Лабораторная работа по физическ	$\langle \Omega V \rangle$	г химии

Определение ККМ в растворах ПАВ

Шамарина Екатерина, Б06-903 Хомутов Андрей, Б06-903 Φ БМ Φ , 2020

Цели работы

- 1. Освоение методик определения критической концентрации мицеллообразования ионогенных и неионогенных ПАВ по измерениям электропроводности и поверхностного натяжения растворов.
- 2. Построение изотермы поверхностного натяжения и адсорбции ПАВ на поверхности раствор/воздух. Определение площади, занимаемой молекулой ПАВ в насыщенном адсорбционном слое.
- 3. Оценка степени ионизации мицелл ионогенных ПАВ по результатам кондуктометрических измерений.

1 Теоретическая часть

1.1 Поверхностное натяжение

В соответствии с уравнением адсорбции Гиббса зависимость коэфффициента поверхностного натяжения и примеси ПАВ в растворе задается следующим образом:

$$d\sigma = -\Gamma d\mu = -\Gamma \cdot RT \cdot d \ln c. \tag{1}$$

Используя связь адсорбции и концентрации вещества через константу адсорбции можно получить уравнение Шишковского, описывающее эту кривую:

$$\sigma = \sigma_0 - \Gamma_{\text{max}} \cdot RT \cdot \ln(1 + Kc). \tag{2}$$

Метод измерения поверхностного натяжения раствора ПАВ в этой работе представляет из себя метод пластинки Вильгельми. При достижении ККМ коэффициент поверхностного натяжения перестает падать и остается практически постоянным. Метод Вильгелми основан на изменении веса пластинки при свободном ее подвесе и при касании с жидкостью:

$$\Delta F = 2\sigma \cdot (d+L) \cdot \cos \Theta - \rho \cdot q \cdot xLd.$$

Второе слагаемое отвечает за силу Архимеда, действующую на пластинку, погруженную в жидкость, а левое - за интересующую нас силу втягивания жикостью за счет поверхностного натяжения последней. Практически от влияния силы Архимеда можно избавиться за счет незначительного погружения пластинки в жидкость, а также за счет измерения силы при непосредственном отрыве ее от кромки воды. Фактически, в работе для этого измерялась максимальная сила, действующая на пластинку в процессе вытаскивания. От влияния угла смачивания тоже можно избавится, для этого материалом для пластинки должен хорошо смачиваться, эффект увеличивается за счет шероховатой поверхности.

В итоге можно достигнуть следующего удобного способа измерения поверхностного натяжения:

$$\sigma = c\Delta F$$
,

где с - некоторая константа.

2 Практическая часть

2.1 Определение ККМ кондуктометрическим методом

Для работы были приготовлены 13 растворов ПАВ (SDS с изначальной концентрацией 40 мМ), в диапазоне концентраций от 1/100 до 4 от ожидаемой ККМ с логарифмическим шагом, за исключением 13го раствора, концентрация которого была равна 8 мМ (ожидаемой ККМ). Объем каждого раствора - 25мл.

Таблица 1: Удельная	электропроводность	в зависимости	от концентрации
ractingar. e getibilari	этенгрепреведнеет	D Capitalinicalii	от попцептрации

N раствора	Спав, мМоль	κ , MKCM/CM
0	0	5,7
1	0,08	12,305
1+2	0,11	15,065
2	0,14	17,775
3	0,24	23,75
3+4	0,32	30,3
4	0,41	36,7
5	0,71	59,1
6	1,22	94,58
7	2,10	156
8	3,62	270
9	6,24	437
13+9	7,12	506
13	8	560
10	10,77	640
11	18,56	850
11 + 12	25,28	1007
12	32,00	1168

Растворы с ПАВ, после измерений методом пластинки Вильгельми (см. далее) были использованы для проведения кондуктометрических измерений. Зависимость $\kappa(C)$ представлена на рисунке 1. Как и ожидалось, около концентрации ПАВ в 8 мМоль, происходит излом графика, разделяющий две линейные его части. Точное положение точки излома оказалось равным 8.1 ± 0.4 мМоль. Справочное значение - 8.2^1 мМоль при 25 градусах Цельсия.

