DIS1

1 More Gradients

Consider the optimization problem $\min_{x \in \mathbb{R}^n} \frac{1}{2} x^{\mathsf{T}} A x - b^{\mathsf{T}} x$, where $A \in \mathbb{R}^{n \times n}$ is a PSD matrix with $0 < \lambda_{\min}(A) \le \lambda_{\max}(A) < 1$.

- (a) Find the optimizer x^* .
- (b) Solving a linear system directly using Gaussian elimination takes $O(n^3)$ time, which may be wasteful if the matrix A is sparse. For this reason, we will use gradient descent to compute an approximation to the optimal point x^* . Write down the update rule for gradient descent with a step size of 1.
- (c) Show that the iterates $x^{(k)}$ satisfy the recursion $x^{(k)} x^* = (I A)(x^{(k-1)} x^*)$.
- (d) Using the previous part and the fact that $||Ax||_2 \le \lambda_{\max(A)} ||x||_2$, show that for some $0 < \rho < 1$,

$$||x^{(k)} - x^*||_2 \le \rho ||x^{(k-1)} - x^*||_2.$$

(e) Let $x^0 \in \mathbb{R}^n$ be the starting value for our gradient descent iterations. If we want a solution $x^{(k)}$ that is $\epsilon > 0$ close to x^* , i.e. $||x^{(k)} - x^*||_2 \le \epsilon$, then how many iterations of gradient descent should we perform? In other words, how large should k be? Give your answer in terms of ρ , $||x^{(0)} - x^*||_2$, and ϵ .

2 Least Squares Using Calculus

(a) In ordinary least-squares linear regression, we typically have n > d so that there is no w such that $\mathbf{X}\mathbf{w} = \mathbf{y}$ (these are typically overdetermined systems — too many equations given the number of unknowns). Hence, we need to find an approximate solution to this problem. The residual vector will be $\mathbf{r} = \mathbf{X}\mathbf{w} - \mathbf{y}$ and we want to make it as small as possible. The most common case is to measure the residual error with the standard Euclidean ℓ^2 -norm. So the problem becomes:

$$\min_{\mathbf{w}} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2$$

Where $\mathbf{X} \in \mathbb{R}^{n \times d}$, $\mathbf{w} \in \mathbb{R}^d$, $\mathbf{y} \in \mathbb{R}^n$. Derive using vector calculus an expression for an optimal estimate for \mathbf{w} for this problem assuming \mathbf{X} is full rank.

- (b) How do we know that $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible?
- (c) What should we do if **X** is not full rank?

3 Regularization and Risk Minimization

- (a) Let **A** be a $d \times n$ matrix. For any $\mu > 0$, show that $(\mathbf{A}\mathbf{A}^{\mathsf{T}} + \mu \mathbf{I})^{-1}\mathbf{A} = \mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A} + \mu \mathbf{I})^{-1}$.
- (b) Let $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ be a sequence of data points. Each y_i is a scalar and each \mathbf{x}_i is a vector in \mathbb{R}^d . Let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]^{\mathsf{T}}$ and $\mathbf{y} = [y_1, \dots, y_n]^{\mathsf{T}}$. Consider the *regularized* least squares problem.

$$\min_{\mathbf{w} \in \mathbb{R}^d} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 + \mu ||\mathbf{w}||_2^2$$

Show that the optimum \mathbf{w}_* is unique and can be written as the linear combination $\mathbf{w}_* = \sum_{i=1}^n \alpha_i \mathbf{x}_i$ for some scalars $\alpha_1, ..., \alpha_n$. What are the coefficients α_i ?

(c) More generally, consider the general regularized empirical risk minimization problem

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n loss(\mathbf{w}^{\mathsf{T}} \mathbf{x}_i, y_i) + \mu ||\mathbf{w}||_2^2$$

where the loss function is convex in the first argument. Prove that the optimal solution has the form $\mathbf{w}_* = \sum_{i=1}^n \alpha_i \mathbf{x}_i$. If the loss function is not convex, does the optimal solution have the form $\mathbf{w}_* = \sum_{i=1}^n \alpha_i \mathbf{x}_i$? Justify your answer.

4 Covariance Practice

Let X be a multivariate random variable (recall, this means it is a vector of random variables) with mean vector $\mu \in \mathbb{R}^d$ and covariance matrix $C \in \mathbb{R}^{d \times d}$. Prove that if C is singular, then the space where X takes values with non-zero probability (this space is called the support of X) has dimension strictly less than n.

Hint: use the identity $Var(\sum_{i=1}^{d} Y_i) = \sum_{i=1}^{d} \sum_{j=1}^{d} Cov(Y_i, Y_j)$.