Math 8452, Homework #2. Due on 6/10/20 (Wed section) or 6/11/20 (Thu section).

Reading and videos:

- Watch the video (see Blackboard) on nonparametric prediction intervals.
- Read Section 3.1 on the signed rank test and Section 4.1 on the rank sum test.
- For next week, read Section 4.5 on relative efficiency.
- For next week, read Section 5.1 on the Ansari-Bradley test.

Problems to do:

1. (Not to turn in.) Given below are the lengths of 12 randomly selected issues of a statistics journal. Find an 80% prediction interval for the length of the next issue of the journal. What is the exact coverage probability for the prediction interval that you used?

- 2. (To turn in.) Suppose that X_1, X_2, X_3 and Y_1, Y_2, Y_3 are two independent simple random samples from the same continuous distribution. If we use the interval $(X_{(1)}, X_{(3)})$ as a prediction interval for the median $Y_{(2)}$ of the second sample, what is the coverage probability?
- 3. (To turn in.) Using listing, find the null distribution of the signed rank statistic when the sample size is n=4 and there are no ties. Is it possible to do a level-0.05 upper-tailed test? 可以吧,为什么不可以
- 4. (To turn in.) Using listing, find the null distribution of the <u>permutation test statistic</u> based on the <u>mean pairwise difference</u> when the data are as given in the table below. Note that we're doing a test based on the four pairwise differences. As in class, we assume symmetry.

Pair	X	Y	这题哟意思
1	35	51	
2	20	32	
3	24	28	
4	28	48	

- 5. (To turn in.) Do problems 1 and 4 on page 54 in the textbook. Use the signed rank test, making sure to report your hypotheses, your p-value, and your conclusions in context. Using R is fine.
- 6. (To turn in.) Using listing, find the null distribution of the rank sum statistic when the sample sizes are m = 5 and n = 2. Using the null distribution, find the rejection region for an upper-tailed level-0.20 test. What is the exact α level for this test?
- 7. (Not to turn in.) Working by hand, do problem 1 on page 133 in the textbook.