TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH TRUNG BÌNH

Dạng. Nguyên hàm cơ bản

Bảng nguyên hàm của một số hàm thường gặp (với C là hằng số tùy ý)	
	$\longrightarrow \int k \mathrm{d}x = kx + C.$
$\Im \int \frac{1}{x} dx = \ln x + C.$	$\longrightarrow \int \frac{1}{ax+b} dx = \frac{1}{a} \ln ax+b + C.$
	$\longrightarrow \int \frac{1}{(ax+b)^2} dx = -\frac{1}{a} \cdot \frac{1}{ax+b} + C.$
$\int \sin x \mathrm{d}x = -\cos x + C.$	$ \int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b) + C. $
	$\int \cos(ax+b)dx = \frac{1}{a}\sin(ax+b) + C.$
	$ \int \frac{\mathrm{d}x}{\sin^2(ax+b)} = -\frac{1}{a}\cot(ax+b) + C. $
	$\longrightarrow \int \frac{\mathrm{d}x}{\cos^2(ax+b)} = \frac{1}{a}\tan(ax+b) + C.$
	$\longrightarrow \int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + C.$
	$\int a^{\alpha x + \beta} dx = \frac{1}{\alpha} \frac{a^{\alpha x + \beta}}{\ln a} + C.$
• NI ân -14 VI; 4 m b an (+ b) 4b bb; 16 m an ân b an hân bất m à 4b ân	

♦ Nhận xét. Khi thay x bằng (ax + b) thì khi lấy nguyên hàm nhân kết quả thêm $\frac{1}{a}$.

Một số nguyên tắc tính cơ bản

- Tích của đa thức hoặc lũy thừa $\stackrel{PP}{\longrightarrow}$ khai triễn.
- Bậc chẵn của sin và cosin \Rightarrow Hạ bậc: $\sin^2 a = \frac{1}{2} \frac{1}{2}\cos 2a$, $\cos^2 a = \frac{1}{2} + \frac{1}{2}\cos 2a$.
- Chứa tích các căn thức của $x \xrightarrow{PP}$ chuyển về lũy thừa.
- **Câu 1.** (Đề Tham Khảo 2020 Lần 2) Hàm số F(x) là một nguyên hàm của hàm số f(x) trên khoảng K nếu

A.
$$F'(x) = -f(x), \forall x \in K.$$

B.
$$f'(x) = F(x), \forall x \in K$$
.

$$\underline{\mathbf{C}}. \ F'(x) = f(x), \forall x \in K.$$

D.
$$f'(x) = -F(x), \forall x \in K$$
.

Lời giải

Chọn C

Theo định nghĩa thì hàm số F(x) là một nguyên hàm của hàm số f(x) trên khoảng K nếu $F'(x) = f(x), \forall x \in K$.

(Mã 101 - 2020 Lần 1) $\int x^2 dx$ bằng

$$\mathbf{A.} \ 2x + C$$

A.
$$2x + C$$
. **D.** $3x^3 + C$. **D.** $3x^3 + C$

C.
$$x^3 + C$$

D.
$$3x^3 + C$$

Lời giải

Chọn B.

(**Mã 102 - 2020 Lần 1**) Họ nguyên hàm của hàm số $f(x) = x^3$ là Câu 3.

A.
$$4x^4 + C$$
.

B.
$$3x^2 + C$$
.

C.
$$x^4 + C$$
.

B.
$$3x^2 + C$$
. **C.** $x^4 + C$. **D.** $\frac{1}{4}x^4 + C$.

Lời giải

Chọn D

Ta có
$$\int x^3 dx = \frac{x^4}{4} + C$$
.

(**Mã 103 - 2020 Lần 1**) $\int x^4 dx$ bằng Câu 4.

A.
$$\frac{1}{5}x^5 + C$$
 B. $4x^3 + C$ **C.** $x^5 + C$ **D.** $5x^5 + C$

B.
$$4x^3 + C$$

C.
$$x^5 + C$$

D.
$$5x^5 + C$$

Lời giải

Chọn A

$$\int x^4 \mathrm{d}x = \frac{1}{5}x^5 + C \ .$$

(Mã 104 - 2020 Lần 1) $\int x^5 dx$ bằng **A.** $5x^4 + C$. **B.** $\frac{1}{6}x^6 + C$. **C.** $x^6 + C$. **D.** $6x^6 + C$. Câu 5.

A.
$$5x^4 + C$$

$$\underline{\mathbf{B}} \cdot \frac{1}{6} x^6 + C$$

C.
$$x^6 + C$$
.

D.
$$6x^6 + C$$

Lời giải

Chon B

(**Mã 101- 2020 Lần 2**) $\int 5x^4 dx$ bằng Câu 6.

A.
$$\frac{1}{5}x^5 + C$$
. $\underline{\mathbf{B}}. x^5 + C$.

$$\mathbf{\underline{B}}. \ x^5 + C.$$

C.
$$5x^5 + C$$
.

C.
$$5x^5 + C$$
. **D.** $20x^3 + C$.

Lời giải

Chọn B

Ta có
$$\int 5x^4 dx = x^5 + C.$$

(Mã 102 - 2020 Lần 2) $\int 6x^5 dx$ bằng Câu 7.

A.
$$6x^6 + C$$
.

$$\mathbf{\underline{B}.} \ x^6 + C$$

A.
$$6x^6 + C$$
. **B.** $x^6 + C$. **C.** $\frac{1}{6}x^6 + C$. **D.** $30x^4 + C$.

D.
$$30x^4 + C$$
.

Lời giải

Chọn B

Ta có:
$$\int 6x^5 dx = x^6 + C$$
.

(Mã 103 - 2020 Lần 2) $\int 3x^2 dx$ bằng Câu 8.

A.
$$3x^3 + C$$
. **B.** $6x + C$.

B.
$$6x + C$$

C.
$$\frac{1}{3}x^3 + C$$
. $\underline{\mathbf{D}} \cdot x^3 + C$.

$$\mathbf{\underline{D}}. \ x^3 + C.$$

Chon D

Ta có:
$$\int 3x^2 dx = 3 \cdot \frac{x^3}{3} + C = x^3 + C$$

(**Mã 104 - 2020 Lần 2**) $\int 4x^3 dx$ bằng Câu 9.

A.
$$4x^4 + C$$

A.
$$4x^4 + C$$
. **B.** $\frac{1}{4}x^4 + C$.

C.
$$12x^2 + C$$
. **D.** $x^4 + C$.

$$\underline{\mathbf{D}}. x^4 + C$$

Lời giải

Chọn D

Ta có
$$\int 4x^3 dx = x^4 + C.$$

Câu 10. (**Mã 103 2018**) Nguyên hàm của hàm số $f(x) = x^4 + x^2$ là

A.
$$\frac{1}{5}x^5 + \frac{1}{3}x^3 + C$$
 B. $x^4 + x^2 + C$ **C.** $x^5 + x^3 + C$. **D.** $4x^3 + 2x + C$

B.
$$x^4 + x^2 + C$$

C.
$$x^5 + x^3 + C$$

D.
$$4x^3 + 2x + 6$$

Lời giải

Chon A

$$\int f(x) dx = \int (x^4 + x^2) dx = \frac{1}{5} x^5 + \frac{1}{3} x^3 + C.$$

Câu 11. (**Mã 104 - 2019**) Họ tất cả nguyên hàm của hàm số f(x) = 2x + 4 là

A.
$$x^2 + C$$
.

B.
$$2x^2 + C$$

B.
$$2x^2 + C$$
. **C.** $2x^2 + 4x + C$. **D.** $x^2 + 4x + C$.

D.
$$x^2 + 4x + C$$
.

Chọn D

Ta có
$$\int f(x) dx = \int (2x+4) dx = x^2 + 4x + C$$
.

Câu 12. (**Mã 102 - 2019**) Họ tất cả các nguyên hàm của hàm số f(x) = 2x + 6 là

A.
$$x^2 + C$$
.

B.
$$x^2 + 6x + C$$
.

C.
$$2x^2 + C$$

C.
$$2x^2 + C$$
. **D.** $2x^2 + 6x + C$.

Lời giải

Chon B

$$\int (2x+6) dx = x^2 + 6x + C$$

Câu 13. (Đề Minh Họa 2020 Lần 1) Họ nguyên hàm của hàm số $f(x) = \cos x + 6x$ là

A.
$$\sin x + 3x^2 + C$$

A.
$$\sin x + 3x^2 + C$$
. **B.** $-\sin x + 3x^2 + C$. **C.** $\sin x + 6x^2 + C$. **D.** $-\sin x + C$.

C.
$$\sin x + 6x^2 + C$$

$$\mathbf{D.} - \sin x + C.$$

Lời giải

Chon A

Ta có
$$\int f(x) dx = \int (\cos x + 6x) dx = \sin x + 3x^2 + C$$
.

Câu 14. (**Mã 105 2017**) Tìm nguyên hàm của hàm số $f(x) = 2 \sin x$.

$$\mathbf{A.} \int 2\sin x dx = -2\cos x + C$$

$$\mathbf{B.} \int 2\sin x dx = 2\cos x + C$$

$$\mathbf{C.} \int 2\sin x dx = \sin^2 x + C$$

$$\mathbf{D.} \int 2\sin x dx = \sin 2x + C$$

Lời giải

Chọn A

(**Mã 101 2018**) Nguyên hàm của hàm số $f(x) = x^3 + x$ là

A.
$$\frac{1}{4}x^4 + \frac{1}{2}x^2 + C$$
 B. $3x^2 + 1 + C$

B.
$$3x^2 + 1 + C$$

C.
$$x^3 + x + 0$$

C.
$$x^3 + x + C$$
 D. $x^4 + x^2 + C$

Chon A

$$\int (x^3 + x^2) dx = \frac{1}{4}x^4 + \frac{1}{2}x^2 + C.$$

(Mã 103 - 2019) Họ tất cả các nguyên hàm của hàm số f(x) = 2x + 3 là Câu 16.

A.
$$x^2 + 3x + C$$

B.
$$2x^2 + 3x + C$$
.

C.
$$x^2 + C$$
.

C.
$$x^2 + C$$
. **D.** $2x^2 + C$.

Lời giải

Ta có
$$\int (2x+3) dx = x^2 + 3x + C$$
.

Câu 17. (Đề Minh Họa 2017) Tìm nguyên hàm của hàm số $f(x) = \sqrt{2x-1}$.

A.
$$\int f(x) dx = \frac{2}{3} (2x-1)\sqrt{2x-1} + C.$$
 B. $\int f(x) dx = \frac{1}{3} (2x-1)\sqrt{2x-1} + C.$

B.
$$\int f(x) dx = \frac{1}{3} (2x-1)\sqrt{2x-1} + C.$$

C.
$$\int f(x) dx = -\frac{1}{3} \sqrt{2x-1} + C$$
.

D.
$$\int f(x) dx = \frac{1}{2} \sqrt{2x-1} + C.$$

Lời giải

Chon B

$$\int f(x)dx = \int \sqrt{2x-1}dx = \frac{1}{2}\int (2x-1)^{\frac{1}{2}}d(2x-1)$$
$$= \frac{1}{3}(2x-1)\sqrt{2x-1} + C$$

(Đề Tham Khảo 2017) Tìm nguyên hàm của hàm số $f(x) = x^2 + \frac{2}{x^2}$ Câu 18.

A.
$$\int f(x) dx = \frac{x^3}{3} + \frac{1}{x} + C$$
.

B.
$$\int f(x) dx = \frac{x^3}{3} - \frac{2}{x} + C$$
.

C.
$$\int f(x) dx = \frac{x^3}{3} - \frac{1}{x} + C$$
.

D.
$$\int f(x) dx = \frac{x^3}{3} + \frac{2}{x} + C$$
.

Lời giải

Chọn A

Ta có
$$\int \left(x^2 + \frac{2}{x^2}\right) dx = \frac{x^3}{3} - \frac{2}{x} + C$$
.

(Mã 110 2017) Tìm nguyên hàm của hàm số $f(x) = \frac{1}{5x-2}$ Câu 19.

