CLASIFICACIÓN DE MAMIFEROS PEQUENOS

Integrantes:

- Alexis Susanibar Rosas
- César Rico Otero
- Leandro Lazo La Rosa

01 Objetivo

Clasificación de imágenes

Se necesita clasificar mamíferos de la orden Roentia de distintas especies y de esta manera identificar la especie a la cual pertenece.

Hamster

Ratón

Musaraña

Conejo

Ardilla

02 Modelo Inicial

Imágenes de mamíferos pequeños en el CIFAR-100

MODELO #1

Model: "model"				
Layer (type)	Output Shape	Param #		
input_1 (InputLayer)	[(None, 32, 32, 3)]	0		
conv2d (Conv2D)	(None, 32, 32, 32)	896		
<pre>batch_normalization (BatchN ormalization)</pre>	(None, 32, 32, 32)	128		
conv2d_1 (Conv2D)	(None, 32, 32, 32)	9248		
<pre>batch_normalization_1 (Batc hNormalization)</pre>	(None, 32, 32, 32)	128		
max_pooling2d (MaxPooling2D)	(None, 16, 16, 32)	0		
conv2d_2 (Conv2D)	(None, 16, 16, 64)	18496		
<pre>batch_normalization_2 (Batc hNormalization)</pre>	(None, 16, 16, 64)	256		
conv2d_3 (Conv2D)	(None, 16, 16, 64)	36928		
<pre>batch_normalization_3 (Batc hNormalization)</pre>	(None, 16, 16, 64)	256		
max_pooling2d_1 (MaxPooling 2D)	(None, 8, 8, 64)	θ		
conv2d_4 (Conv2D)	(None, 8, 8, 128)	73856		
<pre>batch_normalization_4 (Batc hNormalization)</pre>	(None, 8, 8, 128)	512		
conv2d_5 (Conv2D)	(None, 8, 8, 128)	147584		
<pre>batch_normalization_5 (Batc hNormalization)</pre>	(None, 8, 8, 128)	512		
max_pooling2d_2 (MaxPooling 2D)	(None, 4, 4, 128)	θ		
flatten (Flatten)	(None, 2048)	θ		
dropout (Dropout)	(None, 2048)	θ		
dense (Dense)	(None, 1024)	2098176		
dropout_1 (Dropout)	(None, 1024)	θ		
dense_1 (Dense)	(None, 5)	5125		
Total params: 2,392,101				

Total params: 2,392,101 Trainable params: 2,391,205

ENTRENAMIENTO

Ejecución del modelo

```
image_number=101
plt.imshow(x_test[image_number])
<matplotlib.image.AxesImage at 0x7felldea3550>
```



```
n = np.array(x_test[image_number])
labels = '''hamster mouse rabbit shrew squirrel'''.split()
predicted_label = labels[model.predict(n[None,:]).argmax()]

original_label = labels[y_test[image_number]]

print("Original label is {} and predicted label is {}".format(
    original_label, predicted_label))
```

Original label is hamster and predicted label is hamster

	precision	recall	fl-score	support	
	0.05	0.00	0.05	F00	
0		0.96			
1		0.91		500	
2			0.92		
3		0.98		500	
4	0.95	0.94	0.94	500	
accuracy			0.94	2500	
macro avg	0.94	0.94	0.94	2500	
weighted avg	0.94	0.94	0.94	2500	
	precision	recall	fl-score	support	
	bi ectaton	recare	1 46 2 4 4 1 4	a a p p o i c	
	precision	recatt	. 2 300.0	заррот с	
Θ	-		0.76		
_	0.83	0.71		100	
1	0.83 0.54	0.71 0.51	0.76	100 100	
1 2	0.83 0.54 0.65	0.71 0.51 0.55	0.76 0.53 0.59	100 100 100	
1 2 3	0.83 0.54 0.65 0.56	0.71 0.51 0.55 0.76	0.76 0.53 0.59 0.64	100 100 100 100	
1 2	0.83 0.54 0.65 0.56	0.71 0.51 0.55 0.76	0.76 0.53 0.59	100 100 100 100	
1 2 3 4	0.83 0.54 0.65 0.56	0.71 0.51 0.55 0.76	0.76 0.53 0.59 0.64	100 100 100 100	
1 2 3 4 accuracy	0.83 0.54 0.65 0.56 0.65	0.71 0.51 0.55 0.76 0.64	0.76 0.53 0.59 0.64 0.64	100 100 100 100 100	
1 2 3 4 accuracy macro avg	0.83 0.54 0.65 0.65 0.65	0.71 0.51 0.55 0.76 0.64	0.76 0.53 0.59 0.64 0.64	100 100 100 100 100 500	
1 2 3 4 accuracy	0.83 0.54 0.65 0.65 0.65	0.71 0.51 0.55 0.76 0.64	0.76 0.53 0.59 0.64 0.64	100 100 100 100 100 500	

03 Modelo Intermedio

MODELO #2

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 32, 32, 3)]	0
resnet50 (Functional)	(None, None, None, 2048)	23587712
max_pooling2d (MaxPooling2D)	(None, 1, 1, 2048)	0
dropout (Dropout)	(None, 1, 1, 2048)	Θ
flatten (Flatten)	(None, 2048)	0
dense_2 (Dense)	(None, 16)	32784
dense_3 (Dense)	(None, 10)	170
otal params: 23,620,666 rainable params: 23,567,546 lon-trainable params: 53,120		

ENTRENAMIENTO

Ejecución del modelo


```
n = np.array(x_val[inage_number])
labels = '''rabbit squirrel hamster shrew mouse'''.split()
predicted_label = labels[model.predict(n[None,:]).argmax()]

original_label = labels[y_val[image_number]]

print("Original label is {} and predicted label is {}".format(
    original_label, predicted_label))
```

