

CS240 Algorithm Design and Analysis

Lecture 25

Approximation Algorithms

Quan Li Fall 2022 2022.12.13

Vertex Cover

Vertex Cover

- Input A graph with vertices V and edges E.
- Output A subset V' of the vertices, so that every edge in E touches some vertex in V'.
- Goal Make |V'| as small as possible.

- Finding the minimum vertex cover is NP-complete.
- We'll see a simple 2 approximation for this problem.

A Vertex Cover Algorithm

- Initially, let D be all the edges in the graph, and C be the empty set.
 - ☐ C is our eventual vertex cover.
- Repeat as long as there are edge left in D.
 - \square Take any edge (u,v) in D.
 - □ Add {u,v} to C.
 - □ Remove all the edges adjacent to u or v from D.
- Output C as the vertex cover.

Example

- The output is certainly a vertex cover.
 - □ In each iteration, we only take out edges that get covered.
 - □ We keep adding vertices till all edges are covered.
- Now, we show it's a 2 approximation.
- Let C* be an optimal vertex cover.
- Let A be the set of edges the algorithm picked.

- None of the edges in A touch each other.
 - □ Each time we pick an edge, we remove all adjacent edges.
- So each vertex in C* covers at most one edge in A.
 - □ The edges covered by a vertex all touch each other.
- Every edge in A is covered by a vertex in C*.
 - □ Because C* is a vertex cover.
- So $|C^*| \ge |A|$.
- The number of vertices the algorithm uses is 2|A|.
 - \square If algorithm picks edge (u,v), it uses {u,v} in the cover.
- So (# vertices algorithm uses) / (# vertices in opt cover) = $2|A| / |C^*| \le 2|A| / |A| = 2$.

The Pricing Method: Vertex Cover

Weighted Vertex Cover

Weighted vertex cover. Given a graph G with vertex weights, find a vertex cover of minimum weight.

It's a special case of the set cover problem, so the $H(d^*)$ approximation ratio can be achieved by the greedy algorithm, where $d^* = \max degree$

weight =
$$2 + 2 + 4 = 8$$

weight =
$$2 + 9 = 11$$

Weighted Vertex Cover

Pricing method. Each edge must be covered by some vertex i. Edge e pays price $p_e \ge 0$ to use vertex i.

Fairness. Edges incident to vertex i should pay $\leq w_i$ in total.

for each vertex i:
$$\sum_{e=(i,j)} p_e \le w_i$$

Claim. For any vertex cover S and any fair prices p_e : $\sum_e p_e \le w(S)$.

$$\sum_{e \in E} p_e \le \sum_{i \in S} \sum_{e = (i,j)} p_e \le \sum_{i \in S} w_i = w(S)$$

each edge e covered by at least one node in S

sum fairness inequalities for each node in S

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

Pricing Method: Example

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation. Pf.

- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.
- Let S = set of all tight nodes upon termination of algorithm.
- S is a vertex cover: if some edge i-j is uncovered, then neither i nor j is tight. But then while loop would not terminate.
- Let S* be optimal vertex cover. We show $w(S) \le 2w(S^*)$.

$$w(S) = \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in V} \sum_{e=(i,j)} p_e = 2 \sum_{e \in E} p_e \leq 2w(S^*). \quad \blacksquare$$

all nodes in S are tight $S \subseteq V,$ each edge counted twice $\mbox{ fairness lemma }$ prices ≥ 0

LP Rounding: Vertex Cover

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph G = (V, E) with vertex weights $w_i \ge 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.

Weighted Vertex Cover: Integer Linear Programming Formulation

Weighted vertex cover. Given an undirected graph G = (V, E) with vertex weights $w_i \ge 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.

Integer programming formulation.

■ Model inclusion of each vertex i using a 0/1 variable x_i .

$$x_i = \begin{cases} 0 & \text{if vertex } i \text{ is not in vertex cover} \\ 1 & \text{if vertex } i \text{ is in vertex cover} \end{cases}$$

- Objective function: minimize Σ_i w_i x_i.
- Must take either i or j: $x_i + x_j \ge 1$.

(ILP) min
$$\sum_{i \in V} w_i x_i$$
s. t. $x_i + x_j \ge 1$ $(i,j) \in E$

$$x_i \in \{0,1\} \quad i \in V$$

Integer Programming

INTEGER-PROGRAMMING. Given integers a_{ij} and b_i , find integers x_i that satisfy:

min
$$c^t x$$

s. t. $Ax \ge b$
 $x \ge 0$
 $x \text{ integral}$

$$\sum_{j=1}^{n} a_{ij} x_{j} \geq b_{i} \qquad 1 \leq i \leq m$$

$$x_{j} \geq 0 \qquad 1 \leq j \leq n$$

$$x_{j} \qquad \text{integral} \qquad 1 \leq j \leq n$$

Observation. Vertex cover formulation proves that integer programming is NP-hard search problem.

even if all coefficients are 0/1 and at most two variables per inequality

Integer Programming

Linear programming. Max/min linear objective function subject to linear inequalities.

