## Solutions for Problem Set 1 Mathematics for Social Scientists

## Exercise 1..

a. i. 
$$\bullet A \cap B = \{3, 10\}$$

• 
$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

• 
$$A \setminus B = \{1, 2, 5, 6, 7, 8\}$$

ii.

$$\begin{split} A \cap B &= \{\text{"All odd prime numbers"}\} \\ &= \{n \in \mathbb{N} : \text{n is a prime number}\} \setminus \{2\} \\ &= \{n \in \mathbb{N} : \text{n is an odd prime number}\} \end{split}$$

- $A \cup B = \{n \in \mathbb{N} : n \text{ is odd}\} \cup \{2\}$
- $A \backslash B = \{2\}$
- iii.  $A \cap B = (0, 1]$ 
  - $A \cup B = [0, 2)$
  - $A \backslash B = \{0\}$

b. i. 
$$P(A) = \{\{\}, \{a\}, \{b\}, \{5\}, \{a, b\}, \{a, 5\}, \{b, 5\}, \{a, b, 5\}\}$$

ii. 
$$A \times B = \{(a,1), (a,2), (a,f), (b,1), (b,2), (b,f), (c,1), (c,2), (c,f)\}$$

iii. 
$$P(B)\backslash P(A)=\{\{c\},\{a,c\},\{b,c\},\{a,b,c\}\}$$
 
$$|P(A)|=4,|P(B)|=8$$

iv.  $2^n$ 

## **EXERCISE 2.** Fill in the blanks.



















- (i)  $n \in \mathbb{Z}$  is even  $\stackrel{n}{\Longrightarrow} \frac{n}{2} \in \mathbb{Z}$ .
- $\exists$   $m \in \mathbb{N}$  such that  $m \notin \{1, n\}$ , and  $\frac{n}{m} \in \mathbb{N}$ . (ii)  $n \in \mathbb{N}$  is not prime  $\Leftrightarrow$

Fall 2025

(iii)  $\forall q \in \mathbb{Q}, \exists ! n \in \mathbb{Z} \text{ such that } n \leq q < n+1.$ 

(iv) 
$$x \in [0, 1]$$
  $\Rightarrow$   $x \in (0, 1)$ .

(v) 
$$y \in (0,1)$$
  $\Rightarrow$   $y \in [0,1]$ .

**EXERCISE 3.** Let  $f: \mathbb{R} \to \mathbb{R}: x \mapsto x^2$ .

- (i) Let  $g: \mathbb{R} \to \mathbb{R}: x \mapsto x/2$ . What are  $g \circ f$  and  $f \circ g$ ?  $g \circ f: \mathbb{R} \to \mathbb{R}: x \mapsto \frac{x^2}{2}$   $f \circ g: \mathbb{R} \to \mathbb{R}: x \mapsto (\frac{x}{2})^2$
- (ii) Suppose that  $g \circ f : \mathbb{R} \to \mathbb{R} : x \mapsto x$ . What is g? No solution. But we can get something similar: Let  $g : \mathbb{R} \to \mathbb{R} : x \mapsto \sqrt{x}$ Then,  $g \circ f : \mathbb{R} \to \mathbb{R} : x \mapsto |x|$
- (iii) Define a function g such that  $f \circ g(2) = 2$ ,  $f \circ g(0) = 2$ . We need  $g(0), g(2) \in \{-\sqrt{2}, \sqrt{2}\}$ . For example,  $g(x) = \sqrt{2}$
- (iv) In which of the following cases is  $f \circ g$  a well-defined function?
  - (a)  $g: \mathbb{N} \to \mathbb{R}: x \mapsto x+1$ Well defined.  $f \circ g: \mathbb{N} \to \mathbb{R}: x \mapsto (x+1)^2$  is well defined.
  - (b)  $g: \mathbb{R} \to \mathbb{R}: x \mapsto \sqrt{x}$ Not well defined. g is not well defined, because  $\sqrt{x} \notin \mathbb{R}$  for x < 0. Therefore,  $f \circ g$  is not well defined.
  - (c)  $g: \mathbb{R} \to [0, \infty): x \to |x|$ , the modulus (absolute value) function. Well defined.  $f \circ g: \mathbb{R} \to [0, \infty): x \mapsto x^2$  is well defined.

**EXERCISE 4.** Let X and Y be sets,  $f: X \to Y$  a function. Define the **image** of f as

$$\{y \in Y : \exists x \in X \text{ such that } f(x) = y\}.$$

Write down the images of the following functions.

(i) 
$$X = Y = \mathbb{Q}, f(x) = x^3.$$

(ii) 
$$X = (0, 1], Y = \mathbb{R}, f(x) = \frac{1}{x}.$$
 [1,  $\infty$ ]

(iii) 
$$X = Y = \mathbb{R}, f(x) = \sin(x).$$
 [-1.1]

(iv) 
$$X = Y = \mathbb{R}, f(x) = 1.$$
 {1}

**EXERCISE 5.** Sketch the following functions:

(i) 
$$f(x) = 2$$



(ii) 
$$f(x) = 3x - 1$$



(iii) 
$$f(x) = x^2 + 2x + 1$$



(iv) 
$$f(x) = (x-3)^{-1}$$







(vi) 
$$f(x) = e^{2x}$$



(vii) 
$$f(x) = -\sqrt{x}$$



EXERCISE 6. Which of the following functions is injective, bijective, or surjective?

- (i) a(x) = 2x + 1
  - a(x) is both injective (every element of the domain is linked to at most one element in the co-domain) and surjective (since for every element in the co-domain there is at least one element in the domain) and, thus, bijective.
- (ii)  $b(x) = x^2$ 
  - b(x) is not injective since b(x) = b(-x). It is also not surjective since there are no negative values for b(x). However, if we would specify the range of  $b(x) \in \mathbb{R}^+$ , then it would be surjective.
- (iii)  $c(x) = \ln x$  for  $(0, \infty) \mapsto \mathbb{R}$ c(x) is bijective.
- (iv)  $d(x) = e^x$  for  $\mathbb{R} \mapsto \mathbb{R}$

d(x) is injective, but not surjective as there are no negative values for d(x).