Attractor mechanism in gauged supergravity

Karthik Inbasekar

Institute of Mathematical Sciences, Chennai

Sep 2013

Attractors in Gauged Sugra

Introduction

Background

Plan of the talk

Motivation

Thesis overview

Counting BPS states

Non-commuting twists

Results

Summary and future outlook

Attractor mechanism in gauged supergravity

Gauged Supergravity

Generalised Attractors

Bianchi attractors in gauged sugra

Stability of Bianchi attractors in gauged sugra

Summary

Results

Future outlook

Introduction

- Black holes are regions (bounded by an event horizon) in space time where gravity is so strong that even light cannot escape.
- The temperature and entropy of a black hole (in Planck units), Bekenstein-Hawking

$$T_{BH} = rac{\kappa}{2\pi} \; , \quad S_{BH} = rac{A}{4} \; .$$

- Black hole is analogous to a thermodynamic system with large microscopic degeneracy.
- Microscopic physics of black holes involve distances of the order of planck scale - expected to be described by a quantum theory of gravity.

Introduction
Background
Motivation

Microstate counting

Generalised Attractors

- String theory is one of the candidate theories for a quantum description of gravity.
- Successfully provides microscopic and macroscopic descriptions of supersymmetric black holes.
- Number of BPS states do not change as moduli, coupling constants vary continuously. Witten
- Weak coupling: BPS states in stringy description.
- Logarithm of degeneracy of charged BPS states in string theory agrees with black hole entropy in large charge limit. Strominger-Vafa

Background Motivation

Thesis overview

counting

• Strong coupling: BPS black hole solutions in supergravity description.

- Attractor mechanism explains origin of black hole entropy in supergravity. Ferrara-Kallosh-Strominger
- Moduli fields in black hole background flow to specific charge dependent values on the horizon.
- Black hole entropy is determined completely in terms of charges and is independent of asymptotic values of moduli - Agrees with microscopic results.
- Attractor mechanism is a consequence of near horizon geometry rather than susy. Ferrara-Gibbons-Kallosh
- Extends to non-susy cases. Goldstein-lizuka-Jena-Trivedi

- Previous studies of attractor mechanism focussed on black holes with flat asymptotics.
- Generalisation to curved spaces, in particular AdS will be valuable.
- In AdS/CFT, black branes are holographic duals to field theories at finite temperature.
- Extremal branes exhibit vanishing entropy density at zero temperature and describe ground states of the field theory.
- Gauged supergravity Ideal for the study, supports AdS vacuum, describes supergravity regime of AdS/CFT.

Introduction
Background
Motivation
Thesis overview

Microstate counting

Attractor

 $m{\circ}$ Recently, Attractor mechanism generalised for $\mathcal{N}=2, d=4$ gauged supergravity.

 ${\sf Cacciatori\text{-}Klemm}\ ,\ {\sf Kachru\text{-}Kallosh\text{-}Shmakova}$

- Generalised attractors: solutions to equations of motion that reduce to algebraic equations when all the fields, curvature tensors are constants in tangent space.
- Lifshitz, Schrödinger geometries are some examples of generalised attractors.
- Recently, Bianchi attractors: Classification of homogeneous anisotropic extremal black brane horizons in d = 5. lizuka-Kachru-Kundu-Narayan-Sircar-Trivedi
- Embed Bianchi attractors in gauged supergravity, study susy and stability in non susy cases.

Introduction
Background
Motivation
Thesis overview

Microstate counting

Generalised

Thesis overview

• Exploration of microscopic and macroscopic description of black holes in string theory.

- Microscopic side: Counting of a special class of BPS states in $\mathcal{N}=4$ supersymmetric string theory.
- Macroscopic side: Generalisation of attractor mechanism to gauged supergravity.

Counting BPS states

"A non-commuting twist in the partition function",
 S. Govindarajan , Karthik Inbasekar, arXiv:1201.1628.

Generalised Attractors

- "Generalised attractors in five dimensional gauged supergravity", Karthik Inbasekar, P. K.Tripathy, arXiv:1206.3887, JHEP 1209 (2012) 003.
- "Stability of Bianchi attractors in gauged supergravity", Karthik Inbasekar, P. K.Tripathy, arXiv:1307.1314, to appear in JHEP.

Background Motivation Thesis overview

ounting

Attractors in Gauged Sugra

Counting BPS states

Counting BPS states

Non-commuting twists

Results

Summary and future outlook

Microstate

counting

- CHL models -theories with $\mathcal{N}=4$ supersymmetry in four dimensions. Chaudhuri-Howe-Lykken, Aspinwall
- Orbifolds of type II A string theory on $K3 \times T^2$.
- Twisted index counts g twisted BPS states Sen

$$B_{2n}^g = \frac{1}{2n!} \text{Tr}[g(-1)^{2j_3} (2j_3)^{2n}]$$

- Counts BPS states that break 4n, g invariant supersymmetries.
- Computable in special regions of moduli space where g is a symmetry, also require charges to be g invariant.
- Count degeneracy of 1/2 BPS states in CHL models when twist does not commute with orbifold group.

• Moduli spaces with dihedral symmetry $D_n = \mathbb{Z}_n \times \mathbb{Z}_2$,compatible with both the twist and orbifold groups.

Non-commuting twists

Garbagnati

• Map the moduli space from $K3 \times T2$ to heterotic picture via string-string duality.

• In $D_n = \mathbb{Z}_n \rtimes \mathbb{Z}_2$, the commutator subgroup \mathbb{Z}_n , is used to construct the CHL orbifolds.

- Residual \mathbb{Z}_2 symmetry allowed to act as a twist in the partition function.
- compute the twisted partition function. Sen

• Final partition function - product of two terms, oscillator contribution, lattice sum.

$$ilde{\mathcal{F}}(Q,\mu) \simeq rac{16}{|Z_n|} rac{\Theta_{\mathbb{Z}_n}^{\parallel}}{\eta(\mu)^8 \eta(2\mu)^8}$$

- Twisted partiton function counts \mathbb{Z}_2 invariant BPS states in \mathbb{Z}_n orbifold theory.
- expect the modular form to have lesser weight than untwisted case.
- ullet Check by taking asymptotic limit $\mu o 0$

$$ilde{F}(\mu) \sim rac{16}{|Z_n|} rac{1}{Vol_{\mathsf{A}_{||}}} \mathrm{e}^{2\pi^2/\mu} igg(rac{\mu}{2\pi}igg)^{8-rac{\kappa_{\mathbb{Z}_n}}{2}}$$

• Untwisted \mathbb{Z}_n orbifold partition function has weight $12 - k_{\mathbb{Z}_n}/2$. confirms expectations.

Introduction

ounting
Non-commuting

Results

Summary and future outlook

Generalised Attractors

- Computed the twisted index for CHL \mathbb{Z}_n , $3 \le n \le 6$ orbifolds when the twist does not commute with the orbifold group.
- Twisted index computes \mathbb{Z}_2 twisted 1/2 BPS states in CHL \mathbb{Z}_n orbifolds.
- derived the generating function that gives the expected asymptotic limit.
- May be extended to 1/4 BPS states.
- Useful to consider twists that break supersymmetry, and try to extend the counting problem to non-BPS states challenging.

Introduction

counting
Non-commuting
twists

Results Summary and future outlook

Attractors

Attractor mechanism in gauged supergravity

Introduction

Background

Motivation

Thesis overview

Counting BPS state

Non-commuting twists

Results

Summary and future outlook

Attractor mechanism in gauged supergravity

Gauged Supergravity

Generalised Attractors

Bianchi attractors in gauged sugra

Stability of Bianchi attractors in gauged sugra

Summary

Results

Future outlook

Attractors in Gauged Sugra

Introduction

Microstate counting

Generalised Attractors

Gauged Supergravity Generalised Attractors Bianchi attractors in gauged sugra Stability

Gauged Supergravity

Generalised Attractors Bianchi attractors in gauged sugra Stability

Summary

• The most general $\mathcal{N}=2, d=5$ gauged sugra has gravity coupled to vector, tensor and hypermultiplets.

Ceresole-Dall'Agata

 The scalars in the theory parametrise a manifold that factorises into a direct product of a very special and quaternionic manifold,

$$\mathcal{M}_{scalar} = \mathcal{S}(n_V + n_T) \otimes \mathcal{Q}(n_H).$$

• The R symmetry group is $SU(2)_R$.

