Lab-6

Correlation Analysis ¶

```
* Name: Meet Hiteshkumar Trivedi
* Student ID: N01520331
```

Import Libraries

In [2]:

```
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
```

In [3]:

```
import seaborn as sns
%matplotlib inline
```

Import Titanic dataset

In [4]:

t_df = pd.read_csv('E:\Programming\Humber college\Humber Sem 2\Data Analytics\Week-6/Titani

Read head of the dataset

In [5]:

```
t_df.head()
```

Out[5]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emba
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	
4											•

Exercise 1

In [38]:

```
# CODE HERE
fare = t_df['Fare']
fare.plot(kind='hist')
plt.xlabel('Fare')
plt.title('Titanic Fares')
plt.show()
```


Exercise 2

In [11]:

```
# CODE HERE
sns.heatmap(t_df.corr(),cmap='coolwarm')
```

Out[11]:

<AxesSubplot:>

Exercise 3

Find "Pearson correlation" and "Spearman correlation" between "Age" and "Parch" column?

In [14]:

```
# CODE HERE
import scipy
from scipy.stats.stats import pearsonr
from scipy.stats.stats import spearmanr
```

In [26]:

```
age = t_df['Age']
parch = t_df['Parch']
age = age.fillna(t_df['Age'].mean())
parch = parch.fillna(t_df['Parch'].mean())
```

```
13/10/2022, 15:43
                                                Lab 6-2022 - Jupyter Notebook
  In [29]:
  pearsonr_coefficient, p_value = pearsonr(age, parch)
  print('PeasonR Correlation Coefficient %0.3f'% (pearsonr_coefficient))
  # age.isnull()
  PeasonR Correlation Coefficient -0.045
  In [30]:
  spearmanr_coefficient, p_value = spearmanr(age, parch)
  print('Spearman Rank Correlation Coefficient %0.3f' % (spearmanr_coefficient))
  Spearman Rank Correlation Coefficient -0.110
```

Exercise 4

Calculate the standard deviation, variance and mean of column "Fare" and "Age"

```
In [32]:
# CODE HERE
t1 = t_df[['Age', 'Fare']]
t1.std()
Out[32]:
        14.181209
Age
Fare
        55.907576
dtype: float64
In [33]:
t1.var()
Out[33]:
         201.106695
Age
Fare
        3125.657074
dtype: float64
In [35]:
t1.mean()
Out[35]:
        30.272590
Age
Fare
        35.627188
dtype: float64
In [ ]:
```