情報通信ネットワーク第13回

理工学部情報科学科 松澤 智史

本日のコンテンツ

- IPマルチキャスト
- XCAST
- MANET

IP通信の形態

- Unicast
 - 1対1通信
 - 指定した宛先へ送られる
- Broadcast (IPv4のみ)
 - 1対多通信
 - 範囲内全ノードに送られる
- Multicast
 - 1対多通信
 - グループメンバにのみ送られる
- Anycast (主にIPv6)
 - 1対1通信
 - ・対象の中で、最も良い(または最も近い)宛先に送られる

IPマルチキャストとは?

- 同じデータを複数の受信者に送ることができる
- ・ 転送速度(バンド幅)の向上を見込める
- ルータやホストの処理を低下させることができる
- 受信者のアドレスを知らずとも通信ができる

Unicast vs Multicast

Unicast

Unicastの転送は、1受信者に対し1つのデータのコピーを送信する

Unicast vs Multicast

Multicast

Multicastの転送は、複数の受信者に対して1つのデータを送信する

Protocol Component の比較

	Unicast		Multicast					
Host	SMTP,HTTP	DHCP,DNS	Reliable Multicast	MASC/A		SDP	RTP/ RTCP	
Service	TCP	UDP	UDP					
Host-Router Interface	ICMP		IGMP					
Intra-domain	OSPF,RIP,EIGRP,etc		PIM-SM,PI	M-DM	MOSPF		DVMRP	
Routing			RIP		OSPF			
Inter-domain	BGP		MSDP,BGMP					
Routing				MBGP(BGP4+)				

IPマルチキャストの利点

- Enhanced Efficiency
 - ネットワークのトラフィックをコントロールし、 サーバやCPUロードの負荷の軽減を実現する
- Optimized Performance

ネットワーク転送の無駄の排除を可能にする

- Distributed Applications
 - マルチポイントアプリケーション することができる

IPマルチキャストの欠点

- Best Effort Delivery
 - パケットドロップなどの可能性がある
 - 信頼性を実現するには上位層で対応する必要がある
- No Congestion Avoidance
 - TCP の window やスロースタートのような制御ができないため ネットワークの混雑を引き起こす可能性がある
- Duplicates
 - ルーティングプロトコルによっては同一のデータが 複製されて届くことが起こりうる

IPマルチキャストのアドレス体系

・レイヤ3

- IPv4 224.0.0.1 ~ 239.255.255.255 (Class D)
- IPv6 ff00::/8

8bit	4bit	4bit	112bit
11111111	Flag	Scope	Group ID

・レイヤ2 (Ethernet)

- IPv4 01:00:5e:00:00:00 ~ 01:00:5e:7f:ff:ff (23bit分)
- IPv6 33:33:00:00:00:00 ~ 33:33:ff:ff:ff:ff(32bit分)
 IP Multicast Address の下位ビットがそのまま利用される

IPマルチキャスト 動作の概要

IPマルチキャストの動作は以下の2つから成り立つ

- Group Management
- Multicasting (Multicast Routing)

Group Management

- Internet Group Management Protocol(RFC1112)
 - ホストにマルチキャストグループへの参加やデータ受信を許可する

Addressing

- Class D IP address(224-239)が割り当てられる(IPv4の場合)
- マルチキャストのアドレスは受信グループを示すものであって、 受信者を個別に識別するものではない

Group Membership

- ・受信者はIGMPを使用していつでもグループ参加やグループ離脱の 通知をルータに送ることができる
- ・ 送信者はグループのメンバーに所属している必要はない

Internet Group Management Protocol

ホストが自分のネットワークに存在するルータへ 参加要求や離脱要求を出すことができる

マルチキャストルータ

マルチキャストグループのIGMP Queryを定期的に出す 一定時間 Report がなければ受信者不在と判断する

マルチキャストグループを指定したIGMP Reportを 出すことによって受信者存在を通知する

ホスト

IPマルチキャストプロトコルの種類

- ・配送木の種類
 - Shortest Path Tree (Source Distribution Tree) 最短経路木
 - Shared Distribution Tree (Shared Tree) 共有木
- ・受信者の偏り方によるプロトコルの種類
 - Dense Mode Protocols
 - Sparse Mode Protocols

Shortest Path Tree(最短経路木)

Shared Distribution Tree(共有木)

配送木 まとめ

- Shortest Path Trees (Source Distribution Trees)
 - ・ルータのメモリ使用量がO(S×G)になるが、送信者から受信者までの すべての経路が最適化されている

- Shared Distribution Trees
 - ・ルータのメモリ使用量はO(G)と少ないが、受信者までの経路に無駄な 経路が発生する

Dense Mode Protocol

グループメンバーがDense(密集)であると仮定する

- Push Model型のトラフィック配送である
- トラフィックは最初Flooded状態から始まる
- ・メンバーがいない場合には枝狩り(Prune)を行う
- ・参加の遅延を減少するこができる

Sparse Mode Protocol

グループメンバーが広範囲にSparse(まばら)に 点在すると仮定する

- Pull Model型のトラフィック配送である
- トラフィックは最初何もない状態から始まる
- 誰かが要求しない限りトラフィックは流れない (Explicit Join 方式)
- ・参加要求は送信者またはRendezvous Pointへ送られる

具体的なルーティングプロトコル

DVMRP

- PIM
 - PIM-DM
 - PIM-SM

DVMRP

- Distance Vector Multicast Routing Protocol (RFC1075)
- Flooding & Pruning
- RPM(Reverse Path Multicast)アルゴリズムを使用
- ・RIP(Routing Information Protocol)から派生したマルチキャスト用プロトコル
- Dense Mode のルーティングプロトコル
- Source Distribution Treeを形成

DVMRP

DVMRPの評価

• 利点

- RIPに基づいているため、導入が容易である
- 求めるルータの処理能力が低い

• 欠点

- マルチキャストの範囲を大きくできない
- Floodを定期的に行うので、スケーラビリティの問題が 発生する

PIM

Protocol Independent Multicast ユニキャストのルーティングプロトコルに依存しない

- Dence mode (RFC3973)
 - ・ 狭い地域で受信者が多く、トラフィックも多いケースを想定
 - Flooding & Pruning (Poison Reverse なし)
- Sparse mode (RFC4601)
 - 広い地域で、受信者が少なく、トラフィックも少ないケース
 - Rendezvous Pointを設定した共有木を作成する
 - 最短経路木への移行も可能

PIM-DM

PIM-SM (Shared Tree)

PIM-SM (Shortest Path Tree)

PIM-SMの評価

• 利点

- ・効率的なshortest path treeを形成することが可能である
- Joinの届いた枝にしか配送されないため、 トラフィックの無駄を軽減できる

• 問題点等

- Rendezvous Pointが必要になる
- RPは最適なトラフィックの量で最短木移行を決断する必要がある

IPマルチキャスト Checklist

	Dense	Sparse	Scalable	Protocol	Industry
				Independent	Usage
DVMRP	0			RIP依存	0
MOSPF	0			OSPF依存	0
PIM-DM	0		0	0	0
PIM-SM		0	0	0	0
СВТ		0	0	0	

IPマルチキャストの普及状況

- ・アプリケーション開発側
 - 信頼性などは独自に構築する必要がある
 - TCPが使えない
 - ・全世界への到達性を保障していない
 - インフラが整っていない
- ・インフラ提供側
 - ・特殊な機能(IP Multicast 経路構築)を導入する必要がある
 - アプリケーションが少ないため、コストに対する見返りが少ない

IPマルチキャストの普及状況

- ・アプリケーション開発側
 - 信頼性などは独自に構築する必要がある
 - TCPが使えない
 - 全世界への到達性を保障していない
 - インフラが整っていない
- ・インフラ提供側
 - ・特殊な機能(IP Multicast 経路構築)を導入する必要がある
 - アプリケーションが少ないため、コストに対する見返りが少ない

デッドロック状態!!

今後考慮すべき問題点

- アプリケーション開発への障害
 - 送信者が受信者を把握できない問題
 - 暗号に関する問題(RSA等の1対1暗号が使用できない)
 - 信頼性の問題(再送が困難である)
- ・インフラ提供側の問題
 - ルータのメモリサイズの問題
 - RPの負荷集中の問題
 - 相互接続性の問題

XCAST

Explicit Multicast - 明示マルチキャスト(RFC5058)

- 受信者のユニキャストアドレスすべてを指定する
- ・ 複数の宛先をまとめて宛先リストを作る
- IPマルチキャストと異なり送信側駆動である

XCAST

XCASTの評価

- 利点
 - 規模の小さなマルチキャストセッションを多数作成できる
 - IP マルチキャスト対応ルータが存在しなくても動作する

- 欠点
 - 規模の大きなマルチキャストセッションでは効率が悪い
 - ヘッダの肥大化
 - 受信者把握が必要

MANETの前に・・・P2Pについて

- P2P(Peer to Peer)とは
 - 多数のコンピュータが相互に接続され、情報を送受信するインターネットの利用形態。

また、それを可能にするソフトウェアやシステムの事.

- 利用例
 - Yahoo!動画の中継
 - Winny
 - Skype

P2Pネットワーク

アドホック・ネットワーク

- アドホックネットワークとは
 - イーサネットや無線LANのアクセス・ポイントといった
 ネットワーク・インフラを使わずに,端末同士が直接接続して 構成するネットワークのこと
 - ▶P2Pと違って事前にインフラを用意しなくても済む
 - □利用例
 - ロ携帯ゲーム機を接続しての多人数プレイ.
 - ロ災害時のネットワークの代用.等

アドホック・ネットワーク

Mobile Ad-hoc Network (MANET)

- 携帯端末間におけるアドホック通信によって 構成されたネットワーク
- ネットワーク上の端末はルータの様に動作
 - 基地局などの固定インフラが不要
 - 災害時やイベント会場など インフラの機能が低下する状況で有効
- ネットワーク上の端末は移動可能
 - ルーティングにおける 制御パケット数の増加が問題に
 - ▶制御パケット削減の手段として ノードのクラスタリングがある

MANETルーティングの基本知識

- ▶テーブル作成のタイミングの違い
- プロアクティブ型
 - ex, Optimized Link State Routing (OLSR)
 - ・ルーティングテーブル作成の制御情報を定期的に交換
 - 通信開始までの時間が短い
- リアクティブ型
 - ex, Ad hoc On-Demand Distance Vector (AODV)
 - 通信開始要求とともにルーティングテーブルを作成
 - 通信開始までの時間が長い

AODVプロトコル

- Reactive型
- ノード間のマルチホップルーティング経路を構築するプロトコル。
- 制御メッセージ
 - RREQ, RREP, RERR, RREP-ACK
 - 各メッセージはUDPの654ポートに向けて送信される
- ・ 経路表によるパケットの転送

RREQ (Route REQest)

新たに経路を探索するためにネットワークに向けてブロード キャスト(フラッディング)する。

RREQ (Route REQest)

・ヘッダフォーマット

タイプ(8)	JF	RG	D	U	予約済み(11)	ホップ数(8)	
RREQ ID (32)							
送信先IPアドレス (32)							
送信先シーケンス番号 (32)							
送信元IPアドレス(32)							
送信元シーケンス番号 (32)							

RREP (Route Reply)

・送信先ノードがRREQメッセージの返事として、送信元へ送信する

RREP (Route Reply)

・ヘッダフォーマット

タイプ(8)	RA	予約済み(9)	Prefix(5	ホップ数(8)		
送信先IPアドレス(32)						
送信先シーケンス番号(32)						
送信元IPアドレス(32)						
生存時間(32)						

RERR (RouteERRor)

リンクに障害が起きた時に、その影響を受ける隣接ノードに送信される。

RERR (RouteERRor)

・ヘッダフォーマット

タイプ(8)	N	予約済み(15)	送信先数(8)				
不達送信先IPアドレス							
不達送信先シーケンス番号							
不達送信先IPアドレス							
不達送信先シーケンス番号							

DTN (Delay, Disruption, Disconnection Tolerant Networking)

- 連続した通信状態を保てない環境を想定
 - MANETにおける通信はそういった環境
- 通信不能ならデータを蓄積, 通信可能なら転送 ※2ホップの場合

- データの送信は遅延するがいつかは届くというスタンス
- すれちがい通信はDTNの一種

すれちがい通信

- 1~数ホップのFloodingのような通信手法
 - ・遭遇した端末全てに情報を伝達
 - 感染型ルーティング (Epidemic routing)

- ・厳密なブロードキャストではなく、1対1通信を複数回実行
 - 通信プロトコルはwifi, Bluetoothなどに準拠

すれちがい通信の問題点

- ・通信環境を端末密集地帯(イベント会場など)に限定
 - ・不特定多数を宛先とする情報(広告など)を配信する状況を想定

- ・ 周囲の全端末と一度に通信が不可能
 - 時間経過により通信すべき端末と通信ができない可能性

今回のまとめ

- IPマルチキャスト
 - 多対多の通信をサポートする通信
 - TCPが使えない
 - ・配送経路は独自仕様(Unicastとは異なる方法)で決定する必要がある
 - ・配送経路には共有木と最短経路木(最短木)がある
 - ・ 受信者の偏り具合でDenseとSparseの2種類のモードがある
 - DVMRP
 - PIM

XCAST

- IPマルチキャストもどき?の1対多通信
- 特殊なルータを必要としない
- 受信者数が多いとオーバーヘッドが大きくなる

MANET

- プロアクティブ型とリアクティブ型の2種類のルーティングプロトコルがある
- DTN