Bundesministerium Bildung, Wissenschaft und Forschung

Streaming*							
Aufgabennummer: B_501							
Technologieeinsatz:	möglich □	erforderlich 🗵					

Ein Fernsehsender entschließt sich, einen Streaming-Dienst für Filme auf den Markt zu bringen. Damit können Filme über das Internet abgespielt werden.

Die Zeit nach der Markteinführung in Monaten wird mit *t* bezeichnet.

a) Bei der Markteinführung (t = 0) nutzen 1 000 Kunden dieses Angebot.

Die Anzahl der Kunden steigt im 1. Jahr nach der Markteinführung pro Monat jeweils um etwa 20 % bezogen auf die Anzahl des jeweiligen Vormonats.

Die Anzahl der Kunden soll in Abhängigkeit von der Zeit *t* beschrieben werden.

- 1) Erstellen Sie eine Gleichung der zugehörigen Funktion.
- 2) Berechnen Sie die Anzahl der Kunden für t = 7.
- 3) Berechnen Sie, wie lange es nach der Markteinführung dauert, bis die Anzahl der Kunden erstmals 8 000 übersteigt.
- b) In der nachstehenden Tabelle ist die Anzahl der Kunden für einen bestimmten Zeitraum angegeben.

Zeit t in Monaten	18	20	24	26	28
Anzahl der Kunden	23800	32 200	54600	68 000	81 900

Die Anzahl der Kunden soll in Abhängigkeit von der Zeit *t* beschrieben werden.

1) Ermitteln Sie eine Gleichung der zugehörigen linearen Regressionsfunktion.

^{*} ehemalige Klausuraufgabe

Streaming

c) Die über einen längeren Zeitraum betrachtete zeitliche Entwicklung der Anzahl der Kunden kann näherungsweise durch die logistische Funktion *f* beschrieben werden (siehe nachstehende Abbildung).

1) Lesen Sie aus der obigen Abbildung den Zeitpunkt des stärksten Wachstums der Anzahl der Kunden ab.

Für die Funktion
$$f$$
 gilt: $f(t) = \frac{150000}{1 + c \cdot e^{-\lambda \cdot t}}$

Bei der Markteinführung (t = 0) nutzen 1 000 Kunden dieses Angebot.

2) Ermitteln Sie die Parameter c und λ der Funktion f.

Streaming 3

Möglicher Lösungsweg

- **a1)** $N(t) = 1000 \cdot 1,2^{t}$
- a2) N(7) = 3583,1...

Zur Zeit t = 7 nutzen rund 3583 Kunden das Angebot.

a3) N(t) = 8000 oder $1000 \cdot 1,2^t = 8000$

Berechnung mittels Technologieeinsatz: t = 11,40...

b1) Ermittlung mittels Technologieeinsatz: $A(t) = 5820 \cdot t - 82919$ (Koeffizienten gerundet)

c1) 27 Monate nach der Markteinführung wächst die Anzahl der Kunden am stärksten. Toleranzbereich: [25; 29]

c2) f(0) = 1000 oder $\frac{150000}{1+c} = 1000$ $\Rightarrow c = 149$ f(27) = 75000 oder $\frac{150000}{1+149 \cdot e^{-\lambda \cdot 27}} = 75000$

Berechnung mittels Technologieeinsatz: $\lambda = 0.185...$

Die Verwendung anderer Punkte auf dem Graphen von f für das Ermitteln des Parameters λ ist ebenfalls als richtig zu werten.

Lösungsschlüssel

- a1) 1 × A: für das richtige Erstellen der Funktionsgleichung
- a2) 1 × B1: für das richtige Berechnen der Anzahl der Kunden
- a3) 1 × B2: für das richtige Berechnen der Zeitdauer
- b1) 1 x B: für das richtige Ermitteln der Gleichung der Regressionsfunktion
- c1) 1 × C1: für das richtige Ablesen des Zeitpunkts des stärksten Wachstums (Toleranzbereich: [25; 29])
- c2) 1 × B1: für das richtige Ermitteln des Parameters c
 - 1 \times B2: für das richtige Ermitteln des Parameters λ