

UNIVERSIDAD POLITÉCNICA SALESIANA DISEÑO MULTIMEDIA

NOTAS

RECTAS

Se considera la recta L que pasa por P y Q. Esta recta es paralela al vector $\overline{\mathbf{v}} = \overline{PQ}$, por lo tanto, dado un punto $R = (x, y, z) \in L$, se debe cumplir que $PR = t\mathbf{v}$ osea $R - P = t\mathbf{v}$; $\forall t \in R$ por lo tanto $(x, y, z) = P + t\overline{\mathbf{v}}$ conocida como ecuación vectorial de L. Despejando x, y, z de la ecuación anterior se obtiene las ecuaciones parametricas de L

➤ Ecuación Paramétrica de L

Se obtiene cada una despejando la componente correspondiente al punto R obteniendo:

$$x = p_1 + t \mathbf{v}_1$$

$$y = p_2 + t \mathbf{v}_2$$

$$z = p_3 + t \mathbf{v}_3$$

> Ecuación Simétrica de L

Se obtiene despejando t de cada una de las ecuaciones anteriores siempre que $v_i \neq 0$

$$\frac{x - p_1}{v_1} = \frac{y - p_2}{v_2} = \frac{z - p_3}{v_3}$$

UNIVERSIDAD POLITÉCNICA SALESIANA DISEÑO MULTIMEDIA

Ejemplo

Dada la recta $\ L$ que pasa por P=(1,3,-2) y Q=(2,1,-2). En este caso v=Q-P=(1,-2,0), luego se obtiene:

Ecuacion vectorial:

$$(x,y,z) = (1,3,-2) + t(1,-2,0)$$

Ecuaciones paramétricas:

$$x=1+t
 y=3-2t
 z=-2$$

Ecuaciones simétricas:

$$\frac{x-1}{1} = \frac{y-3}{-2}$$
; $z = -2$

El segmento que va de P a Q es el conjunto de puntos

$$P+t(Q-P); \forall t \in [0,1]$$

ya que es paralelo al vector v cuyo modulo es 1