Name:	
TA's Name/Section #:	
Recitation Day/Time:	

Math 165: Midterm v.1

Part I Spring 2013

This part of the exam has 8 problems; each problem is worth 10 points.

You may ${\bf NOT}$ use a calculator on this section. You must show all work, but you need not simplify your answers. This part of the exam will be collected after 40 minutes.

Question 1:		
Question 2:		
Question 3:		
Question 4:		
Question 5:		
Question 6:		
Question 7:		
Question 8:		
80 Total Points:		
OU TOUR TOUR	·	

Question 1 (10 points, 1.3). Find the limit:

$$\lim_{x \to -3} \frac{x^2 + 5x + 6}{x^2 - x - 12}$$

Question 2 (10 points, 1.4). Find the limit:

$$\lim_{x \to 0} \frac{\sin 3x}{x}$$

Question 3 (10 points, 1.5). Evaluate the following limit at ∞ .

$$\lim_{x \to \infty} \frac{3x^2 - 1}{4 - x^2}$$

Question 4 (10 points, 2.2). Let $f(x) = x^2 - 1$. Use the definition of the derivative, as a limit of a quotient, to find f'(2).

Question 5 (10 points, 2.3). Find the equation of the tangent line to the curve $y = \frac{2x+1}{x^2+1}$ at the point (0,1).

Question 6 (10 points, 2.4). Find the derivative of the function $f(x) = \tan x(1 - \sin x)$.

Question 7 (10 points, 2.5). Find the derivative of $\sin 2x - 3\cos^2 x$.

Question 8 (10 points, 2.7). Assuming the equation defines a differentiable function of x, find $D_x y$ by implicit differentiation:

$$x^2 + 2x^2y + 3xy = 0$$