CUI DEVICES

date 10/04/2019

page 1 of 9

SERIES: AMT11 | DESCRIPTION: MODULAR INCREMENTAL ENCODER

FEATURES

- patented capacitive ASIC technology
- low power consumption
- incremental resolutions up to 4096 PPR
- resolutions programmable with AMT Viewpoint™ PC software
- differential line driver versions
- digitally set zero position
- compact modular package with locking hub for ease of installation
- radial and axial cable connections
- 7 different mounting hole options
- -40~125°C operating temperature

ELECTRICAL

parameter	conditions/description	min	typ	max	units
power supply	VDD	4.5	5	5.5	V
start up time			200		ms
current consumption	with unloaded output		16		mA
single ended channels	output high level output low level output current (per channel) rise/fall time	VDD-0.1	8	0.1 15	V V mA ns
differential RS-422 channels	output high level output low level output current (per channel) rise/fall time	3 7	11	0.1 25 20	V V mA ns

INCREMENTAL CHARACTERISTICS

parameter	conditions/description		min	typ	max	units
channels		A, B, Z A, Ā, B, B, Z, Z				
waveform	CMOS voltage square wave					
phase difference	A leads B for CCW rotation (view	ed from front)				
quadrature resolutions ¹	48, 96, 100, 125, 192, 200, 250, 512, 768, 800, 1000, 1024, 1600		,			PPR
index ²	one pulse per 360 degree rotatio	n				
accuracy				0.2		degrees
quadrature duty cycle				50		%

Notes:

- 1. Resolution programmed with AMT Viewpoint™ PC software. Default resolution set to 2048 PPR. All resolutions are listed as pre-quadrature, meaning the final number of counts is PPR x 4.

 2. Zero position alignment set with AMT One Touch Zero™ module, AMT Viewpoint™ PC software, or serial commands

MECHANICAL

parameter	conditions/description	min	typ	max	units
motor shaft length		9			mm
weight	weight varies by configuration		15.7		g
axial play				±0.3	mm
rotational speed (at each	48, 96, 100, 125, 192, 200, 250, 256, 384, 400, 500, 512, 800, 1000, 1024, 2048			8000	RPM
resolution)	360, 768, 1600, 2000, 4096			4000	RPM
	2500			2500	RPM

ENVIRONMENTAL

parameter	conditions/description	min	typ	max	units
operating temperature		-40		125	°C
humidity	non-condensing			85	%
vibration	10~500 Hz, 5 minute sweep, 2 hours on each XYZ			5	G
shock	3 pulses, 6 ms, 3 on each XYZ			200	G
RoHS	yes				

SERIAL INTERFACE

parameter	conditions/description	min	typ	max	units
protocol	serial UART				
controller	ontroller driven by onboard Microchip PIC18F25K80. See Microchip documentation for additional details.				
data rate 8 data bits, no parity, 1 stop bit, least significant bit fi			115200		baud

WAVEFORMS

Figure 1 Quadrature signals with index showing counter-clockwise rotation

The following parameters are defined by the resolution selected for each encoder. The encoders resolution is listed as Pulses Per Revolution (PPR), which is the number of periods (or high pulses) over the encoders revolution.

Parameter	Description	Expression	Units	Notes
PPR	resolution		Pulses Per Revolution	This is the user selected value and the format all resolutions are listed in
CPR	counts	PPR x 4	Counts Per Revolution	This is the number of quadrature counts the encoder has
Т	period	360/R	mechanical degrees	
Р	pulse width	T/2	mechanical degrees	
S	A/B state width	T/4	mechanical degrees	This is the width of a quadrature state
I	index width	T/4	mechanical degrees	The width of a once per turn index is the state width for A & B lines

For more information regarding PPR, CPR, or LPR (Lines Per Revolution) view https://www.cuidevices.com/blog/what-is-encoder-ppr-cpr-and-lpr Note:

PART NUMBER KEY

For customers that prefer a specific AMT11 configuration, please reference the custom configuration key below.

AMT11-V KITS

In order to provide maximum flexibility for our customers, the AMT11 series is provided in kit form standard. This allows the user to implement the encoder into a range of applications using one sku#, reducing engineering and inventory costs.

PINOUT CONNECTOR							
	Function						
# AMT112S AMT112Q AMT113S AMT113G							
1	TX_ENC+	TX_ENC+	RX_ENC+	RX_ENC+			
2	RX_ENC+	RX_ENC+	TX_ENC+	TX_ENC+			
3	N/A	N/A	N/A	N/A			
4	GND ¹	GND ¹	GND ¹	GND ¹			
5	N/A	N/A	N/A	N/A			
6	+5 V	+5 V	+5 V	+5 V			
7	N/A	N/A	N/A	N/A			
8	B+	B+	B+	B+			
9	N/A	B-	N/A	B-			
10	A+	A+	A+	A+			
11	N/A	A-	N/A	A-			
12	Z+	Z+	Z+	Z+			
13	N/A	Z-	N/A	Z-			
14	MCLRB	MCLRB	MCLRB	MCLRB			
15	N/A	N/A	N/A	N/A			
16	N/A	N/A	N/A	N/A			
17	N/A	N/A	N/A	N/A			

 Connect encoder GND to motor chassis as closely as possible. For additional grounding techniques contact CUI Application Support. Note:

AMT113S & AMT113Q AMT112S & AMT112Q 16 14 12 10 8 6 4 14 12 10 8 6 4 2 SECTION A-A DETAIL B SCALE 4:1 SCALE 4:1 Mating Connector: Mating Connector: JAE FI-W17S Samtec ISDF-07-D-L

MECHANICAL DRAWING

AMT112S & AMT112Q

units: mm[inch] tolerance: ±0.1

AMT113S & AMT113Q

units: mm[inch]

tolerance: ±0.1

MECHANICAL DRAWING (CONTINUED)

MOUNTING HOLE PATTERNS

STANDARD BASE

units: mm[inch] tolerance: ±0.1

DETAIL A SCALE 4:1

WIDE BASE

units: mm[inch] tolerance: ± 0.1

ASSEMBLY PROCEDURE

STEP 1

- 1. Insert Tool A as a spacer that defines the distance to the mounting surface.
- 2. Slide appropriate sized Sleeve over shaft all the way down to Tool A.
- 3. Slide Shaft Adaptor over Sleeve.
- 4. Use Tool C to press Shaft Adaptor over Sleeve (ensure Shaft Adapter and Tool C spline alignment) until flush with Tool A.

STEP 4

- 1. Fasten the Base on the motor (Tool C may need to be rotated to allow for some mounting configurations).
- 2. Remove Tool C.

- $\textbf{1.} \ \mathsf{Remove} \ \mathsf{Tools} \ \mathsf{A} \ \mathsf{and} \ \mathsf{C}.$
- 2. Place Base on motor, with Tool C used as a centering tool.

- ${\bf 1.}$ Snap the Top Cover onto the Base, carefully observing that the teeth of the Shaft Adaptor align with the grooves in the hub. *
- * We recommend no more than three cycles of mounting and removal of the AMT top cover base. Multiple cycles of mounting and removing the top cover can cause base fatigue over time and affect encoder performance.

STEP 3

- 1. Align Tool C with flange on Base.
- ${\bf 2.}$ Slide Base and Tool C onto motor, centering onto the Shaft Adapter.

- 1. Make sure the snaps are fully engaged by pressing on the Hub with the reverse side of Tool C.
- 2. When assembly is finished, the Shaft Adaptor, Sleeve and Rotor Hub should all be flush with the Motor Shaft rotating freely.

APPLICATION NOTES

SERIAL INTERFACE

The AMT11 series encoder is designed to operate with a serial UART interface. This interface allows the encoder to be configured and programmed by the AMT Viewpoint™ application. Along with programming, the AMT Viewpoint™ application uses the serial interface for diagnostics and index alignment. Below are instructions on how to use the serial interface for position zeroing.

Table 1 Serial Commands

Command	Action	Use
0	This command sends an ascii '0' (hex value 0x30).	This zeros the encoder and sets the index at the current angular position. This position is stored in non-volatile memory and will remain present until a zero command is set again or encoder is reprogrammed via AMT Viewpoint™.
Q	This command sends an ascii \Q' (hex value $0x51$).	This command restarts the encoder as if it were power cycled.

Table 2 Serial Pins

Pin	Description	Connection
TX_ENC+	This is the pin that the encoder transmits serial data on.	Connect this pin to the receiver input of your serial/UART interface.
RX_ENC+	This is the pin that the encoder receives serial commands on.	Connect this pin to your serial/UART interface transmitter output.
MCLRB	This pin is used to force the encoder into reset for reprogramming via the AMT Viewpoint™ application.	Connection of this pin is not required for the above serial commands.

The serial interface operates at 115200 baud with 8 data bits, no parity, and 1 stop bit, and 1 start bit. This is the standard UART protocol. Data lines TX_ENC+ and RX_ENC+ are high when inactive.

Figure 2 Serial Timing Diagram

Response: \r (hex: 0x0d, binary: 0b10110000)

REVISION HISTORY

rev.	description	date
1.0	initial release	04/30/2014
1.01	updated datasheet	06/24/2014
1.02	updated datasheet	10/13/2015
1.03	added 360 & 2500 PPR resolutions, increased operating temperature to 125°C	12/18/2017
1.04	changed outer mounting holes to be oblong on wide base version	10/10/2018
1.05	brand update	10/04/2019

The revision history provided is for informational purposes only and is believed to be accurate.

CUI DEVICES

CUI Devices offers a one (1) year limited warranty. Complete warranty information is listed on our website.

CUI Devices reserves the right to make changes to the product at any time without notice. Information provided by CUI Devices is believed to be accurate and reliable. However, no responsibility is assumed by CUI Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

CUI Devices products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.