(A) - 2

1.

2.

Choose The Correct One

	$(A) - \frac{b}{a}$	(B) $\frac{c}{d}$	(C) $-\frac{c}{d}$	(D) $-\frac{c}{a}$					
3.	If α , β and γ are the zeros of	**	••						
	$(A) \frac{b^2 - ac}{a^2}$	$(B) \frac{b^2 + 2ac}{b^2}$	(C) $\frac{b^2 - 2ac}{a}$	$(D) \frac{b^2 - 2ac}{a^2}$					
4.	If α, β and γ are the zeros of	the polynomial $f(x) = x^3$	$+ px^2 - pqrx + r$, then $\frac{1}{\alpha \mu}$	$\frac{1}{\beta} + \frac{1}{\beta \gamma} + \frac{1}{\gamma \alpha} =$					
	(A) $\frac{r}{p}$	(B) $\frac{p}{r}$	(C) $-\frac{p}{r}$	(D) $-\frac{r}{p}$					
5.	If the parabola $f(x) = ax^2 + bx$ (A) - 4			(2, -3), the value of $a + b + c$ is –					
6.	If a h are the zeros of $f(y) = y^2$	(B) -2 $^{2} + px + 1$ and c, d are the d) is –	(C) Zero e zeros of $f(x) = x^2 + qx + qx$	(D) 1 - 1 the value of					
7.	E = $(a - c) (b - c) (a + b) (b + c)$ (A) $p^2 - q^2$ If α, β are zeros of $ax^2 + bx + c$	(B) $q^2 - p^2$ c then zeros of $a^3x^2 + ab$	(C) q2 + p2 $ocx + c3 are -$	(D) None of these					
	(A) $\alpha\beta, \alpha + \beta$		(C) $\alpha\beta, \alpha^2\beta^2$	(D) α^3, β^3					
8.	Let α, β be the zeros of the polynomial $x^2 - px + r$ and $\frac{\alpha}{2}, 2\beta$ be the zeros of $x^2 - qx + r$, Then the value of r is								
	(A) $\frac{2}{9}(p-q)(2q-p)$	(B) $\frac{2}{9}(q-p)(2p-q)$) (C) $\frac{2}{9}(q-2)(2q-p)$	(D) $\frac{2}{9}(2p-q)(2q-p)$					
9.	When $x^{200} + 1$ is divided by x^2								
10.	(A) $x + 2$ If a $(p+q)^2 + 2bpq + c = 0$ and a	(B) $2x - 1$ also $a(q + r)^2 + 2bqr + c =$	(C) 2 = 0 then pr is equal to –	(D) - 1					
	(A) $p^2 + \frac{a}{c}$			(D) $q^2 + \frac{a}{c}$					
11.	If a, b and c are not all equal and α and β be the zeros of the polynomial $ax^2 + bx + c$, then value of $(1+\alpha+\alpha^2)$								
	$(1+\beta+\beta^2)$ is:								
	(A) 0	(B) positive	(C) negative	· · ·					
12.	Two complex number α and β are such that $\alpha + \beta = 2$ and $\alpha^4 + \beta^4 = 272$, then the polynomial whose zeros are								
	α and β is –	-, 2 -							
12	(A) $x^2 - 2x - 16 = 0$	(B) $x^2 - 2x + 12 = 0$	(C) $x^2 - 2x - 8 = 0$	(D) None of theses					
13.	If 2 and 3 are the zeros of $f(x)$ (A) -5 30								

If α , β and γ are the zeros of the polynomial $2x^3 - 6x^2 - 4x + 30$. then the value of $(\alpha\beta + \beta\gamma + \gamma\alpha)$ is

If α , β and γ are the zeros of the polynomial $f(x) = ax^3 + bx^2 + cx + d$, then $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} =$

(C) 5

(B) 2

27. If
$$\alpha$$
, β are the zeros of the polynomial $x^2 - px + q$. then $\frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2}$ is equal to -

