

Module 6
Lecture: Basics of Power Amplifiers and Mixers

Vojkan Vidojkovic

Where innovation starts

Outline

- RF specifications
 - Gain
 - Noise
 - Recap: thermal noise, noise figure, constant noise circles
 - Linearity
- Transceiver functions
- Basics of mixers
 - RX case
 - TX case
- Basics of power amplifiers

Learning Objectives

- Understand RF specifications
- Recap <u>noise</u>, <u>noise figure and constant noise circles</u>
- Be able to explain <u>transceiver functions</u>
- Understand operation of <u>mixers in time and frequency</u> domain for
 - RX case
 - TX case
- Understand <u>principle of switching mixer</u>
- Understand principle of <u>power generation</u>
- Be able to explain <u>power amplifier classes</u>

Literature

- Slides from this lecture have been based on books:
 - Behzad Razavi RF Microelectronics
 - RF specifications chapter 2
 - Mixers -> chapter 6
 - Power amplifiers -> chapter 12
 - Vojkan Vidojkovic Adaptive Multistandard Front-ends
 - Image rejection, transceiver functions chapter 2

Outline

- RF specifications
 - Gain
 - Noise
 - Recap: thermal noise, noise figure, constant noise circles
 - Linearity
- Transceiver functions
- Basics of mixers
 - RX case
 - TX case
- Basics of power amplifiers

RF systems – transceiver block diagram

TRX functions

Data conversion
Filtering/selectivity
Frequency conversion
Amplification
Frequency synthesis

Legend

RF - radio frequency

BB - baseband

MN – matching netwok

LNA - low noise amplifier

MIX - mixer

FIL - filter

PA – power amplifier

ADC - analog to digital converter

DAC - digital to analog converter

DSP - digital signal processing

PLL – phased locked loop

RF specifications

- Small signal
 - Gain
 - Noise figure (NF)
 - Input third-order intercept point
 - Input second order intercept point
- Large signal
 - 1-dB compression point

Linearity specifications

Why do we need gain?

- Gain is required for signal conditioning
- Module 4 was dedicated to amplifier gain

Why do we need to analyze noise?

- Link budget allows to calculate received signal power S across a wireless link
- To transmit information across a wireless link, the received signal power must be significantly larger than the noise power N.
- The ratio between the signal power and the noise power is called "Signal-to-noise ratio" SNR:

$$SNR = \frac{S}{N}$$

 If we cannot distinguish the signal from the noise we cannot extract the information!

White noise: Representation of a resistor as a noiseless resistor and a noise voltage source

Available noise power:

$$P_n = \frac{V_N^2}{4R_N} = k_B T B$$

What is the noise power at room temperature (300 K) for a bandwidth of 1Hz? Calculate it in W as well as in dBm.

$$k_B = 1.38 \cdot 10^{-23} \frac{kgm^2}{s^2 K}$$
 $T(K) = T({}^{o}C) + 273$

Definition: Noise figure

For room temperature input noise level!

$$F = \frac{\frac{S_{i}}{N_{i}}}{\frac{S_{o}}{N_{o}}} = \frac{S_{i}}{S_{o}} \frac{N_{o}}{N_{i}} = \frac{1}{G} \frac{Gk_{B} (T_{0} + T_{e})B}{k_{B}T_{0}B} = 1 + \frac{T_{e}}{T_{0}} > 1$$

NF = 10 Log (F)
$$\begin{cases} NF -> \text{ noise figure (dB)} \\ F -> \text{ noise factor} \end{cases}$$

Cascaded NF: Friis' formula

System with cascaded sub-systems with noise figure F_{m} and available gain $G_{a,m}$

$$F_{total} = 1 + (F_1 - 1) + \frac{F_2 - 1}{G_{a,1}} + \dots + \frac{F_m - 1}{G_{a,1}G_{a,2}\dots G_{a,(m-1)}}$$

Noise figure of an amplifier (1)

- Noise figure of a 2-port amplifier: Normalized equivalent noise resistor:

$$r_n = \frac{R_n}{Z_0}$$

$$F = F_{\min} + \frac{r_N}{g_S} \left| \underline{y}_S - \underline{y}_{opt} \right|^2$$

