

MAT A22: Linear Algebra 1 for Mathematical Sciences (Winter 2022)

Welcome to Week 10 of the course. Questions? Thoughts? Comments?

Readings:

- ▶ 7.1 Examples and Elementary Properties
- ▶ 7.2 Kernel and Image of a Linear Transformation

News and Reminders:

- ► Three more weeks to go! Woo-hoo!
- ► Assignment #5 is due Thursday March 24th at 13:00

Definition of Linear Transformations

Definition

Let V and W be vector spaces, and $T:V\to W$ a function. Then T is called a linear transformation if it satisfies the following two properties.

- 1. T preserves addition. For all $\vec{v_1}, \vec{v_2} \in V$, $T(\vec{v_1} + \vec{v_2}) = T(\vec{v_1}) + T(\vec{v_2})$.
- 2. T preserves scalar multiplication. For all $\vec{v} \in V$ and $r \in \mathbb{R}$, $T(r\vec{v}) = rT(\vec{v})$.

Note that the sum $\vec{v}_1 + \vec{v}_2$ is in V, while the sum $T(\vec{v}_1) + T(\vec{v}_2)$ is in W. Similarly, $r\vec{v}$ is scalar multiplication in V, while $rT(\vec{v})$ is scalar multiplication in W.

Important Properties of Linear Transformations

Theorem

Let V and W be vector spaces and T : V \rightarrow W a linear transformation.

- 1. T preserves the zero vector. $T(\vec{0}) = \vec{0}$.
- 2. T preserves additive inverses. For all $\vec{v} \in V$, $T(-\vec{v}) = -T(\vec{v})$.
- 3. T preserves linear combinations. For all $\vec{v_1}, \vec{v_2}, \dots, \vec{v_m} \in V$ and all $k_1, k_2, \dots, k_m \in \mathbb{R}$,

$$T(k_1\vec{v}_1 + k_2\vec{v}_2 + \cdots + k_m\vec{v}_m) = k_1T(\vec{v}_1) + k_2T(\vec{v}_2) + \cdots + k_mT(\vec{v}_m).$$

Problem

Let $T: \mathcal{P}_2 \to \mathbb{R}$ be a linear transformation such that

$$T(x^2 + x) = -1$$
; $T(x^2 - x) = 1$; $T(x^2 + 1) = 3$.

Find
$$T(4x^2 + 5x - 3)$$
.

Suppose
$$a(x^2 + x) + b(x^2 - x) + c(x^2 + 1) = 4x^2 + 5x - 3$$
. Then
$$(a + b + c)x^2 + (a - b)x + c = 4x^2 + 5x - 3.$$

Suppose $a(x^2 + x) + b(x^2 - x) + c(x^2 + 1) = 4x^2 + 5x - 3$. Then

$$(a+b+c)x^2 + (a-b)x + c = 4x^2 + 5x - 3.$$

Solving for a, b, and c results in the unique solution a = 6, b = 1, c = -3.

Suppose
$$a(x^2 + x) + b(x^2 - x) + c(x^2 + 1) = 4x^2 + 5x - 3$$
. Then

$$(a+b+c)x^2+(a-b)x+c=4x^2+5x-3.$$

Solving for a, b, and c results in the unique solution a = 6, b = 1, c = -3. Thus

$$T(4x^2 + 5x - 3) = T(6(x^2 + x) + (x^2 - x) - 3(x^2 + 1))$$

$$= 6T(x^2 + x) + T(x^2 - x) - 3T(x^2 + 1)$$

$$= 6(-1) + 1 - 3(3) = -14.$$

Solution 2

Notice that $S = \{x^2 + x, x^2 - x, x^2 + 1\}$ is a basis of \mathcal{P}_2 , and thus x^2 , x, and 1 can each be written as a linear combination of elements of S.

