ASSESMENT OF LEARNING: SHUFFLENETV2

A PREPRINT

Delvina Wongsono - 2440034050*

Department of Computer Science Bina Nusantara University Jakarta Barat, Cengkareng delvina.wongsono@binus.ac.id

Devin Augustin - 2440094352

Department of Computer Science Bina Nusantara University Jakarta Barat, Cengkareng devin.augustin@binus.ac.id

© Rico Frenaldi Tokanto - 2440114373

Department of Computer Science Bina Nusantara University Jakarta Barat, Cengkareng rico.tokanto@binus.ac.id

January 19, 2023

ABSTRACT

Convolutional neural network merupakan jenis neural network yang digunakan untuk komputasi gambar seperti image recognition. Arsitektur neural network saat ini berkembang dengan sangat cepat di mana kecepatan komputasi dan jumlah memori yang dibutuhkan sangat mempengaruhi desain arsitektur. ShuffleNet V2 merupakan sebuah arsitektur baru yang dibangun dengan mempertimbangkan hal-hal di atas. Dengan menggunakan arsitektur ShuffleNet V2, eksperimen akan dilakukan terhadap dataset Flowers Recognition. Hasil yang didapatkan dari segi akurasi tergolong kurang baik namun jika dalam hal komputasi ShuffleNet V2 dapat tergolong cukup cepat.

Keywords ShuffleNetV2 · Convolutional Neural Networks · MobileNet · DenseNet · ICGV2

1 Introduction

Convolution Neural Network (CNN) merupakan salah satu kelas dari deep learning yang mampu melakukan pengenalan gambar serta klasifikasi gambar, CNN pertama kali ada di publik dengan arsitektur LeNet [1] pada tahun 1998, namun CNN tidak terlalu mendapatkan perhatian atau kurang sukses karena keterbatasan yang ada, antara lain dataset uji coba kecil, komputer yang lambat dan salah dalam menerapkan fungsi non linear.

Arsitektur Convolution Neural Network (CNN) itu sendiri telah berevolusi dari tahun ke tahun menjadi lebih akurat dan cepat, sejak karya dari AlexNet [2] berhasil menjadi pemenang ImageNet Competition, yaitu berupa kompetisi untuk klasifikasi dan deteksi citra yang terdiri dari jutaan citra dengan puluhan ribu kelas. Arsitektur AlexNet terdiri dari total 25 layer dengan 9 convolutional layer dan 60 juta parameter. Kesuksesan yang dibawa oleh AlexNet ini diikuti dengan munculnya arsitektur lain dari CNN, seperti VGG [3], GoogleNet [4], ResNet [5], ResNeXt [6], dan pencarian arsitektur netral otomatis [7, 8, 9].

Namun, perlu diketahui bahwa selain akurasi, kompleksitas perhitungan juga merupakan pertimbangan yang penting. Dalam pekerjaan di dunia nyata sering bertujuan untuk mendapatkan akurasi terbaik dibawah budget komputasi yang terbatas, yang diberikan oleh target platform (misalnya perangkat keras) dan aplikasi skenario (misalnya auto driving requires low latency). Ini memotivasi serangkaian pekerjaan untuk desain arsitektur ringan dan pertukaran akurasi kecepatan yang lebih baik, termasuk ShuffleNet V2 [10], MobileNet V2 [11], MobileNet [12], DenseNet [13], IGCV2 [14], and Xception

^{*}Deep Learning: Assesment of Learning, School Of Computer Science, Bina Nusantara University.

Pada paper ini, permasalahan utama yang dihadapi yaitu ingin membentuk sebuah arsitektur yang memiliki tingkat kinerja bagus, memiliki tingkat akurasi yang cukup tinggi, serta memiliki komputasi yang ringan dan cepat untuk menganalisis serta memprediksi dataset berupa Image. Oleh karena itu, untuk mengatasi beberapa permasalahan tadi kami memakai model ShuffleNet V2 yang dikenal sangat efisien pada saat melakukan proses komputasi, hal ini dikarenakan ShuffleNet V2 mampu memuat lebih banyak saluran peta fitur yang dapat membantu dalam memproses lebih banyak informasi yang penting.

