4. Feladatlap

Műveltek, monoidok, csoportok, csoportmorfizmusok

1. Legyen (M, \cdot) egy monoid és U(M) az invertálható elemek halmaza. Bizonyítsuk be, hogy U(M) zárt részhalmaza M-nek és $(U(M), \cdot)$ csoportot alkot a leszűkített művelettel.

Megoldás. Legyen $e \in M$ az (M, \cdot) monoid semleges eleme, vagyis minden $x \in M$ esetén $x \cdot e = e \cdot x = x$. Az $x \in M$ elem invertálható (van szimmetrikusa), ha létezik olyan $x' \in M$ elem, hogy $x \cdot x' = x' \cdot x = e$. Ekkor az invertálható eleme halmaza

$$U(M) = \{x \in M \mid \exists x' \in M \text{ ú.h. } x' \cdot x = x \cdot x' = e\}.$$

Az U(M) zárt részhalmaza az M-nek, ha bármely $x, y \in U(M)$ esetén $x \cdot y \in U(M)$. Legyenek x', illetve y' az x, illetve y inverzei (szimmetrikusai) az M-ben. Belátjuk, hogy az $(x \cdot y)' := y' \cdot x'$ az $x \cdot y$ szimmetrikusa az M-ben, így $x \cdot y \in U(M)$. Valóban,

$$(x \cdot y) \cdot (x \cdot y)' = (x \cdot y) \cdot (y' \cdot x')$$

$$= x \cdot \underbrace{y \cdot y'}_{e} \cdot x' \qquad (y' \text{ az } y \text{ szimmetrikusa})$$

$$= \underbrace{x \cdot e \cdot x'}_{x} \qquad (e \text{ semleges elem})$$

$$= x \cdot x' \qquad (x' \text{ az } x \text{ szimmetrikusa})$$

$$= e,$$

$$(x \cdot y)' \cdot (x \cdot y) = (y' \cdot x') \cdot (x \cdot y)$$

$$= y' \cdot \underbrace{x \cdot x'}_{e} \cdot y \qquad (x' \text{ az } x \text{ szimmetrikusa})$$

$$= \underbrace{y' \cdot e \cdot y}_{y'} \qquad (e \text{ semleges elem})$$

$$= y' \cdot y \qquad (y' \text{ az } y \text{ szimmetrikusa})$$

$$= y' \cdot y \qquad (y' \text{ az } y \text{ szimmetrikusa})$$

$$= y' \cdot y \qquad (y' \text{ az } y \text{ szimmetrikusa})$$

Mivel beláttuk, hogy az U(M) zárt részhalmaza az M-nek, ezért az M-en értelmezett "·" művelet származtat egy szintén "·"-tal jelölt műveletet az U(M) halmazon. Be fogjuk látni, hogy $(U(M), \cdot)$ csoport, vagyis a származtatott (leszűkített) művelet szintén asszociatív, van semleges eleme és minden elemnek van szimmetrikusa (inverze).

- Asszociativitás. Mivel az M-en a "·" művelet asszociatív, ezért $x\cdot (y\cdot z)=(x\cdot y)\cdot z$ minden $x,y,z\in M$ esetén. Az $U(M)\subseteq M$ bennfoglaltatás miatt az előbbi reláció fennáll sajátosan az $x,y,z\in U(M)$ elemekre is. Tehát a származtatott (leszűkített) művelet is asszociatív az U(M)-en. Azt mondjuk, hogy az asszociativitás öröklődik a zárt részhalmazokra.
- Semleges elem. Elég belátni, hogy az M semleges eleme e is benne van U(M)-ben, mert így ő lesz az $(U(M), \cdot)$ semleges eleme. Valóban, az e-nek is van szimmetrikusa, éspedig e' = e, mivel a semleges elem tulajdonsága alapján $e \cdot e = e$. Tehát $e \in U(M)$, továbbá $e \cdot x = x \cdot e = x$, minden $x \in U(M) \subseteq M$ esetén.
- Szimmetrikus (inverz) elem. Értelmezés szerint minden $x \in U(M)$ esetén létezik $x' \in M$ úgy, hogy $x \cdot x' = x' \cdot x = e$. Elég belátni, hogy $x' \in U(M)$, vagyis létezik $(x')' \in M$ úgy, hogy $x' \cdot (x')' = (x')' \cdot x' = e$. Valóban, az (x')' := x esetén teljesül az előbbi két reláció, mert x' az x szimmetrikusa. Tehát az $x \in U(M)$ elem M-beli és U(M)-beli szimmetrikusa (inverze) ugyanaz.

Ezzel beláttuk, hogy $(U(M), \cdot)$ csoport.

- 2. Határozzuk meg az invertálható elemenek halmazát a következő monoidok esetében:
 - (a) $(\mathbb{N}, +), (\mathbb{N}, \cdot), (\mathbb{Z}, \cdot), (\mathbb{Q}, \cdot), (\mathbb{R}, \cdot), (\mathbb{C}, \cdot);$

Megoldás.
$$U(\mathbb{N},+)=\{0\}; \quad U(\mathbb{N},\cdot)=\{1\}; \quad U(\mathbb{Z},\cdot)=\{-1,1\}; \quad U(\mathbb{Q},\cdot)=\mathbb{Q}\setminus\{0\}=\mathbb{Q}^*; \quad U(\mathbb{R},\cdot)=\mathbb{R}\setminus\{0\}=\mathbb{R}^*; \quad U(\mathbb{C},\cdot)=\mathbb{C}\setminus\{0\}=\mathbb{C}^*.$$

(b) (M^M, \circ) , ahol M egy nemüres halmaz;

Megoldás. Az $M^M = \{f: M \to M \text{ függvény}\}$ halmazon a "o" művelet a függvények összetétele.

$$U(M^M, \circ) = \{ f \in M^M \mid \exists g \in M^M \text{ ú.h. } g \circ f = f \circ g = id_M \},$$

ahol $id_M: M \to M, id_M(x) = x$ az identikus függvény az M halmazon (az (M^M, \circ) monoid semleges eleme).

Ha $g \circ f = id_M$, vagyis minden $x \in M$ esetén g(f(x)) = x, akkor az f függvény injektív. Valóban, ha $f(x_1) = f(x_2)$, akkor behelyettesítve a g függvénybe kapjuk, hogy $g(f(x_1)) = g(f(x_2)) \iff x_1 = x_2.$

Ha $f \circ g = id_M$, vagyis minden $x \in M$ esetén f(g(x)) = x, akkor az g függvény szürjektív. Valóban, az f függvény tetszőleges $x \in M$ értéket felvesz a $g(x) \in M$ helyen.

