Make Us Rich

Outil de prédiction de l'évolution des cours des crypto-monnaies

Contents

1	Intro	oductio	n														4
	1.1	Conte	xte														4
	1.2	Enonc	é du prob	lème													4
	1.3	Object	ifs														4
	1.4	Appro	che de la	solution													4
	1.5	Contri	butions et	réalisatio	ons												5
	1.6	Organ	isation du	rapport													6
2	Sec	tion 1:	Etat de l'	art													7
	2.1	Aperç	u et histor	ique rapio	et												7
	2.2	Fonda	mentaux	des série	s tempo	orelles											8
	2.3	Différe	nts modè	les de pre	édiction												9
	2.4	Résea	ux de neu	irones réd	currents	s (RNN	<i>l</i>) .										11
		2.4.1	Architect	ure du ré	seau de	e neuro	ones	réc	curr	ent	s						11
		2.4.2	Avantage	es et inco	nvénier	nts											12
		2.4.3	Gestion	des gradi	ents .												13
			2.4.3.1	Cas de g	gradient	qui ex	plos	e .									13
			2.4.3.2	Cas de g	gradient	qui dis	spar	aît									14
		2.4.4	Fonction														15
		2.4.5	GRU et l	_STM .													15
			2.4.5.1	Gated R	ecurren	ıt Unit (GR	U).									16
			2.4.5.2	Long Sh	ort-Tern	n Mem	ory	(LS	TM) .							16
3	Sec	tion 2:	Make Us	Rich													18
4	Con	clusio	า														19

Je, Thomas Chaigneau, de l'école Microsoft IA by Simplon à Brest, en alternance en tant que Développeur IA au Crédit Mutuel Arkéa, confirme que c'est mon propre travail et les figures, les tableaux, les extraits de code et les illustrations dans ce rapport sont originaux et n'ont pas été tirés de l'œuvre d'aucune autre personne, sauf lorsque les œuvres d'autres ont été explicitement reconnues, citées et référencées. Je comprends que cela sera considéré comme un cas de plagiat, sinon. Le plagiat est une forme d'inconduite académique et sera pénalisé en conséquence.

Je donne mon consentement a ce qu'une copie de mon rapport soit communiquée aux futurs étudiants comme exemple.

Je donne mon consentement pour que mon travail soit rendu plus largement accessible au public avec un intérêt pour l'enseignement, l'apprentissage et la recherche.

Thomas Chaigneau, April 22,	2022

Tuteur: Jean-Marie Prigent, Machine Learning Engineer @ Crédit Mutuel Arkéa

Un rapport soumis en réponse aux exigences de la formation *Développeur IA* de l'école *Microsoft IA by Simplon à Brest* pour le titre RNCP34757.

1 Introduction

1.1 Contexte

Aujourd'hui, il existe plusieurs solutions de surveillance de portefeuilles financiers en ligne, qui permettent le suivi de l'évolution du cours de différents actifs. Dans le cas des crypto-monnaies, ces outils offrent à l'utilisateur une interface gratuite et simple lui permettant d'ajouter manuellement ses actifs et de les suivre en temps réel. Aucun à ma connaissance n'intègre des outils d'analyses et de prédictions des cours des crypto-monnaies.

1.2 Enoncé du problème

Puisqu'aucun outil, disponible gratuitement, n'offre la possibilité de simuler une prédiction de l'évolution des cours des crypto-monnaies, je souhaite créer un outil permettant de façon automatisée et transparente pour l'utilisateur de suivre l'évolution des cours des crypto-monnaies. Comment permettra à l'utilisateur de disposer d'informations de prédictions automatiques sur ses actifs qui soient un minimum fiables ?

1.3 Objectifs

Développer une architecture permettant l'entraînement automatique de modèles de prédiction de l'évolution des cours des crypto-monnaies, le service de ces modèles via une API REST ainsi qu'une interface web permettant de visualiser les prédictions et l'évolution des cours des crypto-monnaies par l'utilisateur.

