Spacetime as Polar Optics: A 4D Radial—Angular Geometry for Unifying Gravity and Quantum

Sefunmi Ashiru, Sophia Hart, Muhammad Zeeshan Hanif Theoretical Systems and Quantum Geometry, Poughkeepsie, NY (Dated: August 2025)

This paper aims to formalize a unification ansatz in which both gravitational dynamics and quantum phenomena inhabit the same four-dimensional geometry: time is represented as a radial coordinate r=ct emanating from a start event, while distinct "versions" (appearances) of that event correspond to different angular perspectives ϑ of a single history. A universal complex field $\mathcal{A}=|\mathcal{A}|e^{i\phi}$ models compactified standing-frequency excitations ("light" broadly speaking), whose phase gradients generate stress and whose stress sources curvature through Einstein's equations. Measurement is recast as selecting frequency/phase within an angular kernel, so Born weights appear as geometric angular weights on 4D light-cone slices. We articulate luck as polar optic mechanics: apparent luck is angular/phase selection of a deterministic 4D propagation under finite signal speed. We provide a common action, a polar metric adapted to causal flow, a prime-indexed standing-mode ansatz yielding compounded (composite) tension on each "ring of time," and a mapping between Feynman graphs and 4D tension networks. For each major claim we add a rigorous status assessment vs. modern GR, QFT, LQG, and String Theory, cite peer-reviewed literature, and include short proofs and test proposals.

I. PRINCIPLE: ONE GEOMETRY, TWO THEORIES

Hypothesis. (i) Spacetime $(\mathcal{M}, g_{\mu\nu})$ is the same stage for gravity and quantum kinematics; (ii) use a radial-angular chart (r, ϑ) adapted to causality with $r \equiv ct \geq 0$ and $\vartheta \in S^2$ labeling "perspectives" (Bondi–Sachs–type null/angular foliations justify this viewpoint near light cones); (iii) distinct observed "versions" of events are different ϑ -slices of one 4D history; (iv) a universal complex field \mathcal{A} underlies compactified standing modes.

[Assessment: Aligned: One 4D Lorentzian manifold for both GR dynamics and quantum kinematics is standard (quantum fields on curved backgrounds) [? ?]. Using light-cone-adapted angular coordinates is orthodox (Bondi-Sachs framework) [? ?]. Novel: interpreting Born weights as angular weights and casting "luck" as polar optics. Determinism in GR is subtle (global hyperbolicity, Cauchy horizons) [?]. Constraint: any hiddenvariable determinism must respect Bell tests [? ? ?]; Bohm's nonlocal theory is a classic example [?].]

II. RADIAL-ANGULAR METRIC AND CAUSALITY

Adopt a polar-like line element centered on a reference event:

$$ds^{2} = c^{2} dr^{2} - a^{2}(r, \boldsymbol{\vartheta}) d\Omega^{2}, \qquad d\Omega^{2} = \gamma_{AB}(\boldsymbol{\vartheta}) dAdB,$$
(1)

with areal factor $a(r, \vartheta)$ encoding curvature/anisotropy; in flat space $a \to r$. This is consistent with light-cone/retarded-time (à la Bondi-Sachs) foliations used in gravitational radiation theory [??]. Radial nulls $(ds^2 = 0)$ trace ordinary light cones; see also analyses of

null cones in Minkowski backgrounds for GR reconstructions [?].

[Assessment: Aligned (as a coordinate choice). Globally, Eq. (??) is not unique nor always regular, but null-foliation/angle charts are standard near null infinity and in wave zones [?].]

III. UNIFIED ACTION AND PHASE TENSION

Let $\mathcal{A} = |\mathcal{A}|e^{i\phi}$ with action

$$S[\mathcal{A}, g] = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa} R + \frac{\xi}{2} \nabla_{\mu} \mathcal{A} \nabla^{\mu} \mathcal{A}^* - V(|\mathcal{A}|) \right], \tag{2}$$

yielding Einstein $G_{\mu\nu} = \kappa T_{\mu\nu}^{(\mathcal{A})}$ and a curved-space Klein–Gordon equation. Writing $\mathcal{A} = |\mathcal{A}|e^{i\phi}$ separates phase tension

$$T_{\mu\nu}^{(\phi)} = \xi \left(\nabla_{\mu} \phi \nabla_{\nu} \phi - \frac{1}{2} g_{\mu\nu} (\nabla \phi)^2 \right), \tag{3}$$

so phase gradients source curvature (akin to scalar-field stress in GR). String excitations interacting with strong gravitational waves exhibit resonant behavior [?], supporting the broader wave/tension picture (though not this specific model).

[Assessment: Aligned: minimally coupled scalar fields sourcing curvature are textbook GR/QFTCS [? ?]. Novel: treating all matter as one complex "light" field departs from the Standard Model (SM); PDG reviews summarize the established multi-field SM [?].]

