

システム・レベルESD信頼性を強化した 2チャンネル・デジタル・アイソレータ

ADuM3210/ADuM3211

特長

IEC 61000-4-x に準拠してシステム・レベル ESD 性能を強化

高温動作: 125°C

デフォルトのロー・レベル出力

RoHS 準拠のナロー・ボディ 8 ピン SOIC を採用

低消費電力動作

5 V 動作

0 Mbps~2 Mbps でチャンネルあたり最大 1.6 mA 10 Mbps でチャンネルあたり最大 3.7 mA

3 V 動作

0 Mbps~2 Mbps でチャンネルあたり最大 1.4 mA 10 Mbps でチャンネルあたり最大 2.4 mA

3 V/5 V のレベル変換

高いデータレート: DC~10 Mbps (NRZ)

高精度なタイミング特性

5 V 動作でのパルス幅歪み: 最大 3 ns

最大チャンネル間マッチング: 3 ns

同相モード・トランジェント耐性: 25 kV/μs 以上

安全性規制の認定

UL 認定: 2,500 V rms 1 分間の UL 1577 規格

「CSA Component Acceptance Notice #5A」に準拠

VDE の適合性認定済み

DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12

V_{IORM} = 560 V peak

アプリケーション

サイズに厳しいマルチチャンネル・アイソレーション SPI インターフェース/データ・コンバータのアイソレーション RS-232/RS-422/RS-485 トランシーバのアイソレーション フィールド・バスのデジタル・アイソレーション ゲート駆動インターフェース

概要

ADuM321x¹ は、アナログ・デバイセズの iCoupler®技術を採用した 2 チャンネルのデジタル・アイソレータです。このアイソレーション・デバイスは高速 CMOS 技術とモノリシック・トランス技術の組み合わせにより、フォトカプラ・デバイスなどの置換品より優れた性能特性を提供します。

iCoupler デバイスは LED とフォトダイオードを使用せずに、一般にフォトカプラに起因して生ずるデザインの難しさを解消します。一般的なフォトカプラは、不確かな電流変換比すなわち伝達関数が非線形である問題を持っており、温度と寿命の影響はシンプルな iCoupler デジタル・インターフェースと安定な性能特性により除去されます。これらの iCoupler 製品により、外付けのドライバとその他のディスクリート部品は不要になります。さらに、iCoupler デバイスは同等の信号データレートで動作した場合、フォトカプラの消費電力の 1/10~1/6 で動作します。

ADuM321xの 2 つのチャンネルは独立なアイソレーション・チャンネルであり、最大 10 Mbpsの異なるデータレートを持つ 2 つのチャンネル構成が可能です(オーダー・ガイド参照)。これらは、いずれの側も 2.7 V~5.5 V範囲の電源電圧で動作するため、低い電圧のシステムと互換性を持ち、さらに絶縁障壁に跨がる電圧変換機能も可能にします。 ADuM321xアイソレータは、デフォルトの出力ハイ・レベル特性を持つ ADuM3200/ ADuM3201 モデルに対してデフォルトの出力ロー・レベル特性を持っています。また、ADuM321xには 125°C温度グレードの製品もあります。

ADuM120xアイソレータと比較すると、ADuM321x アイソレータではシステム・レベルのIEC 61000-4-x テスト (ESD、バースト、サージ)に関する機能を強化する種々の回路が追加され、レイアウト変更が行われています。 ADuM120x 製品またはADuM321x製品に対するこれらのテストでの実際の対応能力は、ユーザのボードまたはモジュールのデザインとレイアウトに強く依存します。詳細については、アプリケーション・ノートAN-793「iCoupler®アイソレータ製品のESD/ラッチアップに関する考慮事項」をご覧ください。

機能ブロック図

図 1.ADuM3210 の機能ブロック図

図 2.ADuM3211 の機能ブロック図

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に関して、あるいは利用によって生じる第三者の特許やその他の権利の侵害に関して一切の責任を負いません。また、アナログ・デバイセズ社の特許または特許の権利の使用を明示的または暗示的に許諾するものでもありません。仕様は、予告なく変更される場合があります。本紙記載の商標および登録商標は、各社の所有に属します。 ※日本語データシートは REVISION が古い場合があります。最新の内容については、英語版をご参照ください。 ©2007-2009 Analog Devices, Inc. All rights reserved.

Rev. C

本 社/〒105-6891 東京

東京都港区海岸 1-16-1 ニューピア竹芝サウスタワービル 電話 03 (5402) 8200

電話 03(5

大阪営業所/〒532-0003 大阪府大阪市淀川区宮原 3-5-36 新大阪トラストタワー 電話 06(6350)6868

¹米国特許 5,952,849; 6,873,065; 7,075,239 により保護されています。その他の特許は申請中です。

目次

fx
アプリケーション1
概要1
機能ブロック図1
改訂履歴2
仕様
電気的特性—5 V、105°動作3
電気的特性—3 V、105°C動作4
電気的特性—ミックスド 5 V/3 V、105°C動作5
電気的特性—ミックスド3 V/5 V、105°C動作6
電気的特性—5 V、125°C動作7
電気的特性—3 V、125°C動作8
電気的特性—ミックスド 5 V/3 V、125°C動作9
電気的特性—ミックスド 3 V/5 V、125°C動作10
パッケージ特性11
適用規格11
絶縁および安全性関連の仕様11
7L-37 RD RD
改訂履歴
9/09 –Rev. B to Rev. C
Added ADuM3210A and ADuM3211A Throughout
Added ADuM3210A and ADuM3211AThroughout Changes to General Description Section
Added ADuM3210A and ADuM3211A
Added ADuM3210A and ADuM3211A Throughout Changes to General Description Section 1 Reformatted Electrical Characteristics Tables 3 Moved Truth Tables Section 14 Changes to Ordering Guide 20 7/09—Rev. A to Rev. B Added ADuM3211 Throughout Changes to Specifications Section 3 Added Table 16 19 Added Figure 5 and Table 18 20
Added ADuM3210A and ADuM3211A Throughout Changes to General Description Section 1 Reformatted Electrical Characteristics Tables 3 Moved Truth Tables Section 14 Changes to Ordering Guide 20 7/09—Rev. A to Rev. B Added ADuM3211 Throughout Changes to Specifications Section 3 Added Table 16 19 Added Figure 5 and Table 18 20 Added Figure 11 21
Added ADuM3210A and ADuM3211A Throughout Changes to General Description Section 1 Reformatted Electrical Characteristics Tables 3 Moved Truth Tables Section 14 Changes to Ordering Guide 20 7/09—Rev. A to Rev. B Added ADuM3211 Throughout Changes to Specifications Section 3 Added Table 16 19 Added Figure 5 and Table 18 20 Added Figure 11 21 Changes to Power Consumption Section 23
Added ADuM3210A and ADuM3211A
Added ADuM3210A and ADuM3211A Throughout Changes to General Description Section 1 Reformatted Electrical Characteristics Tables 3 Moved Truth Tables Section 14 Changes to Ordering Guide 20 7/09—Rev. A to Rev. B Added ADuM3211 Throughout Changes to Specifications Section 3 Added Table 16 19 Added Figure 5 and Table 18 20 Added Figure 11 21 Changes to Power Consumption Section 23 Changes to Ordering Guide 25 9/08—Rev. Sp0 to Rev. A
Added ADuM3210A and ADuM3211A
Added ADuM3210A and ADuM3211A

DIN V VDE V 0884-10 (VDE V 0884-10)絶縁特性	12
推奨動作条件	12
絶対最大定格	13
ESDの注意	13
ピン配置およびピン機能説明	14
真理値表	14
代表的な性能特性	14
アプリケーション情報	16
PCボードのレイアウト	16
システム・レベル ESDの考慮事項と強化	16
伝搬遅延に関係するパラメータ	16
DC精度と磁界耐性	16
消費電力	17
絶縁寿命	18
外形寸法	19
- ガー・ガノド	10

仕様

電気的特性—5 V、105°動作

すべての typ 仕様は、 $T_A=25$ °C、 $V_{DD1}=V_{DD2}=5$ V での値です。特に指定がない限り、最大/最小規定値は全推奨温度範囲に適用されます: 4.5 V \leq $V_{DD1} \leq$ 5.5 V、4.5 V \leq $V_{DD2} \leq$ 5.5 V、-40 °C \leq $T_A \leq$ +105 °C。特に指定がない限り、スイッチング規定値は、 $C_L=15$ pF \geq CMOS 信号レベルでテストされます。

表 1.