1.4 Approche de la solution

Le projet se décompose en trois composants distincts et qui interagissent entre eux pour former la solution :

- Interface : l'interface web permettant à l'utilisateur de visualiser les prédictions et l'évolution des cours des crypto-monnaies.
- Serving : le serveur web qui met à disposition les modèles de prédiction via une API REST.
- Training: pipeline automatisé d'entraînement des modèles, de leur validation et de leur stockage.

Voici un schéma de l'architecture du projet :

Figure 1: Architecture du projet Make Us Rich

Ce schéma très complet reprend tous les composants du projet et présente les différents liens entre eux. Nous détaillerons les différents composants et leurs fonctions dans les sections suivantes.

1.5 Contributions et réalisations

Tout ce qui est présenté dans le schéma d'architecture ci-dessus est fonctionnel et déployé. Les composants sont développés en utilisant le langage de programmation Python et différents outils et librairies très utiles comme *FastAPI*, *Pytorch-Lightning*, *Scikit-learn*, etc.

Le projet est open-source et est accessible sur GitHub : Make Us Rich.

Il est possible d'y contribuer et de l'améliorer. Il est également possible de simplement l'utiliser

et déployer localement tous les composants du projet. Toutes les étapes de déploiement sont détaillées dans la documentation associée qui est également disponible sur GitHub : Documentation.

1.6 Organisation du rapport

Le rapport s'organise en trois sections :

- Section 1 Etat de l'art : présentation des avancées des modélisations IA et des algorithmes de prédiction sur des séries temporelles.
- Section 2 Make Us Rich : présentation et détails de la solution et de son architecture.
- Section 3 Ouverture : retour sur le projet et ouverture sur les différents axes d'amélioration du projet.

2 Section 1: Etat de l'art

Dans cette première section, nous allons décrire les avancées de la modélisation IA et des algorithmes de prédiction sur des données temporelles. Ce ne sera malheureusement pas une liste exhaustive de toutes les options disponibles, ni un historique complet des différentes évolution des algorithmes de prédiction sur des séries temporelles, car cela est trop riche pour tenir dans ce rapport.

Nous allons donc nous concentrer sur les avancées les plus récentes et celles qui ont un rapport direct avec la solution envisagée dans ce projet. Commençons par un bref aperçu et historique de la tâche de prédiction à l'aide de données temporelles.

2.1 Aperçu et historique rapide

Les séries temporelles, ainsi que leur analyse, sont de plus en plus importantes en raison de la production massive de données dans le monde. Il y a donc un besoin, en constante augmentation, dans l'analyse de ces séries chronologiques avec des techniques statistiques et plus récemment d'apprentissage automatique.

L'analyse des séries chronologiques consiste à extraire des informations récapitulatives et statistiques significatives à partir de points classés par ordre chronologique. L'intérêt étant de diagnostiquer le comportement passé pour prédire le comportement futur.

Aucune des techniques ne s'est développée dans le vide ou par intérêt purement théorique. Les innovations dans l'analyse des séries chronologiques résultent de nouvelles méthodes de collecte, d'enregistrement et de visualisation des données.

Il existe énormément de domaine d'application tels que la médecine, la météorologie, l'astronomie ou encore ce qui va nous intéresser ici, les marchés financiers et notamment celui des crypto-monnaies.

Pour revenir à l'aspect historique, les organisations privées et notamment bancaires ont commencé à collecter des données par imitation du gouvernement américain qui collectait des données économiques publiques. Les premiers pionniers de l'analyse des données chronologiques des cours de la bourse ont fait ce travail mathématique à la main, alors que de nos jours ce travail est réalisé avec l'assistance de méthodes analytiques et des algorithmes de machine learning.

Richard Dennis, dans les années 80, a été le premier à développer un algorithme de prédiction des cours de la bourse qui ne comprenait que quelques règles de base, permettant à quiconque les connaissant de prévoir le prix d'une action et d'en retirer des bénéfices par spéculation.

Progressivement, avec l'accumulation de personnes utilisant ces règles, elles sont devenues de plus en plus inefficaces. Il aura donc fallu développer de nouvelles méthodes, notamment statistiques, plus complexes pour toujours mieux prévoir l'évolution des cours des marchés financiers.

