ETC3460 - Financial Econometrics

Project Presentation

George Wang

on behalf of **Group 40**

Sections

- Portfolio Stock Selection
- Portfolio Weighting Allocation
- OPortfolio Return Time Series Properties
- Predictive Modelling
- O Forecasts

Statistical Software used

- EViews 11
- Used to observe the time series patterns

O R

- Majority of the work was done using R
- More flexible
- Better functionality

Portfolio Stock Selection

- 1. Extracted past one year's close price data for all 200 stocks in the ASX200 index
- 2. Computed some basic (ex-post) statistical measures
- Four moments (Mean, Volatility, Skewness and Kurtosis)
- Sharpe Ratio (risk-adjusted return measure)
- CAPM alpha and beta

Note:

- Risk–free rate used = 0.000983% is the <u>derived daily yield</u> on the Australian 1-year government bond (applying the Effective Annual Rate formula reversely, assuming 252 trading days a year)
- Market return = Return on the ASX200 index

Effective Annual =
$$\left(1 + \frac{r}{n}\right)^n - 1$$

Rate Formula

Portfolio Stock Selection

- Filtered out stocks with Kurtosis > 6 (we don't want too many extreme values/outliers)
- Ranked the remaining stocks in terms of their Sharpe Ratio (we want good risk-adjusted returns)
- Selected the top 5 stocks
- Polynovo Limited (PNV)
- Silver Lake Resources Limited (SLR)
- Spark New Zealand (SPK)
- Fortescue Metals Group Limited (FMG)
- Gold Road Resources Ltd (GOR)

<u>Diversification point of view:</u>

```
asx200 stats %>%
         filter(Kurtosis <= 6) %>%
         arrange(-SharpeRatio)
 A tibble: 50 x 8
   ax ticker
                 Mean Stdev Skewness Kurtosis SharpeRatio
                                                             alpha beta
                                                             <dbl> <dbl>
   <fct>
                <dbl>
                      <dbl>
                                <dbl>
                                         <dbl>
                                                     <dbl>
            0.00294
                                                    0.0631 0.00420 1.53
 1 PNV.AX
                     0.0465
                                          3.24
 2 SLR.AX
                     0.0416
                                          3.34
                               0.167
                                                    0.0549 0.00317 1.06
 3 SPK.AX
                                          3.79
                                                    0.0412 0.00106 0.484
             0.000671 0.0161
4 FMG.AX
             0.00111
                     0.0314
                                          1.96
                                                    0.0349 0.00190 0.971
5 GOR.AX
                     0.0417
                                          5.12
                                                    0.0328 0.00193 0.677
             0.00138
6 SAR.AX
                                          4.29
                     0.0368
                               0.0428
                                                    0.0314 0.00172 0.679
             0.000618 0.0201
                                          2.23
7 CNU.AX
                               0.154
                                                    0.0303 0.00118 0.697
8 A2M.AX
             0.000729 0.0247 -
                                          5.91
                                                    0.0291 0.00126 0.659
9 ASB.AX
             0.000823 0.0303
                                          5.32
                                                    0.0268 0.00180 1.19
10 PME.AX
             0.000994 0.0392
                                                    0.0251 0.00166 0.811
                                          3.67
# ... with 40 more rows
```

various industries: mining, materials, healthcare and telecommunication

Portfolio Weighting Allocation

- Constructed an Efficient Frontier based on the returns matrix and the variance-covariance matrix
- Selected the tangent portfolio
- sits on the steepest Capital Allocation Line (CAL)
- in other words, highest portfolio Sharpe ratio
- Weightings of the tangent portfolio reported from R:

FMG	GOR	PNV	SLR	SPK
0.1097	0.0283	0.3136	0.2805	0.2679

Portfolio Return Time Series Properties

Overall portfolio log-return (2020 Jan 3 – 2020 May 8): 23.01%

Portfolio Return Time Series Properties

Constant Mean Model:

Serial Correlation ✓

Correlogram of Residuals

Date: 06/03/20 Time: 15:00 Sample: 1/03/2020 5/08/2020 Included observations: 88

modada obcortatione. oc						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
_	<u> </u>	1	-0.268	-0.268	6.5276	0.011
ı 🗀	' 	2	0.260	0.203	12.766	0.002
ı b ı	· 🗀	3	0.086	0.220	13.453	0.004
1 [] 1	III	4	-0.091	-0.088	14.227	0.007
· 🗀	<u> </u> -	5	0.251	0.155	20.219	0.001
ı j ı		6	0.031	0.184	20.313	0.002
' (' " '	7	-0.045	-0.103	20.507	0.005
ı 🗓 ı	' □ '	8	0.066	-0.098	20.942	0.007
ı þ i	' 	9	0.105	0.211	22.046	0.009
1 1 1	ljj	10	0.013	0.081	22.062	0.015
' 	lj	11	0.186	0.058	25.625	0.007
- '	-	12	-0.199	-0.195	29.768	0.003
ı b ı	1 1	13	0.099	-0.020	30.795	0.004
1 [] 1	 	14	-0.072	-0.064	31.351	0.005
1 j 1 1	1 1 1	15	0.053	0.021	31.658	0.007
1) 1	1 (1	16	0.009	-0.017	31.667	0.011
' ['	I I	17	-0.114	-0.077	33.107	0.011
ı j ı ı	<u> </u>	18	0.059	0.028	33.505	0.014
' □ '	ı <u>d</u> .	19	-0.130	-0.107	35.430	0.012
1 11 1	- [-	20	0.079	-0.028	36.156	0.015

