Notes TC4

Adrien Pavao

September 2017

Contents

1	Rappel		
	1.1	Espérance	1
2	Infé	erence Bayesienne	2
	2.1	Niveau 1 : Classification Bayesienne	2
	2.2	Niveau 2 : Inférence Bayesienne des paramètres	2
		2.2.1 A priori sur les paramètres	3
		2.2.2 A posteriori sur les paramètres	3
		2.2.3 Retour à la classification	3
3	Mo	dèles de mélange (G.M.M.)	4
			4
	3.2	Algorithme E.M	5
	3.3		6
	3.4	Suite du cours	7

1 Rappel

1.1 Espérance

Soit une variable aléatoire X, l'espérance : $E[X] = \sum_{x \in A_x} P(X=x) \times x$ Exemple si X suit une loi $N(\mu,\sigma)$ GRAPHE (loi normale) $E[X] = \mu$

Pour une variable discrète, ce n'est pas toujours pertinent. De même pour des variables qualitatives plutôt que quantitatives. On préfère donc définir une fonction de cette variable alétoire, et l'espérance de cette fonction. Cela permet de "donner du sens". Ainsi :

$$E[f(X)] = \sum_{x} P(X = x) \times f(x)$$

 ${\bf X}$ dépend de la distribution tirée sur la variable aléatoire. On note ${\bf X}$ (vague) P.

2 Inférence Bayesienne

Différents niveaux d'inférence...

2.1 Niveau 1: Classification Bayesienne

- Y : La classe à prédire (catégorielle)
- \vec{X} : Vecteur aléatoire, $\vec{X} \begin{pmatrix} x_1 \\ \dots \\ x_2 \end{pmatrix}$

On cherche à choisir y de façon à maximiser :

$$P(Y = y | \vec{X} = \vec{x}) = \frac{P(\vec{X} = \vec{x} | Y = y)P(Y = y)}{P(\vec{X} = \vec{x})}$$

Dans cette formule, on remarque des termes particuliers :

- La vraisemblance : $P(\vec{X} = \vec{x}|Y = y)$.
- L'a priori : P(Y = y).
- L'évidence : $P(\vec{X} = \vec{x})$.

La vraisemblance et l'a priori sont à estimer. On estime une ditribution sur X pour chaque classe y. On peut donc faire l'hypothèse naïve suivante :

$$P(\vec{X} = \vec{x}|Y = y) = \prod_{i=1}^{d} P(\vec{X}_i = \vec{x}_i|Y = y)$$

Estimer les paramètres

Cas Bernouilli : $\Theta_{iy} = \frac{n(1,i,y)}{N(i,y)}$

n(1, i, y) = nombre de fois où $\vec{X}_i = 1$ dans la classe y.

Si n(1, i, y) = 0 alors $\Theta_{iy} = 0$ Donc $P(\vec{X} = \vec{x}|Y = y) = 0$, ce qui est mauvais. On estime Θ sur les données et on vient à la conclusion qu'un evenement est impossible sous pretexte qu'on ne l'a jamais observé. Il faut éviter ce problème.

Ce type d'estimation est appelée une estimation MLE : Maximum Likelihood Estimate. Il s'agit de l'interprétation **fréquentiste** des données.

Autrement dit, on cherche les paramètres Θ_{iy} qui maximisent $P(D|\Theta_{iy})$. (D la réalisation des données ...)

2.2 Niveau 2 : Inférence Bayesienne des paramètres

On cherche $P(X_i|Y)$ -; $P(X_i|Y_i\Theta_{iy})$. L'apprentissage revient à l'estimation d'une distribution sur les paramètres.

