

Post-K Supercomputer with Fujitsu's Original CPU, A64FX Powered by Arm ISA

Toshiyuki Shimizu

Nov. 15th, 2018

Post-K is under development, information in these slides is subject to change without notice

- ■Background
 - ■K computer and Post-K
 - Post-K goals and approaches
- ■Fujitsu new Arm CPU A64FX
- ■Post-K system
 - ■System software
 - Configuration
- Performance discussion
- ■Summary and development status

- ■Background
 - ■K computer and Post-K
 - Post-K goals and approaches
- ■Fujitsu new Arm CPU A64FX
- ■Post-K system
 - ■System software
 - Configuration
- ■Performance discussion
- ■Summary and development status

K computer, PRIMEHPC, and Post-K

■K computer, PRIMEHPC FX

- Many applications are running and being developed for science and various industries
- System software TCS supports hardware with newly developed technologies

■Post-K

- RIKEN and Fujitsu are working together for Post-K
- OS is running and design verification is proceeding as scheduled

Post-K goals and approaches

■Post-K goals

- High application performance and good power efficiency
- ■Good usability and better accessibility for users
- Keeping application compatibility while advancing from predecessors

Our approaches

■ Develops high performance and scalable, custom CPU cores

[Performance] Wider SIMD & mathematical acc. primitives, high memory BW

【Scalability】 Scalable interconnect "Tofu"

[Power efficiency] The best device tech, power control functions, optimal resources

- Adopts Arm ISA, binary compatibility
- Maintains performance balance and supports advanced features

- ■Background
 - ■K computer and Post-K
 - Post-K goals and approaches
- ■Fujitsu new Arm CPU A64FX
- ■Post-K system
 - ■System software
 - ■Configuration
- Performance discussion
- ■Summary and development status

Fujitsu new Arm CPU: A64FX

- ■A64FX approach
- Specs and technologies
- ■Tofu interconnect D
- ■Power management
- ■A64FX summary

A64FX: Approach

- High performance Arm CPU
 - Develops original CPU core supporting Arm SVE (Scalable Vector Extension)
- Targeting high performance servers
 - Floating point calculations
 - High memory bandwidth
 - ■Low power consumption
 - ■Scalable performance and configuration
- Extension for emerging applications
 - Half precision (FP16) & INT16/8 partial dot product support

High BW/Calc. is the key for Real apps.

A64FX: Specs & technologies

■CPU generations and key parameters

CPU	SPARC64 VIIIfx	SPARC64 IXfx	SPARC64 XIfx	A64FX
1st system w/ CPU	K	FX10	FX100	Post-K
Si tech. (nm)	45	40	20	7
Core perf. (GFLOPS)	16	14.8	34 SV	E 57~
# of cores	8	16	32 <u>CM</u>	48
Chip perf. (TFLOPS)	0.13	0.24	1.1	2.7~
Memory BW (GB/s)	64	85	480 HB	M 1024
B/F (Bytes/FLOP)	0.5	0.4	0.4	0.4

■Combination of technologies

- SVE increases core performance
- CMG is scalable architecture to increase # of cores
- HBM enables high bandwidth

A64FX technologies: Core performance

- ■High calc. throughput of Fujitsu original CPU core w/ SVE
 - ■512-bit wide SIMD x 2 pipelines and new integer functions

A64FX technologies: Scalable architecture

- Core Memory Group (CMG)
 - 12 compute cores and an assistant core for OS daemon, I/O, etc.
 - Shared L2 cache
 - Dedicated memory controller

- Four CMGs maintain cache coherence w/ on-chip directory
 - Threads binding within a CMG allows linear speed of up to 48 compute cores

A64FX package configuration

A64FX: L1D cache uncompromised BW

■128B/cycle sustained BW even for unaligned SIMD load

"Combined Gather" doubles gather (indirect) load's data throughput, when target elements are within a "128-byte aligned block" for a pair of two regs, even & odd

A64FX: Tofu interconnect D

- ■Integrated w/ rich resources
 - ■Increased TNIs achieves higher injection BW & flexible comm. patterns
 - ■Increased barrier resources allow flexible collective comm. algorithms
- Memory bypassing achieves low latency
 - Direct descriptor & cache injection

	TofuD spec
Data rate	28.05 Gbps
Link bandwidth	6.8 GB/s
Injection bandwidth	40.8 GB/s
	Measured
Put throughput	6.35 GB/s
PingPong latency	0.49~0.54 μs

A64FX: Power monitor and analyzer

- Energy monitor (per chip)
 - Node power via Power API*1 (~msec)
 - Averaged power of a node, CMG (cores, an L2 cache, a memory) etc.

