Measures of Central Tendency:

Ungrouped Data:

A manufacturer of electronic components is interested in determining the lifetime of certain type of battery. A sample in hours of life , is as follows:

- i)Find the sample mean, median and mode.
- ii) Also Show that the sum of deviation of each value from their mean is zero.

Solution:

i)Mean,
$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$= \frac{123 + 116 + \dots + 117}{10}$$

=124.2 hours

So the average lifetime of all the batteries is 124.2 hours

ii) The sum of deviation of each value from their mean is zero

Calculation Table

x_i	\overline{x}	$(x_i - \overline{x})$
123	124.2	-1.2
116		-8.2
122		-2.2
110		-14.2
175		50.8
125		0.8
125		0.8
111		-13.2
118		-6.2
117		-7.2
		$\sum_{i=1}^{n} \left(x_i - \overline{x} \right) = 0$

So The sum of deviation of each value from their mean is zero, $\sum_{i=1}^{n} (x_i - \overline{x}) = 0$

Median: Since n=10 is even

Arrange the data in ascending order:

110,111, 116, 117, 118, 122, 123, 125, 125, 175

Median=Average of $\frac{n}{2}$ and $(\frac{n}{2} + 1)$ thobservation

=Average of 5th and 6th observation

$$=\frac{118+122}{2}=120$$

So the median lifetime is 120 hours i.e. The middle most battery has lifetime of 120 hours.

Mode:

Mode= The value in the series x_i which has maximum frequency.

x	Tally marks	fi
110	1	1
111	1	1
116	1	1
117	1	1
118	1	1
122	1	1
123	1	1
125	//	2
175	1	1
Total		10

Since 125 occurs most frequently. So, mode is 125.

Example of Grouped data:

The Lifetime of 40 similar car batteries is as follows:

Lifetime in years	Number of batteries
1.5-2.0	2
2.0-2.5	1
2.5-3.0	4
3.0-3.5	15
3.5-4.0	10
4.0-4.5	5
4.5-5.0	3

i)Find the mean, median, and mode

ii)Also show the median and mode graphically

Solution:

Calculation table:

Lifetime in years	Number of batteries	x_i =class midvalue	$f_i x_i$
	f_i		
1.5-2.0	2	1.75	3.5
2.0-2.5	1	2.25	2.25
2.5-3.0	4	2.75	11
3.0-3.5	15	3.25	48.75
3.5-4.0	10	3.75	37.5
4.0-4.5	5	4.25	21.25
4.5-5.0	3	4.75	14.25

N=40	$\sum_{i=1}^{n} f_i x_i = 138.5$

Sample Mean,
$$\overline{x} = \frac{\displaystyle\sum_{i=1}^n f_i x_i}{N}$$

$$= \frac{138.5}{40}$$

=3.4625 year.

So, the average lifetime of all the batteries is 3.4625 year.

Median group=
$$\frac{N}{2} = \frac{40}{2} = 20th \ observation$$

Lifetime in years	Number of batteries	x_i =class midvalue	Cumulative Frequency
	f_i		
1.5-2.0	2	1.75	2
2.0-2.5	1	2.25	3
2.5-3.0	4	2.75	7
3.0-3.5	15	3.25	22 Median group
3.5-4.0	10	3.75	32
4.0-4.5	5	4.25	37
4.5-5.0	3	4.75	40
	N=40		

$$\mathsf{Median} = L + \frac{\frac{N}{2} - P.c.f}{f_{\mathit{m}}} \times c$$

$$=3.0+\frac{\frac{40}{2}-7}{15}\times0.5$$

$$=3.43$$
 years

So, the middle most batteries has lifetime of 3.43 years

Mode: 4th group is the modal group.

Here,
$$\Delta_1 = 15 - 4 = 11$$

$$\Delta_2 = 15 - 10 = 5$$

$$\mathsf{Mode=}\,L + \frac{\Delta_1}{\Delta_1 + \Delta_2} \times c$$

$$=3.0+\frac{11}{11+5}\times0.5$$

So the maximum batteries has a lifetime of 3.34 year.

Examples of geometric mean for ungrouped data:

Example: The annual rates of growth of output of a factory in 5 years are

Find the average rates of growth of output for the period.

