MSE 160 Lecture Notes

Hei Shing Cheung Molecules and Materials, Winter 2024

MSE 160

"In this class we are mostly understanding solids"
- Prof. Scott Ramsay

1 Mechanical Behavior

Classes of Materials In this class, we look at three classes of materials (non-exhaustive):

- Metal held together with metallic bonds, typically ductile and conductive.
- Ceramics (often metal oxides [excp: diamond]) held together via covalent & ionic bonds, typically brittle and insulating.
- Polymers Molecules (often hydrocarbons) typically ductile and insulating

Engineering Stress We know that:

$$\sigma = \frac{F}{A_0} \tag{1}$$

Engineering Strein Also:

$$\epsilon = \frac{\Delta l}{l_0} \tag{2}$$

Young's Moduclus For elastic deformation, E, is given, by Hooke's Law, as follows:

$$\sigma = E\epsilon \tag{3}$$

Tensile Test We apply force as to the ends of a dogbone-sample, with l_0 being the gauge length and A_0 being the area of the cross-section at the middle.

1 atm = 101.325 kPa = 1.01325 bar = 14.696 psi $6.022 \times 10^{23} \, \mathrm{mol}^{-1}$

 $1.602 \times 10^{-19} \, \mathrm{C}$

 $1.602 \times 10^{-19} \,\mathrm{J}$ 1 eV

 $8.854 \times 10^{-12} \, \mathrm{F} \, \mathrm{m}^{-1}$

 $8.314\,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}$

 $0.082\,067\,\mathrm{L}\,\mathrm{atm}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}$ $273.15\,\mathrm{K}$ 0°C

 $8.62\times 10^{-5}\,{\rm eV\,atom^{-1}\,K^{-1}}$ $1.38 \times 10^{-23} \, \mathrm{J} \, \mathrm{atom}^{-1} \, \mathrm{K}^{-1}$

 $96486 \,\mathrm{C}\,\mathrm{mol}^{-1}$

 $4.136\times10^{-15}\,\mathrm{eV}\,\mathrm{s}$ $6.626 \times 10^{-34} \,\mathrm{J\,s}$

 $2.99\times 10^8\,{\rm m\,s^{-1}}$ $9.81\,\mathrm{m\,s^{-2}}$

Microstructure

 $LPF = \frac{\text{length of atoms}}{\text{length of vector}}$ $PPF = \frac{\text{area of atoms}}{\text{area of plane}}$ $A = \pi r^2$ $N_V = N \exp(-\frac{Q_V}{kT})$ $n\lambda = 2d_{\rm hkl}\sin\theta$ $\rho = \frac{nA}{V_C N_A}$ $APF = \frac{V_S}{V_C}$ $a = \frac{4}{\sqrt{3}}R$ $n_w=\overline{rac{M_w}{\overline{m}}}$ $d_{\rm hkl} = \frac{1}{\sqrt{h^2 + k^2 + l^2}}$ $\rho = \frac{n_A A_A + \bar{n}_C A_C}{V_C N_A}$ $A_{\text{triangle}} = \frac{1}{2}bh$ $LD = \frac{\#}{\text{Length}}$ $PD = \frac{\#}{\text{Area}}$ $V = \frac{4}{3}\pi r^3$ $a = 2\sqrt{2}R$ $N = \frac{N_A \rho}{M_A \rho}$ $n_n = \frac{\overline{N_n}}{\overline{m}}$

Mechanical Behaviour

aviour	$\epsilon = rac{\Delta l}{l_0}$	$\sigma_{3 ext{-point}} = rac{3FL}{2wh^2}$	$\epsilon_T = \ln(1 + \epsilon)$	$\sigma_T = K \epsilon_T^n$	$\nu = -\frac{\epsilon_x}{\epsilon_z} = -\frac{\epsilon_y}{\epsilon_z}$
INTECTIONICAL Dellayloni	$\sigma=rac{F}{A_0}$	$\sigma = E\epsilon$	$\sigma_T = \sigma(1+\epsilon)$	$\sigma_T = rac{F}{A_i}$	$E = 2\ddot{G}(1 + \nu)$

Magnetic Behaviour

$B_0=\mu_0 H$	$B=\mu_0 H + \mu_0 M$	$\mu_B=rac{e\hbar}{2m_e}=eta$	
$H = \frac{NI}{L}$	$M = \chi_m H$	$B = (1 + \chi_m)\mu_0 H$	$\beta = 9.27 \times 10^{-24} Am^2$

Electrical Behaviour

 $\sigma = n|e|\mu_e$ $\sigma = n|e|\mu_e + p|e|\mu_h$ $\sigma = p|e|\mu_h$

Electrochemistry

$$E = E^{\circ} - \frac{RT}{nF} \ln Q \qquad I = \frac{nC}{t}$$

$$E_{\text{at } 25 \circ \text{C}} = E^{\circ} - \frac{0.0592}{n} \ln Q$$

$$w = nFE^{\circ}$$

Thermodynamics

$$PV = nRT \qquad \Delta U = q + w$$

$$\Delta U = q - P_{\text{ext}} \Delta V \qquad H \equiv U + PV$$

$$G \equiv H - TS \qquad \Delta S = \frac{q_{\text{rev}}}{T}$$

$$\text{constant T: } \Delta G = \Delta H - T \Delta S$$

$$q = mc\Delta T$$

For $aA + bB \to cC + dD$, $Q = \frac{a_C^c a_D^d}{a_A^d a_B^D}$

 $\Delta_{\rm r}G = \Delta G^\circ + RT \ln Q$

 $\Delta_{\rm r} H^{\circ} = (\Sigma v_i \Delta_{f,i} H^{\circ})_{\rm prod.} - (\Sigma v_i \Delta_{f,i} H^{\circ})_{\rm react.}$

 $\Delta_{\rm r} S^{\circ} = (\Sigma v_i \Delta_{f,i} S^{\circ})_{\rm prod.} - (\Sigma v_i \Delta_{f,i} S^{\circ})_{\rm react.}$ $W_{\rm phase} = \frac{\text{length of opp. side of lever}}{\text{total leneth of lever}}$ total length of lever

Specific heats and heat capacities

Substance	$c \left(\frac{J}{g \cdot K} \right)$	$C_P \left(\frac{J}{mol \cdot K} \right)$
Air(g)	1.0	ı
$CO_2(g)$	0.843	37.1
$H_2(g)$	14.304	28.836
$H_2O(g)$	2.03	36.4
$H_2O(l)$	4.184	75.3
$H_2O(s)$	2.09	37.7
NaCl	0.853	50.5

Temperatures and enthalpies of phase changes

29.378

0.918

 $O_2(g)$

Lormon and		and the second of the second o	-	220
ubstance	M.P.	$\Delta_{fus}H$	B.P.	$\Delta_{vap}H$
	$(_{\mathcal{O}}_{\circ})$	$\frac{kJ}{mol}$	$(_{\mathcal{O}}_{\mathcal{O}})$	$\frac{k\bar{J}}{mol}$
Al	658	10.6	2467	284
Ca	851	9.33	1487	162
CH_4	-182	0.92	-164	8.18
H_2O	0	6.01	100	40.7
Fe	1530	14.9	2735	354

Standard formation enthalpy, standard entropy and standard formation Gibbs energy at $298.15\,\mathrm{K}$

$\Delta_f G^{\circ} \over (\frac{kJ}{mol})$	0	-50.75	-23.49	1	1	-1162	ı	1	-394.4	ı	ı	ı	0	ı	1	-228.6	1	0
$S^{\circ} \\ (\frac{J}{mol \cdot K})$	5.74	180.2 200.93	269.9	70.3	38.1	68.87	92.6	83.0	213.6	93.1	1	33.2	27.3	87.4	130.68	188.7	69	205.0
$\Delta_f H^\circ \over (rac{kJ}{mol})$	0	-74.81 -83.9	-103.8	-59.8	-635	-1225	-1186	-987.0	-393.5	-168.6	-154.79	1	0	-824.2	1	-241.8	-285.8	0
Species	C	$CH_4(g) \ C_2H_2(g)$	$C_3H_8(g)$	$CaC_2(s)$	CaO(s)	$CaF_2(s)$	$CaF_2(l)$	$Ca(OH)_2(s)$	$CO_2(g)$	$Cu_2O(s)$	$Cu_2O(l)$	Cu(s)	Fe(s)	$Fe_2O_3(s)$	$H_2(g)$	$H_2O(g)$	$H_2O(l)$	$O_2(g)$

Miscellaneous enthalpies

	T	
Substance	${ m Reaction}$	$\Delta H(rac{kJ}{mol})$
F_2	$F_2 \to F(g)$	157
ĮΉ	$F(g) \to F^-(g)$	-328
Ca	$Ca(g) \to Ca^{2+}(g)$	1734
NaCl	$NaCl(s) \rightarrow$	
	$Na^{+}(aq) + Cl^{-}(aq)$	3.9

