Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования

«Санкт-Петербургский политехнический университет Петра Великого»

Институт компьютерных наук и технологий

УТВЕРЖДАЮ

Директор ИКНТ

____ Л.В. Уткин

«29» октября 2021 г.

ПРОГРАММА

вступительного испытания для поступающих в магистратуру по направлению подготовки / образовательной программе

09.04.04 Программная инженерия

09.04.04_01 Технология разработки и сопровождения качественного программного продукта,

09.04.04_02 Основы анализа и разработки приложений с большими объемами распределенных данных

09.04.04_04 ИТ-инфраструктура предприятия

Код и наименование направления подготовки / образовательной программы

АННОТАЦИЯ

Программа содержит перечень тем (вопросов) по дисциплинам базовой части профессионального цикла учебного плана подготовки бакалавров по направлению **09.04.04** Программная инженерия, вошедших в содержание билетов (тестовых заданий) вступительного испытания в магистратуру.

Вступительное испытание, оценивается по стобалльной шкале и состоит из междисциплинарного экзамена в объеме требований, предъявляемых государственными образовательными стандартами высшего образования к уровню подготовки бакалавра по направлению, соответствующему направлению магистратуры, проводимого очно в письменной или устной форме и дистанционно (максимальный балл -100).

Минимальное количество баллов, подтверждающее успешное прохождение междисциплинарного экзамена – 50 баллов (50%).

Руководитель ОП

Молодяков С.А.

Составители:

Профессор, д.т.н.

Молодяков С.А.

Доцент, к.т.н.

Амосов В.В.

Ст. преподаватель

Котлярова Л.П.

Программа рассмотрена и рекомендована к изданию Ученым советом **ИКНТ** (протокол № 9 от «29» октября 2021 г.).

Misel -

1. ДИСЦИПЛИНЫ, ВКЛЮЧЁННЫЕ В ПРОГРАММУ МЕЖДИСЦИПЛИНАРНОГО ЭКЗАМЕНА

- 1.1. Технологии разработки качественного программного обеспечения.
- 1.2. Сети и телекоммуникации.
- 1.3. Защита информации.

2. СОДЕРЖАНИЕ УЧЕБНЫХ ДИСЦИПЛИН

2.1. Технологии разработки качественного программного обеспечения

- 1. Проблемы разработки программного обеспечения (ПО), модели жизненного цикла программного обеспечения (ЖЦ ПО).
- а) современные модели ЖЦ: водопадная, V-типа, спиральная, инкрементальная, итерационная, прототипная, Agile разработка ПО.
- б) сложность как основная проблема ПО и источники сложности. Средства борьбы со сложностью: абстракция, свертка, прогнозирование-контроль. Модульность как средство борьбы со сложностью программного проекта, прочность и сцепление модулей, интерфейс, контекст, пакетирование модулей.
- в) сборочная технология ПО: проблемы повторного использования модулей (reuse), возвратной инженерии (reengineering), портирования (переноса) ПО или его компонент (porting).
- 2. Процесс производства ПО: методы, технологии, инструментальные средства. а) создание проектного плана; методы оценки ресурсов и распределения работ; рисканализ; отслеживание и контроль плана; методы и инструменты, применяемые для
- планирования программного проекта.
- б) сбор и анализ требований: источники требований, методы сбора и анализа требований; спецификация требований и согласование её с заказчиком и заинтересованными лицами проекта; язык спецификаций, формальные нотации для описания поведения системы (UML, MSC, UCM); системные требования и ПО требования; изменение, отслеживание и контроль спецификации требований.
- в) проектирование ПО: концептуальное (High Level Design) и детальное проектирование (Detailed Design); требования и критерии; отслеживание и контроль спецификаций архитектуры и дизайна, инструменты, применяемые при описании и исполнении дизайна.
- г) обзор этапа реализации проекта (кодирования); отладка, модульное тестирование (метод «белого ящика») и обзоры кода как обязательные составляющие этапа разработки ПО; стандарты кодирования.
- д) тестирование ПО: методы тестирования, ограничения тестирования как метода проверки ПО; инструментальные средства для тестирования и отладки многомодульных программных комплексов; макетирование ПО и внешнего окружения; интеграционное и

