\right)\cos\left(\frac{4\pi}{7}\right)$$

$$= \frac{1}{2}\sin\left(\frac{2\pi}{7}\right)\cos\left(\frac{2\pi}{7}\right)\cos\left(\frac{4\pi}{7}\right)$$

$$= \frac{1}{4}\sin\left(\frac{4\pi}{7}\right)\cos\left(\frac{4\pi}{7}\right)$$

$$= \frac{1}{8}\sin\left(\frac{8\pi}{7}\right) = \frac{1}{8}\sin\left(\pi + \frac{\pi}{7}\right) = -\frac{1}{8}\sin\left(\frac{\pi}{7}\right)$$

et puisque $\pi/7 \not\equiv 0[\pi]$, $\sin(\pi/7) \neq 0$ d'où $p = -\frac{1}{6}$.

2. Rappelons que $\forall a, b \in \mathbb{R}$,

$$2\cos(a)\cos(b) = \cos(a+b) + \cos(a-b).$$

Retroussons nos manches ...

$$2\cos\left(\frac{2\pi}{7}\right)\cos\left(\frac{4\pi}{7}\right) = \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right)$$

d'où

$$4p = 2\cos\left(\frac{\pi}{7}\right)\cos\left(\frac{6\pi}{7}\right) + 2\cos\left(\frac{\pi}{7}\right) + 2\cos\left(\frac{2\pi}{7}\right).$$

Continuons dans cette voie ...

$$2\cos\left(\frac{\pi}{7}\right)\cos\left(\frac{6\pi}{7}\right) = \cos\left(\frac{7\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right)$$

et

$$2\cos\left(\frac{\pi}{7}\right)\cos\left(\frac{2\pi}{7}\right) = \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{\pi}{7}\right),$$

ainsi

$$4p = -1 + \cos\left(\frac{5\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{\pi}{7}\right).$$

Puisque
$$\frac{5\pi}{7} = \pi - \frac{2\pi}{7}$$
, $\frac{3\pi}{7} = \pi - \frac{4\pi}{7}$ et $\frac{\pi}{7} = \pi - \frac{6\pi}{7}$, on a

$$4p = -1 - s$$

et donc $s = -\frac{1}{2}$.

Solution 41

1. Soit $x \not\equiv 0[\pi]$. Posons $t = \tan(x/2)$. On a alors

$$\frac{1 - \cos(x)}{\sin(x)} = \frac{1 - \frac{1 - t^2}{1 + t^2}}{\frac{2t}{1 + t^2}} = \frac{2t^2}{2t} = t = \tan(x/2).$$

2. Soit $x \in \mathbb{R}$. D'après les formules de factorisation, on a

$$\sin(x - 2\pi/3) + \sin(x + 2\pi/3) = 2\cos(-2\pi/3)\sin(x)$$
$$= -\sin(x)$$

3. Soit $x \not\equiv \pi/4[\pi/2]$. On a $\pi/4 - x = \pi/2 - (x + \pi/4)$, donc

$$\alpha = \tan(\pi/4 - x) = \frac{1}{\tan(x + \pi/4)}.$$

De plus,

$$\alpha + \frac{1}{\alpha} = \frac{\alpha^2 + 1}{\alpha} = \frac{1}{\cos^2(\pi/4 - x)} \times \frac{1}{\tan(\pi/4 - x)}$$
$$= \frac{1}{\cos(\pi/4 - x)\sin(\pi/4 - x)} = \frac{2}{\sin(2\pi/4 - x)}$$
$$= \frac{2}{\sin(\pi/2 - 2x)} = \frac{1}{\cos(2x)}$$

4. Soit $x \not\equiv 0[\pi/2]$. On a

$$\frac{1}{\tan(x)} - \tan(x) = \frac{1 - \tan^2(x)}{\tan(x)} = \frac{2}{\tan(2x)}$$

