Series: SSO/1

Code No. 56/1/1

Roll No.			Π	
रोल नं.	12.61			

Candidates must write the Code on the title page of the answer-book. विद्यार्थी उत्तर-पुस्तिका के मुख पृष्ठ पर कोड नं. अवश्य लिखें।

- Please check that this question paper contains 12 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 30 questions.
- · Please write down the serial number of the question before attempting it.
- 15 Minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the student will read the question paper only and will not write any answer on the answer script during this period.
- कृपया जाँच कर लें कि इस प्रश्न पत्र में मुद्रित पृष्ठ 12 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 30 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जायेगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।

CHEMISTRY (Theory) रसायन विज्ञान (सैद्धान्तिक)

Time allowed : 3 hours] निर्धारित समय : 3 घण्टे] [Maximum marks : 70

[अधिकतम अंक : 70

General Instructions:

- (i) All questions are compulsory.
- (ii) Marks for each question are indicated against it.
- (iii) Question numbers 1 to 8 are very short-answer questions and carry 1 mark each.
- (iv) Question numbers 9 to 18 are short-answer questions and carry 2 marks each.
- (v) Question numbers 19 to 27 are also short-answer questions and carry 3 marks each.
- (vi) Question numbers 28 to 30 are long-answer questions and carry 5 marks each.
- (vii) Use Log Tables, if necessary. Use of calculators is not allowed.

सामान्य निर्देश:

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) प्रत्येक प्रश्न के सामने अंक दर्शाए गए हैं।
- (iii) प्रश्न-संख्या 1 से 8 तक अति लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 1 अंक है ।
- (iv) प्रश्न-संख्या 9 से 18 तक लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 2 अंक हैं ।
- (v) प्रश्न-संख्या 19 से 27 तक भी लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 3 अंक हैं ।
- (vi) प्रश्न-संख्या 28 से 30 दीर्घ-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 5 अंक हैं ।
- (vii) आवश्यकतानुसार लॉग टेबलों का प्रयोग करें । कैल्कुलेटरों के उपयोग की अनुमित **नहीं** है । 👓 📁 🗀

- 1. Which point defect in crystals does not alter the density of the relevant solid ? क्रिस्टलों का कौन सा प्वाइंट (बिन्दुक) दोष सम्बद्ध ठोस के घनत्व में परिवर्तन नहीं करता ?
- 2. Define the term 'Tyndall effect'. 'टिन्डल प्रभाव' की परिभाषा लिखिये ।
- Why is the froth flotation method selected for the concentration of Sulphide ores?
 सल्फ़ाइड अयस्कों के सान्द्रण के लिये फ़ेन प्लवन विधि का प्रयोग क्यों करते हैं?
- 4. Why is Bi(v) a stronger oxidant than Sb(v) ?
 Sb(v) की अपेक्षा Bi(v) अधिक प्रबल ऑक्सीकारक क्यों है ?
- 5. Give the IUPAC name of the following compound:

$$CH_3 - C = C - CH_2OH$$
 $CH_3 Br$

निम्न यौगिक का आई यू पी ए सी (IUPAC) नाम दीजिए:

$$CH_3 - C = C - CH_2OH$$

$$CH_3 \quad Br$$

- Write the structure of 3-oxopentanal.
 अॉक्सोपेन्टेनैल की संरचना प्रस्तुत कीजिये ।
- 7. Why is an alkylamine more basic than ammonia?

 अमोनिया की अपेक्षा कोई ऐल्किलएमीन अधिक क्षारीय क्यों होता है?
- 8. Give an example of elastomers. इलैस्टोमरों का एक उदाहरण दीजिए ।

