Back Propagation and Exact Diagonalization

icf

October 2017

1 Back Propagation and Exact Diagonalization

The problem will be solved in five steps:

- 1) Pre-analysis
- 2) Matlab Program Modification
- 3) Input
- 4) Output
- 5) Discussion

```
Notice:
```

Calculation used these parameters below if no special mention:

Lx=2;

Ly=2;

Lz=1;

 $N_up=1;$

 $N_dn=1$;

kx=0;

ky=0;

kz=0;

U=4;

tx=1;

ty=1;

tz=1;

deltau=0.01;

 $N_{\text{wlk}}=100;$

N_blksteps=[100:100:1000];

 $N_{eqblk}=5;$

 $N_blk=10;$

 $itv_{modsvd}=5;$

 $itv_pc=5;$

 $itv_Em=[10:10:100].$

1.1 Pre-analysis

N_up=1 and N_dn=1 is used because in this situation commutation relation of Fermions can be ignored and it is easier to programming.

1.2 Matlab Program Modification

batchsample_itv_Em_BP_ED.m; CPMC_Lab_ED.m; initialization_ED.m.

1.3 Input/Output

 $3.1.mat; 3_1.jpg; 3_2.jpg; 3_3.jpg.$

1.4 Discussion

The error of back propagation method is from the difference between $e^{itv_Em*deltau*H}$ and $\sum W_i*B_i$ which is the QMC estimation of $e^{itv_Em*deltau*H}$ and is hard to corrected by increasing itv_Em*deltau.

Figure 1: Data 1 is mixed Groundstate Energy, Data 2 is Back Propagation Ground State Energy, Data 3 is Exact Diagonalization Back Propagation Energy. itv_Em*deltau is the length of back propagation and the length of detect distance.

Figure 2: Data 1 is Back Propagation Kinetic Energy, Data 2 is Exact Diagonalization Back Propagation Kinetic Energy. itv_Em*deltau is the length of back propagation and the length of detect distance.

Figure 3: Data 1 is Back Propagation Potential Energy, Data 2 is Exact Diagonalization Back Propagation Potential Energy. itv_Em*deltau is the length of back propagation and the length of detect distance.