1 Výroková logika

Obsah

Obsah

1	Výroková logika	1
2	Predikátová logika	3
3	Důkazy matematických vět	4
4	Doporučená literatura	7

Definice 1.1

Výrokem rozumíme každé sdělení, o kterém má smysl uvažovat, zda je, či není pravdivé, a přitom může nastat pouze jedna z těchto možností.

Definice 1.2

Výrok, který neobsahuje žádnou vlastní část, která by sama o sobě byla výrokem, se nazývá *atomární*. Ostatní výroky nazýváme *složené*.

Pravdivostní hodnoty

- \bullet pravdivý výrok \longmapsto 1
- nepravdivý výrok \longmapsto 0
- \bullet phsloženého výroku závisí na phjeho atomárních výroků a logických spojkách, které obsahuje

Logické spojky

- slouží k tvorbě složených výroků z atomárních
- podle počtu výroků, ke kterým se spojka váže je dělíme na: unární (např. \neg), binární (např. $\land, \lor, \Rightarrow, \Leftrightarrow$), . . . , n-ární

Výrokový počet

- $\bullet\;$ teorie, která se zabývá závislostí phsložených výroků na ph výroků skládaných
- konstanty: $\neg, \land, \lor, \Rightarrow, \Leftrightarrow, (,), \ldots$
- výrokové proměnné: A, B, C, \dots

Formule výrokové logiky

Definice 1.3

Formulí výrokové logiky chápeme:

- a) každou výrokovou proměnnou;
- b) slova $\neg A, A \land B, A \lor B, A \Rightarrow B, A \Leftrightarrow B$, pokud slova A a B jsou FVL;
- c) každé slovo, které získáme jako v a) nebo b) konečným počtem kroků.

Příklad 1.1

- $\neg (A \Rightarrow \neg B) \Leftrightarrow C$ je FVL
- $\mathcal{A} \Rightarrow (\mathcal{B} \neg \Rightarrow \mathcal{C})$ není FVL

Ohodnocování FVL

- používá se tzv. tabulková metoda
- \bullet FVL s n výrokovými proměnnými \longmapsto tabulka s 2^n řádky

\mathcal{A}	$ \mathcal{B} $	$\neg \mathcal{A}$	$\mathcal{A} \wedge \mathcal{B}$	$\mathcal{A} \vee \mathcal{B}$	$A \Rightarrow B$	$\mathcal{A} \Leftrightarrow \mathcal{B}$
1	1	0	1	1	1	1
1	0	0	0	1	0	0
0	1	1	0	1	1	0
0	0	1	0	0	1	1

log. spojka	ph vzniklého výroku
Negace	$ph(\neg A) = 1 - ph(A)$
Konjunkce	$ph(A \wedge B) = ph(A)ph(B)$
Disjunkce	$ph(A \lor B) = ph(A) + ph(B) - ph(A)ph(B)$
Implikace	$ph(A \Rightarrow B) = 1$, pokud $ph(A) \le ph(B)$
Ekvivalence	$ph(A \Leftrightarrow B) = 1$, pokud $ph(A) = ph(B)$

Tautologie

Definice 1.4

FVL, která při libovolném ohodnocení svých výrokových proměnných nabývá ph 1, se nazývá tautologie.

Příklady tautologií

- $A \vee \neg A$ (zákon vyloučeného třetího)
- $\neg (A \land \neg A)$ (zákon sporu)
- $\neg(\neg A) \Leftrightarrow A$ (zákon dvojí negace)

- $(A \land B) \Leftrightarrow (B \land A)$ (zákon komutativity konjunkce)
- $(A \lor B) \Leftrightarrow (B \lor A)$ (zákon komutativity disjunkce)
- $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$ (zákon kontrapozice)
- $\mathcal{A} \Leftrightarrow [\mathcal{A} \land (\mathcal{A} \lor \mathcal{B})]$ (zákon absorpce)
- $[(A \Rightarrow B) \land (B \Rightarrow C)] \Rightarrow (A \Rightarrow C)$ (zákon tranzitivity implikace)

2 Predikátová logika

Obsah

Obsah

Výrokové formy

Definice 1.5

Výrokovou formou rozumíme každé sdělení obsahující proměnné, které se stane výrokem po dosazení konstant z oborů proměnnosti za všechny proměnné.

Příklad 1.2

- $U(x,y): (x^2 < y+1; x,y \in \mathbf{N})$
- V(x, y, z): $(x \text{ je násobkem } y + z; \ x, z \in \mathbf{Z} \ y \in \mathbf{N})$
- $W(x,y,z): ((x^2 < y+1) \lor (x \text{ je násobkem } y+z); x \in \mathbf{Z}, y,z \in \mathbf{N})$
- Další možnost, jak z výrokové formy vytvořit výrok, je vázat proměnné VF tzv. kvantifikátory.

Obecná kvantifikace

Definice 1.6

Obecný výrok příslušný k dané VF V(x) s jednou proměnnou je výrok $\forall x V(x)$, který je pravdivý právě když po dosazení libovolné konstanty z oboru proměnnosti do VF dostaneme pravdivý výrok.

• ∀ ... obecný kvantifikátor

Příklad 1.3

$$ph \ (\forall x(x^2 > 0; \ x \in \mathbf{R})) = 0$$

Existenční kvantifikace

Definice 1.7

Existenční výrok příslušný k dané VF W(x) s jednou proměnnou je výrok $\exists x W(x)$, který je pravdivý právě když existuje alespoň jedna konstanta \overline{x} z oboru proměnnosti taková, že $W(\overline{x})$ je pravdivý výrok.

• ∃ ... existenční kvantifikátor

Příklad 1.4

$$ph (\exists x((x \mid 6) \land (x^3 + 8 = 0); x \in \mathbf{Z})) = 1$$

Kvantifikace VF s více proměnnými

- $V(x_1, x_2, ..., x_n) \mapsto VF$ s proměnnými $x_1, x_2, ..., x_n$
- současným vázáním každé z proměnných jedním z kvantifikátorů \forall , \exists získáme z $V(x_1,x_2,\ldots,x_n)$ výrok
- celkem tedy takto můžeme z $V(x_1, x_2, \ldots, x_n)$ získat $2^n \cdot n!$ výroků
- pořadí při kvantifikaci jednotlivých proměnných VF má vliv na pravdivostní hodnotu získaného výroku

Příklad 1.5

- $\forall x \forall y (V(x,y)) \Leftrightarrow \forall y \forall x (V(x,y))$
- $\exists x \exists y (V(x,y)) \Leftrightarrow \exists y \exists x (V(x,y))$
- jsou tautologie predikátového počtu (klasické dvouhodnotové logiky)

Kvantifikace VF s více proměnnými

- $V(x_1, x_2, \dots, x_n) \mapsto VF$ s proměnnými x_1, x_2, \dots, x_n
- $\bullet\,$ současným vázáním každé z proměnných jedním z kvantifikátorů \forall,\exists získáme z $V(x_1,x_2,\ldots,x_n)$ výrok
- celkem tedy takto můžeme z $V(x_1, x_2, ..., x_n)$ získat $2^n \cdot n!$ výroků
- pořadí při kvantifikaci jednotlivých proměnných VF má obecně vliv na pravdivostní hodnotu získaného výroku

Příklad 1.6

- V(x,y): $(\log(x-1) = y; x \in (1,+\infty), y \in \mathbf{R})$
- $ph(\forall x \exists y \ V(x,y)) = 1$
- $ph(\exists y \forall x \ V(x,y)) = 0$

3 Důkazy matematických vět

Obsah

Obsah

Většina matematických tvrzení je ve tvaru implikace (jestliže ... , pak ...) nebo ekvivalence (... právě když ...)

Příklad 1.7

- ullet Je-li n sudé číslo, pak je dělitelné dvěma.
- Trojúhelník ABC, v němž |AB|=c, |BC|=a, |CA|=b, je pravoúhlý s přeponou AB právě když $a^2+b^2=c^2.$
- $(\mathcal{A} \Leftrightarrow \mathcal{B}) \Leftrightarrow [(\mathcal{A} \Rightarrow \mathcal{B}) \land (\mathcal{B} \Rightarrow \mathcal{A})]$ je tautologie.
- Jinými slovy: Tvrzení ve tvaru ekvivalence je pravdivé právě když jsou současně pravdivé obě jeho dílčí implikace.
- $\mathcal{B}\Rightarrow\mathcal{A}$ je tzv. $v\check{e}ta$ obrácená k větě $\mathcal{A}\Rightarrow\mathcal{B}$, kde \mathcal{A},\mathcal{B} jsou libovolné formule výrok. nebo pred. počtu
- $\neg \mathcal{B} \Rightarrow \neg \mathcal{A}$ je tzv. *věta obměněná* k větě $\mathcal{A} \Rightarrow \mathcal{B}$, kde \mathcal{A}, \mathcal{B} jsou libovolné formule výrok. nebo pred. počtu

Přímý důkaz

- Ověřujeme pravdivost tvrzení $A \Rightarrow B$
- Využíváme přitom zákona tranzitivity implikace ve zobecněném tvaru
- $[(A_1 \Rightarrow A_2) \land (A_2 \Rightarrow A_3) \land \cdots \land (A_{n-1} \Rightarrow A_n)] \Rightarrow (A_1 \Rightarrow A_n), n \ge 2$

Přímý důkaz

Příklad 1.8

Tvrzen'e Je-li U vnitřním bodem trojúhelníka ABC, pak platí |AU| + |BU| + |CU| > s, kde s je polovina obvodu ΔABC .

