$S = \iiint (\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} - 2r_{3} (\partial_{\beta}\mathcal{A}^{\ \theta}_{\ \theta} \partial^{i}\mathcal{A}^{\alpha\beta}_{\ \alpha} + \partial_{i}\mathcal{A}^{\ \theta}_{\ \beta} \partial^{i}\mathcal{A}^{\alpha\beta}_{\ \alpha} + \partial_{\alpha}\mathcal{A}^{\alpha\beta_{i}} \partial_{\theta}\mathcal{A}^{\ \theta}_{\ \beta}, -2\partial^{i}\mathcal{A}^{\alpha\beta}_{\ \alpha} \partial_{\theta}\mathcal{A}^{\ \theta}_{\ \beta}, +\partial_{\alpha}\mathcal{A}^{\alpha\beta_{i}} \partial_{\theta}\mathcal{A}^{\ \theta}_{\ \beta}, -2\partial^{i}\mathcal{A}^{\alpha\beta}_{\ \alpha} \partial_{\theta}\mathcal{A}^{\ \theta}_{\ \beta}, +2\partial_{\beta}\mathcal{A}_{i\theta\alpha} \partial^{\theta}\mathcal{A}^{\alpha\beta_{i}}) + \\ = \frac{2}{3}r_{1} (3\partial_{\beta}\mathcal{A}^{\ \theta}_{\ \theta} \partial^{i}\mathcal{A}^{\alpha\beta}_{\ \alpha} + 3\partial_{\alpha}\mathcal{A}^{\alpha\beta_{i}} \partial_{\theta}\mathcal{A}^{\beta}_{\ \beta}, -6\partial^{i}\mathcal{A}^{\alpha\beta}_{\ \alpha} \partial_{\theta}\mathcal{A}^{\ \theta}_{\ \beta}, +3\partial_{\alpha}\mathcal{A}^{\alpha\beta_{i}} \partial_{\theta}\mathcal{A}^{\ \theta}_{\ \beta}, -6\partial^{i}\mathcal{A}^{\alpha\beta}_{\ \alpha} \partial_{\theta}\mathcal{A}^{\beta}_{\ \beta}, -6\partial^{i}\mathcal{A}^{\alpha\beta}_{\ \alpha} \partial_{\theta}\mathcal{A}^{\alpha\beta}_{\ \beta}, -6\partial^{i}\mathcal{A}^{\alpha\beta}_{\ \alpha} \partial_{\theta}\mathcal{A}^{\alpha\beta}_{\ \beta}, -6\partial^{i}\mathcal{A}^{\alpha\beta}_{\ \alpha}, -6\partial^{i}\mathcal{A}^{\alpha\beta}_{\ \alpha}, -6\partial^{i}\mathcal{A}^{\alpha\beta}_{\ \alpha}, -6\partial^{i}\mathcal{A}^{\alpha\beta}_{\ \alpha}, -6\partial^{i}\mathcal{A}^{$

$0.^{+}\mathcal{A}^{\parallel} + \frac{0.^{+}\mathcal{A}^{\parallel}}{6k^{2}(-r_{1} + r_{2})}$

PSALTer results panel

1 2 2 2

Spin-parity form	Covariant form	Multiplicities
0.	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
0^+ $\tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$	1
$2 i k 1 \sigma^{\perp} + 1 \tau^{\perp} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
$1 \cdot \tau^{\parallel \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$i k 1^{+}_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^{+}_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$	3
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$-2 i k 2^{+}_{0} \sigma^{\parallel^{\alpha\beta}} + 2^{+}_{0} \tau^{\parallel^{\alpha\beta}} == 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\chi}_{\chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + $	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha}+4i\!$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} - 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha \beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta}^{\epsilon}) == 0$	
Total expected gauge generators:		16

Massive spectrum

Massive particle				
Pole residue:	$-\frac{1}{r_{i}} > 0$			
Square mass:	$-\frac{\frac{t}{1}}{2r} >$			
Spin:	2			
Parity:	Odd			

Massless spectrum

?
$$k^{\mu} = (p, 0, 0, p)$$
?
Massless particle

Pole residue: $\left| \frac{7}{2} + \frac{-2t_1 p^2}{1} \right|$

Polarisations:	•	3 5	1				
Unitarity conditions							

 $r. \in \mathbb{R} \&\&r. < -2r. \&\&2r. +r. < r. < 0 \&\&t. > 0$