2 Previous Research

Judul	Peneliti	Metode	Kesimpulan	Perbedaan		
MobileNetV2: In-	Mark Sandler, Andrew	Metode Bottleneck	Metode Linear Bottle-	Dengan menggunakan		
verted Residuals	Howard, Menglong	depth-separable. Ar-	neck kurang kuat dari-	COCO dataset, arsitek-		
and Linear Bottle-	Zhu, Andrey Zhmogi-	sitekturnya berisi	pada model dengan non-	tur yang digabungkan		
necks	nov, Liang-Chieh Chen	lapisan Fully Convo-	linear. Hal ini dikare-	dengan model deteksi		
	(2019)	lutional dengan 32	nakan aktivasi selalu da-	SSDLite menghasilkan		
		filter, diikuti dengan	pat beroperasi dalam	komputasi 20x lebih		
		19 lapisan Bottleneck	rezim linier dengan pe-	sedikit dan parameter		
		residual.	rubahan bias dan pen-	10x lebih sedikit dari-		
			skalaan yang sesuai.	pada YOLOv2.		
MobileNets:	Howard Menglong,	Menggunakan metode	Hasilnya jika diband-	Menggunakan dataset		
Efficient Convo-	Zhu, Bo Chen, Dmitry	Depthwise Separable	ingkan dengan	COCO dan perbedaan-		
lutional Neural	Kalenichenko, Weijun	Convolutions yang	GoogleNet dan VGG16	nya terletak pada saat		
Networks for	Wang, Tobias Weyand,	dipisahkan dengan dua	dalam hal akurasi	merancang arsitektur		
Mobile Vision Applications	Marco Andreetto,	hyperparameter global sederhana dan secara	MobileNet lebih unggul	untuk kinerja yang		
Applications	Hartwig Adam (2017)	efisien menukar antara	daripada GoogleNet namun masih kalah	lebih baik dalam peng- gunaan seluler serta		
		latensi dan akurasi.	dengan VGG16, jika	akurasi dan kecepatan		
		fatelisi dali akurasi.	dibandingkan den-	Using COCO.		
			gan SqueezeNet dan	Using COCO.		
			AlexNet dalam hal			
			akurasi. MobileNet			
			lebih unggul dari kedua			
			model tersebut.			
Densely Con-	Gao Huang, Zhuang	Menggunakan metode	DenseNet	Menggunakan		
nected Convolu-	Liu, Laurens van der	ResNet dan metode	meningkatkan akurasi	dataset CIFAR10		
tional Networks	Maaten, Kilian Q. Wein-	DenseNet.	secara konsisten dengan	dan dataset SVHN,		
	berger (2018)		memakai banyak pa-	serta meningkatkan		
			rameter, tanpa adanya	arsitektur dengan		
			overfitting. Cocok	menggunakan model		
			digunakan untuk tugas	kompak dengan		
			visi komputer yang	menghubungkan setiap		
			dibangun di tats fitur	lapisan.		
ICCVO	C vi v V v V v I v v I v v	Manufactural	konvolusi.	Management		
IGCV2: Inter-	Guotian Xie, Jingdong	Membandingkan model	Hasil empiris menun-	Menggunakan dataset		
leaved Structured Sparse Convo-	Wang, Ting Zhang, Jianhuang Lai, Richang	IGCV2 dengan model - model lainnya.	jukkan keunggulan dibandingkan model	CIFAR10 dan Tiny ImageNet, serta meran-		
lutional Neural	Hong, Guo-Jun Qi	mouer ranniya.	MobileNetV1 dan	cang arsitektur CNN		
Networks	(2018)		MobileNetV2 serta	yang efisien dengan		
TICLWOIKS	(2010)		menunjukkan bahwa	menghilangkan re-		
			jaringan dengan ukuran	dundansi pada kernel		
			model yang lebih kecil	convolution.		
			mencapai kinerja yang			
			serupa jika diband-			
			ingkan dengan struktur			
			jaringan lainnya.			

