

TESTE DE HIPÓTESES

CONCEITOS

TESTE DE HIPÓTESE - INTRODUÇÃO

A estatística inferencial é usada para conhecer uma **população** à qual não temos acesso a partir de uma **amostra**.

Todas as conclusões possuem uma certa margem de erro:

- Não podemos afirmar, com 100% de certeza, que certo valor ou característica que encontramos na amostra existe na população;
- Podemos afirmar que existe uma certa probabilidade ou grau de confiança (90%, 95% etc.);
- É possível afirmar que um resultado ou característica existe na população, com uma certa margem de erro (por exemplo, 5%).

O QUE EU POSSO PROVAR?

- A ideia atualmente mais aceita nas pesquisas é que não se pode provar nada, apenas "desprovar";
- Ou seja, nós só aprendemos quando erramos;
- Na ciência "Popperiana", o objetivo é refutar uma assertiva. A sua hipótese é verdadeira enquanto não for refutada (falseada).

QUAL A RAZAO DE TER UMA HIPÓTESE?

Não devemos perguntar qual é a probabilidade de estarmos corretos em nossas assertivas, mas a probabilidade de estarmos errados. Com este objetivo, nós estabelecemos uma hipótese.

Trata-se de uma suposição quanto ao valor de um parâmetro populacional ou quanto à natureza da distribuição de probabilidade de uma variável populacional.

TESTE DE HIPÓTESE - INTRODUÇÃO

O teste de hipótese é um dos procedimentos estatísticos por meio do qual extraímos conclusões a respeito de uma população com base em uma amostra retirada dela. Esse procedimento é utilizado também para que se compare duas populações, utilizando-se as respectivas amostras.

O procedimento de teste é uma regra por meio da qual rejeitamos ou aceitamos uma hipótese (H_0) sobre a população em estudo.

- H₀ Hipótese nula será testada;
- H₁ É a alternativa no caso da rejeição de H₀ (diferente, maior ou menor).
- H₁ também é chamado de H₂ no qual o "a" possui conexão com "alternativo".

TERMINOLOGIA ESPECÍFICA

Alguns termos são específicos de uma área. Em Teste de Hipótese, não é diferente. Ao falsear a H0 você deve entender que "rejeitou" H0 e, por consequência, "aceitou" Ha .

Então, os termos são "aceitar" ou "rejeitar" a hipótese nula ou hipótese alternativa, pois ao rejeitar uma, impreterivelmente, você aceitou a outra.

TESTE DE HIPÓTESE - INTRODUÇÃO

Quando queremos saber se existem
CARACTERÍSTICAS NA POPULAÇÃO,
usamos TESTES DE HIPÓSTES

Exemplos:

- Será que a altura média dos alunos da turma 15 AIML é de 1,72 m?
- Será que as pessoas comem mais chocolate quando estudam estatística?

AUMENTO NA ALTURA (em média)

1º - Criar hipóteses

Hipótese experimental: Há uma determinada característica na população

- Hipótese de uma direção específica:
 Teste unilateral;
- Hipótese de uma direção específica:
 Teste bilateral;
- Hipótese nula: Não há essa característica na população.

2º - Escolher um nível de significância (alfa)

Probabilidade que o analista estabelece como limite para decidir se o valor do teste se deve ao acaso.

$$\alpha = 0.05$$

O efeito é real se apenas 5% (ou menos) dos resultados for devido ao acaso.

$$\alpha = 0.01$$

O efeito é real se apenas 1% (ou menos) dos resultado for devido ao acaso.

3º - Calcular o teste estatístico

O teste estatístico oferece-nos uma quantificação do efeito que estamos a estudar.

Se o valor da estatística teste cair na região crítica (em azul no gráfico) rejeita-se H_{0.}

Ao contrário, quando aceitamos, dizemos que não houve evidência amostral significativa no sentido de permitir a rejeição de H_o.

4º - Calcular o teste p

Probabilidade do resultado do teste estatístico acontecer na população devido ao acaso e não devido a um efeito real.

4° - Calcular o teste p

O p-valor é uma estimativa de significância observada na amostra. Indica a probabilidade de ocorrer valores da estatística mais extremos do que o observado, sob a hipótese H₀ ser verdadeira.

Se o p-valor $< \alpha$, então rejeitamos H_0 , caso contrário, não o rejeitamos.

A zona em azul é a zona de rejeição de H_0 , ou seja, se o seu valor observado ou calculado estiver na zona azul, você deverá rejeitar a H_0 e, por consequência, aceitar a H_0 a sua hipótese alternativa.

A ideia que você precisa guardar é a posição no gráfico do seu valor observado ou calculado. Esta posição irá decidir se a sua observação está em uma área de rejeição ou aceitação.

Unilateral à esquerda:

Ho: $\mu \le 50$

H1: $\mu > 50$

Unilateral à direita:

Ho: $\mu \ge 50$

H1: μ < 50

Bilateral:

Ho: $\mu = 50$

H1: $\mu \neq 50$

Se o valor calculado ou observado cair na área azul, rejeita-se H_0

4° - Comparar α e p

 α = nível de significância estabelecido pelo analista (probabilidade limite para decidir se o valor do teste deve-se ao acaso). Exemplo: α = 0,05.

p = probabilidade do resultado do teste do estatístico se deve ao acaso.

Se uma hipótese for rejeitada quando deveria ser aceita, diz-se que foi cometido um erro Tipo I.

