EXERCICE N°1 Appréhender la définition et la propriété

VOIR LE CORRIGÉ

Soient Ω un univers et A et B deux événements de probabilité non nulle.

Dans chaque cas vérifier l'indépendance de A et B.

1)
$$P(A) = 0.4$$
, $P(B) = 0.3$ et $P(A \cap B) = 0.15$.

2)
$$P_A(B) = 0.6$$
 $P(B) = 0.6$, $P(A \cap B) = 0.36$.

3)
$$P(A) = 0.4$$
 $P(B) = 0.1$ $P(A \cup B) = 0.3$.

4)
$$P(\overline{A}) = 0.9$$
 $P(\overline{B}) = 0.6$ $P(A \cap B) = 0.04$.

EXERCICE N°2 Démontrer l'indépendance

VOIR LE CORRIGÉ

La répartition des pantalons d'Alphonse est donnée par le tableau ci-dessous :

	Habillé	Décontracté	Total
Bleu	5	8	13
Noir	3	6	9
Rouge	0	2	2
Total	8	16	24

Il prend un pantalon au hasard dans son armoire et on considère les événements :

B: « Le pantalon est bleu. »

N: « Le pantalon est noir. »

R: « Le pantalon est rouge. »

D : « Le pantalon est décontracté. »

Les événements suivants sont-ils indépendants ?

2)
$$R \text{ et } \overline{D}$$

4)
$$N \text{ et } \overline{D}$$

EXERCICE N°3 Indépendance vs incompatibilité

VOIR LE CORRIGE

Soient Ω un univers et A et B deux événements tels que : P(A) = 0.1 et P(B) = 0.7.

- 1) Calculer les probabilités de $A \cap B$ et $A \cup B$ si A et B sont indépendants.
- 2) Calculer les probabilités de $A \cap B$ et $A \cup B$ si A et B sont incompatibles.

EXERCICE N°4 Juste une vidéo à regarder...

Cliquer pour visionner

EXERCICE N°5 Sport et cantine

VOIR LE CORRIGÉ

Le tableau ci-dessous donne la répartition de 100 élèves de Terminale d'un lycée, sportifs ou non sportifs, en fonction de leur régime scolaire (externe, interne ou demi-pensionnaire).

	Externe	Demi-P	Interne
Sportif	22	12	6
Non sportif	30	18	12

On choisit un élève au hasard.

- 1) Les événements « l'élève est sportif » et « l'élève est externe » sont-ils indépendants ?
- 2) Les événements « l'élève est non sportif » et « l'élève est demi-pensionnaire » sont-ils indépendants ?

EXERCICE N°1 Appréhender la définition et la propriété

RETOUR À L'EXERCICE

Soient Ω un univers et A et B deux événements de probabilité non nulle. Dans chaque cas vérifier l'indépendance de A et B.

1)
$$P(A) = 0.4$$
, $P(B) = 0.3$ et $P(A \cap B) = 0.15$.

$$P(A) \times P(B) = 0.4 \times 0.3 = 0.12 = P(A \cap B)$$

Donc

$$P(A) \times P(B) \neq P(A \cap B)$$

Ainsi A et B ne sont pas indépendants .

2)
$$P_A(B) = 0.6$$
 $P(B) = 0.6$, $P(A \cap B) = 0.36$.

$$P_A(B) = P(B)$$

Ainsi A et B sont indépendants .

3)
$$P(A) = 0.4$$
 $P(B) = 0.1$ $P(A \cup B) = 0.3$.

• Commençons par déterminer
$$P(A \cap B)$$
.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

donc

$$P(A \cap B) = P(A) + P(B) - P(A \cup B) = 0.4 + 0.1 - 0.3 = 0.2$$
.

•
$$P(A) \times P(B) = 0.4 \times 0.1 = 0.04$$

$$P(A) \times P(B) \neq P(A \cap B)$$

Ainsi A et B ne sont pas indépendants

4)
$$P(\overline{A}) = 0.9 \quad P(\overline{B}) = 0.6 \quad P(A \cap B) = 0.04$$
.

• Commençons par déterminer P(A) et P(B).

$$P(\overline{A}) = 1 - P(A) \Leftrightarrow P(A) = 1 - P(\overline{A})$$

donc P(A) = 1 - 0.9 = 0.1

$$P(\overline{B}) = 1 - P(B) \Leftrightarrow P(B) = 1 - P(\overline{B})$$

donc P(B) = 1 - 0.6 = 0.4

•
$$P(A) \times P(B) = 0.1 \times 0.4 = 0.04 = P(A \cap B)$$

Ainsi A et B sont indépendants

EXERCICE N°2 Démontrer l'indépendance

RETOUR À L'EXERCICE

La répartition des pantalons d'Alphonse est donnée par le tableau ci-dessous :

	Habillé	Décontracté	Total
Bleu	5	8	13
Noir	3	6	9
Rouge	0	2	2
Total	8	16	24

Il prend un pantalon au hasard dans son armoire et on considère les événements :

B: « Le pantalon est bleu. »

N: « Le pantalon est noir. »

R: « Le pantalon est rouge. »

D : « Le pantalon est décontracté. »

Les événements suivants sont-ils indépendants ?

1) B et D

$$P(B) = \frac{13}{24}, P(D) = \frac{16}{24} = \frac{2}{3},$$

$$P(B \cap D) = \frac{8}{24} = \frac{1}{3} \text{ et}$$

$$P(B) \times P(D) = \frac{13}{24} \times \frac{2}{3} = \frac{13}{36}$$

• $P(B) \times P(D) \neq P(B) \times P(D)$

Donc B et D ne sont pas indépendants

3) *N* et *D*

•
$$P(N) = \frac{9}{24} = \frac{3}{8}$$
, $P(D) = \frac{16}{24} = \frac{2}{3}$

$$P(N \cap D) = \frac{6}{24} = \frac{1}{4}$$
 et

$$P(N) \times P(D) = \frac{3}{8} \times \frac{2}{3} = \frac{1}{4}$$

 $P(N) \times P(D) = P(N) \times P(D)$

Donc N et D sont indépendants

2) $R \text{ et } \overline{D}$

$$P(R \cap \overline{D}) = \frac{0}{24} = 0$$

Ainsi R et \overline{D} sont incompatibles.

Donc B et \overline{D} ne sont pas indépendants

4) $N \text{ et } \overline{D}$

•
$$P(N) = \frac{9}{24} = \frac{3}{8}$$
, $P(\overline{D}) = \frac{8}{24} = \frac{1}{3}$

$$P(N \cap \overline{D}) = \frac{3}{24} = \frac{1}{8}$$
 et

$$P(N) \times P(\overline{D}) = \frac{3}{8} \times \frac{1}{3} = \frac{1}{8}$$

$$P(N) \times P(\overline{D}) = P(N) \times P(\overline{D})$$

Donc N et \overline{D} sont indépendants

EXERCICE N°3 Indépendance vs incompatibilité

RETOUR À L'EXERCICE

Soient Ω un univers et A et B deux événements tels que : P(A) = 0.1 et P(B) = 0.7.

1) Calculer les probabilités de $A \cap B$ et $A \cup B$ si A et B sont indépendants.

$$P(A \cap B) = P(A) \times P(B) = 0.1 \times 0.7 = 0.07$$

Ainsi
$$P(A \cap B) = 0.07$$

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.1 + 0.7 - 0.07 = 0.73$$

Ainsi
$$P(A \cup B) = 0.73$$

2) Calculer les probabilités de $A \cap B$ et $A \cup B$ si A et B sont incompatibles.

$$P(A \cap B) = 0$$

et

$$P(A \cup B) = P(A) + P(B) = 0.1 + 0.7 = 0.8$$

Ainsi
$$P(A \cup B) = 0.8$$

EXERCICE N°4 Juste une vidéo à regarder.

Cliquer pour visionner

EXERCICE N°5 Sport et cantine

RETOUR À L'EXERCICE

Le tableau ci-dessous donne la répartition de 100 élèves de Terminale d'un lycée, sportifs ou non sportifs, en fonction de leur régime scolaire (externe, interne ou demi-pensionnaire).

	Externe	Demi-P	Interne
Sportif	22	12	6
Non sportif	30	18	12

On choisit un élève au hasard.

	Externe	Demi-P	Interne	Total
Sportif	22	12	6	40
Non sportif	30	18	12	60
Total	52	30	18	100

Pensez à compléter le tableau avec les effectifs marginaux (les totaux).

Notons

S « l'élève est sportif »

E « l'élève est externe »

D « l'élève est demi-pensionnaire »

I « l'élève est interne »

1) Les événements « l'élève est sportif » et « l'élève est externe » sont-ils indépendants ?

On a

d'une part :

$$P(S) = \frac{40}{100} = 0.4$$
 et $P(E) = \frac{52}{100} = 0.52$

donc
$$P(S) \times P(E) = 0.4 \times 0.52 = 0.208$$

et d'autre part :

$$P(S \cap E) = \frac{22}{100} 0,22$$

$$P(S \cap E) \neq P(S) \times P(E)$$

On en déduit que les deux événements ne sont pas indépendants

2) Les événements « l'élève est non sportif » et « l'élève est demi-pensionnaire » sont-ils indépendants ?

On a

• d'une part :

$$P(\overline{S}) = \frac{60}{100} = 0.6$$
 et $P(D) = \frac{30}{100} = 0.3$

donc
$$P(\overline{S}) \times P(D) = 0.6 \times 0.3 = 0.18$$

• et d'autre part :

$$P(\overline{S} \cap D) = \frac{18}{100} 0.18$$

$$P(\overline{S} \cap D) = P(\overline{S}) \times P(D)$$

On en déduit que les deux événements sont indépendants