Linearization of systems

One dimensional linear approximation

Consider a differentiable function f of one variable.

$$f: \mathbb{R} \to \mathbb{R}$$

Say we are interested in f in a small, open neighborhood about a particular point t^* . t^* is often called the fixed point of the system. Let's call this open neighborhood U. In this case, we can construct a linear approximation of f about the neighborhood U. Recall Taylor Approximation,

$$\frac{\mathrm{d}f}{\mathrm{d}t}(t^*) \approx \frac{f(t) - f(t^*)}{t - t^*} \text{ for } t \in U$$

We can use the above to construct a linear approximation of f. Let f_l denote the linear approximation of f about U.

$$f_l(t) = \frac{\mathrm{d}f}{\mathrm{d}t}(t^*)(t - t^*) + f(t^*) \tag{1}$$

Strictly speaking, f_l is an affine approximation unless $t^* = 0$, but the process of obtaining f_l is colloquially called the linearization of f.

For example, consider $f(t) = t^2$. We will set the fixed point of the system to be $t^* = 1$. Then,

$$f_l(t) = \frac{df}{dt}(t^*)(t - t^*) + f(t^*)$$

$$= 2(t - 1) + 1$$

$$= 2t - 1$$

Let $\varepsilon = 10^{-2}$. Consider the open neighborhood $U = (1 - \varepsilon, 1 + \varepsilon)$. Let's plot f and f_l when their respective domains are restricted to U. This is seen in Figure ?? on the next page.

Figure 1: Left: The linear approximation of the function $f(t) = t^2$ about t = 1 is fairly accurate in the range U = [0.99, 1.01]. Right: Outside of this range, the approximation does not track the function very well.

Linearization of a system

Consider a continuous, non-linear system with state $\vec{x}(t)$ (which is *n* dimensional) and input $\vec{u}(t)$ (which is *m* dimensional) of the form,

$$\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}(t) = f(\vec{x}(t), \vec{u}(t))$$

To clarify and establish notation, f is a function that takes in $\vec{x}(t)$ and $\vec{u}(t)$ and outputs an n dimensional vector. $f_k(\vec{x}(t), \vec{u}(t))$ refers to the function that is the k^{th} coordinate of the output of $f(\vec{x}(t), \vec{u}(t))$.

Let $\vec{x}^*(t)$ be the desired state trajectory and $\vec{u}^*(t)$ be the desired input. Analogous to (??), we will construct an affine estimate about a neighborhood around the fixed points.

$$f(\vec{x}(t), \vec{u}(t)) \approx f(\vec{x}^*(t), \vec{u}^*(t)) + \nabla_{\vec{x}} f(\vec{x}^*(t), \vec{u}^*(t)) (\vec{x}(t) - \vec{x}^*(t)) + \nabla_{\vec{u}} f(\vec{x}^*(t), \vec{u}^*(t)) (\vec{u}(t) - \vec{u}^*(t))$$
(2)

Let's define $\tilde{x} = \vec{x} - \vec{x}^*, \tilde{u} = \vec{u} - \vec{u}^*$. ∇f is the multidimensional generalization of the derivative, which is constructed as follows.

