Restricted Boltzmann Machine

Energy-based models

$$p(x) = \frac{e^{-E(x)}}{Z}$$

Intuitively (or exactly) speaking, the probability of a certain state is inversely proportional to its energy.

This probability distribution is often called a Boltzmann distribution.

This is where the name restricted **Boltzmann** machine comes from.

Boltzmann machine

Figure 1: Left: A general Boltzmann machine. The top layer represents a vector of stochastic binary "hidden" features and the bottom layer represents a vector of stochastic binary "visible" variables. Right: A restricted Boltzmann machine with no hidden-to-hidden and no visible-to-visible connections.

A Boltzmann machine is a network whose elements consist of 0 and 1 (binary units).

Restricted Boltzmann Machine

Figure 1: Left: A general Boltzmann machine. The top layer represents a vector of stochastic binary "hidden" features and the bottom layer represents a vector of stochastic binary "visible" variables. Right: A restricted Boltzmann machine with no hidden-to-hidden and no visible-to-visible connections.

A restricted Boltzmann machine **restricts** connections between visible and hidden nodes.

Restricted Boltzmann Machine

 \times +

Restricted Boltzmann Machine (RBM)

$$\frac{\sum_{i=1}^{D} \sum_{j=1}^{E} \omega_{ij} v_{i} h_{j}}{\sum_{i=1}^{D} b_{i} v_{i} - \sum_{j=1}^{E} a_{j} h_{j}}$$

Probability

$$P(v,h|\theta) = \frac{1}{Z(\theta)} exp(-\overline{E(v,h|\theta)})$$

L'normalizing constant

Conditional distributions

$$P(h_{j}=||V)=g(\sum_{i}W_{ij}V_{i}+a_{j}), P(V_{i}=||h)=g(\sum_{j}W_{ij}h_{j}+b_{i})$$

 $g(x)=\frac{1}{1+\exp(-x)}$

×

$$\hat{D} = \text{arg max} \left[\log P(v \mid \theta) \right] * \frac{\partial}{\partial \theta} \left(-\log P(v) \right) = \frac{\partial}{\partial \theta} \left(-\log P(v,h) \right) = \frac{\partial}{\partial \theta} \left(-\log P(v,$$

×

$$\frac{\partial \theta}{\partial \theta} \left(-\log \beta(\lambda) \right) = \sum_{h} \frac{\left(-\sum_{h} (\lambda, h) \right)}{\left(-\sum_{h} (\lambda, h) \right)} \cdot \frac{\partial \theta}{\partial \theta} E(\lambda, h) + \frac{1}{2} \frac{\partial \theta}{\partial \theta}$$

$$= D(\lambda, h) + \frac{1}{2} \frac{\partial \theta}{\partial \theta}$$

$$= D(\lambda, h) + \frac{1}{2} \frac{\partial \theta}{\partial \theta}$$

$$= \sum_{h} (\lambda, h) + \frac{1}{2} \frac{\partial \theta}{\partial \theta}$$

$$= \sum_{h} (\lambda, h) + \frac{1}{2} \frac{\partial \theta}{\partial \theta}$$

$$= \sum_{h} P(v|h) \frac{\partial}{\partial \theta} E(v,h) + \frac{1}{Z} \frac{\partial Z}{\partial \theta}$$

$$= \sum_{h} P(v|h) \frac{\partial}{\partial \theta} E(v,h) - \left(\frac{1}{Z} \sum_{v,h} exp(-E(v,h)) \frac{\partial}{\partial \theta} E(v,h)\right)$$

=
$$E\left[\frac{\partial}{\partial E}(v,h) \mid v\right] - E\left[\frac{\partial}{\partial E}(v,h)\right]$$

positive phase
: Try to lower the energy of observed V .

= $P(v,h)$

regative phase

: Try to increase the energy of all (v,h)

$$\frac{\partial}{\partial \theta} \left(-\log P(v) \right) = E \left[\frac{\partial}{\partial \theta} E(v,h) \middle| v \right] - E \left[\frac{\partial}{\partial \theta} E(v,h) \right]$$
This what

*
$$E(v,h(\theta)) = v^{T}Wh + b^{T}v + a^{T}h$$
 we know we don't know both of v and h .

Contrastive Divergence (CD) is used

$$\frac{\partial}{\partial w_{ij}} E(v,h|\theta) = V_{i}h_{j}$$

$$\frac{\partial}{\partial b_{i}} E(v,h|\theta) = V_{i}$$

$$\frac{\partial}{\partial a_{i}} E(v,h|\theta) = h_{j}$$

Gribbs sampled h

000

000

000

000

000

Enown visible nodes

Gribbs sampled V

positive phase

negative phase

Deep Belief Network (DBN)

A DBN simply stacks RBM, level by level.

Training is done in a layer-wise manner.

It is an unsupervised learning method.

DBN had been widely used as a pre-training method until 2014..

More information

http://enginius.tistory.com/315

Boltzmann Machine은 [0,1]의 값을 갖는 binary unit들로 이루어진 network를 의미한다.

Figure 1: Left: A general Boltzmann machine. The top layer represents a vector of stochastic binary "hidden" features and the bottom layer represents a vector of stochastic binary "visible" variables. Right: A restricted Boltzmann machine with no hidden-to-hidden and no visible-to-visible connections.

위의 Figure1은 Boltzmann Machine을 안다면 누구나 한번쯤 봤을 그림이다. 먼저 왼쪽의 모형이 general BM이다. 이 BM의 특징은 full-connectivity에 있다. 그리고 오른쪽에 모형이 restricted BM이다. 이 모형은 visible node와 hidden node를 분리시켰다. 이것이 BM과 RBM의 차이이다. 이 간단한 차이로 RBM은 실제 구현이 가능하고, BM은 구현이 매우 어렵다.

