Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра обчислювальної техніки

Методи оптимізації та планування

Графічно-розрахункова робота Тема: Виконання кусково-лінійної апроксимації

Варіант 99

ВИКОНАВ: студент II курсу ФІОТ групи IB-71 Мазан Я. В. Залікова - 7109

> ПЕРЕВІРИВ: доц. Селіванов В.Л.

Особисте завдання:

f(x) для x < 0

№ варіанту	f(x) для x < 0	f(x) для $x > 0$	X _{min}	X _{max}	X_0^a
99	- 2-x -ln3	-ln(x+3)-2	-1	+1	X _{max}

1. Побудувати графік функції y = f(x) для діапазону $x_{min} \le x \le x_{max}$. Значення y = f(x), x_{min} , x_{max} узяти з таблиці варіантів

2. Визначити другу похідну $\frac{d^2y}{dx^2}$ та побудувати її графік для діапазону зміни аргументу $x_{min} \le x \le x_{max}$.

3. Побудувати графік модуля другої похідної функції $\left| \frac{d^2y}{dx^2} \right|$ для діапазону зміни аргументу $x_{\min} \leq x \leq x_{\max}$.

4. Проаналізувати графік нелінійної залежності функції y = f(x), з'ясувавши характер опуклості та вгнутості функції по частинам, наявність точок перегинання та наявність точок розриву першого роду другої похідної функції.

Функція y = f(x) не є опуклою ні вгору, ні вниз на інтервалі $x \in [-1;0)$ так, як друга похідна f''(x) дорівнює нулю на цьому проміжку. Точок перегину функція не має, на проміжку $x \in (0;+1]$ функція f(x) опукла вниз, бо y = f''(x) > 0 на даному проміжку. Точок розриву І роду функція не має.

5. Обрати початкову точку (або початкові точки) апроксимації для подальших розрахунків, зазначивши її (або їх) на графіках y = f(x) та $\left| \frac{d^2 y}{dx^2} \right|$, визначити абсцису цієї початкової точки x_0^p (або абсциси початкових точок x_0^1 , x_0^2 тощо).

Візьму $x_0^1 = x_{min} = -1$; $x_0^2 = 0$

6. За графіком $\left| \frac{d^2 y}{dx^2} \right|$ обрати напрямок (або напрямки) розрахунків значень $h_i = x_i - x_{i-1}$ (i=1,n) від початкової точки (або від початкових точок) та зазначити його (або їх) на цьому графіку у вигляді стрілок над графіком $\left| \frac{d^2 y}{dx^2} \right|$.

7. Визначити методику розрахунків значень h_i (i= 1,n) та обрати формулу для розрахунку значень $h_i = \sqrt{\frac{8 \, \Delta_{max} f}{A_i}}$ або $h_i = \sqrt{\frac{16 \, \Delta_{max} f}{A_i}}$, де A_i на обрати формулу для розрахунку другої похідної на і-й частині ламаної лінії, що розраховується.

Так, як на діапазоні $x\in (0;+1]$ наша функція опукла вниз без жодних точок перегину, то розраховуємо $h_i=\sqrt{\frac{8\Delta_{max}f}{A_i}}$. На першому діапазоні $x\in [-1;0)$ ми апроксимуємо пряму $(A_1=0)$, тому на ньому можемо прийняти $h_1=1$, $x_1=x_0+h_1=0$ $(x_0=-1)$

- 8.Підібрати таке значення похибки $\Delta_{max}f$, при якому в результаті розрахунків h_i (i=1,n) отримаємо n=8 або n=9, тобто отримаємо апроксимуючу ламану лінію з 8 або з 9 частин. Виконати розрахунок усіх значень h_i (i=1,n) та здійснити нумерацію вузлів (вершин ломаної лінії), починаючи з номера 0.
- 9. Здійснити розрахунок абсцис x_i (1,n), починаючи з x_0 , початкових ординат y_i^p (0,n), вузлів апроксимації (вершин ламаної лінії), що належать функції y=f(x), та кінцевих ординат y_i^k (0,n), вузлів апроксимації з урахуванням корекції, яку здійснюють для отримання знакозмінної похибки апроксимації.

Виконання завдань 8-9:

Поділимо ліву частину на інтервали:

$$h_1 := 1$$
 $X_0 := -1$ $A_1 := y''(X_0) = 0$ $X_1 := X_0 + h_1 = 0$

Поділимо праву частину на інтервали:
$$\Delta f_{\mbox{max}} := 0.00011$$
 $h_2 := \sqrt{\frac{16\Delta f_{\mbox{max}}}{A_2}} = 0.126$ $X_2 := X_1 + h_2 = 0.126$ $A_2 := y''(X_1) = 0.111$ $h_3 := \sqrt{\frac{16\Delta f_{\mbox{max}}}{A_3}} = 0.131$ $X_3 := X_2 + h_3 = 0.257$ $A_3 := |y''(X_2)| = 0.102$ $A_4 := |y''(X_3)| = 0.094$ $A_5 := |y''(X_3)| = 0.094$ $A_5 := |y''(X_4)| = 0.087$ $A_6 := \sqrt{\frac{16\Delta f_{\mbox{max}}}{A_6}} = 0.142$ $A_6 := |x_5 + x_6| = 0.684$ $A_7 := |y''(X_6)| = 0.08$ $A_7 := |y''(X_6)| = 0.08$

 $X_8 := X_7 + h_8 = 1$

 $A_8 := |y''(X_7)| = 0.068$

Виходячи з 8-го завдання, шукаємо ординати вершин ломаної лінії:

 $h_8 := \int \frac{16\Delta f_{max}}{A_8} = 0.161$

10. Побудувати графік апроксимуючої функції (ломаної лінії) $y=\phi(x)$, використовуючи отримані значення x_i (0, n) та y_i^k (0, n).