системное тестирование; регрессионное тестирование; виды тестирования, объект тестирования в каждом из видов тестирования (функциональное тестирование, тестирование пользовательского интерфейса, тестирование безопасности, тестирование производительности ПО, тестирование удобства пользования, тестирование совместимости и др); автоматизация тестирования; способы создания тест кейсов (ручной, генерация тест кейсов по формально описанным требованиям к ПО); виды документации в тестировании; критерии тестирования ПО (стохастические критерии, мутационный критерий, структурные критерии).

- е) нагрузочное тестирование и тестирование производительности: этапы при проведении каждого из видов тестирования; особенности выбора инструментов для каждого вида тестирования; типы тестирования производительности (нагрузочное, тестирование стабильности, масштабируемости, отказоустойчивости, стресс тестирование, объёмное тестирование, тестирование восстановления), их цели и задачи.
- ж) документирование ПО: требования к ПО как промышленному продукту; стандарты на оформление программного продукта (IEEE, ISO/MEK, ЕСПД); виды программной документации; средства автоматизации разработки программной документации в индустриальной технологии программирования.
- з) сопровождение ПО: сопровождение или продолжающаяся разработка ПО; проблемы и перспективы сопровождения ПО; используемые инструментальные средства; стиль программирования, ориентированный на поддержку этапа сопровождения.
- 3. Виртуализация, виды виртуализации, цели и примеры применения виртуализации (различия аппаратной виртуализации и контейнеризации). Docker инструмент для контейнеризации, использование в автоматизации тестирования ПО.
- 4. Веб-тестирование: жизненный цикл разработки веб-приложения, задачи тестирования веб-приложений; инструменты для автоматизации тестирования пользовательского интерфейса; инструменты для тестирования серверного компонента.
 - 5. Метрики и управление разработкой и качеством ПО.

ТП распределенных систем и сетей.

- а) основные понятия качества и метрической теории ПО; методы оценки качества ПО (анкеты, рабочие списки, контрольные задачи, распространенные бенчмарки для оценки производительности программного изделия); методы управления качеством ПО, используемые в современных ТП (контроль и отслеживание, обзоры (review) и аудиты); аттестация ПО.
- б) количественная оценка объектов с расплывчатыми свойствами: метрики и индикаторы; использование информационных и топологических метрик для оценки сложности программного модуля; конструктивные критерии качества ПО; основные модели программного модуля, используемые для оценки трудоемкости его разработки; метрики для оценки информационной сложности модулей и их использование для совокупной оценки программного проекта.
- 6. Современные индустриальные технологии программирования (ТП). а) сборочная ТП, особенности ЖЦ сборочной ТП, требования к модулям и интерфейсам; быстрое программирование (agile programming), особенности ЖЦ; аспектное программирование, особенности ЖЦ, требования к модулям и интерфейсам. б) особенности ТП: особенности ТП управляющих систем, ТП отказоустойчивых систем,

в) перспективные направления в развитии ТП: доказательное программирование и визуальное программирование. Метатехнология в программировании больших программных комплексов.

Литература для подготовки:

- 1. С.С.Лавров. Программирование математические основы, средства, теория. СПб. BHV.2001. 320c.
- 2. Гленфорд Майерс, Том Баджетт, Кори Сандлер. Искусство тестирования программ, 3-е изд. Компьютерное издательство Диалектика, 2019. 272 с.
- 3. Котляров В.П., Коликова Т.В. Основы современного тестирования ПО. М: Интернет Университет Информационных Технологий, 2006. -285с.
- 4. Котляров В.П., Коликова Т.В. и др, Технология программирования: Основы современного тестирования ПО, разработанного на С#. СПб.: Изд-во СПбГПУ, 2004 132с.
- 5. Непейвода Н.Н. Стили и методы программирования. М: Интернет Университет Информационных Технологий, 2005. -320c
- 6. Канер С., Фолк Дж., Нгуен Енг. Тестирование программного обеспечения. –К: ДиаСофт, 2000 544с
- 7. Грейди Буч, Джеймс Рамбо, Айвар Джекобсон. UML Руководство пользователя. M.:2000 427c
- 8. Липаев В.В., Позин Б.А., Штрик А.А. Технология сборочного программирования. М: Рад. и связь, 1997 272с.
- 9. Боэм Б. Инженерное проектирование программного обеспечения. -М: Рад. и связь, 1985. 510с.
- 10. Docker Управление вычислениями (второй степ) https://stepik.org/course/1612/syllabus

2.2. Сети и телекоммуникации

1. Основы телекоммуникаций

Эволюция телекоммуникационных сетей. Общие принципы построения сетей. Коммутация каналов и пакетов. Архитектура и стандартизация сетей. Сетевые характеристики. Эталонная модель взаимодействия открытых систем. Задачи физического уровня, уровня передачи данных, сетевого, транспортного, сеансового, представления и прикладного уровней.

2.Линии связи

Согласование характеристик каналов связи и сигналов. Линии связи и каналы передачи данных. Характеристика проводных линий связи, волоконно-оптических линий связи и радиоканалов. Системы мобильной связи. Модели линий связи.

3. Технология физического уровня передачи данных Методы модуляции сигналов. Коды передачи цифровых систем. Алгоритмы приема сигналов. Помехоустойчивость приема сигналов. Методы доступа к среде передачи. Множественный доступ с частотным разделением (FDMA). Множественный доступ с временным разделением (TDMA). Множественный доступ с кодовым разделением

(CDMA). Протоколы управляемого доступа в асинхронных системах. Подуровень управления линией передачи. Методы повышения достоверности при передаче данных.

4. Сетевой уровень.

Коммутация в телекоммуникационных системах. Пространственная, временная и комбинированная коммутация каналов. Виртуальные каналы. Алгоритмы выбора маршрута в сетях с коммутацией пакетов. Алгоритмы борьбы с перегрузкой. Межсетевое взаимодействие. Туннелирование и фрагментация пакетов в объединенных сетях.

5. Локальные вычислительные сети

Структурные компоненты ЛВС: физическая среда, топология, метод доступа. Сети Ethernet и TokenRing. Множественный доступ с контролем несущей и обнаружением конфликтов. Маркерные методы доступа. Структура кадра. Auto-Negotiation. 10-Gigabit Ethernet. Электропитание по сети Ethernet, PoE. Аппаратные средства: сетевые контроллеры, приемопередатчики, концентраторы, коммутаторы. Интеллектуальные функции коммутаторов. Протокол STP. Маршрутизаторы. Статическая и динамическая маршрутизация. Удаленный доступ к локальной сети. LAG. Виртуальные локальные сети. VPN. VLAN. Switch Fabric. Планирование технических средств в базовых конфигурациях ЛВС. Высокоскоростные ЛВС.

6. Сети ТСР/ІР

Система протоколов стека TCP/IP для управления взаимодействием процессов в сети. Основные функции сетевого, транспортного, сеансового, представительного и прикладного уровней и базовые протоколы стека TCP/IP. Адресация, фрагментация в Интерсети. Технология трансляции сетевых адресов NAT. Протокол SMTP. Протоколы Telnet, SSH. Протоколы HTTP, FTP. Протокол ICMP. TRACEROUTE. PING.

7. Технологии глобальных сетей

Структура и информационные услуги территориальных сетей. Протоколы файлового обмена, электронной почты, дистанционного управления. Виды конференц-связи. Информационная система WWW. Служба DNS. Протоколы POP3 и IMAP. Поиск в Интернете. Средства создания Web приложений.

8. Перспективы развития основных сетевых методов одновременной передачи данных, голоса, видеоинформации в направлении повышения производительности, достоверности и надежности. Методы повышения сетевой безопасности.

Литература для подготовки:

- 1. Бройдо, В. Л. Вычислительные системы, сети и телекоммуникации: учеб. для вузов / В. Л. Бройдо, О. П. Ильина. 4-е изд. СПб. : Питер, 2011. 560 с.
- 2. Гусева, А. И. Вычислительные системы, сети и телекоммуникации : учеб. для вузов / А. И. Гусева, В. С. Киреев. М. : Академия, 2014. 288 с.
- 3. Олифер, В. Г. Компьютерные сети. Принципы, технологии, протоколы : учеб. для вузов / В. Г. Олифер, Н. А. Олифер. 5-е изд. СПб. : Питер, 2016. 992 с.
- 4. Пескова, С. А. Сети и телекоммуникации : учеб. для вузов. / С. А. Пескова, А. В. Кузин. 5-е изд., перераб. М. : Академия, 2014. 314 с.
- 5. Пятибратов, А. П. Вычислительные системы, сети и телекоммуникации : учеб. / А. П. Пятибратов, Л. П. Гудыно, А. А. Кириченко. М. : КНОРУС, 2017. 372 с.
- 6. Сети и телекоммуникации : учеб. и практикум для академического бакалавриата / под ред. К. Е. Самуйлова, И. А. Шалимова, Д. С. Кулябова. М. : Юрайт, 2016. 363 с.

7. Таненбаум, Э. Компьютерные сети / Э. Таненбаум, Д. Уэзерол. – 5-е изд. – СПб. : Питер, 2014. – 960 с.

2.3. Защита информации

1. Безопасность информационных технологий. Основные понятия.

Информационная безопасность, безопасность информации, безопасность информационных технологий.

Конфиденциальность, целостность, доступность.

Угрозы безопасности информационных технологий (ИТ).

Модель нарушителя.

Уязвимости информационных систем и пути нанесения ущерба.

Взаимосвязь основных понятий безопасности ИТ. Управление рисками.

Меры противодействия угрозам безопасности: законодательные, морально- этические, организационные, физические, технические.

Основные принципы построения системы защиты АС.

2. Шифрсистемы.

Основные понятия. Классификация криптосистем.

Классификация шифрсистем. Простые шифры.

Теоретико-информационная оценка криптостойкости шифрсистем. Совершенно безопасные системы.

Ненадежность шифров и расстояние единственности.

Практическая стойкость шифра. Современные методы и технологии криптоанализа.

Требования к современным шифрам (диффузия, конфузия, практическая реализуемость). Итерированные блочные шифры. Выбор основных параметров.

Требования к шифрам первого поколения. Сеть Фейстела.

Блочный шифр ГОСТ 28147-89. Основные характеристики. Математическая модель и архитектура.

Требования к шифрам второго поколения. Блочный шифр AES. Основные характеристики. Математическая модель и архитектура.

Сравнительный анализ современных блочных шифров.

Протоколы шифрования. ГОСТ 28147-89. Режим простой замены. Математическая модель, особенности и области применения.

Протоколы шифрования. ГОСТ 28147-89. Режим гаммирования. Математическая модель, особенности и области применения.

Протоколы шифрования. ГОСТ 28147-89. Режим гаммирования с обратной связью. Математическая модель, особенности и области применения.

Сравнительный анализ протоколов шифрования ГОСТ 28147-89 и стандартов США.

3. Обеспечение имитостойкости.

Имитостойкость.

Способы контроля целостности сообщения.

Хэш-функция. Требования к криптографической хэш-функции. Криптостойкость хэш-функций.

Архитектура хэш-функции. Функция сжатия.

Стандарт функции хэширования ГОСТ Р34.11-94. Основные характеристики и математическая модель. Сравнительные характеристики современных хэш-функций.

Стандарт функции хэширования SHA-1. Основные характеристики и математическая модель. Сравнительные характеристики современных хэш-функции.

Протокол контроля целостности с использованием хэш-функции. Область применения.

Коды аутентификации сообщения. Математическая модель. Достоинства и недостатки. Область применения.

НМАС. Математическая модель и основные характеристики. Протокол контроля целостности. Область применения.

Шифрование с контролем целостности. Показатели эффективности. Стандарт блочного шифрования ГОСТ 28147-89, режим выработки имитовставки. Математическая модель и основные характеристики. Протокол контроля целостности.

Сравнительный анализ протоколов контроля целостности.

Методы защиты от навязывания ранее переданных, задержанных или переадресованных сообщений.

4. Криптография с открытым ключом

Требования к преобразованиям в криптографии с открытым ключом. Вычислительно простые и вычислительно сложные проблемы.

Необратимые преобразования с лазейкой и их применение в криптографии с открытым ключом..

Система открытого шифрования RSA. Математическая модель. Протокол применения. Анализ криптостойкости.

Сравнительный анализ шифрования с секретным ключом и открытого шифрования.

5. Электронная цифровая подпись (ЭЦП).

Модель нарушителя и требования к ЭЦП. Сравнение с графической подписью.

ЭЦП RSA, математическая модель, анализ криптостойкости, протокол применения. ЭЦП ElGamal, математическая модель, анализ криптостойкости. Сравнение ЭЦП ElGamal и ЭЦП RSA. ЭЦП DSA, математическая модель, анализ криптостойкости. Математические основы криптографии на эллиптических кривых (ЭК).

ЭЦП на ЭК (ГОСТ Р34.10-2001), математическая модель, анализ криптостойкости, протокол применения.

Сравнительные характеристики ЭЦП (RSA, DSA, ГОСТ Р34.10-2001 (ECDSA)).

Хэш-функции в протоколах цифровой подписи.

6. Управление криптографическими ключами.

Жизненный цикл ключей и функции управления ключами.

Криптографические генераторы псевдослучайных последовательностей (требования, принципы построения, примеры).

Генерация больших простых чисел. Тест Ферма.

Управление ключами в криптосистемах с секретным ключом, сравнительный анализ протоколов децентрализованного и централизованного управления ключами.

Управление ключами в криптосистемах с открытым ключом. Сертификат открытого ключа.

Удостоверяющий центр и его функции. Протоколы сертификации и кросс-сертификации.

Гибридные криптосистемы на основе открытого шифрования и открытого распределения ключей системы.

7. Аутентификация субъектов.

Идентификация и аутентификация. Классификация схем аутентификации. Требования к протоколу аутентификации.

Парольная защита. Достоинства и недостатки (уязвимости). Методы усиления парольной защиты.

Аутентификация с использованием криптографических методов. Примеры протоколов.

Аутентификация с нулевой передачей знаний. Протокол Fiat-Shmir, математическая модель, протокол применения, анализ стойкости.

Биометрическая аутентификация. Статические и динамические биометрические образы. Биометрические механизмы. Биометрическая аутентификация и криптографические механизмы.

8. Разграничение доступа.

Политика безопасности и схема разграничения доступа. Избирательное управление доступом. Математическая модель. Достоинства и недостатки.

Полномочное управление доступом. Математическая модель. Особенности применения и реализации. Ролевая модель управления доступом. Математическая модель. Достоинства и недостатки.

Контроль информационных потоков для обеспечения конфиденциальности (модель Bell-LaPadule). Достоинства и недостатки.

Реализация разграничения доступа в современных ОС.

9. Безопасность компьютерных сетей.

Уязвимости ІР-сетей, сетевых ОС и прикладных сервисов. Типовые сетевые атаки. Защищенный сетевой протокол IPSec, Архитектура: протоколы безопасности (TSP, AH) и режимы их использования, ассоциация безопасности и протокол согласования ее параметров (ISAKMP), БД политик безопасности.

Защищенный транспортный протокол SSL, архитектура и принципы работы. Межсетевые экраны (МЭ). Основные функции. Типы МЭ. Построение и применение правил фильтрации. Конфигурация МЭ.

