lpha Voronoi Diagrams

Karthikeya P, Pradyumnan R

Indian Institute of Technology Madras

Outline

- Introduction
- \bigcirc Fixed α Variant
- \bigcirc Pointwise α Variant
- Applications

Voronoi Diagrams

- A Voronoi diagram is a partition of a plane into regions closest to each of a given set of objects
- In a Euclidean Voronoi diagram, the distance measure is the l_2- norm between any two points

Figure: A Euclidean Voronoi Diagram

lpha Voronoi Diagrams

- In a standard Voronoi diagram, a point is said to belong to a region
 if and only if it is closest to the site forming the region
- What if we say that a point belongs to a region if and only if the ratio of its distances between two sites is less than some scalar $\alpha \in (0, \frac{1}{2})$?
- We call such a partition of space into α regions as the α Voronoi diagram of a given set of sites

lpha Voronoi Diagrams

Figure: α -Boundary

• In Figure 2, we have two points A and B. We say that a point P belongs to the α -region of A if and only if

$$d(P,A) < \alpha \cdot d(P,B) \tag{1}$$

- Between any two points, for a given α and a fixed ordering, the α -region is a circle.
- The boundary of the region is called the lpha-boundary of the lpha-region

Formal Definitions

Definition (α -Closeness)

A point P is said to be α -closer to A than to B if and only if $d(P,A)<\alpha\cdot d(P,B)$ where d(U,V) represents some measure of distance (l_2 -norm unless specified otherwise) between two points U,V

Definition (α -Region)

The α -region of a point A with respect to another point B is defined to be the set of points S such that $P \in S$ is α -closer to A than to B

Two Variants

- When we want to construct the α Voronoi diagram of a set of points, a few choices have to be made
- Unlike a standard Voronoi diagram, the definition of an α Voronoi diagram makes it asymmetric. That is, the ordering of the points matters as the definition given in Equation 1 is asymmetric
- ullet One can choose to fix lpha in one of two ways :-
 - \bullet By fixing one α for the entire diagram
 - \bullet By fixing a weight for each point and letting α vary between any two points

Outline

- Introduction
- igspace 2 Fixed lpha Variant
- \bigcirc Pointwise α Variant
- Applications

Fixed α Variant

- In this particular variant, we take a set of points, order them cyclically to form a polygon and construct the α Voronoi diagram for a specific α that is fixed for all points
- The ordering of the points in Figure 3 is A, B, C, D, E. The circles represent the α -region collection of the points

Figure: Fixed α Variant

Challenges Associated with the Fixed Variant

- The ordering of the points to solve Equation 1 is not trivial. Certain orders give consistent solutions, certain orderings are inconsistent
- The simplest way to ensure a consistent solution is by choosing a cyclic order of points. That is, using Equation 1 for A_i , A_{i+1} where A_i is a site. Recall that using Equation 1 on A_i , A_{i+1} is not the same as using it on A_{i+1} , A_i
- Even with a cyclic ordering, the part of the plane that doesn't belong to any of the α -region collection is inconsistent, as one can't find a unique α -closest site. However, this is not of much concern for sufficiently large α as all the points inside the hull are consistent in such cases

Properties

- The α -regions are all contained in a combination of nothing but circular arcs
- There can be no point that lies in the α -region of every pair of points A_i, A_{i+1}
- \bullet The radius of an $\alpha\text{-circle}$ depends only on the distance between two points and α itself
- Centres of the α -circles lie on the extensions of the line segments joining two adjacent points

Properties

• For a general n-sided polygon with vertices A_i , we denote the centre of the α -circle corresponding to A_i, A_{i+1} with O_i . In such cases,

$$(1 - 2\alpha)^2 \sum_{i=1}^n (O_i O_{i+1})^2 = \sum_{i=1}^n (A_i A_{i+1})^2 - \alpha (1 - \alpha) \sum_{i=1}^n (A_i A_{i+2})^2$$

