Rec'd PCT/PTO 06 MAY 2005

Europäisches Patentamt

European Patent Office

Office européen des brevets

REC'D 1 2 DEC 2003

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°.

02079705.6

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

European Patent Office

Office européen des brevets

Anmeldung Nr:

Application no.: 02079705.6

Demande no:

Anmeldetag:

Date of filing: 07.11.02

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

N.V. Solutia S.A. Chaussée de Boondael 6 1050 Bruxelles BELGIQUE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Heat transfer fluids for application over a broad range of temperatures

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

C09K5/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

Heat Transfer Fluids for Application over a Broad Range of Temperatures.

This invention relates to heat transfer fluids which can beneficially be used over a broad range of temperatures such as at temperatures from below -100 °C up to +175 °C. The inventive compositions consist essentially of a component selected from the group consisting of: a mixture of, at least, two structurally non-identical cycloalkane-alkyl or -polyalkyl components; a mixture of, at least, two structurally nonidentical aliphatic hydrocarbons having a linear or branched 15 chain; and a mixture of a cycloalkane-alkyl or -polyalkyl and an aliphatic hydrocarbon having a linear or branched chain. The compositions are formulated to possess: a cloud point below -100 °C, preferably in the range of from -110 °C to -175 °C; a vapor pressure at +175 °C, below 1300 kPa; and a viscosity, measured; 20 at the cloud point temperature of the fluid +10 °C, below 400 CP.

Heat transfer fluids have been used commercially for a long time. As one would consequently expect, the prior art relating ; to this domain is crowded and diverse and possessed of multiple, improvement proposals, in particular with respect to improving the efficacy of such fluids at low temperatures. Presently, commercial heat transfer fluids can be used at temperatures down to -80 °C. Below that temperature, viscosity can be too high 30 and/or products can be converted into solids. Several commercial products were formulated to mitigate the negatives but were found to be unsuitable for application over a broad range of temperatures because of significant shortcomings including too : high vapor pressures, too low flash points and/or too high 35 viscosities at the operating temperatures. DE-A-42 40 306 discloses heat transfer fluids, based on methylcyclopentane,

having significant deficiencies, such as low flash point (-25 °C) and high vapor pressure, which can render its utilization aleatory. A commercial silicon-based product has too high viscosity and freezing point and is, in addition, economically less attractive.

US-A-6,086,782 discloses heat transfer fluid compositions containing major, possibly comparable, levels of a terpene and ! an alkylbenzene. These compositions are said to retain the liquid state at any temperature in the range of from -18 °C to -115 °C. US-A-5,484,547 describes low temperature heat transfer fluids consisting of major levels of a glycol component and a second component selected from dioxolanes, glycol formal and dioxanes and minor levels of conventional additives. FR-A-1.427.017 relates to refrigerant fluids containing a mixed 15 isopropyl/isobutyl orthosilicate tetraester and a minor level of an ethyl/butyl propyleneglycol diether. These compositions can be used at temperatures down to -54 °C. Phillip E. Tuma, Pharmaceutical Technology, March 2000, pages 104-114, has summarized various obstacles on the road to achieving beneficial 20 low temperature heat transfer performance. Particular attention, is drawn, among others, to flammability, environmental effects and thermal performance. EP-A-92 089 922.1 pertains to working : fluids comprising a mixture of fluoroalkanes and hydrofluoroalkanes, possibly in equal weight proportions. The 25 compositions can be used in refrigerators, freezers, heat pumps: and air conditioning systems. Hydrofluorocarbons do not meet the requirements of this invention among others because of excessive vapor pressures at temperatures above e.g. 100 °C. While known: fluids could be used at selected low temperature conditions, 30 such known fluids are generally inadequate, in particular for use at higher temperatures. Patent application DE-A-198 53.571 divulges heat transfer fluids based on ethylcyclopentane. This technology can allegedly be used over an enlarged temperature range of e.g. from -110 °C to +110 °C. WO-A-01/92436 describes heat transfer fluids based on 2-methyl pentane, 3-methyl pentane, 1,5-hexadiene or 1-hexene.

The negatives attached to prior art low-temperature fluids are operationally significant; the actual application of the art technology is capital intensive and cannot yield manufacturing flexibility over a broad range of temperatures. In particular, short-chain cycloalkane species as such were found to be unsuitable for operation over a broad range of temperatures and, in fact, are not capable of curing, to any meaningful degree, known operational insufficiencies.

