

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (6)

The
Patent
Office

GB00/226

PCT/GB00/00226
26 JANUARY 2000

INVESTOR IN PEOPLE

09/889733

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Andrea Gersay

Dated 2 February 2000

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form.)

9913066.8

The Patent Office

Cardiff Road
Newport
Gwent NP9 1RH

1. Your reference P75751A GCW

2. Patent application number
(The Patent Office will fill in this part)

3. Full name, address and postcode of the or of each applicant *(underline all surnames)*
UNIVERSITY COLLEGE LONDON
Gower Street
London
WC1E 6BT
United Kingdom

Patents ADP number *(if you know it)*

0079 865 2002

United Kingdom

4. Title of the invention Screen Method

5. Name of your agent *(if you have one)* J A KEMP & CO

"Address for service" in the United Kingdom to which all correspondence should be sent
(including the postcode)
14 SOUTH SQUARE
GRAY'S INN
LONDON WC1R 5LX

Patents ADP number *(if you know it)*

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and <i>(if you know it)</i> the or each application number	Country	Priority application number <i>(if you know it)</i>	Date of filing <i>(day / month / year)</i>
---	---------	--	---

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application	Number of earlier application	Date of filing <i>(day / month / year)</i>
---	-------------------------------	---

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? <i>(Answer "Yes" if:</i>	Yes
---	-----

a) any applicant named in part 3 is not an inventor, or
b) there is an inventor who is not named as an applicant, or
c) any named applicant is a corporate body:
See note (d)

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document

Continuation sheets of this form

Description 55

Claim(s) 5

Abstract 1

Drawing(s) 6

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (*Patents Form 7/77*)

Request for preliminary examination and search (*Patents Form 9/77*)

Request for substantive examination
(*Patents Form 10/77*)

Any other documents
(please specify)

11.

I/We request the grant of a patent on the basis of this application

Signature

Date 4 June 1999

12. Name and daytime telephone number of person to contact in the United Kingdom

G.C. WOODS

0171 405 3292

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered "Yes" Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

SCREEN METHOD

Technical field of the invention

This invention relates to methods of screening for
5 compounds which specifically regulate different isoforms
of dimethylarginine dimethylaminohydrolase.

Background of the invention

Arginine residues in proteins are methylated by a
10 family of Protein arginine N-methyltransferases (PRMTs). These enzymes catalyze the methylation of guanidino nitrogens of arginine to produce N^G monomethyl-L-arginine (L-NMMA), N^GN'^G dimethyl-L-arginine (asymmetric dimethylarginine; ADMA) and N^GN^G dimethylarginine
15 (symmetric dimethylarginine; SDMA). Proteolysis of proteins containing these residues releases free methylarginines. Although the biological role of methylarginine residues is unclear, free L-NMMA and ADMA, but not SDMA, are inhibitors of all three isoforms of
20 nitric oxide synthase (NOS) and might alter NOS activity in health or disease.

Free methylarginines are found in cell cytosol, plasma and tissues and their concentrations differ between tissue and between regions within a single tissue
25 or organ. Elevated concentrations of ADMA have been detected in endothelial cells repopulating blood vessels damaged by balloon injury, in the plasma of patients or experimental animals with hyperlipidaemia, renal failure or atherosclerosis, and in patients with schizophrenia or
30 multiple sclerosis. Altered biosynthesis of nitric oxide (NO) has been implicated in the pathogenesis of all of these conditions and it is possible that the accumulation of endogenous ADMA underlies the inhibition of NO generation.

35 The production of methylarginines is probably an

obligatory step in protein turnover, and rates of production may show tissue specific and temporal variations. However, L-NMMA and ADMA, but not SDMA, are actively metabolised to citrulline and methylamines by
5 the action of dimethylarginine dimethylaminohydrolase (DDAH). Certain tissues which express NOSs also appear to express DDAH. Pharmacological inhibition of DDAH increases the concentration of ADMA in endothelial cells and inhibits NO-mediated endothelium-dependent relaxation
10 of blood vessels. These observations suggest that DDAH activity ensures that the local concentration of ADMA does not normally rise sufficiently to affect NO generation, and that changes in DDAH activity could actively alter NOS activity.

15

Summary of the invention

The present invention is based on our finding that humans express two functionally active methylarginases, which we have called DDAHI and DDAHII. We have cloned
20 the polynucleotides that encode DDAHI and DDAHII isoforms and have studied the expression patterns of these two methylarginases via RNA blotting. These experiments revealed that DDAHI has a tissue distribution in humans which is similar to that of the neuronal isoform of
25 nitric oxide synthase (nNOS), whilst DDAHII is highly expressed in vascular tissues which also express endothelial (eNOS).

These data provide evidence that methylarginine concentration is actively regulated in cells that express
30 NOS and further, suggest that there is a mechanism of regulation of NOS whereby different isoforms of NOS are specifically regulated as methylarginine concentrations are modulated by the action of specific DDAH enzymes.

DDAHI and DDAHII may therefore provide new targets
35 for the isolation of compounds which can specifically

modulate the activity of particular NOS isoforms or other arginine utilising enzymes through specific interaction with particular DDAH isoforms.

Furthermore, we have found that the human DDAH I and 5 DDAH II share significant homology with bacterial arginine deiminases. Arginine deiminases have only been described in prokaryotic organisms and the primitive eukaryote *Giardia intestinalis*. Arginine deiminases catalyse the hydrolysis of arginine to ammonia and citrulline in a 10 reaction that closely resembles the hydrolysis of methylarginine to methylamine and citrulline catalysed by DDAH I.

We have isolated DDAH I sequences from three species of bacteria and an arginine deiminase sequence from *P. aeruginosa*. The enzymes encoded by these sequences can 15 be expressed at high levels and large quantities of the expressed enzyme can be recovered. Thus we have identified an excellent source of enzymes which can be used to identify compounds capable of modulating the 20 activity of DDAH enzymes.

According to the present invention there is thus provided a polynucleotide which:

- (a) encodes a polypeptide that has the 25 properties of a methylarginase, which polynucleotide is selected from:
 - (1) the coding sequence of SEQ ID NO: 1, 3, 5, 7, 9 or 11;
 - (2) a sequence which hybridises selectively to 30 the complement of a sequence defined in (1); and
 - (3) a sequence that is degenerate as a result of the genetic code with respect to a sequence defined in (1) or (2); or
- 35 (b) is a sequence complementary to a

polynucleotide defined in (a).

The invention also provides:

- a polypeptide which has methylarginase activity and which comprises the sequence set out in SEQ ID NO: 2, 4, 6, 8, 10 or 12, a sequence substantially homologous thereto or a fragment of either said sequence.
- a vector incorporating a polynucleotide of the invention.
- a cell harbouring a polynucleotide, a peptide or a vector of the invention.
- a process for the preparation of a polypeptide which has methylarginase activity, which process comprises cultivating a host cell harbouring an expression vector of the invention under conditions to provide for expression of the said polypeptide, and recovering the expressed polypeptide.
- a modulator of methylarginase activity.
- a method for identifying a modulator of methylarginase activity and/or expression, comprising:
 - (i) contacting a polynucleotide of the invention, a polypeptide of the invention, a vector of the invention or a cell of the invention and a test substance under conditions that would permit methylarginase activity in the absence of the test substance; and
 - (ii) determining thereby whether the said substance modulates the activity and/or expression of methylarginase.
- a modulator of methylarginase activity and/or expression identified by the method of the

method of the invention.

- a polynucleotide, a polypeptide, an expression vector or a modulator of the invention for use in a method of treatment of the human or animal body by therapy.
- use of a polynucleotide, a polypeptide, an expression vector or a modulator which is an activator of the invention for the manufacture of a medicament for use in the treatment of hyperlipidaemia, renal failure, hypertension, restenosis after angioplasty, atherosclerosis, complications of heart failure, schizophrenia, multiple sclerosis or cancer.
- use of a modulator of the invention which is an inhibitor of methylarginase activity and/or expression for the manufacture of a medicament for use in the treatment of ischaemia-reperfusion injury of the brain or heart, cancer, lethal hypotension in severe inflammatory conditions such as septic shock or multi-organ failure, or local and systemic inflammatory disorders including arthritis, skin disorders or inflammatory cardiac disease.
- a pharmaceutical composition comprising a polynucleotide, a polypeptide, an expression vector or a modulator which is an activator of the invention and a pharmaceutically acceptable carrier and/or diluent.
- a method of treating a human or animal suffering from hyperlipidaemia, renal failure, hypertension, restenosis after angioplasty, atherosclerosis, complications of heart failure, schizophrenia, multiple sclerosis or cancer, which method comprises administering to the host a therapeutically effective amount of

a polypeptide, an expression vector, or a modulator which is an activator of the invention.

- a method of treating a human or animal suffering from ischaemia-reperfusion injury of the brain or heart, cancer, lethal hypotension in severe inflammatory conditions such as septic shock or multi-organ failure, or local and systemic inflammatory disorders including 10 arthritis, skin disorders or inflammatory cardiac disease, which method comprises administering to the host a therapeutically effective amount of a modulator which is an activator of the invention.

15

Brief description of the drawings

Figure 1 shows an amino acid alignment of rat and human DDAH I with human DDAH II. The derived amino acid sequences of human and rat DDAH I and human DDAH II were aligned using the clustal programme. Amino acid identities are indicated (*), highly conservative substitutions (:) and conservative substitutions (.).

Figure 2 shows recombinant expression of human DDAH II. Aliquots of *E. coli* transfected with either empty vector (lanes 1 and 3) or vector containing human DDAH II cDNA (lanes 2 and 4) were resolved on 15% SDS-PAGE gels. Gels were either stained for total protein with coomassie blue (lanes 1 and 2) or processed for western blotting 30 (lanes 3 and 4) as described under Experimental Procedures. The filled arrow indicates the ~40kDa recombinant protein that is specifically recognised by the anti-PentaHis antibody. The migration of molecular weight markers is indicated.

35

Figure 3 shows DDAH activity of recombinant DDAH II. Aliquots of cell lysates of *E. coli* transfected with either empty vector or vector containing human DDAH II cDNA were assayed for DDAH activity as described under 5 Experimental Procedures. Assays were performed in triplicate and the data is expressed as the average of the three replicates after subtraction of background. The data presented is the result of one representative experiment. Similar results were obtained in four 10 independent experiments. The data shown represent the hydrolysis of ~1mmol L-NMMA hr⁻¹ by *E.coli* lysates containing recombinant DDAH II. Under the same conditions, a 30% rat liver homogenate hydrolysed ~18mmol L-NMMA hr⁻¹

15

Figure 4 shows tissue distribution of human DDAH and NOS isoforms. Labelled probes specific for human DDAH I, DDAH II, neuronal NOS, endothelial NOS and b-actin were sequentially hybridized to a commercially available 20 multiple-tissue northern blot. The migration of molecular weight markers is indicated.

Figure 5 shows alignment of human DDAH I and II with *Pseudomonas* Arginine Deiminase. The derived amino acid 25 sequence of human DDAH I and II were aligned with the amino acid sequence of *Pseudomonas* X arginine deiminase. Amino acid identities are indicated (*), highly conservative substitutions (:) and conservative substitutions (.). Boxed regions indicated motifs highly conserved between 30 arginine deiminases.

Figure 6A shows the alignment using ClustalW of 35 human DDAH I and DDAHs from *S.coelicolor*, *P.aeruginosa* and *M.tuberculosis*. Identical amino acids are indicated by (*), highly conserved amino acid substitutions by (:)

and conserved amino acid substitutions by (.).

S. coelicolor DDAH is encoded by residues 33784 to 33011 of cosmid St4C6. The sequence does not have an individual accession number. *P. aeruginosa* DDAH sequence 5 is contained within a contiguous genomic DNA sequence (contig 1281). Again, the sequence does not have an individual accession number. *M. tuberculosis* DDAH has been deposited under accession number DDAH Z797022.

10 Figure 6B shows a similar alignment using ClustalW of *P.aeruginosa* DDAH and arginine deiminase.

15 Figure 7 shows enzymatic activity of ScDDAH and PaDDAH. The effect of 10mM ADMA and SDMA on recombinant ScDDAH and paDDAH was studied using the assay conditions described in the material and methods section below. Assays were carried out in triplicate on aliquots of cell lysates containing empty vector, scDDAH cDNA or paDDAH cDNA and data was expressed as a mean of the total number 20 of replicates after subtraction of background. The results shown are the mean of three independent experiments.

Detailed Description of the Invention

25 Polynucleotides

The invention provides a polynucleotide which:

- 30 (a) encodes a polypeptide that has the properties of a methylarginase, which polynucleotide is selected from:
- 35 (1) the coding sequence of SEQ ID NO: 1, 3, 5, 7, 9 or 11;
- (2) a sequence which hybridises selectively to the complement of a sequence defined in (1); and

- (3) a sequence that is degenerate as a result
of the genetic code with respect to a
nucleic sequence defined in (1) or (2); or
(b) is a sequence complementary to a
polynucleotide defined in (a).

5

SEQ ID NOS: 1, 3, 5, 7, 9 and 11 set out the
sequences of human DDAHI, DDAHII, *S. coelicolor* DDAH,
P. aeruginosa DDAH, *P. aeruginosa* arginine deiminase and
M. tuberculosis DDAH respectively.

10 Polynucleotides of the invention also include
variants of the coding sequence of SEQ ID NO: 1, 3, 5, 7,
9 or 11 which can function as methylarginases. Such
variants thus have the ability to catalyze the production
of citrulline from methylarginines. Typically a
15 polynucleotide of the invention comprises a contiguous
sequence of nucleotides which is capable of hybridizing
under selective conditions to the complement of the
coding sequence of SEQ ID NO: 1, 3, 5, 7, 9 or 11.

A polynucleotide of the invention and the complement
20 of the coding sequence of SEQ ID NO: 1, 3, 5, 7, 9 or 11
can hybridize at a level significantly above background.
Background hybridization may occur, for example, because
of other cDNAs present in a cDNA library. The signal
level generated by the interaction between a
25 polynucleotide of the invention and the complement of the
coding sequence of SEQ ID NO: 1, 3, 5, 7, 9 or 11 is
typically at least 10 fold, preferably at least 100 fold,
as intense as interactions between other polynucleotides
and the coding sequence of SEQ ID NO: 1, 3, 5, 7, 9 or
30 11. The intensity of interaction may be measured, for
example, by radiolabelling the probe, e.g. with ^{32}P .
Selective hybridisation may typically be achieved using
conditions of low stringency (0.03M sodium chloride and
0.03M sodium citrate at about 40°C), medium stringency
35 (for example, 0.03M sodium chloride and 0.03M sodium

citrate at about 50°C) or high stringency (for example, 0.03M sodium chloride and 0.03M sodium citrate at about 60°C).

- A nucleotide sequence which is capable of
- 5 selectively hybridizing to the complement of the DNA coding sequence of SEQ ID NOS: 1, 3, 5, 7, 9 or 11 will generally have at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 98% or at least 99% sequence identity to the coding sequence of SEQ ID NO: 1,
- 10 3, 5, 7, 9 or 11 over a region of at least 20, preferably at least 30, for instance at least 40, at least 60, more preferably at least 100 contiguous nucleotides or most preferably over the full length of SEQ ID NO: 1, 3, 5, 7, 9 or 11.
- 15 Any combination of the above mentioned degrees of sequence identity and minimum sizes may be used to define polynucleotides of the invention, with the more stringent combinations (i.e. higher sequence identity over longer lengths) being preferred. Thus, for example a
- 20 polynucleotide which has at least 90% sequence identity over 25, preferably over 30 nucleotides forms one aspect of the invention, as does a polynucleotide which has at least 95% sequence identity over 40 nucleotides.
- The coding sequence of SEQ ID NO: 1, 3, 5, 7, 9 or
- 25 11 may be modified by nucleotide substitutions, for example from 1, 2 or 3 to 10, 25, 50 or 100 substitutions. The polynucleotide of SEQ ID NO: 1, 3, 5, 7, 9 or 11 may alternatively or additionally be modified by one or more insertions and/or deletions and/or by an
- 30 extension at either or both ends. The modified polynucleotide generally encodes a polypeptide which has methylarginase activity. Degenerate substitutions may be made and/or substitutions may be made which would result in a conservative amino acid substitution when the
- 35 modified sequence is translated, for example as shown in

the Table below.

Polynucleotides of the invention may comprise DNA or RNA. They may also be polynucleotides which include within them synthetic or modified nucleotides. A number 5 of different types of modification to polynucleotides are known in the art. These include methylphosphonate and phosphorothioate backbones, addition of acridine or polylysine chains at the 3' and/or 5' ends of the molecule. For the purposes of the present invention, it 10 is to be understood that the polynucleotides described herein may be modified by any method available in the art. Such modifications may be carried out in order to enhance the *in vivo* activity or lifespan of polynucleotides of the invention.

15 Polynucleotides of the invention may be used as a primer, e.g. a PCR primer, a primer for an alternative amplification reaction, a probe e.g. labeled with a revealing label by conventional means using radioactive or non-radioactive labels, or the polynucleotides may be 20 cloned into vectors.

Such primers, probes and other fragments will preferably be at least 10, preferably at least 15 or at least 20, for example at least 25, at least 30 or at least 40 nucleotides in length. They will typically be 25 up to 40, 50, 60, 70, 100 or 150 nucleotides in length. Probes and fragments can be longer than 150 nucleotides in length, for example up to 200, 300, 400, 500, 600, 700 nucleotides in length, or even up to a few nucleotides, such as five or ten nucleotides, short of the coding 30 sequence of SEQ ID NO: 1, 3, 5, 7, 9 or 11.

Polynucleotides such as a DNA polynucleotide and primers according to the invention may be produced recombinantly, synthetically, or by any means available to those of skill in the art. They may also be cloned by 35 standard techniques. The polynucleotides are typically

provided in isolated and/or purified form.

In general, primers will be produced by synthetic means, involving a stepwise manufacture of the desired nucleic acid sequence one nucleotide at a time.

5 Techniques for accomplishing this using automated techniques are readily available in the art.

Longer polynucleotides will generally be produced using recombinant means, for example using PCR (polymerase chain reaction) cloning techniques. This 10 will involve making a pair of primers (e.g. of about 15-30 nucleotides) to a region of the G14 gene which it is desired to clone, bringing the primers into contact with mRNA or cDNA obtained from a human cell, performing a polymerase chain reaction under conditions which bring 15 about amplification of the desired region, isolating the amplified fragment (e.g. by purifying the reaction mixture on an agarose gel) and recovering the amplified DNA. The primers may be designed to contain suitable restriction enzyme recognition sites so that the 20 amplified DNA can be cloned into a suitable cloning vector.

Such techniques may be used to obtain all or part of the DDAHI and DDAHII genes described herein. Genomic clones corresponding to the cDNA of SEQ ID NOS: 1, 3, 5, 25 7, 9 or 11 containing, for example, introns and promoter regions are also aspects of the invention and may also be produced using recombinant means, for example using PCR (polymerase chain reaction) cloning techniques, starting with genomic DNA from for example a bacterial, an animal 30 or a human cell.

Although in general the techniques mentioned herein are well known in the art, reference may be made in particular to Sambrook *et al*, 1989, Molecular Cloning: a laboratory manual.

35 Polynucleotides which do not have 100% sequence

identity to the sequence of SEQ ID NOS: 1, 3, 5, 7, 9 or 11 but fall within the scope of the invention can be obtained in a number of ways:

5 1. Other human allelic variants of the human DDAH I and DDAH II sequences given in SEQ ID NOS: 1 and 3 may be obtained for example by probing genomic DNA libraries made from a range of individuals, for example individuals from different populations, or individuals with different 10 types of disorder related to aberrant NO metabolism, using probes as described above.

In addition, homologues of SEQ ID NO: 1, 3, 5, 7, 9 or 11 may be obtained from other animals particularly mammals (for example mice and rabbits) or fish (for 15 example *Fugu*) or insects (for example *D. melanogaster*) or other invertebrates (for example *C. elegans*), plants (for example *A. thaliana*), bacteria and yeasts and such homologues and fragments thereof in general will be capable of selectively hybridising to the coding sequence 20 of SEQ ID NOS: 1 and 3 or its complement. Such sequences may be obtained by probing cDNA or genomic libraries from dividing cells or tissues or other animal species with probes as described above. Degenerate probes can be prepared by means known in the art to take into account 25 the possibility of degenerate variation between the DNA sequence of SEQ ID NOS: 1, 3, 5, 7, 9 or 11 and the sequences being probed for under the selective hybridization conditions given above.

2. Allelic variants and species homologues may 30 also be obtained using degenerate PCR which will use primers designed to target sequences within the variants and homologues encoding likely conserved amino acid sequences. Likely conserved sequences can be predicted from aligning the amino acid sequences of the invention. 35 The primers will contain one or more degenerate positions

and will be used at stringency conditions lower than those used for cloning sequences with single sequence primers against known sequences.

3. Alternatively, polynucleotides may be obtained
5 by site directed mutagenesis of SEQ ID NO: 1, 3, 5, 7, 9 or 11 or allelic variants thereof. This may be useful where, for example, silent codon changes are required to sequences to optimise codon preferences for a particular host cell in which the polynucleotide sequences are being
10 expressed. Other sequence changes may be desired in order to introduce restriction enzyme recognition sites, or to alter the property or function of the polypeptides encoded by the polynucleotides.

The invention further provides double stranded
15 polynucleotides comprising a polynucleotide of the invention and its complement.

Polynucleotides, probes or primers of the invention may carry a revealing label. Suitable labels include radioisotopes such as ^{32}P or ^{35}S , enzyme labels, or other
20 protein labels such as biotin. Such labels may be added to polynucleotides, probes or primers of the invention and may be detected using techniques known per se.

Polypeptides

25 A polypeptide of the invention comprises the amino acid sequence set out in SEQ ID NO: 2, 4, 6, 8, 10 or 12 or a substantially homologous sequence, or a fragment of either said sequence and has methylarginase activity. In general, the naturally occurring amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12 is preferred.
30

SEQ ID NOS: 2, 4, 6, 8, 10 and 12 set out the amino acid sequences of human DDAH I, human DDAH II, *S. coelicolor* DDAH, *P. aeruginosa* DDAH, *P. aeruginosa* arginine deiminase and *M. tuberculosis* DDAH respectively

35 In particular, a polypeptide of the invention may

comprise:

- (a) the polypeptide sequence of SEQ ID NO: 2, 4, 6, 8, 10 or 12;
- 5 (b) an allelic variant or species homologue thereof; or
- (c) a protein with at least 70, at least 80, at least 90, at least 95, at least 98 or at least 99% sequence identity to (a) or (b).

10

An allelic variant will be a variant which will occur naturally, for example, in a human, bacterium or yeast and which will function in a substantially similar manner to the protein of SEQ ID NO: 2, 4, 6, 8, 10 or 12, for example it acts as a methylarginase. Similarly, a species homologue of the protein will be the equivalent protein which occurs naturally in another species and which can function as a methylarginase.

15

Allelic variants and species homologues can be obtained by following the procedures described herein for the production of the polypeptides of SEQ ID NO: 2, 4, 6, 8, 10 or 12 and performing such procedures on a suitable cell source e.g. a human or bacterium cell. It will also be possible to use a probe as defined above to probe 20 libraries made from human or bacterial cells in order to obtain clones encoding the allelic or species variants. The clones can be manipulated by conventional techniques 25 to generate a polypeptide of the invention which can then be produced by recombinant or synthetic techniques known per se.

30

A polypeptide of the invention preferably has at least 60% sequence identity to the protein of SEQ ID NO: 3, more preferably at least 70%, at least 80%, at least 90%, at least 95%, at least 97% or at least 99% sequence 35 identity thereto over a region of at least 20, preferably

at least 30, for instance at least 40, at least 60, at least 100 contiguous amino acids or over over the full length of SEQ ID NO: 2, 4, 6, 8, 10 or 12.

The sequence of the polypeptide of SEQ ID NO: 2, 4, 5 6, 8, 10 or 12 and of allelic variants and species homologues can thus be modified to provide polypeptides of the invention. Amino acid substitutions may be made, for example from 1, 2 or 3 to 10, 20 or 30 substitutions. The modified polypeptide generally retains activity as a 10 methylarginase, as defined herein. Conservative substitutions may be made, for example according to the following Table. Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other.

15

ALIPHATIC	Non-polar	G A P
		I L V
	Polar-uncharged	C S T M
		N Q
	Polar-charged	D E
		K R
AROMATIC		H F W Y

Polypeptides of the invention also include fragments 20 of the above-mentioned full length polypeptides and variants thereof, including fragments of the sequence set out in SEQ ID NO: 2, 4, 6, 8, 10 or 12. Such fragments typically retain activity as a methylarginase.

Other preferred fragments include those which 25 include an epitope. Suitable fragments will be at least 5, e.g. at least 10, at least 12, at least 15 or at least 20 amino acids in size. Epitope fragments may typically be up to 50, 60, 70, 80, 100, 150 or 200 amino acids in size. Polypeptide fragments of the polypeptides of SEQ

ID NO: 3, and allelic and species variants thereof may contain one or more (e.g. 1, 2, 3 or 5 to 10, 20 or 30) substitutions, deletions or insertions, including conservative substitutions. Epitopes may be determined 5 by techniques such as peptide scanning techniques already known in the art. These fragments will be useful for obtaining antibodies to polypeptides of the invention.

Polypeptides of the invention may be in a substantially isolated form. It will be understood that 10 the polypeptide may be mixed with carriers or diluents which will not interfere with the intended purpose of the polypeptide and still be regarded as substantially isolated. A polypeptide of the invention may also be in a substantially purified form, in which case it will 15 generally comprise the polypeptide in a preparation in which more than 50%, e.g. more than 80%, 90%, 95% or 99%, by weight of the polypeptide in the preparation is a polypeptide of the invention.

Polypeptides of the invention may be chemically modified, e.g. post-translationally modified. For example, they may be glycosylated or comprise modified amino acid residues. They may also be modified by the addition of Histidine residues to assist their purification or by the addition of a signal sequence to 25 promote their secretion from a cell. Such modified polypeptides and proteins fall within the scope of the term "polypeptide" of the invention.

Polypeptides of the invention may be modified for example by the addition of Histidine residues or a T7 tag 30 to assist their identification or purification or by the addition of a signal sequence to promoter their secretion from a cell where the polypeptide does not naturally contain such a sequence.

Polynucleotides of the invention can be incorporated into a recombinant replicable vector. The vector may be used to replicate the nucleic acid in a compatible host cell. Thus, in a further embodiment, the invention

5 provides a method of making polypeptides of the invention by introducing a polynucleotide of the invention into a replicable vector, introducing the vector into a compatible host cell, and growing the host cell under conditions which bring about replication of the vector.

10 The vector may be recovered from the host cell.

Polynucleotides according to the invention may also be inserted into the vectors described above in an antisense orientation in order to provide for the production of antisense RNA. Antisense RNA or other

15 antisense polynucleotides may also be produced by synthetic means. Such antisense polynucleotides may be used in a method of controlling the levels of methylarginases or their variants or species homologues.

Preferably, a polynucleotide of the invention in a vector is operably linked to a control sequence which is capable of providing for the expression of the coding sequence by the host cell, i.e. the vector is an expression vector. The term "operably linked" refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner. A regulatory sequence, such as a promoter, "operably linked" to a coding sequence is positioned in such a way that expression of the coding sequence is achieved under conditions compatible with the

25 regulatory sequence.

30

Vectors of the invention may be transformed into a suitable host cell as described above to provide for expression of a polypeptide of the invention. Thus, in a further aspect the invention provides a process for

35 preparing a polypeptide according to the invention which

comprises cultivating a host cell transformed or transfected with an expression vector encoding the polypeptide, and recovering the expressed polypeptide.

The vectors may be for example, plasmid, virus or phage vectors provided with a origin of replication, optionally a promoter for the expression of the said polynucleotide and optionally a regulator of the promoter. The vectors may contain one or more selectable marker genes, for example an ampicillin resistance gene in the case of a bacterial plasmid or a resistance gene for a fungal vector. Vectors may be used *in vitro*, for example for the production of RNA or used to transfect or transform a host cell, for example, *E. coli*. The vectors may also be adapted to be used *in vivo*, for example in a method of gene therapy.

A further embodiment of the invention provides host cells transformed or transfected with the vectors for the replication and/or expression of polynucleotides of the invention. The cells will be chosen to be compatible with the said vector and may for example baterial (eg. *E. coli*), yeast, insect or mammalian.

Promoters and other expression regulation signals may be selected to be compatible with the host cell for which expression is designed. For example, yeast promoters include *S. cerevisiae* GAL4 and ADH promoters, *S. pombe* *nmt1* and *adh* promoter. Mammalian promoters include the metallothionein promoter which can be induced in response to heavy metals such as cadmium. Viral promoters such as the SV40 large T antigen promoter or adenovirus promoters may also be used. All these promoters are readily available in the art.

Mammalian promoters, such as b-actin promoters, may be used. Tissue-specific promoters, in particular endothelial or neuronal cell specific promoters (for example the DDAHI and DDAHII promoters), are especially

preferred. Viral promoters may also be used, for example the Moloney murine leukaemia virus long terminal repeat (MMLV LTR), the rous sarcoma virus (RSV) LTR promoter, the SV40 promoter, the human cytomegalovirus (CMV) IE promoter, adenovirus, HSV promoters (such as the HSV IE promoters), or HPV promoters, particularly the HPV upstream regulatory region (URR). Viral promoters are readily available in the art.

The vector may further include sequences flanking the polynucleotide giving rise to antisense RNA which comprise sequences homologous to eukaryotic genomic sequences, preferably mammalian genomic sequences, or viral genomic sequences. This will allow the introduction of the polynucleotides of the invention into the genome of eukaryotic cells or viruses by homologous recombination. In particular, a plasmid vector comprising the expression cassette flanked by viral sequences can be used to prepare a viral vector suitable for delivering the polynucleotides of the invention to a mammalian cell. Other examples of suitable viral vectors include herpes simplex viral vectors (for example as disclosed in WO 98/04726 and WO 98/30707) and retroviruses, including lentiviruses, adenoviruses, adeno-associated viruses and HPV viruses (such as HPV-16 or HPV-18). Gene transfer techniques using these viruses are known to those skilled in the art. Retrovirus vectors for example may be used to stably integrate the polynucleotide giving rise to the antisense RNA into the host genome. Replication-defective adenovirus vectors by contrast remain episomal and therefore allow transient expression.

30

Assays

The invention provides a method for identifying a modulator of methylarginase activity and/or expression, comprising:

35

- (i) contacting a polynucleotide according to the invention, a polypeptide according to the invention, a vector according to the invention or a cell according to the invention and a test substance under conditions that would permit methylarginase activity in the absence of the test substance; and
- 5 (ii) determining thereby whether the said substance modulates the activity and/or expression of methylarginase.
- 10

Any suitable assay format may be used for identifying a modulator of methylarginase activity and/or expression.

In the case of using a polynucleotide or vector of the invention, the assay will typically be carried out on a cell harbouring the polynucleotide or vector or on a cell extract comprising the polynucleotide or vector. The cell or cell extract will typically allow transcription and translation of the polynucleotide or vector in the absence 20 of a test substance.

A typical assay is as follows:

- a defined number of cells harbouring a polynucleotide or vector of the invention are 25 inoculated in growth medium into the wells of a plastics micro-titre plate in the presence of a substance to be tested.
- the micro-titre plates are covered and incubated at an appropriate temperature (eg. 37°C for *E.* 30 *coli*) in the dark.
- samples are withdrawn at regular time intervals and assayed for methylarginase activity, as described in the Examples.
- parallel control experiments can be carried out, 35 in which the substance to be tested is omitted.

Also, as a control, the samples may be assayed for any other enzyme to exclude the possibility that the test substance is a general inhibitor of gene expression or enzyme activity.

5 The assay may also be carried out using a polypeptide of the invention, in which any suitable format may be used for identifying a modulator of methylarginase activity. Most preferably such an assay would be carried out in a single well of a plastics microtitre plate, so that high
10 through-put screening for methylarginase activity modulators may be carried out. In practice, the enzyme reaction is commenced by addition of a methylarginase or a substrate for methylarginase. An assay for a methylarginase modulator may therefore be initiated by
15 providing a medium, containing a test substance and one of a methylarginase and a methylarginase substrate. As a control, the progress of the assay can be followed in the absence of the test substance.

Also the substance tested may be tested with any
20 other known polypeptide/enzyme to exclude the possibility that the test substance is a general inhibitor of enzyme activity.

Suitable methylarginases for the assay can be obtained using the recombinant techniques described above.
25 Suitable substrates are those comprising asymmetric methylarginines, for example N^Gmonomethyl-L-arginine (L-NMMA), asymmetric dimethylarginine (ADMA). In addition to the methylarginase and a suitable substrate, the reaction mixture can contain a suitable buffer, suitable
30 cofactors and suitable divalent cations as a cofactor. A suitable buffer includes any suitable biological buffer that can provide buffering capability at a pH conducive to the reaction requirements of the enzyme.

The assay of the invention may be carried out at any
35 temperature at which a methylarginase, in the absence of

any inhibitor, is active. Typically, however, the assay will be carried out in the range of from 25°C to 37°C.

Measures of enzymatic activity of methylarginase activity are generally known to those skilled in the art,
5 including equilibrium constants, reaction velocities of the appearance of reaction products or the consumption of reaction substrates, reaction kinetics, thermodynamics of reaction, spectrophotometric analysis of reaction products, detection of labelled reaction components, etc. See,
10 generally, Segel, Biochemical Calculations, 2nd Edition, John Wiley and Sons, New York (1976); Suelter, A Practical Guide to Enzymology, John Wiley and Sons, New York (1985). The preferred method of measuring enzymatic activity is by measuring [¹⁴C]citrulline production after the
15 methylarginase has been incubated with [¹⁴C]L-NMMA or [¹⁴C]ADMA.

Assays can also be carried out using constructs comprising a methylarginase gene promoter operably linked to a heterologous coding sequence, to identify compounds
20 which modulate expression of methylarginases at the transcriptional level.

A promoter means a transcriptional promoter. Methylarginase gene promoters can be isolated via methods known to those skilled in the art and as described above.
25 The term "heterologous" indicates that the coding sequence is not operably linked to the promoter in nature; the coding sequence is generally from a different organism to the promoter.

The promoter sequence may be fused directly to a coding sequence or via a linker. The linker sequence may comprise an intron. Excluding the length of any intron sequence, the linker may be composed of up to 45 bases. The linker sequence may comprise a sequence having enhancer characteristics, to boost expression levels.
30

35 Preferably the promoter is operably linked to the

coding sequence of a reporter polypeptide. The reporter polypeptide may be, for example, the bacterial polypeptide β -glucuronidase (GUS), green fluorescent protein (GFP), luciferase (luc), chloramphenicol transferase (CAT) or β -galactosidase (lacZ).

Promoter:reporter gene constructs such as those described above can be incorporated into a recombinant replicable vector. The vector may be used to replicate the nucleic acid construct in a compatible host cell. The vectors may be, for example, plasmid, virus or phage vectors provided with an origin of replication. Any host cell may be used in which the promoter is functional, but typically the host cell will be a cell of the species from which the promoter derives. The promoter:reporter gene constructs of the invention may be introduced into host cells using conventional techniques.

Thus the invention provides a method for identifying a modulator of methylarginase expression. Typically a promoter:reporter polypeptide construct or a cell harbouring that construct will be contacted with a test substance under conditions that would permit the expression of the reporter polypeptide in the absence of the test substance.

Any reporter polypeptide may be used, but typically GUS or GFP are used. GUS is assayed by measuring the hydrolysis of a suitable substrate, for example 5-bromo-4-chloro-3-indolyl- β -D-glucoronic acid (X-gluc) or 4-methylumbelliferyl- β -glucuronide (MUG). The hydrolysis of MUG yields a product which can be measured fluorometrically. GFP is quantified by measuring fluorescence at 590nm after excitation at 494nm. These methods are well known to those skilled in the art.

Methylarginases

Any methylarginase, for example a methylarginase

encoded by a polynucleotide of the invention or a methylarginase having the amino acid sequence of a polypeptide of the invention, may be used in the assays described above. The enzymes may be prokaryotic or 5 eukaryotic. They may be obtained from prokaryotic or eukaryotic extracts, for example from a microbial extract. Alternatively, the enzymes may be produced recombinantly, from, for example, bacteria, yeast or higher eukaryotic cells such as insect cell lines. Recombinant expression of 10 human DDAHII and bacterial DDAHI enzymes is described in the Examples.

Candidate Substances

A substance which modulates the expression 15 or activity of a methylarginase may do so by binding directly to the relevant gene promoter, thus inhibiting or activating transcription of the gene. Inhibition may occur by preventing the initiation or completion of transcription. Activation may occur, for example, by 20 increasing the affinity of the transcription complex for the promoter. Alternatively a modulator may bind to a protein which is associated with the promoter and is required for transcription.

A substance which modulates the activity of a 25 methylarginase may do so by binding to the enzyme. Such binding may result in activation or inhibition of the protein.

Inhibition may occur, for example if the modulator 30 resembles the substrate and binds at the active site of the methylarginase. The substrate is thus prevented from binding to the same active site and the rate of catalysis is reduced by reducing the proportion of enzyme molecules bound to substrate. A modulator which inhibits the activity of a methylarginase may do so by binding to the 35 substrate. The modulator may itself catalyze a reaction of

the substrate, so that the substrate is not available to the enzyme. Alternatively, the inhibitor may simply prevent the substrate binding to the enzyme.

Activation may occur, for example, if the modulator 5 increases the affinity of the substrate for the enzyme or vice versa. This means that the proportion of enzyme molecules bound to a substrate is increased and the rate of catalysis will thus increase.

Suitable candidate substances which can be tested in 10 the above methods include antibody products (for example, monoclonal and polyclonal antibodies, single chain antibodies, chimeric antibodies and CDR-grafted antibodies) which are specific for a methylarginase or mimics of a methylarginase. Furthermore, combinatorial libraries, 15 defined chemical identities, peptide and peptide mimetics, oligonucleotides and natural product libraries, such as display libraries (e.g. phage display libraries) may also be tested. The candidate substances may be chemical compounds. Batches of the candidate substances may be used 20 in an initial screen of, for example, ten substances per reaction, and the substances of batches which show inhibition tested individually.

Modulators

25 A modulator of methylarginase, for example DDAH or arginine deiminase, expression and/or activity is one which produces a measurable reduction or increase in methylarginase expression and/or activity in the assays described above. Thus, modulators of methylarginase 30 expression and/or activity may be inhibitors or activators of methylarginase expression and/or activity.

Preferred inhibitors are those which inhibit methylarginase expression and/or activity by at least 10%, at least 20%, at least 30%, at least 40% at least 50%, at 35 least 60%, at least 70%, at least 80%, at least 90%, at

least 95% or at least 99% at a concentration of the inhibitor of $1\mu\text{g ml}^{-1}$, $10\mu\text{g ml}^{-1}$, $100\mu\text{g ml}^{-1}$, $500\mu\text{g ml}^{-1}$, 1mg ml^{-1} , 10mg ml^{-1} , 100mg ml^{-1} .

Preferred activitors are those which activate
5 methylarginase expression and/or activity by at least 10%,
at least 25%, at least 50%, at least 100%, at least, 200%,
at least 500% or at least 1000% at a concentration of the
activator $1\mu\text{g ml}^{-1}$, $10\mu\text{g ml}^{-1}$, $100\mu\text{g ml}^{-1}$, $500\mu\text{g ml}^{-1}$, 1mg ml^{-1} , 10mg ml^{-1} , 100mg ml^{-1} .

10 The percentage inhibition or activation represents
the percentage decrease or increase in expression/activity
in a comparison of assays in the presence and absence of
the test substance. Any combination of the above mentioned
degrees of percentage inhibition or activation and
15 concentration of inhibitor or activator may be used to
define an inhibitor or activator of the invention, with
greater inhibition or activation at lower concentrations
being preferred.

Candidate substances which show activity in assays
20 such as those described above can be tested in *in vivo*
systems, an animal model. Candidate inhibitors could be
tested for their ability to increase ADMA and L-NMMA levels
and/or to increase blood pressure and/or to decrease
endothelium-dependent relaxation of blood vessels.

25 Candidate activators could be tested for their
ability to increase nitric oxide generation as assessed by
 NO_x measurement and/or to decrease levels of ADMA and L-
NMMA. Ultimately such substances would be tested in animal
models of the target disease states.

30

Therapeutic use

Polynucleotides, peptides, expression vectors and
modulators of methylarginase activity and/or expression and
modulators of methylarginase activity and/or expression
35 identified by the methods of the invention may be used for

the treatment of a condition in which the abnormal metabolism of NO is implicated.

Polynucleotides, peptides, expression vectors and activators of methylarginase activity and/or expression may 5 be used in the treatment of conditions in which reduced NO production is implicated. In particular such conditions as hyperlipidaemia, renal failure, hypertension, restenosis after angioplasty, complications of heart failure, or atherosclerosis and its complications may be treated and 10 patients with schizophrenia or multiple sclerosis may also be treated.

Modulators which are inhibitors of methylarginase activity and/or expression may be used in the treatment of conditions in which increased NO production is implicated. 15 In particular conditions such as ischaemia-reperfusion injury of the brain or heart, cancer, lethal hypotension in severe inflammatory conditions such as septic shock or multi-organ failure, or local and systemic inflammatory disorders including arthritis, skin disorders or 20 inflammatory cardiac disease may be treated.

Alternatively an inhibitor of methylarginase activity and/or expression could be used as a joint therapy together with an inhibitor of NOS activity (for example, a methylarginine). For example, a specific inhibitor of a 25 DDAH isoform could be used with the methylarginine L-NMMA. This approach may radically alter the activity profile of L-NMMA and may result in L-NMMA having an increased inhibitory effect for a specific NOS isoform. Thus, the invention provides a product containing an inhibitor of methylarginase activity and/or expression and a 30 methylarginine as a combined preparation for simultaneous, separate or sequential use in the treatment of ischaemia-reperfusion injury of the brain or heart and lethal hypotension in severe inflammatory conditions such as 35 septic shock or multi-organ failure, or local and systemic

inflammatory disorders including arthritis, skin disorders or inflammatory cardiac disease, or cancer.

Inhibitors of methylarginase expression and/or activity may also be used as antimicrobial, for example 5 antibacterial, agents. Thus, inhibitors of microbial, for example bacterial, DDAH and arginine deiminase expression and/or activity are useful as antimicrobial agents. Therefore, the invention also provides an inhibitor of a 10 bacterial methylarginase, for example a DDAH or an arginine deiminase, for use in the treatment of a bacterial infection.

The formulation of a substance for use in preventing or treating any of the above mentioned conditions will depend upon factors such as the nature of the substance 15 identified, whether a pharmaceutical or veterinary use is intended, etc. Typically an inhibitor is formulated for use with a pharmaceutically acceptable carrier or diluent. For example it may be formulated for topical, parenteral, intravenous, intramuscular, subcutaneous, intraocular, 20 transdermal or oral administration. A physician will be able to determine the required route of administration for each particular patient. The pharmaceutical carrier or diluent may be, for example, an isotonic solution.

The dose of a substance may be determined according 25 to various parameters, especially according to the substance used; the age, weight and condition of the patient to be treated; the route of administration; and the required regimen. Again, a physician will be able to determine the required route of administration and dosage 30 for any particular patient.

The invention potentially allows for the regulation of expression and/or activity of a particular isoform of NOS. Substances which have effects specific for one particular methylarginase isoform, for example DDAHI or 35 DDAHII, may be administered non-specifically as they will

only modulate the expression or activity of a particular methylarginase and thus the activity of one particular isoform of NOS.

Some substances may, however, have affect more than 5 one isoform of methylarginase. Such modulators may have to be administered to specific sites, if they are required to regulate only one particular isoform of NOS. For example, if a condition requires the regulation of nNOS the modulator will have to be delivered to neurons. This may 10 be achieved, for example, by delivery via a viral strain such as herpes simplex virus. Viral vectors comprising polynucleotides of the invention are described above. The viral vector delivery method may be used in the case of administration of, for example, polynucleotides of the 15 invention.

The polynucleotides and vectors of the invention may be administered directly as a naked nucleic acid construct. Uptake of naked nucleic acid constructs by mammalian cells is enhanced by several known transfection techniques for 20 example those including the use of transfection agents. Example of these agents include cationic agents (for example calcium phosphate and DEAE-dextran) and lipofectants (for example lipofectamTM and transfectamTM).

Typically, nucleic acid constructs are mixed with the 25 transfection agent to produce a composition. Preferably the naked nucleic acid construct, viral vector comprising the polynucleotide or composition is combined with a pharmaceutically acceptable carrier or diluent to produce a pharmaceutical composition. Suitable carriers and diluents 30 include isotonic saline solutions, for example phosphate-buffered saline. The composition may be formulated for parenteral, intramuscular, intravenous, subcutaneous, or transdermal administration.

The pharmaceutical composition is administered in 35 such a way that the polynucleotide of the invention, viral

vector for gene therapy, can be incorporated into cells at an appropriate area. When the polynucleotide of the invention is delivered to cells by a viral vector, the amount of virus administered is in the range of from 10^6 to 5 10^{10} pfu, preferably from 10^7 to 10^9 pfu, more preferably about 10^8 pfu for adenoviral vectors. When injected, typically 1-2 ml of virus in a pharmaceutically acceptable suitable carrier or diluent is administered. When the polynucleotide of the invention is administered as a naked 10 nucleic acid, the amount of nucleic acid administered is typically in the range of from 1 μ g to 10 mg.

Where the polynucleotide giving rise to the product is under the control of an inducible promoter, it may only be necessary to induce gene expression for the duration of 15 the treatment. Once the condition has been treated, the inducer is removed and expression of the polypeptide of the invention ceases. This will clearly have clinical advantages. Such a system may, for example, involve administering the antibiotic tetracycline, to activate gene 20 expression via its effect on the tet repressor/VP16 fusion protein.

The use of tissue-specific promoters will be of assistance in the treatment of disease using the polypeptides, polynucleotide and vectors of the invention. 25 It will be advantageous to be able express therapeutic genes in only the relevant affected cell types, especially where such genes are toxic when expressed in other cell types.

The routes of administration and dosages described 30 above are intended only as a guide since a skilled physician will be able to determine readily the optimum route of administration and dosage for any particular patient and condition.

35 The invention is illustrated by the following

Example:

Example

Materials and methods

5 Unless otherwise indicated, the methods used are standard
biochemistry and molecular biology techniques. Examples of
suitable methodology textbooks include Sambrook et al.,
Molecular Cloning, A Laboratory Manual (1989) and Ausubel
et al., Current Protocols in Molecular Biology (1995), John
10 Wiley and Sons, Inc.

Database searching and cDNA cloning

The cDNA sequence of human DDAHI was obtained by a combination of database searching, specific RT-PCR and
15 5'/3' RACE. The database of expressed sequence tags (dbEST) was searched with the cDNA sequence corresponding to the open reading frame of rat DDAHI (Kimoto, M., Sasakawa, T., Tsuji, H., Miyatake, S., Oka, T., Nio, N. and Ogawa, T., 1997, *Biochim. Biophys. Acta* 1337, 6-10) using
20 the 'blast' programme. This search identified a single human cDNA sequence that comprised 161bp of human DDAHI cDNA fused downstream of 160bp of unknown sequence. Using this sequence, two human DDAHI specific oligonucleotide primers HDDAHI.1 and HDDAHI.2 were designed. Human kidney
25 polyA+ RNA was reverse transcribed from an oligo dT primer, following which human DDAHI cDNA was PCR amplified in two PCR reactions incorporating either HDDAHI.1 and RDDAHI.1 or HDDAHI.2 and RDDAHI.2. In order to determine the sequence of the 5' and 3' ends of the human DDAHI open reading frame
30 5' and 3' RACE was performed. For 5' RACE human kidney polyA mRNA was reverse transcribed using primer HDDAHI.3. Following reverse transcription, RNA was digested with RNAse H and cDNA purified using a HighPure DNA purification kit (Boehringer). Purified cDNA was polyA tailed by
35 incubation with terminal transferase in the presence of

dATP. Tailed cDNA was used directly in PCR reactions incorporating OligodTAnchor and HDDADI.4. For 3' RACE human polyA+ RNA was primed with OligodTAnchor and reverse transcribed prior to PCR with oligos HDDAHII.5 and Anchor.

5 All PCR products were cloned into pCRTOP02.1 (In Vitrogen) following the manufactures instructions. CDNA inserts were sequenced using a T7 sequences kit (Amersham) according to the manufacturers instructions.

The sequence of human DDAHII was obtained by data base searching. The database of translated EMBL open reading frames (trembl) was searched with the rat DDAHII peptide sequence. This search identified a hypothetical mouse open reading frame (accession number O08972) that has the capacity to encode a protein of 228 amino acids with

10 63% similarity to rat DDAHII. Interrogation of dbEST with the nucleotide sequence encoding the hypothetical mouse protein identified numerous overlapping human EST's which contained an open reading frame of 858bp with the potential to encode a 285 amino acid protein that is 52% identical to

15 human DDAHII. The oligonucleotides used in these experiments are shown in Table 1.

20

Table 1. Oligonucleotides used.

Name	Sequence	Details
HDDAHII.1	GGT TGA CAT GAT GAA AGA AGC	Homologous to nucleotides 303-324 of human DDAHII
HDDAHII.2	CAG CAC CCC GTT GAT TTG TC	Homologous to nucleotides 454-435 of human DDAHII
HDDAHII.3	GCT TCT TTC ATC ATG TCA ACC	Homologous to nucleotides 324-303 of human DDAHII
HDDAHII.4	CCC AAC AAA GGG CAC GTC TTG	Homologous to nucleotides 682-703 of human DDAHII
HDDAHII.1	GAT CGA ATT CAG GAT GGG GAC GCC GGG G	Homologous to nucleotides -2-15 of human DDAHII encoding an upstream EcoRI site

	HDDAHII.2	GAC TTC TAG AGC TGT GGG GGC GTG TG	Homologous to nucleotides 858-840 of human DDAHII encoding a downstream XbaI site
5	HDDAHII.3	CTC AGC TCC CTC TGC TTG GTG	Homologous to nucleotides 813-834 of human DDAHII
	HDDAHII.4	GAG GGA GGA TTC ACC CAG TGG	Homologous to nucleotides 1003-1024 of human DDAHII
10	RDDAHI.1	TCC GCG GGA TCC ATG GCC GGC CTC	Homologous to nucleotides -12-12 of rat DDAHI
	RDDAHI.2	CGC TCG GTC TAG ATC AAG AGT CTG TCT T	Homologous to nucleotides 872-844 of rat DDAHI
15	HNNOS.1	CTG CTG ATG TCC TCA AAG CCA TCC	Homologous to nucleotides 4079-4102 of human nNOS
20	HNNOS.2	TCT GTC CCG CGC TTA CAA ACT TGC	Homologous to nucleotides 4353-4330 of human nNOS
	HENOS.1	CAA CCA ACG TCC TGC AGA CCG TGC	Homologous to nucleotides 3379-3402 of human eNOS
25	HENOS.2	GGC GGA CCT GAG TCG GGC AGC CGC	Homologous to nucleotides 3690-3667 of human eNOS
	Oligo d(T) Anchor	GAC CAC GCG TAT CGA TGT CGA CTT TTT TTT TTT TTT TTV	5'/3' RACE oligo d(T) anchor primer
30	Anchor	GAC CAC GCG TAT CGA TGT CGA C	5'/3' RACE anchor primer

35 *Recombinant expression*

The entire human DDAHII open reading frame was PCR amplified from oligo dT primed human kidney cDNA using oligos HDDAHII.1 and HDDAHII.2. Oligo HDDAH II.1 is complementary to base pairs 2-15 of the human DDAHII cDNA and contains an EcoRI site in frame with the EcoTI site of pPROX.HTa (Life Technologies). HDDAHII.2 is complementary to base pairs 858-840 of the human DDAHII cDNA and contains an artificial XbaI site. PCR produced a single product of ~850bp which was digested with EcoRI and XbaI, ligated into EcoRI and XbaI digested pRPROX.HTa and transformed into

competent *E.coli* DH5 α . A positive clone (pPDDAHII) containing an insert of 858bp was identified and the insert sequenced on both strands. For expression of recombinant human DDAHII, *E.coli* were grown in liquid culture at 25°C to an OD₆₀₀ of 0.5-0.6. Expression was then induced by the addition of IPTG to a final concentration of 1mM and incubation continued for a further two hours. Following induction, cells were collected by centrifugation, weighed and resuspended in ice cold assay buffer (100mM Na₂HPO₄ pH 6.5) at 1g cells/ml. Cells were disrupted by sonication (6 X 10secs, with 10 sec. intervals) and centrifuged at 50,000g to separate soluble material from insoluble cell debris.

15 *DDAH Assay*

Aliquots of *E.coli* lysates were incubated at 37°C for 60 min. with 250 ml of 100mM Na₂HPO₄ pH 6.5 containing 0.02 μ Ci [¹⁴C]L-NMMA as described previously [16]. Following incubation samples were prepared for determination of [¹⁴C] citrulline production by scintillation counting. Reactions were vortexed with 1ml of 50% (w/v) dowex 50X8-400, centrifuged at 10,000g for 5 min and then 500 μ l of the supernatant was mixed with 5ml of liquid scintillation fluid and the [¹⁴C] content determined.

25 *Northern blot analysis*

The tissue distribution of human DDAHI, DDAHII, endothelial NOS and neuronal NOS mRNA was determined by hybridization of ³²P-labelled cDNA probes to commercially available northern blot (Clontech, human multiple tissue northern blot). Probes were produced by PCR amplification of oligo dT-primed human kidney polyA+ mRNA using oligonucleotide primer pairs HDDAHI 4 and 5, HDDAHII 3 and 4, HENOS i and 2 and HNNOS 1 and 2. Following PCR reaction

products were resolved on 2% agarose gels, isolated from the gel and labelled using a random primed labelling kit (Boehringer) according to the manufacturers instructions. Labelled probes were manufactures instructions.

5 The amino acid sequence of human DDAH1 was added to search the expressed sequence tag database (dbEST). Open reading frames which showed significant similarity to this sequence were identified in *S.coelicolor* (46.5% over 163 amino acids), *P.aeruginosa* (44.3% over 226 amino acids) and
10 *M.tuberculosis* (37.5% over 24 amino acids). The cDNA sequences encoding these putative bacterial DDAHs were then used to design the primers ScDDAH1 and ScDDAH2, PaDDAHs were then used to design the primers ScDDAH1 and ScDDAH2, PaDDAH1 and PaDDAH4, and TbDDAH1 and TbDDAH4. These
15 oligonucleotides PaDEIM2 and PaDEIM3 were designed from the cDNA sequence of *P.aeruginosa* arginine deiminase to amplifying the coding region. Primers TbDDAH1 and TbDDAH4 were designed to amplify an open reading frame from cosmid T3G12 which was identified through the database search
20 using hDDAH1. The oligonucleotides used in these experiments are shown in Table 2.

Table 2. Oligonucleotides Used.

Name	Sequence	Details
ScDDAH 1	GATCGAATTGTGCCAGCAAGAAG GCCTG	Homologous to -9 to 20 encoding an upstream EcoRI site
ScDDAH 2	GATCTCTAGATCAGTCGTACAGCTC GCGC	Homologous to 732 to 751 encoding a downstream XbaI site
PaDDAH 1	GAATTCCATGTTCAAGCACATCATCG	Homologous to 1 to 19 encoding an upstream Eco RI site
PaDDAH 4	AAGCTTCGCCGGCATGGTTC	Homologous to 782 to 768 encoding a downstream Hind III site
TbDDAH 1	GAATTCCGCAATGTATCAATG G	Homologous to -12 to 4 encoding an upstream Eco RI site
TbDDAH 2	AAGTTCCCCACGCACCCCTCAG	Homologous to 1024 to 1011

		encoding a downstream <i>Hind</i> III site
5	PaDEIM 2	GAATTCAGCACGGAAAAACCAAAC Homologous to 3 to 22 encoding an upstream <i>Eco RI</i> site
	PaDEIM 3	AAGCTTGTAGTCGATCGGGTCGC Homologous to 1257 to 1239 encoding a downstream <i>Hind</i> III site
10		

Polymerase Chain Reaction and cDNA Cloning

Amplification of *S.coelicolar* DDAH from cosmid 4C6 was carried out by PCR using the oligonucleotides ScDDAH1 and ScDDAH2. PCR was carried out on *P.aeruginosa* genomic DNA using the primers PADDAG1 and PADDAG4 to amplify the putative DDAH. The *P.aeruginosa* arginine deiminase was also amplified using the oligonucleotides PaDEIM2 and PaDEIM3. The oligonucleotides TbDDAH1 and TbDDAH4 were used in PCR to amplifying the *M.tuberculosis* DDAH from cosmid Y3G12 DNA.

All PCR products were cloned into pCRTPOPO2.1 (In Vitrogen) following the manufacturer's instructions.

25 *Expression of Recombinant Proteins*

The inserts containing the open reading frames of the bacterial DDAHs were excised from the vector using *Eco RI* and *Hind* III, gel purified, ligated into *Eco RI* and *Hind* III digested pProEX.HT and transformed into competent *E.coli* DH5 α . The arginine deiminase was treated as above but was cloned into *EcoRI* and *Hind* III digested pBAD B (In Vitrogen).

For expression of the recombinant proteins, a positive clone was picked and grown in liquid media supplemented with 100 μ g/ml ampicillin. *E.coli* were grown at 25°C to an OD₆₀₀ of 0.5-0.6 for the bacterial DDAHs in pProEX.HT, and at 37° for the arginine deiminase in pBAD B.

Induction of expression of the bacterial DDAHs was carried out by addition of IPTG to a final concentration of 1mM and a further incubation of 2 hours at 25°C. Expression of the arginine deiminase was induced by adding arabinose to a
5 final concentration of 0.02% (w/v) and incubating for a further 4 hours at 37°C.

After induction, cells were harvested by centrifugation and resuspended to a concentration of 250 mg/ml in assay buffer (100mM Na₂HPO₄, pH6.5). Cells were
10 disrupted by sonication (6 X 10 secs.) And centrifuged at 18,000g to remove particulate material.

SDS-Polyacrylamide Gel Electrophoresis and Western Blot Analysis

15 SDS-PAGE was performed in Tris/glycine buffer, pH8.3, on 12% (w/v) separating gel with a 3.5% (w/v) stacking gel. Proteins were transferred onto an Immobilon-P membrane (Millipore) at 200A for 30 minutes. Membranes were then blocked in 5% (w/v) milk in phosphate buffered saline with
20 0.1 Tween 20 (PBST) for 2 hours. The blot was probed with a polyHistidine antibody (Sigma) at a dilution of 1:3000 followed by anti-mouse Ig antibody coupled to horseradish peroxide (Amersham) at a dilution of 1:5000 then developed using an ECL chemiluminescence kit (Amersham).

25

DDAH Assay

Samples were assayed by incubating 100μl of cells lysates with an equal volume of assay mix (100mM Na₂HPO₄ pH 6.5, containing 0.02μCi [¹⁴C] L-NMMA and 100μM cold L-NMMA)
30 at 37°C for 60 min, as previously reported (ref). The samples were then prepared for scintillation counting to measure the production of [¹⁴C] citrulline by adding 400μl of 50% (w/v) Dowex 50X-400 to the reactions, vortexing and centrifugation at 13000g for 2 min. The [¹⁴C] content of
35 100μl of supernatant in 1ml scintillation fluid was then

determined.

Results

Cloning of human DDAHI and DDAHII

Using a combination of RT-PCR and RACE, a cDNA encoding the entire open reading frame of human DDAHI was assembled. The 858bp open reading frame is 90% homologous to rat DDAHI ORF (data not shown) and encodes a polypeptide of 285 amino acids that is 95% identical to the rat protein (Figure 1). A search of the 'trembl' data base using the rat DDAHI amino acid sequence identified a mouse open reading frame encoding a protein with 63% homology over 228 amino acids to rat DDAH. Further data base searching identified a human cDNA of 2000bp containing an open reading frame of 858bp with the potential to encode a protein of 285 amino acids (subsequently referred to as DDAHII). This open reading frame was 63% homologous to human DDAHI at the nucleotide level (data not shown) and the predicted protein is 62% similar to human DDAHI at the amino acid level (Figure 1). Like DDAHI, DDAHII appears to be highly conserved across mammalian species with 98% homology between murine and human DDAHII amino acid sequences (data not shown).

Recombinant expression of human DDAHII

An N-terminally 6X His-tagged body of DDAHII was expressed in *E.coli* under the control of an IPTG induceable promoter. Following induction, a band of ~40kDa (~35kDa human DDAHII + 4kDa 6X His-tag and linker) was apparent in the soluble fraction of cell lysates (Figure 2). The induced protein of ~40kDa is specifically recognised by an anti-His6 antibody confirming its identity as recombinant human DDAHII (Figure 2). In order to establish whether DDAHII is a functional homologue of DDAHI we assayed bacterial cell lysates for DDAH activity. Lysates of cells

transfected with empty vector did not metabolise [¹⁴C] L-NMMA. In contrast, lysates of cells expression recombinant DDAHII did metabolise [¹⁴C] L-NMMA (Figure 3). This action was inhibited by the DDAH inhibitor S-2-amino-4(3-methylguanidino) butanoic acid (4124W) [ref] and by competition with a molar excess of cold L-NMMA, ADMA or citrulline. Enzyme activity was unaffected in the presence of a molar excess of cold SDMA.

10 *Tissue distribution of human DDAH and NOS*

To determine the tissue distribution of DDAHI and DDAHII messenger RNA and to explore any correlation between DDAH and NOS isoform expression we probed a commercially available human multiple tissue northern blots with labelled cDNA probed specific for each isoform (Figure 4). A DDAHI cDNA probe hybridized to a single band of ~4.4Kb that was highly expressed in kidney, brain, pancreas and liver. Lower level expression was also clearly apparent in skeletal muscle whilst signals from the heart placenta and lung were barely detectably. In contrast, a cDNA probe for DDAHII hybridized to a single band of ~2Kb that was most highly expressed by heart, kidney and placenta. In the case of DDAHII, lower level expression in the brain was barely detectable. A probe specific for nNOS revealed high level expression in skeletal muscle and brain, lower levels in kidney and pancreas with no detectable expression in heart, placenta, lung and liver. Endothelial NOS was highly expressed in placenta and heart with lower levels apparent in skeletal muscle, liver, kidney, pancreas and lung, whilst expression in brain was undetectable. The level of β-actin message in each lane is shown as an indication of mRNA loading.

Identification of DDAH-related proteins

35 In order to identify proteins with significant

primary sequence homology to DDAH I/II we performed a search of the swissprot data with both the human DDAH I and DDAH II protein sequences. This search revealed significant homology between both DDAH sequences and the sequences of arginine deiminase enzymes from several microbial species.

5 The highest degree of homology was found with the sequence of arginine deiminase from *Pseudomonas putida* (Accession no. p41142) (Figure 5). The homology was strongest within a 69 amino acid domain (residues 123 to 191 of DDAH I) where the identity rises to 22% and the similarity to 70%. In this domain, DDAH I and DDAH II are 80% identical.

10 Comparison of the sequences of human DDAH I and DDAH II with other arginine-utilizing or arginine-producing enzymes, such as peptidyl-arginine deiminase, arginase,

15 argininosuccinate lysase, arginine decarboxylase and nitric oxide synthase revealed no significant amino acid homology.

Cloning of Streptomyces and Pseudomonas DDAH

A ClustalW alignment of the DDAHs from *S. coelicolor*,
20 *P. aeruginosa*, *M. tuberculosis* and human DDAH I amino acid sequences is shown in Figure 6A. Alignments of *P. aeruginosa* DDAH and arginine deiminase are also shown in Fig. 6B.

Oligonucleotides ScDDAH 1 and ScDDAH 2 were designed
25 from the open reading frame of a putative *S. coelicolor* DDAH identified through database screening. These primers gave a PCR product of approximately 850bp. The primers PaDDAH 1 and PaDDAH 4 amplified a product of approximately 780bp from *P. aeruginosa* genomic DNA and TbDDAH 1 and
30 TbDDAH 4 gave a PCR product of approximately 1150bp from the cosmid Y3G12.

Expression of Recombinant Bacterial DDAHs

35 Expression of N-terminally 6X His-tagged forms of *S. coelicolor*, *M. tuberculosis* and *P. aeruginosa* DDAH was

carried out in *E. coli* under the control of an IPTG inducible promoter. Following induction, a band of ~36kDa was observed in *S. coelicolor* (~32kDa *S. coelicolor* DDAH + ~4kDa 6X His-tag) cell lysates and of 33kDa in *P.*

5 *aeruginosa* (29kDa *P. aeruginosa* DDAH + ~4kDa 6X His-tag) cell lysates. A polyHistidine antibody specifically recognized these bands providing confirmation of the identity of these proteins as recombinant *S. coelicolor* and *P. aeruginosa* DDAH respectively.

10

Activity of Recombinant Bacterial DDAH proteins

The bacterial DDAH cell lysates were assayed for DDAH activity to determine whether they were functional homologues of human DDAH I. These were found to metabolize [14C] L-NMMA, as shown in Figure 7. Empty vector was also transfected into cells and the lysates from these were found not to metabolize [14C] L-NMMA. *P. aeruginosa* DDAH showed higher activity compared to that of *S. coelicolor* DDAH.

15

ADMA and SDMA were both found to compete with L-NMMA as substrates for the bacterial DDAHs (Fig. 7) with ADMA showing a greater effect than SDMA on the metabolism of L-NMMA. Similar results have been obtained for DDAH from *M. tuberculosis*.

