

CV Introduction I

What is computer vision?

Computer Vision: The study of how computers can be programmed to extract useful information about the environment from optical images. -- S.E. Palmer, Vision science (1999)

What is the input?

A (gray-scale) image is a 2D array

What is the input?

What is the output?

Depends on what we want to do with the image

Examples 1: Robotics

 Understanding terrain and identifying obstacles

Examples 1: Robotics

- Understanding terrain and identifying obstacles
- Identifying people and understanding their intentions

Example 2: Internet Vision

- Recognizing obscene/ violent content
- Creating new content (image editing)

Facebook Users Are Uploading 350 Million New Photos Each Day

Example 3: AR/VR

Understand 3D structure of the world

The goals of computer vision

Reconstruction

Understanding 3D structure of the world

Grouping / Re-organization

Group pixels into objects

Recognition

Classify objects, scenes, actions...

What is an image?

A grid (matrix) of intensity values

(common to use one byte per value: 0 = black, 255 = white)

Images as functions

- Can think of image as a function, f, from \mathbb{R}^2 to \mathbb{R} or \mathbb{R}^M
 - Grayscale: f(x, y) gives intensity at position (x, y)

$$f: [a,b] \times [c,d] \rightarrow [0,255]$$

- Color: f(x, y) = [r(x, y), g(x, y), b(x, y)]

Image Processing: Image transformations

Input: Image

-->

Output: Image

$$g(x,y) = f(x,y) + 20$$

$$g(x,y) = f(-x,y)$$

Image denoising

Noise reduction

- Nearby pixels are likely to belong to same object
 - thus likely to have similar color

Replace each pixel by average of neighbors

0	0	0	0	0	0	0	0	0	0
0	0	0	10	10	10	0	0	0	0
0	0	10	20	20	20	10	40	0	0
0	10	20	30	0	20	10	0	0	0
0	10	0	30	40	30	20	10	0	0
0	10	20	30	40	30	20	10	0	0
0	10	20	10	40	30	20	10	0	0
0	10	20	30	30	20	10	0	0	0
0	0	10	20	20	0	10	0	20	0
0	0	0	10	10	10	0	0	0	0

$$(0 + 0 + 0 + 10 + 40 + 0 + 10 + 0 + 0) / 9 = 6.66$$

0	0	0	0	0	0	0	0	0	0
0	0	0	10	10	10	0	0	0	0
0	0	10	20	20	20	10	40	0	0
0	10	20	30	0	20	10	0	0	0
0	10	0	30	40	30	20	10	0	0
0	10	20	30	40	30	20	10	0	0
0	10	20	10	40	30	20	10	0	0
0	10	20	30	30	20	10	0	0	0
0	0	10	20	20	0	10	0	20	0
0	0	0	10	10	10	0	0	0	0

$$(0+0+0+0+0+10+0+0+0+0+20+10+40+0$$

 $+0+20+10+0+0+0+30+20+10+0+0) / 25 = 6.8$

0	0	0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0	0	0
0	0	0	10	10	10	0	0	0	0	(0	1	0	0	0	0	0	0	0	0
0	0	10	20	20	20	10	40	0	0	(0	0	0	0	0	0	0	0	0	0
0	10	20	30	0	20	10	0	0	0	(0	0	0	0	0	0	0	0	0	0
0	10	0	30	40	30	20	10	0	0	(0	0	0	0	0	0	0	0	0	0
0	10	20	30	40	30	20	10	0	0	(0	0	0	0	0	0	0	0	0	0
0	10	20	10	40	30	20	10	0	0	(0	0	0	0	0	0	0	0	0	0
0	10	20	30	30	20	10	0	0	0	(0	0	0	0	0	0	0	0	0	0
0	0	10	20	20	0	10	0	20	0	(0	0	0	0	0	0	0	0	0	0
0	0	0	10	10	10	0	0	0	0	(0	0	0	0	0	0	0	0	0	0

$$(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 10)/9 = 1.11$$

0	0	0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0	0	0
0	0	0	10	10	10	0	0	0	0	(0	1	4	0	0	0	0	0	0	0
0	0	10	20	20	20	10	40	0	0	(0	0	0	0	0	0	0	0	0	0
0	10	20	30	0	20	10	0	0	0	(0	0	0	0	0	0	0	0	0	0
0	10	0	30	40	30	20	10	0	0	(0	0	0	0	0	0	0	0	0	0
0	10	20	30	40	30	20	10	0	0	(0	0	0	0	0	0	0	0	0	0
0	10	20	10	40	30	20	10	0	0	(0	0	0	0	0	0	0	0	0	0
0	10	20	30	30	20	10	0	0	0	(0	0	0	0	0	0	0	0	0	0
0	0	10	20	20	0	10	0	20	0	(0	0	0	0	0	0	0	0	0	0
0	0	0	10	10	10	0	0	0	0	(0	0	0	0	0	0	0	0	0	0

$$(0 + 0 + 0 + 0 + 0 + 10 + 0 + 10 + 20)/9 = 4.44$$

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	10	10	10	0	0	0	0	0	1	4	8	10	8	9	6
0	0	10	20	20	20	10	40	0	0	0	4	11	13	16	11	12	7
0	10	20	30	0	20	10	0	0	0	0	6	14	19	23	19	18	10
0	10	0	30	40	30	20	10	0	0	0	8	18	23	28	23	17	8
0	10	20	30	40	30	20	10	0	0	0	8	16	26	31	30	20	10
0	10	20	10	40	30	20	10	0	0	0	10	18	27	29	27	17	8
0	10	20	30	30	20	10	0	0	0	0	8	14	22	22	20	11	8
0	0	10	20	20	0	10	0	20	0	0	4	11	17	17	12	6	4
0	0	0	10	10	10	0	0	0	0	0	0	0	0	0	0	0	0

0

Noise reduction using mean filtering

Question?