Ordinary derivatives on scalar and fermions are replaced

with K-covariant derivatives.

$$egin{aligned} \partial_{\mu}\phi^{ ilde{x}} &
ightarrow \mathcal{D}_{\mu}\phi^{ ilde{x}} \equiv \partial_{\mu}\phi^{ ilde{x}} + gA^I_{\mu}K^{ ilde{x}}_{I}(\phi) \ \partial_{\mu}q^{X} &
ightarrow \mathcal{D}_{\mu}q^{X} \equiv \partial_{\mu}q^{X} + gA^I_{\mu}K^{X}_{I}(q) \
abla_{
u
ho}B^{M}_{
u
ho} &
ightarrow \mathcal{D}_{\mu}B^{M}_{
u
ho} \equiv
abla_{
u
ho}B^{M}_{
u
ho} + gA^I_{\mu}\Lambda^{M}_{IN}B^{N}_{
u
ho}, \end{aligned}$$

• Gauging the $SU(2)_R$ Symmetry:

$$\nabla_{\mu}\psi_{\nu i} \rightarrow \nabla_{\mu}\psi_{\nu i} + g_R A_{\mu}^I P_{Ii}^{\ \ j}(q)\psi_{\nu i}.$$

 Gauging leads to scalar potentials in the theory possibility of AdS vacuum.

Gauged Supergravity

Introduction

Microstate counting

Attractors

Gauged Supergravity

Bianchi attractors in gauged sugra Stability

Summary

• In tangent space, all the bosonic fields in the theory take constant values at the attractor points.

$$\phi^{\tilde{z}}=\mathrm{const}$$
 ; $q^Z=\mathrm{const}$; $A_a^I=\mathrm{const}$;
$$B_{ab}^M=\mathrm{const}$$
 ; $c_{bc}^{\ \ a}=\mathrm{const}$.

 The attractor geometries are characterised by constant anholonomy coefficients.

$$[e_a, e_b] = c_{ab}^{\ c} e_c ; \quad e_a \equiv e_a^{\mu} \partial_{\mu}$$
$$c_{ab}^{\ c} = e_a^{\mu} e_b^{\nu} (\partial_{\mu} e_{\nu}^{c} - \partial_{\nu} e_{\mu}^{c})$$

Generalised Attractors

Scalar field equations reduce to a minimisation

Gauge field, Tensor field and Einstein equations reduce

condition on an attractor potential.

to algebraic equations at the attractor point.

• The attractor potential is also independently constructed from squares of fermionic shifts.

Constant anholonomy ⇒ regular geometries.

ntroduction

Microstate

Generalised Attractors

Gauged Supergravity
Generalised Attractors
Bianchi attractors in
gauged sugra
Stability

Summary

• Homogeneous symmetries: invariant basis \tilde{e}_i , i = 1, 2, 3 that commutes with Killing vectors.

$$[\xi_j, \tilde{e}_i] = 0, \quad [\tilde{e}_i, \tilde{e}_j] = c_{ij}^{\ k} \tilde{e}_k$$

- Invariant vectors close to form a Lie algebra isomorphic to Bianchi classification (I-IX) of 3d real Lie algebras Bianchi.
- Metric written in terms of invariant one forms ω^i dual to \tilde{e}_i displays manifest homogeneous symmetries.

$$d\omega^k = \frac{1}{2}c_{ij}^{\ k}\omega^i \wedge \omega^j$$

Introduction

Microstate counting

Attractors

Generalised Attractors
Bianchi attractors in
gauged sugra

Summary

 Additional symmetries: scale invariance, time translation invariance

$$\hat{r} \to \lambda \hat{r} , \quad \hat{t} \to \lambda^{-u_0} \hat{t} , \quad \omega^i \to \lambda^{-u_i} \omega^i$$

$$ds^2 = L^2 \left[-\hat{r}^{2u_0} d\hat{t}^2 + \frac{d\hat{r}^2}{\hat{r}^2} + \hat{r}^{2(u_i + u_j)} \eta_{ij} \omega^i \otimes \omega^j \right]$$

Metric has constant anholonomy coefficients.

Generalised Attractors: Example Bianchi II

• One forms, invariant vectors, structure constants,

$$\begin{aligned} c_{23}^{\ 1} &= 1 = -c_{32}^{\ 1}, \\ \xi_1 &= \partial_{\hat{y}}, & \tilde{\mathbf{e}}_1 &= \partial_{\hat{y}}, & \omega^1 &= d\hat{y} - \hat{x}d\hat{z}, & d\omega^1 &= \omega^2 \wedge \omega^3, \\ \xi_2 &= \partial_{\hat{z}}, & \tilde{\mathbf{e}}_2 &= \hat{x}\partial_{\hat{y}} + \partial_{\hat{z}}, & \omega^2 &= d\hat{z}, & d\omega^2 &= 0, \\ \xi_3 &= \partial_{\hat{x}} + \hat{z}\partial_{\hat{y}}, & \tilde{\mathbf{e}}_3 &= \partial_{\hat{x}}, & \omega^3 &= d\hat{x}, & d\omega^3 &= 0 \end{aligned}$$

scaling in coordinates,

$$(\hat{x},\hat{y},\hat{z}) \rightarrow (\lambda^{-u_1}\hat{x},\lambda^{-(u_1+u_3)}\hat{y},\lambda^{-u_3}\hat{z})$$

scaling in one forms,

$$(\omega^1, \omega^2, \omega^3) \rightarrow (\lambda^{-(u_1+u_3)}\omega^1, \lambda^{-u_3}\omega^2, \lambda^{-u_1}\omega^3)$$

metric

$$ds^2 = L^2 igg[-\hat{r}^{2u_0} d\hat{t}^2 + rac{d\hat{r}^2}{\hat{r}^2} + \hat{r}^{2(u_1+u_3)} (\omega^1)^2 + \hat{r}^{2u_3} (\omega^2)^2 + \hat{r}^{2u_1} (\omega^3)^2 igg]$$

- Choose a model: gauged supergravity model with one vector and two tensor multiplets. Gunaydin-Zagermann
- Moduli space

$$\mathcal{M}_{\textit{scalar}} = SO(1,1) imes rac{SO(2,1)}{SO(2)}.$$

- Metric on moduli space $g_{\tilde{x}\tilde{y}}$, $a_{\tilde{l}\tilde{J}}$.
- Gauging: SO(2) subgroup of G using a single vector A^0 (graviphoton).
- ullet R-Symmetry: $A_{\mu}[U(1)_R]=A_{\mu}^0V_0+A_{\mu}^1V_1$

Introduction

counting

Attractors
Gauged Supergravity
Generalised Attractor
Bianchi attractors in

gauged sugra Stability

Bianchi attractors in gauged supergravity

Potential:

$$\mathcal{V}(\phi) = \frac{g^2}{8} \left[\frac{[(\phi^2)^2 + (\phi^3)^2]}{||\phi||^6} \right] - 2g_R^2 \left[2\sqrt{2} \frac{\phi^1}{||\phi||^2} V_0 V_1 + ||\phi||^2 V_1^2 \right].$$

• Conditions for $\mathcal{N}=2$ supersymmetry and AdS vaccum:

$$\phi^2 = 0, \quad \phi^3 = 0, \quad \phi_c^1 = \left(\sqrt{2}\frac{V_0}{V_1}\right)^{\frac{1}{3}}, \quad V_0 V_1 > 0, \quad 32\frac{g_R^2}{g^2}V_0^2 \le 1.$$

- potential evaluated at these values gives the AdS cosmological constant $V_{AdS} = -6g_R^2(\phi_c^1)^2V_1^2$.
- Bianchi attractors exist for values of scalars for which the theory would also have an *AdS* Vacuum.

- Take metric ansatz: Bianchi types,
- gauge field ansatz: time like gauge field

$$A^t = e_a^t A^a = \frac{1}{Lr^u} A^0$$

- Set all tensor fields $B_{\mu\nu}^{M}$ to zero!
- Use the generalised attractor procedure and solve the algebraic field equations!

