Package 'TDAkit'

October 12, 2022

Type	Package
Title	Toolkit for Topological Data Analysis
Versio	on 0.1.2
	ription Topological data analysis studies structure and shape of the data using topological features. We provide a variety of algorithms to learn with persistent homology of the data based on functional summaries for clustering, hypothesis testing, visualization, and others. We refer to Wasserman (2018) <doi:10.1146 annurev-statistics-031017-100045=""> for a statistical perspective on the topic.</doi:10.1146>
Licen	se MIT + file LICENSE
Enco	ding UTF-8
_	rts Rcpp, Rdpack, TDAstats, T4cluster, energy, ggplot2, maotai, stats, utils
Linki	ngTo Rcpp, RcppArmadillo
Roxy	genNote 7.1.1
RdMa	acros Rdpack
Needs	SCompilation yes
	or Kisung You [aut, cre] (https://orcid.org/0000-0002-8584-459X), Byeongsu Yu [aut]
Main	tainer Kisung You <kisungyou@outlook.com></kisungyou@outlook.com>
Repos	sitory CRAN
Date/	Publication 2021-08-23 14:10:05 UTC
R to	opics documented:
	diag2landscape 2 diag2silhouette 3 diagRips 4 fsdist 6 fsdist2 7 fseqdist 9 fshclust 10

2 diag2landscape

	skgroups	11
	skmedoids	13
	smds	14
	smean	16
	snorm	17
	ssc05Z	18
	ssum	19
	stsne	20
	en2circles	
	en2holes	
	lkernel	24
	lot.homology	25
	lot.landscape	26
Index		28

diag2landscape

Convert Persistence Diagram into Persistence Landscape

Description

Persistence Landscape (PL) is a functional summary of persistent homology that is constructed given a homology object.

Usage

```
diag2landscape(homology, dimension = 1, k = 0, nseq = 1000)
```

Arguments

homology an object of S3 class "homology" generated from diagRips or other homology-generating functions.

dimension dimension of features to be considered (default: 1).

k the number of top landscape functions to be used (default: 0). When k=0 is set,

it gives all relevant landscape functions that are non-zero.

nseq grid size for which the landscape function is evaluated (default: 1000).

Value

a list object of "landscape" class containing

lambda an $(nseq \times k)$ landscape functions.

tseq a length-nseq vector of domain grid.

dimension dimension of features considered.

References

Peter Bubenik (2018). "The Persistence Landscape and Some of Its Properties." arXiv:1810.04963.

diag2silhouette 3

Examples

```
#
             Persistence Landscape of 'iris' Dataset
#
# We will extract landscapes of dimensions 0, 1, and 2.
# For each feature, only the top 5 landscape functions are plotted.
# ------
## Prepare 'iris' data
XX = as.matrix(iris[,1:4])
## Compute Persistence Diagram
pdrips = diagRips(XX, maxdim=2)
## Convert to Landscapes of Each Dimension
land0 <- diag2landscape(pdrips, dimension=0, k=5)</pre>
land1 <- diag2landscape(pdrips, dimension=1, k=5)</pre>
land2 <- diag2landscape(pdrips, dimension=2, k=5)</pre>
## Visualize
opar <- par(no.readonly=TRUE)</pre>
par(mfrow=c(2,2))
plot(pdrips$Birth, pdrips$Death, col=as.factor(pdrips$Dimension),
    pch=19, main="persistence diagram", xlab="Birth", ylab="Death")
\verb|matplot(land0\$tseq, land0\$lambda, type="l", lwd=3, main="dimension 0", xlab="t")|
matplot(land1$tseq, land1$lambda, type="l", lwd=3, main="dimension 1", xlab="t")
matplot(land2$tseq, land2$lambda, type="1", lwd=3, main="dimension 2", xlab="t")
par(opar)
```

diag2silhouette

Convert Persistence Diagram into Persistent Silhouette

Description

Persistence Silhouette (PS) is a functional summary of persistent homology that is constructed given a homology object. PS is a weighted average of landscape functions so that it becomes a uni-dimensional function.

Usage

```
diag2silhouette(homology, dimension = 1, p = 2, nseq = 100)
```

Arguments

homology	an object of S3 class "homology" generated from diagRips or other diagram-generating functions.
dimension	dimension of features to be considered (default: 1).
р	an exponent for the weight function of form $ a - b ^p$ (default: 2).
nseq	grid size for which the landscape function is evaluated.