Solution 42

1. On utilise une formule de factorisation :

$$\sin(x) + \sin(5x) = 2\sin(3x)\cos(2x),$$

la première équation est donc équivalente à

$$\cos(2x)\Big[\sin(3x) - \sqrt{3}/2\Big] = 0.$$

- Or, $\cos(2x) = 0$ si et seulement si $2x \equiv \pi/2[\pi]$ c'est-à-dire $x \equiv \pi/4[\pi/2]$.
- On a $\sin(3x) = \sqrt{3}/2 = \sin(\pi/3)$ si et seulement si $3x \equiv \pi/3[2\pi]$ ou $3x \equiv 2\pi/3[2\pi]$, c'est-à-dire $x \equiv \pi/9[2\pi/3]$ ou $x \equiv 2\pi/9[2\pi/3]$.
- L'ensemble des solutions est donc

$$\mathcal{S} = \frac{\pi}{4} + \pi \mathbb{Z} \cup \frac{\pi}{9} + \frac{2\pi}{3} \mathbb{Z} \cup \frac{2\pi}{9} + \frac{2\pi}{3} \mathbb{Z}.$$

REMARQUE. Voici la représentation géométrique de l'ensemble des solutions.

2. On utilise une formule de factorisation ...

$$\cos(x) - \cos(2x) = 2\sin(x/2)\cos(3x/2)$$

la deuxième équation est donc équivalente à

$$2\sin(x/2)\cos(3x/2) = \sin(3x),$$

c'est-à-dire

$$2\sin(x/2)\cos(3x/2) = 2\sin(3x/2)\cos(3x/2),$$

soit finalement:

$$\cos(3x/2) \Big[\sin(x/2) - \sin(3x/2) \Big] = 0.$$

- Or, $\cos(3x/2) = 0$ si et seulement si $3x/2 \equiv \pi/2[\pi]$ c'est-à-dire $x \equiv \pi/3[2\pi/3]$.
- On a $\sin(x/2) = \sin(3x/2)$ si et seulement si $x/2 \equiv 3x/2[2\pi]$ ou $x/2 \equiv \pi 3x/2[2\pi]$ c'est-à-dire $x \equiv 0[2\pi]$ ou $x \equiv \pi/2[\pi]$.
- L'ensemble des solutions est donc

$$S = 2\pi \mathbb{Z} \cup \frac{\pi}{2} + \pi \mathbb{Z} \cup \frac{\pi}{3} + \frac{2\pi}{3} \mathbb{Z}.$$

Remarque. Voici la représentation géométrique de l'ensemble des solutions.

3. En utilisant une formule de duplication, l'équation s'écrit

$$\sin^2(x) + 2\sin^2(x)\cos^2(x) = 1.$$

• On commence par poser $y = \sin^2(x)$, x est solution de l'équation si et seulement si

$$y + 2y(1 - y) = 1,$$

équation admettant deux racines :1 et 1/2. Un nombre réel x est donc solution si et seulement si

$$\sin(x) = \pm 1/\sqrt{2} = \sin(\pm \pi/4),$$

ou

$$\sin(x) = \pm 1 = \sin(\pm \pi/2),$$

ce qui est équivalent à $x \equiv \pi/4[\pi]$ ou $x \equiv 3\pi/4[\pi]$ ou $x \equiv \pi/2[\pi]$.

· L'ensemble des solutions est donc

$$\mathcal{S} = \frac{\pi}{4} + \frac{\pi}{2} \mathbb{Z} \cup \frac{\pi}{2} + \pi \mathbb{Z}.$$

Remarque. Voici la représentation géométrique de l'ensemble des solutions.

- **4.** $\forall x \in \mathbb{R}$, $\cos(x) + \cos(3x) = 2\cos(2x)\cos(x)$. L'équation est donc équivalente à $\cos(2x)[1 + 2\cos(x)] = 0$. Un réel x est donc solution si et seulement si $\cos(2x) = 0$ ou $\cos(x) = -\frac{1}{2} = \cos(2\pi/3)$.
 - La première équation est équivalente à $2x \equiv \frac{\pi}{2}[\pi]$, c'est-à-dire $x \equiv \frac{\pi}{4}[\pi/2]$.
 - La seconde équation est équivalente à $x \equiv \pm \frac{2\pi}{3} [2\pi]$.
 - L'ensemble des solutions est donc

$$\mathcal{S} = \frac{\pi}{2} + \pi \mathbb{Z} \cup \frac{2\pi}{3} + 2\pi \mathbb{Z} \cup -\frac{2\pi}{3} + 2\pi \mathbb{Z}.$$

5. Puisque $\sin(2x) = 2\sin(x)\cos(x)$, l'équation est équivalente à

$$2\sin(x)[\cos(x) + 1/2] = 0.$$

• Un réel x est donc solution si et seulement si $\sin(x) = 0$ ou $\cos(x) = -1/2 = \cos(2\pi/3)$, c'est-à-dire $x \equiv 0 [\pi]$ ou $x \equiv \pm 2\pi/3 [2\pi]$.

