Distâncias no R³

Marcelo Dreux

1 - Distância de Ponto a Ponto

• Dados dois pontos $A = (x_1, y_1, z_1) e B = (x_2, y_2, z_2)$

$$d_{AB} = \|\overrightarrow{AB}\|$$

$$d_{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

2- Distância de Ponto à Reta

• Dados $A = (x_1, y_1, z_1)$ e $r = P_0 + t v$

 $-\operatorname{Se} A \in r \text{ então } d_{Ar} = 0$

 $-Se A \notin r$

Distância de Ponto à Reta

Achar a distância de um ponto A à reta $r = P_0 + v t$

• Passo 1:

Fazer a projeção de P_0A na reta

Passo 2:

Achar o ponto B projetado na reta

Passo 3:

Calcular a distância de A a B

3 - Distância de Ponto a Plano

• 1º método:

Dados o plano α e o ponto P

$$d = \|Proj_n\overrightarrow{QP}\|$$

$$\alpha$$
: $x - y + z = 2$
 $P = (1,1,1)$

4 - Distância de Reta a Plano

- Dados: $r = P_0 + t v$
- α : ax + by + cz = d

Se $< v, n > \neq 0 \Rightarrow$ reta intercepta o plano d = 0

Se $< v, n >= 0 \Rightarrow$ reta paralela ao plano Se $u \notin \alpha$ então d = distância de ponto ao plano (distância de u a α)

a)
$$r = (1 + t, -t, 2t)$$
 $v = (1, -1, 2)$

$$\alpha$$
: $2x - y + z = 1$ $n = (2, -1, 1)$

< v, n > diferente de zero. "Fura" o plano $\Rightarrow d = 0$

b)
$$r = (1 + t, -t, 2t)$$
 $v = (1, -1, 2)$
 $\beta : x + y = 0$ $n = (1, 1, 0)$

$$< v, n >= 1 - 1 = 0 \Rightarrow$$
reta paralela ao plano
Verificar se $P = (1,0,0) \in \beta$

$$P \notin \beta \Rightarrow d \neq 0.$$

Calcular distância do ponto P ao plano beta

5 - Distância entre dois planos

•
$$\alpha$$
: $a_1x + b_1y + c_1z = d_1$
 β : $a_2x + b_2y + c_2z = d_2$

 Somente para planos paralelos. Distância de ponto a plano.

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \neq \frac{d_1}{d_2}$$

a)
$$\alpha$$
: $x + y - 2z = 4$
 β : $2x + z = 2$

b)
$$\alpha$$
: $x + z = 2$
 β : $2x + 2z = 4$

c)
$$\alpha$$
: $x + y + z = 1$

$$\beta \colon x + y + z = 2$$

6 – Distância de Reta à Reta

Dados:
$$r: P_1 + t v_1$$

 $s: P_2 + s v_2$

- Se v_1 é paralelo a v_2
 - $-\operatorname{se} u \in s \text{ então } d_{rs} = 0 \quad \text{(retas coincidentes)}$

 $-\operatorname{se} u \not\in s$ então $d_{rs} = d_{us} \Rightarrow$ distância de ponto a reta

Distância de Reta à Reta

• Se v_1 não é paralelo a v_2

$$-\operatorname{se} r \cap s \neq \emptyset \Rightarrow d = 0$$

 $-\operatorname{se} r \cap s = e \emptyset \Rightarrow r e s \tilde{a}o \text{ reversas}$

Exercícios

Calcule as distâncias entre:

- (a) O ponto A(1,1,1) e a reta r:(t,t,t);
- (b) O ponto A(1,1,1) e a reta r: (t,t,1+t);
- (c) O ponto A(1,1,1) e o plano x + y + z = 1;
- (d) As retas r: (t, 2t, 1-t) e s: (2t, 4t, -2t);
- (e) As retas r: (t, 2t, 1-t) e s: (t, 0, t);
- (f) A reta r: (t, 2t, 1 t) e o plano x + z = 0;
- (g) Os planos x + y + z = 0 e x + y + z = 1.