A HERBRAND-RIBET THEOREM FOR FUNCTION FIELDS

LENNY TAELMAN

ABSTRACT. We prove a function field analogue of the Herbrand-Ribet theorem on cyclotomic number fields. The Herbrand-Ribet theorem can be interpreted as a result about cohomology with μ_p -coefficients over the splitting field of μ_p , and in our analogue both occurrences of μ_p are replaced with the p-torsion scheme of the Carlitz module for a prime $\mathfrak p$ in $\mathbf F_q[t].$

Contents

1.	Introduction and statement of the theorem	1
2.	Tables of small irregular primes	4
3.	Notation and conventions	4
4.	Overview of the proof	5
5.	Flat duality	7
6.	Flat cohomology with $(A/\mathfrak{p})^{\mathrm{D}}$ coefficients	8
7.	Comparing $(A/\mathfrak{p})^{\mathrm{D}}$ and $C[\mathfrak{p}]^{\mathrm{D}}$ -coefficients	9
8.	A candidate cohomology class	11
9.	Vanishing of λ_n	13
10.	Complement: the class module of Y	15
Ref	16	

1. Introduction and statement of the theorem

Let p be a prime number, $F = \mathbf{Q}(\zeta_p)$ the p-th cyclotomic number field and $\operatorname{Pic} \mathcal{O}_F$ its class group. Then $\mathbf{F}_p \otimes_{\mathbf{Z}} \operatorname{Pic} \mathcal{O}_F$ decomposes in eigenspaces under the action of the Galois group $\operatorname{Gal}(F/\mathbf{Q})$ as

$$\mathbf{F}_p \otimes_{\mathbf{Z}} \operatorname{Pic} \mathcal{O}_F = \bigoplus_{n=1}^{p-1} \left(\mathbf{F}_p \otimes_{\mathbf{Z}} \operatorname{Pic} \mathcal{O}_F \right) \left(\omega^n \right)$$

where $\omega \colon \operatorname{Gal}(F/\mathbf{Q}) \to \mathbf{F}_p^{\times}$ is the cyclotomic character.

If n is a nonnegative integer we denote by B_n the n-th Bernoulli number, defined by the identity

$$\frac{z}{\exp z - 1} = \sum_{n=0}^{\infty} B_n \frac{z^n}{n!}.$$

If n is smaller than p then B_n is p-integral. The Herbrand-Ribet theorem [9] [14] states that if n is even and 1 < n < p then

$$(\mathbf{F}_p \otimes_{\mathbf{Z}} \operatorname{Pic} \mathcal{O}_F) (\omega^{1-n}) \neq 0$$
 if and only if $p \mid B_n$.

The Kummer-Vandiver conjecture asserts that for all odd n we have

$$(\mathbf{F}_p \otimes_{\mathbf{Z}} \operatorname{Pic} \mathcal{O}_F) (\omega^{1-n}) = 0.$$

In this paper we will state and prove a function field analogue of the Herbrand-Ribet theorem and state an analogue of the Kummer-Vandiver conjecture.

Let k be a finite field of q elements and A = k[t] the polynomial ring in one variable t over k. Let K be the fraction field of A.

Definition 1. The Carlitz module is the A-module scheme C over Spec A whose underlying k-vectorspace scheme is the additive group \mathbf{G}_a and whose k[t]-module structure is given by the k-algebra homomorphism

$$\varphi \colon A \to \operatorname{End}(\mathbf{G}_a), \ t \mapsto t + F,$$

where F is the q-th power Frobenius endomorphism of \mathbf{G}_a .

The Carlitz module is in many ways an A-module analogue of the **Z**-module scheme \mathbf{G}_m . For example, the $\operatorname{Gal}(K^{\operatorname{sep}}/K)$ -action on torsion points is formally similar to the $\operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$ -action on roots of unity:

Proposition 1 ([7, §7.5]). Let $\mathfrak{p} \subset A$ be a nonzero prime ideal, then $C[\mathfrak{p}](K^{\text{sep}}) \cong A/\mathfrak{p}$ and the resulting Galois representation

$$\rho \colon \operatorname{Gal}(K^{\operatorname{sep}}/K) \longrightarrow (A/\mathfrak{p})^{\times}.$$

satisfies

(1) if a prime $\mathfrak{q} \subset A$ is coprime with \mathfrak{p} then ρ is unramified at \mathfrak{q} and maps a Frobenius element to the class in $(A/\mathfrak{p})^{\times}$ of the monic generator of \mathfrak{q} ;

- (2) $\rho(D_{\infty}) = \rho(I_{\infty}) = k^{\times};$
- (3) $\rho(D_{\mathfrak{p}}) = \rho(I_{\mathfrak{p}}) = (A/\mathfrak{p})^{\times}$

where the D's and I's denote decomposition and inertia subgroups.

Now fix a nonzero prime ideal $\mathfrak{p}\subset A$ of degree d. Let L be the splitting field of ρ . Then L/K is unramified outside \mathfrak{p} and ∞ , and ρ induces an isomorphism $\chi\colon G=\mathrm{Gal}(L/K)\stackrel{\sim}{\longrightarrow} (A/\mathfrak{p})^{\times}$.

Let R be the normalization of A in L and $Y = \operatorname{Spec} R$. Let Y_{fl} be the flat site on Y: the category of schemes locally of finite type over Y, with covering families being the jointly surjective families of flat morphisms.

The \mathfrak{p} -torsion $C[\mathfrak{p}]$ of C is a finite flat group scheme of rank q^d over Spec A. Let $C[\mathfrak{p}]^D$ be the Cartier dual of $C[\mathfrak{p}]$ and consider the decomposition

$$\mathrm{H}^1(Y_{\mathrm{fl}},C[\mathfrak{p}]^{\mathrm{D}})=\bigoplus_{n=1}^{q^d-1}\mathrm{H}^1(Y_{\mathrm{fl}},C[\mathfrak{p}]^{\mathrm{D}})(\chi^n)$$

of the A/\mathfrak{p} -vector space $H^1(Y_{\mathrm{fl}}, C[\mathfrak{p}]^{\mathrm{D}})$ under the natural action of G.

Our analogue of the Herbrand-Ribet theorem will give a criterion for the vanishing of some of these eigenspaces in terms of divisibility by $\mathfrak p$ of the so-called Bernoulli-Carlitz numbers, which we now define.

The Carlitz exponential is the unique power series $e(z) \in K[[z]]$ which satisfies

- (1) $e(z) = z + e_1 z^q + e_2 z^{q^2} + \cdots$ with $e_i \in K$;
- (2) $e(tz) = e(z)^q + te(z)$.

The Carlitz exponential converges on any finite extension of K_{∞} and on an algebraic closure \bar{K}_{∞} it defines a surjective homomorphism of A-modules

$$e \colon \bar{K}_{\infty} \longrightarrow C(\bar{K}_{\infty})$$

whose kernel is discrete and free of rank 1. We define $BC_n \in K$ by the power series identity

$$\frac{z}{e(z)} = \sum_{n=0}^{\infty} BC_n z^n.$$

If n is not divisible by q-1 then BC_n is zero. If n is less than q^d then BC_n is \mathfrak{p} -integral.

Theorem 1. Let $0 < n < q^d - 1$ be divisible by q - 1. Then \mathfrak{p} divides BC_n if and only if $H^1(Y_{\mathrm{fl}}, C[\mathfrak{p}]^{\mathrm{D}})(\chi^{n-1})$ is nonzero.

This is the analogue of the Herbrand-Ribet theorem. The proof is given in section 4, modulo auxiliary results which are proven in sections 6–9.

In this context a natural analogue of the Kummer-Vandiver conjecture is the following:

Question 1. Does $H^1(Y_{\mathrm{fl}}, C[\mathfrak{p}]^{\mathrm{D}})(\chi^{n-1})$ vanish if n is not divisible by q-1?

By computer calculation we have verified that these groups indeed vanish for small q and primes $\mathfrak p$ of small degree, $see \S 2$. However, if one believes in a function field version of Washington's heuristics [18, $\S 9.3$] then one should expect that counterexamples do exist, but are very sparse, making it difficult to obtain convincing numerical evidence towards Question 1.