Scott Ramsay, December 2024

IUPAC Periodic Table of the Elements

18 2 helium 4.0026 ± 0.0001	10 Neon 20.180 ± 0.001	18 Ar argon 39.95 ± 0.16	36 Krypton 83.798 ±0.002	54 Xenon xenon 131.29 ± 0.01	86 Rn radon	Og oganesson
17	9 fluorine 18.998 ± 0.001	17 Chlorine 35.45 ± 0.01	35 Br bromine 79.904 ± 0.003	53 lodine 126.90 ± 0.01	85 At astatine [210]	TS TS tennessine [294]
16	8 Oxygen 15,999 ± 0.001	16 Sulfur 32.06 ± 0.02	34 Se selenium 78.971 ± 0.008	52 Te tellurium 127.60 ± 0.03	84 Po polonium [209]	116 LV livermorium [293]
15	7 Nitrogen 14.007 ± 0.001	15 phosphorus 30.974 ± 0.001	33 AS arsenic 74.922 ± 0.001	51 Sb antimony 121.76 ± 0.01	83 Bi bismuth 208.98 ± 0.01	Mc moscovium [290]
4	6 carbon 12.011 ± 0.002	35 Silicon 28.085 ± 0.001	32 Ge germanium 72.630 ± 0.008	50 Sn tin 118.71 ± 0.01	82 Pb lead 207.2 ± 1.1	114 F flerovium [290]
13	5 boron 10.81 ± 0.02	13 AI aluminium 26.982 ± 0.001	31 Ga gallium 69.723 ± 0.001	49	81 thallium 204.38 ± 0.01	Nh nihonium
'		12	30 Zn zinc 65.38 ± 0.02	Cd cadmium 112.41 ± 0.01	80 Hg mercury 200.59 ± 0.01	Ch copernicium
		11	29 Cu copper 63.546 ± 0.003	47 Silver 107.87 ± 0.01	79 Au gold 196.97 ± 0.01	Rg roentgenium
		10	28 Ni nickel 58.693 ± 0.001	46 Pd palladium 106.42 ± 0.01	78 Pt platinum 195.08 ± 0.02	DS darmstadtium
		6	27 Co cobalt 58.933 ± 0.001	45 Rh rhodium 102.91 ± 0.01	77 r iridium 192.22 ± 0.01	109 Mt meitnerium
		œ	26 Fe iron 55.845	44 Ru ruthenium 101.07 ± 0.02	76 Os osmium 190.23 ± 0.03	108 HS hassium [269]
		7	25 Mn manganese 54.938 ±0.001	Tc Tc technetium	75 Re rhenium 186.21 ± 0.01	107 Bh bohrium [270]
		9	24 Cr chromium 51.996 ± 0.001	42 Mo molybdenum 95.95 ± 0.01	74 W tungsten 183.84 ± 0.01	Sg seaborgium
	oc	5	23 Vanadium 50.942 ± 0.001	Nb niobium 92.906 ± 0.001	73 tantalum 180.95 ± 0.01	105 Db dubnium [268]
Кеу:	Symbol Symbol name abridged standard atomic weight	4	22 Tittanium 47.867 ± 0.001	40 Zr zirconium 91.224 ± 0.002	72 Hf hafnium 178.49 ± 0.01	104 Rf rutherfordium
		8	21 Sc scandium 44.956 ± 0.001	39 yttrium 88.906 ± 0.001	57-71 Ianthanoids	89-103 actinoids
7	4 Be beryllium 9.0122 ± 0.0001	12 Mg magnesium 24.305 ± 0.002	20 Ca calcium 40.078 ± 0.004	38 Sr strontium 87.62 ± 0.01	56 Ba barium 137.33 ± 0.01	88 Ra radium
1 hydrogen 1.0080 ± 0.0002	3 Li ithium 6.94 ± 0.06	Na sodium 22.990 ± 0.001	19 K potassium 39.098 ± 0.001	37 Rb rubidium 85.468 ± 0.001	55 Cs caesium 132.91 ± 0.01	87 Fr francium [223]

International Union of Pure and Applied Chemistry

71 Lu lutetium 174.97 ± 0.01	103 Lr lawrencium [262]
70 Yb ytterbium 173.05 ± 0.02	102 No nobelium [259]
69 Tm thulium 168.93 ± 0.01	Md mendelevium [258]
68 Er erbium 167.26 ±0.01	100 Fm fermium [257]
67 Ho holmium 164.93 ± 0.01	99 ES einsteinium [252]
66 Dy dysprosium 162.50 ± 0.01	98 Cf californium [251]
65 Tb terbium 158.93 ± 0.01	97 BK berkelium [247]
64 Gd gadolinium 157.25 ± 0.03	96 Cm curium [247]
63 Europium 151.96 ± 0.01	95 Am ameridum [243]
62 Samarium 150.36 ± 0.02	94 Pu plutonium [244]
61 Pm promethium	ND neptunium [237]
60 Nd neodymium 144.24 ± 0.01	92 uranium 238.03 ± 0.01
59 Pr praseodymium 140.91 ± 0.01	91 Pa protactinium 231.04 ±0.01
58 Cerium 140.12 ± 0.01	90 Thorium 232.04 ± 0.01
57 La lanthanum 138.91 ± 0.01	89 Ac actinium

For notes and updates to this table, see www.iupac.org. This version is dated 4 May 2022. Copyright © 2022 IUPAC, the International Union of Pure and Applied Chemistry.