Package 'CodataGS'

October 12, 2022

Type Package

Version 1.43 **Date** 2019-05-17

Author Lars Ronnegard

Title Genomic Prediction Using SNP Codata

Maintainer Lars Ronnegard <1rn@du.se>
Description Computes genomic breeding values using external information on the markers. The package fits a linear mixed model with heteroscedastic random effects, where the random effect variance is fitted using a linear predictor and a log link. The method is described in Mouresan, Selle and Ronnegard (2019) <doi:10.1101 636746="">.</doi:10.1101>
License GPL
Depends Matrix
NeedsCompilation no
Repository CRAN
Date/Publication 2019-05-17 15:40:07 UTC
R topics documented:
CodataGS-package
compute_GL
compute_phitau
genomicEBV.w.codata
hat.transf 6 MME 7
scaleZ
summary.CodataGS
Transform
Index 11

2 CodataGS-package

CodataGS-package Genomic Prediction Using SNP Codata

Description

Computes genomic breeding values using external information on the markers. The package fits a linear mixed model with heteroscedastic random effects, where the random effect variance is fitted using a linear predictor and a log link. The method is described in Mouresan, Selle and Ronnegard (2019) <doi:10.1101/636746>.

Details

The DESCRIPTION file:

Package: CodataGS Type: Package

Title: Genomic Prediction Using SNP Codata

Version: 1.43
Date: 2019-05-17
Author: Lars Ronnegard

Maintainer: Lars Ronnegard < lrn@du.se>

Description: Computes genomic breeding values using external information on the markers. The package fits a linear

License: GPL
Depends: Matrix
NeedsCompilation: no

Index of help topics:

CodataGS-package Genomic Prediction Using SNP Codata

MME Mixed model equations
Transform Transforms hat values

compute_GL Computes genomic relationship matrix

compute_phitau Computes models for the variance components genomicEBV.w.codata Performs genomic prediction based on SNP

codata.

hat.transf Transforms hat values scaleZ Scales the genotype matrix.

summary.CodataGS Summary method for CodataGS objects

This package performs genomic prediction based on SNP codata. The main function is genomicEBV.w.codata.

Author(s)

Lars Ronnegard

Maintainer: Lars Ronnegard < lrn@du.se>

compute_GL 3

compute_Gl

Computes genomic relationship matrix

Description

This function computes the genomic relationship matrix, G, together with its matrix square root, L.

Usage

```
compute_GL(Z, w)
```

Arguments

Z Scaled matrix with genotype information w weights

Value

 $\begin{array}{lll} L & Square \ root \ matrix \ of \ G \\ & svdVec & Vectors \ in \ the \ Single \ Value \ Decomposition \ of \ G \\ & svdD & Diagonal \ elements \ in \ the \ Single \ Value \ Decomposition \ of \ G \\ & wZt & weights \ times \ the \ transpose \ of \ Z \\ \end{array}$

Author(s)

Lars Ronnegard

4 compute_phitau

compute_phitau	Computes models for the variance components

Description

This function computes the residual variance, the SNP variances and the linear predictor for the SNP variance model.

Usage

```
compute_phitau(dev, hv, devu, hvu, X.rand.disp)
```

Arguments

dev	Deviance values
uev	Deviance values

hv Hat values for the observed response values

devu Deviance values computed for the random effects

hvu Hat values for the random effects

X.rand.disp Design matrix used in the linear predictor for the SNP variance model.

Value

var.e Residual variance

phi Vector of SNP variances

coef Fitted coefficients for the linear predictor in the SNP variance model

Author(s)

Lars Ronnegard

genomicEBV.w.codata 5

genomicEBV.w.codata	Performs genomic prediction based on SNP codata.
---------------------	--

Description

The main function of the package. The input includes response values, a design matrix for the fixed effects, a matrix with SNP genotype data and a design matrix for the SNP codata.

Usage

```
genomicEBV.w.codata(y, X, Z, X.SNPcodata, Z.test = NULL, max.iter = 100, conv.crit = 1e-5)
```

Arguments

У	Response values
Χ	Design matrix for the fixed effects
Z	Genotype matrix with element values of 0, 1 or 2
X.SNPcodata	Design matrix for the linear predictor of the SNP variances.
Z.test	An optional genotype matrix for a test data set.
max.iter	The maximum number of iterations
conv.crit	The value of the convergence criterion.

Details

By specifying the matrix Z.test in the input, the function computes predicted genomic breeding values for an out-of-sample data set.

Value

gEBV	Genomic breeding values
${\tt predicted.gEBV}$	Genomic breeding values based on the genotypes in Z.test
W	Computed SNP weights
u	Fitted SNP effects
beta	Fitted fixed effects
disp.beta	Fitted coefficients in the linear predictor for the SNP variance model
Converge	Shows whether the algorithm has converged or not
iter	The number of iterations used

Author(s)

