Ciberseguridad Grado en Ingeniería Informática

M2 - Criptografía, Identificación y Control de Accesos

Oscar Delgado oscar.delgado@uam.es

Álvaro Ortigosa (Coord.) alvaro.ortigosa@uam.es

CIFRADO ASIMÉTRICO Repaso

Taxonomía

Cripto simétrica

Clave simétrica

Inconveniente: distribución de claves

Elementos básicos

 Dos claves, denominadas <u>clave</u> <u>pública y privada</u>, vinculadas matemáticamente.

Principio básico:

"Lo que cifra con una de las claves, sólo se puede descifrar con la otra"

Elementos básicos

Funciones hash

Firma digital

Garantiza el <u>no repudio</u>

Esquemas híbridos

Certificados digitales

PKI – Public Key Infraestructure

Seguridad Web // TLS

Transport Layer Security

- Protocolo que aporta secreto, autenticidad e integridad a las comunicaciones, típicamente utilizado sobre HTTP (HTTPS)
- •TLS evolucionó sobre *Secure Sockets Layer* (SSL), desarrollado inicialmente por Netscape.
- Son protocolos diferentes, pero aún se suelen utilizar SSL como referencia genérica.

TLS // Protocolo de transporte

- TLS es un protocolo de transporte que puede proteger (casi) cualquier aplicación
- Es necesario que la app se adapte a TLS (no son sockets normales)

Negociación TLS

El proceso comienza con una negociación (handshake) C-S en la que:

- 1. Se especifica qué versión TLS usarán (TLS 1.0, 1.2, 1.3, etc.)
- 2. Deciden qué suite criptográfica soportan
- 3. El cliente autentica al servidor utilizando su certificado
- 4. Generan **claves de sesión** para cifrar las comunicación cuando acabe el *handshake*

Suite criptográfica

- Algoritmo de clave pública (RSA, EC)
- Algoritmo de clave secreta (AES)
- Algoritmo de hashing
- •Es importante tener la oportunidad de "negociar", por si se descubre alguna vulnerabilidad en algún protocolo

 Negociación: el cliente ofrece opciones y servidor elige una (puede rechazar la conexión si todas son inseguras)

Algoritmos simétricos habituales

- AES Advanced Encryption Standard
- ChaCha cifrado en flujo

Clave pública

 Curvas elípticas (RSA se va abandonando porque son más lentas y posible riesgo del computador cuántico)

Hash

 Solo familia SHA2 y SHA3

Handshake // Alto nivel

Fuente: Cloudfare

Handshake // Detalle

- 1. **CLIENT_HELLO**: El cliente envía la versión de TLS que quiere utilizar, su suite criptográfica y un número aleatorio (nonce), n
- 2. **SERVER_HELLO**: El servidor envía su certificado, los algoritmos elegidos, su propio nonce (n_s) y el nonce del cliente cifrado con su clave privada
- 3. **CLIENT_KEY_EXCHANGE**: el cliente:
 - a. Comprueba el certificado del servidor
 - b. Genera el *pre_master_secret* (un número aleatorio de 48 bytes) y lo cifra con la clave pública del servidor
- 4. **SERVER_FINISH**: el servidor deriva la **clave de sesión** (*master_secret*):

master_secret = hash(pre_master_secret || "master secret" || $n_c + n_s$) [0..47]

y utiliza solo los primeros 48 bytes para cifrar la comunicación a partir de este punto con el algoritmo simétrico elegido. Añade un MAC de todos los mensajes anteriores

 CLIENT_FINISH: deriva la misma clave de sesión y añade su MAC de los mensajes anteriores

Handshake // Detalle

- Los nonces son números aleatorios, que sirven para evitar el ataque de repetición (replay attack): un atacante captura los mensajes intercambiados y simplemente los repite en un momento posterior
- Los mensajes 4 y 5 "firman" todo el proceso y los vinculan con los nonces utilizados
- El mensaje CLIENT_KEY_EXCHANGE es un tipo sencillo de primitiva llamada
 Transporte de claves

ACTIVIDAD

TLS handshake

Vamos a ver la negociación TLS en acción. Para ello, podemos utilizar el comando 'openssl'

```
# openssl s client -connect amazon.es:443
```

Podemos ver más detalle, cómo evoluciona el estado de cliente y servidor con el flag -state:

```
# openssl s client -state -connect amazon.es:443
```

Preguntas

- 1. ¿Pues la versión TLS finalmente negociada? ¿Quién la ha elegido?
- 2. Observa los campos Cipher y Master-key

 Permite probar que un dato existía en un momento dado del tiempo, y que no ha sido modificado desde entonces

• Esencial para la **firma digital**, pues ésta, *per se*, no contiene información sobre el momento de su creación

 Idealmente, la marca de tiempo debe ser generada por una parte diferente a quien realiza la firma: Time Stamp Authority (TSA)

 La FNMT es también TSA, utilizando una fuente de tiempo segura: la del Real Observatorio de la Armada, fuente oficial de la hora legal en España (protocolo NTP)

Sellado de tiempo // Aplicaciones

Firmas digitales

 Aumenta su seguridad, al incluir referencia temporal

Notaría digital

- Prueba de existencia de unos datos en un momento del tiempo
- Protección de copyright

Análisis forense

 Cadena de custodia de logs, ficheros, etc..

Generación

Verificación

Limitaciones

Prueba de propiedad

ACTIVIDAD

Sellado de tiempo

Comando de Linux para conocer el estado de los sockets y conexiones del SO:

```
# netstat -a
```

Preguntas

- 1. ¿Cuántos están en estado LISTEN y ESTABLISHED?
- ¿Qué diferencia hay entre un socket escuchando en localhost y 0.0.0.0?

Certificación basada en blockchain

Almacenamiento seguro de certificados y claves

Protección de claves y certificados

Protección por software

Ventajas

Utilizar contenedores criptográficos específicos, como PKCS#12

Se pueden utilizar tanto para unidades de almacenamiento interno como externo, como USBs o discos duros

Protección por software

Inconvenientes

Necesario instalar software en los ordenadores desde los que se desee almacenar información "segura" y recuperarla

Dependen de un único secreto (contraseña) para su protección

Veracrypt

					aCrypt				×
Volumes	Favorites	Tools	Settings	Help					
	olume				Size	Mount Directory	Т	уре	
1									
2									
3									
<u>4</u> 5									
<u> </u>									
<u> </u>									
8									
9									
8 9 10 11									
9 10 11	e Volume			Volume P			Wip		
9 10 11 Create	e Volume			Volume P			Wip		
9 = 10 = 11	e Volume			Volume F				e Cache	
9 10 11 Create	e Volume ✓ Never sa	ve histo	гу	Volume P		Volume Tools	Selec		

VeraCrypt

Unidades virtuales:

- Generadas por el programa bajo demanda del usuario
- Se comportan exactamente igual que los discos duros
- Pueden ser montadas y desmontadas por el usuario

Contenedor:

- Tipo de fichero creado por el programa que pueden ser accedidos a través de una unidad virtual
- Contienen información cifrada

VeraCrypt

- El driver de TrueCrypt procesa todas las peticiones que se realizan sobre una unidad virtual
- Todas aquellas peticiones que se realizan sobre información "no sensible" son realizadas directamente por el sistema operativo

VeraCrypt // Pre-boot Authentication

 Cifrado de todo el volumen en el que se encuentra un sistema instalado

- Alto nivel de seguridad ya que todos los archivos del sistema, como temporales, ficheros de hibernación, información sobre las aplicaciones ejecutadas, nombres y localizaciones de ficheros, etc., se mantienen cifrados
- VeraCrypt utiliza su propio Boot Loader para autenticar a los usuarios antes de la carga del sistema.

VeraCrypt // Volumen oculto

- Residen dentro de volúmenes convencionales, de forma que a simple vista no pueden ser detectados.
- Cuando se crea un volumen, TrueCrypt rellena el espacio escogido para ese volumen, con información aleatoria.
- La clave utilizada para este segundo volumen escondido debe ser completamente diferente a la utilizada para el volumen convencional.

ACTIVIDAD

Veracrypt

Commando de Linux para conocer el estado de los sockets y conexiones del SO:

```
# netstat -a
```

Preguntas

- 1. ¿Cuántos están en estado LISTEN y ESTABLISHED?
- 2. ¿Qué diferencia hay entre un socket escuchando en localhost y 0.0.0.0?

VeraCrypt

Ejercicio MC_VERACRYPT

- Tiempo de realización: 15 minutos
- Individual

Protecciones hardware

Wallets específicas

Soluciones hardware

- ✓ Ventajas
 - Generalmente no necesitan de ninguna instalación
 - Se conectan como unidades de almacenamiento convencionales
- X Desventajas
 - Menos flexible, ya que el software puede ser instalado en distintos tipos de dispositivos

Hardware Security Modules (HSM)

- HSM gama de dispositivos que ofrecen gran seguridad a la información
- Seguridad a nivel físico y lógico

HSM – Medidas antimanipulación

- La seguridad de estos dispositivos se basa en sus extremas medidas físicas antimanipulación.
- Pueden clasificarse, básicamente, en medidas:
 - **Pasivas**: tratan de dificultar la inspección y manipulación de los componentes activos y las claves almacenadas.
 - Activas: detectan los intentos de intrusión e, inmediatamente, destruyen todas las claves criptográficamente sensibles.

HSM – Medidas antimanipulación pasivas

- La más sencilla es una simple carcasa de acero.
- Útil sólo si se combina con seguridad física de acceso (a un CPD, por ejemplo).
- El peso puede suponer también una medida disuasoria y algunos HSM incluyen peso extra a propósito.

HSM – Medidas antimanipulación pasivas

• Encapsulado de todo el dispositivo en material antimanipulación (resina epoxy):

HSM – Medidas antimanipulación activas

- Algunas de las medidas activas incluyen:
 - Sensores térmicos: protegen contra ataques que impliquen enfriamiento. El enfriamiento extremo provoca efectos de remanencia de datos en memorias RAM.
 - Sensores de rayos X: detectan este tipo de radiación y borran las claves antes de que éstas puedan ser "quemadas" en la RAM por la radiación.

HSM – Medidas antimanipulación activas

- Sensores de luz: borran las claves cuando detectan luz visible. Pueden ser engañados trabajando con luz ultravioleta.
- Sensores de movimiento: constituyen más una medida antirrobo que antimanipulación. Sólo son útiles en un CPD.
- Membranas conductoras: forman una malla alrededor del núcleo y son químicamente indistinguibles del encapsulado. Borran las claves en cuanto son expuestas.