Глава II. Отношения и функции

Прямым (декартовым) произведением множеств A_1, \ldots, A_n называется множество $A_1 \times \ldots \times A_n = \{(a_1, \ldots, a_n) | a_1 \in A_1, \ldots, a_n \in A_n\}$. Если $A_1 = \ldots = A_n$, то множество $A_1 \times \ldots \times A_n$ называется прямой степенью множества A и обозначается A^n .

Бинарным отношением между элементами множеств A и B называется любое подмножество R множества $A \times B$. Если A = B, то отношение R называется бинарным отношением Ha A.

Удобным способом задания бинарного отношения на конечных множествах является матрица бинарного отношения, т. е. бинарному отношению $R \subseteq A \times B$ из множества $A = \{a_1,...,a_n\}$ в множество $B = \{b_1,...,b_m\}$ соответствует матрица C размера $|A| \times |B|$, элементы которой определяются следующим образом:

$$c_{ij} = \begin{cases} 1, \text{ если } (a_i, b_j) \in R, \\ 0, \text{ иначе.} \end{cases}$$

Областью определения бинарного отношения R называется множество $\text{Dom}(R) = \{x \mid x \in A \text{ и существует } y \text{ такой, что } (x,y) \in R \}.$

Областью значений бинарного отношения R называется множество $Im(R)=\{y\mid y\in B \text{ и существует } x \text{ такой, что } (x,y)\in R \}.$

Для бинарных отношений определены обычным образом операции объединения, пересечения, разности.

Дополнением бинарного отношения $R \subseteq A \times B$ называется множество $\overline{R} = (A \times B) \setminus R$.

Обратным отношением для бинарного отношения $R \subseteq A \times B$ называется множество $R^{-1} = \{(y, x) | y \in B, x \in A, (x, y) \in R\}$.

Бинарное отношение R на множестве A называется

рефлексивным, если для всех $x \in A$ $(x, x) \in R$;

антирефлексивным, если для всех $x \in A$ $(x,x) \notin R$;

симметричным, если для всех $x,y \in A$, из того, что $(x,y) \in R$, следует $(y,x) \in R$;

антисимметричным, если для всех $x, y \in A$ из того, что $(x, y) \in R$ и $(y, x) \in R$, следует x = y;

транзитивным, если для всех $x, y, z \in A$ из того, что $(x, y) \in R$ и $(y, z) \in R$, следует $(x, z) \in R$.

Рефлексивное, симметричное и транзитивное отношение R на множестве A называется *отношением* эквивалентности и разбивает множество A на классы эквивалентности по отношению R.

Рефлексивное, антисимметричное и транзитивное отношение R на множестве A называется *отношением нестрогого порядка*. Антирефлексивное, антисимметричное и транзитивное отношение R на множестве A называется *отношением строгого порядка*.

Отношение f из A в B называется ϕ ункциональным (или ϕ ункцией), если для любого $x \in \text{Dom}(f)$ и любых $y_1, y_2 \in \text{Im}(f)$

$$(x, y_1) \in f \quad \text{if } (x, y_2) \in f \Rightarrow y_1 = y_2.$$

При этом говорят, что функция имеет тип f «из A в B» и пишут $f:A \to B$.

Функция f называется всюду определенной, если $\mathrm{Dom}(f) = A;$ сюръективной, если $\mathrm{Im}(f) = B;$ инъективной, если для любых $x_1, x_2 \in \mathrm{Dom}(f)$ и любого $y \in \mathrm{Im}(f)$ если $(x_1, y) \in f$ и $(x_2, y) \in f$, то $x_1 = x_2$.

Функция f называется биективной или взаимно-однозначной, если она всюду определена, сюръективна и инъективна.

Пример 2.1. Задать отношение «являться нестрогим подмножеством» на множестве всех подмножеств P(M) множества $M = \{a,b,c\}$

$$R = \{(A,B) \mid A,B \in P(M), A \subseteq B\}.$$

Установить, какими свойствами обладает данное отношение.

