Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

PRACTICAL HINTS QH211 P48 THY SEAL TION AND USE

OF PHY

MICROSCOPE.

 $\Delta BR(D) \approx 0$ $FCR \approx I(E) \approx E_0 Ox^2 E \approx G \approx EES$.

IN TOLK LIMIN

Portion of "Port Exception Journal of Moroson,".

FULLY ILCUSTRATED.

FRION TWIKE CENER

NEW YORK

LUE INDUSTRITT BURNESS CONFACT

Carrier of the

BAUSCH & LOMB OPTICAL CO.,

MANUFACTURERS OF

FACTORY:

179 North St. Paul Street, ROCHESTER, N. Y. OFFICE:

37 Maiden Lane,

NEW YORK.

The BAUSCH & LOMB OPTICAL COMPANY have for several years been engaged in manufacturing WORKING MICROSCOPES on new and improved models. The different styles have been elaborated under the supervision and by the advice of the ablest Microscopists of the country. They can therefore be guaranteed to be fully up to all the requirements of those who need a really first-class working instrument or any of the different grades; and being manufactured in large numbers, and with every facility which capital and machinery can supply, the prices are very low. Physicians, Students, Naturalists, Amateurs and Families, who intend to procure a microscope, would do well to send for our Illustrated Catalogue, which describes instruments ranging in price from the \$2.50 Botanist's Microscope, to Professional instruments worth \$300.00, and furnished with all the modern appliances. Address

BAUSCH & LOMB OPTICAL COMPANY,
37 Maiden Lane, New York.

THE YOUNG SCIENTIST,

A Practical Journal for Amateurs. ISSUED MONTHLY. Price 50 Cents per year.

It is characteristic of young Americans that they want to be doing something. They are not content with merely knowing how things are done, or even with seeing them done; they want to do them themselves. In other words, they want to experiment. Hence the wonderful demand that has spraag up for small tool chests, turning lathes, scroll saws, wood carving tools, telegraphs, model steam engines, microscojes and all kinds of apparatus. In nine cases out of ten, however, the young workman finds it difficult to learn how to use his tools or apparatus after he has got them. It is true that we have a large number of very excellent text-books, but these are not just the thing. What is wanted is a living teacher. Where a living teacher cannot be found, the next best thing is alive journal, and this we propose to furnish. And in attempting this it is not our intention to confine ourselves to mere practical directions. In these days of knowledge and scientific culture, the "Why" becomes as necessary as the "How." The object of the Young Scientist is to give clear and easily followed directions for performing chemical, mechanical and other operations, as well as simple and accurate explanations of the principles involved in the various mechanical asd chemical processes which we shall undertake to describe.

The scope and character of the journal will be better understood from an inspection of a few numbers, or from the list of contents found on a subsequent page, than from any labored description. There are, however, three features to

which we would call special attention:

CORRESPONDENCE.—In this department we intend to place our readers in communication with each other, and in this way we hope to secure for every one just such aid as may be required for any special work on hand.

EXCHANGES.—An exchange column, like that which has been such a marked success in the Journ it of Microscopy, will be opened in the Young Scientist. Yearly subscribers who may wish to exchange tools, appearatis, books, or the products of their skill, can state what they have to offer and what they want, without charge. Buying and se'ling must, of course, be carried on in the advertising columns.

ILLUSTRATIONS.—The journal will make no claims to the character of a "picture book." but wherever engravings are needed to make the descriptions obtain they will be furnished. Some of the engravings which have already appeared in our pages are as fine as anything to be found in the most expensive journals.

Special Notice.

As our journal is too small and too low-priced to claim the attention of news dealers, we are compelled to rely almost wholly upon subscriptions sent directly to this office. As many persons would no doubt like to examine a few numbers before becoming regular subscribers, we will send four current numbers as a trial trip?

FIFTEEN CENTS.

CLUBS.

Where three or more subscribe together for the journal, we offer the following liberal terms:

224	01	UL ALP	2010																													07		811
	3	cop	AR	for															 		4	6 1		0		0			 0	0 -		DT.	4	2
	U	COD	00	A O L	 4	-	æ		4		м																					6	.04	8
	5	66		6.6																			9 8							٠	 	- 74	·M	2
					*11	200	40	w		4	-	м	м																			0	77	10
	77	6.6		6.6																		9.1					0 1			0		2	. 61	9
						88	117	100	2	911		-	~																			0	.51	Α.
7	0	6.6		6.6																								0 1			 			9

Advertisements, 30 cents per line.

As postal currency has nearly disappeared from circulation, we receive postage stamps of the lower denominations (ones, twos and threes) at their full value. Postal orders are, however, much safer and more convenient. To avoid delay and mistakes address all cumunications to "The Young Scientist, Box 4875, New York," and make all checks and orders payable to John Phin.

PRACTICAL HINTS

ON

THE SELECTION AND USE

OF THE

MICROSCOPE.

ABRIDGEL: FOR THE USE OF BEGINNERS.

By JOHN PHIN,

EDITOR OF "THE AMERICAN JOURNAL OF MICROSCOPY."

FULLY ILLUSTRATED.

NEW YORK:
THE INDUSTRIAL PUBLICATION COMPANY,
1879.

Copyright Secured.

CONTENTS.

PREFA	CE.	-	-	-	-	-		-	-	-	V
INTRO	DUCTION		-	-	-	-	-	-	**		ix
	Microsco										
W:	hat it is ; ial Parts	What of the	it Doe Micr	s; Diff	erent :	Kinds nes of	of Mic	roscor fferen	es ; Es t Parts	ssen s,	13
SIMPL	E MICRO	SCOPES									
]	and Ma Glasses; Microsco Twenty- Microsco	Coddi: pes;] five C	ngton Raspa	Lens; il's M	Stanh	ope L	ens; S Excels	tands ior 1	for Si Iicrose	mple cope;	23
SELEC	TION OF	A MIC	ROSCO	PE FOI	PRAC	TICAL	PURPO	SES.			
:	ust be Adfor Botar Required Adjustm Pieces,	ny; For l; The	r Phys Stand	sicians l; The	; For Stage	Studer ; Mirr	nts; M or; Bo	agnify ody; I	ring F raw-1	Power Tube;	33
ACCES	SSORY AE	PARAT	us.								
	age For Concave cule Cag pressori	Slides se; Zoo	; Wate	ch-Gla Trou	sses;	Watch ompre	-Glass ssoriu	Holde m; Gr	er; An	imal-	47
	MINATIO										
	iffused I erkuhn,	ight;	Bulls-	Eye Co	ondens -	ser; Si -	de Rei	flector -	; The	Lieb- -	61
	MINATIO										
	irect an Light; ! Light,										
220 11	TO USE									T.	
G	eneral : scopes;	Practic	eal No	tes on I	Illumi	nation	; Mone				

CONTENTS.

Correspondence On Thomas
Collecting Objects.
Where to Find Objects; What to Look for; How to Capture them; Nets; Bottle-Holders; Spoons; Collecting Walking Cane; Water Strainer; Wright's Collecting Bottle; Aquaria for Microscopic Objects; Dipping Tubes, 7
THE PREPARATION AND EXAMINATION OF OBJECTS.
Cutting Thin Sections of Soft Substances; Sections of Wood and Bone; Improved Section Cutter; Sections of Rock; Knives; Scissors; Needles; Dissecting Pans and Dishes; Dissecting Microscopes; Separation of Deposits from Liquids; Preparing whole Insects; Feet, Eyes, Tongues, Wings, etc., of Insects; Use of Chemical Tests; Liquids for Moistening Objects; Refractive Power of Liquids; Iod-Serum; Artificial Iod-Serum; Covers for Keeping out Dust; Errors in Microscopic Observa-
tions, 8
Preservative Processes.
General Principles; Preservative Media—Canada Balsam, Solution of Balsam, Colophony, Damar Medium, Glycerine, Glycerine Jelly, Hantzsch's Fluid, Glycerine and Gum, Deane's Gelatine, Alcohol, Thwaite's Fluid, Beale's Liquid, Goadby's Fluids, Pacini's Fluid, Castor Oil; General Rules for Applying Preservative Fluids,
Apparatus for Mounting Objects.
Slides; Covers; Cells; The Turn-Table; Cards for Making Cells; Hot-Plate; Lamps; Retort Stand; Centering Cards; Mounting Needles; Cover Forceps; Slide Holder: Water Bath; Simple Form of Spring Clip,
CEMENTS AND VARNISHES.
General Rules for Using; Gold Size, Black Japan, Brunswick Black, Shellac, Bell's Cement, Sealing Wax Varnish, Colored Shellac, Damar Cement, Marine Glue, Liquid Glue, Dextrine, 11
Mounting Objects.
Mounting Transparent Objects Dry; Mounting in Balsam; Mounting in Liquids; Mounting of Whole Insects; How to Get Rid of Air-Bubbles; Mounting Opaque Objects; Wooden Cells; Pierce's Cell; Prof. Smith's Plan; Deep Cement Cell.
FINISHING THE SLIDES.

PREFACE.

Ten years ago the term "cheap" when applied to microscopes meant worthless; to-day it has a very different signification, for some of our best makers have devoted their attention to the production of easily used instruments of very moderate cost. This has caused a demand for a simple and inexpensive book for beginners which would teach them how to use these microscopes effectively, and it is in the hope of supplying this demand that the present volume has been prepared. As the reader who makes a comparison will readily see, it is merely an abridgement of the author's larger work on the same subject. All matter relating to the use of complicated and expensive instruments has been omitted, and several parts have been rewritten with the view of making them more simple and complete.

In the unabridged edition very full directions are given for examining objectives and for the employment of the different methods of illumination. These, although of the utmost importance to physicians and students, are not available by the class for whom this volume has been prepared.

The omission of all description and figures of objects may, perhaps, require a word of explanation. This book is intended to teach the use of the microscope, not the revelations of the microscope. It is, therefore, a companion to every book on Botany, Zoology, Histology, Entomology, etc., but not a substitute for them. It tells how to cut a potato, and how to examine, preserve, and mount the thin section thus obtained, but for a description of the cells and of the starch which fills them, we must refer to some work on botany of which there are several of great excellence.

INTRODUCTION.

Thousands of microscopes throughout the country are at the present day lying idle, simply because their owners do not know how to use them. If properly employed they might be made to afford an incalculable amount of instruction and amusement; but, as it is, they are a drag upon the popularization of science, because they convey the idea that the microscope is a difficult instrument to use, and that it is not of much account after we have learned to use it. owners of these microscopes have examined all the mounted objects at their command, the entire number of which probably does not exceed two or three dozen, and they have no information as to the best methods of preparing common objects for examination or preservation. Even the objects that they possess have never been explained to them, and are merely pretty toys. The fly's eye is interesting because it looks like a piece of netting, and the butterfly's wing is attractive because it is probably a little more brilliant than the most brilliant silk dress, but neither of these objects interests of itself and because of its beautiful structure.

Moreover it often happens that an instrument which, when first purchased, was of very fair quality, has, through ignorance and carelessness, become so soiled and dimmed that it no longer serves the purpose intended. On more than one occasion have we seen a fine microscope leave the dealer's hands in excellent order, and return in a week entirely unfit for use. Microscopes in this condition, instead of being a source of instruction and pleasure, are an eyesore and an occasion of annoyance. They continually serve as reminders of awkwardness and failure, of wasted time and ill-spent money. And yet with proper instruction and a due amount of care all this might have been avoided.

It is also a fact to be regretted that heretofore the microscope has not been extensively employed in the arts, and in everyday life, simply because practical men have not been taught how to use it, and consequently have been unable to avail themselves of the advantages which it offers; but if carefully and judiciously selected, and properly handled, it is capable of affording an amount and kind of assistance which cannot be safely neglected. It may be made to aid in the examination of raw materials, and of the finer kinds of work; it will enable us to measure spaces which would otherwise be inappreciable, and this, in an age when even in ordinary machine shops the thousandth part of an inch is frequently an important quantity, renders it indispensable to the careful and skillful mechanic; on the

farm it will enable the agriculturist to examine closely and minutely the various noxious insects and forms of fungi and blight, and thus aid him in identifying them and applying the proper remedy; and in the examination of minute seeds, such as timothy, clover, etc., it will prove a very valuable assistant, enabling him to detect any inferiority in the quality, or any impurity or adulteration. Frequently the agricultural seeds offered in market contain minute seeds of offensive weeds, many of which are so small that they are not easily discovered by the naked eye.

Every farmer and mechanic knows the value of a good pair of eyes, and he also knows that an agent which doubles or trebles our power in any given direction at once confers upon us in that respect a superiority over our fellows. Very few men are twice as strong as their comrades; still fewer have three times the strength of ordinary men, and it may be safely affirmed that no man possesses the power of ten ordinary men. But a microscope of very ordinary capacity at once multiplies our powers of sight by ten, twenty, or even a hundred times, while those of the better class enable us to see things with a keenness and clearness which, when compared with that afforded by the naked eye, is as more than a thousand to one.

There are four distinct and important directions in which a microscope may be made to serve us: 1. It is capable of affording the most refined and elevating kind of pleasure by the exhibition of objects of extreme beauty and interest. There are few more splendid sights than the gorgeous colors displayed by some objects when viewed by polarized light, and even the tints of certain minerals, and the brilliant scales of certain insects, when viewed as opaque objects, by means of a good condenser, surpass anything that is familiar to us in our ordinary experience. On the other hand the exquisite beauty of form which is characteristic of most of the objects with which the microscopist concerns himself can be fully appreciated only by those who have seen them. As a source of innocent amusement and pleasure, therefore, the microscope has few or no equals; for it may be safely affirmed that a five-dollar instrument is capable of affording gratification of greater variety and intensity, and of longer continuance, than that yielded by anything else of the same cost. This arises chiefly from the fact that most other instruments, when once exhibited, with their slides or fixtures, lose their freshness and interest, and become old. While for the microscope, a few fibres of wool from the carpet, a few grains of sand from the sea-shore, or a handful of wild flowers from the field, yield objects of surpassing beauty. Everything in nature and in art may be

subjected to inspection by it, and will then disclose new beauties and fresh sources of knowledge. Under it the point of the finest cambric needle looks like a crow-bar, grooved and seamed with scratches; the eye of the fly is seen to consist of thousands of eyes; and the dust on the butterfly's wing appears to be what it really is, scales laid on with all the regularity of shingles or slates on a house; while to prepare and examine these simple objects requires no great skill and no elaborate apparatus.

2. As a means of imparting instruction to the young, the microscope has now become indispensable. The changes which of late years have taken place in the views held by our ablest men in regard to the best education are too well known to need even mention. No education that does not include a knowledge of natural science is now regarded as complete, and there is a very wide range of the most essential and practical knowledge that can be reached only through the microscope. Thus, when we look at a leaf with the naked eye, we see but a green mass of matter, possessing a certain beautiful form, it is true, but disclosing none of those organs which render it more complicated and wonderful than anything ever produced by our most skilful mechanics. Looked at by the microscope, however, this same leaf is found to be made up of innumerable parts, each one of which is highly complex and beautiful; it is furnished with mouths for breathing, with cells for storing, digesting and assimilating nutriment, and with ribs for strengthening its structure; and all this, which is perfectly invisible to the unassisted vision, becomes distinct and obvious when we call to our aid a microscope of even moderate power. It is true that much of this may be taught by means of books, engravings and verbal descriptions, but every one knows that for distinctness and impressiveness the very best engravings fall far short of a view of the real object.

3. As an instrument of research, the microscope now occupies a position which is second to none. There is hardly any department of science in which a student can hope to reach eminence without a familiarity with the microscope. Botany and Zoology have been developed almost wholly by its aid, and so necessary is it in the study of these sciences, that Schleiden, one of the most successful of investigators says of it: "He who expects to become a botanist or a zoologist without using the microscope, is, to say the least of him, as great a fool as he who wishes to study the heavens without a telescope." In chemistry its services have been very important, and in geology and mineralogy it has opened up new fields of research which almost promise to revolutionize these sciences. Medicine has

long acknowledged the microscope as one of its most efficient assistants, and in the practice of the best physicians it is regarded as an indispensable means of diagnosis in some diseases.

4. As an assistant in the arts. Its importance in this department is but just beginning to be recognized, and in a former paragraph we have endeavored to point out a few of the subjects to which it

may be applied with good hopes of success.

These important and obvious advantages are not difficult to secure, provided we avoid two mistakes which are very commonly made by beginners. One of these consists in supposing that it is only by means of very expensive and complicated instruments that anything of value can be accomplished in microscopy. Now while it is certain that, in some departments of study, none but the very best microscopes are of any value at all, it is equally certain that a very wide range of study and of practical work can be thoroughly cultivated by means of apparatus of very moderate cost, and of great simplicity of construction. The great discoveries of Ehrenberg. which opened up entire new fields of research and of thought, were made with a microscope which at the present day would not command \$25. Indeed some of the French instruments that are sold for \$15 will show a very large proportion of the objects that are figured in his earlier works. Most of the great anatomical and botanical discoveries were made with simple microscopes of no great power, and it is not many years since one of the most successful workers in the field of botany gave it as his opinion that a power of 300 diameters is capable of showing everything that is of importance in this science.

The other error is of precisely the opposite kind. It is not at all unusual to meet persons who seem to think that all that is necessary in order to become a microscopist is to buy a microscope and place objects under it! Such people always entertain an exaggerated idea of the power of the microscope as an instrument of research. For example, they think that in order to detect adulteration all that is necessary is to place a sample under the microscope, when all impurities will at once stand out conspicuously! To their imagination every blood corpuscle is clearly marked with the name of the animal from which it was obtained!

Truth lies between these extremes. No progress can be made without steady application and persistent labor, but any person of fair average ability and a moderate degree of perseverance can soon learn to follow the beaten track at least, if not to branch out into original research.

THE SELECTION AND USE

OF

THE MICROSCOPE.

What is a Microscope?—The microscope is an instrument which enables us to see either very minute objects or very minute parts of large objects. It is a very popular idea that the name microscope is applicable only to complex instruments of considerable power; but this is clearly wrong. A ten cent magnifying glass has as good a right to the name microscope as has a complicated binocular instrument with all the latest improvements. By common consent, however, the small hand instruments, without stands, are generally called magnifiers. An attempt has been made to introduce the foreign word loupe as an equivalent of magnifier. The word loupe is, however, superfluous, and is used only by ostentatious pedants, and by foreigners who are ignorant of English.

What the Microscope Does.—It is well known that the further off any object is, the less it appears. A house at a distance appears less than a man who is close by, and the distinctness with which an object is seen depends largely upon its apparent size. Thus, at a distance, a house not only appears very small, but the windows cannot be distinguished from the rest of the building. As we draw nearer it becomes apparently larger, and the different parts become more distinct. First the windows are seen clearly, then the individual panes of glass, then the bricks, and finally the grains of the material of which the bricks are made. When, however, we approach too closely we again find it impossible to see distinctly, as may easily be

proved by a very simple experiment. Place some fine print, such, for example, as the present page, at a distance of six feet from the eye, and gradually move closer to it. At six feet the letters will be indistinguishable; at two feet they will be quite distinct; at one foot still more distinct; at three inches they will be quite blurred. There is, therefore, a limit to the degree of closeness with which we can approach any object for the purpose of examining it, and the object of a microscope is to enable us to get close to it, as it were, without blurring our view. If, without changing the distance of the eye from the paper (three inches) we introduce between the two a lens of one inch focus, and bring it into proper position, we will find that the indistinctness formerly complained of disappears, and the object is now not only seen clearly, but appears very much magnified. That objects appear large in proportion to their nearness to the eye may be thus shown: Take two slips of paper printed with type of the same size (two clippings from a newspaper answer well) and place one at a distance of ten inches from the eye and the other at a distance of five inchesthe edge of the upper slip being placed so as to lie about the middle of the lower one. In this way we can readily compare the apparent sizes of the type on the two slips, and one will be found to appear just twice as large as the other, though, of course, we have the evidence of our senses to prove that they are precisely of the same size. Moreover, as the usual distance for distinct vision is about ten inches, in persons of middle age, it will be found that a lens which enables us to view any object clearly and distinctly from a distance of one inch, will enable us to see it just ten times larger and ten times more distinctly than we could do when looking at it from a distance of ten inches. A consideration of these facts led the late Dr. Goring to propose the name engiscope as a substitute for the word microscope—the word engiscope signifying to see things at a very short distance.

The facts which we have just detailed must, however, be regarded as illustrations, rather than explanations of the action of the microscope. It is evident that the power of a lens to increase the distinctness with which any object is seen, depends not only upon the action of the lens upon the rays of light, but upon the influence which such modified light exerts upon the

organs of vision. Now, the eye, considered merely as an optical instrument, is in reality a small camera obscura in which the cornea, crystalline lens, and other transparent portions, combine to throw upon the retina an image of external objects. That the transparent portions of the eye do in fact act as a lens, and throw a real image upon the retina or posterior portion of the eye, is easily shown by taking the fresh eye of an ox and gradually shaving off the coating at the back until it becomes transparent. If the eye, so prepared, be then held towards a window or any very bright object, a distinct but inverted image of the window or other object will be see on the coat of the eye.

The action of the eye in this case is the same as that of a lens, and the general mode of action of lenses under such circumstances may be easily illustrated by means of a common hand magnifier or even a spectacle glass. If the reader will hold before a window, at a distance of, say, six feet, a sheet of white paper, and will place a magnifier in front of the paper, then by properly adjusting the distance between the magnifier and the paper, a picture of the window will be thrown on the latter. If the magnifier and paper be now removed to a distance of twelve feet from the window, the picture of the latter will be only half as large as it was in the first place, and it will also be found that the distance of the lens from the paper will have to be readjusted and made less.

That the eye possesses this power of adjustment we are all conscious, for we feel that if, when the eye is adjusted for the distinct vision of distant objects, we suddenly look at those which are near, the condition of the eye requires to be changed before a distinct view can be had, and to make this change requires an effort of which we are perfectly conscious.

When a lens is held in front of a sheet of paper, so as to throw on the latter a distinct image of the objects in front of it, the distance between the paper and the lens is called the focal distance or focal length of the latter. This, as we have just seen, varies with the distance of the object which gives the image. In order, therefore, to secure a standard in this respect the object selected is always one whose distance is so great that it may be practically regarded as infinite.

When we examine an object, first at a distance, and then close at hand, we see it through the medium of two different sets of rays, those in the latter case entering the eye in such a direction that the image thrown on the retina is larger than the image produced when the object is more distant. The lens acts, however, by bending the rays so that the same set, which, if allowed to pursue their natural direction would not produce a distinct image, are caused to enter the eye in such a direction that the image is large and clear. The manner in which the lens acts to produce these effects is not difficult to understand. It is true that the ultimate causes which produce these phenomena are beyond our knowledge, but in this respect the ablest philosopher has very little advantage over the veriest tyro. It may be difficult also for the general reader to follow the mathematical demonstrations of the action of lenses. There are, however, a few simple facts which are easily understood, or at least demonstrated and accepted as facts, and which, when clearly and firmly grasped by the mind, render the construction of the microscope comparatively easy of comprehension.

There are two ways in which the subject may be studied. We may examine the facts experimentally, by using lenses and actual eyes in the way we have described, or we may follow the course of the rays as laid down in any good book on optics. A combination of both methods will of course give the clearest views on the subject, and we would therefore advise the reader to provide himself with a few lenses of various degrees of curvature, and consequently of various magnifying powers, and test all the statements made in the text. He will thus acquire such a practical knowledge of the action of lenses as can be obtained in no other way. For this purpose the cheapest lenses are good enough. One or two cheap magnifiers and a few glasses from old spectacles will serve every purpose. The simplest methods of arranging such lenses will be found in a note on a subsequent page, and although very accurately made tools are required for the construction of serviceable optical instruments, it will be found that a very large number of simple but valuable experiments may be worked out with the aid of a few wooden rollers and a little paper and paste.

While the magnifying power of lenses depends upon their focal length, this in turn depends upon the material of which the lens is made, and also upon the curvature given to its surfaces. Lenses of precisely the same form, and made respectively of diamond, flint glass, crown glass and Canada balsam would possess different magnifying powers; the diamond magnifying most, the flint glass next, crown glass next, and Canada balsam least of all. On the other hand, of two lenses composed of the same material, that which has the sharpest curvature to its surfaces will magnify most. Now, on reflection, it will be evident to even the least mathematical mind that lenses which have very sharp or quick curves must of necessity be small. Suppose the curve which bounds the figure of a lens has a radius of half an inch, it is evident that the largest lens which could be made with this curve would be one inch in diameter, and then it would be a perfect sphere. Most lenses, however, resemble thin slices off the spheres, or in some cases two such slices joined together, so that the diameter of the lens is in general greatly less than the radius of the curves which form its surface. Therefore, we see that all lenses of high power are of necessity small, and when lenses are required of very high power they become so minute as to be handled only with great difficulty. Indeed, before the modern improvements in the microscope, many of the lenses used by scientific men were nothing more than little globules of glass, brought to a round form by fusion.

We have made this lengthened explanation of a very simple matter because we have found amongst beginners in microscopy a very general idea that large lenses are the most powerful. "Send me one of your largest and most powerful magnifiers," is an order with which every optician is familiar, and yet such an order contains a contradiction in terms. A lens cannot possibly be large and magnify greatly at the same time.

The Different Kinds of Microscopes.—Microscopes are divided into two classes—simple and compound—the difference between them being purely optical, and not mechanical; for a simple microscope may be very complex and expensive, while, on the other hand, a microscope may be compound and

yet contain very few parts. Thus the little vertical French microscopes, which cost only \$2,50, are compound, although very simple in construction, while a simple microscope, if binocular, and provided with all desirable adjustments, might be a very complicated affair. The difference between simple and compound microscopes is this: in the simple microscope we look at the object directly, while in the compound microscope we look at a magnified image of the object. In the simple microscope, objects are always seen in their natural position, while in the compound microscope they are inverted, and right becomes left, and left becomes right. This makes it very difficult for beginners to work upon objects under the compound microscope; and hence simple microscopes are almost always used for dissecting and botanizing.

It is true that by adding more lenses, and making the instrument still more compound, we can again invert the image, and thus bring it back to its original and natural position, and almost all the very expensive microscopes are furnished with these extra lenses arranged in a piece of accessory apparatus technically known as an erector. The distinguishing feature of the compound microscope remains, however, the same. Certain forms of the microscope, in which concave lenses are substituted for the usual convex form, also give erect images, but this does not affect the general truth of the statement just made.

Simple microscopes frequently consist of more than one lens. Thus, in using the ordinary pocket magnifiers with two or three lenses, it is usual to employ all the lenses at once, looking at the object through two or three lenses at the same time when a high power is required. In this case, however, the two or three lenses are placed close together and act in the same way as a single lens, with surfaces more sharply curved than those of any of the lenses forming the combination. Under such circumstances the image is not inverted, but if we now separate the lenses sufficiently, we will find that on again bringing the object into focus, the image is inverted and greatly enlarged. Moreover, it will be found that the magnifying power may be greatly increased by increasing the distance between the two lenses, and it will also be found that as the dis-

tance of the two lenses from each other is increased, the distance at which the combination is placed from the object must be made less and *vice versa*.*

The early forms of the compound microscope consisted of little more than the two lenses we have just described, but the modern instrument, even in its simplest form, is a vastly more complicated arrangement. In the best forms, for the lens next the eye there is substituted an eye-piece consisting of two lenses with a diaphragm between them, while the objective, or lens next the object, is composed of from four to ten different pieces of glass, forming two or more lenses, which are so arranged that each shall correct the defects of the others, and this optical combination is mounted on a stand which is sometimes a marvel of mechanical ingenuity.

*The student who possesses a little mechanical genius and a desire to become experimentally acquainted with the properties of lenses and the construction of the microscope, would do well to procure a couple of cheap lenses, say one of half inch focus, and one of about two inches focus, and test by actual trial the statements made in the text. Such lenses may be conveniently arranged in a tube formed of writing paper and gummed on the edges. All the most important properties and defects of lenses may be thus illustrated and studied. By means of a little extra care, two such lenses, arranged as we have described, in tubes blackened on the inside, and mounted on a little wooden stand, the focus being adjusted by sliding the tube holding the lenses within another tube, also of paper, will give not only a very fair view of such objects as the wing of a fly, the scales on a butterfly's wing, and even the barbs on the sting of a bee, but it will show the globules of blood quite distinctly, and we have even given a very interesting exhibition of the circulation of the blood in the foot of a frog by means of a temporary arrangement of this kind, which we put together for the purpose of explaining to a little girl the construction of the microscope. We would not recommend any one to use such a microscope for purposes of work or study, because the fallacies to which it may give rise are too numerous and too serious. But any boy, or even girl, who will undertake the construction of such an instrument, cannot fail to obtain thereby an amount of information which the perusal of volumes would not give. As hints towards aiding our young friends, we may remark that our tubes were made of the best stiff paper, rolled up tight and pasted only along the outer edge. The lenses were secured in their places by being attached to the bottoms of pill-boxes, holes being punched through to admit the light. Pill-boxes with holes were also used for diaphragms to reduce the effects of aberration. A piece of mirror reflected the light, and the sides etc., of an old cigar box furnished material for the stand. Fifty cents covered all expenses.

Essential Parts of the Microscope.—When a good lens is held steadily at a certain distance from an object which is properly illuminated, this distance depending upon the form and material of the lens, we are enabled to see the object clearly and distinctly. When, however, this distance is either increased or diminished, the object becomes blurred and indistinct. The point at which vision is most distinct is called the focus* of the lens, and when we are able to see it clearly the object is said to be in focus; when the distance is either increased or diminished, it is said to be out of focus. An object is said to be within the focus when the lens is too near it, and beyond the focus when the lens is too far away.

The performance of any lens depends greatly upon the accuracy with which it is adjusted to the correct focal distance, and the steadiness with which it is held there. For all ordinary purposes, lenses which do not magnify more than ten diameters may be very conveniently held in the hand without any special means of support; but when the power is much greater than this, or where, as in the compound instrument, the microscope is bulky and heavy, it becomes necessary to use some mechanical contrivance which will hold the microscope steadily in its position in relation to the object, otherwise the view becomes indistinct. Thus a good lens, magnifying from thirty to forty diameters, will very readily show the individual corpuscles or globules in the blood of the frog, provided it is arranged on a steady support and accurately adjusted for focus. If merely held in the hand the corpuscles will probably be invisible. Hence the importance of providing efficient means for adjusting the focus and holding and illuminating the object, and the object of the stand is to furnish these means in a compact and convenient form. Every microscope, therefore,

*It is scarcely necessary to inform the reader that the focus described in the text is not precisely the focus of the lens itself, but the focus of a compound lens of which the eye forms one element. Hence the focal distance varies with different eyes, and so does the apparent size of objects. To short sighted people objects appear of larger size than they do to persons of ordinary eye-sight. In working with the compound microscope, we frequently find that different people require a different focal adjustment.

whether simple or compound must possess: 1. Certain means for supporting the object and placing and maintaining it in proper position; 2. Means for illuminating the object, whether it be opaque or transparent; 3. Means for transmitting to the eye an enlarged image of the object.

NAMES OF THE DIFFERENT PARTS.

The different parts which are employed for securing these several ends, have been constructed of an almost endless variety of forms, according to the fancies of the different makers and the requirments of different microscopists. The following are the names of the essential parts of a compound microscope of ordinary construction. The names of the different parts of the simple microscope are the same as those of the compound microscope, but the latter has several parts which do not exist in the former.

The Stand is the term properly applied to the entire frame used for supporting and illuminating the object and carrying the optical part, the latter consisting of the eye-piece and the objectives. Stands are frequently sold separately, or furnished with eye-pieces only—the purchaser making such a selection of objectives as may best suit his special needs.

The Base or Foot is that part which supports the rest of the

stand.

The Body is the tube to which the eye-piece and objectives are attached.

The Arm is that part which carries the body.

A Collar is a short tube through which another tube (the body or the draw-tube, for example) is made to slide. In many microscopes the body does not slide in a collar.

The Stage is the plate upon which the object is placed for

examination.

The Eye-piece is the short brass tube, with its lenses, which is next the eye. The eye-piece contains an Eye-Glass, which is that next the eye; a Field-Glass, placed next the objective, and a Diaphragm, consisting of a brass plate with a hole through it, and so arranged as to cut off the outer rays of light. The

tube in which these lenses are secured is in general movable, and the best microscopes are furnished with several eye-pieces of different powers. We may here remark that where a microscope is furnished with several eye-pieces, the *shortest* eye-piece gives the greatest magnifying power.

The Object-Glass or Objective is the lens or lenses which is placed next the object. The term is frequently applied to the glass plate or slide upon which the object is placed, but this use of the word is entirely wrong, and tends to produce con-

fusion.

A *Draw-tube* is a secondary body which receives the eye-piece, and slides within the main body like the draw of a telescope. It enables us to increase the distance between the eye-piece and the objective, and thus to change the magnifying power, as explained in a previous paragraph.

The objective is moved to or from the object by two methods, which are called respectively the coarse and fine adjustments.

The Coarse Adjustment is used for bringing the objective approximately but rapidly into focus. To effect this the body either slides through a tubular collar or is attached by means of dovetail slides to the arm, and in either case it is moved up and down either by a rack and pinion (or some substitute therefor) or directly by hand.

The Fine Adjustment is employed for bringing the object exactly into focus. It usually consists of a fine screw, which moves either the entire body or the lower part of it. In some cheap stands, the fine adjustment is effected by moving

the stage towards the objective.

The Mirror reflects the light, and causes it to pass through

the object and the body of the instrument.

A Sub-stage is furnished with some instruments. It is used for holding and centering various means of illumination.

Clips are springs attached to the stage for the purpose of holding in place the glass slide or plate carrying the object.

The Object is that which is subjected to examination. It is usually mounted upon

A Slide, or plate of glass, which is laid upon the stage.

DIFFERENT FORMS OF THE SIMPLE MICROSCOPE.

To describe the different forms in market, either of simple or of compound microscopes, would require a large volume. We shall therefore content ourselves with a description of certain typical models which afford variety enough for all practical

purposes.

Hand Magnifiers.—These are so generally useful and applicable that no person who attempts to work much with the microscope can possibly do without one. They are found in market in a great variety of forms, styles of mounting, and price, and are too well known to need minute description. Large lenses, magnifying two or three times, are mounted singly, and used chiefly for the examination of pictures, and as reading glasses; the smaller sizes of the same style serve for the examination of fine engravings. Very small lenses of considerable power, and simply mounted in a frame, are also sold by most opticians. They are known as "watch-charms," and magnify about fifteen diameters. We have also seen a very powerful magnifier mounted in a little ring attached to a pair of eye-glasses.

For the purpose of the student and naturalist, a very excellent form is that which is shown as attached to the Excelsior microscope. It consists of three lenses, mounted in frames, and enclosed in a case so as to be perfectly protected. Each lens has a different focal length, and the three, when combined, give a magnifying power of twenty-five to thirty diameters. Being very portable, and possessing a variety of powers, it is a

favorite form of pocket microscope.

Magnifiers composed of two or more lenses, are to be had of two very distinct kinds. The lenses may either be simply united in one frame, without any special adaptation to each other, or the instrument may consist of two or more achromatic lenses combined together in a fixed and accurately determined relation. Examples of the former are found in the ordinary two and three lens magnifiers we have just described; the latter are not so common, since they are somewhat expen-

sive when well made. They are known as doublets and triplets, and one maker in this country, Mr. Tolles, of Boston, has become famous for the excellence of the simple achromatic microscopes of this class, made by him. These doublets and triplets are altogether the most satisfactory simple microscopes in use, and several firms make a specialty of their manufacture. In addition to Mr. Tolles, the Bausch & Lomb Optical Company, under the direction of Mr. Gundlach, make a very excellent lens of this kind, and in England, Mr. Browning makes a very excellent achromatic magnifier under the name of the Platyscopic Lens.

Where two or more simple lenses are used together (without being combined so as to form a compound microscope) the power of the combination is always equal to the sum of the powers of the separate lenses. Thus if we have a lens of half an inch focus and one of one inch focus, one magnifying ten and the other twenty diameters, the resulting power is thirty and and not two hundred times. In the compound microscope, on the other hand, the combination of an objective magnifying twenty diameters with an eyepiece magnifying ten diameters, gives a magnifying power of two hundred diameters.

Two or more lenses, properly adapted to each other and used

together, give results greatly superior to anything that can be obtained from a single lens, at least so far as clearness and accuracy of definition is concerned. But when used as a working or dissecting microscope, they are open to the objection that the distance at which they must be placed from the object is very small, and hence it is frequently inconvenient to use them for working upon objects. Thus if we have a plano-convex lens of a quarter of an inch focus, and one of three quarters of an inch focus, and place them at a distance of a sixteenth of an inch from each other, we will have a very good magnifier which will enlarge objects about thirty-five to forty times, but we must place it at but a very short distance from the object. If we separate the lenses a little, the definition will be improved, but the working distance, as it is called, will be diminished. Those who have studied optics are quite familiar with these facts, but

the ordinary reader does not always think of them, and yet they

are very important when we come to choose a microscope for working or dissecting purposes.

Watch-Makers' Eve-Glasses.—These are well known, and may be obtained of almost any power within the useful range of a single lens. The eye-glass ordinarily used by watchmakers magnifies about eight times, but glasses magnifying twenty diameters are not uncommon. Glasses of the latter power are usually doublets, that is, they consist of two lenses, arranged together, one being of much longer focus than the other. If well-made they give excellent definition and a large field, and, when mounted on a stand, are very serviceable as dissecting microscopes*, especially in working upon coarse objects, and picking out shells, the larger foraminifera, etc. Their form enables us to support them by means of a small wire ring, arranged as in a retort stand, and the large bellmouth of the frame prevents any light from entering the eye, except that which has passed through the lens. They are very cheap, and any intelligent boy can make a tolerable stand for one. The same stand will answer for several glasses of different powers.

Engravers' Glasses.—These are mounted in frames, in the same manner as the watch-maker's eye-glass, but as they are larger, and are therefore not so readily held in the eye, after the fashion of the latter, they are always used with a stand of some kind. Those of the best quality are, in general, doublets, which give a large field of view, with very good definition, and they are altogether the best microscopes for examining bank bills, fine engravings and similar objects.

*The term dissecting microscope is applied to all microscopes used for working upon objects under moderate magnifying powers. They are used not only for dissecting, properly so called, but for the study of botany, mineralogy, etc., as well as for numerous investigations in the arts. A good microscope of this kind is absolutely indispensable to those who hope to do more than merely look at objects prepared by others. In subsequent paragraphs we describe some of the best instruments of this kind. A complete dissecting microscope should be furnished with stand, mirror, etc., and if the student can afford it, there should be some good mechanical means of adjusting the focus.

The Coddington Lens.—Whenever a power greater than twenty diameters is required for examining objects, a Coddington, if well made, will be found to be the best lens in use, always, of course, excepting the carefully corrected doublets and triplets previously mentioned. The price of the latter, however, is in general four to eight times that of a good Coddington. It has this defect, however, that the working focus is very short, and therefore for a dissecting microscope a doublet is to be preferred. In using a Coddington lens, great care must be taken to secure good illumination of the object, and the shortness of the focus makes this difficult to those who have had no experience.

The Stanhope Lens is similar in form to the Coddington, but is very different in construction. It consists of a cylinder or rod of glass, one end of which is rounded so as to form a lens, while the other end is either flat or slightly curved. The distance between the lens and the flat surface is exactly equal to the focal distance of the lens. Transparent objects. such as the scales of insects, animalculæ in water, etc., are simply placed on the flat surface of the glass cylinder, and when looked at through it, they appear greatly magnified. It is easily used, but can not well be employed as a working microscope. It is this kind of lens that is used in the construction of those watch charms in which a large picture is seen on looking through a very small hole. The picture is a photograph attached to the flat end of a small glass rod, the other end of the rod being formed into a lens of exactly the right focal length required to show the picture clearly and considerably magnified. Lenses and photographs of this kind are usually mounted as miniature opera-glasses.

Stands for Simple Microscopes.—For ordinary purposes of examination, the magnifiers we have just described serve very well when merely held in the hand, but their performance is greatly improved when they are mounted on appropriate stands, which not only enable us to adjust the focus with great accuracy, but which hold the lens steadily in relation to the object, and thus prevent any necessity for that constant adjustment of the eye itself, which always occurs when a lens trem-

bles. Of the simple microscopes in use there are but two that require attention—Raspail's and the Excelsior. For a description of the elaborate dissecting microscopes of the London microscope makers, as well as those of Nachet, and others, we must refer to the large works of Carpenter, Beale, Frey, etc.

Raspail's Microscope.—In this instrument the magnifying glasses are supported by an arm which projects horizontally from an upright column that screws into the top of a box, in which the entire instrument is packed when it is not in use. This column also supports a stage which may be moved up and down by rack work, and a mirror for reflecting the light upwards through the object. This was the instrument so largely used by Raspail in his investigations into the structure of plants, and described by him in his works, and hence it has been called by his name. It resembles very closely the instrument called the Society of Arts Simple Microscope, which is manufactured by Mr. Field of Birmingham.

The Excelsior Microscope.—The accompanying engraving gives a very clear view of this microscope, which is constructed as follows:

To one end of the lid of a small wooden case or box, is attached one of the ends of the box; and when the lid is reversed and turned upside down, it may be slid into the groove which usually receives it, and then forms a stand for the lenses and glass stage, as is shown in engraving. The lenses and stage are supported by a steel rod, D, the lower end of which is hinged to the lid, so that it may be turned down and lie in a groove provided for it. When raised into the position shown in the figure, it is held very securely in place by means of the button, E; and this button also serves to retain it in the groove when it is turned down. The glass stage, G, which is fitted into a frame of hard rubber, slides easily on the stem, D, so as to be readily adjustable for focus, while at the same time it may be firmly fixed, by means of a set-screw, at any desired height, and will then serve as a stage for dissecting purposes. The frame which holds the lenses fits on to the top of the stem. mirror, H, is fitted into the case, and is readily adjustable by means of the button shown on the outside, so that light may

be reflected up through the stage when the objects to be examined are transparent; and when they are to be viewed by reflected light there is a dark ground of hard rubber (not shown in the engraving) which is also carried by the stem, D, and may be turned under the stage, so as to cut off all transmitted light. Dissecting needles (K and L), with neat handles, fit into appropriate grooves. When the lenses and stage are removed from the stem they are readily packed in the case; the

THE EXCELSIOR MICROSCOPE.

stem is then turned down and held in its groove by the button, E; the lid is drawn out of the groove, turned over, and replaced so that the vertical piece (C) closes the open end of the box, and the whole thing is packed into a compass which readily admits of its being carried in the vest pocket.

The lenses are well made, and being provided with a proper diaphragm, great clearness of definition is secured. Two styles

of frame are sold, one containing two, and the other three lenses, the latter being altogether the cheapest, in proportion to the power furnished. The magnifying powers are about as follows: With the lens of longest focus, five diameters; with the lens of medium focus, eight diameters; with the lens of shortest focus, ten diameters. When the lenses of shortest and medium foci are combined the magnifying power is about eighteen diameters; all three lenses together give a power of twenty-five to thirty diameters.

In using a combination of two or more lenses, the lens of shortest focus should always be placed nearest to the object.

As a dissecting microscope for botanical, entomological, and physiological work, this instrument is very efficient and convenient. The glass plate is fitted into the stage so as to form a cell capable of holding water, so that dissections may be carried on under that liquid, or aquatic animals may be kept alive and examined at leisure. The stage may also be turned, so that the flat side will be up when so desired, in which position it is most convenient for some purposes, such as dissections and the teasing out of tissues by means of needles. The only serious defect in the Excelsior microscope is that it is not sufficiently steady for ordinary work, the case which forms the base or foot being, for portability's sake, made quite small. This difficulty is, however, easily remedied by screwing the case to a piece of pine board six inches long, four inches wide, and three-quarters of an inch thick. A single small screw, which does not deface the instrument, is sufficient, and when the microscope is to be carried in the pocket it is easily detached from its temporary stand. Its low price, \$2.75, is a strong recommendation.

A very serviceable stand for a simple microscope is easily extemporized as follows: Procure a good sound wine cork and bore two holes through it, the holes being at right angles to each other, and to the axis of the cork. The holes should be of the right size to slide easily, but firmly, on a wire about the sixteenth of an inch in diameter. One piece of such wire is stuck perpendicularly in a wooden foot, and serves as a stand upon which the cork slides up and down; another piece of wire has a ring at one end for holding the magnifier, while the

other end is thrust through the second hole in the cork and is supported by it.

Whenever a piece of apparatus is to be supported steadily, while at the same time it is necessary that it should be easily moved and adjusted, nothing serves so well as a fine cork sliding on a smooth wire.

Twenty-five cent Microscopes.—Before leaving this subject it may be well to say a few words about those very cheap microscopes which have been so extensively advertised. We frequently see in the papers an advertisement in which some person offers to send for twenty-five cents a microscope which will show animalcules in water, globules of blood etc., etc., and the question naturally arises, Are these microscopes good for anything, or is the advertisement a swindle—the advertiser taking the money and sending nothing in return?

As a general rule, those who send to such advertisers, receive in return, a plate of brass or lead, with a glass bead fastened in a hole in the centre. The glass bead is formed by fusion and is frequently ground flat and polished on the side by which it was attached to the thread or rod of glass from which it was made, forming in such cases a hemispherical lens. Such lenses are very easily made by any one. Take a strip of flint glass, such as a piece of flint glass tubing, or a piece of glass rod, draw it out to a thread in the flame of a spirit lamp. fuse the end and allow it to gather into a drop. Give plenty of time and a good strong heat, so that the surface of the little globe may become well-fused and truly round. The best results are always obtained by holding the thread perpendicularly, as when held horizontally the globule is apt to become distorted. Make one or two dozen of these, and in separating them from the glass rod leave about an eighth of an inch of the latter attached to each globule, to serve as a handle, in the next step of the process, which consists in inserting them to about half their depth in a plate of cement, consisting of shellac thickened with very dry and finely powdered pumicestone. To form such a wax plate, melt some shellac in a ladle or large iron spoon, mix it carefully with as much powdered pumice-stone as can be conveniently stirred in, remove it from

the fire, stir well until it begins to stiffen, and then pour it out on a flat metal plate—the surface of a smoothing iron answering very well. The plate of cement should be from one-half to three-quarters of an inch thick, and the little globules are easily fastened into it by seizing them by the small handles left on them, holding them by a pair of forceps in a lamp flame until they are hot enough to melt the cement, and then pressing them in to about half their depth or a little more. When quite cold they will be very securely held. The little handles, or tails, are now nipped off with a pair of cutting pliers, and the globules ground all at once on a fine grindstone, or still better on a metal plate charged with emery. When they have been reduced nearly to the surface of the plate of cement, they should be ground with emery of the finest kind, and as soon as all coarse scratches have been removed they should be polished on a buff leather with crocus martis or putty powder. When finely polished they may be removed from the cement by means of a small chisel, and any cement that adheres may be dissolved off by means of alcohol. They are then mounted in thin plates of lead, brass, or, what is better still, vulcanite. Out of two dozen such globules, carefully made and well polished, three or four may be obtained that will give satisfactory definition, and it was with such lenses that the early microscopists made many of their discoveries. These men, however, took great pains in making and polishing them, and rejected hundreds as unfit for The objections to the microscopes of this kind, that are ordinarily sold, are that they are badly made, and that good and bad are sold together without any selection being exercised. But, even if well made, they are very difficult to use, and very unsatisfactory in their results, even in the hands of persons of great skill. The polish of a fused surface never equals that of a surface finely cut and polished, as every housekeeper that is familiar with common, and with cut glass, very well knows. The fused surface of these little globes is, therefore, always more or less, covered with striæ or very minute ridges which interfere with their defining powers, and we have described thus minutely the process of their manufacture, rather for the purpose of giving our readers such information as will enable them to understand how they can be sold so cheaply, than in the hope that they will endeavor to make them for themselves.

Penny Microscopes.—A few years ago a man in London made a living by selling through the streets a microscope which would show the eels in paste and vinegar, and of which the price was only one penny, (equal to two cents.) These microscopes were thus made: In the bottom of a pill-box he punched a small hole and then blackened the inside of the box. In this hole was placed a drop of Canada balsam or damar varnish, which was allowed to dry. When hard, the balsam formed a very tolerable lens.

A drop of water, balsam, or varnish, laid on the under side of a slip of clear glass will often enable us to extemporize a microscope capable of doing good service in the hands of a skillful observer. The outline of the drop should be perfectly round, and the glass plate should be held as level as possible. We have derived great assistance from such a lens, when better

could not be had.

The Craig Microscope.—This microscope at one time attained an unprecedented degree of popularity, not on account of its merits, but because of the extensive puffing and advertising which it received. It consists of a vertical frame, somewhat like that of the cheap French microscopes, having a mirror, but no sliding tube, as there is no occasion for any. The slide which holds the object is slipped through a horizontal slit cut in the stand, and the lens with its frame is laid on it.

The lens is a fused bead of glass set in a little frame, to the under side of which is attached a thin plate of glass, whose lower surface is exactly in the focus of the bead, so that when a drop of water or vinegar is placed on the glass plate, or such objects as insects' scales, wings, etc., are laid on it, they are exactly in focus. Hence, this microscope is said to require no adjustment for focus. This is true when the objects to be examined are actually in contact with the glass plate, but when we wish to examine objects that are covered with thin glass (as all valuable preparations should be) or objects having a perceptible thickness, it is impossible to adjust it for focus, and hence it is impossible to examine such objects satisfactorily.

ON THE SELECTION OF A MICROSCOPE FOR PRAC-TICAL PURPOSES.

The object of all the information given in the preceding pages, is to enable the reader not only to understand and use the microscope, but to select one judiciously; and, therefore, in every section we have offered hints bearing in this direction. We now propose to give the reader such special instructions as

are necessary in addition to those previously offered.

In selecting a microscope, regard must be had, not only to the excellence of the instrument, but to its adaptability to the purpose for which it is intended, and to the person who is to use it. A complicated and expensive compound microscope, if placed in the hands of a person having little experience or skill, would evidently be worse than wasted, while to attempt to conduct elaborate and delicate investigations by means of a cheap non-achromatic instrument, would simply be to throw away time. and wantonly incur the risk of serious errors. And yet no mistake is more frequently made. A microscope is wanted; the purchaser is liberal with his means, and he is saddled with an expensive instrument entirely unsuited to his requirements. Or, on the other hand, a physican or student of limited means requires an instrument, and being unable to afford the price of a really good one, he is induced to purchase a cheap affair, whose indications, when applied to the subjects for which he requires it, are entirely unreliable; whereas, he ought to be told that if he cannot afford a microscope with good objectives, he ought to leave microscopy in its applications to medicine and physiology alone. So, too, we often see compound microscopes sold to students of elementary botany, when a cheap dissecting microscope is really what they need.

It would be impossible to give anything like a list of special cases in which the different styles of microscopes prove most

useful: the reader whose attention is called to this point will have little difficulty in deciding the question for himself. We merely give the general rule, that where dissections of plants and animals are to be carried on, a simple microscope should in general be chosen, while the compound microscope furnished with good objectives, is indispensible whenever high powers are required for the *examination* of objects.

Having decided upon the *kind* of microscope that is needed, the next step is to determine the individual quality of the different instruments that may be offered to us. To do this thoroughly, it will in every case be found a good plan to take up, point by point, all those elements that are necessary or desirable in a microscope, and in this way subject the instrument to the most careful scrutiny. Unless a microscope is made specially to order, it will be difficult to find one that will combine all desirable features, but the plan we suggest certainly enables us to decide most readily and accurately as to the presence or absence of those points which are desirable for our purposes. The following are the chief points that demand attention:

Magnifying Power.—We place this first, because usually the first question in regard to a microscope that is asked by beginners is, "What is its magnifying power?" Now magnifying power, although an important element, is after all but a secondary consideration. A microscope magnifying a thousand diameters could easily be made and sold at a profit for five dollars, and a few cents expended in paper and paste will at any time double, or even treble, the magnifying power of an ordinary compound instrument. The proper question is not how much does a microscope magnify, but how much will it show. magnifying power of one hundred diameters, obtained by the use of first-class objectives, will enable us to see more of the true structure of an object than could be reached by a magnifying power of five hundred, the lenses in the latter case being of inferior quality. But, although not the first consideration, magnifying power is a feature of sufficient importance to deserve careful deliberation, and without a knowledge of the powers required, and the mode in which they are expressed, the beginner will often encounter difficulty. Both these points being essential, therefore, before discussing the magnifying powers best suited to different purposes, it may be well to say a word in regard to the mode in which magnifying power is always ex-

pressed by scientific men.

When we look at a small object through a microscope, and see it magnified to twice its length, it is evident that its breadth is also magnified twice, and consequently its surface, no matter what the shape may be, is magnified four times. It might also be said that as we only take cognizance of bodies having a sensible thickness, this thickness must be magnified twice, and therefore the object is magnified twice four, or eight times. The latter, however, is a view which is never insisted upon, and even those who claim the most for their microscopes, never do more than express the magnifying power in surfaces. Scientific men are, however, agreed that to express a magnifying power in surfaces is to convey a wrong impression in regard to the assistance rendered by the instrument to the natural vision, for a careful study of the physiology of vision, teaches us that our power to appreciate and distinguish the features of any object depends upon the distances to which the characteristic points of that object are separated, and this can be measured only by linear, and not by superficial units. There are other considerations which lead to the same conclusion, but for the beginner it is sufficient to know that all scientific microscopists are agreed that when the magnifying power of a microscope is stated, it shall be stated in diameters, and not in areas. By common consent, then, ten times means ten diameters. And yet it is a very common thing for charlatans, and those who wish to deceive the public, to say that a microscope sold by them magnifies ten thousand times, or one hundred diameters, and as "ten thousand times" is much more readily appreciated by the popular mind than "one hundred diameters," the majority of those who read such statements suppose that they will be enabled to see ten thousand times more than they could see with the naked eye, which assuredly is not the case. In some instances these advertisers do not even state the diameters. We have now before us, clipped from a journal of deservedly good reputation, an advertisment which reads as follows, omitting what printers call the "display" arrangement of the words: "Microscopes constructed on scientific principles magnifying 10,000 times." The microscope in question, as we learned by personal examination, gives a magnifying power of about one hundred diameters. Carpenter speaking upon this point says: "The superficial magnifying power is of course estimated by squaring the linear; but this mode of statement is never adopted by scientific observers, although often employed to excite popular admiration, or attract customers, by those whose interest is concerned in doing so." We would, therefore, advise our readers to look with suspicion upon any concern advertising in this manner. Of course an advertisement claiming a magnifying power of "10,000 areas or 100 diameters" is unobjectionable, because both expressions are placed upon an equal footing. It must also be borne in mind that great though unintentional mistakes are often made by dealers in stating the power of the microscopes they offer for sale. Not long ago a friend told us that he had been offered a small microscope having a magnifying power of 500 diameters, for a moderate sum. We called to see it, taking the precaution to put a micrometer and a foot rule in our pocket. By actual measurement the highest magnifying power of this microscope was 45 diameters! Another instance occurs in the catalogue of a well-known and honorable business house, who offer a very neat and well made instrument, whose magnifying power is claimed to be 350 diameters. Careful measurement of several instruments, however, gave an average power of less than 200 diameters! Indeed it will in general be found that the magnifying power stated by dealers who do not devote their chief attention to microscopes, is greatly over estimated.

So much, then, being clearly understood in each case, the question naturally arises. What should be the magnifying powers possessed by microscopes intended for certain specified purposes? That a certain magnifying power is necessary, no matter what the quality of the lenses may be, is true beyond a doubt. Thus, for example, suppose we wish to see the lines on the Pleurosigma Angulatum, which lines are about the one fifty. thousandth of an inch apart; what magnifying power would

be necessary?

With the best illumination, the average human eye can just clearly distinguish lines which are the two-hundredth of an inch apart. Some eyes, under favorable circumstances, can see lines placed as close together as 250 to the inch, but the average is as we have stated.* To be visible even to the best eyes, therefore, the lines on the Angulatum, must be magnified so that they will present the same appearance as lines spaced so as to give at the very most, say, 200 to the inch. This requires a magnifying power of 250 diameters, and with less than this they cannot be seen, no matter how good the objective may be. And when Dr. Frey says that they can be seen with a power of 80 or 100 times, while "weaker objectives, magnifying 40 or 50 times, should show something of the lines," he makes a statement that we cannot accept.

In order, therefore, that an object may be distinctly seen, it must be magnified to a certain extent, but the magnifying power absolutely necessary in any given case, will also depend upon whether the microscope is to be used for general purposes of investigation, or merely for the recognition of known forms. For the latter purpose a power of 100 may be sufficient, while for the former, on the same class of objects, a power of 500 would be the least that would be serviceable. The following are a few of the cases in which the power required can be stated approximately:

For medical purposes (except for pocket instruments, intended merely to enable the observer to recognize known forms) a power of 400 is needed, and the objective should be of really

excellent quality.

Students of histology require a microscope with a wider range of power. Low powers are more useful to them than to the medical man, and if they push their researches in certain directions, there is no limit to the magnifying power needed.

*To test the statement in the text, place a glass micrometer, ruled 200 lines to the inch, on the stage of a microscope, and by means of the mirror throw a beam of light upon it, just as if for examination by transmitted light in the usual way. If we now look at the lines, not through the tube, but simply from one side, they will appear distinctly as well-defined lines. Try the same with a micrometer ruled 250 to the inch; some eyes will be able to distinguish the lines, but very many will fail to do so.

A good two-third, one-fifth, and one-tenth, giving magnifying powers of from 50 to 1000 diameters, will, in general, answer most requirements. It must be borne in mind, however, that beginners can hardly be expected to use a one-tenth inch objective to great advantage, and, therefore, the purchase of this item may safely be deferred.

For the study of botany, and the ordinary facts of vegetable physiology, a power of 300 is sufficient; but the very minute forms of vegetable life require a much higher power, and so do certain of the higher points in the physiology of plants.

For the detection of adulteration, Hassal recommends the inch and the quarter-inch objectives, giving a magnifying power with No. 1 and No. 2 eye-pieces, of from 60 to 350 diameters.

For ordinary purposes of instruction and amusement in the household, a microscope magnifying from 30 to 150 diameters will be found most satisfactory, and for these reasons: Such an instrument is easily managed; if well made it gives a power amply sufficient for all ordinary objects, and it need not be expensive. Moreover, while it is an easy matter to prepare objects so that they may be seen satisfactorily under low and medium powers, it requires great skill and long practice to enable the student to prepare objects so that they may be examined with profit under a high power. And finally, under a high power, but a very small portion of any ordinary object can be seen at once, and consequently many of those things that are best suited for popular examination can only be seen piecemeala very unsatisfactory mode of proceeding. Thus, under a power of 750 diameters, a fly's foot could not possibly be seen as a whole; we might examine a single claw or pad at a time, but not the whole foot, and consequently would find great difficulty in acquiring an idea of what the general structure of the foot is. To give the reader clearer ideas upon this point, we have just measured the diameters of the fields seen under French and American objectives, with the following results: With a magnifying power of 25 diameters, the field is about a quarter of an inch; with 50 diameters, it is one-eighth of an inch; with 100 diameters, one-sixteenth of an inch; with 500 diameters, oneeightieth of an inch; and with 1000 diameters, the one-hundredand-fiftieth of an inch, a space which is ordinarily invisible to the naked eye. Consequently, when these high powers are used, it becomes very difficult for beginners to place the object properly under the microscope, for, as will be readily seen, unless it is adjusted with a variation less than the one-hundred-and-fiftieth of an inch, it cannot be seen at all.

The lowest powers that will show satisfactorily certain wellknown objects, are about as follows: The scales, or so-called feathers on the wings of most butterflies can be very well seen with a power of 25 diameters; under the same power, the eye of a fly shows very distinctly the several smaller eyes, or ocelli, of which it is composed; the individual corpuscles or globules of the frog's blood can be distinguished with a power of about 35 diameters, human blood requiring 40 to 50; to show distinctly the form, etc., of these same corpuscles requires a power of 200 and upwards. The same may be said of starch granules. Human hair and wool may be seen very satisfactorily under a power of 100 diameters, the former appearing like a cord, a quarter of an inch thick. In order to show the peculiar characteristics of these fibres, however, the lenses must be good. Cotton and flax can be readily distinguished under a power of 80 diameters.

A question very frequently asked in regard to cheap microscopes is. Will they show the animalcules in water? And in almost all the advertisements of cheap microscopes, we are told that they will do this. Now, good well water does not contain animalcules that can be seen with ordinary microscopes. is only in stagnant water that they are found, and many of them can be seen with the naked eye, without the use of any microscope whatever. Others require the use of microscopes having powers a hundred fold greater than that of the best microscopes in ordinary use. It is evident, therefore, that such statements are worthless as affording any indication of the character of a microscope. A microscope magnifying fifteen to twenty diameters will show objects that are perfectly invisible to the naked eye, and with fifty diameters, provided the definition is good, we can obtain a very interesting view of many of the most beautiful objects described in the books, and sometimes called animalcules, such as the Volvox Globator, the larger Vorticelli, etc., etc.

The Stand.—This should be firm and substantial, with the centre of gravity very low. Nothing detracts so much from the performance of an objective as tremor and vibration, and a large majority of the microscopes in market are very shaky, from the fact that they are made tall and showy in order to command a higher price. It is well, therefore, to bear in mind that size is no criterion of the value of a microscope. Instrument makers very properly give the size of their instruments, and it generally happens that the largest instruments by the same maker bear the highest prices. Other things being equal, however, small, compact instruments are altogether to be preferred. Some years ago the rage was for large, showy microscopes, which made a fine appearance in the office of the physician, and the study of the naturalist. It was found, however, that in this case efficiency was sacrificed to show, and all our best makers are now cutting down the sizes of their instruments, and making them steady, substantial, durable and easily operated.

There is, of course, a limit to the extent to which stands may be reduced in size without sacrificing their efficiency, and some makers seem to forget this. There are stands in market that are too small every way for anything but special classes of work. The bodies are too small to secure efficiency in the eyepieces and objectives; the stage is too small to allow of the use of slides of proper size, and there is no room beneath the stage for the attachment of proper illuminating apparatus. All this is as inconvenient as the three-feet-high microscopes of the end of the last century.

The weight of the stand is a subject concerning which many seem to differ in opinion. One writer goes so far as to say that no stand weighing less than fifteen pounds can be steady enough for the performance of good work. It will be found, however, that a judicious distribution of the material, and a proper construction of the different parts, will more effectually resist the usual sources of unsteadiness than any increase of absolute weight. Of course, if it is merely desired to make the microscope steady, in the sense that an inkstand is steady—that is, not liable to be tipped over—weight is everything. But the stands that are most difficult to tip over are not those that resist vibrations most perfectly. For the latter a tripod with a

small area of support is best; for the former a stand with a flat base resting over its whole surface on the table should be preferred.

It is obvious that the causes of unsteadiness are either vibrations transmitted from the floor, or movements caused by the hand in performing the necessary manipulations and adjustments. The first can never be stopped by weight, unless, indeed, we make the stand so heavy that its weight will impart rigidity to the table and floor, and this would require a good deal more than fifteen pounds, or even twice that. For the checking of vibrations transmitted from the floor, no device is better than the stand or table described in a subsequent section. So far as movements transmitted by the hand are concerned, if a stand of three or four pounds will not resist them, the observer should set himself about learning delicacy of movement before he proceeds any further.

All microscopes made in this country and in England are now constructed so that the body may be inclined to any angle, thus giving the power of using the microscope in any position -vertical, inclined or horizontal. The importance of this is easily seen when we consider that on the one hand, when liquids are to be examined, it is sometimes necessary, or at least desirable to use the microscope in a vertical position, though this is a very tiresome and inconvenient position, and one that is not calculated to enable the observer to obtain the best possible results; and on the other, it is equally necessary that the body of the microscope should be capable of assuming the horizontal position when the camera lucida is to be employed for making drawings, as will be hereafter explained. And yet Frey actually gives the preference to microscopes that do not incline, and which must always be used in a vertical position! This, of course, necessitates the complicated and expensive arrangement which he describes for adapting the camera lucida to the vertical instrument, a singular instance of prejudice against an obvious and successful improvement.

The Stage.—In every case, a large, roomy stage is of the utmost importance. One great objection to most French in-

struments is that the stages are too small. It should also be firm and substantial, so that its position in regard to the other parts of the stand cannot be varied by slight pressure. At the same time, however, it must be borne in mind that no stage ever was made so firm that even a slight pressure would not affect it. If, therefore, the reader is determined not to rest content with anything short of a perfectly rigid stage, he will reject all the best microscopes in market.

In most microscopes the object is held in place by spring clips, and these should not be too strong or they will be very inconvenient. They should also be so attached that they may

be easily removed or turned out of the way.

The Mirror.—In microscopes of modern construction, the mirror is made of glass, coated with pure silver, (ordinary mirrors are coated with an amalgam of mercury and tin) and the best instruments are provided with two mirrors, one plane and the other concave. In both mirrors the surfaces of the glass should be accurately ground and polished. Blown glass will not answer. The plane mirror reflects the light just as it falls on it, while the concave one causes parallel rays (such as those from the sun) to converge and meet at a point, and renders divergent rays (such as those from a lamp) either less divergent, parallel, or convergent, as the case may be. The concave mirror should be large, but the plane mirror is as efficient when small as when large. Where but one mirror is provided, the concave is the one usually selected.

In English and American microscopes of even the cheapest construction, the mirror is so arranged that it may be made to send a beam of light through the object very obliquely. This is absolutely necessary for some purposes, but not for the examination of ordinary objects. The ability to use oblique light, as it is called, is, however, a great advantage. It not only enables us to resolve lined objects, but to secure important changes in the illumination of common objects. A very fair dark ground illumination may also be secured by placing the mirror in such an oblique position that none of the light can

enter the object-glass directly.

The Body.—The only point connected with the body of the microscope which requires consideration is its size, and this must of necessity vary so much according to the purposes to which the microscope is to be applied, that no rule can be laid down. Pocket microscopes are of necessity small; microscopes intended to give very great magnifying power must be large. A standard size is seven to eight inches in length. The diameter is not of very great importance in bodies of moderate length, but Beale says that in his long tubes, intended to produce great magnifying power, a diameter of two to two-anda-half inches was found to be absolutely necessary. An inch and an eighth is a good size for ordinary instruments. Since a very long body is inconvenient when the microscope is used in a vertical position, the best instruments are furnished with a

Draw Tube, whereby, the length of the body may be varied at pleasure. As explained in a former paragraph, (page 15,) when the distance between the eye-piece and the objectglass is increased, the magnifying power is increased also. The draw tube, therefore, gives us the means of varying and adjusting the magnifying power of the microscope, and this is sometimes of great use. Thus, suppose it were required to draw an object to a scale magnified exactly one hundred diameters; it might be impossible to procure an eye-piece and an objective that, with a fixed length of body, would give exactly this amplification, but when we are able to vary the magnifying power by changing the length of the body, it is easy to get at it exactly. This, however, is but one of many advantages afforded by the draw-tube. If the objective be good, and the eye-piece not very high, an easy and very satisfactory way to increase the magnifying power of the microscope is to lengthen the body by means of an additional tube. Dr. Beale, who has been a most successful worker with high magnifying powers, tells us that in practice he has found this plan so much more advantageous than the use of a deep eye-piece, that he never uses the latter. In some cases he has extended the length of the tube to two feet with good results. We have frequently adopted this method, and where brass tubing could not be had we have used smooth writing paper, and a little paste with very good effect.

The inside of all draw-tubes and bodies should be well blackened. When bright or white the glare greatly injures the defining power. When draw-tubes are so arranged that they rub against the inside of the tube forming the body, they invariably make the latter bright by friction. They should, therefore, always slide in a collar. It is always well to have the lower end of the draw-tube furnished with the Society screw, as by this means it is sometimes possible to use objectives of greater working distance than could otherwise be employed.

Adjustments for Focussing.-In the cheaper forms of the microscope the adjustment is made directly by hand, one tube sliding within another. In a better class of instruments the objective is brought nearly into position by sliding the body through an outer tube, and then the final adjustment is made by means of a screw or other mechanical means. But in all the best microscopes, the coarse adjustment, as it is called, is made by means of a rack and pinion, while the fine adjustment is made in the manner just mentioned. Instead of a rack and pinion, a chain is sometimes employed, and the coarse adjustment is also made in some cases by screws of very wide pitch, and similar devices. Nothing, however, can equal a smoothly cut and well-fitted rack and pinion. It is sometimes alleged that the chain is more delicate, but this is not so. We have now in our possession a cheap, but well made microscope, the rack and pinion of which is so delicate, that with it we can focus an objective of an eighth of an inch focal distance with sufficient accuracy for all ordinary purposes.

For ordinary purposes, especially the work of the physician and medical student, the coarse adjustment may be more easily dispensed with than the fine one, but at the same time it must be remembered that any mode of adjustment in which the body is liable to turn round, is incompatible with the use of many important pieces of apparatus. Thus, for example, any turning of the body interferes with the use of the double nosepiece, the polariscope in its higher applications, Prof. Smith's opaque illuminator, etc. A rack and pinion, or its equivalent, should, therefore, always be chosen, especially as it does not add more than five or six dollars to the cost of the instrument.

The Diaphragm.—Nothing tends so much to obscure our view of the finer points of structure in any object as to have them "drowned" in a superabundance of light, consequently in order to regulate the amount of light which passes through the object, a diaphragm is employed. As ordinarily constructed, it is simply a metal plate placed below the stage, and pierced with holes of various sizes, which may be brought exactly under the field of view, the small holes allowing but a small amount of light to pass, while the large ones admit a full stream.

Objectives.—These are by far the most important part of the microscope, and unless they are carefully corrected it is impossible to obtain clear and accurate views with any except the very lowest powers. Consequently common or non-achromatic objectives are never employed in microscopes which magnify more than one hundred diameters.

First-class achromatic objectives are quite expensive, single ones often costing more than the price of a very fair microscope, all complete. Most makers furnish what are known as students' objectives, which cost much less, and are capable of doing very good work. A still cheaper grade of objectives are those known as French triplets. Of these the half-inch and the quarter-inch are frequently very good.

Objectives are rated either by numbers or by the focal distance of the simple lens to which they are equivalent. Thus an inch objective is one that magnifies ten diameters, the eye being ten inches from the object. This is without the eyepiece, and if the eye-piece magnifies ten times also, the magnifying power of the microscope will be one hundred diameters.

As regards the quality of the objective to be chosen, the most obvious rule would be to select the best that is attainable. To this rule, however, an exception must be made. To use a first-class glass with results equal to its quality, requires more skill than most beginners possess, and therefore the second class objectives will, in their hands, actually do better work than their more expensive rivals. And for the comfort of those who cannot afford the more expensive instruments, we would remind them that it is astonishing how far patience,

skill and experience will go to make up for a deficient instrument. Indeed, it is unfortunately true that some who possess the very best glasses, and have done the most to throw ridicule upon all work done with inferior lenses, have never made a single contribution of the slightest importance to any department of microscopical science.

It is a well-known fact that the very expensive objectives, unless well arranged as to illumination and the adjustment for thickness of cover, are practically worthless.

An important point for consideration will, of course, be, whether or not the glass is intended for original work, or merely for the study or examination of well known objects. The work of the physician and student is chiefly amongst well known objects, and may be very satisfactorily accomplished by means of good non-adjusting objectives, a great point in favor of such glasses being that work may be done with them more rapidly than with glasses that require greater care and skill.

Eye-Pieces.—The magnifying power of every microscope depends upon three things: The focal length of the objective, the length of the body, and the eye-piece. The best microscopes are, therefore, furnished with several eye-pieces, whereby the magnifying power may be varied. There is, however, a limit to the extent to which this may be done. The image obtained by very powerful or deep eye-pieces, as they are called, is rarely satisfactory. The extent to which the definition of really good objectives is deteriorated by the use of eye-pieces of poor quality is sometimes very great.

The lenses composing the eye-piece should be free from air-bubbles, specks and striæ, and the surfaces should be well polished. On looking through the eye-piece at a strongly and evenly illuminated surface, the entire field of view—that is, the whole of the bright circle that is seen, should have the light evenly diffused over its surface, and the edges or border of this circle should be sharp and black.

The different eye-pieces are generally denoted by letters—A, B, C, D, etc., A being the lowest, and B, C, D, etc., successively higher. Some makers use numbers—1, 2, 3, 4, etc. These letters and numbers are, however, entirely arbitrary, in this point

resembling the numbers assigned to objectives by continental makers. A great improvement upon this arbitrary and uncertain system would be to assign to each eye-piece its proper power expressed in inches. Thus, an eye-piece magnifying the same as a simple lens of two inches focus, should be called the two-inch eye-piece.

And here let us call attention to the terms deep and shallow, as applied to eye-pieces. By all authors of repute, a deep eye-piece is one of great magnifying power, while a shallow eye-piece is the reverse. See the Micrographic Dictionary, and the works of Carpenter, Beale, Lardner, Frey, etc., etc. It is, therefore, singular that Dr. Lankester, in his popular little work, "Half-Hours with the Microscope," should have committed the mistake of giving definitions exactly the opposite, upon the ground that eye-pieces of great magnifying power are always short, while low eye-pieces are always long. It is evident, however, that the terms are liable to give rise to confusion, and we pre-fer the words *high* and *low*—the meaning of which is so obvious as to require no explanation, as every body knows what high magnifying power is

While clearness of definition and resolving power are the most important qualities of every good microscope, magnifying power is also of considerable consequence, as explained in a former section. Therefore, every good microscope should be provided with at least one eye-piece of considerable power. often happens that with the objectives and eye-pieces at hand, the amplification, as it is called, or, in other words, the extent to which the object is magnified, is not sufficiently great to enable us to make out its structure, while the objective has not by any means reached the limit of its defining power. In this case a high power eye-piece, which costs comparatively little, will greatly extend our power of successful examination.

ACCESSORY APPARATUS.

Every microscope should be accompanied with certain pieces of accessory apparatus, which are necessary for the convenient and thorough examination of objects, but which do not form part of the instrument itself. Some of these are intended for

the better illumination of the object, and will be described in the section on "Light;" others are used for the procuring and preparation of objects, and will be described in the section devoted to that subject. The following are employed chiefly for holding and presenting objects that have not been "mounted:"

Stage Forceps.—This little instrument accompanies the oldest microscopes. It consists of a pair of very delicate forceps, such as those attached to the forceps-carrier in Fig. 4, which close by the spring of the jaws, and hold any object that may be placed in their grasp. They are opened by pressing on the pins which are seen at the sides. They are in general fastened to the microscope by being stuck into a hole in the stage, and the object may not only be moved backward and forward, but it can be turned round. The better class of forceps carry a small brass tube (shown in Fig. 4) which is filled with cork, and which serves to receive pins, etc., for holding insects, and other objects.

Forceps-Carrier. — However well made the forceps may be, it is almost impossible to slide, with sufficient delicacy, the rod through the tube that holds it. Consequently, it is exceedingly difficult to bring into the field of view, the exact part of the object, that we may wish to

examine. To avoid this difficulty, the author, instead of inserting the pin of the forceps in the stage, provides a special forceps-carrier like that shown in Fig 4. This consists simply of a metal plate, the size of an ordinary slide, and having a hole in one end to receive the pin of the forceps. A large hole is pierced through the centre, to allow the passage of light from the mirror when that is needed. This plate is placed on the stage like a common slide, and it can be moved with as great delicacy as any ordinary object. The mode of using it is too obvious to require further explanation. We have found it exceedingly convenient.

Object-Holder.—The importance of being able to present an object to the light in all directions is well-known to every microscopist. Many years ago we devised an object-holder for effecting this, the construction of which is very simple and inexpensive. It consists of a slip of metal, the size of an ordinary slide—three inches by one—having a hole in the centre

Fig. 5.—object-holder.

and a short pillar rising from one end, as shown in the engraving, Fig. 5, which gives a sectional elevation of the instrument. Through this pillar runs a wire, carrying at one end a milled head by which it may be turned, and at the other a ring which holds a perforated block. This perforated block has a milled collar on the lower end, so that it can be readily turned in the ring that carries it. The hole passing through the block is just the size of a stout pin, so that a disk of card or leather, with a pin through it, will be held steadily when the pin is inserted in the hole. The object to be examined is attached to the surface of the card, by means of balsam or mucilage, and it is obvious that by the combined rotations that may be produced by the two milled heads mentioned, it may be exposed to the action of the light in any desired manner.

The changes which are produced in some objects when the light is made to fall on then in different directions are very marked. Thus, for example, the mineral known as specular iron ore, when illuminated by light falling on it in one direction, is brilliant in the extreme, while when the light falls in other directions it is dead and lustreless. And as it is not always convenient to change the position of the lamp, it is a great advantage to be able to turn the object round. The simple contrivance just described enables us to do this perfectly.

A more perfect arrangement, intended for the same purpose, has been devised by Mr. Beck, of London. Mr. Beck's is,

however, more expensive than ours.

Plain Slides.—The common plain slides serve very well for examining ordinary deposits in liquids. This is particularly the case where inanimate objects, vegetables and minerals are to be examined. Active animals require some contrivance for keeping them still.

The Concave Slide, as it is called, is simply a thick slide with a cup-like hollow ground in the centre. Such slides are cheap, and very convenient. A drop of water placed in one of these concaves, and covered with a thin glass, may be examined easily and thoroughly with moderate power. It is sometimes desirable to employ a cell with a perfectly flat bottom of very thin glass. Such cells may be easily and conveniently made out of a slide of metal, or preferably of vulcanite, through which a hole the size of the proposed cell has been pierced. A piece of thin glass may then be cemented to the under side of the slide, so as to form a water-tight cup. The hole in our slides is round, and has, on the under side, a seat or rebate, a little larger than the hole itself. In this rebate a round glass cover fits, so as to leave the under side of the slide perfectly smooth. Such cells are very convenient, as they are easily cleaned, and are not difficult to repair when the thin glass gets broken. The liquid is also easily covered by means of a thin glass cover, and when full, considerable inclination may be given to the slide before the liquid shows a tendency to run out. Various other devices of a simple kind may be contrived by the microscopist for similar purposes,

Watch-Glasses.—Dr. Beale recommends small flat watch-glasses for holding liquids that are to be examined, and we have found them very excellent. The best kind for this purpose are those known as lunette glasses, which are nearly flat on the bottom. They are awkward things to manipulate, however, unless some means is provided for holding them steady, and moving them about on the stage. We use for this purpose a strip of wood, three inches long, and so wide that we can easily bore in it a hole, about one-eighth of an inch less in diameter than the watch-glass, of which the smallest size should be chosen. The thickness of the strip should be such that when laid on any flat surface, the watch-glass will not come in contact with it. Glasses held in this way are very convenient.

Fig. 11.-WATCH-GLASS HOLDER.

Watch-glasses are very convenient for examining a "dip" from a pond or stream, but for this purpose they require a holder. The little instrument shown in the cut is formed of three pieces of bright tin, which are hinged together. In the upper piece is cut a hole just large enough to receive a watch-glass. Aring of metal of proper height surrounds this hole, and forms a perfect protection to the glass when the instrument is carried in the pocket. The lower slip of tin may be adjusted to any angle, and by turning towards the proper direction, the light of any bright cloud may be reflected up through the liquid. All the joints are made stiff enough to remain in position when once adjusted. A watch-glass arranged in this manner holds a liberal supply of liquid, so that an entire "dip" may be readily examined at once. We have found this little contrivance far superior to more expensive arrangements. It packs into small compass, and is safely carried.

Animalcule Cage.—This forms a very excellent means for holding animalcules that are too active to allow of observation on slides, or in watch-glasses. A good idea of its con-

Fig. 12.—ANIMALCULE CAGE.

struction may be obtained from the engraving, where it will be seen to consist of a plate of metal, three by one inches, to the centre of which is fixed a short tube. In

the upper end of this tube is fastened a beveled piece of glass, and a second tube fits over the first, and has a thin glass cover secured in its upper end. The animalcule is securely held between the two pieces of glass, and the lower glass being beveled on the edge, a drop of liquid placed on it is held between the two glasses by capillary attraction, and cannot spread over the inside of the cage. This point is generally neglected in the cheaper forms of the cage, in which the lower glass is simply a plain disc burnished into the upper end of the inner tube. The consequence is that when the two glasses are brought together the liquid flows over the entire inside of the cage, and the objects are liable to be floated out and lost. As it is important that the distance of the two glasses from each other should be easily and accurately regulated, the outer tube should be slit, so as to make it springy. In this way it may be made to move with a soft and equable motion.

The Zoophyte Trough.—This little piece of apparatus is almost indispensable to those who desire to watch the growth and development of the larger animalcules and small aquatic

Fig. 13.—ZOOPHYTE TROUGH.

plants. Several forms are in common use, the most complete being that shown in Fig. 13. The trough itself is simply a glass tank, to which is fitted a slip of thin plate glass that acts as a division, and enables the observer to keep the objects close up to the front plate. The distance of the dividing plate from the front plate is regulated by an ivory wedge, and the dividing

plate is kept firmly up to its place by means of a spring. This contrivance enables us to regulate the thickness or width of the tank, so that the interior of the vessel may be made so large that it can be easily cleaned.

A smaller and simpler is shown in Fig. 14. It open at the top. The back of the box is formed of a stoutish piece of plate glass, to which is cemented three glass strips, forming the bottom and ends. The front is formed of glass as thin as is compatible with durability, and is also cemented to the end pieces. The width of the trough from front to

A smaller and simpler form of the Zoophyte trough is shown in Fig. 14. It consists of a simple glass box,

Fig. 14.—ZOOPHYTE TROUGH.

back is generally from an eighth to a quarter of an inch. When the trough is filled with water, and living animals are placed in it, their changes and movements may be very readily watched.

Small troughs, such as that just described, are not difficult to make, though the very low price at which they are sold (60 cents to \$1.00) renders it scarcely worth the while of ordinary

microscopists to construct them for themselves. Where this is desirable, however, the best method of making them is as follows: Select a piece of plate glass, of the thickness of an ordinary slide, and cut it about three inches by one and a quarter. Then select another piece of glass, as thick as the trough is to be deep (from front to back), and cut it to the size of the outside of the trough. From the bottom of this piece of glass cut a strip a quarter of an inch wide, and from the sides cut also strips of the same width. The centre piece may now be thrown aside, and the ends of the side strips will make a tight joint with the bottom strip. The three strips should then be cemented to the large plate, and over them should be cemented a piece of the thin glass used for covers. The strongest cement is marine glue, but we are told by Prof. Starr, who is well known for his success in keeping and exhibiting living microscopic objects, that marine glue is very apt to destroy animal life. He, therefore, uses old Canada balsam, and we have seen a large variety of minute forms of animal and vegetable life which had been kept for months in a healthy condition in such troughs or cages.

Compressorium.—In the examination of certain objects, it is frequently necessary to flatten, and even to crush them, in order to render their structure visible. This is best accomplished by means of a well-made compressorium, of which there are several different kinds in use. The ordinary compressorium consists of a metal plate, in the centre of which is fixed the disc of glass upon which the object is laid. A second disc, fastened in a ring which is hung at the end of a lever, by means of two pivots, is pressed against the first by means of a screw, which tilts the lever. In this way a very strong pressure may be exerted, while, owing to the free movement of the ring on the pivots, the plates of glass always remain parallel to each other.

A compressorium which may be used to examine either side of an object is constructed by Messrs. Ross & Co. In this form the two plates are brought together by means of a wedge, which is moved by a screw.

Gravity Compressorium.—The animalcule cage above described was invented by Varley, many years ago, and is very

excellent, but requires considerable skill in its use. It is difficult to adjust the pressure with sufficient delicacy, and we are apt either to crush the animal or leave it too free in its movements. These difficulties are avoided by the apparatus shown in the engraving. Two plates of metal are provided, each with a hole in the centre, which hole is covered with a piece of thin glass. At one end the upper plate has two pins, which fit into two holes in the lower plate, and serve to prevent all side movements. A screw passes through the other end of the upper plate, and serves to separate the two. A drop of water containing an animalcule having been placed on the thin glass attached to the lower plate, the upper plate, with the screw projecting sufficiently from the under side, is laid on it. Then by turning the screw, we can bring the two plates together to any required degree of nearness, and with the utmost delicacy.

Fig. 15.—THE GRAVITY COMPRESSORIUM.

Any minute animal may thus be firmly grasped, without crushing it, while the compressing power exerted by the mere weight of the metal plate is in almost all cases sufficient, even for the complete flattening out of small worms, etc. Even such creatures as the larva of the common gnat or mosquito may be completely crushed by the weight of a plate less than the eighth of an inch thick; and, where greater force is required, it is of course easy to apply the pressure of the finger. In the latter case, no danger of exerting too great a pressure need be incurred, as the projecting screw prevents all that. The want of parallelism between the plates does not prove a serious objection, as it is so very slight that it is hardly perceptible in the short distances ordinarily under observation. Where, however, it is desirable to avoid this defect, screws may be substituted for the pins, and the points may be made to work in holes bored half through the lower plate.

Where animalcule cages are not accessible, a small animal may be held between a common slide and a thin cover. To prevent crushing it, a hair or even a thread may be placed between the cover and the glass. A German author recommends the use of fine gauze or netting, in the meshes of which an animalcule may be held very conveniently. Acting on this idea, we took a thin metal plate, and bored it full of holes of various sizes. An animalcule placed in one of these holes may be kept in the field of view for any length of time, and exhibited to those who desire to see it, but it cannot be kept quiet for scientific examination. We like a piece of fine wire-gauze, better than cotton or linen netting.

Growing Slides.—Where it is desirable to keep the same living object for a considerable time, so as to watch its changes, it is necessary to use what is called a growing slide, by which it may be regularly supplied with air and moisture. A large num-

Fig. 16.—GROWING SLIDE.

ber of complicated devices have been described for this purpose, but the following simple contrivance answers the end very well; we have used it for years. To one end of a common slide with a concave centre, cement a small bottle, as shown in the figure. This is easily done by means of a little marine glue. The glue, cut in small pieces, should be laid on the slide at the point where the bottle is to be attached; the slide is then to be gradually heated until the glue is softened, when the bottle is laid on and moved back and forth until it has been thoroughly imbedded in the cement. The bottle is filled with water and corked, the upper side of the cork having two notches cut in it, one for the entrance of air, and the other for the passage of a loose cotton

thread. The object is placed in the concavity, covered with a piece of thin glass, and the end of the thread is carried under the cover by means of a small notch cut in the slide with a file. The bottle must be filled with very pure water, otherwise the salts, etc., contained in it, become concentrated under the thin cover, owing to the evaporation, and destroy the object.

Frog Plate.—The circulation of the blood in the capillaries of living animals may be observed in the web of the frog's foot, the tail of a small fish or water-lizard, the larvæ of many insects, the ear of a young mouse and the wing of the bat. The tongue of the frog is also a favorite subject with some, and dissections of the living animal have also been made, and the circulation observed in the parts thus displayed. Except, however, for important investigations, we have no right thus to inflict torture and destroy life, and, moreover, the obvious cruelty of the means employed, will to most minds destroy nearly all the pleasure arising from the beauty of the exhibition. Fortunately the circulation of the blood in the foot of the frog may be witnessed without subjecting the animal to any pain. For this purpose the web of the hind foot is spread out over a piece of glass, which is held in a frog-plate, as it is called, to which the little animal is attached. The frog-plates usually sold, however, do not lie conveniently on the stage of a small microscope; they are apt to tip up, and there is no means of attaching them firmly to the stage, so that it is impossible to incline the microscope. The annexed engravings represent a frog-plate, in which these difficulties are avoided. As seen in the figure, it is of the usual form, and has a large opening, into which is burnished a piece of thinnish plate glass upon which the web of the foot is laid. Around this opening is bored a number of small holes, through which threads, tied to the frog's toes, are passed and held firmly by small wooden pins. A series of holes are also bored on each side and cut out at the edge, so that it is unnecessary to pass the twine through the holes, as it may be readily slipped into them. The frog may be enclosed in a bag, one foot being left out, but a simpler and better plan is to swathe him in a strip of muslin two inches wide and eight to twelve inches long. The muslin is dipped in water, and the

Fig. 17. FROG PLATE, PLAN AND SECTION.

Fig. 18.

frog rolled up in it and laid on the plate, where he is held by a few turns of light packing twine passed into the slits in the side of the plate and carried from one to the other and over the animal. Small frogs are best for this purpose, but when too small they are not easily handled. The position of the animal on the plate is so arranged that the foot may be spread over the glass plate that fills the large opening.

The plate is attached to the stage as follows: A cylindrical brass block (Fig. 19) is provided—this block having a milled belt, which renders it more easily turned. The upper surface of

Fig. 19.

this block receives a screw which passes through a slot of considerable length, cut in the frog plate, thus allowing a wide range of motion on the part of the latter; the under surface of the block receives a second screw, which serves to secure it to the stage of the microscope, as shown in Fig. 18. The holes for these screws are not in the same line, their axes being about a quarter of an inch apart, and the consequence is that when the brass block is rotated on the stage, the screw

that passes through the plate acts like a crank in relation to the plate, and moves it longitudinally, provided it (the plate) is kept from rotating with the block. The upper screw is inserted with sufficient tightness to keep the plate from shaking, but is left so loose that the plate can be readily moved back and forth. Hence, while the plate is attached to the stage in such a way that it can not tip up or fall off, it may readily be moved in two directions, one the arc of a comparatively large circle, and the other a longitudinal motion at right angles to this.

This frog plate forms in fact a sort of mechanical stage which admits of very delicate movements being very steadily made. Where this plate is used, the microscope may be inclined to any angle, and no jerking or starting of the animal can displace the portion of the foot that is under observation. Different parts of the same foot and different corresponding parts of different feet are more or less suited to purposes of observation, according as they are more or less transparent and more or less fully supplied with vessels. It is therefore of great ad-

vantage to be able to select that part which answers our purpose most perfectly, and this plate affords peculiar facilities for effecting this.

Table.—The table used for supporting the microscope should be firm and substantial, so that all shake and vibration may be avoided. Those who use very high powers, and desire to avoid vibration as much as possible, will find that a barrel or box, filled with sand, and resting on three feet, makes the best support. Some years ago, having some rather delicate investigations to make, we constructed a table in this way, and found the results very gratifying. Our table was arranged as follows: a common barrel, cut down a little, and filled with sand, was supported on three stout blocks nailed to the bottom. The table proper was made of plank, nearly square, and it entirely covered the top of the barrel. It was supported by a + shaped piece of wood, which was fastened to the centre of the table, and descended into the sand. With such a table, walking on the floor, and the passage of heavy teams in the street, produce no vibration, though, on an ordinary table, they render work with high powers almost impossible.

Where several persons wish to look through the same microscope, it is very awkward if each one has to get up and go to the instrument. At the same time it is of course impossible to move the microscope without moving the arrangement for illumination also. This difficulty has been avoided by means of revolving tables, around which the observers sit, each one in turn examining the object, as the microscope is passed round to him. This is a very excellent, but a somewhat expensive arrangement. The same end may be attained by placing the microscope, lamp, etc., on a smooth board of suitable size and shape, and passing this board to each observer in turn. The board, carrying microscope, lamp, etc., may be made to slide quite easily, and if placed on three feet, it is tolerably steady. Such a support, however, is not to be chosen where the microscope is used for scientific investigations.

ILLUMINATION OF OPAQUE OBJECTS.

Diffused Light.—This term is applied to ordinary daylight or lamp-light, allowed to fall on the object without the intervention of any special means of concentration. That diffused light may be available for the illumination of objects, it is necessary that the objectives be good. Objects which, with ordinary triplets of low angular aperture, are entirely invisible, become beautifully distinct when a better class of objectives is used. Under favorable circumstances the view obtained in this way of any well marked object is very pleasant.

Bulls-Eye Condenser.—This is a large lens of comparatively short focus, which is made to condense the light on the object in the same way that the common burning-glass acts, but with effects greatly less marked, since the light is so much less intense. In some cases the condensing lens is attached to the microscope, and in some special cases this is very convenient, but where there is only one condenser, it should be mounted on

Fig. 22.—BULLS-EYE

a stand, as shown in Fig. 22, so that it may be placed at any height and turned in any direction. Placed between the object and the lamp, it collects the rays of the latter to a focus which brightly illuminates any object upon which it may fall. Opaque objects, which by diffused light are barely visible under the microscope, become very distinct and clearly defined when thus illuminated, and many of them, such as the wings of insects and certain minerals, appear in the most gorgeous colors, which, however, are perfectly natural, and are not the result of chromatic defects in the lenses.

In viewing an opaque object by reflected light, it is evident that we are enabled to judge of the irregularities of the surface largely by means of the shadows cast by the

prominences. By raising or lowering the lamp, and also the con-

denser, the direction and extent of these shadows may be greatly varied. Hence one of the advantages of the students' lamp.

An important use of the condensing lens is to change the direction or character of the rays employed. Thus, when a lamp is in use the rays are divergent, and the easiest way to render them parallel is to pass them through a condensing lens. To effect this the distance of the lens from the lamp must be exactly the same as that at which it brings parallel rays to a focus. In other words, the lens must be at a distance from the lamp which is exactly equal to its focal distance for parallel rays.

Condensing lenses are made of all sizes, and some of them are quite expensive, but we have frequently obtained wonderfully fine results by means of a cheap lens of small size, but good form. A condensing lens is, perhaps, the most important accessory that can accompany a microscope.

Side Reflector.—This is a small silvered concave mirror, which is used to throw the light on the object for the same purpose as the condensing lens. The results which it gives are slightly different, and it is a most valuable means of illumination. It has not been so generally introduced as it deserves to be, and few microscopes are furnished with it unless to special order. It should always be used in combination with a bulls-eye condenser, as light of much greater intensity is thus obtained.

The Lieberkuhn.—This was one of the first instruments used for illuminating opaque objects. It consists of a small, concave, spherical mirror, through the centre of which the objective passes, the focus of the mirror and objective coinciding. The object must be small, and is generally mounted on a small circular disc of leather or card, which stops out the central rays, while the light which passes round it strikes against the concave mirror, and is reflected back again upon the object. The Lieberkuhn gives very brilliant effects with some objects, but it is not very highly prized by modern scientific investigators.

ILLUMINATION OF TRANSPARENT OBJECTS.

The different methods which have been devised for viewing transparent objects are quite as numerous as those available for opaque ones, and require quite as much tact and study. A skilful worker, who thoroughly understands the points essential to good, or rather to appropriate and efficient illumination, will attain results wonderfully superior to those achieved by persons ignorant of the subject, and this, too, although the latter may be working with far superior instruments. This is seen every season at our microscopical exhibitions and conversaziones, and although the work done on these occasions is chiefly for show, the same principle holds good in regard to work done in the direction of study and investigation.

Direct and Reflected Light.-When the microscope is so arranged that the light from a lamp or other self-luminous body shall pass directly through the object and into the microscope without being first reflected from the mirror, the illumination is said to be direct, in distinction from light which has been first reflected from a mirror or other surface. Light from a cloud or a white wall can scarcely be regarded as direct. Direct light gives results which are appreciably different from those produced by reflected light, since light always suffers a change in character by reflection. These two kinds of illumination may be either axial or oblique, and in the case of both reflected and direct light, if the source of light be very distant, the rays will be sensibly parallel, but if the source of light be very near, the rays will be divergent, and, consequently, under such circumstances, the illumination must in part be more or less oblique.

Axial or Central Light.—When the mirror, either plane or concave, is placed directly in the axis of the microscope, and reflects the light through the tube, the illumination is said to be axial or central. The same term also applies to direct light, when the direction in which the rays pass through the object coincides with the optical axis of the instrument.

The rays must, of course, be parallel. If either divergent or convergent, some of the rays will be oblique. In the cheaper forms of the microscope, axial illumination is the only kind for which provision is made.

Oblique Light.—Many objects fail to show their peculiarities when illuminated by parallel rays of light passing through them in the direction of the optic axis of the microscope, but are seen very clearly when the light is sent through them obliquely. To secure illumination by oblique light reflected from the mirror, the latter must be so suspended that it can be turned to one side, and thus send a beam of light through the object at an acute angle. Where direct light is employed, the necessary degree of obliquity may be obtained by adjusting the position of the lamp—a device to which we have resorted when compelled to use a stand in which the mirror did not swing to one side. In this way, also, oblique light may be employed to illuminate objects viewed through a pocket lens, and very interesting effects obtained. For the resolution of fine markings upon diatoms, etc., oblique illumination is a necessity. When the angular aperture of the objective is low, and the light is very oblique, the objects appear light on a dark ground—in fact a sort of dark ground illumination is obtained.

The Spot Lens.—This is a plano-convex lens of very high curvature (it is generally hemispherical,) so mounted that its distance from the object may be properly adjusted, and in this way the rays which pass through it may be brought to a focus at the proper point in relation to the object. The central rays are stopped out by means of a black spot, (hence the name,) so that the object is illuminated wholly by rays which are of too great obliquity to enter the object-glass, except when their direction is changed by the object. The latter, therefore, appears brilliantly illuminated on a dark ground, and in many cases features which could not otherwise be seen are shown very distinctly. In the case of living objects, such as paste eels, and plants having the power of motion, the effect is surprisingly beautiful. Thus, the Volvox appears like a living star moving in a dark sky, or like a phosphorescent globe floating in a dark sea.

The Parabolic Illuminator.—This is an instrument

Fig. 25.—THE PARABOLIC ILLUMINATOR.

intended to accomplish the same end as the spot lens, but in a far more efficient manner. It consists of a block of glass, the outer form of which is a parabola with a cup-shaped depression cut in the upper end. It is mounted in a brass fitting, which slides up and down in the sub-stage of the microscope, and thus may be readily adjusted, so as to throw the light properly upon the object. The

results obtained by means of the parabolic illuminator are wonderfully beautiful.

Polarized Light.—The micro polariscope consists of two distinct parts, a *polarizer* and an *analyzer*, each of which is now generally formed of a Nichol prism properly mounted. A

Fig. 26.—POLARIZER.

Fig. 27.—ANALYZER.

common method of mounting the polarizer is shown in Fig. 26. As there shown, the lower ring is intended to slip into the ring of the sub-stage, the rack and pinion of which enables us to place the end of the prism at a proper distance from the object. When the microscope is not provided with a sub-stage, the polarizer is turned upside down, and the brass fitting slipped into a ring, which is attached to the under side of the stage. The milled ring, which is shown uppermost in the figure, enables us to rotate the prism in both cases.

The analyzer may be arranged in either one of two ways. It may be slipped over the eye-piece, or it may be mounted in a

brass tube, the upper end of which has an external Society screw that attaches it to the body, while the lower end of the tube has an internal Society screw for receiving the objective. Fig. 27 shows the latter arrangement.

Polarized light, except for the mere beauty of its effects, has not received the attention that it deserves. In some departments of scientific investigation, especially mineralogy and geology, its use has afforded very satisfactory and brilliant results. As regards its applications to medicine and physiology, Dr. Frey says: "The examination of tissues by polarized light has a high scientific value, as, by this means, molecular relations become evident, which by investigation with ordinary light, remain entirely concealed. The interpretation of what is seen, is in many cases difficult, and generally lies within the province of optics, with which the medical observer is usually but little familiar."

To detail the method of using it, and the special features which it discloses, would, however, far transcend the limits of this work, and we must, therefore, refer the reader to some special treatise on the subject.

HOW TO USE THE MICROSCOPE.

The remarks which we are now about to offer, are intended for the merest beginners-for those, in fact, who have never used a microscope at all; and therefore they may, perhaps, to some, appear childishly simple. And yet we have seen not only teachers, but professors in colleges, who might have derived some benefit even from these simple hints. We remember on one occasion seeing a professor of botany attempt to examine a minute plant with a common pocket magnifier with three lenses. In the first place he turned the instrument wrong side up, so that, although he could see through it, the results attained were very inferior to what they would have been if the instrument had been properly used; in the second place he wore his hat in such a way as to cut off nearly all the light, and in the third place he did not know how to hold his hands so as to obtain the requisite degree of steadiness. If he had given a few minutes thought to the subject, he could no doubt have corrected his bad methods, but then he evidently had never considered it worthy of earnest thought, although it formed the very foundation of his powers of observation.

Simple Hand Magnifiers.—These are perhaps the most important of all optical instruments, and yet we rarely find a person who can use them efficiently. There are but three points that require attention, viz: The proper position of the magnifier itself, the perfection of the illumination, and the steadiness with which the instrument is held at the exact focal distance from the object. Many magnifiers are so constructed that it is impossible to place them in a wrong position; the side which should go next the eye, and the side which should go next the object are so well marked that no mistake can be made. The greatest liability to error exists where two or three lenses of different powers are fixed in the same frame and used together. This forms one of the most common and useful of our magnifiers, and the rule is always to place the lens of greatest power nearest to the object. Plano-convex lenses should be placed with the plane or flat side next the object.

Hand magnifiers are, in the majority of cases, used for examining opaque objects, and one of the most important conditions for perfect vision is that the object be well illuminated. First of all, then, see that the light falls full and direct on the object; then place the magnifier as nearly in focus as can be done without actually looking through the lens, and, after this, approach the eye to the magnifier. The errors most commonly committed are: Turning the object away from the light; cutting off the light by the projecting brim of a hat or cap; shading the object by the hand or the lens itself; attempting to examine an object in a room that is not sufficiently lighted.

Having secured a proper position for the magnifier and a good illumination, the next step is to devise some means for holding the lens steadily in focus during the examination. This is most readily effected by resting the hand that holds the lens upon the hand that holds the object. Lens and object then move together, and the focusing remains unchanged.

Compound Microscopes.—We presume that the instrument in hand is a very simple one, and that the magnifying power to be used is not very great. No person should attempt to use high powers and complicated instruments until he has served an apprenticeship by using a microscope of simple construction, and objectives of considerable length of focus.

Let the beginner commence by examining some transparent object already mounted. To do this, set the microscope on a firm table, in front of a window by day, or before a lamp at night. Direct sunlight is to be avoided, the light from a white cloud being usually preferred to any other source of illumination. At night use a gaslight that does not flicker, such as an argand burner, or a good kerosene lamp, the German student lamp being very well suited to this purpose. Good results may, however, be obtained from any of the ordinary lamps, especially those with a circular wick, which are now so common. Very fair work may also be done by means of a good candle. This subject has, however, already been discussed at greater length in another section.

If the microscope be a cheap French one, the objectives will be found attached to the body, there seldom being any special provision made for holding them. But with all American and English microscopes, and the better class of instruments from the continent of Europe, special boxes are provided for holding the objectives. These boxes are usually made of brass, and are indispensable to the microscopist that endeavors to take good care of his instrument. Where the objective is kept in a separate box, the body of the microscope must be raised to a sufficient height, and the objective screwed into its place. In doing this be very careful not to let the objective fall and strike against the stage. We have seen more than one good lens spoiled through such an accident.

When the objective has been properly secured in its place, move the body of the microscope up or down until the front lens—that is, the lens which is nearest to the object, is about a quarter of an inch above the stage. Then turn the mirror until the light from the window or lamp is reflected through the microscope, so that when looking through it a bright circle of light is seen.

Place on the stage some mounted object of large size, such as a fly's wing or section of wood. If a low power objective be

used, say one magnifying less than 100 diameters, move the body of the microscope up, so as to increase the distance between the objective and the object. At the same time keep your eye at the eye-piece and watch closely. At a certain point the object will be seen with great distinctness; it is then in focus, and is ready for examination. Always begin with low powers. One of the greatest risks that the beginner runs is that of breaking the objective by forcing it down on the object. To avoid this with high powers, bring the objective down almost into contact with the slide; when doing this do not look through the microscope, but watch the objective, and stop whenever it is sufficiently near the object. Then apply the eye to the eye-piece, slowly raise the body, and watch for the coming of the object into focus. This is the only safe method with high powers.

Before attempting to place an object on the stage, or to remove one from it, see that the objective is raised at least half an inch above the stage. By attempting to introduce a new slide without raising the objective, when using high powers, you run great risk of injuring both the object and the objective. And in removing objects from the stage, never lift them up; always slide them off. In lifting them up, great danger is incurred of bringing them into contact with the objective, and thus doing irreparable injury. Sliding entirely prevents this.

Where the microscope is not provided with mechanical means for adjusting the focus, such as a screw or rack and pinion, a great deal may be accomplished by special methods of manipulation. Thus if, instead of pushing the body directly through the collar, it be moved with a slightly twisting motion, the focus may be adjusted with considerable delicacy, and when the microscope is not provided with a fine movement, a great deal may be done by means of a slight pressure of the fingers on the stage. Few stages are sufficiently rigid to resist even the slightest pressure.

The chief points which the beginner should endeavor to study are the variations which are made in the appearance of the object by means of slight changes in the focusing and the mode of illumination. Experienced microscopists constantly keep their fingers on the fine adjustment of the microscope,

and watch the different appearances which are produced by a change in the mode of illumination. Swinging the mirror to one side, so as to send the light through the object in an oblique direction, or, where the mirror cannot be turned to one side, merely turning it on the trunnions which support it, will often produce most important effects.

From what has previously been said in regard to the necessity for clear and brilliant sources of illumination, the young microscopist may, perhaps, be led to suppose that the field of view cannot be too brilliantly illuminated. Such, however, is far from being the case. With ordinary powers (those below 500 diameters) it is almost always necessary to moderate the light, even of a flat-wicked lamp, and still more that of a students' lamp. The finer details of an object cannot possibly be made out if the illumination be too strong; they are "drowned out," and the whole object becomes what artists and engravers call flat. The light may be regulated by the diaphragm which has been previously described. Where the microscope is not furnished with a diaphragm, increasing the distance of the lamp from the instrument is the best mode of lessening the intensity of the light.

Very bright light is exceedingly trying to the eyes, and therefore the student will find it advantageous to use lights of moderate intensity, and to increase their efficiency in every possible way. This may be done to a very great extent by judicious management—chiefly by excluding from the eye all unnecessary light. In a room very brilliantly lighted with a number of powerful argand burners, it would be impossible to secure the proper illumination of a microscopic object by means of a candle, for the eye, accustomed to the bright light, would fail to be impressed by the weaker one. Extinguish the bright lights, give the eye a short time for rest, and the candle will answer very well. The principle thus illustrated finds a practical application in the use of pasteboard shades surrounding the eye-piece, and excluding from the eye all light except that which passes through the microscope. Such a shade is easily made and adapted to any microscope, and is of great service. We have also in our own practice carried out the same principle by means of extra diaphragms to our eyepieces, thus cutting off all the light which passes through the microscope, except that which actually serves to illuminate the

object.

It will also be found of great importance to secure perfect purity in the special illumination employed. Thus, if we are examining an object by transmitted light, it always detracts from the clearness and beauty of the image if light is reflected from its surface. It is, therefore, of advantage to shade the object by means of a small tin, brass or pasteboard shade, attached to the stage so as to prevent any light from the lamp from falling on the object.

A difficulty which frequently occurs to young microscopists consists in the almost impossibility of securing a field of view equally illuminated in all parts. Assuming that the mirror is in proper position, and that there is nothing to shade any part, it will in general be found that the difficulty arises from the fact that the mirror throws images of the lamp, etc., upon the object. Sometimes this is very distinctly seen; the shape of the flame can be clearly distinguished, and the metal portions of the lamp appear as dark shades. The cause is that the lamp is at the exact distance at which the mirror forms an image of it on the upper surface of the slide, just as a lens, held in front of a white wall, will throw an inverted image of a lamp or candle on the wall, provided the relative distances of the wall, lens and candle are properly adjusted. The remedy is very simple; move the lamp either towards the microscope or away from it, as may be most convenient.

As previously stated, the character of the illumination afforded by a mirror, and by a white surface placed at a short distance from the object, are appreciably different. A very pleasant method of illuminating transparent objects consists in the use of a plate of plaster of paris. Its whiteness is probably as pure as that of any other substance, and it is easily procured. The plate we use was cast in the cover of an old tin box, half an inch deep and three inches in diameter. A flat surface was secured by casting it upon a board. If cast on glass or metal, the surface is glazed and shiny, which is bad. Instead of plaster, fine white paper or cardboard may be used. Such surfaces must not be glazed, and they should be kept scrupulously clean.

The light is also sometimes modified by passing it through ground or colored glass—blue being a special favorite. Such light-modifiers, as they are called, produce a pleasant and equable illumination, which is a great relief to the eyes, but, except for the resolution of finely lined objects, we have not found them otherwise of any special advantage. When it is desired to obtain the greatest resolving power that a lens is capable of affording, the blue cell, as it is called, is probably the most efficient accessory. This is simply a glass tank, somewhat like a zoophyte trough, filled with a solution of oxide of copper in liquor ammoniæ. The solution is prepared by adding liquor ammoniæ to a saturated solution of sulphate of copper, until the precipitate which is first formed is re-dissolved. The intensity of the blue may be regulated, either by diluting the solution, or by varying the thickness of the laver of liquid.

When it is desired to examine anything by light reflected from it, instead of light transmitted through it, the object should be placed before a dead-black surface, such as the dark part of the diaphragm, or a blackened card, and at such a distance from it that the surface of the background is not in focus. Then, place the condensing lens in relation to the lamp, so that a bright spot of light will fall on the object, and on bringing it into focus it will be clearly seen. Low powers only can be satisfactorily used for the examination of opaque objects by beginners.

The beginner should commence with the simplest mounted objects, and afterwards, when a little skill in the manipulation of the instrument has been acquired, he should proceed to the examination of such simple unmounted objects as are easily prepared. The latter course will prove altogether the most valuable and instructive, for he who confines himself to the examination of mounted objects only can never hope to become a microscopist. After a time, when a little skill has been acquired in the preparation of objects, the student may proceed to preserve and mount them. Most young people try to mount before they have learned to prepare objects, and the consequence is that they soon find themselves in possession of a large collection of very poor slides.

Care of the Microscope.—A microscope, when not in use, should always be kept well covered, either in its case or under a suitable cover. There is no more convenient mode of keeping a microscope than to stand it upon a cloth mat, and cover it with a glass shade. It is thus kept free from dust and vapors, and is always ready for use; but when it is kept in its case, and especially if it has to be screwed together, interesting, valuable, or even important objects, will often fail to be examined, simply because too much time and labor are necessary to prepare for the operation.

A good microscope should be so carefully protected, that it shall rarely require to be cleaned or dusted, as this wears off the lacquer, and exposes the metal, which, when thus uncovered, soon begins to tarnish. When dusting or cleaning becomes absolutely necessary, chamois leather, or a very fine old linen or silk handkerchief is most suitable. Never use coarse cloths, or those that have been lying about exposed to dust and dirt.

The lenses should be kept in their boxes when not in use, and when they are attached to the microscope, great care should be taken to keep them from coming into contact with liquids. In order to prevent the latter accident as far as possible, never examine liquids unless when they are covered with thin glass. In the pursuit of micro-chemical studies, the microscopist has frequently to deal with liquids that corrode metals, and even glass. In well-appointed laboratories inverted microscopes are used in such cases, but with ordinary instruments, special means must be employed. The object should be laid on a large piece of thin plate glass, and the objective should be coated with oil. The rest of the metal work may be protected with oiled silk or thin india-rubber.

When liquids which corrode glass are used, the front of the objective should be protected by means of a very thin leaf of the best mica, which may be attached either by glycerine or balsam.

These, however, are exceptional precautions. In ordinary work it is sufficient to see that the lenses and metal work are kept free from stains and finger marks.

Never touch with the fingers the surface of any lenses, either eye-pieces or objectives, as this will be certain to soil them. Use soft camel-hair brushes to remove particles of dust, etc. Where

dirt adheres more strongly, use fine linen slightly moistened with alcohol, and wipe dry with very fine chamois leather. Remember, that alcohol, if used profusely, will attack the lacquer of the brass-work, and even dissolve the cement which holds the lenses together. When objectives are smeared with balsam, the best cleansing agent is said to be kerosene oil. The piece of leather used for wiping lenses should be free from dust, and is best kept in a small box by itself, and used for nothing else. It must be remembered that the glass of which objectives are made is easily scratched, being soft when compared with particles of sand and grit: consequently, when frequently wiped it soon loses that exquisite polish upon which its excellence of performance so much depends. What, then, are we to think of the directions given by the author of a popular work on the microscope, in which we are told to use a piece of leather. slightly impregnated with brick dust!! No better method of destroying an objective could possibly be devised. Therefore, see that in wiping, the slightest possible pressure is used, lest any particle of grit should make a scratch.

The exposed parts of all microscopes, as well as the objectives and their cases, are lacquered, to protect them from being soiled by handling, but the interior of the boxes which hold the object-glasses are rarely so protected, and the black coating of the interior of bodies, draw-tubes, etc., is frequently not very firmly attached. Therefore, never touch them with the fingers.

After taking an objective out of its box, either screw on the cover of the box, or place the latter with its open end down. Do not stand it mouth up, so that it may catch all the dust.

When exhibiting the microscope to others, great care is necessary to keep meddlesome fingers from soiling the glasses. Some people are never content when merely allowed to look at things: they insist upon handling them, and feeling them. To the young microscopist, we would say that if any of your friends insist upon handling your objectives, eye-pieces, etc., put up the instrument and pack it away. A microscope carefully used is as good after fifty years as when first made, but we have seen an instrument suffer more injury in half an hour at the hands of a thoughtless and dirty person, than it would have sustained in twenty years in the hands of a careful microscopist.

COLLECTING OBJECTS.

Those who are engaged in special studies and researches require no directions for collecting objects; but to those who use the microscope for purposes of general instruction or amusement, a few hints may not be out of place. Almost every textbook on botany, physiology, mineralogy and kindred subjects, will not only indicate a long list of objects, but will give directions for procuring them. Plants yield a very large variety of interesting subjects. Thus the cuticles of the leaves and flowers; cellular tissue as shown by dissections, and by cross and longitudinal sections; hairs, pollen, seeds, etc., all deserve careful microscopical examination. Insects furnish an almost unlimited field, and their wings, feet, eyes, mouth, scales, spiracles, hairs, etc., are all worthy of careful preparation and examination.

It is, however, amongst the more minute forms of animal and vegetable life, as found in pools and running streams, that the most interesting objects are to be found, and the number and variety of these is so great that several large volumes would be required to describe them. Even the ponderous works of Ehrenberg and Pritchard do not begin to exhaust the subject, and, therefore, it will be obvious, that even if we were to devote the whole of the present volume to this department, we could but skim the surface. Thus far we have had to depend chiefly upon foreign works for descriptions of these organisms, but it is fortunate that while the higher classes of plants and animals which inhabit Europe, and are described in European works, are entirely different from their congeners on this continent, the same does not hold true in regard to the lower forms. We have found localities which teemed with the Volvox Globator and various species of Closterium, Staurastrum, Pediastrum, etc. Hydras are to be found in great abundance, and so nearly like the described European species that the beginner will find it difficult to detect the difference. We have repeatedly found the Stephanoceras, Melicerta and other beautiful microscopic objects, and as for the more common ones, such as the Vorticelli, or

wheel animalcules and *Entomostraca*, or water fleas, they are to be found in every pool.

Every young microscopist that is desirous of pursuing his studies in this direction, is met at the outset by two difficulties; the first is to obtain the objects, the second is to find out what they are after he has got them. The first is by no means a difficult task, but the second will often puzzle more experienced students than those whom we expect to be readers of this book. We know of but two ways to accomplish it; one is the laborious plan of searching for them in the "Micrographic Dictionary," or the books of Carpenter or Pritchard; the other is to obtain the desired information from some well-informed friend.

The objects which are of most interest to the microscopist are not difficult to obtain, if we know where to look for them, but they are not to be found everywhere. Many stagnant pools will be found to yield but a scanty supply, while others, which, perhaps, to the uninitiated present a less promising appearance. will yield a rich harvest. Beginners are very apt to entertain the popular notion, that every drop of water teems with animalcules, and that when placed under the microscope, it will appear to be literally filled with living things. This idea is fostered by popular writers who describe a drop of water as a globe filled with life, and by lecturers who exhibit pictures and enlarged images of what they call "a drop of water," but which is in reality a considerable quantity of that liquid which has been artificially supplied with inhabitants. Clear well water is almost free from microscopic organisms, and the same is true of the water from clear brooks, which flow swiftly over a pebbly bottom. Ordinary rain water, as found in cisterns having free communication with the air, usually contains large numbers of the larvæ of gnats and mosquitoes, and when exposed to the light it is almost always rich in wheel animalcules, and some of the lower forms of vegetable life. The water supplied to our cities is in general very rich in microscopic vegetables. Thus in the Croton water, which is comparatively pure, we have found a large number of very beautiful species, amongst them the exquisite Monachinus. The best way to secure a supply of the animal and vegetable inhabitants of city water, is to pass a considerable quantity of it through a filter, the surface of which will then furnish a large amount of valuable matter.

But it is not in such fields that the microscopist will find his best hunting grounds. Along the edges of quiet pools of clear water is the best place for the finer vegetable forms, such as the Volvox Globator, Closterium, etc. If the water is much contaminated with dead animal matter or with sewage, nothing will be found but the coarser organisms and animalcules, such as Paramecium. The same is true of small pools found in woods, or very much shaded with trees, and filled with dead leaves. Such places are, however, the favorite haunts of the larve of insects, and also of frogs and Tritons. The size of the pools is not of much consequence. We remember on one occasion to have found by the roadside in Centre County, Pennsylvania, a little pool which was almost filled with the larvæ of Tritons. The gills, which were beautifully developed, would have formed a splendid object under the microscope, but when we returned next day, for the purpose of securing some, the water had dried up, and the larvæ were all gone.

The little pools formed in boggy ground by the footsteps of cattle will often be found to contain large quantities of one or two species of desmids or diatoms. It will not do to look for these objects in similar pools formed in ordinary soft land, and temporarily filled with rain water. The ground must be naturally and constantly wet, so that the pools are always kept filled by the infiltration of water from the surrounding soil. Such pools, however small, usually contain a large number of specimens, and it is in such places that one is most likely to find a supply of one variety unmixed with any others.

While many of the most interesting objects will be found swimming freely about in the water, others of great beauty are always attached to floating weeds, sticks, etc. We have generally been most successful in discovering specimens of this kind when we have placed the gathering in a large glass jar, and allowed it to stand quiet for some time. The water will then settle, and the objects of which the microscopist is in search will have time to expand, when they may be seen in a form resembling light mould, or down, attached to the surfaces of the solid matters.

The surface of the mud at the bottom of ponds of clear water, is frequently very rich in microscopic vegetable organisms. These minute plants seem to seek the light, and to rise through the mud which would otherwise cover them, so that by carefully scraping the surface of the bottom, we are enabled to procure them in large numbers.

It must, of course, be borne in mind, that while some species are found in fresh water, others are marine, that is, they live only in sea-water. The best locations for finding marine forms are: 1, the pools of clear water, found in salt marshes; 2, the surface of the mud at the bottoms of harbors and quiet coves; 3, the waters of the ocean itself, as well as that of the bays and coves connected with it.

The apparatus required for capturing these various objects, is neither bulky nor expensive. For larve and the larger animalcules, the most useful implement is a small net. Ours consists of a ring of brass wire (iron wire would rust and destroy the net) about six inches in diameter, soldered to a tin tube or ferrule, which fits tightly on the end of a walking cane. To the ring is attached a bag of any light, gauzy material, which possesses the two qualities of letting water out rapidly, and keeping small objects in. With this net it is easy to capture anything from a small fish or a frog to the very smallest larva, and it is very portable, since an ordinary walking cane forms a sort of universal handle for this and other implements. Next to the net, we find the most useful articles to be bottles.' They should be of clear glass, so that any object contained in them may be readily examined by means of a pocket lens. For this reason we prefer what are called homeopathic phials of large size (half ounce and quarter ounce), and we generally carry a dozen or two when out on a tramp. A fair sample of the contents of a small pool is easily obtained by gently lowering the phial, mouth downwards, under the water, and bringing it cautiously to the place which is supposed to be richest in specimens. The phial is then turned mouth upward, the air rushes out, and the objects are carried into the bottle by the force of the inrushing current of water. For small, shallow pools, the phial is most conveniently held in the hand, but when the water is deep a handle is required, and for this we use the holder shown in

Fig. 28, which is made to fit on the end of the walking stick. It consists of a ferrule having a semi-cylindrical piece soldered at

Fig. 28.

right angles to it. The ferrule fits the cane, and the bottle is fastened to the cross piece by means of a rubber ring—the method of arranging the latter being easily understood from the engraving. A dozen or more bottles of proper size may be taken along, and they are so easily attached to the holder that there is no necessity for transferring a "dip" to

another bottle. The contents are most easily carried in the

bottle in which they were first obtained.

When the water is too deep for a walking cane, a fishing rod or any long pole may be used, and where these prove too short, as in harbors, etc., a bottle may be lowered and raised properly by means of strings. For this purpose the bottle must be heavily loaded with lead round the neck, and two strings must be attached to it, one fastened to the neck and the other to the bottom. It is by the latter that the bottle must be lowered, but it must be raised by the other. If properly managed it will descend mouth downwards, but the tension of the string attached to the neck will invertit, and when raised by this string it will bring up its contents very perfectly.

For scraping the surface of the mud at the bottom of shallow pools, we use the spoon shown in Fig. 29. It is simply a ring of

tin five inches in diameter and one inch deep. The lower edge is "wired" as the tinsmiths call it, and there is a ferrule soldered to the side so that it may be fixed to the same cane that is used for the net. Over the bottom is stretched a piece of some

Fig. 29.

thin fabric, such as thin muslin, gauze or tarletan, which is held in place by a rubber band that slips over the wire ring on the lower edge. It is best to make one side of the ring somewhat flat, so as to adapt it better to the flat surface of the mud. When the pieces of cloth get soiled, they are easily replaced, and, indeed, in some cases it is not a bad plan to carry the mud home in the wet cloths, a dozen or more of which, with their contents, may

be easily packed in a tin box of small size. One of the boxes used by school children for lunch boxes answers very well, but any tin box with a lid or cover will answer. As it is important that a record should be kept of the locality from which the dip was taken, we carry a few slips of parchment paper, one of which is pinned to each cloth, after the necessary memoranda have been written upon it with a hard pencil. On returning home, the contents of each cloth may be transferred to a separate bottle. This plan saves the carrying of numerous bottles, and the water required to fill them.

An exceedingly covenient traveling companion for those who are fond of collecting, is shown in the accompanying engraving, Fig. 30. The main part forms a very convenient walking cane of ordinary appearance. Like many fishing rods, however, it is hollow, and contains a second rod by which it may be extended to twice its length. This enables the user to reach the bottom of any ordinary pond, and to reach as far as is necessary from

the shore. Accompanying the cane, A, are the hooked knife, B, and the ring and bottle, C. These are made with a double screw, so that they may be attached either to the end of the cane itself, or to the inner rod, and in this way we can have either a short and stout handle, or a longer and more slender one, as circumstances may require. The bottle is made so as to screw into the brass ring, and the same screw enables us to fit a wooden cap on it, which thus encloses the contents tightly. The hook is made of fine steel, and has a sharp cutting edge, as seen in the engraving, so that it is easy to cut off a piece of weed, drag it out of the water and secure it.

Those who carry such a cane do not attract attention by any unusual paraphernalia, and at the same time they are at all times ready to secure any valuable material that may present itself. Several bottles may be carried in the pocket, and screwed into the ring as required.

The collector who desires to make a thorough examination of the microscopic flora and fauna of any pool or stream, must not rest content with infinitesimal quantities of material. It is not necessary, however, to lug home a gallon of water for the sake of the objects contained in it. and so fully have microscopists been impressed with this idea, that the devices which have been prepared for straining out the valuable portions are almost endless. The best and simplest that we have seen is a modification of an

Fig. 31.—WATER-STRAINER.

arrangement, designed, we believe, by Mr. Highley, and figured in Beale's work on the microscope. It consists, as shown in the engraving (see Fig. 31), of a bag or net of some light material, to the bottom of which is attached, by means of twine, or a strong rubber ring, a wide-mouthed bottle. Any quantity of water may be poured into the bag, and all the objects which it contains will roll down the sides of the bag and fall into the bottle, while the fluid escapes through the sides. Delicate objects are consequently not exposed to pressure, rubbing, or any other violence, as they would be in an ordinary filter or bag, and the whole affair is so simple that any one can make it.

A slight modification of this arrangement will be found admirably adapted to the microscopic examination of the water supplied to cities. The bag may be attached to any faucet, and and all the water that is used in the household may be caused to pass through it. In this case, if the bag be made of some tolerably stout material, it may be firmly tied to the faucet, and then all the water that is consumed will be very thor-

oughly purified.

Another very excellent device is the bottle invented by Mr. Wright, of which a modified form is shown in Fig. 32. The mouth of the bottle is closed by means of a

cork in which two funnels are inserted. One of these funnels is placed in the bottle, mouth down; the other projects above the cork, as shown in the engraving. The mouth of the funnel that is in the bottle is covered with muslin or flannel, held in place by a rubber band, which is prevented by a wire ring from slipping along the conical surface of the funnel. When water is poured into the other funnel, it passes into the bottle until the latter is full, and then it flows out of the first funnel, and is carried off by means of a short piece of rubber tubing. Meanwhile, all solid particles are held back by the filter, and as the latter is horizontal and with the filtering

Fig. 32,

surface downwards, most objects of interest fall away from it, and may be found in the water. A single bottle of this description is sufficient, as the cork is easily removed, so that the water may be poured into other bottles. As ordinarily made and sold, Wright's collecting bottle is an expensive piece of apparatus, costing four or five dollars, but as shown in the engraving it may be made for a few cents by any tinsmith.

Where it is desirable to keep the specimens thus obtained so that they may be examined, and their life-history studied. bottles and jars of almost any kind may be used, but those which we have found most convenient are what are known as "quinine" bottles, and may be had at most druggists. For ordinary objects they are just about the right size, and as they are made of tolerably clear glass it is easy to examine the objects through the sides of the bottle. A dozen or two of these little aquaria occupy very little space, and are easily handled. Great care must in general be taken to exclude from the vessels containing the finer organisms, such predatory animalcules as devour them. Water fleas, the larve of insects, etc., will soon make away with the finer specimens. On this account great difficulty is found in keeping the Volvox Globator, since it is greedily devoured by various rotifers, and these are exceedingly difficult to exclude. We have succeeded best in this case by partially filling a bottle with well-filtered water taken from the same pool as the specimens, and transferring the objects to it singly so as to avoid transferring their enemies too. For this purpose the dipping tube should be used. Some authors caution us against mixing the inhabitants of different pools, on the ground that being strangers to each other they will fight. This is more fanciful than accurate, though it has a basis of truth. It is not the circumstance that they are strangers that causes the difficulty, but the fact that the one is the natural prev of the other. The same thing occurs between inhabitants of the same pool. It must be remembered, however, that very slight changes in the conditions in which they are placed will often cause the destruction of these objects. Thus, we have seen some very fine gatherings totally destroyed by being removed from soft, boggy water to clear, hard well water. Therefore, in transferring either animals or vegetables to an aquariun, it is well to supply

them with the same water, mud, etc., in which they were originally found. It will sometimes, however, be well to filter the water so as to remove all such inhabitants as are apt to eat up the others. Water, may be filtered through paper, or where filtering paper is inaccessible, the neck of a funnel may be loosely plugged with cotton. Even this does not quite free it from noxious eggs or germs, and we have sometimes gone so far as to boil it in a flask, the mouth of which we plugged with a loose wad of cotton after introducing the objects we wished to presserve.

When floating freely in these diminutive aquaria, many objects are as difficult to find and capture as would be a small fish in a large pond. The microscopist, therefore, requires special means for capturing them, and placing them on a slide. For this purpose nothing serves so well as what are known as dipping or fishing tubes. These are simply glass tubes of different diameters (from one tenth to one quarter of an inch), and of any convenient length. They are used by closing the upper end with the finger, bringing the lower end near the object (under the water), and then removing the fingers from the upper end. The water, in seeking to find its own level in the tube rushes in with great force and carries the object with it. By again placing the finger on the upper end of the tube, the latter may be lifted from the bottle, and the water with it, and by a little dexterous management it is easy to cause the object to flow out on a slide without allowing too much water to go with it. These tubes are made straight, curved, and with one end drawn to a point, but for most purposes the straight tube answers best as it is most easily kept clean. We prefer to grind the ends rather than to make them smooth by fusion, as the latter process generally contracts the opening, and renders the tube difficult to clean. The best plan, however, is to heat the upper end strongly before the blowpipe, and turn the edge outward like the mouth of a test-tube. It is then easily closed, and the tube is very strong. The lower end should be ground.

PREPARATION, PRESERVATION AND MOUNTING OF OBJECTS.

These three operations are so frequently applied as a single process to objects, that many writers have failed to make a sufficient distinction between them. By keeping the proper distinction clearly in mind, however, the student will not only save much valuable time, but he will secure vastly better results. Except by those who are more anxious to increase the number of objects in their cabinet than the amount of knowledge which they possess, a very large proportion of the objects examined will never be preserved or mounted at all. This however, should not prevent the utmost care being given to the process of preparing them for thorough examination. On the other hand it often happens that objects which have been carefully prepared and mounted, spoil because they have not been subjected to a proper preserving process. Hence the importance of treating these operations separately and fully.

The Preparation and Examination of Objects.— It is a common but very erroneous idea that the only thing that is necessary in order to examine any object under the microscope, is simply to place it on the stage, and get it into focus. With the exception of mounted objects, a very few transparent objects—such as the wings of insects—and some things that are viewed by reflected light, every substance requires to undergo careful preparation before it can be fit for profitable examination. A good example of the necessity for such preparation is seen in the common potato, a piece of which when simply placed on the stage of the microscope, and brought into focus, appears as a glistening mass, and reveals nothing of its true structure. If we now cut from this lump, by means of a very sharp knife, an exceedingly thin slice, place it on a plate of glass, moisten it with a little spirit and water, or better still, glycerine and water, and place over it a thin glass cover, it will disclose to us a most wonderful and beautiful structure. The entire mass will be seen to be composed of cells, these cells being filled with granules of starch of various sizes.

The operation which we have thus briefly described as applicable to the potato, is required for a great many other materials; for whenever a substance is to be examined under any except the very lowest powers, it is absolutely necessary to obtain it in pieces as thin as possible, so that the light may readily pass through them, and it is in general requisite to increase their transparency either by immersing them in a fluid, or by some other means. In preparing objects for the microscope, our aim is in general to examine either the ultimate structure of the substance under investigation, or the arrangement of its different parts; and the processes which are most available for this purpose may be classed under three heads: 1, Mechanical, such as section-cutting, dissection and injection; 2, Chemical, such as the use of iodine for detecting starch; of alcohol for hardening certain structures; of coloring substances for staining germinal matter, etc.; 3, Optical, such as the action whereby certain liquids change the transparency of some objects. Of some of these processes, such as injection, staining and the extended use of chemical tests, elaborate descriptions would be required in order to enable the student to carry them out with success, and we must refer him to the works of Beale and Frey, which are very complete on these points.

Thin sections of any soft substance are easily made with a very sharp knife—a good razor being probably the best available instrument. For work in the higher departments of microscopy, and for the preparation of fine objects for sale, special instruments known as section-cutters are employed, but for the ordinary work of investigation, they are not absolutely necessary though very convenient. Using a good sharp razor, it is an easy matter to shave off any soft substance a wedge shaped piece, the edge of which thins off to nothing, and which presents in its different parts all varieties of thickness, so as to afford a perfect opportunity to study the object under examination. In this way, which is known as the "free-hand" method, suitable sections of most animal and vegetable substances may easily be prepared, and the student will be surprised at the dexterity which a little care and practice will confer.

For cutting sections of very soft tissues a special knife, known as Valentin's knife, has been invented. It consists of two

blades so arranged in one handle that their distance from each other may be easily regulated. When a cut is made with this double-bladed knife, a thin slice of the tissue passes between the blades, and constitutes the section. It is an instrument, however, which will hardly be used by beginners. Sections of substances of greater consistence, such as wood and soft bones, are most easily made in a regular section cutter. The patterns according to which these instruments are constructed are very various, but they all act on the principle of raising above the surface of a brass table, by means of a fine screw, the substance to be cut, and then passing a very sharp razor or knife over the table so as to shave off the projecting part of the object. The table is usually of brass, ground and polished. This gives rise to two serious defects. The metal is too soft in the first place, so that it is impossible to press with sufficient force on the razor without cutting into the table, and secondly, when any soft metal has been ground on a grindstone or emery wheel, the surface becomes so impregnated with gritty matter, that it very rapidly destroys the edge of the cutting tool. We avoid these difficulties by fitting to our section cutter a stout plate of hardened steel, the surface of which has been highly polished by means of buff leather. Quekett describes a cutting machine in which the difficulties we have mentioned are obviated by fixing the knife in a frame so that it is raised above the table, and does not touch the metal. Its edge is thus preserved from injury, and the blade itself cannot be affected by variations in the pressure exerted. Dr. Curtis, of this city, has adopted the same principle in his section cutter, the details of which are admirably carried out.

In making sections of wood and similar substances, the specimen is first well soaked in dilute alcohol, and is then fastened securely into the tube of the section cutter, either by wedges or by casting wax or paraffin around it. The process of raising it by means of the screw and passing the knife over it, is simple enough, and can easily be learned.

With the ordinary cutting machine, success in making thin sections seems to depend upon the perfect sharpness of the cutting edge, the thorough moistening of the knife and section, and the rigidity of the blade. The latter point frequently fails

to receive the attention that it deserves. Where a thin, flexible blade is used, a moderate change in the amount of pressure employed will make a great difference in the thickness of the section, even so far as to double it. When the blade is stiff, a change in the degree of pressure has but little effect.

Soft substances must first be hardened either by immersion in alcohol or other means, and in general must be supported by being surrounded with melted wax or paraffin. Where the specimen is very slender (such as a hair) it must be carefully supported between firm and rigid clamps. Corks and similar yielding substances, which are recommended in most books, never give a cross section accurately taken at right angles. The same is true of the plan so much recommended for obtaining sections of hair, viz.: to pass the razor over the face shortly after shaving. We get sections it is true, but they are all oblique. The best way to get true sections is to imbed the substances in glue, gum, paraffin, wax or some such material.

Sections of bone are prepared by sawing off a thin slice in the first place, and cementing it to a slide by means of thick or old balsam; one side is then filed or ground flat, and polished on buff leather, after which the section is transferred to another slide so as to expose the other side, which is then filed down and polished as before. Great care must be taken so as to hit just the right thickness, and the operation of cementing to the slide must be performed expeditiously, so that the balsam may not saturate the section, and render it too transparent, as when this occurs certain very important features become invisible.

Very hard substances require special apparatus, and considerable skill. Still it is astonishing what may be accomplished by means of good files, whetstones and grindstones in the way of preparing thin and transparent sections even of such substances as rocks and stones.

In order to acquire correct ideas in regard to the structure of objects, of which sections are examined, the student should familiarize himself with the geometrical forms produced by cutting cylinders, cones, spheroids, etc., in various directions. Thus a cylindrical vessel, cut square across, shows a circle; when cut obliquely it shows an oval (ellipse) of greater or less length, and when cut longitudinally it shows two lines which have no

apparent connection with each other. The truth is, however, that we should never deduce the form of vessels from sections alone. In every case it is necessary to examine carefully dissected preparations as well as sections.

The soft parts of animals and vegetables are frequently prepared for examination by careful dissection, that is to say the different parts are separated from each other, and freed from extraneous matter by means of knives, scissors, forceps, needles, camel hair pencils, etc. The knives used by the microscopist are similar to the scalpels ordinarily employed by anatomists, but smaller, and unless very finely tempered and well-sharpened, they are worthless. The knives sent out with low priced microscopes are in general the veriest trash, and the same is true of the needles. There are three kinds of scissors which the microscopist will find useful-plain, straight scissors, elbow scissors, and curved scissors. They must be small, sharp and well made. But the most useful, as well as the simplest instruments for dissecting are a pair of needles, or, rather, a needle and a very fine spatula. The needles used are those ordinarily employed by seamstresses; they should be fixed in a light wooden handle and carefully polished. The latter is a most important point, for it will be found that ordinary needles are too rough for delicate work, as may be easily seen by examining them under the microscope. For microscopical purposes needles are made both straight and curved—the latter being a very useful form. In order to bend a needle, it must first be heated in the flame of a candle, then bent by proper pliers, after which it must be carefully re-tempered. There is little danger of getting it too hard, provided it is not burned. After being hardened it must be carefully re-polished. The handles should be light and smooth. Ordinary penholders make good handles and cost but a trifle, but in case of need any piece of straight-grained, light wood will answer. Universal handles, handles with ferrules, handles wound with thread, etc., look as if they were not common articles, and are purchased by many, but no working microscopist would give them table-room. All the so-called uriversal handles in market are too clumsy and heavy.

In using needles or knives for dissection, they are generally used in pairs, that in the right hand being used for teasing or

cutting, while the one in the left hand is used for holding the object firmly in its place. For the latter purpose, however, we prefer a very narrow spatula, curved and highly polished. Curved needles, with the curve placed flat, answer very well, however.

For the removal of loose matter, and for arranging parts which have been dissected out, there is nothing more useful than good camel hair pencils. Indeed, they are indispensable, and with needles and pencils—two of the simplest and cheapest articles—it is possible to do almost everything.

During the process of dissection the object must be supported upon a glass plate or a dissecting pan, according to its size. Some of the finest preparations have been worked up on ordinary slides three inches long by one wide, and as it is almost always necessary to have the object covered with liquid, a single drop suffices in this case. But where larger objects are to be dissected. ordinary slides are not large enough, and besides there is no provision made for holding a sufficient quantity of liquid. Various kinds of dissecting dishes or pans have therefore been devised. Those used by the author are exceedingly simple and cheap, and are shown in Fig. 33. We use three kinds.

two with opaque bottoms, and one in which the bottom is transparent. The latter is used for objects which are transparent, and is precisely like the others, except that a portion of the metal bottom is cut away and a piece of plate glass cemented over

the aperture. Those used for opaque objects are simply oblong tin dishes, each two inches long, one and a quarter wide and half an inch deep. The bottom plate extends on each side, so as to form rests for the fingers, by which the pan may be kept steady. Into this pan is poured a mixture of equal parts of resin and beeswax, softened if necessary with a little lard. It should be just so soft that a pin may be easily stuck into it, and this affords us the means of pinning out the different parts of a dissection as we progress. In one dish the wax is colored black with lampblack, and this forms a wonderfully effective back ground for most objects; the wax in the other

pan is white, chalk or sulphate of baryta being substituted for lampblack. The pan with a transparent bottom is of precisely the same size, except that the depth is but half as much—the extra depth in the other pan being filled with wax. A quarter of an inch is a sufficient depth of liquid for most objects, and when the sides of the pan are higher than necessary they interfere with the use of knives and needles.

Dissections may also be carried on in watch-glasses, though they are not quite as convenient as pans with perfectly flat bottoms. The kind known as lunette glasses should be chosen, as they are flat in the centre. When a watch-glass is used for this purpose, it is necessary to cement it into a hole cut in a thin piece of wood about four inches long, and of a width which is rather greater than the diameter of the glass.

Most of this work is, of course, done under a simple microscope. The Excelsior, when screwed to a larger base, as described on page 29, answers very well. Larger and more expensive dissecting microscopes are supplied by most opticians.

In addition to these general methods, which are applicable to a great variety of subjects, there are a few special processes which must be adopted in particular cases. In some instances, as when the line of investigation is a new one, the microscopist must work out his own processes, but the following special cases will probably prove interesting to beginners.

It frequently happens that the objects for which the microscopist is searching are found mixed with coarser materials, and in this case it will be found possible to effect a separation by the process known as *elutriation* or washing. Mix the matter thoroughly with water in a tall jar and allow it to settle. In a short time—say one minute—the very coarse particles will have fallen to the bottom, and if the liquid be now poured off and allowed to settle, the finer portion will be found in the second vessel. By graduating the time and carrying the process out to its full extent, a wonderfully perfect separation may be effected. Diatomaceous earth may frequently be treated in this way to advantage.

In some cases separation must be effected by burning, or the action of chemical agents. Guano and various organic matters yield interesting residues after everything soluble has been

washed away and everything combustible has been burnt either with fire or nitric acid. So too the siliceous cuticles of plants may be procured by destroying all the other parts by chemical means. The best way is to heat them in nitric acid, and add to the hot liquid a small quantity of powdered chlorate of potash. The quantities used must be very small, and great care must be exercised.

It is frequently necessary to separate a small quantity of deposit from a large amount of liquid, filtering being inadmissible. For this purpose use a conical glass or a large test tube. allow plenty of time for the deposit to settle, and give occasionally a slight stir, so as to detach the particles from the sides of the vessel. Then pass a large dipping tube (one quarter of an inch in diameter) to the bottom, the upper end of the tube being closed with the finger. On withdrawing the finger the liquid and deposit rush in. Have ready a small ball of soft cement (resin and beeswax equal parts, softened with oil) and with it close the upper end of the tube, which may now be withdrawn, carrying the liquid with it. Place the tube in a vertical position, with its lower end on a slide or in a watchglass, and support it either by means of the ring of a small retort stand or by a simple wire having a ring (horizontal) at the upper end, and a small piece of board for a foot. Beale directs us to cork the tube, but this is difficult unless the tube is made specially for the purpose with a mouth like that of a test tube. Tubes made in this way are, however, the most convenient, and a good velvet cork closes them perfectly.

There is a class of insect preparations, which are quite interesting, though they are not as instructive as inferior preparations made by the process of dissection. We refer to the whole insects found in most collections. They are prepared by soaking the insect in liquor potassæ, which may be had from any druggist; this renders the internal organs soluble and the outer horny skeleton transparent. The viscera are then expelled by pressure with a camel hair pencil, the insect well washed in pure water, soaked first in alcohol, and then in turpentine, and finally mounted in balsam. The points requiring attention are these: Soaking just the right length of time in the potash, for if the insect remains too long in this liquid it will be destroyed;

allowing plenty of time for the alcohol to displace the water, and for the turpentine to displace the alcohol; and manipulating the insect with great care, so as not to break any of the parts. The eyes of insects are prepared by macerating them in very weak potash, and, while still soft, pressing them between two slips of glass. If allowed to harden before being pressed they will split at the edges. The handsomest preparations of eyes are obtained by taking a thin slice from a large eye, such as that of a dragon fly, and treating it as directed.

The feet of insects are in general easily prepared. Moderate soaking in potash, careful washing in water, thorough soaking in alcohol and turpentine, and careful management in properly displaying them on the slide, are the secrets of success. student who wishes to make a careful study of these objects, however, should place them in glycerine, after soaking them in potash and thoroughly washing them. They should of course be deposited in a cell filled with liquid, and then covered with thin glass, and examined. The so-called tongues, etc., of insects require no potash, being sufficiently transparent without it, and after being soaked successively in alcohol and turpentine, they may be mounted in balsam. When wanted for examination merely, immerse them in dilute glycerine, and if the student can succeed in mounting them in cells, in glycerine or some of the gelatinous media hereafter described, they will show their structure to far better advantage than in balsam.

In determining the character of what is brought into view by the processes detailed, great aid will be derived from the use of chemical tests. Thus, in the case of the potato, previously described, most persons who had read anything at all upon such subjects, would recognize the starch granules. All starch granules, however, are not of the same form as those found in the potato; indeed, some would hardly be recognized at all, except by those having considerable experience. But if a little of the tincture of iodine be brought into contact with them, they at once become deeply blue. This subject is too extensive to be discussed here, but those who desire to become proficient in the use of the microscope cannot safely neglect it.

In most cases after an object has been carefully brought into proper mechanical condition, in one of the ways we have de-

scribed, it is necessary to immerse it in some suitable medium, so as to render it clear and transparent. The action of such media may be very well illustrated by the following experiment: Take a short piece of black human hair, place it on a slide, bring it into focus and examine it. It will appear as a dark cord with a light line running down the centre, and from this circumstance has arisen the erroneous popular idea in regard to the tubular structure of hair. Apply a drop of glycerine diluted with an equal bulk of water, and again examine it. The appearance will have entirely changed, having become clearer and more definite, so that the structure of the hair is more easily made out. This effect depends upon the refracting power of the liquid used. The following liquids are usually employed for this purpose, their efficiency being in direct ratio to their index of refraction, which we append to each. Water, 1,336; glacial acetic acid, 1.38; alcohol, 1.372; vitreous humour, 1.340; sea-water, 1.343; equal parts of glycerine and water, 1.40; pure glycerine, 1.475; oil of turpentine, 1.478; Canada balsam, 1.532—1.549; bisulphide of carbon, 1.678; oil of annis, 1.811. Alcohol and water, and solutions of various salts in water are also very useful. When a pure article of glycerine is not available, a solution of white sugar may be used with good results.

Great care must be exercised lest the fluid that is added should change the form or structure of the object. Upon this subject the remarks of Frey are very judicious. He says: "Theory requires that each constituent of the body should be examined in a fluid medium which resembles in respect to quality and quantity, the fluid which saturates the living tissue. Naturally this requirement cannot be completely fulfilled in practice; our aim should be to approach it as nearly as possible. Saliva, vitreous humour, amniotic liquor, serum and diluted albumen are generally recommended as suitable media for the investigation of delicate changeable tissues, and, in certain cases, they accomplish their object in a satisfactory manner. But do not expect them to suffice for every case. Not unfrequently one and the same tissue of different species of animals reacts differently with the same fluid medium, as may be seen with the blood corpuscles. M. Schultze has communicated to us an important and readily proved observation of Landolt's, that animal fluids may be preserved from decomposition for a long time

by the addition of a small piece of camphor."

Schultze recommends as a neutral fluid, suitable for most tissues, a liquid which he calls "Iod-serum." It consists of the amniotic fluid of the calf, to which has been added a concentrated tincture of iodine or a strong solution of iodine in the proportion of six drops to the ounce. The color of the solution is at first wine yellow, but after a few hours it becomes paler; this paleness afterwards increases, and the subsequent addition of a few drops of the iodine solution becomes necessary. As the amniotic fluid is not always attainable, a good substitute may be prepared by mixing 1 ounce white of egg, 9 ounces water, and 40 grains chloride of sodium, with the proper proportion of tincture of iodine.

During the entire process of preparation, the greatest attention must be paid to cleanliness. Particles of dust, which to the unassisted vision are invisible, become offensively prominent under the microscope. To exclude these, and to protect the objects, it is important that the latter should be kept carefully covered when not actually undergoing some operation. Small bell glasses are recommended for this purpose by Dr. Carpenter, and they answer admirably. We prefer, however, as being cheaper and less bulky, watch glasses to which a handle has

Fig. 34.

been cemented as shown in Fig. 34. The handle may be a little knob, turned out of a piece of wood, or where this is not convenient a small cork will answer. A little sealing wax serves for a cement, the watch glass being heated before the wax is applied. Flat

plates of glass answer well to cover the dissecting pans previously described.

When a number of objects are to be protected for some time, we place them on a piece of plate glass eight inches square, cover each with a watch-glass cover, and protect the whole by means of a bell jar with ground edges. The latter fits closely to the plate glass and excludes everything, while the small covers protect the individual specimens when the large cover is raised for the purpose of getting at them.

Singular mistakes have arisen from the fact that foreign

bodies which have accidentally found their way into a preparation have been mistaken for part of the specimen. The only way to avoid similar errors is to exclude all such intruders by means of proper covers, and to become familiar with them so that they may be instantly recognized when present. Dr. Beale gives the following list as those that are most apt to find their way into the preparations of the microscopist: Oil globules; milk: starch from the potato, wheat and rice; bread crumbs; feathers; worsted; fibres of flax, cotton and silk of different colors: human hair, cat's hair and hair from blankets; the scales of butterflies and moths, particularly those from the common clothes moth: fibres of wood, fragments of tea leaves, hairs from plants, vegetable cellular tissue and spiral vessels; particles of sand. The curious circumstances under which such bodies will find their way into a specimen was recently illustrated in the author's experience. In a liquid submitted for examination, and said to be pure, he found foreign matter. It proved to be brick dust, used to clean the tin funnel with which the vessel was filled, and which had been washed in by the passage of the fluid. The student can have no better exercise than to examine these intruders and familiarize himself with their appearance.

Preservative Processes.—The object of all preservative processes is to prevent any change either in the structure or composition of the object. An object may be most perfectly prepared and beautifully mounted, but if it be not so treated as to preserve it from change, the labor thus expended is wasted, as regards the preservation of a permanent record. And yet how many objects there are that we would like to keep for future examination and comparison, or to show to friends. This department of the treatment of objects is, therefore, of great importance, and success in it can only be obtained through a thorough understanding of the principles involved.

There are four methods in common use for the preservation of perishable animal and vegetable substances: 1, Constant exposure to temperature considerably below the freezing point of vater; 2, the perfect exclusion of air; 3, reduction to a state of complete dryness; and 4, the employment of certain anti-septic

compound. The third and fourth are the methods usually employed in microscopy, but the same principles which render the second method so successful in the preservation of canned fruits and meats, deserve the attention of the microscopist.

Drying, as a preservative process, can be applied to but few specimens, chiefly transparent insect preparations, and opaque objects. Blood and similar matters are also sometimes preserved by drying. Such preparations are so easily dried that no special directions are needed. Warming them over a lamp. or preferably on a water-bath, before applying the thin glass cover (as directed in the section on mounting objects) is almost always sufficient. Where the specimen is liable to be injured by heat it may be dried by placing it over sulphuric acid, and covering both acid and preparation with a bell jar having ground edges and resting on a perfectly flat plate of glass. The acid soon absorbs all the moisture and renders the object perfectly dry. Where a cell is used for an opaque object, and dryness is essential, great care must be taken to make the cell impervious to air, otherwise dampness will be sure to penetrate, and if the object be of animal or vegetable origin, fungi will be very apt to grow on it. We have found cells of cardboard peculiarly liable to this defect, and such cells should always be thoroughly saturated, and coated with varnish, such as gold size or Canada halsam.

The great dependence of the microscopist, however, is in the employment of certain preservative media, of the most important of which, the following is a list:

Canada Balsam.—Of all the media employed for the mounting and preservation of objects, Canada balsam is undoubtedly the most generally useful, and it is probable that more objects are mounted in this material than in all the other media put together. As a preservative it is perfect, and its action in rendering many objects transparent and clear is often of great value. Frey tells us that "several sorts of Canada balsam occur in commerce. To be good it should be of thick consistence, nearly colorless, and thoroughly transparent." One difficulty, however, is that much of the Canada balsam that is sold is factitious, being made of cheap resins dissolved in impure turpentine. Such

balsam soon becomes cloudy, and is very apt to crack. Balsam that is too highly colored may be bleached by exposure to sunlight—a process applied by most opticians to the balsam used by them for cementing the lenses of achromatic combinations. Balsam when new is quite fluid, too much so, indeed, for the mounting of most objects. On the other hand, old balsam is thick, and is apt to crack. Microscopists generally keep balsam in wide-mouthed bottles, and take out what is wanted by means of a glass rod. As the process of evaporation, which makes balsam thick and viscid, goes on more slowly in narrow-mouthed bottles, we prefer the latter, and transfer the balsam to the glass slide by means of a fine wire with a small loop at the end. The wire is passed through a cork, or preferably a wooden stopper, and descends to such a depth as to be just below the surface of the balsam. As the latter is used up, the wire is pushed down, and if cemented in its place by the balsam, a little heat soon frees it. The latter remark applies also to the wooden stopper, which is very apt to stick in the neck of the bottle. A very slight exposure to the flame of a spirit lamp is sufficient to loosen it.

Solution of Balsam.—When the objects that are to be preserved in balsam would be injured by the heat necessary to melt it, it is advisable to use a solution of balsam in ether or chloroform. The balsam used for making the solution should be old and thick. This solution is frequently sold with the label, "Balsam for use without heat."

Colophony.—Thiersch recommends a solution of resin or colophony in absolute alcohol. The advantage which this material presents is that the preparation may be placed in it directly from the absolute alcohol, without becoming cloudy, and without prejudice to the durability of the specimen. He advises the microscopist to prepare the colophony himself from Venice turpentine, which is done by dissolving it in an equal volume of ether, filtering it through paper, and evaporating, until, when cold, it breaks with a conchoidal fracture. The material that remains is then to be dissolved in absolute alcohol until it is of a syrupy consistence.

Damar Medium.—Gum damar has been recently introduced amongst the materials used by microscopists, and with some it has found great favor. Carpenter speaks highly of it. Diatoms are said to show better in it than in balsam, and for delicate physiological preparations, especially transparent injections, it is very excellent. It is thus prepared: Half an ounce of gum damar is dissolved in one ounce of oil of turpentine, and half an ounce of gum mastic in two ounces of chloroform. The solutions are filtered and mixed.

Ordinary damar varnish, such as is used by painters, is sometimes sold for microscopical purposes, but it does not give satisfactory results.

Preparations which have been preserved and mounted in balsam or damar are very durable, while those that are mounted in fluids are a source of continual annoyance and loss.

Many microscopists, therefore, exclude from their cabinets all preparations mounted in liquid on the ground that sooner or later they will become worthless. And many of our best dealers refuse to have anything to do with them. Nevertheless, as Frey well says, "the natural condition of the tissues is completely represented only when mounted in a moist condition. This method permits of the most accurate recognition of delicate textural relations, pale cells and fibres, etc., and should not be omitted with any tissue in the production of histological collections."

GLYCERINE.—At the head of the list of preservative media for moist preparations stands glycerine. "Its strong refractive power, its property of combining with water, and of attracting the same from the atmosphere, render it an invaluable medium for mounting animal tissues containing water. It may be truly said, that what Canada balsam is to dry tissues, glycerine is to moist ones."—(Frey.) Much of the glycerine in market is very impure, and although the impurities do not show themselves very strongly at first, they soon become manifest by the darkening of the liquid, (owing probably to the presence of lead), and the formation of a cloudy precipitate. Dr. Beale strongly recommends Price's glycerine, and we have found it very excellent.

When employed as a preservative, glycerine is used either pure or diluted, according to circumstances. Equal parts of glycerine and water form a very excellent medium for most objects. It is alleged, however, that fungi are very apt to grow in glycerine and its solutions. We are inclined to believe that this may be avoided by adopting the precaution detailed at the end of this section. We have now before us specimens that were mounted in pure glycerine and water, eighteen years ago, and they are still quite perfect. If, however, there should be any danger in this direction, the addition of a little camphor will prevent the evil. Glycerine exerts a powerfully solvent action on many salts, particularly salts of lime, such as the carbonate, and hence it is employed for preventing scale in the boilers of steam-engines. This property renders it dangerous to use it for the preservation of structures containing compounds of lime.

GLYCERINE JELLY.—The original directions given by Lawrance are as follows: "Take any quantity of Nelson's gelatine, (any good gelatine will answer, however,) and let it soak for two or three hours in cold water; pour off the superfluous water, and heat the soaked gelatine until melted. To each fluid ounce of the gelatine add one drachm of alcohol, and mix well; then add a fluid drachm of the white of an egg. Mix well while the gelatine is fluid but cool. Now boil until the albumen coagulates, and the gelatine is quite clear. Filter through fine flannel, and to each fluid ounce of the clarified gelatine add six fluid drachms of Price's pure glycerine, and mix well. For the six fluid drachms of glycerine a mixture of two parts of glycerine to four of camphor water may be substituted."

Glycerine jelly is a very excellent medium, and is easily used. At ordinary temperatures it is quite solid, but when slightly heated it melts, and may be used like balsam, directions for mounting in which will be found in the next section. Objects that are to be mounted in glycerine jelly should be soaked until thoroughly saturated with a mixture of 7 parts glycerine, 6 parts water, and 1 part alcohol. It is also well, after immersing them in the melted jelly, to place the slide for a short time

on a water bath heated to about 125° Fah. The jelly then penetrates every part of the preparation.

When intended for use in very warm climates the proportion of the gelatine to the other ingredients should be increased.

