王勇

计算机/软件学院 大数据分析与信息安全团队 21#533 电 话 13604889411

课程网站: http://cstcsjjg.hrbeu.edu.cn

Email: wangyongcs@hrbeu.edu.cn

问题提出

- ◆ 数组存储与效率
- ◆矩阵运算
- ◆信息压缩存储
- ◆人工智能信息处理

本章说明

知识点

数组的类型定义 数组的存储表示 特殊矩阵的压缩 存储表示方法 稀疏矩阵的压缩 存储表示方法 广义表 重点

数组类型的 定义及其 存储表示

本章说明

理解

掌握

充分 理解 数组类型的特点

稀疏矩阵的两类存储压缩方法的特点及其适用范围

领会

特

三元组表示稀 疏矩阵的矩阵 运算处理方法

标

MARGINE Engineering University

本章内容

- 1 数组的定义
- 2 数组的顺序表示和实现
- 3 矩阵的压缩存储
- 4 广义表的定义
- 5 广义表的存储结构
- 6 本章小结

数组的定义

- 数组是线性表的推广
 - 数组可以看成是一种特殊的线性表,即线性表中数据 元素本身也是一个线性表

$$\mathbf{A}_{\text{m}\times n} = \begin{bmatrix} \mathbf{a}_{00} \\ \mathbf{a}_{10} \\ \cdots \\ \mathbf{a}_{m-1,0} \end{bmatrix} \begin{bmatrix} \mathbf{a}_{01} \\ \mathbf{a}_{11} \\ \cdots \\ \mathbf{a}_{m-1,1} \end{bmatrix} \begin{bmatrix} \mathbf{a}_{02} \\ \mathbf{a}_{12} \\ \cdots \\ \mathbf{a}_{m-1,2} \end{bmatrix} \begin{bmatrix} \mathbf{a}_{0,n-1} \\ \mathbf{a}_{1,n-1} \\ \cdots \\ \mathbf{a}_{m-1,n-1} \end{bmatrix}$$

$$\mathbf{A}_{m \times n} = \begin{bmatrix} \mathbf{a}_{00} & \mathbf{a}_{01} & \mathbf{a}_{02} & \dots & \mathbf{a}_{0,n-1} \\ \mathbf{a}_{10} & \mathbf{a}_{11} & \mathbf{a}_{12} & \dots & \mathbf{a}_{1,n-1} \\ \dots & \dots & \dots & \dots \\ \mathbf{a}_{m-1,0} & \mathbf{a}_{m-1,1} & \mathbf{a}_{m-1,2} & \dots & \mathbf{a}_{m-1,n-1} \end{bmatrix}$$

定义

```
ADT Array {
 数据对象: j<sub>i</sub>=0,..., b<sub>i</sub>-1, i=1,2,..,n
     D = \{a_{j_1,j_2,...j_n} | n(>0)为数组的维数,b_i为数组第i维的长
           度,j<sub>i</sub>为数组元素的第i维下标,a<sub>j1,j2,...jn</sub>∈ElemSet }
 数据关系: R={R1, R2, ..., Rn}
      Ri = \{ \langle a_{j_1...j_i...j_n}, a_{j_1...j_i+1,...j_n} \rangle |
                  0 \le j_k \le b_k - 1, 1 \le k \le n \perp k \ne i,
                  0 \le j_i \le b_i - 2, \ a_{j_1...j_i...j_n}, a_{j_1...j_i+1,...j_n} \in D, \ i=2,...,n
```

基本操作:

数组的定义

InitArray(&A, n, bound1, ..., boundn)

操作结果: 若维数 n 和各维长度合法,则构造相应的数组A

DestroyArray(&A)

初始条件:数组A已经存在。

操作结果: 销毁数组 A。

Value(A, &e, index1, ..., indexn)

初始条件: A是n维数组,e为元素变量,随后是n个下标值

操作结果: 若各下标不超界,则e赋值为所指定的A的元素值,并

返回OK。

Assign(&A, e, index1, ..., indexn)