Důkaz:

 A_1 : U je vnitřním bodem trojúhelníka ABC.

 \Rightarrow

 A_2 : U neleží na žádné ze stran AB, BC, CA.

 \Rightarrow

$$A_3$$
: Pro body A, B, C, U platí nerovnosti
$$|AU| + |UB| > |AB|,$$

$$|BU| + |UC| > |BC|,$$

$$|CU| + |UA| > |CA|.$$

 A_4 : Pro body A, B, C, U platí |AU| + |BU| + |CU| > s.

Důkaz matematickou indukcí

• Speciální typ přímého důkazu

Princip matematické indukce

Nechť

- V(x) je VF s oborem proměnnosti **N**,
- V(1) je pravdivý výrok,
- pravdivost V(k) implikuje pravdivost V(k+1) pro každé $k \ge 1$.

Pak V(n) je pravdivý výrok pro každé $n \in \mathbf{N}$.

Důkaz matematickou indukcí

Příklad 1.9

Tvrzení: Platí, že $6|n^3 - n$ pro každé $n \in \mathbb{N}$.

- Označme $V(x) : (6|x^3 x; x \in \mathbf{N}).$
- V(1) je pravdivý výrok.
- Nechť V(k) je pravda pro nějaké přirozené $k \ge 1$.
- Pak ale

$$(k+1)^3 - (k+1) = k^3 - k + 3k(k+1)$$

a protože 6 | 3k(k+1) a podle předchozího předpokladu i $6|k^3-k$, je i V(k+1) pravdivý výrok.

Důkaz sporem

- Ověřujeme pravdivost tvrzení $A \Rightarrow B$.
- $(A \Rightarrow B) \Leftrightarrow \neg(A \land \neg B)$ je tautologie.

• Idea: Dokážeme-li, že $ph((A \land \neg B) \Rightarrow C) = 1$ v situaci, kdy ph(C) = 0, musí platit, že $ph(A \land \neg B) = 0$.

$$\Rightarrow \\ \text{Odtud } ph(\neg(A \land \neg B)) = 1. \\ \Rightarrow \\ \text{Tzn. } ph(A \Rightarrow B)) = 1.$$

• Jinými slovy: Dojdeme-li z předpokladu $A \land \neg B$ k nějakému nepravdivému důsledku, pak tento předpoklad nemůže být pravdivý, tedy jeho negace, která je logicky ekvivalentní s $A \Rightarrow B$, musí být pravdivý výrok.

Důkaz sporem

Příklad 1.10

Tvrzení: Existuje nekonečně mnoho prvočísel. (Jestliže prvočíslo je přirozené číslo mající pouze dva dělitele, sebe sama a jedničku, pak takových čísel je nekonečně mnoho.)

Důkaz (Aristoteles):

- A: Prvočíslo je přirozené číslo mající pouze dva dělitele, sebe sama a jedničku.
- B: Prvočísel je nekonečně mnoho.
- Předpokládejme, že by existovalo pouze konečně mnoho prvočísel.
- Uvažujme jejich součin a přičtěme k němu jedničku. Toto číslo nebude dělitelné žádným z existujících prvočísel (zbytek 1), tedy bude mít pouze dva dělitele, sama sebe a jedničku.
- Nutně se potom ale musí jednat o prvočíslo.
- Což je spor s naším předpokladem.

4 Doporučená literatura

Obsah

Obsah

Reference

- [1] Bican, L. Lineární algebra SNTL Praha, 1972.
- [2] Bican, L. Lineární algebra v úlohách SPN Praha, 1979.
- [3] Birkhoff, G., Mac Lane, S. Algebra *The Macmillan Company New York*, 1968.
- [4] Hort, D., Rachůnek, J. Algebra I VUP Olomouc, 2003.

Reference

- [1] Halaš, R., Chajda, I. Cvičení z algebry VUP Olomouc, 1999.
- [2] Katriňák, T. Algebra a teoretická aritmetika (1) Alfa Bratislava, 1985.
- [3] Krutský, F. Algebra I UP Olomouc, 1995.