Universidade Federal do Ceará Campus Sobral

Métodos Numéricos - 2020.2 (SBL0081)

Prof. Rui F. Vigelis

1a Avaliação Progressiva

1. Represente no sistema F(10, 3, 5, 5) os números:

$$\frac{1}{2}\beta^{-t} = \frac{1}{2}10^{-3} = 0.0005$$
$$\beta^{-1} \left(1 - \frac{1}{2}\beta^{-t} \right) \le s < \left(1 - \frac{1}{2}\beta^{-t} \right)$$
$$0.09995 \le s < 0.9995$$

(a)
$$x_1 = 1473,62;$$

$$|x_1| = 1473.62 = 0.147362 \times 10^4$$

$$s + \frac{1}{2}\beta^{-t} = 0.147362 + 0.0005$$
$$= 0.147862$$

$$\overline{x}_1 = 0.147 \times 10^4$$

(b)
$$x_2 = 0.00064931;$$

$$|x_2| = 0.00064931 = 0.64931 \times 10^{-3}$$

$$s + \frac{1}{2}\beta^{-t} = 0.64931 + 0.0005$$
$$= 0.64981$$

$$\overline{x}_2 = 0.649 \times 10^{-3}$$

(c)
$$x_3 = -0.08996$$
;

$$|x_3| = 0.08996 = 0.8996 \times 10^{-1}$$

$$s + \frac{1}{2}\beta^{-t} = 0.8996 + 0.0005$$
$$= 0.9001$$

$$\overline{x}_3 = -0.900 \times 10^{-1}$$

(d)
$$x_4 = 6712,721.$$

$$|x_4| = 6712.721 = 0.6712721 \times 10^4$$

$$s + \frac{1}{2}\beta^{-t} = 0.6712721 + 0.0005$$

$$= 0.6717721$$

$$\overline{x}_4 = 0.671 \times 10^4$$

2. Aplique o método da bissecção para encontrar a raiz da função $f(x) = x - 3\cos(x)$ no intervalo [0, 2], com tolerância $(b_n - a_n)/2 < \delta = 10^{-1}$.

$$n+1 \ge \frac{\ln[(b-a)/\varepsilon]}{\ln(2)} = 4.32192$$

n	a_n	b_n	x_n	$f(a_n)$	$f(b_n)$	$f(x_n)$
0	0.00000	2.00000	1.00000	-3.00000	3.24844	-0.62090
1	1.00000	2.00000	1.50000	-0.62090	3.24844	1.28778
2	1.00000	1.50000	1.25000	-0.62090	1.28778	0.30403
3	1.00000	1.25000	1.12500	-0.62090	0.30403	-0.16852
4	1.12500	1.25000	1.18750	-0.16852	0.30403	0.06556

3. Usando o método da posição falsa, encontre a raiz da função $f(x) = \text{sen}(x) - \ln(x)$ no intervalo [2, 3], com tolerância $|f(x_n)| < \varepsilon = 5 \times 10^{-4}$.

n	a_n	b_n	x_n	$f(a_n)$	$f(b_n)$	$f(x_n)$
0	2.000000	3.000000	2.184170	0.216150	-0.957492	0.036474
1	2.184170	3.000000	2.214107	0.036474	-0.957492	0.005264
2	2.214107	3.000000	2.218404	0.005264	-0.957492	0.000740
3	2.218404	3.000000	2.219008	0.000740	-0.957492	0.000103

4. Aplique o método da iteração de ponto fixo para encontrar a raiz da função $f(x) = x^3 - x - 5$ no intervalo [0,3], com função de iteração $g(x) = (x+5)^{1/3}$, ponto inicial $x_0 = 1,0$, e tolerância $|f(x_{n+1})| < \varepsilon = 10^{-3}$. Verifique as hipóteses que garantem a convergência do método.

$$f(x) = 0 \Leftrightarrow g(x) = x$$
$$|g'(x)| \le k < 1$$
$$g'(x) = \frac{1}{3} \frac{1}{(x+5)^{2/3}} \le \frac{1}{3} \frac{1}{(0+5)^{2/3}} < 0.113998$$

n	x_n	$f(x_n)$
0	1.00000000000000000	-5.0000000000000000
1	1.817120592832140	-0.817120592832140
2	1.896125121636465	-0.079004528804326
3	1.903421822807408	-0.007296701170944
4	1.904092914876788	-0.000671092069382

5. Use o método de Newton para encontrar a raiz da função $f(x) = x - e^{-x}$ no intervalo [0, 1], com ponto inicial $x_0 = 0.5$ e tolerância $|f(x_{n+1})| < \varepsilon = 5 \times 10^{-3}$.

$$f'(x) = 1 + e^{-x} > 0$$

$$f''(x) = -e^{x} < 0$$

$$f(x_{0}) \cdot f''(x_{0}) > 0$$

$$x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})}$$

$$x_{n+1} = x_{n} - \frac{x_{n} - e^{-x_{n}}}{1 + e^{-x_{n}}}$$

n	x_n	$f(x_n)$
0	0.5000000000000000	-0.106530659712633
1	0.540219656515415	-0.042400605465570
2	0.555828866417468	-0.017767762705420
3	0.562305449174616	-0.007588238058994
4	0.565060087276682	-0.003265909293471

6. Aplique o método das secantes para encontrar a raiz positiva da função $f(x) = x - 3 \ln(x)$, com pontos iniciais $x_0 = 1,0$ e $x_1 = 1,5$, e tolerância $|f(x_{n+1})| < \varepsilon = 10^{-3}$.

n	x_n	$f(x_n)$
0	1.00000000000000000	1.00000000000000000
1	1.50000000000000000	0.283604675675507
2	1.697938670204838	0.109693765022830
3	1.822787869699537	0.021686492829671
4	1.853552841754226	0.002240084625061
5	1.857096742518061	0.000053611079710