Overview

Contents

- 1. The query model of computation
- 2. Deutsch's algorithm
- 3. The Deutsch-Jozsa algorithm
- 4. Simon's algorithm

A standard picture of computation

A standard abstraction of computation looks like this:

Different specific models of computation are studied, including *Turing machines* and *Boolean circuits*.

- Key point -

The *entire input* is provided to the computation — most typically as a string of bits — with nothing being hidden from the computation.

The query model of computation

In the query model of computation, the input is made available in the form of a *function*, which the computation accesses by making *queries*.

We often refer to the input as being provided by an *oracle* or *black box*.

The query model of computation

Throughout this lesson, the input to query problems is represented by a function

$$f: \Sigma^n \to \Sigma^m$$

where n and m are positive integers and $\Sigma = \{0, 1\}$.

Queries

To say that a computation makes a query means that it evaluates the function f once: $x \in \Sigma^n$ is selected, and the string $f(x) \in \Sigma^m$ is made available to the computation.

We measure the efficiency of query algorithms by counting the *number of queries* to the input they require.

Examples of query problems

Or

Input: $f: \Sigma^n \to \Sigma$

Output: 1 if there exists a string $x \in \Sigma^n$ for which f(x) = 1

0 if there is no such string

Parity

Input: $f: \Sigma^n \to \Sigma$

Output: 0 if f(x) = 1 for an even number of strings $x \in \Sigma^n$

1 if f(x) = 1 for an odd number of strings $x \in \Sigma^n$

Minimum

Input: $f: \Sigma^n \to \Sigma^m$

Output: The string $y \in \{f(x) : x \in \Sigma^n\}$ that comes first in the

lexicographic ordering of Σ^m

Examples of query problems

Sometimes we also consider query problems where we have a *promise* on the input. Inputs that don't satisfy the promise are considered as "don't care" inputs.

Unique search

Input: $f: \Sigma^n \to \Sigma$

Promise: There is exactly one string $z \in \Sigma^n$ for which f(z) = 1,

with f(x) = 0 for all strings $x \neq z$

Output: The string z

Or, Parity, Minimum, and Unique search are all very "natural" examples of query problems — but some query problems of interest aren't like this.

We sometimes consider very complicated and highly contrived problems, to look for extremes that reveal potential advantages of quantum computing.

Query gates

For circuit models of computation, queries are made by query gates.

For Boolean circuits, query gates generally compute the input function f directly.

For example, the following circuit computes Parity for every $f: \Sigma \to \Sigma$.

Query gates

For the quantum circuit model, we choose a different definition for query gates that makes them <u>unitary</u> — allowing them to be applied to quantum states.

Definition

The query gate U_f for any function $f:\Sigma^n\to\Sigma^m$ is defined as

$$\mathsf{U}_\mathsf{f}\big(|\mathsf{y}\rangle|x\rangle\big) = |\mathsf{y} \oplus \mathsf{f}(x)\rangle|x\rangle$$

for all $x \in \Sigma^n$ and $y \in \Sigma^m$.

Notation

The string $y \oplus f(x)$ is the *bitwise XOR* of y and f(x). For example:

$$001 \oplus 101 = 100$$

Query gates

For the quantum circuit model, we choose a different definition for query gates that makes them *unitary*— allowing them to be applied to quantum states.

In circuit diagrammatic form U_f operates like this:

will get permutation matrix

 $|0^m\rangle = 0000...$ the amount of m

This gate is always unitary, for any choice of the function f.

Deutsch's problem

Deutsch's problem is very simple — it's the Parity problem for functions of the form $f: \Sigma \to \Sigma$.

There are four functions of the form $f: \Sigma \to \Sigma$:

а	$f_1(a)$	а	$f_2(a)$		$f_3(a)$	а	f4(a)	
0	0	0	0	0	1 0	0	1	
1	0	1	1	1	0	1	1	

The functions f_1 and f_4 are constant while f_2 and f_3 are balanced.

