

CompTIA Cybersecurity Analyst (CySA+) Certification Exam Objectives

EXAM NUMBER: CSO-002

About the Exam

Candidates are encouraged to use this document to help prepare for the CompTIA Cybersecurity Analyst (CySA+) CSO-002 certification exam. With the end goal of proactively defending and continuously improving the security of an organization, CySA+ will verify the successful candidate has the knowledge and skills required to:

- Leverage intelligence and threat detection techniques
- · Analyze and interpret data
- · Identify and address vulnerabilities
- Suggest preventative measures
- Effectively respond to and recover from incidents

This is equivalent to 4 years of hands-on experience in a technical cybersecurity job role.

These content examples are meant to clarify the test objectives and should not be construed as a comprehensive listing of all the content of this examination.

EXAM DEVELOPMENT

CompTIA exams result from subject matter expert workshops and industry-wide survey results regarding the skills and knowledge required of an IT professional.

COMPTIA AUTHORIZED MATERIALS USE POLICY

CompTIA Certifications, LLC is not affiliated with and does not authorize, endorse or condone utilizing any content provided by unauthorized third-party training sites (aka "brain dumps"). Individuals who utilize such materials in preparation for any CompTIA examination will have their certifications revoked and be suspended from future testing in accordance with the CompTIA Candidate Agreement. In an effort to more clearly communicate CompTIA's exam policies on use of unauthorized study materials, CompTIA directs all certification candidates to the CompTIA Description Exam Policies. Please review all CompTIA policies before beginning the study process for any CompTIA exam. Candidates will be required to abide by the CompTIA Candidate Agreement. If a candidate has a question as to whether study materials are considered unauthorized (aka "brain dumps"), he/she should contact CompTIA at examsecurity@comptia.org to confirm.

PLEASE NOTE

The lists of examples provided in bulleted format are not exhaustive lists. Other examples of technologies, processes, or tasks pertaining to each objective may also be included on the exam although not listed or covered in this objectives document. CompTIA is constantly reviewing the content of our exams and updating test questions to be sure our exams are current and the security of the questions is protected. When necessary, we will publish updated exams based on testing exam objectives. Please know that all related exam preparation materials will still be valid.

TEST DETAILS

Required exam CSo-002

Number of questions Maximum of 85

Type of questions Multiple choice and performance-based

Length of test 165 minutes

Recommended experience • 4 years of hands-on experience in a technical cybersecurity job role

• Security+ and Network+, or equivalent knowledge and experience

Passing score 750

EXAM OBJECTIVES (DOMAINS)

The table below lists the domains measured by this examination and the extent to which they are represented.

DOMAIN	PERCENTAGE OF EXAMINATION	
1.0 Threat and Vulnerability Management	22%	
2.0 Software and Systems Security	18%	
3.0 Security Operations and Monitoring	25%	
4.0 Incident Response	22%	
5.0 Compliance and Assessment	13%	
Total	100%	

1.0 Threat and Vulnerability Management

- Explain the importance of threat data and intelligence.
 - Intelligence sources 02
 - Open-source intelligence
 - Proprietary/closed-source intelligence
 - Timeliness
 - Relevancy
 - Accuracy
 - Confidence levels 02
 - Indicator management 05
 - Structured Threat Information eXpression (STIX)
 - Trusted Automated eXchange of Indicator Information (TAXII)
 - OpenIoC

- Threat classification 04
 - Known threat vs. unknown threat
 - Zero-day
 - Advanced persistent threat
- Threat actors 04
 - Nation-state
 - Hacktivist
 - Organized crime
 - Insider threat
 - Intentional
 - Unintentional
- Intelligence cycle 01
 - Requirements

- Collection
- Analysis
- Dissemination
- Feedback
- · Commodity malware 04
- Information sharing and 03 analysis communities
 - Healthcare
 - Financial
 - Aviation
 - Government
 - Critical infrastructure

- Given a scenario, utilize threat intelligence to support organizational security.
 - Attack frameworks 06
 - MITRE ATT&CK
 - The Diamond Model of Intrusion Analysis
 - Kill chain
 - Threat research 05
 - Reputational
 - Behavioral
 - Indicator of compromise (IoC)

- Common vulnerability 09 scoring system (CVSS)
- · Threat modeling methodologies 07
 - Adversary capability
 - Total attack surface
 - Attack vector
 - Impact
 - Likelihood

- Threat intelligence sharing 03 with supported functions
 - Incident response
 - Vulnerability management
 - Risk management
 - Security engineering
 - Detection and monitoring

Given a scenario, perform vulnerability management activities.