Se for aceita uma hipótese que deveria ser rejeitada, foi cometido erro tipo II.

Erros Tipo I e do Tipo II						
Tabela – resumo das decisões possíveis						
	H _o verdadeiro	H _o falso				
Aceitar H _o	Conclusão correta	Erro Tipo II				
Rejeitar H _o	Erro Tipo I	Conclusão correta				

EXISTEM DOIS TIPOS DE ERRO DE HIPÓTESE:

Erro tipo I - rejeição de uma hipótese verdadeira;

Erro tipo II - aceitação de uma hipótese falsa.

As probabilidades desses dois tipos de erros são designadas α e β . A probabilidade α do erro tipo l é denominada "nível de significância" do teste.

Decisão	Realidade			
	H ₀ Verdadeira	H ₀ Falsa		
Aceitar H ₀	Sem erro	Erro Tipo II		
Rejeitar H ₀	Erro Tipo I	Sem erro		

UM POUCO MAIS SOBRE Q

Ao testar uma hipótese estabelecida, a probabilidade máxima com a qual estaremos dispostos a correr risco de um erro Tipo I é denominada nível de significância do teste. Essa probabilidade, representada frequentemente por α , é geralmente especificada antes da extração de qualquer amostra, de modo que os resultados obtidos não influenciem a escolha.

UM POUCO MAIS SOBRE (

Na prática, é usual a adição de um nível de significância 0,05 ou 0,01, embora possam ser usados outros valores. Se, por exemplo, é escolhido um nível de significância de 0,05 ou 5% no planejamento de um teste de hipótese, há então, cerca de 5 chances em 100 da hipótese ser rejeitada quando deveria ser aceita, isto é, há uma confiança de cerca de 95% de que você tome a decisão acertada.

UM POUCO MAIS SOBRE (

p < 0,05

- O resultado do teste estatístico não se deve ao acaso, em 95% dos casos;
- Há um efeito na população (com 95% de confiança);
- Assumimos uma margem de erro de 5%, isto é, existe menos de 0,05 de probabilidade de o resultado do teste estatístico ser devido ao acaso e não a um efeito real na população;
- Existe menos de 0,05 de probabilidade de rejeitarmos a característica quando ela é verdadeira;
- O efeito é estatisticamente significativo para p < 0,05.

UM POUCO MAIS SOBRE (

p ≥ 0,05

- O efeito encontrado pode dever-se ao acaso em 5% ou mais dos casos;
- Não sabemos se o efeito encontrado com os dados da amostra está presente na população;
- O efeito n\u00e3o \u00e9 estatisticamente significativo
 p ≥ 0,05.

Teste de Hipótese		Se a Hipótese nula (H0) é:		
		Verdadeira	Falsa	
O Pesquisador	Aceita H0	Descisão correta	Erro tipo II (β) Falso negativo	
	Rejeita H0	Erro tipo I (α) Falso positivo	Descisão correta	

Erro tipo I: Condenar um inocente. Erro tipo II: Comprar gato por lebre.

UM CASO MANUAL

Queremos estimar o uso médio, em minutos, da telefonia celular de uma certa população, com uma amostra de

n = 100, sabendo-se que σ = 125

Test For	Null Hypothesis (H ₀)	Test Statistic	Distribution	Use When
Population mean (μ)	$\mu = \mu_0$	$\frac{(\bar{x}-\mu_o)}{\sigma/\sqrt{n}}$	Z	Normal distribution or $n > 30$; σ known
Population mean (μ)	$\mu = \mu_0$	$\frac{(\bar{x}-\mu_o)}{\sqrt[s]{\sqrt{n}}}$	t _{n-1}	n < 30, and/or σ unknown
Population proportion (p)	$p = p_0$	$\frac{\hat{p}-p_o}{\sqrt{\frac{p_o\left(1-p_o\right)}{n}}}$	Z	$n\hat{p}, n(1-\hat{p}) \ge 10$
Difference of two means $(\mu_1 - \mu_2)$	$\mu_1 - \mu_2 = 0$	$\frac{\left(\overline{x}_1 - \overline{x}_2\right) - 0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	Z	Both normal distributions, or n_1 , $n_2 \ge 30$; σ_1 , σ_2 known
Difference of two means $(\mu_1 - \mu_2)$	$\mu_1 - \mu_2 = 0$	$\frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	t distribution with df = the smaller of n_1 -1 and n_2 -1	n_1 , n_2 < 30; and/or σ_1 , σ_2 unknown
Mean difference μ_d (paired data)	$\mu_d = 0$	$\frac{\left(\overline{d} - \mu_d\right)}{s_d / \sqrt{n}}$	<i>t</i> _{n-1}	n < 30 pairs of data and/or σ_d unknown
Difference of two proportions $(p_1 - p_2)$	$p_1 - p_2 = 0$	$\frac{\left(\hat{\rho}_1 - \hat{\rho}_2\right) - 0}{\sqrt{\hat{\rho}\left(1 - \hat{\rho}\right)\left(\frac{1}{n_1} + \frac{1}{n_z}\right)}}$	Z	$n\hat{p}, n(1-\hat{p}) \ge 10$ for each group

0 0 0 0

. . . .

OBRIGADO

lattes.cnpq.br/687652 8572507972

Copyright © 2021 | Professor André Silva de Carvalho

Todos os direitos reservados. Reprodução ou divulgação total ou parcial deste documento, é expressamente proibido sem consentimento formal, por escrito, do professor/autor