*1: Sandia National Laboratory

- Energy analyzer (per core)
 - Power profiler via PAPI*2 (~nsec)
 - Fine grained power analysis of a core, an L2 cache and a memory

*2: Performance Application Programming Interface

A64FX: Power Knobs to reduce power consumption of the consumption of t

- "Power knob" limits units' activity via user APIs
- Performance/W would be optimized by utilizing Power knobs, Energy monitor & analyzer

A64FX: Summary

- ■Arm SVE, high performance and efficiency
 - ■DP performance >2.7 TFLOPS, >90%@DGEMM
 - Memory BW 1024 GB/s, >80%@STREAM Triad

	A64FX
ISA (Base, extension)	Armv8.2-A, SVE
Process technology	7 nm
Peak DP performance	>2.7 TFLOPS
SIMD width	512-bit
# of compute cores	48
Memory capacity	32 GiB (HBM2 x4)
Memory peak bandwidth	1024 GB/s
PCle	Gen3 16 lanes
High speed interconnect	TofuD integrated

- ■Background
 - ■K computer and Post-K
 - Post-K goals and approaches
- ■Fujitsu new Arm CPU A64FX
- ■Post-K system
 - ■System software
 - Configuration
- Performance discussion
- ■Summary and development status

Software development: System software

■RIKEN and Fujitsu are developing software stacks for Post-K

FEFS vs Lustre, LLIO vs Burst buffer

■Post-K supports superior performance file system, FEFS + LLIO

	FEFS	Lustre
Storage network	Tofu, InfiniBand, Ether, OPA	InfiniBand, Ether, OPA
Injection BW per node	40.8 GB/s	12.5 GB/s (IB EDR)
MDS scalability	Yes	Yes (ver. 2.4~)
Interoperability	x86, Arm (A64FX)	x86, Power, Arm?
	FEFS + LLIO*	Lustre + Burst buffer**
Local temporary file acc.	Yes	No
Cache file acc.	Yes	Yes
Shared file within a job.	Yes	Yes
Explicit function call	Not required (by mount point)	Required (Source modification)
	*Lightweight Layered IO-Accelerator	**DDN IME

19

LLIO (Lightweight Layered IO-accelerator) overview

- ■Maximizing application file I/O performance
 - Easy access to User Data: File Cache of Global File System
 - Higher Data Access Performance: Temporary Local FS (in a process)
 - Higher Data Sharing Performance: Temporary Shared FS (among processes)

Post-K system configuration

■Scalable design

Unit	# of nodes	Description	
CPU	1	Single socket node with HBM2 & Tofu interconnect D	
CMU	2	CPU Memory Unit: 2x CPU	
BoB	16	Bunch of Blades: 8x CMU	
Shelf	48	3x BoB	
Rack	384	8x Shelf	

CMU: CPU Memory Unit

FUJITSU

A64FX

- ■A64FX CPU x2
- ■QSFP28 x3 for Active Optical Cables
- ■Single-side blind mate of signals & water
- ■~100% direct water cooling

- ■Background
 - ■K computer and Post-K
 - Post-K goals and approaches
- ■Fujitsu new Arm CPU A64FX
- ■Post-K system
 - ■System software
 - Configuration
- ■Performance discussion
- ■Summary and development status

Preliminary performance evaluation results

- ■Over 2.5x faster in HPC & AI benchmarks than SPARC64 XIfx
 - ■Arm SVE, Fujitsu's microarchitecture, and high bandwidth

A64FX chip performance measurements & architectural contributions

- ■Background
 - ■K computer and Post-K
 - Post-K goals and approaches
- ■Fujitsu new Arm CPU A64FX
- ■Post-K system
 - ■System software
 - Configuration
- Performance discussion
- ■Summary and development status

Summary of Post-K

- High application performance and good power efficiency
 - High memory bandwidth & wider SIMD
- ■Arm SVE support
 - Scalable vector extension, state of art Arm instruction set architecture
 - ■Binary compatibility advances and expands the power of ecosystem by incorporating HPC technologies and applications
- Optimizing for new supercomputer standards
 - ■Low power consumption in many aspects
 - ■Being focusing on the existing applications and emerging applications

Post-K inheriting the strong and proven microarchitecture with HPC system software will be more powerful with Arm and its ecosystem

System development status: Post-K

- ■Fujitsu is currently developing Post-K, successor to K computer, with RIKEN
- OS running and design verification is underway as scheduled
- ■RIKEN announced Post-K early access program to begin around Q2/CY2020

https://postk-web.r-ccs.riken.jp/sched.html

shaping tomorrow with you