

Europäisches Patentamt European Patent Office Office européen des brevets

1 Publication number:

51-6. · •

0 471 407 A2

(12)

EUROPEAN PATENT APPLICATION

- 21 Application number: 91202025.2
- 2 Date of filing: 07.08.91

(5) Int. Cl.⁵: **C'07K 17/02**, A61K 39/385, A61K 39/21

- Priority: 13.08.90 US 566654
 13.08.90 US 566656
 13.08.90 US 566638
- 43 Date of publication of application: 19.02.92 Bulletin 92/08
- Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IT LI LU NL SE
- 71 Applicant: MERCK & CO. INC. 126, East Lincoln Avenue P.O. Box 2000 Rahway New Jersey 07065-0900(US)
- Inventor: Lewis, John A. 1229 Clearbrook Road West Chester, PA 19380(US) Inventor: Davide, Joseph P. 471 Wexford Circle Harleysville, PA 19438(US) Inventor: Waterbury, Julie ANN 2610 Skippack Pike, Apt. 1, RD 3 Norristown, PA 19403(US)
- Representative: Barrett-Major, Julie Diane et al Merck & Co., Inc. European Patent Department Terlings Park Eastwick Road Harlow Essex CM20 2QR(GB)
- (S) New embodiments of the HIV principal neutralizing determinant.
- (5) New amino acid sequences of an envelope fragment of HIV are disclosed, as well as immunological conjugates for immunological purposes, including vaccination against AIDS.

Acquired Immune Deficiency Syndrome (AIDS) is the clinical manifestation of the apparent infection of CD4 helper T-cells and other cell targets by human immunodeficiency virus (HIV), also previously referred to as human T-lymphotropic virus type III (HTLV-III), Lymphoadenopathy-associated virus (LAV), or AIDS-related virus (ARV) (hereinafter collectively "HIV"). AIDS is a transmissible deficiency of cellular immunity characterized by opportunistic infections and certain malignancies. A similar disease, AIDS-related complex (ARC), shares many of the epidemiological features and immune abnormalities with AIDS, and often precedes the clinical manifestations of AIDS.

A vaccine against AIDS and/or ARC is an ideal prophylactic treatment for preventing the delibilitating effects of infection by HIV. Applicants have discovered new immunogens useful for such a vaccine. The immunogens are new principal neutralizing determinants (PNDs) of HIV.

Many of the details of the genetic function and virion structure of HIV have not yet been elucidated. However, certain general features have emerged. An RNA virus with a genome totaling about 9 kilobases (kb), its nucleotide sequence contains seven major open reading frames (ORFs) corresponding to the gag, pol and env, vif, tat, rev, and nef genes. The genes gag, pol and env code respectively for core subunits, viral enzymes such as reverse transcriptase or protease, and outer surface subunits. The gene vif codes for a viral infectivity factor, which is a protein involved with enhancement of cell-to-cell transmission of virions without affecting the budding process. The gene tat codes for a small protein that transactivates the expression of all viral proteins. The gene rev regulates expression of the viral proteins of gag, pol and env genes, possibly by facilitating transport of incompletely spliced RNA. The nef gene codes for a viral protein found in the cell cytoplasm, and it may modulate the host cellular signaling system and serve as a transciptional silencer. Terminal repeats in the nucleotide sequence are common to many retroviruses such as HIV and are required for viral replication and integration into the host chromosome. More recent discussions on the general nature of HIV genomic structure, replication and regulation are found in Ratner, L. et al. "Human T-Lymphotropic Retroviruses," in O'Brien, S.J. (ed.) Genetic Maps 1987 Cold Spring Harbor 1987 pp. 124-129; Franchini, G. et al., Nature 328, 539 (1987); Varmus, H. Genes & Dev 2, 1055 (1988).

Principal neutralizing determinants (PNDs) have been located within a selected, conserved region of the env gene. These PNDs are still undefined. Applicants have discovered and defined new embodiments of PND.

AIDS is a disease of a virus with a unique collection of attributes. HIV itself targets the immune system; it possesses a reverse transcriptase capable of turning out highly mutated progeny; it is sequestered from the immune system and it has a hypervariable surface in the (env) region. See, e.g. Hilleman, M.R., Vaccine 6, 175 (1988); Barnes, D.M., Science 240, 719 (1988). In view of these attributes, it was neither anticipated nor expected that the principal neutralizing determinants of this invention would serve as effective AIDS immunogens.

BRIEF DESCRIPTION OF THE INVENTION

New principal neutralizing determinants of HIV are disclosed, and are useful as immunogens for AIDS vaccines, particularly in the form of conjugates

ABBREVIATIONS AND DEFINITIONS

45	AIDS ARC	Acquired immune deficiency syndrome AIDS-related complex
	conjugation	The process of covalently attaching 2 molecules each containing one or more immunological determinants, e.g., HIV envelope fragments and Omp
50	conjugate	Result of conjugation, also known as an antigenic conjugate or immunological conjugate
	HIV .	Generic term for the presumed etiological agent of AIDS and/or ARC, also referred to as strains HTLV-III, LAV, and ARV.
	PND	Principal neutralization determinant of HIV
	Omp	Outer membrane proteosome
55	Recombinant protein	A polypeptide or oligopeptide expressed by foreign DNA in a recombinant eukaryotic or procaryotic expression system.
	Recombinant expression system	A cell containing a foreign DNA expressing a foreign protein or a foreign oligopeptide.

10

Amino Acids		
Full Name	Three-letter symbol	One-letter symbol
Alanine	Ala	Α
Arginine	Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	ם
Asn and/or Asp	Asx	В
Cysteine	Cys	С
Glutamine	Gln	Q
Glutamic acid	Glu	E
Gln and/or Glu	Glx	Z
Glycine	Gly	G
Histidine	His	н
Isoleucine	lle	ı
Leucine	Leu	L
Lysine	Lys	κ
Methionine	Met	М
Phenylalanine	Phe	F
Proline	Pro	Р
Serine	Ser	S
Threonine	Thr	Т
Tryptophan	Trp	w
Tyrosine	Tyr	Y
Valine	Val	v

Nucleotides Bases in DNA or RNA	
Name	One-letter symbol
Adenine	Α
Cytosine	С
guamine	G
thymine	Т .
uracil	U

The terms "protein," "peptide," "oligopeptide," and "polypeptide" and their plurals have been used interchangeably to refer to chemical compounds having amino acid sequences of five or more amino acids. "Amino acid" refers to any of the 20 common amino acids for which codons are naturally available, and are listed in the table of amino acids given above.

When any variable (e.g. PND) occurs more than one time in any constituent or in Formula I, its definition on each occurrence is independent of its definition at every other occurrence. Also, combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides an effective immunogen against AIDS or ARC, and comprises an antigenic conjugate of the formula

 $(PND)_n \sim (Omp)$ I,

55 wherein:

5

10

15

20

25

30

35

PND is the principal neutraliziation determinant of HIV, which is a polypeptide of one or more amino acid sequences;

n = 1-50, wherein n is the number of polypeptides of PND covalently linked to Omp;

indicates covalent linkage;

Omp is outer membrane proteosome of the microorganism Neisseria;

said polypeptide containing in its sequence Gly-X-Gly, wherein X is proline, leucine, alanine, glutamine or serine.

The antigenic conjugates of this invention are prepared by isolating and purifying their component parts PND and Omp, then conjugating PND and Omp together. Subsequent purification of conjugate mixtures may be performed as desired.

The new PND amino acid sequences of this invention include any fragment thereof, provided said fragment is at least five amino acids in length.

Each PND amino acid sequence is determined by DNA sequencing of HIV clones amplified by the polymerase chain reaction.

Polymerase Chain Reaction Amplification

10

Large amounts of DNA coding for PND protein may be obtained using polymerase chain reaction (PCR) amplification techniques as described in Mullis et al., U.S. Patent No. 4,800,159 and other published sources. See also, for example, Innis, M.A. et al. PCR Protocals Academic Press 1990. The extension product of one primer, when hybridized to another primer, becomes a template for the synthesis of another nucleic acid molecule.

The primer template complexes act as substrate for DNA polymerase which, in performing its replication function, extends the primers. The region in common with both primer extensions, upon denaturation, serves as template for a repeated primer extension.

Taq DNA Polymerase catalyzes primer extension in the amplification process. The enzyme is a thermostable DNA polymerase isolated from Thermus aquaticus. Because it stays active through repeated elevations to high denaturation temperatures, it needs to be added only once. Deoxynucleotide triphosphates provide the building blocks for primer extension.

The nucleic acid sequence strands are heated until they separate, in the presence of oligonucleotide primers that bind to their complementary strand at a particular site of the template. This process is continued with a series of heating and cooling cycles, heating to separate strands, and cooling to reanneal and extend the sequences. More and more copies of the strands are generated as the cycle is repeated. Through amplification, the coding domain and any additional primer-encoded information such as restriction sites or translation signals (signal sequences, start codons and/or stop codons) is obtained.PCR protocols are often performed at the 100 µL scale in 0.5 ml microcentrifuge tubes. The PCR sample may be single-or double-stranded DNA or RNA. If the starting material is RNA, reverse transcriptase is used to prepare first strand cDNA prior to PCR. Typically, nanogram amounts of cloned template, up to microgram amounts of genomic DNA, or 20,000 target copies are chosen to start optimization trials.

PCR primers are oligonucleotides, typically 15 to 50 bases long, and are complementary to sequences defining the 5' ends of the complementary template strands. Non-template complementary 5' extensions may be added to primers to allow a variety of useful post amplification operations on the PCR product without significant perturbation of the amplification itself. It is important that the two PCR primers not contain more than two bases complementary with each other, especially at their 3' ends. Internal secondary structure should be avoided in primers.

Because <u>Taq</u> DNA Polymerase has activity in the 37-55°C range, primer extension will occur during the annealing step and the hybrid will be stabilized. The concentrations of the primers are preferably equal in conventional PCR and, typically, are in vast excess of the template to be reproduced.

In one typical PCR protocol, each deoxynucleotide triphosphate concentration is preferably about 200 μ M. The four dNTP concentrations are preferably above the estimated Km of each dNTP (10-15 μ M).

Preferably PCR buffer is composed of about 500 mM potassium chloride, 10.0 mM Tris-HCl (pH 8.3 at room temperature), 1.5 mM magnesium chloride, and 0.01% w/v gelatin. In the presence of 0.8 mM total dNTP concentration, a titration series in small increments over the 1.5-to 4-mM range will locate the magnesium concentration producing the highest yield of a specific product. Too little free magnesium will result in no PCR product and too much free magnesium may produce a variety of unwanted products.

Preferably, in a 100-µL reaction volume, 2.0 to 2.5 units of Taq DNA Polymerase are recommended. The enzyme can be added conveniently to a fresh master mix prepared for a number of reactions, thereby avoiding accuracy problems associated with adding individual 0.5-µL enzyme aliquots to each tube. A typical PCR protocol for amplification of the DNA template includes a 1 minute 94°C denaturation step, a 1 minute 37°C primer annealing step, and a 2 minute 72°C primer extension step. This will amplify a 500 base-pair product at least 100,000-fold in 25 cycles.

During DNA denaturation, sufficient time must be allowed for thermal equilibration of the sample. The practical range of effective denaturation temperatures for most samples is 92-95°C, with 94°C being the standard choice.

Primer annealing is usually performed first at 37°C, and the specificity of the product is evaluated. If unwanted bands are observed, the annealing temperature should be raised in subsequent optimization runs. While the primer annealing temperature range is often 37-55°C, it may be raised as high as the extension temperature in some cases. Merging of the primer annealing and primer extension steps results in a two-step PCR process.

Primer extension, in most applications, occurs effectively at a temperature of 72°C and seldom needs optimization. In the two-temperature PCR process the temperature range may be 65-70°C. In situations where enzyme concentration limits amplification in late cycles, the extension is preferably increased linearly with cyclic number. Usually, 25 to 45 cycles are required for extensive amplification (i.e., 1,000,000 fold) of a specific target.

Once the DNA sequence is determined, through conventional and well-known techniques, its amino acid sequence can be deduced by "translating" the DNA sequence. The resulting amino acid sequence having the principal neutralizing determinant of the envelope gene is then employed to synthesize large quantities of PND protein or fragment thereof. Synthesis is performed by organic synthesis or by recombinant expression systems, or both.

20 Preparation of Principal Neutralization Determinant

A. Organic Synthesis of PND:

Standard and conventional methods exist for rapid and accurate synthesis of long peptides on solidphase supports. Solution-phase synthesis is usually feasible only for selected smaller peptides.

Synthesis on solid-phase supports, or solid-phase synthesis, is most conveniently performed on an automated peptide synthesizer according to e.g., Kent, S. et al., "Modern Methods for the Chemical Synthesis of Biologically Active Peptides," in Alitalo, K. et al., (eds.). Synthetic Peptides in Biology and Medicine, Elsevier 1985, pp. 29-57. Manual solid-phase synthesis may be employed instead, by following the classical Merrifield techniques, as described, for example, in Merrifield, R.B. J. Am. Chem. Soc. 85, 2149 (1963), or known improvements thereof. Solid-phase peptide synthesis may also be performed by the Fmoc method, which employs very dilute base to remove the Fmoc protecting group. Segment synthesis-condensation is a further variant of organic synthesis of peptides as within the scope of the techniques of the present invention.

In organic synthesis of peptides, protected amino acids are condensed to form amide or peptide bonds with the N-terminus of a growing peptide. Condensation is usually performed with the carbodiimide method by reagents such as dicyclohexylcarbodiimide, or N-ethyl, N_1 -(γ -dimethylaminopropyl) carbodiimide. Other methods of forming the amide or peptide bond include, but are not limited to, synthetic routes via an acid chloride, azide, mixed anhydride or activated ester. Common solid-phase supports include polystyrene or polyamide resins.

The selection of protecting groups of amino acid side claims is, in part, dictated by particular coupling conditions, in part by the amino acid and peptide components involved in the reaction. Such aminoprotecting groups ordinarily employed include those which are well known in the art, for example, urethane protecting substituents such as benzyloxycarbonyl (carbobenzoxy), p-methoxycarbobenzoxy, p-nitrocarbobenzoxy, t-butyloxycarbonyl, and the like. It is preferred to utilize t-butoxycarbonyl (BOC) for protecting the ϵ -amino group, in part because the BOC protecting group is readily removed by relatively mild acids such as trifluoroacetic acid (TFA), or hydrogen chloride in ethyl acetate.

The OH group of Thr and Ser may be protected by the Bzl (benzyl) group and the ε-amino group of Lys may be protected by the isopropoxycarbonyl (IPOC) group or the 2-chlorobenzyloxycarbonyl (2-CI-CBZ) group. Treatment with HF or catalytic hydrogenation are typically employed for removal of IPOC or 2-CI-CBZ.

For preparing cocktails of closely related peptides, see, e.g., Houghton, R.A., Proc. Natl. Acad. Sci. USA 82, 5131 (1985).

B. Expression of PND in a Recombinant Expression System

It is now a relatively straightforward technology to prepare cells expressing a foreign gene. Such cells act as hosts and include E. coli, B. subtilis, yeasts, fungi, plant cells or animal cells. Expression vectors for

many of these host cells have been isolated and characterized, and are used as starting materials in the construction, through conventional recombinant DNA techniques, of vectors having a foreign DNA insert of interest. Any DNA is foreign if it does not naturally derive from the host cells used to express the DNA insert. The foreign DNA insert may be expressed on extrachromosomal plasmids or after integration in whole or in part in the host cell chromosome(s), or may actually exist in the host cell as a combination of more than one molecular form. The choice of host cell and expression vector for the expression of a desired foreign DNA largely depends on availability of the host cell and how fastidious it is, whether the host cell will support the replication of the expression vector, and other factors readily appreciated by those of ordinary skill in the art.

The technology for recombinant procaryotic expression systems is now old and conventional. The typical host cell is E. coli. The technology is illustrated by treatises such as Wu, R (ed) Meth. Enzymol. 68 - (1979) and Maniatis, T. et. al., Molecular Cloning: A Laboratory Manual Cold Spring Harbor 1982.

The foreign DNA insert of interest comprises any DNA sequence coding for a PND (or fragment thereof of at least 5 amino acids in length) of the present invention, including any synthetic sequence with this coding capacity or any such cloned sequence or combination thereof. For example, PND peptide coded and expressed by an entirely recombinant DNA sequence is encompassed by this invention.

Vectors useful for constructing eukaryotic expression systems for the production of recombinant PND comprise the DNA sequence for PND, fragment or variant thereof, operatively linked thereto with appropriate transcriptional activation DNA sequences, such as a promoter and/or operator. Other typical features may include appropriate ribosome binding sites, termination codons, enhancers, terminators, or replicon elements. These additional features can be inserted into the vector at the appropriate site or sites by conventional splicing techniques such as restriction endonuclease digestion and ligation.

Yeast expression systems, which are one variety of recombinant eukaryotic expression systems, generally employ Saccharomyces cerevisiae as the species of choice for expressing recombinant proteins.

S. cerevisiae and similar yeasts possess well known promoters useful in the construction of yeast expression systems, including but not limited to GAP491, GAL10, ADH2, and alpha mating factor.

Yeast vectors useful for constructing recombinant yeast expression systems for expressing PND include, but are not limited to, shuttle vectors, cosmid plasmids, chimeric plasmids, and those having sequences derived from 2-micron circle plasmids.

Insertion of the appropriate DNA sequence coding for PND, fragment or variant thereof, into these vectors will, in principle, result in a useful recombinant yeast expression system for PND where the modified vector is inserted into the appropriate host cell, by transformation or other means.

Recombinant mammalian expression systems are another means of producing the recombinant PND for the conjugates of this invention. In general, a host mammalian cell can be any cell that has been efficiently cloned in cell culture. Host mammalian cells useful for the purposes of constructing a recombinant mammalian expression system include, but are not limited to, Vero cells, NIH3T3, GH3, COS, murine C127 or mouse L cells. Mammalian expression vectors can be based on virus vectors, plasmid vectors which may have SV40, BPV or other viral replicons, or vectors without a replicon for animal cells. Detailed discussions on mammalian expression vectors can be found in the treatises of Glover, D.M. (ed.) "DNA Cloning: A Practical Approach," IRL 1985, Vols. I and II.

Recombinant PND may possess additional and desirable structural modifications not shared with the same organically synthesized peptide, such as adenylation, carboxylation, glycosylation, hydroxylation, methylation, phosphorylation or myristoylation. These added features may be chosen or preferred as the case may be, by the appropriate choice of recombinant expression system. On the other hand, recombinant PND may have its sequence extended by the principles and practice of organic synthesis of section A above.

Conjugation of PND and Omp to Form a Covalent Linkage(s) Yielding Conjugate

Antigenic conjugates of PND and Omp are useful for vaccination against AIDS or ARC. Such conjugates have at least one covalent linkage between the antigen PND and Omp, and typically have more than one PND molecule covalently bound to each Omp molecule.

PND and Omp are prepared separately, then linked by non-specific cross-linking agents, monogeneric spaces or bigeneric spacers. Methods for non-specific cross-linking include, but are not limited to, reaction with glutaraldehyde; reaction with N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide, with or without admixture of a succinylated carrier; periodate oxidation of glycosylated substituents followed by coupling to free amino groups of a protein carrier in the presence of sodium borohydride or sodium cyanoborohydride; diazotization of aromatic amino groups followed by coupling on tyrosine side chain residues of the protein;

10

30

40

reaction with isocyanates; or reaction of mixed anhydrides. See, generally, Briand, J.P. et al. J. Imm. Meth. 78, 59 (1985). These methods of non-specifically cross-linking are conventional and well-known in the typical practice of preparing conjugates for immunological purposes.

In another embodiment of the invention conjugates formed with a monogeneric spacer are prepared. These spacers are bifunctional and require functionalization of only one of the partners of the reaction pair to be conjugated before conjugation takes place.

By way of illustration rather than limitation, an example of a monogeneric spacer involves coupling the polypeptide PND to one end of the bifunctional molecule adipic acid dihydrazide in the presence of carbodiimide. A diacylated hydrazine presumably forms with pendant glutamic or aspartic carboxyl groups of PND. Conjugation then is performed by a second coupling reaction with carrier protein in the presence of carbodiimide. For similar procedures, see for example, Schneerson, R. et al., J. Exp. Med. 152, 361 (1980). Another example of a monogeneric spacer is described in Fujii, N. et al. Int. J. Peptide Protein Res. 26, 121 (1985).

In another embodiment of the invention conjugates of PND and Omp are formed with a bigeneric spacer. These spacers are formed after each partner of the reaction pair to be conjugated, e.g., PND and Omp, is functionalized with a bifunctional spacer. Conjugation occurs when each functionalized partner is reacted with its opposite partner to form a stable covalent bond or bonds. See, for example, Marburg, S. et al., J. Am. Chem. Soc. 108, 5282-5287 (1986) and Marburg, S. et al., U.S. Patent 4,695,624, issued 22 September 1987, each incorporated by reference. Bigeneric spacers are preferred for preparing conjugates in human vaccines since the conjugation reaction is well characterized and easily controlled.

Typical and conventional immunological practice provides for the ready and easy synthesis of antigenic conjugates within the scope of the present invention, including the conjugation of Omp with virtually any desired degree of substitution of virtually any peptide of the Sequence Listing. Heterogeneous products of the conjugation reaction are easily separable if needed by a variety of suitable column chromatography techniques.

Vaccine Formulation

25

The form of the immunogen within the vaccine takes various molecular configurations. A single molecular species of the antigenic conjugate (PND)_n~Omp will often suffice as a useful and suitable antigen for the prevention or treatment of AIDS or ARC. Other antigens in the form of cocktails are also advantageous, and consist of a mixture of conjugates that differ by, for example, the degree of substitution (n) or the amino acid sequence of PND or both.

An immunological vector or adjuvant may be added as an immunological vehicle according to conventional immunological testing or practice.

The conjugates of this invention when used as a vaccine, are to be administered in immunologically effective amounts. Dosages of between 1 μ g and 500 μ g of conjugate, and perferably between 50 μ g and 300 μ g of conjugate are to be administered to a mammal to induce anti-peptide, anti-HIV, or HIV-neutralizing immune responses. About two weeks after the initial administration, a booster dose may be administered, and then again whenever serum antibody titers diminish. The conjugate should be given intramuscularly at a concentration of between 10 μ g/ml and 1 mg/ml, and preferably between 50 and 500 μ g/ml, in a volume sufficient to make up the total required for immunological efficacy.

Adjuvants may or may not be added during the preparation of the vaccines of this invention. Alum is the typical and preferred adjuvant in human vaccines, especially in the form of a thixotropic, viscous, and homogeneous aluminum hydroxide gel. For example, one embodiment of the present invention is the prophylactic vaccination of patients with a suspension of alum adjuvant as vehicle and a cocktail of (PND)_n-Omp as the selected set of immunogens or antigens.

The vaccines of this invention may be effectively administered, whether at periods of pre-exposure and/or post-exposure, in combination with effective amounts of the AIDS antivirals, immunomodulators, anti-infectives, or vaccines of Table I.

TABLE I

5		ANTI-VIRALS	
Ū	Drug Name	<u>Manufacturer</u>	<u>Indication</u>
	AL-721	Ethigen	ARC, PGL
		(Los Angeles, CA)	HIV positive, AIDS
10			•
	Recombinant Human	Triton Biosciences	AIDS, Kaposi's
	Interferon Beta	(Almeda, CA)	sarcoma, ARC
15			
	Acemannan	Carrington Labs	ARC
		(Irving, TX)	(See also immuno-
20			modulators)
	,		
	Cytovene	Syntex	sight threateining CMV
	Ganciclovir	(Palo Alto, CA)	peripheral CMV
25			retinitis
	d4T	Deletal March	
		Bristol-Myers	AIDS, ARC
30	Didehydrodeoxy- thymidine	(New York, NY)	
	cnymidine		
	dd	Bristol-Myers	AIDS, ARC
$J\gamma$	Dideoxyinosine	(New York, NY)	•
	EL10	Elan Corp, PLC	HIV infection
40		(Gainesville, GA)	(See also immuno-
			modulators)
	7		
45	Foscarnet	Astra Pharm.	CMV retinitis, HIV
	Trisodium	Products, Inc.	infection, other CMV
	Phosphonoformate	(Westborough, MA)	infections

50

5	<pre>Drug Name Dideoxycytidine; ddc</pre>	Manufacturer Hoffman-La Roche (Nutley, NJ)	Indication AIDS, ARC
10	Novapren	Novaferon Labs, Inc. (Akron, OH) Diapren, Inc. (Roseville, MN, marke	
15	Peptide T Octapeptide Sequence	Peninsula Labs (Belmont, CA)	AIDS
20	Retrovir Zidovudine; AZT	Burroughs Wellcome (Rsch. Triangle Park, NC)	AIDS, adv, ARC pediatric AIDS, Kaposi's sarcoma,
25			asymptomatic HIV infection, less severe HIV disease,
30			<pre>neurological involve- ment, in combination w/other therapies, post-exposure pro-</pre>
35			phylaxis in health care workers
40	Rifabutin Ansamycin LM 427	Adria Laboratories (Dublin, OH) Erbamont (Stamford, CT)	ARC .
45			

9

50

5	<u>Drug Name</u> Dextran Sulfate	Manufacturer Ueno Fine Chem. Ind. Ltd. (Osaka, Japan)	Indication AIDS, ARC, HIV positive asymptomatic
10	Virazole Ribavirin	Viratek/ICN (Costa Mesa, CA)	asymptomatic HIV positive, LAS, ARC
15	Alpha Interferon	Burroughs Wellcome (Rsch. Triangle Park, NC)	<pre>Kaposi's sarcoma, HIV in combination w/Retrovir</pre>
20		Immuno-modulators	
25 30	Drug Name Antibody which neutralizes pH labile alpha aber- rant Interferon in an immuno- adsorption column	Manufacturer Advanced Biotherapy Concepts (Rockville, MD)	Indication AIDS, ARC
35	AS-101	Wyeth-Ayerst Labs. (Philadelphia, PA)	AIDS
40	Bropirimine	Upjohn (Kalamazoo, MI)	advanced AIDS
45	Acemannan	Carrington Labs, Inc. (Irving, TX)	AIDS, ARC (See also anti- virals)

50

5	Drug Name CL246,738	Manufacturer American Cyanamid (Pearl River, NY) Lederle Labs (Wayne, NJ)	Indication AIDS, Kaposi's sarcoma
10	EL10	Elan Corp, PLC	HIV infection
		(Gainesville, GA)	(See also anti- virals)
15	Gamma Interferon	Genentech (S. San Francisco,	ARC, in combination
20		CA)	<pre>w/TNF (tumor necrosis factor)</pre>
	Granulocyte Macrophage Colony	Genetics Institute (Cambridge, MA)	AIDS
25	Stimulating Factor	Sandoz (East Hanover, NJ)	
30	Granulocyte Macrophage Colony Stimulating Factor	Hoeschst-Roussel (Somerville, NJ) Immunex (Seattle, WA)	AIDS
35	Granulocyte Macrophage Colony	Schering-Plough (Madison, NJ)	AIDS
40	Stimulating Factor	(Hadibon, NJ)	AIDS, in combination w/Retrovir
45	HIV Core Particle Immunostimulant	Rorer (Ft. Washington, PA)	seropositive HIV

50

	Drug Name	Manufacturer	<u>Indication</u>
	IL-2	Cetus	AIDS, in combaintion
5	Interleukin-2	(Emerycille, CA)	w/Retrovir
	IL-2	Hoffman-La Roche	AIDS, ARC, HIV, in
10	Interleukin-2	(Nutley, NJ)	combination w/Retrovir
	Immune Globulin	Cutter Biological	pediatric AIDS, in
15	Intravenous	(Berkeley, CA)	combination
	(human)		w/Retrovir
20	IMREG-1	Imreg	AIDS, Kaposi's
		(New Orleans, LA)	sarcoma, ARC, PGL
	IMREG-2	Imreg	AIDS, Kaposi's
25		(New Orleans, LA)	sarcoma, ARC, PGL
	Imuthiol Diethyl	Merieux Institute	AIDS, ARC
30	Dithio Carbamate	(Miami, FL)	
•	INTRON A	Schering Plough	Kaposi's sarcoma
	Alpha-2	(Madison, NJ)	w/Retrovir: AIDS
35	Interferon		
	Methionine-	TNI Pharmaceutical	AIDS, ARC
40	Enkephalin	(Chicago, IL)	•
	MTP-PE	Ciba-Geigy Corp.	Kaposi's sarcoma
	Muramy1-	(Summit, NJ)	
	Tripeptide		

50

	Drug Name	Manufacturer	Indication
	Granulocyte	Amgen	AIDS, in combination
-	Colony	(Thousand Oaks, CA)	w/Retrovir
5	Stimulating		
	Factor		
10	rCD4	Genentech	AIDS, ARC
10	Recombinant	(S. San Francisco,	AIDS, ARC
	Soluble Human CD4		
	Soluble Human CD4	CA)	
15	Recombinant	Biogen	AIDS, ARC
	Soluble Human CD4	(Cambridge, MA)	AIDS, ARC
	boldbic numan CD4	(Cambiidge, IA)	
20			
	Roferon-A	Hoffman-La Roche	Kaposi's sarcoma
	Interferon	(Nutley, NJ)	AIDS, ARC, in
25	Alfa 2a		combination
20			w/Retrovir
	SK&F106528	Smith, Kline & French	HIV infection
30	Soluble T4	Laboratories	
		(Philadelphia, PA)	
35	Thymopentin	Immunobiology	HIV infection
		Research Institute	
		(Annandale, NJ)	
40	Tumor Necrosis	Genentech	ARC is combine
	Factor; TNF	(S. San Francisco,	ARC, in combina-
		CA)	tion w/gamma
		CA/	Interferon

Anti-Infectives

5	Drug Name Clindamycin with Primaquine	Manufacturer Upjohn (Kalamazoo, MI)	Indication PCP
10	Diflucan Fluconazole	Pfizer (New York, NY)	cryptococcal meningitis, candidiasis
15	Pastille Nystatin Pastille	Squibb Corp. (Princeton, NJ)	prevention of oral candidiasis
20	Ornidyl Eflornithine	Merrell Dow (Cincinnati, OH)	PCP
25	Pentamidine Isethionate (IM & IV)	LyphoMed (Rosemont, IL)	PCP treatment
30	Piritrexim	Burroughs Wellcome (Rsch. Triangle Park, NC)	PCP treatment
35	Pentamidine isethionate for inhalation	Fisons Corporation (Bedford, MA)	PCP prophylaxis
40 45	Spiramycin	Phone-Poulenc Pharmaceuticals (Princeton, NJ)	cryptosporidial diarrhea

50

5	<u>Drug Name</u> Intraconazole- R51211	Manufacturer Janssen Pharm. (Piscataway, NJ)	Indication histoplasmosis; cryptococcal meningitis
10	Trimetrexate	Warner-Lambert Other	PCP
15	Drug Name Recombinant Human Erythropoietin	Manufacturer Ortho Pharm. Corp. (Raritan, NJ)	Indication severe anemia assoc. and Retrovir therapy
25	Megestrol Acetate	Bristol-Myers (New York, NY)	treatment of anorexia assoc. w/AIDS
30	Total Enteral	Norwich Eaton Pharmaceuticals (Norwich, NY)	diarrhea and malabsorption related

It will be understood that the scope of combinations of the antigenic conjugates of this invention with 35 AIDS antivirals, immunomodulators, anti-infectives or vaccines is not limited to the list in the above Table, but includes in principle any combination with any pharmaceutical composition useful for the treatment of AIDS. The antigenic conjugates as AIDS or HIV vaccines of this invention include vaccines to be used preor post-exposure to prevent or treat HIV infection or disease, and are capable of producing an immune response specific for the immunogen.

EXAMPLE 1

Isolation of Genomic DNA from Frozen (-20 °C) Pellets of Peripheral Blood Lymphocytes

Each DNA was prepared respecting the principle that preparation and storage of high molecular weight DNA be segregated from all polymerase chain reaction (PCR) amplification experiments.

50

45

	<u>Reagents</u> P-K Buffer		
5	10 mM Tris		Prepare using sterile H ₂ 0 in
	400 mM NaCl	рН 7.4	plastic labware. Sterile filter
	2 mM EDTA		through a 0.45 μm filter
			device and aliquot 10 ml into
10			15 ml conical tubes. Store at
			-20°C.
15	Proteinase K	1.0mg/m1	Dissolve the contents of a bottle
			in sterile H ₂ O to a final conc.
			of 1.0 mg/ml. Aliquot 0.3-0.5 ml
20			into freezer tubes. Store at
			-20°C.
	SDS 10%		Prepare using sterile H ₂ O in
25	505 10%		plastic labware. Sterile filter
			through a 0.45 µm filter device
			and aliquot 2.0 ml into Nalgene
30			freezer tubes. Store at -20°C.

Phenol:Chloroform 50:50 Prepare and aliquot 8.0 ml into 15 ml conical tubes and store at -20°C in the dark.

RNase A 1.0 mg/ml

Dissolve the contents of a bottle in sterile H₂O to a final conc. of 1.0 mg/ml. Aliquot 0.3-0.5 ml into freezer tubes. Store at -20°C.

15

20

25

30

35

40

45

5

10

95% and 70% EtOH

Store at -20°C.

Dilution Buffer
10 mM Tris
25 mM NaCl pH 8.0
0.1 mM EDTA

Prepare using sterile $\rm H_2O$ in plastic labware. Sterile filter through a 0.45 μm filter device and aliquot 10 ml in 15 ml conical tubes. Store at 4°C.

- 1) Suspend cell pellets of co-cultivated patient peripheral blood lymphocytes in 0.5 ml of P-K Buffer taking care to break up pellet completely.
- 2) Adjust sample to 100 µg/ml Proteinase K with 1.0 mg/ml stock. Mix well.
- 3) Adjust sample to 0.5% SDS with 10% stock. Mix well and incubate at 50°C for 16-24 hours.
- 4) Extract sample with an equal volume of Phenol: Chloroform for 10 minutes @ 21-25° C.
- 5) Split phases by centrifugation @ 2K for 5 minutes.
- 6) Remove aqueous and re-extract with an equal vol. of CHCl₃ for 2-5 minutes @ 21-25° C. Split phases as before.
- 7) Repeat Step 6.
- 8) Adjust aqueous to 100 µg/ml RNase A with 1.0 mg/ml stock and incubate @ 37° C for 90 minutes.
- 9) Repeat Steps 4, 5, 6, and 7.
- 10) Precipitate DNA with the addition of 2.5 vol of cold 95% EtOH.
- 11) Collect DNA for 30 minutes at 10,000 RPM's at 4° C.
 - 12) Remove EtOH and wash pellet once with 70% EtOH. Spin for 2 minutes as 10,000 RPM's.
 - 13) Remove EtOH and dissolve the pellet in 300λ of dilution buffer.

EXAMPLE 2

PCR Amplification of Genomic DNA from HIV Isolates

Genomic DNA was amplified by the polymerase chain reaction according to Scharf, S.J. et al. Science 233, 1076 (1986). A heat resistant T. aquaticus DNA polymerase was employed to enhance stability during thermal cycling. See, e.g., Saiki, R. K. et al. Science 239, 487 (1988). Excess primer for each strand was used. The primers were

RP.Hpa having the sequence

5'-P-TCT-GTT-AAC-TTC-ACA-GAC-AAT-GCT-AAA-ACC-ATA-ATA-GTA-CAG-CTG-3'; and RP.Cla having the sequence

5'-P-GCA-ATC-GAT-CTG-TTT-TAA-AGT-GTT-ATT-CCA-TTT-TGC-3'

The 5' phosphate was added by chemical methods, according to Horn, T. et al., Tetrahedron Letters 27, 4705 (1986).

EXAMPLE 3

Filtration of PCR Amplified Sequences

5 General Considerations:

This filtration step removes free nucleotides and low molecular weight oligonucleotide contaminants which inhibit ligation, according to Sharf, et al. Science, 233, 1076 (1986).

- 1) Dilute up to 100λ of sample (1-2 μg DNA/ml) of Example 2 to 400λ with "buffer" (10 mM Tris*HCl, 25 mM NaCl, 0.1 mM EDTA, all buffered to pH8) and spin in a microcentrifuge for 5 minutes at RT.
- N.B. No more than 4 samples can be placed in same rotors at one time. Be sure that the cap of the tube is completely closed or some volume may spray out of the unit. If using a non-dedicated microcentrifuge, spin sample at 2000 x g.
- 2) Remove insert and place in a clean 1.5 ml plastic tube containing a polysulfone filter with a 100,000 dalton molecular weight cut off. Redilute sample to 400λ with buffer and spin as before.
- 3) Repeat Step 2.
- 4a) For Cloning purposes:

Remove sample and rinse membrane gently with 10-20 λ of buffer. Combine the sample and rinse and adjust back to the original volume. Check on agarose gel for yield and purity.

4b) For Reamplification purposes:

Remove sample carefully measuring volume. Rinse the membrane gently with additional buffer as above. Adjust back to the original volume (100λ) and use 5λ of the sample for reamplification.

EXAMPLE 4

25

30

35

10

15

20

Ligation and Cloning of PCR Amplified Sequences

Reagents

pUC13 SmaI/Bap

A cloning vector commercially prepared by Pharmacia, dissolved in 10 mM Tris pH8.0, aliquoted and stored at -20°C. Its

40

45

50

sequence and preparation are described in Vieira, J. et al., Gene 19, 259 (1982), incorporated by reference for these purposes.

5X ligation buffer 250 mM Tris pH7.8 50 mM MgCl₂ 100 mM DTT

> 5.5 mM ATP 250 mg/ml BSA

prepared from stocks aliquoted and stored at -20°C.

20 T_A DNA Ligase

New England Biolabs

SOC media

25

5

15

Final Concentration

	bactotryptone	2%
	Yeast Extract	0.5%
	NaC1	10 mM
35	KC1	2.5 mM
	MgCl ₂ , MgSO ₄	20 mM (10 mM each)
	Glucose	20 mM
	Distilled H ₂ O	
40	2	

- To 97 ml distilled H₂O, add bacto-tryptone, yeast extract, NaCl and KCl. Stir to dissolve, autoclave, and cool to room temperature. Make medium 20 mM in Mg⁺⁺ stock with a 2 M Mg⁺⁺ (1 M MgCl₂•6H₂O + 1 M MgSO₄•

50

45

7H₂O, filtersterilized). Add 2⁴M glucose stock (filtersterilized) to make the medium 20 mM final. Filter the complete medium through a 0.2 µm filter unit. pH should be 7.0 ± 0.1. Filtersterilizing units should be prefiltered with distilled H,O before use to remove any toxic material from the filter.

Luria Bertani Agar + 100 μ g/ml

Ampicillin - commercially prepared from REMEL. For composition, see Sambrook, J. et al., Molecular Cloning 3, A.1 (2nd Ed., 1989)

Xgal 2% in dimethylformamide

stored at -20°C. Xgal is
 5-bromo-4-chloro-3-indoly1
 B-D-galactoside.

IPTG 100 mM in H₂0

- stored at -20°C. IPTG is isopropyl-thiogalactoside.

- 1). Combine 10 λ of filtered PCR amplified DNA (10-20 ng/ml) with 20 ng of pUCl3 Smal/BAP and 100 units of T₄ DNA ligase in a final volume of 20 λ .
- 2). Incubate at 21-25°C for 3 hours.
- 3). Transform 100λ of tranformation competent bacteria using 10λ of ligation buffer.
- 4). Incubate on ice for 30 minutes in sample tubes.

5

10

15

20

25

30

35

40

45

50

- 5). Heat shock tubes for 45 seconds at 42°C.
- 6). Reincubate on ice for 2 minutes before adding 1.0 ml of SOC media (21-25°C).
- 7). Incubate 1 hour at 37 °C shaking at 225 RPM's.
- 8). Pellet cells in 1.5 ml plastic tubes for 10 seconds at maximum speed.
- 9). Remove the media except about 100λ. Care should be taken removing the media as the pellet is loose.
 - 10). Resuspend the cells in the remaining 100λ and spread on an L agar plate containing Ampicillin and onto which 100λ of Xgal and 50λ of IPTG had been previously spread.
 - 11). Invert the incubate at 37 °C. Colonies are visible after 12 hours. Blue color indication is clear after 16 hours.

EXAMPLE 5

Isolation of Plasmid DNA for Subsequent Dideoxy Sequence Analysis

Reagents

MP Buffer 1

50 mM Glucose
 10 mM EDTA
 25 mM Tris pH 8.0

MP Buffer 2 - made fresh for each experiment

25

10

15

0.2 N NaOH 1% SDS

MP Buffer 3

30

Potassium Acetate pH ~5.6 60 ml 5M KOAc 28.5 ml H₂O 11.5 ml gl. HOAc

RNase Stock

1.0 mg/ml RNase A dissolved in H_2O and boiled 10 minutes

40

Phenol:Chloroform (50:50)

Phenol is buffer saturated with an equal volume of buffer (50 mM Tris*HCl, 100 mM NaCl, 1mM EDTA, pH 8.0)

45

55

PEG

13% Poly Ethylene Glycol (PEG-8000)

50 4M NaCl

95% and 70% EtOH

- 1). Three individual colonies from each isolate are selected at random and placed in 10 ml of L Broth. Each are grown overnight in a 50 ml conical tube shaking @ 225-250 RPM's @ 37°C.
 - 2). Collect 9.5 ml of overnight culture at 1K for 20 minutes.
 - 3). Dry pellet well and resuspend by vortexing in 200 λ of MP 1. Transfer to a 1.5 ml plastic tube. Incubate 5 minutes @ RT.

- 4). Add 40λ of MP 2 and incubate 5 minutes on ice. Mix by inversion.
- 5). Add 300 λ of MP 3 and incubate 5 minutes on ice. Mix by inversion.
- 6). Centrifuge 10,000 Xg for 5 minutes @ 4°C.
- 7). Transfer supernatant to a fresh 1.5 ml tube and add 10λ of a 1.0 μ g/ml RNase A stock. Incubate 30 minutes @ 37 ° C.
- 8). Extract with an equal volume (-500\(\lambda\)) of buffer saturated phenol:chloroform. Split phases.
- 9). Transfer aqueous to a fresh tube and precipitate by adding 1.0 ml of cold EtOH. Incubate @ -70° C for 30 minutes.
- 10). Collect at full speed (about 10,000 Xg) for 15 minutes @ 4°C.
- 11). Remove EtOH and wash with 1.0 ml cold 70% EtOH. Respin for 2 minutes.
 - 12). Remove EtOH and drain tube well. Dry pellet by inversion and then redissolve in 80λ H₂O.
 - 13). Adjust sample with 20\(\lambda\) 4M NaCl and 100\(\lambda\) PEG. Incubate 30 minutes on ice.
 - 14). Centrifuge at full speed (about 10,000 Xg) for 15 minutes @ 4°C.
 - 15). Remove supernatant and wash pellet with 1.0 ml cold 70% EtOH. Respin for 2 minutes.
 - 16). Remove EtOH and drain tube well. Dry pellet in speed vac. and then redissolve in 20λ H₂O.

EXAMPLE 6

5

15

20

25

30

35

40

50

55

DETERMINATION OF THE DNA SEQUENCE

Sequencing was performed by the method of Tabor, S. et al., Proc. Nat. Acad. Sci., 84, 4767 (1987). Sequencing gels were read and checked with a scanner. Amino acid sequences were deduced from DNA.

EXAMPLE 7

Preparation of Synthetic Peptides

A. The oligopeptide EE15-1 of the sequence:

1 5 10 15 Cys Thr Arg Pro Ser Asn Asn Thr Arg Arg Gly Ile His Ile Gly

TGT ACA AGA CCC AGC AAC AAT ACA AGA AGA GGT ATA CAT ATA GGA

20 25 30

Pro Gly Arg Ala Leu Tyr Thr Thr Gly Glu Ile Thr Gly Asp Ile CCA GGG AGA GCA CTT TAT ACA ACA GGA GAA ATA ACA GGA GAT ATA

35

Arg Arg Ala Tyr Cys

45 AGA CGA GCA TAT TGT

is synthesized by conventional solid-phase techniques on an automated peptide synthesizer, according to Kent, S. et al., "Modern Methods for the Chemical Synthesis of Biologically Active Peptides," in Alitalo, K. et al. (eds.), Synthetic Peptides in Biology and Medicine, Elsevier 1985, pp. 29-57.

- B. Each of the peptides of the Sequence Listing is prepared by the same method.
- C. Oligopeptide EE15-1 was prepared in a recombinant expression system in E. coli according to the methods of Sambrook, J. et al., Molecular Cloning 3, 17.3 et seq. Cold Spring Harbor 2nd Ed. 1988.

Every other peptide of the Sequence Listing is also prepared in a recombinant expression system in E. coli.

EXAMPLE 8

Extraction and Purification of Omp

A. First Method

5

10

All materials, reagents and equipment were sterilized by filtration, steam autoclave or ethylene oxide, as appropriate; asceptic technique was used throughout.

A 300 gm (wet weight) aliquot of 0.5% phenol inactivated cell paste of Meningococcal group B11 was suspended in 1200 mls of distilled water than suspended by stirring magnetically for 20 minutes at room temperature. The suspended cells were pelleted at 20,000 xg for 45 minutes at 5°C.

For extraction, the washed cells were suspended in 1500 mls 0.1 M Tris, 0.01 M EDTA Buffer pH 8.5 with 0.5% sodium deoxychloate (TED Buffer) and homogenized with a 500 ml Sorvall omnimixer at setting 3 for 60 seconds. The resulting suspension was transferred to ten Erlenmeyer flasks (500 ml) for extraction in a shaking water bath for 15 minutes at 56 °C. The extract was centrifuged at 20,000 x g for 90 minutes at 5 °C and the viscous supernatant fluid was decanted (volume = 1500 mls). The decanted fluid was very turbid and was recentrifuged to clarify further at 20,000 x g for 90 minutes at 5 °C. The twice spun supernatant fluid was stored at 5 °C. The extracted cell pellets were resuspended in 1500 mls TED Buffer. The suspension was extracted for 15 minutes at 56 °C and recentrifuged at 20,000 x g for 90 minutes. The supernatant fluids which contained purified Omp were decanted (volume = 1500 mls) and stored at 5 °C.

20 B. Second Method

All material, reagents, equipment and filters were sterilized by heat, filtration or ethylene oxide. One exception was the K-2 ultracentrifuge which was sanitized with a 0.5% formalin solution. Laminar flow canopies provided sterility protection during equipment connections. Aseptic techniques were followed throughout the entire operations. Overnight storage of the protein was at 2-8°C between steps. A 0.2 micron sterile filtration was conducted just before the final diafiltration to ensure product sterility.

Two 600-liter batches of Neisseria meningitidis were fermented and killed with 0.5% phenol, then concentrated to roughly 25 liters using two 10 ft² 0.2 micron polypropylene cross-flow filtration membranes. The concentrated broth then was diafiltered with 125 liters of cell wash buffer (0.11 M Sodium Chloride, 17.6 mM Sodium Phosphate Diabasic, 23.3 mM Ammonium Chloride, 1.34 mM Potassium Chloride, adjusted to pH 7 with 85% Phorphoric Acid followed by 2.03 mM Magnesium Sulfate Heptahydrate).

For extraction, an equal volume of 2X-TED buffer (0.2M Tris, 0.02M EDTA adjusted to pH 8.5 with concentrated HCl followed with the addition of 1.0% sodium deoxycholate) was added to the cell slurry. The resulting slurry was heated to 56 \pm 3 °C and maintained at this temperature for 30 minutes to complete the extraction of Omp from the cells.

For further purification, the extracted cell slurry was centrifuged at 30,000 x g (18,000 rpm) in a "one-pass" flow mode in a K-ultracentrifuge, and the supernatant stream was collected. The low-speed supernatant was concentrated to 10 liters on two 0.1-micron polysulfone autoclavable hollow-fiber membranes and collected in an 18 liter sterile bottle. The filtration equipment was given two 4-liter rinses with TED buffer (0.1M Tris, 0.01M EDTA, adjusted to pH 8.5 with concentrated HCl, followed with the addition of sodium deoxycholate to 0.5%) which was combined with the retentate. The retentate was subdivided into two or three equal parts. Each part was centrifuged at 80,000 x g (35,000 rpm) for 30 mintues. The Omp protein was pelleted, and the majority of soluble proteins, nucleic acids and endotoxins remained in the supernatant. The supernatant was discarded. The pelleted protein was resuspended by recirculating 55 ± 5 °C TED buffer through the rotor. The first high-speed resuspensions were combined and subjected to a second low-speed spin. The second low-speed spin ensured that residual cell debris was removed from the product stream. The second low speed supernatant was subdivided into two or three equal parts. Each fraction was given two consecutive high-speed spins. All high-speed spins were operated under the same conditions and each further purified the Omp protein.

For sterile filtration and final diafiltration, the third high-speed resuspensions were diluted with an equal volume of TED buffer and filtered through a 0.2 micron cellulose acetate filter. When all fractions were permeated, an 8 L TED buffer rinse was used to flush the filtration system. The permeate and rinse were combined and concentrated to 3 liters on a 0.1 micron polysulfone autoclavable hollow fiber membrane. The material then was diafiltered with 15 liters of sterile pyrogen free water. The retentate was collected in a 4-liter bottle along with a 1-L rinse to give the final product. The final aqueous suspension was stored at 2-8 °C, as purified Omp.

