How the Web Works

Chapter 2

Chapter 2

Internet
Protocols

Domain Name
System

- Uniform Resource Locators
- Hypertext Transfer Protocol

- Web Browsers
- **S** Web Servers

7 Summary

Chapter 2

Internet
Protocols

2 Domain Name
System

- Uniform Resource Locators
- Hypertext Transfer Protocol

- Web Browsers
- **S** Web Servers

7 Summary

A Layered Architecture

TCP/IP.

These protocols have been implemented in every operating system and make fast web development possible.

Networking is its own entire discipline.

Web developer needs general awareness of what the suite of Internet protocols does

A Layered Architecture

Link Layer

Responsible for

- physical transmission of data across media (both wired and wireless) and
- Establishing logical links.

It handles issues like packet creation, transmission, reception, error detection, collisions, line sharing, and more.

Much more to learn in Networking courses outside of web development.

Internet Layer

The Internet layer provides "best effort" communication.

Makes use of IP addresses

IP addresses

Transport Layer (TCP)

Ensures transmissions arrive in order and without error

Application Layer

There are **many** application layer protocols. Web developers should be aware of :

- **HTTP.** The Hypertext Transfer Protocol is used for web communication.
- **SSH.** The Secure Shell Protocol allows remote command-line connections to servers.
- FTP. The File Transfer Protocol is used for transferring files between computers.
- POP/IMAP/SMTP. Email-related protocols for transferring and storing email.
- **DNS**. The Domain Name System protocol used for resolving domain names to IP addresses.

Chapter 2

Internet
Protocols

Domain Name
System

- Uniform Resource Locators
- Hypertext Transfer Protocol

- Web Browsers
- **S** Web Servers

7 Summary

Name Levels

Name Levels

Name Levels

Types of Top Level Domains

- Generic top-level domain (gTLD)
 - Unrestricted. TLDs include .com, .net, .org, and .info.
 - Sponsored. TLDs including .gov, .mil, .edu, and others.
 - New TLDs.
- Country code top-level domain (ccTLD)
 - TLDs include .us , .ca , .uk , and .au.
 - Internationalized Domain Names
- arpa (first assigned TLD. Used for reverse DNS lookups)

Name Registration

Address Resolution

Chapter 2

Internet
Protocols

Domain Name
System

- Uniform ResourceLocators
- Hypertext Transfer Protocol

- Web Browsers
- **S** Web Servers

7 Summary

http://www.funwebdev.com/index.php?page=17#article

Protocol Domain Path Query String Fragment

Recall that in Section 2.1, we listed several application layer protocols on the TCP/IP stack. FTP, SSH, HTTP, POP, IMAP, DNS, ...

Requesting

- ftp://example.com/abc.txt sends out an FTP request on port 21, while
- http://example.com/abc.txt transmits an HTTP request on port 80.

- The domain identifies the server from which we are requesting resources.
- Since the DNS system is case insensitive, this part of the URL is case insensitive.
- Alternatively, an IP address can be used for the domain

- The optional port attribute allows us to specify connections to ports other than the defaults
- Add a colon after the domain, then specify an integer port number.

Path

Familiar concept to anyone who has ever used a computer file system.

The root of a web server corresponds to a folder somewhere on that server.

- On many Linux servers that path is /var/www/html/
- On Windows IIS machines it is often /inetpub/wwwroot/

The path is optional. However, when requesting a folder or the top-level page, the web server will decide which file to send you.

Query String

A way of requesting a portion of a page.

 Browsers will see the fragment in the URL, seek out the tag anchor in the HTML, and scroll the website to it.

Chapter 2

Internet
Protocols

2 Domain Name
System

- Uniform Resource Locators
- Hypertext Transfer Protocol

- Web Browsers
- **S** Web Servers

7 Summary

Hypertext Transfer Protocol

Hypertext Transfer Protocol

- Request headers include data about the client machine.
- Response headers have information about the server answering the request and the data being sent

Hypertext Transfer Request Methods Protocol

Hypertext Transfer Protocol

- 2## codes are for successful responses,
- 3## are for redirection-related responses,
- 4## codes are client errors,
- 5## codes are **server** errors.

Hypertext Transfer (Some) Response Codes Protocol

200: OK

301: Moved Permanently

304: Not Modified

307: Temporary redirect

400: Bad Request

401: Unauthorized

404: Not found

414: Request URI too long

500: Internal server error

Chapter 2

Internet
Protocols

2 Domain Name
System

- Uniform Resource Locators
- Hypertext Transfer Protocol

- Web Browsers
- **6** Web Servers

7 Summary

Web Browsers

Fetching a Web Page

Web Browsers

Fetching a Web Page - Load Times and Cascades

Web Browsers

Browser Rendering

- Interpreting the entire HTML markup together with the image and other assets into a grid of pixels for display within the browser window is called rendering the webpage.
- Implemented differently for each browser (Firefox, Chrome, Safari, Explorer, and Opera)

Web Browsers

Browser Caching

Web Browsers

Browser Features

- search engine integration,
- URL autocompletion,
- Form autocompletion,
- cloud caching of user history/bookmarks,
- phishing website detection,
- secure connection visualization,

and much more

Web Browsers

Browser Extensions

Can change what is shown to the end user. Newer challenge for web developers.

For developers, extensions like

- Firebug and
- Yslow

For the general public:

- Adblock
- Third Party Plugins

Chapter 2

Internet
Protocols

2 Domain Name
System

- Uniform Resource Locators
- Hypertext Transfer Protocol

- Web Browsers
- 6 Web Servers

7 Summary

Operating Systems

- A web server is nothing more than a computer that responds to HTTP requests.
- Real-world web servers are often more powerful than your own desktop computer
- Webservers must choose an application stack to run a website. This application stack will include an
 - operating system,
 - web server software,
 - a database,
 - and a scripting language for dynamic requests

Application Stacks

We will rely on the LAMP software stack, which refers to

- L inux operating system,
- A pache web server,
- M ySQL database, and
- P HP scripting language

Other stacks include WAMP, WISA, MEAN, ...

Operating Systems

- Linux
- Windows

Web Server Software

- Apache
- Nginx
- IIS

Database Software

- MySQL
- PostgreSQL
- Sqlite
- Oracle
- IBM DB2
- Microsoft SQL Server
- MongoDB

Scripting Software

- PHP
- ASP.NET
- Python
- Node.js
- •

Chapter 2

Internet
Protocols

Domain Name
System

- Uniform Resource Locators
- Hypertext Transfer Protocol

- Web Browsers
- **6** Web Servers

7 Summary

Summary Key Terms

address resolution

Apache

Application stack

application layer

country code top-level

domain (ccTLD)

DNS resolver

DNS server

domain names

domain name registrars

Domain Name System

(DNS)

FTP

four-layer network model

generic top-level domain

(gTLD)

GET request

HTTP

Internet Corporation for

Assigned Names and

Numbers (ICANN)

Internet Assigned

Numbers Authority

(IANA)

internationalized top-level

domain name (IDN)

Internet layer

Internet Protocol (IP)

IP address

IPv4

IPv6

LAMP software stack

link layer

MAC addresses

MEAN software stack

packet

protocol

port

POST request

protocol

request

request headers

response codes

response headers

reverse DNS lookups

root name server

second-level domain

SFTP

Questions?