Causal Inference

a summary

Contents

1	Ger	neral	3		2.2.1 Time-varying A	(
2	Mo	dels	5		2.3 Advanced Methods	
	2.1	Traditional Methods	5			
	2.2	G-Methods	5	3	Longitudinal Data	8

1 General

Causal Roadmap (Petersen and van der Laan, 2014) systematic approach linking causality to statistical procedures

- 1. Specifying Knowledge. structural causal model (unifying counterfactual language, structural equations, & causal graphs): a set of possible data-generating processes, expresses background knowledge and its limits
- 2. Linking Data. specifying measured variables and sampling specifics (latter can be incorporated into the model)
- 3. Specifying Target. define hypothetical experiment: decide
 - 1. variables to intervene on: one (point treatment), multiple (longitudinal, censoring/missing, (in)direct effects)
 - 2. intervention scheme: static, dynamic, stochastic
 - counterfactual summary of interest: absolute or relative, marginal structural models, interaction, effect modification
 - 4. population of interest: whole, subset, different population
- **4. Assessing Identifiability.** are knowledge and data sufficient to derive estimand and if not, what else is needed?
- 5. Select Estimand. current best answer: knowledge-based assumptions + which minimal convenience-based asspumptions (transparency) gets as close as possible
- **6. Estimate.** choose estimator by statistical properties, nothing causal here
- 7. Interpret. hierarchy: statistical, counterfactual, feasible intervention, randomized trial

Average Causal Effect
$$E[Y^{a=1}] \neq E[Y^{a=0}]$$

 $E[Y^a] = \sum_y y p_{Y^a}(y)$ (discrete)
 $= \int y f_{Y^a}(y) dy$ (continuous)

individual causal effect $Y_i^{a=1} \neq Y_i^{a=0}$ generally unidentifiable $null\ hypothesis$: no average causal effect $sharp\ null\ hypothesis$: no causal effect for any individual $notation\ A, Y$: random variables (differ for individuals); a, y: particular values; counterfactual $Y^{a=1}$: Y under treatment a=1 $stable\ unit\ treatment\ value\ assumption\ (SUTVA)\ Y_i^a$ is well-defined: no interference between individuals, no multiple versions of treatment (weaker: treatment variation irrelevance) $causal\ effect\ measures\ typically\ based\ on\ means$

risk difference:
$$\Pr[Y^{a=1}=1] - \Pr[Y^{a=0}=1]$$

risk ratio: $\frac{\Pr[Y^{a=1}=1]}{\Pr[Y^{a=0}=1]}$
odds ratio: $\frac{\Pr[Y^{a=1}=1]/\Pr[Y^{a=1}=0]}{\Pr[Y^{a=0}=1]/\Pr[Y^{a=0}=0]}$

number needed to treat (NNT) to save 1 life: -1/risk difference sources of random error: sampling variability (use consistent estimators), nondeterministic counterfactuals association compares E[Y|A=1] and E[Y|A=0], causation compares $E[Y^{a=1}]$ and $E[Y^{a=0}]$ (whole population)

Target Trial emulating an ideal randomized experiment explicitly formulate target trial & show how it is emulated \rightarrow less vague causal question, helps spot issues missing data problem unknown counterfactuals randomized experiments: missing completely at random \rightarrow exchangeability (= exogeneity as treatment is exogenous) ideal randomized experiment: no censoring, double-blind, well-defined treatment, & adherence \rightarrow association is causation

pragmatic trial: no placebo/blindness, realistic monitoring **PICO** (population, intervention, comparator, outcome): some components of target trial

three types of causal effects:

intention-to-treat effect (effect of treatment assignment) per-protocol effect (usually dynamic when toxicity arises) other intervention effect (strategy changed during follow-up) controlled direct effects: effect of A on Y not through B natural direct effect A on Y if $B^{a=0}$ (cross-world quantity) principal stratum effect A on Y for subset with $B^{a=0} = B^{a=1}$ crossover experiment: sequential treatment & outcome t=0,1 individual causal effect $Y_{it}^{a_t=1} - Y_{it}^{a_t=0}$ only identifiable if: no carryover effect, effect \bot time, outcome \bot time time zero if eligibility at multiple t (observational data): earliest, random t, all t (adjust variance with bootstrapping) grace periods: usually treatment starts x months after first eligible, if death before: randomly assign strategy/copy into both

Identifiability Conditions hold in ideal experiments **consistency** counterfactuals correspond to data $Y = Y^A$: if A = a, then $Y^a = Y$ for each individual

- precise definition of Y^a via specifying a (sufficiently well-defined a maybe impossible (effect of DNA before it was discovered), relies on expert consensus)
- linkage of counterfactuals to data (a must be seen in data) $\textbf{positivity} \ \Pr\left[A=a|L=l\right] > 0 \ \forall \, l \ \text{with} \ \Pr\left[L=l\right] > 0;$

$$f_L(l) \neq 0 \Rightarrow f_{A|L}(a|l) > 0 \ \forall a, l$$

- structural violations (inference not on full population)
- random variability (smooth over with parametric models) can sometimes be empirically verified (if all is seen in data) **exchangeability** unverifiable without randomization
- marginal: $Y^a \perp \!\!\! \perp A \cong$ randomized experiment, counterfactuals are missing completely at random (MCAR)
- conditional: $Y^a \perp \!\!\! \perp A | L \cong$ conditionally randomized, counterfactuals are missing at random (MAR) alternative definition: $\Pr\left[A=1|Y^{a=0},L\right]=\Pr\left[A=1|L\right]$ additional conditions:

 $\begin{array}{c} correct\ measurement\ {\rm mismeasurement}\ {\rm of}\ A,Y,L\ {\rm results\ in\ bias}\\ correct\ model\ specification\ {\rm models}\ \stackrel{\rm may}{\to}\ {\rm misspecification\ bias} \end{array}$

Effect Modification A on Y varies across levels of V null average causal effect \neq null causal effect per subgroup population characteristics: causal effect measure is actually "effect in a population with a particular mix of effect modifiers" transportability: extrapolation of effect to another population (issues: effect modification, versions of treatment, interference) effects conditional on V may be more transportable types: additive/multiplicative scale, qualitative (effect in opposite directions)/quantitative, surrogate/causal calculation:

- stratify by V then standardize/IP weight for L,
- L as matching factor (ensures positivity, difficult if high-dimensional L)

collapsibility: causal risk difference and ratio are weighted averages of stratum-specific risks, can not be done for odds ratio

 ${\bf Interaction} \quad {\it effects of joint interventions} \ A \ {\it and} \ E$

 $\Pr\left[Y^{1,1}=1\right]-\Pr\left[Y^{0,1}=1\right]\neq\Pr\left[Y^{1,0}=1\right]-\Pr\left[Y^{0,0}=1\right]$ above definition for additive scale

sufficient component-cause framework

effects of simultaneous treatment: joint interventions ${\cal A}$ and ${\cal E}$

A and E have equal status

different than effect modification: V is not an intervention variable

exchangeability for both A and E needed

interaction is superadditive/-multiplicative if positive (sub- if negative) $\,$

when treatment ${\cal E}$ is randomly assigned: same as effect modification

monotonic effect: same direction for each individual (or no effect) $\,$

sufficient component-cause framework response type (helped, immune, hurt, doomed) turns to 16 types for

binary A and E

(minimal) sufficient cause:

(minimal) U_1 together with A=1 ensure Y=1

(minimal) U_2 together with A=0 ensure Y=1

causal diagrams chapter 6, include swigs from 7.5 and that one technical point

more on SWIGS p $242 \mathrm{ff}$

confounding chapter 7

selection bias chapter 8

measurement bias chapter 9

random variabilty chapter 10

2 Models

Modeling data are a sample from the target population

 $\begin{array}{lll} \textit{estimand:} & \text{quantity of interest,} & \text{e. g. } \mathbf{E}\left[Y|A=a\right] \\ \textit{estimator:} & \text{function to use,} & \text{e. g. } \widehat{\mathbf{E}}\left[Y|A=a\right] \\ \textit{estimate:} & \text{apply function to data,} & \text{e. g. } 4.1 \end{array}$

model: a priori restriction of joint distribution/dose-response curve; assumption: no model misspecification (usually wrong) **non-parametric estimator**: no restriction (saturated model) = Fisher consistent estimator (entire population data \rightarrow true value) **parsimonious model**: few parameters estimate many quantities **bias-variance trade-off**:

wiggliness $\uparrow \rightarrow$ misspecification bias \downarrow , CI width \uparrow

Variable Selection can induce bias if L includes:

 $\begin{array}{ll} \text{(decendant of) collider:} & \textit{selection bias under the null} \\ \text{noncollider effect of } A\text{:} & \textit{selection bias under the alternative} \\ \text{mediator:} & \textit{overadjustment for mediators} \\ \end{array}$

temporal ordering is not enough to conclude anything

bias amplification: e.g. by adjusting for an instrument Z (can also reduce bias)

Machine Learning L is high-dimensional

use lasso or ML for IP weighting/standardization

 $\it but:$ ML does not guarantee elimination of confounding and has largely unknown statistical properties

ightharpoonup **doubly robust estimator:** consistent if bias $<\frac{1}{\sqrt{n}}$ sample splitting: train estimators on training sample, use resulting estimators for doubly robust method on estimation sample (CIs on estimation sample are valid, but n halved) cross-fitting: do again the other way round, average the two estimates, get CI via bootstrapping

problems: unclear choice of algorithm, is bias small enough?

Super Learning (Van der Laan et al., 2007, 2011) oracle selector: select best estimator of set of learners Z_i discrete super learner: select algorithm with smallest cross-validated error (converges to oracle for large sample size) super learner: improves asymptotically on discrete version

 $\operatorname{logit}(Y=1|Z) = \sum_i \alpha_i Z_i$, with $0 < \alpha_i < 1$ and $\sum \alpha_i = 1$ weights α_i are determined inside the cross-validation; for the prediction, Z_i trained on the full data set are used can be cross-validated itself to check for overfitting (unlikely)

2.1 Traditional Methods

Stratification calculate risk for each stratum of L only feasible if enough data per stratum

Outcome regression chapter 15

instrumental variable estimation chapter 16

causal survival analysis chapter 17 (and technical point 22.3)

2.2 G-Methods

 $\begin{tabular}{ll} \textbf{G-Methods} & generalized treatment contrasts: adjust for (surrogate) confounders L \\ \end{tabular}$

- ullet standardization two types of g-formula
- $\bullet \ \ \mathbf{IP} \ \mathbf{weighting} \ \mathrm{also} \ \mathrm{g\text{-}formula}$
- g-estimation: not needed unless longitudinal

time-varying standardize over all possible \bar{l} -histories simulates joint distribution of counterfactuals $(Y^{\bar{a}}, \bar{L}^{\bar{a}})$ for \bar{a} joint density estimator (jde)

discrete:
$$\mathrm{E}\left[Y^{\bar{a}}\right] = \sum_{\bar{l}} \mathrm{E}\left[Y|\bar{A} = \bar{a}, \bar{L} = \bar{l}\right] \prod_{k=0}^{K} f\left(l_{k}|\bar{a}_{k-1}, \bar{l}_{k-1}\right)$$

continuous:
$$\int f(y|\bar{a},\bar{l}) \prod_{k=0}^{K} f\left(l_k|\bar{a}_{k-1},\bar{l}_{k-1}\right) dl$$

for stochastic strategies multiply with $\prod_{k=0}^{K} f^{int}\left(a_k|\bar{a}_{k-1},\bar{l}_k\right)$

estimation (Young et al., 2011; Schomaker et al., 2019)

- 1. model $f(l_k|\bar{a}_{k-1},\bar{l}_{k-1})$ and $\mathrm{E}\left[Y|\bar{A}=\bar{a},\bar{L}=\bar{l}\right]$
- 2. simulate data forward in time: at k=0: use empirical distribution of L_0 (observed data) at k>0: set $\bar{A}=\bar{a}$, draw from models estimated in 1.
- 3. calculate mean of $\hat{Y}_{K,i}^{\bar{a}}$ (bootstrap for CI)

Standardization plug-in (or parametric if so) g-formula conditional expectation joint density estimator

 $\mathbf{E}\left[Y^{a}\right] = \overbrace{\mathbf{E}\left[\mathbf{E}\left[Y|A=a,L=l\right]\right]} = \overbrace{\int \mathbf{E}\left[Y|L=l,A=a\right]f_{L}\left[l\right]dl}$

weighted average of stratum-specific risks; unknowns can be estimated non-parametrically or modeled

no need to estimate f_L [l]/integrate as empirical distribution can be used: estimate outcome model \rightarrow predict counterfactuals on whole dataset \rightarrow average the results (\rightarrow CI by bootstrapping)

for discrete $\boldsymbol{L} \to [Y|A=a] = \sum_l \operatorname{E}\left[Y|L=l, A=a\right] \Pr\left[L=l\right]$

iterated conditional expectation (ice) $\,$

 $E[Y_T^{\bar{a}}] = E[E[E[...E[Y_T|\bar{A}_{T-1}=\bar{a}_{T-1},\bar{L}_T]...|\bar{A}_0=a_0,L_1]|L_0]]$

estimation (Schomaker et al., 2019)

- 1. model inside out: $Q_T = \mathbb{E}\left[Y_T | \bar{A}_{T-1}, \bar{L}_T\right]$ to $Q_0 = \mathbb{E}\left[Q_1 | \bar{L}_0\right]$, predict Q_t with $\bar{A} = \bar{a}$ in each step
- 2. calculate mean of $\hat{Q}_{0,i}^{\bar{a}}$ (bootstrap for CI)

g-null paradox even if the sharp null holds, model misspecification can lead to it being falsely rejected

Proof: for
$$L_0 \rightarrow A_0 \rightarrow Y_0 \rightarrow L_1 \rightarrow A_1 \rightarrow Y_1$$
, $\bar{a} = (a_0, a_1)$
 $\to [Y_1^{\bar{a}}] \stackrel{\text{CE}}{=} \to [\to [Y_1^{\bar{a}}|A_0 = a_0, L_0]]$
(ice) $\stackrel{\text{CE}^*}{=} \to [\to [\to [Y_1|\bar{L}, \bar{A} = \bar{a}, Y_0]|A_0 = a_0, L_0]]$
 $\stackrel{\text{LTP}}{=} \to [\to [\to [Y_1|A_0 = a_0, \bar{L}, Y_0]] \text{Pr}[l_1|a_0, l_0, y_0]]$
 $\stackrel{\text{LTP}}{=} \to [-1] \to [Y_1|A_0 = a_0, \bar{L}, Y_0] \text{Pr}[l_1|a_0, l_0, y_0]] \text{Pr}[l_0]$
(jde) $\stackrel{\text{sum}}{=} \to [\to [Y_1|A_0 = a_0, \bar{L}, Y_0]] \text{Pr}[l_1|a_0, l_0] \text{Pr}[l_0]$
CE: conditional expectation; *: exchangeability;
LTP: law of total probability

Marginal Structural Models association is causation in the IP weighted pseudo-population

associational model $E[Y|A] = \text{causal model } E[Y^a]$ step 1: estimate/model f[A|L] (and f[A]) \rightarrow get $(S)W^A$ step 2: estimate regression parameters for pseudo-population effect modification variables V can be included (e.g. $\beta_0 + \beta_1 a + \beta_2 V a + \beta_3 V$; technically not marginal anymore), $SW^A(V) = \frac{f[A|V]}{f[A|L]}$ more efficient than SW^A

Censoring measuring joint effect of A and C

$$E[Y^{a,c=0}]$$
 is of interest

standardization $E[Y|A=a] = \int E[Y|L=l, A=a, C=0] dF_L[l]$ IP weights $W^{A,C} = W^A \times W^C$ $SW^{A,C} = SW^A \times SW^C$ (uses $n^{c=0}$)

g-estimation can only adjust for confounding, not selection bias → use IP weights

G-Estimation (additive) structural nested models
$$\operatorname{logit} \Pr\left[A = 1 | H(\psi^{\dagger}), L\right] = \alpha_0 + \alpha_1 H(\psi^{\dagger}) + \alpha_2 L$$
$$H(\psi^{\dagger}) = Y - \psi_{\dagger} A$$

find ψ^{\dagger} which renders $\alpha_1=0;$ 95 %-CI: all ψ^{\dagger} for which p>0.05closed-form solution for linear models

derivation: $H(\psi^{\dagger}) = Y^{a=0}$

logit Pr
$$[A = 1|Y^{a=0}, L] = \alpha_0 + \alpha_1 Y^{a=0} + \alpha_2 L$$

 $Y^{a=0}$ unknown, but because of exchangeability α_1 should be zero $Y^{a=0} = Y^a - \psi_1 a$

equivalent to $Y^{a=0} = Y^{a=1} - \psi_1$, but using no counterfactuals

structural nested mean model

$$\begin{array}{ll} \text{additive:} & \mathrm{E}\left[Y^a-Y^{a=0}|A=a,L\right] & =\beta_1 a\left(+\beta_2 a L\right) \\ \\ \text{multiplicative:} & \log\left(\frac{\mathrm{E}\left[Y^a|A=a,L\right]}{\mathrm{E}\left[Y^{a=0}|A=a,L\right]}\right) & =\beta_1 a\left(+\beta_2 a L\right) \end{array}$$

multiplicative is preferred if Y always positive, but does not extend to longitudinal case

semi-parametric: agnostic about β_0 and effect of $L \to {
m robust} \uparrow$ no time-varying: no nesting; model equals marginal structural models with missing β_0, β_3 (unspecified "no treatment")

sensitivity analysis: unmeasured confounding $(\alpha_1 \neq 0)$ can be examined: do procedure for different values of $\alpha_1 \to \text{plot } \alpha_1 \text{ vs.}$ $\psi^{\dagger} \rightarrow \text{how sensitive is estimate to unmeasured confounding?}$ **effect modification:** add V in both g-estimation equations doubly robust estimators exist

IP Weighting inverse probability of treatment (g-formula)

$$\mathrm{E}\left[Y^{a}\right]=\mathrm{E}\left[\frac{I(A=a)Y}{f\left[A|L\right]}\right];W^{A}=\frac{1}{f\left[A|L\right]};SW^{A}=\frac{f(A)}{f\left[A|L\right]}$$

unknowns can be estimated non-parametrically or modeled **pseudo-population:** everyone is treated & untreated $(L \not\rightarrow A)$ FRCISTG (fully randomized causally interpreted structured graph): probability tree for $L \to A \to Y$, can be used to calculate/visualize simulation of values for A

for discrete A, L f[a|l] = Pr[A = a, L = l]

estimators: Horvitz-Thompson; Hajek (modified version) stabilized weights SW^A should have an average of 1 (check!) \rightarrow pseudo-population same size \rightarrow CI width \downarrow

Standardization and IP Weighting are equivalent, but if modeled, different "no misspecification" assumptions:

standardization: outcome model IP weighting: treatment model

doubly robust estimators: reduce model misspecification bias, consistent if either model is correct; $e.\,g.$:

- 1. fit outcome regression with variable $R = \begin{cases} +W^A & \text{if } A{=}1\\ -W^A & \text{if } A{=}0 \end{cases}$ 2. standardize by averaging
- 2.2.1Time-varying A

IP Weighting

$$W^{\bar{A}} = \prod_{k=0}^{K} \frac{1}{f\left(A_{k}|\bar{A}_{k-1}, \bar{L}_{k}\right)}$$

$$SW^{\bar{A}} = \prod_{k=0}^{K} \frac{f(A_k|\bar{A}_{k-1})}{f(A_k|\bar{A}_{k-1},\bar{L}_k)}$$

Doubly Robust Estimator sequential estimation

- 1. estimate $\hat{f}(A_m|\bar{A}_{m-1},\bar{L}_m)$ (e. g. logistic model), use it to calculate at each time m: $\widehat{W}^{\bar{A}_m} = \prod_{k=0}^m \frac{1}{\widehat{f}(A_k|\bar{A}_{k-1},\bar{L}_k)}$ and modified IP weights at m: $\widehat{W}^{\bar{A}_{m-1,a_m}} = \frac{\widehat{W}^{\bar{A}_{m-1}}}{\widehat{f}(a_m|\bar{A}_{m-1},\bar{L}_m)}$
- 2. with $\widehat{T}_{K+1} := Y$, recursively for m = K, K 1, ..., 0: (a) fit outcome regression on \widehat{T}_{m+1} with variable $\widehat{W}^{\bar{A}_m}$
- (b) calculate \widehat{T}_m using the outcome model with $\widehat{W}^{\bar{A}_{m-1,a_m}}$ 3. calculate standardized mean outcome $\widehat{\mathbf{E}}[Y^{\bar{a}}] = \mathbf{E} |\widehat{T}_0|$

valid, if treatment or outcome model correct, or treatment correct until k and outcome otherwise (k+1 robustness)

G-Estimation nested equations: for each time kstrutural nested mean models separate effect of each a_k $\mathbb{E}\left[Y^{\bar{a}_{k-1},a_k,\underline{0}_{k+1}} - Y^{\bar{a}_{k-1},\underline{0}_{k+1}} | \bar{L}^{\bar{a}_{k-1}} = \bar{l}_k, \bar{A}_{k-1} = \bar{a}_{k-1}\right] =$

$$a_k \gamma_k \ (ar{a}_{k-1}, ar{l}_k, eta)$$

calculations

$$H_k\left(\psi^{\dagger}\right) = Y - \sum_{j=k}^{K} A_j \gamma_j \left(\bar{A}_{j-1}, \bar{L}_j, \psi^{\dagger}\right)$$

function γ_j can be, e.g. constant (ψ_1) , time-varying only $(\psi_1 + \psi_2 k)$, or dependent on treatment/covariate history

$$\begin{aligned} & \operatorname{logit} \operatorname{Pr} \left[A_k = 1 | H_k \left(\psi^{\dagger} \right), \bar{L}_k, \bar{A}_{k-1} \right] = \\ & \alpha_0 + \alpha_1 H_k \left(\psi^{\dagger} \right) + \alpha_2 w_k \left(\bar{L}_k, \bar{A}_{k-1} \right) \end{aligned}$$

find α_1 that is closest to zero

a closed form estimator exists for the linear case

Censoring \bar{C} : monotonic type of missing data standardization:

 $\int f(y|\bar{a}, \bar{c} = \bar{0}, \bar{l}) \prod_{k=0}^{K} dF \left(l_k|\bar{a}_{k-1}, c_{k-1} = 0, \bar{l}_{k-1}\right)$ IP weighting:

$$SW^{\bar{C}} = \prod_{k=1}^{K+1} \frac{1 \cdot \Pr\left(C_k = 0 | \bar{A}_{k-1}, C_{k-1} = 0\right)}{\Pr\left(C_k = 0 | \bar{A}_{k-1}, C_{k-1} = 0, \bar{L}_k\right)}$$

2.3Advanced Methods

TMLE targeted minimum loss-based estimation

$$O = (W, A, Y) \sim P_0$$

target $\Psi((P_0) = \psi_0, typically:$

 $E_{W,0} [E_0(Y|A=1,W) - E_0(Y|A=0,W)]$

first step: outcome model $\bar{Q}_n^0(A, W)$ estimating \bar{Q}_0 (part of P_0)

- super learning is often used here, but leads to a biased estimate
- not all of f(Y|A, W) needs to be estimated, just the relevant portion, typically average outcome $E_0(Y|A,W) \to \text{efficiency} \uparrow$ get predicted values for A=1 and A=0

second step: update $\bar{Q}_n^0(A,W)$ to $\bar{Q}_n^1(A,W)$ using treatment model g_n estimating $g_0 = P_0(A|W)$

- goal: bias reduction, get optimal bias-variance trade-off
- super learning is used here as well
- removes all asymptotic bias, if consistent estimator is used here

get predicted values $g_n(1|W_i)$ and $g_n(0|W_i)$ calculate clever covariate $H_n^*(A, W) = \left(\frac{I(A=1)}{g_n(1|W)} - \frac{I(A=0)}{g_n(0|W)}\right)$ for each i: $H_n^*(A, W) = \left(\frac{I(A=1)}{g_n(1|W)} - \frac{I(A=0)}{g_n(0|W)}\right)$ updating: logistic regression offset

 $\operatorname{logit} \bar{Q}_n^1(A, W) = \underbrace{\operatorname{logit} \bar{Q}_n^0(A, W)}_{} + \epsilon_n H_n^*(A, W)$ (converges after first update)

$$Q_n^* = (\bar{Q}_n^1, Q_{W,n}^0)$$

third step: TMLE is a substitution estimator $\psi_n^{TMLE} = \frac{1}{n} \sum_{i=1}^n \left[\bar{Q}_n^1(1, W_i) - \bar{Q}_n^1(0, W_i) \right]$

advantages: doubly robust (consistent if either outcome or treatment model is correctly specified), asymptotically efficient (if both are correct), substition estimator (more robust to outliers and sparsity)

$$\mathcal{L}(O) = \overbrace{\Pr(Y|A,W)}^{Q_Y} \overbrace{\Pr(A|W)}^{g} \overbrace{\Pr(W)}^{Q_W}$$

Second step: update model, incorporate infor on treatment assignment mechanisms to improve ψ_0 ML estimation regress residuals $Y = \bar{Q}_n^0 + \epsilon H(A, W) H(A, W)$ depends on target parameter and loss function but is a function of the propensitiy score update initial fit $\bar{Q}_n^* = \bar{Q}_n^0 + \hat{\epsilon} H(A, W)$

valid inference, good finite sample performance,

H(A, W) comes from the influence curve, targeting ensures mean of efficient influence curve $D^*(P)$ is zero

TMLE solves $P_n D^*(P_n^*) = 0$

$$D^*(P) = \overbrace{\left[\frac{A}{g(1,W)} - \frac{1-A}{g(0,W)}\right] \left[Y - \bar{Q}(A,W)\right]}^{a} + \overbrace{\bar{Q}(1,W) - \bar{Q}(0,W) - \psi}^{b}$$

TMLE is a substitution estimator

 $\psi_n^{TMLE} = \frac{1}{2} \sum_{i=1}^n \bar{Q}_n^*(1, W_i) - \frac{1}{2} \sum_{i=1}^n \bar{Q}_n^*(0, W_i)$ therefore

targeting step makes sure a also has mean zero

$$Y = \epsilon H(A, W) + offset(\bar{Q}_n^0)$$

MLE solves $\sum_{i=1}^{n} H(A_i, W_i) \left[Y_i - \bar{Q}_n^*(A_i, W_i) \right] = 0$ where $\bar{Q}_n^*(A_i, W_i) = \hat{\epsilon} H(A, W) + \bar{Q}_n^0$ therefore obvious choice: $H(A,W)=\frac{A}{g(1,W)}-\frac{1-A}{g(0,W)}$ influence curve based inference: asymptotic linearity

$$\sqrt{n} \left(\psi_n^{TMLE} - \psi_0 \right) \stackrel{D}{\to} \mathcal{N}(0, \sigma^2)$$

95% CI: $\psi_n \pm 1.96\hat{\sigma}/\sqrt{n}$ with $\hat{\sigma}^2 = \frac{1}{2} \sum_{i=1}^n \hat{D}^{*2}(P_n^*)(O_i)$ test statistic for null hypothesis H_0 : $\psi_0 = 0$

$$T = \frac{\psi_n}{\sqrt{\hat{\sigma}^2/n}}$$

p-values calculated as $2\Phi(-abs(T))$

3 Longitudinal Data

Time-Varying Treatments compare 2 treatments treatment history up to k: $\bar{A}_k = (A_0, A_1, ..., A_k)$ shorthand: always treated $\bar{A} = \bar{1}$, never treated $\bar{A} = (\bar{0})$ static strategy: $g = [g_0(\bar{a}_{-1}), ..., g_K(\bar{a}_{K-1})]$ dynamic strategy: $g = [g_0(\bar{l}_0), ..., g_K(\bar{l}_K)]$ stochastic strategy: non-deterministic g optimal strategy is where $E[Y^g]$ is maximized (if high is good)

Sequential Identifiability sequential versions of exchangability: $Y^g \perp \!\!\!\perp A_k | \bar{A}_{k-1} \ \, \forall g,k=0,1,...,K$ conditional exchangeability:

$$\begin{split} \left(Y^g, L_{k+1}^g\right) \perp \!\!\! \perp A_k | \bar{A}_{k-1} &= g\left(\bar{L}_k\right), \bar{L}^k \ \, \forall g, k = 0, 1, ..., K \\ \textbf{positivity:} \ \, f_{\bar{A}_{k-1}, \bar{L}_k}(\bar{a}_{k-1}, \bar{l}_k) \neq 0 \ \, \Rightarrow \\ f_{A_k | \bar{A}_{k-1}, \bar{L}_k}(a_k | \bar{a}_{k-1}, \bar{l}_k) > 0 \ \, \forall \left(\bar{a}_{k-1}, \bar{l}_k\right) \end{split}$$

consistency:

$$Y^{\bar{a}} = Y^{\bar{a}^*}$$
 if $\bar{a} = \bar{a}^*$; $Y^{\bar{a}} = Y$ if $\bar{A} = \bar{a}$;

 $\bar{L}_k^{\bar{a}} = \bar{L}_k^{\bar{a}^*}$ if $\bar{a}_{k-1} = \bar{a}_{k-1}^*$; $\bar{L}_k^{\bar{a}} = \bar{L}_k$ if $\bar{A}_{k-1} = \bar{a}_{k-1}$ generalized backdoor criterion (static strategy): all backdoors into A_k (except through future treatments) are blocked $\forall k$

static sequential exchangeability for $Y^{\bar{a}}$

$$Y^{\bar{a}} \perp \!\!\!\perp A_k | \bar{A}_{k-1}, \bar{L}_k \quad \text{for } k = 0, 1, ..., K$$

use SWIGs to visually check d-separation time-varying confounding $\mathrm{E}\left[Y^{\bar{a}}|L_{0}\right] \neq \mathrm{E}\left[Y|A=\bar{a},L_{0}\right]$

Treatment-Confounder Feedback $A_0 \rightarrow L_1 \rightarrow A_1$: an unmeasured U influencing L_1 and Y turns L_1 into a collider; traditional adjustment (e. g. stratification) biased: use g-methods **g-null test** sequential exchangeability & sharp null true \Rightarrow $Y^g = Y \forall g \Rightarrow Y \perp \!\!\!\perp A_0 | L_0 \& Y \perp \!\!\!\perp A_1 | A_0, L_0, L_1$; therefore: if last two independences don't hold, one assumption is violated **g-null theorem:** $E[Y^g] = E[Y]$, if the two independences hold (\Rightarrow sharp null: only if strong faithfulness (no effect cancelling))

References

If no citation is given, the information is taken from the book (Hernán and Robins, 2020)

- Hernán, M. A. and Robins, J. M. (2020). Causal inference: what if. Boca Raton: Chapman & Hall/CRC.
- Petersen, M. L. and van der Laan, M. J. (2014). Causal models and learning from data: integrating causal modeling and statistical estimation. *Epidemiology (Cambridge, Mass.)*, 25(3):418–426.
- Schomaker, M., Luque-Fernandez, M. A., Leroy, V., and Davies, M.-A. (2019). Using longitudinal targeted maximum likelihood estimation in complex settings with dynamic interventions. *Statistics in medicine*, 38(24):4888–4911. ISBN: 0277-6715 Publisher: Wiley Online Library.
- Van der Laan, M. J., Polley, E. C., and Hubbard, A. E. (2007). Super learner. Statistical applications in genetics and molecular biology, 6(1). Article 24.
- Van der Laan, M. J., Rose, S., et al. (2011). Targeted learning: causal inference for observational and experimental data, volume 4. Springer.
- Young, J. G., Cain, L. E., Robins, J. M., O'Reilly, E. J., and Hernán, M. A. (2011). Comparative effectiveness of dynamic treatment regimes: an application of the parametric g-formula. *Statistics in biosciences*, 3:119–143.