Question 1

```
In [29]: import pandas as pd
from sklearn import tree
from sklearn.metrics import cohen_kappa_score
```

```
In [30]: PATH_TO_FINENAME = 'BDEPennW1.csv'
data = pd.read_csv(PATH_TO_FINENAME)
data.head()
```

Out[30]:

	UNIQUEID	SCHOOL	Class	GRADE	CODER	STUDENTID	Gender	OBSNUM	totalobs- forsession	Activity	ONTASK	TRANSITIONS	NumACTIVITIE
0	14400	В	T9Q	0	Z	600865	0	1	0	Wholecarpet	Υ	3	4
1	14401	В	T9Q	0	Z	596466	0	1	1	Wholecarpet	Υ	3	4
2	14402	В	T9Q	0	Z	616590	0	1	2	Wholecarpet	Υ	3	4
3	14403	В	T9Q	0	Z	734358	1	1	3	Wholecarpet	Υ	3	4
4	14404	В	T9Q	0	Z	826308	1	1	4	Wholecarpet	Υ	3	4

```
In [31]: data.dtypes

Out[31]: UNIQUEID int64
SCHOOL object
Class object
GRADE int64
CODER object
STUDENTID int64
Gender int64
```

OBSNUM int64 totalobs-forsession int64 Activity object ONTASK object TRANSITIONS int64 NumACTIVITIES int64 int64 FORMATchanges NumFORMATS int64 float64 Obsv/act Transitions/Durations float64 Total Time int64 dtype: object

In [32]: data_dum = pd.get_dummies(data, columns = ['SCHOOL', 'Class', 'CODER', 'Activity'])
 data_dum.head()

Out[32]:

	UNIQUEID	GRADE	STUDENTID	Gender	OBSNUM	totalobs- forsession	ONTASK	TRANSITIONS	NumACTIVITIES	FORMATchanges	 Class_T9U	Cla
0	14400	0	600865	0	1	0	Υ	3	4	1	 0	0
1	14401	0	596466	0	1	1	Υ	3	4	1	 0	0
2	14402	0	616590	0	1	2	Υ	3	4	1	 0	0
3	14403	0	734358	1	1	3	Υ	3	4	1	 0	0
4	14404	0	826308	1	1	4	Υ	3	4	1	 0	0

5 rows × 49 columns

```
In [33]: y = data['ONTASK']
In [34]: X = data_dum.drop(columns = ['ONTASK'], axis = 1)
```

We don't need ONTASK when predicting the label.

```
In [35]: clf = tree.DecisionTreeClassifier(min_samples_split = 10)
clf.fit(X, y)
```

No, kappa can not be computed now.

```
In [36]: predictions = clf.predict(X)

In [37]: kappa = cohen_kappa_score(y, predictions)
   kappa
Out[37]: 0.7287148733570503
```