			A Grade			B Grade			
Parameter	Symbol	Min	Typ	Max	Min	Typ	Max	Unit	Test Conditions
SWITCHING SPECIFICATIONS									
Data Rate				1			10	Mbps	Within PWD limit
Propagation Delay	t_{PHL}, t_{PLH}	20		50	20		50	ns	50% input to 50% output
Pulse Width Distortion	PWD			5			3	ns	$ t_{PLH}-t_{PHL} $
Change vs. Temperature			6			5		ps/°C	
Pulse Width	PW	1000			100			ns	Within PWD limit
Propagation Delay Skew	t_{PSK}			20			15	ns	Between any two units
Channel Matching									
Codirectional	t_{PSKCD}			5			3	ns	
Opposing-Direction	t_{PSKOD}			20			15	ns	
Output Rise/Fall Time	t_R/t_F		2.5			2.5		ns	10% to 90%

表 2.

		1 Mbps	1 Mbps—A Grade, B Grade			os–B Grad	e		
Parameter	Symbol	Min	Typ	Max	Min	Typ	Max	Unit	Test Conditions
SUPPLY CURRENT									
ADuM3210	I_{DD1}		1.3	1.7		3.5	4.6	mA	
	I_{DD2}		1.0	1.6		1.7	2.8	mA	
ADuM3211	I_{DD1}		1.1	1.5		2.6	3.4	mA	
	I_{DD2}		1.3	1.8		3.1	4.0	mA	

表3 すべてのモデル

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Logic High Input Threshold	V_{IH}	$0.7~V_{\rm DDX}$			V	
Logic Low Input Threshold	$V_{\rm IL}$			$0.3~V_{\text{DDX}}$	V	
Logic High Output Voltages	V_{OH}	$V_{\rm DDX} - 0.1$	5.0		V	$I_{Ox} = -20 \mu A, V_{Ix} = V_{IxH}$
		$V_{\rm DDX} - 0.5$	4.8		V	$I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltages	V_{OL}		0.0	0.1	V	$I_{Ox} = 20 \mu A, V_{Ix} = V_{IxL}$
			0.2	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
Input Current per Channel	I_{I}	-10	+0.01	+10	μА	$0~V \leq V_{lx} \leq V_{DDX}$
Supply Current per Channel						
Quiescent Input Supply Current	$I_{\mathrm{DDI}(\mathrm{Q})}$		0.4	0.8	mA	
Quiescent Output Supply Current	$I_{DDO(Q)}$		0.5	0.6	mA	
Dynamic Input Supply Current	$I_{DDI(D)}$		0.19		mA/Mbps	
Dynamic Output Supply Current	$I_{DDO(D)}$		0.05		mA/Mbps	
AC SPECIFICATIONS						
Common-Mode Transient Immunity ¹	CM	25	35		kV/μs	$V_{Ix} = V_{DDX}$, $V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V
Refresh Rate	$f_{\rm r}$		1.2		Mbps	

 $^{^1}$ |CM|は、 $V_0>0.8$ V_{DD} を維持している間に維持できる同相モード電圧の最大スルーレートです。 同相モード電圧スルーレートは、立上がりと立下がりの両同相モード電圧エッジに適用されます。

Rev. C - 3/19 -

電気的特性—3 V、105°C動作

すべての typ 仕様は、 T_A = 25 °C、 V_{DD1} = V_{DD2} = 3.0 V での値です。特に指定がない限り、最大/最小規定値は全推奨動作範囲に適用されます: ADuM3210 電源 2.7 V \leq V_{DD1} \leq 3.6 V、2.7 V \leq V_{DD2} \leq 3.6 V; ADuM3211 電源 3.0 V \leq V_{DD1} \leq 3.6 V、3.0 V \leq V_{DD2} \leq 3.6 V、-40 °C \leq T_A \leq +105 °C。特に指定がない限り、スイッチング規定値は、 C_L = 15 pF \geq CMOS 信号レベルでテストされます。

表 4.み

		A Grade			B Grad	e			
Parameter	Symbol	Min	Typ	Max	Min	Typ	Max	Unit	Test Conditions
SWITCHING SPECIFICATIONS									
Data Rate				1			10	Mbps	Within PWD limit
Propagation Delay	t_{PHL}, t_{PLH}	20		60	20		60	ns	50% input to 50% output
Pulse Width Distortion	PWD								$ t_{PLH} - t_{PHL} $
ADuM3210				5			3	ns	
ADuM3211				6			4	ns	
Change vs. Temperature			6			5		ps/°C	
Pulse Width	PW	1000			100			ns	Within PWD limit
Propagation Delay Skew	t_{PSK}			29			22	ns	Between any two units
Channel Matching									
Codirectional	t_{PSKCD}			5			3	ns	
Opposing-Direction	t_{PSKOD}			29			22	ns	
Output Rise/Fall Time	$t_{\rm R}/t_{\rm F}$		3.0			3.0		ns	10% to 90%

表 5.

		1 N	1 Mbps—A Grade, B Grade			Mbps—B	Grade		
Parameter	Symbol	Min	Typ	Max	Min	Typ	Max	Unit	Test Conditions
SUPPLY CURRENT									
ADuM3210	I_{DD1}		0.8	1.3		2.0	3.2	mA	
	I_{DD2}		0.7	1.0		1.1	1.7	mA	
ADuM3211	I_{DD1}		0.7	1.3		1.5	2.1	mA	
	I_{DD2}		0.8	1.6		1.9	2.4	mA	

表 6. すべてのモデル

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Logic High Input Threshold	V_{IH}	$0.7~V_{\rm DDX}$			V	
Logic Low Input Threshold	V_{IL}			$0.3\;V_{\text{DDX}}$	V	
Logic High Output Voltages	V_{OH}	$V_{\rm DDX} = 0.1$	3.0		V	$I_{Ox} = -20 \mu A, V_{Ix} = V_{IxH}$
		$V_{\rm DDX} - 0.5$	2.8		V	$I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltages	V_{OL}		0.0	0.1	V	$I_{Ox} = 20 \mu A, V_{Ix} = V_{IxL}$
			0.2	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
Input Current per Channel	I_{I}	-10	+0.01	+10	μΑ	$0~V \leq V_{\rm Ix} \leq V_{\rm DDX}$
Supply Current per Channel						
Quiescent Input Supply Current	$I_{\mathrm{DDI}(\mathrm{Q})}$		0.3	0.5	mA	
Quiescent Output Supply Current	$I_{DDO(Q)}$		0.3	0.5	mA	
Dynamic Input Supply Current	$I_{DDI(D)}$		0.10		mA/Mbps	
Dynamic Output Supply Current	$I_{DDO(D)}$		0.03		mA/Mbps	
AC SPECIFICATIONS						
Common-Mode Transient Immunity ¹	CM	25	35		kV/μs	$V_{Ix} = V_{DDX}$, $V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V
Refresh Rate	f_r		1.1		Mbps	

 $^{^{1}}$ |CM|は、 V_{0} > 0.8 V_{DD} を維持している間に維持できる同相モード電圧の最大スルーレートです。 同相モード電圧スルーレートは、立上がりと立下がりの両同相モード電圧エッジに適用されます。

Rev. C - 4/19 -

電気的特性--ミックスド5 V/3 V、105°C動作

すべての typ 仕様は、 $T_A=25$ °C、 $V_{DD1}=5$ V、 $V_{DD2}=3.0$ V での値です。特に指定がない限り、最大/最小規定値は全推奨動作範囲に適用されます: ADuM3210 電源 4.5 V \leq $V_{DD1} \leq$ 5.5 V、2.7 V \leq $V_{DD2} \leq$ 3.6 V; ADuM3211 電源 3.0 V \leq $V_{DD1} \leq$ 3.6 V、4.5 V \leq $V_{DD2} \leq$ 5.5 V、-40 °C \leq $T_A \leq$ +105 °C。特に指定がない限り、スイッチング規定値は、 $C_L=15$ pF \geq CMOS 信号レベルでテストされます。

表 7.

