Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа №3

По дисциплине

"Основы профессиональной деятельности"

Вариант: 3314

Выполнил: Рахматов Неъматджон

Группа: Р3133

Преподаватель: *Елена Блохина*

Оглавление

Задание	2
Ход работы	
Таблица команд	
Описание программы	
Область допустимых значений	4
Трассировка	4
Вывол	6

Задание

По выданному преподавателем варианту определить функцию, вычисляемую программой, область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы, предложить вариант с меньшим числом команд. При выполнении работы представлять результат и все операнды арифметических операций знаковыми числами, а логических операций набором из шестнадцати логических значений.

46E:	0484	47C:	0200
46F:	A000	47D:	0280
470:	E000	47E:	2EF2
471:	0200	47F:	0400
472:	+ 0200	480:	EEF0
473:	EEFD	481:	8470
474:	AF05	482:	CEF5
475:	EEFA	483:	0100
476:	4EF7	484:	070E
477:	EEF7	485:	0663
478:	ABF6	486:	01C0
479:	F302	487:	0517
47A:	0300	488:	F500
47B:	0380	İ	

Ход работы

Таблица команд

Адрес	Код комманды	Мнемоника	Комментарий
472	0200	CLA	Очистка аккумулятора
473	EEFD	ST IP-3	$AC \rightarrow MEM(IP-3)$
474	AF05	LD 005	(0005) → AC
475	EEFA	ST IP-6	$AC \rightarrow MEM(IP-9)$
476	4EF7	ADD IP-9	$(AC + MEM(IP-9)) \rightarrow AC$
477	EEF7	ST IP-9	$AC \rightarrow MEM(IP-9)$
478	ABF6	LD -(IP-A)	Загрузка (Косвенная относительная автодекрементная адресация) МЕМ (-MEM (IP - A)) -> AC
479	F302	BPL IP+2	Переход, если плюс (IF N==0)
47A	0300	CLC	0 → C
47B	0380	CMC	$NOT(C) \rightarrow C$
47C	0200	CLA	$0 \rightarrow AC$
47D	0280	NOT	$NOT(AC) \rightarrow AC$
47E	2EF2	AND IP-E	$(AC \text{ and } MEM(IP-E)) \rightarrow AC$
47F	0400	ROL	Циклический сдвиг влево
480	EEF0	ST IP-F	$AC \rightarrow MEM(IP-F)$
481	8470	LOOP 470	Декремент и пропуск (Прямая абсолютная адресация)
482	CEF5	BR IP-B	Безусловный переход (эквивалент JUMP с прямой относительной адресацией)
483	0100	HLT	Остановка

Описание программы

Программа проверяет знак каждого элемента массива, если оно положительное то в результате записывается 0, если отрицательное то записывается 1 потом сдвигается влево.

5 младших байт результата — отображение знаков элементов массива, где 1 — отрицательный, 0 — положительный. При этом номеру элемента массива соответствует номер бита результата

Расположение в памяти БЭВМ программы, исходных данных и результатов: 484-488 — массив с исходными данными, состоящий из пять чисел.

472-483 – инструкции

46Е - ячейка, содержащая в себе адрес начала массива

47F - ячейка, содержащая в себе адрес числа, с которым программа работает

470 - ячейка, содержащая в себе счетчик, который показывает программе, сколько необработанных чисел осталось в массиве

471 – итоговый результат

Адреса первой и последней выполняемой инструкции программы:

472 – адрес первой инструкции

483 – адрес последней инструкции

Область представления:

аrr_first, arr_last - 11-ти разрядные, адрес БЭВМ arr_length, result - 16-ти разрядные целые числа, беззнаковое. arr[i] - 16-ти разрядные знаковые целые числа.

Область допустимых значений

$$-2^{15} \le arr[i] \le 2^{15} - 1$$

 $0 \le arr_length \le 5$
 $arr_first \le arr_last \le arr_first + arr_length - 1$
 $0 \le result \le 2^5 - 1$

Трассировка

 $\begin{array}{l} 0_{(10)} = 0000_{(16)} - 484 \\ -1_{(10)} = FFFF_{(16)} - 485 \\ 1_{(10)} = 0001_{(16)} - 486 \\ -2_{(10)} = FFFE_{(16)} - 487 \\ 2_{(10)} = 0002_{(16)} - 488 \end{array}$

	Выполняемая команда		ожание р	содер кото изменило выпол	йка, жимое орой ось после инение					
Адр	Знчн	IP	CR	AR	DR	BR	AC	NZVC	Адр	Знчн
472	0200	473	0200	472	0200	0472	0000	0100		
473	EEFD	474	EEFD	471	0000	FFFD	0000	0100	471	0000
474	AF05	475	AF05	474	0005	0005	0005	0000		
475	EEFA	476	EEFA	470	0005	FFFA	0005	0000	470	0005
476	4EF7	477	4EF7	46E	0484	FFF7	0489	0000		
477	EEF7	478	EEF7	46F	0489	FFF7	0489	0000	46F	0489
478	ABF6	479	ABF6	488	0002	FFF6	0002	0000	46F	0488

479	F302	47C	F302	479	F302	0002	0002	0000		
47C	0200	47D	0200	47C	0200	047C	0000	0100		
47D	0280	47E	0280	47D	0280	047D	FFFF	1000		
47E	2EF2	47F	2EF2	471	0000	FFF2	0000	0100		
47F	0400	480	0400	47F	0400	047F	0000	0100		
480	EEF0	481	EEF0	471	0000	FFF0	0000	0100	471	0000
481	8470	482	8470	470	0004	0003	0000	0100	470	0004
482	CEF5	478	CEF5	482	0478	FFF5	0000	0100		
478	ABF6	479	ABF6	487	FFFE	FFF6	FFFE	1000	46F	0487
479	F302	47A	F302	479	F302	0479	FFFE	1000		
47A	0300	47B	0300	47A	0300	047A	FFFE	1000		
47B	0380	47C	0380	47B	0380	047B	FFFE	1001		
47C	0200	47D	0200	47C	0200	047C	0000	0101		
47D	0280	47E	0280	47D	0280	047D	FFFF	1001		
47E	2EF2	47F	2EF2	471	0000	FFF2	0000	0101		
47F	0400	480	0400	47F	0400	047F	0001	0000		
480	EEF0	481	EEF0	471	0001	FFF0	0001	0000	471	0001
481	8470	482	8470	470	0003	0002	0001	0000	470	0003
482	CEF5	478	CEF5	482	0478	FFF5	0001	0000		
478	ABF6	479	ABF6	486	0001	FFF6	0001	0000	46F	0486
479	F302	47C	F302	479	F302	0002	0001	0000		
47C	0200	47D	0200	47C	0200	047C	0000	0100		
47D	0280	47E	0280	47D	0280	047D	FFFF	1000		
47E	2EF2	47F	2EF2	471	0001	FFF2	0001	0000		
47F	0400	480	0400	47F	0400	047F	0002	0000		
480	EEF0	481	EEF0	471	0002	FFF0	0002	0000	471	0002
481	8470	482	8470	470	0002	0001	0002	0000	470	0002
482	CEF5	478	CEF5	482	0478	FFF5	0002	0000		

478	ABF6	479	ABF6	485	FFFF	FFF6	FFFF	1000	46F	0485
479	F302	47A	F302	479	F302	0479	FFFF	1000		
47A	0300	47B	0300	47A	0300	047A	FFFF	1000		
47B	0380	47C	0380	47B	0380	047B	FFFF	1001		
47C	0200	47D	0200	47C	0200	047C	0000	0101		
47D	0280	47E	0280	47D	0280	047D	FFFF	1001		
47E	2EF2	47F	2EF2	471	0002	FFF2	0002	0001		
47F	0400	480	0400	47F	0400	047F	0005	0000		
480	EEF0	481	EEF0	471	0005	FFF0	0005	0000	471	0005
481	8470	482	8470	470	0001	0000	0005	0000	470	0001
482	CEF5	478	CEF5	482	0478	FFF5	0005	0000		
478	ABF6	479	ABF6	484	0000	FFF6	0000	0100	46F	0484
479	F302	47C	F302	479	F302	0002	0000	0100		
47C	0200	47D	0200	47C	0200	047C	0000	0100		
47D	0280	47E	0280	47D	0280	047D	FFFF	1000		
47E	2EF2	47F	2EF2	471	0005	FFF2	0005	0000		
47F	0400	480	0400	47F	0400	047F	000A	0000		
480	EEF0	481	EEF0	471	000A	FFF0	000A	0000	471	000A
481	8470	483	8470	470	0000	FFFF	000A	0000	470	0000
483	0100	484	0100	483	0100	0483	000A	0000		

Вывод

В ходе выполнения данной лабораторной работы познакомился с устройством БЭВМ поглубже. Я научился работать в БЭВМ с массивами, ветвлением и циклами. Я изучил прямую и косвенную адресацию и цикл выполнения таких команд, как LOOP и JUMP.