Case Analysis: "V-Mobile: Churn Management"

Professor Song YaoOlin Business School

Customer Analytics

We will develop a proactive churn management program

CHURN MANAGEMENT STEPS

- 1. Develop a model to predict customer churn
- 2. Use model to understand main drivers of churn
- 3. Use insights to develop actions/offers/incentives
- 4. Estimate the impact of these actions/offers/incentives on the probability of churn
- 5. Evaluate the economics

Data for the logistic regression

Variable	Description	Туре
customer	Customer ID	
churn	Did consumer churn in between May 1 and May 15?	Dependent Var. Dummy
revenue	Mean monthly revenue	Non-Dummy Numeric
mou	Mean monthly minutes of use	Non-Dummy Numeric
overage	Mean monthly overage minutes of use	Non-Dummy Numeric
roam	Mean number of roaming calls	Non-Dummy Numeric
threeway	Mean number of threeway calls	Non-Dummy Numeric
months	# of months the customer has had service	Non-Dummy Numeric
uniqsubs	Number of individuals listed under the account previous 12m	Non-Dummy Numeric
phones	# Handsets associated with the account previous 12m	Non-Dummy Numeric
custcare	Mean number of customer care calls	Non-Dummy Numeric
retcalls	Number of calls previously made to retention team	Non-Dummy Numeric
dropvce	Mean number of dropped voice calls	Non-Dummy Numeric
blckvce	Mean number of blocked voice calls	Non-Dummy Numeric
unansvce	Mean number of unanswered voice calls	Non-Dummy Numeric
eqpdays	Number of days of the current equipment	Non-Dummy Numeric

_			
	Variable	Description	Туре
	webcap	Hanset is web capable	Dummy
y	children	Presence of children in HH	Dummy
	creditaa	High credit rating - aa (as opposed to medium or low)	Dummy
_	prizmrur	Prizm code is rural (as opposed to urban, suburban)	Dummy
4	mcycle	Subscriber owns motorcycle/automobile	Dummy
-	occprof	Occupation - professional (as opposed to other occupations)	Dummy
-	occcler	Occupation - clerical (as opposed to other occupations)	Dummy
-	occcrft	Occupation - crafts (as opposed to other occupations)	Dummy
+	occstud	Occupation - student (as opposed to other occupations)	Dummy
1	occhmkr	Occupation - homemaker (as opposed to other occupations)	Dummy
1	occret	Occupation - retired (as opposed to other occupations)	Dummy
1	occself	Occupation - self-employed (as opposed to other occupations)	Dummy
1	travel	Has traveled to foreign countries during previous 12 months	Dummy
	referred	Account opened with a referral link	Dummy
7	newphone	Handset bought as new (as opposed to refurbished)	Dummy

3

We run a logistic regression on the training sample

```
# first create a formula for the model
predictors = [col for col in vmobile.columns if col not in ['customer', 'churn']]
X = vmobile[predictors]
y = vmobile['churn']

# split data into training and test sets (80/20 split)
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

train_formula = 'churn ~ ' + ' + '.join(predictors) # the .join() joins the predictors with ' + '
# then run the model
model = smf.logit(formula=train_formula, data=pd.concat([X_train, y_train], axis=1)).fit()
```

There is no strong evidence of overfitting

We will develop a proactive churn management program

CHURN MANAGEMENT STEPS

- 1. Develop a model to predict customer churn
- 2. Use model to understand main drivers of churn
- 3. Use insights to develop actions/offers/incentives
- 4. Estimate the impact of these actions/offers/incentives on the probability of churn
- 5. Evaluate the economics

5

Getting Ranking of Importance

Feature importance ranking (showing average marginal effects, ranked by absolute magnitude):

referred: -0.019 newphone: -0.015 mcycle: -0.014 occcler: 0.011 occret: -0.011 eqpdays: 0.009

occhmkr: 0.008 travel: 0.008 prizmrur: 0.007 months: -0.007 occstud: 0.006 mou: -0.005 overage: 0.005 children: 0.004 occself: 0.004 occprof: -0.004 dropvce: 0.002 retcalls: 0.002

webcap: 0.002 revenue: -0.002 creditaa: 0.002 unansvce: -0.001 phones: 0.001 roam: 0.001 custcare: 0.000 blckvce: 0.000 occcrft: -0.000

threeway: -0.002 uniqsubs: 0.002

- Select variables with p-values below some cut-off (10% or 5%)
- Calculate importance ratings
 - |AME*SD| for continuous,
 - |AME| for dummies

7

Importance Ranking of Variables with Significance

Variable	Importance
referred	-0.019
newphone	-0.015
occcler	0.011
eqpdays	0.009
travel	0.008
prizmrur	0.007
months	-0.007
mou	-0.005
overage	0.005
dropvce	0.002
retcalls	0.002
uniqsubs	0.002

We will develop a proactive churn management program

CHURN MANAGEMENT STEPS

- 1. Develop a model to predict customer churn
- 2. Use model to understand main drivers of churn
- 3. Use insights to develop actions/offers/incentives
- 4. Estimate the impact of these actions/offers/incentives on the probability of churn
- 5. Evaluate the economics

ξ

Importance Ranking

Variable	Importance				
referred	-0.019				
newphone	-0.015				
occcler	0.011				
eqpdays	0.009				
travel	0.008				
prizmrur	0.007				
months	-0.007				
mou	-0.005				
overage	0.005				
dropvce	0.002				
retcalls	0.002				
uniqsubs	0.002				

Idea: Offer consumers incentives to upgrade to new phone when phone is refurbished (details later...)

