实验结果

说明

目前整体来说,运行时间还是相当不可控。虽然性能优化不影响结果,但是无法及时看到执行的结果, 给实验造成极大的困惑。

目前运行中耗时的地方如下,是否需要优化需要看情况。

- 插桩时间
 - □ 目前的插桩步骤先解析字节码,统计插桩个数,输出中间代码(这步可以删掉)。然后再重新解析字节码,然后做代码变换。这里解析了两次,合并后能少一次。
 - □ 代码变换的结果转换为字节码,再写入硬盘并执行。这步是否可以直接内存中运行修改后的结果。
- 测试用例执行的时间
 - □ Math 这样的库及其慢而且有100多版本,别的库也不快。
 - ✓ 执行多个测试用例不要反复重启 IVM,利用IUnit框架实现。
 - ✓ 目前只执行了涉及到的类的测试用例。
- 分析数据的时间
 - □目前代码中从插桩记录中挑选每个函数的测试用例的trace中,用了两层循环+hash表,即 1000个测试用例10000个插桩点,就要循环1000*10_000次,是耗时的瓶颈。考虑到同函数的 插桩点是连续的,可以通过下标偏移来提取数组片段。
 - ✓ 分析过程中有大量怀疑度为 0 的, 当降序列表确定有0时, 可以跳过后面的计算。
 - ✓ 怀疑度公式计算。这个不大影响时间。
- 其他
 - ☑ 缓存输出结果,避免重复计算。
 - 从数据集导出数据的时间,以及数据集执行测试用例会重编译代码(这步删掉)

关于结果

- 每个故障版本不具有相关性,且为了控制运行时间,只运行了版本相关的测试用例。所以代码行数和执行时间在版本之间都相差很大。因为不相干测试未运行,所以执行了的测试的代码覆盖率只是一部分。未执行部分怀疑度为0,所以可以不影响结果。
- 原实验是以baseline作为分母,实验结果是百分比。不这样做结果的绝对数值在不同版本上差异太大。
- 这里仍然是部分结果。

实验结果图表

先对照一下从原实验数据 -- 数据来源 -> 图表 (数据、趋势)

然后新实验数据 -> 图表

数据集描述

- Table 2. Characteristics of the chosen subject programs. Subject Faulty versions LoC Functions Predicates Tests Language
 - 。 每个被测项目信息,单位都是 个,包括 LoC Functions Predicates Tests
 - 。 实验2的统计数据里有一些汇总数据 methods sites predicates。
 - LoC Tests

Subject	versions	LoC	Functions	Predicates	Tests	Language
Lang	1	21783	2551	21681	174	Java
Lang	2	21752	2548	21718	15	Java
Lang	3	21717	2544	21693	173	Java
Lang	4	21689	2541	21698	138	Java
Lang	5	21553	2530	21573	14	Java
Lang	6	21485	2519	21517	143	Java
Lang	7	21499	2518	21553	167	Java
Lang	8	20367	2452	17468	155	Java
Lang	9	20437	2458	17522	166	Java
Lang	10	20446	2458	17530	164	Java
Lang	11	20346	2437	17437	12	Java
Lang	12	20339	2437	17429	11	Java
Lang	13	20228	2447	17444	209	Java
Lang	14	19634	2372	17191	835	Java
Lang	15	19515	2350	17159	11	Java

实验 1

具体步骤和收集到数据项 (原始格式) 见前一篇论文, 记录的原始数据格式是运行日志。

运行过程分3趟(1 function 2 boost 3 prune),每趟分4步(1插桩2运行3preprocess4mine)。对3趟 汇总。

这里的四项数据都是用柱状图,其中数据包括插桩个数,运行时间,占用磁盘或内存。

top-k, k分别取

• Fig. 6. Percentage of predicates instrumented compared with 100% fully instrumentation in MPS [57]

。 数据来源:插桩数

- o x 轴项目名
- 。 y 轴百分比
- 分组 top-k, k取1, 5, 10
- o chart类型 柱状图

- Fig. 7. Percentage of execution time and disk space used for profile collection compared with MPS [57] (100% as the baseline). (a) execution time, and (b) disk space.
 - 数据来源: profile collection 步骤
 - o x 轴项目名
 - 。 y 轴百分比
 - o 分组 top-k
 - o chart类型柱状图

- Fig. 8. Percentage of time and memory consumption for preprocessing compared with the baseline (100%) in MPS [57]. (a) time, and (b) memory consumption.
 - o preprocessing 过程
 - 数据是的几个步骤的汇总(相加)
 - o x轴y轴分组

- Fig. 9. Percentage of time and memory consumption for mining compared with the baseline (100%) in MPS [57]. (a) time, and (b) memory consumption
 - o mining 过程
 - 数据是的几个步骤的汇总(相加)
 - o x轴y轴分组

实验 2

- Fig. 11. Percentage of predicates instrumented.
 - 数据来源: 实验2RQ1
 - 列版本名称
 - AR列 LESS_FIRST/Top 1/ap%
 - BX列 LESS_FIRST/Top 5/ap%
 - CN列 LESS_FIRST/Top 10/ap%
 - o x 轴项目名
 - 。 y 轴百分比
 - o 分组 top-k, k=1,5,10
 - o chart 类型 柱状图

• Table 3. Average numbers of iterations needed for each type of predicate to find the top 5 predicates, as well as average percentages of predicates instrumented during the process.