初始条件: A是n维数组, e为元素变量,随后是n个下标值

操作结果:若下标不超界,则将 e 的值赋给A中指定下标的元素

} ADT Array

数组的顺序表示和实现

连续的存储单元——数组

a以列序

对行"中组进分组素"按别人"中的对外,一个"按别人"的数别,一个"按别人"的数别,一个"按别人"的数别,一个"按别人",一个"好人"。

数组的顺序表示和实现

0

n-1

n

□以行序为主存储

$$A_{m \times n} = \begin{bmatrix} a_{00} & a_{01} & a_{02} & \dots & a_{0,n-1} \\ a_{10} & a_{11} & a_{12} & \dots & a_{1,n-1} \\ \dots & \dots & \dots & \dots \\ a_{m-1,0} & a_{m-1,1} & a_{m-1,2} & \dots & a_{m-1,n-1} \end{bmatrix}$$

- ❖ 每个数据元素占L个存储单元;
- ❖ LOC(0,0)表示数据元素a₀₀的存储地址 是数组的起始地址(基地址);
- ❖ LOC(i,j)表示下标为(i,j)的数据元素 a_{ii}的存储地址

LOC(i,j)=LOC(0,0)+(i*n+j)*L

ル信爾濱ユ丘大学 Harbin Engineering University

m*n-1 2021/12/14 $\mathbf{a_{01}}$ $a_{0,n-1}$ \mathbf{a}_{10} a_{11} $a_{1,n-1}$ $\mathbf{a}_{\text{m-1,0}}$ $a_{m-1,1}$

 $\mathbf{a}_{\text{m-1,n-1}}$

 $\mathbf{a}_{\mathbf{00}}$

ı.edu.cn/

数组的顺序表示和实现

0

n-1

n

□以列序为主存储

$$A_{m \times n} = \begin{bmatrix} a_{00} & a_{01} & a_{02} & \dots & a_{0,n-1} \\ a_{10} & a_{11} & a_{12} & \dots & a_{1,n-1} \\ \dots & \dots & \dots & \dots \\ a_{m-1,0} & a_{m-1,1} & a_{m-1,2} & \dots & a_{m-1,n-1} \end{bmatrix}$$

- ❖ 每个数据元素占L个存储单元;
- ❖ LOC(0,0)表示数据元素a₀的存储地址, 是数组的起始地址(基地址)
- ❖ LOC(i,j)表示下标为(i,j)的数据元素 aii的存储地址

LOC(i,j)=LOC(0,0)+(j*m+i)*L

m*n-12021/12/14 $a_{m-1,n-1}$

 $\mathbf{a}_{\mathbf{00}}$ \mathbf{a}_{10} $\mathbf{a}_{\text{m-1,0}}$ \mathbf{a}_{01} a_{11}

 $a_{m-1,1}$

 $a_{0,n-1}$

 $a_{1,n-1}$

.edu.cn/

矩阵的压缩存储

7	2	3	4	7	0	0	0
2	7	1	9	2	7	0	0
3	1	7	8	3	1	7	0
4	2 7 1 9	8	6	4	9	8	6

4	6	0	0	0
8	5	16	0	0
0	7	8	2	0
0	0	1	9	3
0	0	0	2	12

4	0	0 16 0	0	0
8	0	16	0	0
0	7	0	0	0
0	0	0	0	0
0	0	0	0	12_

□ 压缩存储

为多个值相同的矩阵元只分配一个存储空间;对零元不分配空间
 这帧图像
 如何存储

特殊矩阵

压缩

特殊矩阵

特殊矩阵一对称矩阵

□ 值相同的元素或者零元素在矩阵中的分布有一定 规律

◆n阶矩阵

$$a_{ij} = a_{ji}$$
 $1 \le i, j \le n$

特殊矩阵一对称矩阵

□压缩存储——对称矩阵

仅存储下 三角

 $\mathbf{a}_{\mathrm{n}1}$ $\mathbf{a}_{\mathrm{n}2}$ $\mathbf{a}_{\mathrm{n}r}$

按行序为主序:

$$\begin{vmatrix} a_{11} & a_{21} & a_{22} & a_{31} & a_{32} & \dots & a_{n1} & \dots & a_{nn} \\ k=0 & 1 & 2 & 3 & 4 & & & & & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & & & & & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & & & & & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & & & & & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & & & & & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & & & & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & & & & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & & & & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & \\ k=0 & 1 & 2 & 3 & 4 & & & \\ k=0 & 1 & 2 & 3 & 4 & & & & \\ k=0 & 1 & 2 & 3 & 4 & & \\$$

特殊矩阵一三角矩阵

□ 值相同的元素或者零元素在矩阵中的分布有一定 规律


```
      7
      0
      0
      0

      2
      7
      0
      0

      3
      1
      7
      0

      4
      9
      8
      6
```

- ▶n阶矩阵
- ◆ 下(上)三角矩阵:矩阵的上(下)三角 (不包括对角线)中的元均为常数c或零

特殊矩阵一三角矩阵

仅存储下 □压缩存储——下三角矩阵

特殊矩阵一对角矩阵

□ 值相同的元素或者零元素在矩阵中的分布有一定 规律

$\lceil 4 \rceil$	6		0	0
8	5	16	0	0
0	7	8	2	0
0	0	1	9	3
0	0	0	2	12_

- ▶n阶矩阵
- ◆ 所有的非零元都集中在以主对角线为中心的带状区域中

特殊矩阵一对角矩阵

仅存储主 对角线非0

$$0 \quad 0 \dots \quad a_{n-1,n-2} \quad a_{n-1,n-1} \quad a_{n-1,n}$$

 $0 \quad 0 \quad \dots \quad \dots \quad a_{n,n-1} \quad a_{n,r}$

按行序为主序:

	a ₁₁	a ₁₂	a ₂₁	a ₂₂	a ₂₃	g	$a_{n,n-1}a_{n,n}$
, -	k-0	1	2	3	1		

稀疏矩阵压缩存储——三元组顺序表

稀疏矩阵压缩存储——十字链表

稀疏矩阵—三

仅存储非 0元素

□稀疏矩阵

$$\delta = \frac{t}{m \times n} \le 0.05$$

t为非0元个数

压缩存储?

$\begin{bmatrix} 0 \end{bmatrix}$	12	9	0	0	0	$\begin{bmatrix} 0 \end{bmatrix}$	
0	0	0	O	0	0	0	
-3	0	0	0	0	14	0	
0	0	24	0	0	0	0	
0	18	0	0	0	0	0	
15	0	0	- 7	0	0	$0 \rfloor{6}$	×7

- ◆ 非零元较零元少,且分布没有一定规律的矩阵
- ◆ 压缩存储原则: 只存矩阵的行列<u>维数</u>和每个

稀疏矩阵—三元组顺序表

□稀疏矩阵—压缩存储

M =	=
-----	---

矩阵维数

- \checkmark (6,7,8)
- ❖非零元

- **√**(1,3,9)
- \checkmark (3,1,-3)
- \checkmark (3,6,14)

- **√**(4,3,24)
- \checkmark (5,2,18)
- \checkmark (6,1,15)
- \checkmark (6,4,-7)

0 09 0 ()

- 0 ()()()
- ()0 ()
 - ()24 ()()()()()
 - 18 0 0 0 0
 - 0
 - ()

用三元组 存储非0元

稀疏矩阵—三元组顺序表

□顺序存储结构表示

```
#define MAXSIZE 12500 //设非零元个数最大值为12500
typedef struct{
    int i,j; //该非零元的行下标和列下标
    ElemType e;
}Triple; //序
typedef struct{
    Triple data[MAXSIZE+1]; //非零元三元组表,
```