• L'ensemble des solutions est donc

$$\mathcal{S} = \pi \mathbb{Z} \cup \frac{2\pi}{3} + 2\pi \mathbb{Z} \cup -\frac{2\pi}{3} + 2\pi \mathbb{Z}.$$

6. Posons y = cos(x). Un réel x est solution si et seulement si

$$12y^2 - 8(1 - y^2) = 20y^2 - 8 = 2$$

ie $y^2 = 2$, c'est-à-dire $y = \pm 1/\sqrt{2}$.

- On a $cos(x) = 1/\sqrt{2} = cos(\pi/4)$ si et seulement si $x \equiv \pm \pi/4[2\pi]$.
- On a $cos(x) = -1/\sqrt{2} = cos(3\pi/4)$ si et seulement si $x \equiv \pm 3\pi/4[2\pi]$.
- L'ensemble des solutions est donc

$$\mathcal{S} = \frac{\pi}{4} + \frac{\pi}{2} \mathbb{Z}.$$

Remarque. Voici la représentation géométrique de l'ensemble des solutions.

Solution 43

Puisque les fonctions $x \mapsto \sin x$ et $x \mapsto \sin 5x$ sont 2π -périodiques, on va d'abord résoudre l'équation sur $[-\pi, \pi]$.

Tout d'abord, les solutions de l'équation $\sin 5x = \sin x \cdot \sin \left[-\pi, \pi\right] \cdot \cot -\pi, -\frac{5\pi}{6}, -\frac{\pi}{2}, -\frac{\pi}{6}, 0, \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6} \cdot \cot \pi.$

Il s'agit alors de déterminer le signe de $f: x \mapsto \sin 5x - \sin x$ entre chacune de ces solutions. Puisque f est continue, elle est de signe constant entre chacune des solutions. Remarquons également que $f(x) = 2\sin 2x \cos 3x$ pour tout $x \in \mathbb{R}$.

- Puisque $f\left(\frac{\pi}{12}\right) = 2\sin\frac{\pi}{6}\cos\frac{\pi}{4} > 0$, f est strictement positive sur $\left]0, \frac{\pi}{6}\right[$.
- Puisque $f\left(\frac{\pi}{4}\right) = 2\sin\frac{\pi}{2}\cos\frac{3\pi}{4} < 0$, f est strictement négative sur $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$.
- Puisque $f\left(\frac{3\pi}{4}\right) = 2\sin\frac{3\pi}{2}\cos\frac{9\pi}{4} < 0$, f est strictement négative sur $\left[\frac{\pi}{2}, \frac{5\pi}{6}\right]$.
- Puisque $f\left(\frac{11\pi}{12}\right) = 2\sin\frac{11\pi}{6}\cos\frac{11\pi}{4} > 0$, f est strictement négative sur $\left[\frac{5\pi}{6}, \pi\right[$.

Comme f est impaire, on a facilement le signe de f entre les racines négatives. On en déduit que l'ensemble des solutions de $\sin 5x \le \sin x \cdot \sin [-\pi, \pi]$ est

$$\left[-\pi, -\frac{5\pi}{6}\right] \cup \left\{-\frac{\pi}{2}\right\} \cup \left[-\frac{\pi}{6}, 0\right] \cup \left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$$

L'ensemble des solutions sur $\mathbb R$ est donc

$$\left(-\frac{\pi}{2}+2\pi\mathbb{Z}\right)\cup\left(\left[-\pi,-\frac{5\pi}{6}\right]+2\pi\mathbb{Z}\right)\cup\left(\left[-\frac{\pi}{6},0\right]+2\pi\mathbb{Z}\right)\cup\left(\left[\frac{\pi}{6},\frac{5\pi}{6}\right]+2\pi\mathbb{Z}\right)$$