Source admittance: $\underline{Y}_S = g_S + jb_S$

Minimum noise figure for the chosen bias point: $F_{\min} = \min(F)$

- Expression with the reflection coefficients Γ_{S} and Γ_{opt}

Offset to optimum value

Scaling factor "sensitivity to offest"

$$F = F_{\min} + 4r_{N} \frac{\left|\underline{\Gamma}_{S} - \underline{\Gamma}_{opt}\right|^{2}}{\left(1 - \left|\underline{\Gamma}_{S}\right|^{2}\right) \cdot \left|1 + \underline{\Gamma}_{opt}\right|^{2}}$$

Constant noise circles

Centers:
$$\underline{C}_F = \frac{\Gamma_{opt}}{1+N}$$

Radii:
$$R_{F} = \frac{1}{1+N} \sqrt{N^2 + N(1 - \left|\Gamma_{opt}\right|^2)}$$

With the "Noise figure parameter N" defined as:

$$\Delta F_n' = N = \left(F - F_{\min}\right) \frac{\left|1 + \underline{\Gamma}_{opt}\right|^2}{4r_n} = \frac{\left|\underline{\Gamma}_S - \underline{\Gamma}_{opt}\right|^2}{1 - \left|\underline{\Gamma}_S\right|^2}$$

Constant noisecircles in the source-reflectioncoefficient Smith Chart

Design for specific noise figure

Typically the values of Γ_{opt} , r_n and F_{min} are known for the transistor.

The amplifier specification requires a noise figure F and a gain G.

Procedure:

- 1. Calculate N
- 2. Calculate C_F and R_F
- Draw the constant noise circle for the required F in the Smith chart as well as the input section constant gain circle for several G_S
- 4. Choose a value for Γ_S that is on the desired noise circle and a certain gain circle
- 5. The remaining gain must come from the transistor and the output matching stage

Why do we need to analyse linearity?

- Typical scenario in wireless communications
- Very weak wanted signal in vicinity of strong interferers

SNR degradation due to nonlinearity

Effect of nonlinear devices on the signal

E.g. transistors, diodes

$$v_{out}(t) = v_{out,DC} + a_1 v_{in}(t) + a_2 v_{in}^2(t) + a_3 v_{in}^3(t) + \dots$$

- Harmonic generation (multiples of a fundamental signal)
- Saturation (gain reduction in an amplifier)
- Intermodulation distortion (products of a two-tone input signal)
- Cross-modulation (modulation transfer from one signal to another)
- AM-PM conversion (amplitude variation causes phase shift)
- Spectral regrowth (intermodulation with many closely spaced signals)

1 dB compression point

Second order intercept point: IP2

IIP2: input power where wanted power = second order power (extrapolated point).

Third order intercept point

IIP3: input power where wanted power = the third order power (extrapolated point).

Cascaded IIP3 formula

System with cascaded sub-systems with input IIP3 IIP3_m and available gain G_{a,m}

$$\frac{1}{\text{IIP3}_{\text{total}}} = \frac{1}{\text{IIP3}_{1}} + \frac{G_{a,1}}{\text{IIP3}_{2}} + \dots + \frac{G_{a,1}G_{a,2}...G_{a,(m-1)}}{\text{IIP3}_{m}}$$

Outline

- RF specifications
 - Gain
 - Noise
 - Recap: thermal noise, noise figure, constant noise circles
 - Linearity
- Transceiver functions
- Basics of mixers
 - RX case
 - TX case
- Basics of power amplifiers

Transceiver functions

Analog transceiver functions

Spectra of cosine wave

Time domain

$$x(t) = A\cos(\omega t)$$

$$x(t) = \frac{A}{2}(e^{j\omega t} + e^{-j\omega t})$$

Frequency domain

Outline

- RF specifications
 - Gain
 - Noise
 - Recap: thermal noise, noise figure, constant noise circles
 - Linearity
- Transceiver functions
- Basics of mixers
 - RX case
 - TX case
- Basics of power amplifiers

Mixing function in time domain – RX case

$$x_{if}(t) = A_{rf}\cos(\omega_{rf}t) A_{lo}\cos(\omega_{lo}t)$$

$$x_{if}(t) = \frac{1}{2} A_{rf} A_{lo} \left(\cos\left(\left(\omega_{rf} + \omega_{lo}\right)t\right) + \cos\left(\left(\omega_{rf} - \omega_{lo}\right)t\right)\right)$$

$$A_{if} = \frac{1}{2} A_{rf} A \square lo$$

$$\omega_{if} = \omega_{rf} - \omega_{lo}$$

Due to low-pass filter

Mixing function in frequency domain – RX case

Time domain

$$x_{if}(t) = x_{rf}(t) x_{lo}(t)$$
multiplication

Frequency domain

$$X_{if}(\omega) = X_{rf}(\omega) * X_{lo}(\omega)$$
convolution

Image problem – time domain (info only)

$$x_{rf}(t) = 2A_w \cos(\omega_w t) + 2A_i \cos(\omega_i t)$$
 (2.7)

 $\underline{A_w}$ and $\underline{A_i}$ are half of the amplitudes of the <u>wanted</u> and <u>unwanted</u> signal, respectively. The sinusoidal LO signal can be expressed as:

$$x_{lo}(t) = 2A_{lo}\cos(\omega_{lo}t) \tag{2.8}$$

The signal at the mixer output (x(t)) is obtained by multiplying the signals $x_{rf}(t)$ and $x_{lo}(t)$:

$$x(t) = x_{rf} \cdot x_{lo} \tag{2.9}$$

Substituting (2.7) and (2.8) into (2.9), x(t) can be expressed as:

$$x(t) = 2[A_w A_{lo} \cos((\omega_w + \omega_{lo})t) + A_w A_{lo} \cos((\omega_w - \omega_{lo})t)] + 2[(A_i A_{lo} \cos((\omega_i + \omega_{lo})t) + A_i A_{lo} \cos((\omega_i - \omega_{lo})t)]$$
(2.10)

The high frequency components that are located at the frequencies $\omega_w + \omega_{lo}$ and $\omega_i + \omega_{lo}$ have to be filtered out. After the filtering, the down-converted signal becomes:

$$x_{if}(t) = 2A_{wd}\cos((\omega_w - \omega_{lo})t) + 2A_{id}\cos((\omega_i - \omega_{lo})t)$$
 (2.11)

 A_{wd} ($A_{wd} = A_w A_{lo}$) and A_{id} ($A_{id} = A_i A_{lo}$) are half of the amplitudes of the down-converted wanted and unwanted signals, respectively. In the case that

$$\omega_i \le \omega_{lo} \le \omega_w$$
 (2.12)

and

$$\omega_{lo} - \omega_i = \omega_w - \omega_{lo} \tag{2.13}$$

niversiteit Technology

the unwanted signal is down-converted to the same IF as the wanted signal.

Image problem – frequency domain (info only)

versiteit echnology

Image problem – summary (info only)

- Image signal is unwanted signal
- Image signal is located at frequency $\omega_{lo}-\omega_{if}$
- Image signal is down-converted to the same ω_{if} as wanted signal
- Image signal degrades SNR

Spectrum of square wave (info only)

Fundamental harmonic can be used for mixing as LO

Implementation of mixing by switching (info only)

 Mixing can be implemented by real multiplication, but using switching is the most common way how mixing is implemented in practice

Gilbert cell mixer – operating principle (info only)

Figure 6.44 (a) Equivalent circuit of active mixer, (b) switching waveforms.

Since $V_{out} = V_{DD} - I_1R_1 - (V_{DD} - I_2R_2)$, we have for $R_1 = R_2 = R_D$,

$$V_{out}(t) = I_{RF}R_D \left[S\left(t - \frac{T_{LO}}{2}\right) - S(t) \right]. \tag{6.57}$$

From Fig. 6.44(b), we recognize that the switching operation in Eq. (6.57) is equivalent to multiplying I_{RF} by a square wave toggling between -1 and +1. Such a waveform exhibits a fundamental amplitude equal to $4/\pi$, 4 yielding an output given by

$$V_{out}(t) = I_{RF}(t)R_D \cdot \frac{4}{\pi}\cos\omega_{LO}t + \cdots$$
 (6.58)

