商業分析: SAS / R HW3

108208004 經濟三 白植允

- 1. 辨認出滿意與不滿意客戶 Predict passenger satisfaction.
- 任選1種監督式學習方法配適模型,預測滿意度 satisfaction (2 類:滿意、中立或不滿意)。

```
data = read.csv("airline_survey.csv",sep = ",")
library(tidyverse)
#1
for(i in c(3,4,6,7,9:22,25)){
   data[,i] = as.factor(data[,i])
}
subdata <- data[1:1000,-c(1,2)]
str(subdata)</pre>
```

=> 先將資料分類,並且只取前1000項(電腦容量的關係)

=>做 random forest,總共做了 500 棵樹且用了 4 個變數來分類,最後的袋外錯誤率為 7.11%。

```
plot(rf)
legend("topright", colnames(rf$err.rate),col = 1:3,cex = 0.8,fill = 1:3)
```


=>大概在第 100 棵樹以後錯誤率漸趨平穩

● 找出重要變數:哪些因素影響客戶滿意度。

<pre>> importance(rf)</pre>				
	neutral or dissatisfied			
Gender		1.567761	1.954023	2.396254
Customer.Type	17.7610405		20.323942	
Age		14.566388	17.047628	
Type.of.Travel	25.6764342		33.669714	48.741688
Class	13.4313411		22.152695	40.182840
Flight.Distance		5.545109	9.575670	
Inflight.wifi.service	35.9177243		36.748901	57.739633
Departure.Arrival.time.convenient	0.5468710	9.252427	7.604997	10.334511
Ease.of.Online.booking	18.7538510		19.738883	17.880217
Gate.location	-0.8412016		8.689976	8.975379
Food.and.drink	7.7682424		9.700226	9.253744
Online.boarding	30.7468798	31.823225	39.472367	80.778665
Seat.comfort	15.2028047		20.831665	25.162443
Inflight.entertainment	15.8415413	17.406707	22.620369	29.118717
On.board.service	11.3879639	12.504548	16.116020	17.393201
Leg.room.service	9.7534939	14.889182	16.856236	19.655422
Baggage.handling	7.6043667	13.681667	14.792060	14.141483
Checkin.service	11.9670907	9.746900	15.058235	14.583861
Inflight.service	9.6089696	11.397098	14.682164	12.064247
Cleanliness	12.3537496	12.558016	17.225123	14.698143
Departure.Delay.in.Minutes	3.1130324	3.050049	4.271428	6.938168
Arrival.Delay.in.Minutes	5.4585921	4.465725	7.327547	8.853215

=>mean decrease accuracy: 將該變數變成隨機變數對預測準確性的降低程度 mean decrease Gini: 該變量對分類樹上觀測值的異質性的影響。由這兩個指標可以發現,Online. boarding、Inflight. wifi. service、Type. of. travel、Class、Inflight. Entertainment 這五項對於顧客滿意度有顯著影響。

- 2. 描述客户 Customer segmentation
- 任選1種非監督式方法,將客戶分群,介紹你分出來的群,對於這些不同 的客戶群集提出給該航空業的商業策略建議。
- 我想針對上述重要變數做分群,並探討群集特徵與滿意度的關係

=>先將資料整理,類別資料轉換成 0,1,2,數值資料做(x-min)/range,其中 score 是指 inflight.wifi.service、online.boarding、inflight.entertainment 的分數加總,w score 則是再對 score 做整理

=>根據兩種不同的 elbow method(wss,silhouette),決定將資料分成八組

=>八組的分類還蠻清楚的,其中第六組的分群範圍較大,散佈在外圍的點可以當作 Outlier,以探討主要分布那群為主

=>圖中可看出第 1,2,5,6,7 組的滿意度相當低(都低於 50%)

>	k\$centers				
	Customer.Type	Type.of.Travel	Eco_Class	Eco_Plus	w_score
1	0.0000000	0.03409091	1	0	0.5162338
2	0.0000000	0.00000000	0	0	0.5880626
3	1.0000000	0.00000000	0	0	0.6758521
4	0.8888889	0.00000000	0	1	0.5968254
5	1.0000000	1.00000000	0	1	0.5156250
6	1.0000000	1.00000000	1	0	0.5078431
7	1.0000000	1.00000000	0	0	0.5546218
8	1.0000000	0.00000000	1	0	0.6183036

