## Irony Detection in Twitter with Imbalanced Scenarios

## Corpora distribution

Figure 1 shows the distribution of ironic and non-ironic tweets in the used corpora.



Figure 1: "Ironic" and "non-ironic" tweets distribution in the corpora.

## Results

We experimented with a set of classifiers composed by: Naive Bayes (NB), Decision Tree (J48), Support Vector Machine (SVM), and Random Forest (RF). With the aim to compensate class imbalance distribution four techniques were applied: random oversampling (ROS), random undersampling (RUS), synthetic minority oversampling (SMOTE), and cost-sensitive learning (COST). We considered two evaluation metrics: the area under the ROC curve (AUC) and F-1 score. Tables 1-4 show the results obtained.

|                       | F1       |       |       |       |       | AUC      |       |       |       |       |  |
|-----------------------|----------|-------|-------|-------|-------|----------|-------|-------|-------|-------|--|
| Dataset               | Original | COST  | ROS   | RUS   | SMOTE | Original | COST  | ROS   | RUS   | SMOTE |  |
| TwReyes2013           | 0.57     | 0.589 | 0.581 | 0.601 | 0.67  | 0.821    | 0.821 | 0.821 | 0.837 | 0.86  |  |
| TwRiloff2013          | 0.487    | 0.498 | 0.49  | 0.498 | 0.467 | 0.742    | 0.742 | 0.745 | 0.746 | 0.724 |  |
| TwIronyBarbieri2014   | 0.6      | 0.573 | 0.598 | 0.591 | 0.597 | 0.852    | 0.852 | 0.851 | 0.848 | 0.849 |  |
| TwSarcasmBarbieri2014 | 0.702    | 0.652 | 0.686 | 0.689 | 0.671 | 0.908    | 0.908 | 0.908 | 0.91  | 0.886 |  |
| TwPtáček2014          | 0.519    | 0.543 | 0.534 | 0.531 | 0.563 | 0.739    | 0.739 | 0.738 | 0.736 | 0.766 |  |
| TwMohammad2015        | 0.412    | 0.443 | 0.417 | 0.45  | 0.42  | 0.635    | 0.635 | 0.631 | 0.637 | 0.619 |  |
| TwImbData08112016     | 0.061    | 0.057 | 0.061 | 0.06  | 0.06  | 0.662    | 0.662 | 0.662 | 0.659 | 0.637 |  |
| TwImbData09112016     | 0.094    | 0.076 | 0.089 | 0.089 | 0.08  | 0.781    | 0.781 | 0.782 | 0.779 | 0.815 |  |
| TwImbData10112016     | 0.107    | 0.087 | 0.099 | 0.1   | 0.095 | 0.797    | 0.797 | 0.797 | 0.795 | 0.831 |  |
| TwImbData11112016     | 0.105    | 0.088 | 0.101 | 0.101 | 0.098 | 0.799    | 0.799 | 0.799 | 0.8   | 0.827 |  |
| TwImbData12112016     | 0.106    | 0.088 | 0.1   | 0.096 | 0.095 | 0.796    | 0.796 | 0.796 | 0.788 | 0.817 |  |
| TwImbData13112016     | 0.101    | 0.086 | 0.095 | 0.094 | 0.083 | 0.788    | 0.788 | 0.788 | 0.786 | 0.804 |  |
| TwImbData14112016     | 0.097    | 0.081 | 0.094 | 0.094 | 0.082 | 0.786    | 0.786 | 0.786 | 0.787 | 0.8   |  |
| TwImbData15112016     | 0.097    | 0.084 | 0.096 | 0.095 | 0.082 | 0.789    | 0.789 | 0.789 | 0.783 | 0.823 |  |
| TwImbData16112016     | 0.097    | 0.081 | 0.096 | 0.097 | 0.077 | 0.791    | 0.791 | 0.791 | 0.793 | 0.783 |  |
| TwImbData17112016     | 0.101    | 0.085 | 0.097 | 0.094 | 0.088 | 0.792    | 0.792 | 0.792 | 0.788 | 0.834 |  |
| TwImbData18112016     | 0.103    | 0.082 | 0.094 | 0.09  | 0.078 | 0.788    | 0.788 | 0.788 | 0.783 | 0.793 |  |

Table 1: Results obtained by using NB for original distribution as well as applying class imbalance treatment techniques in terms of F1 and AUC for each dataset.

|                       | F1       |       |       |       | AUC   |          |       |       |       |       |
|-----------------------|----------|-------|-------|-------|-------|----------|-------|-------|-------|-------|
| Dataset               | Original | COST  | ROS   | RUS   | SMOTE | Original | COST  | ROS   | RUS   | SMOTE |
| TwReyes2013           | 0.826    | 0.806 | 0.815 | 0.803 | 0.815 | 0.888    | 0.915 | 0.861 | 0.891 | 0.881 |
| TwRiloff2013          | 0.436    | 0.516 | 0.427 | 0.438 | 0.46  | 0.635    | 0.735 | 0.627 | 0.631 | 0.65  |
| TwIronyBarbieri2014   | 0.796    | 0.724 | 0.766 | 0.722 | 0.767 | 0.879    | 0.903 | 0.851 | 0.862 | 0.862 |
| TwSarcasmBarbieri2014 | 0.84     | 0.787 | 0.815 | 0.789 | 0.821 | 0.903    | 0.934 | 0.876 | 0.897 | 0.897 |
| TwPtáček2014          | 0.584    | 0.629 | 0.578 | 0.615 | 0.595 | 0.709    | 0.785 | 0.685 | 0.736 | 0.722 |
| TwMohammad2015        | 0.378    | 0.416 | 0.338 | 0.413 | 0.397 | 0.56     | 0.57  | 0.535 | 0.557 | 0.564 |
| TwImbData08112016     | 0.009    | 0.07  | 0.091 | 0.068 | 0.078 | 0.526    | 0.726 | 0.543 | 0.642 | 0.65  |
| TwImbData09112016     | 0.258    | 0.125 | 0.266 | 0.125 | 0.225 | 0.785    | 0.863 | 0.639 | 0.778 | 0.725 |
| TwImbData10112016     | 0.332    | 0.15  | 0.327 | 0.148 | 0.272 | 0.793    | 0.882 | 0.675 | 0.828 | 0.722 |
| TwImbData11112016     | 0.278    | 0.126 | 0.295 | 0.123 | 0.212 | 0.792    | 0.861 | 0.657 | 0.768 | 0.685 |
| TwImbData12112016     | 0.283    | 0.133 | 0.285 | 0.134 | 0.255 | 0.74     | 0.863 | 0.65  | 0.809 | 0.746 |
| TwImbData13112016     | 0.278    | 0.131 | 0.288 | 0.129 | 0.235 | 0.744    | 0.87  | 0.654 | 0.788 | 0.732 |
| TwImbData14112016     | 0.27     | 0.122 | 0.271 | 0.121 | 0.218 | 0.783    | 0.861 | 0.645 | 0.788 | 0.729 |
| TwImbData15112016     | 0.252    | 0.124 | 0.258 | 0.128 | 0.2   | 0.782    | 0.853 | 0.636 | 0.771 | 0.699 |
| TwImbData16112016     | 0.287    | 0.126 | 0.271 | 0.129 | 0.236 | 0.767    | 0.858 | 0.645 | 0.787 | 0.699 |
| TwImbData17112016     | 0.284    | 0.132 | 0.292 | 0.126 | 0.225 | 0.756    | 0.872 | 0.652 | 0.792 | 0.725 |
| TwImbData18112016     | 0.237    | 0.123 | 0.246 | 0.124 | 0.211 | 0.78     | 0.849 | 0.63  | 0.769 | 0.716 |

Table 2: Results obtained by using DT for original distribution as well as applying class imbalance treatment techniques in terms of F1 and AUC for each dataset.