Tehát, ha egy függvénynek van szimmetrikusa (inverze) az összetevésre nézve, akkor bijektív. Fordítva, ha egy függvény bijektív, akkor van inverze. Tehát

$$U(M^M, \circ) = \{ f \mid f : M \to M \text{ bijektív függvény} \}.$$

(c) $(\mathbb{Z}[i], \cdot)$, ahol $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\};$

Első megoldás. A $z=a+ib\neq 0$ komplex szám inverze

$$z^{-1} = \frac{1}{z} = \frac{1}{a+ib} = \frac{a-ib}{(a-ib)(a+ib)} = \frac{a-ib}{a^2+b^2} = \underbrace{\frac{a}{a^2+b^2}}_{a'} + i\underbrace{\frac{-b}{a^2+b^2}}_{b'} = a'+ib'$$

alakú. Tehát $z=a+ib\in U(\mathbb{Z}[i],\cdot)$, ha $a,b\in\mathbb{Z}$ $((a,b)\neq(0,0))$ és $a'=\frac{a}{a^2+b^2}$, $b' = \frac{-b}{a^2 + b^2} \in \mathbb{Z}.$

1. eset. Ha $a, b \in \mathbb{Z}^*$, akkor

$$0 < |a'| = \frac{|a|}{a^2 + b^2} < \frac{|a|}{a^2} = \frac{|a|}{|a|^2} = \frac{1}{|a|} \le 1,$$

tehát ebben az esetben $a+ib\notin U(\mathbb{Z}[i],\cdot).$ 2. eset. Ha a=0 és $b\neq 0$, akkor $a'=\frac{a}{a^2+b^2}=0$ és

$$0 < |b'| = \left| \frac{-b}{a^2 + b^2} \right| = \frac{|b|}{b^2} = \frac{|b|}{|b|^2} = \frac{1}{|b|} \le 1.$$

Tehát ebben az esetben $b'\in\mathbb{Z}$ pontosan, akkor ha $b=\pm 1.$ 3. eset. Ha $a\neq 0$ és b=0, akkor $b'=\frac{-b}{a^2+b^2}=0$ és

$$0 < |a'| = \left| \frac{a}{a^2 + b^2} \right| = \frac{|a|}{a^2} = \frac{|a|}{|a|^2} = \frac{1}{|a|} \le 1.$$

Tehát ebben az esetben $a' \in \mathbb{Z}$ pontosan, akkor ha $a = \pm 1$. Összegezve, $U(\mathbb{Z}[i],\cdot) = \{\pm 1, \pm i\}.$

Második megoldás. A $z=r(\cos\alpha+i\sin\alpha)\neq 0$ trigonometrikus alakban felírt komplex szám inverze $z^{-1}=\frac{1}{r}(\cos(-\alpha)+i\sin(-\alpha))$. Ez alapján az invertálás a komplex számsík origó középpontú egységsugarú körön kívül lévő pontjait (vagyis azokat a $z=r(\cos\alpha+i\sin\alpha)$ komplex számokat, amelyekre |z|=r>1) az egységsugarú kör belsejébe képezi (vagyis $z^{-1}=\frac{1}{r}(\cos(-\alpha)+i\sin(-\alpha))$ komplex számokba, amelyekre $|z^{-1}|=\frac{1}{r}<1$). Az egységsugarú körön belül a $\mathbb{Z}[i]$ halmaznak csak a 0=0+0i pontja található, amely nem lehet inverz. Tehát az egységsugarú körön kívül és belül lévő komplex számok nem elemei az $U(\mathbb{Z}[i],\cdot)$ -nek. Az egységsugarú körön a $\mathbb{Z}[i]$ -nek négy eleme van, éspedig -1,1,-i,i. Ezekre leellenőrizhető, hogy $1^{-1}=1,(-1)^{-1}=-1,(-i)^{-1}=i$ és $i^{-1}=-i$. Tehát $U(\mathbb{Z}[i],\cdot)=\{\pm 1,\pm i\}$.

(d) $(\mathcal{M}_n(\mathbb{R}), \cdot)$, ahol $\mathcal{M}_n(\mathbb{R})$ az $n \times n$ -es valós mátrixok halmaza;

 $Megold\acute{a}s$. Ha egy $(n \times n)$ -es valós mátrix determinánsa nem nulla, akkor a mátrix invertálható és az inverze is egy $(n \times n)$ -es valós mátrix. Ezért $U(\mathcal{M}_n(\mathbb{R}), \cdot) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid \det(A) \neq 0\}$.

(e) (\mathbb{Z}_{10}, \cdot) .

Megoldás. A (\mathbb{Z}_{10},\cdot) monoid semleges eleme $\hat{1}$. A $\mathbb{Z}_{10}=\{\hat{0},\hat{1},\hat{2},\hat{3},\hat{4},\hat{5},\hat{6},\hat{7},\hat{8},\hat{9}\}$ elemei közül csak az $\hat{1},\hat{3},\hat{7}$ és $\hat{9}$ invertálhatóak $(\hat{1}\cdot\hat{1}=\hat{1},\hat{3}\cdot\hat{7}=\hat{21}=\hat{1}$ és $\hat{9}\cdot\hat{9}=\hat{81}=\hat{1})$, tehát $U(\mathbb{Z}_{10},\cdot)=\{\hat{1},\hat{3},\hat{7},\hat{9}\}$.

- **3.** Legyen $A = \{a_1, \ldots, a_n\}$. Határozzuk meg:
 - (a) az A halmazon értelmezhető műveletek számát;

Első megoldás. Egy $A\times A\to A$ művelet lényegében egy $A\times A\to A$ függvény, így az műveletek száma egyenlő a függvények számával:

$$|\{A\times A\to A \text{ m\"{u}velet}\}|=|\{A\times A\to A \text{ f\"{u}ggv\'{e}ny}\}|=|A|^{|A\times A|}=|A|^{|A|\cdot |A|}=n^{n\cdot n}=n^{n^2}.$$

 $M\'{a}sodik\ megold\'{a}s$. Egy $\cdot: A \times A \to A$ művelet megadható egy műveleti táblával, amelyben bármely két elemre elvégzett művelet eredményét tároljuk.

•	a_1	a_2	 a_n
a_1	$a_1 \cdot a_1$	$a_1 \cdot a_2$	 $a_1 \cdot a_n$
a_2	$a_2 \cdot a_1$	$a_2 \cdot a_2$	 $a_2 \cdot a_n$
:	•	•	 •
a_n	$a_n \cdot a_1$	$a_n \cdot a_2$	 $a_n \cdot a_n$

A "·" művelet táblája akkor adott, ha az $a_i \cdot a_j$, i, j = 1, ..., n helyére mindenhova egy A-beli értéket írunk. Tehát a tábla $n \times n$ celláját (mivel ennyi $a_i \cdot a_j$ szorzat írható fel) kell kitölteni az n elemű A halmaz elemeivel. Ezt $n^{n \times n} = n^{n^2}$ -féleképpen tehetjük meg, tehát n^{n^2} művelet van egy n elemű A halmazon.

(b) az A halmazon értelmezhető kommutatív műveletek számát;

Megoldás. Egy · : $A \times A \rightarrow A$ művelet kommutatív, ha $a_i \cdot a_j = a_j \cdot a_i$, minden $i, j = 1, \ldots, n$ esetén. Tehát egy kommutatív művelet műveleti táblája szimmetrikus a főátlóra nézve, vagyis ha a főátlót és a felette lévő cellákat kitöltjük, akkor a főátló alatti cellák kitöltése automatikus a kommutativitás tulajdonsága miatt.

	a_1	a_2	a_3		a_{n-1}	a_n
a_1	$a_1 \cdot a_1$	$a_1 \cdot a_2$	$a_1 \cdot a_3$		$a_1 \cdot a_{n-1}$	$a_1 \cdot a_n$
a_2	$a_2 \cdot a_1$	$a_2 \cdot a_2$	$a_2 \cdot a_3$		$a_2 \cdot a_{n-1}$	$a_2 \cdot a_n$
a_3	$a_3 \cdot a_1$	$a_3 \cdot a_2$	$a_3 \cdot a_3$		$a_3 \cdot a_{n-1}$	$a_3 \cdot a_n$
:	÷	÷		:	÷	÷
a_{n-1}	$a_{n-1} \cdot a_1$	$a_{n-1} \cdot a_2$	$a_{n-1} \cdot a_3$		$a_{n-1} \cdot a_{n-1}$	$a_{n-1} \cdot a_n$
a_n	$a_n \cdot a_1$	$a_n \cdot a_2$	$a_n \cdot a_3$		$a_n \cdot a_{n-1}$	$a_n \cdot a_n$

A fenti táblázatban a fehéren hagyott cellákban $a_i \cdot a_j$, $1 \le i \le j \le n$ helyére kell egy Abeli értéket írni. Tehát összesen (soronként számolva) $n + (n-1) + \dots + 2 + 1 = \frac{n(n+1)}{2}$ cellát kell kitöltenünk az A-beli elemekkel (a többi, zölddel jelölt cella automatikusan értéket kap a kommutativitás miatt). Ezt $n^{\frac{n(n+1)}{2}}$ -féleképpen tehetjük meg, tehát ennyi kommutatív művelet van az n elemű A halmazon.