C. Third Method

Omp is purified from 0.2 M LiCl-0.1M Na Acetate, pH 5.8, extracts by ultracentrifugation, by the method of C.E. Frasch et al. J. Exp. Med. 140, 87-104 (1974), herein incorporated by reference.

EXAMPLE 9

5

20

35

50

A. Preparation of (EE15-1 Peptide)-Omp conjugate ("EE15-1-Omp" conjugate)

N-acetylhomocystaminylated outer membrane protein (Omp) of N. meningitidis from 59 mg of Omp (purified by Method B of Example 2) is prepared by the centrifugation method described in Marburg, S. et al., J. Am. Chem. Soc. 108:5282 (1986). This material (about 50 mg) is reacted at pH 8 (6.5 mL 0.1M $\overline{PO_4}$ buffer) with 20 mg of N- $\overline{\Omega}$ -bromoacetylated EE15-1 (lyophilized) under N₂ for 18 hours at room temperature.

The reaction mixture is diluted to 10 mL with H_2O and centrifuged for 2h, at 4°C and 43,000 rpm. The supernatant is removed, and the pellet resuspended, using a Dounce tissue homogenizer, in 10 mL of H_2O . This suspension is recentrifuged (as above) and the pellet resuspended in 9.5 mL of H_2O . A low speed spin for 1 minute in a clinical centrifuge removes a flocculent insoluble material if any. The degree of substitution can be determined and calculated by a variety of methods.

B. Preparation of Other Peptide Conjugates

By the method of Example 9A the following peptide-Omp conjugates are obtained:

(EE15-1)5-Omp,

(EE164-3)4-Omp,

(EE244-1)₆-Omp,

(EE310-2)8-Omp,

(EE311-1)₁₀-Omp,

(EE359-2)_{6.5}-Omp,

(EE360-1)3.3-Omp, and

(EE543-1)_{4.0}-Omp.

30 EXAMPLE 10

Protocol for Inoculation of Animals with the (EE15-1)5-Omp Conjugate (hereinafter "EE-15-1-Omp" conjugate)

Alum is used as an adjuvant during the inoculation series. The inoculum is prepared by dissolving the EE15-1-Omp conjugate in physiologic saline at a final conjugate concentration of 100 μ g/ml. Preformed alum (aluminum hydroxide gel) is added to the solution to a final level of 500 μ g/ml aluminum. The conjugate is allowed to adsorb onto the alum gel for two hours at room temperature. Following adsorption, the gel with the conjugate is washed twice with physiologic saline and resuspended in the saline to a protein concentration of about 100 μ g/ml.

African green monkeys are individually inoculated with four 100 mcg doses of the EE15-1-Omp conjugate adsorbed onto alum. Each dose is injected intramuscularly. The doses are delivered one or five months apart (week 0, 4, 8 and 28). The animals are bled at intervals of two or four weeks. Serum samples are prepared from each bleed to assay for the development of specific antibodies as described in the subsequent examples.

EXAMPLE 11

Analysis of Sera for Anti-Peptide IgG Antibodies

Each serum sample is analyzed by enzyme-linked immunoadsorbent assay (ELISA). Polystyrene microtiter plates are coated with 0.5 µg per well of the synthetic peptide (not conjugated to Omp) in phosphate-buffered physiological saline (PBS) at 4 °C. Each well is then washed with PBS containing 0.05% TWEEN-20 (PBS-T). Test serum, diluted serially in PBS-T, is added to the peptide-containing wells and allowed to react with the adsorbed peptide for one hour at 36 °C. After washing with PBS-T, alkaline phosphatase-conjugated goat anti-human IgG is added to the test wells and is allowed to react for one hour at 36 °C. The wells are then washed extensively in PBS-T. Each well receives 0.1% p-nitrophenyl phosphate in 10% diethanolamine, pH 9.8, containing 0.5 mM MgCl₂6H₂O. The ensuing reaction is allowed

to proceed at room temperature for 30 minutes, at which time it is terminated by the addition of 3.0 N NaOH.

The greater the interaction of antibodies in the test serum with the peptide substrate, the greater is the amount of alkaline phosphatase bound onto the well. The phosphatase enzyme mediates the breakdown of p-nitrophenyl phosphate into a molecular substance which absorbs light at a wavelength of 405 nm. Hence, there exists a direct relationship between the absorbance at 405 nm of light at the end of the ELISA reaction and the amount of peptide-bound antibody.

Titers of anti-(EE15-1-Omp) antibody are thus readily determined.

EXAMPLE 12

Analysis of Sera for Activity which Specifically Neutralizes HIV Infectivity

Virus-neutralizing activity is determined with an assay described by Robertson et al., J. Virol. Methods 20: 195-202 (1988). The assay measures specific HIV-neutralizing activity in test serum. The assay is based on the observation that MT-4 cells, a human T-lymphoid cell line, are readily susceptible to infection with HIV and, after a period of virus replication, are killed as a result of the infection.

The test serum is treated at 56° C for 60 minutes prior to the assay. This treatment is required to eliminate non-specific inhibitors of HIV replication. Heat treated serum, serially diluted in RPMI-1640 cell culture medium, is mixed with a standard infection dose of HIV. The dose is determined prior to the assay as containing the smallest quantity of virus required to kill all the MT-4 cells in the assay culture after a period of 7 days. The serum-virus mixture is allowed to interact for one hour at 37° C. It then is added to 1.0×10^{5} MT-4 cells suspended in RPMI-1640 growth medium supplemented with 10% fetal bovine serum. The cultures are incubated at 37° C in a 5% CO₂ atmosphere for 7 days.

At the end of the incubation period, a metabolic dye, DTT, is added to each culture. This dye is yellow in color upon visual inspection. In the presence of live cells, the dye is metabolically processed to a molecular species which yields a blue visual color. Neutralized HIV cannot replicate in the target MT-4 cells and therefore does not kill the cells. Hence, positive neutralization is assessed by the development of blue color following addition of the metabolic dye.

All the monkeys inoculated with the EE15-1-Omp conjugate are bled for specific HIV infectivity-neutralizing activity. Further follow-up evaluation of the same monkeys is also performed. Booster shots are also administered to ascertain renewed neutralizing titer.

While the foregoing specification teaches the principles of the present invention, with examples provided for the purpose of illustration, it will be understood that the practice of the invention encompasses all of the usual variations, adaptations, modifications, deletions or additions of procedures and protocols described herein, as come within the scope of the following claims and its equivalents.

40

45

50

	SEQUENCE LISTING
	(1) GENERAL INFORMATION:
	(i) APPLICANT: J.A. LEWIS ET AL.
5	(ii) TITLE OF INVENTION: NEW EMBODIMENTS OF THE
	HIV PRINCIPAL NEUTRALIZING DETERMINANT
	(iii)CORRESPONDENCE ADDRESS: MERCK & CO., INC.
	(A) STREET: P.O. BOX 2000, EAST LINCOLN AVE.
	(B) CITY: RAHWAY
10	(C) STATE: NEW JERSEY
	(D) COUNTRY: USA
	(E) ZIP: 07065
	(iv) COMPUTER READABLE FORM:
	(A) MEDIUM TYPE: Diskette, 5.25 in., 360 Kb storage
15	(B) COMPUTER: Wang PC 381
	(C) OPERATING SYSTEM: MS-DOS 3.30.10
	(D) SOFTWARE: Microsoft WORD 5.0
	(v) CURRENT APPLICATION DATA:
	(A) APPLICATION NUMBER: NA
20	(B) FILING DATE: NA
	(C) CLASSIFICATION: NA
	(vi) PRIOR APPLICATION DATA: NONE
	(A) DOCUMENT NUMBER:
	(B) COUNTRY:
25	(C) FILING DATE:
	(D) PUBLICATION DATE:
	(vii) ATTORNEY/AGENT INFORMATION: (A) NAME: R.D. MEREDITH
	(B) REGISTRATION NUMBER: 30,777
	(C) REFERENCE/DOCKET NUMBER: 18114Y
30	(viii) TELECOMMUNICATION INFORMATION:
	(A) TELEPHONE: 201-594-4678
	(A) TELEPHONE: 201-594-4678 (B) TELEFAX: 201-594-4720
	(C) TELEX:
	(ix) PUBLICATION STATUS: NOT KNOWN
35	(A) AUTHORS:
	(B) TITLE:
	(C) JOURNAL:
	(D) VOLUME:
40	(E) ISSUE:
40	(F) PAGES:
	(G) DATE:
	(H) RELEVANT RESIDUES:
	(1) START:
45	(2) END:
	(3) BASE PAIRS:
	(4) AMINO ACIDS:

55

	(2) INFORMATION FOR SEQ ID NO: EELS-I
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 105
-	(B) TYPE: Nucleic Acid
5	(C) STRANDEDNESS: Single
	(D) TOPOLOGY: Linear
	(ii) KIND:cDNA to genomic RNA
	(ii) KIND (if peptide or protein):
	(A) SEQUENCE ASSEMBLY METHOD: Overlap
10	. (B) FRAGMENT TYPE: Internal Fragment
	(C) HYPOTHETICAL:
	(E) INDIVIDUAL
15	ISOLATE:
	(iv) IMMEDIATE SOURCE:
	(C) CLONE:
	(v) POSITION IN GENOME: Within Env Gene
	(vi) PROPERTIES OF SEQUENCE: Expresses conserved
20	antigenic determinant
	(viii) SEQUENCE DESCRIPTION:
	SEQ ID NO: EE15-1
25	
25	
	1 5 10 15
	Cys Thr Arg Pro Ser Asn Asn Thr Arg Arg Gly Ile His Ile Gly
	TGT ACA AGA CCC AGC AAC AAT ACA AGA AGA GGT ATA CAT ATA GGA
	The state was too the the same same and the same and the same same same same same same same sam
30	
	20 25 30
	Pro Gly Arg Ala Leu Tyr Thr Thr Gly Glu Ile Thr Gly Asp Ile
	CCA GGG AGA GCA CTT TAT ACA ACA GGA GAA ATA ACA GGA GAT ATA
	our our our our our and non our our and him how our our
35	
	35
	Arg Arg Ala Tyr Cys
	AGA CGA GCA TAT TGT
40	·
	(4)
	(2) INFORMATION FOR SEQ ID NO: EE15-2
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 105
45	(B) TYPE: Nucleic Acid
	(C) STRANDEDNESS: Single
	(D) TOPOLOGY: Linear
	(ii) KIND:cDNA to genomic RNA
50	

		(ii) KIND (if peptide or protein):
		(A) SEQUENCE ASSEMBLY METHOD: Overlap
		(B) FRAGMENT TYPE: Internal Fragment
		(C) HYPOTHETICAL:
5		(iii) ORIGINAL SOURCE: HIV
		(E) INDIVIDUAL ISOLATE:
		(iv) IMMEDIATE SOURCE:
		(C) CLONE:
		(v) POSITION IN GENOME: Within Env Gene
10		(vi) PROPERTIES OF SEQUENCE: Expresses conserved antigenic
		determinant
		(viii) SEQUENCE DESCRIPTION:
15	SEQ	ID NO: EE15-2
	•	
	1	5 10 15
		Thr Arg Pro Ser Asn Asn Thr Arg Arg Ser Ile Pro Ile Gly
	TGT	ACA AGG CCC AGC AAC AAT ACA AGA AGA AGT ATA CCT ATA GGA
20		
		20 25 yr ⁽¹⁾ = 230
	D	20 25 30 Gly Arg Ala Phe Tyr Thr Thr Gly Asp Ile Ile Gly Asp Ile
		GGG AGA GCC TTT TAT ACA ACA GGA GAC ATA ATA GGA GAT ATA
25	CCA	GGG AGA GCC III IAI ACA ACA GGA GAC AIA AIA GGA GAI AIA
20		•
		35
	Are	Gln Ala His Cys
	_	CAA GCA CAT TGT
30		V.1. V.1. V.1. 1-1
	(2)	INFORMATION FOR SEQ ID NO: EE15-3
		(i) SEQUENCE CHARACTERISTICS:
		(A) LENGTH: 105
35		(B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single
		(D) TOPOLOGY: Linear
		(ii) KIND: cDNA to genomic RNA
		(ii) KIND (if peptide or protein):
40		(A) SEQUENCE ASSEMBLY METHOD: Overlap
		(B) FRAGMENT TYPE: Internal Fragment
		(C) HYPOTHETICAL:
		(iii) ORIGINAL SOURCE: HIV
45		(E) INDIVIDUAL ISOLATE:
45		(iv) IMMEDIATE SOURCE:
		(C) CLONE:

) PR	OPE		OF							serv	ed a	ntig	enic
5		(vi	de ii)		inan EQUE		DESC	RIPT	'ION:	SEQ	ID	NO:				
	SEQ	ID :	NO:	EE1	5-3											
10	1				5					10					15	
	Cys	Thr	Arg	Pro	Ser	Asn	Asn	Thr	Arg	Arg	Ser	I1e	Pro	Ile	G1y	
	TGT	ACA	AGG	CCC	AGC	AAC	AAT	ACA	AGA	AGĀ	AGT	ATA	CCT	ATA	GGA	
15					20					25					30	
	Pro	G1 v	Arg	Ala		Tvr	Thr	Thr	G1 v		T10	T1a	C1 w	Aan	71a	
	CCA	GGG	AGA	GCC	TTT	TAT	ACA	ACA	GGA	GAC	ATA	ATA	GGA	GAT	ATA	
20					25											
-•	Arg	G15	A1 a	ni.	35											
	AGA															
0.5	(-)															
25	(2)	•)RMA	TION											
			(i)		SEQUAL (A)	ENCE			TERIS		:					
					(B)		LENG		105 Jucle							
					(c)				NESS		ingl	_				
30					(D)			LOGY		ines		. •				
			(ii))		: cI			nomi							
			(ii)	1	KIND	(if	pep	tide	or	prot	ein)	:				
					(A)		SEQU	ENCE	ASS	EMB I	Y ME	THOD): C	ver1	ар	
35					(B)				TYP		Inte	rnal	Fra	gmen	t	
35					(C)				ICAL	_						
			(iii	,	ORIG											
			(iv)					URCE	AL I	SOLA	TE:				_	
			(1)		(C)		CLON		· ě							
40			(v)		POSI				ME:	With	in F	nv C	020			
			(vi)		PROP	ERTI	ES O	F SE	OUEN	CE:	Exn	ress	ee . ene	<u> </u>	rved	antigenic
					dete	rmin	ant		, <u>-</u> -		—-Р		-5 -	CHAC	- 4 <i>ea</i>	auc. Relite
			(vii	i)	SEQU	ENCE	DES	CRIP	TION	:						
45																
-																

55

50

	SEQ	ע עד	10:	EEES	3/-1												
5	1 Cys TGT	Thr ACA	Arg AGA	Pro CCC	5 Asn AAC	Asn AAC	Asn AAT	Thr ACA	Arg AGA	10 Lys AAA	Arg AGG	Ile ATA	Thr ACT	MET ATG	15 Gly GGA		
10	Pro CCA	Gly GGG	Arg AGA	Val GTA	20 Phe TTT	Tyr TAT	Thr ACA	Thr ACA	Gly GGA	25 Gly GGA	Ile ATA	Ile ATA	Gly GGA	Asn AAT	30 Ile ATA		
15	Arg AGA																
20	(2)		INF	ORMA'	SEQ (A) (B) (C)	UENC	E CH LEN TYP STR	ARAC GTH: E: ANDE	TERI 10 Nuc1 DNES	STIC 5 eic S:	S: Acid Sing						
25			(ii (ii	-	(D) KIN KIN (A) (B) (C)	D: c D (i	DNA f pe SEQ FRA	to g ptid UENC GMEN	enom e or E AS	PE:	NA tein LY M	ETHO	D: 1 Fr	Over agme	lap nt		•
30			(ii)	ORI (E) IMM (C)	GINA EDIA	I SO IND TE S CLO	URCE IVII OURC NE:	: HI UAL E:	V ISOL				_			
35			(v) (vi (vi		PRO det	PERT ermi	IES nant	OF S	EQUE		nin Ex	env pres	ses	cons	served	l antiger	ai(
40	SEQ	ID	NO:	EEE	37–2												

50

55

10

Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile Asn Ile Gly TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA AAT ATA GGA

					20	1				25	5				30		
	Pro	Gly	Arg	Ala	Phe	Tyr	Thr	The	G1y	Glu	ı Ile	: Ile	e Gly	Asp	Ile		
	CCA	GGG	AGA	GCA	TTT	TAT	ACA	ACA	GGA	GAA	ATA	ATA	GGA	GAT	ATA		
_																	
5																	
					35												
	Arg	G1n	Ala	His	Cys												
	AGA	CAA	GCA	CAT	TGT												
10																	
10																	
	(2)			ORMA	TION												
			(i)			UENC			TERI		S:						
			•		(A)			GTH:		_							
15					(B)				Nucl								
,,,,					(C)				DNES		Sing	le					
					(D)			OLOG		Line							
			(ii						enom								
			(ii))		D (1:			e or				_		_		
20					(A)								D:				
					(B)						Int	erna	1 Fr	agme	a t		
			(iii		(C)	TRIA			TICA								
			(111	,	(E)	a TIAW.			: HI		A TTE .						
			(iv)	`		יאדת?		OURC	UAL	IOOL	WIE:						
25			(* *)	,	(C)	JU IN.	CLO		٠,								
			(v)			וחזחז	V IN		OME -	1.7.2 4.1		Z	C	_			
									Mad 64. 4								
														2011 64	havre	entice	nic
			(vi)		PROI	PERT	CES (conse	erved	antige	nic
			(vi))	PROI dete	PERT:	(ES (nant	OF S	EQUE	NCE:				conse	erved	antige	nic
30)	PROI dete	PERT:	(ES (nant	OF S		NCE:				conse	erved	antige	nic
30			(vi))	PROI dete	PERT:	(ES (nant	OF S	EQUE	NCE:				conse	erved	antige	nic
30	SEQ	ID N	(vi))	PROI dete SEQU	PERT:	(ES (nant	OF S	EQUE	NCE:				conse	erved	antige	nic
30	SEQ	ID N	(vi)	i)	PROI dete SEQU	PERT:	(ES (nant	OF S	EQUE	NCE:				conse	erved	antige	nic
		ID N	(vi)	i)	PROI dete SEQU	PERT:	(ES (nant	OF S	EQUE	NCE:				conse	erved	antige	nic
30 35	1		(vi) (vii) (vii)	.i) EE37	PROI dete SEQU 7-3	PERT:	IES (nant E DE:	OF S	EQUEI	NCE: N:	Ex	pres	ses (15	antige	nic
	1 Cys	Thr	(vi) (vii) (vii)	EE37	PROI dete SEQU 7-3 5 Asn	PERT: PERT: PENCI	IES (nant E DE:	OF S	EQUE PTIOI Arg	NCE:	Ex	pres.	ses (Ile	15 Gly	antige	nic
	1 Cys	Thr	(vi) (vii) (vii)	EE37	PROI dete SEQU 7-3 5 Asn	PERT: PERT: PENCI	IES (nant E DE:	OF S	EQUE PTIOI Arg	NCE:	Ex	pres.	ses (Ile	15 Gly	antige	nic
	1 Cys	Thr	(vi) (vii) (vii)	EE37	PROI dete SEQU 7-3 5 Asn	PERT: PERT: PENCI	IES (nant E DE:	OF S	EQUE PTIOI Arg	NCE:	Ex	pres.	ses (Ile	15 Gly	antige	nic
35	1 Cys	Thr	(vi) (vii) (vii)	EE37	PROI dete SEQU 7-3 5 Asn AAC	PERT: PERT: PENCI	IES (nant E DE:	OF S	EQUE PTIOI Arg	NCE: N: 10 Lys AAA	Ex	pres.	ses (Ile	15 Gly GGA	antige	nic
	1 Cys TGT	Thr ACA	(vi) (vii) (vii) Arg AGA	EE37	PROI dete SEQU 7-3 5 Asn AAC	PERT: PENCI JENCI Asn AAC	ES (nant E DE: Asn AAT	Thr ACA	EQUE PTIOI Arg AGA	NCE: 10 Lys AAA	Ser AGT	Ile ATA	Asn AAT	Ile ATA	15 G1y GGA	antige	nic
35	1 Cys TGT	Thr ACA	(vi) (vii) (vii) Arg AGA	EE37 Pro	PROI dete SEQU 7-3 5 Asn AAC 20 Arg	PERT: PERT: PENCI Asn AAC	Asn AAT	Thr ACA	EQUE PTION Arg AGA	NCE: 10 Lys AAA 25 Thr	Ser AGT	Ile ATA	Asn AAT	Ile ATA	15 Gly GGA 30 Asp	antige	nic
35	1 Cys TGT	Thr ACA	(vi) (vii) (vii) Arg AGA	EE37 Pro	PROI dete SEQU 7-3 5 Asn AAC 20 Arg	PERT: PERT: PENCI Asn AAC	Asn AAT	Thr ACA	EQUE PTION Arg AGA	NCE: 10 Lys AAA 25 Thr	Ser AGT	Ile ATA	Asn AAT	Ile ATA	15 Gly GGA 30 Asp	antige	nic
35	1 Cys TGT	Thr ACA	(vi) (vii) (vii) Arg AGA	EE37 Pro	PROI dete SEQU 7-3 5 Asn AAC 20 Arg	PERT: PERT: PENCI Asn AAC	Asn AAT	Thr ACA	EQUE PTION Arg AGA	NCE: 10 Lys AAA 25 Thr	Ser AGT	Ile ATA	Asn AAT	Ile ATA	15 Gly GGA 30 Asp	antige	nic
35	1 Cys TGT	Thr ACA	(vi) (vii) (vii) Arg AGA	EE37 Pro	PROI dete SEQU 7-3 5 Asn AAC 20 Arg AGA	PERT: PERT: PENCI Asn AAC	Asn AAT	Thr ACA	EQUE PTION Arg AGA	NCE: 10 Lys AAA 25 Thr	Ser AGT	Ile ATA	Asn AAT	Ile ATA	15 Gly GGA 30 Asp	antige	nic
35	1 Cys TGT Pro	Thr ACA Gly GGA	(vi) (vii) (vii) (vii) Arg AGA	Pro CCC	PROI dete SEQU 7-3 5 Asn AAC 20 Arg AGA	PERT: PENCI JENCI Asn AAC	Asn AAT	Thr ACA	EQUE PTION Arg AGA	NCE: 10 Lys AAA 25 Thr	Ser AGT	Ile ATA	Asn AAT	Ile ATA	15 Gly GGA 30 Asp	antige	nic
35	1 Cys TGT Pro CCA	Thr ACA Gly GGA	(vi) (vii) (viii) (vi	EE37 Pro CCC Gly GGG	PROI dete SEQU 7-3 5 Asn AAC 20 Arg AGA	Asn AAC Ala GCA	Asn AAT	Thr ACA	EQUE PTION Arg AGA	NCE: 10 Lys AAA 25 Thr	Ser AGT	Ile ATA	Asn AAT	Ile ATA	15 Gly GGA 30 Asp	antige	nic
35	1 Cys TGT Pro CCA	Thr ACA Gly GGA	(vi) (vii) (viii) (vi	EE37 Pro CCC Gly GGG	PROI dete SEQU 7-3 5 Asn AAC 20 Arg AGA	Asn AAC Ala GCA	Asn AAT	Thr ACA	EQUE PTION Arg AGA	NCE: 10 Lys AAA 25 Thr	Ser AGT	Ile ATA	Asn AAT	Ile ATA	15 Gly GGA 30 Asp	antige	nic
35	1 Cys TGT Pro CCA	Thr ACA Gly GGA	(vi) (vii) (viii) (vi	EE37 Pro CCC Gly GGG	PROI dete SEQU 7-3 5 Asn AAC 20 Arg AGA	Asn AAC Ala GCA	Asn AAT	Thr ACA	EQUE PTION Arg AGA	NCE: 10 Lys AAA 25 Thr	Ser AGT	Ile ATA	Asn AAT	Ile ATA	15 Gly GGA 30 Asp	antige	nic

	(2)		INF	ORMA'	TION	FOR	SEQ	ID I	NO:	EE54	-1						
			(i)		SEQ	JENC	E CHA	ARAC'	TERI	STIC	S:						
					(A)		LEN	GTH:	10	5							
_					(B)		TYP	E:]	Nucl	eic /	Acid						
5					(C)		STR	ANDE	DNES	S: 8	Sing:	le					
					(D)		TOP	OLOG	Y: 1	Line	ar						
			(ii)	KINI	D: c1	DNA ·	to g	enom:	ic Ri	NA						
			(ii)					e or):					
				-	(A)		SEQ	UENC:	E AS	SEMB!	LY M	ETHOI	D: (Over	lap		
10					(B)		FRA	GMEN'	T TY	PE:	Inte	erna	l Fra	agmer	ı t		
					(C)				TICA								
			(ii:	i)	ORIG	GINA	L SO	URCE	: HIV	7							
			•	·	(E)		IND	IVID	UAL :	ISOL	ATE:						
			(iv)	IMMI	EDIA'	TE S	OURC	E:								
15			• ==	•	(C)		CLO	NE:						_			
			(v)		POS	ITIO	N IN	GEN	OME:	Wit	hin 1	Env (Gene				
			(vi)										cons	erved	antige	nic
							nant										
			(vi	ii)	SEQ	JENC:	E DE	SCRI	PTIO	N:							
20																	
																*	
	SEQ	ID I	NO:	EE5	4-1												
25	_				_										• •		
	1			_	. 5			-		10	_			-1.	15		
									Arg								
	TGT	AUA	AGA	CCC	AAC	AAC	AAI	ACA	AGA	AAA	AGI	AIC	AAI	AIA	GGA		
														•			
30					20					25					30		
	D	C1	۸	A 1 -		T	Th-	Th-	G1y		T10	110	C1 v	A a n			
		-	_			-			GGA								
	CCA	GGG	AGA	GUA	111	TUT	AUA	non	Jun	GOA	AIA	AIN	GGA	GAI	nin		
35					35												
	Arg	Ğ1n	Ala	His													
	_			CAT	-												
											•						
40	(2)		INF	ORMA'	TION	FOR	SEQ	ID 1	NO: 1	EEE6	9-1						
			(i)		SEQ	JENC!	E CH	ARAC	TERI	STIC	S:						
					(A)			GTH:	10								
					(B)		TYP	E: 3	Nucl	eic A	Acid						
45					(C)		STR	ANDE	DNES	S:	Sing	le					
→ 0				_	(D)				Y: :								
			(ii)	KIN	D: c	DNA	to g	enom	ic R	NA						

32

5		(ii) (iii) (iv) (v) (vi) (viii)	KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: IMMEDIATE SOURCE: (C) CLONE: POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenideterminant SEQUENCE DESCRIPTION:	c
15	SEQ ID	NO: EEE	69–1	
20	1 Cys Thr TGT ACA	Arg Leu AGG CTC	5 10 15 Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA	
25	Pro Gly CCA GGG	Arg Ala AGA GCA	20 25 30 Phe Tyr Ala Thr Gly Glu Ile Ile Gly Asp Ile TTT TAT GCA ACA GGA GAA ATA ATA GGA GAT ATA	
30		Ala His GCA CAT		
35	(2)	INFORMAT	TION FOR SEQ ID NO: EEE69-2 SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single	
40		(ii) (ii)	(D) TOPOLOGY: Linear KIND: cDNA to genomic RNA KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment	
45		(iii) (iv)	(C) HYPOTHETICAL: ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: IMMEDIATE SOURCE: (C) CLONE:	
50			POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant SEQUENCE DESCRIPTION:	:

SEQ ID NO: EEE69-2 10 5 1 Cys Thr Arg Leu Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly TGT ACA AGA CTC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA 20 10 Pro Gly Arg Ala Phe Tyr Ala Thr Gly Glu Ile Ile Gly Asp Ile CCA GGG AGA GCA TTT TAT GCA ACA GGA GAA ATA ATA GGA GAT ATA 15 Arg Gln Ala Gln Cys AGA CAA GCA CAG TGT INFORMATION FOR SEQ ID NO: EE74-1 (2) 20 SEQUENCE CHARACTERISTICS: (i) LENGTH: 105 (A) TYPE: Nucleic Acid (B) STRANDEDNESS: Single (C) TOPOLOGY: Linear (D) 25 KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (ii) SEQUENCE ASSEMBLY METHOD: Overlap (A) FRAGMENT TYPE: Internal Fragment (B) (C) HYPOTHETICAL: 30 ORIGINAL SOURCE: HIV (iii) INDIVIDUAL ISOLATE: (E) IMMEDIATE SOURCE: (iv) CLONE: POSITION IN GENOME: Within Env Gene (v) 35 PROPERTIES OF SEQUENCE: Expresses conserved antigenic (vi) determinant (viii) SEQUENCE DESCRIPTION: 40 SEQ ID NO: EE74-1

50

45

55

10

Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile Asn Ile Gly

TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA AAT ATA GGA

					20)				2.	5				30	
	Pro	G13	Arg	Ala	a Phe	Tyr	Thi	Th	r G1			e I1	e G1v	Ast	Ile	
	CCA	GG	AGA	GCA	TTT A	LAT T	CACA	A AC	A GG	A GA	AT	A ATA	A GGA	GAT	ATA	
5																
					35	,										
	Arg	G1n	Ala	His	S Cys	1										
					r TGI											
10																
	(2)		INF	ORMA	TION	FOR	SEC	TD	NO:	EE74	1-2					
	\-,		(i)			UENC										
			\-/		(A)			GTH:								
					(B)				Nucl	-	Andr	ì				
15					(c)				DNES							
					(D)					is. Line	Sing	Te				
			(ii	`												
			(ii	-		D: c:						.				
			(11	,	(A)	D (i							_	_	_	
20					(B)								D: _			
					(C)				T TY		Int	erna	1 Fr	agme	nt	
			(ii:	2 \		O TRIA			TICA							
			(11.	1)		GINA:					4 mm					
			(iv	`	(E)				UAL	ISOT	ATE:					
25			(10	,		EDIA:			E:							
20			()		(C)	T	CLO			••••				-		
			(v)		POS.	1110	A TM	GEN	OME:	Wit	hin	Env	Gene			
			(vi)	,	PRO	PERT	LES (OF S	EQUE	NCE:	Ex	pres	ses (conse	erved	antigenic
			/			ermin										
30			(V1)	ii)	SEQU	JENCE	s des	SCRI	PT10.	N:						
30																
	CEO	TD 1			, ,											
	SEQ	ז ענ	10:	EE/	4-2											
05					_											
35	1			_	_5					10					15	
	Cys	Thr	Arg	Pro	Ser	Asn	Asn	Thr	Arg	Lys	Ser	Ile	Asn	Ile	Gly	
	TGT	ACA	AGA	CCC	AGC	AAC	AAT	ACA	AGA	AAA	AGT	ATA	AAT	ATA	GGA	
40					20					25					30	
	Pro	Gly	Arg	Ala	Phe	Tyr	Thr	Thr	Gly	Asp	Ile	Ile	G1y	Asp	Ile	
	CCA	GGG	AGA	GCA	TTT	TAT	ACC	ACA	GGA	GAC	ATA	ATA	GGA	GAT	ATA	
45					35		٠									
	Arg	G1n	Ala	His	Cys											
	AGA															
											•				•	
50																

	(2)			RMAI													
			(i)			JENCE			TERIS		5:						
					(A)		LEN		105								
5					(B)				Nucle								
					(C)				DNESS		Singl	.e					
					(D)				(: I								
			(ii)						mont								
			(ii))) (if			or								
10					(A)		-		E ASS								
					(B)				TYI		Inte	rna	l Fre	igmer	ול		
				_	(C)				CICAL	_							
			(iii	L)		INAI			: HIV								
					(E)		IND	IVID	JAL :	[SOL	ATE:	_					
15			(iv))		DIA		DURCI	Ξ:								
-					(C)		CLO			••••			· · · ·	-			
			(v)						ME:								
			(vi)))F SI	SQUEN	ICE:	EXI	rese	ses c	:onse	ervea	antig	enic
						rmin				• .							
20			(vii	li)	SEQU	JENCE	E DES	CRII	PTION	v :							
	CEO	TD 8		EE74	3												
	SEQ	ו עו	10.	EE/-	•-3												
25	1				5					10					15		
		Thr	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Lys	Ser	Ile	Asn	Ile	Gly		
	тст	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGA	AAA	AGT	ATA	AAT	ATA	GGA		
				•••													
00																	
30					20					25					30		
	Pro	Gly	Arg	Ala	Phe	Tyr	Thr	Thr	Gly	Asp	Ile	Ile	Gly	Asp	Ile		
	CCA	GGG	AGA	GCA	TTT	TAT	ACA	AÇA	GGA	GAC	ATA	ATA	GGA	GAT	ATA		
35																	
33					35												
	Arg	G1n	Ala	His	Сув									•			
	AGA	CAA	GCA	CAT	TGT												
40																	
40	(2)			ORMA:	TION	FOR	SEQ	ID :	NO:	EEE9	0-1						
			(i)		SEQ	UENC	E CH	ARAC	TERI	STIC	S:						
					(A)			GTH:	10	_							
					(B)		TYP	E:	Nuc1	eic	Acid						
45					(C)		STR	ANDE	DNES	S:	Sing	1e					
40					(D)		TOP	OLOG	Y:	Line	ar						
			(ii)	KIN	D: c	DNA	to g	enom	ic R	NA						

55

5		(ii)	KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL:
		(iii)	ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE:
		(iv)	IMMEDIATE SOURCE: (C) CLONE:
10		(v)	POSITION IN GENOME: Within Env Gene
		(vi)	PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant
		(viii)	
15	SEQ ID	NO: EE	E90-1
	•		
	1		5 10 15
20	Cys Th	r Arg Pro	Asn Asn Asn Thr Arg Lys Ser Ile His Ile Ala
	TGT AC	A AGA CC	C AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GCA
			20 25 30
25	Pro G1	y Arg Ala	Phe Tyr Ala Thr Gly Glu Ile Ile Gly Asp Ile
	CCA GG	G AGA GCA	A TTT TAC GCA ACA GGA GAA ATA ATA GGA GAT ATA
			35
30	Arg Gl	n Ala His	Cys
	AGA CA	A GCA CAI	TGT
	(2)	INFORMA	ATION FOR SEQ ID NO: EE90-2
35		(i)	SEQUENCE CHARACTERISTICS:
			(A) LENGTH: 105
			(B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single
			(D) TOPOLOGY: Linear
40		(ii)	KIND: cDNA to genomic RNA
-		(ii)	KIND (if peptide or protein):
			(A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment
		•	(B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL:
45		(iii)	ORIGINAL SOURCE: HIV
			(E) INDIVIDUAL ISOLATE:
		(iv)	IMMEDIATE SOURCE: (C) CLONE:
		(v)	(C) CLONE: POSITION IN GENOME: Within Env Gene
50		(vi)	PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant
		(viii)	

SEQ ID NO: EE90-2 10 Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile His Ile Ala TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GCA 30 20 10 Pro Gly Arg Ala Phe Tyr Ala Thr Gly Glu Ile Ile Gly Asp Ile CCA GGG AGA GCA TTT TAC GCA ACA GGA GAA ATA ATA GGA GAT ATA 35 15 Arg Gln Ala His Cys AGA CAA GCA CAT TGT (2) INFORMATION FOR SEQ ID NO: EE90-3 20 SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid STRANDEDNESS: Single (C) (D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA 25 (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap FRAGMENT TYPE: Internal Fragment (B) (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV 30 INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: CLONE: (C) POSITION IN GENOME: Within Env Gene (v) PROPERTIES OF SEQUENCE: Expresses conserved antigenic (vi) 35 determinant (viii) SEQUENCE DESCRIPTION: SEQ ID NO: EE90-3 40 5 10 Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile His Ile Ala TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GCA 45

50

					20)				2.	5				30		
	Pro	G1y	Arg	Ala	a Phe	Tyr	A1e	Th	r Gly	7 G1	1 Ile	: I1e	e Gly	/ Ası	Ile		
	CCA	A GGG	AGA	GCA	TTT	TAC	GCA	ACA	A GGA	A GAA	ATA	ATA	A GGA	GA?	ATA 7		
5																	
					35												
	Arg	G1n	Ala	His													
	-	CAA			-												
10																	
	(2)	ı	TME	ODMA	TT 031	EOD	050		310 -								
	(2)	,	(i)		TION				NO: CTERI								
			(-)		(A)			GTH:									
					(B)				Nucl		Acid						
15					(C)		STR	ANDE	DNES	s:	Sing	1e					
					(D)				Y:		_						
			(ii (ii						enom			١.					
			(11	,	(A)	0 (1)			e or E AS				n.	Ozer.	100		
20					(B)				T TY				1 Fr				
					(c)				TICA								
			(ii:	i)		GINAI			: HI								•
			<i>(</i> :)		(E)				UAL	ISOL	ATE:						
25			(iv)	,	(C)	EDIAT	CLO		E:								
			(v)			TION			OME:	Wit	hin	Env	Cene	-			
			(vi)												erved	antig	zenic
					dete	ermin	ant										,
30			(vii	li)	SEQU	JENCE	DES	SCRI	PTIO	N:							
	SEO	ID N	10:	EE10	00-1												
			-														
35																	
33	1	en.		_	5					10					15		
	TCC	Thr ACA	Arg	Pro	His	Asn	Asn	Thr	Arg	Lys	Ser	Ile	His	Ile	Gly		
	100	AUA	AGA	CCC	CAC	AAC	WWI	ACA	AGG	AAA	AGT	ATA	CAT	ATA	GGA		
40					20					25					30		
	Pro	Gly	Arg	Ala	Phe	Tyr	Thr	Thr	Gly	Ala	Ile	Ile	Gly	Asp	Ile		
	CCA	GGG	AGA	GCA	TTT	TAT	ACA	ACA	GGA	GCA	ATA	ATA	GGA	GAT	ATA		
45					35												
	Arg	G1n	Ala	Tyr													
		CAA															
								,							*		
50																	

	(2)		INFO	RMAT	ION	FOR	SEQ	ID N	0: E	EE10	0–2					
	•		(i)		SEQU	ENCE	CHA	RACI	ERIS	TICS	:					
					(A)		LENG	TH:	105							
					(B)		TYPE			ic A	cid					
5					(C)		STRA	NDED	NESS	: S	ingl	е				
					(D)					inea	r					
			(ii))						c RN						
			(ii)							prot		:				
			(,		(A)	•	SEOU	JENCE	ASS	EMBL	Y ME	THOL): O	werl	ap	
10					(B)				TYP			rnal				
					(C)				CICAL							
			(iii)		INAL										
			,	-,	(E)					SOLA	TE:					
			(iv))	IMME	CAIG	E SC	URCE	E:							
15			(= ,		(C)		CLO							_		
			(v)		POSI	TION	IN	GENO	ME:	With	in E	inv (ene			
			(vi)		PROF	ERTI	ES (OF SE	EQUEN	ICE:	Exp	rese	es c	conse	rved	antigenic
						ermin										
			(vii	ii)	SEQU	JENCE	DES	SCRII	OITS	i :						
20			·		•											
	SEQ	ID 1	10:	EEE!	L00-2	2										
25					_					10					15	
	1			_	5	•		-	.	10	C	T1.	u.	T1.		
	Cys	Thr	Arg	Pro	Gly	Asn	Asn	Inr	Arg	Lys	Der	TIE	DIS	TIE	CCA	
	TGC	ACA	AGA	CCC	GGC	AAC	AAT	ACA	AGG	AAA	AGI	ATA	CMI	WIW	GGA	
30					00					25					30	
	_	- 1	Arg	41-	20	There	Th-	Th.	C1++		Tla	T1e	G1 v	Agn		
	Pro	GIY	AGA	ALA	rne	TAT	TILL	YUY	GEA	CAT	ΔΤΔ	ATA	GCA	CAT	ATA	
	CCA	فافافا	AGA	GUA	111	INI	AUA	non	GUA	0411	*****		••••			
35					35											
	A	C1-	Ala	uic												
	VCV VIR	GTII	GCA	CAT	TOT											
	AGA	CAA	GUA	CAI	101											
40	(2)		INF	ORMA	TION	FOR	SEO	ID	NO:	EE10	0-3					
	(-/		(i)							STIC						
			(-/		(A)			GTH:								
					(B)		TYP			eic.	Acid					
					(c)				DNES		Sing	_				
45					(D)					Line	_				•	
			(ii)						ic R						
			`	•		_		·								

5		(i	i) ii) v)	(A) (B) (C) ORI (E)	GINA	SEC FRA HYP L SC IND	QUENC AGMEN POTHE OURCE	T TY TICA : HI UAL	SEMB PE: L: V	Int	ETHO erna		Over		
10		(v) i)	(C) POS PRO	ITIO PERT	CLO N IN	NE: GEN OF S	OME:	Wit NCE:	hin Ex	Env pres	Gene ses	_ cons	erved	antigenic
		(v	iii)					PTIO	N:						
15	SEQ I	D NO:	EE1	00-3											
	1			5					10					15	
20	Cys T TGC A	hr Arg	Pro A CCC	His CAC	Asn AAC	naA TAA	Thr ACA	Arg AGG	Lys AAA	Ser AGT	Ile ATA	His CAT	Ile ATA	Gl v	
	1			5					10					15	
25	Pro G CCA G	ly Arg GG AGA	Ala GCA	Trp TGG	Tyr TAT	Thr ACA	Thr ACA	Gly GGA	Ala GCA	Ile ATA	Ile ATA	G1y GGA	Asp GAT	Ile ATA	·
	Arg G	ln Ala	Tvr	35 Cvs											
30	AGA C				•										
35	(2)	INF	ORMA?	SEQU (A)	ENCE	CHA LENG	RACI	ERIS 105	TICS	:					
		(ii)	(B) (C) (D) KIND		STRA TOPO	NDEL	NESS	: S inea	ingl r	. e				
40		(ii	-	KIND (A)	(if	pep SEQU FRAG	tide ENCE MENT	or ASS	prot EMBL E:	ein) Y ME Inte	THOD rnal	Fra	verl gmen	t	
45		(ii	i)	ORIG	INAL	SOU	RCE:	HIV							
		(iv		IMMEI (C)	DIAT	E SO CLON	URCE E:	:					 		
5 <i>0</i>		(v) (vi) -	POSIT PROPI deter	ERTI	ES O	GENO F SE	ME:	With	in Exp	nv G ress	ene es c	onse	rved a	antigenic
		(vi		SEQUE			CRIP	TION	:						

SEQ ID NO: EE125-1

1 5 10 15
Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Gly Ile His Leu Gly
TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA GGT ATA CAT CTA GGA

20 25 30
Pro Gly Arg Ala Phe Tyr Ala Thr Gly Glu Ile Ile Gly Asp Ile
CCA GGG AGA GCA TTT TAT GCA ACA GGA GAA ATA ATA GGA GAT ATA

Arg Gln Ala His Cys AGA CAA GCA CAT TGT

- (2) INFORMATION FOR SEQ ID NO: EE125-2 20 SEQUENCE CHARACTERISTICS: (i) (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single TOPOLOGY: Linear (D) 25 (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: 30 (iii) ORIGINAL SOURCE: HIV INDIVIDUAL ISOLATE: (E) (iv) IMMEDIATE SOURCE:
- (v) POSITION IN GENOME: Within Env Gene
 (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant
 (viii) SEQUENCE DESCRIPTION:

40 SEQ ID NO: EE125-2

1 5 10 15
Cys Thr Arg Pro Asn Asn Thr Arg Lys Gly Ile His Leu Gly
TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA GGT ATA CAT CTA GGA

CLONE:

50

					20					2.					30		
	Pro	G1;	y Ly	s Ala	a Phe	е Туг	Ala	a Thi	r G1 ₃	y G1:	ı Ile	2 I1e	e G13	Asp	I1e		
	CCA	A GG	A AA	A GCA	TT:	CAT 1	GCA	A ACA	A GGA	A GAA	ATA	ATA	GGA	GAT	ATA		
5																	
3																	
					35	5					•						
	Arg	G11	n Ala	a Hia	Сує	3											
				A CAT													
40																	
10																	
	(2))	INE	ORMA	TION	FOR	SEC	ID	NO:	EEE1	25-3	}					
			(i)			UENC											
					(A)			GTH:			-						
					(B)		TYP	E:	Nuc1	eic	Acid	l.					
15					(c)			ANDE			Sing						
					(D)					Line	_						
			(ii	.)	KIN	D: c											
			(ii	.)		D (i):					
					(A)								D:	Over:	lap		
20					(B)			GMEN						agmei			
					(C)			OTHE									
			(ii	i)	ORI	GINA											
					(E)					ISOL	ATE:						
05			(iv	·)	IMM	EDIA'											-
25					(C)		CLO	NE:									
			(v)		POS	ITIO	N IN	GEN	OME:	Wit	hin	Env	Gene	_			
			(vi)	PRO	PERT:	IES	OF S	EQUE	NCE:	Ex	pres	ses (conse	rved	anti	genic
					det	ermi	nant				•	-					0
30			(vi	ii)	SEQ	UENCI	E DE	SCRI	PTIO	N:							
30																	
	SEQ	ID :	NO:	EEE	125-	3											
35																	
•	1				5					10					15		
	Cys	Thr	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Lys	G1y	Ile	His	Leu	Gly		
	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGA	AAA	GGT	ATA	CAT	CTA	GGA		
40																	
-10					20					25					30		
	Pro	Gly	Arg	Ala	Phe	Tyr	Ala	Thr	G1y	Glu	I1e	Ile	G1y	Asp	Ile		
	CCA	GGG	AGA	GCA	TTT	TAT	GCA	ACA	GGA	GAA	ATA	ATA	GGA	GAT	ATA		
45																	
.0					35												
				His													
	AGA	CAA	GCA	CAT	TGT												•
50																	

	(2)		INFO	RMAT	ION	FOR	SEQ	ID N	o: E	E131	-1					
			(i)		SEQU	ENCE	CHA	RACT			:					
					(A)		LENG		105							
					(B)					ic A						
5					(C)			NDED		: S	ingl	e				
					(D)		TOPO	LOGY	: L	inea						
			(ii)		KIND	: cD	NA t	o ge	nomi	c RN	A					
			(ii)		KIND	(if	pep	tide	or	prot	ein)	:				
			\ ,		(A)		SEQU	ENCE	ASS	EMBL	Y ME	THOD	: 0	ver1	ap	
10					(B)		FRAG	MENT	TYP	E:	Inte	rnal	Fra	gmen	t	
					(c)		HYPO	THEI	ICAL	·: _						
			(iii	.)		INAL	SOU	IRCE:	HIV	'						
			,	•	(E)					SOLA	TE:					
			(iv))	IMME	CAIG	E SC	URCE	:							
15			(,		(C)		CLON	IE:								
			(v)		POSI	TION	IN	GENO	ME:	With	in E	nv (ene			
			(vi)		PROF	ERTI	ES C	F SE	QUEN	ICE:	Exp	rese	es c	onse	rved	antigenic
			(/	'		rmin			•							
			(vii	ii)		JENCE		CRIE	TION	1:						
20			`	/												
	SEO	ID i	10:	EE1	31-1											
			-													
25	1				5					10					15	
	Cvs	Thr	Arg	Pro	Asn	Asn	Asn	Thr	Ser	Lys	Arg	Ile	Ser	Ile	Gly	
	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGC	AAA	AGA	ATA	TCT	ATA	GGA	
															20	
30					20					25					30	
	Pro	G1y	Arg	Ala	Phe	Arg	Ala	Thr	Arg	Ile	Ile	Gly	Asp	TIE	Arg	
	CCA	GGG	AGA	GCT	TTT	CGT	GCA	ACA	AGA	ATA	ATA	GGA	GAT	ATA	AGA	
35					35											
	G1n	Ala	His	Cys												
	CAA	GCA	CAT	TGT	•											
40	(2)				TION	FOR	SEQ	ID	NO:	EE13	1-2					
			(i)							STIC	S:					
			·		(A)			GTH:								
					(B)					eic						
					(C)			ANDE			Sing	le				
45					(D)			OLOG		Line						
			(ii	.)	KIN	D: c	DNA	to g	enon	ic R	NA					
			(ii	.)	KIN	ID (i	f pe	ptid	le or	pro	tein	1):			_	
					(A)					SEMB				0ver	-	
					(B))	FRA	GMEN	T T	PE:	Int	erna	ıl Fı	agme	ent	
50																

			(ii	.i)	(C) ORI (E)	GINA	L SC	OTHE	: HI	V						
5			(iv)		EDIA	TE S	OURC		1201	AlE:					
			(v)				CLO N IN		OME:	Wit	hin	Env	Gene	-		
			(vi		PRO	PERT		OF S							erved	antigenic
10			(vi	ii)				SCRI	PTIO	N:						
	SEQ	ID :	NO:	EE1	31-2											
	•															
15	1	ms	A	D	5				_	10					15	
	TGT	ACA	AGA	CCC	Asn	Asn	Asn AAT	Thr ACA	Ser AGT	Lys	Arg AGA	Ile ATA	Ser TCT	Ile	Gly GGA	
													101	*****	0011	
20					20					25					20	
	Pro	G1v	MET	Ala		Arg	A1a	Thr	Aro	25 Tle	Tle	Glv	Asp	716	30 Arg	
	CCA	GGG	ATG	GCA	TTT	CGT	GCA	ACA	AGA	ATA	ATA	GGA	GAT	ATA	AGA	
25					35											
			His CAT													
30	(2)		INFO	RMA T	CION	FOR	SEQ	ID N	10: E	E131	.–3					
			(i)			ENCE	CHA	ARACI	ERIS	TICS	:					
					(A)		LENC		105							
					(B)			E: N								
35					(C)			NDEI LOGY			ingl	Le				
			(ii)	l	KIND											
			(ii)		KIND):				
					(A)			ENCE): O	ver1	ар	
40					(B)			MENI					Fra			
40					(C)			THET								
			(iii)	ORIG											
			(iv)		(E)			VIDU		SOLA	TE:					
			(10)		(C)		CLON	URCE	•							
45			(v)		POSI				ME:	With	in F	nv C	ene			
			(vi)											០១៩៩	rved :	antigenic
			•		dete	rmin	ant				P			JDC		
			(vii	i)	SEQU	ENCE	DES	CRIP	TION	:						
50																

