Lecture 8 – Closure Properties of Regular Languages COSE215: Theory of Computation

Jihyeok Park

2023 Spring

Recall

Regular Languages

Contents

1. Closure Properties of Regular Languages

Union

Concatenation and Kleene Star

Complement

Intersection

Difference

Reversal

Homomorphism

Closure Properties of Regular Languages

Definition (Closure Properties)

The class of regular languages is **closed** under an n-ary operator op if and only if $op(L_1, \dots, L_n)$ is regular for any regular languages L_1, \dots, L_n . We say that such properties are **closure properties** of regular languages.

Closure Properties of Regular Languages

Definition (Closure Properties)

The class of regular languages is **closed** under an n-ary operator op if and only if $op(L_1, \dots, L_n)$ is regular for any regular languages L_1, \dots, L_n . We say that such properties are **closure properties** of regular languages.

```
A language L is regular \iff \exists RE \ R. \ L(R) = L
A language L is regular \iff \exists \epsilon\text{-NFA} \ N_{\epsilon}. \ L(N_{\epsilon}) = L
A language L is regular \iff \exists \text{NFA} \ N. \ L(N) = L
A language L is regular \iff \exists \text{DFA} \ D. \ L(D) = L
```

Closure Properties of Regular Languages

Definition (Closure Properties)

The class of regular languages is **closed** under an n-ary operator op if and only if $op(L_1, \dots, L_n)$ is regular for any regular languages L_1, \dots, L_n . We say that such properties are **closure properties** of regular languages.

```
A language L is regular \iff \exists RE \ R. \ L(R) = L
A language L is regular \iff \exists \ \epsilon\text{-NFA} \ N_{\epsilon}. \ L(N_{\epsilon}) = L
A language L is regular \iff \exists \ NFA \ N. \ L(N) = L
A language L is regular \iff \exists \ DFA \ D. \ L(D) = L
```

- **1** Construct a regular expression R such that $L(R) = \text{op}(L_1, \dots, L_n)$ using the regular expressions R_1, \dots, R_n such that $L(R_i) = L_i$ for $i = 1, \dots, n$.
- **2** Construct a finite automaton A such that $L(A) = \operatorname{op}(L_1, \dots, L_n)$ using the finite automata A_1, \dots, A_n such that $L(A_i) = L_i$ for $i = 1, \dots, n$.

Closure under Union

Theorem (Closure under Union)

If L_1 and L_2 are regular languages, then so is $L_1 \cup L_2$.

Proof) Let R_1 and R_2 be the regular expressions such that $L(R_1) = L_1$ and $L(R_2) = L_2$, respectively. Consider the following regular expression:

$$R_1 \mid R_2$$

Then, by the definition of the union operator (I), $L(R_1 | R_2) = L_1 \cup L_2$.

Closure under Concatenation and Kleene Star

Theorem (Closure under Concatenation)

If L_1 and L_2 are regular languages, then so is $L_1 \cdot L_2$.

Proof) Let R_1 and R_2 be the regular expressions such that $L(R_1) = L_1$ and $L(R_2) = L_2$, respectively. Consider the following regular expression:

$$R_1 \cdot R_2$$

Then, by the definition of the concatenation operator (\cdot) , $L(R_1 \cdot R_2) = L_1 \cdot L_2.$

Theorem (Closure under Kleene Star)

If L is a regular language, then so is L^* .

Proof) Let R be the regular expressions such that L(R) = L. Consider the following regular expression:

 R^*

Then, by the definition of the Kleene star operator (*), $L(R^*) = L^*$.

6/19

Closure under Complement

Consider the following DFA D such that $L(D) = \{w00 \mid w \in \{0,1\}^*\}.$

How to construct a DFA \overline{D} such that $L(\overline{D}) = \overline{L(D)}$?

Closure under Complement

Consider the following DFA D such that $L(D) = \{w00 \mid w \in \{0,1\}^*\}.$

How to construct a DFA \overline{D} such that $L(\overline{D}) = \overline{L(D)}$?

Closure under Complement

Theorem (Closure under Complement)

If L is a regular language, then so is \overline{L} .

Proof) Let $D = (Q, \Sigma, \delta, q_0, F)$ be the DFA such that L(D) = L. Consider the following DFA:

$$\overline{D} = (Q, \Sigma, \delta, q_0, Q \setminus F).$$

Then,

$$\forall w \in \Sigma^*, \ w \in L(\overline{D}) \iff \delta^*(q_0, w) \in Q \setminus F$$

$$\iff \delta^*(q_0, w) \notin F$$

$$\iff w \notin L(D)$$

$$\iff w \notin L$$

$$\iff w \in \overline{L}$$

Consider two DFA D_0 and D_1 such that $L(D_0) = \{w \in \{0, 1\}^* \mid w \text{ has } 0\}$ and $L(D_1) = \{w \in \{0, 1\}^* \mid w \text{ has } 1\}$, respectively.