- · Vulnerability identification
 - Asset criticality 08
 - Active vs. passive scanning 08, 10
 - Mapping/enumeration 10
- · Validation 09
 - True positive
 - False positive
 - True negative
 - False negative
- Remediation/mitigation
 - Configuration baseline 12
 - Patching 12
 - Hardening 12
 - Compensating controls 11, 51

- Risk acceptance 52
- Verification of mitigation 12
- Scanning parameters and criteria 08
 - Risks associated with scanning activities
 - Vulnerability feed
 - Scope
 - Credentialed vs. non-credentialed
 - Server-based vs. agent-based
 - Internal vs. external
 - Special considerations
 - Types of data
 - Technical constraints
 - Workflow

- Sensitivity levels
- Regulatory requirements
- Segmentation
- Intrusion prevention system (IPS), intrusion detection
- system (IDS), and firewall settings
- · Inhibitors to remediation 14
 - Memorandum of understanding (MOU)
 - Service-level agreement (SLA)
 - Organizational governance
 - Business process interruption
 - Degrading functionality
 - Legacy systems
 - Proprietary systems

Given a scenario, analyze the output from common vulnerability assessment tools.

- · Web application scanner 32
 - OWASP Zed Attack Proxy (ZAP)
 - Burp suite
 - Nikto
 - Arachni
- Infrastructure vulnerability scanner 08
 - Nessus
 - OpenVAS
 - Qualys

- Software assessment tools and techniques
 - Static analysis
 - Dynamic analysis
 - Reverse engineering
 - Fuzzing
- Enumeration 10
 - Nmap
 - hping
 - Active vs. passive 08, 10
 - Responder

- · Wireless assessment tools 10
 - Aircrack-ng
 - Reaver
 - oclHashcat 10, 22
- Cloud infrastructure assessment tools 44
 - ScoutSuite
 - Prowler
 - Pacu

Explain the threats and vulnerabilities associated with specialized technology.

- · Mobile 34
- Internet of Things (IoT) 40
- · Embedded 40
- Real-time operating system (RTOS) 40
- · System-on-Chip (SoC) 40
- Field programmable gate array (FPGA) 40
- · Physical access control 40
- · Building automation systems 40
- · Vehicles and drones 40
 - CAN bus
- · Workflow and process automation systems 40
- Industrial control system 40

- Supervisory control and data 40 acquisition (SCADA)
 - Modbus

Explain the threats and vulnerabilities associated with operating in the cloud.

- Cloud service models 44
 - Software as a Service (SaaS)
 - Platform as a Service (PaaS)
 - Infrastructure as a Service (IaaS)
- Cloud deployment models 44
 - Public
 - Private

- Community
- Hybrid
- Function as a Service (FaaS)/ 44,45 serverless architecture
- Infrastructure as code (IaC) 47
- Insecure application 45
 programming interface (API)
- Improper key management 45
- Unprotected storage 45
- Logging and monitoring 45
 - Insufficient logging and monitoring
 - Inability to access

Given a scenario, implement controls to mitigate attacks and software vulnerabilities.

