

سیگنالها و سیستمها

تمرین پنجم دانشکده مهندسی کامپیوتر دانشگاه صنعتی شریف نیم سال دوم ۰۰-۹۹

استاد: **جناب آقای دکتر منظوری شلمانی** نام و نام خانوادگی: **امیرمهدی نامجو - ۹۷۱۰۷۲۱۲**

۱ سری فوریه

۱.۱ سوال اول

۱.۱.۱ بخش a

$$f(x) = \begin{cases} \pi - x & 0 \le x \le \pi \\ x - \pi & -\pi \le x \le 0 \end{cases}$$

ابتدا عامل DC را بدست می آوریم:

$$a_0 = \frac{1}{2\pi} \int f(x)dx = \frac{1}{2\pi} \int_{-\pi}^0 (x - \pi)dx + \int_0^\pi (\pi - x)dx$$
$$= \frac{1}{2\pi} (\frac{-3\pi^2}{2} - \frac{\pi^2}{2}) = \boxed{-\pi}$$

برای ضرایب کسینوسی داریم:

$$a_n = \frac{1}{\pi} \int (f(x)\cos(nx))dx$$

$$= \frac{1}{\pi} \left(\int_{-\pi}^{0} (x - \pi) \cos(nx) dx + \int_{0}^{\pi} (\pi - x) \cos(nx) dx \right)$$

ابتدا لازم است اشاره کنیم که

$$\int x \cos(nx) = \frac{1}{n^2} \cos(nx) + \frac{1}{n} x \sin(nx)$$

با توجه به این موضوع، از عبارت بالا می توان به راحتی انتگرال گرفت:

$$=\frac{1}{\pi}((\frac{\cos(nx)}{n^2}+\frac{x\sin(nx)}{n}-\frac{\pi\sin(nx)}{n})|_{-\pi}^0+(-\frac{\cos(nx)}{n^2}+\frac{\pi\sin(nx)}{n}-\frac{x\sin(nx)}{n})|_0^\infty)$$

بعد از ساده سازی و محاسبات داریم:

$$a_n = -\frac{2(\pi n \sin(\pi n) + \cos(\pi n) - 1)}{\pi n^2}$$

برای محاسبات ضریب سینوسی داریم:

$$b_n = \frac{1}{\pi} \int (f(x)sin(nx))dx$$

$$= \frac{1}{\pi} \left(\int_{-\pi}^{0} (x - \pi) \sin(nx) dx + \int_{0}^{\pi} (\pi - x) \sin(nx) dx \right)$$

ابتدا لازم است اشاره کنیم که

$$\int x \sin(nx) = \frac{\sin(nx)}{n^2} - \frac{x \cos(nx)}{n}$$

با توجه به این موضوع، عبارت بالا مانند بخش قبل به راحتی قابل محاسبه است. جوابی که در نهایت به آن می رسیم به صورت زیر است:

$$b_n = \frac{2 - 2\cos(\pi n)}{n}$$

و جواب نهایی به صورت:

$$f(x) = a_0 + \sum_{n=1}^{N} (a_n \cos(nx) + b_n \sin(nx))$$

خواهد بود. (تقسیم بر \mathbf{Y} فرمول a_0 را به نوعی در خود انتگرال آن تاثیر دادهام) کد آن در فایل $\mathrm{P1_Q1_a.py}$ قرار دارد. نمودار در صفحه بعد قرار گرفته است. شکل بالایی خود تابع و شکل های بعدی به ازای N=2,5,20,50 هستند.

Amirmahdi Namjoo

۲.۱.۱ ىخش b

$$f(x) = \begin{cases} 1 & 0 \le x < \frac{\pi}{2} \\ 0 & \frac{\pi}{2} \le x < \pi \\ 0 & -\pi \le x < 0 \end{cases}$$

$$a_0 = \frac{1}{2\pi} \int f(x) dx = \frac{1}{2\pi} \int_0^{\pi/2} 1 dx = \boxed{\frac{1}{4}}$$

$$a_n = \frac{1}{\pi} \int (f(x) \cos(nx)) dx$$

$$= \frac{1}{\pi} \int_0^{\pi/2} \cos(nx) dx = \frac{1}{\pi} \frac{\sin(nx)}{n} \Big|_0^{\pi/2} = \boxed{\frac{\sin(\frac{\pi n}{2})}{\pi n}}$$

$$b_n = \frac{1}{\pi} \int (f(x) \sin(nx)) dx$$

$$= \frac{1}{\pi} \int_0^{\pi/2} \sin(nx) dx = -\frac{1}{\pi} \frac{\cos(nx)}{n} \Big|_0^{\pi/2} = \boxed{\frac{2 \sin^2(\frac{\pi n}{4})}{\pi n}}$$

$$\vdots$$

$$2 \cot(2\theta) = 1 - 2 \sin^2(\theta) \text{ where } \theta$$

$$e^{-2\theta} \cot(\theta) = 1 - 2 \sin^2(\theta)$$

$$e^{-2\theta} \cot(\theta) = 1 - 2 \sin^2(\theta)$$

$$e^{-2\theta} \cot(\theta) = 1 - 2 \sin^2(\theta)$$

$$f(x) = a_0 + \sum_{n=1}^{N} (a_n \cos(nx) + b_n \sin(nx))$$

کد آن در فایل $P1_Q1_b.py$ قرار دارد. نمودار در صفحه بعد قرار گرفته است. شکل بالایی خود تابع و شکل های بعدی به ازای N=2,5,20,50 هستند.