C'est ainsi que des méthodes historiques telles que *SARIMA* ou *ARIMA* se sont démocratisées. Elles présentent néanmoins un inconvénient : elles nécessitent des données stationnaires pour fonctionner. De plus, ces techniques statistiques dites historiques ont des résultats médiocres sur le long terme, et ainsi se sont développés d'autres méthodes d'apprentissage automatique utilisant la puissance des réseaux de neurones, comme *RNN* (Recurrent Neural Network).

2.2 Fondamentaux des séries temporelles

Comme évoqué précédemment, la stationnarité d'une série est une propriété essentielle pour l'analyse statistique. Une série chronologique est dite stationnaire si ces propriétés telles que la moyenne, la variance ou la covariance sont constantes au cours du temps. Or, cela n'est pas vrai pour toutes les séries temporelles et notamment les données issues des marchés financiers, qui ne sont stationnaires que sur une période de temps fixée (souvent courte).

Il existe troise composantes qui constituent une série temporelle :

- Tendance (T = Trend): correspond à une augmentation ou à une diminution sur le long terme des données et qui peut assumer une grande variété de modèles. Nous utilisons la tendance pour estimer le niveau, c'est-à-dire la valeur ou la plage typique de valeurs, que la variable doit avoir au cours du temps. On parle de tendance à la hausse ou à la baisse.
- Saisonnalité (S = Seasonal) : est l'apparition de schémas de variations cycliques qui se répètent à des taux de fréquence relativement constants.
- **Résidu (R = Remainder)**: correspondent aux fluctuations à court terme qui ne sont ni systématiques ni prévisibles. Au quotidien, des événements imprévus provoquent de telles instabilités. Concrètement, la composante résiduelle est ce qui reste après l'estimation de la tendance et de la saisonnalité, et leur suppression d'une série chronologique.

Voici une représentation de la décomposition des composantes d'une série temporelle :

Figure 2: Graphique présentant la décomposition classique d'un modèle additif d'une série temporelle (Chailan and Palacios-Rodríguez 2018)

2.3 Différents modèles de prédiction

Nous alons voir ici les différentes techniques et modèles qui existent pour la prédiction à l'aide de données temporelles.

Nous pouvons d'ores et déjà distinguer deux catégories de modèles de prédiction :

• **Modèles statistiques** : dits traditionnels, ils regroupent les modèles univariés et multivariés comprenant respectivement *ARIMA*, *SARIMA* et *VAR*.

Un processus stationnaire X_t admet une représentation ARIMA(p,d,q) dite minimale s'il existe une relation (Goude 2020) :

$$\Phi(L)(1-L)^dX_t = \Theta(L)\epsilon_t, \forall_t \in Z$$

avec pour conditions:

- $\phi_p \neq 0$ et $\theta_q \neq 0$
- Φ et Θ doivent être des polynômes de degrés respectifs p et q, n'ont pas de racines communes et leurs racines sont de modules > 1
- + ϵ_t est un BB de variance σ^2

De même, un processus stationnaire X_t admet une représentation SARIMA(p,d,q) dite minimale si la relation suivante est vraie (Goude 2020) :

$$(1-L)^d\Phi_p(L)(1-L^s)^D\Phi_P(L^s)X_t=\theta_q(L)\theta_Q(Ls)\epsilon_t, \forall_t\in Z$$

avec les mêmes conditions que pour les modèles ARIMA.

• Modèles d'apprentissage automatique : ils regroupent les modèles de régression par amplification de gradient et les modèles par apprentissage profond comprenant les réseaux de neurones récurrents et convolutionnels.

Voici une représentation des différents modèles de prédiction :

Figure 3: Liste non-exhaustive des modèles utilisés pour la prédiction de séries chronologiques.

Nous pourrions également ajouter à cette liste les très récents modèles basés sur l'architecture *Transformers*, comme **Temporal Fusion Transformers** (TFT) qui est un modèle de Google (Lim et al. 2019) qui permet de combiner des données temporelles avec des données non temporelles, des données statiques comme des informations de localisation dans le cas de prédictions météorologiques (Kafritsas 2021).

