Amendments to the Claims

Claims 1 - 15 (canceled)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Serial No. 09/692,990

Claim 16 (currently amended): A computer implemented method for programmatically creating a distributed object program in which at least one complex object is passed as a parameter, wherein the programmatically-created program is programmatically generated from a programmer-written program which is not specially adapted for distributed execution, the distributing one or more objects of a program across more than one physical device, each object containing one or more programmed member functions, said member functions having complex objects, said complex objects including one or more programmed member functions, as parameters, said method comprising the computer executable steps of: identifying all of the one or more objects in the programmer-written program, wherein each of the objects contains one or more programmed member functions and wherein at least one of the programmed member functions is written to pass one of the objects as a parameter; determining a first set which of the identified objects which are to reside on a first computer and a second set which of the identified objects which are to reside on a second computer, wherein the first set and the second set together comprise the identified objects of the programmer-written program and the first set and the second set each include at least one of the identified objects; such that the distributed system will consist of at least a first object on a first computer and a second object on a second computer; identifying all programmed methods contained in each object that may be accessed from a remote computer.

-2-

computer; and

programmatically generating, upon detecting that a first object in the first set contains logic to call one of the programmed member functions of a second object in the second set, a first proxy and a second proxy for each the second object, wherein the first proxy is generated to be installed on the first computer and the second proxy is generated to be installed on the second computer:

programmatically generating logic in the first proxy that will programmatically generate a third proxy, responsive to detecting that the call to the programmed member function of the second object will pass, as a parameter, a third object that is a complex object and that is one of the objects in the first set, wherein the third proxy is generated to be installed on the first

programmatically generating logic in the second proxy that will programmatically generate a fourth proxy, responsive to a call from the first proxy that includes a reference to the third proxy, wherein the fourth proxy is generated to be installed on the second computer.

such that, at run time, the first object can transparently access the programmed member function of the second object can transparently access a programmed member function of the third object, that may be accessed from a remote computer, said first proxy residing on said first computer, and said second proxy residing on said second computer, said first proxy containing network linkage and indication to access programmed member functions on said second proxy on said second computer including logic to transfer and translate complex objects which reside on said first computer used as member function parameters and said second proxy containing linkage and indication to access said programmed member functions on said second object including logic to transfer and

Serial No. 09/692,990

42	translate complex objects, said complex objects containing one or more programmed member				
43	functions and reside on said first computer, used as member function parameters; and;				
44	accessing said remote programmed methods through said proxies.				
1	Claim 17 (currently amended): A method The method as claimed in Claim 16, wherein:				
2	said the logic in said first proxy further comprises programmatically-generated logic to on				
3	said first computer to transfer and translate complex data objects comprising the steps of:				
4	creating a third proxy, for said complex object, which is to reside on said first computer				
5	with said complex object, said third proxy containing linkage and indication to access				
6	programmed member functions on said complex object;				
7	creating (1) create a reference table entry which correlates said the third proxy				
8	object to said complex the third object, which may be accessed by said the third proxy object to				
9	access said complex when invoking programmed member functions of the third object; (2)				
10	translate calls for the programmed member function of the second object that are received from				
11	the first object and that pass the third object as a parameter, whereby a reference to the third				
12	proxy replaces the third object on the received calls, and forward the translated calls to the				
13	second proxy; and (3) upon receiving, from the second proxy, responses to the translated calls,				
1.4	return the responses to the first object; ; and,				
15	passing as a member function parameter to said second proxy on said second				
16	machine a reference to said third proxy, in place of said complex object when said complex				
17	object is to be a parameter in a member function call to said second object on said second				
18	machine:				
	Serial No. 09/692,990 -4- Docket CR9-97 no. 1192				

30.

said logic in said the second r	roxy further com	prises programmatically-generated logic to
		plex data objects comprising the steps of:
creating a fourth proxy	y for said comple:	x object on said first computer which is to
reside on said second computer, said-	fourth proxy cont	aining network linkage and indication
necessary to access programmed men	n ber functions o n	said third proxy on said first machine;
creating a (1) create a	second reference	table entry which correlates said the fourth
proxy to a to the reference to said the	third proxy on sa	id third computer, which may be accessed
by said the fourth proxy to access said	when forwarding	g calls to the third proxy; (2) invoke the
programmed member function of the	second object, res	ponsive to receiving one of the translated
calls that is forwarded from the first p	roxy, wherein the	second reference table entry is consulted
so that an indication of the fourth pro-	ty is substituted, o	on the invocation, for the reference to the
		ned member function of the second object.
a response to the forwarded call, return		
the fourth proxy further compr	ises programmati	cally-generated logic to (1) consult the
second reference table entry responsive	ve to receiving a c	all from the programmed member
function of the second object, thereby	determining that t	the received call corresponds to the third
proxy: (2) translate the call received fro	om the programm	ed member function of the second object
such that the translated call refers to the		
proxy; and (3) upon receiving, from the		·
response to the programmed member fi		
the third proxy further comprise	s programmatica	lly-generated logic to (1) consult the
reference table entry, responsive to rece		
Serial No. 09/692,990	-5-	Docket CD0 87 000 1100

