SentiGAN: Generating Sentimental Texts via Mixture Adversarial Networks

Ke Wang & Xiaojun Wan

{wangke17, wanxiaojun}@pku.edu.cn

July 16, 2018

Institute of Computer Science and Technology, Peking University Beijing, China

- 1. Introduction
- 2. Related Work
- 3. SentiGAN
- 4. Experiments
- 5. Conclusion and Future Work

- 1. Introduction
- 2. Related Work
- SentiGAN
- 4. Experiments
- Conclusion and Future Work

Introduction

- Emotional intelligence is an important part of artificial intelligence.
 - Make machines more friendly to humans.
 - · Make them look more intelligent.
- Challenges
 - Poor quality.
 - · Lack of diversity.
 - Wrong sentiment.

Figure 1: Sentiment classification is very strong, but the generation of sentimental texts does not.

Introduction

Motivation

- Use sentiment classifier to guide the generation of sentimental texts.
- Use multi-class classification to make the text generated by the generator have more accurate sentiment.

Contributions

- We propose a novel framework SentiGAN to generate generic, diversified and high-quality sentimental texts of different sentiment labels.
- We propose a new penalty based objective to make each generator in SentiGAN produce diversified texts of a specific sentiment label.
- Extensive experiments are performed on four datasets and the results demonstrate the efficacy and superiority of our proposed model.

- 1. Introduction
- 2. Related Work
- SentiGAN
- 4. Experiments
- 5. Conclusion and Future Work

Related Work

- Unsupervised text generation.
 - Recurrent neural network language model.
 RNNLM
 - Generative Adversarial Nets and its variants.
 SeqGAN, RankGAN, LeakGAN, LabelGAN
 - Variational Autoencoders and its variants.
 VAE, semi-supervised VAE
- Others tasks
 Product review generation conditioned on specific inputs.

- 1. Introduction
- 2. Related Work
- 3. SentiGAN
- 4. Experiments
- 5. Conclusion and Future Work

- Overall Framework
 - Generator Learning.
 - Discriminator Learning.

Figure 2: The framework of SentiGAN with *k* generators and one multi-class discriminator.

- Generator Learning.
 - We formalize the text generation problem as a sequential decision making process
 - I Calculate the penalty:

$$V_{D_i}^{G_i}(S_{t-1}, X_t) = \begin{cases} \frac{1}{N} \sum_{n=1}^{N} (1 - D_i(X_{1:t}^n; \theta_d)) & t < |X| \\ 1 - D_i(X_{1:t}; \theta_d) & t = |X| \end{cases}$$
 (1)

II Define the penalty based loss function:

$$L(X) = G_i(X_{t+1}|S_t; \theta_g^i) \cdot V_{D_i}^{G_i}(S_t, X_{t+1})$$
 (2)

III Minimize the total penalty based value:

$$J_{G_{i}}(\theta_{g}^{i}) = \mathbb{E}_{X \sim P_{g_{i}}}[L(X)]$$

$$= \sum_{t=0}^{t=|X|-1} G_{i}(X_{t+1}|S_{t};\theta_{g}^{i}) \cdot V_{D_{i}}^{G_{i}}(S_{t}, X_{t+1})$$
(3)

Discriminator Learning.

We use a multi-class classification objective that requires the discriminator to distinguish the real texts with each sentiment type and the generated texts.

$$J_{D}(\theta_{d}) = -\mathbb{E}_{X \sim P_{g}} log D_{k+1}(X; \theta_{d})$$

$$-\sum_{i=1}^{k} \mathbb{E}_{X \sim P_{r_{i}}} log D_{i}(X; \theta_{d})$$
(4)

- The adversarial training of generators and discriminator.
- We train them alternately.

