Series 1

1. Posterior predictive distribution

- a. Assume the model $X \sim \mathcal{N}(\theta, \sigma^2)$ with the prior $\pi(\theta, \sigma^2) \propto \frac{1}{\sigma^2}$. Consider $Y \sim \mathcal{N}(\rho X, \sigma^2)$ with ρ known and fixed. Derive the density $f(y \mid x)$ of the posterior predictive distribution of Y given X.
- b. Assume the model $X \sim \operatorname{Binomial}(\theta, n)$ with the prior $\theta \sim \operatorname{Beta}(\alpha, \beta)$. Further, assume that $Y \sim \operatorname{Binomial}(\theta, n)$ and that conditional on θ , Y is independent of X. Derive the density $f(y \mid x)$ of the posterior predictive distribution of Y given X.

2. Bayesian decision theory

In the lecture, we saw the connection between Bayesian point estimates and Bayesian decision theory.

- a. Show that we obtain the posterior mean if we use a quadratic loss function $L(T, \theta) = (T \theta)^2$.
- b. Show that we obtain the posterior median if we use $L(T, \theta) = |T \theta|$.
- c. Show that we obtain the posterior mode if we use $L(T,\theta)=1_{[-\varepsilon,\varepsilon]^c}(T-\theta)$ and we let ε go to zero.

Hint:

• For the median, use the Leibniz integral rule (see, e.g., https://en.wikipedia.org/wiki/Leibniz integral rule).

3. Bayesian testing and Bayes factor

Assume the model $X \sim \mathcal{N}(\theta, 1)$ and for θ the prior $\pi(\theta) \propto 1$. Our goal is to test the hypothesis $H_0: |\theta| \leq c$ versus $H_1: |\theta| > c$.

- a. Determine the maximal posterior probability of the null hypothesis $\max_{x} \pi(\Theta_0|x)$ as a function of c.
- b. Determine the values of x and c for which $\pi(\Theta_0|x)$ equals 0.95 and calculate the Bayes factor.

¹This is an example of a so called improper prior. As we will see later in the lecture, as long as $\pi(\theta)f(x \mid \theta)$ has finite total mass, one is allowed to use improper priors.