Bachelorarbeit

mein thema

vorgelegt von

Maximilian Huber

am

Institut für Mathematik der

Universität Augsburg

betreut durch

Prof. Dr. Marco Hien

abgegeben am

noch nicht

stand: 16. Dezember 2012

Inhaltsverzeichnis

Einleitung				
ı	Theorie			
1	Mat	Mathematische Grundlagen		
	1.1	Einige Ergebnise aus der Kommutativen Algebra	2	
	1.2	Weiterführende Definitionen	3	
	1.3	Weyl-Algebra und der Ring $\mathcal D$	3	
		1.3.1 Weyl Algebra als Graduierter Ring	6	
	1.4	Struktur von Links-Idealen auf $\mathcal D$	6	
	1.5	Lokalisierung eines $\mathbb{C}\{x\}$ -Modules	6	
	1.6	Lokalisierung eines holonomen \mathcal{D} -Modules	6	
2	Der Meromorpher Zusammenhang			
	2.1	Definition	7	
	2.2	Eigenschaften	7	
	2.3	Formale Meromorphe Zusammenhänge	9	
	2.4	Elementare Meromorphe Zusammenhänge	9	
3	B Levelt-Turittin-Theorem			
II	I Beispiele			
4	Beispiele/Anwendung			
	4.1	Einfache Beispiele	15	
		4.1.1 erstes	15	
		4.1.9 provided	1.0	

	4.1.4	viertes		
		fünftes - bsp e		
4.2	Meron	norpher Zusammenhang der formal, aber nicht Konvergent, zuerfällt	22	
Anhang				

A Aufteilung von ...

16. Dezember 2012

In halts verzeichn is

23

Einleitung

Teil I

Theorie

1 Mathematische Grundlagen

Hier werde ich mich auf [5] und [1] beziehen.

1.1 Einige Ergebnise aus der Kommutativen Algebra

In dieser Arbeit spielen die folgenden Ringe eine Große Rolle:

- $\mathbb{C}[x] := \{\sum_{i=1}^{N} a_i x^i | N \in \mathbb{N} \}$
- $\mathbb{C}\{x\} := \{\sum_{i=1}^{\infty} a_i x^i | \text{pos. Konvergenz radius} \}$
- $\mathbb{C}[x] := \{\sum_{i=1}^{\infty} a_i x^i\}$
- $K := \mathbb{C}(\lbrace x \rbrace) := \mathbb{C}\{x\}[x^{-1}]$
- $\bullet \ \hat{K}:=\mathbb{C}((x)):=\mathbb{C}[\![x]\!][x^{-1}]$

wobei offensichtlich gilt $\mathbb{C}[x] \subset \mathbb{C}\{x\} \subset \mathbb{C}[x]$.

Lemma 1.1 (Seite 2). ein paar eigenschaften

1. $\mathbb{C}[x]$ ist ein graduierter Ring, durch die Grad der Polynome. Diese graduierung induziert eine aufsteigende Filtrierung.

alle Ideale haben die form (x-a) mit $a \in \mathbb{C}$

2. wenn \mathfrak{m} das maximale Ideal von $\mathbb{C}[x]$ (erzeugt von x ist), so ist

$$\mathbb{C}[[x]] = \varprojlim_{k} \mathbb{C}[X] \backslash \mathfrak{m}^{k}$$

The ring $\mathbb{C}[[x]]$ ist ein nöterscher lokaler Ring: jede Potenzreihe mit konstantem term $\neq 0$ ist invertierbar.

Der ring ist ebenfalls ein diskreter ??? Ring (discrete valuation ring)

Die Filtrierung nach grad des Maximalen Ideals, genannt \mathfrak{m} -adische Fitration, ist die Filtrierung $\mathfrak{m}^k = \{f \in \mathbb{C}[[x]] | v(f) \geq k\}$

und es gilt $gr_{\mathfrak{m}}(\mathbb{C}[[x]]) = \mathbb{C}[x]$

3. $\mathbb{C}\{x\}\subset\mathbb{C}[[x]]$ ist ein Untering der Potenzreihen, wobei der Konvergenzradius echt positiv ist.

ist ähnlich zu $\mathbb{C}[[x]]$

1.2 Weiterführende Definitionen

Definition 1.2 (Kommutator). Sei R ein Ring. Für $a, b \in R$ wird

$$[a, b] = b \cdot a - a \cdot b$$

der Kommutator von a und b genannt.