|                       | F1       |       |       |       |       | AUC      |       |       |       |       |  |
|-----------------------|----------|-------|-------|-------|-------|----------|-------|-------|-------|-------|--|
| Dataset               | Original | COST  | ROS   | RUS   | SMOTE | Original | COST  | ROS   | RUS   | SMOTE |  |
| TwReyes2013           | 0.801    | 0.709 | 0.79  | 0.789 | 0.799 | 0.859    | 0.852 | 0.881 | 0.881 | 0.883 |  |
| TwRiloff2013          | 0.192    | 0.429 | 0.54  | 0.528 | 0.557 | 0.548    | 0.627 | 0.73  | 0.723 | 0.743 |  |
| TwIronyBarbieri2014   | 0.743    | 0.496 | 0.717 | 0.713 | 0.729 | 0.824    | 0.74  | 0.844 | 0.843 | 0.848 |  |
| TwSarcasmBarbieri2014 | 0.815    | 0.66  | 0.785 | 0.777 | 0.797 | 0.878    | 0.859 | 0.897 | 0.893 | 0.897 |  |
| TwPtáček2014          | 0.502    | 0.56  | 0.602 | 0.601 | 0.604 | 0.665    | 0.71  | 0.745 | 0.744 | 0.745 |  |
| TwMohammad2015        | 0.035    | 0.432 | 0.427 | 0.445 | 0.386 | 0.506    | 0.5   | 0.59  | 0.6   | 0.583 |  |
| TwImbData08112016     | 0        | 0.038 | 0.077 | 0.076 | 0.075 | 0.5      | 0.5   | 0.671 | 0.671 | 0.665 |  |
| TwImbData09112016     | 0        | 0.063 | 0.144 | 0.131 | 0.15  | 0.5      | 0.704 | 0.831 | 0.813 | 0.826 |  |
| TwImbData10112016     | 0        | 0.064 | 0.18  | 0.16  | 0.21  | 0.5      | 0.705 | 0.856 | 0.838 | 0.844 |  |
| TwImbData11112016     | 0        | 0.054 | 0.169 | 0.14  | 0.184 | 0.5      | 0.649 | 0.84  | 0.815 | 0.82  |  |
| TwImbData12112016     | 0        | 0.062 | 0.175 | 0.148 | 0.19  | 0.5      | 0.696 | 0.848 | 0.814 | 0.837 |  |
| TwImbData13112016     | 0        | 0.061 | 0.17  | 0.153 | 0.176 | 0.5      | 0.692 | 0.841 | 0.816 | 0.827 |  |
| TwImbData14112016     | 0        | 0.063 | 0.16  | 0.143 | 0.174 | 0.5      | 0.7   | 0.843 | 0.814 | 0.823 |  |
| TwImbData15112016     | 0        | 0.058 | 0.155 | 0.139 | 0.158 | 0.5      | 0.675 | 0.828 | 0.805 | 0.827 |  |
| TwImbData16112016     | 0        | 0.062 | 0.162 | 0.141 | 0.176 | 0.5      | 0.697 | 0.834 | 0.814 | 0.827 |  |
| TwImbData17112016     | 0        | 0.059 | 0.164 | 0.146 | 0.167 | 0.5      | 0.678 | 0.839 | 0.813 | 0.833 |  |
| TwImbData18112016     | 0        | 0.062 | 0.151 | 0.139 | 0.158 | 0.5      | 0.697 | 0.834 | 0.811 | 0.811 |  |

Table 3: Results obtained by using SVM for original distribution as well as applying class imbalance treatment techniques in terms of F1 and AUC for each dataset.

