Supplementary Material: Hierarchical Automotive Threat Database

Anonymous Authors

Fig. 1: The proposed hierarchical framework to describe automotive cybersecurity threats.

A. Methodology and Hierarchical Structure

In response to the lack of high-quality automotive threat database, we construct a new threat database that is improving constantly by collecting actual threats that the automotive industry is facing. Particularly, we use a hierarchical framework to present the automotive-specific threats (in Fig.1), in which the involved concepts are explained as follows:

- Threat Description (TD). A threat description (TD) is the smallest element in the framework. It is a set of natural language sentences to describe the details of one particular threat, including the specific Attack Description (AD), the Root Cause (RC) of the threat, the Security Testing Approach (STA) to identify the threat, and the MitiGation (MG) to prevent the threat.
- Threat Code (TC). A threat code (TC) is a group of TDs under a particular category. Here the word "code" comes from the qualitative analysis methodologies [13], in which the process of coding is to give labels to the qualitative data (e.g., interview texts). For example, in Fig.1, Code.1 IVI is the code containing the threat descriptions under the in-vehicle infotainment (IVI) ECU.
- Threat Theme (TT). A threat theme (TT) is a group of threat codes following a particular high-level classification logic. For example, in Fig.1, the *Threat Theme: ECUs* includes the threat codes representing the in-vehicle *ECUs* (e.g., IVI, ADAS), while *Threat Theme: Interface* includes threats related to vehicular interfaces (e.g., OBD, USB).
- Threat Knowledge Graph (TKG). We derive the concept of knowledge graph (KG) [10, 15, 18] to further represent the relations between the threat codes. Specifically, a knowledge graph can be represented by a set of triplets: (head entity, relation, tail entity), meaning that the head entity and the tail entity has the particular relation. In our scenario, the entities are the threat codes, and the triplet (TC.1, relation, TC.2) represents the logical relation between the two codes. For example, the triplet (Code.1 IVI, vulnerable to threats in, Code.6 USB) connects the code IVI and code USB because

the USB interface is a common interface on IVI.

B. Explainations on TTs and TCs

The final result of our threat database is shown in Fig.2, with the following specific threat theme and codes:

- T1: General Requirements. The various ECUs can share a set of theats that are general to various implementations, and this T1 describes these common threats from five threat codes: C1.Hardware, C2.Software, C3.RTOS, C4.Complex OS, and C5.Data. The advantage of setting up this theme is that we do not need to repeat these common threats in the specific ECU categories. For example, secure boot (C2-4 in Tab.II) is the de facto mitigation that should be deployed on various types of ECUs. There are 23 threat descriptions under T1.
- T2: In-Vehicle Components. T2 describes the threats to specific components in the vehicle, including the threats on various ECUs and on the In-Vechile Network (IVN). T2 contains the following 8 codes: C6.IVI, C7.Telematics, C8.Sensor, C9.Gateway and Zone Controller, C10.ADAS, C11.IVN, C12.BMS, and C13.Other ECUs. These codes focus on the threats that are particular to the function of the ECU. For example, the C6-10: browser threat, is the very specific threat that exists in the IVI but not on other ECUs, because the browser module has been widely used in the IVI system to support rich infotainment functions. There are 36 threat descriptions under T2.
- T3: Outside-vehicle Components. T3 describes the threats for specific components outside the vehicle, but can communicate with the vehicle and affect automotive cybersecurity. Specifically, T3 contains the following 3 codes: C14.Mobile APP, C15.Backend Server, C16.Charging Pile. The vulnerabilities in these external components can pose a threat to the vehicle itself. For example, as stated by C16-2 in Tab.XVI, the private data can be leaked through the charging pile. There are 14 threat descriptions under T3.
- **T4:** Communication Protocols. T4 describes the threats to the communication protocols implemented in the automotive context. Specifically, T4 contains the following 4 codes: C17.UWB, NFC and BLE, C18.V2X, C19.CAN, and C20.Ethernet. The unsafe implementation of these protocols can introduce risks. For example, as stated by C20-2 in Tab.XX, lack of encryption on the data transmitted via the protocol can lead to information leak. There are 16 threat descriptions under T4.
- **T5:** Communication Channels/Interfaces. T5 describes the threats on the communication channels and interfaces on the vehicle. Specifically, T5 contains the following 4

Fig. 2: A new hierarchical threat database derived from the interview study, containing 28 threat codes (TCs) under 7 threat themes (TTs).

Fig. 3: Relation analysis: Adjacent matrix showing the relation between the entity codes (on Y axis) and property codes (on X axis). Marked cell represents that the corresponding triplet is identified between the entity code and property code.

codes: C21.Wi-Fi, Bluetooth and Cellular, C22.Charging Port, C23.USB and SD card, C24.OBD. Unsafe implementation of these interfaces leads to threats when these interfaces are exposed to the attacker. For example, as stated by C24-2 in Tab.XXIV, the attacker can modify vehicular parameters through the OBD port due to the lack of proper authentication. There are 15 threat descriptions under T5.

- **T6: Vehicular Functions/Services.** T6 describes threats to vehicular function and services, with the following 3 codes: *C25.OTA, C26.Diagnostic, C27.Remote monitor and control.* The implementation of these "trendy" functions can vary for different manufacturers and car models, and can introduce risks when the design is insecure. For example, as stated by *C27-3* in Tab.XXVII, the unsafe implementation of the secret keys for remote control can be exploited to launch attacks. There are 12 threat descriptions under T6.
- **T7: Others.** T7 includes other threats (e.g., insider attack) that do not fit into other themes. There are 3 threat descriptions under T7.

C. Threat Knowledge Graph

To better illustrate the relations between the threat codes, the 28 codes in Fig.2 are classified into the following two types:

- Entity code. An entity code represents a specific automotive component carrying functions that can introduce security threats. The entity codes are often the object component in

Fig. 4: Part of the TKG (14 triplets) showing the property codes related to the entity code: *IVI*. This representation is equal to the first row in Fig.3.

TARA or security testing. Specifically, all 11 codes under *T2: In-Vehicle Components*, and *T3: Outside-Vehicle Components* are the entity codes.

- **Property code.** A property code represents one specific security property residing in one entity code. Specifically, all 17 codes except the 11 entity codes in T2 and T3 are the property codes.

