CSE 365: Computer Vision

Prof. Mahmoud Khalil Summer 2020

Course Team

- Instructor: Dr. Mahmoud Khalil
 - Email: mahmoud.khalil@eng.asu.edu.eg
- Lab TA: Eng. Mohamed Ashraf
 - Email: Muhammed.a.yousuf@eng.asu.edu.eg

Official Course Description

CSE 365: Computer Vision (3 Credit Hours)

Prerequisite: ECE 255

Introduction. The analysis of the patterns in visual images with the view to understanding the objects and processes in the world that generates them. Image representation and processing. Feature extraction and selection. Object recognition and probabilistic inference. Dynamic and hierarchical processing. Multi-view geometry. Projective reconstruction. Tracking and density propagation. Visual surveillance and activity monitoring. Medical imaging. Applications.

Lecture: 3 hours/week, Tutorial: 1 hour/week, Lab: 1 hour/week

Grading Scheme

• Students will be evaluated based on the following:

Component	%
Assignments (2 assignments 5 marks each and 1 Project 10 marks)	20
Quizzes (2 quizzes, 5 marks each)	10
Attendance and participation	5
Midterm exam	25
Final exam	40

Text Books

- Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, 4th Edition, Pearson Education, Inc. 2018., ISBN: 978-9353062989
- Richard Sceliski, Computer Vision Algorithms and Applications, Springer, 2011 (available online for free at: http://szeliski.org/Book/), ISBN: 978-1848829343
- Rafael C. Gonzalez, Richard E. Woods and Steven L. Eddins, Digital Image Processing Using Matlab, Second edition,, Pearson Education, Inc. 2009., ISBN: 978-0070702622
- OpenCV: https://opencv.org/

Visual Sciences

Image Processing - Computer Vision

Low Level

Image Processing

Acquisition, representation, compression, transmission

image enhancement

edge/feature extraction

Pattern matching

image "understanding" (Recognition, 3D)

Computer Vision

High Level

Course Outlines

FIGURE 1.23 Fundamental steps in digital image processing.

Image Enhancement

Image Denoising

Image Enhancement - Frequency Domain

Original Noisy image

Fourier Spectrum

Edge Detection

Image Segmentation

Goal: identify groups of pixels that go together

Optical character recognition (OCR)

Technology to convert scanned docs to text

• If you have a scanner, it probably came with OCR software

Digit recognition, AT&T labs http://www.research.att.com/

License plate readers
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

Face detection

- Many new digital cameras now detect faces
 - Canon, Sony, Fuji, ...

Smile detection

The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.

Biometrics

Vision-based biometrics

"How the Afghan Girl was Identified by Her Iris Patterns"

Read the story

wikipedia

Login without a password...

Fingerprint scanners on many new laptops, other devices

Face recognition systems now beginning to appear more widely http://www.sensiblevision.com/

.tp.//www.serisiblevision.com/

Object recognition (in mobile phones)

Point & Find, Google Goggles

Building a Panorama

Feature descriptors

- Extraordinarily robust matching technique
 - Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
 - Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
 - Fast and efficient—can run in real time

Interactive Games: Kinect

- Object Recognition: <u>http://www.youtube.com/watch?feature=iv&v=fQ59dXOo63o</u>
- Mario: http://www.youtube.com/watch?v=8CTJL5|UjHg
- 3D: http://www.youtube.com/watch?v=7QrnwoO1-8A
- Robot: http://www.youtube.com/watch?v=w8BmgtMKFbY

Medical imaging

3D imaging MRI, CT

Image guided surgery Grimson et al., MIT

Smart cars

- https://www.mobileye.com/
- Vision systems currently in high-end BMW, GM, Volvo models

Google cars

http://www.nytimes.com/2010/10/10/science/10google.html?ref=artificialintelligence

AutoCars - Uber bought CMU's lab

Car Detection and Depth Estimation

Vision as a Source of Semantic Information

Sports video analysis

Tennis review system

Why is vision so hard?

posed problem

[Sinha and Adelson 1993]

Challenges 1: view point variation

Michelangelo 1475-1564

Adapted from L. Fei-Fei, R. Fergus, A. Torralba

Challenges 2: illumination

Challenges 3: occlusion

Magritte, 1957

Adapted from L. Fei-Fei, R. Fergus, A. Torralba

Challenges 4: scale

Challenges 5: deformation

Xu, Beihong 1943

Challenges 6: background clutter

Challenges 7: intra-class variation

What do computers see?

Stages of computer vision

• Low-level image → image

• Mid-level image → features / attributes

High-level
 features → "making sense", recognition

Low-level

Adapted from Linda Shapiro, U of Washington

Low-level

Mid-level

Mid-level

Low-level to high-level

Computer Vision Projects

Stanford projects

https://web.stanford.edu/class/ee368/index.html

Ain Shams Computer Vision Competition projects

http://alyosama.github.io/computer/vision/2018/05/03/CVC18.html

http://alyosama.github.io/computer/vision/2019/05/08/CVC19.html

http://ihub.asu.edu.eg/cvc2020-results.html

OpenCV - Enabling computer vision

- Open Source Computer Vision library
- Cross-platform
- Free for use under open source BSD license
- Can be easily used with Java, Python, C and C++
- Supports Machine Learning libraries such as TensorFlow.
- https://opencv.org

