Chapter 13 Properties of Triangle

ee24btech11015 - Dhawal

B. JEE Main / AIEEE 3) The sum of the radii of inscribed and circumscribed circles for an n sided regular

4) In a triangle ABC, medians AD and BE are drawn. If AD = 4, ∠DAB =

6) The sides of a triangle are $\sin \alpha$, $\cos \alpha$ ad $\sqrt{1 + \sin \alpha \cos \alpha}$ for some $0 < \alpha < \frac{\pi}{2}$. Then

 $\frac{\pi}{6}$ and $\angle ABE = \frac{\pi}{3}$, then the area of the $\triangle ABC$ is

a) satisfy a + b = c b) are in A.P.

the greatest angle of the triangle is

b) $\frac{8}{3}$

5) If in $\triangle ABC$ $a\cos^2\left(\frac{C}{2}\right) + c\cos^2\left(\frac{A}{2}\right) = \frac{3b}{2}$, then the sides a, b and c

b) $a \cot\left(\frac{\pi}{n}\right)$ c) $\frac{a}{2} \cot\left(\frac{\pi}{2n}\right)$ d) $a \cot\left(\frac{\pi}{2n}\right)$

c) $\frac{16}{3}$

c) are in G.P.

(2003)

(2003)

(2003)

(2004)

d) $\frac{32}{3\sqrt{2}}$

d) are in H.P.

polygon of side a, is

a) $\frac{a}{4} \cot \left(\frac{\pi}{2n} \right)$

a) $\frac{64}{3}$

	d) 60°	c) 120°	b) 90°	a) 150°
7) A person standing on the bank of a river observes that the angle of elevation of the top of a tree on the opposite bank of the river is 60° and when he retires 40 meters away from the tree, the angle of elevation becomes 30°. The breadth of the river is (2004)				
	d) 20m	c) 40m	b) 30 <i>m</i>	a) 60 <i>m</i>
8) In a triangle <i>ABC</i> , let $\angle C = \frac{\pi}{2}$. If <i>r</i> is the inradius and <i>R</i> is the circumradius of the triangle <i>ABC</i> , then $2(R+r)$ equals (2005)				
	d) $c + a$	c) $a+b+c$	b) $a + b$	a) $b + c$
9) If in a $\triangle ABC$, let the altitudes from the vertices A , B , C on opposite sides are in H.P., then $\sin \mathbf{A}$, $\sin \mathbf{B}$, $\sin \mathbf{C}$ are in (2005)				
	d) <i>H.P.</i>	c) A.P. – G.P.	b) <i>A.P.</i>	a) <i>G.P.</i>
10) A tower stand at the centre of a circular park. A and B are two points on the boundary of the park such that $\mathbf{AB} (= a)$ subtends an angle of 60° at the foot of the tower, and the angle of elevation of the top of the tower from A or B is 30° . The height of the tower is (2007)				

(JEEM2017)

d) $\frac{2}{9}$

d) $2a\sqrt{3}$

11) AB is a vertical pole with B at the ground level and A at the top. A man finds that the angle of elevation the the point A from a certain point C on the ground is 60°. He moves away from the pole along the line BC to a point D such that CD = 7 <i>m</i> . From D the angle of elevation of point A is 45°. Then the height of the pole is (2008)
a) $\frac{7\sqrt{3}}{2} \frac{1}{\sqrt{3}-1} m$ b) $\frac{7\sqrt{3}}{2} \left(\sqrt{3}+1\right) m$ c) $\frac{7\sqrt{3}}{2} \left(\sqrt{3}-1\right) m$ d) $\frac{7\sqrt{3}}{2} \frac{1}{\sqrt{3}+1} m$
 12) For a regular polygon, let r and R be the radii of the inscribed and the circumscribed circles. A false statement among the following is (2010) a) There is a regular polygon with r/R = 1/√2 b) There is a regular polygon with r/R = 2/3 c) There is a regular polygon with r/R = 1/2 d) There is a regular polygon with r/R = 1/2
13) A bird is sitting on the top of a vertical pole $20m$ high and its elevation from a point \mathbf{O} on the ground is 45° . It flies off horizontally straight away from the point \mathbf{O} . After one second, the elevation of the bird from \mathbf{O} is reduced to 30° . Then the speed in $(in\ m/s)$ of the bird is
a) $20\sqrt{2}$ b) $20(\sqrt{3}-1)$ c) $40(\sqrt{2}-1)$ d) $40(\sqrt{3}-\sqrt{2})$
14) If the angle of elevation of the top of a tower from three colinear points A , B and C on a line leading to foot of the tower, are 30°, 45° and 60° respectively, then the ratio, AB : BC , is: (<i>JEEM</i> 2015)
a) 1: $\sqrt{3}$ b) 2:3 c) $\sqrt{3}$: 1 d) $\sqrt{3}$: $\sqrt{2}$
15) Let a vertical tower AB have its end A on the level ground. Let C be the mid-point of AB and P be a point on the ground such that $\mathbf{AP} = 2\mathbf{AB}$. If $\angle BPC = \beta$, then $\tan \beta$

c) $\frac{2a}{\sqrt{3}}$

b) $a\sqrt{3}$

a) $\frac{a}{\sqrt{3}}$

is equal to:

a) $\frac{4}{9}$

16) **PQR** is a triangular park with **PQ** = **PR** = 200m. A T.V. tower stands at the midpoint of **QR**. If the angles of the elevation of the top of the tower at **P**, **Q** and **R** are respectively 45° , 30° and 30° , then the height of the tower (*in m*) is: (*JEEM*2018)

c) $\frac{1}{4}$

a) 50 b) $100\sqrt{3}$ c) $50\sqrt{2}$ d) 100

b) $\frac{6}{7}$