

A Minkowski problem and the Brunn-Minkowski inequality for capacity

Murat Akman 29 March 2022

PDEs and Applications, Uppsala Universitet

Outline

- 1. Minkowski Problem
 - Discrete Minkowski Problem
 - Classical Minkowski Problem
 - Minkowski Problem for p-capacity
- 2. Existence: Dark side of the p-capacity
- 3. Uniqueness: Detour; The Brunn-Minkowski inequality
- 4. Regularity: Detour; Monge-Ampère equation [if time permits]

Motivation

Question: Let m distinct unit vectors $\mathbf{n}_1, \dots, \mathbf{n}_m$ in \mathbb{R}^2 which spans \mathbb{R}^2 and m positive numbers l_1, \dots, l_m be given.

Can you find a convex polygon whose edges have the outer unit normals $\mathbf{n}_1, \dots, \mathbf{n}_m$ with corresponding lengths l_1, \dots, l_m ?

Example:

- ▶ For $\mathbf{n}_1 = (1,0)$, $\mathbf{n}_2 = (0,1)$, $\mathbf{n}_3 = (-1,0)$, and $\mathbf{n}_4 = (0,-1)$, $l_1 = l_2 = l_3 = l_4 = 2$. → YES: square with sidelength 2.
- ▶ For $\mathbf{n}_1 = (1,0)$, $\mathbf{n}_2 = (0,1)$, $\mathbf{n}_3 = (-1,0)$, $\mathbf{n}_4 = (0,-1)$, and $l_1 = l_2 = l_3 = 2$ and $l_4 = 3$. → NO??

Discrete Minkowski Problem

Let unit normal vectors $\mathbf{n}_1, \dots, \mathbf{n}_m$ which span \mathbb{R}^n and positive numbers A_1, \dots, A_m be given.

Question: Does there exist a convex polyhedron $\mathcal{P} \subset \mathbb{R}^n$ whose faces have the given unit normals $\mathbf{n}_1, \dots, \mathbf{n}_m$ and surface areas A_1, \dots, A_m ?

ightharpoonup Reformulation: given discrete measure μ on \mathbb{S}^{n-1}

$$\mu(\cdot) = \sum_{i=1}^m A_i \, \delta_{\mathbf{n}_i}(\cdot) \quad \text{where } \delta_{\mathbf{n}_i} \text{ is Dirac-delta point mass measure at } \mathbf{n}_i$$

is there a convex polyhedron $\mathcal{P} \subset \mathbb{R}^n$ with desired properties?

Surface area measure on \mathbb{S}^{n-1}

Let K be a convex body \equiv convex, compact, and non-empty interior.

 $\mathbf{g}_K: \partial K \to \mathbb{S}^{n-1}$ is the Gauss map; $x \mapsto \mathbf{n}_x$.

lackbox Define a measure μ_K on \mathbb{S}^{n-1} associated to K by

$$\mu_K(E):=\int_{\mathbf{g}_K^{-1}(E)}d\sigma\quad\text{whenever}\quad E\subset\mathbb{S}^{n-1}\text{ is Borel set}$$

where $\sigma := \mathcal{H}^{n-1}|_{\partial K} = (n-1)$ -Hausdorff measure on ∂K .

▶ If $\partial K \in C^2$ and has positive Gauss curvature everywhere then $d\mu_K(X) = \frac{1}{\kappa(X)} d\sigma(X) \quad \text{where } \kappa(X) \text{ is the Gauss curvature}.$

Classical Minkowski Problem

Minkowski Problem

Let μ be a given positive finite Borel measure on \mathbb{S}^{n-1} .

Find necessary and sufficient conditions on μ such that there exists a convex body $K\subset\mathbb{R}^n$ satisfying

$$\mu(E) = \mu_K(E) = \int_{\mathbf{g}_K^{-1}(E)} d\sigma$$
 whenever $E \subset \mathbb{S}^{n-1}$ is Borel set.

Necessary conditions:

▶ C1: The centroid of the measure μ is at the origin;

$$\int\limits_{\mathbb{S}^{n-1}} w \, d\mu(w) = ec{0}. \qquad \left(\sum_{i=1}^m A_i \mathbf{n}_i = ec{0} ext{ in the discrete setting.}
ight)$$

▶ C2: The support of μ can not be contained in an equator of \mathbb{S}^{n-1} ; (for every $\theta \in \mathbb{S}^{n-1}$)

$$\int\limits_{\mathbb{S}^{n-1}} |\theta \cdot w| d\mu(w) > 0. \qquad \left(\sum_{i=1}^m A_i |\theta \cdot \mathbf{n}_i| > 0 \text{ in the discrete setting.} \right)$$

Necessity of the condition C1

 \blacktriangleright The centroid of the measure μ is at the origin;

$$\int_{\mathbb{S}^{n-1}} w \, d\mu(w) = \vec{0}. \qquad \left(\sum_{i=1}^m A_i \mathbf{n}_i = \vec{0} \text{ in the discrete setting.}\right)$$

If $\mathbf{w} \in \mathbb{S}^{n-1}$ then the surface area of the projection of ith face to \mathbf{w}^{\perp} is $A_i(\mathbf{n}_i \cdot \mathbf{w})$.

Therefore, for every $\mathbf{w} \in \mathbb{S}^{n-1}$,

$$\sum_{i=1}^{m} A_i(\mathbf{n}_i \cdot \mathbf{w}) = \sum_{\mathbf{n}_i \cdot \mathbf{w} > 0} A_i(\mathbf{n}_i \cdot \mathbf{w}) + \sum_{\mathbf{n}_i \cdot \mathbf{w} < 0} A_i(\mathbf{n}_i \cdot \mathbf{w}) = 0.$$

Necessity of the condition C2

▶ The support of μ can not be contained in an equator of \mathbb{S}^{n-1} ;

(for every
$$\theta \in \mathbb{S}^{n-1}$$
)

$$\int\limits_{\mathbb{S}^{n-1}} |\theta \cdot w| d\mu(w) > 0. \qquad \left(\sum_{i=1}^m A_i |\theta \cdot \mathbf{n}_i| > 0 \text{ in the discrete setting.} \right)$$

Otherwise,

there exists $\theta \in \mathbb{S}^{n-1}$ such that $\theta \cdot \mathbf{n}_i = 0$ for every $i = 1, \dots, m$.

Then polyhedron will not be closed in the $-\theta$ direction.

Solution to Classical Minkowski Problem

Let μ be a finite positive Borel measure on \mathbb{S}^{n-1} satisfying **C1-C2**.

Existence: There is a convex body $K \subset \mathbb{R}^n$ such that

$$\mu(E) = \mu_K(E) = \int_{\mathbf{g}_K^{-1}(E)} d\sigma$$
 whenever $E \subset \mathbb{S}^{n-1}$ is Borel set.

- ▶ Uniqueness: *K* is unique up to translation.
- ▶ **Regularity**: If $d\mu = (1/\kappa)d\sigma$ for some strictly positive $\kappa \in C^{m,\alpha}(\mathbb{S}^{n-1})$, $m \in \mathbb{Z}^{\geq 0}$, and $\alpha \in (0,1)$, then $\partial K \in C^{m+2,\alpha}$.
- ► Existence and Uniqueness: Minkowski 1903 for the case of polyhedron, in general Alexandrov '37, Fenchel-Jessen '38, ...
- ▶ C^{∞} regularity: Lewy '38, Pogorelov '53, Nirenberg '53, Cheng-Yau '76, ...
- $ightharpoonup C^{2,\alpha}$ regularity: The precise gain of two derivatives and the treatment of small values of m is due to Caffarelli in '90.
- ► Sobolev regularity: Philippis-Figalli in '13.

Minkowski-type problems for other measures

▶ L_p Minkowski problem; (L_0 is the classical Minkowski problem) due to Andrews in '99, Chou-Wang in '06, Hug-Lutwak-Yang-Zhang in '05, Ludwig in '11, Lutwak-Oliker in '95 and many more recent results on this.

➤ First eigenvalue of the Laplace operator with Dirichlet boundary conditions; existence due to Jerison in '96, uniqueness due to Brascamp-Lieb in '76 and Colesanti in '05.

▶ Electrostatic capacity associated to Laplace's equation; due to Jerison in '96 and p-capacity associated to p-Laplace equation.

PDE Background

▶ For fixed p, 1 , the p-Laplace equation

$$0 = \Delta_p u = \nabla \cdot (|\nabla u|^{p-2} \nabla u) = |\nabla u|^{p-4} [(p-2) \sum_{i,k=1}^n u_{x_i} u_{x_k} u_{x_i x_k} + |\nabla u|^2 \Delta u]$$

is the Euler-Lagrange equation of $\int_{\Omega} |\nabla u|^p dx$.

- ▶ Applications: image processing, glacelogy, plastic moulding etc
- $ightharpoonup \Delta_n u =$ is invariant under Möbius transformations.
- ▶ For p=2 one gets Laplace equation $\Delta u = u_{x_1x_1} + \ldots + u_{x_nx_n} = 0$.
- ▶ In the complex plane, relation with quasiconformal mappings.
- $ightharpoonup \mathcal{A}$ -harmonic PDEs: $-\operatorname{div} \cdot \mathcal{A}(\nabla u) = 0$.
- ▶ In general, p-harmonic functions are in the class $C^{1,\alpha}$ due to Ural'ceva, Uhlenbeck, Tolksdorf, Lewis, Evans, ... in '80s.
- $lackbox{} u \in W^{1,p}_{\text{loc}}(\Omega)$ is called a weak solution in a domain Ω if

$$\int \langle |\nabla u|^{p-2} \nabla u, \nabla \eta \rangle dx = 0 \quad \text{for all } \eta \in C_0^\infty(\Omega).$$

p-capacity

If $K \subset \mathbb{R}^n$ is closed set, then p-capacity of K is

$$\operatorname{Cap}_p(K) := \inf \left\{ \int_{\mathbb{R}^n} |\nabla v|^p dx, \ v \in C_0^\infty(\mathbb{R}^n): \ v \geq 1 \text{ on } K \right\}.$$

- ▶ It is (n-p)-homogeneous: $\operatorname{Cap}_p(\rho K + z) = \rho^{n-p}\operatorname{Cap}_p(K)$.
- ▶ A ball of radius r has p-capacity $\approx r^{n-p}$.
- \triangleright If u is the minimizer then

$$\left\{ \begin{array}{lll} \Delta_p u = 0 & & \text{in} & \mathbb{R}^n \setminus K, \\ u = 1 & & \text{on} & \partial K, \\ \lim_{|x| \to \infty} u(x) = 0. \end{array} \right.$$

- ▶ Sets with empty interiors (a line segment in \mathbb{R}^2 or \mathbb{R}^3) can have positive p-capacity and p-harmonic functions can see those sets (Any set K with $0 < \mathcal{H}^l(K)$ has $\operatorname{Cap}_n(K) > 0$ for n p < l < n).
- ▶ When $p \ge n$ then any set has zero p-capacity.

A Minkowski problem for p-capacitary measure

Given a convex body $K \subset \mathbb{R}^n$, let u_K be the p-harmonic function (1 ;

$$\left\{ \begin{array}{lll} \Delta_p u_K = 0 & \text{in} & \mathbb{R}^n \setminus K, \\ u_K = 1 & \text{on} & \partial K, \\ \lim_{|x| \to \infty} u_K(x) = 0. \end{array} \right.$$

▶ Define p-capacitary measure $\mu_{p,K}$ on \mathbb{S}^{n-1} associated to K by

$$\mu_{p,K}(E):=\int_{\mathbf{g}_K^{-1}(E)}|\nabla u_K|^pd\sigma\quad\text{whenever}\quad E\subset\mathbb{S}^{n-1}\text{ is Borel}.$$

▶ It is well-defined: $|\nabla u_K|^p \sigma \sim \sigma$ on ∂K (by Dahlberg in '77 for p=2 and for other p by Lewis-Nyström in '12).

The Minkowski problem for p-capacitary measure

Let μ be a given positive finite Borel measure on \mathbb{S}^{n-1} .

Find necessary and sufficient conditions on μ for which there exists a convex body K in \mathbb{R}^n such that $\mu_{p,K} = \mu$.

Solution to the Minkowski Problem

Let μ be a positive finite Borel measure on \mathbb{S}^{n-1} satisfying **C1-C2**.

 \blacktriangleright **Existence**: There is a convex body K such that

$$\mu(E) = \mu_{p,K}(E) = \int_{\mathbf{g}_{\kappa}^{-1}(E)} |\nabla u_K|^p d\sigma \quad \text{whenever} \quad E \subset \mathbb{S}^{n-1} \text{ is Borel}.$$

- ▶ Uniqueness: K is unique up to translation (and dilation when p = n 1).
- ▶ Regularity: If $d\mu = (1/\kappa)d\sigma$ for some strictly positive $\kappa \in C^{m,\alpha}(\mathbb{S}^{n-1}), m \in \mathbb{Z}^{\geq 0}$, and $\alpha \in (0,1)$, then $\partial K \in C^{m+2,\alpha}$.
- ▶ Jerison '96 completely solved for p = 2.
- ▶ Colesanti-Nyström-Salani-Xiao-Yang-Zhang '15 solved existence and regularity for 1 and uniqueness for <math>1 .
- ightharpoonup Akman-Gong-Hineman-Lewis-Vogel '17 solved the existence and uniqueness when 1 .
- ▶ Akman-Lewis-Saari-Vogel '19 solved existence and uniqueness for a related problem when $n \le p < \infty$.
- ▶ Akman-Lewis-Vogel '20 solved the regularity for all p in \mathbb{R}^3 .

Minkowski addition of sets

Minkowski addition of two sets A and B is defined as

$$A+B:=\{a+b \,|\, a\in A,\, b\in B\}=\bigcup_{b\in B}A+\{b\}.$$

$$sA := \{ sa \, | \, a \in A \}.$$

 $A+A \neq 2A$ in general.

The support function of a convex body

▶ The support function h_K of a convex domain K in \mathbb{R}^n is

$$h_K: \mathbb{S}^{n-1} \to \mathbb{R}, \quad h_K(X) = \sup\{\langle X, x \rangle; x \in K\}$$

i.e.: $h_K(X)$ is the distance of supporting hyperplane at a point on ∂K from the origin whose normal is X.

 $-h_K$ is homogeneous of degree 1.

 $-h_K$ is convex.

-Any convex body K is uniquely termined by h_K .

For every convex bodies K, L and constants $\alpha, \beta \geq 0$;

$$h_{\alpha K + \beta L} = \alpha h_K + \beta h_L.$$

The Hadamard Variational Formula

Let K and K_1 be convex bodies.

► The Hadamard variational formula for p-capacity

$$\begin{split} \frac{d}{dt} \mathsf{Cap}_p(K+tK_1)|_{t=0} &= (p-1) \int_{\partial K} h_{K_1}(\mathbf{g}_K(x)) |\nabla u_K(x)|^p \, d\sigma \\ &= (p-1) \int_{\mathbb{S}^{n-1}} h_{K_1}(\xi) d\mu_{p,K}(\xi). \end{split}$$

- ▶ Hence $d\mu_{p,K} = |\nabla u_K|^p d\sigma$ is the first variation of p-capacity at K.
- ► Since

$$\frac{d}{dt}\mathsf{Cap}_p(K+tK)|_{t=0} = \frac{d}{dt}(1+t)^{n-p}|_{t=0}\mathsf{Cap}_p(K) = (n-p)\mathsf{Cap}_p(K).$$

► Hence

$$\mathsf{Cap}_p(K) = \frac{p-1}{n-p} \int_{\partial K} h_K |\nabla u_K|^p \, d\sigma = \frac{p-1}{n-p} \int_{\mathbb{S}^{n-1}} h_K d\mu_{p,K}$$

Existence for Minkowski problem

Strategy for proof of Existence

Given finite positive Borel measure μ on \mathbb{S}^{n-1} satisfying C1-C2;

▶ Define a functional from set of convex bodies K;

$$\mathcal{F}:\mathcal{K}\to\mathbb{R}\quad\text{by}\quad\mathcal{F}(L)=\int\limits_{\mathbb{S}^{n-1}}h_L(X)\,d\mu(X)\quad\text{for}\quad L\in\mathcal{K}.$$

► Consider the following minimization problem

$$\inf\{\mathcal{F}(L) \text{ subject to the constraint } \operatorname{Cap}_p(L) \geq 1\}.$$

▶ If \tilde{K} is a minimizer then Lagrange multiplier implies $\exists \lambda \in \mathbb{R}$

$$d\mathcal{F}(\tilde{K}) = \lambda d\mathsf{Cap}_p(L).$$

lackbox Use the fact that the first variation of the p-capacity is $d\mu_{\tilde{K}}$;

$$d\mathcal{F}(\tilde{K}) = d\mu \quad \text{and} \quad d\mathsf{Cap}_p \tilde{K} = d\mu_{p,\tilde{K}} \quad \Longrightarrow \, d\mu = \lambda d\mu_{p,\tilde{K}}.$$

ightharpoonup A re-scaled copy K of \tilde{K} will be the solution.

What can possible go wrong?

Imagine the 3 blue faces moving to the origin and giving the minimizer the black 1-d segment.

- ▶ For appropriate p, it can have p-capacity 1.
- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$

Proof of Existence in the discrete case

- ▶ Let $\mathbf{n}_1, \dots, \mathbf{n}_m$ be unit normals spans \mathbb{R}^n and let c_1, \dots, c_m be positive numbers $\to \mu = \sum_{i=1}^m c_i \delta_{\mathbf{n}_i}$.
- ▶ Prove that the minimization problem

$$\inf \left\{ \sum_{i=1}^m c_i q_i \mid q = (q_1, \dots, q_m) \text{ satisfying } \mathsf{Cap}_p(\mathcal{P}(q)) \geq 1 \right\}.$$

has a solution for some $\tilde{q} \in \mathbb{R}^m$.

▶ $\mathsf{Cap}_n(\mathcal{P}(\tilde{q})) = 1$ and $\mathcal{P}(\tilde{q})$ has faces F_k with normal \mathbf{n}_k ;

$$\mu(\mathbf{n}_k) = c_k = \lambda \mu_{p, \mathcal{P}(\tilde{q})}(\mathbf{n}_k)$$
 and $c_k = \frac{\lambda(n-1)}{n-p} \int_{F_k} |\nabla u|^p d\mathcal{H}^{n-1}$.

How to rule out low dimensional candidates

- $ightharpoonup \mathcal{P}(\tilde{q})$ has non-empty interior then we are done.
- $\blacktriangleright \mathcal{P}(\tilde{q})$ may have empty interior; i.e., some of $\tilde{q}_i = 0$; i.e., $0 < \mathcal{H}^k(\mathcal{P}(\tilde{q})) < \infty$ for some n p < k < n 1.

Construct $\mathcal{P}(\bar{q})$ with non-empty interior and $\mathsf{Cap}_{p}(\mathcal{P}(\bar{q}))=1$ s.t.

$$\sum_{i=1}^{m} \bar{q}_i c_i < \sum_{i=1}^{m} \tilde{q}_i c_i.$$

Let $a=\frac{1}{4}\min\{\tilde{q}_i:i\in\{1,\ldots m\}\ \&\ \tilde{q}_i\neq 0\}$ and for small t>0,

$$\tilde{E}(t) := \bigcap_{i=1}^{m} \{x : \langle x, \mathbf{n}_i \rangle \le \tilde{q}_i + at\}, \quad E := \bigcap_{i=1}^{m} \{x : \langle x, \mathbf{n}_i \rangle \le a\}.$$

Put
$$E_t = rac{ ilde{E}(t)}{\mathsf{Cap}_n(ilde{E}(t))^{1/(n-p)}}.$$

 $ightharpoonup E_t = E(q(t))$ with $\mathsf{Cap}_p(E_t) = 1$ where $q(t) = (q_1(t), \dots, q_m(t))$ and

$$q_j(t) = rac{ ilde{q}_j + at}{\mathsf{Cap}_n(ilde{E}(t))^{1/(n-p)}} \quad ext{for} \quad 1 \leq j \leq m.$$

ightharpoonup Enough to show for small t>0 near 0 that

$$k(t) = \mathsf{Cap}_{\mathcal{A}}(\tilde{E}(t))^{\frac{-1}{(n-p)}} \sum_{i=1}^{m} c_i(\tilde{q}_i + at) < \sum_{i=1}^{m} \tilde{q}_i c_i = k(0).$$

▶ Show that

$$\lim_{\tau \to 0} \frac{d}{dt} \left. \mathsf{Cap}_p(\tilde{E}(t) + tE) \right|_{t = \tau} = \lim_{\tau \to 0} \int_{\partial(\tilde{E}(\tau) + tE)} h_E |\nabla u_{\tilde{E}(\tau) + \tau E}|^p d\sigma = \infty.$$

▶ Use this in

$$\begin{split} \left[\mathsf{Cap}_p(\tilde{E}(t) + tE) \right]^{1 + \frac{1}{(n-p)}} \frac{d}{dt} k(t) \mid_{t=\tau} &= \mathsf{Cap}_p(\tilde{E}(t) + \tau E) \sum_{i=1}^m c_i a \\ &- \frac{(p-1)}{(n-p)} [\sum_{i=1}^m c_i (\tilde{q}_i + a \tau)] \frac{d}{dt} \mathsf{Cap}_p(\tilde{E}(t) + tE) \mid_{t=\tau}. \end{split}$$

▶ Clearly, for some $t_0 > 0$ small

$$\frac{d}{dt}k(t)\Big|_{t=\tau} < 0 \quad \text{ for } \tau \in (0, t_0].$$

▶ This finishes the proof of existence in the discrete case. One has to run a similar argument for the general case.

Brunn-Minkowski inequality

Uniqueness for Minkowski

Problem, a detour:

Minkowski sum of a square and a disk

$$A \\ + \epsilon B \\ + \epsilon B \\ = \operatorname{area}(A + \epsilon B) = \operatorname{area}(A) + 4l\epsilon + \operatorname{area}(\epsilon B) \\ \geq \operatorname{area}(A) + 2\sqrt{\pi}l\epsilon + \operatorname{area}(\epsilon B) \\ = \operatorname{area}(A) + 2\sqrt{\operatorname{area}(A)\operatorname{area}(\epsilon B)} + \operatorname{area}(\epsilon B) \\ = \left((\operatorname{area}(A))^{1/2} + (\operatorname{area}(\epsilon B))^{1/2} \right)^2.$$

Hence

$$\operatorname{area}(A + \epsilon B)^{1/2} \ge \operatorname{area}(A)^{1/2} + \operatorname{area}(\epsilon B)^{1/2}.$$

Is this a coincidence? How about in \mathbb{R}^n ?

Another Example

$$\begin{aligned} &\operatorname{area}(A) = 6.\\ &\operatorname{area}(B) = 6.\\ &\operatorname{area}(A+B) = 29. \end{aligned}$$

Hence

$$\sqrt{29} = \operatorname{area}(A+B)^{1/2} \geq \operatorname{area}(A)^{1/2} + \operatorname{area}(B)^{1/2} = \sqrt{6} + \sqrt{6} = \sqrt{24}.$$

Classical Brunn-Minkowski inequality

▶ For $\lambda \in [0,1]$

$$|(1-\lambda)A + \lambda B|^{\frac{1}{n}} \ge (1-\lambda)|A|^{\frac{1}{n}} + \lambda |B|^{\frac{1}{n}}.$$

whenever A, B bounded open sets in \mathbb{R}^n . Equality holds precisely when A is a translation and dilation of B (i.e. A is homothetic to B).

▶ Due to Brunn in 1887 and Minkowski in 1896 for convex sets and (for bounded and open sets by Lyusternik in '35).

Equivalent forms of the Brunn-Minkowski inequality

► Elegant

$$|A+B|^{\frac{1}{n}} \ge |A|^{\frac{1}{n}} + |B|^{\frac{1}{n}}.$$

► Multiplicative

$$|(1 - \lambda)A + \lambda B| \ge |A|^{1 - \lambda} |B|^{\lambda}.$$

▶ Minimal

$$|(1 - \lambda)A + \lambda B| \ge \min\{|A|, |B|\}.$$

The Brunn-Minkowski inequality for p-capacity

whenever $A,B\subset\mathbb{R}^n$ are convex compact sets with non-empty interiors. Equality holds precisely when A is homothetic to B.

- ▶ Borell in '83, Caffarelli-Jerison-Lieb in '96, Colesanti-Salani in '03.
- ▶ Akman-Gong-Hineman-Lewis-Vogel '17: Inequality holds for any convex compact sets. Equality holds when *A* is homothetic to *B*.

Equivalent forms of the Brunn-Minkowski inequality for p-capacity

- ▶ Elegant: $\operatorname{Cap}_{p}(A+B)^{\frac{1}{n-p}} \ge \operatorname{Cap}_{p}(A)^{\frac{1}{n-p}} + \operatorname{Cap}_{p}(B)^{\frac{1}{n-p}}$.
- ▶ Multiplicative: $\mathsf{Cap}_p((1-\lambda)A + \lambda B) \ge \mathsf{Cap}_p(A)^{1-\lambda}\mathsf{Cap}_p(B)^{\lambda}$.
- ▶ Minimal: $Cap_p((1 \lambda)A + \lambda B) \ge \min\{Cap_p(A), Cap_p(B)\}.$
- ▶ Akman-Lewis-Saari-Vogel '18: For $n \le p < \infty$, certain quantity associated to p-harmonic function satisfies a Brunn-Minkowski type inequality.

Sketch of Uniqueness of Minkowski Problem

- ▶ Let E_0 and E_1 are two convex body with $\mu_{p,E_0} = \mu_{p,E_1} = \mu$.
- ▶ For $t \in [0,1]$, let $E_t = (1-t)E_0 + tE_1$
- $\blacktriangleright \text{ Define } \mathbf{m}(t) = \mathsf{Cap}_p(E_t)^{\frac{1}{n-p}} = \mathsf{Cap}_p((1-t)E_0 + tE_1)^{\frac{1}{n-p}}.$
- ▶ The Brunn-Minkowski inequality says that $\mathbf{m}(t)$ is a concave function on [0,1] therefore $\mathbf{m}'(0) \geq \mathbf{m}(1) \mathbf{m}(0)$ with strict inequality unless \mathbf{m} is linear in t.
- \blacktriangleright Aim: show that $\mathbf{m}(t)$ is linear in $t\to \text{Equality}$ in Brunn-Minkowski inequality.
- ▶ By the Hadamard variational formula

$$\begin{split} \mathbf{m}'(0) &= \mathsf{Cap}_p(E_0)^{\frac{1}{n-p}-1} \left. \frac{d}{dt} \mathsf{Cap}_p(E_t) \right|_{t=0} \\ &= (p-1) \int_{\mathbb{S}^{n-1}} (h_1(\xi) - h_0(\xi)) d\mu(\xi) \\ &= (n-p) [\mathsf{Cap}_p(E_1) - \mathsf{Cap}_p(E_0)]. \end{split}$$

$$\begin{split} \mathbf{m}(1) - \mathbf{m}(0) &\leq \mathbf{m}'(0) = \mathsf{Cap}_p(E_0)^{\frac{1}{n-p}-1}[\mathsf{Cap}_p(E_1) - \mathsf{Cap}_p(E_0)] \\ &= \mathbf{m}(0)^{1-n+p}[\mathbf{m}(1)^{n-p} - \mathbf{m}(0)^{n-p}]. \end{split}$$

Let
$$l = \left(\frac{\mathsf{Cap}_p(E_1)}{\mathsf{Cap}_p(E_0)}\right)^{\frac{1}{n-p}} = \left(\frac{\mathbf{m}(1)}{\mathbf{m}(0)}\right)$$
.

Now $l^{n-p}-1 \ge l-1$. Reversing the roles of E_0, E_1 we also get

$$l^{p-n} - 1 \ge l^{-1} - 1.$$

Clearly, both these inequalities can only hold if l=1. Thus ${\sf Cap}_p(E_0)={\sf Cap}_p(E_1)$ and hence

$$\mathbf{m}'(0) = 0 = \mathbf{m}(1) - \mathbf{m}(0).$$

Thus $\mathbf{m}(t)$ is linear in t which is implies equality in the Brunn-Minkowski inequality;

 $ightharpoonup E_0$ is a translation and dilation of E_1 .

A detour: Monge-Ampère equation

Regularity for Minkowski problem

A brief introduction to Monge-Ampère equation

Surface = Graph of a convex Lipschitz ϕ .

ightharpoonup At $(x, y, \phi(x, y))$,

$$\vec{n} = \frac{(-\phi_x, -\phi_y, 1)}{\sqrt{1 + |\nabla \phi|^2}}.$$

 $(1,0,\phi_x)$ > The Gauss curvature at $(x,y,\phi(x,y))$ is

$$\kappa(x,y) := \det d\vec{n} = \frac{\phi_{xx}\phi_{yy} - \phi_{xy}^2}{(1 + |\nabla \phi|^2)^2}.$$

► One gets Monge-Ampère equation

$$\det(\nabla^2\phi)=\kappa(x,y)(1+|\nabla\phi|^2)^2=f(x,\phi,\nabla\phi)$$

Smoothness of the surface = regularity of ϕ .

Monge-Ampère measure

Definition

Let Ω be a open convex set. Let $f:\Omega\times\mathbb{R}\times\mathbb{R}^n\to\mathbb{R}_+$ be a convex function. $\phi:\Omega\to\mathbb{R}$ is called an (Alexandrov) solution to the Monge-Ampère equation $\det(\nabla^2\phi)=f(x,\phi,\nabla\phi)$ in Ω if

$$\mu_\phi(A) = \int_A f(x,\phi,\nabla\phi) dx \quad A \subset \Omega \text{ Borel}.$$

For any C^2 function ϕ in a domain D, we can write

$$\int_{E} \det(\nabla^2 \phi) dx = \int_{\nabla \phi(E)} dy = \text{Measure of } \nabla \phi(E).$$

For a C^1 function ϕ , define Monge-Ampère measure μ as

$$\mu_{\phi}(E) = \text{Lebesgue measure of } \nabla \phi(E).$$

For a convex function ϕ ,

$$\mu_{\phi}(E) = \text{Lebesgue measure of } \partial \phi(E)$$

where
$$\partial \phi(x) = \{ y \in \mathbb{R}^n ; \ \phi(z) > \phi(x) + \langle y, z - x \rangle, \ \forall z \}.$$

Regularity of Minkowski Problem - Classical case

Let μ be a finite positive Borel measure on \mathbb{S}^{n-1} satisfying **C1-C2**. Let K be the convex body with non-empty interior s.t.

$$\mu(E) = \mu_K(E) = \int_{\mathbf{g}_K^{-1}(E)} d\sigma$$
 whenever $E \subset \mathbb{S}^{n-1}$ is Borel set.

- ▶ Let $d\mu = d\mu_K = (1/\kappa)d\sigma$ for some strictly positive $\kappa \in C^{m,\alpha}(\mathbb{S}^{n-1})$, $m \in \mathbb{Z}^{\geq 0}$, and $\alpha \in (0,1)$.
- ▶ Let ϕ be a convex Lipschitz function defined on an open subset O of \mathbb{R}^{n-1} whose graph $\{(x,\phi(x)): x\in O\}$ is a portion of ∂K .

Then ϕ satisfies the Monge-Ampère equation

$$\det(\nabla^2 \phi) = (1 + |\nabla \phi|^2)^{\frac{n+1}{2}} \kappa = d\mu$$

▶ Caffarelli '90: If $\mu(F) \le C\mu(F/2)$ for every $F = \partial K \cap H$ for some half-space H then $\partial K \in C^{2,\alpha}$.

Regularity of Minkowski Problem - Our case

Let μ be a finite positive Borel measure on \mathbb{S}^{n-1} satisfying **C1-C2**. Let K be the convex body with non-empty interior s.t.

$$\mu(E) = \mu_{p,K}(E) = \int_{\mathbf{g}_K^{-1}(E)} |\nabla u_K(x)|^p d\sigma \quad \text{whenever} \quad E \subset \mathbb{S}^{n-1} \text{ is Borel set.}$$

Then ϕ satisfies the **Monge-Ampère equation**

$$\det(\nabla^2 \phi) = (1 + |\nabla \phi|^2)^{\frac{n+1}{2}} \kappa |\nabla u_K|^p = d\mu.$$

▶ Jerison '91 + Gutiérrez and Hartenstine '03: When p=2, μ satisfies "weak doubling". That is, for every $F=\partial K\cap H$ for some half-space H, for some $\epsilon\in(0,1]$ such that

$$\int_{F} \delta(x, F)^{1-\epsilon} d\mu(x) \le C\mu(F/2).$$

Then one can run Caffarelli's argument to show $\partial K \in C^{2,\alpha}$.

▶ Akman-Lewis-Vogel '20: Run Jerison's argument and study p-harmonic function in cone domains with arbitrarily small aperture to show for all p in \mathbb{R}^3 .

$\mathcal{THANKS}!$