(c) az A halmazon értelmezhető semleges elemmel rendelkező műveletek számát;

Megoldás. Ha rögzítünk egy a_i elemet egységelemnek (vagyis $e=a_i$), akkor az a_i sora és oszlopa a műveleti táblában automatikusan kitölthető az $e \cdot a_j = a_j \cdot e = a_j$, minden $j=1,\ldots,n$ -re összefüggések miatt.

•	a_1	a_2	 $e = a_i$		a_n
a_1	$a_1 \cdot a_1$	$a_1 \cdot a_2$	 a_1		$a_1 \cdot a_n$
a_2	$a_2 \cdot a_1$	$a_2 \cdot a_2$	 a_2		$a_2 \cdot a_n$
:	:	:	 :	:	:
$e = a_i$	a_1	a_2	 a_i		a_n
:	:	:	 :	:	:
a_n	$a_n \cdot a_1$	$a_n \cdot a_2$	 a_n		$a_n \cdot a_n$

Tehát a fenti táblázatban a zöld cellákon kívül az összes többit ki kell tölteni A-beli elemekkel, összesen $n^2 - n - (n-1) = n^2 - 2n + 1 = (n-1)^2$ cellát kell kitölteni. Így $n^{(n-1)^2}$ olyan műveletet kapunk, amikor a semleges elem $e = a_i$. Egy műveletnek csak egyetlen semleges eleme lehet, ha létezik.

Sorban megismételve $e=a_1,a_2,\ldots,a_n$ semleges elemekre kapjuk, hogy összesen

$$\underbrace{n^{(n-1)^2}}_{e=a_1 \text{ eset\'en}} + \underbrace{n^{(n-1)^2}}_{e=a_2 \text{ eset\'en}} + \dots + \underbrace{n^{(n-1)^2}}_{e=a_n \text{ eset\'en}} = n \cdot n^{(n-1)^2} = n^{n^2 - 2n + 2}$$

egységelemes művelet van az n elemű A halmazon.

(d) az A halmazon értelmezhető kommutatív és semleges elemmel rendelkező műveletek számát.

 $Megold\acute{a}s.$ Ha a művelet kommutatív és egységelemes, akkor egy rögzített $e=a_i$ egységelemre csak a táblázat főátló és a feletti részét kell kitölteni $(\frac{(n+1)n}{2}$ cellát), sőt ezekből még n cella (az egységelem sorának és oszlopának főátlóra és fölé eső cellái) automatikusan kitöltödik az egységelem miatt. Tehát rögzített egységelemre $\frac{(n+1)n}{2}-n=\frac{n(n-1)}{2}$ cellát kell kitölteni az n elemű A halmaz elemeivel. Ezt $n^{\frac{n(n-1)}{2}}$ -féleképpen tehetjük meg.

Ha egységelemnek sorban $e = a_1, a_2, \dots, a_n$ -et választunk, akkor azt kapjuk, hogy

$$\underbrace{n^{\frac{n(n-1)}{2}}}_{e=a_1 \text{ eset\'en}} + \underbrace{n^{\frac{n(n-1)}{2}}}_{e=a_2 \text{ eset\'en}} + \dots + \underbrace{n^{\frac{n(n-1)}{2}}}_{e=a_n \text{ eset\'en}} = n \cdot n^{\frac{n(n-1)}{2}} = n^{\frac{n^2-n+2}{2}}$$

egységelemes, kommutatív művelet van az n elemű A halmazon.

- **4.** Legyen $*: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ egy művelet, ahol x * y = x + y + xy. Bizonyítsuk be, hogy:
 - (a) $(\mathbb{R}, *)$ kommutatív monoid;

 $Megold\acute{a}s.$ A "*" egy művelet az \mathbb{R} halmazon, mert a megadott szabály szerint $x*y \in \mathbb{R}$, minden $x,y \in \mathbb{R}$ esetén.

A "*" művelet asszociatív, mert minden $x,y,z\in\mathbb{R}$ esetén

$$x * (y * z) = x + (y * z) + x(y * z) = x + (y + z + yz) + x(y + z + yz)$$

$$= x + y + z + yz + xy + xz + xyz,$$

$$(x * y) * z = (x * y) + z + (x * y)z = (x + y + xy) + z + (x + y + xy)z$$

$$= x + y + xy + z + xz + yz + xyz,$$

tehát x * (y * z) = (x * y) * z.

A "*" művelet kommutatív, mert minden $x, y \in \mathbb{R}$ esetén

$$x * y = x + y + xy = y + x + yx = y * x,$$

a valós számok összeadásának és szorzásának kommutativitása miatt.

Az e semleges elemet a következőképpen határozhatjuk meg.

$$e*x = x, \forall x \in \mathbb{R} \iff e+x+ex = x, \forall x \in \mathbb{R} \iff e(1+x) = 0, \forall x \in \mathbb{R}.$$

Sajátosan x=0-ra azt kapjuk, hogy e=0. Az e=0 esetén valóban teljesülnek az $0*x=x \Leftrightarrow 0(1+x)=0$, minden $x\in\mathbb{R}$ összefüggések. Tehát e=0 az $(\mathbb{R},*)$ semleges eleme.

Ezzel beláttuk, hogy $(\mathbb{R}, *)$ egy kommutatív monoid.

(b) a $[-1,\infty)$ intervallum zárt részhalmaza \mathbb{R} -nek a "*" műveletre nézve.

Megoldás. A $[-1,\infty)$ intervallum zárt részhalmaza \mathbb{R} -nek a "*" műveletre nézve, ha minden $x,y\in[-1,\infty)$ esetén $x*y\in[-1,\infty)$. Valóban, ha $x,y\in[-1,\infty)$, akkor $x\geq -1$ és $y\geq -1$, vagyis $x+1\geq 0$ és $y+1\geq 0$. Ezeket összeszorozva kapjuk, hogy

$$(x+1)(y+1) \geq 0 \iff x+y+xy+1 \geq 0 \iff x+y+xy \geq -1 \iff x*y \geq -1 \iff x*y \in [-1,\infty).$$

5. Határozzuk meg (\mathbb{Z},\cdot) véges zárt részhalmazait!

Megoldás. Ha az A nem üres véges halmaz a (\mathbb{Z},\cdot) monoid egy zárt részhalmaza, akkor minden $a \in A$ esetén az $a, a^2, \ldots, a^n, \ldots$ elemek is az A-ban vannak. Tegyük fel, hogy $a \neq 0$. Mivel A véges, ezért ez utóbbi elemek nem lehetnek mind különbözőek, vagyis léteznek $m > n \geq 1$ úgy, hogy $a^m = a^n$. Mindkét oldalt osztva a^n -nel kapjuk, hogy $a^{m-n} = 1$, ahol m - n > 0. Tehát a invertálható a (\mathbb{Z},\cdot) monoidban, mert $a \cdot a^{m-n-1} = 1$, ezért $a = \pm 1$. Ezzel beláttuk, hogy az A-nak csak -1,0,1 lehetnek az elemei, vagyis $\emptyset \neq A \subseteq \{-1,0,1\}$.

Ha $-1 \in A$, akkor $(-1)^2 = 1 \in A$, ezért $A = \{-1\}$, $A = \{-1,0\}$ nem zárt részhalmazok. Így a következő zárt részhalmazokat kapjuk:

$$A = \{0\}, A = \{1\}, A = \{0,1\}, A = \{-1,1\}, A = \{-1,0,1\}.$$

6. Legyenek (G, \cdot) és (G', *) csoportok, 1 és 1' semleges elemekkel és a " \circ " művelet: $\circ: (G \times G') \times (G \times G') \to G \times G', (g_1, g_1') \circ (g_2, g_2') = (g_1 \cdot g_2, g_1' * g_2'), \forall g_1, g_2 \in G$ és $\forall g_1', g_2' \in G'$. Bizonyítsuk be, hogy $(G \times G', \circ)$ csoport, ahol $(g^{-1}, (g')^{-1})$ az inverze egy (g, g') elemnek, és (1, 1') a semleges elem.

Megoldás. A "o" művelet asszociatív: minden $(g_1, g'_1), (g_2, g'_2), (g_3, g'_3) \in G \times G'$ esetén

$$(g_1, g'_1) \circ [(g_2, g'_2) \circ (g_3, g'_3)] = (g_1, g'_1) \circ (g_2 \cdot g_3, g'_2 * g'_3)$$

$$= (g_1 \cdot [g_2 \cdot g_3], g'_1 * [g'_2 * g'_3])$$

$$\stackrel{(*)}{=} ([g_1 \cdot g_2] \cdot g_3, [g'_1 * g'_2] * g'_3)$$

$$= (g_1 \cdot g_2, g'_1 * g'_2) \circ (g_3, g'_3)$$

$$= [(g_1, g'_1) \circ (g_2, g'_2)] \circ (g_3, g'_3),$$

ahol a (*) egyenlőségben felhasználtuk, hogy a "·" és "*" műveletek asszociatívak.

Ha $1 \in G$ a "·" és $1' \in G'$ a "*" művelet semleges elemei, akkor $(1, 1') \in G \times G'$ a "o" művelet semleges eleme. Valóban, minden $(g, g') \in G \times G'$ esetén

$$(1,1')\circ(g,g')=(1\cdot g,1'\ast g')\stackrel{(\dagger)}{=}(g,g'),\qquad (g,g')\circ(1,1')=(g\cdot 1,g'\ast 1')\stackrel{(\ddagger)}{=}(g,g'),$$

ahol a (†) és (‡) egyenlőségekben felhasználtuk, hogy 1 a "·" és 1′ a "*" művelet semleges eleme. Ha g^{-1} a $g \in G$ elem inverze (a "·" műveletre nézve) és $(g')^{-1}$ a $g' \in G'$ elem inverze (a "*" műveletre nézve), akkor $(g^{-1}, (g')^{-1}) \in G \times G'$ a (g, g') elem inverze (a "°" műveletre nézve), vagyis $(g, g')^{-1} = (g^{-1}, (g')^{-1})$. Valóban,

$$(g,g') \circ (g^{-1},(g')^{-1}) = (g \cdot g^{-1}, g' * (g')^{-1}) \stackrel{(+)}{=} (1,1'),$$

 $(g^{-1},(g')^{-1}) \circ (g,g') = (g^{-1} \cdot g,(g')^{-1} * g') \stackrel{(\#)}{=} (1,1'),$

ahol a (+) és (#) egyenlőségekben felhasználtuk, hogy g^{-1} a $g \in G$ elem inverze és $(g')^{-1}$ a $g' \in G'$ elem inverze.

7. Igazoljuk, hogy $H=\{z\in\mathbb{C}\,|\,|z|=1\}$ részcsoportja (\mathbb{C}^*,\cdot)-nak, de nem részcsoportja ($\mathbb{C},+$)-nak.

Megoldás. A (H,\cdot) részcsoportja a (\mathbb{C}^*,\cdot) csoportnak, mert:

- (1) $H \neq \emptyset$, hiszen $1 \in H \Leftrightarrow |1| = 1$;
- (2) minden $z_1, z_2 \in H$ (vagyis $|z_1| = |z_2| = 1$) esetén $|z_1 \cdot z_2| = |z_1| \cdot |z_2| = 1 \cdot 1 = 1$, tehát $z_1 \cdot z_2 \in H$;
- (3) minden $z \in H$ (vagyis |z| = 1) esetén $|z^{-1}| = |z|^{-1} = 1^{-1} = 1$, tehát $z^{-1} \in H$.

A H nem részcsoportja a $(\mathbb{C}, +)$ csoportnak, mert $1 \in H$, de $1 + 1 = 2 \notin H$.

8. Legyen $n \in \mathbb{N}^*$, $U_n = \{z \in \mathbb{C} \mid z^n = 1\}$ az n-edrendű egységgyökök halmaza. Bizonyítsuk be, hogy (U_n, \cdot) részcsoportja (\mathbb{C}^*, \cdot) -nak.

Megoldás.

- (1) $U_n \neq \emptyset$, mert $1 \in U_n$, mivel $1^n = 1$, minden $n \in \mathbb{N}^*$ esetén.
- (2) Minden $z_1, z_2 \in U_n$ esetén $z_1 \cdot z_2 \in U_n$. Valóban, $z_1, z_2 \in U_n$, vagyis $z_1^n = z_2^n = 1$, ezért $(z_1 \cdot z_2)^n = z_1^n \cdot z_2^n = 1 \cdot 1 = 1$,

tehát $z_1 \cdot z_2 \in U_n$.

(3) Minden $z \in U_n$ esetén $z^{-1} \in U_n$. Valóban, minden $z \in U_n$, vagyis $z^n = 1$ esetén

$$z^{-1} \cdot z = 1 \iff (z^{-1} \cdot z)^n = 1^n \iff (z^{-1})^n \cdot z^n = 1 \iff (z^{-1})^n \cdot 1 = 1 \iff (z^{-1})^n = 1,$$

ezért $z^{-1} \in U_n$.

A fentiek alapján U_n részcsoportja (\mathbb{C}^* , ·) csoportnak.

- **9.** Legyen $n \in \mathbb{N}$, $n \geq 2$. Bizonyítsuk be, hogy:
 - (a) $GL_n(\mathbb{C}) = \{A \in \mathcal{M}_n(\mathbb{C}) | \det(A) \neq 0\}$ zárt részhalmaz az $(\mathcal{M}_n(\mathbb{C}), \cdot)$ monoidban;

Megoldás. Minden $A, B \in GL_n(\mathbb{C})$ esetén det $A \neq 0$, det $B \neq 0$, így

$$\det(A \cdot B) = \det A \cdot \det B \neq 0,$$

ezért $A \cdot B \in GL_n(\mathbb{C})$. Tehát $GL_n(\mathbb{C})$ zárt részhalmaza az $(\mathcal{M}_n(\mathbb{C}), \cdot)$ monoidnak. \square

(b) $(GL_n(\mathbb{C}), \cdot)$ csoport;

Megoldás. Igazolni kell, hogy a szorzás asszociatív, van semleges elem és minden elemnek van inverze.

