МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Безопасности жизнедеятельности

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Безопасность жизнедеятельности»

Тема: Исследование условий электробезопасности в трехфазных сетях с заземленной нейтралью

Студент гр. 8383	 Киреев К.А.
Студент гр. 8383	 Муковский Д.В
Студент гр. 8383	 Сосновский Д.Н.
Преполаватель	Овлиенко Е.Н.

Санкт-Петербург

Протокол

Іротокол	2	homo	Kori		Sopa 7 opni		pad:		spaz.		
Nº 1/1	٥	ha Wu	us co	supom bre	uusp.	Harpineme pag y wongcob othowsenow zeer B					
	RA	RB	Re	Rzam	R 3=3.				durldo	Uks	Uzsl
1						23	27	27	0	0	0
2 (1.2)	5	5	5			23	27	27	0	0	26,
3(1.3)		150	150			23	27	27	0	0	26,3
4 (1.4)	1	(50	150	20		20	2 8, 5	28,5	2	1,5	28
5(1.42)	150	150	150	100		21,5	28	28	1	1	27
6(2.1)	150	150	150			23	27,5	27	0	0	26
7(2.2)	150	150	150		4 Om	30	34	16	9	9	15
8 (23)	150	150	150		100 OH	25	29	24,5	1,5	1,5	24
9(3.4)	150	150	150		¥	0	0	0	0	0	0
10(4.5)	1/50	150	(50			23	27	27	12,5	12,5	0
10-60mm			150		22	23	27	27	0	0	0
12/4.22			150			23	27	23	0	23	c
10-60 mm		150	150			23	27	17	0	0	0
10-647 66en 1414 2	-	120	150			12	28	28	0	2	0
15/43	_	150	150	10002		0	46	95	24	23	3 6
16-642			150	100CH	te	119	30	,29	3	3	0

Цели работы

- о Исследование режимов однофазного прикосновения человека;
- о Изучение принципа действия зануления;
- Ознакомление с опасностями непрямого прикосновения при использовании защитного заземления и зануления.

Выполнение работы

Анализ условий опасности прямого прикосновения в системе TN

Установлен режим прямого прикосновения человека к фазе А. В таблице 1 приведены результаты измерения напряжений на фазах и корпусах при сопротивлениях фаз, равных $R_A^{(1)}=R_B^{(1)}=R_C^{(1)}=5000~\mathrm{Om}$ и $R_A^{(2)}=R_B^{(2)}=R_C^{(2)}=150000~\mathrm{Om}$.

Таблица 1 – Напряжения при прямом прикосновении человека к фазе

Nº	31	начение со	противлен	ния, Ом		Напряжения фаз и корпусов относительно земли, В						
п/п	R_A	R_B	R_{C}	R _{3am}	R_{3a3}	U_{C01}	U_{B01}	U_{A01}	U_{K1}, U_0	U_{K2}	U_{K3}, U_h	
1	5000	5000	5000	-	-	23	27	27	0	0	26.5	
2	150000	150000	150000	-	-	23	27	27	0	0	26.5	

На рис. 1 приведена упрощенная схема исследуемой прямого прикосновения в системе TN.

Рисунок 1 – Упрощенная схема прямого прикосновения в системе TN

Напряжение прикосновения определяется напряжением фазного напряжения U_{ϕ} из-за малого сопротивления рабочего заземления нейтрали R_0 и практически не зависит от сопротивлений и емкостей фаз относительно земли. По формуле делителя напряжения напряжение прикосновения U_h равно

$$U_h = U_{\Phi} \frac{R_h}{R_0 + R_h} = 219.1 \text{ B} \approx U_{\Phi}$$

При $U_{\Phi}=220$ В, $R_h=1000$ Ом, $R_0=4$ Ом.

На рис. 2 приведена векторная диаграмма напряжений для данной сети.

Рисунок 2 — Векторная диаграмма напряжений

Далее было установлено замыкание фазы С на землю. В таблице 2 приведены результаты измерения напряжений на фазах и корпусах при разных сопротивлениях замыкания.

Таблица 2 – Напряжение прямого прикосновения при замыкании фазы на землю

Nº	31	начение со	противлен	ния, Ом		Напряжения фаз и корпусов относительно земли, В						
п/п	R_A	R_B	R_{C}	$R_{\text{зам}}$	R_{3a3}	U_{C01}	U_{B01}	U_{A01}	U_{K1}, U_0	U_{K2}	U_{K3}, U_h	
1	150000	150000	150000	50	-	20	28.5	28.5	2	1.5	28	
2	150000	150000	150000	100	-	21.5	28	28	1	1	27	

На рис. 3 приведена упрощенная схема сети. Так как сопротивления фаз относительно земли R_A и R_C очень велики по сравнению с сопротивлениями R_h и $R_{\rm 3am}$, то ими можно пренебречь.