。 数据来源: 实验2RQ2

o index 列:项目名,子项目求平均

o 数据列: Branch Return Scalar-pair

■ Iter Pred(%)

○ 图表类型:表格

。 这个实验原始数据格式同 RQ 1,

■ 每个项目分在另外三个excel文件,

■ 只取 TOP-5。

■ iter取BS列LESS_FIRST/Top 5/bi

■ Pred 取 BX列 LESS_FIRST/Top 5/ap%

name	branch_iter	branch_perd	scalar_iter	scalar_perd	return_iter	return_perd
v1_subv1	3	1.23	2	1.09	2	1.73
v1_subv2	1	0.5			2	0.82
v1_subv3	4	1.29	3	1.03	3	1.84
v1_subv4	2	0.18	2	0.34	2	0.14
v1_subv5	1	0.33			2	0.59
v1_subv6	8	0.61	6	0.57	5	0.64
v1_subv7	17	2.36	7	2.99	15	4.76
v1_subv8	24	2.13	17	1.06	21	3.19
v1_subv9	12	1.48	8	0.68	13	2
v1_subv10	19	1.91	15	1.2	21	2.69
v1_subv11	1	0.67	1	0.63		
v1_subv12	2	0.62	2	0.6	1	0.3
v1_subv15	31	5.2	20	5.99	29	7.5
v1_subv17	4	0.34	4	0.69	4	0.54

- Fig. 12. Top Importance value comparisons for program space between ARBI and two state-of-art ABI approaches. The forward analysis uses T-Test as the heuristic and the backward analysis uses Importance as the heuristic.
 - 数据来源:实验2 RQ 4 space_correlation.xlsx
 - sheet 3 最后两列 percentage max_importance 是 ARBI 的数据
 - percentage 是对 Predicates 累积求和然后归一化,
 - max_importance 是 F 列到当前行的最大值
 - 两外两组对比数据有其他参考源。
 - o x轴 Percentage of predicates instrumented
 - o y轴Top score of instrumented predicates
 - 。 分组 ARBI / ABI + Forward TTest / ABI + Backward Importance
 - o chart 类型 折线图

name	outputs	s1	s100	s10000	cg	iterative
v1_subv2	2431	2687	2671	2656	2687	2631
v1_subv3	2488	4351	4302	4250	3558	3409
v1_subv4	2612	9083	5102	4511	3744	4396
v1_subv5	2449	2649	2637	2602	2586	2576
v1_subv6	2586	8868	5021	4729	3754	3662
v1_subv7	2512	4197	4195	4179	3435	3355
v1_subv8	2650	44273	10961	10450	9009	6627
v1_subv9	2604	44445	10987	10387	9201	6579
v1_subv10	2600	41482	11355	10470	9337	6653
v1_subv11	2431	2636	2558	2593	2586	2590
v1_subv12	2412	2608	2535	2577	2524	2541
v1_subv13	2437	7286	6095	5900	5057	4813
v1_subv14	2426	24297	16924	16192	13483	12762
v1_subv15	2464	2758	2650	2641	2517	2530
v1_subv16	2437	4021	3949	4029	3421	3374
v1_subv17	2384	8169	3794	3680	3059	3684
v1_subv18	2390	8171	4587	4414	3940	3689
v1_subv19	2402	7587	3526	3510	2939	3336
v1_subv20	2412	22414	14382	14236	11912	11318
v1_subv21	2414	3974	3715	3724	3302	3224
v1_subv22	2425	64469	7313	3346	2648	3803

- Table 4. User-side slowdown in times (×).
 - 数据来源:实验2 RQ 3 space_overhead.xlsx
 - 单位是运行时间,换算成**倍数**以第一列 () 为分母
 - index 列 项目及版本
 - 。 数据列 CBI 1/1 1/100 1/10000 ARBI Phase 1 Phase 2
 - ARBI = cg + iter 这里 cg 按函数插桩 是 iter 是
 - 。 图表类型:表格
- Table 5. Data transferred over the network for CBI under the 1/100 sampling rate and ARBI; Reduction reports ARBI's reduction in the total data size (i.e., Trace + Binary)
 - 数据来源: 实验2 RQ 5
 - 。 这里跳过这个实验。