We also have the following property

$$\frac{O_i A_i}{O_i A_{i+1}} = \left(\frac{\alpha}{1-\alpha}\right)^2$$

Algorithm to Determine Fixed lpha Voronoi diagram

- For this variant, the entire diagram can be found out in $\mathcal{O}(n)$
- The procedure is very simple. Given points A_i, A_{i+1}, O_i can be found using

$$O(A_i, A_{i+1}) = \frac{(1-\alpha)^2 A_i - \alpha^2 A_{i+1}}{1 - 2\alpha}$$
 (2)

• Once O_i is found using Equation 2, the radius of the circle can be found out as

$$r = \frac{(A_i A_{i+1}) \cdot \alpha}{1 - \alpha^2} \tag{3}$$

Outline

- Introduction
- \bigcirc Fixed α Variant
- $lue{}$ Pointwise lpha Variant
- Applications

Pointwise α Variant

- In this variant, we assign every site a weight. Let w_i be the weight of the site A_i
- We then say that a point a belongs to site to the α -region of A_i over A_{i+1} if and only if

$$\frac{d(P, A_i)}{d(P, A_{i+1})} < \frac{w_i}{w_{i+1}} \tag{4}$$

Note that for this variant, d(U,V) can be any exponent of the Euclidean distance between U,V for the general idea to work. We will stick to l_2 -norm for the rest of the presentation

Empirical Investigations

- We use Monte-Carlo simulations to estimate what the α -region will look like for this variant. The diagram for various grid resolutions is given in Figure 4
- All the region boundaries are circular arcs

Figure: α -region Collection for this Variant

Empirical Investigations

Figure: Voronoi Diagram from the α Voronoi diagram

- For the same sites, if we set their weights to be the same, Equation 4 reduces to the definition of the standard Voronoi diagram
- This is exactly what our Monte-Carlo simulation gives in Figure 5

Observations

- We can observe between Figures 4 and 5 that the α -boundary is pushed away from the site with the higher weight towards the point with the lower weight
- As a consequence, we can say that the α -region of the site with the smallest weight is a subset of its standard Voronoi region

Algorithm to Construct lpha Voronoi diagram

Figure: Plane Sweep Algorithm

- We want to pick cones with angles θ and ϕ such that $A_1B/A_2B=w_1/w_2$. The green lines represent the conical surface
- We have $A_1B/A_2B = tan(\theta)/tan(\phi)$

Algorithm to Construct lpha Voronoi diagram

- To ensure this, we can pick $heta=tan^{-1}(w_1)$ and $\phi=tan^{-1}(w_2)$
- But doing so would require the sweeping plane to keep changing angles, which isn't convenient
- Instead we take $\theta_i = tan^{-1}(w_i/w_{max})$ to ensure that only the site with the highest weight gets a 45° cone angle
- We then sweep a plane inclined at 45° to the plane containing the sites

Algorithm to Construct lpha Voronoi diagram

- Store the intersection of the sweeping plane with the various cones
- Only the cone with the 45° sweep angle will have an unbounded parabolic front, the other cones will form bounded elliptic fronts as the plane would dissect the cone due to its higher angle
- Once the sweeping plane propagates through the entire plane, the projection of the intersections of the plane with the cones will given the Pointwise variant α Voronoi diagram
- The algorithm is similar to Fortune's algorithm, but we cleverly alter the cone angles of every site to give the α Voronoi diagram, yielding a worst case complexity of $\mathcal{O}(nlogn)$

Outline

- Introduction
- \bigcirc Fixed α Variant
- \bigcirc Pointwise α Variant
- Applications

Applications

- The α Voronoi diagram can be used in situations where not only the distance to the site matters, but also a property about the site itself is important
- A great application of the α Voronoi diagram would be in gravitation and electrostatics, where the field intensity at a point doesn't depend only on the distance, but also the mass/charge of the particle (weight of the site)
- This model effortlessly extends to any radial field variation, transcending into higher dimensions with ease

Application: Communication Towers

- In communication towers, the distance of the device from the tower is crucial, but so is the strength of the signal sent from the tower
- The strength decays as a power law with distance
- Moreover, due to the elevation of the towers, 3 dimensional effects should also be considered, which can be done easily with this algorithm
- Several other problems, such as long-range particle-liquid interactions (Stoke's law) can also be modeled using an α Voronoi diagram

Thank You