

CLAIMS

What is claimed is:

1. A system for encrypting/decrypting messages, comprising:

a public key cryptosystem having a predetermined number of prime factors used for the

5 generation of a modulus N and an exponent e;

wherein a proper subset of the prime factors of the modulus N, along with the exponent e,

are required to decrypt messages that are encrypted using the public exponent e and the

public modulus N, where e and N are calculated using RSA methods, and encryption

occurs using RSA methods.

10 2. A method for encrypting/decrypting messages comprising the steps of:

providing a public key cryptosystem having a predetermined number of prime factors

used for the generation of a modulus N and an exponent e;

wherein a proper subset of the prime factors of the modulus N are required to decrypt

messages that are encrypted using the public exponent e and the public modulus N, where

15 e and N are calculated using RSA methods, and encryption occurs using RSA methods.

3. A method for encrypting/decrypting messages comprising the steps of:

Encrypting a plaintext message M into a ciphertext message C using any method that

produces a value equivalent to $C = M^e \text{ mod } N$, where $0 \leq M < N_d$, such that the ciphertext

C can be decrypted into the plaintext message M using only e and the prime factors of N_d

20 N being the product of all of the numbers in the set S;

S being a set of at least two prime numbers, $p_1 \dots p_k$, where k is an integer greater

than 1;

e being a number;

S_d being a proper subset of S ;

N_d being the product of all of the numbers in the set S_d .

4. The method of claim 3, wherein the step of generating the exponent e includes calculating the exponent e as a number that is relatively prime to the product of each

5 distinct prime factor of N minus 1, $(N_1 - 1)*\dots*(N_j - 1)$ for distinct prime factors of N 1 to j , where j is the number of distinct prime factors in N , or choosing the exponent e as a small prime number.

5. A method for decrypting encrypted messages comprising the steps of:

determining if a derived modulus N_d is a squarefree number, and if so,

10 decrypting ciphertext C into message M using any method that produces a value equivalent to $M = C^d \bmod N_d$, where d is generated using the following steps:

calculating the number Z_d as the product of each prime factor of N_d minus 1, $(N_{d1} - 1)*\dots*(N_{dj} - 1)$ for prime factors of N_d 1 to j , where j is the number of prime factors in N_d ;

15 generating the exponent d such that the following relationship is satisfied: $e*d = 1 \bmod Z_d$.

6. The method according to claim 5, further including the step of:

directly calculating $M = C^d \bmod N_d$.

7. The method according to claim 5, further including the steps of:

20 calculating separate decryption exponents $d_{nd1}\dots d_{ndj}$ for all prime factors of N_d 1 to j , where j is the number of prime factors in N_d so that the following relationship is satisfied for each member of N_d : $e*d_{ndi} = 1 \bmod (N_{di} - 1)$; and

performing decryptions of the form $M_i = C^{d_{ndi}} \bmod N_{di}$ for all prime factors of N_d from 1 to j , where j is the number of prime factors in N_d , and then using the values of each M_i and N_{di} to reconstruct M .

8. The method of claim 7, wherein the values of each M_i and N_{di} restore the plaintext

5 message M using the Chinese Remainder Theorem and/or Garner's algorithm.

9. A method for decrypting encrypted messages, comprising the steps of:

decrypting the ciphertext message C to the plaintext message M by

determining if the derived modulus N_d is squareful number, and if so;

calculating separate decryption exponents $d_{nd1} \dots d_{ndj}$ for all distinct prime factors

10 of N_d 1 to j , where j is the number of distinct prime factors in N_d so that the following

relationship is satisfied for each distinct member of N_d : $e * d_{ndi} = 1 \bmod (N_{di} - 1)$;

for each distinct prime factor of N_d , N_{di} , calculating a value b_{di} as the number of times that N_{di} occurs as a prime factor in N_d ;

calculating M_i for each distinct prime factor of N_d , N_{di} ;

15 and using all values of M_i , N_{di} , d_{ndi} , and b_{di} to restore the plaintext message M .

10. The method of claim 9, further including the steps of:

using Hensel Lifting to calculate M_i for each distinct prime factor of N_d , N_{di} .

11. The method of claim 9, further including using techniques such as the Chinese Remainder Theorem and/or Garner's algorithm to use all value of M_i , N_{di} , d_{ndi} , and b_{di} to

20 restore the plaintext message M .

12. A public key cryptosystem where messages are decrypted using a set of prime

numbers S and the public exponent e , and messages are encrypted using a modulus N_p

that is calculated as the product of a set of numbers that is a proper superset of S , and

encryption occurs with standard RSA methods using the public exponent e and the modulus N_p .