Importance Ranking

Variable	Importance
referred	-0.019
newphone	-0.015
occcler	0.011
eqpdays	0.009
travel	0.008
prizmrur	0.007
months	-0.007
mou	-0.005
overage	0.005
dropvce	0.002
retcalls	0.002
uniqsubs	0.002

Idea: Design special customer acquisition campaign for referral customers

11

We will develop a proactive churn management program

CHURN MANAGEMENT STEPS

- 1. Develop a model to predict customer churn
- 2. Use model to understand main drivers of churn
- 3. Use insights to develop actions/offers/incentives
- 4. Estimate the impact of these actions/offers/incentives on the probability of churn
- 5. Evaluate the economics

Offer incentives to upgrade to new phone

```
## Predict the churn probability if we give new phones to customers who have
 ## a refurbished phone and have higher churn rate than the average (1.94%).
 # First check the current churn rate of these customers
 refurb_customers = vmobile[(vmobile['newphone'] == 0) &
                              (test_pred > 0.0194)]
print("Current churn rate of customers with refurbished phone and high churn rates:")
print(refurb_customers['churn'].mean().round(4))
# Predict the churn probability for these customers
 # if we give them a new phone
 # Create a new dataframe with the selected features and the new subscription plan
new_data = refurb_customers.copy()
new_data['newphone'] = 1
 # Predict the churn probability for the new data
new_pred = model.predict(new_data)
# Print the predicted churn probability
print("Predicted churn probability for the new phone:")
print(new_pred.mean().round(4))
Current churn rate of customers with refurbished phone and high churn rates:
```

Current churn rate of customers with refurbished phone and high churn rates: 0.0316
Predicted churn probability for the new phone: 0.0195

13

Acquire More Referral Customers

0.0128

```
## Predict the churn probability if we try to acquire more
 ## customers through referrals.
 # First check the current churn rate of non-referred customers
 # who are more likely to churn
 non_referred_customers = vmobile[(vmobile['referred'] == 0) &
                               (test pred > 0.0194)]
 print("Current churn rate of non-referred high churn customers:")
 print(non_referred_customers['churn'].mean().round(4))
 # Predict the churn probability for these customers
 # if we give them a new phone
 # Create a new dataframe with the selected features and the new subscription plan
 new_data = non_referred_customers.copy()
 new_data['referred'] = 1
 # Predict the churn probability for the new data
 new_pred = model.predict(new_data)
 # Print the predicted churn probability
 print("Predicted churn probability for the new referral:")
 print(new_pred.mean().round(4))
Current churn rate of non-referred high churn customers:
0.0336
Predicted churn probability for the new referral:
```

14

We will develop a proactive churn management program

CHURN MANAGEMENT STEPS

- 1. Develop a model to predict customer churn
- 2. Use model to understand main drivers of churn
- 3. Use insights to develop actions/offers/incentives
- 4. Estimate the impact of these actions/offers/incentives on the probability of churn
- 5. Evaluate the economics

15

A plan specifies an action/incentive/offer and a rule for selecting customers

EXAMPLE OF CHURN PLAN FOR S-MOBILE EXAMPLE

Action: Offer incentive to upgrade to new equipment

Targeting rule: Customers whose equipments were refurbished

and exceed the average churn probability

Expected churn benefit: Baseline churn: 3.16%, projected churn: 1.95%

. . .

We will develop a proactive churn management program

CHURN MANAGEMENT STEPS

- 1. Develop a model to predict customer churn
- 2. Use model to understand main drivers of churn
- 3. Use insights to develop actions/offers/incentives
- 4. Estimate the impact of these actions/offers/incentives on the probability of churn
- 5. Evaluate the economics

17

New Phone Upgrade

Action: Offer incentive to purchase new equipment

Targeting rule: Customers whose equipments are refurbished

and exceed the average churn probability

Expected churn benefit: Baseline churn: 3.16%, projected churn: 1.95%

Median monthly revenue of this group: \$61.56 (based on the variable "revenue"

of this group of customers)

What is the value of consumers who accept new equipment?

LTV CALCULATION USING MEDIAN REVENUE

	Now	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Basel
Revenue	\$0	\$739	\$739	\$739	\$739	\$739	\$739	
Product/Service Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0	Proje
Action/Offer/Incentive Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
Profit	\$0	\$739	\$739	\$739	\$739	\$739	\$739	
Prob. active at end of period	100%	68%	46%	31%	21%	15%	10%	
Expected Profit	\$0	\$503	\$342	\$233	\$158	\$108	\$73	
Present Value of Exp. Profit	\$0	\$457	\$282	\$175	\$108	\$67	\$41	\$1,130

Baseline churn: 3.16%

Projected churn: 1.95%

	Now	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Revenue	\$0	\$739	\$739	\$739	\$739	\$739	\$739
Product/Service Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Action/Offer/Incentive Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Profit	\$0	\$739	\$739	\$739	\$739	\$739	\$739
Prob. active at end of period	100%	79%	62%	49%	39%	31%	24%
Expected Profit	\$0	\$583	\$460	\$364	\$287	\$227	\$179
Present Value of Exp. Profit	\$0	\$530	\$381	\$273	\$196	\$141	\$101

Value of Churn Program: \$492 per subscriber

19