Remark 1. Our BC_n differ from the commonly used Bernoulli-Carlitz numbers by a Carlitz factorial factor (see for example [7, §9.2]). This factor is innocent for our purposes since it is a unit at \mathfrak{p} for $n < q^d$.

Remark 2. Let p be an odd prime number, $F = \mathbf{Q}(\zeta_p)$ and $D = \operatorname{Spec} \mathcal{O}_F$. Global duality [10] provides a perfect pairing between

$$\mathbf{F}_p \otimes_{\mathbf{Z}} \operatorname{Pic} D = \operatorname{Ext}^2_{D_{\operatorname{et}}}(\mathbf{Z}/p\mathbf{Z}, \mathbf{G}_{m,D})$$

and

$$\mathrm{H}^1(D_{\mathrm{et}},\mathbf{Z}/p\mathbf{Z}) = \mathrm{H}^1(D_{\mathrm{fl}},\mathbf{Z}/p\mathbf{Z}).$$

The Herbrand-Ribet theorem thus says that (for 1 < n < p - 1 even)

$$p \mid B_n$$
 if and only if $\mathrm{H}^1(D_{\mathrm{fl}}, \mu_p^{\mathrm{D}})(\chi^{n-1}) \neq 0$,

in perfect analogy with the statement of Theorem 1.

Remark 3. The analogy goes even further. In [16] and [15] we have defined a finite A-module H(C/R), analogue of the class group $\operatorname{Pic} \mathcal{O}_F$, and although we will not use this in the proof of Theorem 1, we show in Section 10 of this paper that there are canonical isomorphisms

$$A/\mathfrak{p} \otimes_A H(C/R) \xrightarrow{\sim} \operatorname{Hom}(\operatorname{H}^1(Y_{\mathrm{fl}}, C[\mathfrak{p}]^{\mathrm{D}}), \mathbf{F}_p).$$

Remark 4. A more naive attempt to obtain a function field analogue of the Herbrand-Ribet theorem would be to compare the \mathfrak{p} -divisibility of the Bernoulli-Carlitz numbers with the p-torsion of the divisor class groups of Y and L (where p is the characteristic of k). In other words, to consider cohomology with μ_p -coefficients

on the curves defined by the splitting of $C[\mathfrak{p}]$. Several results of this kind have in fact been obtained by Goss [6], Gekeler [5], Okada [12], and Anglès [2], but there appears to be no complete analogue of the Herbrand-Ribet theoreom in this context.

In the proof of Theorem 1 we will see that the A-module $H^1(Y_{\rm fl}, C[\mathfrak{p}]^{\rm D})$ and the group $(\operatorname{Pic} Y)[p]$ are related, and this relationship might shed some new light on these older results.

Remark 5. I do not know if there is a relation between Question 1 and Anderson's analogue of the Kummer-Vandiver conjecture [1].

Acknowledgements. I am grateful to David Goss for his insistence that I consider the decomposition in isotypical components of the "class module" of [16] and [15], and to the referee for several useful suggestions. The author is supported by a grant of the Netherlands Organisation for Scientific Research (NWO).

2. Tables of small irregular primes

The results of section 10 indicate a method for computing the modules $H^1(Y_{fl}, C[\mathfrak{p}]^D)$ with their G-action in terms of finite-dimensional vector spaces of differential forms on the compactification X of Y.

Assisted by the computer algebra package MAGMA we were able to compute them in the following ranges:

- (1) q = 2 and $\deg \mathfrak{p} \leq 5$;
- (2) q = 3 and $\deg \mathfrak{p} \le 4$;
- (3) q = 4 and $\deg \mathfrak{p} \leq 3$;
- (4) q = 5 and $\deg \mathfrak{p} \leq 3$.

In all these cases $H^1(Y_{\mathrm{fl}}, C[\mathfrak{p}]^{\mathrm{D}})$ turns out to be at most one-dimensional, and to fall in the χ^{n-1} -component with n divisible by q-1 (and hence with \mathfrak{p} dividing BC_n .) In particular we have not found any counterexamples to Question 1.

In tables 1–3 we list all cases where the cohomology group is nontrivial. For q=5 and $\deg \mathfrak{p} \leq 3$ the group turns out to vanish. In the middle columns, only n in the range $1 \leq n < q^{\deg \mathfrak{p}}$ are printed.

$$\begin{array}{c|cccc} & \mathfrak{p} & \{n:\mathfrak{p} \mid BC_n\} & \dim \mathrm{H}^1(Y_{\mathrm{fl}}, C[\mathfrak{p}]^{\mathrm{D}}) \\ \hline (t^4+t+1) & \{9\} & 1 \end{array}$$

Table 1. All irregular primes in $\mathbf{F}_2[t]$ of degree at most 5

3. Notation and conventions

Basic setup. k is a finite field of q elements, p its characteristic. A = k[t] and $\mathfrak{p} \subset A$ a nonzero prime. These data are fixed throughout the text. We denote by d the degree of \mathfrak{p} , so that A/\mathfrak{p} is a field of q^d elements.

The Carlitz module. The Carlitz module is the A-module scheme C over Spec A defined in Definition 1.

Cyclotomic curves and fields. K is the fraction field of A, and L/K the splitting field of $C[\mathfrak{p}]_K$. The integral closure of A in L is denoted by R, and $Y = \operatorname{Spec} R$. We denote by $\mathfrak{P} \subset R$ the unique prime lying above $\mathfrak{p} \subset A$.

Sites. For any scheme S we denote by $S_{\rm et}$ the small étale site on S and by $S_{\rm fl}$ the flat site in the sense of [11]: the category of schemes locally of finite type over S

p	$\{n: \mathfrak{p} \mid BC_n\}$	$\dim \mathrm{H}^1(Y_{\mathrm{fl}}, C[\mathfrak{p}]^{\mathrm{D}})$
$(t^3 - t + 1)$	{10}	1
$(t^3 - t - 1)$	{10}	1
$(t^4 - t^3 + t^2 + 1)$	{40}	1
$(t^4 - t^2 - 1)$	{32}	1
$(t^4 - t^3 - t^2 + t - 1)$	$\{32\}$	1
$(t^4 + t^3 + t^2 + 1)$	{40}	1
$(t^4 + t^3 - t^2 - t - 1)$	$\{32\}$	1
$(t^4 + t^2 - 1)$	$\{40\}$	1

TABLE 2. All irregular primes in $\mathbf{F}_3[t]$ of degree at most 4

p	$\{n: \mathfrak{p} \mid BC_n\}$	$\dim \mathrm{H}^1(Y_{\mathrm{fl}}, C[\mathfrak{p}]^{\mathrm{D}})$
$(t^3 + t^2 + t + \alpha)$	{33}	1
$(t^3 + t^2 + t + \alpha^2)$	$\{33\}$	1
$(t^3 + \alpha)$	$\{33\}$	1
$(t^3 + \alpha^2)$	$\{33\}$	1
$(t^3 + \alpha^2 t^2 + \alpha t + \alpha^2)$	${33}$	1
$(t^3 + \alpha t^2 + \alpha^2 t + \alpha)$	${33}$	1
$(t^3 + \alpha t^2 + \alpha^2 t + \alpha^2)$	${33}$	1
$(t^3 + \alpha^2 t^2 + \alpha t + \alpha)$	$\{33\}$	1

TABLE 3. All irregular primes in $\mathbf{F}_4[t]$ of degree at most 3 (with $\mathbf{F}_4 = \mathbf{F}_2(\alpha)$).

where covering families are jointly surjective families of flat morphisms. For every S there is a canonical morphism of sites $f \colon S_{\mathrm{fl}} \to S_{\mathrm{et}}$. Any commutative group scheme over S defines a sheaf of abelian groups on S_{fl} and on S_{et} .

Cartier dual. If G is a finite flat commutative group scheme, then $G^{\mathbb{D}}$ denotes the Cartier dual of G.