 $r_t = 0.002617 + u_t$ (0.003819), N = 88

ARCH Effects ✓

Correlogram of Residuals Squared						
Date: 06/03/20 Time: 15:17 Sample: 1/03/2020 5/08/2020 Included observations: 88						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
			0.407 0.275 0.015 0.106 0.079 0.149 0.281 0.010 0.079 -0.026 -0.054 0.0111 -0.042 -0.031	-0.177 -0.142 -0.084 0.034 0.045	2.7000 7.4349 11.630 11.741 27.512 34.811 34.832 35.944 36.578 38.839 46.965 46.975 47.629 47.703 48.023 48.023 49.425 49.624 49.734	0.100 0.024 0.009 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
- d - - d -				0.045		

- Main objective: GOOD FORECASTS
- Forecast accuracy (RMSE) > Model Fit (AIC)
- Model Fitting
- 1. pure ARMA models
- Automatic ARMA model selection using `ARIMA()` in fable
- Two best model fits (having the lowest AICc):

ARMA(2, 2) MA(5)

- However, both pure ARMA models have ARCH effects in residuals
- We needed to add volatility modelling GARCH and its variations

B Test Set

May $1 - \overline{\text{May 8 (N = 6)}}$

- **ARMA-GARCH Models** (GARCH models fitted using rugarch in R)
- ARMA(2,2)-GARCH(1,1)
- MA(5)-GARCH(1,1)
- \triangleright ARMA(2,2)-GARCH(2,1)
- MA(5)-GARCH(2,1)
- \rightarrow ARMA(2,2)-GARCH(1,2)
- \rightarrow MA(5)-GARCH(1,2)

Model ‡	RMSE ‡
ARMA(2,2)-GARCH(1,2)	0.03687867
ARMA(2,2)-GARCH(1,1)	0.03687869
ARMA(2,2)-GARCH(2,1)	0.03700226
MA(5)-GARCH(1,2)	0.03720098
MA(5)-GARCH(1,1)	0.03720101
MA(5)-GARCH(2,1)	0.03785100

- * Findings: ARMA(2,2) as the mean equation always had a better forecast accuracy than MA(5)
- Therefore, we dropped MA(5) and chose to use ARMA(2,2) as the mean equation going forward

- GARCH variations
- ARMA(2,2)-GJRGARCH(1,1,1)
- \rightarrow ARMA(2,2)-EGARCH(1,1)
- Findings: EGARCH had a lower RMSE whereas GJRGARCH did even worse than the ordinary GARCH
- Therefore, we ruled out GJRGARCH

Model ‡	RMSE ‡
ARMA(2,2)-EGARCH(1,1)	0.03630688
ARMA(2,2)-GARCH(1,2)	0.03687867
ARMA(2,2)-GARCH(1,1)	0.03687869
ARMA(2,2)-GARCH(2,1)	0.03700226
ARMA(2,2)-GJRGARCH(1,1,1)	0.03704154

Adding CAPM

- Dynamic regression model CAPM with ARMA errors: CAPM-AR(1) (from `ARIMA()` in fable)
- ARMAX(2,2)-GARCH(1,1)
- ARMAX(2,2)-EGARCH(1,1)
- CAPM-GARCH(1,1)
- \triangleright CAPM-EGARCH(1,1)
- Note:
- ASX200 index return was modelled by an automatically fitted ARMA model in fable: ARMA(1,2)
- "ARMAX" means that we include both the ARMA terms and the exogenous CAPM regressor (excess market return) in the mean equation

Final Model Selection

Portfolio Return CAPM-EGARCH(1,1):
$$r_t = 0.00413 + 1.0459r_{m,t} + \varepsilon_t$$
, $\varepsilon_t = u_t \sigma_t$, $u_t \sim iid N(0,1)$ $ln(\sigma_t^2) = -4.0604 + 0.9045(|u_{t-1}| - \mathbb{E}[|u_{t-1}|]) + 0.0063u_{t-1} + 0.4907 ln(\sigma_{t-1}^2)$ ASX200 Index Return ARMA(1,2): $r_{m,t} = 0.4878r_{m,t-1} - 0.8540\varepsilon_{t-1} + 0.4921\varepsilon_{t-2} + \varepsilon_t$

Residual Diagnostics (CAPM-EGARCH(1,1)):

Model <chr></chr>	RMSE <dbl></dbl>
CAPM-EGARCH(1,1)	0.03330253
CAPM-GARCH(1,1)	0.03333084
CAPM with AR(1) errors	0.03562929
ARMAX(2,2)-GARCH(1,1)	0.03567486
ARMAX(2,2)-EGARCH(1,1)	0.03580940
ARMA(2,2)-EGARCH(1,1)	0.03630688
ARMA(2,2)-GARCH(1,2)	0.03687867
ARMA(2,2)-GARCH(1,1)	0.03687869
ARMA(2,2)-GARCH(2,1)	0.03700226
ARMA(2,2)-GJRGARCH(1,1,1)	0.03704154
MA(5)-GARCH(1,2)	0.03720098
MA(5)-GARCH(1,1)	0.03720101
MA(5)-GARCH(2,1)	0.03785100

Forecasts

- Forecasts
- One-step Point Forecast on the ASX200 index return: 0.2506%.
- One-step Point Forecast on the Portfolio Return: 0.6749%
- One-step 95% Prediction Interval: [-2.2625%, 3.6123%]
- > 5% Conditional Value at Risk (CVaR): -1.7902%

Actual Portfolio Return on May 11th: 1.79%

Forecasts

Forecasts

$$r_t = 0.002617 + u_t$$

(0.003819), $N = 88$

- Comparing with a benchmark model constant mean model:
- Point forecast from the constant mean model: 0.2617%
- 95% prediction interval: [-6.8579%, 7.3813%]

Conclusion: our CAPM-EGARCH(1,1) model has a more accurate point forecast and a much narrower interval forecast.

THANK YOU.

by George Wang – Group 40.