Lab zur Vorbereitung auf die LEK Backup und Protokollierung

ITS-Net-Lin ITS-Net-Lin

Sebastian Meisel Sebastian Meisel

24. Januar 2025

1 Grundlagen und Dateisystem

1.1 Einführung

Das Linux-Dateisystem ist hierarchisch aufgebaut und folgt dem Filesystem Hierarchy Standard (FHS). Dieses Modul vermittelt die grundlegenden Befehle zur Navigation und Verwaltung von Dateien und Verzeichnissen sowie das Verständnis des Linux-Berechtigungssystems.

1.1.1 Wichtige Verzeichnisse im Linux-System

/ Das Wurzelverzeichnis (Root)

/home Benutzerverzeichnisse

/etc Systemweite Konfigurationsdateien

/var Variable Daten (Logs, Mails, etc.)

/tmp Temporäre Dateien

/usr Installierte Software und Bibliotheken

/bin Essentielle Systembefehle

/sbin Systembefehle für die Administration

1.2 Lernziele

Nach Abschluss dieses Moduls können Sie:

- Sicher im Linux-Dateisystem navigieren
- Dateien und Verzeichnisse erstellen, kopieren, verschieben und löschen
- Dateiberechtigungen verstehen und verwalten
- Hard- und Softlinks erstellen und deren Unterschiede verstehen
- Grundlegende Dateioperationen durchführen

1.3 Grundlegende Navigation

1.3.1 Der pwd-Befehl

pwd

Erläuterung:

- Zeigt den absoluten Pfad des aktuellen Verzeichnisses
- Nützlich zur Orientierung in tiefen Verzeichnisstrukturen
- Wichtig für Skripte, die den aktuellen Pfad benötigen

1.3.2 Der cd-Befehl

```
cd /pfad/zum/verzeichnis  # Wechsel zu absolutem Pfad
cd projekt  # Wechsel zu relativem Pfad
cd ..  # Ein Verzeichnis nach oben
cd ~  # Zum Home-Verzeichnis
cd -  # Zum vorherigen Verzeichnis
```

Erläuterung:

- cd ohne Parameter wechselt zum Home-Verzeichnis
- . . bezeichnet das übergeordnete Verzeichnis
- . bezeichnet das aktuelle Verzeichnis
- Absolute Pfade beginnen mit /, relative nicht
- Tilde (~) ist ein Shortcut für das eigene Home-Verzeichnis

1.3.3 Der ls-Befehl

```
1ls# Einfache Auflistung2ls -l# Detaillierte Auflistung mit Rechten, usw.3ls -la# Inkl. versteckter Dateien4ls -lh# Mit menschenlesbaren Größen5ls -R# Rekursive Auflistung
```

Erläuterung der ls -l Ausgabe:

- Erstes Zeichen: Dateityp (d : Verzeichnis, l : Link, : normale Datei)
- Nächste 9 Zeichen: Berechtigungen (rwx für user, group, others)
- Anzahl der Links
- Besitzer
- Gruppe
- Größe
- · Datum der letzten Änderung
- Name

1.4 Datei- und Verzeichnisoperationen

1.4.1 Verzeichnisse erstellen mit mkdir

```
mkdir projekt  # Einzelnes Verzeichnis
mkdir -p pfad/zu/verzeichnis  # Erstellt auch Elternverzeichnisse
mkdir -m 755 geschuetzt  # Mit spezifischen Rechten
mkdir projekt{1..5}  # Mehrere Verzeichnisse
```

Erläuterung:

- -p verhindert Fehler, wenn übergeordnete Verzeichnisse fehlen
- -m setzt direkt die Zugriffsrechte
- Geschweiften Klammern erlauben Muster-Expansion
- Standardrechte werden durch umask beeinflusst

1.4.2 Dateien kopieren mit cp

Erläuterung:

- -r kopiert Verzeichnisse rekursiv (funktiert auch mit großen -R)
- -a entspricht -dR --preserve=all, kopiert Nutzerrechte, Zugriffszeiten, usw.
- -i fragt vor Überschreiben
- –u aktualisiert nur wenn Quelle neuer ist
- -v zeigt kopierte Dateien an

1.4.3 Dateien/Verzeichnisse verschieben mit mv

```
mv alt.txt neu.txt  # Umbenennen
mv datei verzeichnis/  # Verschieben
mv -i quelle ziel  # Interaktiver Modus
mv -u *.txt ziel/  # Nur neuere Dateien
```

Erläuterung:

- Vorsicht: mv überschreibt ohne Nachfrage
- -i für interaktiven Modus empfohlen
- Wenn Ziel ein Verzeichnis ist: Verschieben
- Wenn Ziel eine Datei ist: Umbenennen

1.4.4 Dateien/Verzeichnisse löschen

Erläuterung:

- rm löscht unwiderruflich! Kein Papierkorb!
- -r für rekursives Löschen von Verzeichnissen
- - f überspringt Nachfragen und nicht-existente Dateien
- rmdir löscht nur leere Verzeichnisse
- Vorsicht mit rm -rf / oder rm -rf *

1.5 Dateiberechtigungen

1.5.1 Grundlagen des Berechtigungssystems

Linux unterscheidet drei Berechtigungsebenen:

- u (user): Eigentümer der Datei
- g (group): Gruppe der Datei
- o (others): Alle anderen Benutzer

Und drei Arten von Rechten:

- r (read): Lesen/Anzeigen
- w (write): Schreiben/Ändern
- x (execute): Ausführen/Durchsuchen bei Verzeichnissen

1.5.2 chmod - Berechtigungen ändern

```
chmod 755 datei.sh # Numerische Notation
chmod u+x datei.sh # Symbolische Notation
chmod -R g+rw verzeichnis # Rekursiv für Gruppe
chmod a+r datei.txt # Für alle lesbar
```

Erläuterung numerische Notation:

- Erste Ziffer: Besitzer (4=r, 2=w, 1=x)
- Zweite Ziffer: Gruppe
- Dritte Ziffer: Andere

Beispiele:

- 755: rwxr-xr-x
- 644: rw-r--r--
- 700: rwx-----

1.5.3 chown - Besitzer ändern

```
chown benutzer datei  # Nur Besitzer ändern
chown benutzer:gruppe datei  # Besitzer und Gruppe
chown -R user:group verz  # Rekursiv ändern
```

Erläuterung:

- Nur root kann Besitzer ändern
- : gruppe ändert nur die Gruppe
- –R für rekursive Änderung
- · Benutzer muss existieren

1.6 Links im Linux-Dateisystem

1.6.1 Hardlinks erstellen

ı ln ziel link # Hardlink erstellen

Eigenschaften:

- Gleiche Inode (Eintrag in Dateizuordnungstabelle des Dateisystems) wie Original
- Nur für Dateien möglich (nicht für Verzeichnisse)
- · Nicht über Dateisystemgrenzen
- · Löschen eines Links reduziert Link-Count

1.6.2 Symbolische Links (Softlinks)

```
ln -s ziel link # Symbolischen Link erstellen
```

Eigenschaften:

- Eigene Inode (Eintrag in Dateizuordnungstabelle des Dateisystems)
- Kann auf Verzeichnisse zeigen
- Funktioniert über Dateisystemgrenzen
- Wird ungültig wenn Ziel verschoben/gelöscht wird

1.7 Praktische Übungen

1. Erstellen Sie eine Verzeichnisstruktur für ein Projekt:

```
mkdir -p ~/projekt/{src,doc,test}/{lib,bin,data}
```

2. Setzen Sie entsprechende Berechtigungen:

```
chmod -R 755 ~/projekt
chmod -R g+w ~/projekt/src
```

3. Erstellen Sie verschiedene Arten von Links:

```
touch ~/projekt/src/main.c
ln ~/projekt/src/main.c ~/projekt/src/main.c.backup
ln -s ~/projekt/src/main.c ~/projekt/test/main.c.test
```

