ВАРИАНТЫ ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ

ЗАДАНИЕ №1

Дана матрица A. Найти A^{-1} ; сделать проверку.

Вариант 1.

$$A = \begin{pmatrix} 1 & 3 & 1 \\ 2 & -1 & 1 \\ 3 & 0 & 1 \end{pmatrix}$$
.
 Вариант 2.
 $A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & -4 \\ 7 & -1 & -3 \end{pmatrix}$.

 Вариант 3.
 $A = \begin{pmatrix} 1 & 3 & -1 \\ 2 & 4 & 3 \\ 3 & -2 & 5 \end{pmatrix}$.
 Вариант 4.
 $A = \begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 3 \\ 3 & -2 & 5 \end{pmatrix}$.

Вариант 5.
$$A = \begin{pmatrix} -1 & 2 & 0 \\ 3 & 1 & 1 \\ -2 & -1 & 0 \end{pmatrix}$$
. $\underline{Bapuahm 6.}$ $A = \begin{pmatrix} 1 & 3 & -1 \\ 2 & 4 & 3 \\ 3 & -2 & 5 \end{pmatrix}$.

Вариант 7.
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -1 \\ 4 & 4 & 1 \end{pmatrix}$$
. $Bapuahm 8.$ $A = \begin{pmatrix} -2 & 1 & 1 \\ 2 & -1 & 4 \\ 3 & -1 & 1 \end{pmatrix}$.

Вариант 9.
$$A = \begin{pmatrix} 1 & 3 & 1 \\ 2 & -1 & 1 \\ 3 & 2 & 1 \end{pmatrix}$$
. Вариант 10. $A = \begin{pmatrix} 2 & 1 & -3 \\ 1 & -2 & 0 \\ 1 & 1 & 1 \end{pmatrix}$.

Вариант 11.
$$A = \begin{pmatrix} 1 & 2 & -3 \\ 1 & 2 & 3 \\ 3 & -1 & 0 \end{pmatrix}$$
. Вариант 12. $A = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 1 & 3 \\ 2 & 1 & 2 \end{pmatrix}$.

Вариант 13.
$$A = \begin{pmatrix} 1 & 4 & -1 \\ 2 & 0 & -1 \\ 3 & 1 & 2 \end{pmatrix}$$
. Вариант 14. $A = \begin{pmatrix} -1 & 2 & 0 \\ -2 & -1 & 0 \\ 3 & 1 & 2 \end{pmatrix}$.

Вариант 15.
$$A = \begin{pmatrix} 2 & -1 & 1 \\ 3 & -1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$
. Вариант 16. $A = \begin{pmatrix} 3 & 4 & -2 \\ 5 & 1 & 1 \\ 2 & -3 & 2 \end{pmatrix}$.

Вариант 17.
$$A = \begin{pmatrix} 2 & -1 & -3 \\ 1 & 4 & 1 \\ 1 & 5 & 2 \end{pmatrix}$$
. $Bapuahm 18. A = \begin{pmatrix} 4 & 3 & -4 \\ 1 & -5 & 1 \\ 2 & 8 & -7 \end{pmatrix}$.

Вариант 19.
$$A = \begin{pmatrix} 4 & -1 & -2 \\ 2 & 3 & -3 \\ 3 & -4 & 1 \end{pmatrix}$$
. Вариант 20. $A = \begin{pmatrix} 7 & -9 & -5 \\ 5 & -4 & -7 \\ 2 & -3 & -2 \end{pmatrix}$.

Вариант 21.
$$A = \begin{pmatrix} 3 & 0 & 1 \\ 3 & 4 & 2 \\ 0 & 4 & -3 \end{pmatrix}$$
.

$$\underline{Bapuahm\ 23.} \quad A = \begin{pmatrix} 2 & 1 & 4 \\ 6 & 2 & -5 \\ 8 & 4 & -3 \end{pmatrix}.$$

Вариант 25.
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 5 & 1 \\ 4 & 5 & 2 \end{pmatrix}$$
.

$$\underline{Bapuahm\ 27.}\quad A = \begin{pmatrix} 2 & -5 & -6 \\ 1 & -2 & -3 \\ 1 & -3 & 4 \end{pmatrix}.$$

Вариант 29.
$$A = \begin{pmatrix} 4 & 2 & -3 \\ 9 & -4 & -1 \\ 5 & -1 & 3 \end{pmatrix}$$
.

Вариант 22.
$$A = \begin{pmatrix} 3 & 1 & -4 \\ 1 & 1 & -3 \\ 2 & -1 & -1 \end{pmatrix}$$
.

Вариант 24.
$$A = \begin{pmatrix} 3 & 1 & -2 \\ 5 & 1 & 3 \\ 8 & 2 & 2 \end{pmatrix}$$
.

Вариант 26.
$$A = \begin{pmatrix} 4 & -2 & 3 \\ 1 & -7 & 8 \\ 3 & 5 & -6 \end{pmatrix}$$
.

$$\underline{Bapuahm\ 32.}\ \ A = \begin{pmatrix} 3 & 4 & -2 \\ 5 & 1 & 1 \\ 2 & -3 & 2 \end{pmatrix}.$$

Проверить совместность системы уравнений и в случае совместности решить ее: а) по формулам Крамера; б) матричным методом; в) методом Гаусса.

се. а) по формулам крамера, о) матричным методом, в) методом т аусса.				
Вариант 1.	$\begin{cases} x_1 + 3x_2 + x_3 = 0, \\ 2x_1 - x_2 + x_3 = 1, \\ 3x_1 + x_3 = 2. \end{cases}$	Вариант 2.	$\begin{cases} x + y - z = 6, \\ 2x + 3y - 4z = 21, \\ 7x - y - 3z = 6. \end{cases}$	
Вариант 3.	$\begin{cases} x+3y-z=3, \\ 2x+4y+3z=3, \\ 3x-2y+5z=12. \end{cases}$	<u>Вариант 4.</u>	$\begin{cases} x + 3y - z = 4, \\ 2x + y + 3z = 3, \\ 3x - 2y + 5z = 10. \end{cases}$	
Вариант 5.	$\begin{cases} -x + 2y = 8, \\ 3x + y + z = 2, \\ -2x - y = 1. \end{cases}$	<u>Вариант 6.</u>	$\begin{cases} x_1 + 3x_2 - x_3 = -2, \\ 2x_1 + 4x_2 + 3x_3 = 3, \\ 3x_1 - 2x_2 + 5x_3 = 13. \end{cases}$	
<u>Вариант 7.</u>	$\begin{cases} x + y + z = 1, \\ x + 2y - z = -5, \\ 4x + 4y + z = -2. \end{cases}$	<u>Вариант 8.</u>	$\begin{cases} x_2 + x_3 - 2x_1 = 0, \\ 2x_1 - x_2 + 4x_3 = 15, \\ 3x_1 - x_2 + x_3 = 8. \end{cases}$	
<u>Вариант 9.</u>	$\begin{cases} x_1 + 3x_2 + x_3 = 0, \\ 2x_1 - x_2 + x_3 = 1, \\ 3x_1 + 2x_2 + x_3 = 2. \end{cases}$	<u>Вариант 10.</u>	$\begin{cases} 2x + y - 3z = -7, \\ x - 2y = -3, \\ x + y + z = 2. \end{cases}$	
<u>Вариант 11.</u>	$\begin{cases} x_1 + 2x_2 - 3x_3 = 0, \\ x_1 + 2x_2 + 3x_3 = 6, \\ 3x_1 - x_2 = 2. \end{cases}$	<u>Вариант 12.</u>	$\begin{cases} x_1 + 2x_2 - x_3 = 0, \\ x_1 + x_2 + 3x_3 = 7, \\ 2x_1 + x_2 + 2x_3 = 5. \end{cases}$	
<u>Вариант 13.</u>	$\begin{cases} x_1 + 4x_2 - x_3 = 2, \\ 2x_1 - x_3 = -2, \\ 3x_1 + x_2 + 2x_3 = 5. \end{cases}$	<u>Вариант 14.</u>	$\begin{cases} -x_1 + 2x_2 = 8, \\ -2x_1 - x_2 = 1, \\ 3x_1 + x_2 + 2x_3 = 2. \end{cases}$	
<u>Вариант 15.</u>	$\begin{cases} 2x_1 - x_2 + x_3 = 1, \\ 3x_1 - x_2 - x_3 = 6, \\ x_1 + x_2 + x_3 = 6. \end{cases}$	<u>Вариант 16.</u>	$\begin{cases} 3x_1 + 4x_2 - 2x_3 = 3, \\ 5x_1 + x_2 + x_3 = -2, \\ 2x_1 - 3x_2 + 2x_3 = -6. \end{cases}$	
<u>Вариант 17.</u>	$\begin{cases} 2x_1 - x_2 - 3x_3 = 1, \\ x_1 + 4x_2 + x_3 = -6, \\ x_1 + 5x_2 + 2x_3 = -7. \end{cases}$	<u>Вариант 18.</u>	$\begin{cases} 4x_1 + 3x_2 - 4x_3 = 9, \\ x_1 - 5x_2 + x_3 = 6, \\ 2x_1 + 8x_2 - 7x_3 = 3. \end{cases}$	
<u>Вариант 19.</u>	$\begin{cases} 4x_1 - x_2 - 2x_3 = 8, \\ 2x_1 + 3x_2 - 3x_3 = 9, \\ 3x_1 - 4x_2 + x_3 = 2. \end{cases}$	<u>Вариант 20.</u>	$\begin{cases} 7x_1 - 9x_2 - 5x_3 = 1, \\ 5x_1 - 4x_2 - 7x_3 = 9, \\ 2x_1 - 3x_2 - 2x_3 = 0. \end{cases}$	
<u>Вариант 21.</u>	$\begin{cases} 3x_1 - x_3 = 7, \\ 3x_1 + 4x_2 + 2x_3 = 8, \\ 4x_2 - 3x_3 = 7. \end{cases}$	<u>Вариант 22.</u>	$\begin{cases} 3x + y - 4z = 7, \\ x + y - 3z = 4, \\ 2x - y - z = -2. \end{cases}$	