¹P. Mukerjee, P. Mysels, K. J. (1971), "Critical Micelle Concentration of Aqueous Surfactant Systems," NSRDS-NBS 36, Washington, DC: US. Government Printing

Рис. 1: График ависимости $\kappa(C)$

По наклону графика можно оценить степень ионизации мицелл в растворе.

$$\kappa_1 = \lambda_{Na} \left[Na^+ \right] + \lambda_{DS} \left[DS^- \right] = (\lambda_{Na} + \lambda_{DS}) \left[SDS \right]$$
$$\kappa_2 = \lambda_{Na} \left[Na^+ \right] + \lambda_{DS} \left[DS^- \right] + \lambda_m \left[\text{ mic } ^- \right]$$

Используя тот факт, что

$$[DS^{-}] = KKM, [Na^{+}] = KKM + \alpha N[\text{ mic }], [\text{ mic }^{-}] = \frac{[SDS] - KKM}{N}$$

можем получить:

$$\kappa = \alpha[SDS] (\lambda_{Na} + \lambda_{DS}) + (1 - \alpha)KKM (\lambda_{Na} + \lambda_{DS})$$

Откуда видно что степень ионизации можно оценить как отношение наклонов линейных участков. В нашем случае $\alpha=36.5\pm0.9\%$.

2.2 Определение ККМ методом измерения поверхностного натяжения

2.2.1 Определение ККМ

Сначала проведём измерения методом пластинки Вильгельми для дистиллированной воды. Поверхностное натяжение воды: $\sigma_0 = 72.2 \text{мH/m}$. (справочное)² Т.к. $\sigma = \frac{g}{2L} \cdot m$, найдём "коэффициент перевода": $\frac{g}{2L} = 461.55c^{-2}$. Далее проведём измерения для наших растворов. Результаты в Табл.2.

C, mM	dm, g	sigma
0	0.1548	72.2
0.0798	0.1264	58.3168
0.1349	0.1214	56.0322
0.2337	0.1313	60.6015
0.4016	0.1259	58.1091
0.6933	0.1186	54.7398
1.1953	0.0938	43.2934
2.0200	0.0869	40.1087
3.6160	0.0693	31.9854
6.2400	0.0653	30.1392
8.0000	0.0761	35.1240
10.7680	0.0818	37.7548
18.5600	0.0808	37.2932
32.0000	0.0835	38.5394

Таблица 2: Поверхностное натяжение растворов

Построим графики зависимости σ от C и σ от lnC (с квадратичной аппроксимацией) и определим значение ККМ по излому кривой.

Из Рис.3 видим, что $lnKKM \in [1.1, 2.4]$. Т.е $KKM \in [3.0, 11.0]$ мМ. Определить ККМ более точно затруднительно из-за наличия примеси в растворах (минимума ниже предельного значения на графике).

2.2.2 Определение характеристик поверхностного слоя

Определить предельную адсорбцию можно по наклону изотермы поверхностного натяжения в конце, перед горизонтальным участком (в нашем случае - в окрестности минимума), когда формирование монослоя закончено и все вещество уходит дальше в мицеллы.

$$\left(\frac{d\sigma}{dlnC}\right)\Big|_{\infty}=-13.95~\mathrm{мH/m}.~$$
Тогда $\Gamma_{\infty}=\frac{-1}{RT}\cdot\left(\frac{d\sigma}{dlnC}\right)\Big|_{\infty}=5.63\cdot10^{-6}\frac{mol}{m^2}$

По найденной предельной адсорбции определим площадь, приходящуюся на одну молекулу в плотном монослое на поверхности раствора: $S_0 = \frac{1}{N_A \Gamma_\infty} = 2.95 \cdot 10^{-19} \frac{m^2}{\text{mr}}$

Зная плотность раствора ПАВ: $\rho \simeq 1g/sm^3$ и его молекулярную массу: M=288,4 а.е.м, оценим высоту молекулы в предельно плотном монослое: $l=\frac{\Gamma_\infty\cdot M}{\rho}=1.62\cdot 10^{-9}m=16.2~\text{Å}$

²Никольский Б.П. Справочник химика

Рис. 3: График зависимости $\sigma(lnC)$

Для оценки корректности полученного результата, сравним эту величину с оценкой по известным геометрическим размерам. Длина связи C-C в алканах около $1.5\ \mathring{A}$, валентный угол 109° , длина связей C-H в метильной группе $2\ \mathring{A}$, формула для длины углеводородной цепи с n атомами углерода имеет вид: $L=1.256\ (n-1)+2$. Для SDS(n=12): $L=15.8\mathring{A}$. Как видим, значение близко к оцененному из эксп. данных.

2.2.3 Изотерма адсорбции

Аналогично определению предельной адсорбции вычислим величины адсорбции во всех точках изотермы натяжения $(\sigma(lnC))$. Построим изотерму адсорбции $\Gamma(C)$ и в $1/\Gamma(1/C)$, в предположении изотермы Ленгмюра: $\frac{1}{\Gamma} = \frac{1}{\Gamma_{\infty}} + \frac{1}{\Gamma \cdot K} \cdot \frac{1}{C}$. Результат на Рис. 4 и 5.

Рис. 4: Изотерма адсорбции

Рис. 5: Изотерма адсорбции в линеаризующих координатах

По этому графику определим константу равновесия адсорбции и предельную адсорбцию:

 $\frac{1}{\Gamma_{\infty}} = (1.70 \pm 0.14) \cdot 10^5 \frac{m^2}{mol} \Rightarrow \Gamma_{\infty} = (5.9 \pm 0.5) \cdot 10^{-6} \frac{mol}{m^2}$ $\frac{1}{K\Gamma_{\infty}} = (44.7 \pm 2.6) \frac{m^2}{M*mol} \Rightarrow K = (3.8 \pm 0.3) \cdot 10^3 \frac{1}{M} \text{ Видим, что } \Gamma_{\infty}, \text{ определённая по изотерме адсорбции и изотерме поверхностного натяжения, совпадают в пределах погрешности.}$

2.2.4 Определение станд. своб. энергии адсорбции

Зная константу адсорбции, получим стандартную свободную энергию адсорбции: $\Delta G = -RT lnK = (-20.41 \pm 0.25)$ кДж/моль.

По правилу Траубе $\frac{g_{n+1}}{g_n} = \frac{\Gamma_{n+1}}{\Gamma_n} = \frac{K_{n+1}}{K_n} = \alpha = 2.1$ (для ионогенных ПАВ). (Т.к. $g_n = -\frac{d\sigma}{dC}\Big|_{c > 0}$, а Γ_{∞} одинакова для всех гомологов). Тогда $\Delta G_{n+1} - \Delta G_n = -RT ln\alpha$. И можем оценить $\Delta G_{12}^0 \sim -12RT ln\alpha \simeq -22$ кДж/моль. Как видим, значение близко к значению, посчитаному по определению.

3 Выводы

- 1. На примере кондуктометрических измерений было возможно убедиться в резком изменении свойств раствора при пересечении ККМ по концентрации. Оба участка графика были линейны, благодря чему относительно точно была посчитана величина ККМ 8.1 против 8.2 мМ согласно справочным данным. Также в простейшей оценке была получена степень ионизации $\alpha = 36\%$.
- 2. Тензиометрическим методом получена зависимость поверхностного натяжения от концентрации раствора ПАВ. Определить по ней ККМ можно только с существенно более низкой точностью из-за наличия примеси.
- 3. Построена изотерма адсорбции. По ней определены предельная адсорбция, константа адсорбции, станд.своб.энегрия адсорбции. По величине предельной адсорбции оценены площадь на одну молекулу и её высота в предельно насыщенном слое.