

Eötvös Loránd Tudományegyetem Informatikai Kar Numerikus Analízis Tanszék

A Ljapunov-Schmidt-módszer

Dr. Kovács Sándor Adjunktus **Lipták Bence Gábor** Programtervező Informatikus MSc

Tartalomjegyzék

2.	Funkcionálanalízis kiegészítés		
	2.1.	Faktorterek	
	2.2.	Kompakt operátorok	
	2.3.	Fredholm-operátorok	
	2.4.	Implicit függvény tétel	

1. fejezet

Bevezetés

2. fejezet

Funkcionálanalízis kiegészítés

Ahhoz, hogy a Ljapunov-Schmidt-módszert ismertethessük szükségünk van a Fredholm-operátorok fogalmára, amihez elengedhetetlenek a faktorterek és a kompakt operátorok. A módszerhez emellett még az implicit függvény tétel (Banach-terekben) is szükséges.

TODO jelölések szekció: Lin op, korl Lin op halmazai, esetleg skaláris szorzás jelölése, ha kell

TODO ebből mi maradjon meg? - kinek a szintjére kell belőni a részletességet, szükséges-e az, hogy pl egy évfolyamtárs megérthesse belőle az egészet? faktortér def talán szükséges, Fredholm-op valószínűleg, Frechét-differenciálás és implicit fv tétel szintén

2.1. Faktorterek

Először is ismertessük a faktorterek definícióját, és az alkalmazásunk szempontjából fontos tulajdonságait, a [1] könyv 4.2 fejezete alapján, ahol a bizonyítások is megtalálhatóak.

2.1.1. Definíció (Faktortér). Legyen V egy \mathbb{K} feletti lineáris tér, $U \subset V$ pedig egy altere. A V tér U szerinti faktortere vagy hányadostere

$$V/U := \{ v + U \mid v \in V \}, \tag{2.1}$$

ahol

$$v + U := \{v + u \mid u \in U\}. \tag{2.2}$$

Így egy lineáris térben egy altér segítségével definiáltunk egy halmazrendszert. A

következő állítással megfogalmazzuk, hogy a kapott halmazok és az U altér között mi az összefüggés.

2.1.1. Állítás. Ha V egy \mathbb{K} feletti lineáris tér, $U \subset V$ egy altere, akkor $\forall v, v' \in V$ -re

$$v + U = v' + U \qquad \Leftrightarrow \qquad v - v' \in U.$$
 (2.3)

Ennek segítségével belátható, hogy ha " $v-v'\in U$ " feltétellel definiálunk egy relációt V elemein, akkor az egy ekvivalenciareláció és az ekvivalenciaosztályok pedig a V/U faktortér elemei. Ezután definiáljunk műveleteket a faktortéren.

- **2.1.1. Tétel.** Legyen V egy \mathbb{K} feletti lineáris tér, $U \subset V$ egy altere, ekkor
 - Megadunk

$$V/U \times V/U \longrightarrow V/U$$

 $\mathbb{K} \times V/U \longrightarrow V/U$

leképezéseket a következő módon

$$(v_1 + U) + (v_2 + U) := (v_1 + v_2) + U$$
(2.4)

$$\alpha(v+U) := \alpha v + U \tag{2.5}$$

melyek jól definiáltak.

- A V/U faktortér ezekkel a műveletekkel egy K feletti lineáris tér.
- π_U az úgynevezett **kanonikus leképezés**, melyet

$$\pi_U(v) := v + U \qquad (v \in V)$$

módon definiálunk lineáris operátor V és V/U között.

A faktortér konstrukciója nagyon hasonlít az egész számok körében létesített maradékosztályokra, és rögzített $U \subset V$ esetén ugyanaz a jelölés is alkalmazható:

$$\overline{v} := v + U \qquad (v \in V),$$

ezzel a jelöléssel a műveletek:

$$\overline{v} + \overline{w} = \overline{v + w} \qquad (v, w \in V)$$

$$\alpha \overline{v} = \overline{\alpha v} \qquad (\alpha \in \mathbb{K}, v \in V).$$

Még fontos észrevétel, hogy a π_U leképezés magtere pontosan az U halmaz, valamint az operátor szürjektív is, amiből kapunk a faktortér dimenziójára egy összefüggést:

2.1.2. Tétel. Legyen V egy \mathbb{K} feletti lineáris tér, $U \subset V$ egy altere, ekkor

$$\dim V/U + \dim U = \dim V. \tag{2.6}$$

Ha egy $v \in V$ elemet egy $u \in U$ elemmel eltolunk ($U \subset V$ altér), akkor a V/U faktortérbeli π_U általi képe változatlan, ez a konstrukció alkalmas arra, hogy olyan függvényeket vizsgáljunk, amiknek az értéke az U altéren konstans, speciális esetben 0. Az ilyen leképezésekről szól a következő tétel:

- **2.1.3. Tétel (Homomorfiatétel vektorterekre).** Legyen V egy \mathbb{K} feletti lineáris tér, $F:V\to W$ egy lineáris leképezés, $U\subset V$ egy altér amire $U\subset \operatorname{Ker} F$. Ekkor egyértelműen létezik $F':V/U\to W$ amivel $F=F'\circ\pi_U$. Emellett
 - $\operatorname{Im} F = \operatorname{Im} F'$, illetve F' pontosan akkor szürjektív, amikor F is,
 - $\operatorname{Ker} F' = (\operatorname{Ker} F)/U$, illetve F' pontosan akkor injektív, amikor $U = \operatorname{Ker} F$.

F'-t az **F által indukált homomorfizmusnak** nevezzük.

A faktortérnek van egy hasznos tulajdonsága, amivel nem halmazrendszerként, hanem altérként lehet kezelni.

2.1.4. Tétel. Legyen V egy \mathbb{K} feletti lineáris tér, $U \subset V$ egy altere, $W \subset V$ pedig az U komplemens altere (tehát $V = W \oplus U$). Ekkor a π_U kanonikus leképezés leszűkítése W-re

$$\pi_{|_{U}}: W \longrightarrow V/U, \ \pi_{|_{U}}(w) = w + U$$

 $izomorfia, azaz W \cong V/U.$

2.2. Kompakt operátorok

A Fredholm-operátorok konstrukciójához érdemes feleleveníteni a kompakt operátorok fogalmát és néhány, a gyakorlat szempontjából hasznos tulajdonságukat. A következők során $(X, \|.\|_X)$ és $(Y, \|.\|_Y)$ normált terek.

2.2.1. Definíció (Kompakt operátor). $A: X \to Y$ operátor kompakt, ha bármely $U \subset X$ korlátos halmaznak a képe prekompakt, azaz $\overline{A[U]} \subset Y$ kompakt, valamint ha A korlátos, akkor teljesen folytonosnak is nevezzük. [2]

A továbbiakban az $X \to Y$ közötti kompakt és lineáris operátorok halmazát K(X,Y)-al, X=Y esetén K(X)-szel jelöljük, ez zárt alteret alkot L(X,Y)-ban.

2.2.2. Definíció. $A \in L(X,Y)$ operátor **véges rangú**, ha a képtere véges dimenziós (dim Im $A < \infty$). A véges rangú operátorok halmazát $K_{fin}(X,Y)$ -al rövidítjük. [2, 3]

Belátható ([2]), hogy minden véges rangú operátor kompakt (és így a jelölés indokolt).

A kompakt operátorok bizonyos esetekben közelíthetőek véges rangú operátorokkal:

2.2.1. Tétel. Ha Y-ban van Schauder-bázis, akkor $A \in L(X,Y)$ pontosan akkor kompakt, ha határértéke véges rangú operátorok valamely sorozatának, azaz $K(X,Y) = \overline{K_{fin}(X,Y)}$. [3]

Ezek a feltételek teljesülnek például szeparábilis Hilbert-terekben vagy L^p -terekben $(p \ge 1)$.

