ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ІВАНА ФРАНКА Факультет прикладної математики та інформатики

Кафедра дискретного аналізу

Теорія прийняття рішень Лабораторна робота №6 Системна задача раціонального вибору предметів складних виробів

Виконав Студент групи ПМІ-43 Заречанський Олексій Викладач Доц. Хімка У.

Варіант 4.

Вихідні дані:

Вибірка 1 (ст. 40 підручника Панкратова)

Вибірка 1

 ${\it Таблиця}\ 2.2.$ Вихідні дискретні дані для $X_1[X_{11},X_{12}],\ X_2[X_{21},X_{22}],\ X_3[X_{31},X_{32},X_{33}]$

q_0	X_{11}	X_{12}	X_{21}	X_{22}	X_{31}	X_{12}	X ₃₃ 8,100	
1	2,050	22,015	1.050	4.015	5,000	1,000		
2	5,150	16,100	1,150	9,109	15,800	2,100	4,200	
3	8,200	10,125	1,192	14,125	22,500	2,500	3,500	
4	11,250	4.175	1,250	19,175	28,700	3,510	2,720	
5	14,325	1,200	4,325	24,198	34,500	4,200	2,530	
6	17,350	0,250	8,350	29,251	39,000	5,020	2,100	
7	20,490	5,400	12,411	34,495	46,700	8,200	1,150	
8	23,698	10,500	16,505	28,498	53,800	10,100	0.720	
9	26,900	15,700	20,610	22,598	65,000	12,800	0,540	
10	29,450	20,700	24,695	16,699	82,000	14,400	0,150	
11	32,750	25,750	21,750	9,748	95,400	16,700	0,550	
12	28,800	30,775	18,804	4,775	102,800	18,500	1,760	
13	24,950	35,800	15,850	2.798	117,000	21,300	2.230	
14	20,840	40,850	12,050	7,850	129,780	25,700	4,610	
15	16,910	34,855	9,910	13,855	99,000	29,900	6,160	
16	10,925	22,865	5,925	19,865	85,500	32,500	8,250	
17	4,929	16,885	1,011	25,875	71,900	28,700	12,370	
18	2.933	4,915	5.933	31.899	57,500	24,200	14,260	
19	1,935	8,950	10,935	37,951	43,580	19,100	16,510	
20	3,950	16,975	16,950	42,975	29,400	19,700	19,740	
21	9,810	20,995	22,950	35,015	15,500	21,000	15,140	
22	12,750	24,975	28,108	27,975	12,500	23,560	13,350	
23	15,150	28,950	34,251	19,950	9,800	25,300	8,580	
24			38,204	12,915	6,500	28,700	6,740	
25	18,200 21,450	32,900 36,875	34,248	6,875	4,400	31,560	4,850	
26	24,325	40,865	28,325	1,865	2,500	37,100	6,210	
		46,855	28,325	5,855	1,300	34,700	9,520	
27	27,350			9,850		26,200	10,750	
28	30,400	52,850	18,408		4,700 11,200		12,950	
29	34,500	47,775	13,495	14,775		23,700	8,100	
30	29,600	42,750	8,607	19,750	14,700	20,360		
31	24,700	37,710	3,697	25,697	17,800	17,700	4,150	
32	19,750	32,603	1,750 2,798	31,605 37,495	20,100 40,520	13,340 11,720	2,360	
33	14,800	27,495					1,350 2,130	
34	9,850	22,394	5,850	44,415	65,200	9,900		
35	4,907	17,245	8,913	36,255	80,760	7,740	4,570	
36	1,910	12,192	12,910	28,205	91,100	6,360	6,750	
37	6,925	7,175	17,925	19,175	109,500	5,700	9,260	
38	12,929	2,125	22,929	9,125	122,900	4,750	11,790	
39	18,010	1,105	27,933	3,091	128,300	3,650	13,120	
40	24,935	3,010	21,935	1,985	94,500	3,520	15,360	
41	19,950	13,110	15,950	4,115	57,600	2,720	12,850	
42	14,020	18,115	3,995	9,115	35,800	2,340	10,340	
43	9,050	12,128	9,950	15,120	15,260	2,160	12,680	
44	4,935	6,131	17,935	22,130	9,520	1,760	14,320	
45	1,925	2,135	25,925	29,135	4,800	1,480	16,160	