Frobenius and Cartier operators. For any k-scheme S we denote by

$$F: \mathbf{G}_{a,S} \to \mathbf{G}_{a,S}, x \mapsto x^q$$

the q-power Frobenius endomorphism of sheaves on $S_{\rm fl}$ or $S_{\rm et}$, and by

$$c: \Omega_S \to \Omega_S$$

the q-Cartier operator of sheaves on $S_{\rm et}$. If $q=p^r$ with p prime this is the r-th power of the usual Cartier operator. The endomorphism c satisfies $c(f^q\omega)=fc(\omega)$ for all local sections f of \mathcal{O}_S and ω of Ω_S . In particular it is k-linear.

4. Overview of the proof

Choose a generator λ of $C[\mathfrak{p}](L)$. It defines a map of finite flat group schemes

$$\lambda \colon (A/\mathfrak{p})_Y \longrightarrow C[\mathfrak{p}]_Y$$

which is an isomorphism over $Y - \mathfrak{P}$. It induces a map of Cartier duals

$$C[\mathfrak{p}]_{V}^{\mathrm{D}} \longrightarrow (A/\mathfrak{p})_{V}^{\mathrm{D}}$$

and a map on cohomology

$$\mathrm{H}^1(Y_{\mathrm{fl}}, C[\mathfrak{p}]^{\mathrm{D}}) \longrightarrow \mathrm{H}^1(Y_{\mathrm{fl}}, (A/\mathfrak{p})^{\mathrm{D}}).$$

This map is not G-equivariant (since λ is not G-invariant), but rather restricts for every n to a map

(1)
$$H^{1}(Y_{\mathrm{fl}}, C[\mathfrak{p}]^{\mathrm{D}})(\chi^{n-1}) \xrightarrow{\lambda} H^{1}(Y_{\mathrm{fl}}, (A/\mathfrak{p})^{\mathrm{D}})(\chi^{n}).$$

We will see in section 6 that there is a natural G-equivariant isomorphism

$$\mathrm{H}^1(Y_{\mathrm{fl}},(A/\mathfrak{p})^{\mathrm{D}}) \xrightarrow{\sim} A/\mathfrak{p} \otimes_k \Omega_R^{\mathrm{c}=1}$$

where $\Omega_R^{c=1}$ is the k-vector space of q-Cartier invariant Kähler differentials. Also, we will see that the Kummer sequence induces a short exact sequence

$$(2) \qquad 0 \longrightarrow A/\mathfrak{p} \otimes_{\mathbf{Z}} \Gamma(Y, \mathcal{O}_{Y}^{\times}) \stackrel{\mathrm{dlog}}{\longrightarrow} A/\mathfrak{p} \otimes_{k} \Omega_{R}^{c=1} \longrightarrow A/\mathfrak{p} \otimes_{\mathbf{F}_{p}} (\mathrm{Pic}\,Y)[p] \longrightarrow 0.$$

Note that the residue field of the completion $R_{\mathfrak{P}}$ is A/\mathfrak{p} , so $R_{\mathfrak{P}}$ is naturally an A/\mathfrak{p} -algebra. In particular, for all m the R-module $\Omega_R/\mathfrak{P}^m\Omega_R$ is naturally an A/\mathfrak{p} -module. Using this the quotient map $\Omega_R \longrightarrow \Omega_R/\mathfrak{P}^m\Omega_R$ extends to an A/\mathfrak{p} -linear map

$$A/\mathfrak{p} \otimes_k \Omega_R \longrightarrow \Omega_R/\mathfrak{P}^m \Omega_R.$$

In section §7 we will use the results on flat duality of Artin and Milne [3] to show the following.

Theorem 2. For all n the sequence of A/\mathfrak{p} -vector spaces

$$0 \longrightarrow \mathrm{H}^1(Y_{\mathrm{fl}}, C[\mathfrak{p}]^{\mathrm{D}})(\chi^{n-1}) \xrightarrow{\lambda} A/\mathfrak{p} \otimes_k \Omega_R^{\mathrm{c}=1}(\chi^n) \longrightarrow \Omega_R/\mathfrak{P}^{q^d}\Omega_R$$

is exact.

The function λ is invertible on $Y - \mathfrak{P}$. Consider the decomposition of $1 \otimes \lambda \in A/\mathfrak{p} \otimes_{\mathbf{Z}} \Gamma(Y - \mathfrak{P}, \mathcal{O}_{V}^{\times})$ in isotypical components:

$$1 \otimes \lambda = \sum_{n=1}^{q^d-1} \lambda_n \quad \text{ with } \quad \lambda_n \in A/\mathfrak{p} \otimes_{\mathbf{Z}} \Gamma(Y - \mathfrak{P}, \mathcal{O}_Y^{\times})(\chi^n).$$

The homomorphism dlog: $R^{\times} \to \Omega_R$ extends to an A/\mathfrak{p} -linear map

$$A/\mathfrak{p} \otimes_{\mathbf{Z}} \Gamma(Y, \mathcal{O}_{\mathbf{Y}}^{\times}) \longrightarrow \Omega_{R}.$$

Inspired by Okada's construction [12] of a Kummer homomorphism for function fields we prove in section 8 the following result.

Theorem 3. If $1 \leq n < q^d - 1$ then $\lambda_n \in A/\mathfrak{p} \otimes_{\mathbf{Z}} \Gamma(Y, \mathcal{O}_Y^{\times})$ and the following are equivalent:

- (1) \mathfrak{p} divides BC_n ;
- (2) dlog λ_n lies in the kernel of $A/\mathfrak{p} \otimes_k \Omega_R \to \Omega_R/\mathfrak{P}^{q^d}\Omega_R$.

It may (and does) happen that λ_n vanishes for some n divisible by q-1. However, the following theorem provides us with sufficient control over the vanishing of λ_n .

Theorem 4. If n is divisible by q-1 but not by q^d-1 then the following are equivalent:

- (1) $\lambda_n = 0$;
- (2) $A/\mathfrak{p} \otimes_{\mathbf{F}_p} (\operatorname{Pic} Y)[p](\chi^n) \neq 0.$

The proof is an adaptation of work of Galovich and Rosen [4], and uses L-functions in characteristic 0. It is given in section 9.

Assuming the three theorems above, we can now prove the main result.

Proof of Theorem 1. Assume q-1 divides n and \mathfrak{p} divides BC_n . We need to show that $H^1(Y_{\mathrm{fl}}, C[\mathfrak{p}]^{\mathrm{D}})(\chi^{1-n})$ is nonzero. Being a (component of) a differential logarithm dlog λ_n is Cartier-invariant and Theorem 3 tells us that

$$\operatorname{dlog} \lambda_n \in A/\mathfrak{p} \otimes_k \Omega_R^{c=1}(\chi^n)$$

maps to 0 in $\Omega_R/\mathfrak{P}^d\Omega_R$. If $\lambda_n \neq 0$ then by Theorem 2 we conclude that $H^1(Y_{\mathrm{fl}}, C[\mathfrak{p}]^{\mathrm{D}})(\chi^{n-1})$ is nonzero and we are done. So assume that $\lambda_n = 0$. Consider the short exact sequence (2). By Theorem 4 we have that

$$\dim_{A/\mathfrak{p}} A/\mathfrak{p} \otimes_{\mathbf{F}_p} (\operatorname{Pic} Y)[p](\chi^n) \ge 1,$$

and since $A/\mathfrak{p} \otimes_{\mathbf{Z}} \Gamma(Y, \mathcal{O}_Y^{\times})(\chi^n)$ is one-dimensional, we find that

$$\dim_{A/\mathfrak{p}} A/\mathfrak{p} \otimes_k \Omega_R^{c=1}(\chi^n) \geq 2.$$

But $\Omega_R/\mathfrak{P}^{q^d}\Omega_R(\chi^n)$ is one-dimensional, so it follows from Theorem 2 that

$$H^{1}(Y_{fl}, C[\mathfrak{p}]^{D})(\chi^{n-1}) \neq 0.$$

Conversely, assume that q-1 divides n and \mathfrak{p} does not divide BC_n . Then Theorem 3 guarantees that dlog λ_n is nonzero and it follows from Theorem 4 and the short exact sequence (2) that

$$\dim A/\mathfrak{p} \otimes_k \Omega_R^{c=1}(\chi^n) = 1.$$

Therefore $A/\mathfrak{p} \otimes_k \Omega_R^{c=1}(\chi^n)$ is generated by dlog λ_n and since the image of dlog λ_n in $\Omega_R/\mathfrak{P}^{q^d}\Omega_R$ is nonzero we conclude from Theorem 2 that $\mathrm{H}^1(Y_{\mathrm{fl}},C[\mathfrak{p}]^{\mathrm{D}})(\chi^{n-1})$ vanishes.