4 diagRips

Value

```
a list object of "silhouette" class containing lambda an (nseq \times k) landscape functions. tseq a length-nseq vector of domain grid. dimension dimension of features considered.
```

Examples

```
#
               Persistence Silhouette of 'iris' Dataset
#
# We will extract silhouettes of dimensions 0, 1, and 2.
## Prepare 'iris' data
XX = as.matrix(iris[,1:4])
## Compute Persistence Diagram
pdrips = diagRips(XX, maxdim=2)
## Convert to Silhouettes of Each Dimension
sil0 <- diag2silhouette(pdrips, dimension=0)</pre>
sil1 <- diag2silhouette(pdrips, dimension=1)</pre>
sil2 <- diag2silhouette(pdrips, dimension=2)</pre>
## Visualize
opar <- par(no.readonly=TRUE)</pre>
par(mfrow=c(2,2))
plot(pdrips$Birth, pdrips$Death, col=as.factor(pdrips$Dimension),
     pch=19, main="persistence diagram", xlab="Birth", ylab="Death")
plot(sil0$tseq, sil0$lambda, type="l", lwd=3, main="dimension 0", xlab="t")
plot(sil1$tseq, sil1$lambda, type="l", lwd=3, main="dimension 1", xlab="t")
plot(sil2$tseq, sil2$lambda, type="l", lwd=3, main="dimension 2", xlab="t")
par(opar)
```

diagRips

Compute Vietoris-Rips Complex for Persistent Homology

Description

diagRips computes the persistent diagram of the Vietoris-Rips filtration constructed on a point cloud represented as matrix or dist object. This function is a second-hand wrapper to **TDAstats**'s wrapping for Ripser library.

Usage

```
diagRips(data, maxdim = 1, threshold = Inf)
```

diagRips 5

Arguments

```
data a 'matrix' or a S3 'dist' object.
```

maximum dimension of the computed homological features (default: 1).

threshold maximum value of the filtration (default: Inf).

Value

a dataframe object of S3 class "homology" with following columns

Dimension dimension corresponding to a feature.

Birth birth of a feature.

Death death of a feature.

References

Raoul R. Wadhwa, Drew F.K. Williamson, Andrew Dhawan, Jacob G. Scott (2018). "TDAstats: R Pipeline for Computing Persistent Homology in Topological Data Analysis." *Journal of Open Source Software*, **3**(28), 860. ISSN 2475-9066.

Ulrich Bauer (2019). "Ripser: Efficient Computation of Vietoris-Rips Persistence Barcodes." arXiv:1908.02518.

See Also

```
calculate_homology
```

```
# ------
# Check consistency of two types of inputs : 'matrix' and 'dist' objects
# ------
# Use 'iris' data and compute its distance matrix
XX = as.matrix(iris[,1:4])
DX = stats::dist(XX)
# Compute VR Diagram with two inputs
vr.mat = diagRips(XX)
vr.dis = diagRips(DX)
col1 = as.factor(vr.mat$Dimension)
col2 = as.factor(vr.dis$Dimension)
# Visualize
opar <- par(no.readonly=TRUE)</pre>
par(mfrow=c(1,2), pty="s")
plot(vr.mat$Birth, vr.mat$Death, pch=19, col=col1, main="from 'matrix'")
plot(vr.dis$Birth, vr.dis$Death, pch=19, col=col2, main="from 'dist'")
par(opar)
```

6 fsdist

fsdist

Pairwise L_p Distance of Multiple Functional Summaries

Description

Given multiple functional summaries $\Lambda_1(t), \Lambda_2(t), \dots, \Lambda_N(t)$, compute L_p distance in a pairwise sense.

Usage

```
fsdist(fslist, p = 2, as.dist = TRUE)
```

Arguments

fslist a length-N list of functional summaries of persistent diagrams. p an exponent in $[1,\infty)$ (default: 2). as.dist logical; if TRUE, it returns dist object, else it returns an $(N\times N)$ symmetric matrix.

Value

a S3 dist object or $(N \times N)$ symmetric matrix of pairwise distances according to as . dist parameter.

```
Compute L_2 Distance for 3 Types of Landscapes and Silhouettes
#
# We will compare dim=0,1 with top-5 landscape functions with
# - Class 1 : 'iris' dataset with noise
# - Class 2 : samples from 'gen2holes()'
# - Class 3 : samples from 'gen2circles()'
## Generate Data and Diagram from VR Filtration
ndata
         = 10
list_rips = list()
for (i in 1:ndata){
 dat1 = as.matrix(iris[,1:4]) + matrix(rnorm(150*4), ncol=4)
 dat2 = gen2holes(n=100, sd=1)$data
 dat3 = gen2circles(n=100, sd=1)$data
 list_rips[[i]] = diagRips(dat1, maxdim=1)
 list_rips[[i+ndata]] = diagRips(dat2, maxdim=1)
 list_rips[[i+(2*ndata)]] = diagRips(dat3, maxdim=1)
}
## Compute Persistence Landscapes from Each Diagram with k=5 Functions
```

fsdist2 7

```
# We try to get distance in dimensions 0 and 1.
list_land0 = list()
list_land1 = list()
for (i in 1:(3*ndata)){
  list_land0[[i]] = diag2landscape(list_rips[[i]], dimension=0, k=5)
  list_land1[[i]] = diag2landscape(list_rips[[i]], dimension=1, k=5)
}
## Compute Silhouettes
list_sil0 = list()
list_sil1 = list()
for (i in 1:(3*ndata)){
  list_sil0[[i]] = diag2silhouette(list_rips[[i]], dimension=0)
  list_sil1[[i]] = diag2silhouette(list_rips[[i]], dimension=1)
}
## Compute L2 Distance Matrices
ldmat0 = fsdist(list_land0, p=2, as.dist=FALSE)
ldmat1 = fsdist(list_land1, p=2, as.dist=FALSE)
sdmat0 = fsdist(list_sil0, p=2, as.dist=FALSE)
sdmat1 = fsdist(list_sil1, p=2, as.dist=FALSE)
## Visualize
opar <- par(no.readonly=TRUE)</pre>
par(mfrow=c(2,2), pty="s")
image(ldmat0[,(3*(ndata)):1], axes=FALSE, main="Landscape : dim=0")
image(ldmat1[,(3*(ndata)):1], axes=FALSE, main="Landscape : dim=1")
image(sdmat0[,(3*(ndata)):1], axes=FALSE, main="Silhouette : dim=0")
image(sdmat1[,(3*(ndata)):1], axes=FALSE, main="Silhouette : dim=1")
par(opar)
```

