(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 7 October 2004 (07.10.2004)

PCT

(10) International Publication Number WO 2004/085540 A1

(51) International Patent Classification7:

C09B 29/32

(21) International Application Number:

PCT/EP2004/050308

(22) International Filing Date: 15 March 2004 (15.03.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 2003 0515/03

25 March 2003 (25.03.2003) CH

- (71) Applicant (for all designated States except US): CIBA SPECIALTY CHEMICALS HOLDING INC. [CH/CH]; Klybeckstrasse 141, CH-4057 Basel (CH).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BENKHOFF, Johannes [DE/CH]; Schäferweg 29, CH-4057 Basel (CH). WALLQUIST, Olof [SE/CH]; Spechtstrasse 34, CH-4106 Therwil (CH).
- (74) Common Representative: CIBA SPECIALTY CHEM-ICALS HOLDING INC.; Patent Department, Klybeck-strasse 141, CH-4057 Basel (CH).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: MONOAZOQUINOLONE PIGMENTS, PROCESS FOR THEIR PREPARATION AND THEIR USE

$$O = \begin{pmatrix} Ar_1 & R \\ R_1 & R_1 \\ N = N - W \end{pmatrix}$$
 (1)

(57) Abstract: Monoazoquinolone pigments which, in one of their tautomeric forms, correspond to formula (1), wherein W is unsubstituted or substituted C_6 - C_2 4aryl or unsubstituted or substituted or substituted of formula (1a), wherein Ar_2 is unsubstituted or substituted C_6 - C_2 4aryl or unsubstituted or substituted heteroaryl, Ar_1 is unsubstituted or substituted C_6 - C_2 4aryl or unsubstituted or substituted heteroaryl, C_6 4, C_1 4, C_1 4, C_2 4, C_3 5, C_1 5, C_1 6, C_2 6, C_1 7, C_3 8, C_1 7, C_1 8, C_1 8, C_2 9, C_3 9, C_3 9, C_4 9, C_4 9, C_5 9, C_6 9, $C_$

which is unsubstituted or mono- or poly-substituted by halogen, hydroxy, OR₇, cyano, nitro, SR₇, NR₆R₇, COOR₇, CONR₆R₇, NR₆COOR₇, COO-X₄, COR₄, OR₄, SO₂R₇, SO₂NR₆R₇, SO₃X⁴ or by SO₃R₇, R₄ is hydrogen or has the meanings of R₃, R₅ is hydrogen, C₁-C₄alkyl, halogen, nitro, NR₇R₈ or OR₇, R₆ is hydrogen or C₁-C₃alkyl, R₇ and R₈ are each independently of the other hydrogen; C₁-C₃alkyl; phenyl which is unsubstituted or mono- or poly-substituted by halogen, nitro, OR₅, NR₁₆R₁₇; or benzyl which is unsubstituted or mono- or poly-substituted by halogen, nitro, OR₅, NR₁₆R₁₇, and X⁺ is a cation H⁺, Li⁺, Na⁺, K⁺, Mg⁺⁺_{1/2}, Ca⁺⁺_{1/2}, Sr⁺⁺_{1/2}, Ba^{++1/2}, Cu⁺, Cu⁺⁺_{1/2}, Zn⁺⁺_{1/2}, Mn⁺⁺_{1/2}, Al ⁺⁺⁺_{1/3} or [NR₉R₁₀R₁₁R₁₂]⁺, wherein R₉, R₁₀, R₁₁ and R₁₂ are each independently of the others hydrogen; C₁-C₆alkyl; phenyl which is unsubstituted or mono- or poly-substituted by C₁-C₆alkyl, halogen, nitro, OR₅, NR₁₆R₁₇, and R₁₆ and R₁₇ are each independently of the other hydrogen or C₁-C₆alkyl, are suitable for the colouring of high molecular weight material and are distinguished by good fastness properties of the resulting colourations.