- A mátrixok szorzása asszociatív, ezért a nem nulla determinánsú mátrixok szorzása is asszociatív.
- Az I_n identikus mátrix főátlóján 1-sek vannak, míg a többi eleme 0 és det $I_n = 1$, ezért $I_n \in GL_n(\mathbb{C})$.
- Minden $A \in GL_n(\mathbb{C})$ mátrix invertálható és az inverz mátrixa $A^{-1} = \frac{A^*}{\det A}$, ahol A^* az A adjungáltja. Ekkor $\det A^{-1} = (\det A)^{-1} \neq 0$, így $A^{-1} \in GL_n(\mathbb{C})$, továbbá $A \cdot A^{-1} = A^{-1} \cdot A = I_n$.
- (c) $SL_n(\mathbb{C}) \leq GL_n(\mathbb{C})$, and $SL_n(\mathbb{C}) = \{A \in \mathcal{M}_n(\mathbb{C}) \mid \det(A) = 1\}$.

Megoldás.

- $SL_n(\mathbb{C}) \neq \emptyset$, mert det $I_n = 1$, ezért $I_n \in SL_n(\mathbb{C})$.
- Minden $A, B \in SL_n(\mathbb{C})$, vagyis det $A = \det B = 1$ esetén

$$\det(A \cdot B) = \det A \cdot \det B = 1 \cdot 1 = 1,$$

ezért $A \cdot B \in SL_n(\mathbb{C})$.

• Minden $A \in SL_n(\mathbb{C})$, vagyis det A = 1 esetén

$$\det(A^{-1}) = (\det A)^{-1} = 1^{-1} = 1,$$

ezért $A^{-1} \in SL_n(\mathbb{C})$.

A fentiek alapján az $SL_n(\mathbb{C})$ részcsoportja a $(GL_n(\mathbb{C}),\cdot)$ csoportnak.

- **10.** Legyen G egy csoport és $H_1, H_2 \leq G$ részcsoportok. Bizonyítsuk be, hogy:
 - (a) $H_1 \cap H_2 \leq G$;

Megoldás. Jelölje $e \in G$ a (G, \cdot) csoport semleges elemét.

- Mivel H_1 és H_2 a G részcsoportjai, ezért $e \in H_1$ és $e \in H_2$, tehát $e \in H_1 \cap H_2$, vagyis $H_1 \cap H_2 \neq \emptyset$.
- Ha $g, h \in H_1 \cap H_2$, akkor $g, h \in H_1$ és $g, h \in H_2$. Mivel H_1 részcsoportja G-nek, ezért $g \cdot h^{-1} \in H_1$. Hasonlóan, mivel H_2 részcsoportja G-nek, ezért $g \cdot h^{-1} \in H_2$. Mivel $g \cdot h^{-1}$ benne van a H_1 -ben és H_2 -ben is, ezért benne van a metszetükben is, vagyis $g \cdot h^{-1} \in H_1 \cap H_2$.

Ezzel igazoltuk, hogy $H_1 \cap H_2$ is részcsoportja G-nek.

(b) $H_1 \cup H_2 \leq G \iff H_1 \subseteq H_2 \text{ vagy } H_2 \subseteq H_1.$

Megoldás.

 \rightleftarrows Ha $H_1 \subseteq H_2$, akkor $H_1 \cup H_2 = H_2$, amely részcsoportja a G-nek a feltevés szerint. Hasonlóan, ha $H_2 \subseteq H_1$, akkor $H_1 \cup H_2 = H_1$, amely részcsoportja a G-nek a feltevés szerint.

⇒ Be kell még látni, hogy ha $H_1 \cup H_2$ a G-nek, akkor $H_1 \subseteq H_2$ vagy $H_2 \subseteq H_1$. Az ezzel egyenértékű következő állítást fogjuk belátni. Ha $H_1 \nsubseteq H_2$ és $H_2 \nsubseteq H_1$, akkor létezik $h_1 \in H_1 \setminus H_2$ és $h_2 \in H_2 \setminus H_1$. Ekkor $h_1 \cdot h_2 \notin H_1 \cup H_2$, tehát $H_1 \cup H_2$ nem részcsoportja G-nek. Valóban, ha $h_1 \cdot h_2 \in H_1 \cup H_2$, akkor $h_1 \cdot h_2 \in H_1$ vagy $h_1 \cdot h_2 \in H_2$. Az első esetben, ha $h_1 \cdot h_2 = h'_1 \in H_1$, akkor $h_2 = h_1^{-1} \cdot h'_1 \in H_1$, mivel H_1 részcsoport. De ez ellentmondáshoz vezet, mert $h_2 \in H_2 \setminus H_1$, így $h_2 \notin H_1$. Az második esetben, ha $h_1 \cdot h_2 = h'_2 \in H_2$, akkor $h_1 = h'_2 \cdot h_2^{-1} \in H_2$, mivel H_2 részcsoport. De ez ellentmondáshoz vezet, mert $h_1 \in H_1 \setminus H_2$, így $h_1 \notin H_2$.

11. Igazoljuk, hogy minden $m \in \mathbb{Z}$ esetén $m\mathbb{Z} = \{m \cdot z \mid z \in \mathbb{Z}\}$ részcsoportja a $(\mathbb{Z}, +)$ csoportnak. Adjuk meg a $m\mathbb{Z} \cap n\mathbb{Z}$ metszetcsoportot!

Megoldás. Rögzítjük az $m \in \mathbb{Z}$ számot és igazolni fogjuk, hogy $m\mathbb{Z}$ részcsoportja a $(\mathbb{Z}, +)$ csoportnak.

- $m\mathbb{Z} \neq \emptyset$, mert $0 = m \cdot 0 \in m\mathbb{Z} = \{m \cdot z \mid z \in \mathbb{Z}\}.$
- Minden $z_1, z_2 \in m\mathbb{Z}$ (vagyis léteznek $n_1, n_2 \in \mathbb{Z}$ úgy, hogy $z_1 = m \cdot n_1, z_2 = m \cdot n_2$) esetén

$$z_1 - z_2 = m \cdot n_1 - m \cdot n_2 = m \cdot \underbrace{(n_1 - n_2)}_{\in \mathbb{Z}} \in m\mathbb{Z}.$$

Ezzel igazoltuk, hogy $m\mathbb{Z}$ részcsoportja a $(\mathbb{Z}, +)$ csoportnak.

Be fogjuk látni, hogy $m\mathbb{Z} \cap n\mathbb{Z} = \text{lkkt}(m, n)\mathbb{Z}$, ahol k = lkkt(m, n) > 0 az m és n legkisebb közös többszöröse. Ezt az egyenlőséget két oldali bennfoglaltatással fogjuk belátni.

Mivel $m \mid k$, vagyis $k = m \cdot M$, $M \in \mathbb{Z}$, ezért ha $z \in k\mathbb{Z}$, vagyis $z = k \cdot p$, $p \in \mathbb{Z}$, akkor $z = (m \cdot M) \cdot p = m \cdot (M \cdot p) \in m\mathbb{Z}$. Tehát $k\mathbb{Z} = \text{lkkt}(m, n)\mathbb{Z} \subseteq m\mathbb{Z}$. Hasonlóan belátható, hogy $k\mathbb{Z} = \text{lkkt}(m, n)\mathbb{Z} \subseteq n\mathbb{Z}$. Ezek alapján $k\mathbb{Z} = \text{lkkt}(m, n)\mathbb{Z} \subseteq m\mathbb{Z} \cap n\mathbb{Z}$.

