Pesquisa Operacional

Sensibilidade e Dualidade

Felipe Augusto Lima Reis

felipe.reis@ifmg.edu.br

Sumário

Análise de Sensibilidade

2 Dualidade

- Análise de Sensibilidade é utilizada para avaliação do impacto de alterações dos parâmetros na solução ótima [Goldbarg and Luna, 2005] [Belfiore and Fávero, 2013];
- As seguinte alterações nos parâmetros podem ser avaliadas:
 - Mudança no vetor de custos;
 - Mudança no vetor de termos independentes;
 - Mudança nos coeficientes das variáveis;
 - Acréscimo de restrições;
 - Acréscimo de novas variáveis [Goldbarg and Luna, 2005].

- [Belfiore and Fávero, 2013] divide a Análise de Sensibilidade em dois casos distintos:
 - Modificações que não alteram a solução ótima (variáveis) ou a região de factibilidade
 - Avalia alterações nos valores que os coeficientes da função objetivo e que as constantes do lado direito das restrições podem assumir (limites inferiores e superiores);
 - Devem ser analisadas uma única modificação por vez;
 - Modificações que alteram a solução ótima
 - Denominada Análise de Sensibilidade Pós Otimização, necessita do recálculo da nova solução ótima do modelo;
 - Pode analisar múltiplas modificação de uma só vez.

- De forma teórica, iremos estudar apenas as modificações que não alteram os valores das variáveis da solução ótima ou a região de factibilidade;
 - Iremos adotar, com base em [Belfiore and Fávero, 2013], a solução pelo Método Gráfico;
 - Para isso, deveremos estudar/rever conceitos relativos à inclinação de retas;
- De forma prática, usando softwares para solução de PPL, iremos estudar cenários onde há alteração da solução / variáveis ótimas
 - Para isso, iremos utilizar programação em Python (PuLP).

Inclinação de Reta

• A inclinação de reta α corresponde ao ângulo entre o eixo x e a reta, no sentido anti-horário.

Fonte: [Belfiore and Fávero, 2013]

Inclinação de Reta

- O coeficiente angular (declividade) m determina a direção da reta, definida pela tangente trigonométrica da inclinação α :
 - O coeficiente angular pode ser calculado a partir de dois pontos na reta:

$$m = \operatorname{tg} \alpha = \frac{\operatorname{cat. oposto}}{\operatorname{cat. adjacente}} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

• Pode ainda ser calculado a partir da equação reduzida de reta ax + by + c = 0, reescrita como: [Belfiore and Fávero, 2013]

$$y = -\frac{ax}{b} - \frac{c}{b} \rightarrow y = mx + n$$
, onde $m = -\frac{a}{b}$ e $n = -\frac{c}{b}$

 Na equação anterior, m é denominado coeficiente angular da reta e n é denominado coeficiente linear da reta.

Inclinação de Reta

• A equação geral de uma função objetivo com variáveis x_1 e x_2 , $z = c_1x_1 + c_2x_2$, em sua forma reduzida, é definida como:

$$x_2 = -\frac{c_1}{c_2}x_1 + \frac{z}{c_2}$$

- Considerando um problema com duas restrições ativas¹, podemos calcular os coeficientes angulares das restrições
 - O coeficiente angular da função objetivo, $-c_1/c_2$, estará entre os coeficientes angulares das restrições 1 (m_1) e 2 (m_2) .

$$m_1 \leq -\frac{c_1}{c_2} \leq m_2$$

 Caso a alteração não exceda o intervalo, a alteração não produzirá mudanças na solução ótima (valores de x₁ e x₂).

¹O valor ótimo está na junção de duas restrições (o sistema de equações gera um ponto no gráfico).

A empresa Romes Calçados está interessada em planejar sua produção de chinelos e tamancos para o próximo verão. Os produtos passam pelo processo de corte, montagem e acabamento. A tabela abaixo mostra o total de horas de mão de obra (horas-homem) necessárias para produzir uma unidade de cada componente em cada processo de fabricação, além do tempo total disponível por semana, também em horas-homem. O lucro unitário por chinelo e tamanco fabricado é de R\$15,00 e R\$20,00, respectivamente. Determinar a solução gráfica do modelo.

