الحساب التكاملي

	محتوى الدرس	
2	تكامل دالة متصلة	1
2	1.1 تعریف و ترمیز	
2	2.1 دالة معرفة بتكامل	
3	3.1 التكامل و المساحة	
3	1.3.1 وحدة المساحة	
3	2.3.1 تكامل دالة موجبة و المساحة	
3	3.3.1 تكامل دالة سالبة و المساحة	
4	خاصيات التكامل	2
4	1.2 خاصیات	
5	2.2 القيمةُ المتوسطة	
6	المكاملة بالأجزاء	3
6	مساحة حيز محدد بمنحيين	4
7	حساب الحجوم	5
7	1.5 وحدة قياس الحجوم	
7	2.5 التكامل و حساب الحجوم	
8	3.5 حجم مجسم مولد بدوران '	

1. تكامل دالة متصلة

1.1. تعریف و ترمیز

تعریف

I لتكن f دالة متصلة على مجال I و a و a عنصر بن من a و a دالة أصلية للدالة a على a التكن a دالة أصلية للدالة a من a إلى a العدد الحقيقي a العدد الحقيقي a و نرمن له بالرمن a العدد الحقيقي a

ملاحظات

- العدد $\int_a^b f(x)dx$ غير مرتبطة باختيار الدالة الأصلية $\int_a^b f(x)dx$
- :- خساب العدد f غلی f نکتار دالهٔ أصلیهٔ f للدالهٔ علی f نکتب $\int_a^b f(x) dx$ نکتب •

 $\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$

 $oldsymbol{\cdot} \int_a^b f(x)dx = \int_a^b f(t)dt = \int_a^b f(s)ds = \cdots$ في الكتابة $\int_a^b f(x)dx = \int_a^b f(x)dx$ عكن تعويض المتغير x بأي متغير آخر

نتائج

- $-\int_a^b k dx = [kx]_a^b = k(b-a)$ لكل عدد حقيقي k لدينا •
- لتكن f دالة قابلة للإشتقاق على مجال [a;b] بحيث الدالة f' متصلة و موجية على f' لتكن f دلينا f'(x) = f(x) = f(x)

تمرين 1

- $\int_{-\pi}^{\pi} \sin(x) dx$ و $\int_{0}^{1} e^{2x-1} dx$ و $\int_{0}^{1} e^{2x-1} dx$ و 1.

2.1. دالة معرفة بتكامل

خاصية

لتكن f دالة متصلة على مجال I و a عنصر من I. الدالة f على f التى تنعدم في a الدالة f المعرفة على f بنعدم في f الدالة f المعرفة على f التى تنعدم في f

مثال

الدالة In هي الدالة الأصلية للدالة $x\mapsto\dots\dots$ على $x\mapsto\dots$ على تنعدم في تنعدم في تنعدم في كتب باستعمال التكامل

3.1. التكامل و المساحة

1.3.1. وحدة المساحة

في المستوى منسوب إلى معلم متعامد $(O;\vec{i},\vec{j})$ ، نعتبر النقط I(1;0) و K(1;1). K(1;1) و حدة المساحة هي مساحة الرباعي OIKJ و يرمن لها بالرمن u.a من أجل $\|\vec{i}\| = OJ = q \text{ cm}$ و $\|\vec{i}\| = OI = p \text{ cm}$ لدينا $\|\vec{i}\| = pq \text{ cm}^2$

2.3.1 تكامل دالة موجبة و المساحة

خاصية

لتكن f دالة عددية متصلة و موجبة على مجال [a;b] و f دالة أصلية للدالة [a;b] على [a;b]

 $oldsymbol{\cdot}(O;ec{i};ec{j})$ منحناها في معلم متعامد ممنظم (C_f)

مساحة الحيز المحدد بالمنحنى (C_f) و محور الأفاصيل و المستقيمين اللذين معادلتاهما x=b و x=b هو العدد الحقيقي x=a

مثال

	نحنى الدالة $x\mapsto x^2$ و محور الأفاصيل و المستقيمين $A=\cdots$ هي $x=2$	مساحة الحيز A المحدد بم اللذين معادلتاهما $x=1$

	و $\left\Vert ec{i} ight\Vert =1$ فإن المساحة A بالسنتيمتر مربع هي	$\left\ \vec{i} \right\ = 1,5$ cm من أجل
0 1 2		•••••

3.3.1 تكامل دالة سالبة و المساحة

خاصية

[a;b] على [a;b] و [a;b] و [a;b] و على المالة على على المالة على المالة أصلية للدالة [a;b] و المالة عددية متصلة و سالبة على معامد ممنظم $(C;\vec{i};\vec{j})$ منحناها في معلم متعامد ممنظم $(C;\vec{i};\vec{j})$

مساحة الحيز المحدد بالمنحني (C_f) و محور الأفاصيل و المستقيمين اللذين معادلتاهما x=b و x=b هو العدد الحقيقي x=a

مثال

2. خاصيات التكامل

1.2 خاصیات

خاصيات

لتكن f و g دالتين متصلتين على مجال I و g و g و عناصر من g عددا حقيقيا.

- (علاقة شال)
- $\int_a^b (f(x)+g(x))dx = \int_a^b f(x)dx + \int_a^b g(x)dx$ و $\int_a^b kf(x)dx = k \int_a^b f(x)dx$
 - $\forall x \in [a;b]: f(x) \ge 0 \Rightarrow \int_a^b f(x)dx \ge 0$ θ $\forall x \in [a;b]: f(x) \le 0 \Rightarrow \int_a^b f(x)dx \le 0$
 - $\forall x \in [a;b]: f(x) \leq g(x) \Rightarrow \int_a^b f(x)dx \leq \int_a^b g(x)dx \bullet$
 - $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx \quad \bullet$

تمرين 2

- $\int_{0}^{3} |x^{2}-1| dx$ أحسب التكامل.
- $A = \int_0^{\frac{\pi}{4}} \sin^2(x) dx$ و عتبر التكاملين $A = \int_0^{\frac{\pi}{4}} \cos^2(x) dx$ و.

A-B و A-B و استنتج قيمتي A

 $I=\int_0^1 \frac{1}{1+t^2} dt$ منتج تأطيرا للعدد $t\in [0;1]: \frac{1}{1+t^2} \leq 1$ بين أن $I=\int_0^1 \frac{1}{1+t^2} dt$ منتج تأطيرا للعدد.

٠٠ نعتبر الدالة f المعرفة على $[0;\pi]$ بما يلي: $f(x)=rac{1}{2}+\cos(x)$ بيناها في معلم متعامد ممنظم.

(۱) أدرس تغيرات الدالة f و استنتج إشارة f(x) حسب قيم x

x=0 المنعنى اللذين معادلتاهما x=0 و محور الأفاصيل و المستقيمين اللذين معادلتاهما x=0 و x=0

2.2. القيمة المتوسطة

خاصية

لتكن f دالة متصلة على مجال I و a و b عنصر بن من I و h عددين حقيقيين بحيث $h \leq H$.

 $\forall x \in [a; b]: h \le f(x) \le H \Rightarrow h(b - a) \le \int_a^b f(x) dx \le H(b - a)$

مساُحة الحيز بين المنحني (C_f) و محور الأفاصيل محصورة بين مساحة مستطيلين للما نفس القاعدة b-a، ارتفاعيهما h و H.

تعريف

لتكن f دالة متصلة على [a;b]. نسمي القيمة المتوسطة للدالة f على [a;b] العدد الحقيقي $m=\frac{1}{b-a}\int_a^b f(x)dx$ نسمي

العدد m هو ارتفاع المستطيل الذي مساحته هي مساحة الحيز بين (C) و محور الأفاصيل و قاعدته هي b-a.

تمرين 3

 $f(x) = x^2$ يلي: $f(x) = x^2$ يلي: 1. المعرفة على الدالة $f(x) = x^2$

أحسب القيمة المتوسطة للدالة f على [-1;1] ثم أول مبيانيا النتيجة.

- $f(x) = 1 + \ln(x+1)$: يلي: $f(x) = 1 + \ln(x+1)$ با يلي: $f(x) = 1 + \ln(x+1)$ با يلي: رادالة $f(x) = 1 + \ln(x+1)$
- را) أدرس تغيرات الدالة f على [0;e-1] و استنتج تأطيرا للدالة f
 - $\cdot \int_1^{e-1} f(x) dx$ استنتج تأطيرا للعدد (ب)

3. المكاملة بالأجزاء

خاصية

لتكن u و v دالتين قابلتين للإشتقاق على مجال I بحيث u و v متصلتان على مجال $\int_a^b u'(x)v(x)dx=[u(x)v(x)]_a^b-\int_a^b u(x)v'(x)dx$ لكل عنصرين u و u من u لدينا: u لدينا: u من u لدينا: u من u

مثال

```
I = \int_1^e x \ln(x) dx حساب التكامل u(x) = \dots على u(x) = \dots الدالتان u(x) = \dots u(x)
```

تمرين 4

1. أحسب التكاملات التالية:

 $A = \int_0^{\frac{\pi}{2}} e^x \sin(x) dx$ و $A = \int_0^{\frac{\pi}{2}} e^x \sin(x) dx$ و $A = \int_0^1 (2x - 1) e^x dx$ و $A = \int_0^1 (2x - 1) e^x dx$ و $A = \int_0^1 (2x - 1) e^x dx$ و $A = \int_0^1 (2x - 1) e^x dx$ و $A = \int_0^1 (2x - 1) e^x dx$ و $A = \int_0^1 (2x - 1) e^x dx$ و $A = \int_0^1 (2x - 1) e^x dx$ و $A = \int_0^1 (2x - 1) e^x dx$ و $A = \int_0^1 (2x - 1) e^x dx$ و $A = \int_0^1 (2x - 1) e^x dx$ و $A = \int_0^1 (2x - 1) e^x dx$ و $A = \int_0^1 (2x - 1) e^x dx$ و $A = \int_0^1 (2x - 1) e^x dx$

