#### 11장 신경망

### 1. 框

인공신형망 (Artificial neutral networks); 신경망 (neutral networks) ⇒ 통료, 예측을 위한 모델 뉴션이 서로 상호 연결되어 경험으로부터 확습하는 두되의 생물학터 활동모델에 기반 나 인간의 확습방식을 모방, 신청망의 확습과 기억특성은 인간과 유사 → 개개의 사례로부터 일반화하는 능력도 있습신경망의 주요 강점은 높은 예측성능 → 예측번수와 반응변수 사이의 매우 복잡한 관계표현(다는 모델로는 불가능)

## 2 신청말의 개념과 잔

변수들과 반응변수 사이의 복잡한 관계들 파악하는 방법으로 입혀정보를 통합

● 선형 회귀에서는 사용자가 반응과 에흑번수들 사이의 관계형대를 직접 명시

→ 신형망·테서는 사용자가 울바운 형태를 명시할 필요가 젊음 > 대신에 신형망이 그러한 관계를 데이터소부터 확습



가장 많이 응용된 모델은 다음 전방향 신경망 (multilayer ficeforword networks) 전방항신경망은 한쪽 방향으로 환전히 연결되어있고 순환이 없는 구조 M개의 클래스를 가진 분류면데에는 M개의 톨렉노드

# 3. 더이터에 방 職

ex) 작은 데이터셋

| 86 | 지방 접수 | 영분 접수 | 수용이목 |
|----|-------|-------|------|
| 1  | 0.2   | 0.9   | 1    |
| 2  | Ř1    | 01    | 0    |
| 3  | 0,2   | 3.4   | 0    |
| 4  | 0,2   | 0.5   | 0    |
| 5  | 0,4   | 0.5   | 1    |
| 6  | 0.3   | 0.8   | 1    |



### • 구드의 출력계산

세 가지 유형 (입작,은닉, 홀려)에 대해서 노드의 입·홍려 → 가장 큰 차이는 입혀 → 통력에 사용되는 사상함수

일<u>럭 노트</u>: 메흑 변수의 값을 일력으로 취하고 출적은 일력과 같음

P개의 예측원수가 있다면 보통 P개의 노드로 구성

→ 위 메니너 예약 바소가 2개이기 대부터 2개의 4도 첫 바쁘니 데이터에 대해 그 출범

X,=0.2. X,=0.9

윤닉층 노드 : 입력층의 출력값을 입력으로 받음 → 이 예뻐에서는 3개의 소드, 모든 입력노드에서 입력을 받음 출력값을 제상하기 위해서 압력의 가듯함을 제산한 후에 '어떤' 함수 전용

(→ X, X₂···, X₂와 같은 입력값에 대해 노트 j의 클럽값은 가득치합 명+ Σ 등 W; j X; 로 계산

 $\int$  여기서  $\Theta_{i}$   $\omega_{i,j}$  등은 호계에 완의로 설팅된 이후 학습된에 따라 호칭되는 연결감도

O; - 노드 jal bins, 노드/의 공헌도를 조밀하는 상수

다음으로 이 합계에 할수 9를 덕용 └ 제 전 함 환 환경수

일종의 단조(monotone)함수인데 선형함수(9(s)=60),자수함수(9(s)= exp(4s)) → 가장 널리 사용

음( e-s) ( 의(s) = 1/1+e-s) 등이 있음

(Squashing effect)

GO.1과 5.9사이에서는 거의 선형이지만 매우 큰 값이나 또는 값은 제한하는 효과

Output; = 
$$9(\theta_i + \sum_{i=1}^{p} \omega_{ij} x_i) = \frac{1}{(f e^{-\theta_i} + \sum_{i=1}^{p} \omega_{ij} x_i)}$$

연결강도의 초기화

6.라 Wil의 많은 때문 되는 첫자로 화라 (항상은 아니지만 또 0.00±0.05)

