0

中国科学技术大学 2017—2018学年秋学期期末考试A卷

考试科目: 数学分析(B3)		得分
学生所在系:	学号	姓名
注意:		
* $\mathbb{Z}_{>0}$, \mathbb{Z} , \mathbb{R} 与 \mathbb{R}^d 分别指全体正*除第一题之外,所有问题之解	整数的集合,全体整数的集合,全答须有完整过程.	·体实数的集合与d维欧氏空间.
问题一 (20分) 在试卷或者答题	纸上直接写出如下各问的答案,不	要计算过程。
1a. ℝ ² 的子集		
$\left\{ (x_1, x_2) \in \mathbb{R}^2 : \frac{x_1^2}{4} + \frac{x_2^2}{9} \le 1 \right\}$	$\bigcup \left\{ \left(2 + \frac{1}{n}, 0\right) : n \in \mathbb{Z}_{>0} \right\} \bigcup \left\{ (x_1) \right\}$	$(x_1, x_2) \in \mathbb{R}^2 : (x_1 - 3)^2 + x_2^2 = 1$
的面积(二维Jordan测度)等于_		
1b. 具体写出一个从 \mathbb{R}^2 的度量号 $\{(x_1, x_2) \in \mathbb{R}^2 : x_2 = 0\}$ 的同胚	子空间 $M_1 = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 - x_1^2 \in \mathbb{R}^3 : x_2 - x_1^2 : x_2 - x_1^2$	=0} 到另一个度量子空间M ₂ =
1c. 将4阶实方阵全体构成的线性的	生空间Mat₄等同于欧氏空间ℝ ^{4×4} .	那么四阶正交矩阵全体O(4)是Mat ₄ 中
1d. $(0, +\infty)$ 上的函数 $\frac{1}{x}$ 关于点	x ₀ >0的幂级数展开式为	<u> </u>
1e. 极限 $\lim_{k o \infty} \left(\lim_{j o \infty} \left(\sin \frac{1}{j} \right) \right)$	(k!π²))²j) 等于	
问题一 (10八)况6.34。3149	是交向之间的曲舟、江田头工纳	加工来人名伊尔人

问题二 (12分) 设 $f: M \to N$ 为度量空间之间的映射. 证明关于f的如下两个条件等价:

- (1) 任意N的闭子集A在f下的原像 $f^{-1}(A)$ 为M中的闭子集.
- (2) 任给M中的收敛点列{ p_n }, { $f(p_n)$ }在N中收敛.

问题三 (8分) 设E是 \mathbb{R} 的非空子集,且实数y是两个数列 $\{x_n\}$ 与 $\{y_n\}$ 的公共极限,其中 x_n 属于E, y_n 是E的下界.证明y是E的下确界.

问题四 (10分) 称紧致区间I上的函数列 f_1, f_2, \cdots 逐点有界, 是指对于任意 $x \in I$, 存在M(x) > 0使得对于所有k成立 $|f_k(x)| \le M(x)$. 称 f_1, f_2, \cdots 逐点等度连续, 是指对于任意 $x \in I$ 与任意1/m, 存在与x及1/m都有关的1/n,使得对于所有k与所有和x的距离小于1/n 的 $y \in I$,成立 $|f_k(x) - f_k(y)| \le 1/m$. 证明: 紧致区间I上逐点有界且逐点等度连续的函数列 f_1, f_2, \cdots 必定存在一个逐点收敛的子列.

问题五 (12分) 设f是R上的2π周期函数且在任何紧致区间上黎曼可积.

5A 证明必定存在 $x_0 \in \mathbb{R}$ 使得 $\lim_{N \to \infty} \sigma_N f(x_0) = f(x_0)$, 其中

$$\sigma_{N}f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-y)K_{N}(y)dy, \quad K_{N}(x) = \frac{1}{N+1} \left(\frac{\sin \frac{(N+1)y}{2}}{\sin \frac{y}{2}} \right)^{2}.$$

5B 证明在区间[$-\pi$, π]上满足上述性质的点 x_0 的全体构成一个不可数集合.