0

-3

-2

-1

Amirmahdi Namjoo

۲.۱ سوال دوم

a بخش ۱.۲.۱

$$\cos(4t) = \frac{1}{2}e^{-4jt} + \frac{1}{2}e^{4jt}$$

$$\sin(6t) = \frac{1}{2j}e^{6jt} - \frac{1}{2j}e^{-6jt}$$

در نتیجه ضرایب سری فوریه برای $\cos(4t) + \sin(6t)$ به صورت زیر است:

$$a_4 = \frac{1}{2}, a_{-4} = \frac{1}{2}, a_6 = \frac{1}{2j}, a_{-6} = \frac{-1}{2j}$$

 $a_k=0$ و به ازای $k\neq \pm 4, \pm 6$ داریم

۲.۲.۱ بخش b

$$\omega_0 = \frac{2\pi}{T}$$

$$a_k = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-jk\frac{2\pi}{T_0}t} dt$$

برای k=0 به طور جداگانه محاسبه کرده و داریم:

$$a_0 = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t)dt = 0$$

برای باقی موارد داریم:

$$a_k = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-jk\frac{2\pi}{T_0}t} dt = \frac{1}{T_0} \left(\int_{-T_0/2}^0 (-A) e^{-jk\frac{2\pi}{T_0}t} dt + \int_0^{T_0/2} (A) e^{-jk\frac{2\pi}{T_0}t} dt \right)$$
$$= \frac{1}{T_0} \left(\frac{AT_0 j(-1 + e^{jk\pi})}{2k\pi} + \frac{-AT_0 j(1 - e^{jk\pi})}{2k\pi} \right)$$

$$=\frac{Aje^{-jk\pi}(-1+e^{jk\pi})^2}{2k\pi}$$

c سخش ۳.۲.۱

دوره تناوب پایه $|\sin(x)|$ برابر π است و عملا مانند \sin مثبتی بین 0 تا π است که در همه تناوبهایش تکرار می شود. در نتیجه باید براساس این تناوب حل کرد.

$$a_k = \frac{1}{\pi} \int_0^{\pi} |\sin(x)| e^{-2jkx} dx = \frac{1}{\pi} \int_0^{\pi} \sin(x) e^{-2jkx} dx$$

:برای ضریب a_0 داریم

$$a_0 = \frac{1}{\pi} \int_0^{\pi} \sin(x) dx = \frac{2}{\pi}$$

برای سایر ضرایب داریم:

$$\begin{split} a_k &= \frac{1}{\pi} \int_0^\pi \frac{1}{2j} (e^{ix} - e^{-ix}) e^{-2jkx} dx \\ &= \frac{1}{2\pi} \left(\frac{e^{-j(2k-1)x}}{2k-1} - \frac{e^{-j(2k+1)x}}{2k+1} \right) |_0^\pi \\ &= \frac{1}{2} \left(\frac{1}{2k+1} - \frac{1}{2k-1} \right) + \frac{1}{2} \left(\frac{e^{-j\pi(2k-1)}}{2k-1} - \frac{e^{-j\pi(2k+1)}}{2k+1} \right) \\ &= \boxed{\frac{1+e^{-2j\pi k}}{1-4k^2}} \end{split}$$

٣.١ سوال سوم

۱.۳.۱ بخش a

$$x(t) = + -2je^{-2j\omega_0 t} + -1je^{-1j\omega_0 t} + 1je^{1j\omega_0 t} + 2je^{2j\omega_0 t}$$
$$= -\frac{4}{2j}(e^{2j\omega_0 t} - e^{-2j\omega_0 t}) - \frac{2}{2j}(e^{j\omega_0 t} - e^{-j\omega_0 t})$$
$$= -4\sin(2\omega_0 t) - 2\sin(\omega_0 t)$$

۲.۳.۱ بخش b

عبارت مورد نظر باید ما را به یاد سری فوریه قطار ضربه بیندازد.

$$\delta_{T_0}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

برای ضرایب فوریه چنین چیزی داریم:

$$c_k = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} \delta(t) e^{-jk\omega_0 t} dt = \frac{1}{T_0}$$

$$\delta_{T_0}(t) = \sum_{k=-\infty}^{\infty} \delta\left(t - kT_0\right) = \frac{1}{T_0} \sum_{k=-\infty}^{\infty} e^{jk\omega_0 t} \quad \omega_0 = \frac{2\pi}{T_0}$$

با توجه به این موضوع برای چیزی که در صورت سوال داده شده، می توانیم آن را معادل با

$$z(t) = \sum_{k=-\infty}^{\infty} e^{jk\omega_0 t} \delta(t - T_0 k + 2k)$$

بدانیم. در عبارت بالا 2k برای زوج سازی و سپس e برای شیفت فرکانسی اضافه شده است که باعث بشود که تنها عبارتهای فرد 1 بمانند و عبارتهای زوج 0 شوند.

