รายละเอียดของกระบวนวิชา 229351 ปีการศึกษา 2/2563

1. รหัสกระบวนวิชา 229351

ชื่อกระบวนวิชา การเรียนรู้เชิงสถิติสำหรับวิทยาการข้อมูล (Statistical Learning for Data Science 1)

2. ผู้สอน อาจารย์ ดร. ดลภาค พรนพรัตน์

ผู้ช่วยศาสตราจารย์ ดร. พิมผกา ธานินพงศ์

3. เวลา Sec 01 : Lecture: Tu 14:30-16:30 น. ที่ SCB4202 Lab: F 14:30-16:30 น. ที่ STB107

Sec 02 : Lecture M 11:00-13:00 น. ที่ SCB4202 Lab: Th 11:00-13:00 น. ที่ STB207

4. หน่วยกิต 3 (3-0-6)

5. Website: donlapark.github.io/ds351

แผนการสอน

สัปดาห์ที่	หัวข้อ/รายละเอียด	จำนวนชั่วโมง			กิจกรรมการเรียนการสอน
		บรรยาย	ปฏิบัติ	ฝึกปฏิบัติ	
1	ชี้แจงและแนะนำกระบวนวิชา แนวคิดพื้นฐานของวิทยาการข้อมูล - ทบทวนหลักการเขียนภาษา python	2	2	0	การบรรยายโดยใช้ภาพนิ่งและคอมพิวเตอ
2-3	พีชคณิตเชิงเส้นสำหรับวิทยาการข้อมูล (Linear algebra) - นิยามและคุณสมบัติของเวกเตอร์และเมทริกซ์ - การคำนวณด้วยเวกเตอร์และเมทริกซ์ - การแปลงเวกเตอร์ด้วยเมทริกซ์ - การแยกส่วนประกอบของเมทริกซ์	2	2	0	- การบรรยายโดยใช้ภาพนิ่งและ คอมพิวเตอร์ - ปฏิบัติการคอมพิวเตอร์ดัว ภาษา python
4	การวิเคราะห์องค์ประกอบหลัก (Principal component analysis)	4	4	0	
5	 นิยามของการเรียนรู้เชิงสถิติ การสร้าง Training set และ Test set Bias-Variance tradeoff, no-free-lunch theorem การวัดประสิทธิภาพของโมเดล 	2	2	0	
6-8	การวิเคราะห์การถดถอย (Linear regression) - การเตรียมข้อมูลเพื่อการวิเคราะห์การถดถอย ➤ การสร้างตัวแปรและตัวแปรหุ่น ➤ การสร้างเมทริกซ์แผนแบบ - การวิเคราะห์การถดถอยเชิงเส้นอย่างง่าย - การวิเคราะห์การถดถอยเชิงเส้นพหุคูณ - การทดสอบความสัมพันธ์ของตัวแปร - การเลือกตัวแปร - การถดถอยแบบริดจ์และแบบ Lasso	8	8	0	
9-12	การวิเคราะห์อนุกรมเวลาสำหรับวิทยาการข้อมูล - การเตรียมข้อมูลเพื่อการวิเคราะห์อนุกรมเวลา - การวิเคราะห์อนุกรมเวลาแบบคลาสสิค ➤ ความเป็นฤดูกาลและความคงที่ ➤ สหสัมพันธ์ในตัวและสหสัมพันธ์ในตัว บางส่วน ➤ เทคนิคการปรับให้เรียบ ตัวแบบการถดถอยในตัว	8	8	0	

ตัวแบบการเฉลี่ยเคลื่อนที่ ตัวแบบการเฉลี่ยเคลื่อนที่ถดถอยในตัว			
การวิเคราะห์การถดถอยโลจิสติกส์สำหรับวิทยาการ ข้อมูล - การเตรียมข้อมูลเพื่อการวิเคราะห์การถดถอยโลจิ สติกส์ทวิ - การวิเคราะห์การถดถอยโลจิสติกส์ทวิ ➤ วิธีภาวะน่าจะเป็นสูงสุด - การวิเคราะห์การถดถอยโลจิสติกส์พหุกลุ่ม - การวิเคราะห์การถดถอยโลจิสติกส์อันดับ	8	8	0

การประเมินผลการเรียนรู้

2.1 สรุปสัดส่วนการให้คะแนน

- การบ้าน4 ครั้ง คะแนน 10%
- ปฏิบัติการ 12 ครั้ง คะแนน 15%
- Kaggle คะแนน 15%
- สอบกลางภาค คะแนน 30% (TBD)
- สอบปลายภาค คะแนน 30% (สอบวันอาทิตย์ ที่ 28 มีนาคม 2564 เวลา 15:30-18:30 น.)

2.2 การประเมินผลการเรียนการสอน

- นักศึกษาต้องเข้าสอบทั้งกลางภาคและปลายภาค หากนักศึกษาขาดสอบอย่างใดอย่างหนึ่ง นักศึกษาจะได้รับลำดับขั้น F
- วิธีการตัดเกรดแบบอิงกลุ่ม

การบ้าน

• วิชานี้มีการบ้านทั้งหมด 4 ชิ้น เพื่อให้นักศึกษาได้ทบทวนเนื้อหาที่เรียนไปและมีประสบการณ์ในการเขียนโค้ด ขอให้นักศึกษาส่งการบ้านเป็นไฟล์ *.pdf ผ่านทาง Microsoft Teams ภายในเวลาที่กำหนด โดยไปที่กลุ่มของกระบวนวิชา 229351 แล้วเลือกที่แท็บ **งานที่มอบหมาย** หรือ **Assignments**

ปฏิบัติการ (Lab)

- ทุก ๆ วันจันที่ห้อง STB107 (Sec 01) หรือ STB207 (Sec 02)
- เน้นการวิเคราะห์ข้อมูลด้วยภาษา Python เราจะทำปฏิบัติการผ่าน Google Colab
- ส่งไฟล์ Notebook หลังจากปฏิบัติการทุกครั้งผ่าน Microsoft Teams

Kaggle

- สมัครเป็นสมาชิกเว็บไซต์ kaggle แล้วเข้าไปที่เว็บไซต์ของการแข่งขัน (link อยู่ใน Microsoft Teams)
- สร้างตัวแบบในการทำนายที่ดีที่สุดโดยใช้ training set แล้ว upload การทำนายบน test set ผ่านทางเว็บไซต์ข้างบน
- การแข่งขันสิ้นสุดวันศุกร์ที่ 12 มีนาคม 2564 เวลา 23:59 น.
- เขียนรายงานถึงวิธีที่ใช้และประสิทธิภาพของตัวแบบที่ได้ ความยาว 4-10 หน้า ส่งภายในวันศุกร์ที่ 19 มีนาคม 2564 สามารถดูตัวอย่างรายงานได้ที่ donlapark.github.io/ds351

ทรัพยากรประกอบการเรียนการสอน

1 ตำราและเอกสารหลัก

เอกสารประกอบการสอนของอาจารย์

2 เอกสารและข้อมูลแนะนำ

- Rob J Hyndman and George Athanasopoulos, Forecasting: Principles and Practice. (available online at https://otexts.com/fpp2)
- 3. Gilbert Strang, Linear Algebra and Learning from Data