MA 102 (Mathematics II) IIT Guwahati

Tutorial Sheet No. 4

Linear Algebra

February 7, 2019

- 1. Determine whether the following are vector spaces (under the usual operations of addition and scalar multiplication of functions) over \mathbb{R} .
 - (a) $\{f: (a,b) \to \mathbb{R} \mid f(c) = 0\}$, where $c \in (a,b)$.
 - (b) $\{f: (a,b) \to \mathbb{R} \mid f(c) \neq 0 \text{ for any } c \in (a,b)\}.$
 - (c) $\{f:(a,b)\to\mathbb{R}\mid f \text{ is continuous in } (a,b)\}.$
 - (d) $\{f:(a,b)\to\mathbb{R}\mid f \text{ is continuous everywhere except at } c, \text{ where } c\in(a,b). \}$
 - (e) $\{f:(a,b)\to\mathbb{R}\mid f \text{ is a one-one function }\}.$
 - (f) $\{f:(a,b)\to\mathbb{R}\mid \text{ range of }f\text{ is a finite set }\}.$
 - (g) $\{f: (a,b) \to \mathbb{R} \mid f' = 0\}.$
 - (h) $\{f: (a,b) \to \mathbb{R} \mid f'' 3f' + 7f = 0\}.$
- 2. (a) If $\mathbb{U} := \left\{ \begin{bmatrix} a & b \\ -b & 0 \end{bmatrix} : a, b \in \mathbb{R} \right\}$, then find \mathbb{V} such that $\mathbb{U} \oplus \mathbb{V} = \mathcal{M}_2(R)$.
 - (b) Let $\mathcal{C}(\mathbb{R}) := \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous } \}$ and $\mathbb{U} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous and } f(-x) = f(x) \text{ for all } x \in \mathbb{R} \}$. Then find \mathbb{V} such that $\mathbb{U} \oplus \mathbb{V} = \mathcal{C}(\mathbb{R})$.
- 3. (a) Let \mathbb{V} is a vector space over \mathbb{R} and let $A := [a_{ij}] \in \mathcal{M}_k(\mathbb{R})$ be invertible. Show that $\mathbf{u}_1, \dots, \mathbf{u}_k \in \mathbb{V}$ are linearly independent if and only if $\sum_{i=1}^k a_{i1}\mathbf{u}_i, \dots, \sum_{i=1}^k a_{ik}\mathbf{u}_i$ are linearly independent.
 - (b) Show that $\{\mathbf{u}, \mathbf{v}\} \subseteq \mathbb{V}$ is linearly independent iff $\{\mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v}\}$ is linearly independent.

Solution:

(a) Let $U := [\mathbf{u}_1, \dots, \mathbf{u}_k]$. For $\mathbf{x} = [x_1, \dots, x_k]^\top \in \mathbb{R}^k$, define $U\mathbf{x} := x_1\mathbf{u}_1 + \dots + x_k\mathbf{u}_k$.

Define $\mathbf{w}_r := \sum_{i=1}^k a_{ir} \mathbf{u}_i$ and $W := [\mathbf{w}_1, \dots, \mathbf{w}_k]$. Then W = UA.

Suppose that U is LI. Let $\mathbf{x} \in \mathbb{R}^k$ be such that $W\mathbf{x} = \mathbf{0}$. Then $UAx = \mathbf{0} \Longrightarrow A\mathbf{x} = \mathbf{0} \Longrightarrow \mathbf{x} = \mathbf{0}$ since A is invertible. This shows that W is LI.

Conversely, suppose that W is LI. Let $\mathbf{y} \in \mathbb{R}^k$ be such that $U\mathbf{y} = \mathbf{0} \Longrightarrow UA(A^{-1}y) = \mathbf{0} \Longrightarrow W\mathbf{x} = \mathbf{0} \Longrightarrow \mathbf{x} = \mathbf{0}$, where $\mathbf{x} = A^{-1}\mathbf{y}$. This shows that $\mathbf{y} = \mathbf{0}$. Hence U is LI.

- (b) Consider $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$. Then $[\mathbf{u}, \mathbf{v}]A = [\mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v}]$.
- 4. Let \mathbb{W}, \mathbb{U} be subspaces of \mathbb{V} . Show that $\mathbb{W} \cup \mathbb{U}$ is a subspace iff either $\mathbb{W} \subseteq \mathbb{U}$ or $\mathbb{U} \subseteq \mathbb{W}$. What about union of three subspaces?

