UNIVERSITÀ DI PADOVA ESAME DI BIOELETTROMAGNETISMO

Prova scritta – Completa

Cognome	Nome	Numero Matricola	Numero posto		
Esercizio 1					
a)) In una regione V nel vuoto, in assenza di correnti impresse:					
$\nabla \times \bar{e} = -\frac{1}{c^2} \frac{\partial \bar{h}}{\partial t}$	$\nabla \times \bar{d} = -\frac{1}{c^2} \frac{\partial \bar{b}}{\partial t}$	$ abla imesar{d}$	$= -\frac{1}{c^2} \frac{\partial \bar{h}}{\partial t}$		
b) Una superficie priva di discontinuità tra due mezzi omogenei, privi perdite, $\varepsilon_1 \neq \varepsilon_2$ e μ_0 , la densità di carica superficiale è nulla. Detto \hat{x}_1 il versore ortogonale al piano orientato dal mezzo 1 al mezzo 2:					
$\bar{B}_1\hat{x}_1 \neq \bar{B}_2\hat{x}_1$	$\bar{E}_1 \times \hat{x}_1 \neq \bar{E}_2 \times \hat{x}_1$	$ar{E}_{f 1} \hat{x}$	$_{1}\neq \bar{E}_{2}\hat{x}_{1}$		
c) In una regione occupata da aria si propaga una onda piana uniforme definita da $E = \hat{x}E_0e^{-j\beta z}$. La densità di potenza attiva è $0.5 \pi W/m^2$. Il modulo del campo elettrico vale:					
$ \bar{E} = \sqrt{12\pi} \frac{V}{m}$	$ \bar{E} = \sqrt{1.2} \ 10\pi \frac{V}{m}$	$ \bar{E} =$	$\sqrt{\pi}10^{-1}\frac{V}{m}$		
d) Direttività e guadagno di un'antenna coincidono quando:					
l'antenna è isotropa	l'antenna ha efficienza un	nitaria l'anteni	na è direttiva		

Con frasi e formule appropriate descrivere la derivazione dell'equazione di Helmholtz per il campo magnetico e illustrare le proprietà delle sue soluzioni.

a) In relazione alla funzionalità della	a membrana cellulare, la pompa sodio	-potassio contribuisce:			
alla termoregolazione	al controllo delle concentrazioni	alla generazione del PA			
b) Il modello HH descrive il potenzi	ale di membrana:				
in condizioni dinamiche	all'equilibrio	durante la fase di refrattarietà			
c) Nella propagazione sopra soglia lo stimolo lungo l'assone:					
si attenua	rimane indistinto	si amplifica			
d) In tessuti biologici l'onda em si classifica come ionizzante quando l'energia dei fotoni corrispondenti:					
E > 33 eV	E > 10 eV	5 eV < E < 13 eV			

Con concetti, formule e grafici descrivere il modello elettrico circuitale per la modellazione della propagazione sopra-soglia del potenziale d'azione nell'assone a-mielinico.

a) Nel metodo numerico FDTD se si	aumenta di un valore più elevato	la bada delle frequenze analizzate, il
passo temporale:		
rimane invariato	aumenta	diminuisce
b) Nel software commerciale CST, qua al calcolo ottenuto su campioni del pe		o su campioni del peso di 10g rispetto
non dipende dal peso	è più basso	è più alto