CLAIMS

- (previously presented) A method for forming a pharmaceutical composition, comprising:
 - (a) forming a solution comprising a cholesteryl ester transfer protein inhibitor, a concentration-enhancing polymer, and a solvent;
 - (b) rapidly removing said solvent from said solution to form a solid amorphous dispersion comprising said cholesteryl ester transfer protein inhibitor and said concentration-enhancing polymer; and
 - (c) said concentration-enhancing polymer being present in said solution in a sufficient amount so that said solid amorphous dispersion provides a maximum concentration of said cholesteryl ester transfer protein inhibitor in a use environment that is at least 10-fold the equilibrium concentration provided by a control composition consisting essentially of an equivalent amount of said cholesteryl ester transfer protein inhibitor but with no concentration-enhancing polymer

wherein said cholesteryl ester transfer protein inhibitor has the Formula IV

and pharmaceutically acceptable forms thereof; wherein R_{IV-1} is hydrogen, Y_{IV} , W_{IV} - X_{IV} or W_{IV} - Y_{IV} ; wherein W_{IV} is a carbonyl, thiocarbonyl, sulfinyl or sulfonyl; X_{IV} is $-O-Y_{IV_1}$ - $S-Y_{IV_1}$ - $N(H)-Y_{IV}$ or $-N-(Y_{IV})_2$;

wherein Y_{IV} for each occurrence is independently Z_{IV} or a fully saturated, partially unsaturated or fully unsaturated one to ten membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is

optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted with $\mathbb{Z}_{\mathbb{N}_4}$

wherein Z_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said Z_{IV} substituent is optionally mono-, di- or tri-substituted independently with halo, $(C_2\text{-}C_6)$ alkenyl, $(C_1\text{-}C_6)$ alkyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino wherein said $(C_1\text{-}C_6)$ alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino, said $(C_1\text{-}C_6)$ alkyl substituent is also optionally substituted with from one to nine fluorines;

 $R_{\text{IV-2}}$ is a partially saturated, fully saturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or trisubstituted independently with halo, said carbon is optionally mono-substituted with oxo, said carbon is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo; or said $R_{\text{IV-2}}$ is a partially saturated, fully saturated or fully unsaturated three to seven membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen, wherein said $R_{\text{IV-2}}$ ring is optionally attached through (C_1-C_4) alkyl;

 $\label{eq:wherein said R} $$ $$ \underset{N_2^2 \text{ ring is optionally mono-, di- or tri-substituted independently with halo, (C_2-C_6) alkenyl, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N-{(C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkyloxycarbonyl; $$$

with the proviso that R_{IV-2} is not methyl;

 R_{IV-3} is hydrogen or Q_{IV} ;

wherein Q_{IV} is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with V_{IV} ;

wherein V_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

 $\frac{\text{wherein said V_{Ny} substituent is optionally mono-, di-, tri-, or tetra-substituted}{\text{independently with halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, amino, nitro, cyano, oxo, carboxamoyl, mono-N- or di-N,N-{(C_1-C_6) alkylamino wherein said (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N-{(C_1-C_6) alkylamino wherein said (C_1-C_6) alkyloxycarbonyl, substituent is optionally mono-, di- or trisubstituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N-(C_1-C_6) alkylamino, said (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N-(C_1-C_6) alkyloxycarbonyl, mono-N- o$

R_{IV-4} is Q_{IV-1} or V_{IV-1};

wherein Q_{N-1} a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, and said carbon chain is optionally mono-substituted with

 V_{iV-1} :

wherein V_{N-1} is a partially saturated, fully saturated or fully unsaturated three to six

membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said $V_{\text{IV-1}}$ substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ alkoxy, amino, nitro, cyano, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino wherein said $(C_1\text{-}C_6)$ alkyl substituent is optionally mono-substituted with oxo, said $(C_1\text{-}C_6)$ alkyl substituent is also optionally substituted with from one to nine fluorines;

wherein either R_{IV-3} must contain V_{IV} or R_{IV-4} must contain V_{IV-1};

