BÀI 46: LUYỆN TẬP: ANĐEHIT-XETON- AXIT CACBOXYLIC

I. MUC TIÊU:

1. Kiến thức: Củng cố kiến thức về anđehit, axit cacboxylic

2.Kĩ năng: Rèn luyện kĩ năng:

- Viết phương trình hoá học
- Phân biệt axit, anđehit
- 3. Thái độ: Rèn luyện tính cẩn thận, khả năng trình bày, khả năng tư duy của học sinh

4. Phát triển năng lực

- Phát triển năng lực phát hiện và giải quyết vấn đề
- Phát triển năng lực sáng tạo và làm việc nhóm

II. PHƯƠNG PHÁP:

- Dạy học phát hiện và giải quyết vấn đề
- PPDH đàm thoại tái hiện

III. CHUẨN BỊ GIÁO CỤ:

- 1. Giáo viên: Giáo án
- 2. Học sinh: Chuẩn bị bài mới

IV. TIẾN TRÌNH BÀI DẠY:

- 1. Ôn định lớp: Kiểm tra sĩ số, đồng phục...
- 2. Kiểm tra bài cũ: Kết hợp kiểm tra trong bài

3. Nội dung:

HOẠT ĐỘNG THAY VA TRÒ		NOI DUNG
_	I. Kiến thức o	cần nắm:
Hoạt động 1: Hệ thống hoá kiến thức về axit cacboxylic - GV dùng câu hỏi vấn đáp HS để hoàn chỉnh theo bảng	Cấu tạo	AXIT CACBOXYLIC R-COOH (R: C _x H _y ; H; - COOH)
HS trả lời theo các câu hỏi của GV. Và lấy thí dụ	Phân loại	 Theo đặc điểm của R: no, không no, thơm. Theo số lượng nhóm chức trong phân tử: đơn chức, đa chức.
	Tên thay thế	- Tên = Axit + Tên hiđrocacbon no tương ứng với mạch chính + oic. Thí dụ: HCOOH, CH ₃ COOH Axit metanoic, Axit etanoic

Hoạt động 2:
- Hs thảo luận 3', đại diện lên
bảng trình bày, hs khác nhận xét

Gv đánh giá

HD: Hỗn hợp 2 axit chưa biết số mol, giải hệ phương trình

Điều chế	1. Phương pháp lên men giấm
	(phương pháp cổ truyền)
	$C_2H_5OH \xrightarrow{\text{Men giấm}}$
	CH ₃ COOH+H ₂ O
	2. Oxi hoá anđehit axetic
	$2\text{CH}_3\text{CHO} + \text{O}_2$
	2CH ₃ COOH
	3. Oxi hoá ankan
	Tổng quát:
	$2R - CH_2 - CH_2 - R^1 + 5O_{2MNN}$
	$2R-COOH + 2R^1-COOH + 2H_2O$
	Thí du:
	2CH ₃ CH ₂ CH ₂ CH ₃
	ANKAN ACII COOII
	ANKEN H2, XI, I° ANKIN 4CH3COOH
	Butan
	$+2H_2O$
	4. Từ metan (hoặc metanol pp
	hiện đại)
	CH ₄ ANEAN CH ₃ OH
	CH ₃ COOH
Tính chất	1. Tính axit: Tác dụng với quì
	tím, kim loại trước H ₂ , bazo, oxit
	bazo, muối.
	Thí dụ:
	2. Tác dụng với ancol tạo este.
	Thí dụ: TQ:
	RC OOH + H O-R' t^0 , xt RCOOR' + H ₂ C

II. <u>Bài tâp</u>:

<u>Bài tâp 1</u>:Bằng phương pháp hoá học, phân biệt các chất sau: anđehit axetic, ancol etylic, axit axetic, đimetylete?

Giải:

- Dùng quì tím →axit
- Dung dịch AgNO₃/NH₃→anđehit
- Na \rightarrow ancol

<u>Bài tâp 2</u>: Lấy a gam hỗn hợp gồm CH₃COOH và C₂H₅COOH tiến hành thí nghiệm sau:

TN1: Cho a gam hỗn hợp tác dụng với Na dư thu

được 336ml khí H₂ đkc TN2: Để trung hoà hết a gam hỗn hợp thì cần vừa

đủ V ml dd NaOH 0,1M. Cô cạn dung dịch sau pư thu được 2,6 gam muối khan. Hãy tính % khối lượng mỗi axit trong hỗn hợp và giá trị V?

Giải:

Gọi x, y là số mol CH₃COOH và C₂H₅COOH TN1:

 $C_2H_5COOH + Na \rightarrow C_2H_5COONa + \frac{1}{2}H_2$ vmol $\frac{1}{2}H_2$

$$x/2 + y/2 = \sum_{ANKAN \atop M, K^2 + M, K^2} ANKADIEN} ANKADIEN \Leftrightarrow x + y = 0.03 (1)$$

TN2:

 $CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$

x mol x mol x mol

 $C_2H_5COOH + NaOH \rightarrow C_2H_5COONa + H_2O$

y mol y mol y mol

$$m_{muoi} = 82x + 96y = 2,6(2)$$

Từ (1) và (2) ta có
$$\begin{cases} x = 0.02 \\ y = 0.01 \end{cases}$$

$$m_{CH_3COOH} = 60.0, 02 = 1, 2(g)$$

$$m_{C_2H_5COOH} = 74.0,01 = 0,74(g)$$

$$\%m_{CH_3COOH} = \frac{1,2.100}{1,2+0,74} = 61,9(\%)$$

$$% m_{C_2H_5COOH} = 100 - 61,9 = 38,1(%)$$

Số mol NaOH=0,03 → V=0,03:0,1=0,3(1)

4. Củng cố: Trong bài

V. Dặn dò:

- Nắm vững phương pháp giải các bài tập
- Chuẩn bị bài thực hành số 6