$$\frac{Bapuahm\ 23.}{8apuahm\ 24.} \begin{cases} 2x_1 + x_2 + 4x_3 = 1, \\ 6x_1 + 2x_2 - 5x_3 = 0, \\ 8x_1 + 4x_2 - 3x_3 = 4. \end{cases} \qquad \frac{Bapuahm\ 24.}{8x_1 + 2x_2 + 2x_3} \begin{cases} 3x_1 + x_2 - 2x_3 = -2, \\ 5x_1 + x_2 + 3x_3 = 1, \\ 8x_1 + 2x_2 + 2x_3 = -1. \end{cases}$$

$$\frac{Bapuahm\ 25.}{8x_1 + 5x_2 + 2x_3} \begin{cases} x + 2y + z = 1, \\ 3x + 5y + z = 0, \\ 4x + 5y + 2z = 1. \end{cases} \qquad \frac{Bapuahm\ 26.}{8x_1 - 7x_2 + 8x_3} \begin{cases} 4x_1 - 2x_2 + 3x_3 = 6, \\ x_1 - 7x_2 + 8x_3 = -5, \\ 3x_1 + 5x_2 - 6x_3 = 11. \end{cases}$$

$$\frac{Bapuahm\ 27.}{8x_1 - 3x_2 + 4x_3 = 0.} \end{cases} \qquad \frac{Bapuahm\ 28.}{8x_1 - 3x_2 - 2x_3 = 0.} \end{cases} \qquad \frac{Bapuahm\ 28.}{8x_1 - 4x_2 - 3x_3 = 3, \\ 5x_1 - 3x_2 - 2x_3 = 0. \end{cases}$$

$$\frac{Bapuahm\ 29.}{8x_1 - 4x_2 - x_3 = 4, \\ 5x_1 - x_2 + 3x_3 = 7. \end{cases} \qquad \frac{Bapuahm\ 30.}{8x_1 + 4x_2 + 2x_3 = 15, \\ 3x_1 + 4x_2 + 2x_3 = 15. \end{cases}$$

$$\frac{Bapuahm\ 31.}{8x_1 + 4x_2 - 2x_3 = 15.}$$

$$\frac{Bapuahm\ 32.}{8x_1 - x_2 + 4x_3 = 15, \\ 3x_1 - x_2 + x_3 = 8. \end{cases}$$

Решить систему методом Гаусса; в случае совместности выполнить проверку.

$$\begin{array}{l} \frac{Bapuanm 17}{8apuanm 27}. \begin{cases} x_1 + 2x_2 + 3x_3 - 2x_4 + x_5 = 4, \\ 3x_1 + 6x_2 + 5x_3 - 4x_4 + 3x_5 = 5, \\ x_1 + 2x_2 + 7x_3 - 4x_4 + x_5 = 11, \\ 2x_1 + 4x_2 + 2x_3 - 3x_4 + 3x_5 = 6. \end{cases} \\ \frac{Bapuanm 18}{8x_1 + 4x_2 + 2x_4 + 3x_5 = 5, \\ 5x_1 + 3x_2 + 2x_4 + 3x_5 = 5, \\ 5x_1 + 3x_2 + 2x_4 + 3x_5 = 5, \\ 5x_1 + 3x_2 + 3x_3 + 2x_4 + 6x_5 = 7. \end{cases} \\ \frac{Bapuanm 19}{8x_1 + 4x_2 + 2x_4 + 3x_5 = 5, \\ 5x_1 + 3x_2 + 3x_3 + 2x_4 + 3x_5 = 4, \\ 7x_1 + 5x_2 + 3x_3 + 4x_4 + 6x_5 = 7. \end{cases} \\ \frac{Bapuanm 21}{7x_1 + 5x_2 + 2x_3 - 2x_4 + 6x_5 = -6.} \\ \frac{Bapuanm 22}{7x_1 + 5x_2 + 2x_3 - 2x_3 + 4x_4 = 9, \\ 2x_1 - x_2 + 3x_3 + 3x_5 = 2, \\ -x_1 + 2x_2 - x_3 + 2x_4 - x_5 = -3. \end{cases} \\ \frac{Bapuanm 23}{8x_1 + 2x_2 + 2x_3 + 2x_4 + 2x_5 = 4, \\ x_1 + 2x_2 - 3x_3 + 2x_4 = 2, \\ x_1 - 2x_2 - 2x_3 - 3x_4 - 5x_5 = 7. \end{cases} \\ \frac{Bapuanm 23}{8x_1 + 2x_2 + 2x_3 + 2x_4 + 2x_5 = 4, \\ x_1 + 2x_2 - 2x_3 - 3x_4 - 5x_5 = 7. \end{cases} \\ \frac{Bapuanm 24}{8x_1 + 2x_2 + 2x_3 + 3x_4 + 2x_5 = 4, \\ x_1 + 2x_2 - 2x_3 - 3x_4 - 5x_5 = 7. \end{cases} \\ \frac{Bapuanm 25}{8x_1 + 2x_2 + 2x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 - 2x_3 - 3x_4 - 5x_5 = 7. \end{cases} \\ \frac{Bapuanm 25}{8x_1 + 2x_2 + 2x_3 + 3x_4 + 2x_5 = 1, \\ x_1 - 2x_2 - 2x_3 - 3x_4 - 5x_5 = 7. \end{cases} \\ \frac{Bapuanm 25}{8x_1 + 2x_2 + 2x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 - 2x_3 - 3x_4 - 5x_5 = 7. \end{cases} \\ \frac{Bapuanm 25}{8x_1 + 2x_2 + 2x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 + 3x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 + 3x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 + 3x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 + 3x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 + 3x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 + 3x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 + 3x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 + 3x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 + 3x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 + 3x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 + 3x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 + 3x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 + 3x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 + 3x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 + 3x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 + 3x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 + 3x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 + 3x_3 + 2x_4 + 2x_5 = 1, \\ x_1 - 2x_2 + 3x_3 + 2x_4$$

Даны три вектора $\vec{a}, \vec{b}, \vec{c}$. Найти:

- а) скалярное произведение векторов $\vec{a}, \vec{b};$
- б) векторное произведение векторов \vec{a}, \vec{b} ;
- в) смешанное произведение векторов $\vec{a}, \vec{b}, \vec{c}$.

Вариант 1.
$$\vec{a} = 3\vec{i} - \vec{j} - 2\vec{k}, \vec{b} = 3\vec{j} - \vec{k}, \vec{c} = \vec{i} - 3\vec{j} - \vec{k}.$$

Вариант 2.
$$\vec{a} = \vec{i} - \vec{j} + 2\vec{k}, \vec{b} = 5\vec{i} - 6\vec{j} + 2\vec{k}, \vec{c} = \vec{i} + 3\vec{j} - \vec{k}.$$

Вариант 3.
$$\vec{a} = \vec{i} - \vec{j} + 3\vec{k}, \vec{b} = -2\vec{i} + 2\vec{j} + \vec{k}, \vec{c} = 3\vec{i} - 2\vec{j} + 5\vec{k}.$$

Вариант 4.
$$\vec{a} = 3\vec{i} + \vec{j} + 2\vec{k}, \vec{b} = 2\vec{j} - 3\vec{k}, \vec{c} = \vec{i} - 3\vec{j} + \vec{k}.$$

Вариант 5.
$$\vec{a} = \vec{i} - 3\vec{j} + 5\vec{k}, \vec{b} = 2\vec{i} - \vec{k}, \vec{c} = -4\vec{i} + 6\vec{j} - 2\vec{k}.$$

Вариант 6.
$$\vec{a} = 2\vec{i} + \vec{j} - 5\vec{k}, \vec{b} = 3\vec{j} - \vec{k}, \vec{c} = \vec{i} + \vec{j} - 2\vec{k}.$$

Вариант 7.
$$\vec{a} = \vec{i} - \vec{j} - 2\vec{k}, \vec{b} = \vec{i} - 4\vec{j} - 5\vec{k}, \vec{c} = 3\vec{j} - 2\vec{k}.$$

Вариант 8.
$$\vec{a} = 4\vec{j} - 2\vec{k}, \vec{b} = 2\vec{i} - \vec{j} - 2\vec{k}, \vec{c} = 2\vec{i} - 4\vec{k}.$$

Вариант 9.
$$\vec{a} = 8\vec{j} - 6\vec{k}, \vec{b} = 2\vec{i} + \vec{j} - \vec{k}, \vec{c} = 2\vec{i} + 3\vec{j} - 2\vec{k}.$$

Вариант 10.
$$\vec{a} = 3\vec{i} - 3\vec{j} - 2\vec{k}, \vec{b} = -\vec{j} - 2\vec{k}, \vec{c} = \vec{i} + \vec{j} + 4\vec{k}.$$

Вариант 11.
$$\vec{a} = 3\vec{i} - 6\vec{j} - \vec{k}, \vec{b} = \vec{i} + 4\vec{j} - 5\vec{k}, \vec{c} = 3\vec{i} - 4\vec{j} + 12\vec{k}.$$

Вариант 12.
$$\vec{a} = 6\vec{j} - 4\vec{k}, \vec{b} = 3\vec{i} - 3\vec{j} - \vec{k}, \vec{c} = 5\vec{i} + \vec{j} - \vec{k}.$$

Вариант 13.
$$\vec{a} = \vec{i} - 3\vec{j} + 2\vec{k}, \vec{b} = 2\vec{j} - 2\vec{k}, \vec{c} = 3\vec{i} + 3\vec{j} + \vec{k}.$$

Вариант 14.
$$\vec{a} = 3\vec{i} + 3\vec{j}, \vec{b} = 2\vec{j} - 4\vec{k}, \vec{c} = \vec{i} - 3\vec{k}.$$

Вариант 15.
$$\vec{a} = 2\vec{j} - 2\vec{k}, \vec{b} = 3\vec{i} - \vec{k}, \vec{c} = 5\vec{i} + 3\vec{j} - \vec{k}$$
.

