Линейная алгебра

Чепелин Вячеслав

Содержание

1	Лиі	нейные отображения.	2
	1.1	Основные определения. Теорема о ранге и дефекте линейных отображений	2
	1.2	Матрица лин. отображения. Координатный изоморфизм. Формула замены мат-	
		рицы линейного отображения при замене базиса	4
	1.3	Инварианты линейного отображения	7
	1.4	Собственные числа и собственные векторы лин. оператора	11
	1.5	Оператор простой структуры (о.п.с). Проекторы. Спектральное разложение. Функ-	
		ция от диагонализированной матрицы	14
	1.6	Комплексификация вещ. лин. пр-ва. Продолжение вещественного линейного опе-	
		ратора	20
	1.7	Минимальный многочлен линейного оператора. Теорема Кэли - Гамильтона	23
2	Ино	формация о курсе	24

1 Линейные отображения.

1.1 Основные определения. Теорема о ранге и дефекте линейных отображений

<u>def:</u> U, V - линейное пространства над одним полем $K(\mathbb{R}, \mathbb{C})$.

 $\mathcal{A}:U\to V$ называется **линейным гомоморфизмом**, если:

$$\forall \lambda \in K, \forall u_1, u_2 \in U : \mathcal{A}(u_1 + \lambda u_2) = \mathcal{A}(u_1) + \lambda \mathcal{A}(u_2)$$

Замечание 1: Мы будем писать Au, вместо A(u).

Замечание 2: Au, Bu это какие-то числа, поэтому мы можем складывать их и умножать на скаляр.

Замечание 3: $AO_U = O_V$, частный случай $\lambda = 0$

Примеры:

- 1. О: это нулевое отображения $\forall u \in U : \mathbb{O}u = 0$
- 2. P_n пространство многочленов степени $\leq n$. $\mathcal{A} = \frac{d}{dx}$ дифферинцирование.
- 3. ε тождественное отображение. $\varepsilon: U \to U: \forall u \in U: \varepsilon u = u$.

Введем операции:

1. $\lambda \in K : \mathcal{A}$ — линейное отображение. Введем операцию умножения:

$$\forall u \in U : (\lambda \mathcal{A})u = \lambda(\mathcal{A}u)$$

2. \mathcal{A}, \mathcal{B} — линейные отображение. Введем операцию сложения:

$$\forall u \in U : (\mathcal{A} + \mathcal{B})u = \mathcal{A}u + \mathcal{B}u$$

3. $\mathcal{B} \in L(U, W), \ \mathcal{A} \in (L(W, V).$ Введем операцию произведения:

$$\forall u \in U : (\mathcal{A} \cdot \mathcal{B})u = \mathcal{A}(\mathcal{B}u)$$

 $\operatorname{Im} \mathcal{A} = \{v \in V : v = \mathcal{A}u | \forall u \in U\} - \underline{\text{образ линейного пространства.}}$

Замечание: $\operatorname{Im} \mathcal{A}$ — линейное подпространство.

 $\mathcal{K}er\mathcal{A}=\{u\in U|\mathcal{A}u=0\}$ — ядро линейного отображения.

 $rg\mathcal{A}=\dim\operatorname{Im}\mathcal{A}-$ ранг отображения

 $def \mathcal{A} = \dim \mathcal{K}er \mathcal{A} - \mathbf{д}e$ фект отображения.

Виды отображений:

- сюръекция, если $\operatorname{Im} \mathcal{A} = V \Leftrightarrow rg\mathcal{A} = \dim V$.
- инъекция, если $KerA = \{ \mathbb{O}_U \} \Leftrightarrow defA = 0.$
- ullet биекция или изоморфизм $\Leftrightarrow \begin{cases} \operatorname{Im} \mathcal{A} = V \\ \mathcal{K}er\mathcal{A} = \{\mathbb{O}_U\} \end{cases} \Leftrightarrow \begin{cases} rg\mathcal{A} = \dim V \\ def\mathcal{A} = 0 \end{cases}$
- эндоморфизмом или линейным оператором, когда U=V.

$$\mathcal{A} \in End(V) = End_K(v)$$

• автоморфизм это биекция + эндоморфизм.

$$\mathcal{A} \in Aut(V) = Aut_K(v)$$

Примеры:

- 1. P_n пространство многочленов степени не больше n. $\mathcal{A} = \frac{d}{dt} \mathcal{A} : P_n \to P_n$. не инъекция, не сюръекция, не изоморофизм, эндоморфизм и не автоморфизм
- 2. $U = K^n, V = K^m, A = (a_{ij})_{m \times n}, a_{ij} \in K, \forall u \in U : Au = A \cdot u.$

$$\operatorname{Im} \mathcal{A} = \left\{ y \in K^m \ \ \substack{y = \mathcal{A}x \\ \forall x \in K^n} \ \right\} = \operatorname{span}(A_1, \dots, A_n) - \operatorname{образ}$$
 матрицы.

$$y = A \cdot x = \sum_{i=1}^{n} A_i \cdot x_i$$

Давайте более подробно рассмотрим отображения:

1. сюръекция $\Leftrightarrow rg\mathcal{A} = \dim V = m$.

$$\mathcal{K}er\mathcal{A} = \{x \in K^n : Ax = \mathbb{O}\}$$
 — общее решение СЛОУ, ядро матрицы.

 $\dim \mathcal{K}er\mathcal{A} = \dim$ общего решения = n - rgA.

$$def \mathcal{A} = n - rgA - \partial e \phi e \kappa m$$
 матрицы.

- 2. инъекция $\Leftrightarrow def A = 0 \Leftrightarrow n rgA = 0 \Leftrightarrow rgA = n$.
- 3. биекция $\Leftrightarrow \begin{cases} rgA = n \\ rgA = m \end{cases} \Leftrightarrow n = m.$
- 4. эндоморфизм $\Leftrightarrow n = m \Leftrightarrow A_{n \times n}$.
- 5. автоморфизм $\Leftrightarrow rg\mathcal{A} = n, A_{n \times n} \Leftrightarrow \exists A^{-1}.$

Свойства произведения:

- 1. \mathcal{A}, \mathcal{B} изоморф. $\Rightarrow \mathcal{A} \cdot \mathcal{B}$ изоморфно.
- 2. $\mathcal{A}(\mathcal{B}_1 + \mathcal{B}_2) = \mathcal{A}\mathcal{B}_1 + \mathcal{A}\mathcal{B}_2$.
- 3. $\forall \lambda \in K : \mathcal{A}(\lambda \mathcal{B}) = (\lambda \mathcal{A})\mathcal{B} = \lambda(\mathcal{A} \cdot \mathcal{B}).$
- 4. $C \in L(\Omega, U) : A \cdot (B \cdot C) = (A \cdot B) \cdot C$

Ассоциативная унитальная алгебра.

Замечание 1. Если $\mathcal{A} \in L(U,V)$ — изоморфно $\Rightarrow \mathcal{A}^{-1}$ — взаимно обр. отображение.

Замечание 2. Если $\mathcal{A} \in End(V)$, а также изоморфизм $\Leftrightarrow \mathcal{A} \in Aut(V) \Leftrightarrow \mathcal{A}^{-1} \in End(V)$ обратный лин. оператор к \mathcal{A} .

 $\underline{\mathbf{def:}}\ U_0 \subset U$ - линейное подпространство. $\mathcal{A} \in L(U,V)$

 $\mathcal{A}|_{U_0}: U_0 \to V$ сужение лин. отобр. на лин подпространство.

 $\forall u \in \mathcal{A}_0 : \mathcal{A}_0 u = \mathcal{A} u.$

Если \mathcal{A} — изоморфизм, то тогда его сужение на U_0 будет линейным отображением между U_0 и $\operatorname{Im} \mathcal{A}_0$. И это будет тоже изоморфизм.

Теорема (о ранге и дефекте линейного отображения)

 $\forall \mathcal{A} \in L(U, V)$. Доказать dim $U = def \mathcal{A} + rg \mathcal{A}$.

Доказательство:

Пусть $U_0 = \mathcal{K}er \subset U$. Пусть $U_1 \subset U$, такое, что $U_0 \oplus U_1 = U$ — прямое дополнение. Возьму $\mathcal{A}_1 = \mathcal{A}|_{U_1} \in L(U_1, \operatorname{Im} \mathcal{A}_1)$.

 $\forall u \in U : \exists ! u = u_0 + u_1$, где $u_0 \in U_0$, $u_1 \in U_1$, по т. об определении прямой суммы. Тогда получаем, что:

$$\mathcal{A}u = \mathcal{A}u_0 + \mathcal{A}u_1 = \mathcal{A}u_1$$

Откуда $\operatorname{Im} \mathcal{A} = \operatorname{Im} \mathcal{A}_1, rg\mathcal{A} = rg\mathcal{A}_1.$

 $\mathcal{K}er\mathcal{A}_1\subset U_1$, а также $\mathcal{K}er\mathcal{A}_1\subset \mathcal{K}er\mathcal{A}=U_0\Rightarrow \mathcal{K}er\mathcal{A}_1=\{0\}\Rightarrow \mathcal{A}_1$ — инъективна $\Rightarrow \mathcal{A}_1$ изоморфно. Откуда получаем:

$$\dim U = \dim U_1 + \dim U_0 = rq\mathcal{A} + def\mathcal{A}$$

Q.E.D.

Следствие. (характеристика автоморфизма)

Если $\mathcal{A} \in Aut(V) \Leftrightarrow rg\mathcal{A} = \dim V \Leftrightarrow def\mathcal{A} = 0$ — условие обратимости линейного оператора.

1.2 Матрица лин. отображения. Координатный изоморфизм. Формула замены матрицы линейного отображения при замене базиса.

 $\mathcal{A} \in L(U,V)$ — линейное отображение.

Пусть есть $\xi = (\xi_1, \xi_2, \dots, \xi_n)$ базис U, а так же $\eta = (\eta_1, \eta_2, \dots, \eta_m)$ базис V.

$$u \in U \xleftarrow{\text{изоморфизм}} u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} \in K^n; \ v \in V \xleftarrow{\text{изоморфизм}} v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{pmatrix} \in K^m$$

$$\exists v = \mathcal{A}u, u \in U : v = \mathcal{A}(\sum_{i=1}^{n} x_i \xi_i) = \sum_{i=1}^{n} x_i \mathcal{A}\xi_i$$

To есть Im $\mathcal{A} = span(\mathcal{A}\xi_1, \mathcal{A}\xi_2, \dots, \mathcal{A}\xi_n)$

$$rg\mathcal{A} = rg(\mathcal{A}\xi_1, \mathcal{A}\xi_2, \dots, \mathcal{A}\xi_n).$$

Теперь заметим, что $\mathcal{A}\xi_i \in V$, откуда:

$$A\xi_i = \sum_{j=1}^m a_{ji}\eta_j \stackrel{\mathrm{коорд.\ изоморфизм}}{\longleftrightarrow} A_i = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{pmatrix} \in K^m$$

Назовем $A = (A_1, \dots, A_n) = (a_{ij})_{m \times n} - \underline{\text{матрицой линейного отображения}} \ \mathcal{A}$ на базисах ξ, η .

Замечание. Т.к. здесь координатный изоморфизм, то:

$$rg\mathcal{A} = rg(\mathcal{A}\xi_1, \dots, \mathcal{A}\xi_n) = rg(A_1, \dots, A_n) = rgA.$$

 $\underline{\mathbf{def:}}\ \mathcal{A} \in End(V): \mathcal{A}: V \to V$ — лин. оператор.

Зафиксируем здесь один базис $e = e_1, \dots, e_n$. Получу:

$$\mathcal{A}e_i = \sum_{j=1}^n a_{ji}e_j \Leftrightarrow (\mathcal{A}e_1, \dots, \mathcal{A}e_n) = (e_1, \dots, e_n)\mathcal{A}$$

Тогда $A_{n \times n}$ — матрица линейного оператора.

Заметим, что теперь мы умеем:

$$\mathcal{A} \in L(U,V) \stackrel{\text{вз. однозначно}}{\longleftrightarrow} A \in M_{m \times n}$$

Утв. $L(U,V)\cong M_{m\times n}$ координатный изоморфизм линейных отображений

Доказательство:

У нас есть взаимно однозначное соответствие. Проверим линейность:

 $\forall \lambda \in K : \mathcal{A} + \lambda \mathcal{B} \stackrel{\text{проверить}}{\longleftrightarrow} A + \lambda B.$

$$(\mathcal{A} + \lambda \mathcal{B})\xi_i = \mathcal{A}\xi_i + \lambda \cdot \mathcal{B}x_i = \sum_{j=1}^m a_{ji}\eta_j + \lambda \sum_{j=1}^m b_{ji}\eta_j = \sum_{j=1}^m (a_{ji} + \lambda b_{ji}) \cdot \eta_j$$

А откуда уже видно нужное нам соответствие.

Q.E.D.

Утв. $\mathcal{A} \in L(W,V), \mathcal{B} \in L(U,W), \mathcal{AB} \in L(U,V).$ Пусть w - базис W, η - базис V, ξ - базис U. Тогда $\mathcal{AB} \leftrightarrow AB$ в базисах (ξ,η)

$$\mathcal{AB}\xi_{i} = \mathcal{A}(\mathcal{B}\xi_{i}) = \mathcal{A}(\sum_{k=1}^{p} b_{ki}w_{k}) = \sum_{k=1}^{p} b_{ki}\mathcal{A}(w_{k}) = \sum_{k=1}^{p} b_{ki}\sum_{j=1}^{m} a_{jk}\eta_{j} = \sum_{j=1}^{m} (\sum_{k=1}^{p} a_{jk}b_{kj})\eta_{j} = \sum_{j=1}^{m} (\sum_{k=1}^{p} a_{jk}b_{kj})\eta_{j} = \sum_{k=1}^{m} (\sum_{k=1$$

$$= \sum_{j=1}^{m} (AB)_{ji} \cdot \eta_j$$

Q.E.D.

Следствие: $\mathcal{A} \in L(U,V)$ - изоморфизм, A - матр в $\xi,\eta \Rightarrow A^{-1}$ - матр в $(\eta,\xi).$

Доказательство:

$$A \cdot A^{-1} = \varepsilon_V, \quad A^{-1} \cdot A = \varepsilon_U$$

 $AX = E_\eta, \quad XA = E_\xi$

B силу того, что \mathcal{A} — изоморфизм:

$$\dim U = \dim V = n, \quad rgA = n \Leftrightarrow \exists A^{-1}$$

$$X = A^{-1}$$

Q.E.D.

Утверждение: Пусть $\mathcal{A} \in L(U_{\varepsilon}, V_{\eta}), v = \mathcal{A}u$. Тогда $\mathbf{v} = A\mathbf{u}$, где \mathbf{v} и \mathbf{u} — координатные столбцы v и u соответственно.

Доказательство: С одной стороны, v можно разложить по базису V:

$$v = \sum_{j=1}^{m} \mathbf{v}_j \eta_j$$

 ${\bf C}$ другой стороны, v представим как результат отображения:

$$v = \mathcal{A}u = \sum_{i=1}^{n} \mathbf{u}_{i} \mathcal{A}\xi_{i} = \sum_{i=1}^{n} \mathbf{u}_{i} \sum_{j=1}^{m} a_{ji} \eta_{j} = \sum_{j=1}^{m} (\sum_{i=1}^{n} a_{ji} \mathbf{u}_{i}) \eta_{j} \Rightarrow \mathbf{v}_{j} = \sum_{i=1}^{n} a_{ji} \mathbf{u}_{i}$$

. Откуда получаем искомое: $v = Au \Leftrightarrow \mathbf{v} = A \cdot \mathbf{u}$. Последнее равенство называется координатной формой записи действия линейного отображения.

Q.E.D.

Теорема (формула замены матрицы лин. отобр. при замене базиса)

 $\mathcal{A} \in L(U,V)$ — линейное отображение.