1

A reaction is of second order with respect to a reactant. How will the rate of reaction be affected if the concentration of this reactant is 2 (i) doubled. reduced to half? (ii) एक अभिकारक के संबन्ध में एक अभिक्रिया द्वितीय कोटि की है । यदि इस अभिकारक का सांद्रण दुगुना कर दिया जाए, और (i) आधा कर दिया जाए. (ii) तो अभिक्रिया की दर कैसे प्रभावित होगी? Explain the role of 10. Cryolite in the electrolytic reduction of alumina. (i) Carbon monoxide in the purification of nickel. (ii) निम्न को स्पष्ट कीजिए: एलुमीना के वैद्युत अपघटन में क्रायोलाइट का कार्य। निकल धातु के परिष्करण में कार्बन मोनोऑक्साइड का कार्य। 11. Draw the structures of the following molecules: (i) XeF, BrF₃ (ii) निम्न अणुओं की संरचनाएँ आरेखित कीजिए: (i) XeF, BrF₂ (ii) 12. Complete the following chemical reaction equations: (i) $P_{4(s)} + NaOH_{(aq)} + H_2O_{(l)} \longrightarrow$ (ii) $I_{(aq)}^- + H_2O_{(l)} + O_{3(g)} \longrightarrow$ निम्न रासायनिक अभिक्रिया समीकरणों को पूर्ण कीजिये: $P_{4(s)} + NaOH_{(aq)} + H_2O_{(l)} \longrightarrow$ (i) $I^{-}_{(aq)} + H_2O_{(l)} + O_{3(q)} \longrightarrow$ (ii) Differentiate between molality and molarity of a solution. What is the effect of 13. change in temperature of a solution on its molality and molarity? 2

56/1/1

परिवर्तन का क्या प्रभाव होता है ?

विलयन में विलेय की मोललता और मोलरता के बीच के अंतर को स्पष्ट कीजिए । इन पर विलयन के ताप के

14.	Which ones in the following pairs of substances	undergoes S_N^2 substitution reaction
	faster and why?	

निम्न यौगिक युग्मों में से कौन एक यौगिक अधिक तीव्र $S_{
m N}2$ प्रतिस्थापन अभिक्रिया करता है और क्यों ?

(i)
$$\longrightarrow$$
 CH_2Cl अथवा \bigcirc \longrightarrow Cl

15. Complete the following reaction equations:

(i)
$$\bigcirc$$
 OH + SOC $l_2 \rightarrow$

(ii)
$$OH \longrightarrow CH_2OH + HCl \rightarrow$$

निम्न अभिक्रियाओं को पूर्ण कर लिखिये :

(i)
$$\bigcirc$$
 OH + SOC $l_2 \rightarrow$

(ii)
$$OH \longrightarrow CH_2OH + HCl \rightarrow$$

16. Explain what is meant by

- (i) a peptide linkage
- (ii) a glycosidic linkage

स्पष्ट कीजिए कि निम्नलिखित का क्या अर्थ होता है :

- (i) पेप्टाइड लिंकेज
- (ii) ग्लाइकोसाइडिक लिंकेज

जल में घुलनशील दो विटामिनों के नाम लिखिये । उनके स्रोतों का उल्लेख कीजिए और उन बीमारियों के नाम लिखिए जो इन विटामिनों की भोजन में कमी के कारण होती हैं ।

2

2

2

56/1/1

- 18. Draw the structures of the monomers of the following polymers:
 - (i) Teflon
 - (ii) Polythene

OR

What is the repeating unit in the condensation polymer obtained by combining $HO_2CCH_2CH_2CO_2H$ (succinic acid) and $H_2NCH_2CH_2NH_2$ (ethylene diamine).

निम्न बहुलकों के एकलकों की संरचनाएँ आरेखित कीजिए:

- (i) टेफ्लॉन
- (ii) पॉलीथीन

अथवा

 ${
m HO_2CCH_2CH_2CO_2H}$ (सक्सीनिक ऐसिड) और ${
m H_2NCH_2CH_2NH_2}$ (एथिलीन डाइऐमीन) के संयोजन से प्राप्त संघनन बहुलक में बारंबार आने वाला यूनिट क्या है ?

19. Iron has a body centred cubic unit cell with a cell edge of 286.65 pm. The density of iron is 7.87 g cm⁻³. Use this information to calculate Avogadro's number (At. mass of Fe = 56 g mol⁻¹).

आयरन का क्रिस्टल काय केन्द्रित घनाकार एकक सेल रखता है । इसके एकक सेल के कोर की लम्बाई $286.65~\rm pm$ होती है । आयरन का घनत्व $7.87~\rm g~cm^{-3}$ है । इस सूचना का उपयोग करते हुए ऐवोगाद्रो संख्या का परिकलन कीजिए । (Fe का परमाणु द्रव्यमान = $56~\rm g~mol^{-1}$)

20. 100 mg of a protein is dissolved in just enough water to make 10.0 mL of solution. If this solution has an osmotic pressure of 13.3 mm Hg at 25 °C, what is the molar mass of the protein?

