MATH574 - Dynamical Systems

Based on lectures from Winter 2025 by Prof. Antony Humphries. Notes by Louis Meunier

Contents

1 Examples of Dynamical Systems	. 2
2 Existence-Uniqueness Theory	. 2
3 Limit Sets and the Evolution Operator	
4 Stability Theory	
5 Delay Differential Equations	. 8

§1 Examples of Dynamical Systems

Roughly speaking, a dynamical system is a system that evolves in time, with common examples being a differential equation, in the continuous case, or a map, in the discrete case.

⊗ Example 1.1 (The Logistic Map):

§2 Existence-Uniqueness Theory

Definition 2.1 (Lipschitz): We say a function $f: \mathbb{R}^p \to \mathbb{R}^p$ is Lipschitz on $B \subseteq \mathbb{R}^p$ if there is a constant L > 0 such that $||f(x) - f(y)|| \le L ||x - y||$ for every $x, y \in B$. We call L a "Lipschitz" constant. It is certainly not unique in general.

We say f globally Lipschitz if it is Lipschitz on $B = \mathbb{R}^p$, and f locally Lipschitz if f Lipschitz on every bounded domain $B \subseteq \mathbb{R}^p$ (note: the L will in general depend on the domain).

Theorem 2.1: Let $f : \mathbb{R}^p \to \mathbb{R}^p$ be a locally Lipschitz function. Then, there exists a unique solution to the initial value problem $\dot{u} = f(u), u(0) = u_0$ on some interval $t \in (-T_1(u_0), T_2(0))$, where $-T_1(u_0) < 0 < T_2(u_0)$ and

- either $T_2(u_0) = +\infty$ or $||u(t)|| \to \infty$ as $t \to T_2(u_0)$, and
- either $T_1(u_0) = \infty$ or $||u(t)|| \to -\infty$ as $t \to -T_1(u_0)$.

Heuristically, this first condition states that either our solution exists for all (forward) time after $-T_1(u_0)$, or it blows up in finite time, with a similar interpretation for the second, going backwards.

Proposition 2.1: Let $\dot{u} = f(u)$ where f locally Lipschitz. Let $B \subseteq \mathbb{R}^p$ be a bounded subset such that initial conditions $u_0, v_0 \in B$ define solutions u(t), v(t) with $u(t), v(t) \in B$ for all $t \in [0, T]$. Let L be a Lipschitz constant for f on B. Then,

$$e^{-Lt} \, \|u_0 - v_0\| \leq \|u(t) - v(t)\| \leq e^{Lt} \, \|u_0 - v_0\| \qquad \forall \, t \in [0,T].$$

This provides a bound on how quickly solutions grow, decay in *B*.

 \hookrightarrow Corollary 2.1: Let f locally Lipschitz and $u_0 \neq v_0$. Then, $u(t) \neq v(t)$ for all time such that the solutions both exist.

§3 Limit Sets and the Evolution Operator

We state definitions in this section first for ODEs, but they generalize.

 \hookrightarrow **Definition 3.1** (Evolution Operator): Given $\dot{u} = f(u)$, the *evolution operator* is the map

$$S(t): \mathbb{R}^p \to \mathbb{R}^p, \qquad t \ge 0$$

such that $u(t) = S(t)u_0$.

Such a map also defines a *semi-group* $\{S(t): t \ge 0\}$ under composition, namely it is closed under repeated composition and this operator is associative.

For $B \subseteq \mathbb{R}^p$ define

$$S(t)B := \bigcup_{u \in B} S(t)u = \{u(t) = S(t)u_0 : u_0 \in B\}.$$

 \hookrightarrow **Definition 3.2** (Forward/Positive Orbit): We define the *forward orbit* of a point u_0 as

$$\Gamma^+(u_0) \coloneqq \bigcup_{t \ge 0} S(t) u_0,$$

i.e. the set of all points u_0 may "visit" as time increases.

→ Definition 3.3 (Backwards/Negative Orbit): Similarly, define a backwards orbit (if one exists)

$$\Gamma^{-}(u_0) := \{u(t) : t \leq 0\},\$$

s.t.
$$\forall t \le s \le 0, S(-t)u(t) = u_0 \text{ and } S(s-t)u(t) = u(s).$$

Note that a negative orbit won't be unique in general, eg in maps, periodic points may multiple preimages.

 \hookrightarrow **Definition 3.4** (Complete Orbit): If a negative orbit for u_0 exists, define the *complete orbit* through u_0 as

$$\Gamma(u_0)\coloneqq \Gamma^+(u_0)\cup \Gamma^-(u_0).$$

Notice that if $v \in \Gamma(u_0)$, then $\Gamma(v) = \Gamma(u_0)$; namely a complete orbit through v exists.

Definition 3.5 (Invariance): The set *B* is said to be *positively invariant* if $S(t)B \subseteq B$ for all $t \ge 0$. Similarly, *B* is said to be *negatively invariant* if $B \subseteq S(t)B$ for all $t \ge 0$.

