Dimension Reduction

Problem of high dimensional data, i.e., the number of observations is close or smaller than the number of features describing the objects (see JWHT, pp 238-244):

- High likelihood of overfitting, i.e., the objects are perfectly predicted in the training sample.
- Models can no longer be meaningful interpreted (not so much an issue in ML)
- Several statistical approached won't work anymore due to multicollinearity.
- Features are highly redundant.
 - ⇒ The information in redundant features becomes highly inflated.
 - ⇒ Consequently, these features will substantially influence the outcome of supervised and unsupervised ML algorithms.

Methods of dimensionality reduction:

- Principal component analysis (PC)
- Uniform manifold approximation and projection (UMAP). See Burkov, pp 119-121.
- Autoencoders

PC is unsupervised by an outcome variable y.

- PC determines independent linear combinations of the original features that best capture the variability in a set of features.
- Since the outcome variable y is not involved in this process of generating linear combinations, there is no guarantee that the best combination set (these are the principal components) will be found that predict y.
- PC often turns out to be a reasonably good approximation of the relevant predictor features.
- PC dimension reduction lowers the *variance of the predictor function* in supervised learning and only *marginally increases the bias* by missing relevant predictors.
- The *number of variables* used or the *number of their associated principal components* are hyper- or tuning parameters selected by the analyst.
- See the example kNNwithPC.r.

Geometrical Interpretation of Principal Components and Eigenvalues

Review: z-transformation and the correlation matrix

- Let \mathbf{x} and \mathbf{y} be to random vectors with means \overline{x} and \overline{y} as well as standard deviations s_x^2 and s_y^2 , respectively.
- ullet The z-transformation transforms the vector ${f x}$ to ${f z}_{_{x}}$ and analog the vector ${f y}$ to ${f z}_{_{y}}$ by

$$z \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \rightarrow \mathbf{z}_x = \begin{pmatrix} (x_1 - \overline{x}) / s_x \\ (x_2 - \overline{x}) / s_x \\ \vdots \\ (x_n - \overline{x}) / s_x \end{pmatrix}.$$

The new vectors $\mathbf{z}_{_{x}}$ and $\mathbf{z}_{_{y}}$ have a mean of zero and a standard deviation of one.

The correlation between x and y is defined as

$$corr(\mathbf{x}, \mathbf{y}) = \frac{1}{n} \cdot \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{s_x \cdot s_y}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} ((x_i - \overline{x}) / s_x) \cdot ((y_i - \overline{y}) / s_y)$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} z_{xi} \cdot z_{yi}$$

$$= \frac{1}{n} \cdot \mathbf{z}_x^T \cdot \mathbf{z}_y$$

and can be written therefore in terms of the vectors of \mathbf{z}_x and \mathbf{z}_y .

- Let the p variables in a matrix $\mathbf{X}_{n \times p}$ be standardized by their means and standard deviations. The resulting standardized matrix is $z(\mathbf{X}) \to \mathbf{Z}$.
- The *correlation matrix* \mathbf{R} among the p variables can then be easily calculated in terms of z-transformed variables by matrix multiplication:

$$\mathbf{R}_{p \times p} = \frac{1}{n} \cdot \mathbf{Z}^T \cdot \mathbf{Z}$$

• Usually, the correlation matrix provides the input to PC but alternatively also a covariance matrix can be used if the variance of individual features reflects their information content.

Figure 1: A scatter plot between two *z*-transformed variables

- Two positively correlated bivariate normal distributed variables
- Approximately 68% of the cases lie within the normal ellipse

- Due to the z-transformation:
 - The point (0,0) is in the center of the distribution
 - The spread along the Z_1 and Z_2 axes is $\sigma_1 = \sigma_2 = 1$.
- The Z_1 and Z_2 axes are orthogonal (both are at a rectangular or 90° angle).
- **Definition orthogonal:** let x and y be two vectors with identical number of components n.
 - o If their cross-product $\mathbf{x}^T \cdot \mathbf{y}$ is zero, i.e., $\sum_{i=1}^n x_i \cdot y_i = 0$, then they are said to be orthogonal.
 - Corollary: If two z-transformed variables are orthogonal then they are also uncorrelated.
- The coordinates of the points (observations) are given by $\mathbf{Z} = \begin{pmatrix} z_{11} & \cdots & z_{n1} \\ z_{12} & \cdots & z_{n2} \end{pmatrix}^T$

Components as new Coordinate System by Orthogonal Rotation

Figure 2: Rotation of the original reference system to new component system

- The first component axis fits the *main axis* of the ellipse. It captures *most of the variation* of the point cloud
- The second component axis is <u>orthogonal</u> to the first eigenvector axis and stretches along the *minor axis* of the ellipse. It captures the *remaining variation*.
- Scenario: What happens when both variables Z_1 and Z_2 are perfectly correlated? \Rightarrow One component axis captures all the variation and the other component axis captures none, i.e., it becomes irrelevant.
- The relationship between the old and the new coordinate system is indicated by the loading coefficients of the rotation matrix $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = (\mathbf{a}_1 \mid \mathbf{a}_2)$
- The loading coefficients have been standardized so that their lengths are $a_{11}^2 + a_{21}^2 = 1$ and $a_{12}^2 + a_{22}^2 = 1$
- Furthermore, the coefficients of \mathbf{a}_1 and \mathbf{a}_2 are orthogonal $a_{11} \cdot a_{12} + a_{21} \cdot a_{22} = 0$ or $\mathbf{a}_1^T \cdot \mathbf{a}_2 = 0$.
- Thus the rotation matrix A is orthonormal: $A^T \cdot A = I$

Coordinates of Points in New Coordinate System

Figure 3: Coordinates (component scores) of points in the new component system

- Each data point $\mathbf{p}_i = (z_{i1}, z_{i2})^T$ in the **original** coordinate system has **new** but equivalent coordinates in the rotated component coordinate system $\mathbf{p}_i = (f_{i1}, f_{i2})^T$.
- The first component axis is expressed by $\mathbf{f}_1 = a_{11} \cdot \mathbf{z}_1 + a_{21} \cdot \mathbf{z}_2 = \mathbf{Z} \cdot \mathbf{a}_1$ and the second eigenvector axis is expressed by $\mathbf{f}_2 = a_{12} \cdot \mathbf{z}_1 + a_{22} \cdot \mathbf{z}_2 = \mathbf{Z} \cdot \mathbf{a}_2$, that is in matrix terms,

$$\mathbf{f}_{1} \qquad \mathbf{f}_{2} \qquad \mathbf{z}_{1} \qquad \mathbf{z}_{2} \\
\begin{pmatrix}
a_{11}z_{11} + a_{21}z_{12} & a_{12}z_{11} + a_{22}z_{12} \\
a_{11}z_{21} + a_{21}z_{22} & a_{12}z_{21} + a_{22}z_{22} \\
\vdots & \vdots & \vdots \\
a_{11}z_{n1} + a_{21}z_{n2} & a_{12}z_{n1} + a_{22}z_{n2}
\end{pmatrix} = \begin{pmatrix}
z_{11} & z_{12} \\
z_{21} & z_{22} \\
\vdots & \vdots \\
z_{n1} & z_{n2}
\end{pmatrix} \cdot \begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}$$

• The two vectors \mathbf{f}_1 and \mathbf{f}_2 are uncorrelated because they are orthogonal $\mathbf{f}_1^T \cdot \mathbf{f}_2 = 0$ and centered around zero.

