M 431: Assignment 13

Nathan Stouffer

Page 163 — Problem 3

Problem. Find the greatest common divisor of the following polynomials over \mathbb{Q} , the field of rational numbers.

(a)
$$x^3 - 6x + 7$$
 and $x + 4$

(b)
$$x^2 - 1$$
 and $2x^7 - 4x^5 + 2$

(c)
$$3x^2 + 1$$
 and $x^6 + x^4 + x + 1$

(d)
$$x^3 - 1$$
 and $x^7 - x^4 + x^3 - 1$

Proof. I'm running short on time, so I didn't show much work on these ones.

(a) Here, x + 4 is irreducible so we only need to test if x + 4 divides $x^3 - 6x + 7$. Using long division, I found that this was not the case. So the greatest common divisor is the polynomial 1.

(b) Here $x^2 - 1 = (x+1)(x-1)$. Using long divion again, I found that x-1 divides $2x^7 - 4x^5 + 2$ but x+1 does not so the greatest common divisor is x-1.

(c) $3x^2 + 1$ is irreducible in $\mathbb{R}[x]$ so it is certainly irreducible in \mathbb{Q} . For this problem, I found the zeros of $3x^2 + 1$ in the comple plane then computed their output in the polynomial $x^6 + x^4 + x + 1$. Neither resulted in 0, so $3x^2 + 1$ does not divide $x^6 + x^4 + x + 1$ and the greatest common divisor is 1.

(d) For this one, $x^7 - x^4 + x^3 - 1 = x^4(x^3 - 1) + 1(x^3 - 1) = (x^4 + 1)(x^3 - 1)$ so $x^3 - 1$ is the greatest common divisor!

Page 164 — Problem 5

Problem. In the previous problem, let $I=\{f(x)a(x)+g(x)b(x)\}$ where f(x),g(x) run over $\mathbb{Q}[x]$ and a(x) is the first polynomial and b(x) is the second one in each part of the problem. Find d(x) so that I=(d(x)) for each part.

Proof.

Page 164 — Problem 10

Problem. Show that the following polynomials are irreducible over the field F indicated.

- (a) $x^2 + 7$ over \mathbb{R} (b) $x^3 3x + 3$ over \mathbb{Q} (c) $x^2 + x + 1$ over \mathbb{Z}_2 (d) $x^2 + 1$ over \mathbb{Z}_{19} (e) $x^3 9$ over \mathbb{Z}_{13} (f) $x^4 + 2x^2 + 2$ over \mathbb{Q}

Proof.

Page 164 — Problem 13

Problem. Let \mathbb{R} be the field of real numbers and \mathbb{C} that of complex numbers. Show that $\mathbb{R}[x]/(x^2+1)\cong\mathbb{C}$. *Proof.*

Page 165 — Problem 16

Problem. Let $F=\mathbb{Z}_p$ for some prime number p and $q(x)\in F[x]$ where q(x) is irreducible with degree n. Show that F[x]/(q(x)) has exactly p^n elements.

Proof.

Page 171 — Problem 6

Problem. Let F be the field and φ an automorphism of F[x] such that $\varphi(a)=a$ for all $a\in F$. If $f(x)\in F[x]$, prove that f(x) is irreducible in F[x] if and only if $g(x)=\varphi(f(x))$ is.

Proof.