USING THREE-POINT FUNCTIONS OF GALAXIES AND MATTER TO TEST GALAXY MODELS AND COSMOLOGY

GCCL Seminar

Laila Linke

Based on work in collaboration with: Peter Schneider, Patrick Simon, Sven Heydenreich, And many KiDS members!

Argelander-Institut für Astronomie

Image Credit: Springel (2005)

Some "big questions"...

Which cosmological model* best describes the evolution and structure of the Universe?

Which galaxy model best describes the evolution and distribution of Galaxies?

Two-Point Statistics are not the only tool to constrain cosmology and galaxy models

Two-Point Statistics

Cosmology

Galaxy models

Galaxy Clustering

Cosmic Shear

Galaxy-Galaxy-Lensing

Two-Point Statistics are not the only tool to constrain cosmology and galaxy models

Two-Point Statistics

Cosmology

Galaxy Clustering

Cosmic Shear

Galaxy-Galaxy-Lensing

Galaxy models

Three-Point Statistics

Cosmology

Galaxy models

Third-Order Galaxy
Clustering

Third-Order Shear

Galaxy-Galaxy-Galaxy-Lensing (G3L)

Two-Point Statistics are not the only tool to constrain cosmology and galaxy models

Two- Point Statistics Cosmology

Galaxy Clustering Cosmic Shear Galaxy-Galaxy-Lensing Galaxy models

Three-Point Statistics

Cosmology

Galaxy models

Third-Order Galaxy
Clustering

Third-Order Shear

Overview of Models of Galaxy Formation and Evolution

Galaxy models can be divided into three categories

Computational Complexity

Analytical Models

Semi-Analytic Models

Hydrodynamical Simulations

Number of Assumptions

Overview of Models of Galaxy Formation and Evolution

Galaxy models can be divided into three categories

Semi-Analytic Models

Hydrodynamical Simulations

Computational Complexity

Number of Assumptions

Overview of Galaxy-Galaxy-Galaxy-lensing

We use G3L to test galaxy models

OBSERVABLES

- G3L Correlation Functions $\tilde{\mathcal{G}}(\overrightarrow{\vartheta_1},\overrightarrow{\vartheta_2}) = \frac{1}{\bar{n}^2} \langle n(\vec{\theta} + \overrightarrow{\vartheta_1}) \, n(\vec{\theta} + \overrightarrow{\vartheta_2}) \gamma(\vec{\theta}) \rangle$ Aperture Statistics $\langle N^2 M_{\rm ap} \rangle$

BENEFITS COMPARED TO 2-PT STATISTICS:

Galaxy-Matter-Bispectrum

Correlations of galaxy populations

Alignment of galaxy pairs and matter

Overview of Models of Galaxy Formation and Evolution

Galaxy models can be divided into three categories

Hydrodynamical Simulations

Computational Complexity

Number of Assumptions

Pipeline for testing SAMs with G3L

We test two SAMs by comparing their G3L predictions to observations

More Info at LL, Simon, Schneider & Hilbert (2020): Astronomy & Astrophysics, 634:A13, arXiv: 1909.06190;

Observational and Simulational Data for SAM test

We test two SAMs by comparing their G3L predictions to observations

Simulation

Millennium Run with models by Henriques+ (2015; H15) and Lagos+(2012; L12)

- 64 x 16 deg² realizations
- Source shear from multiple-lens-plane algorithm (Hilbert+ 2009)
- Lens stellar masses and colours from SAM

Observation

Overlap of KiDS, VIKING and GAMA

- 180 deg² survey area
 with spectroscopy and photometry
- Source shapes from KiDS + VIKING (Wright+ 2019)
- Lens redshifts, stellar masses and colours from GAMA (Liske+ 2015, Wright+ 2017)

11

Image Credits:

G3L measurements for red and blue lenses

The H15 model agrees, the L12 model disagrees with the observations

G3L measurements for lenses with different stellar masses

The H15 model agrees, the L12 model disagrees with the observations

- H15 model agrees with observations
- L12 model differs from observations
- Potential reasons: Too strong ram pressure stripping / Tidal interactions, different dust and IMF models

Overview of Models of Galaxy Formation and Evolution

Galaxy models can be divided into three categories

Computational Complexity

Number of Assumptions

Overview of G3L halo model

Halo models rely on several assumptions

Pipeline for testing the G3L halo model

We fit HOD parameters with the observed G3L signal

Result of Halo Model Fit to Millennium Simulation

Best-fitting model agrees with the Millennium Simulation at the 95% Confidence Level

Comparison of HODs from G3L fit and actual HODs

The G3L fit recovers the HODs of red and blue simulated galaxies

- G3L fit recovers HODs of red and blue galaxies
- Fit has large uncertainties at small halo masses, better constraints for medium to large halo masses
- Similar results for stellarmass selected lenses

Result of Halo Model Fit to KV450 x GAMA

Best-fitting model agrees with the Observation at the 95% Confidence Level

HODs and from G3L fit to KV450 x GAMA

The HODs of GAMA galaxies are similar to the simulated ones

- G3L fit gives HODs similar to the HODs in the simulation
- Fit has large uncertainties at small halo masses

Two-Point Statistics are not the only tool to constrain cosmology and galaxy models

Overview of third-order shear analysis

OBSERVABLES

- Third-Order Shear Correlation Functions Γ₀, Γ₁
 Aperture Statistics ⟨M³_{ap}⟩(θ₁, θ₂, θ₃), ⟨M²_LM_{ap}⟩(θ₁, θ₂, θ₃)

BENEFITS COMPARED TO 2PT STATISTICS / OTHER HOS:

- Break $\Omega_{\rm m} \sigma_8$ degeneracy (e.g. <u>Kilbinger & Schneider, 2005</u>)
- Potential for self-calibration of nuisance parameters (Pyne & Joachimi, 2021)
- Can be directly used on shear catalogues and deals easily with masks
- Automatically includes systematics check with B-Modes
- Direct modelling eases inclusion of systematics

Measurement and modelling pipeline for third order shear

In collaboration with Sven Heydenreich

Comparison of 3pcf of model and Millennium simulation

The 3pcf of the model agrees with the simulation

- Model agrees with
 Millennium simulation for all triangle configurations
- Modelling of 3pcf is computationally more expensive than modelling of aperture statistics
- Data vector for 3pcf is larger

In collaboration with Sven Heydenreich

Comparison of $\langle M_{\rm ap}^3 \rangle$ of model and Millennium simulation

The modelled aperture statistics agree with the simulation

- Modelled and directly measured aperture masses agree remarkably well
- Conversion from 3pcf to aperture statistics is accurate only if the 3pcf is measured in ~15x15x15 bins or more
- E/B-mode leakage is small (in contrast to two-point statistics)

In collaboration with Sven Heydenreich

Conclusion

Three-Point statistics are worthwhile!

G3L can be used to test galaxy models

- Not all SAMs predict the correct G3L signal
- Halo Models can describe G3L with realistic HOD parameters
- G3L halo model showed that HODs of red and blue galaxies are positively correlated

Third-order-shear can be used to complement cosmological analyses

- Modelling of third-order shear correlation function and aperture statistics is possible
- Models agree with Millennium Simulation

THANK YOU!

Argelander-Institut für Astronomie

