

Revieu

Plant Preparations and Compounds with Activities against Biofilms Formed by *Candida* spp.

Tomasz M. Karpiński ^{1,*}, Marcin Ożarowski ², Agnieszka Seremak-Mrozikiewicz ^{3,4,5}, Hubert Wolski ^{3,6} and Artur Adamczak ⁷

- Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland; marcin.ozarowski@iwnirz.pl
- Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland; asm@data.pl (A.S.-M.); hubertwolski@wp.pl (H.W.)
- ⁴ Laboratory of Molecular Biology in Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, National Research Institute, Kolejowa 2, 62-064 Plewiska, Poland
- Division of Gynecology and Obstetrics, Podhale Multidisciplinary Hospital, Szpitalna 14, 34-400 Nowy Targ, Poland
- Department of Botany, Breeding and Agricultural Technology of Medicinal Plants, Institute of Natural Fibres and Medicinal Plants, National Research Institute, Kolejowa 2, 62-064 Plewiska, Poland; artur.adamczak@iwnirz.pl
- * Correspondence: tkarpin@ump.edu.pl; Tel.: +48-61-854-61-38

Abstract: Fungi from the genus *Candida* are very important human and animal pathogens. Many strains can produce biofilms, which inhibit the activity of antifungal drugs and increase the tolerance or resistance to them as well. Clinically, this process leads to persistent infections and increased mortality. Today, many Candida species are resistant to drugs, including C. auris, which is a multiresistant pathogen. Natural compounds may potentially be used to combat multiresistant and biofilm-forming strains. The aim of this review was to present plant-derived preparations and compounds that inhibit Candida biofilm formation by at least 50%. A total of 29 essential oils and 16 plant extracts demonstrate activity against Candida biofilms, with the following families predominating: Lamiaceae, Myrtaceae, Asteraceae, Fabaceae, and Apiacae. Lavandula dentata (0.045-0.07 mg/L), Satureja macrosiphon (0.06-8 mg/L), and Ziziphora tenuior (2.5 mg/L) have the best antifungal activity. High efficacy has also been observed with Artemisia judaica, Lawsonia inermis, and Thymus vulgaris. Moreover, 69 plant compounds demonstrate activity against Candida biofilms. Activity in concentrations below 16 mg/L was observed with phenolic compounds (thymol, pterostilbene, and eugenol), sesquiterpene derivatives (warburganal, polygodial, and ivalin), chalconoid (lichochalcone A), steroidal saponin (dioscin), flavonoid (baicalein), alkaloids (waltheriones), macrocyclic bisbibenzyl (riccardin D), and cannabinoid (cannabidiol). The above compounds act on biofilm formation and/or mature biofilms. In summary, plant preparations and compounds exhibit anti-biofilm activity against Candida. Given this, they may be a promising alternative to antifungal drugs.

Keywords: *Candida*; biofilm; treatment; antifungals; natural compounds; essential oil; extract; minimal inhibitory concentration (MIC)

check for updates

Citation: Karpiński, T.M.; Ożarowski, M.; Seremak-Mrozikiewicz, A.; Wolski, H.; Adamczak, A. Plant Preparations and Compounds with Activities against Biofilms Formed by *Candida* spp. *J. Fungi* **2021**, *7*, 360. https:// doi.org/10.3390/jof7050360

Academic Editors: Célia F. Rodrigues and Jesus A. Romo

Received: 20 March 2021 Accepted: 1 May 2021 Published: 5 May 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

The genus *Candida* contains about 150 species; however, most are environmental organisms. The most medically important is *Candida albicans*, which accounts for about 80% of infections. *C. albicans* causes more than 400,000 cases of bloodstream life-threatening infections annually, with a mortality rate of about 42% [1]. *Candida* non-albicans species that

J. Fungi **2021**, 7, 360 2 of 13

are mainly responsible for infections are *C. glabrata*, *C. parapsilosis*, *C. tropicalis*, *C. krusei*, and *C. dubliniensis* [2]. Less frequently identified are *C. guilliermondii*, *C. lusitaniae*, *C. rugosa*, *C. orthopsilosis*, *C. metapsilosis*, *C. famata*, *C. inconspicua*, and *C. kefyr* [3].

C. albicans is a member of the commensal microflora. It colonizes the oral mucosal surface of 30–50% of healthy people. The rate of carriage increases with age and in persons with dental prostheses up to 60% [4–6]. Opportunistic infection caused by *Candida* species is termed candidiasis. At least one episode of vulvovaginal candidiasis (or thrush) concerns 50 to 75% of women of childbearing age [7]. Candidiasis can also affect the oral cavity, penis, skin, nails, cornea, and other parts of the body. In immunocompromised persons, untreated candidiasis poses the risk of systemic infection and fungemia [5,8]. *Candida* can be an important etiological factor in the infection of chronic wounds that are difficult to treat; this is mainly related to the production of biofilm [9].

Treatment of candidiasis depends on the infection site and the patient's condition. According to guidelines, vulvovaginal candidiasis should be treated with oral or topical fluconazole; however, regarding C. glabrata infection, topical boric acid, nystatin, or flucytosine is suggested. In oropharyngeal candidiasis, the treatment options include clotrimazole, miconazole, or nystatin, and in severe disease, fluconazole or voriconazole. In candidemia and invasive candidiasis, the drugs of choice are echinocandins (caspofungin, micafungin, anidulafungin), fluconazole, or voriconazole; in resistant strains, amphoteticin B is used. In selected cases of candidemia caused by *C. krusei*, voriconazole is recommended [10–12]. More details can be found in the Guidelines of the Infectious Diseases Society of America [12] and the European Society of Clinical Microbiology and Infectious Diseases [11]. Increasingly, Candida species are becoming resistant to drugs. Marak and Dhanashree [13] tested the resistance of 90 Candida strains isolated from different clinical samples, such as pus, urine, blood, and body fluid. Their study revealed that about 41% of C. albicans strains are resistant to fluconazole and voriconazole. Simultaneously, about 41% of C. tropicalis strains are resistant to voriconazole and about 36% of strains to fluconazole. In strains of C. krusei, about 23% are resistant to fluconazole and about 18% to voriconazole. Rudramurthy et al. [14] studied resistance in C. auris, which is considered a multiresistant pathogen. Among 74 strains obtained from patients with candidemia, over 90% of strains were resistant to fluconazole and about 73% to voriconazole. Virulence factors of Candida species include the secretion of hydrolases, the transition of yeast to hyphae, phenotypic switching, and biofilm formation [15,16]. All microorganisms in biofilm form are more resistant to antimicrobial and host factors, which leads to difficulties in eradication [17]. It has also been shown that resistance to drugs increases significantly in the case of Candida biofilm occurrence. Biofilm prevents the spread of antifungals; moreover, fluconazole is bound by the biofilm matrix [18]. The formation of a Candida biofilm during infection increases mortality, length of hospital stay, and cost of antifungal therapy [19].

Due to the above, new antifungal drugs are sought that could effectively combat not only planktonic fungi but also fungal biofilms. The natural compounds offer promise, with many acting on *Candida* species or biofilms in vitro [20].

The aim of this review was to present plant-derived natural compounds that have an effect against biofilms formed by *Candida* species.

2. Materials and Methods

In this review, publications available in PubMed and Scopus databases and through the Google search engine were taken into account. The following keywords and their combinations were used: "antifungal," "Candida," "anti-biofilm," "biofilm," "plant," "compound," "extract," and "essential oil." The principal inclusion criterion was the inhibition of biofilm formation by at least 50%. We focused on biofilm inhibition assays, in which the time of culture allowed for *Candida* biofilm maturation was at least 24 hours. Articles from the year 2000 to the present were taken into account. All articles published in predatory journals were rejected.

J. Fungi **2021**, *7*, 360 3 of 13

3. Results and Discussion

3.1. Plant Preparations That Display Activity against Candida Biofilms

The present review includes 60 articles in which *Candida* biofilm formation was inhibited by at least 50%. It has been shown that preparations from 34 plants demonstrate activity against *Candida* biofilms. Among them were 29 essential oils and 16 extracts. The plants from the following families dominated: Lamiaceae (6 species in 5 genera), Myrtaceae (5 species in 4 genera), Asteraceae (4 species in 4 genera), Fabaceae (4 species in 3 genera), and Apiacae (4 species in 2 genera).

Plants from the Lamiaceae family had the best antifungal activity, including *Lavandula dentata* (0.045–0.07 mg/L) [21], *Satureja macrosiphon* (0.06–8 mg/L) [22], and *Ziziphora tenuior* (2.5 mg/L) [23]. *Artemisia judaica* (2.5 mg/L) from the Asteraceae family [24], *Lawsonia inermis* (2.5–12.5 mg/L) from the Lythraceae family [25], and *Thymus vulgaris* (12.5 mg/L) from the Lamiaceae family [26] likewise exhibited good antifungal activity (Table 1). All preparations were essential oils, with the exception of *Lawsonia inermis*, which was an extract. Most of the plant preparations presented in Table 1 acted on biofilm formation and/or mature biofilms.