Setor	Tempo (horas-homem) para processar 1 unidade		Tempo disponível
	chinelo	tamanco	(horas-homem/semana)
corte	5	4	240
montagem	4	8	360
acabamento	0	7,5	300

Fonte: [Belfiore and Fávero, 2013]

O problema pode ser modelado como:

$$\begin{aligned} \max \ z &= 15x_1 + 20x_2 \\ \text{suj. a:} & 5x_1 + 4x_2 \leq 240 \qquad \text{(corte)} \\ 4x_1 + 8x_2 \leq 360 \qquad \text{(montagem)} \\ 7,5x_2 \leq 300 \qquad \text{(acabamento)} \\ x_1,\ x_2 \geq 0 \qquad \text{(não negatividade)} \end{aligned}$$

onde,

 $x_1 = \text{quantidade de chinelos produzidos por semana, e}$

 $x_2 =$ quantidade de tamancos produzidos por semana.

- A partir da solução do problema, temos os seguintes valores:
 - z = 1000 (lucro líquido semanal);
 - $x_1 = 20$ (chinelos por semana);
 - $x_2 = 35$ (tamancos por semana).

- A partir da solução do problema usando o método gráfico, podemos ver que o valor ótimo está na interseção das restrições 1 e 2 (restrições ativas)
 - Podemos calcular as inclinações e avaliar o intervalo para o qual mudanças na função objetivo não alteram a solução ótima.

Restrição 1:

$$x_2 = -\frac{5}{4}x_1 + 60 \rightarrow m_1 = -\frac{5}{4}$$

Restrição 2

$$x_2 = -\frac{1}{2}x_1 + 45 \quad \rightarrow \quad m_2 = -\frac{1}{2}$$

- A partir da solução do problema usando o método gráfico, podemos ver que o valor ótimo está na interseção das restrições 1 e 2 (restrições ativas)
 - Podemos calcular as inclinações e avaliar o intervalo para o qual mudanças na função objetivo não alteram a solução ótima.

Restrição 1:

$$x_2 = -\frac{5}{4}x_1 + 60 \quad \to \quad m_1 = -\frac{5}{4}$$

Restrição 2

$$x_2 = -\frac{1}{2}x_1 + 45 \quad \rightarrow \quad m_2 = -\frac{1}{2}$$

- A partir da solução do problema usando o método gráfico, podemos ver que o valor ótimo está na interseção das restrições 1 e 2 (restrições ativas)
 - Podemos calcular as inclinações e avaliar o intervalo para o qual mudanças na função objetivo não alteram a solução ótima.

Restrição 1:

$$x_2 = -\frac{5}{4}x_1 + 60 \quad \to \quad m_1 = -\frac{5}{4}$$

Restrição 2:

$$x_2 = -\frac{1}{2}x_1 + 45 \quad \rightarrow \quad m_2 = -\frac{1}{2}$$

 A partir das restrições ativas podemos calcular o intervalo no qual não há alteração da solução ótima.

$$-\frac{5}{4} \le \frac{c_1}{c_2} \le -\frac{1}{2} \quad \to \quad \frac{1}{2} \le \frac{c_1}{c_2} \le \frac{5}{4}$$

- Caso os aumentos dos lucros unitários passe de R\$15,00 e R\$20,00, respectivamente, para R\$20,00 e R\$25,00, haverá alteração nas condições iniciais?
 - Calculando o fator c_1/c_2 , vemos que seu valor será igual a 0,8;
 - Como $0,5 \le 0,8 \le 1,25$, a modificação não altera a solução ótima;
 - O lucro será, então, de $z = 20 \times 20 + 25 \times 35 = 1275$.