13. A method for encrypting/decrypting messages, comprising the steps of:

Encrypting a plaintext message M into a ciphertext message C using any method
5 that produces a value equivalent to $C = M^e \text{ mod } N_p$, where $0 \leq M < N$, such that the ciphertext C can be decrypted into the plaintext message M using e and the prime factors of N

N being the product of all of the numbers in the set S;

S being a set of at least one prime number, $p_1 \dots p_k$, where k is an integer greater
10 than 0;

S_p being a proper superset of S;

N_p being the product of all of the numbers in the set S_p ;

e being a number.

14. The method of claim 13, wherein the step of generating the exponent e includes

15 calculating the exponent e as a number that is relatively prime to the product of each distinct prime factor of N_p minus 1, $(N_{p1} - 1) * \dots * (N_{pj} - 1)$ for distinct prime factors of N_p 1 to j, where j is the number of distinct prime factors in N_p .

15. The method of claim 13, wherein the step of generating the exponent e includes choosing the exponent e as a small prime number.

20 16. A method for decrypting encrypted messages, including the steps of:

Decrypting the ciphertext message C to the plaintext message M by:

determining if the derived modulus N is squareful number; if so then, calculating separate decryption exponents $d_{n1} \dots d_{nj}$ for all distinct prime factors of N 1 to j, where j is the

number of distinct prime factors in N so that the following relationship is satisfied for each distinct member of N: $e * d_{ni} = 1 \pmod{N_i - 1}$;

for each distinct prime factor of N, N_i , calculating a value b_i as the number of times that N_i occurs as a prime factor in N;

5 calculating M_i for each distinct prime factors of N, N_i ;

and using each value of M_i , N_i , b_i and d_{ni} to restore the plaintext message M;

17. The method of claim 16, where Hensel Lifting is used to calculate M_i for each distinct prime factor of N, N_i .

18. The method of claim 16, further including using techniques such as the Chinese Remainder Theorem and/or Garner's algorithm to use all value of M_i , N_i , d_{ni} , and b_i to restore the plaintext message M.

19. A method of decrypting encrypted messages, including the steps of:

Decrypting the ciphertext message C into the plaintext message M by:

determining if the modulus N is a squarefree number; and if so then,

15 decrypting ciphertext C into message M using any method that produces a value equivalent to $M = C^d \pmod{N}$, where d is generated using the following steps:

Calculating the number Z as the product of each prime factor of N minus 1, $(N_1 - 1) * \dots * (N_j - 1)$ for prime factors of N 1 to j, where j is the number of prime factors in N;

then generating the decryption exponent d such that the following relationship is

20 satisfied: $e * d = 1 \pmod{Z}$.

20. The method according to claim 19, further including the step of:

directly calculating $M = C^d \pmod{N}$.

21. The method according to claim 19, further including the steps of:

calculating separate decryption exponents $d_1 \dots d_j$ for all prime factors of N 1 to j, where j is the number of prime factors in N so that the following relationship is satisfied for each member of N: $e * d_i = 1 \pmod{N_i - 1}$; and performing decryptions of the form $M_i = C^{d_i} \pmod{N_i}$ for all prime factors of N from 1 to j, where j is the number of prime factors in N, and then using the values of each M_i and N_i to reconstruct M.

5 22. The method of claim 21, wherein the values of each M_i and N_i reconstruct M using the Chinese Remainder Theorem and/or Garner's algorithm.

23. A method for encrypting/decrypting messages comprising the steps of:
Encrypting a plaintext message M into a ciphertext message C using any method that
10 produces a value equivalent to $C = M^e \pmod{N_p}$, where $0 \leq M < N$, such that the ciphertext C can be decrypted into the plaintext message M using e and the prime factors of N.

N being the product of all of the members of set S;
S being a set of at least two numbers, $p_1 \dots p_k$ where k is an integer greater than 1 and all members of S are equal to p_s , which is a prime number;

15 S_p being a superset of S;
 N_p being the product of all of the numbers in the set S_p ;

e being a number.
24. The method of claim 23, wherein the step of generating the exponent e further includes: Calculating the exponent e as a number that is relatively prime to the product of
all of the distinct prime factors of N_p minus 1, $(N_{p1} - 1) * \dots * (N_{pj} - 1)$ for distinct prime factors of N_p 1 to j, where j is the number of distinct prime factors in N_p .

25. The method of claim 23, wherein the step of generating the exponent e includes choosing the exponent e as a small prime number.

26. A method of decrypting encrypted messages, including the steps of:

Decrypting the ciphertext message C to the plaintext message M by:

Calculating b as the number of times that the number p_s occurs as a prime factor in N;

5 Generating an exponent d such that the following equation is satisfied:

$$e^*d = 1 \text{ mod } (p_s - 1);$$

Using Hensel Lifting to transform C into M with d, p_s , and b as input values.