1.8 Sicherheitshinweise

- Vorsicht bei der Verwendung von rm -rf
- Backup wichtiger Dateien vor Änderungen
- Berechtigungen restriktiv setzen
- Root-Rechte nur wenn nötig verwenden
- · Symbolische Links prüfen vor Verwendung

2 Paketverwaltung

2.1 APT-System

2.1.1 Paketquellen aktualisieren

apt update

Paketlisten aktualisieren

• Erläuterungen:

Zweck Mit dem Befehl werden die Paketquellen auf den neuesten Stand gebracht, d. h., die lokalen Listen der verfügbaren Softwarepakete werden mit den Repositorys synchronisiert.

Wann ausführen?

- Vor der Installation neuer Software.
- Wenn der letzte Aufruf von apt update mehr als 24 Stunden zurückliegt.

Hinweis Dieser Befehl aktualisiert nur die Paketlisten, nicht die installierte Software selbst.

2.1.2 Software installieren und aktualisieren

apt install paketname # Software installieren

pakete aktualisieren # Alle installierten Pakete aktualisieren

apt remove paketname # Software entfernen

apt autoremove # Nicht mehr benötigte Abhängigkeiten entfernen

Erläuterungen:

1. Software installieren:

- Der Befehl apt install paketname wird verwendet, um ein bestimmtes Softwarepaket zu installieren. Dabei werden auch alle benötigten Abhängigkeiten automatisch installiert.
- Beispiel: apt install viminstalliert den Texteditor Vim.

2. Software aktualisieren:

- Mit apt upgrade werden alle installierten Pakete auf die neuesten Versionen aktualisiert, sofern sie in den Paketquellen verfügbar sind.
- **Tipp:** Führe vorher immer apt update aus, um sicherzustellen, dass die neuesten Listen verwendet werden.

3. Software entfernen:

• Mit apt remove paketname wird ein bestimmtes Paket deinstalliert, jedoch bleiben die Konfigurationsdateien erhalten.

• Für eine vollständige Entfernung, einschließlich der Konfigurationsdateien, kann apt purge paketname verwendet werden.

4. Nicht benötigte Pakete entfernen:

• Mit apt autoremove werden automatisch Pakete entfernt, die nicht mehr benötigt werden, z. B. Abhängigkeiten von zuvor deinstallierten Paketen.

Zusätzliche Hinweise:

Sicherheitsupdates Für sicherheitskritische Updates solltest du apt upgrade regelmäßig ausführen.

3 Benutzerverwaltung

3.1 Super-User-Rechte

3.1.1 Methoden zur Rechteerweiterung

```
su # Wechsel zum root-Benutzer
sudo befehl # Einzelnen Befehl mit root-Rechten ausführen
```

3.1.2 Voraussetzungen

su root-Benutzer muss existieren

sudo Benutzer muss in /etc/sudoers eingetragen sein, z. B. indem er der Gruppe sudo angehört.

Sicherheitsempfehlung sudo bevorzugen

3.2 Benutzer und Gruppen

Die Verwaltung von Benutzern und Gruppen ermöglicht die Organisation von Rechten und Zugriffssteuerung auf einem Linux-System.

3.2.1 Benutzer verwalten

```
useradd username # Benutzer erstellen
usermod -aG gruppe user # Benutzer zu Gruppe hinzufügen
passwd username # Passwort setzen/ändern
```

Erläuterungen:

1. Benutzer erstellen:

- useradd username erstellt einen neuen Benutzer.
- Zusätzliche Optionen, z. B. für das Home-Verzeichnis, können mit –m angegeben werden: useradd –m username.
- Nach der Erstellung sollte mit passwd username ein Passwort für den Benutzer gesetzt werden.

2. Benutzer zu Gruppen hinzufügen:

 Mit usermod −aG gruppe user wird ein Benutzer zu einer bestehenden Gruppe hinzugefügt. Wichtig Das –a (append) ist notwendig, um existierende Gruppenmitgliedschaften beizubehalten.