۴.۱ سوال چهارم

در سوال نمادهای e_k و e_k استفاده شده است ولی برای راحتی کار و از آن جایی که کلا دو سیگنال اصلی داریم، از a_k و a_k در جواب استفاده شده است.

$$x_1[n]x_2[n] = \sum_{k=0}^{N_0-1} \sum_{l=0}^{N_0-1} a_k b_l e^{j(2\pi/N_0)(k+l)n}$$

$$x_1[n]x_2[n] = \sum_{k=0}^{(N_0-1)} \sum_{l'=k}^{(k+N_0-1)} a_k b_{l'-k} e^{j(2\pi/N_0)'n}$$

:با توجه به متناوب بودن $b_{l'-k}$ و متناوب بودن

$$x_1[n]x_2[n] = \sum_{k=0}^{N_0 - 1} \sum_{l'=0}^{N_0 - 1} a_k b_{l'-k} e^{j(2\pi/N_0)t'n} = \sum_{l=0}^{N_0 - 1} \left[\sum_{k=0}^{N_0 - 1} a_k b_{l-k} \right] e^{j(2\pi/N_0)ln}$$

پس

$$c_k = \sum_{t=0}^{N_0 - 1} a_k b_{l-k}$$

و معادلا:

$$c_k = \sum_{k=0}^{N_0 - 1} b_k a_{l-k}$$

برای اثبات رابطه پارسوال داریم:

$$N_0 \sum_{l=\langle N_0 \rangle} a_l b_{k-l} = \sum_{\langle N_0 \rangle} x_1[n] x_2[n] e^{-j(2\pi/N_0)kn}$$

:با قرار دادن k=0 داریم

$$N_0 \sum_{l=\langle N_0\rangle} a_l b_{-1} = \sum_{n=\langle N_0\rangle} x_1[n] x_2[n]$$

در نتیجه:

$$\frac{1}{N_0} \sum_{n=0}^{N_0 - 1} x[n] = \sum_{k=0}^{N_0 - 1} a_k b_{-k}$$

۵.۱ سوال پنجم

در نتیجه سوال قبل قرار می دهیم:

$$x_2[n] = x_1^*[n]$$

در نتیجه این موضوع داریم:

$$b_k = a_{-k}^*$$

پس

$$\frac{1}{N_0} \sum_{n=0}^{N_0 - 1} x[n] = \sum_{n=0}^{N_0 - 1} a_k n_{-k}$$

$$\frac{1}{N_0} \sum_{n=0}^{N_0 - 1} x_1[n] x_1^*[n] = \sum_{k=0}^{N_0 - 1} a_k a_k^*$$

بنابراين:

$$\sum_{k=\langle n_0 \rangle} |a_k|^2 = \frac{1}{N_0} \sum_{n=\langle N_0 \rangle} |x[n]|^2.$$

٦.١ سوال ششم

$$f(t) = \begin{cases} t + \frac{5}{3} & -1 \le t < 0 \\ -t + \frac{5}{3} & 0 \le t < 2 \\ 0 & 2 \le t < 4 \end{cases}$$

a بخش ۱.٦.۱

$$a_0 = \frac{1}{5} \int f(t)dt = \frac{1}{5} \left(\int_{-1}^0 t + \frac{5}{3} dt + \int_0^2 -t + \frac{5}{3} dt \right)$$
$$= \frac{1}{5} \left(\frac{7}{6} + \frac{4}{3} \right) = \boxed{\frac{1}{2}}$$

$$a_k = \frac{1}{5} \int_{-1}^{5} f(t) e^{-jk\frac{2\pi}{5}t} dt = \frac{1}{5} \left(\int_{-1}^{0} (t + \frac{5}{3}) e^{-jk\frac{2\pi}{5}t} dt + \int_{0}^{2} (-t + \frac{5}{3}) e^{-jk\frac{2\pi}{5}t} dt \right)$$

$$\frac{1}{5} \left(\frac{50i\pi k + e^{\frac{2i\pi k}{5}} (-75 - 20i\pi k) + 75}{12\pi^2 k^2} + \frac{-50i\pi k + e^{\frac{-4}{5}i\pi k} (-75 - 10i\pi k) + 75}{12\pi^2 k^2} \right) \\
= \frac{e^{\frac{1}{5}(-4)i\pi k} \left(-2i\pi k + 30e^{\frac{4i\pi k}{5}} + e^{\frac{6i\pi k}{5}} (-15 - 4i\pi k) - 15 \right)}{12\pi^2 k^2}$$

