ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКО	Й		
ПРЕПОДАВАТЕЛЬ			
ассистент			Е.К. Григорьев
должность, уч. степень, з	вание	подпись, дата	инициалы, фамилия
O	ТЧЕТ О ЛАЕ	БОРАТОРНОЙ РАБО	OTE №2
МОДЕЛИРОВАН	ИЕ ГЕНЕРАТ	ГОРОВ НОРМАЛЬН	О РАСПРЕДЕЛЁННЫХ
	ПСЕВДО	СЛУЧАЙНЫХ ЧИС	ЕЛ
	по курс	у: МОДЕЛИРОВАНИЕ	
	-		
РАБОТУ ВЫПОЛНИЛ			
СТУДЕНТ ГР. №	4143		Е.Д.Тегай
		подпись, дата	инициалы, фамилия

Цель работы

Получить навыки моделирования нормально распределенных псевдослучайных чисел в программной среде MATLAB/GNU Octave, а также первичной оценки качества полученных псевдослучайных чисел.

Индивидуальный вариант

Содержимое индивидуального варианта показано на рисунке 1. Следует отметить, что для удобства восприятия номер варианта и исходные данные выделены жёлтым цветом.

Варианты задания

Таблица 1

Nº	m	σ	Nº	m	σ
1	20	1	11	10	3
2	19	3	12	9	2
3	18	2	13	8	4
4	17	1	14	7	1
5	16	4	15	6	1
6	15	1	16	5	2
7	14	2	17	4	3
8	13	4	18	3	2
9	12	3	19	2	1
10	11	1	20	1	3

Рисунок 1 – Индивидуальный вариант

Ход работы

Для начала от руки по исходным данным строятся график функции плотности распределения и график функции распределения. Соответствующие расчёты и графики приведены на рисунках 2-3.

Рисунок 2 – График плотности распределения

Рисунок 3 – График функции распределения

Листинг кода

```
clear all
close all
clc
% Задаем изначальные параметры
M = 2;
Sigma = 1;
% Задаем масштаб по абсциссе
x = -5:.1:5;
% Задаем график функции нормального распределения
% и график плотности распределения
y1 = normpdf(x,M,Sigma);
y2 = normcdf(x,M,Sigma);
% Строим графики
figure;
plot(x,y1);
figure;
plot(x,y2);
```

Результаты

Соответствующие результаты продемонстрированы на рисунках 4-5. Следует также отметить, что графики в программе и изображённые ранее на рисунках 2-3 совпадают, а значит расчёты проведены верно.

Рисунок 4 – Результат работы программы

Рисунок 5 – Результат работы программы

Способ генерации, основанный на центральной предельной теореме

Далее генерируется 12 наборов псевдослучайных чисел, где каждый набор состоит из $N=1000,\,5000$ и 10000 чисел. Затем строятся гистограммы для каждого набора случайных чисел. Это показано на рисунках 6-8.

```
clear all
close all
clc

table=zeros(4,3);

N=1000;

[table(1,1),table(1,2),table(1,3)]=fun1(N);

[table(2,1),table(2,2),table(2,3)]=fun2(N);

[table(3,1),table(3,2),table(3,3)]=fun3(N);

[table(4,1),table(4,2),table(4,3)]=fun4(N);

table

%Генерация по центральной предельной теореме
function [Mid, Dis, SKO]=fun1(n)
Y=zeros(1,n);
for s=1:n
    R=rand(1,n);
```

```
m=n/2;
D=n/12;
sigma=sqrt(D);
N=sum(R);
Y(s)=2+(1/sigma)*(N-m);
end
figure;
histogram(Y);
end
```