 $R_{IV.5}$, $R_{IV.5}$, $R_{IV.7}$ and $R_{IV.8}$ are each independently hydrogen, a bond, nitro or halo wherein said bond is substituted with T_{IV} or a partially saturated, fully saturated or fully unsaturated (C_1 - C_{12}) straight or branched carbon chain wherein carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, and said carbon is optionally mono-substituted with T_{IV} :

wherein T_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or, a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said T_{IV} substituent is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl substituent is also optionally substituted with from one to nine fluorines; and

wherein $R_{\text{IV-5}}$ and $R_{\text{IV-6}}$, or $R_{\text{IV-6}}$, and $R_{\text{IV-7}}$, and/or $R_{\text{IV-7}}$ and $R_{\text{IV-8}}$ may also be taken together and can form at least one four to eight membered ring that is partially saturated or fully unsaturated optionally having one to three heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring or rings formed by R_{IV-5} and R_{IV-6} , or R_{IV-6} and R_{IV-7} , and/or R_{IV-7} and R_{IV-7}

and wherein said concentration-enhancing polymer is selected from hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate. hydroxypropyl cellulose acetate succinate, hydroxyethyl methyl cellulose succinate, hydroxyethyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, hydroxyethyl methyl cellulose acetate succinate, hydroxyethyl methyl cellulose acetate phthalate, carboxyethyl cellulose, carboxymethyl cellulose, carboxymethylethyl cellulose, cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate succinate, hydroxypropyl methyl cellulose acetate succinate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate. cellulose acetate trimellitate, methyl cellulose acetate trimellitate, ethyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl methyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate succinate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate. cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate, hydroxypropyl salicylic acid cellulose acetate, ethylbenzoic acid cellulose acetate, hydroxypropyl ethylbenzoic acid cellulose acetate, ethyl phthalic acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate

- (original) The method of claim 1, further comprising the step of atomizing said solution to form droplets.
 - 3. (original) The method of claim 2 wherein said step of atomizing

said solution is performed by spraying said solution through a pressure nozzle.

- 4. (original) The method of claim 1 wherein said solvent is removed by spray-drying.
- 5. (original) The method of claim 1 wherein said solvent is removed by spray-coating.
- 6. (currently amended) A method for forming a pharmaceutical composition, comprising:
 - (a) feeding a cholesteryl ester transfer protein inhibitor into an extruder;
 - (b) feeding a concentration-enhancing polymer into said extruder;
 - (c) extruding said cholesteryl ester transfer protein inhibitor and said concentration-enhancing polymer through said extruder to form a solid amorphous dispersion comprising said cholesteryl ester transfer protein inhibitor and said concentration-enhancing polymer; and
 - (d) feeding a sufficient amount of said concentration-enhancing polymer into said extruder so that said solid amorphous dispersion provides a maximum concentration of said cholesteryl ester transfer protein inhibitor in a use environment that is at least 10-fold the equilibrium concentration provided by a control composition consisting essentially of an equivalent amount of said cholesteryl ester transfer protein inhibitor but with no concentration-enhancing polymer

wherein said cholesteryl ester transfer protein inhibitor has the Formula IV

and pharmaceutically acceptable forms thereof;

wherein R_{N-1} is hydrogen, Y_{IV} , W_{IV} - X_{IV} or W_{IV} - Y_{IV} ; wherein W_{IV} is a carbonyl, thiocarbonyl, sulfinyl or sulfonyl; X_{IV} is -O- Y_{IV} , -S- Y_{IV} , -N(H)- Y_{IV} or -N- $\{Y_{IV}\}_2$;

wherein Y_{IV} for each occurrence is independently Z_{IV} or a fully saturated, partially unsaturated or fully unsaturated one to ten membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted with Z_{IV} .

wherein $Z_{|V}$ is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said Z_{IV} substituent is optionally mono-, di- or tri-substituted independently with halo, $(C_2\text{--}C_6)$ alkenyl, $(C_1\text{--}C_6)$ alkyl, hydroxy, $(C_1\text{--}C_6)$ alkoxy, $(C_1\text{--}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{--}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{--}C_6)$ alkylamino wherein said $(C_1\text{--}C_6)$ alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, $(C_1\text{--}C_6)$ alkoxy, $(C_1\text{--}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{--}C_6)$ alkylamino, said $(C_1\text{--}C_6)$ alkyl substituent is also optionally substituted with from one to nine fluorines;