یا اگر روش فرمول کسینوس و سینوس را برویم داریم:

$$a_n = \frac{2}{5} \int (f(t)\cos(\frac{2\pi}{5}nt))dt$$

$$= \frac{2}{5} \left(\int_{-1}^{0} (t+5/3)\cos(\frac{2\pi}{5}nt)dt + \int_{0}^{2} (-t+5/3)\cos(\frac{2\pi}{5}nt)dt \right)$$

$$= \frac{\sin^2(\frac{\pi n}{5})\left(4\pi n\sin(\frac{2\pi n}{5}) + 30\cos(\frac{2\pi n}{5}) + 45\right)}{3\pi^2 n^2}$$

$$b_n = \frac{2}{5} \left(\int (f(t)\sin(\frac{2\pi}{5}nt))dt \right)$$

$$= \frac{2}{5} \left(\int_{-1}^{0} (t+5/3)\sin(\frac{2\pi}{5}nt)dt + \int_{0}^{2} (-t+5/3)\sin(\frac{2\pi}{5}nt)dt \right)$$

$$= \frac{15\left(\sin\left(\frac{2\pi n}{5}\right) - \sin\left(\frac{4\pi n}{5}\right)\right) + 4\pi n\cos\left(\frac{2\pi n}{5}\right) + 2\pi n\cos\left(\frac{4\pi n}{5}\right)}{6\pi^2 n^2}$$

$$f(x) = a_0 + \sum_{n=1}^{N} (a_n \cos(nx) + b_n \sin(nx))$$

۲.٦.۱ بخش b

کِدهای مسئله به زبان پایتون در فایل P1_Q6_b.py موجود است و جواب قسمتهای بعد براساس

Floating- مد نظر در ادامه نوشته شده اند. توجه کنید که به دلیل ویژگیهای اعداد -Floating جملات مد نظر در ادامه نوشته شده اند. توجه کنید که به دلیل ویژگیهای اعداد -Point عموما ضرایبی که صفر بوده اند به صورت عددی ضربدر 10^{-33} نوشته شده اند. سپس از آن ابتدا در یک شکل سیگنالها به ازای مقادیر N به صورت جداگانه رسم شده اند. سپس در اشکال بعدی، به ازای هر کدام از مقادیر، نمودار آن با رنگ نارنجی روی نمودار اصلی با رنگ آبی رسم شده است.

> $a_1 = 0.772711906482877, b_1 = 0.07175375986881644$ $a_2 = 0.27113541693643917, b_2 = 0.028002784979373037$ $a_3 = -0.004852111911900812, b_3 = -0.08960735823011712$ $a_4 = 0.004714960180721709, b_4 = -0.010817086948420714$ $a_5 = 1.5195743635847465e - 33, b_5 = 0.06366197723675814$ $a_6 = 0.04083290139095018, b_6 = -0.0008212742065860439$ $a_7 = 0.04515821107548206, b_7 = -0.011886611106858576$ $a_8 = -0.01831062003374954, b_8 = -0.023451895441009625$ $a_9 = -0.007676952848145469, b_9 = -0.00338756817877342$ $a_{10} = 1.5195743635847456e - 33, b_{10} = 0.03183098861837907$ $a_{11} = 0.017911214823682062, b_{11} = -0.0010816983697769051$ $a_{12} = 0.023201132067024215, b_{12} = -0.008867354363816892$ $a_{13} = -0.013610002113093692, b_{13} = -0.012990392854308745$ $a_{14} = -0.006730131246383232, b_{14} = -0.0019169012948294058$

 $a_{15} = 1.5195743635847434e - 33, b_{15} = 0.021220659078919374$ $a_{16} = 0.01118956850490962, b_{16} = -0.000907051304878608$ $a_{17} = 0.015464268832541013, b_{17} = -0.006821294507069879$ $a_{18} = -0.010581176024894123, b_{18} = -0.008919232952258454$ $a_{19} = -0.005585535368095415, b_{19} = -0.0013214190722783403$ $a_{20} = 1.5195743635847419e - 33, b_{20} = 0.015915494309189534$ $a_{21} = 0.008076648709406326, b_{21} = -0.0007562919849315991$ $a_{22} = 0.011564843734622392, b_{22} = -0.005507870241109013$ $a_{23} = -0.008613443680564381, b_{23} = -0.006775588961597922$ $a_{24} = -0.004711199325475308, b_{24} = -0.0010040831881916652$ $a_{25} = 1.5195743635847393e - 33, b_{25} = 0.012732395447351627$ $a_{26} = 0.006300406249170883, b_{26} = -0.0006432609418058376$ $a_{27} = 0.009225781951316991, b_{27} = -0.004609416023114295$ $a_{28} = -0.007250921405575788, b_{28} = -0.005457578628620997$ $a_{29} = -0.004055794714702865, b_{29} = -0.0008081706869254678$ $a_{30} = 1.519574363584735e - 33, b_{30} = 0.010610329539459687$ $a_{31} = 0.005157489248731366, b_{31} = -0.0005579230259798711$

 $a_{32} = 0.007669732145959915, b_{32} = -0.003959686879886606$ $a_{33} = -0.006256136875045252, b_{33} = -0.004566755490351168$ $a_{34} = -0.003553802680498653, b_{34} = -0.0006755979057181989$ $a_{35} = 1.5195743635847316e - 33, b_{35} = 0.009094568176679736$ $a_{36} = 0.004362360888597353, b_{36} = -0.0004918855395621645$ $a_{37} = 0.006561005399865466, b_{37} = -0.0034690828700930944$ $a_{38} = -0.005499407016535415, b_{38} = -0.0039249666296024815$ $a_{39} = -0.003159413834482431, b_{39} = -0.0005800860028377107$ $a_{40} = 1.5195743635847268e - 33, b_{40} = 0.007957747154594767$ $a_{41} = 0.003778044173238204, b_{41} = -0.00043950225495442116$ $a_{42} = 0.005731421240004929, b_{42} = -0.003085957785323703$ $a_{43} = -0.004905005087522983, b_{43} = -0.0034408366129256586$ $a_{44} = -0.0028423248893797424, b_{44} = -0.0005080735752180709$ $a_{45} = 1.5195743635847215e - 33, b_{45} = 0.00707355302630646$ $a_{46} = 0.0033308907366752464, b_{46} = -0.00039703351695859266$ $a_{47} = 0.0050875680137263376, b_{47} = -0.0027786711713284526$ $a_{48} = -0.004426026511190478, b_{48} = -0.003062743915561243$

