КФДЛ.441461.029РЭ-ЛУ

ПЛАТА МАКЕТНО-ОТЛАДОЧНАЯ ДЛЯ МИКРОКОНТРОЛЛЕРА К1921ВГ015

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ КФДЛ.441461.029РЭ

Инв. № полл. Полп. и лата Взам. инв. № Инв. № Полп. и лата

Внимательно ознакомьтесь с данным руководством по эксплуатации перед использованием изделия. Данное руководство по эксплуатации соответствует плате макетно-отладочной К1921ВГ015 (ревизия платы 2).

Полп. и лата	
Инв.№	
Взам. инв. №	
Полп. и лата	
Инв.№ полл.	

СОДЕРЖАНИЕ

1 Описание изделия	4
1.1 Назначение изделия	4
1.2 Технические характеристики	4
1.3 Состав изделия	5
1.4 Системные требования	6
2 Использование	7
2.1 Подготовка изделия к использованию	7
2.1.1 Конфигурация запуска МК	7
2.1.2 Выбор источник питания платы и питания МК	8
2.2 Использование изделия	10
2.2.1 Назначения разъемов PLD	10
2.2.2 Программирование микроконтроллера	16
2.2.3 Использование программатора для работы с другими устройствами	17
2.2.4 Использование схемы сброса	18
2.2.5 Аппаратное прерывание	19
2.2.6 Светодиодная индикация	19
2.2.7 Использование вывода SERVEN	20
2.2.8 Измерение потребления микроконтроллера	21
3 Меры предосторожности	

1 Описание изделия

1.1 Назначение изделия

Плата макетно-отладочная для микроконтроллера К1921ВГ015 (далее плата) предназначена для изучения архитектуры 32-разрядного микроконтроллера К1921ВГ015 (далее МК), а также для макетирования и отладки систем пользователя на ее основе. Плата не предназначена для встраивания в конечные устройства.

Для удобства работы с МК все порты ввода-вывода продублированы на штыревые разъемы по краям платы.

1.2 Технические характеристики

Технические и конструктивные характеристики приведены в таблице 1:

Таблица 1 — Технические характеристики

Микроконтроллер	1921ВГ015	
Архитектура контроллера	RISC 32 бит	
ОЗУ (SRAM)	256+64 Кбайт	
ПЗУ (FLASH)	1 Мбайт	
Опорный источник тактового сигнала,	16	
МГЦ		
Количество цифровых линий І/О	56	
Аналого-Цифровой преобразователь	8 каналов, 12 бит, 2,5 Мвыб/с	
(АЦП)		
Интерфейс программирования	USB-to-UART-JTAG, JTAG	
Наличие цифровых интерфейсов	UART, SPI, CAN, I2C, PWM, USB	
Номинальное потребление платы, мА	150	
Габаритные размеры (Д х Ш х В), мм	90 x 96 x 15	
Диапазон рабочих температур, °С	от 0 до +60	
	От шины USB-Type C	
Питание	От внешнего источника питания	
	7 – 12 B 0,5A	

1.3 Состав изделия

Плата состоит из функциональных блоков (см. рисунок 1):

Рисунок 1 — Общий вид макетно-отладочной платы для микроконтроллера K1921B Γ 015

- 1 блок источников питания;
- 2 блок программатора;
- 3 микросхема 1921ВГ015;
- 4 сервисный блок;
- 5 батарейный отсек CR1220;
- 6 светодиодная индикация.

1.4 Системные требования

Для работы с платой потребуется персональный компьютер (далее ПК) с характеристиками:

- 1) оперативная память не менее 4 Гб;
- 2) свободное место на жестком диске не менее 10 Гб;
- 3) свободный порт USB;
- 4) операционная система не ниже Windows 7.

Для корректной установки программного обеспечения на ПК требуется обладать правами администратора.

Для подключения платы к ПК необходим кабель USB type C (не входит в комплект поставки).

Полп. и лата	
Инв. №	
Взам. инв. №	
Полп. и лата	
Инв.№ полл.	