 $(R = 0.0821 L atm mol^{-1} K^{-1} and 760 mm Hg = 1 atm.)$

एक प्रोटीन की 100 mg मात्रा को उपयुक्त जल मात्रा में घोलकर ठीक 10.0 mL विलयन बनाया गया है। यदि इस विलयन का 25 °C पर परासरणी दाब 13.3 mm Hg हो तो प्रोटीन का मोलर द्रव्यमान क्या होगा ?

 $(R = 0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1}$ और एक वायुमण्डल दाब = 760 mm Hg)

21. A first order reaction has a rate constant of 0.0051 min⁻¹. If we begin with 0.10 M concentration of the reactant, what concentration of reactant will remain in solution after 3 hours?

एक प्रथम कोटि की अभिक्रिया का दर स्थिरांक $0.0051~\mathrm{min^{-1}}$ है । यदि हम घोल में अभिकारक के $0.10~\mathrm{M}$ सांद्रण के साथ प्रारम्भ करें तो $3~\mathrm{ti}$ टे के पश्चात् अभिकारक का कितना सान्द्रण शेष बचेगा ?

3

2

3

56/1/1

- 22. How are the following colloids different from each other in respect of dispersion medium and dispersed phase? Give one example of each type.
 - (i) An aerosol (ii) A hydrosol (iii) An emulsion

परिक्षेपण माध्यम और परिक्षिप्त की प्रावस्था के संदर्भ में निम्न कोलाइड कैसे एक दूसरे से भिन्न होते हैं ? प्रत्येक प्रकार का एक-एक उदाहरण भी दीजिए :

(i) एरोसॉल (ii) हाइड्रोसॉल (iii) इमल्शन

23. Account for the following:

- (i) NH₃ is a stronger base than PH₃.
- (ii) Sulphur has a greater tendency for catenation than oxygen.
- (iii) Bond dissociation energy of F_2 is less than that of Cl_2 .

OR

Explain the following situations:

- (i) In the structure of HNO_3 molecule, the N O bond (121 pm) is shorter than N OH bond (140 pm).
- (ii) SF₄ is easily hydrolysed whereas SF₆ is not easily hydrolysed.
- (iii) XeF₂ has a straight linear structure and not a bent angular structure.

निम्न के आधार मूल कारण लिखिये:

- (i) PH, की अपेक्षा NH, अधिक प्रबल क्षार है।
- (ii) ऑक्सीजन की अपेक्षा सल्फ़र में शृंखलन प्रवृत्ति अधिक होती है ।
- (iii) F_2 की बन्ध वियोजन ऊर्जा Cl_2 की बन्ध वियोजन ऊर्जा से कम होती है ।

अथवा

निम्न परावस्थाओं के आधार समझाइये :

- (i) HNO₃ अणु की संरचना में, N O बंध (121 pm) N OH बंध (140 pm) की अपेक्षा कम लम्बा होता है ।
- (ii) SF_4 सुगमता से जल अपघटित हो जाता है जबिक SF_6 सुगमता से जल अपघटित नहीं होता ।
- (iii) XeF₂ अणु की संरचना मोड़दार कोणीय न होकर सीधी रेखीय होती है ।

3

- 24. For the complex $[Fe(en)_2Cl_2]Cl$, (en = ethylene diamine), identify (i) the oxidation number of iron, (ii) the hybrid orbitals and the shape of the complex, (iii) the magnetic behaviour of the complex, the number of geometrical isomers, (iv) whether there is an optical isomer also, and (v) name of the complex. (At. no. of Fe = 26) (vi) कॉम्प्लेक्स (संकर) [$Fe(en)_2Cl_2$]Cl (एथिलीन डाइऐमीन = en) के लिये निम्न की पहचान कीजिए : आयरन की उपचयन अवस्था । (i) संकर आर्बिटलें और कॉम्प्लेक्स का आकार । (ii) कॉम्प्लेक्स का चुम्बकीय व्यवहार । (iii) ज्यामितीय समावयवीयों की संख्या । (iv) क्या इसके प्रकाशिक समावयवी भी हैं ? (v) कॉम्प्लेक्स का नाम (प.क्र. Fe = 26) (vi) 25. Explain the mechanism of the following reactions: (i) Addition of Grignard's reagent to the carbonyl group of a compound forming an adduct followed by hydrolysis. (ii) Acid catalysed dehydration of an alcohol forming an alkene. Acid catalysed hydration of an alkene forming an alcohol. (iii) निम्न अभिक्रियाओं की क्रियाविधि की व्याख्या कीजिए: एक यौगिक के कार्बोनिल मूलक से ग्रिग्नार्ड अभिकारक का योग और ऐसे बने योगफल का जल
 - अपघटन ।
 - ऐल्कोहॉल के अम्ल उत्प्रेरित निर्जलीकरण से ऐल्कीन का बनना । (ii)
 - एक ऐल्कीन के अम्ल उत्प्रेरित जलयोजन से ऐल्कोहॉल का बनना । (iii)

