

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof^a. Karla Lima

Fundamentos da Matemática I

08 de Abril de 2018

- (1) Reescreva as expressões abaixo, como pedido. Descreva quais propriedades de soma e multiplicação de inteiros que você usou.
 - (a) 7(5+11), como soma de 35 e um outro número inteiro;
 - (b) 2(30+5), como soma de 10 e um outro número inteiro;
 - (c) (9+2)(5+3), como soma de 45 e outros 3 números inteiros;
 - (d) 12 + 75, na forma a(4 + c), onde $a \in c$ representam números inteiros;
 - (e) 35-50, na forma 5(a-c), onde $a \in c$ representam números inteiros;
 - (f) -16-8, na forma a(b+c), onde $a, b \in c$ representam números inteiros;
- (2) Encontre $a \in \mathbb{Z}$ que satisfaz as igualdades abaixo, descrevendo as propriedades de soma e multiplicação de inteiros que você usou.
 - (a) 12(a-3)=0
 - (b) 5a = 0
 - (c) $3 \times 4 = 3 \times a$
 - (d) 7 + a = 7 + 5
 - (e) $2 \times a + 2 \times 9 = 2(9+8)$
- (3) Usando o princípio de indução, mostre que:

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}.$$

(4) Um número natural \mathbf{n} é dito um **quadrado perfeito**, se, e somente se, existir um número natural \mathbf{a} tal que $n=a^2$. Usando contrapositiva, prove que se um quadrado perfeito é ímpar então sua raiz quadrada é ímpar (ou seja, se n é ímpar então a também será).