3. Passwort setzen oder ändern:

- passwd username ermöglicht das Setzen oder Ändern des Passworts eines Benutzers.
- Für Sicherheitsrichtlinien kann die Konfiguration in /etc/login.defs angepasst werden.

3.2.2 Gruppen verwalten

```
groupadd groupname # Gruppe erstellen
groupdel groupname # Gruppe löschen
groups username # Gruppenzugehörigkeit anzeigen
```

Erläuterungen:

1. Gruppe erstellen:

- groupadd groupname erstellt eine neue Benutzergruppe.
- Diese Gruppen können genutzt werden, um Rechte gezielt mehreren Benutzern zuzuweisen.

2. Gruppe löschen:

• Mit groupdel groupname wird eine Gruppe entfernt.

Hinweis Prüfe vorher, ob die Gruppe noch aktiv genutzt wird, um unerwartete Probleme zu vermeiden.

3. *Gruppenzugehörigkeit anzeigen:

• Der Befehl groups username listet alle Gruppen auf, denen ein Benutzer angehört.

4 Administratorrechte

4.1 Rechteverwaltung

Die Rechteverwaltung erlaubt die Kontrolle über den Zugriff auf Dateien, Verzeichnisse und Systemressourcen.

4.1.1 Dateiberechtigungen

```
chmod 764 datei  # Rechte numerisch setzen
chmod g+w datei  # Gruppe Schreibrecht geben
chown user:gruppe datei  # Besitzer und Gruppe ändern
```

Erläuterungen:

1. Rechte numerisch setzen:

- Mit chmod 764 datei wird der Zugriff numerisch festgelegt:
 - 7 (rwx) Vollzugriff für den Besitzer.
 - 6 (rw-) Lese- und Schreibrechte für die Gruppe.
 - **4 (r--)** Nur Leserechte für andere.

2. Spezifische Rechte ändern:

• chmod g+w datei gibt der Gruppe Schreibrechte auf die Datei.

Weitere Optionen u (Benutzer), g (Gruppe), o (andere), a (alle).

3. Besitzer und Gruppe ändern:

- chown user: gruppe datei ändert den Besitzer und die Gruppe einer Datei oder eines Verzeichnisses.
- Beispiel: chown alice:users dokument.txt.

4.1.2 Besondere Rechte

```
chmod u+s datei  # SUID-Bit setzen
chmod g+s verzeichnis  # SGID-Bit setzen
chmod +t verzeichnis  # Sticky-Bit setzen
```

Erläuterungen:

1. SUID-Bit:

- Mit chmod u+s datei wird das SUID-Bit gesetzt.
- Führt ein Benutzer die Datei aus, erfolgt die Ausführung mit den Rechten des Dateibesitzers.

2. SGID-Bit:

- chmod g+s verzeichnis setzt das SGID-Bit für ein Verzeichnis.
- Neue Dateien oder Verzeichnisse erben automatisch die Gruppenzugehörigkeit.

3. Sticky-Bit:

- chmod +t verzeichnis aktiviert das Sticky-Bit.
- Nur der Besitzer kann Dateien löschen oder verschieben, auch wenn andere Benutzer Schreibrechte haben.

5 Firewalls

5.1 Firewall-Systeme

Firewalls schützen ein System vor unbefugten Netzwerkzugriffen. Es gibt verschiedene Firewall-Lösungen:

5.1.1 Verfügbare Systeme

iptables Traditionelles (veraltetes), mächtiges Firewall-System.

nftables Moderner Nachfolger von iptables mit besserer Performance und einfacher Syntax.

ufw (Uncomplicated Firewall) Ein benutzerfreundliches Frontend für iptables / nft, ideal für einfache Konfigurationen.