Solution: (\Rightarrow) Suppose that $\mathbb{U} \cup \mathbb{W}$ is a subspace. We claim that either $\mathbb{U} \subseteq \mathbb{W}$ or $\mathbb{W} \subseteq \mathbb{U}$. Assume our claim is not true. Then \exists a $u \in \mathbb{U} \setminus \mathbb{W}$ and a $w \in \mathbb{W} \setminus \mathbb{U}$. Note that $u, w \in \mathbb{U} \cup \mathbb{W}$,

a subspace. So $u + w \in \mathbb{U} \cup \mathbb{W}$, a union of two sets. So either $u + w \in \mathbb{U}$ or $u + w \in \mathbb{W}$. Let $u + w \in \mathbb{U}$. As u is already in \mathbb{U} , we get $w = (u + w) + (-1)u \in \mathbb{U}$, a contradiction. Similarly, $u + w \in \mathbb{W}$ leads to another contradiction. Hence our claim is valid and we are done.

 (\Leftarrow) Trivial.

2nd part Answer: If and only if one of the subspaces contains the other two (take the field as \mathbb{R} or \mathbb{C}).

If part is obvious.

Only if part. Assume $\mathbb{U} \cup \mathbb{V} \cup \mathbb{W}$ is a subspace to show that one of the subspaces contain the other two.

If not, then neither $\mathbb{U} \supseteq \mathbb{V} \cup \mathbb{W}$ nor $\mathbb{V} \supseteq \mathbb{U} \cup \mathbb{W}$ (\mathbb{W} is also not a superset of $\mathbb{U} \cup \mathbb{V}$, but we will not need it).

Take $x \in \mathbb{U} \setminus (\mathbb{V} \cup \mathbb{W})$ and a $y \in \mathbb{V} \setminus (\mathbb{U} \cup \mathbb{W})$, then $x + y \in \mathbb{U} \cup \mathbb{V} \cup \mathbb{W}$. If $x + y \in \mathbb{U}$, then $y = x + y + (-1)x \in \mathbb{U}$, which is a contradiction. Similarly $x + y \in \mathbb{V}$ gives a contradiction. Hence $x + y \in \mathbb{W}$. Since $y \in \mathbb{V} \setminus (\mathbb{U} \cup \mathbb{W})$ implies $(-1)y \in \mathbb{V} \setminus (\mathbb{U} \cup \mathbb{W})$ (check this), by exactly similar argument $x + (-1)y \in \mathbb{W}$. Hence $2x = (x + y) + (x + (-1)y) \in \mathbb{W}$, which contradicts that $x \in (\mathbb{U} \setminus \mathbb{V} \cup \mathbb{W})$. Hence the claim is true.

5. Let \mathbb{V} be a finite dimensional vector space. Let U and W be subspaces of \mathbb{V} . Show that $\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W)$.

Solution: Choose a basis B of $U \cap W$. Extend B to a basis B_1 of U. Also extend B to a basis B_2 of W. Then $B \cup (B_1 \setminus B) \cup (B_2 \setminus B)$ is a basis of U + W (Check).

6. If
$$\mathcal{W}_1 = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \mid x_1 = 2x_3 + x_2 \right\}$$
 and $\mathcal{W}_2 = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \mid 2x_1 = 2x_3 + 3x_2 \right\}$ then determine $\mathcal{W}_1 \cap \mathcal{W}_2$ and $\mathcal{W}_1 + \mathcal{W}_2$?

7. Extend

$$S = \left\{ \begin{bmatrix} 1\\2\\0\\-1\\0\\3 \end{bmatrix}, \begin{bmatrix} 2\\4\\1\\0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\6\\2\\1\\2\\-1 \end{bmatrix} \right\}$$

to a basis of \mathbb{R}^6 using GJE.

Solution: Consider
$$A = \begin{bmatrix} 1 & 2 & 0 & -1 & 0 & 3 \\ 2 & 4 & 1 & 0 & 1 & -1 \\ 3 & 6 & 2 & 1 & 2 & -1 \end{bmatrix}$$
. Then $\tilde{A} = \operatorname{rref}(A) = \begin{bmatrix} 1 & 2 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$.

Note that $\operatorname{span}(S) = \operatorname{col}(A^T) = \operatorname{col}(\tilde{A}^T)$. Since the 2nd, 4th and 5th columns in \tilde{A} are non-pivot columns, if we add rows $\mathbf{e}_2^T, \mathbf{e}_4^T, \mathbf{e}_5^T$ to \tilde{A} , then we get a 6×6 matrix of rank 6. Thus, $S \cup \{\mathbf{e}_2, \mathbf{e}_4, \mathbf{e}_5\}$ is a basis for \mathbb{R}^6 .