Solution 2

Notice that $S = \{x^2 + x, x^2 - x, x^2 + 1\}$ is a basis of \mathcal{P}_2 , and thus x^2 , x, and 1 can each be written as a linear combination of elements of S.

$$x^{2} = \frac{1}{2}(x^{2} + x) + \frac{1}{2}(x^{2} - x)$$

$$x = \frac{1}{2}(x^{2} + x) - \frac{1}{2}(x^{2} - x)$$

$$1 = (x^{2} + 1) - \frac{1}{2}(x^{2} + x) - \frac{1}{2}(x^{2} - x).$$

Solution 2

Notice that $S = \{x^2 + x, x^2 - x, x^2 + 1\}$ is a basis of \mathcal{P}_2 , and thus x^2 , x, and 1 can each be written as a linear combination of elements of S.

$$x^{2} = \frac{1}{2}(x^{2} + x) + \frac{1}{2}(x^{2} - x)$$

$$x = \frac{1}{2}(x^{2} + x) - \frac{1}{2}(x^{2} - x)$$

$$1 = (x^{2} + 1) - \frac{1}{2}(x^{2} + x) - \frac{1}{2}(x^{2} - x).$$

Then working with these (alternative basis) elements, we get:

$$T(x^2)$$
 = $T(\frac{1}{2}(x^2 + x) + \frac{1}{2}(x^2 - x))$
 = $\frac{1}{2}(-1) + \frac{1}{2}(1) = 0$.

Solution 2

Notice that $S = \{x^2 + x, x^2 - x, x^2 + 1\}$ is a basis of \mathcal{P}_2 , and thus x^2 , x, and 1 can each be written as a linear combination of elements of S.

$$x^{2} = \frac{1}{2}(x^{2} + x) + \frac{1}{2}(x^{2} - x)$$

$$x = \frac{1}{2}(x^{2} + x) - \frac{1}{2}(x^{2} - x)$$

$$1 = (x^{2} + 1) - \frac{1}{2}(x^{2} + x) - \frac{1}{2}(x^{2} - x).$$

Then working with these (alternative basis) elements, we get:

$$T(x^{2}) = T\left(\frac{1}{2}(x^{2} + x) + \frac{1}{2}(x^{2} - x)\right)$$

$$= \frac{1}{2}(-1) + \frac{1}{2}(1) = 0.$$

$$T(x) = T\left(\frac{1}{2}(x^{2} + x) - \frac{1}{2}(x^{2} - x)\right)$$

$$= \frac{1}{2}(-1) - \frac{1}{2}(1) = -1.$$

Solution 2

Notice that $S = \{x^2 + x, x^2 - x, x^2 + 1\}$ is a basis of \mathcal{P}_2 , and thus x^2 , x, and 1 can each be written as a linear combination of elements of S.

$$x^{2} = \frac{1}{2}(x^{2} + x) + \frac{1}{2}(x^{2} - x)$$

$$x = \frac{1}{2}(x^{2} + x) - \frac{1}{2}(x^{2} - x)$$

$$1 = (x^{2} + 1) - \frac{1}{2}(x^{2} + x) - \frac{1}{2}(x^{2} - x).$$

Then working with these (alternative basis) elements, we get:

$$T(x^{2}) = T\left(\frac{1}{2}(x^{2} + x) + \frac{1}{2}(x^{2} - x)\right)$$

$$= \frac{1}{2}(-1) + \frac{1}{2}(1) = 0.$$

$$T(x) = T\left(\frac{1}{2}(x^{2} + x) - \frac{1}{2}(x^{2} - x)\right)$$

$$= \frac{1}{2}(-1) - \frac{1}{2}(1) = -1.$$

$$T(1) = T\left((x^{2} + 1) - \frac{1}{2}(x^{2} + x) - \frac{1}{2}(x^{2} - x)\right)$$

$$= 3 - \frac{1}{2}(-1) - \frac{1}{2}(1) = 3.$$

Action on a Spanning Set

Theorem

Let V and W be vector spaces, where

$$V = \operatorname{span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}.$$

Suppose that S and T are linear transformations from V to W. If $S(\vec{v_i}) = T(\vec{v_i})$ for all i, $1 \le i \le n$, then S = T.

