Curve e Superfici per il Design Laboratorio - 1

Prof. Nicola Parolini

17 Ottobre 2019

II FranzPlot in breve

FranzPlot nasce come strumento software specificamente come supporto per la didattica di questo corso.

- Costruisce e renderizza mesh, superfici e curve parametriche.
- La creazione e la trasformazione degli oggetti rappresentati avviene assemblando grafi composti da nodi.
- Ogni elemento del grafo ha una funzione specifica, il suo output viene usato come input negli altri nodi.
- ► FranzPlot è disponibile come eseguibile per Windows (8, 10) e OS X (10.11+) su Beep.
- É disponibile un eseguibile a parte compatibile con Windows 7.
- Descrizione dettagliata di tutte le funzionalità nella guida utente (in Inglese).

Come avviare FranzPlot

- ▶ Una volta scaricato l'eseguibile franzplot.exe spostatelo nella cartella dove si intende lavorare (possibilmente sul disco locale nei computed del laboratorio informatico è usualmente indicato con Z:). È sufficiente fare doppio click per avviare il programma, non è necessaria installazione.
- ▶ Il sistema operativo potrebbe chiedere conferma prima di aprire un qualsiasi software scaricato da internet. In tal caso è necessario sbloccare l'eseguibile prima di avviarlo (vedi primo paragrafo della guida per le istruzioni).

Interfaccia utente

All'avvio viene mostrato il Node Graph Editor. Per creare un nodo fare **click destro** e scegliere un nodo dal menù. Esempio:

Creare una primitiva

Creare un nodo di Geometry Renderer

Interfaccia utente

Collegare i due nodi

Dalla barra dei pulsanti, clickare su Genera Scena

Per zoomare **nell'editor** tenere premuto ctrl e usare la rotella del mouse. Per resettare il livello di zoom clickare usando la rotella.

Nota sulle trasformazioni

Nelle prossime slide seguirà l'elenco delle trasformazioni usate nell'intero corso, la maggior parte di queste non saranno usate in questa esercitazione.

Rotazioni: Asse x

$$R_{\mathsf{x}}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \tag{1}$$

Rotazioni: Asse y

$$R_{y}(\theta) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$
 (2)

Rotazioni: Asse z

$$R_{z}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix}$$
 (3)

Tagli

Taglio in direzione x sulle facce con normale y:

$$T_{xy} = \begin{bmatrix} 1 & k_x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (4)

Taglio in direzione y sulle facce con normale x:

$$T_{yx} = \begin{bmatrix} 1 & 0 & 0 \\ k_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (5)

Tagli[2]

Taglio in direzione z sulle facce con normale x:

$$T_{zx} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k_z & 0 & 1 \end{bmatrix}$$
 (6)

Taglio in direzione z sulle facce con normale y:

$$T_{zy} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & k_z & 1 \end{bmatrix}$$
 (7)

Scalatura, Riflessione, Proiezione

Scalatura

$$S = \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & S_z \end{bmatrix} \tag{8}$$

Riflessione

$$F = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - 2 \begin{bmatrix} n_x \\ n_y \\ n_z \end{bmatrix} [n_x \quad n_y \quad n_z]$$
 (9)

Proiezione

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} n_{x} \\ n_{y} \\ n_{z} \end{bmatrix} \quad \begin{bmatrix} n_{x} & n_{y} & n_{z} \end{bmatrix}$$
 (10)

Coordinate omogenee

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & t_1 \\ a_{21} & a_{22} & a_{23} & t_2 \\ a_{31} & a_{32} & a_{33} & t_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11}x + a_{12}y + a_{13}z + t_1 \\ a_{21}x + a_{22}y + a_{23}z + t_2 \\ a_{31}x + a_{32}y + a_{33}z + t_3 \\ 1 \end{bmatrix}$$

Coordinate omogenee

FranzPlot fa uso di matrici di trasformazione in coordinate omogenee, che sono matrici 4×4 .

Per l'uso odierno, ci basta sapere che quando scriviamo una matrice di trasformazione 3 x 3 dobbiamo scriverla nel blocco in alto a sinistra, lasciando invariato il resto:

$$T = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \Rightarrow \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Esercizio 1: prendere familiarità con FranzPlot

Il nodo **Primitive** ci fornisce una piccola libreria di figure geometriche primitive, figure solide già costruite: sfera, cubo, cilindro, ecc... Vediamo un altro esempio di utilizzo:

- ▶ Disegnare un cilindro con asse parallelo a Z ed altezza 1.
 - ► Elementi da utilizzare: Geometries→ Primitives, Geometry Renderer.

- Effettuare uno scaling con $S_x = 2$, $S_y = 1$, $S_z = 0.5$.
 - ► Elementi aggiuntivi da utilizzare: Transformations → Generic Matrix, Transformations → Transform

Esercizio 1 - i

Esercizio 1 - ii

Esercizio 2: Identificare una trasformazione

- Disegnare un cubo centrato sull'origine, con lati di misura 2 (notare che nella primitiva è possibile fissare un parametro che influenza la dimensione dell'oggetto).
- ► Applicare al cubo la seguente matrice:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Descrivere la deformazione che è stata applicata al cubo. Il volume del cubo è cambiato?

Esercizio 2 - i

Esercizio 3: Trasformazioni tempo dipendenti

▶ Partiamo nuovamente dal cubo dell'es. 2, questa volta applichiamo una trasformazione nel tempo del tipo:

$$A = \begin{bmatrix} 1 & 0 & t \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

► Utilizzare l'elemento Transformations → Time Transform Attenzione: in questa matrice è obbligatorio usare la lettera t

Generare la scena e fare click sul tasto Play dalla Top Bar

Esercizio 4 - Rotazioni e traslazioni

Per applicare una trasformazione di rotazione o traslazione abbiamo due alternative:

Scrivere gli elementi nella matrice generica

oppure

 Usare due nodi contenenti le trasformazioni "preconfezionate" (utili per fare test o esperimenti più velocemente)

Andiamo a vedere come usare i nodi Translation Matrix e Rotation Matrix

Esercizio 4 - Rotazioni e traslazioni

- Creare un oggetto di tipo 'dado' ('dice') utilizzando il comando Primitive, con fattore di scala 0.5.
- ▶ Traslare il centro dell'oggetto in $\langle 2,1,0 \rangle$ (combinando gli elementi Transformations → Translation Matrix e Vector).
- ► Ruotare di 180 gradi il dado traslato intorno all'asse Z (usando l'elemento Transformations → Rotation Matrix).
- Rappresentare i tre oggetti (iniziale, traslato, traslato e ruotato).

Esercizio 4 - i - Dado traslato

Esercizio 4 - ii - Trasformazioni in cascata

Esercizio 4 - iii - Risultato

Esercizio 4 - iv - Considerazioni finali

- È possibile verificare che il dado sia stato ruotato correttamente controllando come sono orientate le facce.
- Se vogliamo animare la rotazione usando la Time Transform, sarà necessario scrivere la matrice "a mano" (non è possibile usare il nodo Rotation Matrix).
- Cambiando l'ordine delle trasformazioni (applicando la rotazione prima della traslazione), il risultato finale è lo stesso o cambia?

Per Casa: Proiezioni ortogonali

Creare un'organizzazione di oggetti le cui proiezioni sui piani cartesiani riproducono le figure sovrastanti.