 \triangleright Множество P(M) конечно $P(M) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\}$, поэтому отношение R зададим матрицей отношения (таблица 2.1):

{a} {*b*} Ø {*c*} {*a*,*b*} {*a*,*c*} $\{b,c\}$ {*a*,*b*,*c*} R Ø {*a*} {*b*} {*c*} *{a,b} {a,c}* {*b*,*c*}

Таблица 2.1

 $\{a,b,c\}$ 0 0 0 0 0 0 1

Отношение R является рефлексивным на множестве P(M), так как для любого множества $A \in P(M)$ выполнено $A \subseteq A$, т. е. $\forall A \in P(M) \ (A,A) \in R$.

Заметим, что на главной диагонали матрицы рефлексивного отношения R стоят только единицы.

Отношение R является антисимметричным на множестве P(M), так как для любых множеств $A, B \in P(M)$ если $A \subseteq B$ и $B \subseteq A$, то A = B, т. е. $\forall A, B \in P(M)$ $(A, B) \in R$, $(B, A) \in R \Rightarrow A = B$.

Отношение R является транзитивным на множестве P(M), так как для любых множеств $A,B,C\in P(M)$ если $A\subseteq B$ и $B\subseteq C$, то $A\subseteq C$, т. е. $\forall A,B,C\in P(M)$ $(A,B)\in R$, $(B,C)\in R$ \Rightarrow $(A,C)\in R$.

Из перечисленных свойств следует, что R является отношением нестрогого порядка на множестве P(M). Более того, отношение R задает *частичный порядок* на множестве P(M), так как во множестве P(M) есть элементы, *сравнимые по отношению* R (например, элементы $\{a\}$ и $\{a,b\}$ сравнимы по R, так как $\{a\} \subseteq \{a,b\}$) и *несравнимые по отношению* R (например, элементы $\{a\}$ и $\{b,c\}$ несравнимы по R, так как $\{a\} \subsetneq \{b,c\}$ и $\{b,c\} \subsetneq \{a\}$).

А) Контрольные вопросы

- **2.1** Дайте определение прямого произведения двух множеств, трех множеств, n множеств. Приведите пример элементов множеств \mathbb{R}^2 и \mathbb{R}^3 .
- **2.2** Докажите, что $|A \times B| = |A| \cdot |B|$.
- **2.3** Дайте определение унарного, бинарного, n-арного отношения. Приведите пример.
- 2.4 Приведите пример бинарного отношения, которое является:
 - а) рефлексивным, симметричным, не транзитивным;
 - б) рефлексивным, антисимметричным, не транзитивным;
 - в) рефлексивным, не симметричным, транзитивным;
 - г) не рефлексивным, антисимметричным, транзитивным.
- **2.5** Каким свойством обладает матрица рефлексивного бинарного отношения, симметричного бинарного отношения, антисимметричного бинарного отношения?
- **2.6** Приведите пример отношения эквивалентности, отношения строгого порядка, отношения нестрогого порядка.

2.7 Проиллюстрируйте с помощью диаграмм Эйлера-Венна разбиение множества U на следующие классы эквивалентности:

a) A, \overline{A} ;

6) $(A \cap B)$, $(A \Delta B)$, $\overline{(A \cup B)}$.

- 2.8 Дайте определение биективной функции.
- **2.9** Докажите, что если между двумя множествами A и B существует биективная функция $f: A \to B$, то |A| = |B|.
- Б) Задачи и упражнения
- **2.10** Даны множества $X = \{x, y\}, Y = \{x, y, z\}$. Задайте следующие множества:

a) $X \times Y$;

6) $Y \times X$;

B) X^2 ;

 Γ) $X \times Y \times X$.

2.11 Найдите геометрическую интерпретацию множеств:

a) $[0;1] \times [0;2]$;

6) [0;1]×(0;1);

B) $[0;1]^3$,

где $[0;1],[0;2],(0;1) \subset \mathbb{R}$.

2.12 Задайте перечислением пар следующие бинарные отношения. Постройте матрицы данных отношений:

a) $R = \{(x,y) \mid x,y \in \{1,2,3,4\}, x < y\};$

б) $R = \{(x,y) \mid x \in \{1,2,3,4,5\}, y \in \{12,16\}, x$ делит $y\}$;

в) $R = \{(x,y) \mid x,y \in \{1,2,3,4,5\}, (x+y) \text{ четно}\};$

- Γ) $R = \{(x,y) \mid x,y \in A, x \text{ предшествует } y\}$, где $A = \{\text{понедельник, вторник, среда, четверг, пятница, суббота, воскресение}\}.$
- **2.13** Найдите Dom(R), Im(R), \overline{R} , R^{-1} для следующих бинарных отношений:

a) $R = \{(x,y) \mid x,y \in \{1,2,3,4\}, x \ge y\};$

6) $R = \{(x, y) | x \in [0, 3], y \in [-1, 2], x^2 + 4y^2 \le 4\};$

B) $R = \{(x, y) | x \in [0,1], y \in [0,4], x^3 = y\};$

 Γ) $R = \{(a,b) | a,b \in P(M), a \subseteq b\}$, где $M = \{x,y\}$.

2.14 Для отношения $R = \{(x,y) \mid x,y \in M, x \ge y\}, M = \{1,2,3,4,5,6,7,8\}$:

- а) постройте матрицу отношения;
- $\mathbf{6}$) найдите область определения Dom(R);
- \mathbf{B}) найдите область значений $\mathrm{Im}(R)$;
- Γ) найдите образы R(2) и R(5) элементов относительно данного отношения;
- **д)** найдите образы множеств $R(\{2,5\})$ и $R(\{2,3\})$;
- **e**) найдите прообразы элементов $R^{-1}(2)$ и $R^{-1}(5)$;
- ж) найдите прообразы множеств $R^{-1}(\{2,5\})$ и $R^{-1}(\{2,3,5\})$;
- з) задайте дополнение \overline{R} и обратное отношение R^{-1} ;
- **и**) докажите, что R является отношением нестрогого порядка на M.
- **2.15** Определите, выполняются ли для следующих отношений свойства рефлексивности, антирефлексивности, симметричности, антисимметричности, транзитивности:
 - **а)** отношения "быть знакомым", "жить в одном городе", "быть моложе" на множестве людей;
 - **б**) отношение \geq на множестве \mathbb{R} ;
 - **в**) отношение строгого включения на множестве P(A), где $(A) = \{1, 2, ..., n\}$;
 - г) $R = \{(m,n) \mid m$ и n взаимно просты $\}$ на множестве \mathbb{N} ;
 - д) $R = \{(m,n) \mid m-n=2\}$ на множестве \mathbb{N} ;
 - **e**) $R = \{(x,y) \mid (x+2y) \text{ делится на 3} \}$ на множестве \mathbb{Z} ;
 - ж) $R = \{((x,y),(u,v)) \mid x+v=y+u\}$ на множестве $\mathbb{N} \times \mathbb{N}$.
- **2.16** Для отношения $R = \{(x,y) \mid x,y \in M, x \text{ и } y \text{ имеют один и тот же остаток от деления на 3}, <math>M = \{1,2,3,4,5,6,7,8\}$:
 - a) постройте матрицу отношения R;
 - **б**) докажите, что R является отношением эквивалентности на M;
 - ${f B}$) разбейте множество M на классы эквивалентности по отношению R;
- **2.17** Докажите, что следующие отношения являются отношениями эквивалентности:
 - **a)** $R = \{(x, y) | x, y \in \mathbb{R}, x^2 = y^2\};$
 - **6)** $R = \{(x, y) | x, y \in \mathbb{R}, (x y) \in \mathbb{Z}\};$

- **B)** $R = \{(x, y) | x, y \in \mathbb{C}, \text{Re } x = \text{Re } y\}.$
- **2.18** Выясните, какие из следующих подмножеств множества $\mathbb{Z} \times \mathbb{Z}$ являются ϕ ункциями из \mathbb{Z} в \mathbb{Z} :

a) $\{(n,2n) | n \in \mathbb{Z}\};$

6) $\{(2n,n) | n \in \mathbb{Z}\};$

2.19 Выясните, какие из следующих функций являются биективными из \mathbb{R} в

a) $f(x) = e^x$; **6)** $f(x) = x^2$;

B) $f(x) = x^3 - x$; Γ f(x) = 2x + 1;

д) f(x) = |x|.