Solution: So will calculate geometric mean because data are given in percentages.

Let the initial value is 100.

X_i	$\log x_i$
105.0	2.021

102.5	2.011
107.5	2.031
110.0	2.041
105.0	2.021
Total	$\sum \log x_i = 10.125$

We know log GM=
$$\frac{\sum_{i=1}^{n} \log x_i}{n} = \frac{10.125}{5}$$

=2.025

So the average rate of growth of output for the period is =105.93-100=5.93%

Example: In a certain factory a unit of work is completed by A in 4 minute, by B in 5 Minute, C in 6 minute, D in 10 minute, and E in 12 minute. What is the average number of unit of work completed per minute? Which average do you consider here and why?

Solution:

Since the information are given in unit of time. So we will use harmonic mean.

Calculation Table

x_i	1
	X_i

Α	4	0.25
В	5	0.20
С	6	0.167
D	10	0.100
E	12	0.083
		$\sum_{i=1}^{n} \frac{1}{x_i} = 0.8$

We know,
$$HM = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}} = 5/0.8 = 6.25 \text{ minute}$$

The average number of unit of work completed per minute is 1/6.25=0.16unit.

Relation between AM, GM and HM:

For same data $AM \ge GM \ge HM$

i)Check: 10, 20, 30, 50, 60

Solution:

1_	$\log x_i$
\mathcal{X}_{i}	
0.10	1.00
0.05	1.30
0.033	1.47
0.02	1.69
0.016	1.77
	0.10 0.05 0.033 0.02

$$\sum_{i=1}^{n} x_i = 170$$

$$\sum_{i=1}^{n} \frac{1}{x_i} = 0.22$$

$$\sum_{i=1}^{n} \log x_i = 7.23$$

We know AM=
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{170}{5} = 34$$

$$\log GM = \frac{\sum_{i=1}^{n} \log x_i}{n} = \frac{7.23}{5} = 1.446$$

$$GM = Anti \log(1.446) = 27.93$$

$$HM = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}} = \frac{5}{.22} = 22.72$$

Since the AM=34, GM=27.93, and HM=22.72, So it is clear that $AM \ge GM \ge HM$.

ii)For same data $AM \ge GM \ge HM$

Profit in Lac Taka	Number of companies
25-35	4
35-45	7
45-55	15
55-65	14
65-75	8
75-85	2

Calculation Table

Class interval	X_i	f_{i}	$f_i x_i$	$f_i \log x_i$	$\underline{f_i}$
					x_i

25-35	30	4	120	5.908	.133
35-45	40	7	280	11.214	.175
45-55	50	15	750	25.485	.3
55-65	60	14	840	24.894	.233
65-75	70	8	560	14.761	.114
75-85	80	2	160	3.806	.025
		N=50	$\sum f_i x_i = 2710$	$\sum f_i log x_i = 86.068$	$\sum \frac{f_i}{x_i} = 0.98$

We know,

$$AM = \frac{\sum f_i x_i}{N} = \frac{2710}{50} = 54.2$$

We know,

$$logGM = \frac{\sum f_i log \, x_i}{N} = \frac{86.068}{50} = 1.72136$$

$$GM = Antilog(1.72136) = 52.65$$

We know,

$$HM = \frac{N}{\sum \frac{f_i}{x_i}} = \frac{50}{.98} = 51.020$$

Since the AM=54.2, GM=52.65, and HM=51.020, So it is clear that $AM \ge GM \ge HM$

Weighted average:

Ex: In a company, there are 50 skilled workers with daily wage 500 TK,25 semi-skilled workers with daily wage 400 Tk and 15 unskilled workers with daily wage 300 TK. What is the average daily wages of the workers?

Solution: Let , W_1 = no.of Skilled worker=50

W2= no. semi-skilled worker=25

W3= no. of unskilled worker=15

Weighted Average =
$$\frac{W_1X_1 + W_2X_2 + W_3X_3}{W_1 + W_2 + W_3}$$

$$=\frac{50\times500+25\times400+15\times300}{50+25+15}$$

=438.89TK

So the workers earn on average 438.89 Taka daily.