Вариант 16.
$$\vec{a} = 2\vec{i} - 3\vec{j} + 2\vec{k}, \vec{b} = 3\vec{j} - 4\vec{k}, \vec{c} = -\vec{i} + \vec{j} - 2\vec{k}.$$

Вариант 17.
$$\vec{a} = 7\vec{i} + \vec{j} + 2\vec{k}, \vec{b} = -5\vec{i} + 3\vec{j} - 2\vec{k}, \vec{c} = 3\vec{i} + 3\vec{j} + 2\vec{k}.$$

Вариант 18.
$$\vec{a} = -2\vec{i} - \vec{j} + 3\vec{k}, \vec{b} = 2\vec{i} + 2\vec{j} + 4\vec{k}, \vec{c} = \vec{i} - 2\vec{j} + 5\vec{k}.$$

Вариант 19.
$$\vec{a} = 4\vec{i} + 2\vec{j} + 5\vec{k}, \vec{b} = 7\vec{j} + 2\vec{k}, \vec{c} = 2\vec{j} + 7\vec{k}.$$

Вариант 20.
$$\vec{a} = -\vec{i} + 5\vec{j} - 10\vec{k}, \vec{b} = 5\vec{i} - 7\vec{j} + 8\vec{k}, \vec{c} = 2\vec{i} + 2\vec{j} - 7\vec{k}.$$

Вариант 21.
$$\vec{a} = 3\vec{i} + 2\vec{j} - 5\vec{k}, \vec{b} = -\vec{j} + 4\vec{k}, \vec{c} = \vec{i} - 2\vec{j} + 2\vec{k}.$$

Вариант 22.
$$\vec{a} = 4\vec{i} - \vec{j} - 2\vec{k}, \vec{b} = -\vec{i} - 4\vec{j} - 5\vec{k}, \vec{c} = 3\vec{j} - 2\vec{k}.$$

Вариант 23.
$$\vec{a} = \vec{i} - 2\vec{k}, \vec{b} = 2\vec{i} + 3\vec{j} - 2\vec{k}, \vec{c} = \vec{j} + 5\vec{k}.$$

Вариант 24.
$$\vec{a} = -2\vec{j} + 2\vec{k}$$
, $\vec{b} = 2\vec{i} - \vec{j} - \vec{k}$, $\vec{c} = 5\vec{i} - 3\vec{j} - 2\vec{k}$.

Вариант 25.
$$\vec{a} = -\vec{i} + 2\vec{j} - 2\vec{k}, \vec{b} = -\vec{j} + \vec{k}, \vec{c} = \vec{i} + 2\vec{j} + 4\vec{k}.$$

Вариант 26.
$$\vec{a} = 2\vec{i} - \vec{j} + 3\vec{k}, \vec{b} = \vec{i} - 3\vec{j} + 2\vec{k}, \vec{c} = 3\vec{i} + 2\vec{j} - 4\vec{k}.$$

Вариант 27.
$$\vec{a} = 4\vec{i} - \vec{j} - \vec{k}, \vec{b} = \vec{i} + 2\vec{j} - 5\vec{k}, \vec{c} = 3\vec{i} - \vec{j} + 2\vec{k}.$$

Вариант 28.
$$\vec{a} = 2\vec{i} - 3\vec{j} + 4\vec{k}, \vec{b} = 2\vec{i} - 2\vec{k}, \vec{c} = 3\vec{i} - \vec{j} + \vec{k}.$$

Вариант 29.
$$\vec{a} = -\vec{i} + 3\vec{j}, \vec{b} = 3\vec{j} - 4\vec{k}, \vec{c} = \vec{i} - 3\vec{k}.$$

Вариант 30.
$$\vec{a} = 3\vec{i} - 8\vec{k}$$
, $\vec{b} = 3\vec{i} - \vec{j} - \vec{k}$, $\vec{c} = 5\vec{i} + 2\vec{j} - \vec{k}$.

Вариант 31.
$$\vec{a} = 3\vec{i} + 2\vec{j} - 5\vec{k}, \vec{b} = -\vec{j} + 4\vec{k}, \vec{c} = \vec{i} - 2\vec{j} + 2\vec{k}.$$

Вариант 32. $\vec{a} = \vec{i} - \vec{j} + 3\vec{k}, \vec{b} = -2\vec{i} + 2\vec{j} + \vec{k}, \vec{c} = 3\vec{i} - 2\vec{j} + 5\vec{k}.$

Даны координаты точек A, B, C, D. Найти:

- а) указанный угол треугольника АВС;
- б) площадь треугольника ABC;
- в) объем пирамиды АВСО.
- <u>Вариант 1.</u> A(3;1;-2), B(1;0;-1), C(7;-3;-1), D(7;-5;0); угол между сторонами AB и BC.
- <u>Вариант 2.</u> A(1;2;4), B(-3;2;1), C(4;2;1), D(7;-5;0); угол между сторонами AB и AC.
- <u>Вариант 3.</u> A(1;2;0), B(2;0;2), C(2;2;2), D(3;4;-3); угол между сторонами AB и BC.
- <u>Вариант 4.</u> A(2;4;6), B(2;4;7), C(1;-2;0), D(5;1;4); угол при вершине B.
- <u>Вариант 5.</u> A(1;2;3), B(2;3;4), C(-1;2;-3), D(0;1;8); угол при вершине B.
- <u>Вариант 6.</u> A(2;4;6), B(2;4;7), C(1;-2;0), D(5;1;4); угол при вершине C.
- <u>Вариант 7.</u> A(2;4;6), B(2;4;7), C(1;-2;0), D(5;1;4); угол при вершине C.
- <u>Вариант 8.</u> A(-1;-2;1), B(-4;-2;0), C(3;-3;4), D(3;-3;0); угол при вершине A.
- <u>Вариант 9.</u> A(-1;2;0), B(-1;-2;1), C(3;-3;4), D(3;-2;0); угол при вершине A.
- <u>Вариант 10.</u> A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3); угол при вершине A.
- <u>Вариант 11.</u> A(0;-1;4), B(6;-2;9), C(1;8;-3), D(1;5;-2); угол при вершине A.
- *Вариант 12.* A(-1;3;1), B(2;-1;1), C(2;-6;5), D(3;5;1); угол при вершине B.
- $\underline{\textit{Вариант 13.}}$ A(1;-1;2), B(2;-2;2), C(5;-6;2), D(0;1;0); угол при вершине A.
- *Вариант 14.* A(1;-2;1), B(5;5;5), C(3;3;2), D(3;-3;0); угол при вершине C.
- *Вариант 15.* A(0;-2;9), B(6;8;-3), C(1;-1;4), D(1;5;-2); угол при вершине A.
- Вариант 16. A(7;2;1), B(5;-6;2), C(3;4;-2), D(2;-3;2); угол ABC.
- <u>Вариант 17.</u> A(-2;3;-2), B(2;-3;2), C(2;1;0), D(1;5;5); угол ABC.
- Вариант 18. A(3;-1;2), B(-5;6;2), C(-1;3;1), D(2;2;4); угол C.
- Вариант 19. A(4;2;3), B(2;2;7), C(-1;2;-3), D(0;1;5); угол ABC.
- <u>Вариант 20.</u> A(3;-2;2), B(1;-3;5), C(5;0;6), D(4;-4;7); угол ABC.
- Вариант 21. A(1;3;2), B(5;5;7), C(1;10;4), D(1;5;9); угол ABC.
- <u>Вариант 22.</u> A(-1;-3;-1), B(3;-2;-3), C(-2;-7;-6), D(-1;0;-3); угол ABC.
- Вариант 23. A(5;-1;2), B(5;0;2), C(-1;-3;-1), D(2;-3;2); угол ABC.
- Вариант 24. A(0;2;5), B(-4;1;1), C(-3;2;1), D(2;-2;1); угол BAC.
- <u>Вариант 25.</u> A(-1;-1;2), B(3;6;-2), C(3;3;1), D(7;7;4); угол BAC.
- Вариант 26. A(-3;1;-1), B(0;-2;3), C(-1;-2;1), D(3;3;1); угол ABC.
- Вариант 27. A(-2;0;4), B(6;-2;3), C(-1;8;-3), D(1;5;-2); угол BAC.
- <u>Вариант 28.</u> A(2;-1;2), B(2;3;6), C(1;-6;2), D(0;1;0); угол ABC.
- Вариант 29. A(1;2;-3), B(3;3;5), C(-3;0;2), D(0;3;4); угол BAC.
- <u>Вариант 30.</u> A(-3;-2;0), B(6;1;-3), C(-1;-1;4), D(1;5;-2); угол BAC.
- Вариант 31. A(-2;3;-2), B(2;-3;2), C(2;1;0), D(1;5;5); угол ABC.
- *Вариант 32.* A(0;-2;9), B(6;8;-3), C(1;-1;4), D(1;5;-2); угол при вершине A.

Найти вектор \vec{a} , удовлетворяющий заданным условиям, и его направляющие косинусы.

Вариант 1.
$$\vec{a} \uparrow \downarrow \overrightarrow{AB}$$
 и $|\vec{a}| = 35$, если $\overrightarrow{AB} = \{12; 4; 3\}$.

Вариант 2.
$$\vec{a} \uparrow \uparrow \overrightarrow{AB}$$
 и $|\vec{a}| = 1$, если $A(1, -3, 2)$, $B(4, 9, 6)$.

Вариант 3.
$$\vec{a} \uparrow \downarrow \overrightarrow{AB}$$
 и $|\vec{a}| = 27$, если $A(1, -3, 2)$, $B(0, -1, 4)$.

Вариант 4.
$$\vec{a} \uparrow \uparrow \overrightarrow{AB}$$
 и $|\vec{a}| = 30$, если $\overrightarrow{AB} = 12\vec{i} + 16\vec{j} + 15\vec{k}$.

Вариант 5.
$$\vec{a} \uparrow \uparrow \overrightarrow{AB}$$
 и $|\vec{a}| = 39$, если $\overrightarrow{AB} = \{3; -12; -4\}$.

Вариант 6.
$$\vec{a} \uparrow \downarrow \overrightarrow{AB}$$
 и $|\vec{a}| = 30$, если $A(0;3;-1)$, $B(1;1;-1)$.

Вариант 7.
$$\vec{a} \uparrow \downarrow \vec{d}$$
 и $|\vec{a}| = 50$, если $\vec{d} = \{6; -8; -7, 5\}$.

Вариант 8.
$$\vec{a} \uparrow \downarrow \overrightarrow{AB}$$
 и $|\vec{a}| = 26$, если $A(-1; -3; -1)$, $B(2; 9; 3)$.

Вариант 9.
$$\vec{a} \uparrow \uparrow \overrightarrow{AB}$$
 и $|\vec{a}| = 30$, если $A(1, -2, -2)$, $B(1, 6, 4)$.

Вариант 10.
$$\vec{a} \uparrow \uparrow \overrightarrow{AB}$$
 и $|\vec{a}| = 30$, если $\overrightarrow{AB} = 4\vec{i} + 8\vec{j} - 8\vec{k}$.

Вариант 11.
$$\vec{a} \uparrow \downarrow \vec{AB}$$
 и $|\vec{a}| = 50$, если $A(-6, -7, 15)$, $B(6, 9, 0)$.

$$\underline{Bapuahm\ 12.}\quad \vec{a}\uparrow\downarrow \overrightarrow{AB}\$$
и $|\vec{a}|=30$, если $A(0,3,-1),B(1,1,-1).$

Вариант 13.
$$\vec{a} \uparrow \downarrow \vec{d}$$
 и $|\vec{a}| = 30$, если $\vec{d} = -2\vec{i} - \vec{j} + 2\vec{k}$.

Вариант 14.
$$\vec{a} \uparrow \uparrow \vec{d}$$
 и $|\vec{a}| = 39$, если $\vec{d} = -3\vec{i} + 12\vec{j} + 4\vec{k}$.

Вариант 15.
$$\vec{a} \uparrow \uparrow \overrightarrow{AB}$$
 и $|\vec{a}| = 1$, если $A(5; -3; 4)$, $B(-7; 1; 1)$.

Вариант 16.
$$\vec{a} \uparrow \downarrow \vec{d}$$
 и $|\vec{a}| = 2$, если $\vec{d} = \{32, -24, 30\}$.

Вариант 17.
$$\vec{a} \uparrow \uparrow \overrightarrow{AB}$$
 и $|\vec{a}| = 3$, если $A(2;-1;-1)$, $B(-6;5;-1)$.

Вариант 18.
$$\vec{a} \uparrow \downarrow \vec{d}$$
 и $|\vec{a}| = 2$, если $\vec{d} = 2\vec{i} + 3\vec{j} - 6\vec{k}$.

Вариант 19.
$$\vec{a} \uparrow \downarrow \vec{d}$$
 и $|\vec{a}| = 6$, если $\vec{d} = 3\vec{i} - 4\vec{k}$.

Вариант 20.
$$\vec{a} \uparrow \uparrow \overrightarrow{AB}$$
 и $|\vec{a}| = 15$, если $A(3;2;1)$, $B(15;-13;-14)$.

Вариант 21.
$$\vec{a}$$
 ↑↑ \vec{BC} и $|\vec{a}|$ = 2, если $B(3;5;5)$, $C(5;4;3)$.

Вариант 22.
$$\vec{a} \uparrow \downarrow \vec{d}$$
 и $|\vec{a}| = 7$, если $\vec{d} = -8\vec{i} - 15\vec{j} + 17\vec{k}$.

Вариант 23.
$$\vec{a} \uparrow \uparrow \vec{d}$$
 и $|\vec{a}| = 1$, если $\vec{d} = \vec{i} - 5\vec{j} + 2\vec{k}$.

$$\underline{Bapuahm\ 24.}\quad \vec{a}\uparrow\uparrow \overline{AB}\ _{\mathrm{H}}\ \left|\vec{a}\right|=3\ ,\ \mathrm{есл}_{\mathrm{H}}\ A(2;-1;-1),\ B(-4;5;-4).$$

$$\underline{\textit{Вариант 25.}} \quad \vec{a} \uparrow \downarrow \vec{d} \ \text{и} \ \left| \vec{a} \right| = 2 \ , \ \text{если} \ \vec{d} = \left\{ \frac{1}{2}; -1; 1 \right\}.$$

Вариант 26.
$$\vec{a} \uparrow \uparrow \overrightarrow{AB}$$
 и $|\vec{a}| = 14$, если $A(-1;0;2)$, $B(5;3;0)$.

Вариант 27.
$$\vec{a} \uparrow \uparrow \overrightarrow{AB}$$
 и $|\vec{a}| = 25$, если $A(3;1;0,5)$, $B(-3;-7;-7)$.

Вариант 28.
$$\vec{a} \uparrow \downarrow \overrightarrow{AB}$$
 и $|\vec{a}| = 3$, если $A(3; -4; 3)$, $B(-3; -1; 1)$.

Вариант 29.
$$\vec{a} \uparrow \downarrow \vec{d}$$
 и $|\vec{a}| = 2$, если $\vec{d} = 12\vec{i} - 4\vec{j} + 6\vec{k}$.

<u>Вариант 30.</u> \vec{a} ↑↓ \overrightarrow{AB} и $|\vec{a}|$ = 4, если A(-5;-1;4), B(7;2;0).

<u>Вариант 31.</u> $\vec{a} \uparrow \uparrow \overrightarrow{BC}$ и $|\vec{a}| = 2$, если B(3;5;5), C(5;4;3).

<u>Вариант 32.</u> $\vec{a} \uparrow \uparrow \overrightarrow{AB}$ и $|\vec{a}| = 1$, если A(1, -3, 2), B(4, 9, 6).

Даны точки A, B, C. Найти уравнения прямых, проходящих через заданную точку:

- а) параллельно указанной прямой;
- б) перпендикулярно указанной прямой.

)		
	Координаты точек	Точка	Прямая
Вариант 1.	A(3;-4), B(-1;-2), C(1;3)	C	AB
Вариант 2.	A(-1;3), B(2;-1), C(2;-6)	C	AB
Вариант 3.	A(1;-1), B(6;-6), C(1;3)	C	AB
Вариант 4.	A(3;1), B(1;0), C(7;-3)	C	AB
Вариант 5.	A(1;2), B(2;3), C(-1;2)	C	AB
Вариант 6.	A(3;-7), B(2;8), C(-7;2)	C	AB
Вариант 7.	A(4;-9), B(-1;3), C(2;7)	A	BC
Вариант 8.	A(-3;6), B(4;1), C(0;-2)	A	BC
Вариант 9.	A(2;3), B(3;4), C(3;1)	C	AB
<u>Вариант 10.</u>	<i>A</i> (3;-8), <i>B</i> (5;-3), <i>C</i> (-7;2)	A	BC
<u>Вариант 11.</u>	A(-1;6), B(7;-2), C(3;2)	A	BC
<u>Вариант 12.</u>	<i>A</i> (8;–5), <i>B</i> (6;–5), <i>C</i> (1;6)	A	BC
Вариант 13.	A(1;3), B(-1;2), C(0;9)	A	BC
<u>Вариант 14.</u>	A(-2;4), B(-5;7), C(-7;0)	C	AB
<u>Вариант 15.</u>	A(-7;2), B(-5;7), C(-2;4)	C	AB
<u>Вариант 16.</u>	A(1;-1), B(-2;1), C(3;5)	C	AB
<u>Вариант 17.</u>	A(1;-2), B(1;1), C(0;3)	A	BC
<u>Вариант 18.</u>	A(3;-1), B(5;7), C(4;-1)	В	AC
<u>Вариант 19.</u>	A(-1;-3), B(4;-5), C(2;1)	A	BC
<u>Вариант 20.</u>	A(5;-4), B(-1;3), C(-3;-2)	C	AB
<u>Вариант 21.</u>	<i>A</i> (2;3), <i>B</i> (-5;1), <i>C</i> (-8;12)	C	AB
<u>Вариант 22.</u>	<i>A</i> (2;-3), <i>B</i> (4;5), <i>C</i> (3;-4)	A	BC
<u>Вариант 23.</u>	A(2;-1), B(1;-1), C(0;2)	A	BC
<u>Вариант 24.</u>	A(2;-1), B(0;-2), C(12;3)	A	BC
<u>Вариант 25.</u>	<i>A</i> (4;2), <i>B</i> (7;4), <i>C</i> (3;–4)	A	BC
<u>Вариант 26.</u>	<i>A</i> (8; –9), <i>B</i> (3; –4), <i>C</i> (–1; –2)	C	AB
<u>Вариант 27.</u>	A(3;4), B(-8;1), C(2;5)	В	AC

<u>Вариант 28.</u>	A(3;-1), B(5;7), C(4;-1)	A	BC
<u>Вариант 29.</u>	A(-1;4), B(5;2), C(-3;6)	A	BC
<u>Вариант 30.</u>	A(-1;4), B(5;3), C(0;1)	A	BC
<u>Вариант 31.</u>	A(-3;6), B(4;1), C(0;-2)	A	BC
<u>Вариант 32.</u>	A(-1;-3), B(4;-5), C(2;1)	A	BC

Построить линии, заданные каноническими уравнениями:

Вариант 1. a)
$$\frac{x^2}{36} - \frac{y^2}{64} = 1;$$

$$6) \ \frac{x^2}{36} + \frac{y^2}{64} = 1;$$

B)
$$y^2 = 4x$$
.

Вариант 2. a)
$$\frac{x^2}{9} - \frac{y^2}{16} = 1;$$

6)
$$\frac{x^2}{9} + \frac{y^2}{16} = 1;$$

B)
$$y^2 = 0.5x$$
.

Вариант 3. a)
$$\frac{x^2}{25} - \frac{y^2}{16} = 1;$$

6)
$$\frac{x^2}{25} + \frac{y^2}{16} = 1;$$

B)
$$y^2 = 6x$$
.

Вариант 4. a)
$$\frac{x^2}{36} - \frac{y^2}{25} = 1;$$

6)
$$\frac{x^2}{36} + \frac{y^2}{25} = 1;$$

B)
$$x^2 = 2y$$
.

Bapuahm 5. a)
$$\frac{x^2}{25} - \frac{y^2}{64} = 1$$
;

$$6) \frac{x^2}{25} + \frac{y^2}{64} = 1;$$

B)
$$x^2 = 6y$$
.

Вариант 6. a)
$$\frac{x^2}{81} - \frac{y^2}{64} = 1;$$

6)
$$\frac{x^2}{81} + \frac{y^2}{64} = 1$$
;

B)
$$x^2 = -5y$$
.

Вариант 7. a)
$$\frac{y^2}{16} - \frac{x^2}{25} = 1;$$

6)
$$\frac{x^2}{16} + \frac{y^2}{25} = 1;$$

B)
$$y^2 = x$$
.

Вариант 8. a)
$$\frac{x^2}{25} - \frac{y^2}{9} = 1;$$

6)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1;$$

B)
$$y^2 = -2x$$
.

Вариант 9. a)
$$\frac{x^2}{9} - \frac{y^2}{36} = 1;$$

$$6) \frac{x^2}{9} + \frac{y^2}{36} = 1;$$

B)
$$y^2 = -6x$$
.

Вариант 10. a)
$$\frac{x^2}{49} - \frac{y^2}{9} = 1;$$

6)
$$\frac{x^2}{49} + \frac{y^2}{9} = 1;$$

B)
$$y^2 = 7x$$
.

Вариант 11. a)
$$\frac{x^2}{49} - \frac{y^2}{25} = 1;$$

6)
$$\frac{x^2}{49} + \frac{y^2}{25} = 1;$$

B)
$$y^2 = -3x$$
.

Вариант 12. а)
$$\frac{x^2}{144} - \frac{y^2}{25} = 1;$$

$$6) \frac{x^2}{144} + \frac{y^2}{25} = 1;$$

B)
$$y^2 = -12x$$
.

Вариант 13. a)
$$\frac{x^2}{144} - \frac{y^2}{49} = 1;$$

$$6) \frac{x^2}{144} + \frac{y^2}{49} = 1;$$

B)
$$y^2 = 12x$$
.

Вариант 14. a)
$$\frac{x^2}{4} - \frac{y^2}{9} = 1;$$

$$6) \frac{x^2}{4} + \frac{y^2}{6} = 1;$$

B)
$$x^2 = 6y$$
.

Вариант 15. a)
$$-\frac{x^2}{16} + \frac{y^2}{4} = 1;$$

$$6) \frac{x^2}{16} + \frac{y^2}{4} = 1;$$

B)
$$x^2 = -6y$$
.

Вариант 16. a)
$$\frac{x^2}{9} - \frac{y^2}{36} = 1;$$

6)
$$\frac{x^2}{9} + \frac{y^2}{36} = 1;$$

B)
$$y^2 = -6x$$
.

Вариант 17. a)
$$\frac{x^2}{121} - \frac{y^2}{144} = 1;$$

$$6) \frac{x^2}{121} + \frac{y^2}{144} = 1;$$

B)
$$y^2 = 11x$$
.

Bapuahm 18. a)
$$-\frac{x^2}{81} + \frac{y^2}{25} = 1$$
;

$$6) \frac{x^2}{81} + \frac{y^2}{25} = 1;$$

B)
$$y^2 = 9x$$
.

Вариант 19. а)
$$\frac{x^2}{144} + \frac{y^2}{100} = 1;$$

6)
$$\frac{x^2}{144} - \frac{y^2}{100} = 1;$$

B)
$$y^2 = 10x$$
.

Вариант 20. a)
$$\frac{x^2}{4} - \frac{y^2}{25} = 1$$
;

6)
$$\frac{x^2}{4} + \frac{y^2}{25} = 1;$$

B)
$$y^2 = -x$$
.

Вариант 21. a)
$$\frac{x^2}{4} - \frac{y^2}{16} = 1;$$

6)
$$\frac{x^2}{4} + \frac{y^2}{16} = 1;$$

B)
$$y^2 = 9x$$
.

Вариант 22. a)
$$\frac{x^2}{81} + \frac{y^2}{144} = 1$$
;

6)
$$\frac{x^2}{81} - \frac{y^2}{144} = 1;$$

B)
$$x^2 = 12y$$
.

Вариант 23. a)
$$-\frac{x^2}{25} + \frac{y^2}{16} = 1;$$

$$6) \frac{x^2}{25} + \frac{y^2}{16} = 1;$$

B)
$$y^2 = -2x$$
.

Вариант 24. a)
$$\frac{x^2}{64} - \frac{y^2}{100} = 1;$$

$$6) \frac{x^2}{64} + \frac{y^2}{100} = 1;$$

B)
$$y^2 = 8x$$
.

Вариант 25. a)
$$-\frac{x^2}{81} + \frac{y^2}{100} = 1;$$

6)
$$\frac{x^2}{81} + \frac{y^2}{100} = 1$$
;

B)
$$x^2 = 7y$$
.

Вариант 26. a)
$$\frac{y^2}{16} - \frac{x^2}{9} = 1$$
;

6)
$$\frac{x^2}{16} + \frac{y^2}{9} = 1;$$

B)
$$x^2 = 8y$$
.

Вариант 27. а)
$$-\frac{x^2}{9} + \frac{y^2}{4} = 1;$$

6)
$$\frac{x^2}{9} + \frac{y^2}{4} = 1;$$

B)
$$y^2 = -9x$$
.

Вариант 28. a)
$$-\frac{x^2}{81} + \frac{y^2}{25} = 1;$$

6)
$$\frac{x^2}{81} + \frac{y^2}{25} = 1;$$

B)
$$y^2 = 9x$$
.

Вариант 29. a)
$$\frac{x^2}{100} - \frac{y^2}{16} = 1;$$

$$6) \frac{x^2}{100} + \frac{y^2}{16} = 1;$$

B)
$$x^2 = 4y$$
.

Вариант 30. a)
$$\frac{x^2}{100} - \frac{y^2}{49} = 1;$$

6)
$$\frac{x^2}{100} + \frac{y^2}{49} = 1$$
;

B)
$$y^2 = -10x$$
.

Вариант 31. a)
$$\frac{x^2}{144} - \frac{y^2}{49} = 1;$$

6)
$$\frac{x^2}{144} + \frac{y^2}{49} = 1;$$

B)
$$y^2 = 12x$$
.

Вариант 32. a)
$$\frac{x^2}{4} - \frac{y^2}{16} = 1;$$

$$6) \frac{x^2}{4} + \frac{y^2}{16} = 1;$$

B)
$$y^2 = 9x$$
.

Выделив полные квадраты, привести уравнение кривой второго порядка к каноническому виду и сделать рисунок кривой.

Вариант 1. a)
$$4x^2 + 16y^2 - 24x + 64y + 36 = 0$$
;

Вариант 2. a)
$$4x^2 - 9y^2 - 8x - 36y - 68 = 0$$
;

Вариант 3. a)
$$4x^2 - 8x - y + 7 = 0$$
;

Вариант 4. a)
$$9x^2 + 16y^2 + 18x - 32y - 119 = 0$$
;

Bapuahm 5. a)
$$25x^2 + 4y^2 + 100x + 8y + 4 = 0$$
;

Вариант 6. a)
$$4x^2 - 9y^2 - 24x + 18y - 9 = 0$$
;

Вариант 7. a)
$$\frac{1}{4}x^2 + x - y + 2 = 0$$
;

Вариант 8. a)
$$4x^2 + 9y^2 - 8x + 36y + 4 = 0$$
;

Вариант 9. a)
$$-25x^2 + 4y^2 - 100x + 8y + 196 = 0$$
;

Вариант 10. a)
$$49x^2 + 9y^2 - 98x - 18y - 383 = 0$$
;

Вариант 11. a)
$$9x^2-4y^2-54x+8y+41=0$$
;

Вариант 12. a)
$$9x^2 + 49y^2 + 18x - 98y - 400 = 0$$
;

Вариант 13. a)
$$4x^2 + 9y^2 - 24x - 18y + 9 = 0$$
;

Вариант 14. a)
$$25x^2-4y^2-100x+8y-4=0$$
:

Вариант 15. a)
$$x^2 + 4x - 5y + 3 = 0$$
;

Вариант 16. a)
$$x^2 - 4x + 5y + 3 = 0$$
;

Вариант 17. a)
$$9x^2 + 4y^2 - 54x - 8y + 49 = 0$$
;

Вариант 18. a)
$$9x^2 - 25y^2 + 36x + 100y - 289 = 0$$
;

Вариант 19. a)
$$y-2-x-x^2=0$$
;

Вариант 20. a)
$$4x^2 + 4x - 8y - 19 = 0$$
;

Вариант 21. a)
$$25x^2 - 4y^2 + 100x - 8y - 4 = 0$$
;

Вариант 22. a)
$$-25x^2 + 9y^2 + 100x + 36y - 289 = 0$$
;

Вариант 23. a)
$$9x^2 + 25y^2 + 36x - 100y - 89 = 0$$
;

Вариант 24. a)
$$-25x^2 + 16y^2 + 150x - 96y - 481 = 0$$
;

Вариант 25. a)
$$25x^2 + 16y^2 - 150x - 96y - 31 = 0$$
;

Вариант 26. a)
$$25x^2 - 4y^2 - 100x - 8y - 4 = 0$$
;

6)
$$x^2 + y^2 - 3x = 0$$
.

6)
$$x^2 + y^2 - 3x + 4y = 0$$
.

6)
$$x^2 + y^2 - 3y = 0$$
.

6)
$$x^2 + y^2 - 5x = 0$$
.

6)
$$x^2 + y^2 - 3x - 3y = 0$$
.

6)
$$3x^2 + 3y^2 - 6x - 2y = 0$$
.

6)
$$2x^2 + 2y^2 + y = 0$$
.

6)
$$x^2 + y^2 + y = 0$$
.

6)
$$3x^2 + 3y^2 + x = 0$$
.

$$6) x^2 + y^2 - 3y = 0.$$

6)
$$x^2 + y^2 + 5x - 8y + 1 = 0$$
.

6)
$$x^2 + y^2 - 3x + 7y - 25 = 0$$
.

6)
$$x^2 + y^2 - 8y + 1 = 0$$
.

6)
$$5x^2 + 5y^2 + x = 0$$
.

6)
$$2x^2 + 2y^2 + 6x - 8y + \frac{9}{2} = 0.$$

6)
$$x^2 + y^2 + 6x - 8y = 0$$
.

6)
$$x^2 + y^2 + 4x - 1 = 0$$
.

6)
$$4x^2 + 4y^2 - 3x + 4y = 0$$
.

6)
$$x^2 + y^2 - 14x - 8y + 40 = 0$$
.

6)
$$2x^2 + 2y^2 - 4x - 6y = 0$$
.

6)
$$x^2 + y^2 - 4x - 6y = 3$$
.

6)
$$x^2 + y^2 - 2x + 4y - 11 = 0$$
.

6)
$$x^2 + y^2 + 8x - 6y = 0$$
.

$$6) x^2 + y^2 + 4y = 0.$$

6)
$$3x^2 + 3y^2 + 2x + y = 0$$
.

6)
$$x^2 + y^2 + 10x - 4y = 0$$
.

Вариант 27. a)
$$-16x^2 + 25y^2 + 96x + 100y - 444 = 0$$
;

Вариант 28. a)
$$9x^2 + 4y^2 + 72x - 24y + 144 = 0$$
;

Вариант 29. a)
$$16x^2 + 25y^2 - 96x + 100y - 156 = 0$$
;

Вариант 30. a)
$$49x^2 + 9y^2 - 98x + 18y - 400 = 0$$
;

Вариант 31. a)
$$\frac{1}{4}x^2 + x - y + 2 = 0$$
;

Вариант 32. а)
$$9x^2 - 4y^2 - 54x + 8y + 41 = 0$$
;

6)
$$x^2 + y^2 + 16x - 20y - 5 = 0$$
.

6)
$$x^2 + y^2 - 2x + 4y - 11 = 0$$
.

6)
$$x^2 + y^2 + 4x = 5$$
.

6)
$$4x^2 + 4y^2 - 8x + 6y = \frac{11}{4}$$
.

$$6) \ 2x^2 + 2y^2 + y = 0.$$

6)
$$x^2 + y^2 + 5x - 8y + 1 = 0$$
.

Определить, является ли заданная система векторов линейно независимой.

<u>Вариант 1.</u> Система многочленов $\vec{x}_1 = 1$, $\vec{x}_2 = 1 + t$, $\vec{x}_3 = 1 + t^2$, $\vec{x}_4 = 1 + t^3$.

 $\underline{\textit{Вариант 2.}} \quad \text{Система матриц \overline{a}_1} = \begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix}, \ \overline{a}_2 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \ \overline{a}_3 = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \ \overline{a}_4 = \begin{pmatrix} -1 & 2 \\ 3 & 6 \end{pmatrix}.$

Вариант 3. Система многочленов $2t + t^5$, $t^3 - t^5$, $t + t^3$.

<u>Вариант 4.</u> Система векторов $\overline{x}_1 = (-2;1;1;3), \quad \overline{x}_2 = (-2;7;0;4), \quad \overline{x}_3 = (-7;4;6;-10),$ $\overline{x}_4 = (8;9;-3;-4)$.

<u>Вариант 5.</u> Система векторов $\overline{a}_1 = (-1;1;0;3)$, $\overline{a}_2 = (-1;3;1;-1)$, $\overline{a}_3 = (1;2;-1;2)$, $\overline{a}_4 = (0;-1;0;1)$.

<u>Вариант 6.</u> Система матриц $\overline{a}_1 = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$, $\overline{a}_2 = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$, $\overline{a}_3 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\overline{a}_4 = \begin{pmatrix} 3 & 4 \\ 5 & 7 \end{pmatrix}$.

<u>Вариант 7.</u> Система векторов $\overline{a}_1 = (1;2;3;5;0)$, $\overline{a}_2 = (2;2;-3;-4;1)$, $\overline{a}_3 = (3;4;-1;-4;-1)$, $\overline{a}_4 = (4;7;7;3;5)$.

<u>Вариант 8.</u> Система многочленов $1+2x^2+x^3$, x, $2-3x+3x^2-x^3$, $3+4x+4x^2+2x^3$. <u>Вариант 9.</u> Система векторов $\overline{a}_1=(-1;2;0;1)$, $\overline{a}_2=(3;0;-1;-2)$, $\overline{a}_3=(1;1;1;1)$, $\overline{a}_4=(0;-2;3;0)$.

Вариант 10. Система многочленов $x + 3x^2 - x^3$, $2x^3 + x - 2$, $3 + x - x^2$, $x + 2x^2 + x^3$.

<u>Вариант 11.</u> Система векторов $\overline{e}_1 = (-1;-1;1;0)$, $\overline{e}_2 = (1;3;2;-1)$, $\overline{e}_3 = (0;1;-1;0)$, $\overline{e}_4 = (3;-1;2;1)$.

<u>Вариант 12.</u> Система матриц $\bar{a}_1 = \begin{pmatrix} -2 & 0 \\ 1 & 1 \end{pmatrix}$, $\bar{a}_2 = \begin{pmatrix} 0 & 1 \\ -2 & 0 \end{pmatrix}$, $\bar{a}_3 = \begin{pmatrix} 1 & 3 \\ 0 & 0 \end{pmatrix}$, $\bar{a}_4 = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$.

 $\underline{\textit{Вариант 13.}} \quad \text{Система матриц } \overline{a}_1 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, \ \overline{a}_2 = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}, \ \overline{a}_3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ \overline{a}_4 = \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}.$

 $\underline{\textit{Вариант 14.}} \quad \text{Система матриц } \overline{a}_1 = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}, \ \overline{a}_2 = \begin{pmatrix} 0 & 1 \\ -3 & 4 \end{pmatrix}, \ \overline{a}_3 = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix}, \ \overline{a}_4 = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}.$

Вариант 15. Система многочленов $2x^5 + x^3$, $4x^5 + 3x^3 - 4x$, $x^5 + 5x^3 - 3x$.

<u>Вариант 17.</u> Система векторов $\overline{e}_1 = (-1; -1; -2; 1; 0)$, $\overline{e}_2 = (1; 3; 0; 2; -1)$, $\overline{e}_3 = (0; 1; 1; -1; 0)$.

Вариант 18. Система многочленов $x^4 - 2x^2 + 1$, $2x^4 + 1$, $x^2 - x^4 + 1$.