Рисунок 3 – Упрощенная схема рассматриваемой сети

На рис. 4 приведена схема, содержащая только контур фазы C с замыканием на землю – нейтраль.

Рисунок 4 – Упрощенная схема контура фазы С

Рассчитаем дополнительное напряжение на R_0 :

При $R_{\text{зам}} = 50 \text{ Ом}$:

$$U_{R_{01}} = U_C \frac{R_0}{R_{33M} + R_0} = 16.3 \text{ B}$$

При $R_{\text{зам}} = 100 \text{ Ом}$:

$$U_{R_{02}} = U_C \frac{R_0}{R_{\text{3am}} + R_0} = 8.5 \text{ B}$$

Далее вычислим напряжения, падающие на человека в данной схеме, оно будет примерно равно фазному напряжению, увеличенному на U_{R_0} по второму правилу Кирхгофа.

$$U_h = U_A \frac{R_h}{R_0 + R_h} = 219.1 \text{ B}$$

$$U_{h1} = U_h + U_{R_{01}} = 219.1 + 16.3 = 235.4 \text{ B}$$

$$U_{h2} = U_h + U_{R_{02}} = 219.1 + 8.5 = 227.6 \text{ B}$$

На рис. 5, 6 приведены векторная диаграмма напряжений в сети с напряжением на. $R_0=50~\mathrm{Om}$ и $100~\mathrm{Om}$ соответственно.

Рисунок 5 — Векторная диаграмма напряжений ($R_0 = 50~\mathrm{Om}$)

Рисунок 6 — Векторная диаграмма напряжений ($R_0 = 100~\mathrm{Om}$)

По полученным результатам можно сделать вывод, что напряжение на человека при прямом прикосновении фазы A с замыканием фазы C землю становится больше фазного, причем чем меньше сопротивление замыкания, тем больше напряжение прикосновения.

Оценка опасности заземления корпусов при непрямом прикосновении

Был установлен режим прикосновения человека к корпусу K_3 , фаза А замкнута на корпус. Измерены напряжения на фазах и корпусах, результаты измерений приведены в строке 1 таблицы 3.

Таблица 3 – Напряжение непрямого прикосновения к заземленному корпусу

Nº	31	начение со	противлен	ния, Ом		Напряжения фаз и корпусов относительно земли, В						
п/п	R_A	R_B	R_{C}	$R_{\text{зам}}$	R_{3a3}	U_{C01}	U_{B01}	U_{A01}	U_{K1}, U_0	U_{K2}	U_{K3}, U_h	
1	150000	150000	150000	-	-	23	27.5	27	0	0	26	
2	150000	150000	150000	-	4	30	34	16	9	9	15	
3	150000	150000	150000	-	100	25	29	24.5	1.5	1.5	24	

На рис. 7 приведена упрощенная схема полученной сети.

Рисунок 7 – Упрощенная схема сети

Напряжение непрямого прикосновения к незаземленному корпусу в этой сети равно:

$$U_h = U_A \frac{R_h}{R_h + R_0} \approx U_A \ (R_h \gg R_0).$$

То есть напряжение непрямого прикосновения равно напряжению прямого прикосновения к фазе.

Корпус заземляется сопротивлением $R_{\rm 3a3}=4~{\rm Om}.$ На рис. $8~{\rm приведена}$ упрощенная схема сети.

Рисунок 8 – Упрощенная схема сети

Напряжение прикосновения при $R_{\rm 3a3} = 4$ Ом и $U_A = 220$ В равно

$$U_h = U_A \frac{\left(\frac{R_h R_{3a3}}{R_h + R_{3a3}}\right)}{\frac{R_h R_{3a3}}{R_h + R_{3a3}} + R_0} \approx U_A \frac{R_{3a3}}{R_{3a3} + R_0} = \frac{U_A}{2} = 110 \text{ B}$$

Напряжение на нулевом проводнике и на зануленных корпусах при этом будет равно

$$U_{00_1} \approx U_A \frac{R_0}{R_{333} + R_0} = 110 \text{ B}$$

На рис. 9 приведена векторная диаграмма напряжений для рассматриваемой сети.

Рисунок 9 – Векторная диаграмма напряжений

Установлено сопротивление заземления $R_{\rm 3a3}=100~{\rm Om}$ и измерены напряжения на фазах и корпусах. Напряжение прикосновения при $U_A=220~{\rm B}$ равно

$$U_h \approx U_A \frac{R_{3a3}}{R_{3a3} + R_0} = 211.5 \text{ B}$$

Полученное напряжение прикосновения близко к фазному.

Напряжение на нулевом проводнике и на зануленных корпусах в рассматриваемой сети равно

$$U_{00_1} \approx U_A \frac{R_0}{R_{3a3} + R_0} = 8.5 \text{ B}$$

На рис. 10 приведена векторная диаграмма напряжений сети.

