CÁLCULO DIFERENCIAL

Conceito de derivada. Interpretação geométrica

A noção fundamental do Cálculo Diferencial – a derivada – parece ter sido pela primeira vez explicitada no século XVII, pelo matemático francês Pierre de Fermat.

Considere-se uma função f e sejam P e Q dois pontos da curva de coordenadas (a, f(a)) e (a+h, f(a+h)). O declive da recta que passa por esses dois pontos é dado por

$$\frac{f(a+h)-f(a)}{a+h-a} \ = \ \frac{f(a+h)-f(a)}{h}.$$

Define-se tangente a uma curva f num ponto (a, f(a)) como a recta cujo declive é o $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$.

A
$$\frac{f(a+h)-f(a)}{h}$$
 chama-se **razão incremental**.

Definição:

Seja f uma f. r. v. r.. Chama-se **derivada da função** f **no ponto de abcissa** a (representa-se por f'(a)) ao limite, caso exista,

$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}.$$

Nota: A expressão $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ também pode ser usada para definir derivada da função f no ponto a. Para verificar a equivalência basta fazer x - a = h e efectuar os cálculos.

Nota: Se f'(a) existe, diz-se que f é derivável em a ou que f tem derivada em a.

Definição:

Seja f uma f. r. v. r.. Chama-se **derivada à esquerda da função** f **no ponto de abcissa** a (representa-se por $f'(a^-)$) ao limite, caso exista,

$$\lim_{h\to 0^{-}} \frac{f(a+h)-f(a)}{h}.$$

Definição:

Seja f uma f. r. v. r.. Chama-se **derivada à direita da função** f **no ponto de abcissa** a (representa-se por $f'(a^+)$) ao limite, caso exista,

$$\lim_{h\to 0^+} \frac{f(a+h)-f(a)}{h}.$$

Teorema:

Uma função f tem derivada no ponto a sse existem e são iguais as derivadas laterais nesse ponto. O valor comum dessas derivadas é a derivada da função no ponto.

Definição:

Uma f. r. v. r. diz-se **derivável num intervalo**]b,c[se é derivável em todos os pontos do intervalo.

Definição:

Uma f. r. v. r. diz-se **derivável num intervalo** [b,c] se é derivável em todos os pontos do intervalo aberto e derivável à direita de b e à esquerda de c.

De modo idêntico define-se função **derivável** em intervalos do tipo $b, +\infty$ [;] $-\infty$, c [;[b, c];[$b, +\infty$ [ou] $-\infty$, c].

Definição:

Uma f. r. v. r. diz-se **derivável** se é derivável em todos os pontos do seu domínio.

Definição:

Seja f uma f. r. v. r.. Chama-se **função derivada de** f (representa-se por f') à função de x, definida para todos os pontos onde existe derivada finita, tal que

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Nota: Para além da notação f'(x) poderão surgir outras notações. Por exemplo:

$$\frac{d(f(x))}{dx}$$
; $Df(x)$; $\frac{dy}{dx}$ ou y' .

Exemplos:

Calcule, usando a definição, a função derivada de cada uma das seguintes funções:

a)
$$f(x) = a$$
, a constante; **b)** $f(x) = x$; **c)** $f(x) = x^n$;

$$\mathbf{b)} \ f(x) = x \ ;$$

$$\mathbf{c)} \ f(x) = x^n \ ;$$

d)
$$f(x) = \sqrt{x}$$
 ;

e)
$$f(x) = \operatorname{sen} x$$
;

e)
$$f(x) = \sin x$$
; **f)** $f(x) = \cos x$.

Derivabilidade e continuidade

Teorema:

Toda a função que admite derivada finita num ponto é contínua nesse ponto.

Exemplo:

Seja f(x) = |x+1|. Estude a função quanto à continuidade e diferenciabilidade no ponto de abcissa -1.

OBSERVAÇÃO: O recíproco deste teorema é FALSO.

Regras de derivação

Teorema:

A derivada de uma constante é igual a zero.

Teorema:

A derivada da função identidade é igual a um.