With the above classification, the triplet to build the knowledge graph [10, 15, 18] is further presented as (entity code, is vulnerable to threats in, property code). Finally, we constructed 109 triplets between the 11 entity codes and 17 property codes, and the result is shown in the form of an adjacent matrix in Fig.3. Specifically, in Fig.3, the X axis represents the property codes and the Y axis represents the entity codes. Each marked cell represents that the corresponding triplet is identified. For example, the cell (C6, C4) is marked, which means that the threats in C4: Complex OS and reside in the entity C6: IVI.

Specifically, Fig.4 shows part of the knowledge graph, originating from the entity code *C6.IVI*. This figure represents the threat codes that should be considered when evaluating IVI security. For example, it is very likely that an IVI is equipped with a complex OS (e.g., Linux, Android) to perform various infotainment functions, and thus there is a triplet connecting *C6.IVI* and *C4.Complex OS*. As a result, such a graphical representation can make the TARA and security testing more systematic and comprehensive. Taking Fig.4 as an example, when evaluating the security of the IVI ECU, the threats under other property codes (i.e., the threat codes in T1, T4, T5 and T6 in Fig.4) should also be considered to build a reliable security baseline for this ECU.

Note that this TKG is also flexible to the implementation of a specific vehicle model. For example, some advanced car models may already have equipped the wireless communication interface on its gateway ECU for more efficient communication, in which case the entity code *C9.Gateway* should be connected with property codes like *C21.Wi-Fi*. Overall, our goal is to provide a baseline as a reference, and manufacturers can flexibly use this database.

REFERENCES

- Unified diagnostic services (UDS) Part 3: Unified diagnostic services on CAN implementation (UDSonCAN). https://www.iso.org/standard/ 55284.html, 2012.
- [2] Iso/sae 21434:2021: Road vehicles cybersecurity engineering. https://www.iso.org/standard/70918.html, 2021.
- [3] Aosp: Secure nfc. https://source.android.com/docs/core/connect/securenfc. 2022.
- [4] Iec 62433. https://webstore.iec.ch/publication/67258, 2022.
- [5] Le secure connection. https://www.bluetooth.com/blog/bluetooth-pairing-part-4/, 2022.
- [6] Android best security practice. https://developer.android.com/topic/ security/best-practices, 2023.
- [7] Aosp: Hardware-backed keystore. https://source.android.com/docs/security/features/keystore, 2023.
- [8] Information technology security techniques code of practice for information security controls based on iso/iec 27002 for cloud services. https://www.iso.org/standard/43757.html, 2023.
- [9] Platform security architecture. https://www.arm.com/architecture/ security-features/platform-security, 2023.
- [10] H. Cai, V. W. Zheng, and K. C.-C. Chang. A comprehensive survey of graph embedding: Problems, techniques, and applications. *IEEE Transactions on Knowledge and Data Engineering*, 30(9):1616–1637, 2018.
- [11] K.-T. Cho and K. G. Shin. Error handling of in-vehicle networks makes them vulnerable. In *Proceedings of the 2016 ACM SIGSAC Conference* on Computer and Communications Security, pages 1044–1055, 2016.
- [12] J. Cichonski, J. Franklin, and M. Bartock. Nist: Guide to lte security. Technical report, National Institute of Standards and Technology, 2016.
- [13] J. Corbin and A. Strauss. Basics of qualitative research: Techniques and procedures for developing grounded theory. Sage publications, 2014.
- [14] T. Häckel, P. Meyer, F. Korf, and T. C. Schmidt. Secure timesensitive software-defined networking in vehicles. arXiv preprint arXiv:2201.00589, 2022.
- [15] S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip. A survey on knowledge graphs: Representation, acquisition, and applications. *IEEE Transactions on Neural Networks and Learning Systems*, 33(2):494–514, 2021
- [16] J. Padgette, J. Bahr, M. Batra, R. Smithbey, L. Chen, and K. Scarfone. Nist: Guide to bluetooth security, 2022-01-19 05:01:00 2022.
- [17] M. Souppaya, K. Scarfone, et al. Nist: Guidelines for securing wireless local area networks (wlans). NIST Special Publication, 800:153, 2012.
- [18] Q. Wang, Z. Mao, B. Wang, and L. Guo. Knowledge graph embedding: A survey of approaches and applications. *IEEE Transactions on Knowledge and Data Engineering*, 29(12):2724–2743, 2017.

TABLE I: Code 1: Hardware security.

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C1-1	Attacker can compromise the target ECU (i.e., IVI and Telematics) via physical debug ports (e.g., JTAG, USB, UART, SPI), and thus extract the firmware or root the system	Debug ports are left open for debugging	Perform penetration testing on the physical debug ports	Manufacturers should disable all physical debug ports or apply security access control on them
C1-2	Attacker can analyze the ECU physically to get critical information (e.g., PCB design), or make modifications on the hardware	Lack of physical protection on the physical design	Testers can physically examine the physical design of the PCB from the attacker's perspective	Manufacturers should deploy mitigations to increase the difficulty for such physical analysis (e.g., hide PINs for critical chips, hide the wiring in inner layers, delete readable texts on silkscreen, and other hardware obfuscation techniques)
C1-3	Attacker can extract the firmware from the chip for further analysis	Lack of physical protection to prevent firmware extraction	Perform firmware extraction from the attacker's perspective	Enable read protection on the flash; erase the firmware with strong voltage attack when the memory is being removed by the attacker
C1-4	Various physical attacks can be launched on the chips (e.g., fault injection attacks, side-channel attacks)	Lack of best security practice to prevent physical attacks	Penetration testing via possible physical attacks	Manufacturers should enable best security practice according to the SOTA techniques and standards (e.g., Platform Security Architecture levels [9], or IEC 62433 [4])

TABLE II: Code 2: Software security.