41	determining that the received translated call corresponds to the third object; (2) translate the call			
42	received from the fourth proxy to invoke the programmed member function of the third object			
43	and forward the translated call to the third object, where the programmed member function of the			
44	third object will then be executed; a	nd (3) upon receiving.	from the programmed member	
45	function of the third object, a result	of the execution, return	the result to the fourth proxy.;	
46	passing as a member	function parameter to	said second object from said second	
47	proxy on said second computer an in	ndication of said fourth	proxy, in place of said reference to	
48	said third proxy on said first comput	ter, which represents s	aid complex object on said first	
49	computer.			
50	said network linkage and ind	lication in said fourth p	roxy necessary to access programmed	
51	member functions on said third prox	y on said first compute	or comprising the steps of:	
52	looking up said fourt	h proxy in said referenc	ce table on said second computer to	
53	determine which object on said first	machine said fourth of	oject is a proxy for, said lookup	
54	returning a reference to said third pr	oxy on said first compt	ater;	
55	calling the appropriat	e programmed member	functions in said third proxy on said	
56	first computer.			
57	said linkage and indication in	said third proxy neces	sary to access programmed methods	
58	on said complex object comprising t			
59		proxy in said reference	table on said first computer to	
60	determine which object on said first machine said third object is a proxy for, said lookup			
61	returning a reference to said complex	returning a reference to said complex object on said first computer,		
62 .	calling the appropriate	programmed member	functions in said complex object.	
	Serial No. 09/692,990	-6 -	Docket CR9-97-092-1152	

	1	Claim 18 (currently amended): A method The method as claimed in Claim 17 wherein 16.			
	2	wherein one of said complex objects the third object is said identical to the first object, such that			
	3	the call to the programmed member function of the second object executes as a callback on the			
	4	first object. on said first computer.			
	1	Claim 19 (currently amended): A method The method as claimed in Claim 16, wherein 17			
	2	wherein said the reference table entry and the second reference table entry are created as is a			
,	3	database entries.			
	1	Claim 20 (currently amended): A computer program product for programmatically creating a			
	2	distributed object program in which at least one complex object is passed as a parameter, whereir			
	3	the programmatically-created program is programmatically generated from a programmer-written			
	4	program which is not specially adapted for distributed execution, the distributing one or more			
	5	objects of a program across more than one physical device, each object containing one or more			
	6	programmed member functions, said member functions having complex objects, said complex			
	7	objects including one or more programmed member functions, as parameters, said computer			
	8	program product comprising:			
	9	a computer-readable storage medium have computer-readable program code means			
1	.0	embodied in said medium, said computer-readable program code means comprising:			
1	.1	computer-readable program code means for identifying all of the one or more			
1	2	objects in the programmer-written program, wherein each of the objects contains one or more			
		Serial No. 09/692,990 -7- Docket CR9-97-092-US2			

13	programmed member functions and wherein at least one of the programmed member functions is				
14	written to pass one of the objects as a parameter;				
15	computer-readable program code means for determining a first set which of the				
16	identified objects which are to reside on a first computer and which a second set of the identified				
17	objects which are to reside on a second computer, wherein the first set and the second set				
18	together comprise the identified objects of the programmer-written program and the first set and				
19	the second set each include at least one of the identified objects; such that the distributed system				
20	will consist of at least a first object on a first computer and a second object on a second				
21	computer,				
22	computer-readable program code means for identifying all programmed methods				
23	contained in each object that may be accessed from a remote computer,				
24	computer-readable program code means for programmatically generating, upon				
25	detecting that a first object in the first set contains logic to call one of the programmed member				
26	functions of a second object in the second set, a first proxy and a second proxy for each the				
27	second object, wherein the first proxy is generated to be installed on the first computer and the				
28	second proxy is generated to be installed on the second computer:				
29	computer-readable program code means for programmatically generating logic in				
.30	the first proxy that will programmatically generate a third proxy, responsive to detecting that the				
31	call to the programmed member function of the second object will pass, as a parameter, a third				
32	object that is a complex object and that is one of the objects in the first set, wherein the third				
33	proxy is generated to be installed on the first computer; and				
34	computer-readable program code means for programmatically generating logic in				
	Serial No. 09/692,990 -8- Docket CR9-97-092-US2				