inator, $D(X;\theta_d)$; Real text dataset with k types of sentiment, $T = \{T_1, ..., T_k\}$: **Output:** Well trained generators, $\{G_i(X|S;\theta_a^i)\}_{i=1}^{i=k}$; Initialize {G_i}^{i=k}_{i=1}, D with random weights; Pre-train {G_i}_{i=1}^{i=k} using MLE on T; Generate fake texts F = {F_i}_{i=1}^{i=k} using {G_i}_{i=1}^{i=k}; 4: Pre-train $D(X; \theta_d)$ using $\{T_1, ..., T_k, F\}$: 5: repeat for g-steps do 6: for i in $1 \sim k$ do Generate fake texts using $G_i(z; \theta_a^i)$; Calculate penalty $V_{D_i}^{G_i}$ by Eq (3); 10. Update $G_i(z; \theta_a^i)$ by minimizing Eq (2); 11: end for

Generate fake texts $F = \{F_i\}_{i=1}^{i=k}$

Update $D(X; \theta_d)$ using $\{T_1, ..., T_k, F\}$ by minimiz-

12:

13:

15: Update $D(X; \theta_d)$ using Eq (5); 16: **end for** 17: **until** SentiGAN converges

18: return:

end for

for d-steps do

 $\{G_i(X|S;\theta_q^i)\}_{i=1}^{i=k};$

Algorithm 1 The adversarial training process in SentiGAN

Input: Input noise, z; Generators, $\{G_i(X|S;\theta_a^i)\}_{i=1}^{i=k}$; Discrim-

- The Multi-Class Classification Objective
 - The optimal i-th generator can learn the distribution of the real texts with the i-th sentiment.

$$\mathbb{E}_{X \sim P_g} log[\frac{P_g(X)}{P_{avg}(X)}] + \sum_{i=1}^k \mathbb{E}_{X \sim P_{r_i}} log[\frac{P_{r_i}(X)}{P_{avg}(X)}] - (k+1)log(k+1)$$

$$= KL(\sum_{i=1}^k P_{g_i}(X)||P_{avg}(X)) + \sum_{i=1}^k KL(P_{r_i}(X)||P_{avg}(X)) - (k+1)log(k+1),$$
(5)

While keeping θ_d constant, the *i*-th generator aims to minimize the penalty $(V_{D_i}^{G_i})$ given by the discriminator.

- The Penalty-Based Objective
 - ① Our penalty based objective can be considered as a measure of wasserstein distance which always provides meaningful gradients, even when the distributions of P_r and P_g do not overlap.

$$W(P_r, P_g) = \frac{1}{K} \sup_{||L||_L \le K} \mathbb{E}_{X \sim P_r}[L(X)] - \mathbb{E}_{X \sim P_g}[L(X)]. \tag{6}$$

② Our penalty-based loss function $G(X|S;\theta_g)V(X)$ can be thought of as adding $G(X|S;\theta_g)$ to the reward-based loss function $(-G(X|S;\theta_g)D(X;\theta_d))$.

$$G(X|S;\theta_g)V(X) = G(X|S;\theta_g)(1 - D(X;\theta_d)$$

$$= G(X|S;\theta_g) - G(X|S;\theta_g)D(X;\theta_d)$$
(7)

- 1. Introduction
- 2. Related Work
- SentiGAN
- 4. Experiments
- Conclusion and Future Work

Simplify:

We simply refer to the work of [Hu et al., 2017] and focus on generating short sentences (length \leq 15 words) of two sentiment types (positive and negative).

Datasets:

- MR: Movie Reviews [Socher et al., 2013], contains 2133 positive sentences and 2370 negative sentences.
- BR: Beer Reviews [Mcauley and Leskovec, 2013], contains 1437767 positive sentences and 11202 negative sentences.
- CR: Customer Reviews [Hu and Liu, 2004], contains 1024 positive sentences and 501 negative sentences.

· Baselines:

- RNNLM[Mikolov et al., 2011]
- SeqGAN[Yu et al., 2017]
- Variational Autoencoders(VAE)[Kingma and Welling, 2014]
- Conditional GAN(C-GAN)[Mirza and Osindero, 2014]
- Semi-supervised
 VAE(S- VAE)[Kingma et al., 2014]

 Sentiment Accuracy of Generated Texts:

Accuracy	MR	BR	CR
Real Data	0.892	0.874	0.846
RNNLM	0.622	0.595	0.552
SeqGAN	0.717	0.684	0.632
VAE	0.751	0.721	0.643
SentiGAN(k=1)	0.803	0.750	0.731
C-GAN	0.822	0.773	0.762
S-VAE	0.831	0.793	0.727
SentiGAN(k=2)	0.885	0.841	0.803

Table 1: Comparison of sentiment accuracy of generated sentences. The real data is the training corpus.

