Processamento Digital de Sin

André Marçal, FCUF

PROCESSAMENTO DE SINAL E IMAGEM EM FÍSICA MÉDICA

2019/2020 - 2° Semestre

(F4012)

Introduction to Digital Signal Processing

Introdução ao Processamento Digital de Sinal

Processamento Digital de Sina

André Marçal, FCUF

2

What is Digital Signal Processing?

"The process whereby real world phenomena can be translated into digital data for analysis, manipulation and synthesis."

"This is done by sampling a signal with na instrument, like a camera or a microfone, which in turn generates a sequence of numbers."

A signal carries information (useful information + noise).

The goal of signal processing is to **Extract**, **enhance or rearrange the useful information carried by the signal**.

Some examples of typical signals are presented in the following slides

Processamento Digital de Sina

André Marçal, FCUF

ıçaı, FCUP

Types of Signals

The way the signal is generated:

- Natural
- Synthetic

The number of independent variables:

- One-dimensional
- M-Dimensional

The number of independent sources:

- Single source (scalar signal)
- Multiple sources (vector or multi-channel signal)

Example of a two-dimensional (2D) signal

A greyscale ("black-and-white") image, represents light intensity as a function of 2 independent variables, the spatial coordinates x and y.

The intensity (greylevel) at location (x,y) can be expressed as f(x,y).

A digital image is a 2D discrete-time signal, and its 2 independent variables are discrete spatial variables.

Processamento Digital de Sin

André Marçal, FCUF

4.4

Types of Signals

The methods used for information extraction in DSP depend on the types of signals and the nature of the information.

Besides being

- Natural / Synthetic
- One-dimensional / M-Dimensional
- Single / Multiple sources

The signal (real-valued or complex-valued) can be:

- Continuos
- Discrete function of the independent variables.

and:

- Deterministic (can be uniquely described by a mathematical expression or look-up table)
- Stochastic (non-deterministic, has a random component).

Processamento Digital de Sinal

André Marçal, FCU

12

Continuos / Discrete signals

For a 1D signal, the independent variable is usually labeled as time.

If the independent variable is

- continuous, the signal is called **continuous-time** signal
- discrete, the signal is called discrete-time signal

A continuous-time signal is defined at every instant of time.

A discrete-time signal is defined at discrete instants of time, thus it is a **sequence of numbers.**

Processamento Digital de Sin

André Marçal, FCUF

12

Continuos / Discrete signals

A continuous-time signal with a continuous amplitude is usually called an **analog signal** (sinal analógico).

A discrete-time signal with discrete-values amplitudes represented by a finite number of digits is referred to as a **digital signal**.

Digitized music (in a CD, mp4 file, etc.) is an example of digital signal.

A discrete-time signal with continuous-valued amplitudes is called a **sampled-data signal**.

A digital signal is thus a quantized sampled-data signal.

A continuous-time signal with a discrete-value amplitudes is usually called a **quantized boxcar signal**.

Processamento Digital de Sina

André Marçal, FCUP

15

Continuos / Discrete signals

The functional dependence of a signal in its mathematical representation is often explicitly shown.

For a continuous-time 1D signal, the continuous independent variable is usually denoted by t. For example u(t).

For a discrete-time 1D signal, the discrete independent variable is usually denoted by n. For example v[n].

Each member of v[n] is called a **sample** (amostra).

Often a discrete-time signal is generated by **sampling** a continuous-time signal at uniform intervals of time.

The independent discrete variable n can be normalized to assume integer values.

Processamento Digital de Sinal

André Marcal, ECIII

16

Quantization of an analog signal

Consider a continuous-time signal with a continuous amplitude (analog signal), given by

$$x_a(t) = 0.9^t$$

This signal is sampled at 1s intervals, resulting in

 $x(n)=0.9^{n}$

where n is a discrete variable of time.

Quantization of an analog signal The amplitude of the signal is also quantized, with a quantization step (Δ): Levels of quantization depends on the control of the signal is also quantized. With a quantization step (Δ): The quantization error eq(n) is limited by Δ : $-\frac{\Delta}{2} \leq e_q(n) \leq \frac{\Delta}{2}$

