

Model Development Phase Template

	20 HDIE 2024	
Date	29 JUNE 2024	
Team ID	739773	
Project Title	A Comprehensive Measure of Well- Being: The Human Development Index Using Machine Learning	
Maximum Marks	6 Marks	

Model Selection Report

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness

			Performance Metric (e.g., MSE,SCORE)
Model	Description	Hyperparameters	

Random Forest	Random forests are widely used in various machine learning tasks due to their robustness, accuracy, and ability to handle complex datasets with highdimensional features. They are particularly effective when individual decision trees may overfit the data or when interpretability of individual trees is less critical compared to overall predictive performance.	-	Random Forest MSE: 0.001971249999999999 Random Forest Train Score: 0.9947387758915783 Random Forest Test Score: 0.9743873613771092
Decision Tree	Decision trees are popular in machine learning and data mining because they are easy to understand and interpret. They can handle both numerical and categorical data and can be applied to both classification and regression tasks. A decision tree for the Human Development Index (HDI) would aim to classify or predict the HDI value of a region or country based on various factors that contribute to human development.	-	MSE:0.0006954529970833289 Train Score: 1.0 Test Score:0.9274014000

Linear	Linear regression is a	-	MSE: 0.00079211369306
Regression	statistical method used to		Train: 0.95348095293
	model the relationship		Test: 0.970827472375
	between a dependent variable		
	and one or more independent		
	variables The equation of this		
	line is typically expressed as		
	(y = mx + b), where (y)		
	is the dependent variable, \setminus (x		
	\) is the independent variable,		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
	is the y-intercept. Linear		
	regression is used for		
	predictive analysis and to		
	determine the strength and		
	character of the relationship		
	between variables.		

.