ST2132 Distribution of ML Estimators

Semester 1 2022/2023

Main Result

- $\hat{\theta}_n$: ML estimator of $\theta \in \Theta \subset \mathbb{R}^p$, based on either
 - 1. IID RV's X_1, \ldots, X_n with density $f(x|\theta)$. $\mathcal{I}(\theta)$: Fisher information in any X_i . or
 - 2. $(X_1, ..., X_r) \sim \text{Multinomial}(n, \mathbf{p}(\theta))$. $\mathcal{I}(\theta)$: Fisher information in Multinomial $(1, \mathbf{p}(\theta))$.

As $n \to \infty$, the distribution of $\sqrt{n\mathcal{I}(\theta)}(\hat{\theta}_n - \theta) \qquad \qquad \qquad \boxed{0} \qquad \boxed{0} \qquad \boxed{0}$ converges to $N(\mathbf{0}, \mathbf{I}_p)$. Required technical conditions hold in almost all applications.

Consequences

 \triangleright For large n, approximately

$$\hat{\theta}_n \sim \mathsf{N}\left(\theta, \frac{\mathcal{I}(\theta)^{-1}}{n}\right)$$

- ML estimators are asymptotically unbiased, and consistent: $\hat{\theta}_n \to \theta$.
- ▶ Approximate CIs for θ can be constructed.

Poisson and Bernoulli

▶ $X_1, ..., X_n$ IID Poisson(λ). $\hat{\lambda} = \bar{X}$. $\mathcal{I}(\lambda) = 1/\lambda$. For large n, approximately

$$\hat{\lambda} \sim N\left(\lambda, \frac{\lambda}{n}\right)$$

▶ $X_1, ..., X_n$ IID Bernoulli(p). $\hat{p} = \bar{X}$. $\mathcal{I}(p) = 1/p(1-p)$. For large n, approximately

$$\hat{p} \sim \mathsf{N}\left(p, \frac{p(1-p)}{n}\right)$$

These also follow directly from CLT.

Normal distribution

 \triangleright $X_1, \ldots, X_n \text{ IID } N(\mu, \sigma^2).$

$$\hat{\mu} = \bar{X}, \qquad \hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$
ML Estimators slide 5:

Variance of ML Estimators slide 5:

$$\mathcal{I}(\mu,\sigma) = \begin{bmatrix} 1/\sigma^2 & 0 \\ 0 & 2/\sigma^2 \end{bmatrix}$$

For large n, approximately

$$\left[\begin{array}{c} \hat{\mu} \\ \hat{\sigma} \end{array}\right] \sim \mathsf{N}\left(\left[\begin{array}{c} \mu \\ \sigma \end{array}\right], \left[\begin{array}{cc} \frac{\sigma^2}{n} & \mathbf{0} \\ \mathbf{0} & \frac{\sigma^2}{2n} \end{array}\right]\right)$$

Distribution of $\hat{\mu}$ and independence are exact.

HWE trinomial

X = $(X_1, X_2, X_3) \sim \text{Trinomial}(n, \mathbf{p})$, where

$$p_1 = (1 - \theta)^2$$
, $p_2 = 2\theta(1 - \theta)$, $p_3 = \theta^2$

$$\hat{\theta} = \frac{X_2 + 2X_3}{2n} \sim \text{Binomial}\left(\sum_{n \in \mathbb{N}} \theta\right)$$

▶ The information in a Trinomial $(1,\mathbf{p})$ distribution is

$$\mathcal{I}(\theta) = \frac{2}{\theta(1-\theta)} \quad \text{fin} \left(2,\theta\right)$$

► For large *n*, approximately,

$$\hat{\theta} \sim N\left(\theta, \frac{\theta(1-\theta)}{2n}\right)$$

Also follows directly from CLT.

Trinomial distribution

X ~ Trinomial($n, (p_1, p_2, p_3)$). Let $\theta = (p_1, p_2)$.

$$\hat{p}_i = \frac{X_i}{n} \qquad i > 1, 2, 3$$

▶ The information in a Trinomial $(1, (p_1, p_2, p_3))$ distribution is

$$\mathcal{I}(p_1,p_2) = \left[egin{array}{ccc} rac{1}{p_1} + rac{1}{p_3} & rac{1}{p_3} \ rac{1}{p_2} + rac{1}{p_3} \end{array}
ight]$$

For large *n*, approximately

$$\left[\begin{array}{c} \hat{p}_1 \\ \hat{p}_2 \end{array}\right] \sim \mathsf{N} \left(\left[\begin{array}{c} p_1 \\ p_2 \end{array}\right], \frac{1}{n} \left[\begin{array}{c} p_1(1-p_1) & -p_1p_2 \\ -p_1p_2 & p_2(1-p_2) \end{array}\right] \right)$$
 implying that \hat{p} is also approximately normal.

Gamma distribution

- X_1, \ldots, X_n IID Gamma (α, λ) . The ML estimators $\hat{\alpha}$ and $\hat{\lambda}$ cannot be expressed algebraically.
- ▶ The Fisher information is

$$\mathcal{I}(\alpha,\lambda) = \begin{bmatrix} \psi'(\alpha) & -\frac{1}{\lambda} \\ -\frac{1}{\lambda} & \frac{\alpha}{\lambda^2} \end{bmatrix}$$

where $\psi(\alpha)$ is the digamma function.

 \triangleright For large n, approximately

$$\left[\begin{array}{c} \hat{\alpha} \\ \hat{\lambda} \end{array}\right] \sim \mathsf{N}\left(\left[\begin{array}{c} \alpha \\ \lambda \end{array}\right], \frac{\mathcal{I}(\alpha, \lambda)^{-1}}{n}\right)$$

Normal approximation for ML estimator

$$1 - \alpha \approx \Pr\left(-z_{\frac{\alpha}{2}} \le \frac{\hat{\theta}_n - \theta}{\sqrt{\mathcal{I}(\theta)^{-1}/n}} \le z_{\frac{\alpha}{2}}\right) \quad \frac{\sqrt{-\mu}}{0}$$

Hence

$$1 - \alpha \approx \Pr\left(\hat{\theta}_n - z_{\frac{\alpha}{2}} \sqrt{\frac{\mathcal{I}(\theta)^{-1}}{n}} \le \theta \le \hat{\theta}_n + z_{\frac{\alpha}{2}} \sqrt{\frac{\mathcal{I}(\theta)^{-1}}{n}}\right)$$

Confidence interval

 \triangleright For large n, the random interval

$$\left(\hat{\theta}_n - z_{\frac{\alpha}{2}} \sqrt{\frac{\mathcal{I}(\theta)^{-1}}{n}}, \hat{\theta}_n + z_{\frac{\alpha}{2}} \sqrt{\frac{\mathcal{I}(\theta)^{-1}}{n}}\right)$$

covers θ with probability of about $1 - \alpha$.

▶ Data give the ML **estimate** of θ .

edisotion of

SE is approximated by bootstrap: replacing θ by its ML estimate in $\sqrt{\frac{\mathcal{I}(\theta)^{-1}}{n}}$.

Then

(estimate
$$-z_{\frac{\alpha}{2}}$$
 SE, estimate $+z_{\frac{\alpha}{2}}$ SE)

is an approximate $(1 - \alpha)$ -CI for θ .

Poisson

ML estimate of λ is \bar{x} . $\mathcal{I}(\lambda)^{-1} = \lambda$.

Bootstrap approximation:

$$SE = \sqrt{\frac{\lambda}{n}} \approx \sqrt{\frac{\bar{x}}{n}}$$

For large n, an approximate $(1 - \alpha)$ -CI for λ is

$$\left(\bar{x}-z_{\alpha/2}\sqrt{\frac{\bar{x}}{n}},\bar{x}+z_{\alpha/2}\sqrt{\frac{\bar{x}}{n}}\right)$$

Used in Parameter Estimation I slide 7.

Normal distribution

 x_1, \ldots, x_n realisations of IID N(μ, σ^2) RV's, n large. ML estimates of μ and σ are $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and $\hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$.

$$\frac{\mathcal{I}(\mu,\sigma)^{-1}}{n} = \begin{bmatrix} \frac{\sigma^2}{n} & 0 \\ 0 & \frac{\sigma^2}{2n} \end{bmatrix} \quad \text{var} \quad \hat{\sigma}$$

SEs of \bar{x} and $\hat{\sigma}$ estimated as $\hat{\sigma}/\sqrt{n}$ and $\hat{\sigma}/\sqrt{2n}$.

Approximate $(1-\alpha)$ -CI:

$$\mu : \left(\bar{x} - z_{\frac{\alpha}{2}} \frac{\hat{\sigma}}{\sqrt{n}}, \bar{x} + z_{\frac{\alpha}{2}} \frac{\hat{\sigma}}{\sqrt{n}} \right)$$

$$\sigma : \left(\hat{\sigma} - z_{\frac{\alpha}{2}} \frac{\hat{\sigma}}{\sqrt{2n}}, \hat{\sigma} + z_{\frac{\alpha}{2}} \frac{\hat{\sigma}}{\sqrt{2n}} \right)$$

s is not used. No big deal, since n is large.

Scope of asymptotic normality of ML estimators

▶ Given IID normal RV's, let $\hat{\sigma}$ be the ML estimator of σ , so $\hat{\sigma}^2$ is the ML estimator of σ^2 .

Both $\hat{\sigma}$ and $\hat{\sigma}^2$ are asymptotically normal, though for a given n, one will likely be closer to normal than the other.

