Coding Challenge 9000

Info: The code should be as fast and concise as possible. The readability of the code is secondary, but comments are desired.

Challenge 5

There are exactly ten ways of selecting three from five, 12345:

In combinatorics, we use the notation, $\binom{5}{3} = 10$.

In general,
$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$
, where $r \leqslant n$, $n! = n \times (n-1) \times \ldots \times 3 \times 2 \times 1$, and $0! = 1$.

It is not until n=23, that a value exceeds one-million: $\binom{23}{10}=1144066$.

How many, not necessarily distinct, values of $\binom{n}{r}$ for $1 \leqslant n \leqslant 100$, are greater than one-million?