MOSFET – Power, **N-Channel 60 V, 20 A, 39 m**Ω

Features

- Low R_{DS(on)}
- High Current Capability
- 100% Avalanche Tested
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parar	Symbol	Value	Unit		
Drain-to-Source Volta	V _{DSS}	60	V		
Gate-to-Source Voltag	je – Contir	nuous	V_{GS}	±20	V
Gate-to-Source Voltag - Non-Repetitive (t _p <			V_{GS}	±30	٧
Continuous Drain		T _C = 25°C	I _D	20	Α
Current (R _{θJC})	Steady			13	
Power Dissipation $(R_{\theta JC})$	State	T _C = 25°C	P _D	36	W
Pulsed Drain Current	t _p =	= 10 μs	l _{DM}	76	Α
Operating Junction and	T_J, T_{stg}	-55 to 150	°C/		
Source Current (Body I	Diode)		10	20	Α
Single Pulse Drain-to- Energy (V _{DD} = 50 V, V ₀ I _{L(pk)} = 19 A, L = 0.1 ml	EAS	18	mJ		
Lead Temperature for S (1/8" from case for 10 s		urposes	T _L N	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	3.5	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	45	

Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
60 V	39 m Ω @ 10 V	20 A
	50 mΩ @ 4.5 V	18 A

DPAK CASE 369AA (Surface Mount) STYLE 2

IPAK CASE 369D (Straight Lead) STYLE 2

MARKING DIAGRAMS & PIN ASSIGNMENT

= Assembly Location*

= Year WW = Work Week 5867NL = Device Code = Pb-Free Package

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) Parameter Symbol Test Condition Min Typ Max Unit

Parameter	Symbol	Test Cond	ition	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D =	= 250 μA	60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				60		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0	μΑ
		$V_{GS} = 0 V$, $V_{DS} = 60 V$	T _J = 125°C			100	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS}$	s = ±20 V			±100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = I_{DS}$	= 250 μΑ	1.5	1.8	2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				5.2		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D	₀ = 10 A		26	39	mΩ
		V _{GS} = 4.5 V, I _E	_O = 10 A		33	50	
Forward Transconductance	9FS	V _{DS} = 15 V, I _D) = 10 A		8.0	·10,	S
CHARGES, CAPACITANCES AND GATE RE	SISTANCES				OF.	9.	
Input Capacitance	C _{iss}			11.	675		pF
Output Capacitance	C _{oss}	V _{GS} = 0 V, f = 1 V _{DS} = 25	1.0 MHz,	JE	68		
Reverse Transfer Capacitance	C _{rss}	VDS 120		47			
Total Gate Charge	Q _{G(TOT)}	50,		-mi	15		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} = 48 V.		50.7	4.0		
Gate-to-Source Charge	Q_{GS}	$V_{GS} = 10 \text{ V}, V_{DS} = 48 \text{ V},$ $I_D = 20 \text{ A}$		"VE.	2.2		
Gate-to-Drain Charge	Q_{GD}	I FROM		114.	4.3		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 48 \text{ V},$ $I_{D} = 20 \text{ A}$			7.6		nC
Gate Resistance	R_{G}	1 0			1.3		Ω
SWITCHING CHARACTERISTICS (Note 3)	180	MILE					
Turn-On Delay Time	t _{d(on)}	, 1/1/2			6.5		ns
Rise Time	(t _r	$V_{GS} = 10 \text{ V}, V_{D}$	n = 48 V.		12.6		
Turn-Off Delay Time	t _{d(off)}	$I_D = 20 \text{ A}, R_G$			18.2		
Fall Time	C _t			2.4			
DRAIN-SOURCE DIODE CHARACTERISTIC	S.						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		0.87	1.2	V
THIS		I _S = 10 A	T _J = 100°C		0.78		1
Reverse Recovery Time	t _{RR}				17		ns
Charge Time	ta	V _{GS} = 0 V, dls/dt	= 100 A/us.		13		1
Discharge Time	tb	$l_{S} = 20$	Α		4.0		1
Reverse Recovery Charge	Q _{RR}				12		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2%.

3. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

Q_T V_{GS} V_{GS} V_{GS} V_{GS} V_{GS} V_{GS} V_{DS} = 48 V V_{DS} = 48 V V_{DS} = 20 A V_D

Figure 7. Capacitance Variation

Figure 8. Gate-To-Source Voltage vs.
Total Charge

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

TYPICAL PERFORMANCE CURVES

Figure 13. Thermal Response

ORDERING INFORMATION

Order Number	Package	Shipping [†]
NTD5867NL-1G	IPAK (Straight Lead) (Pb-Free)	75 Units / Rail
NTD5867NLT4G	DPAK (Pb-Free)	2500 / Tape & Reel
†For information on tape and reel specification Specifications Brochure, BRD8011/D.	ns, including part orientation and tape sizes,	please refer to our Tape and Reel Packaging
O DEVICE PLE	ASENTATIVE (
THIS RE		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DPAK INSERTION MOUNT

CASE 369 ISSUE O

DATE 02 JAN 2000

SCALE 1:1

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.250	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.033	0.040	0.84	1.01
F	0.037	0.047	0.94	1.19
G	0.090	BSC	2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.175	0.215	4.45	5.46
S	0.050	0.090	1.27	2.28
٧	0.030	0.050	0.77	1.27

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:		STYLE 5:		STYLE 6:	
PIN 1.	BASE	PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	GATE	PIN 1.	MT1
2.	COLLECTOR	2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE	2.	MT2
3.	EMITTER	3.	SOURCE	3.	ANODE	3.	GATE	3.	CATHODE	3.	GATE
4.	COLLECTOR	4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE	4.	MT2

DOCUMENT NUMBER:	98ASB42319B	Electronic versions are uncontrolled except when accessed directly from the Document Reported versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK INSERTION MOUNT		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DPAK (SINGLE GUAGE) CASE 369AA **ISSUE B** SCALE 1:1 C

DATE 03 JUN 2010

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29 BSC		
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108	REF	2.74	REF	
L2	0.020 BSC		0.51	BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER

PIN 1. GATE 2. ANODE 3. CATHODE

4. ANODE

STYLE 5:

4. COLLECTOR

STYLE 2: PIN 1. GATE

STYLE 6:

2. DRAIN 3. SOURCE 4. DRAIN

STYLE 3: PIN 1. ANODE

2. CATHODE 3. ANODE CATHODE

STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE

STYLE 7:

PIN 1. GATE 2. COLLECTOR PIN 1. MT1 2. MT2 3. GATE 3. EMITTER COLLECTOR

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code Α = Assembly Location L = Wafer Lot ٧ = Year = Work Week WW = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part

DOCUMENT NUMBER:	98AON13126D	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1		

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales