W13 - B Tree Functions

Due 9 Apr at 23:59

Points 20

Questions 10

Available 3 Apr at 9:00 - 9 Apr at 23:59

Time limit None

Allowed attempts Unlimited

This quiz was locked 9 Apr at 23:59.

Attempt history

	Attempt	Time	Score
KEPT	Attempt 3	1 minute	20 out of 20
LATEST	Attempt 3	1 minute	20 out of 20
	Attempt 2	less than 1 minute	18 out of 20
	Attempt 1	22 minutes	18 out of 20

(!) Correct answers are hidden.

Score for this attempt: 20 out of 20

Submitted 9 Apr at 14:54 This attempt took 1 minute.

Question 1

2 / 2 pts

The relationship between Tree data structures and sorting can be exploited in many ways. An appropriate Tree structure pays the cost of an initial sort during the creation phase and is able to maintain sortedness without additional effort after that. Given that the lower bound on sorting n keys is in the order of $n \log n$, what could be the lower bound on the average cost of the add function in any such tree data structure?

O(n)

Question 3	2 / 2 pts
Space utilization in a B-Tree is always at or above	
25%	
75%	
50%	

Question 4	2 / 2 pts
The key motivation behind using B-Tree (in place of AVL or RB improving:	Tree) is
time complexity	
I/O complexity	
space complexity	

Question 5	3 / 3 pts
The following is true for a B-Tree of order d:	
Each node can contain maximum 'd' number of keys.	
☐ The tree can have some empty sub-trees.	
All leaf nodes are at the same level.	
Th root can contain at least 2 and at most d children.	
☐ It does not follow binary search tree property.	
Each child node can contain at least ceil (d/2) children and at most children.	d

In a 2-4 tree, you can simply delete a key (without doing any rotation/merging/splitting) if the node from which the key is being deleted is a 3-node or 4-node . Answer 1: 3-node or 4-node

Question 8 2 / 2 pts B-trees are balanced, with a uniform path length in root-to leaf searches. This guarantees uniformly efficient search.

True			
False			

An (a,b)-tree is a multi way search tree such that each node has between a and b children and stores between a–1 and b–1 entries. The tree in qs. 1 is an (choose all that apply):

(2,3)-tree
(2,4)-tree
(3,4)-tree

Question 10	2 / 2 pts
If a B-tree contains N keys, L keys per node and an aver per node, then the number of levels are $O(\log_F)$	age of <i>F</i> children
N/L	

Quiz score: 20 out of 20