VI dust (10 (1,1,0), 11 : 2x+1,, 1

Lucrare II (141)

of $f \in End(\mathbb{R}^2)$, $A = [f]_{Ro,Ro} = \begin{pmatrix} 1 & -2 \\ 2 & -4 \end{pmatrix}$, Ro = repeate canonica) for vate diagonaliza, b) f nu se grate diagonaliza,

c) valorile proprii sunt egale; d) pol caract are rad € CIR

(2) (\mathbb{R}^{3}, g_{0}) Fie repeal $\mathbb{R}^{2} = \{f_{1}=(1_{1}-1_{1}1), f_{2}=(0_{1}1_{0}), f_{3}=(1_{1}1_{1}0)\}$ Repeal ortonormat obtinut au Gram-Jehmidt este a) $\{\frac{1}{\sqrt{3}}(1_{1}-1_{1}1), \frac{1}{\sqrt{6}}(1_{1}2_{1}1), \frac{1}{\sqrt{2}}(1_{1}0_{1}-1)\}; b\} \{\frac{1}{\sqrt{2}}(1_{1}0_{1}0), \frac{1}{\sqrt{2}}(1_{1}-1_{1}1), \frac{1}{\sqrt{3}}(1_{1}1_{1}1)\};$ c) $\{\frac{1}{\sqrt{6}}(2_{1}1_{1}-1), \frac{1}{\sqrt{2}}(1_{1}0_{1}1), \frac{1}{\sqrt{3}}(1_{1}1_{1}1)\}; d\} \{\frac{1}{\sqrt{2}}(1_{1}-1_{1}0), \frac{1}{\sqrt{2}}(1_{1}0_{1}1), \frac{1}{\sqrt{3}}(1_{1}1_{1}1)\};$

(3) $(\mathbb{R}^{3}, 9^{\circ}), \mu = (1_{10}, 1)$ $5 \in \text{End}(\mathbb{R}^{3})$ simetria ortogonalà fatà de $2\{u_{1}^{3}\}$ a) $5(x) = (x_{1}, -x_{3}, -x_{2}), b) 5(x) = (-x_{3}, x_{2}, -x_{4})$ $(x) 5(x) = (x_{1}, x_{2}, -x_{3}), d) 5(x) = (-x_{1}, x_{2}, -x_{3}).$

(4) (R^3, g_0) , u = (1,1,-1) Complemental ortogonal $\{u\}$ esternal $\{x \in R^3 \mid x_1 - x_2 - x_3 = 0\}$; b) $\{x \in R^3 \mid x_1 + x_2 + x_3 = 0\}$; c) $\{x \in R^3 \mid x_1 + x_2 - x_3 = 0\}$; d) $\{x \in R \mid \{x_1 + x_2 = 0\}$.

(5) Q: $\mathbb{R}^3 \longrightarrow \mathbb{R}$ forma jatratica, $A = \begin{pmatrix} 4 & -2 & 0 \\ -2 & 4 & 1 \end{pmatrix}$ matricea assista Lignatura lui Q este: a) (3,0); b) (1,2); c) (1,1); d) (2,1)

(6) (R^3, g_0) , u = (1, -1, 2), $f \in End(R^3)$, f(x) = 2x, u > u $g_0 = 2$; > produs scalar sanonic (a) dim Ker f = 2, b) dim Ker f = 1; c) $f \in Aut(R^3)$, $d) f \in Sem(R^3)$

 $\mathcal{F}(\mathcal{R}^3, g_0)$, $f \in \text{End}(\mathbb{R}^3)$, $[f]_{R_0, R_0} = A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \end{pmatrix}$ $\exists un reper ortenormat in <math>\mathbb{R}^3$ ai matricea $u \neq u$ forma diagonala: forma diagonala: $f(\mathcal{R}^3, g_0)$, $f(\mathcal{$ 1 000 (10 (11,01, 11: 11: 11.)

(8) $(R^{3})g_{0}$, $f \in End(R^{3})$, $[f]_{R_{0},R_{0}} = \frac{1}{7}\begin{pmatrix} -3 & -2 & 6 \\ 6 & -3 & 2 \\ 2 & 6 & 3 \end{pmatrix}$ a) $f = R\varphi$, $\cos \varphi = \frac{5}{7}$; b) $f = R\varphi$, $\cos \varphi = -\frac{5}{7}$; c) $f = A_{0}R\varphi$, $\cos \varphi = -\frac{7}{5}$, c) $f = A_{0}R\varphi$, $\cos \varphi = \frac{1}{7}$,

c) $f = SoR\varphi$, $ros \varphi = -\frac{7}{5}$, c) $f = SoR\varphi$, $ros \varphi = \frac{1}{7}$, unde $R\varphi = rotatie$ de $*\varphi$, axá $< \{e, g>$, L s = simietrie ortogonala fata de $< \{e, g>$.

(9) $Q: \mathbb{R}^3 \longrightarrow \mathbb{R}$, $Q(x) = x_1^2 + 2x_1x_2$ $g: \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}$ forma foldra atricata a) $g(x,y) = x_1y_1 + 2x_1y_2 + 2x_2y_1$; b) $g(x_1) = x_1y_1 + x_2y_1 + x_2y_2$ c) $g(x,y) = x_1y_1 + x_2y_2 + x_3y_3$; d) $g(x_1y) = x_1y_1 + x_1y_2 + x_2y_1$.