Example: Bianchi Type II

Bianchi Type II specified by gauging parameters g, V_0, V_1 .

$$ds^{2} = L^{2} \left[-\hat{r}^{2u_{0}} d\hat{t}^{2} + \frac{d\hat{r}^{2}}{\hat{r}^{2}} + \hat{r}^{2u_{1}} d\hat{x}^{2} + \hat{r}^{2(u_{3}+u_{1})} d\hat{y}^{2} \right.$$
$$\left. - 2\hat{x}\hat{r}^{2(u_{3}+u_{1})} d\hat{y} d\hat{z} + \left[\hat{r}^{2(u_{3}+u_{1})} \hat{x}^{2} + \hat{r}^{2u_{3}} \right] d\hat{z}^{2} \right],$$

$$u_0 = \sqrt{2}, \quad u_3 = u_1 = \frac{1}{2\sqrt{2}}, \quad L = \sqrt{\frac{2}{3}} \frac{(\phi_c^1)^4}{g}, \quad A^0 = \sqrt{\frac{5}{8}} \frac{1}{(\phi_c^1)^2},$$

$$\phi_c^1 = \left(\sqrt{2} \frac{V_0}{V_1}\right)^{\frac{1}{3}}, \quad V_0 V_1 > 0, \quad \frac{23}{2(\phi_c^1)^4} \le 1,$$

- Solutions were found at critical points, not at absolute minima of attractor potential.
- Preliminary susy analysis of existing solutions using KSI indicated broken susy.
- Non-susy attractors can be unstable to scalar fluctuations about critical value.
- consider scalar field fluctuations about attractor value,

$$\phi_c + \epsilon \delta \phi(r, t)$$

Introduction

Microstate counting

Generalised Δttractors

> Gauged Supergravity Generalised Attractors Bianchi attractors in

Stability

Stress energy tensor: Backreaction at first order

 For Gauged sugra with generic gauging, trace of Einstein equation,

$$\begin{split} R\frac{(2-d)}{2} = & T_{\mu}^{attr\mu}|_{\phi_c} + (d-2)gK_{yI}|_{\phi_c}A^{\lambda I}\partial_{\lambda}(\delta\phi^{y}) \\ & + g^{2}\frac{\partial K_{IJ}}{\partial\phi^{z}}\bigg|_{\phi_c}A^{I}_{\mu}A^{J\mu}\delta\phi^{z} \\ T_{\mu}^{\mu attr}|_{\phi_c} = & \mathcal{V}_{attr}(\phi_c)D - \bigg[a_{IJ}|_{\phi_c}F^{I}_{\mu\nu}F^{\mu\nu J} + g^{2}K_{IJ}|_{\phi_c}A^{I}_{\mu}A^{\mu J}\bigg] \end{split}$$

$$K_{IJ} = g_{xy}K_I^xK_J^y$$

- Scalar fluctuation terms indicate backreaction even at first order perturbation.
- Relevant boundary conditions for scalars should be such that they are well behaved near the horizon.
- For $U(1)_R$ gauging, g=0 and back reaction is absent.

Attractors in Gauged Sugra

Introduction

icrostate ounting

Attractors

Gauged Supergravity Generalised Attractors Bianchi attractors in gauged sugra Stability

Scalar fluctuation equations

Scalar fluctuation equation for arbitrary gauged sugra,

$$\nabla_{\mu}\nabla^{\mu}\delta\phi^{x} - g^{zx}\frac{\partial^{2}\mathcal{V}_{attr}}{\partial\phi^{z}\partial\phi^{y}}\bigg|_{\phi_{c}}\delta\phi^{y} + 2g\left(g^{zx}\tilde{\nabla}_{y}K_{lz}\right)|_{\phi_{c}}A^{\mu I}\nabla_{\mu}\delta\phi^{y} = 0$$

 $ilde{
abla}$ - covariant derivative w.r.t g_{xy} .

 ∇ - covariant derivative w.r.t near horizon metric.

- higher order metric/gauge field fluctuations can be ignored for solving the above equation at lowest order.
- Laplacian for any given 5d Bianchi type metric,

$$\nabla_{\mu}\nabla^{\mu} = \frac{1}{L^{2}} \left[\hat{r}^{2} \partial_{\hat{r}}^{2} + (m+2)\hat{r} \partial_{\hat{r}} - \frac{1}{\hat{r}^{2u_{0}}} \partial_{\hat{t}}^{2} \right]$$

$$m = -1 + \sum_{l} c_{l} u_{l}, c_{l} > 0, c_{0} = 1.$$

Scalar fluctuation equations

 For the specific gauged supergravity model fluctuation equation reduce to ,

$$\left[\hat{r}^2\partial_{\hat{r}}^2 + (m+2)\hat{r}\partial_{\hat{r}} - \frac{1}{\hat{r}^2u_0}\partial_{\hat{t}}^2 - \lambda\right]\delta\phi^{x} = 0$$

 λ - Eigenvalue of double derivative of attractor potential.

Sign of λ - indicates nature of critical point.

• For ansatz $\delta\phi(\hat{r},\hat{t})=f(\hat{r})e^{ik\hat{t}}$ (with k real), we get Bessel equation

$$\left[\hat{r}^2\partial_{\hat{r}}^2 + (m+2)\hat{r}\partial_{\hat{r}} + \left(\frac{k^2}{\hat{r}^{2u_0}} - \lambda\right)\right]f(\hat{r}) = 0$$

Scalar fluctuations

Scalar fluctuations

$$f(X) = \left(\frac{X}{2}\right)^{\nu_0} \left[C_1 H^1_{\nu_\lambda}(X) \left[\Gamma(1 - \nu_\lambda) e^{i\nu_\lambda \pi} + \Gamma(1 + \nu_\lambda) \right] + C_2 H^2_{\nu_\lambda}(X) \left[\Gamma(1 - \nu_\lambda) e^{-i\nu_\lambda \pi} + \Gamma(1 + \nu_\lambda) \right] \right]$$

$$X = \frac{k}{u_0 \hat{r}^{u_0}}, \quad \nu_{\lambda} = \frac{\sqrt{(1+m)^2 + 4\lambda}}{2u_0}, \quad \nu_0 = \frac{(1+m)}{2u_0}$$
• Consistency condition for ν_{λ} real,

• Consistency condition for ν_{λ} real

$$\nu_{\lambda} = \frac{\sqrt{(1+m)^2 + 4\lambda}}{2u_0} = \frac{\sqrt{(\sum_{l} c_{l} u_{l})^2 + 4\lambda}}{2u_0} \le 1$$

• implies $\lambda < 0$, $(\sum c_{ij}u_{i})^{2}$

$$-\frac{(\sum_{l}c_{l}u_{l})^{2}}{4}\leq\lambda<0$$

 Scalar fluctuations - well defined for critical points which are maxima of attractor potential.

Conditions for stability

• In our coordinate system horizon is located at $\hat{r} = 0$, $X \simeq 1/\hat{r}$, consider asymptotic expansion of f(X)

$$f(X) \sim \left(\frac{X}{2}\right)^{\nu_0 - \frac{1}{2}} \sqrt{\frac{1}{\pi}} \left[C_1 e^{i(X - \frac{\pi}{2}(\nu_\lambda + \frac{1}{2}))} \left[\Gamma(1 - \nu_\lambda) e^{i\nu_\lambda \pi} + \Gamma(1 + \nu_\lambda) \right] \right.$$
$$\left. + C_2 e^{-i(X - \frac{\pi}{2}(\nu_\lambda + \frac{1}{2}))} \left[\Gamma(1 - \nu_\lambda) e^{-i\nu_\lambda \pi} + \Gamma(1 + \nu_\lambda) \right] \right]$$

Leading divergent term is absent only when,

$$u_0 = \frac{(1+m)}{2u_0} = \frac{\sum_{l} c_l u_l}{2u_0} \le \frac{1}{2}$$

• since $c_0 = 1$,

$$\sum_{I,I\neq 0}c_Iu_I\leq 0$$

 But u_I ≥ 0 for regular horizon, therefore stability conditions are:

$$u_0 \neq 0, \quad u_I = 0 \quad \forall I \neq 0$$

Stable Bianchi metrics

Bianchi metrics with scale invariance in all directions,

$$ds^2 = L^2 \left[-\hat{r}^{2u_0} d\hat{t}^2 + \frac{d\hat{r}^2}{\hat{r}^2} + \hat{r}^{2(u_i + u_j)} \eta_{ij} \omega^i \otimes \omega^j \right]$$

• Stability condition,

$$u_0 \neq 0$$
, $u_I = 0 \quad \forall I \neq 0$

 Stable Bianchi attractors in gauged supergravity are a subclass with scale invariance only in radial and time directions.

$$ds^2 = L^2 \left(-\hat{r}^{2u_0} d\hat{t}^2 + \frac{d\hat{r}^2}{\hat{r}^2} \right) + L^2 \left(\eta_{ij} \omega^i \otimes \omega^j \right)$$

• They are of the direct product form $Lif_{u_0}(2) \times M$.

Stability summary

• Unstable generalised attractors

Geometry	λ	и0	$u_I, I \neq 0$
Lifshitz	-34	3	1
Bianchi II	$-\frac{22}{3}$	$\sqrt{2}$	$u_1=u_3=\frac{1}{2\sqrt{2}}$
Bianchi VI h < 0	$-1 + \frac{14h}{3} - h^2$	$\frac{1}{\sqrt{2}}(1-h)$	$u_2 = -\frac{1}{\sqrt{2}}h, u_3 = \frac{1}{\sqrt{2}}$

• Stable generalised attractors in direct product form

Geometry	λ	u_0	$u_I, I \neq 0$
$Lif_{u_0}(2) \times M_I$	$-\frac{5u_0^2}{3}$	any $u_0 > 0$	0
$AdS_2 \times M_I$	$-\frac{5}{3}$	1	0
$Lif_{u_0}(2) \times M_{II}$	$-\frac{61}{6}$	$\sqrt{\frac{11}{2}}$	0
$Lif_{u_0}(2) \times M^*$	$\lambda < 0$	any $u_0 > 0$	0

Attractors in Gauged Sugra

Introduction

Summary

Background

Motivation

Thesis overview

Counting BPS state

Non-commuting twists

Results

Summary and future outlook

Attractor mechanism in gauged supergravity

Gauged Supergravity

Generalised Attractor

Bianchi attractors in gauged sugra

Stability of Bianchi attractors in gauged sugra

Summary

Results

Future outlook

Introduction

Aicrostate ounting

ieneralised attractors

Summary

Results Future outloo

Microstate ounting Generalised

 Scalar moduli - determined as functions of the charges by extremising an attractor potential.

Results

 Attractor potential is constructed independently from fermionic shifts in gauged supergravity.

- Bianchi attractors are examples of generalised attractors in gauged supergravity.
- Explicit examples: z = 3 Lifshitz solution, Bianchi II, Bianchi VI solutions in gauged supergravity.
- Explicit examples: $Lif_{u_0}(2) \times M$ for M_I , M_{II} and $AdS_2 \times \mathbb{R}^3$ in $U(1)_R$ gauged sugra.

- Stress energy tensor in gauged supergravity depends on scalar fluctuations even at first order.
- Instability III behaved fluctuations near the horizon will backreact strongly \implies significant deviation from the attractor geometry.
- Consistency condition on scalar fluctuations: critical point is a maxima of the attractor potential.
- Regularity of the fluctuations near the horizon require the near horizon geometry to factorise as $Lif_{\mu_0} \times M$,

$$ds^2 = L^2 \left(-\hat{r}^{2u_0} d\hat{t}^2 + rac{d\hat{r}^2}{\hat{r}^2}
ight) + L^2 \left(\eta_{ij} \omega^i \otimes \omega^j
ight)$$

 $M = M_I, M_{II} \dots M_{IX}$ - 3d homogeneous subspaces invariant under the Bianchi type symmetries.

Results

 Completion: search for models to embed the rest of Bianchi attractors.

 SUSY of Bianchi attractors - Try to find susy critical points by solving Killing spinor equations, gaugino, hyperino conditions. Ongoing

- Attractor flow equations: Either analytic/numeric approaches to construct solutions interpolating between the Bianchi types at the IR and AdS₅ in the UV. Will prove attractor mechanism in gauged supergravity.
- String embedding: To understand gauged sugra, generalised attractors from flux compactifications perspective. Particularly gauged sugra with gauging of R symmetries.

Introduction

counting

Generalised Attractors

Results
Future outlook

Introduction

Counting

Generalised Attractors

Summary Results Future outlook

 Hyperscale violating Bianchi attractors - Metrics with conformal invariance, different scaling properties lizuka-Kachru-Kundu-Narayan-Sircar-Trivedi-Wang, Embedding in gauged sugra, susy analysis, string embedding.

Thank You!

Gauged Sugra: Lagrangian

The bosonic part of the five dimensional $\mathcal{N}=2$ gauged supergravity:

$$\begin{split} \hat{\mathbf{e}}^{-1}\mathbf{L}_{\textit{Bosonic}}^{\mathcal{N}=2} &= -\frac{1}{2}R - \frac{1}{4}\mathbf{a}_{\tilde{I}\tilde{J}}\mathcal{H}_{\mu\nu}^{\tilde{I}}\mathcal{H}^{\tilde{J}\mu\nu} - \frac{1}{2}\mathbf{g}_{XY}\mathcal{D}_{\mu}q^{X}\mathcal{D}^{\mu}q^{Y} \\ &- \frac{1}{2}\mathbf{g}_{\tilde{x}\tilde{y}}\mathcal{D}_{\mu}\phi^{\tilde{x}}\mathcal{D}^{\mu}\phi^{\tilde{y}} + \frac{\hat{\mathbf{e}}^{-1}}{6\sqrt{6}}C_{IJK}\epsilon^{\mu\nu\rho\sigma\tau}F_{\mu\nu}^{I}F_{\rho\sigma}^{J}A_{\tau}^{K} \\ &+ \frac{\hat{\mathbf{e}}^{-1}}{4\mathbf{g}}\epsilon^{\mu\nu\rho\sigma\tau}\Omega_{MN}B_{\mu\nu}^{M}\mathcal{D}_{\rho}B_{\sigma\tau}^{N} - \mathcal{V}(\phi,q). \end{split}$$

$$\mathcal{H}_{\mu\nu}^{\tilde{I}} = (F_{\mu\nu}^{I}, B_{\mu\nu}^{M}), \qquad \mu = 0, \dots, 4$$
 $M = 1, \dots, n_{T}, \qquad I = 0, 1, \dots, n_{V}$
 $\tilde{x} = 0, 1, \dots, n_{V} + n_{T}, \qquad X = 1, 2, \dots, 4n_{H}.$

Gauged Sugra: Potential and fermionic shifts

$$V(\phi, q) = 2g^{2}W^{\tilde{a}}W^{\tilde{a}} - g_{R}^{2}[2P_{ij}P^{ij} - P_{ij}^{\tilde{a}}P^{\tilde{a}ij}] + 2g^{2}N_{iA}N^{iA}$$

$$P_{ij} \equiv h^{I} P_{Iij}, \qquad \qquad P_{ij}^{\tilde{a}} \equiv h^{\tilde{a}I} P_{Iij}$$

$$W^{\tilde{a}} \equiv \frac{\sqrt{6}}{4} h^{I} K_{I}^{\tilde{x}} f_{\tilde{x}}^{\tilde{a}}, \qquad \qquad \mathcal{N}^{iA} \equiv \frac{\sqrt{6}}{4} h^{I} K_{I}^{X} f_{X}^{Ai}.$$

Bosonic part of supersymmetry transformations:

$$\begin{split} &\delta_{\epsilon}\psi_{\mu i}=\sqrt{6}\nabla_{\mu}\epsilon_{i}+\frac{i}{4}h_{\tilde{l}}(\gamma_{\mu\nu\rho}\epsilon_{i}-4g_{\mu\nu}\gamma_{\rho}\epsilon_{i})\mathcal{H}^{\nu\rho\tilde{l}}+ig_{R}P_{ij}\gamma_{\mu}\epsilon^{j}\\ &\delta_{\epsilon}\lambda_{i}^{\tilde{a}}=-\frac{i}{2}f_{X}^{\tilde{a}}\gamma^{\mu}\epsilon_{i}\mathcal{D}_{\mu}\phi^{\tilde{x}}+\frac{1}{4}h_{\tilde{l}}^{\tilde{a}}\gamma^{\mu\nu}\epsilon_{i}\mathcal{H}_{\mu\nu}^{\tilde{l}}+g_{R}P_{ij}^{\tilde{a}}\epsilon^{j}+gW^{\tilde{a}}\epsilon_{i}\\ &\delta_{\epsilon}\zeta^{A}=-\frac{i}{2}f_{X}^{A}\gamma^{\mu}\epsilon^{i}\mathcal{D}_{\mu}q^{X}+g\mathcal{N}_{i}^{A}\epsilon^{i}. \end{split}$$

The potential can be written as squares of fermionic shifts.

Gauge field equation

• Since $c_{ab}^{\ \ c} = const$,

$$F_{ab} = e_a^{\mu} e_b^{\nu} (\partial_{\mu} e_{\nu}^{c} - \partial_{\nu} e_{\mu}^{c}) A_c = c_{ab}^{\ c} A_c$$

• The Gauge field equation of motion,

$$\begin{split} \partial_{\mu}(\hat{\mathbf{e}} \mathbf{a}_{I\tilde{J}} \mathcal{H}^{\tilde{J}\mu\nu}) &= -\frac{1}{2\sqrt{6}} C_{I\tilde{J}\tilde{K}} \epsilon^{\nu\mu\rho\sigma\tau} \mathcal{H}^{\tilde{J}}_{\mu\rho} \mathcal{H}^{\tilde{K}}_{\sigma\tau} \\ &+ g \hat{\mathbf{e}} \big[g_{XY} K_{I}^{X} \mathcal{D}^{\nu} q^{Y} + g_{\tilde{x}\tilde{y}} K_{I}^{\tilde{x}} \mathcal{D}^{\nu} \phi^{\tilde{y}} \big] \end{split}$$

in tangent space, is an algebraic equation at the attractor points

$$\begin{split} \hat{\mathbf{e}} \ a_{I\tilde{J}}[\boldsymbol{\omega}_{\mathsf{a},\ c}^{\ a}\boldsymbol{\mathcal{H}}^{cb\tilde{J}} + \boldsymbol{\omega}_{\mathsf{a},\ c}^{\ b}\boldsymbol{\mathcal{H}}^{ac\tilde{J}}] = & -\frac{1}{2\sqrt{6}}C_{I\tilde{J}\tilde{K}}\epsilon^{bacde}\boldsymbol{\mathcal{H}}_{ac}^{\tilde{J}}\boldsymbol{\mathcal{H}}_{de}^{\tilde{K}} \\ & + g^2\hat{\mathbf{e}}\big[g_{XY}K_I^XK_J^Y \\ & + g_{\tilde{x}\tilde{y}}K_I^{\tilde{x}}K_J^{\tilde{y}}\big]A^{Jb}. \end{split}$$

