ЧМ

19 февраля 2020 г.

2-е Задание 1

1.1 Уравнение Теплопроводности

$$\frac{\delta T}{\delta t} - U \frac{\delta T}{\delta x} - \chi \frac{\delta^2 T}{\delta x^2} = Q$$

1.1.1 Уравнение Конвективного переноса

$$\frac{\delta T}{\delta t} - U \frac{\delta T}{\delta x} = 0$$

Решение имеет вид:

$$T(t,x) = T_0(x - Ut)$$

	явная	квнак
По поток	Абсолютно неустойчивая	Абсолютно неустойчивая
Против потока	Условно устойчивая	Абсолютно устойчивая, схемная релаксация

Таблица 1: Устойчивость методов для уравнения конвективного переноса

При s>1 неустойчивая

 Π ри s=1 неустойчивая, точная

При s < 1 устойчивая

1.1.2 Уравнение Теплопроводности в неподвижной среде

$$\frac{\delta T}{\delta t} - \chi \frac{\delta^2 T}{\delta x^2} = 0$$

Решение имеет вид:

$$T(t,x) = \frac{1}{\sqrt{t}e^{\frac{-x^2}{4\chi t}}}$$

явная	неявная
Условно устойчивая	Абсолютно устойчивая, схемная релаксация

Таблица 2: Устойчивость методов для уравнения Теплопроводности в неподвижной среде

 Π ри s $<\frac{1}{3}$ устойчивая Π ри $\frac{1}{2}<$ s $<\frac{1}{3}$ неустойчивая, слабая Π ри s $>\frac{1}{2}$ неустойчивая