Дискретные структуры

осень 2013

Александр Дайняк

www.dainiak.com

Группы

Группа — это множество G с заданной на нём бинарной операцией о, которая удовлетворяет свойствам:

- Ассоциативность: $\forall a,b,c \in \mathbb{G}$ $(a \circ b) \circ c = a \circ (b \circ c)$
- Существование нейтрального элемента:

$$\exists e \in \mathbb{G}: \ \forall a \in \mathbb{G} \quad a \circ e = e \circ a = a$$

• Существование обратных элементов:

$$\forall a \in \mathbb{G} \ \exists b \in \mathbb{G}: \ a \circ b = b \circ a = e$$

Примеры групп

Группами, например, являются:

- множество $\mathbb Z$ относительно операции сложения чисел,
- множество чётных чисел относительно сложения чисел,
- множество $\mathbb Q$ относительно операции сложения чисел,
- множество $\mathbb{Q} \setminus \{0\}$ относительно операции умножения чисел,
- множество \mathbb{R}^n относительно операции покоординатного сложения векторов.
- множество невырожденных матриц из $\mathbb{R}^{n imes n}$ относительно операции умножения матриц.

Группами не являются, например:

- множество $\mathbb{Z} \setminus \{0\}$ относительно операции умножения чисел,
- множество нечётных чисел относительно сложения чисел,
- множество всех матриц $\mathbb{R}^{n \times n}$ относительно операции умножения матриц.

Геометрические примеры

Группой является множество всевозможных поворотов плоскости относительно начала координат.

Операция $a \circ b$ означает, что сначала выполняется поворот a, а затем b (композиция).

- $(a \circ b) \circ c = a \circ (b \circ c)$ очевидно
- ullet Нейтральный элемент поворот на $0^{
 m o}$
- Обратный элемент к повороту на угол α поворот на угол $(-\alpha)$.

Единственность нейтрального и обратных элементов

Утверждение.

В любой группе нейтральный элемент единственный.

Доказательство:

Пусть e' и e'' — нейтральные элементы.

Т.к. e'' нейтральный, то $e' \circ e'' = e'$.

Т.к. e' нейтральный, то $e' \circ e'' = e''$.

Отсюда e'=e''.

Единственность нейтрального и обратных элементов

Утверждение.

В любой группе для любого элемента a обратный к a элемент единственный.

Доказательство:

Пусть b' и b'' — обратные к a элементы.

Тогда

$$b' = b' \circ e = b' \circ (a \circ b'') = (b' \circ a) \circ b'' = e \circ b'' = b''$$

Изоморфизм групп

Группы (\mathbb{G}', \circ) и (\mathbb{G}'', \bullet) *изоморфны,* если существует биекция $\phi: \mathbb{G}' \leftrightarrow \mathbb{G}''$, такая, что

$$\forall a, b \in \mathbb{G}' \quad \phi(a) \cdot \phi(b) = \phi(a \circ b)$$

Изоморфизм ϕ всегда отображает нейтральный элемент в нейтральный:

$$\phi(e_{\mathbb{G}'}) = e_{\mathbb{G}''}$$

Кроме того, если a и b — взаимно обратные элементы в \mathbb{G}' , то $\phi(a)$ и $\phi(b)$ будут взаимно обратными в \mathbb{G}'' . (\leftarrow упражнения!)

Изоморфизм групп

Примеры:

• Группа (ℤ, +) изоморфна группе чётных чисел с операцией сложения.

Изоморфизм: $x \rightarrow 2x$

• Группа поворотов плоскости на угол, кратный $\frac{\pi}{2}$, с операцией композиции изоморфна группе чисел $\{0,1,2,3\}$ с операцией сложения по модулю 4.

Подгруппы

Если (G,∘) — группа, ⊞ ⊆ G и ⊞ является группой относительно операции ∘, то ⊞ называется *подгруппой* группы G.

Обозначение: $\mathbb{H} \leq \mathbb{G}$.

Примеры:

- При каждом фиксированном k все числа, делящиеся на k, образуют подгруппу в $(\mathbb{Z},+)$
- Целые числа образуют подгруппу в группе $(\mathbb{R}, +)$

Аддитивные и мультипликативные обозначения

Операция ∘ часто обозначается также знаком «+» или «·». Тогда обозначения такие:

Общая запись	В обозначении «+»	В обозначении «·»
$a \circ b$	a + b	$a\cdot b$ или просто ab
Нейтральный элемент e	0	1
Обратный элемент к элементу a	-a	a^{-1}
$\underbrace{a \circ a \circ \cdots \circ a}_{n \text{ pas}}$	na	a^n

Вместо a + (-b) сокращённо пишут: a - b.

Вместо $a \cdot b^{-1}$ сокращённо пишут: a/b.

Подстановка (перестановка) — это биекция множества на себя:

Обозначение: 23145

Тождественная подстановка:

Композиция подстановок:

Обратная подстановка:

Совокупность всех подстановок на множестве $\{1,2,...,n\}$ образует группу относительно композиции (последовательного применения). Эта группа называется симметрической группой и обозначается \mathbb{S}_n . Очевидно,

$$|\mathbb{S}_n| = n!$$

Упражнение.

Подстановки на множестве $\{1,2,...,n\}$, оставляющие элемент k неподвижным, образуют подгруппу в группе \mathbb{S}_n . Эта подгруппа оказывается изоморфной группе \mathbb{S}_{n-1} .

Теорема.

Любая конечная группа изоморфна некоторой группе подстановок. Доказательство: предъявим изоморфизм.

Пусть
$$\mathbb{G} = \{g_1, g_2, ..., g_n\}.$$

Каждому элементу $a \in \mathbb{G}$ сопоставим перестановку σ_a на множестве \mathbb{G} :

$$\sigma_a(g_1) \coloneqq g_1 \circ a$$

$$\vdots$$

$$\sigma_a(g_n) \coloneqq g_n \circ a$$

$$\sigma_a(g_1) \coloneqq g_1 \circ a$$

$$\vdots$$

$$\sigma_a(g_n) \coloneqq g_n \circ a$$

Каждое отображение σ_a — это действительно перестановка, т.к. при $i \neq j$ имеем

$$g_i \circ a \neq g_j \circ a$$

Очевидно также, что при $a \neq b$ имеем $\sigma_a \neq \sigma_b$, то есть рассматриваемое сопоставление элементам $\mathbb G$ перестановок является биекцией из $\mathbb G$ в $\{\sigma_{g_1},\dots,\sigma_{g_n}\}$.

$$\sigma_a(g_1) \coloneqq g_1 \circ a \\
\vdots \\
\sigma_a(g_n) \coloneqq g_n \circ a$$

Пусть σ_a и σ_b — перестановки, сопоставленные элементам $a,b \in \mathbb{G}$. Посмотрим, как себя ведёт композиция этих перестановок $\sigma_a \sigma_b$.

Пусть $g \in \mathbb{G}$. Имеем

$$(\sigma_a \sigma_b)(g) = \sigma_b(g \circ a) = (g \circ a) \circ b = \sigma_{a \circ b}(g)$$

Осталось показать, что $\{\sigma_{g_1},\dots,\sigma_{g_n}\}$ — группа.

$$\sigma_a(g_1) \coloneqq g_1 \circ a$$

$$\vdots$$

$$\sigma_a(g_n) \coloneqq g_n \circ a$$

Множество перестановок $\{\sigma_{g_1}, ..., \sigma_{g_n}\}$ является группой относительно операции композиции:

- Нейтральная перестановка у нас есть это σ_e , где e нейтральный элемент в $\mathbb G$.
- Обратная перестановка к σ_a это σ_b , где элемент b обратен к a в \mathbb{G} :

$$\sigma_a \sigma_b(x) = x \circ a \circ b = x \circ e = x$$

Группу можно определить как множество \mathbb{G} с ассоциативной операцией \circ , такой, что для любых $a,b\in \mathbb{G}$ существуют решения (относительно x) уравнений

$$a \circ x = b$$
 и $x \circ a = b$

Доказательство:

Будем работать в мультипликативных обозначениях.

Если \mathbb{G} группа, и ax = b, то

$$x = (a^{-1}a)x = a^{-1}(ax) = a^{-1}b$$

то есть x существует и определён однозначно.

Аналогично разбираемся с уравнением xa = b.

Обратно, пусть уравнения вида ax = b и xa = b разрешимы в \mathbb{G} .

Докажем существование нейтрального элемента.

Зафиксируем $a \in \mathbb{G}$.

Пусть e_{left} — решение уравнения xa = a.

Пусть $b \in \mathbb{G}$ — произвольный элемент в \mathbb{G} .

Пусть c — решение уравнения ax = b.

Имеем

$$e_{\text{left}}b = e_{\text{left}}(ac) = (e_{\text{left}}a)c = ac = b$$

Итак, $\forall b \in \mathbb{G}$ мы имеем $e_{\text{left}}b = b$.

Пусть e_{right} — решение уравнения ax = a.

Пусть d — решение уравнения xa = b.

Имеем

$$be_{\text{right}} = (da)e_{\text{right}} = d(ae_{\text{right}}) = da = b$$

Таким образом, $\forall b \in \mathbb{G}$ выполнено $be_{\mathrm{right}} = b$.

Кроме того $e_{\mathrm{left}}=e_{\mathrm{left}}e_{\mathrm{right}}=e_{\mathrm{right}}$, то есть $e\coloneqq e_{\mathrm{left}}=e_{\mathrm{right}}$ — «полноценный» нейтральный элемент в $\mathbb G$.

Существование нейтрального элемента $e \in \mathbb{G}$ доказано. Осталось доказать существование обратных элементов.

Для любого a пусть a_{left}^{-1} и a_{right}^{-1} — решения уравнений xa=e и ax=e соответственно.

Достаточно показать, что $a_{\mathrm{left}}^{-1} = a_{\mathrm{right}}^{-1}$. Имеем

$$a_{\text{left}}^{-1} = a_{\text{left}}^{-1} e = a_{\text{left}}^{-1} a a_{\text{right}}^{-1} = e a_{\text{right}}^{-1} = a_{\text{right}}^{-1}$$

что и требовалось.

«Сдвиги» множеств

Пусть (\mathbb{G} , \circ) — группа.

Для элемента $a \in \mathbb{G}$ и подмножества $S \subseteq \mathbb{G}$ обозначают

$$a \circ S \coloneqq \{a \circ s \mid s \in S\}$$

И

$$S \circ a \coloneqq \{s \circ a \mid s \in S\}$$

Мощности «сдвигов» множеств

Утверждение.

Для любого $a \in \mathbb{G}$ и любого $S \subseteq \mathbb{G}$ имеем $|a \circ S| = |S \circ a| = |S|$

Доказательство (здесь и до конца лекции в мультипликативных обозначениях):

Пусть $S = \{a_1, ..., a_m\}$, где $m \coloneqq |S|$.

Зафиксируем любой элемент $a \in \mathbb{G}$ и любые i,j. Если $aa_i = aa_j$, то $a^{-1}aa_i = a^{-1}aa_j$, откуда $a_i = a_j$.

Значит, все элементы aa_1 , aa_2 ..., aa_m различны.

Смежные классы

Пусть $\mathbb{H} \leq \mathbb{G}$ и $a \in \mathbb{G}$.

Множество $a \circ \mathbb{H}$ называется левым смежным классом элемента a по подгруппе \mathbb{H} .

Аналогично, множество $\mathbb{H} \circ \alpha$ называется *правым смежным классом*.

(Для групп, в которых операция коммутативна, соответствующие левые и правые смежные классы совпадают.)

Примеры смежных классов

Примеры:

- Множество чисел вида 7+3k образует смежный класс в абелевой группе $(\mathbb{Z},+)$
- Совокупность перестановок на множестве $\{1,2,\dots,n\}$, меняющих друг с другом местами элементы i и j, образует смежный класс в группе \mathbb{S}_n

Смежные классы

Утверждение.

Различные левые смежные классы по одной и той же подгруппе не пересекаются.

Это же справедливо и для правых смежных классов.

Доказательство:

Пусть $\mathbb{H} \leq \mathbb{G}$ и $a', a'' \in \mathbb{G}$.

Допустим, что $a'\mathbb{H}\cap a''\mathbb{H}\neq\emptyset$ и покажем, что тогда $a'\mathbb{H}=a''\mathbb{H}$.

Если $a'\mathbb{H}\cap a''\mathbb{H}\ni b$, то существуют $c,d\in\mathbb{H}$, такие, что b=a'c=a''d

Смежные классы

 $\exists c, d \in \mathbb{H}$ такие, что a'c = a''d.

Рассмотрим произвольный элемент $s \in a' \mathbb{H}$.

По определению, $\exists h \in \mathbb{H}$ такой, что s = a'h.

Имеем $s = a'h = a''(dc^{-1})h = a''(dc^{-1}h)$. То есть $s \in a'' \mathbb{H}$.

Получили, что $a'\mathbb{H} \subseteq a''\mathbb{H}$.

Аналогично доказывается, что $a'' \mathbb{H} \subseteq a' \mathbb{H}$.

Отсюда

$$a'\mathbb{H} = a''\mathbb{H}$$

Теорема Лагранжа

Теорема (Лагранжа о порядке подгруппы).

Если $\mathbb{H} \leq \mathbb{G}$ и $|\mathbb{G}| < \infty$, то $|\mathbb{G}|$ делится на $|\mathbb{H}|$.

Доказательство:

Очевидно, любой элемент $\alpha \in \mathbb{G}$ принадлежит некоторому смежному классу \mathbb{H} , например,

$$a \in a\mathbb{H}$$

Поэтому имеет место разбиение

$$\mathbb{G} = a_1 \mathbb{H} \sqcup a_2 \mathbb{H} \sqcup \cdots \sqcup a_m \mathbb{H}$$

где $a_i\mathbb{H}$ — различные смежные классы.

Так как $|a_i\mathbb{H}|=|\mathbb{H}|$ для каждого i, то $|\mathbb{G}|=m\cdot |\mathbb{H}|$.

Теорема Силова

Теорема. (Силова о существовании подгруппы) Пусть \mathbb{G} — конечная группа. Для любого числа вида p^{α} , делящего $|\mathbb{G}|$, существует $\mathbb{H} \leq \mathbb{G}$, такая, что $|\mathbb{H}| = p^{\alpha}$.

(Здесь p простое, lpha произвольное натуральное.)

Доказательство:

Пусть $\beta \coloneqq \max \{x \mid |\mathbb{G}|$ делится на $p^x\}$.

Зафиксируем произвольное $\alpha \leq \beta$.

Доказательство теоремы Силова: мощность множества M

 $|\mathbb{G}|=p^{\beta}l$, где l не делится на p. Положим $M\coloneqq\{S\subseteq\mathbb{G}\mid |S|=p^{\alpha}\}$. Имеем

$$|M| = {p^{\beta}l \choose p^{\alpha}} =$$

$$= \frac{p^{\beta}l \cdot (p^{\beta}l - 1) \cdot \dots \cdot (p^{\beta}l - p^{\alpha} + 1)}{1 \cdot 2 \cdot \dots \cdot p^{\alpha}} =$$

$$= p^{\beta - \alpha}l \cdot \prod_{k=1}^{p^{\alpha} - 1} \frac{p^{\alpha}(p^{\beta - \alpha}l - 1) + k}{k}$$

Доказательство теоремы Силова: мощность множества M

 $|\mathbb{G}| = p^{\beta}l$, где l не делится на p.

Положим $M\coloneqq \{S\subseteq \mathbb{G}\mid |S|=p^{\alpha}\}$. Имеем

$$|M| = p^{\beta - \alpha} l \cdot \prod_{k=1}^{p^{\alpha} - 1} \frac{p^{\alpha} (p^{\beta - \alpha} l - 1) + k}{k}$$

При $k < p^{\alpha}$ и $m \in \mathbb{N}$ степень, с которой p входит в разложение числа k, равна степени, с которой p входит в разложение числа $(p^{\alpha}m + k)$.

Поэтому наибольшая степень p, на которую делится |M|, равна $(\beta - \alpha)$.

Доказательство теоремы Силова: орбиты

$$M \coloneqq \{S \subseteq \mathbb{G} \mid |S| = p^{\alpha}\}$$

Для $S \subseteq \mathbb{G}$ и $g \in \mathbb{G}$ обозначим $Sg \coloneqq \{sg \mid s \in S\}$

Очевидно, если $S \in M$, то $Sg \in M$.

 $\it Opбитой \ {\rm Mhoжectba} \ \it S \ {\rm Hasobe} \ {\rm Emp}$

$$orb(S) := \{Sg \mid g \in \mathbb{G}\}$$

Для любого $S \in M$ имеем $S \in \operatorname{orb}(S) \subseteq M$.

Покажем, что если $\operatorname{orb}(S') \cap \operatorname{orb}(S'') \neq \emptyset$, то $\operatorname{orb}(S') = \operatorname{orb}(S'')$.

Допустим, что $\operatorname{orb}(S') \cap \operatorname{orb}(S'') \ni S$.

Доказательство теоремы Силова: различные орбиты не пересекаются

$$orb(S) := \{Sg \mid g \in \mathbb{G}\}\$$

Допустим, что $\operatorname{orb}(S') \cap \operatorname{orb}(S'') \ni S$, тогда $\exists a,b \in \mathbb{G}$: S'a = S''b

Отсюда $S' = S''ba^{-1}$.

Пусть $T \in \operatorname{orb}(S')$, т.е. T = S'c для некоторого c.

Но тогда $T = S''(ba^{-1}c)$ ∈ orb(S'').

Итак, $orb(S') \subseteq orb(S'')$.

Так же доказывается, что $orb(S'') \subseteq orb(S')$, и следовательно orb(S') = orb(S'').

Доказательство теоремы Силова: подбираем специальную орбиту

$$M \coloneqq \{S \subseteq G \mid |S| = p^{\alpha}\}$$

 $\operatorname{orb}(S) \coloneqq \{Sg \mid g \in G\}$
 $\forall S \in M \ S \in \operatorname{orb}(S)$
 $\operatorname{orb}(S') \cap \operatorname{orb}(S'') \neq \emptyset \Rightarrow \operatorname{orb}(S') = \operatorname{orb}(S'')$

Следовательно, всё множество M разбивается на непересекающиеся орбиты: $\exists S_1, \dots, S_r$ такие, что $M = \operatorname{orb}(S_1) \sqcup \dots \sqcup \operatorname{orb}(S_r)$

Наибольшая степень p, на которую делится |M|, равна $(\beta-\alpha)$, поэтому

 $\exists i$: $|\operatorname{orb}(S_i)|$ не делится на $p^{\beta-\alpha+1}$

Доказательство теоремы Силова: определяем искомую подгруппу

Зафиксируем $S \in M$, такое, что

orb(S) =
$$\{T_1, T_2, ..., T_n\}$$

где n не делится на $p^{\beta-\alpha+1}$.

Положим $\mathbb{H}\coloneqq\{g\in\mathbb{G}\mid T_1g=T_1\}.$

Если $g_1, g_2 \in \mathbb{H}$, то

$$T_1(g_1g_2) = (T_1g_1)g_2 = T_1g_2 = T_1$$

то есть $g_1g_2 \in \mathbb{H}$.

Доказательство теоремы Силова: определяем искомую подгруппу

Зафиксируем $S \in M$, такое, что

$$orb(S) = \{T_1, T_2, ..., T_n\}$$

где n не делится на $p^{\beta-\alpha+1}$.

Положим $\mathbb{H} \coloneqq \{g \in \mathbb{G} \mid T_1g = T_1\}.$

Если
$$g_1,g_2\in\mathbb{H}$$
, то $g_1g_2\in\mathbb{H}$. Если $g\in\mathbb{H}$, то $T_1g^{-1}=(T_1g)g^{-1}=T_1(gg^{-1})=T_1e=T_1$

то есть $g^{-1} \in \mathbb{H}$.

Отсюда \mathbb{H} — подгруппа в \mathbb{G} .

Доказательство теоремы Силова: описываем смежные классы

$$orb(S) = \{T_1, T_2, \dots, T_n\}$$

$$\mathbb{H} := \{g \in \mathbb{G} \mid T_1 g = T_1\} \leq \mathbb{G}$$

Рассмотрим произвольный правый смежный класс $\mathbb{H}a$ по подгруппе $\mathbb{H}.$

Пусть $T_1 a = T_k$.

Рассмотрим произвольный элемент $g \in \mathbb{H}a$.

Т.к. g = ha для некоторого $h \in \mathbb{H}$, то $T_1g = T_1(ha) = (T_1h)a = T_1a = T_k$

То есть оказалось, что $\mathbb{H}a=\{g\in\mathbb{G}\mid T_1g=T_k\}$

Доказательство теоремы Силова: описываем смежные классы

$$orb(S) = \{T_1, T_2, \dots, T_n\}$$

$$\mathbb{H} := \{g \in \mathbb{G} \mid T_1 g = T_1\} \leq \mathbb{G}$$

Оказалось, что любой правый смежный класс по подгруппе **Ш** может быть представлен как

$$\{g \in \mathbb{G} \mid T_1g = T_k\}$$

для некоторого k.

А значит, общее число различных смежных классов по $\mathbb H$ равно n.

Доказательство теоремы Силова: находим порядок подгруппы

$$orb(S) = \{T_1, T_2, \dots, T_n\}$$

$$\mathbb{H} := \{g \in \mathbb{G} \mid T_1g = T_1\} \leq \mathbb{G}$$

Число различных смежных классов по $\mathbb H$ равно n.

Имеем

$$n \cdot |\mathbb{H}| = |G| = p^{\beta} l \quad \Rightarrow \quad |\mathbb{H}| = \frac{p^{\beta} l}{n}$$

и так как n не делится на $p^{eta-lpha+1}$, то

$$|\mathbb{H}|$$
 делится на p^{lpha}

Достаточно теперь показать, что $|\mathbb{H}| \leq p^{\alpha}$.

Доказательство теоремы Силова: находим порядок подгруппы

$$orb(S) = \{T_1, T_2, \dots, T_n\}$$

$$\mathbb{H} := \{g \in \mathbb{G} \mid T_1 g = T_1\} \leq \mathbb{G}$$

Возьмём произвольный $t \in T_1$.

Для любого $h \in \mathbb{H}$

$$th \in T_1 h = T_1$$

Отсюда

$$t\mathbb{H} \subseteq T_1$$

Следовательно $|\mathbb{H}| = |t\mathbb{H}| \le |T_1| = p^{\alpha}$.

Теорема доказана.