Definition 1.3 (pull-back). Der pull-back ρ^+M ist der Vektorraum $\rho^*M = \mathbb{C}((u)) \otimes_{\mathbb{C}((u))} M$ mit dem pull-back Zusammenhang $\rho^*\nabla$ definiert durch $\partial_u(1 \otimes m) := \rho'(u) \otimes \partial_t m$

sei nun N ein $\mathbb{C}((u))$ -VR mit Verknüpfung

Definition 1.4 (push-forward). Der push-forward ρ_+N ist definiert durch:

- der $\mathbb{C}((t))$ -VR ρ_*N ist der \mathbb{C} -VR N mit der $\mathbb{C}((t))$ Struktur durch $f(t)\cdot 0:=f(\rho(t))m$
- die wirkung von ∂_t ist die von $\rho'(u)^{-1}\partial_u$

Satz 1.5. es gilt dir Projektionsformel

$$\rho_{+}(N \otimes_{\mathbb{C}((u))} \rho^{+}M) \cong \rho_{+}N \otimes_{\mathbb{C}((t))} M \tag{1.1}$$

1.3 Weyl-Algebra und der Ring \mathcal{D}

Ich werde hier die Weyl Algebra, wie in [5, Chapter 1], in einer Veränderlichen einführen. Sei $\frac{\partial}{\partial x} = \partial_x$ der Ableitungsoperator nach x und sei $f \in \mathbb{C}[x]$ (bzw. $\mathbb{C}[x]$). Man hat die

folgende Kommutations-Relation zwischen dem Ableitungsoperator und dem Multiplikations $Operator\ f$:

$$\left[\frac{\partial}{\partial x}, f\right] = \frac{\partial f}{\partial x} \tag{1.2}$$

wobei die Rechte Seite die Multiplikation mit $\frac{\partial f}{\partial x}$ darstellt. Dies bedeutet, für alle $g \in \mathbb{C}[x]$ hat man:

$$\left[\frac{\partial}{\partial x}, f\right] \cdot g = \frac{\partial fg}{\partial x} - f\frac{\partial g}{\partial x} = \frac{\partial f}{\partial x} \cdot g$$

Definition 1.6 (Weyl Algebra). Definiere nun die Weyl Algebra $A_1(\mathbb{C})$ (bzw. die Algebra \mathcal{D} von linearen Operatoren mit Koeffizienten in $\mathbb{C}\{x\}$ bzw. die Algebra $\hat{\mathcal{D}}$ (Koeffizienten in $\mathbb{C}[x]$)) als die Quotientenalgebra der freien Algebra, welche von dem Koeffizientenring zusammen mit dem Element ∂_x , erzeugt wird, Modulo der Relation (1.2).

Wir werden die Notation $A_1(\mathbb{C}) := \mathbb{C}[x] < \partial_x > \text{(bzw. } \mathcal{D} := \mathbb{C}\{x\} < \partial_x > \text{bzw. } \hat{\mathcal{D}} := \mathbb{C}[x] < \partial_x > \text{)}$ verwenden.

Lemma 1.7. Sei A einder der 3 soeben eingeführten Objekten, die Addition

$$+: A \times A \rightarrow A$$

und die Multiplikation

$$\cdot: A \times A \to A$$

definieren auf A eine $Ringstruktur(A, +, \cdot)$.

Beweis. Zula Barbara: Kapittel 2 section 1

Bemerkung 1.8. $A_1(\mathbb{C})$, \mathcal{D} und $\hat{\mathcal{D}}$ sind nicht kommutative Algebren.

Lemma 1.9. Es gelten die Formeln

$$\begin{split} [\partial_x, x^k] &= k x^{k-1} \\ [\partial_x^j, x] &= j \partial_x^{j-1} \\ [\partial_x^j, x^k] &= \sum_{i \geq 1} \frac{k(k-1) \cdots (k-i+1) \cdot j(j-1) \cdots (j-i+1)}{i!} x^{k-i} \partial_x^{j-i} \end{split}$$

Beweis. Zula Barbara

Proposition 1.10. Jedes Element in $A_1(\mathbb{C})$ (bzw. \mathcal{D} oder $\hat{\mathcal{D}}$) kann auf eindeutige weiße als $P = \sum_{i=0}^n a_i(x) \partial_x^i$, mit $a_i(x) \in A_1(\mathbb{C})$ (bzw. \mathcal{D} oder $\hat{\mathcal{D}}$), geschrieben werden.

