# Лабораторная работа №7

Эффективность рекламы

Топонен Никита Андреевич

# Содержание

| Цель работы                                                                | 5  |
|----------------------------------------------------------------------------|----|
| Задание                                                                    | 6  |
| Теоретическое введение                                                     | 7  |
| Выполнение лабораторной работы                                             | 10 |
| Случай первый: $lpha_1(t) >> lpha_2(t)$                                    | 10 |
| Случай второй: $\alpha_1(t) << \alpha_2(t)$                                | 11 |
| Случай третий: $lpha_1(t)pproxlpha_2(t)$                                   | 13 |
| Сравнение эффективности                                                    | 16 |
| Вопросы к лабораторной                                                     | 16 |
| Записать модель Мальтуса (дать пояснение, где используется дан-            |    |
| ная модель)                                                                | 16 |
| Записать уравнение логистической кривой (дать пояснение, что               |    |
| описывает данное уравнение)                                                | 17 |
| На что влияет коэффициент $lpha_1(t)$ и $lpha_2(t)$ в модели распростране- |    |
| ния рекламы                                                                | 18 |
| Как ведет себя рассматриваемая модель при $lpha_1(t)\gglpha_2(t)$          | 18 |
| Как ведет себя рассматриваемая модель при $\alpha_1(t) \ll \alpha_2(t)$    | 18 |
| Выводы                                                                     | 20 |
| Список литературы                                                          | 21 |

# Список иллюстраций

| 1 | График решения уравнения модели Мальтуса            | 8  |
|---|-----------------------------------------------------|----|
| 2 | График логистической кривой                         | 9  |
| 1 | График изменения людей, знающих о товаре в случае 1 | 11 |
| 2 | График изменения людей, знающих о товаре в случае 2 | 13 |
| 3 | График изменения людей, знающих о товаре в случае 3 | 15 |
| 4 | Сравнение эффективности рекламы                     | 16 |
| 5 | График решения уравнения модели Мальтуса            | 18 |
| 6 | График логистической кривой                         | 19 |

# Список таблиц

# Цель работы

Рассмотреть модель эффективности рекламы. Написать модель в OpenModelica, построить и проанализировать графики эффективности рекламы для трех случаев.

## **Задание**

#### Вариант 41

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1. 
$$\frac{dn}{dt} = (0.205 + 0.000023*n(t))*(N-n(t))$$

2. 
$$\frac{dn}{dt} = (0.0000305 + 0.24*n(t))*(N-n(t))$$

3. 
$$\frac{dn}{dt} = (0.05*sin(t) + 0.03*cos(4t)*n(t))*(N-n(t))$$

При этом объем аудитории N=2300 , в начальный момент о товаре знает n(0)=20 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

## Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь п покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что  $\frac{dn}{dt}$  - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом:  $\alpha_1(t)*(N-n(t))$ , где N - общее число потенциальных платежеспособных покупателей,  $\alpha_1(t)>0$  - характеризует интенсивность рекламной кампа-

нии (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной  $\alpha_2(t)*(N-n(t))$  , эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)*n(t))*(N-n(t))$$

(1)

При  $\alpha_1(t) >> \alpha_2(t)$  получается модель типа модели Мальтуса, решение которой имеет вид (@001)



Рис. 1: График решения уравнения модели Мальтуса

В обратном случае, при  $\alpha_1(t) << \alpha_2(t)$  получаем уравнение логистической кривой (@002):



Рис. 2: График логистической кривой

## Выполнение лабораторной работы

Случай первый:  $\alpha_1(t) >> \alpha_2(t)$ 

В этом случае уравнение принимает следующий вид:

$$\frac{dn}{dt} = (0.205 + 0.000023 * n(t)) * (N - n(t))$$

С начальными значениями  $N=2300,\,n=20.$ 

Код модели для первого случая:

```
model lab07_case1
```

```
constant Real alpha_1=0.205 "значение коэффициента aplha_1"; constant Real alpha_2=0.000023 "значение коэффициента aplha_2"; constant Real N=2300 "объем аудитории";
```

```
Real n "число людей снающих о товаре";
```

```
initial equation
```

```
n=20 "количество людей, знающий о товаре в момент времени t=0";
```

#### equation

```
der(n)=(alpha_1+alpha_2*n)*(N-n);
```

#### end lab07\_case1;



Рис. 1: График изменения людей, знающих о товаре в случае 1

## Случай второй: $\alpha_1(t) << \alpha_2(t)$

В этом случае уравнение принимает следующий вид:

$$\frac{dn}{dt} = (0.0000305 + 0.24 * n(t)) * (N - n(t))$$

С начальными значениями  $N=2300,\,n=20.$ 

Код модели для второго случая:

model lab07\_case2

```
constant Real alpha_1=0.0000305 "значение коэффициента aplha_1"; constant Real alpha_2=0.24 "значение коэффициента aplha_2"; constant Real N=2300 "объем аудитории";

Real n "число людей снающих о товаре";

initial equation
n=20 "количество людей, знающий о товаре в момент времени t=0";

equation
der(n)=(alpha_1+alpha_2*n)*(N-n);

end lab07_case2;
```



Рис. 2: График изменения людей, знающих о товаре в случае 2

Как видно из графика скорость распространения рекламы имеет максимальное значение с ростом количества узнавших о продукте людей, так как в данном случае, когда коэффициент  $\alpha_2$  много больше  $\alpha_1$  практически вся реклама распространяется сарафанным радио. То есть чем больше людей знает, тем быстрее распространяется реклама.

Случай третий: 
$$lpha_1(t)pproxlpha_2(t)$$

В этом случае уравнение принимает следующий вид:

$$\frac{dn}{dt} = (0.05*sin(t) + 0.03*cos(4t)*n(t))*(N-n(t))$$

```
С начальными значениями N=2300, n=20.
  Код модели для третьего случая:
model lab07_case3
constant Real N=2300 "объем аудитории";
Real n "число людей снающих о товаре";
Real alpha 1 "значение коэффициента aplha 1";
Real alpha 2 "значение коэффициента aplha 2";
initial equation
n=20 "количество людей, знающий о товаре в момент времени t=0";
alpha_1=0 "начальное значение коэффициента alpha_1";
alpha_2=0.03 "начальное значение коэффициента alpha 2";
equation
alpha_1=abs(0.05*sin(time));
alpha 2=abs(0.03*cos(4*time));
der(n)=(alpha 1+alpha 2*n)*(N-n);
end lab07_case3;
```



Рис. 3: График изменения людей, знающих о товаре в случае 3

### Сравнение эффективности



Рис. 4: Сравнение эффективности рекламы

На данном графике синяя линия - это эффективность сарафанного радио, а красная - эффективность рекламы.

### Вопросы к лабораторной

Записать модель Мальтуса (дать пояснение, где используется данная модель)

$$\frac{\partial N}{\partial t} = rN$$

где

- N исходная численность населения,
- r коэффициент пропорциональности, для которого r = b d, где
  - **-** *b* коэффициент рождаемости
  - **-** *d* **-** коэффициент смертности
- t время.

Модель используется в экологии для расчета изменения популяции особей животных.

# Записать уравнение логистической кривой (дать пояснение, что описывает данное уравнение)

$$\frac{\partial P}{\partial t} = rP(1 - \frac{P}{K})$$

- r характеризует скорость роста (размножения)
- K поддерживающая ёмкость среды (то есть, максимально возможная численность популяции)

Исходные предположения для вывода уравнения при рассмотрении популяционной динамики выглядят следующим образом:

- скорость размножения популяции пропорциональна её текущей численности, при прочих равных условиях;
- скорость размножения популяции пропорциональна количеству доступных ресурсов, при прочих равных условиях. Таким образом, второй член уравнения отражает конкуренцию за ресурсы, которая ограничивает рост популяции.

# На что влияет коэффициент $\alpha_1(t)$ и $\alpha_2(t)$ в модели распространения рекламы

 $lpha_1(t)$  — интенсивность рекламной кампании, зависящая от затрат  $lpha_2(t)$  — интенсивность рекламной кампании, зависящая от сарафанного радио

## Как ведет себя рассматриваемая модель при $\alpha_1(t)\gg \alpha_2(t)$

При  $\alpha_1(t)\gg \alpha_2(t)$  получается модель типа модели Мальтуса (@007):



Рис. 5: График решения уравнения модели Мальтуса

## Как ведет себя рассматриваемая модель при $\alpha_1(t) \ll \alpha_2(t)$

При  $\alpha_1(t) \ll \alpha_2(t)$  получаем уравнение логистической кривой (@008):



Рис. 6: График логистической кривой

# Выводы

Как видно по графикам трех случаев и сравнения эффективности, в данной модели сарафанное радио работает намного лучше, так как намного больше людей узнает о продукте именно благодаря ему.

# Список литературы

- Кулябов Д.С. Лабораторная работа  $N^27$
- Кулябов Д.С. Задания к лабораторной работе  $N^{o}7$  ( по вариантам )