5. Flat duality

In this section we summarize some of the results of Artin and Milne [3] on duality for flat cohomology in characteristic p.

Let S be a scheme over k and \mathcal{V} a quasi-coherent \mathcal{O}_S -module. Then the pull-back $F^*\mathcal{V}$ of \mathcal{V} under $F: S \to S$ is a quasi-coherent \mathcal{O}_S -module and there is a k-linear (typically not \mathcal{O}_S -linear) isomorphism

$$F: \mathcal{V} \longrightarrow F^*\mathcal{V}$$

of sheaves on $S_{\rm fl}$.

If S is smooth of relative dimension 1 over k then the q-Cartier operator induces a canonical map

$$c: \mathcal{H}om(F^*\mathcal{V}, \Omega_{S/k}) \longrightarrow \mathcal{H}om(\mathcal{V}, \Omega_{S/k})$$

of sheaves on S_{et} .

Recall that the we denote the canonical map $S_{\rm fl} \to S_{\rm et}$ by f.

Theorem 5 (Artin & Milne). Let S be smooth of relative dimension 1 over Spec k. Let

$$0 \longrightarrow G \longrightarrow \mathcal{V} \stackrel{\alpha - F}{\longrightarrow} F^* \mathcal{V} \longrightarrow 0$$

be a short exact sequence of sheaves on $S_{\rm fl}$ with

(1) V a locally free coherent \mathcal{O}_S -module:

(2) $\alpha \colon \mathcal{V} \to F^*\mathcal{V}$ a morphism of \mathcal{O}_S -modules.

Then G is a finite flat group scheme and there is a short exact sequence

$$(4) 0 \longrightarrow \mathbf{R}^1 f_* G^{\mathbf{D}} \longrightarrow \mathcal{H}om(F^* \mathcal{V}, \Omega_{S/k}) \stackrel{\alpha-c}{\longrightarrow} \mathcal{H}om(\mathcal{V}, \Omega_{S/k}) \longrightarrow 0$$

of sheaves on $S_{\rm et}$, functorial in (3). Moreover, for all $i \neq 1$ one has $R^i f_* G^D = 0$.

Proof. Locally on S, we have that G is given as a closed subgroup scheme of \mathbf{G}_a^n defined by equations of the form $FX - \alpha X = 0$. In particular G is flat of degree $q^{\mathrm{rk}\,\mathcal{V}}$. The Cartier dual G^{D} of G is a finite flat group scheme of height 1.

If q is prime then the existence of (4) is shown in [3, §2]. One can deduce the general case from this as follows. Assume n is a positive integer, and assume given a short exact sequence

$$0 \longrightarrow G \longrightarrow \mathcal{V} \stackrel{\alpha - F^n}{\longrightarrow} (F^n)^* \mathcal{V} \longrightarrow 0$$

of sheaves on S_{fl} , with $\alpha \colon \mathcal{V} \to (F^n)^* \mathcal{V}$ a \mathcal{O}_S -linear map. Define

$$\mathcal{V}' := \mathcal{V} \oplus F^*\mathcal{V} \oplus \cdots \oplus (F^{n-1})^*\mathcal{V}.$$

The map α induces an \mathcal{O}_S -linear map

$$\alpha' \colon \mathcal{V}' \longrightarrow F^*\mathcal{V}'$$

defined by mapping the component \mathcal{V} to the component $(F^n)^*\mathcal{V}$ using α , and mapping all other components to zero. We thus have a short exact sequence

$$0 \longrightarrow G \longrightarrow \mathcal{V}' \stackrel{\alpha'-F}{\longrightarrow} F^*\mathcal{V}' \longrightarrow 0$$

and one deduces the theorem for F^n from the theorem for F.

Example 5.1. If $k = \mathbf{F}_p$ then the Artin-Schreier exact sequence

$$0 \longrightarrow \mathbf{Z}/p\mathbf{Z} \longrightarrow \mathbf{G}_a \stackrel{1-F}{\longrightarrow} \mathbf{G}_a \longrightarrow 0$$

on $S_{\rm fl}$ induces a dual exact sequence

$$0 \longrightarrow \mathbf{R}^1 f_* \mu_p \longrightarrow \Omega_{S/k} \stackrel{1-\mathrm{c}}{\longrightarrow} \Omega_{S/k} \longrightarrow 0$$

on $S_{\rm et}$, and the exact sequence

$$0 \longrightarrow \alpha_p \longrightarrow \mathbf{G}_a \stackrel{-F}{\longrightarrow} \mathbf{G}_a \longrightarrow 0$$

on $S_{\rm fl}$ induces a dual exact sequence

$$0 \longrightarrow \mathbf{R}^1 f_* \alpha_p \longrightarrow \Omega_{S/k} \stackrel{-\mathbf{c}}{\longrightarrow} \Omega_{S/k} \longrightarrow 0$$

on S_{et} .

6. Flat cohomology with $(A/\mathfrak{p})^{\mathrm{D}}$ coefficients

The constant sheaf A/\mathfrak{p} on Y_{fl} has a resolution

$$0 \longrightarrow A/\mathfrak{p} \longrightarrow A/\mathfrak{p} \otimes_k \mathbf{G}_{a,Y} \stackrel{1-1\otimes F}{\longrightarrow} A/\mathfrak{p} \otimes_k \mathbf{G}_{a,Y} \longrightarrow 0$$

so by Theorem 5 we have $R^i f_*(A/\mathfrak{p})^D = 0$ for $i \neq 1$, and $R^1 f_*(A/\mathfrak{p})^D$ sits in a short exact sequence

$$1 \longrightarrow \mathrm{R}^1 f_* (A/\mathfrak{p})^\mathrm{D} \longrightarrow A/\mathfrak{p} \otimes_k \Omega_Y \stackrel{1 \otimes \mathrm{c} - 1}{\longrightarrow} A/\mathfrak{p} \otimes_k \Omega_Y \longrightarrow 0$$

of sheaves on $Y_{\rm et}$. Taking global sections now yields an isomorphism

$$\mathrm{H}^1(Y_{\mathrm{fl}},(A/\mathfrak{p})^{\mathrm{D}}) \stackrel{\sim}{\longrightarrow} A/\mathfrak{p} \otimes_k \Omega_{R/k}^{\mathrm{c}=1}$$

where $\Omega_{R/k}^{c=1}$ denotes the k-vector space of Cartier-invariant Kähler differentials. On the other hand, we have a natural isomorphism

$$(A/\mathfrak{p})^{\mathrm{D}} \xrightarrow{\sim} A/\mathfrak{p} \otimes_{\mathbf{F}_n} \mu_p,$$

of sheaves on $Y_{\rm fl}$ and the Kummer sequence

$$1 \longrightarrow \mu_p \longrightarrow \mathbf{G}_m \stackrel{p}{\longrightarrow} \mathbf{G}_m \longrightarrow 1$$

gives rise to a short exact sequence

$$(5) \quad 0 \longrightarrow A/\mathfrak{p} \otimes_{\mathbf{Z}} \Gamma(Y, \mathcal{O}_{Y}^{\times}) \longrightarrow \mathrm{H}^{1}(Y_{\mathrm{fl}}, (A/\mathfrak{p})^{\mathrm{D}}) \longrightarrow A/\mathfrak{p} \otimes_{\mathbf{F}_{p}} (\mathrm{Pic}\,Y)[p] \longrightarrow 0.$$

The proof of Theorem 5 shows that the resulting composed morphism

$$A/\mathfrak{p} \otimes_{\mathbf{Z}} \Gamma(Y, \mathcal{O}_Y^{\times}) \longrightarrow \mathrm{H}^1(Y_{\mathrm{fl}}, (A/\mathfrak{p})^{\mathrm{D}}) \xrightarrow{\sim} A/\mathfrak{p} \otimes_k \Omega_R^{\mathrm{c}=1}$$

is the map induced from

dlog:
$$\Gamma(Y, \mathcal{O}_Y^{\times}) \to \Omega_R^{c=1} : u \mapsto \frac{\mathrm{d}u}{u}$$

so that (5) becomes the short exact sequence (2).