How to construct a DFA D such that $L(D) = L(D_0) \cap L(D_1)$?

Consider two DFA D_0 and D_1 such that $L(D_0) = \{w \in \{0, 1\}^* \mid w \text{ has } 0\}$ and $L(D_1) = \{w \in \{0, 1\}^* \mid w \text{ has } 1\}$, respectively.

How to construct a DFA D such that $L(D) = L(D_0) \cap L(D_1)$?

Theorem (Closure under Intersection)

If L_0 and L_1 are regular languages, then so is $L_0 \cap L_1$.

Proof) Let $D_0 = (Q_0, \Sigma, \delta_0, q_0, F_0)$ and $D_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ be the DFA such that $L(D_0) = L_0$ and $L(D_1) = L_1$. Consider the following DFA:

$$D = (Q_0 \times Q_1, \Sigma, \delta, (q_0, q_1), F_0 \times F_1).$$

where $\forall q \in Q_0, q' \in Q_1, a \in \Sigma$. $\delta((q, q'), a) = (\delta_0(q, a), \delta_1(q', a))$.

Theorem (Closure under Intersection)

If L_0 and L_1 are regular languages, then so is $L_0 \cap L_1$.

Proof) Let $D_0 = (Q_0, \Sigma, \delta_0, q_0, F_0)$ and $D_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ be the DFA such that $L(D_0) = L_0$ and $L(D_1) = L_1$. Consider the following DFA:

$$D = (Q_0 \times Q_1, \Sigma, \delta, (q_0, q_1), F_0 \times F_1).$$

where $\forall q \in Q_0, q' \in Q_1, a \in \Sigma$. $\delta((q, q'), a) = (\delta_0(q, a), \delta_1(q', a))$. Then,

$$\forall w \in \Sigma^*, \ w \in L(D) \iff \delta^*((q_0, q_1), w) \in F_0 \times F_1$$

$$\iff \delta^*(q_0, w) \in F_0 \text{ and } \delta^*(q_1, w) \in F_1$$

$$\iff w \in L(D_0) \text{ and } w \in L(D_1)$$

$$\iff w \in L(D_0) \cap L(D_1)$$

$$\iff w \in L_0 \cap L_1$$

Theorem (Closure under Intersection)

If L_0 and L_1 are regular languages, then so is $L_0 \cap L_1$.

Proof) Another proof is to use De Morgan's law:

$$L_0\cap L_1=\overline{\overline{L_0}\cup\overline{L_1}}$$

Since we already know that the regular languages are closed under complement and union, we are done.

Closure under Difference

Theorem (Closure under Difference)

If L_0 and L_1 are regular languages, then so is $L_0 \setminus L_1$.

Proof) Similarly, we can use the following fact:

$$L_0\setminus L_1=L_0\cap \overline{L_1}$$

Since we already know that the regular languages are closed under complement and intersection, we are done.

Consider the following ϵ -NFA N_{ϵ} such that $L(N_{\epsilon}) = \{w0 \text{ or } w1 \mid w \in \{0,1\}^*\}$:

How to construct an ϵ -NFA N_{ϵ}^{R} such that $L(N_{\epsilon}^{R}) = L(N_{\epsilon})^{R}$?

Consider the following ϵ -NFA N_{ϵ} such that $L(N_{\epsilon}) = \{w0 \text{ or } w1 \mid w \in \{0,1\}^*\}$:

How to construct an ϵ -NFA N_{ϵ}^{R} such that $L(N_{\epsilon}^{R}) = L(N_{\epsilon})^{R}$?

Theorem (Closure under Reversal)

If L is a regular language, then so is L^R .

Proof) Let $N_{\epsilon} = (Q, \Sigma, \delta, q_0, F)$ be the ϵ -NFA such that $L(N_{\epsilon}) = L$. Consider the following

$$N_{\epsilon}^{R} = (Q \uplus \{q_{s}\}, \Sigma, \delta^{R}, q_{s}, \{q_{0}\})$$

where

$$orall q \in Q. \ orall a \in \Sigma. \ \delta^R(q, \mathbf{a}) = \{q' \in Q \mid q \in \delta(q', \mathbf{a})\} \ orall q \in Q. \ \delta^R(q, \epsilon) = \{q' \in Q \mid q \in \delta(q', \epsilon)\} \ orall a \in \Sigma. \ \delta^R(q_s, \mathbf{a}) = \varnothing \ \delta^R(q_s, \epsilon) = F$$

Theorem (Closure under Reversal)

If L is a regular language, then so is L^R .

