C2 Algebra

Robin Adams

August 20, 2022

1 Groups

Definition 1 (Group). A *group* is a triple (G, \cdot, e) where G is a set, \cdot is a binary operation on G, and $e \in G$, such that:

-1			
1.	٠	1S	associative.

$$2. \ \forall x \in G.xe = ex = x$$

3.
$$\forall x \in G. \exists y \in G. xy = yx = e$$

Lemma 2. The integers \mathbb{Z} form a group under + and 0.

Proof: Easy. \square

Lemma 3. In any group, inverses are unique.

PROOF: Suppose y and z are inverses to x. Then y = ey = zxy = ze = z

Definition 4. We write x^{-1} for the inverse of x.

2 Abelian Groups

Definition 5 (Abelian Group). A group (G, +, 0) is *Abelian* iff + is commutative.

When using additive notation (i.e. the symbols + and 0) for a group, we write -y for the inverse of y, and x-y for x+(-y).

Lemma 6. The integers \mathbb{Z} are Abelian.

Proof: Easy.

Lemma 7. The rationals \mathbb{Q} form an Abelian group under +.

PROOF: Easy.

Lemma 8. The non-zero rationals form an Abelian group under multiplication.

Proof: Easy. \square

3 Ring Theory

Definition 9 (Commutative Ring). A commutative ring is a quintuple $(R, +, \cdot, 0, 1)$ consisting of a set R, binary operations + and \cdot on R, and elements $0, 1 \in R$ such that:

- 1. (R, +, 0) is an Abelian group.
- 2. The operation \cdot is commutative, associative, and distributive over +.
- $3. \ \forall x \in R.x1 = x$
- 4. $0 \neq 1$

Definition 10 (Integral Domain). An *integral domain* is a ring such that, whenever xy = 0, then x = 0 or y = 0.

Lemma 11. The integers form an integral domain.

Proof: Easy.

4 Field Theory

Definition 12 (Field). A *field* is an integral domain such that every non-zero element has a multiplicative inverse.

Definition 13 (Field of Fractions). Let R be an integral domain. The *field of fractions* of R is $(R \times (R - \{0\}))/\sim$, where $(a,b) \sim (c,d)$ iff ad = bc, under the following operations:

$$[(a,b)] + [(c,d)] = [(ad+bc,bd)]$$
$$[(a,b)][(c,d)] = [(ac,bd)]$$
$$0 = [(0,1)]$$
$$1 = [(1,1)]$$

It is routine to check that \sim is an equivalence relation and the operations are well-defined and form a field. The additive inverse of [(a,b)] is [(-a,b)], and the multiplicative inverse of [(a,b)] is [(b,a)].

Definition 14 (Rational Numbers). The field of *rational numbers* $\mathbb Q$ is the field of fractions of the integers.

5 Rational Numbers

Lemma 15. If $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$ and b,b',d,d' are all positive then ad < bc iff a'd' < b'c'.

PROOF: Easy.

Definition 16. The ordering on the rationals is defined by: if b and d are positive then [(a,b)] < [(c,d)] iff ad < bc.

Theorem 17. The relation < is a linear ordering on \mathbb{Q} .

Proof: Easy. \square

Definition 18 (Positive). A rational q is positive iff 0 < q.

Definition 19 (Absolute Value). The *absolute value* of a rational q is the rational |q| defined by

$$|q| = \begin{cases} q & \text{if } q \ge 0 \\ -q & \text{if } q \le 0 \end{cases}$$

Theorem 20. For any rational s, the function that maps q to q + s is strictly monotone.

Proof: Easy.

Theorem 21. For any positive rational s, the function that maps q to qs is strictly monotone.

Proof: Easy.

Theorem 22. Define $E: \mathbb{Z} \to \mathbb{Q}$ by E(a) = [(a,1)]. Then E is one-to-one and:

- 1. E(a+b) = E(a) + E(b)
- 2. E(ab) = E(a)E(b)
- 3. E(0) = 0
- 4. E(1) = 1
- 5. a < b iff E(a) < E(b)

Proof: Easy.

