

Fig. 1: Denominações dos LEDs do display de 7 segmentos.

ITENS ERRADOS **NÃO ANULAM** ITENS CORRETOS. O cartão de respostas e o funcionamento dos principais registradores se encontram no final da prova. Em todas as questões, considere que o MCLK e SMCLK foram configurados para funcionarem a 1 MHz e que o Watchdog Timer está desligado. Boa prova.

1. (1.25 pontos)

```
#define BTN BIT3
   void Configura_Dado(void)
   {
4
     P1DIR &= ~BTN;
     P10UT |= BTN;
     P1REN |= BTN;
     TACCRO = 5;
     TACTL = TASSEL_2 + ID_0 + MC_1;
10
11
   int Retorna_Dado(void)
12
     while((P1IN&BTN)~=0);
     while((P1IN&BTN)==0);
15
     return(TAR+1);
16
```

O código acima implementa a escolha do valor de um dado digital, baseado no Timer A e em um botão conectado ao pino P1.3. Para CADA item a seguir, indique se ele é verdadeiro ou falso.

- A A função Configura_Dado() só precisa ser chamada uma vez antes da função Retorna_Dado() para o dado digital funcionar corretamente.
- B A função Retorna_Dado() realiza o debounce do botão.
- C O usuário deveria ser capaz de contar passos

- de 10^{-6} segundos para tirar sempre o valor que desejasse.
- D O valor do dado é determinado quando o usuário pressiona o botão.
- 2. (1.25 pontos) Considere uma carga de 12 V que necessita de (d+501)/1000 A para funcionar, aonde d corresponde aos três últimos dígitos da sua matrícula. Por exemplo, para o aluno com matrícula 12/3456789, então d=789 e a carga é de (789+501)/1000=1,29 A. Calcule a resistência necessária e a topologia (normal ou par Darlington) para o MSP430 controlar esta carga com transistores bipolares de junção com $V_{BE}=0,7$ V e $\beta=150$. O MSP430 opera com $V_{CC}=3$ V e corrente máxima de 6 mA por pino digital.

3. (1.25 pontos)

```
void Config_TimerA(void)
2
     P1DIR |= BIT6;
3
     P1SEL |= BIT6;
     P1SEL2 &= "BIT6;
     TACCRO = 1000-1;
     TACCR1 = 0;
     TACCTL1 = OUTMOD_7;
     TACTL = TASSEL_2 + ID_0 + MC_1 + TAIE;
     _BIS_SR(GIE);
10
11
   interrupt(TIMERO_AO_VECTOR) TA_ISR(void)
13
14
     TACCR1 = (TACCR1<(TACCR0-10)) ? TACCR1+10 : 0;
15
     TACTL &= ~TAIFG;
16
17
```

O código acima implementa um LED de brilho alterável através do Timer A. Para CADA item a seguir, indique se ele é verdadeiro ou falso.

- A O ciclo completo de mudança do brilho do LED dura 1 s.
- B Após a chamada da função Config_TimerA(), a frequência com que o LED pisca não alterada.
- C O LED pisca a uma frequência de 100 Hz.
- D O brilho do LED aumenta e diminui gradativamente.

```
4. (1.25 pontos)
```

```
#define BTN BIT3
2
   volatile char e = 0;
   void Config_Botao(void)
6
     P1REN |= BTN;
     P1OUT |= BTN;
     P1DIR &= ~BTN;
     P1IES |= BTN;
10
     P1IE |= BTN;
     P1IFG = 0;
12
      _BIS_SR(GIE);
13
   }
14
15
   interrupt(PORT1_VECTOR) P1_ISR(void)
16
17
   {
     volatile unsigned int i=60000;
18
      e^{-1};
19
      if(e==0)
20
        TACTL = MC_0;
21
      else
23
        TACCRO = 2500-1;
24
        TACTL = TASSEL_2 + ID_0 + MC_1;
25
     while((P1IN & BTN)==0);
28
     while(i--);
     P1IFG = 0;
29
   }
```

O código acima implementa o controle do Timer A via um botão ligado ao pino P1.3. Para CADA item a seguir, indique se ele é verdadeiro ou falso.

- A O processador não pode ser interrompido enquanto ele está preso nos laços while() das linhas 27 e 28.
- B O Timer A só é acionado quando o usuário solta o botão.
- C A função P1_ISR() realiza o debounce do botão.
- D Uma variável global define se o Timer A deve ser desligado ou ligado para contar períodos de 2,5 ms.

5. (1.25 pontos)

```
void Hello1(void)

void Hello1(void)

volatile unsigned int i;

P1DIR |= BIT6;

for(;;)

{
```

```
i=300;
        while(i--);
        P10UT ^= BIT6;
9
10
   }
11
12
   void Hello2(void)
13
14
     P1DIR |= BIT6;
15
      TACCRO = 62500-1;
16
      TACTL = TASSEL_2 + ID_3 + MC_1;
17
     for(;;)
18
      {
19
        while((TACTL&TAIFG)==0);
20
        P10UT ^= BIT6;
21
        TACTL &= ~TAIFG;
22
      }
23
24
25
   void Hello3(void)
26
27
      P1DIR |= BIT6;
28
      P1SEL |= BIT6;
29
      P1SEL2 &= "BIT6;
30
31
32
      TACCRO = 62500-1;
      TACCR1 = 62500/2;
33
      TACCTL1 = OUTMOD_7;
34
      TACTL = TASSEL_2 + ID_3 + MC_1;
35
36
```

O código acima apresenta 3 possíveis funções Olá Mundo com o MSP4302553. Considere que um LED foi conectado ao pino P1.6, em série com uma resistência adequada. Para CADA item a seguir, indique se ele é verdadeiro ou falso.

- A A função Hello3() utiliza o Timer A em modo de comparação.
- B Ao se chamar a função Hello1(), é possível ver o LED piscando.
- C As 3 funções funcionam em loop infinito.
- D As 3 funções só fazem o LED piscar se o pino P1.6 for conectado ao anodo do LED.
- E Ao se chamar a função Hello2(), o LED pisca com frequência de 2 Hz.
- F Ao se chamar a função Hello3(), o LED pisca com frequência de 2 Hz.

6. (1.25 pontos)

```
#define PIN_1 BITO
#define PIN_2 BIT1
```

```
#define PIN_3 BIT2
   #define PIN_4 BIT4
   #define ALL_PINS (PIN_1+\
         PIN_2+PIN_3+PIN_4)
7
   void Charlie_LED_On(
       volatile char pin_pos,
9
        volatile char pin_neg)
10
11
     P1DIR &= ~(PIN_1+PIN_2+PIN_3+PIN_4);
12
     P10UT |= pin_pos;
13
     P10UT &= ~pin_neg;
14
     P1DIR |= (pin_pos+pin_neg);
   }
16
17
   void Charlieplex(volatile char LEDs)
18
19
20
     volatile int j;
     volatile pin_pos[] = {
21
       PIN_1,PIN_1,PIN_1,
22
       PIN_2,PIN_2,PIN_2,
       PIN_3,PIN_3,PIN_3,
24
       PIN_4,PIN_4,PIN_4};
25
     volatile pin_neg[] = {
26
27
        PIN_2,PIN_3,PIN_4,
       PIN_1,PIN_3,PIN_4,
28
       PIN_1,PIN_2,PIN_4,
29
30
       PIN_1,PIN_2,PIN_3};
     for(j=0; j<12; j++)
        if((LEDs & (1<<j))~=0)
32
          Charlie_LED_On(
33
            pin_pos[j],
34
35
            pin_neg[j]);
```

O código acima controla LEDs conectados por charlieplexing. Para CADA item a seguir, indique se ele é verdadeiro ou falso.

- A Na chamada à função Charlieplex(), cada bit na variável de entrada LEDs indica se o LED correspondente será aceso ou não.
- B A linha 12 do código acima impede que os LEDs errados sejam acesos nas linhas 13 e 14.
- C A função Charlieplex() acende mais de um LED por vez.
- D Para os LEDs piscarem a uma frequência f, a função Charlieplex() deve ser chamada f vezes por segundo.

7. (1.25 pontos)

```
#include <msp430g2553.h>
#define BTN BIT3
#define DSP_1 BIT0
#define DSP_2 BIT1
#define DSP_3 BIT2
```

```
#define DSP_4 BIT4
   #define DSPS (DSP_1+DSP_2+\
            DSP_3+DSP_4)
   #define SEG_A BITO
   #define SEG_B BIT1
   #define SEG_C BIT2
   #define SEG_D BIT3
12
   #define SEG_E BIT4
13
   #define SEG_F BIT5
14
   #define SEG_G BIT6
   #define SEG_DP BIT7
   #define OITO
17
                    (SEG_A+SEG_B+\
            SEG_C+SEG_D+\
18
            SEG_E+SEG_F+SEG_G)
19
   #define ZERO
                   (OITO-SEG_G)
20
   #define UM
                    (SEG_B+SEG_C)
21
   #define DOIS
                    (OITO-SEG_C-SEG_F)
   #define TRES
                    (OITO-SEG_E+SEG_F)
   #define QUATRO (UM+SEG_F+SEG_G)
   #define SEIS
                    (OITO-SEG_B)
   #define CINCO (SEIS-SEG_E)
   #define SETE
                    (UM+SEG_A)
   #define NOVE
                    (OITO-SEG_E)
28
   #define TUDO
                   OITO+SEG_DP
29
31
   int main(void)
32
   {
33
     volatile char i, j;
     volatile char disps[] =
34
        {DSP_1,DSP_2,DSP_3,DSP_4};
35
     volatile char vals[] =
36
        {NOVE, SEIS, UM, CINCO, DOIS,
37
       QUATRO, TRES, ZERO, OITO, SETE);
     WDTCTL = WDTPW | WDTHOLD;
39
     BCSCTL1 = CALBC1_1MHZ;
     DCOCTL = CALDCO_1MHZ;
     P1REN |= BTN;
     P10UT |= BTN;
43
     P1DIR &= "BTN;
44
     P1DIR |= DSPS;
     P2DIR = TUD0;
     for(j=0; j<4; j=(j+3)%4)
47
        for(i=0; i<9; i++)
          if((P1IN & BTN)==0)
            P10UT |=DSPS;
51
            P2OUT = vals[i];
            P10UT &=~disps[j];
          }
54
     return 0;
55
```

O código acima controla 4 displays de 7 segmentos multiplexados. Os LEDs dos displays são denominados de acordo com a Fig. 1. Para CADA item a seguir, indique se ele é verdadeiro ou falso.

A O código acima só acende LEDs em displays de 7 segmentos de catodo comum

- B O botão conectado só tem funcionalidade se ligado ao pino P1.3 e ao terra.
- C A função main() não possui um loop infinito.
- D Para os caracteres entre 0 e 9, existe a mesma probabilidade de qualquer um deles aparecer nos displays.
- E No instante em que alguém pressiona o botão ligado ao pino P1.3, o código escreve um caracter entre 0 a 9 em somente um dos quatros displays conectados.
- 8. (1.25 pontos) Considere que d_1 corresponde aos dois primeiros dígitos da sua matrícula, e que d_2 corresponde aos dois últimos números da sua matrícula. Por exemplo, para o aluno com matrícula 12/3456789, então $d_1 = 12$ e $d_2 = 89$. Calcule os valores de TACCR0 e TACCR1 para o Timer A funcionar em modo de comparação via canal 1 com frequência $f = 10 * d_2 + 1000$ Hz e ciclo de trabalho $C = (d_1/6 - 1) *$ Considere que o Timer A funciona em modo UP a 1/8 da frequência do SM-CLK, e que o modo Reset/Set foi escolhido. Arredonde os resultados para o valor inteiro mais próximo.

Table 1: Cartão de respostas.

Nome	
Matrícula	
Turma	
-0	
Questão	Resposta (V/F ou valor numérico)
1	(a)(b)(c)(d)
2	
3	(a)(b)(c)(d)
4	(a)(b)(c)(d)
5	(a)(b)(c)(d)(e)(f)
6	(a)(b)(c)(d)
7	(a)(b)(c)(d)(e)
8	

