EC3303: Econometrics I

Review of Probability & Statistics (Supplementary Lecture)

Kelvin Seah

AY 2022/2023, Semester 1

Random Variable (RV)

- A random variable (RV) is a variable whose value is an outcome of a random phenomenon.
- Random variables can be **discrete** or **continuous**.
 - discrete RV takes on only a discrete set of values like 0,1,2,...
 - continuous RV takes on a continuum of possible values.
 - E.g. number of times your computer crashes while you are writing a term paper is an example of a discrete RV.
 - Eg. length of time you take to write an email is an example of a continuous RV.

Probability Distribution

• Consider a discrete RV, X. Probability distribution of X lists the values and the probability that each value will occur:

Value of <i>X</i>	x_1	x_2	x_3	 $\overline{x_k}$
Probability	p_1	p_2	p_3	 p_k

- p_i must satisfy 2 requirements:
 - Every p_i is a number between 0 and 1
 - $p_1 + p_2 + p_3 + \dots + p_k = 1$

Distributions of Random Variables

The mean is a measure of the centre of a distribution.

• The variance/standard deviation are measures of the spread or dispersion of a distribution.

Mean (Expected Value) of a RV

• The mean (expected value) of a random variable X – denoted E(X) or μ_X – is an average of the possible values of X, but with a modification: modification to account for the fact that not all outcomes are equally likely.

• Suppose *X* is a discrete RV

Value of <i>X</i>	x_1	x_2	x_3	•••	x_k
Probability	p_1	p_2	p_3		p_k

$$\mu_X = E(X) = x_1 p_1 + x_2 p_2 + x_3 p_3 + \dots + x_k p_k = \sum_{i=1}^k x_i p_i$$

Standard Deviation & Variance of a RV

- **variance / standard deviation** measure the spread of a probability distribution.
- variance of a RV, X, is denoted σ_X^2 or var(X)

$$var(X) = E[(X - \mu_X)^2]$$

Value of <i>X</i>	x_1	x_2	x_3	 x_k
Probability	p_1	p_2	p_3	 p_k

$$\sigma^{2}_{X} = Var(X) = E[(X - \mu_{X})^{2}] = (x_{1} - \mu_{X})^{2} p_{1} + (x_{2} - \mu_{X})^{2} p_{2} + \dots + (x_{k} - \mu_{X})^{2} p_{k}$$
$$= \sum_{i=1}^{k} (x_{i} - \mu_{X})^{2} p_{i}$$

$$Var(X) = E[(X - \mu_X)^2]$$

- unit of the variance is awkwardly the unit of the square of X.
- standard deviation denoted σ_X is the square root of the variance. It is easier to interpret because it has the same units as X.

Rules for Means

- Let X, Y be RVs, a, b be constants, then:
- E(a)=a
- E(a+bX)=a+bE(X)
- E(X+Y)=E(X)+E(Y) (expectation is a linear operator)

Rules for Variances

- Let X, Y be RV's, a, b be constants, then:
- var(a)=0
- $var(aX+b)=a^2var(X)$ (note the squared constant)
- In general:

$$var(X + Y) = var(X) + var(Y) + 2cov(X, Y)$$
$$var(X - Y) = var(X) + var(Y) - 2cov(X, Y)$$

$$var(aX + bY) = a^{2}var(x) + b^{2}var(Y) + 2abcov(X, Y)$$
$$var(aX - bY) = a^{2}var(x) + b^{2}var(Y) - 2abcov(X, Y)$$

but if X and Y are independent,

$$var(X + Y) = var(X) + var(Y)$$

$$var(X - Y) = var(X) + var(Y)$$

$$var(aX + bY) = a^{2}var(x) + b^{2}var(Y)$$

$$var(aX - bY) = a^{2}var(x) + b^{2}var(Y)$$

Normal Distribution

- Represents a large family of distributions, each with a unique mean & variance value.
- Suppose X follows a normal distribution with mean μ and variance σ^2 $X \sim N(\mu, \sigma^2)$

- Approx 68% of the observations fall within σ of the mean μ .
- Approx 95% of the observations fall within 2σ of the mean μ .
- Approx 99.7% of the observations fall within 3σ of the mean μ .