R_{IV-2} is a partially saturated, fully saturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or trisubstituted independently with halo, said carbon is optionally mono-substituted with oxo, said carbon is optionally mono-substituted with oxo, said carbon is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, or said R_{IV-2} is a partially saturated, fully saturated or fully unsaturated three to seven membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur

and nitrogen, wherein said R_{IV-2} ring is optionally attached through (C₁-C₄)alkyl:

wherein said $R_{1\vee2}$ ring is optionally mono-, di- or tri-substituted independently with halo, (C_2-C_6) alkenyl, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkytthio, oxo or (C_1-C_6) alkyloxycarbonyl;

with the proviso that R_{IV-2} is not methyl;

R_{IV-3} is hydrogen or Q_{IV};

wherein Q_{IV} is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with V_{IV} ;

wherein $V_{\rm IV}$ is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

 $\frac{\text{wherein said V}_{\text{IV}} \text{ substituent is optionally mono-, di-, tri-, or tetra-substituted}}{\text{independently with halo, } (C_1\text{-}C_6)\text{alkyl, } (C_2\text{-}C_6)\text{alkenyl, hydroxy, } (C_1\text{-}C_6)\text{alkoxy, }}}{(C_1\text{-}C_4)\text{alkylthio, amino, nitro, cyano, oxo, carboxamoyl, mono-N- or di-N,N-}(C_1\text{-}C_6)} \\ \frac{\text{alkylcarboxamoyl, carboxy, } (C_1\text{-}C_6)\text{alkyloxycarbonyl, mono-N- or di-N,N-}(C_1\text{-}C_6)\text{alkylamino}}{\text{wherein said } (C_1\text{-}C_6)\text{alkyloxy, } (C_1\text{-}C_6)\text{alkyloxy, } (C_1\text{-}C_6)\text{alkylthio, amino, nitro, cyano, oxo, carboxy, } (C_1\text{-}C_6)\text{alkyloxycarbonyl, mono-N- or di-N,N-}(C_1\text{-}C_6)\text{alkylamino, said } (C_1\text{-}C_6)\text{alkyloxycarbonyl, mono-N- or di-N,N-}(C_1\text{-}C_6)\text{alkyloxycarbonyl, mono-N- or di-N,N-}(C_1\text{-}C_6)\text{alkyloxycarbonyl,$

R_{IV-4} is Q_{IV-1} or V_{IV-1} :

 $\frac{\text{wherein }Q_{\text{IV-1}} \text{ a fully saturated, partially unsaturated or fully unsaturated one to six}{\text{membered straight or branched carbon chain wherein the carbons, other than the}}$

connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, and said carbon chain is optionally mono-substituted with

VIV-1;

wherein V_{1V-1} is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V_{1V-1} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, amino, nitro, cyano, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-substituted with oxo, said (C_1-C_6) alkyl substituent is also optionally substituted with from one to nine fluorines:

wherein either R_{IV-3} must contain V_{IV} or R_{IV-4} must contain V_{IV-1};

 $R_{\text{IV-5}}$, $R_{\text{IV-6}}$, $R_{\text{IV-7}}$ and $R_{\text{IV-8}}$ are each independently hydrogen, a bond, nitro or halo wherein said bond is substituted with T_{IV} or a partially saturated, fully saturated or fully unsaturated (C_1 - C_{12}) straight or branched carbon chain wherein carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, and said carbon is optionally mono-substituted with T_{IV} ;

wherein $T_{\rm IV}$ is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or, a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said T_{IV} substituent is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino

wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl substituent is also optionally substituted with from one to nine fluorines; and

