

The capacity and power of Quantum Machine Learning

Nouhaila Innan*, Walid EL Maouki

*PhD Student at Hassan II University of Casablanca

Qiskit | Fall Fest

• The algorithm itself runs on a quantum computer.

 The data operates on quantum or come from a quantum state/process.

- Deterministic quantum models
 - □Deutsh-Jozsa algorithm

- Variational quantum models:
 - □Variational quantum eigensolver
 - □Variational classifier
 - **□**Quantum support vector machines
 - □Quantum neural networks
 - **...**

In general...

What does capacity mean?

Qiskit | Fall Fest

Expressivity

Power

How many functions can my model approximate?

Is a higher capacity always better?!

We can understand capacity in the context of generalization performance

How do we measure capacity?

(Classically)

Capacity measures

As a start, making your model larger (adding more parameters, increasing the depth) was assumed to add to capacity

Deep neural networks

A common misconception or seemingly paradoxical behavior was that DNNs do not overfit

Distribution of margins

- Linear classifiers that produce large margins (Vapnik, V., & Chervonenkis, A. (1974). Theory of pattern recognition.)
- Explained the "paradox" observed in boosting methods (Bartlett, P., Freund, Y., Lee, W. S., & Schapire, R. E. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. The annals of statistics, 26(5), 1651-1686.)

Capacity measures

- Unfortunately, margins don't seem to work with neural networks
- The margin does not inform us about generalization behavior when we consider the randomized experiment example by Zhang et al.

Capacity of quantum models!

Variational circuits

Qiskit | Fall Fest

Sim et al. "Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms." Advanced Quantum Technologies 2.12 (2019): 1900070.

Effective Dimension

*Chose the best possible classical ffnn out of all possible configurations

Effective dimension and generalization

Found that the effective dimension for a model trained on confusion sets with increasing label corruption accurately captures generalisation behaviour

How will QML models generalize?

Where can we hope for an advantage?

Qiskit | Fall Fest

Capacity?

Generalization?

Data?

Computational?

Quantum kernels?

Training?

Statistical?

Variational circuits?

Applications?

QML challenges

Task: Train a quantum circuit on labelled samples in order to predict labels for new data

Step 1: Encode the classical data into a quantum state

Step 2: Apply a parameterized model/ Ansatz

Step 3: Measure the circuit to extract labels

Step 4: Use optimization techniques (like gradient

descent) to update model parameters

Step1: Encoding data into quantum state

Qiskit | Fall Fest

Encoding classical data into the quantum state is an open problem:

- There is **no generic encoding method** addressing all types of datasets.
- It **depends very much on your problem**. Hence, multiple data encodings are possible.

Basis encoding

- <u>Pros</u>: suitable for arithmetic computations.
- Cons: requires a lot of qubits. A real number is approximated by (n + k + 2) bits, and thus prepared as an (n + k + 2)-dimensional quantum state.

Each encoding is essentially a trade-off between two major factors:

- 1. The number of required qubits.
- 2. The number of operations to prepare the quantum state.

Amplitude encoding

- Pros: it requires only $log_2(n)$ qubits to represent an n-dimensional data point.
- <u>Cons</u>: Requires a deep circuit to implement (in terms of no. operations/gates).

Step 2-1: Parametrized model or Ansatz

Expressibility and entanglement capability: Expressive ansatz to span enough Hilbert space where our solution state reside

Sim, Sukin et al. "Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms." Advanced Quantum Technologies 2.12 (2019): 1900070.

Step 2-2: Parametrized model or Ansatz

heuristic/hardware efficient Ansatz

2-qubit gates are applied only to adjacent qubits.

Amaro, et al. A case study of variational quantum algorithms for a job shop scheduling problem. EPJ Quantum Technol. **9**, 5 (2022). https://doi.org/10.1140/epjqt/s40507-022-00123-4

Kandala, et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017). https://doi.org/10.1038/nature23879

Problem inspired ansatz

Unitary Coupled Cluster Ansatz

Step 2-4: Ansatz

❖ The Barren plateau problem

Reasons

- **1. Deep** parametrized circuit and no. qubits
- **2. Random** initialization of parameters
- 3. hardware **noise** induced barren plateaus
- 4. Entanglement-induced barren plateaus

Consequence

- 1. The expected value of the gradient is zero! $\langle \partial_k C \rangle = 0$
- 2. Gradients vanish exponentially with the number of qubits! $Var[\partial_k C] \approx 2^{-n}$

Solutions

- 1. Use parameters **close to the solution**. [1]
- 2. Use **local cost functions** instead of global ones. [2]
- 3. Introduce **correlations between parameters**. [3][4]

[1] Grant et al Quantum 3, 214 (2019) [2] Cost Function Dependent Barren Plateaus in Shallow Parameterized Quantum Circuits," M. Cerezo, et al, arXiv:2001.00550 [3] Z. Holmes et al., arXiv:2101.02138 (2021) [4] T. Volkoff and P. J. Coles, arXiv:2005.12200 (2020)

Application: QCNN for

Classical convolutional neural network

Qiskit | Fall Fest

Pooling operation

Fully connected or DNN

Input						
7	3	5	2	maxpool	Output	
8	7	1	6		8	6
4	9	3	9		9	9
0	8	4	5			

Yamashita, R., Nishio, M., Do, R.K.G. *et al.* Convolutional neural networks: an overview and application in radiology. *Insights Imaging* **9**, 611–629 (2018).