Рисунок 6 – Гистограмма для N=1000

Рисунок 7 — Гистограмма для N = 5000

Рисунок 8 — Гистограмма для N=10000

Далее строятся эмпирические функции. Это показано на рисунках 8-10.

```
clear all
close all
clc
table=zeros(4,3);
N=10000;
[table(1,1),table(1,2),table(1,3)]=fun1(N);
 [table(2,1),table(2,2),table(2,3)]=fun2(N);
 [table(3,1),table(3,2),table(3,3)]=fun3(N);
 [table(4,1),table(4,2),table(4,3)]=fun4(N);
table
%Генерация по центральной предельной теореме
function [Mid, Dis, SKO]=fun1(n)
Y=zeros(1,n);
for s=1:n
    R=rand(1,n);
    m=n/2;
    D=n/12;
    sigma=sqrt(D);
    N=sum(R);
    Y(s)=2+(1/sigma)*(N-m);
end
figure;
ecdf(Y);
end
```


Рисунок 8 — Эмпирическая функция для N=1000

Рисунок 9 — Эмпирическая функция для N=5000

Рисунок 10 – Эмпирическая функция для N = 10000

После этого проводится графический тест «Распределение на плоскости». Соответствующие графики показаны на рисунках 11 – 13.

```
clear all
close all
clc
table=zeros(4,3);
N=10000;
 [table(1,1),table(1,2),table(1,3)]=fun1(N);
 [table(2,1),table(2,2),table(2,3)]=fun2(N);
 [table(3,1),table(3,2),table(3,3)]=fun3(N);
 [table(4,1),table(4,2),table(4,3)]=fun4(N);
table
%Генерация по центральной предельной теореме
function [Mid, Dis, SKO]=fun1(n)
Y=zeros(1,n);
x=zeros(1,0.5*n);
y=zeros(1,0.5*n);
for s=1:n
    R=rand(1,n);
    m=n/2;
    D=n/12;
    sigma=sqrt(D);
    N=sum(R);
```

```
Y(s)=2+(1/sigma)*(N-m);
end
for s=1:(0.5*n)
    x(s)=Y(2*s-1);
    y(s)=Y(2*s);
end
figure;
scatter(x,y);
Mid=mean(Y);
Dis=var(Y);
SKO=std(Y);
end
```


Рисунок 11 – Распределение на плоскости для N = 1000

Рисунок 12 — Распределение на плоскости для N=5000

Рисунок 13 — Распределение на плоскости для N=10000

Затем строятся графики «Квантиль-квантиль». Это показано на рисунках 14-16.

```
clear all
close all
clc
table=zeros(4,3);
N=10000;
 [table(1,1),table(1,2),table(1,3)]=fun1(N);
 [table(2,1),table(2,2),table(2,3)]=fun2(N);
 [table(3,1),table(3,2),table(3,3)]=fun3(N);
 [table(4,1),table(4,2),table(4,3)]=fun4(N);
%Генерация по центральной предельной теореме
function [Mid, Dis, SKO]=fun1(n)
Y=zeros(1,n);
x=zeros(1,0.5*n);
y=zeros(1,0.5*n);
for s=1:n
    R=rand(1,n);
    m=n/2;
    D=n/12;
    sigma=sqrt(D);
    N=sum(R);
    Y(s)=2+(1/sigma)*(N-m);
end
for s=1:(0.5*n)
    x(s)=Y(2*s-1);
    y(s)=Y(2*s);
end
figure;
qqplot(Y);
Mid=mean(Y);
Dis=var(Y);
SKO=std(Y);
end
```


Рисунок 14 – «Квантиль-квантиль» для N=1000

Рисунок 15 — «Квантиль-квантиль» для N=5000

Рисунок 16 – «Квантиль-квантиль» для N = 10000

Все те же действия производятся и по отношению к полярному методу Марсальи, преобразованию Бокса-Мюллера и встроенной функции генерации стандартно нормально распределённых псевдослучайных чисел.