- More generally, let $\hat{\theta}$ be the ML estimator of θ . For any
- $h:\Theta o \mathbb{R},\ h(\hat{ heta})$ is the ML estimator of h(heta). For large $n,h(\hat{ heta})$ is approximately normal.
 - In the normal case, let h(x) = 1/x. Then $1/\hat{\sigma}$ is also asymptotically normal.

Je Kt

Another revisit to rainfall data

- ▶ ML estimates of α and λ are 0.44 and 1.96. Estimated SEs are 0.03 and 0.25.
- Assuming n = 227 is large enough, approximate 95%-CI:

$$\alpha$$
: 0.44 ± 1.96 × 0.03 \approx (0.38, 0.50)

$$\lambda : 1.96 \pm 1.96 \times 0.25 \approx (1.47, 2.45)$$

Parameter Estimation II slide 20: bias in 1.96 is about 0.04. Bias-corrected 95%-CI for λ : (1.43, 2.41).

Multinomial distribution (1)

 $\mathbf{X} \sim \text{Multinomial}(n, (p_1, \dots, p_r))$. ML estimator $\hat{\mathbf{p}} = \mathbf{X}/n$. $\theta = (p_1, \dots, p_{r-1})$. $\mathcal{I}(\theta)$ is the information in a Multinomial $(1, \mathbf{p})$ distribution, given on Variance of ML Estimators slide 12.

For large
$$n$$
, approximately,
$$\hat{\theta} \sim N\left(\theta, \frac{\mathcal{I}(\theta)^{-1}}{n}\right)$$

$$\operatorname{var}(\hat{\theta}) = \frac{\mathcal{I}(\theta)^{-1}}{n}, \text{ with } (i, j)\text{-entry:}$$

$$\frac{p_i(1-p_i)}{n}, \quad i=j$$

$$-p_i p_i \quad i \neq j$$

Multinomial distribution (2)

Distribution of $\hat{\theta}$ implies $\hat{\mathbf{p}}$ also has an approximate normal distribution, with expectation \mathbf{p} and variance

$$\operatorname{var}(\hat{\mathbf{p}}) = \frac{1}{n}(\operatorname{diag}(\mathbf{p}) - \mathbf{p}\mathbf{p}')$$

- var $(\hat{\mathbf{p}})$ has var $(\hat{\theta})$ at its top left. The additional entries are such that each row and column of var $(\hat{\mathbf{p}})$ sums to 0. What is the rank of var $(\hat{\mathbf{p}})$?
- ightharpoonup Large-sample CI for p_i can be constructed, and looks like one based on the binomial distribution.

Conclusion: ML vs MOM

- ▶ Both MOM amd ML estimators are consistent: bias goes to 0 as $n \to \infty$.
- ► MOM uses only sample moments to estimate parameter. ML uses all information contained in the density function. Hence ML estimates tend to have smaller bias and SE.
- ► The asymptotic properties of ML estimators are powerful and important. For large *n*, the SE can be estimated without Monte Carlo, and a good CI for the parameter is available.
- ► MOM estimators may not be asymptotically normal, so it is more difficult to construct a CI. However, it is easier to compute, so is sometimes useful.

Conclusion: Population mean vs parameter

SRS of size n from a large population with mean μ and variance

 σ^2 . $\hat{\mu} = \bar{X}$. $\hat{\theta}_n$ ML estimator based on n IID RV's or a multinomial RV with n trials.

Estimator	E	var	Distribution
$\hat{\mu}$	μ	σ^2/n	pprox Normal
$\hat{ heta}_n$	$\approx \theta$	$\approx \mathcal{I}(\theta)^{-}/n$	pprox Normal

How large should n be for $\hat{\theta}_n$ to be normally distributed? Generally never. Monte Carlo can be used to check how close it is to normal.

ML in other models (1)

- ML estimation works in other statistical models, such as when the random variables are independent but not identically distributed, and beyond. Details in future modules.
- Multiple Regression. Suppose that

$$Y = X\beta + \epsilon$$

 $X: n \times p$ matrix of known constants,

 β : $p \times 1$ vector of unknown constants,

 ϵ : $n \times 1$ random vector, with IID N(0, σ^2) components.

▶ Given realisation y, how to estimate β and σ^2 by ML?

ML in other models (2)

- For $0 , the log odds is <math>\log \frac{p}{1-p}$.
- ▶ **Logistic Regression**. $Y_i \sim \text{Bernoulli}(p_i)$ are independent for $i=1,\ldots,n$. Let θ be vector of log odds: $\theta_i = \log \frac{p_i}{1-p_i}$. Suppose that

$$\theta = X\beta$$

X: $n \times p$ matrix of known constants. β : $p \times 1$ vector of unknown constants.

- Given realisations y_1, \ldots, y_n , how to estimate β by ML?
- Markov chain, time series, etc.