5.1.2 Grundlegende Konfiguration

```
ufw enable  # Firewall aktivieren
ufw allow 22/tcp  # SSH-Port öffnen
ufw status  # Firewall-Status anzeigen
```

Erläuterungen:

1. Firewall aktivieren:

- Mit ufw enable wird die Firewall aktiviert und beginnt, Regeln durchzusetzen.
- Die Konfiguration wird aus den vordefinierten Profilen und Regeln geladen.

2. Ports freigeben:

- ufw allow 22/tcp erlaubt eingehende Verbindungen auf Port 22 (TCP), z. B. für SSH.
- Alternative: ufw allow 80 für HTTP ohne Nennung des Layer 4 Protokolls.

3. Firewall-Status prüfen:

• Mit ufw status kannst du überprüfen, welche Regeln aktuell aktiv sind.

Zusätzlicher Hinweis: Für fortgeschrittene Einstellungen kann eine Kombination aus u fw und iptables oder ein Wechsel zu nftables sinnvoll sein.

5.2 Praktische Übungen

1. Paketmanagement durchführen:

```
apt update && apt upgrade # System aktualisieren
```

2. Benutzer einrichten:

```
sudo useradd -m -s /bin/bash mohamad
```

sudo passwd mohamad

3. Firewall konfigurieren:

```
sudo ufw allow ssh
```

sudo ufw enable

5.3 Sicherheitshinweise

- Regelmäßige System-Updates durchführen
- Starke Passwörter verwenden
- Minimale Rechte vergeben
- Firewall-Regeln regelmäßig prüfen
- sudo-Rechte nur bei Bedarf vergeben

6 Backup-Strategien

6.1 Backup-Arten

6.1.1 Grundlegende Backup-Typen

- · Vollbackup: Sicherung aller Daten
- Differentielles Backup: Sicherung aller Änderungen seit letztem Vollbackup
- Inkrementelles Backup: Sicherung aller Änderungen seit letztem Backup

6.1.2 Moderne Backup-Lösungen

BorgBackup und Restic Vorteile:

- Deduplizierte Backups (Speicherplatzersparnis)
- Verschlüsselte Backups
- Plattformübergreifend nutzbar
- Open-Source

7 rsync und tar

7.1 rsync Grundlagen

7.1.1 Grundlegende Syntax

```
rsync -a /quelle /backup  # Archiv-Modus
rsync -av /quelle /backup  # Mit Fortschrittsanzeige
rsync -avz /quelle /backup  # Mit Komprimierung
```

7.1.2 Wichtige Optionen

- -a Archiv-Modus (erhält Metadaten)
- **-v** Ausführliche Ausgabe
- -z Komprimierung während der Übertragung
- **--delete** Löscht Dateien im Ziel, die in der Quelle nicht mehr existieren

7.2 tar Archivierung (nur FISI)

7.2.1 Grundlegende Befehle

```
tar cvf backup.tar /quelle  # Archiv erstellen
tar xvf backup.tar  # Archiv entpacken
tar czvf backup.tar.gz /quelle # Mit Komprimierung
```

7.2.2 Wichtige Optionen

- c Archiv erstellen
- **x** Archiv entpacken
- v Ausführliche Ausgabe
- **f** Archivdatei angeben
- **z** gzip-Komprimierung

8 Loganalyse

Die Analyse von Systemlogs ist essenziell für die Diagnose und Überwachung eines Linux-Systems. Logs geben Einblick in den Zustand des Systems, Authentifizierungen, Fehler und vieles mehr.

8.1 Systemlogs

Systemlogs enthalten Meldungen des Kernels, von Diensten und Anwendungen. Die Logs befinden sich standardmäßig unter /var/log.

8.1.1 Wichtige Log-Dateien

```
/var/log/syslog # Allgemeine Systemmeldungen
2 /var/log/auth.log # Authentifizierungsmeldungen
3 /var/log/kern.log # Kernel-Meldungen
```

Erläuterungen:

1. /var/log/syslog:

- Enthält allgemeine Systemmeldungen und Protokolle von vielen Diensten.
- Typischer Ausgangspunkt für die Fehlersuche.