10. Оценочные стандарты безопасности информационных технологий.

Нормативные стандарты. «Оранжевая книга» Концепция, основные понятия. Достоинства и недостатки.

Руководящие документы Гостехкомиссии : «Показатели защищенности от НСД к информации», «Классификация АС и требования по защите информации». Концепция, основные понятия, принципы применения, достоинства и недостатки.

ГОСТ ISO/IEC 15408 «Общий критерий оценки безопасности информационных технологий». Концепция документа. Основные понятия: требования безопасности (функциональные и доверия) и их структуризация, уровни доверия, профиль защиты). Принципы применения.....

Литература для подготовки:

- 1. Габидулин Э. М., Кшевецкий А. С., Колыбельников А. И.Защита информации: учебное пособие М.: МФТИ, 2011. 225 с. http://permsite.ru/files/2017/12/information security Z3WChDA.pdf
- 2. Партыка, Т. Л. Информационная безопасность : учеб. пособие для вузов / Т. Л. Партыка, И. И. Попов. 5-е изд., перераб. и доп. М. : ФОРУМ : ИНФА-М, 2014. 432 с.
- 3. Хорев, П. Б. Программно-аппаратная защита информации : учеб. пособие для вузов / П. Б. Хорев. 2-е изд., испр. и доп. М. : ФОРУМ : ИНФА-М, 2015. 352 с.
- 4. Шаньгин, В. Ф. Информационная безопасность компьютерных систем и сетей : учеб. пособие для вузов / В. Ф. Шаньгин. М. : ИД ФОРУМ : ИНФА-М, 2014. 416 с

3. ПРИМЕР ТЕСТОВОГО ЗАДАНИЯ

Санкт-Петербургский политехнический университет Петра Великого Институт металлургии, машиностроения и транспорта

УТВЕРЖДАЮ

Руководитель ОП

С.А. Молодяков «29» октября 2021 г.

ВСТУПИТЕЛЬНОЕ ИСПЫТАНИЕ

по направлению подготовки / образовательной программе 09.04.04 Программная инженерия / 09.04.04 01 Технология разработки и сопровождения качественного программного продукта, 09.04.04 02 Основы анализа и разработки приложений с большими объемами распределенных данных, 09.04.04 04 ИТ-инфраструктура предприятия

Код и наименование направления подготовки / образовательной программы

- 1. Примеры тестовых вопросов по трем темам (30 вопросов, каждый имеет 2 балла, максимально можно набрать 60 баллов):
- 1) Интеграционное тестирование это

Выберите один ответ:

- а. процесс тестирования системы в целом с целью проверки того, что она соответствует установленным требованиям
- b. тестирование, выполняемое для обнаружения дефектов в интерфейсах и во взаимодействии между интегрированными компонентами или системами
- с. процесс, который проводится с целью определения соответствия системы критериям приёмки и с целью дать возможность пользователям, заказчикам или иным авторизированным лицам определить, принимать систему или нет
- d. тестирование отдельных компонентов программного обеспечения
 - 2) Какую основную задачу решают протоколы физического уровня эталонной модели взаимодействия открытых систем (OSI)?

Выберите один ответ:

- а. Управление доступом к среде передачи
- b. Маршрутизация пакетов.

- с. Передача и прием сигналов линии связи
- d. Межсетевое взаимодействие.

3) В схеме шифрования с открытым ключом

Выберите один ответ:

- а. Ключ зашифрования открытый, ключ расшифрования закрытый (секретный)
- b. Ключ зашифрования открытый, ключ расшифрования открытый
- с. Ключ зашифрования закрытый (секретный), ключ расшифрования открытый
- d. Ключ зашифрования закрытый (секретный), ключ расшифрования закрытый (секретный)
 - 2. Пример тестового вопроса в виде эссе (письменный ответ) (4 вопроса по 10 баллов, максимально можно набрать 40 баллов)

Перечислите и опишите метрики оценки сложности разрабатываемого программного обеспечения