PERGUNTA 95 (CABO DE FIBRA ÓPTICA)	
O que é o cabo de Fibra Óptica ?	
Mostre os filamentos usados como núcleo de um cabo de Fibra Óptica	
Quais as vantagens do cabo de Fibra Óptica sobre o cabo Par Trançado?	
Ilustre um cabo de Fibra Óptica	
O que é um cabo de Fibra Óptica Multimodo ?	
Ilustre a transmissão de dados via Fibra Óptica Multimodo	
O que é um cabo de Fibra Óptica Monomodo ?	
Ilustre a transmissão de dados via Fibra Óptica Monomodo	
Ilustre a diferença entre as espessuras dos cabos Multimodo e Monomodo	

Como são os conectores de cabos de Fibra Óptica?

PERGUNTA 95 (CABO DE FIBRA ÓPTICA)

O cabo de Fibra Óptica é um cabo usado para a transmissão de dados, assim como o cabo Par Trançado, porém, enquanto o Par Trançado possuí um núcleo de cobre para permitir impulsos elétricos, a Fibra Óptica é formada por vários filamentos flexíveis e transparentes, de vidro ou plástico, onde a transmissão é feita por através de faixos de luz impulsionados sobre os filamentos que são um pouco mais espessos que um fio de cabelo.

- Não sofre interferência eletromagnética: Por não usar núcleo de cobre, os filamentos ópticos transferem comprementos de onda de luz, mesmo que a instalação seja próxima de motores e transformadores o sinal não sofrerá interferência;
- **Tem baixa atenuação:** Os impulsos elétricos não vão a longas distâncias assim como os impulsos de luz, isso faz com que os dados possam ser transmitidos em grandes quantidades mesmo que por longas distâncias;

Existem 2 tipos de cabo de Fibra Óptica, o Multimodo (Multimode em inglés) e o Monomodo, a diferença principal entre eles está na espessura do núcleo de filamentos ópticos. O Multimodo utiliza um filamento mais espesso, de 50 a 62 mícrons, e utiliza faixo de luz produzido por LED que envia diversos complementos de onda que são trafegam pelo núcleo se "batendo" nas paredes do cabo. Cabos Multimodo tem a característica de serem usados para instalações menores, de até 2km.

O Monomodo (Monomode em inglês) utiliza um filamento mais fino, de 8 a 10 mícrons, e em vez de faixo de luz produzido por LED, o Monomodo utiliza Laiser que envia um único complemento de onda que trafega reto pelo núcleo. Esse complemento de onda reto permite que os dados cheguem a longas distâncias, de até 740km.

Geralmente os cabos de Fibra Óptica possuem um par de conectores em cada ponta da conexão, um conector serve como transmissor de dados (T) e o outro como receptor de dados (R), visto que os dados são emitidos em luz, enviar complementos de onda em dois sentidos no mesmo cabo seria inviável, por isso é necessário duas entradas de conexão.

PERGUNTA 95 (CABO DE FIBRA ÓPTICA)	PERGUNTA 95 (CABO DE FIBRA ÓPTICA)
Como funciona o conector ST ?	O conector ST é o modelo mais antigo de conector, ele possuía até mesmo trava giratória que podia ser conectada diretamente na placa ou num conversor. Nesse conector temos uma entrada para transmissão de dados e outra para recepção.
Como funciona o conector SC?	O conector SC veio um substituição do modelo ST, no lugar de uma trava giratória, agora tínhamos uma trava estilo pinça, que quando conectada fazia um "click", e podia ser conectada diretamente aos novos modelos de placa de rede. Assim como o ST, o conector SC possuí duas entradas.
Como funciona o conector LC?	O conector LC veio um substituição do modelo SC, ele também possuí uma trava estilo pinça para ser conectada diretamente as placa de rede. Porém ocupava menos espaço que o conector SC, era mais compacto. Aqui podemos ver uma comparação entre os dois
Como funciona o conector MTRJ?	O conector para Fibra Óptica mais moderno que nós temos é o MTRJ, esse é um conector mais seguro, ele basicamente tem o mesmo tamanho dos conectores RJ45 do Par Trançado, e eles possuem uma trava de segurança estilo pinça.
Quais as categorias e capacidades dos cabos para Fibra Óptica?	As categorias dividem cabos em Multimodo ou Monomodo: FX - Capacidade de 100Mbps até 2Km Multimodo: SX - Capacidade de 1000Mbs entre 200 ~ 500m SR - Capacidade de 10Gbps até 300m Monomodo: LX - Capacidade de 1000Mbps até 2Km LR - Capacidade de 10Gbps até 10Km