原始记录	室温环	F境			鼓	表思
In= KomA	t = 26	、3℃ 表2.4.1	1测绘结果,U	川和RH不需要	ള填写,于课 原	5计算
Is/mA	+B, +I,	-B, + Is	-B, - <u>Z</u>	tB,-Z	S UH/m	PH/(h³/c
25	-17.2	17. X	-17.3	17.2	The second secon	17.3
	-34.7	1.76	-34.9	34.8	-34.87 5-31	×.9
1.5	-17.0	[2. <u>}</u>	- <u>t22</u>	J1.8	-J2.41 -J	52.
2	-69.2	69.5	-69.3	68.9	-69.2	
7.5	-fr9	86.7	£6.3	G.J	-86.2	
3	-102.7	/03.}	-103. 2	102.6	-/03.0	

表2.4.2测绘结果,UH和n不需要填写,于课后计算 1 = 2mA, Im = 50 mA t/c +B,+Is -B, +Is -B, -Is +B, -Is UH/mV -17.2 -17.4 16.3 -20 17.5 0 -12.0 -18.2 18.2 12.2 -89 20 12.5 -12.4 9.0 6.9 40 -6-3 -6.9 6.4 60 -4.7J.0 -T.0 3. F V. 7 do -3.5 3.7 -3.7 3.5 100 -2.6 -2.8 -2.0 -1. 120 2.2

实际实验课未要求测绘p型霍尔组件,以上数据均基于n型霍尔组件;

测绘数据未经检验,仅供参考。实验时请以自身测绘结果为准,照搬数据可能被判不合格。

>实验目的对象是在10000000A-Y32 , 数数400次成立重 7H-Y37 是2019日
11)了解霍尔效应实验原理及有关霍尔之件对材料要求的知识。
(2) 学习用抵消法消除的效应的影响。
13) 计算霍尔之件的霍尔系数和载流子浓度, 经新以上了。曲线和
n-t曲线
实验原理
1. 霍尔效应: 当电流通过特体时, 若在季直于电流的方面施加一个磁场, 会
在特体的两侧产生一个与电流和磁场方向均重直的电压。
A Z
如图2.4.1,若在电流了。重直方向上加上磁
→ B, 则载流于在洛伦兹为的作用下多发生偏
VevB B V 较,从而在试样的上下两侧开始聚集异号的
由荷,产生相应的附加电场正的
图2.4.1 将体试样 载流于持续偏移, 电场强度正成渐离大,电
场力随上增强,最终与洛伦兹加手街。此时载
流子的横向漂移停止,云达到一个稳没值。
手銜状态下,有 eEH = eVB } 联定得 UH = Is·B ned , 即霍尔电压 RUTCR II. T.
Is=ngSv=nebdv 沒和=ned,则成化为UH=RH:Is·B=KH·Is·B
$40 R_{H} = \frac{1}{ne}$ 为霍尔系数(单位为 m^3/c); $K_{H} = \frac{1}{ned}$ 为霍尔灵敏度,反映了霍尔效应的强强
2.实验中产生的副效应及消除方法
A↓ 的效应: 如图 2.4.2, 霍尔文件的两个输出电极 A和A′, 由于工艺限制,
工。 新 新安全动称、导致电流通过时、即使没有磁场地生产生下动加电压
Us=Is·r,其中下为AA'的的电阻,所以,UAA'=UH+Us
B A 报淌法:在规定了电流 / +B ,+Is U441'= U,= Uy+ Uo
图2.4.2 得位电路降和磁场方向后,5分泌量 - B.+Is Um'= U2=-Un+U6 + UF
T3水同组后的UAA、然后起其 -B,-I6 UAA'=U3=UH-U6
代数年的值,即可以成小设差 +B, -Is Uan'=U4=-UH-U6
共也, U1、U2、U3、U4的代数平均值,即UH=U1-U2+U3-U4

实验仪器 ZK T-HC 霍尔兹应测试论、2KT-PQD0/00变温霍尔兹应复验仪 ZKY-PC00(引温控电源、PF000) N型霍尔组件 1、ZKT-BD000/双刀双拇环泛盒