Dans notre projet, nous allons nous concentrer sur les modèles de Machine Learning les plus récents, qui sont les modèles de Deep Learning tels que les architectures réseaux de neurones convolutionnels et réseaux de neurones récurrents.

2.4 Réseaux de neurones récurrents (RNN)

Les réseaux de neurones récurrents, ou *Recurrent Neural Network*, sont des architectures de neurones qui sont utilisés dans beaucoup de cas d'usage. Ils sont appelés réseaux de neurones récurrents car ils sont capables de se réguler en fonction de la sortie des neurones précédents (Sherstinsky 2020). Ils sont notamment utilisés pour la prédiction de séries temporelles, car ils permettent de prédire la valeur d'une variable à partir de ses valeurs précédentes.

2.4.1 Architecture du réseau de neurones récurrents

Le modèle RNN est donc capable de prédire la valeur d'une variable à partir de ses valeurs précédentes, par le biais d'états cachés (en anglais *hidden states*). Ainsi, un modèle RNN prend en entrée des séquences de vectors de données, et non pas des vecteurs de données individuels.

Une architecture traditionnelle d'un RNN se présente comme suit (Amidi and Amidi 2020) :

Figure 4: Architecture d'un réseau de neurones récurrents (RNN)

À l'instant t, l'activation $a^{< t>}$ d'un neurone est définie par la fonction d'activation suivante :

$$a^{< t>} = g_1(W_{aa}a^{< t-1>} + W_{ax}x^{< t>} + b_a)$$

et la sortie $y^{< t>}$ est de la forme :

$$y^{} = g_2(W_{ya}a^{} + b_y)$$

où W_{ax} , W_{aa} , W_{ya} , b_a et b_y sont des coefficients de poids partagés temporellement entre les fonctions d'activation g_1 et g_2 .

Il est également intéressant de s'intéresser à l'architecture d'une cellule (en anglais *block*) qui compose un réseau de neurones récurrents. Cela permet de comprendre les mécanismes qui ont lieu à chaque étape de la propagation de données dans un réseau RNN. Ce sera également utile dans un second temps pour pouvoir comparer les différences majeures avec des architectures plus intéressantes que celles dites classiques, que nous verrons juste après.

Voici donc une représentation de l'architecture d'une cellule d'un réseau de neurones récurrents :

Figure 5: Architecture d'une cellule d'un réseau de neurones récurrents (RNN) (Amidi and Amidi 2020)

Nous pouvons voir que chaque cellule va prendre un état de la donnée précédente, et qu'elle va produire une sortie en fonction de son état et de la fonction d'activation associée.

2.4.2 Avantages et inconvénients

Voici un tableau récapitulatif des avantages et inconvénients d'utiliser ce genre de modélisation (Amidi and Amidi 2020) :

Table 1: Avantages et inconvénients des modèles RNN

Avantages	Inconvénients							
- Possibilité de traiter une entrée de	- Le calcul est plus consommateur en ressources							
n'importe quelle longueur	(par rapport à d'autres modèles)							

Avantages	Inconvénients
- La taille du modèle n'augmente pas avec la taille de l'entrée	- Difficulté pour accéder aux informations trop lointaines
- Le calcul prend en compte les informations historiques	- Impossibilité d'envisager une entrée future pour l'état actuel
- Les pondérations sont réparties dans le temps	

Nous pouvons constater que comme attendu lors de l'utilisation de modèles de *Deep Learning*, les modèles RNN sont plus consommateurs en ressources que d'autres modèles de *Machine Learning*. Ils présentent néanmoins des avantages non négligeables, en dehors d'un gain de performances, pour notre cas d'usage dans le cadre de la prédiction de séries temporelles financières.

2.4.3 Gestion des gradients

Il existe également un autre inconvénient des modèles RNN qui sont les phénomènes de gradients qui disparaissent et qui explosent lors de l'apprentissage. En anglais, on parle de *vanishing* gradient et exploding gradient.

Cela est expliqué par le fait que sur le long terme il est très difficile de capturer les dépendances à cause du gradient multiplicatif qui peut soit décroître, soit augmenter de manière exponentielle en fonction du nombre de couches du modèle.

2.4.3.1 Cas de gradient qui explose Pour contrer les phénomènes de gradient qui explose, il est possible d'utiliser une technique de *gradient clipping* (Sherstinsky 2020) (en français *coupure de gradient*) qui permet de limiter le gradient à une valeur fixée. Puisque la valeur du gradient est plafonnée les phénomènes néfastes de gradient sont donc maîtrisés en pratique.

Figure 6: Technique de gradient clipping

Grâce à cette technique, nous pouvons donc éviter que le gradient devienne trop important en le remettant à une échelle plus petite.

2.4.3.2 Cas de gradient qui disparaît Concernant les phénomènes de gradient qui disparaissent, il est possible d'utiliser des *portes* de différents types, souvent notées Γ et sont définies par :

$$\Gamma = \sigma(Wx^{< t>} + Ua^{< t-1>} + b)$$

où W, U et b sont des coefficients spécifiques à la porte et σ est une fonction sigmoïde.

Les portes sont utilisées dans les architectures plus spécifiques comme *GRU* et *LSTM* que nous verrons plus tard.

Table 2: Comparaison des différents types de portes et leurs rôles

Type de porte	Rôle	Utilité
Porte d'actualisation Γ_u	Décide si l'état de la cellule doit être mis à jour avec la valeur d'activation en cours	GRU, LSTM
Porte de pertinence Γ_r	Décide si l'état de la cellule antérieure est important ou non	GRU, LSTM
Porte d'oubli Γ_f	Contrôle la quantité d'information qui est conservé ou oublié de la cellule antérieure	LSTM
Porte de sortie Γ_o	Détermine le prochain état caché en contrôlant quelle quantité d'information est libérée par la cellule	LSTM

Ces différents types de portes permettent de corriger les erreurs de calcul du gradient en fonction de la mesure de l'importance du passé, et ainsi de s'affranchir en partie des phénomènes de gradient qui disparaissent. Il est important de noter que les portes d'oubli et de sortie sont utilisées uniquement dans les architectures LSTM. GRU dispose donc de deux portes, alors que LSTM dispose de quatre portes.

2.4.4 Fonctions d'activation

Il existe trois fonctions d'activation qui sont utilisées dans les modèles RNN :

Figure 7: Fonctions d'activation communément utilisées et leurs représentations (Amidi and Amidi 2020)

- La fonction d'activation sigmoïde représente la fonction de répartition de la loi logistique, souvent utilisée dans les réseaux de neurones, car elle est dérivable.
- La fonction d'activation tanh, ou *tangente hyperbolique, représente la fonction de répartition de la loi hyperbolique.
- La fonction d'activation RELU, ou rectified linear unit, représente la fonction de répartition de la loi linéaire.

Le rôle d'une fonction d'activation est de modifier de manière non-linéaire les valeurs de sortie des neurones, ce qui permet de modifier spatialement leur représentation. Une fonction d'activation est donc définie et spécifique pour chaque couche du réseau de neurones. Il ne faut pas confondre avec les fonctions de *loss* qui sont utilisées pour déterminer la qualité de l'apprentissage et sont quant à elles uniques, c'est-à-dire que l'on doit définir une unique fonction de loss pour chaque modèle.

2.4.5 GRU et LSTM

Nous pouvons distinguer les unités de porte récurrente (en anglais *Gated Recurrent Unit*) (GRU) et les unités de mémoire à long/court terme (en anglais *Long Short-Term Memory*) (LSTM). Ces deux architectures sont très similaires et visent à atténuer le problème de gradient qui disparaît, rencontré avec les RNNs traditionnels lors de l'apprentissage. *LSTM* peut être vu comme étant une généralisation de *GRU* en utilisant des cellules de mémoire à long ou court terme.

Pour comprendre les différences fondamentales entre les deux architectures, il est nécessaire de regarder en détails les différentes équations utilisées par chacune d'elles.

2.4.5.1 Gated Recurrent Unit (GRU) Comme nous l'avons vu précédemment, l'architecture GRU comporte deux portes : une porte d'actualisation Γ_u (en anglais $\mathit{update gate}$) et une porte de pertinence Γ_r (en anglais $\mathit{reset gate}$).

