Модулятор

Single Sideband Transmitted Carrier

(AM-SSB-TC)

Для запуска скриптов необходимо корневую папку репозитория сделать рабочей папкой Matlab!

1. Введение

Как упоминалось в части SSB SC, основное преимущество однополосной модуляции заключается в двухкратном уменьшении полосы модулированного сигнала по сравнению с обычной DSB модуляцией. Так как огибающая SSB SC сигнала не совпадает с информационным сообщением, его прием возможен только когерентным методом. Поэтому необходимо точно восстановить частоту и фазу несущей. Для сигналов DSB SC для этого можно применить PLL с возведением сигнала в квадрат или схему Костаса. Для SSB SC сигнала, к сожалению, эти методы не работают. Поэтому часто вместе с однополосным сигналом передается несущая, которая позволяет применить обычную PLL для когерентной демодуляции. Такой сигнал называется SSB TC. Также при определенных условиях для SSB TC сигналов можно применять некогерентный приемник.

2. Однотональная модуляция с использованием преобразования Гильберта

Методы модуляции SSB TC ни чем не отличаются от однополосной модуляции с подавленной несущей (SSB SC). Поэтому сразу рассмотрим модулятор на основе преобразования Гильберта.

Комплексный сигнала с односторонним спектром можно получить из исходного сообщения с помощью преобразования Гильберта, которое представляет из себя всепропускающий фильтр, который изменяет только фазу сигнала. Преобразование Гильберта формирует мнимую часть аналитического сигнала. Таким образом, можем записать:

$$m_A(t) = m(t) + j \cdot m_H(t),$$

где m(t) - исходное информационное сообщение, $m_H(t) = H\{m(t)\}$ - преобразование Гильберта от сообщения, $m_A(t)$ - аналитический сигнал с односторонним спектром.

Этот аналитический сигнал можно перенести на несущую частоте с помощью умножения на комплексную экспоненту. В результате сигнал останется комплексным. Чтобы сделать его вещественным нужно, оставить только его действительную часть. Однако, это приведет к тому, что в спектре сигнала в явном виде не будет содержаться гармоники на несущей частоте. Это можно исправить, если перед переносом спектра к действительной части аналитического сигнала добавить постоянную составляющую:

$$m_{ATC}(t) = m(t) + A + j \cdot m_H(t),$$

где А амплитуда несущей.

После умножения на комплексную экспоненту и выделения дейсвительной части получим USB сигнал, содержащий только верхнюю половину полосы частот сообщения. В виде формул данные преобразования можно записать так:

$$s_{\text{USB}}(t) = \text{Real}\left\{m_{A\,\text{TC}}(t) \cdot e^{j \cdot 2\pi \cdot f_{C} \cdot t}\right\}.$$

Структурная схема передатчика предсталена ниже:

Если представить комплексную экспонету и аналитический сигнал как сумму действительной и мнимой части, то выражение для $s_{\mathrm{USB}}(t)$ можно переписать в виде:

$$\begin{split} s_{\mathrm{USB}}(t) &= \mathrm{Real}\big\{(m(t) + A + j \cdot m_H(t),) \cdot (\cos(2\pi \cdot f_c \cdot t) + j \cdot \sin(2\pi \cdot f_c \cdot t))\big\} = \\ &= \mathrm{Real}\big\{((m(t) + A) \cdot \cos(2\pi \cdot f_c \cdot t) - m_H(t) \cdot \sin(2\pi \cdot f_c \cdot t)) + j \cdot (m_H(t) \cdot \cos(2\pi \cdot f_c \cdot t) + (m(t) + A) \cdot \sin(2\pi \cdot f_c \cdot t))\big\} = \\ &= (m(t) + A) \cdot \cos(2\pi \cdot f_c \cdot t) - m_H(t) \cdot \sin(2\pi \cdot f_c \cdot t). \end{split}$$

Таким образом, схему приемника можно представить в виде:

Если провести комплексное сопряжение аналитического сигнала, то получим сигнал, который содержит только отрицательные частоты. После добавления постоянной составляющей, переноса на спектра несущую частоту и выделения действительной части получим LSB сигнал. То есть, имеем:

$$s_{\mathrm{LSB}}(t) = \mathrm{Real} \left\{ \left(m_A^*(t) + A \right) \cdot e^{j \cdot 2\pi \cdot f_c \cdot t} \right\}.$$

Структурная схема передатчика предсталена ниже:

Если представить комплексную экспонету и аналитический сигнал как сумму действительной и мнимой части, то выражение для $s_{\mathrm{LSB}}(t)$ можно переписать в виде:

$$s_{\text{LSB}}(t) = (m(t) + A) \cdot \cos(2\pi \cdot f_c \cdot t) + m_H(t) \cdot \sin(2\pi \cdot f_c \cdot t).$$

Таким образом, схему приемника можно представить в виде:

Рассмотрим данный метод формирования однополосного сигнала для однотональной модуляции. В этом случае информационное сообщение представляет из себя гармонический сигнал вида:

$$m(t) = A_m \cos(2\pi f_m t),$$

где A_m - амплитуда тона, f_m - частота в герцах.

Преобразование Гильберта от косинуса равно синусу той же частоты. Значит можем записать:

$$m_H(t) = A_m \sin(2\pi f_m t).$$

Таким образом, аналитичечкий сигнал можно представить в виде:

$$m_A(t) = m(t) + j \cdot m_H(t) = A_m \cos(2\pi f_m t) + j \cdot A_m \sin(2\pi f_m t) = A_m \cdot e^{j \cdot 2\pi \cdot f_m \cdot t}$$

После добавления постоянной составляющей, переноса на несущую частоту с помощью умножения на комплексную экспоненту и взятия действительной части получим:

$$s_{\mathrm{USB}}(t) = \mathrm{Real} \left\{ \left(A_m \cdot e^{j \cdot 2\pi \cdot f_m \cdot t} + A \right) \cdot e^{j \cdot 2\pi \cdot f_c \cdot t} \right\} = \mathrm{Real} \left\{ A_m \cdot e^{j \cdot 2\pi \cdot (f_m + f_c) \cdot t} + A \cdot e^{j \cdot 2\pi \cdot f_c \cdot t} \right\} = \mathrm{Acos}(2\pi f_c t) + A_m \mathrm{cos}(2\pi (f_c + f_m) t).$$

То есть, как и ожидалось, USB сигнал для однотональной модуляции состоит из единственного тона на частоте $f_c + f_m$ и тона на частоте несущей.

Чтобы получить LSB сигнал, необходимо предварительно произвести комплексное сопряжение аналитического сигнала. В связи с этим можем записать:

$$m_A^*(t) = A_m \cdot e^{-j \cdot 2\pi \cdot f_m \cdot t}.$$

$$s_{\mathrm{LSB}}(t) = \mathrm{Real}\left\{\left(A_m \cdot e^{-j \cdot 2\pi \cdot f_m \cdot t} + A\right) \cdot e^{j \cdot 2\pi \cdot f_c \cdot t}\right\} = \mathrm{Real}\left\{A_m \cdot e^{j \cdot 2\pi \cdot (f_c - f_m) \cdot t} + A \cdot e^{j \cdot 2\pi \cdot f_c \cdot t}\right\} = \mathrm{Acos}(2\pi f_c t) + A_m \mathrm{cos}(2\pi (f_c - f_m) t).$$

То есть, LSB сигнал для однотональной модуляции состоит из единственного тона на частоте $f_c - f_m$ и тона на частоте несущей.

Ниже представлен скрипт для получения спектра однополосного сигнала с помощью преобразования Гильберта для однотональной модуляции. С помощью переменной ModulationMethod можно выбрать, какой вид модуляции будет использован (USB или LSB):

```
clc; clear; close all;
FrameSize = 5000; % размер обрабатываемой за один раз пачки данных
Fs = 100e3; % тактовая частота (Hz)
Ac = 1.5;
                   % амплитуда несущей
% выбор метода модуляции
ModulationMethod = "LSB";
% генератор однотонального сигнала
% частота тона: 5 kHz
Message = dsp.SineWave(...
    'SampleRate', Fs,...
    'SamplesPerFrame', FrameSize,...
    'Frequency', 5e3,...
    'Amplitude', 1 ...
    );
% генератор несущей
% частота несущей: 35 kHz
Carrier = dsp.SineWave(...
    'SampleRate', Fs,...
    'SamplesPerFrame', FrameSize,...
    'Frequency', 35e3,...
    'ComplexOutput', true, ...
    'Amplitude', 1);
% формирует аналитический сигнал
HilbertTranform = dsp.AnalyticSignal(...
```

```
'FilterOrder', 100 ...
    );
% объект для вычисления спектра
SpecEstimator = dsp.SpectrumEstimator(...
    'PowerUnits','dBm', ...
    'FrequencyRange', 'centered', ...
    'SampleRate', Fs ...
    );
% объект для отрисовки графиков
Plotter = dsp.ArrayPlot(...
    'PlotType','Line', ...
    'XOffset', -Fs/2, ...
    'YLimits', [-30, 35], ...
    'XLabel', 'Frequency (Hz)', ...
    'YLabel', 'Amplitude (dBm)', ...
    'ChannelNames', {'Analytic Message', 'Message', 'SSB AM Signal'}, ...
    'SampleIncrement', Fs/FrameSize ...
    );
% запуск симуляции
for i = 1:100
    % формирование тонального сигнала
    MessageData = Message();
    % формирование аналитического сигнала
    AnalyticData = HilbertTranform(MessageData);
   % добавление постоянной составляющей
    AnalyticData = AnalyticData + Ac;
    % формирование несущей
    CarrierWave = Carrier();
   % однополосная модуляция
    if (ModulationMethod == "USB")
        SSBAmSignal = real(AnalyticData.*CarrierWave);
    else
        SSBAmSignal = real(conj(AnalyticData).*CarrierWave);
    end
   % вычисление спектров
    Spectrums = SpecEstimator([AnalyticData, MessageData, SSBAmSignal]);
    % вывод результатов на график
    Plotter(Spectrums)
    % задержка в 0.1 секунды для лучшей визуализации
    pause(0.1)
end
```


На графике представлен спектр информационного сигнала (синий) и спектр аналитического сигнала (желтый) с добавленной постоянной составляющей. В зависимости от вида модуляции (USB или LSB) аналитический сигнал будет располагаться только на положительных или только на отрицательных частотах. Также можно увидеть, что, как и ожидалось, модулированный сигнал состоит из одного тона информационного сообщения и тона несущей.

4. Модуляция несколькими тонами

Разобравшись с однотональной модуляцией, легко распространить результаты на случай модуляции несколькими тонами. Пусть информационный сигнал представляет из себя сумму гармонических сигналов:

$$m(t) = \sum_{i=1}^{N} A_i \cos(2\pi f_i t),$$

Рассмотрим, что происходит в частотной области. В случае обычной DSB модуляции несколькими тонами модулированный сигнал примет следующий вид:

$$s_{\text{am}}(t) = \sum_{i=1}^{N} A_i \cos(2\pi f_i t) \cdot A_c \cos(2\pi f_c t) = \frac{A_c}{2} \sum_{i=1}^{N} A_i \left[\cos(2\pi (f_i + f_c)t) + \cos(2\pi (f_i - f_c)t)\right].$$

