TD 1

Robot à câbles - Sujet

Présentation

Les robots parallèles à câbles sont une structure de robots apparus au début des années 2000. Dans ce système, la plate-forme est déplacée et orientée par rapport à une référence fixe dans toutes les directions de l'espace par l'enroulement ou le déroulement de plusieurs câbles (figure 1.1). Cette structure permet à la plate-forme d'atteindre une grande zone de travail avec une très grande précision dans le positionnement comme dans l'orientation.

Les performances attendues pour ce robot à câbles sont précisées dans le tableau 1.1.

Exigences	Niveau	Remarques
Charge déplacée	≤ 616 kg	Valeur limitée par la résistance des
		câbles
Précision de positionnement	$\leq 10 \mathrm{mm}$	Dans les trois directions de l'espace
Vitesse de translation	$\leq 1\mathrm{ms^{-1}}$	Selon les trois directions de l'espace
Accélération de translation	$\leq 0.5 \mathrm{m s^{-2}}$	Selon les trois directions de l'espace

Concours Centrale-Supélec 2023 - TSI.

FIGURE 1.1 - Robot à câbles CAROCA

Table 1.1 – Performances attendues pour le robot à câbles au niveau de la plateforme suspendue

Étude de l'asservissement de la longueur d'un câble pour gérer le mouvement

Objectif

Déterminer les réglages de la commande asservie des moteurs permettant d'assurer l'enroulement adéquat des câbles.

Le programme de pilotage tient compte de l'allongement relatif des câbles suite aux efforts de traction lors du déplacement de la plate-forme chargée. Il génère alors, pour chacun des huit moteurs, des consignes de position et de vitesse qui sont envoyées aux variateurs de vitesse qui alimentent les moteurs afin d'assurer un positionnement de la plate-forme conforme aux attentes de l'utilisateur. L'ensemble composé d'un variateur et du moteur associé est appelé moto-variateur pour la suite. L'algorithme implanté dans le variateur est de type commande vectorielle, ce qui rend le moto-variateur équivalent à un système du premier ordre avec une bande passante à $-3\,\mathrm{dB}$ de $200\,\mathrm{Hz}$. Le modèle défini figure est adopté pour la suite.

FIGURE 1.2 – Schéma-bloc de la commande en position du moteur

Notations

▶ $\Theta_c(p)$ et $\Theta(p)$ sont respectivement les images de la consigne de position angulaire $\theta_c(t)$ (en rad) issue du programme de pilotage et de la position angulaire effective

- $\theta(t)$ du moteur (en rad). $\Omega(p)$ est l'image de la vitesse angulaire $\omega(t) = \dot{\theta}(p)$ du moteur (grandeur temporelle en rad s⁻¹).
- ▶ Le capteur de position (codeur optique incrémental associé à une unité de comptage sur 13 bits) est de gain c = 1304 point rad⁻¹.
- ▶ L'adaptateur est de gain K_a , grandeur en point rad⁻¹.
- ▶ Le correcteur est de type proportionnel de gain a, ce qui permet de délivrer une tension $u_{c\Omega}(t)$ proportionnelle à l'écart $\varepsilon(t)$. Un pré-réglage a permis de choisir la valeur $a = 43.4 \,\mathrm{mV}$ point⁻¹.
- ► Le comportement du motovariateur est assimilé à un premier ordre de gain $b = 31.4 \,\mathrm{rad}\,\mathrm{s}^{-1}\,\mathrm{V}^{-1}$ et de constante de temps $\tau = 796\,\mu\mathrm{s}$.

Question 1 Justifier la valeur numérique proposée pour la constante de temps τ .

Dans la structure de l'asservissement de position de la figure 1.2, l'erreur est définie $par\mu(t) = \theta_c(t) - \theta(t)$ (grandeur en rad) et l'écart par $\varepsilon(t) = r_c(t) - r_a(t)$ (grandeur en point).

Question 2 On souhaite que l'erreur $\mu(t)$ soit nulle quand l'écart $\varepsilon(t)$ l'est : en déduire la relation entre K_a et ε .

Question 3 Après avoir donné l'expression de la fonction de transfert en boucle ouverte $H_{bo}(j\omega)$, tracer son diagramme asymptotique de Bode (courbes de gain et de phase en précisant la valeur de la cassure et le gain associé) et esquisser le plus précisément possible l'allure des courbes réelles de réponse fréquentielle.

