Розділ 1 Множини та відношення

Тема 1.1 Множини

1.1.1 Основні поняття теорії множин

Множина — сукупність деяких **елементів**, цілком визначених у випадку кожної конкретної множини.

Георг Кантор

Приклади множин:

множина чисел, що діляться на 5;

множина студентів ФІОТ;

множина людей, що народилися у 2020 р. і т.д.

А, S, X,... — позначення множин

 a, s, x, \dots — позначення елементів множин

Символ «∈» — символ належності

 $x \in S$ — $x \in$ елементом множини S

 $x \notin S$ — елемент x не належить множині S

Приклади:

 $A = \{a, b, c, d\}$ — множина A складається з чотирьох елементів a, b, c, d

 $A = \{a_1, a_2,, a_n\}$ — скінченна множина A складається з n елементів $a_1, a_2,, a_n$

 $\{x\}$ — одинична множина

Якщо множина S скінченна, то кількість елементів в множині позначається |S|.

Приклад. $S = \{a, b, c\}, |S| = 3.$

Порядок слідування елементів у множині не має значення.

Наприклад, $\{a, b, c\}$ та $\{c, a, b\}$ — одна й та сама множина.

Позначення основних числових множин:

$$N$$
 — множина натуральних чисел, $N = \{1, 2, 3, ...\};$

$$Z$$
 — множина цілих чисел, $Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\};$

Позначення основних числових множин:

Q — множина раціональних чисел; будь-яке раціональне число можна зобразити у вигляді дробу: a/b, де $a,b\in Z,\ b\neq 0$;

R — множина дійсних чисел; будь-яке дійсне число можна зобразити у вигляді нескінченного десяткового дробу $a,b_1b_2b_3...b_n...$ із цілою частиною $a \in Z$ і $b_k \in \{0,...,9\}$.

Приклад. $A = \{C, D\}, C = \{a, b\}, D = \{c, d, e\}.$

При цьому $C \in A$, $D \in A$, але $a \notin A$, $c \notin A$.

Приклад. $X = \{\{1,2\},3\}.$

Множина називається скінченною, якщо вона містить скінченне число елементів,

нескінченною — якщо вона містить необмежене число елементів.

Приклад.

A={1, 2, 3, 4, 5, 6, 7, 8, 9, 0} — множина цифр в десятковій системі числення скінченна;

 $N = \{1, 2, 3, ...\}$ — множина натуральних чисел нескінченна.

Упорядкованою вважається така множина, в якій важливі не тільки її елементи, але і порядок їх наступності у множині.

Приклад.

$$A = \langle 1, 2, 3 \rangle;$$

 $A = \langle a_1, a_2, ..., a_n \rangle, n \in N;$
 $B = (a, b, c).$

1.1.2 Способи задання множин

1) переліком елементів

Приклад.

$$A = \{a_1, a_2,, a_n\}$$

 $O = \{$ Іванов, Петров, Сидоров, Кукушкіна $\}$.

2) визначення властивості елементів

(характеристичний предикат)

Приклади.

$$X = \big\{ x \,|\, P(x) \big\};$$

$$N_{10} = \{x \mid x \in N, x < 10\};$$

множина S студентів групи IC-12, які одержують стипендію.

3) рекурсивно (породжуюча процедура)

Приклад.

Нехай
$$F = \{\varphi_1, \varphi_2, \varphi_3, ...\}$$
, де $\varphi_i \in N$, $i = 1, 2, 3, ...$

$$\varphi_1 = 1$$
, $\varphi_2 = 2$, $\varphi_n = 3\varphi_{n-2} + \varphi_{n-1}$, $n = 3, 4, ...$

Тоді

$$\varphi_3 = 3\varphi_1 + \varphi_2 = 3 \cdot 1 + 2 = 5;$$

$$\varphi_4 = 3\varphi_2 + \varphi_3 = 3 \cdot 2 + 5 = 11$$
 і т.д.

Множина задана коректно, якщо для будь-якого елемента можна визначити, належить він множині чи ні.

Приклади.

A — множина, що містить будь-які п'ять натуральних чисел;

B — множина всіх простих чисел

При заданні множин можуть бути неточності або збитковості, які необхідно усувати.

Приклад. A — множина залишків, що одержуються при послідовному діленні натуральних чисел $\{3, 4, 5, 6, ...\}$ на 3: $A = \{0, 1, 2, 0, 1, 2, 0, 1, 2, 0, ...\}$.

1.1.3 Основні поняття теорії множин

Дві множини **рівні**, якщо вони містять однаковий набір елементів. Позначається A = B. Якщо множини не рівні, це позначається $A \neq B$.

Приклад. Нехай задані множини

$$A = \{1, 2, 3, 4, 5\};$$

B — множина натуральних чисел від 1 до 5;

$$C = \{c \mid 1 \le c \le 5, c \in N\};$$

$$D = \{4, 1, 5, 2, 3\}.$$

Чи є серед множин A, B, C, D — рівні?

Двостороннє включення

A=B тоді і тільки тоді, коли з $x\in A$ виходить $x\in B$ і з $y\in B$ виходить $y\in A$.

Множини A і B називаються **еквівалентними** або **рівнопотужними** ($A \sim B$), якщо між ними можна встановити взаємнооднозначну відповідність.

Взаємнооднозначною називається така відповідність між множинами A і B, при якій кожному елементу $a \in A$ відповідає один і тільки один елемент $b \in B$, і кожному елементу $b \in B$ відповідає один і тільки один елемент $a \in A$.

Приклад. Взаємнооднозначна відповідність між глядачами і кріслами (кожному глядачеві відповідає одне і тільки одне визначене крісло і навпаки).

Множина A називається **зчисленною** (дискретною), якщо вона еквівалентна натуральному ряду N ($A \sim N$).

Множина A називається континуальною (незчисленною), якщо вона еквівалентна відрізку [0, 1], а потужність цієї множини — континуум.

Множина A, всі елементи якої належать множині B, називається **підмножиною** множини B.

Приклад.

$$A = \{1, 2, 3\};$$

$$B = \{1, 2, 3, 4, 5\}.$$

Нестроге включення позначається $A \subseteq B$, означає, що A — **підмножина** множини B, що, можливо, співпадає з B.

Строге включення позначається $A \subset B$ і означає, що A — підмножина множини B, що не співпадає з B.

У цьому випадку кажуть, що A — власна підмножина множини B.

Приклад. $R^+ \subset R$.

Приклад.

X — множина учнів деякого класу,

Y — множина відмінників у цьому класі.

Тоді $Y \subset X$.

Виконання співвідношень

 $A \subseteq B$ і $B \subseteq A$ можливе тільки при A = B.

I зворотно, A = B, якщо $A \subseteq B$ і $B \subseteq A$ водночас.

Універсальною називається множина, яка містить всі можливі елементи, що зустрічаються в даній задачі. Універсальна множина позначається символом U.

Приклад. Розглянемо деяку групу студентів. Нехай A — множина юнаків групи, B — множина відмінників.

U — множина студентів групи, $A \subseteq U$, $B \subseteq U$.

Приклад.

$$a \in \{a,b,c\}$$

$${a}\subset{a,b,c}$$

Порожньою називається така множина, яка не містить ніяких елементів. Така множина позначається спеціальним символом \varnothing .

Порожня множина \varnothing ε підмножиною будь-якої множини $A, \varnothing \subseteq A.$

Порожня множина ϵ множиною, тому, якщо деяка множина A не містить жодного елемента, то $A=\varnothing$; |A|=0.

Запис $A = \{\emptyset\}$ означає, що A містить один елемент — \emptyset , |A| = 1.

Таким чином, будь-яка непорожня множина *А* обов'язково має, як мінімум, дві підмножини — порожню множину і саму цю множину.

Множину всіх підмножин множини A називають множиною-степенем або булеаном множини A.

Позначають 2^A (або P(A)).

Приклад. Hexaй $A = \{a,b,c\}$.

$$2^{A} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\$$

Для довільної множини A з n елементів кількість

всіх її підмножин дорівнює
$$2^n$$
: $|2^A| = 2^{|A|} = 2^n$.

Множини зображають графічно за допомогою діаграм Венна.

Універсальну множину позначають прямокутником, а всі інші множини — кругами в ньому.

1.1.4 Операції над множинами

Нехай множини A та B — підмножини універсуму U .

Діаграми Венна: круги зображують множини, що беруть участь в операції, а заштрихована частина — результат операції.

Об'єднання (сума) $(A \cup B)$ множин A і B — множина, що складається з тих і тільки тих елементів, які входять або до A,

або до B, або до A і B одночасно, тобто

$$A \cup B = \{x \mid x \in A \text{ afo } x \in B\}.$$

Приклад. Нехай $A = \{1, 2, 3\}; B = \{2, 3, 4\},$ тоді $A \cup B = \{1, 2, 3, 4\}.$

 Перетин
 (добуток)
 $(A \cap B)$

 множин A і B — множина, що

 складається з тих і тільки тих

 елементів, які належать одночасно множині A та множині B, тобто

$$A \cap B = \{x \mid x \in A \text{ ta } x \in B\}.$$

Приклад. Нехай $A = \{1, 2, 3\}; B = \{2, 3, 4\},$ тоді $A \cap B = \{2,3\}.$

Різниця ($A \setminus B$, A - B) множин A і B — множина, що складається з тих і тільки тих елементів, які належать множині A та не належать множині B, тобто

$$A \backslash B = \{x \mid x \in A \text{ Ta } x \notin B\}.$$

Приклад. Нехай
$$A = \{1, 2, 3\}; B = \{2, 3, 4\},$$
 тоді $A \setminus B = \{1\}.$

Симетрична різниця $(A \div B, A \triangle B,$

 $A \oplus B$) A і B — множина, що складається з усіх елементів A, які не належать множині B, й усіх елементів

B, які не належать множині A, тобто

$$A \div B = \{x \mid (x \in A \text{ та } x \notin B) \text{ або } (x \notin A \text{ та } x \in B)\}.$$

За означенням: $A \div B = (A \backslash B) \cup (B \backslash A)$.

Приклад. Нехай
$$A = \{1, 2, 3\}; B = \{2, 3, 4\},$$
 тоді $A \div B = \{1, 4\}.$

Доповнення (заперечення) $(\overline{A},$

A') до множини A — множина, що містить усі елементи універсуму, за винятком елементів множини A, тобто

$$\overline{A} = \{x \mid x \notin A\}.$$

За означенням: $\overline{A} = U \setminus A$.

1.1.5 Властивості операцій над множинами

- ідемпотентність (самопоглинання)

1a)
$$A \cup A = A$$

16)
$$A \cap A = A$$

- комутативність

2a)
$$A \cup B = B \cup A$$

26)
$$A \cap B = B \cap A$$

- асоціативність

3a)
$$A \cup (B \cup C) = (A \cup B) \cup C$$

36)
$$A \cap (B \cap C) = (A \cap B) \cap C$$

- дистрибутивність

4a)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$46) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

 властивості порожньої та універсальної множин

5a)
$$A \cup \emptyset = A$$

6a)
$$A \cup \overline{A} = U$$

7a)
$$A \cup U = U$$

8a)
$$\overline{\varnothing} = U$$

56)
$$A \cap \emptyset = \emptyset$$

66)
$$A \cap \overline{A} = \emptyset$$

76)
$$A \cap U = A$$

86)
$$\overline{U} = \emptyset$$

• поглинання

9a)
$$A \cup (A \cap B) = A$$

96)
$$A \cap (A \cup B) = A$$

- закони де Моргана

10a)
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

10б)
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

- властивості доповнення, різниці та рівності

11)
$$A \cup B = U$$
 ta $A \cap B = \emptyset \iff B = \overline{A}$

12)
$$\overline{A} = A$$
 (інволютивність)

13)
$$A \setminus B = A \cap \overline{B}$$

14)
$$A \div B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$$

15)
$$A \div B = B \div A$$

- властивості доповнення, різниці та рівності

16)
$$(A \div B) \div C = A \div (B \div C)$$

17)
$$A \div \emptyset = \emptyset \div A = A$$

18)
$$A \subset B \Leftrightarrow A \cap B = A \Leftrightarrow A \cup B = B \Leftrightarrow A \cap \overline{B} = \emptyset$$

19)
$$A = B \iff (A \cap \overline{B}) \cup (\overline{A} \cap B) = \emptyset$$

Доведення тотожностей

- за допомогою діаграм Венна
- методом двостороннього включення
- методом алгебраїчних перетворень,
 використовуючи властивості операцій над множинами

Доведення закону де Моргана за допомогою діаграм Венна

10a)
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
.

Діаграма Венна для лівої частини:

Доведення закону де Моргана за допомогою діаграм Венна

10a)
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
.

Права частина

Доведення властивості асоціативності

36)
$$A \cap (B \cap C) = (A \cap B) \cap C$$
.

$$ightharpoonup$$
 Нехай $x \in A \cap (B \cap C) \implies x \in A, x \in B, x \in C \implies$

$$\Rightarrow x \in (A \cap B) \ i \ x \in C \ \Rightarrow \ x \in (A \cap B) \cap C \ \Rightarrow$$

$$\Rightarrow A \cap (B \cap C) \subseteq (A \cap B) \cap C.$$

Аналогічно доводиться, що $(A \cap B) \cap C \subset A \cap (B \cap C)$.

Отже,
$$A \cap (B \cap C) = (A \cap B) \cap C$$
.

Доведення властивості 1a: $A \cup A = A$.

Доведення властивості дистрибутивності $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

▶ 3 одного боку, оскільки

$$(B \cap C) \subseteq B$$
, to $A \cup (B \cap C) \subseteq A \cup B$.

Аналогічно

$$B \cap C \subseteq C$$
 i $A \cup (B \cap C) \subseteq A \cup C$.

Значить, $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.

Доведення властивості дистрибутивності $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

3 іншого боку, якщо $x \in (A \cup B) \cap (A \cup C)$, то $x \in A \cup B$ і $x \in A \cup C$.

Якщо $x \in A$, то $x \in A \cup (B \cap C)$. А якщо $x \notin A$, то $x \in B$ і $x \in C$ і тоді $x \in B \cap C$.

Отже, $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.

Разом з отриманим раніше включенням маємо потрібну рівність. ▶

Сукупність множин A_1 , A_2 , ..., A_n називається **розбиттям** множини A, якщо:

$$1. \bigcup_{i=1}^{n} A_i = A.$$

2.
$$A_i \cap A_j = \emptyset$$
, $\forall i \neq j$.

Якщо умова 2 не задовольняється, то сукупність множин буде називатися **покриттям**.

Приклад 1

$$(A \cap B \cap C) \cup (\overline{A} \cap B \cap C) \cup \overline{B} \cup \overline{C} =$$

$$= [(A \cup \overline{A}) \cap B \cap C] \cup \overline{B} \cup \overline{C} = \tag{46}$$

$$= (\mathbf{U} \cap B \cap C) \cup \overline{B} \cup \overline{C} = \tag{6a}$$

$$= (B \cap C) \cup \overline{B} \cup \overline{C} = \tag{76}$$

$$= (B \cap C) \cup (B \cap C) = \tag{106}$$

$$=\mathbf{U}\tag{6a}$$

Приклад 2

$$(A \cap B \cap C \cap \overline{D}) \cup (\overline{A} \cap C) \cup (\overline{B} \cap C) \cup (C \cap D) =$$

$$= (A \cap B \cap C \cap \overline{D}) \cup [(\overline{A} \cup \overline{B} \cup D) \cap C] = \tag{46}$$

$$= (A \cap B \cap C \cap \overline{D}) \cup [(A \cap B \cap \overline{D}) \cap C] = \tag{106}$$

$$= [(A \cap B \cap \bar{D}) \cup (A \cap B \cap \bar{D})] \cap C = \tag{46}$$

$$= \mathbf{U} \cap C = \tag{6a}$$

$$=C$$
 (76)

Приклад 3

$$(\overline{A \cap \overline{B}}) \cup B =$$

$$= (\overline{A} \cup \overline{\overline{B}}) \cup B = \tag{106}$$

$$= (\overline{A} \cup B) \cup B = \tag{12}$$

$$= \overline{A} \cup (B \cup B) = \tag{3a}$$

$$= \overline{A} \cup B \tag{1a}$$