Xception: Deep	Francois Chollet (2017)	Menggunakan metode	Pengamatan ini men-	Menggunakan dataset
Learning with		Depthwise Convolution	gusulkan penggantian	ImageNet dan metode
Depthwise		dan diikuti oleh Point-	modul Inception den-	Depthwise Separable
Separable Convo-		wise Convolution	gan konvolusi yang da-	convolution
lutions			pat dipisahkan dalam ar-	
			sitektur visi komputer	
			saraf. Kinerja pada	
			dataset ImageNet dan	
			JFT juga meningkat	
			dibandingkan dengan	
			Inception V3.	
			_	

Table 1: Previous Research

Penelitian dilakukan oleh Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen, menggunakan dataset COCO sebagai eksperimennya. Dalam makalah ini mereka menggambarkan arsitektur seluler baru, MobileNetV2 menggunakan Bottleneck depth-separable convolution dengan metode residual [11]. Arsitekturnya berisi lapisan fully convolutional dengan 32 filter dan diikuti oleh 19 lapisan residual bottleneck, juga arsitektur yang digabungkan dengan model deteksi SSDLite yang komputasinya 20x lebih sedikit dan parameter 10x lebih sedikit daripada YOLOv2. Hasilnya yaitu model Linear Bottleneck kurang kuat jika dibandingkan dengan model non-linearitas, karena aktivasi selalu dapat beroperasi dalam rezim linier dengan perubahan bias dan penskalaan yang sesuai. Bagaimanapun Linear Bottleneck kemacetan Linier meningkatkan kinerja dan memberikan dukungan bahwa nonlinier menghancurkan informasi dalam ruang berdimensi rendah.

Penelitian dilakukan oleh Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam, mereka menggunakan dataset COCO sebagai eksperimennya. Mereka menghadirkan kelas model efisien yang disebut sebagai MobileNets dan menggunakan convolution yang dapat dipisahkan secara mendalam dengan dua hyperparameter global sederhana yang secara efisien menukar antara latensi dan akurasi [12]. Arsitekturnya dirancang untuk kinerja yang lebih baik dalam penggunaan seluler, akurasi dan kecepatan. Hasilnya jika dibandingkan dengan GoogleNet dan VGG16 dalam hal akurasi MobileNet lebih unggul dari GoogleNet namun masih kalah dengan VGG16, jika dibandingkan dengan SqueezeNet [15] dan AlexNet dalam hal akurasi, MobileNet lebih unggul dari kedua model tersebut.

Penelitian dilakukan oleh Gao Huang, Zhuang Liu, Laurens van der Maaten, mereka menggunakan dataset CIFAR10[16], dataset SVHN serta dataset ImageNet. Dalam makalah ini mereka menggunakan Dense Convolutional Network (DenseNet) yang menghubungkan setiap lapisan ke setiap lapisan lainnya secara feed-forward, kemudian dibandingkan dengan ResNet [13]. Hasilnya antara DenseNet dan ResNet jika menggunakan dataset ImageNet maka uji kesalahan ResNet sedikit lebih baik daripada DenseNet.

Penelitian dilakukan oleh Guotian Xie dan yang lainnya, mereka menggunakan dataset CIFAR10 dan Dataset Tiny ImageNet. Mereka merancang arsitektur CNN yang efisien dengan menghilangkan redundansi pada kernel convolution dan menghadirkan blok Interleaved Structured Sparse Convolution (IGCV2) guna menyusun kernel yang padat [14]. Hasilnya menunjukkan keunggulan dibandingkan MobileNetV1 dan MobileNetV2 dan menunjukkan bahwa jaringan dengan ukuran model yang lebih kecil mencapai kinerja yang sama jika dibandingkan dengan struktur jaringan lainnya.

Penelitian dilakukan oleh Francois Chollet dengan menggunakan ImageNet dataset dan metode Depthwise Separable Convolution [17]. Penelitian ini menunjukkan bagaimana convolution dan depthwise separable convolutions terletak pada kedua ekstrem spektrum diskrit, dengan modul Inception [18] menjadi titik perantara di antaranya. Pengamatan ini mengusulkan penggantian modul Inception dengan convolution yang dapat dipisahkan secara mendalam dalam arsitektur visi komputer saraf.

3 Methodology or Architecture Deep Learning

3.1 ShuffleNetV2 Architeture

Tabel di bawah menunjukkan arsitektur keseluruhan dari ShufflenetV2.

