I/O Techniques

Input Output Techniques

- Programmed I/O
- Interrupt driven I/O
- Direct Memory Access (DMA)

Input Output Techniques

Programmed I/O

- CPU has direct control over I/O
 - Sensing status
 - Read/write commands
 - Transferring data
- CPU waits for I/O module to complete operation
- Wastes CPU time

Programmed I/O

- CPU requests I/O operation.
- I/O module performs operation and sets status bits after completion.
- CPU checks status bits periodically.
- I/O module does not inform CPU directly that is it does not interrupt CPU.
- CPU must wait.

Interrupt Driven I/O

- Overcomes CPU waiting
- No repeated CPU checking of device
- I/O module interrupts when ready

Interrupt Driven I/O Basic Operation

- CPU issues read command
- I/O module gets data from peripheral while CPU does other work
- I/O module interrupts CPU after completion
- CPU requests data
- I/O module transfers data

Simple Interrupt Processing

CPU Viewpoint

- Issue read command
- Do other work
- Check for interrupt at end of each instruction cycle
- • If interrupted:-
 - Save context (registers)
 - Process interrupt
- Fetch data & store

Changes in Memory and Registers for an Interrupt

DMA