Triple data[MAXSIZE+1]; //非零元三元组表。 data[0]未用

int mu, nu, tu; //矩阵的行数、列数和非零元个数

}TSMatrix;

稀疏矩阵—三元组顺序表

data[0].i,data[0].j,data [0].e分别存放矩阵行 列维数和非零元个数

行列下标

非零元值

		e
6	7	8
1	2	12
1	3	9
3	1	-3
3	6	14
4	3	24
5	2	18
6	1	15
6	4	-7
	1 1 3 3 4 5 6	1 2 1 3 3 1 3 6 4 3 5 2 6 1

data

稀疏矩阵—三元组顺序表

示例

求转置矩阵

己知一个稀疏矩阵的三元组表,求该矩阵转置矩阵的三元组表

思路

- ▶ 将矩阵行、列维数互换;
- ◆ 将每个三元组中的i和j相互调换;
- 重排三元组次序

			i	i	e		
	$\lfloor 0$	0	0	0	0	$0 \rfloor$	7×6
	0	0	14	0	0	0	
	0	0	0 0 14	0	0	0	
N =	0	0	0	0	0	-7	
	9	0	0	24	0	0	
	12	0	0	0	18	0	
	0	0		0	0	15	

(T.data

稀疏矩阵—三元组顺序表

方法一

按矩阵的列序转置

M.data

按T.data中三元组次序依次在M.

应的三元组进行转置

Col从1~n
在M中找
每1列
立1771

2021/12 Idata://cstcsjjg.hrbeu.e

	i	j	e	_		i	j	e	
0	6	7	8		0	7	6	8	
$p \longrightarrow 1$	1	2	12	— р	$q \longrightarrow 1$	1	3	-3	
$p \longrightarrow 2$	1	3	9	— р	$q \longrightarrow 2$	1	6	15	col=1
$p \longrightarrow 3$	3	1	-3	— р	$q \rightarrow 3$	2	1	12	1.
$p \longrightarrow 4$	3	6	14	← р	$q \longrightarrow 4$	2 9	5	18	AV A
p → 5	4	3	24	← р	$q \longrightarrow 5$	3	1	9	col=2
p → 6	5	2	18	← р	6	3	4	24	
p → 7	6	1	15	— р	7	4	6	-7	
p 2 45	6	4	-7	← p	8	6	3	14	

稀疏矩阵—三元组顺序表

按矩阵的列序转置的算法思想

- (1) \diamondsuit T.mu=M.nu, T.nu=M.mu, T.tu=M.tu, col=1, q=1 (转置矩阵T的三元组下标初始化,q指向转置后的 第1个位置) p=1 (指向M的第1个位置)
- (2) 如p所指元素的列下标=col,则送q所指位置,q++
- (3) p++, 若p<=M.tu(1~最后1个非0元),则(2),否(4)
- (4) col++, 如果col<=M.nu, p=1,转(2), 否(5)
- (5) 结束

算法实现

Click

适用于 tu<<mu*tu

时间复杂度为0(nuxtu)

求稀疏矩阵的转置矩阵算法

```
Status TransposeSMatrix(TSMatrix M, TSMatrix &T)
   //采用三元组表存储表示,求稀疏矩阵M的转置矩阵T
 T.mu=M.nu; T.nu=M.mu; T.tu=M.tu; //T的维数和非零元个数
            //M存在非零元
 if(T.tu){
           //T的序号
   q=1;
  for(col=1;col<=M.nu;++col) //扫描M的所有列
     for(p=1;p<=M.tu;++p) //扫描当前M中的每个三元组
        if(M.data[p].j == col) //交换
                 { T.data[q].i=M.data[p].j;
                   T.data[q].j=M.data[p].i;
                   T.data[q].e=M.data[p].e;
                   ++q;
 return OK;
//TransposeMatrix
                       Back
```