Fordítva, minden $z \in \mathbb{Z}$ esetén ha $m \mid z$ és $n \mid z$, akkor $k \mid z$, vagyis ha $z \in m\mathbb{Z}$ és $z \in n \in \mathbb{Z}$, akkor $z \in k\mathbb{Z} = \text{lkkt}\,(m,n)\mathbb{Z}$. Ez alapján $m\mathbb{Z} \cap n\mathbb{Z} \subseteq \text{lkkt}\,(m,n)\mathbb{Z}$.

Mivel lkkt $(m, n)\mathbb{Z} \subseteq m\mathbb{Z} \cap n\mathbb{Z}$ és $m\mathbb{Z} \cap n\mathbb{Z} \subseteq \text{lkkt } (m, n)\mathbb{Z}$, így $m\mathbb{Z} \cap n\mathbb{Z} = \text{lkkt } (m, n)\mathbb{Z}$.

12. Határozzuk meg a következő elemek rendjét $GL_2(\mathbb{C})$ -ben:

$$X = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad Y = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad Z = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}.$$

Megoldás. Egy (G, \cdot) csoportban a $g \in G$ elem rendje a legkisebb olyan n pozitív egész szám, amelyre

$$g^n = \underbrace{g \cdot \dots \cdot g}_{n \text{-szer}} = 1,$$

ahol $1 \in G$ a csoport egységeleme (semleges eleme). Ha nem létezik ilyen elem, akkor az elem rendje végtelen.

Megjegyezzük, hogy a $(GL_2(\mathbb{C}), \cdot)$ csoport semleges eleme $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Az X elem rendjének kiszámításához elkezdjük kiszámolni az X mátrix hatványait:

$$X^2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2.$$

Mivel $X=X^{-1}\neq I_2$ és $X^2=I_2$, ezért az $X\in GL_2(\mathbb{C})$ rendje 2.

Hasonlóan az Y elem rendjének kiszámításához elkezdjük kiszámolni az Y mátrix hatványait:

$$Y^{2} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{2} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \quad Y^{3} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{3} = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}, \quad Y^{4} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{4} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}.$$

Indukcióval belátható, hogy $Y^k = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$ minden $k \in \mathbb{N}^*$ esetén. Valóban,

$$Y^{k+1} = Y^k \cdot Y = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & k+1 \\ 0 & 1 \end{pmatrix}.$$

Mivel csak k=0 esetén lesz $Y^k=\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}=I_2$, ezért az $Y=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\in GL_2(\mathbb{C})$ elem rendje végtelen.

Végül a Z elem rendjének kiszámításához elkezdjük kiszámolni az Z mátrix hatványait:

$$Z^{2} = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}^{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \ Z^{3} = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}^{3} = \begin{pmatrix} -i & 0 \\ 0 & -i \end{pmatrix}, \ Z^{4} = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}^{4} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_{2}.$$
 Így a $Z = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}$ elem rendje 4.

- **13.** Legyen $f: \mathbb{C}^* \to \mathbb{R}^*$, f(z) = |z| és $g: \mathbb{C}^* \to GL_2(\mathbb{R})$, $g(a+bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. Bizonyítsuk be a következő állításokat:
 - (a) f csoportmorfizmus (\mathbb{C}^*, \cdot) és (\mathbb{R}^*, \cdot) csoportok között és határozzuk meg a magját; Megoldás. Az $f: \mathbb{C}^* \to \mathbb{R}^*$, f(z) = |z| leképezés jól értelmezett, mert $|z| = 0 \iff z = 0$. Az f egy csoportmorfizmus a (\mathbb{C}^*, \cdot) csoportról a (\mathbb{R}) csoportra, mert

$$f(z_1 \cdot z_2) = |z_1 \cdot z_2| = |z_1| \cdot |z_2| = f(z_1) \cdot f(z_2),$$

minden $z_1, z_2 \in \mathbb{C}^*$ esetén.

Az f morfizmus magja ker $f = \{z \in \mathbb{C}^* \mid f(z) = 1\}$ (1 az (\mathbb{R}^*, \cdot) csoport semleges eleme), tehát

$$\ker f = \{z \in \mathbb{C}^* \mid |z| = 1\} = \{z = \cos \varphi + i \sin \varphi \in \mathbb{C}^* \mid \varphi \in [0, 2\pi)\}.$$

(b) g csoportmorfizmus (\mathbb{C}^*,\cdot) és $(GL_2(\mathbb{R}),\cdot)$ csoportok között.

Megoldás. A $g: \mathbb{C}^* \to GL_2(\mathbb{R}), \ g(a+ib) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ jól értelmezett, mivel ha $z = a + ib \neq 0$, akkor $\det g(a+ib) = \begin{vmatrix} a & b \\ -b & a \end{vmatrix} = a^2 + b^2 \neq 0$. Továbbá $g: \mathbb{C}^* \to GL_2(\mathbb{C})$ egy csoportmorfizmus, mivel minden $a_1 + ib_1, \ a_2 + ib_2 \in \mathbb{C}^*$ esetén

$$g((a_1 + ib_1) \cdot (a_2 + ib_2)) = g(a_1a_2 - b_1b_2 + i(a_1b_2 + a_2b_1))$$

$$= \begin{pmatrix} a_1a_2 - b_1b_2 & a_1b_2 + a_2b_1 \\ -(a_1b_2 + a_2b_1) & a_1a_2 - b_1b_2 \end{pmatrix}$$

$$= \begin{pmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{pmatrix} \cdot \begin{pmatrix} a_2 & b_2 \\ -b_2 & a_2 \end{pmatrix}$$

$$= g(a_1 + ib_1) \cdot g(a_2 + ib_2).$$

14. Legyen $n \in \mathbb{N}$, $n \geq 2$. Bizonyítsuk be, hogy $(\mathbb{Z}_n, +)$ és (U_n, \cdot) csoportok izomorfak.

Megoldás. Értelmezzük az $f: \mathbb{Z}_n \to U_n$, $f(\hat{k}) = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right)$ függvényt. Ez a függvény jól értelmezett, mivel nem függ a $\hat{k} \in \mathbb{Z}_n$ maradék osztály k reprezentánsától, illetve $f(\hat{k}) \in U_n$. Valóban, ha $\hat{\ell} = \hat{k}$, akkor $\ell = k + p \cdot n$, ahol $p \in \mathbb{Z}$, és

$$\begin{split} f(\hat{\ell}) &= \cos\left(\frac{2\pi\ell}{n}\right) + i\sin\left(\frac{2\pi\ell}{n}\right) = \cos\left(\frac{2\pi(k+pn)}{n}\right) + i\sin\left(\frac{2\pi(k+pn)}{n}\right) \\ &= \cos\left(\frac{2\pi k}{n} + 2\pi p\right) + i\sin\left(\frac{2\pi k}{n} + 2\pi p\right) = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right) \\ &= f(\hat{k}). \end{split}$$

Végül
$$f(\hat{k}) = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right) \in U_n$$
, mivel

$$\left[\cos\left(\frac{2\pi k}{n}\right)+i\sin\left(\frac{2\pi k}{n}\right)\right]^n=\cos\left(n\cdot\frac{2\pi k}{n}\right)+i\sin\left(n\cdot\frac{2\pi k}{n}\right)=\cos(2\pi k)+i\sin(2\pi k)=1.$$