2 Использование

2.1 Подготовка изделия к использованию

В начале работы с платой необходимо провести визуальный осмотр платы на отсутствие внешний физических повреждений. Продолжать работу с платой можно только убедившись в их отсутствии.

Далее необходимо убедиться в отсутствии установленных коммутационных перемычек. После этого выполнить следующие действия:

- сконфигурировать запуск МК (см. 2.1.1 настоящего руководства);
- выбрать источник питания платы и питания МК (см. 2.1.2 настоящего руководства).

Таблица с описанием всех перемычек приведена в приложении 1

2.1.1 Конфигурация запуска МК

Необходимо установить перемычку на разъеме «FT_RST» сигнала сброса FT2232 замкнув контакты 1 и 2 (см. таблицу 2).

ВНИМАНИЕ! Данная перемычка может использоваться для подачи сигнала сброса на программатор в случае его зависания.

Таблица 2 - Описание разъема «FT_RST»

Обозначение разъема	Функциональное назначение	Описание состояний	Схематичное Изображение
	Сигнал сброса	При замкнутых контактах 1 и 2 сигнал сброса для FT2232 снят	3v3 GND GND
«FT_RST»	для FT2232	При замкнутых контактах 2 и 3 сигнал сброса для FT2232 установлен	3V3 GND GND

Далее следует установить перемычку «RESET» управления сброса МК (см. таблицу 3).

Таблица 3 — Описание разъема «RESET»

Обозначение разъема	Функциональное назначение	Описание состояний	Схематичное Изображение
«RESET»	Супервизор питания и сброс	При замкнутых контактах 1 и 2 сигнал сброса МК формируется с помощью супервизора питания	1-2
	питания и сорос МК	При разомкнутых контактах 1 и 2 сигнал сброса МК не зависит от супервизора питания.	1 2

2.1.2 Выбор источник питания платы и питания МК

На плате реализована коммутация источников питания (см. рисунок 2).

Рисунок 2 – Коммутация питания платы

Перед подключением внешнего источника питания, необходимо установить перемычки «USB 5V JACK» и «REG MAIN DBG» (см. таблицу 4).

Далее необходимо подключить внешний источник питания. Для этого на плате предусмотрено 3 разъема (см. рисунок 3).

Таблица 4 - Конфигурация питания

Обозначение разъема	Функциональное назначение	Описание состояний	Схематичное Изображение
	Выбор	При замкнутых контактах 1 и 2 основное питание платы берется с шины USB2	3 ACK
«USB 5V JACK»	источника питания платы	При замкнутых контактах 2 и 3 основное питание платы берется от внешнего источника питания	1 2 3 NOSE
«DBG MAIN REG»	Выбор источника питания МК	При замкнутых контактах 1 и 2 основное питание МК берется с шины USB2 или от внешнего источника питания в зависимости от состояния разъема «USB 5V JACK»	3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
		При замкнутых контактах 2 и 3 основное питание отладочной платы берется с шины USB1	3v3 C C C C C C C C C C C C C C C C C C

Рисунок 3 – Разъемы питания платы

- 1 -разъем USB Type-C;
- 2 разъем X12 типа В2В-ХН-А с первым положительным контактом;
- 3 разъем X13 типа DC Barrel Jack с положительным контактом в центре диаметром 2 мм.

К одному из разъемов B2B-XH-A или DC Barrel Jack возможно подключить внешний источник питания с характеристиками:

- 1 напряжение от 6,5 B до 12 B;
- 2 ограничение тока 1 А.

ВНИМАНИЕ! Не допускать одновременного подключения разных источников питания к разъемам 2 и 3.

Убедитесь, что перемычки «VCC1», «AREF», «AVCC2» и «VBAT» установлены (см. 2.2.8).

2.2 Использование изделия

Для использования заложенных в плату функциональных возможностей периферии, необходимо производить коммутацию соответствующего периферийного блока.

2.2.1 Назначения разъемов PLD

На плате располагается два пользовательских разъема типа PLS (X4, X5) и один разъем типа PLD (X6) с шагом 2,54 мм. Каждый контакт PLS и PLD разъемов на плате подписан. Соответствие выводов разъемов с контактами МК представлено на таблицах 5-9.

Таблица 5 — Назначение выводов разъема X6 (нижняя контактная группа) РВ $0{-}15$

Вывод разъема X6 на плате	Альтернативная функция	GPIO MK	Вывод МК
0	UART1_CTS / UART4_RX / SPI0_CLK	PB0	53
1	UART1_DCD / UART4_TX / SPI0_FSS	PB1	54
2	UART1_DSR / TMR32_EXTIN / SPI0_RX	PB2	55
3	UART1_RI / TMR0_EXTIN / SPI0_TX	PB3	56
4	UART1_RTS / TMR1_EXTIN / SPI1_CLK	PB4	57
5	UART1_DTR / TMR2_EXTIN / SPI1_FSS	PB5	58
6	UART2_CTS / UART0_RX / SPI1_RX	PB6	59
7	UART2_DCD / UART0_TX / SPI1_TX	PB7	60
8	UART2_DSR / TMR1_OUT0 / CAN0_RX	PB8	62
9	UART2_RI / TMR1_OUT1/CAN0_TX	PB9	63
10	UART2_RTS / TMR1_OUT2 / CAN1_RX	PB10	64
11	UART2_DTR / TMR1_OUT3 / CAN1_TX	PB11	65
12	UART3_CTS / TMR1_CCIA / CMP_OUT0	PB12	66
13	UART3_DCD / TMR1_CCIB / CMP_OUT1	PB13	67
14	UART3_DSR / TMR32_CCIA / CMP_OUT0	PB14	68
15	UART3_RI / TMR2_CCIB / CMP_OUT1	PB15	69

Таблица 6 — Назначение выводов разъема X6 (нижняя контактная группа) $PC\ 0{-}15$

Вывод разъема X6 на плате	Альтернативная функция	GPIO MK	Вывод МК
0	UART3_RTS / TMR32_OUT0	PC0	34
1	UART3_DTR / TMR32_OUT1	PC1	35
2	UART4_CTS / TMR32_OUT2	PC2	36
3	UART4_DCD / TMR32_OUT3	PC3	37
4	UART4_DSR / TMR32_EXTIN	PC4	38
5	UART4_RI / TMR0_EXTIN	PC5	39
6	UART4_RTS / TMR0_OUT0	PC6	40
7	UART4_DTR / TMR0_OUT1 / CLKOUT	PC7	41
8	TMR0_OUT2 / CAN0_RX	PC8	42
9	TMR0_OUT3 / CAN0_TX	PC9	43
10	TMR0_CCIA / CAN1_RX	PC10	44
11	TMR0_CCIB / CAN1_TX	PC11	45
12	TMR1_EXTIN / I2C_SCL	PC12	46
13	TMR2_EXTIN / I2C_SDA	PC13	47
14	TMR2_CCIA / I2C_SCL	PC14	48
15	TMR2_CCIB / I2C_SDA	PC15	49

Таблица 7 — Назначение выводов разъема X6 (нижняя контактная группа) РА $0{-}15$

Вывод разъема X6 на плате	Альтернативная функция	GPIO MK	Вывод МК
0	RX / TM2_OUT0	PA0	77
1	UART0_TX / TIM2_OUT1	PA1	78
2	UART1_RX / TMR2_OUT2	PA2	79
3	UART1_TX / TMR2_OUT3	PA3	80
4	UART2_RX / TMR1_CCIA / QSPI_CLK	PA4	81
5	UART2_TX / TMR1_CCIB / QSPI_FSS	PA5	82
6	UART3_RX / TMR1_OUT0 / QSPI_IO0	PA6	83
7	UART3_TX / TMR1_OUT1 / QSPI_IO1	PA7	84
8	UART4_RX / TMR1_OUT2 / QSPI_IO2	PA8	85
9	UART4_TX / TMR1_OUT3 / QSPI_IO3	PA9	86
10	UART0_CTS / UART1_RX / QSPI_CLK	PA10	87
11	UART0_DSR / UART2_RX / QSPI_IO0	PA12	89
12	UART0_DCD / UART1_TX / QSPI_FSS	PA11	88
13	UART0_RI / UART2_TX / QSPI_IO1	PA13	90
14	UART0_RTS / UART3_RX / QSPI_IO2	PA14	91
15	UART0_DTR / UART3_TX / QSPI_IO3	PA15	92

Полп. и лата	
Инв.№	
Взам. инв.№	
Полп. и лата	
Инв.№ полл.	

Вывод МК

42

43

44

45

GPIO MK

PC8

PC9

PC10

PC11

Таблица 8 — Назначение выводов разъема X5 (левая контактная группа)

Альтернативная функция

TMR0_OUT2 / CAN0_RX

TMR0_OUT3 / CAN0_TX

TMR0_CCIA / CAN1_RX

TMR0_CCIB / CAN1_TX

4	CANTIA	INIKU_CCID / CANI_IA	FCII	43
5	I2C SCL	TMR1_EXTIN / I2C_SCL	PC12	46
6	I2C SDA	TMR2_EXTIN / I2C_SDA	PC13	47
7	SPI0 CLK	UART1_CTS / UART4_RX /	PB0	53
		SPI0_CLK		
8	SPI0 FSS	UART1_DCD / UART4_TX /	PB1	54
		SPIO_FSS		
9	SPI0 MISO	UART1_DSR / TMR32_EXTIN /	PB2	55
		SPIO_RX		
10	SPI0 MOSI	UART1_RI / TMR0_EXTIN /	PB3	56
		SPIO_TX		
11	SPI1 CLK	UART1_RTS / TMR1_EXTIN /	PB4	57
		SPI1_CLK		
12	SPI1 FSS	UART1_DTR / TMR2_EXTIN /	PB5	58
		SPI1_FSS		
13	SPI1 MISO	UART2_CTS / UART0_RX /	PB6	59
		SPI1_RX		
14	SPI1 MOSI	UART2_DCD / UART0_TX /	PB7	60
		SPI1_TX		
15	UART0 RX	UART0_RX / TMR2_OUT0	PA0	77
16	UART0 TX	UART0_TX / TIM2_OUT1	PA1	78
17	UART1 RX	UART1_RX / TMR2_OUT2	PA2	79
18	UART1 TX	UART1_TX / TMR2_OUT3	PA3	80
19	UART2 RX	UART2_RX / TMR1_CCIA /	PA4	81
		QSPI_CLK		
20	UART2 TX	UART2_TX / TMR1_CCIB /	PA5	82
		QSPI_FSS		
21	UART3 RX	UART3_RX / TMR1_OUT0 /	PA6	83
		QSPI_IO0		
22	UART3 TX	UART3_TX / TMR1_OUT1 /	PA7	84
		QSPI_IO1		
23	UART4 RX	UART4_RX / TMR1_OUT2 /	PA8	85
		QSPI_IO2		
24	UART4 TX	UART4_TX / TMR1_OUT3 /	PA9	86
		QSPI_IO3		

Вывод разъема Х5 на плате

CAN0 RX

CAN0 TX

CAN1 RX

CAN1 TX

1

2

3

4

Таблица 9 — Назначение выводов разъема X4 (правая контактная группа)