- Quality of Generated Sentences
 - Fluency:

We use a language modeling toolkit -SRILM [Stolcke, 2002] to test the fluency of generated sentences.

Figure 3: Comparison of fluency (Perplexity) of generated sentences (Lower perplexity means better fluency).

Quality of Generated Sentences:

Novelty:

We want to investigate how different the generated sentences and the training corpus are.

$$Novelty(S_i) = 1 - \max\{\varphi(S_i, C_i)\}_{i=1}^{j=|C|}$$

Methods	MR	BR	CR
RNNLM	0.267	0.283	0.399
SeqGAN	0.298	0.328	0.437
VAE	0.287	0.347	0.417
SentiGAN(k=1)	0.344	0.409	0.479
C-GAN	0.368	0.398	0.482
S-VAE	0.328	0.369	0.437
SentiGAN(k=2)	0.395	0.427	0.549

Table 2: Comparison of the novelty of generated sentences.

- Quality of Generated Sentences:
 - Diversity:

We want to see if the generator can produce a variety of sentences.

$$Diversity(S_i) = 1 - \max\{\varphi(S_i, S_j)\}_{j=1}^{j=|S|, j \neq i}$$

Methods	MR	BR	CR
Real Data	0.753	0.705	0.741
RNNLM	0.691	0.677	0.663
SeqGAN	0.641	0.636	0.619
VAE	0.661	0.658	0.620
SentiGAN(k=1)	0.711	0.687	0.668
C-GAN	0.726	0.688	0.680
S-VAE	0.692	0.687	0.649
SentiGAN(k=2)	0.741	0.713	0.708

Table 3: Comparison of the diversity of generated sentences.

- Quality of Generated Sentences:
 - Intelligibility:
 We use human
 evaluation for
 evaluating the
 intelligibility of
 generated sentences.

Figure 4: Comparison of intelligibility of generated sentences by human evaluation.

Validation of Penalty-Based Objective
 We use a synthetic data set to test our proposed model in the mere use of the penalty based objective (i.e., SentiGAN(k=1)).

Figure 5: The illustration of learning curves. Dotted line is the end of pre-training.

Case Study
 Our proposed model produces sentences that are more readable, sentimentally accurate, with better quality, and longer than that of C-GAN.

	SentiGAN(k=2)	C-GAN
-e	a fantastic finally , simply perfect masterpiece.	give it credit, this is our 's brilliant. (Unreadable)
£	one of the greatest movies i have ever seen.	good, bloody fun movie
So	funny and entertaining, just an emotionally idea but it was pretty good.	makes me smile every time to get on alien . (Unreadable)
-	the best comedy is a science fiction, captain is like a comic legend.	powerfully moving! (Very short)
ve	one of the most disturbing and sickening movies i have ever seen.	very bad comedy. (Very short)
=	a story which fails to rise above its disgusting source material .	a mere shadow of its predecessors
80	the comedy is nonexistent.	a timeless classic western dog (Wrong sentiment)
Z	this is a truly bad movie .	one of those history movie traps

Figure 6: Examples sentences generated by SentiGAN and Conditional GAN trained on MR.

- 1. Introduction
- 2. Related Work
- SentiGAN
- 4. Experiments
- 5. Conclusion and Future Work

Conclusion and Future Work

Conclusion

- We propose a novel framework SentiGAN to generate generic, diversified and high-quality sentimental texts of different sentiment labels.
- We propose a new penalty based objective to make each generator in SentiGAN produce diversified texts of a specific sentiment label.
- Extensive experiments are performed on four datasets and the results demonstrate the efficacy and superiority of our proposed model.

Future Work

- Use of more complex and sophisticated generators.
- Apply our model to generate texts with other kinds of labels (e.g., different writing styles).

Acknowledgments

- National Natural Science Foundation of China.
- Anonymous reviewers for their helpful comments.

Thank You!