A.
$$\int \frac{\mathrm{d}x}{5x-2} = \frac{1}{5} \ln |5x-2| + C$$

B.
$$\int \frac{\mathrm{d}x}{5x-2} = \ln|5x-2| + C$$

C.
$$\int \frac{dx}{5x-2} = -\frac{1}{2} \ln |5x-2| + C$$

D.
$$\int \frac{dx}{5x-2} = 5 \ln |5x-2| + C$$

Lời giải

Chọn A

Áp dụng công thức $\int \frac{\mathrm{d}x}{ax+b} = \frac{1}{a} \ln |ax+b| + C \left(a \neq 0\right)$ ta được $\int \frac{\mathrm{d}x}{5x-2} = \frac{1}{5} \ln |5x-2| + C$.

Câu 20. (Mã123 2017) Tìm nguyên hàm của hàm số $f(x) = \cos 3x$

$$\mathbf{A.} \int \cos 3x dx = 3\sin 3x + C$$

B.
$$\int \cos 3x dx = \frac{\sin 3x}{3} + C$$

$$\mathbf{C.} \int \cos 3x dx = \sin 3x + C$$

D.
$$\int \cos 3x dx = -\frac{\sin 3x}{3} + C$$

Lời giải

Chon B

Ta có:
$$\int \cos 3x dx = \frac{\sin 3x}{3} + C$$

(**Mã 104 2018**) Nguyên hàm của hàm số $f(x) = x^3 + x^2$ là Câu 21.

A.
$$\frac{1}{4}x^4 + \frac{1}{3}x^3 + C$$
 B. $3x^2 + 2x + C$ **C.** $x^3 + x^2 + C$ **D.** $x^4 + x^3 + C$

B.
$$3x^2 + 2x + C$$

C.
$$x^3 + x^2 + C$$

D.
$$x^4 + x^3 + C$$

Lời giải

Chon A

Câu 22. (Đề Tham Khảo 2019) Họ nguyên hàm của hàm số $f(x) = e^x + x$ là

A.
$$e^x + 1 + C$$

B.
$$e^x + x^2 + C$$

C.
$$e^x + \frac{1}{2}x^2 + C$$

B.
$$e^x + x^2 + C$$
 C. $e^x + \frac{1}{2}x^2 + C$ **D.** $\frac{1}{x+1}e^x + \frac{1}{2}x^2 + C$

Lời giải

Chon C

Câu 23. (**Mã 101 - 2019**) Họ tất cả các nguyên hàm của hằm số f(x) = 2x + 5 là

$$\mathbf{A.} \ x^2 + C.$$

B.
$$x^2 + 5x + C$$

B.
$$x^2 + 5x + C$$
. **C.** $2x^2 + 5x + C$. **D.** $2x^2 + C$.

D.
$$2x^2 + C$$

Chọn B

Họ tất cả các nguyên hàm của hàm số f(x) = 2x + 5 là $F(x) = x^2 + 5x + C$.

Câu 24. (**Mã 104 2017**) Tìm nguyên hàm của hàm số $f(x) = 7^x$.

A.
$$\int 7^x dx = \frac{7^x}{\ln 7} + C$$
 B. $\int 7^x dx = 7^{x+1} + C$

B.
$$\int 7^x \, \mathrm{d}x = 7^{x+1} + C$$

C.
$$\int 7^x dx = \frac{7^{x+1}}{x+1} + C$$
 D. $\int 7^x dx = 7^x \ln 7 + C$

D.
$$\int 7^x \, \mathrm{d}x = 7^x \ln 7 + C$$

Lời giải

Chon A

Áp dụng công thức $\int a^x dx = \frac{a^x}{\ln a} + C$, $(0 < a \ne 1)$ ta được đáp án B

(Mã 102 2018) Nguyên hàm của hàm số $f(x) = x^4 + x$ là Câu 25.

A.
$$4x^3 + 1 + C$$

B.
$$x^5 + x^2 + C$$

A.
$$4x^3 + 1 + C$$
 B. $x^5 + x^2 + C$ **C.** $\frac{1}{5}x^5 + \frac{1}{2}x^2 + C$ **D.** $x^4 + x + C$

D.
$$x^4 + x + C$$

Lời giải

Chon C

Ta có
$$\int (x^4 + x) dx = \frac{1}{5}x^5 + \frac{1}{2}x^2 + C$$
.

(Đề Tham Khảo 2018) Họ nguyên hàm của hàm số $f(x) = 3x^2 + 1$ là Câu 26.

A.
$$x^3 + C$$

B.
$$\frac{x^3}{3} + x + C$$

C.
$$6x + 6$$

C.
$$6x + C$$
 D. $x^3 + x + C$

$$\underline{\mathbf{C}}$$
họn $\underline{\mathbf{D}}$

$$\int (3x^2 + 1) dx = x^3 + x + C.$$

(THPT An Lão Hải Phòng 2019) Tìm nguyên hàm $\int x(x^2+7)^{15} dx$?

A.
$$\frac{1}{2}(x^2+7)^{16}+C$$

A.
$$\frac{1}{2}(x^2+7)^{16}+C$$
 B. $-\frac{1}{32}(x^2+7)^{16}+C$ **C.** $\frac{1}{16}(x^2+7)^{16}+C$ **D.** $\frac{1}{32}(x^2+7)^{16}+C$

$$\mathbf{\underline{D}} \cdot \frac{1}{32} (x^2 + 7)^{16} + C$$

Lời giải

Chọn D

$$\int x(x^2+7)^{15} dx = \frac{1}{2} \int (x^2+7)^{15} d(x^2+7) = \frac{1}{32} (x^2+7)^{16} + C$$

(THPT Ba Đình -2019) Họ nguyên hàm của hàm số $f(x) = e^{3x}$ là hàm số nào sau đây? Câu 28.

A.
$$3e^x + C$$
.

$$\underline{\mathbf{B}} \cdot \frac{1}{3} e^{3x} + C$$
.

B.
$$\frac{1}{3}e^{3x} + C$$
. **D.** $3e^{3x} + C$.

D.
$$3e^{3x} + C$$
.

Ta có: $\int e^{3x} dx = \frac{1}{2}e^{3x} + C$, với C là hằng số bất kì.

