10 – surface shading

Illumination and Shading

Figure 6.5

Surface Normals

Illumination and Shading

- Illumination Models
 - Ambient
 - Diffuse
 - Attenuation
 - Specular Reflection
- Interpolated Shading Models
 - Flat, Gouraud, Phong
 - Problems

Surface Shading

Illumination Models: Ambient Light

- Simple illumination model $I = k_i$
- Use nondirectional lights $I = I_a k_a$
- I_a = ambient light intensity (I_{aR}, I_{aG}, I_{aB})
- k_a = ambient-reflection coefficient (k_{aR}, k_{aG}, k_{aB})
- Uniform across surface

Diffuse Light

- Account for light position
 - Ignore viewer position
- Proportional to $\cos \Theta$ between N and L

$$I = I_{p}k_{d} \cos\Theta$$
$$= I_{p}k_{d} (N \cdot L)$$

• Model:

$$I = I_a k_a + I_p k_d (N \cdot L)$$

Again, Colored Lights

(slightly different, but equivalent, to book)

- O_d : diffuse color $O_{d=}(O_{dR}, O_{dG}, O_{dB})$
- Compute for each component
- i.e. red component is $I_{R} = I_{aR}k_{aR}O_{dR} + f_{att}I_{pR}k_{d}O_{dR} (N \cdot L)$
- Note: use O_d for ambient and diffuse

Light Intensity Values

- /_a, /_d
 - Represent intensity
 - Have R,G,B components
 - Do not need to fall in the 0..1 range!
 - Often need $I_d > 1$
 - Final computed $l \le 1$

Attenuation: Distance

• f_{att} models distance from light $I = I_{\text{a}}k_{\text{a}} + f_{\text{att}}I_{\text{p}}k_{\text{d}} (N \cdot L)$

Realistic

$$f_{\rm att} = 1/(d_L^2)$$

Hard to control, so often use

$$f_{\text{att}} = 1/(c_1 + c_2 d_L + c_3 d_L^2)$$

Recall Reflectance Equation

Attenuation: Atmospheric (fog, haze)

- z_f and z_b : near/far depth-cue plane
- s_f and s_b : scale factors
- I_{dc}: depth cue color
- Given $z_f > z_0 > z_b$ interpolate $s_f > s_0 > s_b$
- Adjust intensity

$$I' = s_0 I + (1 - s_0) I_{dc}$$

Specular Reflection: Phong Model

- Account for viewer position
 - Create highlights
- Based on $\cos^n \alpha = (R \cdot V)^n$
 - Larger *n*, smaller highlight
- k_s : specular reflection coef.

$$I = I_a k_a O_d + f_{att} I_p \left[k_d O_d (N \cdot L) + k_s (R \cdot V)^n \right]$$

Specular Power

Materials, Highlight Color

Multiple Light Sources

Obvious summation over *m* lights:

$$I = I_{a}k_{a}O_{d} + \sum_{1 \leq 0 \leq m} f_{atti}I_{pi} [k_{d}O_{d}(N \cdot L_{i}) + k_{s}(R_{i} \cdot V)^{n}]$$

Shading Models

Surface color in this model = ambient + diffuse + specular

To shade triangles:

- 1) Per Triangle
- 2) Per Vertex
- 3) Per Pixel

Shading Models: Per Triangle (Flat Shading)

- Compute one color for polygon
 - Use polygon normal in lighting eqs.
- Every pixel is assigned same color

- Fast and simple
- Shade of polygons independent

Shading Models: Per Vertex (Gouraud Shading)

- Compute vertex normals
 - Average normals of abutting polygons
- Use vertex normal in lighting eqs.
- Linearly interpolate vertex intensities
 - Along edges
 - Along scan lines

Gouraud Shading

Often appears dull, chalky

- Lacks accurate specular component
 - If included, will be averaged over entire polygon

Flat Shading

Mach banding

 Artifact at discontinuities in intensity or intensity slope

Shading Models: Per Pixel (Phong Shading)

- Linearly interpolate vertex normals
 - Compute lighting eqs. at each pixel
 - Normals must be backmapped to WC

Can use specular component

Closeup: Flat, Gouraud, Phong

Problems with Interpolated Shading

Polygonal silhouette

• Perspective distortion

Problems with Interpolated Shading

- Scanline/orientation dependent
 - Creates temporal aliasing when used to render animation frames:

Problems with Interpolated Shading

Shared vertices

- Missed specular highlights
- Missed geometry