稀疏矩阵—三元组顺序表

方法二

按矩阵的行序转置

- ◆按M.data中三元组次序转置,转置结果放入T.data中恰当位置。
- ◆此法关键是要预先确定M.data中每一列第
- 一个非零元在T.data中位置。(cpot[col])
- ◆为确定这些位置,转置前应先求得M.data的每一列中非零元个数。(num[col])

设num[col]记录M中第col列中非0元个数,cpot[col]记录M中第col列的第1个非0元在T中的恰当位置,有:

cpot[1]=1;

cpot[col]=cpot[col-1]+num[col-1] 2\leqcol\leq M.mu

求稀疏矩阵的转置矩阵算法

• col	1	2	3	4	5	6	7
num[col]	2	2	2	1	0	1	0
cpot[col]	1	3	5	7	8	8	9
	_			0	•		

M的列 即T的行

				3	5	7				
	i	j	e	_		-	Í	i	j	e
0	6	7	8				→ 0	7	6	8
p →1	1	2	12			g	1	1	3	-3
$p \rightarrow 2$	1	3	9		>	$<_{ m q}$	/ 2	1	6	15
p-3	3	1	-3			q	→3	2	1	12
p →4	3	6	14			\searrow_q	4	2	5	18
p-5	4	3	24		K	q	→ 5	3	1	9
p —6	5	2	18			\overline{q}	→ 6	3	4	24
\mathbf{p}^{-7}	6	1	15			q	≪7	4	6	-7
$p \rightarrow 8$	6	4	-7			\mathbf{q}	→8	6	3	14
乙姓大学	M.data							T.data		

稀疏矩阵—三元组顺序表

方法二 按矩阵的行序转置的算法思想

- (1) 由M求T的维数和非零元个数
- (2) 统计每一列的非零元个数num[]
- (3) 求每一列第一个非零元在T中的下标号cpot[]
- (4) 设p指向M的第1个非零元
- (5) 求该非零元的列号col,用q指向该列在T中的位置 (q==cpot[col])
- (6) 从M到T转置(p指於 用空间换
- (7) p++, 如p<=M.tu, 取时间 则(8) 结束

算法实现

Click

时间复杂度为O(nu+tu)

求稀疏矩阵的转置矩阵算法

```
Status FastTransposeSMatrix(TSMatrix M, TSMatrix &T)
   //采用三元组表存储表示,求稀疏矩阵M的转置矩阵T
 T.mu=M.nu; T.nu=M.mu; T.tu=M.tu; //T的维数和非零元个数
                                   //M存在非零元
 if(T.tu)
    { for(col=1;col<=M.nu;++col) num[col]=0;
     for(t=1;t\leq M.tu;++t)
        ++num[M.data[t].j]; //M每一列非零元个数
        cpot[1]=1; //第1列中第1个非0元素在T中的位置
     //求第col列中第一个非零元在T.data中的序号
     for(col=2;col<=M.nu;++col)
        cpot[col]=cpot[col-1]+num[col-1];
     for(p=1;p<=M.tu;++p) //从M的第1个至最后1个转置
        { col=M.data[p].j; q=cpot[col]; //拿j找其在T位号q
         T.data[q].i= M.data[p].j; T.data[q].j= M.data[p].i;
         T.data[q].e= M.data[p].e; ++cpot[col];
         }//for
    }//if
 return OK;
   astTransposeMatrix
                           Back
```

稀疏矩阵—三元组顺序表

三元组顺序表

优点

非零元在表中按行序有 序存储,便于进行依 行序处理的矩阵运算

缺点

若需按行号存取某一行 的非零元,则需从头开 始进行查找

稀疏矩阵—十字链表

□引入原因

当矩阵的非零元的个数发生变化时,不宜采用三元组表。如A=A+B,非零元的插入或删除将会引起A dot 中的数据移动,这是顺序结构三元组的弱势 非零元的 行、列、值

□十字链表结点形式

typedef struct OLNode{

int

ElemType e;

struct OLNode *right,*down;

i j e down right

}OLNode; *OLink;

typedef struct

{ Olink *rhead,*chead;

int mu, nu, tu;

