Lectures

Ilia Kamyshev

January 5, 2021

Contents

1	\mathbf{The}	e Learning Problem	1
	1.1	Introduction]
	1.2	Formal definition of learning	2

1 The Learning Problem

1.1 Introduction

It is assumed that training data is randomly generated. It is also assumed that there is a probability distribution P defined on Z. P is fixed and unknown for given problem. A sequence of labelled examples of the form (x,y) is presented to the neural network during training. For some positive integer m there is training sample:

$$z = ((x_1, y_1), \dots, (x_m, y_m)) = (z_1, \dots, z_m) \in Z^m$$

Random training sample of length m is an element of Z^m distributed according to the product probability distribution P^m . Let's denote the set of all functions the network can approximate as H. Then, an *error* of $h \in H$ will be:

$$error_P(h) = P\{(x,y) \in Z : h(x) \neq y\}$$

The sample error (observed error) is defined as:

$$error_z(h) = \frac{1}{m} |\{i : 1 \le i \le m \text{ and } h(x_i) \ne y_i\}|$$

Given h after the training is hypothesis (the error of this function should have minimum value), so:

$$opt_P(H) = \inf_{g \in H} error_P(g)$$

We may say that h is ϵ – good if for $\epsilon \in (0, 1)$:

$$error_P(h) < opt_P(H) + \epsilon$$

1.2 Formal definition of learning

Let's denote δ as a confidence parameter to ensure that the learning algrotihm will be ϵ – good with probability at least $1 - \delta$. Suppose that H maps from a set X to $\{0,1\}$. A learning algorithm L for H is a function:

$$L:\bigcup_{m=1}^{\infty}Z^m\to H$$

So if z is a training sample drawn randomly from distribution P^m , then the hypothesis L(z) is such that:

$$error_P(L(z)) < opt_P(H) + \epsilon$$

In other words:

$$P^{m}\{error_{P}(L(z)) < opt_{P}(H) + \epsilon\} \ge 1 - \delta$$