Введение в язык R, язык аналитики BigData

1. Введение в язык R

ПРЕИМУЩЕСТВА R

- + R **свободный** пакет.
- + Активный процесс разработки ядра, **частые релизы**.
- + Сплоченное **комьюнити**, огромное количество библиотек:
 - + Около 4000 библиотек в CRAN.
 - Ядро содержит только самую основную функциональность, для многих часто возникающих задач уже нужно устанавливать библиотеки.
- + Во многом чрезвычайно элегантный и интуитивный синтаксис.
 - + Код читаем ⇒ анализ данных **воспроизводим!**
- + Широкие возможности для работы с графикой.

Декларативный бесплатный язык программирования. Появился в 1993 году. Это потрясающе гибкие приложение и язык для исследования,

визуализации и понимания данных. На сегодняшний день является стандартом в области анализа данных.

Options for R on Hadoop

	RODBC/RJDBC	RHive	RHadoop
Focus	SQL Access from R	Broad access to Hive and HDFS	Tight integration with core Hadoop components
Integration Ease	Install Hortonworks Hive ODBC driver Install Hive Libraries	 Requires Hadoop binaries, libraries, and configuration files on client machines 	
		 Uses Java DFS Client and HiveServer 	
Benefits	Low impact on existing R scripts leveraging other DB packages	Wide range of features expressed through HQL	 Ability to run R on a massively distributed system
	 Not required to install Hadoop configuration/binaries on client machines 	- rhive-apply R Distributed apply function using HQL	 Ability to work with full data sets instead of sample sets
Limitations	Parallelism limited to Hive	Requires heavy client deployment	Additional Information
	Result set size	 Dependent on HiveServer, and can't be used with HiveServer2 	https://github.com/RevolutionAnalytic s/RHadoop/wiki
© Copyright 2014 Haraka	to-Machand Development Company, J. P. The Information contains	d best is subject to drivege with our notice, 19° hoscist vid.	(b)

R «заточен» под статистическую обработку данных, работу с графикой и алгоритмами машинного обучения. В поддерживает широкий спектр статистических и численных методов и обладает хорошей расширяемостью с помощью пакетов. Пакеты представляют собой библиотеки для работы специфических функций или специальных областей применения (например, доступ к BigData, у Oracle есть библиотека для работы с ее RDBMS, парсинга web-страниц и так далее). Используется единый глобальный репозитарий, хотя можно установить новые пакеты из любого источника.

Ещё одной особенностью R являются графические возможности, заключающиеся в возможности создания качественной графики, которая может включать математические символы, в том числе интерактивные 3D-модели на JavaScript.


```
WVPlots::ScatterHist(frm, "x", "y", title="Example Fit")
```

```
## `geom_smooth()` using method = 'loess'
## `geom_smooth()` using method = 'loess'
```


Scatterplot with best linear fit through points. Reports the R-squared and significance of the linear fit.

- 2. Объекты языка R
 - 2.1. Простые Numeric, Complex, Date, Character, Boolean, Raw
 - 2.2. Векторы, Списки, Массивы, Матрицы, Факторы и, пожалуй, самый важные DataFrame (чем-то похожа на таблицы в реляционных базах)
 - 2.2.1. Data Frame создает таблицу данных из поименованных или непоименованных аргументов

```
Console ~/ ⋈
> a <- data.frame(Number=1:4, Letter=c("a","b","c","d"), Boolean=c(FALSE,TRUE,TRUE,FALSE))
  Number Letter Boolean
2
       2
              b
                   TRUE
3
       3
              C
                   TRUE
       4
                  FALSE
> a$Number
[1] 1 2 3 4
> a[["Number"]]
[1] 1 2 3 4
> a[1]
  Number
       1
3
       3
4
       4
> a[-1]
 Letter Boolean
           FALSE
2
       b
            TRUE
3
       C
            TRUE
           FALSE
> a[2:3]
  Letter Boolean
          FALSE
       a
2
       b
            TRUE
3
       C
            TRUE
       d
          FALSE
> a[c("Letter","Boolean")]
  Letter Boolean
           FALSE
       a
2
       b
            TRUE
3
       C
            TRUE
       d
           FALSE
> a[1,]
  Number Letter Boolean
       1
                 FALSE
> a[,1]
[1] 1 2 3 4
> a[2,2]
[1] b
Levels: a b c d
```

- 2.3. Зарезервированные
 - 2.3.1. NULL "пустой" объект
 - 2.3.2. NaN неверная операция, например деление на 0
 - 2.3.3. Inf бесконечность (бывает как со знаком «плюс», так и со знаком «минус»)
 - 2.3.4. NA неизвестное значение (например, когда увеличили длину вектора без его заполнения)

- 3. Команды языка R
 - 3.1. Полезная функция help(....) получить документацию по указанной команде/функции
 - 3.2. Присвоение

- 3.2.1. Интересное использование присвоения
- 3.3. Арифметические

- 3.4. Условные операторы if(), ifelse()
- 3.5. Циклы for, while, бесконечный цикл repeat

```
Console ~/ ♠
> for (k in 1:5){ print(k) }
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
> k <- 1; while (k <= 5){ print(k); k<-k+1 }</pre>
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
> k <- 1; repeat { print(k); k<-k+1; if(k>5) break }
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
>
```

3.6. Функции. Объявляются с помощью ключевого слова function

```
Console ~/ 
> fn=function(a) {
+     if (a) {
+         print("true");
+     } else {
+         print("false");
+     }
+ }
> fn(TRUE)
[1] "true"
> fn(F)
[1] "false"
> |
```

- 4. Пример расчета прогноза продаж и сравнение с данными из Oracle Demantra
 - 4.1. Введение. У ритейла есть большое количество торговых точек, где продаются разные продукты: сотовые телефоны, аксессуары и другое. На основании данных продаж в Oracle Demantra строится прогноз на ближайшие 6 недель о том, сколько будет еще продано. Из-за объемов и "тормозов" самой Demantr'ы делаются упрощения: данные берутся не за каждый день, а за всю неделю, а также не по каждому элементу, а по группе элементов (типа, смартфоны iPhone 6s 64Гб, без учета цвета), и нет различий по точкам продаж. В нашем примере сделаем несколько упрощений (учитываем только продажи, и не учитываем дефицит и остатки; не учитываем «выбросы»; только простая формула регрессии линейная; другие параметры). Так, возьмём только одну группу "Роутер_4G_WIFI_MAIN" с кодом 12225. На этом примере увидим также, как использовать конструкции в языке R.

4.2. Настроим среду

```
Console C:/Users/andrey.zvyagin.DIR/Downloads/Smart Tip/Moe/
                                                                           > Sys.setenv(JAVA_HOME='C:\\Program Files (x86)\\Java\\jre1.8.0_141')
> install.packages("rJava")
trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.4/rJava_0.9-8.zi
Content type 'application/zip' length 716884 bytes (700 KB)
downloaded 700 KB
package 'rJava' successfully unpacked and MD5 sums checked
The downloaded binary packages are in
        C:\Users\andrey.zvyagin.DIR\AppData\Local\Temp\RtmpCsfklQ\downloade
d_packages
> # добавим работу с Excel
> install.packages("xlsx", dep = T)
trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.4/xlsx_0.5.7.zip
Content type 'application/zip' length 401348 bytes (391 KB)
downloaded 391 KB
package 'xlsx' successfully unpacked and MD5 sums checked
The downloaded binary packages are in
        C:\Users\andrey.zvyagin.DIR\AppData\Local\Temp\RtmpCSfklQ\downloade
d_packages
> library("xlsx")
Загрузка требуемого пакета: rJava
Загрузка требуемого пакета: xlsxjars
> library(ggplot2)
> library(dplyr)
Присоединяю пакет: 'dplyr'
Следующие объекты скрыты от 'package:lubridate':
    intersect, setdiff, union
Следующие объекты скрыты от 'package:xts':
    first, last
Следующие объекты скрыты от 'package:stats':
    filter, lag
Следующие объекты скрыты от 'package:base':
    intersect, setdiff, setequal, union
> |
```

4.3. Загрузим исходные данные по продажам

```
Console C:/Users/andrey.zvyagin.DIR/Downloads/Smart Tip/Moe/
 > # загрузим данные по продажам
 > # загрузим данные по продажам

> setwd("C:/Users/andrey.zvyagin.DIR/Downloads/Smart Tip/Moe")

> sales1 <- read.xlsx("sales.xls", sheetIndex = 1); sales2 <- read.xlsx("sales.xls", sheetIndex = 2); sales3 <- read.xl

sx("sales.xls", sheetIndex = 3)

> # подготовим данные
> # NOMITORNM ADARDET
> dates1<-sales1$SALEDATE[rep(which(sales1$DIST_MOD_ID==12225))]; dates2<-sales2$SALEDATE[rep(which(sales2$DIST_MOD_ID=
=12225))]; dates3<-sales3$SALEDATE[rep(which(sales3$DIST_MOD_ID==12225))];
> dates<-c(dates1, dates2, dates3)
> quantity1<-sales1$QUANTITY[rep(which(sales1$DIST_MOD_ID==12225))]; quantity2<-sales2$QUANTITY[rep(which(sales2$DIST_MOD_ID==12225))]; quantity3<-sales3$QUANTITY[rep(which(sales3$DIST_MOD_ID==12225))]</pre>
 > quantity<-c(quantity1,quantity2,quantity3)
> quantity<-quantity[order(dates)] # cop
> dates<-dates[order(dates)] # cop
                                                                                   # сортировка
# сортировка
> sales<-data.frame(dates,quantity)
> head(sales)
               dates quantity
 1 2015-07-27
 2 2015-08-03
3 2015-08-10
                                          1
 4 2015-08-17
 5 2015-08-24
 6 2015-08-31
                                        33
 > head(sales1)
     DIST_MOD_ID
                                 SALEDATE QUANTITY
                 29571 2016-01-25
                                                                  36
                 11131 2016-08-08
10344 2017-07-03
30283 2017-03-27
                                                                  42
                                                                  18
                 10314 2015-11-30
10380 2016-12-05
 5
6
                                                                    3
> |
```

4.4. Построим математическую модель (Natural Cubic Splines)

4.5. Загрузим данные по прогнозу из Oracle Demantra на ближайшие 6 недель

```
Console C:/Users/andrey.zvyagin.DIR/Downloads/Smart Tip/Moe/
> # добавим на график данные из Oracle Demantra
> forecast <- read.xlsx("forecast.xls", sheetIndex = 1)</pre>
> forecast_s<-forecast$SALEDATE[rep(which(forecast$DIST_MOD_ID==12225))]</pre>
> forecast_q<-forecast$QUANTITY[rep(which(forecast$DIST_MOD_ID==12225))]</pre>
> forecast_q<-forecast_q[order(forecast_s)]</pre>
                                                             # сортировка
> forecast_s<-forecast_s[order(forecast_s)]</pre>
                                                             # сортировка
> forecast<-data.frame(dates=forecast_s,quantity=forecast_q)</p>
> forecast
       dates quantity
1 2017-07-31
                   672
2 2017-08-07
                   738
3 2017-08-14
                   672
4 2017-08-21
                   680
5 2017-08-28
                   718
6 2017-09-04
                   639
```

4.6. Построим сами прогноз продаж на ближайшие 6 недель

```
Console C:/Users/andrey.zvyagin.DIR/Downloads/Smart Tip/Moe/
                                                                    RStu...
                                                                                   \Box
                                                                                         X
> # вычислим прогноз
> # 1. построим линейную регрессивную модель
                                                                    forecast ×
> fit.lm<-lm(quantity~ns(dates,12),data=sales)</pre>
                                                                    🗇 🖒 🖳 🗸 Filter 🔍
> summary(Tit.Im)
                                                                          dates
                                                                                   quantity
call:
                                                                        1 2017-07-31
                                                                                      672
lm(formula = quantity ~ ns(dates, 12), data = sales)
                                                                        2 2017-08-07
                                                                                      738
Residuals:
                                                                        3 2017-08-14
                                                                                      672
                     Median
     Min
               1Q
                                   3Q
                                           Max
-1391.42 -186.26
                              159.34 1985.38
                       8.68
                                                                        4 2017-08-21
                                                                                      680
                                                                        5 2017-08-28
                                                                                      718
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                                                                        6 2017-09-04
                                                                                      639
(Intercept)
                   185.9
                               274.0 0.679 0.499043
ns(dates, 12)1
                   4799.8
                               369.6 12.987 < 2e-16 ***
ns(dates, 12)2
                   3268.4
                               462.9
                                       7.061 2.95e-10 ***
                               417.8 11.477
ns(dates, 12)3
ns(dates, 12)4
                   4794.8
                                               < 2e-16 ***
                               443.1 -1.889 0.061989 .
                  -837.1
                  1178.7
                               429.9 2.742 0.007332 **
ns(dates, 12)5
ns(dates, 12)6
                   -166.6
                               437.0 -0.381 0.703949
ns(dates, 12)7
ns(dates, 12)8
                  1615.5
                               433.0
                                        3.731 0.000328 ***
                    802.4
                               434.3
                                        1.848 0.067824 .
ns(dates, 12)9
                    375.3
                               430.4
                                       0.872 0.385511
ns(dates, 12)10
                   1462.8
                               360.8
                                        4.054 0.000104 ***
                               702.2
                   134.0
                                       0.191 0.849040
ns(dates, 12)11
                                                                   Showing 1 to 6 of 6 entries
ns(dates, 12)12
                   1257.7
                                        3.985 0.000134 ***
                               315.6
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 447.9 on 93 degrees of freedom
Multiple R-squared: 0.9085, Adjusted R-squared: 0.8967
F-statistic: 76.96 on 12 and 93 DF, p-value: < 2.2e-16
> # 2. сам прогноз
> myforecast<-data.frame(dates=forecast$dates)
> mypredict<-predict(fit.lm,myforecast)
> mypredict
                          3
       1
932.7451 880.1100 827.4749 774.8398 722.2047 669.5696
```

