Exercise Sheet 06 Distributed Data Analytics Syed Khalid Ahmed

Exercise 01: Data cleaning and text tokenization:

Flow of the program:

The program takes a single file as input, performs operations to perform data cleaning and generates an output file. This output file will be used in Exercise # 02 as an input. I have saved the output file in directories that follow a naming convention (Book-1, Book-2, ...) because the program of Exercise # 02 first reads the URL of the file in order to identify from which file the words are coming from. By using the directory names, I can identify the file.

Mapper:

In the mapper function, I am reading the file line by line and outputting it to the reducer for further processing. I am stripping the line and checking if the line is a blank space or not. If it is not then output it to the reducer.

Reducer:

In the Reducer, I have made a FileCleanser() function that removes all the punctuation marks and numbers. It also removes all the common stop words that are found in the English literature. I have created a set which contains all the possible stop words. The program uses regular expressions to remove all the punctuations and numbers. It then checks whether a word appears in the stopwords's set or not. If it is not a stopword then it is merged with the string.

Hadoop Commands Used:

Following commands were used.

To put the files in HDFS:

hadoop fs -put /home/khalid/Documents/*.txt /Exercise6-Data/

For Book#1:

hadoop jar /home/khalid/Downloads/hadoop-2.7.2/share/hadoop/tools/lib/hadoop-*streaming*.jar -file /home/khalid/Homework06/Exercise01/FileCleansing-mapper.py -mapper /home/khalid/Homework06/Exercise01/FileCleansing-mapper.py -file /home/khalid/Homework06/Exercise01/FileCleansing-reducer.py -reducer /home/khalid/Homework06/Exercise01/FileCleansing-reducer.py -input /Exercise6-Data/1.txt -output /Exercise6-Solution/CleansedFiles/Book1/

For Book#2:

hadoop jar /home/khalid/Downloads/hadoop-2.7.2/share/hadoop/tools/lib/hadoop-*streaming*.jar -file /home/khalid/Homework06/Exercise01/FileCleansing-mapper.py -mapper /home/khalid/Homework06/Exercise01/FileCleansing-mapper.py -file /home/khalid/Homework06/Exercise01/FileCleansing-reducer.py -reducer /home/khalid/Homework06/Exercise01/FileCleansing-reducer.py -input /Exercise6-Data/2.txt -output /Exercise6-Solution/CleansedFiles/Book2/

For Book#3:

hadoop jar /home/khalid/Downloads/hadoop-2.7.2/share/hadoop/tools/lib/hadoop*streaming*.jar -file /home/khalid/Homework06/Exercise01/FileCleansing-mapper.py -mapper
/home/khalid/Homework06/Exercise01/FileCleansing-mapper.py -file
/home/khalid/Homework06/Exercise01/FileCleansing-reducer.py -reducer
/home/khalid/Homework06/Exercise01/FileCleansing-reducer.py -input /Exercise6-Data/3.txt output /Exercise6-Solution/CleansedFiles/Book3/

For Book#4:

hadoop jar /home/khalid/Downloads/hadoop-2.7.2/share/hadoop/tools/lib/hadoop-*streaming*.jar -file /home/khalid/Homework06/Exercise01/FileCleansing-mapper.py -mapper /home/khalid/Homework06/Exercise01/FileCleansing-mapper.py -file /home/khalid/Homework06/Exercise01/FileCleansing-reducer.py -reducer /home/khalid/Homework06/Exercise01/FileCleansing-reducer.py -input /Exercise6-Data/4.txt - output /Exercise6-Solution/CleansedFiles/Book4/

For Book#5:

hadoop jar /home/khalid/Downloads/hadoop-2.7.2/share/hadoop/tools/lib/hadoop-*streaming*.jar -file /home/khalid/Homework06/Exercise01/FileCleansing-mapper.py -mapper /home/khalid/Homework06/Exercise01/FileCleansing-mapper.py -file /home/khalid/Homework06/Exercise01/FileCleansing-reducer.py -reducer /home/khalid/Homework06/Exercise01/FileCleansing-reducer.py -input /Exercise6-Data/5.txt -output /Exercise6-Solution/CleansedFiles/Book5/

Images:

This is the output of the Hadoop cat command.

Directory for each book

Each Book directory has part-00000 as the output file.

Exercise 02: TFIDF scores of words:

Flow of the program:

The program takes the all of the input files from the previous program, performs operations to compute TF , IDF and TF*IDF scores and generates an output file.

Mapper:

In the mapper function, I am reading the files line by line and outputting it to the reducer for further processing. Since I have to find the id of the file from which the word is coming, so I have used:

to get the URL of the file that is currently being used by the mapper. It the returns a URL string from which I extract the directory name, perform a split and then use the number to identify the file. For example, my directory name is Book-2. I can extract 2 from this directory name which will tell me that this is file # 2.

The program then reads line from the file and generates and generates a key/value pair in which key is the word and value is the file id.

Reducer:

In the Reducer, the first function Compute() function counts the number of words in each file and the word counts for a specific file. The second function TFIDF() uses the information obtained in the first function to calculate the TF, IDF and TF*IDF scores for each word of a particular file.

The output consists of four columns for word, TF, IDF and TF*IDF scores respectively.

Hadoop Commands Used:

Following command was used

hadoop jar /home/khalid/Downloads/hadoop-2.7.2/share/hadoop/tools/lib/hadoop-*streaming*.jar -file /home/khalid/Homework06/Exercise02/TF-IDF-mapper.py -mapper /home/khalid/Homework06/Exercise02/TF-IDF-mapper.py -file /home/khalid/Homework06/Exercise02/TF-IDF-reducer.py -reducer /home/khalid/Homework06/Exercise02/TF-IDF-reducer.py -input /Exercise6-Solution/CleansedFiles/Book-*/part-00000 -output /Exercise6-Solutions/Output/

In the above command, Book-* means that it will get all the directories that match this wildcard and output their part-00000 files.

Images:

Output of the program