(A)
$$\frac{p^4}{q^2} + 2 - \frac{4p^2}{q}$$
 (B) $\frac{p^4}{q^2} - 2 + \frac{4p^2}{q}$ (C) $\frac{p^4}{q^2} + 2q - \frac{4p^2}{q}$ (D) None of these

(B)
$$\frac{p^4}{a^2} - 2 + \frac{4p^2}{a}$$

(C)
$$\frac{p^4}{q^2} + 2q - \frac{4p^2}{q}$$

28. If
$$\alpha$$
, β are the zeros of the polynomial $x^2 - px + 36$ and $\alpha^2 + \beta^2 = 9$, then $p =$

$$(A) \pm 6$$

$$(B) \pm 3$$

$$(C) \pm 8$$

$$(D) \pm 9$$

(A)
$$\pm 6$$
 (B) ± 3 (C) ± 8
29. If α, β are zeros of $ax^2 + bx + c$, $ac \neq 0$, then zeros of $cx^2 + bx + a$ are –

$$(A) - \alpha, -\beta$$

(B)
$$\alpha, \frac{1}{\beta}$$
 (C) $\beta, \frac{1}{\alpha}$

(C)
$$\beta, \frac{1}{\alpha}$$

(D)
$$\frac{1}{\alpha}$$
, $\frac{1}{\beta}$

(A)
$$\frac{2}{3}$$

(B)
$$\sqrt{2}$$

31. The bi-quadratic polynomial whose zeros are 1, 2,
$$\frac{4}{3}$$
, -1 is:

(A)
$$3x^4 - 10x^3 + 5x^2 + 10x - 8$$

(C) $3x^4 + 10x^3 + 5x^2 - 10x - 8$

(B)
$$3x^4 + 10x^3 - 5x^2 + 10x - 8$$

(C)
$$3x^4 + 10x^3 + 5x^2 - 10x - 8$$

(B)
$$3x^4 + 10x^3 - 5x^2 + 10x - 8$$

(D) $3x^4 - 10x^3 - 5x^2 + 10x - 8$

32. The cubic polynomials whose zeros are
$$4, \frac{3}{2}$$
 and -2 is:

(A)
$$2x^3 + 7x^2 + 10x - 24$$

(B)
$$2x^3 + 7x^2 - 10x - 24$$

(D) None of these

(C)
$$2x^3 - 7x^2 - 10x + 24$$

(A)
$$2x^3 + 7x^2 + 10x - 24$$
 (B) $2x^3 + 7x^2 - 10x - 24$ (C) $2x^3 - 7x^2 - 10x + 24$ (D) None of these
33. If the sum of zeros of the polynomial $p(x) = kx^3 - 5x^2 - 11x - 3$ is 2, then k is equal to :

(A)
$$k = -\frac{5}{2}$$

(B)
$$k = \frac{2}{5}$$

(C)
$$k = 10$$

(D)
$$k = \frac{5}{2}$$

(A)
$$k = -\frac{5}{2}$$
 (B) $k = \frac{2}{5}$ (C) $k = 10$
34. If $f(x) = 4x^3 - 6x^2 + 5x - 1$ and α, β and γ are its zeros, then $\alpha\beta\gamma =$

(A)
$$\frac{3}{2}$$

(B)
$$\frac{5}{4}$$

(C)
$$-\frac{3}{2}$$

(D)
$$\frac{1}{4}$$

(A)
$$\frac{3}{2}$$
 (B) $\frac{5}{4}$ (C) $-\frac{3}{2}$ (D) $\frac{1}{4}$ 35. Consider $f(x) = 8x^4 - 2x^2 + 6x - 5$ and $\alpha, \beta, \gamma.\delta$ are it's zeros then $\alpha + \beta + \gamma + \delta =$

(A)
$$\frac{1}{4}$$

(B)
$$-\frac{1}{4}$$
 (C) $-\frac{3}{2}$

(C)
$$-\frac{3}{2}$$

(D) None of these

36. If
$$x^2 - ax + b = 0$$
 and $x^2 = px + q = 0$ have a root in common and the second equation has equal roots, then –

$$(A) b + q = 2ap$$

(A) b + q = 2ap (B)
$$b + q = \frac{ap}{2}$$

(C)
$$b + q = ap$$

OBJECTIVE			ANSWER KEY							EXERCISE - 4					
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	A	C	D	В	C	В	В	D	C	В	D	C	В	C	A
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	В	В	В	В	D	C	C	В	A	C	В	A	D	D	D
Que.	31	32	33	34	35	36									·
Ans.	A	C	D	D	D	В									

	Choose The Corn	rect One							
1.	If the sum of the tw	[EAMCE]	Γ - 2003]						
	(A) - r	(B) r	(C) 2r	(D) $-2r$					
2.	Let $a \neq 0$ and $p(x)$	be a polynomial of de	gree grater than 2. If $p(x)$ leav	es remainders a and - a when	n divided				
	respectively by x +	a and $x - a$, the remaind	er when $p(x)$ is divided by $x^2 - a^2$	is [EAMCE]	Γ - 2003]				
	(A) 2x	(B)-2x	(C) x	(D) - x					
3.		olynomial $x^2 + px + q$ is s	equare of the other root, then	[IIT-Screening	g - 2003]				
	(A) $p^3 - q(3p-1) +$	$+q^2=0$	(B) $p^3 - q(3p + 1) +$ (D) $p^3 + q(3p + 1) -$	$q^2 = 0$					
	(C) $p^3 + q(3p-1) -$	$-q^2=0$	(D) $p^3 + q(3p+1) -$	$q^2 = 0$					
4.	If α, β are the	zeros of $x^2 + px +$	1 and γ, δ be those of	$x^2 + qx + 1$, then the	value of				
	$(\alpha - \gamma)(\beta - \gamma) (\alpha + \delta)(\beta + \delta) = $ [DC]								
	(A) $p^2 - q^2$	(B) $q^2 - p^2$	(C) p^2	(D) q^2					
5.	The quadratic polyn	iomial whose zeros are tv	wice the zeros of $2x^2 - 5x + 2 = 0$	is – [Kerala Engineering	g -2003]				
	$(A) 8x^2 - 10x + 2$	(B) $x^2 - 5x + 4$	(C) $2x^2 - 5x + 2$	(D) $x^2 - 10x + 6$					
6.			en as 17 in place of 13 and it's z						
	zeros of the original			[Kerala Engineering	; -2003]				
			(C) - 3, -7						
7.	•		are the zeros of the polynomial		; -2003]				
	(A) $2x^2 - 7x + 6$	(B) $3x^2 + 9x + 11$	(C) $9x^2 - 27x + 20$	(D) $3x^2 - 12x + 5$					
8.	If α, β, γ are the ze	eros of the polynomial x ³	$+4x + 1$, then $(\alpha + \beta)^{-1} + (\beta +$	$\gamma)^{-1} + (\gamma + \alpha)^{-1} =$					
	(A) 2	(B) 3	(C) 4	(D) 5 [EAMCET-	-2003]				
9.	If α , β are the zero	s of the quadratic polyno	mial $4x^2 - 4x + 1$, then $\alpha^3 + \beta$	is –					
	1	1							
	(A) $\frac{1}{4}$	(B) $\frac{1}{8}$	(C) 16	(D) 32					
10.	The value of 'a' fo	or which one root of the o	quadratic polynomial $(a^2 - 5a + 3)$	$(x^2 + (3a - 1))x + 2$ is twice a	s large as				
100	the other, is -	T WINGH ONE TOOL OF the V	quadratic perynomiai (a su s	[AIEEE -					
		2	2	1	,				
	(A) $-\frac{1}{3}$	(B) $\frac{2}{3}$	(C) $-\frac{2}{3}$	(D) $\frac{1}{3}$					
11	Lat or Rhatha war	$f_{x} = f_{x}^{2} + (2 + 1) + 1$	The volume of $\frac{1}{2}$ for which α^2	R^2 is minimum is					
11.	·		. The values of λ for which α^2		20021				
10	(A) 0	(B) 1 Substituting $1 \cdot x^2 + b \cdot x$	(C) 2	(D) 3 [AMU-2	2002]				
12.	(A) (25)	(B) $(-3, 1)$	$+c, b, c \in R$, then (b, c) is given						
13.			(C) $(-2, 5)$ - $9x - 5$, the other zeros are –	(D)(3,1)					
13.	(A) 1 and $2 - i$		(C) 0 and 1	(D) None of these					
14.			$(1+4\lambda) x + \lambda^2 + 2$ may be one						
17,	The value of 70 for								
	(A) 4	(B) $\frac{33}{8}$	(C) $\frac{17}{4}$	(D) $\frac{31}{8}$					
15.	If 1 is a zara of t	O	'	O .					
16.			+ px + q is equal to the sum of the	[Tamil Nadu Engineering	, 2002]				
10,	(A) $P^2 - q^2 = 0$		(C) p2 + p = 2q	(D) None of these					
	(11)1 9 0	$(\mathbf{D}) \mathbf{P} \cdot \mathbf{q} = 0$	(C) P P 29	(D) Frome of these					

If p, q are zeros of $x^2 + px + q$, then **18.** [AIEEE - 2002] (B) p = 1 or 0 (C) p = -2(D) p = -2 or 0(A) p = 1If $\alpha \neq \beta$ and $\alpha^2 = 5\alpha - 3$, $\beta^2 = 5\beta - 3$, then the polynomial whose zeros are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ is: [AIEEE - 2002] 19. (A) $3x^2 - 25x + 3$ (B) $x^2 - 5x + 3$ (D) $3x^2 - 19x + 3$ If $\alpha \neq \beta$ and the difference between the roots of the polynomials $x^2 + ax + b$ and $x^2 + bx + a$ is the same, then 20. [AIEEE - 2002] (B) a + b - 4 = 0(C) a - b + 4 = 0(D) a - b - 4 = 0(A) a + b + 4 = 0If the zeros of the polynomial $ax^2 + bx + c$ be in the ratio m: n, then 21. (A) $b^2 mn = (m^2 + n^2) ac$ (B) $(m + n)^2$ ac = b^2 mn (C) $b^2 (m^2 + n^2) = mnac$ (D) None of these COMPREHENSION BASED QUESTIONS Maximum and Minimum value of a quadratic expression: At $x = \frac{-b}{2a}$, we get the maximum or minimum value of the quadratic expression, $y = ax^2 + bx + c$ When a > 0, the expression $ax^2 + bx + c$ gives minimum value $= \frac{4ac - b^2}{4a}$ (i) When a < 0, the expression $ax^2 + bx + c$ gives maximum value = $\frac{4ac - b^2}{4a}$ Based on above information, do the following questions: 22. The minimum value of the expression $4x^2 + 2x + 1$ ($x \in R$) is -(A) $\frac{1}{4}$ (D) 1 If x be real, the maximum value of $7 + 10x - 5x^2$ is – 23. (B) 15 (A) 12 (B) 15 (C) 16 (D) 18 If p and q (\neq 0) are the zeros of the polynomial $x^2 + px + q$, then the least value of $x^2 + px + q$ ($x \in R$) is – 24. (B) $\frac{1}{4}$ (D) $\frac{9}{4}$ If x is real, the minimum value of $x^2 - 8x + 17$ is – **25.** (A) - 1(B) 0(C) 1 (D) 2 **OBJECTIVE** ANSWER KEY **EXERCISE - 5** 2 5 9 14 15 Oue. 3 4 7 8 10 11 12 13 1 6 В В D D \mathbf{C} A \mathbf{C} Ans. В D A В В D В **16 17** 18 19 20 21 22 23 24 25 Que.

Let α, β be the zeros of the polynomial (x - a)(x - b) - c with $c \ne 0$, then the zeros of the polynomial

(C) a, b

[IIT-1992, AIEEE - 2002]

(D) a + c, b + c

17.

 $(x-\alpha)(x-\beta) + c$ are:

(B) b, c

(A) a, c

C

Ans.

 \mathbf{C}

В

D

A

В

 \mathbf{C}

A

 \mathbf{C}

 \mathbf{C}