Registradores das portas P1 e P2 do MSP430

Reg.	Uso	Exemplo
PxDIR	Define se o pino correspondente ao bit será de entrada (bit = 0) ou de saída (bit = 1).	Se PxDIR = 0xF, os pinos Px.0-Px.3 são definidos como saída, e Px.4-Px.7 são definidos como entrada.
PxREN	Habilita o resistor de pull-up/down correspondente ao bit.	Se PxREN = 0xF, somente os resistores de pull-up/ldown nos pinos Px.0-Px.3 são habilitados.
PxOUT	Escreve o valor no pino de saída correspondente ao bit.	Se PxOUT = 0xF, os pinos Px.0-Px.3 são levados para nível alto, e Px.4-Px.7 são levados para nível baixo.
PxOUT	Define se o resistor correspondente ao bit será de pull-up (bit = 1) ou de pull-down (bit = 0).	Se PxREN = 0xFF e PxOUT = 0xF, os pinos Px.0-Px.3 terão resistores de pull-up, e Px.4-Px.7 terão resistores de pull-down.
PxIN	Reflete o valor do pino de entrada correspondente ao bit.	Se PxIN = 0xF, os pinos Px.0-Px.3 estão em nível alto, e Px.4-Px.7 estão em nível baixo.
PxIE	Habilita interrupções no pino correspondente ao bit.	Se PxIE = 0xF, os pinos Px.0-Px.3 podem causar interrupções mascaráveis.
PxIES	Define se a interrupção habilitada será por borda de subida (bit=0) ou de descida (bit=1).	Se PxIE = 0xFF e PxIES = 0xF, os pinos Px.0-Px.3 podem causar interrupções mascaráveis por borda de descida, e os pinos Px.4-Px.7 podem causar interrupções mascaráveis por borda de subida.

```
Instruções para configurar o MCLK @ 1MHz:
```

BCSCTL1 = CALBC1_1MHZ;

DCOCTL = CALDCO_1MHZ;

Instruções para configurar o MCLK @ 8MHz:

BCSCTL1 = CALBC1_8MHZ;

DCOCTL = CALDCO_8MHZ;

Instruções para configurar o MCLK @ 12MHz:

BCSCTL1 = CALBC1_12MHZ;

DCOCTL = CALDCO_12MHZ;

Instruções para configurar o MCLK @ 16MHz:

BCSCTL1 = CALBC1 16MHZ;

DCOCTL = CALDCO 16MHZ;

Instrução para parar o Watchdog Timer: WDTCTL = WDTPW + WDTHOLD;

Instrução para habilitar interrupções mascaráveis: _BIS_SR(GIE);

Interrupção mascarável da Porta P1: interrupt(PORT1_VECTOR) P1_ISR(void){ }

Interrupção mascarável da Porta P2: interrupt(PORT2_VECTOR) P2_ISR(void){ }

Interrupção mascarável do Timer A: interrupt(TIMERO_A1_VECTOR) TAO_ISR(void){ }

Headers úteis: msp430g2553.h, legacymsp430.h

ō	7	13	12	=	6	ø	80								
		Unused					TASSELX								
rw-(0)	n-(0)	- m-(0)	W-(0)	w-(0)	rw-(0)	rw-(0)	o (0)	12.3.4 T.	ACCTLx, Ca	TACCTLx, Capture/Compare Control Register	are Control R	egister			
IDx		MCx		Unused	TACLR	TAIE	TAIFG	5	1	13	15	=	5	ø	20
9		rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)		CMx		CCISx	SCS	SCCI	Unused	CAP
TASSELY Bits	Bits 15-10 U	Unused Timer A clock source select	dord					rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	-	Б	rw-(0)
		00 TACLK	1000					7	0	GR.	۵	9	No	_	0
								rw-(0)	OUTMODX	m-(0)	CCIE	CO	OUT	COV	CCIFG
		11 INCLK (INCLK	s device-spe	INCLK (INCLK is device-specific and is often assigned to the inverted TBCLK) (see the	signed to the invert	ed TBCLK) (see	the	CMx (c)	Bit 15-14	Capture mode	(4)			100	
D _x	Rite 7-6	device-specific data sheet) nout divider. These bits select the c	data sheet)	istay for the innut of	nati						70				
		input divider. These bits select the divider for the input diock. 00 /1	Select are an	VIDER FOR THE IMPUN OF	OCK.						Capture on rising edge				
										11 Capture	Capture on both rising and falling edges	alling edges			
								CCISx	Bit 13-12	Capture/compare	input select. These	bits select the TAC	CCRx input signal.	Capture/compare input select. These bits select the TACCRx input signal. See the device-specific data	ecific dat
MCx Bits	Bits 5-4	Mode control. Setting MCx = 00h when Timer_A is not in use conserves power.	Cx = 00h whe	en Timer_A is not in	use conserves por	wer.				sheet for specific	sheet for specific signal connections. 00 CCIxA				
	_		timer is halte	g.											
			mer counts up	p to TACCRO.	7					10 GND					
		11 Up/down mode:	the timer cou	Up/down mode: the timer counts up to TACCR0 then down to 0000h	then down to 0000	₹		0	D3 44	11 Voc	This bill	is supplied to supplied	nive the capture in	out alonal with the	Emar olo
Unused Bit 3		Unused						eve	1 100	Asynchro	Asynchronous capture	is used to synchro	nace and capture in	ayricimante capiture adunce. Tina on sa usera la ayricimante une capiture injuti signisi witi une sinte cacoo. O Asyrichronous capiture	on de co
TACLR Bit 2		Timer_A clear. Setting this bit resets TAR, the clock divider, and the count direction. The TACLR bit is automatically reset and is always read as zero.	is bit resets is always read	TAR, the clock divid d as zero.	er, and the count o	irection. The TA	ACLR bit is			1 Synchron	Synchronous capture				
TAIE Bit 1		Timer_A interrupt enable. This bit enables the TAIFG interrupt request 0 Interrupt disabled). This bit ena	ables the TAIFG into	errupt request.				9	be read via this bit	III	i in ouncing Co.	une es medie sode	og i namenana supanimonimpara mpari. Har amanasa seet mpan aginar as annana mirit ma mesos agina anna sar Ba read via this bit	y organi
		Interrupt enabled	a.					CAP	Bit 8	Capture mode	Capture mode	ç			
Di O		No interrupt pending	ding							0 Compare mode	mode				
			9					OUTMODx	Bits 7-5	Output mode. Modes 2	mooe des 2, 3, 6, and 7	 Culput mode. Modes 2, 3, 6, and 7 are not useful for TACCRO, because EQUx = EQU0 	VCCR0, because E	QUx = EQUO.	
12.3.2 TAR, TI	imer_A	TAR, Timer_A Register								000 OUT bit value 001 Set	value				
15	7	13	ñ	=	10	ø	8			010 Toggle/reset	set				
rw-(D)	rw-(0)	rw-(0)	T.	TARX rw-(0)	rw-(0)	rw-(0)	- (O)								
7	o	on .	•	9	N	-	0			110 Toggle/set	R				
				TARx							~				
rw-(0)	rw-(0)	re-(0)	rw-(0)	The TAB recistor is the count of Timer	- rw-(0)	rw-(0)	rw-(0)	CCIE	Bit 4	Capture/compare interrupt 0 Interrupt disabled	interrupt enable. T disabled	his bit enables the	interrupt request of	Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG flag. O interrupt disabled	CCIFG
ωI	x. Time		npare Re	dister x				2	9	1 Interrupt enabled	enabled				
ń	ŧ.	å	ō	:	ŝ	Ď		OUT	Bit 2	Output. For outpu	t mode 0, this bit d	Output. For output mode 0, this bit directly controls the state of the output	state of the output.		
			١.١	TACCRX						1 Output high	g;				
rw-(0)	rw-(0)	rw-(0)	W-(0)	rw-(0)	rw-(0)	W-(0)	rw-(0)	COV	Bit 1	Capture overflow.	This bit indicates	a capture overflow of	ocurred. COV mu	Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software.	tware.
7	6	(J)	4	ω	N	-	0			0 No captu	No capture overflow occurred	ă			
W-(0)	rw-(0)	rw-(0)	W-(0)	TACCHX rw-(0)	rw-(0)	W-(0)	rw-(0)	CCIFG	Bit 0	Capture/compare interrupt flag	compare interrupt flag				
		Timer_A capture/compare register.	e register.							0 No intern	No interrupt pending				
		Compare mode: TACCHx holds the data for the comparison to the timer value in the Timer_A Hegister, TAR.	x holds the d	ata for the compans	on to the timer valu	Je in the Timer_	A Hegister,			Farmand odnama	Ferminal				