2. /var/log/auth.log:

- Protokolliert Anmeldeversuche und Authentifizierungsaktivitäten, z. B. erfolgreiche oder fehlgeschlagene SSH-Logins.
- Besonders nützlich für Sicherheitsanalysen.

3. /var/log/kern.log:

- Enthält Meldungen des Kernels, wie Hardwarefehler oder Kernel-Warnungen.
- Hilfreich bei der Diagnose von Treiberproblemen oder Hardwarefehlern.

8.1.2 Log-Analyse-Befehle

```
dmesg # Kernel-Ring-Buffer anzeigen
dmesg | grep -i error # Nach Fehlern suchen
tail -f /var/log/syslog # Logs in Echtzeit verfolgen
```

Erläuterungen:

1. dmesg:

- Zeigt die Kernel-Nachrichten (Ring-Buffer) an.
- Besonders nützlich für Boot-Probleme oder Hardware-Fehler.
- Beispiel: dmesg | grep usb zeigt USB-bezogene Nachrichten.

2. Nach Fehlern suchen:

- dmesg | grep -i error filtert Nachrichten, die den Begriff "error" enthalten.
- Der Schalter i macht die Suche groß-/kleinschreibungsunabhängig.

3. Logs in Echtzeit verfolgen:

- Mittail -f /var/log/syslog kannst du laufende Systemmeldungen in Echtzeit überwachen.
- Ideal zur Beobachtung von Prozessen, die gerade Fehler werfen oder Debugging erfordern.

8.2 Log-Filterung

Logs können umfangreich sein. Mit Filterbefehlen kannst du gezielt relevante Informationen extrahieren.

8.2.1 Grundlegende Filterbefehle

```
grep 'ssh' /var/log/auth.log # SSH-Einträge finden
dmesg | grep 'ssh' >> ssh.log # SSH-Meldungen in Datei anhängen
```

Erläuterungen:

- 1. *Suchen nach Schlüsselwörtern:
 - Mit grep 'ssh' /var/log/auth.log kannst du alle Einträge finden, die mit SSH zu tun haben.
 - Praktisch für die Überprüfung von SSH-Zugriffen oder Angriffen.

2. Ergebnisse speichern:

• Mit dmesg | grep 'ssh' >> ssh.log werden gefilterte Nachrichten in die Datei ssh.log angehängt.

Hinweis Verwende > statt >>, wenn du den Inhalt der Datei überschreiben möchtest.

Zusätzlicher Tipp:

Erweiterte Tools Tools wie logwatch oder journalctl bieten detailliertere Analyse- und Filteroptionen.

8.3 Praktische Übungen

1. Vollbackup erstellen:

```
sudo mkdir -m 777 /backup.0
rsync -av --progress /home/bros /backup.0
```

- Was bewirkt, das –a, bzw. das –v?
- 1. Logs überwachen:

```
tail -f /var/log/auth.log | grep 'ssh'
```

2. Komprimiertes Backup erstellen: (nur FISI)

```
tar -czvf backup-$(date +%Y%m%d).tar.gz /home/bros
```

- Warum ist das z notwendig?
- Was bewirkt \$(date %Y%m%d)?
- Versuchen Sie mit man date herauszufinden, wie Sie das Datumsformat anpassen können.

8.4 Sicherheitshinweise

- Regelmäßige Backup-Tests durchführen
- Backups verschlüsselt speichern
- Backup-Medien sicher aufbewahren
- Log-Dateien regelmäßig prüfen
- Backup-Strategie dokumentieren

9 Netzwerkdiagnose

Die Netzwerkdiagnose ist essenziell, um Verbindungsprobleme, DNS-Probleme oder Routingfehler zu identifizieren und zu beheben.

9.1 Grundlegende Netzwerkbefehle

Diese Befehle helfen bei der Analyse von Netzwerkproblemen und der Überprüfung der Netzwerkkonfiguration.