 A partir das restrições ativas podemos calcular o intervalo no qual não há alteração da solução ótima.

$$\boxed{-\frac{5}{4} \le \frac{c_1}{c_2} \le -\frac{1}{2} \quad \to \quad \frac{1}{2} \le \frac{c_1}{c_2} \le \frac{5}{4}}$$

- Caso os aumentos dos lucros unitários passe de R\$15,00 e R\$20,00, respectivamente, para R\$20,00 e R\$25,00, haverá alteração nas condições iniciais?
 - Calculando o fator c_1/c_2 , vemos que seu valor será igual a 0,8;
 - Como $0,5 \le 0,8 \le 1,25$, a modificação não altera a solução ótima;
 - O lucro será, então, de $z = 20 \times 20 + 25 \times 35 = 1275$.

 A partir das restrições ativas podemos calcular o intervalo no qual não há alteração da solução ótima.

$$-\frac{5}{4} \le \frac{c_1}{c_2} \le -\frac{1}{2} \quad \to \quad \frac{1}{2} \le \frac{c_1}{c_2} \le \frac{5}{4}$$

- Caso os aumentos dos lucros unitários passe de R\$15,00 e R\$20,00, respectivamente, para R\$20,00 e R\$25,00, haverá alteração nas condições iniciais?
 - Calculando o fator c_1/c_2 , vemos que seu valor será igual a 0,8;
 - Como $0,5 \le 0,8 \le 1,25$, a modificação não altera a solução ótima;
 - O lucro será, então, de $z = 20 \times 20 + 25 \times 35 = 1275$.

- [continuação...]
 - Qual o intervalo de valores que c₂ pode assumir, a partir do problema original, de modo que não haja alteração das condições da solução ótima?
 - A partir do intervalo de c_1/c_2 , temos

$$\begin{cases} 0, 5 \ c_2 \le 15 \ \to c_2 \le 30 \\ 1, 25 \ c_2 \ge 15 \ \to c_2 \ge 12 \end{cases}$$

- Com base nos cálculos anteriores, temos que as solução $(x_1=20,x_2=35)$ permanecerá inalterada² se $12 \le c_2 \le 30$.
- Suponha que o lucro unitário de c_2 caiu para R\$18,00. Qual o intervalo de lucro de c_1 para manutenção da solução atual?
 - Definindo $c_2=18$, temos que o intervalo ficará $0,5\times 18 \le c_1 \le 1,25\times 18 \ \to \ 9 \le c_1 \le 22,5.$

²Apenas a quantidade de itens produzidos de x_1 e x_2 , não necessariamente o valor ótimo

- [continuação...]
 - Qual o intervalo de valores que c₂ pode assumir, a partir do problema original, de modo que não haja alteração das condições da solução ótima?
 - A partir do intervalo de c_1/c_2 , temos:

$$\begin{cases} 0, 5 \ c_2 \le 15 \ \to c_2 \le 30 \\ 1, 25 \ c_2 \ge 15 \ \to c_2 \ge 12 \end{cases}$$

- Com base nos cálculos anteriores, temos que as solução $(x_1 = 20, x_2 = 35)$ permanecerá inalterada² se $12 \le c_2 \le 30$.
- Suponha que o lucro unitário de c_2 caiu para R\$18,00. Qual o intervalo de lucro de c_1 para manutenção da solução atual?
 - Definindo $c_2=18$, temos que o intervalo ficará $0,5\times 18\leq c_1\leq 1,25\times 18 \ \rightarrow \ 9\leq c_1\leq 22,5.$

²Apenas a quantidade de itens produzidos de x_1 e x_2 , não necessariamente o valor ótimo z.

- [continuação...]
 - Qual o intervalo de valores que c₂ pode assumir, a partir do problema original, de modo que não haja alteração das condições da solução ótima?
 - A partir do intervalo de c_1/c_2 , temos:

$$\begin{cases} 0,5 \ c_2 \le 15 \ \to c_2 \le 30 \\ 1,25 \ c_2 \ge 15 \ \to c_2 \ge 12 \end{cases}$$

- Com base nos cálculos anteriores, temos que as solução $(x_1=20,x_2=35)$ permanecerá inalterada² se $12 \le c_2 \le 30$.
- Suponha que o lucro unitário de c_2 caiu para R\$18,00. Qual o intervalo de lucro de c_1 para manutenção da solução atual?
 - Definindo $c_2=18$, temos que o intervalo ficará $0.5 \times 18 \le c_1 \le 1.25 \times 18 \ \rightarrow \ 9 \le c_1 \le 22.5$.

