- Ahmed, A., Aly, M., Gonzalez, J., Narayanamurthy, S., & Smola, A. J. (2012). Scalable inference in latent variable models. *Proceedings of the fifth ACM international conference on Web search and data mining* (pp. 123–132).
- Aji, S. M., & McEliece, R. J. (2000). The generalized distributive law. *IEEE transactions on Information Theory*, 46(2), 325–343.
- Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. *arXiv preprint arXiv:1409.0473*.
- Bishop, C. M. (1995). Training with noise is equivalent to tikhonov regularization. *Neural computation*, *7*(1), 108–116.
- Bishop, C. M. (2006). Pattern recognition and machine learning. springer.
- Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. *Transactions of the Association for Computational Linguistics*, 5, 135–146.
- Bollobás, B. (1999). Linear analysis. Cambridge University Press, Cambridge.
- Boyd, S., & Vandenberghe, L. (2004). *Convex Optimization*. Cambridge, England: Cambridge University Press.
- Brown, N., & Sandholm, T. (2017). Libratus: the superhuman ai for no-limit poker. *IJCAI* (pp. 5226–5228).
- Campbell, M., Hoane Jr, A. J., & Hsu, F.-h. (2002). Deep blue. Artificial intelligence, 134(1-2), 57–83.
- Canny, J. (1987). A computational approach to edge detection. *Readings in computer vision* (pp. 184–203). Elsevier.
- Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: encoder-decoder approaches. *arXiv preprint arXiv:1409.1259*.
- Chowdhury, G. G. (2010). Introduction to modern information retrieval. Facet publishing.
- Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. *arXiv preprint arXiv:1412.3555*.
- Csiszár, I. (2008). Axiomatic characterizations of information measures. *Entropy*, 10(3), 261–273.
- De Cock, D. (2011). Ames, iowa: alternative to the boston housing data as an end of semester regression project. *Journal of Statistics Education*, 19(3).
- DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., ... Vogels, W. (2007). Dynamo: amazon's highly available key-value store. *ACM SIGOPS operating systems review* (pp. 205–220).

- Doucet, A., De Freitas, N., & Gordon, N. (2001). An introduction to sequential monte carlo methods. *Sequential Monte Carlo methods in practice* (pp. 3–14). Springer.
- Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. *Journal of Machine Learning Research*, 12(Jul), 2121–2159.
- Dumoulin, V., & Visin, F. (2016). A guide to convolution arithmetic for deep learning. *arXiv* preprint *arXiv*:1603.07285.
- Edelman, B., Ostrovsky, M., & Schwarz, M. (2007). Internet advertising and the generalized second-price auction: selling billions of dollars worth of keywords. *American economic review*, 97(1), 242–259.
- Flammarion, N., & Bach, F. (2015). From averaging to acceleration, there is only a step-size. *Conference on Learning Theory* (pp. 658–695).
- Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 2414–2423).
- Ginibre, J. (1965). Statistical ensembles of complex, quaternion, and real matrices. *Journal of Mathematical Physics*, 6(3), 440–449.
- Girshick, R. (2015). Fast r-cnn. Proceedings of the IEEE international conference on computer vision (pp. 1440–1448).
- Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 580–587).
- Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. *Proceedings of the thirteenth international conference on artificial intelligence and statistics* (pp. 249–256).
- Goh, G. (2017). Why momentum really works. *Distill*. URL: http://distill.pub/2017/momentum, doi:10.23915/distill.00006²⁸⁴
- Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. *Communications of the ACM*, 35(12), 61–71.
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). *Deep Learning*. MIT Press. http://www.deeplearningbook.org.
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... Bengio, Y. (2014). Generative adversarial nets. *Advances in neural information processing systems* (pp. 2672–2680).
- Gotmare, A., Keskar, N. S., Xiong, C., & Socher, R. (2018). A closer look at deep learning heuristics: learning rate restarts, warmup and distillation. *arXiv preprint arXiv:1810.13243*.
- Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional lstm and other neural network architectures. *Neural networks*, 18(5-6), 602–610.
- Gunawardana, A., & Shani, G. (2015). Evaluating recommender systems. *Recommender systems handbook* (pp. 265–308). Springer.
- Guo, H., Tang, R., Ye, Y., Li, Z., & He, X. (2017). Deepfm: a factorization-machine based neural network for ctr prediction. *Proceedings of the 26th International Joint Conference on Artificial Intelligence* (pp. 1725–1731).