fsdist2

Pairwise L_p Distance for Two Sets of Functional Summaries

Description

Given two sets of functional summaries $\Lambda_1(t), \ldots, \Lambda_M(t)$ and $\Omega_1(t), \ldots, \Omega_N(t)$, compute L_p distance across pairs.

Usage

```
fsdist2(fslist1, fslist2, p = 2)
```

Arguments

```
fslist1 a length-M list of functional summaries of persistent diagrams.
fslist2 a length-N list of functional summaries of persistent diagrams.
p an exponent in [1, \infty) (default: 2).
```

8 fsdist2

Value

```
an (M \times N) distance matrix.
```

```
Compute L1 and L2 Distance for Two Sets of Landscapes
# First set consists of {Class 1, Class 2}, while
# Second set consists of {Class 1, Class 3} where
# - Class 1 : 'iris' dataset with noise
# - Class 2 : samples from 'gen2holes()'
# - Class 3 : samples from 'gen2circles()'
# ------
## Generate Data and Diagram from VR Filtration
      = 10
ndata
list_rips1 = list()
list_rips2 = list()
for (i in 1:ndata){
 dat1 = as.matrix(iris[,1:4]) + matrix(rnorm(150*4, sd=4), ncol=4)
 dat2 = gen2holes(n=100, sd=1)$data
 dat3 = as.matrix(iris[,1:4]) + matrix(rnorm(150*4, sd=4), ncol=4)
 dat4 = gen2circles(n=100, sd=1)$data
 list_rips1[[i]]
                    = diagRips(dat1, maxdim=1)
 list_rips1[[i+ndata]] = diagRips(dat2, maxdim=1)
                     = diagRips(dat3, maxdim=1)
 list_rips2[[i]]
 list_rips2[[i+ndata]] = diagRips(dat4, maxdim=1)
}
## Compute Persistence Landscapes from Each Diagram with k=10 Functions
# We try to get distance in dimension 1 only for faster comparison.
list_pset1 = list()
list_pset2 = list()
for (i in 1:(2*ndata)){
 list_pset1[[i]] = diag2landscape(list_rips1[[i]], dimension=1, k=10)
 list_pset2[[i]] = diag2landscape(list_rips2[[i]], dimension=1, k=10)
}
## Compute L1 and L2 Distance Matrix
dmat1 = fsdist2(list_pset1, list_pset2, p=1)
dmat2 = fsdist2(list_pset1, list_pset2, p=2)
## Visualize
opar <- par(no.readonly=TRUE)</pre>
par(mfrow=c(1,2), pty="s")
image(dmat1[,(2*ndata):1], axes=FALSE, main="distance for p=1")
image(dmat2[,(2*ndata):1], axes=FALSE, main="distance for p=2")
par(opar)
```

fseqdist 9

fseqdist

Multi-sample Energy Test of Equal Distributions

Description

Also known as k-sample problem, it tests whether multiple functional summaries are equally distributed or not via Energy statistics.

Usage

```
fseqdist(fslist, label, method = c("original", "disco"), mc.iter = 999)
```

Arguments

fslist a length-N list of functional summaries of persistent diagrams.

label a length-N vector of class labels.

method (case-sensitive) name of methods; one of "original" or "disco".

mc.iter number of bootstrap replicates.

Value

a (list) object of S3 class htest containing:

method name of the test.

statistic a test statistic.

p.value p-value under H_0 of equal distributions.

10 fshclust

```
list_rips[[i]] = diagRips(dat1, maxdim=1)
list_rips[[i+ndata]] = diagRips(dat2, maxdim=1)
list_rips[[i+(2*ndata)]] = diagRips(dat3, maxdim=1)
}

## Compute Persistence Landscapes from Each Diagram with k=5 Functions
list_land0 = list()
for (i in 1:(3*ndata)){
    list_land0[[i]] = diag2landscape(list_rips[[i]], dimension=0, k=5)
}

## Create Label and Run the Test with Different Options
list_lab = c(rep(1,ndata), rep(2,ndata), rep(3,ndata))
fseqdist(list_land0, list_lab, method="original")
fseqdist(list_land0, list_lab, method="disco")
```

fshclust

Hierarchical Agglomerative Clustering

Description

Given multiple functional summaries $\Lambda_1(t), \Lambda_2(t), \dots, \Lambda_N(t)$, perform hierarchical agglomerative clustering with L_2 distance.