²Apenas a quantidade de itens produzidos de x_1 e x_2 , não necessariamente o valor ótimo z.

- [continuação...]
 - Qual o intervalo de valores que c₂ pode assumir, a partir do problema original, de modo que não haja alteração das condições da solução ótima?
 - A partir do intervalo de c_1/c_2 , temos:

$$\begin{cases} 0, 5 \ c_2 \le 15 \ \to c_2 \le 30 \\ 1, 25 \ c_2 \ge 15 \ \to c_2 \ge 12 \end{cases}$$

- Com base nos cálculos anteriores, temos que as solução $(x_1 = 20, x_2 = 35)$ permanecerá inalterada² se $12 < c_2 < 30$.
- Suponha que o lucro unitário de c_2 caiu para R\$18,00. Qual o intervalo de lucro de c_1 para manutenção da solução atual?
 - Definindo $c_2 = 18$, temos que o intervalo ficará $0.5 \times 18 < c_1 < 1.25 \times 18 \rightarrow 9 < c_1 < 22.5$

15 / 49

²Apenas a quantidade de itens produzidos de x_1 e x_2 . não necessariamente o valor ótimo z. Pesquisa Operacional - Sensibilidade e Dualidade

- Preço Sombra (shadow price) corresponde ao "acréscimo (ou decréscimo) no valor da função objetivo caso seja adicionada (ou retirada) uma unidade na quantidade atual de recursos disponíveis da i-ésima restrição" [Belfiore and Fávero, 2013]
 - Caso seja adicionado uma unidade à uma restrição i ($b_i + 1$), qual será o impacto no valor da função objetivo?
 - O preço sombra busca responder a essa questão e avaliar o comportamento do modelo nessa condição;
 - De forma análoga, pode ser usado para avaliar o decréscimo de uma unidade de uma restrição i.

- O preço sombra pode ser interpretado como:
 - Preço justo a ser pago pela utilização de uma unidade do recurso i;
 - Custo de oportunidade de recursos pela perda de uma unidade do recurso i [Belfiore and Fávero, 2013];
- Preço sombra também corresponde ao nome dado às variáveis de decisão do problema dual [Belfiore and Fávero, 2013].

• O preço sombra para adição de uma unidade em um recurso b_i^0 é dada por: [Belfiore and Fávero, 2013]

$$P_{i} = \frac{\Delta z_{+1}}{\Delta b_{i,+1}} = \frac{z_{+1} - z_{0}}{+1}$$

onde,

 $\Delta z_{+1} =$ acréscimo no valor de z caso seja adicionada 1 unidade de recurso em b_i^0 ; $z_0 =$ valor inicial da função objetivo;

 z_{+1} = novo valor da função objetivo após ser adicionada 1 unidade em b_i^0 ; e $\Delta b_{i,+1}$ = acréscimo em b_i^0 (definição de preço-sombra).

 O preço sombra para remoção de uma unidade em um recurso b_i⁰ é dada por: [Belfiore and Fávero, 2013]

$$P_i = \frac{\Delta z_{-1}}{\Delta b_{i,-1}} = \frac{z_{-1} - z_0}{-1} = \frac{z_0 - z_{-1}}{1}$$

onde,

 Δz_{-1} = decréscimo no valor de z caso seja adicionada 1 unidade de recurso em b_i^0 ; z_0 = valor inicial da função objetivo;

 z_{-1} = novo valor da função objetivo após ser removida 1 unidade em b_i^0 ; e $\Delta b_{i,+1}$ = decréscimo em b_i^0 (definição de preço-sombra).

- Para alterações em uma das constantes do lado direito da restrição, é necessário utilizar o conceito de preço sombra para cálculo das variáveis;
 - O objetivo da análise é determinar o intervalo de valores em que b_i pode variar;
 - Para isso, é necessário obter o intervalo em que o preço-sombra permanece constante;
 - O cálculo do preço-sombra é válido somente para as restrições ativas;
 - O preço-sombra para restrições não ativas é zero [Belfiore and Fávero, 2013].