$$\nabla_{\mathbf{x}} f(\mathbf{x}, \mathbf{u}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}, \mathbf{u}) & \frac{\partial f_1}{\partial x_2}(\mathbf{x}, \mathbf{u}) & \dots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}, \mathbf{u}) \\ \frac{\partial f_2}{\partial x_1}(\mathbf{x}, \mathbf{u}) & \frac{\partial f_2}{\partial x_2}(\mathbf{x}, \mathbf{u}) & \dots & \frac{\partial f_2}{\partial x_n}(\mathbf{x}, \mathbf{u}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_n}{\partial x_1}(\mathbf{x}, \mathbf{u}) & \frac{\partial f_n}{\partial x_2}(\mathbf{x}, \mathbf{u}) & \dots & \frac{\partial f_n}{\partial x_n}(\mathbf{x}, \mathbf{u}) \end{bmatrix} \text{ and } \nabla_{\mathbf{u}} f(\mathbf{x}, \mathbf{u}) = \begin{bmatrix} \frac{\partial f_1}{\partial u_1}(\mathbf{x}, \mathbf{u}) & \frac{\partial f_1}{\partial u_2}(\mathbf{x}, \mathbf{u}) & \dots & \frac{\partial f_1}{\partial u_m}(\mathbf{x}, \mathbf{u}) \\ \frac{\partial f_2}{\partial u_1}(\mathbf{x}, \mathbf{u}) & \frac{\partial f_2}{\partial u_2}(\mathbf{x}, \mathbf{u}) & \dots & \frac{\partial f_2}{\partial u_m}(\mathbf{x}, \mathbf{u}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_n}{\partial u_1}(\mathbf{x}, \mathbf{u}) & \frac{\partial f_n}{\partial u_2}(\mathbf{x}, \mathbf{u}) & \dots & \frac{\partial f_n}{\partial u_m}(\mathbf{x}, \mathbf{u}) \end{bmatrix}$$

Note the dimensions of the matrices. It must be notated that, when calculating $\nabla_x f$, \vec{u} is considered constant. Similarly, when calculating $\nabla_u f$, \vec{x} is considered constant.

To continue from (??), note that,

$$\frac{\mathrm{d}x}{\mathrm{d}t}(t) = f(x(t), u(t)), \frac{\mathrm{d}x^*}{\mathrm{d}t}(t) = f(x^*(t), u^*(t)) \text{ and } \frac{\mathrm{d}x}{\mathrm{d}t}(t) = \frac{\mathrm{d}x^*(t)}{\mathrm{d}t} + \frac{\mathrm{d}\tilde{x}}{\mathrm{d}t}(t)$$

Plugging this back into (??), we get,

$$\frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}t}(t) + \frac{\mathrm{d}\tilde{\boldsymbol{x}}}{\mathrm{d}t}(t) \approx \frac{\mathrm{d}\boldsymbol{x}^*}{\mathrm{d}t}(t) + \nabla_{\vec{\boldsymbol{x}}}f(\vec{\boldsymbol{x}}^*(t), \vec{\boldsymbol{u}}^*(t))\tilde{\boldsymbol{x}}(t) + \nabla_{\vec{\boldsymbol{u}}}f(\vec{\boldsymbol{x}}^*(t), \vec{\boldsymbol{u}}^*(t))\tilde{\boldsymbol{u}}(t)$$

Thus, we get linearized version of our system.

$$\frac{\mathrm{d}\tilde{x}}{\mathrm{d}t}(t) \approx \nabla_{\vec{x}} f(\vec{x}^*(t), \vec{u}^*(t)) \tilde{x}(t) + \nabla_{\vec{u}} f(\vec{x}^*(t), \vec{u}^*(t)) \tilde{u}(t)$$
(3)

Note that, unlike the one dimensional linearization example, we are **linearizing with respect to** \vec{x} **and** \vec{u} . Also, observe that our state variables are now the pertubations $\tilde{x}(t)$ and $\tilde{u}(t)$.

Questions

1. Jacobian Warm-Up

Consider the following function $f: \mathbb{R}^2 \mapsto \mathbb{R}^3$

$$f(x_1, x_2) = \begin{pmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \\ f_3(x_1, x_2) \end{pmatrix} = \begin{pmatrix} x_1^2 - x_2^2 \\ x_1^2 + x_1 x_2^2 \\ x_1 \end{pmatrix}$$

Calculate its Jacobian.

2. Linearization

Consider a mass attached to two springs:

We assume that each spring is linear with spring constant k and resting length X_0 . We want to build a state space model that describes how the displacement y of the mass from the spring base evolves. The differential equation modeling this system is $\frac{d^2y}{dt} = -\frac{2k}{m}(y - X_0 \frac{y}{\sqrt{y^2 + a^2}})$.

- (a) Write this model in state space form $\dot{x} = f(x)$.
- (b) Find the equilibrium of the state-space model. You can assume $X_0 < a$.
- (c) Linearize your model about the equilibrium.