Mathe 3Inf/4Etit Kochrezepte

Stef9998

11. April 2022

ln	haltsverzeichnis	_
1	Interpolation 1.1 Polynominterpolation (Newtonsche Interpolationsformel)	2 2
2	Numerische Integration 2.1 Newton-Cotes	3 3 3 3
4	Lineare Gleichungssysteme4.3 Cholesky Verfahren $(LL^T = A)$	5 5 5
5	Nichtlineare Gleichungssysteme 5.2.1 lokales Newton-Verfahren	6
6	Verfahren zur Eigenwert- und Eigenvektorberechnung 6.2 Vektoriteration	7 7
7	Statistik und Wahrscheinlichkeitstheorie 7.5 Zufallsvariablen und Verteilungsfunktion	8
8	Schätzverfahren und Konfidenzintervalle 8.2 Maximum-Likelihood-Schätzer	9 9 9
9	Tests	10

1 Interpolation

1.1 Polynominterpolation (Newtonsche Interpolationsformel)

Wir berechnen ein Polynom n-ten Grades $p_n(x)$ welches die Ursprungsfunktion annähert.

Dafür benutzen wir das Schema

$$\begin{array}{c|c} x_0 & f_{[x_0]} = y_0 \\ \hline x_1 & f_{[x_1]} = y_1 \\ \hline x_2 & f_{[x_2]} = y_2 \\ \hline \vdots & \end{array}$$

$$f_{[x_j,\dots,x_{k+j}]} = \frac{f_{[x_{j+1}\dots,x_{j+k}]} - f_{[x_j,\dots,x_{j+k-1}]}}{x_{j+k} - x_j} = \frac{f_{\mathsf{unten}} - f_{\mathsf{oben}}}{x_{\mathsf{unten}} - x_{\mathsf{oben}}}$$

um dann Polynom zu berechnen

$$p_n(x) = \gamma_0 + \sum_{i=1}^n \gamma_i(x - x_0) \dots (x - x_{i-1})$$
 , $\gamma_i = f_{[x_0 \dots x_i]}$

wobei die γ_i 's einfach die oberste Zeile (ohne x_0) im Schema ist.

Hinweis: Man kann Zeilen vertauschen. Das heißt wenn viele $f_{[x]} = 0$ lohnt es sich meist diese nach oben zu tauschen.

Fehlerabschätzung:

Äquidistant

$$\max_{x \in [a,b]} |f(x) - p_n(x)| \le \max_{x \in [a,b]} \frac{|f^{(n+1)}(x)|}{(n+1)!} (b-a)^{n+1}$$

Tschebyschev-Abszissen

$$\max_{x \in [a,b]} |f(x) - p_n(x)| \le \max_{x \in [a,b]} \frac{|f^{(n+1)}(x)|}{(n+1)!} \left(\frac{b-a}{2}\right)^{n+1} 2^{-n}$$

2 Numerische Integration

a, b sind Start- und Endpunkt. h ist die Schrittweite. n sind die Stützstellen.

$$\|f(\xi)\|=\max_{x\in[a,b]}|f(x)|$$

2.1 Newton-Cotes

Allgemeiner Fehler

$$\int_{a}^{b} \|f(x) - p_n(x)\| dx \le \frac{\left\|f^{(n+1)}(\xi)\right\|}{(n+1)!} (b-a)^{n+2} = \max_{x \in [a,b]} \frac{|f^{(n+1)}(x)|}{(n+1)!} (b-a)^{n+2}$$

2.1.1 geschlossen

2.1.2 offen

2.2 summiert

Aufteilen in Teilintervalle m

$$N = n \cdot m$$

$$H = \frac{b-a}{m}$$

$$h = \frac{b-a}{N}$$

$$x_i = a + ih$$

$$i = 0, \dots, N$$

Summierte Trapezregel

(geschlossen, n = 1, $h = \frac{b-a}{m}$)

$$S_N^{(1)}(f) = \frac{h}{2} \sum_{i=0}^{m-1} (f(x_i) + f(x_{j+1}))$$

Fehler:
$$R_N^{(1)}(f) = -\frac{f''(\xi)}{12}(b-a)h^2$$

Summierte Simpson-Regel (geschlossen,
$$n=2,\,h=\frac{b-a}{2m}$$
)

$$S_N^{(2)}(f) = \frac{h}{3} \sum_{j=0}^{m-1} (f(x_{2j}) + 4f(x_{2j+1}) + f(x_{2j+2}))$$

Fehler:
$$R_N^{(2)}(f) = -\frac{f^{(4)}(\xi)}{180}(b-a)h^4$$

Summierte Rechteck-Regel (offen,
$$n=0,\,2m=N,\,h=\frac{b-a}{N}$$
)

$$\tilde{S}_N^{(0)} = 2h \sum_{j=1}^m f(x_{2j-1})$$

Fehler:
$$\tilde{R}_{N}^{(0)}(f) = \frac{f''(\xi)}{6}(b-a)h^{2}$$

4 Lineare Gleichungssysteme

4.3 Cholesky Verfahren $(LL^T = A)$

Für
$$j = 1, \ldots, n$$

$$l_{jj} = \sqrt{a_{jj} - \sum_{k=1}^{j-1} l_{jk}^2}$$

Falls Wurzel nicht existiert, STOPP $\Rightarrow A$ nicht definit

Für
$$i = j + 1, ..., n$$
:

$$l_{ij} = \frac{a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk}}{l_{jj}}$$

4.4 Fehlerabschätzung für gestörte Gleichungssysteme

induziert

$$Ax = b (A + \Delta A)\tilde{x} = b + \Delta b$$

dann gilt für den Fehler

$$\frac{||\tilde{x}-x||}{||x||} \leq \frac{cond(A)}{1-cond(A)||\Delta A||/||A||} \left(\frac{||\Delta A||}{||A||} + \frac{||\Delta b||}{||b||}\right)$$

mit

$$||x||_2 = \sqrt{x^T x} \qquad \text{induziert} \qquad ||A||_2 = \sqrt{\lambda_{max}(A^T A)}$$

$$||x||_1 = \sum_{i=1}^n |x_i| \qquad \text{induziert} \qquad ||A||_1 = \max_{j=1,\dots,n} \sum_{i=1}^n |a_{ij}| \qquad \text{(Spaltensummen Norm = "gr\"oßte" Spalte)}$$

$$||x||_\infty = \max_{i=1,\dots,n} |x_i| \qquad \text{induziert} \qquad ||A||_\infty = \max_{i=1,\dots,n} \sum_{j=1}^n |a_{ij}| \qquad \text{(Zeilensummen Norm = "gr\"oßte" Zeile)}$$

(Zeilensummen Norm = "größte" Zeile)

$$cond(A) = ||A|| ||A^{-1}||$$

5 Nichtlineare Gleichungssysteme

5.2.1 lokales Newton-Verfahren

$$s^{(k)} \text{ L\"osung von } J_F(x^{(k)}) s^{(k)} = -F(x^{(k)})$$

$$x^{(k+1)} = x^{(k)} + s^{(k)}$$
 Bei $f(x): \mathbb{R}^1 \to \mathbb{R}^1$
$$J_F(x^{(k)})^{-1} = F'(x^{(k)})$$

$$\Rightarrow s^{(k)} = -\frac{F(x^{(k)})}{F'(x^{(k)})}$$

$$x^{(k+1)} = x^{(k)} - \frac{F(x^{(k)})}{F'(x^{(k)})}$$

6 Verfahren zur Eigenwert- und Eigenvektorberechnung

6.2 Vektoriteration

Einfache Vektoriteration nach von Mises:

Wir setzen die zu Iterationsmatrix B einfach gleich der gegebenen Matrix A

$$B = A$$

Um die nächste Iteration von z zu bekommen bedarf es nur dieser Formel, welche man die ganze so lange durchiteriert, bis man bei der gewünschen Zahl angekommen ist.

$$z^{(k+1)} = \frac{1}{||Bz^{(k)}||} Bz^{(k)}$$

Um nun den Rayleigh-Quotienten von einem beliebigen k (meistens wird das vorletzte benutzt) einfach alles in die Formel einsetzen.

$$R(z^{(k)},B) = \frac{(z^{(k)})^H B z^{(k)}}{(z^{(k)})^H z^{(k)}}$$

Bei reellen Werten entspricht $(.)^H$ der Transponierten.

Inverse Vektoriteration von Wielandt:

Hier ist B mit einem Shift μ verschoben, und das Ganze invertiert.

$$B = (A - \mu I)^{-1}$$

Achtung! Dabei nicht die Inverse bestimmen, sondern über die DGL

$$(A - \mu I)\hat{z}^{(k+1)} = z^{(k)}$$

 \hat{z}^{k+1} bestimmen und dann normieren zu

$$z^{(k+1)} = \frac{\hat{z}^{(k+1)}}{\|\hat{z}^{(k+1)}\|}$$

$$R(z^{(k)}, (A - \mu I)^{-1}) = \frac{(z^{(k)})^H \hat{z}^{(k+1)}}{(z^{(k)})^H z^{(k)}}$$

Bei reellen Werten entspricht $(.)^{\cal H}$ der Transponierten.

Einen Eigenwert λ_i (oder Schätzung) erhalten wir dann durch Umstellen von

$$\mu_i = \frac{1}{\lambda_i - \mu}$$

Wobei μ_i dem Rayleigh-Quotienten entspricht.

7 Statistik und Wahrscheinlichkeitstheorie

7.5 Zufallsvariablen und Verteilungsfunktion

Alle Wahrscheinlichkeiten $P(\Omega)$ / die Verteilungsfunktion im unendlichen $F(+\infty)$ muss =1 werden.

$$E(X) = \sum_{i} x_i P(X = x_i)$$

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

$$E(X^2) = \sum_{i} (x_i)^2 P(X = x_i)$$

$$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$$

$$Var(X) = E(X^2) - (E(X))^2$$

8 Schätzverfahren und Konfidenzintervalle

8.2 Maximum-Likelihood-Schätzer

 $f_{\theta}(x)$ entspricht der Dichtefunktion. Bei diskreten Werten siehe oben.

$$L(\theta; x_1, \dots x_n) = f_{\theta}(x_1) f_{\theta}(x_2) \dots f_{\theta}(x_n)$$
$$ln\left(L(\theta; x_1, \dots x_n)\right) = \sum_{i=1}^n ln\left(f_{\theta}(x_i)\right)$$

Teilweise kann man f_{θ} durch den ln nochmal in Summen aufteilen, da dann alle Summanden ohne θ bei der Ableitung rausfliegen.

$$\frac{\partial}{\partial \theta} ln \left(L(\theta; x_1, \dots x_n) \right) = \frac{\partial}{\partial \theta} \sum_{i=1}^n ln \left(f_{\theta}(x_i) \right) \stackrel{!}{=} 0$$

Nun nach θ umstellen. Dies ist dann die eindeutige Nullstelle

$$\hat{\theta}(x_1,\ldots,x_n)=\ldots$$

Um zu wissen, dass es ein Maximum ist, muss man noch schauen ob die 2. Ableitung < 0 ist

$$\frac{\partial^2}{\partial \theta^2} ln\left(L(\theta; x_1, \dots x_n)\right) \stackrel{!}{<} 0$$

8.3 Konfidenzintervalle

$$F_{\theta}(x) = F_{(\mu,\sigma^2)}(x) = \Phi(\frac{x-\mu}{\sigma}) \qquad \bar{X}_{(n)} = \frac{1}{n} \sum_{i=1}^{n} X_i \qquad S_{(n)}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_{(n)})^2$$