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C2-1	The attacker and exploit the unsafe code in the software installed on ECUs to launch further attacks	Unsafe programming on the ECUs	Perform vulnerability scanning on the code used in the software systems	Manufacturers should ensure the robustness of the code in development process, and also perform security testing on the software system afterwards
C2-2	The reuse of the open-source third-party modules can introduce vulnerabilities that can be exploited by the attacker	Lack of strict security testing before introducing the third-party codes	Perform penetration testing on the third-party code used in the software	Ensure the safety of the introduced third-party code (e.g., always use the latest version and update the code frequently)
C2-3	Software handling oncoming messages (e.g., CAN, Bluetooth message) can be compromised by the crafted malicious message (e.g., trigger stack overflow attack)	Lack of secure code implementation on the software handling oncoming message	Perform penetration and fuzzing testing on these essential software	Ensure the safety of these essential software, including performing vulnerability scanning on the safety-critical codes
C2-4	Attacker can manipulate the booting process of the operating system, leading to information leakage and other subsequent attacks	Lack of protections on the OS booting process (e.g., secure boot)	Testers can perform penetration testing on the booting process of the OS to identify vulnerabilities	Secure boot should be well implemented. For example, 1). the Root of Trust (RoT) cannot be overwritten by attackers; 2). the OS should refuse to execute tampered boot code or load manipulated boot image; 3). the secret keys and authentication algorithms should not be easily accessed by the attacker (e.g., using HSM)
C2-5	Attacker can reverse-engineer the extracted firmware to get critical information, leading to possible information leak or product piracy	Lack of protection on the firmware	Penetration testing on the extracted firmware	Manufacturers should enable mitigations to prevent the firmware from being reverse-engineered (e.g., obfuscation, code packing, code encryption)
C2-6	The secret keys to protect the file system and firmware are not securely stored	Lack of secure implementation on storing the secret keys	Penetration testing on extracting the keys	Safely store the secret keys, for example, using the Hardware security module (HSM)

TABLE III: Code 3: Low-end OS (e.g., RTOS) on MCU.

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C3-1	System development does not follow best security practice, and thus introducing risks	Lack of strict and secure development process	Perform penetration testing based on the best security practice	Manufacturers should strictly follow the best security practice in development stage (e.g., AzureRTOS best security practice)
C3-2	Out-of-date OS version (e.g., AzureRTOS, FreeRTOS) introduces potential risks	Lack of strict and secure development process	Perform penetration testing based on the best security practice	Manufacturers should make sure the OS kernel is up-to-date
C3-3	The RTOS responsible for in-vehicle communications (e.g., receiving and sending CAN messages) forwards crafted messages to the vehicle network	Lack of protection mechanism for possible attacks	Fuzz testing on the communication channel; perform injection attacks on the channel	Enable a whitelist mechanism to block malicious messages

TABLE IV: Code 4: High-end OS (e.g., Linux, Android) on MPU.

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C4-1	Out-of-date OS version introduces potential risks	Out-of-date OS version is applied and thus can be vulnerable	Examine the OS version	Manufacturers should make sure the OS kernel is up-to-date
C4-2	Lack of OS-level protection introduces potential risks	Lack of OS level protection	Perform penetration testing on the related security modules in the MPU OS	Enable the OS-level security modules (e.g., SELinux, AppAromor)
C4-3	Lack of security measure on protecting the inter-process communication (IPC) introduce risks	Lack of protection on IPC	Perform penetration testing on process communication	Enable protections on IPC, including 1). use secre protocols to encrypt essential data; 2). enable access control mechanisms on the IPC resources, and 3). implement user and process isolation.
C4-4	Lack of security measure on protecting the data and resources stored in the OS	Lack of protection on data	Perform penetration testing on the access control of the OS resources	Enable strict access control for critical application and data
C4-5	Poorly-secured network setting introduce risks	Improper network setting	Perform penetration testing on the network interfaces (e.g., try to monitor or manipulate the traffic via sniffed ports)	Properly configure the network setting (e.g., a well-configured <i>iptable</i> as the firewall)

TABLE V: Code 5: Data related.

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C5-1	Information leak can happen when private data are not securely collected, stored, or transmitted	Lack of best practice and protection on the private data protection	Perform penetration testing on the collection, storage, and transmission of the private data	Best security practice following the up-to-date regulations (e.g., GDPR)
C5-2	The encryption mechanism can be cracked and thus lead to various attacks	Unsafe encryption mechanism	Perform penetration testing on the encryption mechanism and evaluate the chance to be attacked	Best security practice on robust encryption mechanism, including 1). use strong encryption as AES or RSA, 2). generate key with secure random number generator, 3). safely stored the key (e.g., in hardware security model - HSM), 4). frequently update the key
C5-3	There is a lack of comprehensive logging record, making it difficult to launch forensic analysis	Lack of necessary logging design in the developing process	Extract the system log to evaluate its content (e.g., whether the contents are sufficient)	System log function should be enabled to offer evidence for forensic analysis
C5-4	System log contains improper information which could be a security threat once leaked to attacker (e.g., OTA update log)	The information collected by the system logs is not propoerly designed	Extract the system log to evaluate its content (e.g., whether the contents are over-collected)	1). Strictly restrict which data should be recorded and which should not; 2). measures should be implemented to ensure that the log is securely stored (e.g., use encryption)
C5-5	Sensitive information (e.g., secret keys and private information) can be leaked when hardcoded in firmware or program	Developers lack security awareness	Perform security testing on how sensitive information is stored, and evaluate corresponding risks of being leaked	Use additional approach to protect the sensitive information, for example, HSM or encryption/

