Ejercicio 1. Matrices y vectores.

Resuelva mediante matrices el siguiente sistema de ecuaciones:

$$\begin{cases} 2x + 3y + 4z = 20 \\ 3x - 5y - z = -10 \\ -x + 2y - 3z = -6 \end{cases}$$

Recuerde que el sistema de ecuaciones se puede representar de la forma Ax = B, siendo x un vector que contiene las incógnitas (x, y, z).

Ejercicio 2. Matrices y vectores. Operaciones aritméticas.

Se desea realizar una serie de operaciones con dos matrices (A y B) utilizando Matlab.

1. Escriba una función en Matlab que reciba como parámetros las matices A y B.

function OperacionesMatriz(A, B)

Esta función debe realizar las siguientes operaciones sobre las matrices introducidas y mostrar por pantalla el resultado de cada una de ellas:

- La transpuesta de cada una de las matrices
- La inversa de la matriz A
- El valor del determinante y el rango de la matriz A.
- El producto matricial de A y B
- El producto elemento a elemento de la primera columna de A y la primera columna de B.
- Un vector fila obtenido concatenando la primera fila de cada una de las matrices
- Un vector columna obtenido concatenando la primera columna de cada una de las matrices
- 2. Cree una matriz **A** cuadrada de dimensiones 3x3 y un vector **B** de dimensiones 3x1, con los valores que desee, y utilícelas para comprobar el correcto funcionamiento de la función creada en el apartado 1.
- 3. Modifique la función creada en el apartado 1 de forma que:
 - También se muestren por pantalla las matrices introducidas A y B.
 - En caso de que no sea posible realizar alguno de los cálculos solicitados, debido a las dimensiones de las matrices, se muestre un mensaje por pantalla indicándolo.

Y compruebe el correcto funcionamiento de la función modificada para las matrices **A** y **B** creadas en el apartado 2, así como para la matriz **A** previamente creada, y una nueva matriz **B** de dimensiones 2x1.

Algunas funciones útiles: det, help, disp, doc, inv, rank, size.

Ejercicio 3. Matrices y vectores. Operaciones con matrices.

Realice un script de Matlab que permita desarrollar una serie de operaciones con una matriz:

- 1. El script ha de generar una matriz, cuadrada y aleatoria del tamaño indicado por el usuario. En la línea de comandos se ha de visualizar el mensaje: "Indique el tamaño de la matriz".
- 2. A partir de la matriz construida, el script deberá calcular y presentar por pantalla los siguientes datos:
 - La matriz generada.
 - Una segunda matriz formada por las columnas impares de la matriz inicial
 - El valor de los elementos de la diagonal de la matriz generada.
 - Valor máximo, mínimo, medio y varianza de cada fila.

Algunas funciones útiles: det, help, disp, diag, **doc**, input, max, mean, min, num2str, rand, randn, rank, size, str2double, var.

Ejercicio 4. Tiempo de cómputo y representación gráfica

Realice un script en Matlab que permita obtener y representar el tiempo consumido para el cálculo del rango y el determinante de una matriz en función de su tamaño (de 1x1 a 200x200 – 200 casos diferentes). Tenga en cuenta los siguientes pasos:

- o Rellene la matriz de las dimensiones deseadas con valores aleatorios.
- Obtenga y almacene en una matriz, para cada caso y por separado, el tiempo necesario para cada cálculo del rango y del determinante.
- Los tiempos de procesamiento para el cálculo del rango y del determinante se representarán en tres gráficas en la misma figura, todas deben incluir una rejilla (grid):
 - Gráfica 1. Tiempo de cálculo del determinante. Se representará con línea azul, y marcadores circulares.
 - Gráfica 2. Tiempo de cálculo del rango. Se representará con línea discontinua verde, y marcadores cuadrados.
 - Gráfica 3. Tiempo de cálculo del determinante y del rango (hold on). Se representará el tiempo del determinante con línea discontinua negra y el tiempo del rango con línea continua roia
- Deben añadirse etiquetas a los ejes de todas las gráficas, y leyendas indicando qué representa cada línea en las gráficas. Las etiquetas deben coincidir con las unidades de las medidas.
- o El texto debe ser de tamaño 14 para facilitar la legibilidad.
- El aspecto debe de ser similar el siguiente:

Algunas funciones útiles: det, gca, gcf, grid on; help, hold on, hold off, legend, plot, rand, rand, rank, subplot, tic, toc, title, xlabel, ylabel.

Ejercicio 5. Representación gráfica en 3D (OPTATIVO)

Realice un script en Matlab que dibuje sobre el área $-5 \le x, y \le 5$ la superficie, la superficie en forma de malla y el contorno de la función:

$$z = y * sin\left(pi * \frac{x}{10}\right) + 5 * cos((x^2 + y^2)/8) + cos(x + y)cos(3x - y).$$

- En la misma figura dibuje en la parte superior y centrada la gráfica de la superficie (*surf*), y en la parte inferior las gráficas de la superficie en forma de malla (*mesh*) y del contorno (*contour*). Además, añada la barra de color al contorno.
- · Deben añadirse etiquetas a los ejes, y un título a cada gráfica

Algunas funciones útiles: meshgrid, mesh, surf, contourf xlabel, ylabel, subplot.