Метод Марсальи

Затем строятся гистограммы для каждого набора случайных чисел. Это показано на рисунках 17-19.

```
clear all
close all
clc

table=zeros(4,3);

N=1000;
  [table(1,1),table(1,2),table(1,3)]=fun1(N);
  [table(2,1),table(2,2),table(2,3)]=fun2(N);
  [table(3,1),table(3,2),table(3,3)]=fun3(N);
  [table(4,1),table(4,2),table(4,3)]=fun4(N);
table

function [Mid, Dis, SKO]=fun1(n)
Y=zeros(1,n);
z0s=zeros(1,0.5*n);
```

```
z1s=zeros(1,0.5*n);
S=-10;
for m=1:(0.5*n)
    while S<=0 || S>=1
        r1=-1+2*rand(1,1);
        r2=-1+2*rand(1,1);
        S=power(r1,2)+power(r2,2);
    end
    z0=(r1/sqrt(S))*sqrt(-2*log(S));
    z1=(r2/sqrt(S))*sqrt(-2*log(S));
    Y(2*m-1)=z0;
    Y(2*m)=z1;
    z0s(m)=z0;
    z1s(m)=z1;
    S=-10;
end
figure;
hist(Y);
% figure;
% ecdf(Y);
% figure;
% scatter(z0s,z1s);
% figure;
% qqplot(Y);
Mid=mean(Y);
Dis=var(Y);
SKO=std(Y);
end
```


Рисунок 17 — Гистограмма для N=1000

Рисунок $18 - \Gamma$ истограмма для N = 5000

Рисунок 19 — Гистограмма для N=10000

Далее строятся эмпирические функции. Это показано на рисунках 20-22 .

```
clear all
close all
clc
table=zeros(4,3);
N=10000;
[table(1,1),table(1,2),table(1,3)]=fun1(N);
 [table(2,1),table(2,2),table(2,3)]=fun2(N);
 [table(3,1),table(3,2),table(3,3)]=fun3(N);
 [table(4,1),table(4,2),table(4,3)]=fun4(N);
table
function [Mid, Dis, SKO]=fun1(n)
Y=zeros(1,n);
z0s=zeros(1,0.5*n);
z1s=zeros(1,0.5*n);
S=-10;
for m=1:(0.5*n)
    while S<=0 || S>=1
        r1=-1+2*rand(1,1);
        r2=-1+2*rand(1,1);
        S=power(r1,2)+power(r2,2);
    z0=(r1/sqrt(S))*sqrt(-2*log(S));
    z1=(r2/sqrt(S))*sqrt(-2*log(S));
    Y(2*m-1)=z0;
    Y(2*m)=z1;
    z0s(m)=z0;
    z1s(m)=z1;
    S=-10;
end
figure;
ecdf(Y);
Mid=mean(Y);
Dis=var(Y);
SKO=std(Y);
end
```


Рисунок 20 — Эмпирическая функция для N=1000

Рисунок 21 - Эмпирическая функция для <math>N = 5000

Рисунок 22 – Эмпирическая функция для N = 10000

После этого проводится графический тест «Распределение на плоскости». Соответствующие графики показаны на рисунках 23 – 25.

```
clear all
close all
clc
table=zeros(4,3);
N=1000;
 [table(1,1),table(1,2),table(1,3)]=fun1(N);
 [table(2,1),table(2,2),table(2,3)]=fun2(N);
 [table(3,1),table(3,2),table(3,3)]=fun3(N);
 [table(4,1),table(4,2),table(4,3)]=fun4(N);
table
function [Mid, Dis, SKO]=fun1(n)
Y=zeros(1,n);
z0s=zeros(1,0.5*n);
z1s=zeros(1,0.5*n);
S=-10;
for m=1:(0.5*n)
    while S<=0 || S>=1
        r1=-1+2*rand(1,1);
        r2=-1+2*rand(1,1);
        S=power(r1,2)+power(r2,2);
    end
    z0=(r1/sqrt(S))*sqrt(-2*log(S));
    z1=(r2/sqrt(S))*sqrt(-2*log(S));
    Y(2*m-1)=z0;
```

```
Y(2*m)=z1;

z0s(m)=z0;

z1s(m)=z1;

S=-10;

end

figure;

scatter(z0s,z1s);

Mid=mean(Y);

Dis=var(Y);

SKO=std(Y);

end
```


Рисунок 23 – Распределение на плоскости для N = 1000

Рисунок 24 — Распределение на плоскости для N=5000

Рисунок 25 — Распределение на плоскости для N=10000 Затем строятся графики «Квантиль-квантиль». Это показано на рисунках 26-28.

```
clear all
close all
clc
table=zeros(4,3);
N=1000;
 [table(1,1),table(1,2),table(1,3)]=fun1(N);
 [table(2,1),table(2,2),table(2,3)]=fun2(N);
 [table(3,1),table(3,2),table(3,3)]=fun3(N);
 [table(4,1),table(4,2),table(4,3)]=fun4(N);
table
function [Mid, Dis, SKO]=fun1(n)
Y=zeros(1,n);
z0s=zeros(1,0.5*n);
z1s=zeros(1,0.5*n);
S=-10;
for m=1:(0.5*n)
    while S<=0 || S>=1
        r1=-1+2*rand(1,1);
        r2=-1+2*rand(1,1);
        S=power(r1,2)+power(r2,2);
    end
    z0=(r1/sqrt(S))*sqrt(-2*log(S));
    z1=(r2/sqrt(S))*sqrt(-2*log(S));
    Y(2*m-1)=z0;
    Y(2*m)=z1;
    z0s(m)=z0;
```

```
z1s(m)=z1;
S=-10;
end
figure;
qqplot(Y);
Mid=mean(Y);
Dis=var(Y);
SKO=std(Y);
end
```


Рисунок 26 – «Квантиль-квантиль» для N=1000

Рисунок 27 – «Квантиль-квантиль» для N = 5000

Рисунок 28 — «Квантиль-квантиль» для N = 10000

Встроенная функция генерации стандартно нормально распределённых псевдослучайных чисел

Затем строятся гистограммы для каждого набора случайных чисел. Это показано на рисунках 29-31.

```
clear all
close all
clc
table=zeros(4,3);
N=1000;
 [table(1,1),table(1,2),table(1,3)]=fun1(N);
 [table(2,1),table(2,2),table(2,3)]=fun2(N);
 [table(3,1),table(3,2),table(3,3)]=fun3(N);
 [table(4,1),table(4,2),table(4,3)]=fun4(N);
table
%Встроенная генерация randn()
function [Mid, Dis, SKO]=fun1(n)
Y=randn(1,n);
x=zeros(1,0.5*n);
y=zeros(1,0.5*n);
for s=1:(0.5*n)
    x(s)=Y(2*s-1);
    y(s)=Y(2*s);
end
figure;
hist(Y);
end
```


Рисунок 29 — Гистограмма для N=1000

Рисунок $30 - \Gamma$ истограмма для N = 5000

Рисунок 31 — Гистограмма для N=10000

Далее строятся эмпирические функции. Это показано на рисунках 32 - 34.

```
clear all
close all
clc
table=zeros(4,3);
N=1000;
 [table(1,1),table(1,2),table(1,3)]=fun1(N);
 [table(2,1),table(2,2),table(2,3)]=fun2(N);
 [table(3,1),table(3,2),table(3,3)]=fun3(N);
 [table(4,1),table(4,2),table(4,3)]=fun4(N);
table
%Встроенная генерация randn()
function [Mid, Dis, SKO]=fun1(n)
Y=randn(1,n);
x=zeros(1,0.5*n);
y=zeros(1,0.5*n);
for s=1:(0.5*n)
    x(s)=Y(2*s-1);
    y(s)=Y(2*s);
end
figure;
ecdf(Y);
end
```


Рисунок 32 - Эмпирическая функция для <math>N = 1000

Рисунок 33 - Эмпирическая функция для <math>N = 5000

Рисунок 34 – Эмпирическая функция для N = 10000

После этого проводится графический тест «Распределение на плоскости». Соответствующие графики показаны на рисунках 35-37.

```
clear all
close all
clc
table=zeros(4,3);
N=1000;
 [table(1,1),table(1,2),table(1,3)]=fun1(N);
 [table(2,1),table(2,2),table(2,3)]=fun2(N);
 [table(3,1),table(3,2),table(3,3)]=fun3(N);
 [table(4,1),table(4,2),table(4,3)]=fun4(N);
table
%Встроенная генерация randn()
function [Mid, Dis, SKO]=fun1(n)
Y=randn(1,n);
x=zeros(1,0.5*n);
y=zeros(1,0.5*n);
for s=1:(0.5*n)
    x(s)=Y(2*s-1);
    y(s)=Y(2*s);
end
figure;
scatter(x,y);
% figure;
% qqplot(Y);
```

```
% Mid=mean(Y);
% Dis=var(Y);
% SKO=std(Y);
end
```


Рисунок 35 – Распределение на плоскости для N = 1000

Рисунок 36 — Распределение на плоскости для N=5000

Рисунок 37 — Распределение на плоскости для N=10000 Затем строятся графики «Квантиль-квантиль». Это показано на рисунках 38-40.

```
clear all
close all
clc
table=zeros(4,3);
N=10000;
 [table(1,1),table(1,2),table(1,3)]=fun1(N);
 [table(2,1),table(2,2),table(2,3)]=fun2(N);
 [table(3,1),table(3,2),table(3,3)]=fun3(N);
 [table(4,1),table(4,2),table(4,3)]=fun4(N);
table
%Встроенная генерация randn()
function [Mid, Dis, SKO]=fun1(n)
Y=randn(1,n);
x=zeros(1,0.5*n);
y=zeros(1,0.5*n);
for s=1:(0.5*n)
    x(s)=Y(2*s-1);
    y(s)=Y(2*s);
end
figure;
qqplot(Y);
Mid=mean(Y);
Dis=var(Y);
SKO=std(Y);
end
```


Рисунок 38 – «Квантиль-квантиль» для N = 1000

Рисунок 39 – «Квантиль-квантиль» для N = 5000

Рисунок 40 – «Квантиль-квантиль» для N=10000

Преобразование Бокса-Мюллера

Затем строятся гистограммы для каждого набора случайных чисел. Это показано на рисунках 41-43.

```
clear all
close all
clc
table=zeros(4,3);
N=1000;
 [table(1,1),table(1,2),table(1,3)]=fun1(N);
 [table(2,1),table(2,2),table(2,3)]=fun2(N);
 [table(3,1),table(3,2),table(3,3)]=fun3(N);
 [table(4,1),table(4,2),table(4,3)]=fun4(N);
table
%Генерация по преобразованию Бокса-Мюллера
function [Mid, Dis, SKO]=fun1(n)
Y=zeros(1,n);
x=zeros(1,0.5*n);
y=zeros(1,0.5*n);
for s=1:(0.5*n)
    r1=rand(1,1);
    r2=rand(1,1);
    z0=cos(2*pi*r1)*sqrt(-2*log(r2));
    z1=sin(2*pi*r1)*sqrt(-2*log(r2));
    Y(2*s-1)=z0;
    Y(2*s)=z1;
    x(s)=z0;
    y(s)=z1;
end
figure;
hist(Y);
end
```


Рисунок $41 - \Gamma$ истограмма для N = 1000

Рисунок $42 - \Gamma$ истограмма для N = 5000

Рисунок $43 - \Gamma$ истограмма для N = 10000

Далее строятся эмпирические функции. Это показано на рисунках 44 – 46.

```
clear all
close all
clc
table=zeros(4,3);
N=1000;
 [table(1,1),table(1,2),table(1,3)]=fun1(N);
 [table(2,1),table(2,2),table(2,3)]=fun2(N);
 [table(3,1),table(3,2),table(3,3)]=fun3(N);
 [table(4,1),table(4,2),table(4,3)]=fun4(N);
table
%Генерация по преобразованию Бокса-Мюллера
function [Mid, Dis, SKO]=fun1(n)
Y=zeros(1,n);
x=zeros(1,0.5*n);
y=zeros(1,0.5*n);
for s=1:(0.5*n)
    r1=rand(1,1);
    r2=rand(1,1);
    z0=cos(2*pi*r1)*sqrt(-2*log(r2));
    z1=sin(2*pi*r1)*sqrt(-2*log(r2));
    Y(2*s-1)=z0;
    Y(2*s)=z1;
    x(s)=z0;
    y(s)=z1;
end
figure;
ecdf(Y);
end
```