Beweis. [5, Proposition 1.2.3]

ein teil des Beweises ist "left as an exersice"

Definition 1.11. Sei $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$ gegeben, so definiere

$$\deg P := \max\{i | a_i \neq 0\}$$

In natürlicher Weise erhält man $F_N\mathcal{D}:=\{P\in\mathcal{D}|\deg P\leq N\}$ sowie die entsprechende aufsteigende Filtrierung

$$\cdots \subset F_{-1}\mathcal{D} \subset F_0\mathcal{D} \subset F_1\mathcal{D} \subset \cdots \subset \mathcal{D}$$

und erhalte $gr_k^F \mathcal{D} = F_N \mathcal{D}/F_{N-1} \mathcal{D} = \{P \in \mathcal{D} | \deg P = N\} \cong \mathbb{C}\{x\}.$

Beweis. Sei $P \in F_N \mathcal{D}$ so betrachte den Isomorphismus:

$$F_N \mathcal{D}/F_{N-1} \mathcal{D} \to \mathbb{C}\{x\}; [P] = P + F_{N-1} \mathcal{D} \mapsto a_n(x)$$

Proposition 1.12. Es gilt:

 $gr^F\mathcal{D} := \bigoplus_{\mathbb{N}\in\mathbb{Z}} gr^F_N\mathcal{D} = \bigoplus_{\mathbb{N}\in\mathbb{N}_0} gr^F_N\mathcal{D} \cong \bigoplus_{\mathbb{N}\in\mathbb{N}_0} \mathbb{C}\{x\} \cong \mathbb{C}\{x\}[\xi] = \bigoplus_{\mathbb{N}\in\mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$ $isomorph \ als \ grad. \ Ringen$

1.3.1 Weyl Algebra als Graduierter Ring

Sei A nun einer der drei Koeffizienten Ringe, welche zuvor behandelt wurden. Der Ring $A < \partial_x >$ kommt zusammen mit einer aufsteigenden Filtrierung, welche wir mit $F(A < \partial_x)$ bezeichen werden. Sei P ein bzgl. 1.10 minimal geschriebener Operator, so ist P in F_k falls der maximale Grad von ∂_x in P kleiner oder gleich k. So definiere den Grad degP von P als die Eindeutige ganze Zahl k mit $P \in F_k A < \partial_x > /F_{k-1} < \partial_x >$

Unabhängigkeit von Schreibung wird in Sabbah Script behauptet

- 1.4 Struktur von Links-Idealen auf $\mathcal D$
- **1.5** Lokalisierung eines $\mathbb{C}\{x\}$ -Modules
- **1.6** Lokalisierung eines holonomen \mathcal{D} -Modules

2 Der Meromorpher Zusammenhang

Quelle ist [5]

2.1 Definition

Definition 2.1 (Meromorpher Zusammenhang). Ein (Keim eines) Meromorpher Zusammenhang (an x = 0) (\mathcal{M}_K, ∂) besteht aus folgenden Daten:

- \mathcal{M}_K , ein endlich dimensionaler K-Vr
- einer \mathbb{C} -linearen Abbildung $\partial: \mathcal{M}_K \to \mathcal{M}_K$, genannt *Derivation*, welche für alle $f \in K$ und $u \in \mathcal{M}_K$ die *Leibnitzregel*

$$\partial(fu) = f'u + f\partial u \tag{2.1}$$

erfüllen soll.

Bemerkung 2.2. Später wird man auf die angabe von ∂ verichten und einfach \mathcal{M} als den Meromorphen Zusammenhang bezeichnen.

2.2 Eigenschaften

Hier nun einige Eigenschaften Meromorpher Zusammenhänge.

Lemma 2.3. Sei (\mathcal{M}, ∂) ein gegebener Meromorpher Zusammenhang, und φ ein Basisisomorphismus von K^r nach \mathcal{M} , also in der Situation

$$\begin{array}{ccc} \mathcal{M} & \stackrel{\partial}{\longrightarrow} \mathcal{M} \\ \uparrow & \uparrow \\ \cong \varphi & \varphi \cong \\ \mid & \downarrow \\ K^r & \stackrel{\varphi^{-1}\partial \varphi}{\longrightarrow} K^r \end{array}$$

gilt: $(K^r, \varphi^{-1}\partial \varphi)$ ist ebenfalls ein Meromorpher Zusammenhang.