> mean(newdata\$w_score)
[1] 0.5962857

=>第 2 組客人的這三項分數並沒有與平均差距很大,也許是其他因素影響滿意度,需要透過其他變數探討滿意度較低的原因。

=>綜合第 5,6,7 組客人可看出不管是乘坐哪種艙別,Loyal Customer 對於 Personal Travel 的服務都不是很滿意。

=>策略 1:公司針對 Loyal Customer 祭出優惠,例如與旅遊業者合作,只要是 Loyal Customer 參加旅遊行程能享有機票折扣,或是在飛機上享有專屬服務(更 多樣的電影可以看或是能免費使用 WIFI)

=>大部分客群都對於 Online.Boarding 不滿意,公司應盡速完善網路預辦登機的服務。

=>第1組客人可看成 disloyal Customer、Business Travel、Eco Class,應該就是一般出差的旅客,我認為他們的行程比較緊湊且較常搭乘飛機,因此除了改善Online.Boarding 的服務外,也許公司可以提出積點服務,像是搭乘多少次 Eco class 的班機能讓他們晉升商務艙,或是針對這類客人辦理快速通關的服務。

附錄:R 程式碼

```
data = read.csv("airline_survey.csv", sep = ",")
library(tidyverse)
#1
for(i in c(3,4,6,7,9:22,25)){
```

```
data[,i] = as.factor(data[,i])
}
subdata <- data[1:1000, -c(1,2)]
str(subdata)
library(randomForest)
rf <- randomForest(satisfaction ~.,data = subdata,</pre>
importance=T ,na.action = na.omit,nstart = 10)
rf
plot(rf)
legend("topright", colnames(rf$err.rate),col = 1:3,cex = 0.8,fill =
1:3)
importance(rf)
varImpPlot(rf)
#2
newdata <- subdata[,c(2,4,5,7,12,14,23)] %>%
 mutate(
   Customer.Type = ifelse(Customer.Type=="Loyal Customer",1,0),
   Type.of.Travel = ifelse(Type.of.Travel=="Personal Travel",1,0),
   Eco Class = ifelse(Class =="Eco",1,0),
   Eco Plus = ifelse(Class == "Eco Plus", 1, 0),
as.integer(Inflight.wifi.service)+as.integer(Online.boarding)+as.inte
ger(Inflight.entertainment)-3,
   w score = (score-min(score))/(max(score)-min(score))
summary(newdata)
library(factoextra)
fviz nbclust(newdata[,c(1,2,8,9,11)],
           FUNcluster = kmeans, #k-Means
           nstart = 20,
           method ="wss", #total within sum of square
           k.max = 20 #max number of clusters to consider
```

```
) +
 labs(title = "Elbow Method for K-Means") +
 geom vline(xintercept = 8,linetype =2)
fviz_nbclust(newdata[,c(1,2,8,9,11)],
           FUNcluster = kmeans, #k-Means
           nstart = 20,
           method ="silhouette", #total within sum of square
           k.max = 20 #max number of clusters to consider
) +
 labs(title = "Elbow Method for K-Means")
k = kmeans(newdata[,c(1,2,8,9,11)],centers = 8, nstart = 20)
k$cluster
fviz cluster(k,data = newdata[,c(1,2,8,9,11)])
newdata$group = as.factor(k$cluster)
str(newdata)
ggplot(newdata,aes(group,fill = satisfaction))+
 geom bar()
k$centers
mean(newdata$w score)
ggplot(newdata,aes(x=group,y=score,fill = group)) +
geom boxplot()+theme(legend.position = "none")
group <- newdata %>%
 group by(group) %>%
 summarise(mean wifi = mean(as.integer(Inflight.wifi.service)),
          mean online = mean(as.integer(Online.boarding)),
          mean entertainment =
mean(as.integer(Inflight.entertainment))) %>%
 mutate(group = as.character(group))
summarise1 <- newdata %>%
 summarise(mean wifi = mean(as.integer(Inflight.wifi.service)),
```