Quantum convolutional neural network

Qiskit | Fall Fest

Input: Classical or quantum state

Convolution

 Combination of entangling and parametrized gates applied between neighboring pairs of qubits

Quantum convolutional neural network

Qiskit | Fall Fest

Input: Classical or quantum state

Pooling

- Measure a subset of the qubits and use the measurement results to control other operations on the remaining qubits.
- Reduces the number of qubits while retaining characteristic features of the input state vector

Quantum convolutional neural network

Qiskit | Fall Fest

Input: Classical or quantum state

Fully connected or PQC

- Applied on the remaining qubits
- **Perform classification** by mapping the result onto a single output qubit

Quantum Phase recognition

Model: a family of Hamiltonians on a **spin-1/2 chain** with open boundary conditions:

$$H = -J \sum_{i=1}^{N-2} Z_i X_{i+1} Z_{i+2} - h_1 \sum_{i=1}^{N} X_i - h_2 \sum_{i=1}^{N-1} X_i X_{i+1}$$

- J: coupling constant (let's take J = 1)
- h_1 : parametrize the strength of an external field.
- h₂: parametrize the nearest neighbor Ising-type coupling.
- $\{X_i, Y_i, Z_i\}$ are the **Pauli operators** acting on the spin at site i or qubit i.
- *N*: is the **number of spins** in our model or number of qubits

Phase of matter of spin system

By varying the model parameters h_1 and h_2 in H, we obtain different systems, each with its own ground state. This latter allows us to identify which phase of matter our system is in.

$$H = -J \sum_{i=1}^{N-2} Z_i X_{i+1} Z_{i+2} - h_1 \sum_{i=1}^{N} X_i - h_2 \sum_{i=1}^{N-1} X_i X_{i+1}$$
 paramagnetic phase symmetry-protected topological (SPT) phases anti-ferromagnetic phase

Problem: We have three phase of matter, and we are trying to recognize the ground states that belongs to the **SPT phase.**

QCNN is very efficient in quantum phase recognition

input states are the ground states of a family of Hamiltonians

Task: train a QCNN on labelled samples in order to predict labels for new data

Training and testing data

Qiskit | Fall Fest

 $|\psi\rangle_{\alpha}$ is input state=ground state

Training Data:

- 40 ground state wavefunctions
- Train along $h_2 = 0$, $h_1 = \text{sampled } 40 \text{ times between } 0 \text{ and } 1.6, \text{ J=1}$
- Classified training data: $\{|\psi\rangle_{\alpha}$, $y_{\alpha}\}$, $\alpha=1\dots M$, $y_{\alpha}=0$ or 1 corresponding binary classification outputs.

0 corresponds to paramagnetic or anti-ferromagnetic phase while 1

corresponds to SPT phase

Case where $h_2 = 0 \rightarrow h_1 \le 1$ are in the SPT phase and thus assigned the label 1 while $h_1 > 1$ are in the paramagnetic phase

Test Data:

Combination of (h1/J, h2/J) in the range (0, 1.6) and (-1.6, 1.6) respectively

These wavefunctions would be fed into the QCNN and the final measurement would determine the predicted label/phase of matter that the wavefunction belongs to.

Convolution layers

Qiskit | Fall Fest

We parameterize unitaries as exponentials of generalized $a \times a$ Gell-Mann matrices $\{\Lambda_j\}$, where $a=2^w$ and w is the number of qubits involved in the unitary: $U=\exp(-i\sum_j\theta_j\Lambda_j)$; $i^2=-1$ There are a^2-1 Gell-Mann matrices, hence a^2-1 trainable parameters in U

1. C_1 : we apply U_1 , a 4-qubits convolution. U_1 is a product of six two-qubit unitaries between each possible pair of qubits: $U_1 = U_{23}U_{24}U_{13}U_{14}U_{12}U_{34}$, $a = 2^2$

$$q_1$$
 q_2
 U_{12}
 U_{13}
 U_{23}
 U_{34}
 U_{34}
 U_{34}
 U_{4}
 U_{4}
 U_{4}
 U_{4}
 U_{4}
 U_{5}

2. $C_{2,3,4}$: $U_{2,3,4}$ are three qubits unitary, $a = 2^3$

Pooling and fully connected layers

3. *P*: reduces the total number of "active" qubits in the circuit by a factor of 3. The pooling unitaries are controlled by a measurement in the X-basis.

$$V_1 = \exp(-i\sum_j \lambda_j \Lambda_j)$$
 $V_2 = \exp(-i\sum_j \beta_j \Lambda_j)$ $a = 2^1$

4. F: is a *U* with $2^w \times 2^w$ Gell-Mann matrices where *w* is the remaining qubits

Measurement and learning

Qiskit | Fall Fest

5. $\langle X \rangle = f_{\{U_i,V_j,F\}}(|\psi_{\alpha}\rangle)$ this result help us compute the cost function via the mean error square formula:

$$MSE = \frac{1}{2M} \sum_{\alpha=1}^{M} \left(y_i - f_{\{U_i, V_j, F\}}(|\psi_{\alpha}\rangle) \right)^2,$$

 y_i is the predifined label of $|\psi_{\alpha}\rangle$, M: # of training samples (in our case= 40)

6. Update parameters θ_{μ} :

$$\theta_{\mu} \to \theta_{\mu} - \lambda \frac{\partial MSE}{\partial \theta_{\mu}}$$

Parameter shif-rule:

$$\frac{\partial MSE}{\partial \theta_{\mu}} = \frac{1}{2} \left(MSE \left(\theta_{\mu} + \frac{\pi}{2} \right) - MSE \left(\theta_{\mu} - \frac{\pi}{2} \right) \right)$$

Used Gradient free optimizer: Cobyla with 500 iterations

Thank you!

Nouhaila Innan & Walid EL Maouki nouhailainnan@gmail.com, elmaouaki.walid@gmail.com