То есть, после модуляции каждому тону будут соответстовать две гармоники на частотах $f_i + f_c$ и $f_i - f_c$. Как упоминалось ранее, начилие двух тонов приводит к удвоению спектра. С помощью преобразования Гильберта можно удалить половину спектра информационного сообщения, после чего добавить к сигналу несущую. Построим спектры сигналов для случая модуляции тремя тонами.

```
clc; clear; close all;
FrameSize = 5000; % размер обрабатываемой за один раз пачки данных
```

```
Fs = 200e3;
                    % тактовая частота (Hz)
Ac = 1.5;
                    % амплитуда несущей
% выбор метода модуляции
ModulationMethod = "LSB";
% генератор информационного сигнала из трех тонов
% частота тонов: 5, 8 и 13 kHz
% амплитуды тонов: 0.1, 0.5 и 0.7
Message = dsp.SineWave(...
    'SampleRate', Fs,...
    'SamplesPerFrame', FrameSize,...
    'Frequency', [5e3 8e3 13e3],...
    'Amplitude', [0.1 0.5 0.7]);
% генератор несущей
% частота несущей: 35 kHz
Carrier = dsp.SineWave(...
    'SampleRate', Fs,...
    'SamplesPerFrame', FrameSize,...
    'Frequency', 50e3,...
    'ComplexOutput', true, ...
    'Amplitude', 1);
% формирует аналитический сигнал
HilbertTranform = dsp.AnalyticSignal(...
    'FilterOrder', 100 ...
    );
% объект для вычисления спектра
SpecEstimator = dsp.SpectrumEstimator(...
    'PowerUnits','dBm',...
    'FrequencyRange','centered',...
    'SampleRate',Fs ...
    );
% объект для отрисовки графиков
Plotter = dsp.ArrayPlot(...
    'PlotType','Line', ...
    'XOffset', -Fs/2, ...
    'YLimits', [-20, 35], ...
    'XLabel', 'Frequency (Hz)', ...
    'YLabel', 'Amplitude (dBm)', ...
    'ChannelNames', {'Message', 'SSB Signal'}, ...
    'SampleIncrement', Fs/FrameSize ...
    );
% запуск симуляции
for i = 1:100
    % формирование информационного сигнала
   MessageData = Message();
   MessageData = MessageData(:,1) + MessageData(:,2) + MessageData(:,3);
    % формирование аналитического сигнала
```

```
AnalyticData = HilbertTranform(MessageData);
    % добавление постоянной составляющей
    AnalyticData = AnalyticData + Ac;
    % формирование несущей
    CarrierWave = Carrier();
    % однополосная модуляция
    if (ModulationMethod == "USB")
        SSBAmSignal = real(AnalyticData.*CarrierWave);
    else
        SSBAmSignal = real(conj(AnalyticData).*CarrierWave);
    end
    % вычисление спектров
    Spectrums = SpecEstimator([MessageData, SSBAmSignal]);
   % вывод результатов на график
    Plotter(Spectrums)
    % задержка в 0.1 секунды для лучшей визуализации
    pause(0.1)
end
```


Можно увидеть, что спектр модулированного сигнала (синий) в зависимости от вида модуляции соответсвует верхней или нижней половине спектра информационного сообщения (желтый). Так же в спектре присутстует гармоника на несущей частоте.