Вывод разъема Х4 на		Альтернативная	GPIO MK	Вывод МК
плат	e	функция	OF IO MIK	рывод ми
1	ADC7	ADC_CH 7	ADC	29
2	ADC6	ADC_CH 6	ADC	28
3	ADC5	ADC_CH 5	ADC	27
4	ADC4	ADC_CH 4	ADC	26
5	ADC3	ADC_CH 3	ADC	24
6	ADC2	ADC_CH 2	ADC	23
7	ADC1	ADC_CH 1	ADC	22
8	ADC0	ADC_CH 0	ADC	21
9	AREF			19
10	AGND			20
11	IN1+	CMP_INP1		8
12	IN1-	CMP_INN1		7
13	IN0+	CMP_INP0		6
14	IN0-	CMP_INN0		5
15	AGND			20
16	OUT	AT_OUT		4
17	IN2	AT_IN2		3
18	IN1	AT_IN1		2
19	IN0	AT_IN0		1
20	GND			
21	WU0	WAKEUP0		100
22	WU1	WAKEUP1		99
23	WU2	WAKEUP2		98
24	3.3V			

Рисунок 4 – Расположение пользовательских разъемов на плате

2.2.2 Программирование микроконтроллера

Переда началом программирования MK необходимо ознакомиться с документом «Быстрый старт» (clck.ru/3ELmDN) и произвести установку соответствующего ΠO .

Для программирования МК на плате предусмотрен разъем «USB 1» (см. рисунок 5).

Рисунок 5 – Разъем программирования

Необходимо подключить плату к персональному компьютеру (далее Π K) с помощью кабеля USB Type A – USB Type C (не входит в комплект поставки), после чего произвести программирование согласно документу «Быстрый старт».

2.2.3 Использование программатора для работы с другими устройствами

Возможно использование программатора, расположенного на плате, для программирования других устройств. Для этого необходимо установить перемычку на разъем «MRST» (см. таблицу 10) и подключить устройство к разъему программирования внешний устройств (см. рисунок 6).

Рисунок 6 – Разъем программатора

ВНИМАНИЕ! На разъемы «DTR_RST» и «RST_DTR» устанавливать перемычки не нужно.

Таблица 10 - Описание разъема «MRST»

Обозначение разъема	Функциональное назначение	Описание состояний	Схематичное Изображение
«MRST»	Удержание сигнала сброса	При замкнутых контактах 1 и 2 сигнала сброса МК с вывода супервизора питания (разъем «RESET») удерживается, что позволяет подключить программатор FT2232 к другим внешним устройствам.	GND SA
		При разомкнутых контактах 1 и 2 сигнала сброса МК с вывода супервизора питания (разъем «RESET») не удерживается.	GND GND

2.2.4 Использование схемы сброса

Для аппаратного сигнал сброса реализована схема, связанная с супервизором цепи питания 3,3 В ядра МК. Для управления сигналом предусмотрена тактовая кнопка (см. рисунок 7). При разомкнутом переключателе «RESET» кнопка не будет влиять на сброс МК (см таблица 3).

Рисунок 7 – Кнопка аппаратного сброса

Допускается подключение пользовательского источника сигнала аппаратного сброса с активным уровнем сигнала — «0». Расположение разъема указано на рисунке 8.

Рисунок 8 – Разъем подключения пользовательского сигнала сброса

2.2.5 Аппаратное прерывание

На плате предусмотрена тактовая кнопка подачи сигнала аппаратного прерывания (высокий активный уровень). Сигнал кнопки скоммутирован с выводом WAKEUP0 (вывод МК 100) и PA11 (вывод МК 88). Расположение кнопки приведено на рисунке 9.

Рисунок 9 – Кнопка аппаратного прерывания

2.2.6 Светодиодная индикация

На плате установлено три красных светодиода для индикации наличия электропитания. Каждый светодиод соответствует своей цепи электропитания «5 V»

Инв.№ полл.

- соответствует 5 B, «3,3 V» - соответствует 3,3 B, «DBG» - соответствует 3,3 B от разъема программатора (см. рисунок 10).

Рисунок 10 – Индикация режимов электропитания

Пользовательская световая индикация подключена к выводам микроконтроллера «PA12–PA15». Расположение на плате приведено на рисунке 11.

