TEMA 1. ESTRUCTURA ATÒMICA

1.1 Estructura dels àtoms

Isòtops

- **1.** 12,011 uma
- **2.** 99,67% ¹⁴N 0,33 ¹⁵N

1.2 Bases experimentals de la teoria quàntica

Radiacions electromagnètiques

- 3. Per fotó (J)
 - (a) $3,313\cdot10^{-19}$; $3,614\cdot10^{-19}$, $4,979\cdot10^{-19}$ (b) $9,929\cdot10^{-19}$ (c) $1,325\cdot10^{-15}$ (d) $1,988\cdot10^{-23}$ (e) $1,988\cdot10^{-27}$ (f) $4,376\cdot10^{-20}$

Per mol de fotons (kJ mol⁻¹)

- (a) 199.5,217.5, 299.3; (b) 598,8 (c) $798,0\cdot10^3$ (d) $11,8\cdot10^3$ (e) $1,2\cdot10^{-3}$ (f) 26.3
- **4.** 1071,4 THz
- **5.** 1 m
- 6. 2,817·10¹⁹ fotons

Efecte Fotoelèctric

- **7.** Sí, No
- 8. 2,35·10⁻²⁰ J
- **9.** Si; No; 6.11·10⁵ m/s
- **10.** (a) α (b) 3.3·01⁻²⁰ v=2,69·10⁵ m/s (c) augmentant intensitat radiació (c) només augmentant freqüència de radiació incident.

Espectres Atòmics

- **11.** (f) < (a) = (b) < (e) < (c) < (d)
- **12.** (a) 121,6 nm; 91,2 nm (b) n=5 (c) NO

13.

/·				
Sèrie	Freqüència (s ⁻¹)	Longitud d'ona (m)	Número d'ona	Energia (J)
			(cm ⁻¹)	
Lyman	2,47·10 ¹⁵	1,22·10 ⁻⁷	8,22·10 ⁴	1,63·10 ⁻¹⁸
Balmer	4,57·10 ¹⁴	6,57·10 ⁻⁷	1,52·10 ⁴	3,03·10 ⁻¹⁹
Paschen	1,60·10 ¹⁴	1,88·10 ⁻⁶	5,33·10 ³	1,06·10 ⁻¹⁹

14. (a) n=8 (d) 397,4 nm

1.3 Relació entre els espectres atòmics i l'estructura atòmica. Àtom de Bohr

16.
$$\lambda = 4,8644 \cdot 10^{-7}$$
 m, $\lambda_{Li+2} = 5,4024 \cdot 10^{-8}$ m

17. Segons el model de Bohr aquest dos nivells estan degenerats

1.4 Naturalesa ondulatòria de la matèria

Hipòtesi de Louis de Broglie

23. (a) 3,97·10⁻¹³ m; 1,98·10⁻³⁹ m (b) Per l'efecte de la massa

Principi d'incertesa de Heisenberg

24.
$$\Delta x \ge 1,16 \cdot 10^{-3} \text{ m}$$

26.
$$p = 9.838 \cdot 10^{-31} \text{ kg} \cdot \text{m} \cdot \text{s}^{-1}$$
; $\Delta p \ge 5.27 \cdot 10^{-23} \text{ kg} \cdot \text{m} \cdot \text{s}^{-1}$

Postulats de la mecànica quàntica. Equació de Schrödinger

29. (a)
$$-\frac{8\hbar^2}{m}$$
; (b) $\frac{9\hbar^2}{2m}$ (c) No

30. (a)
$$3i\hbar i - 9\hbar^2$$
 (b) No (c) No

32. Sí;
$$-(n_x^2 + n_y^2 + n_z^2)$$
 (vigileu al fer la derivada parcial)

Partícula en una caixa

- 33. (c) 112.9 eV (d) 0.5
- **34.** (a) 1,2,0,8 (b) 2,3,1,9 (c) C<A<B<D (d) λ = 1Å, λ = 0.66 Å
- 35. (a) 0,376 eV, 1,13 eV (b) petita
- **36.** 0,5; (b) 0,25
- **37.** Màxima probabilitat: $\frac{L}{6}, \frac{3L}{6}, \frac{5L}{6}$ (b) 2/3

1.5 Àtom d'hidrogen. Orbitals atòmics

- 38. No hi ha una sola resposta.
- **39.** (a) $\iint \psi_{2p_z}^*(r,\theta,\varphi) \cdot \psi_{2p_z}(r,\theta,\varphi) r^2 \sin\theta \, dr d\theta d\varphi$ en general. Per comprovar normalització $\int_0^{2\pi} \int_0^\pi \int_0^\infty \psi_{2p_z}^*(r,\theta,\varphi) \cdot \psi_{2p_z}(r,\theta,\varphi) \, r^2 \sin\theta \, dr d\theta d\varphi = 1$