6 Ordered Fields

Definition 23 (Ordered Field). An *ordered field* is a sextuple $(D, +, \cdot, \cdot, 0, 1, <)$ such that $(D, +, \cdot, 0, 1)$ is a field, < is a linear ordering on D, and:

$$\forall x, y, z. x < y \Leftrightarrow x + z < y + z$$
$$\forall x, y, z. 0 < z \Rightarrow (x < y \Leftrightarrow xz < yz)$$

7 The Real Numbers

Definition 24 (Dedekind Cut). A real number or Dedekind cut is a subset x of \mathbb{Q} such that:

- 1. $\emptyset \neq x \neq \mathbb{Q}$
- 2. x is closed downwards, i.e. for all $q \in x$, if $r \in \mathbb{Q}$ and r < q then $r \in x$.
- 3. x has no largest member.

Let \mathbb{R} be the set of all real numbers.

Definition 25. Given real numbers x and y, we write x < y iff $x \subset y$.

Theorem 26. The relation < is a linear ordering on \mathbb{R} .

PROOF: The only hard part is proving that, for any reals x and y, either $x \subseteq y$ or $y \subseteq x$.

Suppose $x \nsubseteq y$. Pick $q \in x$ such that $q \notin y$. Let $r \in y$. Then $q \not < r$ (since y is closed downwards) therefore r < q. Hence $r \in x$ (because x is closed downwards). \square

Theorem 27. Any nonempty set A of reals bounded above has a least upper bound.

PROOF: We prove that $\bigcup A$ is a Dedekind cut. It is then the least upper bound of A.

The set $\bigcup A$ is nonempty because A is nonempty. Pick an upper bound r for A, and a rational $q \notin r$; then $q \notin \bigcup A$, so $\bigcup A \neq \mathbb{Q}$.

 $\bigcup A$ is closed downwards because every member of A is closed downwards.

 $\bigcup_{\square} A$ has no largest member because every member of A has no largest member.

Definition 28 (Addition). Addition + on \mathbb{R} is defined by:

$$x+y=\{q+r\mid q\in x, r\in y\}\ .$$

We prove this is a Dedekind cut.

Proof:

 $\langle 1 \rangle 1. \ x + y \neq \emptyset$

PROOF: Pick $q \in x$ and $r \in y$. Then $q + r \in x + y$.

- $\langle 1 \rangle 2. \ x + y \neq \mathbb{Q}$
 - $\langle 2 \rangle 1$. Pick $q \in \mathbb{Q} x$ and $r \in \mathbb{Q} y$
 - $\langle 2 \rangle 2$. For all $q' \in x$ we have q' < q
 - $\langle 2 \rangle 3$. For all $r' \in y$ we have r' < r
 - $\langle 2 \rangle 4$. For all $q' \in x$ and $r' \in y$ we have q' + r' < q + r
- $\langle 2 \rangle 5. \ q + r \notin x + y$
- $\langle 1 \rangle 3$. x + y is closed downwards.

```
\langle 2 \rangle 1. Let: q \in x and r \in y
```

$$\langle 2 \rangle 2$$
. Let: $s < q + r$

$$\langle 2 \rangle 3$$
. $s - q < r$

$$\langle 2 \rangle 4. \ s - q \in y$$

$$\langle 2 \rangle 5.$$
 $s = q + (s - q) \in x + y$

 $\langle 1 \rangle 4$. x + y has no largest member.

$$\langle 2 \rangle 1$$
. Let: $q \in x$ and $r \in y$

$$\langle 2 \rangle 2$$
. Pick $q' \in x$ with $q < q'$

$$\langle 2 \rangle 3$$
. Pick $r' \in y$ with $r < r'$

$$\langle 2 \rangle 4$$
. $q' + r' \in x + y$ and $q + r < q' + r'$

Theorem 29. Addition is associative and commutative.

Proof: Easy.

Definition 30 (Zero). The real number zero is $0 = \{q \in \mathbb{Q} : q < 0\}$. It is easy to check this is a Dedekind cut.

Theorem 31. For every real x we have x + 0 = x.

