Applied Machine Learning

Classification - Support Vector Machines

Support Vector Machine

- Training of a Support Vector Machine
 - Stochastic Gradient Descent
 - Regularization Constant
- Multi-class problems with Support Vector Machines

Training a Support Vector Machine

Training dataset: N pairs (\mathbf{x}_i, y_i)

Classification function: $f(\mathbf{x}) = sign(\mathbf{a}^{\mathsf{T}}\mathbf{x} + b) \in \{-1, +1\}$

$$\mathbf{x} = \begin{bmatrix} x_0 \\ \vdots \\ x_{k-1} \end{bmatrix} \qquad \mathbf{a} = \begin{bmatrix} a_0 \\ \vdots \\ a_{k-1} \end{bmatrix} \qquad b$$

Training: find \mathbf{a} , b, and λ that minimize the cost function:

$$S(\mathbf{a}, b; \lambda) = \frac{1}{N} \sum_{i=1}^{N} \left[\max(0, 1 - y_i * (\mathbf{a}^\mathsf{T} \mathbf{x} + b)) \right] + \lambda \frac{1}{2} \mathbf{a}^\mathsf{T} \mathbf{a}$$

- Find \mathbf{a} and b
- Find λ

a and b: Stochastic Gradient Descent

 Rescale data so each feature has unit variance

$$\mathbf{u} = \begin{bmatrix} \mathbf{a} \\ b \end{bmatrix}$$

Minimize cost function

$$g(\mathbf{u}) = \left[\frac{1}{N} \sum_{i=1}^{N} g_i(\mathbf{u})\right] + g_0(\mathbf{u})$$

$$g_i(\mathbf{u}) = \max(0, 1 - y_i * (\mathbf{a}^\mathsf{T} \mathbf{x} + \mathbf{b}))$$

$$g_0(\mathbf{u}) = \lambda \frac{1}{2} \mathbf{a}^\mathsf{T} \mathbf{a}$$

a and b: Stochastic Gradient Descent

Minimize cost function:

•
$$g(\mathbf{u}) = \left[\frac{1}{N} \sum_{i=1}^{N} g_i(\mathbf{u})\right] + g_0(\mathbf{u})$$

- Start at random point for $\mathbf{u}^{(0)}$
- Iteratively, at step (n)
 - compute descent direction $\mathbf{p}^{(n)}$ and step size η
 - so that $g(\mathbf{u}^{(n)} + \eta \mathbf{p}^{(n)}) < g(\mathbf{u}^{(n)})$
 - update ${\bf u}^{(n+1)} = {\bf u}^{(n)} + \eta {\bf p}^{(n)}$

SGD: Descent Direction

Minimize cost function:

•
$$g(\mathbf{u}) = \left[\frac{1}{N} \sum_{i=1}^{N} g_i(\mathbf{u})\right] + g_0(\mathbf{u})$$

Descent direction:

$$\mathbf{p}^{(n)} = -\nabla g((u)^{(n)})$$

$$\mathbf{p}^{(n)} = -\nabla g((u)^{(n)})$$

$$= -(\left[\frac{1}{N}\sum_{i=1}^{N}\nabla g_{i}(\mathbf{u})\right] + \nabla g_{0}(\mathbf{u}))$$

Estimation through mean of batch:

•
$$\mathbf{p^{(n)}}_{N_b} = -\left(\left[\frac{1}{N_b}\sum_{j\in batch}\nabla g_j(\mathbf{u})\right] + \nabla g_0(\mathbf{u})\right)$$

SGD: Step Length

- Minimize cost function:
 - $g(\mathbf{u}) = \left[\frac{1}{N} \sum_{i=1}^{N} g_i(\mathbf{u})\right] + g_0(\mathbf{u})$
- Step length: η
 - if too small: many steps
 - if too large: overshoots and oscillation
 - refine η as minimum gets closer

SGD: Step Length

- Minimize cost function:
 - $g(\mathbf{u}) = \left[\frac{1}{N} \sum_{i=1}^{N} g_i(\mathbf{u})\right] + g_0(\mathbf{u})$
- Epoch
 - one pass on training set of size N
 - each step sees a batch of N_b items
 - . the dataset is covered in $\frac{N}{N_b}$ steps
 - step size in epoch e: $\eta^{(e)} = \frac{m}{e+l}$
 - constants m and l: tune on small subsets

SGD: Step Length

Minimize cost function:

•
$$g(\mathbf{u}) = \left[\frac{1}{N} \sum_{i=1}^{N} g_i(\mathbf{u})\right] + g_0(\mathbf{u})$$

- Season
 - constant number of iterations, much smaller than epochs
 - each step sees a batch of N_b items
 - step size in season s: $\eta^{(s)} = \frac{m}{s+l}$
 - constants m and l: tune on small subsets

SGD: Gradient

$$\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_d \end{bmatrix} \qquad \nabla g = \begin{bmatrix} \frac{\partial g}{u_1} \\ \vdots \\ \frac{\partial g}{u_d} \end{bmatrix}$$

- Batches of 1 sample at each training step: $N_b = 1$
- $\nabla g(\mathbf{u}) = \nabla(\max(0, 1 y_i * (\mathbf{a}^\mathsf{T} \mathbf{x}_i + b)) + \frac{\lambda}{2} \mathbf{a}^\mathsf{T} \mathbf{a})$

$$\begin{bmatrix} \mathbf{a}^{(n+1)} \\ b^{(n+1)} \end{bmatrix} = \begin{bmatrix} \mathbf{a}^{(n)} - \eta \nabla_{\mathbf{a}} \\ b^{(n)} - \eta \nabla_{b} \end{bmatrix}$$

 $y_i * (\mathbf{a}^\mathsf{T} \mathbf{x}_i + b) \ge 1$. Correct, away from boundary

$$\nabla_a (0 + \frac{\lambda}{2} \mathbf{a}^\mathsf{T} \mathbf{a}) = \lambda \mathbf{a}$$

$$\nabla_b(0 + \frac{\lambda}{2} \mathbf{a}^\mathsf{T} \mathbf{a}) = \mathbf{0}$$

 $y_i * (\mathbf{a}^\mathsf{T} \mathbf{x}_i + b) < 1$. Correct, close to boundary, or incorrect

$$\nabla_a (1 - y_i^* (\mathbf{a}^\mathsf{T} \mathbf{x}_i + b) + \frac{\lambda}{2} \mathbf{a}^\mathsf{T} \mathbf{a}) = -\mathbf{y_i}^* \mathbf{x_i} + \lambda \mathbf{a}$$

$$\nabla_b (1 - y_i * (\mathbf{a}^\mathsf{T} \mathbf{x}_i + b) + \frac{\lambda}{2} \mathbf{a}^\mathsf{T} \mathbf{a}) = -\mathbf{y_i}$$

SGD: Stop

Minimize cost function:

•
$$g(\mathbf{u}) = \left[\frac{1}{N} \sum_{i=1}^{N} g_i(\mathbf{u})\right] + g_0(\mathbf{u})$$

- Season or Epochs
- Stop when
 - predefined number of seasons or epochs
 - error on held-out data items is smaller than some threshold
 - other criteria

Regularization constant λ

- . Regularization constant λ in $g_o(\mathbf{u}) = \lambda \frac{1}{2} \mathbf{a}^{\mathsf{T}} \mathbf{a}$: try at different scales (e.g., $\lambda \in \{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1\}$)
- split dataset into Test Set and Train Set for cross-validation
 - for each λ_i in set to try, iteratively
 - generate a new Fold from Train Set with a Cross-Validation Train Set and Validation Set
 - using testing λ_i apply Stochastic Gradient Descent on Cross-Validation Train Set to find ${f a}, b$
 - evaluate \mathbf{a}, b, λ_i on Validation Set and record error for current Fold
 - cross-validation error for chosen λ_i is average error over all the Folds
- using λ with the lowest cross-validation error, apply SGD on whole training set to get final ${f a}, b$

Summary: Finding a, b, and λ

- Dataset with N pairs (\mathbf{x}_i, y_i)
- Rescale each \mathbf{x}_i to have unit variance
- Use cross-validation to train an SVM on Training Set for each option in λ at different scales
 - choose the λ that achieve highest accuracy
- Train an SVM with the chosen λ to find the final ${\bf a}$ and b
- Compute accuracy and error on Test Set

Multi-class classification

- One SVM to predict each class
- Encode in binary word
 - 001 = Class 1
 - 010 = Class 2
 - 100 = Class 3
- Issue: More than one class can be predicted

Multi-class classification

- one-vs-all
 - One SVM to predict each class
 - To classify an item, compute score for each SVM
 - Class reported is the one with largest SVM score

Multi-class classification

- all-vs-all
 - One SVM for each pair of classes
 - SVM 1: class 1 vs class 2
 - SVM 2: class 1 vs class 3
 - SVM 3: class 2 vs class 3
 - To classify an item, each SVM votes on its classes
 - Report class with more votes
 - Issue: need $O(N^2)$ for N classes

Support Vector Machine

- Training of a Support Vector Machine
 - Stochastic Gradient Descent
 - Regularization Constant
- Multi-class problems with Support Vector Machines

Applied Machine Learning

Classification - Support Vector Machines