TABLE VI: Code 6: In-vehicle Components: IVI

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
Number	IVI applications, including the	Root Cause (RC)	Security resulting Approach (STA)	wingation (MO)
C6-1	pre-installed ones and the third-party apps from the app market, have security flaws that can be exploited by attackers	Lack of following the best security practice for IVI app development	Penetration testing on the APPs installed on IVI	Best security practice on the development and security testing on the apps that can be installed on IVI
C6-2	"Developer mode" or "engineering mode" can be activated by particular actions (e.g., clicking particular area on screen multiple times), in which case attacker can exploit this function to analyze the system for various attacks	Unsafe backdoors are left in the developing process	Penetration testing the debug backdoors on the IVI system	Disable the developer mode or super-user mode function as possible; 2). Add authentication on the access to these high-privilege system modes
C6-3	Attacker sends malicious messages to IVI to trigger particular attacks (e.g., via Wi-Fi, Bluetooth)	Unsafe implementation on the IVI communication interface (e.g., unsafe software or protocol)	Penetration and fuzz testing on the IVI communication interfaces	Best security practice on 1). the communication protocol and interfaces, and 2). software program handling oncoming messages
C6-4	The audio control functions can be compromised by carefully-crafted signals (e.g., the dolphin attack)	Lack of security control on the audio signal received by IVI	Testing the robustness of the audio control system (e.g., by sending signals in various frequencies)	Enable strong authentication to increase the robustness of the audio recognition module
C6-5	The third-party apps that could be installed from the APP market in the IVI have security flaws that can be exploited	Lack of strict supervision of the application published on the APP market	Perform security testing on the applications that can be installed from the IVI APP market	Developers should perform deep security analysis on the apps that can be installed in IVI to prevent possible risks
C6-6	Attacker can install a malicious app in the IVI via particular interfaces	Lack of protection on the APP installation process in IVI	Check whether IVI allows user to install arbitrary application (e.g., malware)	IVI should enable a whitelist of legal applications, and ban the illegal application from being installed
C6-7	The implementation of the <i>hypervisor</i> module on IVI has security flaws that can be exploited	Unsafe implementation on hypervisor	Perform penetration testing on the hypervisor implementation	Best security practice for the hypervisor implementation, for example: 1). enable strict access control between different systems; 2). development process should follow strict security requirements
C6-8	Due to the lack of security access control, high security-level functions (e.g., car-control modules) can be accessed or activated by low security-level ones (e.g., infotainment modules)	The principle of least privilege (PoLP) is not followed	Try accessing the safety-critical functions with low-privilege components in IVI	The resources for <i>infotainment</i> functions and <i>car-control</i> functions should be strictly isolated (e.g., infotainment modules should not be able to influence the car-control modules)
C6-9	Services opened on particular ports introduce risks	Unsafe implementation on the system ports and the corresponding programs	Penetration and fuzz testing on the open ports and the programs listening on these ports	1). remove unused and unnecessary services and ports on IVI; 2). strict authentication should be applied on the neccessary ports on IVI
C6-10	The browser function, (including an intact browser that can visit arbitrary Internet website, and the browser modules (e.g., WebView) in IVI applications), can be exploited by the attacker	Unsafe implementation on the browser modules (e.g., low version of Webview introduces known CVEs)	Penetration testing on the browser modules used in IVI	Manufacturers make particular effort to ensure the security of the browser module (e.g., make sure the browser kernel is up-to-date and cannot be exploited by known CVEs)
C6-11	The communication between the IVI and other clients can be compromised and thus leading to information leakage	Lack of encryption on the communication data	Capture the communication between IVI and other components to check whether the data are properly encrypted	All critical data communicating with IVI should be properly encrypted (e.g., on HTTPS, MQTT, v2x, WIFI, Bluetooth, NFC, USB, etc.).

TABLE VII: Code 7: In-vehicle Components: Telematics

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C7-1	The remote control service is exploited and thus leading to various attacks	Lack of security protection of the safety-critical control messages	Try various attacks for the control interfaces on Telematics (e.g., DoS attacks, spoofing attacks)	Strictly check the integrity and authenticity of the received control messages
C7-2	The remote diagnostic service is exploited and thus the attacker can send malicious diagnostic messages into the vehicle	Unsafe implementation on the remote diagnostic functions enabled on Telematics	Try various attacks for the diagnostic functions on Telematics (e.g., DoS attacks, spoofing attacks)	Strictly check the integrity and authenticity of the received diagnostic messages
C7-3	Attacker sends malicious messages to Telematics to trigger particular attacks (e.g., via Wi-Fi, BLE, SMS message)	Unsafe implementation on the various messages received on the communication channels	Penetration testing on the implementations on the communication channels	Best security practice on 1). the communication protocol and interfaces, and 2). software program handling oncoming messages
C7-4	Information leakage can happen if the Telematics improperly collect and update the user data to the backend server	Implementation does not follow the best practice to protect private data	Check the possible violation of privacy on the data collected and uploaded by Telematics	Best security practice on the data security involved in the Telematics (e.g., GDPR)
C7-5	The network communication on Telematics can be compromised by the particular devices (e.g., GSM fake station) set up by the attacker	Lack of protections against the attacks by particular devices set up by the attacker	Perform various attacks by setting up the GSM fake station (e.g., DoS or Spoofing attack)	Best security practice on the cellular communications and other channels
C7-6	The ports opened on Telematics for Cellular communication can be compromised by the attacker to launch various attacks	Lack of proper authentication on the Cellular implementation on Telematics	Penetration testing on the ports for Cellular services on Telematics	Enable authentication on the ports for Cellular communication services

TABLE VIII: Code 8: In-vehicle Components: Sensors

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C8-1	The implementation of the perceptions sensors (i.e., camera, LiDAR, and sonar) lacks the robustness and thus can be compromised or cannot meet the performance demand in extreme cases	Lack of implementations to ensure the robustness of the sensor signals	Testing the performance of the sensors under extreme cases	Make sure the implementation is up-to-date and robust; Give warning to the driver when any anomaly (e.g., possible attacks or performance downgradation) is detected
C8-2	The messages communicating with the tire pressure monitoring system (TPMS) can be compromised and thus leading to various attacks (e.g., eavesdropping and spoofing)	Lack of security protections on the communication channels for TPMS	Try various attacks for the TPMS system (e.g., Dos and Spoofing attacks)	Best security practice on the TPMS implementation
C8-3	The GNSS sensors can be exploited and thus the attacker can affect the related vehicular functions (e.g., navigation and autonomous driving)	Lack of implementations to ensure the robustness of the GNSS signals	Try various attacks for the GNSS sensors (e.g., Dos and Spoofing attacks)	Best security practice on the GNSS sensor implementation