7. Comparing
$$(A/\mathfrak{p})^{\mathrm{D}}$$
 and $C[\mathfrak{p}]^{\mathrm{D}}$ -coefficients

Choose a nonzero torsion point $\lambda \in C[\mathfrak{p}](L)$. Then λ defines a morphism $(A/\mathfrak{p})_Y \to C[\mathfrak{p}]_Y$ and hence a morphism of Cartier duals

$$C[\mathfrak{p}]_Y^{\mathrm{D}} \xrightarrow{\lambda} (A/\mathfrak{p})_Y^{\mathrm{D}}.$$

Let $\mathfrak{P} \in Y$ be the unique prime above $\mathfrak{p} \subset A$. We have $\mathfrak{P} = R\lambda$.

Proposition 2. The sequence

(6)
$$0 \longrightarrow R^1 f_* C[\mathfrak{p}]^D \xrightarrow{\lambda} R^1 f_* (A/\mathfrak{p})^D \longrightarrow \Omega_Y/\mathfrak{P}^q{}^d \Omega_Y \xrightarrow{1-c^d} \Omega_Y/\mathfrak{P}\Omega_Y \longrightarrow 0,$$

of sheaves on Y_{et} is exact and if $i \neq 1$ then $R^i f_* C[\mathfrak{p}]^D = 0.$

Note that for all N the sheaf $\Omega_Y/\mathfrak{P}^N\Omega_Y$ on Y_{et} is naturally a sheaf of A/\mathfrak{p} modules. The middle map in the proposition is the composition

$$\mathrm{R}^1 f_*(A/\mathfrak{p})^{\mathrm{D}} \longrightarrow A/\mathfrak{p} \otimes_k \Omega_Y \longrightarrow \Omega_Y/\mathfrak{P}^{q^d}\Omega_Y.$$

Taking global sections in (6) we obtain an exact sequence of A/\mathfrak{p} -vector spaces

$$0 \longrightarrow \mathrm{H}^{1}(Y_{\mathrm{fl}}, C[\mathfrak{p}]_{Y}^{\mathrm{D}}) \stackrel{\lambda}{\longrightarrow} A/\mathfrak{p} \otimes_{k} \Omega_{R}^{c=1} \longrightarrow \Omega_{R}/\mathfrak{P}^{q^{d}}\Omega_{R}$$

and considering the G-action on λ we see that Proposition 2 implies Theorem 2.

As one may expect, the proof of Proposition 2 relies on a careful analysis of the group scheme $C[\mathfrak{p}]_Y$ near the prime \mathfrak{P} .

Let $\bar{s} \to Y$ be a geometric point lying above $\mathfrak{P} \in Y$,

Lemma 1. There is an étale neighborhood $V \to Y$ of \bar{s} and a short exact sequence

$$0 \longrightarrow C[\mathfrak{p}]_V \longrightarrow \mathbf{G}_{a,V} \stackrel{\lambda^{q^d-1} - F^d}{\longrightarrow} \mathbf{G}_{a,V} \longrightarrow 0$$

of sheaves of A/\mathfrak{p} -vector spaces on V_{fl} .

Proof. Let $\mathcal{O}_{Y,\bar{\mathfrak{p}}}$ be the étale stalk of \mathcal{O}_Y at \bar{s} (a strict henselization of $\mathcal{O}_{Y,\mathfrak{P}}$) and let $S = \operatorname{Spec} \mathcal{O}_{Y,\bar{\mathfrak{p}}}$. We have that $C[\mathfrak{p}]_S$ is a finite flat A/\mathfrak{p} -vector space scheme of rank q^d over S, étale over the generic fibre. Such vector space schemes have been classified by Raynaud [13, §1.5] (generalizing the results of Oort and Tate [17]). Let $q = p^r$ with $p = \operatorname{char} k$, then the classification says that $C[\mathfrak{p}]_S$ is a subgroupscheme of \mathbf{G}_a^{rd} given by equations

$$X_i^p = a_i X_{i+1}$$

for some $a_i \in \mathcal{O}_{Y,\bar{s}}$, and where the index i runs over $\mathbf{Z}/rd\mathbf{Z}$. Since the special fibre of $C[\mathfrak{p}]_S$ is the kernel of F^d on \mathbf{G}_a , we find that all but one a_i are units. In particular, we can eliminate all but one variable and find that $C[\mathfrak{p}]_S$ sits in a short exact sequence

$$0 \longrightarrow C[\mathfrak{p}]_S \longrightarrow \mathbf{G}_{a,S} \stackrel{a-F^d}{\longrightarrow} \mathbf{G}_{a,S} \longrightarrow 0$$

for some $a \in \mathcal{O}_{Y,\bar{s}}$, well-defined up to a unit. We claim that $a = \lambda^{q^d-1}$ (up to a unit). To see this, we compute the discriminant of the finite flat S-scheme $C[\mathfrak{p}]_S$ in two ways. On the one hand $C[\mathfrak{p}]_S$ is defined by the equation $X^{q^d} - aX$, with discriminant a^{q^d} (modulo squares of units). On the other hand, $C[\mathfrak{p}]$ is the \mathfrak{p} -torsion scheme of the Carlitz module and hence it is given by an equation

$$X^{q^d} + b_{d-1}X^{q^{d-1}} + \ldots + b_0X$$

with $b_i \in A$, and with b_0 a generator of \mathfrak{p} . In this way we find that the discriminant equals $b_0^{q^d}$ (modulo squares of units). Comparing the two expressions we conclude that we can take $a = \lambda^{q^d-1}$, which proves the claim.

To finish the proof it suffices to observe that this short exact sequence is already defined over some étale neighbourhood $V \to Y$ of \bar{s} .

Using this lemma we can now prove Proposition 2.

Proof of Proposition 2. Let V be as in the lemma and $U := Y - \mathfrak{P}$. Then $\{U, V\}$ is an étale cover of Y and it suffices to prove that the pull-backs of (6) to U_{et} and V_{et} are exact.

The pull-back to $U_{\rm et}$ is the sequence

$$0 \longrightarrow \mathrm{R}^1 f_* C[\mathfrak{p}]_U^{\mathrm{D}} \stackrel{\lambda}{\longrightarrow} \mathrm{R}^1 f_* (A/\mathfrak{p})_U^{\mathrm{D}} \longrightarrow 0$$

which is exact because $\lambda \colon (A/\mathfrak{p})_U \to C[\mathfrak{p}]_U$ is an isomorphism of sheaves on U_{fl} . For the exactness over V_{et} , consider the commutative square

$$\mathbf{G}_{a,V} \xrightarrow{1-F^d} \mathbf{G}_{a,V}$$

$$\downarrow^{\lambda} \qquad \qquad \downarrow^{\lambda^{q^d}}$$

$$\mathbf{G}_{a,V} \xrightarrow{\lambda^{q^d-1}-F^d} \mathbf{G}_{a,V}$$

It extends to a map of short exact sequences

$$0 \longrightarrow (A/\mathfrak{p})_{V} \longrightarrow \mathbf{G}_{a,V} \xrightarrow{1-F^{d}} \mathbf{G}_{a,V} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \lambda \qquad \qquad \downarrow_{\lambda^{q^{d}}}$$

$$0 \longrightarrow C[\mathfrak{p}]_{V} \longrightarrow \mathbf{G}_{a,V} \xrightarrow{\lambda^{q^{d}-1}-F^{d}} \mathbf{G}_{a,V} \longrightarrow 0$$

and without loss of generality we may assume that the leftmost vertical map is the one induced by λ . Now Theorem 5 (with k, F, and S replaced by A/\mathfrak{p} , F^d and V) yields a commutative diagram of sheaves of A/\mathfrak{p} -vector spaces on $V_{\rm et}$ with exact rows:

$$0 \longrightarrow R^{1}f_{*}C[\mathfrak{p}]_{V}^{D} \longrightarrow \Omega_{V} \xrightarrow{\lambda^{q^{d-1}}-c^{d}} \Omega_{V} \longrightarrow 0$$

$$\downarrow^{\lambda} \qquad \qquad \downarrow^{\lambda} \qquad \qquad \downarrow^{\lambda}$$

$$0 \longrightarrow R^{1}f_{*}(A/\mathfrak{p})_{V}^{D} \longrightarrow \Omega_{V} \xrightarrow{1-c^{d}} \Omega_{V} \longrightarrow 0$$