- The normal distribution with mean = 0 and variance $\sigma^2 = 1$ is the standard normal distribution.
- RVs that have a standard normal distribution are denoted $Z \sim N(0, 1)$
- To compute probabilities involving normally distributed RVs,
 - 1. Standardize the variable.
 - 2. Look up standard normal c.d.f (Appendix Table 1).

Normal Distribution

- Suppose $X \sim N(1,4)$
 - How do we standardize *X*?

•
$$Z = \frac{X-\mu}{\sigma} = \frac{X-1}{2} = \frac{1}{2}(x-1)$$

$$\frac{1}{2}(x-1) \sim N(0,1)$$

• can now use the Appendix Table 1 to answer questions like "what is the probability that $X \leq 2$?"

- Suppose $X \sim N(1,4)$
 - "What is the probability that $X \leq 2$?"

•
$$\Pr(X \le 2) = \Pr\left(\frac{X-1}{2} \le \frac{2-1}{2}\right) = \Pr\left(Z \le \frac{1}{2}\right) = 0.691$$

• "What is the probability that $1 \le X \le 2$?"

•
$$\Pr(1 \le X \le 2) = \Pr\left(\frac{1-1}{2} \le \frac{X-1}{2} \le \frac{2-1}{2}\right)$$

= $\Pr\left(0 \le Z \le \frac{1}{2}\right) = \Pr\left(Z \le \frac{1}{2}\right) - \Pr(Z \le 0)$
= $0.691 - 0.500 = 0.191$

Review of Statistics

- Statistics is the science of using data to learn about unknown population distributions of interest.
- What is the mean of the distribution of earnings in Singapore?
 - 1) Perform an exhaustive survey of all workers in Singapore and construct the population distribution of earnings.

or

- 2) Select a random sample from the population of workers in Singapore. Then use statistical methods to draw inferences (**statistical inference**) about the full population.
- \rightarrow Method (2) is more practical.

3 Ingredients of Statistical Inference

- 1. **Estimation** computing a "best guess" numerical value for an unknown characteristic of a population distribution, from a sample of data
- 2. **Hypothesis testing** formulating a specific hypothesis about the population, then using sample evidence to decide whether it is true.
- 3. Confidence intervals computing an interval for an unknown population characteristic, using a sample of data

Review 3 concepts in the context of inference about an unknown population mean.

Estimation of the Population Mean

- You want to estimate the mean earnings μ_Y of the population of workers in Singapore. How would you do this?
- A possible way:
 - Choose a random sample of n workers.
 - Use the sample average $\bar{Y} = \frac{1}{n}(Y_1 + Y_2 + \dots + Y_n)$ to estimate the unknown population mean μ_Y .
 - \overline{Y} is an example of an *estimator* of the population mean μ_Y .

Estimator vs Estimate

Estimator

- An **estimator** is a procedure / formula used to obtain an estimate of the parameter of interest
- It is a function of the (randomly drawn) sample of data.
- It is a RV, because it depends on a randomly selected sample.

Estimate

- An **estimate** is a numerical value of the estimator when it is computed using data from a specific sample.
- An estimate is just a number and so is nonrandom.

Estimator vs Estimate

sample average

$$\bar{Y} = \frac{1}{n}(Y_1 + Y_2 + \dots + Y_n)$$

is an **estimator** of the population mean μ_Y .

- Suppose we have drawn a random sample of 500 Singaporeans aged between 18 and 65 and collected data on their earnings.
- Then, we use the above formula to compute the average income and find it is SG\$35,100. This number is an **estimate**.

Sample of Data Drawn Randomly from a Population: $Y_1, ..., Y_n$

- Under simple random sampling (SRS),
 - *n* objects selected at random from a population & each member of the population is equally likely to be included in the sample.
 - *n* observations are $(Y_1, Y_2, ..., Y_n)$ where Y_1 is the value of the first observation, Y_2 is the value of the second observation, and so on.
 - Prior to sample selection, the value of each Y_i , i = 1, ..., n is random & can take on many possible values. So each Y_i is a random variable.
 - Once the objects are selected & the values of Y are observed,
 each Y_i becomes a number no more random.