11. Здійснити розрахунок значень кутових коефіцієнтів (значень тангенсів кутів нахилу) k_i (i=1,n) лінійних частин ламаної лінії.

Загальна формула для розрахунку k_i : $k_i = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$

$$k_1 = \frac{f(0) - f(-1)}{0 + 1} = -3.1 + 4.1 = 1$$

Аналогічно маємо:

$$k_2 = \frac{f(0.126) - f(0)}{0.126} = -0.327$$

$$k_3 = \frac{f(0.257) - f(0.126)}{0.131} = -0.313$$

$$k_4 = -0.301$$

$$k_4 = -0.301$$

$$k_5 = -0.289$$

$$k_6 = -0.277$$

$$k_7 = -0.267$$

$$k_8 = -0.257$$

- 12. Виконати розкладання апроксимуючої функції (ламаної лінії) $y=\phi(x)$ на окремі доданки (лінійні та елементарні нелінійні (лінійні з обмеженням на нульовому рівні)), починаючи з точки, яка має абсцису x_0^a . Значення x_0^a узяти з таблиці варіантів.
- 13. Над кожним елементарним нелінійним доданком зазначити його квадрант
- (I, II, III, IV) та режим (на відкривання чи на закривання)
- 14. Здійснити розрахунок наступних значень:
 - Значення $\phi(x_0^a)$ для першого лінійного доданку
 - Значення $b_0 = k_0$ та x_0 для другого лінійного доданку
 - Значення $b_i = k_i k_{i-1}$ та x_{REFi} для кожного елементарного нелінійного доданку

Завдання 12-14:

Із варіанту маємо $x_0^a = x_{max} = 1$. Так, як у нас $x_0^a = x_{max}$, то в нас для елементарних нелінійних доданків $\phi_i(x) = b_i(x-x_i)$ діє лише обмеження 2 роду:

$$b_i = \begin{cases} 0, x \ge x_i \\ k_i - k_{i-1}, x < x_i \end{cases}$$

Перший лінійний доданок:

$$\varphi(x_0^a) = f(x_{max}) = -3.387$$

Другий лінійний доданок:

$$b_0 := k_8 = -0.257$$

$$\varphi_0(x) := b_0(x - X_8)$$

Елементарні нелінійні доданки:

$$b_1 := k_7 - k_8 = -0.011$$

$$\varphi_1(x) := \begin{bmatrix} b_1 \cdot (x - X_7) & \text{if } x < X_7 \\ 0 & \text{otherwise} \end{bmatrix}$$

II квадрант, на закривання

$$b_2 := k_6 - k_7 = -9.739 \times 10^{-3}$$

$$\varphi_2(x) := \begin{bmatrix} b_2 \cdot (x - X_6) & \text{if } x < X_6 \\ 0 & \text{otherwise} \end{bmatrix}$$

II квадрант, на закривання

$$b_3 := k_5 - k_6 = -0.012$$

$$\varphi_3(x) := \begin{bmatrix} b_3 \cdot (x - X_5) & \text{if } x < X_5 \\ 0 & \text{otherwise} \end{bmatrix}$$

II квадрант, на закривання

$$\begin{aligned} \mathbf{b}_4 &:= \mathbf{k}_4 - \mathbf{k}_5 = -0.012 \\ \varphi_4(\mathbf{x}) &:= & \left| \mathbf{b}_4 \cdot \left(\mathbf{x} - \mathbf{X}_4 \right) \right| \text{ if } \mathbf{x} < \mathbf{X}_4 \end{aligned}$$

II квадрант, на закривання

$$b_5 := k_3 - k_4 = -0.013$$

$$\varphi_5(x) := b_5 \cdot (x - X_3) \text{ if } x < 0 \text{ otherwise}$$

II квадрант, на закривання

$$b_{-} = k_{-} - k_{-} = -0.013$$

$$\begin{aligned} \mathbf{b}_6 &\coloneqq \mathbf{k}_2 - \mathbf{k}_3 = -0.013 \\ \phi_6(\mathbf{x}) &\coloneqq \begin{bmatrix} \mathbf{b}_6 \cdot \left(\mathbf{x} - \mathbf{X}_2 \right) & \text{if } \mathbf{x} < \mathbf{X}_2 \\ 0 & \text{otherwise} \end{bmatrix} \end{aligned}$$

II квадрант, на закривання

$$b_7 := k_1 - k_2 = 1.327$$

$$\varphi_7(x) := \begin{vmatrix} b_7 \cdot (x - X_1) & \text{if } x < X_1 \\ 0 & \text{otherwise} \end{vmatrix}$$

$$\frac{\varphi_7(x)}{-1} - 0.5 \qquad 0.5$$

III квадрант, на відкривання

Обчислення
$$x_{REFi} = x_i - \frac{y_i^k}{k_i}$$

 $X_{REF1} = -1 + 4.099/1 = 3.098$

 $X_{REF2} = 0 - 3.099/0.327 = -9.489$

 $X_{REF3} = 0.126 - 3.14/0.313 = -9.892$

 X_{REF4} = [розрахунки ідентичні] = -10.319

 $X_{REF5} = -10.768$

 $X_{REF6} = -11.241$

 $X_{REF7} = -11.675$

 $X_{REF8} = -12.201$