Beweis. TODO, (3. Treffen)
$$\Box$$

Sind ∂_1 und ∂_2 zwei Meromorphe Zusammenhänge auf $\mathcal{M}_K \cong K^r$. So betrachte $\partial_1 - \partial_2 : \mathcal{M} \to \mathcal{M}$ für alle $f \in K$ und $u \in \mathcal{M}_K$:

$$(\partial_1 - \partial_2)(fu) = \partial_1(fu) - \partial_2(fu)$$
$$= f'u + f\partial_1 u - f'u - f\partial_2 u$$
$$= f \cdot (\partial_1 - \partial_2)(u)$$

Lemma 2.4. Da $\partial_1 - \partial_2$ \mathbb{C} -linear und, wie eben gezeigt, $(\partial_1 - \partial_2)(fu) = f \cdot (\partial_1 - \partial_2)(u)$ allgemein gilt: Die differenz zweier Meromorpher Zusammenhäge ist K-linear.

Insbesondere ist $\frac{d}{dz} - \partial : K^r \to K^r$ K-linear, also es existiert eine Matrix $A \in M(r \times r, K)$ mit $\frac{d}{dz} - \partial = A$, also ist $\partial = \frac{d}{dz} - A$.

Definition 2.5 (Transformationsformel). In der Situation

mit φ, ψ und T K-Linear und $\partial, (\frac{d}{dz} + A)$ und $(\frac{d}{dz} + B)$ \mathbb{C} -Linear, gilt: Der Merom. Zush. $\frac{d}{dz} + A$ auf K^r wird durch Basiswechsel $T \in GL(r, K)$ zu

$$\frac{d}{dz} + (T^{-1} \cdot T' + T^{-1}AT) = \frac{d}{dz} + B$$

Definition 2.6. $A \sim B$ differenziell Äquivalent : $\Leftrightarrow \exists T \in GL(r,K)$ mit $B = T^{-1} \cdot T' + T^{-1}AT$

$$1 = TT^{-1} \leadsto T'T^{-1} + T(T^{-1})' = 0$$

$$1 = T^{-1}T \leadsto (T^{-1})'T + T^{-1}T' = 0$$

2.3 Formale Meromorphe Zusammenhänge

Definition 2.7 (Formaler Meromorpher Zusammenhang). Ein Formaler Meromorpher zusammenhang $(\mathcal{M}_K, \partial)$ besteht aus folgenden Daten:

- \mathcal{M}_K , ein endlich dimensionaler \hat{K} -Vr
- eine Derivation ∂ , für die die Leibnitzregel (2.1), für alle $f \in \hat{K}$ und $u \in \mathcal{M}_{\hat{K}}$, erfüllt sein soll.

Oder einfach ein Meromorpher Zshg. über anderes K also \hat{K}

2.4 Elementare Meromorphe Zusammenhänge

Definition 2.8 (Elementarer formaler Zusammenhang). Zu einem gegebenen $\rho \in u\mathbb{C}[\![u]\!], \varphi \in \mathbb{C}((u))$ und einem endlich dimensionalen $\mathbb{C}((u))$ -Vektorraum R mit regulärem Zusammenhang ∇ , definieren wir den assoziierten Elementaren endlich dimensionalen $\mathbb{C}((t))$ -Vektorraum mit Zusammenhang, durch:

$$El(\rho, \varphi, R) = \rho_{+}(\mathscr{E} \otimes R)$$

Levelt-Turittin-Theorem

sabbah Fourier-local.pdf lemma 2.4 [4]

Lemma 3.1. $\rho: u \mapsto u^p, \ \mu_{\xi}: u \mapsto \xi u, \ \text{für alle } \varphi \in \mathbb{C}((u)) \ \text{gilt}$

$$\rho^+ \rho_+ \mathscr{E}^{\varphi} = \bigoplus_{\xi^p = 1} \mathscr{E}^{\varphi \circ \mu_{\xi}}$$

Beweis. Wir wählen eine $\mathbb{C}((u))$ Basis $\{e\}$ von \mathscr{E}^{φ} und zur vereinfachung nehmen wir an, dass $\varphi \in u^{-1}\mathbb{C}[u^{-1}]^{[1]}.$

Dann ist die Familie $e, ue, ..., u^{p-1}e$ eine $\mathbb{C}((t))$ -Basis von $\rho_+\mathscr{E}^{\varphi}$.