 ξ, ξ' базисы U, а η, η' базисы V. Хотим поменять базисы на штрихованные и получить новую матрицу. Тогда ее можно получить так:

$$A' = T_{\eta \to \eta'}^{-1} A T_{\xi \to \xi'}$$

Воспользуемся данным рисунком, чтобы понять происходящее. Мы хотим найти матрицу \mathcal{A}' . Для этого, заметим, что преобразование \mathcal{A}' , это преобразование \mathcal{B} , потом примененное к нему преобразование \mathcal{C} . То есть:

$$A' = CAB$$

Заметим, что матрица \mathcal{B} , это матрица перехода из ξ в ξ' . Это так потому что у нас просто меняется базис (про саму матрицу перехода см. одноименный раздел). Матрица \mathcal{C} , это $T_{\eta'\to\eta}$. Откуда, исходя из двух утверждений сверху:

$$A' = T_{\eta' \to \eta} A T_{\xi \to \xi'} \Rightarrow A' = T_{\eta \to \eta'}^{-1} A T_{\xi \to \xi'}$$

Q.E.D.

Следствие: $A \in End(V)$. e, e' базисы V. $A' = T^{-1}AT$, где $T = T_{e \to e'}$.

<u>def:</u> квадратные матрицы A и B называются подобными, если \exists невырожденная матрица C, такая, что: $B = C^{-1}AC$.

Замечание: матрицы линейного оператора в разных базисах подобны (см. следствие выше).

1.3 Инварианты линейного отображения.

<u>Инвариатность</u> называется некоторое свойство объекта, которое не меняется при определенных действиях и преобразованиях.

 ${\cal A}$ - линейное отображение. Ранг и дефект инварианты относительно выбора базиса.

Пусть $\mathcal{A} \in End(V)$. Пусть e_1, \ldots, e_n базис v.

Как мы знаем, $\exists ! D$ n-форма, такая что $D(e_1, \dots e_n) = 1$. Тогда **определитель линейного оператора**:

$$\det \mathcal{A} := \det(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = D(\mathcal{A}e_1, \dots, \mathcal{A}_n)$$

Замечание: $\det \mathcal{A} = D(\mathcal{A}e_1, \dots, \mathcal{A}_n) = D(Ae_1, \dots, A_n) = \det A$ — определение определителя линейного оператора и матрицы соотносятся.

Теорема:

 $\forall \mathcal{A} \in End(V), \det \mathcal{A} = \det A.$

Возьмем $e = (e_1, \dots, e_n)$ базис V. Тогда:

$$\mathcal{A} \overset{\text{вз. однозначно}}{\longleftrightarrow} A = (a_{ij})_{n \times n}$$

$$\det \mathcal{A} = D(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = D(\sum_{i=1}^n a_{i1}e_{i_1}, \dots, \sum_{i=1}^n a_{in}e_{i_n}) =$$

$$\overset{\text{тк } D - n \text{ форма}}{\longleftrightarrow} \det \mathcal{A} = \sum_{i_1=1}^n \dots \sum_{i_n=1}^n a_{i_11} \cdot \dots \cdot a_{i_nn} D(e_{i_1} \dots, e_{i_n}) =$$

$$= \sum_{\sigma \in S_n} a_{i_11} \cdot \dots \cdot a_{i_nn} \cdot (-1)^{\varepsilon(\sigma)} D(e_1, \dots, e_n) = \det A$$

Q.E.D.

Замечание: A и B подобные матрицы, то $\det A = \det B$.

Замечание: $\det A$ инвариант линейного оператора, он не зависит от базиса.

Следствие 1: $\forall n$ - форма f на V:

$$\forall \xi_1, \dots, \xi_n \in V : f(\mathcal{A}\xi_1, \dots, \mathcal{A}\xi_n) = \det Af(\xi_1, \dots, \xi_n)$$

Доказательство:

Возьмем $e = (e_1, \dots, e_n)$ базис $V. \mathcal{A} \stackrel{e}{\longleftrightarrow} A.$ Это значит, что мы берем матрицу линейного оператора в данном базисе.

$$f(\mathcal{A}e_1,\ldots,\mathcal{A}e_n) \stackrel{\text{из доказательства теоремы}}{=} \det Af(e_1,\ldots,e_n)$$

На самом деле $\alpha = f(e_1, \ldots, e_n)$, поэтому:

$$\forall \xi_1, \dots, \xi_n : g(\xi_1, \dots, \xi_n) := f(\mathcal{A}\xi_1, \dots, \mathcal{A}\xi_n)$$

Заметим, что g - полилинейное, тк f полилин. и \mathcal{A} - лин. отобр. Также g - антисим, тк f - антисим. Откуда g - n-форма. Заметим интересный факт:

$$g(e_1, \dots, e_n) = f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = \det A \cdot f(e_1, \dots, e_n)$$

Откуда:

$$g(\xi_1, \dots, \xi_n) = g(e_1, \dots, e_n) D(\xi_1, \dots, \xi_n) = \det A \cdot \alpha D(\xi_1, \dots, \xi_n) = \det A \cdot f(\xi_1, \dots, \xi_n)$$
Q.E.D.

Замечание: Мы можем вывести 9-ое свойство определителя по-другому. Пусть $\mathcal{A} = A_{n \times n}$ — линейный оператор умножения. $f = D, B_j \in K^n$. Тогда:

$$det(AB_1,\ldots,AB_N) = \det A \cdot \det B$$

Следствие 2: $\mathcal{A}, \mathcal{B} \in End(V) \Rightarrow \det(\mathcal{AB}) = \det \mathcal{A} \cdot \det \mathcal{B}$

Пусть e - базис V. Тогда $\mathcal{A} \stackrel{e}{\longleftrightarrow} A, \mathcal{B} \stackrel{e}{\longleftrightarrow} B$. Также $\mathcal{AB} \stackrel{e}{\longleftrightarrow} AB$ по свойству. Откуда:

$$\det \mathcal{AB} = \det(AB) = \det A \cdot \det B = \det \mathcal{A} \cdot \det \mathcal{B}$$

Q.E.D.

Следствие 3: $\mathcal{A} \in Aut(V) \Leftrightarrow \det A \neq 0$. Причем $\det \mathcal{A}^{-1} = \frac{1}{\det \mathcal{A}}$

Доказательство:

$$\mathcal{A} \in Aut(V) \Leftrightarrow \begin{cases} \mathcal{A} \in End(V) \\ \text{изоморфизм} \end{cases} \Leftrightarrow \begin{cases} \mathcal{A} \in End(V) \\ def \mathcal{A} = \dim \mathcal{K}er \mathcal{A} = 0 \end{cases} \Leftrightarrow \begin{cases} \mathcal{A} \in End(V) \\ rg \mathcal{A} = n \end{cases} \Leftrightarrow \begin{cases} \mathcal{A} \stackrel{e}{\leftrightarrow} A, \det A \neq 0 \\ rg \mathcal{A} = n \end{cases}$$

Мы знаем, что существует \mathcal{A}^{-1} . А также $\mathcal{A} \cdot \mathcal{A}^{-1} = \varepsilon$. Откуда по свойству 3 получаем, что $\det \mathcal{A}^{-1} = \det \mathcal{A}$.

Q.E.D.

Следствие 4: $\det(\mathcal{A}\mathcal{A}^{-1}) = 1 = \det \mathcal{A} \cdot \det \mathcal{A}^{-1}$

Вспомним старое определение $trA = \sum_{i=1}^{n} a_{ii}$ - след матрицы.

Теорема (о tr подобных матриц)

Если A и B подобны, то trA = trB.

Доказательство:

A и B подобны $\Leftrightarrow \exists C: B = C^{-1}AC$. Пусть $C^{-1} = S = (s_{ij})$. Откуда:

$$trB = \sum_{i=1}^{n} b_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} s_{ij} (AC)_{ji} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} s_{ij} \cdot a_{jk} \cdot c_{ki} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{jk} \sum_{i=1}^{n} c_{ki} s_{ij}$$

Заметим, что $(CS)_{kj}=\delta_{kj}$, где $\delta_{kj}=\begin{cases} 1, k=j \\ 0, k\neq j \end{cases}$. Так что получаем, что

$$trB = \sum_{i=1}^{n} a_{ii} = trA$$

Q.E.D.

Следствие: $\forall A \in End(V) \Rightarrow tr(A) = trA'$, где A и A' матрицы оператора A в базисе e и e' соответственно.

 $\mathbf{def:}\ \mathcal{A} \in End(V), tr\mathcal{A} = trA - \mathbf{c}$ лед оператора.

Замечание: след оператора инвариантен из следствия выше.

<u>def:</u> Линейное подпространство $L \subset V$ называется <u>инвариантным</u> относительно линейного оператора $\mathcal{A} \in End(V)$, если $\forall v \in L, \mathcal{A}v \in L$.

Теорема 1:

 $L \subset V$ - линейное подпространство. L - инвариантно относительно $\mathcal{A} \in End(V)$. Тогда \exists базис пр-ва V матрица, такой что матрица оператора \mathcal{A} в этом базисе будет иметь $\mathit{cmynehuamuй}$ $\mathit{виd}$, при этом размерность $A^1 = k \times k$, $k = \dim L$.

$$A = \begin{pmatrix} A^1 & * \\ 0 & A^2 \end{pmatrix}$$

Доказательство:

 $L = span(e_1, \ldots, e_k)$ - базис L.

Дополним базис L до базиса $V: V = span(e_1, \ldots, e_k, e_{k+1}, \ldots, e_n)$.

Запишем матрицу A по определению:

$$\forall e_i \in L : \mathcal{A}e_i \in L \Rightarrow \mathcal{A}e_i = \sum_{j=1}^k a_{ji}e_j \leftrightarrow A_i = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{ki} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Откуда
$$A = \begin{pmatrix} a_{11} & \dots & a_{1k} & * & \dots & * \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ a_{k1} & \dots & a_{k1} & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & * & \dots & * \end{pmatrix} \Rightarrow A^1 = \begin{pmatrix} a_{11} & \dots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{k1} \end{pmatrix}$$

Q.E.D.

Теорема 2:

 $V = \bigoplus_{i=1}^{m} L_i, L_i$ инвариантны отн. $\mathcal{A}. \Rightarrow \exists$ базис пр-ва V, такое что м-ца оператора \mathcal{A} будет иметь блочно-диагональный вид:

$$\begin{pmatrix} A^1 & \dots & \dots & \mathbb{O} \\ \vdots & A^2 & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{O} & \dots & \dots & A^n \end{pmatrix}$$

Доказательство:

Пусть базис $V\stackrel{\text{по эквив. условию} \oplus}{=}$ объединение базисов L_i .

$$L_i = span(e_1^i, \dots, e_{k_i}^i), \dim L_i = k_i$$

Построим матрицу по определению. Не трудно заметить, что для каждого L_i из доказательства прошлой теоремы, все кроме соотв. строчек для L_i будет зануленно.

Q.E.D.

Замечание: $A_i \leftrightarrow A|_{L_i} \in End(L_i)$.

Теорема 3.

$$V=\bigoplus_{i=1}^m L_i,\ L_i$$
 инвариантны отн $\mathcal{A}\Rightarrow\operatorname{Im}\mathcal{A}=\bigoplus_{i=1}^m\operatorname{Im}\mathcal{A}|_{L_i},$ где $\mathcal{A}|_{L_i}\in L(L_i,V)$

Доказательство:

$$V = \bigoplus_{i=1}^m L_i \stackrel{\text{из т. об экв. опр. прямой суммы}}{\longleftrightarrow} \forall v \in V: \exists ! v = \sum_{i=1}^m v_i, v_i \in L_i$$

$$\forall v \in V : \operatorname{Im} A \ni Av = A \sum_{i=1}^{m} v_i = \sum_{i=1}^{m} Av_i \in \operatorname{Im} A|_{L_i}$$

Тогда всё, что нам осталось проверить это то, что наши пространства дизъюнкты. Но, если присмотреться к тому, что у нас написано, то у нас для любого вектора из $\operatorname{Im} \mathcal{A}$ существует лишь одно разложение через $\operatorname{Im} A|_{L_i}$, что соответствует эквивалентному определению прямой суммы.

Q.E.D.

1.4 Собственные числа и собственные векторы лин. оператора

 $\lambda \in K$ называется <u>собственным числом</u> $\mathcal{A} \in End(V)$, если $\exists v \in V, v \neq 0$. $\mathcal{A}v = \lambda v$. Такой v называют **собственным вектором** собственного числа λ .

$$\lambda \in K : \begin{cases} \mathcal{A}v = \lambda v \\ v \neq 0 \end{cases} \Leftrightarrow \begin{cases} (A - \lambda \varepsilon)v = 0 \\ v \neq 0 \end{cases} \Leftrightarrow \begin{cases} v \in \mathcal{K}er(A - \lambda \varepsilon) \\ v \neq 0 \end{cases} \Leftrightarrow$$

 $\Leftrightarrow v$ собственный вектор собственного числа $\lambda.$

 $V_{\lambda} = \mathcal{K}er(A - \lambda \varepsilon) -$ собственное подпространство \mathcal{A} соответств. с.ч. λ . Это мн-во всех с.в. V, отвечающим с.ч. λ и нулевой вектор.

 $\gamma(\lambda) = \dim V_{\lambda} - \underline{\text{геометрическая кратность}}.$

Свойства:

- 1. V_{λ} инвариантно относительно $(\mathcal{A} \lambda \varepsilon)$.
- 2. V_{λ} инвариантно относительно \mathcal{A} .
- 3. $\gamma(\lambda)$ инвариант относительно базиса.

Условие существования с.ч.:

 $\lambda \in K_{\mathcal{A}}$ - с.ч., v - с.в. $\Leftrightarrow \mathcal{K}er(A - \lambda \varepsilon)$ нетривиально $\Leftrightarrow def(A - \lambda \varepsilon) \neq 0 \Leftrightarrow rg(A - \lambda \varepsilon) \neq n \Leftrightarrow det(A - \lambda \varepsilon) = 0$

Тк определитель линейного оператора инвариантен, то:

$$\det(\mathcal{A} - \lambda \varepsilon) = 0 \Leftrightarrow \det(A - \lambda E) = 0$$

 $\underline{\mathbf{def:}}\ \chi(t) = \det(\mathcal{A} - t\varepsilon)$ - характеристический многочлен оператора $\mathcal{A}.$

Т.к. det оператора инвариантен $\chi(t) = \det(A - tE)$, где A - матрица линейного оператора \mathcal{A} в некотором базисе.

$$\chi(t) = \begin{vmatrix} a_{11} - t & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - t & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - t \end{vmatrix} = (-1)^n \cdot t^n + (-1)^{n-1} (trAt^{n-1}) + \dots + \det A$$

По теореме Виета: $\begin{cases} t_1 + \ldots + t_n = trA \\ t_1 \cdot \ldots \cdot t_n = \det A \end{cases}$ Заметим, что λ с.ч. $\mathcal{A} \Leftrightarrow \begin{cases} \lambda \in K \\ \chi(\lambda) = 0 \end{cases}$ - корень хар. мн.

Замечание. Если все корни хар. мн. $\in K \Rightarrow \begin{cases} \lambda_1 + \ldots + \lambda_n = trA \\ \lambda_1 \cdot \ldots \cdot \lambda_n = \det A \end{cases}$

<u>def:</u> <u>Спектром</u> оператора \mathcal{A} называется множество $\{(\lambda, \alpha(\lambda))\}, \alpha(\lambda)$ - кратность λ лин. оператора в хар. уравнении (*алгебраическая кратность*). Спектр это множество пар.

 $\underline{\mathbf{def:}}\ \mathbf{\Pi poctoй}\ \mathbf{cnektp}-$ все кратности - единички.

Теорема 1:

$$\forall \mathcal{A} \in End(V)$$
. $\forall \lambda$ с.ч. $\mathcal{A} : 1 \leq \gamma(\lambda) \leq \alpha(\lambda)$

Доказательство:

 λ с.ч. $\mathcal{A} \Leftrightarrow \mathcal{K}er(\mathcal{A} - \lambda \varepsilon) = V_{\lambda}$ не тривиально $\Leftrightarrow \gamma_1 = \dim V_{\lambda} \geq 1$.