4. مساحة حيز محدد بمنحيين

خاصية

لتكن f و g دالتين متصلتين على مجال [a;b]. مساحة الحيز المحدد بمنحنييي الدالتين f و g و المستقيمين الذين معادلتاهما g و g هي:

 $\int_{a}^{b} |f(x) - g(x)| dx$

تمرين 5

 $f(x)=x-rac{\ln(x)}{x}$: يلي: $0;+\infty$ المعرفة على $0;+\infty$ المعرفة على بعتبر الدالة f المعرفة على بعتبر الدالة و ليكن (C_f) منحناها في معلم متعامد ممنظم (C_f)

-1 أدر س تغيرات الدالة f محددا نهايتيها عند 0 و

- بين أن (C_f) يقبل مقاربا مائلا (Δ) ينبغى تحديده.
 - $\bullet(C_f)$ و المنحتى النسبي للمستقيم (Δ) و المنحتى .3
- x=e و $x=rac{1}{e}$ الذين معادلتاهما $x=rac{1}{e}$ و المنتقيم $x=rac{1}{e}$ و المستقيمين الذين معادلتاهما $x=rac{1}{e}$

5. حساب الحجوم

1.5. وحدة قياس الحجوم

I(1;0;0) في الفضاء المنسوب إلى معلم متعامد $(O;\vec{i},\vec{j},\vec{k})$ نعتبر النقط N(1;1;1) و N(1;0;1) و N(1;1;1) و N(1;0;1) و N(1;1;1) و N(0;0;1) و N(0;1;1) و N(0;1;1) و N(0;1;1) و N(0;1;1) و N(0;1;1) وحدة الحجم هي حجم المضلع N(0;0;1;1) و N(0;0;1;1) وحدة الحجم هي حجم المضلع N(0;0;1;1) و N(0;0;1) وحدة الحجم هي حجم المضلع N(0;0;1) و N(0;0;1) و N(0;1;1) و N(0;1

2.5. التكامل و حساب الحجوم

خاصية

في الفضاء المنسوب إلى معلم متعامد $(O;\vec{i},\vec{j},\vec{k})$ ، نعتبر مجسما (\mathcal{E}) معددا بالمستويين (\mathcal{P}_a) و (\mathcal{P}_a) اللذين معادلتاهما z=b و z=a المستوى اللذين معادلتاهما S(t) و [a;b] اللذي الناتج عن تقاطع المستوى ليكن z=t معادلته z=t معادلته z=t معادلته z=t معادلته وزدا كانت الدالة z=t متصلة على z=t فإن حجم المجسم z=t هو z=t المجسم z=t المحسم z=t ا

أمثلة

تستعمل الخاصية السابقة في تحديد أحجام بعض المجسمات الاعتيادية مثل الأسطوانة و الموشور و الفلكة و $\cdot \cdot \cdot$ • حجم أسطوانة ارتفاعها h و شعاع قاعدتها $\cdot \cdot \cdot$

* * * * *	• • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
* * * * *	• • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • •
			• • • • • • • • • •	• • • • • • • • • • • • • • • •
• • • • •			• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
* * * * *			• • • • • • • • • • •	
			• • • • • • • • • • •	

R هاعدته R هاعدته R هاعدته R هام و شعاع قاعدته R
• حجم فلكة شعاعها R.

3.5. حجم مجسم مولد بدوران

خاصية

 $(O; \vec{i}; \vec{j})$ منحناها في معلم متعامد ممنظم [a; b] و ليكن [a; b] منحناها في معلم متعامد ممنظم $V = \int_a^b \pi (f(t))^2 dt$ عندما يدور المنحنى (C_f) حول محور الأفاصيل فإنه يولد جسما حجمه (C_f)

تمرين 6

- $f(x) = \sqrt{9-x}$ يلي يابي الدالة المعرفة على الدالة المعرفة على $f(x) = \sqrt{9-x}$ بالدالة المعرفة على الدالة الدالة المعرفة على الدالة ا
 - (۱) حدد مساحة الحيز A المحدد في الشكل.
 - $(\dot{\psi})$ احسب حجم الجسم المولد بدوران منحنى الدالة f:

$$\|\vec{j}\| = \|\vec{k}\| = 1$$
cm و $\|\vec{i}\| = \frac{1}{3}$ cm نعطي نعطي i.

- - مدد حجم هرم قاعدته مربع طول أضلاعه L و ارتفاعه h.