			A Grade	;		B Grad	e		
Parameter	Symbol	Min	Typ	Max	Min	Typ	Max	Unit	Test Conditions
SWITCHING SPECIFICATIONS									
Data Rate				1			10	Mbps	Within PWD limit
Propagation Delay	t_{PHL}, t_{PLH}	15		55	15		55	ns	50% input to 50% output
Pulse Width Distortion	PWD			5			3	ns	$ t_{PLH}-t_{PHL} $
Change vs. Temperature			6			5		ps/°C	
Pulse Width	PW	1000			100			ns	Within PWD limit
Propagation Delay Skew	t_{PSK}			29			22	ns	Between any two units
Channel Matching									
Codirectional	t_{PSKCD}			5			3	ns	
Opposing-Direction	t_{PSKOD}			29			22	ns	
Output Rise/Fall Time	t_R/t_F		3.0			3.0		ns	10% to 90%

表 8.

		1 Mbps—	1 Mbps—A Grade, B Grade			os—B Gra	de		
Parameter	Symbol	Min	Typ	Max	Min	Typ	Max	Unit	Test Conditions
SUPPLY CURRENT									
ADuM3210	I_{DD1}		1.3	1.7		3.5	4.6	mA	
	I_{DD2}		0.7	1.0		1.1	1.7	mA	
ADuM3211	I_{DD1}		1.1	1.5		2.6	3.4	mA	
	I_{DD2}		0.8	1.6		1.9	2.4	mA	

表 9. すべてのモデル

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Logic High Input Threshold	V_{IH}	$0.7 V_{DDX}$			V	
Logic Low Input Threshold	$V_{\rm IL}$	0.8		$0.3~V_{\text{DDX}}$	V	
Logic High Output Voltages	V_{OH}	$V_{\rm DDX} = 0.1$	V_{DDX}		V	$I_{Ox} = -20 \mu A, V_{Ix} = V_{IxH}$
		$V_{\rm DDX} - 0.5$	$V_{DDX} - 0.2$		V	$I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltages	V_{OL}		0.0	0.1	V	$I_{Ox} = 20 \mu A, V_{Ix} = V_{IxL}$
			0.2	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
Input Current per Channel	$I_{\rm I}$	-10	+0.01	+10	μА	$0~V \leq V_{\mathrm{Ix}} \leq V_{\mathrm{DDX}}$
Supply Current per Channel						
Quiescent Input Supply Current	$I_{DDI(Q)}$		0.4	0.8	mA	
Quiescent Output Supply Current	$I_{DDO(Q)}$		0.3	0.5	mA	
Dynamic Input Supply Current	$I_{DDI(D)}$		0.19		mA/Mbps	
Dynamic Output Supply Current	$I_{DDO(D)}$		0.03		mA/Mbps	
AC SPECIFICATIONS						
Common-Mode Transient Immunity ¹	CM	25	35		kV/μs	$V_{Ix} = V_{DDX}, V_{CM} = 1000 \text{ V},$ transient magnitude = 800 V
Refresh Rate	$f_{\rm r}$		1.2		Mbps	

 $^{^{1}}$ |CM|は、 V_{0} > 0.8 V_{DD} を維持している間に維持できる同相モード電圧の最大スルーレートです。 同相モード電圧スルーレートは、立上がりと立下がりの両同相モード電圧エッジに適用されます。

Rev. C - 5/19 -

電気的特性—ミックスド3 V/5 V、105°C動作

すべての typ 仕様は、 $T_A=25$ °C、 $V_{DD1}=3$ V、 $V_{DD2}=5.0$ V での値です。特に指定がない限り、最大/最小規定値は全推奨動作範囲に適用されます: ADuM3210 電源 2.7 V \leq $V_{DD1} \leq$ 3.6 V、4.5 V \leq $V_{DD2} \leq$ 5.5 V; ADuM3211 電源 3.0 V \leq $V_{DD1} \leq$ 3.6 V、4.5 V \leq $V_{DD2} \leq$ 5.5 V、-40 °C \leq $T_A \leq +105$ °C。特に指定がない限り、スイッチング規定値は、 $C_L=15$ pF \geq CMOS 信号レベルでテストされます。

表 10.

			A Grade	;		B Grade			
Parameter	Symbol	Min	Typ	Max	Min	Typ	Max	Unit	Test Conditions
SWITCHING SPECIFICATIONS									
Data Rate				1			10	Mbps	Within PWD limit
Propagation Delay	t_{PHL}, t_{PLH}	15		55	15		55	ns	50% input to 50% output
Pulse Width Distortion	PWD								$ t_{PLH} - t_{PHL} $
ADuM3210				5			3	ns	
ADuM3211				6			4	ns	
Change vs. Temperature			6			5		ps/°C	
Pulse Width	PW	1000			100			ns	Within PWD limit
Propagation Delay Skew	t_{PSK}			29			22	ns	Between any two units
Channel Matching									
Codirectional	t_{PSKCD}			15			3	ns	
Opposing-Direction	t_{PSKOD}			29			22	ns	
Output Rise/Fall Time	t_R/t_F		2.5			2.5		ns	10% to 90%

表 11.

		1 Mbps	1 Mbps—A Grade, B Grade		10 Mbp	10 Mbps—B Grade			
Parameter	Symbol	Min	Typ	Max	Min	Typ	Max	Unit	Test Conditions
SUPPLY CURRENT									
ADuM3210	I_{DD1}		0.8	1.3		2.0	3.2	mA	
	I_{DD2}		1.0	1.6		1.7	2.8	mA	
ADuM3211	I_{DD1}		0.7	1.3		1.5	2.1	mA	
	I_{DD2}		1.3	1.8		3.1	4.0	mA	

表 12. すべてのモデル

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Logic High Input Threshold	V_{IH}	$0.7~V_{\rm DDX}$			V	
Logic Low Input Threshold	$V_{\rm IL}$	0.4		$0.3\ V_{\text{DDX}}$	V	
Logic High Output Voltages	V_{OH}	$V_{DDX} - 0.1$	$V_{ m DDX}$		V	$I_{Ox} = -20 \mu A, V_{Ix} = V_{IxH}$
		$V_{\rm DDX} - 0.5$	$V_{DDX} - 0.2$		V	$I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltages	V_{OL}		0.0	0.1	V	$I_{Ox} = 20 \mu A, V_{Ix} = V_{IxL}$
			0.2	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
Input Current per Channel	$I_{\rm I}$	-10	+0.01	+10	μΑ	$0~V \leq V_{Ix} \leq V_{DDX}$
Supply Current per Channel						
Quiescent Input Supply Current	$I_{\mathrm{DDI}(\mathrm{Q})}$		0.3	0.5	mA	
Quiescent Output Supply Current	$I_{DDO(Q)}$		0.5	0.6	mA	
Dynamic Input Supply Current	$I_{\mathrm{DDI}(\mathrm{D})}$		0.10		mA/Mbps	
Dynamic Output Supply Current	$I_{DDO(D)}$		0.05		mA/Mbps	
AC SPECIFICATIONS						
Common-Mode Transient Immunity ¹	CM	25	35		kV/μs	$V_{Ix} = V_{DDX}$, $V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V
Refresh Rate	\mathbf{f}_{r}		1.1		Mbps	

