

题目名称		樱花	爱的花环
程序文件名	queue	sakura	garland
输入文件名	queue.in	sakura.in	garland.in
输出文件名	queue.out	sakura.out	garland.out
每个测试点时限	1秒	1秒	1秒
内存限制	512 MB	512 MB	512 MB
测试点数目	10	10	10
每个测试点分值	10	10	10
是否有部分分	无	无	无

提交源程序需加后缀

对于 Pascal 语言	queue.pas	sakura.pas	garland.pas
对于 C 语言	queue.c	sakura.c	garland.c
对于 C++ 语言	queue.cpp	sakura.cpp	garland.cpp

测试环境:

Archlinux 32-bit @ Intel® Core TM i3-2350M CPU @ 2.30GHz

C/C++ 语言使用 GCC 版本 4.6.2 进行编译。

Pascal 语言使用 FPC 版本 2.6.0 进行编译。

编译命令:

Pascal 语言: fpc %s.pas

C语言: gcc -o %s %s.c

C++ 语言: g++ -o %s %s.cpp

列队春游 (queue.pas/c/cpp)

题目描述

春天到了,小朋友们在老师的带领下出去春游。为了小朋友们的安全,学校规定他们在活动时必须要由老师带领排成一列。显然,排队有一个弊端,即某些人的视野会被别人阻挡而导致无法尽情地欣赏春色。

为了简化起见,我们用 $(h_1, h_2, h_3, \dots, h_n)$ 来描述一个排好的队列,第 i 个数 h_i 表示第 i 个小朋友的身高。相邻两个人的距离均为 1,老师始终站在第一个人的前面,并且和第一个小朋友的距离也为 1。身为成年人的老师一定比所有的小朋友都高。

当队列排好后,每个人都有一个视野距离,即他前面离他最近的不低于他身高的人的距离,如下图所示,虚线即表示每个人视野距离(y轴代表老师)。

我们用 $S(h_1,h_2,h_3,\cdots,h_n)$ 表示所有小朋友视野距离的总和。如果我们知道每个小朋友的 身 高 h_i , 对 于 一 个 $\{1,2,3,\cdots,n\}$ 的 排 列 p , 我 们 都 能 很 容 易 地 计 算 出 来 $S(h_{p_1},h_{p_2},h_{p_3},\cdots,h_{p_n})$ 。然而小朋友们的排队顺序还没有确定。老师想要知道,如果随机挑选一个 $\{1,2,3,\cdots,n\}$ 的排列 p , $S(h_{p_1},h_{p_2},h_{p_3},\cdots,h_{p_n})$ 的期望值是多少呢?

输入格式

第一行整数n,表示有n个小朋友。 接下来一行n个数,表示n个小朋友的身高。

输出格式

在单独的一行内输出一个数,表示小朋友们视野距离总和的期望值。保留两位小数。

样例输入

3

1 2 3

样例输出

4.33

样例说明

$$S(1,2,3) = 1 + 2 + 3 = 6$$
, $S(1,3,2) = 1 + 2 + 1 = 4$, $S(2,1,3) = 1 + 1 + 3 = 5$,

$$S(2,3,1) = 1 + 2 + 1 = 4$$
, $S(3,1,2) = 1 + 1 + 2 = 4$, $S(3,2,1) = 1 + 1 + 1 = 3$.

故期望值为
$$\frac{6+4+5+4+4+3}{6} = \frac{13}{3}$$
。

数据范围与约定

对于 20% 的数据, 保证 $1 \le n \le 10$ 。

对于 50% 的数据,保证 $1 \le n \le 70$,且所有的 h_i 互不相同。

对于 100% 的数据,保证 $1 \le n \le 300$, $1 \le h_i \le 1000$ 。

樱花

(sakura.pas/c/cpp)

背景

又到了一年樱花盛开的时节。Vani 和妹子一起去看樱花的时候,找到了一棵大大的樱花树,上面开满了粉红色的樱花。Vani 粗略估计了一下,一共有足足n!片花瓣。

Vani 轻柔地对她说:"你知道吗?这里面的一片花瓣代表着你,我从里面随机摘一片,能和你相遇的概率只有 $\frac{1}{n!}$ 那么小。我该是多么的幸运,才让你今天这么近地站在我面前。相信我,我一定会把这亿万分之一的缘分变为永远。"

粉红的樱花漫天飞舞,妹子瞬间被 Vani 感动了。她轻轻地牵起了他的手,和他相依而坐。这时,她突然看到田野的尽头也长着两棵樱花树,于是慢慢地把头靠在 Vani 的肩上,在他耳边低语:"看到夕阳里的那两棵樱花树了吗?其中一棵树上的一片花瓣是你,另一棵树上的一片花瓣是我,如果有人从这棵摘下一片,从那棵采下一瓣,我们相遇的概率会不会正好是 $\frac{1}{n!}$ 呢?"

Vani 的大脑飞速运作了一下,立即算出了答案。正要告诉妹子,她突然又轻轻地说:"以前你总是说我数学不好,但是这种简单的题我还是会算的。你看假如左边那棵树上有 x 片花

瓣,右边那个有y片花瓣,那么我们相遇的概率不就是 $\frac{1}{x} + \frac{1}{y}$ 么,不过有多少种情况能使

它正好可以等于 $\frac{1}{n!}$ 呢?这个你就帮我算一下吧~"

显然,面对天然呆的可爱妹子,Vani 不但不能吐槽她的渣数学,而且还要老老实实地帮她算出答案哦。

题目描述

求不定方程 $\frac{1}{x} + \frac{1}{y} = \frac{1}{n!}$ 的正整数解 (x, y) 的数目。

输入格式

一个整数n。

输出格式

一个整数,表示有多少对(x,y)满足题意。答案对 10^9+7 取模。

样例输入

2

样例输出

3

样例说明

共有三个数对(x,y)满足条件,分别是(3,6)、(4,4)和(6,3)。

数据范围与约定

对于 30% 的数据, 保证 $n \le 100$ 。

对于 100% 的数据, 保证 $1 \le n \le 10^6$ 。

爱的花环

(garland.pas/c/cpp)

背景

Vani 带着他的妹子来到了花园中欣赏美丽的景色,他买了两个花环给自己和她戴上。 一阵温暖的春风吹过,馥郁的香气四处飘散。Vani 和她满怀深情地互相对视,于是就聊到 了他刚买的花环。

「Vani、このガーランド本当にきれいだね~」

(Vani, 这个花环真的很漂亮呢~)

「当たり前だよ。特に選ばれたの、僕ら二人きりの花飾りのですね。」

(那是当然的咯。这可是特别挑选的,只属于我们两个人的花环呢。)

「しかし、ガーランドはいっぱいあるし、この二つは何の特殊の意味があるの?」

(但是, 有那么多的花环, 这两个有什么特殊的意义呢?)

Vani 面对这样的问题感到有点不知所措,因为实际上这两个花环只是他觉得好看而挑选的。但是面对她的问题,Vani 又不好意思实话实说,于是他打算忽悠一下她来使妹子开心。在此之前,你需要帮助 Vani 准备一套最好的说辞。

题目描述

自己的解释满足条件。

两个人的花环上一共有n种花。首先,Vani 会煞有介事地向妹子解释说某两种花配对的话有着怎样的意义,并且 Vani 会解释清楚所有 C_n^2 个配对的含义。严格地说,Vani 声明了一个整数矩阵 A, A_{ij} 的值表示花i 和花j 配对的话会增加的花环的契合度。这个值如果是正的,就表示这样配对有着正面意义,否则表示负面意义。显然对于任意的 $1 \le i,j \le n$,有 $A_{ij} = A_{ji}$ 。

之后,Vani 必须考虑自己的理论的可信度。Vani 觉得,只有 $\sum_{i=1}^n\sum_{j=1}^nA_{ij}=0$,并且对于任意的 $1\leq i,j\leq n$,都满足 $L_{ij}\leq A_{ij}\leq R_{ij}$,他的一套说辞才是可信的。所以,Vani 必须使得

Vani 发现两人的花环上花朵的数目相同,并且都有一个蝴蝶结。于是他从蝴蝶结开始沿顺时针方向将花朵编号,并且将两个花环对应位置上的花朵进行比较。每出现一个花朵对 (i,j),两个花环之间的契合度就会增加 A_{ij} 。由于花环是确定的,你的任务就是帮助 Vani 确定一个满足要求的矩阵 A,使得两个花环的契合度达到最大。Vani 向你保证一定存在一个满足全部要求的矩阵 A,并且你只需要给出最大可能的契合度。注意这个最大的契合度也有可能是 0 甚至是负数。

输入格式

显然,花环上花朵的排布并不重要,这个问题需要的只是各个花朵对的数目。于是我们 将按照以下格式给出所需的信息。

输入文件的行从1开始标号。

第一行包含一个整数n,表示花朵的种类数。

之后n行,每行n个整数。第i行第j个整数为k就表示花朵对(i-1,j)出现了k次。

之后n行,每行n个整数。第i行第j个整数为k就表示 $L_{(i-n-1),j}=k$ 。

之后n行,每行n个整数。第i行第j个整数为k就表示 $R_{(i-2n-1),i}=k$ 。

输出格式

输出一个整数,表示最大可能的契合度。

样例输入

4

7 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

1 -10 -10 -10

-10 1 -10 -10

-10 -10 1 -10

-10 -10 -10 1

10 10 10 10

10 10 10 10

10 10 10 10

10 10 10 10

样例输出

90

样例说明

Vani 只需要按照
$$A = \begin{pmatrix} 10 & -10 & 10 & -10 \\ -10 & 10 & -10 & -10 \\ 10 & -10 & 10 & 10 \\ -10 & -10 & 10 & 10 \end{pmatrix}$$
 忽悠妹子就可以了。

数据范围与约定

对于 20% 的数据,满足 $n \le 5$, $-10 \le L_{ij} < R_{ij} \le 10$ 。

对于 50% 的数据,满足 $n \le 50$, $-100 \le L_{ij} < R_{ij} \le 100$ 。

对于 100% 的数据,满足 $4 \le n \le 500$, $-10000 \le L_{ij} < R_{ij} \le 10000$,对于任意的 $1 \le i,j \le n$,满足 $\max(L_{ij},L_{ji}) < \min(R_{ij},R_{ji})$ 。花朵对的数目不为负,且不大于 100000。