(b)
$$\langle r \rangle = \int_0^{2\pi} \int_0^{\pi} \int_0^{\infty} \psi_{2p_z}^*(r,\theta,\varphi) \cdot r \cdot \psi_{2p_z}(r,\theta,\varphi) r^2 \sin\theta \, dr d\theta d\varphi$$

40. 2 nodes radials, 0 nodes angulars. r=7,1a₀ i r=1,9a₀

41. (a)
$$\psi(r,\theta,\varphi) = \frac{\sqrt{6}}{81} \left(4 - \frac{2}{3}r\right) r e^{-r/3} \frac{\sqrt{3}}{2\sqrt{\pi}} \cos\theta$$

- (b) No, per què la part angular no és constant.
- (c) Sí, r=6 unitats atòmiques

(d)
$$\frac{6}{81^2} \left(16 \int_0^\infty r^4 e^{-2r/3} dr + \frac{4}{9} \int_0^\infty r^6 e^{-2r/3} dr - \frac{16}{3} \int_0^\infty r^5 e^{-2r/3} dr \right) = \frac{6}{81^2} \left(164! \left(\frac{3}{2} \right)^5 + \frac{4}{9} 6! \left(\frac{3}{2} \right)^7 - \frac{16}{3} 5! \left(\frac{3}{2} \right)^6 \right) = 1$$

(e) Màxims a $\theta=0,\pi$ (per qualsevol φ), per tant correspon a un orbital de tipus p_z

42. (a) n=2, l=1 (b) 2p_z (c)
$$\int_0^{2\pi} \int_0^{\pi} \int_0^{\infty} \psi_{2p_z}^*(r,\theta,\varphi) \cdot \psi_{2p_z}(r,\theta,\varphi) r^2 \sin\theta \, dr d\theta d\varphi$$
 =1 (d) r_{max}=4a₀/Z

- **43.** (a) 1 node radial, 1 node angular. R=6a₀; pla yz (b) Perquè es tracta d'un node.
- **44.** R=4a₀
- **45.** R=6a₀
- **46.** R=6a₀
- **47.** Màx: θ=90° i φ=45° i 135°; Plans nodals: θ=0° i φ=0 i 90° (xy i yz)

- **48.** (a) 3/2a₀
- **49.** (a) $-\frac{e^2}{4\pi\epsilon_0 a_0}$, b) $\frac{e^2}{8\pi\epsilon_0 a_0}$ (exercici de dificultat alta). E=T+V i $E=-\frac{m_e e^4}{8\epsilon_0^2 h^2}$
- **50.** $3p_{\nu}$

1.6 Àtoms Polielectrònics: Regles de Slater

51.

Z=15	Configuració?			Nombres quàntics de l'últim electró (n,l,m _l , m _s)	Estat d'oxidació (si s'escau)
	Fonamental	Excitat	Impossible		
$1s^2 2s^3 2p^6 3s^2 3p^1$			X	(3,1,0,1/2)	
$1s^2 2s^2 2p^6 3s^2 3p^6$	X			(3,1,0,1/2)	-3
$1s^2 2s^2 2p^6 3s^2 3q^6$		Χ		(3,2,0,1/2)	0
1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶	Х			(2,1,0,1/2)	+5
$1s^2 2s^2 2p^6 3s^2 3p^3$	Х			(3,1,0,1/2)	0
$1s^2 2s^2 2p^6 3s^1 3p^1$		Х		(3,1,0,1/2)	+3
$1s^2 2s^2 2p^7 3s^2 3p^2$			X	(3,1,0,1/2)	

52. els orbitals px, py i pz amb electrons amb spins paral·lels

- **53.** ↑ ↑ ↑
- **54.** (a) 2,85 (b)3,65 (c) 5,6 (d) 7,6
- 55. Fa referència als electrons més externs (3s3p) K⁺ 7,75; Cl⁻ 5,75
- **56.** K 4,81 eV Rb 4,2 eV
- **57.** K [Ar] $4s^1$ vs [Ar] $3d^1$; Ca [Ar] $4s^2$ vs [Ar] $4s^13d^1$
- **58.** (a) 1,85 eV (b) 0.0 eV; (c) 5,746 eV, 99,14 eV i 122,400 eV
- **59.** (a) 4s [Ar]4s¹3d²