Az f függvény egy csoportmorfizmus, mert minden $\hat{k}, \hat{h} \in \mathbb{Z}_n$ esetén

$$\begin{split} f(\hat{k} + \hat{h}) &= f(\widehat{k+h}) = \cos\left(\frac{2\pi(k+h)}{n}\right) + i\sin\left(\frac{2\pi(k+h)}{n}\right) \\ &= \left[\cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right)\right] \cdot \left[\cos\left(\frac{2\pi h}{n}\right) + i\sin\left(\frac{2\pi h}{n}\right)\right] \\ &= f(\hat{k}) \cdot f(\hat{h}). \end{split}$$

Az f függvény injektív, mert a magja ker $f = \{\hat{0}\}:$

$$f(\hat{k}) = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right) = 1 \iff \frac{2\pi k}{n} \in 2\pi\mathbb{Z} \iff k \in n\mathbb{Z} \iff \hat{k} = \hat{0}.$$

Az $U_n = \{z \in \mathbb{C} \mid z^n = 1\}$ halmaznak legfeljebb n eleme van, mert a $z^n - 1 = 0$ egyenletnek legfeljebb n különböző gyöke lehet a komplex számok halmazán. Ezenkívül

$$z_k = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right), \quad k = 0, 1, \dots, n-1$$

különböző gyökei a $z^n-1=0$ egyenletnek, így az U_n halmaznak pontosan n eleme van, éspedig $U_n=\left\{\cos\left(\frac{2\pi k}{n}\right)+i\sin\left(\frac{2\pi k}{n}\right)\,\Big|\,k=0,1,\ldots,n-1\right\}$. Minden $k=0,1,\ldots,n-1$ esetén $f(\hat{k})=\cos\left(\frac{2\pi k}{n}\right)+i\sin\left(\frac{2\pi k}{n}\right)$, tehát f szürjektív.

Mivel f bijektív csoportmorfizmus, ezért csoportizomorfizmus, így a $(\mathbb{Z}_n, +)$ és (U_n, \cdot) csoportok izomorfak.

- **15.** Legyenek (G, *) és (G', \circ) csoportok (a semleges elemek 1, illetve 1') és $f: G \to G'$ csoport-morfizmus. Bizonyítsuk be, hogy:
 - (a) f(1) = 1' és minden $x \in G$ csoportelem esetén $f(x^{-1}) = [f(x)]^{-1}$;

Megoldás. Az f csoportmorfizmus, ezért $f(1) = f(1*1) = f(1) \circ f(1)$, vagyis $f(1) = f(1) \circ f(1)$. Ezt szorozva (balról vagy jobbról) az $f(1) \in G'$ elem inverzével (szimmetrikusával) kapjuk, hogy 1' = f(1).

Az f csoportmorfizmus, ezért minden $x \in G$ elem és az inverze, x^{-1} esetén

$$1' = f(1) = f(x * x^{-1}) = f(x) \circ f(x^{-1}),$$

amelyet szorozva balról az $f(x)^{-1} \in G'$ elemmel kapjuk, hogy $f(x)^{-1} = f(x^{-1})$.

(b) $\ker f = \{x \in G \mid f(x) = 1'\} \le G \text{ és Im } f \le G';$

Megoldás. A ker $f \neq \emptyset$, mivel $1 \in \ker f$ az (a) alpont alapján. Továbbá, ha $x,y \in \ker f$, vagyis f(x) = f(y) = 1', akkor

$$f(x * y^{-1}) = f(x) \circ f(y^{-1}) = f(x) \circ f(y)^{-1} = 1' \circ (1')^{-1} = 1',$$

mert f csoportmorfizmus és $1' \in G'$ semleges elem, továbbá az (a) alpont alapján. Ezzel igazoltuk, hogy ker f részcsoportja G-nek.

Az Im $f \neq \emptyset$, mert $1' = f(1) \in \text{Im } f$ az (a) alpont alapján. Ha $x', y' \in \text{Im } f$, vagyis x' = f(x) és y' = f(y) valamely $x, y \in G$ esetén, akkor az (a) alpont alapján

$$x' \circ (y')^{-1} = f(x) \circ [f(y)]^{-1} = f(x) \circ f(y^{-1}) = f(x * y^{-1}) \in \operatorname{Im} f$$

Ezzel igazoltuk, hogy Im f részcsoportja G'-nek.

(c) $\ker f = \{1\}$ akkor és csakis akkor, ha f injektív;

 $Megold\acute{a}s$. Ha f injektív, akkor a ker $f = f^{-1}(1')$ halmaznak 1 az egyetlen eleme, vagyis ker $f = \{1\}$. Fordítva, ha ker $f = \{1\}$, akkor

$$f(x) = f(y) \Leftrightarrow f(x) \circ f(y)^{-1} = 1' \Leftrightarrow f(x) \circ f(y^{-1}) = 1' \Leftrightarrow f(x * y^{-1}) = 1' \Leftrightarrow x * y^{-1} = 1 \Leftrightarrow x = y,$$
vagyis f injektív.

(d) ha $H \leq G$ és $H' \leq G'$ akkor és csakis akkor, ha $f(H) \leq G'$ és $f^{-1}(H') \leq G$.

Megoldás. Legyen H a G egy részcsoportja. Ekkor $1 \in H$, így $f(1) = 1' \in f(H)$, vagyis $f(H) \neq \emptyset$. Továbbá, tetszőleges $x, y \in f(H)$ esetén léteznek $g, h \in G$ úgy, hogy x = f(g) és y = f(h), így

$$x\circ y^{-1}=f(g)\circ f(h)^{-1}=f(g)\circ f(h^{-1})=f(g*h^{-1})\in f(G)$$

az (a) alpont alapján és mivel G részcsoport. Ezzel beláttuk, hogy f(G) részcsoportja a G' csoportnak.

Ha H' egy részcsoportja a G' csoportnak, akkor az $f^{-1}(H') = \{h \in H \mid f(h) \in H'\}$ halmaz nem üres, mert $1' \in H'$ és az f(1) = 1' alapján $1 \in f^{-1}(H')$. Ezenkívül, ha $g, h \in f^{-1}(H')$, vagyis $f(g), f(h) \in H'$, akkor

$$f(g * h^{-1}) = f(g) \circ f(h^{-1}) = f(g) \circ f(h)^{-1} \in H',$$

vagyis $g*h^{-1} \in f^{-1}(H)$, az (a) alpont alapján és mivel H' részcsoport. Ezzel beláttuk, hogy $f^{-1}(H')$ a G részcsoportja.

További feladatok

16. Legyen $a \in \mathbb{R}^*$. Igazoljuk, hogy $f_a : (\mathbb{R}, +) \to (\mathbb{R}, +)$, $f_a(x) = a \cdot x$ egy csoportizomorfizmus és adjuk meg az inverzét!

Megoldás. Legyen $a \in \mathbb{R}^*$ rögzített. Minden $x, y \in \mathbb{R}$ esetén $f_a(x+y) = a \cdot (x+y) = a \cdot x + a \cdot y = f_a(x) + f_a(y)$, tehát $f_a : \mathbb{R} \to \mathbb{R}$, $f_a(x) = a \cdot x$ egy csoportmorfizmus az $(\mathbb{R}, +)$ csoportról önmagára.

