

Ferrari: Federated Feature Unlearning via Optimizing Feature Sensitivity Hanlin Gu^{2*}, Win Kent Ong^{1*}, Chee Seng Chan¹, Lix*in Fan*²

Universiti Malaya¹, WeBank AI Lab²

Introduction feature unlearning methods impractical in federated Centralized settings: > Full training datasets All of you need participate to Participation of all clients (Server | 0 achieve unlearning

- Difficulty in evaluating the effectiveness of feature unlearning.
- > Conventional method compared to the retrained model without the target feature reduced model utility.

Contributions

- 1. We define the **feature sensitivity** based on Lipschitz continuity and introduce this metric in federated feature unlearning.
- 2. We proposed an effective federated feature unlearning framework, called Ferrari, allowing clients to selectively unlearn specific features from the trained global model without the participation of other clients by optimizing feature sensitivity locally.
- 3. We provide theoretical proof and extensive experimental results demonstrate the state-of-the-art utility and effectiveness of our proposed framework.

Feature Sensitivity Metrics

$$s = E_{\delta_F} \frac{\|f(x) + f(x + \delta_F)\|_2}{\|\delta_F\|_2}$$

Local Unlearning Feature Sensitivity-Guided Optimization

$$\theta^{u} = \underset{\theta}{\operatorname{argmin}} E_{(x,y)\in D_{u}} \frac{1}{N} \sum_{i=1}^{N} \frac{\|f_{\theta}(x) + f_{\theta}(x + \delta_{F,i})\|_{2}}{\|\delta_{F,i}\|_{2}}$$

Qualitative Results

 Sensitive Feature Unlearning – Model Inversion Attack Baseline Retrain Ours **Target**

Backdoor Feature Unlearning - GradCAM Ours Baseline Retrain Input

Biased Feature Unlearning - GradCAM Ours Baseline Input Retrain

Method **Local Feature Unlearning** slope=-LMinimizing 7 Feature Sensitivit slope=L

Quantitative Evaluation

Sensitive Feature Unlearning

Scenario	Datasets	Unlearn	Feature Sensitivity						
		Feature	Baseline	Retrain	Fine-tune	FedCDP [65]	FedRecovery [61]	Ferrari (Ours	
	CelebA	Mouth	$0.96 \pm 1.41 \times 10^{-2}$	$0.07 \pm 8.06 \times 10^{-4}$	$0.79 \pm 2.05 \times 10^{-2}$		$0.91\pm3.41\times10^{-2}$	$0.09 \pm 3.04 \times 10$	
Sensitive	Adult	Marriage	$1.31 \pm 1.53 \times 10^{-2}$	$0.02 \pm 6.47 \times 10^{-4}$	$0.94 \pm 6.81 \times 10^{-2}$	$1.07 \pm 7.43 \times 10^{-2}$	$1.14 \pm 2.57 \times 10^{-2}$	$0.05 \pm 1.72 \times 10$	
Sensitive	Diabetes	Pregnancies	$1.52 \pm 0.91 \times 10^{-2}$	$0.05 \pm 5.07 \times 10^{-4}$	$0.96 \pm 1.28 \times 10^{-2}$	$1.23 \pm 3.82 \times 10^{-2}$	$0.83 \pm 5.08 \times 10^{-2}$	$0.07 \pm 1.07 \times 10$	
	IMDB	Names	$0.85 \pm 1.07 \times 10^{-2}$	$0.07 \pm 5.38 \times 10^{-4}$	$0.74 \pm 3.81 \times 10^{-2}$	$0.81 \pm 3.27 \times 10^{-2}$	$0.78 \pm 2.41 \times 10^{-2}$	0.08 \pm 1.32 \times 10	
	Unlearn Attack Success Rate(ASR) (%)								

Scenario	Datasets	Uniearn	Attack Success Rate(ASR) (%)						
Scenario		Feature	Baseline	Retrain	Fine-tune	FedCDP [65]	FedRecovery [61]	Ferrari(Ours)	
	CelebA	Mouth	84.36 ± 3.22	47.52 ± 1.04	77.43 ± 10.98	75.36 ± 9.31	71.52 ± 6.07	51.28 ± 2.41	
Sensitive	Adult	Marriage	87.54 ± 13.89	49.28 ± 2.13	83.45 ± 8.44	72.83 ± 5.18	80.39 ± 10.68	49.58 ± 1.38	
	Diabetes	Pregnancies	92.31 ± 7.55	38.89 ± 2.52	88.46 ± 5.01	81.91 ± 8.17	78.27 ± 2.47	42.61 \pm 1.81	
	IMDB	Names	90.28 ± 2.49	40.29 ± 1.59	86.74 ± 3.81	83.67 ± 4.59	80.95 ± 3.51	43.75 ± 1.86	