the second proxy that will programmatically generate a fourth proxy, responsive to a call from 35 36 the first proxy that includes a reference to the third proxy, wherein the fourth proxy is generated 37 to be installed on the second computer, such that, at run time, the first object can transparently access the programmed member 38 function of the second object and the programmed member function of the second object can 39 transparently access a programmed member function of the third object, that may be accessed 40 41 from a remote computer, said first proxy residing on said first computer and said second proxy 42 residing on said second computer, said first proxy containing network linkage and indication to access programmed member functions on said second proxy on said second computer including 43 44 logic to transfer and translate complex objects which reside on said first computer used as member function parameters and said second proxy containing linkage and indication to access 45 said programmed member functions on said second object including logic to transfer and 46 translate complex objects, said complex objects containing one or more programmed member 47 functions and reside on said first computer, used as member function parameters, and, 48 49 computer-readable program code means for accessing said remote programmed 50 methods through said proxies. 1. Claim 21 (currently amended): A computer The computer program product as claimed in Claim 20, wherein: 2 3 said logic in said the first proxy on said first computer to transfer and translate complex data objects comprising the steps of: 4 5 creating a third proxy, for said complex object, which is to reside on said first Serial No. 09/692,990 -9-Docket CR9-97-092-US2

6	computer with said complex object, said third proxy containing linkage and indication to access				
7	programmed member functions on said complex object;				
8	creating further comprises programmatically-generated logic to (1) create a				
9	reference table entry which correlates said the third proxy object to said complex the third object				
10	which may be accessed by said the third proxy object to access said complex when invoking				
11	programmed member functions of the third object; (2) translate calls for the programmed				
12	member function of the second object that are received from the first object and that pass the				
13	third object as a parameter, whereby a reference to the third proxy replaces the third object on the				
14	received calls, and forward the translated calls to the second proxy; and (3) upon receiving, from				
15	the second proxy, responses to the translated calls, return the responses to the first object; ; and,				
16	passing as a member function parameter to said second proxy on said second				
17	machine a reference to said third proxy, in place of said complex object when said complex				
18	object is to be a parameter in a member function call to said second object on said second				
19.	machine:				
20	said logic in said the second proxy on said second computer to transfer and translate				
21	complex data objects comprising the steps of:				
22	creating a fourth proxy for said complex object on said first computer which is to				
23	reside on said second computer, said fourth proxy containing network linkage and indication				
24	necessary to access programmed member functions on said third proxy on said first machine;				
25	creating a further comprises programmatically-generated logic to (1) create a				
26	second reference table entry which correlates said the fourth proxy to a to the reference to said				
27	the third proxy on said third computer, which may be accessed by said the fourth proxy to access				
	Serial No. 09/692,990 -10- Docket CR9-97-092-US2				

Serial No. 09/692,990

28	said when forwarding calls to the third proxy: (2) invoke the programmed member function of
29	the second object, responsive to receiving one of the translated calls that is forwarded from the
30	first proxy, wherein the second reference table entry is consulted so that an indication of the
31	fourth proxy is substituted, on the invocation, for the reference to the third proxy, and (3) upon
32	receiving, from the programmed member function of the second object, a response to the
33	forwarded call, return the response to the first proxy;
34	the fourth proxy further comprises programmatically-generated logic to (1) consult the
35	second reference table entry, responsive to receiving a call from the programmed member
3.6	function of the second object, thereby determining that the received call corresponds to the third
′37:⊸	proxy; (2) translate the call received from the programmed member function of the second object
38	such that the translated call refers to the third proxy and forward the translated call to the third
39	proxy; and (3) upon receiving, from the third proxy, a response to the translated call, return the
40:	response to the programmed member function of the second object; and
41	the third proxy further comprises programmatically-generated logic to (1) consult the
42	reference table entry, responsive to receiving the translated call from the fourth proxy, thereby
43	determining that the received translated call corresponds to the third object; (2) translate the call
44	received from the fourth proxy to invoke the programmed member function of the third object
45	and forward the translated call to the third object, where the programmed member function of the
46	third object will then be executed; and (3) upon receiving, from the programmed member
47	function of the third object, a result of the execution, return the result to the fourth proxy,;
48	
49	passing as a member function parameter to said second object from said second