实验步骤与数据记录

- (1)正确连接名组件,测量室温下n型霍尔组件的Ry和 n.
- ①将工作电流、/劢磁电流调节旋钮连明计旋转多圈,使电流最小。
- ②将n型霍尔组件正确装配到 C型器铁上,霍尔•玩输入端与霍尔组件电极4、2相连,双刀双挥开关盒 I、输出端与霍尔组件电极1、3相连,开关盒 Im输出端与电磁铁 Im输入端相连
- ③汉录教器铭牌参数:电磁铁比例系数C=249.7 mT/A,霍尔级件厚度 ol=1_um. 田巷通电源、保持Im=400mA不安、接通风扁电源以维持霍尔组件温度于室温。

· U. U. U. U. V. 要结果处	Is/mA	Wynz	U2/mV	U3/mV	U4/mV	UH/my	RH/M3/C)	n/m^3
原始数据,由于高幅原因,这图	0.5	*- 国态	7.4	-1].3	17.2	-17.3	3.46×10-4	1.80/4022
The state of the s	SARA	343	-32:4	-34.9	34.8	-34.9	3.49×10-4	1.788×10 ²²
IS HOUR TROJEA IMA ISTEMA.	是是是	-12.0	25.3-	-52.2	51.8	-52.	-3.48 × 10-4	1.796×102
ZmA, 2.5mA, 3mA进行测量		69.2	69.5	-69.3	68.9	-69.2	-3.463×10 ⁻⁴	1.905 x/03,
结果为如右表所示。	2.5	-85.9	86-7	-86.3	85.8	-86.2	-3.452×104	1.809×1022
	3	-102.7	103.3	-103.2	102.6	-103.0	-3,437×10-4	1.817×1022

(2) 挂入温控电源,测试n型霍尔组件的载流子浓度 ①上颌连接温控电源的温度定 Uz/mV U1/mV U2/mV U4/mV UH/mV n/m3 0.912x/022 卷篇接□、功率电源接口 -17.1 -20 1.02/2/00.1 ②打开温控电源开关,预积、 18.2 12.2 0 -12.0 -11.2 -8.9 15/2 20 2.35] x/02 D保持 Is = 2mA, In=JomA 40 -6.3 3,214×1022 4. 不变,改变温度进行测 -4.7 1.0 -J. 0 4.330 x/02 量、结果的右截断示 do -3.6 -3.5 3.7 3.5 J.720 x102 -2. f 2--2.6 -2.7 7.422×102 -2.0 -2. 2.1 -2. 120 2,2

数据处理						
	UI	H - IS 关系	曲线表			
0.0	1.0	1.5	2.0	2.	5	3.0
-200						
-60.0	-34.9	-52.1				
霍 -40.0 中 -60.0 □ -80.0		-52.1	-69.2			
-100.0				-8	5.2	
-120.0		愛 尔中:	流 (Is/mA)			-103.0
		隹小七/	JIL (15/111A)			
		n - t 关系曲	1			
0.0005 + 22	r	n - t 关系曲	线表			7.422E+22
8.000E+22 7.000E+22	ř	n - t 关系曲	1线表			7.422E+22
7.000E+22	ľ	n - t 关系曲	线表	5.	720E+22	7.422E+22
7.000E+22	ľ	n - t 关系曲		5. 4.330E+22		7.422E+22
7.000E+22	ľ	n - t 关系曲	2			7.422E+22
7.000E+22		2.353E+	3.214E+22			7.422E+22
7.000E+22 载 6.000E+22 流 5.000E+22 浓 4.000E+22 (n/m²) 2.000E+22 9.115E+2: 1.000E+22	1.4		3.214E+22			7.422E+22
7.000E+22	1.4	2.353E+ 457E+22 20 40	3.214E+22 22 60			7.422E+22
7.000E+22 载 6.000E+22 流 5.000E+22 浓 4.000E+22 (n/m³) 2.000E+22 9.115E+2: 1.000E+22	1 ^{1.029E+22} 1.2	2.353E+ 457E+22 20 40	3.214E+22 22	1.330E+22	720E+22	

