CSE 1201 Data Structure

Chapter 4: Queues

Instructor: Md. Shahid Uz Zaman Dept. of CSE, *RUET*

What is a queue?

- It is an ordered group of homogeneous items of elements.
- Queues have two ends:
 - Elements are added at one end called *rear*.
 - Elements are removed from the other end called *front*.
- The element added first is also removed first (FIFO: First In, First Out).

Queue Specification

- Definitions: (provided by the user)
 - MAX_ITEMS: Max number of items that might be on the queue
 - *ItemType*: Data type of the items on the queue
- Operations
 - Enqueue (ItemType newItem)
 - Dequeue ()

Enqueue (ItemType newItem)

- Function: Adds newItem to the rear of the queue.
- *Preconditions*: Queue has been initialized and is not full.
- Postconditions: newItem is at rear of queue.

Dequeue (ItemType& item)

- Function: Removes front item from queue and returns it in item.
- *Preconditions*: Queue has been initialized and is not empty.
- *Postconditions*: Front element has been removed from queue and item is a copy of removed element.

Implementation issues

- Implement the queue as a *circular structure*.
- How do we know if a queue is full or empty?
- Initialization of *front* and *rear*.
- Testing for a *full* or *empty* queue.

Make *front* point to the element **preceding** the front element in the queue (one memory location will be wasted).

Initialize front and rear

Queue is empty now!!

rear == front

Queue: Enqueue() function

Topic 1: Write an Algorithm to insert a new element in a queue

Queue: Enqueue() function

Topic 1: Write an Algorithm to insert a new element in a queue


```
void enqueue(int x){
if(rear == n-1)
  rear=0;
  if(rear==front)
     {printf("Queue is full.\n");
      rear=n-1;
  else
     a[rear]=x;
else{
  if(rear+1==front)
     printf("Queue is full.\n");
  else
     a[++rear]=x;
```

Queue: Dequeue() function

Topic 1: Write an Algorithm to delete element from a queue

Queue: Dequeue() function

Topic 1: Write an Algorithm to delete element from a queue


```
void dequeue(){
  int x;
if(rear==front)
  printf("Queue is empty..\n");
else
   if(front==n-1)
     front=0;
   else
     front++;
   x=a[front];
```

.

Recursion

What is recursion?

- Sometimes, the best way to solve a problem is by solving a <u>smaller version</u> of the exact same problem first
- Recursion is a technique that solves a problem by solving a <u>smaller problem</u> of the same type

Problems defined recursively

There are many problems whose solution can be defined recursively

Example: *n factorial*

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ (n-1)! * n & \text{if } n > 0 \end{cases}$$

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ 1*2*3*...*(n-1)*n & \text{if } n > 0 \end{cases}$$

$$(closed form solution)$$

Coding the factorial function

Recursive implementation

```
int fact( int n)
{
  if (n==0) // base case
  return 1;
  else
  return n * factl(n-1);
}
```


Coding the factorial function (cont.)

Iterative implementation

```
int Factorial(int n)
{
  int fact = 1;

for(int count = 2; count <= n; count++)
  fact = fact * count;

return fact;
}</pre>
```

Another example: *n* choose *k* (combinations)

• Given *n* things, how many different sets of size *k* can be chosen?

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
, $1 \le k \le n$ (closed-form solution)

with base cases:

$$\binom{n}{1}$$
 = n (k = 1), $\binom{n}{n}$ = 1 (k = n)

Ackerman function

It's a recursive function with two arguments each of which can be assigned any non-negative integer.

Ackermann function is defined as:

$$A(m,n) = egin{cases} n+1 & ext{if } m=0 \ A(m-1,1) & ext{if } m>0 ext{ and } n=0 \ A(m-1,A(m,n-1)) & ext{if } m>0 ext{ and } n>0. \end{cases}$$

Examples:

$$A(0,2)=2+1=3$$

 $A(1,0)=A(1-1,1)=A(0,1)=1+1=2$
 $A(1,1)=A(1-1,A(1,1-1)=A(0,A(1,0))$
 $=A(0,2)=2+1=3$

Ackerman function: A(1,2)

```
Solve A(1, 2)?
Answer:
Given problem is A(1, 2)
Here m = 1, n = 2 e.g m > 0 and n > 0
Hence applying third condition of Ackermann
function
A(1, 2) = A(0, A(1, 1)) - (1)
Now, Let's find A(1, 1) by applying third
condition of Ackermann function
A(1, 1) = A(0, A(1, 0)) - (2)
Now, Let's find A(1, 0) by applying second
condition of Ackermann function
A(1, 0) = A(0, 1) - (3)
Now, Let's find A(0, 1) by applying first
condition of Ackermann function
```

A(0, 1) = 1 + 1 = 2

Now put this value in equation 3 Hence A(1, 0) = 2*Now put this value in equation 2* A(1, 1) = A(0, 2) - (4)Now, Let's find A(0, 2) by applying first condition of Ackermann function A(0, 2) = 2 + 1 = 3Now put this value in equation 4 *Hence* A(1, 1) = 3Now put this value in equation 1 A(1, 2) = A(0, 3) - (5)Now, Let's find A(0, 3) by applying first condition of Ackermann function A(0, 3) = 3 + 1 = 4Now put this value in equation 5 *Hence* A(1, 2) = 4So, A(1, 2) = 4