TABLE IX: Code 9: In-vehicle Components: Gateway and Zone Controller

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C9-1	Attackers can exploit the improper forwarding rules to perform	Security flaw exists in	Penetration testing on the forwarding rules	Gateway should forward messages based on the strict and correct CAN Communication Matrix (for CAN interface)
	cross-domain attacks by sending crafted packets to get access control	the forwarding process	of the gateway and zone controller	and Access Control List (ACL) for Ethernet interface, and discard the illegal packets
C9-2	Lack of authentication on critical packets (e.g., control commands) gives attackers the chance to control ECUs by replay attack	Unsafe implementation on the critical commands sent to gateway	Try to send control messages to the gateway to compromise ECUs on other domain	Authentication should be applied in critical commands or services
C9-3	Attackers sends crafted packets to the particular gateway interfaces (i.e., CAN and Ethernet interface) to launch attack on the protocol implementation	Lack of protections on the known attacks for the protocol implementation	Perform penetration testing on the protocol implementation	Security measures should be implemented to prevent attacks on CAN and Ethernet interfaces. For example, for 1). CAN interfaces, replay attacks, eavesdropping attacks, DoS attacks, scanning attacks should be considered; for 2). Ethernet interfaces, classic attacks including port/IP scanning, ARP/IP spoofing, UDP/ICMP flooding attacks should be considered.
C9-4	The FOTA function of the Gateway can be compromised and thus leading to various attacks	Unsafe implementation for the FOTA function in gateway	Penetration testing on the FOTA function enabled on gateway	Gateway is the essential ECU responsible for the firmware update of other ECUs, and its FOTA implementation should be carefully designed to prevent possible risks, for example: 1). check the firmware integrity and authenticity; 2). transmit the firmware in encrytion

TABLE X: Code 10: In-vehicle Components: Advanced driver-assistance system (ADAS)

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C10-1	The real-time performance of the ADAS system cannot be met and thus introducing risks	Lack of security implementation to ensure the real-time performance	Penetration testing on the real-time performance	Implementations should be used to ensure the real-time performance of the ADAS system, which is a safety-critical system (e.g., Time-Sensitive Networking)
C10-2	Lack of check on integrity and authenticity of the messages communication with ADAS, and thus attacker can launch spoofing or replay attacks by sending crafted messages	Unsafe implementation on the ADAS communications	Perform various attacks on the communication channels on ADAS (e.g., DoS and Spoofing)	Add mechanism to ensure the integrity and authenticity of the messages, for example: 1). check the timestamp of the control messages; 2). authenticate safety-critical requests (e.g., change system parameter)
C10-3	Adversarial attacks can be launched against the sensors (e.g., camera and LiDAR) on ADAS	Lack of protection to identify adversarial attacks	Perform adversarial attacks on the ADAS systems (e.g., black-box attacks on camera and LiDAR perception)	Mitigations againt such attacks should be considered, for example: 1). use multiple sensors for one type of perception (e.g., multiple cameras); 2). use multi-sensor fusion to reduce the risk of being attacked; 3). use robust machine learning methods
C10-4	The control policy of the ADAS have security flaws which introduces risks (e.g., dangerous driving in complex scenario such as crossroad)	Security flaws exist in the control program of ADAS	Penetration testing on the control programs of ADAS	build robust control policy which considers dangerous corner cases; 2). make the human driver take over anytime when ADAS cannot determine current situation
C10-5	The algorithms used in ADAS can be stolen and thus causing product piracy, or attacker can analyze the algorithms to launch further attacks	Lack of protection on the code and algorithms stored in ADAS	Extract the code and algorithms in ADAS	The algorithm code should be safely stored in ADAS (e.g., using encryption or obfuscation)
C10-6	Personal data related to ADAS can be leaked or improperly collected by the manufacturer	Failed to follow best security practice on protecting private data	Extract the private data stored in ADAS	Manufacturers should clearly notify the user what data are being collected and why; 2). Personal data cannot be collected without user permission; 3). Personal data should be stored and transmitted with encryption

TABLE XI: Code 11: In-vehicle Components: In-Vehicle Network (IVN)

			•	
Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
	Attackers can compromise other			Security measures should be implemented to securely
	in-vehicle nodes or network segments	Lack of isolation on the	Penetration testing on the access control of	segment the IVN, for example: 1). using VLAN access
C11-1	once she has controlled one of them,	IVN design	the nodes (i.e., ECUs) on IVN	control technique; 2). restrict in-vehicle access with
	due to the lack of network separation	IVIN design	the nodes (i.e., ECOS) on IVIN	passwords (e.g., ban unrestricted ssh); 3). avoid using
	mitigations			unsafe communication protocols (e.g., Telnet, FTP)
	Attackers can listen on the bus (e.g.,	Lack of encryption on		Critical data (e.g., secret keys, FOTA firmware, private
C11-2	CAN or Ethernet) to steal critical	the data transmitted in	Extract communication data on IVN	data) should be encrypted before they are transmitted on
	information	IVN		the bus
C11-3	Message injection attacks can be	Lack of protection on the	Perform various injection attacks on IVN	Implementation should be used to protect IVN from
C11-3	launched on the IVN	injection attacks on IVN	(e.g., DoS, spoofing, replay attacks)	injection attacks.
	The network forwarding process has	Unsafe implementation	Penetration testing on the access control in	Forwarding rules should be safely implemented to prevent
C11-4	security flaw that can be exploited to	on the network	IVN	unauthorized access
	reach other in-vehicle nodes	forwarding rules in IVN	IVIN	unaumorized access

TABLE XII: Code 12: In-vehicle Components: Battery Management System (BMS)

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C12-1	The Battery management system (BMS) can be attacked via the charging port (e.g., information leakage, spoofing attacks), due to the unsafe design or lack of protection	Lack of protection on possible attacks launched from charging port	Penetration testing on the charging port to compromise the BMS	Apply best security practice on BMS, for example: apply secure authentication on the messages comming from the charging port

TABLE XIII: Code 13: In-vehicle Components: Other ECUs

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C13-1	Other ECUs does failed to follow best security practice and thus leading to possible attacks	Failed to follow best security practice	Penetration testing on other ECUs according to best security practice	Apply best security practice on other ECUs

TABLE XIV: Code 14: Outside-vehicle components: Mobile App.