I.I.D. Observations in the Dataset

- Because individuals are selected at random, knowing the value of Y_1 provides no information about Y_2 . Thus:
 - Y_1 and Y_2 are independently distributed.
 - Y_1 and Y_2 come from the same distribution, and so, Y_1 and Y_2 are identically distributed.
 - distribution of each Y_i , where i = 1, ..., n, is the same as the population distribution of Y.
 - Under SRS, $Y_1, Y_2, ..., Y_n$ are independently & identically distributed (*i.i.d.*)

What an SRS Scheme is Not

- You want to know the unemployment rate in Singapore.
 So you survey people sitting in parks at 10am on a Tuesday.
- You want to know the mean age of all OCBC customers
 So you survey OCBC customers at 10.30am on a weekday.

Sampling Distribution of the Sample Average

• sample average \overline{Y} of n observations $Y_1, ..., Y_n$:

$$\overline{Y} = \frac{1}{n}(Y_1 + Y_2 + \dots + Y_n) = \frac{1}{n}\sum_{i=1}^n Y_i$$

- Drawing a random sample means that the sample average is itself a random variable
 - Since $Y_1, ..., Y_n$ are random variables, their average is also a random variable.
 - Had a different sample been drawn, the observations & the sample average would have been different.
 - The value of \overline{Y} varies from one randomly drawn sample to the next.
 - i.e. value of \overline{Y} will vary in repeated sampling.
 - Since \overline{Y} is a random variable, it has a probability distribution known as the sampling distribution.

Value of \overline{Y} varies from one randomly drawn sample to the next...

- I am interested in knowing the mean height of students in this class.
- I can draw a random sample of size 3 (*n*=3) and compute the average height:

Sample 1				
Height (cm)				
1				
2				
3				
Average Height				

Sample 2				
	Height (cm)			
1				
2				
3				
Average Height				

• The value of the sample average varies from sample to sample.

Mean & Variance of the Distribution of the Sample Average \overline{Y}

- The exact (finite-sample) sampling distribution of \overline{Y} is determined by the sample size n & the population distribution.
- If the population has mean μ_Y & variance σ_Y^2 ,

1

$$E(\overline{Y}) = \mu_{\overline{Y}} =$$

2. since the observations are independent, covariance between the Y_i 's are 0.

$$var(\overline{Y}) = \sigma^2_{\overline{Y}} =$$

• Standard deviation of \overline{Y} is the square root of the variance:

$$std.dev(\overline{Y}) = \sigma_{\overline{Y}} = \frac{\sigma_Y}{\sqrt{n}}$$

- these results hold whatever the distribution of Y_i (also the population distribution) is
- Since the mean of \overline{Y} is the same as the mean of the population:
 - The sample average \overline{Y} is an **unbiased** estimator of the unknown population mean μ_Y .
 - More on unbiasedness soon
- Since $var(\overline{Y}) = \frac{\sigma^2_{\overline{Y}}}{n}$, the variability of the sampling distribution of \overline{Y} decreases as the sample size n grows.

Unbiasedness

- Let $\hat{\theta}$ be an estimator of θ .
- We say that $\hat{\theta}$ is **unbiased** if

$$E(\widehat{\boldsymbol{\theta}}) = \boldsymbol{\theta}$$

- if we draw samples repeatedly and take an average of the resulting estimates, we will get the true value the estimator is correct **on average**.
- $E(\widehat{\theta}) \theta$ is called bias.
- Since $E(\overline{Y}) = \mu_Y$, the sample mean is an unbiased estimator of the population mean.

Unbiased vs Biased Estimator

Shape of the Sampling Distribution of \overline{Y}

- Exact shape of the distribution of \overline{Y} depends on the shape of the population distribution
 - if the population distribution is normal, then so is the distribution of \overline{Y} .
- Let a population be distributed $N(\mu_Y, \sigma^2_Y)$, then the sample average \overline{Y} of n independent observations has the $N(\mu_Y, \frac{\sigma^2_Y}{n})$ distribution
 - many population distributions are not normal however.
 - so, in general, the finite sample distribution of \overline{Y} can be complicated.

Large-Sample Approximations to Sampling Distributions

• As the sample size n increases, the distribution of \overline{Y} gets closer to a normal distribution. This result is true no matter what shape the population distribution has as long as the population has a finite variance (i.e. $\sigma^2_{V} < \infty$).

Central Limit Theorem

Draw an SRS of size n from any population with mean μ_Y and finite variance σ_Y^2 . When n is large, the sampling distribution of \overline{Y} is approximately normal.

$$\overline{Y}$$
 is approximately $N(\mu_Y, \frac{\sigma^2}{n})$

- How large must n be?
 - Quality of the normal approximation depends on the population distribution.
 - $n \ge 100$ is typically sufficient for a wide variety of population distributions.

Central Limit Theorem

As $n \to \infty$,

$$\overline{Y} \stackrel{d}{\to} N(\mu_Y, \frac{\sigma^2_Y}{n})$$

- \overline{Y} is said to have an *asymptotic normal distribution* if the distribution of \overline{Y} approaches the normal as n grows large.
- When *n* is large, the distribution of the standardized sample average $\frac{\bar{Y} \mu_Y}{\sigma_{\bar{V}}}$ is well approximated by a N(0,1) distribution

$$\frac{\overline{Y}-\mu_Y}{\sigma_{\overline{V}}} \stackrel{d}{\to} N(0,1)$$

• So the asymptotic normal distribution of $\frac{\overline{Y} - \mu_Y}{\sigma_{\overline{Y}}}$ does not depend on the distribution of *Y* (population distribution)!

Law of Large Numbers & Consistency

• Law of large numbers (LLN) states that when the sample size n increases, \overline{Y} will be near the population mean μ_Y with increasing probability

As
$$n \to \infty$$
, $\overline{Y} \xrightarrow{p} \mu_V$

- \overline{Y} is a **consistent** estimator of μ_Y .
- LLN says that if we can afford to keep on measuring more people, then we will eventually estimate the mean earnings of Singaporean workers very accurately.

Consistency

- Let $\hat{\theta}$ be an estimator of θ .
- $\hat{\theta}$ is **consistent** if

$$\widehat{\boldsymbol{\theta}} \stackrel{p}{\rightarrow} \boldsymbol{\theta}$$

- that is, if $\hat{\theta}$ is consistent, then the probability that it is within a small interval of the true value θ approaches 1 as the sample size increases.
- For an estimator to be consistent, both bias & variance should tend to 0 as *n* gets large.
- \overline{Y} is unbiased. Also, its variance, $var(\overline{Y}) = \frac{\sigma^2_{\overline{Y}}}{n}$ approaches 0 as n gets large.
- So \overline{Y} is a consistent estimator of the population mean μ_Y .

Consistency in a Picture

LLN & CLT at Work: An E.g.

• Let Y represent commute time, where Y = 1 if a commute is short & Y = 0 if it is long. Suppose Y is distributed:

Value of Y	0	1
Probability	0.22	0.78

- Then E(Y), in this e.g., tells us the probability of having a short commute on any randomly selected day.
 - $E(Y) = \mu_Y = E(Y_i) = 0.78$ is the fraction of commutes over a large number of commutes where the commute is short.
- In practice, the distribution of Y (and hence μ_Y) is unknown and has to be estimated.
 - can estimate μ_Y using \overline{Y} , where \overline{Y} is the fraction of commutes in a sample in which the commute is short.

Law of Large Numbers and Consistency at Work

As n gets larger, the variance of the sampling distribution of \bar{Y} decreases and the sampling distribution becomes more tightly concentrated around the true mean μ_Y =0.78

Central Limit Theorem at Work

As n gets larger, the sampling distribution of \overline{Y} becomes increasingly well approximated by a normal distribution.

Summary of the Sampling Distribution of \overline{Y}

- Keep taking random samples of size n from a population with mean μ_Y and variance σ_Y^2 .
 - Find the sample average \overline{Y} for each sample
 - Collect all the \overline{Y} 's and display their distribution.
 - That's the sampling distribution of \overline{Y} .
- Sampling distribution of a sample average \overline{Y} has mean μ_Y and variance $\frac{\sigma^2_Y}{n}$.
 - distribution of \overline{Y} is normal if the population distribution is normal.
 - it is approximately normal for large *n* even if the population distribution is not normal.

Estimation of the Population Mean...Again

- \overline{Y} provides one way to estimate μ_Y . But it is not the only way.
- For e.g., another way to estimate μ_Y is to use the first observation Y_1 .
 - In repeated samples, Y_1 will take on different values, so Y_1 has a sampling distribution.
 - Because we assume SRS, the sampling distribution of Y_1 will be the same as the population distribution of Y.
 - So $E(Y_1) = \mu_Y$ and Y_1 is an unbiased estimator of μ_Y .
 - Since Y_1 and \overline{Y} are both unbiased estimators of μ_Y , how do we choose between them?

Efficiency

- Let $\hat{\theta}$ and $\tilde{\theta}$ be unbiased estimators of θ . We prefer the estimator with the tighter sampling distribution. In other words, we prefer the estimator with the smaller variance.
- Suppose $var(\widehat{\boldsymbol{\theta}}) < var(\widetilde{\boldsymbol{\theta}})$,
 - then $\hat{\theta}$ is more **efficient** than $\tilde{\theta}$ and we prefer using $\hat{\theta}$ as our estimator.

First Observation Y_1 or Sample Average \overline{Y} ?

We prefer estimators which are more efficient.

$$var(Y_1) = \sigma^2_{Y}$$

$$var(\overline{Y}) = \frac{\sigma^2_{Y}}{n}$$

- For $n \ge 2$, $var(\overline{Y}) < var(Y_1)$, so \overline{Y} should be used instead of Y_1 .
- In fact, \overline{Y} is actually the most efficient estimator among all unbiased estimators that are linear (i.e. linear estimators of μ_Y are weighted averages of Y_1, Y_2, \dots, Y_n).
- \overline{Y} is therefore **BLUE** (**Best Linear Unbiased Estimator**) of μ_Y .

Desirable Properties of Estimators

- We would like an estimator that gets as close as possible to the unknown true value (parameter).
- Hence the 3 desirable characteristics of an estimator are that it is:
 - 1) Unbiased
 - 2) Consistent
 - 3) Efficient

Hypothesis Tests

- We now know how to select an estimator with good properties.
- However, the result we get is just a point estimate. If we collected another sample & computed another estimate, the value of the estimate would likely be different. Can we say more about our result?
- Hypothesis testing allows us to say whether the value we got as an estimate is "compatible" with some hypothesized value about the population.
- E.g.: Given estimate of \$31 per hour, can we say that the mean wage in Singapore is not \$30 per hour?

Hypothesis Testing: Terminology

- Null Hypothesis: a hypothesis to be tested; usually a statement of "no effect" or "no difference". Denoted H_0 .
- Alternative Hypothesis: a hypothesis we test the null against; this is the statement we hope is true if the null is not. Denoted H_1 .
- A hypothesis is **simple** if it specifies a certain value for the parameter tested. For example,

$$H_0$$
: $\mu = 30$

• Otherwise, it is a **composite.** For example,

$$H_1: \mu > 30$$
 or $H_1: \mu \neq 30$

Null hypotheses are always simple; Alternative hypotheses are always composite.

Hypothesis Tests Concerning the Population Mean

• Specify the null & alternative hypotheses, depending on your question

$$H_0$$
: $E(Y) = \mu_{Y,0}$ vs H_1 : $E(Y) \neq \mu_{Y,0}$ (2-sided alternative)

$$H_0$$
: $E(Y) = \mu_{Y,0}$ vs H_1 : $E(Y) < \mu_{Y,0}$ (1-sided alternative)

$$H_0$$
: $E(Y) = \mu_{Y,0}$ vs H_1 : $E(Y) > \mu_{Y,0}$ (1-sided alternative)

where $\mu_{Y,0}$ is the value of the population mean under the null hypothesis.

• Problem is to use the evidence in a randomly selected sample of data to decide whether to "accept" (not reject) the null hypothesis H_0 or to reject it in favour of the alternative H_1 .

Test Statistics

- Hypothesis tests are based on a statistic which estimates the parameter of interest (E.g. estimate of \$31 in wage example)
- If H_0 is true, we expect the estimate to take a value near the parameter value specified by H_0 .
- Values of the estimate far from the value specified by H_0 give evidence against H_0 . Alternative hypothesis determines which directions count as evidence against H_0 .

<u>E.g.</u>

- H_1 : $E(Y) \neq 30$ values of the estimate far from 30 give evidence against H_0 .
- H_1 : E(Y) < 30 only values of the estimate lower than 30 give evidence against H_0 .
- H_1 : E(Y) > 30 only values of the estimate greater than 30 give evidence against H_0 .

• To assess how far the estimate is from the parameter specified by the null hypothesis, standardize the estimate:

$$test\ statistic = \frac{\overline{Y} - \mu_{Y,0}}{\sigma_{\overline{Y}}} = \frac{\overline{Y} - \mu_{Y,0}}{\sigma_{Y}/\sqrt{n}}$$

- In practice, the population standard deviation σ_Y is unknown & we estimate it using the sample standard deviation s_Y
 - Using s_Y instead of σ_Y is possible because

$$s^2 \xrightarrow{p} \sigma^2_{Y}$$

where

$$s^{2}_{Y} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}$$

• Using s_Y in place of σ_Y , we have the **t-statistic**

$$t = \frac{\overline{Y} - \mu_{Y,0}}{s_Y/\sqrt{n}}$$

where s_Y/\sqrt{n} is called the standard error of \overline{Y} or $SE(\overline{Y})$.

- think of $t = \frac{\bar{Y} \mu_{Y,0}}{s_Y/\sqrt{n}}$ as a standardized version of \bar{Y} assuming the null hypothesis is true.
 - CLT says that when n is large, the t-statistic will have an approximate N(0,1) distribution.
- "Reject" or "do not reject" H_0 based on either the
- 1) p-value or
- 2) pre-specified significance level.

Calculating the p-value (2-sided Alternative)

- p-value is the probability of drawing a statistic (estimate) which is as
 extreme or more extreme than the one computed using your sample of
 data, assuming the null hypothesis is true.
- Let \overline{Y}^{act} denote the value of the sample average actually computed using the sample & Pr_{H_0} denote the probability computed assuming the null hypothesis is true, then:

$$p - value = Pr_{H_0} \left[\left| \overline{Y} - \mu_{Y,0} \right| > \left| \overline{Y}^{act} - \mu_{Y,0} \right| \right] = Pr_{H_0} \left[\left| \frac{\overline{Y} - \mu_{Y,0}}{\sigma_{\overline{Y}}} \right| > \left| \frac{\overline{Y}^{act} - \mu_{Y,0}}{\sigma_{\overline{Y}}} \right| \right]$$

$$= Pr_{H_0} \left[\left| \frac{\overline{Y} - \mu_{Y,0}}{\sigma_{\overline{Y}}} \right| > \left| \frac{\overline{Y}^{act} - \mu_{Y,0}}{\sigma_{\overline{Y}}} \right| \right] \cong Pr_{H_0} \left[\left| \frac{\overline{Y} - \mu_{Y,0}}{\sigma_{\overline{Y}}} \right| > \left| \frac{\overline{Y}^{act} - \mu_{Y,0}}{\sigma_{\overline{Y}}} \right| \right]$$

p-value =
$$2\Phi(-|t^{act}|)$$

p-value: area in the tails of a standard normal outside $|t^{act}|$

- For large n, p-value = probability that the test-statistic falls outside $\left| \frac{\bar{Y}^{act} \mu_{Y,0}}{\sigma_{\overline{y}}} \right|$
- In practice, $\sigma_{\overline{Y}}$ is unknown it must be estimated by s_Y/\sqrt{n} , the standard error of \overline{Y} .

Calculating the p-value: An e.g.

You want to test whether the average per hour earnings in Singapore are significantly different from \$30 at the 5% level. You randomly sample 100 residents and find:

$$\bar{Y}^{act} = \$33$$
, $s_V = 9$, $n = 100$

- Formulate hypothesis: $H_0: E(Y) = 30$; $H_1: E(Y) \neq 30$
- Compute the t-statistic: $t^{act} = \frac{\bar{Y}^{act} \mu_{Y,0}}{s_Y/\sqrt{n}} = \frac{33 30}{9/\sqrt{100}} = 3\frac{1}{3}$
- Calculate the p-value: $2\Phi(-|t^{act}|) = 2\Phi(-|3\frac{1}{3}|) \approx 0.00$
- Since the p-value is so small (≈ 0.00), it is unlikely that such a sample would have been drawn if the null hypothesis is true. So conclude that null hypothesis is false.
- If the p-value computed was not small however (say 0.4), then it is quite likely that our observed sample average of \$33 could have arisen just by random sampling variation even if the null hypothesis were true. Accordingly, we cannot reject the null hypothesis.