27. A method for encrypting/decrypting messages, comprising the steps of:

Encrypting a plaintext message M into a ciphertext message C using any method that

10 produces a value equivalent to $C = M^e \text{ mod } N_p$, where $0 \leq M < p$, such that the ciphertext C can be decrypted into the plaintext message M using e and p

p being a prime number;

S being a set containing only the number p;

S_p being a superset of S;

15 N_p being the product of all members of the set S_p ;

e being a number.

28. The method of claim 27, wherein the step of generating the exponent e further

includes: Calculating the exponent e as a number that is relatively prime to the product of each distinct prime factor of N_p minus 1, $(N_{p1} - 1) * \dots * (N_{pj} - 1)$ for distinct prime factors

20 of N_p 1 to j, where j is the number of distinct prime factors in N_p .

29. The method of claim 27, wherein the step of generating the exponent e includes choosing the exponent e as a small prime number.

30. A method for decrypting encrypted messages, comprising the steps of:

Decrypting using any method that produces a value equivalent to as $M = C^d \text{ mod } p$, where d is generated using the following step:

Calculating d such that the following equation is satisfied:

$$e*d = 1 \text{ mod } (p - 1).$$

5 31. A method for establishing cryptographic communications, comprising the steps of:

calculating a composite number N, which is formed from the product of distinct prime numbers S, p_1, \dots, p_k where $k \geq 1$.

Encoding a plaintext message M, to a ciphertext C, where M corresponds to a
10 number representative of a message and $0 \leq M < S$;

generating an exponent e;
transforming said plaintext, M, into said ciphertext, C, where C is developed
using any method that produces a value equivalent to $C = M^e \text{ mod } N$, such that ciphertext
C can be decrypted into plaintext M using only e and S.

15 32. The method of claim 31, wherein the step of generating the exponent e further
includes: Calculating the exponent e as a number that is relatively prime to the product of
each distinct prime factor of N minus 1, $(N_1 - 1), \dots, (N_j - 1)$ for distinct prime factors of
N 1 to j, where j is the number of distinct prime factors in N.

33. The method of claim 31, wherein the step of generating the exponent e includes
20 choosing the exponent e as a small prime number.

34. A method for decrypting encrypted messages, comprising the steps of:
decoding the ciphertext message C to the plaintext message M, wherein said decoding
comprises the step of: transforming said ciphertext message C to plaintext M, using any

method that produces a value equivalent to $M = C^d \text{ mod } S$, where d is generated using the following step:

generating d such that $e*d = 1 \text{ mod } (S - 1)$.

35. A system for encrypting and decrypting electronic communications including a

5 network of computers and/or computer-type devices, such as personal data assistants

(PDAs), mobile phones and other devices, in particular mobile devices capable of

communicating on the network; generating at least one private key and at least one public

key, wherein the at least one private key is determined based upon any one of a

multiplicity of prime numbers that when multiplied together produce N, which is the

10 modulus for at least one of the public keys.

36. A method for public key decryption where less than all of the distinct prime

factors of a number N are used to decrypt a ciphertext message C into plaintext message

M, where encryption occurs with the public key {e, N} using any method that produces a

value equivalent to $C = M^e \text{ mod } N$.

15 37. A method for public key encryption with a public key {e, N} where a plaintext

message M is encrypted into a ciphertext message C using any method that produces a

value equivalent to $C = M^e \text{ mod } (N*X)$, where N is the public modulus and X is any

integer greater than 1.

38. A method for public key decryption of a message that has been encrypted with the

20. public key {e, N} where a ciphertext message C is decrypted into a plaintext message M

using any method that produces a value equivalent to $M = C^d \text{ mod } N_d$, where N_d is the

product of less than all of the prime factors of the public modulus N and d satisfies the

equation $e \cdot d = 1 \pmod{Z}$, where Z is the product of each of the k prime factors of N_d minus 1, $(p_1 - 1) \cdot \dots \cdot (p_k - 1)$.

39. A method for public key decryption of a message that has been encrypted using any method that produces a value equivalent to $C = M^e \pmod{N}$, where a ciphertext 5 message C is decrypted into a plaintext message M using any method that produces a value equivalent to $M = C^d \pmod{N_d}$, where N_d is the product of less than all of the prime factors of the public modulus N and d satisfies the equation $e \cdot d = 1 \pmod{Z}$, where Z is the product of each of the k prime factors of N_d minus 1, $(p_1 - 1) \cdot \dots \cdot (p_k - 1)$.

10