National Institute of Technology, Durgapur

Department of Electrical Engineering Electrical Machines Laboratory

Swinburne's Test

Object:

To determine efficiency vs. load characteristics of a dc shunt machine (motor_as_well as generator) by Swinburne's method.

Apparatus Used:

- 1. Machine under test one D.C. machine.
- 2. Ammeters-MC-1 No.
- 3. Voltmeter-MC-2 Nos.
- 4. Tachometer-1.

Theory: As this is a no-load test, it cannot be performed on a dc series motor. In this method, the machine is run at no-load as a shunt motor at rated speed. The iron and friction losses are determined by measuring the input to the dc machine at no-load.

Circuit Diagram:

Fig. 1 Circuit diagram for Swinburne's Test

Let, I_0 = No-load input current as a motor

 $I_f = No-load$ field current

 I_{a0} = No-load armature current

V = Terminal voltage

 $I_{a0} = I_0 - I_f$

Power absorbed by the armature at no-load = No-load rotational loss, W_0 + small amount of armature copper loss, $I_{ao}^2R_a$

Hence, no-load rotational losses, $W_0 = VI_{a0} - I_{ao}^2 R_a$ Watts

Fig. 2 Circuit diagram for Drop test

Procedure:

- 1. Connect the D.C. motor as shown in the circuit diagram Fig. 1.
- 2. With maximum resistance in the armature circuit, start the motor gradually cutting out the armature resistance and run the motor at rated speed 'on no load' at rated terminal voltage.
- 3. Measure the terminal voltage, current through the armature, current through the shunt field and speed. Note them in Table No. 1.
- 4. Measure its armature resistance (R_a) by 'voltage drop' method. For this, make connection as shown in Fig. 2 and take three sets of readings for armature current and armature voltage. Note them in Table No. 2.

Observations:

Table No. 1

SL. No.	Motor terminal voltage (V)	Motor input current (I_I) (amps)	Motor field current (I_f) (amps)		

Table No. 2:

No. of observations	Voltage across armature (V)	Current through armature (A)	Armature resistance (Ω)	Mean resistance (Ω)
1. 2. 3.				

Calculations:

Calculate the efficiencies of the machine as a motor and as a generator for different values of load currents and write in the tables.

As a motor:

Load Current $I_L =$ Amps (Assume 15%, 25%, 50%, 75% of rated current) Armature current $I_a = I_L - I_f$ Amps Armature copper loss = $I_a^2 R_a$ watts

Shunt field loss = VI_f watts

Total losses = Armature copper loss + Shunt field loss + Constant losses

Input Power = VI_L watts

Output Power = Input Power - Total losses

Output power

Hence, efficiency, $\eta = ---- X 100\%$

Input Power

SL. No.	Motor input voltage (V)	$Motor$ $input$ $current$ (I_L) $(amps)$	$Motor$ $field$ $current$ (I_f) $(amps)$	$Motor$ $armature$ $current$ $(I_a = I_L - I_f)$ $(amps)$	Armature copper loss $(I_a^2 R_a)$ Watts	Total Loss (Watts)	Input power (V×I _L) Watts	Output power (Watts)	Efficiency

As a generator:

Load Current $I_L =$ _____ Amps (Assume 15%, 25%, 50%, 75% of rated current)

Generator output = VI_L Watts

Armature current $Ia = I_L + I_f$ Amps

Armature copper loss = $I_a^2 R_a$ Watts

Shunt field loss = VI_f watts

Total losses = Armature copper loss + Shunt field loss + Constant losses

Input Power = Output power + Total losses

Output power Hence, efficiency, $\eta = \frac{100\%}{100\%}$ Input Power

SL	1	Load	Field	Armature	Armature	Total	Input	Output	Efficiency
No	. voltage	current	current	current	copper	Loss	power	power	
	(V)	(I_L)	(I_p)	$(I_a = I_L +$	loss	(Watts)	(Watts)	(Watts)	
		(amps)	(amps)	I_{f}	$(I_a^2 R_a)$		111		
				(amps)	Watts				
					30			- 23	
					70.		10		
									2
-	200		,			11			
		6		9					
					=				

Reports and Calculation:

- 1. Determine the armature copper loss under no load condition.
- 2. Determine the values of efficiency at different loads as mentioned above at rated terminal voltage and speed.
- 3. Draw efficiency vs. load current characteristics of the machine for motor as well as generator mode of operation.