wherein $R_{\text{IV-5}}$ and $R_{\text{IV-6}}$, or $R_{\text{IV-6}}$, and $R_{\text{IV-7}}$, and/or $R_{\text{IV-7}}$ and $R_{\text{IV-8}}$ may also be taken together and can form at least one four to eight membered ring that is partially saturated or fully unsaturated optionally having one to three heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring or rings formed by $R_{\text{IV-5}}$ and $R_{\text{IV-6}}$, or $R_{\text{IV-6}}$ and $R_{\text{IV-7}}$, and/or $R_{\text{IV-7}}$ and $R_{\text{IV-7}}$ and $R_{\text{IV-7}}$ and $R_{\text{IV-7}}$ and $R_{\text{IV-7}}$ and $R_{\text{IV-7}}$ and $R_{\text{IV-8}}$ are optionally mono-, di- or tri-substituted independently with halo, $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ alkylsulfonyl, $(C_2\text{-}C_6)$ alkyloxycarbonyl, hydroxy, $(C_1\text{-}C_6)$ alkylsulfonyl, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N.N- $(C_1\text{-}C_6)$ alkylamino wherein said $(C_1\text{-}C_6)$ alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, $(C_1\text{-}C_6)$ alkylsulfino, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino, said $(C_1\text{-}C_6)$ alkyl substituent is also optionally substituted with from one to nine fluorines; with the proviso that when $R_{\text{IV-2}}$ is carboxyl or $(C_1\text{-}C_4)$ alkylcarboxyl, then $R_{\text{IV-1}}$ is not hydrogen;

and wherein said concentration-enhancing polymer is selected from hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl cellulose acetate succinate, hydroxyethyl methyl cellulose succinate. hydroxyethyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, hydroxyethyl methyl cellulose acetate succinate, hydroxyethyl methyl cellulose acetate phthalate, carboxyethyl cellulose, carboxymethyl cellulose, carboxymethyl cellulose, cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate succinate, hydroxypropyl methyl cellulose acetate succinate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate. cellulose acetate trimellitate, methyl cellulose acetate trimellitate, ethyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl methyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate succinate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate, hydroxypropyl salicylic acid cellulose acetate, ethylbenzoic acid cellulose acetate, hydroxypropyl ethylbenzoic acid cellulose acetate, ethyl phthalic acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate.

- 7. (original) The method of claim 6, further comprising the step of mixing said cholesteryl ester transfer protein inhibitor and said concentration-enhancing polymer together to form a mixture prior to feeding said cholesteryl ester transfer protein inhibitor and said concentration-enhancing polymer into said extruder.
- 8. (original) The method of claim 6, further comprising the step of mixing said cholesteryl ester transfer protein inhibitor and said concentration-enhancing polymer together to form a mixture after feeding said cholesteryl ester transfer protein inhibitor and said concentration-enhancing polymer into said extruder.
- (original) The method of claim 6, further comprising the step of forming a molten mixture of said cholesteryl ester transfer protein inhibitor and said concentration-enhancing polymer.
- (original) The method of claim 9, further comprising the step of rapidly cooling said molten mixture.
- 11. (original) The method of claim 9, further comprising the step of feeding an excipient into said extruder to reduce the temperature required to form said molten mixture.
- 12. (original) The method of claim 6 wherein said extruder is a twinscrew extruder.
- 13. (currently amended) A method for forming a pharmaceutical composition, comprising:
 - forming a molten mixture comprising a cholesteryl ester transfer protein inhibitor and a concentration-enhancing polymer;
 - cooling said mixture to form a solid amorphous dispersion comprising said cholesteryl ester transfer protein inhibitor and said concentration-enhancing polymer; and

(c) providing a sufficient amount of said concentration-enhancing polymer in said mixture so that said solid amorphous dispersion provides a maximum concentration of said cholesteryl ester transfer protein inhibitor in a use environment that is at least 10-fold the equilibrium concentration provided by a control composition consisting essentially of an equivalent amount of said cholesteryl ester transfer protein inhibitor but with no concentration-enhancing polymer

wherein said cholesteryl ester transfer protein inhibitor has the Formula IV

and pharmaceutically acceptable forms thereof:
wherein R_{IV-1} is hydrogen, Y_{IV}, W_{IV}-X_{IV} or W_{IV}-Y_{IV}:
wherein W_{IV} is a carbonyl, thiocarbonyl, sulfinyl or sulfonyl;
X_{IV} is -O-Y_{IV}, -S-Y_{IV}, -N(H)-Y_{IV} or -N-(Y_{IV});

wherein Y_{IV} for each occurrence is independently Z_{IV} or a fully saturated, partially unsaturated or fully unsaturated one to ten membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted with Z_{IV} .