}CrossList;

同一列下 一个非零

同一行下 一个非零 元

矩阵的压缩存储

稀疏矩阵—十字链表

矩阵的压缩存储

稀疏矩阵—十字链表

□建立十字链表的思想

$$m=4, n=3, t=5$$

1,1,3

2,2,5

2,3,4

4,1,8

2,1,7

矩阵的压缩存储

稀疏矩阵—十字链表

- □建立十字链表的算法思想
 - (1) 初始化
- (2) 循环输入各非0元的(i,j,e), 直到最后一个, 重复做: (3)-(5)
 - (3) 申请结点,赋值
 - (4) 寻找行i插入位置,插入
 - a)行首,M.rhead[i]==NULL || M.rhead[i]->j>j
 - b)行内,q=M.rhead[i];

(q->right)&&q->right.j<j; q=q->right

(5) 寻找列j插入位置,插入(同行)

建立十字链表的算法实现

Click

时间复杂度为O(t*s), s=max(m.n)

广义表的定义

定义

是线性表的推广,广泛地应用于人工智能等领域的表处理语言LISP语言。一般记作 $LS=(a_1, a_2, ..., a_n)$ $(n\geq 0)$

术语

名称: LS

长度: n

原子: a_i是单个元素,一般用小写字母a表示

子表: a_i是广义表,一般用大写字母A表示

表头(Head): 非空广义表 LS的第一个数据元素a₁

表尾(Tail): 非空广义表 LS除第一个数据元素外的

其余数据元素构成的广义表 (a2, ..., an)

广义表的定义

特性

数据元素有固定的相对次序 元素可以是子表,而子表的元素还可是子表 广义表可以为其它列表共享,可以是一个递归 的表

A=()

F=(b,(c,d,e))

E=(b,(c),(d,e))

D=(E,A,F)

C=(A,D,F)

B=(a,B)=(a,(a,(a,v...)))

广义表的定义

操作人长度

A=() A的长度为0

F=(b,(c,d,e)) F的长度为2

E=(b,(c),(d,e)) E的长度为3

D=(**E**,**A**,**F**) **D**的长度为3

C=(A,D,F) C的长度为3

B=(a,B)=(a,(a,(a,...))) B的长度为2

广义表中元素的"长度"应由最外层括弧中的"逗号" 来定

广义表的定义

操作

取表头、取表尾 F=(b,(c,d,e))

GetHead(F)=b

GetTail(F)=((c,d,e))=F1

GetHead(F1)=(c,d,e)=F2, GetTail(F1)=()

GetHead(F2)=c, GetTail(F2)=(d,e)=F3

GetHead(F3)=d, GetTail(F3)=(e)=F4

GetHead(F4)=e, GetTail(F4)=()

- ❖ 两个操作只对非空表有意义;
- * 取表头的结果可能是原子,也可能是个广义表;
- * 取表尾"必定"是个广义表,但可能是个空的广义表。

广义表的存储结构

- 顺序存储? ——不确定因素、缺乏灵活性、操作复杂
- □采用链式存储结构
- □两种结构的结点

表结点: 用来表示子表

原子结点:用来表示元素

表尾指针

广义表的存储结构

广义表的存储结构

Harbin Engineering University

广义表的存储结构

2021/12/14http://cstcsjjg.hrbeu.edu.cn/

本章小结

- ◆ 了解数组的类型定义及其在高级语言中实现的方法
- ◆ 数组的特点是一种多维的线性结构,较多的操作是进行存取或修改某个元素的值,插入和删除操作较少,因此它主要采用顺序存储结构。
- ◆ 介绍了稀疏矩阵的两种表示方法。至于在具体应用问题中采用哪一种表示方法,取决于该矩阵主要进行什么样的运算
- ◆ 广义表是一种递归定义的线性结构,因此它兼有线性结构和层次结构的特点

