Rétroaction et oscillations

Régulateur de vitesse

Régulateur de vitesse

Formalisme de Laplace

Formalisme de Laplace

Formalisme de Laplace : application

Formalisme de Laplace : application

Fonctions de transfert du régulateur de vitesse :

- en boucle ouverte :
$$H_{BO}(p) = A(p)B(p) = \frac{\alpha \beta T_0(1 + R_3/R_2)}{1 + \tau p}$$

- en boucle fermée :

$$H(p) = \frac{A(p)}{B(p)} = \frac{T_0 \beta (1 + R_3 / R_2)}{1 + \tau p + \alpha \beta T_0 (1 + R_3 / R_2)}$$

$$H(p) = \frac{H_0}{1 + \tau_{BF} p}$$

avec
$$H_0 = \frac{T_0 \beta (1 + R_3 / R_2)}{1 + \alpha T_0 \beta (1 + R_3 / R_2)}$$

et
$$\tau_{BF} = \frac{\tau}{1 + \alpha T_0 \beta (1 + R_3/R_2)}$$

Oscillateur à pont de Wien

Chaîne directe : amplificateur non-inverseur

Chaîne de retour : filtre de Wien

Oscillateur à pont de Wien

Oscillateur à pont de Wien

Conditions de Barkhausen pour l'oscillateur à pont de Wien

On cherche ω telle que : $A(j\omega)B(j\omega)=1$

$$A(j\omega) = \frac{R_1 + R_2}{R_1} = G \qquad B(j\omega) = \frac{\frac{R}{1 + jRC\omega}}{R + \frac{1}{jC\omega} + \frac{R}{1 + jRC\omega}} = \frac{1}{3 + j(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})}$$

La condition sur l'argument de $A(j\omega)B(j\omega)$ fixe la pulsation $\omega 0$

$$arg[A(j\omega)B(j\omega)] = arg\frac{G}{3+j(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} = arg[3-j(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})] = 0$$

d'où

$$\omega = \omega_0$$

La condition sur le module de $A(j\omega)B(j\omega)$ fixe le gain :

$$G = 3$$

Modèle de l'effet Larsen:

$$H(p) = \frac{G(p)}{1 - \alpha G(p)}$$