$\phi: E \to E'$

Definition 2. The *kernel* $\ker \varphi$ are the points $P \in E$ that are mapped to infinity $\mathcal{O}' \in E'$. For all isogenies we will care about, the degree $\deg \varphi$ is equal to the size of $\ker \varphi$.

$$\ker \varphi := \{ P \in E \mid \varphi(P) = \mathcal{O}' \}.$$

The kernel is *cyclic* if every point in $\ker \varphi$ is a multiple of some *generator* $K \in \ker \varphi$. Then, for $n = \deg \varphi$,

$$\ker \varphi = \{ K, [2]K, [3]K, ..., [n]K \}$$

Theorem 1. If the kernel $\ker \varphi$ is cyclic, with generator $K=(x_K,y_K)\in E(\mathbb{F}_q)$, then it's easy to compute a smooth degree φ : We can compute E' and $\varphi(P)$ for $P\in E(\mathbb{F}_q)$.

IN PRACTICE

- computing isogenies often **bottleneck** in efficiency of isogeny-based cryptography
- isogenies of degree 2^n are **most efficient**, for largest n with rational points of order 2^n
- can describe such an isogeny by a single point $K \in E[2^n](\mathbb{F}_q)$
- we **choose** our field \mathbb{F}_q and curve E such that we have many of such points/isogenies

The Study of Vermeer (1964)