Type classes (+): Additive a => $a \rightarrow a \rightarrow a$ (-):: Add Group a => $a \rightarrow a \rightarrow a$ (*):: Multiplicative a=> $a \rightarrow a \rightarrow a$ ():: Mul Group a => $a \rightarrow a \rightarrow a$

Type classes (+): Additive a => $a \rightarrow a \rightarrow a$ $a \rightarrow a \rightarrow a$ (-):: Add Group a => (*):: Multiplicative a=> $a \rightarrow a \rightarrow a$ (): Mul Group a => $a \rightarrow a \rightarrow a$

Type classes Additive $R \rightarrow R \rightarrow R$ R-PR P(PR) P(Bool->R)

Type classes mull (a:es) ys = mull ([a]+0:es) ys = mull La I gs + mull (0:as) gs $eval(a:as) x = a + x \cdot eval as x$ = scale Lays +0: mul L as ys

Type classes Additive 1R->1R->1R DS Fun Exp Fun Exp DS (R->/R)

atrik Jausson Derivative streams. reflor series $DSL \rightarrow \delta \sigma \lambda$ $D_{e^{2N}}$ Derivative streams Patrik Jausson add, mul: DSa > DSa > DSa fs, fs : DSa mul fs@ (f: fs') gs@ (g:gs') = m:nus' where m = f *gms'= add (mul fs' gs) (mul fs gs')

 $DSL \rightarrow \delta \sigma \lambda$