Sistemas Operativos

Cursada 2022

Comisión S21 y S22

Cuando nace la multiprogramación, lo que vamos a tener es el:

Uso compartido de la CPU entre múltiples procesos/Hilos

Dos tipos de procesos:

- **➢Orientados a la CPU**
- **➢Orientados a la E/S**
- Intermedios (sobre dispositivos rápidos)

Procesos/Hilos

- ➢Orientados a CPU Ráfagas largas
- ➢Orientados a la E/S − Ráfagas cortas

Otro objetivo de la multiprogramación era Lograr el máximo uso de la CPU y para esto tenemos que ?

Planificar (buscar un equilibrio)

El planificador de largo plazo trataba de buscar ese equilibrio

- ➤ EL planificador de corto plazo va a trabajar sobre un conjunto (No lista) de procesos listos.
- Teniendo en cuenta que la CPU trabaja de a ráfagas
- ➤ Vamos a tener varios algoritmos de planificación de la CPU
- Distintos criterios (depende en que equipos y organización estemos)

Otro concepto a tener en cuenta en los algoritmos de planificación es

Con desalojo

Diagrama de 9 estados de Unix

Algoritmos de planificación

- > FCFS (First Come First Served) un FIFO
- ➤SJF (Shortest Job First)
- ➤ SRTF (Short Remaining Time First)
- > Prioridad
- ► RR (Round Robin)
- ➤ RR (Round Robin) Variante
- > Multicola

Algoritmo FCFS

Ejemplo FCFS (nonpreemptive)

Job	Instante Ilegada	Tiempo de CPU	Instante E/S	Tiempo E/S
Α	0	4		
В	3	2		
С	3	2	1	2
D	5	3		

Penaliza ciertos tipos de procesos

FCFS - No Apropiativo

Reloj	Listo	Ejecucion	Espera	End	Comentario
0	Α	SO			CS
1		А			
2		Α			
3	ABC	SO			CS
4	BC	А			
5	ABCD	so			CS
6	BCD	Α			
7	BCD	SO		Α	CS
8	CD	В			
9	CD	В			
10	CD	SO		AB	CS
11	D	С			
12	D	SO	O		CS
13	D	D	C		
14	DC	so			CS
15	C	D		ABC	
16	C	D			
17	C	SO		ABD	CS
18		С		ABD	
19		SO		ABDC	CS

Algoritmo SJF

Ejemplo SJF (nonpreemptive)

$$T_{(n+1)} = \dot{\alpha}.t_0 + (1 - \dot{\alpha})t_n$$

Job	Instante Ilegada	Tiempo de CPU	Instante E/S	Tiempo E/S
Α	0	4		
В	2	3		
С	2	2	1	2
D	5	2		

SJF - No Apropiativo

Reloj	Listo	Ejecucion	Espera	End	Comentario
0	Α	so	·		CS
1		Α			
2	ACB	SO			CS
3	СВ	А			
4	СВ	А			
5	ACDB	SO			CS
6	CDB	Α			
7	CDB	SO		Α	CS
8	DB	С			
9	DB	SO	C		CS x E/S
10	В	D	C		
11	CDB	SO			CS
12	DB	С			
13	DB	SO		AC	CS
14	В	D			
1 5	В	D			
16	В	SO		ACD	CS
17		В			
18		В			
19		В			
20		SO		ACDB	CS

Algoritmo SRTF

Ejemplo SRTF (preemptive)

También llamado SJF Apropiativo

Job	Instante de llegada	Tiempo de CPU
А	0	7
В	3	6
С	5	3
D	7	5
E	12	3

SRTF - Apropiativo

Reloj	Listo	Ejecucion	Espera e/S	End	Comentario
0	Α	SO			CS
1		Α			
2		Α			
3	AB	so			CS
4	В	Α			
5	CAB	SO			CS
6	AB	O			
7	CADB	so			CS
8		O			
9		O			
10	ADB	so		O	CS
11	DB	Α			
12	AEDB	so			CS
13	EDB	Α			
14	EDB	Α			
15	EDB	Α			
16	EDB	so		CA	CS
17	DB	E			
18	DB	E			
19	DB	E			
20	DB	so		CAE	CS
21	В	D			

Algoritmo de Prioridades

Ejemplo algoritmo Prioridades (preemptive)

Job	Hora de llegada	Tiempo de CPU	Prioridad
Α	0	3	3
В	3	4	1
С	3	2	3
D	5	4	4
E	7	2	2

Prioridades iguales (inconveniente)
Starvation o muerte por inanición (inconveniente)
Limite al numero de atención (solución)
Prioridades relativas (solución)

Prioridades - Apropiativo

Reloj	Listo	Ejecucion	Espera	End	Comentario
0	Α	SO			CS
1		Α			
2		Α			
3	BAC	SO			CS
4	AC	В			
5	BACD	SO			CS
6	ACD	В			
7	BEACD	SO			CS
8	EACD	В			
9	EACD	В			
10	EACD	SO		В	CS
11	ACD	E			
12	ACD	E			
13	ACD	SO		BE	CS
14	CD	Α			
15	CD	SO		BEA	CS
16	D	С			
17	D	С			
18	D	SO		BEAC	CS
19		D			
20		D			
21		D			
22		D			
23		SO		BEACD	CS

Algoritmo de Round Robin

Ejemplo algoritmo RR

Lo vamos a llamar RR tradicional

Es un algoritmo injusto?

Que pasa con los procesos orientados a CPU?

Algoritmo de Round Robin

Ejemplo algoritmo RR

Job	Hora de llegada	Tiempo de CPU	Instante - E/S
Α	0	5	2 – 1
В	2	4	
С	4	3	1-2
D	10	4	

Algoritmo Round Robin Q=3 – No Apropiativo

Reloj	Listo	Exec	Espera	End	Comentario
0	Α	SO			CS
1		Α			
2	A B	SO			Proceso nuevo
3	В	А			Vuelva hasta cumplir q
4	ВС	SO	А		No cumple q xq hace E/S
5	ВСА	SO			CS – IE – A al final
6	CA	В			
7	CA	В			
8	CA	В			Q=3 y vuelve al final
9	CAB	SO			
10	CABD	SO			
11	ABD	С			
12	ABD	SO	С		
13	B D	А	С		
14	ABDC	<u>SO</u>			IE
15	BDC	А			
16	BDC	А			
17	BDC	SO		А	CS
18	DC	В			
19	DC	SO		A B	CS
20	С	D			
21	С	D			
22	С	D			Q=3 y D vuelve al final
23	C D	SO			CS
24	D	С			
25	D	С			
26	D	SO		АВС	CS
27		D			
28		SO		ABCD	CS

Calculos para comparar Algoritmos

Tiempo de espera de cada proceso: el tiempo que estuvo en la cola de listo

Tiempo en E/S:

$$Te/sA = 1$$
; $Te/sC = 2$

Tiempo de retorno: tiempo que el proceso estuvo en el sistema

Tretorno = Te + Texec + T e/s

$$TrA = 11 + 5 + 1 = 17$$
; $TrB = ?$; $TrC = ?$; $TrD = ?$

Tretorno_medio = (TrA+TrB+TrC+TrD)/cantidad de procesos

Algoritmo de Round Robin

- > Variante que se uso en el kernel linux
- > Doble cola y memoria de lo usado

Se define un Quantum grande para los procesos Ejemplo q=30

Planificación Colas niveles Múltiples

Los procesos se clasifican en grupos:

- > Interactivos
- > Por lotes
- > Procesos del Sistema
- Procesos de Usuario

Prioridad Baja

Planificación Colas niveles Múltiples y retroalimentación

Los procesos se mueven entre distintas colas Separar procesos con distintas ráfagas de CPU Las colas tendrían distintas prioridades

Fin clase