Usage

```
fshclust(
  fslist,
  method = c("single", "complete", "average", "mcquitty", "ward.D", "ward.D2",
        "centroid", "median"),
  members = NULL
)
```

Arguments

fslist a length-N list of functional summaries of persistent diagrams.

method agglomeration method to be used. This must be one of "single", "complete",

"average", "mcquitty", "ward.D", "ward.D2", "centroid" or "median".

members NULL or a vector whose length equals the number of observations. See hclust

for details.

Value

an object of class helust. See helust for details.

fskgroups 11

Examples

```
______
           K-Groups Clustering via Energy Distance
# We will cluster dim=0 under top-5 landscape functions with
# - Class 1 : 'iris' dataset with noise
# - Class 2 : samples from 'gen2holes()'
# - Class 3 : samples from 'gen2circles()'
# -----
## Generate Data and Diagram from VR Filtration
ndata
        = 10
list_rips = list()
for (i in 1:ndata){
 dat1 = as.matrix(iris[,1:4]) + matrix(rnorm(150*4), ncol=4)
 dat2 = gen2holes(n=100, sd=1)$data
 dat3 = gen2circles(n=100, sd=1)$data
 list_rips[[i]] = diagRips(dat1, maxdim=1)
 list_rips[[i+ndata]] = diagRips(dat2, maxdim=1)
 list_rips[[i+(2*ndata)]] = diagRips(dat3, maxdim=1)
list_lab = c(rep(1,ndata), rep(2,ndata), rep(3,ndata))
## Compute Persistence Landscapes from Each Diagram with k=5 Functions
list_land0 = list()
for (i in 1:(3*ndata)){
 list_land0[[i]] = diag2landscape(list_rips[[i]], dimension=0, k=5)
## Run MDS for Visualization
embed = fsmds(list_land0, ndim=2)
## Clustering with 'single' and 'complete' linkage
hc.sing <- fshclust(list_land0, method="single")</pre>
hc.comp <- fshclust(list_land0, method="complete")</pre>
## Visualize
opar = par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(embed, pch=19, col=list_lab, main="2-dim embedding")
plot(hc.sing, main="single linkage")
plot(hc.comp, main="complete linkage")
par(opar)
```

k-Groups Clustering of Multiple Functional Summaries by Energy Distance

12 fskgroups

Description

Given N functional summaries $\Lambda_1(t), \Lambda_2(t), \dots, \Lambda_N(t)$, perform k-groups clustering by energy distance using L_2 metric.

Usage

```
fskgroups(fslist, k = 2, ...)
```

Arguments

```
fslist a length-N list of functional summaries of persistent diagrams. k the number of clusters. . . . extra parameters including maxiter the number of iterations (default: 50). nstart the number of restarts (default: 2).
```

Value

```
a length-N vector of class labels (from 1:k).
```

```
K-Groups Clustering via Energy Distance
# We will cluster dim=0 under top-5 landscape functions with
# - Class 1 : 'iris' dataset with noise
# - Class 2 : samples from 'gen2holes()'
# - Class 3 : samples from 'gen2circles()'
# ------
## Generate Data and Diagram from VR Filtration
ndata
      = 10
list_rips = list()
for (i in 1:ndata){
 dat1 = as.matrix(iris[,1:4]) + matrix(rnorm(150*4), ncol=4)
 dat2 = gen2holes(n=100, sd=1)$data
 dat3 = gen2circles(n=100, sd=1)$data
 list_rips[[i]] = diagRips(dat1, maxdim=1)
 list_rips[[i+ndata]] = diagRips(dat2, maxdim=1)
 list_rips[[i+(2*ndata)]] = diagRips(dat3, maxdim=1)
}
## Compute Persistence Landscapes from Each Diagram with k=5 Functions
list_land0 = list()
for (i in 1:(3*ndata)){
 list_land0[[i]] = diag2landscape(list_rips[[i]], dimension=0, k=5)
}
```

fskmedoids 13

```
## Run K-Groups Clustering with different K's
label2 = fskgroups(list_land0, k=2)
label3 = fskgroups(list_land0, k=3)
label4 = fskgroups(list_land0, k=4)
truelab = rep(c(1,2,3), each=ndata)

## Run MDS & Visualization
embed = fsmds(list_land0, ndim=2)
opar = par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
plot(embed, col=truelab, pch=19, main="true label")
plot(embed, col=label2, pch=19, main="k=2 label")
plot(embed, col=label3, pch=19, main="k=3 label")
plot(embed, col=label4, pch=19, main="k=4 label")
par(opar)
```

fskmedoids

K-Medoids Clustering

Description

Given N functional summaries $\Lambda_1(t), \Lambda_2(t), \dots, \Lambda_N(t)$, perform k-medoids clustering using pairwise distances using L_2 metric.

Usage

```
fskmedoids(fslist, k = 2)
```

Arguments

 $\begin{array}{ll} {\sf fslist} & {\sf a \ length-}N \ {\sf list} \ {\sf of \ functional \ summaries} \ {\sf of \ persistent \ diagrams}. \\ {\sf k} & {\sf the \ number \ of \ clusters}. \end{array}$

Value

```
a length-N vector of class labels (from 1:k).
```

14 fsmds

```
## Generate Data and Diagram from VR Filtration
         = 10
ndata
list_rips = list()
for (i in 1:ndata){
 dat1 = as.matrix(iris[,1:4]) + matrix(rnorm(150*4), ncol=4)
 dat2 = gen2holes(n=100, sd=1)$data
 dat3 = gen2circles(n=100, sd=1)$data
 list_rips[[i]] = diagRips(dat1, maxdim=1)
 list_rips[[i+ndata]] = diagRips(dat2, maxdim=1)
 list_rips[[i+(2*ndata)]] = diagRips(dat3, maxdim=1)
}
## Compute Persistence Landscapes from Each Diagram with k=5 Functions
list_land0 = list()
for (i in 1:(3*ndata)){
 list_land0[[i]] = diag2landscape(list_rips[[i]], dimension=0, k=5)
}
## Run K-Medoids Clustering with different K's
label2 = fskmedoids(list_land0, k=2)
label3 = fskmedoids(list_land0, k=3)
label4 = fskmedoids(list_land0, k=4)
truelab = rep(c(1,2,3), each=ndata)
## Run MDS & Visualization
embed = fsmds(list_land0, ndim=2)
opar = par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
plot(embed, col=truelab, pch=19, main="true label")
plot(embed, col=label2, pch=19, main="k=2 label")
plot(embed, col=label3, pch=19, main="k=3 label")
plot(embed, col=label4, pch=19, main="k=4 label")
par(opar)
```

fsmds

Multidimensional Scaling

Description

Given multiple functional summaries $\Lambda_1(t), \Lambda_2(t), \dots, \Lambda_N(t)$, apply multidimensional scaling to get low-dimensional representation in Euclidean space. Usually, ndim=2,3 is chosen for visualization.

Usage

```
fsmds(fslist, ndim = 2, method = c("classical", "metric"))
```

fsmds 15

Arguments

```
fslist a length-N list of functional summaries of persistent diagrams. 
ndim an integer-valued target dimension (default: 2). 
method name of an algorithm type (default: classical).
```

Value

```
an (N \times ndim) matrix of embedding.
```

```
______
     Multidimensional Scaling for Multiple Landscapes and Silhouettes
# We will compare dim=0 with top-5 landscape and silhouette functions with
# - Class 1 : 'iris' dataset with noise
# - Class 2 : samples from 'gen2holes()'
# - Class 3 : samples from 'gen2circles()'
## Generate Data and Diagram from VR Filtration
       = 10
ndata
list_rips = list()
for (i in 1:ndata){
 dat1 = as.matrix(iris[,1:4]) + matrix(rnorm(150*4), ncol=4)
 dat2 = gen2holes(n=100, sd=1)$data
 dat3 = gen2circles(n=100, sd=1)$data
 list_rips[[i]] = diagRips(dat1, maxdim=1)
 list_rips[[i+ndata]] = diagRips(dat2, maxdim=1)
 list_rips[[i+(2*ndata)]] = diagRips(dat3, maxdim=1)
## Compute Landscape and Silhouettes of Dimension 0
list_land = list()
list_sils = list()
for (i in 1:(3*ndata)){
 list_land[[i]] = diag2landscape(list_rips[[i]], dimension=0)
 list_sils[[i]] = diag2silhouette(list_rips[[i]], dimension=0)
}
list_lab = rep(c(1,2,3), each=ndata)
## Run Classical/Metric Multidimensional Scaling
land_cmds = fsmds(list_land, method="classical")
land_mmds = fsmds(list_land, method="metric")
sils_cmds = fsmds(list_sils, method="classical")
sils_mmds = fsmds(list_sils, method="metric")
## Visualize
opar <- par(no.readonly=TRUE)</pre>
par(mfrow=c(2,2))
```

16 fsmean

```
plot(land_cmds, pch=19, col=list_lab, main="Landscape+CMDS")
plot(land_mmds, pch=19, col=list_lab, main="Landscape+MMDS")
plot(sils_cmds, pch=19, col=list_lab, main="Silhouette+CMDS")
plot(sils_mmds, pch=19, col=list_lab, main="Silhouette+MMDS")
par(opar)
```

fsmean

Mean of Multiple Functional Summaries

Description

Given multiple functional summaries $\Lambda_1(t), \Lambda_2(t), \dots, \Lambda_N(t)$, compute the mean

$$\bar{\Lambda}(t) = \frac{1}{N} \sum_{n=1}^{N} \Lambda_n(t)$$

•

Usage

```
fsmean(fslist)
```

Arguments

fslist

a length-N list of functional summaries of persistent diagrams.

Value

a functional summary object.

fsnorm 17

```
ldsum = fsmean(list_land)

## Visualize
sam5 <- sort(sample(1:10, 5, replace=FALSE))
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,3), pty="s")
for (i in 1:5){
   tgt = list_land[[sam5[i]]]
   matplot(tgt$tseq, tgt$lambda[,1:5], type="l", lwd=3, main=paste("landscape no.",sam5[i]))
}
matplot(ldsum$tseq, ldsum$lambda[,1:5], type="l", lwd=3, main="weighted sum")
par(opar)</pre>
```

fsnorm

 L_p Norm of a Single Functional Summary

Description

Given a functional summary $\Lambda(t)$, compute the p-norm.