➡ 헤른변수가 없는 모델과 마찬가지로 신경맞에 대해 아무런 지식이 없는 상태를 나타 법



마지막 단계는 정군화 → 더하면 lol 되도록 하는 것

P(Y= 싫어함) = 횰릭, / (횰럭, + 횰럭 7) P(Y=통아함 ) = 1— P(Y=싫어함)

불류를 위해서 이 정향에 것으로값을 사용, 두개이상의 클래스에서는 가장 큰 값을 갖는것 선택 선형과 로지스틱 회귀와의 관계

하나의 출력노드, 운닉층이 없는 신경망에서 P개의 예측변수를 가지는 데이터세트 나 훈력노드는 3(O+Z [Lu.x.) 의 훈력값은 가짐 \_ 다듯 선형회귀의 수타라 일처

9가 항등함수 9(s) = S 라면  $\hat{y} = \Theta + \sum_{i=1}^{p} U_i X_i$   $\Rightarrow$  운식층이 없고 단일 출력도 G 9가 항등함수이면 신경망은 응답과 여름반수사이게 변현관계약을 가접

아진 출력뿐수 Y, 9가 로지스틱 함수 P(ŷ=1) = 1+e<sup>-(0+25164x)</sup> - 로지스틱 패유수와 5일

수식이 같다할지라도 취정모델이 다르기 때문에 연변장도(리카의 제4)의 결과되면 취정치는 다른 수 있음

• 데이터 원처리

로지스틱 함수에서는 예측반수와 응답변수들의 값이 [o, [] 사이 값인 때 최종으로 작동

나 신경망 압력문에 [o, [] 사이 값으로 조정 필요 [o, b] 사이의 값이면  $\frac{\lambda^{-o}}{b-c}$ 로 정규화 이진변수들인 경우 가변수만 생성하면 됨

너무 심하게 비대칭적인 예측반수들은 변환필요 - 3고 변환등
시고모이드 함수인 경우에는 [-1, [] 사이의 값으로 조정

모델의 학습

학습이산 최상의 예측결과를 도출하는 연변강도 ⑤; 와 ω; 를 추정하는 첫 하나의 레코드를 앞에 나온 것처럼 계산하고 모든 레코드에 대해 반복 . 각 레코드에 대해 모델의 예측값과 실제값을 비로 → 그 차이가 즐겁노드의 오차

→ 이 오차는 신형방에서 추정된 연결장도를 반복적으로 갱신하기 위해 사용 출력보도의 오라는 연결된 운식보도의 모든 보드들에 분산되어 각기 연결강도를 갱신하는데 사용

- 오카의 역전파 (back propagation)

오차가 마지막 중 (출력층)에서부터 운식층등로 역으로 계산  $\sqrt{4886}$ 도 나타내면 출적되고 난의 오차는  $(1-\hat{\chi})(\chi-\hat{\chi})$ 

면 건 강도등의 갱신  $\theta_{ij}^{new} = \theta_{ij}^{old} + \underline{\ell}_{eHr_{ik}}^{ehr_{ik}}$  학습한 '이나 '현광당도 감쇄' 파라미터  $\circ$  ~ 1 사이의 상수  $\omega_{ij}^{new} = \omega_{ij}^{old} + \ell_{eHr_{ik}}^{ehr_{ik}}$  한북한 때 마다 변경되는 현경망도의 변화강을 조절

연결강도 방산은 크게 '개별장신(Cose 나타다)', '일괄정신(Lotch updating)'으로 나됨

● 데이터에 대한 예포크(epoch), 스윕(sweep), 밴릭(:teration)

일괄갱신 - 전체 학습서트가 선정망에 일적된 후에 연결강도 갱신

( 이 경우 오차는 모두 레코C의 오차하

나 개백 병원이 원광 병신보다 더 정확한 결과를 내지만 학습에 소요되는 시간이 관에집 갱신은 언제 멈추는가?