Proof:

$$\langle 1 \rangle 1. \ x + 0 \subseteq x$$

PROOF: Let $q \in x$ and $r \in 0$. Then q + r < q so $q + r \in x$.

$$\langle 1 \rangle 2. \ x \subseteq x + 0$$

PROOF: Let $q \in x$. Pick $r \in x$ such that q < r. Then $q - r \in 0$ and $q = r + (q - r) \in x + 0$.

Ш

Definition 32. For any real x, define

$$-x = \{ r \in \mathbb{Q} : \exists s > r . - s \notin x \} .$$

We prove this is a Dedekind cut.

Proof:

$$\langle 1 \rangle 1. -x \neq \emptyset$$

PROOF: Pick s such that $s \notin x$. Then $-s - 1 \in -x$.

$$\langle 1 \rangle 2. -x \neq \mathbb{Q}$$

 $\langle 2 \rangle 1$. Pick $r \in x$

Prove: $-r \notin -x$

 $\langle 2 \rangle 2$. Assume: for a contradiction $-r \in -x$

 $\langle 2 \rangle 3$. Pick s > -r such that $-s \notin x$

 $\langle 2 \rangle 4$. -s < r

 $\langle 2 \rangle 5. -s \in x$

 $\langle 2 \rangle 6$. Q.E.D.

PROOF: This is a contradiction.

 $\langle 1 \rangle 3$. -x is closed downwards.

Proof: Easy.

```
\langle 1 \rangle 4. -x has no largest element.
```

- $\langle 2 \rangle 1$. Let: $r \in -x$
- $\langle 2 \rangle 2$. Pick s > r such that $-s \notin x$
- $\langle 2 \rangle 3$. Pick q such that r < q < s
- $\langle 2 \rangle 4$. r < q and $q \in -x$

Lemma 33. For any positive integer a and integer b, there exists a natural number k such that b < ak.

PROOF: Take k = |b| + 1.

Lemma 34. For any positive rational p and rational r, there exists a natural number k such that r < pk.

PROOF: Let p=a/b and r=c/d where a,b and d are positive. By Lemma 33, pick k such that bc < adk. Then r < pk. \square

Lemma 35. Let p be a positive real number. For any real x, there exists $q \in x$ such that $p + q \notin x$.

Proof:

- $\langle 1 \rangle 1$. PICK rationals $r_1 \in x$ and $r_2 \notin x$
- $\langle 1 \rangle 2$. There exists a natural number k such that $kp > r_2 r_1$

Proof: By Lemma 34.

- $\langle 1 \rangle 3$. Let: k be least such that $r_1 + kp \notin x$
- $\langle 1 \rangle 4. \ k \neq 0$

PROOF: Since $r_1 \in x$.

- $\langle 1 \rangle 5$. Let: $q = r_1 + (k-1)p$
- $\langle 1 \rangle 6. \ q \in x$

Proof: By minimality of k.

 $\langle 1 \rangle 7. \ q + p \notin x$

Theorem 36. For any real x we have x + (-x) = 0.

Proof:

- $\langle 1 \rangle 1. \ x + (-x) \subseteq 0$
 - $\langle 2 \rangle 1$. Let: $q \in x$ and $r \in -x$
 - $\langle 2 \rangle 2$. Pick s > r such that $-s \notin x$
 - $\langle 2 \rangle 3. \ q < -s$
 - $\langle 2 \rangle 4. \ q < -r$
 - $\langle 2 \rangle 5.$ q+r < 0
- $\langle 1 \rangle 2. \ 0 \subseteq x + (-x)$
 - $\langle 2 \rangle 1$. Let: p < 0
 - $\langle 2 \rangle 2$. PICK $q \in x$ such that $q p/2 \notin x$

Proof: By Lemma 35.

- $\langle 2 \rangle 3$. Let: s = p/2 q
- $\langle 2 \rangle 4. -s \notin x$

$$\langle 2 \rangle$$
5. $p-q \in -x$
PROOF: Since $p-q < s$ and $-s \notin x$.
 $\langle 2 \rangle$ 6. $p=q+(p-q) \in x+(-x)$