10

It is therefore a major object of this invention to provide heat transfer fluids capable of operating over a broad range of temperatures. It is another object of this invention to formulate heat transfer fluids capable of being used effectively at a broad range of temperatures, particularly from +175 °C to,-15 145 °C while avoiding, inter alia, significant vapor pressure build-up and maintaining adequate fluidity properties. It is yet another object of this invention to formulate heat transfer fluids having acceptable physical properties even in the substantial absence of aromatics. The foregoing and other 20 benefits can now be secured from heat transfer fluids consisting essentially of a component selected from the group consisting of: a mixture of narrowly defined cycloalkane-alkyl or polyalkyl; a mixture of specifically defined aliphatic hydrocarbons; and mixtures of a cycloalkane-alkyl, or -25 polyalkyl, and an aliphatic hydrocarbon, at a level such that the composition exhibits cumulative physical properties, including a cloud point below -100 °C, a vapor pressure at +175 "C below 1300 kPa, and a viscosity, measured at the cloud point temperature +10 °C, below 400 cP. The inventive technology 30 herein is described in more detail hereinafter.

Particular terms as used throughout the description and the claims shall have the following meaning:

35

"cloud point" is defined as the temperature of equilibrium between a multicomponent liquid of specified composition and the

25

30

35

first solid phase that appears when that liquid is cooled measured in accordance with the method of ASTM D-2500. The cloud point of the liquid heat transfer fluid can also be calculated in accordance with the method of S.I. SANDERS, Chemical and Engineering Thermodynamics, Wiley, New York, 1977, Chapter 8;

"vapor pressure" is measured thereby using the method of PROCESS HEATING, November/December 1994, page 27, Volume 1, Number 4, or calculated by methods described in R.C. REID J.M. PRAUSNITZ and T.K. SHERWOOD, The Properties of Gases and Liquids, McGraw-Hill, New York, 1977;

"viscosity" is determined in accordance with the method of ASTM D-445, or calculated by the method of VAN VELZEN, CARDOZO and LANGENKAMP, as described in R.C. REID, J.M. PRAUSNITZ and T.K. SHERWOOD, The Properties of Gases and Liquids, McGraw-Hill, New York, 1977, Chapter 9;

20 the term "alkyl" embraces, unless defined differently, straight or branched species;

the terms "aliphatic hydrocarbon" and "aliphatic alkane" can be used interchangeably;

the term "structurally non-identical" means, with respect to the cycloalkane-alkyl or -polyalkyl components and with respect to the aliphatic hydrocarbon components, that the first of such individual components has a different molecular weight as compared to the second component or that the first and the second components are structural isomers; and

"percent" or "%" refers, unless defined more specifically, to percent or % by weight.

This invention concerns heat transfer fluids which can be used beneficially over a broad range of temperatures such as at

temperatures in the range from -145 °C up to +175 °C. The heat transfer fluid compositions herein consist essentially of a component selected from the group consisting of: a mixture of two structurally non-identical cycloalkane-alkyl or -polyalkyl components, wherein the cycloalkane moiety contains from 5 to 8 carbon atoms, the alkyl moiety contains from 1 to 6 carbon atoms with the proviso that the total number of carbon atoms in the alkyl moiety(ies) is in the range of from 1 to 10; a mixture of, at least, two structurally non-identical aliphatic hydrocarbons having a linear or branched chain with from 5 to 15 carbon . 10 atoms; and a mixture of a cycloalkane-alkyl or -polyalkyl, wherein the cycloalkane moiety contains from 5 to 8 carbon atoms, the alkyl moiety contains from 1 to 6 carbon atoms with the proviso that the total number of carbon atoms in the alkyl moiety(ies) is in the range of from 1 to 10, and an aliphatic 15 hydrocarbon having a linear or branched chain with from 5 to 15 carbon atoms; at a level such that the composition has a cloud point below -100 °C, preferably in the range of from -110 °C to -175 °C, a vapor pressure, at +175 °C, below 1300 kPa, and a viscosity, measured at the cloud point temperature +10 °C, below 20 400 cP. In preferred executions herein, the alkyl moiety in the cycloalkane-alkyl component is selected from methyl, ethyl and propyl, the aliphatic hydrocarbon contains from 5 to 10 carbon atoms, the viscosity is below 300 cP and the vapor pressure, at +175 °C, is below 827 kPa, more preferably below 621 kPa. 25

The structurally non-identical components are characterized by a different molecular weight of the first (cycloalkane/aliphatic hydrocarbon) component versus the second component, and thus can translate into different numbers of carbon atoms and/or different numbers of hydrogen atoms, or in that the first and the second (cycloalkane/aliphatic hydrocarbon) components are structural isomers. Examples of structurally non-identical cycloalkanes of different molecular weights are cyclo-pentane and cyclo-hexane. Examples of non-identical cycloalkane isomers are: 1,2-dimethyl cyclohexane versus 1,3-dimethyl cyclohexane; and n-propyl cyclohexane versus isopropyl cyclohexane. Examples

30

of cycloalkane components having different numbers of hydrogen atoms are perhydroindene versus n-propyl cyclohexane. Examples of structurally non-identical aliphatic hydrocarbons of different molecular weights are n-hexane and n-heptane. Examples of structurally non-identical isomers are pentane-2-methyl and pentane-3-methyl.

Representative and preferred species of the essential first or second cycloalkane component are: cyclohexane-methyl, -dimethyl, -ethylmethyl, -trimethyl, -ethyl and -propyl; cyclopentane-methyl, -dimethyl, -ethylmethyl, -trimethyl, -ethyl and -propyl; cycloheptane-methyl, -dimethyl, -ethylmethyl, -trimethyl, -trimethyl, -ethyl and -propyl; and cyclooctane-methyl, -dimethyl, -ethylmethyl, -trimethyl, -ethyl and -propyl.

15

10

The aliphatic hydrocarbon preferably contains from 5 to 10 carbon atoms. Representative and preferred species of the first or second aliphatic alkane are: pentane-2,2,4-trimethyl; pentane-2,3,4-trimethyl; pentane-2-methyl; pentane-3-methyl; hexane-2-methyl; hexane-3-methyl; n-hexane; hexane-2,2-dimethyl; hexane-3,3-dimethyl; n-heptane; heptane-4-methyl; n-octane; and octane-2-methyl. Examples of preferred combinations of aliphatic hydrocarbons are as follows: n-hexane/2,2,4-trimethylpentane; 2methylhexane/2,2,4-trimethylpentane; 2-methylhexane/n-heptane; 25 2-methylhexane/n-hexane; 2,2,4-trimethylpentane/n-heptane; and n-hexane/n-heptane. The ponderal ratios of aliphatic hydrocarbons, in mixtures thereof, can be varied over the complete range of from 99 : 1 to 1 : 99. It was found that, in the substantial absence of a cycloalkane component e.g. in the event the cycloalkane represents less than 5 % of the 30 combination of cycloalkane component and aliphatic component (100 %), the ponderal ratio of aliphatic hydrocarbon species in the binary mixture thereof is preferably in the range of from 190 : 10 to 10 : 90, more preferably of from 70 : 30 to 30 : 70.

35

The ponderal (weight) ratios of the first cycloalkane component to the second cycloalkane component are generally in the range

of from 95 : 5 to 5 : 95, preferably of from 90 : 10 to 10 : 90, more preferably of from 75 : 25 to 25 to 75. Examples of preferred combinations of structurally non-identical cycloalkane components are: ethylcyclopentane/ethylcyclohexane; ethylcyclopentane/n-propylcyclohexane; methylcyclohexane/ethylcyclohexane; methylcyclohexane/ethylcyclohexane, and methylcyclohexane/ethylcyclopentane.

The claimed compositions can also be represented by a mixture of 10 a cycloalkane-alkyl or -polyalkyl in combination with an aliphatic hydrocarbon in accordance with Claim 1(c). The individual and preferred species of such components are as described above. The ponderal ratios of the cycloalkane component to the aliphatic hydrocarbon in such mixtures are 15 generally in the range of from 97 : 3 to 10 : 90, preferably of from 80 : 20 to 25 : 75, more preferably of from 70 : 30 to 35 : 65. Both components, i.e. the cycloalkane component and the aliphatic hydrocarbon component, can in such combinations, be represented by a mixture of individual components. As an 20 example, methylcyclohexane can be combined with an aliphatic component represented by a mixture of 2,2,4-trimethylpentane and n-heptane or 2-methylhexane can be combined with a cycloalkane component represented by a mixture of ethylcyclohexane and n-25 propylcyclohexane.

In one preferred execution herein, a heat transfer fluid is concerned consisting essentially of a combination of an aliphatic hydrocarbon and a cycloalkane-alkyl or -polyalkyl in the meaning of Claim I(c). The aliphatic hydrocarbon and the cycloalkane components are as defined hereinbefore. The weight ratio of aliphatic hydrocarbon to cycloalkane component is preferably in the range of from 95 : 5 to 50 : 50, most preferably from 90 : 10 to 60 : 40. Both, the aliphatic hydrocarbon and the cycloalkane component can be represented by mixtures of structurally non-identical species as defined above. Preferred aliphatic species for use in such compositions can be

30

selected from 3-methylpentane, 2-methylpentane, 2,2,4trimethylpentane and n-hexane. Examples of preferred cycloalkane
species are methyl- and ethyl-cyclohexane. Preferred heat
transfer fluids so formulated are listed in Examples 68-73.

5 These fluids were found to be superiorly effective over a broad temperature range down to temperatures below -140 °C.

The inventive compositions can contain additive levels of ingredients that serve for optimizing and enhancing the performance of the inventive compositions. Such additives are well-known in the domain of heat transfer fluids and are generally used in art-established levels for their known functionality. Specific examples of suitable additives include anti-oxidants, dyes and acid scavengers. The term "additive level" is meant to define a cumulative level of from 0.01 % to 4%, preferably from 0.01 % to 2 %

The cycloalkane and/or alkane component represents the major and predominant constituent of the claimed heat transfer compositions. As such, the cycloalkane/alkane constituent represents more than 90 %, preferably more than 96 %, most preferably from 98 % to 100 % of the inventive heat transfer compositions.

Comparative performance parameters of a series of examples in accordance with this invention were determined thereby using the methods recited in the patent description. The results are listed in the following tables whereby the column headings refer to the following:

A = Sample Number;

10

15

20

30

35 B = Cloud Point in °C;

C = Vapor Pressure at +175 °C in kPa;

9 .

D = Viscosity in cP at cloud point temperature +10 °C; and

E = Ponderal (weight %) Fraction of Components.

	A	В	c	D	E	Components
10	8	-155.3	821.8	213.8	47.2 46.7 6.1	Methylcyclopentane Ethylcyclopentane 2,2,4-Trimethylpentane
15	9	-154.4	826.7	194.8	50.2 49.8	Methylcyclopentane Ethylcyclopentane
13	10	-152.5	500.6	251.9	49.5 32.5 18.0	Ethylcyclopentane Methylcyclohexane Ethylcyclohexane
20	11	-152.0	578.5	185.9	51.5 34.4 14.1	Ethylcyclopentane Methylcyclohexane
25	12	-150.3	518.5	203.9	55.7 36.2 8.1	2-Methylhexane Ethylcyclopentane Methylcyclohexane
30	13	-149.6	561.9	165.4	58.9 38.7	n-Propylcyclohexane Ethylcyclopentane Methylcyclohexane
30	14.	-149.0	543.3	174.7	2,4 60.4 39.6	n-Hexane Ethylcyclopentane Methylcyclohexane
35	15	-148.2	531.6	121.8	60.6 17.4 22.0	Ethylcyclopentane 2-Methylhexane Ethylcyclohexane
40	16	-147.5	546.7	160.6	55.2 42.3 2.5	Ethylcyclopentane Methylcyclohexane
45	17	-146.2	497.1	125.7	65.9 24.0	n-Heptane Ethylcyclopentane Ethylcyclohexane
43	18	-146.2	448.1	132.9	10.1 65.8 24.1	2,2,4-Trimethylpentane Ethylcyclopentane Ethylcyclohexane
50	19	-146.1	604.7	93.3	10.1 65.7	n-Propylcyclohexane Ethylcyclopentane
					21.7 12.6	2-Methylhexane : 2,2,4-Trimethylpentane :

07/11 02 THU 18:33 FAX +3223439413

	20	-145.2	504.0	103.3	70.8 25.9 3.3	Ethylcyclopentane Ethylcyclohexane n-Hexane
5	21	-145.0	479.9	111.8	71.1 26.0 2.9	Ethylcyclopentane Ethylcyclohexane n-Heptane
10	22	-144.7	546.7	91.1	71.9 16.9 11.2	Ethylcyclopentane 2-Methylhexane n-Propylcyclohexane
15	23	-144.7	621.2	75	73.6 22.6 3.8	Ethylcyclopentane 2-Methylhexane n-Hexane
20	24	-144.5	596.4	79.7	73.8 22.8 3.4	Ethylcyclopentane 2-Methylhexane n-Heptane
20	25	-144.4	475.0	108.5	73.2 26.8	Ethylcyclopentane Ethylcyclohexane
25	26	-143.9	595.7	76.5	76.2 23.8	Ethylcyclopentane 2-Methylhexane
	27	-143.3	540,5	135.8	48.5 24.1 27.4	Methylcyclohexane 2-Methylhexane Ethylcyclohexane
30	28	-143.2	518.5	95.8	76.1 11.8 12.2	Ethylcyclopentane 2,2,4-Trimethylpentane n-Heptane
35	29	-142.3	592.9	73.8	81.0 14.5	Ethylcyclopentane 2,2,4-Trimethylpentane
40	30	-142.1	562.6	80.4	4.5 81.5 14.5 4.0	n-Hexane Ethylcyclopentane 2,2,4-Trimethylpentane n-Hexane
	31	-142.0	528.8	77.2	82.7 2 13.3	Ethylcyclopentane n-Hexane n-Propylcyclohexane
45	32	-141.8	500.5	84.2	82.9 13.4 3.7	Ethylcyclopentane n-Propylcyclohexane n-Heptane
50	33	-141.2	559.8	76.8	85.0 15.0	Ethylcyclopentane 2,2,4,-Trimethylpentane:
e e	34	-141.0	494.3	81	86.0 14.0	Ethylcyclopentane n-Propylcyclohexane
55	35	-141.0	630.8	95.8	50.8	Methylcyclohexane

					30.2 19.0	2-Methylhexane 2,2,4-Trimethylpentane	
5	36	-140.7	580.5	62.4	90.7 5.0 4.3	Ethylcyclopentane n-Hexane n-Heptane	
10	37	-140.4	495.0	185.6	53.7 30.7 15.6	Methylcyclohexane Ethylcyclohexane 2,2,4-Trimethylpentane	
	38	-140.1	424.7	229	54.2 31.6 14.2	Methylcyclohexane Ethylcyclohexane	
15	39	-139.8	578.4	59	94.7 5.3	n-Propylcyclohexane Ethylcyclopentane n-Hexane	: ::::
20	40	-139.4	542.6	64.6	95.4 4.6	Ethylcyclopentane n-Heptane	:
25	41	-138.8	668.1	68.6	59.9 34.0 6.1	Methylcyclohexane 2-Methylhexane n-Hexane	: : :
	42	-138.7	510.2	127.2	59.5 34.0 5.5	Methylcyclohexane Ethylcyclohexane n-Hexane	
30	43	-138.5	629.5	78.4	60.2 34.3 5.5		•
35	45	-138.4	559.2	101.1	59.5 24.8 15.7	Methylcyclohexane 2-Methylhexane n-Propylhexane	
40	46	-138.1	471.6	166.3	60.5 34.5 5.0	Methylcyclohexane Ethylcyclohexane n-Heptane	
45	47	-137.3	630.2	74.5	63.5 36.5	Methylcyclohexane 2-Methylhexane	
50	48	-137.1	459.9	176.5	62.9 37.1	Methylcyclohexane : Ethylcyclohexane :	
50	49	-136.4	521.2	144	62.3 20.8 16.9	Methylcyclohexane : 2,2,4-Trimethylpentane: n-Propylcyclohexane	
55	50	-135.0	564.7	53.2	40.3 33.1	2-Methylhexane Ethylcyclohexane	

A	Ŀ	LAYE	(<u>a</u>) (
1	1	2002	17.3

						•
٠.					26.6	2,2,4-Trimethylpentane
5	51	-134.7	584.0	102.2	67.7 25.3 7.0	Methylcyclohexane ; 2,2,4-Trimethylpentane n-Heptane
	52	-134.2	548.8	90	71.8 7.8 20.4	Methylcyclohexane n-Hexane n-Propylcyclohexane
10	53	-133.6	492.2	129.5	72.4 20.7 6.9	Methylcyclohexane n-Propylcyclohexane n-Heptane
15	. 54	-133.2	475.0	53.3	40.7 40.0 19.3	2-Methylhexane Ethylcyclohexane n-Propylcyclohexane
20	55	-133.0	581.2	103	72.6 27.4	Methylcyclohexane 2,2,4-Trimethylpentane
	56	-132.0	616.4	34.8	47.4 43.0 9.6	2-Methylhexane Ethylcyclohexane n-Hexane
25	57	-131.9	479.2	141.1	77.3 22.7	Methylcyclohexane n-Propylcyclohexane
30	58	-131.8	632.9	60.3	81.4 10.0 8.6	Methylcyclohexane n-Hexane n-Heptane
35	_. 59	-131.4	550.2	40	48.0 43.4 8.6	2-Methylhexane Ethylcyclohexane n-Heptane
40	60	-131.3	604.0	39	48.8 33.9 17.3	2-Methylhexane 2,2,4-Trimethylpentane n-Propylcyclohexane
45	61	-130.3	743.2	27.5	53.9 35.5 10.6	2-Methylhexane 2,2,4-Trimethylpentane n-Hexane
50	62	-130.0	635.0	58.1	88.9 11.1	Methylcyclohexane n-Hexane
25	63	-128.3	675.0	28.8	52.9 47.1	2-Methylhexane : 2,2,4-Trimethylpentane
55	64	-128.2	370.9	72.3	46.3	Ethylcyclohexane

					30.4 23.3	2,2,4-Trimethylpentane n -Propylcyclohexane $_{\parallel}$
5	65	-127.4	689.5	23.1	61.6 13.2 25.2	2-Methylhexane n-Hexane n-Propylcyclohexane
10	66	-126.9	555.7	36	48.9 38.1 13.0	Ethylcyclohexane 2,2,4-Trimethylpentane n-Hexane
10	67	126.3	606.7	26	63.6 24.2 12.2	2-Methylhexane n-Propylcyclohexane n-Heptane
15	68	-166.8	1132.8	188	77.4 15.5 7.1	3-Methylpentane Methylcyclohexane Ethylcyclohexane
20	69	-166.3	1165.9	175.1	80.5	3-Methylpentane
					15.2	Methylcyclohexane
					4.3	2,2,4-Trimethylpentane
	70	-159.5	1125.2	143.6	66.8	2-Methylpentane
25					22.4	Methylcyclohexane
					10.8	Ethylcyclohexane .
	71	-152.9	1163.1	60.3	82.4	3-Methylpentane
					15.4	Ethylcyclohexane
30					2.2	n-Hexane
	72	-149.6	1110.1	72	60.2	2-Methylpentane
					36.9	Methylcyclohexane :
					2.9	n-Hexane
35	73	-149.6	1041.1	62.8	59.1	3-Methylpentane
	• •	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			38.0	Methylcyclohexane
					2.9	n-Hexane
						1

⁴⁰ The foregoing testing results demonstrate the superior performance of the inventive technology.

CLAIMS

5

20

- 1 Heat transfer fluid, for use over a broad range of temperatures, consisting essentially of a component selected from the group consisting of:
- (a) a mixture of at least two structurally non-identical cycloalkane-alkyl or -polyalkyl components, wherein the cycloalkane moiety contains from 5 to 8 carbon atoms, the alkyl moiety contains from 1 to 6 carbon atoms with the proviso that the total number of carbon atoms in the alkyl moiety(ies) is in the range of from 1 to 10;
 - (b) a mixture of, at least, two structurally non-identical aliphatic hydrocarbons having a linear or branched chain with from 5 to 15 carbon atoms; and
 - (c) a mixture of a cycloalkane-alkyl or -polyalkyl, wherein the cycloalkane moiety contains from 5 to 8 carbon atoms, the alkyl moiety contains from 1 to 6 carbon atoms with the proviso that the total number of carbon atoms in the alkyl moiety(ies) is in the range of from 1 to 10, and an aliphatic hydrocarbon having a linear or branched chain with from 5 to 15 carbon atoms;
- at a level such that the composition has: a cloud point below -100 °C, preferably in the range of from -110 °C to -175 °C; a vapor pressure, at +175 °C, below 1300 kPa and a viscosity, measured at the cloud point temperature +10 °C, below 400 cP.
- The heat transfer fluid in accordance with Claim 1 wherein the alkyl moiety in the cycloalkane-alkyl or -polyalkyl
 component is selected from methyl, ethyl and propyl and mixtures thereof.