Filters

- Filtering
 - Form a new image whose pixels are a combination of the original pixels
- Why?
 - To get useful information from images
 E.g., extract edges or contours (to
 understand shape)
 - To enhance the image
 - E.g., to blur to remove noise
 - E.g., to sharpen to "enhance image"

Replace pixel by mean of neighborhood

10	5	3	
4	5	1	4.1
1	1	7	
Local i	mag f	e da	Modified image data $S[f]$

$$S[f](m,n) = \sum_{i=-1}^{1} \sum_{j=-1}^{1} f(m+i, n+j)/9$$

A more general version

Local image data

A more general version

Local image data

A more general version

$$S[f](m,n) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i,j)f(m+i,n+j)$$

- $w(i,j) = \frac{1}{(2k+1)^2}$ for mean filter
- If $w(i,j) \ge 0$ and sum to 1, weighted mean
- But w(i, j) can be arbitrary real numbers!

Convolution and cross-correlation

Convolution and cross-correlation

Cross correlation

$$S[f] = w \otimes f$$

$$S[f](m,n) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i,j)f(m+i,n+j)$$

Convolution

$$S[f] = w * f$$

$$S[f](m,n) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i,j) f(m-i,n-j)$$

Cross-correlation

1	2	3	
4	5	6	
7	8	9	
	W		

1	2	3
4	5	6
7	8	9
	f	
/ * /	. 7*7	. 0*0

Convolution

7 8 9								
_								
4	5	6						
1	2	3						

	1	2	3						
	4	5	6						
	7	8	9						
		f		ı					
+	+ 6*4 + 7*3 + 8*2 +								

Properties: Linearity

$$(w \otimes f)(m,n) = \sum_{i=-k}^{\kappa} \sum_{j=-k}^{\kappa} w(i,j) f(m+i,n+j)$$

$$f'(m,n) = af(m,n)$$
$$(w \otimes f')(m,n) = a(w \otimes f)(m,n)$$

Properties: Linearity

$$(w \otimes f)(m,n) = \sum_{i=-k}^{n} \sum_{j=-k}^{n} w(i,j)f(m+i,n+j)$$

$$f' = af + bg$$
$$w \otimes f' = a(w \otimes f) + b(w \otimes g)$$

Properties: Shift invariance

$$f'(m,n) = f(m - m_0, n - n_0)$$

$$(w \otimes f')(m,n) = (w \otimes f)(m - m_0, n - n_0)$$

- Shift, then convolve = convolve, then shift
- Output of convolution does not depend on where the pixel is

f'

- We like linearity
 - Linear functions behave predictably when input changes
 - Lots of theory just easier with linear functions
- All linear shift-invariant systems can be expressed as a convolution

CNN for image classification

Convolution

Pooling

Why pooling?

Subsampling pixels will not change the object

We can subsample the pixels to make image smaller fewer parameters to characterize the image

The whole CNN

Can repeat many times

CV Introduction II

Convolution and Image Classifier

Wan Herun
Xi'an Jiaotong University
wanherun@stu.xjtu.edu.cn

Input images

Convolution Kernel

0	0	0
0	1	0
0	0	0

0	-1	0
-1	4	-1
0	-1	0

0	-1	0
-1	5	-1
0	-1	0

output images

-1	-1	-1
-1	9	-1
-1	-1	-1

- The convolution kernel can extract some features from original images
- Different convolution kernel can extract different features
 - the weight
 - the size

Receptive Field

After 2 3*3 kernel?

Normal convolution

Kernel size Stride Padding Input and output channels

Dilated convolution dilation rate

Expand the receptive field Not lose the resolution

Transposed convolution

up-sampling interpolation

Input image: 4*4

Handwriting digitals classifier

32 * 32 0/1 matrix

We do not care about the whole image

Just focus on the important feature

32*32*1024+ 1024*512+ 512*10+ (1024+512)(bias)

3M

7 2

- the part of the image
- the relative position of the part
- Little correlation

Handwriting digitals classifier

Conv layer Extract feature

Pooling layer Sample

cascade of classifiers

- Conv layer
- Pooling layer
- FC

Coding

VGG

ConvNet Configuration						
A						
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
input (224 × 224 RGB image)						
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
			pool			
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
			pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
		max	pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
		max	pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
	maxpool					
FC-4096						
FC-4096						
FC-1000						
		soft-	·max			

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	С	D	E
Number of parameters	133	133	134	138	144

- Simple
 - 3*3 conv kernel
 - 2*2 max pooling
- More 3*3 is better
- The deeper, the better?

Residual Network

- Is learning better networks as easy as stacking more layers?

Vanishing/ exploding gradient

20-layer iter. (1e4) 20-layer iter. (1e4)

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Thank you!

Wan Herun
Xi'an Jiaotong University
wanherun@stu.xjtu.edu.cn