Még tegyünk egy megállapítást a kompakt operátorok adjungáltjával kapcsolatban:

2.2.2. Tétel. Legyenek $(X, \|.\|_X)$ és $(Y, \|.\|_Y)$ Banach-terek, $A \in L(X, Y)$, ekkor

$$A \in K(X,Y) \Leftrightarrow A^* \in K(Y^*,X^*),$$

azaz A pontosan akkor kompakt, ha A* adjungált operátora kompakt. [2, 4]

2.3. Fredholm-operátorok

Végül beszéljünk a Fredholm-operárokról és lehetőségekről az előállításukra. A továbbiakban $(X, ||.||_X)$ és $(Y, ||.||_Y)$ Banach-terek.

2.3.1. Definíció (Fredholm-operátor). $T \in L(X,Y)$ Fredholm-operátor, ha az alábbiak teljesülnek:

- $\dim \operatorname{Ker} T < \infty$,
- T/X/ zárt Y-ban,
- $\dim(Y/T[X]) < \infty$.

Ekkor a T operátor indexe ind $T := \dim \operatorname{Ker} T - \dim(Y/T[X]) \in \mathbb{Z}$, T cokernele $\operatorname{coker} T := Y/T[X]$ (azaz Y-ban a T képtere szerinti faktortér), valamint a cokernel $\operatorname{dimenzi\acute{o}ja}$ az operátor $\operatorname{kodimenzi\acute{o}ja}$ $\operatorname{codim} T := \dim \operatorname{coker} T$. [1, 3, 4, 5]

Az X és Y közötti Fredholm-operátorok halmazát a továbbiakban $\mathcal{F}(X,Y)$ -al jelöljük. Belátható, hogy a második feltétel (T képterének a zártsága) a másik kettőből következik [4, 5].

Most nézzük meg, hogy bizonyos függvény műveletek hatására változik-e a Fredholmtulajdonság.

- **2.3.1. Tétel.** Legyenek $(X, \|.\|_X)$, $(Y, \|.\|_Y)$ és $(Z, \|.\|_Z)$ Banach-terek, ekkor:
 - $A \in \mathcal{F}(X,Y)$ és $B \in \mathcal{F}(Y,Z)$, ekkor $B \circ A \in \mathcal{F}(X,Z)$ és $\operatorname{ind}(B \circ A) = \operatorname{ind} B + \operatorname{ind} A$,
 - $A \in \mathcal{F}(X,Y)$, $ekkor\ A^* \in \mathcal{F}(X^*,Y^*)$ és ind $A^* = -\operatorname{ind} A$,
 - $\mathcal{F}(X,Y)$ nyílt részhalmaza L(X,Y)-nak, és az ind : $\mathcal{F}(X,Y) \to \mathbb{Z}$ függvény lokálisan konstans.

Tehát Fredholm-operátorok kompozíciója Fredholm-operátor, valamint Fredholm-operátor adjungáltja is Fredholm-operátor. [3, 5]

Korábban említettük a kompakt operátorok és a Fredholm-operátorok kapcsolatát, erről szól a következő állítás.

2.3.2. Tétel. $T \in L(X,Y)$ bijektív, $K \in L(X,Y)$ kompakt, ekkor T + K Fredholmoperátor és $\operatorname{ind}(T+K) = 0$. Ennek speciális esete amikor $(X, \|.\|_X) = (Y, \|.\|_Y)$ és T az identitás X-en. [3, 5]

Amennyiben ilyen módon kaptunk egy Fredholm-operátort, akkor ahhoz (a kompakt operátorok altér-tulajdonságából kifolyólag) egy kompakt operátort hozzáadva is Fredholm-operátort kapunk, ez igaz tetszőleges konstrukció esetén is:

2.3.3. Tétel. $K \in K(X,Y)$ és $F \in \mathcal{F}(X,Y)$ esetén $K + F \in \mathcal{F}(X,Y)$, valamint $\operatorname{ind}(K+F) = \operatorname{ind} F$. [3]

