Operating Systems

(Sistemas Operativos)

Introduction

六

The Landscape

- Applications (Software)
 - Programs executing millions / billions of instructions per second (e.g., text editors, databases, Al pipelines)
- Physical resources (Hardware)
 - CPU: where instructions are executed
 - Memory: stores volatile data structures
 - I/O Devices: external devices to interact with
 - Disk: to store data persistently
 - Keyboard, mouse, display, printer, ...

The Challenges

- Writing code that uses directly the hardware interfaces is challenging...
 - Different hardware devices and interfaces
 - Low level languages (e.g., Assembly)
 - Time consuming and error-prone
- and requires addressing several concerns
 - Efficient usage of hardware resources
 - Resource sharing (e.g., CPU, memory, disk) across multiple running programs
 - Security and isolation of running programs

>

Enters the Operating System (OS)

- Mediates the interaction between programs and hardware
- Abstracts physical resources into general, powerful, and easier-to-use virtual forms
- Offers interfaces (APIs) to use these resources (e.g., run programs, use memory and devices)
- Manages resources for multiple programs (e.g., concurrent programs, resource sharing)

2024-2025 OPERATING SYSTEMS INTRODUCTION

Why Should I Do This Course?

- The OS is a powerful ally to efficiently run multiple programs on a computer, however:
- The incorrect use of OS tools and APIs may lead to
 - Inefficient programs (bad performance)
 - Incorrect programs (bugs, crashes, data corruption)
- To correctly use these tools and APIs one must:
 - Try them practical classes!
 - Understand them (means knowing the OS) theoretical classes!
- And finally, because Operating Systems are Fun!
 - You will study algorithms, data structures and optimizations applicable to different contexts (Al pipelines, databases, web services, apps, ...)

2024-2025 OPERATING SYSTEMS INTRODUCTION

Roadmap

Theory

- Introduction to Operating Systems
 - Design goal(s) and evolution of OSs
 - Modern OS stack, tools and interfaces
- CPU Management
 - The process abstraction and API
 - CPU scheduling
- Memory Management
 - Address space management
 - Extending physical memory
- Persistence
 - I/O devices (HDDs, SSDs, RAIDs)
 - File Systems interface and design

Practice

- Persistence API
 - Creating, writing, and reading files
 - Improving programs' performance when accessing and persisting data
- Processes API
 - Creating processes
 - Sequential and concurrent programs
 - Executing programs
- Process Communication API
 - Efficiently exchanging data across
 - related processes
 - un-related processes

Assessment

- Project (50%)
 - Report: 17/05/2025
 - Presentation: 02/06/2025 05/06/2025

- Written exam (50%) minimum grade: 8 values
 - 27/05/2025

Main References

Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau.
Operating Systems: Three Easy Pieces. Arpaci-Dusseau Books, 2018.

Avi Silberschatz, Peter Baer Galvin, Greg Gagne.
Operating System Concepts (10. ed). John Wiley & Sons, 2018.

Team (LEI + LCC)

- João Paulo (LEI+LCC) jtpaulo@di.uminho.pt
- Ana Nunes (LEI) ananunes@di.uminho.pt
- Victor Fonte (LEI) vff@di.uminho.pt
- Pedro Peixoto (LEI) D14110@di.uminho.pt
- Tânia Esteves (LEI+LCC) d12729@di.uminho.pt
- Ricardo Macedo (LCC) d12010@di.uminho.pt
- Francisco Neves (LEI) D8328@di.uminho.pt
- Rúben Daniel Adão (LEI) ruben.d.adao@inesctec.pt

2024-2025 OPERATING SYSTEMS INTRODUCTION

Questions?