 $a_{49} = -0.0025822630276678576, b_{49} = -0.0004518742494494454 \\$

 $a_{50} = 1.5195743635847159e - 33, b_{50} = 0.006366197723675813$

Amirmahdi Namjoo

c بخش م ۳.٦.۱ بخش c بخش کد این بخش در فایل P1_Q6_c قرار دارد.

۲ تبدیل فوریه

۱.۲ سوال اول

$$X(jw) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

a بخش ا ۱.۱.۲

$$e^{-a|t|}\sin\omega_0 t$$

$$X(jw) = \int_{-\infty}^{\infty} e^{-a|t|} \sin(\omega_0 t) e^{-j\omega t} dt$$

$$\int_{0}^{\infty} \sin(\omega_0 t) e^{(-jw-a)t} + \int_{-\infty}^{0} \sin(\omega_0 t) e^{(-jw+a)t}$$

$$= \int_{0}^{\infty} e^{-at} \sin(\omega_0 t) (e^{-jwt} - e^{jwt})$$

$$= -2j \int_{0}^{\infty} e^{at} \sin(\omega_0 t) \sin(\omega t)$$

$$= j \int_{0}^{\infty} e^{at} (\cos((\omega_0 + \omega)t) - \cos((\omega_0 - \omega)t))$$

$$= j\left(e^{at}\left(\frac{a\cos(t(\omega_0 - \omega)) + (\omega_0 - \omega)\sin(t(\omega_0 - \omega))}{a^2 + (\omega_0 - \omega)^2} - \frac{a\cos(t(\omega_0 + \omega)) + (\omega_0 + \omega)\sin(t(\omega_0 + \omega))}{a^2 + (\omega_0 + \omega)^2}\right)\right)\Big|_0^\infty$$

:با شرط a < 0 داریم

$$= \frac{4a\omega_0\omega_j}{(a^2 + \omega_0^2)^2 + 2\omega^2(a - \omega_0)(a + \omega_0) + \omega^4}$$

۲.1.۲ بخش b

$$X(j\omega) = \int_{-1}^{1} (1 + \cos(\pi t))e^{-j\omega t} dt$$

$$X(j\omega) = \int_{-1}^{1} e^{-j\omega t} dt + \int_{-1}^{1} \frac{e^{j\pi t} + e^{-j\pi t}}{2} e^{-j\omega t} dt$$

$$X(j\omega) = \frac{e^{-j\omega t}}{-j\omega} \Big|_{-1}^{1} + \frac{1}{2} \left(\frac{e^{j(\pi-\omega)}}{j(\pi-\omega)} + \frac{e^{-j(\pi+\omega)t}}{-j(\pi+\omega)} \right) \Big|_{-1}^{1}$$

$$X(j\omega) = \frac{e^{-j\omega} - e^{j\omega}}{-j\omega} + \frac{1}{2} \left(\frac{e^{j(\pi-\omega)} - e^{j(\pi-\omega)}}{j(\pi-\omega)} + \frac{e^{-j(\pi+\omega)} - e^{j(\pi+\omega)}}{-j(\pi+\omega)} \right)$$

$$X(j\omega) = \frac{2}{\omega} \cdot \frac{e^{j\omega} - e^{-j\omega}}{2j} + \frac{1}{\pi-\omega} \cdot \frac{e^{j(\pi-\omega)} - e^{j(\pi-\omega)}}{2j} + \frac{1}{\pi+\omega} \cdot \frac{e^{j(\pi+\omega)} - e^{-j(\pi+\omega)}}{2j}$$

$$X(j\omega) = \frac{2\sin\omega}{\omega} + \frac{\sin(\pi-\omega)}{\pi-\omega} + \frac{\sin(\pi+\omega)}{\pi+\omega}$$

$$X(j\omega) = \frac{2\sin\omega}{\omega} + \frac{\sin(\pi-\omega)}{\pi-\omega} + \frac{\sin(\pi+\omega)}{\pi+\omega}$$

۳.۱.۲ بخش c

:اثبات. اثبات می $rac{2a}{a^2+\omega^2}$ سورت و $e^{a|t|}$ است. اثبات

$$x(t) = e^{-dt} = \begin{cases} e^{-at} & t > 0 \\ e^{at} & t < 0 \end{cases}$$

$$X(\omega) = \int_{-\infty}^{0} e^{at} e^{-j\omega t} dt + \int_{0}^{\infty} e^{-at} e^{-j\omega t} dt$$

$$= \int_{-\infty}^{0} e^{(a-j\omega)t} dt + \int_{0}^{\infty} e^{-(a+j\omega)t} dt$$

$$= \frac{1}{a-j\omega} + \frac{1}{a+j\omega} = \frac{2a}{a^2 + \omega^2}$$

 $j rac{d}{d\omega} F(\omega)$: همچنین می دانیم که تبدیل فوریه tf(t) تبدیل فوریه برابر است با پس در این جا هم جواب

$$j\frac{d}{d\omega}\frac{2a}{a^2 + \omega^2} = -\frac{4aj\omega}{\left(a^2 + \omega^2\right)^2}$$

