UNIVERSIDAD DE BUENOS AIRES FACULTAD DE PSICOLOGIA

MAESTRIA EN PSICOLOGIA COGNITIVA

TESIS: "INTERFACE MENTE-CEREBRO MÁQUINA"

Autor: Alejandro Gustavo Sabatini

Director: Guillermo Campitelli

AÑO 2007

Dedicada a:

LEONARDO DA VINCI

"massimi esponenti dell'unione tra umanesimo e scienza"

(máximo exponente de la unión del humanismo y la ciencia)

Asimismo quiero dejar expresado mi profundo sentir Humanista, con la siguiente expresión:

"La ventaja de la racionalidad – y de sus fundamentos, la ciencia y la democracia- es su capacidad de autocorregirse, por no estar sujeta a ninguna autoridad ni revelación, ni dogma indiscutible y definitivo". Sebreli (2006).

A.G.S.

ÍNDICE

	Páginas	
Resumen	ix	
1 Introducción	01	
2 Revisión Bibliográfica	12	
2.1Clasificación de la interface mente-cerebro	12	
2.2 El usuario como agente externo: Interacción Huma I	Máqui-	
na	16	
2.3 El usuario como agente interno: Nueva rama de inve	estigación,	
Interacción Mente-Cerebro Máquina	18	
2.3.1 Interacción Mente-Cerebro Máquina en Anin	nales	
y en Insectos	19	
2.3.2 Interacción Mente-Cerebro Máquina en seres	Huma-	
nos	22	
2.3.2.aInvasivos	22	
2.3.2.bNo invasivos	24	
2.4. Clasificación de los sistemas IMCM	25	
3 Experimento IMCM	28	
3.1Metodología	32	
3 1 1 -Particinantes	35	

3.1.2Aparato	36
3.1.3Procedimiento	. 37
3.1.4Análisis de Datos	42
3.2Resultados	42
3.3Discusión	46
4Análisis Teórico	54
4.1 Algoritmo de formación	83
4.2 Concepto de mente	. 91
4.3Introducción al concepto de Firmware	102
4.3.1Concepto teórico del Firmware en Ciencia	
de la Computación	108
4.3.2Psicología Cognitiva y Firmware	109
4.3.3 Firmware como Interface de los experimentos	
del Capítulo 3	126
4.4 Convergencia Teórica, Críticas al modelo y otros	129
5Conclusiones	140
6 -Ribliografía	144

Listado de Figuras:

FIGURAS:

	Página
Figura 1. Diagrama del sistema IMCM	5
Figura 2. El sistema IMCM en animales	. 20
Figura 3: Niveles cognitivos	65
Figura 4. El Tálamo, sus núcleos y proyección cortical	. 70
Figura 5. Superficie externa del cerebro con las divisiones Citoaquitectónicas enumeradas por Brodmann (1909)	. 74
Figura 6. Relaciones anatómicas entre globo ocular y lóbulos occipitales: Corteza Calcarina	. 75
Figura 7. Niveles de configuración del sistema IMCM	84
Figura 8. La percepción de la señal acústica y la intención del usuario	. 86
Figura 9. Experimento que demuestra la dilatación temporal con un reloj vertical	. 98
Figura 10. Modelo de Von Neumann	. 105
Figura 11. Modelo de Hardvard	.106
Figura 12. Composición del Universo	132

TABLAS:

Tabla 1.AGrupo Experimental Tiempo A	1 3
Tabla 1.BGrupo Control Tiempo A 4	3
Tabla 2.A Grupo Experimental Tiempo B	14
Tabla 2.B Grupo Control Tiempo B	4
Tabla 3.AGrupo Rexp- Adrian4	6
Tabla 3.BGrupo Rexp- Adrian4	6

RESUMEN:

Dentro de la rama de investigación Interacción Humano Máquina, se trató el Siste-ma Interface Mente-Cerebro Máquina (IMCM) incluído en el concepto de Tecno-logías Convergentes. Se realizó un experimento que ha utilizado un sistema indepen-diente, activo, sincrónico, no invasivo y no metabólico. Este último hizo uso de las on-das alfa, con ojos cerrados. Y una réplica del experimento de Adrian (1946) de ondas alfa con ojos abiertos. El sistema IMCM configuró un Algoritmo de Formación, que tu-vo en cuenta los algoritmos biológico, neuroeléctrico y cognitivo. Por el método ana-lógico de ingeniería computacional inversa, esta tesis propone un modelo para la com-prensión del funcionamiento de la mente-cerebro que utiliza la convergencia episte-mológica (analogía o metáfora del ordenador, analogía o metáfora cerebral y la neuro-fisiología). Dado que el tema principal es el sistema IMCM, ésta considera al hardware y al cerebro; de modo que se interesa por el sistema físico, más allá del concepto fun-cionalista. Por ello, a nivel teórico, tomó de la Ciencia de la Computación el concepto de Firmware (híbrido entre software y hardware), como concepto de implementación de la mentecerebro en el sistema físico: cerebro y sistema IMCM. Definido el término computar como la realización de instrucciones u órdenes, se formuló que el Firmware se implica en dos vertientes que no son excluyentes: primero, en el intrincado desarrollo ontológico humano y segundo, en lo epistemológico desde lo cognitivo, como concepto que ayudaría a explicar la estructuración y configuración para comprender el funciona-miento de la mente-cerebro. Por ello, se ha desarrollado un modelo de la mente-cere-bro, cuyo concepto formal es el Dimensionalismo Estructural Humano. Desde la Psico-logía

Cognitiva, esta tesis se enmarca dentro del **Dualismo Funcional** (Duarte, 1996) y el **Dualismo Material no cartersiano** (referido a la materia bariónica y no bariónica).