 $Tаблиця\ 2.3.\$ Вихідні дискретні дані для $Y_{1}[X_{1},X_{2},X_{3}],\ i=\overline{1,4}$

q_0	Y_1	Y ₂	Y_3	Y_4	q_0	Y_i	Y_2	Y_3	Y_4
1	154,621	158,145	219,406	227,683	24	2321,321	19883,435	644,716	239,425
2	398,163	173,368	192,651	190,123	25	2891,845	14972,834	829,942	122,147
3	587,411	271,084	187,691	183,576	26	3308,614	9080,562	949,316	95,954
4	767,197	383,567	78,793	174,789	27	3529,956	7887,987	1148,231	150,492
5	966,547	493,813	79,497	154,316	28	4730,129	5688,951	1347,987	254,897
6	1153,789	601,378	177,082	132,817	29	5917,152	3455,494	1542,967	458,289
7	1210,926	855,579	267,758	257,425	30	8678,654	1211,209	1732,856	672,164
8	1851,381	960,432	371,956	289,519	31	9212,145	996,197	1915,632	853,356
9	1987,364	1176,283	491,123	321,374	32	12886,243	677,325	1493,135	427,168
10	2536,123	1293,657	512,859	549,173	33	12362,345	364,615	1177,824	206,123
11	2292,341	1578,624	653,717	784,136	34	10632,879	152,534	963,453	182,659
12	1988,324	2354,324	717,965	879,152	35	9267,156	45,178	779,167	93,834
13	1326,939	3478,926	955,912	901,239	36	7070,531	36,176	580,836	71,345
14	857,128	4588,675	1169,359	1225,482	37	4984,243	20,364	287,192	66,841
15	605,327	5499,367	1292,924	1340,976	38	2881,956	10,428	185,834	93,952
16	458,386	6468,567	1318,549	1875,846	39	1616,829	8,475	301,985	109,463
17	218,859	7353,932	1257,354	1916,124	40	973,329	16,924	528,591	233,415
18	195,737	9335,124	984,167	863,928	41	449,421	54,183	602,861	308,613
19	106,168	11261,946	716,375	703,153	42	225,356	96,324	705,817	407,319
20	185,761	12151,387	541,326	631,195	43	176,578	176,457	978,473	282,263
21	790,639	13910,519	475,651	571,588	44	170,948	195,814	1081,417	184,132
22	1323,784	15485,142	244,856	436,847	45	168,334	204,549	1178,653	61,953
23	1831,438	17688,125	448,314	341,842		0.00 A C C C C C C C C C C C C C C C C C C			and a second

Ці ж дані використовувались в лабораторній роботі номер 3, то продовжу використовуючи її результати.

Вхідні дані для побудови множини Парето:

Варіант 4

1. Сформувати систему рівнянь:

$$y_i[q_0] - \Phi_i(x_1, x_2, x_3[q_3]) = 0; i = \overline{1, m}.$$

2. Скоригувати показники $x_1 \in D_1, x_2 \in D_2$ при незмінних y, x_3 :

$$\begin{split} y \in B^*, & B^* = \{B_i^*, i = \overline{1, m}\}, & B_i^* = \{y_i \mid b_i^- \leq y_i \leq b_i^+, i \in [1, m]\}; \\ x_1 \in D_1^{\pm}, & D_1^{\pm} = \{x_1 \mid x_1 = \left\langle x_{1j_1}, j_1 = \overline{1, n_1} \right\rangle, x_{1j_1}^- \leq x_{1j_1} \leq x_{1j_1}^+ \}; \\ x_2 \in D_2^{\pm}, & D_2^{\pm} = \{x_2 \mid x_2 = \left\langle x_{2j_2}, j_2 = \overline{1, n_2} \right\rangle, x_{2j_2}^- \leq x_{2j_2} \leq x_{2j_2}^+ \}; \\ x_3 \in D_3^*, & D_3^* = \{x_3 \mid x_3 = \left\langle x_{3j_3}, j_3 = \overline{1, n_3} \right\rangle, d_{3j_3}^- \leq x_{3j_3} \leq d_{3j_3}^+ \}. \end{split}$$

3. Перевірити виконання умов $D_1^{\circ} \subseteq D_1^{\pm}, \ D_2^{\circ} \subseteq D_2^{\pm}$.

Додав колонку в програму з лабораторної 3, та запустив її з степенями полінома 2, 3, 4 для x_1, x_2, x_3 відповідно.

Результати:

```
-Corrected bounds for x1---
 -Bounds for x1--
                                                        Bounds for variable D+-
Bounds for variable D+-
                                                        x11= [4,709487; 5,36380597014925]
x11= [1,91; 34,5]
                                                       x12= [3,3525; 5,0434201736807]
x12= [0,25; 52,85]
                                                        Limits for variable Do
Limits for variable Do
                                                       x11= [4,709487; 5,36380597014925]
x11= [1,91; 34,5]
                                                        x12= [3,3525; 5,0434201736807]
x12= [0,25; 52,85]
                                                       Limits for variable B+-
Limits for variable B+-
                                                       y0= [106,168; 12886,243]
y0= [106,168; 12886,243]
                                                       y1= [8,475; 19883,435]
y1= [8,475; 19883,435]
                                                       y2= [78,793; 1915,632]
y2= [78,793; 1915,632]
                                                       y3= [61,953; 1916,124]
y3= [61,953; 1916,124]
                                                       Limits for variable Bo
Limits for variable Bo
                                                       y0= [43,7968730662926; 14432,59216]
y0= [43,7968730662926; 14432,59216]
                                                       y1= [-21,44175; 457319,005]
y1= [-21,44175; 457319,005]
                                                       y2= [-26,080483; 22987,584]
y2= [-26,080483; 22987,584]
                                                       y3= [27,3336636; 6514,8216]
y3= [27,3336636; 6514,8216]
 -Bounds for x2---
                                                     -Corrected bounds for x2-
Bounds for variable D+-
                                                    Bounds for variable D+-
x21= [1,011; 38,204]
                                                   x21= [2,4928227; 5,93967661691542]
x22= [1.865; 44,415]
                                                   x22= [7,96355; 12,7045194508009]
Limits for variable Do
                                                    Limits for variable Do
x21= [1,011; 38,204]
                                                   x21= [2,4928227; 5,93967661691542]
x22= [1,865; 44,415]
                                                   x22= [7,96355; 12,7045194508009]
Limits for variable B+-
                                                   Limits for variable B+-
y0= [106,168; 12886,243]
                                                   y0= [106,168; 12886,243]
y1= [8,475; 19883,435]
                                                   y1= [8,475; 19883,435]
y2= [78,793; 1915,632]
                                                   y2= [78,793; 1915,632]
y3= [61,953; 1916,124]
                                                   y3= [61,953; 1916,124]
Limits for variable Bo
                                                   Limits for variable Bo
y0= [43,7968730662926; 14432,59216]
                                                   y0= [43,7968730662926; 14432,59216]
y1= [-21,44175; 457319,005]
                                                   y1= [-21,44175; 457319,005]
y2= [-26,080483; 22987,584]
                                                   y2= [-26,080483; 22987,584]
y3= [27,3336636; 6514,8216]
                                                   y3= [27,3336636; 6514,8216]
```

За результатами Во включає B+-, Do включає D+- як для x_1 так і для x_2 , що означає що регіон Парето знайдено.