Why does this matter?

This theorem tells us that a linear transformation is completely determined by its actions on a spanning set.

Determined by a Spanning Set

Proof.

We must show that $S(\vec{v}) = T(\vec{v})$ for each $\vec{v} \in V$. Let $\vec{v} \in V$. Then (since V is spanned by $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$), there exist $k_1, k_2, \ldots, k_n \in \mathbb{R}$ so that

$$\vec{v} = k_1 \vec{v}_1 + k_2 \vec{v}_2 + \cdots + k_n \vec{v}_n.$$

Determined by a Spanning Set

Proof.

We must show that $S(\vec{v}) = T(\vec{v})$ for each $\vec{v} \in V$. Let $\vec{v} \in V$. Then (since V is spanned by $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$), there exist $k_1, k_2, \dots, k_n \in \mathbb{R}$ so that

$$\vec{v} = k_1 \vec{v}_1 + k_2 \vec{v}_2 + \cdots + k_n \vec{v}_n.$$

It follows that

$$S(\vec{v}) = S(k_1\vec{v}_1 + k_2\vec{v}_2 + \dots + k_n\vec{v}_n)$$

$$= k_1S(\vec{v}_1) + k_2S(\vec{v}_2) + \dots + k_nS(\vec{v}_n)$$

$$= k_1T(\vec{v}_1) + k_2T(\vec{v}_2) + \dots + k_nT(\vec{v}_n)$$

$$= T(k_1\vec{v}_1 + k_2\vec{v}_2 + \dots + k_n\vec{v}_n)$$

$$= T(\vec{v}).$$

Therefore, S = T.

Isomorphisms

Example

 $\mathcal{P}_1 = \{ax + b \mid a, b \in \mathbb{R}\}$ has addition and scalar multiplication defined as follows:

$$(a_1x + b_1) + (a_2x + b_2) = (a_1 + a_2)x + (b_1 + b_2),$$

 $k(a_1x + b_1) = (ka_1)x + (kb_1),$

for all $(a_1x + b_1), (a_2x + b_2) \in \mathcal{P}_1$ and $k \in \mathbb{R}$. This feels a lot like:

$$\mathbb{R}^2 = \left\{ \left[egin{array}{c} a \ b \end{array}
ight] \ \left[egin{array}{c} a,b \in \mathbb{R} \end{array}
ight\}$$

where addition and scalar multiplication are defined as follows:

$$\begin{bmatrix} a_1 \\ b_1 \end{bmatrix} + \begin{bmatrix} a_2 \\ b_2 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 \\ b_1 + b_2 \end{bmatrix} \qquad k \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} ka_1 \\ kb_1 \end{bmatrix}$$

for all $\begin{vmatrix} a_1 \\ b_1 \end{vmatrix}$ and $\begin{vmatrix} a_2 \\ b_2 \end{vmatrix} \in \mathbb{R}^2$ and $k \in \mathbb{R}$.

The Definition of Isomorphism

Definition

Let V and W be vector spaces and $T:V\to W$ a linear transformation. T is an isomorphism if and only if T is both one-to-one and onto (i.e., $\operatorname{null}(T)=\{0\}$ and $\operatorname{image}(T)=W$). If $T:V\to W$ is an isomorphism, then the vector spaces V and W are said to be isomorphic, and we write $V\cong W$.

Example

The identity operator $I:V\to V$ given $I(\vec{v})=\vec{v}$ on any vector space is an isomorphism.

Onto but Not One-to-One

Problem

Let $T: M_{22} \to \mathbb{R}^2$ be a linear transformation defined by

$$T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+d \\ b+c \end{bmatrix}$$
 for all $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22}$.

Prove that T is onto but not one-to-one.

Let
$$\begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$$
. Since $T \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$, T is onto. Observe that $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \in \ker(T)$, so $\ker(T) \neq \vec{0}_{22}$.

Invertible Matrices

Problem

Suppose U is an invertible $m \times m$ matrix and let $T: M_{mn} \to M_{mn}$ be defined by

$$T(A) = UA$$
 for all $A \in M_{mn}$.

Prove the following:

- 1. T is linear
- 2. T is one-to-one
- 3. T is onto

Polynomials and \mathbb{R}^{n+1}

Problem

The map $T: \mathcal{P}_n \to \mathbb{R}^{n+1}$ defined below is an isomorphism.

$$T(a_0 + a_1x + a_2x^2 + \cdots + a_nx^n) = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

To verify this, prove that:

- 1. T is a linear transformation
- 2. T is one-to-one
- 3. T is onto

2×2 Symmetric Matrices

Problem

Let V denote the set of 2×2 real symmetric matrices. Then V is a vector space with dimension three. Find an isomorphism $T: \mathcal{P}_2 \to V$ with the property that $T(1) = I_2$ (the 2×2 identity matrix).

$$V = \left\{ \left[egin{array}{ccc} a & b \ b & c \end{array}
ight] \; \left| \; a,b,c \in \mathbb{R}
ight\} = \operatorname{span} \left\{ \left[egin{array}{ccc} 1 & 0 \ 0 & 0 \end{array}
ight], \left[egin{array}{ccc} 0 & 1 \ 1 & 0 \end{array}
ight], \left[egin{array}{ccc} 0 & 0 \ 0 & 1 \end{array}
ight]
ight\}.$$

$$V = \left\{ \left[\begin{array}{cc} a & b \\ b & c \end{array} \right] \; \middle| \; a,b,c \in \mathbb{R} \right\} = \operatorname{span} \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right\}.$$

Let

$$B = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right\}.$$

Then B is independent, and span(B) = V, so B is a basis of V. Also, $\dim(V) = 3 = \dim(\mathcal{P}_2)$.

$$V = \left\{ \left[\begin{array}{cc} a & b \\ b & c \end{array} \right] \; \middle| \; a,b,c \in \mathbb{R} \right\} = \operatorname{span} \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right\}.$$

Let

$$B = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right\}.$$

Then B is independent, and span(B) = V, so B is a basis of V. Also, $\dim(V) = 3 = \dim(\mathcal{P}_2)$. However, we want a basis of V that contains I_2 .

Solution (Continued)

Let

$$\mathcal{B}' = \left\{ \left[egin{array}{ccc} 1 & 0 \ 0 & 1 \end{array}
ight], \left[egin{array}{ccc} 0 & 1 \ 1 & 0 \end{array}
ight], \left[egin{array}{ccc} 0 & 0 \ 0 & 1 \end{array}
ight]
ight\}.$$

Since B' consists of dim(V) symmetric independent matrices, B' is a basis of V. Note that $I_2 \in B'$.

Solution (Continued)

Let

$$\mathcal{B}' = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right\}.$$

Since B' consists of dim(V) symmetric independent matrices, B' is a basis of V. Note that $I_2 \in B'$. Define

$$T(1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, T(x) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, T(x^2) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Then for all $ax^2 + bx + c \in \mathcal{P}_2$,

$$T(ax^2 + bx + c) = \begin{bmatrix} c & b \\ b & a + c \end{bmatrix},$$

and $T(1) = I_2$.

Extra Problems: An Unexpected Isomorphism

Problem

Let $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\} = (0, \infty)$ denote the positive numbers. Consider the following operations "box plus" and "box dot" on \mathbb{R}^+ .

$$\lambda \boxdot x = x^{\lambda}$$
 $x \boxplus y = xy$

Prove that \mathbb{R}^+ (with \boxplus and \boxdot) is isomorphic \mathbb{R} (with + and \cdot) via T(2) = 1.