LÒGICA I LLENGUATGES

CURSO 2022-23

SEGUNDA PRUEBA PARCIAL DE PROBLEMAS (Grupo A)

- (a) Consideremos el vocabulario $\sigma=\{c,f^1,P^1,Q^2\}$ y la σ -interpretación I definida de la siguiente forma:
 - dominio de $I = \{1, 2, 3, 4\},\$
 - I(c) = 3,
 - $I(P) = \{2, 3\},$
 - $I(Q) = \{(1,1), (1,2), (2,1), (2,2), (3,2), (3,4), (4,4)\},$
 - I(f)(1) = 2, I(f)(2) = 2, I(f)(3) = 1, I(f)(4) = 3.

Determinar entonces, razonando la respuesta, si las siguientes fórmulas son verdaderas o falsas en I:

- (1) $Pc \rightarrow \exists yQyc$,
- (2) $\exists x Q f(x) x$,
- (3) $\forall x (Qf(x)x \to Qxx)$,
- $(4) \ \forall x \forall y (Qxy \leftrightarrow Pf(x)),$
- (5) $\forall x \exists y (Qxy \land Py)$.

(7,5 puntos)

(b) Consideremos las siguientes fórmulas:

$$\varphi_1 = \forall x (Bx \to \exists y \neg Axy),$$

$$\varphi_2 = \forall x (\neg Dx \to Bx),$$

$$\varphi_3 = \forall y \exists z (\neg Dy \vee \neg Ayz),$$

$$\varphi = \neg \exists z \forall y A z y.$$

Se pide entonces:

- (1) Obtener formas clausales de las fórmulas φ_1 , φ_2 y φ_3 .
- (2) Demostrar por resolución que φ es consecuencia lógica de las fórmulas $\varphi_1,\,\varphi_2$ y $\varphi_3.$

(2.5 puntos)

Solución:

- (a) (1) es falsa, pues $\overline{P}\overline{c} = \overline{P}3$ es verdadera, y sin embargo no existe ningún $y \in \{1,2,3,4\}$ tal que $\overline{Q}y3$ sea verdadera, por lo que $I(\exists yQyc) = F$. Así pues, $I(Pc \to \exists yQyc) = V \to F = F$.
 - (2) es verdadera, tomando x=1, ya que tenemos que $\overline{f}(1)=2$ y $\overline{Q}21=V$.
- (3) es verdadera. Para demostrarlo, comprobamos que todos los valores posibles de x en el conjunto $\{1,2,3,4\}$ hacen verdadera la fórmula $(Qf(x)x \to Qxx)$. Para x=1, tenemos que $(Qf(1)1 \to Q11) = (Q21 \to Q11) = V \to V = V$. Si x=2, tenemos que $(Qf(2)2 \to Q22) = (Q22 \to Q22) = V \to V = V$. Si x=3, tenemos que $(Qf(3)3 \to Q33) = (Q13 \to Q33) = F \to F = V$. Y si x=4, tenemos que $(Qf(4)4 \to Q44) = (Q34 \to Q44) = V \to V = V$.
- (4) es falsa, ya que si tomamos x=3 e y=2, tenemos que $\overline{Q}32=V$, pero $\overline{Pf}(3)=\overline{P}1=F$.
- (5) es falsa, ya que para x=4 tenemos que $\overline{Q}44=V$, pero $\overline{Q}4y=F$ para y=1,2,3. Entonces, como $\overline{P}4$ es falsa, deducimos que $\forall x\exists y(Qxy\wedge Py)$ es falsa.
 - (b) (1) Tenemos $(\varphi_1)^{cl} = \forall x (\neg Bx \lor \neg Axf(x)),$ $(\varphi_2)^{cl} = \forall x (Dx \lor Bx),$ $(\varphi_3)^{cl} = \forall y (\neg Dy \lor \neg Ayg(y)).$
- (b) (2) Tenemos que considerar las formas clausales del apartado (a) y una forma clausal de $\neg \varphi$. Tenemos entonces que $\forall yAcy$ es una forma clausal de $\neg \varphi$. Ahora, consideramos los núcleos de las formas clausales obtenidas:

$$\neg Bx \lor \neg Axf(x),$$

$$Dx \lor Bx,$$

$$\neg Dy \lor \neg Ayg(y),$$

$$Acy.$$

Recordemos que cuando se aplica el algoritmo de resolució, tenemos que renombrar las variables que se repiten en las cláusulas. Entonces, reemplazamos $Dx \vee Bx$ por $Du \vee Bu$, y reemplazamos Acy por Acv. Por tanto, tenemos las siguientes entradas para la resolución:

- 1. $\neg Bx \lor \neg Axf(x)$
- 2. $Du \vee Bu$
- 3. $\neg Dy \lor \neg Ayg(y)$
- 4. Acv

Resolviendo 1 y 4, obtenemos:

5. $\neg Bc$

ya que Axf(x) y Acv son unificables por $\{x=c, v=f(c)\}.$

A continuación, resolviendo 2 y 5, obtenemos:

6. Da

ya que Bu y Bc son unificables por $\{u=c\}$.

Ahora, resolviendo 3 y 6, obtenemos:

7. $\neg Acg(c)$

ya que Dy y Dc son unificables por $\{y=c\}$.

Finalmente, resolviendo 4 y 7, obtenemos:

8. □

ya que Acv y Acg(c) son unificables por $\{v=g(c)\}.$