۴.1.۲ بخش d

$$X(jw) = \int_{-\infty}^{\infty} \cos(\omega_0 t) u(t) e^{-j\omega t} dt$$

$$X(jw) = \int_{0}^{\infty} \cos(\omega_0 t) e^{-j\omega t} dt$$

$$X(jw) = \frac{1}{2} \int_{0}^{\infty} (e^{j\omega_0 t} + e^{-j\omega_0 t}) e^{-j\omega t} dt$$

$$= -\frac{j\omega}{\omega^2 - \omega_0^2}$$

e بخش ۵.۱.۲

$$\Delta(t) = \begin{cases} 1 - 2|t| & 0 \le t \le 1/2 \\ 0 & \text{otherwise} \end{cases} = \begin{cases} 1 - 2t & 0 \le t \le 1/2 \\ 0 & \text{otherwise} \end{cases}$$

$$F(\omega) = \int_{-\infty}^{\infty} \Delta(t)e^{-j\omega t}dt$$

$$= \int_{0}^{1/2} (1 - 2t)e^{-j\omega t}dt$$

$$= \frac{j\omega(2t - 1) + 2}{(j\omega)^2}e^{-j\omega t}\Big|_{t=0}^{1/2}$$

$$= \frac{2 - j\omega - 2e^{-j\omega/2}}{(j\omega)^2}$$

۲.1.۲ بخش f

$$x(t) = \begin{cases} 1 \text{ if } 1 \le |t| \le 3\\ -1 \text{ if } |t| < 1\\ 0 \text{ otherwise} \end{cases}$$

میدانیم که تبدیل فوریه سیگنال مستطیلی بین 1/2 تا 1/2 تا 1/2 به صورت: $\sin\frac{\omega}{2}=sinc(\omega/2)$ میدانیم که تبدیل فوریه سیگنال مستطیلی ذکر شده را با نماد $\Pi(t/6)-2\Pi(t/2)$ نمایش بدهیم، عبارت بالا $\Pi(t/6)-2\Pi(t/2)$ است. در نتیجه

$$F(\omega) = 6sinc(6\omega/2) - 4sinc(2\omega/2) = 6sinc(3\omega) - 4sinc(\omega)$$

۲.۲ سوال دوم ۱.۲.۲ بخش a

$$F(\omega) = \frac{16 - 16j\omega + 4\omega^2 - 4j\omega^3}{54 + 81j\omega + 18\omega^2 + 31j\omega^3 - 6\omega^4}$$

$$F(\omega) = \frac{4(-2 + j\omega)(-1 + j\omega)(2 + j\omega)}{-(3 + j\omega)^2(-3 + 2j\omega)(2 + 3j\omega)}$$

$$= \frac{80}{63(j\omega + 3)^2} + \frac{28}{1053(2j\omega - 3)} + \frac{640}{637(3j\omega + 2)} - \frac{4028}{3969(j\omega + 3)}$$

$$\frac{80}{63}te^{-3t}u(t) + \frac{-14}{1053}e^{\frac{3}{2}t}u(-t) + \frac{640}{1911}e^{\frac{-2}{3}t}u(t) + \frac{4028}{3969}e^{-3t}u(t)$$

۲.۲.۲ بخش b

$$F(j\omega) = 2\pi j\omega e^{-|\omega|}$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi j\omega e^{-|\omega|} e^{j\omega t} d\omega$$

$$\int_{-\infty}^{0} j\omega e^{\omega} e^{j\omega t} d\omega + \int_{0}^{\infty} j\omega e^{-\omega} e^{j\omega t} d\omega$$

$$= \frac{i}{(t-i)^{2}} + \left(-\frac{i}{(t+i)^{2}}\right)$$

$$= -\frac{4t}{(t^{2}+1)^{2}}$$

۳.۲ سوال سوم

۴.۲ سوال چهارم

$$h(t) = \frac{\sin(10\pi t) - \sin(6\pi t)}{2\pi t}$$

$$H(j\omega) = \begin{cases} \frac{1}{2}, & |\omega| < 10\pi \\ 0, & |\omega| > 10\pi \end{cases} - \begin{cases} \frac{1}{2}, & |\omega| < 6\pi \\ 0, & |\omega| > 6\pi \end{cases}$$

$$x(t) = \frac{1}{2}(\cos(5\pi t) + \cos(9\pi t))$$

$$X(j\omega) = \frac{\pi}{2}(\delta(\omega - 5\pi) + \delta(\omega + 5\pi)) + \frac{\pi}{2}(\delta(\omega - 9\pi) + \delta(\omega + 9\pi))$$

