In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.formula.api as smf
import statsmodels.api as sm
from statsmodels.graphics.regressionplots import influence_plot
```

In [2]:

```
# import dataset
data=pd.read_csv("50_Startups.csv")
data
```

Out[2]:

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03
21	78389.47	153773.43	299737.29	New York	111313.02
22	73994.56	122782.75	303319.26	Florida	110352.25
23	67532.53	105751.03	304768.73	Florida	108733.99
24	77044.01	99281.34	140574.81	New York	108552.04
25	64664.71	139553.16	137962.62	California	107404.34
26	75328.87	144135.98	134050.07	Florida	105733.54
27	72107.60	127864.55	353183.81	New York	105008.31
28	66051.52	182645.56	118148.20	Florida	103282.38
29	65605.48	153032.06	107138.38	New York	101004.64
30	61994.48	115641.28	91131.24	Florida	99937.59
31	61136.38	152701.92	88218.23	New York	97483.56
32	63408.86	129219.61	46085.25	California	97427.84
33	55493.95	103057.49	214634.81	Florida	96778.92
34	46426.07	157693.92	210797.67	California	96712.80
35	46014.02	85047.44	205517.64	New York	96479.51
36	28663.76	127056.21	201126.82	Florida	90708.19

	R&D Spend	Administration	Marketing Spend	State	Profit
37	44069.95	51283.14	197029.42	California	89949.14
38	20229.59	65947.93	185265.10	New York	81229.06
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41
49	0.00	116983.80	45173.06	California	14681.40

In [3]:

EDA
data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49

Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	R&D Spend	50 non-null	float64
1	Administration	50 non-null	float64
2	Marketing Spend	50 non-null	float64
3	State	50 non-null	object
4	Profit	50 non-null	float64

dtypes: float64(4), object(1)

memory usage: 2.1+ KB

In [4]:

```
data1=data.rename({'R&D Spend':'RDS','Administration':'ADMS','Marketing Spend':'MKTS'},
axis=1)
data1
```

Out[4]:

	RDS	ADMS	MKTS	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03
21	78389.47	153773.43	299737.29	New York	111313.02
22	73994.56	122782.75	303319.26	Florida	110352.25
23	67532.53	105751.03	304768.73	Florida	108733.99
24	77044.01	99281.34	140574.81	New York	108552.04
25	64664.71	139553.16	137962.62	California	107404.34
26	75328.87	144135.98	134050.07	Florida	105733.54
27	72107.60	127864.55	353183.81	New York	105008.31
28	66051.52	182645.56	118148.20	Florida	103282.38
29	65605.48	153032.06	107138.38	New York	101004.64
30	61994.48	115641.28	91131.24	Florida	99937.59
31	61136.38	152701.92	88218.23	New York	97483.56
32	63408.86	129219.61	46085.25	California	97427.84
33	55493.95	103057.49	214634.81	Florida	96778.92
34	46426.07	157693.92	210797.67	California	96712.80
35	46014.02	85047.44	205517.64	New York	96479.51
36	28663.76	127056.21	201126.82	Florida	90708.19

	RDS	ADMS	MKTS	State	Profit
37	44069.95	51283.14	197029.42	California	89949.14
38	20229.59	65947.93	185265.10	New York	81229.06
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41
49	0.00	116983.80	45173.06	California	14681.40

In [5]:

data1[data1.duplicated()] # No duplicated data

Out[5]:

RDS ADMS MKTS State Profit

In [6]:

data1.describe()

Out[6]:

	RDS	ADMS	MKTS	Profit
count	50.000000	50.000000	50.000000	50.000000
mean	73721.615600	121344.639600	211025.097800	112012.639200
std	45902.256482	28017.802755	122290.310726	40306.180338
min	0.000000	51283.140000	0.000000	14681.400000
25%	39936.370000	103730.875000	129300.132500	90138.902500
50%	73051.080000	122699.795000	212716.240000	107978.190000
75%	101602.800000	144842.180000	299469.085000	139765.977500
max	165349.200000	182645.560000	471784.100000	192261.830000

In [7]:

```
# Correlation Analysis
data1.corr()
```

Out[7]:

	RDS	ADMS	MKTS	Profit
RDS	1.000000	0.241955	0.724248	0.972900
ADMS	0.241955	1.000000	-0.032154	0.200717
MKTS	0.724248	-0.032154	1.000000	0.747766
Profit	0.972900	0.200717	0.747766	1.000000

In [8]:

```
sns.set_style(style='darkgrid')
sns.pairplot(data1)
```

Out[8]:

<seaborn.axisgrid.PairGrid at 0x2795fb31460>


```
In [9]:
```

```
# Model Building
model=smf.ols("Profit~RDS+ADMS+MKTS",data=data1).fit()
```

In [10]:

```
# Model Testing
# Finding Coefficient parameters
model.params
```

Out[10]:

Intercept 50122.192990 RDS 0.805715 ADMS -0.026816 MKTS 0.027228

dtype: float64

In [11]:

```
# Finding tvalues and pvalues
model.tvalues , np.round(model.pvalues,5)
```

Out[11]:

```
(Intercept
               7.626218
RDS
              17.846374
ADMS
              -0.525507
MKTS
               1.655077
dtype: float64,
Intercept
              0.00000
RDS
              0.00000
ADMS
              0.60176
MKTS
              0.10472
dtype: float64)
```

In [12]:

```
# Finding rsquared values
model.rsquared_adj # Model accuracy is 94.75%
```

Out[12]:

```
(0.9507459940683246, 0.9475337762901719)
```

In [13]:

```
# Build SLR and MLR models for insignificant variables 'ADMS' and 'MKTS'
# Also find their tvalues and pvalues
slr_a=smf.ols("Profit~ADMS",data=data1).fit()
slr_a.tvalues , slr_a.pvalues # ADMS has in-significant pvalue
```

Out[13]:

```
(Intercept 3.040044
ADMS 1.419493
dtype: float64,
Intercept 0.003824
ADMS 0.162217
dtype: float64)
```

In [14]:

```
slr_m=smf.ols("Profit~MKTS",data=data1).fit()
slr_m.tvalues , slr_m.pvalues # MKTS has significant pvalue
```

Out[14]:

```
(Intercept
              7.808356
MKTS
              7.802657
dtype: float64,
```

Intercept 4.294735e-10 MKTS 4.381073e-10

dtype: float64)

In [15]:

```
mlr_am=smf.ols("Profit~ADMS+MKTS",data=data1).fit()
mlr_am.tvalues , mlr_am.pvalues # varaibles have significant pvalues
```

Out[15]:

```
(Intercept
              1.142741
ADMS
              2.467779
MKTS
              8.281039
```

dtype: float64,

2.589341e-01 Intercept **ADMS** 1.729198e-02 MKTS 9.727245e-11

dtype: float64)

In [16]:

```
# Model Validation
# Two Techniques: 1. Collinearity Check & 2. Residual Analysis
# 1) Collinearity Problem Check
# Calculate VIF = 1/(1-Rsquare) for all independent variables
rsq_r=smf.ols("RDS~ADMS+MKTS",data=data1).fit().rsquared
vif_r=1/(1-rsq_r)
rsq a=smf.ols("ADMS~RDS+MKTS",data=data1).fit().rsquared
vif a=1/(1-rsq a)
rsq_m=smf.ols("MKTS~RDS+ADMS",data=data1).fit().rsquared
vif m=1/(1-rsq m)
# Putting the values in Dataframe format
d1={'Variables':['RDS','ADMS','MKTS'],'Vif':[vif r,vif a,vif m]}
Vif df=pd.DataFrame(d1)
Vif df
```

Out[16]:

	Variables	Vif
0	RDS	2.468903
1	ADMS	1.175091
2	MKTS	2.326773

In [17]:

```
# 2) Residual Analysis
# Test for Normality of Residuals (Q-Q Plot) using residual model (model.resid)
sm.qqplot(model.resid,line='q')
plt.title("Normal Q-Q plot of residuals")
plt.show()
```


In [18]:

list(np.where(model.resid<-30000))</pre>

Out[18]:

[array([49], dtype=int64)]

In [19]:

```
# Test for Homoscedasticity or Heteroscedasticity (plotting model's standardized fitted
values vs standardized residual values)

def standard_values(vals) : return (vals-vals.mean())/vals.std() # User defined z = (x
- mu)/sigma
plt.scatter(standard_values(model.fittedvalues), standard_values(model.resid))
plt.title('Residual Plot')
plt.xlabel('standardized fitted values')
plt.ylabel('standardized residual values')
plt.show()
```


In [20]:

```
# Test for errors or Residuals Vs Regressors or independent 'x' variables or predictors
# using Residual Regression Plots code graphics.plot_regress_exog(model,'x',fig) # e
xog = x-variable & endog = y-variable
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'RDS',fig=fig)
plt.show()
```


In [21]:

```
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'ADMS',fig=fig)
plt.show()
```


In [22]:

```
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'MKTS',fig=fig)
plt.show()
```


In [23]:

```
# Model Deletion Diagnostics (checking Outliers or Influencers)
# Two Techniques : 1. Cook's Distance & 2. Leverage value
# 1. Cook's Distance: If Cook's distance > 1, then it's an outlier
# Get influencers using cook's distance
(c,_)=model.get_influence().cooks_distance
c
```

Out[23]:

```
array([3.21825244e-05, 3.27591036e-03, 3.23842699e-02, 2.17206555e-02, 1.44833032e-02, 1.17158463e-02, 2.91766303e-03, 3.56513444e-03, 4.04303948e-05, 4.86758017e-03, 1.51064757e-02, 1.63564959e-02, 1.15516625e-02, 4.01422811e-03, 6.12934253e-02, 3.40013448e-02, 8.33556413e-03, 3.30534399e-03, 2.16819303e-03, 4.07440577e-02, 4.25137222e-04, 1.09844352e-02, 2.91768000e-03, 2.76030254e-04, 5.04643588e-03, 3.00074623e-03, 3.41957068e-03, 2.98396413e-02, 1.31590664e-03, 1.25992620e-04, 4.18505125e-05, 9.27434786e-06, 7.08656521e-04, 1.28122674e-04, 2.09815032e-02, 6.69508674e-03, 5.55314705e-02, 6.55050578e-05, 5.61547311e-02, 1.54279607e-03, 1.84850929e-03, 1.97578066e-03, 1.36089280e-04, 2.05553171e-02, 1.23156041e-04, 9.03234206e-02, 5.45303387e-02, 5.33885616e-03, 1.90527441e-01, 2.88082293e-01])
```

In [24]:

```
# Plot the influencers using the stem plot
fig=plt.figure(figsize=(20,7))
plt.stem(np.arange(len(data1)),np.round(c,5))
plt.xlabel('Row Index')
plt.ylabel('Cooks Distance')
plt.show()
```

<ipython-input-24-099d41a6999a>:3: UserWarning: In Matplotlib 3.3 individu
al lines on a stem plot will be added as a LineCollection instead of indiv
idual lines. This significantly improves the performance of a stem plot. T
o remove this warning and switch to the new behaviour, set the "use_line_c
ollection" keyword argument to True.

plt.stem(np.arange(len(data1)),np.round(c,5))

In [25]:

```
# Index and value of influencer where C>0.5
np.argmax(c) , np.max(c)
```

Out[25]:

(49, 0.28808229275432634)

In [26]:

```
# 2. Leverage Value using High Influence Points : Points beyond Leverage_cutoff value a
re influencers
influence_plot(model)
plt.show()
```


In [27]:

```
# Leverage Cuttoff Value = 3*(k+1)/n; k = no.of features/columns & n = no. of datapoin
ts
k=data1.shape[1]
n=data1.shape[0]
leverage_cutoff = (3*(k+1))/n
leverage_cutoff
```

Out[27]:

0.36

In [28]:

data1[data1.index.isin([49])]

Out[28]:

	RDS	ADMS	MKTS	State	Profit
49	0.0	116983.8	45173.06	California	14681.4

In [29]:

Improving the Model
Discard the data points which are influencers and reassign the row number (reset_inde
x(drop=True))
data2=data1.drop(data1.index[[49]],axis=0).reset_index(drop=True)
data2

Out[29]:

	RDS	ADMS	MKTS	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03
21	78389.47	153773.43	299737.29	New York	111313.02
22	73994.56	122782.75	303319.26	Florida	110352.25
23	67532.53	105751.03	304768.73	Florida	108733.99
24	77044.01	99281.34	140574.81	New York	108552.04
25	64664.71	139553.16	137962.62	California	107404.34
26	75328.87	144135.98	134050.07	Florida	105733.54
27	72107.60	127864.55	353183.81	New York	105008.31
28	66051.52	182645.56	118148.20	Florida	103282.38
29	65605.48	153032.06	107138.38	New York	101004.64
30	61994.48	115641.28	91131.24	Florida	99937.59
31	61136.38	152701.92	88218.23	New York	97483.56
32	63408.86	129219.61	46085.25	California	97427.84
33	55493.95	103057.49	214634.81	Florida	96778.92
34	46426.07	157693.92	210797.67	California	96712.80
35	46014.02	85047.44	205517.64	New York	96479.51
36	28663.76	127056.21	201126.82	Florida	90708.19

	RDS	ADMS	MKTS	State	Profit
37	44069.95	51283.14	197029.42	California	89949.14
38	20229.59	65947.93	185265.10	New York	81229.06
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41

In [30]:

```
# Model Deletion Diagnostics and Final Model
while np.max(c)>0.5 :
    model=smf.ols("Profit~RDS+ADMS+MKTS",data=data2).fit()
    (c,_)=model.get_influence().cooks_distance
    c
    np.argmax(c), np.max(c)
    data2=data2.drop(data2.index[[np.argmax(c)]],axis=0).reset_index(drop=True)
    data2
else:
    final_model=smf.ols("Profit~RDS+ADMS+MKTS",data=data2).fit()
    final_model.rsquared, final_model.aic
    print("Thus model accuracy is improved to",final_model.rsquared)
```

Thus model accuracy is improved to 0.9613162435129847

In [31]:

```
final_model.rsquared
```

Out[31]:

0.9613162435129847

In [32]:

data2

Out[32]:

	RDS	ADMS	MKTS	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03
21	78389.47	153773.43	299737.29	New York	111313.02
22	73994.56	122782.75	303319.26	Florida	110352.25
23	67532.53	105751.03	304768.73	Florida	108733.99
24	77044.01	99281.34	140574.81	New York	108552.04
25	64664.71	139553.16	137962.62	California	107404.34
26	75328.87	144135.98	134050.07	Florida	105733.54
27	72107.60	127864.55	353183.81	New York	105008.31
28	66051.52	182645.56	118148.20	Florida	103282.38
29	65605.48	153032.06	107138.38	New York	101004.64
30	61994.48	115641.28	91131.24	Florida	99937.59
31	61136.38	152701.92	88218.23	New York	97483.56
32	63408.86	129219.61	46085.25	California	97427.84
33	55493.95	103057.49	214634.81	Florida	96778.92
34	46426.07	157693.92	210797.67	California	96712.80
35	46014.02	85047.44	205517.64	New York	96479.51
36	28663.76	127056.21	201126.82	Florida	90708.19

	RDS	ADMS	MKTS	State	Profit
37	44069.95	51283.14	197029.42	California	89949.14
38	20229.59	65947.93	185265.10	New York	81229.06
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41

In [33]:

```
# Model Predictions
# say New data for prediction is
new_data=pd.DataFrame({'RDS':70000,"ADMS":90000,"MKTS":140000},index=[0])
new_data
```

Out[33]:

```
RDS ADMS MKTS
0 70000 90000 140000
```

In [34]:

```
# Manual Prediction of Price
final_model.predict(new_data)
```

Out[34]:

0 108727.154753 dtype: float64

In [35]:

```
# Automatic Prediction of Price with 90.02% accurry
pred_y=final_model.predict(data2)
pred_y
```

Out[35]:

```
0
      190716.676999
1
      187537.122227
2
      180575.526396
3
      172461.144642
4
      170863.486721
5
      162582.583177
6
      157741.338633
7
      159347.735318
8
      151328.826941
      154236.846778
9
10
      135507.792682
11
      135472.855621
12
      129355.599449
13
      127780.129139
14
      149295.404796
15
      145937.941975
      117437.627921
16
17
      130408.626295
18
      129129.234457
19
      116641.003121
20
      117097.731866
21
      117911.019038
22
      115248.217796
23
      110603.139045
24
      114051.073877
25
      103398.054385
26
      111547.638935
27
      114916.165026
28
      103027.229434
29
      103057.621761
30
      100656.410227
31
       99088.213693
32
      100325.741335
33
       98962.303136
34
       90552.307809
35
       91709.288672
36
       77080.554255
37
       90722.503244
38
       71433.021956
39
       85147.375646
40
       76625.510303
41
       76492.145175
42
       72492.394974
43
       62592.049718
44
       67025.731107
45
       50457.297206
46
       58338.443625
47
       49375.776655
48
       51658.096812
dtype: float64
```

In [36]:

```
# table containing R^2 value for each prepared model
d2={'Prep_Models':['Model','Final_Model'],'Rsquared':[model.rsquared,final_model.rsquared]}
table=pd.DataFrame(d2)
table
```

Out[36]:

	Prep_Models	Rsquared
0	Model	0.950746
1	Final_Model	0.961316