9.1.1 Verbindungstests

1	ping hostname	#	Verfügbarkeit testen
2	traceroute hostname	#	Routing-Pfad anzeigen
3	netstat	#	Netzwerkverbindungen anzeigen

Erläuterungen:

- 1. ping hostname:
 - Sendet ICMP-Pakete an den angegebenen Host, um dessen Erreichbarkeit und die Antwortzeit zu testen.
 - Beispiel: ping google.com prüft, ob die Domain erreichbar ist.
 - **Hinweis:** Manche Hosts blockieren ICMP-Anfragen, daher kann der Test fehlschlagen, obwohl der Host erreichbar ist.
- 2. traceroute hostname:
 - Zeigt den Routing-Pfad (Hop-by-Hop) zum angegebenen Host.
 - Hilfreich, um herauszufinden, wo Verbindungen blockiert oder verzögert werden.
 - Beispiel: traceroute example.com.
- 3. netstat:
 - Listet aktive Netzwerkverbindungen und Ports auf.
 - Beispiel: netstat -tuln zeigt aktive TCP- und UDP-Ports im numerischen Format.
 - **Hinweis:** Auf neueren Systemen ist der Ersatz ss empfohlen: ss -tuln.

9.1.2 Netzwerkkonfiguration

1	ip addr	# IP-Adressen anzeigen
2	ip route	# Routing-Tabelle anzeigen
3	nslookup domain	# DNS-Auflösung prüfen

Erläuterungen:

- 1. ip addr:
 - Zeigt die IP-Adressen und Schnittstellen des Systems an.
 - Beispiel: ip addr show zeigt alle Netzwerkschnittstellen und ihre zugewiesenen IP-Adressen.
- 2. ip route:
 - Listet die Routing-Tabelle auf, um zu sehen, wie das System Pakete weiterleitet.
 - Beispiel: ip route show zeigt Standardrouten und spezifische Routen.

- Besonders nützlich, wenn Verbindungen zu bestimmten Netzwerken nicht funktionieren.
- 3. nslookup domain:
 - Prüft die DNS-Auflösung für eine angegebene Domain.
 - Beispiel: nslookup example.com zeigt die IP-Adresse(n) der Domain.
 - **Hinweis:** Für detailliertere DNS-Analysen kann dig verwendet werden.

10 SSH

10.1 SSH-Konfiguration

10.1.1 Schlüsselerstellung

10.1.2 Vorteile der Public-Key-Authentifizierung

- Höhere Sicherheit (keine Brute-Force-Angriffe)
- Bequeme Nutzung (kein Passwort nötig)
- Erleichtert Automatisierung
- ED25519 bietet hohe Sicherheit bei kurzer Schlüssellänge

10.2 SSH-Verbindungen

10.2.1 Grundlegende Befehle

10.2.2 Sicherheitsoptionen

```
ssh -p 2222 user@host # Alternativer Port
ssh -i ~/.ssh/key user@host # Spezifischer Schlüssel
```

11 Samba

11.1 Freigabe-Konfiguration

11.1.1 Grundkonfiguration

```
[shared]
path = /home/shared
browseable = yes
writable = yes
guest ok = no
valid users = @share
```

11.1.2 Benutzerverwaltung

```
smbpasswd -a user # Benutzer hinzufügen
smbpasswd -x user # Benutzer löschen
pdbedit -L # Benutzer auflisten
```

11.1.3 Fehlerbehebung

Häufige Probleme:

- Falsches Passwort (Caps-Lock pr

 üfen)
- Kein Samba-Passwort gesetzt
- Fehlende Gruppenmitgliedschaft
- Falsche Berechtigungen im Dateisystem

12 Dienste-Verwaltung

12.1 Systemd

12.1.1 Grundlegende Befehle

```
systemctl start dienst # Dienst starten
systemctl stop dienst # Dienst stoppen
systemctl restart dienst # Dienst neu starten
systemctl status dienst # Status anzeigen
```