با ضرب H در X ، عبارت داری π که فقط در π مقدار دارد، در هر دو حالت H شامل حالت π شده و صفر می شود. ولی عبارت دومی فقط در حالت π اصدق می کند و نصف می شود. در نتحه:

$$Y(j\omega) = \frac{\pi}{4}(\delta(\omega - 9\pi) + \delta(\omega + 9\pi))$$

بس

$$y(t) = \frac{1}{4}\cos(9\pi t)$$

۵.۲ سوال پنجم

$$2\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} - 2y(t) = x(t-1)$$

با فرض شرايط اوليه صفر:

$$\begin{split} 2(j\omega)^2 Y(j\omega) + 3(j\omega) Y(j\omega) - 2Y(j\omega) &= e^{-j\omega} X(j\omega) \\ X(j\omega) &= \frac{1}{5+j\omega} - \frac{1}{1+j\omega} \\ Y(j\omega) &= e^{-j\omega} \times \frac{\frac{1}{j\omega+5} - \frac{1}{j\omega+1}}{2j\omega^2 + 3j\omega - 2} \\ &= e^{-j\omega} \times (-\frac{4}{(j\omega+1)(j\omega+5)\left(2j\omega^2 + 3j\omega - 2\right)}) \\ &= e^{-j\omega} \times (-\frac{4}{15(j\omega+2)} + \frac{1}{33(j\omega+5)} - \frac{32}{165(2j\omega-1)} + \frac{1}{3(j\omega+1)}) \\ &: \text{ابتدا قسمت درون پرانتز را تبديل فوريه معكوس مى گيريم:} \end{split}$$

$$ightarrow rac{-4}{15}e^{-2t}u(t)+rac{1}{33}e^{-5t}u(t)+rac{16}{65}e^{rac{1}{2}t}u(-t)+rac{1}{3}e^{-t}u(t)$$
حال اثر $e^{-j\omega}$ را که شییفت به راست می دهد را اعمال میکنیم:

$$\begin{split} y(t) &= \frac{-4}{15}e^{-2(t-1)}u(t-1) + \frac{1}{33}e^{-5(t-1)}u(t-1) + \frac{16}{65}e^{\frac{1}{2}(t-1)}u(-(t-1)) + \frac{1}{3}e^{-(t-1)}u(t-1) \\ &= \frac{-4}{15}e^{-2t+2)}u(t-1) + \frac{1}{33}e^{-5t+5)}u(t-1) + \frac{16}{65}e^{\frac{1}{2}t-\frac{1}{2}}u(-t+1) + \frac{1}{3}e^{-t+1}u(t-1) \end{split}$$

سوال ششم

$$\sum_{k=-\infty}^{+\infty} \delta\left(\omega - k\omega_0\right) = \frac{1}{\omega_0} \sum_{n=-\infty}^{+\infty} e^{\frac{2\pi n j\omega}{\omega_0}}$$

 $\sum_{k=-\infty}^{+\infty} \delta\left(\omega-k\omega_0
ight)$ اگر توِجه کنیم عبارت صورت سوال به شدت شبیه سری فوریه است. در اصل عبارت صورت سوال به شدت یک عبارت متناوب با دوره تناوب ω_0 است که در هر ω_0 یک تابع ضربه ایجاد کرده است. در نتیجه T_0 أَنْ رَا دَرَ يَكُ دَوْرَهُ تَنَاوِب بدست مَى آوْرَيم. البته بهتر بود به جاى نماد ω_0 از نماد ω_0 استفاده می شد چون عملا این جا ω_0 فرکانس نیست و خود دوره تناوب است ولی به هر حال با همین نماد جلو میرویم. عملا بهتر بود برای رعایت نمادگذاریِ به ُجای \dot{w} هم t گذاشته میشد ولی در صورت سُوال نُمَّادُگذاری متفاوتی استُفاده شده است و از آن جایی که عملاً تبدیل خاصی هم خُواسته ω نشده است، می توانیم به صورت سوال به چشم یک تابع معمولی نگاه کنیم که به جای نماد t نماد ω در آن گذاشته شده است.

$$a_k = \frac{1}{\omega_0} \int_{-\omega_0/2}^{\omega_0/2} \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0) e^{-jk\frac{\omega_0}{2\pi}\omega} d\omega$$

عبارت بالا فقط به ازای n=0 مقدار غیر صفر دارد (در بازه انتگرال نوشته شده):

$$a_k = \frac{1}{\omega_0} \int_{-\omega_0/2}^{\omega_0/2} \delta(\omega) e^{-jk\frac{\omega_0}{2\pi}\omega} d\omega$$

عبارت بالا تنها در $\omega = 0$ ناصفر است یس:

$$a_k = \frac{1}{\omega_0} \int_{-\omega_0/2}^{\omega_0/2} \delta(\omega) d\omega = \frac{1}{\omega_0}$$

 ω_0 کر نتیجه با توجه به رابطه سری فوریه به عبارت زیر می رسیم. توجه کنید که در این جا عملا میرابطه فوریه به صورت ω_0 است.