(i)

26.	Giving an example for each describe the following reactions:						
	(i)	Hofmann's bromamide reaction					
	(ii)	Gatterman reaction					
	(iii)	A coupling reaction					
	प्रत्येक	क के लिये एक उदाहरण देकर निम्न अभिक्रियाओं का वर्णन कीजिए :	uii				
	(i)	हाफमान की ब्रोमैमाइड अभिक्रिया,					
	(ii)	गैटरमान अभिक्रिया, विता तथा विकास विवास वि					
	(iii)	युग्मन अभिक्रिया । (८) = १ (८) अर (८) жықты ।					
27.	Expl	Explain the following types of substances with one suitable example, for each case:					
	(i)	Cationic detergents.					
	(ii)	Food preservatives.					
	(iii)	Analgesics.					
	प्रत्येक	पद के लिये एक-एक उपयुक्त उदाहरण देते हुए निम्न पदों की व्याख्या कीजिए :					
	(i)	केटायनिक अपमार्जक ।					
	(ii)	खाद्य परिरक्षक ।					
	(iii)	पीड़ाहारी ।					
28.	(a)	Define molar conductivity of a substance and describe how for weak a strong electrolytes, molar conductivity changes with concentration of solu How is such change explained?					
	(b)	A voltaic cell is set up at 25 °C with the following half cells:					
		Ag ⁺ (0.001 M) Ag and Cu ²⁺ (0.10 M) Cu					
		What would be the voltage of this cell ? ($E_{cell}^{\circ} = 0.46 \text{ V}$)					
		Acid catalysed by the state of					
	(a)	State the relationship amongst cell constant of a cell, resistance of the solution in the cell and conductivity of the solution. How is molar conductivity of solute related to conductivity of its solution?					
	(b)	A voltaic cell is set up at 25 °C with the following half-cells:					
		$Al \mid Al^{3+}$ (0.001 M) and Ni Ni ²⁺ (0.50 M)					
		Calculate the cell voltage $[E^{\circ}_{Ni^{2+} Ni} = -0.25 \text{ V}, E^{\circ}_{Al^{3+} Al} = -1.66 \text{ V}]$					
56/1/	1	8					

- (a) पदार्थ की मोलर चालकता की परिभाषा लिखिए । दुर्बल और प्रबल विद्युत अपघट्यों की मोलर चालकताएँ विलयन में सान्द्रता परिवर्तन पर किस प्रकार प्रभावित होती हैं ? इन परिवर्तनों का कारण स्पष्ट कीजिए ।
- (b) 25 °C पर अर्ध सेलों Ag^+ (0.001 M) | Ag और Cu^{2+} (0.10 M) | Cu को जोड़ कर एक वोल्टीय सेल बनाया गया है । इस सेल की वोल्टता क्या होगी ? ($E^\circ_{cell} = 0.46 \text{ V}$)

अथवा

- (a) किसी विलयन की चालकता, सेल में विलयन का प्रतिरोध और सेल स्थिरांक के परस्पर संबन्ध को लिखिये। विलेय की मोलर चालकता और विलयन की चालकता का सम्बन्ध भी लिखिये।
- (b) एक वोल्टीय सेल 25 °C पर निम्न अर्ध सेलों से संयोजित है : $Al \mid Al^{3+} \ (0.001 \ M) \ \text{और Ni} \mid \text{Ni}^{2+} \ (0.50 \ M)$ सेल की वोल्टता परिकलित कीजिए । $[E^{\circ}_{\text{Ni}^{2+}\mid \text{Ni}} = -0.25 \ \text{V}, E^{\circ}_{\text{Al}^{3+}\mid \text{Al}} = -1.66 \ \text{V}]$
- 29. (a) Complete the following chemical reaction equations:

(i)
$$MnO_{4(aq)}^{-} + C_2O_{4(aq)}^{2-} + H_{(aq)}^{+} \longrightarrow$$

(ii)
$$Cr_2O_7^{2-}_{(aq)} + Fe^{2+}_{(aq)} + H^+_{(aq)} \longrightarrow$$

- (b) Explain the following observations about the transition/inner transition elements:
 - (i) There is in general an increase in density of element from titanium (Z = 22) to copper (Z = 29).
 - (ii) There occurs much more frequent metal-metal bonding in compounds of heavy transition elements (3rd series).
 - (iii) The members in the actinoid series exhibit a larger number of oxidation states than the corresponding members in the lanthanoid series.