Câu 29. (THPT Cẩm Giàng 2 2019) Tính $\int (x-\sin 2x) dx$.

$$\mathbf{A.} \ \frac{x^2}{2} + \sin x + C \ .$$

B.
$$\frac{x^2}{2} + \cos 2x + C$$

C.
$$x^2 + \frac{\cos 2x}{2} + C$$

A.
$$\frac{x^2}{2} + \sin x + C$$
. **B.** $\frac{x^2}{2} + \cos 2x + C$. **C.** $x^2 + \frac{\cos 2x}{2} + C$. **D.** $\frac{x^2}{2} + \frac{\cos 2x}{2} + C$.

Ta có
$$\int (x - \sin 2x) dx = \int x dx - \int \sin 2x dx = \frac{x^2}{2} + \frac{\cos 2x}{2} + C$$
.

(THPT Hoàng Hoa Thám Hưng Yên 2019) Nguyên hàm của hàm số $y = e^{2x-1}$ là

A.
$$2e^{2x-1} + C$$

B.
$$e^{2x-1} + C$$

A.
$$2e^{2x-1} + C$$
. **B.** $e^{2x-1} + C$. **C.** $\frac{1}{2}e^{2x-1} + C$. **D.** $\frac{1}{2}e^x + C$.

$$\mathbf{D.} \ \frac{1}{2} \mathbf{e}^x + C \ .$$

Ta có:
$$\int e^{2x-1} dx = \frac{1}{2} \int e^{2x-1} d(2x-1) = \frac{1}{2} e^{2x-1} + C$$
.

(THPT Hùng Vương Bình Phước 2019) Tìm họ nguyên hàm của hàm số $f(x) = \frac{1}{2x+3}$ Câu 31.

A.
$$\ln |2x+3|+C$$
.

B.
$$\frac{1}{2} \ln |2x+3| + C$$
.

B.
$$\frac{1}{2}\ln|2x+3|+C$$
. **C.** $\frac{1}{\ln 2}\ln|2x+3|+C$. **D.** $\frac{1}{2}\lg(2x+3)+C$.

D.
$$\frac{1}{2} \lg(2x+3) + C$$

(THPT Hùng Vương Bình Phước 2019) Tìm họ nguyên hàm của hàm số $y = x^2 - 3^x + \frac{1}{x}$.

A.
$$\frac{x^3}{3} - \frac{3^x}{\ln 3} - \frac{1}{x^2} + C, C \in \mathbb{R}$$
.

B.
$$\frac{x^3}{3} - 3^x + \frac{1}{x^2} + C$$
, $C \in \mathbb{R}$.

C.
$$\frac{x^3}{3} - \frac{3^x}{\ln 3} + \ln |x| + C, \ C \in \mathbb{R}$$
.

D.
$$\frac{x^3}{3} - \frac{3^x}{\ln 3} - \ln |x| + C, \ C \in \mathbb{R}$$
.

Ta có:
$$\int \left(x^2 - 3^x + \frac{1}{x}\right) dx = \frac{x^3}{3} - \frac{3^x}{\ln 3} + \ln |x| + C, C \in \mathbb{R}$$
.

(THPT Hùng Vương Bình Phước 2019) Tìm họ nguyên hàm của hàm số $f(x) = \sin 3x$ Câu 33.

A.
$$-3\cos 3x + C$$

B.
$$3\cos 3x + C$$

C.
$$\frac{1}{3}\cos 3x + C$$

A.
$$-3\cos 3x + C$$
. **B.** $3\cos 3x + C$. **C.** $\frac{1}{3}\cos 3x + C$. $\underline{\mathbf{D}} \cdot -\frac{1}{3}\cos 3x + C$.

Lời giải

$$\int \sin 3x \, \mathrm{dx} = -\frac{\cos 3x}{3} + C$$

Câu 34. (Chuyên KHTN 2019) Họ nguyên hàm của hàm số $f(x) = 3x^2 + \sin x$ là

$$\mathbf{A.} \ x^3 + \cos x + C$$

B.
$$6x + \cos x + C$$

A.
$$x^3 + \cos x + C$$
. **B.** $6x + \cos x + C$. **C.** $x^3 - \cos x + C$. **D.** $6x - \cos x + C$.

$$\mathbf{D.} \ 6x - \cos x + C.$$

Ta có
$$\int (3x^2 + \sin x) dx = x^3 - \cos x + C.$$

Câu 35. (Chuyên Bắc Ninh -2019) Công thức nào sau đây là sai?

$$\underline{\mathbf{A}}. \int \ln x \, \mathrm{d}x = \frac{1}{x} + C$$

$$\underline{\mathbf{A}}. \int \ln x \, \mathrm{d}x = \frac{1}{x} + C. \qquad \mathbf{B}. \int \frac{1}{\cos^2 x} \, \mathrm{d}x = \tan x + C.$$

$$\mathbf{C.} \int \sin x \, \mathrm{d}x = -\cos x + C \,.$$

$$\mathbf{D.} \int \mathbf{e}^x \, \mathrm{d}x = \mathbf{e}^x + C \; .$$

Lời giải

Ta có:
$$\int \ln x \, dx = \frac{1}{x} + C$$
 sai.

Câu 36. (Chuyên Bắc Ninh 2019) Nếu $\int f(x) dx = 4x^3 + x^2 + C$ thì hàm số f(x) bằng

A.
$$f(x) = x^4 + \frac{x^3}{3} + Cx$$
. **B.** $f(x) = 12x^2 + 2x + C$.

C.
$$f(x) = 12x^2 + 2x$$
. **D.** $f(x) = x^4 + \frac{x^3}{3}$.

D.
$$f(x) = x^4 + \frac{x^3}{3}$$

Có
$$f(x) = (4x^3 + x^2 + C)' = 12x^2 + 2x$$
.

