Example 2.6

FM broadcast station is allowed to have a frequency deviation of 75 kHz. If a 4 kHz (highest voice frequency) audio signal causes full deviation (i.e. at maximum amplitude of information signal), calculate the modulation index.

deviation ratio

Solution:

Modulation index,
$$m_f = \frac{\Delta f}{f_m} = \frac{75 \text{ kHz}}{4 \text{ kHz}} = \frac{18.75}{100}$$

Example 2.7:

Determine the peak frequency deviation, $\Delta f,$ and the modulation index, m_f , for an FM modulator with a deviation sensitivity k_f = 10 kHz / V. The modulating signal to be transmitted is, $\upsilon_m(t)$ = 5 cos ($10k\pi t).$

Solution:

Peak frequency deviation,

$$\Delta f = k_f \times Vm$$

$$= 10 \text{ kHz/V} \times 5 \text{ V}$$

$$= \underline{50 \text{kHz}}$$

Modulation index,

$$m_f = \Delta f / fm$$

= 50kHz / 5kHz
= 10