 O intervalo em que o preço-sombra deve permanece constante deve satisfazer a seguinte relação: [Belfiore and Fávero, 2013]

$$\frac{\Delta z_{+p}}{\Delta b_{i,+p}} = \frac{\Delta z_{-q}}{\Delta b_{i,-q}} = \frac{z_{+p} - z_0}{p} = \frac{z_{-q} - z_0}{q} = P_i$$

onde,

 $\Delta z_{+p} =$ acréscimo no valor de z se forem adicionadas p unidades de recurso em b_i^0 ; $\Delta z_{-q} =$ acréscimo no valor de z se forem removidas q unidades de recurso em b_i^0 ; $z_0 =$ valor inicial da função objetivo; $z_{+p} =$ novo valor da função objetivo após serem adicionadas p unidades em b_i^0 ; $z_{-q} =$ novo valor da função objetivo após serem removidas q unidades em b_i^0 ; $\Delta b_{i,+p} =$ acréscimo em b_i^0 ; e $\Delta b_{i,-q} =$ acréscimo em b_i^0 ;

- Segundo [Belfiore and Fávero, 2013], a equação do preço sombra pode ser interpretada da seguinte forma:
 - Preço justo a ser pago pela utilização de p unidades do recurso i, sendo proporcional ao preço sombra;
 - Se adicionadas p unidades, o valor da função objetivo cresceria Δz_{+p} = P_i × p;
 - Custo de oportunidade, pela perda de q unidades do recurso i.
 - Se adicionadas q unidades, o valor da função objetivo decresceria $\Delta z_{-q} = P_i \times q$.

- Considere novamente o problema anterior, da Romes Calçados [Belfiore and Fávero, 2013].
 - Qual o impacto da adição de uma hora-homem no setor de corte?
 - Se alterarmos o tempo disponível do setor de cortes em uma hora-homem, a restrição será dada por:

$$5x_1 + 4x_2 \le 241$$

- A solução ótima será dada pela interseção das retas ativas $5x_1 + 4x_2 = 241$ e $4x_1 + 8x_2 = 360$;
- A nova solução ótima será: x₁ = 20, 33, x₂ = 34, 83 e
 z = 1.001, 67.

- Considere novamente o problema anterior, da Romes Calçados [Belfiore and Fávero, 2013].
 - Qual o impacto da adição de uma hora-homem no setor de corte?
 - Se alterarmos o tempo disponível do setor de cortes em uma hora-homem, a restrição será dada por:

$$5x_1 + 4x_2 \le 241$$

- A solução ótima será dada pela interseção das retas ativas $5x_1 + 4x_2 = 241$ e $4x_1 + 8x_2 = 360$;
- A nova solução ótima será: $x_1 = 20, 33, x_2 = 34, 83$ e z = 1.001, 67.

- [continuação...]
 - A solução pelo método gráfico pode ser vista na figura abaixo:

- [continuação...]
 - Qual o preço sombra do setor de corte?
 - O preço sombra pode ser calculado por:

$$P_1 = \frac{1001,67 - 1000}{241 - 240} = 1,67$$

- Podemos concluir que a adição de uma hora-homem no setor de corte causa um aumento no valor da função objetivo de 1.67.
- De forma similar, o preço justo para cada hora-homem no setor de corte é 1,67 [Belfiore and Fávero, 2013].

- [continuação...]
 - Qual o preço sombra do setor de corte?
 - O preço sombra pode ser calculado por:

$$P_1 = \frac{1001,67 - 1000}{241 - 240} = 1,67$$

- Podemos concluir que a adição de uma hora-homem no setor de corte causa um aumento no valor da função objetivo de 1,67.
- De forma similar, o preço justo para cada hora-homem no setor de corte é 1,67 [Belfiore and Fávero, 2013].

- [continuação...]
 - Caso reduzissemos uma hora-homem, qual seria o impacto no setor de cortes?
 - Usando a fórmula negativa, o preço sombra também pode ser calculado como:

$$P_1 = \frac{1000 - 998, 33}{240 - 239} = 1,67$$

- Podemos concluir que cada hora-homem retirada do setor de corte promove um decrescimento na função objetivo de 1,67;
- De forma similar, o custo de oportunidade por cada hora-homem perdida no setor de corte é 1,67 [Belfiore and Fávero, 2013].