Deutsch's problem

Input: $f: \Sigma \to \Sigma$

Output: 0 if f is constant, 1 if f is balanced

Deutsch's problem

Deutsch's problem

Input: $f: \Sigma \to \Sigma$ if we only know mapping $0 \to x$; and we

Output: 0 if f is constant, 1 if f is balanced don't know the mapping 1 -> ? then we don't know the parity of the function

Every classical query algorithm must make 2 queries to f to solve this problem — learning just one of two bits provides no information about their parity.

Our query algorithm from earlier is therefore optimal among classical query algorithms for this problem.

Deutsch's algorithm

Deutsch's algorithm solves Deutsch's problem using a single query.

$$|0 \oplus a\rangle - |1 \oplus a\rangle$$

$$= (-1)^{\alpha}(|0\rangle - |1\rangle)$$

$$|f = 0 | |0 \oplus 0\rangle - |1 \oplus 0\rangle$$

$$= (-1)^{0} | |0\rangle - |1\rangle$$

$$|f = 1 = |0 \oplus 1\rangle - |1 \oplus 1\rangle$$

$$= |1\rangle - |0\rangle$$

$$(-1)^{1} (|1\rangle - |1\rangle$$

$$-|0\rangle + |1\rangle$$

$$|f = 1 = |0 \oplus 1\rangle - |1 \oplus 1\rangle$$

$$= |1\rangle - |0\rangle$$

$$(-1)^{1} (|1\rangle - |1\rangle$$

$$-|0\rangle + |1\rangle$$

$$|f = 1 = |0 \oplus 1\rangle - |1 \oplus 1\rangle$$

$$= |1\rangle - |1\rangle$$

$$= |1\rangle + |1\rangle$$

$$= |1\rangle$$

$$= |1\rangle + |1\rangle$$

$$= |$$

Deutsch's algorithm

Deutsch's algorithm solves Deutsch's problem using a single query.

$$\begin{split} |\pi_2\rangle &= |-\rangle \left(\frac{(-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle}{\sqrt{2}}\right) \\ &= (-1)^{f(0)}|-\rangle \left(\frac{|0\rangle + (-1)^{f(0)\oplus f(1)}|1\rangle}{\sqrt{2}}\right) \\ &= \left\{(-1)^{f(0)}|-\rangle|+\rangle \quad f(0) \oplus f(1) = 0 \\ (-1)^{f(0)}|-\rangle|-\rangle \quad f(0) \oplus f(1) = 1 \end{split}$$

Deutsch's algorithm

Deutsch's algorithm solves Deutsch's problem using a single query.

$$\begin{split} |\pi_2\rangle &= \begin{cases} (-1)^{f(0)}|-\rangle|+\rangle & f(0) \oplus f(1) = 0 \\ (-1)^{f(0)}|-\rangle|-\rangle & f(0) \oplus f(1) = 1 \end{cases} \\ |\pi_3\rangle &= \begin{cases} (-1)^{f(0)}|-\rangle|0\rangle & f(0) \oplus f(1) = 0 \\ (-1)^{f(0)}|-\rangle|1\rangle & f(0) \oplus f(1) = 1 \end{cases} & \text{interference} \\ &= (-1)^{f(0)}|-\rangle|f(0) \oplus f(1)\rangle \end{split}$$

Phase kickback

$$\begin{split} |b \oplus c\rangle &= X^c |b\rangle \\ U_f \big(|b\rangle |\alpha\rangle \big) &= |b \oplus f(\alpha)\rangle |\alpha\rangle = \big(X^{f(\alpha)} |b\rangle \big) |\alpha\rangle \\ U_f \big(|-\rangle |\alpha\rangle \big) &= \big(X^{f(\alpha)} |-\rangle \big) |\alpha\rangle = (-1)^{f(\alpha)} |-\rangle |\alpha\rangle \\ U_f \big(|-\rangle |\alpha\rangle \big) &= (-1)^{f(\alpha)} |-\rangle |\alpha\rangle &\longleftarrow \text{phase kickback} \end{split}$$

Phase kickback

0 if f is constant

igl 1 if f is balanced

X |-> = - |-> negative 1 minus |-> state minus state = an eigenvector of the X operation, with eigen value equal to negative 1.

$$\begin{split} &U_f\big(|-\rangle|\,\alpha\big)\big) = (-1)^{f(\alpha)}|-\rangle|\,\alpha\big\rangle &\longleftarrow \underset{\text{kickback}}{\text{phase}} \\ &|\pi_1\rangle = |-\rangle|+\rangle \\ &|\pi_2\rangle = U_f\big(|-\rangle|+\rangle\big) = \frac{1}{\sqrt{2}}U_f\big(|-\rangle|0\rangle\big) + \frac{1}{\sqrt{2}}U_f\big(|-\rangle|1\rangle\big) \\ &= |-\rangle\bigg(\frac{(-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle}{\sqrt{2}}\bigg) \end{split}$$

The Deutsch-Jozsa circuit

The Deutsch-Jozsa algorithm extends Deutsch's algorithm to input functions of the form $f: \Sigma^n \to \Sigma$ for any $n \ge 1$.

The quantum circuit for the Deutsch-Jozsa algorithm looks like this:

We can, in fact, use this circuit to solve multiple problems.

gain some information about f, that can potentially help to solve query problems where f is the input

The Deutsch-Jozsa problem

The Deutsch-Jozsa problem generalizes Deutsch's problem: for an input function $f: \Sigma^n \to \Sigma$, the task is to output 0 if f is constant and 1 if f is balanced.

When $n \ge 2$, some functions $f: \Sigma^n \to \Sigma$ are neither constant nor balanced.

This function is neither constant nor balanced: $\begin{array}{c|c} x & f(x) \\ \hline 00 & 0 \\ 01 & 0 \\ 10 & 0 \\ 11 & 1 \\ \end{array}$

Input functions that are neither constant nor balanced are "don't care" inputs.

The Deutsch-Jozsa problem

The Deutsch-Jozsa problem generalizes Deutsch's problem: for an input function $f: \Sigma^n \to \Sigma$, the task is to output 0 if f is constant and 1 if f is balanced.

```
Deutsch-Jozsa problem
```

Input: $f: \Sigma^n \to \Sigma$ we're promised that the input function f is either constant or

Promise: f is either constant or balanced balanced, and the goal is to figure out which one it is.

Output: 0 if f is constant, 1 if f is balanced

we're not responsible for what happens if the input doesn't meet the promise.

The Deutsch-Jozsa problem

Deutsch-Jozsa problem

Input: $f: \Sigma^n \to \Sigma$

Promise: f is either constant or balanced

Output: 0 if f is constant, 1 if f is balanced

Output: 0 if $y = 0^n$ and 1 otherwise. if y = all zero string

The Hadamard operation works like this on standard basis states:

$$\begin{split} H|0\rangle &= \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \\ H|1\rangle &= \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle \end{split}$$

We can express these two equations as one:

$$H|\alpha\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}(-1)^{\alpha}|1\rangle = \frac{1}{\sqrt{2}}\sum_{b \in \{0,1\}}(-1)^{\alpha b}|b\rangle$$

The Hadamard operation works like this on standard basis states:

$$H|\alpha\rangle = \frac{1}{\sqrt{2}} \sum_{b \in \{0,1\}} (-1)^{ab} |b\rangle$$

Now suppose we perform a Hadamard operation on each of n gubits:

^ tensor n = n-fold tensor product of H with itself = n copies of H all tensor together

$$\begin{split} &H^{\otimes n}|x_{n-1}\cdots x_1x_0\rangle\\ &=\left(H|x_{n-1}\rangle\right)\otimes\cdots\otimes\left(H|x_0\rangle\right) \text{ n-fold of Hadamard gate applied to each qubit}\\ &=\left(\frac{1}{\sqrt{2}}\sum_{y_{n-1}\in\Sigma}(-1)^{x_{n-1}y_{n-1}}|y_{n-1}\rangle\right)\otimes\cdots\otimes\left(\frac{1}{\sqrt{2}}\sum_{y_0\in\Sigma}(-1)^{x_0y_0}|y_0\rangle\right)\\ &=\frac{1}{\sqrt{2^n}}\sum_{y_{n-1}\cdots y_0\in\Sigma^n}(-1)^{x_{n-1}y_{n-1}+\cdots+x_0y_0}|y_{n-1}\cdots y_0\rangle \end{split}$$

$$\begin{split} H^{\otimes n} | x_{n-1} \cdots x_1 x_0 \rangle \\ &= \frac{1}{\sqrt{2^n}} \sum_{y_{n-1} \cdots y_0 \in \Sigma^n} (-1)^{x_{n-1} y_{n-1} + \dots + x_0 y_0} | y_{n-1} \cdots y_0 \rangle \\ &\qquad \qquad H^{\otimes n} | x \rangle = \frac{1}{\sqrt{2^n}} \sum_{y \in \Sigma^n} (-1)^{x \cdot y} | y \rangle \end{split}$$

Binary dot product

For binary strings $x = x_{n-1} \cdots x_0$ and $y = y_{n-1} \cdots y_0$ we define dot product = parity of individual bits / XOR of the logical and of the individual bits

$$\begin{split} x \cdot y &= x_{n-1} y_{n-1} \oplus \cdots \oplus x_0 y_0 \\ &= \begin{cases} 1 & \text{if } x_{n-1} y_{n-1} + \cdots + x_0 y_0 \text{ is odd} \\ 0 & \text{if } x_{n-1} y_{n-1} + \cdots + x_0 y_0 \text{ is even} \end{cases} \end{split}$$

$$\mathsf{H}^{\otimes n}|x\rangle = \frac{1}{\sqrt{2^n}} \sum_{y \in \Sigma^n} (-1)^{x \cdot y} |y\rangle$$

$$|\pi_1\rangle = |-\rangle \otimes \frac{1}{\sqrt{2^n}} \sum_{x \in \Sigma^n} |x\rangle$$

$$\mathsf{H}^{\otimes n}|x\rangle = \frac{1}{\sqrt{2^n}} \sum_{y \in \Sigma^n} (-1)^{x \cdot y} |y\rangle$$

$$|\pi_2\rangle = |-\rangle \otimes \frac{1}{\sqrt{2^n}} \sum_{x \in \Sigma^n} (-1)^{f(x)} |x\rangle$$

$$\mathsf{H}^{\otimes n}|x\rangle = \frac{1}{\sqrt{2^n}} \sum_{y \in \Sigma^n} (-1)^{x \cdot y} |y\rangle$$

If we see that every measurement outcome is 0, the function is constant.

If any one of the measurements is 1, the function is balanced.
$$|\pi_3\rangle = |-\rangle \otimes \frac{1}{2^n} \sum_{y \in \Sigma^n} \sum_{x \in \Sigma^n} (-1)^{f(x) + x \cdot y} |y\rangle$$

The probability for the measurements to give $y = 0^n$ is

$$p(0^n) = \left| \frac{1}{2^n} \sum_{x \in \Sigma^n} (-1)^{f(x)} \right|^2 = \begin{cases} 1 & \text{if f is constant} \\ 0 & \text{if f is balanced} \end{cases}$$

The Deutsch-Jozsa algorithm therefore solves the Deutsch-Jozsa problem without error with a single query.

Any $\frac{deterministic}{2^{n-1}}$ algorithm for the Deutsch-Jozsa problem must at least $2^{n-1} + 1$ queries. because we have to query the function on more of the half of inputs to be sure of the solution.

A *probabilistic* algorithm can, however, solve the Deutsch-Jozsa problem using just a few queries:

- 1. Choose k input strings $x^1,\ldots,x^k\in\Sigma^n$ uniformly at random.
- 2. If $f(x^1) = \cdots = f(x^k)$, then answer 0 (constant), else answer 1 (balanced).

If f is constant, this algorithm is correct with probability 1.

If f is balanced, this algorithm is correct with probability $1 - 2^{-k+1}$.