Table 1. Antifungal (MICs) and anti-biofilm (inhibition >50%) activity of plant preparations (essential oils or extracts).

Name of Plant (Family)	Main Compounds Presented in the Reference (EO: Essential Oil)	Targeted Species of Candida	MICs (mg/L; mL/L)	Inhibition of Biofilm Formation by at Least 50% (mg/L; mL/L)	Inhibited Stage of Biofilm; Method of Biofilm Detection	Ref.
Acorus calamus var. angustatus Besser = A. tatarinowii Schott (Acoraceae)	EO: asaraldehyde, 1-(2,4,5-trimethoxyphenyl)-1,2-propanediol, α -asarone, β -asarone, γ -asarone, acotatarone C	C. albicans	51.2	50–200	Mature biofilm; crystal violet and fluorescence microscopy	[27]
Allium sativum L. (Amaryllidaceae)	Extract: allicin	C. albicans	400	60	Biofilm formation; XTT	[28]
Aloysia gratissima (Aff & Hook).Tr (Verbenaceae)	EO: E-pinocamphone (16.07%), β-pinene (12.01%), guaiol (8.53%), E-pinocarveol acetate (8.19%)	C. albicans	15	500	Biofilm formation; crystal violet	[29]
		C. albicans	1.25	2.5		
Artemisia judaica L.	EO: piperitone (30.4%), camphor	C. guillermondii	1.25	2.5	•	
(Asteraceae)	(16.1%), ethyl cinnamate (11.0%), chrysanthenone (6.7%)	C. krusei	1.25	2.5	Mature biofilm; XTT	[24]
	chrysanthenone (0.770)	C. parapsilosis	1.25	2.5	•	
		C. tropicalis	1.25	2.5	•	
Buchenavia tomentosa Eichler (Combretaceae)	Extract: gallic acid, kaempferol, epicatechin, ellagic acid, vitexin, and corilagin	C. albicans	625	312.5	Biofilm formation and mature biofilm; culture	[30]
Chamaecostus cuspidatus (Nees & Mart.) C.Specht & D.W.Stev. (Costaceae)	Extract: dioscin, aferoside A, aferoside C	C. albicans	250	15.62	Biofilm formation and mature biofilm; MTT	[31]
Cinnamomum verum I. Presl	EO: eugenol (77.22%), benzyl benzoate	C. albicans	1000	150		
(Lauraceae)	(4.53%), trans-caryophyllene (3.39%), acetyl eugenol (2.75%), linalool 2.11%	C. dubliniensis	1000	200	Biofilm adhesion; XTT	[32]
		C. tropicalis	1000	350		
		C. albicans	500	2000		
		C. glabrata	250	1000	•	
Citrus limon (L.) Osbeck	EO: limonene (53.4%), neral (11%), geraniol (9%), <i>trans</i> -limonene oxide	C. krusei	500	125	Biofilm formation and	[33]
(Rutaceae)	(7%), nerol (6%)	C. orthopsilosis	500	1000	mature biofilm; XTT - -	[00]
		C. parapsilosis	500	2000		
		C. tropicalis	250	2000		
Copaifera paupera (Herzog) Dwyer (Fabaceae)	Extract: galloylquinic acids, quercetrin, afzelin	C. glabrata	5.89	46.87	Biofilm formation and mature biofilm; XTT	[34]
Copaifera reticulata Ducke (Fabaceae)	Extract: galloylquinic acids, quercetrin, afzelin	C. glabrata	5.89	46.87	Biofilm formation and mature biofilm; XTT	[34]
	EO: 1-decanol (33.91%), E-2-decen-1-ol (23.59%), 2-dodecen-1-ol (13.06%), E-2-tetradecen-1-ol (5.46%)	C. albicans	7	250	Biofilm formation; crystal violet	[29]
Coriandrum sativum L.		C. albicans	15.6	62.5–125		
(Apiaceae)	EO: decanal (19.09%), trans-2-decenal	C. dubliniensis	31.2	62.5–125	Biofilm adhesion;	[35]
	(17.54%), 2-decen-1-ol (12.33%), cyclodecane (12.15%)	C. rugosa	15.6	62.5	crystal violet	[33]
	,,	C. tropicalis	31.2	31.25-250		

J. Fungi **2021**, 7, 360 4 of 13

 Table 1. Cont.

Name of Plant (Family)	Main Compounds Presented in the Reference (EO: Essential Oil)	Targeted Species of Candida	MICs (mg/L; mL/L)	Inhibition of Biofilm Formation by at Least 50% (mg/L; mL/L)	Inhibited Stage of Biofilm; Method of Biofilm Detection	Ref.
Croton eluteria (L.) W.Wright (Euphorbiaceae)	EO: α-pinene (29.37%), β-pinene (19.35%), camphene (10.31%), 1,8-cineole (9.68%)	C. albicans	4000	5–500	Biofilm formation; confocal laser microscopy	[36]
		C. albicans	250	1000		
		C. glabrata	31.25	250	-	
Cupressus sempervirens L.	EO: sabinene (20.3%), citral (20%),	C. krusei	62.5	62.5	Biofilm formation and	
(Cupressaceae)	terpinene-4-ol (15.4%), α -pinene (8%)	C. orthopsilosis	31.25	125	mature biofilm; XTT	[33]
		C. parapsilosis	62.5	500	=	
		C. tropicalis	250	500	_	
Cymbopogon citratus (DC.) Stapf (Poaceae)	EO: no composition	C. albicans	180–360	22.5–180	Biofilm formation; XTT	[37]
Cymbopogon martini (Roxb.) W.Watson (Poaceae)	EO: no composition	C. albicans	16,800	800	Biofilm formation; XTT	[38]
Cymbopogon nardus (L.)	EO: citronellal (27.87%),	C. albicans	1000	2500-5000		
Řendle	geraniol (22.77%), geranial (14.54%),	C. krusei	250-500	2500	Biofilm adhesion; XTT	[39]
(Poaceae)	citronellol (11.85%), neral (11.21%)	C. parapsilosis	500-1000	5000-10,000	-	
Cyperus articulatus L. (Cyperaceae)	EO: α-pinene (5.72%), mustakone (5.66%), α-bulnesene (5.02%), α-copaene (4.97%)	C. albicans	125	250	Biofilm formation; crystal violet	[29]
Eucalyptus sp. (Myrtaceae)	EO: no composition	C. albicans	8	8	Mature biofilm; luminescence	[40]
	EO: 1,8-cineole (75.8%), p-cymene	C. albicans	219	11,250-22,500	- Matura bi-Glass (Cont.)	
Eucalyptus globulus Labill.	(7.5%) , α -pinene (7.4%) , limonene	C. glabrata	219	11,250-22,500	 Mature biofilm; atomic force microscopy 	[41]
(Myrtaceae)	(6.4%)	C. tropicalis	885	11,250-22,500		
	EO: no composition	C. albicans	8400	500	Biofilm formation; XTT	[38]
Eugenia brasiliensis Lam. (Myrtaceae)	Extract: no composition	C. albicans	15.62–31.25	156	Mature biofilm; scanning electron microscopy	[42]
Eugenia leitonii Legrand nom. inval. (Myrtaceae)	Extract: no composition	C. albicans	15.62–250	156	Mature biofilm; scanning electron microscopy	[42]
Helichrysum italicum (Roth) G.Don (Asteraceae)	EO: α -pinene (27.64%), γ -elemene (23.84%), β -caryophyllene (13.05%), α -longipinene (11.25%)	C. albicans	6000	10–500	Biofilm formation; confocal laser microscopy	[36]
Laserpitium latifolium L.	Extract: laserpitine	C. albicans	1250	6300	Mature biofilm;	[43]
(Apiaceae)	Extract inscription	C. krusei	1250	6300	luminescence	[10]
Laserpitium ochridanum	Extract: isomontanolide,	C. albicans	5000	10,000	Mature biofilm;	[43]
Micevski (Apiaceae)	montanolide, tarolide	C. krusei	5000	10,000	luminescence	[10]
Laserpitium zernyi Hayek = L.	Extract: isomontanolide,	C. albicans	7500	15,000	Mature biofilm;	[43]
siler subsp. zernyi (Hayek) Tutin	montanolide, tarolide	C. krusei	7500	37,500	luminescence	[10]
(Apiaceae) Lavandula dentata L. (Lamiaceae)	EO: eucalyptol (42.66%), β -pinene (8.59%), trans- α -bisabolene (6.34%), pinocarveol (6.3%)	C. albicans	0.15-0.18	0.045-0.07	Mature biofilm; XTT	[21]
Lawsonia inermis L. (Lythraceae)	Extract: no composition	C. albicans	10	2.5–12.5	Mature biofilm; MTT	[25]
Lippia sidoides Cham. (Verbenaceae)	EO: thymol (65.76%), p-cymene (17.28%), α-caryophyllene (10.46%), cyclohexanone (6.5%)	C. albicans	250	500	Biofilm formation; crystal violet	[29]
		C. albicans	500	2000		
		C. glabrata	250	2000	-	
Litsea cubeba (Lour.) Pers. (Lauraceae)	EO: limonene (37%), neral (31.4%),	C. krusei	62.5	250	Biofilm formation and	F007
	citral (12%), linalool (4%)	C. orthopsilosis	250	2000	mature biofilm; XTT	[33]
	-	C. parapsilosis	500	1000	-	
		C. tropicalis	1000	2000	- 	
Mentha × piperita L.	EO: menthol (32.93%), menthone (24.41%), 1,8-cineole (7.89%)	C. albicans	1–10	10	Biofilm formation; MTT	[44]
(Lamiaceae)	EO: no composition	C. albicans	11,600	800	Biofilm formation; XTT	[38]
Mikania glomerata Spreng (Asteraceae)	EO: germacrene D (38.29%), α-caryophyllene (9.49%), bicyclogermacrene (7.98%), caryophyllene oxide (4.28%)	C. albicans	250	500	Biofilm formation; crystal violet	[29]

J. Fungi **2021**, 7, 360 5 of 13

Table 1. Cont.

