Лекция 1. Поляризация

В прошлом семестре мы говорили о плоских бесконечных волнах. В реальности волны не бесконечные — о них говорят, как о импульсе, одиночном, кратковременном возмущении Свет излучается атомами за конечное время, порядка наносекунд. Получаем конечный световой импульс, длину распространения которого можно посчитать — $l = c \cdot t$, а значит мы можем говорить о световом импульсе, который локализован, как о частице. Здесь появляется понятие кванта: атом не может излучить меньше одного фотона, поэтому фотон — это квант, неделимая часть

Из прошлого семестра мы знаем, что электрон может преодолеть потенциальный барьер, действуя как волна, из-за своего размера. Следствием этого является ограничением на размер транзистора

Такой эффект не сходится с представлениями классической физики. В классической физике (в том числе в механике Ньютона) рассматриваются более высокие порядки размеров и на более низких скоростях, чем скорость света. В механике Гамильтона, основывающейся на концепции гамильтониана (оператора полной энергии) отпадает понятие траектории

Будем говорить, что волна представляет $E(z,t) = (E_0 e^{i(\omega t - kz)})$

Если волна не лежит в системе координат, то добавляют матрицу поворота: $E(z,t) = \left(E_0\begin{pmatrix}\cos\theta\\\sin\theta\end{pmatrix}e^{i(\omega t - kz)}\right)$

Свет считается **поляризованным**, если направления колебания светового вектора \vec{E} упорядочены каким-либо образом

В простом случае поляризация бывает линейной (или плоской) – в этом случае вектор напряженности движется в одной плоскости

Большинство бытовых источников света излучают неполяризованные волны — в них колебания разных направлений быстро и беспорядочно сменяют друг друга. С помощью устройства с названием **поляризатор** можно получить поляризованный свет, поглощая другие. Поляризатор лишь частично задерживающий колебания, перпендикулярные к его плоскости, называется несовершенным. Качество поляризатора зависит от толщины и материала

С помощью другого прибора – монохроматора – можно получить монохроматическую волну. Так как свет с разной длиной волны имеет разные коэффициенты преломления, то монохроматор способен пропускать свет с нужной длиной волны

Если свет поляризован плохо, то его называют частично поляризованным

Если пропустить частично поляризованный свет через поляризатор, прибора вокруг направления луча интенсивность прошедшего света будет изменяться от I_{\min} до I_{\max} . Причем, так как поляризатор симметричен, то угол между I_{\min} и I_{\max} равен $\frac{\pi}{2}$

Степенью поляризации $P = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}}$ можно выразить, насколько сильно поляризован свет

Однако, так как поляризатор не пропускает лучи в неправильном направлении, то интенсивность света уменьшиться. Закон Малюса гласит, что доля интенсивность выходящего света от интенсивность входящего равна $\cos^2 \varphi$, где φ – угол между плоскостью поляризатора и плоскостью колебания \vec{E}

$$I = I_0 \cos^2 \varphi$$

Если пропустить естественный свет через поляризатор, то интенсивность выходящего света равна $I=\frac{1}{2}I_0$. Это объясняется тем, что в естественном свете волны направлены во все стороны равновероятно, а среднее значение $\cos^2\varphi$ равна $\frac{1}{2}$

Существует круговая (или эллиптическая) поляризация, когда вектор \vec{E} вращается в плоскости, перпендикулярной направлению распространения волны