Санкт-Петербургский государственный университет Математико-механический факультет Кафедра физической механики

МЕТОДЫ ИЗМЕРЕНИЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ СИСТЕМЫ Отчёт по лабораторной работе №2.2

«Электронный осциллограф»

Выполнил студент:

Евсеева Полина Валерьевна группа: 23.С02-мм

Проверил:

к.ф.-м.н., доцент Кац Виктор Михайлович

Содержание

Вве	едение
1.1	Цель работы
	Решаемые задачи
Осн	ювная часть
2.1	Теоретическая часть
2.2	Эксперимент
	Обработка данных и обсуждение результатов
	Исходный код
	Таблицы
	Графики
Вгл	рол
	1.1 1.2 Och 2.1 2.2

1 Введение

1.1 Цель работы

Целью данной лабораторной работы является исследование и анализ характеристик чувствительности осциллографа, а также изучение фигур Лиссажу для разных отношений частот. В процессе работы будет выполнен расчет максимальной чувствительности, коэффициента усиления, а также проведены эксперименты для определения отклонений и их влияния на точность измерений.

1.2 Решаемые задачи

- 1. Исследовать чувствительность пластин вертикального и горизонтального отклонений осциллографической трубки.
- 2. Наблюдать с помощью осциллографа синусоидальное напряжение, полученное с выхода генератора.
- 3. Получить фигуры Лиссажу и определить частоту исследуемого напряжения по фигурам Лиссажу.

2 Основная часть

2.1 Теоретическая часть

Измерения Чувствительность горизонтальных и вертикальных пластин измеряется по формуле:

$$S = \frac{L}{2\sqrt{2} \cdot U_{\text{eff}}} \tag{1}$$

где

- S чувствительность (мм/B),
- L длина одного деления экрана осциллографа,
- $U_{\rm eff}$ эффективное напряжение.

2.2 Эксперимент

Для получения термоэлектронной эмиссии катод трубки нагревают, подавая на нагреватель катода переменное напряжение. Вылетевшие из катода электроны ускоряются электрическим полем и движутся по направлению к аноду. По пути они пролетают через фокусирующей электрод, который собирает вылетевшие электроны в пучок, образуя электронный луч, который проходит

между отклоняющими пластинами двух взаимно перпендикулярных плоских конденсаторов. Если в конденсаторах создать электрическое поле, то первый конденсатор С1 может отклонять луч в одном направлении, а второй конденсатор С2 – в перпендикулярном. Пройдя отклоняющие пластины конденсаторов, электронный луч попадает в широкую часть трубки. Экран электронно-лучевой трубки покрывается веществом, которое светится под действием электронного пучка. В результате на экране видно светящееся пятно F. При правильно подобранных напряжениях на катоде, аноде и фокусирующем электроде это пятно имеет размеры порядка 1 мм в диаметре.

Рис. 1. Схема установки

Рис. 2. Схема установки

Рис. 3. Схема установки

Рис. 4. Фотография установки - осциллограф

Рис. 5. Фотография установки - генератор сигналов

2.3 Обработка данных и обсуждение результатов

Исходный код

Для написания программы, вычисляющей все требуемые данные, используется язык C++; среда разработки - Visual Studio.

Программа на С++ выполняет следующие задачи:

- 1. Читает данные из трех файлов: Ueff_vertical.txt, Ueff_horizontal.txt, Ueff_max.txt, содержащих значения напряжений U_{eff} .
- 2. Рассчитывает чувствительность S по формуле:

$$S = \frac{L}{2 \cdot \sqrt{2} \cdot U_{eff}}$$

где L — длина, а U_{eff} — значение напряжения для каждой точки.

- 3. Проверяет соответствие размеров массивов данных. В случае несоответствия выбрасывает исключение.
- 4. Выводит результаты вычислений в консоль для вертикальных и горизонтальных данных и записывает результаты для данных из Ueff_max.txt в файл output_max.txt.
- 5. Обрабатывает ошибки, такие как невозможность открыть файл или несоответствие размеров данных.
- 6. Устанавливает кодировку консоли в UTF-8 для корректного отображения символов.

Листинг 1. Функция считывания данных из файла

```
std::vector<double> readData(const std::string& filename) {
    std::ifstream file(filename);
    if (!file.is_open()) {
        throw std::runtime_error("He удалось открыть файл " + filename);
    }

std::vector<double> data;
    double value;
    while (file >> value) {
        data.push_back(value);
    }

return data;
}
```

Листинг 2. Функция расчета чувствительности

```
std::vector<double> calculateSensitivity(const std::vector<double>& L,
    const std::vector<double>& Ueff) {
    std::vector<double> sensitivity;

    for (size_t i = 0; i < L.size(); ++i) {
        double S = L[i] / (2 * std::sqrt(2) * Ueff[i]);
        sensitivity.push_back(S);
    }

    return sensitivity;
}</pre>
```

Листинг 3. Функция для вычисления среднего значения

```
double mean(const vector<double>& data) {
      double sum = 0.0;
      for (double value : data) {
3
          sum += value;
      return sum / data.size();
  // Функция для вычисления стандартного отклонения деление ( на n(n-1))
 double standard deviation(const vector<double>& data) {
      double avg = mean(data);
      double sum squared diff = 0.0;
11
12
      // Суммируем квадраты отклонений
      for (double value : data) {
          sum squared diff += pow(value - avg, 2);
      }
16
17
      // Стандартное отклонение деление ( на n(n-1))
18
      return sqrt(sum squared diff / (data.size() * (data.size() - 1)));
19
20 }
```

Таблицы

Длина линии на экране, L (мм)	Эффективное напряжение, U_{eff} (B)	Чувствительность, S (мм/B)		
10	4,5	0.785674		
20	10,9	0,648722		
30	17,5	0,606092		
40	23,5	0,601793		
50	31,6	0,55942		

Таблица 1. Опытные данные и чувствительность пластин вертикального отклонения (ПВО)

Длина линии на экране, L (мм)	Эффективное напряжение, U_{eff} (B)	Чувствительность, S (мм/В)
10	3	1.17851
20	8,5	0.83189
30	13,7	0.774205
40	20,2	0.700106
50	26,5	0,667082

Таблица 2. Опытные данные и чувствительность пластин горизонтального отклонения ($\Pi\Gamma O$)

Длина линии на экране, L (мм)	Эффективное напряжение, U_{eff} (B)	Чувствительность, S (мм/В)
10	0,073	48.432
20	0,12	58.9256
30	0,196	54.1153
40	0,351	40.291

Таблица 3. Максимальная чувствительность осциллографа

Вид фигуры Лиссажу		8	000	ОО
Отношение частот f_x/f_y	1:1	2:1	1:3	1:2
Частота по лимбу генератора f_y , Γ ц		25	150	100
Исследуемая частота f_x , Γ ц	50	50	50	50

Таблица 4. Таблица исследования фигур Лиссажу

Графики

Из графиков ПВО и ПГО видим, что ПВО в диапазоне 10.9-31.6, ПГО в диапазоне 8.5-26.5 находятся в зоне постоянной чувствительности. Вычислим значения как средние арифметические трех соответствующих измерений, и погрешность как стандартную погрешность этих измерений.

$$S_y=0.64034\,\mathrm{mm/B}$$

Рис. 6. Зависимость чувствительности пластин вертикального отклонения от напряжения

Рис. 7. Зависимость чувствительности пластин горизонтального отклонения от напряжения

$$S_x = 0.830359 \, \text{mm/B}$$

$$\Delta S = \sqrt{\frac{\sum_{i=1}^{n} (S_i - \overline{S})^2}{n(n-1)}}$$

Таким образом:

$$\Delta S_y = 0.0389866 \, \text{mm/B}, \quad \Delta S_x = 0.0916488 \, \text{mm/B}$$

Максимальный коэффициент усиления:

$$K_{\text{max}} = \frac{S}{S_y} = 92.022$$

3 Вывод

Были исследованы чувствительности пластин вертикального и горизонтального отклонений осциллографической трубки. При синусоидальном напряжении были получены различные неподвижные фигуры Лиссажу, вычислено среднее напряжение, равное $50\pm0.5~\Gamma$ ц.

Список литературы

[1]