Identification of new Component System through Constrained Optimization

Figure 4: Eigenvalues and variance of along component axes

- The eigenvalues λ_1 and λ_2 measure the spread of the ellipse along both component axes, that is, the variance of the data points along the first component axis is $Var(\mathbf{f}_1) = \lambda_1$ and along the second component axis it is $Var(\mathbf{f}_2) = \lambda_2$.
- The eigenvalues are distinctly ordered with $\lambda_1 \ge \lambda_2 \ge 0$
- The eigenvectors is calculated such that
 - $\circ \max_{a_{11},a_{21}} Var(\mathbf{f}_1)$ for the first component and
 - o the second component is calculate such that $\max_{a_{12},a_{22}} Var(\mathbf{f}_2)$ subject to $\mathbf{f}_1^T \cdot \mathbf{f}_2 = 0$
- The eigenvalues sum to $\lambda_1 + \lambda_2 = Var(Z_1) + Var(Z_2) = 2$, which is equal to the **trace** of the 2×2 correlation matrix **R**. Therefore, no variation is **lost or added** in the rotated component coordinate system.
- Because the correlation matrix \mathbf{R} between \mathbf{z}_1 and \mathbf{z}_2 is **positive definite**, both eigenvalues are greater than zero (or in an extreme case equal to zero).
- The *determinate* of the correlation matrix **R** equals the product of the eigenvalues.

• For more than p=2 original variables we would get the new coordinates $\mathbf{f}_1,\mathbf{f}_2,\ldots,\mathbf{f}_p$ with $Var(\mathbf{f}_1)=\lambda_1,Var(\mathbf{f}_2)=\lambda_2,\ldots,Var(\mathbf{f}_p)=\lambda_p$ with $\lambda_1\geq\lambda_2\geq\cdots\geq\lambda_p\geq0$

Geometrical Interpretation of Principal Components, Eigenvalues, and Eigenvectors

Objectives of Principal Component Analysis:

- Principal component analysis is an *exploratory data driven* method.
 - That is, it is not based on an *underlying conceptional model* and depends solely on the *observed data*.
- It seeks a few *underlying dimensions* (the components) that explain the *pattern of covariation* in the correlation matrix.
 - ⇒ It follows the concept of parsimony (complexity reduction, suppression of random noise and simplification)
- The *component loadings* define the *meaning* of these underlying dimensions with regards to the original variables.
 - \Rightarrow They actually are the *correlation* between the original variables \mathbf{z}_l with the component \mathbf{f}_k , i.e., $corr(\mathbf{z}_l, \mathbf{f}_k) = a_{lk}$.
- The underlying dimensions are generally supposed to be *independent* (uncorrelated) from each other.

- Consequently, they become useful as input to other methods such as regression analysis or cluster analysis.
 - Review questions: Why are uncorrelated variables in regression analysis preferred?
- Potential applications:
 - Analysis of *potentially redundancy in data* leading to dimensionality reduction.
 - Identification of *underlying mechanism* that has generated our observed data.
 - In *remote sensing* to combine several redundant spectral bands, etc.

Model Structure:

- The correlation matrix among variables is in the center of the PC method.
 The correlation coefficient reflects the *relationship* among the observed pairs of variables.
 PC analysis *evaluates the internal structure* in the correlation matrix. (this allows to distinguish and label components)
- If the correlation matrix does not have an internal structure, such as for *mutually independent variables*, dimensionality reduction become meaningless.

- The underlying dimensions (components) are derived as combinations of the observed variables.
 Underlying dimensions can only *indirectly* be observed by investigating their relationships among the original variables.
- Reversal of the perspective: In the geometrical introduction, the components were combinations of the variables $\mathbf{F} = \mathbf{Z} \cdot \mathbf{A}$; in the reversal, the original variables are modeled by a set of components:
 - \Rightarrow **Z** = **F** · **A**^T because for rotation matrices **A**^T = **A**⁻¹
- Principal component analysis resembles a regression model of an observed variable being regressed on a set of underlying components.

Selection of the number of Components:

- No direct statistical guidelines (i.e., significance tests) are available because principal component analysis is not a statistical model based on a statistical distribution model (no direct distribution assumptions about the underlying distributions are made).
- Some guidelines are:

- None of the components should explain *less than* the variation that a single variable captures.
 - \Rightarrow Consequently, do not consider components that have an eigenvalue $\lambda_i < 1$.
- Generate a *scree-plot*. For datasets with many variables, one may observe a clear discontinuity in the decreasing sequence of the eigenvalues. Use all components prior to that discontinuity.
- See the example **basinFactorComp.r** as an example for a basic factor analysis using principal components.