A generalized Grothendieck inequality and entanglement in XOR games

arXiv: quant-ph/0901.2009

Jop Briët¹, Harry Buhrman^{1,2} and Ben Toner^{1,3}

University of BQP Solutions Amsterdam Pty Ltd.

Research supported by NWO (Vici grant), IST (QAP) and BSIK/BRICKS

• The verifier picks questions i,j \in {1,...,r} according to probability distribution π (i,j)

- •The verifier picks questions i,j \in {1,...,r} according to probability distribution $\pi(i,j)$
- •He computes function $V(i,j) \in \{\pm 1\}$, sends i to Alice and j to Bob

- The verifier picks questions i,j \in {1,...,r} according to probability distribution $\pi(i,j)$
- •He computes function $V(i,j) \in \{\pm 1\}$, sends i to Alice and j to Bob
- •Alice answers $\alpha_i \in \{\pm 1\}$ and Bob $\beta_j \in \{\pm 1\}$

- The verifier picks questions i,j \in {1,...,r} according to probability distribution $\pi(i,j)$
- •He computes function $V(i,j) \in \{\pm 1\}$, sends i to Alice and j to Bob
- •Alice answers $\alpha_i \in \{\pm 1\}$ and Bob $\beta_j \in \{\pm 1\}$
- •Alice and Bob win if $\alpha_i \beta_i = V(i,j) \Leftrightarrow V(i,j) \cdot (\alpha_i \beta_i) = +1$

•We can quantify how well Alice and Bob can play game $G(\pi,V)$ by the correlation bias

$$\omega(G) := \max_{\{\alpha_i\}, \{\beta_j\} \in \{\pm 1\}} \sum_{i,j} \pi(i,j) V(i,j) \alpha_i \beta_j$$

(Deterministic strategies are optimal)

Non-local XOR games

- •Alice and Bob share entangled state $\Psi \in C^{dxd}$
- • α_i is the outcome of a $\{\pm 1\}$ -valued measurement of observable A_i on Alice's part of ψ
- β_j is the outcome of a $\{\pm 1\}$ -valued measurement of observable B_j on Bob's part of ψ

(Projective measurements and pure states are optimal)

Non-local XOR games

- Measurements give expectation $E[\alpha_i \beta_j] = [\neg] \psi | A_i \otimes B_j | \psi [\neg]$
- The d-dimensional non-local correlation bias:

$$\omega_d^*(G) := \max_{\{A_i\}, \{B_j\}, |\psi\rangle \in \mathbb{C}^{d \times d}} \sum_{i,j} \pi(i,j) V(i,j) \langle \psi | A_i \otimes B_j | \psi \rangle$$

(Projective measurements and pure states are optimal)

Example: CHSH game

• Questions: i,j∈{0, I}

$$\pi(0,0) = 1/4$$
 $\forall (0,0) = 1$
 $\pi(0,1) = 1/4$ $\forall (0,1) = 1$
 $\pi(1,0) = 1/4$ $\forall (1,0) = 1$
 $\pi(1,1) = 1/4$ $\forall (1,1) = -1$

Example: CHSH game

• Questions: i,j∈{0, I}

$$\pi(0,0) = 1/4$$
 $V(0,0) = 1 = \alpha_0 \beta_0$
 $\pi(0,1) = 1/4$ $V(0,1) = 1 = \alpha_0 \beta_1$
 $\pi(1,0) = 1/4$ $V(1,0) = 1 = \alpha_1 \beta_0$
 $\pi(1,1) = 1/4$ $V(1,1) = -1 = \alpha_1 \beta_1$

Example: CHSH game

• Questions: i,j∈{0, I}

$$\pi(0,0) = 1/4$$
 $V(0,0) = 1 = \alpha_0\beta_0$
 $\pi(0,1) = 1/4$ $V(0,1) = 1 = \alpha_0\beta_1$
 $\pi(1,0) = 1/4$ $V(1,0) = 1 = \alpha_1\beta_0$
 $\pi(1,1) = 1/4$ $V(1,1) = -1 = \alpha_1\beta_1$

