PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Interrogación 1 MAT1203 - 16 de septiembre

Decida si las siguientes afirmaciones son verdaderas o falsas. Si es verdadera, demuéstrela. Si es falsa dé un contraejemplo.

1. a) Si $u, v \in \mathbb{R}^2$, entonces ||u + v|| = ||u|| + ||v||.

Solución:

La afirmación es falsa.

Si
$$u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 y $v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, entonces $u + v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Se tiene que $\|u\|=1,\ \|v\|=1$ y $\|u+v\|=\sqrt{2},$ y no se cumple que $\|u+v\|=\|u\|+\|v\|.$

b) Sean $u, v \in \mathbb{R}^n$. Si $\{u + v, v\}$ es linealmente independiente, entonces $\{u, v\}$ es linealmente independiente.

Solución:

La afirmación es verdadera.

Sean $\alpha, \beta \in \mathbb{R}$ tales que $\alpha(u) + \beta(v) = \vec{0}$. Se probará que necesariamente $\alpha = \beta = 0$.

Como $\alpha(u) + \beta(v) = \vec{0}$ se intentará construir una combinación lineal de u+v y v.

Sumando y restando el vector $\alpha(v)$ se obtiene

$$\alpha(u) + \alpha(v) - \alpha(v) + \beta(v) = \vec{0}.$$

Reordenando se tiene $\alpha(u+v) + (\beta - \alpha)(v) = \vec{0}$.

Se tiene entonces una combinación lineal de los vectores u + v y v. Pero ellos son linealmente independientes, por lo tanto esta combinación debe ser trivial.

Luego $\alpha=0$ y $\beta-\alpha=0$, reemplazando se obtiene $\alpha=\beta=0$ que era lo que se quería probar.

Otra forma:

También es posible demostrar la afirmación por contradicción:

Si el conjunto $\{u, v\}$ es linealmente dependiente, entonces existen $\alpha, \beta \in \mathbb{R}$ no ambos nulos tal que $\alpha u + \beta v = \vec{0}$.

Si
$$\alpha \neq 0$$
, entonces $u = -\frac{\beta}{\alpha}v$, luego el conjunto $\{u + v, v\} = \left\{\frac{(\alpha - \beta)}{\alpha}v, v\right\}$.

Como está formado por dos vectores múltiplos del mismo vector, entonces es linealmente dependiente.

Si
$$\beta \neq 0$$
, entonces $v = -\frac{\alpha}{\beta}u$, luego el conjunto $\{u+v,v\} = \left\{\frac{(\beta-\alpha)}{\beta}u, -\frac{\alpha}{\beta}u\right\}$.

Como está formado por dos vectores múltiplos del mismo vector, entonces es linealmente dependiente.

2. a) Sean u, v y w vectores distintos y no nulos en \mathbb{R}^n . Si $u \cdot v = u \cdot w = v \cdot w = 0$, entonces el conjunto $\{u, v, w\}$ es linealmente independiente.

Solución:

La afirmación es verdadera.

Sean $\alpha, \beta, \gamma \in \mathbb{R}$ tales que $\alpha(u) + \beta(v) + \gamma(w) = \vec{0}$. Se probará que necesariamente $\alpha = \beta = \gamma = 0$.

 \bullet Como $u\cdot \vec{0}=0,$ entonces reemplazando se tiene:

$$u \cdot (\alpha(u) + \beta(v) + \gamma(w)) = 0$$
, es decir:

$$\alpha(u \cdot u) + \beta(u \cdot v) + \gamma(u \cdot w) = 0$$
, reemplazando:

 $\alpha(u \cdot u) + 0 + 0 = 0$, pero u es no nulo, luego $(u \cdot u) \neq 0$, por lo tanto $\alpha = 0$.

• Como $v \cdot \vec{0} = 0$, entonces reemplazando se tiene:

$$v \cdot (\alpha(u) + \beta(v) + \gamma(w)) = 0$$
, es decir:

$$\alpha(v\cdot u) + \beta(v\cdot v) + \gamma(v\cdot w) = 0,$$
 reemplazando:

 $0 + \beta(v \cdot v) + 0 = 0$, pero v es no nulo, luego $(v \cdot v) \neq 0$, por lo tanto $\beta = 0$.

• Como $w \cdot \vec{0} = 0$, entonces reemplazando se tiene:

$$w\cdot (\,\alpha(u)+\beta(v)+\gamma(w)\,)=0,$$
es decir:

$$\alpha(w\cdot u) + \beta(w\cdot v) + \gamma(w\cdot w) = 0,$$
 reemplazando:

 $0 + 0 + \gamma(w \cdot w) = 0$, pero w es no nulo, luego $(w \cdot w) \neq 0$, por lo tanto $\gamma = 0$.

b) El conjunto
$$\left\{ u \in \mathbb{R}^4 \text{ tal que } u \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix} = 0 \right\}$$
 es un conjunto generado por 3 vectores linealmente independientes.

Solución:

La afirmación es verdadera.

Primero se escribe la condición de producto punto como una ecuación:

$$\left\{ u = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \text{ tal que } x_1 + x_3 + 2x_4 = 0 \text{ con } x_1, x_2, x_3, x_4 \in \mathbb{R} \right\}.$$

Entonces el conjunto es la solución de un sistema de ecuaciones lineales con una ecuación y cuatro variables, las variables libres son x_2 , x_3 y x_4 :

$$\left\{ u = \begin{pmatrix} -x_3 - 2x_4 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \text{ con } x_2, x_3, x_4 \in \mathbb{R} \right\}.$$

Se escribe como conjunto generado:

$$\left\{ u = x_2 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -2 \\ 0 \\ 0 \\ 1 \end{pmatrix} \text{ con } x_2, x_3, x_4 \in \mathbb{R} \right\}.$$

Por último se muestra que el conjunto generador es linealmente independiente:

La forma escalonada reducida de $\left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -2 & 0 & 0 & 1 \end{array} \right]$ tiene tres pivotes:

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -2 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -1/2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1/2 \end{bmatrix}$$

3. *a*) Si

$$L_{1} = \left\{ x \in \mathbb{R}^{3} \text{ tal que } x = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \text{ con } \alpha \in \mathbb{R} \right\} \text{ y}$$

$$L_{2} = \left\{ x \in \mathbb{R}^{3} \text{ tal que } x = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \text{ con } \alpha \in \mathbb{R} \right\},$$
entonces L_{1} y L_{2} no tienen puntos en común.

Solución:

La afirmación es verdadera.

Si existiera un punto en común, entonces existe α y β tal que:

$$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}.$$
 Es decir, el sistema
$$\begin{bmatrix} 1 & -2 \\ 0 & -1 \\ 2 & -1 \end{bmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} \text{ tiene solución para } \alpha \neq \beta.$$

Se escalona entonces la matriz ampliada:

$$\left[\begin{array}{cc|c} 1 & -2 & -1 \\ 0 & -1 & -1 \\ 2 & -1 & 0 \end{array}\right] \sim \left[\begin{array}{cc|c} 1 & -2 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{array}\right].$$

De la última fila se obtiene que el sistema no tiene solución, por lo tanto efectivamente las rectas no tienen puntos en común.

b) Sea $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 0 \end{bmatrix}$. El sistema Ax = b tiene solución para todo $b \in \mathbb{R}^2$.

Solución:

La afirmación es verdadera.

Sea $b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \in \mathbb{R}^2$. Se forma la matriz ampliada del sistema y se escalona:

$$\left[\begin{array}{cc|cc} 1 & 2 & 3 & b_1 \\ 1 & 3 & 0 & b_2 \end{array}\right] \sim \left[\begin{array}{cc|cc} 1 & 2 & 3 & b_1 \\ 0 & 1 & -3 & b_2 - b_1 \end{array}\right].$$

Como esta última matriz tiene pivote en cada una de sus filas, entonces el sistema tiene solución independiente de los valores de b_1 y b_2 .

4. a) Si u y v son vectores en \mathbb{R}^3 , entonces $Gen\{u, v\} = Gen\{u, v + 5u\}$.

Solución:

La afirmación es verdadera.

- Si x = au + bv para algunos $a, b \in \mathbb{R}$ es un elemento de $Gen\{u, v\}$, entonces: x = (a 5b)(u) + b(v + 5u) y por lo tanto pertenece a $Gen\{u, v + 5u\}$.
- \bullet Si y=cu+d(v+5u) para algunos $c,d\in\mathbb{R}$ es un elemento de Gen $\{u,v+5u\},$ entonces:

y = (c + 5d)(u) + d(v) y por lo tanto pertenece a Gen $\{u, v\}$.

Otra forma:

- u = (1)u + (0)(v + 5u) y v = (-5)u + (1)(v + 5u) por lo tanto $Gen\{u, v\} \subseteq Gen\{u, v + 5u\}.$
- u = (1)u + (0)(v) y v + 5u = (5)u + (1)(v) por lo tanto $Gen\{u, v + 5u\} \subseteq Gen\{u, v\}.$

Otra forma:

- El conjunto $Gen\{u, v + 5u\}$ es igual a $Gen\{u, v + 5u, v\}$ pues v = (-5)u + (1)(v + 5u).
- El conjunto $Gen\{u, v + 5u, v\}$ es igual a $Gen\{u, v\}$ pues v + 5u = (1)v + (5)u.

b) El sistema $\begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & r \end{bmatrix} x = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ es tal que existen valores de $r \in \mathbb{R}$ tal que el sistema tiene solución única y existen valores de $r \in \mathbb{R}$ tal que el sistema no tiene solución.

Solución:

La afirmación es verdadera.

Se escalona la matriz ampliada del sistema:

$$\begin{bmatrix} 1 & 2 & | & 4 \\ 1 & 3 & | & 5 \\ 1 & r & | & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & | & 4 \\ 0 & 1 & | & 1 \\ 0 & r - 2 & | & 2 \end{bmatrix}.$$

De la última fila se tiene que si r=2, entonces el sistema no tiene solución.

También de la última fila se tiene que si r=4, entonces la tercera fila es un múltiplo de la segunda y la forma escalonada queda:

$$\left[\begin{array}{cc|c} 1 & 2 & 4 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{array}\right] \sim \left[\begin{array}{cc|c} 1 & 2 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right].$$

Por lo tanto en este caso el sistema tiene solución única dada por $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$.