5. Модуляция звуковым сигналом

Рассмотрим, как будет выглядеть спектр сигнала после однополосной модуляции, если информационное сообщение является аудиосигналом. В файле Audio_Source.wav записано звуковое сообщение с частотой дискретизации 44.1 kHz. Частота несущей будет равна 60 kHz. Чтобы избежать наложения спектров, выберем итоговую частоту дискретизации модулированного сигнала в 5 раз больше частоты аудиосигнала, то есть 5 * 44.1 kHz. Это потребует провести интерполяцию для увеличения частоты дискретизации информационного сообщения.

```
clc; clear; close all;
AudioFrameSize = 1000; % количество отсчетов аудиофайла, получаемых за один раз
FramesNumber = 100; % число обрабатываемых пачек данных
                        % коэффициент увеличения частоты дискретизации
RateRatio = 5;
                        % амплитуда несущей
Ac = 1.5;
% выбор метода модуляции
ModulationMethod = "LSB";
% объект для считываения отсчетов аудиофайла
AudioReader = dsp.AudioFileReader(...
    'wav/Audio_Source.wav', ...
    'SamplesPerFrame', AudioFrameSize...
    );
% дополнительные расчеты
AudioFs = AudioReader.SampleRate;
                                                % получаем частоту дискретизации аудиосообщения
SignalFs = AudioFs * RateRatio;
                                                % частота дискретизации модулированного сигнала
SignalFrameSize = AudioFrameSize * RateRatio; % количество отсчетов Ам-сигнала, получаемых за один раз
% генератор несущей с частотой 60 kHz
Carrier = dsp.SineWave(...
    'SampleRate', SignalFs,...
    'SamplesPerFrame', SignalFrameSize,...
    'Frequency', 60e3,...
    'ComplexOutput', true, ...
    'Amplitude', 1);
% объект вычисления преобразования Гильберта
% формирует аналитический сигнал
HilbertTranform = dsp.AnalyticSignal(...
    'FilterOrder', 100 ...
    );
% интерполятор
Upsampler = dsp.SampleRateConverter(...
    'Bandwidth', 40e3, ...
    'InputSampleRate',AudioFs, ...
    'OutputSampleRate', SignalFs ...
    );
% объект для вычисления спектра
SpecEstimator = dsp.SpectrumEstimator(...
    'PowerUnits','dBm',...
    'FrequencyRange','centered',...
    'SampleRate',SignalFs);
```

```
% объект для отрисовки графиков
Plotter = dsp.ArrayPlot(...
    'PlotType','Line', ...
    'XOffset', -SignalFs/2, ...
    'YLimits', [-90, 35], ...
    'XLabel', 'Frequency (Hz)', ...
    'YLabel', 'Amplitude (dBm)', ...
    'ChannelNames', {'Analytic Data', 'Carrier', 'SSB Signal'}, ...
    'SampleIncrement', SignalFs/SignalFrameSize ...
    );
% запуск симуляции
for i = 1:FramesNumber
    % считывание отсчетов аудиосообщения и выделение одного канала из
   % стерео сигнала
    AudioData = AudioReader();
    AudioData = AudioData(:,1);
   % формирование аналитического сигнала
   AnalyticData = HilbertTranform(AudioData);
   % добавление постоянной составляющей
    AnalyticData = AnalyticData + Ac;
    % увеличение частоты дискретизации аудиосообщения
    UpsampledData = Upsampler(AnalyticData);
    % формирование несущей
    CarrierWave = Carrier();
   % однополосная модуляция
    if (ModulationMethod == "USB")
        SSBAmSignal = real(UpsampledData.*CarrierWave);
    else
        SSBAmSignal = real(conj(UpsampledData).*CarrierWave);
    end
    % вычисление спектров
    SpectrumData = SpecEstimator([UpsampledData, CarrierWave, SSBAmSignal]);
    % вывод результатов на график
    Plotter(SpectrumData)
   % задержка в 0.1 секунды для лучшей визуализации
    pause(0.1)
end
```


Можно увидеть, что в результате преобразования Гильберта удаление одной из половин спектра сообщения выполняется не идеально. На спектре видны остатки подавленной половины. Эти остатки могут влиять на соседние каналы связи. В нашем примере амплитуда подавленных спектральных компонентов отличается от передаваемого сигнала почти на 40 дБ. В зависимости от требований к передатчику этого может быть достаточно, а может быть и нет.

8. Преимущества и недостатки SSB-TC

Преимущества:

- уменьшение вдвое ширины спектра модулированного сигнала;
- возможно применение обычной PLL для когерентного приема;
- при определенных условиях можно использовать некогерентный приемник.

Недостатки:

• модуляция менее эффективна с точки зрения мощности, так как несущая передается.

Литература:

- 1. B. P. Lathi Modern Digital and Analog Communication Systems
- 2. R. Stewart, K. Barlee, D. Atkinson, L. Crockett Software Defined Radio using MATLAB® & Simulink and the RTL-SDR