 $\Theta=\{(\mu,\sigma_0^2):\mu\in\mathbb{R},\sigma^2>0\} \text{ und } \tau(\theta)=\mu/\sigma^2. \text{ Das Konfidenzintervall für } \mu/\sigma^2 \text{ zum Niveau } 1-\alpha \text{ lautet } 1-\alpha \text{$

Konfidenzintervall für μ bei bekannter Varianz $\sigma^2 = \sigma_0^2$

$$I(X_1, \dots, X_n) = \left[\bar{X}_{(n)} - u_{1-\alpha/2} \frac{\sigma_0}{\sqrt{n}}, \bar{X}_{(n)} + u_{1-\alpha/2} \frac{\sigma_0}{\sqrt{n}} \right]$$

Konfidenzintervall für μ bei unbekannter Varianz σ^2

$$I(X_1, \dots, X_n) = \left[\bar{X}_{(n)} - t_{n-1;1-\alpha/2} \sqrt{\frac{S_{(n)}^2}{n}}, \bar{X}_{(n)} + t_{n-1;1-\alpha/2} \sqrt{\frac{S_{(n)}^2}{n}} \right]$$

Konfidenzintervall für σ^2 bei bekanntem Erwartungswert $\mu=\mu_0$

$$I(X_1, \dots, X_n) = \left[\frac{\sum_{i=1}^n (X_i - \mu_0)^2}{\chi_{n;1-\alpha/2}^2}, \frac{\sum_{i=1}^n (X_i - \mu_0)^2}{\chi_{n;\alpha/2}^2} \right]$$

Konfidenzintervall für σ^2 bei unbekanntem Erwartungswert μ

$$I(X_1, \dots, X_n) = \left[\frac{(n-1)S_{(n)}^2}{\chi_{n-1;1-\alpha/2}^2}, \frac{(n-1)S_{(n)}^2}{\chi_{n-1;\alpha/2}^2} \right]$$

9 Tests

1. X_1, \ldots, X_n unabhängig, identisch $N(\mu, \sigma^2)$ -verteilt

Gauß-Test , testen für μ bei bekannter Varianz $\sigma^2=\sigma_0^2$

2. a)
$$H_0: \mu = \mu_0$$
, b) $H_0: \mu \le \mu_0$, c) $H_0: \mu \ge \mu_0$

3. Testgröße

$$T(X_1,\ldots,X_n) = \frac{\sqrt{n}}{\sigma_0}(\bar{X}_{(n)} - \mu_0)$$

4. Ablehnung Falls

a)
$$|T| > u_{1-\alpha/2}$$
, b) $T > u_{1-\alpha}$, c) $T < u_{\alpha}$

t-Test , testen für μ bei unbekannter Varianz σ^2

2. a)
$$H_0: \mu = \mu_0$$
, b) $H_0: \mu \le \mu_0$, c) $H_0: \mu \ge \mu_0$

3. Testgröße

$$T(X_1, \dots, X_n) = \sqrt{n} \frac{\bar{X}_{(n)} - \mu_0}{\sqrt{S_{(n)}^2}}$$

4. Ablehnung Falls

a)
$$|T| > t_{n-1;1-\alpha/2}$$
, b) $T > t_{n-1;1-\alpha}$, c) $T < t_{n-1;\alpha}$

χ^2 -Streuungstest , testen für σ^2 bei unbekanntem Erwartungswert μ

2. a)
$$H_0: \sigma^2 = \sigma_0^2$$
, b) $H_0: \sigma^2 \le \sigma_0^2$, c) $H_0: \sigma^2 \ge \sigma_0^2$

3. Testgröße

$$T(X_1, \dots, X_n) = \frac{(n-1)}{\sigma_0^2} S_{(n)}^2$$

4. Ablehnung falls a)
$$T<\chi^2_{n-1;\alpha/2}$$
 oder $T>\chi^2_{n-1;1-\alpha/2}$, b) $T>\chi^2_{n-1;1-\alpha}$, c) $T<\chi^2_{n-1;\alpha}$