tion 23.2), is a dynamic-programming algorithm. The following lemma states the optimal-substructure property of shortest paths more precisely.

Lemma 22.1 (Subpaths of shortest paths are shortest paths)

Given a weighted, directed graph G = (V, E) with weight function $w : E \to \mathbb{R}$, let $p = \langle v_0, v_1, \dots, v_k \rangle$ be a shortest path from vertex v_0 to vertex v_k and, for any i and j such that $0 \le i \le j \le k$, let $p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$ be the subpath of p from vertex v_i to vertex v_j . Then, p_{ij} is a shortest path from v_i to v_j .

Proof Decompose path p into $v_0 \overset{p_{0i}}{\leadsto} v_i \overset{p_{ij}}{\leadsto} v_j \overset{p_{jk}}{\leadsto} v_k$, so that $w(p) = w(p_{0i}) + w(p_{ij}) + w(p_{jk})$. Now, assume that there is a path p'_{ij} from v_i to v_j with weight $w(p'_{ij}) < w(p_{ij})$. Then, $v_0 \overset{p_{0i}}{\leadsto} v_i \overset{p'_{ij}}{\leadsto} v_j \overset{p_{jk}}{\leadsto} v_k$ is a path from v_0 to v_k whose weight $w(p_{0i}) + w(p'_{ij}) + w(p_{jk})$ is less than w(p), which contradicts the assumption that p is a shortest path from v_0 to v_k .

Negative-weight edges

Some instances of the single-source shortest-paths problem may include edges whose weights are negative. If the graph G=(V,E) contains no negative-weight cycles reachable from the source s, then for all $v \in V$, the shortest-path weight $\delta(s,v)$ remains well defined, even if it has a negative value. If the graph contains a negative-weight cycle reachable from s, however, shortest-path weights are not well defined. No path from s to a vertex on the cycle can be a shortest path—you can always find a path with lower weight by following the proposed "shortest" path and then traversing the negative-weight cycle. If there is a negative-weight cycle on some path from s to v, we define $\delta(s,v)=-\infty$.

Figure 22.1 illustrates the effect of negative weights and negative-weight cycles on shortest-path weights. Because there is only one path from s to a (the path $\langle s,a\rangle$), we have $\delta(s,a)=w(s,a)=3$. Similarly, there is only one path from s to b, and so $\delta(s,b)=w(s,a)+w(a,b)=3+(-4)=-1$. There are infinitely many paths from s to c: $\langle s,c\rangle$, $\langle s,c,d,c\rangle$, $\langle s,c,d,c,d,c\rangle$, and so on. Because the cycle $\langle c,d,c\rangle$ has weight $\delta(s,c)=s$, and the shortest path from s to c is $\langle s,c\rangle$, with weight $\delta(s,c)=w(s,c)=s$, and the shortest path from s to d is $\langle s,c,d\rangle$, with weight $\delta(s,d)=w(s,c)+w(c,d)=11$. Analogously, there are infinitely many paths from s to e: $\langle s,e\rangle$, $\langle s,e,f,e\rangle$, $\langle s,e,f,e,f,e\rangle$, and so on. Because the cycle $\langle e,f,e\rangle$ has weight s has because s is reachable from s to s has because s is reachable from s has because s is reachable.

Figure 22.1 Negative edge weights in a directed graph. The shortest-path weight from source s appears within each vertex. Because vertices e and f form a negative-weight cycle reachable from s, they have shortest-path weights of $-\infty$. Because vertex g is reachable from a vertex whose shortest-path weight is $-\infty$, it, too, has a shortest-path weight of $-\infty$. Vertices such as h, i, and j are not reachable from s, and so their shortest-path weights are ∞ , even though they lie on a negative-weight cycle.

and so $\delta(s, g) = -\infty$. Vertices h, i, and j also form a negative-weight cycle. They are not reachable from s, however, and so $\delta(s, h) = \delta(s, i) = \delta(s, j) = \infty$.