Câu 37. (THPT Lương Thế Vinh Hà Nội 2019) Trong các khẳng định sau, khẳng định nào sai?

$$\mathbf{A.} \int \cos 2x \mathrm{d}x = \frac{1}{2} \sin 2x + C.$$

B.
$$\int x^{e} dx = \frac{x^{e+1}}{e+1} + C$$
.

C.
$$\int \frac{1}{r} dx = \ln |x| + C$$
. $\underline{\mathbf{D}} \cdot \int e^x dx = \frac{e^{x+1}}{x+1} + C$.

$$\underline{\mathbf{D}} \cdot \int \mathrm{e}^x \mathrm{d}x = \frac{\mathrm{e}^{x+1}}{x+1} + C$$

Ta có:
$$\int e^x dx = \frac{e^{x+1}}{x+1} + C$$
 sai vì $\int e^x dx = e^x + C$.

(THPT Lương Thế Vinh Hà Nội 2019) Nguyên hàm của hàm số $y = 2^x$ là Câu 38.

A.
$$\int 2^x dx = \ln 2 \cdot 2^x + C$$
. **B.** $\int 2^x dx = 2^x + C$. **C.** $\int 2^x dx = \frac{2^x}{\ln 2} + C$. **D.** $\int 2^x dx = \frac{2^x}{\ln 2} + C$.

$$\underline{\mathbf{C}}. \int 2^x dx = \frac{2^x}{\ln 2} + C.$$

D.
$$\int 2^x dx = \frac{2^x}{x+1} + C$$

NGUYĒN BĀO VƯƠNG - 0946798489

Do theo bảng nguyên hàm: $\int a^x dx = \frac{a^x}{1-a^x} + C$.

(Liên Trường Thọt Tọ Vinh Nghệ An 2019) Tìm họ nguyên hàm của hàm số Câu 39. $f(x) = 3x - \sin x$.

 $\mathbf{A.} \int f(x) dx = 3x^2 + \cos x + C.$

B.
$$\int f(x) dx = \frac{3x^2}{2} - \cos x + C$$
.

 $\underline{\mathbf{C}} \cdot \int f(x) dx = \frac{3x^2}{2} + \cos x + C.$

D.
$$\int f(x) dx = 3 + \cos x + C$$
.

Ta có
$$\int f(x) dx = \int (3x - \sin x) dx = \frac{3x^2}{2} + \cos x + C$$
.

Câu 40. (Sở Bình Phước 2019) Họ nguyên hàm của hàm số $f(x) = x + \sin x$ là

B.
$$x^2 - \cos x + C$$

A.
$$x^2 + \cos x + C$$
 B. $x^2 - \cos x + C$ **C.** $\frac{x^2}{2} - \cos x + C$ **D.** $\frac{x^2}{2} + \cos x + C$

D.
$$\frac{x^2}{2} + \cos x + C$$

Lời giải

Chon C

Theo bảng nguyên hàm cơ bản

(THPT Minh Khai Hà Tĩnh 2019) Họ nguyên hàm của hàm số $f(x) = \cos x$ là: Câu 41.

B.
$$-\cos x + C$$
.

$$\mathbf{C} \cdot -\sin x + C$$
.

D.
$$\sin x + C$$
.

Lời giải

Ta có $\int \cos x dx = \sin x + C$.

Câu 42. (THPT Đoàn Thượng - Hải Dương - 2019) Họ các nguyên hàm của hàm số $f(x) = x^4 + x^2$ là

B.
$$x^4 + x^2 + C$$
.

A.
$$4x^3 + 2x + C$$
. **B.** $x^4 + x^2 + C$. **C.** $\frac{1}{5}x^5 + \frac{1}{3}x^3 + C$. **D.** $x^5 + x^3 + C$.

D.
$$x^5 + x^3 + C$$

Lời giải.

Ta có
$$\int f(x) dx = \int (x^4 + x^2) dx = \frac{1}{5}x^5 + \frac{1}{3}x^3 + C$$
.

(THPT Cù Huy Cận 2019) Họ nguyên hàm của hàm số $f(x) = e^x - 2x$ là. Câu 43.

$$\mathbf{\underline{B}}. \ e^x - x^2 + C$$

A.
$$e^x + x^2 + C$$
. **B.** $e^x - x^2 + C$. **C.** $\frac{1}{x+1}e^x - x^2 + C$. **D.** $e^x - 2 + C$.

D.
$$e^x - 2 + C$$
.

Lời giải

Ta có:
$$\int (e^x - 2x) dx = e^x - x^2 + C$$

Câu 44. (Chuyên Hùng Vương Gia Lai 2019) Họ các nguyên hàm của hàm số $y = \cos x + x$ là

$$\mathbf{B.} \, \sin x + x^2 + C$$

A.
$$\sin x + \frac{1}{2}x^2 + C$$
. **B.** $\sin x + x^2 + C$. **C.** $-\sin x + \frac{1}{2}x^2 + C$. **D.** $-\sin x + x^2 + C$.

$$\mathbf{D.} -\sin x + x^2 + C$$

Lời giải

$$\int (\cos x + x) dx = \sin x + \frac{1}{2}x^2 + C.$$

(Chuyên Lê Quý Đôn Điện Biên 2019) Họ nguyên hàm của hàm số $y = x^2 - 3x + \frac{1}{x}$ là

A.
$$\frac{x^3}{3} - \frac{3x^2}{2} - \ln|x| + C$$
. **B.** $\frac{x^3}{3} - \frac{3x^2}{2} + \ln x + C$.

C.
$$\frac{x^3}{3} - \frac{3x^2}{2} + \ln|x| + C$$
. D. $\frac{x^3}{3} - \frac{3x^2}{2} + \frac{1}{x^2} + C$.

Ta có:

$$\int (x^2 - 3x + \frac{1}{x}) dx = \frac{x^3}{3} - \frac{3x^2}{2} + \ln|x| + C.$$

- (Chuyen Phan Bội Châu Nghệ An 2019) Họ nguyên hàm của hàm số $f(x) = \frac{1}{x} + \sin x$ là

 - **A.** $\ln x \cos x + C$. **B.** $-\frac{1}{x^2} \cos x + C$. **C.** $\ln |x| + \cos x + C$. **D.** $\ln |x| \cos x + C$.

Ta có
$$\int f(x) dx = \int \left(\frac{1}{x} + \sin x\right) dx = \int \frac{1}{x} dx + \int \sin x dx = \ln|x| - \cos x + C$$
.

- (THPT Yên Phong 1 Bắc Ninh 2019) Hàm số $F(x) = \frac{1}{3}x^3$ là một nguyên hàm của hàm số nào sau đây trên $(-\infty; +\infty)$?

- **A.** $f(x) = 3x^2$. **B.** $f(x) = x^3$. **C.** $f(x) = x^2$. **D.** $f(x) = \frac{1}{4}x^4$.

Gọi $F(x) = \frac{1}{3}x^3$ là một nguyên hàm của hàm số f(x).

Suy ra
$$F'(x) = f(x) \Rightarrow f(x) = x^2$$
.

Câu 48. (THPT Yên Phong 1 Bắc Ninh 2019) Tìm họ nguyên hàm của hàm số $f(x) = 2^x$.

A.
$$\int f(x) dx = 2^x + C$$
. **B.** $\int f(x) dx = \frac{2^x}{\ln 2} + C$.

C.
$$\int f(x) dx = 2^x \ln 2 + C$$
.

D.
$$\int f(x) dx = \frac{2^{x+1}}{x+1} + C$$
.

Lời giải

Ta có:
$$\int f(x) dx = \int 2^x dx = \frac{2^x}{\ln 2} + C$$
.

- (THPT Yên Định Thanh Hóa 2019) Tìm nguyên hàm của hàm số $f(x) = \frac{x^4 + 2}{x^2}$.
 - **A.** $\int f(x) dx = \frac{x^3}{2} \frac{1}{x} + C$.

B. $\int f(x) dx = \frac{x^3}{2} + \frac{2}{x} + C$.

- C. $\int f(x) dx = \frac{x^3}{2} + \frac{1}{x} + C$.
- $\underline{\mathbf{D}}. \int f(x) dx = \frac{x^3}{3} \frac{2}{x} + C.$

Ta có:
$$\int f(x) dx = \int \frac{x^4 + 2}{x^2} dx = \int \left(x^2 + \frac{2}{x^2}\right) dx = \frac{x^3}{3} - \frac{2}{x} + C$$
.

(Sở Hà Nội 2019) Hàm số nào trong các hàm số sau đây là một nguyên hàm của hàm số $y = e^x$?

A.
$$y = \frac{1}{x}$$
.

$$\underline{\mathbf{B}}. \ \ y=e^x.$$

C.
$$y = e^{-x}$$
.

D.
$$y = \ln x$$
.

Lời giải

Ta có: $(e^x)' = e^x \implies y = e^x$ là một nguyên hàm của hàm số $y = e^x$.

(Chuyên Lương Thế Vinh Đồng Nai 2019) Tính $F(x) = \int e^2 dx$, trong đó e là hằng số và $e \approx 2,718$.

A.
$$F(x) = \frac{e^2 x^2}{2} + C$$
. **B.** $F(x) = \frac{e^3}{3} + C$. **C.** $F(x) = e^2 x + C$. **D.** $F(x) = 2ex + C$.

B.
$$F(x) = \frac{e^3}{3} + C$$

$$\underline{\mathbf{C}}. \ F(x) = e^2 x + C.$$

D.
$$F(x) = 2ex + C$$
.

Lời giải

Ta có: $F(x) = \int e^2 dx = e^2 x + C$.

(Chuyên Lê Quý Đôn Quảng Trị 2019) Tìm nguyên hàm của hàm số $f(x) = \frac{1}{1-2x}$ trên $\left(-\infty;\frac{1}{2}\right)$.

A.
$$\frac{1}{2} \ln |2x-1| + C$$

A.
$$\frac{1}{2}\ln|2x-1|+C$$
. **B.** $\frac{1}{2}\ln(1-2x)+C$. \underline{C} . $-\frac{1}{2}\ln|2x-1|+C$. **D.** $\ln|2x-1|+C$.

D.
$$\ln |2x-1| + C$$
.

Trên khoảng $\left(-\infty; \frac{1}{2}\right)$, ta có: $\int f(x) dx = \int \frac{1}{1-2x} dx = -\frac{1}{2} \int \frac{1}{1-2x} d(1-2x) = -\frac{1}{2} \ln|2x-1| + C$.

Câu 53. (Chuyên Hưng Yên 2019) Nguyên hàm của hàm số $f(x) = 2^x + x$ là

$$\underline{\mathbf{A}} \cdot \frac{2^x}{\ln 2} + \frac{x^2}{2} + C$$

B.
$$2^x + x^2 + C$$

A.
$$\frac{2^x}{\ln 2} + \frac{x^2}{2} + C$$
. **B.** $2^x + x^2 + C$. **C.** $\frac{2^x}{\ln 2} + x^2 + C$. **D.** $2^x + \frac{x^2}{2} + C$.

D.
$$2^x + \frac{x^2}{2} + C$$

Ta có $\int (2^x + x) dx = \frac{2^x}{\ln 2} + \frac{1}{2}x^2 + C$.

(Chuyên Sơn La 2019) Họ nguyên hàm của hàm số $f(x) = 1 + \sin x$

A.
$$1 + \cos x + C$$
.

B.
$$1 - \cos x + C$$
.

C.
$$x + \cos x + C$$
. $\underline{\mathbf{D}}$. $x - \cos x + C$.

$$\mathbf{\underline{D}}. \ x - \cos x + C$$

Lời giải

Ta có $\int f(x)dx = \int (1+\sin x)dx = x-\cos x + C$.

(THPT Đông Sơn Thanh Hóa 2019) Nguyên hàm của hàm số $f(x) = \frac{1}{3}x^3 - 2x^2 + x - 2019$ là

A.
$$\frac{1}{12}x^4 - \frac{2}{3}x^3 + \frac{x^2}{2} + C$$
.

B.
$$\frac{1}{9}x^4 - \frac{2}{3}x^3 + \frac{x^2}{2} - 2019x + C$$
.

$$\underline{\mathbf{C}} \cdot \frac{1}{12} x^4 - \frac{2}{3} x^3 + \frac{x^2}{2} - 2019x + C$$
.

D.
$$\frac{1}{9}x^4 + \frac{2}{3}x^3 - \frac{x^2}{2} - 2019x + C$$
.

Sử dụng công thức $\int x^n dx = \frac{x^{n+1}}{n+1} + C$ ta được:

$$\int \left(\frac{1}{3}x^3 - 2x^2 + x - 2019\right) dx = \frac{1}{3} \cdot \frac{x^4}{4} - 2 \cdot \frac{x^3}{3} + \frac{x^2}{2} - 2019x + C = \frac{1}{12}x^4 - \frac{2}{3}x^3 + \frac{1}{2}x^2 - 2019x + C.$$

(THPT Yên Khánh - Ninh Bình - 2019) Họ nguyên hàm của hàm số $f(x) = \frac{1}{3x-1}$ trên khoảng Câu 56.

$$\left(-\infty;\frac{1}{3}\right)$$
 là:

A.
$$\frac{1}{3}\ln(3x-1)+C$$

B.
$$\ln(1-3x)+C$$

A.
$$\frac{1}{3}\ln(3x-1)+C$$
 B. $\ln(1-3x)+C$ **C.** $\frac{1}{3}\ln(1-3x)+C$ **D.** $\ln(3x-1)+C$

D.
$$\ln(3x-1) + C$$

Ta có:
$$\int \frac{1}{3x-1} dx = \frac{1}{3} \int \frac{d(3x-1)}{3x-1} = \frac{1}{3} \ln|3x-1| + C = \frac{1}{3} \ln(1-3x) + C \text{ (do } x \in \left(-\infty; \frac{1}{3}\right))$$

Câu 57. (Chuyên Lê Hồng Phong Nam Định 2019) Trong các khẳng định sau, khẳng định nào sai?

A.
$$\int 2^x dx = 2^x \ln 2 + C$$
. **B**. $\int e^{2x} dx = \frac{e^{2x}}{2} + C$.

C.
$$\int \cos 2x dx = \frac{1}{2} \sin 2x + C.$$

$$\mathbf{D.} \int \frac{1}{x+1} dx = \ln |x+1| + C \quad (\forall x \neq -1).$$

Lời giải

Chọn A

Ta có:
$$\int 2^{x} dx = \frac{2^{x}}{\ln 2} + C$$
.

(Chuyên Lê Hồng Phong Nam Định 2019) Cho hàm số $f(x) = \frac{2x^4 + 3}{x^2}$. Khẳng định nào sau Câu 58. đây là đúng?

A.
$$\int f(x)dx = \frac{2x^3}{3} + \frac{3}{2x} + C$$
.

B.
$$\int f(x)dx = \frac{2x^3}{3} - \frac{3}{x} + C$$
.

C.
$$\int f(x)dx = \frac{2x^3}{3} + \frac{3}{x} + C$$
.

D.
$$\int f(x)dx = 2x^3 - \frac{3}{x} + C$$
.

Lời giải

Chọn B

Ta có
$$\int f(x)dx = \int \frac{2x^4 + 3}{x^2} dx = \int \left(2x^2 + \frac{3}{x^2}\right) dx = \frac{2x^3}{3} - \frac{3}{x} + C$$

(Sở Thanh Hóa 2019) Cho hàm số $f(x) = 2^x + x + 1$. Tìm $\int f(x) dx$.

A.
$$\int f(x) dx = 2^x + x^2 + x + C$$
.

B.
$$\int f(x) dx = \frac{1}{\ln 2} 2^x + \frac{1}{2} x^2 + x + C$$
.

C.
$$\int f(x) dx = 2^x + \frac{1}{2}x^2 + x + C$$
.

D.
$$\int f(x) dx = \frac{1}{x+1} 2^x + \frac{1}{2} x^2 + x + C$$
.

Ta có:
$$\int (2^x + x + 1) dx = \frac{1}{\ln 2} 2^x + \frac{1}{2} x^2 + x + C$$
.

- (Liên Trường Thọt Tọ Vinh Nghệ An 2019) Tìm họ nguyên hàm của hàm số $f(x) = 3x - \sin x$.
 - **A.** $\int f(x) dx = 3x^2 + \cos x + C$.

B. $\int f(x) dx = \frac{3x^2}{2} - \cos x + C$.

- $\underline{\mathbf{C}} \cdot \int f(x) dx = \frac{3x^2}{2} + \cos x + C.$
- **D.** $\int f(x) dx = 3 + \cos x + C$.

Lời giải

Chon C

Ta có
$$\int f(x) dx = \int (3x - \sin x) dx = \frac{3x^2}{2} + \cos x + C$$
.

- (Chuyên Bắc Giang 2019) Hàm số $F(x) = e^{x^2}$ là nguyên hàm của hàm số nào trong các hàm số Câu 61.

 - **<u>A.</u>** $f(x) = 2xe^{x^2}$. **B.** $f(x) = x^2e^{x^2} 1$. **C.** $f(x) = e^{2x}$. **D.** $f(x) = \frac{e^x}{2x}$.

Lời giải

Chon A

Ta có
$$f(x) = F'(x) \implies f(x) = (e^{x^2})' = 2xe^{x^2}$$
.

(Chuyên Đại Học Vinh 2019) Tất cả các nguyên hàm của hàm số $f(x) = 3^{-x}$ là

$$\underline{\mathbf{A}} \cdot -\frac{3^{-x}}{\ln 3} + C$$

B.
$$-3^{-x} + C$$

C.
$$3^{-x} \ln 3 + C$$

B.
$$-3^{-x} + C$$
 C. $3^{-x} \ln 3 + C$ **D.** $\frac{3^{-x}}{\ln 3} + C$

Chon A

Ta có
$$\int f(x)dx = \int 3^{-x} dx = -\int 3^{-x} d(-x) = -\frac{3^{-x}}{\ln 3} + C$$
.

