ESTRUTURA DE DADOS

Árvores AVL

Profa. Dra. Jaqueline Brigladori Pugliesi

1

Introdução

 Árvores de altura balanceada ou de altura equilibrada foram introduzidas em 1962 por dois matemáticos russos, G. M. Adel'son-Vel'skii e E. M. Landis, também conhecidas como árvores AVL.

Para todo nó de uma árvore AVL, a diferença entre as alturas de suas subárvores não excede a uma unidade.

 Devido ao balanceamento da árvore, as operações de busca, inserção e remoção podem ser efetuadas em O(log2(n)), mesmo no pior caso.

Árvore AVL

- Uma árvore AVL é definida como:
 - Uma árvore vazia é uma árvore AVL.
 - Sendo T uma árvore binária cujas subárvores esquerda e direita são E e D, respectivamente, T será uma árvore AVL contanto que:
 - E e D são árvores AVL.
 - |he hd| <= I, onde he e hd são as alturas das subárvores E e D, respectivamente.

3

Fator de Balanceamento

- O fator de balanceamento ou fator de equilíbrio de um nó T em uma árvore binária é definido como sendo he – hd onde he e hd são as alturas das subárvores esquerda e direita de T, respectivamente.
- Para qualquer nó T numa árvore AVL, o fator de balanceamento assume o valor -I, 0 ou +I.

Fator de Balanceamento (cont.)

- Para o rebalanceamento da árvore é necessário calcular o Fator de Balanceamento para verificar qual rotação deve ser efetuada afim de rebalanceá-la.
- Se fator de balanceamento é positivo, as rotações são feitas à direita.
- Se fator de balanceamento é negativo, as rotações são feitas à esquerda.

Fator de Balanceamento (cont.)

 Há dois tipos de ocorrências nos casos de balanceamento:

Caso I: Nó raiz com FB 2 ou –2 com um filho (na direção de onde houve a inserção) com FB I ou –1 com o mesmo sinal, neste caso a solução é uma rotação simples.

Caso 2: Nó raiz com FB 2 ou -2 com um filho (na direção de onde houve a inserção) com FB -1 ou 1 os quais possuem sinais trocados, neste caso a solução é uma rotação dupla.

Inserções (cont.)

Inserido x=7

A inserção produz uma árvore desbalanceada...

4

5

- Inserido x=7
- A inserção produz uma árvore desbalanceada, cujo balanceamento envolve uma rotação esquerda

Inserções (cont.)

• Inserir x=2

Inserções (cont.)

- Inserido x=2
- Inserido x=I
- Ocorre desbalanceamento da subárvore de raiz 4...

15

Inserções (cont.)

- Inserido x=2
- Inserido x=I
- Ocorre desbalanceamento da subárvore de raiz 4, que é corrigido por uma rotação direita

- Inserido x=3
- Ocorre desbalanceamento da subárvore de raiz 5...

- Inserido x=3
- Ocorre desbalanceamento da subárvore de raiz 5, que é corrigido por uma rotação dupla direita

Inserções (cont.)

• Inserir x=6

Inserções (cont.)

- Inserido x=6
- Ocorre desbalanceamento da subárvore de raiz 5...

21

Inserções (cont.)

- Inserido x=6
- Ocorre desbalanceamento da subárvore de raiz 5, que é corrigido por uma rotação dupla esquerda

1 3 5 7

Remoção (cont.)

- A remoção em árvores AVL é similar à de uma árvore binária de busca.
- Todavia, é preciso verificar o balanceamento e, se necessário, aplicar algumas das rotações.

Resumo

- Há um custo adicional para manter uma árvore balanceada, mesmo assim garantindo $O(log_2(n))$, mesmo no pior caso, para todas as operações.
- Em testes empíricos:
 - Uma rotação é necessária a cada duas inserções.
 - Uma rotação é necessária a cada cinco remoções.
- A remoção em árvore balanceada é tão simples (ou tão complexa) quanto a inserção.

31

Exemplos de Aplicação

- Redes de comunicação de dados
 - envio de pacotes ordenados e/ou redundantes
- Codificação de Huffman
 - o compressão e descompressão de arquivos

Exercício

Inserir os seguintes elementos em uma Árvore AVL:

50 40 30 45 47 55 56 I 2 3

2. e remover os seguintes elementos:

56 30 40 50 I 2

