Ultra-Fast CMOS Failure Test Unit (UF-FTU)

Group TL-012 Milestone 4 - Product Review

Showcase Video

Executive Summary

- UBC System on Chip lab are studying the causes of transistor healing
- Our solution provides a flexible platform for these studies
- Focus on adaptability and performance per dollar
- Allow the client to reduce resources needed to perform these studies

Background and Context

- Transistor Healing: Restoration of transistor performance
- Purpose: Provide a device capable of measuring transistor healing
- Requirements:
 - Sample DUT's output voltage at 1GSPS for half a second
 - Provide 10mV of resolution
 - Present data ready for processing

Design Overview

Design Overview

- System consists of 3 boards:
 - Existing Board
 - Developed by SoC Lab
 - AFE Board
 - Digital Board

Device Under Test

- DUT Specifications
 - Intel Cyclone 10 FPGA
 - Configured as a CMOS Buffer
- Goal
 - Understand buffer performance after aging
 - Attempt to regain performance with transistor healing

Cyclone 10 Dev Board (https://shop.trenz-electronic.de/)

Analog Front End (AFE) Board

- Performs
 - Input signal single-ended to differential signaling conversion
 - Input signal scaling and biasing
 - Noise filtering
- Design
 - 4 Layer PCB
 - Onboard power supplies
 - Controlled Impedance and Length Matched Traces

Analog Front End (AFE) Design

Digital Board

- Performs
 - Digitization of samples
 - Storage of samples
 - Clock Generation
- Design
 - o 6 Layer PCB
 - Controlled Impedance and Length Matched Traces
 - Onboard power supplies

Digital Board

Clock Domain Buffering System

- Performs
 - o High speed clock domain crossing.
 - Transferring data collected by ADC to DDR memory.
- Design
 - Use FIFOs are buffers.
 - Control the read/write sequence of the FIFOs and the data flow using a state machine.

Control Logics of Clock
Buffering System
Reset

Perform

 Working as a control logic to control the Clock Domain Buffering System.

Design

- Trigger of the reset of the whole system also resets the state machine
- The state transition depends on both received feedbacks from FIFOs and current state
- Error state is also the default state.

System Controller

Consists of 3 major states

- Idle
 - The device is waiting a trigger event
- Triggered
 - The device has received the trigger command
 - Fill the buffer until buffer full
- Store
 - Buffer full
 - Transfer data to the mass storage

Visualizer

- Performs
 - Easy display of samples
 - o Allows data dissection
 - Runs live and stored samples
- Design
 - Automatic SD Card detection
 - End user customizable
 - Written in Python

Validation & Verification

- Subsystems have all gone through simulation & functional testing
- Hardware verification for subsystems successful
- Design has been validated using lab equipment to show design requirements are met

Budget & Resources

- \$1,650 budget available
- Initial projected cost of \$1,621
- Final cost of \$886
- Saved \$735 from initial projection
- Equipment
 - Ketan's Lab
 - Remote desktop

Results and Next Steps

- The device is capable of meeting all the requirements
- Client can begin testing transistor healing
- The next steps are:
 - Continued development of the verilog gateware
 - Integration with the existing system

Live Demonstration

Questions?

Appendices

Analog Front End (AFE) Design - ADC Calcs

ADS58B19

Range:

V_in,cm = 1.7V V in,diff = 1.5Vpk-pk

- 0.75Vpk-pk swing per input
- +/- 0.375V per input

 V_{in} , + or - = [1.325V to 2.075V]

AFE Design:

Output V_diff = 1.3Vpk-pk max to leave some headroom (0.2V) for ADC $1.3V/(2^9) = 2.5mV/bit$ resolution, meeting the 10mV resolution requirement

Figure 6. ADS58B19 Block Diagram

Analog Front End (AFE) Design - Buffer

LMH6559

200kΩ Input impedance 1050MHz large signal bandwidth

Analog Front End (AFE) Design - FDA

LMH5401

- 4.4GHz large signal bandwidth
- 2.8V maximum differential output voltage swing

Analog Front End (AFE) Design - Scaling and Biasing

A	А	В	G	ט	E
1	Design Inputs (enter values)				
2	V _{Sig_min}	V _{Sig_max}	V _{Out_Diff}	CM	V _{REF}
3	0	2.5	1.3	1.7	3.3
4	Design Choi	ices (enter v			
5	R _{S+}	R_F	R_{S-}		
6	1000	1000	1000		
7	Calculated Values				
8	V _{OUT} /V _{Sig}	R _{T+}	R_{G+}	R _{T-}	R_{G-}
9	0.52	1083.33	480.00	245.28	803.03
10	Nearest Standard Values				
11	R _{T+}	R _{G+}	R _{T-}	R_{G-}	
12	1070.0	475.0	243.0	806.0	
13	Attenuation and Feedback Factors with Standard Values				
14	B+	B-	Atten+	Atten-	Z _{IN}
15	0.498	0.500	0.517	0.195	1460.177
16	Output Voltages with Standard Values				
11.572		Min	Mid	Max	V _{OUT_Diff}
17			the second secon		
17 18	V _{OUT+}	1.373	1.698	2.023	1.300
-	V _{OUT+}		1.698 Mid	2.023 Min	10 10 10 10 10 10 10 10 10 10 10 10 10 1
18	V _{OUT+}	1.373	207000		1.300

Analog Front End (AFE) Design - Filter

HMC1023

6th order butterworth low pass filter 5MHz to 72MHz programmable cutoff frequency 0 to 10dB programmable gain One-time-programmable default setting SPI interface (<30MHz)

Figure 1. Filter Attenuation (all Bandwidths) [1]

Clock Domain Buffering System

```
casex((current_stage, full_1, full_2, empty_1, empty_2)}
(2'b00, 2'b00, 2'b10); [reset_1, reset_2, RdEn_1, RdEn_2, WrEn_1, WrEn_2, next_stage) = (2'b00, 2'b00, 2'b10, 2'b00);//Bata recived by FIFO_1, but FIFO_1 is not filled yet
(2'b00, 2'b10); [reset_1, reset_2, RdEn_1, RdEn_2, WrEn_1, WrEn_2, next_stage) = (2'b00, 2'b00, 2'b10, 2'b00);//Bata recived by FIFO_1, but FIFO_1 is not filled yet
(2'b00, 2'b10, 2'b01); [reset_1, reset_2, RdEn_1, RdEn_2, WrEn_1, WrEn_2, next_stage) = (2'b00, 2'b00, 2'b00, 2'b01);//FIFO_1 is filled. FIFO_2 is still at initial stage.

(2'b01, 2'b01, 2'b01); [reset_1, reset_2, RdEn_1, RdEn_2, WrEn_1, WrEn_2, next_stage) = (2'b00, 2'b10, 2'b01);//Start read from FIFO_1 while write to FIFO_2
(2'b01, 2'b01, 2'b00, 2'b00); [reset_1, reset_2, RdEn_1, RdEn_2, WrEn_1, WrEn_2, next_stage) = (2'b00, 2'b10, 2'b01, 2'b01);//FIFO_1 is emptied and FIFO_2 is not empty anymore
(2'b01, 2'b01, 2'b01); [reset_1, reset_2, RdEn_1, RdEn_2, WrEn_1, WrEn_2, next_stage) = (2'b00, 2'b00, 2'b01, 2'b01);//FIFO_1 is emptied and FIFO_2 is not filled yet (Read speed is faster than write). Fause sending data to DDR until FIFO_2is filled
(2'b01, 2'b01, 2'b01); [reset_1, reset_2, RdEn_1, RdEn_2, WrEn_1, WrEn_2, next_stage) = (2'b00, 2'b00, 2'b01, 2'b01);//FIFO_2 is filled and FIFO_1 is not empty anymore
(2'b01, 2'b01, 2'b01); [reset_1, reset_2, RdEn_1, RdEn_2, WrEn_1, WrEn_2, next_stage) = (2'b00, 2'b01, 2'b01);//FIFO_2 is filled and FIFO_2 is filled and FIFO_2. FIFO_1 is not empty anymore
(2'b10, 2'b00, 2'b00); [reset_1, reset_2, RdEn_1, RdEn_2, WrEn_1, WrEn_2, next_stage) = (2'b00, 2'b01, 2'b01);//FIFO_2 is emptied and FIFO_2 is not filled yet (Read speed is faster than write). Pause sending data to DDR until FIFO_2is filled
(2'b01, 2'b01); [reset_1, reset_2, RdEn_1, RdEn_2, WrEn_1, WrEn_2, next_stage) = (2'b00, 2'b01, 2'b01);//FIFO_2 is emptied and FIFO_2 is emptied and FIFO_1 is not empty anymore
(2'b10, 2'b01); [reset_1, reset_2, RdEn_1, RdEn_2, WrEn_1, WrEn_2, next_stage) = (2'b00, 2'b01, 2'b01);//FIFO_2 is emptie
```

DDR3 Memory

Performs

- Stores all test data received from the ADC buffers
- 8 Gb DDR3 RAM for multiple cycles
- Performance oriented memory controller at upto 12.8 Gb/s

Design

- Programmed in SystemVerilog
- Uses Lattice Diamond DDR3 Controller
- Validated functionally

Visualizer

```
def triangle(length, amplitude):
     section = length // 4
     for direction in (1, -1):
         for i in range (section):
             yield i * (amplitude / section) * direction
         for i in range (section):
             yield (amplitude - (i * (amplitude / section))) * direction
@app.callback(
            [Input("graph-update", "n intervals"), Input('submit-val', 'n clicks')]
    global counter
    global X
    global Y
    global old clicks
    if old clicks != click:
       X = deque()
        Y = deque()
        counter = 0
        old clicks = click
        data = plotly.graph objs.Scatter(
            x=list(X),
           y=list(Y),
            name='Scatter',
            mode= 'lines+markers'
        return [
                        'data': [data],
                        'layout' : go.Layout(
                                                xaxis=dict(range=[0,0], title="Time (Milliseconds)"),
                                                yaxis=dict(range=[0,0], title="Measured Voltage (Millivolts)"),
```