- [continuação...]
 - Caso reduzissemos uma hora-homem, qual seria o impacto no setor de cortes?
 - Usando a fórmula negativa, o preço sombra também pode ser calculado como:

$$P_1 = \frac{1000 - 998, 33}{240 - 239} = 1,67$$

- Podemos concluir que cada hora-homem retirada do setor de corte promove um decrescimento na função objetivo de 1,67;
- De forma similar, o custo de oportunidade por cada hora-homem perdida no setor de corte é 1,67 [Belfiore and Fávero, 2013].

- [continuação...]
 - Qual o crescimento e decrescimento máximos permitidos para um valor b_1 (setor de corte)?
 - ullet O valor de b_1 deve variar no intervalo $b_1^0-q \leq b_1 \leq b_1^0+p$
 - A partir do cálculos dos preços sombras, temos que o intervalo possível é 1,67 × q ≤ b₁ ≤ 1,67 × p;
 - Percebemos pelo gráfico anterior que a nova reta da solução ótima é paralela à reta da solução original;
 - Com isso, o objetivo seria deslocar a reta o máximo possível, paralelamente à reta da solução original, produzindo uma nova solução ótima.

- [continuação...]
 - Qual o crescimento e decrescimento máximos permitidos para um valor b_1 (setor de corte)?
 - ullet O valor de b_1 deve variar no intervalo $b_1^0-q \leq b_1 \leq b_1^0+p$
 - A partir do cálculos dos preços sombras, temos que o intervalo possível é $1,67 \times q \leq b_1 \leq 1,67 \times p$;
 - Percebemos pelo gráfico anterior que a nova reta da solução ótima é paralela à reta da solução original;
 - Com isso, o objetivo seria deslocar a reta o máximo possível, paralelamente à reta da solução original, produzindo uma nova solução ótima.

- [continuação...]
 - Temos, para o cenário indicado, a seguinte representação gráfica:

Fonte: [Belfiore and Fávero, 2013]

- [continuação...]
 - Qual o crescimento e decrescimento máximos permitido para um valor b₁ (setor de corte)?
 - Pela imagem, podemos definir os pontos D e G como limites da direção de deslocamento;
 - Os pontos D e G correspondem, graficamente, aos pontos (10, 40) e (90, 0);
 - Substituindo os valores na equação da restrição $(5x_1 + 4x_2)$, temos que D = 210 e G = 450;
 - Logo, enquanto tivermos $210 \le b_1 \le 450$, a solução (x_1,x_2) permanecerá constante;
 - Considerando o valor original (b₁⁰ = 240), temos o seguinte intervalo: b₁⁰ − 30 ≤ b₁ ≤ b₁⁰ + 210;
 - O lucro de cada cenário pode ser calculado para o intervalo

- [continuação...]
 - Qual o crescimento e decrescimento máximos permitido para um valor b₁ (setor de corte)?
 - Pela imagem, podemos definir os pontos D e G como limites da direção de deslocamento;
 - Os pontos D e G correspondem, graficamente, aos pontos (10, 40) e (90, 0);
 - Substituindo os valores na equação da restrição $(5x_1 + 4x_2)$, temos que D = 210 e G = 450;
 - Logo, enquanto tivermos $210 \le b_1 \le 450$, a solução (x_1, x_2) permanecerá constante;
 - Considerando o valor original ($b_1^0 = 240$), temos o seguinte intervalo: $b_1^0 30 \le b_1 \le b_1^0 + 210$;
 - O lucro de cada cenário pode ser calculado para o intervalo.

DUALIDADE

Dualidade

- "Dualidade é um conceito amplo que engloba a possibilidade do tratamento de duas naturezas distintas de uma mesma entidade". [Goldbarg and Luna, 2005]
 - Correspondem a processos que podem ser representados por modelos de estruturas distintas e comportamentos iguais
 - A interpretação, entretanto, é completamente diferente;
 - Ex.: Para aumentar o lucro de uma empresa, podemos atuar tanto na maximização de receitas quanto na minimização de custos.