Рисунок 44 - Эмпирическая функция для <math>N = 1000

Рисунок 45 - Эмпирическая функция для <math>N = 5000

Рисунок 46 – Эмпирическая функция для N = 10000

После этого проводится графический тест «Распределение на плоскости». Соответствующие графики показаны на рисунках 47 – 49.

```
clear all
close all
clc
table=zeros(4,3);
N=10000;
 [table(1,1),table(1,2),table(1,3)]=fun1(N);
 [table(2,1),table(2,2),table(2,3)]=fun2(N);
 [table(3,1),table(3,2),table(3,3)]=fun3(N);
 [table(4,1),table(4,2),table(4,3)]=fun4(N);
table
%Генерация по преобразованию Бокса-Мюллера
function [Mid, Dis, SKO]=fun1(n)
Y=zeros(1,n);
x=zeros(1,0.5*n);
y=zeros(1,0.5*n);
for s=1:(0.5*n)
    r1=rand(1,1);
    r2=rand(1,1);
    z0=cos(2*pi*r1)*sqrt(-2*log(r2));
    z1=sin(2*pi*r1)*sqrt(-2*log(r2));
    Y(2*s-1)=z0;
    Y(2*s)=z1;
    x(s)=z0;
    y(s)=z1;
end
figure;
```


Рисунок 47 – Распределение на плоскости для N = 1000

Рисунок 48 — Распределение на плоскости для N=5000

Рисунок 49 — Распределение на плоскости для N = 10000

Затем строятся графики «Квантиль-квантиль». Это показано на рисунках

50 - 52.

```
clear all
close all
clc
table=zeros(4,3);
N=10000;
 [table(1,1),table(1,2),table(1,3)]=fun1(N);
 [table(2,1),table(2,2),table(2,3)]=fun2(N);
 [table(3,1),table(3,2),table(3,3)]=fun3(N);
 [table(4,1),table(4,2),table(4,3)]=fun4(N);
table
%Генерация по преобразованию Бокса-Мюллера
function [Mid, Dis, SKO]=fun1(n)
Y=zeros(1,n);
x=zeros(1,0.5*n);
y=zeros(1,0.5*n);
for s=1:(0.5*n)
    r1=rand(1,1);
    r2=rand(1,1);
    z0=cos(2*pi*r1)*sqrt(-2*log(r2));
    z1=sin(2*pi*r1)*sqrt(-2*log(r2));
    Y(2*s-1)=z0;
    Y(2*s)=z1;
    x(s)=z0;
    y(s)=z1;
end
figure;
qqplot(Y);
```

```
Mid=mean(Y);
Dis=var(Y);
SKO=std(Y);
end
```


Рисунок 50 — «Квантиль-квантиль» для N=1000

Рисунок 51 — «Квантиль-квантиль» для N = 5000

Рисунок 52 — «Квантиль-квантиль» для N = 10000

Оценки

Соответствующие оценки математического ожидания, дисперсии и среднеквадратичного отклонения представлены на рисунках 53 – 55.

1.9977	0.9889	0.9945
-0.0066	1.0374	1.0185
-0.0399	1.0182	1.0091
0.0281	0.9932	0.9966
D 52		N I 1000
Рисунок 53	– Оценки дл	1000 = 1000
2.0049	Оценки дл1.0059	я N = 1000 1.0029
•		
2.0049	1.0059	1.0029
2.0049 -0.0022	1.0059 0.9901	1.0029 0.9950

Рисунок 54 - Оценки для N = 5000

2.0077	1.0282	1.0140
0.0017	1.0031	1.0016
0.0111	1.0108	1.0054
-0.0108	0.9805	0.9902

Рисунок 55 — Оценки для N = 10000

Выводы

В данной лабораторной работе были получены навыки моделирования нормально распределенных псевдослучайных чисел в программной среде MATLAB/GNU Octave, а также первичной оценки качества полученных псевдослучайных чисел.