Original label is mouse and predicted label is mouse

	precision	recall	fl-score	support	
0	1.00	1.00	1.00	408	
1	1.08	1.90	1.00	408	
2	1.00	1.00	1.00	468	
3	1.00	1.90	1.00	468	
4	1.00	1.00	1.00	408	
accuracy			1.00	2008	
macro avg	1.00	1.00	1.00	2868	
weighted avg	1.00	1.90	1.00	2868	
	precision	recall	fl-score	support	
	precision	recall	fl-score	support	
θ	precision 0.52				
1			0.47		
1 2	0.52	0.43	0.47	100	
1	0.52 0.47	0.43 0.51 0.68	0.47 0.49	100 100	
1 2	0.52 0.47 0.61	0.43 0.51 0.68	0.47 0.49 0.64	108 108 108	
1 2 3	0.52 0.47 0.61 0.54	0.43 0.51 0.68 0.59	0.47 0.49 0.64 0.56	108 108 108	
1 2 3	0.52 0.47 0.61 0.54	0.43 0.51 0.68 0.59	0.47 0.49 0.64 0.56	108 108 108 108	
1 2 3 4	0.52 0.47 0.61 0.54	0.43 0.51 0.68 0.59	0.47 0.49 0.64 0.56 0.40	100 100 100 100 100	
1 2 3 4 accuracy	0.52 0.47 0.61 0.54 0.43	0.43 0.51 0.68 0.59 0.38	0.47 0.49 0.64 0.56 0.49	100 100 100 100 100	
1 2 3 4 accuracy macro avg	0.52 0.47 0.61 0.54 0.43	0.43 0.51 0.68 0.59 0.38	0.47 0.49 0.64 0.56 0.49	108 108 108 108 108 508	

04 Modelo Final

DATASET PROPIO

Dataset:

Hamster: 114

Ratón: 131

Conejo: 100

Musaraña: 105

Ardilla: 101

DATASET PROPIO

Train_dataset:

Hamster: 97

Ratón: 111

Conejo: 85

Musaraña: 89

Ardilla: 86

Test_dataset:

Hamster: 17

Ratón: 20

Conejo: 15

Musaraña: 16

Ardilla: 15

DATASET PROPIO

MODELO #3

Model: "model"

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 224, 224, 3)]	Θ
activation (Activation)	(None, 224, 224, 3)	0
conv2d (Conv2D)	(None, 112, 112, 128)	3584
batch_normalization (BatchN ormalization)	(None, 112, 112, 128)	512
activation_1 (Activation)	(None, 112, 112, 128)	0
dropout (Dropout)	(None, 112, 112, 128)	0
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 56, 56, 128)	Θ
max_pooling2d_1 (MaxPooling 2D)	(None, 28, 28, 128)	0
conv2d_1 (Conv2D)	(None, 14, 14, 64)	73792
dropout_1 (Dropout)	(None, 14, 14, 64)	0
<pre>batch_normalization_1 (Batc hNormalization)</pre>	(None, 14, 14, 64)	256
activation_2 (Activation)	(None, 14, 14, 64)	Θ
dropout_2 (Dropout)	(None, 14, 14, 64)	0
dense (Dense)	(None, 14, 14, 32)	2080
dropout_3 (Dropout)	(None, 14, 14, 32)	0
dense_1 (Dense)	(None, 14, 14, 16)	528
dropout_4 (Dropout)	(None, 14, 14, 16)	Θ
dense_2 (Dense)	(None, 14, 14, 8)	136
flatten (Flatten)	(None, 1568)	Θ
labels (Dense)	(None, 5)	7845

Total params: 88,733 Trainable params: 88,349 Non-trainable params: 384

ENTRENAMIENTO

Ejecución del modelo

```
plt.imshow(image)
<matplotlib.image.AxesImage at 0x7fa9cfc07710>
image = cv2.cvtColor(image, cv2.COLOR BGR2RGB)
resized image = cv2.resize(image , (224,224))
print(type(resized image))
prdiction = model predict.predict(resized image[None,:])
<class 'numpy.ndarray'>
prdiction
array([[0.01233012, 0.07350295, 0.20452142, 0.08081158, 0.6288339 ]],
      dtype=float32)
label dict={
  θ: "hamster",
 1: "mouse",
  2: "rabbit",
  3: "shrew",
  4: "squirrel"
label dict[prdiction.argmax()]
'squirrel'
```

```
print(classification report(labels train, label train predictions))
              precision
                           recall f1-score
                                               support
                   0.80
                              0.97
                                        0.88
                                                    97
                                        0.83
                   0.90
                             0.77
                                                   111
                   0.72
                             0.98
                                        0.83
                                                    85
                   0.88
                             0.74
                                       0.80
                                                    89
                   0.92
                              0.69
                                        0.79
                                        0.83
                                                   468
    accuracy
                                        0.83
                                                   468
                   0.84
                              0.83
   macro avg
weighted avg
                   0.85
                             0.83
                                        0.83
                                                   468
print(classification report(labels test, label test predictions))
              precision
                           recall f1-score
                                               support
                   0.76
                             0.76
                                        0.76
                                                    17
                             0.75
                                                    20
                                        0.81
                   0.88
                   0.79
                             1.00
                                        0.88
                                                    15
                   0.75
                             0.75
                                       0.75
                                                    16
                   0.71
                             0.67
                                                    15
                                        0.69
                                        0.78
                                                    83
    accuracy
                                        0.78
                   0.78
                              0.79
                                                    83
   macro avg
weighted avg
                   0.79
                              0.78
                                        0.78
                                                    83
```

05 Conclusiones

iiiGRACIAS!!!

