✓ 1. Varíola

Situação anterior: Altamente letal e desfigurante, causava milhões de mortes por ano.

Controle atual: Erradicada em 1980 pela OMS, graças a campanhas de vacinação em massa.

Importância: Única doença humana erradicada completamente até hoje.

2. Poliomielite (paralisia infantil)

Situação anterior: Causava paralisia permanente, especialmente em crianças, e mortes.

Controle atual: Quase erradicada no mundo; ainda há poucos casos em países como Afeganistão e Paquistão.

Vacina: Oral (Sabin) e injetável (Salk).

3. Sarampo

Situação anterior: Muito contagioso, causava milhares de mortes infantis por ano.

Controle atual: Casos reduziram drasticamente com a vacina tríplice viral (sarampo, caxumba, rubéola).

Desafio: Casos estão reaparecendo em algumas regiões devido à queda da cobertura vacinal.

✓ 4. Rubéola

Situação anterior: Relativamente leve, mas perigosa para gestantes (pode causar síndrome da rubéola congênita).

Controle atual: Controlada com a vacina tríplice viral.

Impacto: Reduziu drasticamente casos de má-formações em bebês.

5. Caxumba

Situação anterior: Afetava principalmente crianças e podia causar complicações como infertilidade masculina.

Controle atual: Rara em populações com alta cobertura vacinal.

1. Acesso igualitário para todos Sem custo: Pessoas de todas as classes sociais têm acesso às vacinas, independentemente da renda.

Justiça social: Reduz desigualdades e protege populações vulneráveis (crianças, idosos, indígenas, etc.).

- 2. Prevenção de doenças e mortes Evita surtos: Vacinas gratuitas aumentam a cobertura vacinal e reduzem o risco de epidemias.
- Salva vidas: Previne doenças graves que podem causar sequelas ou levar à morte.
 - ✓ 3. Redução de gastos com tratamento Economia para o SUS: Prevenir é muito mais barato do que tratar doenças.
 - Menos internações: Reduz a sobrecarga nos hospitais e nos serviços de saúde.

1. Células apresentadoras de antígenos (APCs)
 Principais tipos: Células dendríticas, macrófagos e células B.
 Função:

turam o antígeno da vacina (por exemplo, uma proteína viral ou bact inativada).

essam" esse antígeno e o apresentam na sua superfície usando molé chamadas MHC (Complexo Principal de Histocompatibilidade). Migrando para os linfonodos, ativam outras células imunológicas.

2. Linfócitos T

Linfócito T auxiliar (CD4+):

Reconhece o antígeno apresentado pelas APCs.

Estimula outras células do sistema imune a entrarem em ação.

Ajuda a ativar os linfócitos B e os linfócitos T citotóxicos.

Linfócito T citotóxico (CD8+):

Ativado quando necessário.

Destrói células infectadas por vírus ou outros patógenos.

1. Transcrição do DNA

O mRNA é produzido a partir do DNA (que contém as instruções genéticas) no núcleo da célula.

O processo começa com a transcrição, onde uma "cópia" do gene (uma sequência específica de DNA) é feita em forma de mRNA. Esse mRNA carrega as informações genéticas para a sintese de proteínas.

2. Transporte do núcleo para o citoplasma

Uma vez criado, o mRNA deixa o núcleo e vai para o citoplasma da célula, onde as proteínas são produzidas.

3. Tradução nas ribossomos

No citoplasma, o mRNA é "lido" pelos ribossomos, que são como "fábricas de proteínas".

O mRNA tem uma sequência de códons (trincas de nucleotídeos) que indicam qual aminoácido deve ser adicionado à proteína. Os ribossomos leem o mRNA e, com a ajuda de RNA de transferência (tRNA), montam os aminoácidos na ordem correta para formar a proteína.

4. Função das proteínas

As proteínas produzidas a partir do mRNA têm diversas funções no organismo, como:

Catalisar reações químicas (enzimas).

Transportar moléculas (como a hemoglobina que transporta oxigênio).

Formar estruturas (como colágeno e queratina).

Regular processos celulares (como hormônios e fatores de crescimento).

1. Formação do iRNA

O RNA interferente começa com moléculas de RNA de fita dupla (dsRNA), que podem vir de vírus ou ser introduzidas experimentalmente.

Em algumas células, também pode ser originado a partir de microRNAs (miRNA), que são moléculas de RNA de fita simples com um papel regulador.

O dsRNA é processado por uma enzima chamada Dicer, que corta o RNA em pequenos fragmentos de cerca de 20-25 nucleotídeos. Esses fragmentos são chamados de pequenos RNAs interferentes (siRNA) ou microRNAs (miRNA), dependendo da origem.

2. Formação do complexo RISC

Os pequenos RNAs (siRNAs ou miRNAs) se associam a um complexo proteico chamado RISC (RNA-Induced Silencing Complex).

O RISC carrega o RNA de interferência (iRNA) e o usa como uma "cópia" para encontrar mRNAs complementares na célula.

3. Reconhecimento e silenciamento do mRNA alvo

O iRNA dentro do complexo RISC se emparelha com um mRNA alvo que tenha uma sequência complementar.

Se for siRNA: O emparelhamento é exato e o mRNA alvo é cortado ou degradado, impedindo a tradução.

Se for miRNA: O emparelhamento pode ser menos perfeito, resultando em bloqueio da tradução sem degradação completa do mRNA, mas ainda impedindo a produção da proteína.

4. Resultados da interferência

O mRNA alvo pode ser:

Degradado: Como no caso do siRNA, onde o mRNA é cortado e destruído, impedindo a produção de proteínas.

Desativado: No caso do miRNA, o mRNA é simplesmente bloqueado para não ser traduzido em proteínas.

1. Silenciamento de genes defeituosos

Muitas doenças genéticas são causadas por mutações em genes que resultam na produção de proteínas defeituosas ou tóxicas.

O iRNA pode ser projetado para alvo exatamente esse gene defeituoso, degradando seu mRNA antes que a proteína seja feita.

Isso interrompe a cadeia de produção da doença em nível molecular.

2. Precisão e especificidade

O iRNA pode ser feito para se ligar a uma única sequência específica de mRNA, o que significa que ele pode atuar com altíssima precisão.

Isso reduz os efeitos colaterais, já que apenas o gene-alvo é silenciado, sem afetar outros genes saudáveis.

3. Alternativa a tratamentos tradicionais

Muitas doenças genéticas não têm cura ou são tratadas apenas com medicações que aliviam os sintomas, sem resolver a causa.

O iRNA ataca a causa genética da doença, oferecendo uma abordagem mais direta e eficaz.

4. Possibilidade de personalização

O tratamento com iRNA pode ser customizado para o gene afetado em cada paciente, algo que se encaixa na medicina personalizada.

Isso é especialmente útil para doenças raras, causadas por mutações únicas.

5. Resultados promissores em testes clínicos

Estudos com iRNA já mostraram resultados positivos em doenças como: Amiloidose hereditária (Transthyretin amyloidosis – FDA já aprovou um medicamento com iRNA).

Hipercolesterolemia familiar.

Cânceres causados por superexpressão de certos genes.

Doenças oculares genéticas.

Doenças neurodegenerativas, como Huntington.