Estadística Industrial

Metodologia de superfície de resposta (MSR)

Necessitat de models Necessitat de models Modelar la realitat Y = f (X, Z) de cara a: Predir Y en determinades condicions X's Seleccionar condicions òptimes de X's per Y Determinar condicions X's robustes de Y per Z's En la pràctica busquem models útils

Cada pas genera informació que ajuda a fer el següent pas

- Disseny factorial amb punts centrals (si estem lluny del màxim o mínim, un model lineal serà suficient)
- Mirem si el model lineal és bo. Si és bo, comencem a moure'ns pel camí de màxim pendent.
- Quan arribem al màxim (mínim), fem un nou disseny factorial amb punts centrals.
- 4. Si el model lineal és bo, corregim la direcció i seguim experimentant. Si no és bo, segurament estem ja a prop de l'òptim. Afegim experiments per estimar els coeficients quadràtics.

Estadística Industrial

44

Exemple: fundició de tapes d'alumini

Procés

Fundició de tapes d'alumini

- Objectiu
 - Trobar les condicions òptimes de temperatura i pressió per reducir la porositat.
 - Entendre la superficie de resposta.

Estadística Industrial

Exemple: fundició de tapes d'alumini

- · Situació inicial
 - Poc coneixement del problema
 - Es vol explorar el comportamient de la porositat al voltant de les condicions actuals
 - Experimentació següencial
- Hipòtesis: la superficie podrà ser aproximada per un model de primer ordre.
- Disseny: factorial 2² amb 2 punts centrals (que permeti comprovar la hipòtesis)

Per què fer servir punts centrals ens permet comprovar si existeix curvatura?

Estadística Industrial

Punts centrals. Cas 1: no hi ha punts centrals

$$\begin{split} \beta = & \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} & X = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix} & \gamma = \begin{pmatrix} \beta_{12} \\ \beta_{11} \\ \beta_{22} \end{pmatrix} & Z = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \\ A = & \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} & \begin{cases} E(b_0) = \beta_0 + (\beta_{11} + \beta_{22}) \\ E(b_1) = \beta_1 \\ E(b_2) = \beta_2 \end{split}$$

- Si el model real és de segon ordre i s'estima un model de primer ordre, a més d'obtenir-se una aproximació dolenta, la constant queda afectada por un biaix degut a la curvatura
- No es pot separar el biaix (les columnes X₀, X₁² y X₂² són iguals)

Estadística Industrial

Punts centrals. Cas 1: hi ha k punts centrals

$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} \quad X = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ \dots & \dots & \dots \\ 1 & 0 & 0 \end{pmatrix} \quad \gamma = \begin{pmatrix} \beta_{12} \\ \beta_{11} \\ \beta_{22} \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \\ \dots & \dots & \dots \\ 0 & 0 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 4/4 + k & 4/4 + k \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 4/4 + k & 4/4 + k \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{cases} E(b_0) = \beta_0 + \frac{4}{4 + k} (\beta_{11} + \beta_{22}) \\ E(b_1) = \beta_1 \\ E(b_2) = \beta_2 \end{cases}$$

- Com abans, la constant queda afectada por un biaix degut a la curvatura (encara que ara el biaix és diferent)
- Es pot estimar conjuntament β_{11} y β_{22} per comprovar si existeix curvatura ja que la columna X₀ és diferent a les columnes X₁² y X₂², que són iguals entre

Estadística Industrial

Direcció del gradient en un model estimat

Model (en unitats codificades)

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k$$

Gradient

$$\left(\frac{\partial \mathbf{Y}}{\partial \mathbf{x}_1}, \frac{\partial \mathbf{Y}}{\partial \mathbf{x}_2}, ..., \frac{\partial \mathbf{Y}}{\partial \mathbf{x}_k}\right)$$

Steepest ascent
$$(\beta_1, \beta_2, ..., \beta_k)$$

Steepest descent
$$-(\beta_1, \beta_2, ..., \beta_k)$$

S'acostuma a normalitzar el vector amb la direcció de màxim pendent:

$$u = \frac{\left(\beta_{1}^{-},\beta_{2}^{-},\ldots,\beta_{k}^{-}\right)}{\sqrt{\beta_{1}^{-2} + \beta_{2}^{-2} + \ldots + \beta_{k}^{-2}}} \qquad u = \frac{-\left(\beta_{1}^{-},\beta_{2}^{-},\ldots,\beta_{k}^{-}\right)}{\sqrt{\beta_{1}^{-2} + \beta_{2}^{-2} + \ldots + \beta_{k}^{-2}}}$$

$$u = \frac{-(\beta_{1}, \beta_{2}, ..., \beta_{k})}{\sqrt{\beta_{1}^{2} + \beta_{2}^{2} + ... + \beta_{k}^{2}}}$$

Estadística Industrial

Experimentació orientativa en direcció del gradient

- Una manera de fer-ho: A partir de las condicions representades per u, 2u, 3u, 4u, ... desfer la codificació per estudiar aquestes condicions (tenint en compte el coneixement que es tingui del procés, pressupost, etc.) i seleccionar les noves condicions experimentals.
- Probablement la condició "u" no se seleccionarà per estar dins de l'actual regió experimental i la resta de condicions estaran massa a prop.

