K-Medoid Clustering - Solved Example - 1

i	x	у
X1	2	6
X2	3	4
Х3	3	8
X4	4	7
X5	6	2
Х6	6	4
X7	7	3
Х8	7	4
Х9	8	5
X10	7	6

- Apply K-Medoid clustering algorithm to form two clusters.
- Use Manhattan distance to find the between data point and medoid.

K-Medoid Clustering - Solved Example - 1

- · Select two medoids
- C1=(3, 4)
- C2=(7, 4)
- $Manhattan \, Dist = |x_1 x_2| + |y_1 y_2|$
- Mdist[(2,6),(3,4)] = |2-3| + |6-4| = 3
- Mdist[(3,4),(3,4)] = |3-3| + |4-4| = 0

i	х	У	C1	C2	Cluster
X1	2	6	3	7	C1
X2	3	4	0	4	C1
ХЗ	3	8	4	8	C1
Х4	4	7	4	6	C1
X5	6	2	5	3	C2
Х6	6	4	3	1	C2
Х7	7	3	5	1	C2
X8	7	4	4	0	C2
х9	8	5	6	2	C2
X10	7	6	6	2	C2

K-Medoid Clustering - Solved Example - 1

Step 2

· Cluster are

C1: {(2,6), (3,4), (3,8), (4,7)}

• C2: {(6, 2), (6, 4), (7, 3), (7, 4), (8, 5), (7,6)}

i	х	у	C1	C2	Cluster
X1	2	6	3	7	C1
X2	3	4	0	4	C1
ХЗ	3	8	4	8	C1
Х4	4	7	4	6	C1
Х5	6	2	5	3	C2
Х6	6	4	3	1	C2
Х7	7	3	5	1	C2
Х8	7	4	4	0	C2
Х9	8	5	6	2	C2
X10	7	6	6	2	C2

- C1: {(2,6), (3,4), (3,8), (4,7)}
- C2: {(6, 2), (6, 4), (7, 3), (7, 4), (8, 5), (7,6)}
- · Calculate the Total Cost

•
$$\underline{Cost(c,x)} = \sum_{i} |c_i - x_i|$$

- $Total\ Cost = \{Cost((3,4),(2,6)) + Cost((3,4),(3,8)) + Cost((3,4),(4,7)) + Cost((7,4),(6,2)) + Cost((7,4),(6,4)) + Cost((7,4),(7,3)) + Cost((7,4),(8,5)) + Cost((7,4),(7,6))\}$
- $Total \ Cost = 3 + 4 + 4 + 2 + 3 + 1 + 1 + 2 = 20$

K-Medoid Clustering - Solved Example - 1

- Randomly select one non-medoid point and recalculate the cost.
- C1=(3, 4) and C2=(7, 4)

- Swap C2 with O
- New Medoids
- C1=(3, 4) and O=(7, 3)

i	х	у	C1	0	Cluster
X1	2	6			
X2	3	4			
Х3	3	8			
X4	4	7			
X5	6	2			
Х6	6	4			
X7	7	3			
X8	7	4			
Х9	8	5			
X10	7	6			

Step 3	i	х	у	C1	0	Cluster
New Medoids	X1	2	6	3	8	C1
. (1–12, 4)1 (2–17, 2)	X2	3	4	0	5	(1)
• C1=(3, 4) and O=(7, 3)	Х3	3	8	4	9	C1
• $Manhattan \ Dist = x_1 - x_2 + y_1 - y_2 $	X4	4	7	4	7	C1
	X5	6	2	5	2	0
	Х6	6	4	3	2	О
• $Mdist[(2,6),(7,3)] = 2-7 + 6-3 = 8$	X7	7	3	5	0	0
	X8	7	4	4	1	0
	vo		-	-	9	

K-Medoid Clustering - Solved Example - 1

X10

6

3

0

- C1: {(2,6), (3,4), (3,8), (4,7)}
- O: {(6, 2), (6, 4), (7, 3), (7, 4), (8, 5), (7,6)}
- · Calculate the Total Cost
- $Cost(c,x) = \sum_{i} |c_i x_i|$
- Current Total Cost = $\{Cost((3,4), (2,6)) + Cost((3,4), (3,8)) + Cost((3,4), (4,7)) + Cost((7,3), (6,2)) + Cost((7,3), (6,4)) + Cost((7,3), (7,4)) + Cost((7,3), (8,5)) + Cost((7,3), (7,6))\}$
- Current Total Cost = $3 + 4 + 4 + 2 + 2 + 1 + 3 + 3 \neq 22$

- Cost of Swapping of medoid C2 with O
- S = Current Total Cost Previous Total Cost
- S = 22 20 = 2 > 0
- · Hence Swapping C2 with O is not a good Idea.
- Final Medoids are C1 = (3, 4) and C2=(7, 4)
- Clusters are
- C1: {(2,6), (3,4), (3,8), (4,7)}
- C2: {(6, 2), (6, 4), (7, 3), (7, 4), (8, 5), (7,6)}

K-Medoid Clustering - Solved Example - 2

Point	Х	Υ
1	1	4
2	5	1
3	5	2
4	5	4
5	10	4
6	25	4
7	25	6
8	25	7
9	25	8
10	29	7

- Apply K-Medoid clustering algorithm to form two clusters.
- Use Euclidean distance to find the distance between data point and medoid.

- Let us choose that (1, 4) and (10, 4) are the medoids
- C1=(1, 4) and C2=(10, 4)
- (x_1, y_1) and (x_2, y_2) are data points
- Eucladian Dist = $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- $EDist[(1,4),(1,4)] = \sqrt{(1-1)^2 + (4-4)^2} = 0$
- EDist[(1,4),(5,1)] = $\sqrt{(5-1)^2 + (1-4)^2} = 5$

Point	Х	Y	C1	C2	Cluster
1	1	4	0	9	C1
2	5	1	5	5.83	C1
3	5	2	4.47	5.39	C1
4	5	4	4	5	C1
5	10	4	9	0	C2
6	25	4	24	15	C2
7	25	6	24.08	15.13	C2
8	25	7	24.19	15.30	C2
9	25	8	24.33	15.52	C2
10	29	7	28.16	19.24	C2=

- · Cluster are
- C1: {(1,4), (5,1), (5,2), (5,4)} and
- C2: {(10,4), (25,4), (25,6), (25,7), (25,8),
 (29,7)}.
- Now calculating the cost which is nothing but the sum of distance of each non-medoid point from the medoid of the cluster it belongs to.

Point	X	Y	C1	C2	Cluster
1	1	4	0	9	C1
2	5	1	5	5.83	C1
3	5	2	4.47	5.39	C1
4	5	4	4	5	C1
5	10	4	9	0	C2
6	25	4	24	15	C2
7	25	6	24.08	15.13	C2
8	25	7	24.19	15.30	C2
9	25	8	24.33	15.52	C2
10	29	7	28.16	19.24	C2

- C1: {(1,4), (5,1), (5,2), (5,4)} and C2: {(10,4), (25,4), (25,6), (25,7), (25,8), (29,7)}.
- · Calculate the Total Cost
- $Cost(c, x) = \sum_{i} |c_i x_i|$
- $Total\ Cost = cost((1,4),(5,1)) + cost((1,4),(5,2)) + cost((1,4),(5,4)) + cost((10,4),(25,4)) + cost((10,4),(25,6)) + cost((10,4),(25,7)) + cost((10,4),(25,8)) + cost((10,4),(29,7))$
- $Total\ Cost = \{ |1-5| + |4-1| \} + \{ |1-5| + |4-2| \} + \{ |1-5| + |4-4| \} + \{ |10-25| + |4-4| \} + \{ |10-25| + |4-7| \} + \{ |10-25| + |4-7| \} + \{ |10-25| + |4-7| \} + \{ |10-29| + |4-7| \}$
- $Total\ Cost = 4 + 3 + 4 + 2 + 4 + 0 + 15 + 0 + 15 + 2 + 15 + 3 + 15 + 4 + 19 + 3 = 108$

Step 2	Point	Х	Υ	C1	C2	Cluster
• C1=(5, 4) and C2=(25, 7)	1	1	4	4	24.19	C1
52 (5) 1) and 52 (25) 1)	2	5	1	3	20.8	C1
• Eucladian Dist = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	3	5	2	2	20.62	C1
• $EDist[(1,4),(5,4)] = \sqrt{(5-1)^2 + (4-4)^2} = 4$	4	5	4	0	20.22	C1
	5	10	4	5	15.30	C1
• $EDist[(1,4),(25,7)] =$	6	25	4	20	3	C2
$\sqrt{(25-1)^2+(7-4)^2}=24.19$	7	25	6	20.10	1	C2
	8	25	7	20.22	0	C2
	9	25	8	20.40	1	C2
	10	29	7	24.19	4	CEstatefac

K-Medoid Clustering – Solved Example – 2

- C1: {(1,4), (5,1), (5,2), (5,4), (10, 4)} and
- C2: {(25,4), (25,6), (25,7), (25,8), (29,7)}.
- · Calculate the Total Cost
- $Cost(c,x) = \sum_{i} |c_i x_i|$
- $Total\ Cost = cost((5,4),(1,4)) + cost((5,4),(5,1)) + cost((5,4),(5,2)) + cost((5,4),(10,4)) + cost((25,7),(25,4)) + cost((25,7),(25,6)) + cost((25,7),(25,8)) + cost((25,7),(29,7))$
- Total Cost = 23

- $Swapping\ cost = Current\ Total\ Cost Previous\ Total\ Cost$
- Swapping cost = 23 108 = (-85) < 0
- If swapping cost > 0, we stop the algorithm here, and clusters formed in Step 1 is the final answer

- Randomly select two non-medoid point and recalculate the cost.
- C5=(10, 4) and C6=(29, 7)
- · Swap C1 with C5 and C2 with C6
- New Medoids
- C1=(10, 4) and C2=(29, 7)

Point	Х	Υ	C1	C2	Cluster
1	1	4			
2	5	1			
3	5	2			
4	5	4			
5	10	4			
6	25	4			
7	25	6			
8	25	7			
9	25	8			
10	29	7_			■ Subsurbe

K-Medoid Clustering – Solved Example – 2

- C1=(10, 4) and C2=(29, 7)
- Eucladian Dist = $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$

Point	Х	Υ	C1	C2	Cluster
_1	1	4	9	28.16	C1
2	5	1	5.8	24.73	C1
3	5	2	5.3	24.51	C1
4	5	4	5	24.18	C1
5	10	4	0	19.23	C1
6	25	4	15	5	C2
7	25	6	15.13	4.12	C2
8	25	7	15.29	4	C2
9	25	8	15.52	4.12	C2
10	29	7	19.23	0	C2

- Cluster are
- C1: {(1,4), (5,1), (5,2), (5,4), (10, 4)} and
- C2: {(25,4), (25,6), (25,7), (25,8), (29,7)}.
- Total cost = 9+5+3+5+2+5+0+4+3+4+1+4+0+4+1=46

Point	Х	Υ	C1	C2	Cluster
1	1	4	9	28.16	C1
2	5	1	5.8	24.73	C1
3	5	2	5.3	24.51	C1
4	5	4	5	24.18	C1
5	10	4	0	19.23	C1
6	25	4	15	5	C2
7	25	6	15.13	4.12	C2
8	25	7	15.29	4	C2
9	25	8	15.52	4.12	C2
10	29	7	19.23	0	Cettoo

K-Medoid Clustering – Solved Example – 2

- Swapping cost = Current Total Cost Previous Total Cost
- Swapping cost = 46 23 = 23 > 0
- · Swapping cost > 0, we stop the algorithm here.
- Our final clusters are
- C1: {(1,4), (5,1), (5,2), (5,4), (10,4)} and
- C2: {(25,4), (25,6), (25,7), (25,8), (29,7)}

K-Medoid vs K-Means Clustering

- Partitioning Around Medoids or the K-medoids algorithm is a partitional clustering algorithm which is slightly modified from the K-means algorithm.
- In K-means algorithm, they choose means as the centroids but in the K-medoids, data points are chosen to be the medoids.