

Semester: August 2021 - November 2021							
Examination: In Semester Examination							
Programme code:		Clara CV		Semester: III (SVU			
Programme:		Class: SY		2020)			
Name of the Constituent College: K. J. Somaiya College of Engineerin	ng	Name of the department/Section/Center: COMP					
Course Code: 116U01C301	Name of the Cours	se: I	ntegral Transf	Form and Vector Calculus			

Question No.		Max. Marks	CO Mapped
Q1	Choose the correct option from the following MCQ (2 MARK EACH)	10	CO1 CO2
(i)	If $L(erf\sqrt{t}) = \frac{1}{s\sqrt{s+1}}$ then $L(erf3\sqrt{t}) =$ (a) $\frac{1}{s\sqrt{s+3}}$ (b) $\frac{3}{s\sqrt{s+1}}$ (c) $\frac{1}{3s\sqrt{s+3}}$ (d) $\frac{3}{s\sqrt{s+9}}$		
(ii)	$L[t^n e^{at}] =$ $(a) \frac{(-1)^n n!}{(s-a)^{n+1}} \qquad (b) \frac{n!}{(s-a)^{n+1}} \qquad (c) \frac{(-1)^n}{(s+a)^{n+1}} \qquad (d) \frac{(-1)^n n!}{(s+a)^{n+1}}$		
(iii)	$L^{-1}\left[\tan^{-1}\left(\frac{2}{s}\right)\right] =$ (a) $-\frac{1}{t}\sin 2t$ (b) $\frac{2}{t}\sin 2t$ (c) $\frac{1}{t}\sin 2t$ (d) $-\frac{2}{t}\sin 2t$		
(iv)	In Fourier expansion of $f(x) = x \sin x$ in the interval $0 \le x \le 2\pi$. $a_1 =$ $(a) -\frac{\pi}{2} \qquad (b) -\frac{1}{2} \qquad (c) \frac{1}{2} \qquad (d) 0$		
(v)	In Fourier series $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx) + \sum_{n=1}^{\infty} (b_n \sin nx)$ for $f(x) = x $ in the range $(-\pi, \pi)$, $a_0 =$ (a) π (b) $-\pi$ (c) $-\frac{\pi}{2}$ (d) $\frac{\pi}{2}$		

Q.2	Attempt any TWO of the following	10	CO1
(a)	Find the Laplace transform of $t^{-1} \int_0^t e^{-u} \sin u du$		
(b)	Find the inverse Laplace transforms of $\frac{1}{s\sqrt{s+4}}$ by using convolution theorem		
(c)	Express the function $f(t) = \begin{cases} \sin t, & 0 < t < \pi \\ \cos t, & t > \pi \end{cases}$ as Heaviside's unit step functions and find its Laplace transform		
Q 3	Attempt any ONE of the following	10	CO2
(a)	Obtain Fourier sine series for half – range $(0, l)$ with period $2l$ for the function $f(x)$ represented by the graph $f(x)$ $\begin{pmatrix} \frac{l}{3}, k \end{pmatrix}$ $\begin{pmatrix} \frac{2l}{3}, -k \end{pmatrix}$		
(b)	Obtain Fourier series for $f(x) = \cos px$ in $(-\pi, \pi)$, where p is not an integer .Hence prove that (i) $\cot p\pi = \frac{2p}{\pi} \left[\frac{1}{2p^2} - \frac{1}{p^2 - 1^2} + \frac{1}{p^2 - 2^2} - \frac{1}{p^2 - 3^2} + \cdots \right]$ (ii) $\frac{1}{2} - \frac{\pi\sqrt{3}}{18} = \frac{1}{9 \cdot 1^2 - 1} + \frac{1}{9 \cdot 2^2 - 1} + \frac{1}{9 \cdot 3^2 - 1} + \cdots$		