wherein Z_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently,

optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said Z_{IV} substituent is optionally mono-, di- or tri-substituted independently with halo, $(C_2\text{-}C_6)$ alkyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_6)$ alkyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_6)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino wherein said $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino, said $(C_1\text{-}C_6)$ alkyl substituent is also optionally substituted with from one to nine fluorines;

 $R_{\text{N}\cdot2}$ is a partially saturated, fully saturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or trisubstituted independently with halo, said carbon is optionally mono-substituted with oxo, said carbon is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono- or disubstituted with oxo; or said $R_{\text{IV}\cdot2}$ is a partially saturated, fully saturated or fully unsaturated three to seven membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen, wherein said $R_{\text{IV}\cdot2}$ ring is optionally attached through (C_1-C_4) alkyl;

 $\label{eq:wherein said R} $$ \frac{C_1-C_6}{C_2-C_6}$ alkyl, hydroxy, (C_1-C_6)alkoxy, (C_1-C_4)alkylthio, amino, nitro, eyano, oxo, carboxy, (C_1-C_6)alkyloxycarbonyl, mono-N- or di-N,N-(C_1-C_6)alkylamino wherein said (C_1-C_6)alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, (C_1-C_6)alkoxy, (C_1-C_4)alkylthio, oxo or (C_1-C_6)alkyloxycarbonyl;$

with the proviso that R_{IV-2} is not methyl;

R_{IV-3} is hydrogen or Q_{IV};

wherein $Q_{\rm IV}$ is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, and said carbon chain is optionally mono-substituted with $V_{\rm IV}$:

wherein $V_{|V|}$ is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said V_{IV} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, $(C_1\text{-}C_6)$ alkyl, $(C_2\text{-}C_6)$ alkenyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_6)$ alkylthio, amino, nitro, cyano, oxo, carboxamoyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylcarboxamoyl, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino wherein said $(C_1\text{-}C_6)$ alkyl or $(C_2\text{-}C_6)$ alkenyl substituent is optionally mono-, di- or trisubstituted independently with hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino, said $(C_1\text{-}C_6)$ alkyl or $(C_2\text{-}C_6)$ alkenyl substituents are also optionally substituted with from one to nine fluorines;

R_{IV-4} is Q_{IV-1} or V_{IV-1};

wherein Q_{IV-1} a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, and said carbon chain is optionally mono-substituted with

V_{IV-1}:

wherein V_{1V-1} is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V_{1V-1} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, amino, nitro, cyano, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-substituted with oxo, said (C_1-C_6) alkyl substituent is also optionally substituted with from one to nine fluorines:

wherein either R_{IV-3} must contain V_{IV} or R_{IV-4} must contain V_{IV-1};

 $R_{\text{IV-5}}$, $R_{\text{IV-7}}$ and $R_{\text{IV-9}}$ are each independently hydrogen, a bond, nitro or halo wherein said bond is substituted with T_{IV} or a partially saturated, fully saturated or fully unsaturated (C_1 - C_{12}) straight or branched carbon chain wherein carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, and said carbon is optionally mono-substituted with T_{IV} ;

wherein T_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or, a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said T_{IV} substituent is optionally mono-, di- or tri-substituted independently with halo, $(C_1\text{-}C_6)$ alkyl, $(C_2\text{-}C_6)$ alkenyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_6)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino wherein said $(C_1\text{-}C_6)$ alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, $(C_1\text{-}C_6)$ alkoy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino, said $(C_1\text{-}C_6)$ alkyl substituent is also optionally substituted with from one to nine fluorines; and

wherein $R_{\text{IV-5}}$ and $R_{\text{IV-6}}$, or $R_{\text{IV-6}}$ and $R_{\text{IV-7}}$, and/or $R_{\text{IV-7}}$ and $R_{\text{IV-8}}$ may also be taken together and can form at least one four to eight membered ring that is partially saturated or fully unsaturated optionally having one to three heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring or rings formed by $R_{IV.5}$, and $R_{IV.6}$, or $R_{IV.6}$ and $R_{IV.7}$, and/or $R_{IV.7}$ and $R_{IV.7}$, and/or $R_{IV.7}$ and $R_{IV.8}$ are optionally mono-, di- or tri-substituted independently with halo, (C_1-C_6) alkyl, (C_1-C_6) alkylsulfonyl, (C_2-C_6) alkylsulfonyl, hydroxy, (C_1-C_6) alkylsulfonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkylsubstituent is optionally mono-, oxo, carboxy, (C_1-C_6) alkylsulfony, (C_1-C_6) alkyl

