631 632

7. Tables

633 634

635

636 637

638

639

Table 1: List of stream sites, locations and data availability, all geographic coordinates use NAD 83 datum. Order matches supplemental material, from upstream to downstream. Although 95% confidence intervals are provided for discharge at all sites except Budd Creek and Hetch Hetchy, we provide here a qualitative rating of the relative quality of the discharge data at each site, where A = our best sites; B = intermediate-quality sites; C= our poorest sites. ** Tuolumne precipitation is provided at an hourly time-step along with the meteorological data at the Dana station. The provided data is scaled to the Dana location as documented in the text and metadata files.

Site Code	Site Name	Latitude	Longitude	Basi n Are a	Elevat ion	Water Years with Data (X=data available)									a (X	Dat a Tim e- step	Raw Data Availa ble	Qua lity	Type of installatio				
		Degrees	Degrees	km²	m	0 2	0	0 4	0 5	0	0 7	0	9		1	1 2	1		1 5	hr			
Q01	Lyell below Maclure	37.777	-119.261	15	2940				X	X	X		X	X	X	X	X X	X	X X	0.5	Yes	В	Solinst, Stilling tube Vented Transduce
Q02a	Lyell Fork, upstream	37.869	-119.331	109	2640					X	X	X	X	X	X	X	X	X	X	0.5	Yes	A	Solinst, Stilling tube; Vented transducer installed 7/16/201
Q02b	Lyell Fork, downstrea m	37.869	-119.331	109	2640	X	X	X	X	X	X	X		X	X					0.5	Yes	В	Solinst, anchor
Q03a	Dana	37.876	-119.333	74	2650	X	X	X	X	X										0.5	Yes	С	Solinst,

	Fork, lodge																						anchor	
Q03b	Dana Fork, Bug Camp	37.877	-119.338	75	2640					X	X	X	X	X	X	X	X	X	X	0.5	Yes	A	Solinst, Stilling tube; Vented transducer (6/12/201 5-present)	
						X	X	X	X														Solinst, anchor	
Q04	Tuolumne 120	37.876	-119.355	186	2600	2600					X	X		X	X	X	X	X	X	X	0.5	Yes	A	Solinst, Stilling tube
																	X	X	X				Vented Transduce r installed 10/2012.	
Q05	Delaney Creek, meadow	37.883	-119.381	16	2600							X	X	X	X	X	X	X	X	0.5	Yes	В	Solinst, Stilling tube	
Q06a	Budd Creek upstream	37.873	-119.382		2600						X	X	X	X	X		X	X	X	0.5	Yes	С	Solinst, Stilling tube	
Q06b	Budd Creek downstrea m	37.874	-119.382	7	2600	X	X	X	X	X			X			X	X	X	X	0.5	Yes	С	Solinst, anchor	
Q07	Hetch Hetchy Reservoir	37.9708	-119.7883	118 1	1162	X	X	X	X	X	X	X	X	X	X	X	X	X	X	24	No	A	See text	
	Tuolumne Snow					X	X	X	X	X	X	X	X	X	X	X	X	X	X	1	No		Precipitati on**	
TUM	Pillow & Precip	37.8730	-119.3500	NA	2600	X	X	X	X	X				X		X			X	24			SWE (pillow)	
						X	X	X	X	X	X	X	X	X	X	X	X	X	X		Available		SWE	

																					proximate		(snow course)
	Dana Snow Pillow & Met	37.896	-119.257	NA	3000	X	X	X	X	X	X	X	X	X	X	X	X	X	Х	1	No		Tair, RH, wind, incoming shortwave
DAN						X	X	X	X	X				X	X	X	X	X	X	24	No		SWE (pillow)
																					Available		SWE
						X	X	Χ	X	X	X	X	Χ	X	X	X	X	X	X		proximate		(snow
																				montl	nly in the s	spring	course)
	Distribute d Tmean, Tmin, Tmax	62 sites, see metadata			X	X	X	X											24	No		Air temperatu re	

Table 2. Stream Sensor Instrument Installations: types and accuracy

*Note that the Levelogger Gold reports water level equivalent above the datalogger's pressure zero point of 950 cm (the Edge models do not have such an offset.) ¹Druck was used at Delaney Cr above PCT from 2012-2015; ²Campbell Scientific CS450 was used at Lyell below Maclure 2012-present; Tuolumne at 120 2012-present; Dana at Bug Camp 2014-present; Lyell above Twin Bridges 2015-present.

Installation Type	Anchored Solinst*	Solinst in Stilling Tube	Vented Pressure	Barometric
			Transducer	Pressure
Description	Instrument in a PVC	Instrument in PVC pipe	Same as stilling tube but	Instrument in a
	pipe inside a concrete	inserted in vertical pipe	with data cord connected	building or in a
	anchor, which is cabled	attached to the streambed	to a data logger box	tree or in a dry
	to a tree, bridge, or	and bank with rebar; with	(typically hidden in a tree)	groundwater
	culvert.	cord for downloading	and another cord open to	well
		instrument.	the atmosphere.	
Instrument Used	Solinst Levelogger	Solinst Levelogger	Druck ¹ Or Campbell	Solinst
			Scientific CS450 PT ²	Barologger
Instrument	Levelogger Model	Levelogger Edge and Gold:	Druck: 0-5 PSI Range,	Edge: ± 0.05
Specs/Accuracy	3001: 0.1°C temp	Temp accuracy ± 0.05°C	0.25% accuracy; CS450: 0-	kPa, with
	accuracy, ±0.5 cm	Pressure ± 0.05% of FS (for	7.25 PSI Range, 0.1%	temperature
	pressure/depth	5 m model, this would be	accuracy;	compensation,
	accuracy; temperature	±0.25 cm); Manufacturer		temperature
	compensated over the	states clock accurate to 1		accuracy ±
	range of -10 to 40°C;	minute per year, but 20		0.05°C
	drift of 0.1% of the full	minutes of drift per year		Gold: 0.01 cm
	range (±0.5 cm for a 5	was typically observed in		and ± 0.05°C
	m model, used here).	practice		(also has temp
				compensation);
				Model 3001
				same as 5 m
				Levelogger.
Processing steps	1) subtract off	1, 3, and 4	3 and 4	3, and 5) adjust

required	atmospheric pressure; 2) correct for offsets in instrument location; 3) check for instrument drift; 4) develop rating curve			for temperature dependencies
Total error estimates in stage (Note that these are worst case scenarios – errors for most sites are believed to be less.)	Up to ± 3 to 4 cm, with ± 2 cm due to summed instrument accuracy and drift for both stream and barometric instruments; and ± 1 to 2 cm more due to uncertainty in instrument location	Up to ± 2 cm due to summed instrument accuracy and potential drift for both stream and barometric instruments	Up to ± 0.5 cm due to summed instrument accuracy and potential drift	Up to ± 1 cm due to summed instrument accuracy and potential drift
Error propagation into estimated discharge (using Lyell Fork above Twin Bridges at 0.7 m, typical summer flow, as an example)	± 0.92 m ³ s ⁻¹ to ± 1.24 m ³ s ⁻¹ (14-19%)	± 0.61 m ³ s ⁻¹ (9%)	± 0.15 m ³ s ⁻¹ (2%)	± 0.30 m ³ s ⁻¹ (5%)
Pros	Easy installation, lowest visible impact	Low visible impact; stable location and datum	Stable location and datum; lowest processing time required (saves ~8 hours of desk work per year); can reference instrument stage to field datum at each visit	
Cons	Instrument location moves through time; Most processing time	Error increases with atmospheric adjustment; hard to reference	More work required to reduce visible impact (e.g., hiding conduit and annual	