If $I_{RF}(t) = g_{m1}V_{RF}\cos\omega_{RF}t$, then the IF component at $\omega_{RF} - \omega_{LO}$ is equal to

Mixer noise figure (info only)

- The mixer exhibits a flat frequency response at its input from the image band to the signal band.
- The noise figure of a noiseless mixer is 3 dB. This quantity is called the "single-sideband" (SSB) noise.
- In practice, taking into account mixer noise, noise figure is much higher, around 10dB

Mixing function in time domain – TX case

$$x_{if}(t) = A_{if}\cos(\omega_{if}t)$$

$$x_{lo}(t) = A_{lo}\cos(\omega_{lo}t)$$

$$x_{lo}(t) = A_{lo}\cos(\omega_{lo}t)$$

$$LO (local oscillator) signal$$

$$x_{rf}(t) = A_{if}\cos(\omega_{rf}t) A_{lo}\cos(\omega_{lo}t)$$

$$x_{rf}(t) = \frac{1}{2}A_{if} A_{lo}(\cos\left((\omega_{if} + \omega_{lo})t\right) + \cos\left((\omega_{if} + \omega_{lo})t\right))$$

$$A_{rf} = \frac{1}{2}A_{if} A \boxed{lo}$$
Due to band-pass filter **TU**/e Technische University of Technology

 $\omega_{rf} = \omega_{if} + \omega_{lo}$

Mixing function in frequency domain – TX case

Time domain

$$x_{rf}(t) = x_{if}(t) x_{lo}(t)$$
multiplication

Frequency domain

$$X_{rf}(\omega) = X_{if}(\omega) * X_{lo}(\omega)$$
convolution

Outline

- RF specifications
 - Gain
 - Noise
 - Recap: thermal noise, noise figure, constant noise circles
 - Linearity
- Transceiver functions
- Basics of mixers
 - RX case
 - TX case
- Basics of power amplifiers

TX – output power requirements

- Antenna is a load for a PA
- > PA is expected to deliver power to the antenna

'ersiteit chnology

Power generation - limitation

- ightharpoonup Output power $P_{out@R_L} = \frac{V_{out}^2}{R_L}$
- Output power limited by load R_L and supply V_{DD}
- Supply V_{DD} is limited by technology
- The only way to improve output power is selecting right R₁

Optimum load for power amplifier (info only)

- ightharpoonup Optimum load $R_L = \frac{2V_{DD} V_{MIN}}{I_{MAX}}$
- \triangleright Load-pull simulations provide R_L

Load-pull simulations

- Optimum load found by sweeping
- Load-pull simulations results in constant power contours

Matching network for PA

Matching network transform antenna impedance to optimum load

PA performance parameters: P_{1dB,out}, P_{MAX}

➤ Output 1-dB compression point: P_{1dB,out}

➤ Maximum output power: P_{MAX}

PA performance parameters: efficiency

The "drain efficiency" (for FET implementations) or "collector efficiency" (for bipolar implementations) is defined as:

$$\eta = \frac{P_L}{P_{supp}}$$

where P_L denotes the average power delivered to the load and P_{supp} the average power drawn from the supply voltage.

"Power-added efficiency", PAE, defined as

$$PAE = \frac{P_L - P_{in}}{P_{supp}}$$

where Pin is the average input power

PA classes

- Based on operating point PAs can be divided into:
 - Class A
 - Class B
 - Class C
 - Class D
 - Class F
 - > Class E

Out of scope for this course

PA operation in class A (info only)

- Class A amplifiers are defined as circuits in which the transistor(s) remain on and operate linearly across the full input and output range.
- If linearity is required, then class A operation is necessary.

The maximum drain efficiency of class A amplifiers:

$$\eta = \frac{V_{DD}^2/(2R_{in})}{V_{DD}^2/R_{in}} = 50\%.$$

PA operation in class B (info only)

Conduction Angle is defined as the percentage of the signal period during which the transistor remain on multiplied by 360 °

➤ The traditional class B PA employs two parallel stages each of which conducts for only 180°, thereby achieving a higher efficiency than the class A counterpart.