²⁸⁴ https://doi.org/10.23915/distill.00006

- Hadjis, S., Zhang, C., Mitliagkas, I., Iter, D., & Ré, C. (2016). Omnivore: an optimizer for multi-device deep learning on cpus and gpus. *arXiv preprint arXiv:1606.04487*.
- Hazan, E., Rakhlin, A., & Bartlett, P. L. (2008). Adaptive online gradient descent. *Advances in Neural Information Processing Systems* (pp. 65–72).
- He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. *Proceedings of the IEEE international conference on computer vision* (pp. 2961–2969).
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 770–778).
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep residual networks. *European conference on computer vision* (pp. 630–645).
- He, X., & Chua, T.-S. (2017). Neural factorization machines for sparse predictive analytics. *Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval* (pp. 355–364).
- He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.-S. (2017). Neural collaborative filtering. *Proceedings of the 26th international conference on world wide web* (pp. 173–182).
- Hebb, D. O., & Hebb, D. (1949). The organization of behavior. Vol. 65. Wiley New York.
- Hennessy, J. L., & Patterson, D. A. (2011). Computer architecture: a quantitative approach. Elsevier.
- Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J. (1999). An algorithmic framework for performing collaborative filtering. 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1999 (pp. 230–237).
- Hidasi, B., Karatzoglou, A., Baltrunas, L., & Tikk, D. (2015). Session-based recommendations with recurrent neural networks. *arXiv* preprint *arXiv*:1511.06939.
- Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. *Neural computation*, *9*(8), 1735–1780.
- Hoyer, P. O., Janzing, D., Mooij, J. M., Peters, J., & Schölkopf, B. (2009). Nonlinear causal discovery with additive noise models. *Advances in neural information processing systems* (pp. 689–696).
- Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 7132–7141).
- Hu, Y., Koren, Y., & Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets. 2008 Eighth IEEE International Conference on Data Mining (pp. 263–272).
- Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 4700–4708).
- Ioffe, S. (2017). Batch renormalization: towards reducing minibatch dependence in batch-normalized models. *Advances in neural information processing systems* (pp. 1945–1953).
- Ioffe, S., & Szegedy, C. (2015). Batch normalization: accelerating deep network training by reducing internal covariate shift. *arXiv* preprint *arXiv*:1502.03167.
- Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., & Wilson, A. G. (2018). Averaging weights leads to wider optima and better generalization. *arXiv preprint arXiv:1803.05407*.

- Jia, X., Song, S., He, W., Wang, Y., Rong, H., Zhou, F., ... others. (2018). Highly scalable deep learning training system with mixed-precision: training imagenet in four minutes. *arXiv* preprint *arXiv*:1807.11205.
- Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., ... others. (2017). Indatacenter performance analysis of a tensor processing unit. 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA) (pp. 1–12).
- Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved quality, stability, and variation. *arXiv preprint arXiv:1710.10196*.
- Kim, Y. (2014). Convolutional neural networks for sentence classification. *arXiv preprint* arXiv:1408.5882.
- Kingma, D. P., & Ba, J. (2014). Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.
- Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and techniques. MIT press.
- Kolter, Z. (2008). Linear algebra review and reference. Available online: http.
- Koren, Y. (2009). Collaborative filtering with temporal dynamics. *Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 447–456).
- Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. *Computer*, pp. 30–37.
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. *Advances in neural information processing systems* (pp. 1097–1105).
- Kung, S. Y. (1988). Vlsi array processors. Englewood Cliffs, NJ, Prentice Hall, 1988, 685 p. Research supported by the Semiconductor Research Corp., SDIO, NSF, and US Navy.
- LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., & others. (1998). Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11), 2278–2324.
- Li, M. (2017). Scaling Distributed Machine Learning with System and Algorithm Co-design (Doctoral dissertation). PhD Thesis, CMU.
- Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed, A., Josifovski, V., ... Su, B.-Y. (2014). Scaling distributed machine learning with the parameter server. 11th \$\\$USENIX\$\\$ Symposium on Operating Systems Design and Implementation (\$\\$OSDI\$\\$ 14) (pp. 583–598).
- Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv preprint arXiv:1312.4400.
- Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. *Proceedings of the IEEE international conference on computer vision* (pp. 2980–2988).
- Lin, Y., Lv, F., Zhu, S., Yang, M., Cour, T., Yu, K., ... others. (2010). Imagenet classification: fast descriptor coding and large-scale sym training. *Large scale visual recognition challenge*.
- Lipton, Z. C., & Steinhardt, J. (2018). Troubling trends in machine learning scholarship. *arXiv* preprint arXiv:1807.03341.
- Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). Ssd: single shot multibox detector. *European conference on computer vision* (pp. 21–37).
- Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 3431–3440).

- Loshchilov, I., & Hutter, F. (2016). Sgdr: stochastic gradient descent with warm restarts. *arXiv* preprint arXiv:1608.03983.
- Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. *International journal of computer vision*, 60(2), 91–110.
- Luo, P., Wang, X., Shao, W., & Peng, Z. (2018). Towards understanding regularization in batch normalization. *arXiv preprint*.
- Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning word vectors for sentiment analysis. *Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies-volume 1* (pp. 142–150).
- McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. *The bulletin of mathematical biophysics*, *5*(4), 115–133.
- McMahan, H. B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., ... others. (2013). Ad click prediction: a view from the trenches. *Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 1222–1230).
- Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. *arXiv preprint arXiv:1301.3781*.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. *Advances in neural information processing systems* (pp. 3111–3119).
- Mirhoseini, A., Pham, H., Le, Q. V., Steiner, B., Larsen, R., Zhou, Y., ... Dean, J. (2017). Device placement optimization with reinforcement learning. *Proceedings of the 34th International Conference on Machine Learning-Volume 70* (pp. 2430–2439).
- Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D., & Wagenmakers, E.-J. (2016). The fallacy of placing confidence in confidence intervals. *Psychonomic bulletin & review*, 23(1), 103–123.
- Nesterov, Y., & Vial, J.-P. (2000). Confidence level solutions for stochastic programming, Stochastic Programming E-Print Series.
- Nesterov, Y. (2018). Lectures on convex optimization. Vol. 137. Springer.
- Neyman, J. (1937). Outline of a theory of statistical estimation based on the classical theory of probability. *Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences*, 236(767), 333–380.
- Pennington, J., Schoenholz, S., & Ganguli, S. (2017). Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. *Advances in neural information processing systems* (pp. 4785–4795).
- Pennington, J., Socher, R., & Manning, C. (2014). Glove: global vectors for word representation. *Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)* (pp. 1532–1543).
- Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of causal inference: foundations and learning algorithms. MIT press.
- Petersen, K. B., Pedersen, M. S., & others. (2008). The matrix cookbook. *Technical University of Denmark*, 7(15), 510.
- Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. *USSR Computational Mathematics and Mathematical Physics*, 4(5), 1–17.

- Quadrana, M., Cremonesi, P., & Jannach, D. (2018). Sequence-aware recommender systems. *ACM Computing Surveys (CSUR)*, *51*(4), 66.
- Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. *arXiv preprint arXiv:1511.06434*.
- Reddi, S. J., Kale, S., & Kumar, S. (2019). On the convergence of adam and beyond. *arXiv preprint* arXiv:1904.09237.
- Reed, S., & De Freitas, N. (2015). Neural programmer-interpreters. arXiv preprint arXiv:1511.06279.
- Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: towards real-time object detection with region proposal networks. *Advances in neural information processing systems* (pp. 91–99).
- Rendle, S. (2010). Factorization machines. 2010 IEEE International Conference on Data Mining (pp. 995–1000).
- Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2009). Bpr: bayesian personalized ranking from implicit feedback. *Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence* (pp. 452–461).
- Rumelhart, D. E., Hinton, G. E., Williams, R. J., & others. (1988). Learning representations by back-propagating errors. *Cognitive modeling*, 5(3), 1.
- Russell, S. J., & Norvig, P. (2016). *Artificial intelligence: a modern approach*. Malaysia; Pearson Education Limited..
- Salton, G., Wong, A., & Yang, C.-S. (1975). A vector space model for automatic indexing. *Communications of the ACM*, 18(11), 613–620.
- Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help optimization? *Advances in Neural Information Processing Systems* (pp. 2483–2493).
- Sarwar, B. M., Karypis, G., Konstan, J. A., Riedl, J., & others. (2001). Item-based collaborative filtering recommendation algorithms. *Www*, 1, 285–295.
- Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002). Methods and metrics for cold-start recommendations. *Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval* (pp. 253–260).
- Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. *IEEE Transactions on Signal Processing*, 45(11), 2673–2681.
- Sedhain, S., Menon, A. K., Sanner, S., & Xie, L. (2015). Autorec: autoencoders meet collaborative filtering. *Proceedings of the 24th International Conference on World Wide Web* (pp. 111–112).
- Sergeev, A., & Del Balso, M. (2018). Horovod: fast and easy distributed deep learning in tensorflow. *arXiv preprint arXiv:1802.05799*.
- Shannon, C. E. (1948, 7). A mathematical theory of communication. *The Bell System Technical Journal*, 27(3), 379–423.
- Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... others. (2016). Mastering the game of go with deep neural networks and tree search. *nature*, 529(7587), 484.
- Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*.
- Smola, A., & Narayanamurthy, S. (2010). An architecture for parallel topic models. *Proceedings of the VLDB Endowment*, 3(1-2), 703–710.

- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. *The Journal of Machine Learning Research*, 15(1), 1929–1958.
- Strang, G. (1993). Introduction to linear algebra. Vol. 3. Wellesley-Cambridge Press Wellesley, MA.
- Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. *Advances in artificial intelligence*, 2009.
- Sukhbaatar, S., Weston, J., Fergus, R., & others. (2015). End-to-end memory networks. *Advances in neural information processing systems* (pp. 2440–2448).
- Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum in deep learning. *International conference on machine learning* (pp. 1139–1147).
- Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. *Thirty-First AAAI Conference on Artificial Intelligence*.
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... Rabinovich, A. (2015). Going deeper with convolutions. *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 1–9).
- Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 2818–2826).
- Tallec, C., & Ollivier, Y. (2017). Unbiasing truncated backpropagation through time. *arXiv* preprint *arXiv*:1705.08209.
- Tang, J., & Wang, K. (2018). Personalized top-n sequential recommendation via convolutional sequence embedding. *Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining* (pp. 565–573).
- Teye, M., Azizpour, H., & Smith, K. (2018). Bayesian uncertainty estimation for batch normalized deep networks. *arXiv preprint arXiv:1802.06455*.
- Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. *COURSERA: Neural networks for machine learning*, 4(2), 26–31.
- Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. *Cognitive psychology*, 12(1), 97–136.
- Töscher, A., Jahrer, M., & Bell, R. M. (2009). The bigchaos solution to the netflix grand prize. *Netflix prize documentation*, pp. 1–52.
- Uijlings, J. R., Van De Sande, K. E., Gevers, T., & Smeulders, A. W. (2013). Selective search for object recognition. *International journal of computer vision*, *104*(2), 154–171.
- Van Loan, C. F., & Golub, G. H. (1983). Matrix computations. Johns Hopkins University Press.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... Polosukhin, I. (2017). Attention is all you need. *Advances in neural information processing systems* (pp. 5998–6008).
- Wang, L., Li, M., Liberty, E., & Smola, A. J. (2018). Optimal message scheduling for aggregation. *NETWORKS*, *2*(3), 2–3.
- Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., & Owens, J. D. (2016). Gunrock: a high-performance graph processing library on the gpu. *ACM SIGPLAN Notices* (p. 11).

- Wasserman, L. (2013). All of statistics: a concise course in statistical inference. Springer Science & Business Media.
- Watkins, C. J., & Dayan, P. (1992). Q-learning. *Machine learning*, 8(3-4), 279–292.
- Welling, M., & Teh, Y. W. (2011). Bayesian learning via stochastic gradient langevin dynamics. *Proceedings of the 28th international conference on machine learning (ICML-11)* (pp. 681–688).
- Wigner, E. P. (1958). On the distribution of the roots of certain symmetric matrices. *Ann. Math* (pp. 325–327).
- Williams, S., Waterman, A., & Patterson, D. (2009). *Roofline: An insightful visual performance model for floating-point programs and multicore architectures*. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
- Wood, F., Gasthaus, J., Archambeau, C., James, L., & Teh, Y. W. (2011). The sequence memoizer. *Communications of the ACM*, 54(2), 91–98.
- Wu, C.-Y., Ahmed, A., Beutel, A., Smola, A. J., & Jing, H. (2017). Recurrent recommender networks. *Proceedings of the tenth ACM international conference on web search and data mining* (pp. 495–503).
- Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. *arXiv preprint arXiv:1708.07747*.
- Xiong, W., Wu, L., Alleva, F., Droppo, J., Huang, X., & Stolcke, A. (2018). The microsoft 2017 conversational speech recognition system. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5934–5938).
- Ye, M., Yin, P., Lee, W.-C., & Lee, D.-L. (2011). Exploiting geographical influence for collaborative point-of-interest recommendation. *Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval* (pp. 325–334).
- You, Y., Gitman, I., & Ginsburg, B. (2017). Large batch training of convolutional networks. *arXiv* preprint arXiv:1708.03888.
- Zaheer, M., Reddi, S., Sachan, D., Kale, S., & Kumar, S. (2018). Adaptive methods for nonconvex optimization. *Advances in Neural Information Processing Systems* (pp. 9793–9803).
- Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.
- Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: a survey and new perspectives. *ACM Computing Surveys (CSUR)*, 52(1), 5.
- Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. *Proceedings of the IEEE international conference on computer vision* (pp. 2223–2232).