Setze $e_k = u^{-k} \otimes_{\mathbb{C}((t))} u^k e$. Dann ist die Familie $\mathbf{e} = (e_0, ..., e_{p-1})$ eine $\mathbb{C}((u))$ -Basis von $\rho^+ \rho_+ \mathscr{E}^{\varphi}$. Zerlege nun $u\varphi'(u)=\sum_{j=0}^{p-1}u^j\psi_j(u^p)\in u^{-2}\mathbb{C}[u^{-1}]$ mit $\psi_j\in\mathbb{C}[t^{-1}]$ für alle j>0 und $\psi_0\in\mathbb{C}[u^{-1}]$ $t^{-1}\mathbb{C}[u^{-1}]$ (siehe: Anhang A).

Sei P die Permutationsmatrix, definiert durch $\mathbf{e} \cdot P = (e_1, ..., e_{p-1}, e_0)$ [2]. Es gilt:

$$u\partial_u e_k = \sum_{i=0}^{p-1-k} u^i \psi_i(u^p) e_{k+1} + \sum_{i=p-k}^{p-1} u^i \psi_i(u^p) e_{k+i-p}$$

denn:

$$u\partial_u e_k = u\partial_u (u^{-k} \otimes_{\mathbb{C}((t))} u^k e)$$

$$\varphi = \mathcal{E}^{\varphi} \Leftrightarrow \varphi \equiv \psi \mod \mathbb{C}[[u]]$$

$${}^{[2]}P = \begin{pmatrix} 0 & & & 1 \\ 1 & 0 & & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{pmatrix}$$

$$= u(-ku^{-k-1} \otimes_{\mathbb{C}((t))} u^k e + pu^{p-1}u^{-k} \otimes_{\mathbb{C}((t))} \partial_t (\underbrace{u^k e}_{\in \rho_+ \mathscr{E}^{\varphi}}))$$

$$= -ku^{-k} \otimes_{\mathbb{C}((t))} u^k e + pu^{p-1}u^{-k+1} \otimes_{\mathbb{C}((t))} (pu^{p-1})^{-1} (ku^{k-1}e + u^k \varphi'(u)e)$$

$$= -ku^{-k} \otimes_{\mathbb{C}((t))} u^k e + u^{-k+1} \otimes_{\mathbb{C}((t))} (ku^{k-1}e + u^k \varphi'(u)e)$$

$$= \underbrace{-ku^{-k} \otimes_{\mathbb{C}((t))} u^k e + u^{-k+1} \otimes_{\mathbb{C}((t))} ku^{k-1}e}_{=0} + u^{-k+1} \otimes_{\mathbb{C}((t))} u^k \varphi'(u)e$$

$$= u^{-k} \otimes_{\mathbb{C}((t))} u^{k+1} \varphi'(u)e$$

$$= \sum_{i=0}^{p-1} u^{-k} \otimes_{\mathbb{C}((t))} u^k u^i \underbrace{\psi_i(u^p)e}_{\in\mathbb{C}((t))}$$

$$= \sum_{i=0}^{p-1} u^i \psi_i(u^p) (u^{-k} \otimes_{\mathbb{C}((t))} u^k e)$$

$$= \sum_{i=0}^{p-1-k} u^i \psi_i(u^p) e_{k+1} + \sum_{i=p-k}^{p-1} u^i \psi_i(u^p) e_{k+i-p}$$

so dass gilt:

$$u\partial_u \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} u^j \psi_j P^j \right]$$

denn:

$$u\partial_{u}\mathbf{e} = (u\partial_{u}e_{0}, ..., u\partial_{u}e_{p-1})$$

$$= \left(\sum_{i=0}^{p-1-k} u^{i}\psi_{i}(u^{p})e_{k+1} + \sum_{i=p-k}^{p-1} u^{i}\psi_{i}(u^{p})e_{k+i-p}\right)_{k \in \{0, ..., p-1\}}$$