Backdoor and Biased Feature Unlearning

Scenarios	Datasets	Unlearn Feature		Accuracy (%)						
				Baseline	Retrain	Fine-tune	FedCDP[65]	FedRecovery[61]	Ferrari(Ours)	
Backdoor	MNIST		\mathscr{D}_r	95.65 ± 1.39	97.19 ± 2.49	96.16 \pm 0.37	65.82 ± 6.85	40.81 ± 4.31	95.93 ± 0.45	
	MINISI		\mathscr{D}_u	97.43 ± 3.69	0.00 ± 0.00	72.64 ± 0.24	69.37 ± 0.83	53.72 ± 3.14	$\textbf{0.11} \pm \textbf{0.01}$	
	FMNIST		\mathfrak{D}_r	91.07 ± 0.54	93.85 ± 1.08	94.36 ±1.98	68.46 ± 3.39	42.93 ± 2.50	92.83 ± 0.61	
	FWINIST	Backdoor pixel- pattern	\mathscr{D}_u	94.51 ± 6.29	0.00 ± 0.00	43.91 ± 0.28	72.19 ± 0.49	48.15 ± 4.37	0.90 ± 0.03	
	CIFAR-10		\mathfrak{D}_r	87.63 ± 1.16	91.12 ± 1.60	92.02 ± 3.15	54.91 ±6.91	27.49 ± 4.96	89.91 ±0.95	
			\mathscr{D}_u	95.05 ± 2.30	0.00 ± 0.00	88.44 ± 0.92	62.75 ± 5.07	49.26 ± 2.23	0.29 ± 0.04	
	CIFAR-20		\mathscr{D}_r	75.06 ± 6.41	81.91 ± 4.68	82.67 \pm 1.32	55.67 ± 6.35	23.76 ± 2.17	78.29 ± 3.12	
			\mathscr{D}_u	94.21 ± 4.11	0.00 ± 0.00	86.53 ± 1.47	50.17 ± 9.11	50.38 ± 4.25	$\textbf{0.78} \pm \textbf{0.08}$	
	CIFAR-100		\mathfrak{D}_r	54.14 ± 3.96	73.54 ± 5.70	73.66 \pm 6.57	34.62 ± 2.24	15.62 ± 7.78	69.57 ± 3.81	
			\mathscr{D}_u	88.98 ± 6.63	0.00 ± 0.00	65.38 ± 4.76	57.29 ± 3.62	46.17 ± 9.25	0.15 ± 0.01	
	ImageNet		\mathscr{D}_r	52.35 ± 2.25	67.05 ± 1.29	67.34 \pm 2.73	29.74 ± 4.72	13.46 ± 6.53	65.74 ± 1.32	
			\mathscr{D}_u	83.16 ± 3.74	0.00 ± 0.00	71.48 ± 3.69	62.39 ± 3.05	54.92 ± 5.59	0.09 ± 0.02	
Biased	CMNIST	Color	\mathfrak{D}_r	64.94 ± 7.88	98.76 ± 3.65	67.15 ± 2.60	25.85 ± 1.58	23.92 ± 1.08	84.31 ±2.63	
			\mathscr{D}_u	98.88 ± 4.90	98.44 ± 1.90	97.95 ± 1.13	30.17 ± 4.69	27.64 ± 9.37	84.62 \pm 3.59	
	CelebA	Mouth	\mathfrak{D}_r	79.46 ± 2.09	96.47 ± 6.15	84.45 ± 1.48	14.29 ± 0.81	16.34 ± 3.43	94.18 ±3.08	
			\mathscr{D}_u	96.38 ± 3.87	96.11 ± 2.17	94.23 ± 0.66	21.58 ± 3.48	25.72 ± 8.02	94.79 ±1.48	

Conclusion

- Ferrari is a federated feature unlearning framework that efficiently removes sensitive, backdoor, and biased features by requiring only the requesting client's participation. It leverages Lipschitz continuity to reduce model sensitivity and ensure fairness.
- Ferrari preserves privacy, complies with regulatory data deletion requirements, and maintains model performance, making it a practical solution for federated learning environments.