- 3. The heat transfer fluid in accordance with Claim 1 wherein the aliphatic hydrocarbon contains from 5 to 10 carbon atoms.
- 4 The composition in accordance with claim 1 wherein the . 5 viscosity is below 300 cp.
 - 5. The composition in accordance with Claim 1 wherein the vapor pressure, at +175 °C, is below 827 kPa.
- 10 6. The heat transfer fluid in accordance with Claim 1 wherein the cycloalkane-alkyl component is represented by: cyclohexane+methyl, -dimethyl, -ethylmethyl, -trimethyl, -ethyl and -propyl; cyclopentane-methyl, -dimethyl, -ethylmethyl, -trimethyl, -ethylmethyl, trimethyl, -ethylmethyl, trimethyl, ethylmethyl, dimethyl, -ethylmethyl, dimethyl, -ethylmethyl, trimethyl, ethyl and -propyl.
- 7. The heat transfer fluid in accordance with Claim 1 wherein the aliphatic alkane is represented by: pentane-2,2,4-trimethyl; pentane-2,3,4-trimethyl; pentane-2-methyl, pentane-3-methyl; hexane-2-methyl; n-hexane; hexane-2,2-dimethyl; hexane-3,3-dimethyl; n-heptane; heptane-4-methyl; n-octane; and octane-2-methyl.
 - 8. The heat transfer fluid in accordance with Claim 1(a) wherein the ponderal ratio of the structural non-identical cycloalkane components is in the range of from 95 : 5 to 5 : 95.
- 9. The heat transfer fluid in accordance with Claim 8 wherein the cycloalkane components are represented by combinations of ethylcyclopentane/ethylcyclohexane; ethylcyclopentane/n-propylcyclohexane; methylcyclohexane/ethylcyclohexane; ethylcyclohexane/n-propylcyclohexane; ethylcyclohexane/n-propylcyclohexane; and methylcyclohexane/ethylcyclopentane.

- 10. The heat transfer fluid in accordance with Claim 1(c) wherein the ponderal ratio of the cycloalkane component to the aliphatic hydrocarbon is in the range of from 97: 3 to 10: 90.
- 11. The heat transfer fluid in accordance with Claim 8 wherein the ponderal ratio of the cycloalkane components is in the range of from 75: 25 to 25: 75.
- 10 12. The heat transfer fluid in accordance with Claim 10 wherein the ponderal ratio of the cycloalkane component to the aliphatic hydrocarbon is in the range of from 80: 20 to 25: 75.
- 15 13. The heat transfer fluid in accordance with Claim 12 wherein the ponderal ratio of the cycloalkane component to the aliphatic hydrocarbon is in the range of from 70: 30 to 35: 65.
- 20 14. The heat transfer fluid in accordance with Claim 1(c) wherein the weight ratio of the aliphatic hydrocarbon to the cycloalkane component is in the range of from 90 : 10 to 60 : 40, whereby the aliphatic hydrocarbon is selected from 2-methylpentane, 3-methylpentane, 2,2,4-trimethylpentane and n-
- 25 hexane and the cycloalkane component is selected from ethylcyclohexane and methyl-cyclohexane.

ABSTRACT

Heat transfer fluids which can be used over a broad range of
temperatures such as from 175 °C to -145 °C are disclosed. The
heat transfer fluids consist essentially of a mixture of at
least two structurally non-identical cycloalkane-alkyl or polyalkyl compounds, or a mixture of at least two structurally
non-identical aliphatic hydrocarbons, or a mixture of a

cycloalkane-alkyl or -polyalkyl compound and an aliphatic
hydrocarbon. The individual components are present at levels
such as to confer to the fluid composition a cloud point below.
-100 °C, a vapor pressure at +175 °C below 1300 kPa, and a
viscosity, measured at the cloud point temperature +10 °C, below
15 400 cP.

EP0312170