Exercise sheet

Lecturer: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Part 1. Stochastic learning

Exercise 1. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ such that $f(w) = g(\langle w, x \rangle + y)$ or some $x \in \mathbb{R}^d$, $y \in \mathbb{R}$. If g is convex function then f is convex function.

Solution. Let $u, v \in \mathbb{R}^d$ and $a \in [0, 1]$. It is

$$\begin{split} f\left(\alpha u + (1 - \alpha)v\right) &= g\left(<\alpha u + (1 - \alpha)v, x > + y\right) \\ &= g\left(<\alpha u, x > + < (1 - \alpha)v, x > + y\right) \\ &= g\left(\alpha\left(< u, x > + y\right) + (1 - \alpha)\left(< v, x > + y\right)\right) \qquad y = \alpha y + (1 - \alpha)y \\ &\leq \alpha g\left(< u, x > + y\right) + (1 - \alpha)g\left(< v, x > + y\right) \\ &= \alpha f\left(u\right) + (1 - \alpha)f\left(v\right) \end{split} \tag{g is convex}$$

Exercise 2. (*)Let functions g_1 be ρ_1 -Lipschitz and g_2 be ρ_2 -Lipschitz. Then f with $f(x) = g_1(g_2(x))$ is $\rho_1\rho_2$ -Lipschitz.

Solution.

$$|f(w_1) - f(w_2)| = |g_1(g_2(w_1)) - g_1(g_2(w_2))|$$

$$\leq \rho_1 |g_2(w_1) - g_2(w_2)|$$

$$\leq \rho_1 \rho_2 |w_1 - w_2|$$

Exercise 3. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ with $f(w) = g(\langle w, x \rangle + y)$ $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$. Let $g: \mathbb{R} \to \mathbb{R}$ be a β -smooth function. Then f is a $(\beta ||x||^2)$ -smooth.

Hint:: You may use Cauchy-Schwarz inequality $\langle y, x \rangle \leq ||y|| \, ||x||$

$$\begin{split} f\left(v\right) &= g\left(\langle w, x \rangle + y\right) \\ &\leq g\left(\langle w, x \rangle + y\right) + g'\left(\langle w, x \rangle + y\right) \langle v - w, x \rangle + \frac{\beta}{2} \left(\langle v - w, x \rangle\right)^2 & (g \text{ is smooth}) \\ &\leq g\left(\langle w, x \rangle + y\right) + g'\left(\langle w, x \rangle + y\right) \langle v - w, x \rangle + \frac{\beta}{2} \left(\|v - w\| \|x\|\right)^2 & (\text{Cauchy-Schwatz inequality}) \\ &= f\left(w\right) + \langle \nabla f\left(w\right), v - w \rangle + \frac{\beta \|x\|^2}{2} \|v - w\|^2 \end{split}$$

Exercise 4. $(\star)f: S \to \mathbb{R}$ is ρ -Lipschitz over an open convex set S if and only if for all $w \in S$ and $v \in \partial f(w)$ it is $||v|| \le \rho$.

Hint:: You may use Cauchy-Schwarz inequality $\langle y, x \rangle \leq ||y|| \, ||x||$

Solution. \Longrightarrow Let $f: S \to \mathbb{R}$ be ρ -Lipschitz over convex set $S, w \in S$ and $v \in \partial f(w)$.

- Since S is open we get that there exist $\epsilon > 0$ such as $u := w + \epsilon \frac{v}{\|v\|}$ where $u \in S$. So $\langle u w, v \rangle = \epsilon \|v\|$ and $\|u w\| = \epsilon$.
- From the subgradient definition we get

$$f(u) - f(w) \ge \langle u - w, v \rangle = \epsilon ||v||$$

• From the Lipschitzness of $f(\cdot)$ we get

$$f(u) - f(w) > \rho ||u - w|| = \rho \epsilon$$

Therefore $||v|| \leq \rho$.

Proof. \Leftarrow It is for all $w \in S$ and $v \in \partial f(w)$ it is $||v|| \le \rho$.

• For any $u \in S$, it is

$$f\left(w\right)-f\left(u\right)\leq\left\langle v,w-u\right\rangle \qquad \qquad \text{(because }v\in\partial f\left(w\right)\text{)}$$
 (1)
$$\leq\left\|v\right\|\left\|w-u\right\| \qquad \text{by Cauchy-Schwarz inequality}$$

$$\leq\rho\left\|w-u\right\| \qquad \text{because }\left\|v\right\|\leq\rho$$

• Similarly it results $u, w \in S$

$$f(w) - f(u) \le \langle v, u - w \rangle ||v|| \le ||v|| ||u - w|| \le \rho ||u - w||$$

from (??) because w, u can be swaped in (??) as they both are any values in S.

Exercise 5. (*)Let $g_1(w), ..., g_r(w)$ be r convex functions, and let $g(\cdot) = \max_{\forall j} (g_j(\cdot))$. Show that for some w it is $\nabla g_k(w) \in \partial g(w)$ where $k = \arg \max_j (g_j(w))$ is the index of function $g_j(\cdot)$ presenting the greatest value at w.

Since g_j is convex, for all u

$$g_{j}(u) \geq g_{j}(w) + \langle u - w, \nabla g_{j}(w) \rangle$$

However $g\left(u\right)=\max_{\forall j}\left(g_{j}\left(u\right)\right)\geq g_{j}\left(u\right)$ for any j, and $g\left(w\right)=g_{j}\left(w\right)$ at w. Then

$$g(u) \ge g(w) + \langle u - w, \nabla g_j(w) \rangle$$

Then by the definition of the sub-gradient $\nabla g_{j}\left(w\right)\in\partial g\left(w\right)$