I. Base et Dimension.

semaine du 23 mars 2020

Dans cette seconde partie, nous abordons les théorèmes généraux sur les développements limités, c'est-à-dire les opérations licites.

Rappels

Nous fixons un **espace vectoriel** E (e.v); un **corps** "des scalaires" \mathbb{K} est donc sous-entendu.

- Une partie $X \subset E$ est **génératrice** si Vect(X) = E, soit : pour tout vecteur $u \in E$, il existe $\{x_1, x_2, ..., x_n\} \subset X$ et des scalaires $\lambda_1, \lambda_2, ..., \lambda_n$, tels que $u = \sum_{i=1}^n \lambda_i x_i$.
- Une partie $X \subset E$ est **libre** si, pour tout sous-ensemble $\{x_1, x_2, ..., x_n\} \subset X$ et tous scalaires $\lambda_1, \lambda_2, ..., \lambda_n$, nous avons : $\sum_{i=1}^n \lambda_i x_i = 0_E \Longrightarrow \forall i, \lambda_i = 0$.
- Ces concepts concernent aussi les familles de E, $X = (x_i)_{i \in I}$ (fonction $X : I \to E$, $i \mapsto x_i$). Par définition, X est génératrice si et seulement si son image $Im(X) = \{x_i\}_{i \in I}$ est génératrice; X est libre si et seulement si X est injective et Im(X) est libre.

Calculs

Pour prouver qu'une partie est libre (ou génératrice), nous devons la plupart des fois résoudre un système linéaire. Nous avons aussi :

- Toute partie d'une partie libre est libre; idem pour une famille libre et ses sous-familles (restrictions).
- Toute partie contenant une partie génératrice est génératrice;
 idem pour les "extensions" d'une famille génératrice.
- L'image directe Y = f(X), d'une partie génératrice X ⊂ E par une application linéaire surjective f : E → F, est une partie génératrice de F; idem pour une famille génératrice de E.
- L'image directe Y = f(X), d'une partie libre X ⊂ E par une application linéaire injective f : E → F, est une partie libre de F; idem si X est une famille libre de E.

Deux derniers points : pour une famille X de E (génératrice ou libre), prendre la famille composée $Y = f \circ X$.

Définition

Une base finie $B=(b_1,..,b_n)$ est une famille de E, à la fois libre et génératrice. ("Famille" plutôt que "partie" car l'ordre importe.) Remarques :

- La "base" $B = (b_i)_i$ signifie que pour tout $u \in E$, il **existe** des scalaires **uniques** $\lambda_1, ..., \lambda_n$, tels que : $u = \sum_i \lambda_{i=1}^n b_i$.
- Ces scalaires λ_i forment la matrice des **coordonnées** de u: une matrice (colonne) dépendante du choix de la base B. Réciproque : une matrice colonne définit un unique vecteur.
- Certains espaces vectoriels, admettent une **base infinie**, telle la base canonique $(X^i)_{i\in\mathbb{N}}$ de $\mathbb{K}[X]$ (monômes unitaires); il s'agit là aussi de familles génératrices et libres, à la fois.

Exemple. Chaque espace canonique \mathbb{K}^n $(n \ge 0)$ admet une base particulière, formée de n vecteurs : sa **base canonique** ; par exemple, la base canonique de \mathbb{K}^3 est ((1,0,0),(0,1,0),(0,0,1)).

Propriétés

Soit $B=(b_1,..,b_n)$, une base d'un e.v E. Tout $u\in E$ admet une matrice de coordonnées (colonne), $Mat_B(u)\in \mathcal{M}_{n,1}(\mathbb{K})$.

Théorème

 $L'application\ Mat_B: E \longrightarrow \mathcal{M}_{n,1}(\mathbb{K})\ est\ un\ isomorphisme.$

En particulier : dim(E) = n.

Soit une application linéaire $f: E \longrightarrow F$. Nous savons que si f est un isomorphisme, l'image de toute base B de E est base de F: une base est libre et génératrice, un isomorphisme, injectif et surjectif.

Théorème

(Réciproque.) Si l'image par f de toute base de E, est une base de F, alors f est un isomorphisme.

Dimension

Rappel $(n \in \mathbb{N})$. Tout e.v E isomorphe à \mathbb{K}^n est dit de **dimension** n, ce que nous notons dim(E) = n.

Le concept de "base" fournit une définition alternative pour la dimension : E est de dimension n s'il admet une base de cardinal (longueur) n. Outre une caractérisation limitée à la seule dimension finie, la difficulté rencontrée est double pour un e.v :

- Admet-il seulement une base?
- Quand elle existe, la base n'est (presque) jamais unique : *quid* de l'invariance du cardinal?

Un théorème répond précisément à ces questions philosophiques :

Théorème

Tout e.v admet une base; deux de ses bases ont même cardinal.

Avec les bases canoniques, nous retrouvons : $dim(\mathbb{K}^n) = n \ (n \ge 0)$.

Produit et Somme

Si E_1 et E_2 sont des e.v, le produit $E_1 \times E_2$ est aussi un e.v.

Théorème

(Produit cartésien) $dim(E_1 \times E_2) = dim(E_1) + dim(E_2)$.

Cette formule se généralise à plusieurs e.v $E_1, ..., E_n$ (récurrence) :

Théorème

 $dim(\prod_{i=1}^n E_i) = \sum_{i=1}^n dim(E_i)$. En particulier, pour tout e.v E et tout entier $n \ge 0$: $dim(E^n) = n.dim(E)$.

Théorème

(Somme directe) Si F et G sont des s.e.v d'un e.v E, tels que $F \cap G = 0$, nous avons $dim(F \oplus G) = dim(F) + dim(G)$.

Généralisation à plusieurs s.e.v de $E: dim(\bigoplus_{i=1}^n F_i) = \sum_{i=1}^n F_i$.

Base Incomplète

Théorème

(Base "Incomplète") Toute famille libre est contenue dans une base. Toute famille génératrice contient une base.

Quelques estimations si E est un e.v de dimension finie :

Théorème

Longueur de toute famille libre L de E : $card(L) \leq dim(E)$. Longueur de toute famille génératrice G de E : $card(G) \geqslant dim(E)$.

Une famille libre L de E avec card(L) = dim(E) est dite **maximale**; une famille génératrice G avec card(G) = dim(E) est **minimale**.

Théorème

Une famille libre maximale, ou génératrice minimale, est une base.

Formule de Grassmann

Quelques corollaires issus du théorème de la base incomplète :

Théorème

Pour tout s.e.v F d'un e.v E, nous avons $dim(F) \leq dim(E)$; si E est de dimension finie et dim(F) = dim(E), alors F = E.

Théorème

Tout s.e.v F de E admet (au moins) un s.e.v supplémentaire G.

Théorème

(Formule de Grassmann) Pour tous s.e.v F et G d'un e.v E, nous avons : $dim(F+G)+dim(F\cap G)=dim(F)+dim(G)$.

En particulier : $dim(F + G) \leq dim(F) + dim(G)$.

