

Group 5

Ana Brennan (8157246)

Michael Botros (8327615)

Rachel Cohen (8076627)

Hunter Marriott (8258832)

Allison Tolgyesi (8127047)

Outline

Introduction

Our Design

Causes of THA
Objectives
Evolution of the Hip Implant
Gaps in Current Technologies

Stem

Head

Cup

Liner

Stress Analysis

Beam Theory
Fatigue
Wear

Introduction

Causes of THA

- Arthritis
- Bone Necrosis
- Osteoporosis

Prevalence

- 51% women, 24% men = 250,000 fractures annually (USA)
- 10% due to osteonecrosis
- Higher in women than in men

Healthy hip joint

Osteoarthritis

Objectives/Motivation

Typical Patient

- Elderly (70+)
- Female
- Mildly active lifestyle
 - 5000 steps/day

Objectives

- Address gaps in current technology
- Provide a stable, long lasting hip implant

▶ Evolution of the Hip Implant

1891

- Ivory
- Nickel-plated screws

1953 - 1960

- First use of metal-on-metal
- First use of polyon-metal

Current

- Variety of bearing combinations
- Highly biocompatible materials
- 15-20 year lifetime

Gaps in Current Technology

- Wear leading to Osteolysis
 Causes implant to loosen and fail
- Stress Shielding
 Implant takes too much stress and bone resorbs
- Limited Range of motion
 Femur dislocation

Design Requirements and Criteria

Requirements

- Maintain ROM
- Avoid dislocation
- Reduce friction
- Reduce noise
- Biocompatible
- Ease of imaging
- Maximize lifetime

Criteria

- <\$50,000
- <2kg mass of implant
- For patients:
 - o >100lbs, <240lbs
 - o >5'0", <6'4"

Stem

Head

Liner

Acetabular cup

Femoral Stem

► Ti-6Al-7Nb

- o Young's modulus similar to bone
- Biocompatible
- Non-magnetic (MRI)
- Cemented (2mm thick)
- Triangular press fit into head
- Coating: Curcumin and antibiotic hydrogel coatings
- Slightly shortened stem
- Eccentricity to match trabecular bone

Femoral Head

Shape

- Articulates within acetabular liner
- o 32mm diameter

► Triangular Slot

- o Press fit onto femoral neck
- Prevents rotation

► Co-Cr-Mo

- Wear resistant
- Biocompatible
- Corrosion resistant

Acetabular Liner

▶ XLPE

- High strength
- Shock absorbing
- Enhances stability

Design features

- Chamfer
- Flaps to stop spinning
- Ring to lock liner in place

Curcumin coating

Acetabular Shell

- Cemented (2mm thick)
- Ti-6Al-7Nb
 - o Young's modulus similar to bone
 - Biocompatible
 - Non-magnetic (MRI)
- Non uniform thickness
 - Optimizes fatigue stress
 - Reduces stress shielding
 - Prevents loosening

Stress Analysis

Safety Factors	A-A	B-B	C-C	D-D
Natural Cortical Bone	-	35	22	2.1
Cortical Bone with Implant	-	128	22	2.9
Implant	4.4	338	32	7.6
Cement	_	1457	31	5.3

Hertz Contact Stress	Safety factor
CoCr	6.4
XLPE	4.2

Stress Shielding	B-B	C-C	D-D
Stress shielding ratio	3.5 (72%)	1.8 (45%)	1.4 (27%)

Fatigue Analysis

- Cyclic loading during walking
- Stresses occur in the femoral stem
- Alternating and mean stresses
 - Minimum force while laying down
 - Maximum force while walking
- All cross-sections show infinite life

Wear Analysis

- XLPE liner against the Co-Cr femoral head
- Function of distance, force, Brinell hardness
- Worst case scenario:
 - 10 million passes
 - Maximum arc length distance
- Wear volume equivalent to a 3.4mm cube

Sagittal Plane Range of Motion

Flexion 100° Extension 50°

Typical flexion ROM of a 55-86 y/o is 109°±19° flexion

Female passive extension ROM is ~26°

Frontal Plane Range of Motion

Adduction \Longrightarrow 51° Abduction \Longrightarrow 60°

Female passive ROM:

- 30° adduction
- 42° abduction

Transverse Plane Range of Motion

Internal rotation \implies 121.23° External rotation \implies 67.67°

Prosthetic ROM >> Anatomical ROM

Features and Contributions

Curcumin Coating

To reduce osteolysis from debris

Removable Liner

For easy replacement

Non Uniform Cup

To prevent stress shielding and cup loosening

Eccentric Implant

To mimic trabecular bone

Cemented

Elderly, no bone ingrowth

Antibiotic Hydrogel

To prevent infection

Thank you