12.1.2 Automatischer Start

```
systemctl enable dienst  # Beim Boot aktivieren
systemctl disable dienst  # Beim Boot deaktivieren
systemctl is-enabled dienst # Status prüfen
```

12.2 Praktische Übungen

1. SSH-Zugang einrichten:

```
ssh-keygen -t ed25519
ssh-copy-id -i ~/.ssh/id_ed25519.pub user@server
```

2. Samba-Freigabe konfigurieren:

```
sudo smbpasswd -a user
sudo systemctl restart smbd
```

3. Dienste überwachen:

```
systemctl status sshd smbd
journalctl -u sshd
```

13 Hardware-Informationen

13.1 Speichergeräte

13.1.1 Block-Devices anzeigen

Ausgabe enthält:

· NAME: Gerätename

• MAJ:MIN: Major/Minor-Nummer

SIZE: KapazitätTYPE: Gerätetyp

• MOUNTPOINT: Einhängepunkt

13.1.2 Festplatten und Controller

```
lshw -C disk  # Detaillierte Festplatteninformationen  # Storage-Controller-Informationen
```

13.2 Systeminformationen

13.2.1 PCI-Geräte

```
lspci  # PCI-Geräte auflisten
lspci -v  # Ausführliche Informationen
lspci -k  # Mit Kernelmodulen
```

Zeigt an:

- Grafikkarten
- Netzwerkkarten
- USB-Controller
- SATA-Controller
- · Andere PCI-Geräte

13.2.2 USB-Geräte

```
1 lsusb  # USB-Geräte auflisten
2 lsusb -v  # Detaillierte Informationen
3 lsusb -t  # Als Baumstruktur
```

14 Speichernutzung

14.1 Festplattenspeicher

14.1.1 Verfügbarer Speicherplatz

Ausgabe enthält:

• Filesystem: Gerätename

• Size: Gesamtgröße

• Used: Genutzter Speicher

• Available: Verfügbarer Speicher

• Use%: Prozentuale Nutzung

• Mounted on: Einhängepunkt

14.1.2 Verzeichnisgrößen

```
du  # Speichernutzung von Verzeichnissen
du -h  # Mit menschenlesbaren Größen
du -sh * # Zusammenfassung pro Verzeichnis
```

14.2 Arbeitsspeicher (nur FISI)

14.2.1 RAM-Nutzung

```
free # Arbeitsspeichernutzung

free -h # Mit menschenlesbaren Größen

free -s 1 # Aktualisierung jede Sekunde
```

Zeigt an:

• total: Gesamter RAM

• used: Genutzter RAM

• free: Freier RAM

• shared: Geteilter Speicher

• buff/cache: Puffer/Cache

• available: Verfügbar für neue Prozesse

14.3 Praktische Beispiele

1. Systeminformationen sammeln:

```
echo "===_uSpeichergeräte_u===" > sysinfo.txt

lsblk >> sysinfo.txt

echo -e "\n===_uPCI-Geräte_u===" >> sysinfo.txt

lspci >> sysinfo.txt

echo -e "\n===_uSpeichernutzung_u===" >> sysinfo.txt

df -h >> sysinfo.txt
```

echo -e Erlaubt die Nutzung von Escapesequenzen wie \n für einen Zeilenumbruch.

Was bewirkt >>? Was passiert, wenn Sie stattdessen > nutzen.

Was bewirkt die Option -h beim df-Befehl?

1. Speicherauslastung überwachen:

```
watch -n 1 'freeu-h;uecho;udfu-h'
```

watch -n 1 Bewirkt das der nachfolgende Befehl jede Sekunde neu aufgerufen wird.

• Sie können mit Strg-C abbrechen.

Was ist der Unterschied zwischen free und df

1. Große Dateien finden:

```
du -ah /home | sort -hr | head -n 20
```

du -a Dateigröße für alle Dateien (nicht nur Verzeichnisse) ausgeben.

Was bewirken die Optionen -hr beim sort-Befehl?

Was bewirkt die Option - n 20 beim head-Befehl?