4. Stochastic Processes

- 1. sequence / family of random variables
- 2. a random function (hard to formulate)

Definition: A **stochastic process** $\{X_t\}_{t\in T}$ is a collection of random variables, defined on a common probability space.

T: index set. In most cases, T corresponds to time, and is either discrete $\{0,1,2,\cdots\}$ or continuous $[0,\infty)$

In discrete case, we writes $\{X_n\}_{n=0,1,2,\dots}$

This **state space** S os a stochastic process is the set of all possible value of $X_t, t \in T$

S can also be either discrete or continuous. In this course, we typically deal with **discrete** stat space. Then we relabel the stats so that $S=\{0,1,2,\cdots\}$ (countable state space) or $S=\{0,1,2,\cdots,M\}$ (finite state space)

Remark: As in the case of the joint distribution, we need the r.v's in a stochastic process to be defined on a common probability space, because we want to discuss their joint behaviours, i.t, how things change over time.

Thus, we can identify each point ω in the sample space Ω with a function defined on T and taking value in S. Each function is called a **path** of this stochastic process

Example Let X_0, X_1, \cdots be independent and identical r.v's following some distribution. Then $\{X_n\}_{n=0,1,2,\dots}$ is a stochastic process

Example Let $X_1,X_2,...$ be independent and identical r.v.'s. $P(X_1=1)=p$, and $P(X_1=-1)=1-p$. Define $S_0=0,S_n=\sum_{i=1}^n X_i,n\leq 1$, e.g.

- $S_0 = 0$
- $S_1 = X_1$
- $S_2 = X_1 + X_2$
-

Then $\{S_n\}_{n=0,1,\dots}$ is a stochastic process, with state space $S=\mathbb{Z}$ (integer)

Sn

 $\{S_n\}_{n=0,1,\dots}$ is called a "simple random walk". ($S_n=S_{n-1}+X_n$)

$$S_n = \begin{cases} S_{n-1} + 1 \\ S_{n-1} - 1 \end{cases}$$

Remark: Why we need the concept of "stochastic process"? Why don't we just look at the joint distribution of $(X_0, X_1, ..., X_n)$?

Answer: The joint distribution of a large number of r.v's is very complicated, because it does not take advantage of the special structure of T(time).

For example, simple random walk. The full distribution of $(S_0, S_1, ..., S_n)$ is complicated or n large. However, the structure is actually simple if we focus on the adjacent times:

$$S_{n+1} = S_n + X_{n+1} \\ S_n: \text{ last value.} \quad X_{n+1}: \text{related to } Ber(p). \text{ They are independent}$$

By introducing time into the framework, we can greatly simplify many things.

More precisely, we fine that for simple random walk, $\{S_n\}_{n=0,1,...}$, if we know S_n the distribution of S_n+1 will not depend on the history $(S_0,...,S_n-1)$. This is a very useful property

In general for a stochastic process $\{X_n\}_{n=0,1,\dots}$, at time n, we already know X_0,X_1,\dots,X_n , S_0 our best estimate of the distribution of X_{n+1} should be the conditional distribution:

$$X_{n+1}|X_n,...,X_n$$

given by:

$$P(X_{n+1} = x_{n+1} | X_n = x_n, ..., X_0 = x_0)$$

As time passes, the expression becomes more and more complicated \rightarrow impossible to handle.

However, if we know that this conditional distribution is actually the same as the conditional distribution only given X_n , then the structure will remain simple for any time. This motivates the notion of $Markov\ chain$.