- Attack types
 - Extensible markup language (XML) attack 20
 - Structured query language (SQL) injection 20
 - Overflow attack
 - Buffer 19
 - -Integer 20
 - Heap 19
 - Remote code execution 21
 - Directory traversal 20
 - Privilege escalation 23

- Password spraying 22
- Credential stuffing 22
- Impersonation 35, also 18 & 31
- On-path attack (previously known as man-in-the-middle attack) 23
- Session hijacking 21
- Rootkit 23
- Cross-site scripting 20
 - Reflected
 - Persistent
 - Document object model (DOM)

Vulnerabilities 18

- Improper error handling
- Dereferencing
- Insecure object reference
- Race condition
- Broken authentication
- Sensitive data exposure
- Insecure components
- Insufficient logging and monitoring
- Weak or default configurations
- Use of insecure functions
 - strcpy

2.0 Software and Systems Security

- Given a scenario, apply security solutions for infrastructure management.
 - · Cloud vs. on-premises 44
 - Asset management 15
 - Asset tagging
 - · Segmentation 25
 - Physical
 - Virtual
 - Jumpbox
 - System isolation
 - Air gap
 - Network architecture 25
 - Physical
 - Software-defined

- Virtual private cloud (VPC)
- Virtual private network (VPN)
- Serverless
- · Change management 15
- · Virtualization 25
 - Virtual desktop infrastructure (VDI) 46
- · Containerization 46
- · Identity and access management 31
 - Privilege management
 - Multifactor authentication (MFA)
 - Single sign-on (SSO)
 - Federation

- Role-based
- Attribute-based
- Mandatory
- Manual review
- · Cloud access security broker (CASB) 44
- · Honeypot 27
- · Monitoring and logging 41
- Encryption 50
- · Certificate management
- Active defense 27

Explain software assurance best practices.

- Platforms 18 for general info, specifics below if applicable
 - Mobile 34
 - Web application 21
 - Client/server
 - Embedded 40
 - System-on-chip (SoC) 40
 - -Firmware 40
- Software development life cycle (SDLC) integration 16
- DevSecOps 47
- · Software assessment methods 18

- User acceptance testing
- Stress test application
- Security regression testing
- Code review
- Secure coding best practices 17
 - Input validation also 18-21
 - Output encoding
 - Session management
 - Authentication
 - Data protection
 - Parameterized queries

- Static analysis tools 18
- Dynamic analysis tools 18
- Formal methods for verification of critical software 18
- · Service-oriented architecture 46
 - Security Assertions Markup Language (SAML) 31
 - Simple Object Access Protocol (SOAP) 46
 - Representational State Transfer (REST) 46
 - Microservices 46

Explain hardware assurance best practices. all in 38

- · Hardware root of trust
 - Trusted platform module (TPM)
 - Hardware security module (HSM)
- eFuse
- Unified Extensible Firmware Interface (UEFI)
- Trusted foundry
- Secure processing
 - Trusted execution
 - Secure enclave
 - Processor security extensions
 - Atomic execution

- Anti-tamper
- Self-encrypting drive
- Trusted firmware updates
- Measured boot and attestation
- Bus encryption

-3.0 Security Operations and Monitoring

- Given a scenario, analyze data as part of security monitoring activities.
 - Heuristics 37
 - Trend analysis 13
 - Endpoint
 - Malware 43
 - Reverse engineering 43
 - Memory
 - System and application behavior
 - Known-good behavior
 - Anomalous behavior
 - Exploit techniques
 - File system
 - User and entity behavior analytics (UEBA) 37
 - Network 26 unless noted otherwise
 - Uniform Resource Locator (URL) and domain name system (DNS) analysis 29
 - Domain generation algorithm 29
 - Flow analysis
 - Packet and protocol analysis
 - Malware

- · Log review 41
 - Event logs
 - Syslog
 - Firewall logs
 - Web application firewall (WAF)
 - Proxv
 - Intrusion detection system (IDS)/
 Intrusion prevention system (IPS)
- · Impact analysis 52
 - Organization impact vs. localized impact
 - Immediate vs. total
- Security information and event management (SIEM) review 42
 - Rule writing
 - Known-bad Internet protocol (IP)
 - Dashboard
- · Query writing 42
 - String search
 - Script
 - Piping

- E-mail analysis all in 35
 - Malicious payload
 - Domain Keys Identified Mail (DKIM)
 - Domain-based Message Authentication, Reporting, and Conformance (DMARC)
 - Sender Policy Framework (SPF)
 - Phishing
 - Forwarding
 - Digital signature
 - E-mail signature block
 - Embedded links
 - Impersonation
 - Header

- Given a scenario, implement configuration changes to existing controls to improve security.
 - Permissions
 - Allow list (previously known as whitelisting)
 - Blocklist (previously known as blacklisting)
 - Firewall
 - Intrusion prevention system (IPS) rules
- Data loss prevention (DLP)
- Endpoint detection and response (EDR)
- Network access control (NAC)
- Sinkholing
- Malware signatures
 - Development/rule writing
- Sandboxing

Port security

Explain the importance of proactive threat hunting.

