# Absolute-pressure sensors in micromechanical hybrid design

Measurement of pressures in gases up to 400 kPa



- High accuracy.
- EMC protection better than 100 V m<sup>-1</sup>.
- Temperature-compensated.
- Version with additional integral temperature sensor.



#### **Applications**

This sensor is used to measure the absolute intake-manifold pressure. On the version with integral temperature sensor, the temperature of the drawn-in air flow is also measured.

#### **Design and function**

The piezoresistive pressure-sensor element and suitable electronic circuitry for signal-amplification and temperature compensation are mounted on a silicon chip. The measured pressure is applied from above to the diaphragm's active surface. A reference vacuum is enclosed between the rear side and the glass base. Thanks to a special coating, both pressure sensor and temperature sensor are insensitive to the gases and liquids which are present in the intake manifold.

#### Installation information

The sensor is designed for mounting on a horizontal surface of the vehicle's intake manifold. The pressure fitting together with the temperature sensor extend into the manifold and are sealed-off to atmosphere by O-rings. By correct mounting in the vehicle (pressure-monitoring point on the top at the intake manifold, pressure fitting pointing downwards etc.) it is to be ensured that condensate does not collect in the pressure cell.

### Range

| Pressure                             | Character- | Features                    | Dimension  | Order No.                    |
|--------------------------------------|------------|-----------------------------|------------|------------------------------|
| range                                | istic      | i eatures                   | drawing 2) | Order No.                    |
|                                      |            |                             | urawing-)  |                              |
| kPa (p <sub>1</sub> p <sub>2</sub> ) | curve1)    |                             |            |                              |
| 10115                                | 1          |                             | 1          | B 261 260 136 <sup>3</sup> ) |
| 10115                                | 1          |                             | 2          | 0 261 230 052                |
| 20250                                | 1          |                             | 1          | 0 281 002 487                |
| 10115                                | 1          | Integral temperature sensor | 3          | 0 261 230 030                |
| 20250                                | 1          | Integral temperature sensor | 3          | 0 261 230 042                |
| 20300                                | 1          | Integral temperature sensor | 3          | 0 281 002 437                |
| 50350                                | 2          | Integral temperature sensor | 3          | 0 281 002 456                |
| 50400                                | 2          | Integral temperature sensor | 3          | B 261 260 508 <sup>3</sup> ) |
|                                      |            |                             |            |                              |

- 1) The characteristic-curve tolerance and the tolerance expansion factor apply for all versions, see Page 36
- 2) See Page 37
- 3) Provisional draft number, order number available upon enquiry. Available as from about the end of 2001

#### **Accessories**

| Plug housing      | Qty. required: 1 <sup>4</sup> ) | 1 928 403 966 |
|-------------------|---------------------------------|---------------|
| Plug housing      | Oty. required: 1 <sup>5</sup> ) | 1 928 403 736 |
| Contact pin       | Qty. required: 3 or 46)         | 1 928 498 060 |
| Individual gasket | Oty. required: 3 or 46)         | 1 928 300 599 |

- 4) Plug housing for sensors without integral temperature sensor
- 5) Plug housing for sensors with integral temperature sensor
- 6) Sensors without temperature sensor each need 3 contacts and gaskets. Sensors with integral temperature sensor each need 4 contacts and gaskets



#### **Technical data**

|                                            |                        |    | min. | typ.   | max.              |
|--------------------------------------------|------------------------|----|------|--------|-------------------|
| Operating temperature                      | $\vartheta_{B}$        | °C | -40  | _      | +130              |
| Supply voltage                             | $U_{V}$                | V  | 4.5  | 5.0    | 5.5               |
| Current consumption at $U_V = 5 \text{ V}$ | $I_{V}$                | mΑ | 6.0  | 9.0    | 12.5              |
| Load current at output                     | $I_{L}$                | mΑ | -1.0 | _      | 0.5               |
| Load resistance to $U_{V}$ or ground       | $R_{\text{pull-up}}$   | kΩ | 5    | 680    | _                 |
|                                            | $R_{\text{pull-down}}$ | kΩ | 10.0 | 100    | _                 |
| Response time                              | t <sub>10/90</sub>     | ms | _    | 1.0    | _                 |
| Voltage limitation at $U_V = 5 \text{ V}$  |                        |    |      |        |                   |
| Lower limit                                | $U_{A\;min}$           | V  | 0.25 | 0.3    | 0.35              |
| Upper limit                                | $U_{A\;max}$           | V  | 4.75 | 4.8    | 4.85              |
|                                            |                        |    |      |        |                   |
| Limit data                                 |                        |    |      |        |                   |
| Supply voltage                             | $U_{V\;max}$           | ٧  | _    | _      | +16               |
| Storage temperature                        | $artheta_{L}$          | °C | -40  | -      | +130              |
|                                            |                        |    |      |        |                   |
| Temperature sensor                         |                        |    |      |        |                   |
| Measuring range                            | $\vartheta_{M}$        | °C | -40  | _      | +130              |
| Measured current                           | $I_{M}$                | mA | _    | _      | 1 <sup>1</sup> )  |
| Nominal resistance at +20 °C               |                        | kΩ | _    | 2.5±5% | _                 |
| Thermal time constant                      | t <sub>63</sub>        | s  | _    | _      | 10 <sup>2</sup> ) |
|                                            |                        |    |      |        |                   |

- 1) Operation at 5 V with 1 kΩ series resistor
- 2) In air with a flow rate of 6 m·s<sup>-1</sup>



#### Section through the sensor cell.

1 Protective gel, 2 Pressure, 3 Sensor chip, 4 Bonded connection, 5 Ceramic substrate, 6 Glass base.

#### Section through the pressure sensor.

1 Bonded connection, 2 Cover, 3 Sensor chip, 4 Ceramic substrate, 5 Housing with pressure-sensor fitting, 6 Gasket, 7 NTC element.



#### Signal evaluation: Recommendation.

The pressure sensor's electrical output is so designed that malfunctions caused by cable open-circuits or short circuits can be detected by a suitable circuit in the following electronic circuitry. The diagnosis areas situated outside the characteristic-curve limits are provided for fault diagnosis. The circuit diagram shows an example for detection of all malfunctions via signal outside the characteristic-curve limitation.

## Absolute-pressure sensors in micromechanical hybrid design (contd.) Measurement of pressures in gases up to 400 kPa



P<sub>2</sub> kPa

Pressure p

2

0,50









#### Explanation of symbols.

 $U_{\mathsf{A}}$  Output voltage

 $U_{V}$  Supply voltage

Tolerance multiplier

After continuous operation N As-new state



