Introduction

The main goal of this project is to use Machine Learning techniques to determine whether a loan should be approved or not based on the past information of a person. This project includes:

- 1. Data Cleaning
- 2. Data Visualizations
- 3. Transforming data
- 4. Identifying outliers
- 5. Model Evaluations.

The libraries used in this project are:

- 1. sklearn
- 2. matplotlib
- 3. numpy
- 4. pandas
- 5. seaborn

There are different models to train your data, here we will be using:

- 1. logistic regression
- 2. decision trees
- 3. random forest
- 4. Hyperparameter Tuning method

Dataset

This dataset is named Loan Prediction Dataset data set. The dataset contains 613 records and attributes: Loan_ID, Gender, Married, Dependents, Education, Self_Employed, Applicant Income,

Co-applicant Income, Loan Amount, Loan Amount Term, Credit History, Property Area, and Loan_Status.

Libraries

```
import os #paths to file
In [1]:
         import numpy as np # linear algebra
         import pandas as pd # data processing
         import warnings# warning filter
         #ploting libraries
         import matplotlib.pyplot as plt
         import seaborn as sns
         import warnings# warning filter
         #Machine learning libraries
         from sklearn.model selection import train test split
         from sklearn.metrics import confusion_matrix
         from sklearn.metrics import classification report
         from sklearn.metrics import accuracy_score
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.linear model import LogisticRegression
         warnings.filterwarnings("ignore")
```

Load the datasets

```
In [2]: #load the dataset
    #training set
    #download the data to run the report
    tr_df = pd.read_csv(r"/Users/mirandacheng7/Downloads/Loan Prediction/train_u6luj
    #testing set
    te_df= pd.read_csv(r"/Users/mirandacheng7/Downloads/Loan Prediction/test_Y3wMUE5
```

Processing the dataset

Take a look at the datesets

Training set:

```
In [3]: #display the first 5 rows of the training set
tr_df.head()
```

Out[3]:		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coappli
	0	LP001002	Male	No	0	Graduate	No	5849	
	1	LP001003	Male	Yes	1	Graduate	No	4583	
	2	LP001005	Male	Yes	0	Graduate	Yes	3000	
	3	LP001006	Male	Yes	0	Not Graduate	No	2583	

		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coappli
	4	LP001008	Male	No	0	Graduate	No	6000	
	Tes	ting set:							
In [4]:		display to		5 rows	of the tes	ting set			
Out[4]:		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coappli
	0	LP001015	Male	Yes	0	Graduate	No	5720	
	1	LP001022	Male	Yes	1	Graduate	No	3076	
	2	LP001031	Male	Yes	2	Graduate	No	5000	
	3	LP001035	Male	Yes	2	Graduate	No	2340	
	4	LP001051	Male	No	0	Not Graduate	No	3276	

Size of each data set:

```
In [5]: #print the size of each dataset
    print(f"training set (row, col): {tr_df.shape}\n\ntesting set (row, col): {te_df
    training set (row, col): (614, 13)
    testing set (row, col): (367, 12)
```

Data Cleaning

Find the missing values

```
tr_df.isnull().sum()
In [6]:
                               0
Out[6]: Loan_ID
        Gender
                               13
        Married
                               3
                              15
        Dependents
        Education
                               0
        Self Employed
                              32
        ApplicantIncome
                               0
        CoapplicantIncome
                               0
        LoanAmount
                              22
        Loan Amount Term
        Credit_History
                               50
        Property_Area
                               0
        Loan Status
                               0
        dtype: int64
```

Fill the missing values

As Gender, Married, credit_history, and self_employed are categorical data, we will replace the missing value with the most requent value.

```
In [7]: #filling the missing data with mode
```

```
null cols = ['Credit History', 'Self Employed', 'LoanAmount', 'Dependents', 'Loan
         for col in null cols:
             tr_df[col] = tr_df[col].fillna(tr_df[col].dropna().mode().values[0])
         tr_df.isnull().sum().sort_values
Out[7]: <bound method Series.sort_values of Loan ID
                                                                   0
        Gender
        Married
                              0
        Dependents
                              0
        Education
                              0
        Self Employed
                              0
        ApplicantIncome
                              0
                              0
        CoapplicantIncome
        LoanAmount
                              0
        Loan_Amount_Term
                              0
                              0
        Credit_History
                              0
        Property_Area
        Loan_Status
                              0
        dtype: int64>
In [8]:
         #check if there are any duplicates
         tr_df.duplicated().any()
Out[8]: False
         #remove the id column for both datasets as it's not needed
In [9]:
         tr df.drop('Loan ID',axis=1,inplace=True)
         te df.drop('Loan ID',axis=1,inplace=True)
         #print the size of each dataset
         print(f"training set (row, col): {tr df.shape}\n\ntesting set (row, col): {te df
        training set (row, col): (614, 12)
        testing set (row, col): (367, 11)
```

Data visalization

First, let's split data into categorical and numberical data. For categorical data, we want to show counts in each categorical bin using bars, for numberic data, we want to see the distribution.

```
#categorical columns
In [10]:
          cat = tr df.select dtypes('object').columns.to list()
          #numerical columns
          num = tr df.select dtypes('number').columns.to list()
          #numberical data
          loan num = tr df[num]
          #categorical df
          loan cat = tr df[cat]
In [11]:
          loan_cat
               Gender Married Dependents
                                            Education Self_Employed
                                                                    Property_Area Loan_Status
Out[11]:
            0
                 Male
                                       0
                                             Graduate
                                                                           Urban
                                                                                           Υ
                          No
                                                                No
```

	Gender	Married	Dependents	Education	Self_Employed	Property_Area	Loan_Status
1	Male	Yes	1	Graduate	No	Rural	N
2	Male	Yes	0	Graduate	Yes	Urban	Υ
3	Male	Yes	0	Not Graduate	No	Urban	Y
4	Male	No	0	Graduate	No	Urban	Υ
•••							
609	Female	No	0	Graduate	No	Rural	Υ
610	Male	Yes	3+	Graduate	No	Rural	Υ
611	Male	Yes	1	Graduate	No	Urban	Υ
612	Male	Yes	2	Graduate	No	Urban	Υ
613	Female	No	0	Graduate	Yes	Semiurban	N

614 rows × 7 columns

```
In [12]: #display the counts of observations using bars for each categorical column
for i in loan_cat:
    plt.figure(figsize=(5,5))
    total = float(len(loan_cat[i]))
    ax = sns.countplot(loan_cat[i],palette='Blues')
    for p in ax.patches:
        height = p.get_height()
        ax.text(p.get_x()+p.get_width()/2,height + 3,'{:.1f}%'.format(height/totax.set_title(i))
    plt.show()
```



```
In [28]: #display the distribution of each numerical column
for i in loan_num:
    plt.hist(loan_num[i], bins=30)
    plt.title(i)
    plt.show()
```


Display categorical data by Loan status.

Encoding data to numeric

change categorical data into numeric format

```
Loan Prediction Analysis - Machine Learning
             from sklearn.preprocessing import LabelEncoder
In [16]:
             cols = ["Gender", "Married", "Education", "Self_Employed", "Property_Area", "Loan_
             le = LabelEncoder()
             for col in cols:
                   tr_df[col] = le.fit_transform(tr_df[col].astype(str))
           tr_df['Dependents'].value_counts()
In [17]:
            0
                    360
Out[17]:
            1
                    102
            2
                    101
            3+
                      51
            Name: Dependents, dtype: int64
             # As 3+ in Dependents column has not been changed to numberic, so we should repl
In [18]:
             tr_df['Dependents'] = np.where((tr_df.Dependents == '3+'), 3, tr_df.Dependents)
In [19]:
             #plotting the correlation matrix
             plt.figure(figsize=(15,10))
             sns.heatmap(tr_df.corr(), annot = True, cmap='BuPu')
Out[19]: <AxesSubplot:>
                                           0.045
                                                 -0.00052
                                                          0.059
                                                                  0.083
                                                                          0.11
                                                                                 -0.074
                                                                                        0.0092
                                                                                                -0.026
                                                                                                        0.018
                    Gender
                                           0.012
                                                  0.0045
                                                          0.052
                                                                  0.076
                                                                          0.15
                                                                                 -0.1
                                                                                        0.011
                                                                                                0.0043
                                                                                                        0.091
                   Married -
                                                                                                                      - 0.8
                                   0.012
                                                   -0.01
                                                          -0.14
                                                                 -0.062
                                                                                 -0.074
                                                                                        -0.074
                                                                                                -0.065
                  Education -
                           0.045
                                                                         -0.17
                                                                                                        -0.086
               Self_Employed - -0.00052
                                                          0.13
                                                                 -0.016
                                                                         0.11
                                   0.0045
                                           -0.01
                                                                                 -0.034
                                                                                        -0.0016
                                                                                                -0.031
                                                                                                       -0.0037
                                                                                                                      - 0.6
                                   0.052
                                           -0.14
                                                   0.13
                                                                  -0.12
                                                                                 -0.047
                                                                                         -0.019
                                                                                                -0.0095
                                                                                                       -0.0047
              ApplicantIncome
                           0.059
                                                                          0.19
                                                                                         0.011
                                                                                                0.011
            CoapplicantIncome
                                   0.076
                                           -0.062
                                                  -0.016
                                                          -0.12
                                                                                 -0.059
                                                                                                        -0.059
                                                                                                                       0.4
                            0.11
                                   0.15
                                           -0.17
                                                   0.11
                                                                  0.19
                                                                                 0.037
                                                                                        -0.00025
                                                                                                -0.047
                                                                                                        -0.032
                LoanAmount -
                                           -0.074
                                                                         0.037
                                                                                        -0.0047
                                                                                                -0.076
                                                                                                        -0.023
```