Lars Ronnegard

6 hat.transf

Examples

```
#######
#Simulation part
set.seed(1234)
N <- 200 \#Number of individuals
k <- 300 #Number of SNPs with all marker positions including a QTL
Z1 \leftarrow matrix(0, N, k)
Z2 \leftarrow matrix(0, N, k)
Z1[1:N, 1] \leftarrow rbinom(N, 1, 0.5) #Simulated phased SNP matrices
Z2[1:N, 1] \leftarrow rbinom(N, 1, 0.5)
LD.par <- 0.2 #A parameter to simulate LD. 0 gives full LD, and 0.5 no LD
for (j in 2:k) {
  Z1[1:N, j] \leftarrow abs(Z1[1:N, j-1] - rbinom(N, 1, LD.par))
  Z2[1:N, j] \leftarrow abs(Z2[1:N, j-1] - rbinom(N, 1, LD.par))
Z <- Z1 + Z2 #Genotypic SNP matrix
x1 \leftarrow c(rep(1,k/2), rep(0,k/2)) #An indicator for the SNPs.
#The first k/2 SNPs and the last k/2 have different variances
#Simulate linear predictor for the random effect variance
lin.pred <- 0 + 2*x1
X.snp <- model.matrix( ~ x1 ) #Corresponding design matrix</pre>
u <- rnorm(k, 0 , sqrt( exp(lin.pred) ))</pre>
#Took the square root here because it is the SD that is specified.
#and exp() because we are modelling a log link.
u.scaled <- u/as.numeric( sqrt( var( crossprod(t(Z), u) )) )</pre>
#Scaled by the variance of the breeding values
e <- rnorm(N) #A residual variance
mu <- 0
y \leftarrow mu + crossprod(t(Z), u.scaled) + e
######
#Estimation part
mod1 <- genomicEBV.w.codata(y = as.numeric(y),</pre>
          X = matrix(1, N, 1), Z = Z, X.SNPcodata = X.snp)
#To fit gBLUP just specify X.SNPcodata = matrix(1, k, 1)
cat("Correlation between true and estimated BV for the codata model:")
cat(cor(crossprod(t(Z),u.scaled), mod1$gEBV), "\n")
```

hat.transf

Transforms hat values

Description

Transforms hat values between the SNP-BLUP model and the gBLUP model.

Usage

```
hat.transf(C22, transf, vc, k, N, w)
```

7 **MME**

Arguments

C22 Submatrix of the inverse of the LHS in the MME

A transformation matrix. transf

vc Genetic variance Number of SNPs k Number of individuals Ν

SNP weights

Value

Transformed hat values

Author(s)

Lars Ronnegard

MME Mixed model equations

Description

A fast version of the Henderson's mixed model equations (MME)

Usage

```
MME(y, X, Z, var.e, var.u)
```

Arguments

Response У

Χ Design matrix for fixed effects Ζ

Design matrix for the random effects

Residual variance var.e Genetic variance var.u

Value

Estimates of fixed effects beta Fitted random effects

hν Hat values Deviances dev

Author(s)

Lars Ronnegard

8 scaleZ

scaleZ

Scales the genotype matrix.

Description

Scales the genotype matrix so that ZZ' gives the genomic relationship matrix.

Usage

```
scaleZ(Z, freq1)
```

Arguments

Z Genotype matrix with element values 0, 1 and 2

freq1 Optional input parameter with allele frequencies. A vector of length equal to the

number of columns in Z.

Value

Z Scaled genotype matrix

Author(s)

Lars Ronnegard

summary.CodataGS 9

summary.CodataGS

Summary method for CodataGS objects

Description

A summary method for the object class CodataGS

Usage

```
## S3 method for class 'CodataGS'
summary(object, ...)
```

Arguments

```
object A CodataGS object ... arguments not used
```

Details

Provides a concise summary of CodataGS objects.

```
#######
#Simulation part
set.seed(1234)
N <- 200 #Number of individuals
k <	- 300 #Number of SNPs with all marker positions including a QTL
Z1 \leftarrow matrix(0, N, k)
Z2 \leftarrow matrix(0, N, k)
Z1[1:N, 1] \leftarrow rbinom(N, 1, 0.5) #Simulated phased SNP matrices
Z2[1:N, 1] <- rbinom(N, 1, 0.5)
LD.par <- 0.2 \#A parameter to simulate LD. 0 gives full LD, and 0.5 no LD
for (j in 2:k) {
  Z1[1:N, j] \leftarrow abs(Z1[1:N, j-1] - rbinom(N, 1, LD.par))
  Z2[1:N, j] \leftarrow abs(Z2[1:N, j-1] - rbinom(N, 1, LD.par))
}
Z <- Z1 + Z2 #Genotypic SNP matrix
x1 \leftarrow c(rep(1,k/2), rep(0,k/2)) #An indicator for the SNPs.
#The first k/2 SNPs and the last k/2 have different variances
#Simulate linear predictor for the random effect variance
lin.pred <- 0 + 2*x1
X.snp <- model.matrix( ~ x1 ) #Corresponding design matrix</pre>
u <- rnorm(k, 0 , sqrt( exp(lin.pred) ))</pre>
#Took the square root here because it is the SD that is specified.
#and exp() because we are modelling a log link.
u.scaled <- u/as.numeric( sqrt( var( crossprod(t(Z), u) )) )</pre>
#Scaled by the variance of the breeding values
e <- rnorm(N) #A residual variance
```

10 Transform

Transform

Transforms hat values

Description

The function calls the hat.transf function.

Usage

```
Transform(X, L, var.e, var.u, v, svdVec, svdD, wZt, w)
```

Arguments

Χ	Design matrix for the fixed effects
L	Square root matrix of the genomic relationship matrix, G
var.e	Residual variance
var.u	Genetic variance
V	Random effects
svdVec	Vector from the Single Value Decomposition of G
svdD	Diagonal elements of the Single Value Decomposition of G
wZt	Weights times the transpose of the scaled genotype matrix
W	Fitted SNP weights

Value

u SNP effects

qu Hat values for the SNP effects

Author(s)

Lars Ronnegard

Index

```
* package
CodataGS-package, 2

CodataGS (CodataGS-package), 2

CodataGS-package, 2

compute_GL, 3

compute_phitau, 4

genomicEBV.w.codata, 5

hat.transf, 6

MME, 7

scaleZ, 8

summary (summary.CodataGS), 9

summary.CodataGS, 9

Transform, 10
```