

Berechnungen

Auslegung eines Zwischenkreiskondensators

Angaben	711m	Hntarr	ahman
Alluabell	ZUIII	unten	iennien

Unternehmen: English Electric Company Ltd. (EE)

Standort: Berlin

Anschrift: Wilhelminenhofstraße 75A

12459 Berlin

Bearbeiter

Name: S. Richter

Bearbeitungsstand

Datum: 23.06.2022

Vermerke

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Da	teng	grundlage	2
	1.1	Leis	stungsdaten 16,7Hz-Netz	2
	1.2	Leis	stungsdaten 50Hz-Netz	2
	1.3	Vor	handene Hilfsenergien	2
	1.4	Lief	fergrenze	2
2	Au	sleg	jung des Zwischenkreiskondensators	3
	2.1	Übe	ersetzungsverhältnis des Transformators	3
	2.2	Zwi	ischenkreisspannung	3
	2.3	Zwi	ischenkreisstrom	3
	2.4	Ene	ergieabfluss	3
	2.5	Zwi	ischenkreiskondensator	4
	2.6	Str	ombelastung des Zwischenkreises	4
	2.6	5.1	Netzstrom	4
	2.6	5.2	Mittelwert	4
	2.6	5.3	Effektivwert	5
	2.6	5.4	Wechselanteil	5
	2.7	Spa	annungsbelastung des Zwischenkreises	5

1 Datengrundlage

1.1 Leistungsdaten 16,7Hz-Netz

Nennspannung : 110kV 2AC 16,7Hz max. Spannung : 123kV 2AC 16,7Hz min. Spannung : 105kV 2AC 16,7Hz

Nennleistung : 16MW bei $cos(\phi) = 0.8$

1.2 Leistungsdaten 50Hz-Netz

Nennspannung : 110kV 3AC 50Hz max. Spannung : 123kV 3AC 50Hz min. Spannung : 105kV 3AC 50Hz

Nennleistung : 17,5MW bei $cos(\phi) = 1$

1.3 Vorhandene Hilfsenergien

2 unabhängige 400V 3AC 50Hz Einspeisungen 500kVA

1.4 Liefergrenze

16,7Hz-Seite : 110kV-Transformator-Anschluss 50Hz-Seite : 110kV-Transformator-Anschluss

2 Auslegung des Zwischenkreiskondensators

2.1 Übersetzungsverhältnis des Transformators

$$\ddot{\mathbf{u}} = \frac{110kV}{3,5kV} = \underline{31,43}$$

Primärspannung [kV]	Sekundärspannung [kV]
105	3,34
110	3,50
123	3,91

2.2 Zwischenkreisspannung

• maximale Spannung:

$$\underline{U_{dC_max} = U_{d_max} \approx 3.91kV}$$

$$\underline{\Delta U_{dC_max}} = 0.005 \cdot U_{dC_max} = 0.005 \cdot 3.91 kV \approx \underline{\underline{19.6V}}$$

• minimale Spannung:

$$\underline{U_{dC_min} = U_{d_min} \approx 3.34kV}$$

$$\underline{\Delta U_{dC_min}} = 0.005 \cdot U_{dC_min} = 0.005 \cdot 3.34 kV \approx \underline{\underline{16.7V}}$$

2.3 Zwischenkreisstrom

maximaler Strom:

$$\underline{\underline{I_{d_max}}} = \frac{P_d}{U_{dC_min}} = \frac{17,5MW}{3,34kV} \approx \underline{5,24kA}$$

minimaler Strom:

2.4 Energieabfluss

maximaler Energieabfluss:

$$\underline{\underline{\Delta E_{max}}} = I_{d_max} \cdot \frac{T}{6} \cdot \Delta U_{dC_min} = 5,24kA \cdot 3,33ms \cdot 16,7V \approx \underline{\underline{292Ws}}$$

• minimaler Energieabfluss:

$$\underline{\underline{\Delta E_{min}}} = I_{d_min} \cdot \frac{T}{6} \cdot \Delta U_{dC_max} = 4,48kA \cdot 3,33ms \cdot 19,6V \approx \underline{\underline{292Ws}}$$

2.5 Zwischenkreiskondensator

maximale Kapazität:

$$C_{d_max} = \frac{2 \cdot \Delta E_{max}}{\Delta U_{dC_min} \cdot (2 \cdot U_{dC_min} + \Delta U_{dC_min})}$$

$$\underline{C_{d_max}} = \frac{2 \cdot 292Ws}{16,7V \cdot (2 \cdot 3,34kV + 16,7V)} \approx \frac{5,22mF}{2}$$