Estimer $P(\Theta_{iy}|D)$.

$$P(\Theta_{iy}|D) = \frac{P(D|\Theta_{iy})P(\Theta_{iy})}{P(D)}$$

2.2.1 A priori sur les paramètres

Cas Bernouilli : $\Theta_{iy} \in [0,1]$, continu. Donc $P(\Theta_{iy})$ _ une loi continue de support [0,1]. Le choix : Loi Beta.

$$P(\Theta_{iy}; \alpha_0, \alpha_1) = \frac{\Gamma(\alpha_0 + \alpha_1)}{\Gamma(\alpha_0)\Gamma(\alpha_1)} \Theta_{iy}^{\alpha_1 - 1} (1 - \Theta_{iy})^{\alpha_0 - 1}$$

(Dénominateur et game -; Normalisation)

 α_0 et α_1 sont les paramètres de la loi Beta. On a $\alpha_0,\alpha_1>0,\in R$ (R reel, D majuscule ...)

- Fonction de densité symétrique : $\alpha_0 = \alpha_1$ et $\alpha_0, \alpha_1 > 1$. Graphe 1
- A priori non-informatif:

 $\alpha_0 = \alpha_1 = 1.$

Graphe 2

• A priori parcimonieux (sparse):

 $\alpha_0, \alpha_1 < 1$

Graphe 3

2.2.2 A posteriori sur les paramètres

$$P(\Theta_{iy}|D) \propto P(D|\Theta_{iy})P(\Theta_{iy};\alpha_1,\alpha_0)$$

(vraimsemblance et a priori).

$$P(\Theta_{iy}|D) \propto \Theta_{iy}^{N_1 + \alpha_1 - 1} (1 - \Theta_{iy})^{N_0 + \alpha_0 - 1}$$

 \propto signifie "proportionnel à".

- N_0 : Nombre de x_i à 0 dans D.
- N_1 : Nombre de x_i à 1 dans D.

(defition importante) La loi a posteriori est comme la loi a priori, une loi Beta. La loi Beta est l'a priori **conjugué** de Bernouilli (conjugated prior).

2.2.3 Retour à la classification

1. Maximum a Posteriori des Paramètres (MAP)

 $\Theta_{iy} = argmax P(\Theta_{iy}|D)$ (chapeau sur le theta!) $\Theta_{iy} = \frac{N_1 + \alpha_1 - 1}{N_1 + N_0 + \alpha_1 + \alpha_0 - 2}$ α_1 et α_0 agissent comme des "pseudo-comptes". Lissage (smoothing) de distibution. $\Theta_{iy}! = 0$ Si $N_1, N_0 >> \alpha_1, \alpha_0$ alors l'a priori est négligeable.

-¿ Régularisation, éviter le sur-apprentissage.

2. Loi prédictive (inférence Bayesienne 3)

 $P(X_i = x_i | Y = y; \Theta_{iy})$ avec Θ_{iy} estimés à partir des données (MAP).

Le paramètre n'existe pas et ne doit donc pas apparaitre dans la prédiction. La vraie prédiction :

 $P(X_i = x_i|D) = integrale01P(X_i = x_i; \Theta_{iy}|D)d\Theta_{iy}$, en marginalisant les paramètres.

 $P(X_i;\Theta_{iy}|D) = P(X_i|\Theta_{iy};D)P(\Theta_{iy}|D) \text{ (vraisemblance et a priori)}.$

$$P(X_i = x_i | D) = \frac{N_1 + \alpha_1}{N_1 + N_0 + \alpha_1 + \alpha_0}, \forall \alpha_1 \text{ et } \alpha_0 > 0.$$

3 Modèles de mélange (G.M.M.)

3.1 Introduction

Un large champ d'applications:

• Clustering : Apprentissage non supervisé. Par exemple, l'algorithme des K-means.

$$D = (x_n)_{n=1}^N$$

On fixe K, un nombre de clusters.

• Estimation de distribution.

Exemple: La classification (d'image). Graphe 1.

- Augmenter la capacité du modèle.
- Augmenter le nombre de paramètres.
- Mélange de Gaussienne (G.M.M.)

