Subregular Learning of a Phonology and a Set of Underlying Forms

Wenyue Hua, Adam Jardine, and Huteng Dai

Rutgers University

Introduction

UR and Phonological grammar learning

• Learning problem: the simultaneous inference of underlying representation (URs) and a phonological grammar from alternating surface representations (SRs)

(Merchant, 2008; Tesar, 2014; Cotterell et al., 2015)

 Our proposal: a solution based on the structure provided by the input strictly local (ISL) functions

(Chandlee and Heinz, 2018; Jardine et al., 2014)

English plural

The plural morpheme in English has at least two pronunciations: [s] and [z].

Morphemes	SR
CAT-PL	[kæt <mark>s</mark>]
CUFF-PL	[kʌfs]
DEATH-PL	$[d\epsilon\theta_s]$
GIRL-PL	[gɜ:rl <mark>z</mark>]
CHAIR-PL	[t͡ʃɛərz]
BOY-PL	[bɔɪz]

English plural

The plural morpheme in English has at least two pronunciations: [s] and [z].

Analysis:

- A map from morphemes to URs $\begin{array}{c} \text{CAT} {\rightarrow} / \text{k} \\ \text{EL} {\rightarrow} / \text{z} / \\ \text{etc.} \end{array}$
- A map from URs to SRs $/z/ \rightarrow [s]/[-SONORANT]$ ___

Morphemes	SR
CAT-PL	[kæts]
CUFF-PL	[kʌfs]
DEATH-PL	[dεθ <mark>s</mark>]
GIRL-PL	[gɜ:rl <mark>z</mark>]
CHAIR-PL	[t͡ʃɛərz]
BOY-PL	[bɔɪz]

Formalizing the problem

- M: set of morphemes
- \cdot Σ : alphabet of both SR and UR segments
- · Targets:
 - lexicon function $\ell: M^* \to \Sigma^*$
 - phonology function $\varphi: \Sigma^* \to \Sigma^*$
- Note: ℓ is an ISL₁ function from morphemes to URs

Formalizing the problem

- M: set of morphemes
- \cdot Σ : alphabet of both SR and UR segments
- · Targets:
 - · lexicon function $\ell: M^* \to \Sigma^*$
 - phonology function $\, \varphi : \Sigma^* o \Sigma^* \,$
- Note: ℓ is an ISL₁ function from morphemes to URs
- Learning data is generated by $\varphi \circ \ell$; i.e., a finite set D such that

$$\forall \langle m, s \rangle \in D, \ \varphi(\ell(m)) = s$$

Target transducers and learning data

m	S
r_1s_1	[tatta]
r_1s_2	[tatda]
r_1s_3	[tata]
r_2s_1	[tadda]
r_2s_2	[tadda]
r_2s_3	[tada]
r_3s_1	[ata]
r_3s_2	[ada]
r_3s_3	[aa]

Target transducers and learning data

m	S
r_1s_1	[tatta]
r_1s_2	[tatda]
r_1s_3	[tata]
r_2s_1	[tadda]
r_2s_2	[tadda]
r_2s_3	[tada]
r_3s_1	[ata]
r_3s_2	[ada]
r_3s_3	[aa]

Target transducers and learning data

m	S
r ₁ S ₁	[tatta]
r_1s_2	[tatda]
r_1s_3	[tata]
r_2s_1	[tadda]
r_2s_2	[tadda]
r_2s_3	[tada]
r_3s_1	[ata]
r_3s_2	[ada]
r_3s_3	[aa]

Assumptions

What does the learner know a priori?

- A lexicon of morphemes/lexical meanings (M), in which each morpheme has only one UR (ℓ is ISL₁).
- The ISL_k structure of phonology function. Here, we focus on ISL₂

Assumptions

What does the learner know a priori?

- A lexicon of morphemes/lexical meanings (M), in which each morpheme has only one UR (ℓ is ISL₁).
- \cdot The ISL $_k$ structure of phonology function. Here, we focus on ISL $_2$
- ISL functions only make changes in the output with respect to the local information in the input.

Proposed Learner

Roadmap

- · Initial hypothesis
- · Learning procedure
 - · Inconsistency detection
 - · Environment collection
 - · UR selection
 - Modification

Initial hypothesis

• Initial hypothesis for ℓ : prefix tree transducer T_ℓ , obtained from SR segmentation based on longest common prefix (LCP)

(Oncina et al., 1993; Jardine et al., 2014)

m	S
r_1S_1	[tatta]
<i>r</i> ₁ <i>S</i> ₂	[tatda]
<i>r</i> ₁ <i>S</i> ₃	[tata]
r_2s_1	[tadda]
r_2s_2	[tadda]
r_2s_3	[tada]
r_3s_1	[ata]
r_3s_2	[ada]
r ₃ S ₃	[aa]

LCP of morphemes is r_1 , LCP of SR is tat

m	S	
<i>r</i> ₁ <i>S</i> ₁	[tatta]	
r_1S_2	[tatda]	
<i>r</i> ₁ <i>S</i> ₃	[tata]	
r_2s_1	[tadda]	
r_2s_2	[tadda]	\leftarrow LCP of morphemes is r_2 , LCP of SR is tac
r_2S_3	[tada]	
r_3s_1	[ata]	
r_3s_2	[ada]	
<i>r</i> ₃ <i>s</i> ₃	[aa]	

m	S
r_1s_1	[tatta]
r_1S_2	[<mark>tat</mark> da]
r_1S_3	[tata]
r_2S_1	[tadda]
r_2S_2	[tadda]
r_2S_3	[tada]
r_3S_1	[ata]
<i>r</i> ₃ <i>S</i> ₂	[<mark>a</mark> da]
<i>r</i> ₃ <i>S</i> ₃	[<mark>a</mark> a]

LCP of morphemes is r_3 , LCP of SR is a

m	S
<i>r</i> ₁ S ₁	[<mark>tat</mark> ta]
<i>r</i> ₁ S ₂	[tatda]
r_1S_3	[tata]
r_2s_1	[tadda]
r_2S_2	[tadda]
r_2S_3	[tada]
r_3S_1	[<mark>a</mark> ta]
r ₃ S ₂	[ada]
<i>r</i> ₃ <i>s</i> ₃	[<mark>a</mark> a]

m	S
r ₁ S ₁	[tatta]
r_1S_2	[tatda]
<i>r</i> ₁ <i>S</i> ₃	[tata]
r_2s_1	[tadda]
r_2s_2	[tadda]
r_2s_3	[tada]
r_3S_1	[<mark>a</mark> ta]
r_3S_2	[ada]
<i>r</i> ₃ S ₃	[<mark>a</mark> a]

m	S
<i>r</i> ₁ <i>S</i> ₁	[tatta]
r_1s_2	[<mark>tat</mark> da]
<i>r</i> ₁ <i>s</i> ₃	[tata]
<i>r</i> ₂ <i>s</i> ₁	[tadda]
r_2S_2	[tadda]
r_2S_3	[tada]
r_3S_1	[<mark>a</mark> ta]
<i>r</i> ₃ <i>S</i> ₂	[ada]
<i>r</i> ₃ <i>S</i> ₃	[aa]

m	S
r ₁ S ₁	[tatta]
r_1S_2	[tatda]
r_1S_3	[tata]
r_2S_1	[tadda]
r_2S_2	[tadda]
r_2S_3	[tada]
<i>r</i> ₃ <i>S</i> ₁	[ata]
r_3S_2	[<mark>a</mark> da]
<i>r</i> ₃ s ₃	[<mark>a</mark> a]

m	S
r ₁ S ₁	[tatta]
r_1S_2	[tatda]
r_1S_3	[tata]
r_2S_1	[tadda]
r_2S_2	[tadda]
r_2S_3	[tada]
<i>r</i> ₃ <i>s</i> ₁	[ata]
<i>r</i> ₃ S ₂	[<mark>a</mark> da]
<i>r</i> ₃ <i>S</i> ₃	[<mark>a</mark> a]

Initial hypothesis

• Initial hypothesis for ℓ : prefix tree transducer T_{ℓ} , obtained from SR segmentation based on longest common prefix

(Oncina et al., 1993; Jardine et al., 2014)

• Initial hypothesis for φ : ISL $_2$ transducer T_{φ} for identity function

Single Process Example: phonology transducer

Identity function: /tadt/→[tadt] /tatt/→[tatt] ...

Learning Procedure

- · Modify lexicon transducer T_ℓ until one UR per morpheme
- For each change in lexicon transducer T_ℓ , make opposite change in phonology transducer T_φ

Inconsistency detection

The learner detects the inconsistency on lexicon transducer T_{ℓ}

Inconsistency detection

The learner detects the inconsistency on lexicon transducer T_{ℓ}

Find environment for different SRs based on the phonology transducer.

environment s₁

Find environment for different SRs based on the phonology transducer.

	environment	S ₁
r_1s_1	tat	ta

Find environment for different SRs based on the phonology transducer.

	environment	S ₁
r_1s_1	tat	ta
r_3s_1	a	ta

Find environment for different SRs based on the phonology transducer.

	environment	S ₁
r_1s_1	tat	ta
r_3s_1	a	ta
r_2s_1	tad	da

Primary Result

- The learner can learn assimilation, dissimilation, deletion, epenthesis and metathesis.
- · So far it learns only one phonology process from a data set.
- In particular, it is able to learn opacity, *i.e.* self-counter-feeding and self-counter-bleeding.

Future Research

- Learn multiple phonology processes simultaneously from one data set.
- Learn all ISL₂ functions.
- Learn all ISL_k functions for any given k.
- · Learn Output-Strictly-Local (OSL) phonology transformations.

(Chandlee et al., 2015).

• ...

Discussion

Three questions

• Why we design an ISL learner, *i.e.* why not OSL learner or Output Tier Based Strictly Local (OTSL) learner?

(Chandlee et al., 2015; Burness and McMullin, 2019)

 How abstract is the learnt UR? Specifically, is it able to learn abstract URs?

(Kiparsky, 1968; Kenstowicz and Kisseberth, 2014)

· What differentiate subregular learners from other learners?

Why ISL phonology?

• Empirically significant: 94% of phonology patterns in P-Base database are ISL.

(Mielke, 2004; Chandlee and Heinz, 2018).

 Learning based on the structure of ISL class can be extended to OSL and OTSL functions, which both share a particular structure

Can we learn abstract URs?

· It depends.

Can we learn abstract URs?

- · It depends.
- Two cases: whether the abstract UR exerts phonological influence on the target phonology function.

Subregular learner vs. Other learners

· Current learner: specific to learning phonology.

(Gallistel and King, 2011; Heinz, 2010).

 Cue-based parameter setting model and Learners based on Optimality Theory: non-specific to learning phonology (Dresher and Kaye, 1990; Dresher, 1999; Jarosz, 2006; Apoussidou, 2007; Merchant, 2008; Merchant and Tesar, 2008).

Subregular learner vs. Other learners

· Current learner: specific to learning phonology.

(Gallistel and King, 2011; Heinz, 2010).

- Cue-based parameter setting model and Learners based on Optimality Theory: non-specific to learning phonology (Dresher and Kaye, 1990; Dresher, 1999; Jarosz, 2006; Apoussidou, 2007; Merchant, 2008; Merchant and Tesar, 2008).
- Modular learning: an ISL learner is an independent module in learning the whole phonology. By composing different modules, the knowledge of the whole is acquired.

Heinz (2010, 2011).

