SANS serif: alignment-free, whole-genome based phylogenetic reconstruction

Roland Wittler, Andreas Rempel, Marco Sohn

Bielefeld University

DSB 2021

Outline

SANS

SANS serif

IUPAC Characters

Coding Sequences

Clustering MAGs

Outlook

Classical approaches

- ▶ mult. alignment of marker genes
- ightharpoonup alignment to reference ightarrow SNPs
- pairwise distances or ML
- ► tree

Classical approaches

- ▶ mult. alignment of marker genes
- ightharpoonup alignment to reference ightarrow SNPs
- pairwise distances or ML
- ▶ tree

Whole genome

- ► *k*-mers, spaced *k*-mers, . . .
- pairwise distances
- ▶ tree

Classical approaches

- mult. alignment of marker genes
- ▶ alignment to reference → SNPs
- pairwise distances or ML
- tree

Whole genome

- ► *k*-mers, spaced *k*-mers, . . .
- pairwise distances
- tree

SANS: Symmetric Alignment-free phylogeNomic Splits

whole genome (no markers, no alignment, no reference)

Classical approaches

- mult. alignment of marker genes
- ▶ alignment to reference → SNPs
- pairwise distances or ML
- ▶ tree

Whole genome

- ► k-mers, spaced k-mers, . . .
- pairwise distances
- tree

SANS: Symmetric Alignment-free phylogeNomic Splits

- whole genome (no markers, no alignment, no reference)
- ightharpoonup k-mers ightharpoonup splits (no pairwise comparison)

A and B separated in phylogeny

- \Rightarrow mutations on that edge
- ⇒ sequences unique to A and sequences unique to B
- \Rightarrow A and B k-mers of about same total amount $w \approx w'$
- $\Rightarrow \sqrt{w \cdot w'}$ to downweight asymmetry or $\sqrt{(w+1) \cdot (w'+1)}$ to not loose any

Outline

SANS

SANS serif

IUPAC Characters

Coding Sequences

Clustering MAGs

Outlook

First SANS version [DSB 2019, WABI 2019]:

- 1. build C-DBG (Bifrost, Melsted&Holley)
- 2. extract splits from unitigs and store in trie

Re-implementation:

- hash tables
- no dependencies
- space and time efficient
- includes filtering of splits (e.g. tree filter)

First SANS version [DSB 2019, WABI 2019]:

- 1. build C-DBG (Bifrost, Melsted&Holley)
- 2. extract splits from unitigs and store in trie

Space and time Efficient Re-Implementation incl. Filters: SANS serif

- hash tables
- no dependencies
- space and time efficient
- includes filtering of splits (e.g. tree filter)

SANS serif

Andreas Rempel

k-mer >SAL_BA7171AA_AS_NODE_40 0b10010010100000 GGCACGTGGAGAATAAGTTGCACTGGCGGTT 0b01110110111110 GGATGTGGTGA TGAATGAAGATGATTGCAGAATAAG 0b11000101111000 A A G A G G G A A T G C T G C G G A A T T G T T T T C A G G G A T T A G 0b01001010000001 >SAL BA7171AA AS NODE 19 0b01000011000110 CTCGTTGATGGGGTAGTTATTGTGGAATGTCCACCG Ob00010001101001 GTGTGTCCATCAAGAAAATTTATCAGCATAGCGAG 0b00011101010101 TTGAAAAATTCATATTTATGAAGAACATAAGAAATT 0b00011111010111 TCTCCATCATTGCTCACATTGACCACGGTAAATCGA 0b10100011101001 CGCTGTCTGACCGTATTATCCAGATCTGCGGTGGCC 0b01100011111101 >SAL_BA7171AA_AS_NODE_13 GAAGATACAGGACTACATAAAGCACCAGCTTGAAGA GGATAAAATGGGAGAGCAGTTATCGATCCCTTATCC GGGTAGCCCGTTTACGGGCCGTAAGTAGCGAAGTCT GATGCAAATGTCAGATCGCGTGCGCCTGTTAGGGCG CGGCTGGTAAGAGAGCCTTATAGGCGCATCAGAAAA ACCTCCGGCTATGCCGGAGGATATTTATTACATTCT

files 0b100000000000000 0b1100000000000000 0b1100000000000000 0b01011101100000 0b001111111111111 0b001111111111111 Ob001111111111111 0b01011101100000 0b1100000000000000 0b00001001111111

split	#k-mers		weight
0b0010110100000 0b1100000000000 0b00011010110000 0b00100111001000	[362, 389] [260, 230]	→	494.983 375.257 244.540 148.350

SANS serif

Andreas Rempel

Roland Wittler SANS Update DSB 2021 8 / 19

250 assemblies: andi: 110 min, Co-phylog: 9 h, FSWM: 50 h, ...