Definition 3.6 (*ω*-limit sets): A point $x ∈ \mathbb{R}^p$ is called an *ω*-limit point of u_0 if there exists a sequence $\{t_n\}$ with $t_n \to \infty$ such that $S(t_n)u_0 \to x$ as $n \to \infty$. The set of all such points for an initial condition u_0 is denoted $\omega(u_0)$, and called the *ω*-limit set of u_0 .

Given a bounded set B, the ω -limit set of B is defined as

$$\omega(B) \coloneqq \{ x \in \mathbb{R}^p : \exists t_n \to \infty, y_n \in B \text{ s.t. } S(t_n) y_n \to x \}.$$

Remark 3.1: In general, $\omega(B)$ is *not* the union of ω -limit sets of points in B.

→Theorem 3.1: For any $u_0 \in \mathbb{R}^p$,

$$\omega(u_0) = \bigcap_{s \ge 0} \overline{\bigcup_{t \ge s} \{S(t)u_0\}},$$

and similarly for any bounded $B \subseteq \mathbb{R}^p$,

$$\omega(B) = \bigcap_{s \ge 0} \overline{\bigcup_{t \ge s} S(t)B}.$$

 \hookrightarrow Definition 3.7 (α-limit set): A point $x \in \mathbb{R}^p$ is called an α-limit point for $u_0 \in \mathbb{R}^p$ if there exists a negative orbit through u_0 and a sequence $\{t_n\}$ with $t_n \to -\infty$ such that $u(t_n) \to x$. The set of all such points for u_0 is denoted $\alpha(u_0)$.

Theorem 3.2: If $\Gamma^+(u_0)$ bounded, then $\omega(u_0)$ is a non-empty, compact, invariant, connected set.

Definition 3.8 (Attraction): We say a set *A attracts B* if for every $\varepsilon > 0$, there is a $t^* = t^*(\varepsilon, A, B)$ such that $S(t)B \subseteq N(A, \varepsilon)$ for every $t \ge t^*$, where $N(A, \varepsilon)$ denotes the *ε*-neighborhood of *A*.

A compact, invariant set A is called an *attractor* if it attracts an open neighborhood of itself, i.e. $\exists \varepsilon > 0$ such that A attracts $N(A, \varepsilon)$.

A *global attractor* is an attractor that attracts every bounded subset of \mathbb{R}^p .

Theorem 3.3 (Continuous Gronwall Lemma): Let z(t) be such that $\dot{z} \leq az + b$ for some $a \neq 0, g \in \mathbb{R}$ and $z(t) \in \mathbb{R}$. Then, $\forall t \geq 0$,

$$z(t) \le e^{at} z(0) + \frac{b}{a} \left(e^{at} - 1 \right).$$

Theorem 3.4 (*ω*-limit sets as attractors): Assume $B \subseteq \mathbb{R}^p$ is a bounded, open set such that $S(t)B \subseteq \overline{B} \forall t > 0$. Then, $\omega(B) \subseteq B$, and $\omega(B)$ is an attractor, which attracts B. Furthermore,

$$\omega(B) = \bigcap_{t \ge 0} S(t)B.$$

Definition 3.9 (Dissipative): A dynamical system is called *dissipative* if there exists a bounded set *B* such \forall *A* bounded, there exists a $t^* = t^*(A) > 0$ such that $S(t)A \subseteq B \ \forall \ t \ge t^*$. We then call such a *B* an *absorbing set*.

Remark 3.2: *B* absorbing $\Rightarrow \omega(A) \subseteq \omega(B)$. Moreover, $\omega(B)$ attracts *A* for every bounded set *A*. I.e., $\omega(B)$ is a global attractor.

§4 STABILITY THEORY

 \hookrightarrow **Definition 4.1** (Stable/Unstable Manifolds): If u^* a steady state of a dynamical system, the *stable manifold* of u^* is defined as the set

$$\{u \in \mathbb{R}^p : \omega(u) = u^*\},$$

and similarly, the unstable manifold is defined

$$\{u \in \mathbb{R}^p : \Gamma^-(u) \exists \text{ and } \alpha(u) = u^*\}.$$

Definition 4.2 (Lyapunov Stability): A steady state u^* is called *Lyapunov stable* if $\forall \varepsilon > 0$, there exists a $\delta > 0$ such that if $||u^* - v|| < \delta$, then $||S(t)v - u^*|| < \varepsilon$ for all time $t \ge 0$.

Definition 4.3 (Quasi-Asymptotically Stable): A steady state u^* is called *Quasi-asymptotically stable* (qas) if there exists a $\delta > 0$ such that if $\|u - u^*\| < \delta$, $\lim_{t \to \infty} \|S(t)u - u^*\| = 0$.

 \hookrightarrow **Definition 4.4** (Asymptotically Stable): A steady state u^* is called asymptotically stable if it is both Lyapunov stable and qas.