The Bernstein-Vazirani problem

Bernstein-Vazirani problem

Input: $f: \Sigma^n \to \Sigma$

Promise: there exists a binary string $s = s_{n-1} \cdots s_0$ for which

 $f(x) = s \cdot x$ for all $x \in \Sigma^n$

Output: the string s

The Bernstein-Vazirani problem

$$\begin{split} |\pi_{3}\rangle &= |-\rangle \otimes \frac{1}{2^{n}} \sum_{y \in \Sigma^{n}} \sum_{x \in \Sigma^{n}} (-1)^{f(x)+x \cdot y} |y\rangle \\ &= |-\rangle \otimes \frac{1}{2^{n}} \sum_{y \in \Sigma^{n}} \sum_{x \in \Sigma^{n}} (-1)^{s \cdot x + y \cdot x} |y\rangle \\ &= |-\rangle \otimes \frac{1}{2^{n}} \sum_{y \in \Sigma^{n}} \sum_{x \in \Sigma^{n}} (-1)^{(s \oplus y) \cdot x} |y\rangle \\ &= |-\rangle \otimes |s\rangle \end{split}$$

The Deutsch-Jozsa circuit therefore solves the Bernstein-Vazirani problem with a single query.

Any probabilistic algorithm must make at least n queries to find s.

Simon's problem

Simon's problem the input: f maps n bit string to m bit string, where m is some positive A function $f: \Sigma^n \to \Sigma^m$ integer that isn't equal to 1 in general Input: Promise: There exists a string $s \in \Sigma^n$ such that hidden string s $[f(x) = f(y)] \Leftrightarrow [(x = y) \text{ or } (x \oplus s = y)]$

> there exists string s having length equal to n, such that a particular "if" for all $x, u \in \Sigma^n$

and "only if" condition is true for all choices of all n-bit string x and y

Output: The string s

f of x is equal to f of y, iff. one of two possibilities holds:

1. x = v

Case 1: $s = 0^n$ 2. x with hidden string s = y

The condition in the promise simplifies to

$$[f(x) = f(y)] \Leftrightarrow [x = y]$$

This is equivalent to f being *one-to-one*.

Simon's problem

Simon's algorithm

Simon's algorithm consists of running the following circuit several times, followed by a post-processing step.

$$\begin{split} |\pi_1\rangle &= \frac{1}{\sqrt{2^n}} \sum_{x \in \Sigma^n} |0^m\rangle |x\rangle \\ |\pi_2\rangle &= \frac{1}{\sqrt{2^n}} \sum_{x \in \Sigma^n} |f(x)\rangle |x\rangle \\ |\pi_3\rangle &= \frac{1}{\sqrt{2^n}} \sum_{x \in \Sigma^n} |f(x)\rangle \otimes \left(\frac{1}{\sqrt{2^n}} \sum_{y \in \Sigma^n} (-1)^{x \cdot y} |y\rangle \right) = \frac{1}{2^n} \sum_{y \in \Sigma^n} \sum_{x \in \Sigma^n} (-1)^{x \cdot y} |f(x)\rangle |y\rangle \end{split}$$

```
1:02:37
p(y) = \left\| \frac{1}{2^{n}} \sum_{x \in \Sigma^{n}} (-1)^{x \cdot y} |f(x)\rangle \right\|^{2} \qquad \text{for } \{f\} = \{f(x) : x \in \Sigma^{n}\}
p(y) = \left\| \frac{1}{2^{n}} \sum_{x \in \Sigma^{n}} (-1)^{x \cdot y} |f(x)\rangle \right\|^{2} \qquad \text{for } \{f\} = \{x \in \Sigma^{n} : f(x) = Z\}
                = \left\| \frac{1}{2^n} \sum_{z \in \mathsf{range}(f)} \left( \sum_{x \in f^{-1}(z)} (-1)^{x \cdot y} \right) |z\rangle \right\|^2
               =\frac{1}{2^{2n}}\sum_{z\in\mathsf{range}(f)}\left|\sum_{x\in f^{-1}\{\ell_{z}\}\setminus\{-1\}}(-1)^{x\cdot y}\right|^{2}
                           range(f) = \{f(x) : x \in \Sigma^n\}
                     f^{-1}(\{z\}) = \{x \in \Sigma^n : f(x) = z\}
```

$$p(y) = \frac{1}{2^{2n}} \sum_{z \in range(f)} \left| \sum_{x \in f^{-1}(\{z\})} (-1)^{x \cdot y} \right|^2$$

Case 1: $s = 0^{n}$

Because f is a one-to-one, there a single element $x \in f^{-1}(\{z\})$ for every $z \in \text{range}(f)$:

$$\left| \sum_{x \in f^{-1}(\{z\})} (-1)^{x \cdot y} \right|^2 = 1$$

There are 2^n elements in range(f), so

because f one-to-one

$$p(y) = \frac{1}{2^{2n}} \cdot 2^n = \frac{1}{2^n}$$

(for every $y \in \Sigma^n$).

$$p(y) = \frac{1}{2^{2n}} \sum_{z \in range(f)} \left| \sum_{x \in f^{-1}(\{z\})} (-1)^{x \cdot y} \right|^2$$

— Case 2:
$$s \neq 0^n$$

There are two strings in the set $f^{-1}(\{z\})$ for each $z \in \text{range}(f)$; if $w \in f^{-1}(\{z\})$ either one of them, then $w \in S$ is the other.

$$\left| \sum_{x \in f^{-1}(\{z\})} (-1)^{x \cdot y} \right|^2 = \left| (-1)^{w \cdot y} + (-1)^{(w \oplus s) \cdot y} \right|^2 = \left| 1 + (-1)^{s \cdot y} \right|^2 = \begin{cases} 4 & s \cdot y = 0 \\ 0 & s \cdot y = 1 \end{cases}$$

There are 2^{n-1} elements in range(f), so

$$p(y) = \frac{1}{2^{2n}} \sum_{z \in \mathsf{range}(f)} \left| \sum_{x \in f^{-1}(\{z\})} (-1)^{x \cdot y} \right|^2 = \begin{cases} \frac{1}{2^{n-1}} & s \cdot y = 0 \\ 0 & s \cdot y = 1 \end{cases}$$

Classical post-processing

Running the circuit from Simon's algorithm one time gives us a random string $y \in \Sigma^n$.

— Case 1: s = 0ⁿ

$$p(y) = \frac{1}{2^n}$$

hidden string (s) is all-zero string we obtain a completely random string from the measurements, where each end bit

string y is equally likely.

 \longrightarrow Case 2: $s \neq 0^n$

$$p(y) = \begin{cases} \frac{1}{2^{n-1}} & s \cdot y = 0\\ 0 & y \cdot s = 1 \end{cases}$$

the function f satisfy for a different string s (not equal to the all-zero string). then we get random string y having binary dot product equal to 0 with s, each is equally likely.

Suppose we run the circuit independently k = n + r times, obtaining strings y^1, \dots, y^k .

$$y^{1} = y_{n-1}^{1} \cdots y_{0}^{1}$$

$$y^{2} = y_{n-1}^{2} \cdots y_{0}^{2}$$
:

$$\begin{aligned} y^1 &= y_{n-1}^1 \cdots y_0^1 \\ y^2 &= y_{n-1}^2 \cdots y_0^2 \\ &\vdots \\ y^k &= y_{n-1}^k \cdots y_0^k \end{aligned} \qquad M = \begin{pmatrix} y_{n-1}^1 & \cdots & y_0^1 \\ y_{n-1}^2 & \cdots & y_0^2 \\ \vdots & \ddots & \vdots \\ y_{n-1}^k & \cdots & y_0^k \end{pmatrix} \qquad M \begin{pmatrix} s_{n-1} \\ \vdots \\ s_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$A\begin{pmatrix} s_{n-1} \\ \vdots \\ s_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Using Gaussian elimination we can efficiently compute the null space (modulo 2) of M. With probability greater than $1 - 2^{-r}$ it will be $\{0^n, s\}$.

Classical difficulty

Any probabilistic algorithm making fewer than $2^{n/2-1} - 1$ queries will fail to solve Simon's problem with probability at least 1/2.

- Simon's algorithm solves Simon's problem with a *linear* number of queries.
- Every classical algorithm for Simon's problem requires an exponential number of queries.