- ① 새로운 연결장도가 이전 반복에서 언어진 첫불다 조금만 차이가 날 때
- ② 오보급용이 요구된 목표값에 도달했을 때
- ③ 반보 실행횟수의 한제에 도달했을 때

#### • 과전함의 회피

선형망의 단점은 데이터에 쉽게 과접합 → 검증데이터(고리고 새로운 데이터)에 대해 오차울이 너무 커집

→ 학습의 반복횟수를 제한하여 데이터를 과도하게 학습하지 않도록 해야함

검증으라는 학습의 호기단계에서는 들어들지만 할마 지나지 않아 다시 증가

(\*\*\*이 단계가 회학의 반복횟수를 정하게 위한 좋은 지점

• 예측과 생규를 위한 출력의 사용

신경망에 들어오기 전 [0,1] 범위로 조정되므로 <u>출력</u>값도 조정 필호

#### 4 धन्यर भड़क थव

역전파를 이용해 모델의 학습은 많은 시간이 소요 → 유선 네트워크의 구조를 걸정해야할 됐다 있습 어떻게 걸ố? — 과거의 경험을 활용하거나 여러 번 시행적으로 거침

나 많은 자동화 방법이 연구되고 있지만 시행 작은 방식을 명백하게 넘어서지 못함

7분 지침들

① 윤닉층의 수: 가장 널리 사용되는 수는 1개. 보통 1개의 윤닉층으로도 변수들 사이의 복잡한 관계파악에 충분

②은닉돔의 크기: 은닉층 노드를 몇 개호 둘 것인가? 수에 따라 미뤄합되거나 과퇴합됨

( 아게 (예속변수의 수)로 사막해서 괴직함 여부를 확인하면서 즐어거나 눌러가는 방법 사용

③ <u>출석노드의 수</u>: m개의 글래스를 갖는 범주형 롤렉번수에 대해 노드의 수는 m이거나 m-1

수치형 변수에 대해서는 보통 하나의 출력되고 사용

이외에도 에壳번수들의 선택에 주의→ 신경함은 원칙의 중에 크게 의돈. 사용하기전에 명역자의, 변수선택 및 차원 특소기법을 사용하여 주의표제 에루벤수들을 선택

소프트웨어에 따라 사용자가 조절할 수 있는 화라이터로 '학습을'(연명강도 함쇄) 1. 모멘터이 있음

학습을 - 새로운 정보의 반영도를 들인으로서 과직함을 피하는데 주로 사용

(\* 연결강도 상의 이상치 효과를 약화시키는데 도움 > 국본 최적점에 빠지지 않도록 함 ([0,1] 사이의 뜀퀴)

인 = [/[현재 반복회수] 인= [3. 시작해서 0.5, 0으로 감소가능 \*/

## 5 어룩반수들과 출러번수 사이의 관계관의

출석이 모델링하는 데이터의 패턴을 설명하지 못한다는 전에서 '블랙 박스'라고 블린 경우에 따라 만감도 분석 등을 해서 선정망이 알아낸 관계에 대해 알 수도 있음 나이를 만나 얼마나 예측에 영향을 미뤘는지 알기 힘든게 주된 단점

# 6 신청방의 상점과 단점

장점: 좋은 여특성능 - 노이즈가 많은 데이터에 때우 유리 여흑번수와 펼렉번수사이의 매우 복합한 <u>관계</u> 파악 가능
고려사항

- ① 사례집합으로부터 일반화하는 능력이 있긴하지만 외삼루은은 여전히 위험
- ② 내장형 반속선택 배커내즘 시 ~ 예측변수 선택에 주의가 필요
- ③ 엄청난 국민성 따문에 많은 수의 데이터에 크게 의존 (확대생활성 등으로 해결가능)
- ④ 연결상도가 학습 데이터에 회전으로 맞지 있는 값들로 수첩 → 전력 회력해가 아니라 국복 최덕해를 낼 위험성 존대
- ③ 게손시간이 많이 겠다 → 회사간 응용은 이번 문제를 반드시 해결 필요

나 분이 수가 늘어날을 엄청나게 좋가