- La) A group is a non-empty set that fits four conditions
 - 1) G is closed meening x, y & G (=> xy & G
 - 2) G is associative a(bc) (=> (ab) C
 - 3) Inverses cxist: X & G <= > x 16 6
 - 4) Identity exists: (ae) = e, Ya Ee, a,e & G
 - b) A normal subgroup N of a group G is a albertoup N \le 6 where \frac{1}{9}Ng = N \text{ for all get} Or specifically H = \left\{ g^1hg, get \text{ G, neH}\right\{ e} \cong H \text{ G}
 - c) If G acts on a set 5 then Gs is tre result Gs:= {ga | ge G, a & S}.
 - d) Let $\phi: G \to H$ be a non-inorphism of group G onto H. Then $G/\ker(\phi) \cong \operatorname{im}(\phi)$, when $H \not= G$ then $G/H \cong H$.
- €) Let NAG. Then the union N/G and H/G, where H≤G, form, an isomorphism of G: F: N/G → H/G.

Anthony J

- F) Lagranges theorem states that if $H \leq G$ and |G| = N, where N is finite, then |H|/h; or more so |H|/|G|.
- 9) NG(H):= {g|g-1Hg=H for g & G}
- h) 161 = 3500. Cauchy's theorem gaucentees on element for values of N = 1, 2, 5, 7.
- i) [x,y] = x-'y'xy, x,y ∈ G.
- (17257)(3214)(27)(132)(56143)(28)(134)(1728431)(56)
- K) | (1723431) (56) | = 2.7 = 14
- 1) \((123)(45678)\) = 3.5 = 15.
- n) stabilizes of x in S is $H := \{ g \in G \mid g_5 = x \text{ for } 5, x \in S \}.$

- 2a) Observe that $gHg^{-1} \subseteq G$ as for every $h \in H$ $g (ghg^{-1}) \in G$. Now observe that the properties of a stoup apply to gHg^{-1} :
 - Then $xy = g_x h_x g_x^{-1} g_y h_y g_y^{-1}$, which is a product of elements of G. Assume $xy \not\in gHg^{-1}$: then g_{xy} and g_{xy}^{-1} cannot both exist in G. But since G is a group, we know that if either g_{xy} or g_{xy}^{-1} exists, the other does too. Thus gHg^{-1} is closed.
 - 2) 9Hg-1 inharibo the same associative papertice as
 - 3) As mentioned in (1), we know that IF $X \in SHS^{-1}$ then $X^{-1} = (g_x h_x g_x^{-1} k)^{-1} \in gHg^{-1}$.
 - 4) Consider geg-1=gg-1=e. e e gHg-1.

Thus 9Hg is a subgroup of G.

Ba) Let $x,y \in G$. Observe that $\Phi(x)$, $\Phi(y)$ E im (Φ) and that $\Phi(y^{-1})$. $\Phi(y^{-1}) = (\Phi(y))^{-1} \in \text{im}(\Phi)$. Thus by the subgroup exiterce y and $a = \phi(x) \in \text{im}(\Phi)$.

Finally consider $\Phi(xy^{-1}) = \Phi(x)(\Phi(y))^{-1} \in \text{im}(\Phi)$.

Finally consider $\phi(xy^{-1}) = \phi(x)(\phi(y)) \in im(\phi)$. $Xy'' \in G$ so $\phi(xy'') \in im(\phi)$; therefore by the subscorp citation one element $\phi(x)$ and $\phi(y)$ implies $\phi(xy'') \in im(\phi)$. Thus $im(\phi) \leq G$.

36) im(0) < 6, by which Lagranges Theorem shows that lim(0)///61.

Anthony

- 4) Let $x \in H \setminus K$ and $y \in K \setminus H$ where $H \setminus K \subset G$. Observe that if $H \cup K = G$, than $xy \in H \cup K \in G$, as G is a closed set/group. However, we know that neither $X \cap Y \in H \cup K$, meaning any elements $d \in K \cap H$ are not elements of G.
 - 5) Closecre that N/G = {gN/gEG}, and that G and N cre abelien (p2).