- Input: integers c_j, b_i, a_{ij}.
- Output: real numbers x_i.

(LP) min
$$c^t x$$

s. t. $Ax \ge b$
 $x \ge 0$

(LP) min
$$\sum_{j=1}^{n} c_{j} x_{j}$$
s. t.
$$\sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i} \quad 1 \le i \le m$$

$$x_{j} \ge 0 \quad 1 \le j \le n$$

Linear. No x^2 , xy, arccos(x), x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice. Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

LP Feasible Region

LP geometry in 2D.

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

(LP) min
$$\sum_{i \in V} w_i x_i$$
s. t. $x_i + x_j \ge 1$ $(i, j) \in E$

$$x_i \ge 0 \quad i \in V$$

Observation. Optimal value of (LP) is \leq optimal value of (ILP). Pf. LP has fewer constraints.

Note. LP is not equivalent to vertex cover.

- Q. How can solving LP help us find a small vertex cover?
- A. Solve LP and round fractional values.

Weighted Vertex Cover

Theorem. If x^* is optimal solution to (LP), then $S = \{i \in V : x^*_i \ge \frac{1}{2}\}$ is a vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]

- Consider an edge $(i, j) \in E$.
- Since $x_i^* + x_j^* \ge 1$, either $x_i^* \ge \frac{1}{2}$ or $x_j^* \ge \frac{1}{2}$ \Rightarrow (i, j) covered.

Pf. [S has desired cost]

■ Let S* be optimal vertex cover. Then

$$\sum_{i \in S^*} w_i \geq \sum_{i \in S} w_i x_i^* \geq \frac{1}{2} \sum_{i \in S} w_i$$

$$| \qquad |$$

$$\text{LP is a relaxation} \qquad x_i^* \geq \frac{1}{2}$$

K-Center Problem

K-Center Problem

- Given a city with n sites, we want to build k centers to serve them.
 - □ Let S be set of sites, C be set of centers.
- Each site uses the center closest to it.
 - □ Distance of site s from the nearest center is $d(s,C) = min_{c \in C}d(s,c)$.
- Goal is to make sure no site is too far from its center.
 - □ We want to minimize the max distance that any site is from its closest center.
 - Minimize $r(C) = max_{s \in S} min_{c \in C} d(s, c)$.
 - \square C is called a cover of S, and r is called C's radius.
 - □ Where should we put centers to minimize the radius?
- Assume distances satisfy triangle inequality.

Gonzalez's Algorithm

- k-Center is NP-complete.
- We'll give a simple 2-approximation for it.
- Idea Say there's one site that's farthest away from all centers. Then it makes the radius large. We'll put a center at that site, to reduce the radius.
 - □ Note we allow putting center at same location as site.

Gonzalez's Algorithm

- C is set of centers, initially empty.
- □ repeat k times
 - choose site s with maximum d(s,C)
 - □ add s to C
- □ return C
- Note The centers are located at the sites.

- Let C be the algorithm's output, and r be C's radius.
 - $\square r = max_{s \in S} min_{c \in C} d(s, c)$
- Lemma 1 For any $c, c' \in C$, $d(c, c') \ge r$.
- Proof Since r is the radius, there exists a point $s \in S$ at distance \geq r from all the centers.
 - □ If there's no such s, then C's radius < r.
 - \square So s is distance \geq r from c and c'.
 - □ Suppose WLOG c' is added to C after c.
 - \square If d(c,c')<r, then algorithm would add s to C instead of c', since s is farther.

- Cor There exist k+1 points mutually at distance $\geq r$ from each other.
 - \square By the lemma, the k centers are mutually \ge r distance apart.
 - \square Also, there's an s \in S at distance \ge r from all the centers.
 - Otherwise, C's covering radius is < r.
 - \square So, the k centers plus s are the k+1 points.
- Call these k+1 points D.

- Let C* be an optimal cover with radius r*.
- Lemma 2 Suppose $r > 2r^*$. Then for every $c \in D$, there exists a corresponding $c' \in C^*$. Furthermore, all these c' are unique.
- Proof Draw a circle of radius r/2 around each $c \in D$.
 - \square There must be a $c' \in C^*$ inside the circle, because
 - c is at most distance r* away from its nearest center, since r* is C*'s radius.
 - r/2>r*.
 - \square Given $c_1, c_2 \in D$, let $c'_1, c'_2 \in C^*$ be inside c_1 and c_2 's circle, resp.
 - \square c₁ and c₂'s circles don't touch, because $d(c_1,c_2) \ge r$.
 - \square So $c'_1 \neq c'_2$

- Thm Let C be the output of Gonzalez's algorithm and let C^* be an optimal k-center. Then $r(C) \leq 2r(C^*)$.
- Proof By Lemma 2, if $r(C)>2r(C^*)$, then for every $c\in D$, there is a unique $c'\in C^*$.
 - \square But there are k+1 points in D, by the corollary.
 - \square So, there are k+1 points in C*. This is a contradiction because C* is a k-center.

Next Final Review