SEQ ID NO: EE131-3 10 1 Cys Thr Arg Pro Asn Asn Asn Thr Ser Lys Arg Ile Ser Ile Gly TGT ACA AGA CCC AAC AAC AAT ACA AGC AAA AGA ATA TCT ATA GGA 10 Pro Gly Arg Ala Phe Arg Ala Thr Arg Ile Ile Gly Asp Ile Arg CCA GGG AGA GCA TTT CGT GCA ACA AGA ATA ATA GGA GAT ATA AGA 35 15 Gln Ala His Cys CAA GCA CAT TGT INFORMATION FOR SEQ ID NO: EEE149-1 (2) 20 (i) SEQUENCE CHARACTERISTICS: LENGTH: 105 (A) TYPE: Nucleic Acid (B) (C) STRANDEDNESS: Single TOPOLOGY: Linear (D) 25 KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (ii) SEQUENCE ASSEMBLY METHOD: Overlap (A) FRAGMENT TYPE: Internal Fragment (B) (C) HYPOTHETICAL: 30 ORIGINAL SOURCE: HIV (iii) INDIVIDUAL ISOLATE: IMMEDIATE SOURCE: (iv) CLONE: (C) POSITION IN GENOME: Within Env Gene (v) 35 PROPERTIES OF SEQUENCE: Expresses conserved antigenic (vi) determinant (viii) SEQUENCE DESCRIPTION: 40 SEQ ID NO: EEE149-1 5 10

50

45

55

Cys Thr Arg Pro Asn Asn Asn Thr Arg Arg Gly Ile Ser Ile Gly

TGT ACA AGA CCC AAC AAC AAT ACA AGA AGG GGT ATA AGT ATA GGA

					20)				2	5				30		
	Pre	o G13	y Ar	g Ala	a Phe	e Val	Ty	r A1	a Th	r Ly	s Il	e Ile	e Gly	у Авр	Ile		
	CC	A GG	G AG	A GCA	A TT	GTI	TA	r gc	A AC	AA A	A AT	A ATA	A GG/	A GAT	ATA		
5																	
		-01			35												
				a His													
	AGA	A CAA	A GCZ	A CAI	TGT												
10																	
	(2))	TNI	FORMA	TION	FOR	SEC	מדו	NO.	EE1/	a_2						
	(-/		(i)			UENC											
			\-/	,	(A)			GTH:									
15					(B)		TYP		Nucl	-	Acid	ı					
15					(c)				DNES		Sing						
					(D)			OLOG		Line	•						
			(ii		KIN	D: c	DNA	to g	enon	ic R	NA						
			(ii	.)	KIN	D (i	f pe	ptid	le or	pro	tein	·):					
20					(A)		SEQ	UENC	E AS	SEMB	LY M	ETHO	D:	Over:	lap		
					(B)				IT TY		Int	erna	1 Fr	agme	at		
					(C)				TICA								
			(ii	1)		GINA											
			(iv	. 1	(E)	EDIA:			UAL	ISOL	ATE:						
25			(10	,	(C)	EDIA.	CLO		E:								
			(v)			ITIO			OMF .	Wi+	hin	For	C	_			
			(vi													anti	
			• • •	•	det	ermir	ant	0. <i>D</i>	DQUL			br co	868	COHS	er vea	ancı	genic
30			(vi	ii)		JENCE		SCRI	PTIO	N:							
30					·												
	SEQ	ID I	NO:	EE1	49-2												
	•				_												
35	1	5711		_	5					10					15		
	TOT	Inr	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Arg	Gly	Ile	Ser	Ile	Gly		
	161	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGA	AGG	GGT	ATA	AGT	ATA	GGA		
																	•
					20					25					20		
40	Pro	G1v	Arg	Ala		Va 1	Tvr	A1 a	Thr		T1.	T1.	C1	Asp	30 T1 a		
	CCA	GGG	AGA	GCA	TTT	GTT	TAT	GCA	ACA	AAA	ATA	ATA	GCA	GAT	ATA		
											*****	nin	GGA	GAI	VIV		
45					35												
70				His													
	AGA	CAA	GCA	CAT	TGT												
			**	•													

	(2)		INFO	RMA1	NOIT											
			(i)		SEQU	JENCE	CHA	ARAC'	CER IS	STICS	:					
					(A)		LEN	TH:	105	,						
					(B)		TYPE	E: 1	Nuc1e	eic A	cid					
5					(C)		STRA	MDEI	DNESS	S: S	ingl	.e				
					(D)		TOP	LOG	: I	Lines	ır					
			(ii))						c RN						
			(ii))	KINI	(if				prot						
					(A))ver1		
10					(B)		FRAC	GMEN?	TYI	E:	Inte	rnal	. Fra	agmer	ıt	
					(C)		HYPO	THE:	LICYI	٠ <u>:</u> _						
			(iii	i)	ORIC	INAI		JRCE								
					(E)		IND	IVID	JAL 3	SOL	TE:					
			(iv))	IMM	EDIA	CE SO	DURCI	€:							
15					(C)		CLO							-		
			(v)							With						
			(vi))				OF SI	EQUE	ICE:	Exp	press	ses o	conse	erved	antigenic
						ermin				_						
			(vi	ii)	SEQU	JENCE	E DES	SCRI	STIO	v:						
20																÷
	SEQ	ID 1	10:	EE14	49-3			•								
25	1				5					10					15	
		Thr	Ara	Pro		Aen	Aen	Thr	Aro		G1v	Ile	Ser	Ile	G1v	
	ТСТ	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGA	AGG	GGT	ATA	AGT	ATA	GGA	
	101	11011	*****	000												
30					20					25					30	
	Pro	G1y	Arg	Ala	Phe	Va1	Tyr	Ala	Thr	Lys	Ile	Ile	Gly	Asp	Ile	
	CCA	GGG	AGA	GCA	TTT	GTT	TAT	GCA	ACA	AAA	ATA	ATA	GGA	GAT	ATA	
35					35											
	Arg	Gln	Ala	His	Сув											
	AGA	CAA	GCA	CAT	TGT											
40	(0)		731T	ODMA	TET ON	EOD	CEO	TD.	NO.	erri	50 1					
40	(2)			OKMA	TION					STIC						
			(i)		(A)			GTH:	10		٥.					
					(B)					eic A	Acid					
					(C)			ANDE			Sing					
45										Line.	_	TE				
40			(22	`	(D)			OLOG		ic R						
			(ii (ii							pro		١.				
			(11	,	(A)					SEMB			D•	0ver	lan	
					(B)		•	GMEN						agme		
50					(1)		1 1/73	OLLINY.	_ 11		****	~		~Pmc		

		(iii)	(C) HYPOTHETICAL: ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE:
5		(iv)	IMMEDIATE SOURCE: (C) CLONE:
		(v)	POSITION IN GENOME: Within Env Gene
		(vi)	PROPERTIES OF SEQUENCE: Expresses conserved antigenic
			determinant
10		(viii)	SEQUENCE DESCRIPTION:
	SEQ ID	NO: EE	E159-1
15			
15	1		5 10 15
	Cys Th	r Arg Pro	Ser Asn Asn Thr Arg Lys Ser Ile His Ile Gly
	TGT AC	A AGA CC	C AGC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA
20			20 25 30
	Pro Gl	v Arg Ala	Phe Tyr Ala Thr Gly Glu Ile Ile Gly Asp Ile
	CCA GG	G AGA GCA	TTT TAT GCA ACA GGA GAA ATA ATA GGA GAT ATA
25			25
	A== C1=	a Ala Wia	35 - C
	_	n Ala His A GCA CAI	
30	4.5.3		
	(2)		TION FOR SEQ ID NO: EEE159-2
		(i)	SEQUENCE CHARACTERISTICS:
			(A) LENGTH: 105 (B) TYPE: Nucleic Acid
			(C) STRANDEDNESS: Single
35			(D) TOPOLOGY: Linear
		(ii)	KIND: cDNA to genomic RNA
		(ii)	KIND (if peptide or protein):
			(A) SEQUENCE ASSEMBLY METHOD: Overlap
40			(B) FRAGMENT TYPE: Internal Fragment
			(C) HYPOTHETICAL:
		(iii)	ORIGINAL SOURCE: HIV
			(E) INDIVIDUAL ISOLATE:
		(iv)	IMMEDIATE SOURCE:
45		(v)	(C) CLONE:
		(v) (vi)	PROPERTIES OF SECUENCE: France Gene
		(**)	PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant
		(viii)	
50		,	
JU			

SEQ ID NO: EEE159-2

5	1 Cys 7 TGT A	Thr ACA	Arg AGA	Pro CCC	5 Asn AAC	Asn AAC	Asn AAT	Thr ACA	Arg AGG	10 Lys AAA	Ser AGT	Ile ATA	Pro CCT	Ile ATA	15 Gly GGA	
10	Pro C	Gly GGG	Arg AGA	Ala GCA	20 Phe TTT	Tyr TAT	Ala GCA	Thr ACA	Gly GGA	25 Asp GAC	Ile ATA	Ile ATA	Gly GGA	Asp GAT	30 Ile ATA	
15	Arg (
20	(2)		INFO	RMAT		JENCI	LENG TYPI		reri: 10! Nucle	STIC: 5 eic <i>A</i>	S: Acid	le				
25			(ii) (ii)		(D) KINI KINI (A) (B)): cI) (ii	ONA PER	GMEN'	enom: e or E AS: I TY!	pro SEMB: PE:	NA tein LY M	ETHO!		Over:		
30			(iii		(E) IMMI		L SOU IND TE SO	OTHE: URCE IVIDI OURCI	: HI	V	ATE:					
35			(v) (vi)		PRO	PERT:	IES (nant	GEN	EQUE	NCE:					erved	antigenic
40	SEQ	ID N	10:	EE15	59–3											
45	1 TGT /															
50	CCA	GGG	AGA	GCA	20 TTT	TAT	GCA				ATA			GAT		

55

Pro Gly Arg Ala Phe Tyr Ala Thr Gly Glu Ile Ile Gly Asp Ile

35 AGA CAA GCA CAT TGT Arg Gln Ala His Cys 5 (2) INFORMATION FOR SEQ ID NO: EE164-1 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid 10 (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA KIND (if peptide or protein): (ii) (A) SEQUENCE ASSEMBLY METHOD: Overlap 15 (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: 20 (C) CLONE: (v) POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic (vi) determinant (viii) SEQUENCE DESCRIPTION: 25 SEQ ID NO: EE164-1 30 10 Cys Thr Arg Pro Ser Asn Asn Thr Ser Lys Gly Ile His Ile Gly TGT ACA AGA CCC AGC AAC AAT ACA AGC AAA GGT ATA CAT ATA GGA 35 20 25 Pro Gly Arg Ala Phe Tyr Thr Thr Gly Asn Ile Ile Gly Asn Ile CCA GGG AGA GCA TTT TAT ACA ACA GGA AAT ATA ATA GGA AAT ATA 40 Arg Gln Ala His Cys AGA CAA GCA CAT TGT 45 (2) INFORMATION FOR SEQ ID NO: EE164-2 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid 50

					(C)		STR	ANDE:	DNES	S: 3	Sing	le						
					(D)		TOP	OLOG	Y: :	Line	ar							
			(ii)	KIN	D: c	DNA	to g	enom	ic R	AN							
5			(ii)	KIN	D (i:	f pe	ptid	e or	pro	tein):						
					(A)		SEQ	UENC	E AS	SEMB:	LY M	ETHO!	D: (Over	lap			
					(B)		FRA	GMEN'	T TY	PE:	Int	erna.	l Fr	agme	nt			
					(C)	*	HYP	OTHE	TICA	L:								
			(ii	i)		GINA:	L SO	URCE	: HI	V								
10			•	•	(E)		IND	IVID	UAL	ISOL	ATE:						_	
			(iv)		EDIA'	TE S	OURC	E:									
				•	(C)		CLO	NE:						_				
			(v)			ITIO	N IN	GEN	OME:	With	hin :	Env	Gene					
			(vi		PRO	PERT	IES	OF S	EQUE	NCE:	Ex	pres	ses	cons	erved	ant:	igeni	.c
15			·	•		ermi							•					
_			(vi	ii)	SEQ	UENC:	E DE	SCRI	PTIO	N:								
	SEQ	ID I	NO:	EE1	64-2													
20												•						
	1				5					10					15			
	Cys	Thr	Arg	.Pro	Asn	Asn	Asn	Thr	Ser	Arg	G1y	Ile	His	Ile	Gly			
	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGC	AGA	GGT	ATA	CAT	ATA	GGA			
25																		
															20			
	_				20	-		PP 1	01	25	T1 -	*1 -	O1	A	30			
										Asn								
	CCA	GGG	AGA	GCA	TTT	TAT	GCA	ACA	GGA	AAT	ATA	AIA	GGA	GAT	AIA			
30																		
					25													
	.	A	A 1 -	*** -	35													
		Arg																
	AGA	CGA	GCA	CAI	161													
35																		
	(2)		INE	ODMA'	TION	FOR	SEO	TD .	NO ·	EEE1	64-3							
	(2)		(i)				-			STIC								
			(1)		(A)			GTH:			•							
40					(B)		TYP			eic .	Acid							
40					(c)					S:								
					(D)					Linea								
			(ii)		D: cl				ic RI								
			(ii							pro) :						
45			•	-	(A)	•				SEMB:			D: (0ver	lap			
					(B)					PE:					-			
					(c)				TICA									
										-								

			(ii	i)	ORI (E)	GINA		URCE			ATE:					
			(iv)		EDIA		OURC					_			
5			(v) (vi		POS PRO	PERT	N IN IES	GEN OF S					Gene ses	- cons	erved	antigenic
			(vi	ii)		ermi UENC		SCRI	PTIO:	N:						
10																
	SEQ	ID 1	NO:	EEE	164–	3										•
	1				5					10					15	
15	Cys	Thr	Arg	Pro	Ser	Asn	Asn	Thr	Arg	Lys	G1y	Ile	His	Ile	G1y	
	TGT	ACA	AGA	CCC	AGC	AAC	AAT	ACA	AGA	AAA	GGT	ATA	CAT	ATA	GGA	
					20					0.5					20	
20	Pro	G1v	Arg	A1a	Phe	Tvr	Thr	Thr	G1v	25 Gln	Ile	Ile	G1 v	Asp	30 T1e	
	CCA	GGG	AGĂ	GCA	TTT	TAT	ACA	ACA	GGA	CAA	ATA	ATA	GGA	GAT	ATA	
					25											
25	Aro	Gin	Ala	Hie	35 Cve											
			GCA													
	(2)		TME	DMA.	r a on	EOD	O.F.O.	TD 1	·							
30	(4)		(i)	KMA.	CION SEQU			ID I								
			•		(A)		LENC		105							
					(B)			i: N								
					(D)			NDEI LOGY		: S inea	ingl	.e				
35			(ii))	KIND	: cD										
			(ii))	KIND											
					(A) (B)		SEQU	MENT	ASS): 0			
					(c)			THET			inte	rnaı	Fra	gmen	ιτ	
40			(iii	.)	ORIG					. –						
					(E)			VIDU		SOLA	TE:					
			(iv)	l	IMME (C)				:							
			(v)		POSI		CLON IN		ME:	With	in F	nv C	ene			
45			(vi)											onse	rved	antigenic
			(vii		dete SEQU	rmin	an t				•	_	_			
			,		~ ~ ~					-						

50

SEQ ID NO: EE179-1

5 10 5 1 Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA 30 25 20 10 Pro Gly Arg Ala Phe Tyr Thr Thr Gly Glu Ile Ile Gly Asn Ile CCA GGG AGA GCA TTT TAT ACA ACA GGA GAA ATA ATA GGA AAT ATA 15 Arg Gln Ala His Cys AGA CAA GCA CAC TGT INFORMATION FOR SEQ ID NO: EE179-2 (2) 20 SEQUENCE CHARACTERISTICS: (i) LENGTH: 105 (A) TYPE: Nucleic Acid (B) STRANDEDNESS: Single (C) TOPOLOGY: Linear (D) 25 KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (ii) SEQUENCE ASSEMBLY METHOD: Overlap (A) FRAGMENT TYPE: Internal Fragment (B) HYPOTHETICAL: (C) 30 ORIGINAL SOURCE: HIV (iii) INDIVIDUAL ISOLATE: IMMEDIATE SOURCE: (vi) CLONE: (C) POSITION IN GENOME: Within Env Gene (v) 35 PROPERTIES OF SEQUENCE: Expresses conserved antigenic (vi) determinant (viii) SEQUENCE DESCRIPTION: 40 SEQ ID NO: EE179-2 10 5 Cys Thr Arg Pro Ser Asn Asn Thr Arg Lys Ser Ile His Ile Gly TGT ACA AGA CCC AGC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA

55

					2	0				2	5				30	
	Pro	o G1	y Ar	g Al	a Ph	e Ty	r Th	r Th	r Gl	y Gl	u II	e Il	e G1	u Ası	n Ile	
	CCA	A GG	G AG	A GC	A TT	TA:	r AC	A AC	A GG	A GA	A AT	A AT	A GA	A AA	ATA 1	
5																
					_											
	A	- 01	1		3!	-										
	_				s Суа											
	AGA	L CA	A GC	A ÇA	C TG	ŗ										
10																
	(2))	IN	FORM	MOITA	FOR	SEC	מד כ	NO:	EE1	79_3					
			(i)			UENC										
					(A)			GTH:								
15					(B))	TYE	E:	Nucl	eic	Acid	i				
					(C))	STR	ANDI	EDNES	s:	Sing	;1e				
					(D)					Line						
			(ii			D: c										
			(ii	i.),	KIN	D (i	f pe	ptic	le or	pro	tein	·):				
20					(A)								D:			
					(B) (C)				T TY		Int	erna	1 Fr	agme	nt	
			(ii	i)		GINA			TICA							
			(11	,	(E)				UAL		ATE •					
25			(iv	·)		EDIA				1001						
25			•	•	(C)		CLO									
			(v))	POS	ITIO	N IN	GEN	OME:	Wit	hin	Env	Gene			
			(vi	.)	PRO	PERT	IES	OF S							erved	antigenic
			, .		det	ermi	nant									
30			(vi	ii)	SEQ	UENC	E DE	SCRI	PTIO	N:						
	SEO	מז	NO:	EF1	79–3											
	524	12			,,-3											
05																
35	1				5					10					15	
	Cys	Thr	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Lys	Ser	Ile	His	Ile	G1v	
	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGA	AAA	AGT	ATA	CAT	ATA	GGA	
40																
	D	01	A		20					25					30	
	CCA	CCC	Arg	Ala	Phe	Tyr	Thr	Thr	Gly	Glu	Ile	Ile	Gly	Asn	Ile	
	CCA	GGG	MGA	GCA	TTT	IAI	ACA	ACA	GGA	GAA	ATA	ATA	GGA	AAT	ATA	
45					35											
	Arg	Gln	Ala	His												
	AGA															
50																

	(2)		INF	ORMA'	TION	FOR	SEQ	ID	NO:	EEE18	81-1						
	1		(i)		SEQ	UENC	E CH	ARAC'	TERI	STIC	s:						
					(A)			GTH:	10.								
5					(B)				Nuc1			_					
Ū					(C)				DNES		_	le					
					(D)				Y: 1								
			(ii						enom:			١.					
			(ii	,	(A)	J (1:			e or): ETHO	n• (Brow'	1 0 0		
10									T TY			erna.					
					(c)				TICA		1110	criia.		-Bmc			
			(ii:	i)					: HIV	_			-				
			\	-,	(E)				UAL :		ATE:						
			(iv)		EDIA:	TE S	OURC	Ε:								
15					(C)		CLO	_						_			
			(v)									Env (
			(vi)				OF S	EQUEI	VCE:	Ex	pres	ses (conse	erved	i antig	enic
			, .			ermi											
20			(vi	ii)	SEQU	JENC	E DE	SCRI	PTIO	V :							
	SEO	ID I	10	EEE:	181-1	L											
						-											
25																	
20	_1	_		_	. 5					_10	_		•		15		
					Asn												,
	161	ACA	AGA	CCC	AAC	WAI	AAI	ACA	AGA	AAA	AGI	ATA	CAI	ATA	GGA		
											-						
30					20					25					30		
	Pro	G1y	Arg	Ala	Phe	Tyr	Thr	Thr	G1y		Ile	Ile	G1y	Asn			
					TTT												
05																	
35					35												
	_			His	•												
	AGA	CAA	GCA	CAT	TGT												
40	(2)		TNF	TRMA"	TION	FOR	SEO	י חד	۷ 0 - 1	TF181	1_2						
	(-/		(i)	J14 41.					TER I								
			(-,		(A)				10								
					(B)				Vuc1		Acid						
					(C)				ONES		Sing	le					
45					(D)			DLOG		Linea							
			(ii)	KINI	o: cl	DNA 1	to ge	enom	ic Ri	AV						

56

50

5		((ii) (iii)	(A) (B) (C) ORIGI (E)	FRA HYI NAL SC INI	QUENC AGMEN POTHE OURCE OIVID	E AS T TY TICA : HI UAL	SEMB PE: L: V	LY M Int	ETHO				· -	
10		(iv) v) vi)	(C) POSIT	ION IN	NE: GEN	OME:						emred	antigeni	_
			viii)	deter	minant NCE DE	:			 .	P			crvcu	ancigeni	C
15	SEQ 1	ID NO	: EE	181–2											
	1			5				10					15		
20				Asn A				Lys					Gly		
				20				25					30		
25	Pro G CCA G	Sly A	rg Ala GA GCA	Phe T	yr Thr AT ACA	Thr ACG	G1y GGA	G1u	Ile ATA	Ile ATA	Gly GGA	Asn TAA	Ile		
				35				•							
30			la His CA CAI												
	(2)			TION FO											
35		(:	i)	(A) (B) (C)	TYPI STRA	GTH: E: N ANDEI	105 Jucle NESS	ic A : S	cid ingl	. e					
40			ii) ii)	KIND (A)	cDNA t	otide JENCE	nomi or ASS	prot EMBL	A ein) Y ME	THOD					
45			iii)	(C) ORIGIN (E)	HYPO NAL SOU IND:	OTHEI URCE: IVIDU	ICAL HIV	; : –	· 		. rra	agmen			
		(1	lv) 7)	(C) POSIT	CLONION IN	NE: GENC	ME:					-	·	. •	
50			ri) viii)	detern	ninant				Ежр	ress	es c	onse	rved	antigenic	:

	SEQ ID	NO. EEI	.01-3
5	1 Cys Thr TGT ACA	Arg Pro	5 10 15 O Asn Asn Thr Arg Lys Ser Ile His Ile Gly C AAC AAT AAT ACA AGA AAA AGT ATA CAT ATA GGA
10			20 25 30 a Phe Tyr Thr Thr Gly Gly Ile Ile Gly Asp Ile A TTT TAT ACA ACG GGA GGA ATA ATA GGA GAT ATA
15		Ala His A GCA CAT	
20	(2)	(i)	ATION FOR SEQ ID NO: EE211-1 SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid
25		(ii) (ii)	(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear KIND: cDNA to genomic RNA KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment
30		(iii)	(C) HYPOTHETICAL: ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE:
35		(iv) (v) (vi)	IMMEDIATE SOURCE: (C) CLONE: POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenideterminant
40	SEQ ID	(viii)	SEQUENCE DESCRIPTION: 211-1

58

Cys Thr Arg Pro Asn Asp Asn Thr Arg Arg Ser Ile Asn Ile Gly TGT ACA AGA CCC AAC GAC AAT ACA AGA AGA AGT ATA AAT ATA GGA

10

45

50

					20					2.					30			
	Pre	o G1	y Ar	g Ala	a Phe	Э Туг	Ala	a Th	r G1	y G1:	ı I1	e Ile	e Gly	Asn	Ile			
	CCA	A GG	G AG	A GC	C TT	CAT 7	GCA	A AC	A GG	A GAA	ATA	A ATA	GGA	AAT	ATA			
5																		
					35													
				a His														
	AGA	A CAA	A GCA	A CAI	TG1													
10																		
	(0)																	
	(2)	,				FOR						2						
			(i)	,		UENC					s:							
					(A)			GTH:		_								
15					(B)		TYP			eic								
					(D)				DNES		Sing	те						
			(ii	1		D: c		OLOG		Line								
			(ii		KIN	D. (i	DINA F De	ntid	enon	TC K	toin MA	۸.						
			(11	. /	(A)								D	Over]				
20					(B)					PE:				agmer				
					(c)				TICA		1111	CINA	I II.	aRmer	10			
			(ii	i)		GINA							_					
			,	-,	(E)					ISOL	ATE:							
05			(iv)		EDIA'						•••					-	
25					(C)		CLO			_								
			(v)		POS	ITIO	N IN	GEN	OME:	Wit	hin	Env (Gene	_				
			(vi)	PRO	PERT:	ES (OF S	EQUE	NCE:	Ex	pres	ses (conse	rved	ant	igeni	ic
					det	ermin	ant					-						
30			(vi	ii)	SEQ	UENCI	DE	SCRI	PTIO	N:								
	SEQ	ID :	NO:	EEE:	211-	2												
35	1				-													
	_	TL	A	D	5	A				_ 10	_		_	_	15			
	TCT	TUL	ACA	rro	ASD	ASD	AST	Thr	Arg	Lys	Ser	Ile	Ser	Leu	Gly			
	161	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGA	AAA	AGT	ATA	TCT	CTA	GGA			
40					20					25					20			
	Pro	G1 v	Ser	م 1 A		Tur	Δ1a	Th∽	C1 11		T1.	T1-	C1	Asp	30			
	CCA	GGG	AGT	GCA	ATT	TAT	GCA	ACA	GCA	CAC	ATA	ATA	CCV	GAT .	116			
				0011	****	1111	JUA	non	GGA	GAC	VIV	WIW	GGM	GAI.	MIM			
45					35													
	Arg	Gln	Ala	His														
				CAT														
					_													
5 0																		
50																		

	(2)		INF	ORMA	TION	FOR	SEC	ID	NO:	EE21	5-1						
			(i)						TERI								
					(A)		LEN	GTH:	10	5							
					(B)		TYP	E:	Nuc1	eic	Acid						
5					(C)		STR	ANDE	DNES	S:	Sing	le					
					(D)		TOP	OLOG	Y:	Line	ar						
			(ii)	KIN	D: c	DNA	to g	enom	ic R	NA						-
			(ii)	KIN	D (i	f pe	ptid	e or	pro	tein):					
					(A)		SEQ	UENC	E AS	SEMB	LY M	ETHO	D:	0ver	lap		
10					(B)		FRA	GMEN	T TY	PE:	Int	erna	1 Fr	agme	nt		
					(C)		HYP	OTHE	TICA	L:							
			(ii	i)	ORI	GINA		-	: HI	-							
				_	(E)				UAL	ISOL	ATE:						
			(iv)		EDIA			E :								
15			, ,		(C)		CLO							_			
			(v)						OME:								
			(vi)					EQUE	NCE:	Ex	pres	ses	cons	erved	antigen	ic
			, .			ermi											
20			(V1	ii)	SEQ	UENC	E DE	SCRI	PTIO	N:							
	SEQ	ID :	NO:	EE2	15–1												
25	1				5					10					15		
	Cys	Ile	Arg	Pro	Asn	Asn	Asn	Thr	Arg		Ser	I1e	His	Tle			
	TGT	ATA	AGA	CCC	AAC	AAC	AAT	ACA	AGA	AAA	AGT	ATA	CAT	ATA	GGA		
30					20					25					30		
	Pro	Gly	Arg	Ala	Phe	Tyr	Thr	Thr	G1y	Asp	Ile	Ile	G1y	Asp	Ile		
	CCA	GGG	AGA	GCA	TTT	TAT	ACA	ACA	GGA	GAT	ATA	ATA	GGA	GAT	ATA		
35					25												
55	A	01 -	A 1 -	TT 4 -	35												
			Ala GCG		-		•										
	AGA	CAA	GCG	CAI	161												
40	(2)			ORMA'					NO: 1								
			(i)			JENCI	E CHA	ARAC'	TER I	STICS	S:						
					(A)			GTH:	105								
					(B)		TYPI		Vucle			_					
15					(C)				DNESS		Sing.	le					
45					(D)			DLOG		Line							
			(ii)	,	KINI): cI)NA 1	to ge	enomi	ic RN	AV						

55

5			(ii (iv	i)	(A) (B) (C) ORI (E) IMM	GINA	SEQ FRA HYP L SO IND TE S	UENC GMEN OTHE URCE IVID OURC	T TY TICA : HI UAL	SEMB PE: L: V	LY M Int	ETHO		Over		
10) ii)	PRO:	PERT ermi	IES nant	GEN OF S	OME: EQUE	NCE:					erved	antigenic
15	SEQ	ID :	NO:	EE2	15-2											
20	1 Cys TGT	Ile ATA	Arg AGA	Pro CCC	5 Asn AAC	Asn AAC	Asn TAA	Thr ACA	Arg AGA	10 Lys AAA	Ser AGT	Ile ATA	His CAT	Ile ATA	15 Gly GGA	
25	Pro CCA	Gly GGG	Arg AGA	Ala GCA	20 Phe TTT	Tyr TAT	Thr ACA	Thr ACA	Gly GGA	25 Asp GAT	Ile ATA	Ile ATA	Gly GGA	Asp GAT	30 Ile ATA	
30			Ala GCA													
35	(2)		INFO	ORMA 1	(A) (B) (C)	ENCE	CHA LENG TYPE STRA	RACT TH: E: N NDEI	ERIS 105 Jucle NESS	TICS	: :	.e				
40			(ii) (ii)		(D) KIND KIND (A) (B)	: cD	NA t per SEQU	tide ENCE	nomi	prot EMBL	A ein) Y ME	THOE		verl		
45			(iii (iv)		(C) ORIG (E) IMME (C)	INAL DIAT	SOU INDI E SO CLON	RCE: VIDU URCE	AL I	SOLA						·
50			(v) (vi) (vii		POSI PROP dete SEQU	ERTI rmin	ES 0 ant	F SE	QUEN	CE:	in E Exp	nv G ress	ene es c	onse	rved	antigenic

SEQ ID NO: EE215-3 5 10 15 5 1 Cys Ile Arg Pro Asn Asn Thr Arg Lys Ser Ile His Ile Gly TGT ATA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA 20 25 10 Pro Gly Arg Ala Phe Tyr Thr Thr Gly Thr Ile Ile Gly Asp Ile CCA GGG AGA GCA TTT TAT ACA ACA GGA ACA ATA ATA GGA GAT ATA 15 35 Arg Gln Ala His Cys AGA CAA GCA CAT TGT INFORMATION FOR SEQ ID NO: EEE217-1 20 (2) SEQUENCE CHARACTERISTICS: (i) (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single 25 (D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): SEQUENCE ASSEMBLY METHOD: Overlap (A) (B) FRAGMENT TYPE: Internal Fragment 30 (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV INDIVIDUAL ISOLATE: (E) (iv) IMMEDIATE SOURCE: (C) CLONE: 35 (v) POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic (vi) determinant (viii) SEQUENCE DESCRIPTION: 40 SEQ ID NO: EEE217-1 5 10 1 Cys Thr Arg Pro Asn Asn Thr Arg Arg Gly Ile Ser Ile Gly 45

50

55

TGT ACA AGA CCC AAC AAC AAT ACA AGA AGG GGT ATA AGT ATA GGA

					20)				25	5				30	
	Pro	G1;	y Ar	g Ala	a Phe	Val	Tyr	Ala	a Thi	Lys	s I1	e Ile	e G13	y Asp	Ile	
	CCA	A GG	G AG	A GC	A TT	GTI	TAT	GCA	A ACA	AAA A	A ATA	A ATA	GGA	GAT	ATA	
5																
					35	:										
	Are	G1r	n A12	His	Cys											
					TGI											
10																
	(2)				TION	FOR	SEQ	ID	NO:	EE21	7-2					
			(i))			E CHA	ARAC	TERI	STIC	s:					
					(A)		LEN		10	5						
15					(B)		TYPI		Nuc1							
					(C)				DNES		Sing	:le				
			(::	`	(D)		TOP			Line						
			(ii (ii		KIN	D: C.	DNA 1	to g	enom	ic R	NA	\ .				
			(11	,	(A)	U (1)	f per						n .	^		
20					(B)									Over: agmer		
					(c)		HYPO				1111	erna	I FI	agmer	1 C	
			(ii	i)			L SOU							_		
			,	-,	(E)				UAL		ATE:					
			(iv)		EDIA:	TE SC					. —				
25					(C)		CLON									
			(v)		POS	ITION	IN	GEN	OME:	Wit	hin	Env	Gene	_		
			(vi)	PRO	PERT	ES C	F S	EQUE	NCE:	Ex	pres	ses	conse	rved	antigenic
					det	ermin	ıant									J
30			(vi	ii)	SEQ	JENCE	DES	CRI	PTIO	V:						
												•				-
	SEO	ו תז	NTO •	EE0.	י לו											
	SEQ	ועו	NO:	EE2	17-2											
35	1				5					10					15	
	Cys	Thr	Arg	Pro		Asn	Asn	Thr	Arg		Ser	Ile	Thr	Ile	Cl v	
	TGT	ACA	AGA	CCC	AAT	AAC	AAT .	ACA	AGA	AAA	AGT	ATA	ACT	ATA	GGA	
40																
+0					20					25					30	
	Pro	Gly	Arg	Ala	Phe	Tyr	Ala	Thr	Gly	Glu	Ile	Ile	Gly	Asp	Ile	
	CCA	GGG	AGA	GCA	TTT	TAT	GCA A	ACA	GGA	GAA	ATA	ATA	GGA	GAT	ATA	
45					25											
	Arg	C1n	Δ1 c	Hi.	35 Cwa											
	AGA				•											
			JUN	OHI	191											

55

	(2)	INFORMA	ATION FOR SEQ ID NO: EE228-1
		(i)	SEQUENCE CHARACTERISTICS:
_			(A) LENGTH: 105
5			(B) TYPE: Nucleic Acid
			(C) STRANDEDNESS: Single
			(D) TOPOLOGY: Linear
		(ii)	KIND: cDNA to genomic RNA
		(ii)	KIND (if peptide or protein):
10			(A) SEQUENCE ASSEMBLY METHOD: Overlap
			(B) FRAGMENT TYPE: Internal Fragment
			(C) HYPOTHETICAL:
		(iii)	ORIGINAL SOURCE: HIV
			(E) INDIVIDUAL ISOLATE:
15		(iv)	IMMEDIATE SOURCE:
			(C) CLONE:
		(v)	POSITION IN GENOME: Within Env Gene
		(vi)	PROPERTIES OF SEQUENCE: Expresses conserved antigenic
			determinant
20		(viii)	SEQUENCE DESCRIPTION:
	SEQ ID	NO: EE2	28–1
25			
25			
	1		5 10 15
	Cys Thr	Arg Pro	Asn Asn Asn Thr Arg Lys Ser Ile Pro Ile Gly
	TGT ACA	AGA CCC	AAC AAC AAT ACA AGA AAA AGT ATA CCT ATA GGA
30			
50			
			20 25 30
	Pro Gly	Arg Ala	Phe Tyr Thr Thr Gly Asp Ile Ile Gly Asp Ile
	CCA GGG	AGA GCA	TTT TAT ACA ACA GGA GAT ATA ATA GGA GAT ATA
35			
,,			
			35
		Ala His	
	AGA CAA	GCA CAT	TGT
10			
	(0)		
	(2)		TION FOR SEQ ID NO: EE228-2
		(i)	SEQUENCE CHARACTERISTICS:
			(A) LENGTH: 105
! 5			(B) TYPE: Nucleic Acid
-			(C) STRANDEDNESS: Single
		(::)	(D) TOPOLOGY: Linear
		(ii)	KIND: cDNA to genomic RNA

50

5		(iii)	KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE:
10		(iv) (v) (vi)	IMMEDIATE SOURCE: (C) CLONE: POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic
		(viii)	determinant SEQUENCE DESCRIPTION:
15	SEQ ID	NO: EE:	228–2
	1		5 10 15
20	Cys Th	r Arg Pro	O Asn Asn Asn Thr Arg Lys Ser Ile Pro Ile Gly C AAC AAC AAT ACA AGA AAA AGT ATA CCT ATA GGA
	igi Aq	A AGA CCC	, AND AND AND AGA AGA AGA AGI ATA CUT ATA GGA
	D 01-		20 25 30
25	CCA GG	G AGA GCA	Phe Tyr Thr Thr Gly Asp Ile Ile Gly Asp Ile TTT TAT ACA ACA GGA GAT ATA ATA GGA GAT ATA
			35
30		Ala His GCA CAT	Cys
	(2)	INFORMA	TION FOR SEQ ID NO: EE228-3
35		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single
40		(ii) (ii)	(D) TOPOLOGY: Linear KIND: cDNA to genomic RNA KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap
45		(iii)	(B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE:
		(iv)	IMMEDIATE SOURCE: (C) CLONE:
50		(v) (vi)	POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic
		(viii)	determinant SEQUENCE DESCRIPTION:

SEQ ID NO: EE228-3

5 10 15 5 Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile Pro Ile Gly TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CCT ATA GGA 20 25 30 10 Pro Gly Arg Ala Phe Tyr Thr Thr Gly Asp Ile Ile Gly Asp Ile CCA GGG AGA GCA TTT TAT ACA ACA GGA GAT ATA ATA GGA GAT ATA 35 15 Arg Gln Ala His Cys AGA CAA GCA CAT TGT (2) INFORMATION FOR SEQ ID NO: EE229-1 20 SEQUENCE CHARACTERISTICS: (A) LENGTH: 102 (B) TYPE: Nucleic Acid STRANDEDNESS: Single (C) (D) TOPOLOGY: Linear 25 (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap FRAGMENT TYPE: Internal Fragment (B) (C) HYPOTHETICAL: 30 (iii) ORIGINAL SOURCE: HIV INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: CLONE: (v) POSITION IN GENOME: Within Env Gene 35 PROPERTIES OF SEQUENCE: Expresses conserved antigenic (vi) determinant SEQUENCE DESCRIPTION: (viii) 40 SEQ ID NO: EE229-1 5 10 Cys Thr Arg Pro Asn Asn Asn Thr Arg Arg Ser Ile His Ile Gly 45 TGT ACA AGA CCC AAT AAC AAT ACA AGA AGA AGT ATA CAT ATA GGA

50

					20)				25	,				30				
															Arg				
	CCA	GGG	AGA	GCA	TTI	TAT	GCA	ACA	GAI	ATA	ATA	GGA	raa /	' ATA	AGA				
5																			
					35														
	G1n	Ala	His	Cvs															
		GCA		_															
10																			
	(0)																		
	(2)		1NF						NO:										
			(1)		(A)			GTH:	TERI 10		5:								
15					(B)				Nucl	_	Acid								
75					(c)				DNES										
				_	(D)				Y:										
)					enom										
			(ii)	(A)				e or E AS				D.	~	1				
20					(B)								l. 1 Fr	Over					
					(c)				TICA					ug.mc.					
			(ii:	i)	ORI	GINA	L SO	URCE	: HI	V									
					(E)				UAL	ISOL	ATE:								
25			(iv)	IMMI (C)	EDIA!			E:										
			(v)			וחודו	CLO		OME .	W4+1	hin 1	Farr	Cono	-					
			(v) (vi)		POS		N IN	GEN					Gene		erved	i an	tio	enio	
			(v) (vi)		POS:		N IN	GEN							erved	i an	tig	enio	:
30			(vi)		POS: PROI dete	PERT: ermin	N IN IES (nant	GEN OF S		NCE:					erve	i an	tig	enio	:
30			(vi))	POS: PROI dete	PERT: ermin	N IN IES (nant	GEN OF S	EQUE	NCE:					erved	i an	tig	enio	>
30	SFO	רו א	(vi)) ii)	POS: PROI dete SEQU	PERT: ermin	N IN IES (nant	GEN OF S	EQUE	NCE:					erved	i an	tig	enio	2
30	SEQ	ID N	(vi)) ii)	POS: PROI dete SEQU	PERT: ermin	N IN IES (nant	GEN OF S	EQUE	NCE:					erve	i an	tig	enio	3
	SEQ	ID N	(vi)) ii)	POS: PROI dete SEQU	PERT: ermin	N IN IES (nant	GEN OF S	EQUE	NCE:					erved	i an	tig:	enio	•
<i>30</i>	1		(vi) (vii) ii) EE2:	POS: PROI dete SEQI	PERT: ermin JENCI	N IN IES (nant E DE:	GEN OF S	EQUEI	NCE: N:	Ex	pres	ses	cons	15	i an	tig	enio	3
	1 Cys	Thr	(vi) (vii) (vii)) ii) EE2: Pro	POS: PROI dete SEQI 29-2	PERT: PERT: JENCI	N IN IES (nant E DE:	GEN OF S SCRI	EQUE PTIOI Arg	NCE: N: 10 Lys	Ex;	pres.	ses	cons.	15 Gly	i an	tig	enio	2
	1 Cys	Thr	(vi) (vii) (vii)) ii) EE2: Pro	POS: PROI dete SEQI 29-2	PERT: PERT: JENCI	N IN IES (nant E DE:	GEN OF S SCRI	EQUE PTIOI Arg	NCE: N: 10 Lys	Ex;	pres.	ses	cons.	15 Gly	i an	tig	enio	2
	1 Cys	Thr	(vi) (vii) (vii)) ii) EE2: Pro	POS: PROI dete SEQI 29-2	PERT: PERT: JENCI	N IN IES (nant E DE:	GEN OF S SCRI	EQUE PTIOI Arg	NCE: N: 10 Lys	Ex;	pres.	ses	cons.	15 Gly	i an	tig	enio	
	1 Cys	Thr	(vi) (vii) (vii)) ii) EE2: Pro	POS: PROD dete SEQU 29-2 5 Gly GGC	PERT: PERT: JENCI	N IN IES (nant E DE:	GEN OF S SCRI	EQUE PTIOI Arg	NCE: N: 10 Lys AAA	Ex;	pres.	ses	cons.	15 Gly GGA	i an	tig	enio	>
35	1 Cys TGT	Thr ACA	(vi) (vii IO: Arg AGA) ii) EE2: Pro CCC	POS: PROD dete SEQUENTE 29-2 5 Gly GGC	PERT: PERMIN JENCI Asn AAC	N IN IES (nant E DE: Asn AAT	GEN OF S SCRI	EQUE PTIOI Arg AGA	NCE: N: 10 Lys AAA	Gly GGT	Ile ATA	His CAT	Ile ATA	15 G1y GGA	i an	tig	enic	
35	1 Cys TGT	Thr ACA	(vi) (vii) (vii) (vii) Arg) ii) EE2: Pro CCC	POS: PROD dete SEQUENT 29-2 5 Gly GGC 20 Ile	PERT: PERMIN JENCI Asn AAC	Asn AAT	GEN OF S SCRI Thr ACA	EQUE PTIOI Arg AGA	NCE: N: 10 Lys AAA 25 Ile	Gly GGT	Ile ATA	ses	Ile ATA	15 Gly GGA 30 Arg	i an	tig	enio	
35	1 Cys TGT	Thr ACA	(vi) (vii) (vii) (vii) Arg) ii) EE2: Pro CCC	POS: PROD dete SEQUENT 29-2 5 Gly GGC 20 Ile	PERT: PERMIN JENCI Asn AAC	Asn AAT	GEN OF S SCRI Thr ACA	EQUE PTIOI Arg AGA	NCE: N: 10 Lys AAA 25 Ile	Gly GGT	Ile ATA	His CAT	Ile ATA	15 Gly GGA 30 Arg	i an	tig	enic	
35	1 Cys TGT	Thr ACA	(vi) (vii) (vii) (vii) Arg) ii) EE2: Pro CCC	POS: PROD dete SEQUE 29-2 5 Gly GGC 20 Ile ATT	PERT: PERMIN JENCI Asn AAC	Asn AAT	GEN OF S SCRI Thr ACA	EQUE PTIOI Arg AGA	NCE: N: 10 Lys AAA 25 Ile	Gly GGT	Ile ATA	His CAT	Ile ATA	15 Gly GGA 30 Arg	i an	tig	enio	2
35 40	1 Cys TGT Pro	Thr ACA Gly GGG	(vi) (vi) (vi) Arg AGA	Pro CCC	POS: PROD dete SEQUENT 29-2 5 Gly GGC 20 Ile	PERT: PERMIN JENCI Asn AAC	Asn AAT	GEN OF S SCRI Thr ACA	EQUE PTIOI Arg AGA	NCE: N: 10 Lys AAA 25 Ile	Gly GGT	Ile ATA	His CAT	Ile ATA	15 Gly GGA 30 Arg	i an	tig.	enio	2
35 40	1 Cys TGT Pro CCA	Thr ACA Gly GGG	(vi) (vii) (vii) (vii) Arg AGA Arg AGA) ii) EE2: Pro CCC Ala GCA Cys	POS: PROD dete SEQUE 29-2 5 Gly GGC 20 Ile ATT	PERT: PERMIN JENCI Asn AAC	Asn AAT	GEN OF S SCRI Thr ACA	EQUE PTIOI Arg AGA	NCE: N: 10 Lys AAA 25 Ile	Gly GGT	Ile ATA	His CAT	Ile ATA	15 Gly GGA 30 Arg	i an	tig	enic	
35 40	1 Cys TGT Pro CCA	Thr ACA Gly GGG	(vi) (vii) (vii) (vii) Arg AGA Arg AGA) ii) EE2: Pro CCC Ala GCA Cys	POS: PROD dete SEQUE 29-2 5 Gly GGC 20 Ile ATT	PERT: PERMIN JENCI Asn AAC	Asn AAT	GEN OF S SCRI Thr ACA	EQUE PTIOI Arg AGA	NCE: N: 10 Lys AAA 25 Ile	Gly GGT	Ile ATA	His CAT	Ile ATA	15 Gly GGA 30 Arg	i an	tig	enio	
35 40	1 Cys TGT Pro CCA	Thr ACA Gly GGG	(vi) (vii) (vii) (vii) Arg AGA Arg AGA) ii) EE2: Pro CCC Ala GCA Cys	POS: PROD dete SEQUE 29-2 5 Gly GGC 20 Ile ATT	PERT: PERMIN JENCI Asn AAC	Asn AAT	GEN OF S SCRI Thr ACA	EQUE PTIOI Arg AGA	NCE: N: 10 Lys AAA 25 Ile	Gly GGT	Ile ATA	His CAT	Ile ATA	15 Gly GGA 30 Arg	i an	tig	enio	2

	(2)	INFORMA	ATION FOR SEQ ID NO: EE229-3									
		(i)	SEQUENCE CHARACTERISTICS:									
			(A) LENGTH: 102									
_			(B) TYPE: Nucleic Acid									
5			(C) STRANDEDNESS: Single									
			(D) TOPOLOGY: Linear									
		(ii)	KIND: cDNA to genomic RNA									
		(ii)	KIND (if peptide or protein):									
			(A) SEQUENCE ASSEMBLY METHOD: Overlap									
10			(B) FRAGMENT TYPE: Internal Fragment									
			(C) HYPOTHETICAL:									
		(iii)	ORIGINAL SOURCE: HIV									
			(E) INDIVIDUAL ISOLATE:									
		(iv)	IMMEDIATE SOURCE:									
15			(C) CLONE:									
		(v)	POSITION IN GENOME: Within Env Gene									
		(vi)	PROPERTIES OF SEQUENCE: Expresses conserved antigenic									
			determinant									
		(viii)	SEQUENCE DESCRIPTION:									
20												
	SEQ ID	NO: EE2	29–3									
25												
	1 -		5 10 15									
	Cys Thi	Arg Pro	Gly Asn Asn Thr Arg Lys Gly Ile His Ile Gly									
	IGI ACA	A AGA CCC	GGC AAC AAT ACA AGA AAA GGT ATA CAT ATA GGA									
30			20 25 30									
	Pro Cla	. A=- A1-										
	CCV CCC	VIR NIS	Ile Tyr Ala Thr Asp Ile Ile Gly Asp Ile Arg ATT TAT GCA ACA GAT ATA ATA GGA GAT ATA AGA									
	CCA GGG	AGA GCA	ATT THE GOA NOW GAT ATA AGA									
35			35									
	Gln Ala	His Cys										
		CAT TGT										
40	(2)	INFORMA	TION FOR SEQ ID NO: EEE244-1									
		(i)	SEQUENCE CHARACTERISTICS:									
			(A) LENGTH: 102									
			(B) TYPE: Nucleic Acid									
			(C) STRANDEDNESS: Single									
45			(D) TOPOLOGY: Linear									
		(ii)	KIND: cDNA to genomic RNA									

