Counting rational points on elliptic curves and descent via 2-isogeny

Francesco Naccarato

June 2020

ABSTRACT. Let E/\mathbb{Q} be an elliptic curve over the rational numbers. It is known, by the work of Bombieri and Zannier, that if E has full rational 2-torsion, then the number $N_E(B)$ of rational points with Weil height bounded by B is $\mathcal{O}_{\epsilon}(B^{\epsilon})$ for every positive ϵ . In this work, we exploit the method of descent via 2-isogeny to extend this result to the case in which E has just one rational 2-torsion point. Moreover, we make use of a result of Petsche to improve on the best known estimate for the growth of $N_E(B)$ for this class of curves.

1 Notation

We denote the cardinality of a set X as |X|.

The numbers c_k in the following will be positive, absolute and computable constants.

We will write $f(x) \ll g(x)$ to mean that $\exists \lim_{x \to \infty} \frac{f(x)}{g(x)} \ll \infty$.

The function $w(\cdot)$ counts the number of distinct prime factors of the integer input.

We will initially define quantities that depend on an elliptic curve E by putting E in subscript, but will subsequently omit this.

2 Introduction and results

For an elliptic curve E/\mathbb{Q} in Weierstrass form given by an equation of the form:

$$y^2 = x^3 + ax + b \qquad a, b, c \in \mathbb{Q} \tag{1}$$

we define, in the usual fashion, its height H(E) as the Weil height of the vector (1, a, b), its discriminant $\Delta_E := -16(4a^3 + 27b^2)$ and we let $h(E) := \log H(E)$.

We will see that it is not restrictive to work with a quasi-minimal model of E, given by:

$$y^2 = x^3 + Ax + B \tag{2}$$

with $A, B \in \mathbb{Z}$ and $H(E) = max\{4|A|^3, 27B^2\}$.

We recall that elliptic curves are groups with the usual structure arising from the Weierstrass map. When E is an elliptic curve defined over \mathbb{Q} , the set of its rational points is a subgroup, the Mordell-Weil group $E(\mathbb{Q})$. We also recall that, by Mordell's Theorem, $E(\mathbb{Q})$ is finitely generated and that the rank r_E is defined as the abelian rank of $E(\mathbb{Q}) \equiv \mathbb{Z}^{r_E} \times T$.

We will say that an elliptic curve E/\mathbb{Q} has a rational 2-torsion point when the 2-torsion subgroup of E, denoted as E[2], intersects its Mordell-Weil group non-trivially; we will say that E has full rational 2-torsion when $E[2] \subset E(\mathbb{Q})$.

Let us introduce the usual Weil height H(P) of a rational point as the Weil height of its x-coordinate, and analogously for its logarithmic Weil height. Moreover, let us define the quantity that we are interested in bounding:

$$N_E(B) := |\{P \in E(\mathbb{Q}) : H(P) \le B\}|$$

or, equivalently,

$$N_E(B) := |\{P \in E(\mathbb{Q}) : h(P) \le \log B\}|$$
 (3)

In [1], Theorem 1, Bombieri and Zannier proved that for elliptic curves in Weierstrass form with full rational 2-torsion one has:

$$N(B) \le B^{\frac{C}{\sqrt{\log \log B}}}$$

for sufficiently large B (depending on the curve) and C an absolute constant.

We can now state our result:

Theorem 2.1 There exists an absolute computable constant c such that for any elliptic curve E/\mathbb{Q} as in (1) with a rational 2-torsion point the inequality:

$$N(B) \le M^{\frac{c}{\log \log M}} \tag{4}$$

holds, with $M := max\{B, H(E)\}.$

This result implies, for this special family of curves, a conjecture that is widely believed to hold true for any elliptic curve over \mathbb{Q} :

Conjecture 1 Let $\epsilon > 0$. There exists a constant $c'(\epsilon)$ depending only on ϵ such that, with the same notation as in Theorem 2.1,

$$N(B) \le c'(\epsilon)M^{\epsilon}$$

for every elliptic curve E/\mathbb{Q} as in (1).