Hantzsch's Fluid.—Very beautiful preparations of delicate vegetable forms have been prepared with this liquid, even the coloring matter being left unaltered. It consists of 3 parts of pure alcohol, 2 parts of distilled water and one part of glycerine. The object, placed in a cell, is covered with a drop of this liquid, and then set aside under a bell-glass. The alcohol and water soon evaporate, so that the glycerine alone is left, and another drop of the liquid is then to be added, and a second evaporation permitted; the process being repeated if necessary, until enough glycerine is left to fill the cell, which is then to be covered and closed in the usual manner. We have used this liquid with gratifying success. It is easily prepared, is not difficult to use, and it gives very excellent results.

GLYCERINE AND GUM.—Of this medium Carpenter says: "For many objects that would be injured by the small amount of heat required to melt Deane's gelatine or glycerine jelly, the glycerine and gum medium of Mr. Farrants will be found very useful. This is made by dissolving 4 parts by weight of picked gum arabic in 4 parts of cold distilled water, and adding 2 parts of glycerine. The solution must be made without the aid of heat, the mixture being occasionally stirred, but not shaken. whilst it is proceeding: after it has been completed, the liquid should be strained (if not perfectly free from impurity) through fine cambric previously well washed out by a current of clear cold water; and it should be kept in a bottle closed with a glass stopper or cap (not with cork), containing a small piece of camphor. The great advantage of this medium is that it can be used cold, and vet soon viscifies without cracking: it is well suited to preserve delicate animal as well as vegetable tissues. and in most cases it increases their transparency.

Deane's Gelatine.—Before the introduction of glycerine jelly, Deane's gelatine was a favorite medium, and we still use

it with success. Take gelatine, 1 ounce; honey, 5 ounces; water, 5 ounces; rectified spirit, ½ ounce; creosote, 6 drops. Soak the gelatine in water until soft, and then add it to the honey, which has been previously raised to a boiling heat in another vessel. Then boil the mixture, and when it has cooled somewhat add the creosote mixed with the spirit. Lastly, filter through fine flannel. When required for use, the bottle containing the mixture must be slightly warmed, and a drop placed on the preparation upon the glass slide, which should also be warmed a little. Next, the glass cover, after having been breathed upon, is to be laid on with the usual precautions. The edges may be covered with a coating of Brunswick black. Care must be taken that the surface of the drop does not become dry before the application of the glass cover; and the inclusion of air-bubbles must be carefully avoided.

Alcohol.—Mixed with water in various proportions, alcohol forms one of our best preservative liquids, for both animal and vegetable substances. The chief objection to it is the difficulty with which it is retained in the cell.

Thwatte's Fluid.—Take water, 16 ounces; alcohol, 1 ounce; creosote, sufficient to saturate the spirit; chalk, as much as may be necessary. Mix the creosote and spirit, stir in the chalk with the aid of a pestle and mortar, and let the water be added gradually. Next add an equal quantity of water saturated with camphor. Allow the mixture to stand for a few days and filter. Used for preserving desmidiæ, and also animal substances.

Beale's Liquid.—Creosote, 3 drachms; wood naphtha, 6 ounces; distilled water, 64 ounces; chalk, as much as necessary. Mix the naphtha and creosote, then add as much prepared chalk as may be sufficient to form a thick, smooth paste; afterwards add, very gradually, a small quantity of the water, which must be well mixed with the other ingredients in a mortar. Add two or three small lumps of camphor, and allow the mixture to stand in a lightly covered vessel for a fortnight or three weeks with occasional stirring. The almost clear supernatant fluid may then be poured off and filtered if necessary. It should be kept in well-corked or stoppered bottles.

Goadby's Fluids.—Goadby used two distinct fluids, designated by letters A and B, the difference being that alum was a constituent of one and not of the other. Of both fluids there were several degrees of strength, which were designated by numbers. A fluid, as usually employed (A2), consisted of rock salt, 4 ounces; alum, 2 ounces; corrosive sublimate, 4 grains; boiling water, 2 quarts. To make the B fluid take rock salt, 8 ounces; corrosive sublimate, 2 grains; boiling water, 1 quart.

Pacini's Fluid.—Take corrosive sublimate, 1 part; pure chloride of sodium (common salt), 2 parts; glycerine, 13 parts; distilled water, 113 parts. This mixture is allowed to stand for at least two months. After that time it is prepared for use by mixing one part of it with three parts of distilled water, and filtering it through filtering paper. This fluid is very strongly recommended by Frey. It is used for blood globules, nerves and ganglia, the retina, cancer cells, and especially delicate proteinous tissues.

Castor Oil.—This is used for preserving certain crystals. The best cold-drawn castor oil answers the purpose.

There are a few general rules which we have found essential to the successful use of these media, but which are often neglected, the result being the ultimate destruction of the specimens. One of the most important points is the use of an abundance of the medium (we are now talking of preserving, not mounting) and the gradual saturation of the object with it. A piece of fresh muscle, simply mounted in a shallow cell with a drop or two of Goadby's fluid, will spoil in a very short time. The same object, properly treated, may be preserved indefinitely. The proper course is to completely immerse the object in a considerable quantity of the liquid, and if necessary change the liquid several times until the substance to be preserved has been thoroughly subjected to the action of the medium. For this purpose the quantity contained in ordinary cells is altogether too little; small cups, basins, large watchglasses, etc., are needed. It must be remembered that the substance acted upon generally absorbs certain constituents of the preserving fluid, and hence the latter is left either very weak or there is an unequal distribution of the constituents as regards the substance itself and the surrounding fluid. Moreover the fluids contained in many objects are displaced by the preserving medium, and tend to dilute the latter. In most cases, therefore, where the preserving medium is a liquid, the desired result is best attained by soaking the substance in the fluid for several days before mounting, changing the liquid two or three times, and finally mounting in fresh fluid of regular strength. We would lay great stress upon this point, having seen many fine preparations spoiled by pursuing a different course. The late Dr. Goadby, whose skill in this department was well known, always insisted upon this course, and during a somewhat extended intercourse with him, and observation of his methods and processes, we became fully convinced of its importance.

With many preservative liquids, it is well to begin with a diluted article, and gradually increase the strength at each change of fluid until the proper strength has been reached. This course is specially recommended with glycerine and saline solutions.

Another point which demands attention is the entire exclusion of air, especially of oxygen. Now air adheres with great tenacity to most surfaces, such as those of glass or metal, and it dissolves to a considerable extent in all watery solutions. To get rid of it, the surface of the cell and cover should be either well warmed, and then allowed to cool just before being filled, or washed with alcohol (after which it may be dried). To expel the air from the liquids, they should be boiled, and to prevent the absorbtion of a fresh dose of air, they should be kept well stoppered. But as air will find access to the liquids so as ultimately to saturate them, it is necessary to boil the fluids at frequent intervals, so as to get rid of this element. Without strict attention to these points it is almost impossible to preserve animal substances for any length of time in saline fluids.

Mounting Objects.—For the purpose of conveniently exhibiting and comparing objects, and arranging them in cabinets where they can be at all times accessible, it is necessary to mount them securely in such a manner that they may be easily

handled. For purposes of mere examination and study, mounting is unnecessary, but when the objects are to be kept for future reference it is indispensable. It is true that where the specimens are large they might be kept in bottles in a preservative fluid, and taken out when wanted. This would be very inconvenient, however, and with very minute or delicate

objects it would be almost impracticable.

There are three modes in which objects are mounted: 1. Dry, the object being simply attached to the slide and suitably protected. 2. In balsam, the object being immersed in Canada balsam, damar medium, copal varnish, or some similar material. 3. In fluid, the object being mounted in some of the preservative liquids previously described. Specimens may be mounted in any of these ways, so as to be viewed either as transparent or opaque objects, and the instruments and materials required are neither numerous nor expensive. With those named in the following list almost any ordinary object may be neatly put up, though it is of course to be expected that occasions will frequently arise when special instruments and methods, which are not described by any author, will be needed. Experience alone can enable the microscopist to treat such cases successfully.

SLIDES.—Most objects are mounted between two pieces of glass, one of which is called the slide and the other the cover. As it is convenient to have these slides all the same size, so that they may be easily arranged in cabinets, the Microscopical Society of London has adopted a slide three inches long by one inch wide as the standard size for use amongst their members, and this size has been generally adopted by microscopists throughout the world. All the best slides that are found in market are of this size, and the microscopist who fails to adopt it will be subject to great inconvenience when he desires to exchange objects with others who are pursuing similar studies. Several other sizes are employed by the French, most of them being quite small (25 by 3 and 23 by 5), but as these small slides are the only ones that can be used with some French microscopes—the stages of which are too small to take a slide 3 by 1 they are usually kept in stock by dealers in microscopic appar-

atus. Small slides have this advantage, that they cost less, and take up less room in a cabinet. Large slides look best, and afford more room for descriptive labels, which is an important point. But since slides 3 by 1 have been adopted by common consent, the microscopist who mounts specimens, or who buys objects mounted on slides of a different size, commits a mistake for which the advantages offered by the small slides are but a slight compensation. The only exceptions to this rule are where the objects are too large to be mounted securely on a slide of standard size, or where a large number are to be prepared for the purpose of illustrating some special series of investigations. It is to be presumed that such a series will never be broken up and separated, and as it will in all probability be assigned to its own cabinet, it is sometimes of advantage to have it upon slides of a size other than that in common use. As the objects composing such a series will probably be numbered and catalogued, there is no necessity for extended descriptions on the labels, and therefore slides of half the usual size (1½ by 1) will serve very well. The cabinet may thus be reduced in bulk by one-half. We have a special cabinet, illustrative of textile fibres, mounted upon slides of small size, and find it quite convenient.

The glass from which slides are cut should be free from airbubbles, scratches and that wavy appearance which is due either to inequalities in the surface or to irregularities in the composition of the glass itself. Ordinary window glass is entirely unfit for the purpose. The most suitable kind is plate glass, the surface of which has been ground and polished, so as to be perfectly even and smooth. Glass of this kind is used for looking-glasses and by photographers, and when other material could not be had, we have made very excellent slides out of broken looking-glasses and photographer's plates, though it is difficult to get the latter thin enough. Slides of good glass are, however, manufactured in quantity and sold at a reasonable price, so that under ordinary circumstances it will hardly pay the microscopist to cut out his own slides. Moreover the slides sold by the dealers have the edges neatly ground, an operation which the microscopist will find tedious and troublesome.

As procured from the manufacturers, the slides are always dirty, never having been washed after the process of grinding and polishing the edges. If this dirt were soft it would not matter so much, but it is in general hard and gritty-being in fact the grinding sand-and the consequence is that the surfaces of the slides are very apt to be scratched and injured. There is but one firm that exports slides to this country, and they are very careless in this respect. Out of a gross of slides it is often difficult to find two dozen that are not so scratched as to be worthless for the finest class of work. Having procured the slides, however, the first thing to do is to clean and assort them. They should be cleaned by being rinsed in water containing a little washing soda; the dirt being removed if necessary by the use of an old nail brush or tooth brush. Until this has been done they should not be wived with cloth or leather, for by so doing the particles of sand are dragged along the surface, making a deep mark. They should then be washed in pure water, carefully wiped with a soft cloth, and assorted for thickness and quality. It is in general best to sort them into three classes-thick, medium and thin-the latter being used for test and other very delicate objects. Elaborate instruments have been devised for measuring the thickness of the slides, so as to assort them accurately, but they are entirely unnecessary; the eye is a sufficiently accurate guide. To determine their quality, they must be examined under the microscope, and as it is only the central portion that is of any consequence in this case, we place them on a brass plate, 3 by 1, with the edges slightly turned up, and having a hole fiveeighths of an inch in diameter in the centre. That part which lies over the hole is the only part which it is necessary to examine. Slides which contain air-bubbles, striæ or scratches, are at once laid aside to be used either for opaque objects or those of a very coarse kind. Those that are perfect are carefully stored away where they will not be subject to injury.

Covers.—After being properly arranged on the slide with a suitable preservative medium, the objects must be covered with a small piece of thin glass. Glass intended specially for this purpose is made in England, and imported either in sheets or

cut into squares and circles of suitable sizes. Directions for cutting these covers would be out of place here. The beginner will always find it most economical to buy them ready cut. Of the two kinds—round and square—the former are, for all ordinary purposes, the most convenient, as covers of this shape are best suited to cells made with the turn-table, and they may also be finished more easily and neatly than the square ones.

Covers should be carefully assorted for thickness, since the thickness of the cover exerts a material influence on the performance of all lenses except those of the lowest power or quality. Where objectives which do not adjust for thickness of cover are employed, the microscopist should find out the exact thickness to which they have been corrected by the maker, and use glass of this thickness in covering all objects that are to be examined by means of these lenses.

The inexperienced student will be apt to find some difficulty in cleaning these covers. They are so fragile that it is difficult to rub them, so as to remove dirt, without breaking them. The best method is to soak them in a weak solution of potash, rinse them off carefully several times with clean water, and after pouring the last water off, give them a final rinsing by taking them up in a pair of forceps and moving them about in a tumbler of clean water. They should then be laid (singly, of course) on a wiping block and wiped. Wiping blocks are made by covering a flat block of wood with chamois leather or linen, drawn tightly so as to present a flat but somewhat soft surface. These blocks are generally made round and with handles, but we prefer them oblong (4 by 11 inches) and without handles. One of them is laid on the table face up upon this face the thin glass is laid and wiped with the other block. In this way the thinnest glass can be cleaned without risk of fracture.

Cells—Turn-Table.—All objects that are mounted dry or in fluid should be placed in cells, as unless this is done it is difficult to arrange the object properly or to secure the thin cover permanently. In the majority of cases these cells consist of little more than a ring of cement laid on the glass slide and allowed to harden, and their depth does not exceed the thickness of a sheet of paper. Such cells are in constant demand,

and are almost always made by the microscopist himself by means of a little instrument known as a turn-table or whirling table, of which there are several different forms in market. A cheap and efficient form is shown in Fig. 35. The table is supported by a spindle upon which it turns, motion being communicated by means of a milled ring. The slide is held in its place by two spring clips, and it is brought to the centre by means of a guide or bar, c, with a square projection. This is carefully arranged, so that a slide 3 by 1 shall be accurately centered. Hence it follows that the rings and cells on all the slides put up by the owner may be instantly and accurately

Fig. 35.—TURN-TABLE.

centered by simply placing them on the table and bringing them up to a firm bearing against the guide. This bar or guide may, however, be instantly removed when desired, and when this is done, any cell may be truly centered by the usual methods. This turn-table, therefore, enables us always to bring cells of our own make instantly to a perfectly accurate centre, while other cells can be centered at any time with very little trouble.

To most turn-tables there lies the objection that the devices for centering and holding the slide make one side heavier than the other, and consequently, as every mechanic knows, irregular and eccentric motion is the result. On many otherwise well-made instruments it is, from this cause, impossible to make a true cell, particularly if we attempt to work at a high speed. In the turn-table just described, this difficulty is obviated by a heavy-headed screw, of the precise weight necessary, which is screwed into the under surface of the plate, and gives a perfect balance to the wheel. It then runs smoothly and truly.

Those who once see a turn-table, will find no difficulty either in understanding the method of using it, or in putting this knowledge into practice. The slide, being held on the table either by springs or clutches, is made to revolve rapidly, and a brush, charged with cement or varnish, is held against its surface so as to leave a ring. There is a slight knack about making good cells, which it requires a little practice to acquire. brush must be held in the direction of a tangent to the ringthat is, it must not point to the centre of the circle, but must lie so that the ring, as it revolves, will draw the cement away from the brush. Practice alone can give expertness in doing this, and we would advise the beginner to work steadily for a few hours at making cells on pieces of common window glass, strips of which can be had for nothing from any glazier. The chief points to be attended to are the position of the brush and the consistence of the cement. If the latter be too fluid, it spreads and does not form a well-defined circle. If too thick it does not leave the brush as freely as is necessary. The method of preparing the cement will be explained under the proper head

Fig. 41.

Where a turn-table is not at hand, very good cells may be made as follows: On a card draw the outlines of a slide with a series of circles in the centre, as shown in Fig. 41; lay the slide on the card so that the centre of the circles will be at the centre of the slide, and then paint a circle of cement on the

slide by hand, the rings beneath serving as a guide. Very good cells may be thus made, but the process is of course more tedious than that with the turn-table, and does not give as neat results.

A few precautions are necessary in order to insure the permanent adhesion of the cells to the glass. In addition to providing cement of good quality, we must see that the slide is dry and recently heated. It is difficult, with most cements, to use hot slides, as the cement is apt to flow; but the slide should have been recently heated, and after the cement has partially hardened, the cells should be baked by exposure to a temperature as high as they will stand. This is easily done by placing them on a board or plate, and leaving the latter for a short time in an oven.

Where cells of greater depth are required, rings of various materials are cemented to the slide. For objects mounted dry, rings of leather or cardboard answer well, provided they are carefully varnished so as to be impervious to air and moisture. For liquids, rings of glass, tin, ebonite, etc., are used. Rings of rubber and gutta-percha have been suggested, but they do not answer, as they soon become rotten. Full directions for making and using deep cells may be found in the works of Quekett, Carpenter, Beale, Frey, etc.

HOT-PLATE. This is simply a stout plate of brass or iron, which is supported over a lamp by suitable means. The common plan is to insert four stout wires to serve as legs, but a better mode is to support the plate on the ring of a retort stand, as its distance from the lamp can thus be readily adjusted and the temperature regulated. The hot-plate serves to distribute the heat, and thus to prevent the slides from becoming suddenly and unequally heated. Moreover, by means of it several slides can be heated at once, and thus much time may be saved. It should be tolerably heavy. The one we use is of cast iron, six inches long and three inches wide. The upper surface has been ground so as to be tolerably smooth, When a hot-plate is not at hand, a good substitute may be found in a smooth brick, or, better still, a plate of soapstone. These may be heated in the fire and will retain their heat for a long time.

LAMP.—Any lamp, or even candle, will answer, but we prefer a spirit lamp, the flame being free from smoke and easily managed. At night the kerosene lamp used for giving light will answer. Where gas is used, the Bunsen burner is a great convenience. Whatever lamp or burner be used, it should be surrounded with a chimney or shade, so as to prevent the flickering of the flame by currents of air. The best shade is a tin cylinder, with rows of holes at top and bottom for the admission and exit of air.

RETORT STAND.—A suitable retort stand is a very simple affair, and is best made at home. Ours consists of a board of hard wood, 5 inches by 4, into which is screwed a rod fourteen inches long, and a quarter of an inch in diameter. The rings have no screws, but are simply pieces of wire, one end of which is twisted round the rod, while the other is formed into a ring of the required size. Rings formed in this way are easily moved on the upright rod, but no weight placed on them in the usual manner can cause them to slip down.

Cards for Centering the Objects.—Unless the objects are placed on the centres of the slides, the latter have a very awkward look. By drawing the outlines of a slide on a card, and marking out the centre, this difficulty is easily overcome. A card marked off in this way is shown in Fig. 42.

Fig. 42.

It is well to have two cards, one black with a white centre, and the other white with a black centre, as some objects, when immersed in the medium in which they are to be mounted,

show best against a dark ground, while others are most easily seen against a light one. Those who use the self-centering turn-tables may readily centre their slides by painting on them a ring of some water-color, which is easily washed off. The ring is, of course, laid on the side opposite to that which receives the object.

Mounting Needles.—These are similar to dissecting needles, but being used in balsam, varnish and similar substances, they cannot be used for dissection, and should be kept by themselves. They are most easily cleaned by being warmed over the lamp, and wiped with a piece of soft leather. When the balsam is burned on them, as recommended by some, it leaves a crust which is not easily removed.

Fig. 43.

COVER FORCEPS.-In placing the cover on the object, the ordinary forceps are very inconvenient. We have long used a pair of forceps bent as in Fig. 43, and with the points carefully adjusted. The mode of using the instrument will be obvious from the engraving. A very ingenious device intended to answer the same purpose has been invented by Dr. Fletcher. These forceps are self-closing, so that the thin glass cover is held without any effort. After the cover is in position on the slide,

by pressing on the blades they open and allow it to slip out.

If the cover should stick to the forceps in the slightest degree, it may be prevented from moving when the forceps are removed by inserting a common

Fig. 44.

pin in the slit seen in Fig. 44. When using the forceps shown in Fig. 43, the same end may be attained by means of a wire fork (a hair-pin is as good as anything), which may be made to straddle the nose of the instrument.

SLIDE HOLDER.—The hot slides cannot be comfortably held in the fingers, and therefore a pair of wooden forceps become a necessity. Those usually sold are made by screwing together two thin slips of wood with a piece of brass or lead inserted between them at one end. To admit the slide, the slips are forced apart by pressing on pins arranged as in the stage forceps.

When placed on a table the metal counter-balances the slide, and keeps it from touching the surface on which it is laid—a very important point. The English forceps, being all wood, frequently tip with a heavy slide.

A common spring clothes-pin is frequently used, but when we come to lay the slide down, the clothes-pin holds it in an awkward manner. The end of the hot slide is sure to lie on the table. and if fluid balsam or other medium should be present, the fact that the slide is not level produces bad results. By cutting off about half an inch from one of the limbs of the forceps part of the pin, however, this difficulty is avoided. The slide may then be grasped in such a way that when the clothes-pin is placed on the table, the glass will be held in a perfectly level position. A glance at Fig. 45 will show what we mean. A great advantage of this

form of holder is that it costs but a trifle, so that the microscopist can supply himself with an abundance of them, and thus several slides may be cooling, while work on others is going on. When very heavy slides are used, it may become necessary to screw a plate of sheet lead to the under side of the clothes-pin, so as to prevent tipping.

WATER BATH.—A water bath is indispensable in those eases where a certain very moderate degree of heat is not to be exceeded. Few persons fully appreciate the difficulty of regulating or even estimating the temperature of an object held over a naked flame, and mischief is often done before the operator is aware of it. A serviceable water bath is easily extemporized out of an old fruit can and a small beaker glass. This serves for exposing material and preparations to a temperature lower than that of boiling water. Where slides are to be so heated, the simplest contrivance is a flat tin box, with all the joints (cover and all, of course,) tightly soldered. A small tube, closed with a cork, serves to admit the water.

Spring Clips.—One of the first of the needs which impress themselves upon the mind of the beginner, is the necessity for something to retain the thin cover in its place, until the cement, which is intended to hold it permanently, dries. An endless variety of spring clips have been invented for this purpose, but we have never seen anything that we liked better than the simple article shown in Fig. 46, and which we have used for

Fig. 46.

over fifteen years. It consists simply of a piece of brass wire bent as in the engraving. The slide being held in the left hand, the clip, held by the upper wire, is brought so that the projecting part of the ring is placed under the edge of the slide. The upper part is then lifted up so as to open the clip, which is then slid on to the slide until the vertical point is in the right position. When a broader surface than the point of the wire is needed, a piece of cork may be stuck on it, and if there should be need for greater pressure than that which the spring of the wire affords, this can be obtained by sliding a small brass ring on to the clip.

Various other forms of spring clip have been invented, but none that we consider more simple, or that we like better than the above, which has this great merit, that any one can make it for himself out of materials that may be obtained at any hardware store. It must be borne in mind, however, that all clips constructed upon this plan are apt to cause a slight displacement of the object, from the fact that the movement of the point is not quite perpendicular. With delicate objects this is a matter of importance. The only remedy is to use the end pressure of a rod moving in fixed guides.

CEMENTS AND VARNISHES.

A supply of carefully selected cements and varnishes is indispensable to the microscopist, and it is also well that he should understand the nature and properties of the materials used, otherwise he will be liable to make gross blunders. Thus, of the different articles in use, some are easily mixed with each other, while others separate as soon as left to themselves; some dry in one way and some in another. It would require a volume to detail the properties of the different substances which enter into the composition of the cements used by the microscopist. We have space for only the following hints, which, however, we hope will prove useful.

Cements become hard in three different ways—cooling, evaporation and oxidation. Shellac, sealing wax, electrical cement, etc., when melted by heat, furnish examples of the first process. Shellac and sealing-wax dissolved in alcohol, and asphalt and damar dissolved in turpentine, dry by the second process—the solvents evaporating and leaving behind the material which they had dissolved. Drying oil in all its forms, such as gold size, paint, etc., becomes hard by oxidation—not, as is generally supposed, by evaporation.

In the case of varnishes which dry by the evaporation of some of their constituents, it is obvious that if a fresh layer

be laid over an old one, the old layer will be softened, and if there should be any tendency to a vacuum in the cell, the softened cement will be unable to resist the outside pressure, and will creep in and spoil the object. So, too, with varnishes or cements formed chiefly of drying oil or gold size. If the different coats be laid on too thickly or too rapidly, the part that is beneath cannot easily harden, but will remain for a very long time in a semi-liquid condition. We have just removed some brass rings from slides to which they were attached four months ago by means of gold size, and although the outer surface of the cement was hard and dry, the interior was quite liquid, freely soiling the fingers.

GOLD SIZE.—The most extraordinary recipes have been given for the preparation of this cement, which is in reality nothing but good linseed oil rendered very drying by the usual methods. Gilders frequently make it into a semi-paint by adding coloring matter, thus forming a ground of a shade similar to the gold they use, and this seems to have misled some of our best writers. There is no ochre, litharge, or anything of the kind present in good gold size. It does not pay to prepare gold size in small quantities, and it may be obtained from any color dealer. The older it is the better, and it is well, therefore, to lay in a good stock, which must be kept carefully corked. The working supply should be kept in a small bottle. This is the favorite cell making material employed by Dr. Carpenter, and it is certainly the most reliable cement we have. It adheres firmly to glass, and if laid on in very thin successive layers, tolerably deep and very durable cells may be built up, but the process requires considerable time, otherwise the under layers will remain soft. It has this great advantage over asphalt, damar, and other cements composed of solid materials dissolved in some menstruum, that fresh coats have but very slight action on the old layers on which they may be laid. It mixes with turpentine, and consequently with most materials soluble in turpentine, but when once dry and hard, turpentine, alcohol, ether, etc., have little or no action on it. It does not mix with alcohol, and therefore cannot be mixed with the solution of shellac in alcohol in any of its forms,

BLACK JAPAN.—When this can be procured of good quality, it makes a very excellent cell. It adheres very firmly to the glass provided the latter be exposed to a moderate heat after the cement has become dry. Black Japan dries up and thickens when kept, but may be thinned with turpentine.

Brunswick Black.—This is simply a solution of asphaltum in turpentine. Occasionally it is rendered very black by the addition of a little lampblack. When good, it makes a very excellent cement. Its quality depends chiefly upon the character of the asphaltum that is used in its preparation. Now there are several varieties of asphaltum in market, the most common kind at the present day being that obtained from coal tar. This seems to be entirely unfit for the purpose. The proper kind is that which is found native in several parts of the world. The two kinds are easily distinguished by their odors.

SHELLAC.—This well known substance, when dissolved in alcohol, forms a varnish or cement of great value to the microscopist, and is the proper one to be used when glycerine is employed. Much of the shellac in market is artificially made from resin and wax, and makes a poor varnish. Real shellac must be employed if failure would be avoided.

Bell's Cement.—Carpenter states that this cement is merely shellac dissolved in alcohol. With us it has presented no advantage over other cements.

SEALING WAX VARNISH.—This is prepared by dissolving the best sealing wax in alcohol. It unfortunately happens that all the fancy colored sealing wax in market is of inferior quality. Very excellent red wax may be obtained, but we have never been able to obtain good blue, black, green or other colored wax. We therefore make varnish of these colors by dissolving in alcohol the materials used for making the best red wax, substituting some other color, however, for the vermillion.

COLORED SHELLAC.—Bleached shellac, dissolved in alcohol, and colored with aniline blue, red, etc., makes a very fine transparent varnish.

Damar Cement.—This is a mixture of equal parts of damar varnish and gold size, mixed together. It should stand for some time before being used. It is said to be very excellent. It is very tough, and serves well as an outer coating over such brittle cements as shellae and sealing wax varnish.

MARINE GLUE.—This is undoubtedly the strongest cement in use for joining pieces of glass or glass and metal together. Skilful microscopists make great use of it; beginners do not find it so easy to manage as some others. In using it, the simplest method is to cut it in small pieces, lay it on one of the surfaces that are to be joined, melt it by heat, and apply the other surface, making sure of perfect contact by rubbing the two pieces upon each other, if they will allow of it. Marine glue may be obtained from most dealers in microscopes.

The cement known as liquid glue, is simply a solution of

shellac in alcohol.

For attaching labels, paper covers, etc., to the slides, nothing is better than good dextrine. After having mixed the dextrine with water to the proper consistence, add six drops of glycerine to the fluid ounce of dextrine. This will prevent the labels

or covers from cracking off.

Having provided himself with the necessary tools and materials, the next step is to learn how to use and apply them, and this will probably be most easily taught by describing a few characteristic examples. And first of all, selecting the most easily mounted of all objects, we commence with the scales on the butterfly's wings. Having prepared a cell of proper size, and allowed it to dry, the first step is to select a cover to suit it, and give a final cleaning to both slide and cover. When every particle of dust has been removed, breathe gently on the slide. and press the wing lightly against it, and within the cell. A large number of scales will at once adhere to the slide, and the next step is to attach the cover. Place the slide on the hotplate, (which must not be too hot, however,) and when it is thoroughly dry, and the cement somewhat soft, lay the cover on by means of the cover forceps. Press it into contact with the cement, and the operation is completed. It is not difficult to see when the cover and the cement are in perfect contact,

and great care must be taken to close the cell all round in this way. It is true, this point is not of so much consequence with the particular object under consideration, but with some objects it would be quite important. The scales are now mounted dry, and may be kept for any length of time; no dust can soil them, and they are not liable to be injured by contact with other bodies. It only remains to label and "finish" the slide as hereafter directed.

Next to the above in simplicity is the mounting of such objects as the wings of insects in balsam. Suppose we wish to mount one of the smaller wings of a bee or wasp, so as to show the curious hooks with which it is armed: Place the warm slide on the centering card, drop a little balsam on the centre, and again warm the slide, so that any air that may be present may collect in fine bubbles which can be removed by means of a cold mounting needle. When the air-bubbles have been removed, seize the wing (previously well cleaned with a camel hair brush) with a pair of fine forceps, and lower the tip of it into the warm balsam. Then slowly lower the wing until it is entirely immersed. Drop, very little more balsam on it, warm the slide again (slightly this time), and remove air bubbles if there should be any. Then take a clean cover in the cover forceps, make it quite warm, and place it over the object by allowing it to first touch one edge of the balsam, and then to gradually fall down so as to exclude all air bubbles. In the case of the bee's wing it does not answer to apply much pressure as this would tend to distort the hooks. Press the cover into place as much as it will bear and no more, lay the slide in a warm place for some time until the balsam hardens, and then clean and finish the slide.

In mounting objects in balsam and fluids, the great difficulty to be encountered is the presence of air bubbles. Careful and judicious management, however, readily enables us to avoid them. In the first place see that they are entirely removed from the balsam on the slide. This is much more easily done before immersing the object in the balsam then afterwards. Next see that the air is expelled from the object. In the case of the wing, this is effected by slowly immersing the object in the balsam. Lastly see that no air enters with the cover, To

do this see that the cover is hot, and that it is lowered on the balsam slowly, and from one side. If in any case there should be a vacant space under the cover as at a Fig. 47, and it should be desired to fill it, do not apply the fresh balsam directly at a. To do so would certainly be to inclose a large air bubble. Drop the balsam at b, warm the slide, and the balsam will creep in by capillary attraction, and expel the air.

Fig. 47.

Let us now suppose that we have some small insect which we have prepared by soaking in potash, and which we desire to mount in balsam. Such a preparation if immersed directly in balsam, would be spoilt, since the balsam and watery solution would not mix. Therefore, proceed as follows: Wash the insect in pure water, and drain off the water; wash with strong alcohol, drain off the alcohol, and soak for twenty-four hours in the strongest alcohol you can get. Pour off the alcohol and soak for twenty-four hours in turpentine. The object may now be immersed in balsam without difficulty.

Air pumps and similar contrivances are generally recommended as the best means for removing air bubbles, but we never use them. If the object be dry, we soak it in alcohol until all the air has been expelled, then transfer to turpentine, and finally to balsam. This requires time, it is true but it does not occupy the time of the microscopist. The soaking process goes on without any attention from him, and while it involves far less labor, with us it has always given far better results, though we have used very fine air pumps, and followed the best published directions. Take the case of a dry shaving of wood, many of which are well worth mounting. It would be

very laborious to get the air out of this by means of the air pump, while by soaking successively in alcohol and turpentine, it can be mounted with great ease.

Let us now take the case of an object mounted in fluid in a cell. Suppose it is the so-called tongue of a fly, which of course has been soaked for some time in the liquid in which it is to be finally mounted, viz., dilute glycerine. We make a cell of suitable thickness, which in this case may be made with shellac dissolved in alcohol. Several coats will be required, and as shellae alone does not adhere well to glass, we prefer to lay on first a coat of gold size or Japan, and when this is thoroughly dry, to lay the shellac on it. No difficulty will be found in making a cell of sufficient depth. The cell is now to be filled with the liquid, the object placed in it, and the whole carefully examined for air bubbles, which must be removed if they exist. The cover is now applied, all superfluous fluid removed by means of a camel hair pencil, which has been moistened and then squeezed dry, and finally the edge of the cover is to be coated with a thin layer of cement. After a day or so another layer of cement should be laid on, and this process repeated until at least three layers have been applied.

We give no directions for the construction and use of very deep cells as this is work that will hardly be attempted by beginners.

When opaque objects are to be mounted either in balsam, or in fluid, the process required is the same as that employed for transparent objects. Very many opaque objects are, however, mounted dry, and in this case all that is needed is to attach them to a slide, and see that they are properly protected. When thin they may be readily mounted in cement cells, and this is altogether the neatest and most secure plan where it can be used. Thicker objects require deeper cells, which may be made of card, ebonite or electrical cement. (3 parts resin, and 1 of wax, colored with ochre or any similar matter). Cells of card are made by first punching out a disc like a gun wad, and then punching a hole in this so as to leave a ring. The ring is to be cemented to the glass slide and carefully varnished.

Wooden slides with a cell bored in the centre, are recom-

mended very highly, and seem to answer a very good purpose. The cells are not bored quite through the wooden slip, and as they are blackened on the inside, any small object that may be cemented to the bottom of them shows very well. For seeds, small shells, and similar objects, they answer admirably. In most cases it will be found unnecessary to cover the cells with thin glass. Several slides may be packed together face to face, and if held in firm contact by means of a rubber ring, dust will be entirely excluded. Or they may be arranged in the drawers of an ordinary cabinet, face down, the labels being placed on the backs. This will effectually exclude the dust.

Some years ago we mounted a large number of specimens of minerals on leather discs, which were cemented to glass slides. These leather discs were three-quarters of an inch in diameter, and we had a lot of pill-box covers which exactly fitted them. These covers, when slipped on to the discs, protected the objects perfectly, and the whole formed a very cheap, convenient and excellent mode of mounting.

A very ingenious cell for opaque objects, the invention of

Prof Pierce, of Providence, R. I., is shown in Fig. 48. It consists of a metallic cell, having a broad flange like the rim of a hat, which is cemented to an ordinary glass slide, as shown in

section in the lower figure. To this cell is fitted a metal cap, which covers and protects the object. The object may be placed directly on the glass, or raised by means of a disc of any required thickness, so as to be more easily illuminated. The slide, with cell uncovered and containing an object, is shown in the upper figure. Uncovered objects may in this way be very perfectly protected from dust and mechanical violence.

Where it is desirable to cover objects with thin glass, the method devised by Prof. H. L. Smith will be found very excellent. He takes a circular disc of thin sheet wax, which is easily cut with a punch from the sheet wax ordinarily used for making flowers, and attaches it by means of heat to the centre of a

glass slide. A brass ring, of which the interior is the same size as the disc, is then attached to the slide, and the object is fixed to the wax by slightly moistening the surface of the latter by a minute drop of turpentine. When dry, a cover, which exactly fits into the bevel of the ring, is attached with a little cement, and the whole may then be finished off on the turn-table. The appearance is very elegant, and the specimens are perfectly preserved.

A cell which we have found very durable, easily and quickly made, and very neat, is constructed as follows: Having procured some good gold size and pure litharge, grind the latter to a very fine powder. Mix the litharge and gold size to the thickness of cream, and color either black or dark olive by adding lamp-black. With this paint, as it may be called, make as many cells as are wanted, and when made, dust finely powdered litharge over them until they are covered a sixteenth of an inch deep; allow them to stand a few minutes, and then shake off all the loose litharge by means of a few smart taps. The surface of the cell will now be quite rough. Allow it to stand a few hours, and then press it against a plate of glass. If this be done carefully, a smooth, solid ring will be left on the slide. If the edges should not be as smooth as they ought to be, it is easy to trim them off on the turn-table by means of a small chisel. Such cells, after a few weeks, become very hard, and may be finished so as to be very neat. By introducing a few obvious and unimportant modifications, we have, in this way, made cells of some depth which held liquids quite well.

Finishing the Slides.—After the objects have been mounted, the slides may be finished in one of two ways: they may be covered with paper, or they may be left without any covering, the labels being attached directly to the slide. In the latter case the edges of the slide must have been previously ground and polished, and, as a general rule the thin cover is circular and not square, and is finished with a neat coat of varnish on the edge. This varnish serves to do something more than merely ornament the slide; it secures the cover in its place, and prevents the drying up of the medium used for mounting. Even in the case of Canada balsam it is of use, for

if gold size be used as the varnish, it prevents the evaporation of the turpentine, and the ultimate drying and cracking of the balsam. Where glycerine jelly, glycerine, or glycerine and

gum are used, it becomes indispensable.

The process employed for finishing slides in this way is as follows: The objects having been mounted, the slides are laid away until the balsam, cement, etc., have been hardened, when all superfluous matters of this kind are easily removed with a small chisel made out of a brad-awl ground thin and sharp. A small chisel-pointed piece of hard wood, and a little water, will remove the last traces of balsam or varnish, and if necessary a final cleaning may be given with a rag moistened with alcohol. The slide is then placed on the turntable, and a neat ring of varnish, either plain or colored, is run around the edge.

The proper labeling of the slides is an important matter. Our system is as follows: As soon as the object is mounted, the slide is labeled on the under side with a very thin gummed label, and it is also numbered on the upper side with a writing diamond. Of this number a record is kept, so that even if the label should fall off or get soaked off, a new label may be provided. As soon as the slide is finished, the regular label is attached, and the small label removed. As regards designs, etc., for labels, the variety is endless. Each microscopist will probably select the one that accords most nearly with his own taste.

CATALOGUE

OF

Books and Periodicals

PUBLISHED AND FOR SALE BY

THE INDUSTRIAL PUBLICATION COMPANY,

176 Broadway, New York.

Any of these Books may be obtained from any Bookseller or Newsdealer, or will be sent Free by mail to any part of the United States or Canada ON RECEIPT OF PRICE.

The Amateur's Handbook of Practical Information,

For the Workshop and the Laboratory. Second Edition. Greatly Enlarged. Neatly Bound - - 15 cents.

This is a handy little book, containing just the information needed by Amateurs in the Workshop and Laboratory. Directions for making Alloys, Fusible Metals, Cements, Glues, etc.; and for Soldering, Brazing, Lacquering, Bronzing, Staining and Polishing Wood, Tempering Tools, Cutting and Working Glass, Varnishing, Silvering, Gilding, Preparing Skins, etc., etc.

The New Edition contains extended directions for preparing Polishing Powders, Freezing Mixtures, Colored Lights for tableaux, Solutions for rendering ladies' dresses incombustible, etc. There has also been added a very large number of new and valuable receipts.

Rhymes of Science: Wise and Otherwise.

By O. W. Holmes, Bret Hart, Ingoldsby, Prof. Forbes, Prof. J. W. McQ. Rankine, Hon. R. W. Raymond, and others.

With Illustrations. Cloth, Gilt Title. - 50 cents

Section Cutting.

A Practical Guide to the Preparation and Mounting of Sections for the Microscope; Special Prominence being given to the Subject of Animal Sections. By Sylvester Marsh. Reprinted from the London edition. With Illustrations. 12mo., Cloth, Gilt Title. - 75 cents.

This is undoubtedly the most thorough treatise extant upon section, cutting in all its details. The American edition has been greatly enlarged by valuable explanatory notes, and also by extended directions, illustrated with engravings, for selecting and sharpening knives and razors.

Companion for Cheap Microscopes.

Intended for those who have absolutely no knowledge of the Microscope or how to use it. Price, in Boards, 30 cents. In Cloth, Gilt Title - 50 cents.

This is a very elementary book, giving very simple directions for using the Microscope, and for collecting, preparing and mounting objects.

How to Use the Microscope.

A Simple and Practical Book, intended for beginners. By John Phin, editor of "The American Journal of Microscopy." Second Edition. Greatly Enlarged, with 50 illustrations in the text and 4 full-page engravings printed on heavy tint paper. 12mo., Neatly bound in Cloth, Gilt Title.

The Microscope.

By Andrew Ross. Fully Illustrated. 12mo., Cloth, Gilt Title. - - - - 75 cents.

This is the celebrated article contributed by Andrew Ross to the "Penny Cyclopædia," and quoted so frequently by writers on the Microscope. Carpenter and Hogg, in the last editions of their works on the Microscope, and Brooke, in his treatise on Natural Philosophy, all refer to this article as the best source for full and clear information in regard to the principles upon which the modern achromatic Microscope is constructed. It should be in the library of every person to whom the Microscope is more than a toy. It is written in simple language, free from abstruse technicalities.

Diatoms.

Practical Directions for Collecting, Preserving, Transporting, Preparing and Mounting Diatoms. By Prof. A. Mead Edwards, M. D., Prof. Christopher Johnston, M. D., Prof. Hamilton L. Smith, LL. D.

12mo., Cloth. - - - 75 cents.

This volume undoubtedly contains the most complete series of directions for Collecting, Preparing and Mounting Diatoms ever published. The directions given are the latest and best.

Common Objects for the Microscope.

By Rev. J. G. Wood. Upwards of four hundred illustrations, including twelve colored plates by Tuffen West.

Illuminated Covers. - 50 cents.

This book contains a very complete description of the objects ordinarily met with, and as the plates are very good, and almost every object is figured, it is a most valuable assistant to the young microscopist.

Five Hundred and Seven Mechanical Movements.

Embracing all those which are Most Important in Dynamics, Hydraulics, Hydrostatics, Pneumatics, Steam Engines, Mill and Other Gearing, Presses, Horology and Miscellaneous Machinery; and including Many Movements never before published, and several of which have only recently come into use. By Henry T. Brown, editor of the "American Artisan." Eleventh Edition. \$1.00.

This work is a perfect Cyclopædia of Mechanical Inventions, which are here reduced to first principles, and classified so as to be readily available. Every mechanic that hopes to be more workman, ought to have a copy.

The Six Days of Creation.

The Chemical History of the Six Days of Creation. By John Phin, C. E., editor of "The American Journal of Microscopy." 12mo., Cloth. - 75 cents.

Stories About Horses.

Just the Book for Boys. With eight full-page engravings. In Boards, 25 cents. In Cloth - 50 cents.

Shooting on the Wing.

Plain Directions for Acquiring the Art of Shooting on the Wing. With Useful Hints concerning all that relates to Guns and Shooting, and particularly in regard to the art of Loading so as to Kill. To which has been added several Valuable and hitherto Secret Recipes, of Great Practical Importance to the Sportsman. By an Old Gamekeeper.

12mo., Cloth, Gilt Title.

75 cents.

The Pistol as a Weapon of Defence,

In the House and on the Road.

12mo., Cloth. - - - 50 cents.

This work aims to instruct the peaceable and law-abiding citizens in the best means of protecting themselves from the attacks of the brutal and the lawless, and is the only practical book published on this subject. Its contents are as follows: The Pistol as a Weapon of Defence.—The Carrying of Fire-Arms.—Different kinds of Pistols in Market; How to Choose a Pistol.—Ammunition, different kinds; Powder, Caps, Bullets, Copper Cartridges, etc.—Best form of Bullet.—How to Load.—Best Charge for Pistols.—How to regulate the Charge.—Care of the Pistol; how to Clean it.—How to Handle and Carry the Pistol.—How to Learn to Shoot.—Practical use of the Pistol; how to Protect yourself and how to Disable your antagonist.

Lightning Rods.

Plain Directions for the Construction and Erection of Lightning Rods. By John Phin, C. E., editor of "The Young Scientist," author of "Chemical History of the Six Days of the Creation," etc. Second Edition. Enlarged and Fully Illustrated.

12mo., Cloth, Gilt Title. - - 50 cents.

This is a simple and practical little work, intended to convey just such information as will enable every property owner to decide whether or not his buildings are thoroughly protected. It is not written in the interest of any patent or particular article of manufacture, and by following its directions, any ordinarily skilful mechanic can put up a rod that will afford perfect protection, and that will not infringe any patent. Every owner of a house or barn ought to procure a copy.

JOURNAL OF MICROSCOPY.

POPULAR SCIENCE.

PROSPECTUS.

The object of the Journal of Microscopy is to diffuse a knowledge of the best methods of using the Microscope; of all valuable improvement in the line strument and its accessories; of all new methods of microscopical investigation and of the most recent results of microscopical research. The June 100 microscopical research is the June 100 microscopical research. not address itself to those who have long pursued certain special line, of research, and whose wants can be supplied only by elaborate papers, which, from their thoroughness, are entitled to be called monographs rather than more articles. It is intended rather to meet the wants of those who use the microscope for purposes of general study, medical work, class insruction, and even amosefor purposes of general study, medical work, class institution, at deven anneament, and who desire, in addition to the information afforded by trabooks, such a knowledge of what others are doing as can be lerived only from a periodical. With this object in view, therefore, the publishers represent make the Joi analy so simple, practical and trustworthy, that it will prove to the advantage of every one who uses the microscope at all to take it.

ILLUSTRATIO'S —The JOURNAL will be freely illustrated by engravings representing either objects of natural history or apparatus countries with the

TRANSACTIONS OF SOCIETIES .- THE AMERICAN JOURNAL OF MUROSCOPY is not the organ of any Society, but it gives the proceedings of all Societies whose officers send us a report. As the JOURNAL is devoted wholly to Microscopy, and is in good form and size for binding, no better medium can be had for preserving the scientific records of any society. Matters of mere business routine we are frequently obliged to omit for want of room.

out expense, except for postage, to exchange slides and materials with each other.

TERMS.

During the first two years of its existence, the subscription to the AMERICAN Journal of Microscopy was only fifty cents per year, but at the request of more than two-thirds of the subscribers, the size of the Journal has been doubled, and the price raised to

ONE DOLLAR PER YEAR.

Four copies for three dollars. Those who wish to economize in the direction

of periodicals, would do well to examine our clubbing list.

Foreign Subscribers.—The Journal will be sent, postage paid, to any country in the Postal Union for \$1.24, or 5 shillings sterling per year. English postage stamps, American currency or American postage stamps taken in payment. In return for a postal order or draft for £1 5s, five copies of the JOURNAL will be furnished and mailed to different addresses. Make all drafts and postal

ha dsome cloth cases, which we offer for \$1.25 each. Vols. I and II, bound: and the numbers of Vol. III, as issued, we offer for \$2.50. We can no longer supply complete sets of 1876-7 in sheets. To those who wish to examine the journal, we

Advertisements.

The Journal of Microscopy, from its very nature, is a visitor to the very best families, and its value as an advertising medium has therefore proved to be much above that of average periodicals. A few select advertisements will be finerted at the rate of 30 cents per line, nonparied measure, of which twelve lines make an inch. Address

AMERICAN JOURNAL OF MICROSCOPY.

P. O. Box 2852, New York.

Just Published. 1 Vol., 12mo. Neatly Bound in Cloth, Gilt Title. Price 75 cents.

HOW TO USE THE MIGROSCOPE.

A Simple and Practical Book, intended for beginners.

By JOHN PHIN,

Editor of "The American Journal of Microscopy."

Second Edition. Greatly Enlarged, with 50 illustrations in the text,
and 4 full-page engravings printed on heavy tint paper.

CONTENTS:

What a Microscope is —Different Kinds of Microscopes.—Simple Microscopes.—Hand Mignifiers.—The Coddington Lens.—The Stanhope Lens.—Raspail's Microscope.—The Excelsior Microscope.—Twenty-five cent Microscopes and how to make them.—Penny Microscopes.

COMPOUND MICROSCOPES.—Different kinds of Objectives.—Non-Achromatic Objectives.—French Achromatic Objectives—Objectives of the English Form.—Immersion Objectives—Focal Lengths corresponding to the numbers employed by Nachet, Hartnack and Gundlach.

How to Choose A Microscope.—Microscopes for Special Purposes.—Magnifying Power required for different purposes.—How to judge of the quality of the different parts of the Microscope.

Accessory Apparatus.—Stage Forceps, Animalcule Cage, etc.

ILLUMINATION.—Sun Light.—Artificial Light.—Bulls-Eye Condenser.—Side Reflector.—The Lieberkuhn.—Axial Light.—Oblique Light.—Direct Light.

How to Use the Microscope.—How to Care for the Microscope.

How to Collect Objects.—Where to find Objects.—What to Look for.—How to Capture Them.—Nets.—Bottle-Holders.—Spoons.—New Form of Collecting Bottle.—Aquaria for Microscopic Objects.—Dipping Tubes.

THE PREPARATION AND EXAMINATION OF OBJECTS.—Cutting Thin Sections of Soft Substances.—Sections of Wood and Bone.—Improved Section Cutter.—Sections of Rock.—Knives.—Seissors.—Needles.—Dissecting Pans and Dishes.—Dissecting Microscopes.—Separation of Deposits from Liquids.—Preparing whole Insec....—Feet, Eyes, Tongues, Wings, etc., of Insects.—Use of Chemical Tests.—Liquids for Moistening Objects.—Refractive Power of Liquids.—Covers for Keeping out Dust.—Errors in Microscopical Observations.

Preservation of Objects.—General Principles.—Recipes for Preservative Fluids.—General Rules for Applying them.

Mounting Objects —Apparatus and Materials for: Slides, Covers, Cells, Turn-Table, Cards for Making Cells, Hot-Plate, Lamps, Retort Stand, Slide-Holder, Mounting Needles, Cover Forceps, Simple Form of Spring Clip, Centering Cards, Gold Size, Black Japan, Brunswick Black, Sheilac, Bell's Cement, Sealing Wax Varnish, Colored Shellac, Damar Cement, Marine Glue, L'quid Giue, Dextrine.—Mounting Transpurent Objects Dry.—Mounting in Balsam.—Mounting in Balsam.—Mounting of Whole Insects.—How to Get Rid of Air-Bubbles.—Mounting Opaque Objects.

FINISHING THE STIDES

May be obtained from any Bookseller or News Agent, or will be sent by mail, postage paid, on receipt of price.

THE INDUSTRIAL PUBLICATION COMPANY,

P. O. Box 4875.

176 Broadway, New York.

THE INDUSTRIAL PUBLICATION CO.

178 BRUADWAY, ARW YORK.

THE AMERICAN JOHNNAL OF MICROSCOPY A Months of the American processor of the processor of t

the said Use of the Microscope. Interior for how more the later Pub., Second Edulary, goathy colored with a Director of the formation

THE MICROSCOPE HE I F & KING The best work. The

DATOMS: I worked The there are Collecting, Preserving, Time-potuncy, Preparent, and Arounds, Thaters, My Professor, A. M., Morrison, Course, then becomes and H., morred, Shipe, it is schools

COMMON OBJEC ' on the committee, by 2-v, An in the committee of the commit

MW DAVE OF CREATION By John Phila Com-A HOTOTONG ON THE WING A Simple and the second was a few and the second mental and the s

If all hold on the ages what has any need two we wanted and people and the control of the contro

FIVE HUNDRED AND SEVEN Me himingl Movements. By Makey

Bunwis, Small to cloth Pully illustrated!

AMATEUR'S HANDEOOK of Practical Information for the Works

IN PRESS.

A New York BY HOW TO SEF WITH THE MICROSCOPE. pted the Wants of Physicians and Naturalist III Physics

COMPANION FOR CHEAR MICROSCOPES. A Mark to Texture

receift of P