Usage

```
fsnorm(fsobj, p = 2)
```

Arguments

```
fsobj a functional summary object.

p an exponent in [1, \infty) (default: 2).
```

Value

an L_p -norm value.

```
## Generate Toy Data from 'gen2circles()'
dat = gen2circles(n=100)$data

## Compute PD, Landscapes, and Silhouettes
myPD = diagRips(dat, maxdim=1)
myPL0 = diag2landscape(myPD, dimension=0)
myPL1 = diag2landscape(myPD, dimension=1)
myPS0 = diag2silhouette(myPD, dimension=0)
myPS1 = diag2silhouette(myPD, dimension=1)

## Compute 2-norm
fsnorm(myPL0, p=2)
```

18 fssc05Z

```
fsnorm(myPL1, p=2)
fsnorm(myPS0, p=2)
fsnorm(myPS1, p=2)
```

fssc05Z

Spectral Clustering by Zelnik-Manor and Perona (2005)

Description

Given N functional summaries $\Lambda_1(t), \Lambda_2(t), \dots, \Lambda_N(t)$, perform spectral clustering proposed by Zelnik-Manor and Perona using a set of data-driven bandwidth parameters.

Usage

```
fssc05Z(fslist, k = 2, nnbd = 5)
```

Arguments

fslist a length-N list of functional summaries of persistent diagrams.

k the number of cluster (default: 2).

nnbd neighborhood size to define data-driven bandwidth parameter (default: 5).

Value

```
a length-N vector of class labels (from 1:k).
```

References

Zelnik-manor L, Perona P (2005). "Self-Tuning Spectral Clustering." In Saul LK, Weiss Y, Bottou L (eds.), *Advances in Neural Information Processing Systems 17*, 1601–1608. MIT Press.

fssum 19

```
dat2 = gen2holes(n=100, sd=1)$data
 dat3 = gen2circles(n=100, sd=1)$data
 list_rips[[i]] = diagRips(dat1, maxdim=1)
 list_rips[[i+ndata]] = diagRips(dat2, maxdim=1)
 list_rips[[i+(2*ndata)]] = diagRips(dat3, maxdim=1)
}
## Compute Persistence Landscapes from Each Diagram with k=5 Functions
list_land0 = list()
for (i in 1:(3*ndata)){
 list_land0[[i]] = diag2landscape(list_rips[[i]], dimension=0, k=5)
## Run Spectral Clustering using Different K's.
label2 = fssc05Z(list_land0, k=2)
label3 = fssc05Z(list_land0, k=3)
label4 = fssc05Z(list_land0, k=4)
truelab = rep(c(1,2,3), each=ndata)
## Run MDS & Visualization
embed = fsmds(list_land0, ndim=2)
opar = par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
plot(embed, col=truelab, pch=19, main="true label")
plot(embed, col=label2, pch=19, main="k=2 label")
plot(embed, col=label3, pch=19, main="k=3 label")
plot(embed, col=label4, pch=19, main="k=4 label")
par(opar)
```

fssum

Weighted Sum of Multiple Functional Summaries

Description

Given multiple functional summaries $\Lambda_1(t), \Lambda_2(t), \dots, \Lambda_N(t)$, compute the weighted sum

$$\bar{\Lambda}(t) = \sum_{n=1}^{N} w_n \Lambda_n(t)$$

with a specified vector of given weights w_1, w_2, \ldots, w_N .

Usage

```
fssum(fslist, weight = NULL)
```

20 fstsne

Arguments

```
fslist a length-N list of functional summaries of persistent diagrams. weight a weight vector of length N. If NULL (default), weights are automatically set as w_1 = \cdots = w_N = 1/N.
```

Value

a functional summary object.

```
# ------
     Weighted Average of 10 Persistence Landscapes from '2holes' data
# ------
## Generate 10 Diagrams with 'gen2holes()' function
list_rips = list()
for (i in 1:10){
 list_rips[[i]] = diagRips(gen2holes(n=100, sd=2)$data, maxdim=1)
## Compute Persistence Landscapes from Each Diagram with k=5 Functions
list_land = list()
for (i in 1:10){
 list_land[[i]] = diag2landscape(list_rips[[i]], dimension=0, k=5)
}
## Some Random Weights
wrand = abs(stats::rnorm(10))
wrand = wrand/sum(wrand)
## Compute Weighted Sum of Landscapes
ldsum = fssum(list_land, weight=wrand)
## Visualize
sam5 <- sort(sample(1:10, 5, replace=FALSE))</pre>
opar <- par(no.readonly=TRUE)</pre>
par(mfrow=c(2,3), pty="s")
for (i in 1:5){
 tgt = list_land[[sam5[i]]]
 matplot(tgt$tseq, tgt$lambda[,1:5], type="1", lwd=3, main=paste("landscape no.",sam5[i]))
matplot(ldsum$tseq, ldsum$lambda[,1:5], type="1", lwd=3, main="weighted sum")
par(opar)
```

fstsne 21

Description

Given N functional summaries $\Lambda_1(t), \Lambda_2(t), \dots, \Lambda_N(t)$, t-SNE mimicks the pattern of probability distributions over pairs of Banach-valued objects on low-dimensional target embedding space by minimizing Kullback-Leibler divergence.