Proof) Another proof is to use the structural induction on the regular expressions. Let R be a regular expression. Then, we define its reverse R^R as follows:

- If $R = \emptyset$, then $R^R = \emptyset$.
- If $R = \epsilon$, then $R^R = \epsilon$.
- If R = a, then $R^R = a$.
- If $R = R_0 | R_1$, then $R^R = R_0^R | R_1^R$.
- If $R = R_0 \cdot R_1$, then $R^R = R_1^R \cdot R_0^R$.
- If $R = R_0^*$, then $R^R = (R_0^R)^*$.
- If $R = (R_0)$, then $R^R = (R_0^R)$.

Theorem (Closure under Reversal)

If L is a regular language, then so is L^R .

Proof) Another proof is to use the structural induction on the regular expressions. Let R be a regular expression. Then, we define its reverse R^R as follows:

- If $R = \emptyset$, then $R^R = \emptyset$.
- If $R = \epsilon$, then $R^R = \epsilon$.
- If R = a, then $R^R = a$.
- If $R = R_0 | R_1$, then $R^R = R_0^R | R_1^R$.
- If $R = R_0 \cdot R_1$, then $R^R = R_1^R \cdot R_0^R$.
- If $R = R_0^*$, then $R^R = (R_0^R)^*$.
- If $R = (R_0)$, then $R^R = (R_0^R)$.

$$R = ab(cd)^* | ef$$

$$R^R = (dc)^*ba|fe$$

Closure under Homomorphism

Definition (Homomorphism)

Suppose Σ and Γ are two finite sets of symbols. Then, a function

$$h: \Sigma \to \Gamma^*$$

is called a **homomorphism**. For a given word $w = a_1 a_2 \cdots a_n$,

$$h(w) = h(a_1)h(a_2)\cdots h(a_n)$$

For a language L,

$$h(L) = \{h(w) \mid w \in L\}$$

Example (Homomorphism)

Let
$$\Sigma = \{0,1\}$$
, $\Gamma = \{a,b\}$, and $h(0) = ab$, $h(1) = a$. Then,

$$h(10) = aab$$

$$h(010) = abaab$$

$$h(10) = aab$$
 $h(010) = abaab$ $h(1100) = aaabab$

Closure under Homomorphism

Theorem (Closure under Homomorphism)

If h is a homomorphism and L is a regular language, then so is h(L).

Proof) Let R be the regular expression such that L(R) = L. Then, we define its homomorphic regular expression h(R) as follows:

- If $R = \emptyset$, then $h(R) = \emptyset$.
- If $R = \epsilon$, then $h(R) = \epsilon$.
- If R = a, then h(R) = h(a).
- If $R = R_0 | R_1$, then $h(R) = h(R_0) | h(R_1)$.
- If $R = R_0 \cdot R_1$, then $h(R) = h(R_1) \cdot h(R_0)$.
- If $R = R_0^*$, then $h(R) = (h(R_0))^*$.
- If $R = (R_0)$, then $h(R) = (h(R_0))$.

Closure under Homomorphism

Theorem (Closure under Homomorphism)

If h is a homomorphism and L is a regular language, then so is h(L).

Proof) Let R be the regular expression such that L(R) = L. Then, we define its homomorphic regular expression h(R) as follows:

- If $R = \emptyset$, then $h(R) = \emptyset$.
- If $R = \epsilon$, then $h(R) = \epsilon$.

$$h(0) = ab$$

$$h(1) = a$$

- If R = a, then h(R) = h(a).
- If $R = R_0 | R_1$, then $h(R) = h(R_0) | h(R_1)$.

$$R = 0(0|1)*0*$$

- If $R = R_0 \cdot R_1$, then $h(R) = h(R_1) \cdot h(R_0)$.
- If $R = R_0^*$, then $h(R) = (h(R_0))^*$.
- If $R = (R_0)$, then $h(R) = (h(R_0))$.

$$h(R) = (ab(ab|a)^*ab)^*$$

Summary

1. Closure Properties of Regular Languages

Union

Concatenation and Kleene Star

Complement

Intersection

Difference

Reversal

Homomorphism

Next Lecture

• The Pumping Lemma for Regular Languages

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr