Cours 7 : La linéarisation

Eric Bourreau

+ Vincent Boudet

Linear Tricks – Techniques de linéarisation

- De nombreux concepts sont non-linéaires :
 - Max
 - Valeur absolue
 - Si
- Il est possible de les représenter de manière linéaire en introduisant des variables dont les variations *capturent* cette non-linéarité

(Attention, il est possible que cela ralentisse la résolution)

• Il est aussi possible de modéliser le problème avec d'autres formalismes plus étendu : CSP (Constraint Satisfaction Problem), NLP (Non-Linear Programming), LS (Local Search), ...

Linéarisation du Max

- L'exemple des wagons
 Minimiser max(chargement)
- Minimiser $(max_j(\sum_{i=1}^n w_i x_{ij}))$
- Introduction d'une variable représentant le concept $\rightarrow K$
- Mise sous forme linéaire des relations liant les variables x_{ij} et K

•
$$\sum_{i=1}^{n} w_i x_{ij} \le K$$
 $j = 1, ..., 3$

K se comporte correctement en fonction des valeurs de x_{ij}

Linéarisation de la valeur absolue

- L'exemple de l'emploi du temps $x_i \neq x_i$
- $x_i x_j \neq 0 \implies |x_i x_j| > 0 \implies |x_i x_j| \ge 1$
- Si $x_i \ge x_j$ alors $(x_i x_j) \ge 1$ // Si $x_j > x_i$ alors $(x_j x_i) \ge 1$
- On introduit une variable pour arbitrer l'ordre entre x_i et $x_j : y_{ij}$
- Mise sous forme linéaire des relations liant les variables (x_i, x_j, y_{ij})

$$(x_i - x_j) + M(1 - y_{ij}) \ge 1$$
 // $(x_j - x_i) + My_{ij} \ge 1$

M est appelé BigM, on lui donne une valeur suffisamment grande pour dominer la condition

Linéarisation du SI

- Exemple Rail/Route
- « La SNCF impose à l'entreprise de transporter au moins 10 tonnes sur chaque liaison pour qu'elle puisse bénéficier des tarifs indiqués »
- $x_{ij} = 0 \ OU \ x_{ij} \ge 10$
- Soit $x_{ij} = 0$ // Soit $x_{ij} \neq 0$ ET $x_{ij} \geq 10$
- On introduit une variable pour représenter la condition y_{ij}
- Mise sous forme linéaire des relations liant les variables (x_{ij}, y_{ij})

$$x_{ij} \ge 10(1 - y_{ij}) // x_{ij} \le M y_{ij}$$

Linéarisation des tournées

- Exemple du fioul
- « Chaque client doit être livré en une seule fois. Déterminez les tournées »
- Modèle 1 : contrainte de sous-tour interdites
- Modèle 2 : x_{ij} + modéliser la quantité livrée jusqu'au client i : y_i

$$\begin{aligned} q_i &\leq y_i \leq Q \\ y_i &\leq Q - (Q - q_i) \ x_{1i} \\ y_j &\geq y_i + q_j - Q + Q \ x_{ij} + (Q - q_j - q_i) x_{ji} \end{aligned} \quad \forall i, j$$

• On peut voir les y_i comme des variables d'ordre