Tensor field equation

• The tensor field equation is,

$$\frac{1}{g}\epsilon^{\mu\nu\rho\sigma\tau}\Omega_{MP}\mathcal{D}_{\rho}B_{\mu\nu}^{M}+\hat{e}a_{\tilde{I}P}\mathcal{H}^{\tilde{I}\sigma\tau}=0.$$

In tangent space,

$$\frac{1}{g} \epsilon^{abcde} \left[c_{ac}^{f} B_{fb}^{M} + g A_c^{l} \Lambda_{IN}^{M} B_{ab}^{N} \right] \Omega_{MP} + \hat{e} a_{\tilde{l}P} \mathcal{H}^{\tilde{l}de} = 0.$$

is an algebraic equation at the attractor points,

Einstein equation

• The Einstein equation at the attractor point:

$$R_{ab} - \frac{1}{2}R\eta_{ab} = T_{ab}^{attr}$$

• In the absence of torsion, The left handside is algebraic:

$$R_{abc}^{d} = \partial_{a}\omega_{bc}^{d} - \partial_{b}\omega_{ac}^{d} - \omega_{ac}^{e}\omega_{be}^{d} + \omega_{bc}^{e}\omega_{ae}^{d} - c_{ab}^{e}\omega_{ec}^{d}$$
$$\omega_{a,bc} = \frac{1}{2}[c_{ab,c} - c_{ac,b} - c_{bc,a}]$$

• The stress energy tensor at the attractor point:

$$\begin{split} T_{ab}^{attr} &= \mathcal{V}_{attr}(\phi, q) \eta_{ab} - \left[a_{\tilde{I}\tilde{J}} \mathcal{H}_{ac}^{\tilde{I}} \mathcal{H}_{b}^{c\tilde{J}} + g^{2} [g_{XY} K_{I}^{X} K_{J}^{Y} \right. \\ &+ g_{\tilde{x}\tilde{y}} K_{I}^{\tilde{x}} K_{J}^{\tilde{y}}] A_{a}^{I} A_{b}^{J} \right]. \end{split}$$

 The Einstein equations are algebraic at the attractor points.

Scalar equation

• The scalar $\phi^{\tilde{x}}$ field equations,

$$\begin{split} \hat{\mathbf{e}}^{-1}\partial_{\mu} \big[\hat{\mathbf{e}} \ g_{\tilde{\mathbf{z}}\tilde{\mathbf{y}}} \mathcal{D}^{\mu} \phi^{\tilde{\mathbf{y}}} \big] - \frac{1}{2} \frac{\partial g_{\tilde{\mathbf{x}}\tilde{\mathbf{y}}}}{\partial \phi^{\tilde{\mathbf{z}}}} \mathcal{D}_{\mu} \phi^{\tilde{\mathbf{x}}} \mathcal{D}^{\mu} \phi^{\tilde{\mathbf{y}}} \\ - g A^{I}_{\mu} g_{\tilde{\mathbf{x}}\tilde{\mathbf{y}}} \frac{\partial K^{\tilde{\mathbf{x}}}_{I}}{\partial \phi^{\tilde{\mathbf{z}}}} \mathcal{D}^{\mu} \phi^{\tilde{\mathbf{y}}} - \frac{1}{4} \frac{\partial a_{\tilde{I}\tilde{\mathbf{J}}}}{\partial \phi^{\tilde{\mathbf{z}}}} \mathcal{H}^{\tilde{\mathbf{J}}}_{\mu\nu} \mathcal{H}^{\tilde{\mathbf{J}}\mu\nu} - \frac{\partial \mathcal{V}(\phi, q)}{\partial \phi^{\tilde{\mathbf{z}}}} = 0. \end{split}$$

• For the quaternion q^Z , the equation of motion is

$$\begin{split} \hat{\mathbf{e}}^{-1}\partial_{\mu} \big[\hat{\mathbf{e}} \ g_{ZY} \mathcal{D}^{\mu} q^{Y} \big] - \frac{1}{2} \frac{\partial g_{XY}}{\partial q^{Z}} \mathcal{D}_{\mu} q^{X} \mathcal{D}^{\mu} q^{Y} \\ - g A^{I}_{\mu} g_{XY} \frac{\partial K^{X}_{I}}{\partial q^{Z}} \mathcal{D}^{\mu} q^{Y} - \frac{\partial \mathcal{V}(\phi, q)}{\partial q^{Z}} = 0. \end{split}$$

Attractor Potential

Using attractor ansatz,

• Equation of motion for $\phi^{\tilde{x}}$ reduces to,

$$\frac{\partial}{\partial \phi^{\tilde{z}}} \bigg[\mathcal{V}(\phi,q) + \frac{1}{2} g^2 \, g_{\tilde{x}\tilde{y}} K_I^{\tilde{x}} K_J^{\tilde{y}} A^{Ia} A_a^J + \frac{1}{4} a_{\tilde{I}\tilde{J}} \mathcal{H}_{ab}^{\tilde{I}} \mathcal{H}^{\tilde{J}ab} \bigg] = 0.$$

• Equation of motion for q^Z reduces to,

$$\frac{\partial}{\partial q^{Z}} \left[\mathcal{V}(\phi, q) + \frac{1}{2} g^{2} g_{XY} K_{I}^{X} K_{J}^{Y} A^{aI} A_{a}^{J} \right] = 0.$$

Attractor Potential

 Scalar field equations reduce to an extremisation condition on an attractor potential.

$$\begin{aligned} \mathcal{V}_{attr}(\phi, q) = & \left[\mathcal{V}(\phi, q) + \frac{1}{4} a_{\tilde{I}\tilde{J}} \mathcal{H}_{ab}^{\tilde{I}} \mathcal{H}^{\tilde{J}ab} \right. \\ & \left. + \frac{1}{2} g^2 \left[g_{\tilde{x}\tilde{y}} K_I^{\tilde{x}} K_J^{\tilde{y}} + g_{XY} K_I^X K_J^Y \right] A^{Ia} A_a^J \right] \end{aligned}$$

 The attractor potential gives rise to the attractor values of the scalars upon extremisation.

Attractor Potential from fermion shifts

Susy transformations at attractor points:

$$\begin{split} \delta\psi_{ai} &= \sqrt{6}D_{a}\epsilon_{i} + (\Sigma_{i|j})^{bc}(\gamma_{abc} - 4\eta_{ab}\gamma_{c})\epsilon^{j} + \gamma_{a}S_{ij}\epsilon^{j} \\ \delta\lambda_{i}^{\tilde{a}} &= \Sigma_{i|j}^{\tilde{a}}\epsilon^{j} + (\Sigma_{i|j}^{\tilde{a}})^{a}\gamma_{a}\epsilon^{j} + (\Sigma_{i|j}^{\tilde{a}})^{ab}\gamma_{ab}\epsilon^{j} \\ \delta\zeta^{A} &= (\Sigma_{|j}^{A})\epsilon^{j} + (\Sigma_{|j}^{A})^{a}\gamma_{a}\epsilon^{j} \end{split}$$

Generalised Fermion shifts:

$$\begin{split} \Sigma_{i|j}^{\tilde{a}} &= g_R P_{ij}^{\tilde{a}} - g W^{\tilde{a}} \epsilon_{ij} \quad ; \quad (\Sigma_{|j}^{A}) = g \mathcal{N}_j^{A} \\ (\Sigma_{i|j}^{\tilde{a}})^a &= \frac{i}{2} g f_{\tilde{x}}^{\tilde{a}} K_l^{\tilde{x}} A^{la} \epsilon_{ij} \quad ; \quad (\Sigma_{|j}^{A})^a = -\frac{i}{2} g f_{jX}^{A} K_l^{X} A^{al} \\ (\Sigma_{i|j}^{\tilde{a}})^{ab} &= -\frac{1}{4} h_{\tilde{l}}^{\tilde{a}} \mathcal{H}^{\tilde{l}ab} \epsilon_{ij} \quad ; \quad (\Sigma_{i|j})^{bc} = -\frac{i}{4} h_{\tilde{l}} \mathcal{H}^{bc\tilde{l}} \epsilon_{ij} \\ S_{ij} &= i g_R P_{ij} \end{split}$$

Attractor Potential from fermion shifts

 The attractor potential can be constructed independently from squares of fermionic shifts

$$\begin{split} -\mathcal{V}_{attr} \frac{\epsilon^{l}_{k}}{4} &= \bar{S}^{i}_{k} S_{i}^{l} - \epsilon^{lj} \bigg\{ \Big[(\overline{\Sigma^{A}_{|k}}) (\Sigma_{A|j}) + \frac{1}{2} (\overline{\Sigma^{\tilde{a}i}_{|k}}) (\Sigma^{\tilde{a}}_{i|j}) \Big] \\ &+ \Big[(\overline{\Sigma^{A}_{|k}})_{a} (\Sigma_{A|j})^{a} + \frac{1}{2} (\overline{\Sigma^{\tilde{a}i}_{|k}})_{a} (\Sigma^{\tilde{a}}_{i|j})^{a} \Big] \\ &+ \Big[(\overline{\Sigma^{i}_{|k}})_{ab} (\Sigma_{i|j})^{ab} + (\overline{\Sigma^{\tilde{a}i}_{|k}})_{ab} (\Sigma^{\tilde{a}}_{i|j})^{ab} \Big] \bigg\}, \end{split}$$

which can be shown to reproduce,

$$\begin{split} \mathcal{V}_{attr}(\phi,q) = & \left[\mathcal{V}(\phi,q) + \frac{1}{4} a_{\tilde{I}\tilde{J}} \mathcal{H}_{ab}^{\tilde{I}} \mathcal{H}^{\tilde{J}ab} \right. \\ & \left. + \frac{1}{2} g^2 \left[\, g_{\tilde{x}\tilde{y}} K_I^{\tilde{x}} K_J^{\tilde{y}} + g_{XY} K_I^X K_J^Y \right] A^{Ia} A_a^J \right] \end{split}$$

AdS

$$ds^{2} = L^{2} \left[-\hat{r}^{2} d\hat{t}^{2} + \frac{d\hat{r}^{2}}{\hat{r}^{2}} + \hat{r}^{2} (d\hat{x}^{2} + d\hat{y}^{2} + d\hat{z}^{2}) \right],$$

$$\phi_c^2 = 0$$
, $\phi_c^3 = 0$, $\phi_c^1 = \left(\sqrt{2}\frac{V_0}{V_1}\right)^{\frac{1}{3}}$, $\Lambda = -6g_R^2 V_1^2 (\phi_c^1)^2$,

$$V_0 V_1 > 0$$
, $32 \frac{g_R^2}{\sigma^2} V_0^2 \le 1$, $L^2 = -\frac{6}{\Lambda}$,

Lifshitz

$$\begin{split} ds^2 &= L^2 \bigg[-\hat{r}^{2u_0} d\hat{t}^2 + \frac{d\hat{r}^2}{\hat{r}^2} + \hat{r}^2 (d\hat{x}^2 + d\hat{y}^2 + d\hat{z}^2) \bigg] \;, \\ u_0 &= 3, \quad L = \sqrt{3} \frac{(\phi_c^1)^4}{g} \;, \quad A^{0\bar{0}} &= \sqrt{\frac{2}{3}} \frac{1}{(\phi_c^1)^2} \;, \\ \phi_c^1 &= \left(\sqrt{2} \frac{V_0}{V_1} \right)^{\frac{1}{3}} \;, \quad V_0 V_1 > 0 \;, \quad \frac{32}{3(\phi_c^1)^4} \leq 1 \;. \end{split}$$

Bianchi II

$$\begin{split} ds^2 &= L^2 \bigg[-\hat{r}^{2u_0} d\hat{t}^2 + \frac{d\hat{r}^2}{\hat{r}^2} + \hat{r}^{2u_1} d\hat{x}^2 + \hat{r}^{2(u_3+u_1)} d\hat{y}^2 \\ &\quad - 2\hat{x}\hat{r}^{2(u_3+u_1)} d\hat{y} d\hat{z} + \big[\hat{r}^{2(u_3+u_1)}\hat{x}^2 + \hat{r}^{2u_3}\big] d\hat{z}^2 \bigg] \;, \\ u_0 &= \sqrt{2} \;, \quad u_3 = u_1 = \frac{1}{2\sqrt{2}} \;, \quad L = \sqrt{\frac{2}{3}} \frac{(\phi_c^1)^4}{g} \;, \quad A^{0\bar{0}} = \sqrt{\frac{5}{8}} \frac{1}{(\phi_c^1)^2} \;, \\ \phi_c^1 &= \left(\sqrt{2} \frac{V_0}{V_1}\right)^{\frac{1}{3}} \;, \quad V_0 V_1 > 0 \;, \quad \frac{23}{2(\phi^1)^4} \leq 1 \;, \end{split}$$

Bianchi VI

$$\begin{split} ds^2 &= L^2 \bigg[-\hat{r}^{2u_0} d\hat{t}^2 + \frac{d\hat{r}^2}{\hat{r}^2} + d\hat{x}^2 + e^{-2\hat{x}} \hat{r}^{2u_2} d\hat{y}^2 + e^{-2h\hat{x}} \hat{r}^{2u_3} d\hat{z}^2 \bigg] \;, \\ u_0 &= \frac{1}{\sqrt{2}} (1-h) \;, \quad u_2 = -\frac{1}{\sqrt{2}} h \;, \quad u_3 = \frac{1}{\sqrt{2}} \;, \quad L = \frac{(\phi_1^c)^4}{\sqrt{6}g} (1-h) \;, \\ A^{0\bar{0}} &= \sqrt{\frac{-2h}{(-1+h)^2}} \frac{1}{(\phi_c^1)^2} \;, \quad h < 0 \;, \quad h \neq 0, 1 \;, \\ \phi_c^1 &= \left(\sqrt{2} \frac{V_0}{V_c} \right)^{\frac{1}{3}} \;, \quad V_0 V_1 > 0 \;, \quad \frac{8(3-h+3h^2)}{(\phi^1)^4(-1+h)^2} \leq 1 \;, \end{split}$$

$Lif_{\mu_0}(2) \times M_I$

$$ds^{2} = L^{2} \left[-\hat{r}^{2u_{0}} d\hat{t}^{2} + \frac{d\hat{r}^{2}}{\hat{r}^{2}} + d\hat{x}^{2} + d\hat{y}^{2} + d\hat{z}^{2} \right],$$

$$ds^{2} = L^{2} \left[-\hat{r}^{2U_{0}} d\hat{t}^{2} + \frac{A^{2}}{\hat{r}^{2}} + d\hat{x}^{2} + d\hat{y}^{2} + d\hat{z}^{2} \right]$$

$$A_{0}\hat{t} = \frac{1}{A_{0}\hat{0}} A_{1}\hat{t} + \frac{1}{A_{1}\hat{0}} A_{0}\hat{0} + \frac{1}{A_{1}\hat{0}} A_{0}\hat{$$

 $\Lambda = -6g_R^2 V_1^2 (\phi_c^1)^2 \; , \quad \phi_c^1 = \left(\sqrt{2} \frac{V_0}{V_c}\right)^{\frac{1}{3}} \; , \quad V_0 V_1 > 0 \; .$

$$A^{0\hat{t}} = \frac{1}{L\hat{t}}A^{0\bar{0}} , \quad A^{1\hat{t}} = \frac{1}{L\hat{t}}A^{1\bar{0}} , \quad \frac{A^{0\bar{0}}}{A^{1\bar{0}}} = \frac{1}{2}\frac{V_1}{V_0} , \quad L^2 = -\frac{u_0^2}{2\Lambda} ,$$

$Lif_{\mu_0} \times M_H$

$$ds^2 = L^2 \bigg[-\hat{r}^{2u_0} d\hat{t}^2 + \frac{d\hat{r}^2}{\hat{r}^2} + d\hat{x}^2 + d\hat{y}^2 - 2\hat{x}d\hat{y}d\hat{z} + (\hat{x}^2 + 1)d\hat{z}^2 \bigg] \ ,$$

$$A^{0\hat{t}} = \frac{1}{L\hat{r}}A^{0\bar{0}} , \quad A^{1\hat{t}} = \frac{1}{L\hat{r}}A^{1\bar{0}} , \quad \frac{A^{0\bar{0}}}{A^{1\bar{0}}} = \frac{1}{2}\frac{V_1}{V_0} , \quad u_0 = \sqrt{\frac{11}{2}} ,$$

$$A^{0\hat{t}} = \frac{1}{L\hat{r}}A^{0\bar{0}} , \quad A^{1\hat{t}} = \frac{1}{L\hat{r}}A^{1\bar{0}} , \quad \frac{A^{0\bar{0}}}{A^{1\bar{0}}} = \frac{1}{2}\frac{V_1}{V_0} , \quad u_0 = \sqrt{\frac{11}{2}} ,$$

$$L^2 = -\frac{13}{4\Lambda} , \quad \Lambda = -6g_R^2 V_1^2 (\phi_c^1)^2 , \quad \phi_c^1 = \left(\sqrt{2}\frac{V_0}{V_1}\right)^{\frac{1}{3}} , \quad V_0 V_1 > 0 .$$

susy

 The spinors in five dimensions satisfy a symplectic majorana condition:

$$\epsilon^{ij}\bar{\epsilon}_j=(\epsilon^i)^tC$$

• In two component spinor λ notation

$$\epsilon_i = \left(\begin{array}{c} i\epsilon_{ij}\lambda_j \\ \lambda_i^* \end{array}\right)$$

SM spinors have manifest $SU(2)_R$ invariance.

- First one has to check the Killing spinor integrability equation for necessary conditions for supersymmetry.
- Then one has to solve the Killing spinor equations.

SUSY: Killing spinor integrability conditions

• KSI expressible in terms of fermionic shifts. Defining $M_{abc} = \gamma_{abc} - 4\eta_{ab}\gamma_c$,

$$\begin{split} -\frac{1}{4}R_{ae}^{cd}\gamma_{cd}\epsilon_{i} &= -\frac{1}{\sqrt{6}}(\Sigma_{i|j})^{fc}[\omega_{a,}^{b}M_{e[bc]} - \omega_{e,}^{b}M_{a[bc]}]\epsilon^{j} \\ &\quad -\frac{1}{6}\bigg\{[(\Sigma_{i|j})^{bc}M_{abc} + \gamma_{a}S_{ij}][(\Sigma_{k|I})^{gh}M_{egh} + \gamma_{e}S_{kI}] \\ &\quad -[(\Sigma_{i|j})^{bc}M_{ebc} + \gamma_{e}S_{ij}][(\Sigma_{k|I})^{gh}M_{agh} + \gamma_{a}S_{kI}]\bigg\}\epsilon^{jk}\epsilon^{I} \end{split}$$

All shifts vanish ⇒ Maximal supersymmetry (AdS₅ vacuum, unique).

$$\frac{1}{4}R_{ae}^{cd}\gamma_{cd}\epsilon_{i} = \frac{1}{6}S_{ij}S_{kl}\gamma_{ae}\epsilon^{jk}\epsilon^{l}$$

SUSY: Killing spinor integrability conditions

- Some shifts vanish ⇒ partially broken supersymmetry (Lifshitz, Bianchi types)
- cases with only vector multiplets in minimal gauged supergravity: Either 1/2 BPS or 1/4 BPS solutions.
 [Gauntlett-Gutowski]
- Lifshitz solutions: known to be 1/4 BPS [Cassani-Faedo].
- We expect Bianchi attractors to be 1/4 BPS. (in progress)

Scalar fluctuations time independent

• the scalar fluctuation equation:

$$\left[\hat{r}^2\partial_{\hat{r}}^2 + (m+2)\hat{r}\partial_{\hat{r}} - \frac{1}{\hat{r}^2u_0}\partial_{\hat{t}}^2 - \lambda\right]\delta\phi^{x} = 0$$

admits a simple solution when the fluctuations $\delta\phi^{\rm x}$ are time independent.

$$\delta \phi^{\mathsf{x}} = C_1 r^{\left(\sqrt{4\lambda + (1+m)^2} - (1+m)\right)/2} + C_2 r^{\left(-\sqrt{4\lambda + (1+m)^2} - (1+m)\right)/2}$$

- one of the modes vanishes as $r \to 0$ provided λ is positive and it is possible to get stable attractors upon setting $C_2 = 0$.
- none of our examples (possibly model dependent) admit a critical point with $\lambda>0$. such fluctuations are unstable.

Attractors in Gauged Sugra

Introduction

counting

Generalised Attractors

Summary

Results Future outlook

microstate counting details

details microstate counting

CHL \mathbb{Z}_n orbifold models¹ with $\mathcal{N}=4$ supersymmetry in four dimensions.

- These are orbifolds of type II A string theory on $K3 \times T^2$, where the orbifold group G acts as a symplectic automorphism on K3 and as shifts on the torus T^2 .
- This is dual to the heterotic string theory on T^6 via string-string duality.
- The action of G is determined on $\Gamma_{22,6} \cong \Gamma_{20,4} \oplus \Gamma_{2,2}$ and copied to the Heterotic side by identifying it with the Narain Lattice.
- The result is an asymmetric orbifold of a heterotic string on T^6 .

¹Chaudhuri et.al '95, Aspinwall '95

dihedral groups as symplectic automorphisms

- Moduli spaces that admit a dihedral symmetry $D_n=\mathbb{Z}_n\rtimes\mathbb{Z}_2$ are compatible with both the twist and orbifold groups.
- If a elliptic K3 surface admitted both \mathbb{Z}_2 and $\mathbb{Z}_n, 3 \leq n \leq 6$ symmetries as symplectic automorphisms then the dihedral group acts as a symplectic automorphism on $K3^2$.

$$\mathcal{E}_{D_3}: y^2 = x^3 + (a_1\tau + a_0\tau^4 + a_1\tau^7)x + (b_2 + b_1\tau^3 + b_0\tau^6 + b_1\tau^9 + b_2\tau^{12})$$

$$\sigma_3:(x,y,\tau)\mapsto (\zeta_3^2x,\zeta_3^3y,\zeta_3\tau),$$

$$\varsigma_2:(x,y,\tau)\mapsto (\frac{x}{\tau^4},-\frac{y}{\tau^6},\frac{1}{\tau})$$

• One can choose the charges of the theory Q to take values from the sublattices of $\Gamma_{19,3}$ that are invariant under Dihedral symmetries³. This is compatible with both \mathbb{Z}_2 twist and \mathbb{Z}_n orbifold projections.

³Griess, Lam 0806.2753

both \mathbb{Z}_2 twist and \mathbb{Z}_n orbitoid projections. ²A.Garbagnati 0904.1519

dihedral groups and twisted partition functions

 The dihedral group of order 2n has the following presentation

$$D_n \cong \langle h, g | h^n = e, g^2 = e, ghg = h^{-1} \rangle$$

- The elements of $D_n = \{e, h, \dots, h^{n-1}, g, gh, \dots, gh^{n-1}\}$
- The group invariant projector of the \mathbb{Z}_n subgroup has the following property:

$$g.P_{\mathbb{Z}_n} = \frac{1}{n}g\left(\sum_{j=0}^{n-1}h^j\right) = \frac{1}{n}\left(\sum_{j=0}^{n-1}h^j\right) = P_{\mathbb{Z}_n}.g$$

• g commutes with $P_{\mathbb{Z}_n}$ even though it doesn't commute with the individual elements.

Example: Z3

• The \mathbb{Z}_3 subgroup of D_3 : $\mathbb{Z}_3 = \{e, h, h^2\}$ and $P_{\mathbb{Z}_3} = (e + h + h^2)/3$. The partition function for \mathbb{Z}_3 orbifolds including all twisted sectors

$$Z_{T/\mathbb{Z}_3} = P_{\mathbb{Z}_3} \bigsqcup_{e} + P_{\mathbb{Z}_3} \bigsqcup_{h} + P_{\mathbb{Z}_3} \bigsqcup_{h^2}$$

• Twisting the partition function by $g \in \mathbb{Z}_2$ amounts to insertion of g in the trace,

$$\operatorname{Tr}_{\mathcal{H}_h}(g \ q^H) \equiv g \bigsqcup_h$$

• For the g twisted partition function-contribution comes only from the untwisted sector of the orbifold CFT, inconsistent bc when $gh \neq hg$.

$$gX(\tau, \sigma+2\pi) = ghg^{-1}gX(\tau, \sigma); hX(\tau+2\pi, \sigma) = hgh^{-1}hX(\tau, \sigma)$$

Hence, we are left to evaluate

$$Z_{T/\mathbb{Z}_3}^{\mathbb{Z}_2} = rac{1}{3} \left(g \bigsqcup_e + gh \bigsqcup_e + gh^2 \bigsqcup_e
ight)$$

Orbifold action: heterotic description

• The action of the orbifold group element $h \in H \equiv \mathbb{Z}_n$

$$P \rightarrow R_h P + a_h$$
; $P \in \Gamma_{22,6}$

- $\forall R_h \in R_H$, R_H leaves 22 k of the 22 left moving directions invariant.
- The action of the twist element $g \in G$ on K3 leaves 14 of the 22 2-cycles of K3 invariant, In the heterotic picture it exchanges the two E_8 components. It is not accompanied by shifts.
- The action of the orbifold and twist leaves the right movers invariant to preserve $\mathcal{N}=4$ supersymmetry.
- Compatibility with the \mathbb{Z}_2 twist, and \mathbb{Z}_n orbifold projection requires the charges Q to take values on a lattice⁴ that is invariant under both the symmetries.

⁴Griess, Lam 0806.2753

Orbifold action: on oscillators and lattice

• The complex worldsheet co-ordinates X^j , j=1,2,...,k/2 represent the planes of rotation. R_H is characterized by k/2 phases $\phi_j(h)$. The effect of the rotation R_H is to multiply the complex oscillators by phases.

$$\alpha_{-n}^{j} \rightarrow e^{2\pi i \phi_{j}(d)} \alpha_{-n}^{j}$$
 ; $\bar{\alpha}_{-n}^{j} \rightarrow e^{-2\pi i \phi_{j}(d)} \bar{\alpha}_{-n}^{j}$

- The Narain Lattice $\Gamma^{(22,6)}$ is embedded in a 22 + 6 dimensional vector space V.
- The action of the entire group thus separates the vector space V into an invariant subspace V_{\perp} and its orthogonal complement V_{\parallel} .
- The invariant sublattice Λ_{\perp} and its orthogonal complement Λ_{\parallel} are

$$\Lambda_{\perp} = \Gamma \bigcap V_{\perp} \quad ; \quad \Lambda_{\parallel} = \Gamma \bigcap V_{\parallel}.$$

BPS states and level matching

- Momenta in the compact directions take values on the Narain lattice $\Gamma^{(22,6)}$. The (left,right) components of the momentum vector are denoted as $\vec{P}=(\vec{P}_L,\vec{P}_R)$
- $Q=(\vec{Q}_L,\vec{Q}_R)$ to denotes the projection of \vec{P} along V_\perp and $P_\parallel=(\vec{P}_{\parallel L},0)$ the projection of \vec{P} along V_\parallel .
- The BPS states are picked by keeping the rightmoving oscillators at the lowest eigenvalue allowed by GSO projection, i.e $N_R=1$.

$$N_L - 1 + \frac{1}{2} \vec{P}_{\parallel L}^2 = N$$

with $N=\frac{1}{2}(\vec{Q}_R^2-\vec{Q}_L^2)$ and $\vec{P}_{\parallel L}=\vec{K}(Q)+\vec{p},$ where $\vec{p}\in\Lambda_{\parallel}$ and $\vec{K}(Q)\in V_{\parallel}$ is a constant vector that lies in the unit cell of $\Lambda_{\parallel}.$

Group invariant projection

• The counting of the number of \mathbb{Z}_n invariant BPS states for a given charge Q is done by implementing the group invariant projection.

$$\frac{1}{n}\sum_{j=o}^{n-1}h^{j}\bigsqcup_{e}$$

- The contribution to the trace with a orbifold group element $h \in \mathbb{Z}_n$ inserted comes only from those $\vec{P}_{\parallel L}$ which are invariant under the action of h, i.e $\vec{P}_{\parallel L} \in V_{\perp}(h)$.
- When a group element h acts on the vacuum carrying momentum \vec{P} it will produce a phase

$$e^{2\pi i \vec{a}_h \cdot \vec{Q}} e^{-2\pi i \vec{a}_{hL} \cdot (\vec{p} + \vec{K}(Q))}$$

 The twist g does not have shifts, and will not produce these phases.

Degeneracy

• The degeneracy of BPS states in untwisted sector carrying a charge Q is expressed as⁵

$$d(Q) = \frac{16}{|\mathbb{Z}_n|} \sum_{h \in \mathbb{Z}_n} \sum_{N_L=0}^{\infty} d^{osc}(N_L, h) e^{2\pi i \vec{a}_h \cdot \vec{Q}} e^{-2\pi i \vec{a}_{hL} \cdot \vec{K}(Q)}$$

$$\sum_{\vec{p} \in \Lambda_{\parallel}} e^{-2\pi i \vec{a}_{hL} \cdot \vec{p}} \delta_{N_L - 1 + \frac{1}{2}(\vec{p} + \vec{K}(Q))^2, N}$$

$$\vec{p} + \vec{K}(Q) \in V_{\perp}(h)$$

where $d^{osc}(N_L, h)$ is the number of ways one can construct oscillator level N_L from the 24 left-movers weighted by the action of h.

• Treating Q and $\hat{N} \equiv N$ as independent variables, the partition function,

$$ilde{F}(Q,\mu) = \sum_{\hat{N}} F(Q,\hat{N}) e^{-\mu \hat{N}}$$

⁵(Ashoke Sen hep-th/0504005)

Partition function

Explicitly, the partition function has the form,

$$ilde{\mathcal{F}}(Q,\mu) = rac{16}{|\mathbb{Z}_n|} \sum_{h \in \mathbb{Z}} e^{2\pi i ec{a}_h \cdot ec{Q}} e^{-2\pi i ec{a}_{hL} \cdot ec{K}(Q)} ilde{\mathcal{F}}^{osc}(h,\mu) ilde{\mathcal{F}}^{lat}(Q,h,\mu)$$

where, the oscillator and lattice contribution to the partition function are

$$\begin{split} \tilde{F}^{osc}(h,\mu) &= \sum_{N_L=0}^{\infty} d^{osc}(N_L,h) e^{-\mu N_L} e^{\mu} \\ \tilde{F}^{lat}(Q,h,\mu) &= \sum_{\vec{p} \in \Lambda_{\parallel}} e^{-2\pi i \vec{a}_{hL} \cdot \vec{p}} e^{-\frac{1}{2}\mu(\vec{p} + \vec{K}(Q))^2} \\ \vec{p} + \vec{K}(Q) \in V_{\perp}(h) \end{split}$$

 The inverse of the partition function gives the degeneracy

$$F(Q, \tilde{N}) = \frac{1}{2\pi i} \int_{\epsilon - i\pi}^{\epsilon + i\pi} d\mu \ \tilde{F}(Q, \mu) \ e^{\mu \tilde{N}}$$

Oscillator contribution

$$\tilde{F}^{osc}(h,\mu) = q^{-1} \left(\prod_{n=1}^{\infty} \frac{1}{1-q^n} \right)^{24-k_h} \prod_{j=1}^{k_h/2} \left(\prod_{n=1}^{\infty} \frac{1}{1-e^{2\pi i \phi_j(h)} q^n} \frac{1}{1-e^{-2\pi i \phi_j(h)} q^n} \right)$$

- $\phi_j(h)$ and k_h in $\tilde{F}^{osc}(h,\mu)$ depend only on the order of the group element h.
- With a g insertion one evaluates the oscillator contribution for,

$$g \bigsqcup_e + gh \bigsqcup_e + gh^2 \bigsqcup_e + \ldots + gh^{n-1} \bigsqcup_e$$

- The elements g, gh, \dots, gh^{n-1} are each of order 2 and have identical contributions.
- Since g exchanges the E_8 co-ordinates, the number of directions that are rotated $k_g=8$ and non zero phases $\phi_j(g)=1/2$

$$ilde{\mathcal{F}}^{osc}(g,\mu) = rac{1}{\eta(\mu)^8 \eta(2\mu)^8}$$

Lattice contribution

- Inclusion of twist: Since the charges are already g
 invariant, g has no further action on the lattice.
- The lattice contribution from a orbifold group element h is

$$ilde{F}^{lat}(Q,h,\mu) = \sum_{egin{subarray}{c} ec{p} \in \Lambda_{\parallel} \ ec{p} + ec{K}(Q) \in V_{\perp}(h) \end{array}} e^{-2\pi i a_{ec{h}\perp} ec{p}} e^{-rac{1}{2}\mu(ec{p} + ec{K}(Q))^2}.$$

• When h is identity $V_{\perp}(e) = V$. For any other h, we have $dimV_{\perp}(h) < dim(V)$. The dominant contribution would be from

$$ilde{\mathcal{F}}^{ extit{Iat}}(Q,e,\mu) \simeq \sum_{ec{p} \in \Lambda_{||}} e^{-rac{1}{2}\mu(ec{p}+ec{\mathcal{K}}(Q))^2} \equiv \Theta_{\mathbb{Z}_n}^{||}$$

Result

• Combining the oscillator and the lattice contributions, the partition function for g twisted half-BPS states in CHL \mathbb{Z}_n orbifolds is

$$ilde{F}(Q,\mu) \simeq rac{16}{|Z_n|} rac{\Theta_{\mathbb{Z}_n}^{\parallel}}{\eta(\mu)^8 \eta(2\mu)^8}$$

 \bullet The resulting modular form has lesser weight than the partition function for the untwisted half-BPS states as can be seen from the asymptotic limit $\mu \to 0$

$$ilde{F}(\mu) \sim rac{16}{|Z_n|} rac{1}{Vol_{\Lambda_{\parallel}}} e^{2\pi^2/\mu} igg(rac{\mu}{2\pi}igg)^{8-rac{NZ_n}{2}}$$

Group	$12-rac{k_{\mathbb{Z}_n}}{2}$	$8-rac{k_{\mathbb{Z}_n}}{2}$	$\mathit{k}_{\mathbb{Z}_n} = \mathit{rank}(\Lambda_{\parallel})$
\mathbb{Z}_3	6	2	12
\mathbb{Z}_4	5	1	14
\mathbb{Z}_5	4	0	16
\mathbb{Z}_6	4	0	16