Hypothesis Testing with a Prespecified Significance Level

- Reject H_0 when the p-value is small:
 - the smaller the p-value, the stronger the evidence against H_0 provided by the data.
- But how small is small?

- must set a benchmark on how small the p-value should be before we reject H_0 .
- Fixed benchmark is called a **significance level**, α .

- When you conduct a hypothesis test, you can make 2 types of mistakes:
- I. Type I error: rejecting the null when it is true.
- II. Type II error: not rejecting a null when it is false.

- Significance level, α : prespecified probability of a type I error that we are willing to tolerate, e.g., 5% or 1%.
 - If you choose $\alpha = 0.05$, then you will reject the null if and only if p-value<0.05.
 - If you choose $\alpha = 0.01$, then you will reject the null if and only if p-value<0.01.

Hypothesis Tests Using a Fixed Significance Level

- Can perform hypothesis tests without computing p-values if we fix the significance level.
- Suppose we choose $\alpha = 0.05$, then for a 2-sided alternative, we reject the null if $|t^{act}| > 1.96$
 - 1.96 is called a **critical value**. It cuts off 5% of the area under the tails of the distribution of the t-statistic.
 - If we choose $\alpha = 0.01$, then for a 2-sided alternative, we reject the null if $|t^{act}| > 2.58$
 - If we choose $\alpha = 0.1$, then for a 2-sided alternative, we reject the null if $|t^{act}| > 1.64$

Summary of Hypothesis Testing with 2-sided Alternatives

- Compute the standard error of \overline{Y} , $SE(\overline{Y}) = s_Y/\sqrt{n}$
- Compute the t-statistic:

$$t^{act} = \frac{\bar{Y}^{act} - \mu_{Y,0}}{s_Y/\sqrt{n}}$$

• Compute the p-value:

$$p$$
-value = $2\Phi(-|t^{act}|)$

- Reject null at the 5% significance level if the p-value < 0.05.
- Equivalently, reject null at the 5% significance level if $|t^{act}| > 1.96$

One-Sided Alternatives

• In some circumstances, we might have reason to think that the population mean exceeds the hypothesized value

$$H_1: E(Y) > \mu_{Y,0}$$
 (1-sided alternative)

- For a 1-sided alternative of this form, only large positive values of the sample average (and hence the t-statistic) count as evidence against H_0 .
- So we reject H_0 only if the t-statistic takes on a large enough positive value.

$$H_1: E(Y) > \mu_{Y,0}$$
 (1-sided alternative)

To test the one-sided alternative above:

- Compute the standard error of \overline{Y} , $SE(\overline{Y}) = s_Y/\sqrt{n}$ (as before)
- Compute the t-statistic: (as before)

$$t^{act} = \frac{\overline{Y}^{act} - \mu_{Y,0}}{s_Y / \sqrt{n}}$$

• Compute the p-value: (calculation of p-values is modified)

$$p-value = Pr_{H_0}(t > t^{act}) = 1 - \Phi(t^{act})$$

p-value here is the area under the standard normal distribution to the right of the calculated t-statistic.

• Reject H_0 at the 5% significance level if the p-value < 0.05

$$H_1: E(Y) > \mu_{Y,0}$$
 (1-sided alternative)

- critical values for a 1-sided alternative are different:
 - Suppose we choose $\alpha = 0.05$, then for the 1-sided alternative above, we reject the null if $t^{act} > 1.64$.
 - It cuts off 5% of the area under the **upper tail** of the distribution of the t-statistic.
 - Suppose we choose $\alpha = 0.01$, then for the 1-sided alternative above, we reject the null if $t^{act} > 2.33$.
- If the alternative hypothesis is H_1 : $E(Y) < \mu_{Y,0}$, everything discussed applies except that signs are switched.

One-Sided Alternative: An e.g.

You want to test whether the average per hour earnings in Singapore are significantly more than \$30 at 5% level. You randomly sample 100 residents and find:

$$\bar{Y}^{act} = \$31, \qquad s_Y = 8, \qquad n = 100$$

- Formulate hypothesis: H_0 : E(Y) = 30; H_1 : E(Y) > 30
- Compute the t-statistic: $t^{act} = \frac{\bar{Y}^{act} \mu_{Y,0}}{s_Y/\sqrt{n}} = \frac{31-30}{8/\sqrt{100}} = 1.25$
- Calculate the p-value: $1 \Phi(t^{act}) = 1 \Phi(1.25) = 1 0.8944 = 0.1056$
- Or equivalently, 1.25 < 1.64 (5% '1-tailed' critical value)
- Do not reject H_0 at the 5% level.

Confidence Intervals

- Useful when goal is to estimate a population parameter because it provides an indication of how variable the estimate is.
- A confidence interval is an interval which contains the true value of a parameter with a certain prespecified probability.
 - E.g. A 95% **confidence interval** for μ_Y is an interval that contains the true value of μ_Y in 95% of repeated samples.

Confidence Interval for the Population Mean

• when n is large,

$$\overline{Y}$$
 is approximately $N(\mu_Y, \frac{\sigma^2_Y}{n})$

- So the probability that \overline{Y} will be within 1.96 standard deviations of the population mean μ_Y is 0.95.
- To say that \overline{Y} lies within 1.96 standard deviations of μ_Y is to say that μ_Y is within 1.96 standard deviations of \overline{Y}
- So 95% of all samples will capture the true μ_Y in the interval from \overline{Y} $1.96\sigma_{\overline{Y}}$ to \overline{Y} + $1.96\sigma_{\overline{Y}}$
- So a 95% confidence interval for μ_V is

$$\overline{Y} - 1.96\sigma_{\overline{Y}} \le \mu_Y \le \overline{Y} + 1.96\sigma_{\overline{Y}}$$
 or

$$\overline{Y} - 1.96 \frac{\sigma_Y}{\sqrt{n}} \le \mu_Y \le \overline{Y} + 1.96 \frac{\sigma_Y}{\sqrt{n}}$$

• A 95% confidence interval for μ_Y is

$$\bar{Y} - 1.96 \frac{\sigma_Y}{\sqrt{n}} \le \mu_Y \le \bar{Y} + 1.96 \frac{\sigma_Y}{\sqrt{n}}$$

- In practice, σ_Y/\sqrt{n} is unknown it must be estimated by s_Y/\sqrt{n} , the **standard error** of \overline{Y} .
- So the 95% confidence interval for μ_Y is $\overline{Y} 1.96SE(\overline{Y}) \le \mu_Y \le \overline{Y} + 1.96SE(\overline{Y})$

Confidence Intervals

• We can specify the confidence level we like

95% confidence interval for
$$\mu_Y = \{ \overline{Y} \pm 1.96SE(\overline{Y}) \}$$

90% confidence interval for
$$\mu_Y = \{ \overline{Y} \pm 1.64 SE(\overline{Y}) \}$$

99% confidence interval for
$$\mu_Y = \{ \overline{Y} \pm 2.58 SE(\overline{Y}) \}$$

Confidence Intervals: An E.g.

You randomly sample 100 Singaporean workers and find that

$$\bar{Y} = \$31$$
, $s_Y = 8$, $n = 100$

The 95% confidence interval for the mean hourly earnings of Singaporeans is

$$\mu_Y = \{ \overline{Y} \pm 1.96SE(\overline{Y}) \} = \left\{ \overline{Y} \pm 1.96 \frac{S_Y}{\sqrt{n}} \right\} = \left\{ 31 \pm 1.96 \frac{8}{\sqrt{100}} \right\} = \left[\$29.43, \$32.57 \right]$$

- What this says:
 - We are 95% confident that the mean earnings of Singaporeans lies between \$29.43 and \$32.57 per hour.
- What this does not say:
 - The probability is 95% that the true mean earnings falls between \$29.43 and \$32.57 per hour.

This interval misses the true μ . The others all capture μ .

- The figure illustrates the behavior of 95% CI in repeated sampling.
- Here, there are 25 samples, giving these 95% CIs.
- The centre of each interval is at X
 and so varies from sample to
 sample. The "margin of error",
 ± 1.96SE(X
), is the same for
 each interval.
- In the long run, 95% of all samples give an interval that contains the true μ
- We are not sure if our sample is one of the 95% where the interval contains μ or one of the "unlucky" 5%
- So we say we are 95% confident that the true μ lies between the interval \$29.43 and \$32.57

- This is **not the same** as saying "the probability is 95% that the true μ falls between \$29.43 and \$32.57".
- The true μ , either is, or is not, between \$29.43 and \$32.57.