Usage

```
fstsne(fslist, ndim = 2, ...)
```

Arguments

fslist a length-N list of functional summaries of persistent diagrams.

ndim an integer-valued target dimension.

... extra parameters for Rtsne algorithm, such as perplexity, momentum, and oth-

ers.

Value

a named list containing

embed an $(N \times ndim)$ matrix whose rows are embedded observations.

stress discrepancy between embedded and original distances as a measure of error.

See Also

Rtsne

```
______
     Multidimensional Scaling for Multiple Landscapes and Silhouettes
# We will compare dim=0 with top-5 landscape and silhouette functions with
# - Class 1 : 'iris' dataset with noise
# - Class 2 : samples from 'gen2holes()'
# - Class 3 : samples from 'gen2circles()'
# -----
## Generate Data and Diagram from VR Filtration
ndata
        = 10
list_rips = list()
for (i in 1:ndata){
 dat1 = as.matrix(iris[,1:4]) + matrix(rnorm(150*4), ncol=4)
 dat2 = gen2holes(n=100, sd=1)$data
 dat3 = gen2circles(n=100, sd=1)$data
 list_rips[[i]] = diagRips(dat1, maxdim=1)
 list_rips[[i+ndata]] = diagRips(dat2, maxdim=1)
 list_rips[[i+(2*ndata)]] = diagRips(dat3, maxdim=1)
}
```

22 gen2circles

```
## Compute Landscape and Silhouettes of Dimension 0
list_land = list()
list_sils = list()
for (i in 1:(3*ndata)){
  list_land[[i]] = diag2landscape(list_rips[[i]], dimension=0)
  list_sils[[i]] = diag2silhouette(list_rips[[i]], dimension=0)
list_lab = rep(c(1,2,3), each=ndata)
## Run t-SNE and Classical/Metric MDS
land_cmds = fsmds(list_land, method="classical")
land_mmds = fsmds(list_land, method="metric")
land_tsne = fstsne(list_land, perplexity=5)$embed
sils_cmds = fsmds(list_sils, method="classical")
sils_mmds = fsmds(list_sils, method="metric")
sils_tsne = fstsne(list_land, perplexity=5)$embed
## Visualize
opar <- par(no.readonly=TRUE)</pre>
par(mfrow=c(2,3))
plot(land_cmds, pch=19, col=list_lab, main="Landscape+CMDS")
plot(land_mmds, pch=19, col=list_lab, main="Landscape+MMDS")
plot(land_tsne, pch=19, col=list_lab, main="Landscape+tSNE")
plot(sils_cmds, pch=19, col=list_lab, main="Silhouette+CMDS")
plot(sils_mmds, pch=19, col=list_lab, main="Silhouette+MMDS")
plot(sils_tsne, pch=19, col=list_lab, main="Silhouette+tSNE")
par(opar)
```

gen2circles

Generate Two Intersecting Circles

Description

It generates data from two intersecting circles.

Usage

```
gen2circles(n = 496, sd = 0)
```

Arguments

n the total number of observations to be generated.

sd level of additive white noise.

gen2holes 23

Value

```
a list containing
```

data an $(n \times 2)$ data matrix for row-stacked observations.

label a length-n vector for class label.

Examples

```
## Generate Data with Different Noise Levels
nn = 200
x1 = gen2circles(n=nn, sd=0)
x2 = gen2circles(n=nn, sd=0.1)
x3 = gen2circles(n=nn, sd=0.25)

## Visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
plot(x1$data, pch=19, main="sd=0.00", col=x1$label)
plot(x2$data, pch=19, main="sd=0.10", col=x2$label)
plot(x3$data, pch=19, main="sd=0.25", col=x3$label)
par(opar)</pre>
```

gen2holes

Generate Two Intertwined Holes

Description

It generates data from two intertwine circles with empty interiors(holes).

Usage

```
gen2holes(n = 496, sd = 0)
```

Arguments

n the total number of observations to be generated.

sd level of additive white noise.

Value

```
a list containing
```

data an $(n \times 2)$ data matrix for row-stacked observations.

label a length-n vector for class label.

24 plkernel

Examples

```
## Generate Data with Different Noise Levels
nn = 200
x1 = gen2holes(n=nn, sd=0)
x2 = gen2holes(n=nn, sd=0.1)
x3 = gen2holes(n=nn, sd=0.25)

## Visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
plot(x1$data, pch=19, main="sd=0.00", col=x1$label)
plot(x2$data, pch=19, main="sd=0.10", col=x2$label)
plot(x3$data, pch=19, main="sd=0.25", col=x3$label)
par(opar)</pre>
```

plkernel

Persistence Landscape Kernel

Description

Given multiple persistence landscapes $\Lambda_1(t), \Lambda_2(t), \ldots, \Lambda_N(t)$, compute the persistence landscape kernel under the L_2 sense.

