Microscopic Images Binary Classification

🔬 SeeGene Project Report 🔬

> Background is Enough?

A model is able to accurately distinguish between malignant and benign without looking at the tissue

Tissue Area

Tissue Area

White-ish

Brightness

Black Area

- N images tend to have less tissue than M images
- N images tend to be less bright than M images
- N dataset contains more 'zoom-out' images than the M dataset
- The model seems to pick spurious features from the background

- N images tend to have less tissue than M images ⇒ No really
- N images tend to be less bright than M images ⇒ No really
- N dataset contains more 'zoom-out' images than the M dataset ⇒ Maybe
- The model seems to pick spurious features from the background ⇒ Yes

- Pathologists could transfer their inherent bias to the dataset through the way they examine
 the
 - Do pathologists move differently on Normal samples and Malignant samples?

- Pathologists could transfer their inherent bias to the dataset through the way they examine
 the
 - Do pathologists move differently on Normal samples and Malignant samples?

GOAL: Find differences between N and M using this data

Is there any difference?

Is there any difference?

• Vanilla RNN, Ir = 0.01, epochs = 50

	Pred M	Pred N
True M	28	30
True N	61	85

• LSTM, Ir = 0.01, epochs = 50

	Pred M	Pred N
True M	58	0
True N	146	0

More data?

Another approach?

~ THANK YOU ~