Roland Wittler SANS Update DSB 2021 9 / 19

Outline

SANS

SANS serif

IUPAC Characters

Coding Sequences

Clustering MAGs

Outlook

10 / 19

IUPAC Characters

Andreas Rempel

$\mathsf{R}\,\to\mathsf{A}\;\mathsf{or}\;\mathsf{G}$

 $\mathsf{Y} \to \mathsf{C} \mathsf{ or } \mathsf{T}$

 $\mathsf{S} \,\to \mathsf{G} \; \mathsf{or} \; \mathsf{C}$

 $W \rightarrow A \text{ or } T$

 $\mathsf{K}\,\to\mathsf{G}\;\mathsf{or}\;\mathsf{T}$

 $M \rightarrow A \text{ or } C$

 $\mathsf{B}\,\to\mathsf{C}$ or G or T

 $\mathsf{D}\,\to\mathsf{A}$ or G or T

 $H\,\to A$ or C or T

 $V\,\to\,A\,\,\text{or}\,\,C\,\,\text{or}\,\,G$

 $N \to any base$

Consider all variants:

$$\mathsf{AARCGYA} \Rightarrow \begin{cases} \mathsf{AAACGCA} \\ \mathsf{AAACGTA} \\ \mathsf{AAGCGCA} \\ \mathsf{AAGCGTA} \end{cases}$$

10 / 19

IUPAC Characters

Andreas Rempel

```
\begin{array}{c} \mathsf{R} \ \rightarrow \ \mathsf{A} \ \mathsf{or} \ \mathsf{G} \\ \mathsf{Y} \ \rightarrow \ \mathsf{C} \ \mathsf{or} \ \mathsf{T} \\ \mathsf{S} \ \rightarrow \ \mathsf{G} \ \mathsf{or} \ \mathsf{C} \\ \mathsf{W} \ \rightarrow \ \mathsf{A} \ \mathsf{or} \ \mathsf{T} \\ \mathsf{K} \ \rightarrow \ \mathsf{G} \ \mathsf{or} \ \mathsf{T} \\ \mathsf{M} \ \rightarrow \ \mathsf{A} \ \mathsf{or} \ \mathsf{C} \\ \mathsf{B} \ \rightarrow \ \mathsf{C} \ \mathsf{or} \ \mathsf{G} \ \mathsf{or} \ \mathsf{T} \\ \mathsf{D} \ \rightarrow \ \mathsf{A} \ \mathsf{or} \ \mathsf{G} \ \mathsf{or} \ \mathsf{T} \\ \mathsf{H} \ \rightarrow \ \mathsf{A} \ \mathsf{or} \ \mathsf{C} \ \mathsf{or} \ \mathsf{T} \\ \mathsf{V} \ \rightarrow \ \mathsf{A} \ \mathsf{or} \ \mathsf{C} \ \mathsf{or} \ \mathsf{G} \end{array}
```

 $N \rightarrow anv base$

Consider all variants:

$$\mathsf{AARCGYA} \Rightarrow \begin{cases} \mathsf{AAACGCA} \\ \mathsf{AAACGTA} \\ \mathsf{AAGCGCA} \\ \mathsf{AAGCGTA} \end{cases}$$

True variant:

supports / is supported by further k-mers

False variant:

cancelled out due to missing inverse split

IUPAC Characters

Andreas Rempel

Simulated phylogeny, 100 leaf genomes, length $\sim\!\!96\,\mathrm{kb},\,5\,\mathrm{PAM}$ to the root simulated with ALF [Dalquen et al., 2012]

	original	with 0.1 % N's	
		skipped	replaced
unweighted			
precision	0.90	0.63	0.78
recall	0.70	0.38	0.58
weighted			
precision	0.98	0.95	0.98
recall	0.88	0.68	0.88

Roland Wittler SANS Update DSB 2021 11/19

Outline

SANS

SANS serif

IUPAC Characters

Coding Sequences

Clustering MAGs

Outlook

Coding Sequences

```
whole genome \Rightarrow coding sequnences DNA \Rightarrow amino acids
```

```
-a, --amino Consider amino acids:
--input provides amino acid sequences
Implies --norev and a default k of 10
```

