Homework 2 Solutions

1. .

(a) Correct statement: If y(t) = h(t) * x(t) then y(t-3) = h(t) * x(t-3). Proof: $y(t) = \int_{-\infty}^{\infty} h(\tau) x(t - \tau) d\tau$ so $y(t - 3) = \int_{-\infty}^{\infty} h(\tau) x(t - 3 - \tau) d\tau = h(t) * x(t - 3)$.

(b) Incorrect statement: If y(t) = h(t) * x(t) then $y(t-3) \stackrel{not!}{=} h(t-3) * x(t-3)$. Example: $h(t) = x(t) = \delta(t)$. Then $y(t) = \delta(t)$ so $y(t-3) = \delta(t-3)$. But $h(t-3) * x(t-3) = \delta(t-3) * \delta(t-3) = \delta(t-6) \neq \delta(t-3)$.

(c) Correct statement: If $y(t) = h(t) \cdot x(t)$ then $y(t-3) = h(t-3) \cdot x(t-3)$, by definition of the product of two signals. But $y(t-3) \neq h(t) \cdot x(t-3)$ again by considering $h(t) = x(t) = \delta(t)$.

2. .

(a) $h(t-\tau)$ is nonzero over $t-a < \tau < t-b$ and $x(\tau)$ is nonzero over $c < \tau < d$. The integral of their product is nonzero when t-a>c and t-b<d, so that the intervals overlap. Thus a+c< t< b+d is the range of values of t for which y(t) is possibly nonzero.

of
$$t$$
 for which $y(t)$ is possibly nonzero.
(b) $a=1,b=3,c=-5,d=-1$ so $\boxed{-4 < t < +2.}$
For $t-1>-5$ but $t-3<-5,$ $y(t)=\int_{-5}^{t-1}1\,dt=t+4$. For $t-3>-5$ but $t-1<-1,$ $y(t)=\int_{t-3}^{t-1}1\,dt=2$. For $t-3<-1$ but $t-1>-1,$ $y(t)=\int_{t-3}^{-1}1\,dt=2-t$. So $\boxed{y(t)=\left\{ \begin{array}{ll} t+4, & -4 < t < -2\\ 2, & -2 < t < 0\\ 2-t, & 0 < t < 2\\ 0, & \text{otherwise.} \end{array} \right.}$

3. The sketches are shown below:

4. (a) $\int_{-\infty}^{\infty} y(t)dt = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau \right] dt = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau)x(t-\tau)dt d\tau = \int_{-\infty}^{\infty} h(\tau) \left[\int_{-\infty}^{\infty} x(t-\tau)dt \right] d\tau = \int_{-\infty}^{\infty} h(\tau) \left[\int_{-\infty}^{\infty} x(t^*)dt^* \right] d\tau = \left[\int_{-\infty}^{\infty} x(t)dt \right] \left[\int_{-\infty}^{\infty} h(\tau)d\tau \right].$

(b) $\frac{d}{dt}y(t) = \frac{d}{dt}\left[\int_{-\infty}^{\infty}h(\tau)x(t-\tau)d\tau\right] = \int_{-\infty}^{\infty}h(\tau)\frac{d}{dt}x(t-\tau)d\tau = h(t)*(\frac{d}{dt}x(t)).$ The other part of the statement was very similar.

(c) $h(t) = \frac{d}{dt}s(t)$. Sketch s(t) and we easily get from graph that $h(t) = 3\delta(t) - \delta(t-2) - \text{rect}(\frac{t-1}{2})$

5. (a) $x_2(t) = x_1(t) - x_1(t-2) \Rightarrow y_2(t) = y_1(t) - y_1(t-2)$

(b)
$$x_3(t) = x_1(t) + x_1(t+1) \Rightarrow y_3(t) = y_1(t) + y_1(t+1)$$

6. $x(\tau) = (1 - |\tau/2|)\operatorname{rect}(\tau/4)$, so graphically,

$$x(t) = \begin{cases} \int_{-2}^{t} (1+\tau/2)d\tau & -2 < t < 0\\ \int_{t-2}^{0} (1+\tau/2)d\tau + \int_{0}^{t} (1-\tau/2)d\tau & 0 < t < 2\\ \int_{t-2}^{2} (1-\tau/2)d\tau & 2 < t < 4\\ 0 & \text{otherwise} \end{cases} = \begin{cases} 1+t+t^{2}/4 & -2 < t < 0\\ 1+t-t^{2}/2 & 0 < t < 2\\ 4-2t+t^{2}/4 & 2 < t < 4\\ 0 & \text{otherwise} \end{cases}$$

7. (a) $y(t) = \int_{-\infty}^{t} (t - \tau)e^{-(t - \tau)}x(\tau)d\tau = \int_{-\infty}^{\infty} (t - \tau)u(t - \tau)e^{-(t - \tau)}x(\tau)d\tau \Rightarrow h(t) = te^{-t}u(t)$

Causal: h(t) = 0 for t < 0.

Stable: $\int_{-\infty}^{\infty} |h(t)| dt = \int_{0}^{\infty} t e^{-t} dt = -(t+1)e^{-t} \Big|_{0}^{\infty} = 1.$ Dynamic: $h(t) \neq 0$ for t > 0.

(b) $y(t) = \int_{t-1}^{t+1} e^{-2(t-\tau)} x(\tau) d\tau = \int_{-\infty}^{\infty} \operatorname{rect}\left(\frac{t-\tau}{2}\right) e^{-2(t-\tau)} x(\tau) d\tau \Rightarrow h(t) = \operatorname{rect}(t/2) e^{-2t}$

Non-causal: $h(t) \neq 0$ for t < 0. Stable: $\int_{-\infty}^{\infty} |h(t)| dt = \int_{-1}^{1} e^{-2t} dt = \frac{e^2 - e^{-2}}{2}.$

Dynamic: $h(t) \neq 0$ for t > 0.

8.

$$\frac{dx(t)}{dt} = -6e^{-3t}u(t-1) + 2e^{-3t}\delta(t-1) = -3x(t) + 2e^{-3}\delta(t-1) \to -3y(t) + e^{-2t}u(t)$$

Thus we know

$$2e^{-3}\delta(t-1) \rightarrow e^{-2t}u(t) \quad \Rightarrow \quad \delta(t) \rightarrow \frac{1}{2}e^{-2t+1}u(t+1)$$

and it follows $h(t) = \frac{1}{2}e^{-2t+1}u(t+1)$.

9. Plug $y(t) = Ce^{st}$ into the equation, and we get s = -10. Hence the homogeneous solution is

$$y_h(t) = Ce^{-10t}$$

For the particular solution, when t > 0

$$y_p(t) = P_0 x(t) + P_1 \frac{d}{dt} x(t) + \dots = P_0$$

Thus

$$y(t) = y_h(t) + t_p(t) = Ce^{-10t} + P_0$$
 for $t > 0$

Plugging into the differential equation, we get

$$-10Ce^{-10t} + 10Ce^{-10t} + 10P_0 = 2 \Rightarrow P_0 = \frac{1}{5}$$

Moreover, with the initial condition, we have

$$y(0) = C + P_0 = 1 \Rightarrow C = \frac{4}{5}$$

Thus
$$y(t) = (\frac{4}{5}e^{-10t} + \frac{1}{5})u(t)$$