Name of Plant (Family)	Main Compounds Presented in the Reference (EO: Essential Oil)	Targeted Species of Candida	MICs (mg/L; mL/L)	Inhibition of Biofilm Formation by at Least 50% (mg/L; mL/L)	Inhibited Stage of Biofilm; Method of Biofilm Detection	Ref.
		C. albicans	1250-10,000	None or 1250		
Myrtus communis L. (Myrtaceae)	EO: α-pinene (39.8%), 1,8-cineole (24.8%), limonene (10.7%), linalool (6.4%)	C. parapsilosis	1250 to >16,000	1250	No data; no data	[45]
		C. tropicalis	1250-16,000	1250	•	
	Extract: kaempherol-O-dihexoside,	C. albicans	620	10,000		
Ononis spinosa L. (Fabaceae)	kaempherol-O-hexoside-pentoside, kaempherol-O-hexoside,	C. krusei	620	5000	Mature biofilm; luminescence	[46]
	quercetin-O-hexoside-pentoside, acetylquercetin-O-hexoside	C. tropicalis	310	10,000	•	
Pelargonium graveolens L'Hér. (Geraniaceae)	EO: geraniol (42.3%), linalool (20.1%), citronellol (11.1%), menthone (8.0%)	C. albicans	125	4000-8000	Mature biofilm; XTT	[47]
Piper claussenianum (Miq.) C. DC. (Piperaceae)	EO: nerolidols	C. albicans	4100–9600	2400–12,600	Mature biofilm; MTT	[48]
Portulaca oleracea L. (Portulacaceae)	Extract: no composition	C. albicans	10	12.5	Mature biofilm; MTT	[25]
Punica granatum L. (Lythraceae)	Extract: ellagic acid	C. albicans	1000	100-750	Biofilm formation and mature biofilm; crystal violet	[49]
Santolina impressa Hoffmanns. & Link (Asteraceae)	EO: β-pinene (22.5%), 1,8-cineole (10.0%), limonene (9.1%), camphor (8.1%), β-phellandrene (8.0%)	C. albicans	540	70–1050	Biofilm formation; XTT	[50]
Satureja hortensis L. (Lamiaceae)	EO: thymol (45.9%), gamma-terpinen (16.71%), carvacrol (12.81%), p-cymene (9.61%)	C. albicans	200–400	400–4800	Biofilm adhesion, formation, and mature biofilm; MTT	[51]
Satureja macrosiphon (Coss.) =	EO: linalool (28.46%), borneol (16.22%),	C. albicans	0.06-4	0.06-8	Biofilm formation; XTT	[22]
Micromeria macrosiphon Coss. (Lamiaceae)	terpinene-4-ol (14.58%), <i>cis-</i> sabinene hydrate (12.96%)	C. dubliniensis	0.25-4	2–8	,	
Syzygium aromaticum (L.) Merr. & L.M.Perry = Eugenia	EO: no composition	C. albicans	100-200	50	Biofilm formation; XTT	[37]
caryophyllus (Spreng.) Bullock & S.G.Harrison (Myrtaceae)	EO: no composition	C. albicans	48,000	3300	Biofilm formation; XTT	[38]
Thymus vulgaris L.	EO: thymol (54.73%), carvacrol (12.42%), terpineol (4.00%), nerol acetate (2.86%),	C. albicans	1.56–25	12.5	Biofilm formation; absorbance, crystal	[26]
(Lamiaceae)	fenchol (0.5%)	C. tropicalis	25–50	12.5	violet, and scanning electron microscopy	[26]
Warburgia ugandensis Sprague	Extract: ugandenial A, warburganal,	C. albicans	Lack of data	1000	Biofilm formation and mature biofilm; XTT	[52]
(Canellaceae)	polygodial, alpha-linolenic acid ALA	C. glabrata	Lack of data	1000	and confocal laser microscopy	
Ziziphora tenuior L. (Lamiaceae)	EO: pulegone (46.8%), p-menth-3-en-8-ol (12.5%), isomenthone (6.6%), 8-hydroxymenthone (6.2%), isomenthol (4.7%)	C. albicans	1.25	2.5	Mature biofilm; XTT	[23]
Zuccagnia punctata L. (Fabaceae)	Extract: no composition	C. albicans	400	100	Biofilm formation and mature biofilm; XTT and crystal violet	[53]

Legend: MIC—minimal inhibitory concentration; XTT—reduction assay of 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[carbonyl(phenylamino)]-2H-tetrazolium hydroxide; MTT—reduction assay of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide [54,55].

Antibiofilm activity may vary between plants in the same family. For example, in the Lamiaceae family, essential oil from Lavandula dentata acted against C. albicans biofilm at concentrations of 0.045–0.07 $\mu L/mL$ [21], while essential oil from Satureja hortensis acted against the same biofilm at concentrations of 400–4800 mg/L [51]. There may also be large differences within the same species, due to various reasons. This may be influenced by, for example, different research methodologies, the use of different strains of fungi, and different chemical compositions depending on the plant variety, country, and season of harvest. A notable example of such a difference is observed with Mentha \times piperita. In studies by Benzaid et al. [44], essential oil of M. piperita acted against Candida biofilm at a concentration of 10 $\mu L/mL$. However, the work of Agarwal et al. [38] showed that the same essential oil was active at 800 $\mu L/mL$.

Changes in the content of active substances were described by Gonçalves et al. [56]. They showed that in essential oil from *Mentha cervina* collected in August, the amount of

J. Fungi **2021**, 7, 360 6 of 13

isomenthone was 8.7% and pulegone was 75.1%. However, in essential oil collected in February, the ratio of the two compounds reversed and amounted to 77.0% for isomenthone and 12.9% for pulegone. The method of obtaining the compounds likewise had an influence on their content in the final essential oil. In a study by Ćavar et al. [57], the composition of essential oils of *Calamintha glandulosa* differed depending on the extraction method. The level of menthone was 3.3% using aqueous reflux extraction, 4.7% using hydrodistillation, and 8.3% using steam distillation, while the concentration of shisofuran was only 0.1% using hydrodistillation and steam distillation, while aqueous reflux yielded 9.7%.

3.2. Plant Compounds That Display Activity against Candida Biofilm

It has been shown that 69 compounds obtained from plants demonstrate activity against *Candida* biofilms (Table 2). Among these, the most common are monotherpenes (20), followed by sesquiterpene lactones (7) and sesquiterpenes (6). Another big group is also phenolic compounds, including phenols (6), phenolic acids (5), phenolic aldehydes (2), polyphenols (2), and phenolic alcohol (1).

In terms of activity, large differences were found, depending on the authors cited. Eugenol and thymol serve as good examples. Both compounds exhibited excellent activity in some studies (from 12.5 mg/L for eugenol [58] and 1.56 mg/L for thymol [26]), and in other studies, the activity was very poor (up to 80,000 for both [59]). These differences may be related, for example, to a different purity of the compound, a different fungal suspension density, or even to the use of other *Candida* strains with different sensitivities to chemical substances. A number of other factors, such as the type of culture medium, pH of the medium, incubation time, and temperature may likewise influence the antimicrobial activity [20].

According to the European Committee on Antimicrobial Susceptibility Testing (EU-CAST), the antifungal clinical breakpoints are between 0.001 mg/L and 16 mg/L [60]. Using EUCAST guidelines in this review, the most active compounds that inhibit (>50%) *Candida* biofilm formation are lichochalcone A (from 0.2 mg/L) [61], thymol (from 3.12 mg/L) [26], dioscin (from 3.9 mg/L) [31], baicalein (from 4 mg/L) [62], warburganal (4.5 mg/L) [52], pterostilbene, waltheriones and riccardin D (both from 8 mg/L) [63–65], polygodial (10.8 mg/L) [52], cannabidiol and eugenol (both from 12.5 mg/L) [58,66], and ivalin (15.4 mg/L) [67]. It is interesting that monotherpenes, which represent the highest percentage of substances listed in Table 2, are not the most active compounds. The two larger groups with the best activity are phenolic compounds (thymol, pterostilbene, and eugenol), and sesquiterpene derivatives (warburganal, polygodial, and ivalin). Single compounds with the highest observed activity belong to chalconoids (lichochalcone A), steroidal saponins (dioscin), flavonoids (baicalein), alkaloids (waltheriones), macrocyclic bisbibenzyls (riccardin D), and cannabinoids (cannabidiol). Most of the compounds presented in Table 2 acted on biofilm formation and/or mature biofilm.

Active Compound	Example of Plant Origin	Targeted Fungus	MICs (mg/L, mL/L)	Inhibition of Biofilm Formation by at Least 50% (mg/L, mL/L)	Inhibited Stage of Biofilm; Method of Biofilm Detection	Ref.
		C. albicans	32	16		
		C. glabrata	>32	16	– Mature biofilm; XTT	[63]
	Waltheria indica, W. brachypetala	C. krusei	16	16		
	TH Criticity permits	C. parapsilosis	4	16		
		C. tropicalis	>32	16	-	
Anisaldehyde (phenolic aldehyde)	Pimpinella anisum , Foeniculum vulgare	C. albicans	500	500	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[68]
Anisic acid (phenolic acid)	Pimpinella anisum	C. albicans	4000	4000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[68]
Anisyl alcohol (phenolic alcohol)	Pimpinella anisum	C. albicans	31	500	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[68]
Baicalein (flavonoid)	Scutellaria baicalensis, S. lateriflora	C. albicans	No data	4–32	Biofilm formation; XTT	[62]

Table 2. Antifungal and antibiofilm activity of plant compounds.

J. Fungi **2021**, 7, 360 7 of 13

 Table 2. Cont.

Active Compound	Example of Plant Origin	Targeted Fungus	MICs (mg/L, mL/L)	Inhibition of Biofilm Formation by at Least 50% (mg/L, mL/L)	Inhibited Stage of Biofilm; Method of Biofilm Detection	Ref.
Camphene (monotherpene)	Croton eluteria,	C. albicans	No data	500	Biofilm formation; confocal laser microscopy	[36]
	Cinnamomum verum	C. albicans	1000	2000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]
		C. albicans	125-250	Not or 62.5-250		
Camphor		C. glabrata	175	Not	-	
(bicyclic monotherpene)	Cinnamomum camphora, Artemisia annua	C. krusei	350	Not	Biofilm formation; crystal violet and absorbance	[70]
monouterpene)	Анстіян иннин	C. parapsilosis	125	Not	and absorbance	
		C. tropicalis	175	175	-	
Cannabidiol (cannabinoid)	Cannabis sativa	C. albicans	No data	12.5–100	Biofilm formation; confocal microscopy	[66]
			250	500	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]
Carvacrol	Thymus serpyllum, Carum carvi,	C. albicans	100-20,000	300-1250	Mature biofilm; XTT	[71]
(phenol)	Origanum vulgare		1000	750–1500	Biofilm formation; MTT	[72]
		C. glabrata	100-20,000	300–1250	N. 1: (1 NTT	[22]
		C. parapsilosis	100-20,000	300–1250	Mature biofilm; XTT	[71]
Carvene/Limonene (monotherpene)	Citrus × aurantium, Citrus limon	C. albicans	1000	4000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]
Carvone/Carvol (monotherpene)	Carum carvi, Mentha spicata	C. albicans	>4000	250	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]
β-Caryophyllene (sesquiterpene)	Helichrysum italicum, Caryophyllusaromaticus	C. albicans	No data	100–500	Biofilm formation; confocal laser microscopy	[36]
1,4-Cineole (monotherpene)	Rosmarinus officinalis , Thymus vulgaris	C. albicans	>4000	4000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]
			4000	4000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]
	Eucalyptus globulus, Salvia officinalis, Pinus sylvestris -	C. albicans	8	4	Mature biofilm; luminescence	[40]
1,8-			3000-23,000	Not or 3000-23,000		
Cineole/Eucalyptol		C. glabrata	2000	Not	Profile Committee and 1 fel a	
(monotherpene)		C. krusei	4000	2000-4000	 Biofilm formation; crystal violet and absorbance 	[70]
		C. parapsilosis	2000	1000-2000	-	
		C. tropicalis	4000	2000–4000	_	
Cinnamaldehyde	Cinnamomum sp.,	C. albicans	62	125	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[68]
(aldehyde)	Apium graveolens	C. morcuris	50-400	25–200	Mature biofilm; XTT	[58]
Cinnamic acid (phenolic acid)	Cinnamomum sp.	C. albicans	2000	4000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[68]
Citral (monotherpene)	Melissa officinalis, Backhousia citriodora	C. albicans	500	1000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]
Citronellal (monotherpene)	Cymbopogon citratus , Melissa officinalis	C. albicans	500	1000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]
β-Citronellol (monotherpene)	Melissa officinalis, Pelargonium roseum	C. albicans	500	1000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]
Cuminaldehyde (monotherpene)	Carum carvi , Cinnamomum verum	C. albicans	1000 to >4000	6000–7000	Biofilm formation; MTT	[72]
p-Cymene (monotherpene)	Thymus vulgaris, Eucalyptus sp.	C. albicans	2000	4000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]
	<u> </u>	C. albicans	16	32		
3-Deoxoantidesmone	Waltheria indica	C. glabrata	>32	32	Mature biofilm; XTT	[63]
(alkaloid)		C. krusei	32	32		
		C. parapsilosis	32	32	-	
		C. tropicalis	>32	32	-	
2',4'-Dihydroxy-3'- methoxychalcone (chalcone)	Zuccagnia punctata, Oxytropis falcata	C. albicans	100	25	Biofilm formation and mature biofilm; XTT and crystal violet	[53]
(01111100110)	Dioscorea sp.,	C. albicans	3.9–15.62	3.9–31.25	Biofilm formation and mature biofilm; MTT	[31]
Dioscin (steroidal saponin)	Chamaecostus				,	
Dioscin	Chamaecostus Punica granatum L.	C. albicans	75–100	25–40	Biofilm formation and mature biofilm; crystal violet	[49]

J. Fungi **2021**, 7, 360 8 of 13

 Table 2. Cont.

Active Compound	Example of Plant Origin	Targeted Fungus	MICs (mg/L, mL/L)	Inhibition of Biofilm Formation by at Least 50% (mg/L, mL/L)	Inhibited Stage of Biofilm; Method of Biofilm Detection	Ref.	
4α,5α-Epoxy- 10α,14H-1-epi- inuviscolide (sesquiterpene lactone)	Carpesium macrocephalum	C. albicans	>128	38	Biofilm formation and mature biofilm; XTT	[67]	
			50-400	12.5–200	Mature biofilm; XTT	[58]	
Eugenol (phenol)	Syzygium aromaticum , Cinnamomum sp.	C. albicans	250	500	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]	
			500	500	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[68]	
			1200	10,000-80,000	Mature biofilm; XTT	[59]	
Farnesol (sesquiterpene)	Tilia sp., Cymbopogon sp.	C. albicans	1000	500	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[68]	
			1000	500	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]	
Gallic acid (phenolic acid)	Polygonum sp., Buchenavia tomentosa	C. albicans	5000	2500	Biofilm formation and mature biofilm; culture	[30]	
Geraniol	Pelargonium graveolens,	C. albicans	1000	1000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]	
(monotherpene)	Rosa sp.	C. albicans	100–20,000	300–1250	Mature biofilm; XTT	[71]	
		C. albicans	No data	1000-8000	Mature biofilm; XTT	[47]	
		C. glabrata	100–20,000	300–1250	Mature biofilm; XTT	[71]	
		C. parapsilosis	100–20,000	300–1250			
Guaiacol (phenol)	Guaiacum officinale , Apium graveolens	C. albicans	500	1000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[68]	
Hydroxychavicol (phenol)	Piper betle	C. albicans	125–500	125–1000	Biofilm formation and mature biofilm; XTT	[74]	
β-Ionone (carotenoid)	Lawsonia inermis , Camellia sinensis	C. albicans	250	250	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]	
Isomontanolide (sesquiterpenic	Laserpitium ochridanum, L. zernyi	C. albicans	50	250	Mature biofilm; luminescence	[43]	
lactone) Isopulegol (monotherpene)	Mentha rotundifolia, Melissa officinalis	C. krusei C. albicans	200 >4000	250 250	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]	
Ivalin (sesquiterpene lactone)	Geigeria aspera, Carpesium macrocephalum	C. albicans	>128	15.4	Biofilm formation and mature biofilm; XTT	[67]	
Laserpitine	Laserpitium latifolium,	C. albicans	200	400	Matura histilm, luminasanas	[42]	
(sesquiterpene lactone)	Laserpitiumhalleri	C. krusei	200	400	_ Mature biofilm; luminescence	[43]	
Lichochalcone A (chalconoid)	Glycyrrhiza sp.	C. albicans	6.25–12.5	0.2–20	Biofilm formation; crystal violet	[61]	
Linalool (monotherpene)	Lavandula officinalis,	C. albicans	No data	100–500	Biofilm formation; confocal laser microscopy	[36]	
(monomerpene)	Pelargonium graveolens	Teurgonium gruceotens		2000	1000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]
			No data	1000–8000	Mature biofilm; XTT	[47]	
α-Longipinene (sesquiterpene)	Croton eluteria, Helichrysum italicum	C. albicans	No data	100–500	Biofilm formation; confocal laser microscopy	[36]	
Menthol (monotherpene)	Mentha spp.	C. albicans	>4000	2000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]	
			2500	10,000-80,000	Mature biofilm; XTT	[59]	
Montanolide (sesquiterpene lactone)	Laserpitium ochridanum, L. zernyi	C. albicans	200	400	_ Mature biofilm; luminescence	[43]	
(sesquiterperic factorie)	E. Zernyi	C. krusei	200	400			
Morin (flavonoid)	Prunus dulcis , Morus alba	C. albicans	150	37.5–600	Biofilm formation; crystal violet	[75]	
Myrcene (monotherpene)	Humulus lupulus, Cannabis sativa	C. albicans	1000	2000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]	
Nerol (monotherpene)	Citrus × aurantium, Humulus lupulus	C. albicans	2000	500	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]	
Nerolidols (sesquiterpene)	Citrus × aurantium, Piper claussenianum	C. albicans	18,600-62,500	2500–10,000	Mature biofilm; MTT	[48]	
α-Pinene (monotherpene)	Pinus sylvestris, Picea abies	C. albicans	3125	3125	Biofilm formation; XTT	[76]	
β-Pinene (monotherpene)	Pinus sylvestris, Picea abies	C. albicans	2000	4000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]	
			187	187	Biofilm formation; XTT	[76]	
Polygodial	Warburgia ugandensis, Polygonum hydropiper	C. albicans	4.1	10.8	Biofilm formation and mature biofilm; XTT and confocal laser	[52]	
(sesquiterpene)	1 онудонит пуигорирег	C. glabrata	94.1	50.6-61.9	microscopy		