Voici l'architecture d'une unité de GRU:

Figure 8: Architecture d'une unité de GRU (Amidi and Amidi 2020)

Il faut discerner trois composantes importantes pour la structure de l'unité de GRU :

- La cellule candidate $c^{< t>}$, où $c^{< t>} = tanh(W_c[\Gamma_r \star a^{< t-1>}, x^{< t>}] + b_c)$
- L'état final de la cellule $c^{< t>}$, où $c^{< t>} = \Gamma_u \star c^{< t>} + (1 \Gamma_u) \star c^{< t-1>}$

L'état final de la cellule est calculé par la somme des produits de la porte d'actualisation Γ_u et de la valeur de la cellule candidate $c^{< t>}$ et de l'ineverse de la porte d'actualisation $1-\Gamma_u$ multiplié par la valeur de l'état final de la cellule antérieure c^{t-1} .

Cet état final de la cellule est donc dépendant de la porte d'actualisation Γ_u et peut soit être mis à jour avec la valeur de la cellule candidate $c^{< t>}$ ou soit conservé la valeur de l'état final de la cellule antérieure.

- La fonction d'activation $a^{< t>}$, où $a^{< t>} = c^{< t>}$
- **2.4.5.2 Long Short-Term Memory (LSTM)** Maintenant que nous avons vu plus en détails l'architecture générale des RNNs, ainsi que les particularités de GRU, il est temps d'aborder en

détails les particularités de l'architecture de LSTM, qui sera l'architecture choisie par le projet final.

En plus des deux portes d'actualisation et de pertinence, LSTM intègre une porte d'oubli Γ_f et une porte de sortie Γ_o .

Figure 9: Architecture d'une unité de LSTM (Amidi and Amidi 2020)

L'architecture LSTM est similaire à l'architecture GRU, mais permet de gérer le problème de gradient qui disparaît. Ainsi, aux trois composantes de l'unité de GRU que nous avons vu précédemment, il y a deux différences :

- La fonction d'activation $a^{< t>}$ est désormais multipliée par la porte de sortie Γ_o , ce qui permet de contrôler la quantité d'information qui est libérée par la cellule. On a donc : $a^{< t>} = \Gamma_o \star c^{< t>}$
- L'état final de la cellule $c^{< t>}$ est désormais influencé par la porte d'oubli Γ_f qui devient un facteur de la valeur de l'état final de la cellule antérieure c^{t-1} . En agissant ainsi, la porte d'oubli permet de réguler la quantité d'information retenue de la cellule antérieure. Il y a donc un choix sur ce qui est conservé et oublié. On a ainsi : $c^{< t>} = \Gamma_f \star c^{t-1} + \Gamma_f \star c^{< t-1>}$

3 Section 2: Make Us Rich

4 Conclusion

Amidi, Afshine, and Shervine Amidi. 2020. "Recurrent Neural Networks Cheatsheet Star." *CS* 230 - Recurrent Neural Networks Cheatsheet. Stanford.edu. https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks.

- Chailan, Romain, and F. Palacios-Rodríguez. 2018. "TP-Timeseries Novembre 2018." *Rchailan.github.io.* https://rchailan.github.io/assets/lectures/timeseries/tp_timeseries.ht ml.
- Goude, Yannig. 2020. "Les Processus Arima." Paris-Saclay. https://www.imo.universite-paris-saclay.fr/~goude/Materials/time_series/cours6_ARIMA.pdf.
- Kafritsas, Nikos. 2021. *Temporal Fusion Transformer: Time Series Forecasting with Inter-pretability*. https://towardsdatascience.com/temporal-fusion-transformer-googles-model-for-interpretable-time-series-forecasting-5aa17beb621.
- Lim, Bryan, Sercan O. Arik, Nicolas Loeff, and Tomas Pfister. 2019. "Temporal Fusion Transformers for Interpretable Multi-Horizon Time Series Forecasting." arXiv. https://doi.org/10.48550/ARXIV.1912.09363.
- Sherstinsky, Alex. 2020. "Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network." *Physica D: Nonlinear Phenomena* 404 (March): 132306. https://doi.org/10.1016/j.physd.2019.132306.