OR

(a) Complete the following chemical equations for reactions:

(i)
$$MnO_{4(aq)}^{-} + S_2O_{3(aq)}^{2-} + H_2O_{(l)} \longrightarrow$$

$$(ii) \quad \operatorname{Cr_2O_{7(aq)}^-} + \operatorname{H_2S_{(g)}} + \operatorname{H^+_{(aq)}} \longrightarrow \\$$

56/1/1

- (b) Give an explanation for each of the following observations:
 - (i) The gradual decrease in size (actinoid contraction) from element to element is greater among the actinoids than that among the lanthanoids (lanthanoid contraction).
 - (ii) The greatest number of oxidation states are exhibited by the members in the middle of a transition series.
 - (iii) With the same d-orbital configuration (d^4) Cr^{2+} ion is a reducing agent but Mn^{3+} ion is an oxidising agent.
- (a) निम्न रासायनिक समीकरणों को पूरा कर लिखिये :

(i)
$$MnO_{4(aq)}^{-} + C_2O_{4(aq)}^{2-} + H_{(aq)}^{+} \longrightarrow$$

(ii)
$$Cr_2O_7^{2-}(aq) + Fe^{2+}(aq) + H^+(aq) \longrightarrow$$

- (b) संक्रमण/आंतर संक्रमण तत्त्वों के विषय में निम्न अवलोकनों की व्याख्या कीजिए :
 - (i) टाइटेनियम (Z = 22) से कॉपर (Z = 29) तक तत्त्व घनत्व सामान्यत: बढ़ता रहता है ।
 - (ii) भारी संक्रमण तत्त्वों (तीसरी श्रेणी) के यौगिकों में बहुदा धातु-धातु आबन्ध अधिक पाये जाते हैं।
 - (iii) ऐक्टिनायड श्रेणी के तत्त्व तत्संबन्धी लैन्थेनायड श्रेणी के तत्त्वों की अपेक्षा अधिक संख्या में भिन्न उपचयन अवस्थाएँ प्रदर्शित करते हैं ।

अथवा

(a) निम्न रासायनिक समीकरणों को पूरा कर लिखिये :

(i)
$$MnO_{4(aq)}^{-} + S_2O_{3(aq)}^{2-} + H_2O_{(l)} \longrightarrow$$

(ii)
$$Cr_2O_{7(aq)}^- + H_2S_{(g)}^- + H_{(aq)}^+ \longrightarrow$$

- (b) निम्न अवलोकनों की व्याख्या कीजिए:
 - (i) ऐक्टिनाइडों में एक तत्त्व से अगले तत्त्व में परमाणु के आकार में सामान्यता घटाव (ऐक्टिनाइड संकुचन) अपेक्षाकृत लैंथेनाइडों के (लैंथेनाइड संकुचन) अधिक देखा जाता है ।
 - (ii) एक संक्रमण श्रेणी में अधिकतम उपचयन अवस्थाएँ श्रेणी के मध्य के तत्त्वों द्वारा प्रदर्शित होती हैं।
 - (iii) समान d-आर्बिटल विन्यास (d 4) के साथ Cr^{2+} आयन अपचायक है जबिक Mn^{3+} आयन उपचायक है ।

- (a) निम्न कैसे प्राप्त किये जाते हैं : 20 3000000
 - (i) एथिल बेन्ज़ीन से बेन्ज़ोइक अम्ल,
 - (ii) टाल्युईन से बेन्ज़ाल्डिहाइड ।
- (b) निम्न संश्लेषणों को उचित अभिकारक, उत्पाद अथवा छुटे हुए पदार्थों को देकर पूरा कीजिए :

(b) Complete ends synthesis in a singular missing material, reagenf or products.

(i)
$$C_6H_5COCl \xrightarrow{\text{Pd-BaSO}_4} \dots$$

(ii)
$$\longrightarrow$$
 + Anhydrous A/Cl_3 \longrightarrow $\stackrel{O}{\mathbb{C}}$ CH_3