Пусть $\dim V_{\lambda} = \gamma$, V_{λ} инвариантно относительно $\mathcal{A} \Rightarrow$ по т-ме 1 об инв. подпр. существует V такой, что матрица оператора \mathcal{A} будет иметь ступенчатый вид:

$$A = \begin{pmatrix} A^1 & * \\ 0 & A^2 \end{pmatrix}$$

$$\dim A^1 = \gamma \times \gamma, V = span(e_1, \dots, e_{\gamma}, e_{\gamma+1}, \dots, e_{\gamma})$$

При построении матрицы оператора \mathcal{A} :

$$\mathcal{A}e_i=\lambda e_i\leftrightarrow A_i=egin{pmatrix} dots\\ \lambda\\ 0\\ dots \end{pmatrix}$$
 - λ - на i -ой строчке. Немного распишем:

$$\chi(t) = \det(A - tE) = \begin{vmatrix} A^1 - tE_{\gamma \times \gamma} & * \\ 0 & A^2 - tE_{(n-\gamma) \times (n-\gamma)} \end{vmatrix}^{\text{по 6-ому св-ву опр}} =$$

$$=|A^{1}-tE||A^{2}-tE|=\chi_{A^{1}}(t)\cdot\chi_{A^{2}}(t)=(\lambda-t)^{\gamma}\chi_{A_{2}}(t)\Rightarrow$$

 $\Rightarrow \lambda$ корень $\chi(t)$, причем кратность $\geq \gamma$, т.к λ может оказаться корнем χ_{A^2}

Q.E.D.

Теорема 2:

 $\lambda_1, \lambda_2, \ldots, \lambda_n$ попарно различные с.ч $\mathcal{A}, v_1, \ldots, v_n$ соответ. с.в.

 $\Rightarrow v_1, \dots, v_n$ — лин. независимы.

Доказательство:

Докажем по индукции:

База $m = 1 : \lambda_1, v_1 \Rightarrow$ лин. незав.

ИП: Пусть верно для m, докажем для m + 1:

От противного: Пусть $\lambda_1, \ldots, \lambda_m, \lambda_{m+1}$ попарно различные собственные числа.

 v_1,\dots,v_m - линейно независимы по ИП. v_1,\dots,v_m,v_{m+1} - линейно зависимы. Откуда: $v_{m+1}=\sum_{i=1}^m \alpha_i v_i$. С одной стороны:

$$\mathcal{A}v_{m+1} = \lambda_{m+1}v_{m+1} = \lambda_{m+1}\sum_{i=1}^{m} \alpha_i v_i$$

С другой стороны:

$$\mathcal{A}v_{m+1} = \mathcal{A}\sum_{i=1}^{m} \alpha_i v_i = \sum_{i=1}^{m} \alpha_i \mathcal{A}v_i = \sum_{i=1}^{m} \alpha_i \lambda_i v_i$$
$$\sum_{i=1}^{m} (\lambda_{m+1} - \lambda_i) a_i v_i = 0$$

Но мы знаем, что v_1, \ldots, v_m линейно независимы. Откуда эта линейная комбинация тривиальна, но с другой стороны, она такой быть не может, потому что $\exists \alpha_i \neq 0$, для которого v_i не равен нулю, а так же, исходя из того что искомые с.ч. попарно различны, то $v_{m+1} - v_i \neq 0$. Откуда комбинация нетривиальна.

Противоречие.

Q.E.D.

Следствие: $\lambda_1,\ldots,\lambda_m$ попарно различные с.ч. $\mathcal{A}\Rightarrow\bigoplus_{i=1}^m V_{\lambda_i}$, т.е V_{λ_i} дизъюнктны.

Доказательстсво:

$$0 = v_1 + \ldots + v_m, v_i \in V_{\lambda_i}$$

Если в сумме какой-то из векторов не нулевой, то это собственный вектор, а собственные вектора для различных с.ч. линейно независимы. Противоречие. Откуда все вектора в сумме нулевые, откуда подпространства дизъюнктны.

Теорема 3:

$$V = \bigoplus_{i=1}^{m} L_i, L_i$$
 инвариантно относительно $\mathcal{A} \in End(V)$

$$\Rightarrow \chi(t) = \det(\mathcal{A} - t\varepsilon) = \prod_{i=1}^{m} \chi_{\mathcal{A}_i}(t).$$

Доказательство:

Смотрим теорему 3 об инв. подпр. Матрица А - блочно-диагональная:

$$A = \begin{pmatrix} A^1 & \dots & \dots & \mathbb{O} \\ \vdots & A^2 & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{O} & \dots & \dots & A^n \end{pmatrix}$$

Тогда
$$\chi(t)=\det(A-tE)$$
 по 6-ому свойству опр.
$$\prod_{i=1}^m\det(A^i-tE)=\prod_{i=1}^m\chi_{A_i}(t)$$

Q.E.D.

1.5 Оператор простой структуры (о.п.с). Проекторы. Спектральное разложение. Функция от диагонализированной матрицы.

 $\mathcal{A} \in End(V)$ называется <u>оператором простой структуры</u> (о.п.с), если \exists базис пространства V такой, что матрица оператора \mathcal{A} в этом базисе имеет диаг. вид.

$$\Lambda = diag(\lambda_1, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}$$

Заметим, что в таком случае собственные числа оператора \mathcal{A} будут λ_i , а так же собственные вектора этих чисел - соотв. столбики (легко проверить умножением). Отсюда все корни характ. многочлена $\chi \in K \Leftrightarrow \sum_{\lambda \text{-c.ч.}\mathcal{A}} \alpha(\lambda) = n = \dim V$.

Теорема:

 $\forall A \in End(V),$ если \sum_{λ -с.ч. $\mathcal{A}} \alpha(\lambda) = n,$ то тогда:

$$\mathcal A$$
 - о.п.с $\Leftrightarrow \forall \lambda$ - с.ч : $\gamma(\lambda) = \alpha(\lambda) \Leftrightarrow \sum_{\lambda$ -с.ч. $\mathcal A} \gamma(\lambda) = n = \dim V$

Доказательство:

 \sum_{λ -с.ч. $\mathcal{A}} \alpha(n) = n \Leftrightarrow$ все корни $\chi \in K$, откуда \mathcal{A} - о.п.с.

 ${\mathcal A}$ о.п.с. $\Leftrightarrow \exists$ базис V такой, что матрица диагональна \Leftrightarrow

$$\Leftrightarrow V = \bigoplus_{\lambda - \text{c.u.}} V_{\lambda} \Leftrightarrow \sum_{\lambda - \text{c.u.}} \gamma(\lambda) = n = \dim V$$

Q.E.D.

Следствие. Если все корни характ. многочлена $\in K$, а также все $\alpha(\lambda) = 1$ (спектр простой), то \mathcal{A} - о.п.с.

<u>def:</u> $A_{n \times n}$ называется **диагонализируемой**, если она подобна диагональной.

Теорема (критерий диагональности матрицы А)

это перепишетмя

A подобна диагональной \Leftrightarrow матрица о.п.с $\mathcal A$ в нек. базисе

Доказательство:

 $\bullet \Rightarrow$

Пусть A - диагонализируемая \Leftrightarrow подобна диагональной $\Leftrightarrow \exists$ невырожд Т: $T^{-1}AT = \Lambda = diag(\lambda_1, \ldots, \lambda_n)$. V - линейное пространство над полем K. $e = (e_1, \ldots, e_n)$ - базис V.

Пусть
$$A$$
 - матрица в базисе e . Тогда $Ae_j = \sum_{i=1}^n = a_{ij}e_i.v = (v_1,\dots,v_n)$ - базис. Откуда $v_1,\dots,v_n = (e_1,\dots,e_n)T_{e\to v} \Rightarrow \mathcal{A} \stackrel{v}{\longleftrightarrow} A' = T^{-1}AT = \Lambda$

• $\not \in \mathcal{A}$ о.п.с, A - матрица в некотором базисе $e = (e_1, \dots, e_n)$. Возьму v_1, \dots, v_n - базис V, где v_i - собственный вектор \mathcal{A} . Заметим, что так как \mathcal{A} о.п.с, то такой базис существует

Теперь давайте возьмем матрицу перехода из $T_{e\to v}$. Тогда $\mathcal{A} \stackrel{v}{\longleftrightarrow} A' = T^{-1}AT = \Lambda \Rightarrow A$ подобна диагональной

Q.E.D.

Алгоритм поиска диагонального представления матрицы подобной диагональной:

- 1. найти спектр: если все корни $\chi \in K$, переходим к п2.
- 2. найти все $\gamma(\lambda)$, если $\forall \lambda$ с.ч $\gamma(\lambda) = \alpha(\lambda)$, то перейти к п3.
- 3. $T_{\text{Kall}\to v} = (v_1, \dots, v_n) \ T^{-1}AT = \Lambda$

 $\underline{\mathbf{def:}}\ V = \bigoplus_{i=1}^m L_i.$ По теореме об равносильных условиях прямой суммы:

 $\forall v \in V : \exists! v = \sum_{i=1}^m v_i$, где $v_i \in L_i$. Возьму $P_i \in End(V)$, такие, что $P_i \cdot v = v_i \in L_i$.

Тогда такие P_i^{i-1} назовем **операторами проектирования** на подпр-во L_i .

Свойства операторов проектировния:

1. Im
$$P_i = L_i \ \mathcal{K}er P_i = \bigoplus_{j \neq i} L_j$$

2.
$$P_i P_j = \mathbb{O}$$

$$3. \sum_{i=1}^{m} P_i = \varepsilon$$

4.
$$P_i^2 = P_i, (P_j^k = P_j,$$
где $k \in \mathbb{N})$ - идемпотентность

Они все тривиальны

Утверждение. Возьму множество операторов: $\{P_i\}_{i=1}^m, P_i \in End(V)$.

Пусть они удовлетворяют свойствам $2,3 \Rightarrow V = \bigoplus_{i=1}^{m} \operatorname{Im} P_{i}$. P_{i} это проектор на L_{i} .

Доказательство:

Мы знаем, что $P_iP_j=\mathbb{O}$, для $i\neq j$, а также $\sum\limits_{j=1}^m P_i=\varepsilon$. Откуда получаем, что:

$$P_{i} = P_{i}\varepsilon = P_{i}\sum_{j=1}^{m} P_{j} = \sum_{j=1}^{m} P_{j}P_{i} = P_{i}^{2}$$

A это значит, что $\forall v \in V : v = \varepsilon v = \sum_{i=1}^m P_i v \Rightarrow V = \sum_{i=1}^m \operatorname{Im} P_i$.

Осталось показать едиственность разложения нуля:

$$\mathbb{O}=\sum_{i=1}^m v_i=\sum_{i=1}^m P_iw_i$$
, где $w_i\in V$

$$P_j \mathbb{O} = \mathbb{O} = P_j \sum_{i=1}^n P_i w_i = \sum_{i=1}^n P_i P_j w_i = P_j w_j = v_j$$

$$\Rightarrow v_i = 0, \forall j = 1 \dots m \Rightarrow$$
 дизъюнк. $\Rightarrow \bigoplus \operatorname{Im} P_i$

Q.E.D.

Замечание: Из определения проекторовь следует, что они существуют и определены однозначны для данной прямой суммы.

Теорема (спектральное разложение о.п.с)

Дан $\mathcal{A} \in End(V)$. Тогда выполнено:

1)
$$\mathcal{A}$$
 - о.п.с. $\Rightarrow \mathcal{A} = \sum_{\lambda \text{ - c.ч.}} \lambda P_{\lambda}, P_{\lambda}$ - проектор на V_{λ} \forall с.ч. λ .

Такое разложение называется спектральным

2)
$$V = \bigoplus_{i=1}^m L_i$$
, P_i проекторы на L_i . $\mathcal{A} = \sum_{j=1}^m \lambda_i P_i \Rightarrow \mathcal{A}$ о.п.с, λ_i с.ч.

 $\operatorname{Im} P_i = L_i = V_{\lambda} (\text{соотвест. подпр-во})$

Доказательство

1) \mathcal{A} о.п.с $\Leftrightarrow V = \bigoplus_{\lambda \text{ - c.ч}} V_{\lambda}$. Возьму P_{λ} проекторы на V_{λ} (исходя из определения -они существуют) Тогда давайте воспользуемся определением:

$$\forall v \in V : \exists ! v = \sum_{\lambda \text{--c.q}} v_{\lambda}$$
, где $v_{\lambda} \in V_{\lambda} : \mathcal{A}v = \mathcal{A}(\sum_{\lambda} v_{\lambda}) = \sum_{\lambda} \mathcal{A}v_{\lambda} = \sum_{\lambda} \lambda v_{\lambda} = \sum_{\lambda} \lambda P_{\lambda}v_{\lambda}$

Откуда уже крайне очевидно получаем, что $\mathcal{A} = \sum_{\lambda} \lambda P_{\lambda}$.

2)
$$V=\bigoplus_{i=1}^m L_i$$
. Откуда по определению: $\forall v\in V:\exists!v=\sum_{i=1}^m v_i\in L_i=\mathrm{Im}\, P_i,\,v_i\neq 0$. Тогда

$$\mathcal{A}v_i = (\sum_{j=1}^m \lambda_j P_j)v_i = (\sum_{j=1}^m \lambda_j P_j)P_iv = v\sum_{j=1}^m \lambda_j P_j P_i$$

Теперь вспомним свойство, что при умножении двух различных операторов мы получаем О. Поэтому на самом деле наша сумма равна:

$$v\sum_{i=1}^{m} \lambda_j P_j P_i = v\lambda_i P_i P_i = v\lambda_i P_i = \lambda_i v_i$$

Хорошо теперь вспомним, что изначально это было равно $\mathcal{A}v_i$. поэтому $\mathcal{A}v_i = \lambda_i v_i$, откуда получаем, что v_i с.в. \mathcal{A} отвечающий с.ч. λ_i .

Откуда получаем, что наше подмножество $V_{\lambda_i} \supseteq \operatorname{Im} P_i$ (потому что любой $v \in \operatorname{Im} P_i$ - случайный вектор)

Вспомним, что: $V=\bigoplus_{i=1}^m {
m Im}\, P_i\subseteq \bigoplus_{i=1}^m V_{\lambda_i},$ а как мы знаем $\bigoplus_{i=1}^m V_{\lambda_i}\subseteq V.$ Откуда, я получаю, что:

$$\bigoplus_{i=1}^m \operatorname{Im} P_i = \bigoplus_{i=1}^m V \lambda_i \xrightarrow{\text{так как } P_i \subseteq V_{\lambda_i}} \operatorname{Im} P_i = V_{\lambda_i}$$

Q.E.D.

Следствие (спектральное разложение диагонализируемой матрицы)

A диагонализируема $\Leftrightarrow \exists!\{P_i\}_{i=1}^m,$ такое, что $P_i\cdot P_j=\mathbb{O},\ i\neq j$ и $\sum\limits_{i=1}^m P_i=E,\ A=\sum\limits_{i=1}^m \lambda_i P_i$

Доказательство

очевидно следует из теоремы:

A диагонализируема \iff матрица $\mathcal A$ о.п.с. Либо можно считать $A=\mathcal A$ о.п.с. $\in End(K^n)$

Q.E.D.

Замечание. Матрица A подобна диагональной, то у нее есть диагональное представление:

$$T^{-1}AT = \Lambda = \text{diag } (\lambda_1 \dots \lambda_n), A = T\Lambda T^{-1}$$

А также у такой матрицы есть спектральное разложение:

$$A = \sum_{\lambda \text{ c.y.}} \lambda P_{\lambda}$$

СЕЙЧАС НАЧНЕТСЯ ЧТО-ТО СТРАШНОЕ

 $\underline{\mathbf{def:}}\ A_k = (a_{ij}^k)_{n \times n}$ - последовательность матриц $n \times n$.

Обозначают так: $(A_k)_{k=1}^{\infty}$ — последовательность матриц.