<u>Вариант 19.</u> Система матриц $\overline{a}_1 = \begin{pmatrix} -1 & 3 \\ 1 & 0 \end{pmatrix}, \ \overline{a}_2 = \begin{pmatrix} 2 & 0 \\ 1 & -2 \end{pmatrix}, \ \overline{a}_3 = \begin{pmatrix} 0 & -1 \\ 1 & 3 \end{pmatrix}, \ \overline{a}_4 = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}.$

<u>Вариант 20.</u> Система многочленов $3+x^2-x^3$, $3x^2-x^3+x-1$, $1-x^2$, $2-x+2x^2+x^3$.

Вариант 22. Система многочленов $2t + t^5$, $t^3 - t^5$, $t + t^3$.

<u>Вариант 23.</u> Система векторов $\overline{e}_1 = (-3;2;0;-1)$, $\overline{e}_2 = (2;1;2;2)$, $\overline{e}_3 = (1;-1;1;0)$, $\overline{e}_4 = (0;2;0;1)$.

Вариант 24. Система многочленов $2x^2 + 3x + 1$, $-3x^2 + 2x + 4$, $x^2 - x - 5$.

<u>Вариант 25.</u> Система векторов $\overline{e}_1 = (-1;3;1;0)$, $\overline{e}_2 = (2;0;1;-2)$, $\overline{e}_3 = (0;-1;1;3)$, $\overline{e}_4 = (1;2;1;0)$.

 $\underline{\textit{Вариант 26.}} \quad \text{Система матриц} \ \overline{a}_1 = \begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}, \ \overline{a}_2 = \begin{pmatrix} -2 & 2 \\ -1 & 1 \end{pmatrix}, \ \overline{a}_3 = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}, \ \overline{a}_4 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$

 $\underline{\textit{Вариант 27.}} \quad \text{Система матриц } \overline{a}_1 = \begin{pmatrix} -2 & 0 \\ 1 & 1 \end{pmatrix}, \ \overline{a}_2 = \begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix}, \ \overline{a}_3 = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}, \ \overline{a}_4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$

Вариант 28. Система векторов $1-x^4$, $x-x^4$, x^2-x^4 , x^3-x^4 , x^4 .

<u>Вариант 29.</u> Система матриц $\overline{a}_1 = \begin{pmatrix} 1 & 3 \\ 0 & -1 \end{pmatrix}$, $\overline{a}_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\overline{a}_3 = \begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix}$, $\overline{a}_4 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.

<u>Вариант 30.</u> Система многочленов $3x^2 + x^3 - 1$, $x^2 - x$, $2 + 3x + x^2$, $1 + x + x^2 + 2x^3$.

<u>Вариант 31.</u> Система векторов $\overline{a}_1 = (-1;1;0;3)$, $\overline{a}_2 = (-1;3;1;-1)$, $\overline{a}_3 = (1;2;-1;2)$, $\overline{a}_4 = (0;-1;0;1)$.

Найти координаты вектора в заданном базисе указанного линейного пространства.

 $\underline{\textit{Вариант 1.}}$ Координаты элемента $\overline{a} = \begin{pmatrix} 6 & 2 \\ 1 & -4 \end{pmatrix}$ в базисе $\overline{e}_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $\overline{e}_2 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$,

 $\overline{e}_3=egin{pmatrix} 1&0\\1&0 \end{pmatrix},\ \overline{e}_4=egin{pmatrix} 0&0\\0&1 \end{pmatrix}$ линейного пространства квадратных матриц 2-го порядка.

<u>Вариант 2.</u> Координаты многочлена $5t - t^3 + 2t^5$ в базисе $2t + t^5$, $t^3 - t^5$, $t + t^3$ пространства нечетных многочленов степени не выше 5.

<u>Вариант 3.</u> Координаты $\overline{x} = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$ в базисе $\overline{a}_1 = \begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix}$, $\overline{a}_2 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, $\overline{a}_3 = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$,

 $\overline{a}_4 = \begin{pmatrix} -1 & 2 \\ 3 & 6 \end{pmatrix}$ пространства квадратных матриц 2-го порядка.

<u>Вариант 4.</u> Координаты $g(x) = 4x^2 + x - 9$ в базисе $2x^2 + 3x + 1, -3x^2 + 2x + 4, x^2 - x - 5$ линейного пространства многочленов степени не выше 2.

<u>Вариант 5.</u> Координаты многочлена $5t - t^3 + 2t^5$ в базисе $t + t^5$, $t^3 + t^5$, $t + t^3$ линейного пространства нечетных многочленов степени не выше 5.

<u>Вариант 6.</u> Координаты многочлена $f(x)=1+x^2-2x^3$ в базисе 1, x+1, x^2+1 , x^3+1 линейного пространства многочленов степени не выше 3.

<u>Вариант 7.</u> Координаты многочлена $f(x) = 1 - 2x + 3x^2 - 4x^3 + 5x^4$ в базисе 1, x - 1, $(x-1)^2$, $(x-1)^3$, $(x-1)^4$ пространства многочленов степени не выше 4.

<u>Вариант 8.</u> Координаты матрицы $\bar{x} = \begin{pmatrix} 1 & 4 \\ -4 & 0 \end{pmatrix}$ в базисе $\bar{a}_1 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$, $\bar{a}_2 = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$,

 $\overline{a}_3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ \overline{a}_4 = \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}$ пространства квадратных матриц 2-го порядка.

<u>Вариант 9.</u> Координаты многочлена $g(x) = 4 + x + 8x^2 - 5x^3$ в базисе $x + 3x^2 - x^3$, $2x^3 + x - 2$, $3 + x - x^2$, $x + 2x^2 + x^3$ пространства многочленов степени не выше 3.

 $\underline{\textit{Вариант 10.}}$ Координаты матрицы $\overline{x} = \begin{pmatrix} 2 & 6 \\ 8 & 0 \end{pmatrix}$ в базисе $\overline{a}_1 = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$, $\overline{a}_2 = \begin{pmatrix} 1 & 2 \\ 4 & 0 \end{pmatrix}$,

 $\overline{a}_3 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \ \overline{a}_4 = \begin{pmatrix} 0 & 0 \\ 0 & 3 \end{pmatrix}$ пространства квадратных матриц 2-го порядка.

 $\underline{Bapuaнm\ 11}.$ Координаты матрицы $\overline{d}=\begin{pmatrix} -5 & 8 \\ 1 & 4 \end{pmatrix}$ в базисе $\overline{a}_1=\begin{pmatrix} -1 & 3 \\ 1 & 0 \end{pmatrix}, \ \overline{a}_2=\begin{pmatrix} 2 & 0 \\ 1 & -2 \end{pmatrix},$

 $\overline{a}_3 = \begin{pmatrix} 0 & -1 \\ 1 & 3 \end{pmatrix}, \ \overline{a}_4 = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$ пространства квадратных матриц 2-го порядка.

<u>Вариант 12.</u> Координаты многочлена $f(x) = 2x + 6x^2 + 3x^3$ в базисе $1 + 2x^2 + x^3$, x, $2 - 3x + 3x^2 - x^3$, $3 + 4x + 4x^2 + 2x^3$ пространства многочленов степени не выше 3.

<u>Вариант 13.</u> Координаты многочлена $f(x) = x^4 - 5x^2$ в базисе $x^4 - 2x^2 + 1$, $2x^4 + 1$, $x^2 - x^4 + 1$ пространства четных многочленов степени не выше 4.

<u>Вариант 14.</u> Координаты элемента $g(x) = 4x^2 + x - 9$ в базисе $2x^2 + 3x + 1$, $-3x^2 + 2x + 4$, $x^2 - x - 5$ пространства многочленов степени не выше 2.

 $\underline{Bapuahm\ 15}.$ Координаты матрицы $\overline{x} = \begin{pmatrix} 1 & -11 \\ 2 & 4 \end{pmatrix}$ в базисе $\overline{a}_1 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, \ \overline{a}_2 = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix},$ $\overline{a}_3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ \overline{a}_4 = \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}$ пространства квадратных матриц 2-го порядка.

<u>Вариант 16.</u> Координаты многочлена $f(x) = x^3 - 4x^2$ в базисе $3 + x^2 - x^3$, $3x^2 - x^3 + x - 1$, $1 - x^2$, $2 - x + 2x^2 + x^3$ пространства многочленов степени не выше 3.

<u>Вариант 17.</u> Координаты многочлена $f(x)=1-2x+3x^2-4x^3+5x^4$ в базисе 1, x-1, $(x-1)^2$, $(x-1)^3$, $(x-1)^4$ пространства многочленов степени не выше 4.

<u>Вариант 18.</u> Координаты матрицы $\bar{x} = \begin{pmatrix} 1 & 4 \\ -4 & 0 \end{pmatrix}$ в базисе $\bar{a}_1 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$, $\bar{a}_2 = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$,

 $\overline{a}_3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ \overline{a}_4 = \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}$ пространства квадратных матриц 2-го порядка.

<u>Вариант 19.</u> Координаты многочлена $g(x) = 7x^5 - 5x^3 - 3x$ в базисе $2x^5 + x^3$, $4x^5 + 3x^3 - 4x$, $x^5 + 5x^3 - 3x$ пространства нечетных многочленов степени не выше 5.

 $\underline{Bapuahm\ 20.}$ Координаты матрицы $\overline{x}=\begin{pmatrix}2&-2\\6&3\end{pmatrix}$ в базисе $\overline{a}_1=\begin{pmatrix}1&0\\2&3\end{pmatrix},\ \overline{a}_2=\begin{pmatrix}0&1\\-3&4\end{pmatrix},$

 $\overline{a}_3 = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix}, \ \overline{a}_4 = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$ пространства квадратных матриц 2-го порядка.