实验结论	0.2 2 - 10 次。野处军设立位
()在该实验条件下, 通过雹尔组件	(n型)的电流越大, 霍尔电压的绝对顶越大.
②在该实验条件下,温度升高时气	霍尔电阻逐渐减小,霍尔既的绝对值逐渐
成小, 载流子浓度逐渐 增大的	且有增速加快的趋势。
实验讨论	
实验误差: (1) 仪器误差: 仪器目	自测量精度不足或仪器产生的磁场不均匀.
	电流通过样的时将触不良或接触电阻较大,
导致电	流河量值不准确;
②	第6在不同区域的温度不均匀,可能导致挥的中
	- 流度ス-設。
	外,存在由热效应和热磁效应所引起的各种
	(爱庭霍森效应,里纪-勒杜克效应及能斯特
数方等)	
霍尔元件的基本工作原理:与由流派	过半导体材料时,载流了沿电流扬色动。若
	子电流的绝加器 磁场,载流子受洛伦兹力
	料两侧偏移形式电荷堆积,进而在垂直于电
	的的方向产生一个超生的微小电压,积零尔电压.
7110/1-/2000-2	AND THE STATE OF T
霍尔数左的左用: 通过上述原理	,霍尔元件实现了磁场到电信号的转换,成为
	江使用的传感器上一.
	通过检测电流,独的磁场间接测量电流从.
	可用旋转磁体触发霍尔开关,计算较速和较数
	测磁性物体的存在或位置变化

思考题				泵50	铁鼠
(1) 附霍尔效应要具	备那些条件?		12.AC = 1-	Aasal	= "Ĺ
0导体或特殊		11 + 9-	17 4	1	\ T
②电流通过材料		χŢ	r.Tr-		7.0
③重直于电流方		1.7.7			
		3 4.5%	- 3 %o.c	1	1.5
12) 怎样利用工、B1	的方向及以的	极性判断	试样的是电	美型?	<u>.c</u>
15.B:使用右至	接则,右手回	指指向电流	之为何,手掌	指向磁场	3向,
大拇指	指向即为霍尔	电压方向, 才	&据霍尔电 /	无极性可否	角定
马电麦-					
UH 校中生: UH 2		明武流程	电子(n型单	导体或全	属)
11/2	贤怛为正, 须	明载流子	空穴(P型	号体)	<i>a</i>
V.15. //					
(3) 老磁的 B 5霍尔组(4	牛的法线方向不	·一级 . xt 泅1	量结果有何	影响?	
①霍尔电压的有效					
② 当磁场方向不可					弘场
的地可方面	可能导致测量的	法果的偏差	Aya Oli	emI A	1. 2. A.
		<u>Γ-</u> (12 - 11 - 11 - 11 - 11 - 11 - 11 - 11		I + A+	ivi
			7.5.		0.5-
(4) 能召用霍尔元件测定				9 ()	
	节办亚元级	タ おこれ たせ	101 WAT 10	6	
TH TU 2014 XV	重交变磁场	(考酷, 左女 友变磁长期	平河河河 東	P = 4 可能	无法乃
明 可以测量方	重交变磁场	3. 君能, 应艾 灰变磁场频	中过高,霍	17.元件可能	无法及
明何友	重交要磁场 交强磁场但若	《君能,应艾 亥变磁品数	四何测道 平过高,霍	尔之作可能	利法及
明 可以测量方	重交变磁场 2000 2000 2000 2000 2000 2000 2000 20	(君龍, 左女 友变磁品數	四何测度 李过高,霍	尔之作可能	为法及
明 可以测量方	重交变磁场 2000 2000 2000 2000 2000 2000 2000 20	3. 君龍,应艾 亥变吞吞妫	中何知道	尔之外可能	无法及
明 可以测量方	重交变磁场 经存品的	(君能 , 应艾 灰变吞吞 - 参	中国的	P. 之7年 可能	天法及
明 可以测量方	重交变磁场 经存品的	· 君能,应艾 友变吞吞 · 参	中设高,程	1.3.14 可能	天法及
明 可以测量方	重交变磁场	· 若能,应故 交变吞吞 步	中过高,程	P. 三、4 可能	天法及