Раз это последовательность, то давайте введем на ней вот такой предел:

$$A = \lim_{n \to \infty} A_k = \forall i, j : a_{ij} = \lim_{k \to \infty} a_{ij}^k$$

Для лучшего понимания этого мира смотрите на приведеный ниже пример:

$$\lim_{k \to \infty} \begin{pmatrix} (1 + \frac{2}{k})^k & \sqrt[k]{k} \\ \frac{\sin^{\pi}/k}{1/k} & \frac{1 - \cos^{\pi}/k}{1/k} \end{pmatrix} = \begin{pmatrix} e^2 & 1 \\ \pi & 0 \end{pmatrix}$$

$$\underline{\mathbf{def:}}\ a_n \in R: \sum_{m=1}^\infty a_m = S \Leftrightarrow \exists \lim_{k o \infty} \sum_{m=1}^k a_m = S,$$
 где $S_k = \sum_{m=1}^k a_m$ - $\underline{\mathbf{vactuчhas}}\ \mathbf{cymma}\ \mathbf{psдa.}$

А саму такую конструкцию понятно называют рядом. Теперь давайте немного притронимся к матану:

$$\sum_{m=0}^{\infty} c_m x^m$$
 - ряды Тейлора - Маклорена.

 $x \in \mathbb{R}(\mathbb{C})$ — их область определения, $|x| < \mathbb{R}$ — радиус сходимости, $c_m \in \mathbb{R}(\mathbb{C})$. Причем эти c-шки на самом деле производные. (если интересно см. конспект по мат. анализу первый семестр)

Рассмотрим пример: Давайте разложим e^x , нам это позже понадобится:

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n, |x| < +\infty$$

В таком случае $c_m = \frac{f^{(m)}(0)}{m!}$.

Пусть $f(x) = \sum_{m=0}^{\infty} c_n x^n$. А давайте расширим на матрицы :)

<u>def:</u> $A_{n \times n} : f(A) = \sum_{m=0}^{\infty} c_m A^m$. Причем мы так же считаем частичные суммы и ищем их предел, но теперь просто ищем предел в матрицах.

Можно добавить параметр: $f(At) = \sum_{m=0}^{\infty} c_m A^m t^m$.

Теорема 1 (функция от диагонализируемой матрицы 1)

Пусть A - подобна диагональной. А также нам дана $f(x) = \sum_{m=0}^{\infty} c_m x^m, |x| < r.$

Тогда, если
$$\forall$$
 с.ч. $|\lambda| < r \Rightarrow \exists f(A)$ и $f(A) = Tf(\lambda)T^{-1}$, где $f(\Lambda) = \begin{pmatrix} f(\lambda_1) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & f(\lambda_n) \end{pmatrix}$

Доказательство:

Упрощу $\sum_{m=0}^k c_m A^m$. Мы знаем, что A - подобна диагональной $\Rightarrow A = T\Lambda T^{-1}$. Тогда:

$$A^{m} = (T\Lambda T^{-1})^{m} = T\Lambda T^{-1}T\Lambda T^{-1}\dots T\Lambda T^{-1} = T\Lambda^{m}T^{-1}$$

Теперь давайте подставим это в нашу сумму:

$$\sum_{m=0}^{k} c_m A^m = \sum_{m=0}^{k} c_m T \Lambda^m T^{-1} = T \sum_{m=0}^{k} c_m \Lambda^m T^{-1}$$

Теперь вспомним, что λ^n подобна диагональной, поэтому занесем сумму внутрь матрицы и получим:

$$T\sum_{m=0}^{k} c_m \Lambda^m T^{-1} = T \begin{pmatrix} \sum_{m=0}^{k} c_m \lambda_1^m & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sum_{m=0}^{k} c_m \lambda_n^m \end{pmatrix} T^{-1} =$$

Теперь вспомним, что все наши с.ч. лежат внутри радиуса, поэтому для них мы можем применить формулу, откуда:

$$\lim_{k \to \infty} \sum_{m=0}^{k} c_m A^m = \lim_{k \to \infty} T \begin{pmatrix} \sum_{m=0}^{k} c_m \lambda_1^m & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sum_{m=0}^{k} c_m \lambda_n^m \end{pmatrix} T^{-1} = T \begin{pmatrix} f(\lambda_1) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & f(\lambda_n) \end{pmatrix} T^{-1}$$

Q.E.D.

Теорема 2 (функция от диагонализируемой матрицы 2)

A - подобна диагональной.

Тогда A имеет спектральное разложение $\sum\limits_{\lambda \text{ - c.ч.}} \lambda P_{\lambda}$, где P_{λ} - проекторы. А также нам дана

$$f(x) = \sum_{m=0}^{\infty} c_m x^m, |x| < r.$$

Тогда, если \forall с.ч. $|\lambda| < r$, то $\exists f(A)$, а так же $f(A) = \sum_{\lambda \text{ - c.ч.}} f(\lambda) P_{\lambda}$.

Доказательство:

$$A^{m} = (\sum_{\lambda} \lambda P_{\lambda})^{m} = \sum_{\lambda} \lambda P_{\lambda} \sum_{\mu} \mu P_{\mu} \dots \sum_{\xi} \xi P_{\xi}$$

А теперь вспомним свойства проекторов. Когда я умножаю два разных проектора, я получаю ноль, откуда:

$$A^{m} = \sum_{\lambda} \lambda P_{\lambda} \sum_{\mu} \mu P_{\mu} \dots \sum_{\xi} \xi P_{\xi} = \sum_{\lambda} \lambda^{m} P_{\lambda}^{m} = \sum_{\lambda} \lambda^{m} P_{\lambda}$$

Значит: $\sum_{m=0}^k c_m A^m = \sum_{m=0}^k c_m \sum_{\lambda} \lambda^m P_{\lambda} = \sum_{\lambda} P_y \sum_{m=0}^k \lambda^m c_m$. Теперь если я возьму предел, то я получу то, что мне нужно, потому что каждая лямбда < r и поэтому я могу вместо них подставить $f(\lambda)$.

Экспонента:

А теперь давайте возьмем все c=1, а также вспомним, что мы можем протаскивать с собой параметр. Поэтому у нас получается новая формула:

 $f(A) = \lim_{k \to \infty} \sum_{m=0}^k t^m A^m$, а теперь вспомним наше разложение e-шки. А это именно оно и есть! Поэтому получаю:

$$e^{At} = f(At) = \lim_{k \to \infty} \sum_{m=0}^{k} t^m A^m$$

Свойства:

1.
$$(e^{At})' = Ae^{At} = e^{At}A$$
.

2.
$$e^{(A_1+A_2)t} = e^{A_1t} \cdot e^{A_2t}$$

3.
$$e^{\mathbb{O}}t = E$$
.

Обратная:

$$A$$
 - подобна диагональной \forall с.ч. $\lambda \neq 0 \Rightarrow \exists A^{-1} = T \begin{pmatrix} \frac{1}{\lambda_1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \frac{1}{\lambda_n} \end{pmatrix} T^{-1}$

Свойства:

1.
$$A^{-1} = \sum_{\lambda - c. x/} \frac{1}{\lambda} P(\lambda)$$

2.
$$AA^{-1} = T\Lambda T^{-1}T\Lambda^{-1}T^{-1} = E$$

3.
$$AA^{-1} = (\sum \mu P_{\mu})(\sum \frac{1}{\lambda} P_{\lambda}) = \sum_{\lambda} \lambda \frac{1}{\lambda} P_{\lambda} = E$$

Корень:

$$\forall$$
 с.ч. $\lambda \geq 0$, мы можем ввести $\sqrt[m]{A} = T \begin{pmatrix} \sqrt[m]{\lambda_1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sqrt[m]{\lambda_n} \end{pmatrix} T^{-1}$

Свойства:

1.
$$m \in \mathbb{N}, \geq 2$$

2.
$$\sqrt[m]{A} = \sum_{\lambda \text{ c. q.}} \sqrt[m]{\lambda} P_{\lambda}$$

3.
$$\sqrt[m]{\lambda} \geqslant 0$$

1.6 Комплексификация вещ. лин. пр-ва. Продолжение вещественного линейного оператора

Давайте посмотрим какие линейные операторы мы уже изучили:

Пусть $\mathcal{A} \in End(V) \stackrel{e}{\longleftrightarrow} A, \chi(t)$ - корни многочлена. Он может быть:

- 1. все корни $\in K$. $\sum_{\lambda = c, y} \alpha(\lambda) = n = \dim V$
 - \exists базис V: $\forall \lambda : \alpha(\lambda) < \gamma(\lambda)$ диагонализируема.
 - \exists базис V: \exists с.ч. λ $\gamma(\lambda) < \alpha(\lambda) \iff A$ жарданова форма.
- 2. не все корни $\in K$. В таком случае вещ. V комплексифицируют

<u>def:</u> V - линейное пространство над \mathbb{R} (вещ. лин. пр-во)

$$\forall x, y \in V \to z = x + iy \in V_{\mathbb{C}}$$

$$V_{\mathbb{C}} = \{ z = x + yi | \forall x, y \in V \}$$

комплексификация V

$$\mathbb{O} \in V \leftrightarrow \mathbb{O} + i\mathbb{O} = \mathbb{O} \in V_{\mathbb{C}}$$

$$x \in V \leftrightarrow x + i\mathbb{O} = x \in V_c, V \subset V_{\mathbb{C}}.$$

$$z = x + iy$$

$$-x+i(-y)$$

Линейное пространство над полем комплексных чисел.