K : Le nombre de Gausiennes / clusters.

$$P(\vec{x_n}|\Theta) = \sum_{k=1}^k \pi_k N(\vec{u_k}, \Sigma_k)$$

- Les paramètres $\Theta: (\pi_k, \vec{u_k}, \sum_k)_{k=1}^K$
- $-\pi_k$ est le poids du mélange.
- $-N(\vec{u_k}, \Sigma_k)$ est la loi gaussienne.

L'objectif de l'apprentissage est d'estimer les paramètres du mélange permettant de :

- Maximiser $\Pi_{n=1}^N P(\vec{X} = \vec{x}|\Theta)$
- Maximiser $log(\Pi_{n=1}^N P(\vec{X} = \vec{x_n}|\Theta))$ (on retrouve la probabilité vue plus haut).

3.2 Algorithme E.M.

• Algorithme itératif qui cherche à maximiser :

$$log(P(\vec{X} = \vec{x_n}|\Theta))$$

- Introduire des variables latentes (cachées) :
 - Pour chaque $\vec{x} > \vec{Z}$ (one-hot vecteur)
 - $-\vec{Z} = (0, 0, ..., 1, 0, 0) > Z_k = 1 <=> \vec{x} \in clusterk$
 - $-\vec{Z}$:
 - * Pseudo-affectation
 - * Un vecteur latent
 - * Inconnu $= \vec{i}$, \vec{Z} un vecteur aléatoire
 - $\ast\,$ Affectation "soft" : Un point peut appartenir à tous les clusters.

Résumé du programme :

Introduction \vec{Z} associé à \vec{X} . Si on souhaite maximiser :

$$P(X|\Theta) = \sum_{Z} P(\vec{X}, \vec{Z}|\Theta)$$

$$P(X|\Theta) = \sum_{Z} P(\vec{X}|\vec{Z},\Theta) P(\vec{Z}|\Theta)$$

On note que $P(X|Z,\Theta)$ est la loi normale $N(\vec{u_k},\Sigma_k)$ et que $P(\vec{Z}|\Theta)$ est π_k . Si $\vec{Z_k}=(0,...,1,0)rangk$

- (\vec{X}, \vec{Z}) : Données complètes.
- (\vec{X}) : Données incomplètes.

Etape E(xpection):

- Connaitre \vec{Z} à Θ fixé.
- Calcul la probabilité d'affectation : $P(\vec{Z}|, \vec{X}, \Theta)$

Etape M(aximization) : Les données sont incomplètes. On calcule Θ et on "fixe" $\vec{Z}.$

3.3 Optimisation variationnelle

Après l'introduction de \vec{Z} , on introduit une distribution auxiliaire sur \vec{Z} , notée $q(\vec{Z})$. On souhaite maximiser selon Θ :

$$log(P(X|\Theta) = \sum_{\vec{Z}} q(\vec{Z}log(\frac{P(\vec{X}, \vec{Z}|\Theta)}{q(\vec{Z})}) - \sum_{\vec{Z}} q(\vec{Z}log(\frac{P(\vec{Z}|\vec{X}, \Theta)}{q(\vec{Z})})$$

$$log(P(X|\Theta)) = log(P(X,Z|\Theta)) - log(P(Z|X,\Theta))$$

Rappel : $P(X|\Theta) = \frac{P(X,Z|\Theta)}{P(Z|X,\Theta)}$ C'est-à-dire : Le second terme

$$-\sum_{\vec{Z}}q(\vec{Z}log(\frac{P(\vec{Z}|\vec{X},\Theta)}{q(\vec{Z})})=E_{\vec{Z}vq(\vec{Z})}[log(\frac{P(\vec{Z},\vec{X}|\Theta)}{q(\vec{Z})})]$$

Divergence de Kullback-Leibler (DKL).

$$DKL(q(\vec{Z})||P(\vec{Z}|\vec{X},\Theta))$$

De chaque côté du "||" on a deux distributions sur \vec{Z} . Divergence \neq distance (asymétrique). (faire une phrase...)