J. Fungi **2021**, 7, 360 9 of 13

 Table 2. Cont.

Active Compound	Example of Plant Origin	Targeted Fungus	MICs (mg/L, mL/L)	Inhibition of Biofilm Formation by at Least 50% (mg/L, mL/L)	Inhibited Stage of Biofilm; Method of Biofilm Detection	Ref.
Pterostilbene (polyphenol)	Pterocarpus marsupium, Pterocarpus santalinus, Vitis vinifera	C. albicans	No data	8–32	Biofilm formation and mature biofilm; XTT	[65]
Riccardin D (macrocyclic bisbibenzyl)	Dumortiera hirsuta	C. albicans	16	8–64	Mature biofilm; XTT	[64]
Salicylaldehyde (phenolic aldehyde)	Filipendula ulmaria, Fagopyrum esculentum	C. albicans	31	125	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[68]
Salicylic acid (phenolic acid)	Salix sp., Filipendula ulmaria	C. albicans	4000	2000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[68]
Scopoletin (cumarin)	Mitracarpus frigidus, Scopolia carniola	C. tropicalis	50	50	Biofilm adhesion, formation, and mature biofilm; absorbance and digital scanning	[77]
6-Shogaol (phenylalkane)	Zingiber officinale	C. auris	32–64	16–64	Mature biofilm; crystal violet	[78]
Tarolide	Laserpitium ochridanum,	C. albicans	400	1000	Mature biofilm; luminescence	[43]
sesquiterpene lactone)	L. zernyi	C. krusei	400	1000		[20]
Telekin sesquiterpene lactone)	Carpesium macrocephalum, Telekia speciose	C. albicans	>128	36	Biofilm formation and mature biofilm; XTT	[67]
Terpinolene (terpene)	Cannabis sativa, Citrus limon	C. albicans	2000	4000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]
5,7,3',4'- Tetramethoxyflavone (flavonoid)	Psiadia punctulate, Kaempferia parviflora	C. albicans	100	40	Biofilm formation; crystal violet	[79]
α-Thujone (monotherpene)	Artemisia absinthium, Tanacetum vulgare	C. albicans	>4000	500	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]
			250	250	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]
	Thymus vulgaris, Trachyspermum copticum –	_	1.56–50	3.12	Biofilm formation; absorbance, crystal violet, and scanning electron microscopy	[26]
			32–128	128	Biofilm adhesion and mature biofilm; XTT	[80]
Thymol			100-20,000	300-1250	Mature biofilm; XTT	[71]
(phenol)			125	125–250	Biofilm formation and mature biofilm; XTT	[81]
			1200	5000-80,000	Mature biofilm; XTT	[59]
		C. tropicalis	1.56–50	12.5	Biofilm formation; absorbance, crystal violet, and scanning electron microscopy	[26]
	-	C. glabrata	100-20,000	300-1250	Mature biofilm; XTT	[71]
		C. parapsilosis	100-20,000	300-1250	Wature biolinit, X11	[/1
Tn-AFP1 (protein)	Trapa natans	C. tropicalis	32	16	Mature biofilm; XTT	[82]
5,6,8-Trihydroxy-7,4' dimethoxy flavone (flavonoid)	Thymus membranaceus subsp. membranaceus, Dodonaea viscosa var. angustifolia	C. albicans	390	390	Biofilm formation and mature biofilm; MTT	[83]
		C. albicans	32	16		
	•	C. glabrata	>32	16	-	
5(R)-Vanessine (alkaloid)	Waltheria indica	C. krusei	32	16	Mature biofilm; XTT	[63]
(minimora)		C. parapsilosis	>32	16	-	
		C. tropicalis	>32	16	-	
Vanillic acid (phenolic acid)	Angelica sinensis , Solanum tuberosum	C. albicans	>4000	4000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[68
Vanillin (phenol)	Vanilla planifolia	C. albicans	1000	500	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[68
		C. albicans	4–32	8-32		
	-	C. glabrata	32 or >32	8–32	-	
Waltheriones (alkaloid)	Waltheria indica, W. viscosissima	C. krusei	16-32 or >32	8–32	Mature biofilm; XTT	[63
(airaioiu)	vv. viscosissimu	C. parapsilosis	2-32 or >32	8–32	-	
	-	C. tropicalis	32 or >32	8–32	-	
Warburganal	Washisaia	C. albicans	4	4.5	Biofilm formation and mature	[EQ
(sesquiterpene)	Warburgia sp.	C. glabrata	72–72.6	49.1–55.9	 biofilm; XTT and confocal laser 	[52]

Legend: MIC—minimal inhibitory concentration; XTT—reduction assay of 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[carbonyl(phenylamino)]-2H-tetrazolium hydroxide; MTT—reduction assay of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide [54,55].

J. Fungi **2021**, 7, 360 10 of 13

4. Conclusions

Plant preparations (essential oils and extracts) and pure compounds exhibit anti-biofilm activity against *Candida* species. Some of them are characterized by high activity in concentrations below 16 mg/L. Given this activity at relatively low concentrations, some may prove to be promising alternatives to antifungal drugs, especially in the cases of resistant or multiresistant strains of *Candida*. Moreover, the simple chemical structures involved and relative ease of extraction from natural sources warrant further research into the development of new, promising, and much-needed plant-based antifungals.

Author Contributions: Conceptualization, T.M.K. and M.O.; methodology, T.M.K.; analysis of results, T.M.K. and M.O.; writing—original draft preparation, T.M.K., M.O., A.S.-M., H.W., and A.A.; writing—review and editing, T.M.K. and M.O.; supervision, T.M.K.; funding acquisition, T.M.K. and H.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We are very grateful to Mark Stasiewicz for English language corrections.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden Killers: Human Fungal Infections. *Sci. Transl. Med.* **2012**, *4*, 165rv13. [CrossRef]

- 2. Ciurea, C.N.; Kosovski, I.-B.; Mare, A.D.; Toma, F.; Pintea-Simon, I.A.; Man, A. *Candida* and Candidiasis-Opportunism Versus Pathogenicity: A Review of the Virulence Traits. *Microorganisms* **2020**, *8*, 857. [CrossRef] [PubMed]
- 3. Moran, G.; Coleman, D.; Sullivan, D. An Introduction to the Medically Important Candida Species. In *Candida and Candidiasis*, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012; pp. 11–25.
- 4. Buranarom, N.; Komin, O.; Matangkasombut, O. Hyposalivation, Oral Health, and *Candida* Colonization in Independent Dentate Elders. *PLoS ONE* **2020**, *15*, e0242832. [CrossRef] [PubMed]
- 5. Arya, N.R.; Naureen, R.B. Candidiasis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021.
- 6. Millet, N.; Solis, N.V.; Swidergall, M. Mucosal IgA Prevents Commensal *Candida Albicans* Dysbiosis in the Oral Cavity. *Front. Immunol.* **2020**, *11*, 555363. [CrossRef] [PubMed]
- 7. Sobel, J.D. Vulvovaginal Candidosis. Lancet 2007, 369, 1961–1971. [CrossRef]
- 8. Vila, T.; Sultan, A.S.; Montelongo-Jauregui, D.; Jabra-Rizk, M.A. Oral Candidiasis: A Disease of Opportunity. *J. Fungi* **2020**, *6*, 15. [CrossRef] [PubMed]
- 9. Karpiński, T.; Sopata, M.; Mańkowski, B. The Antimicrobial Effectiveness of Antiseptics as a Challenge in Hard to Heal Wounds. *Leczenie Ran* **2020**, *17*, 88–94. [CrossRef]
- 10. Bhattacharya, S.; Sae-Tia, S.; Fries, B.C. Candidiasis and Mechanisms of Antifungal Resistance. Antibiotics 2020, 9, 312. [CrossRef]
- 11. Cornely, O.A.; Bassetti, M.; Calandra, T.; Garbino, J.; Kullberg, B.J.; Lortholary, O.; Meersseman, W.; Akova, M.; Arendrup, M.C.; Arikan-Akdagli, S.; et al. ESCMID* Guideline for the Diagnosis and Management of *Candida* Diseases 2012: Non-Neutropenic Adult Patients. *Clin. Microbiol. Infect.* 2012, 18 (Suppl. 7), 19–37. [CrossRef]
- 12. Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. *Clin. Infect. Dis.* 2016, 62, e1–e50. [CrossRef]
- 13. Marak, M.B.; Dhanashree, B. Antifungal Susceptibility and Biofilm Production of *Candida* Spp. Isolated from Clinical Samples. *Int. J. Microbiol.* **2018**, 2018, 7495218. [CrossRef] [PubMed]
- 14. Rudramurthy, S.M.; Chakrabarti, A.; Paul, R.A.; Sood, P.; Kaur, H.; Capoor, M.R.; Kindo, A.J.; Marak, R.S.K.; Arora, A.; Sardana, R.; et al. *Candida auris* Candidaemia in Indian ICUs: Analysis of Risk Factors. *J. Antimicrob. Chemother.* **2017**, 72, 1794–1801. [CrossRef] [PubMed]
- 15. Mayer, F.L.; Wilson, D.; Hube, B. Candida Albicans Pathogenicity Mechanisms. Virulence 2013, 4, 119–128. [CrossRef] [PubMed]
- 16. Łaska, G.; Sienkiewicz, A. Antifungal Activity of the Rhizome Extracts of *Pulsatilla Vulgaris* against *Candida Glabrata*. *Eur. J. Biol. Res.* **2019**, *9*, 93–103.
- Gebreyohannes, G.; Nyerere, A.; Bii, C.; Sbhatu, D.B. Challenges of Intervention, Treatment, and Antibiotic Resistance of Biofilm-Forming Microorganisms. Heliyon 2019, 5, e02192. [CrossRef]
- 18. Pereira, R.; Dos Santos Fontenelle, R.O.; de Brito, E.H.S.; de Morais, S.M. Biofilm of *Candida Albicans*: Formation, Regulation and Resistance. *J. Appl. Microbiol.* **2020**. [CrossRef] [PubMed]

J. Fungi **2021**, 7, 360 11 of 13

19. Tumbarello, M.; Fiori, B.; Trecarichi, E.M.; Posteraro, P.; Losito, A.R.; De Luca, A.; Sanguinetti, M.; Fadda, G.; Cauda, R.; Posteraro, B. Risk Factors and Outcomes of Candidemia Caused by Biofilm-Forming Isolates in a Tertiary Care Hospital. *PLoS ONE* **2012**, 7, e33705. [CrossRef]

- 20. Karpiński, T.M. Essential Oils of Lamiaceae Family Plants as Antifungals. Biomolecules 2020, 10, 103. [CrossRef]
- 21. Müller-Sepúlveda, A.; Chevecich, C.C.; Jara, J.A.; Belmar, C.; Sandoval, P.; Meyer, R.S.; Quijada, R.; Moura, S.; López-Muñoz, R.; Díaz-Dosque, M.; et al. Chemical Characterization of *Lavandula Dentata* Essential Oil Cultivated in Chile and Its Antibiofilm Effect against *Candida Albicans*. *Planta Med.* **2020**, *86*, 1225–1234. [CrossRef]
- 22. Motamedi, M.; Saharkhiz, M.J.; Pakshir, K.; Amini Akbarabadi, S.; Alikhani Khordshami, M.; Asadian, F.; Zareshahrabadi, Z.; Zomorodian, K. Chemical Compositions and Antifungal Activities of *Satureja Macrosiphon* against *Candida* and *Aspergillus* Species. *Curr. Med. Mycol.* **2019**, *5*, 20–25. [CrossRef]
- 23. Abu-Darwish, M.S.; Cabral, C.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Paoli, M.; Tomi, F.; Efferth, T.; Salgueiro, L. Ziziphora Tenuior, L. Essential Oil from Dana Biosphere Reserve (Southern Jordan); Chemical Characterization and Assessment of Biological Activities. *J. Ethnopharmacol.* 2016, 194, 963–970. [CrossRef] [PubMed]
- 24. Abu-Darwish, M.S.; Cabral, C.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Zulfiqar, A.; Khan, I.A.; Efferth, T.; Salgueiro, L. Chemical Composition and Biological Activities of *Artemisia Judaica* Essential Oil from Southern Desert of Jordan. *J. Ethnopharmacol.* **2016**, 191, 161–168. [CrossRef]
- 25. Soliman, S.S.M.; Semreen, M.H.; El-Keblawy, A.A.; Abdullah, A.; Uppuluri, P.; Ibrahim, A.S. Assessment of Herbal Drugs for Promising Anti-Candida Activity. BMC Complement. Altern. Med. 2017, 17, 257. [CrossRef]
- 26. Jafri, H.; Ahmad, I. *Thymus Vulgaris* Essential Oil and Thymol Inhibit Biofilms and Interact Synergistically with Antifungal Drugs against Drug Resistant Strains of *Candida Albicans* and *Candida Tropicalis*. *J. Mycol. Med.* **2020**, *30*, 100911. [CrossRef] [PubMed]
- 27. Wang, Z.-J.; Zhu, Y.-Y.; Yi, X.; Zhou, Z.-S.; He, Y.-J.; Zhou, Y.; Qi, Z.-H.; Jin, D.-N.; Zhao, L.-X.; Luo, X.-D. Bioguided Isolation, Identification and Activity Evaluation of Antifungal Compounds from *Acorus Tatarinowii* Schott. *J. Ethnopharmacol.* **2020**, 261, 113119. [CrossRef]
- 28. Said, M.M.; Watson, C.; Grando, D. Garlic Alters the Expression of Putative Virulence Factor Genes SIR2 and ECE1 in Vulvovaginal C. Albicans Isolates. *Sci. Rep.* **2020**, *10*, 3615. [CrossRef]
- 29. Bersan, S.M.F.; Galvão, L.C.C.; Goes, V.F.F.; Sartoratto, A.; Figueira, G.M.; Rehder, V.L.G.; Alencar, S.M.; Duarte, R.M.T.; Rosalen, P.L.; Duarte, M.C.T. Action of Essential Oils from Brazilian Native and Exotic Medicinal Species on Oral Biofilms. *BMC Complement*. *Altern. Med.* **2014**, *14*, 451. [CrossRef]
- 30. Teodoro, G.R.; Gontijo, A.V.L.; Salvador, M.J.; Tanaka, M.H.; Brighenti, F.L.; Delbem, A.C.B.; Delbem, Á.C.B.; Koga-Ito, C.Y. Effects of Acetone Fraction From *Buchenavia Tomentosa* Aqueous Extract and Gallic Acid on *Candida Albicans* Biofilms and Virulence Factors. *Front. Microbiol.* **2018**, *9*, 647. [CrossRef] [PubMed]
- 31. Barros Cota, B.; Batista Carneiro de Oliveira, D.; Carla Borges, T.; Cristina Catto, A.; Valverde Serafim, C.; Rogelis Aquiles Rodrigues, A.; Kohlhoff, M.; Leomar Zani, C.; Assunção Andrade, A. Antifungal Activity of Extracts and Purified Saponins from the Rhizomes of *Chamaecostus Cuspidatus* against *Candida* and *Trichophyton* Species. *J. Appl. Microbiol.* **2021**, *130*, 61–75. [CrossRef] [PubMed]
- 32. Wijesinghe, G.K.; Maia, F.C.; de Oliveira, T.R.; de Feiria, S.N.B.; Joia, F.; Barbosa, J.P.; Boni, G.C.; de Cássia Orlandi Sardi, J.; Rosalen, P.L.; Höfling, J.F. Effect of *Cinnamomum Verum* Leaf Essential Oil on Virulence Factors of *Candida* Species and Determination of the In-Vivo Toxicity with Galleria Mellonella Model. *Mem. Inst. Oswaldo. Cruz.* 2020, 115, e200349. [CrossRef]
- 33. Pedroso, R.D.S.; Balbino, B.L.; Andrade, G.; Dias, M.C.P.S.; Alvarenga, T.A.; Pedroso, R.C.N.; Pimenta, L.P.; Lucarini, R.; Pauletti, P.M.; Januário, A.H.; et al. In Vitro and In Vivo Anti-*Candida* Spp. Activity of Plant-Derived Products. *Plants* **2019**, *8*, 494. [CrossRef]
- 34. Andrade, G.; Orlando, H.C.S.; Scorzoni, L.; Pedroso, R.S.; Abrão, F.; Carvalho, M.T.M.; Veneziani, R.C.S.; Ambrósio, S.R.; Bastos, J.K.; Mendes-Giannini, M.J.S.; et al. Brazilian *Copaifera* Species: Antifungal Activity against Clinically Relevant *Candida* Species, Cellular Target, and In Vivo Toxicity. *J. Fungi* 2020, 6, 153. [CrossRef]
- 35. de Almeida Freires, I.; Murata, R.M.; Furletti, V.F.; Sartoratto, A.; de Alencar, S.M.; Figueira, G.M.; de Oliveira Rodrigues, J.A.; Duarte, M.C.T.; Rosalen, P.L. *Coriandrum Sativum* L. (Coriander) Essential Oil: Antifungal Activity and Mode of Action on *Candida* spp., and Molecular Targets Affected in Human Whole-Genome Expression. *PLoS ONE* **2014**, *9*, e99086. [CrossRef]
- 36. Manoharan, R.K.; Lee, J.-H.; Kim, Y.-G.; Kim, S.-I.; Lee, J. Inhibitory Effects of the Essential Oils α-Longipinene and Linalool on Biofilm Formation and Hyphal Growth of *Candida Albicans*. *Biofouling* **2017**, *33*, 143–155. [CrossRef] [PubMed]
- 37. Khan, M.S.A.; Ahmad, I. Biofilm Inhibition by *Cymbopogon Citratus* and *Syzygium Aromaticum* Essential Oils in the Strains of *Candida Albicans. J. Ethnopharmacol.* **2012**, 140, 416–423. [CrossRef] [PubMed]
- 38. Agarwal, V.; Lal, P.; Pruthi, V. Prevention of *Candida Albicans* Biofilm by Plant Oils. *Mycopathologia* **2008**, *165*, 13–19. [CrossRef] [PubMed]
- 39. De Toledo, L.G.; Ramos, M.A.D.S.; Spósito, L.; Castilho, E.M.; Pavan, F.R.; Lopes, É.D.O.; Zocolo, G.J.; Silva, F.A.N.; Soares, T.H.; Dos Santos, A.G.; et al. Essential Oil of *Cymbopogon Nardus* (L.) Rendle: A Strategy to Combat Fungal Infections Caused by *Candida* Species. *Int. J. Mol. Sci.* 2016, 17, 1252. [CrossRef]
- Hendry, E.R.; Worthington, T.; Conway, B.R.; Lambert, P.A. Antimicrobial Efficacy of Eucalyptus Oil and 1,8-Cineole Alone and in Combination with Chlorhexidine Digluconate against Microorganisms Grown in Planktonic and Biofilm Cultures. J. Antimicrob. Chemother. 2009, 64, 1219–1225. [CrossRef]

