Dataflow analysis

Dataflow analysis: what is it?

- A common framework for expressing algorithms that compute information about a program
- Why is such a framework useful?
- It provides a common language, which makes it easier to:
 - communicate your analysis to others
 - compare analyses
 - adapt techniques from one analysis to another
 - reuse implementations (eg: dataflow analysis frameworks)

Data flow analysis

Goal :

- collect information about how a procedure manipulates its data
- This information is used in various optimizations
 - For example, knowledge about what expressions are available at some point helps in common subexpression elimination.

IMPORTANT!

- Soundness is a must: Data flow analysis should never tell us that a transformation is safe when in fact it is not.
- It is better to not perform a valid optimization that to perform one that changes the function of the program.

Soundness is a must!

- Data flow analysis should never tell us that a transformation is safe when in fact it is not.
- When doing data flow analysis we must be
 - Conservative
 - Do not consider information that may not preserve the behavior of the program
 - Aggressive
 - Try to collect information that is as exact as possible, so we can get the greatest benefit from our optimizations.

Global Iterative Data Flow Analysis

Global:

- Performed on the control flow graph
- Goal = to collect information at the beginning and end of each basic block

Iterative:

- Construct data flow equations that describe how information flows through each basic block and solve them by iteratively converging on a solution.
- The "ingredients" of the equations:
 - Algebraic representation of the property of interest
 - Labels associated to the control flow diagrams

Global Iterative Data Flow Analysis

- Components of data flow equations
 - Sets containing collected information
 - In (or entry) set: information coming into the BB from outside (following flow of dats)
 - gen set: information generated/collected within the BB
 - kill set: information that, due to action within the BB, will affect what has been collected outside the BB
 - out (or exit) set: information leaving the BB
 - Functions (operations on these sets)
 - Transfer functions describe how information changes as it flows through a basic block
 - Meet functions describe how information from multiple paths is combined.

Global Iterative Data Flow Analysis

- Algorithm sketch
 - Typically, a bit vector is used to store the information.
 - For example, in reaching definitions, each bit position corresponds to one definition.
 - We use an iterative fixed-point algorithm.
 - Depending on the nature of the problem we are solving, we may need to traverse each basic block in a forward (top-down) or backward direction.
 - The order in which we "visit" each BB is not important in terms of algorithm correctness, but is important in terms of efficiency.
 - In & Out sets should be initialized in a conservative and aggressive way.

```
Initialize gen and kill sets
Initialize in or out sets (depending on "direction")
while there are no changes in in and out sets {
   for each BB {
     apply meet function
     apply transfer function
   }
}
```

Typical problems

Reaching definitions

For each use of a variable, find all definitions that reach it.

Upward exposed uses

For each definition of a variable, find all uses that it reaches.

Live variables

For a point p and a variable v, determine whether v is live at p.

Available expressions

Find all expressions whose value is available at some point p.

Very Busy expressions

 Find all expressions whose value will be used in all the next paths

- Determine which <u>definitions</u> of a variable may reach a <u>use</u> of the variable.
 - For each use, list the definitions that reach it. This is also called a ud-chain.
 - In global data flow analysis, we collect such information at the endpoints of a basic block, but we can do additional local analysis within each block.
- Uses of reaching definitions :
 - constant propagation
 - we need to know that all the definitions that reach a variable assign it to the same constant
 - copy propagation
 - we need to know whether a particular copy statement is the only definition that reaches a use.
 - code motion
 - we need to know whether a computation is loop-invariant

Something obvious

- The program doesn't terminate.
- Proof: the only assignment to x is at top, so x is always true.

As a Control Flow Graph

Formulation: Reaching Definitions

- Each place some variable x is assigned is a definition.
- Ask: for this use of x, where <u>could</u> x last have been defined?
- In our example: only at x=true.

Example: Reaching Definitions

Clincher

- Since at x == true, d₁ is the only definition of x that reaches, it must be that x is true at that point.
- The conditional is not really a conditional and can be replaced by a branch.

Not Always That Easy

```
int i = 2; int j = 3;
while (i != j) {
   if (i < j) i += 2;
   else j += 2;
}</pre>
```

We'll develop techniques for this problem, but later ...

The Control Flow Graph

DFA is Sufficient Only

- In this example, i can be defined in two places, and j in two places.
- No obvious way to discover that i!=j is always true.
- But OK, because reaching definitions is sufficient to catch most opportunities for constant folding (replacement of a variable by its only possible value).