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C14-1	APP development does not follow common best security practice	Lack of implementation of app security best practice	Penetration testing on the common best security practice	Best security for APP development should be followed, including ensuring right permissions, safe data storage, secure communication (e.g., best security practice for Android development [6])
C14-2	Communication between the mobile APP and other clients (e.g., server or vehicle) can be compromised to launch further attacks (e.g., eavesdropping, spoofing)	Unsafe implementation on the communication channels	Penetration testing and fuzz testing on the communication channels of the mobile apps	Best security on the specific communication channel (e.g., UWB, NFC and BLE)
C14-3	Attacker can reverse-engineer the App to obtain critical information to launch further attacks	Lack of protection on the app code	Extract the app installation package and perform testing accordingly	Enable implementations to prevent the app from being reverse-engineered (e.g., obfuscation, code encryption)
C14-4	Sensitive data (e.g., private data, encryption/decryption code, secret keys) can be leaked from the mobile app side if not properly handled	Unsafe implementation for data transmission on mobile app	Penetration testing on the data transmission process enabled by mobile app	Enable implementations to prevent the data security (e.g., code encryption and obfuscation; prevent the data from being accessed by other apps)
C14-5	The high-privilege interface or module in the mobile app (e.g., the vehicle control APIs) is exposed to other apps and thus can be exploited to launch various attacks	Failed to follow the principle of least privilege (PoLP) in app development	Testing to access the high-privilege APIs with low-privilege modules	The developer should strictly restrict the safety-critical APIs from being accessed from other process in the mobile

TABLE XV: Code 15: Outside-vehicle components: Backend Server.

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C15-1	The server setting does not follow common best security practice	Failed to follow the best security on server implementation	Security testing according to the common best security practice	Best security for backend server security should be followed (e.g., ISO 27017 [8])
C15-2	Communication between the backend server and other clients (e.g., mobile app or vehicle) can be compromised to launch further attacks (e.g., eavesdropping, spoofing)	Unsafe implementation on the data transmission between server and other clients	Penetration testing on the data transmitted from and to the backend server	Best security on the specific communication channel
C15-3	Attacker can launch the DoS attack on the server via particular communication channels	Lack of DoS protections on the particular server interfaces and communication channels	Testers can send a large amount of data on the communication channel to launch DoS attacks	Implementations to prevent DoS attacks, including: 1). setting up firewalls and other filtering mechanisms; 2). detections to identify traffic bursts; 3). a quick recovery plan when DoS attacks happen
C15-4	Attacker can steal the user credentials via Credential Stuffing Attacks on the server	Lack of protections to defend credential stuffing attacks	Try to stuffing the user credentials based on known week passwords	Implementations to prevent credential stuffing attacks, including: 1). advise users to change password frequently, and only strong passwords are allowed; 2). enable multi-step authentication and CAPTCHA; 3). enable detectors to detect abnormal traffic and login requests
C15-5	Attacker can perform injection attacks on the server (e.g., SQL injection, cross-site scripting)	Lack of protections to prevent injection attacks	Testers can perform penetration testing on the server interfaces to discover possible injection attacks	Server should carefully check the format and content input data to filter malicious message
C15-6	Personal information can be leaked due to the improper storage of data on server	Data stored on server are in plaintext or not properly encrypted	Penetration testing on the accessibility of the on-server data	Data on server, especially personal data, should be stored and transmitted after encryption
C15-7	Due to the design flaw of the authentication process, the attacker can perform illegal actions on other customers' cars with one valid account (e.g., stealing information or even control other cars)	Security flaw exists in the server authentication process	Perform penetration testing on the authentication process enabled by backend server	The server should strictly check the authenticity of the received messages 2). the server should strictly restrict the resources that can be accessed from the users

TABLE XVI: Code 16: Outside-vehicle components: Charging pile.

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C16-1	The authentication implemented on the charging pile has security flaws and thus introducing risks (e.g., allow attackers to steal the electrical energy without payment)	Unsafe implementation on the authentication for charging servcie	Penetration testing on the security of charging service	Apply strong mutual authentication on the charging service
C16-2	The vehicular data is leaked to the third-party charging service provider	Unsafe implementation on the charging access	Penetration testing on the security of charging service	1). restrict the data that can be accessed from the vehicle charging port; 2). the charging pile itself and the corresponding backend server should follow the best security practice

TABLE XVII: Code 17: Communication protocols: Short-range communication protocols: UWB, NFC, and BLE.

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C17-1	Eavesdropping: attacker monitors the communication channel with particular equipments, and thus stealing essential information	Lack of encryption on the transmitted data on the channel	Perform eavesdropping on the channel trying to steal transmitted data	Enable encryption on the transmitted data
C17-2	DoS or Jamming attacks: attacker spreads a large amount of garbage messages to jam the communication channel	Lack of protection for DoS attack on the channel	Perform DoS attack on the channel	Implementations to increase the robustness of the communication (e.g., frequency hopping)
C17-3	Spoofing / MITM / Replay attack: attacker captures and replay the messages to control the vehicle (e.g., open the door)	Lack of protection to prevent possible injection attacks	Perform the injection and replay attacks on the channel	Enable encryption and strong mutual authentication on the transmitted data
C17-4	Best security practice is not followed	Failed to follow the best security practice for the common protocol implementation	Perform penetration testing according to the best security practice	Perform best security practice for each protocols (e.g., secure NFC [3], LE secure connection [5])
C17-5	The version of the implemented protocol itself is out-of-date (low version of BLE) and thus introducing vulnerabilities on historical versions	Failed to implement the up-to-date protocol	Check whether the version of the implemented protocol is up-to-date	Developers should frequently update the version of the protocols themselves

TABLE XVIII: Code 18: Communication protocols: V2X.

N	ımber	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C	18-1	The V2X communication can be compromised and thus leading to various attacks (e.g., DoS, sybil, spoofing attacks)	Failed to follow the best security practice for V2X implementation	Perform security testing according to the best security practice on V2X implementation	Best security practice of corresponding V2X protocol (e.g., 802.11p and 3GPP); 2). The V2X messages should be transmitted in secure channel and be authenticated after being received by the vehicles

TABLE XIX: Code 19: Communication protocols: In-vehile CAN.