Mivel a Fredholm-operátoroknál nem feltétel, hogy a magterük csak a tér nullelemét tartalmazza, ezért általában nem invertálhatóak, de egy hasonló tulajdonságot megadhatunk:

2.3.4. Tétel. $T \in L(X,Y)$ pontosan akkor Fredholm-operátor, ha létezik $B \in L(Y,X)$, $K_X \in K(X)$, $K_Y \in K(Y)$ úgy, hogy

$$BT = I_{|_{X}} + K_{X}, TB = I_{|_{Y}} + K_{Y}.$$

Azaz a Fredholm-tulajdonság lényegében az invertálhatóság modulo kompakt operátort jelenti. [3, 5]

2.4. Implicit függvény tétel

A módszer használata során az eredmény eléréséhez szükségünk lesz az implicit függvény tételre Banach-terekben, illetve ahhoz kötődően a Fréchet-derivált fogalmára. $(X, \|.\|_X)$, $(Y, \|.\|_Y)$ és $(Z, \|.\|_Z)$ a következők során Banach-terek.

2.4.1. Definíció. $F: X \times Y \to Z$ Fréchet-differenciálható X-ben az (u_0, v_0) pontban, ha létezik $(D_x F)(u_0, v_0) \in L(X, Z)$ úgy, hogy

$$\lim_{h \to 0} \frac{\|F(u_0 + h, v_0) - F(u_0, v_0) - (D_x F)(u_0, v_0)h\|_Z}{\|h\|_X} = 0.$$

Látható, hogy egy ponthoz tartozó derivált (a valós, többdimenziós esethez hasonlóan) egy függvény.

2.4.1. Tétel (Implicit függvény tétel Banach-terekben). $F: X \times Y \to Z$ folytonos, $(u_0, v_0) \in X \times Y$, $F(u_0, v_0) = 0$, $(D_x F)(u_0, v_0)$ bijektív és folytonos. Ekkor létezik (u_0, v_0) -nak olyan $U \times V \subset X \times Y$ környezete és $G: V \to U$ függvény, amivel $G(v_0) = u_0$ és

$$F(G(v), v) = 0$$
 $(\forall v \in V).$

Ezen felül minden $U \times V$ -beli megoldás ebben a formában áll elő. [6]

Az ilyen tulajdonságokkal rendelkező $D_x F$ függvényeket lineáris homeomorfizmusnak nevezzük:

2.4.2. Definíció. Az A leképezés lineáris homeomorfizmus, ha folytonos, bijektív és az inverze is folytonos.

Az inverz folytonossága pedig a Banach-féle inverz tételből (vagy Banach-féle homeomorfiatételből) következik:

2.4.2. Tétel. $A \in L(X,Y)$ Banach-terek közötti bijektív operátor, ekkor $A^{-1} \in L(Y,X)$. ([2] 6.1.4)

3. fejezet

A Ljapunov-Schmidt-módszer és alkalmazásai

Először is vizsgáljunk meg egy bifurkációs problémát [7] alapján, ezen keresztül szemléltetve a módszer lényegét. Tekintsük a következő egyenletet:

$$F(\lambda, x) = 0$$

ahol $\lambda \in \mathbb{R}$ valós paraméter, $x \in X$ állapotváltozó (TODO ?) X Banach-térben, $0 \in Y$ pedig egy Banach-tér nulleleme, F pedig kétszer folytonosan differenciálható operátor. A feladat meghatározni azon $(\lambda, x) \in \mathbb{R} \times X$ párokat, amelyek kielégítik az egyenletet, lehetőség szerint az x-eket λ függvényében.

Feltesszük, hogy létezik megoldás, valamint azt, hogy minden x=0 esetén minden $\lambda \in \mathbb{R}$ megoldása az egyenletnek (az úgynevezett triviális megoldások). Ezen kívül tegyük fel azt, hogy $(\lambda_0,0) \in \mathbb{R} \times X$ bármely környezetében van nemtriviális megoldás, azaz $(\lambda_0,0)$ bifurkációs pont. Ez maga után vonja, hogy $F_x(\lambda_0,0)$ Fréchet-derivált nem invertálható.