-11-

, 0	proxy on said second computer air indication or said fourth proxy, in place of said reference to
51	said third proxy on said first computer, which represents said complex object on said first
52	computer.
3	said network linkage and indication in said fourth proxy necessary to access programmed
54	member functions on said third proxy on said first computer comprising the steps of:
55	looking up said fourth proxy in said reference table on said second computer to
6	determine which object on said first machine said fourth object is a proxy for, said lookup
5 7	returning a reference to said third proxy on said first computer;
8 ,	calling the appropriate programmed member functions in said third proxy on said
59	first computer.
50	said linkage and indication in said third proxy necessary to access programmed methods
51	on said complex object comprising the steps of:
52	looking up said third proxy in said reference table on said first computer to
3	determine which object on said first machine said third object is a proxy for, said lookup
4	returning a reference to said complex object on said first computer;
55	calling the appropriate programmed member functions in said complex object.
1	Claim 22 (currently amended): A computer The computer program product as claimed in Claim
2	21 wherein one of said complex objects 20, wherein the third object is said identical to the first
3	object, such that the call to the programmed member function of the second object executes as a
4	callback on the first object, on said first computer.

Serial No. 09/692,990

1	Claim 23 (currently amended): A computer The computer program product as claimed in Claim
Ż	21 wherein said 20, wherein the reference table is a entry and the second reference table entry are
з่	created as database entries.
1	Claim 24 (currently amended): A computer system for programmatically creating a distributed
2	object program in which at least one complex object is passed as a parameter, wherein the
3	programmatically-created program is programmatically generated from a programmer-written
4	program which is not specially adapted for distributed execution, the distributing one or more
5	objects of a program across more than one physical device, each object containing one or more
6:	programmed member functions, said member functions having complex objects, said complex
7	objects including one or more programmed member functions, as parameters, said system
8	comprising:
9	means for identifying all of the one or more objects in the programmer-written program,
10	wherein each of the objects contains one or more programmed member functions and wherein at
11 ¹	least one of the programmed member functions is written to pass one of the objects as a
12	parameter;
13	means for determining which a first set of the identified objects which are to reside on a
14	first computer and a second set which of the identified objects which are to reside on a second
15	computer, wherein the first set and the second set together comprise the identified objects of the
16	programmer-written program and the first set and the second set each include at least one of the
17	identified objects: such that the distributed system will consist of at least a first object on a first
18	computer and a second object on a second computer,

-13-

19	means for identifying all programmed methods contained in each object that may be
20	accessed from a remote computer,
21	means for programmatically generating, upon detecting that a first object in the first set
22	contains logic to call one of the programmed member functions of a second object in the second
23	set, a first proxy and a second proxy for each the second object, wherein the first proxy is
24	generated to be installed on the first computer and the second proxy is generated to be installed
25	on the second computer:
26	means for programmatically generating logic in the first proxy that will programmaticall
27.	generate a third proxy, responsive to detecting that the call to the programmed member function
28.	of the second object will pass, as a parameter, a third object that is a complex object and that is
29	one of the objects in the first set, wherein the third proxy is generated to be installed on the first
30	computer; and
31	means for programmatically generating logic in the second proxy that will
32	programmatically generate a fourth proxy, responsive to a call from the first proxy that includes
33	reference to the third proxy, wherein the fourth proxy is generated to be installed on the second
34	computer.
35	such that, at run time, the first object can transparently access the programmed member
36	function of the second object and the programmed member function of the second object can
37	transparently access a programmed member function of the third object, that may be accessed
38	from a remote computer, said first proxy residing on said first computer and said second proxy
39	residing on said second computer, said first proxy containing network linkage and indication to
40	access programmed member functions on said second proxy on said second computer including
	Serial No. 09/692,990 -14- Docket CR9-97-092-US2