• minimale Kapazität:

$$C_{d_min} = \frac{2 \cdot \Delta E_{min}}{\Delta U_{dC_max} \cdot (2 \cdot U_{dC_max} + \Delta U_{dC_max})}$$

$$\underline{C_{d_min}} = \frac{2 \cdot 292Ws}{19,6V \cdot (2 \cdot 3,91kV + 19,6V)} \approx \underline{\frac{3,80mF}{19,6V}}$$

2.6 Strombelastung des Zwischenkreises

2.6.1 Netzstrom

• maximaler Netzstrom:

$$\underline{\underline{I_{Netz_max}}} = \frac{P_N}{\sqrt{3} \cdot U_{N \ min} \cdot \cos(\varphi)} = \frac{17,5MW}{\sqrt{3} \cdot 3,34kV} \approx \underbrace{\frac{3,03kA}{3,34kV}}_{\text{min}} \approx \underbrace{\frac{1}{\sqrt{3} \cdot 3},\frac{1}{\sqrt{3} \cdot 3}}_{\text{min}} \approx \underbrace{\frac{1}{\sqrt{3} \cdot 3},\frac{1}{\sqrt{3}}}_{\text{min}} \approx \underbrace{\frac{1}{\sqrt{3} \cdot 3},\frac{1$$

• minimaler Netzstrom:

$$\underline{I_{Netz_min}} = \frac{P_N}{\sqrt{3} \cdot U_{N max} \cdot \cos(\varphi)} = \frac{17,5MW}{\sqrt{3} \cdot 3,91kV} \approx \underbrace{\frac{2,58kA}{1000}}_{\text{max}}$$

2.6.2 Mittelwert

• maximaler Mittelwert:

$$\underline{\frac{I_{dAV_max}}{\pi}} = I_{Netz_max} \cdot \frac{\sqrt{2}}{\frac{\pi}{\sqrt{3}}} \cdot \cos(\varphi) = 3.03kA \cdot \frac{\sqrt{2}}{\frac{\pi}{\sqrt{3}}} \cdot 0.8 \approx \underline{\frac{1.89kA}{\pi}}$$

• minimaler Mittelwert:

$$\underline{\frac{I_{dAV_min}}{\pi}} = I_{Netz_min} \cdot \frac{\sqrt{2}}{\frac{\pi}{\sqrt{3}}} \cdot \cos(\varphi) = 2,58kA \cdot \frac{\sqrt{2}}{\frac{\pi}{\sqrt{3}}} \cdot 0,8 \approx \underline{\frac{1,61kA}{\sqrt{3}}}$$

E

2.6.3 Effektivwert

maximaler Effektivwert:

$$I_{deff_max} = I_{Netz_max} \cdot \sqrt{1 + \frac{3 \cdot \sqrt{3}}{2 \cdot \pi} \cdot \cos^2(\varphi)}$$

$$\underline{\underline{I_{deff_max}}} = 3.03kA \cdot \sqrt{1 + \frac{3 \cdot \sqrt{3}}{2 \cdot \pi} \cdot \cos^2(0.8)} \approx \underline{\frac{4.10kA}{1.00}}$$

• minimaler Effektivwert:

$$I_{deff_min} = I_{Netz_min} \cdot \sqrt{1 + \frac{3 \cdot \sqrt{3}}{2 \cdot \pi} \cdot \cos^2(\varphi)}$$

$$\underline{I_{deff_min}} = 2,58kA \cdot \sqrt{1 + \frac{3 \cdot \sqrt{3}}{2 \cdot \pi} \cdot \cos^2(0,8)} \approx \underline{3,49kA}$$

2.6.4 Wechselanteil

• maximaler Wechselanteil:

$$I_{d\sim_max} = \sqrt{I_{deff_max}^2 - I_{dAV_max}^2}$$

$$\underline{I_{d\sim_max}} = \sqrt{(4,10kA)^2 - (1,89kA)^2} \approx \underline{\frac{3,64kA}{max}}$$

• minimaler Wechselanteil:

$$I_{d\sim_min} = \sqrt{I_{deff_min}^2 - I_{dAV_min}^2}$$

$$\underline{I_{d\sim_min}} = \sqrt{(3,49kA)^2 - (1,61kA)^2} \approx \underline{3,10kA}$$

2.7 Spannungsbelastung des Zwischenkreises

maximale Spannung:

$$\underline{U_{dc_max}} = 1.2 \cdot U_{d_max} = 1.2 \cdot \sqrt{2} \cdot 3.91 kV \approx \underline{6.64 kV}$$

minimale Spannung:

$$\underline{\underline{U_{dC_min}}} = 1.2 \cdot U_{d_min} = 1.2 \cdot \sqrt{2} \cdot 3.34kV \approx \underline{\underline{5.67kV}}$$