Dualidade

- Problemas duais correspondem a um par de modelos de PL, compostos por um problema primal e um problema dual, que respeitam as seguinte condições: [Goldbarg and Luna, 2005]
 - Possuem funções objetivo simétricas:
 - Se o problema primal é de maximização então, o problema dual é de minimização (e vice-versa);
 - Possuem simetria nas restrições:
 - ullet Restrições de \leq no problema primal correspondem a restrições de \geq no dual (e vice-versa);
 - Termos independentes no problema primal surgem como os coeficientes da função objetivo no dual (e vice-versa);
 - A matriz de restrição do problema primal é a transposta da matriz de restrição do dual (e vice-versa).

Dualidade

- Apesar das características distintas, os problemas primal e dual levam à mesma solução ótima [Belfiore and Fávero, 2013];
- A teoria da dualidade pode ser aplicada em casos em que a solução do problema primal não é simples ou trivial;
 - A solução do problema dual pode ser mais simples;
 - Além disso, a teoria da dualidade possibilita uma interpretação econômica adicional [Belfiore and Fávero, 2013].

Conversão Primal \leftrightarrow Dual

 A conversão de um problema primal em um problema dual pode ser representada na tabela abaixo.

	Primal	Dual	
	$\operatorname{Min} z = cx$	Max w = ub	
Forma Canônica	sujeito a: Ax ≥ b	sujeito a: uA ≤ c	
	$x \ge 0$	<i>u</i> ≥ 0	
	Min z = cx	Max w = ub	
Forma Padrão	sujeito a:	sujeito a:	
	Ax = b	$uA \leq c$	
	<i>x</i> ≥ 0	$u \in R$	

Fonte: [Goldbarg and Luna, 2005]

Conversão Primal \leftrightarrow Dual - Generalização

 De forma geral, a conversão de um problema primal em um problema dual é resumida na tabela abaixo.

Primal	Dual		
objetivo (maximização)	objetivo (minimização)		
objetivo (minimização)	objetivo (maximização)		
restrição \geq	variável ≤ 0		
restrição \leq	variável ≥ 0		
restrição =	variável irrestrita		
variável ≥ 0	restrição ≥		
variável ≤ 0	restrição \leq		
variável irrestrita	restrição =		

Fonte: Adaptado de [Oliveira and Carravilla, 2013] [Taha, 2007]

Conversão Primal \leftrightarrow Dual - Exemplo

• Exemplo da conversão de um problema primal em um problema dual:

Duai				Primai					
			$3y_1 + 4y_2 + 9y_3$	min				$5x_1 + 2x_2$	max
			$y_1 + y_3 y_2 + 2y_3$	s.t.	(2)	4	\leq	x ₁ x ₂	s.t.
(3)	0	\geq	y_1, y_2, y_3			_	_	$x_1 + 2x_2$ x_1, x_2	

Fonte: [Diego Mello da Silva, 2016]

Teoremas

Dualidade Fraca

 Se x é uma solução factível para o problema primal, e u é a solução factível para o problema dual, então:

$$u'b \leq c'x$$

- Corolário:
 - Se x e u são, respectivamente, soluções factíveis para o primal e dual, e $u'b \le c'x$, então x e u são soluções ótimas para o primal e dual, respectivamente [Goldbarg and Luna, 2005].

Dualidade Forte

 Se um PPL tem uma solução ótima, então seu dual também possui solução e os respectivos custos ótimos são iguais [Diego Mello da Silva, 2016].

