Глубокое обучение и вообще

Соловей Влад

9 марта 2021 г.

Посиделка 15: Воспоминания

Agenda

- Нейронные ячейки наши кубики
- Хаки специфичные под нейронки
- Технические хаки

А что такое нейросеть? Что мы можем назвать нейросетью в текущем понимании индустрии?

Давайте наберем нейронные ячейки? Накидываем!

Dense

Наша база - полносвязная ячейки. Почему она полносвязная? Чем она характеризуется? сколько нам надо слоев на практике?

Dense

Наша база - полносвязная ячейки.

Функции активации

А какие бывают функции активации? Как их выбирать? На что влияет их выбор?

Функции активации

Наша база - полносвязная ячейки.

Название функции	$oldsymbol{\Phi}$ ормула $f(x)$	$oldsymbol{\Pi}$ роизводная $f'(x)$			
Логистический сигмоид σ	$\frac{1}{1+e^{-x}}$	$f(x)\left(1-f(x) ight)$			
Гиперболический тангенс tanh	$\frac{1+e^{-x}}{e^x-e^{-x}}$ $\frac{e^x-e^{-x}}{e^x+e^{-x}}$	$1 - f^2(x)$			
SoftSign	$\frac{x}{1+ x }$	$\frac{1}{(1+ x)^2}$			
Ступенька (функция Хевисайда)	$\begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$	0			
SoftPlus	$\log\left(1+e^x\right)$	$\frac{1}{1+e^{-x}}$			
ReLU	$\begin{cases} 0, & x < 0 \\ x, & x \ge 0 \end{cases}$	$\begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$			
Leaky ReLU, Parameterized ReLU	$\begin{cases} ax, & x < 0 \\ x, & x \ge 0 \end{cases}$	$\begin{cases} a, & x < 0 \\ 1, & x \ge 0 \end{cases}$			
ELU	$\begin{cases} \alpha \left(e^{x} - 1 \right), & x < 0 \\ x, & x \ge 0 \end{cases}$	$\begin{cases} f(x) + \alpha, & x < 0 \\ 1, & x \ge 0 \end{cases}$			

Сверточная часть

Давайте обсудим тут чем мы можем управлять:

Сверточная часть

Когда и зачем мы можем использовать каждый из пулингов?

													IVIAX	4	7	9
2	4	5	7	3	-2		2	4	5	7	3	-2	Pooling			
-2	0	0	4	9	9		-2	0	0	4	9	9	\longrightarrow	1	6	
1	0	-1	2	1	1		1	0	-1	2	1	1		4	5	3
1	1	6	3	7	2		1	1	6	3	7	2				
3	4	0	-2	3	0		3	4	0	-2	3	0	Average Pooling	1	4	4,8
3	0	5	1	0	0		3	0	5	1	0	0		0,8	2,5	2,8
Feature Map Pool size=2										2,5	1	0,8				

Анпуллинг

Анпуллинг

Сверточная часть

А это что за зверь и почему?

ImageNet features extractor

Реккурентная часть

А в чем идея реккурентных ячеек? Что нам дает реккуретность?

Обучение и градиентный спуск

Градиентые спуски

Какой главный параметр градиентных спусков?

- 1. SGD
- 2. Momentum SGD
- 3. RMSprop
- 4. Adam

Обратное распространение ошибки

А это о чем? Чем он лучше прямого?

Эвристики

Эвристики

Ага... А что это такое и какие они есть?

Архитектуры

Архитектуры

Вспоминаем архитектуры, которые мы смотрели? Чем архитектура отличается от ячейки?

- 1. Inseption
- 2. Resnet
- 3. Autoencoders
- 4. Unet
- 5. GAN
- 6. W2V (Embeddings)

Что-то еще?

Техническая часть

Умеем

- 1. Задавать модели по разному
- 2. Использовать разные callback (а какие?)
- 3. Брать куски моделей и их применять
- 4. Использовать кастомные кусочки
- 5. Дебажить код (ну мы точно пытались)