Welcome to Week 1

AWS & Azure Academy 2024

Hello

HELLO my name is

Allen Sanders

Senior Technology Instructor Pluralsight ELS

About me...

- 27+ years in the industry
- 23+ years in teaching
- Certified Cloud architect
- Passionate about learning
- Also, passionate about Reese's Cups!

Agenda

- Speaking the language of Cloud
- Survey of AWS vs. Azure Services (Compute, Networking, Storage, Database)
- Secure networking on the Cloud (AWS PrivateLink and Azure Private Endpoints)
- Infrastructure-as-Code (IaC) The What and the Why

How we're going to work together

- Slides and words to highlight key concepts
- Demos to bring those concepts "to life"
- Lab work (which will take place in sandboxes provided by "A Cloud Guru")
 for hands-on reinforcement
- NOTE: I welcome being interrupted if you need more info, or clarification, or anything else, just break in and ask. I am here to help you.

Speaking the Language of Cloud

Application Hosting

By Application Hosting, we mean the target infrastructure and runtime platform used for deployment and execution of an application or system; can include compute (CPU and server resources), storage, network, data and operating system

Application Hosting – An "Interesting" Example?

Here's an example of someone thinking "outside-of-the-box" when it comes to application hosting!

https://mashable.com/article/pregnancy-test-doom/

What Are the Hosting Options with Cloud?

- IaaS
- PaaS
- Serverless / FaaS
- SaaS
- Containers

What do they all mean?

Pizza-as-a-Service

From a LinkedIn post by Albert Barron from IBM (https://www.linkedin.com/pulse/20140730172610-9679881-pizza-as-a-service/)

Pizza as a Service

Side-by-Side Comparison

Survey of AWS vs. Azure Services

Compute

AWS

Azure

Infrastructure as a Service (IaaS)										
•	Availability sets	•	Community images	₩.	Compute Fleet					
	Azure compute galleries	₹	Host groups	·	Image templates					
.	Images	I,	Lab accounts	(68)	Proximity placement groups					
	Restore Point Collections PREVIEW	ф	SSH keys	8	Azure Virtual Desktop					
*	Virtual machine scale sets		Virtual machines	* •	VM application definitions					
	VM application versions	•	VM image definitions	•	VM image versions					
Platform as a Service (PaaS)										
•	App Services	* •	Cloud services (extended support)	*	Azure Spring Apps					
W	Virtual Instances for SAP solutions	•	Azure VMware Solution							
Serve	rless and microservices									
©	Container Apps	.	Container Apps Environments	4 >	Function App					
10 10 10 10 10 10	Kubernetes services	Ğ.	Kubernetes services - Automatic (Preview)							
High	performance computing									
	BareMetal Instances	•	Batch accounts	×	Genomics accounts					
	Quantum Workspaces PREVIEW	sur	SAP HANA on Azure PREVIEW							
Hybrid cloud										
	Azure Arc		Machines - Azure Arc							

AWS - EC2 Instance Bootstrapping Execute the "Hands-On" lab available at https://github.com/KernelGamut32/aws_azure_academy_2024_public/tree/main/week01/labs/lab01

AWS - Lambda Using AWS Console

Execute the "Hands-On" lab available at https://github.com/KernelGamut32/aws_azure_academy_2024_public/tree/main/week01/labs/lab02

Azure - Function App in Azure Portal

Execute the "Hands-On" lab available at https://github.com/KernelGamut32/aws_azure_academy_2024_public/tree/main/week01/labs/lab03

Networking

AWS

AWS PrivateLink

https://docs.aws.amazon.com/vpc/latest/privatelink/what-is-privatelink.html

https://docs.aws.amazon.com/vpc/latest/privatelink/concepts.html

https://docs.aws.amazon.com/whitepapers/latest/aws-privatelink/aws-privatelink.html

Azure

Azure Private Link

https://learn.microsoft.com/en-us/azure/private-link/private-link-overview

https://learn.microsoft.com/en-us/azure/private-link/private-link-service-overview

https://learn.microsoft.com/en-us/azure/private-link/private-endpoint-overview

Storage

AWS

Hybrid and edge storage								
Azure Edge Hardware Center	Azure Stack Edge / Data Box Gateway							
Object, file, and block storage								
Disk Accesses	Disk Encryption Sets	Disks						
Elastic SANs	Azure Native Qumulo Scalable File Service PARTNER	Azure NetApp Files						
Snapshots	■ Storage accounts	Storage browser						
Storage migration								
Azure Data Box	Storage movers							
Additional storage services								
Data Lake Storage Gen1	HPC caches	Azure Managed Lustre						
Storage Sync Services								

AWS - S3 and VPC

Execute the "Hands-On" lab available at https://github.com/KernelGamut32/aws_azure_academy_2024_public/tree/main/week01/labs/lab04

Azure - Private Link for Blob Storage

Execute the "Hands-On" lab available at https://github.com/KernelGamut32/aws_azure_academy_2024_public/tree/main/week01/labs/lab05

AWS - PrivateLink

Execute the "Hands-On" lab available at https://github.com/KernelGamut32/aws_azure_academy_2024_public/tree/main/week01/labs/lab06

Database

Relational Databases

- Collection of related tables (representing entities) and fields (representing entity attributes)
- Supports identification of keys that can be used to quickly locate and uniquely identify entities
- Normalized relationships used to create hierarchies of connected entities and minimize data duplication
- Strict data design (schema)

Document Databases

```
{
    "id": "b01754e8-5108-401d-810d-ff0aa6b9337e",
    "name": {
        "first": "Melissa",
        "last": "Testing"
    },
    "address": {
        "street": "123 Main St",
        "city": "San Francisco",
        "state": "CA",
        "zip": "94105"
    }
}
```

- Data represented as a logical grouping of attributes and relationships
- Captures entire hierarchy (parent and children) used to describe an entity (or "document")
- Data is repeated (rather than normalized), fully encapsulating all detail about an entity in the system
- Fluid data design

AWS

Build new applications									
🧽 Azure Cosmos DB	*	Î	Azure Database for PostgreSQL flexible servers		sor	Azure SQL Database Hyperscale			
Modernize existing applications									
Azure Cosmos DB for Mong	oDB (vCore)	My	Azure Database for MySQL flexible servers		::	Azure Managed Instance for Apache Cassandra			
Oracle Database@Azure		sQL	SQL databases	*		SQL managed instances			
SQL virtual machines									
Hybrid data services									
Azure Arc data controllers		•	PostgreSQL servers – Azure Arc PREVIEW		<u></u>	SQL managed instances - Azure Arc			
SQL Server - Azure Arc									
Additional data services									
S Azure Cache for Redis		•	Azure Database Migration Services		æ	Elastic Job agents			
Managed databases		file 1	SQL Server stretch databases						

AWS - Serverless with DB

Execute the "Hands-On" lab available at https://github.com/KernelGamut32/aws_azure_academy_2024_public/tree/main/week01/labs/lab07

Azure - MySQL Database

Execute the "Hands-On" lab available at https://github.com/KernelGamut32/aws_azure_academy_2024_public/tree/main/week01/labs/lab08

Containerization

So, What Are Containers?

- Form of virtualization at the app packaging level (like virtual machines at the server level)
- Isolated from one another at the OS process layer (vs VM's which are isolated at the hardware abstraction layer)
- Images represent the packaging up of an application and its dependencies as a complete, deployable unit of execution (code, runtime and configuration)

So, What Are Containers?

- A platform (e.g., Docker) running on a system can be used to dynamically create containers (executable instances of the app) from the defined image
- Typically, much, much smaller than a VM which makes them lightweight, quickly deployable and quick to "boot up"
- An orchestration engine (e.g., Kubernetes) might be used to coordinate multiple instances of the same container (or a "pod" of containers) to enable the servicing of more concurrent requests (scalability)

So, What Are Containers?

So, How Do Containers & Microservices Fit Together?

- Microservices with their smaller size, independently-deployable and independently-scalable profile, and encapsulated business domain boundary – are a great fit for containers
- Using Kubernetes, sophisticated systems of integrated microservices can be built, tested and deployed
- Leveraging the scheduling and scalability benefits of Kubernetes can help an organization target scaling across a complex workflow in very granular ways
- This helps with cost management as you can toggle individual parts of the system for optimized performance

AWS

X

Containers

Elastic Container Registry

Fully-managed Docker container registry : Share and deploy container software, publicly or privately

Elastic Container Service

Highly secure, reliable, and scalable way to run containers

Elastic Kubernetes Service

The most trusted way to start, run, and scale Kubernetes

Red Hat OpenShift Service on AWS

Fully managed Red Hat OpenShift service on AWS

Container infrastructure		
♠ Container instances	Container registries	
Container management		
Kubernetes fleet manager	Kubernetes services	Kubernetes services - Automatic (Preview)
Azure Red Hat OpenShift clusters	Service Fabric clusters	😭 Service Fabric managed clusters
Containerized applications		
😞 App Configuration	Container App Jobs	Container Apps

Infrastructure-as-Code (IaC)

The What and the Why

- As the name implies, the definition & configuration of our infrastructure IN code
- Instead of manually creating (inefficient) → automated in scripts that run "at the push of a button"

				0) :				1															• (0	1 (00		0		• ()			
									0																								1					01				0								
	0	0		10					0								0					0																				0	1							
												1 (0																								0	0										10
	r							0 (0																			0																		
					10	01												,						4)		1		0						0															
	0					11						ı							i						5											1												0		
0 1			i.								0 (,		0	Š	n						ò			,			n		00							'n	١	i									0		
																																															00			i
																																															0			
																																															ï			
								0				0													•								• (9 1					
		10					00										H												0																			0		
												0																																						
				0 0																																														
																		0		0																														ı
															1	,			0		0		0	0 1										0			0 4											00	,	t
									(0.0	1			n									i	d	,	10	1										1			c								0 1	1	
																																															4			

- If only creating a handful of resources, manual is (probably) fine
- Creating hundreds (or even thousands), not so much!
- Modern DevOps is built around automation quickly tearing down and rebuilding entire sets of infrastructure as and when required

laC – Advantages?

Testable

Repeatable

Auditable

IaC - AWS

laC - Azure

Knowledge Check

- Q: This hosting option provides a "function" hosted in the Cloud that can be used to expose functionality using multiple languages, can be triggered in multiple ways, and provides a consumption-based costing model. Your choice?
- 1. laaS
- 2. PaaS
- 3. Serverless
- 4. SaaS

- Q: This hosting option requires a higher degree of operational management on the part of the organization that chooses to use it for hosting resources in the Cloud. Your choice?
- 1. laaS
- 2. PaaS
- 3. Serverless
- 4. SaaS

Q: Which of the following is one of the Compute options available to you in AWS?

- 1. Function App
- 2. EC2
- 3. VPC
- 4. DynamoDB

Q: Which of the following is <u>NOT</u> one of the Database options available to you in Azure?

- 1. Azure Cosmos DB
- 2. SQL Databases
- 3. SQL managed instances
- 4. Storage accounts

Q: Which of the following is an advantage of IaC (Infrastructure-as-Code)?

- 1. Testability
- 2. Repeatability
- 3. Auditability
- 4. All of the above

Thank you!

If you have additional questions, please reach out to me at: asanders@gamuttechnologysvcs.com