is carboxyl or (C₃-C₄) alkylcarboxyl, then R_{IV-1} is not hydrogen;

and wherein said concentration-enhancing polymer is selected from hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl cellulose acetate succinate, hydroxyethyl methyl cellulose succinate, hydroxyethyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, hydroxyethyl methyl cellulose acetate succinate, hydroxyethyl methyl cellulose acetate phthalate, carboxyethyl cellulose, carboxymethyl cellulose, carboxymethyl cellulose, cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate succinate, hydroxypropyl methyl cellulose acetate succinate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate, cellulose acetate trimellitate, methyl cellulose acetate trimellitate, ethyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl methyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate succinate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate, hydroxypropyl salicylic acid cellulose acetate, ethylbenzoic acid cellulose acetate, hydroxypropyl ethylbenzoic acid cellulose acetate, ethyl phthalic acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate.

- 14. (original) The method of claim 13, further comprising the step of adding an excipient to reduce the temperature required to form said molten mixture.
- 15. (original) The method of claim 13, further comprising the step of mixing said molten mixture so that said molten mixture is substantially homogeneous.
- 16. (original) The method of claim 13 wherein said molten mixture is formed by melting said concentration-enhancing polymer and adding said cholesteryl ester transfer protein inhibitor to said concentration-enhancing polymer.
- 17. (original) The method of claim 13 wherein said molten mixture is formed by melting said cholesteryl ester transfer protein inhibitor and adding said concentration-enhancing polymer to said cholesteryl ester transfer protein inhibitor.

- 18. (original) The method of claim 13 wherein said molten mixture is formed by mixing said cholesteryl ester transfer protein inhibitor and said concentration-enhancing polymer together to form a solid blend and heating said solid blend.
- 19. (original) The method of any one of claims 1, 6 and 13 wherein said cholesteryl ester transfer protein inhibitor is substantially amorphous and said dispersion is substantially homogeneous.
- 20. (previously amended) The product of claim 25 wherein said dispersion has a single glass transition temperature.

(canceled)

- 22. (previously amended) The product of claim 25 wherein said composition provides in said use environment an area under the concentration versus time curve for any period of at least 90 minutes between the time of introduction into the use environment and about 270 minutes following introduction to the use environment that is at least about 5-fold that of a control composition.
- 23. (previously amended) The product of claim 25 wherein said composition provides a relative bioavailability that is at least 4-fold relative to said control composition.
- 24. (previously amended) The product of claim 25 wherein said cholesteryl ester transfer protein inhibitor has a dose-to-aqueous-solubility ratio of at least 1,000 ml.
 - 25. (original) The product of the method of any one of claims 1-18.

26-42 (canceled)

43. (new) The method of any one of claims 1, 6 and 13 wherein said cholesteryl ester transfer protein inhibitor is selected from:

- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-isopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester;
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-chloro-2-cyclopropyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester:
- [2S,4S] 2-cyclopropyl-4-[(3,5-dichloro-benzyl)-methoxycarbonyl-amino]-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester;
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclopropyl-6trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid tert-butyl ester;
- [2R,4R] 4-[(3,5-bis-trifluoromethyl-benzyl)methoxycarbonyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinaline-1-carboxylic acid isopropyl ester;
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester;
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclobutyl-6trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-ethyl-6trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester;
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methoxymethyl-6trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester;
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-ethyl-6trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid 2-hydroxy-ethyl ester;
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester:
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-ethyl-6trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester;
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclopropyl-6trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid propyl ester; and
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-ethyl-6trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid propyl ester.
- 44. (new) The method of claim 43 wherein said cholesteryl ester transfer protein inhibitor is [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester.