

Introduction to Scientific Computation Lecture 5 Fall 2018

Graphs

Graph

Seven Bridges of Königsberg

Graph

- V node in the graph
- E edge in the graph, the connection between two nodes

Applications

- Road networks
- Electronic circuits
- Telecommunication networks
- Social networks
- Any relationships ...

Types

Undirected G

$$V = \{A, B, C, D\}$$
$$E = \{AB, BD, AD, BC\}$$

Types

Directed G

$$V = \{1,3,5,7,9,11\}$$

$$E = \{(1,3),(3,1),(5,7),(5,9),(5,7),(5,9),(9,9),(9,11),(11,1)\}$$

Adjacency - two vertices are called adjacent if they are connected by edge

Path - the sequence of vertices which connects two nodes in a graph

Complete graph - every vertex is connected to every other vertex

Adjacency - two vertices are called adjacent if they are connected by edge

Path - the sequence of vertices which connects two nodes in a graph

Complete graph - every vertex is connected to every other vertex

Adjacency - two vertices are called adjacent if they are connected by edge

Path - the sequence of vertices which connects two nodes in a graph

Complete graph - every vertex is connected to every other vertex

Adjacency - two vertices are called adjacent if they are connected by edge

Path - the sequence of vertices which connects two nodes in a graph

Complete graph - every vertex is connected to every other vertex

Adjacency - two vertices are called adjacent if they are connected by edge

Path - the sequence of vertices which connects two nodes in a graph

Complete graph - every vertex is connected to every other vertex

Quiz: how many edges exist in a complete graph?

Quiz: how many edges exist in a complete graph?

Answer:
$$\frac{N^2 - N}{2}$$

Clique - complete subgraph

Euler trail (path) - the path in a finite graph which visits every edge exactly once

Clique - complete subgraph

Euler trail (path) - the path in a finite graph which visits every edge exactly once

Clique - complete subgraph

Euler trail (path) - the path in a finite graph which visits every edge exactly once

Clique - complete subgraph

Euler trail (path) - the path in a finite graph which visits every edge exactly once

Handshaking lemma

$$G = \langle V, E \rangle$$

$$\sum_{u \in V} d(u) = 2 |E|$$

in a party of people some of whom shake hands, an even number of people must have shaken an odd number of other people's hands.

Graph

Back to Seven Bridges of Königsberg

An undirected graph has an Euler path if and only if exactly zero or two vertices have odd degree, and all of its vertices with nonzero degree belong to a single connected component.

$$G = \langle V, E \rangle$$

Adjacency matrix

Adjacency list

$$G = \langle V, E \rangle$$

Adjacency matrix

Directed: N^2

Undirected: N^2

Adjacency list

Directed: N + M

Undirected: N + 2M

$$G = \langle V, E \rangle$$

Adjacency matrix

Adjacency list

Quiz: What is better to test if an edge is in the graph?

$$G = \langle V, E \rangle$$

Adjacency matrix

Adjacency list

Quiz: What is better to test if an edge is in the graph?

Answer: matrix

$$G = \langle V, E \rangle$$

Adjacency matrix

Adjacency list

Quiz: What is faster to find the degree of vertex?

$$G = \langle V, E \rangle$$

Adjacency matrix

Adjacency list

Quiz: What is better to test if an edge is in the graph?

Answer: list

$$G = \langle V, E \rangle$$

Adjacency matrix

Adjacency list

$$M + N \ VS \ N^2$$

$$G = \langle V, E \rangle$$

Adjacency matrix

Adjacency list

$$M + N \ VS \ N^2$$

