Modelul cuantic al atomului de hidrogen

$$n\frac{\lambda_n}{2} = 2R_0 \qquad \longrightarrow \qquad \lambda_n = \frac{4R_0}{n}$$

$$-\frac{2m_0}{\hbar^2}(E-U)\psi$$

$$n\frac{\lambda_{n}}{2} = 2R_{0} \longrightarrow \lambda_{n} = \frac{4R_{0}}{n}$$

$$\frac{\partial^{2}\psi}{\partial x^{2}} + \frac{\partial^{2}\psi}{\partial y^{2}} + \frac{\partial^{2}\psi}{\partial z^{2}} = -\frac{2m_{0}}{\hbar^{2}}(E - U)\psi$$

$$\begin{cases} x = r\sin\theta\cos\varphi, \\ y = r\sin\theta\sin\varphi, \\ z = r\cos\theta. \end{cases}$$

$$k_{0} = \frac{1}{4\pi\varepsilon_{0}} \sqrt{U = -k_{0}\frac{e^{2}}{r}}$$

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \varphi^2} = -\frac{2m_0}{\hbar^2} \left(E + \frac{k_0 e^2}{r} \right) \psi$$

Una dintre soluțiile acestei ecuații este funcția $\psi = C_1 e^{-r/a}$

În acest caz $\frac{d\psi}{d\theta} = \frac{d\psi}{d\phi} = 0$ și atunci:

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \left(C_1 e^{-\frac{r}{a}} \right)}{\partial r} \right) = -\frac{2m_0}{\hbar^2} \left(E + \frac{k_0 e^2}{r} \right) C_1 e^{-\frac{r}{a}} \longrightarrow$$

$$\frac{1}{a^{2}} - \left(\frac{2}{a}\right)\frac{1}{r} = -\frac{2m_{0}E}{\hbar^{2}} - \left(\frac{2m_{0}k_{0}e^{2}}{\hbar^{2}}\right)\frac{1}{r} \qquad \qquad \frac{\frac{2}{a}}{a} = \frac{2m_{0}k_{0}e^{2}}{\hbar^{2}} \implies \frac{1}{a} = \frac{\hbar^{2}}{k_{0}m_{0}e^{2}} \\ \frac{1}{a^{2}} = -\frac{2m_{0}E}{\hbar^{2}} \implies E = -\frac{\hbar^{2}}{2m_{0}a^{2}}.$$

Observăm, că funcția $\psi = C_1 e^{-r/a}$ nu are noduri, adică reprezintă unda staționară în starea cu energie minimă numită și **starea fundamentală**

$$E_i = -k_0^2 \frac{m_0 e^4}{2\hbar^2} = -\left(9.10^9\right)^2 \frac{9.1.10^{-31} \left(1.6.10^{-19}\right)^4}{2\left(1.054.10^{-34}\right)^2} \approx -21.8.10^{-19} \text{ J} = -13.6 \text{ eV}$$

Sensul fizic al constantei a

$$d\mathscr{P} = \left| \psi \left(r \right) \right|^2 dV = 4\pi C_1^2 e^{-\frac{2r}{a}} r^2 dr \implies \frac{d}{dr} \left(e^{-\frac{2r}{a}} r^2 \right) = 0 \implies e^{-\frac{2r}{a}} \left(2r - \frac{2r^2}{a} \right) = 0 \implies r_m = a$$

Astfel, la distanța $r_m = a$ de la nucleu probabilitatea aflării electronului este maximă. Aceasta este raza atomului de hidrogen

$$R = a = \frac{\hbar^2}{k_0 m_0 e^2} = 5.3 \cdot 10^{-11} \text{ m}$$

Constanta C_1 în expresia pentru funcția de undă a electronului se determină din condiția de normare:

$$\int_{(V)} |\psi|^2 dV = 1 \implies C_1^2 \int_0^\infty e^{-\frac{2r}{a}} 4\pi r^2 dr = 1 \implies 4\pi C_1^2 \frac{a^3}{4} = 1 \implies C_1 = \frac{1}{\sqrt{\pi a^3}}$$

Astfel, funcția de undă a electronului în starea fundamentală a atomului de hidrogen are aspectul:

$$\psi_1(r) = \frac{1}{\sqrt{\pi a^3}} e^{-\frac{r}{a}}$$

Se poate demonstra că funcțiile de undă ale acestui electron în următoarele stări au aspectele

$$\psi_{2}(r) = C_{2} \left(1 - \frac{r}{2a} \right) e^{-\frac{r}{2a}} \qquad \psi_{3}(r) = C_{3} \left(1 - \frac{2r}{3a} + \frac{2r^{2}}{27a^{2}} \right) e^{-\frac{r}{3a}}$$

Aceste funcții satisfac ecuația Schrödinger cu condiția ca $E_2 = E_1/4$,

 $E_3 = E_1/9$ ș.a.m.d. Nivelurile energetice ale atomului de hidrogen se exprimă:

$$E_n = \frac{E_1}{n^2} = -\frac{1}{n^2} k_0^2 \frac{m_0 e^4}{2 \hbar^2}$$

unde n=1, 2, 3,... întreg pozitiv, se numește numărul cuantic principal

Cuantificarea momentului cinetic al unui electron

Din soluția ecuației Schrödinger rezultă și faptul, că vectorul momentului cinetic orbital al electronului L se cuantifică, adică are valori discrete:

$$L = \hbar \sqrt{l(l+1)}$$
 unde $l = 0, 1, 2, 3, \dots, (n-1)$

Numărul întreg pozitiv *l* este numit număr cuantic orbital.

Stările electronului caracterizate de diferite valori ale numărului cuantic orbital *l* sunt notate și denumite după cum urmează:

$$l = 0$$
 - starea s
 $l = 1$ - starea p
 $l = 2$ - starea d
 $l = 3$ - starea f

Cuantificarea spațială

Din soluția ecuației Schrödinger de asemenea rezultă, că momentul orbital al impulsului electronului \vec{L} poate avea numai astfel de direcții în spațiu, încât proiecția L_z a acestui vector pe direcția câmpului magnetic exterior ia valori cuantificate multiple constantei \hbar

$$L_{z} = m\hbar, \qquad m = 0, \pm 1, \pm 2, \pm 3, \cdots, \pm l$$

unde m este un număr întreg, numit număr cuantic magnetic

Se observă că vectorul L poate avea 2l+1 orientări în spațiu. Rezultatele de mai sus privind cuantificarea energiei și a momentului cinetic pot fi obținute prin rezolvarea riguroasă a ecuației Schrödinger dacă este căutată sub formă

$$\psi_{n,l,m}(r,\theta,\varphi) = R_{n,l}(r)\Theta_{l,m}(\theta)e^{im\varphi}$$

Cuantificarea momentului magnetic orbital

Se știe că mișcarea electronului pe orbită în jurul nucleului generează un curent orbital, care dă naștere unui moment magnetic orbital al electronului p_m , orientat în sens opus vectorului momentului cinetic orbital

$$\vec{p}_{m} = \gamma \vec{L} = -\frac{e}{2m_{0}} \vec{L}$$

$$p_{m} = |\vec{p}_{m}| = \frac{e}{2m_{0}} |\vec{L}| = \frac{e\hbar}{2m_{0}} \sqrt{l(l+1)} = \mu_{B-P} \sqrt{l(l+1)}$$

unde
$$\mu_{B-P} = \frac{e\hbar}{2m_0}$$
 se numește magnetonul Bohr-Procopiu, având valoarea $\mu_{B-P} = 9,27 \cdot 10^{-24} \,\text{A} \cdot \text{m}^2$

Pentru momentul magnetic orbital al electronului trebuie să se realizeze cuantificarea spațială, deoarece proiecția momentului magnetic orbital al electronului \vec{p}_m pe axa Oz ce determină direcția câmpului magnetic exterior, poate lua valorile;

$$p_{mz} = -\frac{e}{2m_0}L_z = -\frac{e}{2m_0}m\hbar = -m\mu_{B-P}$$

Efect Zeeman

Întrucât unei valori concrete a numărului cuantic orbital l îi corespund 2l+1 valori posibile ale numărului cuantic magnetic m, fiecare nivel energetic al electronului se va despica în 2l+1 subniveluri.

Despicarea liniilor spectrale la situarea sursei în câmp magnetic a fost observată pentru prima dată de Zeeman în a.1896.

Experiențele Stern și Gerlach

Stern și Gerlach, efectuând măsurători directe ale momentelor magnetice, au descoperit în a.1922 că un fascicul îngust de atomi de hidrogen, evident în starea *s*, se împarte în două fascicule într-un câmp magnetic neomogen

Pentru a explica rezultatele acestui experiment, fizicienii americani Uhlenbeck și Gaudsmith au înaintat ipoteza că electronul posedă nu numai moment cinetic orbital al impulsului L și moment magnetic orbital p_m , dar și moment cinetic (al impulsului) propriu L_s , numit **spin al electronului** și moment magnetic propriu p_{ms} .

$$L_s = \hbar \sqrt{s(s+1)} \qquad 2s+1=2 \quad \Longrightarrow \quad s = \frac{1}{2}$$

unde s este numit număr cuantic de spin.

$$L_{sz} = m_{s}\hbar$$

unde m_s este numărul cuantic magnetic de spin; poate avea doar două valori:

$$m_s = \pm 1/2$$

Astfel, pentru o descriere completă a stării unui electron dintr-un atom, este necesar, împreună cu numerele cuantice principal, orbital și magnetic, de specificat și numărul cuantic magnetic de spin.

Principiul Pauli

În orice atom nu pot exista doi electroni în aceeași stare staționară, determinată de toate cele patru numere cuantice n, l, m и m_c .

$$N(n,l,m,m_s) = 0 \text{ sau } 1$$

$$N(n,l,m) = 2$$

$$N(n,l) = 2(2l+1)$$

$$N(n) = \sum_{l=0}^{n-1} N(n,l) = 2\sum_{l=0}^{n-1} (2l+1) = 2\frac{1+2n-1}{2}n = 2n^2$$

Totalitatea electronilor dintr-un atom, caracterizați de unul și același număr cuantic principal *n* constituie **un strat de electroni**. În fiecare strat electronii se distribuie după **învelișuri**.

Numărul maxim de electroni în primele 4 straturi electronice și învelișuri este prezentat în tabelul următor

Numărul cuantic principal, n	1	Č.	2	3			4			
Simbolul stratului	K	1	r	М			N			
Nr. maxim de electroni în strat	2	8		18			32			
Numărul cuantic orbital, <i>l</i>	0	0	1	0	1	2	0	1	2	3
Simbolul învelişului	1 <i>s</i>	2 <i>s</i>	2 <i>p</i>	3 <i>s</i>	3 <i>p</i>	3 <i>d</i>	4 <i>s</i>	4 <i>p</i>	4 <i>d</i>	4f
Nr. maximal de electroni în înveliș	2	2	6	2	6	10	2	6	10	14