- · Establishing a hypothesis 07
- Profiling threat actors and activities 07
- Threat hunting tactics 07
 - Executable process analysis
- · Reducing the attack surface area 07
- Bundling critical assets 08
- Attack vectors 07
- Integrated intelligence 07
- · Improving detection capabilities 08

Compare and contrast automation concepts and technologies.

- · Workflow orchestration 45
 - Security Orchestration, Automation, and Response (SOAR) **42**
- Scripting 45
- Application programming interface (API) integration
- · Automated malware signature creation
- Data enrichment
- Threat feed combination
- Machine learning 48
- Use of automation protocols and standards
 - Security Content Automation Protocol (SCAP) **09**
- · Continuous integration 47

Continuous deployment/delivery 47

4.0 Incident Response

Explain the importance of the incident response process.

- Communication plan 53
 - Limiting communication to trusted parties
 - Disclosing based on regulatory/ legislative requirements
 - Preventing inadvertent release of information
 - Using a secure method of communication
 - Reporting requirements

- Response coordination 53 with relevant entities
 - Legal
 - Human resources
 - Public relations
 - Internal and external
 - Law enforcement
 - Senior leadership
 - Regulatory bodies

- Factors contributing to data criticality 53
 - Personally identifiable information (PII)
 - Personal health information (PHI)
 - Sensitive personal information (SPI)
 - High value asset
 - Financial information
 - Intellectual property
 - Corporate information

Given a scenario, apply the appropriate incident response procedure. 53

- Preparation
 - Training
 - Testing
 - Documentation of procedures
- · Detection and analysis
 - Characteristics contributing to severity level classification
 - Downtime
 - Recovery time
 - Data integrity
 - Economic
 - System process criticality
 - Reverse engineering
 - Data correlation
- Containment
 - Segmentation

- Isolation
- Eradication and recovery
 - Vulnerability mitigation
 - Sanitization
 - Reconstruction/reimaging
 - Secure disposal
 - Patching
 - Restoration of permissions
 - Reconstitution of resources
 - Restoration of capabilities and services
 - Verification of logging/ communication to security monitoring
- Post-incident activities
 - Evidence retention

- Lessons learned report
- Change control process
- Incident response plan update
- Incident summary report
- IoC generation
- Monitoring

Given an incident, analyze potential indicators of compromise. 24

- Network-related
 - Bandwidth consumption
 - Beaconing
 - Irregular peer-to-peer communication
 - Rogue device on the network
 - Scan/sweep
 - Unusual traffic spike
 - Common protocol over non-standard port
- · Host-related
 - Processor consumption

- Memory consumption
- Drive capacity consumption
- Unauthorized software
- Malicious process
- Unauthorized change
- Unauthorized privilege
- Data exfiltration
- Abnormal OS process behavior
- File system change or anomaly
- Registry change or anomaly
- Unauthorized scheduled task

- · Application-related
 - Anomalous activity
 - Introduction of new accounts
 - Unexpected output
 - Unexpected outbound communication
 - Service interruption
 - Application log

Given a scenario, utilize basic digital forensics techniques. 49

- Network
 - Wireshark
 - tcpdump
- Endpoint
 - Disk
 - Memory
- Mobile
- Cloud

- Virtualization
- · Legal hold
- Procedures
- Hashing
 - Changes to binaries
- Carving
- · Data acquisition

5.0 Compliance and Assessment

- Understand the importance of data privacy and protection. 50 & as noted additionally
 - · Privacy vs. security
 - Non-technical controls
 - Classification
 - Ownership
 - Retention
 - Data types
 - Retention standards also 51
 - Confidentiality

- Legal requirements
- Data sovereignty
- Data minimization
- Purpose limitation
- Non-disclosure agreement (NDA)
- Technical controls
 - Encryption
 - Data loss prevention (DLP)

- Data masking
- Deidentification
- Tokenization
- Digital rights management (DRM)
 - Watermarking
- Geographic access requirements
- Access controls
- Given a scenario, apply security concepts in 52 unless noted otherwise support of organizational risk mitigation.
 - · Business impact analysis
 - · Risk identification process
 - · Risk calculation
 - Probability
 - Magnitude
 - Communication of risk factors
 - Risk prioritization
 - Security controls 11
 - Engineering tradeoffs 16
 - · Systems assessment

- · Documented compensating controls
- Training and exercises
 - Red team 27
 - Blue team 27
 - White team 27
 - Tabletop exercise
- Supply chain assessment 38
 - Vendor due diligence
 - Hardware source authenticity
- Explain the importance of frameworks, policies, procedures, and controls.
 - Frameworks 51
 - Risk-based
 - Prescriptive
 - Policies and procedures 51
 - Code of conduct/ethics
 - Acceptable use policy (AUP)
 - Password policy
 - Data ownership

- Data retention
- Account management
- Continuous monitoring
- Work product retention
- Control types 11
 - Managerial
 - Operational
 - Technical

- Preventative
- Detective
- Responsive
- Corrective
- Audits and assessments 51
 - Regulatory
 - Compliance

CompTIA Cybersecurity Analyst (CySA+) Acronym List

The following is a list of acronyms that appear on the CompTIA CySA+ exam. Candidates are encouraged to review the complete list and attain a working knowledge of all listed acronyms as a part of a comprehensive exam preparation program.

ACRONYM	SPELLED OUT	ACRONYM	SPELLED OUT
3DES	Triple Data Encryption Algorithm	ELK	Elasticsearch, Logstash, Kibana
ACL	Access Control List	ERP	Enterprise Resource Planning
AES	Advanced Encryption Standard	FaaS	Function as a Service
API	Application Programming Interface	FPGA	Field-programmable Gate Array
ARP	Address Resolution Protocol	FTK	Forensic Toolkit
APT	Advanced Persistent Threat	FTP	File Transfer Protocol
ATT&CK	Adversarial Tactics, Techniques,	HIDS	Host Intrusion Detection System
	and Common Knowledge	HIPS	Host-based Intrusion Prevention System
AUP	Acceptable Use Policy	HSM	Hardware Security Module
BEC	Business Email Compromise	HTTP	Hypertext Transfer Protocol
BYOD	Bring Your Own Device	IaaS	Infrastructure as a Service
CA	Certificate Authority	IaC	Infrastructure as Code
CAN	Controller Area Network	ICMP	Internet Control Message Protocol
CASB	Cloud Access Security Broker	IDS	Intrusion Detection System
CI/CD	Continuous Integration/Continuous Delivery	IMAP	Internet Message Access Protocol
CIS	Center for Internet Security	IoC	Indicator of Compromise
COBIT	Control Objectives for	IoT	Internet of Things
	Information and Related Technology	IP	Internet Protocol
CPU	Central Processing Unit	IPS	Intrusion Prevention System
CRM	Customer Relations Management	ISAC	Information Sharing and Analysis Center
CVSS	Common Vulnerability Scoring System	ISO	International Organization for Standardization
DDoS	Distributed Denial of Service	ITIL	Information Technology Infrastructure Library
DGA	Domain Generation Algorithm	LAN	Local Area Network
DHCP	Dynamic Host Configuration Protocol	LDAP	Lightweight Directory Access Protocol
DKIM	Domain Keys Identified Mail	MaaS	Monitoring as a Service
DLP	Data Loss Prevention	MAC	Mandatory Access Control
DMARC	Domain-based Message	MD5	Message Digest 5
	Authentication, Reporting, and Conformance	MDM	Mobile Device Management
DMZ	Demilitarized Zone	MFA	Multifactor Authentication
DNS	Domain Name System	MOA	Memorandum of Agreement
DNSSEC	Domain Name System Security Extensions	MOU	Memorandum of Understanding
DOM	Document Object Model	MRTG	Multi Router Traffic Grapher
DRM	Digital Rights Management	NAC	Network Access Control
EDR	Endpoint Detection and Response	NAS	Network-attached Storage

ACRONYM	SPELLED OUT	ACRONYM	SPELLED OUT
NAT	Network Address Translation	TAXII	Trusted Automated eXchange of
NDA	Non-disclosure Agreement		Intelligence Information
NIC	Network Interface Card	TCP	Transmission Control Protocol
NIDS	Network Intrusion Detection Systems	TFTP	Trivial File Transfer Protocol
NIST	National Institute of Standards and Technology	TLS	Transport Layer Security
OEM	Original Equipment Manufacturer	TPM	Trusted Platform Module
OSSIM	Open Source Security Information Management	UDP	User Datagram Protocol
OVAL	Open Vulnerability and Assessment Language	UEBA	User and Entity Behavior Analytics
OWASP	Open Web Application Security Project	UEFI	Unified Extensible Firmware Interface
PaaS	Platform as a Service	UEM	Unified Endpoint Management
PAM	Pluggable Authentication Module	URL	Uniform Resource Locator
PCAP	Packet Capture	USB	Universal Serial Bus
PCI	Payment Card Industry	UTM	Unified Threat Management
PHI	Personal Health Information	VDI	Virtual Desktop Infrastructure
PID	Process Identification Number	VLAN	Virtual Local Area Network
PII	Personally Identifiable Information	VoIP	Voice over Internet Protocol
PKI	Public Key Infrastructure	VPC	Virtual Private Cloud
RADIUS	Remote Authentication Dial-in User Service	VPN	Virtual Private Network
RDP	Remote Desktop Protocol	WAF	Web Application Firewall
REST	Representational State Transfer	WAN	Wide Area Network
RTOS	Real-time Operating System	XML	Extensible Markup Language
SaaS	Software as a Service	XSS	Cross-site Scripting
SAML	Security Assertions Markup Language	ZAP	Zed Attack Proxy
SCADA	Supervisory Control and Data Acquisition		
SCAP	Security Content Automation Protocol		
SDLC	Software Development Life Cycle		
SFTP	SSH File Transfer Protocol		
SHA	Secure Hash Algorithm		
SIEM	Security Information and Event Management		
SLA	Service Level Agreement		
SMB	Server Message Block		
SOAP	Simple Object Access Protocol		
SOAR	Security Orchestration, Automation, and Response		
SOC	Security Operations Center		
SoC	System on Chip		
SPF	Sender Policy Framework		
SPI	Sensitive Personal Information		
SQL	Structured Query Language		
SSH	Secure Shell		
SSHD	Solid-state Hybrid Drive		
SSID	Service Set Identifier		
SSL	Secure Sockets Layer		
SSO	Single Sign-on		
STIX	Structured Threat Information eXpression		
TACACC.	Taurainal Assass Cambuallau		

TACACS+ Terminal Access Controller

Access Control System Plus

CySA+ Proposed Hardware and Software List

CompTIA has included this sample list of hardware and software to assist candidates as they prepare for the CySA+ exam. This list may also be helpful for training companies that wish to create a lab component for their training offering. The bulleted lists below each topic are samples and are not exhaustive.

IT HARDWARE

- Workstation (or laptop) with ability to run VM
- · Managed switch
- Firewall
- Mobile phones
- VoIP Phone
- WAP
- IDS/ IPS
- IoT Devices
- Servers

SOFTWARE

- VM images for attack targets
- Windows Server
- Windows Client
 - Commando VM
- Linux
 - Kali
 - ParrotOS
 - Security Onion
- Chrome OS
- UTM Appliance
- pfSense
- Metasploitable

- Access to cloud instances
 - Azure
 - AWS
 - GCP
- SIEM
 - Graylog
 - ELK
 - Splunk
- Vulnerability scanner
 - OpenVAS
 - Nessus