8. Find a basis for each of the following subspaces.

(a)
$$U := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : 2a - c - d = 0, a + 3b = 0, a, b, c, d \in \mathbb{R} \right\}.$$

(b)
$$V := \{p(x) \in \mathbb{R}[x] : \deg(p(x)) \le 4 \text{ and } p(-2) = 0\}.$$

Solution:

- (a) Solving 2a c d = 0, a + 3b = 0 we get $[a, b, c, d]^T = \left[\frac{s}{2} + \frac{t}{2}, \frac{-s}{6} + \frac{-t}{6}, s, t\right]^T$. Thus, $\left\{\begin{bmatrix}\frac{1}{2} & \frac{-1}{6}\\1 & 0\end{bmatrix}, \begin{bmatrix}\frac{1}{2} & \frac{-1}{6}\\0 & 1\end{bmatrix}\right\}$ or $\left\{\begin{bmatrix}3 & -1\\6 & 0\end{bmatrix}, \begin{bmatrix}3 & -1\\0 & 6\end{bmatrix}\right\}$ is a basis.
- (b) Let $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$ be such that p(-2) = 0. Then, $a_0 2a_1 + 4a_2 8a_3 + 16a_4 = 0$. Therefore,

$$p(x) = (2a_1 - 4a_2 + 8a_3 - 16a_4) + a_1x + a_2x^2 + a_3x^3 + a_4x^4$$
$$= a_1(2+x) - a_2(4-x^2) + a_3(8+x^3) - a_4(16-x^4).$$

and we get a basis $\{2+x, 4-x^2, 8+x^3, 16-x^4\}$.

9. Let \mathbb{V} be a vector space and S be a subset of \mathbb{V} . Let $L = \{\mathbb{U} | \mathbb{U} \leq \mathbb{V}, S \subseteq \mathbb{U}\}$. Then show that $\operatorname{span}(S) = \bigcap_{\mathbb{U} \in L} \mathbb{U} = \text{the smallest subspace containing } S$.

Solution: As each \mathbb{U} contains S, it must contain $\operatorname{span}(S)$. Hence $\bigcap_{\mathbb{U}\in L}\mathbb{U}$ contains $\operatorname{span}(S)$. Further, as $\operatorname{span}(S)$ is $\operatorname{subspace}$, it must appear as one \mathbb{U} on the right hand side. Thus $\bigcap_{\mathbb{U}\in L}\mathbb{U}$ cannot be larger than $\operatorname{span}(S)$.

- 10. Consider $\mathbb{W} = \{ v \in \mathbb{R}^6 \mid v_1 + v_2 + v_3 = 0, \ v_2 + v_3 + v_4 = 0, \ v_5 + v_6 = 0 \}$. Find a basis of \mathbb{W} and extend it to a basis of \mathbb{R}^6 .
- 11. Consider $S := \{1 + x, (1 + x)^2, 1 x^2, 10\} \subseteq \mathbb{R}[x]$. Describe span(S) and find its dimension.
- 12. Find a basis for span $(1 2x, 2x x^2, 1 x^2, 1 + x^2)$ in $\mathbb{R}_2[x]$.
- 13. Let $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a basis of a vector space \mathbb{V} . Show that $\{\mathbf{v}_1, \mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3, \dots, \mathbf{v}_1 + \dots + \mathbf{v}_n\}$ is also a basis of \mathbb{V} .
- 14. Determine whether the set \mathcal{B} given below is a basis for $\mathcal{M}_2(\mathbb{R})$.

(a)
$$\mathcal{B} := \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \right\}.$$

(b)
$$\mathcal{B} := \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right\}.$$

15. Find a basis for each of the following subspaces.

a)
$$\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a - d = 0, a, b, c, d \in \mathbb{R} \right\}$$
.

- b) $\{a + bx + cx^3 : a, b, c \in \mathbb{R}, a 2b + c = 0\}.$
- c) $\{A \in \mathcal{M}_{m \times n}(\mathbb{R}) : \text{row sums of } A \text{ are zero}\}.$
- 16. Let $U := \{A \in \mathcal{M}_3(\mathbb{R}) : A^\top = A \text{ and } \operatorname{Tr}(A) = 0\}$. Find two bases of U and extend these bases to bases of the real symmetric matrices of size 3×3 .