区近傍系

(X, dx), (Y, dx) は距離空間であると仮定する,

A∈Xとを>のに対して,

 $U_{\varepsilon}(a) = U_{\varepsilon}^{\chi}(a) = \{ \chi \in \chi \mid d\chi(\chi, a) < \varepsilon \}$

をみのXにかけるを近傍(E-neighborhood)と呼ぶ、

(UE(a) (E>0) を点の <u>E近傍至 (System of E-neighborhoods of a)</u>と呼ぶ、

「距離空間にかける点列の収束や写像の連続性は, 距離函数を直接的に使わずに, と近傍至の言葉だけを使って言い直すことができる。

注意 これから、このパターンをくりかえす、 距離空間の概念もすでにかなり抽像化されているが、 応用名を増やすためにさらに進んだ抽像化を行う、

点到の収車 X内の点到(ans) と点deXについて,

- (1) {an>n=1 は d に収車する
- 性意のを>Oに対い、あるNか存在して、n≥Nならは"dx(an,x)<を、
- \Leftrightarrow 点点の任意のと近傍 $U_{\epsilon}(d)$ に対して、ある N かが存在して、 $\{\alpha_{h}\}_{n=1}^{n}$ $CU_{\epsilon}(d)$
- (2) {an)n=1 は d に 収束しない
- 巻 ある 5>0 かで存在して, 任意のNに対して, あるn≥Nで、故(an,d)≥をも みたすものかで存在する。
- \iff 点はのあると近傍 $U_{\epsilon}(a)$ か存在して、任意のN に対して $\{a_n\}_{n=N}^{\infty}$ \downarrow $U_{\epsilon}(\alpha)$
- \iff $\int \mathbb{L}_{\xi}(d)$ n ある ξ 近傍 $U_{\xi}(d)$ か 存在して, $U_{\xi}(d)$ に 含まれない a_n は 無限個 ある.

写像の連続性 f:X→Y について,

(1) チは連続である

単近任意のQ∈Xと任意のを>0に対して、
あるる>0が存在して、X∈Xかっdx(x,a)<るならは"dy(f(x),f(a))<を、
</p> 台(任意の $\alpha \in X$ と $f(\alpha)$ の任意の ϵ 近傍 $U_{\epsilon}^{Y}(f(\alpha))$ に対して、 α のある δ 近傍 $U_{\delta}^{X}(\alpha)$ か存在して、 $f(U_{\delta}^{X}(\alpha))$ \subset $U_{\epsilon}^{Y}(f(\alpha))$ 、

(2) 千は連発でない

はまれるにはまれるにはなるのが存在して、 (仕室の $\delta > 0$ に好して、ある $X \in X$ で $d_X(X, \alpha) < \delta$ かっ $d_Y(f(x), + (\alpha)) \ge \epsilon$ となるものかで存在する。

問題 以上で述べたことをさらに整理したり、詳しくしたりして、 ノートにまとめよ、そのときに、すべての説明に図を追加せよ、 囗 図を描くことは非常に大事です。