3 Preliminaries

We start by noticing that

$$|\Delta| \le 32H(E). \tag{5}$$

For our estimation, we make use of the canonical height:

$$\hat{h}(P) := \lim_{n \to \infty} 4^{-n} h(2^n P).$$

It is well known that \hat{h} is a quadratic form on $E(\mathbb{Q})$ and that it is positive definite on the quotient $E(\mathbb{Q})/T \simeq \mathbb{Z}^r$. We can consider the tensor product of abelian groups $E(\mathbb{Q}) \otimes \mathbb{R} \simeq \mathbb{R}^r$: we see that the torsion is mapped in 0 by the tensor, and $E(\mathbb{Q})/T$ injects (in the sense of $E(\mathbb{Q})/T \otimes 1 \hookrightarrow E(\mathbb{Q}) \otimes \mathbb{R}$) in a lattice of dimension r: we can then bring our quadratic form onto this lattice by setting $\hat{h}(x) := \hat{h}(P)$ where P is the unique rational point modulo torsion such that $P \otimes 1 = x$.

This form can be extended by linearity to \mathbb{Q}^r and by continuity to all \mathbb{R}^r , and it is a well-known result that it remains positive definite: hence, we can take \hat{h} to be the square of the usual euclidean norm (so the image lattice of the Mordell-Weil group modulo torsion will be some lattice, not necessarily \mathbb{Z}^r , in a metric sense).

It is well known (see [2]) that, once the curve is fixed, the Weil and canonical heights differ by at most a constant, so proving (4) for the Weil height with N(B) defined as in (3) is equivalent to proving it with the alternative definition

$$N(B) := |\{P \in E(\mathbb{Q}) : \hat{h}(P) \le \log B\}|.$$
 (6)

Hence the problem of counting rational points with Weil height up to $\log B$ is the same as counting the number of the points of this lattice in the ball of centre 0 and radius $\sqrt{\log B}$, and then multiplying by the cardinality of the torsion.

Remark 3.1 To see that it is sufficient to prove Theorem 2.1 for curves as in (2), just notice that changing from a model E' as in (1) to one E as in (2) does not change the canonical height, and that $h(E') < c_0h(E) + c_0$.

Lemma 3.2 Let E/\mathbb{Q} be an elliptic curve in Weierstrass form with a rational 2-torsion point. Let Δ be its discriminant and r its rank: then one has

$$r \le 2w(\Delta) + 2. \tag{7}$$

Proof: We can apply a descent via 2-isogeny as described in [3] (see specifically Prop. 3.8 p.92 and p. 98) to obtain:

$$|E(\mathbb{Q})/2E(\mathbb{Q})| \le 2^{w(\Delta)+2}.$$

This, together with the bound

$$2^r \leq |E(\mathbb{Q})/2E(\mathbb{Q})|,$$

which follows by explicitly writing the quotient as:

$$(\mathbb{Z}/2\mathbb{Z})^r \prod_{i=1}^k \mathbb{Z}_{p_i^{r_i}}/2\mathbb{Z}_{p_i^{r_i}}$$

thanks to the classification of finitely generated abelian groups, gives:

$$r \leq 2w(\Delta) + 2$$
. \square

We now observe that the *Prime Number Theorem* implies the bound:

$$w(k) << \frac{\log k}{\log \log k}$$

This, together with (7), tells us that $r \leq c_1 \frac{\log |\Delta|}{\log \log |\Delta|} + c_1$. From now on, let us put:

$$r = \alpha \frac{\log |\Delta|}{\log \log |\Delta|}, \quad \alpha \in [0, c_2]$$
 (8)

This estimation is the key point where the rationality of a 2-torsion point comes into play: in fact, in all that follows we can drop this assumption.

Remark 3.3 Notice that in proving Theorem 2.1 we can suppose, without loss of generality,

$$B \ge H(E) \ge \max\{c_{11}, e^3\}.$$
 (9)

The first inequality because if B < H(E) then $N(B) \le N(H(E))$ and they have the same lower bound in the statement; the second (we need $M \ge e^3$ to ensure that $\log \log M > 0$ so that we have a meaningful upper bound in the RHS of (4), and we will need $B > c_{11}$ in Section 4) because there is only a finite number of elliptic curves with $H(E) < \max\{c_{11}, e^3\}$.

In what follows, E will be an elliptic curve as in (2), with no further hyphoteses on the torsion.

4 Main argument

The following argument is due to Bombieri and Zannier and can be found, presented in similar fashion, in [1]. Our strategy is simple:

- 1. we find a small enough radius ρ_0 such that we can bound the number of points of the lattice in a ball of radius ρ_0 centered at a point of the lattice;
- 2. we count how many of this balls we need to cover all the lattice inside the ball of centre 0 and radius $\sqrt{\log B}$.

The second step is the easiest, for we just need an elementary covering lemma:

Lemma 4.1 Given a positive integer n, radii R, ρ and a subset S of the n-ball B(0,R), there exists a set of at most $(1+\frac{2R}{\rho})^n$ balls of radius ρ centered at points of S such that S is contained in the union of these balls.

Proof: Consider a maximal set Γ of disjoint balls of radii $\frac{\rho}{2}$ centered at points of S (by maximal we mean such that any ball of radius $\frac{\rho}{2}$ centered at a point of S intersects a ball of Γ). Notice that the union of the balls in Γ is contained in $\mathcal{B}(0, R + \frac{\rho}{2})$, which gives $|\Gamma| \leq \frac{V_n(R + \frac{\rho}{2})}{V_n(\frac{\rho}{2})} \leq (1 + \frac{2R}{\rho})^n$ with $V_n(a)$ the n-volume of the n-ball of radius a.

But enlarging the balls in Γ by a factor of 2 we get a set of balls centered at points of S which covers S, because if a point of S lied outside the union of these new balls, that would contradict maximality. \square

It is clear that we will make use of this Lemma putting n=r (and $R=\sqrt{\log B}$, $\rho=\rho_0$) from which the importance of the magnitude of the rank in our estimation follows.

For the first step, we need to distinguish two cases: small and large rank.

Small rank: in this case, we use a result by Masser, which can be found in [4]:

Theorem 4.2 There exist a constant $c_3 > 1$ such that the number of rational points of E with canonical height bounded by $\frac{1}{C}$ is at most $Ch(E)^{\frac{3}{2}}$.

So using Lemma 4.1 with $\rho = C^{-\frac{1}{2}}$ we find:

$$N(B) \le |T|Ch(E)^{\frac{3}{2}}(1 + 2RC^{\frac{1}{2}})^r \le (c_4 \log B)^{\frac{3}{2}}(c_5\sqrt{\log B})^r \le (c_6 \log B)^{\frac{r+3}{2}}.$$

Along with (5), Lemma 3.2 and (9) this gives:

$$N(B) \le (\log B)^{c_7 \alpha \frac{\log B}{\log \log B}} = B^{c_7 \alpha}$$

which implies our desired result for, for example, $\alpha \leq \frac{1}{\sqrt{\log B}}$.

Large rank: in this case we employ a result of Petsche concerning the *minimum* canonical height of a non torsion point. It turns out that this quantity can be bounded below as a function of the minimal discriminant Δ_m of the curve and of its Szpiro ratio:

$$\sigma = \frac{\log |\Delta_m|}{\log \mathcal{N}} \tag{10}$$

where \mathcal{N} is the conductor of the curve.

Theorem 4.3 There exists a constant c_8 such that for any non-torsion point $P \in E(\mathbb{Q})$, we have

$$\hat{h}(P) > \frac{\log |\Delta_m|}{c_8 \sigma^6}$$

Proof: We recall for the reader's convenience Prop. 7 of [5]:

Let k a number field of degree $d = [k : \mathbb{Q}]$, and let E/k be an elliptic curve with Szpiro ratio σ . Then:

$$|\{P \in E(k) : \hat{h}(P) \le \frac{\log \mathbb{N}_{k/\mathbb{Q}}(\Delta_{E/k})}{2^{13}3d\sigma^2}\} \le a_1 d\sigma^2 \log (a_2 d\sigma^2)$$

with $a_1 = 134861$ and $a_2 = 104613$.

In its proof in the original paper, we see that in the precise case of $k = \mathbb{Q}$ that we are examining, the LHS of (25) is precisely 0 since \mathbb{Q} has just one archimedean place, and no estimate is needed. This enables us to remove the $\log(c_2d\sigma^2)$ factor in the statement. The rest of the proof is the same as the original. \square

Remark 4.4 Actually, this refinement is not really needed for our purposes, because, since $\sigma \geq 1$, we can "absorb" the aforementioned log factor in the σ^2 factor by changing constant and write σ^3 instead. This exponent change, as will be easy to see, only results in a change of the absolute constant in the statement of Theorem 2.1. Nevertheless, it is interesting to see that we can slightly improve the bound for the smallest canonical height for $k = \mathbb{Q}$ (and even for imaginary quadratic fields).

Since \mathcal{N} is divisible by all the primes dividing Δ_m except at most 2 and 3, the rank being "large" (in the sense of (8)) means that the discriminant has a lot of prime divisors with small exponent, so the *Szpiro ratio* is not too small (it is always greater than 1, see []) and our lower bound will be good.

Let us formalize this line of reasoning: apply Lemma 4.1 with $\rho = \sqrt{\frac{\log |\Delta_m|}{c_8 \sigma^6}}$: then we know that in each of these balls there is just 1 non-torsion point and so we obtain:

$$N(B) \le \left(c_9 \sqrt{\frac{\log B}{\log |\Delta|}} \sigma^3\right)^r \le \left(c_9 \frac{\log B}{\log N} \sigma^2\right)^{\alpha \frac{\log B}{\log \log B}}.$$
 (11)

But from what we said earlier about the primes dividing \mathcal{N} , it follows that $6\mathcal{N}$ has at least $max\{2, \frac{r-2}{2}\} \geq \frac{r}{3}$ prime factors and hence

$$6\mathcal{N} \geq p_{\frac{r}{3}} \#$$

with $p_n\#:=\prod_{j=1}^n p_j$ the primorial; again by PNT we have $p_n\#=e^{(1+o(1))n\log n}$, which gives us:

$$\log 6 + \log \mathcal{N} \ge c_{10} \alpha \frac{\log B}{3 \log \log B} (\log \alpha + \log \log B - \log \log \log B - \log \frac{c_{10}}{3})$$

and if $\alpha > \frac{1}{\sqrt{\log B}}$ then it follows that, for $B > c_{11}$,

$$\log \mathcal{N} \ge c_{12} \alpha \log B. \tag{12}$$

By (5) and (9), this immediately gives us:

$$\sigma \le \frac{c_{13}}{\alpha} \tag{13}$$

Substituting (12) and (13) in (11) we get:

$$N(B) \le B^{\frac{3\alpha \log{(\frac{c_{13}}{\alpha})}}{\log \log{B}}} \tag{14}$$

It is elementary that the function $x\log(\frac{c_{13}}{x})$ is bounded by an absolute constant in $[\frac{1}{\sqrt{\log B}},\infty)$ (it is, in fact, bounded by $\frac{c_{13}}{e}$ on all $(0,\infty)$) and so we obtain:

$$N(B) \le B^{\frac{c_{14}}{\log \log B}}$$

which concludes the proof of Theorem 2.1.

References

- [1] E. Bombieri and U. Zannier. On the number of rational points on certain elliptic curves. 2004.
- [2] H.G. Zimmer. On the difference of the weil height and the neron-tate height. 1976.
- [3] J. H. Silverman e J. T. Tate. Rational Points on Elliptic Curves. Springer, pp. 80-98, 2015.
- [4] D.W. Masser. Counting points of small height on elliptic curves. 1989.
- [5] C. Petsche. Small rational points on elliptic curves over number fields. 2006.