$$= \mathbf{e} \begin{pmatrix} u^{p-1}\psi_{p-1}(u^{p}) & \cdots & u^{3}\psi_{3}(u^{p}) & u^{2}\psi_{2}(u^{p}) & u^{1}\psi_{1}(u^{p}) \\ u^{1}\psi_{1}(u^{p}) & u^{p-1}\psi_{p-1}(u^{p}) & & \ddots & u^{2}\psi_{2}(u^{p}) \\ u^{2}\psi_{2}(u^{p}) & u^{1}\psi_{1}(u^{p}) & \ddots & & u^{3}\psi_{3}(u^{p}) \\ u^{3}\psi_{3}(u^{p}) & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & u^{1}\psi_{1}(u^{p}) & u^{p-1}\psi_{p-1}(u^{p}) \\ u^{p-2}\psi_{p-2}(u^{p}) & \cdots & u^{3}\psi_{3}(u^{p}) & u^{2}\psi_{2}(u^{p}) & u^{1}\psi_{1}(u^{p}) & u^{p-1}\psi_{p-1}(u^{p}) \end{pmatrix}$$

$$= \mathbf{e} \left[\sum_{j=0}^{p-1} u^{j}\psi_{j}(u^{p})P^{j}\right]$$

Die Wirkung von ∂_u auf die Basis von $\rho^+\rho_+\mathscr{E}^{\varphi(u)}$ ist also Beschrieben durch:

$$\partial_u \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} u^{j-1} \psi_j P^j \right]$$

Diagonalisiere nun
$$TPT^{-1}=D=\begin{pmatrix} \xi^0 & & & \\ & \xi^1 & & \\ & & \ddots & \\ & & & \xi^{p-1} \end{pmatrix}^{[3]}, \text{ mit } \xi^p=1 \text{ und } T\in Gl_p(\mathbb{C}).$$

So dass gilt:

$$\begin{split} T[\sum_{j=0}^{p-1}u^{j-1}\psi_{j}(u^{p})P^{j}]T^{-1} &= [\sum_{j=0}^{p-1}u^{j-1}\psi_{j}(u^{p})(TPT^{-1})^{j}] \\ &= [\sum_{j=0}^{p-1}u^{j-1}\psi_{j}(u^{p})D^{j}] \\ &= \begin{pmatrix} \sum_{j=0}^{p-1}u^{j-1}\psi_{j} & & & \\ & \sum_{j=0}^{p-1}u^{j-1}\psi_{j} & & \\ & & \ddots & & \\ & & \sum_{j=0}^{p-1}u^{j-1}\psi_{j} & & \\ & & & \ddots & \\ & & & \sum_{j=0}^{p-1}u^{j-1}\psi_{j} & & \\ & & & \ddots & \\ & & & \sum_{j=0}^{p-1}(u\xi^{1})^{j-1}\psi_{j}\xi^{1} & & \\ & & & \ddots & \\ & & & \sum_{j=0}^{p-1}(u\xi^{p-1})^{j-1}\psi_{j}\xi^{p-1} \end{pmatrix} \end{split}$$

Wie sieht denn die Wirkung auf die Basis von $\bigoplus_{\xi^p=1} \mathscr{E}^{\varphi\circ\mu_\xi} \stackrel{\Phi}{\cong} \mathbb{C}((u))^p$ aus?

 $^{^{[3]}}$ Klar, da mipo X^p-1

$$\partial_{u} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \partial_{u} 1 \\ \partial_{u} 0 \\ \vdots \\ \partial_{u} 0 \end{pmatrix} = \begin{pmatrix} \varphi'(u) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \partial_{u} 0 \\ \partial_{u} 1 \\ \partial_{u} 0 \\ \vdots \\ \partial_{u} 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \varphi'(u) \\ 0 \\ \vdots \\ 0 \end{pmatrix} \xrightarrow{\Phi} \begin{pmatrix} 0 \\ \varphi'(u)\xi \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Also kommutiert das Diagram:

Und deshalb ist klar ersichtlich das auf $\rho^+\rho_+\mathscr{E}^{\varphi(u)}$ und $\sum_{j=0}^{p-1}u^{j-1}\psi_jD^j$ ein Äquivalenter Meromorpher Zusammenhang definiert ist.