Рисунок 10 – Векторная диаграмма напряжений

Изучение принципа действия зануления

Корпус K_{1-1} занулен, в сеть устройство подключается через автоматический выключатель. Фаза A замыкается на корпус K_{1-1} . После замыкания проведено измерение напряжений на фазах и корпусах, результаты измерений приведены в таблице 4.

Таблица 4— Напряжения в сети с автоматическим выключателем при замыкании фазы на зануленный корпус

Nº	№ Значение сопротивления, Ом					Напряжения фаз и корпусов относительно земли, В					
п/п	R_A	R_B	R_{C}	R _{3am}	R_{3a3}	U_{C01}	U_{B01}	U_{A01}	U_{K1}, U_0	U_{K2}	U_{K3}, U_h
1	150000	150000	150000	-	-	0	0	0	0	0	0

Как видно из таблицы, автоматический выключатель снял напряжение со стенда. На рис. 11 приведена схема режима и изображен контур тока короткого замыкания.

Рисунок 11 – Упрощенная схема сети

Оценка опасности зануления корпусов при непрямом прикосновении

1. Случай неправильно выбранной (завышенной) установки срабатывания максимальной токовой защиты

Фаза A была замкнута на зануленный корпус K_{1-2} . Упрощенная схема сети изображена на рис. 12.

Рисунок 12 – упрощенная схема сети

В этой сети для отключения цепи используется предохранитель F, но ток замыкания недостаточен для его срабатывания, поэтому снятие напряжение со стенда не произошло автоматически. В таблице 5 приведены результаты измерения напряжений на фазах и корпусах.

Таблица 5 — Напряжения в сети с предохранителем при замыкании фазы на зануленный корпус

Nº	Значение сопротивления, Ом						Напряжения фаз и корпусов относительно земли, В					
п/п	R_A	R_B	R_{C}	$R_{\text{зам}}$	R_{3a3}	U_{c01}	U_{B01}	U_{A01}	U_{K1}, U_0	U_{K2}	U_{K3}, U_h	
1	150000	150000	150000	-	-	23	27	27	12.5	12.5	0	

Замыкание фазы на корпус привело к появлению большого напряжения на нулевом проводе и зануленном корпусе K_2 . На рисунке $11\ z_A$ и z_N — сопротивления фазного и нейтрального проводников, причем $z_A \approx z_N$. Тогда напряжение на нулевом проводе и на зануленных корпусах равно

$$U_{R_0} = U_A \frac{z_N}{z_A + z_N} \approx \frac{1}{2} U_A$$

Векторная диаграмма напряжений приведена на рисунке 13.

Рисунок 13 - векторная диаграмма напряжений

2. Случай обрыва нулевого провода или неправильной установки в нем выключателя нагрузки

Был смоделирован обрыв нулевого провода. Были измерены напряжения в сети с выключенной (табл. 6 строка 1) и включенной (табл. 6 строка 2) осветительной нагрузкой.

Таблица 6 – Напряжения в сети при обрыве нулевого провода

Nº	3	Напряжения фаз и корпусов относительно земли, В									
п/п	R_A	R_B	R_{C}	$R_{\text{зам}}$	R_{3a3}	U_{C01}	U_{B01}	U_{A01}	U_{K1}, U_0	U_{K2}	U_{K3}, U_h
1	150000	150000	150000	-	-	23	27	27	0	0	0
2	150000	150000	150000	-	-	23	27	27	0	23	0

На рис. 14 приведена схема сети с включенной световой нагрузкой. Напряжение на корпусе K_1 равно нулю, так как обрыв нулевого проводника произошел между корпусом и нагрузкой.

Рисунок 14 — схема сети с включённой световой нагрузкой На рис. 15 приведена упрощенная схема замещения сети при прикосновении человека к корпусу K_2 и включенной световой нагрузке.

Рисунок 15 — упрощенная схема сети при прикосновении человека к K2 и включенной световой нагрузке

Напряжение в этом случае равны:

$$U_{h} = U_{A} \frac{R_{h}}{R_{0} + R_{h} + R_{H}}$$

$$U_{H} = U_{A} \frac{R_{H}}{R_{0} + R_{h} + R_{H}}$$

$$U_{R0} = U_{A} \frac{R_{0}}{R_{0} + R_{h} + R_{H}}$$

Будем считать, что в качестве световой нагрузки используется лампа накаливания мощностью 60 Вт. Тогда сопротивление нагрузки при $U_A=220~\mathrm{B}$ равно

$$R_{\rm H} = \frac{U_A^2}{P} = 807 \, \text{Om}$$

Напряжения в этом случае равны:

 $U_h = 121.5 \; \mathrm{B} - \mathrm{напряжение} \; \mathrm{прикосновения}$

 $U_{\rm H} = 98~{
m B} - {
m напряжение}$ на световой нагрузке

 $U_{R0} = 0.5 \text{ B} - \text{напряжение на } R_0$

Векторная диаграмма напряжений приведена на рис. 16.

Рисунок 16 – векторная диаграмма напряжений

На рис. 17 приведена схема сети при отключенной световой нагрузке – схема разомкнута, и напряжения на нулевом проводнике (корпусах) и человеке равны нулю.

Рисунок 17 — упрощенная схема сети при отключенной световой нагрузке Далее было подключено повторное заземление нулевого провода. Повторные изменения приведены в таблице 7 (1 строка осветительная нагрузка выключена, вторая — включена).

Таблица 7 — Напряжения в сети при обрыве нулевого провода и повторном заземлении

Nº	3	Значение сопротивления, Ом						Напряжения фаз и корпусов относительно земли, В					
п/п	R_A	R_B	R_{C}	$R_{\text{зам}}$	R_{3a3}	U_{C01}	U_{B01}	U_{A01}	U_{K1}, U_0	U_{K2}	U_{K3}, U_h		
1	150000	150000	150000	-	-	23	27	27	0	0	0		
2	150000	150000	150000	-	-	22	28	28	0	2	0		

На рис. 18 приведена упрощенная схема сети с повторным заземлением и включенной нагрузкой при прикосновении человека к корпусу K_2 .

Рисунок 18 – упрощенная схема сети с повторным заземлением и включенной нагрузкой при прикосновении человека к K2.

При $R_{\text{повт}} = 10 \text{ Ом} \ll R_h$, $R_H = 1210 \text{ Ом}$ и $U_A = 220 \text{ В}$ напряжение прикосновения равно

$$U_{h} = U_{A} \frac{\left(\frac{R_{h}R_{\text{повт}}}{R_{h} + R_{\text{повт}}}\right)}{\frac{R_{h}R_{\text{повт}}}{R_{h} + R_{\text{повт}}} + R_{0} + R_{H}} \approx U_{A} \frac{R_{\text{повт}}}{R_{\text{повт}} + R_{0} + R_{H}} = 1.8 \text{ B}$$

Полученное напряжение значительно меньше, чем напряжение прикосновения без повторного заземления.

На рис. 19 приведена векторная диаграмма напряжений.

Рисунок 19 – векторная диаграмма напряжений

Таким образом, опасное напряжение на корпусах зануленных приборов можно снизить при помощи повторного заземления.

3. Случай обрыва в цепи заземления нейтрали источника при наличии замыкания фазы на землю

Фаза С замыкается на землю, отключается рабочее заземление. Измеряются напряжения в сети при отключенном и включенном повторном заземлении. Результаты занесены в таблицу 8.

Таблица 8 – Напряжения в сети при отсутствии рабочего заземления и замыкании фазы на землю

Nº	<u>№</u> Значение сопротивления, Ом						Напряжения фаз и корпусов относительно земли, В						
п/п	R_A	R_B	R_{C}	$R_{\text{зам}}$	R_{3a3}	U_{C01}	U_{B01}	U_{A01}	U_{K1}, U_0	U_{K2}	U_{K3}, U_h		
1	150000	150000	150000	100	-	0	46	45	24	23	0		
2	150000	150000	150000	100	-	19	30	29	3	3	0		

На рис. 20 приведена упрощенная схема сети при отсутствии повторного заземления.

Замыкание фазы на землю приводит к уравниванию потенциалов между этой фазой и землей. Тогда напряжение неповрежденных фаз относительно земли будет равно линейному, а напряжение нулевого проводника относительно земли и, следовательно, напряжения на зануленных корпусах, будет равно фазному напряжению.

Рисунок 20 — упрощенная схема сети при отсутствии повторного заземления На рис. 21 изображена векторная диаграмма напряжений сети.

Рисунок 21 – векторная диаграмма напряжений сети

На рис. 22 изображена упрощенная схема сети при наличии повторного заземления нулевого проводника.

Рисунок 22 — упрощенная схема сети при наличии повторного заземления нулевого проводника

При повторном заземлении нулевого проводника в сети возникает контур «фаза С – замыкание на землю – повторное заземление – нулевой проводник». Тогда по формуле делителя напряжения при $U_C = 220$ В напряжение нулевого проводника относительно земли равно

$$U_{00_1} = U_C \frac{R_{\text{повт}}}{R_{\text{повт}} + R_{\text{зам}}} = 0.1 U_C = 22 \text{ B}$$

На рис. 23 приведена векторная диаграмма напряжений.

Рисунок 23 – векторная диаграмма напряжений

Напряжение фаз А и В относительно земли немного больше фазного.