 $^{^{1}}$ |CM|は、 V_{0} > 0.8 V_{DD} を維持している間に維持できる同相モード電圧の最大スルーレートです。 同相モード電圧スルーレートは、立上がりと立下がりの両同相モード電圧エッジに適用されます。

Rev. C - 6/19 -

電気的特性—5 V、125°C動作

すべての typ 仕様は、 $T_A=25$ °C、 $V_{DD1}=V_{DD2}=5$ V での値です。特に指定がない限り、最大/最小規定値は全推奨動作範囲に適用されます: 4.5 V \leq V $_{DD1} \leq$ 5.5 V、4.5 V \leq V $_{DD2} \leq$ 5.5 V、-40 °C \leq $T_A \leq$ +125 °C。特に指定がない限り、スイッチング規定値は、 $C_L=15$ pF \geq CMOS 信号レベルでテストされます。

表 13.

Parameter		Min	Тур	Max	Unit	Test Conditions/Comments
SWITCHING SPECIFICATIONS						
Data Rate				10	Mbps	Within PWD limit
Propagation Delay	t_{PHL},t_{PLH}	20		50	ns	50% input to 50% output
Pulse Width Distortion	PWD			3	ns	$ t_{\rm PLH}-t_{\rm PHL} $
Change vs. Temperature			5		ps/°C	
Pulse Width	PW	100			ns	Within PWD limit
Propagation Delay Skew	t_{PSK}			15	ns	Between any two units
Channel Matching						
Codirectional	t_{PSKCD}			3	ns	
Opposing-Direction	t_{PSKOD}			15	ns	
Output Rise/Fall Time	t_R/t_F		2.5		ns	10% to 90%

表 14.

			1 Mbps	}		10 Mbp	s		
Parameter	Symbol	Min	Typ	Max	Min	Typ	Max	Unit	Test Conditions
SUPPLY CURRENT									
ADuM3210	I_{DD1}		1.3	1.7		3.5	4.6	mA	
	I_{DD2}		1.0	1.6		1.7	2.8	mA	
ADuM3211	I_{DD1}		1.1	1.5		2.6	3.4	mA	
	I_{DD2}		1.3	1.8		3.1	4.0	mA	

表 15. すべてのモデル

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Logic High Input Threshold	V_{IH}	$0.7~V_{\rm DDX}$			V	
Logic Low Input Threshold	$V_{\rm IL}$			$0.3~V_{\text{DDX}}$	V	
Logic High Output Voltages	V_{OH}	$V_{\rm DDX} - 0.1$	5.0		V	$I_{Ox} = -20 \mu A, V_{Ix} = V_{IxH}$
		$V_{\rm DDX} = 0.5$	4.8		V	$I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltages	V_{OL}		0.0	0.1	V	$I_{Ox} = 20 \mu A, V_{Ix} = V_{IxL}$
			0.2	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
Input Current per Channel	I_{I}	-10	+0.01	+10	μΑ	$0 \text{ V} \leq V_{Ix} \leq V_{DDX}$
Supply Current per Channel						
Quiescent Input Supply Current	$I_{DDI(Q)}$		0.4	0.8	mA	
Quiescent Output Supply Current	$I_{DDO(Q)}$		0.5	0.6	mA	
Dynamic Input Supply Current	$I_{DDI(D)}$		0.19		mA/Mbps	
Dynamic Output Supply Current	$I_{DDO(D)}$		0.05		mA/Mbps	
AC SPECIFICATIONS						
Common-Mode Transient Immunity ¹	CM	25	35		kV/μs	$V_{Ix} = V_{DDX}, V_{CM} = 1000 \text{ V},$ transient magnitude = 800 V
Refresh Rate	\mathbf{f}_{r}		1.2		Mbps	

 $^{^1}$ |CM|は、 $V_0>0.8$ V_{DD} を維持している間に維持できる同相モード電圧の最大スルーレートです。 同相モード電圧スルーレートは、立上がりと立下がりの両同相モード電圧エッジに適用されます。

Rev. C -7/19 -

電気的特性—3 V、125°C動作

すべての typ 仕様は、 $T_A=25$ °C、 $V_{DD1}=V_{DD2}=3.0$ V での値です。特に指定がない限り、最大/最小規定値は全推奨動作範囲に適用されます: 3.0 V \leq V $_{DD1}\leq$ 3.6 V、3.0 V \leq V $_{DD2}\leq$ 3.6 V、-40 °C \leq T $_A\leq$ +125 °C。特に指定がない限り、スイッチング規定値は、 $C_L=15$ pF \geq CMOS 信号レベルでテストされます。

表 16.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
SWITCHING SPECIFICATIONS						
Data Rate				10	Mbps	Within PWD limit
Propagation Delay	t_{PHL}, t_{PLH}	20		60	ns	50% input to 50% output
Pulse Width Distortion	PWD					$ t_{PLH}-t_{PHL} $
ADuM3210				3	ns	
ADuM3211				4	ns	
Change vs. Temperature			5		ps/°C	
Pulse Width	PW	100			ns	Within PWD limit
Propagation Delay Skew	t_{PSK}			22	ns	Between any two units
Channel Matching						
Codirectional	t_{PSKCD}			3	ns	
Opposing-Direction	t_{PSKOD}			22	ns	
Output Rise/Fall Time	$t_{ m R}/t_{ m F}$		3.0		ns	10% to 90%

表 17.

			1 Mbps	s		10 Mbp	s		
Parameter	Symbol	Min	Typ	Max	Min	Typ	Max	Unit	Test Conditions
SUPPLY CURRENT									
ADuM3210	I_{DD1}		0.8	1.3		2.0	3.2	mA	
	I_{DD2}		0.7	1.0		1.1	1.7	mA	
ADuM3211	I_{DD1}		0.7	1.3		1.5	2.1	mA	
	I_{DD2}		0.8	1.6		1.9	2.4	mA	

表 18. すべてのモデル

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Logic High Input Threshold	V_{IH}	$0.7~V_{DDX}$			V	
Logic Low Input Threshold	$V_{\rm IL}$			$0.3\ V_{DDX}$	V	
Logic High Output Voltages	V_{OH}	$V_{\rm DDX} = 0.1$	3.0		V	$I_{Ox} = -20 \mu A, V_{Ix} = V_{IxH}$
		$V_{\rm DDX} = 0.5$	2.8		V	$I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltages	V_{OL}		0.0	0.1	V	$I_{Ox} = 20 \ \mu A, \ V_{Ix} = V_{IxL}$
			0.2	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
Input Current per Channel	$I_{\rm I}$	-10	+0.01	+10	μΑ	$0 \text{ V} \leq V_{Ix} \leq V_{DDX}$
Supply Current per Channel						
Quiescent Input Supply Current	$I_{\mathrm{DDI(Q)}}$		0.3	0.5	mA	
Quiescent Output Supply Current	$I_{DDO(Q)}$		0.3	0.5	mA	
Dynamic Input Supply Current	$I_{\mathrm{DDI(D)}}$		0.10		mA/Mbps	
Dynamic Output Supply Current	$I_{DDO(D)}$		0.03		mA/Mbps	
AC SPECIFICATIONS						
Common-Mode Transient Immunity ¹	CM	25	35		kV/μs	$V_{Ix} = V_{DDX}, V_{CM} = 1000 \text{ V},$ transient magnitude = 800 V
Refresh Rate	$f_{\rm r}$		1.1		Mbps	