Per passar d'unitats originales a codificades:

$$\begin{aligned} & x_i : \text{unitats codificades} \\ & \xi_i : \text{unitats originals} \end{aligned} \quad x_i = \frac{\xi_i - \frac{\max(\xi_i) + \min(\xi_i)}{2}}{\frac{\max(\xi_i) - \min(\xi_i)}{2}} \end{aligned}$$

(ara ve un exemple!)

Estadística Industrial

¿Com continuar?

Cal afegir experiments per poder estimar els termes quadràtics ¿Com afegim els nous experiments?

Е

El que volem:

- No haver de fer massa experiments
- Que puguem fer les tongades d'experiments seqüencialment (en blocs)
- Que permetin estimar amb precisió els coeficients del model
- Que permetin tenir una estimació de l'error independient del model
- Tenir un bon comportament de la variança de predicció a la zona d'experimentació

Estadística Industrial

Cub

-1 -1

-1 -1

-1 1 1

-1

1

1 1

0 0

0 0

С

-1

-1

0

Dissenys per estimar models de segon ordre

E	str	ell	a

Α	В	С
$-\alpha$	0	0
α	0	0
0	-α	0
0	α	0
0	0	-α
0	0	α
0	0	0
0	0	0
0	0	0

N_c: número de punts en els vèrtexs del cub (és de la forma 2k o 2k-p) noc: número de punts centrals en el cub

El valor de α i el número de punts centrals en l'estrella (noe) s'escullen de manera que el disseny acompleixi les condicions de rotabilitat i ortogonalitat

Estadística Industrial

Dissenys per estimar models de segon ordre

Rotabilitat

La variança dels valors previstos $V[\hat{y}(x)] = \sigma^2 x'(X'X)^{-1}x$ és la mateixa per tots els punts x que estan a la mateixa distància del centre del disseny

Aquesta condició depèn només del valor de α i del número d'experiments que s'han realitzat en el cub (sense comptar els del centre), N_c

$$\alpha = \sqrt[4]{N_c}$$

Estadística Industrial

Dissenys per estimar models de segon ordre

Ortogonalitat

Les estimacions dels paràmetres són independents entre si i independents a la seva vegada de l'efecte bloc

S'han d'acomplir 2 condicions:

- 1. Cada bloc ha de contenir un disseny ortogonal
- 2. La fracció del total de la suma de quadrats de cada variable x_i en cada bloc ha de ser igual a la fracció del número total d'observacions distribuïdes en cada bloc

$$\frac{\sum_{j=1}^{n_b} x_{bij}^2}{\sum_{i=1}^{N} x_{bij}^2} = \frac{n_b}{N}$$

n_b: número d'observacions en el bloc b

N: número total d'observacions

Estadística Industrial

Dissenys per estimar models de segon ordre

Cas particular d'ortogonalitat per dissenys centrals compostos

 $\alpha = \sqrt{\frac{N_c (2k + n_{oe})}{2(N_c + n_{oc})}}$

N_c:

número de punts del cub sense els punts del centre

K: número de factors

n_{oc}:

número de punts centrals del cub

n_{oe}:

número de punts centrals de l'estrella

Estadística Industrial

K	El més fàcil és fer-ho amb Minitab!					
	2	3	4	5	5(1/2)	6
Fracció del cub	1	1	1	1	1/2	1/2
N _c	4	8	16	32	16	32
Bloc (en cub)	1	2	2	4	1	2
N _e = 2k	4	6	8	10	10	12
n _{oc} (per bloc)	3	2	2	2	6	4
n _{oe}	3	2	2	4	1	2
N total	14	20	30	54	33	54
α (ortogonalitat)	1.414	1.633	2	2.366	2	2.366
α (rotabilitat)	1.414	1.682	2	2.378	2	2.378
Generadors de bloc		B=123	B=1234	B ₁ =123 B ₂ =2345		B=123
Generadors del disseny fraccional					5=1234	6=1234

Als experiments de l'eta l'estrella	apa 3 afegim ara els que cor	responen a	Etapa 4
Temperatura (°C)	Pressió (kg./cm.²)	Porositat	
- √2 (68 5)	0 (845)	3,02	
√ 2 (715)	0 (845)	4,40	
0 (700)	- √ 2 (810)	3,90	
0 (700)	√ 2 (880)	3,76	
0 (700)	0 (845)	3,20	
0 (700)	0 (845)	3,28	
0 (700)	0 (845)	3,17	
Afegim a l'anàlisi l'efe	cte bloc, per veure si surt s	ignificatiu	

Què fer si tenim 3 o més factors?

