PFE

Alexandre Vieira

Modèle Diff. modèles Vitesse Forme

Simulation
Simplification
Résultats

Limite propagation Problème Théorique Numérique

Conclusion

Projet de Fin d'Étude : Propagation d'un pathogène dans un champ de blé

Alexandre Vieira

INSA de Rouen

14 mars 2015

PFE

Alexandre Vieira

Modèle Diff. modèles Vitesse Forme

Simulation Simplification Résultats

propagatior Problème Théorique Numérique

- 1 Modèle mathématique étudié
 - Différents modèles
 - Étude de la vitesse de propagation
 - Étude de la forme du front d'onde
- 2 Simulation numérique
 - Simplification de l'équation
 - Résultats numériques
- 3 Problème de décision : limiter la propagation du pathogène
 - Formulation du problème
 - Considérations théoriques
 - Simulation numérique

PFE

Alexandre Vieira

Modèle

Diff. modèles Vitesse Forme

Simplification Résultats

Limite propagation Problème Théorique Numérique

- 1 Modèle mathématique étudié
 - Différents modèles
 - Étude de la vitesse de propagation
 - Étude de la forme du front d'onde
 - 2 Simulation numérique
- 3 Problème de décision : limiter la propagation du pathogène

Modèles de propagation

PFE

Alexandre Vieira

Modèle

Diff. modèles Vitesse

Forme

Simulation Simplification

Simplificatio Résultats

propagation Problème Théorique

Numérique

Conclusion

Modèle SI:

$$\begin{array}{rcl} \frac{dS}{dt} & = & -\beta SI \\ \frac{dI}{dt} & = & \beta SI \end{array}$$

Modèle de contact distribué :

$$\frac{\partial I}{\partial t}(x,t) = \beta(x)(N - I(x,t)) \int_{\mathbb{R}} k(x,y)I(y,t)dy \qquad (1)$$

Modèle avec mouvement de population

$$\frac{\partial I}{\partial t}(x,t) = \beta(x)(N - I(x,t)) - DI(x,t) + D \int_{\mathbb{R}} k(x,y)I(y,t)dy$$
(2)

Vitesse de propagation

PFE

Alexandre Vieira

Modèle Diff. modèles Vitesse Forme

Simulation
Simplification

propagation
Problème
Théorique

Numérique

Vitesse bornée par le modèle linéaire :

$$\frac{\partial I}{\partial t} = \beta(x) N \int_{\mathbb{R}} k(x, y) I(y, t) dy$$

Condition initiale bornée par une exponentielle :

$$I_0(x,0) \leq Ae^{-\theta x}$$

Vitesse bornée par

$$c = \beta(x) \inf_{\theta > 0} \frac{M(\theta)}{\theta} \tag{3}$$

Conjecture : sous certaines hypothèses, vitesse du modèle complet = vitesse du modèle linéaire.

Forme du front d'onde

PFE

Alexandre Vieira

Modèle
Diff. modèles
Vitesse
Forme
Simulation

Simulation Simplification

Résultats

propagation

Problème Théorique Numérique

Conclusion

Raisonnement par perturbations. Forme du front d'onde à l'ordre 0 donné par :

$$I(z) = \frac{1}{1 + \exp\left(\beta \frac{z}{c}\right)}$$

Figure : Forme approchée du front à l'ordre 0 : $\beta=1$, c=1

PFE

Alexandre Vieira

Modèle Diff. modèles Vitesse Forme

Simulation

Simplification Résultats

propagation Problème Théorique Numérique

Conclusion

1 Modèle mathématique étudié

- 2 Simulation numérique
 - Simplification de l'équation
 - Résultats numériques
- 3 Problème de décision : limiter la propagation du pathogène

Forme du front d'onde

PFE

Alexandre Vieira

Modèle Diff. modèles Vitesse Forme

Simulation

Simulation

Simplification Résultats

Limite propagation Problème Théorique Numérique

$$\frac{\partial I}{\partial t}(x,t) = \beta(x)N \sum_{n=0}^{+\infty} \frac{(-1)^n \mu_n}{n!} \frac{\partial^n I}{\partial x^n}(x,t)$$

$$\frac{\partial I}{\partial t}(x,t) = \beta(x) \left(I(x,t) + \frac{\mu_2}{2} \frac{\partial^2 I}{\partial x^2}\right) \tag{4}$$

Cadre, résultats et analyse

PFE

Alexandre Vieira

Modèle Diff. modèles Vitesse Forme

Simulation
Simplification
Résultats

Limite propagation Problème Théorique Numérique

Cadre, résultats et analyse

PFE

Alexandre Vieira

Modèle Diff. modèles Vitesse Forme

Simulation
Simplification
Résultats

Limite propagation Problème Théorique Numérique

PFE

Alexandre Vieira

Modèle Diff. modèles Vitesse Forme

Simulation Simplification Résultats

Limite propagation

Problème Théorique Numérique

- 1 Modèle mathématique étudié
- 2 Simulation numérique
- 3 Problème de décision : limiter la propagation du pathogène
 - Formulation du problème
 - Considérations théoriques
 - Simulation numérique

Problème de décision

PFE

Alexandre Vieira

Modèle Diff. modèles Vitesse Forme

Simulation
Simplification
Résultats

Limite

propagation Problème

Théorique Numérique

Conclusion

Maximiser
$$\begin{cases} t \\ \frac{1}{mes(\Omega)} \int_{\Omega} I(x,t) dx > 0, 5 \\ r_1 \leq R \leq r_2 \\ x_{\mu} > \alpha \end{cases}$$

Difficile à traiter.

Largeur du front d'onde

PFE

Alexandre Vieira

Modèle Diff. modèles Vitesse Forme

Simulation Simplification Résultats

Limite propagation Problème

Théorique Numérique

Conclusion

$$c = \beta \inf_{\theta > 0} \frac{M(\theta)}{\theta} = \beta K \tag{5}$$

Approximation à l'ordre 0 de la forme du front d'onde :

$$I(z) = \frac{1}{1 + \exp\left(\frac{\beta}{c}z\right)} \tag{6}$$

 \Rightarrow Largeur du front d'onde :

$$w = \frac{c}{\beta} = \frac{\beta K}{\beta} = K$$
 constante indépendante de β (7)

$$x_{\mu} < w \text{ ou } x_{\mu} > w$$
?

Résulats

PFE

Alexandre Vieira

Modèle Diff. modèles Vitesse Forme

Simulation Simplification Résultats

Limite propagation Problème Théorique Numérique

Résulats

PFE

Alexandre Vieira

Modèle Diff. modèles Vitesse Forme

Simulation Simplification Résultats

Limite propagation Problème Théorique

Numérique

Conclusion

PFE

Alexandre Vieira

Modèle Diff. modèles Vitesse Forme

Simulation Simplification Résultats

propagation Problème Théorique Numérique

- Premiers résultats encourageants
- Une compléxité à augmenter : toujours les mêmes résultats avec 3, 4, + d'espèces?
- Une approche différente dans ce projet