Connectedness and Compactness

Lecture 18 - 05/03/2021

Def Let X be a topological space. A separation of X is a pair U, V of disjoint non-empty open subsets of X whose Union is X. X is said to be connected if it does not have a separation.

Prop. A space X is connected iff the only subsets of X that are both open (3.1) and closed ("clopen") are pland X.

If U,V is a separation, U is clopen.

If A + Ø is clopen, A, X\A is a separation.

Prop If X and Y are homeomorphic, X is connected iff Y is connected.
(3.2)

Lemma If y is a subspace of X, a separation of Y is pair of disjoint non-empty (3.3) sets A,B whose union is Y, neither of which contains a limit point of the other The space Y is connected iff there is no separation of Y.

This is easily shown since the sets involved in a separation are clopen lin Y). $\overline{A} \Lambda Y = A$

The other direction is similarly straightforward.

For example, any topological space with the indiscrete topology is connected.

-> Show that B is not connected.

Lemma.	IF	the	sets	C,\mathcal{D}	form	a separation	of	X	and	Å	is	a	connecte
(3.4)	Subsp	uce of	y, `	Y S C	Or	Y ⊆D.							

If not, we can write $Y = (Y \cap C) \cup (Y \cap D)$ Topen in Y

Lemma. A union of connected spaces is connected if their intersection (3.5) is non-empty.

Proof: Let (A_{a}) be a family of connected subspaces of X and $p \in \mathbb{N}$ A_{a} . We claim that $Y = \bigcup_{i} A_{a}$ is connected. Suppose C,D is a separation of Y and wlog that $p \in C$. Since A_{a} is connected and $p \in C$, $A_{a} \subseteq C$. Therefore, $Y = \bigcup_{i} A_{a} \subseteq C$, contradicting the non-emptiness of D.

Thus. Let A be a connected subspace of X IF $A \subseteq B \subseteq \overline{A}$, B is also connected.

(We can add any of the limit points without destroying connectedness)

Proof Suppose C,D is a separation of B. Assume wlog that $A \subseteq C$. Then $B \subseteq \overline{A} \subseteq \overline{C}$. But $\overline{C} \cap D = \emptyset$, yielding a contradiction and proving the claim.

Theo. The image of a connected space under a continuous map is connected.

(3.1)

and f is surjective

Proof Let $f: X \to Y$ be continuous where X is connected. Suppose C,D is a separation of Y. Since f is continuous, $f^{-1}(C)$ and $f^{-1}(D)$ are also open and they form a separation of X, resulting in a contradiction.

Theo. A finite Cartesian product of connected spaces is connected.

(3.8) (under either the box or product topo., they are equal)

Proof It suffices to show that if X and Y are connected XxY is connected. (Use the fact that (x1x...xxn...) x Xn is homeomorphic to (X1x...xXn...) x Xn Fix xxy E XxY. Xx {y} is connected (it is homeomorphic to X) and so is {x1 xy. The result follows on using Theo 3.5.

Show that \mathbb{R}^{ω} under the box topology is disconnected.

Hint: Let A= {(an) · (an) is bounded } and B= { (bn) · (bn) is unbounded }.

Show that Rio under the product topology is connected.

Hint: Show that \mathbb{R}^{co} , the set of sequences eventually O, is connected and that $\mathbb{R}^{\omega} = \mathbb{R}^{co}$. $\mathbb{R}^{co} = \mathbb{V}^{R^n} \longrightarrow \mathbb{O}$ after first n co-ordinates.

Theo. An arbitrary product of connected spaces is connected in the product (3.9) topology.

(the proof is nearly identical to that for RW above)

Def: A simply ordered set L having more than one element is called a linear continuum if

- · L has the least upper bound property.
- · if x<y in L, there exists z in L such that x<z<y.

Clearly. IR is a linear continuom.

The of L is a linear continuum, then L, intervals in L, and rough in L, $(3\cdot10)$ are connected

Theo. [Intermediate Value Theorem]

Let $f: X \rightarrow Y$ be continuous, where X is a connected space and Y is an ordered set under the ordered topology. If $a,b \in X$ and $r \in Y$ such that f(a) < r < f(b), there exists $c \in X$ such that f(c) = r.

Proof. Suppose otherwise. Then $f(x) \cap (-\infty, r)$ and $f(x) \cap (r, \infty)$ form a separation of f(x). However, the image under f of x is connected, resulting in a contradiction.