Рисунок 11 — Расположение пользовательской световой индикации

2.2.7 Использование вывода SERVEN

На плате реализована возможность удержания сигнала на выводе SERVEN МК. Для этого необходимо установить перемычку на разъем «SERVEN» (см. таблицу 11).

Таблица 11 - Описание разъема «SERVEN»

Обозначение разъема	Функциональное назначение	Описание состояний	Схематичное Изображение
«SERVEN»	Сервисный режим	При замкнутых контактах 1 и 2 на выводе SERVEN МК будет сформирована единица	3v3 ERV
		При разомкнутых контактах 1 и 2 на выводе МК будет сформирован ноль	3V3 T

2.2.8 Измерение потребления микроконтроллера

На плате реализована возможность измерения тока потребления микроконтроллера. Для измерения потребления линии VCC1 необходимо использовать разъем «VCC1» (см. таблицу 12).

Таблица 12 - Описание разъема «VCC1»

Обозначение разъема	Функциональное назначение	Описание состояний	Схематичное Изображение
		Нормальная работа платы	3v3 VCC1
«VCC1»	Измерение тока потребления МК по цепи VCC1	При разомкнутых контактах 1 и 2 имеется возможность измерить ток потребления цепи VCC1 с помощью амперметра.	1 2 EVE

Для измерения потребления линии VCC2 необходимо использовать разъем «AVCC2» (см. таблицу 13).

Таблица 13 - Описание разъема «AVCC2»

Обозначение разъема	Функциональное назначение	Описание состояний	Схематичное Изображение
		Нормальная работа платы	3v3A
«AVCC2»	Измерение тока потребления МК по цепи AVCC	При разомкнутых контактах 1 и 2 имеется возможность измерить ток потребления цепи AVCC с помощью амперметра	3V3A

Для измерения тока потребления линии VBat необходимо использовать разъем «VBAT» (см. таблицу 14).

Таблица 14 - Описание разъема «VBAT»

7	Обозначение разъема	Функциональное назначение	Описание состояний	Схематичное Изображение
			Нормальная работа платы	3V3BT
	«VBAT»	Измерение тока потребления МК по цепи VBAT	При разомкнутых контактах 1 и 2 имеется возможность измерить ток потребления цепи VBAT с помощью амперметра	3V3BT (T)

Для измерения тока потребления линии ARef от внутреннего источника опорного напряжения необходимо использовать разъем «AREF» (см. таблицу 15).

Таблица 15 - Описание разъема «AREF»

Обозначение разъема	Функциональное назначение	Описание состояний	Схематичное Изображение
		Нормальная работа платы	+AREF
«AREF»	Измерение тока потребления МК по цепи AREF	При разомкнутых контактах 1 и 2 имеется возможность измерить ток потребления цепи AREF с помощью амперметра	+AREF T

Для подключения внешнего источника опорного напряжения допускается использовать вывод разъема «AREF». Его расположение указано на рисунке 12.

Рисунок 12 – Разъем подключения внешнего источника опорного напряжения

3 Меры предосторожности

Не подвергайте плату ударам, и не роняйте ее.

Не подвергайте плату действию сильных магнитных полей.

Не подвергайте плату действию жидкостей, дождя и сырости.

Во избежание повреждения оборудования электростатическим разрядом применяйте меры по предотвращению накопления статического заряда: используйте антистатический браслет, подключённый к земле, если у вас нет антистатического браслета, держите руки сухими и сначала прикоснитесь к металлическому предмету, чтобы устранить статическое электричество. Не кладите плату на ковёр или другие поверхности, способные накапливать электростатический заряд.

Не подвергайте плату действию температур свыше 55° С и прямого солнечного света.

Подключение платы допускается только через предназначенные для этого разъёмы.

Перед использованием после транспортировки или хранения в условиях холода или повышенной влажности необходимо выдержать плату в сухом помещении при комнатной температуре в оригинальной упаковке для предотвращения запотевания не менее 3 часов.

Полп. и лата	
о́М.янИ	
Взам. инв. №	
Полп. и лата	
Инв. № подл.	