Ackerman function

Table

$m \setminus n$	0	1	2	3	4	n
0	1	2	3	4	5	n+1
1	2	3	4	5	6	n+2=2+(n+3)-3
2	3	5	7	9	11	$2n+3 = 2 \cdot (n+3) - 3$
3	5	13	29	61	125	$2^{(n+3)}-3$
4	$\begin{array}{c} 13 \\ = 2^{2^2} - 3 \end{array}$	$\begin{array}{c} 65533 \\ = 2^{2^{2^2}} - 3 \end{array}$	$2^{65536} - 3$ $= 2^{2^{2^{2^{2}}}} - 3$	$2^{2^{65536}} - 3$ $= 2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2$	$2^{2^{2^{65536}}} - 3$ $= 2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2$	$\underbrace{2^{2^{\cdot \cdot \cdot^{2}}}}_{n+3} - 3$

Ackerman function: C++ Program

```
// C++ program to illustrate Ackermann function
#include <iostream>
using namespace std;
int ack(int m, int n)
  if (m == 0)
     return n + 1;
  else if((m > 0) && (n == 0)){
     return ack(m - 1, 1);
  else if((m > 0) && (n > 0)){
     return ack(m - 1, ack(m, n - 1));
```

```
// Driver code
int main()
{
    int A;
    A = ack(1, 2);
    cout << A << endl;
    return 0;
}
```

The Fibonacci Sequence

The Fibonacci Sequence

He gave us our 10 digit number system!

He recognized a series of numbers that often occur in nature. These are now called the Fibonacci numbers. The series starts with 0 & 1. All following numbers are the sum of the 2 previous numbers!

Here's how it starts... 0,1,1,2,3,5.....

Leonardo of Pisa or Fibonacci: Born 1175 AD

Fibonacci Series

Topic 1: Write an Algorithm to create n elements Fibonacci series

n: total elementsa[i]: stores elements

Fibonacci Series

Find the ratio of successive Fibonacci numbers:

```
*1:1, 2:1, 3:2, 5:3, 8:5, ...
```

- *1:1,1:2,2:3,3:5,5:8,...
- What do you notice?

Look at the following rectangles:

Now ask yourself, which of them seems to be the most naturally attractive rectangle? If you said the first one, then you are probably the type of person who likes everything to be symmetrical. Most people tend to think that the third rectangle is the most appealing.

If you were to measure each rectangle's length and width, and compare the ratio of length to width for each rectangle you would see the following:

Rectangle one: Ratio 1:1

Rectangle two: Ratio 2:1

Rectangle Three: Ratio 1.618:1

Have you figured out why the third rectangle is the most appealing? That's right - because the ratio of its length to its width is the Golden Ratio! For centuries, designers of art and architecture have recognized the significance of the Golden Ratio in their work.

1:1.618

Fibonacci numbers

Are our bodies based on Fibonacci numbers?

Find the ratio of

- Height (red): Top of head to fingertips (blue)
- Top of head to fingertips (blue): Top of head to elbows (green)
- Length of forearm (yellow): length of hand (purple)

What do

- There are three towers
- 64 gold disks, with decreasing sizes, placed on the first tower
- You need to move all of the disks from the first tower to the last tower
- Larger disks can not be placed on top of smaller disks
- The third tower can be used to temporarily hold disks

The disks must be moved within one week.
 Assume one disk can be moved in 1 second.
 Is this possible?

• To create an algorithm to solve this problem, it is convenient to generalize the problem to the "N-disk" problem, where in our case N = 64.

Algorithm

We can combine these steps into the following algorithm:

```
0. Receive n, src, dest, aux.
1. If n > 1:

a. Move(n-1, src, aux, dest);
b. Move(1, src, dest, aux);
c. Move(n-1, aux, dest, src);

Else

Display "Move the top disk from ", src, " to ", dest. End if.
```

VIDEO

Coding

```
// ...
void Move(int n, char src, char dest, char aux)
  if (n > 1)
    Move(n-1, src, aux, dest);
    Move(1, src, dest, aux);
    Move(n-1, aux, dest, src);
  else
    cout << "Move the top disk from "</pre>
         << src << " to " << dest << endl;
```

Testing

The Hanoi Towers

Enter how many disks: 1
Move the top disk from A to B

Testing (Ct'd)

The Hanoi Towers

```
Enter how many disks: 2
Move the top disk from A to C
Move the top disk from A to B
Move the top disk from C to B
```

Testing (Ct'd)

The Hanoi Towers

```
Enter how many disks: 3
Move the top disk from A to B
Move the top disk from A to C
Move the top disk from B to C
Move the top disk from A to B
Move the top disk from C to A
Move the top disk from C to B
Move the top disk from A to B
```

Testing (Ct'a)

The Hanoi Towers

```
Enter how many disks: 4
move a disk from needle A to needle B
move a disk from needle C to needle B
move a disk from needle A to needle C
move a disk from needle B to needle A
move a disk from needle B to needle C
move a disk from needle A to needle C
move a disk from needle A to needle B
move a disk from needle C to needle B
move a disk from needle C to needle A
move a disk from needle B to needle A
move a disk from needle C to needle B
move a disk from needle A to needle C
move a disk from needle A to needle B
move a disk from needle C to needle B
```

Analysis

Let's see how many moves" it takes to solve this problem, as a function of *n*, the number of disks to be moved.

<u>n</u>	Number of disk-moves required
1	1
2	3
3	7
4	15
5	31
ĵ	2 <i>i</i> -1
64	2 ⁶⁴ -1 (a big number)

Assignment-1

- 1: Write an algorithm to check whether a queue is full or empty..
- 2 Write an algorithm to merge two stack into one.
- 3. Write an algorithm to copy all the elements of an array into a stack.
- 4. Write an algorithm to copy all the elements of a stack into a queue.
- 5: Write an algorithm to find ⁿC_r using recursion.
- 6: Write an algorithm to find first n elements of Fibonacci series.