IV. PARTICLES AS COMPACTIFIED STANDING MODES

On an angular loop at fixed r with length $L_{r)=\int \sqrt{a^2\,d\Omega^2},}$ standing modes satisfy

$$n\,\lambda = L_{r),} \qquad {}_{k_n = \frac{2\pi n}{L_{r)},\ n \in \mathbb{N}.\left(4\right)}}$$

Mode energies $E_n = \hbar \omega_n$ follow local dispersion set by V and curvature. As an analogy for spectral selection in structured media, quasiperiodic arrays exhibit localization bands and nontrivial selection rules [?].

[Assessment: Aligned as a cavity/potential analogy. Novel if claimed literally for the SM spectrum; empirically, SM particle content is not explained as compactified photon modes [?].]

V. BORN WEIGHTS AS ANGULAR WEIGHTS; LUCK AS POLAR OPTIC MECHANICS

Define an angularly normalized field on each ring of time

$$\tilde{\Psi}(r, \boldsymbol{\vartheta}) \equiv \sqrt{\frac{1}{\Omega_r}} \, \mathcal{A}(r, \boldsymbol{\vartheta}), \qquad \Omega_r \equiv \int a^2(r, \boldsymbol{\vartheta}) \, d\Omega. \quad (5)$$

Detection with instrument kernel K_{ω} yields

$$P(\omega, \boldsymbol{\vartheta} \mid r) \propto \left| \int d\Omega' K_{\omega}(\boldsymbol{\vartheta}, \boldsymbol{\vartheta}') \, \tilde{\Psi}(r, \boldsymbol{\vartheta}') \right|^2.$$
 (6)

Luck as polar optics: apparent randomness reflects finitec access to phases from only part of S^2 ; probability is an angular under-sampling of an underlying interference field.

[Assessment: Complementary interpretive layer; compatible with decoherence/Born usage in quantum optics [?]. Constraint: local hidden-variable completions are excluded by loophole-free Bell tests; any deterministic completion must be explicitly nonlocal/contextual [????].

VI. PRIME-INDEXED STANDING MODES & COMPOUNDED TENSION ON THE RING OF TIME

Let

$$f(\theta) = \sum_{n \ge 1} a_n \cos(n\theta + \varphi_n), \quad \mathsf{t}(\theta) = \frac{\eta}{2} (\partial_{\theta} f)^2.$$
 (7)

If we *seed* only prime harmonics $p \in \mathbb{P}$, quadratic mixing and weak nonlinearities generate composite indices via sum/difference identities; see Appendix ??. A von Mangoldt-weighted "sieve" operator,

$$S[f](\theta) = \sum_{n>1} \Lambda(n) a_n e^{i(n\theta + \varphi_n)}, \tag{8}$$

diagnoses missing primes: adding a missing p reduces composite-phase error at multiples of p. Average tension obeys

$$\mathcal{E}_{\text{avg}}[\mathsf{t}] = \frac{\eta}{4} \sum_{n \ge 1} n^2 a_n^2,\tag{9}$$

so rarity ($\sim 1/\ln p$) versus energy ($\propto p^2 a_p^2$) trade off (Prime Number Theorem background; spectral analogies with prime statistics are suggestive [??]).

[Assessment: Aligned: Fourier analysis and nonlinear wave-mixing (sum/difference frequency generation) are standard in nonlinear optics/fluids [?]. Novel: using prime seeding as a design ansatz for compounded tension and "prime events".]

VII. TENSION NETWORKS AND FEYNMAN GRAPHS

Define the phase-tension scalar $\mathcal{R} = (\nabla \phi)^2$. High- \mathcal{R} filaments define a graph $\mathcal{G} \subset \mathcal{M}$: edges follow large phase gradients, vertices are compactification knots, sheets are interference membranes. Feynman graphs then serve as bookkeeping shadows of stress/propagation on \mathcal{G} .

[Assessment: Heuristic mapping. Aligned in spirit with path-integral/diagrammatics [? ?]. Novel as a literal identification of spacetime tension filaments with diagrammatic edges.]

VIII. BLACK/WHITE HOLES AS CONDENSATES OF THE SAME JELLY

When phase tension and energy focus, $a(r, \vartheta)$ shrinks and null congruences converge (black-hole trapping: Kerr etc.) [? ?]. The Kruskal extension of Schwarzschild includes a white-hole region as the time-reverse of a black hole [?]. Higher-dimensional analogs (5D black holes/rings) display rich surface geometry [?].

[Assessment: Aligned: black holes; white holes exist as time-reversed regions in extended solutions. Novel/speculative: "mutual reopening/repulsion" of nearby white-hole-like sources in nature. No observational support; GR allows white-hole regions mathematically but they are unstable/unobserved.]

IX. RECOVERING LIMITS AND CONFRONTATION WITH DATA

GR limit. With weak ϕ gradients, $T_{\mu\nu}^{(\phi)}$ is a standard scalar source and Einstein's equations reduce to GR with known tests (perihelion advance, Shapiro delay, frame dragging, gravitational waves) [???].