Legyen

$$L := F_x(\lambda_0, x_0) : X \to Y,$$

$$K := \text{Ker } L,$$

$$R := \text{Im } L.$$

Tegyük fel, hogy K-nak és R-nek (amelyek zárt alterek X-ben és Y-ban) vannak komplemens alterei, azaz létezik $W \subset X$ zárt altér, amellyel $K \oplus W = X$, illetve $Z \subset Y$ szintén zárt altér, amellyel $R \oplus Z = Y$, és bármely $x \in X$ egyértelműen

felírható $x=u+v, u\in K, v\in W$ alakban, valamint bármely $y\in Y$ egyértelműen felírható $y=r+z, r\in R, z\in Z$ alakban - ezek teljesülnek például akkor, hogyha K és R véges dimenziós alterek, azaz ha L Fredholm-operátor. Vegyük ezenfelül a $Q:Y\to R$ és $P:Y\to Z$ projekciókat.

Írjuk fel az eredeti egyenlet Taylor-polinomját:

$$0 = F(\lambda, x) = Lx + \phi(\lambda, x)$$

(ahol $\phi(\lambda, x) = F(\lambda, x) - Lx$ a megfelelő maradéktag), és ezekbe írjuk be az x = u + v felírást, valamint vetítsük őket az R és a Z alterekre, így kapjuk az alábbi két egyenletet:

$$0 = QL(u+v) + Q\phi(\lambda, u+v) = Lv + Q\phi(\lambda, u+v),$$

$$0 = PL(u+v) + P\phi(\lambda, u+v).$$

Az első egyenlet így egy 3-változós függvényt ír le:

$$\Phi(\lambda, u, v) := Lv + Q\phi(\lambda, u + v),$$

ami folytonosan differenciálható, és deriváltja a 3. változó szerint az u=v=0 helyen

$$\Phi_v(\lambda_0, 0, 0) : v \to Lv + Q\phi_r(\lambda_0, 0)v.$$

Mivel $\phi(\lambda, x) = F(\lambda, x) - Lx$, így

$$\phi_x(\lambda_0, 0) = F_x(\lambda_0, 0) - L = L - L = 0,$$

ezért

$$\Phi_v(\lambda_0, 0, 0) = L_{|_W},$$

viszont Ker $L_{|W}=\{0\}$ és Im L=R, így $\Phi_v(\lambda,0,0)$ folytonos bijekció W és R között. Alkalmazható az implicit függvény tétel, tehát van $(\lambda_0,0,0)$ -nak egy olyan $\Lambda \times \mathcal{K} \times \mathcal{W}$ környezete, amiben egy $\gamma: \Lambda \times \mathcal{K} \to \mathcal{W}$ függvény meghatározza a $\Phi_v(\lambda,u,v)=0$ összes megoldását $\Phi_v(\lambda,u,\gamma(\lambda,u))$ alakban. Ezt behelyettesítve az eredeti egyenletbe kapjuk az

$$0 = PF(\lambda, u + \gamma(\lambda, u))$$

egyenletet. Mivel $u \in K$ és dim $K < \infty$, valamint $\operatorname{Im} P = Z$, dim $Z < \infty$, így az eredeti egyenletet sikerült redukálnunk egy véges dimenzión értelmezett, véges

dimenziós értékkészletű (TODO?) egyenletre, amit könnyebb megoldani.

Irodalomjegyzék

- [1] R. Scharlau, *TODO*. TODO, 2006 (?)TODO.
- [2] K. Sándor, Funkcionálanalízis feladatokban. TODO, 2013.
- [3] TODO, Notex on Fredholm (and compact) operators. TODO, 2009.
- [4] TODO, TODO lectures 16 and 17. TODO, TODO.
- [5] C. Frantzen, Diffun2, Fredholm Operators (?) TODO, 2012.
- [6] TODO, TODO Implicit Functions and Lyapnov-Schmidt. TODO, TODO.
- [7] TODO, Cambridge Studies in Advanced Mathemathics. TODO, 1995.