J. Fungi **2021**, 7, 360 12 of 13

41. Quatrin, P.M.; Verdi, C.M.; de Souza, M.E.; de Godoi, S.N.; Klein, B.; Gundel, A.; Wagner, R.; de Almeida Vaucher, R.; Ourique, A.F.; Santos, R.C.V. Antimicrobial and Antibiofilm Activities of Nanoemulsions Containing *Eucalyptus Globulus* Oil against *Pseudomonas Aeruginosa* and *Candida* spp. *Microb. Pathog.* **2017**, 112, 230–242. [CrossRef] [PubMed]

- 42. Sardi, J.d.C.O.; Freires, I.A.; Lazarini, J.G.; Infante, J.; de Alencar, S.M.; Rosalen, P.L. Unexplored Endemic Fruit Species from Brazil: Antibiofilm Properties, Insights into Mode of Action, and Systemic Toxicity of Four *Eugenia* spp. *Microb. Pathog.* 2017, 105, 280–287. [CrossRef]
- 43. Popović, V.; Stojković, D.; Nikolić, M.; Heyerick, A.; Petrović, S.; Soković, M.; Niketić, M. Extracts of Three *Laserpitium* L. Species and Their Principal Components Laserpitine and Sesquiterpene Lactones Inhibit Microbial Growth and Biofilm Formation by Oral *Candida* Isolates. *Food. Funct.* **2015**, *6*, 1205–1211. [CrossRef]
- 44. Benzaid, C.; Belmadani, A.; Djeribi, R.; Rouabhia, M. The Effects of *Mentha* × *Piperita* Essential Oil on *C. Albicans* Growth, Transition, Biofilm Formation, and the Expression of Secreted Aspartyl Proteinases Genes. *Antibiotics* **2019**, *8*, 10. [CrossRef] [PubMed]
- 45. Cannas, S.; Molicotti, P.; Usai, D.; Maxia, A.; Zanetti, S. Antifungal, Anti-Biofilm and Adhesion Activity of the Essential Oil of *Myrtus Communis* L. against *Candida* Species. *Nat. Prod. Res.* **2014**, 28, 2173–2177. [CrossRef]
- 46. Stojković, D.; Dias, M.I.; Drakulić, D.; Barros, L.; Stevanović, M.; C F R Ferreira, I.; D Soković, M. Methanolic Extract of the Herb *Ononis Spinosa* L. Is an Antifungal Agent with No Cytotoxicity to Primary Human Cells. *Pharmaceuticals* **2020**, *13*, 78. [CrossRef] [PubMed]
- 47. Souza, C.M.C.; Pereira Junior, S.A.; Moraes, T.d.S.; Damasceno, J.L.; Amorim Mendes, S.; Dias, H.J.; Stefani, R.; Tavares, D.C.; Martins, C.H.G.; Crotti, A.E.M.; et al. Antifungal Activity of Plant-Derived Essential Oils on *Candida Tropicalis* Planktonic and Biofilms Cells. *Med. Mycol.* 2016, 54, 515–523. [CrossRef] [PubMed]
- 48. Curvelo, J.A.R.; Marques, A.M.; Barreto, A.L.S.; Romanos, M.T.V.; Portela, M.B.; Kaplan, M.A.C.; Soares, R.M.A. A Novel Nerolidol-Rich Essential Oil from *Piper Claussenianum* Modulates *Candida Albicans* Biofilm. *J. Med. Microbiol.* **2014**, 63, 697–702. [CrossRef] [PubMed]
- 49. Bakkiyaraj, D.; Nandhini, J.R.; Malathy, B.; Pandian, S.K. The Anti-Biofilm Potential of Pomegranate (*Punica Granatum* L.) Extract against Human Bacterial and Fungal Pathogens. *Biofouling* **2013**, 29, 929–937. [CrossRef] [PubMed]
- 50. Alves-Silva, J.M.; Zuzarte, M.; Gonçalves, M.J.; Cruz, M.T.; Cavaleiro, C.; Salgueiro, L. Unveiling the Bioactive Potential of the Essential Oil of a Portuguese Endemism, *Santolina Impressa*. J. Ethnopharmacol. **2019**, 244, 112120. [CrossRef]
- 51. Sharifzadeh, A.; Khosravi, A.R.; Ahmadian, S. Chemical Composition and Antifungal Activity of *Satureja Hortensis* L. Essentiall Oil against Planktonic and Biofilm Growth of *Candida Albicans* Isolates from Buccal Lesions of HIV(+) Individuals. *Microb. Pathog.* **2016**, 96, 1–9. [CrossRef]
- 52. Kipanga, P.N.; Liu, M.; Panda, S.K.; Mai, A.H.; Veryser, C.; Van Puyvelde, L.; De Borggraeve, W.M.; Van Dijck, P.; Matasyoh, J.; Luyten, W. Biofilm Inhibiting Properties of Compounds from the Leaves of *Warburgia Ugandensis* Sprague Subsp. *Ugandensis* against *Candida* and Staphylococcal Biofilms. *J. Ethnopharmacol.* **2020**, 248, 112352. [CrossRef] [PubMed]
- 53. Gabriela, N.; Rosa, A.M.; Catiana, Z.I.; Soledad, C.; Mabel, O.R.; Esteban, S.J.; Veronica, B.; Daniel, W.; Ines, I.M. The Effect of *Zuccagnia Punctata*, an Argentine Medicinal Plant, on Virulence Factors from *Candida* Species. *Nat. Prod. Commun.* **2014**, 9, 933–936. [CrossRef]
- 54. Karpiński, T.M. Efficacy of Octenidine against Pseudomonas Aeruginosa Strains. Eur. J. Biol. Res. 2019, 9, 135–140.
- 55. Loures, F.V.; Levitz, S.M. XTT Assay of Antifungal Activity. Bio. Protoc. 2015, 5, e1543. [CrossRef] [PubMed]
- 56. Gonçalves, M.J.; Vicente, A.M.; Cavaleiro, C.; Salgueiro, L. Composition and Antifungal Activity of the Essential Oil of *Mentha Cervina* from Portugal. *Nat. Prod. Res.* **2007**, *21*, 867–871. [CrossRef]
- 57. Ćavar, S.; Vidic, D.; Maksimović, M. Volatile Constituents, Phenolic Compounds, and Antioxidant Activity of *Calamintha Glandulosa* (Req.) Bentham. *J. Sci. Food Agric.* **2013**, 93, 1758–1764. [CrossRef]
- 58. Khan, M.S.A.; Ahmad, I. Antibiofilm Activity of Certain Phytocompounds and Their Synergy with Fluconazole against *Candida Albicans* Biofilms. *J. Antimicrob. Chemother.* **2012**, *67*, 618–621. [CrossRef]
- 59. Pemmaraju, S.C.; Pruthi, P.A.; Prasad, R.; Pruthi, V. *Candida Albicans* Biofilm Inhibition by Synergistic Action of Terpenes and Fluconazole. *Indian J. Exp. Biol.* **2013**, *51*, 1032–1037.
- 60. EUCAST: Breakpoints for Antifungals. Available online: https://eucast.org/astoffungi/clinicalbreakpointsforantifungals/ (accessed on 19 March 2021).
- 61. Messier, C.; Grenier, D. Effect of Licorice Compounds Licochalcone A, Glabridin and Glycyrrhizic Acid on Growth and Virulence Properties of *Candida Albicans*. *Mycoses* **2011**, *54*, e801–e806. [CrossRef] [PubMed]
- 62. Cao, Y.; Dai, B.; Wang, Y.; Huang, S.; Xu, Y.; Cao, Y.; Gao, P.; Zhu, Z.; Jiang, Y. In Vitro Activity of Baicalein against *Candida Albicans* Biofilms. *Int. J. Antimicrob. Agents* **2008**, *32*, 73–77. [CrossRef] [PubMed]
- 63. Cretton, S.; Dorsaz, S.; Azzollini, A.; Favre-Godal, Q.; Marcourt, L.; Ebrahimi, S.N.; Voinesco, F.; Michellod, E.; Sanglard, D.; Gindro, K.; et al. Antifungal Quinoline Alkaloids from *Waltheria Indica*. *J. Nat. Prod.* **2016**, *79*, 300–307. [CrossRef]
- 64. Cheng, A.; Sun, L.; Wu, X.; Lou, H. The Inhibitory Effect of a Macrocyclic Bisbibenzyl Riccardin D on the Biofilms of *Candida Albicans*. *Biol. Pharm. Bull.* **2009**, 32, 1417–1421. [CrossRef] [PubMed]
- 65. Hu, D.-D.; Zhang, R.-L.; Zou, Y.; Zhong, H.; Zhang, E.-S.; Luo, X.; Wang, Y.; Jiang, Y.-Y. The Structure-Activity Relationship of Pterostilbene Against *Candida Albicans* Biofilms. *Molecules* **2017**, 22, 360. [CrossRef]

