SGD for logistic regression

(A) From exercise01, the gradient descent of β is $\nabla l(\beta) = \sum_{i=1}^{N} (m_i w_i - y_i) x_i$

View as $\hat{y}_i = E(y_i \mid \beta) = m_i w_i$ (expectation of Binomial distribution) the fitted value of y_i ,

when given
$$\beta$$
, the gradient descent is $\nabla l(\beta) = \sum_{i=1}^{N} (\hat{y}_i - y_i) x_i = \sum_{i=1}^{N} g_i(\beta)$

Where
$$g_i(\beta) = (\hat{y}_i - y_i)x_i$$

(B) Since we draw a single data point from the sample, *i* is the only random variable which follows a discrete uniform distribution, i.e.,

$$P(i = k) = \begin{cases} \frac{1}{n} & k \in \{1, 2, ..., n\} \\ 0 & otherwise \end{cases}$$

Then the expectation of $ng_i(\beta)$ is

$$E[ng_{i}(\beta)] = nE[g_{i}(\beta)] = n\sum_{j=1}^{n} g_{j}(\beta)P(i=j) = n\sum_{j=1}^{n} g_{j}(\beta)\frac{1}{n} = \sum_{j=1}^{n} g_{j}(\beta) = \nabla l(\beta)$$

Therefore, $ng_i(\beta)$ is an unbiased estimator of $\nabla l(\beta)$.

(C) See the attached R code. The convergence condition is

$$\frac{|l(\beta^{(t)}) - l(\beta^{(t-1)})|}{|l(\beta^{(t-1)})| + \varepsilon} < \varepsilon, \text{ where } \varepsilon = 1e - 10$$

step size $\gamma = 0.01$

ii) SGD converged in iterations: 13034

Here gradient is calculated from a single data point, which is sampled randomly from the whole data set. Since this single-data-point is an unbiased estimate of the full-data gradient, we move in the right direction toward the minimum. We choose step size $\gamma = 0.001, 0.1, 0.05, 0.1, 0.5,$ and 1 respectively and loop through 100,000 iterations. From the above figures, the negative log likelihood has converged in less than 100,000 iterations with each of the step sizes.

(D) Try a decaying step size using Robbins-Monro rule for step sizes: $\gamma^{(t)} = C(t+t_0)^{-\alpha}$, where C>0, $0.5 \le \alpha \le 1$, and t_0 (the prior number of steps) are constants. The exponent α is usually called the learning rate. Clearly the closer α is to 1, the more rapidly the step sizes decay. Here we pick $\alpha=0.75$ and $t_0=1$, with a range of C=0.01,0.1,1,10,50,100. The results are shown in the figures below and we obtain good approximations of β with different C. The figures show that with larger C like 50 or 100 and a fixed $\alpha=0.75$, the estimates are obtained really rapidly.

Then, we choose varying $\alpha = 0.5, 0.6, 0.7, 0.8, 0.9$, and 1 with a fixed C = 50. From the figures

below, the negative log likelihood converged rather quickly with C=50 and $\alpha=0.8$ (only 81 iterations). This shows that good estimates are obtained rapidly with Robbins-Monro rules.

 $\alpha = 0.5 \label{eq:alpha}$ i) SGD converged in iterations: 33737

 $\alpha = 0.7 \label{eq:alpha}$ iii) SGD converged in iterations: 2023

v) SGD converged in iterations: 474

 $\alpha = 0.9$

 $\alpha = 1 \label{eq:alpha}$ vi) SGD converged in iterations: 1190