Some shortest-paths algorithms, such as Dijkstra's algorithm, assume that all edge weights in the input graph are nonnegative, as in a road network. Others, such as the Bellman-Ford algorithm, allow negative-weight edges in the input graph and produce a correct answer as long as no negative-weight cycles are reachable from the source. Typically, if there is such a negative-weight cycle, the algorithm can detect and report its existence.

Cycles

Can a shortest path contain a cycle? As we have just seen, it cannot contain a negative-weight cycle. Nor can it contain a positive-weight cycle, since removing the cycle from the path produces a path with the same source and destination vertices and a lower path weight. That is, if $p = \langle v_0, v_1, \ldots, v_k \rangle$ is a path and $c = \langle v_i, v_{i+1}, \ldots, v_j \rangle$ is a positive-weight cycle on this path (so that $v_i = v_j$ and w(c)>0), then the path $p' = \langle v_0, v_1, \ldots, v_i, v_{j+1}, v_{j+2}, \ldots, v_k \rangle$ has weight w(p') = w(p) - w(c) < w(p), and so p cannot be a shortest path from v_0 to v_k .

That leaves only 0-weight cycles. You can remove a 0-weight cycle from any path to produce another path whose weight is the same. Thus, if there is a shortest path from a source vertex s to a destination vertex v that contains a 0-weight cycle, then there is another shortest path from s to v without this cycle. As long as a shortest path has 0-weight cycles, you can repeatedly remove these cycles from the path until you have a shortest path that is cycle-free. Therefore, without loss of

generality, assume that shortest paths have no cycles, that is, they are simple paths. Since any acyclic path in a graph G = (V, E) contains at most |V| distinct vertices, it also contains at most |V| - 1 edges. Assume, therefore, that any shortest path contains at most |V| - 1 edges.

Representing shortest paths

It is usually not enough to compute only shortest-path weights. Most applications of shortest paths need to know the vertices on shortest paths as well. For example, if your GPS told you the distance to your destination but not how to get there, it would not be terribly useful. We represent shortest paths similarly to how we represented breadth-first trees in Section 20.2. Given a graph G = (V, E), maintain for each vertex $v \in V$ a *predecessor* $v.\pi$ that is either another vertex or NIL. The shortest-paths algorithms in this chapter set the π attributes so that the chain of predecessors originating at a vertex v runs backward along a shortest path from s to v. Thus, given a vertex v for which $v.\pi \neq \text{NIL}$, the procedure PRINT-PATH(G, s, v) from Section 20.2 prints a shortest path from s to v.

In the midst of executing a shortest-paths algorithm, however, the π values might not indicate shortest paths. The *predecessor subgraph* $G_{\pi} = (V_{\pi}, E_{\pi})$ induced by the π values is defined the same for single-source shortest paths as for breadth-first search in equations (20.2) and (20.3) on page 561:

$$V_{\pi} = \{ v \in V : v.\pi \neq \text{NIL} \} \cup \{ s \} ,$$

$$E_{\pi} = \{ (v.\pi, v) \in E : v \in V_{\pi} - \{ s \} \} .$$

We'll prove that the π values produced by the algorithms in this chapter have the property that at termination G_{π} is a "shortest-paths tree"—informally, a rooted tree containing a shortest path from the source s to every vertex that is reachable from s. A shortest-paths tree is like the breadth-first tree from Section 20.2, but it contains shortest paths from the source defined in terms of edge weights instead of numbers of edges. To be precise, let G = (V, E) be a weighted, directed graph with weight function $w: E \to \mathbb{R}$, and assume that G contains no negative-weight cycles reachable from the source vertex $s \in V$, so that shortest paths are well defined. A *shortest-paths tree* rooted at s is a directed subgraph G' = (V', E'), where $V' \subseteq V$ and $E' \subseteq E$, such that

- 1. V' is the set of vertices reachable from s in G,
- 2. G' forms a rooted tree with root s, and
- 3. for all $v \in V'$, the unique simple path from s to v in G' is a shortest path from s to v in G.