Descripció de Regions **#UPC**

<u>Introducció</u>

Volem extraure característiques numèriques de les regions

Introducció

-Problema: les formes varien.

- traslació
- Rotació
- Resolució
- Escala
- Projecció 2D
- Oclusions

Types of invariance

Illumination

Types of invariance

Illumination Scale

Types of invariance

Illumination

Scale

Rotation

Types of invariance

Illumination

Scale

Rotation

Affine

Types of invariance

Illumination

Scale

Rotation

Affine

Full Perspective

Introducció

- Descriptors basats en contorns:
 - Codis de cadena
 - Propietats geomètriques (perímetre, corbatura...)
 - Descriptors de Fourier
 - Segments (aprox. Poligonals)
 - B-Splines
 - Shape context
- -Descriptors basats en regions:
 - Propietats geomètriques (àrea, excentricitat...)
 - Moments estadístics
 - Convex hull
 - Esquelets
 - Descomposició en sub-regions (grafs)

Codis de cadena

- Descriu l'objecte com una sequència de segments unitaris d'una orientació determinada

Codi C-4: 3,0,0,3,0,1,1,2,1,2,3,2

Codis de cadena

- Robust a la rotació?

Codi: 3,0,0,3,0,1,1,2,1,2,3,2

Codi: 2,3,3,2,3,0,0,1,0,1,2,1

- Fem la codificació incremental (derivada del chain-code).

Codi incremental: 1,0,3,1,1,0,1,3,1,1,3,1

1: gir a esquerra 3: gir a dreta

Propietats geomètriques del contorn

- <u>Perímetre</u>. Els passos horitzontals i verticals del codi de
- Freeman sumen 1 unitat. Els diagonals 2 Corbatura. Rati entre el perimetre i el nº de canvis de direcció del contorn
- <u>Signatura</u>. Transformació $r(\theta)$, és la sequència de les distàncies dels píxels del contorn al centre de l'objecte.

Slope density function

Descriptors de Fourier

Transformada de Fourier. Recordatori:

Tota funció periòdica es pot expresar com una suma de sinus/cosinus de diferents freqüències, cadascun ponderat per coeficients corresponents. (Sèries de Fourier).

Encara que la funció no sigui periòdica, es pot expresar com la integral de sinus/cosinus ponderats per les funcions corresponents (Fourier transform).

Transformada de de Fourier

Recordatori:

FIGURE 4.1 The function at the bottom is the sum of the four functions above it Fourier's idea in 1807 that periodic functions could be represented as a weighted sun of sines and cosines was met with skepticism.

L'objectiu de la Transformada de Fourier és representar un senyal com una combinació linial de funcions sinusoidals de diferents freqüències.

Transformada de de Fourier

Fourier transform (discrete case) DTC

$$F(u) = \frac{1}{M} \int_{x=0}^{M-1} f(x)e^{-j2 \cdot ux/M}$$
 for $u = 0,1,2,...,M-1$

Inverse Fourier transform:

$$f(x) = \int_{u=0}^{M-1} F(u)e^{j2 ux/M}$$
 for $x = 0,1,2,...,M-1$

Descriptors de Fourier

Fourier transform of the signature s(t)

$$u_n = \frac{1}{N} \int_{t=0}^{N-1} s(t) \exp(-\frac{j2}{N} nt)$$

 u_n , n = 0, 1, ..., N-1, are called FD denoted as FD_n

Normalised FD

$$\mathbf{f} \quad [\frac{|FD_1|}{|FD_0|}, \frac{|FD_2|}{|FD_0|}, ..., \frac{|FD_m|}{|FD_0|}]$$

Descriptors de Fourier

Directament a partir de les coordenades: N pixels (x,y)

Llista d'N nombres complexes: x+jy 2D→ 1D

Descriptors de Fourier

Anàlisi de la forma d'un contorn usant la Transformada de Fourier:

- Les coordenades (x,y) de cada pixel de contorn són tractades com la part real i la part imaginària d'un nombre complexe. P = x + jy
- Es transforma la llista de coordenades usant la DFT
- Els coeficients de Fourier obtinguts s'anomenen Descriptors de Fourier.
- La forma bàsica del contorn ve determinada pels primers descriptors, que representen les freqüències més baixes.
- Els descriptors corresponents a les freqüències més altes ens donen més informació sobre els detalls del contorn.

Aproximacions poligonals

- Representa la regió com un polígon.
- Usem els vèrtexs de la regió per construir el polígon

- En comptes de segments rectilinis també s'usen B-splines

Descriptors geomètrics de les regions

- Àrea: comptatge del nº de píxels
- -Projeccions: Comptatge del nº de píxels en la projecció vertical i horitzontal

- Excentricitat: rati eix major / eix menor

Descriptors geomètrics de les regions

- Elongació: Rati entre el llarg i l'ample del rectangle envolvent
- Rectangularitat: Rati entre l'àrea de la regió i la del rectangle envolvent
- <u>Compacitat</u>: Àrea/perimetre². La forma més compacta és el cercle.

Figure 6.25 Compactness: (a) Compact, (b) non-compact.

Descriptors geomètrics de les regions

- <u>Convex hull</u>: Forma convexa més petita que engloba a la regió

Figure 6.26 Convex hull.

Moments

$$S = \{(x, y) | f(x, y) = 1\}$$

Given a pair of non-negative integers (j,k) the $\underline{digital}$ (j,k)th \underline{moment} of S is given by:

$$M_{jk}(S) = \sum_{(x,y)\in S} x^j y^k$$

Moments

$$S = \{(x, y) | f(x, y) = 1\}$$

$$M_{jk}(S) = \sum_{(x,y)\in S} x^j y^k$$

Exemple:

$$M_{oo}(S) = \sum_{(x,y)\in S} x^0 y^0 = \sum_{(x,y)\in S} 1 = \#(S)$$

Area de 5 !!

Moments

$$S = \{(x, y) | f(x, y) = 1\}$$

$$M_{jk}(S) = \sum_{(x,y)\in S} x^j y^k$$

Exemple:

$$M_{10}(S) = \sum_{(x,y)\in S} x^1 y^0 = \sum_{(x,y)\in S} x$$

$$\bar{x}$$

$$M_{01}(S) = \sum_{(x,y)\in S} x^0 y^1 = \sum_{(x,y)\in S} y$$

$$\frac{M_{10}(S)}{M_{oo}(S)} = \frac{\sum_{(x,y)\in S} x}{\#(S)} = \bar{x}$$

$$\frac{M_{01}(S)}{M_{oo}(S)} = \frac{\sum_{(x,y)\in S} y}{\#(S)} = \bar{y}$$

Centre de masses de 5!

Moments

Invariants a ???

- Traslació
- •Escala
- •Rotació
- Skewing

... Malament anem si usem coordenades absolutes

Moments centrals

$$S = \{(x, y) | f(x, y) = 1\}$$

$$\bar{x} = \frac{M_{10}(S)}{M_{oo}(S)}$$
 $\bar{y} = \frac{M_{01}(S)}{M_{oo}(S)}$

Given a pair of non-negative integers (j,k) the <u>central</u> (j,k)th <u>moment</u> of S is given by:

$$\mu_{jk}(S) = \sum_{(x,y) \in S} (x - \bar{x})^j (y - \bar{y})^k$$

$$\mu_{jk}(S) = \sum_{(x,y) \in S} (x - \bar{x})^j (y - \bar{y})^k$$

 (\bar{x},\bar{y})

Translation by T = (a,b):

$$S_T = \{(x^*, y^*) | x^* = x + a, y^* = y + b, (x, y) \in S\}$$

$$\bar{x^*} = \frac{M_{10}(S_T)}{M_{oo}(S_T)} = \bar{x} + a$$

$$\bar{y^*} = \frac{M_{01}(S_T)}{M_{oo}(S_T)} = \bar{y} + b$$

$$ar{x^*} = rac{M_{10}(S_T)}{M_{oo}(S_T)} = ar{x} + a$$
 $ar{y^*} = rac{M_{01}(S_T)}{M_{oo}(S_T)} = ar{y} + b$ $\mu_{jk}(S_T) = \mu_{jk}(S)$

Translation INVARIANT!

Moments normalitzats

$$\mu_{jk}(S) = \sum_{(x,y)\in S} (x - \bar{x})^j (y - \bar{y})^k$$

$$\sigma_x = \sqrt{\frac{\mu_{20}(S)}{M_{oo}(S)}}$$

$$\sigma_y = \sqrt{\frac{\mu_{02}(S)}{M_{oo}(S)}}$$

Given a pair of non-negative integers (j,k) the normalized (j,k)th moment of S is given by:

$$m_{jk}(S) = \sum_{(x,y)\in S} \left(\frac{x-\bar{x}}{\sigma_x}\right)^j \left(\frac{y-\bar{y}}{\sigma_y}\right)^k$$

Moments normalitzats

Scaling by (a,c) and translating by T = (b,d):

$$S_{ST} = \{(x^*, y^*) | x^* = ax + b, y^* = cy + d, (x, y) \in S\}$$

$$m_{jk}(S_{ST}) = m_{jk}(S)$$

Scaling and translation INVARIANT!

Descripció per parts

- Dividir l'objecte en parts i representar-lo a partir de:
 - Les seves parts
 - Els atributs de cada part
 - Les relacions entre parts

- El gran problema:
 - Què es una part? Com es troba?

Com trobem les parts?

Característiques de nivell de gris

- S'usen estadístics senzills:
 - Màxim
 - Mínim
 - Mitjana
 - Desviació
 - Histogrames
 - Matrius de co-ocurrència
- També es solen usar característiques de textura

Limitacions dels descriptors de formes

- Depenents de la segmentació
- Poden ser sensibles al soroll
- Són massa sensibles a les oclusions
- No és trivial fer-los invariants