						Ouput C	Channels	
Layer	Output size	KSize	Stride	Repeat	0.5X	1X	1.5	2X
Image	224x224				3	3	3	3
Conv1	112x112	3x3	2	1	24	24	24	24
MaxPool	56x56	3x3	2	1	24	24	24	24
Stage2	28x28		2	1	48	116	176	244
Stage2	28x28		1	3	48	116	176	244
Stage3	14x14		2	1	96	232	352	488
Stage3	14x14		1	7	96	232	352	488
Stage4	7x7		2	1	192	464	702	976
Stage4	7x7		1	3	192	464	702	976
Conv5	7x7	1x1	1	1	1024	1024	1024	1024
GlobalPool	1x1	7x7						
FC					1000	1000	1000	1000
FLOPs					41M	146M	299M	591M
NumberD of Weights					1.4M	2.3M	3.5M	7.4M

Table 2: ShuffleNetV2 Architecture

3.2 Architecture Explanation

3.2.1 ShuffleNet V2

Figure 1: ShuffleNetV2 Architecture

Terdapat Image berukuran 224 x 224 yang terdiri atas 3 filter channel dengan masing - masing Output channel yang sudah tertera di tabel.

Pertama, masuk ke Lapisan Convolution awal (Conv1) [19] dan MaxPool [20], ini merupakan jenis lapisan CNN yang terdiri atas 24 filter channel yang berukuran 3 x 3 dengan nilai langkah (Stride) 2 serta terdapat satu stage shuffle, Output size untuk Conv1 sebesar 112 x 112 sementara untuk MaxPool memiliki Output size sebesar 56 x 56.

Kedua, masuk ke lapisan Stage2 dimana terdiri atas dua stage shuffle (1 dan 3) dengan nilai stride (2 dan 1). Stage2 memiliki Output size sebesar 28 x 28 dan untuk Output channels dapat dilihat pada tabel di atas.

Ketiga, masuk ke lapisan Stage3 dimana terdiri atas dua stage shuffle (1 dan 7) dengan nilai stride (2 dan 1). Stage3 memiliki Output size sebesar 14 x 14 dan untuk Output channels dapat dilihat pada tabel di atas.

Keempat, masuk ke lapisan Stage4 dimana terdiri atas dua stage shuffle (1 dan 3) dengan nilai stride (2 dan 1). Stage4 memiliki Output size sebesar 7 x 7 dan untuk Output channels dapat dilihat pada tabel di atas.

Kelima, yaitu Lapisan Convolution akhir (Conv5) yang berukuran 1 x 1 dengan nilai Stride 1 dan terdiri atas 1 stage shuffle. Lapisan ini memiliki Output size 7 x 7 serta Output channel dapat dilihat pada tabel di atas.

Keenam, dilakukan GlobalPool yang berukuran 7 x 7, sehingga menghasilkan Output size 1 x 1.

Ketujuh, masuk ke Fully Connected [21] (FC) yang menghasilkan nilai Output channel sebesar 1000, selanjutnya dilakukan Floating Point Operations Per seconds (FLOPs), hal ini berfungsi untuk mengukur/menggambarkan berapa banyak operasi yang dibutuhkan untuk menjalankan sebuah model jaringan.

3.2.2 MobileNet V1

Tabel di bawah merupakan arsitektur keseluruhan dari MobileNet.

Type/Stride	Filter Shape	Input Size	
Conv/s2	3x3x3x32	224x224x3	
Conv dw/s1	3x3x32 dw	112x112x32	
Conv/s1	1x1x32x64	112x112x32	
Conv dw/s2	3x3x64 dw	112x112x64	
Conv/s1	1x1x64x128	56x56x64	
Conv dw/s1	3x3x128 dw	56x56x128	
Conv/s1	1x1x128x128	56x56x128	
Conv dw/s2	3x3x128 dw	56x56x128	
Conv/s1	1x1x128x256	28x28x128	
Conv dw/s1	3x3x256 dw	28x28x256	
Conv/s1	1x1x256x256	28x28x256	
Conv dw/s2	3x3x256 dw	28x28x256	
Conv/s1	1x1x256x512	14x14x256	
5x Conv dw/s1	3x3x512 dw	14x14x512	
5x Conv/s1	1x1x512x512	14x14x512	
Conv dw/s2	3x3x512 dw	14x14x512	
Conv/s1	1x1x512x1024	7x7x512	
Conv dw/s2	3x3x1024 dw	7x7x1024	
Conv/s1	1x1x1024x1024	7x7x1024	
Avg Poll/s1	Pool 7x7	7x7x1024	
FC/s1	1024x1000	1x1x1024	
Softmax/s1	Classifier	1x1x1000	