Câu 63. (Sở Phú Thọ 2019) Họ nguyên hàm của hàm số $f(x) = x^3 + x^2$ là

A.
$$\frac{x^4}{4} + \frac{x^3}{3} + C$$
. **B.** $x^4 + x^3 + C$. **C.** $3x^2 + 2x + C$. **D.** $\frac{x^4}{3} + \frac{x^3}{4} + C$

B.
$$x^4 + x^3 + C$$

C.
$$3x^2 + 2x + C$$
.

D.
$$\frac{x^4}{3} + \frac{x^3}{4} + C$$

Chọn A

$$\int f(x) dx = \int (x^3 + x^2) dx = \frac{x^4}{4} + \frac{x^3}{3} + C.$$

- (Chuyên ĐHSP Hà Nội 2019) Hàm số nào trong các hàm số sau đây không là nguyên hàm của Câu 64. hàm số $v = x^{2019}$?
 - **A.** $\frac{x^{2020}}{2020} + 1$. **B.** $\frac{x^{2020}}{2020}$.
- <u>C.</u> $y = 2019x^{2018}$. **D.** $\frac{x^{2020}}{2020} 1$.

Ta có: $\int x^{2019} dx = \frac{x^{2020}}{2020} + C$, C là hằng số. Nên các phương án **A**, **B**, **D** đều là nguyên hàm của hàm số $v = x^{2019}$.

(Chuyên Quốc Học Huế 2019) Tìm họ nguyên hàm của hàm số $y = x^2 - 3^x + \frac{1}{x}$. Câu 65.

A.
$$\frac{x^3}{3} - \frac{3^x}{\ln 3} - \ln |x| + C, C \in R$$

B.
$$\frac{x^3}{3} - \frac{3^x}{\ln 3} + \ln |x| + C, C \in R$$

C.
$$\frac{x^3}{3} - 3^x + \frac{1}{x^2} + C, C \in \mathbb{R}$$

D.
$$\frac{x^3}{3} - \frac{3^x}{\ln 3} - \frac{1}{x^2} + C, C \in \mathbb{R}$$

Lời giải

Ta có:
$$\int \left(x^2 - 3^x + \frac{1}{x}\right) dx = \frac{x^3}{3} - \frac{3^x}{\ln 3} + \ln|x| + C, C \in \mathbb{R}$$
.

(Quảng Ninh 2019) Tìm nguyên hàm của hàm số $f(x) = e^x \left(2017 - \frac{2018e^{-x}}{x^5} \right)$. Câu 66.

A.
$$\int f(x) dx = 2017e^x - \frac{2018}{x^4} + C$$
.

B.
$$\int f(x) dx = 2017e^x + \frac{2018}{x^4} + C$$
.

C.
$$\int f(x) dx = 2017e^x + \frac{504.5}{x^4} + C$$

C.
$$\int f(x) dx = 2017e^x + \frac{504.5}{x^4} + C$$
. D. $\int f(x) dx = 2017e^x - \frac{504.5}{x^4} + C$.

Lời giải

$$\int f(x) dx = \int e^x \left(2017 - \frac{2018e^{-x}}{x^5} \right) dx = \int \left(2017e^x - \frac{2018}{x^5} \right) dx = 2017e^x + \frac{504.5}{x^4} + C$$

(HSG Bắc Ninh 2019) Họ nguyên hàm của hàm số $y = e^x \left(2 + \frac{e^{-x}}{\cos^2 x} \right)$ là

$$\underline{\mathbf{A}} \cdot 2e^x + \tan x + C$$

B.
$$2e^{x} - \tan x + C$$

A.
$$2e^x + \tan x + C$$
 B. $2e^x - \tan x + C$ **C.** $2e^x - \frac{1}{\cos x} + C$ **D.** $2e^x + \frac{1}{\cos x} + C$

D.
$$2e^x + \frac{1}{\cos x} + C$$

Lời giải

Ta có:
$$y = e^x \left(2 + \frac{e^{-x}}{\cos^2 x} \right) = 2e^x + \frac{1}{\cos^2 x}$$
$$\int y dx = \int \left(2e^x + \frac{1}{\cos^2 x} \right) dx = 2e^x + \tan x + C.$$

(Chuyên Hạ Long 2019) Tìm nguyên F(x) của hàm số f(x)=(x+1)(x+2)(x+3)?

A.
$$F(x) = \frac{x^4}{4} - 6x^3 + \frac{11}{2}x^2 - 6x + C$$
. **B.** $F(x) = x^4 + 6x^3 + 11x^2 + 6x + C$.

B.
$$F(x) = x^4 + 6x^3 + 11x^2 + 6x + C$$
.

$$\underline{\mathbf{C}}. \ F(x) = \frac{x^4}{4} + 2x^3 + \frac{11}{2}x^2 + 6x + C.$$

$$\mathbf{D}. \ F(x) = x^3 + 6x^2 + 11x^2 + 6x + C.$$

D.
$$F(x) = x^3 + 6x^2 + 11x^2 + 6x + C$$
.

Ta có:
$$f(x)=x^3+6x^2+11x+6 \Rightarrow F(x)=\int (x^3+6x^2+11x+6)dx = \frac{x^4}{4}+2x^3+\frac{11}{2}x^2+6x+C$$
.

(Sở Bắc Ninh 2019) họ nguyên hàm của hàm số $f(x) = \frac{1}{5x + 4}$ là:

NGUYĒN BĀO VƯƠNG - 0946798489

A.
$$\frac{1}{5}\ln(5x+4)+C$$
.

B.
$$\ln |5x+4| + C$$

A.
$$\frac{1}{5}\ln(5x+4)+C$$
. **B.** $\ln|5x+4|+C$. **C.** $\frac{1}{\ln 5}\ln|5x+4|+C$. $\underline{\mathbf{D}}$. $\frac{1}{5}\ln|5x+4|+C$.

Ta có
$$\int \frac{1}{5x+4} dx = \frac{1}{5} \int \frac{1}{5x+4} d(5x+4) = \frac{1}{5} \ln|5x+4| + C$$
.

BẠN HỌC THAM KHẢO THÊM DẠNG CÂU KHÁC TẠI

https://drive.google.com/drive/folders/15DX-hbY5paR0iUmcs4RU1DkA1-7QpKIG?usp=sharing

Theo dõi Fanpage: Nguyễn Bảo Vương F https://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương * https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIÊU TOÁN) 🥗 https://www.facebook.com/groups/703546230477890/

Án sub kênh Youtube: Nguyễn Vương

* https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view as=subscriber

Tải nhiều tài liệu hơn tại: http://diendangiaovientoan.vn/

ĐỂ NHẬN TÀI LIỆU SỚM NHẤT NHÉ!