4 Stability Theory 5

⇒ Definition 4.5 (Linearization): Consider a dynamical system $\dot{u} = f(u)$, where $f(u^*) = 0$. Let $v(t) = u(t) - u^*$, then, $\dot{v} = f(u^* + v)$, and $v^* = 0$ corresponds to a fixed point. Taylor expanding \dot{v} , we find

$$\begin{split} \dot{v} &= f(u^* + v) \\ &= f(u^*) + J_f(u^*)v + \mathcal{O}\left(\|v\|^2\right) \\ &= J_f(u^*) \cdot v + \mathcal{O}\left(\|v\|^2\right), \end{split}$$

where $J_f(u^*)$ the Jacobian matrix of f evaluated at u^* . The linear system

$$\dot{v} = J_f(u^*)v$$

is called the *linearization* of $\dot{u} = f(u)$ at u^* .

→ Proposition 4.1: The general solution to the linearized system

$$\dot{v} = Jv, \qquad v(0) = v_0,$$

is

$$v(t) = e^{tJ} \cdot v_0,$$

where e^{\cdot} the matrix exponential defined by the (always convergent) series

$$e^M = \sum_{j=0}^{\infty} \frac{M^j}{j!}.$$

Suppose $\dot{v} = Jv$ and J complex diagonlizable with eigenvalues $\lambda_1, ..., \lambda_n$. Then, J conjugate to the diagonal matrix Λ with diagonal entries equal to the eigenvalues, namely

$$J = P\Lambda P^{-1}.$$

It follows that

$$v(t) = Pe^{t\Lambda}P^{-1}v_0.$$

Equivalently (changing coordinates), letting $w(t) = P^{-1}v(t)$, we find

$$w(t) = e^{t\Lambda} w(0),$$

noting that now, since Λ diagonal,

$$e^{t\Lambda} = \begin{pmatrix} e^{t\lambda_1} & & \\ & \ddots & \\ & & e^{t\lambda_n} \end{pmatrix}.$$

 \hookrightarrow **Definition 4.6** (Linear Stable, Unstable, Centre Manifolds): Supposing 0 a steady state and $J_f(0)$ complex diagonalizable, define respectively the *linear* stable, unstable, and centre manifolds:

 $E^s(0) := \{u \mid u \text{ spanned by eigenvectors with } \Re(\lambda) < 0\}$

 $E^{u}(0) := \{u \mid u \text{ spanned by eigenvectors with } \Re(\lambda) > 0\}$

 $E^{c}(0) := \{u \mid u \text{ spanned by eigenvectors with } \Re(\lambda) = 0\}.$

Notice that if $u_0 \in E^s(0)$, then the corresponding solution with initial condition u_0 , u(t), converges to 0 as $t \to \infty$, with similar conditions for $u_0 \in E^u(0)$.

 \hookrightarrow **Definition 4.7** (Hyperbolic): A steady state u^* is called *hyperbolic* if $J_f(u^*)$ has no eigenvalues with $\Re(\lambda) = 0$, i.e. dim($E^c(u^*)$) = 0.

Theorem 4.1: If u^* a hyperbolic steady state of $\dot{u} = f(u)$, and all of the eigenvalues of $J_f(u^*)$ have strictly negative real part, then u^* is asymptotically stable.

Theorem 4.2: If u^* a steady state and $J_f(u^*)$ has a steady state with eigenvalue having real part strictly positive real part, then u^* unstable (namely not Lyapunov stable).

Remark 4.1: These theorems describe cases in which the linearization is correct in predicting the nonlinear behaviour.

Remark 4.2: The second theorem can only guarantee non-Lyapunov stability because linearization is a local process - quasi-asymptotic stability is "more global", and not picked up by the linearization necessarily.

Theorem 4.3 (Hartman-Grobman Theorem): If f continuously differentiable and $\dot{u} = f(u)$ has a hyperbolic steady state u^* , then there exists an open ball $B(u^*, \delta) \subseteq \mathbb{R}^p$, an open set $0 \in N$ and a homeomorphism

$$H: B(u^*, \delta) \to N$$

such that while $u(t) \in B(u^*, \delta)$ a solution to $\dot{u} = f(u)$, then v(t) = H(u(t)) a solution of $\dot{v} = J_f(u^*)v$.

4 Stability Theory 7

 \hookrightarrow **Definition 4.8** (Stable, Unstable Manifold): The *stable, unstable* manifolds of a steady state u^* are defined

$$\begin{split} W^s(u^*) &\coloneqq \{u \in \mathbb{R}^p \mid S(t)u \to u^* \text{ as } t \to \infty\} \\ W^u(u^*) &\coloneqq \{u \in \mathbb{R}^p \mid \Gamma^-(u) \ \exists \ \text{and} \ S(t)u \to u^* \text{ as } t \to -\infty\}. \end{split}$$

$\S 5$ Delay Differential Equations