

T-TEST

HYPOTHESIS TESTING

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

1-Sample t-Test

F-Test

2-Sample t-Test

Paired t-Test

<u>1-sample t-test</u> is a statistical method used to determine whether the <u>mean</u> of a <u>single sample</u> (\overline{x}_1) differs significantly from a known or hypothesized population mean (μ_0) .

Test Statistic

$$t = \frac{\overline{x}_1 - \mu_o}{s/\sqrt{n}}$$

where:

t = t-statistic

 $\bar{x}_1 = \text{sample mean}$

 μ_o = hypothesized population mean

s = sample standard deviation

n =sample size

syntax from scipy import stats t_stat, p_value = stats.ttest_1samp(sample_data, pop_mean, alternative = 'two-sided'

Null Hypothesis

$$H_o: \mu_1 = \mu_o$$

Alternative Hypothesis

$$H_a$$
: $\mu_1 \neq \mu_o$ (p-value $\leq \alpha$)

- Continuous data
- Normal data

EXERCISE

The dataset contains the electricity production in MWh by the following production types:

Туре	μ	σ
Nuclear	1282.48	241.19
Wind	771.73	666.53
Hydroelectric	1792.64	679.98
Oil and Gas	1166.84	433.92
Coal	1138.50	329.93
Solar	171.81	257.26
Biomass	54.94	13.76

Perform a <u>1-sample t-test</u> to determine whether the mean electricity production (in MWh) for each production type in the given dataset differs significantly from known population parameters.

dataset

"<u>electricity-sample-1-dataset.csv</u>"

F-TEST

F-TEST_

<u>F-test</u> is a statistical test used to compare the <u>variances</u> of <u>two samples</u> (s_1^2, s_2^2) and determine if they are significantly different.

Test Statistic

$$F = s_1^2/s_2^2$$

where:

F = F-statistic

 s_1^2 = larger sample variance

 s_2^2 = smaller sample variance

CUMULATIVE PROBABILITY OF F-DISTRIBUTION

```
<u>syntax</u>
from scipy import stats
# F-statistic
if var_1 > var_2:
   f_stat = var_1/var_2
else:
   f stat = var 2/var 1
p_value = 1 - stats.f.cdf(
   f_stat,dof_1,dof_2
```

Null Hypothesis

$$H_o$$
: $\sigma_1^2 = \sigma_2^2$

Alternative Hypothesis

$$H_a$$
: $\sigma_1^2 \neq \sigma_2^2$ (p-value $\leq \alpha$)

- Continuous data
- Normal data

2-sample t-test is a statistical method used to compare the <u>means</u> of <u>two independent groups</u> $(\overline{x}_1, \overline{x}_2)$ to determine if they are significantly different from each other.

Test Statistic

$$t = \frac{\overline{x}_1 - \overline{x}_2}{s_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

where:

t = t-statistic

 $\bar{x}_1, \bar{x}_2 = \text{mean of each group}$

 n_1 , n_2 = sample size of each group

 s_P = pooled standard deviation

$$= \left(\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}\right)$$

INDEPENDENT SAMPLES

```
<u>syntax</u>
```

```
from scipy import stats

t_stat, p_value = stats.ttest_ind(
    sample_1 data, sample_2 data,
    alternative = 'two-sided',
    equal_var = True
)
```

Null Hypothesis

$$H_o: \mu_1 = \mu_1$$

Alternative Hypothesis

$$H_a$$
: $\mu_1 \neq \mu_2$ (p-value $\leq \alpha$)

- Continuous data
- Normal data

PAIRED T-TEST

PAIRED T-TEST

<u>Paired t-test</u> is a statistical method used to compare the <u>means</u> of <u>two related groups</u> $(\overline{x}_1, \overline{x}_2)$ to determine if they are significantly different from each other.

Test Statistic

$$t = \frac{\overline{x}_d}{s_d \sqrt{n}}$$

where:

t = t-statistic

 \bar{x}_d = mean of the difference between groups

 s_d = standard deviation of the difference

n =sample size

RELATED SAMPLES

<u>syntax</u>

```
from scipy import stats

t_stat, p_value = stats.ttest_rel(
    sample_1 data, sample_2 data,
    alternative = 'two-sided',
    equal_var = True
)
```

Null Hypothesis

$$H_o$$
: $\mu_d = 0$

Alternative Hypothesis

$$H_a$$
: $\mu_d \neq 0$ (p-value $\leq \alpha$)

- Continuous data
- Normal data

EXERCISE

The dataset contains the electricity production in MWh by the following production types:

Туре	μ	σ
Nuclear	1282.48	241.19
Wind	771.73	666.53
Hydroelectric	1792.64	679.98
Oil and Gas	1166.84	433.92
Coal	1138.50	329.93
Solar	171.81	257.26
Biomass	54.94	13.76

Perform a <u>2-sample t-test</u> to compare the means of electricity production (in MWh) between two distinct groups in the dataset.

dataset

"<u>electricity-sample-1-dataset.csv</u>"

LABORATORY