Quantum limit. On fixed (\mathcal{M}, g) , small-amplitude \mathcal{A} obeys the curved-space KG equation [? ?]; standard interference/Born rule are recovered.

SM precision. Any unification must not spoil QED's precision (electron g-2 and tenth-order calculations) [??] Our construction stays agnostic about SM gauge content (to be added atop \mathcal{A} if needed). Historical alternatives like a "neutrino theory of photons" are noted but not compatible with the modern SM [??].

[Assessment: Aligned: these limits are standard. Constraint: extremely tight QED/GR tests bound any new couplings.]

X. PHENOMENOLOGY AND TESTS

Analog fluids/photonics. Drive superfluids or optical cavities with prime-indexed phase masks; verify composite lines appear by mixing and that adding a "missing prime" reduces sieve error (nonlinear mixing calibrated by [?]).

Interferometry as angular tomography. Multiaperture interferometers resolving ϑ should exhibit curvature-dependent reweighting of fringe envelopes consistent with $a(r,\vartheta)$ (a geometric calibration of angular Born weights).

Hydrodynamic quantum analogs. Examine whether droplet pilot-wave analogs show prime-seeded stability bands [? ?].

[Assessment: Falsifiable lab signatures exist for the prime-sieve/tension story and for angular tomography. Astrophysical deviations from GR lensing would tightly bound any new phase-tension couplings.]

XI. STATUS MAP: WHAT ALIGNS, WHAT'S NEW, WHAT'S SKEPTICAL

- Fully aligned with modern science: One 4D Lorentzian manifold; null/angle foliations (Bondi–Sachs); GR tests including frame-dragging and gravitational waves; QFT on curved spacetime; QED precision; Kerr/Schwarzschild/Kruskal basics [? ? ? ? ? ? ? ? ? ?].
- New but complementary (conceptual): Born weights as angular weights; "luck as polar optics"; tension-network interpretation of diagrams; prime-seed design ansatz for compounded tension (intended for analog systems). Must be checked against Bell tests and precision constraints [? ? ? ?].
- Far-fetched/ruled-out as stated: "Everything is compactified light" (conflicts with SM content [?]); white-hole repulsion in nature (no evidence;

white holes are non-astrophysical regions of extended solutions); any local hidden-variable determinism (excluded by loophole-free Bell tests [??]). Historical proposals like a neutrino theory of photons are not consistent with current electroweak theory [??].

XII. CONCLUSION

Assuming one 4D geometry with time as radius and angles as perspectives produces a clean synthesis: the "material" of many apparent worlds is an oscillatory field observed through angular kernels; particles are standing-mode knots (in analogy), and Born weights can be recast as angular weights. We provided a scalar-GR action, a polar metric, a prime-sieve standing-mode mechanism that deterministically compounds into composite tension on each ring of time, and a tests list. The decisive next step is empirical: cavity/superfluid/photonic analogs and angular tomography that can confirm or falsify the prime-sieve and polar-optic predictions.

Appendix A: Polar Normalization and Perspective Weights

With r = ct and $\vartheta \in S^2$ with area element $a^2(r, \vartheta) d\Omega$, define $\tilde{\Psi}$ by Eq. (??). Then

$$\int_{S^2} |\tilde{\Psi}(r,\boldsymbol{\vartheta})|^2 a^2(r,\boldsymbol{\vartheta}) d\Omega = \frac{1}{\Omega_r} \int_{S^2} |\mathcal{A}(r,\boldsymbol{\vartheta})|^2 a^2 d\Omega = 1,$$
(A1)

so angular detection weights are properly normalized on each radial slice.

Appendix B: Prime Mixing & Average Tension

Let
$$f(\theta) = \sum_{n \ge 1} a_n \cos(n\theta + \varphi_n)$$
. Then $\partial_{\theta} f = \sum_n (-na_n) \sin(n\theta + \varphi_n)$ and

$$\mathsf{t}(\theta) = \frac{\eta}{2} (\partial_{\theta} f)^2 = \frac{\eta}{2} \sum_{m,n} mn \, a_m a_n \sin(m\theta + \phi_m) \sin(n\theta + \phi_n).$$

Using $\sin u \sin v = \frac{1}{2}[\cos(u-v) - \cos(u+v)]$, quadratic mixing generates indices $|m \pm n|$. If f is seeded only at primes, composites appear in t automatically. Averaging over θ kills cross terms, yielding Eq. $(\ref{eq:condition})$.

Appendix C: Bell Constraints on "Polar Luck"

Any claim that probabilities arise from inaccessible but *local* angular phases is equivalent to a local hiddenvariable model and violates loophole-free Bell inequalities \cline{beta} ? ?]. Any deterministic completion must be nonlo-

 $\operatorname{cal/contextual}$ (or accept retrocausality), which we leave outside scope.