Train-Test Split

Loan_Amount_Term -

Credit_History -

Property Area -

Loan Status -

```
X= tr_df.drop(columns = ['Loan_Status'], axis = 1)
In [20]:
          y = tr df['Loan Status']
```

-0.074

0.0092

-0.026

0.018

-0.1

0.011

0.0043

0.091

-0.074

-0.065

-0.086

-0.034

-0.0016

-0.031

-0.0037

Self_Employed

-0.047

-0.019

-0.0095

-0.0047

-0.059

0.011

0.011

-0.059

-0.00025

-0.047

-0.032

-0.0047

-0.076

-0.023

0.002

- 0.2

0.002

0.032

Loan Status

```
In [21]: #Split the data into train-test split:
    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, rand
    print(f"X_training set (row, col): {X_train.shape}\n\ny_train (row, col): {y_training set (row, col): (460, 11)
    y_train (row, col): (460,)
    X_test set (row, col): (154, 11)
    y_test set (row, col): (154,)
```

Logistic Regression

Logistic regression is a statistical model that in its basic form uses a logistic function to model a binary dependent variable, although many more complex extensions exist. (Wikipedia)

77.27% Accurate

Decision Tree

Decision Trees are constructed by splitting a data set based on different conditions and the goal is to create a model that predicts the value of a target variable by learning simple decisions inferred from the data features.

Survival of passengers on the Titanic


```
DT = DecisionTreeClassifier()
In [23]:
          DT.fit(X train, y train)
          y_predict = DT.predict(X_test)
          #prediction summary
          print(classification report(y test, y predict))
          # print out the accuracy score
          DT_SC = accuracy_score(y_predict,y_test)
          print(f"{round(DT SC*100,2)}% Accurate")
                                     recall f1-score
                        precision
                                                         support
                     0
                             0.53
                                       0.44
                                                  0.48
                                                              54
                                       0.79
                                                             100
                             0.72
                                                  0.76
             accuracy
                                                  0.67
                                                             154
            macro avg
                             0.63
                                       0.62
                                                  0.62
                                                             154
         weighted avg
                             0.66
                                       0.67
                                                  0.66
                                                             154
```

66.88% Accurate

Random Forest

Random forest is an ensemble of decision trees that are trained with a combination of learning models to increase the overall results. Random forest builds multiple decisions trees and combines them together to get a better prediction.


```
In [24]: RF = RandomForestClassifier()
    RF.fit(X_train, y_train)

y_predict = RF.predict(X_test)

# prediction Summary
    print(classification_report(y_test, y_predict))

# print out accuracy score
    RF_SC = accuracy_score(y_predict,y_test)
    print(f"{round(RF_SC*100,2)}% Accurate")
```

support	f1-score	recall	precision	
54	0.57	0.43	0.88	0
100	0.85	0.97	0.76	1
154	0.78			accuracy
154	0.71	0.70	0.82	macro avg
154	0.75	0.78	0.80	weighted avg

77.92% Accurate

Hyperparameter tuning

```
print(classification_report(y_test, y_predict))

# print out the accuracy score

RF_tuning_SC = accuracy_score(y_predict,y_test)
print(f"{round(RF_tuning_SC*100,2)}% Accurate")
```

	precision	recall	f1-score	support
0	0.88	0.43	0.57	54
1	0.76	0.97	0.85	100
accuracy			0.78	154
macro avg	0.82	0.70	0.71	154
weighted avg	0.80	0.78	0.75	154

77.92% Accurate

Out[26]:		Model	Accuracy Score
	1	Random Forest	0.779221
	2	Hyperparameter Tunning	0.779221
	3	Logistic Regression	0.772727
	0	Decision Tree	0.668831

Conclusions

- 1. Loan Status is the most dependent on credit history as they have a high correlation ratio
- 2. The random forest after using hyperparameter tuning is the most accurate as modifying parameters could achieve an optimal model architecture