41	logic to transfer and translate complex objects which reside on said first computer used as
42	member function parameters and said second proxy containing linkage and indication to access
43	said programmed member functions on said second object including logic to transfer and
4 4	translate complex objects, said complex objects containing one or more programmed member
45	functions and reside on said first computer, used as member function parameters; and,
46	means for accessing said remote programmed methods through said proxies.
1.	Claim 25 (currently amended): A system The system as claimed in Claim 24, wherein:
2	said logic in said the first proxy on said first computer to transfer and translate complex
3 ,	data objects comprising the steps of:
4	creating a third proxy, for said complex object, which is to reside on said first
5	computer with said complex object, said third proxy containing linkage and indication to access
6	programmed member functions on said complex object;
. 7 , .	creating further comprises programmatically-generated logic to (1) create a
8	reference table entry which correlates said the third proxy object to said complex the third object,
9	which may be accessed by said the third proxy object to access said complex when invoking
10	programmed member functions of the third object; (2) translate calls for the programmed
11	member function of the second object that are received from the first object and that pass the
12	third object as a parameter, whereby a reference to the third proxy replaces the third object on the
13	received calls, and forward the translated calls to the second proxy; and (3) upon receiving, from
14	the second proxy, responses to the translated calls, return the responses to the first object; and,
15	passing as a member function parameter to said second proxy on said second
	Serial No. 09/692,990 -15- Docket CRO 07 000 1150

10	machine a reference to said tittle proxy,	, ill place of said c	omplex object when said complex
17	object is to be a parameter in a member	r function call to sa	id second object on said second
18	machine.		
19	said logic in said the second pro	xy on said second	computer to transfer and translate
20	complex data objects comprising the sta	cps of.	
21	creating a fourth proxy f	for said complex of	ject on said first computer which is to
22	reside on said second computer, said fo	urth proxy containi	ng network linkage and indication
23	necessary to access programmed memb	er functions on said	I third proxy on said first machine,
24	creating a further compr	ises programmatica	lly-generated logic to (1) create a
25	second reference table entry which corr	relates said <u>the</u> four	th proxy to a to the reference to said
26	the third proxy on said third computer,	which may be acce	ssed by said the fourth proxy to access
27	said when forwarding calls to the third	proxy; (2) invoke t	ne programmed member function of
28	the second object, responsive to receivi	ng one of the trans	ated calls that is forwarded from the
29	first proxy, wherein the second reference	ce table entry is con	sulted so that an indication of the
30	fourth proxy is substituted, on the invoc	cation, for the refer	ence to the third proxy; and (3) upon
31	receiving, from the programmed memb	er function of the s	econd object, a response to the
32	forwarded call, return the response to the	ne first proxy;	
33	the fourth proxy further compris	ses programmatical	ly-generated logic to (1) consult the
34	second reference table entry, responsive	to receiving a call	from the programmed member
35	function of the second object, thereby d	etermining that the	received call corresponds to the third
36	proxy; (2) translate the call received fro	m the programmed	member function of the second object
37	such that the translated call refers to the	third proxy and fo	ward the translated call to the third
	Serial No. 09/692,990	-16-	Docket CR9-97-092-US2

proxy; and (3) upon receiving, from the third proxy, a response to the translated call, return the 38 response to the programmed member function of the second object; and 39 the third proxy further comprises programmatically-generated logic to (1) consult the 40 reference table entry, responsive to receiving the translated call from the fourth proxy, thereby 41 determining that the received translated call corresponds to the third object; (2) translate the call 42 received from the fourth proxy to invoke the programmed member function of the third object 43 and forward the translated call to the third object, where the programmed member function of the 44 third object will then be executed; and (3) upon receiving, from the programmed member 45 function of the third object, a result of the execution, return the result to the fourth proxy. 46 47 passing as a member function parameter to said second object from said second proxy on said second computer an indication of said fourth proxy; in place of said reference to 48 said third proxy on said first computer, which represents said complex object on said first 49 50 computer. said network linkage and indication in said fourth proxy necessary to access programmed 51 member functions on said third proxy on said first computer comprising the steps of: 52 looking up said fourth proxy in said reference table on said second computer to 53 determine which object on said first machine said fourth object is a proxy for, said lookup 54 returning a reference to said third proxy on said first computer; 55 56 calling the appropriate programmed member functions in said third proxy on said 57 first computer. said linkage and indication in said third proxy necessary to access programmed methods 58 59 on said complex object comprising the steps of. Serial No. 09/692,990 -17-Docket CR9-97-092-US2

60 looking up said third proxy in said reference table on said first computer to determine which object on said first machine said third object is a proxy for, said lookup 61 returning a reference to said complex object on said first computer; 62 calling the appropriate programmed member functions in said complex object: 63 Claim 26 (currently amended): A system The system as claimed in Claim 25 wherein one of said 1 complex objects 24, wherein the third object is identical to the said first object, such that the call 2 to the programmed member function of the second object executes as a callback on the first object, on said first computer. Claim 27 (currently amended): A system The system as claimed in Claim 25 wherein said 24, wherein the reference table entry and the second reference table entry are created as is a database 3 entries.