- DKL(q, P) = 0 ssi q = P
- $DKL(q, P) \ge 0$

Le premier terme : $E_{\vec{Z}vq(\vec{Z})}[log(\frac{P(\vec{Z},\vec{X}|\Theta)}{q(\vec{Z})}))]$ est nommé ELBO (Evidence Lower Bound).

$$log(P(\vec{X}|\Theta)) = L(\Theta, q) + DKL(q(\vec{Z})||P(\vec{Z}|\vec{X}, \Theta))$$

On a $L(\Theta,q)$ une borne inférieure (ELBO). On fait une optimisation par borne inférieure : on maximise la fonction en maximisant sa borne inférieure. Il s'agit d'une maximisation "indirecte".

Etape E:

- Les paramètres sont fixés : $\Theta = \Theta^{old}$
- Maximiser $L(\Theta^{old}, q)$

$$\begin{split} L(\Theta^{old},q) &= -DKL(q(\vec{Z}),P(\vec{Z}|\vec{X},\Theta^{old})) + log(P(\vec{X}|\Theta^{old})) \\ &q(\vec{Z}) = P(\vec{Z}|\vec{X},\Theta^{old}) \end{split}$$

Etape M : Maximiser L selon Θ avec q fixé. ILLUSTRATION..

3.4 Suite du cours

(A joindre à la subsection algorithme EM?) L'algorithme E.M. est un algorithme d'optimisation.

1.

$$logP(\vec{X} = \vec{x}|\Theta) = \sum_{Z} q(Z = z)log\frac{P(\vec{X} = \vec{x}, Z = z)}{q(Z = z)} - \sum_{Z = z} q(Z)log\frac{P(Z|X)}{q(Z)}$$

$$logP(\vec{X} = \vec{x}|\Theta) = E_{Z(vague)q}[log\frac{P(X,Z)}{q(Z)} - E_{Z(vague)q}[log\frac{P(Z|X)}{q(Z)}]]$$

q est la distribution auxiliaire.

Dans la soustraction:

- Premier terme : classification sachant Z. On l'optimise dans l'étape M.
- Deuxième terme : réalisme. On l'optimise dans l'étape E.

2. Etape E

• Pour chaque \vec{x}_n , on calcule sa probabilité d'affectation avec Θ fixés.

$$P(Z = k | \vec{X} = \vec{x}_n) = \frac{\pi_k \times N(\vec{u}_k, \sum_k)}{\sum_{k'=1}^k \pi_{k'} \times N(\vec{u}_k', \sum_{k'})}$$

• Objectif: $P(Z|\vec{x};\Theta_{old})(fleche)q(Z)$

3. Etape M

Optimiser un classifieur selon les données qui sont représentées par q(Z) (la fonction auxiliaire). Si on note $a_{nk} = P(Z = k | \vec{x}_n; \Theta_{old})$, la probabilité d'un cluster :

$$P(Z = k) = \pi_k = \frac{1}{N} = \sum_{n} a_{nk} = \frac{N_k}{N}$$

N est le "nombre d'exemple".

$$\vec{u}_k = \frac{1}{N} \sum_n a_{nk} \vec{x}_n$$

Qu'est-ce que a_{nk} ? (pas compris)

$$\sum_{k} = \sum_{n} (\vec{x}_n - \vec{\mu}_k)(\vec{x}_n - \vec{\mu}_k)^t$$

On peut obtenir un nouveau jeu de paramètres Θ_{new}

4. Algo E.M.

- 1. Initialisation des paramètres $(\pi_k, \vec{\mu}_k, \sum_k)_{k=1}^k$
- 2. E : Calcul des " a_{nk} " $|\Theta|$
- 3. M : Calcul de $\Theta|$ " a_{nk} "

On boucle entre les étapes 2 et 3 (en général une dizaine de fois) puis l'agorithme se termine.