20

25

SEQUENCE LISTING

(1) GENERAL INFORMATION:

5

(i) APPLICANT:

(A) NAME: UNIVERSITY COLLEGE LONDON
(B) STREET: Gower Street
(C) CITY: London
10 (E) COUNTRY: United Kingdom
(F) POSTAL CODE (ZIP): WC1E 6BT

10

(ii) TITLE OF INVENTION: SCREEN METHOD

15

(iii) NUMBER OF SEQUENCES: 12

20

(iv) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)

20

(2) INFORMATION FOR SEQ ID NO: 1:

25

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 858 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
30 (D) TOPOLOGY: linear

30

(ii) MOLECULE TYPE: cDNA

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

40

ATGGCCGGCC TCGGCCACCC CTCCGCCTTC GGCCGGGCCA CCCACGCCGT GGTGCGGGCG 60

CTACCCGAGT CGCTCTGCCA GCACGCGCTG AGAACGCCA AGGGCGAGGA GGTGGACGTC 120

45

GCCCCGCGGG AACGGCAGCA CCAGCTCTAC GTGGGCGTGC TGGGCAGCAA GCTGGGGCTG 180

CAGGTGGTGG AGCTGCCGGC CGACGAGAGC CTTCCGGACT GCGCTTCGT GGAGGACGTG 240

50

GCCGTGGTGT GCGAGGAGAC GGCCCTCATC ACCCGACCCG GGGCGCCGAG CCGGAGGAAG 300

GAGGTTGACA TGATGAAAGA AGCATTAGAA AAACCTCAGC TCAATATAGT AGAGATGAAA 360

GATGAAAATG CAACTTTAGA TGGCGGAGAT GTTTTATTCA CAGGCAGAGA ATTTTTGTG 420

55

GGCCTTCCA AAAGGACAAA TCAACGAGGT GCTGAAATCT TGGCTGATAC TTTTAAGGAC 480

TATGCAGTCT CCACAGTGCC AGTGGCAGAT GGGTTGCATT TGAAGAGTTT CTGCAGCATG 540

GCTGGGCCTA ACCTGATCGC AATTGGGTCT AGTGAATCTG CACAGAAGGC CCTTAAGATC 600

55

ATGCAACAGA TGAGTGACCA CCGCTACGAC AAACTCACTG TGCCTGATGA CATAGCAGCA 660
AACTGTATAT ATCTAAATAT CCCAACAAA GGGCACGTCT TGCTGCACCG AACCCGGAA 720
5 GAGTATCCAG AAAGTGCAA GGTATTGAG AACTGAAGG ACCATATGCT GATCCCCGTG 780
AGCATGTCTG AACTGGAAA GGTGGATGGG CTGCTCACCT GCTGCTAGT TTTAATTAAC 840
AAGAAGGTAG ACTCCTGA 858
10

(2) INFORMATION FOR SEQ ID NO: 2:

15 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 285 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
20 (ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
25 Met Ala Gly Leu Gly His Pro Ser Ala Phe Gly Arg Ala Thr His Ala
1 5 10 15
Val Val Arg Ala Leu Pro Glu Ser Leu Cys Gln His Ala Leu Arg Ser
20 25 30
30 Ala Lys Gly Glu Glu Val Asp Val Ala Arg Ala Glu Arg Gln His Gln
35 40 45
Leu Tyr Val Gly Val Leu Gly Ser Lys Leu Gly Leu Gln Val Val Glu
35 50 55 60
35 Leu Pro Ala Asp Glu Ser Leu Pro Asp Cys Val Phe Val Glu Asp Val
65 70 75 80
40 Ala Val Val Cys Glu Glu Thr Ala Leu Ile Thr Arg Pro Gly Ala Pro
85 90 95
Ser Arg Arg Lys Glu Val Asp Met Met Lys Glu Ala Leu Glu Lys Leu
100 105 110
45 Gln Leu Asn Ile Val Glu Met Lys Asp Glu Asn Ala Thr Leu Asp Gly
115 120 125
50 Gly Asp Val Leu Phe Thr Gly Arg Glu Phe Phe Val Gly Leu Ser Lys
130 135 140
50 Arg Thr Asn Gln Arg Gly Ala Glu Ile Leu Ala Asp Thr Phe Lys Asp
145 150 155 160
55 Tyr Ala Val Ser Thr Val Pro Val Ala Asp Gly Leu His Leu Lys Ser
165 170 175

Phe Cys Ser Met Ala Gly Pro Asn Leu Ile Ala Ile Gly Ser Ser Glu
180 185 190

5 Ser Ala Gln Lys Ala Leu Lys Ile Met Gln Gln Met Ser Asp His Arg
195 200 205

Tyr Asp Lys Leu Thr Val Pro Asp Asp Ile Ala Ala Asn Cys Ile Tyr
210 215 220

10 Leu Asn Ile Pro Asn Lys Gly His Val Leu Leu His Arg Thr Pro Glu
225 230 235 240

Glu Tyr Pro Glu Ser Ala Lys Val Tyr Glu Lys Leu Lys Asp His Met
245 250 255

15 Leu Ile Pro Val Ser Met Ser Glu Leu Glu Lys Val Asp Gly Leu Leu
260 265 270

20 Thr Cys Cys Ser Val Leu Ile Asn Lys Lys Val Asp Ser
275 280 285

(2) INFORMATION FOR SEQ ID NO: 3:

25 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 858 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

30 (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

35 ATGGGGACGC CGGGGGAGGG GCTGGGCCGC TGCTCCATG CCCTGATCCG GGGAGTCCC 60
GAGAGCCTGG CGTCGGGGGA AGGTGCGGGG GCTGGCCTTC CCGCTCTGGA TCTGGCAAA 120
GCTCAAAGGG AGCACGGGGT GCTGGGAGGT AAACTGAGGC AACGACTGGG GCTACAGCTG 180
40 CTAGAACTGC CACCTGAGGA GTCATTGCCG CTGGGACCAG TGCTTGGCGA CACGGCCGTG 240
ATCCAAGGGG ACACGGCCCT AATCACGCGG CCCTGGAGCC CCGCTCGTAG GCCAGAGGTC 300
45 GATGGAGTCC GCAAAGCCCT GCAAGACCTG GGGCTCCGAA TTGTGAAAT AGGAGACGAG 360
AACGCGACGC TGGATGGCAC TGACGTTCTC TTCACCGGCC GGGAGTTTT CGTAGGCCTC 420
TCCAAATGGA CCAATCACCG AGGAGCTGAG ATCGTGGCGG ACACGTTCCG GGACTTCGCC 480
50 GTCTCCACTG TGCCAGTCTC GGGTCCCTCC CACCTGCGCG GTCTCTGCCG CATGGGGGA 540
CCTCGCACTG TTGTGGCAGG CAGCAGCGAC GCTGCCAAA AGGCTGTCCG GGCAATGGCA 600
55 GTGCTGACAG ATCACCCATA TGCCCTCCCTG ACCCTCCAG ATGACGCGAC TGCTGACTGT 660

CTCTTCTTC GTCCTGGTT GCCTGGTGTG CCCCCCTTCC TCCTGCACCG TGGAGGTGGG 720
GATCTGCCA ACAGCCAGGA GGCACTGCAG AAGCTCTCTG ATGTCACCCCT GGTACCTGTG 780
5 TCCTGCTCAG AACTGGAGAA AGCTGGCGCC GGGCTCAGCT CCCTCTGCTT GGTGCTCAGC 840
ACACGCCCA ACAGCTGA 858

10 (2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 285 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
15 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Gly Thr Pro Gly Glu Gly Leu Gly Arg Cys Ser His Ala Leu Ile
1 5 10 15

25 Arg Gly Val Pro Glu Ser Leu Ala Ser Gly Glu Gly Ala Gly Ala Gly
20 25 30

Leu Pro Ala Leu Asp Leu Ala Lys Ala Gln Arg Glu His Gly Val Leu
35 40 45

30 Gly Gly Lys Leu Arg Gln Arg Leu Gly Leu Gln Leu Leu Glu Leu Pro
50 55 60

Pro Glu Glu Ser Leu Pro Leu Gly Pro Leu Leu Gly Asp Thr Ala Val
65 70 75 80

35 Ile Gln Gly Asp Thr Ala Leu Ile Thr Arg Pro Trp Ser Pro Ala Arg
85 90 95

40 Arg Pro Glu Val Asp Gly Val Arg Lys Ala Leu Gln Asp Leu Gly Leu
100 105 110

Arg Ile Val Glu Ile Gly Asp Glu Asn Ala Thr Leu Asp Gly Thr Asp
115 120 125

45 Val Leu Phe Thr Gly Arg Glu Phe Phe Val Gly Leu Ser Lys Trp Thr
130 135 140

Asn His Arg Gly Ala Glu Ile Val Ala Asp Thr Phe Arg Asp Phe Ala
145 150 155 160

50 Val Ser Thr Val Pro Val Ser Gly Pro Ser His Leu Arg Gly Leu Cys
165 170 175

55 Gly Met Gly Gly Pro Arg Thr Val Val Ala Gly Ser Ser Asp Ala Ala
180 185 190

Gln Lys Ala Val Arg Ala Met Ala Val Leu Thr Asp His Pro Tyr Ala
195 200 205
Ser Leu Thr Leu Pro Asp Asp Ala Ala Ala Asp Cys Leu Phe Leu Arg
5 210 215 220
Pro Gly Leu Pro Gly Val Pro Pro Phe Leu Leu His Arg Gly Gly
225 230 235 240
Asp Leu Pro Asn Ser Gln Glu Ala Leu Gln Lys Leu Ser Asp Val Thr
10 245 250 255
Leu Val Pro Val Ser Cys Ser Glu Leu Glu Lys Ala Gly Ala Gly Leu
260 265 270
15 Ser Ser Leu Cys Leu Val Leu Ser Thr Arg Pro His Ser
275 280 285
20

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:
25 (A) LENGTH: 777 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear
30 (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:
35 GTGCCAGCA AGAAGGCCCT GGTCCGCCGC CCCAGCCCCA GGCTCGCCGA AGGACTGGTG 60
ACACACGTCG AGCGGGAGCA GGTCGATCAC GGCTGGCCC TCGAACAGTG GGACGCCTAC 120
GTCGAGGCC CGGGAGCACA CGGCTGGAG ACTCTGGAGG TGGACCCGGC CGAGTACTGT 180
40 CCGGACTCGG TCTTCGTCGA GGACGCCGTC GTCGTGTTCC GCAACGTCGC GCTGATCACG 240
CGGCCCGGCG CCGAGTCGCG GCGCGCGGAG ACGGCCGGCG TCGAGGAGGC CGTGGCCCGG 300
45 CTCGGCTGCT CGGTGAAGTG GGTGTGGAG CGGGGCACCC TGGACGGCGG CGACGTCCCTG 360
AAGATCGGCG ACACGATCTA CGTGGGACGC GGCGGCCGGA CCAACGCGGC CGGTGTCCAG 420
CAGTTGCGGG CGGCGTTCGA GCCGCTGGC GCGCGGGTCG TCGCCGTGCC CGTGAGCAAG 480
50 GTGCTGCATC TGAAGTCGGC GGTACCCGCG CTGCCGGACG GGACGGTGAT CGGGCACATC 540
CCGCTGACGG ACGTGCCCTC GCTGTTCCCC CGTTCCCTGC CGGTGCCGGA GGAGTCGGGG 600
55 GCGCACGTGG TGCTGCTCGG CGGGAGCAGG CTGCTGATGG CGGCGAGCGC GCCCAAGACG 660

GCGGAGCTGC TCGCCGATCT CCGTCACGAG CCGGTGCTCG TCGACATCGG GGAGTTCGAG 720
AAGCTGGAGG GCTGTGTGAC GTGCCTCTCG GTCAGGCTGC GCGAGCTGTA CGACTGA 777

5

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

- 10 (A) LENGTH: 258 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Val Pro Ser Lys Lys Ala Leu Val Arg Arg Pro Ser Pro Arg Leu Ala
20 1 5 10 15

Glu Gly Leu Val Thr His Val Glu Arg Glu Gln Val Asp His Gly Leu
20 25 30

25 Ala Leu Glu Gln Trp Asp Ala Tyr Val Glu Ala Leu Gly Ala His Gly
35 40 45

Trp Glu Thr Leu Glu Val Asp Pro Ala Glu Tyr Cys Pro Asp Ser Val
30 50 55 60

Phe Val Glu Asp Ala Val Val Val Phe Arg Asn Val Ala Leu Ile Thr
65 70 75 80

35 Arg Pro Gly Ala Glu Ser Arg Arg Ala Glu Thr Ala Gly Val Glu Glu
85 90 95

Ala Val Ala Arg Leu Gly Cys Ser Val Asn Trp Val Trp Glu Pro Gly
100 105 110

40 Thr Leu Asp Gly Gly Asp Val Leu Lys Ile Gly Asp Thr Ile Tyr Val
115 120 125

Gly Arg Gly Arg Thr Asn Ala Ala Gly Val Gln Gln Leu Arg Ala
130 135 140

45 Ala Phe Glu Pro Leu Gly Ala Arg Val Val Ala Val Pro Val Ser Lys
145 150 155 160

Val Leu His Leu Lys Ser Ala Val Thr Ala Leu Pro Asp Gly Thr Val
50 165 170 175

Ile Gly His Ile Pro Leu Thr Asp Val Pro Ser Leu Phe Pro Arg Phe
180 185 190

55 Leu Pro Val Pro Glu Glu Ser Gly Ala His Val Val Leu Leu Gly Gly

	195	200	205
	Ser Arg Leu Leu Met Ala Ala Ser Ala Pro Lys Thr Ala Glu Leu Leu		
	210	215	220
5	Ala Asp Leu Gly His Glu Pro Val Leu Val Asp Ile Gly Glu Phe Glu		
	225	230	235
	Lys Leu Glu Gly Cys Val Thr Cys Leu Ser Val Arg Leu Arg Glu Leu		
10	245	250	255
	Tyr Asp		

15 (2) INFORMATION FOR SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 765 base pairs
- (B) TYPE: nucleic acid
- 20 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

ATGTTCAAGC ACATCATCGC TCGCACGCCC GCCCCGAGCC TGGTCGACGG CCTGACCTCC	60
AGCCACCTCG GCAAGCCGGA CTACGCCAAG GCCCTGGAGC AGCACAAACGC CTACATCCGC	120
30 GCCTTGCAGA CCTGCGACGT GGACATCACC CTGCTGCCGC CGGACGAACG CTTCCCGAC	180
TCGGTGTTCG TCGAGGACCC GGTGCTCTGC ACCTCGCGCT GCGCCATCAT CACCCGCCCC	240
35 GGCGCCGAAT CGCGGCGCGG CGAGACCGAG ATCATCGAGG AAACCGTGCA GCGCTTCTAT	300
CCGGGCAAGG TCGAGCGCAT CGAGGCACCC GGCACGGTGG AAGCCGGCGA CATCATGATG	360
40 GTCGGCGACC ACTTCTACAT CGGCGAATCG GCCCCGACCA ACGCCGAGGG CGCCCGGCAG	420
ATGATCGCGA TCCTGGAGAA ACATGGCTC AGCGGCTCGG TGGTGCCTC GGAAAAGGTC	480
CTGCACCTGA AGACCGGGCT CGCCTACCTG GAACACAACA ACCTGCTGGC CGCCGGCGAG	540
45 TTCGTAGCA AGCCGGAGTT CCAGGACTTC AACATCATCG AGATCCCCGA AGAGGAGTCC	600
TACGCCGCCA ACTGCATCTG GGTCAACGAA AGGGTGATCA TGCCCGCCGG CTATCCCCG	660
50 ACCCGCGAGA AGATCGCCCG CCTCGGCTAC CGGGTGATCG AGGTGGACAC CTCCGAATAT	720
CGCAAGATCG ACGGCGGCGT CAGTTGCATG TCGCTGCCGT TCTGA	765

(2) INFORMATION FOR SEQ ID NO: 8:

55 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 254 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

5

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

10 Met Phe Lys His Ile Ile Ala Arg Thr Pro Ala Arg Ser Leu Val Asp
 1 5 10 15

15 Gly Leu Thr Ser Ser His Leu Gly Lys Pro Asp Tyr Ala Lys Ala Leu
 20 25 30

20 Glu Gln His Asn Ala Tyr Ile Arg Ala Leu Gln Thr Cys Asp Val Asp
 35 40 45

25 Ile Thr Leu Leu Pro Pro Asp Glu Arg Phe Pro Asp Ser Val Phe Val
 50 55 60

30 Glu Asp Pro Val Leu Cys Thr Ser Arg Cys Ala Ile Ile Thr Arg Pro
 65 70 75 80

35 Gly Ala Glu Ser Arg Arg Gly Glu Thr Glu Ile Ile Glu Glu Thr Val
 85 90 95

40 Gln Arg Phe Tyr Pro Gly Lys Val Glu Arg Ile Glu Ala Pro Gly Thr
 100 105 110

45 Val Glu Ala Gly Asp Ile Met Met Val Gly Asp His Phe Tyr Ile Gly
 115 120 125

50 Glu Ser Ala Arg Thr Asn Ala Glu Gly Ala Arg Gln Met Ile Ala Ile
 130 135 140

55 Leu Glu Lys His Gly Leu Ser Gly Ser Val Val Arg Leu Glu Lys Val
 145 150 155 160

60 Leu His Leu Lys Thr Gly Leu Ala Tyr Leu Glu His Asn Asn Leu Leu
 165 170 175

65 Ala Ala Gly Glu Phe Val Ser Lys Pro Glu Phe Gln Asp Phe Asn Ile
 180 185 190

70 Ile Glu Ile Pro Glu Glu Ser Tyr Ala Ala Asn Cys Ile Trp Val
 195 200 205

75 Asn Glu Arg Val Ile Met Pro Ala Gly Tyr Pro Arg Thr Arg Glu Lys
 210 215 220

80 Ile Ala Arg Leu Gly Tyr Arg Val Ile Glu Val Asp Thr Ser Glu Tyr
 225 230 235 240

85 Arg Lys Ile Asp Gly Gly Val Ser Cys Met Ser Leu Arg Phe

245

250

(2) INFORMATION FOR SEQ ID NO: 9:

5 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1257 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

15	ATGAGCACGG AAAAAACCAA ACTTGGCGTC CACTCCGAAG CGGGCAAACCT GCGCAAAGTG	60
	ATGGTCTGCT CGCCCCGGACT CGCCCACCAG CGCCTGACCC CGAGCAACTG CGACCGAGTTG	120
20	CTGTTCGACG ACGTGATCTG GGTGAACCAG GCCAACGCGCG ACCACTTCGA CTTCGTCACC	180
	AAGATGCGCG AGCGCGGCAT CGACGTCTC GAGATGCACA ATCTGCTGAC CGAGACCATC	240
	CAGAACCCGG AAGCGCTGAA GTGGATCCTC GATCGCAAGA TCACCGCCGA CAGCGTCGGC	300
25	CTGGGCCTGA CCAGCGAGCT GCGCTCCTGG CTGGAGAGCC TGGAGCCGCG CAAGCTGGCC	360
	GAGTACCTGA TCGGCGGGCGT CGCCGCTGAC GACCTGCCCG CCAGCGAAGG CGCCAACATC	420
30	CTCAAGATGT ACCCGCGAGTA CCTGGGCCAT TCCAGCTTCC TGCTGCCGCC GTTGGCGAAC	480
	ACCCAGTTCA CCCCGACAC CACTTGCTGG ATCTACGGCG GCGTGAACCT GAACCCGATG	540
	TACTGGCCGG CGCGACGACA GGAAACCCCTG CTGACCACCG CCATCTACAA GTTCCACCCC	600
35	GAGTTCGCCA ACCGCCGAGTT CGAGATCTGG TACGGCGACC CGGACAAGGA CCACGGCTCC	660
	TCGACCCCTGG AAGGCGCGA CGTGATGCCG ATCGGCAACG GCGTGGTCCT GATCGGCATG	720
40	GGCGAGCGCT CCTCGCGCCA GGCCATCGGT CAGGTCGCCCG AGTCGCTGTT CGCCAAGGGC	780
	GCCGCCGAGC GGGTGATCGT CGCCGGCCTG CGGAAGTCCC GCGCCGCGAT GCACCTGGAC	840
	ACCGTGTTCAG CTTCTGCGA CCGCGACCTG GTCACGGTCT TCCCGGAAGT GGTCAAGGAA	900
45	ATCGTGCCT TCAGCCTGCG CCCCCGATCG AGCAGCCCT ACGGCATGAA CATCCGCCGC	960
	GAGGAGAAAA CCTTCTCGA AGTGGTCGCC GAATCCCTCG GCCTGAAGAA ACTGCGCGTG	1020
50	GTCGAGACCG GCGGCAACAG CTTCGCCGCC GAGCGCGAGC AATGGGACGA CGGTAACAAC	1080
	GTGGTCTGCC TGGAGCCGGG CGTGGTGGTC GGCTACGACC GCAACACCTA CACCAACACC	1140
	CTGCTGCGCA AGGCCGGCGT CGAGGTCAATC ACCATCAGCG CCAGCGAACT GGGTCGCGGT	1200
55	CGCGGGCGCG GCCACTGCAT GACCTGCCCG ATCGTCCGCG ACCCGATCGA CTACTGA	1257

(2) INFORMATION FOR SEQ ID NO: 10:

(i) SEQUENCE CHARACTERISTICS:

- 5 (A) LENGTH: 418 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: protein

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Met Ser Thr Glu Lys Thr Lys Leu Gly Val His Ser Glu Ala Gly Lys
1 5 10 15

15 Leu Arg Lys Val Met Val Cys Ser Pro Gly Leu Ala His Gln Arg Leu
20 25 30

20 Thr Pro Ser Asn Cys Asp Glu Leu Leu Phe Asp Asp Val Ile Trp Val
35 40 45

Asn Gln Ala Lys Arg Asp His Phe Asp Phe Val Thr Lys Met Arg Glu
50 55 60

25 Arg Gly Ile Asp Val Leu Glu Met His Asn Leu Leu Thr Glu Thr Ile
65 70 75 80

Gln Asn Pro Glu Ala Leu Lys Trp Ile Leu Asp Arg Lys Ile Thr Ala
85 90 95

30 Asp Ser Val Gly Leu Gly Leu Thr Ser Glu Leu Arg Ser Trp Leu Glu
100 105 110

Ser Leu Glu Pro Arg Lys Leu Ala Glu Tyr Leu Ile Gly Gly Val Ala
115 120 125

Ala Asp Asp Leu Pro Ala Ser Glu Gly Ala Asn Ile Leu Lys Met Tyr
130 135 140

40 Arg Glu Tyr Leu Gly His Ser Ser Phe Leu Leu Pro Pro Leu Pro Asn
145 150 155 160

Thr Gln Phe Thr Arg Asp Thr Thr Cys Trp Ile Tyr Gly Gly Val Thr
165 170 175

45 Leu Asn Pro Met Tyr Trp Pro Ala Arg Arg Gln Glu Thr Leu Leu Thr
180 185 190

Thr Ala Ile Tyr Lys Phe His Pro Glu Phe Ala Asn Ala Glu Phe Glu
195 200 205

Ile Trp Tyr Gly Asp Pro Asp Lys Asp His Gly Ser Ser Thr Leu Glu
210 215 220

55 Gly Gly Asp Val Met Pro Ile Gly Asn Gly Val Val Leu Ile Gly Met

225 230 235 240
Gly Glu Arg Ser Ser Arg Gln Ala Ile Gly Gln Val Ala Gln Ser Leu
245 250 255
5 Phe Ala Lys Gly Ala Ala Glu Arg Val Ile Val Ala Gly Leu Pro Lys
260 265 270
Ser Arg Ala Ala Met His Leu Asp Thr Val Phe Ser Phe Cys Asp Arg
10 275 280 285
Asp Leu Val Thr Val Phe Pro Glu Val Val Lys Glu Ile Val Pro Phe
290 295 300
15 Ser Leu Arg Pro Asp Pro Ser Ser Pro Tyr Gly Met Asn Ile Arg Arg
305 310 315 320
Glu Glu Lys Thr Phe Leu Glu Val Val Ala Glu Ser Leu Gly Leu Lys
325 330 335
20 Lys Leu Arg Val Val Glu Thr Gly Gly Asn Ser Phe Ala Ala Glu Arg
340 345 350
Glu Gln Trp Asp Asp Gly Asn Asn Val Val Cys Leu Glu Pro Gly Val
25 355 360 365
Val Val Gly Tyr Asp Arg Asn Thr Tyr Thr Asn Thr Leu Leu Arg Lys
370 375 380
30 Ala Gly Val Glu Val Ile Thr Ile Ser Ala Ser Glu Leu Gly Arg Gly
385 390 395 400
Arg Gly Gly Gly His Cys Met Thr Cys Pro Ile Val Arg Asp Pro Ile
405 410 415
35 Asp Tyr

(2) INFORMATION FOR SEQ ID NO: 11:

40 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1014 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
45 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:
50 ATGTATCAAT GGAAAATACG CAACGACCAT CGTTTGATTG TGAAATCAGA GCCAAATATC 60
GTTGGTTTAT GACGGATTCC TACGTCGCTG CTGCCCCGTCT AGGGTCACCT GCACGCCGCA 120
55 CCCCCCGGAC GCGGGCGGTAT GCAATGACCC CGCCGGCCTT CTTTGCCTGC GCATACGCGA 180

TCAACCCCTG GATGGACGTC ACCGGGCCAG TCGACGTCA AGTCGCGCAA GCACAGTGGG 240
AGCACCTCCA CCAGACCTAT CTTCGGCTAG GCCACAGCGT GGATCTGATC GAGCCCATT 300
5 CCGGGTTACC GGACATGGTG TACACCGCCA ACGGTGGGTT CATCGCGCAC GACATGCCG 360
TGGTCGCCCCG GTTCCGGTTC CCCGAACGAG CTGGTGAGTC TAGAGCCTAT GCCAGCTGGA 420
TGTCTCGGT CGGATATCGC CCGGTGACCA CCCGCCACGT CAACGAGGGA CAGGGCGACC 480
10 TGCTGATGGT TGGCGAAAGG GTGTTGGCGG GCTACGGCTT TCGCACAGAC CAGCGCGCAC 540
ACGCCGAAAT CGCCGCGGTG CTTGGTCTGC CGGTGGTCTC CCTCGAGTTG GTCGACCCAC 600
15 GGTTCTATCA CCTGGACACC GCGCTGGCCG TGCTCGACGA CCACACGATC GCCTACTACC 660
CGCCGGCGTT CAGTACGGCA GCGCAGGAAC AGTTGTCGGC GCTGTTCCCC GACGCGATTG 720
20 TGGTCGGCAG TGCCGACGCG TTCTGTTCG GACTCAACGC CGTCTCTGAC GGTCTGAACG 780
TAGTGCTTCC GGTCGCGGCC ATGGGTTTG CGGCGCAGTT ACGCGCAGCC GGCTTCGAGC 840
CCTGGTGTG CGATCTGTCC GAGCTGCTCA AGGGCGGCGG TTCCGTCAAG TGCTGCACGC 900
25 TGGAGATACA CCCATGACAA ATCTCGCGGA TGCCACTCAG GCCACTATGG CACTGGTCGA 960
AAGGCATGCA GCGCACAATT ATTCCGGCT GCCTGTGGTG GCGGCCAGCG CTGA 1014

(2) INFORMATION FOR SEQ ID NO: 12:

30 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 305 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
35 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:
40 Asn Val Ser Met Glu Asn Thr Gln Arg Pro Ser Phe Asp Cys Glu Ile
1 5 10 15
Arg Ala Lys Tyr Arg Trp Phe Met Thr Asp Ser Tyr Val Ala Ala Ala
45 20 25 30
Arg Leu Gly Ser Pro Ala Arg Arg Thr Pro Arg Thr Arg Arg Tyr Ala
35 40 45
50 Met Thr Pro Pro Ala Phe Phe Ala Val Ala Tyr Ala Ile Asn Pro Trp
50 55 60
Met Asp Val Thr Ala Pro Val Asp Val Gln Val Ala Gln Ala Gln Trp
55 65 70 75 80

Glu His Leu His Gln Thr Tyr Leu Arg Leu Gly His Ser Val Asp Leu
85 90 95

5 Ile Glu Pro Ile Ser Gly Leu Pro Asp Met Val Tyr Thr Ala Asn Gly
100 105 110

Gly Phe Ile Ala His Asp Ile Ala Val Val Ala Arg Phe Arg Phe Pro
115 120 125

10 Glu Arg Ala Gly Glu Ser Arg Ala Tyr Ala Ser Trp Met Ser Ser Val
130 135 140

Gly Tyr Arg Pro Val Thr Thr Arg His Val Asn Glu Gly Gln Gly Asp
145 150 155 160

15 Leu Leu Met Val Gly Glu Arg Val Leu Ala Gly Tyr Gly Phe Arg Thr
165 170 175

Asp Gln Arg Ala His Ala Glu Ile Ala Val Leu Gly Leu Pro Val
20 180 185 190

Val Ser Leu Glu Leu Val Asp Pro Arg Phe Tyr His Leu Asp Thr Ala
195 200 205

25 Leu Ala Val Leu Asp Asp His Thr Ile Ala Tyr Tyr Pro Pro Ala Phe
210 215 220

Ser Thr Ala Ala Gln Glu Gln Leu Ser Ala Leu Phe Pro Asp Ala Ile
225 230 235 240

30 Val Val Gly Ser Ala Asp Ala Phe Val Phe Gly Leu Asn Ala Val Ser
245 250 255

Asp Gly Leu Asn Val Val Leu Pro Val Ala Ala Met Gly Phe Ala Ala
35 260 265 270

Gln Leu Arg Ala Ala Gly Phe Glu Pro Val Gly Val Asp Leu Ser Glu
275 280 285

40 Leu Leu Lys Gly Gly Ser Val Lys Cys Cys Thr Leu Glu Ile His
290 295 300

Pro
305

45

CLAIMS

1. A polynucleotide which:

- 5 (a) encodes a polypeptide that has the properties of a methylarginase, which polynucleotide is selected from:
(1) the coding sequence of SEQ ID NO: 1, 3, 5, 7, 9 or 11;
10 (2) a sequence which hybridises selectively to the complement of a sequence defined in (1); and
(3) a sequence that is degenerate as a result of the genetic code with respect to a sequence defined in (1) or (2); or
15 (b) is a sequence complementary to a polynucleotide defined in (a).

2. A polynucleotide according to claim 1 which is
20 a DNA sequence.

3. A polynucleotide according to claim 1 or 2 which encodes the amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 10 or 12.

25 4. A polynucleotide which comprises the coding sequence of SEQ ID NO: 1, 3, 5, 7, 9 or 11 or a fragment thereof.

5. A polypeptide which has methylarginase activity and which comprises the sequence set out in SEQ ID NO: 2, 4, 6, 8, 10 or 12, a sequence substantially homologous thereto or a fragment of either said sequence.
30

6. A vector incorporating a polynucleotide as defined in any one of claims 1 to 4.

7. A vector according to claim 6, which is an expression vector.

35 8. A cell harbouring a polynucleotide according to

any one of claims 4, a peptide according to claim 5 or vector according to claim 6 or 7.

9. A process for the preparation of a polypeptide which has methylarginase activity, which process comprises cultivating a host cell harbouring an expression vector according to claim 7 under conditions to provide for expression of the said polypeptide, and recovering the expressed polypeptide.

10. A modulator of methylarginase activity.

11. A modulator according to any one of claims 10 to 12, wherein the methylarginase is DDAHI.

12. A modulator according to any one of claims 10 to 12, wherein the methylarginase is DDAHII.

13. A modulator according to claim 10, which is an inhibitor of methylarginase activity and/or expression.

14. A modulator according to claim 10, which is an activator of methylarginase activity and/or expression.

15. A method for identifying a modulator of methylarginase activity and/or expression, comprising:

20 (i) contacting a polynucleotide according to any one of claims 1 to 4, a polypeptide according to claim 5, a vector according to claim 7 or a cell according to claim 8 and a test substance under conditions that would permit methylarginase activity in the absence of the test substance; and

25 (ii) determining thereby whether the said substance modulates the activity and/or expression of methylarginase.

30

16. A modulator of methylarginase activity and/or expression identified by the method of claim 15.

17. A modulator according to any one of claims 16 to 18, wherein the methylarginase is DDAHI.

18. A modulator according to any one of claims 16 to 18, wherein the methylarginase is DDAHII.

19. A modulator according to claim 16, which is an inhibitor of methylarginase activity and/or expression.

5 20. A modulator according to claim 16, which is an activator of methylarginase activity and/or expression.

10 21. A polynucleotide according to any one of claims 1 to 4, a polypeptide according to claim 5, an expression vector according to claim 7 or a modulator according to any 10 one of claims 10 to 14 or 16 to 20 for use in a method of treatment of the human or animal body by therapy.

15 22. A polynucleotide according to any one of claims 1 to 4, a polypeptide according to claim 5, an expression vector according to claim 7 or a modulator according to 15 claim 14 or 20 for use in a method of treatment of hyperlipidaemia, renal failure, hypertension, restenosis after angioplasty, atherosclerosis, complications of heart failure, schizophrenia, multiple sclerosis or cancer.

20 23. A modulator according to claim 13 or 19 for use in a method of treatment of ischaemia-reperfusion injury of the brain or heart, cancer, lethal hypotension in severe inflammatory conditions such as septic shock or multi-organ failure, or local and systemic inflammatory disorders including arthritis, skin disorders or inflammatory cardiac 25 disease.

24. Use of a polynucleotide according to any one of claims 1 to 4, a polypeptide according to claim 5, an expression vector according to claim 7 or a modulator according to claim 14 or 20 for the manufacture of a 30 medicament for use in the treatment of hyperlipidaemia, renal failure, hypertension, restenosis after angioplasty, atherosclerosis, complications of heart failure, schizophrenia, multiple sclerosis or cancer.

25. Use of a modulator according to claim 13 or 19 35 for the manufacture of a medicament for use in the

treatment of ischaemia-reperfusion injury of the brain or heart, cancer, lethal hypotension in severe inflammatory conditions such as septic shock or multi-organ failure, or local and systemic inflammatory disorders including
5 arthritis, skin disorders or inflammatory cardiac disease.

26. A pharmaceutical composition comprising a polynucleotide according to any one of claims 1 to 4, a polypeptide according to claim 5, an expression vector according to claim 6 or a modulator according to any one of
10 claims 10 to 14 and 16 to 20 and a pharmaceutically acceptable carrier and/or diluent.

27. A method of treating a human or animal suffering from hyperlipidaemia, renal failure, hypertension, restenosis after angioplasty, atherosclerosis,
15 complications of heart failure, schizophrenia, multiple sclerosis or cancer, which method comprises administering to the host a therapeutically effective amount of a polypeptide according to claim 5, an expression vector according to claim 7 or a modulator according to claim 14
20 or 20.

28. A method of treating a human or animal suffering from ischaemia-reperfusion injury of the brain or heart, cancer, lethal hypotension in severe inflammatory conditions such as septic shock or multi-organ failure, or
25 local and systemic inflammatory disorders including arthritis, skin disorders or inflammatory cardiac disease, which method comprises administering to the host a therapeutically effective amount of a modulator according to any one of claims 13 or 19.

30 29. A modulator according to claim 23 for use in said method together with a methylarginine.

30. Use of a modulator according to claim 25 for the manufacture of a medicament for use in said treatment together with a methylarginine.

35 31. A method according to claim 28, which further

comprises administering to the host a methylarginine.

32. A modulator according to claim 29, use according to claim 30 or a method according to claim 31, wherein the methylarginine is L-NMMA.

5 33. A modulator according to claim 16, which is an inhibitor of a bacterial methylarginase.

34. A modulator according to claim 33 for use in a method of treatment of the human or animal body by therapy.

10 35. A modulator according to claim 34 for use in the treatment of a bacterial infection.

36. Use of a modulator as defined in claim 33 for the manufacture of a medicament for use in the treatment of a microbial infection.

15 37. A method of treatment of a host suffering from a bacterial infection, which method comprises administering to the host a therapeutically effective amount of a modulator as defined in claim 33.

20

25

30

ABSTRACT

SCREEN METHOD

5

Two dimethylarginine dimethylaminohydrolase (DDAH) genes have been cloned from humans. These genes can be used to screen for inhibitors and activators of activity and/or expression of DDAHs. Inhibitors and activators of activity and/or expression of DDAHs are useful in the treatment of conditions in which abnormal metabolism of nitric oxide is implicated.

10

Rat DDAH I MAGLSHP-SVFGRATHAVVRAPPESLCRHALRRSQGEEVDARAERQHQLYVGVLGSKLG
 Human DDAH I MAGLGHP-SAFGRATHAVRALPESLCQHALRSAKGEVDVARAERQHQLYVGVLGSKLG
 Human DDAH II ---MGTPGEGLGRCshalirgpeslasgegagglpaldlakaqrehgvlgkrlqrlg
 : * . :**. :**; * . ***. : : * . :*.*; * ; * : * * . :**
 LQVQLPADES LPDCVFVEDVAVVCEETALITRGAPSRRKEVDMMKALEKLQLNIVEM
 LQVELPADES LPDCVFVEDVAVVCEETALITRGAPSRRKEVDMMKALEKLQLNIVEM
 LQLLELPPEE SLPPLGPLLGD TAVI QGDT ALIT RGPWS PARRPEV DGV RKA LQDLGLRIVEI
 ; : * . :** : : * . **; :***** * ; * ; *** : : * . :****;
 KDENATLDGGDVLF TGREFFVG LSKRTN QRGAEILADTFKD YAVSTVPVADSLHLKSFCS
 KDENATLDGGDVLF TGREFFVG LSKRTN QRGAEILADTFKD YAVSTVPVADGLHLKSFCS
 GDENATLDGTDVLF TGREFFVG LSKWTN HRGAEIVADTFRDFAVSTVPVSGPSHLRGLCG
 ***** * ***** * :***** * :***** * :***** * :***** * :***** * :*****
 MAGPNLIAIGSSESAQKALKIMQQMSDHRYDKLTVDDMAANCIYLN--IPSKGHVLLHR
 MAGPNLIAIGSSESAQKALKIMQQMSDHRYDKLTVDDIAANCIYLN--IPNKGHVLLHR
 MGGPRTVAGSSDAAQKAVRAMAVLTDHPYASLTLPDAAADCLFLRPGLPGVPPFLLHR
 * . **. : . :****; * : * * * . * ; * * * * : * . : * . :****
 TPEEYPESAKVYEKLKDHLI PVSNSEMEKVDGLLTCCSVFINKKTDS
 TPEEYPESAKVYEKLKDHLI PVSNSELEKVDGLLTCCSVLINKVDS
 GGGDLPNSQEALQKLSDVTLVPVSCSELEKAGAGLSSLCLVLSTRPHS
 : * ; * : . : * . * ; * * * * : * : . *

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

(

Figure 6A

PaDeiminase	MSTEKTKLGVHSEAGKLRKVMVCS PGLAHQRLLTPSNCDELLFDDVIWVNQAKRDFDFVT
PaDDAH	-----
PaDeiminase	KMRERGIDVLEMHNLITETIONPEALKWILDRKITADSVGLGLTSELRSWLESLEPRKLA
PaDDAH	-----MFKHIIAR-TPARSLVDGLTSSHLG-----KP-----
	: * : * _ * : * : * * . . : *
PaDeiminase	EYLIGGVAADDLPASEGANILKMYREYLGHSSFLPP---LPNTQFTRD-TTCWIYGGVT
PaDDAH	-----DYAKALEQHNAYIRALQTCDVDITLLPPDERFPDSVVFEDPVLCTSRCALL
	* * * * : . . * * * : * : * . * . .
PaDeiminase	LNPMDYWPARQETLLTTAIYKFHPEFANAEEFEIWYGDPAKDHDGSTLEGGDVMPIGNGVV
PaDDAH	TRPGAESRGETEIIIEETVQRFYP-----GKVERIEAPGTVEAGDIMMVGDF-HF
	* . * : : : : * : * . : * : * : * : * : * : .
PaDeiminase	LIGMGERSSRQAIGQVAQSQLFKAGAAERVIVAGLPKSRAAMHLDTVFSFCDRDLTVFPE
PaDDAH	YIGESARTNAEGARQMIAILKEHGLSGSVVRL---EK--VLHLKTGLAYLEHNLLAAGE
	* * . * : . : * : * : * : * : . . : * * . * : : : : : . *
PaDeiminase	VVKIEVPFSLRPDPSSPYGMNIRREEKTFLEVVAESGLKLRLRVETGGNSFAAEREQWD
PaDDAH	FVS--K----PE-----FQDFNIIIEIP----EESSYA
	* . * : . : : : * . * : . .

Figure 6B

Figure 7

PCT/GB00/022006

26/11/00

J. A. Kemp + Co