(where by abuse of notation, we denote the canonical maps of sites $V_{\rm fl} \to V_{\rm et}$ and $Y_{\rm fl} \to Y_{\rm et}$ by the same symbol f.) This shows that on $V_{\rm et}$ we have an exact sequence

$$0 \longrightarrow \mathrm{R}^1 f_* C[\mathfrak{p}]_V^D \stackrel{\lambda}{\longrightarrow} \mathrm{R}^1 f_* (A/\mathfrak{p})_V^D \longrightarrow \Omega_V / \lambda^{q^d} \Omega_V \stackrel{1-\mathrm{c}^d}{\longrightarrow} \Omega_V / \lambda \Omega_V \longrightarrow 0,$$
 so the pullback of (6) to V_{et} is exact.

8. A CANDIDATE COHOMOLOGY CLASS

Let $\lambda \in R$ be a primitive \mathfrak{p} -torsion point of the Carlitz module. Consider the decomposition

$$1 \otimes \lambda = \sum_{n=1}^{q^d - 1} \lambda_n$$

in $A/\mathfrak{p} \otimes_{\mathbf{Z}} \Gamma(Y - \mathfrak{P}, \mathcal{O}_Y^{\times})$. In this section we will prove Theorem 3, which states that for $1 \leq n < q^d - 1$ we have

$$\lambda_n \in A/\mathfrak{p} \otimes \Gamma(Y, \mathcal{O}_{\mathbf{V}}^{\times})$$

and that the following are equivalent

- (1) \mathfrak{p} divides BC_n ;
- (2) dlog λ_n lies in the kernel of $A/\mathfrak{p} \otimes_k \Omega_R \longrightarrow \Omega_R/\mathfrak{P}^{q^d}\Omega_R$.

We start with the first assertion.

Proposition 3. If $1 \le n < q^d - 1$ then $\lambda_n \in A/\mathfrak{p} \otimes_{\mathbf{Z}} \Gamma(Y, \mathcal{O}^{\times})$.

Proof. For all integers n we have

$$\lambda_n = -\sum_{g \in G} \chi(g)^{-n} \otimes g\lambda.$$

If moreover n is not divisible by $q^d - 1$ then $\sum_{g \in G} \chi(g)^{-n} = 0$ so that we can rewrite the above identity as

$$\lambda_n = -\sum_{g \in G} \chi(g)^{-n} \otimes \frac{g\lambda}{\lambda}.$$

Since the point \mathfrak{P} is fixed under G it follows that for all $g \in G$ one has that $g\lambda/\lambda$ has valuation 0 at \mathfrak{P} and therefore for all $1 \le n < q^d - 1$ we have

$$\lambda_n \in A/\mathfrak{p} \otimes \Gamma(Y, \mathcal{O}_Y^{\times}),$$

as was claimed. \Box

Now let $L_{\mathfrak{P}}$ be the completion of L at \mathfrak{P} and \mathfrak{m} the maximal ideal of its valuation ring $\mathcal{O}_{Y,\mathfrak{P}}^{\wedge}$. Note that $\mathfrak{m} = (\lambda)$.

Consider the quotient $\mathfrak{m}/\mathfrak{m}^{q^d}$. It carries two A-module structures:

- (1) the linear action coming from the A-algebra structure of $\mathcal{O}_{Y,\mathfrak{P}}^{\wedge}$;
- (2) the Carlitz action defined using φ .

Also, the Galois group G acts on $\mathfrak{m}/\mathfrak{m}^{q^d}$ and the action commutes with both A-module structures.

Lemma 2. Both actions on $\mathfrak{m}/\mathfrak{m}^{q^d}$ factor over A/\mathfrak{p} .

Proof. Note that $\mathfrak{p}\mathcal{O}_{Y,\mathfrak{P}}^{\wedge} = \mathfrak{m}^{q^d-1}$. In particular the assertion is immediate for the linear action. For the Carlitz action, consider a generator f of \mathfrak{p} . Then

$$\varphi(f) = a_0 + a_1 F + \dots + a_{d-1} F^{d-1} + F^d$$

with $a_i \in \mathfrak{p}$ for all i. From this it follows that $\varphi(f)$ maps $\mathfrak{m} \subset \mathcal{O}_{Y,\mathfrak{P}}^{\wedge}$ into \mathfrak{m}^{q^d} , as desired.

The Carlitz exponential series

$$e(z) = \sum_{n=1}^{\infty} e_n z^n \in K[[z]]$$

has the property that for all $n < q^d$ the coefficient e_n is \mathfrak{p} -integral, so the truncated and reduced exponential power series

$$\bar{e}(z) = \sum_{n=1}^{q^d-1} e_n z^n \in (A/\mathfrak{p})[[z]]/(z^{q^d})$$

defines a k-linear map

$$\bar{e} \colon \mathfrak{m}/\mathfrak{m}^{q^d} o \mathfrak{m}/\mathfrak{m}^{q^d}$$

which is an isomorphism because it induces the identity map on the intermediate quotients $\mathfrak{m}^i/\mathfrak{m}^{i+1}$. Note that \bar{e} is G-equivariant, as the coefficients e_i of the Carlitz exponential lie in K.

Lemma 3. For all $x \in \mathfrak{m}/\mathfrak{m}^{q^d}$ and $a \in A$ we have $\bar{e}(ax) = \varphi(a)\bar{e}(x)$.

Proof. In K[[z]] we have the identity

$$e(tz) = te(z) + e(z)^q$$

of formal power series. Identifying coefficients on both sides we find that in $(A/\mathfrak{p})[[z]]/(z^{q^d})$ we have

$$\bar{e}(tz) = t\bar{e}(z) + \bar{e}(z)^q,$$

and we deduce that for all $a \in A$ and $x \in \mathfrak{m}/\mathfrak{m}^{q^d}$ we have $\bar{e}(ax) = \varphi(a)\bar{e}(x)$.

Put $\bar{\pi} := \bar{e}^{-1}(\bar{\lambda})$, where $\bar{\lambda}$ is the image of $\lambda \in \mathfrak{m}$ in $\mathfrak{m}/\mathfrak{m}^{q^d}$.

Lemma 4. For all $g \in G$ we have $g\bar{\pi} = \chi(g)\bar{\pi}$.

In other words $\bar{\pi} \in \mathfrak{m}/\mathfrak{m}^{q^d}(\chi)$.

Proof of Lemma 4. Let $g \in G$ and $a \in A$ be so that a reduces to g in $G = (A/\mathfrak{p})^{\times}$. Since λ is a \mathfrak{p} -torsion point of the Carlitz module we have that

$$g\bar{\lambda} = \varphi(a)\bar{\lambda}.$$

Applying \bar{e}^{-1} to both sides we find with Lemma 3 that

$$q\bar{\pi} = a\bar{\pi}$$

and by definition $a\bar{\pi}$ equals $\chi(g)\bar{\pi}$.

Choose a lift $\pi \in \mathfrak{m}$ of $\bar{\pi}$ such that $g\pi = \chi(g)\pi$ for all g. Then π is a uniformizing element of $L_{\mathfrak{p}}$.

Proposition 4. Let $1 \le n < q^d - 1$. Then

$$d\log \lambda_n = (BC_n \pi^n + \delta) d\log \pi$$

for some $\delta \in \mathfrak{m}^{n+q^d-1}$.