问题六 (8分) 将 \mathfrak{n} 阶实方阵全体构成的线性空间 $\mathrm{Mat}_{\mathfrak{n}}$ 等同于欧氏空间 $\mathbb{R}^{\mathfrak{n}^2}$. 证明: 存在 $\mathrm{Mat}_{\mathfrak{n}}$ 的包含 \mathfrak{n} 阶单位矩阵 $\mathrm{I}_{\mathfrak{n}}$ 的开集 U 与 V ,对于 V 中的任意矩阵 A ,在 U 中存在唯一的矩阵 X ,使得

$$X^{2018} - X^{2017} + X = A$$
.

问题七 (20分) 称函数 $f:\mathbb{R}^d\to\mathbb{R}$ 为径向函数, 是指: 对于任意的 $x,y\in\mathbb{R}^d$, 只要|x|=|y|, 就有f(x)=f(y), 这里 $|\cdot|$ 是 \mathbb{R}^d 上的欧氏范数. 称函数 $f:\mathbb{R}^d\to\mathbb{R}$ 适当衰减, 是指f连续并且存在C>0, 对于任意 $x\in\mathbb{R}^d$ 成立 $|f(x)|\leq \frac{C}{1+|x|^{n+1}}$.

7A 设函数 $f: \mathbb{R}^d \to \mathbb{R}$ 适当衰减 证明

$$f^{\sharp}(\xi) := \int_{\mathbb{R}^d} f(x) \cos(x \cdot \xi) dx, \quad \xi \in \mathbb{R}^d,$$

为在 \mathbb{R}^d 上处处有定义的一致连续函数,这里 $x \cdot \xi$ 为 \mathbb{R}^d 上向量x与 ξ 的欧氏内积.

7B 设 $f: \mathbb{R}^d \to \mathbb{R}$ 为适当衰减的径向函数. 证明 $f^{\sharp}: \mathbb{R}^d \to \mathbb{R}$ 是径向函数.

问题八 (10分) 设M是 \mathbb{R}^3 中二维 \mathbb{C}^1 紧致曲面. 证明: 对于 \mathbb{R}^3 中的任意平面 \mathbb{V} , 至少存在M 上两点的切平面分别与 \mathbb{V} 平行或者重合.

期末考试A卷的参考答案及评分标准

1. 每问4分, 给分为0, 4分, 共两档.

$$6\pi,\ M_1\ni (x_1,x_2)\mapsto (x_1,0)\in M_2,\ 6,\ \frac{1}{x_0}\sum_{n=0}^{\infty}{(-1)^n\left(\frac{x-x_0}{x_0}\right)^n},\ 0.$$

- 2. 每问6分, 给分为0-6分, 共7档.
- (1) \Longrightarrow (2) 由(1)以及闭集的余集为开集,我们知道任意N的开子集U在f下的原像 $f^{-1}(U)$ 为M中的开子集. (2分) 设 $p_n \to p$ in M,利用反证法证明 $f(p_n) \to f(p)$. 若不然,通过取子列的方法,我们可以不妨设存在 $\epsilon_0 > 0$: d $(f(p_n), f(p)) \ge \epsilon_0$ for all n. (2分) 记B为N中以f(p)为中心,以 ϵ_0 为半径的开球. 由于 $f^{-1}(B)$ 为M的包含p的开集以及 $p_n \to p$,当n充分大时, $p_n \in f^{-1}(B)$,从而 $f(p_n) \in B$. 矛盾! (2分)
- (2) ⇒ (1) 任取N的闭子集A, 任取 $f^{-1}(A)$ 中的收敛点列 p_n , 设 $p_n \to p \in M$. 由条件(2), $f(p_n)$ 在N中收敛. (2分) 对收敛于p的新混合点列 p_1, p, p_2, p, \cdots 运用条件(2), (2分) 得 $f(p_n) \to f(p)$. 由于 $f(p_n)$ 属于闭集A, 所以 $f(p) \in A$, 从而 $p \in f^{-1}(A)$. 得证 $f^{-1}(A)$ 为闭集. (2分)
- 3. 给分为0-8分, 共9档.

由于y是E的下界的极限, y亦为E的下界. (4分) 任给E的下界z, 由于 $x_n \ge z$, 取极限得 $y \ge z$. 从而得到y是E的最大下界. (4分)

4. 给分为0-10分共11档. 这个题中的"紧致"条件是多余的, 命题对于一般的区间都成立.

任取 $\epsilon > 0$,对于任意 $x \in I$,存在I中的包含x的开集 U_x ,任给 $y \in U_x$,任给k,都有 $|f_k(x) - f_k(y)| < \frac{\epsilon}{3}$. 由于 $\{f_n\}$ 逐点有界,利用对角线证法,可以不妨设 $\{f_n\}$ 在I的一个可数稠密子集 $\{a_1, a_2, \cdots\}$ 上逐点收敛.

任取 $x \in I$, 由稠密性不妨设 a_1 属于 U_x . 由于 $\{f_n(a_1)\}$ 收敛, 那么存在N, 当 $k, \ell \ge N$ 时, $|f_k(a_1) - f_\ell(a_1)| < \S$. 此时, 再由第一段中的不等式和三角不等式, 成立

$$|f_k(x) - f_{\ell}(x)| \le |f_k(x) - f_k(a_1)| + |f_k(a_1) - f_{\ell}(a_1)| + |f_{\ell}(a_1) - f_{\ell}(x)| < 3 \cdot \frac{\epsilon}{3}.$$

即证{fn}逐点收敛.

- 5. 5A为9分, 给分为0-9分共10档. 5B为3分, 给分为0-3分共4档.
- 5A 分两步证明命题.
- $Step\ 1.\$ 若f在 x_0 连续,那么必定成立 $\lim_{N\to\infty}\sigma_N f(x_0)=f(x_0).\ (6分)$ 这是一道作业题,过程略. $Step\ 2.\ f$ 一定有连续点. (3分) 事实上,只需证明 $f|_{[-\pi,\pi]}$ 在区间内部 $(-\pi,\pi)$ 一定有连续点. 由于f在该区间上黎曼可积,由第六章的定理知: 任给 $\epsilon>0$,存在开区间列 I_n ,使得f在 $[-\pi,\pi]$ 上的不连续点集合可以包含于并集 $\cup_n I_n$,并且 $\sum_n |I_n| < \epsilon$. 若f在 (π,π) 上任意点都不连续,那么任给 $1>\epsilon>0$,存在开区间列 I_n , $[-\pi,\pi]\subset \cup_n I_n$,并且 $\sum_n |I_n| < \epsilon$. 由于 $[-\pi,\pi]$ 紧致,所以它包含于有限个长度之和小于1的开区间,矛盾!
- **5B** f在($-\pi$, π)上的连续点集合不可数. 若不然, 任给 $\epsilon > 0$, 可数集合会包含于一列长度和小于 ϵ 的开区间之并, 再由Step 2 的推理即得证. (3分)

6. 分为0-8分共9档. 定义映射 $f: Mat_n \to Mat_n$ 为 $f(X) = X^{2018} - X^{2017} + X$. 将 Mat_n 与 $\mathbb{R}^{n \times n}$ 等同起来, 那么f(X)的每个分量都为X的分量们的多项式函数, 从而 $f \in C^1$. (2分)由于

$$f(I_n + B) - f(I_n) = (I_n + B)^{2018} - (I_n + B)^{2017} + (I_n + B) - I_n = 2B + r(B), \quad \lim_{|B| \to 0} \frac{|r(B)|}{|B|} = 0,$$

所以 $df_{I_n}(B) = 2B$, 从而 df_{I_n} 可逆. (4分) 利用逆映射定理得证. (2分)

7. 每问10分, 分为0-10分共11档.

7A f[#]的良定性是一道习题. (4分).

下证它一致连续. 任给 $\epsilon>0$,取N充分大使得 $\int_{|x|>N}|f(x)|dx<\frac{\epsilon}{2}$. (2分) 任意取定 $\xi,\eta,x\in\mathbb{R}^d$,定义区间[0,1]上的函数 $\varphi(t):=\cos\left(\left(t\eta+(1-t)\xi\right)\cdot x\right)$. 由微分中值定理, 链式法则以及Cauchy-Schwarz 不等式, 存在 $s\in(0,1)$ 使得

$$|\cos\xi\cdot x-\cos\eta\cdot x|=|\varphi(0)-\varphi(1)|=|\varphi'(s)|=\left|\sin\left(\left(s\eta+(1-s)\xi\right)\cdot x\right)\right|\cdot|(\xi-\eta)\cdot x|\leq |\xi-\eta|\cdot|x|.$$

(2分) 于是, 当 $|\xi-\eta|$ << 1时, 我们有

$$\begin{split} |f^{\sharp}(\xi) - f^{\sharp}(\eta)| & \leq & \int_{|x| > N} 2|f(x)| \, dx + \int_{|x| \leq N} |\cos(\xi \cdot x) - \cos(\eta \cdot x)| \cdot |f(x)| \, dx \\ & \leq & \frac{\varepsilon}{2} + \int_{|x| \leq N} \frac{C|\xi - \eta| |x|}{1 + |x|^{n+1}} \, dx \\ & \leq & \frac{\varepsilon}{2} + C2^d \, N^d \, |\xi - \eta| < \varepsilon. \quad (2 \text{ points}) \end{split}$$

7B 设R: $\mathbb{R}^d \to \mathbb{R}^d$ 为正交变换. 对于一个适当衰减函数f: $\mathbb{R}^d \to \mathbb{R}$, 记Rf(x):= f(Rx). 那么利用x·ξ=(Rx)·(Rξ), det R=±1以及积分换元公式, 得到(Rf)[‡](ξ)=(Rf[‡])(ξ). (6分) 当f还是径向函数时, 对于任意的正交变换R, 成立Rf=f, 由前面的关系式得f[‡]=Rf[‡]. (2分) 任给两个长度相同的向量ξ,η∈ \mathbb{R}^d , 由线性代数, 存在正交变换R将ξ映到η, 因此f[‡] 亦为径向函数. (2分)

8. 取平面 $V \subset \mathbb{R}^3$ 的单位法向量 ξ . 我们断言: $\mathbb{R}^3 \bot C^1$ 函数 $f(x) = x \cdot \xi$ 在紧致 C^1 曲面 $M \bot - \xi$ 不取常值. 用反证法. 假设M含于某个平面 $H = \{x \in \mathbb{R}^3 : x \cdot \xi = \text{const}\}$, 那么 $M \subset H$. 因为M是二维曲面, 任给 $p \in M$, 存在H中包含p的U, 使得 $U \cap M$ 为一个H的开集, 通过适当缩小开集U使得 $U \cap M$. 于是M为H的开集. 另一方面, 由于M为 \mathbb{R}^3 的闭子集, 从而 $M = M \cap H$ 为H 的闭集. 由于H 连通, M = H. 这与M 紧致矛盾. (4 分)

由于f在紧致曲面M不取常值,从而f在M上不同的两点p, q分别取到最大值与最小值. (2分)于是通过Lagrange乘数法论证, ξ同时是曲面M上p, q处M的法向量. (4分)

期末判卷及平时成绩等事宜安排

期末试卷评分标准 见参考答案

改卷及平时成绩工作要求:

请龚思恩与朱乐宜在1月10日将各自负责的学生们的平时成绩发给吴悦,请吴悦在1月12日晚20:00之前汇总完毕,同时将带有期中考试成绩与平时成绩的Excel表格发给我与另外两位助教.

请大家自带红笔于1月13日周六上午9:00开始在我的办公室判卷。判卷工作由龚思恩负责组织, 并**自备笔记本电**脑。

请大家分配好任务,参考每题后面的评分标准,采用流水方式判卷,。全部判卷完毕之后,请大家交叉复核一次。如果复核人对原判定分数有不同意见,请商讨决定最后分数。复核完毕之后总分,总分完毕之后请大家切记再检查一次总分,之后再登记到Excel 文件。请在1月13日晚上将包含平时作业成绩与期末考试成绩的Excel 文件发给我与三位课代表: 林不渝, 倪亦瑾与梅可科,并同时在课程QQ群发如下公告通知学生:

对期末分数或者平时成绩有异议的同学请在1月14日晚上22:00之前向各自的主管助教提出复核申请,过期的申请恕不接受。助教将细致认真地重新批改申请人的期末试卷或者复核申请人平时作业成绩,得到的分数或者成绩为最终结果。整个过程中申请人不接触期末考试试卷。

期末成绩以及平时成绩的复核过程请各位助教在1月16日以内完成,并将期末分数与平时成绩的 变动情况交龚思恩汇总.

请龚思恩在17日之前把最终的Excel 文件(包含期中, 期末考试成绩与换算成百分制的平时成绩)发给我, 并将期末试卷移交给我。