J. Fungi **2021**, 7, 360 13 of 13

66. Feldman, M.; Sionov, R.V.; Mechoulam, R.; Steinberg, D. Anti-Biofilm Activity of Cannabidiol against *Candida Albicans*. *Microorganisms* **2021**, *9*, 441. [CrossRef] [PubMed]

- 67. Xie, C.; Sun, L.; Meng, L.; Wang, M.; Xu, J.; Bartlam, M.; Guo, Y. Sesquiterpenes from *Carpesium Macrocephalum* Inhibit *Candida Albicans* Biofilm Formation and Dimorphism. *Bioorg. Med. Chem. Lett.* **2015**, 25, 5409–5411. [CrossRef] [PubMed]
- 68. Raut, J.S.; Shinde, R.B.; Chauhan, N.M.; Karuppayil, S.M. Phenylpropanoids of Plant Origin as Inhibitors of Biofilm Formation by *Candida Albicans. J. Microbiol. Biotechnol.* **2014**, 24, 1216–1225. [CrossRef] [PubMed]
- 69. Raut, J.S.; Shinde, R.B.; Chauhan, N.M.; Karuppayil, S.M. Terpenoids of Plant Origin Inhibit Morphogenesis, Adhesion, and Biofilm Formation by *Candida Albicans. Biofouling* **2013**, 29, 87–96. [CrossRef] [PubMed]
- 70. Ivanov, M.; Kannan, A.; Stojković, D.S.; Glamočlija, J.; Calhelha, R.C.; Ferreira, I.C.F.R.; Sanglard, D.; Soković, M. Camphor and Eucalyptol-Anticandidal Spectrum, Antivirulence Effect, Efflux Pumps Interference and Cytotoxicity. *Int. J. Mol. Sci.* **2021**, 22, 483. [CrossRef] [PubMed]
- 71. Dalleau, S.; Cateau, E.; Bergès, T.; Berjeaud, J.-M.; Imbert, C. In Vitro Activity of Terpenes against *Candida* Biofilms. *Int. J. Antimicrob. Agents* **2008**, *31*, 572–576. [CrossRef] [PubMed]
- 72. Touil, H.F.Z.; Boucherit, K.; Boucherit-Otmani, Z.; Khoder, G.; Madkour, M.; Soliman, S.S.M. Optimum Inhibition of Amphotericin-B-Resistant *Candida Albicans* Strain in Single- and Mixed-Species Biofilms by *Candida* and Non-*Candida* Terpenoids. *Biomolecules* 2020, 10, 342. [CrossRef]
- 73. Janeczko, M.; Masłyk, M.; Kubiński, K.; Golczyk, H. Emodin, a Natural Inhibitor of Protein Kinase CK2, Suppresses Growth, Hyphal Development, and Biofilm Formation of *Candida Albicans*. *Yeast* **2017**, *34*, 253–265. [CrossRef] [PubMed]
- 74. Ali, I.; Khan, F.G.; Suri, K.A.; Gupta, B.D.; Satti, N.K.; Dutt, P.; Afrin, F.; Qazi, G.N.; Khan, I.A. In Vitro Antifungal Activity of Hydroxychavicol Isolated from *Piper Betle L. Ann. Clin. Microbiol. Antimicrob.* **2010**, *9*, 7. [CrossRef] [PubMed]
- 75. Abirami, G.; Alexpandi, R.; Durgadevi, R.; Kannappan, A.; Veera Ravi, A. Inhibitory Effect of Morin Against *Candida Albicans* Pathogenicity and Virulence Factor Production: An in Vitro and in Vivo Approaches. *Front. Microbiol.* **2020**, *11*, 561298. [CrossRef] [PubMed]
- 76. Rivas da Silva, A.C.; Lopes, P.M.; Barros de Azevedo, M.M.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological Activities of α-Pinene and β-Pinene Enantiomers. *Molecules* **2012**, *17*, 6305–6316. [CrossRef] [PubMed]
- 77. Lemos, A.S.O.; Florêncio, J.R.; Pinto, N.C.C.; Campos, L.M.; Silva, T.P.; Grazul, R.M.; Pinto, P.F.; Tavares, G.D.; Scio, E.; Apolônio, A.C.M.; et al. Antifungal Activity of the Natural Coumarin Scopoletin Against Planktonic Cells and Biofilms From a Multidrug-Resistant *Candida Tropicalis* Strain. *Front. Microbiol.* 2020, 11, 1525. [CrossRef]
- 78. Kim, H.-R.; Eom, Y.-B. Antifungal and Anti-Biofilm Effects of 6-Shogaol against *Candida Auris. J. Appl. Microbiol.* **2020**. [CrossRef] [PubMed]
- 79. Dal Piaz, F.; Bader, A.; Malafronte, N.; D'Ambola, M.; Petrone, A.M.; Porta, A.; Ben Hadda, T.; De Tommasi, N.; Bisio, A.; Severino, L. Phytochemistry of Compounds Isolated from the Leaf-Surface Extract of *Psiadia Punctulata* (DC.) Vatke Growing in Saudi Arabia. *Phytochemistry* 2018, 155, 191–202. [CrossRef] [PubMed]
- 80. Shu, C.; Sun, L.; Zhang, W. Thymol Has Antifungal Activity against *Candida Albicans* during Infection and Maintains the Innate Immune Response Required for Function of the P38 MAPK Signaling Pathway in *Caenorhabditis Elegans*. *Immunol. Res.* **2016**, *64*, 1013–1024. [CrossRef] [PubMed]
- 81. Braga, P.C.; Culici, M.; Alfieri, M.; Dal Sasso, M. Thymol Inhibits *Candida Albicans* Biofilm Formation and Mature Biofilm. *Int. J. Antimicrob. Agents* **2008**, *31*, 472–477. [CrossRef]
- 82. Mandal, S.M.; Migliolo, L.; Franco, O.L.; Ghosh, A.K. Identification of an Antifungal Peptide from *Trapa Natans* Fruits with Inhibitory Effects on *Candida Tropicalis* Biofilm Formation. *Peptides* **2011**, 32, 1741–1747. [CrossRef] [PubMed]
- 83. Patel, M.; Srivastava, V.; Ahmad, A. Dodonaea Viscosa Var Angustifolia Derived 5,6,8-Trihydroxy-7,4' Dimethoxy Flavone Inhibits Ergosterol Synthesis and the Production of Hyphae and Biofilm in *Candida Albicans*. *J. Ethnopharmacol.* **2020**, 259, 112965. [CrossRef]