- В) Тестовые задания (укажите единственный верный ответ)
- **2.20** Декартовым произведением $A \times B$ двух множеств A и B называется...
 - а) множество всех произведений элементов, принадлежащих множествам A и B.
 - б) множество всех упорядоченных пар, в которых первый элемент принадлежит множеству A, а второй – множеству B;
 - в) множество всех неупорядоченных пар, в которых один элемент принадлежит множеству A, а другой – множеству B;
 - г) множество всех упорядоченных пар, в которых первый элемент принадлежит множеству B, а второй – множеству A;
- **2.21** Мощность $A \times B \times C$ множеств декартового произведения $A = \{a,b,c\}, B = \{d,e,f,g\}$ и $C = \{a,d,e\}$ равна...
 - **a)** 24;
 - **6**) 10;
 - **B)** 12;
 - **r**) 36.
- **2.22** Бинарное отношение $R = \{(x,y) \mid x,y \in \{1,2,3,4,5,6,7,8\}, 3x = 2y\}$ состоит из следующих пар элементов...

- **a)** (2,3) и (3,2);
- **б)** (3,2) и (6,4);
- **в**) (2,3) и (4,6);
- г) (2,3), (3,2), (4,6) и (6,4).
- **2.23** Дано бинарное отношение $R = \{(x,y) \mid x,y \in \{1,2,3,4,5,6,7,8\}, x > y\}.$

Область определения отношения R^{-1} равна...

- **a**) {1,2,3,4,5,6,7};
- **6**) {1,2,3,4,5,6,7,8};
- **B)** {2,3,4,5,6,7,8};
- **B)** {2,3,4,5,6,7}.
- **2.24** Дано бинарное отношение $R = \{(x,y) \mid x,y \in \{1,2,3,4,5,6,7,8\}, x \ge y\}.$

Область значений отношения \overline{R} равна...

- **a**) {1,2,3,4,5,6,7};
- **6**) {1,2,3,4,5,6,7,8};
- **B)** {2,3,4,5,6,7,8};
- **Γ**) {2,3,4,5,6,7}.
- **2.25** Бинарное отношение $R = \{(x,y) \mid x,y \in \{1,2,3,4,5,6,7,8\}, x-y<2\}$ является...
 - а) рефлексивным, симметричным и транзитивным;
 - б) рефлексивным, несимметричным и нетранзитивным;
 - в) нерефлексивным, симметричным и нетранзитивным;
 - г) антирефлексивным, антисимметричным и транзитивным.
- **2.26** Бинарное отношение $R = \{(x,y) \mid x,y \in \{1,2,3,4,5,6,7,8\}, |y-x/>1\}$ является...
 - а) рефлексивным, симметричным и транзитивным;
 - б) нерефлексивным, несимметричным и нетранзитивным;
 - в) антирефлексивным, симметричным и нетранзитивным;
 - г) антирефлексивным, антисимметричным и транзитивным.
- **2.27** Матрица рефлексивного бинарного отношения, заданного на конечном множестве обладает свойством...

- а) главная диагональ матрицы содержит только единицы;
- б) главная диагональ матрицы содержит только нули;
- в) матрица симметрична относительно главной диагонали;
- г) матрица имеет треугольный вид.
- 2.28 Бинарное отношение является отношением строгого порядка, если оно...
 - а) рефлексивное, симметричное и транзитивное;
 - б) антирефлексивное, антисимметричное и транзитивное;
 - в) рефлексивное, антисимметричное и транзитивное.
- **2.29** Отношение f из A в B называется функциональным, если оно обладает следующим свойством...
 - **a**) если f(a) = b и f(a) = c, то b = c;
 - **б**) если f(a) = b и f(c) = b, то a = c;
 - **в**) область определения Dom(f) = A;
 - Γ) область значений Im(f) = B.
- **2.30** Функция f из A в B является взаимно-однозначной (биекцией), если она...
 - а) всюду определена и инъективна;
 - б) всюду определена и сюръективна;
 - в) инъективна и сюръективна;
 - г) всюду определена, инъективна и сюръективна.