Teorema:

Sejam f e g duas f. r. v. r. que admitem derivada no respectivo domínio, então:

1.
$$[f(x) \pm g(x)]' = f'(x) \pm g'(x);$$

2.
$$[f(x) \cdot g(x)]' = f'(x) \cdot g(x) + g'(x) \cdot f(x);$$

3.
$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x) \cdot g(x) - g'(x) \cdot f(x)}{[g(x)]^2}.$$

Teorema:

Sejam f e g duas f. r. v. r. que admitem derivadas nos respectivos domínios. A derivada da função composta $h(x) = (f \circ g)(x)$ é dada por:

$$h'(x) = f'(g(x))g'(x).$$

Teorema:

Se f tiver derivada no seu domínio, então $(f(x))^n = n[f(x)]^{n-1} f'(x)$, n inteiro positivo.

Observação: Esta regra é ainda válida para potências de expoente racional.

Exemplos:

Calcule : a)
$$\left[\text{sen }^{3}(x) \right]'$$
;

b)
$$\left[\sqrt[n]{f(x)}\right]'$$
.

Teorema:

Se f é uma f. r. v. r. invertível, com derivada finita e não nula no seu domínio, então a sua inversa é também derivável com derivada dada por:

$$[f^{-1}(y)]' = \frac{1}{f'(x)}$$
, com $y = f(x)$.

Exemplos:

Calcule as derivadas das seguintes funções:

- **a)** arcsen(x) ; **b)** arccos(x) ;
- c) arctan(x); d) arccotg(x).

Derivada da função implícita

Na função implícita a variável y é definida como uma função de x, por meio de uma equação que envolve as duas variáveis:

$$F(x, y) = 0.$$

Diz-se que a equação indicada define y como função implícita de x.

Exemplos:

a)
$$xy = 1$$
; **b)** $x^2 + y^2 = 1$.

A técnica de derivação da função implícita consiste em derivar ambos os membros da equação em ordem a x, considerando sempre y como uma função de x.

Exemplos:

- a) Derivar $x^2 y^3$, supondo y = f(x).
- **b)** Determinar o coeficiente angular da tangente ao gráfico de $y^4 + 3y 4x^3 = 5x + 1$, no ponto P(1,-2).

Nota:

Supõe-se que a equação define implicitamente uma função diferenciável f, tal que y = f(x).

Derivada de funções definidas de forma paramétrica

Consideremos uma função definida pelas equações paramétricas:

$$\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}.$$

Supondo que ϕ e ψ são deriváveis e que $x = \phi(t)$ admite inversa $t = \varphi(x)$, igualmente derivável, podemos considerar y = f(x), como a composta de $y = \psi(t)$ com $t = \varphi(x)$.

Usando a regra de derivação da função composta:

$$\frac{dy}{dx} = \psi'(t) \phi'(x)$$

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} \quad \text{ou seja} \quad \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}}.$$

Exemplo:

Calcular a derivada da função y = f(x) definida pelas equações paramétricas:

$$\begin{cases} x = a + r \cos \theta \\ y = b + r \sin \theta \end{cases}, \text{ com } \theta \in [0, 2\pi[.]]$$

Nota: Estas equações definem uma circunferência de raio r e centro em (a,b).

Derivadas sucessivas

Seja f uma função que admite derivada de primeira ordem. Esta derivada conduz a uma nova função: f'.

Se, por sua vez, esta nova função admite derivada, obtemos uma derivada de segunda ordem que se representa por f''.

Da mesma forma a terceira derivada, se existir, representa-se por f''' e assim sucessivamente. (...)

Após n derivações sucessivas (n inteiro positivo) obtém-se a derivada de ordem n de f que se representa por $f^{(n)}$.

Podemos usar as seguintes notações:

•
$$f'(x)$$
; $\frac{d(f(x))}{dx}$; $Df(x)$; $\frac{dy}{dx}$; ou y' , para a primeira derivada;

•
$$f''(x)$$
; $\frac{d^2(f(x))}{dx^2}$; $D^2f(x)$; $\frac{d^2y}{dx^2}$ ou y'' , para a segunda derivada;

(…)

•
$$f^{(n)}(x)$$
 ; $\frac{d^n(f(x))}{dx^n}$; $D^n f(x)$; $\frac{d^n y}{dx^n}$ ou $y^{(n)}$, para a n -ésima derivada.

Exemplos:

- a)Calcular a segunda derivada da função paramétrica atrás definida.
- **b**)Determinar uma expressão geral para a n-ésima derivada da função $\log(x)$.