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C19-1	Eavesdropping: attacker monitors the CAN communication channel with particular device attached on the IVN	Lack of encryption protection on the CAN data	Perform eavesdropping attacks on the CAN bus	Enable encryption on critical data transmitted on CAN bus
C19-2	DoS or Jamming attacks: attacker spreads a large amount of garbage messages to jam the CAN bus	Lack of protections against DoS attacks on CAN bus	Perform DoS attacks on the bus to test the robustness	Implementation to increase the robustness against DoS attack (e.g., IDS and other detection machenisms)
C19-3	Spoofing / MITM / Replay attack: attacker captures and replay the messages to control particular ECUs on CAN bus	Lack of protection to prevent possible injection attacks	Perform the injection and replay attacks on the CAN bus	Enable encryption on critical data transmitted on CAN bus
C19-4	Attacks exploiting the intrinsic nature of CAN protocols (e.g., bus-off attack exploiting the CAN error handling mechanism [11])	Lack of protection to prevent attacks exploiting the protocol features	Perform penetration testing on the CAN bus implementation	Perform best security practice for the emerging attacks (e.g., up-to-date IDS)

TABLE XX: Code 20: Communication protocols: In-vehicle Ethernet.

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C20-1	Eavesdropping: attacker monitors the Ethernet communication channel with particular device attached on the IVN or a compromised ECU	Lack of encryption protection on the data transmitted via Ethernet	Perform eavesdropping attacks on the Ethernet communication	Enable encryption on critical data transmitted on Ethernet
C20-2	DoS or Jamming attacks: attacker spreads a large amount of garbage messages to jam the Ethernet communication channel	Lack of protections against DoS attacks on Ethernet	Perform DoS attacks on the bus to test the robustness	Implementation to increase the robustness against DoS attack (e.g., IDS and other detection machenisms)
C20-3	Spoofing / MITM / Replay attack: attacker captures and replay the messages to control particular ECUs on Ethernet	Lack of protection to prevent possible injection attacks	Perform the injection and replay attacks on Ethernet	Enable encryption on critical data transmitted on Ethernet
C20-4	Lack of network segment isolation, and thus the attacker can compromise other ECUs from one ECU (e.g., via unauthorized ssh or Telnet communication)	Lack of design to isolate ECUs on the Ethernet implementation	Penetration testing on the access control enabled on Ethernet implementation	Enable encryption on the request of accessing one node from another
C20-5	Then time-sensitive design (TSN) does not meet demands and thus can be exploited by attacker [14]	Lack of protection to ensure the real-time performance of Ethernet (e.g., for ADAS)	Testing the real-time performance of Ethernet	Implementations to ensure the real-time performance of real-time performance
C20-6	Attacks exploiting the intrinsic nature of Ethernet protocols (e.g., ARP spoofing and MAC spoofing attcks)	Lack of protection to prevent attacks exploiting the Ethernet features	Perform penetration testing on the Ethernet implementation	Perform best security practice for the classic and emerging attacks on Ethernet (e.g., MAC spoofing, ARP spoofing)

TABLE XXI: Code 21: Communication channel/interface: Wireless channels - Wi-Fi, Bluetooth, and Cellular.

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C21-1	Best security practice on Wi-Fi service is not followed, and thus introducing risks	Failed to follow best security practice	Perform security testing according to the best security practice	Follow the best security practice on Wi-Fi, for example: 1). enable WPA3 encryption; 2). enable strong password; 3). disable SSID broadcasting; 4). follow the NIST standard [17])
C21-2	Attacker controls the vehicular traffic by triggering the vehicle to connect to malicious Wi-Fi AP (e.g., faking the 4S shop service Wi-Fi that the vehicle will automatically connect to)	Unsafe implementation on the Wi-Fi network setting	Perform penetration testing on the Wi-Fi implementation on the system	Enable mutual authentication when connecting to service Wi-Fi; 2). restrict in-vehicle resources that can be accessed by Wi-Fi traffic; 3). critical data should be transmitted after encryption
C21-3	Attacker sends malicious messages via the Wi-Fi interface to the vehicle	Lack of implementation to filter the malicious messages on Wi-Fi	Penetration and fuzz testing on the Wi-Fi interface	Firewall mechanism should be properly set (e.g., iptable) to filter the malicious messages on Wi-Fi interface
C21-4	Best security practice on classic Bluetooth service is not followed, and thus introducing risks	Failed to follow best security practice	Perform security testing according to the best security practice	Follow the best security practice on Bluetooth (e.g., follow the NIST standard [16])
C21-5	Best security practice on Cellular network is not followed, and thus introducing risks	Failed to follow best security practice	Perform security testing according to the best security practice	Follow the best security practice on Cellular (e.g., follow the NIST standard [12])

TABLE XXII: Code 22: Communication channel/interface: Physical - Charging port.

			3	8 81
Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C22-1	Attacker can monitor the in-vehicle traffic via the charging port to steal critical data	Lack of data protection on the charging port	Monitor the data transmission on the charging port	Restrict the data that can be accessed by passively listening on the charging port; 2). Enable encryption on critical data transmitted from the charging port
C22-2	Attacker can inject malicious data via charging port to actively request in-vehicle data or modify the parameters of the BMS	Lack of protection for injection attacks on charging port	Penetration testing on the charging port to identify possible attacks	Authentication is required for the critical requests from the charging port (e.g., request data, launch the charging)
C22-3	Security flaws exist in the authentication process in communication on charging port	Unsafe authentication is implemented	Penetration testing on the authentication process enabled on charging port	Best security practice on the authentication process on charging port (e.g., strong mutual authentication)

TABLE XXIII: Code 23: Communication channel/interface: Physical - USB and SD card.

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C23-1	Unused or verbose external physical interfaces introduce risks (i.e., USB or SD card slot)	Verbose physical interface introduces risks	Penetration testing on the physical interface	Remove unused physical interfaces to reduce the possibilities of being attacked via these interfaces
C23-2	Attacker compromises the system via a malicious device connecting to the physical interfaces	Lack of authentication on the data transmitting from USB or SD card	Perform injection attacks via the physical interface	The system should authenticate data coming from the external physical interfaces
C23-3	Vehicle services enabled via the USB port (e.g., Apple Carplay and Android Auto) has security flaws and thus introducing risks	Failed to follow best security practice on the service implementation	Penetration testing on the services enabled on USB port	Follow best security practice in development stage to prevent risks; Frequently update the service version to ensure the security

TABLE XXIV: Code 24: Communication channel/interface: Physical - OBD port.