4.7. Сравним на графике наши результаты

4.7.1. Отличия в расчетах есть, так как в Demantra используется несколько методов: убирание всплесков, разные модели регрессии и выбор из них лучшей и так далее. В рамках этого смарт-типа это не рассматривается.

График Oracle Demantra очень сильно пересекается с графиком реальных продаж из-за того, что реальные остатки долгое время (несколько недель) были «прижаты» тем, сколько было заказано ритейлом на основании прогноза из Oracle Demantra.

5. Перспективы языка R

5.1. Выводы:

- очень удобная работа с данными: массивами и так далее (минимум запросов и кода)
- прекрасные возможности по визуализации данных, инфографика
- очень просто производить очень сложные вычисления (построение запроса буквально в 2 строки)
- большое количество библиотек для большого круга задач: статистика и прочие научные работы, машинное обучение и другое. Новые функции становятся доступными для скачивания еженедельно
- можно не только делать сложные вычисления, но и увидеть логику данных вычислений
- интерактивность (можешь сразу же проверить какую-то теорию, увидеть результаты)
- хорошо документирован
- есть интерфейс для внешних библиотек на других языках программирования
- доступны графические интерфейсы пользователя, которые позволяют стоить модели по типу drap-and-drop (Weka и другие)
- бесплатность

The 2017 Top Programming Languages

Language Rank	Types	Spectrum Ranking
1. Python	⊕ 🖵	100.0
2. C	□ 🖵 🛢	99.7
3. Java	⊕ 🖸 🖵	99.5
4. C++	[] ♀■	97.1
5. C#	\oplus \Box $\overline{\Box}$	87.7
6. R	<u>_</u>	87.7
7. JavaScript		85.6
8. PHP	(81.2
9. Go	⊕ 🖵	75.1
10. Swift		73.7

The 2017 Top Programming Languages (IEEE Spectrum)

5.2. Основной конкурент - язык Python

- 5.2.1. R проигрывает Python: Python это универсальный язык, более распространен, R больше для интерактивной работы
- 5.2.2. R выигрывает Python: больше библиотек, один глобальный репозиторий пакетов и в целом система их установки, скорость R (все библиотеки на C/C++), многовариантность решения задач, простота в работе, больше зарплата
- 5.2.3. SAS можно не рассматривать, так как он используется в очень крупном энтерпрайзе

Tool Preference for Data Scientists vs. Other Predictive Analytics Professionals

2017 SAS, R, or Python Flash Survey Results (Burtch Works Executive Recruiting)

5.2.4. Очень часто аналитики используют оба языка

New Leader, Trends, and Surprises in Analytics, Data Science, Machine Learning Software Poll (KDnuggets News)

6. Ссылки

- 6.1. Основной сайт проекта
- 6.2. <u>CRAN (Comprehensive R Archive Network) центральная система хранения и распространения R и его пакетов</u>
- 6.3. <u>Язык программирования R Викиучебник</u>
- 6.4. Блог "Р.: Анализ и визуализация данных"
- 6.5. Python & R codes for common Machine Learning Algorithms