Towards Formally Verified Finance with Linear Temporal Logic

A financial contract is a component in a reactive system

Quinn Dougherty

Casper Association - R&D

2024 Jan 17

- * Logic
 - \rightarrow Introduction
 - \rightarrow Why it matters in financial software
- * Linear Temporal Logic (LTL)
 - \rightarrow Beyond truth to truth when
- * ACTUS
 - \rightarrow PAM in LTL
- * LTL-ACTUS (demo)
 - $\rightarrow\,$ A formal verification strategy for finance

Logic ●00000

Logic

- * What is logic
- * Why it matters in financial software

» What is logic

Study of an argument's structure

Example: modus ponens

If it is raining, then the ground is wet. It is raining. Therefore, the ground is wet.

Example: modus tollens

If it is snowing, then it is cold outside. It is not cold outside. Therefore, it is not snowing.

» The connectives

And

 $P \wedge Q$ if and only if P is true and Q is true.

Or

 $P \vee Q$ if and only if at least one of P or Q is true

Not

 \neg if and only if P is not true

» The quantifiers

For all / for every

 $\forall x, Px$ is true if P is always true regardless of what x is

There exists / for some

 $\exists x, Px$ is true if P is true at least once throughout values of x

Why logic matters in software and finance

Beyond quality assurance

Testing on steroids: quantified proofs rather than piecemeal instances

Formal verification

- * Quantify ("for all") over a program's inputs, execution traces of nondeterministic programs, or over all programs of a language
- * Prove correctness with respect to a specification

Linear Temporal Logic (LTL)

» Linear Temporal Logic (LTL)

- * Beyond truth to truth when
- * Logic that's aware of timestep

» The modal operators

Always

 $\Box P$ is true if P is true regardless of timestep

Eventually

 $\Diamond P$ is true if P will come true at some timestep, but possibly not yet

» Verifying a traffic light with LTL

A traffic light should never be green in all directions
$\square \left((\text{northGreen} \land \text{southGreen}) \rightarrow \neg (\text{eastGreen} \lor \text{westGreen}) \right)$
A traffic light should eventually turn green in all directions
$\Box\Diamond \mathrm{northGreen} \wedge \Box\Diamond \mathrm{southGreen} \wedge \Box\Diamond \mathrm{eastGreen} \wedge \Box\Diamond \mathrm{westGreen}$

Algorithmic Contract Types **Unified Standard (ACTUS)**

PAM

Pay interest periodically, but principal only at end of term

Algorithmic Contract Types Unified Standard (ACTUS)

» PAM in LTL

The terms are static throughout lifetime of contract

 \square Terms(principal=1000, ir=0.05, months=24)

The eventual total repayment is equal to the principal plus interest

 $\lozenge \; State(\texttt{total_repayment=principal} \; * \; (1 + \texttt{ir} \; / \; 12) \; * \; \texttt{months})$

We connect each of these temporal propositions together with "and" (\land)

LTL-ACTUS (demo)

» LTL-ACTUS (demo)

Linear temporal logic as the financial execution environment

» Demo