앞서 설명하였듯이 BM에서 node는 0또는 1의 binary한 값을 갖는다. 그리고 각 node사이에는 symmetric하게 link 가 있는데, 이 link에는 weight가 존재한다. 이 weight의 값은 굳이 양수일 필요 없이 모든 값을 가질 수 있다. RBM의 경우 각 node를 visible과 hidden으로 나눠 놓았고, 여기서 visible node는 우리의 data가 들어가는 곳을 의미하고, hidden의 경우 우리는 각 node가 1이 될 확률만을 알게된다.

BM의 상태는 에너지를 통해서 설명될 수 있는데 엔트로피와 마찬가지로 에너지가 높을 수록 그 존재 확률이 낮아지게 된다. 먼저 특정 상태의 에너지는 다음과 같이 표시된다.

The energy of the state $\{v, h\}$ is defined as:

$$E(\mathbf{v}, \mathbf{h}; \theta) = -\mathbf{v}^{\mathsf{T}} \mathbf{W}^{1} \mathbf{h}^{1} - \mathbf{h}^{1\mathsf{T}} \mathbf{W}^{2} \mathbf{h}^{2}, \quad (1)$$

그리고 이때 해당 상태의 확률은 다음과 같다.

$$P(\mathbf{v}; \theta) = \frac{P^*(\mathbf{v}; \theta)}{\mathcal{Z}(\theta)} = \frac{1}{\mathcal{Z}(\theta)} \sum_{\mathbf{v}} \exp\left(-E(\mathbf{v}, \mathbf{h}^1, \mathbf{h}^2; \theta)\right).$$

Applications

My first conference paper

International Conference

- Sungjoon Choi, Kyungjae Lee, Songhwai Oh, "Robust Learning From Demonstration Using Leveraged Gaussian Processes and Sparse Constrained Opimization", in IEEE Conference on Robotics and Automation (ICRA), 2016
- Sungjoon Choi, Eunwoo Kim, Kyungjae Lee, Songhwai Oh, "Leveraged Non-Stationary Gaussian Process Regression for Autonomous Robot Navigation", in IEEE Conference on Robotics and Automation (ICRA), 2015

Sungjoon Choi, Eunwoo Kim, Songhwai Oh, "Human Behavior Prediction for Smart Homes Using Deep Leering", ROMAN, 2013

Process Motion Model Using I1-Norm Based Low-Rank Kernel Matrix Approximation" in Proc. of the IEEE International Conference on Intelligent Robots and Systems (IROS), 2014.

- Sungjoon Choi, Eunwoo Kim, Songhwai Oh, "Real-Time Navigation in Crowded Dynamic Environments Using Gaussian Process Motion control", in IEEE Conference on Robotics and Automation (ICRA), 2014
- Sungjoon Choi, Mahdi Jadaliha, Jongeun Choi, Songhwai Oh, "Distributed Gaussian Process Regression for Mobile Sensor Networks Under Localization Uncertainty", in IEEE Conference on Decision and Control (CDC), 2013
- Sungjoon Choi, Eunwoo Kim, Songhwai. Oh, "Human Behavior Prediction for Smart Homes Using Deep Learning", in IEEE International Symposium on Robot and Human Interactive Communications (ROMAN), 2013

DBN-Reconstruct

DBN-Reconstruct

Use to predict Home Dataset

Result

Finance forecasting

Conditional RBM

Conditional Restricted Boltzmann Machines

In order to model temporal coupling, we need to use CRBM (Taylor 2009) instead of RBM. The CRBM assign a probability to any joint setting of the visible units v and hidden units h conditional on u by

$$P(\mathbf{v}, \mathbf{h} \mid \mathbf{u}) = exp(-E(\mathbf{v}, \mathbf{h}, \mathbf{u}))/Z$$
 (5)

where Z is a normalization constant and $E(\mathbf{v},\mathbf{h},\mathbf{u})$ is an energy function:

$$E(\mathbf{v}, \mathbf{h}, \mathbf{u}) = -\mathbf{v}^{\mathrm{T}} \mathbf{W} \mathbf{h} - \mathbf{u}^{\mathrm{T}} \mathbf{A} \mathbf{v} - \mathbf{u}^{\mathrm{T}} \mathbf{B} \mathbf{h} - \mathbf{a}^{\mathrm{T}} \mathbf{v} - \mathbf{b}^{\mathrm{T}} \mathbf{h}$$
(6)

where $\mathbf{v} \in \{0,1\}^D$ is a vector of binary visible units, $\mathbf{h} \in \{0,1\}^F$ is a vector of binary hidden units and $\mathbf{u} \in \{0,1\}^D$ is a vector of binary visible units. $\mathbf{W} \in \mathbb{R}^{D \times F}$ encodes the interactions between \mathbf{v} and \mathbf{h} , $\mathbf{A} \in \mathbb{R}^{D \times D}$ encodes the interactions between \mathbf{u} and \mathbf{v} , $\mathbf{B} \in \mathbb{R}^{D \times F}$ encodes the interactions between \mathbf{u} and \mathbf{h} . $\mathbf{a} \in \mathbb{R}^D$ and $\mathbf{b} \in \mathbb{R}^F$ denote the biases of \mathbf{v} and \mathbf{h} separately. Hence, $\Omega = \{\mathbf{W}, \mathbf{A}, \mathbf{B}, \mathbf{a}, \mathbf{b}\}$ are the model parameters that need to learn.