Вариант 21. Координаты многочлена $f(x) = 2x^3 + 2x^2 + 8x + 3$ в базисе $3x^2 + x^3 - 1$, $x^2 - x$, $2 + 3x + x^2$, $1 + x + x^2 + 2x^3$ пространства многочленов степени не выше 3.

 $\underline{Bapuahm\ 22}.$ Координаты матрицы $\overline{x} = \begin{pmatrix} 4 & 3 \\ 3 & 3 \end{pmatrix}$ в базисе $\overline{a}_1 = \begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}, \ \overline{a}_2 = \begin{pmatrix} -2 & 2 \\ -1 & 1 \end{pmatrix},$ $\overline{a}_3 = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}, \ \overline{a}_4 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ пространства квадратных матриц 2-го порядка.

 $egin{aligned} & \underline{Bapuahm\ 23.} \end{aligned}$ Координаты матрицы $& \overline{a} = \begin{pmatrix} 2 & 2 \\ 8 & 3 \end{pmatrix}$ в базисе $& \overline{a}_1 = \begin{pmatrix} 1 & 3 \\ 0 & -1 \end{pmatrix}, & \overline{a}_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \\ & \overline{a}_3 = \begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix}, & \overline{a}_4 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ пространства квадратных матриц 2-го порядка.

 $\underline{Bapuahm\ 24.}$ Координаты матрицы $\overline{a} = \begin{pmatrix} 2 & 2 \\ 8 & 3 \end{pmatrix}$ в базисе $\overline{a}_1 = \begin{pmatrix} 1 & 3 \\ 0 & -1 \end{pmatrix}$, $\overline{a}_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\overline{a}_3 = \begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix}$, $\overline{a}_4 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ пространства квадратных матриц 2-го порядка.

 $\underline{Bapuahm\ 25}$. Координаты матрицы $\overline{x} = \begin{pmatrix} 1 & 4 \\ -4 & 0 \end{pmatrix}$ в базисе $\overline{a}_1 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$, $\overline{a}_2 = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$, $\overline{a}_3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\overline{a}_4 = \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}$ пространства квадратных матриц 2-го порядка.

<u>Вариант 26.</u> Координаты многочлена $f(x)=1+x^2-2x^3$ в базисе 1, x+1, x^2+1 , x^3+1 линейного пространства многочленов степени не выше 3.

<u>Вариант 27.</u> Координаты многочлена $5-t^2+2t^4$ в базисе $2+t^4$, t^2-t^4 , $1+t^2$ пространства четных многочленов степени не выше 4.

<u>Вариант 28.</u> Координаты вектора $\overline{a}=(7;2;5;1)$ в базисе $\overline{e}_1=(-1;-1;1;0)$, $\overline{e}_2=(1;3;2;-1)$, $\overline{e}_3=(0;1;-1;0)$, $\overline{e}_4=(3;-1;2;1)$ пространства \mathbf{R}^4 .

<u>Вариант 29.</u> Координаты многочлена $f(x) = x^4 + 7x^2 + 3$ в базисе $-2x^4 - x^2 + 2$, $2x^4 + x^2 - 3$, $x^4 + x^2 + 1$ пространства четных многочленов степени не выше 4.

<u>Вариант 30.</u> Координаты вектора $\overline{a}=(6;3;8;-1)$ в базисе $\overline{e}_1=(-1;-1;1;0)$, $\overline{e}_2=(1;3;2;-1)$, $\overline{e}_3=(0;1;-1;0)$, $\overline{e}_4=(3;-1;2;1)$ пространства \mathbf{R}^4 .

<u>Вариант 31.</u> Координаты $g(x) = 4x^2 + x - 9$ в базисе $2x^2 + 3x + 1, -3x^2 + 2x + 4, x^2 - x - 5$ линейного пространства многочленов степени не выше 2.

 $\underline{Bapuahm\ 32}.$ Координаты матрицы $\overline{a} = \begin{pmatrix} 2 & 2 \\ 8 & 3 \end{pmatrix}$ в базисе $\overline{a}_1 = \begin{pmatrix} 1 & 3 \\ 0 & -1 \end{pmatrix}, \ \overline{a}_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$ $\overline{a}_3 = \begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix}, \ \overline{a}_4 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ пространства квадратных матриц 2-го порядка.

Найти собственные значения и собственные векторы линейного оператора с матрицей $\it A$.

матрицеи А.					
Вариант 1.	$A = \begin{pmatrix} 1 & -4 & -8 \\ -4 & 7 & -4 \\ -8 & -4 & 1 \end{pmatrix}.$	Вариант 2.	$A = \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix}$	3 0 -1	$\begin{bmatrix} 3 \\ -3 \\ 2 \end{bmatrix}$.
Вариант 3.	$A = \begin{pmatrix} 4 & 3 & 3 \\ -4 & -3 & -6 \\ 2 & 2 & 5 \end{pmatrix}.$	Вариант 4.	$A = \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix}$	2 -9 6	$\begin{pmatrix} 3 \\ -18 \\ 12 \end{pmatrix}$
Вариант 5.	$A = \begin{pmatrix} 1 & -4 & -8 \\ -4 & 7 & -4 \\ -8 & -4 & 1 \end{pmatrix}.$	Вариант 6.	$A = \begin{pmatrix} -3 \\ 7 \\ -3 \end{pmatrix}$	-5 9 -3	$\begin{bmatrix} -4 \\ 5 \\ 0 \end{bmatrix}$.
<u>Вариант 7.</u>	$A = \begin{pmatrix} 3 & 2 & 3 \\ 2 & -9 & -18 \\ -2 & 6 & 12 \end{pmatrix}.$	<u>Вариант 8.</u>	$A = \begin{pmatrix} 7 \\ -3 \\ -3 \end{pmatrix}$	5 -1 -3	$\begin{pmatrix} 4 \\ -3 \\ 0 \end{pmatrix}$.
<u>Вариант 9.</u>	$A = \begin{pmatrix} 6 & 5 & 4 \\ -1 & 0 & -1 \\ -2 & -2 & 0 \end{pmatrix}.$	<u>Вариант 10.</u>	$A = \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix}$	2 -9 6	$\begin{pmatrix} 3 \\ -18 \\ 12 \end{pmatrix}$
<u>Вариант 11.</u>	$A = \begin{pmatrix} 1 & -4 & -8 \\ -4 & 7 & -4 \\ -8 & -4 & 1 \end{pmatrix}.$	<u>Вариант 12.</u>	$A = \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix}$	3 0 -1	$\begin{bmatrix} 3 \\ -3 \\ 2 \end{bmatrix}$.
<u>Вариант 13.</u>	$A = \begin{pmatrix} 6 & 5 & 4 \\ -1 & 0 & -1 \\ -2 & -2 & 0 \end{pmatrix}.$	<u>Вариант 14.</u>	$A = \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix}$	2 -9 6	$\begin{pmatrix} 3 \\ -18 \\ 12 \end{pmatrix}$
<u>Вариант 15.</u>	$A = \begin{pmatrix} 1 & -4 & -8 \\ -4 & 7 & -4 \\ -8 & -4 & 1 \end{pmatrix}.$	Вариант 16.	$A = \begin{pmatrix} -3 \\ 7 \\ -3 \end{pmatrix}$	-5 9 -3	$\begin{bmatrix} -4 \\ 5 \\ 0 \end{bmatrix}$.
<u>Вариант 17.</u>	$A = \begin{pmatrix} 3 & 2 & 3 \\ 2 & -9 & -18 \\ -2 & 6 & 12 \end{pmatrix}.$	<u>Вариант 18.</u>	$A = \begin{pmatrix} 7 \\ -3 \\ -3 \end{pmatrix}$	5 -1 -3	$\begin{pmatrix} 4 \\ -3 \\ 0 \end{pmatrix}$.
<u>Вариант 19.</u>	$A = \begin{pmatrix} 4 & 3 & 3 \\ -4 & -3 & -6 \\ 2 & 2 & 5 \end{pmatrix}.$	<u>Вариант 20.</u>	$A = \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix}$	2 -9 6	$ \begin{array}{c} 3 \\ -18 \\ 12 \end{array} $
<u>Вариант 21.</u>	$A = \begin{pmatrix} 1 & -4 & -8 \\ -4 & 7 & -4 \\ -8 & -4 & 1 \end{pmatrix}.$	<u>Вариант 22.</u>	$A = \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix}$	3 0 -1	$\begin{bmatrix} 3 \\ -3 \\ 2 \end{bmatrix}$.

$$\underline{Bapuahm\ 23.}\quad A = \begin{pmatrix} 4 & 3 & 3 \\ -4 & -3 & -6 \\ 2 & 2 & 5 \end{pmatrix}.$$

Вариант 25.
$$A = \begin{pmatrix} 1 & -4 & -8 \\ -4 & 7 & -4 \\ -8 & -4 & 1 \end{pmatrix}$$
.

Вариант 27.
$$A = \begin{pmatrix} 3 & 2 & 3 \\ 2 & -9 & -18 \\ -2 & 6 & 12 \end{pmatrix}$$
.

Вариант 31.
$$A = \begin{pmatrix} 1 & -4 & -8 \\ -4 & 7 & -4 \\ -8 & -4 & 1 \end{pmatrix}$$
.

Вариант 26.
$$A = \begin{pmatrix} -3 & -5 & -4 \\ 7 & 9 & 5 \\ -3 & -3 & 0 \end{pmatrix}$$
.