Ghost Imaging Using Tuneable Spatial Correlations

Juan Sebastián Vargas¹

Departamento de Física Universidad de los Andes

March 20, 2018

Imaging

Most Common Imaging Process

Figure: Normal eye, Myopie and Hypermetropia

Ghost Imaging Experimental Setup

Figure: Experimental Setup for Alignment

Ghost Imaging Experimental Setup

Figure: Experimental Setup for Ghost Imaging

Biphoton

$$egin{aligned} |\Psi
angle &= \int dq_s dq_i d\Omega_s d\Omega_i \ & imes \left[\Phi(q_s,\Omega_s;q_i,\Omega_i) \hat{a}^\dagger(\Omega_s,q_s) \hat{a}^\dagger(\Omega_i,q_i)
ight. \ &+ \Phi(q_i,\Omega_i;q_s,\Omega_s) \hat{a}^\dagger(\Omega_s,q_s) \hat{a}^\dagger(\Omega_i,q_i) \right] |0
angle \end{aligned}$$

After using Polarisers this reduces to:

$$|\Psi
angle = \int dq_{s}dq_{i}d\Omega_{s}d\Omega_{i} \times \left[\Phi(q_{s},\Omega_{s};q_{i},\Omega_{i})\hat{a}^{\dagger}(\Omega_{s},q_{s})\hat{a}^{\dagger}(\Omega_{i},q_{i})\right]|0
angle$$

Nonlinear Crystal (BBO)

Tracing Out Temporal Correlations

To Observe the transverse correlations the frequency information has to be traced out.

$$egin{aligned} \mathcal{F}_{\mathit{frequency}}(\Omega_{n}) &pprox & exp\left[-rac{\Omega_{n}^{2}}{4\sigma_{n}^{2}}
ight] \ & ilde{\Phi}(q_{s},q_{i}) = \int d\Omega_{s}d\Omega_{i}\mathcal{F}_{s}(\Omega_{s})\mathcal{F}_{i}(\Omega_{i})\Phi(q_{s},\Omega_{s};q_{i},\Omega_{i}) \end{aligned}$$

Correlations Degree (DOC)

A way to quantify the degree of spatial correlation we shall define 'correlation parameter':

$$\mathcal{K}^{\lambda} = rac{\mathcal{C}^{\lambda}_{si}}{\sqrt{\mathcal{C}^{\lambda}_{ss}\mathcal{C}^{\lambda}_{ii}}}$$

calculated for each direction $(\lambda=x,y)$ from the covariance matrix C^λ with elements $C_{kj}^\lambda=\langle q_k^\lambda q_j^\lambda \rangle - \langle q_k^\lambda \rangle \langle q_j^\lambda \rangle$.

DOC vs w_p

Fourier Plane

Using Fourier one to one correspondence between the transverse momentum and position $q=\frac{2\pi}{\lambda f}r$.

Detection

The coincidence counts that will be measured by the Detectors will be proportional to the magnitude square of the resulting biphoton function $\Phi_1(r_2)$.

$$S(\vec{r_A}(x_A, y_A)) \propto |\int d^2 \vec{r_C} T(\vec{r_C}) \Phi(\frac{2\pi}{\lambda f} \vec{r_C}, \frac{2\pi}{\lambda f} \vec{r_A})|^2 \qquad (2)$$

Numerical Example

Figure: Mask used

Numerical Example

Experiment at Uniandes: Results

Figure: Alignment and Ghost Image square 4x4 μm

Figure: Mask Used so far

Figure: Alignment and Ghost Image interrogation

Figure: Alignment for the L

Figure: Ghost Long Measurement

Experimental vs. Simulation Results

Figure: Comparison for the Interrrogation

Figure: Comparison for the L

Bibliography