Table 3: MobileNet V1 Architecture

Pada arsitektur MobileNet terdapat Input size (224x224x3) dimana dilakukan Convolution dengan Stride 2 dan Filter Shape sebesar (3x3x3x32), setelah itu dilakukan Depthwise Convolution dengan stride 1 yang memperkecil Input size menjadi (112x112x32) dengan Filter Shape (3x3x32). Proses ini dilakukan berulang kali guna memperkecil dimensi gambar, setelah Input size menjadi sebesar (7x7x1024) maka dilakukan Average Pooling yang berukuran 7x7 dengan Stride 1. Selanjutnya, masuk ke lapisan Fully Connected Layer dengan Stride 1, filter shape menjadi 1024x1000 dan Input size menjadi 1x1x1024. Setelah itu, masuk ke lapisan Softmax yang berguna untuk menghitung probabilitas pada hasil output, yang terjadi di output layer dimana akan diambil nilai probabilitas yang paling besar sebagai hasil prediksi.

4 Result and Analysis

Pada eksperimen kami, kita menggunakan dataset "Flowers Recognition" [22] yang terdiri dari 4242 gambar bunga dan terdapat 5 jenis, yaitu chamomile, tulip, rose, sunflower, dandelion. Setiap jenis bunga memiliki sekitar 800 foto dan memiliki ukuran sebesar 320 x 240 piksel. Sebelum melakukan training terhadap dataset, data akan dibagi dua menjadi train dan validation dengan rasio delapan banding dua [23].

Learning rate yang digunakan adalah 0.1 dengan parameter epoch 30 dan batch size 16. Di sini kami memilih learning rate 0.1 karena jika learning rate terlalu besar, maka akurasi yang dihasilkan akan menjadi buruk dan waktu yang dibutuhkan training akan semakin besar [24]. Berikut adalah hasilnya:

4.1 Training and Validation Loss

Jika dilihat pada grafik di di bawah, dikatakan bahwa hasil akurasi akan bagus apabila mendekati angka 1 dengan kata lain semakin tinggi angkanya, maka hasil semakin baik. Sebaliknya untuk loss, semakin kecil angkanya (mendekati angka 0) maka hasil semakin bagus [25]. Berdasarkan grafik di atas, dapat disimpulkan bahwa tidak terjadinya overfitting maupun underfitting terhadap dataset "Flower Recognition" [26].

Figure 2: Train and Validation Loss

4.2 Training and Validation Accuracy

Dan juga dapat dilihat bahwa Learning rate yang dihasilkan sebesar 0.1, sementara itu angka kurva pada akurasi hanya sampai di 0.38 dan 0.35.

Figure 3: Train and Validation Accuracy

Setelah itu, dilakukan test terhadap model yang telah kami jalankan. Setelah memasukkan beberapa gambar bunga, hasil prediksi yang kami peroleh bisa dikatakan cukup akurat di mana saat gambar tulip dimasukkan, maka model berhasil memprediksi dengan benar dan menghasilkan probabilitas sebesar 0.337 dan untuk gambar daisy dihasilkan probability sebesar 0.995. Hasil juga dapat dilihat pada gambar di bawah ini.

Figure 5: Test Two.

5 Conclusion

Dari hasil analisa yang telah dilakukan terhadap dataset "Flower Recognition" menggunakan code ShuffleNetV2 oleh Lin Feng Lee, hasil yang diperoleh hanya sekitar 0.3 hingga 0.4, hal ini dinilai kurang memuaskan jika dinilai dari segi akurasi. Tetapi, jika dilihat dari nilai loss, hasil yang diperoleh cukup baik hal ini dikarenakan nilainya yang semakin rendah dan mendekati angka 0. Selain itu, waktu komputasi yang dihasilkan juga tidak terlalu lama. Namun, secara keseluruhan dan adanya sedikit peningkatan terhadap kode, arsitektur ini merupakan arsitektur yang bagus untuk diterapkan untuk menganalisis dataset berupa Image.

References

- [1] Ben Ding. Lenet: Lightweight and efficient lidar semantic segmentation using multi-scale convolution attention. 01 2023.
- [2] Sutskever I. Hinton G.E. Krizhevsky, A. Imagenet classification with deep convolutional neural networks. in: Advances in neural information processing systems.
- [3] Zisserman A. Simonyan, K. Very deep convolutional networks for large-scale image recognition. *arXiv* preprint *arXiv*:1409.1556, 2014.
- [4] Liu W. Jia Y. Sermanet P. Reed S. Anguelov-D. Erhan D. Vanhoucke V. Rabinovich A. et al Szegedy, C. Going deeper with convolutions, cvpr. 2015.
- [5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016. doi:10.1109/CVPR.2016.90.
- [6] Girshick R. Doll 'ar P. Tu Z. He K. Xie, S. Aggregated residual transformations for deep neural networks. in: Computer vision and pattern recognition (cvpr). 2017 IEEE Conference on, IEEE (2017) 5987–5995, 2017.
- [7] Vasudevan V. Shlens J. Le Q.V. Zoph, B. Learning transferable architectures for scalable image recognition. *arXiv* preprint arXiv:1707.07012, 2017.
- [8] Zoph B. Shlens J. Hua W. Li L.J. Fei-Fei L. Yuille A. Huang J. Murphy K. Liu, C. Progressive neural architecture search. *arXiv preprint arXiv:1712.00559*, 2017.
- [9] Aggarwal A. Huang Y. Le Q.V. Real, E. Regularized evolution for image classifier architecture search. *arXiv* preprint arXiv:1802.01548, 2018.
- [10] Zhang X. Zheng H. Sun J. Ma, N. Shufflenet v2: Practical guidelines for efficient cnn architecture design. 2018.
- [11] Howard A. Zhu M. Zhmoginov A. Chen L.C. Sandler, M. Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation. *arXiv preprint arXiv:1801.04381*, 2018.
- [12] Zhu M. Chen B. Kalenichenko D. Wang W. Weyand-T. Andreetto M. Adam H. Howard, A.G. Mobilenets: Efficient convolutional neural networks for mobile vision applications. *arXiv* preprint arXiv:1704.04861, 2017.

- [13] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely connected convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2261–2269, 2017. doi:10.1109/CVPR.2017.243.
- [14] Guotian Xie, Jingdong Wang, Ting Zhang, Jianhuang Lai, Richang Hong, and Guo-Jun Qi. IGCV2: interleaved structured sparse convolutional neural networks. CoRR, abs/1804.06202, 2018. URL http://arxiv.org/abs/ 1804.06202.
- [15] Forrest Iandola, Matthew Moskewicz, Khalid Ashraf, Song Han, William Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and textless1mb model size. 02 2016.
- [16] Akwasi Akwaboah. Convolutional neural network for cifar-10 dataset image classification. 11 2019.
- [17] François Chollet. Xception: Deep learning with depthwise separable convolutions, 2016.
- [18] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. *CoRR*, abs/1409.4842, 2014. URL http://arxiv.org/abs/1409.4842.
- [19] Phil Birch, Navid Rahimi, Peter Overbury, Rupert Young, and Chris Chatwin. Implementations and optimisations of optical conv2d networks designs. 03 2020.
- [20] Somenath Bera and Vimal Shrivastava. Effect of pooling strategy on convolutional neural network for classification of hyperspectral remote sensing images. *IET Image Processing*, 14, 02 2020. doi:10.1049/iet-ipr.2019.0561.
- [21] Sh Shabbeer Basha, Shiv Ram Dubey, Viswanath Pulabaigari, and Snehasis Mukherjee. Impact of fully connected layers on performance of convolutional neural networks for image classification. *Neurocomputing*, 378, 10 2019. doi:10.1016/j.neucom.2019.10.008.
- [22] Alexander Mamaev. Flowers recognition dataset. URL https://www.kaggle.com/datasets/alxmamaev/flowers-recognition.
- [23] Adam; Engels Daniel W.; Barry-Straume, Jostein; Tschannen and Edward Fine. An evaluation of training size impact on validation accuracy for optimized convolutional neural networks. *SMU Data Science Review*, 1, 2018.
- [24] D. Wilson and Tony Martinez. The need for small learning rates on large problems. volume 1, pages 115 119 vol.1, 02 2001. ISBN 0-7803-7044-9. doi:10.1109/IJCNN.2001.939002.
- [25] Simon Dräger and Jannik Dunkelau. Evaluating the impact of loss function variation in deep learning for classification. 10 2022.
- [26] Jeff Bilmes. Underfitting and overfitting in machine learning. 2020.