

LECTURE-4(B)

COURSE TITLE
LINEAR ALGEBRA

&

GEOMETRY

(MT-272)

DEPARTMENT OF TELECOMMUNICATION ENGINEERING

COURSE TEACHER

DR. FAREED AHMAD

SPANNING SETS

Spanning Set:

If $S=\{v_1,v_2,...,v_k\}$ is a set of vectors in a vector space W of V consisting of all linear combinations of the vectors in S is called space spanned by $v_1, v_2,...,v_k$ and we say that the vectors $v_1, v_2,...,v_k$ span W. It is denoted by

$$W = Span(S)$$
 or $W = Span\{v_1, v_2, \dots, v_k\}$

SPANNING SETS ... Con'd

• The span of a set: span(S)

If $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ is a set of vectors in a vector space V, then the span of S is the set of all linear combinations of the vectors in S.

(a) Span {v₁, v₂} is the plane through the origin determined by v₁ and v₂.

(b) Span {v} is the line through the origin determined by v.

SPANNING SETS ...Con'd

Alternative definition of a spanning set of a vector space:

If every vector in a given vector space V can be written as a linear combination of vectors in a set S, then S is called a **spanning set** of the vector space V.

Note: The above statement can be expressed as follows

$$\operatorname{span}(S) = V$$

- \Leftrightarrow S spans (generates) V
- $\Leftrightarrow V$ is spanned (generated) by S
- \Leftrightarrow S is a spanning set of V

EXAMPLE-1

Ex 1:

(a) The set $S = \{(1,0,0), (0,1,0), (0,0,1)\}$ spans R^3 because any vector $\mathbf{u} = (u_1, u_2, u_3)$ in R^3 can be written as $\mathbf{u} = u_1(1,0,0) + u_2(0,1,0) + u_3(0,0,1)$

(b) The set $S = \{1, x, x^2\}$ spans P_2 because any polynomial function $p(x) = a + bx + cx^2$ in P_2 can be written as $p(x) = a(1) + b(x) + c(x^2)$

EXAMPLE-2

Ex 2: A spanning set for R^3

Show that the set $S = \{(1,2,3), (0,1,2), (-2,0,1)\}$ spans R^3 Sol:

We must examine whether any vector $\mathbf{u} = (u_1, u_2, u_3)$ in R^3 can be expressed as a linear combination of $\mathbf{v}_1 = (1, 2, 3)$,

$$\mathbf{v}_2 = (0, 1, 2)$$
, and $\mathbf{v}_3 = (-2, 0, 1)$

If
$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 \Rightarrow (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3) = c_1 (1, 2, 3) + c_2 (0, 1, 2) + c_3 (-2, 0, 1)$$

 $\Rightarrow (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3) = (c_1 - 2c_3, 2c_1 + c_2, 3c_1 + 2c_2 + c_3)$

$$c_1$$
 -2 c_3 = u_1
 \Rightarrow 2 c_1 + c_2 = u_2
 $3c_1$ +2 c_2 + c_3 = u_3

EXAMPLE-2 ...Con'd

Note: (1) If A is an invertible matrix, then the system of linear equations $A\mathbf{x} = \mathbf{b}$ has a unique solution $(\mathbf{x} = A^{-1}\mathbf{b})$ given any \mathbf{b}

(2) From , a square matrix A is invertible (nonsingular) if and only if det $(A) \neq 0$

The above problem thus reduces to determine whether this system is consistent for all values of u_1 , u_2 , and u_3

$$|A| = \begin{vmatrix} 1 & 0 & -2 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{vmatrix} \neq 0$$

 $\therefore A\mathbf{x} = \mathbf{u}$ has exactly one solution for every \mathbf{u}

$$\Rightarrow$$
 span $(S) = R^3$

EXAMPLE-3

Ex 3: Determine whether the given vectors spans R³

$$\mathbf{v}_1 = (3,1,4), \ \mathbf{v}_2 = (2,-3,5), \ \mathbf{v}_3 = (5,-2,9), \ \mathbf{v}_4 = (1,4,-1)$$

Sol:

We must examine whether any vector $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$ in \mathbf{R}^3 can be expressed as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , and \mathbf{v}_4

If
$$u=c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3\mathbf{v}_3+c_4\mathbf{v}_4$$
 \Rightarrow $3c_1+2c_2+5c_3+c_4=u_1$ $c_1-3c_2-2c_3+4c_4=u_2$ $4c_1+5c_2+9c_3-c_4=u_3$

The Augmented Matrix is

$$\begin{bmatrix} 3 & 2 & 5 & 1 & u_1 \\ 1 & -3 & -2 & 4 & u_2 \\ 4 & 5 & 9 & -1 & u_3 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & -3 & -2 & 4 & u_2 \\ 3 & 2 & 5 & 1 & u_1 \\ 4 & 5 & 9 & -1 & u_3 \end{bmatrix}$$

EXAMPLE-3 ...Con'd

Thus the system is inconsistent unless the last entry in the last row of the above matrix is zero. Since this is not the case for all values of u_1 , u_2 , and u_3 , the given vectors do not span R^3 .