# Arquitectura de computadores II Unidad de control

Mayo de 2022

2 Control del procesador

3 Implementación cableada

#### Contenido

1 Microoperaciones

2 Control del procesador

3 Implementación cableada

#### Conceptos

Cuando se ejecuta un programa se tienen una secuencia de ciclos de captación y ejecución para cada instrucción. Sin embargo, estas operaciones pueden descomponerse en operaciones más pequeñas.



#### Ciclo de captación

Se examina el ciclo de captación, que tiene lugar al principio de cada instrucción, el cual involucra los siguientes registros del procesador

- Registro de dirección de memoria (MAR) Está conectado a las líneas de dirección del bus
- Registro intermedio de memoria (MBR) Está conectado a las líneas de datos del bus
- 3. Contador de programa (PC) Contiene la dirección a la siguiente instrucción a captar
- Registro de instrucción (IR) Contiene la última instrucción captada

#### Ciclo de captación

El proceso puede ser estudiado en las siguientes unidades de tiempo

- 1. Primera unidad de tiempo: Transferir PC a MAR
- 2. **Segunda unidad de tiempo:** Direccionar en la memoria (MAR) y almacenar en MBR e incrementar PC
- 3. **Tercer unidad de tiempo:** Transferir de MBR a IR (Instrucción a ejecutar)

#### Ciclo de captación

```
\begin{array}{lll} t1: & MAR < & (PC) \\ t2: & MBR < & Memory \\ & PC < & (PC) + I \\ t3: & IR < & (MBR) \end{array}
```



#### Ciclo indirecto

Una vez se capta una instrucción, el siguiente paso es captar los operandos fuente. Las microperaciones requeridas son.

- Primera unidad de tiempo: Transferir a MAR la dirección del operando
- Segunda unidad de tiempo: Direccionar en la memoria (MAR) y almacenar en MBR e incrementar PC
- 3. **Tercer unidad de tiempo:** Transferir de MBR a IR (Instrucción a ejecutar)

#### Ciclo indirecto

```
t1: MAR <--- (IR (Address))
```

t2: MR <— Memory

t3: IR (Address) <— (MBR(Address))

#### Ciclo de interrupción

Este se presenta cuando hemos tenido una señal de interrupción durante la ejecución de la instrucción.

- 1. Primera unidad de tiempo: Transferir a MBR el valor de PC
- 2. **Segunda unidad de tiempo:** Transferir a MAR la dirección donde quedamos al momento de llegar la interrupción. PC ahora tiene la dirección de la instrucción de la interrupción
- 3. **Tercer unidad de tiempo:** Transferir a memoria el valor de MBR (Guardar el contexto)

```
t1: MBR <— (PC)
t2: MAR <— Save_Address
PC <— Routine_Address
t3: Memory <— (MBR)
```

#### Ciclo de ejecución

Es más complejo ya que depende de las operaciones se requieran hacer en el procesador. Las micro-operaciones dependen de:

- 1. Número de operadores se requieren en la instrucción
- 2. Si se requiere almacenamiento temporal durante la ejecución
- 3. Donde se almacena el resultado de la operación

```
Ciclo de ejecución

Por ejemplo ADD R1,X.

t1: MAR <-- (IR (address))
t2: MBR <-- Memory
t3: R1 <-- (R1) + (MBR)
```

#### Ciclo de Instrucción

Puede ser descompuesto en varias micro-operaciones, en el siguiente ejemplo, se ha designado el estado del procesador en términos del registro ICC(Instruction Cicle Code):

- 00 Captación
- 01 Indirecto
- 10 Ejecución
- 11 Interrupción



#### Contenido

1 Microoperaciones

2 Control del procesador

3 Implementación cableada

#### Requisitos funcionales

De acuerdo a lo visto anteriormente, se han descompuesto las instrucciones en microperaciones o operaciones elementales. Por ello se deben definir los requisitos funcionales de la unidad de control del procesador y por ello, se debe realizar la caracterización del procesador:

- 1. Definir elementos básicos del procesador
- 2. Describir las microoperaciones del procesador
- 3. ¿Que debe hacer la unidad de control para que el procesador haga las microoperaciones?

#### Requisitos funcionales

La unidad de control debe regular las señales de:

- 1. ALU
- 2. Registros
- 3. Rutas de datos internos
- 4. Rutas de datos externos





#### Requisitos funcionales

Las microperaciones de un procesador se pueden clasificar de la siguiente forma:

- 1. Transferir datos en un registro a otro
- 2. Transferir datos de un registro a un E/S
- 3. Transferir datos de E/S a un registro
- 4. Realizar alguna operación (arimética o lógica)

#### Requisitos funcionales

La unidad de control realiza dos tareas básicas:

- 1. **Secuenciamiento:** Hace que el procesador avance a través de una serie de microoperaciones para realizar alguna tarea
- 2. Ejecución: Hace que ejecute cada micropoperación

ADD AX, BX

Coptoción ADD memory. RAM

PC Driver Datrucción

PC MAR

CMAR] -> MBR -> IR

Lodivecto AX y BX

AX MAR

CMAR] -> MBR -> IR DIV BLICL

Alt AL

Corp residuo

Ejecución Sulora Ax, Bx

9 10 ALU

Enviores lo single

Almonormonos en el rigistro

resultado

Interrupcion MBR ( Juander el contexto) [ /] -> MAR ( DIVIECTOR PIle) MBR - [MAR] (Gordo) MAR > Pir patroc



#### Señales de control

Son aquellas señales para controlar los elementos en el procesador

- 1. Reloj: Para sincronizar los elementos del procesador
- 2. Registro de instrucción: Código de la operación a realizar
- 3. Indicadores: Banderas de estado del procesador
- 4. **Señales del bus de control:** Manejar las señales de interrupción
- 5. Señales de control internas del procesador: Registros y ALU
- 6. Señales de control hacia el bus de control: Memoria y E/S



#### Señales de control

Esquema de señales de control:







#### Contenido

1 Microoperaciones

2 Control del procesador

3 Implementación cableada

### Implementación cableada

#### Organización interna del procesador

Para que la unidad de control sea funcional, deben conectarse todas las señales hacia los elementos de la CPU y el bus de control. Existen dos tipos de implementación:

- 1. Implementación cableada
- 2. Implementación microprogramada

### Implementación cableada

#### Entradas de la unidad de control

Las entradas de la unidad de control son el reloj, los indicadores, el registro de instrucción y las líneas de control del bus. Estas pueden ser vistas como una secuencia de bits y estas pueden ser codificadas como una línea de n bits. Por ello, es util utilizar un decodificador de n entradas y  $2^n$  salidas. Con ello se garantiza:

- 1. Sólo se activa una línea en la salida ante un estimulo de entrada
- 2. Se pueden identificar las instrucciones claramente







### Implementación cableada

#### Entradas de la unidad de control

Esquema de cableado de señales de control:



## Preguntas

¿Preguntas?

Siguiente tema: Control microprogramado