55

. 5		(ii)	KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment	
5		(iii)	(C) HYPOTHETICAL: ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE:	
		(iv)	IMMEDIATE SOURCE: (C) CLONE:	
10		(v) (vi)	POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigeni determinant	.c
		(viii)		
15	SEQ II	NO: EE	244-1	
	1		5 10 15	
20		r Arg Pro	Asn Asn Asn Ile Lys Ile Arg Ser Ile His Ile	
	TGT AC	CA AGG CCC	C AAC AAC AAT ATA AAA ATA AGA AGT ATA CAT ATA	
			20 25 30	
25			Pro Phe Tyr Thr Thr Lys Ile Gly Asp Ile Arg	
	GGA CC	A GGG AGA	CCA TTT TAT ACA ACA AAA ATA GGA GAT ATA AGA	
	Gln Al	a Tyr Cys	35	
30		A TAT TGT		
	(2)	INFORMA	TION FOR SEQ ID NO: EE244-2	
35		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 102 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single	
40		(ii) (ii)	(D) TOPOLOGY: Linear KIND: cDNA to genomic RNA KIND (if peptide or protein):	
		/···	(A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL:	
45		(iii)	ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE:	
		(iv)	IMMEDIATE SOURCE: (C) CLONE:	
		(v)	POSITION IN GENOME: Within Env Gene	
50		(vi)	PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant	2
		(viii)	SEQUENCE DESCRIPTION:	

SEQ ID NO: EE244-2

1 5 10 15 5 Cys Thr Arg Pro Asn Asn Ile Lys Ile Arg Ser Ile His Ile TGT ACA AGG CCC AAC AAC AAT ATA AAA ATA AGA AGT ATA CAT ATA 20 25 30 10 Gly Pro Gly Arg Pro Phe Tyr Thr Thr Lys Ile Gly Asp Ile Arg GGA CCA GGG AGA CCA TTT TAT ACA ACA AAA ATA GGA GAT ATA AGA 35 15 Gln Ala Tyr Cys CAA GCA TAT TGT (2) INFORMATION FOR SEQ ID NO: EE244-3 20 SEQUENCE CHARACTERISTICS: (A) LENGTH: 102 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 25 (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): SEQUENCE ASSEMBLY METHOD: Overlap FRAGMENT TYPE: Internal Fragment (B) (C) HYPOTHETICAL: 30 (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (v) POSITION IN GENOME: Within Env Gene 35 PROPERTIES OF SEQUENCE: Expresses conserved antigenic (vi) determinant (viii) SEQUENCE DESCRIPTION: 40 SEQ ID NO: EE244-3 5 10 Cys Thr Arg Pro Asn Asn Ile Lys Ile Arg Ser Ile His Ile 45 TGT ACA AGG CCC AAC AAC AAT ATA AAA ATA AGA AGT ATA CAT ATA

50

					20)				25	i				30		
														Ile			
	GGA	A CC	GGC	AGA	CCA	TTI	CAT '	ACA	A ACA	AAA	ATA	GGA	GAI	ATA	AGA		
5																	
					35												
	G1 _r	. A1s	Тът	Cys		•											
				TGT													
10																	
	(2))				FOR											
			(i)	1		UENC					S:						
					(A) (B)			GTH:		-							
15					(C)		TYP		DNES	eic.	Acia Sing						
					(D)			OLOG		Line	_	16					
			(ii)		D: c					-						
			(ii)	KIN	D (i	f pe	ptid	e or	pro	tein						
20					(A)									Over1			
					(B)					PE:	Int	erna.	l Fr	agmer	ıt		
			(ii	4)	(C)	GINA:			TICA								
			(11	_,	(E)					ISOL	ATE:						
			(iv)		EDIA:											
25					(C)		CLO	NE:					_	_			
			(v)			ITIO											
			(vi)				OF S	EQUE	NCE:	Ex	pres	ses (conse	rved	antigeni	C
			(sri	ii)		ermi: UENC!		cob t	ית דיתים	AT .							
30			(• 1	11)	bEQ	OENTO	i De,	SCKI	1110								
	SEQ	ID I	NO:	EE2	89–1												
35	1									10							
	_	Thr	Ara	Pro	5 Asn	Acn	Acn	ም ኤ	A = =	10	C1 **	T10	n: -	Ile	15		
	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGA	AAA	GCT	ATA	CAT	ATA	CCA		
													0.11	*****	OGI		
40																	
70	_				20	_				25					30		
	Pro	Gly	Arg	Ala	Phe	Tyr	Thr	Thr	Gly	Glu	Ile	Ile	Gly	Asp	Ile		
	CCA	GGG	AGA	GCA	111	IAI	ACI	AUA	GGA	GAA	ATA	ATA	GGA	GAT	ATA		
45					35												
	Arg	Gln	Ala	His													
	AGA	CAA	GCA	CAT	TGT												
5 0																	

	(2)	INFORM	ATION FOR SEQ ID NO: EE289-2
		(i)	SEQUENCE CHARACTERISTICS:
_			(A) LENGTH: 105
5			(B) TYPE: Nucleic Acid
			(C) STRANDEDNESS: Single
			(D) TOPOLOGY: Linear
		(ii)	KIND: cDNA to genomic RNA
		(ii)	KIND (if peptide or protein):
10			(A) SEQUENCE ASSEMBLY METHOD: Overlap
			(B) FRAGMENT TYPE: Internal Fragment
			(C) HYPOTHETICAL:
		(iii)	ORIGINAL SOURCE: HIV
15			(E) INDIVIDUAL ISOLATE:
15		(iv)	IMMEDIATE SOURCE:
			(C) CLONE:
		(v)	POSITION IN GENOME: Within Env Gene
		(vi)	PROPERTIES OF SEQUENCE: Expresses conserved antigenic
20			determinant
20		(viii)	SEQUENCE DESCRIPTION:
	SEQ ID	NO: EE2	89–2
25			
-	1		P
	-	A	5 10 15
	TOT AGA	Arg Pro	Asn Asn Asn Thr Arg Lys Gly Ile His Ile Gly
	IGI ACA	AGA CCC	AAC AAC AAT ACA AGA AAA GGT ATA CAT ATA GGA
30			
			20 25 30
	Pro Gly	A== A1=	
	CCA GGG	VIR VIR	Phe Tyr Thr Thr Gly Glu Ile Ile Gly Asp Ile TTT TAT ACT ACA GGA GAA ATA ATA GGA GAT ATA
	CCA GGG	AGA GUA	III IAI ACI ACA GGA GAA ATA ATA GGA GAT ATA
35			
			35
	Are Gin	Ala His	
		GCA CAT	
	11021 0121	oon oni	161
ю			
	(2)	INFORMA	TION FOR SEQ ID NO: EE290-1
		(i)	SEQUENCE CHARACTERISTICS:
		(-)	(A) LENGTH: 105
			(B) TYPE: Nucleic Acid
5			(C) STRANDEDNESS: Single
			(D) TOPOLOGY: Linear
		(ii)	KIND: cDNA to genomic RNA
		•	DAMANIEC MANT

72

50

5			(ii (ii (iv	i)	(A) (B) (C) ORI (E) IMM	GINA	SEQ FRA HYP L SO IND TE S	UENC GMEN OTHE URCE IVID OURC	T TY TICA : HI UAL	SEMB PE: L: V	LY M	ETHO erna		Over		·
10			(v) (vi		PRO det	PERT ermi	IES nant	GEN OF S	EQUE	NCE:		Env pres			erved	antigenic
			(vi	ii)	SEQ	UENC.	E DE	SCRI	PTIO	N:						
15	SEQ	ID :	NO:	EE2	90–1											
	1				5					10					15	•
20	Cys	Thr	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Lys	Ser	Ile	His	Leu	G1y	
	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGA	AAA	AGT	ATA	CAT	CTA	GGG	
					20					25					30	
05	Pro	G1y	Arg	Ala		Tyr	Thr	Thr	G1y		Ile	Ile	G1v	Asp		
25	CCA	GGG	AGA	GCA	TTT	TAT	ACA	ACA	GGA	GAC	ATA	ATA	GGA	GAT	ATA	
	Ara	Gin	Ala	ni c	35 Cwo											
30			GCA													
	(2)		INFO)RMA	CION	FOR	SEQ	ID N	io: E ERIS	E293	1-1					
35			(1)		(A)		LENG		105		•					
					(B)				lucle							
					(D)				NESS			.e				
			(ii))	KIND											
40			(ii))	KIND	(if	pep	tide	or	prot	ein)	:	_			
•					(A) (B)									verl gmen		
			_		(c)		HYPO	THET	ICAL	: _				Rmen		
45			(iii	.)	ORIG						me.					
			(iv)		IMME	DIAT	E SO	URCE	: AL I	SULA	TE:					
					(C)		CLON	E:						-		
			(v) (vi)		POSI											
50			(V I)		ete.	rmin	eo U ant	r de	ΛΩΕΙΝ	CE:	Ехр	ress	es c	onse	rved	antigenic
			(vii		SEQU			CRIP	TION	:						

SEQ ID NO: EE293-1

5 10 5 Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA 20 25 30 10 Pro Gly Arg Ala Phe Tyr Thr Thr Gly Glu Ile Ile Gly Asn Ile CCA GGG AGA GCA TTT TAT ACA ACA GGA GAA ATA ATA GGA AAT ATA 35 15 Arg Gln Ala His Cys AGA CAA GCA CAT TGT (2) INFORMATION FOR SEQ ID NO: EE293-2 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 TYPE: Nucleic Acid (B) (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 25 (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: 30 (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: CLONE: (v) POSITION IN GENOME: Within Env Gene 35 (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant (viii) SEQUENCE DESCRIPTION: 40 SEQ ID NO: EE293-2 5 10 Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly 45 TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA

55

					20					2:					30		
	Pro	o G1	y Ar	g Ala	a Phe	Ty:	Th	r Th	r G1	y G11	1 I1e	e Ile	e G13	Asn	Ile		
	CCA	A GG	G AG	A GC	A TT	LAT 7	' AC	A ACA	A GG	A GAA	ATA	A ATA	A GGA	TAA	ATA		
-																	
5																	
					35	5											
	Arg	g Glr	ı Ala	a His	Cys	;											
				A CAT													
10																	
	(2))	INF	ORMA	TION	FOR	SEC) ID	NO:	EE29	3-3						
			(i)			UENC											
					(A)			IGTH:									
					(B)	ı	TYE	E:	Nuc1	eic	Acid	1					
15					(C)					s:							
					(D)					Line							
			(ii	.)		D: c											
			(ii			D (i):					
					(A)					SEMB			D:	Over]	ap		
20					(B)					PE:				agmer		•	
					(C)		HYP	OTHE	TICA	L:				-6			
			(ii	i)	ORI	GINA:	L SO	URCE	: HI	v							
					(E)					ISOL	ATE:						
			(iv)	IMM	EDIA:											
25					(C)		CLO	NE:									
			(v)		POS	ITIO	NI V	GEN	OME:	Wit	hin	Env	Gene	_			
			(vi)	PRO	PERT:	IES	OF S	EQUE	NCE:	Ex	pres	ses	conse	rved	anti	genic
					det	ermi	nant		-			•					5
30			(vi	ii)	SEQ	UENCI	E DE	SCRI	PTIO	N:							
30																	
	SEQ	ID 1	NO:	EE2	93–3												
35																	
00	1				5					10					15		
	Cys	Thr	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Lys	Ser	Ile	His	Ile	Gly		
	TGT	AÇA	AGA	CCC	AAC	AAC	AAT	ACA	AGA	AAA	AGT	ATA	CAT	ATA	GGA		
40																	
70	_				20					25					30		
	Pro	Gly	Arg	Ala	Phe	Tyr	Thr	Thr	Gly	Glu	Ile	Ile	Gly	Asn	I1e		
	CCA	GGG	AGA	GCA	TTT	TAT	ACA	ACA	GGA	GAA	ATA	ATA	GGA	AAT	ATA		
45											•						
					35												
				His													
	AGA	CAA	GCA	CAT	TGT												
50																	

	(2)	INFORMA	ATION FOR SEQ ID NO: EE295-1
		(i)	SEQUENCE CHARACTERISTICS:
			(A) LENGTH: 105
			(B) TYPE: Nucleic Acid
5			(C) STRANDEDNESS: Single
			(D) TOPOLOGY: Linear
		(ii)	KIND: cDNA to genomic RNA
		(ii)	KIND (if peptide or protein):
			(A) SEQUENCE ASSEMBLY METHOD: Overlap
10			(B) FRAGMENT TYPE: Internal Fragment
			(C) HYPOTHETICAL:
		(iii)	ORIGINAL SOURCE: HIV
		(111)	(E) INDIVIDUAL ISOLATE:
		(iv)	IMMEDIATE SOURCE:
15		(= ,)	(C) CLONE:
		(v)	POSITION IN GENOME: Within Env Gene
		(vi)	PROPERTIES OF SEQUENCE: Expresses conserved antigenic
		` '	determinant
		(viii)	SEQUENCE DESCRIPTION:
20			
	SEQ ID	NO: EE2	95–1
0.5			
25	1		5 10 15
	Cys Thr	Arg Pro	Asn Asn Asn Thr Arg Lys Gly Ile His Ile Gly
	TGT ACA	AGA CCC	AAC AAC AAT ACA AGA AAA GGT ATA CAT ATA GGA
		٠	
30			
50			20 25 30
	Pro Gly	Arg Ala	Phe Tyr Ala Thr Lys Asp Ile Ile Gly Asp Ile
	CCA GGG	AGA GCA	TTT TAT GCA ACA AAA GAC ATA ATA GGA GAT ATA
35			
	4 61	44	35
	•	Ala His	
	AGA CAA	GCA CAT	TGT
40	(2)	TRIEODMA	TION FOR ORD IN NO. BROOK O
	(2)	(i)	TION FOR SEQ ID NO: EE295-2
		(1)	SEQUENCE CHARACTERISTICS:
			(A) LENGTH: 105
			(B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single
4 5			/- >
		(ii)	(D) TOPOLOGY: Linear KIND: cDNA to genomic RNA
		ヽエエノ	WIND. COMM TO REHOMIC KNW

50

E		(ii)	KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL:
5		(iii)	ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE:
		(iv)	IMMEDIATE SOURCE: (C) CLONE:
10		(v) (vi)	POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant
		(viii)	
15	SEQ ID	NO: EE2	95–2
	1		5 10 15
20	Cys Th	r Arg Pro A AGA CCC	Asn Asn Asn Thr Arg Lys Gly Ile His Ile Gly AAC AAC AAT ACA AGA AAA GGT ATA CAT ATA GGA
			20 25 30
25			Phe Tyr Ala Thr Lys Asp Ile Ile Gly Asp Ile TTT TAT GCA ACA AAA GAC ATA ATA GGA GAT ATA
30		n Ala His A GCA CAT	
	(2)		TION FOR SEQ ID NO: EE297-1
35		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear
40		(ii) (ii)	KIND: cDNA to genomic RNA KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment
45		(iii)	(C) HYPOTHETICAL: ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE:
		(iv)	IMMEDIATE SOURCE: (C) CLONE:
50		(v) (vi)	POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant
		(viii)	SEQUENCE DESCRIPTION:

SEQ ID NO: EE297-1 10 Cys Ile Arg Pro Asn Asn Thr Arg Lys Ser Ile Asn Ile Gly TGT ATA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA AAT ATA GGA 20 25 30 10 Pro Gly Arg Ala Phe Tyr Thr Thr Gly Glu Ile Ile Gly Asn Ile CCA GGG AGA GCA TTT TAT ACA ACA GGA GAA ATA ATA GGA AAT ATA 35 15 Arg Gln Ala His Cys AGA CAA GCA CAT TGT (2) INFORMATION FOR SEQ ID NO: EE297-2 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single TOPOLOGY: Linear (D) 25 (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: 30 (iii) ORIGINAL SOURCE: HIV INDIVIDUAL ISOLATE: (E) (iv) IMMEDIATE SOURCE: CLONE: (v) POSITION IN GENOME: Within Env Gene 35 (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant SEQUENCE DESCRIPTION: (viii) 40 SEQ ID NO: EE297-2

50

45

55

10

Cys Ile Arg Pro Asn Asn Thr Arg Lys Ser Ile Asn Ile Gly TGT ATA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA AAT ATA GGA

					2	0				2.	5				30	
	Pr	o G1	y Ar	g Al	a Ph	e Ty	r Th	r Th	r G1	y G1	u Ile	e Ile	e Gly	Asn	Ile	
	CC	A GG	G AG	A GC	A TT	T TA	r AC	A AC	A GG	A GA	A ATA	ATA	GGA	AAT	ATA	
5																
J																
					3.	5										
	Arg	3 G1	n Ala	a Hi	s Cy	5										
	AGA	A CA	A GC	A CA	T TG	Γ										
10																
	(2))	INI	FORM	MIOITA	I FOR	SEC) ID	NO:	EE29	7-3					
			(i)			QUENC										
					(A)			IGTH:								
					(B)		TYE		_		Acid					
15					(c)				DNES		Sing					
					(D)			OLOG		Line	_					
			(ii	i)		ID: c				_						
			(ii			D (i						١.				
			,	- /	(A)		SEC	UENC	F AS	CEMB	TV M	FTUO'	D: (Decom 1		
20					(B)		FRA	CMEN	T TY	DE.			l Fra			
					(c)				TICA		THE	erma	T LIS	agmen	C	
			(ii	i)		GINA										
			\	/	(E)				UAL		A TE .					
			(iv	r)		EDIA				1301	WIE.					
25			\	,	(C)		CLO									
			(v)	1		ITIO			OMF .	Wit	hin	Fore (2000	-		
			(vi		PRO	PERT	TES	OF S	FOUR	いつに・	ulli.		sene			antigenic
					det	ermi	nent	OI D	DQUL	NCE.	1111	hree	ses c	onse	rvea	antigenic
			(vi	ii)		UENC		SCRT	PTIO	NJ •						
30			• • •	,	4			JUN 1	1 1 1 0.							
	SEO	ID	NO:	EE2	97–3				•							
	`		_													
35	1				5					10					15	
	Cvs	Ile	Arg	Pro		Asn	Asn	Thr	Ara		Ser	T16	Asn	71.	C1	
	TGT	ATA	AGA	CCC	AAC	AAC	AAT	ACA	AGG		ACT	ATA	AAT	ATA A	COA	
								*****	1100	tnn.	NGI	VIV	WI	WIW	GGA	
40					20					25					20	
	Pro	G1v	Aro	A1a		Tyre	Th-	Th-	C1		T1 -	T 7	01		30	
	CCA	GGG	AGA	GCA	Tile	TAT	YCY	1111	GIY	GIU	116	116	Gly	Asn .	lle	
	0011	000	non	GCA	111	TWI	AUA	ACA	GGA	GAA	ATA	ATA	GGA .	AAT A	ATA	
45					25											
	A	C1-	A 1 -	u: -	35											
			Ala													
	AUA	CAA	GCA	CAT	IGT											
50																

79

	(2)	IN	FORM	ATIO	N FO	R SE	Q ID	NO:	EE30	04-1						
			(i)	SEC	QUEN	CE CI	HARA	CTER	ISTI	cs:						
_					(A)			NGTH									
5					(B))	TY	PE:	Nucl	leic	Aci	1					
					(c))		RAND									
					(D))		POLO				,					
			(i:	i)	KIN	ID: c		to g									
			(i:	i)	KIN	ID (i	if pe	eptio	le or	pro	teir	1):					
10					(A))	SEC	QŪENO	CE AS	SEME	BLY N	1ETHC	D:	Over	·lan		
					(B))	FRA	AGMEN	TY TY	PE:	Int	erna	ıl Fr	aome	ent		
					(C))	HYE	POTHE	TICA	L:				~B			
			(ii	ii)	ORI	GINA	L SC	DURCE	E: HI	v							
					(E)			IIVIC			ATE:						
15			(iv	7)	IMM	EDIA	TE S	SOURC	E:								
					(C)		CLO	NE:									
			(v)		POS	ITIO	N IN	GEN	OME:	Wit	hin	Env	Gene	_			
			(vi	1)	PRO	PERT	IES	OF S	EQUE	NCE:	Ex	pres	ses	cons	erved	antig	enic
					det	ermi	nant	:	•			£			02100	ancig	enic
20			(vi	ii)	SEQ	UENC	E DE	SCRI	PTIO	N:							
	SEQ	ID	NO:	EE3	04-1												
25																	
	1				5					10					15		
	Cys	Thr	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Lvs	Ser	Ile	Asn	He	Glv		
	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGG	AAA	AGT	ATA	AAT	ATA	GGA		
															0011		
30																	
	_				20					25					30		
	Pro	Gly	Arg	A1a	Phe	Tyr	Thr	Thr	G1y	Glu	Ile	Ile	G1y	Asp	T1 -		
	CCA	GGG	AGA	GCA	TTT	TAT	ACA	ACA	GGA	GAA	ATA	ATA	GGA	GAT	ATA		
15																	
					35												
	Arg	Gln	Ala	His	Cys												
	AGA	CAA	GCA	CAT	TGT												
0																	
U	(0)		T11-														
	(2)		INF	JRMA'	CION	FOR	SEQ	ID N	10: E	E304	-2						
			(i)		SEQU			ARACI			:			•			
					(A)			STH:	105								
5					(B)		TYPE		lucle	ic A	cid						
•					(C)		STRA	NDEI	NESS		ingl	e					
					(D)		TOPO	LOGY	: L	inea	r						
			(ii))	KIND	: cD	NA t	o ge	nomi	c RN	Α						

55

5		(ii) (iii)	KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: ORIGINAL SOURCE: HIV	
		(iv)	(E) INDIVIDUAL ISOLATE: IMMEDIATE SOURCE: (C) CLONE:	
10		(v) (vi)	POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant	2
		(viii)	SEQUENCE DESCRIPTION:	
15	SEQ ID	NO: EE3	304-2	
	1		5 10 15	
20	Cys Thi	r Arg Pro A AGA CCC	Asn Asn Asn Thr Arg Arg Ser Ile Asn Ile Gly C AAC AAC AAT ACA AGG AGA AGT ATA AAT ATA GGA	
			20 25 30	
25	Pro G13 CCA GG0	7 Arg Ala G AGA GCA	Phe Tyr Thr Thr Gly Glu Ile Ile Gly Asp Ile TTT TAT ACA ACA GGA GAA ATA ATA GGA GAT ATA	
			35	
30		Ala His GCA CAT		
	(2)	INFORMA:	TION FOR SEQ ID NO: EE304-3	
35		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single	
40		(ii) (ii)	(D) TOPOLOGY: Linear KIND: cDNA to genomic RNA KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (R) FRACMENT TYPE: Lettered FracMent Type:	
45		(iii)	(B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: ORIGINAL SOURCE: HIV	
		(iv)	(E) INDIVIDUAL ISOLATE: IMMEDIATE SOURCE: (C) CLONE:	
5 <i>0</i>		(v) (vi)	POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic	
		(viii)	determinant SEQUENCE DESCRIPTION:	

SEQ ID NO: EE304-3

5	1				5					10					15
5	Cys	Thr	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Arg	Ser	Ile	Asn	Ile	G13
													AAT		
10					20					25					30
10	Pro	G1y	Arg	Ala	Phe	Tyr	Thr	Thr	Gly	G1u	Ile	Ile	G1y	Asp	Ι1€
	CCA	GGG	AGA	GCA	TTT	TAT	ACA	ACA	GGA	GAA	ATA	ATA	GGA	GAT	ATA
15					35										
75	Arg	Gln	Ala	His	Cys										
	AGA	CAA	GCA	CAT	TGT				-						

	(2) INFORMATION FOR SEQ ID NO: EE308-1
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 105
	(B) TYPE: Nucleic Acid
5	(C) STRANDEDNESS: Single
	(D) TOPOLOGY: Linear
	(ii) KIND: cDNA to genomic RNA
	(ii) KIND (if peptide or protein):
	(A) SEQUENCE ASSEMBLY METHOD: Overlap
10	(B) FRAGMENT TYPE: Internal Fragment
	(C) HYPOTHETICAL:
	(iii) ORIGINAL SOURCE: HIV
	(E) INDIVIDUAL
	ISOLATE:
15	(iv) IMMEDIATE SOURCE:
	(C) CLONE:
	(v) POSITION IN GENOME: Within Env Gene
	(vi) PROPERTIES OF SEQUENCE: Expresses conserved
00	antigenic determinant
20	(viii) SEQUENCE DESCRIPTION:
	SEQ ID NO: EE308-1
25	
	1
	1 5 10 15
	Cys Thr Arg Pro Asn Asn Thr Arg Lys Ser Ile His Ile Gly
	TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA
30	
	20 25 30
	Pro Gly Arg Ala Phe Tyr Thr Thr Gly Glu Ile Ile Gly Asp Ile CCA GGC AGA GCA TTT TAT ACA ACA GGA GAA ATA ATA GGA GAT ATA
	CON GOC NOW GOW III INI NOW NOW GOW GWW WIM WIM GOW GWI WIM
35	
	35
	Arg Gln Ala His Cys
	AGA CAA GCA CAT TGT
40	
	(2) INFORMATION FOR SEQ ID NO: EE308-2
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 105
	(B) TYPE: Nucleic Acid
45	(C) STRANDEDNESS: Single
	(D) TOPOLOGY: Linear
	(ii) KIND: cDNA to genomic RNA
	. ,
E0	

83

5	(ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE:
10	(C) CLONE: (v) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant (viii) SEQUENCE DESCRIPTION:
¹⁵ S	EQ ID NO: EE308-2
20 C	1 5 10 15 ys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly GT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA
25 P.	20 25 30 ro Gly Arg Pro Phe Tyr Thr Thr Gly Glu Ile Ile Gly Asp Ile CA GGC AGA CCA TTT TAT ACA ACA GGA GAA ATA ATA GGA GAT ATA
	35 rg Gln Ala His Cys GA CAA GCA CAT TGT
95	2) INFORMATION FOR SEQ ID NO: EE310-1 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single
90	(D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment
5	(C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE:
o	 (v) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant (viii) SEQUENCE DESCRIPTION:

SEQ ID NO: EE310-1

5	1 Cys Thi TGT ACA	r Arg Pro	5 10 15 o Ser Asn Asn Thr Arg Arg Gly Ile His Ile Gly C AGC AAC AAT ACC AGA AGA GGT ATA CAT ATA GGA	
10	Pro Gly CCA GG	o Arg Ala G AGA GCA	20 25 30 a Phe Tyr Thr Thr Gly Glu Ile Thr Gly Asp Ile A TTT TAT ACA ACA GGA GAA ATA ACA GGA GAT ATA	
15	-	Ala His GCA CAI	·	
20	(2)	INFORMA	ATION FOR SEQ ID NO: EE310-2 SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single	
25		(ii) (ii)	(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear KIND: cDNA to genomic RNA KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment	
30		(iii) (iv)	(C) HYPOTHETICAL: ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: IMMEDIATE SOURCE: (C) CLONE:	
35		(v) (vi) (viii)	POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigeni determinant SEQUENCE DESCRIPTION:	c
40	SEQ ID 1	NO: EE3	10-2	
45	1 Cys Thr TGT ACA	Arg Pro AGA CCC	5 10 15 Ser Asn Asn Thr Arg Arg Gly Ile His Ile Gly AGC AAC AAT ACA AGA AGA GGT ATA CAT ATA GGA	

50

					20					2.	5				30	
	Pro	Gly	Arg	3 A1	a Phe	Tyr	Thi	Th	r G1	y G1	u II	e Th	r G1	y Ası	Tle	
	CCA	GGG	AGA	GC/	A TT	rat 7	ACA	A AC	A GG	A GA	A AT	A AC	A GG	A GA	ATA 1	٠
5																
					35	:										
	Arg	G1n	A12	Hic	S Cya											
					TG1											
						•										
10																
	(2)		INF	ORMA	TION	FOR	SEQ	ID	NO:	EE31	.0-3					
			(i)		SEQ	UENC	E CH	ARA(TER	STIC	es:					
					(A)			GTH:		_						
15					(B)				Nuc1							
					(C)				DNES		Sing	;le				
			(ii	`	(D)				Υ:							
			(ii	-	KIN	D: cl D (i:	F ne	ro g	enon	ic K	NA Toda					•
			`	•	(A)	<i>D</i> (1)	SEO	UENC	E AS	Pro Semb	T.V N	iji Irtuo	m•	Over	1	
20					(B)		FRA	GMEN	T TY	PE:	Int	erna	1 Fr	agme	nt nt	
					(C)		HYP	OTHE	TICA	L:				- Pinc		
			(ii	i)		GINA										
					(E)				UAL	ISOL	ATE:					
25			(iv)		EDIA			E:							
			()		(C)	T	CLO							_		
			(v) (vi)		PPO	KOITI	EC (GEN	OME:	Wit	hin	Env	Gene			
			(• 1	,	det	ermin	LED (Jr 5	EQUE	NCE:	Ex	pres	ses	cons	erved	antigenic
			(vi	ii)		JENCE		SCRI	PTIO	N •						
30					•											
	SEQ	ID N	0:	EE3	10–3											
35	1				5											
	_	Thr	Aro	Pro		Acn	A c.o.	Th-	۸	10	01		•••		15	
	Cys TGT	ACA	AGA	CCC	AGC	AAC	AAT	ACA	ACA	Lys	GLY	116	His	lle	Gly	
								non	NGA	nnn	GGI	WIW	CAT	AIA	GGA	
40																
40					20					25					30	
	Pro	Gly	Arg	Ala	Phe	Tyr	Thr	Thr	Gly	Glu	Ile	Thr	G1y	Asp	T16	
	CCA	GGG .	AGA	GCA	TTT	TAT .	ACA	ACA	GGA	GAA	ATA	ACA	GGA	GAT	ATA	
45					35											
	Arg (Gln 4	Ala	His												
	AGA (
					-											
50																
50																

	(2))	INE	ORMA	TION	FOR	SEC	OI (NO:	EE31	1-1						
			(i))	SEQ	UENC	E CE	IARAC	TERI	STIC	es:						
					(A)		LEN	IGTH:	10	5							
_					(B)		TYP	E:	Nuc1	eic	Acid	l					
5					(C)		STR	ANDE	DNES	S:	Sing	le.					
					(D)		TOP	OLOG	Y:	Line	ar						
			(ii	.)	KIN	D; c	DNA	to g	enom	ic R	NA						
			(ii	.)	KIN	D (i	f pe	ptid	e or	pro	tein):					
					(A)		SEQ	UENC	E AS	SEMB	LY M	ETHO	D:	0ver	lap		
10					(B)		FRA	GMEN	T TY	PE:	Int	erna	1 Fr	agme	nt		
					(C)		HYP	OTHE	TICA	L:							
			(ii	i)	ORI	GINA	L SO	URCE	: HI	V							
					(E)		IND	IVID	UAL	ISOL	ATE:						
			(iv)	IMM	EDIA	TE S	OURC	E :								
15					(C)		CLO	NE:									
			(v)		POS	ITIO	N IN	GEN	OME:	Wit	hin	Env	Gene				
			(vi)	PRO	PERT	IES	OF S	EQUE	NCE:	Ex	pres	ses	cons	erved	antigen	ic
							nant					_				•	
			(vi	ii)	SEQ	UENC	E DE	SCRI	PTIO	N:							
20					•												
	SEQ	ID	NO:	EE3	11-1												
25																	•
20	1				5					10					15		
	Cys	Thr	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Arg	Ser	Ile	His	Ile	G1y		
	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACC	AGA	AGA	AGT	ATA	CAT	ATA	GGA		
30																	
30					20					25					30		
	Pro	Gly	Arg	Ala	Phe	Tyr	Ala	Thr	G1y	Ala	Ile	Ile	G1y	Asp	Ile		
	CCA	GGG	AGA	GCA	TTT	TAT	GCA	ACA	GGA	GCT	ATA	ATA	GGA	GAT	ATA		
								,									
35																	
00					35												
	_	_	Ala		•												
	AGA	CGA	GCA	TAT	TGT												
40	<i>(</i> - <i>)</i>																
70	(2)			ORMA'	LION												
			(i)			ENC		ARAC			S:						
					(A)		LEN		102								
					(B)		TYPE		Nucle		Acid						
45					(C)			ANDEI		S: S	Singl	le					
70					(D)			DLOG		Lines							
			(ii))	KINI	cI: cI	ONA t	o ge	nomi	ic RN	JA						

50

_		(i	i)	(A) (B)	:	pepti SEQUEN FRAGME	CE AS	SEMB	LY M	ETHO	D: 1 Fr	Over agme	lap nt		
5		(i	ii)	(C) ORIC (E)	GINAL	HYPOTH SOURC INDIVI	E: HI	V	ΔΤΕ•						
		(i·	v)		EDIAT	E SOUR		1001	nie.					·	
10		(v)	POSI	TION	IN GE	NOME:	Wit	hin	Env	Gene	_			
		(v:	i)	PROF		ES OF							erved	antigeni	2
		(v:	iii)			DESCR	IPTIO	N:							
15	SEQ 1	D NO:	EE3	12-1											
	1			_											
		~h	. D	5	A A			_10			_		15		
20	TGT A	Thr Arg	CCC	AAC	ASTI A	AT AC	Arg A AGA	Lys AAA	Ser	ATA	ACT	Ile ATA	Gly GGA		
	Pro G	lu Arg	. 41.	20	T A	1 - 111-		25	T1.	01			30		
25	CCA G	AG AGA	GCA	TTT	TAT G	CA ACA	GAT	ATA	ATA	GGA	AAT	ATA	Arg AGA		
				35			• •								
30	Gln A	la His	Cvs	33											
30		CA CAI	•												
	(2)	INF	'ORMA'	TION :	FOR S	EQ ID	NO: I	TE312	2-2						
35		(i)				CHARAC									
				(A)	L	ENGTH:	99	•							
				(B)			Nucle								
				(D)		TRANDE OPOLOG		_	Singl	.e					
40		(ii)			A to g		inea c RN							
40		(ii)	KIND	(if	peptid	e or	prot	ein)):					
				(A)	S	EQUENC	E ASS	EMBL	Y ME	THOD					
				(B) (C)		RAGMEN			Inte	rnal	Fra	gmen	t		
		(ii	i)	-		YPOTHE SOURCE									
1 5		,	-,	(E)		NDIVID			TE:						
		(iv)	IMMEI		SOURC									
				(C)	_	LONE:									
		(v) (vi		PROBI	CION :	IN GEN	OME:	With	in E	nv G	ene				
io		(V1	,	deter	mina	our S at	EQUEN	CE:	Ехр	ress	es c	onse	rved	antigenic	
		(vi	ii)			DESCRI	PTION	:							

SEQ ID NO: EEE312-2

5	1 Cys Thr TGT ACA	Arg Pro	5 10 15 Asn Asn Asn Thr Arg Lys Ser Ile Thr Ile Gly AAC AAC AAT ACA AGA AAA AGT ATA ACT ATA GGA	
10	Pro Gly CCA GGG	Arg Ala AGA GCA	20 25 30 Phe Tyr Ala Thr Asp Ile Ile Gly Asn Ile Arg TTT TAT GCA ACA GAT ATA ATA GGA AAT ATA AGA	
15	Gln Ala		35	
20	(2)	INFORMAT	TION FOR SEQ ID NO: EE313-1 SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single	
25		(ii) (ii)	(D) TOPOLOGY: Linear KIND: cDNA to genomic RNA KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment	
30		(iii) (iv)	(C) HYPOTHETICAL: ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: IMMEDIATE SOURCE: (C) CLONE:	
35		(v) (vi) (viii)	POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigeni- determinant SEQUENCE DESCRIPTION:	c
40	SEQ ID	NO: EE3	13-1	
	1	. Ama D==	5 10 15 Asn Asn His Thr Glu Lys Arg Ile Thr Leu Gly	
45	TGT ACA	A AGA CCC	AAC AAC CAT ACA GAA AAA CGT ATA ACT CTA GGA	

50

					20					25					30	
	Pro	G1y	Arg	Val	Leu	Tyr	Thr	Thr	G1y	Arg	Ile	I1e	G1y	Asp	Ile	
	CCG	GGG	AGA	GTA	CTT	TAT	ACA	ACA	GGA	AGA	ATA	ATA	GGA	GAT	ATA	
5																
				•	35											
	_	Arg			-											
	AGA	CGA	GCA	CAT	TGT											
10																
	(2)		INF	ORMA'	TION	FOR	SEO	TD I	NO: 1	EE31	7_1					
	(-)		(i)							STIC						
			(-)		(A)			GTH:	10		-					
					(B)		TYP	E: 1	Nucl	eic A	Acid					
15					(c)			ANDE	DNES	S: 1	Sing	le				
					(D)		TOP	OLOG	Y: :	Line	ar					
			(ii)	KIN): cl	DNA	to g	enom	ic R	AN					
			(ii)	KIN) (i				pro						
20					(A)					SEMB:					_	
					(B)					PE:	Int	erna	l Fra	agme	nt	
					(C)			OTHE:		_						
			(ii:	i <i>)</i>		GINA.		URCE								
			/ 1		(E)					ISOL	ATE:					
25			(iv	,	(C)	LDIA.	CLO	DURC	E:							
			(v)			וחזחז			OME .	With	hin l	Fnz (Cone	_		
			(vi											cons	erved	antigenic
			``-	,		ermi		0. 0.	-QU			PI CB.				ac.geze
			(vi:	ii)				SCRI	PTIO	N:						
30			-		•											
	SEQ	ID I	:07	EE3	17–1											
35					_					10						
	1	77YL	A	D	5	A	A	TT1	A	10	0	71 -	PTYL	T1 .	15	
		Thr ACA														
	161	ACA	AGA	CCC	WWI	AAC	WWI	ACA	AGA	AAA	MGI	WIW	ACI	WIW	GGA	
					20					25					30	•
40																
40	Pro	G1v	Arg	Ala		Tyr	Ala	Thr	G1v	G1u	Ile	Ile	G1v	Asp		
40		Gly GGG			Phe										Ile	
40					Phe										Ile	
					Phe										Ile	
4 0 4 5	CCA	GGG	AGA	GCA	Phe TTT										Ile	
	CCA	GGG G1n	AGA Ala	GCA His	Phe TTT 35 Cys										Ile	
	CCA	GGG	AGA Ala	GCA His	Phe TTT 35 Cys										Ile	
	CCA	GGG G1n	AGA Ala	GCA His	Phe TTT 35 Cys										Ile	

90

	(2))	IN	FORM	ATION	FOI	R SE	QID	NO:	EE3	20-1						
			(i)	SEC	QUEN(CE CI	IARA(CTER	ISTI	cs:						
					(A))	LE	VGTH:	: 10)5							
5					(B))	TY	PE:	Nucl	leic	Acid	i					
					(C))	STI	RANDI	EDNES	SS:	Sing	(le					
					(D))		OLO		Line	-						
			(i:	i)	KIN	D: c	DNA	to s	genon	nic F	RNA						
			(ii	()					ie or			ı):					
10					(A)								D:	0ver	·lan		
•					(B)				IT TY					agme			
					(c)				TICA								
			(ii	i)					: HJ			-					
			•	•	(E)				UAL		ATE:						
15			(iv	-)				OURC									
			• •	•	(C)			NE:									
			(v)	١					OME:	Wit	hin	Env	Cene	_			
			(vi												amrad	antige	
			,		det	ermi	nant	0. 0	LQUL			PICS	565	COMB	erveu	ancige	HIC
20			(vi	ii)					PTIO	N •							
			• -	,				01(1	0	•••							
	SEQ	ID	NO:	EE3	20-1												
25																	
	1				5					10					15		
	Сув	Thr	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Lys	Ser	Ile	His	Ile	Gly		
	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGA	AAA	AGT	ATA	CAT	ATA	GGA		
30																	
	_				20					25					30		
	Pro	Gly	Arg	Ala	Phe	Tyr	Ala	Thr	G1y	Glu	Ile	Ile	G1y	Asp	Ile		
	CCA	GGG	AGA	GCA	TTT	TAT	GCA	ACA	GGA	GAA	ATA	ATA	GGA	GAT	ATA		
35																	
					35												
			Ala				•										
	AGA	CAA	GCA	CAT	TGC												
40																	
40	٥.																
	2))RMA	CION	FOR	SEQ	ID N	10: I	EE320)-2						
			(i)			ENCE			CERIS		5:			,			
					(A)				105								
					(B)				lucle								
45					(C)				DNESS			.e					
					(D)				: I								
			(ii))	KIND	: cI	NA t	o ge	nomi	c RN	IA						

50

(iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (Iv) IMMEDIATE SOURCE: (C) CLONE: (C) CLONE: (V) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant (viii) SEQUENCE DESCRIPTION: SEQ ID NO: EE320-2 1 5 10 15 Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GCA 20 25 30 Pro Gly Arg Ala Phe Tyr Thr Thr Gly Glu Ile Ile Gly Asp Ile CCA GGC AGA GCA TTT TAT ACA ACA GGA GAA ATA ATA GGA GAT ATA 35 Arg Gln Ala His Cys AGA CAA GCA GAA GCA CAT TGT (2) INFORMATION FOR SEQ ID NO: EE322-1 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 99 (B) TYFE: Nucleic Acid (C) STRANDENNESS: Single (D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (iii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRACMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (IV) IMMEDIATE SOURCE: (V) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant			(ii)	KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL:
(C) CLONE: (v) POSITION IN GENOME: Within Env Gene (vi) PROFERTIES OF SEQUENCE: Expresses conserved antigen determinant (viii) SEQUENCE DESCRIPTION: SEQ ID NO: EE320-2 1 5 10 15 Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA 20 25 30 Pro Gly Arg Ala Phe Tyr Thr Thr Gly Glu Ile Ile Gly Asp Ile CCA GGC AGA GCA TTT TAT ACA ACA GGA GAA ATA ATA GGA GAT ATA 35 Arg Gln Ala His Cys AGA CAA GCA CAT TGT (2) INFORMATION FOR SEQ ID NO: EE322-1 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 99 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (iii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRACMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (II) ORIGINAL SOURCE: (III) ORIGINAL SOURCE: (IV) POSITION IN GENOME: Within Env Gene (vi) PROFERTIES OF SEQUENCE: Expresses conserved antigen determinant	5		(iii)	ORIGINAL SOURCE: HIV
(vi) PROFERTIES OF SEQUENCE: Expresses conserved antiger determinant (viii) SEQUENCE DESCRIPTION: SEQ ID NO: EE320-2 1 5 10 15 Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA 20 25 30 Pro Gly Arg Ala Phe Tyr Thr Thr Gly Glu Ile Ile Gly Asp Ile CCA GGC AGA GCA TTT TAT ACA ACA GGA GAA ATA ATA GGA GAT ATA 35 Arg Gln Ala His Cys AGA CAA GCA CAT TGT (2) INFORMATION FOR SEQ ID NO: EE322-1 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 99 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRACMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (iv) IMMEDIATE SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (V) POSITION IN GENOME: Within Env Gene determinant				(C) CLONE:
(viii) SEQUENCE DESCRIPTION: SEQ ID NO: EE320-2 1	10			PROPERTIES OF SEQUENCE: Expresses conserved antigenic
SEQ ID NO: EE320-2 1			(viii)	
Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA 20 25 30 Pro Gly Arg Ala Phe Tyr Thr Thr Gly Glu Ile Ile Gly Asp Ile CCA GGC AGA GCA TTT TAT ACA ACA GGA GAA ATA ATA GGA GAT ATA 35 Arg Gln Ala His Cys AGA CAA GCA CAT TGT (2) INFORMATION FOR SEQ ID NO: EE322-1 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 99 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (V) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant	15	SEQ ID	NO: EE	320–2
20 25 30 Pro Gly Arg Ala Phe Tyr Thr Thr Gly Glu Ile Ile Gly Asp Ile CCA GGC AGA GCA TTT TAT ACA ACA GGA GAA ATA ATA GGA GAT ATA 35 Arg Gln Ala His Cys AGA CAA GCA CAT TGT (2) INFORMATION FOR SEQ ID NO: EE322-1 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 99 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (v) POSITION IN GENOME: Within Env Gene (vi) PROFPERTIES OF SEQUENCE: Expresses conserved antigen determinant		1		5 10 15
20 25 30 Pro Gly Arg Ala Phe Tyr Thr Thr Gly Glu Ile Ile Gly Asp Ile CCA GGC AGA GCA TTT TAT ACA ACA GGA GAA ATA ATA GGA GAT ATA 35 Arg Gln Ala His Cys AGA CAA GCA CAT TGT (2) INFORMATION FOR SEQ ID NO: EE322-1 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 99 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (v) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant	20			
Pro Gly Arg Ala Phe Tyr Thr Thr Gly Glu Ile Ile Gly Asp Ile CCA GGC AGA GCA TTT TAT ACA ACA GGA GAA ATA ATA GGA GAT ATA 35 Arg Gln Ala His Cys AGA CAA GCA CAT TGT (2) INFORMATION FOR SEQ ID NO: EE322-1 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 99 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (V) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant	•	101 1101		THE THE REAL PROPERTY AND THE COLUMN THE COL
CCA GGC AGA GCA TTT TAT ACA ACA GGA GAA ATA ATA GGA GAT ATA 35 Arg Gln Ala His Cys AGA CAA GCA CAT TGT (2) INFORMATION FOR SEQ ID NO: EE322-1 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 99 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (v) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant				20 25 30
Arg Gln Ala His Cys AGA CAA GCA CAT TGT (2) INFORMATION FOR SEQ ID NO: EE322-1 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 99 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (V) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant	25			
Arg Gln Ala His Cys AGA CAA GCA CAT TGT (2) INFORMATION FOR SEQ ID NO: EE322-1 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 99 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (D) TOPOLOGY: Linear (II) KIND: cDNA to genomic RNA (II) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (III) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (IV) IMMEDIATE SOURCE: (V) POSITION IN GENOME: Within Env Gene (VI) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant		CCA GGC	AGA GUA	TIT INT ACA ACA GGA GAA ATA ATA GGA GAT ATA
(2) INFORMATION FOR SEQ ID NO: EE322-1 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 99 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (V) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant				35
(2) INFORMATION FOR SEQ ID NO: EE322-1 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 99 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (C) HYPOTHETICAL: (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: HIV (E) INDIVIDUAL ISOLATE: (v) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant	30	_		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 99 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (v) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant		AGA CAA	GCA CAI	. 161
(A) LENGTH: 99 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (v) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant		(2)		
(B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (V) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant	35		(1)	
(D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (v) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant				(B) TYPE: Nucleic Acid
(ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (V) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant				
(ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (v) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant		-	(ii)	
(A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (v) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant	10			
(C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (v) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant				(A) SEQUENCE ASSEMBLY METHOD: Overlap
(iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (v) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant				· · · · · · · · · · · · · · · · · · ·
(E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (v) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant			(iii)	
(iv) IMMEDIATE SOURCE: (C) CLONE: (v) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant	15		(/	
(v) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant			(iv)	IMMEDIATE SOURCE:
(vi) PROPERTIES OF SEQUENCE: Expresses conserved antigen determinant			()	
determinant				
	50		(**)	determinant
/ + + + + > ODGOTTAOD DEGOL/TETTOM #			(viii)	

SEQ ID NO: EE322-1 5 1 5 10 Thr Arg Pro Gly Asn Asn Thr Arg Lys Gly Ile His Ile Gly Pro ACA AGA CCC GGC AAC AAT ACA AGA AAA GGT ATA CAT ATA GGA CCA 10 20 25 30 Gly Arg Ala Ile Tyr Ala Thr Asp Ile Ile Gly Asp Ile Arg Gln GGG AGA GCA ATT TAT GCA ACA GAT ATA ATA GGA GAT ATA AGA CAA 15 35 Ala His Cys GCA CAT TGT 20 (2) INFORMATION FOR SEQ ID NO: EE322-2 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 TYPE: Nucleic Acid (B) (C) STRANDEDNESS: Single 25 (D) TOPOLOGY: Linear KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (ii) (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment 30 (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: 35 (v) POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic (vi) determinant SEQUENCE DESCRIPTION: (viii) 40 SEQ ID NO: EE322-2 1 5 10

50

45

55

Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile Pro Ile Gly TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CCT ATA GGA.

					20					25					30		
	Pro	G1y	Arg	A1a	Phe	Tyr	Thr	Thr	G1y	G1u	Ile	Ile	G1y	Asp	Ile		
	CCA	GGG	AGA	GCA	TTT	TAT	ACA	ACA	GGA	GAA	ATA	ATA	GGA	GAT	ATA		
5																	
					35												
			Ala														
	AGA	CAA	GCA	CAT	TGT												
10																	
	(2)		INF	ORMA'	TION	FOR	SEO	TD '	NO:	EE32	2-3						
	(-/		(i)							STIC							
					(A)			GTH:	10		_						
15					(B)		TYP	E: 1	Nuc1	eic A	Acid						
					(C)		STR	ANDE	DNES	S:	Sing	le					
					(D)			OLOG		Line							
			(ii							ic R							
			(ii)) (i:				pro							
20					(A) (B)		-							Over1	_		
					(C)			OTHE'		PE:	Inc	erna.	L Fra	agmer	1 L		
			(ii:	i)		TNA		URCE		-							
			\	-,	(E)					ISOL	ATE:						
25			(iv)	IMMI	DIA:		OURC									
25					(C)		CLO	NE:						_			
													_				
			(v)							With							
			(v) (vi		PROI	ERT	ES (conse	rved	anti	genic
			(vi)	PROI dete	ERT:	IES (nant	OF S	EQUE	NCE:				conse	rved	anti	genic
30)	PROI dete	ERT:	IES (nant		EQUE	NCE:				conse	erved	anti	genic
30			(vi)	PROI dete	ERT:	IES (nant	OF S	EQUE	NCE:				conse	erved	anti	genic
30	SEQ	ID 1	(vi (vi) ii)	PROI dete SEQU	ERT:	IES (nant	OF S	EQUE	NCE:				conse	erved	anti	genic
30	SEQ	ID 1	(vi) ii)	PROI dete SEQU	ERT:	IES (nant	OF S	EQUE	NCE:				conse	erved	anti	genic
	SEQ	ID 1	(vi (vi) ii)	PROI dete SEQU	ERT:	IES (nant	OF S	EQUE	NCE:				conse	erved	anti	genic
30 35	1	÷	(vi (vi:) ii) EE32	PROP dete SEQU	PERTI Ermin JENCI	IES (nant E DE:	OF S	EQUEI PT101	NCE: N: 10	Ex	presi	es (15	anti	genic
	1 Cys	Thr	(vi (vi: NO:) ii) EE32 Pro	PROD dete SEQU 22-3	PERT:	IES (nant E DE:	OF SI	EQUE PTIO	NCE: N: 10 Lys	Ex	pres:	es (Ile	15 G1v	anti	genic
	1 Cys	Thr	(vi (vi: NO:) ii) EE32 Pro	PROD dete SEQU 22-3	PERT:	IES (nant E DE:	OF SI	EQUE PTIO	NCE: N: 10 Lys	Ex	pres:	es (15 G1v	anti	genic
	1 Cys	Thr	(vi (vi: NO:) ii) EE32 Pro	PROD dete SEQU 22-3	PERT:	IES (nant E DE:	OF SI	EQUE PTIO	NCE: N: 10 Lys	Ex	pres:	es (Ile	15 G1v	anti	genic
	1 Cys	Thr	(vi (vi: NO:) ii) EE32 Pro	PROI dete SEQU 22-3 5 Asn AAT	PERT:	IES (nant E DE:	OF SI	EQUE PTIO	NCE: N: 10 Lys AAA	Ex	pres:	es (Ile	15 Gly GGA	anti	genic
35	1 Cys TGT	Thr ACA	(vi (vi: NO: Arg AGA) EE32 Pro CCC	PROI dete SEQU 22-3 5 Asn AAT	PERTI PERTI PENCI ASD ASD	ES (nant E DE: Asn AAT	Thr ACA	EQUE PTIO Arg AGA	NCE: N: 10 Lys AAA	Ex; Ser AGT	Ile ATA	Thr ACT	Ile ATA	15 G1y GGA	anti	genic
35	1 Cys TGT	Thr ACA	(vi (vi: NO: Arg AGA) ii) EE32 Pro CCC	PROI dete SEQU 22-3 5 Asn AAT 20 Phe	PERTIPERMINATE OF THE PERTIPERMENT OF THE PERT	Asn AAT	Thr ACA	Arg AGA	NCE: N: 10 Lys AAA 25 Glu	Ser AGT	Ile ATA	Thr ACT	Ile ATA	15 Gly GGA 30 Ile	anti	genic
35	1 Cys TGT	Thr ACA	(vi (vi: NO: Arg AGA) ii) EE32 Pro CCC	PROI dete SEQU 22-3 5 Asn AAT 20 Phe	PERTIPERMINATE OF THE PERTIPERMENT OF THE PERT	Asn AAT	Thr ACA	Arg AGA	NCE: N: 10 Lys AAA 25 Glu	Ser AGT	Ile ATA	Thr ACT	Ile ATA	15 Gly GGA 30 Ile	anti	genic
35	1 Cys TGT	Thr ACA	(vi (vi: NO: Arg AGA) ii) EE32 Pro CCC	PROI dete SEQU 22-3 5 Asn AAT 20 Phe	PERTIPERMINATE OF THE PERTIPERMENT OF THE PERT	Asn AAT	Thr ACA	Arg AGA	NCE: N: 10 Lys AAA 25 Glu	Ser AGT	Ile ATA	Thr ACT	Ile ATA	15 Gly GGA 30 Ile	anti	genic
35	1 Cys TGT Pro	Thr ACA Gly GGG	(vi (vi: NO: Arg AGA	Pro CCC	PRODUCT SEQUENTS SEQU	PERTIPERMINATE OF THE PERTIPERMENT OF THE PERT	Asn AAT	Thr ACA	Arg AGA	NCE: N: 10 Lys AAA 25 Glu	Ser AGT	Ile ATA	Thr ACT	Ile ATA	15 Gly GGA 30 Ile	anti	genic
35	1 Cys TGT Pro CCA	Thr ACA Gly GGG	(vi (vi: NO: Arg AGA Arg AGA	Pro CCC	PRODUCT SEQUENTS SEQU	PERTIPERMINATE OF THE PERTIPERMENT OF THE PERT	Asn AAT	Thr ACA	Arg AGA	NCE: N: 10 Lys AAA 25 Glu	Ser AGT	Ile ATA	Thr ACT	Ile ATA	15 Gly GGA 30 Ile	anti	genic
35	1 Cys TGT Pro CCA	Thr ACA Gly GGG	(vi (vi: NO: Arg AGA	Pro CCC	PRODUCT SEQUENTS SEQU	PERTIPERMINATE OF THE PERTIPERMENT OF THE PERT	Asn AAT	Thr ACA	Arg AGA	NCE: N: 10 Lys AAA 25 Glu	Ser AGT	Ile ATA	Thr ACT	Ile ATA	15 Gly GGA 30 Ile	anti	genic
35	1 Cys TGT Pro CCA	Thr ACA Gly GGG	(vi (vi: NO: Arg AGA Arg AGA	Pro CCC	PRODUCT SEQUENTS SEQU	PERTIPERMINATE OF THE PERTIPERMENT OF THE PERT	Asn AAT	Thr ACA	Arg AGA	NCE: N: 10 Lys AAA 25 Glu	Ser AGT	Ile ATA	Thr ACT	Ile ATA	15 Gly GGA 30 Ile	anti	genic

	(2))	INI	FORM	MOITA	I FOI	R SEC	QID	NO:	EE3	24-1						
			(i))	SEC	UEN(CE CE	IARA(CTERI	STI	cs:						
					(A))	LEN	NGTH:	: 10	5							
5					(B))	TY	E:	Nuc1	eic	Acid	i					
Ÿ					(C))	STE	RANDE	EDNES	s:	Sing	;le					
					(D))	TOF	OLOG	SY:	Line	ear						
			(ii	i)	KIN	D: c	DNA	to g	genom	ic F	AMS						
			(ii	1)	KIN	D (i	f pe	ptid	le or	pro	tein	·):					
10	•				(A)		SEC	UENC	E AS	SEMI	BLY M	ETHO	D:	0ver	lap		
10					(B)		FRA	GMEN	IT TY	PE:	Int	erna	1 Fr	agme	nt		
					(C)		HYP	OTHE	TICA	L:							
			(ii	.i)	ORI	GINA	L SO	URCE	: HI	V							
					(E)		IND	IVID	UAL	ISOL	ATE:						
15			(iv	·)	IMM	EDIA	TE S	OURC	E:								
					(C)		CLO							_			
			(v)						OME:								
			(vi	.)	PRO	PERT	IES	OF S	EQUE	NCE:	Ex	pres	ses	cons	erved	antigen	ic
					det	ermi	nant										
20			(vi	ii)	SEQ	UENC	E DE	SCRI	PTIO	N:							
	GE0	T.D.	110														
	SEQ	מנ	NO:	EE3	24-1												
25	1				5					10					• •		
		The	۸	D	-	۸	۸	17°L	*1.	10		T1	** *		15		
	тст	YCV	VCV	CCC	Asn AAC	VAC	ASII	THE	116	Lys	Ser	116	HIS	MET	GIY		
	101	non	NOA	CCC	AAC	AAC	WYI	ACA	AIA	MMM	MGI	AIA	CAI	AIG	GGA		
30					20					25					30		
	Leu	G1 v	Arg	Thr	Phe	Tvr	Thr	Thr	G1 v		Va 1	Tle	G1 v	Acn			
	CTA	GGG	AGG	ACA	TTT	TAT	ACA	ACA	GGA	GAA	GTA	ATA	CCA	CAT	ΔΤΔ		
								11011	0011	OI II I	OIN	nin	GGA	GAI	VIV		
35					35								•				
	Arg	Gln	Ala	His	Cvs												
	-		GCA		•												
40																	
40	(2)		INF	ORMA'	TION	FOR	SEQ	ID 1	10: E	E324	4-2						
			(i)						TER IS					•			
					(A)		LEN		105								
					(B)		TYPE	E: 1	Nucle	ic A	Acid						
45					(C)		STRA		ONESS		Singl	l e					
-0					(D)		TOPO	DLOG	: I	ine	_						
			(ii))	KINI): cI	DNA t	o ge	enomi	c Ri	AV						

50

5			(ii (iv	i)	(A) (B) (C) ORIC (E) IMMI	GINA:	SEQ FRA HYP L SO IND IND IE S	UENCE GMENE OTHE URCE IVIDI OURCE	T TY TICA: HIV UAL	SEMBI PE: L:	Int	ETHO!		Over:		·
10			(v) (vi)	PROI det	TTION PERT: ermin	IES (nant	GENO OF S		VCE:					erved	antigenic
			(vi	ii)	SEQ	JENC	E DE	SCRI	PTIO	1:						
15	SEQ	ID I	NO:	EE3	24–2											
	1				5					10					15	
00		Thr	Arg	Pro	-	Asn	Asn	Thr	Are		Ser	T1e	His	Leu		
20														CTA		
					20					25					30	
25	Pro	G1y	Arg	Ala		Tyr	Thr	Thr	Gly		Ile	Ile	G1y	Asp		
20														GAT		•
30	-	Gln CAA			•											
	(2)		INE	DMAT	rion	FOD	SEO	TD 1	۱ ۵۰ ۰ ا	. ני כי בו	7 1					
	(2)		(i)	Mun.					rer i							
35			,_,		(A)		LEN		10							,
					(B)		TYP		Nucle							
					(C)				ONES	_	Sing.	le				
			(ii))	(D)): cī		DLOGY	enomi	Linea C RN						
40			(ii						or) :				
					(A)									Over		
					(B)				TY		Inte	ernal	l Fra	agmer	nt	
			(iii	i.)		INAI			ICAI III:	_						
45			`	-,	(E)				JAL		ATE:					
			(iv))		EDIAT	E S	OURCI								
			()		(C)	· •• • • • • • • • • • • • • • • • • •	CLO		ME -	112				-		
			(v) (vi)										Gene			antigenic
50			(* 1	•	dete	rmir	ant	וט זי	יתינו	· · ·	EX.	hr egi	- C & (CONS	er AGG	ancidenic
			(vii	li)				SCRII	OITS	1 :						

SEQ ID NO: EE327-1

1 5 10 Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Gly Ile His Ile Gly TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA GGT ATA CAT ATA GGA 20 25 30 Pro Gly Arg Ala Phe Tyr Ala Thr Gly Asp Ile Ile Gly Asp Ile CCA GGG AGA GCA TTT TAT GCA ACA GGA GAC ATA ATA GGA GAT ATA 15 Arg Gln Ala His Cys AGA CAA GCA CAT TGT (2) INFORMATION FOR SEQ ID NO: EE327-2 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 25 (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap FRAGMENT TYPE: Internal Fragment (B) (C) HYPOTHETICAL: 30 (iii) ORIGINAL SOURCE: HIV INDIVIDUAL ISOLATE: _ (iv) IMMEDIATE SOURCE: (C) CLONE: (v) POSITION IN GENOME: Within Env Gene 35 PROPERTIES OF SEQUENCE: Expresses conserved antigenic (vi) determinant (viii) SEQUENCE DESCRIPTION: 40 SEQ ID NO: EE327-2 5 10 Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Gly Ile His Ile Gly 45 TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA GGT ATA CAT ATA GGA

55

			20 25 30	
	Pro Gly	y Arg Ala	a Phe Tyr Ala Thr Gly Asp Ile Ile Gly Asp Ile	
	CCA GG	G AGA GCA	A TTT TAT GCA ACA GGA GAC ATA ATA GGA GAT ATA	
5				
			35	
	Arg Glr	n Ala His		
		GCA CAT		
10				
	(2)	THEODIA	ATTON TOP OTO TO TO TO	
	(2)	informa (i)	ATION FOR SEQ ID NO: EE327-3 SEQUENCE CHARACTERISTICS:	
		(1)	(A) LENGTH: 105	
15			(B) TYPE: Nucleic Acid	
15			(C) STRANDEDNESS: Single	
			(D) TOPOLOGY: Linear	
		(ii)	KIND: cDNA to genomic RNA	
		(ii)	KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap	
20			(B) FRAGMENT TYPE: Internal Fragment	
			(C) HYPOTHETICAL:	
		(iii)	ORIGINAL SOURCE: HIV	
		(:)	(E) INDIVIDUAL ISOLATE:	
25		(iv)	IMMEDIATE SOURCE: (C) CLONE:	
		(v)	POSITION IN GENOME: Within Env Gene	
		(vi)	PROPERTIES OF SEQUENCE: Expresses conserved antigen	ic
			determinant	
30		(viii)	SEQUENCE DESCRIPTION:	
•				
	SEO ID	NO: EE3	327–3	
35			· · · · · · · · · · · · · · · · · · ·	
	1 Cvc Thr	A D	5 10 15	
	TGT ACA	AGA CCC	Asn Asn Asn Thr Arg Lys Gly Ile His Ile Gly AAC AAC AAT ACA AGA AAA GGT ATA CAT ATA GGA	
			MINO AND ANT NOW HON HAN GGI ATA CAT ATA GGA	
40				
+0			20 25 30	
	Pro Gly	Arg Ala	Phe Tyr Ala Thr Gly Asp Ile Ile Gly Asp Ile	
	CCA GGG	AGA GCA	TTT TAT GCA ACA GGA GAC ATA ATA GGA GAT ATA	
4 5			35	
		Ala His	Cys	
	AGA CAA	GCA CAT	TGT	
50				

	(2)	INFORMA	ATION FOR SEQ ID NO: EE345-1	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 105	
5			(B) TYPE: Nucleic Acid	
J			(C) STRANDEDNESS: Single	
			(D) TOPOLOGY: Linear	
	,	(ii)	KIND: cDNA to genomic RNA	
		(ii)	KIND (if peptide or protein):	
10			(A) SEQUENCE ASSEMBLY METHOD: Overlap	
10			(B) FRAGMENT TYPE: Internal Fragment	
			(C) HYPOTHETICAL:	
		(iii)	ORIGINAL SOURCE: HIV	
			(E) INDIVIDUAL ISOLATE:	
15		(iv)	IMMEDIATE SOURCE:	
13			(C) CLONE:	
		(v)	POSITION IN GENOME: Within Env Gene	
		(vi)	PROPERTIES OF SEQUENCE: Expresses conserved antigenic	
			determinant	
20		(viii)	SEQUENCE DESCRIPTION:	
	SEQ ID	NO: EE3	45–1	
25				
	1		5 10 15	
	Cys Thr	Arg Pro	Ser Asn Asn Thr Arg Lys Gly Ile His Ile Gly	
	TGT ACA	AGA CCC	AGC AAT AAT ACA AGA AAA GGT ATA CAT ATA GGG	
30			••	
	D 01		20 25 30	
	Pro Gly	Arg Ala	Phe Tyr Ala Thr Gly Glu Ile Thr Gly Asp Ile	
	CCA GGG	AGA GCA	TTT TAT GCA ACG GGA GAG ATA ACA GGA GAT ATA	
35			35	
	Ara Gla	Ala His		
	_	GCA CAT		
	11011 0111	OUN CHI	101	
10	(2)	INFORMAT	TION FOR SEQ ID NO: EE345-2	
		(i)	SEQUENCE CHARACTERISTICS:	
		\-,	(A) LENGTH: 105	
			(B) TYPE: Nucleic Acid	
		•	(C) STRANDEDNESS: Single	
15			(D) TOPOLOGY: Linear	
		(ii)	KIND: cDNA to genomic RNA	
		-	B	

50

			(ii	.)	KIN (A) (B)	1	SEC	UENC	le or E AS	SEMB	LY M	ETHO		Over			
5					(c)				TICA		111 C	erma	I FI	agme	in L		
			(ii	i)		GINA	L SO	URCE	: HI	V	ATE:						
			(iv)		EDIA		OURC							 		
10			(v)						OME:								
			(vi)	PRO	PERT	IES	OF S	EQUE	NCE:	Ex	pres	ses	cons	erved	antigen:	ic
			(vi	ii)		ermi UENC			PTIO	N:							
15	SEQ	ID	NO:	EE3	45-2												
	1				5					10							
20		Thr	Arø	Pro	Ser	Aen	Acn	Th∽	A = ~	10	C1	T1.	m: _	71.	15		
20	TGT	ACA	AGA	CCC	AGC	AAT	AAT	ACA	AGA	AAA	GCT	ATA	CAT	ATA 116	GIA		
											001	nin	Oni	NIN	GGG		
					20					25					30		
25	Pro	G1y	Arg	Ala	Phe	Phe	Thr	Thr	Gly	Glu	Ile	Thr	G1y	Asp	Ile		
	CCA	GGG	AGA	GCA	TTT	TTT	ACA	ACA	GGA	GAA	ATA	ACA	GGA	GAT	ATA		
					35												
30			Ala												•		
	AGA	CAA	GCA	CAT	TGT												
	(2)		INFO	RMA!	TION	FOR	SEQ	ID N	10: E	EE345	5–3						
35			(i)		SEQU	ENCE	CHA	ARAC'	TERIS	TICS	5:						
					(A)		LENC		105								
					(B)				luc1e								
					(D)			DLOGY	NESS	: S inea	ingl	.e					
			(ii)	ı): cI			nomi								
ю			(ii)						or			:			•		
					(A)		SEQU	ENCE	ASS	EMBL	Y ME	THOD): C	ver1	ap		
					(B)		FRAG	MENT	TYP	E:	Inte	rna1	Fra	gmen	t		
					(C)				ICAL								
5			(iii) -	ORIG												
			(iv)		IMME	DTAT	E SU	VIDOE	AL I	SOLA	TE:						
			\ - • /		(C)		CLON		•								
			(v)		POSI	TION	IN	GENO	ME:	With	in E	nv G	ene	•			
0			(vi)		PROP	ERTI	ES O	F SE	QUEN	CE:	Exp	ress	es c	onse	rved	antigeni	c
-			,		uete	rmin	ant				•	_	_				-
			(vii	1)	SEQU	ENCE	DES	CRIP	TION	:							

SEQ ID NO: EE345-3

	1		5		10	15	
5		or Ara Pro		en Thr Ara		His Ile Gly	
						A CAT ATA GGG	
	IGI A	A AGA CCC	, AGC AAI A	AI ACA AGA	AAA AGI AIA	A CAI AIA GGG	
			20			20	
10	D	- A A 1	20	1 70 61	25	30	
						Gly Asp Ile	
	CCA GG	G AGA GCA	III IAI G	JA AUG GGA	GAG ATA ACA	GGA GAT ATA	
			25				
15			35				
		n Ala His					
	AGA CA	A GCA CAI	TGT				
	4-5						
	(2)		TION FOR SE				
20		(i)		CHARACTERI	STICS:		
				ENGTH: 10			
				TPE: Nucle			
				TRANDEDNES:	S: Single		
			(D) TO	POLOGY: 1	Linear		
25		(ii)	KIND: cDNA	to genom	ic RNA		
		(ii)	KIND (if p	eptide or			
				QUENCE ASS	SEMBLY METHO	D: Overlap	
		. ,	(A) SE	QUENCE ASS AGMENT TY	SEMBLY METHO PE: Interna	D: Overlap 1 Fragment	
		,,	(A) SE (B) FR	EQUENCE ASS AGMENT TYPE POTHETICAL	E: Interna	D: Overlap 1 Fragment	
30		(iii)	(A) SE (B) FR	AGMENT TYI POTHETICAI	E: Interna	D: Overlap 1 Fragment	
30			(A) SE (B) FF (C) HY ORIGINAL S	AGMENT TYI POTHETICAI	PE: Interna	D: Overlap 1 Fragment	
30			(A) SE (B) FF (C) HY ORIGINAL S	AGMENT TYPE POTHETICAL SOURCE: HIVE DIVIDUAL 1	PE: Interna	D: Overlap 1 Fragment	
30		(iii)	(A) SE (B) FF (C) HY ORIGINAL S (E) IN IMMEDIATE	AGMENT TYPE POTHETICAL SOURCE: HIVE DIVIDUAL 1	PE: Interna	D: Overlap 1 Fragment	·
30		(iii)	(A) SE (B) FF (C) HY ORIGINAL S (E) IN IMMEDIATE (C) CL	AGMENT TYPE POTHETICAL SOURCE: HIV DIVIDUAL D SOURCE:	PE: Interna	1 Fragment	·
<i>30</i>		(iii) (iv)	(A) SE (B) FR (C) HY ORIGINAL S (E) IN IMMEDIATE (C) CL POSITION I	AGMENT TYPE POTHETICAL SOURCE: HIVE DIVIDUAL D SOURCE: ONE: N GENOME:	PE: Interna .: .: .: .: .: .: .: .: .: .: .: .: .:	1 Fragment	antigenic
		(iii) (iv) (v)	(A) SE (B) FR (C) HY ORIGINAL S (E) IN IMMEDIATE (C) CL POSITION I PROPERTIES	AGMENT TYPE POTHETICAL SOURCE: HIVE SOURCE: ONE: N GENOME:	PE: Interna .: .: .: .: .: .: .: .: .: .: .: .: .:	1 Fragment	antigenic
		(iii) (iv) (v) (vi)	(A) SE (B) FR (C) HY ORIGINAL S (E) IN IMMEDIATE (C) CL POSITION I PROPERTIES determinan	AGMENT TYPE POTHETICAL SOURCE: HIV DIVIDUAL I SOURCE: ONE: IN GENOME: OF SEQUEN	PE: Interna S: SOLATE: Within Env	1 Fragment	antigenic
		(iii) (iv) (v)	(A) SE (B) FR (C) HY ORIGINAL S (E) IN IMMEDIATE (C) CL POSITION I PROPERTIES	AGMENT TYPE POTHETICAL SOURCE: HIV DIVIDUAL I SOURCE: ONE: IN GENOME: OF SEQUEN	PE: Interna S: SOLATE: Within Env	1 Fragment	antigenic
		(iii) (iv) (v) (vi)	(A) SE (B) FR (C) HY ORIGINAL S (E) IN IMMEDIATE (C) CL POSITION I PROPERTIES determinan	AGMENT TYPE POTHETICAL SOURCE: HIV DIVIDUAL I SOURCE: ONE: IN GENOME: OF SEQUEN	PE: Interna S: SOLATE: Within Env	1 Fragment	antigenic
	SEO ID	(iii) (iv) (v) (vi) (viii)	(A) SE (B) FR (C) HY ORIGINAL S (E) IN IMMEDIATE (C) CI POSITION I PROPERTIES determinan SEQUENCE D	AGMENT TYPE POTHETICAL SOURCE: HIV DIVIDUAL I SOURCE: ONE: IN GENOME: OF SEQUEN	PE: Interna S: SOLATE: Within Env	1 Fragment	antigenic
35	SEQ ID	(iii) (iv) (v) (vi)	(A) SE (B) FR (C) HY ORIGINAL S (E) IN IMMEDIATE (C) CI POSITION I PROPERTIES determinan SEQUENCE D	AGMENT TYPE POTHETICAL SOURCE: HIV DIVIDUAL I SOURCE: ONE: IN GENOME: OF SEQUEN	PE: Interna S: SOLATE: Within Env	1 Fragment	antigenic
35	SEQ ID	(iii) (iv) (v) (vi) (viii)	(A) SE (B) FR (C) HY ORIGINAL S (E) IN IMMEDIATE (C) CI POSITION I PROPERTIES determinan SEQUENCE D	AGMENT TYPE POTHETICAL SOURCE: HIV DIVIDUAL I SOURCE: ONE: IN GENOME: OF SEQUEN	PE: Interna S: SOLATE: Within Env	1 Fragment	antigenic
35	SEQ ID	(iii) (iv) (v) (vi) (viii)	(A) SE (B) FR (C) HY ORIGINAL S (E) IN IMMEDIATE (C) CI POSITION I PROPERTIES determinan SEQUENCE D	AGMENT TYPE POTHETICAL SOURCE: HIV DIVIDUAL I SOURCE: ONE: IN GENOME: OF SEQUEN	PE: Interna	1 Fragment Gene ses conserved	antigenic
35	1	(iii) (iv) (v) (vi) (viii) NO: EE3	(A) SE (B) FR (C) HY ORIGINAL S (E) IN IMMEDIATE (C) CI POSITION I PROPERTIES determinan SEQUENCE D	AGMENT TYPE POTHETICAL SOURCE: HIVE SOURCE: ONE: IN GENOME: OF SEQUENT OESCRIPTION	PE: Interna :: SOLATE: Within Env ICE: Expres	1 Fragment Gene ses conserved	antigenic
35	1 Cys Ile	(iii) (iv) (v) (vi) (viii) NO: EE3	(A) SE (B) FR (C) HY ORIGINAL S (E) IN IMMEDIATE (C) CI POSITION I PROPERTIES determinan SEQUENCE D	AGMENT TYPE POTHETICAL SOURCE: HIVE DIVIDUAL DESOURCE: ONE: IN GENOME: OF SEQUENT OF SEQUENTED	PE: Interna ::	1 Fragment Gene ses conserved 15 Thr Ile Gly	antigenic
35	1 Cys Ile	(iii) (iv) (v) (vi) (viii) NO: EE3	(A) SE (B) FR (C) HY ORIGINAL S (E) IN IMMEDIATE (C) CI POSITION I PROPERTIES determinan SEQUENCE D	AGMENT TYPE POTHETICAL SOURCE: HIVE DIVIDUAL DESOURCE: ONE: IN GENOME: OF SEQUENT OF SEQUENTED	PE: Interna ::	1 Fragment Gene ses conserved	antigenic
35	1 Cys Ile	(iii) (iv) (v) (vi) (viii) NO: EE3	(A) SE (B) FR (C) HY ORIGINAL S (E) IN IMMEDIATE (C) CI POSITION I PROPERTIES determinan SEQUENCE D	AGMENT TYPE POTHETICAL SOURCE: HIVE DIVIDUAL DESOURCE: ONE: IN GENOME: OF SEQUENT OF SEQUENTED	PE: Interna ::	1 Fragment Gene ses conserved 15 Thr Ile Gly	antigenic

55

	_				20					25					30			
	Pro	Gly	y Ar	g Ala	a Pho	Phe	Ala	a Th	r Gly	7 G1u	ı Ile	Thr	G1y	Asp	Ile			
	CCA	1 GG(i AG	A GC	A 1"1".	r TT.	r GCA	A AC	A GGA	A GAA	ATA	ACA	GGA	GAI	ATA			
5																		
					35													
	Aro	, G1,	. Δ1.	. Hic	S Cya													
	AGA	CAA	GCA	CAT	r TG1	,	•											
	1101	. 0.1		1 0/1.	. 10.	•												
10																		
	(2)	:	INE	ORMA	TION	FOR	SEO	ID	NO:	EE35	6-2							
			(i))	SEC	UENC	E CH	ARAC	TERI	STIC	S:							
					(A))		GTH:										
15					(B))	TYP	E:	Nuc1	eic	Acid							
					(C)		STR	ANDE	DNES	S:	Sing	1e				•		
					(D)			OLOG		Line								
			(ii						enom			_						
			(ii	.)	KIN	D (i	f pe	ptid	e or	pro	tein):						
20					(A)		SEQ	UENC	E AS	SEMB		ETHO						
					(B) (C)				T TY		Int	erna:	L Fra	agme	nt			
			(ii	i)					: HI									
			,	-,	(E)				UAL		ATE ·							
			(iv)			TE S			10011				-			_	
25					(C)		CLO											
			(v)		POS	ITIO	N IN	GEN	OME:	Wit	hin l	Env (Gene	-				
			(vi)										conse	erved	ant	igenio	
			_		det	ermı	nant				_	-						
30			(vi	ii)	SEQ	UENC	E DE	SCRI	PTIO	N:								
	SEO	ID	NO.	FF3	56-2													
	DDQ			DUJ.	JU-2													
35	1				5					10					15			
	Cys	Ile	Arg	Pro	Ser	Asn	Asn	Thr	Arg		Ser	Ile	Thr	Tle	G1 v			
	TGT	ATA	AGA	CCC	AGC	AAC	AAT	ACA	AGA	AAA	AGT	ATA	ACT	ATA	GGA			
													-					
40																		
	5	61			20					25					30			
	CCA	CCC	Arg	ATA	Phe	Phe	Ala	Thr	Gly	Glu	Ile	Thr	Gly	Asp	Ile			
	CCA	GGG	AGA	GCA	111	111	GCA	ACA	GGA	GAA	ATA	ACA	GGA	GAT	ATA			
4 5					35													
	Arg	Gln	Ala	His						•								
	AGA																	
									-									

5	(2)	(ii) (ii) (iii)	TION FOR SEQ ID NO: EE356-3 SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear KIND: cDNA to genomic RNA KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE:										
15		(iv) (v) (vi)	IMMEDIATE SOURCE: (C) CLONE: POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic										
20		(viii)	determinant SEQUENCE DESCRIPTION:										
	SEQ ID	NO: EE35	56–3										
25			5 10 15 Ser Asn Asn Thr Arg Lys Ser Ile Thr Ile Gly AGC AAC AAT ACA AGA AAA AGT ATA ACT ATA GGA										
30			20 25 30 Phe Phe Ala Thr Gly Glu Ile Thr Gly Asp Ile TTT TTT GCA ACA GGA GAA ATA ACA GGA GAT ATA										
35		Ala His GCA CAT											
40	(2)	INFORMAT	ION FOR SEQ ID NO: EE359-1 SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid										
45		(ii)	(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear KIND: cDNA to genomic RNA										

50

			(ii)	(A)		SEC	UENC	e or	SEMB	LY M	ETHO	D:	0ver	lap		
5					(B) (C)				T TY		Int	erna	l Fr	agme	ent		
			(ii	i)		GINA	L SO	URCE	: HI	V	ATE:						
			(iv)		EDIA		OURC							·		
10			(v)		POS	ITIO	N IN	GEN	OME:	Wit	hin	Env	Gene	_			
			(vi)	PRO	PERT	IES	OF S	EQUE	NCE:	Ex	pres	ses	cons	erved	antigen	ic
			(373	ii)			nant	COD T	חשאס	NT -							
			(• 1	11)	SEQ	OEMC	e de	SCKI	PTIO	N:							
15	SEQ	ID	NO:	EE3	59–1												
	1				5					10					15		
20	Cys	Thr	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Arg	Ser	Ile	Asn	Ile	G1y		
	161	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGA	AGA	AGT	ATA	AAT	ATA	GGA		
					20					25					30		
25	Pro	G1 y	Arg	Ala	Phe	Tyr	Ala	Thr	G1y	Asp	Ile	Ile	Gly	Asp	Tle		
	CCA	GGG	AGA	GCC	TTT	TAT	GCA	ACA	GGA	GAC	ATA	ATA	GGA	GAT	ATA		
					35												
30			Ala														
	AGA	CAA	GCA	CAT	TGT												
	(2)		INFO	RMA:	TION	FOR	SEO	ID N	10: F	E359) - 2						
15			(i)		SEQU	ENCE	CHA	RACT	ERIS	STICS)		,				
-					(A)		LENG	TH:	105	i							
					(B)		TYPE		lucle		cid						
					(D)				NESS		Singl	.е					
_			(ii)		KIND	: cT		LOGY		inea							
0			(ii)		KIND	(if	Der	tide	or	prot	ein)	١•					
					(A)	,	SEQU	ENCE	ASS	EMBL	Y ME	THOD): O	ver1	AD.		
					(B)		FRAG	MENI	TYP	E:	Inte	rnal	Fra	gmen	t		
					(C)				ICAL	: _				<u> </u>			
5			(iii)	ORIG	INAL											
			(iv)		(E) IMME	ከተልጥ	E CO	ATDU	AL I	SOLA	TE:						
			\ - \ /		(C)		CLON		•								
			(v)		POSI				ME:	With	in F	nv C	ene				
0			(vi)		PROP	ERTI	ES O	F SE	QUEN	CE:	Exp	rese	es c	លាទទ	rved	antigeni	
U					aete.	rmın	an t							J0 C	~ + Gu	our TREU	LC
			(vii	i)	SEOU	ENCE	DES	CRIP	TION	•							

SEQ ID NO: EE359-2

5			5 Asn Asp Asn 3 AAC GAC AAT A			
10			20 Phe Tyr Ala 7 TTT TAT GCA A			
15	-	Ala His GCA CAT	_			
20	(2)	INFORMA	TION FOR SEQ I SEQUENCE CHAR (A) LENGI (B) TYPE: (C) STRAN	RACTERISTICS TH: 105 : Nucleic A	cid	
25		(ii) (ii)	(D) TOPOL KIND: cDNA to KIND (if pept (A) SEQUE	LOGY: Linea genomic RN ide or prot ENCE ASSEMBL	Ά	
30		(iii) (iv)	(C) HYPOT ORIGINAL SOUR	THETICAL: _ RCE: HIV VIDUAL ISOLA VRCE:		*
35		(v) (vi) (viii)	POSITION IN G	ENOME: With SEQUENCE:		onserved antigenic
40	SEQ ID 1	NO: EE3!	59–3			
4 5	1 Cys Thr TGT ACA	Arg Pro AGA CCC	5 Asn Asp Asn T AAC GAC AAT A	10 hr Arg Arg CA AGA AGA	Ser Ile Asn AGT ATA AAT	15 Ile Gly ATA GGA

55

					20					25					30			
	Pro	G1 y	Arg	Ala	Phe	Tyr	Ala	Thr	G1y	Asp	Ile	Ile	Gly	Asp	Ile			
			AGA															
_																		
5																		
					35													
	Arg	G1n	Ala	His														
	_		GCA		-													
		0																
10																		
	(2)		INFO	ORMA"	TION	FOR	SEO	ID I	NO: 1	EE360)-1							
	\-/		(i)				•		TER I									
			_/		(A)		LEN		10									
					(B)		TYPI		Vuc1e		Acid							
15					(c)				DNES		Sing:	ء ا						
					(D)				Y:]		_							
			(ii)	`					enom									
			(ii)						or			١.						
			(11,	,	(A)) (1)						. • ETHOI	. (meri	an			
20					(B)				r TY			ernal						
					(c)				CICA		T11.6.	si na.		Per				
			(iii	:)		TNIAI			HIV	_								
			(111	.,	(E)	3 T 11(V)			JAL :		\TF•							
			(iv)	`		EDIA:				LOUIZ	TIP.						-	
25			(IV.	,	(C)	אועט.	CLO	-	<u>.</u>									
					16		CLUI	16.						_				
			()			וחדחו	I TRI	CENI	ME.	1.7.4 + 1	3 - 1		2000	-				
			(v)		POS							Env (2025	· ····································	22.	iaar	
			(v) (vi)		POS:	PERT	ES (conse	erved	ant	iger	nic
			(vi))	POS! PROI dete	PERT:	(ES (nant	OF SI	EQUEI	NCE:				conse	erved	ant	iger	nic
30			(vi)		POS! PROI dete	PERT:	(ES (nant	OF SI		NCE:				conse	erved	ant	iger	nic
30			(vi))	POS! PROI dete	PERT:	(ES (nant	OF SI	EQUEI	NCE:				conse	erved	ant	iger	nic
30	SEO	י חד	(vi)) Li)	POS! PROI dete SEQI	PERT:	(ES (nant	OF SI	EQUEI	NCE:				conse	erved	ant	iger	nic
30	SEQ	ID I	(vi)) Li)	POS! PROI dete SEQI	PERT:	(ES (nant	OF SI	EQUEI	NCE:				conse	erved	ant	iger	nic
30	SEQ	ID I	(vi)) Li)	POS! PROI dete SEQI	PERT:	(ES (nant	OF SI	EQUEI	NCE:				conse	erved	ant	iger	nic
30 35		ID 1	(vi)) Li)	POS: PROI dete SEQI	PERT:	(ES (nant	OF SI	EQUEI	NCE:				conse		ant	iger	nic
	1		(vi) (vii) Li) EE36	POS: PROI dete SEQI	PERT: ermin JENCI	IES (nant E DE:	OF SI	EQUEI PT I OI	NCE: N:	Ex	pres	ses (15	ant	iger	nic
	1 Cys	Thr	(vi) (vi) (vi)) Li) EE36 Pro	POS: PROI dete SEQI	PERT: ermin JENCI	IES (nant E DE:	OF SI	EQUEI PTIOI Arg	NCE: N: 10 Lys	Ex	press Ile	His	Ile	15 Ala	ant	iger	nic
	1 Cys	Thr	(vi) (vii) Li) EE36 Pro	POS: PROI dete SEQI	PERT: ermin JENCI	IES (nant E DE:	OF SI	EQUEI PTIOI Arg	NCE: N: 10 Lys	Ex	press Ile	His	Ile	15 Ala	ant	iger	nic
	1 Cys	Thr	(vi) (vi) (vi)) Li) EE36 Pro	POS: PROI dete SEQI	PERT: ermin JENCI	IES (nant E DE:	OF SI	EQUEI PTIOI Arg	NCE: N: 10 Lys	Ex	press Ile	His	Ile	15 Ala	ant	iger	nic
	1 Cys	Thr	(vi) (vi) (vi)) Li) EE36 Pro	POS: PROI dete SEQI 50-1 Ser AGC	PERT: ermin JENCI	IES (nant E DE:	OF SI	EQUEI PTIOI Arg	NCE: N: 10 Lys AAA	Ex	press Ile	His	Ile	15 Ala GCA	ant	iger	nic
35	1 Cys TGC	Thr ACA	(vi) (vi) (vi) Arg AGG	Pro	POS: PROI dete SEQI 60-1 5 Ser AGC	PERT: PERT: PENC! ASD ASD	Asn AAT	Thr	Arg AGA	NCE: 10 Lys AAA	Exp Ser AGT	Ile ATA	His CAT	Ile ATA	15 Ala GCA 30	ant	iger	nic
35	1 Cys TGC	Thr ACA	(vi) (vi) (vi) Arg Arg	Pro CCC	POS: PROI dete SEQI 60-1 5 Ser AGC	Asn AAC	Asn AAT	Thr ACA	Arg AGA	NCE: 10 Lys AAA 25	Ser AGT	Ile ATA	His CAT	Ile ATA	15 Ala GCA 30 Ile	ant	iger	nic
35	1 Cys TGC	Thr ACA	(vi) (vi) (vi) Arg AGG	Pro CCC	POS: PROI dete SEQI 60-1 5 Ser AGC	Asn AAC	Asn AAT	Thr ACA	Arg AGA	NCE: 10 Lys AAA 25	Ser AGT	Ile ATA	His CAT	Ile ATA	15 Ala GCA 30 Ile	ant	iger	nic
35	1 Cys TGC	Thr ACA	(vi) (vi) (vi) Arg Arg	Pro CCC	POS: PROI dete SEQI 60-1 5 Ser AGC	Asn AAC	Asn AAT	Thr ACA	Arg AGA	NCE: 10 Lys AAA 25	Ser AGT	Ile ATA	His CAT	Ile ATA	15 Ala GCA 30 Ile	ant	iger	nic
35	1 Cys TGC	Thr ACA	(vi) (vi) (vi) Arg Arg	Pro CCC	POS: PROI dete SEQI 50-1 5 Ser AGC 20 Phe TTT	Asn AAC	Asn AAT	Thr ACA	Arg AGA	NCE: 10 Lys AAA 25	Ser AGT	Ile ATA	His CAT	Ile ATA	15 Ala GCA 30 Ile	ant	iger	nic
35 40	1 Cys TGC	Thr ACA Gly GGG	(vi) (vi) (vi) Arg AGG	Pro CCC	POS: PROI dete SEQI 50-1 5 Ser AGC 20 Phe TTT	Asn AAC	Asn AAT	Thr ACA	Arg AGA	NCE: 10 Lys AAA 25	Ser AGT	Ile ATA	His CAT	Ile ATA	15 Ala GCA 30 Ile	ant	iger	nic
35 40	1 Cys TGC Pro CCA	Thr ACA Gly GGG	(vi) (vi) (vi) Arg AGG Arg AGA	Pro CCC	POS: PROI dete SEQI 50-1 5 Ser AGC 20 Phe TTT 35 Cys	Asn AAC	Asn AAT	Thr ACA	Arg AGA	NCE: 10 Lys AAA 25	Ser AGT	Ile ATA	His CAT	Ile ATA	15 Ala GCA 30 Ile	ant	iger	nic
35 40	1 Cys TGC Pro CCA	Thr ACA Gly GGG	(vi) (vi) (vi) Arg AGG	Pro CCC	POS: PROI dete SEQI 50-1 5 Ser AGC 20 Phe TTT 35 Cys	Asn AAC	Asn AAT	Thr ACA	Arg AGA	NCE: 10 Lys AAA 25	Ser AGT	Ile ATA	His CAT	Ile ATA	15 Ala GCA 30 Ile	ant	iger	nic
35 40	1 Cys TGC Pro CCA	Thr ACA Gly GGG	(vi) (vi) (vi) Arg AGG Arg AGA	Pro CCC	POS: PROI dete SEQI 50-1 5 Ser AGC 20 Phe TTT 35 Cys	Asn AAC	Asn AAT	Thr ACA	Arg AGA	NCE: 10 Lys AAA 25	Ser AGT	Ile ATA	His CAT	Ile ATA	15 Ala GCA 30 Ile	ant	iger	nic
35 40	1 Cys TGC Pro CCA	Thr ACA Gly GGG	(vi) (vi) (vi) Arg AGG Arg AGA	Pro CCC	POS: PROI dete SEQI 50-1 5 Ser AGC 20 Phe TTT 35 Cys	Asn AAC	Asn AAT	Thr ACA	Arg AGA	NCE: 10 Lys AAA 25	Ser AGT	Ile ATA	His CAT	Ile ATA	15 Ala GCA 30 Ile	ant	iger	nic

106

	(2)		INF	ORMA	TION	FOR	SEQ	ID	NO:	EE36	0-2					
			(i)		SEQ	UENC	E CH	ARAC	TERI	STIC	S:					
					(A)		LEN	GTH:	10	5						
					(B)		TYP		Nuc1		Acid					
5					(C)		STR	ANDE	DNES	S:	Sing	1e				
					(D)		TOP	OLOG	Y:	Line	ar					
			(ii)	KIN	D: c	DNA	to g	enom	ic R	NA					
			(ii)	KIN	D (i	f pe	ptid	e or	pro	tein) :				
					(A)		SEQ	UENC	E AS	SEMB	LY M	ETHO	D:	Over	lap	
10					(B)		FRA	GMEN	T TY	PE:	Int	erna	1 Fr	agme	nt	
					(C)		HYP	OTHE	TICA	L:						
			(ii	i)	ORIG	GINA	L SO	URCE	: HI	V						
					(E)		IND	IVID	UAL	ISOL	ATE:					
			(iv)	IMM	EDIA	TE S	OURC	E:							
15					(C)		CLO	NE:						_		
			(v)		POS	ITIO	N IN	GEN	OME:	Wit	hin	Env	Gene			
			(vi)	PRO	PERT	IES	OF S	EQUE	NCE:	Ex	pres	ses	cons	erved	antigenic
					dete	ermi	nant									
			(vi	ii)	SEQ	JENC:	E DE	SCRI	PTIO	N:						
20																
	SEQ	ID I	NO:	EE3	60-2											
05	_				_											
25	1				_5				_	_ 10	_				15	
														Ile		
	TGC	ACA	AGG	CCC	AGC	AAC	AAT	ACA	AGA	AAA	AGT	ATA	CAT	ATA	GCA	
30															20	
30	_				20	_	_			25					30	
														Asp		
	CCA	GGG	AGA	GCA	TTT	TAT	ACA	ACA	GGA	GCA	ATA	ACA	GGA	GAT	ATA	
35					35											
	A	01-	A1 -	17.5 -												
	_			His CAT	-											
	AGA	CAA	GCA	CAI	161							,				
40	(2)		TRIE	ODMA'	rion	FOD	CEA	TD I	MO • 1	FF 261	n 2					
	(2)		(i)					ARAC'								
			(1)		(A)) Eu (C)		GTH:	10		٥.					
					(B)		TYP		Nuclo		A ~ : ~					
					(C)			ANDE			Sing	1				
45					(D)			OLOG:		Line	_	re				
-			(22	`		۱۰ - ۱										
			(ii	,	I/ TIAT) • C1	DIAM.	to g	=11QII);	rc K	177					

50

5			(ii (ii (iv	i)	(A) (B) (C) ORI (E)	GINA	SEQ FRA HYP L SO IND	UENC GMEN OTHE URCE	T TY TICA : HI UAL	SEMB PE: L: V	LY M Int	ETHO erna	D: 1 Fr	Over agme	lap nt		
10			(v) (vi)	(C) POS PRO det	ITIO PERT ermi:	CLO N IN IES nant	GEN OF S	OME: EQUE	NCE:	hin Ex	Env pres	Gene ses	 cons	erved	antig	enic
15	SEQ	ID :	NO:	ii) EE3		JENC:	E DE	SCRI	PTIO	N:							
	1				E				·	• • •							
	_	Thr	Arg	Pro	5 Ser	Asn	Asn	Thr	A = 0	10	Sor	T16	Wie.	71.	15		
20	TGC	ACA	AGG	CCC	AGC	AAC	AAT	ACA	AGA	AAA	AGT	ATA	CAT	ATA	GCA		
					00												
	Pro	G1 v	Arg	۵1ء	20 Phe	Tur	Th-	Th-	C1	25	T1 -	77°L	01	A -	30		
25	CCA	GGG	AGA	GCA	TTT	TAT	ACA	ACA	GGA	GCA	ATA	ACA	GGA	GAT	ATA		
30			Ala GCA									`					
	(2)		INFO	RMA]	TION	FOR	SEQ	ID N	10: E	E367	'-1						
35			(i)		(A) (B) (C)		LENG TYPE STRA	TH: : N NDEL	ERIS 105 Jucle NESS	ic A	cid ingl	.e					
10			(ii) (ii)		(D) KIND KIND	: cD	NA t pep	o ge	or	c RN prot	A ein)	:					
					(A) (B) (C)		FRAG HYPO	MENT THET	'TYP 'ICAL	E: :	Y ME Inte	THOD rna1	Fra	verl gmen	ap t		
15			(iii)	ORIG						mr.						
			(iv)		IMME:	DIAT	E SO CLON	URCE	AL I	JULA.	TE!		<u> </u>				
			(v)		POSI				ME:	With	in F	nv C					
o			(vi)		PROP:	ERTI	ES O	F SE	QUEN	CE:	Exp	ress	es c	onse	rved	antige	nic
			(vii:		SEQU			CRIP	TION	:							

SEQ ID NO: EE367-1

1 5 10 15 Cys Thr Arg Pro Asn Asn Thr Ile Lys Ser Ile His MET Gly TGT ACA AGA CCC AAC AAC AAT ACA ATA AAA AGT ATA CAT ATG GGA 20 25 30 10 Leu Gly Arg Thr Phe Tyr Thr Thr Gly Glu Val Ile Gly Asp Ile CTA GGG AGG ACA TTT TAT ACA ACA GGA GAA GTA ATA GGA GAT ATA 35 15 Arg Gln Ala His Cys AGA CAA GCA CAT TGT (2) INFORMATION FOR SEQ ID NO: EE367-2 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single TOPOLOGY: Linear (D) 25 (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap FRAGMENT TYPE: Internal Fragment (B) (C) HYPOTHETICAL: 30 (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (v) POSITION IN GENOME: Within Env Gene 35 PROPERTIES OF SEQUENCE: Expresses conserved antigenic (vi) determinant (viii) SEQUENCE DESCRIPTION: 40 SEQ ID NO: EE367-2 5 10 1 Cys Thr Arg Pro Asn Asn Asn Thr Ile Lys Ser Ile His MET Gly 45 TGT ACA AGA CCC AAC AAC AAT ACA ATA AAA AGT ATA CAT ATG GGA

50

					20)				25	5				30		
	Let	ı Gly	, Arε	The	Phe	Tyr	Thr	Th	r G13	7 G1:	ı Val	l Ile	: G1	7 Ası	Ile		
	CTA	GGG	AGG	ACA	TTI	TAT	ACA	ACA	A GG	A GAA	GTA	ATA	GGA	GA?	ATA		
5																	
					35												
					Сув												
	AGA	CAA	GCA	CAI	TGT	ı											
10																	
	(2)				TION												
			(i)			UENC	E CH	ARAC	TERI	STIC	s:						
					(A)			GTH:		-							
15					(B)		TYP			eic	Acid						
					(C)				DNES		Sing	1e					
					(D)					Line							
			(ii			D: c						_					
			(ii)		D (i	f pe	ptid	e or	pro	tein):					
20					(A)							ETHO					
					(B)					PE:	Int	erna	l Fr	agme	nt		
			(ii	٠,	(C)	O TREA :			TICA								
			(11	1)	(E)	GINA											
			(iv	`		EDIA:				ISÓL	ATE:				-		
25			(14	,	(C)	EDIA.	CLO		E:							-	
			(v)		,	וחדח			OME .	Wii +	h.i.	Env (7	_			
			(vi		PROI	PERT	TES (OE S	FOIL.	MIC.	LITH.	DECC.	-ene			antig	•
			` -		dete	ermin	nant	J. D	LQUL	IICE.	LA	bres	568	COMB	ervea	antig	genic
30			(vi:	ii)		JENCI		SCRT	PTIO	N:							
30			•	•	•		- .		0.								
	SEQ	ID N	: 01	EE3	57-3												
35																	
	1				5					10					15		
	Cys	Thr	Arg	Pro	Asn	Asn	Asn	Thr	Ile	Lys	Ser	Ile	His	MET	G1v		
	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACA	ATA	AAA	AGT	ATA	CAT	ATG	GGA		
40																	
	_	:_			20					25					30		
	Leu	Gly	Arg	Thr	Phe	Tyr	Thr	Thr	Gly	G1u	Val	I1e	G1y	Asp	Ile		
	CTA	GGG	AGG	ACA	TTT	TAT	ACA	ACA	GGA	GAA	GTA	ATA	GGA	GAT	ATA		
45																	
	A	61			35												
		Gln															
	AGA	CAA	GCA	CAT	IGT												
50																*	

5	(2)	INFORMA	ATION FOR SEQ ID NO: EE370-1 SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single	
10		(ii) (ii)	(D) TOPOLOGY: Linear KIND: cDNA to genomic RNA KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL:	
15		(iii) (iv) (v) (vi)	ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: IMMEDIATE SOURCE: (C) CLONE: POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic	
20		(viii)	determinant	
	SEQ ID 1	NO: EE3	70–1	
25	1 Cys Thr TGT ACA	Arg Pro AGA CCC	5 10 15 Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA	
30	Pro Gly CCA GGA	Arg Ala AGA GCA	20 25 30 Phe Tyr Thr Thr Gly Asp Ile Ile Gly Asp Ile TTT TAT ACA ACA GGA GAC ATA ATA GGA GAT ATA	
35	Arg Gln AGA CAA	Ala His GCA CAT		
40	(2)	INFORMAT	TION FOR SEQ ID NO: EE370-2 SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid	
45		(ii)	(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear KIND: cDNA to genomic RNA	

50

			(ii)	(A) (B)	D (i:	SEQ	UENC		SEMB:	LY M	ETHO:		Over: agmen	-	
5			(ii	i)	(C) ORIG		L SO	URCE	TICA: : HI UAL	V	ATE •					
			(iv)				OURC		1301	AIE:					
10			(v)		POS	ITIOI	NI N	GEN	OME:	Wit	hin 1	Env (Gene	_		
			(vi)				OF S	EQUE	NCE:	Ex	pres	ses	cons	erved	antigenic
			(vi	ii)		ermi: UENC		SCRI	PTIO	N :						
15	SEQ	ID I	NO:	EE3	70–2											
	•				-					10					1.5	
	1 Cvc	The	A = a	Pro	5 Asn	Acn	Acn	Thr	A ~~~	10	50=	T10	ui.	Ile	15 C1 w	
20														ATA		
																
					20					25					30	
0.5	Pro	Gly	Arg	Ala		Tyr	Thr	Thr	G1y		Ile	Ile	G1y	Asp		
25	CCA	GGA	AGA	GCA	TTT	TAT	ACA	ACA	GGA	GAC	ATA	ATA	GGA	GAT	ATA	
					35											
	Arg	G1n	Ala	His	Cys											
30	AGA	CAA	GCA	CAT	TGT											
	(2)			ORMAT	rion	FOR	SEQ	ID 1	NO: 1	EE370	0–3					
35			(i)			JENCI			rer I		3:					
•					(A) (B)		LENO TYP		10! Nucle							
					(C)				DNES		scia Sing:	م ا				
					(D)				Y:]			16				
			(ii))					enom:							
40			(ii)					e or							
							SEQ	UENCI	E ASS					Over:		
					(C)				r TYI		Inte	erna.	l Fra	agmer	nt	
			(iii	i)		INA			: HIV							
4 5			`	-,	(E)						ATE:					
			(iv)			CE S	OURCI								
			, ,		(C)		CLO							_		
			(v)									Env (_	
50			(vi)	,		ERT.		or Si	LQUEI	WUE:	Exp	pres	ses (cons	erved	antigenic
			(vi	ii)				SCRTI	PTIO	J:						

SEQ ID NO: EE370-3

5 10 5 Cys Thr Arg Pro Asn Asn Thr Arg Lys Ser Ile His Ile Gly TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA 20 25 30 10 Pro Gly Arg Ala Phe Tyr Thr Thr Gly Asp Ile Ile Gly Asp Ile CCA GGA AGA GCA TTT TAT ACA ACA GGA GAC ATA ATA GGA GAT ATA 15 Arg Gln Ala His Cys AGA CAA GCA CAT TGT (2) INFORMATION FOR SEQ ID NO: EE374-1 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 25 (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: 30 (iii) ORIGINAL SOURCE: HIV INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (v) POSITION IN GENOME: Within Env Gene 35 (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant (viii) SEQUENCE DESCRIPTION: 40 SEQ ID NO: EE374-1 10 Cys Ile Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly TGT ATA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA

					20					25	,		•		30		
	Pro	G1:	y Arg	g Ala	Phe	Tyr	Thr	Thi	c G13	Thr	Ile	lle	G1v	Asp	Ile		
	CCA	GG	G AGA	GCA	TTT	TAT	ACA	ACA	GGA	ACA	ATA	ATA	GGA	GAT	ATA		
5																	
J																	
					35												
	Arg	G1r	ı Ala	His	Cys												
	AGA	CAA	GCA	CAI	TGT												
10																	
,,																	
	(2)		INF	ORMA	TION	FOR	SEQ	ID	NO:	EE37	4-2						
			(i)		SEQ	UENC:	E CH	ARAC	TERI	STIC	s:						
					(A)		LEN	GTH:	10	5							
15					(B)		TYP	E:	Nuc1	eic .	Acid						
					(C)		STR	ANDE	DNES	s:	Sing	le					
					(D)		TOP	OLOG	Y:	Line	_						
			(ii		KIN	D: cl	DNA	to g	enom	ic R	NA						
			(ii)	KIN) (i:	f pe	ptid	e or	pro	tein):					
20					·(A)		SEQ	UENC	E AS	SEMB:	LY M	ETHO:	D: (verl	ap	•	
					(B)					PE:				agmen			
					(C)				TICA								
			(ii	i)		SINA)	SOI	URCE	: HI	V							
			_		(E)	*				ISOL	ATE:						
25			(iv)		EDIAT	CE SO	OURC	E:								
				•	(C)		CLO							_			
			(v)									Env (
			(vi)	PROF	'ERT	ES (OF S	EQUE	NCE:	Ex	pres	ses o	conse	rved	antigenic	
					dete	rmin	ant									_	
30			(vi	ii)	SEQU	JENCE	DES	SCRI	PTIO	N:							
	050																
	SEQ	ID :	NO:	EE3	74-2												
	1				_												
35	-	T1 -	A	_	5			_		10					15		
	Cys	116	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Lys	Ser	Ile	His	Ile	G1y		
	161	AIA	AGA	CCC,	AAC	AAC	AAT	ACA	AGA	AAA	AGT	ATA	CAT	ATA	GGA		
10	Dec	C1	A	A 1 -	20	m	-			_25					30		
	CCV	CCC	ACA	ATA	rne	Tyr	Ihr	Thr	Gly	Thr	Ile	Ile	Gly	Asp	Ile		
	CCA	GGG	AGA	GCA	111	TAT	ACA	ACA	GGA	ACA	ATA	ATA	GGA	GAT	ATA		
					25												
‡ 5	Ara	C1-	۸1.	His	35												
	_			CAT	-												
	nun	Onn	GUM	ONI	161												
		1															

55

	(2)	INFO	ORMATION	FOR SEQ ID	NO: EE37	4-3		
		(i)	SEQU	ENCE CHARAC	TERISTIC	S:		
			(A)	LENGTH:	105			
			(B)	TYPE:	Nucleic .	Acid		
5			(c)	STRANDE		Single		
			(D)	TOPOLOG		-		
		(ii)		: cDNA to g				
		(ii)		(if peptid				
		• •	(A)				D: Overla	an
10			(B)		T TYPE:		1 Fragmen	
			(c)	HYPOTHE				_
		(iii		INAL SOURCE	-			
			(E)	INDIVID	UAL ISOL	ATE:		
		(iv)	IMME	DIATE SOURC			-	
15			(C)	CLONE:				
		(v)	POSI	TION IN GEN	OME: With	hin Env	Gene	
		(vi)	PROP	ERTIES OF S	EQUENCE:	Expres	ses consei	ved antigenic
				rminant		_		Ū
		(vii	i) SEQU	ENCE DESCRI	PTION:			
20								
	SEQ I	D NO:	EE374-3					
25	1		5		10			1.
	_	1	-			0 71		15
	TOT A	TA ACA	rro Asn A	sn Asn Thr AC AAT ACA	Arg Lys	Ser lie	His lie G	ily
	IGIA	IN NUN	CCC AAC A	MC MAI MCM	AGA AAA	AGI AIA	CAI AIA	GA ·
30			20		25			30
	Pro G	lv Arg		yr Thr Thr		Tie Tie	Gly Acn I	
	CCA G	GG AGA	GCA TTT 1	AT ACA ACA	GGA ACA	ATA ATA	GGA GAT A	TΔ
					0011 11011		con one r	·LA
35		·	35					
	Arg G	ln Ala I	His Cys					
	AGA CA	AA GCA (CAT TGT					
40	(2)	INFO	RMATION F	OR SEQ ID 1	NO: EE378	-1		
		(i)	SEQUE	NCE CHARACT	TERISTICS	:	•	
			(A)	LENGTH:	105			
			(B)	TYPE: N	Nucleic A	cid		
1 5			(c)	STRANDEI	ONESS: S	ingle		
4 5			(D)	TOPOLOGY				
		(ii)	KIND:	cDNA to ge	enomic RN	Α		=

50

5		(ii) (iii) (iv) (v) (vi) (viii)	KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: IMMEDIATE SOURCE: (C) CLONE: POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant SEQUENCE DESCRIPTION:
15	SEQ ID	NO: EE3	78–1
20	1 Cys Th TGT AC	r Arg Pro A AGA CCC	5 10 15 Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA
25	Pro G1:	y Arg Ala G AGA GCA	20 25 30 Phe Tyr Thr Thr Gly Glu Ile Ile Gly Asp Ile TTT TAT ACA ACA GGA GAA ATA ATA GGA GAT ATA
30	-	n Ala His A GCA CAT	
35	(2)	INFORMAT	TION FOR SEQ ID NO: EE378-2 SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single
40		(ii) (ii)	(D) TOPOLOGY: Linear KIND: cDNA to genomic RNA KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL:
45		(iii) (iv)	ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: IMMEDIATE SOURCE: (C) CLONE:
50		(vi)	POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant SEQUENCE DESCRIPTION:

SEQ ID NO: EE378-2

5	1 Cys Thi TGT ACA	r Arg Pro A AGA CCC	5 Asn Asn Asn AAC AAC AAT	Thr Arg Ly	O s Ser Ile Hi A AGT ATA CA	15 s Ile Gly r ATA GGA
10	Pro G13 CCA GGG	/ Arg Ala G AGA GCA	20 Phe Tyr Thr TTT TAT ACA	Thr Gly Gl	5 u Ile Ile Gly A ATA ATA GGA	30 7 Asp Ile A GAT ATA
15		Ala His GCA CAT				
20	(2)	INFORMAT	(B) TYP		CS: Acid	
25			(D) TOP(KIND: cDNAKIND (if per (A) SEQUENT) (B) FRACE	OLOGY: Line to genomic I ptide or pro UENCE ASSEMI GMENT TYPE:	ear RNA otein): BLY METHOD:	
30 ,		(iv)	ORIGINAL SO	IVIDUAL ISOI OURCE:	ATE:	
35		(v) (vi)	POSITION IN	GENOME: With SEQUENCE:	hin Env Gene Expresses	- conserved antigenic
40	SEQ ID 1	NO: EE37	8-3			
4 5	1 Cys Thr TGT ACA	Arg Pro A	5 Asn Asn Asn AAC AAC AAT	Thr Arg Lys ACA AGA AAA	Ser Ile Pro AGT ATA CCT	15 Ile Gly ATA GGA

55

					20	I				25	,				30	
	Pro	G13	Arg	g Ala	Phe	Tyr	Thr	Thr	Gly	Glu	·I1e	: Ile	G1y	Asp	Ile	
	CCA	GGG	AGA	GCA	TTT	TAT	ACA	ACA	GGA	GAA	ATA	ATA	GGA	GAT	ATA	
5																
	A	- 01-			35											
					Cys TGT											
	AGA	CAL	GUA	CAI	161											
10																
	(2)	i	INF	ORMA	TION	FOR	SEO	TD	NO:	EE38	0-1					
			(i)						TERI							
					(A)			GTH:			•					
15					(B)		TYP	E:	Nuc1	eic	Acid					
					(C)		STR	ANDE	DNES	s:	Sing	1e				
					(D)		TOP	OLOG	Y:	Line	ar					
			-	.)					enom							
			(ii	.)		D (i			e or							
20					(A)									Over:		
					(B)				T TY		lnt	erna	l Fr	agmei	nt	
			(ii	;)	(C)	CTNA			TICA : HI		· · ·					
			(11	1,	(E)	GIMA			UAL		Δ TE •					
25			(iv)		EDIA:				1001	ni.					
25			•		(C)		CLO		_ `							
			(v)		POS	ITIO!	N IN	GEN	OME:	Wit	hin	Env (Gene	-		
			(vi)	PRO	PERT	IES (OF S	EQUE	NCE:	Ex	pres	ses	conse	erved	antigenic
					det	ermin	ant					_				0
30			(vi	ii)	SEQ	JENCI	E DE	SCRI	PTIO	N:						
	SEO	ו מד	м О•	EE3	RO_1											
	224				00-1											
35																
30	1				5					10					15	
	Cys	Thr	Arg	Pro	Ser	Asn	Asn	Thr	Arg	Lys	Ser	Ile	His	I1e	G1v	
	TGT	ACA	AGA	CCC	AGC	AAC	AAT	ACA	AGA	AAA	AGT	ATA	CAT	ATA	GGA	
40																
	Desc	C1	A	A 1 -	20	m		PT-15	٥.	25					30	
	CCA	GEG	ACA	WIR	rne	TAT	Inr	Inr	GLY	Glu	lle	Ile	Gly	Asp	Ile	
	COA	333	AUA	GCA	111	IMI	ACA	ACA	GGA	GAA	ATA	ATA	GGA	GAT	ATA	
45																
45					35											
	Arg	G1n	Ala	His												
				CAT												
50																

	(2)		INF			UENC	E CH	IARAC	NO: TERI 10 Nucl	STIC	s:						
5					(D)		STR		DNES		Sing						
			(ii (ii	-	KIN	D (i	f pe	ptid	enom	pro	tein):					
10					(A) (B) (C)		FRA	GMEN	E AS T TY	PE:							
			(ii	i)			L SO	URCE	: HI	V	ATE:		···		***		
15			(iv			EDIA		OURC									
			(v)						OME:						_		
			(vi	,	det	PERI ermi	IES nant	OF S	EQUE	NCE:	EX	pres	ses	cons	erved	antigenio	2
20			(vi	ii)					PTIO	N:							
	SEQ	ID N	10:	EE3	80–2												
25	1				5					10					15		
	Сув	Thr	Arg	Pro	Ser	Asn	Asn	Thr	Arg	Lys	Ser	Ile	His	Ile	G1 y		
	TGT A	ACA	AGA	CCC	AGC	AAC	AAT	ACA	AGA	AAA	AGT	ATA	CAT	ATA	GGA		
30					20					95					20		
	Pro (G1y	Arg	Ala	_	Tyr	Thr	Thr	G1v	25 Glu	Ile	Ile	G1 v	Asp	30 Ile		
	CCA (GGG	AGÃ	GCA	TTT	TAT	ACA	ACA	GGA	GAA	ATA	ATA	GGA	GAT	ATA		
35					35												
	Arg C	3ln .	Ala	His													
	AGA C	CAA	GCA	CAT	TGT												
40	(2)		INFO	RMAT	אחזי	FOR	SFO	TD N	10: E	F307	7_1						
	(-)		(i)		SEQU				ERIS								
					(A)		LENC	TH:	105	;							
					(B) (C)		TYPE		lucle NESS		cid Singl						
45					(D)			LOGY		inea	_						
			(ii)		KIND	: cD	NA t	o ge	nomi	c RN	A						

50

			(ii	1)	(A)	'	SEQ	UENC	E AS	pro SEMB	LY	1ETHC	D:	Over	lap		
_					(B) (C)		FRA	GMEN	TICA	PE:	Int	erna	ıl Fr	agme	nt		-
5			(ii	.i)		GINA	L SO	URCE			ATE:		 .				
			(iv)		EDIA		OURC									
10			(v)									Env					
			(vi	.)	PRO	PERT	IES	OF S	EQUE	NCE:	Ex	pres	ses	cons	erved	antig	enic
			(vi	ii)		ermi UENC			PTIO	N:							
15	SEQ	ID :	NO:	EE3	97–1												
	1				5												
	_	The	Ara	Pro	_	Acn	A an	Th-	۸	10	C	71_	** *	Ile	15	•	
20	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACA	ACA	ACA	ACT	TIE	MIS	ATA	GLY		
				000		1110		non	non	nun	AGI	, VIV	CAC	MIM	GGA		
					20					25					30		
25	Pro	G1y	Arg	Ala	Phe	Tyr	Ala	Thr	G1y	G1u	Ile	Ile	G1v	Asn	Ile		
0	CCA	GGG	AGA	GCA	TTT	TAT	GCA	ACA	GGA	GAA	ATA	ATA	GGA	AAT	ATA		
					35												
00	Arg	G1n	Ala	Tyr													
30				TAT													
	(2)		INF	ORMA:	MOIT	FOR	SEO	ID N	10 : F	ERQC)_1						
35			(i)		SEQU	ENCE	CHA	RACI	CERIS	TICS	; - ; :						
30					(A)		LENG		105								
					(B)		TYPE			ic A	cid						
					(C)				NESS		ing	le			•		
			(ii)		(D)			LOGY		inea							
40			(ii)		KIND); CL	NA I	o ge	nomi	c KN prot	A	١.					
			(,		(A)	(SEOU	ENCE	ASS	EMRI.	V MI); FTHAT		Verl			
							FRAG	MENI	TYP	E:	Inte	ernal	Fra	igmen	t.		
					(C)		HYPO	THEI	'ICAL	: _				-B	•		
4 5			(iii	.)	ORIG												
			(4)		(E)	D T A =	INDI	VIDU	AL I	SOLA	TE:						
			(iv)	, .	IMME (C)				:								
			(v)				CLON		MF.	With	<u> </u>	Env G		-			
			(vi)		PROP	ERTI	ES O	F SE	OUEN	GE. Migu	TII E	env G	ene			antige	
50			,		dete	rmin	ant	- 01	~ C 1314	on.	ux]	\r & 2 2	CB C	onse	rved	antige:	nic
			(vii		SEQU			CRIP	TION	:							

SEQ ID NO: EE399-1

5	1 Cys The TGT ACA	r Arg Pro A AGA CCC	5 10 15 O Asn Asn Asn Thr Arg Lys Gly Ile His Ile Gly C AAC AAC AAT ACA AGA AAA GGT ATA CAT ATA GGA
10	Pro Gly CCA GGC	, Arg Ala G AGA GCA	20 25 30 A Phe Tyr Thr Thr Gly Glu Ile Ile Gly Asp Ile A TTT TAT ACA ACA GGA GAA ATA ATA GGA GAT ATA
15		Ala His GCA CAT	
20	(2)	INFORMA	ATION FOR SEQ ID NO: EE399-2 SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single
25		(ii) (ii)	(D) TOPOLOGY: Linear KIND: cDNA to genomic RNA KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment
30		(iii) (iv)	(C) HYPOTHETICAL: ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: IMMEDIATE SOURCE: (C) CLONE:
35		(v) (vi) (viii)	POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant SEQUENCE DESCRIPTION:
40	SEQ ID	NO: EE39	99–2
45	1 Cys Thr TGT ACA	Arg Pro AGA CCC	5 10 15 Asn Asn Asn Thr Arg Lys Gly Ile His Ile Gly AAC AAC AAT ACA AGA AAA GGT ATA CAT ATA GGA

55

					20					25					30		
				Ala													
	CCA	GGG	AGA	GCA	TTT	TAT	ACA	ACA	GGA	GAA	ATA	ATA	GGA	GAT	ATA		
5																	
					35												
	Arg	G1n	Ala	His													
	_			CAT	-												
10																	
,,	(-)																
	(2)		INF	ORMA:													
			(1)		(A)			GTH:	TERI 10		3:						
					(B)		TYP		Nucl		Acid						
15					(c)				DNES			le					
					(D)				Y: :								
			(ii						enom								
			(ii)	(A)	D (i:			e or					^			
20					(B)		-		r TY			ETHO		Over: agmen	•		
					(c)				TICA:		1110	51 MG.		agmer			
			(ii:	i)		GINA			: HI								
				_	(E)				JAL :	ISOL	ATE:						-
25			(iv)		EDIA:			€:								
			(v)		(C)	TTTA	CLO		ME.	1.1.4.4.1	- 3 - 1	F (_			
			(vi									Env (havre	anti	genic
				,		ermiı		J. J.	- Q	.02.		P1 05.	,	COMB		antı	.genrc
30			(vi:	ii)	SEQ	JENCI	E DE	SCRI	PTIO	٧:							
30																	
	CEO	TD B	٠.	EE39	20.2												
	DEQ	11/1	10.	EEJ:	,,-,												
35	1				5					10					15		
	Cys	Thr	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Arg	Ser	Ile	His	Ile	G1y		
	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGA	AGA	AGT	ATA	CAT	ATA	GGA		
40					20					25					30		
	Pro	G1y	Arg	Ala	Phe	Tyr	Thr	Thr	G1y		Ile	Ile	G1y	Asn			
	CCA	GGG	AGA	GCA	TTT	TAT	ACA	ACA	GGA	GAA	ATA	ATA	GGA	AAT	ATA		
45					25					,							
	Aro	G1n	Ala	His	35 Cvs												
	_			CAT	-												

122

5	(2)	INFORMA (i) (ii) (ii)	TION FOR SEQ ID NO: EE405-1 SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear KIND: cDNA to genomic RNA KIND (if peptide or protein):
10			(A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL:
		(iii)	ORIGINAL SOURCE: HIV
		(iv)	(E) INDIVIDUAL ISOLATE: IMMEDIATE SOURCE:
15		(= ·)	(C) CLONE:
		(v)	POSITION IN GENOME: Within Env Gene
		(vi)	PROPERTIES OF SEQUENCE: Expresses conserved antigenic
20		(viii)	determinant SEQUENCE DESCRIPTION:
	SEQ ID	NO: EE4	05–1
25	1		5 10 15
	_	Arg Pro	Asn Asn Asn Thr Arg Lys Arg Ile Thr Thr Gly
	TGT ACA	AGA CCC	AAC AAC AAT ACA AGA AAA AGA ATA ACT ACG GGA
30			20 25 30
			Tyr Tyr Thr Gly Glu Ile Ile Gly Asp Ile
	CCG GGG	AGA GTA	TAT TAT ACA ACA GGA GAA ATA ATA GGA GAT ATA
35			
	Ama Tura	Ala His	35 Cua
		GCA CAT	
40	(2)	TNEODMA	TION FOR SEC ID NO. FELOS 2
	(2)	(i)	TION FOR SEQ ID NO: EE405-2 SEQUENCE CHARACTERISTICS:
		•	(A) LENGTH: 105
			(B) TYPE: Nucleic Acid
45			(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear
		(ii)	KIND: cDNA to genomic RNA

50

			(ii)	(A) (B)		SEQ	UENC	e or E AS	SEMB	LY M	ETHO		Over agme			·
5					(C)				TICA								
			(ii:	1)	(E)				: HI UAL		ATE •						
			(iv)		IMM (C)	EDIA	TE S	OURC NE:	E:								
10			(v) (vi)		PRO.		IES		OME: EQUE						erved	antig	enic
			(vii	i)				SCRI	PT10	N:							
15	SEQ	ID 1	NO:	EE4	05–2												
	1				5					10					15		
	_	Thr	Arg	Pro		Asn	Aen	Thr	Ara		Ara	T1a	Th∽	Th =	15 C1**		
20	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGA	AAA	AGA	ATA	ACT	ACG	GGA		
					20					25					30		
25	Pro CCG	G1y GGG	Arg AGA	Val GTA	Tyr TAT	Tyr TAT	Thr ACA	Thr ACA	Gly GGA	Glu GAA	Ile ATA	Ile ATA	Gly GGA	Asp GAT	Ile ATA		
30	Arg A	Lys	Ala	His	35 Cys												
35	(2)		INFO	RMA:	TION SEQU (A) (B)	ENCE	LENC	ARACT	NO: E TERIS 105 Nucle	STICS	S:						
‡ 0			(ii) (ii)		(C) (D) KIND		STRA TOPO NA t	NDEI LOGY	ONESS : I	inea c RN	Singl Ar IA			-			
					(A) (B) (C)		SEQU FRAC	ENCE MENT	e or E ASS TYP TICAL	EMBI	Y ME	THOE		verl			
15			(iii		ORIG		INDI	VIDU	AL I		TE:						
			(iv)		(C)		E SO	E:						_			
			(v)		POSI	TION	IN	GENC	ME:	With	in E	nv G	ene				
io			(vi)		PROP dete	ERTI	ES 0	F SE	QUEN	CE:	Ехр	ress	es c	onse	rved	antige	nic
			(vii:	i)				CRIP	TION	:							

SEQ ID NO: EE405-3

5						e Thr Thr Gly A ACT ACG GG	y
10						30 e Glu Asp Vai A GAA GAT GTA	
15		Ala His GCA CAT					
20	(2)	INFORMA'	• •		TICS:		
25		(ii) (ii)	(D) TOP KIND: cDNA KIND (if pe (A) SEC	ptide or QUENCE ASS	inear c RNA protein): EMBLY METH(DD: Overlap	
30		(iii) (iv)	(C) HYF ORIGINAL SO (E) INI IMMEDIATE S	OIVIDUAL I	·	al Fragment	
35		(v) (vi) (viii)	POSITION IN	OF SEQUEN	CE: Expres	Gene sses conserve	d antigenic
40	SEQ ID 1	NO: EE50	05–1				
4 5	1 Cys Thr TGT ACA	Arg Pro AGG CCC	5 Asn Asn Asn AAC AAC AAT	Thr Arg	10 Arg Ser Ile AGA AGT ATA	15 Asn Ile Gly AAT ATA GGA	

55

					20					25					30		
				Ala													
	CCA	GGG	AGA	GCA	TTT	TAT	GCA	ACA	GGA	GAT	ATA	ACA	GGA	GAT	ATA		
5																	
					35												
	Arg	G1n	Ala	His													
	_			CAT	-												
10																	
. •	(0)		***	00344	T 011	T 05	050	TD :	N70 -		- ^						
	(2)		(i)	ORMA						EE3U: STIC:							
			(1)		(A)	ошто.		GTH:	10		•						
15					(B)		TYP		Nuc1	eic A	Acid						
15					(C)			ANDE		S: S	Sing	le					
				`	(D)			OLOG:		Line							
			(ii (ii							ic RI pro		١.					
			(11	,	(A)	U (I.				SEMB): (Overl	ap		
20					(B)					PE:		erna:					
				_	(C)			OTHE:		-							
			(ii	i)		GINA		URCE			4 mm -						
			(iv	`	(E)	FDTA'		OURC		ISOL	ATE:						
25			(14	,	(C)	DIA.	CLO		٠.								
			(v)		POS					Witl				_			
			(vi)				OF SI	EQUE	NCE:	Ex	pres	ses o	conse	erved	l antigeni	.c
			(ermin		COD T	D T T C 1	NT -							
30			(VI	ii)	SEQ	JEN/CI	ישע ב	SCRI	110	N :							
	SEQ	ID I	NO:	EE50	05-2												
35	1				5					10					15		
	_	Thr	Arg	Pro	_	Asn	Asn	Thr	Arg		Ser	Tle	Asn	Tle			
	TGT	ACA	AGG	CCC	AAC	AAC	AAT	ACA	AGA	AGA	AGT	ATA	AAT	ATA	GGA		
40																	
	Pro	C1 v	A = 0	A1.	20 Pho	T	41.	Th	C1	25	т1_	TT16	C1	4 ·	30		
	CCA	GGG	AGA	Ala GCA	TTT	TAT	GCA	ACA	GCA	GAT	ATA	ACA	CCA	CAT	TIE		
							- 0		00	0		11011	0041	9111	nin		
46																	
4 5					35												
				His	-												
	AUA	UAA	GUM	CAT	161												
50																	

126

	(2))	INE	ORMA	ATION	FOF	SEC	ID (NO:	EE5)5 – 3					
			(i))	SEQ	UENC	E CE	LARAC	TERI	STI	cs:					
					(A)		LEN	GTH:	10	5						
-					(B)		TYF	E:	Nuc1	eic	Acid	t				
5					(C)		STR	ANDE	DNES	s:	Sing	le.				
					(D)		TOP	OLOG	Y:	Line	ar					
			(ii	.)	KIN	D: c	DNA	to g	enom	ic F	AŃ					
			(ii	.)	KIN	D (i	f pe	ptid	e or	pro	tein	·):				
40					(A)		SEQ	UENC	E AS	SEMI	BLY M	ETHO	D:	Over	lap	
10					(B)		FRA	GMEN	T TY	PE:	Int	erna	1 Fr	agme	nt	
					(C)		HYP	OTHE	TICA	L:						
			(ii	i)	ORI	GINA	L SO	URCE	: HI	V						
					(E)		IND	IVID	UAL	ISOI	ATE:					
			(iv)	IMMI	EDIA	TE S	OURC	E:							
15					(C)		CLO							_		
			(v)						OME:							
			(vi)	PRO	PERT	IES	OF S	EQUE	VCE:	Ex	pres	ses	cons	erved	antigenic
							nant									
20			(vi	ii)	SEQU	JENC	E DE	SCRI	PTIO	1:						
20																
	SEQ	ID	NO:	EE5	05–3											
25					-											
	1	601L	A	D	5	A	A			10					15	
	TOT	IRE	Arg	Pro	Asn	Asn	AST	Inr	Arg	Arg	Ser	116	Asn	Tie	Gly	
	161	AUA	AGG	CCC	AAC	AAC	AAI	ACA	AGA	AGA	AGT	AIA	AAT	ATA	GGA	
30					20					25					20	
	Pro	G1 v	Ara	۸1 م	Phe	Tre	A 1 a	Th-	C1 **			Th.	C1	۸	30	
	CCA	CCC	ACA	CCA	TTT	TAT	CCA	1111	CCA	CAT	ATA	1111	CCA	CAT	116	
	COA	333	non	GUA	111	TAT	GUA	AUA	GGA	GAI	VIV	ACA	GGA	GMI	WIW	
35					35											
	Are	G1n	Ala	Hic												
•	_		GCA		_											
		0.2.	00.1	0	101											
40	(2)		INFO)RMA	CION	FOR	SEO	ID N	10: E	E50	7-1					
			(i)						TERIS					•		
					(A)		LENG		105		-					
					(B)				lucle		Acid					
					(c)				NESS		Singl	le				
45					(D)			LOGI		ine	_	-				
			(ii))	KIND	: ct			enomi							

50

			(ii	.)	KIN (A) (B) (C)		SEQ FRA	UENC GMEN		SEMB PE:	LY M	ETHO		Over agme			
5			(ii	i)		GINA	L SO	URCE	: HI UAL	V	ATE:						
			(iv		IMM (C)	EDIA	TE S CLO	OURC	E:								
10			(v)						OME:								
,,			(vi)	PRO det	PERT ermi	IES nant	OF S	EQUE	NCE:	Ex	pres	ses	cons	erved	antigeni	c
			(vi	íí)	SEQ	UENC	E DE	SCRI	PTIO	N:							
15	SEQ	ID :	NO:	EE5	07–1												
					•												
	1				5					10					15		
	Cys	Thr	Arg	Pro		Asn	Asn	Thr	Arg		Ser	Ile	Asn	Ile			
20	TGT	ACA	AGĀ	CCC	AAC	AAC	AAT	ACA	AGA	AAA	AGT	ATA	AAT	ATA	GGA		
					20					0 E					20		
	Pro	G1 v	Arg	A1a		Tur	۵1 م	Thr	C1 17	25	T1.	T1.	C1	A	30		
25	CCA	GGG	AGA	GCA	TTT	TAT	GCA	ACA	GGA	GAA	ATA	ATA	GGA	GAT	ATA		
					35												
	Arg	G1n	Ala	His													
30			GCA														
	(2)		INFO	RMA'	rion	FOR	SEO	ID N	10: E	EE509	91						
			(i)						CERIS								
35					(A)		LENC	TH:	105	•							
					(B)				luc1e		cid						
					(C)				NESS		Singl	Le					
			(ii)	١	(D)				: I								
40			(ii)						nomi			١.					
			(,	•	(A)								۰ ،	ver1	90		
					(B)				TYP					gmen			
					(C)				CICAL					- 6	. •		
4 5			(iii	.)		INAL	SOU	RCE:	HIV	,							
,,					(E)				JAL I	SOLA	TE:						
			(iv)	1		DIAT			:								
			(v)		(C)		CLON		ME -	T.7.2 4. 1			<u> </u>	-			
			(vi)		PROP	ERTI	ES O	OEMU OEMU	ME:	WITH CF.	in E	nv G	ene			antigeni	_
50			,		dete	rmin	ant		, чоти	JD.		, T C 9 8	ca C	.use	TAGO	antigeni	C
			(vii	i)				CRIP	TION	:							

SEQ ID NO: EE509-1

5 10 Cys Thr Arg Pro Asn Asn Thr Arg Lys Gly Ile His Ile Gly TGT ACA AGA CCC AAC AAC AAT ACA AGG AAA GGT ATA CAT ATA GGA 20 25 30 10 Pro Gly Arg Ala Phe Tyr Ala Thr Gly Glu Ile Ile Gly Asp Ile CCG GGG AGA GCA TTT TAT GCA ACA GGA GAA ATA ATA GGA GAT ATA 35 15 Arg Gln Ala His Cys AGA CAA GCA CAT TGT (2) INFORMATION FOR SEQ ID NO: EE509-2 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 25 (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: 30 (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (v) POSITION IN GENOME: Within Env Gene 35 (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant SEQUENCE DESCRIPTION: (viii) 40 SEQ ID NO: EE509-2 5 10 Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Gly Ile His Ile Gly 45 TGT ACA AGA CCC AAC AAC AAT ACA AGG AAA GGT ATA CAT ATA GGA

50

					20					25					30	
	Pro	G13	Arg	Ala	Phe	ту т	Ala	Thr	: G13	7 Glu	ı Ile	: I1e	G13	Asp	Ile	
	CCG	GGG	AGA	GCA	TTI	CAT	GCA	ACA	A GGA	GAA	ATA	ATA	GGA	GAT	ATA	
5																
	_				35											
			Ala								٠.					
	AGA	CAA	GCA	CAT	TGI	•										
10																
	(2)		TATE	ODMA	T ()											
	(2)			UKUA	TION	TUK	SEQ	TD	NO:	EE51	0-1					
			(i)		(A)					STIC	5:					
					(B)		TYP	GTH:								
15					(C)						Acid					
					(D)				DNES		Sing	Te				
			(ii)				OLOG		Line ic R						
			(ii		KIN	D. (i	DIVA F ne	ro g	enom	1C K	NA tein	١.				
20			(,	(A)	<i>D</i> (1	SEO	HENC	E AS	PIO RMR	LY M): ETUA	n.	O***	1	
20					(B)		FRA	CMEN	T TV	PE:				agme:		
					(c)				TICA		1110	erna	I FI	agme	n C	
			(iii	i)					: HI							
	•		,		(E)					İSOL	ATE:					
25			(iv))	IMM	EDIA	TE S									
					(C)		CLO									
			(v)		POS	ITIO	N IN	GEN	OME:	Wit	hin 1	Env (Gene	_		
			(vi))	PRO	PERT	IES (OF S	EQUE	NCE:	Ex	pres	ses	cons	erved	antigenic
					det	ermi	nant					-				0 -
30			(vii	.i)	SEQ	JENC:	E DE	SCRI	PTIO	N:						
	650															
	SEQ	ו ענ	10:	EE51	10-1											
35																
	1				_					••						
	1 Cve	Th∽	A-~	Dwa	5	A	A	77%	A	10					15	
	Cys	Thr	Arg	Pro	Ser	Asn	Asn	Thr	Arg	Arg	Gly	Ile	His	Ile	G1 w	
	Cys	Thr ACA	Arg AGA	Pro CCC	Ser	Asn AAC	Asn AAT	Thr ACA	Arg AGA	Arg	Gly GGT	Ile ATA	His CAT	Ile ATA	G1 w	
	Cys	Thr ACA	Arg AGA	Pro CCC	Ser	Asn AAC	Asn AAT	Thr ACA	Arg AGA	Arg	Gly GGT	Ile ATA	His CAT	Ile ATA	G1 w	
40	Cys	Thr ACA	Arg AGA	Pro CCC	Ser AGT	Asn AAC	Asn AAT	Thr ACA	Arg AGA	Arg AGA	Gly GGT	Ile ATA	His CAT	Ile ATA	Gly GGT	
40	Cys TGT	ACA	AGA	CCC	Ser AGT 20	AAC	AAT	ACA	AGA	Arg AGA	GGT	ATA	CAT	ATA	Gly GGT	
40	Cys TGT Pro	ACA Gly	AGA Ala	CCC Phe	Ser AGT 20 Tyr	AAC	AAT	ACA Gly	AGA	Arg AGA 25 Ile	GGT	ATA G1v	CAT	ATA	Gly GGT 30	
40	Cys TGT Pro	ACA Gly	AGA	CCC Phe	Ser AGT 20 Tyr	AAC	AAT	ACA Gly	AGA	Arg AGA 25 Ile	GGT	ATA G1v	CAT	ATA	Gly GGT 30	
	Cys TGT Pro	ACA Gly	AGA Ala	CCC Phe	Ser AGT 20 Tyr	AAC	AAT	ACA Gly	AGA	Arg AGA 25 Ile	GGT	ATA G1v	CAT	ATA	Gly GGT 30	
40 45	Cys TGT Pro	ACA Gly	AGA Ala	CCC Phe	Ser AGT 20 Tyr TAT	AAC	AAT	ACA Gly	AGA	Arg AGA 25 Ile	GGT	ATA G1v	CAT	ATA	Gly GGT 30	
	Cys TGT Pro CCA	Gly GGA	AGA Ala GCA	Phe TTT	Ser AGT 20 Tyr	AAC	AAT	ACA Gly	AGA	Arg AGA 25 Ile	GGT	ATA G1v	CAT	ATA	Gly GGT 30	
	Cys TGT Pro CCA	Gly GGA	AGA Ala	Phe TTT	Ser AGT 20 Tyr TAT	AAC	AAT	ACA Gly	AGA	Arg AGA 25 Ile	GGT	ATA G1v	CAT	ATA	Gly GGT 30	
	Cys TGT Pro CCA	Gly GGA	Ala GCA	Phe TTT	Ser AGT 20 Tyr TAT	AAC	AAT	ACA Gly	AGA	Arg AGA 25 Ile	GGT	ATA G1v	CAT	ATA	Gly GGT 30	
	Cys TGT Pro CCA	Gly GGA	Ala GCA	Phe TTT	Ser AGT 20 Tyr TAT	AAC	AAT	ACA Gly	AGA	Arg AGA 25 Ile	GGT	ATA G1v	CAT	ATA	Gly GGT 30	

130

	(2))	INI	FORMA	MOITA	FOF	SEC	QI (NO:	EE51	l 0-2						
			(i))	SEQ	UEN	CE CH	LARA(CTERI	STIC	es:						
					(A))	LEN	GTH:	: 10	2							
5					(B)		TYF	E:	Nuc1	eic	Acid	l					
					(C)		STR	ANDE	EDNES	S:	Sing	1e					
					(D)		TOP	OLOG	SY:	Line	_						
			(ii	i)	KIN	D: 0	DNA	to g	enom	ic R	NA						
			(ii	.)	KIN	D (i	f pe	ptid	le or	pro	tein):					
10					(A)		SEQ	UENC	E AS	SEMB	LY M	ETHO	D:	Over	lap		
					(B)				T TY					agme			
					(C)		HYP	OTHE	TICA	L:							
			(ii	i)	ORI	GINA	L SO	URCE	: HI	V							
					(E)		IND	IVID	UAL	ISOL	ATE:						
15			(iv	•)	IMM	EDIA	TE S	OURC	E:					-			
					(C)		CLO	NE:									
			(v)		POS	ITIO			OME:	Wit	hin	Env	Gene	_			
			(vi)											erved	antige	nic
							nant		•			•					
20			(vi	ii)	SEQ	UENC	E DE	SCRI	PTIO	N:							
	SEQ	ID	NO:	EE5	10-2												
25	_																
	1				5					10					15		
	Cys	Thr	Arg	Pro	Ser	Asn	Asn	Thr	Arg	Arg	G1y	Ile	His	Ile	Gly		
	TGT	ACA	AGA	CCC	AGT	AAC	AAT	ACA	AGA	AGA	GGT	ATA	CAT	ATA	GGT		
30																	
		~1			_20					25					30		
	Pro	GIY	Ala	Phe	Tyr	Thr	Thr	Gly	Asp	Ile	Ile	Gly	Asp	Ile	Arg		
	CCA	GGA	GUA	TTT	TAT	ACA	ACA	GGA	GAC	ATA	ATA	GGA	GAT	ATA	AGA		
35					25												
	C1-	A 1 -	77.5 -	0	35												
			His	-													
	CAA	GCA	CAT	161													
40	(2)		TNE	י א אמר	T ON	FOR	CEO	TD 1	10. 1	20E1/		•				•	
	(2)		(i))IU IA	CION				TERIS					•			
			(1)		(A)	ENCI					•						
					(B)		LENG		102								
									Nucle			_					
45					(D)				ONESS		Singl	.е					
			(ii)) - T		LOGY		ines							
			(11)	,	VIND	: CI	JAN C	o ge	enomi	C KI	(A						

50

			(ii)	(A) (B)		SEQ!	UENC	E AS	prof SEMBI PE:	LY M	ETHO!						
5			(ii:	i)	(C) ORI (E)	GINA	L SOI	URCE	TICAI : HIV UAL	_	ATE:			, , , , , , ,				
			(iv)		EDIA:		OURC				*		_			_	
10			(v)							Witl								_
			(vi	,		PEKT. ermi:		JF 51	FOOF	NCE:	EX	pres	ses (cons	erved	anti	rgeni	C
			(vi	ii)	SEQ	UENC	E DE	SCRI	PTIO	N:								
15	SEQ	ID 1	10:	EE5	10–3													
	1				5					10					15			
20										Arg AGA					G1y GGT			
					20					25					30			
25		_			_			_	_	Ile ATA		-	_		_			
					35						•							
30			His															
	CAG	GUA	CAT	161														

	(2)	INFORMA	TION FOR SEQ ID NO: EE520-1
		(i)	SEQUENCE CHARACTERISTICS:
			(A) LENGTH: 105
5			(B) TYPE: Nucleic Acid
J			(C) STRANDEDNESS: Single
			(D) TOPOLOGY: Linear
		(ii)	KIND: cDNA to genomic RNA
		(ii)	KIND (if peptide or protein):
10			(A) SEQUENCE ASSEMBLY METHOD: Overlap
			(B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL:
		(iii)	(C) HYPOTHETICAL:ORIGINAL SOURCE: HIV
		(111)	(E) INDIVIDUAL ISOLATE:
		(iv)	IMMEDIATE SOURCE:
15		(2.)	(C) CLONE:
		(v)	POSITION IN GENOME: Within Env Gene
			PROPERTIES OF SEQUENCE: Expresses conserved
			antigenic determinant
		(viii)	
20			
	SEQ ID I	NO: EE52	.0-1
25	1		5 10 15
	_	Arg Pro	Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly
	TGT ACA	AGA CCC	AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA
•			
30			20 25 30
	Pro Gly	Arg Ala	Phe Tyr Ala Thr Gly Glu Ile Ile Gly Asp Ile
	CCA GGG	AGA GCA	TTT TAT GCA ACA GGA GAA ATA ATA GGA GAT ATA
35			35
	Arg Gln	Ala His (
	_	GCA CAT	
40	(2)	INFORMAT	ION FOR SEQ ID NO: EE520-2
			SEQUENCE CHARACTERISTICS:
			(A) LENGTH: 105
			(B) TYPE: Nucleic Acid
45			(C) STRANDEDNESS: Single
			(D) TOPOLOGY: Linear
			KIND: cDNA to genomic RNA
		(ii) K	(IND (if peptide or protein):
			(A) SEQUENCE ASSEMBLY METHOD: Overlap
50			(B) FRAGMENT TYPE: Internal Fragment
		,	(C) HYPOTHETICAL:

			(ii (iv		(E)		IND		: HI UAL E:		ATE:	-				
5			(v) (vi					GEN	OME: EQUE		•	pres	ses	cons	erved rmina	
			(vi	ii)	SEQ	JENC	E DE	SCRI	PTIO	N:	an	rike	nic	ue Le	rmina	ii C
10																
	SEQ	ID 1	NO:	EE5	20–2											
15	1				5					10					15	
75	Cys	Thr	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Lys	Ser	I1e	His	I1e	G1y	
	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGA	AAA	AGT	ATA	CAT	ATA	GGA	
					20					25					30	
20	Pro	G1y	Arg	Ala	Phe	Tyr	Ala	Thr	G1y		Ile	Ile	G1y	Asp		
	CCA	GGG	AGA	GCA	TTT	TAT	GCA	ACA	GGA	GAA	ATA	ATA	GGA	GAT	ATA	
					35											
25	Arg	Gln	Ala	His												
	_		GCA		_											
30	(2)		INFO	RMA!	NOI	FOR	SEQ	ID 1	NO: I	EE520	0–3					
30			(i)			ENC			TER IS		S:					
					(A) (B)		LEN(105 Nucle		h i a					
				•	(c)				DNESS		Singl	le				
35					(D)		TOP	DLOG	: I	Lines	ar					
			(ii) (ii)						nomi			١.				
			(11)	,	(A)	(11					tein) LY ME): (verl	an	
					(B)				TYF					gmen		
40			(iii	`	(C)	T37 4 T			CICAL	-		_				
			(111	.)	(E)	INAI			: HIV JAL I		TE •					
			(iv)		IMME	DIAT		URCE								
					(C)		CLO							_		
45			(v) (vi)						ME: EQUEN		nin E					
			\ + 		INOF	TK 1 1		AF SE	いくった/	OE:					rved	ı t
			(vii	i)	SEQU	ENCE	DES	CRIE	TION	i:			0			•

SEQ ID NO: EE520-3

5	1 5 10 15 Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA
10	20 25 30 Pro Gly Arg Ala Phe Tyr Ala Thr Gly Glu Ile Ile Gly Asp Ile CCA GGG AGA GCA TTT TAT GCA ACA GGA GAA ATA ATA GGA GAT ATA
15	35 Arg Gln Ala His Cys AGA CAA GCA CAT TGC
20	(2) INFORMATION FOR SEQ ID NO: EE528-1 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single
25	(D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment
30	(C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE:
35	(C) CLONE: (v) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant (viii) SEQUENCE DESCRIPTION:
40	SEQ ID NO: EE528-1
45	1 5 10 15 Cys Thr Arg Pro Asn Asn Asn Thr Arg Arg Gly Ile His Ile Gly TGT ACA AGA CCC AAC AAC AAT ACG AGG AGA GGT ATA CAT ATA GGA

55

	Pro CCA	G1y GGG	Arg AGA	Ala GCA	20 Val GTI	Туг	Ala GCA	Thr ACA	Asp GAT	25 Lys	Ile	Ile ATA	Gly GGA	Asn AAT	30 Ile ATA
5															
			Ala GCA												
10		0111	0011	0111	101										
	(2)		INF	ORMA	SEQ (A)	UENC	E CH	ID :		STIC					
15					(B) (C) (D)			E: : ANDE: OLOG	DNES		Acid Sing ar				
20			(ii (ii		KIN KIN (A) (B)	D: c D (i	DNA f pe SEQ	to g ptide UENC: GMEN:	enom e or E AS	ic R pro SEMB	NA tein LY M				
			(ii:	i)	(C) ORIG		L SO	OTHE: URCE	: HI		Δ Τ F •				
							TIME								
25			(iv)		(C)		TE S	OURCI NE:	E: 						
25			(iv) (v) (vi)		(C) POS	ITIO	TE S CLO N IN	OURC	E: OME:	Wit	hin Ex	pres	ses (erved
25 30			(v))	(C) POS: PRO	ITIO PERT	TE S CLO N IN IES	OURCI NE: GENO	E: OME: EQUE	With	hin Ex	pres	ses (erved rminan
	SEQ	ID N	(v) (vi))	(C) POS: PROI SEQI	ITIO PERT	TE S CLO N IN IES	OURCI NE: GENO OF SI	E: OME: EQUE	With	hin Ex	pres	ses (
30	SEQ 1	ID N	(v) (vi)) li)	(C) POS: PROI SEQI	ITIO PERT	TE S CLO N IN IES	OURCI NE: GENO OF SI	E: OME: EQUE	With NCE:	hin Ex	pres	ses (rminan
	1 Cys	Thr	(v) (vi) (vii) Li) EE52 Pro	(C) POS: PROI SEQU 28-2	ITIO PERT JENC	TE S CLO N IN IES E DE:	OURCI NE: GENO OF SI	E: OME: EQUE PTION	With NCE: N:	hin Expan	pres tige	ses onic of	iete:	rminan 15 Glv
30 35	1 Cys	Thr	(v) (vi) (vii) Li) EE52 Pro	(C) POS: PROI SEQU 28-2 Asn AAC	ITIO PERT JENC	TE S CLO N IN IES E DE:	OURCI NE: GENO OF SI SCRII	E: OME: EQUE PTION	With NCE: N: 10 Arg AGA	hin Expan	pres tige	ses onic of	iete:	15 Gly GGA
<i>30</i> 35	1 Cys TGT	Thr ACA	(v) (vi) (vii) (vii) Arg AGA	Pro CCC	(C) POS: PROI SEQU 28-2 5 Asn AAC	ITIO PERT JENC Asn AAC	TE SCORE CLOCK CLOCK CLOCK CLOCK CLOCK CLOCK CLOCK CLOCK CLOCK CLCC CLCC	OURCI NE: GEN(OF SI SCRII Thr ACG	E: DME: EQUER PTION Arg AGG	With NCE: N: 10 Arg AGA	hin Expans	pres tigen Ile ATA	His CAT	Ile ATA	15 Gly GGA
30	1 Cys	Thr ACA	(v) (vi) (vii) (vii) Arg AGA	Pro CCC	(C) POS: PROI SEQU 28-2 5 Asn AAC	ITIO PERT JENC Asn AAC	TE SCORE CLOCK CLOCK CLOCK CLOCK CLOCK CLOCK CLOCK CLOCK CLOCK CLCC CLCC	OURCI NE: GEN(OF SI SCRII Thr ACG	E: DME: EQUER PTION Arg AGG	With NCE: N: 10 Arg AGA	hin Expans	pres tigen Ile ATA	His CAT	Ile ATA	15 Gly GGA
30 35	1 Cys TGT	Thr ACA	(v) (vi) (vii) (vii) Arg AGA	Pro CCC	(C) POS: PROD SEQUENTED SEQUENTED SEQUENTE SEQUENTED SEQUENTED SEQUENTED SEQUENTED SEQUENTED SEQUENTED SEQ	ITIO PERT JENC Asn AAC	TE SCORE CLOCK CLOCK CLOCK CLOCK CLOCK CLOCK CLOCK CLOCK CLOCK CLCC CLCC	OURCI NE: GEN(OF SI SCRII Thr ACG	E: DME: EQUER PTION Arg AGG	With NCE: N: 10 Arg AGA	hin Expans	pres tigen Ile ATA	His CAT	Ile ATA	15 Gly GGA
35	1 Cys TGT	Thr ACA Gly GGG	(vi) (vii) (vii) NO: Arg AGA	Pro CCC	(C) POS: PROD SEQUENTE SEQUENTE SEQUENT	ITIO PERT JENC Asn AAC	TE SCORE CLOCK CLOCK CLOCK CLOCK CLOCK CLOCK CLOCK CLOCK CLOCK CLCC CLCC	OURCI NE: GEN(OF SI SCRII Thr ACG	E: DME: EQUER PTION Arg AGG	With NCE: N: 10 Arg AGA	hin Expans	pres tigen Ile ATA	His CAT	Ile ATA	15 Gly GGA

136

50

	(2)	INFORMATION FOR SEQ ID NO: EE528-3 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 105
5		(B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear
10		 (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL:
15		(iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE:
15		(C) CLONE: (v) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant
20	SEQ ID	(viii) SEQUENCE DESCRIPTION:
25	1 Cys Thr TGT ACA	5 10 15 Arg Pro Asn Asn Asn Thr Arg Arg Gly Ile His Ile Gly AGA CCC AAC AAC AAT ACG AGG AGA GGT ATA CAT ATA GGA
		20 25 30
30	Pro Gly CCA GGG	Arg Ala Val Tyr Ala Thr Asp Lys Ile Ile Gly Asn Ile AGA GCA GTT TAT GCA ACA GAT AAA ATA ATA GGA AAT ATA
35		35 Ala His Cys GCA CAT TGT
40	(2)	INFORMATION FOR SEQ ID NO: EE529-1 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single
45		(D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap
		(B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL:
50		

	(iii) (iv)	ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: IMMEDIATE SOURCE: (C) CLONE:							
	(v) (vi)	POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant							
	(viii)	SEQUENCE DESCRIPTION:							
SEQ ID	NO: EE5	29–1							
1		5 10 15							
Cys Thr	Arg Pro	Ser Asn Asn Thr Arg Arg Ser Ile Pro Ile Gly							
TGT ACA	AGA CCC	AGC AAC AAT ACA AGA AGA AGT ATA CCT ATA GGA							
		20 25 30							
Pro Gly CCA GGG	Arg Ala AGA GCA	Phe Tyr Thr Thr Gly Asp Ile Ile Gly Asp Ile TTT TAT ACA ACA GGA GAT ATA ATA GGA GAT ATA							
		35							
	Ala His GCA CAT								
(2)	INFORMA	TION FOR SEQ ID NO: EE529-2							
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single							
	(ii)	(D) TOPOLOGY: Linear KIND: cDNA to genomic RNA							
	(ii)	KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL:							
	(iii)	ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE:							
	(iv)	IMMEDIATE SOURCE: (C) CLONE:							
	(v)	POSITION IN GENOME: Within Env Gene							
	(vi)	PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant							
	(viii)	SEQUENCE DESCRIPTION:							

SEQ ID NO: EE529-2

	1				5					10)				15
	Cys	Thr	Arg	, Pro	Asn	Asn	Asn	Thr	Arg	Lys	s Sei	r Ile	Thr	Ile	Gly
	TGI	' ACA	AGA	CCI	CAAC	AAI	CAA	ACA	AGA	AAA	A AG	ATA 1	ACT	ATA	GGA
5															
J											_				
	n	01			20					25					30
	Pro	GIY	Arg	ALS	Phe	Tyr	Ala	Thr	Gly	Asp	Ile	Ile	Gly	Asp	Ile
	CCG	GGG	AGA	GCA	TTT	TAT	GUA	ACA	GGA	GAC	; ATA	ATA	GGA	GAT	ATA
10															
					35										
	Arg	G1n	Ala	His	Cys										
					TGT										
			- 000												
15															
	(2)		INF	ORMA	TION	FOR	SEQ	ID	NO:	EE53	3–1				
			(i)		SEQ	UENC	E CH	ARAC	TERI	STIC	s:				
					(A)		LEN	GTH:	10	5					
20					(B)						Acid				
20					(C)			ANDE			Sing	1e			
					(D)			OLOG		Line					
			(ii			D: cl									
			(ii)		0 (1					tein			_	
25					(A)							ETHO		verl	
					(B)			GMEN'			int	erna.	l Fra	agmen	ıt
			(ii:	: \	-	GINAI		OTHE:							
			(11.	.,	(E)	3 T 14W 1		IVID			A TT .				
			(iv))		EDIAT				IOUL	WIE:				
30			(,	(C)	JD IM	CLO		٠.						
			(v)			TION			ME:	Wit	hin	Env (lone	-	
			(vi)		POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved									rved	
			•						- • • -						minant
			(vii	ii)	SEQU	JENCE	DES	CRI	PTIO	٧:		6			
35															
							,								
	SEQ	ID N	10:	EE53	33–1						•				
40	1				5					10					
	_	Th-	۸	D=0	-	A	۸	TL	A	10	_		_		15
	ТСТ	VCV TIII	VCV UTR	CCC	Asn	AAC	ASII	TUL	ACA	Lys	Ser	116	Pro	116	Gly
	101	nun	nun	CCC	AAC	AAC	WVI	ACA	AGA	AAA	AGT	ATA	CCT	ATA	GGA
45					20					25					30
	Pro	G1v	Arg	Ala	Phe	Tvr	Thr	Thr	G1 v		T16	T1_	C1 w	A a ~	JU T1a
	CCA	GGG	AGA	GCA	TTT	TAT	ACA	ACA	GGA	GAT	ATA	ATA	GGA	CAT	ATA
	-												Jun	JAI	
50															

					35	ı										
	Arg	G1n	Ala	His	Cys											
	AGA	CAA	GCA	CAT	TGT	•										
5																
	(-)															
	(2)			ORMA												
			(i)		SEQ (A)		E CH	AKAC GTH:			S:					
					(B)		TYP		10 Nucl	-	Acid					
10					(c)				DNES		Sing					
					(D)			OLOG		Line	_					
			(ii)			DNA			ic R	NA					
			(ii)			f pe									
15					(A)								D:			
					(B)				T TY		Int	erna	1 Fr	agme	nt	
			(22	٠,	(C)				TICA				_	-		
			(ii	1)	(E)	GINA	L SO		: HI		A TT .					
			(iv)		EDTA	TE S			1901	TIE.					
20			•		(C)		CLO									
			(v)		POS	ITIO	N IN	GEN	OME:	Wit	hin	Env (Gene		•	
			(vi)	PRO	PERT	IES	OF S	EQUE	NCE:					erved	
									·		an	tige	nic (dete:	rmina	nt
25			(VI	ii)	SEQ	UENC	E DE	SCR1.	PTIO	N:						
	SEQ	ID I	NO:	EE5	33–2											
30	_				_											
	1	771 1	A .	_	5			_		_10			_		15	
	TCT	Inr	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Lys	Ser	Ile	Pro	Ile	Gly	
	161	AUA	nun	CCC	MAC	AAC	WAI	AUA	AGA	AAA	AGT	ATA	CCT	ATA	GGA	
35					20					25					30	
	Pro	G1y	Arg	Ala	Phe	Tyr	Thr	Thr	G1y	Asp	Ile	Ile	G1y	Asp	Ile	
	CCA	GGG	AGA	GCA	TTT	TAT	ACA	ACA	GGA	GAT	ATA	ATA	GGA	GAT	ATA	
40					35											
	Aro	Gln	A1 a	His												
				CAT												
45																-
	(2)			ORMA1												
	٠		(i)		-	ENC	E CHA				S:	•				
					(A) (B)		LENC		105							
					(C)		TYPE		Nucle ONESS			١٥				
50					(0)		O TIVE	لانتاسات	A1000		Singl					

5	(ii) (ii) (iv) (v) (vi)	KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: IMMEDIATE SOURCE: (C) CLONE: POSITION IN GENOME: Within Env Gene
15	(viii	
	SEQ ID NO: E	E533-3
20	1 Cys Thr Arg P TGT ACA AGA C	5 10 15 ro Asn Asn Asn Thr Arg Lys Ser Ile Pro Ile Gly CC AAC AAC AAT ACA AGA AAA AGT ATA CCT ATA GGA
25	Pro Gly Arg A CCA GGG AGA G	20 25 30 la Phe Tyr Thr Thr Gly Asp Ile Gly Asp Ile CA TTT TAT ACA ACA GGA GAT ATA ATA GGA GAT ATA
30	Arg Gln Ala H AGA CAA GCA CA	
35	(2) INFORM (1)	AATION FOR SEQ ID NO: EE535-1 SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single
40	(ii) (ii)	(D) TOPOLOGY: Linear KIND: cDNA to genomic RNA KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment
45	(iii) (iv)	(C) HYPOTHETICAL: ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: IMMEDIATE SOURCE:
50	(v)	(C) CLONE: POSITION IN GENOME: Within Env Gene

			(vi)	PRO	PERT	IES	OF S	EQUE	NCE:		-			erved	
			(vi	ii)	SEQ	UENC	E DE	SCRI	PTIO	N:	an	rige	nıc	aete	rminan	τ
5	SEQ	ID	NO:	EE5	35–1											
10	1 Cys TGT	Thr ACA	Arg AGA	Pro CCC	5 Asn AAC	Asn AAC	Asn AAT	Thr ACA	Arg AGA	10 Lys AAA	Ser	Ile ATA	His CAT	Ile ATA	15 Gly GGA	
15	Pro CCA	G1y GGG	Arg AGA	Ala GCA	20 Phe TTT	Tyr TAT	Ala GCA	Thr ACA	Gly GGA	25 Glu GAA	Ile ATA	Ile ATA	Gly GGA	Asp GAT	30 Ile ATA	
20	_			His CAT	-											
25	(2)		INF(i)	ORMA:	TION SEQU (A) (B) (C)	UENC:	E CHA LENG TYPI	ARAC:	TERI: 10: Nucl	STIC 5 eic <i>i</i>	S:	le				
30			(ii (ii		KINI (A) (B)); cl	DNA (F pej SEQU	to ge	enom: e or E AS	pro	NA tein LY M	ETHO:		Over:	•	
35			(ii:	-	(E)		L SOI	VIDU DURCE	HIV	_	ATE:					
40			(vi) (vi)		PROF	PERT	N IN IES (E DES	OF SE	EQUE	NCE:	Exp	pres	ses (erved minant	:
4 5	SEQ	ID N	10:	EE53	35–2											
50	1 Cys TGT	Thr ACA	Arg AGA	Pro CCC	5 Asn AAC	Asn AAC	Asn TAA	Thr ACA	Arg AGA	10 Lys AAA	Ser AGT	Ile ATA	His CAT	Ile ATA	15 Gly GGA	

142

			20 25 30
	Pro G1	y Arg Ala	a Phe Tyr Ala Thr Gly Glu Ile Ile Gly Asp Ile
			A TTT TAT GCA ACA GGA GAA ATA ATA GGA GAT ATA
5			
			35
	Ara C1.	n 410 Ui	
	_	n Ala His	The state of the s
	AGA CA	A GCA CAT	1 161
10			
70	4 - 5		
	(2)	INFORMA	ATION FOR SEQ ID NO: EE543-1
		(i)	SEQUENCE CHARACTERISTICS:
			(A) LENGTH: 105
			(B) TYPE: Nucleic Acid
15			(C) STRANDEDNESS: Single
			(D) TOPOLOGY: Linear
		(ii)	KIND: cDNA to genomic RNA
		(ii)	KIND (if peptide or protein):
		(11)	
20			(A) SEQUENCE ASSEMBLY METHOD: Overlap
20			(B) FRAGMENT TYPE: Internal Fragment
			(C) HYPOTHETICAL:
		(iii)	ORIGINAL SOURCE: HIV
			(E) INDIVIDUAL ISOLATE:
		(iv)	IMMEDIATE SOURCE:
25			(C) CLONE:
		(v)	POSITION IN GENOME: Within Env Gene
		(vi)	PROPERTIES OF SEQUENCE: Expresses conserved
		, ,	antigenic determinant
		(viii)	SEQUENCE DESCRIPTION:
30		(bigomica babonii i ion.
	SEQ ID	NO. FFS	43–1
	SEQ ID	NO. EES	143-1
35			_
33	1	_	5 10 15
	Cys Thr	Arg Pro	Asn Asn Asn Thr Arg Arg Gly Ile Ser Ile Gly
	TGT ACA	AGA CCC	AAC AAC AAT ACA AGA AGG GGT ATA AGT ATA GGA
40			20 25 30
	Pro Glv	Arg Ala	Phe Val Tyr Ala Thr Lys Ile Ile Gly Asp Ile
	CCA GGG	AGA GCA	TTT GTT TAT GCA ACA AAA ATA ATA GGA GAT ATA
	0011 000	11011 0011	TIT OIT INT OON NON NAM NIM NEW TAIN IN
45			25
			35
		Ala His	-
	AGA CAA	GCA CAT	TGT
50			

143

	(2)	INFORMAT	ION FOR SEQ ID NO: EE543-2
	• •		SEQUENCE CHARACTERISTICS:
			(A) LENGTH: 105
			(B) TYPE: Nucleic Acid
5			(C) STRANDEDNESS: Single
			(D) TOPOLOGY: Linear
			KIND: cDNA to genomic RNA
			KIND (if peptide or protein):
			(A) SEQUENCE ASSEMBLY METHOD: Overlap
10			(B) FRAGMENT TYPE: Internal Fragment
			(C) HYPOTHETICAL:
			ORIGINAL SOURCE: HIV
			(E) INDIVIDUAL ISOLATE:
			IMMEDIATE SOURCE:
15			(C) CLONE:
			POSITION IN GENOME: Within Env Gene
		(vi)	PROPERTIES OF SEQUENCE: Expresses conserved
			antigenic determinant
20		(viii)	SEQUENCE DESCRIPTION:
	200 70	NO - EEC/	2 0
	SEQ ID	NO: EE54	3-2
25	_		
	1		5 10 15
			Asn Asn Asn Thr Arg Lys Ser Ile Thr Ile Gly
	TGT ACA	AGA CCC	AAT AAC AAT ACA AGA AAA AGT ATA ACT ATA GGA
30			
00			20 25 30
			Phe Tyr Ala Thr Gly Glu Ile Ile Gly Asp Ile
	CCA GGG	AGA GCA	TTT TAT GCA ACA GGA GAA ATA ATA GGA GAT ATA
35			
35			35
	Arg Gln	Ala His	Cys
	AGA CAA	GCA CAT	TGT
40	(2)	INFORMAT	ION FOR SEQ ID NO: EE543-3
		(i)	SEQUENCE CHARACTERISTICS:
			(A) LENGTH: 105
			(B) TYPE: Nucleic Acid
			(C) STRANDEDNESS: Single
45			(D) TOPOLOGY: Linear
			KIND: cDNA to genomic RNA
			KIND (if peptide or protein):
			(A) SEQUENCE ASSEMBLY METHOD: Overlap
			(B) FRAGMENT TYPE: Internal Fragment
50			72) TIGOTHUI TITDI THEETHUI LIURMEHE

			(C) HYPOTHETICAL:
		(iii)	ORIGINAL SOURCE: HIV
			(E) INDIVIDUAL ISOLATE:
_		(iv)	IMMEDIATE SOURCE:
5			(C) CLONE:
		(v)	POSITION IN GENOME: Within Env Gene
		(vi)	PROPERTIES OF SEQUENCE: Expresses conserved
			antigenic determinant
		(viii)	
10			
	SEQ ID	NO: EE5	543–3
	•		
15	1		5 10 15
	Cys Th	r Arg Pro	Asn Asn Asn Thr Arg Lys Ser Ile Thr Ile Gly
	TGT AC	A AGĂ CCC	C AAT AAC AAT ACA AGA AAA AGT ATA ACT ATA GGA
20			20 25 30
	Pro G1	y Arg Ala	Phe Tyr Ala Thr Gly Glu Ile Ile Gly Asp Ile
	CCA GG	G AGA GCA	TTT TAT GCA ACA GGA GAA ATA ATA GGA GAT ATA
25			35
	Arg Gl	n Ala His	Cys
	_	A GCA CAT	
30	(2)	INFORMA	TION FOR SEQ ID NO: EE558-1
		(i)	SEQUENCE CHARACTERISTICS:
			(A) LENGTH: 105
			(B) TYPE: Nucleic Acid
			(C) STRANDEDNESS: Single
35			(D) TOPOLOGY: Linear
		(ii)	KIND: cDNA to genomic RNA
		(ii)	KIND (if peptide or protein):
			(A) SEQUENCE ASSEMBLY METHOD: Overlap
40			(B) FRAGMENT TYPE: Internal Fragment
40			(C) HYPOTHETICAL:
		(iii)	ORIGINAL SOURCE: HIV
			(E) INDIVIDUAL ISOLATE:
		(iv)	IMMEDIATE SOURCE:
45			(C) CLONE:
45		(v)	POSITION IN GENOME: Within Env Gene
		(vi)	PROPERTIES OF SEQUENCE: Expresses conserved
			antigenic determinant
		(viii)	SEQUENCE DESCRIPTION:
E0			
5 <i>0</i>			

	SEQ ID NO: EE558-1	
5	Cys Thr Arg Pro Asn Asn Asn Thr Arg Ly	
	TGT ACA AGA CCC AAC AAC AAT ACA AGA AA	AA AGT ATA CAT ATA GGA
10	20 2 Pro Gly Arg Ala Phe Tyr Ala Thr Gly Gl CCA GGG AGA GCA TTT TAT GCA ACA GGA GA	
15	35	
15	Arg Gln Ala His Cys	
	AGA CAA GCA CAT TGC	
20	(2) INFORMATION FOR SEQ ID NO: EE5 (i) SEQUENCE CHARACTERISTI (A) LENGTH: 105 (B) TYPE: Nucleic (C) STRANDEDNESS: (D) TOPOLOGY: Lin	ICS:
25	(ii) KIND: cDNA to genomic(ii) KIND (if peptide or pr	RNA cotein): MBLY METHOD: Overlap
30	(iii) ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISO (iv) IMMEDIATE SOURCE: (C) CLONE:	DLATE:
35	(v) POSITION IN GENOME: Wi	thin Env Gene
35	(vi) PROPERTIES OF SEQUENCE	E: Expresses conserved antigenic determinant
	(viii) SEQUENCE DESCRIPTION:	.
40	SEQ ID NO: EE558-2	
		15
4 5	Cys Thr Arg Pro Asn Asn Asn Thr Arg Ly TGT ACA AGA CCC AAC AAC AAT ACA AGA AA	

55

50

Pro Gly Arg Ala Phe Tyr Ala Thr Gly Glu Ile Ile Gly Asp Ile CCA GGG AGA GCA TTT TAT GCA ACA GGA GAA ATA ATA GGA GAT ATA

35

		Ala His Cys GCA CAT TGC	
5			
10	(2)		OR SEQ ID NO: EE558-3 NCE CHARACTERISTICS: LENGTH: 105 TYPE: Nucleic Acid STRANDEDNESS: Single TOPOLOGY: Linear
15		(ii) KIND:	cDNA to genomic RNA (if peptide or protein): SEQUENCE ASSEMBLY METHOD: Overlap FRAGMENT TYPE: Internal Fragment HYPOTHETICAL:
20		(iii) ORIGIN (E)	NAL SOURCE: HIV INDIVIDUAL ISOLATE: LATE SOURCE:
		(v) POSITI (vi) PROPER	CLONE: ION IN GENOME: Within Env Gene RTIES OF SEQUENCE: Expresses conserved antigenic determinant
25		(V111) SEQUEN	NCE DESCRIPTION:
	SEQ ID N	O: EE558-3	
30			10 15 on Asn Thr Arg Lys Ser Ile His Leu Gly AC AAT ACA AGA AAA AGT ATA CAT CTA GGG
35			25 30 Or Thr Thr Gly Asp Ile Ile Gly Asp Ile AT ACA ACA GGA GAC ATA ATA GGA GAT ATA
40		35 Ala His Cys GCA CAT TGT	
45			OR SEQ ID NO: EE594-1 ICE CHARACTERISTICS: LENGTH: 105 TYPE: Nucleic Acid
50			

147

55

BNSDOCID: <EP___0471407A2_I_>

			(ii	`	(C) (D)		TOP	ANDE OLOG	Y:	Line		1e				
			(ii					ptid				١.				
5			\	• /		2 (1	SEO	UENC	E AS	SEMB	I.Y M	FTHO	D:	0ver	lan	
					(B)									agme		
					(c)			OTHE						-6		
			(ii	i)	ORI	GINA	L SO	URCE	: HI	v		-				
10					(E)		IND	IVID	UAL	ISOL	ATE:	_				
70			(iv	•)	IMM	EDIA	TE S	OURC	E:							
					(C)		CLO						,	_		
			(v)					GEN				Env	Gene	!		
			(vi)	PRO	PERT	IES	OF S	EQUE	NCE:	Ex	pres	ses	cons	erved	
15											an	tige	nic	dete	rminar	nt
			(vi	ii)	SEQ	UENC	E DE	SCRI	PTIO	N:						
	CEO	TD 1	NO.	EE5	07. 1											
	SEQ	ID	NO:	EES	94-1											
20																
	1				5					10					15	
		Thr	Arg	Pro		Asn	Asn	Thr	MET		Ser	T1e	Hic	Ile		
	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACA	ATG	AAA	AGT	ATA	CAT	ATA	CCA	
0.5													V		0011	
25																
					20					25					30	
	Pro	G1 y	Arg	Ala	Phe	Tyr	Thr	Thr	G1y	Gln	I1e	Ile	G1y	Asp	I1e	
	CCA	GGG	AGA	GCA	TTT	TAT	ACA	ACA	GGA	CAA	ATA	ATA	GGA	GAT	ATA	
30																
					35											
	_	Gln			•											
	AGA	CAA	GÇA	CAT	IGI											
35																
	(2)		INFO	ORMA?	TTON	FOR	SEO	TD A	<u>ا</u> ۱۸۰	7650/	2					
	\-/		(i)					RACI								
			,		(A)		LEN		105		- •					
40					(B)		TYPE		lucle		Acid					
40					(C)			NDEI			Sing	le				
					(D)			LOGY		Lines				•		
			(ii))	KINI): cI	ONA t	o ge	nomi	ic RN	NA.					
			(ii))	KINI		per	tide	or	prot	ein)					
45					(A)			JENCE): (Over1	lap	
	•				(B)		FRAC	MENT	TYP	E:				agmer		
					(C)			THET								
			(iii	L)		INAI		IRCE:								
			(2)		(E)			VIDU		SOLA	TE:					
50			(iv)	,	IMME	LAIU	E SC	URCE	::							

(C) CLONE: (v) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinan
(viii) SEQUENCE DESCRIPTION:
SEQ ID NO: EE594-2
1 5 10 15
Cys Thr Arg Pro Asn Asn Asn Thr MET Lys Ser Ile His Ile Gly
TGT ACA AGA CCC AAC AAC AAT ACA ATG AAA AGT ATA CAT ATA GGA
20 25 30
Pro Gly Arg Ala Phe Tyr Thr Thr Gly Gln Ile Ile Gly Asp Ile
CCA GGG AGA GCA TTT TAT ACA ACA GGA CAA ATA ATA GGA GAT ATA
35
Arg Gln Ala His Cys
AGA CAA GCA CAT TGT
(2) INFORMATION FOR SEQ ID NO: EE594-3
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 105
(B) TYPE: Nucleic Acid
(C) STRANDEDNESS: Single
(D) TOPOLOGY: Linear
(ii) KIND: cDNA to genomic RNA
<pre>(ii) KIND (if peptide or protein):</pre>
(A) SEQUENCE ASSEMBLY METHOD: Overlap
(B) FRAGMENT TYPE: Internal Fragment
(C) HYPOTHETICAL:
(iii) ORIGINAL SOURCE: HIV
(E) INDIVIDUAL ISOLATE:
(iv) IMMEDIATE SOURCE:
(C) CLONE:
<pre>(v) POSITION IN GENOME: Within Env Gene (vi) PROPERTIES OF SEQUENCE: Expresses conserved</pre>
*
antigenic determinant (viii) SEQUENCE DESCRIPTION:
(1111) DEGOTATION:

55

	1				5					10)				15
	Cys	Thr	Arg	Pro	Asn	Asn	Asn	Thr	MEI	Lys	Ser	: Ile	His	Ile	Gly
	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACA	ATG	AAA	AGI	ATA	CAI	ATA	GGA
5															
					00										
	D	C1	۸	41-	20		m	PITTL		25		**	1		30
	CCA	GLY	VCV WLR	CCV WIS	rne TTT	Tyr	TUL	TUI	CCA	GID	116	116	GIY	Asp	Ile ATA
	COA	000	non	GUA	111	INI	AUA	ACA	GGA	CAA	MIN	AIA	GGA	GAI	AIA
10															
					35										
	Arg	Gln	Ala	His	Сув										
	AGA	CAA	GCA	CAT	TGT										
15															
	(2)								NO:						
			(i)			UENC.			TERI		S:				
					(A) (B)			GTH:	10 Nucl	_	A				
20					(C)		TYP		DNES		Acia Sing				
					(D)			OLOG		s. Line	_	Te			
			(ii)					enom						
			(ii						e or):			
25			•	•	(A)	•			E AS				D:	0ver	lap
20					(B)				T TY					agme	
					(C)				TICA						·
			(ii:	i)		GINA			: HI						
					(E)				UAL	ISOL	ATE:				
30			(iv))		EDIA:			E:						
			(v)		(C)	TTIO	CLO			****				-	
			(vi)	_					OME: EQUEI						
			(*1,	,	IKO	EKI.	res (JF 5.	eQuei	VCE:					erved rminant
			(vii	ii)	SEOU	JENCI	E DES	SCRI	PTIO	V :	an	rige	iiie (ae Le	rminant
35			•	•	_					•					
	SEQ	ID N	10:	EE62	28-1										
40	•				-										
	1 C***	ጥե	A	D	5	A		PP11		_10					15
	TOT	TUL	ACA	rro	ASD	ASD	Asn	Thr	Arg	Lys	Gly	Ile	His	MET	Gly
	161	AUA	AGA	CCC	AAC	AAI	AAI	ACA	AGA	AAA	GGT	ATA	CAT	ATG	GGA
											•				
45					20					25					30
	Pro	G1y	Lys	Ala		Tvr	Ala	Thr	Gly		م 1 آ	T1 =	G1 w	Δεσ	JU Tle
	CCA	GGG	AAA	GCA	TTT	TAT	GCA	ACA	GGG	GAC	ATA	ATA	GGA	AAT	ATA
			-						-50			*****	JGA	*###	*****
5 0															
,,,															

150

Arg Gln	35 Ala His Cys		
AGA CAA	GCA CAT TGT		
		•	
(2)	(i) SEQUE	ENCE CHARACTERISTICS: LENGTH: 105	
	(C) (D)	STRANDEDNESS: Single TOPOLOGY: Linear	
	(ii) KIND	(if peptide or protein):	
	(B) (C)	FRAGMENT TYPE: Internal Fragment HYPOTHETICAL:	
			-
	· ·	ERTIES OF SEQUENCE: Expresses conserved	
	(viii) SEQUE		
SEQ ID 1	NO: EE628-2		
1	5	10 15	
Cys Thr TGT ACA	Arg Pro Asn A AGA CCC AAC A	sn Asn Thr Arg Lys Gly Ile His MET Gly AC AAT ACA AGA AAA GGT ATA CAT ATG GGA	
	20	25	
Pro Gly CCA GGG	Lys Ala Phe T	yr Ala Thr Gly Asp Ile Ile Gly Asn Ile	
	35		
	Ala His Cys		
(2)		OR SEQ ID NO: EE628-3 NCE CHARACTERISTICS:	
	SEQ ID 1 Cys Thr TGT ACA Pro Gly CCA GGG Arg Gln AGA CAA	Arg Gln Ala His Cys AGA CAA GCA CAT TGT (2) INFORMATION (i) SEQUI (A) (B) (C) (D) (ii) KIND (ii) KIND (A) (B) (C) (iii) ORIGI (E) (iv) IMMEI (C) (v) POSIT (vi) PROPE (viii) SEQUE SEQ ID NO: EE628-2 1	Arg Cln Ala His Cys AGA CAA GCA CAT TGT (2) INFORMATION FOR SEQ ID NO: EE628-2

5		(ii) (ii)	(D) TOPOLOGY: Linear KIND: cDNA to genomic RNA KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL:
		(iii)	ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE:
10		(iv)	IMMEDIATE SOURCE: (C) CLONE:
		(v) (vi)	POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant
15		(viii)	SEQUENCE DESCRIPTION:
	SEQ ID N	io: EE6	28-3
20			5 10 15 Asn Asn Asn Thr Arg Lys Gly Ile His MET Gly
	TGT ACA	AGA CCC	AAC AAC AAT ACA AGA AAA GGT ATA CAT ATG GGA
25	Pro Gly CCA GGG	Lys Ala AAA GCA	20 25 30 Phe Tyr Ala Thr Gly Asp Ile Ile Gly Asn Ile TTT TAT GCA ACA GGG GAC ATA ATA GGA AAT ATA
30	Arg Gln AGA CAA		· ·
35	(2)	INFORMAT	TION FOR SEQ ID NO: EE639-1 SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single
40		(ii) (ii)	(D) TOPOLOGY: Linear KIND: cDNA to genomic RNA KIND (if peptide or protein):
45			(A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL:
		(iii) (iv)	ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: IMMEDIATE SOURCE:
50		\ - ·/	(C) CLONE:

		(v) (vi)			N IN				Ex	pres	ses	cons	erve	
		(vi	ii)	SEQ	UENC	E DE	SCRI	PTIO	N:	an	tige	nic	aete	rmina	an
SEQ	ID	NO:	EE6	39–1											
,				-											
l Cve	Thr	Ara	Pro	5 4 sp	Acn	Hic.	Th.∽	C1	10	A ===	T1.	Th-	T	15 Gly	
TGT	ACA	AGA	CCC	AAC	AAC	CAT	ACA	GAA	AAA	CGT	ATA	ACT	CTA	GGA	
				20					25					20	
Pro	Glv	Aro	Va 1	_	Tvr	Thr	Thr	C1 v		Tla	T1_	C1 vr	400	30 T10	
CCG	GGG	AGA	GTA	CTT	TAT	ACA	ACA	GGA	AGA	ATA	ATA	GGA	GAT	ATA	
				35											
Arg	Arg	Ala	His												
_	_		CAT	-											
(2)		INFO	ORMAT	LION	FOR	SEQ	א מז	io. F	FF630	2_2					
		(i)				E CHA LENG TYPE STRA	RACT TH:	ERIS 105 Jucle NESS	STICS ic A	S: Acid Singl	.e				
		(ii) (ii)		KINI		NA t	o ge	nomi	c RN	IA) :				
				(A) (B) (C)		SEQU FRAG HYPO	MENI	TYP	E:			Fre	ver1 gmen	-	
		(iii	.)	ORIG	INAI	SOU INDI		HIV AL I		TE:					
		(iv)	•	IMME (C)		E SO	URCE								
		(v)				IN									
		(vi)				ES O								rved mina	
		(vii	i)	SEQU	ENCE	DES	CRIP	TION	:		-				

153

50

	1				5					10)				15	
	Суб	Thr	Arg	Pro	Asn	Asn	His	Thr	Glu	Lys	Arg	; Ile	Thr	Leu	ı Gly	
	TGT	ACA	AGA	CCC	AAC	AAC	CAI	ACA	GAA	AAA	CGI	ATA	ACI	CTA	GGA	
5																-
_																
	_				_ 20		0			25					30	
	Pro	Gly	Arg	Val	Leu	Tyr	Thr	Thr	Gly	Arg	Ile	Ile	G1y	' Asp	Ile	
	CCG	GGG	AGA	GTA	CTT	TAT	ACA	ACA	GGA	AGA	ATA	ATA	GGA	GAI	ATA	
10																
					35											
	A = a	Arg	A1.	uio												
	_	CGA			-											
	nun	CGA	GUA	ONI	161											
15																
	(2)		INF	ORMA'	TION	FOR	SEO	TD	NO:	EE63	9_3					
	\ -,		(i)						TERI							
			\-,		(A)			GTH:	10							
					(B)				Nuc1	-	Acid					
20		,			(c)				DNES		Sing	1e				
					(D)			OLOG		Line	_					
			(ii))		D: c			enom							
			(ii))	KIN) (i	f pe	ptid	e or	pro	tein):				
					(A)		SEQ	UENC.	E AS	SEMB:	LY M	ETHO	D:	0ver	lap	
25					(B)				T TY				1 Fr		_	
					(C)		HYP	OTHE	TICA	և։ լ						
			(iii	L)	ORIG	GINA	L SO	URCE	: HIV	1						
					(E)		IND	IVID	UAL :	ISOL	ATE:		· · · · · · · · · · · · · · · · · · ·			
30			(iv))		EDIA	re s	OURC	E:							
					(C)		CLO							_		
			(v)						OME:							
			(vi)	,	PROF	PERT.	IES (OF S	EQUEI	VCE:					erved	
			(::	4.1	CEOI	ienoi	- 1012	300 T	n	• .	an	tige	nic (dete:	rmina	nt
35			(vii	. 1)	SEQU	ENCI	e DE:	SCKI	PTION	v:						
	SEO	ID N	0:	EE63	19-3											
			•		., ,											
40	1				5					10					15	
	Cys	Thr	Arg	Pro	Asn	Asn	Asn	Thr	Arg		Ser	T1e	Pro	Tle	Glw	
	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGG	AAA	AGT	ATA	CCA	ATA	GGA	
													00	•••••	0011	
AE.																
45					20					25					30	
	Pro	Gly	Arg	Ala	Phe	Tyr	Ala	Thr	G1y	Asp	I1e	Ile	G1y	Asp	Ile	
	CCA	GGG	AGA	GCA	TTT	TAT	GCA	ACA	GGA	GAC	ATA	ATA	GGA	GAT	ATA	
50																

154

35

		ln Ala His Cys AA GCA CAT TGT	
5			
10	(2)	INFORMATION FOR SEQ ID NO: EE660-1 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid	
15		(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) KIND: cDNA to genomic RNA (ii) KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment	
		(C) HYPOTHETICAL:(iii) ORIGINAL SOURCE: HIV	
20		(E) INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: (v) POSITION IN GENOME: Within Env Gene	
		(vi) PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant	
25		(viii) SEQUENCE DESCRIPTION:	
	SEQ ID	NO: EE660-1	
30	1	5 10 15	
	Cys The	r Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile Pro Ile Gly A AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CCT ATA GGA	
35		20 25 30	
	Pro Gly CCA GGA	y Arg Ala Phe Tyr Thr Thr Gly Asp Val Ile Gly Asp Ile A AGA GCA TTT TAT ACA ACA GGA GAT GTA ATA GGA GAT ATA	
40	Arg Glr	35 n Ala Arg Cys	
	AGA CAA	A GCA CGT TGT	
4 5	(2)	INFORMATION FOR SEQ ID NO: EE660-2 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single	

155

					(D)		TOP	OLOG	Υ:	Line	ar					
			(ii	`				to g								
			(ii					ptid				١.				
			(11	,	(A)								n.	0ver	1.00	
5					(B)									agme		
					(C)						111 €	ema	T LL	agme	nt	
			(22	i)				OTHE URCE								
			(11	1)							A 77777 .					
			(iv	`	(E)			IVID		1201	AIE:					
10			(10	,	(C)		-	OURC	e:							
			(v)				CLO	GEN	OME	1.7.2 6	h.i.	E	<u> </u>	_		
			(vi													
			(1)	,	PRU	PEKI	IES	OF S	EQUE	NCE:					erved	
			(211	CEO	i i Enio	e ne	CODT	DETA	NT -	an	tige	nic	dete:	rminant	
15			(VI	ii)	SEQ	OFNC	E DE	SCRI	P110	N:						
	SEO	ID :	NO.	FF6	دn_2											
	SEQ	ID.	140:	EEO	60–2											
20	1				5					10					1 5	
		Th.	A = ~	Dro		A an	۸ ۵۵	Th	۸		C	T1_	A	Ile	15	
	ТСТ	ACA	VCV Vr R	CCC	VVC	VVC	AAT	THE	ACA	WIR	Ser	TIE	ASD	ATA	GIY	
	101	AUA	AUA	CCC	AAC	AAC	WWI	AUA	MGM	MUM	WGI	AIA	AAI	WIW	GGA	
25					20					25					30	
	Pro	G1 v	Aro	Αla		Tur	Δ1a	Thr	G1 w		Tio	T1.	C1 **	Asp		
	CCA	GGG	AGA	GCA	TTC	TAT	GCA	ACA	CCA	GCC	ATA	ATA	CCA	GAT	ATA	
	00	000		0011	110	****	0011	non	GGA	900	NIN	UIU	GGA	GAI	VIV	
30					35											
	Arg	G1n	Ala	His												
			GCA													
35	(2)		INFO	ORMA'	CION	FOR	SEQ	ID 1	10: I	EE661	l-1					
			(i)					ARAC:								
					(A)		LEN		105		-					
					(B)		TYPI			eic A	Acid					
					(c)			NDE			Sing	l e				
40					(D)			DLOG		Lines	_					
			(ii))): cI		to ge						•		
			(ii)		KINI	(i)	per	ptide	or	prof	ein'	١.				
			,,		(A)	` `	SEO	JENCE	E ASS	FMRI	Y MI	, . THOI		Over1	an	
					(B)		FRAC	MEN'	TY	E:	Inte	- 11101	Fr	agmen	.ap	
45					(c)			THE			1116	- L 11G.		v₽mer.		
			(iii	()		INA		JRCE:		_						
			•	•	(E)			VIDU			TE:					
			(iv))		DIAT		URCE								
			, ,		(C)		CLON									
					/									_		

		POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved
5	(viii)	antigenic determinant SEQUENCE DESCRIPTION:
	SEQ ID NO: EE66	1-1
10	1 Cys Thr Arg Pro	5 10 15 Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly
15	TGT ACA AGA CCC	AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA
15		20 25 30 Phe Tyr Ala Thr Gly Glu Ile Ile Gly Asp Ile
	CCA GGG AGA GCA	TTT TAT GCA ACA GGA GAA ATA ATA GGA GAT ATA
20	Arg Gln Ala His (AGA CAA GCA CAT 1	•
25	(i) S	ION FOR SEQ ID NO: EE661-2 SEQUENCE CHARACTERISTICS: (A) LENGTH: 105
30	(ii) K (ii) K	(B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear KIND: cDNA to genomic RNA KIND (if peptide or protein):
35	((A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: DRIGINAL SOURCE: HIV
40	(iv) I	(E) INDIVIDUAL ISOLATE:
		POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant
45	(viii) S	SEQUENCE DESCRIPTION:
	SEQ ID NO: EE661	.–2

55

	1				5					10					15	
	Cys	Thr	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Lys	Ser	Ile	His	I1e	Gly	
	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGA	AAA	AGT	ATA	CAT	ATA	GGA	
5																
•	_	٠.			20	_			-1	25	٠				30	
		-	_			-			-				•	Asp		
	CCA	GGG	AGA	GCA	111	TAT	GCA	ACA	GGA	GAA	AIA	ATA	GGA	GAT	ATA	
10																
					35											
	Arg	Gln	Ala	His												
	_		GCA		-											
4-	٠.															
15																
	(2)		INF	ORMA!	NOIT	FOR	SEQ	ID I	1:08	EE66	L-3					
			(i)		SEQU	JENC	E CH	ARAC:	rer i	STIC	3:					
					(A)			GTH:	10							
20					(B)		TYP		Vuc1							
					(C)			ANDE			Sing	le				
			(ii)	`	(D)			OLOG								
			(ii)					to ge ptide				١.				
			(11.	,	(A)	, (1)							٠. (Over:	lan	
25					(B)			GMEN'						agmer	-	
					(c)			THE?								
			(iii	i.)	ORIC	INA	S01	JRCE:	HI:	7						
					(E)		IND	IVIDU	JAL]	SOL	ATE:					
							re c	TIDOI	-							
30			(iv))	IMME	DIA:	וב א	JOICI	: :							
30					(C)		CLO	VE:						_		
30			(v)		(C) POSI	TIO	CLOI	VE: GEN(ME:					-		
30					(C) POSI	TIO	CLOI	VE:	ME:		Exp	pres	ses (erved	
30			(v) (vi)	•	(C) POSI PROF	TION PERT	CLOI I IN IES (NE: GENO OF SI	ME: EQUEN	VCE:	Exp	pres	ses (erved cminar	ıt
35			(v)	•	(C) POSI PROF	TION PERT	CLOI I IN IES (VE: GEN(ME: EQUEN	VCE:	Exp	pres	ses (ıt
			(v) (vi)	•	(C) POSI PROF	TION PERT	CLOI I IN IES (NE: GENO OF SI	ME: EQUEN	VCE:	Exp	pres	ses (ıt
	SEQ	ID N	(v) (vi)	•	(C) POSI PROF	TION PERT	CLOI I IN IES (NE: GENO OF SI	ME: EQUEN	VCE:	Exp	pres	ses (ıt
	SEQ	ID N	(v) (vi)	ii)	(C) POSI PROF	TION PERT	CLOI I IN IES (NE: GENO OF SI	ME: EQUEN	VCE:	Exp	pres	ses (it
35		ID N	(v) (vi)	ii)	(C) POSI PROF SEQU	TION PERT	CLOI I IN IES (NE: GENO OF SI	ME: EQUEN	VCE:	Exp	pres	ses (ıt
	1		(v) (vi) (vi)) (i) EE66	(C) POSI PROF SEQU	TION PERTI	CLOI N IN IES (NE: GENO OF SI	ME: EQUEN	NCE:	Exp	prese	ses (dete	rminar 15	ıt
35	1 Cys	Thr	(v) (vi) (vii)	ii) EE66	(C) POSI PROF SEQU 51-3	TION PERTI	CLOI I IN IES (E DES	NE: GEN(DF SI GCRII	ME: EQUEN	NCE:	Exp and	press tiger	ses (Ile	cminar 15 Gly	ıt
35	1 Cys	Thr	(v) (vi) (vii)	ii) EE66	(C) POSI PROF SEQU 51-3	TION PERTI	CLOI I IN IES (E DES	NE: GEN(DF SI GCRII	ME: EQUEN	NCE:	Exp and	press tiger	ses (dete	cminar 15 Gly	ıt
35	1 Cys	Thr	(v) (vi) (vii)	ii) EE66	(C) POSI PROF SEQU 51-3	TION PERTI	CLOI I IN IES (E DES	NE: GEN(DF SI GCRII	ME: EQUEN	NCE:	Exp and	press tiger	ses (Ile	cminar 15 Gly	it
35	1 Cys	Thr	(v) (vi) (vii)	ii) EE66	(C) POSI PROF SEQU 51-3 5 Asn AAC	TION PERTI	CLOI I IN IES (E DES	NE: GEN(DF SI GCRII	ME: EQUEN	ICE: 1: 10 Lys AAA	Exp and	press tiger	ses (Ile	15 Gly GGA	nt
35	1 Cys TGT	Thr ACA	(v) (vi) (vii) NO: Arg AGA	EE66	(C) POSI PROF SEQU 31-3 5 Asn AAC	PERTI JENCI Asn AAC	CLOI I IN IES (E DES	NE: GEN(DF SE SCRIE Thr ACA	OME: EQUEN	ICE: I: 10 Lys AAA 25	Exj and Ser AGT	ress tiger	Ses (Ile ATA	15 Gly GGA	ıt
35	1 Cys TGT	Thr ACA	(v) (vi) (vii) IO: Arg AGA	EE66 Pro	(C) POSJ PROF SEQU 31-3 5 Asn AAC	PERTI	CLOIN IN IES (E DES Asn AAT	VE: GEN(DF SI SCRII Thr ACA	OME: EQUENTION Arg AGA	ICE: I: 10 Lys AAA 25 Gln	Exj and Ser AGT	Ile ATA	Ses (Ile ATA	15 Gly GGA 30 Ile	it
35	1 Cys TGT	Thr ACA	(v) (vi) (vii) IO: Arg AGA	EE66 Pro	(C) POSJ PROF SEQU 31-3 5 Asn AAC	PERTI	CLOIN IN IES (E DES Asn AAT	VE: GEN(DF SI SCRII Thr ACA	OME: EQUENTION Arg AGA	ICE: I: 10 Lys AAA 25 Gln	Exj and Ser AGT	Ile ATA	Ses (Ile ATA	15 Gly GGA 30 Ile	ıt
35 40 45	1 Cys TGT	Thr ACA	(v) (vi) (vii) IO: Arg AGA	EE66 Pro	(C) POSJ PROF SEQU 31-3 5 Asn AAC	PERTI	CLOIN IN IES (E DES Asn AAT	VE: GEN(DF SI SCRII Thr ACA	OME: EQUENTION Arg AGA	ICE: I: 10 Lys AAA 25 Gln	Exj and Ser AGT	Ile ATA	Ses (Ile ATA	15 Gly GGA 30 Ile	nt
35	1 Cys TGT	Thr ACA	(v) (vi) (vii) IO: Arg AGA	EE66 Pro	(C) POSJ PROF SEQU 31-3 5 Asn AAC	PERTI	CLOIN IN IES (E DES Asn AAT	VE: GEN(DF SI SCRII Thr ACA	OME: EQUENTION Arg AGA	ICE: I: 10 Lys AAA 25 Gln	Exj and Ser AGT	Ile ATA	Ses (Ile ATA	15 Gly GGA 30 Ile	ıt

158

	Arg AGA															
5																
	(2)		INF			UENC	CE CE	ID IARAC	TERI 10	STIC 5						
10			(ii	`	(C)		STR TOP	ANDE OLOG	DNES Y:	S: Line	Sing ar					
15			(ii		KIN (A)	D (i	f pe SEQ		e or E AS	pro SEMB	tein	ETHO		0ver		
			(ii	i)		GINA	HYP L SO	GMEN OTHE URCE	TICA : HI	L: V		erna	1 Fr	agme	nt 	
20			(iv		(C)	EDIA	TE S		E:							
			(v) (vi)	PRO	PERT	IES	GEN OF S	EQUE	NCE:	Ex	pres	ses	cons	erved rminan	ıt
25			(vi:	ii)	SEQ	UENC	E DE	SCRI	PTIO	N:						
	SEQ I	D N	10:	EE6	53–1		·									
30	1				5					10					15	
	Cys I TGT A	Thr .CA	Arg AGA	Pro CCC	Asn AAT	Asn AAC	Asn AAT	Thr ACA	Arg AGA	Lys AAA	Ser AGT	Ile ATA	Thr ACT	Ile ATA	Gly GGA	
35					20					25					30	
	Pro G CCA G	1y GG	Arg AGA	Ala GCA	Phe	Tyr TAT	Ala GCA	Thr ACA	G1y GGA	Glu	Ile ATA	Ile ATA	Gly GGA	Asp GAT	Ile	
1 0					35											
	Arg G AGA C				Сув											
15	(2)		INFO	RMAI						TICS	S:					

					(D)		TOP	OLOG	Y :	Line	ar					
			(ii)	KIN	D: c	DNA	to g	enom	ic R	NA					
			(ii)						pro):				
5					(A)		SEQ	UENC	E AS	SEMB	LY M	ETHO	D:	0ver	lap	
					(B)		FRA	GMEN	T TY	PE:	Int	erna	1 Fr	agme	n t	
					(c)			OTHE						-B		
			(ii	i)				URCE								
			\	_,	(E)					ISOL	ATF.					
10			(iv)				OURC		1001	nil.	_				
			(1)	,	(C)	DD III	CLO		٠.							
			(v)			TTIO			OME .	Wit	hi-	Fore	Cono	_		
			(vi												erved	
			(• 1	,	I KO.	LENI	IEO	OF S.	EQUE	NCE:						_
15			(ii)	CEO	HENO	ם ה	COD T	חידרו	NT A	an	tige	nic	aete:	rminan	C
			(VI.	11)	3EQ	UEHVC.	e DE	SCRI	r 1 1 U	1A :						
	SEV.	ID	NO.	EE4	63-2											
	yac	ID I		EEO	03-2											
20																
	1				5					10					1.0	
		Th-	۸	Dro		۸	A	Th	A	10	01	71.	Y7.5 -	T1 -	15	
	TOT	Thr	ALR	000	ASII	ASI	AST	Inr	Arg	Lys	GIY	116	HIS	TIE	GIY	
	161	ACA	AGA	CCC	AAC	AAC	AAI	ACA	AGA	AAA	GGT	ATA	CAT	ATA	GGA	
25																
25					20											
					20	_				25					30	
	Pro	Gly	Arg	Ala	Phe	Tyr	Thr	Thr	Gly	Glu	Ile	Ile	Gly	Asn	Ile	
	CCA	GGG	AGA	GCA	TTT	TAT	ACA	ACA	GGA	GAA	ATA	ATA	GGA	AAT	ATA	
30					0.5											
		٥.			35											
	_	Gln			_											
	AGA	CAA	GCA	CAT	TGT											
35	(0)															
	(2))RMA						EE663						
			(i)			JENCE				STICS	S:					
					(A)		LEN		105							
					(B)		TYPE			eic A	Acid					
40					(c)			NDEI			Singl	le				
					(D)					Lines						
			(ii)		KINI	e cI	ONA t	o ge	tmons	ic RN	IA					
			(ii))	KINI) (if	per	tide	or	prot	ein)) :				
					(A)		SEQU	JENCE	E ASS	EMBI	Y ME	THOI): ()ver1	ар	
45					(B)		FRAG	MEN1	TY	E:				agmen		
					(C)			THET								
			(iii	.)		INAI		IRCE:							<u></u>	
					(E)					CSOLA	TE:					
			(iv))	IMME	DIAT		URCE								
5 <i>0</i>					(C)		CLON	E:								

			(v) (vi						OME: EQUE		Ex	pres	ses	cons	erved	
5			(vi	ii)	SEQ	UENC	E DE	SCRI	PTIO	N:	an	tige	nic	dete	rmine	int
	SEQ	ID	NO:	EE6	63-3											
10																
, 0	1				5					10					15	
	_	Thr	Arg	Pro		Asn	Asn	Thr	Ile	-	Ser	Ile	Thr	Ile	Gly	
														ATA		
15																
					20					25					30	
	Pro	G1v	Arg	Ala		Tvr	Ala	Thr	G1v		Ile	Ile	G1v	Asp		
														GAT		
20																
20					35											
	Arg	Gln	Ala	His												
	AGA															
25																
	(2)		INFO	DRMA'	MOTO	FOR	SEO	ו מז	10: E	TE66	5_1					
	(-/		(i)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-		CER IS							
					(A)		LEN		105							
30					(B)				Nucle			1 -				
					(D)				ONESS (: I		_	Le				
			(ii))					nomi							
			(ii))		(if			or							
35					(A) (B)				E ASS					Over]	-	
					(C)				TYI TICAL		ince	erna.	rre	agmer	11	
			(iii	.)		INAI			HIV	_						
					(E)				JAL I	SOLA	TE:					
40			(iv))	(C)	DIAI	CLON		E:							
			(v)			TION			ME:	With	in F	inv (lene	-		
		•	(vi))					QUEN					onse	rved	
															mina	
45			(vii	.i)	SEQU	ENCE	DES	CRIE	MOIT	T:						
	SEQ	ID N	:0	EE66	5-1											
															•	

55

	1				5					10	1				15
	Сув	Thr	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Arg	Ser	Ile	Pro	Ile	G1y
	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGA	AGA	AGT	ATA	CCT	ATA	GGA
5										•					
	_				20	_				25					30
	Pro	Gly	Arg	Ala	Phe	Tyr	Ala	Thr	Gly	Gln	I1e	Ile	Gly	Asp	Ile
	CCA	GGG	AGA	GCA	TTT	TAT	GCA	ACA	GGA	CAA	ATA	ATA	GGA	GAT	ATA
10															
					35										
	Ara	G1n	A1 a	His											
				CAT											
15		 .	0011	0											
	(2)		INF	ORMA'	TION	FOR	SEQ	ID I	NO: I	EE66.	5-2				
	, ,		(i)				E CHA								
					(A)		LEN		10						
20		-			(B)		TYPI	E: 1	Nucle	eic	Acid				
					(C)		STRA	NDE	DNES	S: :	Sing:	le			
					(D)		TOP	LOG	Y:]	Line	ar				
			(ii	-			DNA 1								
			(ii)		D (i					tein				
25					(A)						LY MI				
					(B)				TYI		Inte	ernal	l Fra	agmer	ıt
					(C)		HYPO	THE:	CICAI	.:					
			(:::	. \						-					
			(iii	L)	ORIC		L SOU	JRCE:	IH:	, -	A 7012 a				
00					ORIG	GINA	L SOU	IRCE:	HIV	, -	ATE:				
30			(ii:		ORIG (E) IMMI	GINA	L SOU INDI CE SO	IRCE: IVIDI IURCI	HIV	, -	ATE:				
30			(iv))	ORIC (E) IMMI (C)	GINA1 EDIA1	L SOU INDI TE SO CLON	JRCE: VIDI JURCI IE:	HIV	J ISOL			Sene		
3 <i>0</i>			(iv))	ORIC (E) IMMI (C) POSI	GINAI EDIAI ITION	L SOU INDI IE SO CLON N IN	IRCE: VIDI URCI IE: GEN(HIV JAL I	/ ISOL	hin H			-	erved
30			(iv))	ORIC (E) IMMI (C) POSI	GINAI EDIAI ITION	L SOU INDI TE SO CLON	IRCE: VIDI URCI IE: GEN(HIV JAL I E: OME:	/ ISOL	hin Exp	rese	ses o		erved
<i>30</i> 35			(iv))	ORIC (E) IMMI (C) POSI PROI	GINAI EDIAI ITION PERTI	L SOU IND TE SO CLOM IN IES O	IRCE: OURCI IE: GENO	HIVIAL DAL DAL DAL DAL DAL DAL DAL DAL DAL D	VisoL	hin Exp	rese	ses o		erved
			(iv) (v) (vi))	ORIC (E) IMMI (C) POSI PROI	GINAI EDIAI ITION PERTI	L SOU INDI IE SO CLON N IN	IRCE: OURCI IE: GENO	HIVIAL DAL DAL DAL DAL DAL DAL DAL DAL DAL D	VisoL	hin Exp	rese	ses o		
			(iv) (v) (vi))	ORIC (E) IMMI (C) POSI PROI	GINAI EDIAI ITION PERTI	L SOU IND TE SO CLOM IN IES O	IRCE: OURCI IE: GENO	HIVIAL DAL DAL DAL DAL DAL DAL DAL DAL DAL D	VisoL	hin Exp	rese	ses o		
	SEQ	ID N	(iv) (v) (vi))	ORIC (E) IMMI (C) POSI PROI	GINAI EDIAI ITION PERTI	L SOU IND TE SO CLOM IN IES O	IRCE: OURCI IE: GENO	HIVIAL DAL DAL DAL DAL DAL DAL DAL DAL DAL D	VisoL	hin Exp	rese	ses o		
	SEQ	ID N	(iv) (v) (vi)) (ii)	ORIC (E) IMMI (C) POSI PROI	GINAI EDIAI ITION PERTI	L SOU IND TE SO CLOM IN IES O	IRCE: OURCI IE: GENO	HIVIAL DAL DAL DAL DAL DAL DAL DAL DAL DAL D	VisoL	hin Exp	rese	ses o		
	_	ID N	(iv) (v) (vi)) (ii)	ORIC (E) IMMI (C) POSI PROI	GINAI EDIAI ITION PERTI	L SOU IND TE SO CLOM IN IES O	IRCE: OURCI IE: GENO	HIVIAL DAL DAL DAL DAL DAL DAL DAL DAL DAL D	VisoLa With NCE:	hin Exp	rese	ses o		minant
35	1		(iv) (v) (vi) (vii) (i) EE66	ORIC (E) IMME (C) POSI PROI SEQU	GINAI EDIAI ITION PERTI	L SOU INDI IE SO CLOM IN IES O	JRCE: IVIDI DURCI JE: GEN(DF SI	HIV JAL J E: OME: EQUEN	With NCE:	hin i Exp ant	press Liger	ses d	leter	minant
35	1 Cys	Thr	(iv) (v) (vi) (vii)) Li) EE66	ORIC (E) IMME (C) POSI PROI SEQU	GINAI EDIAI ITION PERTI JENCE	L SOU INDI IE SO CLOM I IN IES O	VICE: VIDE VICE: GENE OF SE	HIV JAL J E: OME: EQUEN	With NCE:	hin i Exp ant	oress igen	ses dic d	Ile	minant 15 Gly
35	1 Cys	Thr	(iv) (v) (vi) (vii)) Li) EE66	ORIC (E) IMME (C) POSI PROI SEQU	GINAI EDIAI ITION PERTI JENCE	L SOU INDI IE SO CLOM I IN IES O	VICE: VIDE VICE: GENE OF SE	HIV JAL J E: OME: EQUEN	With NCE:	hin i Exp ant	oress igen	ses dic d	Ile	minant 15 Gly
35 40	1 Cys	Thr	(iv) (v) (vi) (vii)) Li) EE66	ORIC (E) IMME (C) POSI PROI SEQU	GINAI EDIAI ITION PERTI JENCE	L SOU INDI IE SO CLOM I IN IES O	VICE: VIDE VICE: GENE OF SE	HIV JAL J E: OME: EQUEN	With NCE:	hin i Exp ant	oress igen	ses dic d	Ile	minant 15 Gly
35	1 Cys	Thr	(iv) (v) (vi) (vii)) Li) EE66	ORIC (E) IMMI (C) POSI PROI SEQU 5-2	GINAI EDIAI ITION PERTI JENCE	L SOU INDI IE SO CLOM I IN IES O	VICE: VIDE VICE: GENE OF SE	HIV JAL J E: OME: EQUEN	With NCE: 10 Arg	hin i Exp ant	oress igen	ses dic d	Ile	ninant 15 Gly GGA
35 40	1 Cys TGT	Thr ACA	(iv) (vi) (vii) HO: Arg	Pro CCC	ORIC (E) IMMI (C) POSI PROI SEQU 55-2 Asn AAC	GINAI EDIAI ITION PERTI JENCE ASN AAC	L SOU IND) IE SO CLOM IN IES O E DES	Thr	E HIV JAL J E: 	With NCE: 10 Arg AGA	hin Exp ant	iger lle ATA	Pro	Ile ATA	15 Gly GGA
35 40	1 Cys TGT	Thr ACA	(iv) (vi) (vii) IO: Arg	Pro CCC	ORIC (E) IMMI (C) POSI PROI SEQU 55-2 Asn AAC	EDIATEDIATE ITION PERTI	L SOU INDIFE SO CLON IN IES O	Thr	E HIV JAL J E: ME: EQUEN PTION Arg AGA	With NCE: 10 Arg AGA	hin Expant Ser AGT	Ile ATA	Pro CCT	Ile ATA	15 Gly GGA 30 Ile
35 40	1 Cys TGT	Thr ACA	(iv) (vi) (vii) IO: Arg	Pro CCC	ORIC (E) IMMI (C) POSI PROI SEQU 55-2 Asn AAC	EDIATEDIATE ITION PERTI	L SOU INDIFE SO CLON IN IES O	Thr	E HIV JAL J E: ME: EQUEN PTION Arg AGA	With NCE: 10 Arg AGA	hin Exp ant	Ile ATA	Pro CCT	Ile ATA	15 Gly GGA 30 Ile
35 40 45	1 Cys TGT	Thr ACA	(iv) (vi) (vii) IO: Arg	Pro CCC	ORIC (E) IMMI (C) POSI PROI SEQU 55-2 Asn AAC	EDIATEDIATE ITION PERTI	L SOU INDIFE SO CLON IN IES O	Thr	E HIV JAL D E: 	With NCE: 10 Arg AGA	hin Expant Ser AGT	Ile ATA	Pro CCT	Ile ATA	15 Gly GGA 30 Ile
35 40	1 Cys TGT	Thr ACA	(iv) (vi) (vii) IO: Arg	Pro CCC	ORIC (E) IMMI (C) POSI PROI SEQU 55-2 Asn AAC	EDIATEDIATE ITION PERTI	L SOU INDIFE SO CLON IN IES O	Thr	E HIV JAL D E: 	With NCE: 10 Arg AGA	hin Expant Ser AGT	Ile ATA	Pro CCT	Ile ATA	15 Gly GGA 30 Ile

162

			35
	Arg Glm	Ala His	Cys
		GCA CAT	
5			
	(2)	INFORMAT	ION FOR SEQ ID NO: EE665-3
			SEQUENCE CHARACTERISTICS:
		• •	(A) LENGTH: 105
10			(B) TYPE: Nucleic Acid
			(C) STRANDEDNESS: Single
			(D) TOPOLOGY: Linear
			KIND: cDNA to genomic RNA
			KIND (if peptide or protein):
15			
			; ; · · · · · · · · · · · · · · · · · ·
			i i
			ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE:
20			
			IMMEDIATE SOURCE:
•		·	(C) CLONE:
			POSITION IN GENOME: Within Env Gene
		(vi) P	PROPERTIES OF SEQUENCE: Expresses conserved
25		(-···)	antigenic determinant
20		(viii) S	SEQUENCE DESCRIPTION:
	CEC ID	10 - PECCE	
	SEQ ID 1	NO: EE665	0-3
30			
30	•		_
	1		5 10 15
	Cys Thr	Arg Pro A	asn Asn Asn Thr Arg Arg Ser Ile Pro Ile Gly
	TGT ACA	AGA CCC A	AC AAC AAT ACA AGA AGA AGT ATA CCT ATA GGA
0.5			
35			
			20 25 30
	Pro Gly	Arg Ala P	he Tyr Ala Thr Gly Gln Ile Ile Gly Asp Ile
	CCA GGG	AGA GCA T	TT TAT GCA ACA GGA CAA ATA ATA GGA GAT ATA
40			
			35
	Arg Gln	Ala His C	ys:
	AGA CAA	GCA CAT TO	GT
4 5			
	(2)	INFORMATIO	ON FOR SEQ ID NO: EE667-1
	•	(i) S1	EQUENCE CHARACTERISTICS:
		· (A	A) LENGTH: 105
			B) TYPE: Nucleic Acid
50			C) STRANDEDNESS: Single

			(D) TOPOLOGY: Linear
		(ii)	KIND: cDNA to genomic RNA
		(ii)	KIND (if peptide or protein):
5		, ,	(A) SEQUENCE ASSEMBLY METHOD: Overlap
			(B) FRAGMENT TYPE: Internal Fragment
			(C) HYPOTHETICAL:
		(iii)	ORIGINAL SOURCE: HIV
		(111)	(E) INDIVIDUAL ISOLATE:
10		(iv)	IMMEDIATE SOURCE:
		(21)	(C) CLONE:
		(v)	POSITION IN GENOME: Within Env Gene
		(vi)	PROPERTIES OF SEQUENCE: Expresses conserved
		(/	antigenic determinant
15		(viii)	
		(,,,,,	obquarda bbookii i ion.
			·
	SEQ ID	NO: EE6	67–1
	•		
20			•
	1		5 10 15
	Cys Th	r Arg Pro	Asn Asn Asn Thr Arg Lys Arg Ile Thr Thr Gly
	TGT AC	A AGA CCC	AAC AAC AAT ACA AGA AAA AGA ATA ACT ACG GGA
25			
			20 25 30
	Pro G1	y Arg Val	Tyr Tyr Thr Thr Gly Asp Ile Ile Gly Asp Ile
	CCG GG	G AGA GTA	TAT TAT ACA ACA GGA GAT ATA ATA GGA GAT ATA
30			
			35
	Arg G1	n Ala His	Cys
	AGA CA	A GCA CAT	TGT
35	>		
	(2)		TION FOR SEQ ID NO: EE667-2
		(i)	SEQUENCE CHARACTERISTICS:
			(A) LENGTH: 105
			(B) TYPE: Nucleic Acid
40			(C) STRANDEDNESS: Single
			(D) TOPOLOGY: Linear
		(ii)	KIND: cDNA to genomic RNA
		(ii)	KIND (if peptide or protein):
45			(A) SEQUENCE ASSEMBLY METHOD: Overlap
45			(B) FRAGMENT TYPE: Internal Fragment
			(C) HYPOTHETICAL:
		(iii)	ORIGINAL SOURCE: HIV
		(!)	(E) INDIVIDUAL ISOLATE:
50		(iv)	IMMEDIATE SOURCE:
JU			(C) CLONE:

		(v) (vi)	POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant
5		(viii)	
	SEQ ID	NO: EE6	67–2
10	1 Cys Thr TGT ACA	Arg Pro AGA CCC	5 10 15 Ser Asn Asn Thr Arg Lys Ser Ile His Ile Gly AGC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA
15			20 25 30 Phe Tyr Thr Thr Gly Glu Ile Ile Glu Asn Ile TTT TAT ACA ACA GGA GAA ATA ATA GAA AAT ATA
20		Ala His GCA CAC	
25	(2)	INFORMAT	TION FOR SEQ ID NO: EE667-3 SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single
30		(ii) (ii)	(D) TOPOLOGY: Linear KIND: cDNA to genomic RNA KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL:
35		(iv)	ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: IMMEDIATE SOURCE: (C) CLONE: POSITION IN GENOME: Within Env Gene
40		(vi)	PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant SEQUENCE DESCRIPTION:
45	SEQ ID N	10: EE66	7–3
50	1 Cys Thr TGC ACA	Arg Pro AGG CCC	5 10 15 Ser Asn Asn Thr Arg Lys Ser Ile His Ile Ala AGC AAC AAT ACA AGA AAA AGT ATA CAT ATA GCA

					20					25					30	
	Pro	G1y	Arg	Ala	Phe	Tyr	Thr	Thr	G1y	Glu	Ile	Ile	G1u	Asn	Ile	
	CCA	GGG	AGA	GCA	TTT	TAT	ACA	ACA	GGA	GAA	ATA	ATA	GAA	AAT	ATA	
5																
					25											
					35											
	-	Gln														
	AGA	CAA	GCA	CAC	TGT											
10																
	(2)		INF	ORMA'	TION	FOR	SEQ	ID 1	NO:	EE66	9-1					
			(i)					ARAC'								
			(-)		(A)			GTH:	10							
15					(B)		TYP		Nucl	-						
					(c)			ANDE			Sing.	re				
					(D)			OLOG		Line				1		
			(ii)	KIN	D: c	DNA ·	to g	enom	ic RI	AV					
			(ii)	KIN	D (i:	f pe	ptide	e or	pro	tein) :				
20					(A)		SEQ	UENC	E AS	SEMB	LY MI	ETHO	D: (Over	lap	
					(B)			GMEN'						agmei		
					(c)			OTHE:								
			(ii:	:)		~ TNIA:		URCE		-						
			(11.	1,		3 TIVE		-			A 177772 A					
25			,.		(E)			IVID		1201	ATE:					_
25			(iv	,		EDIA		OURC	E:							
					(C)		CLO							-		
			(v)		POS:	ITIO	N IN	GEN	OME:	Wit	nin l	Env (Gene			
			(vi)	PRO	PERT	IES (OF SI	EQUE	NCE:	Exp	pres	ses (cons	erved	
											ani	tige	nic o	dete	rminant	
30			(vi:	ii)	SEQ	JENC	E DE	SCRI	PTIO	V: .		•				
				-	,											
	SEO	ID 1	٠0٧	EE6	50_1											
	DLQ	10 .	•••	מבטנ	J											
35																
33					_											
	1				5					10					15	
	Cys	Thr	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Lys	Ser	Ile	Pro	Ile	G1y	
	TGT	ACA	AGA	CCT	AAC	AAC	AAT	ACA	AGA	AAA	AGT	ATA	CCT	ATA	GGA	
40																
					20					25					30	
	Pro	G1 v	A = a	Δ10	Ile	Tur	A 1 a	Th.	C1 **		T1.	T10	C1	A		
	110	Gry	TIE	VI G	TIE	TAT	COA	1111	GLY	GIU	116	116	GIY	Asp	116	
	004	000		GUA	WII	INI	GCA	ACA	GGA	GAA	ATA	ATA	GGA	GAT	ATA	
	CCA	GGG	AUA													
4-	CCA	GGG	AUA													
45	CCA	GGG	non													
45	CCA	GGG	non		35											
45	CCA	GGG G1n			35											
4 5	CCA Arg	Gln	Ala	His	35 Cys											
4 5	CCA Arg		Ala	His	35 Cys											
4 5	CCA Arg	Gln	Ala	His	35 Cys											
	CCA Arg	Gln	Ala	His	35 Cys											
	CCA Arg	Gln	Ala	His	35 Cys											

166

	(2)	INFORMA	ATION FOR SEQ ID NO: EE669-2
		(i)	SEQUENCE CHARACTERISTICS:
			(A) LENGTH: 105
5			(B) TYPE: Nucleic Acid
			(C) STRANDEDNESS: Single
			(D) TOPOLOGY: Linear
		(ii)	KIND: cDNA to genomic RNA
		(ii)	KIND (if peptide or protein):
10		\ ,	(A) SEQUENCE ASSEMBLY METHOD: Overlap
			(B) FRAGMENT TYPE: Internal Fragment
			(C) HYPOTHETICAL:
		(iii)	ORIGINAL SOURCE: HIV
		(111)	(E) INDIVIDUAL ISOLATE:
15		(iv)	IMMEDIATE SOURCE:
,,		(14)	(C) CLONE:
		(v)	POSITION IN GENOME: Within Env Gene
		(vi)	PROPERTIES OF SEQUENCE: Expresses conserved
00		(1::)	antigenic determinant
20		(viii)	SEQUENCE DESCRIPTION:
	000 70		
	SEQ ID	NO: EE6	69–2
25	_		
	1		5 10 15
	Cys Thr	Arg Pro	Asn Asn Asn Thr Arg Lys Ser Ile Pro Ile Gly
	TGT ACA	AGA CCT	AAC AAC AAT ACA AGA AAA AGT ATA CCT ATA GGA
30			
			20 25 30
	Pro Gly	Arg Ala	Ile Tyr Ala Thr Gly Glu Ile Ile Gly Asp Ile
	CCA GGG	AGA GCA	ATT TAT GCA ACA GGA GAA ATA ATA GGA GAT ATA
35			
			35
	Arg Gln	Ala His	Cvs
	_	GCA CAT	
40			
	(2)	TNFORMAT	TION FOR SEQ ID NO: EE669-3
	(-)	(i)	SEQUENCE CHARACTERISTICS:
		(1)	(A) LENGTH: 105
45			(B) TYPE: Nucleic Acid
45			(C) STRANDEDNESS: Single
			(D) TOPOLOGY: Linear
		(ii)	KIND: cDNA to genomic RNA
		(ii)	KIND (if peptide or protein):
			(A) SEQUENCE ASSEMBLY METHOD: Overlap
50			(B) FRAGMENT TYPE: Internal Fragment

			(C) HYPOTHETICAL:
		(iii)	ORIGINAL SOURCE: HIV
		` '	(E) INDIVIDUAL ISOLATE:
5		(iv)	IMMEDIATE SOURCE:
		(_,,	(C) CLONE:
		(v)	POSITION IN GENOME: Within Env Gene
		(vi)	PROPERTIES OF SEQUENCE: Expresses conserved
		(+1)	antigenic determinant
10		(viii)	SEQUENCE DESCRIPTION:
		(111)	DDQOENOD DDDONII I IONI
	SEQ ID NO	0: EE66	69-3
	DDQ 12 14	0. 2200	,, 3
15			
	1		5 10 15
		Ara Pro	Asn Asn Asn Thr Arg Lys Ser Ile Pro Ile Gly
			AAC AAC AAT ACA AGA AAA AGT ATA CCT ATA GGA
	IGI ACA I	NGA CCI	ANC ANC ANT ACA ANA ANA ACT ATA CCT ATA COA
20			
			20 25 30
	Pmo Clar	۸ ۸ ۸ ۱ ۸	Phe Tyr Thr Thr Gly Glu Ile Ile Gly Asp Ile
			TTT TAT ACA ACA GGA GAA ATA ATA GGA GAT ATA
	CCA GGG A	AGA GCA	III IAI ACA ACA GGA GAA AIA AIA GGA GAI AIA
25			
			25
	A 01 -		35
	Arg Gln		
	AGA CAA	SUA CAI	161
30			
00	(0)	TITODIA A	ETAN DAD ADO ID NO. EDITATA 1
			FION FOR SEQ ID NO: EE1476-1
	1	(i)	SEQUENCE CHARACTERISTICS:
			(A) LENGTH: 102
35			(B) TYPE: Nucleic Acid
33			(C) STRANDEDNESS: Single
			(D) TOPOLOGY: Linear
		(ii)	KIND: cDNA to genomic RNA
		(ii)	KIND (if peptide or protein):
40			(A) SEQUENCE ASSEMBLY METHOD: Overlap
40			(B) FRAGMENT TYPE: Internal Fragment
			(C) HYPOTHETICAL:
	((iii)	ORIGINAL SOURCE: HIV
			(E) INDIVIDUAL ISOLATE:
45	((iv)	IMMEDIATE SOURCE:
45			(C) CLONE:
		(v)	POSITION IN GENOME: Within Env Gene
	•	(vi)	PROPERTIES OF SEQUENCE: Expresses conserved
		*	antigenic determinant
	•	(viii)	SEQUENCE DESCRIPTION:
50			·

SEQ ID NO: EE1476-1 5 1 5 10 Cys Thr Arg Pro Tyr Asn Asn Ile Lys Ile Arg Ser Ile His Ile TGT ACA AGG CCC TAC AAC AAT ATA AAA ATA AGA AGT ATA CAT ATA 10 20 25 30 Gly Pro Gly Arg Pro Phe Tyr Thr Thr Lys Ile Gly Asp Ile Arg GGA CCA GGG AGA CCA TTT TAT ACA ACA AAA ATA GGA GAT ATA AGA 15 35 Gln Ala Tyr Cys CAA GCA TAT TGT 20 (2) INFORMATION FOR SEQ ID NO: EE3032-1 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 105 (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single 25 (D) TOPOLOGY: Linear KIND: cDNA to genomic RNA (ii) (ii) KIND (if peptide or protein): SEQUENCE ASSEMBLY METHOD: Overlap (A) (B) FRAGMENT TYPE: Internal Fragment 30 (C) HYPOTHETICAL: (iii) ORIGINAL SOURCE: HIV INDIVIDUAL ISOLATE: (iv) IMMEDIATE SOURCE: (C) CLONE: POSITION IN GENOME: Within Env Gene (v) PROPERTIES OF SEQUENCE: Expresses conserved (vi) antigenic determinant (viii) SEQUENCE DESCRIPTION: 40 SEQ ID NO: EE3032-1

1 5 10 15
Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly
TGT ACA AGG CCC AAT AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA

20 25 30
Pro Gly Arg Ala Phe Tyr Thr Thr Gly Asp Ile Ile Gly Asp Ile
CCA GGG AGG GCA TTT TAT ACA ACA GGA GAC ATA ATA GGA GAT ATA

					. 35											
	Arg	G1n	Ala	His	Cys											
				CAT												
5																
	(2)		INF	ORMA?	CION	FOR	SEO	ID 1	NO: 1	EE303	32-2					
	(-)		(i)						TER I							
			(-)		(A)			GTH:								
10					(B)				Nucle		Acid					
					(c)				DNES		Singl	le				
					(D)				Y: 1		_					
			(ii))					enom							
			(ii)						or) :				
15			(,	(A)	, ,): ()ver1	an	
•					(B)		-		r TY					gmer	-	
					(c)				TICA			,		-6		
			(ii:	;)		TNA			HIV	_						
			(11.	- /	(E)	3 111212			JAL		TE.					
20			(iv)	`		znta'	TE SO			LDOIL	110.					
20			(10.	,	(C)		CLO		•							
			()				-		OME:	1.7.4 + 1	-i I	(2000	-		
			(v)													
			(vi	,	PKUI	EKI.	IES (Jr SI	cQue	VCE:					erved cmina	-+
05			(CEO	TENIO	e ne	וד ממכ	וחדדח	AT .	anı	riger	110 (ie ce i	штиа	II C
25			(vi:	11)	SEQ) ETAC	c DE:	OCKII	PTIO	ν.						
	CEO	TD I		EE3/	120 (2										
	SEQ	ו עו	NO:	EE30	J32 - ,	2										
00																
30	,				•					10					15	
	1	ATT	A	7 0 – –	5	A	A	TT	A	10	01	T1.	W	MET		
				Pro												
	161	ACA	AGG	CCC	AAI	AAC	WAI	ACA	AGA	AAA	GGI	AIA	CAI	AIG	GGA	
35										0.5					20	
	_				_ 20	•		-	61	25		~ 1	~1 .		30	
				Ala												
	CCA	GGG	AGG	GCA	TTT	TAT	ACA	ACA	GGA	GAC	ATA	ATA	GGA	GAT	ATA	
40																
					35											
				His											•	
	AGA	CAA	GCA	CAT	TGT											
45																
	(2)			ORMA:												
			(i)			UENC			TERI		S:					
					(A)		LEN	GTH:	10	_						
					(B)		TYP	E:]	Nucl	eic A	Acid					
50					(C)		STR	ANDE	DNES	S: :	Sing	le				

5	(ii) (ii) (iii) (iv) (v) (vi)	(D) TOPOLOGY: Linear KIND: cDNA to genomic RNA KIND (if peptide or protein): (A) SEQUENCE ASSEMBLY METHOD: Overlap (B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL: ORIGINAL SOURCE: HIV (E) INDIVIDUAL ISOLATE: IMMEDIATE SOURCE: (C) CLONE: POSITION IN GENOME: Within Env Gene PROPERTIES OF SEQUENCE: Expresses conserved antigenic determinant
15	(viii)	SEQUENCE DESCRIPTION:
	SEQ ID NO: EE3	032–3
20	1	5 10 15
	Cys Thr Arg Pro	Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly
	TGT ACA AGG CCC	AAT AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA
25		20 25 30
	Pro Gly Arg Ala	Phe Tyr Thr Thr Gly Asp Ile Ile Gly Asp Ile
	CCA GGG AGG GCA	TTT TAT ACA ACA GGA GAC ATA ATA GGA GAT ATA
30		35
	Arg Gln Ala His	
	AGA CAA GCA CAT	igi
35		TION FOR SEQ ID NO: EEE6405-1
	(i)	SEQUENCE CHARACTERISTICS:
		(A) LENGTH: 105 (B) TYPE: Nucleic Acid
		(C) STRANDEDNESS: Single
40	(ii)	(D) TOPOLOGY: Linear
	(ii)	KIND: cDNA to genomic RNA KIND (if peptide or protein):
		(A) SEQUENCE ASSEMBLY METHOD: Overlap
45		(B) FRAGMENT TYPE: Internal Fragment (C) HYPOTHETICAL:
	(iii)	ORIGINAL SOURCE: HIV
		(E) INDIVIDUAL ISOLATE:
	(iv)	IMMEDIATE SOURCE: (C) CLONE:
50	(v)	POSITION IN GENOME: Within Env Gene

					20)				25	•				30	
	Pro	G1 y	Arg	, Ala	Phe	Ту	Ala	Thr	Gly	Glu	ı Ile	MET	Gly	Asp	Ile	
	CCA	GGG	AGA	GCA	TTI	' TAT	GCA	ACA	GGA	GAA	ATA	ATG	GGA	GA7	ATA	
5																
•					25											
	۸	C1-	. 41-	17:-	35											
	_			His CAT	-											
	nun	CAA	GUE	CAI	161											
10																
	(2)		INF	ORMA	TION	FOR	SEQ	ID	NO:	EE64	05-3					
			(i)					ARAC								
					(A)		LEN	GTH:	10	5						
15					(B)		TYP	E:	Nuc1	eic	Acid					
15			•		(C)		STR	ANDE	DNES	S:	Sing	1e				
					(D)			OLOG		Line						
			(ii	-				to g								
	· ·		(ii)	KIN	D (i					tein		_	_	_	
20					(A) (B)			GMEN			LY M			0ver	_	
					(C)			OTHE			int	erna	ı rr	agme	nt	
			(ii	i)				URCE								
			(-,	(E)			IVID			ATE:					
			(iv)		EDIA		OURC								
25					(C)		CLO									
			(v)								hin :	Env (Gene	_		
			(vi)	PRO:	PERT	IES	OF S	EQUE	MCE:	Ex	pres	ses (cons	erved	
					~-~						an	tige	nic (dete	rmina	nt
30			(V1	ii)	SEQ	UENC	E DE	SCRI	LT TO	N :						
	SEO	ID I	NO:	EE64	405-	3										
						-										
35	1				5					10					15	
	Cys	Thr	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Lys	Ser	Ile	Pro	Ile	Gly	
	TGT	ACA	AGA	CCC	AAC	AAC	AAT	ACA	AGG	AAA	AGT	ATA	CCT	ATA	GGA	
40					20							•				
	Pro	Aro	Ara	Δ1a		Tur	۸1۵	Th-	C1	25	T1.	71.	O1		30	
	CCA	AGG	AGA	Ala GCA	TTT	TAT	GCA	ACA	CCA	Web	ATA	TIE	GLA	ASP	TIE	
	•					~*		*****	CON	ON	TIV	UTW	GGM	GMI	WIW	
45					35											
				His												
	AGA	CAA	GCA	CAT	TGT											
															,	

	(2)	INFORMATION FOR SEQ ID NO: EE6636-1 (i) SEQUENCE CHARACTERISTICS:	
		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 105	
5		(B) TYPE: Nucleic Acid	
		(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	
		(ii) KIND: cDNA to genomic RNA	
		(ii) KIND (if peptide or protein):	
10		(A) SEQUENCE ASSEMBLY METHOD: Overlap	
		(B) FRAGMENT TYPE: Internal Fragment	
		(C) HYPOTHETICAL:	
		(iii) ORIGINAL SOURCE: HIV	
		(E) INDIVIDUAL ISOLATE:	
15		(iv) IMMEDIATE SOURCE:	
		(C) CLONE:	
		(v) POSITION IN GENOME: Within Env Gene	
		(vi) PROPERTIES OF SEQUENCE: Expresses conserved	
		antigenic determinant	
20		(viii) SEQUENCE DESCRIPTION:	
	CEO ID	NO. FEC. 26 1	
	SEQ ID	NO: EE6636-1	
25			
	1	5 10 15	
	——————————————————————————————————————	Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly	
	TGT ACA	AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA	
30			
	•	20 25 30	
	Pro Gly	Arg Ala Phe Tyr Thr Thr Gly Glu Ile Ile Gly Asn Ile	
	CCA GGG	AGA GCA TTT TAT ACA ACA GGA GAA ATA ATA GGA AAT ATA	
35			
		35	
	-	Ala His Cys	
	AGA CAA	GCA CAT TGT	
40			
40	(2)	INFORMATION FOR CEO ID NO. PROCESS R	
	(2)	INFORMATION FOR SEQ ID NO: EE6636-2 (i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 105	
		(B) TYPE: Nucleic Acid	
45		(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	
		(ii) KIND: cDNA to genomic RNA	
		(ii) KIND (if peptide or protein):	
		(A) SEQUENCE ASSEMBLY METHOD: Overlap	
50		(B) FRAGMENT TYPE: Internal Fragment	

					(c)		HYP	OTHE	TICA	L:						
			(ii	i)		GINA		URCE		_						
			•		(E)					ISOL	ATE:					
5			(iv)		EDIA	TE S	OURC								
			(v)		(C)	יתדה	CLO		OME	Wit	h 2 1	E	C	-		
			(vi												erved	
10											_	_			rmina	nt
70			(Vi	ii)	SEQ	JENC:	E DE	SCRI	PTIO	N:						
	SEQ	ID	NO:	EE6	636-	2										
15																
	1				5					10					1 5	
	1	Th-	۸	D=0		A ==	A an	Th-	A		C	т1.	W	T1.	15	
	-		_						_					Ile ATA	-	
20																
					20					25		,			30	
	Pro	G1 v	Aro	A1a		Tvr	Thr	Thr	G1 v		Tle	Tle	C1 v	Asn	-	
														AAT		
25																
					35											
	Arg	Gln	Ala	His												
		CAA														
30																
	(2)			ORMA:						EE663						
			(i)			JENCI				STICS	S:					
					(A)		LEN		105							
35					(B)					eic A						
00					(D)			ANDE			Sing	ге				
			(ii)	`)• ~1				Linea ic RM						
			(ii)							prot		١.				
				,	(A)					SEMBI			D: (Over]	lan	
40					(B)					PE:				agmer	_	
					(c)			THE								
			(iii	i)		INA	L SOI	JRCE	IH:	j -						
					(E)		IND	IVIDU	JAL :	ISOLA	ATE:					
			(iv))	IMM	EDIA	re so	OURCE	Ξ:							
45					(C)		CLO							_		
			(v)							With						
			(vi))	PROI	PERT	ES (OF SE	EQUE	VCE:					erved rminar	n t
			(vii	ii)	SEQ	JENCI	E DES	SCRIE	TION	٧:			'			
50				-	•	=-				-						

SEQ ID NO: EE6636-3

5 1

1 5 10 15
Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly
TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA

20 25

Pro Gly Arg Ala Phe Tyr Thr Thr Gly Glu Ile Ile Gly Asn Ile CCA GGG AGA GCA TTT TAT ACA ACA GGA GAA ATA ATA GGA AAT ATA

30

Arg Gln Ala His Cys AGA CAA GCA CAT TGT

Claims

20

25

30

35

40

45

50

 An antigenic conjugate of HIV major neutralization determinant covalently linked to purified outer membrane proteosome of Neisseria, comprising an antigenic conjugate of the formula

 $(PND)_n \sim (Omp),$

or pharmaceutically acceptable salt thereof, wherein:

PND is the major neutralization determinant of HIV, which is a polypeptide of one or more amino acid sequences;

- n indicates the number of polypeptides of PND covalently linked to Omp and is 1-50;
- indicates covalent linkage;

Omp is purified outer membrane proteosome of Neisseria,

said polypeptide having a sequence of 35 amino acids or less, but at least 5 amino acids in length; said polypeptide containing in its sequence Gly-X-Gly, wherein X is proline, leucine, alanine, glutamine or serine;

said polypeptide having any of the sequences given in the sequence listing with the exception of sequence nos. EE90-1, EE90-2, EE90-3, EE312-1, EE360-1, EE360-2, EE360-3, EE667-3 and EE6405-3.

2. The antigenic conjugate of claim 1 wherein X is proline.

- 3. The antigenic conjugate of claim 1 wherein the covalent linkage between PND and Omp consists essentially of a bigeneric spacer.
- 4. The antigenic conjugate of claims 1-3, in combination with any of the antivirals, immunomodulators, anti-infectives or vaccines of Table I.
- 5. The antigenic conjugate of claims 1-3, wherein said Omp is derived from Neisseria meningitidis.
- 6. A cocktail of antigenic conjugates consisting essentially of a mixture of more than one molecular species of the antigenic conjugates of claims 1-3.
- 7. An AIDS vaccine comprising an antigenic conjugate of HIV major neutralization determinant covalently linked to purified outer membrane proteosome of Neisseria, said conjugate of the formula

 $(PND)_n \sim (Omp),$

or pharmaceutically acceptable salt thereof, wherein:

PND is the major neutralization determinant of HIV, which is a polypeptide of one or more amino acid sequences;

- n indicates the number of polypeptides of PND covalently linked to Omp and is 1-50;
- indicates covalent linkage;

5

10

30

35

40

45

Omp is purified outer membrane proteosome of Neisseria;

said polypeptide having a sequence of 35 amino acids or less, but at least 5 amino acids in length; said polypeptide containing in its sequence Gly-X-Gly, wherein X is proline, leucine, alanine, glutamine or serine;

said polypeptide having any of the sequences given in the sequence listing;

said conjugate mixed with a suitable immunological adjuvant, carrier or vector, said vaccine to be used pre- and post-exposure to prevent or treat HIV infection or disease, said vaccine capable of eliciting specific HIV neutralizing antibodies.

- 15 8. The AIDS vaccine of claim 7 wherein X is proline.
 - The AIDS vaccine of claim 7 wherein the covalent linkage betwen PND and Omp consists essentially of a bigeneric spacer.
- 20 10. The AIDS vaccine of claims 7-9 in combination with any of the antivirals, immunomodulators, antiinfectives or vaccines of Table I.
 - 11. The AIDS vaccine of claims 7-9, wherein said Omp is derived from Neisseria meningitidis.
- 25 12. The AIDS vaccine of claism 7-9 comprising a cocktail of said antigenic conjugates, said cocktail consisting essentially of a mixture of more than one molecular species of said antigenic conjugates.
 - 13. A pharmaceutical composition comprising an antigenic conjugate of HIV major neutralization determinant covalently linked to purified outer membrane proteosome of Neisseria, said antigenic conjugate of the formula

(PND)n~(Omp),

or pharmaceutically acceptable salt thereof, wherein:

- PND is the major neutralization determinant of HIV, which is a polypeptide of one or more amino acid sequences;
- n indicates the number of polupeptides of PND covalently linked to Omp and is 1-50;
- indicates covalent linkage;
- Omp is purified outer membrane proteosome of Neisseria,

said polypeptide having a sequence of 35 amino acids or less, but at least 5 amino acids in length; said polypeptide containing in its sequence Gly-X-Gly, wherein X is proline, leucine, alanine, glutamine or serine;

said polypeptide having any of the sequences given in the sequence listing;

said conjugate mixed with a suitable immunological adjuvant, said composition useful as a vaccine capable of producing specific HIV neutralizing antibody in mammals.

- 14. The composition of claim 13 wherein X is proline.
- 15. The composition of claim 13 wherein the covalent linkage between PND and Omp consists essentiallyof a bigeneric spacer.
 - 16. The composition of claims 13-15, in combination with any of the antivirals, immunomodulators, antiinfectives or vaccines of Table I.
- 55 17. The composition of claims 13-15, wherein said Omp is derived from Neisseria meningitidis.
 - 18. A pharmaceutical composition containing a cocktail of antigenic conjugates consisting essentially of a mixture of more than one molecular species of the antigenic conjugates of claims 13-15.

- 19. The use of a conjugate as claimed in claim 1 for the preparation of a medicament for vaccinating against AIDS or ARC.
- 20. The use of a conjugate as claimed in claim 2 for the preparation of a medicament for vaccinating against AIDS or ARC.
 - 21. The use of a conjugate as claimed in claim 3 for the preparation of a medicament for vaccinating against AIDS or ARC.
- 22. The use of a conjugate as claimed in claim 1 together with any of the antivirals, immunolodulators or anti-infectives of Table I for the preparation of a medicament for vaccinating against AIDS or ARC.
 - 23. The use as claimed in claim 19 or 20 wherein the Omp is derived from Neisseria meningitidis.
- 24. The use of a conjugate as claimed in claim 1 for the preparation of a medicament for the prevention or treatment of infection by HIV, or for the treatment of AIDS.
 - 25. The use of a conjugate as claimed in claim 2 for the preparation of a medicament for the prevention or treatment of infection by HIV, or for the treatment of AIDS.
 - 26. The use of a conjugate as claimed in claim 3 for the preparation of a medicament for the prevention or treatment of infection by HIV, or for the treatment of AIDS.
- 27. The use of a conjugate as claimed in claim 1 together with any of the antivirals, immunolodulators or anti-infectives of Table I for the preparation of a medicament for the prevention or treatment of infection by HIV, or for the treatment of AIDS.
 - 28. The use as claimed in claim 24 or 25 wherein the Omp is derived from Neisseria meningitidis.

5

20

30

35

40

45

50

THIS PAGE BLANK (USPTO)

Europäisches Patentamt European Patent Office Office européen des brevets

11) Publication number:

0 471 407 A3

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 91202025.2

2 Date of filing: 07.08.91

(5) Int. Cl.⁵: **C07K 17/02**, C07K 7/10, A61K 37/02, A61K 39/385, A61K 39/21, A61K 47/48

Priority: 13.08.90 US 566654
 13.08.90 US 566656
 13.08.90 US 566638

Date of publication of application:19.02.92 Bulletin 92/08

Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

Date of deferred publication of the search report: 12.05.93 Bulletin 93/19 7) Applicant: MERCK & CO. INC. 126, East Lincoln Avenue P.O. Box 2000 Rahway New Jersey 07065-0900(US)

Inventor: Lewis, John A. 1229 Clearbrook Road West Chester, PA 19380(US) Inventor: Davide, Joseph P. 471 Wexford Circle Harleysville, PA 19438(US) Inventor: Waterbury, Julie ANN 2610 Skippack Pike, Apt. 1, RD 3 Norristown, PA 19403(US)

Representative: Barrett-Major, Julie Diane et al Merck & Co., Inc. European Patent Department Terlings Park Eastwick Road Harlow Essex CM20 2QR (GB)

New embodiments of the HIV principal neutralizing determinant.

© New amino acid sequences of an envelope fragment of HIV are disclosed, as well as im – munological conjugates for immunological purposes, including vaccination against AIDS.

EUROPEAN SEARCH REPORT

Application Number

EP 91 20 2025 Page 1

				rage 1
	DOCUMENTS CONS			
Category	Citation of document with i	ndication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)
Y	EP-A-0 311 219 (STI DIERGENEESKUNDIG IN * the whole documen *especially column	CHTING CENTRAAL ISTITUUT) it *	1-28	C07K17/02 C07K7/10 A61K37/02 A61K39/385 A61K39/21
Y	WO-A-9 003 984 (REP * the whole documen * especially page 2	it *	1-28	A61K47/48
Y	EP-A-O 339 504 (E.I COMPANY) * the whole documen	DU PONT DE NEMOURS AND	1-28	
D,Y	EP-A-0 161 188 (MER * the whole documen		1-28	
Y	EP-A-0 186 576 (MER * the whole documen		1-28	
Y	OF THE HUMAN IMMUNO (HIV-1)' * the whole documen	RE 1990, OXFORD,UK RONTING THE AN IMMUNODOMINANT VIRUS NEUTRALIZING ENVELOPE GLYCOPROTEIN DEFICIENCY VIRUS TYPE 1 t *	1-28	TECHNICAL FIELDS SEARCHED (Int. Cl.5) CO7K A61K
Y	EP-A-0 290 893 (GEN CORPORATION) * the whole documen		1-28	
1	The present search report has b	een drawn up for all claims		
	Place of search THE HAGUE	Date of completion of the search 21 DECEMBER 1992		Examine SITCH W.D.C.
X : part Y : part doct A : tech O : non	CATEGORY OF CITED DOCUME ticularly relevant if taken alone ticularly relevant if combined with an ument of the same category inological backgroundwritten disclosure rmediate document	NTS T: theory or principl E: earlier patent do after the filing di	ument, but pub ite in the application or other reasons	e invention lished on, or

EUROPEAN SEARCH REPORT

Application Number

EP 91 20 2025 Page 2

				_ rage Z		
		DERED TO BE RELEVAN	T			
Category	Citation of document with i of relevant pa	ndication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)		
1	DATABASE WPIL Section Ch, Week 90 Derwent Publication Class B04, AN 90-22 & JP-A-2 157 294 (N June 1990 * abstract *	s Ĺtd., London, GB; 8714	1-28	·		
	pages 6768 – 6772 JAVAHERIAN ET AL 'PI	89, WASHINGTON D.C.,USA RINCIPAL NEUTRALIZING IMMUNODEFICIENCY VIRUS FEIN'	1-28			
),P,	EP-A-0 402 088 (MERC	CK AND CO.INC.)	1-28			
,	* the whole document	*				
				TECHNICAL FIELDS SEARCHED (int. Cl.5)		
	The present search report has bee	n drawn up for all claims				
_	Place of search	Date of completion of the nearth		Extendent		
TH	E HAGUE	21 DECEMBER 1992	S	SITCH W.D.C.		
X : partice Y : partice docum A : techno O : non-w	TEGORY OF CITED DOCUMENT plarly relevant if taken alone plarly relevant if combined with anoth ent of the same category plogical background ritten disclosure ediate document	E: earlier patent docu after the filing dat er D: document cited in L: document cited for	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons A: member of the same patent family, corresponding			

THIS PAGE BLANK (USPTO)