Teil II

Beispiele

4 Beispiele/Anwendung

4.1 Einfache Beispiele

4.1.1 erstes

$$P_a = t^2 \partial_t^2 + t \partial_t + (t^2 - n^2) = \sum_{k=0}^{2} \sum_{l=0}^{2} \alpha_{kl} t^l \partial_t^k$$

Mit:
$$\alpha_{2,2} = 1$$
, $\alpha_{1,1} = 1$, $\alpha_{0,2} = t^2$ und $\alpha_{0,0} = n^2$

$$P_a = t^2 \partial_t^2 + t \partial_t + (t^2 - n^2) \Rightarrow \begin{cases} k = 2, l = 2 & \Rightarrow u \le k = 2, v \ge l - k = 0 \\ k = 1, l = 1 & \Rightarrow u \le 1, v \ge 0 \\ k = 0, l = 0 & \Rightarrow u \le 0, v \ge 0 \\ k = 0, l = -2 & \Rightarrow u \le 0, v \ge 2 \end{cases}$$

also slopes $(P_a) = \{1\}$

4.1.2 zweites

$$P_b = t\partial_t^2 + 2\partial_t - 1$$

$$P_b = t\partial_t^2 + 2\partial_t - 1 \Rightarrow \begin{cases} k = 2, l = 1 & \Rightarrow u \le k = 2, v \ge l - k = -1 \\ k = 1, l = 0 & \Rightarrow u \le 1, v \ge -1 \\ k = 0, l = 0 & \Rightarrow u \le 0, v \ge 0 \end{cases}$$

also slopes(P_b) = {0} also ist P_b regulär singulär

4.1.3 drittes

zula Barbara Seite 46

$$P_c = t^2 \partial_t + 1$$

$$P_c = t^2 \partial_t + 1 \Rightarrow \begin{cases} k = 1, l = 2 & \Rightarrow u \le 1, v \ge 1 \\ k = 0, l = 1 & \Rightarrow u \le 0 \end{cases}$$

also slopes $(P_c) = \{1\}.$

4.1.4 viertes

zula Barbara Seite 46

Original aus der Zula:

$$P_d = -3t^{14}\partial_t^6 + t^{11}(t+3)\partial_t^5 + 2t^8\partial_t^4 - t^6(t^3+1)\partial_t^3 + t^4\partial_t$$

$$P_{d} \Rightarrow \begin{cases} k = 6, l = 14 & \Rightarrow u \leq k = 6, v \geq l - k = 8 \\ k = 5, l = 12 & \Rightarrow u \leq 5, v \geq 7 \\ k = 5, l = 11 & \Rightarrow u \leq 5, v \geq 6 \\ k = 4, l = 8 & \Rightarrow u \leq 4, v \geq 4 \\ k = 3, l = 9 & \Rightarrow u \leq 3, v \geq 6 \\ k = 3, l = 6 & \Rightarrow u \leq 3, v \geq 3 \\ k = 1, l = 4 & \Rightarrow u \leq 1, v \geq 3 \end{cases}$$

also ist Abbildung 5.8 auf seite 53 der zula falsch?

$$P_d = -3t^{14}\partial_t^6 + t^{11}(t+3)\partial_t^5 + 2t^8\partial_t^4 - t^6(t^3+1)\partial_t^3 + t^3\partial_t$$

$$P_{d} \Rightarrow \begin{cases} k = 6, l = 14 & \Rightarrow u \leq k = 6, v \geq l - k = 8 \\ k = 5, l = 12 & \Rightarrow u \leq 5, v \geq 7 \\ k = 5, l = 11 & \Rightarrow u \leq 5, v \geq 6 \\ k = 4, l = 8 & \Rightarrow u \leq 4, v \geq 4 \\ k = 3, l = 9 & \Rightarrow u \leq 3, v \geq 6 \\ k = 3, l = 6 & \Rightarrow u \leq 3, v \geq 3 \\ k = 1, l = 3 & \Rightarrow u \leq 1, v \geq 2 \end{cases}$$

also slopes $(P_b) = \{0, \frac{1}{2}, 1, 2\}$ also ist P_d irregulär singulär.

Offenbar ist der Hauptnenner der Steigugnen gleich 2.

Betrachte also $\rho:t\mapsto u^2$

und erhalte: ???

4.1.5 fünftes - bsp e

Für $P_e=t^4(t+1)\partial_t^4+t\partial_t^2+\frac{1}{t}\partial_t+1$ sieht das Newton-Polygon wie folgt aus:

also sind die Slopes slopes $(P_e) = \{0, \frac{2}{3}\}.$

Dies gilt Analog für das einfachere:

$$\bar{P}_e = t^4 \partial_t^4 + \frac{1}{t} \partial_t$$

Also offensichtlich gilt slopes $(\bar{P}_e) = \{0, \frac{2}{3}\}$, also haben die Slopes den Hauptnenner 3, deshalb mache einen Pullback mit $\rho: t\mapsto u^3$

Versuch:

$$\rho^+ \bar{P}_e = u^{12} \partial_u^4 + \frac{1}{u^3} \partial_u$$

FALSCH: $\partial_t \not\mapsto \partial_u$

$$\rho^{+}\bar{P}_{e} \Rightarrow \begin{cases} k = 4, l = 12 & \Rightarrow u \leq 4, v \geq 8 \\ k = 1, l = -3 & \Rightarrow u \leq 1, v \geq -4 \end{cases}$$

zu steil

4.1.6 Einfaches Beispiel

Neuer start (der Weg zu einem leichten Beispiel): Beginne mit

$$t^4(t+1)\partial_t^4 + t\partial_t^2 + \frac{1}{t}\partial_t + 1$$

(von ZulaBarbara Seite 47) und ignoriere zuerst die Terme, die zum Newton Polygon keinen Beitrag Leisten

$$t^4\partial_t^4 + \frac{1}{t}\partial_t$$

multipliziere dieses mit t und ändere aber dadurch den assoziierten Meromorphen Zusammenhang nicht [5, Chapter 5.1]

$$P := t^5 \partial_t^4 + \partial_t$$

und es gilt slopes $(P)=\{0,\frac{2}{3}\}$. Eliminiere als nächstes nun die Brüche in den Slopes mittels einem geeignetem Pullback. Da hier der Hauptnenner 3 ist bietet sich $\rho:t\mapsto u^3$ für den Pullback an.

Dieser Pullback Multipliziert (indirekt) die Slopes mit 3, **Quelle?** aber wie wendet man ihn (explizit) an?

$$\rho^{+}P = ???$$

welches die Slopes slopes $(\rho^+P)=\{0,2\}\subset\mathbb{Z}$ hat. Schreibe nun dieses $\rho^+P=Q\cdot R$ mit $P,Q\in\mathbb{C}[\![u]\!]$ wobei gilt slopes $(Q)=\{0\}$ und slopes $(R)=\{2\}$.

Also gilt:

$$\hat{\mathcal{D}}/(\hat{\mathcal{D}}\cdot\rho^+P)\cong\hat{\mathcal{D}}/(\hat{\mathcal{D}}\cdot Q)\oplus\hat{\mathcal{D}}/(\hat{\mathcal{D}}\cdot R)$$

4.2 Meromorpher Zusammenhang der formal, aber nicht Konvergent, zuerfällt

Quellen??

$$\sum n!x^n$$

Weiteres Beispiel:

 $Sabbah_Fourier-local.pdf \rightarrow 5.b.$

A Aufteilung von ...

Sei $\varphi \in u^{-1}\mathbb{C}[u^{-1}]$, so ist $\varphi' =: \sum_{i=2}^N a_{-i}u^{-i} \in u^{-2}\mathbb{C}[u^{-1}]$ also $u\varphi'(u) = \sum_{i=1}^N a_{-i-1}u^{-i} \in u^{-1}\mathbb{C}[u^{-1}]$, welches wir zerlegen wollen. Zerlege also $u\varphi'(u) = \sum_{j=0}^{p-1} u^j \psi_j(u^p)$ mit $\psi_j \in \mathbb{C}[t^{-1}]$ für alle j > 0 und $\psi_0 \in t^{-1}\mathbb{C}[t^{-1}]$:

also:

$$\psi_0(u^p) = a_{-(p+1)}u^{-p} + a_{-(2p+1)}u^{-2p} + \dots$$

$$\psi_1(u^p) = a_{-p}u^{-p} + a_{-2p}u^{2p} + \dots$$

$$\vdots$$

$$\vdots$$

$$\psi_{p-1}(u^p) = a_{-2}u^p + a_{-(p+2)}u^{2p} + \dots$$

Literaturverzeichnis

- [1] S.C. Coutinho. A Primer of Algebraic D-Modules. London Mathematical Society Student Texts. Cambridge University Press, 1995.
- [2] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics. Springer, 1977.
- [3] H. Matsumura and M. Reid. *Commutative Ring Theory*. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1989.
- [4] C. Sabbah. An explicit stationary phase formula for the local formal fourier-laplace transform. Paper.
- [5] C. Sabbah. Introduction to algebraic theory of linear systems of differential equations. Vorlesungsskript.
- [6] C. Sabbah. An explicit stationary phase formula for the local formal Fourier-Laplace transform. ArXiv e-prints, June 2007.