- Si tenim 3 factors (i tots ells entren en el model) podem dibuixar les corves de nivell per 2 d'ells, a nivell baix, mig i alt del tercer factor.
- Si tenim 4 o més factors, potser alguns d'ells són inerts i no entren en el model (podem passar d'ells). Si només estudiem 2 o 3 factors podríem dibuixar també les corves de nivell.
- Si tenim 4 o més factors que entren en el model es pot treballar amb projeccions sobre un subconjunt de 2 o 3 factors, pero la interpretació es aleshores més difícil.
- Si tenim 4 o més factors, l'anàlisi canònic pot ajudar-nos a descobrir com és la superfície.

Estadística Industrial

E2

essors d'estadística de l'ETS d'Enginyeria Industrial de Barcelona

Anàlisi canònic (1)

- La forma canònica d'una superfície correspon a la seva representació amb eixos de simetria paral·lels als eixos de coordenades i centrada a l'origen de coordenades. Aquesta representació permet "veure" com és la superfície.
- Les superfícies que surten de la metodologia de superfície de resposta sovint no són superfícies canòniques.
- Una superficie qualsevol es pot transformar en superfície canònica realitzant 2 operacions:
 - Canviar els eixos de coordenades de manera que queden paral·lels als eixos de simetria de la superfície (forma canònica A)
 - Seleccionar el punt crític de la superfície com a nou origen de coordenades (forma canònica B)

Estadística Industrial

Mètode per obtenir formes canòniques

$$\mathbf{b}_{0} = \left(\mathbf{b}_{0}\right) \quad \mathbf{X} = \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \dots \\ \mathbf{x}_{k} \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \\ \mathbf{b}_{3} \\ \dots \\ \mathbf{b}_{k} \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} \mathbf{b}_{11} & \frac{1}{2}\mathbf{b}_{12} & \dots & \frac{1}{2}\mathbf{b}_{1k} \\ \frac{1}{2}\mathbf{b}_{12} & \mathbf{b}_{22} & \dots & \frac{1}{2}\mathbf{b}_{2k} \\ \dots & \dots & \dots & \dots \\ \frac{1}{2}\mathbf{b}_{1k} & \frac{1}{2}\mathbf{b}_{2k} & \dots & \mathbf{b}_{kk} \end{pmatrix}$$

Expressat en forma matricial

$$Y = b_0 + X'b + X'BX$$

Estadística Industrial

Forma canònica A

$$Y = b_0 + (X'M)(M'b) + (X'M)(M'BM)(M'X)$$

Forma canònica A

$$Y = b_0 + P'\theta + P'\Lambda P$$

$$P = M'X \quad \theta = M'b$$

La forma canònica A només conté termes quadràtics purs, han desaparegut les interaccions

(ara ve un exemple!)

Estadística Industrial

Forma canònica B

Per trobar la forma canònica B primer veiem a quina distància de l'origen de coordenades es troba el punt crític

- Si el punt crític està dins de la zona d'experimentació, l'aproximació de la superfície serà igual de vàlida al voltant del nou origen de coordenades
- Si el punt crític està fora de la zona d'experimentació, no té sentit extrapolar la superfície i no es troba la forma canònica B

En l'exemple de les llantes, la distància del punt crític a l'origen de coordenades...

Temperatura
$$\rightarrow$$
 $x_1 = -1,25$ \Rightarrow $d = \sqrt{(-1,25-0)^2 + (-0,46-0)^2} = 1,3$ Pressio \rightarrow $x_2 = -0,46$

Estadística Industrial

Forma canònica B

Per l'exemple de les llantes...

El punt crític està a 1,3 unitats de l'origen de coordenades, dins de la zona d'experimentació.

Té sentit fer servir el model trobat al voltant del nou origen de coordenades

Per passar a la forma canònica B:

- Canviem l'origen de coordenades de (0,0) a (-1,23; 0,41), si treballem en unitats codificades originals
- Canviem l'origen de coordenades de (0,0) a M'(-1,23; 0,41), si treballem en unitats codificades noves (les de la forma canònica A)

Estadística Industrial

EO

Forma canònica B

Es pot primer girar els eixos i després canviar l'origen de coordenades, o al revés.

Fent servir el canvi d'origen després de girar els eixos:

$$Y = b_0 + (X'M)(M'b) + (X'M)(M'BM)(M'X)$$

$$Y = b_0 + ((X - X_0)'M)(M'b) + ((X - X_0)'M)(M'BM)(M'(X - X_0))$$

Així movem l'origen de coordenades

Forma canònica B

$$\begin{split} \boldsymbol{Y} &= \boldsymbol{Y}_0 + \boldsymbol{\lambda}_1 \boldsymbol{\omega}_1^{\ 2} + \boldsymbol{\lambda}_2 \boldsymbol{\omega}_2^{\ 2} + ... + \boldsymbol{\lambda}_k \boldsymbol{\omega}_k^{\ 2} \\ \boldsymbol{\omega}_i &= \boldsymbol{M'}(\boldsymbol{X}_i - \boldsymbol{X}_{i0}) = \boldsymbol{M'} \boldsymbol{X}_i - \boldsymbol{M'} \boldsymbol{X}_{i0} = \boldsymbol{P}_i - \boldsymbol{P}_{i0} \end{split}$$

Estadística Industrial

Exemple. Anàlisi canònic per les tapes d'alumini

Porositat = 2,84 - 0,36 B + 0,50 Temp + 0,03 Pres + 0,24 Temp² + + 0,33 Pres² - 0,22 Temp-Pres (model en unitats codificades)

Porositat serà Y, Temp serà X₁ i Pres serà X₂

$$Y = 2.84 - 0.36 B + 0.50 X_1 + 0.03 X_2 + 0.24 X_1^2 + 0.33 X_2^2 - 0.22 X_1 \cdot X_2$$

$$b_0 = (2.84)$$
 $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ $b = \begin{pmatrix} 0.50 \\ 0.03 \end{pmatrix}$ $B = \begin{pmatrix} 0.24 & -0.11 \\ -0.11 & 0.33 \end{pmatrix}$

$$M = \begin{pmatrix} -0.56 & 0.83 \\ 0.83 & 0.56 \end{pmatrix} \quad \lambda_1 = 0.40 \quad \lambda_2 = 0.17$$

Estadística Industrial

Exemple. Anàlisi canònic per les tapes d'alumini

La forma canònica B serà:

$$Y = Y_0 + 0.36 B + 0.40 \omega_1^2 + 0.17 \omega_2^2$$

Els dos valors propis són > 0. La superfície té un mínim.

$$\begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} = \mathbf{M'} \begin{pmatrix} \mathbf{X}_1 - \mathbf{X}_{10} \\ \mathbf{X}_2 - \mathbf{X}_{20} \end{pmatrix} =$$

$$= \begin{pmatrix} -0.56 & 0.83 \\ 0.83 & 0.56 \end{pmatrix} \begin{pmatrix} X_1 - (-1.23) \\ X_2 - (-0.41) \end{pmatrix} = \begin{pmatrix} -0.56 & 0.83 \\ 0.83 & 0.56 \end{pmatrix} \begin{pmatrix} X_1 + 1.23 \\ X_2 + 0.41 \end{pmatrix} \Rightarrow$$

$$\begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} = \begin{pmatrix} -0.56 & 0.83 \\ 0.83 & 0.56 \end{pmatrix} \begin{pmatrix} X_1 + 1.23 \\ X_2 + 0.41 \end{pmatrix} \Rightarrow$$

Per passar de les unitats originals a les

$$\omega_1 = -0,56 \ X_1 + 0,83 \ X_2 - 0,35$$

$$\omega_2 = 0.83 \ X_1 + 0.56 \ X_2 + 1.25$$

transformades.

Estadística Industrial

Professors d'estadística de l'ETS d'Enginyeria Industrial de Barcelona

Conclusions de l'anàlisi canònic

- La porositat canvia més ràpidament en la direcció de w₁ que en la de w₂ (el seu valor propi és més gran)
- · Direcció de mínim canvi en porositat.

La tenim quan $\omega_1 = 0$.

$$\omega_1 = 0 = -0,56 X_1 + 0,83 X_2 - 0,35$$

· Direcció de màxim canvi en porositat.

La tenim quan $\omega_2 = 0$.

$$\omega_2 = 0 = 0.83 \ X_1 + 0.56 \ X_2 + 1.25$$

 Donada una porositat mínima, existeixen unes quantes combinacions de temperatura i pressió que permeten treballar amb la porositat desitjada.

Estadística Industrial