Утв. Пусть e_1,\ldots,e_n - базис V. Докажем что e_1,\ldots,e_n - базис V_c

Доказательство:

$$z = x + yi = \sum_{j=1}^{n} e_j x_j + i \sum_{j=1}^{n} y_j e_j /$$

$$\Rightarrow \forall z = x + yi \in V_{\mathbb{C}}$$

$$z=\sum_j x_j e_j+i\sum_j y_j e_j=\sum_j (x_j+iy_j) e_j$$
, откуда е - порождающий базис для $V_{\mathbb C}$.

Докажем линейную независимость.

$$\mathbb{O} = \sum_{j=1}^{n} (a_j + ib_j)e_j = i\sum_{j=1}^{n} b_j e_j + i\sum_{j=1}^{n} a_j e_j$$
, откуда получили линейную независимость

$$\iff \begin{cases} \sum\limits_{j=1}^{n}\alpha_{j}e_{j} = \mathbb{O} \\ \sum\limits_{j=1}^{n}\beta_{j}e_{j} = \mathbb{O} \end{cases} \iff \begin{cases} \forall_{j}:\alpha_{j} = 0 \\ \forall_{j}:\beta_{j} = 0 \end{cases}$$

$$ightarrow e_1 \dots e_n$$
 лин.нез. в $V_{\mathbb C}$

$$e_j = e_j + i \cdot 0 \rightarrow$$
 базис $V_{\mathbb{C}}$

$$V \subset V_{\mathbb{C}}$$

$$\dim V = \dim V_{\mathbb{C}} = n$$

$$x \iff \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$y \iff \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$z = x + iy \iff \begin{pmatrix} x_1 + iy_1 \\ \vdots \\ x_n + iy_n \end{pmatrix}$$

 $\underline{\operatorname{def:}}\ z \in V_c,\, \overline{z} = x - iy$ - сопряженный вектор.

$$z = x + iy, \ x, y \in V$$

Свойства:

1.
$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$$

2.
$$\overline{\lambda z} = \overline{\lambda}\overline{z}$$

 $3. \ v_1, \ldots, v_m$ - лин. независимость $\Leftrightarrow \overline{v_1}, \ldots \overline{v_m}$ лин.незав.

$$\mathbb{O} = \sum_{j=1}^{m} \alpha_j v_j = \sum_{j=1}^{m} \overline{\alpha}_j \overline{v}_j$$

$$ightarrow$$
 чд $(v_1 \dots v_m) =$ чд $(\overline{v}_1 \dots \overline{v}_m)$

 $\underline{\operatorname{def:}}\ \mathcal{A} \in End(V).\ \forall z \in V_c: \mathcal{A}_c z = \mathcal{A} x + i \mathcal{A} y$ - $\underline{\operatorname{продолжением вещ лин. оператора}}\ \mathcal{A}$ на комплекм V_C вещ пр-ва V.

Очевидно, что $A_c \in End(V_c)$, т.к. A - лин. отобр.

Утв. $\mathcal{A} \in End(V), \ e = (e_1, \dots, e_n)$ базис $V \ (\Rightarrow$ базис $V_c)$

$$\mathcal{A} \stackrel{e}{\longleftrightarrow} A = (a_{ij})_{m \times n}, a_{ij} \in \mathbb{R}$$

$$\Rightarrow \mathcal{A}_c \leftrightarrow A$$

Доказательство:

по def матр опер:

$$\mathcal{A}_{\mathbb{C}} \cdot e_j = \mathcal{A} \cdot e_j + i\mathcal{A}\mathbb{O} = \mathcal{A} \cdot e_j = \sum_{k=1}^n \alpha_{kj} e_k \iff A_j = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

 $\mathcal{A}_{\mathbb{C}} \iff A$ вещ.м-ца

Свойства $\mathcal{A}_{\mathbb{C}}$:

1.
$$\chi_{\mathcal{A}}(t) = \chi_{\mathcal{A}_{\mathbb{C}}}(t)$$
.

Замечание:

1) если
$$\lambda=\alpha+i\beta\in\mathbb{C}, \beta\neq0$$
 - корень $\chi(t)\Rightarrow\lambda$ с.ч. $\mathcal{A}_{\mathbb{C}},$ но не с.ч. $\mathcal{A}.$

- 2) если $\lambda=\alpha+i\beta\in\mathbb{C}$ корень $\chi\Rightarrow\overline{\lambda}=\alpha-i\beta$ тоже корень
- 2. $\forall z \in V_{\mathbb{C}} : \overline{A_{\mathbb{C}}z} = A_{\mathbb{C}}\overline{z}$.
- 3. λ с.ч $\mathcal{A}_{\mathbb{C}}$, z с. в , отвечающий $\lambda \Rightarrow \overline{\lambda}$ с.ч. $\mathcal{A}_{\mathbb{C}}$, \overline{z} с.в., отвечающий $\overline{\lambda}$

Вернемся к тому старому разделению на случаи.

не все корни $\chi(t) \in K \Rightarrow \mathcal{A}_{\mathbb{C}} \stackrel{e}{\longleftrightarrow} A \in End(V_{\mathbb{C}})$ и она попадает в два случая.

1.7 Минимальный многочлен линейного оператора. Теорема Кэли - Гамильтона

 $\underline{\mathbf{def:}}\ \mathcal{A} \in End(V)$ - нормализованный многочлен $\psi(t)$ называется аннулятором элемента $x \in V,$ если $\psi(\mathcal{A})x = \mathbb{O}$

$$\psi(t) = t^k + \ldots + a_{k+1}t^0$$

$$\psi(\mathcal{A}) = A^k + \ldots + a_{k+1}\varepsilon$$

$$ψ(t) = \prod_{\lambda \text{ - корень}} (t - \lambda)^{m(\lambda)}$$

$$\psi(\mathcal{A}) = \prod_{\lambda \text{ - корень}} (\mathcal{A} - \lambda \xi)^{m(\lambda)}$$

 $\underline{\operatorname{def:}}$ аннулятор элемента $x \in V$ наимень. степени называется минимальным аннулятором элемента x.

Теорема: (о существовании миним. аннуратора)

- 1. $\forall x \in V \exists ! \quad \psi(t)$ миним.аннур. x
- 2. \forall другой аннулятор x: на минимальный аннулятор

Доказательстов:

Теорема: (о существовании и единственности миним. единственного оператора)

- 1. $\forall \mathcal{A} \in End(V)$: $\exists !$ минимальный многочлен.
- 2. \forall аннул. оператора ${\mathcal A}$ делится на миним. мн-н ${\mathcal A}$

Доказательстов: Пусть $e=(e_1,\ldots,e_n)$ - базис V. Построим $\psi_\lambda(t)$ - линейный аннул e_j

2 Информация о курсе

Поток — y2024.

Группы М3138-М3139.

Преподаватель — Кучерук Екатерина Аркадьевна.

Не сдавайтесь, изучая лин. ал. Это реально! Upd: 13.02 слава устал