 $^{^{1}}$ |CM|は、 V_{0} > 0.8 V_{DD} を維持している間に維持できる同相モード電圧の最大スルーレートです。 同相モード電圧スルーレートは、立上がりと立下がりの両同相モード電圧エッジに適用されます。

Rev. C - 8/19 -

電気的特性—ミックスド 5 V/3 V、125°C動作

すべての typ 仕様は、 $T_A=25$ °C、 $V_{DD1}=5$ V、 $V_{DD2}=3.0$ V での値です。特に指定がない限り、最大/最小規定値は全推奨動作範囲に適用されます: 4.5 V \leq $V_{DD1} \leq$ 5.5V、3.0 V \leq $V_{DD2} \leq$ 3.6 V、-40 °C \leq $T_A \leq$ +125 °C。特に指定がない限り、スイッチング規定値は、 $C_L=15$ pF と CMOS 信号レベルでテストされます。

表 19.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
SWITCHING SPECIFICATIONS						
Data Rate				10	Mbps	Within PWD limit
Propagation Delay	t _{PHL} ,	15		55	ns	50% input to 50% output
	t_{PLH}					
Pulse Width Distortion	PWD			3	ns	$ \mathbf{t}_{\mathrm{PLH}} - \mathbf{t}_{\mathrm{PHL}} $
Change vs. Temperature			5		ps/°C	
Pulse Width	PW	100			ns	Within PWD limit
Propagation Delay Skew	t_{PSK}			22	ns	Between any two units
Channel Matching						
Codirectional	t_{PSKCD}			3	ns	
Opposing-Direction	t_{PSKOD}			22	ns	
Output Rise/Fall Time	t_R/t_F		3.0		ns	10% to 90%

表 20.

			1 Mbp	s		10 Mbp	os		
Parameter	Symbol	Min	Typ	Max	Min	Typ	Max	Unit	Test Conditions
SUPPLY CURRENT									
ADuM3210	I_{DD1}		1.3	1.7		3.5	4.6	mA	
	I_{DD2}		0.7	1.0		1.1	1.7	mA	
ADuM3211	I_{DD1}		1.1	1.5		2.6	3.4	mA	
	I_{DD2}		0.8	1.6		1.9	2.4	mA	

表 21. すべてのモデル

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Logic High Input Threshold	V_{IH}	$0.7~V_{\rm DDX}$			V	
Logic Low Input Threshold	V_{IL}	0.8		$0.3~V_{\text{DDX}}$	V	
Logic High Output Voltages	V_{OH}	$V_{\rm DDX} = 0.1$	$V_{ m DDX}$		V	$I_{Ox} = -20 \mu A, V_{Ix} = V_{IxH}$
		$V_{\rm DDX} - 0.5$	$V_{DDX}\!=\!0.2$		V	$I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltages	V_{OL}		0.0	0.1	V	$I_{Ox} = 20 \mu A, V_{Ix} = V_{IxL}$
			0.2	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
Input Current per Channel	$I_{\rm I}$	-10	+0.01	+10	μΑ	$0 \text{ V} \leq V_{lx} \leq V_{DDX}$
Supply Current per Channel						
Quiescent Input Supply Current	$I_{\mathrm{DDI}(\mathrm{Q})}$		0.4	0.8	mA	
Quiescent Output Supply Current	$I_{DDO(Q)}$		0.3	0.5	mA	
Dynamic Input Supply Current	$I_{DDI(D)}$		0.19		mA/Mbps	
Dynamic Output Supply Current	$I_{DDO(D)}$		0.03		mA/Mbps	
AC SPECIFICATIONS						
Common-Mode Transient Immunity ¹	CM	25	35		kV/μs	$V_{Ix} = V_{DDX}, V_{CM} = 1000 \text{ V},$ transient magnitude = 800 V
Refresh Rate	\mathbf{f}_{r}		1.2		Mbps	

 $^{^{1}}$ |CM|は、 $V_{0}>0.8$ V_{DD} を維持している間に維持できる同相モード電圧の最大スルーレートです。 同相モード電圧スルーレートは、立上がりと立下がりの両同相モード電圧エッジに適用されます。

Rev. C - 9/19 -

電気的特性—ミックスド3 V/5 V、125°C動作

すべての typ 仕様は、 $T_A=25$ °C、 $V_{DD1}=3$ V、 $V_{DD2}=5.0$ V での値です。特に指定がない限り、最大/最小規定値は全推奨動作範囲に適用されます: 3.0 V \leq $V_{DD1} \leq$ 3.6 V、4.5 V \leq $V_{DD2} \leq$ 5.5 V、-40 °C \leq $T_A \leq$ +125 °C。特に指定がない限り、スイッチング規定値は、 $C_L=15$ pF と CMOS 信号レベルでテストされます。

表 22.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
SWITCHING SPECIFICATIONS						
Data Rate				10	Mbps	Within PWD limit
Propagation Delay	t_{PHL},t_{PLH}	15		55	ns	50% input to 50% output
Pulse Width Distortion	PWD					$ t_{PLH} - t_{PHL} $
ADuM3210				3	ns	
ADuM3211				4	ns	
Change vs. Temperature			5		ps/°C	
Pulse Width	PW	100			ns	Within PWD limit
Propagation Delay Skew	t_{PSK}			22	ns	Between any two units
Channel Matching						
Codirectional	t_{PSKCD}			3	ns	
Opposing-Direction	$t_{\rm PSKOD}$			22	ns	
Output Rise/Fall Time	$t_{ m R}/t_{ m F}$		2.5		ns	10% to 90%

表 23.

			1 Mbps	5		10 Mbp	s		
Parameter	Symbol	Min	Typ	Max	Min	Typ	Max	Unit	Test Conditions
SUPPLY CURRENT									
ADuM3210	I_{DD1}		0.8	1.3		2.0	3.2	mA	
	I_{DD2}		1.0	1.6		1.7	2.8	mA	
ADuM3211	I_{DD1}		0.7	1.3		1.5	2.1	mA	
	I_{DD2}		1.3	1.8		3.1	4.0	mA	

表 24. すべてのモデル

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Logic High Input Threshold	V_{IH}	$0.7~V_{\rm DDX}$			V	
Logic Low Input Threshold	$V_{\rm IL}$	0.4		$0.3~V_{\text{DDX}}$	V	
Logic High Output Voltages	V_{OH}	$V_{\rm DDX} = 0.1$	V_{DDX}		V	$I_{Ox} = -20 \mu A, V_{Ix} = V_{IxH}$
		$V_{\rm DDX} - 0.5$	$V_{DDX} = 0.2$		V	$I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltages	V_{OL}		0.0	0.1	V	$I_{Ox} = 20 \mu A, V_{Ix} = V_{IxL}$
			0.2	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
Input Current per Channel	$I_{\rm I}$	-10	+0.01	+10	μΑ	$0~V \leq V_{\rm Ix} \leq V_{\rm DDX}$
Supply Current per Channel						
Quiescent Input Supply Current	$I_{DDI(Q)}$		0.3	0.5	mA	
Quiescent Output Supply Current	$I_{DDO(Q)}$		0.5	0.6	mA	
Dynamic Input Supply Current	$I_{DDI(D)}$		0.10		mA/Mbps	
Dynamic Output Supply Current	$I_{DDO(D)}$		0.05		mA/Mbps	
AC SPECIFICATIONS						
Common-Mode Transient Immunity ¹	CM	25	35		kV/μs	$V_{Ix} = V_{DDX}$, $V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V
Refresh Rate	$f_{\rm r}$		1.1		Mbps	

 $^{^{1}}$ |CM|は、 V_{0} > 0.8 V_{DD} を維持している間に維持できる同相モード電圧の最大スルーレートです。 同相モード電圧スルーレートは、立上がりと立下がりの両同相モード電圧エッジに適用されます。

Rev. C - 10/19 -

パッケージ特性

表 25.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Resistance (Input-to-Output) ¹	R _{I-O}		10^{12}		Ω	
Capacitance (Input-to-Output) ¹	$C_{\text{I-O}}$		1.0		pF	f = 1 MHz
Input Capacitance	C_{I}		4.0		pF	
IC Junction-to-Case Thermal Resistance, Side 1	$\theta_{ m JCI}$		46		°C/W	Thermocouple located at center of package underside
IC Junction-to-Case Thermal Resistance, Side 2	$\theta_{ m JCO}$		41		°C/W	

 $^{^1}$ デバイスは 2端子デバイスと見なします。 すなわち、ピン $1 \sim$ ピン 4 を相互に接続し、ピン $5 \sim$ ピン 8 を相互に接続します。

適用規格

ADuM321xは、表 26 に記載する組織の認定を取得しています。

表 26.