-c, --code Translate DNA: --input provides coding sequences
Implies --norev and a default k of 10
optional: ID of the genetic code to be used
Default: 1 (The Standard Code)
Use 11 for Bacterial, Archaeal, and Plant Plastid Code

Roland Wittler SANS Update DSB 2021 12 / 19

Coding Sequences Marco Sohn

90 Pseudomonas genomes

Roland Wittler SANS Update DSB 2021 13 / 19

Coding Sequences Marco Sohn

90 Pseudomonas genomes

Coding Sequences Marco Sohn

90 Pseudomonas genomes

Outline

SANS

SANS serif

IUPAC Characters

Coding Sequences

Clustering MAGs

Outlook

Metagenome Assembled Genomes

Sample 2

Given: Many MAGs from many samples.

Problem: Cluster MAGs such that: cluster = genome

Roland Wittler SANS Update DSB 2021 14/19

- 1. infer phylogeny using SANS
- 2. chop tree into clusters

1. infer phylogeny using SANS

2. chop tree into clusters

Roland Wittler SANS Update DSB 2021 15 / 19

Clustering MAGs

Clustering MAGs

Rank threshold

Minimizers [Andreas Rempel]

Roland Wittler SANS Update DSB 2021 17/19

Clustering MAGs

CAMI mouse gut metagenome [Sczyrba et al.] 5786 MAGs, 686 genomes (simulated)

Roland Wittler SANS Update DSB 2021

Outline

SANS

SANS serif

IUPAC Characters

Coding Sequences

Clustering MAGs

Outlook

parallelization [Fabian Kolesch]
 in particular reading the input files

- parallelization [Fabian Kolesch]
 in particular reading the input files
- counting k-mers [Ann-Cathrin Groba]
 1 1 0 0 vs. 9 9 0 0 vs. 9 9 1 0

- parallelization [Fabian Kolesch]
 in particular reading the input files
- counting k-mers [Ann-Cathrin Groba]
 1 1 0 0 vs. 9 9 0 0 vs. 9 9 1 0
- estimating k [Rebecca Pfeil] Shannon entropy(?), sampling

- parallelization [Fabian Kolesch]
 in particular reading the input files
- counting k-mers [Ann-Cathrin Groba] 1 1 0 0 vs. 9 9 0 0 vs. 9 9 1 0
- estimating k [Rebecca Pfeil] Shannon entropy(?), sampling
- reference free quality measure [Marco Sohn, Rebecca Pfeil]
 tree-likeliness

Roland Wittler SANS Update DSB 2021 19 / 19

- parallelization [Fabian Kolesch]
 in particular reading the input files
- counting k-mers [Ann-Cathrin Groba] 1 1 0 0 vs. 9 9 0 0 vs. 9 9 1 0
- estimating k [Rebecca Pfeil] Shannon entropy(?), sampling
- reference free quality measure [Marco Sohn, Rebecca Pfeil]
 tree-likeliness

Thank you!

(100 assemblies)

Roland Wittler SANS Update DSB 2021 21/19

Roland Wittler SANS Update DSB 2021 21/19

90 Pseudomonas genomes

	Whole Genome	Coding Sequences	
	DNA	DNA	AA
$\overline{}$	25	25	8
time	17min	6.9s	1.5s
memory	12G	140M	17M

Roland Wittler SANS Update DSB 2021 22/19

- 1. SANS, filter for tree, re-root
- 2. post-order traversal:
 - 2.1 ignore non-branching node
 - 2.2 get clusters from sub-trees (recursively) item if edge ≥ parent edge: remove found clusters from current leaf set remaining leaf set =: new cluster

CAMI mouse gut metagenome [Sczyrba et al.]

Simulated dataset representing 64 metagenome samples.

		MIMAG	MIMAG
	All	medium	high
contamination		< 10 %	< 5%
completeness		$\geq 50\%$	>90%
# MAGs	11 602	5 786	2510
	(23 GB)		
# genomes	791	686	349
// genomes		000	3.3
# species	509	448	271

Roland Wittler SANS Update DSB 2021 24 / 19

Clustering MAGS – Strain level

Roland Wittler SANS Update DSB 2021

25 / 19

Clustering MAGS – Strain level

[Peter Belmann]

Roland Wittler SANS Update DSB 2021 25 / 19

Clustering MAGS - Strain level

Roland Wittler SANS Update DSB 2021 25 / 19

Clustering MAGS – Species level

Clustering MAGS – Species level

Roland Wittler SANS Update DSB 2021 26 / 19

Clustering MAGS – Species level

