Amrita Vishwa Vidyapeetham

MCA

Fourth Semester

18CA314-Cryptography and Network Security Assignment 1

Part A

- 1. $a \in \mathbb{Z}_p$ Prove that $(a+p)^n \pmod{p} \equiv a^n \pmod{p}$
- 2. Find the multiplicative inverse of all the elements in \mathbb{Z}_5 and \mathbb{Z}_{11}
- 3. Determine the gcd of 56245 and 43159
- 4. Compute $\Phi(n)$ for 3^4 and 2^{10}
- 5. Compute $3^{100} mod(31319)$

Part B -Programming Assignment

- 1. Write a program to implement Extended Euclidean Algorithm and find multiplicative inverse for following values.
 - (a) $53947^{-1} mod 56211$
 - (b) $19385^{-1} mod \ 43159$
- 2. In cryptography, a brute-force attack consists of an attacker submitting many passwords or passphrases with the hope of eventually guessing correctly.
 - Implement a DES algorithm in any programming language (You are free to use language libraries). and decrypt the following cipher text using brute-force attack. Convert the hexadecimal value to string in the final stage.

Cipher text: 0x4B518774A408E3E5

3. In real world, the commonly used RSA key size if 1024 bits, which is hard for cryptanalysis with limited resources. Implement a RSA algorithm with integer data type and show that you are able to decrypt the cipher text without knowing the private key.