Aula 7 - Exercise Class 2

Prof. Marcelino Andrade

Faculdade UnB Gama

April 10, 2017

Contents

Section 4.3 Superposition

Section 4.4 Source Transformation

Section 4.5 and 4.6 Thevenin's and Norton's Theorems

Section 4.8 Maximum Power Transfer

Section 5.2 Operational Amplifiers

Section 5.3 Ideal Op Amp

Section 5.4 Inverting, Noninverting, Summing and Difference Amplifiers

Section 5.8 Cascaded Op Amp Circuits

Fundamentals of Electric Circuits (Alexander and Sadiku), 4th Edition

Superposition

Problem 4.19 - Use superposition to solve for v_x in the circuit of Figure below.

Answer: $v_x = -26.67V$.

Source Transformation

Problem 4.31 - Determine v_x in the circuit of Figure below using source transformation.

Answer: $v_x = 3.652V$.

Section 4.5 and 4.6 Thevenin's and Norton's Theorems

Thevenin's Theorem

Problem 4.39 - Obtain the Thevenin equivalent at terminals a-b of the circuit in Figure below.

Answer: $v_t = -16.4V$ and $R_t = 20\Omega$

Norton's Theorem

Problem 4.55 - Obtain the Norton equivalent at terminals a-b of the circuit in Figure below.

Answer: $i_n = -20mA$ and $R_n = 100K\Omega$

Maximum Power Transfer

Problem 4.71 - For the circuit in Figure below, what resistor connected across terminals a-b will absorb maximum power from the circuit? What is that power?

Answer: $R_L = 8K\Omega$ and $P_L = 1.152W$

Operational Amplifiers

Problem 5.7 - The op amp in Figure below has $R_i = 100K\Omega$, $R_o = 100\Omega$, A = 100,000. Find the differential voltage v_d and the output voltage v_o .

Answer: $v_d = -100nV$ and $v_o = -10mV$

Ideal Op Amp

Problem 5.13 - Find v_o and i_o in the circuit of Figure below.

Answer: $v_o = 2.7V$ and $i_0 = 288\mu V$

Section 5.3 Ideal Op Amp

Ideal Op Amp

Problem 5.17 - Calculate the gain v_o/v_i when the switch in Figure below is in: (a) position 1, (b) position 2 and (c) position 3.

Answer: (a)
$$\frac{v_o}{v_i} = -1.2$$
, (b) $\frac{v_o}{v_i} = -8$, and (a) $\frac{v_o}{v_i} = -200$

Inverting, Noninverting, Summing and Difference Amplifiers

Problem 5.33 - Refer to the op amp circuit in Figure below. Calculate i_x and the power dissipated by the $3K\Omega$ resistor.

Answer: $i_x = -6mA$ and $p_{3k} = 108mW$

Section 5.4 Inverting, Noninverting, Summing and Difference Amplifiers

Cascaded Op Amp Circuits

Problem 5.63 - Determine the gain v_o/v_i of the circuit in Figure below.

Answer:
$$\frac{v_o}{v_i} = \frac{\frac{R_2 R_4}{R_1 R_5} - \frac{R_4}{R_6}}{1 - \frac{R_2 R_4}{R_2 R_5}}$$