At most 3 equations can simultaneously be satisfied

•Classically, the players win with probability $\leq 3/4$ (correlation bias $\leq 1/2$)

$$\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

$$\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

- •Both carry out the same protocol:
 - •Question 0: Perform R(-π/16) on qubit
 - •Question I: Perform R(3π/16) on qubit
 - Measure in computational basis

$$\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

- •Both carry out the same protocol:
 - •Question 0: Perform R(-π/16) on qubit
 - •Question I: Perform R(3π/16) on qubit
 - Measure in computational basis
- •Entangled players win with probability ≈ 0.85

$$\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

- •Both carry out the same protocol:
 - •Question 0: Perform R(-π/16) on qubit
 - •Question I: Perform R(3π/16) on qubit
 - Measure in computational basis
- •Entangled players win with probability ≈ 0.85 (correlation bias ≈ 0.71)

$$\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

- •Both carry out the same protocol:
 - •Question 0: Perform R(-π/16) on qubit
 - •Question I: Perform R(3π/16) on qubit
 - Measure in computational basis
- •Entangled players win with probability ≈ 0.85 (correlation bias ≈ 0.71)
- Tsirelson showed this is best possible

Observables and vectors

•Tsirelson (1987) discovered a correspondence between measurements sets of observables on pure states, and inner products of sets of unit vectors.

For pure state $\psi \in C^{d\times d}$ and observables A_a, B_b , there exist unit vectors $a,b \in S_{2d^2-1}$ s.t.

$$a \cdot b = \langle \psi | A_a \otimes B_b | \psi \rangle$$

Conversely, there exist mappings A,B from S_{n-1} to observables on maximally entangled state $\psi \in C^{d\times d}$ with

$$d=2^{n/2}$$
 s.t. for a,b \in S_n

$$\langle \psi | A(a) \otimes B(b) | \psi \rangle = a \cdot b$$

XOR games and Grothendieck's inequality [Tsirelson87]:

- •Associate a matrix $M \in [-1,1]^{rxr}$ with game (π,V) : $M_{ij} = \pi(i,j)V(i,j)$.
- •Tsirelson's map lets us upper bound the d-dim. quantum correlation by correlations with 2d²-dim unit vectors:

$$\omega_d^*(M) = \max_{\{A_i\}, \{B_j\}, |\psi\rangle \in \mathbb{C}^{d \times d}} \sum_{i,j} M_{ij} \langle \psi | A_i \otimes B_j | \psi \rangle \le \max_{\{a_i\}, \{b_j\} \in S_{2d^2 - 1}} \sum_{i,j} M_{ij} a_i \cdot b_j$$

XOR games and Grothendieck's inequality [Tsirelson87]:

- •Associate a matrix $M \in [-1,1]^{rxr}$ with game (π,V) : $M_{ij} = \pi(i,j)V(i,j)$.
- •Tsirelson's map lets us upper bound the d-dim. quantum correlation by correlations with 2d²-dim unit vectors:

$$\omega_d^*(M) = \max_{\{A_i\}, \{B_j\}, |\psi\rangle \in \mathbb{C}^{d \times d}} \sum_{i,j} M_{ij} \langle \psi | A_i \otimes B_j | \psi \rangle \le \max_{\{a_i\}, \{b_j\} \in S_{2d^2 - 1}} \sum_{i,j} M_{ij} a_i \cdot b_j$$

• This gives an upper bound on the quantum correlation in terms of the classical correlation and Grothendieck's constant

$$\omega_d^*(M) \le K_G \cdot \omega(M)$$

(Davie `84, Reeds `91) $1.676 \le K_G \le 1.782$ (Krivine `71)

Grothendieck constant of order n

 $\bullet K_G(n)$ is the smallest constant s.t. for every real rxr matrix M

$$\frac{\max_{\{a_i\},\{b_j\}\in S_{n-1}} \sum_{i,j\in[r]} M_{ij} a_i \cdot b_j}{\max_{\{\alpha_i\},\{\beta_j\}\in \{\pm 1\}} \sum_{i,j\in[r]} M_{ij} \alpha_i \beta_j} \le K_G(n)$$

Grothendieck constant of order n

 $\bullet K_G(n)$ is the smallest constant s.t. for every real rxr matrix M

$$\frac{\max_{\{a_i\},\{b_j\}\in S_{n-1}} \sum_{i,j\in[r]} M_{ij} a_i \cdot b_j}{\max_{\{\alpha_i\},\{\beta_j\}\in \{\pm 1\}} \sum_{i,j\in[r]} M_{ij} \alpha_i \beta_j} \le K_G(n)$$

- $\bullet K_G = \sup_n K_G(n)$
- Arose in study of norms on tensor products of Banach spaces
- Has also found applications in:
 - Quantum information
 - Communication complexity
 - Approximation algorithms
- \bullet K_G(3) < K_G (Krivine)
- $\bullet K_G(n)$ is not known to be strictly increasing with n

Our results

•Suppose we get a list of probabilities of Alice and Bob's measurements outcomes, conditioned on their measurements

- Suppose we get a list of probabilities of Alice and Bob's measurements outcomes, conditioned on their measurements
- •If the data violates a Bell inequality, then we know they share an entangled state

- Suppose we get a list of probabilities of Alice and Bob's measurements outcomes, conditioned on their measurements
- •If the data violates a Bell inequality, then we know they share an entangled state
- •But can we also lower bound the dimension of the state?

- Suppose we get a list of probabilities of Alice and Bob's measurements outcomes, conditioned on their measurements
- •If the data violates a Bell inequality, then we know they share an entangled state
- •But can we also lower bound the dimension of the state?
- •Conjecture: Yes, even with two-outcome measurements

- Suppose we get a list of probabilities of Alice and Bob's measurements outcomes, conditioned on their measurements
- •If the data violates a Bell inequality, then we know they share an entangled state
- •But can we also lower bound the dimension of the state?
- •Conjecture: Yes, even with two-outcome measurements
- This talk: Yes, for some XOR games!

Dimension witnesses and XOR games

For every d, there is an XOR game M and finite n>d, s.t.

$$\omega_d^*(M) < \omega_n^*(M)$$

Dimension witnesses and XOR games

For every d, there is an XOR game M and finite n>d, s.t.

$$\omega_d^*(M) < \omega_n^*(M)$$

Obtained independently by Vértesi and Pál Other related work: [Wehner et al. `08]

$$\text{Recall:} \quad \frac{\omega_d^*(M)}{\omega(M)} \ \le \ \frac{\max_{\{a_i\}, \{b_j\} \in S_{2d^2-1}} \sum_{i,j} M_{ij} a_i \cdot b_j}{\max_{\{\alpha_i\}, \{\beta_j\} \in \{\pm 1\}} \sum_{i,j} M_{ij} \alpha_i \beta_j} \le K_G(2d^2)$$

[Brunner et al. '08]

Since $K_G(3) < K_G$ there exists an XOR game M s.t. for some n>2, we have $\omega_2^*(M) < \omega_n^*(M)$ (there exist qubit witnesses)

If $K_G(n)$ is strictly increasing with n (not known), then there are XOR games (M) that can be played better with more entanglement (as conjectured)

We take a different approach: generalize $K_G(n)$

Definition: For m<n, let $K_G(n \oplus m)$ be the smallest constant for, s.t. for every real rxr matrix M

$$K_G(n \mapsto m) \ge \frac{\max_{\{a_i\}, \{b_j\} \in S_{n-1}} \sum_{i,j \in [r]} M_{ij} a_i \cdot b_j}{\max_{\{a_i'\}, \{b_j'\} \in S_{m-1}} \sum_{i,j \in [r]} M_{ij} a_i' \cdot b_j'}$$

Definition: For m<n, let $K_G(n \oplus m)$ be the smallest constant for, s.t. for every real rxr matrix M

$$K_G(n \mapsto m) \ge \frac{\max_{\{a_i\}, \{b_j\} \in S_{n-1}} \sum_{i,j \in [r]} M_{ij} a_i \cdot b_j}{\max_{\{a_i'\}, \{b_j'\} \in S_{m-1}} \sum_{i,j \in [r]} M_{ij} a_i' \cdot b_j'}$$

Definition: For m<n, let $K_G(n \oplus m)$ be the smallest constant for, s.t. for every real rxr matrix M

$$K_G(n \mapsto m) \ge \frac{\max_{\{a_i\}, \{b_j\} \in S_{n-1}} \sum_{i,j \in [r]} M_{ij} a_i \cdot b_j}{\max_{\{a_i'\}, \{b_j'\} \in S_{m-1}} \sum_{i,j \in [r]} M_{ij} a_i' \cdot b_j'}$$