Question 4 Relever sur la courbe tracée à la question précédente la valeur de la marge de phase $M\varphi$. Sachant qu'on souhaite que cette marge soit de $M\varphi=45^\circ$, conclure quant au réglage de a.

Question 5 Déterminer l'expression de l'image $\mu(p)$ de l'erreur en fonction de l'image $\Theta_c(p)$ de la consigne angulaire et de la fonction de transfert en boucle ouverte $H_{bo}(p)$ de l'asservissement.

La précision du système s'évalue par l'erreur en régime permanent pour des consignes de position de types :

• échelon d'amplitude θ_0 (en rad) : l'erreur en régime permanent, notée μp (en rad), est dite « statique » ;

► rampe de pente ω_0 (en rad s⁻¹) : l'erreur en régime permanent, notée μv (en rad s⁻¹), est dite « de poursuite ».

Les exigences de l'utilisateur imposent que ces deux erreurs doivent être inférieures à 0,1% de la consigne.

Question 6 Déterminer la valeur de l'erreur statique μ_p . Déterminer l'expression de l'erreur de poursuite μ_v en fonction des gains a, b et c et de la pente ω_0 . Faire l'application numérique et vérifier si les exigences de l'utilisateur sont vérifiées.

TD 1

Robot à câbles - Corrigé

Présentation

Étude de l'asservissement de la longueur d'un câble pour gérer le mouvement

Objectif

Déterminer les réglages de la commande asservie des moteurs permettant d'assurer l'enroulement adéquat des câbles.

Question 1 Justifier la valeur numérique proposée pour la constante de temps τ .

Correction

Si la bande passant à -3 dB est de 200 Hz, on a une pulsation de cassure à 200 Hz soit $\omega_{\tau}=\frac{1}{\tau}=2\times\pi\times200$ et $\tau=7,9\times10^{-4}=796~\mu s$.

Question 2 On souhaite que l'erreur $\mu(t)$ soit nulle quand l'écart $\varepsilon(t)$ l'est : en déduire la relation entre K_a et ε .

Correction

Dans les conditions citées ci-dessus, il faut donc nécessairement $K_a = c$.

Question 3 Après avoir donné l'expression de la fonction de transfert en boucle ouverte $H_{bo}(j\omega)$, tracer son diagramme asymptotique de Bode (courbes de gain et de phase en précisant la valeur de la cassure et le gain associé) et esquisser le plus précisément possible l'allure des courbes réelles de réponse fréquentielle.

Correction

Concours Centrale-Supélec 2023 - TSI.

FIGURE 1.3 – Robot à câbles CAROCA

Question 4 Relever sur la courbe tracée à la question précédente la valeur de la marge de phase $M\varphi$. Sachant qu'on souhaite que cette marge soit de $M\varphi=45^\circ$, conclure quant au réglage de a.

Correction

La marge de phase est mesurée à enivron 45°. Le choix de *a* est donc convenable.

Question 5 Déterminer l'expression de l'image $\mu(p)$ de l'erreur en fonction de l'image $\Theta_c(p)$ de la consigne angulaire et de la fonction de transfert en boucle ouverte $H_{bo}(p)$ de l'asservissement.

Correction

Pour déterminer l'erreur vis-à-vis de la consigne, il faudrait déplacer le comparateur vers la gauche. Cela revient à avoir un asservissement à retour unitaire en passant le gain c dans la chaîne directe.

Chaine directe. On a donc
$$\mu(p) = \frac{\Theta_c(p)}{1 + FTBO(p)}$$
 avec $FTBO(p) = \frac{abc}{p(1 + \tau p)}$. Remarque: on peut aussi exprimer $\varepsilon(p) = \frac{R_c(p)}{1 + FTBO(p)} = \frac{\Theta_c(p)a}{1 + FTBO(p)}$. On a donc $\varepsilon(p) = a\mu(p)$.

Question 6 Déterminer la valeur de l'erreur statique μ_p . Déterminer l'expression de l'erreur de poursuite μ_v en fonction des gains a, b et c et de la pente ω_0 . Faire l'application numérique et vérifier si les exigences de l'utilisateur sont vérifiées.