$$\sum_{k=-\infty}^{+\infty} \delta\left(\omega - k\omega_0\right) = \sum_{n=-\infty}^{+\infty} a_n e^{\frac{2\pi n j\omega}{\omega_0}}$$

$$\sum_{k=-\infty}^{+\infty} \delta\left(\omega - k\omega_0\right) = \frac{1}{\omega_0} \sum_{n=-\infty}^{+\infty} e^{\frac{2\pi n j \omega}{\omega_0}}$$

سوال هفتم ٧.٢

که f = 0 باشد. یعنی به جز تأبع f که تبدیل فوریه اش هم f است و عملا می توان گفت support که f = 0 باشد. البته در اصل اثباتی ای ندارد، هیچ حالتی دیگری امکان ندارد هردوی آنها همزمان متناهی باشند. البته در اصل اثباتی

که این جا مینویسیم، برای حالت compact-support است ولی عملا compact-support حالت finite-support را هم پوشش می دهد. compact-support نشان دهنده وجود یک بازه است که در آن مقدار تابع ناصفر است و پس از آن صفر است و عملا تعداد support متناهی را حالت خاصی از compact-support بدانیم.

فَرَضَ کنیم که f پیوسته بوده و در بازه $[-\pi/2, pi/2]$ تعریف شده باشد. همچنین $F(\omega)$ به ازای برابر صفر باشد. نشان می دهیم که چنین حالتی تنها در صورتی که f صفر باشد امکان $|\omega|>N$ پذیر است. برای این کار، f را به صورت متناوب در نظر گرفته و دوره تناوب آن را بین $[-\pi,\pi]$ قرار می دهیم. در این صورت ضرایب سری فوریه آن به صورت زیر می شود:

$$c_n = \frac{1}{2\pi} \left(\int_{-\pi}^{\pi} f(x)e^{jnx} dx \right)$$

عبارت داخل پرانتز عملا خود تبدیل فوریه f است. یعنی $c_n=rac{1}{2\pi}F(n)$ شده است. حال اگر به ازای |n|>N ازای تعداد محدوی عُدْد ازای تعداد محدوی عُدْد مقدار ناصفر دارد.

در نتیجه یعنی سری فوریه f در بازه $[-\pi,\pi]$ یک جمع متناهی به صورت

$$f(x) = \sum_{n=-N}^{n=N} c_n e^{jnx}$$

است. این عبارت عملا یک چندجمله ای مثلثاتی از درجه N (یا کمتر از N) است.

البته توجه کنید که ممکن است ابهاماتی پیرامون همگرایی پیش بیاید ولی از آن جایی که ی پیرو را می بازه و بازه می در می در می بازه می بازه می تابع چند جمله ای مثلثاتی که بعد از یک بازه ای کاملا صفر می شود می در می دهیم که یک تابع چند جمله ای مثلثاتی که بعد از یک بازه ای کاملا صفر می شود می دهیم که یک تابع چند جمله ای مثلثاتی که بعد از یک بازه ای کاملا صفر می شود می در م

باید متحد با صفر باشد.

$$P_N(x) = \sum_{-N}^{N} c_n e^{inx} =$$

$$\left(\sum_{-N}^{N} \alpha_n \cos nx + \beta_n \sin nx\right) + i \left(\sum_{-N}^{N} A_n \cos nx + B_n \sin nx\right)$$

$$= u(x) + iv(x)$$

از طرفی میدانیم که توابع مثلثاتی بسط تیلور همگرا دارند. در نتیجه اگر مقدار آن حول نقطه ای خاص 0 باشد، همه ضرایب تیلور آن باید صفر باشند. در نتیجه با توجه به این که در مثلا بازه مقدار تابع صفر است و با توجه به همگرایی بسط تیلور تابع، مقدار آن باید به ازای همه نقاط $[\pi/2,\pi]$ صفر بوده باشد. یعنی $f\equiv 0$ بوده است.

در نتیجه از متناهی بودن support هر دوی f و f نتیجه گرفتیم که f صفر است. در نتیجه

امکان ندارد هر دوی آنها متناهی باشند. توجه کنید که بازه انتخاب شده برای این سوال اختیاری بود و میشد بازههای دیگری را هم انتخاب کرد و به راحتی با Scale کردن مقادیر، همچنان توضیحات بالا برقرار بود.

البته تقریبا بدیهی بود که یک چندجمله ای مثلثاتی درجه N حداکثر 2N ریشه دارد (این را هم می شود به راحتی با در نظر گرفتن صفحه مختلط و نوشتن توابع مثلثاتی به صورت مختلط اثبات کرد) و در نتیجه این که در بازه $[\pi/2,\pi]$ عبارت تماما صفر بود و بسط مثلثاتی متناهی از آن داشتیم، نشان دهنده این بود که این عبارت باید متحد با صفر باشد. توجیه بسط تیلور صرفا برای کامل تر شدن اثبات بود.

توجه کنید که در صورت سوال finite بودن صحبت شده که می توان آن را مشابه compact بودن در نظر گرفت ولی با بازه گسترده تر. چون compact بودن و support هم بر این اساس است که از یک بازه ای به بعد، همه مقادیر صفر بشوند و قبل از لزوما صفر نباشند. در حالت compact می تواند تعداد این مقادیر بیشمار هم باشد و مثلا یک بازه پیوسته باشد ولی می تواند محدود هم باشد و مشکل خاصی از این بابت نیست.