Skewing the Sequent Calculus:

Skew Monoidal Categories \(\s \) Skew Multicategories

Federica Pasqualone, Wilf Offord

March 28, 2024

- 1 Skew-Monoidal Categories
- 2 Skew Multicategories
- 3 Sequent Calculus

Definition

Skew-Monoidal Categories

A **skew-monoidal category** is a category \mathcal{C} equipped with:

- \blacksquare a bifunctor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$
- an object $I \in \mathcal{C}_0$
- three natural transformations, called associator, left and right unitor respectively. Component-wise written as:

$$\alpha_{x,y,z}: (x \otimes y) \otimes z \to x \otimes (y \otimes z)$$

$$\lambda_x: I \otimes x \to x$$

$$\rho_x: x \to x \otimes I$$

natural in x, y, z. They are not required to be natural isos! such that the following diagrams commute: ◆□▶ ◆問▶ ◆団▶ ◆団▶ ■ めぬぐ

Definition

! In the case of monoidal categories, the final three equations follow from the first two.

Examples

- Trivially, any monoidal category is a skew-monoidal category.
- Take \mathcal{C} to be **Ptd**, the category of pointed sets, with $(X, x_0) \otimes (Y, y_0) := (X + Y, inlx_0)$ and I := (1, *). Then α, λ, ρ can be easily defined (see next slide).
- \blacksquare A skew-monoidal structure can be put on the poset \mathbb{N} , as we will see shortly.
- Let \mathcal{D} be cocomplete so that all left Kan extensions exist, and fix a functor $J: \mathcal{C} \to \mathcal{D}$. We define a tensor product on $[\mathcal{C}, \mathcal{D}]$ by $F \otimes G := \operatorname{Lan}_{I} F \circ G$. The monoidal unit is J. The universal property of Kan extensions gives maps α , λ , ρ pointing in the right direction, but not necessarily invertible.

Ptd as Skew Monoidal Category 1/3

Consider $I := (1, *), (X, x_0), (Y, y_0) \in \mathbf{Ptd}$ pointed sets (or pointed topological spaces!): with tensor product

$$(X,x_0)\otimes(Y,y_0):=(X+Y,\mathsf{inl}x_0)$$

Define associator, left and right unitors as follows:

$$((X,x_0)\otimes(Y,y_0))\otimes(Z,z_0)=((X+Y)+Z,\inf(\inf x_0))$$

$$\downarrow^{\alpha_{X,Y,Z}}$$

$$(X,x_0)\otimes((Y,y_0)\otimes(Z,z_0))=(X+(Y+Z),\inf x_0)$$

Ptd as Skew Monoidal Category 2/3

$$\lambda_X : (1,*) \otimes (X,x_0) = (1+X,\mathsf{inl}*) \to (X,x_0)$$
 $\mathsf{inl}* \mapsto x_0$
 $\mathsf{inr} x \mapsto x$

$$\rho_X: (X, x_0) \to (1 + X, \mathsf{inl}*)$$
$$x \mapsto \mathsf{inl}x$$

! The left unitor is not monic, the right not epic - but the associator is iso!

Skew-Monoidal Categories

00000000

Ptd as Skew Monoidal Category 3/3

What we have just defined look likes a co-product in **Ptd**, but it is not ! - it is indeed the tensor product.

Here it is the actual co-product:

$$(X,x_0)+(Y,y_0)=((X+Y)/\sim,[inlx_0])$$

with equivalence relation induced by gluing $inlx_0$ and $inry_0$.

N as Posetal SMC

Skew-Monoidal Categories

Consider the natural numbers with their standard order as posetal category, meaning

$$n \le m \iff n \to m$$

for $n, m \in \mathbb{N}$.

For a fixed number $\mathbf{n} \in \mathbb{N}$, that we set as unit of the monoidal structure, define the monoidal product truncating as follows:

$$h\otimes r:=(h-\mathbf{n})+r$$

The left, right unitors and associator reads:

$$\lambda_h : (\mathbf{n} - \mathbf{n}) + h = 0 + h = h$$
 $\rho_h : h \le h \text{ max} \mathbf{n} = (h - \mathbf{n}) + \mathbf{n}$
 $\alpha_{h,r,t} : (((h - \mathbf{n}) + r) - \mathbf{n}) + t \le (h - \mathbf{n}) + (r - \mathbf{n}) + t$

Coherence

Skew-Monoidal Categories

- When α , ρ , and λ are isomorphisms, we have a **monoidal** category, and the morphisms in these are easily characterised by MacLane's coherence theorem.
- This can be stated as follows: the free monoidal category on any set of objects is a preorder.
- In the skew case, this is no longer true. For instance, it is not the case that $\rho_I \circ \lambda_I = \mathrm{id}_{I \otimes I}$. It would be nice therefore to have some other way to characterise the morphisms in free skew-monoidal categories.
- The paper solves the issue by characterizing morphisms as equivalence classes of deduction trees for a sequent calculus, as we will see at the very end.

Multicategories

- The sequent calculus presented is best understood as a calculus for left representable skew multicategories. We give first some background on multicategories and their relation to monoidal categories.
- \blacksquare A **multicategory** \mathcal{C} is like a category, except morphisms can have "multiple inputs": for each list A of objects of C, and for each object B, we have a Hom-set Hom(A; B). Elements of these homsets are often drawn as follows:

Figure: A multimorphism $f \in \text{Hom}(A_1, A_2, A_3, A_4, A_5; B)$

Multicategories

There is a multi-ary composition operation, and identity morphisms, depicted as:

Skew Multicategories

000000000

- (a) Graphical representation of f(g, h, k). Here $f \in \text{Hom}(C_1, C_2, C_3; D)$, $g \in \text{Hom}(A_1, A_2; C_1)$, $h \in \text{Hom}(E, C_2)$, $k \in \text{Hom}(B; C_3)$
- (b) Graphical representation of id_A
- These are subject to obvious multi-ary associativity and unitality constraints, which follow automatically from the graphical representation.

Representable Multicategories

- We say a list \overline{A} of objects is *representable* if there exists an object $m(\overline{A})$ and a morphism $\theta(\overline{A}): \overline{A} \to m(\overline{A})$ such that precomposing with $\theta(\overline{A})$ gives a natural isomorphism between $\operatorname{Hom}(m(\overline{A}),B)$ and $\operatorname{Hom}(\overline{A},B)$, for any B that is, the functor $\operatorname{Hom}(\overline{A},-)$ is representable.
- We also write $m(A_1, ..., A_n)$ as $(A_1 \otimes \cdots \otimes A_n)$.

Skew Multicategories

■ We draw θ and the inverse to precomposition, a map $\text{Hom}(\overline{A}; B) \to \text{Hom}(m(\overline{A}); B)$, as follows:

$$heta(A_1,A_2,A_3) = egin{pmatrix} A_1 \otimes A_2 \otimes A_3 \ A_1 & A_2 & A_3 \end{pmatrix},$$

Representable Multicategories

- A multicategory is weakly representable if all lists of objects are, and representable if additionally composition with $(id_{A_1}, \ldots, id_{A_i}, \theta(\overline{B}), id_{C_1}, \ldots, id_{C_k})$ induces a bijection between $\operatorname{Hom}(\overline{A}, m(\overline{B}), \overline{C}; D)$ and $\operatorname{Hom}(\overline{A}, \overline{B}, \overline{C}; D)$ for all \overline{A} , \overline{B} , \overline{C} , D.
- Representable multicategories are important because they are in equivalence with monoidal categories.

Representable Multicategories

■ We can reconstruct the coherences of a monoidal category from the representable multicategory structure, e.g.:

Skew Multicategories

ററററ•റററററ്

We will now define skew multicategories, and a left representability condition picking out a subcategory of skew multicategories that are in equivalence with skew-monoidal categories.

Skew Multicategories

A **skew multicategory** has two types of multimorphism: **tight** and **loose**. Concretely, a skew multicategory is:

Skew Multicategories

- A class of objects.
- For each object B, a class $Hom_I(;B)$ of **loose nullary maps** into B.
- For each n > 0, and objects A_1, \ldots, A_n, B , classes $\operatorname{Hom}_t(A_1, \ldots, A_n; B)$ and $\operatorname{Hom}_l(A_1, \ldots, A_n; B)$ of **tight** and **loose** morphisms, and a function $\lambda_{A_1, \ldots, A_n; B} : \operatorname{Hom}_t(A_1, \ldots, A_n; B) \to \operatorname{Hom}_l(A_1, \ldots, A_n; B)$ allowing us to view tight maps as loose.
- A chosen element id_A : $Hom_t(A; A)$
- A composition operation on both tight and loose morphisms, such that $g \circ (f_1, \ldots, f_n)$ is tight exactly when g and f_1 are.

Skew Multicategories

We can graphically represent this structure as follows:

(a) A map in $Hom_t(A_1, A_2, A_3; B)$

(c) Action of λ

(b) A map in $Hom_I(A_1, A_2, A_3; B)$

(d) The composite f(g, h, k). Here f and g are tight, and thus the composite is.

Skew Multicategories

subject to:

Analogues of the unitality and associativity laws.

Skew Multicategories

ററററററെ റെറ്

• Composition commutes with λ , i.e.

$$(\lambda g) \circ (\lambda f_1, \ldots, f_n) = \lambda (g \circ (f_1, \ldots, f_n)).$$

The associativity and unitality are automatic from the graphical representation. The other condition is:

Representable Skew Multicategories

A skew multicategory is **left representable** if for all lists A of objects, there are objects $m_t(\overline{A})$ and $m_l(\overline{A})$, and multimorphisms $\theta_t(\overline{A}) \in \operatorname{Hom}_t(\overline{A}; m_t(\overline{A}))$ and $\theta_l(\overline{A}) \in \operatorname{Hom}_l(\overline{A}; m_l(\overline{A}))$ which induce bijections:

$$\operatorname{\mathsf{Hom}}_t(m_t(\overline{A}),\overline{C};B) o \operatorname{\mathsf{Hom}}_t(\overline{A},\overline{C};B)$$

$$\operatorname{\mathsf{Hom}}_t(m_I(\overline{A}),\overline{C};B) \to \operatorname{\mathsf{Hom}}_I(\overline{A},\overline{C};B)$$

We also write $(A_1 \otimes \cdots \otimes A_n)$ for $m_t(A_1, \ldots, A_n)$ and I for $m_l()$.

Representable Skew Multicategories

We graphically represent θ_t and the inverse to precomposition with θ_t , a map $\operatorname{Hom}_t(\overline{A}, \overline{C}; B) \to \operatorname{Hom}_t(m_t(\overline{A}), \overline{C}; B)$, as:

We represent $\theta_I()$ and the inverse to precomposition with $\theta_I()$, a map $\operatorname{Hom}_I(\overline{A}; B) \to \operatorname{Hom}_t(I, \overline{A}; B)$, as:

Representable Skew Multicategories

Left representable skew multicategories are in equivalence with skew-monoidal categories. For instance, we can build the associator and unitors as tight morphisms using the above structure:

From the definition of left representable skew multicategories, we can derive a sequent calculus for the coherences in a skew-monoidal category. We present these one by one with justification and the corresponding graphical representation. Sequents are of the form $S \mid \Gamma \rightarrow A$ where S is the "stoup", either empty or a single object, Γ is a list of objects, and A is an object.

$$\dfrac{A\mid\Gamma\stackrel{f}{
ightarrow}C}{-\mid A,\Gamma
ightarrow C}$$
 shift

•000000

$$\frac{S \mid \Gamma \xrightarrow{f} A \quad A \mid \Delta \xrightarrow{g} C}{S \mid \Gamma, \Delta \to C} \text{ scut}$$

$$\frac{-\mid \Gamma \xrightarrow{f} A \quad S \mid \Delta_{1}, A, \Delta_{2} \xrightarrow{g} C}{S \mid \Delta_{1}, \Gamma, \Delta_{2} \to C} \text{ ccut}$$

Skew-Monoidal Categories

We impose an equational theory on derivations enforcing the axioms of a skew multicategory, for instance:

$$\frac{A \mid \Gamma \xrightarrow{f} B}{- \mid A, \Gamma \to B} \xrightarrow{\text{shift}} B \mid \Delta \xrightarrow{g} C \\ \hline - \mid A, \Gamma, \Delta \to C \qquad \text{scut} = \frac{A \mid \Gamma \xrightarrow{f} B \quad B \mid \Delta \xrightarrow{g} C}{- \mid A, \Gamma, \Delta \to C} \xrightarrow{\text{shift}} \text{scut}$$

Sequent Calculus

To capture left representable skew multicategories, we add four additional rules.

$$\frac{S \mid \Gamma \xrightarrow{f} A \quad - \mid \Delta \xrightarrow{g} B}{S \mid \Gamma, \Delta \to A \otimes B} \otimes R$$

$$\frac{A \mid B, \Gamma \xrightarrow{f} C}{A \otimes B \mid \Gamma \to C} \otimes L$$

Sequent Calculus

These are also subject to equations, like:

$$\frac{A \otimes B \mid \to A \otimes B}{A \otimes B \mid \to A \otimes B} \stackrel{\text{id}}{=} \frac{A \mid \to A}{A \otimes B \mid \to A \otimes B} \stackrel{\text{id}}{=} \frac{A \mid B \to A \otimes B}{A \otimes B \mid \to A \otimes B} \otimes L$$

 $A \otimes B$

 $A \otimes B$

Main Theorem

Theorem

Morphisms from A to B in a free skew-monoidal category on a set of objects are in bijection with equivalence classes of derivations of $A \mid \to B$ in the above sequent calculus.

References

- [1]John Bourke and Stephen Lack. "Skew monoidal categories and skew multicategories". In: Journal of Algebra 506 (July 2018), pp. 237–266. ISSN: 0021-8693. DOI: 10.1016/j.jalgebra.2018.02.039. URL: http://dx.doi.org/10.1016/j.jalgebra.2018.02.039.
- Tarmo Uustalu, Niccolò Veltri, and Noam Zeilberger. The |2| Sequent Calculus of Skew Monoidal Categories. 2020. arXiv: 2003.05213 [cs.LO].
- [3] Paul Wilson, Dan Ghica, and Fabio Zanasi. String diagrams for non-strict monoidal categories. 2022. arXiv: 2201.11738 [math.CT].