UL	CSA	VDE
Recognized under UL 1577 Component Recognition Program ¹	Approved under CSA Component Acceptance Notice #5A	Certified according to DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 ²
Single/basic 2500 V rms isolation voltage	Basic insulation per CSA 60950-1-03 and IEC 60950-1, 400 V rms (566 V peak) maximum working voltage	Reinforced insulation, 560 V peak
_	Functional insulation per CSA 60950-1-03 and IEC 60950-1, 800 V rms(1131 V peak) maximum working voltage	
File E214100	File 205078	File 2471900-4880-0001

 $^{^1}$ UL1577 に従い、絶縁テスト電圧 3,000 V rms 以上を 1 秒間加えて各 ADuM321x を確認テストします(リーク電流検出規定値 = 5 μ A)。

絶縁および安全性関連の仕様

表 27.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage		2500	V rms	1-minute duration
Minimum External Air Gap (Clearance)	L(I01)	4.90 min	mm	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L(I02)	4.01 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Gap (Internal Clearance)		0.017 min	mm	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index)	CTI	>175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		IIIa		Material Group (DIN VDE 0110, 1/89, Table 1)

Rev. C - 11/19 -

² DIN V VDE V 0884-10 に従い、各 ADuM321x に 1,050 Vpeak 以上の絶縁テスト電圧を 1 秒間加えることによりテストして保証されています(部分放電の検出規定値=5 pC)。 (*)マーク付は、DIN V VDE V 0884-10 認定製品を表します。

DIN V VDE V 0884-10 (VDE V 0884-10)絶縁特性

これらのアイソレータは、安全性制限値データ以内でのみのアイソレーション強化に適します。安全性データの維持は、保護回路を使って確実にする必要があります。パッケージ表面の(*)マークは、560 Vpeak 動作電圧に対して DIN V VDE V 0884-10 認定済みであることを表示します。

表 28.

Description	Conditions	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage ≤ 150 V rms			I to IV	
For Rated Mains Voltage ≤ 300 V rms			I to III	
For Rated Mains Voltage ≤ 400 V rms			I to II	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Working Insulation Voltage		V_{IORM}	560	V peak
Input-to-Output Test Voltage, Method B1	$V_{IORM} \times 1.875 = V_{PR}$, 100% production test, $t_m = 1$ sec, partial discharge < 5 pC	V_{PR}	1050	V peak
Input-to-Output Test Voltage, Method A	$V_{IORM} \times 1.6 = V_{PR}, t_m = 60 \text{ sec, partial discharge} < 5 \text{ pC}$	V_{PR}		
After Environmental Tests Subgroup 1			896	V peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$V_{IORM} \times 1.2 = V_{PR}, t_m = 60 \text{ sec, partial discharge} < 5 \text{ pC}$		672	V peak
Highest Allowable Overvoltage	Transient overvoltage, $t_{TR} = 10$ sec	V_{TR}	4000	V peak
Safety-Limiting Values	Maximum value allowed in the event of a failure (see Figure 3)			
Case Temperature		T_{S}	150	°C
Side 1 Current		I_{S1}	150	mA
Side 2 Current		I_{S2}	160	mA
Insulation Resistance at T _S	$V_{IO} = 500 \text{ V}$	R_S	>109	Ω

図 3.温度ディレーティング・カーブ、DIN V VDE V 0884-10 による安全な規定値のケース温度に対する依存性

推奨動作条件

表 29.

Parameter	Symbol	Rating
Operating Temperature	T_A	
ADuM3210AR/ADuM3210BR		−40°C to +105°C
ADuM3211AR/ADuM3211BR		−40°C to +105°C
ADuM3210TR/ADuM3211TR		-40°C to +105°C
Supply Voltages ¹	$egin{array}{c} V_{DD1}, \ V_{DD2} \end{array}$	
ADuM3210AR/ADuM3210BR		2.7 V to 5.5 V
ADuM3210TR/ADuM3211AR ADuM3211BR/ADuM3211TR		3 V to 5.5 V
Input Signal Rise and Fall Times		1 ms

[「]すべての電圧はそれぞれのグラウンドを基準とします。 外部磁界耐性については、DC 精度と磁界耐性のセクションを参照してください。

Rev. C - 12/19 -

絶対最大定格

特に指定のない限り、周囲温度は 25℃ です。

表 30.

Parameter	Symbol	Rating
Storage Temperature	T_{ST}	−55°C to +150°C
Ambient Operating Temperature	T _A	-40°C to +105°C
Supply Voltages ¹	$V_{\mathrm{DD1}}, V_{\mathrm{DD2}}$	-0.5 V to +7.0 V
Input Voltage ^{1, 2}	V_{IA}, V_{IB}	$-0.5 \text{ V to V}_{\text{DDI}} + 0.5 \text{ V}$
Output Voltage ^{1, 2}	V_{OA}, V_{OB}	$-0.5 \text{ V to V}_{DDO} + 0.5 \text{ V}$
Average Output Current per Pin ³	I _O	-35 mA to +35 mA
Common-Mode Transients ⁴	CM _H , CM _L	$-100 \text{ kV/}\mu\text{s}$ to $+100 \text{ kV/}\mu\text{s}$

¹すべての電圧はそれぞれのグラウンドを基準とします。

上記の絶対最大定格を超えるストレスを加えるとデバイスに恒 久的な損傷を与えることがあります。この規定はストレス定格 の規定のみを目的とするものであり、この仕様の動作セクショ ンに記載する規定値以上でのデバイス動作を定めたものではあ りません。デバイスを長時間絶対最大定格状態に置くとデバイ スの信頼性に影響を与えます。

表 31.最大連続動作電圧 1

Parameter	Max	Unit	Constraint
AC Voltage, Bipolar Waveform	565	V peak	50-year minimum lifetime
AC Voltage, Unipolar Waveform			
Functional Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
Basic Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10
DC Voltage			
Functional Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
Basic Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10

¹アイソレーション障壁に加わる連続電圧の大きさを意味します。詳細については、絶縁寿命のセクションを参照。

ESDの注意

ESD (静電放電)の影響を受けやすいデバイスです。電荷を帯びたデバイスや回路ボードは、検知されないまま放電することがあります。本製品は当社独自の特許技術である ESD 保護回路を内蔵してはいますが、デバイスが高エネルギーの静電放電を被った場合、損傷を生じる可能性があります。したがって、性能劣化や機能低下を防止するため、ESD に対する適切な予防措置を講じることをお勧めします。

Rev. C - 13/19 -

 $^{^2\,}V_{DDI}\,\&\,V_{DDO}$ は、それぞれチャンネルの入力側と出力側の電源電圧を表します。

³種々の温度に対する最大許容電流については図3を参照してください。

⁴ 絶縁障壁にまたがる同相モード過渡電圧を表します。絶対最大定格を超える 同相モード過渡電圧を加えると、ラッチアップまたは恒久的損傷が生ずるこ とがあります。

ピン配置およびピン機能説明

図 4.ADuM3210 のピン配置

図 5.ADuM3211 のピン配置

表 32.ADuM3210 のピン機能説明

ピン番号	記号	説明
1	V_{DD1}	アイソレータ・サイド1の電源電圧、
		$2.7 \text{ V} \sim 5.5 \text{ V}_{\circ}$
2	V_{IA}	ロジック入力 A。
3	V_{IB}	ロジック入力 B。
4	GND_1	グラウンド1。アイソレータ・サイド1
		のグラウンド基準。
5	GND_2	グラウンド2。アイソレータ・サイド2
		のグラウンド基準。
6	V_{OB}	ロジック出力 B。
7	V_{OA}	ロジック出力 A 。
8	V_{DD2}	アイソレータ・サイド2の電源電圧、
		$2.7 \text{ V} \sim 5.5 \text{ V}_{\circ}$

表 33.ADuM3211 のピン機能説明

ピン番号	記号	説明
1	V_{DD1}	アイソレータ・サイド1の電源電圧、
		$2.7 \mathrm{V} \sim 5.5 \mathrm{V}_{\circ}$
2	V_{OA}	ロジック出力 A 。
3	V_{IB}	ロジック入力 B。
4	GND_1	グラウンド1。アイソレータ・サイド1
		のグラウンド基準。
5	GND_2	グラウンド2。アイソレータ・サイド2
		のグラウンド基準。
6	V_{OB}	ロジック出力 B。
7	V_{IA}	ロジック入力 A。
8	V_{DD2}	アイソレータ・サイド2の電源電圧、
		$2.7 \mathrm{V}{\sim}5.5 \mathrm{V}_{\circ}$

真理値表

表 34.ADuM3210 の真理値表(正論理)

V _{IA} Input	V _{IB} Input	V _{DD1} State	V _{DD2} State	V _{OA} Output	V _{OB} Output	Notes
Н	Н	Powered	Powered	Н	Н	
L	L	Powered	Powered	L	L	
Н	L	Powered	Powered	Н	L	
L	Н	Powered	Powered	L	Н	
X	X	Unpowered	Powered	L	L	Outputs return to the input state within 1 μ s of V_{DDI} power restoration
X	X	Powered	Unpowered	Indeterminate	Indeterminate	Outputs return to the input state within 1 μs of V_{DDO} power restoration

表 35.ADuM3211 の真理値表(正論理)

		,				
V _{IA} Input	V _{IB} Input	V _{DD1} State	V _{DD2} State	Voa Output	V _{OB} Output	Notes
Н	Н	Powered	Powered	Н	Н	
L	L	Powered	Powered	L	L	
Н	L	Powered	Powered	Н	L	
L	Н	Powered	Powered	L	Н	
X	X	Unpowered	Powered	Indeterminate	L	Outputs return to the input state within 1 μ s of V_{DDI} power restoration
X	X	Powered	Unpowered	L	Indeterminate	Outputs return to the input state within $1 \mu s$ of V_{DDO} power restoration

Rev. C - 14/19 -

代表的な性能特性

図 6.5 V および 3 V 動作でのデータレート対 チャンネル当たりの入力電源電流

図 7.5 V および 3 V 動作でのデータレート(出力無負荷)対 チャンネルあたりの出力電源電流

図 8.5 V および 3 V 動作でのデータレート(15 pF 出力負荷)対チャンネルあたりの出力電源電流

図 9.5 V および 3 V 動作でのデータレート対 ADuM3210 V_{DD1} 電源電流

図 10.5 V および 3 V 動作でのデータレート対 ADuM3210 V_{DD2}電源電流

図 11.5 V および 3 V 動作でのデータレート対 AduM3211 の V_{DD1} または V_{DD2} 電源電流

Rev. C - 15/19 -

アプリケーション情報

PCボードのレイアウト

ADuM321x デジタル・アイソレータには、ロジック・インターフェース用の外付けインターフェース回路は不要です。入力電源ピンと出力電源ピンにはバイパス・コンデンサを接続することが推奨されます。コンデンサの値は、0.01μF~0.1μF とする必要があります。コンデンサの両端と入力電源ピンとの間のパターン長は20 mm以下にする必要があります。

システム・レベル ESDの考慮事項と強化

システム・レベル ESD の信頼性 (たとえば IEC 61000-4-x)は、アプリケーションごとに大幅に変わるシステム・デザインに大きく依存します。ADuM321x では、ESD 信頼性のシステム・デザインへの依存性を小さくするために多くの機能強化を行っています。この機能強化には次が含まれます。

- すべての入力/出力インターフェースへ ESD 保護セルを追加。
- ビア付きの太い並行ラインの使用による主要なメタル・パターン抵抗を削減。
- PMOS デバイスと NMOS デバイスとの間にガードおよびアイソレーション技術を採用することにより、CMOS デバイスに固有な SCR 効果を削減。
- メタル・パターンに 45° コーナーを採用することにより電 界集中領域を削減。
- 各電源ピンとそれぞれのグラウンドとの間の ESD クランプを大きくして、電源ピンの過電圧保護機能を強化。

ADuM321xではシステム・レベル のESD 信頼性を強化していますが、強固なシステム・レベル・デザインの代わりになるものではありません。ボード・レイアウトとシステム・レベル・デザインの推奨事項については、AN-793「iCoupler®アイソレータ製品のESD/ラッチアップに関する考慮事項」を参照してください。

伝搬遅延に関係するパラメータ

伝搬遅延時間は、ロジック信号がデバイスを通過するのに要する時間を表すパラメータです。ロジック・ロー・レベル出力までの伝搬遅延は、ロジック・ハイ・レベル出力までの伝搬遅延と異なることがあります。

図 12.伝搬遅延パラメータ

パルス幅歪みとはこれら 2 つの遅延時間の間の最大の差を意味 し、入力信号のタイミングが保存される精度を表します。

チャンネル間マッチングとは、1 つの ADuM321x デバイス内に ある複数のチャンネル間の伝搬遅延差の最大値を意味します。

伝搬遅延スキューは、同じ条件で動作する複数の ADuM321x デバイス間での伝搬遅延差の最大値を表します。

DC精度と磁界耐性

アイソレータ入力での正および負のロジック変化により、狭いパルス(1 ns)がトランスを経由してデコーダに送られます。デコーダは双安定であるため、パルスによるセットまたはリセットにより入力ロジックの変化が表されます。2μs以上入力にロジック変化がない場合、該当する入力状態を表す周期的な一連の更新パルスが出力のDC精度を確保するために送出されます。デコーダが約 5μs間以上この入力パルスを受信しないと、入力側が電源オフであるか非動作状態にあると見なされ、ウォッチドッグ・タイマ回路によりアイソレータ出力が強制的にデフォルト状態(表 34 と表 35 参照)にされます。

ADuM321x は、外部磁界に対して耐性を持っています。 ADuM321x の磁界耐性の限界は、トランスの受信側コイルに発生する誘導電圧が十分大きくなって、デコーダをセットまたはリセットさせる誤動作の発生により決まります。この状態が発生する条件を以下の解析により求めます。ADuM321x の 3 V 動作は最も敏感な動作モードであるため、この条件について調べます。

トランス出力でのパルスは 1.0 V 以上の振幅を持っています。デコーダは約 0.5 V の検出スレッショールドを持つので、誘導電圧に対しては 0.5 V の余裕を持っています。受信側コイルへの誘導電圧は次式で与えられます。

$$V = (-d\beta/dt) \sum_{n} r_n^2, \quad n = 1, 2, ..., N$$

ここで、

 $\beta = 磁束密度(Gauss)$

N=受信側コイルの巻数

 r_n =受信側コイルの n 回目の半径(cm)