Example: Be Conservative

Is it possible that p points to x?

As a Control Flow Graph

Possible Resolution

- Just as data-flow analysis of "reaching definitions" can tell what definitions of x might reach a point, another DFA can eliminate cases where p definitely does not point to x.
- Example: the only definition of p is p = &y and there is no possibility that y is an alias of x.

Formalization: Reaching definitions Analysis

- How can we formalize a definition D?
 By a pair (x,n) where x is the variable modified by D, and n identifies the assignment D.
- A definition D reaches a point p if there is a path from D to p along which D is not killed.
- A definition D of a variable x is killed when there is a redefinition of x.
- How can we represent the set of definitions reaching a point?

- What is safe?
 - To assume that a definition reaches a point even if it turns out not to.
 - The computed set of definitions reaching a point p will be a superset of the actual set of definitions reaching p
 - It's a "possible", not a "definite" property
 - Goal: make the set of reaching definitions as small as possible (i.e. as close to the actual set as possible)

- How are the gen and kill sets defined?
 - gen[B] = {definitions that appear in B and reach the end of B}
 - kill[B] = {all definitions that never reach the end of B}
- What is the direction of the analysis?
 - forward
 - out[B] = gen[B] \cup (in[B] kill[B])

- What is the confluence operator?
 - union
 - $in[P] = \cup out[Q]$, over the predecessors Q of P
- How do we initialize?
 - start small
 - Why? Because we want the resulting set to be as small as possible
 - for each block B initialize out[B] = gen[B]

Formal specification

- The reaching Definition Analysis is specified by the following equations:
- For each program point,

$$RD_{\mathtt{in}}(p) = \begin{cases} \textbf{1} & \text{if p is the initial point in the control graph} \\ \\ \textbf{U} & \{RD_{\mathtt{out}}(q) \mid \text{ there is an arrow from q to p in the CFD} \} \end{cases}$$

$$RD_{out}(p) = gen_{RD}(p) U (RD_{in}(p) \setminus kill_{RD}(p))$$

- RD_{in}(1)= $\{(n,?),(m,?)\}$ RD_{out}(1) = $\{(n,?),(m,?)\}$
- RD_{in}(2)= $\{(n,?),(m,?)\}$ RD_{out}(2)= $\{(n,?),(m,2)\}$
- $RD_{in}(3) = RD_{out}(2) U RD_{out}(5)$ ={(n,?),(n,5),(m,2),(m,4)} $RD_{out}(3) = \{(n,?),(n,5),(m,2),(m,4)\}$
- RD_{in}(4)= $\{(n,?),(n,5),(m,2),(m,4)\}$ RD_{out}(4)= $\{(n,?),(n,5),(m,4)\}$
- RD_{in}(5)= $\{(n,?),(n,5),(m,4)\}$ RD_{out}(5)= $\{(n,5),(m,4)\}$
- RD_{in}(6)= $\{(n,?),(n,5),(m,2),(m,4)\}$ RD_{out}(6)= $\{(n,?),(n,5),(m,2),(m,4)\}$

Algorithm

- Input: Control Graph Diagram
- Output : RD
- Steps:
 - step 1 (inizialization):
 - RD_{in}(p) is the emptyset for each p
 - $RD_{in}(1) = i = \{(x,?) \mid x \text{ is a program variable}\}$

Step 2 (iteration)

```
Flag =TRUE;
while Flag
Flag = FALSE;
for each program point p
new = U{f(RD,q) | (q,p) is an edge of the graph}
if RD<sub>in</sub>(p) != new
Flag = TRUE;
RD<sub>in</sub>(p) = new;
where f(RD,q)= gen<sub>RD</sub>(q) U (RD<sub>in</sub>(q) \ kill<sub>RD</sub>(q) )
```

Example

```
[ input n; ]¹
[ m:= 1; ]²
[ while n>1 do ]³

       [ m:= m * n; ]⁴
       [ n:= n - 1; ]⁵
[ output m; ]⁶
```

$$Arr RD_{in}(1) = \{(n,?), (m,?)\}$$

$$RD_{in}(2) = \{(n,?), (m,?)\}$$

$$RD_{in}(3) = \{(n,?), (n,5), (m,2), (m,4)\}$$

$$RD_{in}(4) = \{(n,?), (n,5), (m,4)\}$$

$$RD_{in}(5) = \{(n,5), (m,4)\}$$

$$RD_{in}(6) = \{(n,?), (n,5), (m,2), (m,4)\}$$