|                       | F1       |       |       |       |       | AUC      |       |       |       |       |  |
|-----------------------|----------|-------|-------|-------|-------|----------|-------|-------|-------|-------|--|
| Dataset               | Original | COST  | ROS   | RUS   | SMOTE | Original | COST  | ROS   | RUS   | SMOTE |  |
| TwReyes2013           | 0.854    | 0.835 | 0.858 | 0.829 | 0.859 | 0.972    | 0.971 | 0.972 | 0.969 | 0.972 |  |
| TwRiloff2013          | 0.329    | 0.534 | 0.446 | 0.526 | 0.514 | 0.797    | 0.805 | 0.808 | 0.79  | 0.81  |  |
| TwIronyBarbieri2014   | 0.814    | 0.801 | 0.821 | 0.794 | 0.822 | 0.958    | 0.958 | 0.96  | 0.956 | 0.959 |  |
| TwSarcasmBarbieri2014 | 0.865    | 0.841 | 0.869 | 0.836 | 0.869 | 0.975    | 0.975 | 0.976 | 0.972 | 0.975 |  |
| TwPtáček2014          | 0.624    | 0.669 | 0.659 | 0.671 | 0.679 | 0.888    | 0.886 | 0.888 | 0.884 | 0.888 |  |
| TwMohammad2015        | 0.134    | 0.467 | 0.232 | 0.481 | 0.303 | 0.661    | 0.661 | 0.663 | 0.658 | 0.649 |  |
| TwImbData08112016     | 0.039    | 0.092 | 0.048 | 0.082 | 0.05  | 0.758    | 0.791 | 0.777 | 0.783 | 0.783 |  |
| TwImbData09112016     | 0.051    | 0.151 | 0.091 | 0.134 | 0.13  | 0.903    | 0.926 | 0.918 | 0.918 | 0.916 |  |
| TwImbData10112016     | 0.042    | 0.166 | 0.095 | 0.145 | 0.165 | 0.922    | 0.935 | 0.936 | 0.924 | 0.926 |  |
| TwImbData11112016     | 0.046    | 0.154 | 0.074 | 0.132 | 0.107 | 0.881    | 0.915 | 0.905 | 0.906 | 0.901 |  |
| TwImbData12112016     | 0.049    | 0.158 | 0.096 | 0.133 | 0.134 | 0.902    | 0.923 | 0.917 | 0.907 | 0.907 |  |
| TwImbData13112016     | 0.069    | 0.155 | 0.087 | 0.132 | 0.117 | 0.895    | 0.925 | 0.918 | 0.913 | 0.91  |  |
| TwImbData14112016     | 0.075    | 0.145 | 0.105 | 0.132 | 0.115 | 0.901    | 0.919 | 0.922 | 0.909 | 0.907 |  |
| TwImbData15112016     | 0.05     | 0.141 | 0.072 | 0.125 | 0.096 | 0.891    | 0.909 | 0.908 | 0.899 | 0.91  |  |
| TwImbData16112016     | 0.057    | 0.149 | 0.086 | 0.129 | 0.088 | 0.904    | 0.917 | 0.918 | 0.907 | 0.911 |  |
| TwImbData17112016     | 0.028    | 0.148 | 0.056 | 0.134 | 0.098 | 0.894    | 0.915 | 0.912 | 0.906 | 0.914 |  |
| TwImbData18112016     | 0.027    | 0.141 | 0.05  | 0.129 | 0.071 | 0.884    | 0.914 | 0.903 | 0.902 | 0.895 |  |

Table 4: Results obtained by using RF for original distribution as well as applying class imbalance treatment techniques in terms of F1 and AUC for each dataset.

## Critical statistical difference diagrams

Figure 2 shows all the pairwise comparisons of the learning algorithms in the original dataset distribution.



Figure 2: All pairwise comparison of algorithms using the original class distribution

Figures 3, 4, 5 and 6 show the critical differences diagrams for applying the class imbalance treatment techniques to NB, J48, SVM and RF, respectively.



Figure 3: Comparison for the NB algorithm.



Figure 4: Comparison for the J48 algorithm.



Figure 5: Comparison for the SVM algorithm.



Figure 6: Comparison for the RF algorithm.