Az f_a inverze $f_{\frac{1}{a}}$, mivel minden $x \in \mathbb{R}$ esetén

$$\left(f_a \circ f_{\frac{1}{a}}\right)(x) = f_a\left(f_{\frac{1}{a}}\right)(x) = f_a\left(\frac{1}{a} \cdot x\right) = a \cdot \left(\frac{1}{a} \cdot x\right) = x,$$

$$\left(f_{\frac{1}{a}} \circ f_a\right)(x) = f_{\frac{1}{a}}\left(f_a\right)(x) = f_{\frac{1}{a}}\left(a \cdot x\right) = \frac{1}{a} \cdot (a \cdot x) = x.$$

17. Igazoljuk, hogy

- (a) $f: (\mathbb{C}, +) \to (\mathbb{C}, +), f(z) = \bar{z};$
- (b) $f: (\mathbb{C}^*, \cdot) \to (\mathbb{C}^*, \cdot), f(z) = \bar{z};$
- (c) $f: (H, \cdot) \to (H, \cdot), f(z) = \bar{z}, \text{ and } H = \{z \in \mathbb{C} \mid |z| = 1\}$

csoportizomorfizmusok és adjuk meg az inverzüket.

Megoldás.

(a) Az $f: \mathbb{C} \to \mathbb{C}$, f(z) = z csoportmorfizmus a $(\mathbb{C}, +)$ csoportról önmagára, mert minden $z = a + ib, w = c + id \in \mathbb{C}$ esetén

$$f(z+w) = f((a+ib) + (c+id)) = \overline{(a+id) + (c+id)} = (a-ib) + (c-id)$$

$$= \overline{a+ib} + \overline{c+id} = f(a+ib) + f(c+id)$$

$$= f(z) + f(w).$$

Az f inverze $f^{-1}(z) = f(z) = \overline{z}$, mivel minden $z = a + bi \in \mathbb{C}$ esetén

$$(f \circ f)(z) = (f \circ f)(a+ib) = f(f(a+ib)) = f(\overline{a+ib})$$
$$= \overline{a+ib} = \overline{a-ib} = a+ib$$
$$= z$$

Tehát f egy bijektív csoportmorfizmus, így csoportizomorfizmus.

(b) Az $f: \mathbb{C}^* \to \mathbb{C}^*$, $f(z) = \overline{z}$ függvény jól értelmezett, mert ha $z \neq 0$, akkor $\overline{z} \neq 0$. Az f egy csoportmorfizmus, mert minden z = a + ib, $w = c + id \in \mathbb{C}^*$ esetén

$$f(z \cdot w) = \overline{z \cdot w} = \overline{(a+ib)(c+id)} = \overline{(ac-bd) + i(ad+bc)}$$
$$= (ac-bd) - i(ad+bc) = (a-ib)(c-id) = \overline{a+ib} \cdot \overline{c+id}$$
$$= \overline{z} \cdot \overline{w} = f(z) \cdot f(w)$$

Az f inverze az előző alponthoz hasonlóan $f^{-1}(z) = f(z) = \overline{z}$. Tehát f egy bijektív csoportmorfizmus, vagyis csoportizomorfizmus.

(c) Az $f: H \to H$, $f(z) = \overline{z}$ függvény jól értelmezett, mert $|z| = |\overline{z}|$, ezért ha $z \in H$, vagyis |z| = 1, akkor $|\overline{z}| = 1$, vagyis $f(z) = \overline{z} \in H$. Az előző alponthoz hasonlóan f egy csoportmorfizmus, továbbá bijektív, mert $f^{-1}(z) = f(z) = \overline{z}$, minden $z \in H$ esetén. Tehát f egy csoportizomorfizmus.

18. Igazoljuk, hogy $exp: (\mathbb{R}, +) \to (\mathbb{R}_{>0}, \cdot)$, $exp(x) = e^x$ egy csoportizomorfizmus, ahol $\mathbb{R}_{>0} = (0, +\infty)$. Határozzuk meg az exp csoportizomorfizmus az inverzét! Írjuk fel, hogy mit jelent, hogy az inverz is csoportmorfizmus!

Megoldás. Minden $x, y \in \mathbb{R}$ esetén

$$exp(x+y) = e^{x+y} = e^x e^y = exp(x) \cdot exp(y),$$

ezért exp egy csoportmorfizmus. Az exp függvény bijektív, mert $exp^{-1}(x) = \ln x$, minden $x \in (0, +\infty)$. Bijektív csoportmorfizmus inverze is csoportmorfizmus, ezért $\ln : (\mathbb{R}_{>0}, \cdot) \to (\mathbb{R}, +)$ is csoportmorfizmus, vagyis minden $x, y \in \mathbb{R}_{>0} = (0, +\infty)$ esetén $\ln(x \cdot y) = \ln x + \ln y$.

19. Legyen $H = \{z \in \mathbb{C} \mid |z| = 1\}$. Igazoljuk, hogy $\varphi : (\mathbb{R}, +) \to (H, \cdot), \ \varphi(x) = \cos x + i \sin x \text{ egy csoportmorfizmus és határozzuk meg a magját.$

Megoldás. Minden $x, y \in \mathbb{R}$ esetén

$$f(x+y) = \cos(x+y) + i\sin(x+y) = (\cos x + i\sin x)(\cos y + i\sin y) = f(x) \cdot f(y),$$

ezért f egy csoportmorfizmus. Az f csoportmorfizmus magja

$$\ker f = \{x \in \mathbb{R} | f(x) = 1\} = \{x \in \mathbb{R} | \cos x + i \sin x = 1\}$$
$$= \{x \in \mathbb{R} | \cos x = 1 \text{ és } \sin x = 0\} = \{2k\pi | k \in \mathbb{Z}\}.$$

20. Igazoljuk, hogy $f: (\mathbb{Z}, +) \to (U_n, \cdot), f(k) = \cos\left(\frac{2k\pi}{n}\right) + i\sin\left(\frac{2k\pi}{n}\right)$ egy csoportmorfizmus. Határozzuk meg a magját!

Megoldás. Minden $k, h \in \mathbb{Z}$ esetén

$$\begin{split} f(k+h) &= \cos\left(\frac{2(k+h)\pi}{n}\right) + i\sin\left(\frac{2(k+h)\pi}{n}\right) \\ &= \cos\left(\frac{2k\pi}{n} + \frac{2h\pi}{n}\right) + i\sin\left(\frac{2k\pi}{n} + \frac{2h\pi}{n}\right) \\ &= \left(\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}\right) \cdot \left(\cos\frac{2h\pi}{n} + i\sin\frac{2h\pi}{n}\right) \\ &= f(k) \cdot f(h), \end{split}$$

tehát f csoportmorfizmus. Az f csoportmorfizmus magja

$$\ker f = \{k \in \mathbb{Z} \mid f(k) = 1\} = \left\{ k \in \mathbb{Z} \mid \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} = 1 \right\}$$
$$= \left\{ k \in \mathbb{Z} \mid \frac{2k\pi}{n} \in 2\pi\mathbb{Z} \right\} = \{k \in \mathbb{Z} \mid k \in n\mathbb{Z}\} = n\mathbb{Z}.$$

21. Legyen (G, +) egy csoport és $H \leq G$ egy részcsoportja. Igazoljuk, hogy

$$x\rho y \Leftrightarrow x - y \in H, \quad x, y \in G,$$

egy ekvivalenciareláció a G-n. Ebben az esetben a $G/\rho = \{\rho(g) \mid g \in G\}$ faktorhalmazt G/H-val jelöljük. Ha (G, +) kommutatív csoport, akkor igazoljuk, hogy $(G/H, \oplus)$ is egy csoport a $\rho(g_1) \oplus \rho(g_2) = \rho(g_1 + g_2)$, minden $\rho(g_1), \rho(g_2) \in G/\rho$ művelettel.