Usage

```
plkernel(landlist)
```

Arguments

landlist

a length-N list of "landscape" objects, which can be obtained from diag2landscape function.

Value

```
an (N \times N) kernel matrix.
```

References

Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt (2015). "A stable multi-scale kernel for topological machine learning." *Proc. 2015 IEEE Conf. Comp. Vision & Pat. Rec. (CVPR '15)*.

```
# ------
# Persistence Landscape Kernel in Dimension 0 and 1
#
# We will compare dim=0,1 with top-20 landscape functions with
```

plot.homology 25

```
# - Class 1 : 'iris' dataset with noise
# - Class 2 : samples from 'gen2holes()'
# - Class 3 : samples from 'gen2circles()'
## Generate Data and Diagram from VR Filtration
ndata
         = 10
list_rips = list()
for (i in 1:ndata){
  dat1 = as.matrix(iris[,1:4]) + matrix(rnorm(150*4), ncol=4)
  dat2 = gen2holes(n=100, sd=1)$data
  dat3 = gen2circles(n=100, sd=1)$data
  list_rips[[i]] = diagRips(dat1, maxdim=1)
  list_rips[[i+ndata]] = diagRips(dat2, maxdim=1)
  list_rips[[i+(2*ndata)]] = diagRips(dat3, maxdim=1)
}
## Compute Persistence Landscapes from Each Diagram with k=5 Functions
# We try to get distance in dimensions 0 and 1.
list_land0 = list()
list_land1 = list()
for (i in 1:(3*ndata)){
  list_land0[[i]] = diag2landscape(list_rips[[i]], dimension=0, k=5)
  list_land1[[i]] = diag2landscape(list_rips[[i]], dimension=1, k=5)
}
## Compute Persistence Landscape Kernel Matrix
plk0 <- plkernel(list_land0)</pre>
plk1 <- plkernel(list_land1)</pre>
## Visualize
opar <- par(no.readonly=TRUE)</pre>
par(mfrow=c(1,2), pty="s")
image(plk0[,(3*(ndata)):1], axes=FALSE, main="Kernel : dim=0")
image(plk1[,(3*(ndata)):1], axes=FALSE, main="Kernel : dim=1")
par(opar)
```

plot.homology

Plot Persistent Homology via Barcode or Diagram

Description

Given a persistent homology of the data represented by a reconstructed complex in S3 class homology object, visualize it as either a barcode or a persistence diagram using **ggplot2**.

Usage

```
## S3 method for class 'homology'
plot(x, ...)
```

26 plot.landscape

Arguments

```
x a homology object.
... extra parameters including
method type of visualization; either "barcode" or "diagram".
```

Value

```
a ggplot2 object.
```

Examples

```
# Use 'iris' data
XX = as.matrix(iris[,1:4])
# Compute VR Diagram
homology = diagRips(XX)
# Plot with 'barcode'
opar <- par(no.readonly=TRUE)
plot(homology, method="barcode")
par(opar)</pre>
```

plot.landscape

Plot Persistence Landscape

Description

Given a persistence landscape object in S3 class landscape, visualize the landscapes using **ggplot2**.

Usage

```
## S3 method for class 'landscape' plot(x, ...)
```

Arguments

x a landscape object.

... extra parameters including

top.k the number of landscapes to be plotted (default: 5).

colored a logical; TRUE to assign different colors for landscapes, or FALSE to use grey color for all landscapes.

Value

```
a ggplot2 object.
```

plot.landscape 27

```
# Use 'iris' data
XX = as.matrix(iris[,1:4])

# Compute Persistence diagram and landscape of order 0
homology = diagRips(XX)
landscape = diag2landscape(homology, dimension=0)

# Plot with 'barcode'
opar <- par(no.readonly=TRUE)
plot(landscape)
par(opar)</pre>
```

Index

* convert	fsmean, 16			
diag2landscape, 2	fsnorm, 17			
diag2silhouette, 3	fssc05Z, 18			
* data	fssum, 19			
gen2circles, 22	fstsne, 20			
gen2holes, 23				
* diagram	gen2circles, 22			
diagRips, 4	gen2holes, 23			
* landscape				
plkernel, 24	hclust, 10			
* summaries				
fsdist, 6	plkernel, 24			
fsdist2,7	plot.homology, 25			
fseqdist, 9	plot.landscape, 26			
fshclust, 10	Dt 21			
fskgroups, 11	Rtsne, <i>21</i>			
fskmedoids, 13				
fsmds, 14				
fsmean, 16				
fsnorm, 17				
fssc05Z, 18				
fssum, 19				
fstsne, 20				
* utility				
plot.homology, 25				
plot.landscape, 26				
prot. randscape, 20				
${\tt calculate_homology}, {\tt 5}$				
diag2landscape, 2, 24				
diag2silhouette, 3				
diagRips, 4				
fsdist, 6				
fsdist2,7				
fseqdist, 9				
fshclust, 10				
fskgroups, 11				
fskmedoids, 13				
fsmds, 14				