Baterias: Gerando Eletricidade Através de Reações Químicas

- ♦ Células Primárias (ou baterias).
 - A reação na célula não é reversível.
- Células Secundárias.
 - A reação da célula pode ser revertida passando-se uma corrente elétrica pela célula (recarga).
- Baterias de Fluxo e Células a Combustível.
 - Materiais atravessam a bateria, que converte energia química em eletricidade.

A Célula de Leclanché (Seca)

Isolamento

Bastão de grafite (catodo)

Pasta de MnO₂ e carbono em contato com o catodo

Pasta de NH₄Cl/ZnCl₂ (eletrólito)

Invólucro de zinco metálico (anodo)

Copyright © 2007 Pea

A Célula de Leclanché (Seca)

Oxidação:

$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$$

Redução:

$$2 \text{ MnO}_2(s) + \text{H}_2\text{O}(1) + 2 e^- \rightarrow \text{Mn}_2\text{O}_3(s) + 2 \text{ OH}^-$$

Reação ácido-base:

$$NH_4^+ + OH^- \rightarrow NH_3(g) + H_2O(1)$$

Reação de precipitação: $NH_3 + Zn^{2+}(aq) + Cl^- \rightarrow [Zn(NH_3)_2]Cl_2(s)$

Célula Alcalina Seca

Redução:

$$2 \text{ MnO}_2(s) + \text{H}_2\text{O}(1) + 2 e^- \rightarrow \text{Mn}_2\text{O}_3(s) + 2 \text{ OH}^-$$

Pode-se pensar na reação de oxidação em duas etapas:

$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$$

$$Zn^{2+}(aq) + 2 OH^{-} \rightarrow Zn (OH)_{2}(s)$$

$$Zn(s) + 2OH^{-} \rightarrow Zn(OH)_{2}(s) + 2e^{-}$$

Copyright © 2007 Pearson Prentice Hall, Inc.

Bateria de Chumbo e Ácido

♦ A bateria secundária mais comum.

Copyright © 2007 Pearson Prentice Hall, Inc.

Bateria de Chumbo e Ácido

Redução:

$$PbO_2(s) + 3 H^+(aq) + HSO_4^-(aq) + 2 e^- \rightarrow PbSO_4(s) + 2 H_2O(1)$$

Oxidação:

$$Pb(s) + HSO_4(aq) \rightarrow PbSO_4(s) + H^+(aq) + 2e^-$$

$$PbO_2(s) + Pb(s) + 2 H^+(aq) + HSO_4^-(aq) \rightarrow 2 PbSO_4(s) + 2 H_2O(l)$$

$$E_{\text{cel}}^{\circ} = E_{\text{PbO}_2/\text{PbSO}_4}^{\circ} - E_{\text{PbSO}_4/\text{Pb}}^{\circ} = 1,74 \text{ V} - (-0,28 \text{ V}) = 2,02 \text{ V}$$

A Célula de Zinco-Prata:

$$Zn(s)$$
, $ZnO(s)$ | $KOH(sat)$ | $Ag_2O(s)$, $Ag(s)$

$$Zn(s) + Ag_2O(s) \rightarrow ZnO(s) + 2 Ag(s)$$
 $E_{cel} = 1.8 \text{ V}$

A Célula de Mercúrio-Zinco:

Anodo:

$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$$

$$Zn^{2+}(aq) + 2 OH^{-} \rightarrow Zn (OH)_{2}(s)$$

Global:

$$\operatorname{Zn}(s) + 2 \operatorname{OH}^{2} \longrightarrow \operatorname{Zn}(\operatorname{OH})_{2}(s) + 2 e^{-1}$$

Catodo:

$$HgO + H_2O + 2e^- \rightarrow Hg + 2OH^-$$

A Célula de Níquel-Cádmio

Anodo (-)

 $Cd + 2OH^{-} \rightarrow Cd(OH)_{2} + 2e^{-}$

Catodo (+)

 $2NiO(OH) + 2H_2O + 2e \rightarrow 2Ni(OH)_2 + 2OH^{-1}$

Global:

 $Cd + 2NiO(OH) + 2H_2O \rightarrow Cd(OH)_2 + 2Ni(OH)_2$

Células a Combustível

- ◆ Convertem diretamente a energia química de um combustível e um oxidante em energia elétrica.
- ◆ Energia limpa: Não há emissão de CO₂, CO, NO₂ e SO₂.
- ◆ Processo de alta eficiência (até 90%).
- Baixo consumo e eliminação de água.

Células a Combustível

Célula a Combustível	Temp. Operação (°C)	Eletrólito	Aplicação
Alcalina (AFC)	60-90	KOH 35-50%	Tração/Espaço
Troca Protônica (PEFC)	50-100	Membrana Polimérica (Nafion, Dow)	Tração, Espaço, Portáteis
Ácido Fosfórico (PAFC)	160-220	H₃PO₄ Concentrado	Geração Estacionária
Carbonato Fundido (MCFC)	620-660	Carbonatos Fundidos	Geração Estacionária
Óxido Sólido (SOFC)	800-1000	ZrO ₂ estabilizado com ítria	Geração Estacionária
Metanol/Etanol Direto (DMFC/DEFC)	50-90	Membrana Polimérica (Nafion, Dow)	Portáteis
Zinco/Ar (ZAFC)	Ambiente - 700	NaOH em matriz cerâmica	Tração
Cerâmica Protônica (PCFC)	700	Condutores protônicos de alta temperatura	Geração Estacionária
Microbial ou Biológica (MFC/BFC)	25-40	Soluções "biológicas"	Portáteis

Células a Combustível - AFC

$$O_2(g) + 2 H_2O(1) + 4 e^- \rightarrow 4 OH^-(aq)$$

$$2\{H_2(g) + 2 OH^-(aq) \rightarrow 2 H_2O(1) + 2 e^-\}$$

$$2H_2(g) + O_2(g) \rightarrow 2 H_2O(1)$$

$$E_{\text{cell}}^{\circ} = E_{\text{O}_2/\text{OH}^{-}}^{\circ} - E_{\text{H}_2\text{O}/\text{H}_2}^{\circ}$$

= 0,401 V - (-0,828 V) = 1,229 V

$$\varepsilon = \Delta G^{\circ} / \Delta H^{\circ} = 0.83$$

Célula a Combustível PEM

Fonte: http://www.humboldt.edu/~serc/animation.html

Membranas Poliméricas Perfluorosulfônicas: Nafion®, Dow®

Alguns Exemplos - Transporte

Fonte: http://www.fuelcells.org, http://www.fuelcelltoday.com

Alguns Exemplos - Transporte

Projeto Vega II: LH2 - Unicamp, MME, NIPE-Unicamp

Alguns Exemplos - Transporte

Só Carros "Populares"?

Transportes

http://www.boeing.com/news/releases/2007/q1/070327e_nr.html

Alguns Exemplos: Portáteis

Fonte: http://www.fuelcells.org : Fuel Cells 2000

MCI e CaC: Uma Comparação

Fonte: http://www.ballard.com