ADuM321x受信側コイルの形状が与えられ、かつ誘導電圧がデコーダにおける 0.5 V余裕の最大 50%であるという条件が与えられると、最大許容磁界は 図 13 のように計算されます。

図 13.最大許容外部磁束密度

たとえば、磁界周波数= 1 MHz で、最大許容磁界= 0.2 k Ggauss の場合、受信側コイルでの誘導電圧は 0.25V になります。これは検出スレッショールドの約 50%であるため、出力変化の誤動作はありません。同様に、仮にこのような条件が送信パルス内に存在しても(さらに最悪ケースの極性であっても)、受信パルスが 1.0 V 以上から 0.75V へ減少されるため、デコーダの検出スレッショールド 0.5 V に対してなお余裕を持っています。

前述の磁束密度値は、ADuM321xトランスから与えられた距離だけ離れた特定の電流値に対応します。図 14 に、周波数の関数としての許容電流値を与えられた距離に対して示します。図から読み取れるように、ADuM321xは耐性を持ち、影響を受けるのは、高周波でかつデバイスに非常に近い極めて大きな電流の場合に限られます。1 MHzの例では、デバイス動作に影響を与えるためには、0.5 kAの電流をADuM321xから5 mmの距離まで近づける必要があります。

図 14.様々な電流値と ADuM3210/ADuM3211 までの距離に対す る最大許容電流

強い磁界と高周波が組合わさると、PCB パターンで形成されるループに十分大きな誤差電圧が誘導されて、後段回路のスレッショールドがトリガされてしまうことに注意が必要です。パターンのレイアウトでは、このようなことが発生しないように注意する必要があります。

消費電力

ADuM321x アイソレータ内にあるチャンネルの電源電流は、電源電圧、チャンネルのデータレート、チャンネルの出力負荷の関数になっています。

各入力チャンネルに対して、電源電流は次式で与えられます。

$$I_{DDI} = I_{DDI(Q)} f \le 0.5 f_r$$

$$I_{DDI} = I_{DDI(D)} \times (2f - f_r) + I_{DDI(O)}$$
 $f > 0.5f_r$

各出力チャンネルに対して、電源電流は次式で与えられます。

$$I_{DDO} = I_{DDO(O)} f \le 0.5f_r$$

$$I_{DDO} = (I_{DDO(D)} + (0.5 \times 10^{-3}) \times C_L V_{DDO}) \times (2f - f_r) + I_{DDO(D)}$$

 $f > 0.5f_r$

ここで、

 $I_{DDI(D)}$ と $I_{DDO(D)}$ は、それぞれチャンネル当たりの入力ダイナミック電源電流と出力ダイナミック電源電流です(mA/Mbps)。

 I_{DDIQ} と I_{DDOQ} は、それぞれ指定された入力静止電源電流と出力静止電源電流です(mA)。

 C_L は出力負荷容量(pF)。

VDDO は出力電源電圧(V)。

fは入力ロジック信号周波数(MHz、入力データレートの 1/2、NRZ シグナリング)。

frは入力ステージのリフレッシュ・レート(Mbps)。

 I_{DDI} と I_{DD2} の電源電流を計算するために、 I_{DD1} と I_{DD2} に対応するチャンネルの各入力と各出力の電源電流を計算して合計します。図 6 に、データレートの関数としてのチャンネル当たりの入力電源電流を示します。図 7 と図 8 に、それぞれ無負荷出力と 15 pF出力に対して、データレートの関数としてのチャンネル当たりの出力電源電流を示します。図 9 ~図 11 に、ADuM3210 とADuM3211 のチャンネル構成に対するデータレートの関数としての I_{DD1} と I_{DD2} の合計電源電流を示します。

Rev. C - 17/19 -

絶縁寿命

すべての絶縁構造は、十分長い時間電圧ストレスを受けるとブレークダウンします。絶縁性能の低下率は、絶縁に加えられる電圧波形の特性に依存します。アナログ・デバイセズは、規制当局が行うテストの他に、広範囲なセットの評価を実施してADuM321xの絶縁構造の寿命を測定しています。

アナログ・デバイセズは、定格連続動作電圧より高い電圧レベルを使った加速寿命テストを実施しています。複数の動作条件に対する加速ファクタを求めました。これらのファクタを使うと、実際の動作電圧での故障までの時間を計算することができます。

表 31 に、バイポーラAC動作条件と最大推奨動作電圧での 50 年のサービス寿命に対するピーク電圧と最大CSA/VDE認定動作電圧を示します。多くのケースで、実証された動作電圧は 50 年サービス寿命の電圧より高くなっています。これらの高い動作電圧での動作は、ケースによって絶縁寿命を短くすることがあります。

ADuM321xの絶縁寿命は、アイソレーション障壁に加えられる電圧波形のタイプに依存します。iCoupler絶縁構造の性能は、波形がバイポーラAC、ユニポーラAC、DCのいずれであるかに応じて、異なるレートで低下します。図15、図16、図17に、これらのアイソレーション電圧波形を示します。

バイポーラ AC 電圧は最も厳しい環境です。AC バイポーラ条件での 50 年動作寿命の目標により、アナログ・デバイセズが推奨する最大動作電圧が決定されています。

ユニポーラACまたはDC電圧の場合、絶縁に加わるストレスは 大幅に少なくなります。このために、高い動作電圧での動作で も 50 年の寿命を維持することができます。表 31 に示す動作電 圧は、ユニポーラAC電圧またはユニポーラDC電圧のケースに 適合する場合、50 年最小寿命に適用することができます。図 16 または 図 17 に適合しない絶縁電圧波形は、バイポーラAC波形 として扱う必要があり、ピーク電圧は 表 31 に示す 50 年寿命電 圧値に制限する必要があります。

図 16 に示す電圧は、説明目的のためにのみ正弦波としています。 すなわち、0 Vとある規定値との間で変化する任意の電圧波形と することができます。規定値は正または負となることができますが、電圧は0 Vを通過することはできません。

Rev. C - 18/19 -

外形寸法

COMPLIANT TO JEDEC STANDARDS MS-012-AA

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

図 18.8 ピン標準スモール・アウトライン・パッケージ[SOIC_N] ナロウ・ボディ(R-8) 寸法: mm (インチ)

オーダー・ガイド

Model	Number of Inputs, V _{DD1} Side	Number of Inputs, V _{DD2} Side	Maximum Data Rate (Mbps)	Maximum Propagation Delay, 5 V (ns)	Maximum Pulse Width Distortion (ns)	Temperature Range	Package Option ¹
ADuM3210ARZ ²	2	0	1	100	5	-40°C to +105°C	R-8
ADuM3210ARZ-RL7 ²	2	0	1	100	5	-40°C to +105°C	R-8
ADuM3210BRZ ²	2	0	10	50	3	−40°C to +105°C	R-8
ADuM3210BRZ-RL7 ²	2	0	10	50	3	−40°C to +105°C	R-8
ADuM3210TRZ ²	2	0	10	50	3	−40°C to +125°C	R-8
ADuM3210TRZ-RL7 ²	2	0	10	50	3	-40°C to +125°C	R-8
ADuM3211ARZ ²	1	1	1	100	6	-40°C to +105°C	R-8
ADuM3211ARZ-RL7 ²	1	1	1	100	6	-40°C to +105°C	R-8
ADuM3211BRZ ²	1	1	10	50	4	−40°C to +105°C	R-8
ADuM3211BRZ-RL7 ²	1	1	10	50	4	−40°C to +105°C	R-8
ADuM3211TRZ ²	1	1	10	50	4	−40°C to +125°C	R-8
ADuM3211TRZ-RL7 ²	1	1	10	50	4	-40°C to +125°C	R-8

¹ R-8 = 8 ピン・ナロウ・ボディ SOIC_N

Rev. C - 19/19 -

 $^{^{2}}$ Z = RoHS 準拠製品。