Conclusion

Summary

- Subregular classes of functions provide structure for the simultaneous induction of URs and the phonological grammar
- The general procedure here can be extended to learning iterative (output-based) processes, long-distance processes, and process interactions

Acknowledgements

We thank Bruce Tesar, Adam McCollumn, Mariapaola D'imperio, Chris Oakden, Dine Mamadou, Jill Harper, Sreekar Raghotham, the Rutgers MathLing group, and the audience at the Rutgers/SBU/Haverford/Delaware subregular phonology workshop, for their insightful comments.

m	S
r_1s_1	[tatta]
r_1s_2	[tadda]
r_1s_3	[tata]
r_2s_1	[tadta]
r_2s_2	[tadda]
r_2s_3	[tata]
r_3s_1	[ata]
r_3s_2	[ada]
<i>r</i> ₃ s ₃	[aa]

m	S
r_1s_1	[tatta]
r_1s_2	[tadda]
r_1s_3	[tata]
r_2s_1	[tadta]
r_2s_2	[tadda]
r_2s_3	[tata]
r_3s_1	[ata]
r_3s_2	[ada]
r ₃ S ₃	[aa]

m	S
r_1s_1	[tatta]
r_1s_2	[tadda]
r_1s_3	[tata]
r_2s_1	[tadta]
r_2s_2	[tadda]
r_2s_3	[tata]
r_3s_1	[ata]
r_3s_2	[ada]
r_3s_3	[aa]

m	S
r_1s_1	[tatta]
r_1s_2	[tadda]
r_1s_3	[tata]
r_2s_1	[tadta]
r_2s_2	[tadda]
r_2s_3	[tata]
r_3s_1	[ata]
r_3s_2	[ada]
<i>r</i> ₃ <i>s</i> ₃	[aa]

Opacity

- · counter-feeding:
- · counter-bleeding:

Counter-feeding

/t/ becomes a voiced [d] after /d/.

m s r_1s_1 $[tatta]$ r_1s_2 $[tatda]$ r_1s_3 $[tata]$ r_2s_1 $[tadda]$ r_2s_2 $[tadda]$ r_2s_3 $[tada]$ r_3s_1 $[ata]$ r_3s_2 $[ada]$ r_3s_3 $[aa]$ r_4s_1 $[taddta]$ r_4s_2 $[tadda]$ r_4s_3 $[tadda]$		
r_1s_2 [tatda] r_1s_3 [tata] r_2s_1 [tadda] r_2s_2 [tadda] r_2s_3 [tada] r_3s_1 [ata] r_3s_2 [ada] r_3s_3 [aa] r_4s_1 [taddda] r_4s_2 [tadda]	m	S
r_1s_3 [tata] r_2s_1 [tadda] r_2s_2 [tadda] r_2s_3 [tada] r_3s_1 [ata] r_3s_2 [ada] r_3s_3 [aa] r_4s_1 [taddta] r_4s_2 [tadda]	r_1 S ₁	[tatta]
r_2s_1 [tadda] r_2s_2 [tadda] r_2s_3 [tada] r_3s_1 [ata] r_3s_2 [ada] r_3s_3 [aa] r_4s_1 [taddta] r_4s_2 [tadda]	r_1s_2	[tatda]
r_2s_2 [tadda] r_2s_3 [tada] r_3s_1 [ata] r_3s_2 [ada] r_3s_3 [aa] r_4s_1 [taddta] r_4s_2 [taddda]	r_1s_3	[tata]
r_2s_3 [tada] r_3s_1 [ata] r_3s_2 [ada] r_3s_3 [aa] r_4s_1 [taddta] r_4s_2 [taddda]	r_2s_1	[tadda]
r_3 s ₁ [ata] r_3 s ₂ [ada] r_3 s ₃ [aa] r_4 s ₁ [taddta] r_4 s ₂ [taddda]	r_2s_2	[tadda]
r_3s_2 [ada] r_3s_3 [aa] r_4s_1 [taddta] r_4s_2 [taddda]	r_2s_3	[tada]
r_3 s ₃ [aa] r_4 s ₁ [taddta] r_4 s ₂ [taddda]	r_3s_1	[ata]
r_4s_1 [taddta] r_4s_2 [taddda]	r_3s_2	[ada]
r_4s_2 [taddda]	r_3s_3	[aa]
[]	r_4s_1	[taddta]
r ₄ s ₃ [tadda]	r_4s_2	[taddda]
	r ₄ s ₃	[tadda]

Modified Transducer

environment s_1

	environment	S ₁
r_1s_1	tat	ta

	environment	S ₁
r_1s_1	tat	ta
r_3s_1	a	ta

	environment	S_1
r_1s_1	tat	ta
r_3s_1	a	ta
r ₄ S ₁	tadd	ta

	environment	S ₁
r_1s_1	ta t	ta
r_3s_1	a	ta
r ₄ S ₁	tad d	ta
r_2s_1	tad	da

References

- Apoussidou, D. (2007). The learnability of metrical phonology: Lot. *Universiteit van Amsterdam [Host]*.
- Burness, P. and McMullin, K. (2019). Efficient learning of output tier-based strictly 2-local functions. In *Proceedings of the 16th Meeting on the Mathematics of Language*, pages 78–90, Toronto, Canada. Association for Computational Linguistics.
- Chandlee, J., Eyraud, R., and Heinz, J. (2015). Output strictly local functions. In *Proceedings of the 14th Meeting on the Mathematics of Language (MoL 2015)*, pages 112–125, Chicago, USA. Association for Computational Linguistics.
- Chandlee, J. and Heinz, J. (2018). Strictly locality and phonological maps. *LI*, 49:23–60.

- Cotterell, R., Peng, N., and Eisner, J. (2015). Modeling word forms using latent underlying morphs and phonology. *Transactions of the Association for Computational Linguistics*, 3:433–447.
- Dresher, B. E. (1999). Charting the learning path: Cues to parameter setting. *Linguistic Inquiry*, 30(1):27–67.
- Dresher, B. E. and Kaye, J. D. (1990). A computational learning model for metrical phonology. *Cognition*, 34(2):137–195.
- Gallistel, C. R. and King, A. P. (2011). Memory and the computational brain: Why cognitive science will transform neuroscience, volume 6. John Wiley & Sons.
- Heinz, J. (2010). Learning long-distance phonotactics. *Linguistic Inquiry*, 41(4):623–661.
- Heinz, J. (2011). Computational phonology part II: Grammars, learning, and the future. *Language and Linguistics Compass*, 5(4):153–168.

- Jardine, A., Chandlee, J., Eyraud, R., and Heinz, J. (2014). Very efficient learning of structured classes of subsequential functions from positive data. In *International Conference on Grammatical Inference*, pages 94–108.
- Jarosz, G. (2006). Rich lexicons and restrictive grammars: Maximum likelihood learning in Optimality Theory. PhD thesis.
- Kenstowicz, M. and Kisseberth, C. (2014). *Topics in phonological theory*. Elsevier.
- Kiparsky, P. (1968). *How abstract is phonology?* Indiana University Linguistics Club.
- Merchant, N. and Tesar, B. (2008). Learning underlying forms by searching restricted lexical subspaces. In *In The Proceedings of CLS 41. ROA-811*. Citeseer.
- Merchant, N. N. (2008). *Discovering underlying forms: Contrast pairs and ranking*. PhD thesis, Rutgers University-Graduate School-New Brunswick.

- Mielke, J. (2004). P-base: Database of sound patterns.
- Oncina, J., García, P., and Vidal, E. (1993). Learning subsequential transducers for pattern recognition interpretation tasks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 15(5):448–458.
- Tesar, B. (2014). *Output-driven phonology: Theory and learning*. Number 139. Cambridge University Press.