Set Theory

Lecture 10

Introduction to Set Theory

- A set is a structure, representing an <u>unordered</u> collection (group, plurality) of zero or more <u>distinct</u> (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.

Basic notations for sets

- For sets, we'll use variables S, T, U, ...
- We can denote a set S in writing by listing all of its elements in curly braces:
 - {a, b, c} is the set of whatever 3 objects are denoted by a, b, c.
- **Set builder notation:** For any proposition P(x) over any universe of discourse, $\{x \mid P(x)\}$ is the set of all x such that P(x).
 - e.g., $\{x \mid x \text{ is an integer where } x>0 \text{ and } x<5 \}$

Basic properties of sets

- Sets are inherently <u>unordered</u>:
 - No matter what objects a, b, and c denote,{a, b, c} = {a, c, b} = {b, a, c} ={b, c, a} = {c, a, b} = {c, b, a}.
- All elements are <u>distinct</u> (unequal); multiple listings make no difference!
 - $\{a, b, c\} = \{a, a, b, a, b, c, c, c, c\}.$
 - This set contains at most 3 elements!

Definition of Set Equality

- Two sets are declared to be equal *if and only if* they contain <u>exactly the same</u> elements.
- In particular, it does not matter how the set is defined or denoted.
- For example: The set {1, 2, 3, 4} =
 {x | x is an integer where x>0 and x<5 } =
 {x | x is a positive integer whose square
 is >0 and <25}

Type of Set

Infinite Sets

- Conceptually, sets may be *infinite* (*i.e.*, not *finite*, without end, unending).
- Symbols for some special infinite sets:

 $N = \{0, 1, 2, ...\}$ The **n**atural numbers.

 $Z = \{..., -2, -1, 0, 1, 2, ...\}$ The *i*ntegers.

R = The "real" numbers, such as 374.1828471929498181917281943125...

Infinite sets come in different sizes!

Venn Diagrams

Basic Set Relations: Member of

- x∈S ("x is in S") is the proposition that object x is an
 ∈lement or member of set S.
 - -e.g. $3 \in \mathbb{N}$, "a" $\in \{x \mid x \text{ is a letter of the alphabet}\}$
- Can define set equality in terms of ∈ relation:
 ∀S,T: S=T ↔ (∀x: x∈S ↔ x∈T)
 "Two sets are equal iff they have all the same members."
- $x \notin S := \neg(x \in S)$ "x is not in S"

The Empty Set

- Ø ("null", "the empty set") is the unique set that contains no elements whatsoever.
- $\emptyset = \{\} = \{x/\text{False}\}$
- No matter the domain of discourse,

Subset and Superset Relations

- $S \subseteq T$ ("S is a subset of T") means that every element of S is also an element of T.
- $S \subseteq T \Leftrightarrow \forall x (x \in S \rightarrow x \in T)$
- Ø⊂S, S⊂S.
- $S \supseteq T$ ("S is a superset of T") means $T \subseteq S$.
- Note $S=T \Leftrightarrow S \subseteq T \land S \supseteq T$.
- means $\neg (S \subseteq T)$, i.e. $\exists x (x \in S \land x \notin T)$ $S \not\subset T$

Proper (Strict) Subsets & Supersets

• $S \subset T$ ("S is a proper subset of T") means that $S \subseteq T$ but $T \subset S$. Similar for $S \supset T$.

Sets Are Objects, Too!

- The objects that are elements of a set may themselves be sets.
- E.g. let $S=\{x \mid x \subseteq \{1,2,3\}\}$ then $S=\{\emptyset,$ $\{1\}, \{2\}, \{3\},$ $\{1,2\}, \{1,3\}, \{2,3\},$ $\{1,2,3\}\}$
- Note that $1 \neq \{1\} \neq \{\{1\}\} !!!!$

Cardinality and Finiteness

- |S| (read "the *cardinality* of S") is a measure of how many different elements S has.
- E.g., $|\varnothing|=0$, $|\{1,2,3\}|=3$, $|\{a,b\}|=2$, $|\{\{1,2,3\},\{4,5\}\}|=2$
- We say S is *infinite* if it is not *finite*.
- What are some infinite sets we've seen?

The *Power Set* Operation

- The power set P(S) of a set S is the set of all subsets of S. $P(S) = \{x \mid x \subseteq S\}$.
- $E.g. P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}.$
- Sometimes P(S) is written 2^{S} . Note that for finite S, $|P(S)| = 2^{|S|}$.
- It turns out that |P(N)| > |N|.
 There are different sizes of infinite sets!

Ordered *n*-tuples

- For $n \in \mathbb{N}$, an ordered n-tuple or a <u>sequence</u> of length n is written $(a_1, a_2, ..., a_n)$. The first element is a_1 , etc.
- These are like sets, except that duplicates matter, and the order makes a difference.
- Note $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, ..., n-tuples.

Cartesian Products of Sets

- For sets A, B, their Cartesian product $A \times B := \{(a, b) \mid a \in A \land b \in B \}.$
- $E.g. \{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$
- Note that for finite A, B, $|A \times B| = |A| |B|$.
- Note that the Cartesian product is **not** commutative: $\neg \forall AB: A \times B = B \times A$.
- Extends to $A_1 \times A_2 \times ... \times A_n$...

The Union Operator

- For sets A, B, their union $A \cup B$ is the set containing all elements that are either in A, or (" \vee ") in B (or, of course, in both).
- Formally, $\forall A,B: A \cup B = \{x \mid x \in A \lor x \in B\}$.
- Note that A∪B contains all the elements of A
 and it contains all the elements of B:

$$\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$$

Union Examples

• $\{a,b,c\}\cup\{2,3\} = \{a,b,c,2,3\}$

• $\{2,3,5\}\cup\{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,3,5,7\}$

The Intersection Operator

- For sets A, B, their intersection $A \cap B$ is the set containing all elements that are simultaneously in A and $("\wedge")$ in B.
- Formally, $\forall A,B: A \cap B \equiv \{x \mid x \in A \land x \in B\}.$
- Note that A∩B is a subset of A and it is a subset of B:

$$\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$$

Intersection Examples

{a,b,c}∩{2,3} = ____
{2,4,6}∩{3,4,5} = ___

• $\{2,4,6\} \cap \{3,4,5\} = \frac{\emptyset}{\{4\}}$

Disjointedness

- Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty. $(A \cap B = \emptyset)$
- Example: the set of even integers is disjoint with the set of odd integers.

Inclusion-Exclusion Principle

Set Difference

For sets A, B, the difference of A and B, written A-B, is the set of all elements that are in A but not B.

•
$$A - B := \{x \mid x \in A \land x \notin B\}$$

= $\{x \mid \neg(x \in A \rightarrow x \in B)\}$

Also called:
 The <u>complement of B with respect to A</u>.

Set Difference Examples

```
• \{1,2,3,4,5,6\} - \{2,3,5,7,9,11\} =
• \mathbf{Z} - \mathbf{N} = \{..., \{-1,4,0\}\} 1, 2, ...\} - \{0, 1, ...\}
= \{x \mid x \text{ is an integer but not a nat. } \#\}
= \{x \mid x \text{ is a negative integer}\}
= \{..., -3, -2, -1\}
```

Set Difference - Venn Diagram

A-B is what's left after B
 "takes a bite out of A"

Set Complements

- The *universe of discourse* can itself be considered a set, call it *U*.
- The *complement* of *A*, written _____is the complement of *A* w.r.t. *U*, *i.e.*, it 4s *U*–*A*.
- *E.g.,* If *U*=**N**,

$$\overline{\{3,5\}} = \{0,1,2,4,6,7,\dots\}$$

More on Set Complements

An equivalent definition, when U is clear:

Set Identities

- Identity: $A \cup \emptyset = A \quad A \cap U = A$
- Domination: $A \cup U = U$ $A \cap \emptyset = \emptyset$
- Idempotent: $A \cup A = A = A \cap A$
- Double complement:
- Commutative: $A \cup B = B \cup A^{A} \setminus \overline{A} \cap B = B \cap A$
- Associative: $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$

DeMorgan's Law for Sets

Exactly analogous to (and derivable from)
 DeMorgan's Law for propositions.

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Proving Set Identities

To prove statements about sets, of the form $E_1 = E_2$ (where E_3 are set expressions), here are three useful techniques:

- Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
- Use logical equivalences.
- Use a membership table.

Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - − Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - − Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 - − Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
- Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$

Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use "1" to indicate membership in the derived set, "0" for non-membership.
- Prove equivalence with identical columns.

Membership Table Example

Prove $(A \cup B) - B = A - B$.

A	В	$A \cup B$	$(A \cup B)$	-B	A-B	3
0	0	0	0		0	
0	1	1	0		0	
1	0	1	1		1	
1	1	1	0		0	

Membership Table Exercise

Prove $(A \cup B) - C = (A - C) \cup (B - C)$.

ABC	$A \cup B$	$(A \cup B) - C$	A-C	B-C	$(A-C)\cup(B-C)$
0 0 0					
0 0 1					
0 1 0					
0 1 1					
1 0 0					
1 0 1					
1 1 0					
1 1 1					

Generalized Union

- Binary union operator: $A \cup B$
- *n*-ary union: $A \cup A_2 \cup ... \cup A_n := ((...((A_1 \cup A_2) \cup ...) \cup A_n))$ (grouping & order is irrelevant)
- "Big U" notation:

$$igcup_n^n A_i$$

• Or for infinite sets of isets:

$$\bigcup_{A \in X} A$$

Generalized Intersection

- Binary intersection operator: $A \cap B$
- *n*-ary intersection: $A \cap A_2 \cap ... \cap A_n \equiv ((...((A_1 \cap A_2) \cap ...) \cap A_n))$ (grouping & order is irrelevant)
- "Big Arch" notation:

• Or for infinite sets of sets: