Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра теоретических основ электротехники

Лабораторной работа №13
Вариант №1
«Переходные процессы в линейных цепях с сосредоточенными параметрами»

Проверил: Батюков С.В.

Выполнил: студент гр. №950501 Деркач А.В.

1. Цель работы

Экспериментальное исследование переходных процессов в линейных цепях с сосредоточенными параметрами при включении или отключении источника напряжения; определение влияния отдельных параметров на характер переходного процесса; выбор параметров и экспериментальное исследование дифференцирующих и интегрирующих цепей.

2. Расчёт домашнего задания

Исходные данные варианта представлены в таблице 1.

Таблица <i>1</i> – Исходные данны	Таблица
-----------------------------------	---------

Ran	Cxe	Исходные данные								
иант		<i>r</i> ₁ , Ом	<i>r</i> ₂ , кОм	<i>r</i> ₃ , кОм	<i>r</i> ₄ , Ом	<i>C</i> ₁ , мкФ	<i>C</i> ₂ , мкФ	C_3 , мк Φ	r_k , Om	<i>L</i> , Гн
1	a	580	5,8	0,2;0,15;0,1	15;30;60	0,5	5,0	0,22;0,33;0,47	68	0,25

Рассчитываемая схема изображена на рисунке 1.

Рисунок 1 — Схема для исследования переходных процессов

1) Определим ток заданной цепи и напряжение на ёмкости классическим методом.

Определяем независимые начальные условия (ННУ). Для этого изобразим схему до коммутации (рис. 2).

Рисунок 2 — Состояние схемы в момент перед коммутацией

Поскольку ток в ветви с источником до коммутации был разомкнут, то значения тока в индуктивности и напряжении на ёмкость до коммутации были равны нулю:

$$i_L(0-) = i_L(0+) = 0;$$

 $U_C(0-) = U_C(0+) = 0.$

2) Определим значения функций тока и напряжения в установившемся режиме по схеме (рис. 3).

Рисунок 3 – Схема в установившемся режиме

В схеме (рис 3.) индуктивность заменили короткозамкнутым участком, а емкость разрывом ветви, так источник ЭДС E=const. Частота постоянного тока равна нулю, а значит $Z_L=j\omega L=0$ и $Z_C=1/(j\omega C)=\infty$.

$$i_{LYCT}(t) = 0;$$

 $U_{CYCT}(t) = E = 10 \text{ B}.$

Составим характеристическое уравнение и определим его корни. Для этого изобразим схему после коммутации, в которой заменим источник ЭДС E его внутренним сопротивлением (полагая, что источник ЭДС идеальный, т.е. $R_{\rm BHE}=0$, заменяем его короткозамкнутым участком), а сопротивления индуктивности и конденсатора записываем в операторной форме (рис 4.).

Рисунок 4 — Схема для вычисления входного сопротивления

$$Z(p) = pL + r_k + \frac{1}{pC} + r_3$$

Решаем уравнение Z(p) = 0 и находим его корни:

$$Z(p) = pL + r_k + \frac{1}{pC} + r_3 = 0$$

$$LCp^2 + C \cdot (r_k + r_3)p + 1 = 0$$

$$1,175 \cdot 10^{-7} \cdot p^2 + 7,896 \cdot 10^{-5} \cdot p + 1 = 0$$

Решив квадратное уравнение, получим его корни:

$$p_1 = -336 + j2897,866$$
 и $p_2 = -336 - j2897,866$

В случае комплексно-сопряженных корней ($p_1 = -\delta + j\omega_{\rm CB}$ и $p_1 = -\delta - j\omega_{\rm CB}$) свободные составляющие искомых функций будут выглядеть следующим образом:

$$i_{LCB}(t) = Ae^{-\delta t}\sin(\omega_{CB}t + \psi_1),$$

$$U_{CCB}(t) = Be^{-\delta t}\sin(\omega_{CB}t + \psi_2),$$

где $\delta = -336$ $\omega = 2897,866$. Значит

$$i_{LCB}(t) = Ae^{-336t} \sin(2897,866t + \psi_1),$$

 $U_{CCB}(t) = Be^{-336t} \sin(2897,866t + \psi_2),$

Полные переходные токи и напряжения равны суммам соответствующих установившихся и свободных составляющих:

$$i_{L}(t) = i_{L \text{YCT}}(t) + i_{L \text{CB}}(t),$$

 $U_{C}(t) = U_{C \text{YCT}}(t) + U_{C \text{CB}}(t).$

Запишем последние выражения, подставив в них найденные ранее значения:

$$i_L(t) = 0 + Ae^{-336t} \sin(2897,866t + \psi_1),$$

 $U_C(t) = 10 + Be^{-336t} \sin(2897,866t + \psi_2),$

Для определения постоянных интегрирования A, B и начальных фаз свободных колебаний ψ_1 , ψ_2 будет не достаточно одного уравнения, а потому для каждой из искомых функций записывают систему из 2-х уравнений, где второе уравнение получают путем дифференцирования первого. Так для тока $i_L(t)$ получаем систему.

3) Решение системы для тока $i_L(t)$:

$$\begin{cases} i_L(t) = 0 + Ae^{-336t} \sin(2897,866t + \psi_1), \\ i'_L(t) = -336Ae^{-336t} \sin(2897,866t + \psi_1) + 2897,866Ae^{-336t} \cos(2897,866t + \psi_1). \end{cases}$$

Для того чтобы упростить решение, последнюю систему уравнений перепишем для момента времени t=0+, получаем:

$$\begin{cases} i_L(0+) = 0 + A\sin(\psi_1), \\ i'_L(0+) = -336A\sin(\psi_1) + 2897,866A\cos(\psi_1). \end{cases}$$

Значение $i_L(0+) = 0$ (ННУ, определенное в первом пункте расчета). Значение производной тока в индуктивности $i_L'(0+)$ может быть не равно нулю, а потому определим это значение по схеме замещения для момента времени t = 0+ (рис. 5).

Рисунок 5 – Схема замещения

В схеме (рис. 5) индуктивность заменили на разрыв в ветви так как согласно найденным ННУ ток $i_L(0+)=0$, емкость заменили на короткозамкнутый участок, так как $U_C(0+)=0$. Известно , что

$$U_L = L \frac{di_L}{dt}.$$

Значит $\left. \frac{di_L}{dt} \right|_{t=0+} = \frac{U_L(0+)}{L}$, определим ЗНУ $U_L(0+)$ по схеме рисунка 5:

$$U_L(0+) = E = 10 \text{ B}$$

Следовательно:

$$i_L^{'}(0+) = \frac{U_L(0+)}{L} = \frac{10}{0.25} = 40$$

Система уравнений для тока в индуктивности принимает следующий вид:

$$\begin{cases} 0 = 0 + A\sin(\psi_1), \\ 40 = -336A\sin(\psi_1) + 2897,866A\cos(\psi_1). \end{cases}$$

Решив систему, получим:

$$A = 0.014$$
$$\psi_1 = 0$$

В итоге, получим:

$$i_L(t) = 0.014e^{-336t}\sin(2897,866t)$$

График зависимости имеет вид (рис 6.):

Рисунок 6 - График функции $i_L(t)$

4) Решение системы для напряжения $U_C(t)$:

$$U_C(t) = 10 + Be^{-336t} \sin(2897,866t + \psi_2)$$

Составляем систему из двух уравнений:

$$\begin{cases} U_C(t) = 10 + Be^{-336t} \sin(2897,866t + \psi_2) \\ U_C'(t) = -336Be^{-336t} \sin(2897,866t + \psi_2) + \\ 2897,866Be^{-336t} \cos(2897,866t + \psi_2). \end{cases}$$

Для того чтобы упростить решение, последнюю систему уравнений перепишем для момента времени t=0+, получаем:

$$\begin{cases} U_C(0+) = 10 + B\sin(\psi_2) \\ U_C(0+) = -336B\sin(\psi_2) + 2897,866B\cos(\psi_2). \end{cases}$$

Значение $U_C(0+) = 0$ (ННУ, определенное в первом пункте расчета). Значение производной тока в индуктивности $U'_C(0+)$ может быть не равно нулю, а потому определим это значение по схеме замещения для момента времени t = 0+ (рис. 5).

Известно, что

$$i_C = C \frac{dU_C}{dt}$$
.

Значит $\frac{dU_C}{dt}\Big|_{t=0+} = \frac{i_C(0+)}{C}$, определим ЗНУ $i_C(0+)$ по схеме рисунка 5:

$$i_C(0+) = 0$$

Следовательно:

$$U_C'(0+) = \frac{i_C(0+)}{C} = 0$$

Система уравнений для напряжения в емкости принимает следующий вид:

$$\begin{cases} 0 = 10 + B\sin(\psi_2) \\ 0 = -336B\sin(\psi_2) + 2897,866B\cos(\psi_2). \end{cases}$$

Решив систему, получим:

$$B = -10,067$$

 $\psi_2 = 83,386$

В итоге, получим:

$$U_C(t) = 10 - 10,067e^{-336t} \sin(2897,866t + 83,386)$$

График зависимости имеет вид (рис 7.):

Рисунок 7 - график функции $U_C(t)$

3. Определение частоты собственных колебаний, декремента и логарифмического декремента

$$\tau_{II} = \left| \frac{1}{\delta} \right| = \left| \frac{1}{-336} \right| = 0,003 \text{ c},$$

$$T_C = \frac{2\pi}{\omega} = \frac{2 \cdot 3,14}{2998} = 0,0022 \text{ c},$$

$$\Delta = e^{\left| \delta \right| \cdot T_C} = e^{336 \cdot 0,0022} = 2,072,$$

$$\theta = \left| \delta \right| \cdot T_C = 336 \cdot 0,0022 = 0,729.$$

4. Расчёт дифференцирующей цепи

Исходные данные приведены в таблице 2.

Таблица 2 – Исходные данные

Don	Вариант	Случай А		Случай Б		Случай В		
Барі		<i>r</i> ₃ , кОм	C_3 , мк Φ	<i>r</i> ₃ , кОм	C_3 , мк Φ	<i>r</i> ₃ , кОм	C_3 , мк Φ	
1	1	0,1	0,22	0,2	0,22	0,2	0,47	

Дифференцирующая цепь представлена на рисунке 8.

Рисунок 8 – Дифференцирующая цепь

$$\omega = 2\pi f = 2 \cdot \pi \cdot 50 = 314 \text{ (рад/с)}$$

Случай А:
$$r_3 = \frac{1}{11 \times 10^{-6}} = \frac{1}{11 \times 10^{-6}} = 1315$$
 (Ом)

Случай Б:
$$r_3 = \frac{1}{11(2)C} = \frac{1}{11(2)(10)^{-6}} = 1315$$
 (Ом)

Случай А:
$$r_3 = \frac{1}{11 \cdot \omega \cdot C_3} = \frac{1}{11 \cdot 314 \cdot 0.22 \cdot 10^{-6}} = 1315 \text{ (Ом)}$$
Случай Б: $r_3 = \frac{1}{11 \cdot \omega \cdot C_3} = \frac{1}{11 \cdot 314 \cdot 0.22 \cdot 10^{-6}} = 1315 \text{ (Ом)}$
Случай В: $r_3 = \frac{1}{11 \cdot \omega \cdot C_3} = \frac{1}{11 \cdot 314 \cdot 0.47 \cdot 10^{-6}} = 615,686 \text{ (Ом)}$

Случай А:
$$\tau_{\text{ц}} = r_3 \cdot C_3 = 1316 \cdot 0.22 \cdot 10^{-6} = 0,00029$$
 (c)

Случай Б:
$$\tau_{\text{ц}} = r_3 \cdot \mathcal{C}_3 = 1316 \cdot 0.22 \cdot 10^{-6} = 0,00029 \ (c)$$
 Случай В: $\tau_{\text{ц}} = r_3 \cdot \mathcal{C}_3 = 616 \cdot 0.47 \cdot 10^{-6} = 0,00029 \ (c)$

Случай В:
$$\tau_{II} = r_3 \cdot C_3 = 616 \cdot 0.47 \cdot 10^{-6} = 0,00029$$
 (c)

$$U(t) = Ue^{-\frac{\tau_{\rm H}}{\tau_{\rm II}}}$$

Временная диаграмма дифференцирующей цепи представлена на рисунке 9.

Рисунок 9 – Временная диаграмма дифференцирующей цепи

5. Расчёт интегрирующей цепи

Интегрирующая цепь представлена на рисунке 10.

Рисунок 10 – Интегрирующая цепь

Случай А:
$$C_3 = \frac{10}{\omega \cdot r} = \frac{1}{314 \cdot 100} = 31,85 \text{ (мкФ)}$$

Случай Б: $C_3 = \frac{10}{\omega \cdot r} = \frac{1}{314 \cdot 200} = 15,92 \text{ (мкФ)}$
Случай В: $C_3 = \frac{10}{\omega \cdot r} = \frac{1}{314 \cdot 200} = 15,92 \text{ (мкФ)}$

$$\tau_{\text{II}} = r_3 \cdot C_3 = 0,00318 (c)$$

$$U(t) = U \left(1 - e^{-\frac{\tau_{\text{II}}}{\tau_{\text{II}}}} \right) = 10 \left(1 - e^{-\frac{0,01}{0,00318}} \right) = 9,569 \text{ B}$$

Временная диаграмма дифференцирующей цепи представлена на рисунке 11.

Рисунок 11 – Временная диаграмма интегрирующей цепи

6. Результаты эксперимента.

Форма кривой подаваемого напряжения на схему (рис. 12) имеет вид

Рисунок 12 – Кривая напряжения ГПН

Результаты измерений представлены в таблице 3:

Таблица 3 – Результаты измерений

V _{амп} , В	<i>a</i> ₁ , B	<i>a</i> ₂ , B	f, Гц	Т, мс	Тс, мс
10	7,4	3,6	50	10	2,3

Вычислим частоту собственных колебаний и логарифмический декремент колебаний:

$$f_C = \frac{1}{T_C} = \frac{1}{2, 3 \cdot 10^{-3}} = 434,78$$
 (Гц)

$$\theta = \ln \frac{a_1}{a_2} = \ln \frac{7,4}{3,6} = 0,72$$

Вычисленные значения совпадают со значениями, рассчитанными в домашнем задании.

Осциллограммы напряжения и тока при r = 100 и C = 0,22 приведены на рисунках 13 и 14 соответственно.

Рисунок 13 – Осциллограмма напряжения

Рисунок 14 – Осциллограмма тока

Также были произведены измерения тока и напряжения при $r=100\,$ и $C=0,47\,$, результаты которых приведены на рисунках 15 и 16 соответственно, а также измерения напряжения и тока при $r=200\,$ и $C=0,47\,$, результаты которых приведены на рисунках 17 и 18 соответственно.

Рисунок 15 – Осциллограмма тока

Рисунок 16 – Осциллограмма напряжения

Рисунок 17 – Осциллограмма напряжения

Рисунок 18 – Осциллограмма тока

7. Вывод

В процессе подготовки и выполнения лабораторной работы мы провели расчеты и исследовали переходные процессы в линейных электрических цепях сосредоточенными параметрами. По рассчитанным построили графики функций токов данным напряжений. Экспериментально сняли измерения амплитуд напряжений, период входного напряжения, осциллограммы тока и напряжения. Также рассчитали логарифмический декремент колебаний.