Correction

La FTBO est de classe 1 et il n'y a pas de perturbation. On a donc $\mu_p=0$ et $\mu_v=\frac{\omega_0}{abc}$. Pour $\omega_0=1$, on a $\mu_v=0$, 05%. Le cahier des charges est respecté.

TD₂

Exosquelette lombaire - Sujet

Mise en situation

On s'intéresse à un banc d'essai permettant de valider un actionneur linéaire. Dans ce cadre, il est nécessaire de proposer un modèle de connaissance de l'asservissement en force, le valider par comparaison avec une mesure sur le banc d'essai et vérifier les performances de l'actionneur linéaire sur ce banc d'essai. Ce modèle permettra de valider une commande pour le cas spécifique étudié.

Concours Centrale-Supélec 2023 – MP.

Figure 1.4 – Exosquelette lombaire Japet

Le schéma-blocs est donné dans la figure 1.4.

FIGURE 1.5 – Schéma-blocs de l'asservissement de force développée par un actionneur linéaire placé sur le banc d'essai

Réglage de la boucle d'asservissement de la vitesse angulaire du moteur

Le schéma-blocs décrivant la structure de l'asservissement de la vitesse angulaire du moteur est fourni sur la figure 1.5. Cet asservissement doit respecter le cahier des charges fourni dans le tableau 1.2.

Critère concepteur	Niveau
Marge de phase	≥ 80°
Erreur en régime permanent pour une perturbation en éche-	Nulle
lon constante	
Pulsation de coupure à 0 dB	$\omega_{0 \text{ dB}} = 10 \text{rad} \cdot \text{s}^{-1}$

Le choix d'un correcteur proportionnel intégral est fait afin de diminuer l'influence de la perturbation en couple modélisée par $C_r(p)$. La fonction de transfert du correcteur de la boucle d'asservissement en vitesse angulaire est noté $C_v(p)$, tel que $C_v(p) = K_i \frac{1+\tau_i p}{\tau_i p}$.

On note $H_{\text{BOv}}(p) = \frac{\Omega_m(p)}{\varepsilon_v(p)}$ la fonction de transfert en boucle ouverte de l'asservissement de vitesse angulaire du moteur.

FIGURE 1.6 – Schéma-blocs de la boucle d'asservissement de la vitesse angulaire du moteur électrique

TABLE 1.2 – Critères concepteur pour la boucle d'asservissement de la vitesse angulaire

Question 1 Déterminer l'expression littérale de la phase de $H_{BOv}(i\omega)$. En déduire la valeur numérique de τ_i respectant les critères concepteur de la boucle de vitesse.

Le diagramme de Bode de la boucle ouverte $H_{BOv}(p)$, avec $K_i = 1$ et τ_i déterminé à la question 1, est donné sur la figure 1.6.

Figure 1.7 – Diagramme de Bode de $H_{\mathrm{BOv}}(p)$

Question 2 Déterminer la valeur numérique de K_i afin que la boucle d'asservissement de vitesse respecte les critères concepteur du tableau 1.2.

Simplification du modèle de connaissance

Il est possible de mettre le schéma-blocs de la figure 1.4 sous la forme du schéma-blocs de la figure 1.7, afin de faciliter la prévision des performances simulées.

FIGURE 1.8 – Schéma-blocs de l'asservissement de la force développée par un actionneur linéaire

Question 3 Déterminer les fonctions de transfert $H_8(p)$ et $H_9(p)$ en fonction de K_5 , I_{eq} et $H_6(p)$. Ne pas remplacer K_5 et $H_6(p)$ par les expressions trouvées précédemment.

Pour faciliter l'analyse des performances simulées, le schéma-blocs de la figure 1.7 est adapté afin de disposer d'un schéma-blocs à retour unitaire, tel que décrit sur la figure 1.8.

FIGURE 1.9 – Schéma-blocs de l'asservissement de la force développée par un actionneur linéaire à retour unitaire

Question 4 Déterminer l'expression du gain K_{10} en fonction de K_{capt} et de K_{res} .

Question 5 Déterminer la fonction de transfert G(p) en fonction de $H_2(p)$, $I_{\rm eq}$, $H_8(p)$, $H_9(p)$ et $K_{\rm res}$. Ne pas remplacer $H_2(p)$, $H_8(p)$ et $H_9(p)$ par les expressions trouvées précédemment.

Pour la suite, on donne la fonction de transfert G(p), obtenue avec les valeurs de réglage correctes déterminées aux questions 1 et 2,

$$G(p) = \frac{F(p)}{\Omega_c(p)} = \frac{1 + \tau_i p}{p} \frac{1, 2 \times 10^{-5}}{2 \times 10^{-4} + 9, 7 \times 10^{-5} p + 5, 3 \times 10^{-6} p^2}.$$

Analyse des performances de l'asservissement en force développée par un actionneur linéaire

Il est proposé dans cette section d'analyser les performances simulées de l'asservissement en force dont un extrait du cahier des charges est présenté dans le tableau 1.3.

Id	Exigence	Critère	Niveau
Id1.1	Stabilité	Marge de phase	≥ 60°
		Marge de gain	> 20 dB
		Dépassement maximal	< 2,5%
Id1.2	Précision	Erreur en régime permanent pour une entrée	< 1%
		en échelon	
Id1.3	Rapidité	Temps de réponse à 5% pour une consigne en	$tr_{5\%} < 1 s$
101.5		échelon de force de 40 N	
		Vitesse maximale de montée de la force de trac-	$100 \text{ N} \cdot \text{s}^{-1}$
		tion	

Table 1.3 – Extrait du cahier des charges fonctionnel de l'actionneur linéaire sur le banc d'essai

On note $H_{\text{BO f}}(p) = \frac{F(p)}{\varepsilon_f(p)}$ la fonction de transfert en boucle ouverte de l'asservissement en force développé par un actionneur linéaire. Dans un premier temps, le choix d'un correcteur proportionnel $C(p) = K_{\text{cor}}$ est réalisé. Le diagramme de Bode de la fonction de transfert $H_{BOf}(p) = \frac{F(p)}{\varepsilon_f(p)} = K_{\text{cor}} K_{10}G(p)$, avec $K_{\text{cor}} = 1$ et la valeur de τ_i déterminée à la question 1 , est donné sur la figure 1.9.

Question 6 Déterminer la valeur numérique limite de K_{cor} afin que la boucle d'asservissement de force respecte les critères de marge de phase et de gain du tableau 1.3.

Les courbes sur la figure 1.10 représentent les réponses temporelles du modèle de connaissance de la figure 1.4, avec les correcteurs $C_v(p)$ et C(p) correctement réglés, et de l'expérimentation sur le banc d'essai pour une consigne en échelon de force de 40 N.

Question 7 Quel critère du tableau des exigences (tableau 1.3) n'est pas pris en compte dans le modèle de connaissance? D'après la courbe expérimentale, ce critère est-il respecté par le système réel?

FIGURE 1.10 – Diagramme de Bode de $H_{BOf}(p)$

FIGURE 1.11 – Réponses temporelles du modèle et expérimentale, pour une consigne en échelon de force de 40 N

TD₂

Exosquelette lombaire - Corrigé

Mise en situation

On s'intéresse à un banc d'essai permettant de valider un actionneur linéaire. Dans ce cadre, il est nécessaire de proposer un modèle de connaissance de l'asservissement en force, le valider par comparaison avec une mesure sur le banc d'essai et vérifier les performances de l'actionneur linéaire sur ce banc d'essai. Ce modèle permettra de valider une commande pour le cas spécifique étudié.

Concours Centrale-Supélec 2023 - MP.

FIGURE 1.12 – Exosquelette lombaire Japet

Le schéma-blocs est donné dans la figure 1.4.

FIGURE 1.13 – Schéma-blocs de l'asservissement de force développée par un actionneur linéaire placé sur le banc d'essai

Réglage de la boucle d'asservissement de la vitesse angulaire du moteur

Le schéma-blocs décrivant la structure de l'asservissement de la vitesse angulaire du moteur est fourni sur la figure 1.5. Cet asservissement doit respecter le cahier des charges fourni dans le tableau 1.2.

Critère concepteur	Niveau
Marge de phase	≥ 80°
Erreur en régime permanent pour une perturbation en éche-	Nulle
lon constante	
Pulsation de coupure à 0 dB	$\omega_{0 \text{ dB}} = 10 \text{rad} \cdot \text{s}^{-1}$

TABLE 1.4 – Critères concepteur pour la boucle d'asservissement de la vitesse an-

gulaire

Le choix d'un correcteur proportionnel intégral est fait afin de diminuer l'influence de la perturbation en couple modélisée par $C_r(p)$. La fonction de transfert du correcteur de la boucle d'asservissement en vitesse angulaire est noté $C_v(p)$, tel que $C_v(p) = K_i \frac{1+\tau_i p}{\tau_i v}$.

On note $H_{\text{BOv}}(p) = \frac{\Omega_m(p)}{\varepsilon_v(p)}$ la fonction de transfert en boucle ouverte de l'asservissement de vitesse angulaire du moteur.

d'asservissement de la vitesse angulaire du moteur électrique

FIGURE 1.14 – Schéma-blocs de la boucle

Question 1 Déterminer l'expression littérale de la phase de $H_{BOv}(i\omega)$. En déduire la valeur numérique de τ_i respectant les critères concepteur de la boucle de vitesse.

Correction

On a
$$H_{\text{BOv}}(i\omega) = C_v(p)K_1 \frac{1}{R}K_3 \frac{1}{I_{\text{eq}}p} = \frac{K_i K_1 K_3}{RI_{\text{eq}}} \frac{1+\tau_i p}{\tau_i p^2}.$$

On a
$$\varphi(\omega) = \arg\left(\frac{K_i K_1 K_3}{R I_{\text{eq}}}\right) + \arg\left(1 + \tau_i p\right) - \arg\left(\tau_i p^2\right) = \arctan \tau_i \omega - 180^\circ.$$

On souhaite une marge de phase supérieure à 80° ; donc $M_\varphi = \varphi(\omega) + 180 = \arctan \tau_i \omega \ge 80^\circ$. $\arctan \tau_i \omega \ge 80^\circ \Rightarrow \tau_i \omega \ge \tan 80 \Rightarrow \tau_i \ge \frac{\tan 80}{\omega_0 \, \mathrm{dB}} \Rightarrow \tau_i \ge 0,57 \, \mathrm{s}$.

Le diagramme de Bode de la boucle ouverte $H_{BOv}(p)$, avec $K_i = 1$ et τ_i déterminé à la question 1, est donné sur la figure 1.6.

FIGURE $H_{\text{BOv}}(p)$

Question 2 Déterminer la valeur numérique de K_i afin que la boucle d'asservissement de vitesse respecte les critères concepteur du tableau 1.2.

Correction

Pour $\omega_{0\,\mathrm{dB}}=10\,\mathrm{rad\,s^{-1}}$ on mesure un gain de 80 dB. Il faut donc déterminer K_i tel que $20 \log K_i = -80 \text{ soit } K_i = 1 \times 10^{-4} \text{ V s rad}^{-1}.$

Les critères de marge et de pulsation de coupure sont respectés (on a tout fait pour). L'erreur statique est nulle car il y a un intégarteur dans le correcteur (elle sera nulle à condition que la perturbation soit constante).

Simplification du modèle de connaissance

Il est possible de mettre le schéma-blocs de la figure 1.4 sous la forme du schéma-blocs de la figure 1.7, afin de faciliter la prévision des performances simulées.

Question 3 Déterminer les fonctions de transfert $H_8(p)$ et $H_9(p)$ en fonction de K_5 , I_{eq} et $H_6(p)$. Ne pas remplacer K_5 et $H_6(p)$ par les expressions trouvées précédemment.

Xavier Pessoles Sciences Industrielles de l'Ingénieur – MP

Figure 1.16 - Schéma-blocs de l'asservissement de la force développée par un actionneur linéaire

Correction

En décalant le point de prélèvement du capteur de vitesse d'un bloc vers la droite, on se

retrouve avec $\frac{1}{H_6(p)}$ dans la boucle de retour.

On sort le bloc $\frac{1}{I_{\rm eq}p}$ de la « petite » boucle et $\frac{1}{I_{\rm eq}p}$ se retrouve aussi dans la pboucle de

En identifiant, on a alors $H_9(p) = \frac{1}{H_6(p)}$ et en utilisant la formule de Black, on a $H_8(p) =$

$$\frac{H_6(p)}{1 + \frac{H_6(p)K_5}{I_{\rm eq}p}} = \frac{H_6(p)I_{\rm eq}p}{I_{\rm eq}p + H_6(p)K_5}$$

Pour faciliter l'analyse des performances simulées, le schéma-blocs de la figure 1.7 est adapté afin de disposer d'un schéma-blocs à retour unitaire, tel que décrit sur la figure

FIGURE 1.17 - Schéma-blocs de l'asservissement de la force développée par un actionneur linéaire à retour unitaire

Question 4 Déterminer l'expression du gain K_{10} en fonction de K_{capt} et de K_{res} .

Correction

Question 5 Déterminer la fonction de transfert G(p) en fonction de $H_2(p)$, I_{eq} , $H_8(p)$, $H_9(p)$ et K_{res} . Ne pas remplacer $H_2(p)$, $H_8(p)$ et $H_9(p)$ par les expressions trouvées précédemment.

Correction

Pour la suite, on donne la fonction de transfert G(p), obtenue avec les valeurs de réglage correctes déterminées aux questions 1 et 2,

$$G(p) = \frac{F(p)}{\Omega_c(p)} = \frac{1 + \tau_i p}{p} \frac{1, 2 \times 10^{-5}}{2 \times 10^{-4} + 9, 7 \times 10^{-5} p + 5, 3 \times 10^{-6} p^2}.$$

Analyse des performances de l'asservissement en force développée par un actionneur linéaire

Il est proposé dans cette section d'analyser les performances simulées de l'asservissement en force dont un extrait du cahier des charges est présenté dans le tableau 1.3.

Id Exigence Critère Niveau Id1.1 ≥ 60° Stabilité Marge de phase > 20 dBMarge de gain Dépassement maximal < 2,5% Id1.2 Précision Erreur en régime permanent pour une entrée < 1% en échelon Rapidité Temps de réponse à 5% pour une consigne en $tr_{5\%} < 1 s$ Id1.3 échelon de force de 40 N Vitesse maximale de montée de la force de trac- $100 \text{ N} \cdot \text{s}^{-1}$

fonctio le banc

On note $H_{\text{BO f}}(p) = \frac{F(p)}{\varepsilon_f(p)}$ la fonction de transfert en boucle ouverte de l'asservissement en force développé par un actionneur linéaire. Dans un premier temps, le choix d'un correcteur proportionnel $C(p) = K_{\text{cor}}$ est réalisé. Le diagramme de Bode de la fonction de transfert $H_{BOf}(p) = \frac{F(p)}{\varepsilon_f(p)} = K_{\text{cor}} K_{10}G(p)$, avec $K_{\text{cor}} = 1$ et la valeur de τ_i déterminée à la question 1, est donné sur la figure 1.9.

FIGURE $H_{BOf}(z)$

Pulsation (rad-s $^{-1}$)

Question 6 Déterminer la valeur numérique limite de K_{cor} afin que la boucle d'asservissement de force respecte les critères de marge de phase et de gain du tableau 1.3.

FIGURE 1.19 – Réponses temporelles du modèle et expérimentale, pour une consigne en échelon de force de 40 N

Les courbes sur la figure 1.10 représentent les réponses temporelles du modèle de connaissance de la figure 1.4, avec les correcteurs $C_v(p)$ et C(p) correctement réglés,

et de l'expérimentation sur le banc d'essai pour une consigne en échelon de force de 40 N.

Correction

Question 7 Quel critère du tableau des exigences (tableau 1.3) n'est pas pris en compte dans le modèle de connaissance? D'après la courbe expérimentale, ce critère est-il respecté par le système réel?

Correction

Contrôle d'une machine de forage – Sujet

D'après Concours CCINP 2023 - MP.

On travaille avec le schéma-bloc simplifié de la figure 1.11 où K_0 est un gain d'adaptation fixe.

FIGURE 1.20 – Schéma-bloc de l'asservissement en vitesse simplifié

On prend dans un premier temps un correcteur C(p) proportionnel : $C(p) = K_p$.

Question 1 Exprimer la fonction de transfert en boucle ouverte $G_{BO}(p) = \frac{V(p)}{\varepsilon(p)}$.

Question 2 Avec un correcteur proportionnel, peut-on satisfaire l'exigence de précision de vitesse indiquée à l'exigence 2.1.1.? Justifier.

On utilise dans un second temps un correcteur proportionnel intégral : $C(p) = K_P \left(1 + \frac{1}{T_i p}\right)$.

Question 3 L'exigence de précision sur la vitesse est-elle satisfaite? Justifier.

Ce correcteur est initialement réglé avec les valeurs suivantes : $K_p = 1$ et $T_i = 10$ s.

Question 4 Tracer les diagrammes de Bode asymptotique et réel de ce correcteur. Détailler les constructions.

Pour le réglage de la question précédente, on donne le diagramme de Bode de la fonction de transfert en boucle ouverte ainsi corrigée sur le DR3.

Question 5 Affiner le réglage du correcteur (sans modifier la valeur de T_i) en proposant une valeur de K_p permettant de garantir la marge de phase spécifiée dans l'exigence 2.1.1. On répondra à cette question sur la figure précente.

« requirement » Performances de l'axe

Id = '2.1.1'

Text = 'La vitesse de l'axe d'avance doit respecter les performances suivantes :

- précision : erreur staique nulle
 stabilité : marges de phase de
- 30° et de gain de 40dB'

Enfin, on souhaite valider ou invalider l'hypothèse faite en début de cette sous-partie concernant la non-influence de l'amortisseur sur les performances d'asservissement en vitesse d'avance de la table de forage. Les diagrammes de Bode de la figure suivante, illustrent la fonction de transfert en boucle ouverte corrigée sans (en train plein) et avec amortisseur (en pointillés).

Question 6 Sur quelle(s) performance(s) la présence de l'amortisseur peut-elle influer? Justifier que le correcteur choisi permet de répondre aux exigences 2.1.1 en présence de l'amortisseur.

Contrôle d'une machine de forage – Corrigé

D'après Concours CCINP 2023 - MP.

On travaille avec le schéma-bloc simplifié de la figure 1.11 où K_0 est un gain d'adaptation fixe.

FIGURE 1.21 – Schéma-bloc de l'asservissement en vitesse simplifié

On prend dans un premier temps un correcteur C(p) proportionnel : $C(p) = K_p$.

Question 1 Exprimer la fonction de transfert en boucle ouverte $G_{BO}(p) = \frac{V(p)}{\varepsilon(p)}$.

Correction

Question 2 Avec un correcteur proportionnel, peut-on satisfaire l'exigence de précision de vitesse indiquée à l'exigence 2.1.1.? Justifier.

Correction

On utilise dans un second temps un correcteur proportionnel intégral : $C(p) = K_P \left(1 + \frac{1}{T_i p}\right)$.

Question 3 L'exigence de précision sur la vitesse est-elle satisfaite? Justifier.

Correction

Ce correcteur est initialement réglé avec les valeurs suivantes : $K_p = 1$ et $T_i = 10$ s.

Question 4 Tracer les diagrammes de Bode asymptotique et réel de ce correcteur. Détailler les constructions.

Correction

Pour le réglage de la question précédente, on donne le diagramme de Bode de la fonction de transfert en boucle ouverte ainsi corrigée sur le DR3.

Question 5 Affiner le réglage du correcteur (sans modifier la valeur de T_i) en proposant une valeur de K_p permettant de garantir la marge de phase spécifiée dans l'exigence 2.1.1. On répondra à cette question sur la figure précente.

Correction

« requirement » Performances de l'axe

Id = '2.1.1'

Text = 'La vitesse de l'axe d'avance doit respecter les performances suivantes :

- précision : erreur staique nulle
- stabilité : marges de phase de 30° et de gain de 40dB'

Enfin, on souhaite valider ou invalider l'hypothèse faite en début de cette sous-partie concernant la non-influence de l'amortisseur sur les performances d'asservissement en vitesse d'avance de la table de forage. Les diagrammes de Bode de la figure suivante, illustrent la fonction de transfert en boucle ouverte corrigée sans (en train plein) et avec amortisseur (en pointillés).

Question 6 Sur quelle(s) performance(s) la présence de l'amortisseur peut-elle influer? Justifier que le correcteur choisi permet de répondre aux exigences 2.1.1 en présence de l'amortisseur.

Correction