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C24-1	Attacker can monitor the in-vehicle traffic by a device attached on OBD port to steal critical data	Lack of data protection on the OBD port	Penetration testing by monitoring the data transmission on the OBD port	Restrict the data that can be accessed by passively listening on the OBD port
C24-2	Attacker can inject malicious data via OBD port to actively request in-vehicle data or modify the parameters of the ECUs	Lack of authentication on the requests from the OBD port	Penetration testing by sending requests from the OBD port to access in-vehicle data or modify vehicular parameter	Authentication is required for the critical requests launched by the OBD device (e.g, read private data and change ECU parameter)
C24-3	Security flaws exist in the authentication process in OBD communication	Unsafe implementation on the authentication process on OBD communication	Penetration testing on the authentication process on OBD	Best security practice on the authentication process in OBD communication
C24-4	The third-party OBD device introduces additional risks to the vehicle system	Lack of protection to prevent risks introduced by third-party OBD device	Penetration testing on the OBD from the perspective of third-party device	The manufactures should restrict the resources that can be accessed by an untrusted third-party OBD device, for example: 1), critical data should not be accessed from the OBD port without authentication; 2), vehicle parameters cannot be changed without authentication; 3), control commands cannot be executed without authentication.

TABLE XXV: Code 25: Vehicular function/services: OTA update.

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
Number	Attack Description (AD)			
C25-1	Attacker can illegally obtain the update image for further analysis	Lack of protection on the	Penetration testing on the access control of	Update image should be transmitted in secure
		access control of the	the update image (e.g., try to download	communication protocols (e.g., HTTPS), and itself should
		update image	the image from particular URL)	be encrypted
C25-2	Attacker can hijack the communication between the vehicle and server (e.g., fake the vehicle to illegally download firmware, or fake the server to distribute crafted firmware)	Lack of proper authentication to ensure the secure transmission of the update image	Testing by trying to tampering with the communication channels for OTA	Secure mutual authentication should be implemented during OTA process
C25-3	DoS attacks can happen during OTA process	Lack of mechanism to prevent DoS attacks	Testing by Launching DoS attack on the OTA process	Deploy mitigations to prevent DoS attacks (e.g., add validation on the timestamp and version to prevent rollback attacks)
C25-4	The vehicle installs incomplete or crafted firmware, due to the unsafe integrity and authenticity validation	Unsafe implementation on the authentication process of the downloaded firmware	Penetration testing on the authentication process of the ECU	The vehicle should perform extensive examination on the integrity and authenticity of the downloaded firmware (e.g., using strong hash function checksum and digital signatures)

TABLE XXVI: Code 26: Vehicular function/services: Diagnostic.

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C26-1	Attacker can read private data from the ECUs via launching the diagnostic services (e.g., [1])	Lack of authentication on the diagnostic request for critical in-vehicle data	Testing by sending diagnostic requests to access in-vehicle data	Manufacturers should strictly restrict the range of data that can be accessed by diagnostic services, and essential data (e.g., private data, secrect keys) cannot be accessed without proper authentication
C26-2	Attacker can perform replay attack by sending crafted diagnostic messages to target ECUs	Lack of authentication on the diagnostic messages	Testing by sending diagnostic requests to perform replay attacks	ECUs should authenticate the received diagnostic messages, especially those for safety-critical controls (e.g, unlock car doors, folding rearview mirror)
C26-3	Attacker can manipulate the parameters within the ECUs with crafted diagnostic messages	Lack of authentication on the diagnostic messages	Testing by sending diagnostic requests to modify vehicular parameters	Manufacturers should strictly restrict the power of diagnostic messages to modify the ECU parameters. For example, critical parameters cannot be modified without authentication
C26-4	Attacker can compromise the remote diagnostic services if the service is not securely implemented	Lack of mechanisms to protect the remote diagnostic functions	Penetration testing on the remote diagnostic functions enabled by the vehicle (e.g., on Telematics)	Enable strong security implementations on remote diagnostic services (e.g., implementing TLS or SSL encryption for DoIP diagnostic)

TABLE XXVII: Code 27: Vehicular function/services: Remote monitor and control.

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C27-1	Unsafe implementation on the communication channel or protocols for remote functions	Failed to follow best security practice on the communication channel	Penetration testing on the protocol implementation	Best security practice for specific implementation (e.g., BLE protocol)
C27-2	Attacker can perform MITM attack to steal critical information transmitted on the channel, or replay the captured message to launch attack afterwards	Lack of implementation to prevent replay attacks on the remote functions	Testing by launching replay and spoofing attacks to affect the remote functions	Critical information should be encrypted in transmission, and timestamp check should be implemented to prevent replay attack
C27-3	The implementation of the digital key has security flaws that can be exploited by the attacker	Unsafe implementation on the secret keys involved in authentication	Penetration testing on the security of the secret key implementation	Digital keys should be securely stored (e.g., encrypt the key itself, or use Hardware-backed Keystore [7]); 2) digital keys should be strong enough to prevent it from being brute-forced; 3). digital keys should be frequently updated by the backend server
C27-4	The encryption / decryption algorithm involved has security flaws that can be exploited by the attacker	Unsafe encryption is used	Penetration testing on the authentication process	The authentication codes should be protection by encryption or obfuscation and cannot be easily accessed; strong authentication algorithms should be used (e.g., AES and RSA); 3). use secure random number generators (e.g., use hardware-based true random number generator to generate unpredictable random numbers)

TABLE XXVIII: Code 28: Others.

Number	Attack Description (AD)	Root Cause (RC)	Security Testing Approach (STA)	Mitigation (MG)
C28-1	Unsafe human action can introduce risks to the vehicular system (e.g., misled by the malicious page to install a malware in IVI)	Lack of warnings of the risky actions possibly done by the car owner	Testing the possible risky actions that can be performed by the car owner	1). Restrict the user privilege; 2). Well inform the user of the possible risks of dangerous actions.
C28-2	Insider attacks can happen and thus bringing loss to the manufacturer company	Failed to follow the best security practice for management	Checking the management system of the automotive company	Strictly restrict the resources that can be accessed by the employees, and follow the best security practice of developing process (e.g., ISO 21434 [2])
C28-3	Some safe actions when the vehicle is parked can be the dangerous action when the vehicle is running (e.g., playing video on IVI leading to distractive driving; diagnostic controls)	Lack of comprehensive consideration on the status of the vehicle	Testing by performing dangerous actions while the vehicle is moving (e.g., sending diagnostic control messages)	The vehicle should be <i>state-aware</i> to prevent dangerous actions when it is running