Hardness of Untimed Language Universality

Romain Brenguier Ocan Sankur Thanks to Stefan Göller

LSV, CNRS & ENS Cachan, France {brenguier, sankur}@lsv.ens-cachan.fr

YR-CONCUR September 10, 2011

Timed Systems

• Context: Formal verification of systems running in real-time;

Timed Systems

- Context: Formal verification of systems running in real-time;
- Examples: mobile phone, plane, car, train, robot,...

Timed Systems

- Context: Formal verification of systems running in real-time;
- Examples: mobile phone, plane, car, train, robot,...

Modeled by Timed Automata

Timed Automata (TA) [Alur and Dill 1994]

Finite automata + Analog clocks

- Clocks cannot be stopped, all grow at the same rate.
- An edge is activated when its **clock constraint** holds.
- A clock can be **reset** by a transition.

Timed Automata (TA) [Alur and Dill 1994]

${\sf Finite\ automata}\ +\ {\sf Analog\ clocks}$

Runs of a timed automaton

(idle,
$$x = 0$$
) $\xrightarrow{23.7}$ (idle, $x = 23.7$) $\xrightarrow{\text{click?}}$ ($\ell_1, x = 0$) $\xrightarrow{10}$ ($\ell_1, x = 10$) $\xrightarrow{\text{click?}}$ ($\ell_2, x = 10$) $\xrightarrow{\text{double_click!}}$ (idle, $x = 10$) \cdots

Timed Automata (TA) [Alur and Dill 1994]

Finite automata + Analog clocks

The untimed language of a timed automaton

Sequences of edge labels along which there is a run.

For instance (click? \cdot single_click!)* $\subseteq L(A)$.

Known Results about TA

Emptiness is PSPACE-complete;

$$L(A) = \varnothing$$
? $L^{t}(A) = \varnothing$?

• Timed language universality is undecidable;

$$L^{t}(A) = \Sigma^{*}? \ L^{t}(A) = L^{t}(B)? \ L^{t}(A) \subseteq L^{t}(B)?$$

Known Results about TA

• Emptiness is PSPACE-complete;

$$L(A) = \varnothing$$
? $L^t(A) = \varnothing$?

Timed language universality is undecidable;

$$L^{t}(\mathcal{A}) = \Sigma^{*}? \ L^{t}(\mathcal{A}) = L^{t}(\mathcal{B})? \ L^{t}(\mathcal{A}) \subseteq L^{t}(\mathcal{B})?$$

 Untimed language universality and inclusion are PSPACE-hard and in EXPSPACE.

$$L(A) = \Sigma^*$$
? $L(A) = L(B)$? $L(A) \subseteq L(B)$?

Known Results about TA

• Emptiness is PSPACE-complete;

$$L(A) = \varnothing$$
? $L^t(A) = \varnothing$?

Timed language universality is undecidable;

$$L^{t}(A) = \Sigma^{*}? L^{t}(A) = L^{t}(B)? L^{t}(A) \subseteq L^{t}(B)?$$

 Untimed language universality and inclusion are PSPACE-hard and in EXPSPACE.

$$L(A) = \Sigma^*$$
? $L(A) = L(B)$? $L(A) \subseteq L(B)$?

What is the exact complexity of these problems?

"Compatibility" between regions and constraints;

- "Compatibility" between regions and constraints;
- "Compatibility" between regions and resets;

- "Compatibility" between regions and constraints;
- "Compatibility" between regions and resets;
- "Compatibility" between regions and time elapsing;

- "Compatibility" between regions and constraints;
- "Compatibility" between regions and resets;
- "Compatibility" between regions and time elapsing;
- ⇒ Bisimulation property.

- "Compatibility" between regions and constraints;
- "Compatibility" between regions and resets;
- "Compatibility" between regions and time elapsing;
- ⇒ Bisimulation property.

Main Result

Theorem

Untimed language inclusion and universality problems for timed automata are EXPSPACE-complete.

Main Result

Theorem

Untimed language inclusion and universality problems for timed automata are EXPSPACE-complete.

Algorithm

Given timed automata \mathcal{A} and \mathcal{B}

- construct the corresponding region automata, R(A), R(B);
- use a PSPACE algorithm to check language inclusion on the region automata, $R(A) \subseteq R(B)$.

Given an exponential space Turing machine T and an input x,

Executions are encoded by some words;

- Executions are encoded by some words;
- We construct an automaton that recognizes timed words that are:
 - either **not correct** executions of T,

- Executions are encoded by some words;
- We construct an automaton that recognizes timed words that are:
 - either **not correct** executions of T.
 - or executions that do not start with the input x,

- Executions are encoded by some words;
- We construct an automaton that recognizes timed words that are:
 - either **not correct** executions of T,
 - or executions that do **not start** with the input x,
 - or executions that are not accepting;

- Executions are encoded by some words;
- We construct an automaton that recognizes timed words that are:
 - either **not correct** executions of T,
 - or executions that do not start with the input x,
 - or executions that are not accepting;
- ⇒ The automaton is universal if and only if the input x is not accepted by the Turing machine.

A configuration

A configuration

An execution is encoded by

An execution is encoded by

The alphabet of the timed automaton is $\Gamma = \Sigma \cup Q \cup \{\$\}$

Module $D(\$, 2^n)$

$$L(D(a, m)) = (\Gamma \setminus \{q_{acc}\})^m \cdot (\Gamma \setminus \{a\}) \cdot \Gamma^*$$

Encoding an Instruction

Encoding an Instruction

$$\cdots a p b \cdots \$ \cdots c b q \cdots$$

$$\leftarrow 2^{n}-1 \rightarrow$$

Encoding an Instruction

$$\leftarrow 2^n - 1 \rightarrow$$

The Global Construction

Conclusion

 \bullet The algorithm is simple and uses the region abstraction \dots

Conclusion

- The algorithm is simple and uses the region abstraction . . .
- But the problem is hard.

Conclusion

- The algorithm is simple and uses the region abstraction . . .
- But the problem is hard.

Thank you for your attention