Proof. Since $\bar{\lambda} = \bar{e}(\bar{\pi})$ we have in $\mathcal{O}_{Y,\mathfrak{V}}^{\wedge}$ the identity

$$\lambda = \sum_{n=1}^{q^d - 1} e_n \pi^n + \delta_1$$

for some $\delta_1 \in \mathfrak{m}^{q^d}$. Since $d\pi^n = 0$ for any n divisible by q we find

$$d\lambda = (1 + \delta_2)d\pi$$

for some $\delta_2 \in \mathfrak{m}^{q^d}$. Dividing both expressions we find

$$\operatorname{dlog} \lambda = \left(\sum_{n=0}^{q^d - 2} BC_n \pi^n + \delta_3\right) \operatorname{dlog} \pi$$

for some $\delta_3 \in \mathfrak{m}^{q^d-1}$. Now the proposition follows from decomposing this identity in isotypical components, since dlog π is G-invariant and $g\pi = \chi(g)\pi$ for all $g \in G$. \square

We can now finish the proof of Theorem 3.

Proof of Theorem 3. If n > 1 then the Theorem follows from the above proposition. If n = 1 we consider two cases. Either q > 2 and then $BC_1 = 0$ and $\operatorname{dlog} \lambda_1 = 0$, or else q = 2 and then \mathfrak{p} does not divide BC_1 and from the above π -adic expansion we see that $\operatorname{dlog} \lambda_1$ does not map to zero in $\Omega_R/\mathfrak{P}^{q^d}\Omega_R$. In both cases the theorem holds.

9. Vanishing of λ_n

Let W be the ring of Witt vectors of A/\mathfrak{p} . For $a \in (A/\mathfrak{p})^{\times}$ we denote by $\tilde{a} \in W^{\times}$ the Teichmüller lift of a. Also, we denote by $\tilde{\chi} \colon G \to W^{\times}$ the Teichmüller lift of the character $\chi \colon G \to (A/\mathfrak{p})^{\times}$. If M is a W[G]-module then it decomposes into isotypical components

$$M = \bigoplus_{n=1}^{q^d - 1} M(\tilde{\chi}^n)$$

with G acting via $\tilde{\chi}^n$ on $M(\tilde{\chi}^n)$.

Put $U := W \otimes_{\mathbf{Z}} \Gamma(Y, \mathcal{O}_Y^{\times})$ and let D be the W-module of degree zero W-divisors on X - Y. Then we have a natural inclusion $U \hookrightarrow D$ with finite quotient. Consider the decomposition of $1 \otimes \lambda \in W \otimes \Gamma(Y - \mathfrak{P}, \mathcal{O}_Y^{\times})$ in isotypical components:

$$1 \otimes \lambda = \sum_{n=1}^{q^{d}-1} \tilde{\lambda}_{n} \quad \text{with} \quad \tilde{\lambda}_{n} \in W \otimes_{\mathbf{Z}} \Gamma(Y - \mathfrak{P}, \mathcal{O}_{Y}^{\times})(\tilde{\chi}^{n}).$$

We have

$$\tilde{\lambda}_n = \sum_{g \in G} \chi(g)^{-n} \otimes g\lambda$$

and for $1 < n < q^d - 1$ we have that $\tilde{\lambda}_n$ lies in $U(\tilde{\chi}^n)$ and it maps to λ_n under the reduction map

$$U \longrightarrow A/\mathfrak{p} \otimes_{\mathbf{Z}} \Gamma(Y, \mathcal{O}_Y^{\times}).$$

If n is divisible by q-1 but not by q^d-1 , the W-modules $D(\tilde{\chi}^n)$ and $U(\tilde{\chi}^n)$ are free of rank one. In particular

$$\lambda_n = 0$$
 if and only if $\frac{U(\tilde{\chi}^n)}{W\tilde{\lambda}_n} \neq 0$,

and Theorem 4 follows from the following.

Proposition 5. Let n be divisible by q-1 but not by q^d-1 . Then the finite W-modules

$$\frac{U(\tilde{\chi}^n)}{W\lambda_n}$$

and

$$W \otimes_{\mathbf{Z}} \operatorname{Pic} Y(\tilde{\chi}^n)$$

have the same length.

Proof. Let X be the canonical compactification of Y. Since we have a short exact sequence of W-modules

$$0 \longrightarrow \frac{D(\tilde{\chi}^n)}{U(\tilde{\chi}^n)} \longrightarrow W \otimes_{\mathbf{Z}} (\operatorname{Pic}^0 X)(\tilde{\chi}^n) \to W \otimes_{\mathbf{Z}} (\operatorname{Pic} Y)(\tilde{\chi}^n) \longrightarrow 0,$$

it suffices to show that

$$\frac{D(\tilde{\chi}^n)}{W\lambda_n}$$
 and $W \otimes_{\mathbf{Z}} (\operatorname{Pic}^0 X)(\tilde{\chi}^n)$

have the same length. By Goss and Sinnott [8] the length of $W \otimes_{\mathbf{Z}} (\operatorname{Pic}^0 X)(\tilde{\chi}^n)$ is the *p*-adic valuation of $L(1, \tilde{\chi}^{-n}) \in W$. We will show that also the length of $D(\tilde{\chi}^n)/W\lambda_n$ equals the *p*-adic valuation of $L(1, \tilde{\chi}^{-n})$. Since *n* is divisible by q-1, the representation $\tilde{\chi}^{-n}$ is unramified at ∞ . Since all

Since n is divisible by q-1, the representation $\tilde{\chi}^{-n}$ is unramified at ∞ . Since all the points of X lying above ∞ are k-rational, the local L-factor at ∞ of $L(T,\tilde{\chi}^{-n})$ is $(1-T)^{-1}$. Since n is not divisible by q^d-1 , the representation is ramified at $\mathfrak p$ and hence the local L-factor at $\mathfrak p$ is 1. Recall that for a prime $\mathfrak q\subset A$ coprime with $\mathfrak p$ we have that $\chi(\operatorname{Frob}_{\mathfrak q})$ is the image of the monic generator of $\mathfrak q$ in $(A/\mathfrak p)^\times$. Together with unique factorization in A we obtain

$$L(T,\tilde{\chi}^{-n}) = (1-T)^{-1} \sum_{a \in A_+, a \not\in \mathfrak{p}} \tilde{a}^{-n} T^{\deg a},$$

where A_+ is the set of monic elements of A. In fact it is easy to see that for $m \ge d$ the coefficient of T^m in the sum vanishes, so we have

(7)
$$L(T,\chi^{-n}) = (1-T)^{-1} \sum_{a \in A_+^{< d}} \tilde{a}^{-n} T^{\deg a},$$

where $A_{+}^{\leq d}$ is the set of monic elements of degree smaller then d. Since n is divisible by q-1 we have

$$\sum_{a \in A_{+}^{\leq d}} \tilde{a}^{-n} T^{\deg a} = \frac{1}{q-1} \sum_{a \in A^{\leq d}} \tilde{a}^{-n} T^{\deg a}.$$

We conclude from (7) that

$$L(1, \tilde{\chi}^{-n}) = \frac{1}{q-1} \sum_{a \in A^{< d}} (\deg a) \tilde{a}^{-n}.$$

Consider the function

$$deg: G \to \{0, 1, \dots, d-1\}$$

which maps $g \in G$ to the degree of its unique representative in $A^{\leq d}$. Then the above identity can be rewritten as

$$L(1, \tilde{\chi}^{-n}) = \frac{1}{q-1} \sum_{g \in G} (\deg g) \tilde{g}^{-n}.$$

By [4, p. 372] there is a point in X - Y with associated valuation v and integers u, w with (u, p) = 1 such that

$$v(g\lambda) = u\deg g + w$$

for all $g \in G$. The valuation v extends to an isomorphism of W-modules

$$v: D(\tilde{\chi}^n) \to W,$$

and we have

$$v(\lambda_n) = \sum_{g \in G} \tilde{g}^{-n} v(g\lambda)$$

$$= u(q-1)L(1, \tilde{\chi}^{-n}) + w \sum_{g \in G} \tilde{g}^{-n}$$

$$= u(q-1)L(1, \tilde{\chi}^{-n}).$$

In particular, the length of $D(\tilde{\chi}^n)/\lambda_n$ is the *p*-adic valuation of $L(1,\tilde{\chi}^{-n})$ and the proposition follows.

10. Complement: the class module of Y

Let L be an arbitrary finite extension of K and R the integral closure of A in L. Put $Y = \operatorname{Spec} R$. In [16] and [15] we have given several equivalent definitions of a finite A-module H(C/Y) depending on Y, that is analogous to the class group of a number field. One of these definitions is the following.

Let X be the canonical compactification of Y and let ∞ be the divisor on X of zeroes of $1/t \in L$. (This is also the inverse image of the divisor ∞ on \mathbf{P}^1 .) Then H(C/Y) is defined by the exact sequence

(8)
$$A \otimes_k H^1(X, \mathcal{O}_X) \xrightarrow{\partial} A \otimes_k H^1(X, \mathcal{O}_X(\infty)) \longrightarrow H(C/Y) \longrightarrow 0,$$

where

$$\partial = 1 \otimes (t + F) - t \otimes 1.$$

Theorem 6. Let $I \subset A$ be a nonzero ideal. Then there is a natural isomorphism

$$\mathrm{H}^1(Y_{\mathrm{fl}}, C[I]^{\mathrm{D}})^{\vee} \xrightarrow{\sim} H(C/Y) \otimes_A A/I$$

where $(-)^{\vee}$ denotes the k-linear dual.

Proof. The starting point of the proof is the exact sequence of sheaves of A-modules

$$0 \longrightarrow A \otimes_k \mathbf{G}_a \stackrel{\partial}{\longrightarrow} A \otimes_k \mathbf{G}_a \stackrel{\alpha}{\longrightarrow} C \longrightarrow 0$$

with $\partial(a \otimes f) = a \otimes (f^q + tf) - ta \otimes f$ and with $\alpha(a \otimes f) = \varphi(a)f$. From this we derive a short exact sequence

$$0 \longrightarrow C[I]_Y \longrightarrow A/I \otimes_k \mathbf{G}_a \stackrel{\partial}{\longrightarrow} A/I \otimes_k \mathbf{G}_a \longrightarrow 0.$$

Using Theorem 5 we obtain a dual resolution:

$$0 \longrightarrow \mathrm{R}^1 f_* C[I]^\mathrm{D} \longrightarrow A/I \otimes_k \Omega_Y \stackrel{\partial^*}{\longrightarrow} A/I \otimes_k \Omega_Y \longrightarrow 0$$

of sheaves of A-modules on $Y_{\rm et}$, where $\partial^* = 1 \otimes (t+c) - t \otimes 1$. Since $R^i f_* C[I]^D = 0$ for $i \neq 1$, taking global sections we obtain an exact sequence of A-modules

$$(9) 0 \longrightarrow H^{1}(Y_{\mathrm{fl}}, C[I]^{\mathrm{D}}) \longrightarrow A/I \otimes_{k} \Gamma(Y, \Omega_{Y}) \xrightarrow{\partial^{*}} A/I \otimes_{k} \Gamma(Y, \Omega_{Y}).$$

Now we claim that the natural inclusion of the complex

$$A/I \otimes_k \Gamma(X, \Omega_X(-\infty)) \xrightarrow{\partial^*} A/I \otimes_k \Gamma(X, \Omega_X)$$

in the complex

$$A/I \otimes_k \Gamma(Y, \Omega_Y) \xrightarrow{\partial^*} A/I \otimes_k \Gamma(Y, \Omega_Y)$$

is a quasi-isomorphism. Indeed, the quotient has a filtration with intermediate quotients of the form

$$A/I \otimes_k \frac{\Gamma(X, \Omega_X(n\infty))}{\Gamma(X, \Omega_X((n-1)\infty))} \xrightarrow{\partial^*} A/I \otimes_k \frac{\Gamma(X, \Omega_X((n+1)\infty))}{\Gamma(X, \Omega_X(n\infty))}$$

with $n \in \mathbf{Z}_{\geq 0}$. On these intermediate quotients we have that $1 \otimes c$ and $t \otimes 1$ are zero, so that $\partial^* = 1 \otimes t$, which is an isomorphism.

Hence we obtain from (9) a new exact sequence

$$0 \longrightarrow \mathrm{H}^1(Y_{\mathrm{fl}}, C[I]^{\mathrm{D}}) \longrightarrow A/I \otimes_k \Gamma(X, \Omega_X(-\infty)) \stackrel{\partial^*}{\longrightarrow} A/I \otimes_k \Gamma(X, \Omega_X).$$

Under Serre duality the q-Cartier operator c on Ω_X is adjoint to the q-Frobenius F on \mathcal{O}_X , so we obtain a dual exact sequence

$$A/I \otimes_k H^1(X, \mathcal{O}_X) \xrightarrow{\partial} A/I \otimes_k H^1(X, \mathcal{O}_X(\infty)) \longrightarrow H^1(Y_{\mathrm{fl}}, C[I]^{\mathrm{D}})^{\vee} \longrightarrow 0.$$

Theorem 6 now follows by comparing this sequence with the sequence obtained by reducing (8) modulo I.

References

- [1] Greg W. Anderson. Log-algebraicity of twisted A-harmonic series and special values of L-series in characteristic p. J. Number Theory, 60(1):165–209, 1996. MR1405732.
- [2] Bruno Anglès. On Gekeler's conjecture for function fields. J. Number Theory, 87(2):242–252, 2001. MR1824146.
- [3] M. Artin and J. S. Milne. Duality in the flat cohomology of curves. *Invent. Math.*, 35:111–129, 1976. MR0419450.
- [4] Steven Galovich and Michael Rosen. The class number of cyclotomic function fields. J. Number Theory, 13(3):363-375, 1981. MR634206.
- [5] Ernst-Ulrich Gekeler. On regularity of small primes in function fields. J. Number Theory, 34(1):114–127, 1990. MR1039771.

- [6] David Goss. Analogies between global fields. In Number theory (Montreal, Que., 1985), volume 7 of CMS Conf. Proc., pages 83–114. Amer. Math. Soc., Providence, RI, 1987. MR894321.
- [7] David Goss. Basic structures of function field arithmetic, volume 35 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin, 1996. MR1423131.
- [8] David Goss and Warren Sinnott. Class-groups of function fields. Duke Math. J., 52(2):507–516, 1985. MR792185.
- [9] J. Herbrand. Sur les classes des corps circulaires. J. Math. Pures Appl., IX. Sér., 11:417–441, 1932.
- [10] Barry Mazur. Notes on étale cohomology of number fields. Ann. Sci. École Norm. Sup. (4), 6:521-552 (1974), 1973. MR0344254.
- [11] J. S. Milne. Arithmetic duality theorems, volume 1 of Perspectives in Mathematics. Academic Press Inc., Boston, MA, 1986. MR881804.
- [12] Shozo Okada. Kummer's theory for function fields. J. Number Theory, 38(2):212-215, 1991.MR1111373.
- [13] Michel Raynaud. Schémas en groupes de type (p, \ldots, p) . Bull. Soc. Math. France, 102:241–280, 1974. MR0419467.
- [14] Kenneth A. Ribet. A modular construction of unramified p-extensions of $\mathbf{Q}(\mu_p)$. Invent. Math., 34(3):151–162, 1976. MR0419403.
- [15] Lenny Taelman. The Carlitz shtuka. J. Number Theory, 131(3):410–418, 2011. MR2739043.
- [16] Lenny Taelman. Special L-values of Drinfeld modules. To appear in Annals of Math., 2011.
- [17] John Tate and Frans Oort. Group schemes of prime order. Ann. Sci. École Norm. Sup. (4), 3:1–21, 1970. MR0265368.
- [18] Lawrence C. Washington. Introduction to cyclotomic fields, volume 83 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1997. MR1421575.

MATHEMATISCH INSTITUUT, P.O. Box 9512, 2300 RA LEIDEN, THE NETHERLANDS *E-mail address*: lenny@math.leidenuniv.nl