Teoremas

- Teorema da Existência
 - Para um par de problemas duais, uma e somente uma das alternativas é verdadeira [Goldbarg and Luna, 2005]:
 - Nenhum dos problemas tem solução;
 - Um deles não tem solução viável e o outro tem solução ótima ilimitada.
 - Ambos possuem solução ótima finita
- O Teorema da Existência pode ser resumido na tabela abaixo:

		Dual		
		Viável	Inviável (U = ∅)	
Primal	Viável	Min cx = Max ub	$cx = -\infty$	
	Inviável (X = ∅)	$ub = + \infty$	possível	

Fonte: [Goldbarg and Luna, 2005]

Teoremas

- Teorema das Folgas Complementares
 - Dado um par de programas duais, uma condição necessária e suficiente para que as soluções x e u sejam ótimas é que se verifiquem as seguintes relações de complementaridade de folga:

1
$$u(Ax - b) = 0$$

$$(c - uA)x = 0$$

- A programação matemática pode ser utilizada para a tomada de decisão nos sistemas de produção;
 - Ela é capaz de prover uma análise econômica racional;
- Em problemas econômicos, podemos representar o problema primal como um modelo de alocação de recursos;
 - O objetivo, comumente, é maximizar um recurso ou uma receita [Diego Mello da Silva, 2016].

- Como contexto teórico econômico, o método Simplex auxilia na definição do equilíbrio entre o valor agregado de um processo/produto em relação aos insumos que o constituem [Goldbarg and Luna, 2005].
 - Teoria do custo de oportunidade: corresponde à oportunidade renunciada ao escolher um determinado bem, produto e/ou insumo;
 - Ex.: Ao comprar um carro à vista, você renuncia ao possível lucro gerado pelo aplicação financeira resultante do dinheiro usado para compra do carro.

- Para um sistema de produção modelado em um PPL de maximização, objetivando o lucro e restrito a fatores de produção, o problema dual deve satisfazer à teoria do valor marginal: [Goldbarg and Luna, 2005]
 - O valor da unidade marginal de um fator de produção é igual ao máximo valor da produção que poderia ser obtida usando essa unidade do fator." [Carl Menger, 1871]³

 Na interpretação utilizada por [Goldbarg and Luna, 2005], maximização de lucros na face primal, é substituído pela minimização de custos, na face dual.

Fonte: Adaptado de [Goldbarg and Luna, 2005]

• Considere a relação entre o problema primal e dual:

$$z = \sum_{j=1}^n c_j x_j \le \sum_{i=1}^n u_i b_i = w$$

- A igualdade z = w é valida quando ambas as soluções primal e dual são ótimas;
- ullet Podemos interpretar a igualdade z=w da seguinte maneira:

receita =
$$\sum_{i}$$
 (unidades recursos i) × (\$ por unidades do recurso i)

- Variável dual u_i representa o valor equivalente por unidade do recurso i;
 - Ela corresponde ao preço sombra (shadow price) do recurso i;
- O preço sombra indica qual a modificação na função objetivo se aumentarmos 1 unidade do i-ésimo recurso;
 - Também pode ser interpretado como o custo marginal por unidade aumentada no i-ésimo recurso b_i;
 - Na otimalidade ele é interpretado como o "preço justo" por unidade do i-ésimo recurso.

 De forma semelhante, podemos representar a desigualdade z ≤ w como:

receita ≤ valor equivalente de recursos

- Quando a receita de todas as atividades for menor do que o valor equivalente dos recursos, as soluções do primal e dual não são ótimas.
- Otimalidade somente é atingida quando os recursos são explorados completamente
 - Quando a entrada (valor equivalente dos recursos) for igual a saída (receita) [Diego Mello da Silva, 2016].

Referências I

Belfiore, P. and Fávero, L. P. (2013).

Pesquisa operacional para cursos de engenharia. Elsevier, 1 edition.

Diego Mello da Silva (2016).

Pesquisa Operacional - Slides de Aula.

IFMG - Instituto Federal de Minas Gerais, Campus Formiga.

Goldbarg, M. C. and Luna, H. P. L. (2005).

Otimização combinatória e programação linear: modelos e algoritmos. Elsevier. 2 edition.

Oliveira, J. F. and Carravilla, M. A. (2013).

 $\label{eq:Duality in linear programming - companion slides of applied mathematical programming by bradley, hax, and magnanti.$

[Online]; acessado em 11 de Outubro de 2020. Disponível em: https://web.fe.up.pt/-mac/ensino/docs/OT20122013/Chapter%204%20-%20Duality%20in%20Linear%20Programming.pdf.

Taha, H. A. (2007).

Pesquisa Operacional.

Editora Prentice-Hall, 8 edition.