- $\bullet K_{G}(n \bigoplus I) = K_{G}(n)$
- Trivial upper bound: $K_G(n \oplus m) \leq K_G(n)$
- We prove first lower bound: $K_G(n \oplus m) > 1 + 1/2m 1/2n O(1/m^2)$

Definition: For m<n, let $K_G(n \oplus m)$ be the smallest constant for, s.t. for every real rxr matrix M

$$K_G(n \mapsto m) \ge \frac{\max_{\{a_i\}, \{b_j\} \in S_{n-1}} \sum_{i,j \in [r]} M_{ij} a_i \cdot b_j}{\max_{\{a_i'\}, \{b_j'\} \in S_{m-1}} \sum_{i,j \in [r]} M_{ij} a_i' \cdot b_j'}$$

- $\bullet K_{G}(n \bigoplus I) = K_{G}(n)$
- Trivial upper bound: $K_G(n \oplus m) \leq K_G(n)$
- We prove first lower bound: $K_G(n \oplus m) > 1 + 1/2m 1/2n O(1/m^2)$

Our lower bound is proved by choosing M: For $a,b \in S_{n-1}$,

let M be a function: $M(a,b) = a \cdot b$

$$K_G(n \mapsto m) \ge \frac{\max_{A,B:S_{n-1} \to S_{n-1}} \int_{a,b \in S_{n-1}} dadb(a \cdot b) (A(a) \cdot B(b))}{\max_{A',B':S_{n-1} \to S_{m-1}} \int_{a,b \in S_{n-1}} dadb(a \cdot b) (A'(a) \cdot B'(b))} > 1$$

Relation to dimension witness game

•Define a game (π, V) by infinitely many questions, labelled as unit vectors $a,b \in S_{n-1}$, and $\pi(a,b)V(a,b) = M(a,b) = a\cdot b$

 By Tsirelson, the numerator and denominator bound nonlocal correlations

$$\max_{A,B:S_{n-1}\to S_{n-1}} \int_{a,b\in S_{n-1}} dadb(a\cdot b) (A(a)\cdot B(b)) \le \omega_{2^{n/2}}^*(M)$$

$$\omega_{\mathbf{d}}^{*}(M) \leq \max_{A',B':S_{n-1}\to S_{2d^{2}-1}} \int_{a,b\in S_{n-1}} dadb(a\cdot b) (A'(a)\cdot B'(b))$$

Relation to dimension witness game

•Define a game (π,V) by infinitely many questions, labelled as unit vectors $a,b \in S_{n-1}$, and $\pi(a,b)V(a,b) = M(a,b) = a\cdot b$

By Tsirelson, the numerator and denominator bound non-

local correlations

$$\max_{A,B:S_{n-1}\to S_{n-1}}\int_{a,b\in S_{n-1}}dadb(a\cdot b)\left(A(a)\cdot B(b)\right)\leq \omega_{2^{n/2}}^*(M)$$
 Alice

$$\omega_d^*(M) \le \max_{A',B':S_{n-1}\to S_{2d^2-1}} \int_{a,b\in S_{n-1}} dadb(a\cdot b) (A'(a)\cdot B'(b))$$

Set $n = 2d^2 + 1$ so that m > n

$$\frac{\omega_{2^{n/2}}^*(M)}{\omega_d^*(M)} \geq \frac{\max_{A,B:S_{n-1}\to S_{n-1}} \int_{a,b\in S_{n-1}} dadb(a\cdot b) \left(A(a)\cdot B(b)\right)}{\max_{A',B':S_{n-1}\to S_{2d^2-1}} \int_{a,b\in S_{n-1}} dadb(a\cdot b) \left(A'(a)\cdot B'(b)\right)} > 1$$

Bob

 This is a game that Alice and Bob can play better with more entanglement

Lower bound on Kg(n mm)

$$K_{G}(n \mapsto m) \geq \frac{\max_{A,B:S_{n-1} \to S_{n-1}} \int_{a,b \in S_{n-1}} dadb(a \cdot b) \left(A(a) \cdot B(b)\right)}{\max_{A',B':S_{n-1} \to S_{m-1}} \int_{a,b \in S_{n-1}} dadb(a \cdot b) \left(A'(a) \cdot B'(b)\right)} > 1$$

We need to find the maximizing maps A and B

How to choose A and B

Denominator =
$$\max_{A,B:S_{n-1}\to S_{m-1}} \int dadb(a\cdot b)((A(a)\cdot B(b)))$$

•The integrand can be written as an inner product

$$(a \cdot b) ((A(a) \cdot B(b)) = (a \otimes A(a)) \cdot (b \otimes B(b))$$
$$\left(\int da (a \otimes A(a)) \right) \cdot \left(\int db (b \otimes B(b)) \right)$$

How to choose A and B

Denominator =
$$\max_{A,B:S_{n-1}\to S_{m-1}} \int dadb(a\cdot b)((A(a)\cdot B(b)))$$

The integrand can be written as an inner product

$$(a \cdot b) ((A(a) \cdot B(b))) = (a \otimes A(a)) \cdot (b \otimes B(b))$$
$$\left(\int da (a \otimes A(a)) \right) \cdot \left(\int db (b \otimes B(b)) \right)$$

- •This is maximal if these vectors are parallel. So set B=A.
- We need to calculate the maximal length of a vector

$$\left\| \int da \left(a \otimes A(a) \right) \right\|^2 = \|\chi v\|^2 = \chi^2$$
unit vector

How to choose A

• Take the Schmidt decomposition of v:

$$v = \sum_{i=1}^{m} \lambda_i x_i \otimes y_i$$

 $(\{x_1,...,x_n\}$ and $\{y_1,...,y_m\}$ are bases for R^n and R^m respectively)

$$\chi = (\chi v) \cdot v = \left(\int da (a \otimes A(a)) \right) \cdot \left(\sum_{i=1}^{m} \lambda_i x_i \otimes y_i \right)$$
$$= \int da \left(\sum_{i=1}^{m} \lambda_i (a \cdot x_i) y_i \right) \cdot A(a)$$

 Again we should set the vectors parallel. This gives an integral we can just evaluate

$$\chi = \int_{a \in S_{n-1}} da \left(\sum_{i=1}^{m} \frac{1}{m} a_i^2 \right)^{1/2}$$

Now just evaluate the integrals

$$K_{G}(n \mapsto m) \geq \left(\frac{\int_{a \in S_{n-1}} da\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}^{2}\right)^{1/2}}{\int_{a \in S_{n-1}} da\left(\frac{1}{m} \sum_{i=1}^{m} a_{i}^{2}\right)^{1/2}}\right)^{2}$$

$$= \left(\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n}\Gamma\left(\frac{n}{2}\right)}\right)^{2} / \left(\frac{\Gamma\left(\frac{m+1}{2}\right)}{\sqrt{m}\Gamma\left(\frac{m}{2}\right)}\right)^{2}$$

$$\geq 1 + \frac{1}{2m} - \frac{1}{2n} - O\left(\frac{1}{m^{2}}\right)$$

$$> 1$$

Making the game finite

• Take questions from an €-net:

$$E=\{u_1,...,u_t\}\subseteq S_{n-1} \text{ s.t. for every}$$

 $a \in S_{n-1}$, there exist a

u∈E close to a:

$$||\mathbf{a} - \mathbf{u}||_2 \le \epsilon$$

- The region R_u is the set $a \in S_{n-1}$ to which u is the closest
- ullet Finite game: For questions u,v \in E $M_{\mathrm{finite}}(u,v) := \int_{a \in R_u} dadb(a \cdot b)$ $b \in R_v$

$$\frac{\omega_{2^{n/2}}^*(M_{\text{finite}}) + 2\varepsilon}{\omega_d^*(M_{\text{finite}})} \ge \frac{\omega_{2^{n/2}}^*(M_{\text{infinite}})}{\omega_d^*(M_{\text{infinite}})} > 1 \quad \text{•Set n and } \varepsilon \text{ appropriately}$$

Summary

- •Grothendieck's inequality: non-local vs classical games
- •Generalization (K_G(n⊕m)): non-local vs non-local
- •For every d, there is an XOR game M and finite n>d, s.t. $\omega_d^*(M) < \omega_n^*(M)$. (Binary dimension witnesses exist.)
- •We showed this by proving $K_G(n \oplus m) > 1$