Devoir maison 2

Exercice 1 Dites si les fonctions suivantes sont holomorphes sur leur domaine de définition :

(i)
$$\frac{e^z}{z^3}$$
 (ii) $\frac{z}{z^2+1}$ (iii) \overline{z} (iv) $e^{1/(z^2+3z)}$ (v) $\operatorname{Re}(z)$.

Parmi ces fonctions lesquelles définissent des fonctions méromorphes sur \mathbb{C} ?

Pour les fonctions ci-dessus qui sont méromorphes sur \mathbb{C} déterminez les pôles et les résidus en ces pôles.

Exercice 2 Soient γ_1 et γ_2 deux lacets dans $\mathbb{C} \setminus \{0\}$, vérifiant l'hypothèse suivante :

$$\forall t \in [0,1], \quad |\gamma_1(t) - \gamma_2(t)| < |\gamma_1(t)| + |\gamma_2(t)|.$$

Montrer que ces deux lacets sont homotopes dans \mathbb{C}^* .

Indication: Considérez $H(s,t) = (1-s)\gamma_1(t) + s\gamma_2(t)$ $s \in [0,1]$ et par l'absurde vérifiez que $H(s_0,t) = 0$ est impossible.

Exercice 3 L'objectif de cet exercice est de faire réfléchir avec des arguments d'abord élémentaires au logarithme complexe.

Tâchons de répondre à une question toute simple :

Que vaut
$$\log(-1)$$
?

- 1. Supposons que la formule $\log(xy) = \log(x) + \log(y)$ est valable également pour les nombres négatifs. Quelle valeur trouvez-vous pour $\log(-1)$?
- 2. Partons maintenant de la formule qui définit le logarithme :

$$\log(x) = \int_1^x \frac{1}{t} dt .$$

On voudrait naturellement l'appliquer pour calculer $\log(-1)$. Quel est le problème?

3. On peut peut-être éviter ce problème en calculant une valeur principale « à la Cauchy », en posant

$$\log(x) = \lim_{\epsilon \to 0^+} \left(\int_1^{\epsilon} \frac{1}{t} dt + \int_{-\epsilon}^x \frac{1}{t} dt \right) .$$

Qu'obtenez-vous pour $\log(-1)$? Ce résultat est-il compatible avec ce que vous avez trouvé en (a)?

4. Les résultats que vous venez d'obtenir vous paraissent peut-être convaincants. Sont-ils compatibles avec l'identité

$$x = e^{\log(x)}$$
 ?

- 5. Vous disposez de nouveaux outils pour contourner le problème : Définissez le logarithme de par $\log(-1) = \int_{\gamma} \frac{dz}{z}$ où γ est un chemin $\mathbb{C} \setminus \{0\}$ allant de 1 à -1. Que trouve-t-on si $\gamma(t) = e^{it}$, $t \in [0, \pi]$, le demi-cercle supérieur? et pour $\gamma(t) = e^{-it}$, $t \in [0, \pi]$, le demi-cercle inférieur?
- 6. Les valeurs obtenues en 5) contredisent-elles le théorème d'invariance par homotopie pour l'intégrale sur un chemin d'une fonction holomorphe? Pourquoi?

- 7. Les valeurs obtenues en 5) pour $\log(-1)$ sont-elles compatibles entre elles? Avec celle obtenue en 1) et 3)? Calculez maintenant $\int_{\gamma_1} \frac{1}{z} dz$ pour $\gamma_1(t) = e^{it}$, $t \in [0, (2k+1)\pi]$, $k \in \mathbb{N}$ et $\int_{\gamma_2} \frac{1}{z} dz$ pour $\gamma_2(t) = e^{-it}$, $t \in [0, (2k+1)\pi]$, $k \in \mathbb{N}$. Combien avez-vous de valeurs différentes pour $\log(-1)$?
- 8. Une détermination du logarithme est une fonction continue f d'une variable complexe z, définie sur un ouvert connexe Ω de \mathbb{C} ne contenant pas 0, telle que

$$\forall z \in \Omega, \quad e^{f(z)} = z.$$

Soit Ω un ouvert connexe ne contenant pas 0. Montrer que si f et g sont deux déterminations du logarithme sur Ω , alors il existe $k \in \mathbb{Z}$ tel que $\forall z \in \Omega$, $g(z) = f(z) + 2\pi i k$. Expliquer en particulier pourquoi $k \in \mathbb{Z}$ ne dépend pas de $z \in \Omega$.

- 9. Montrer qu'il n'existe pas de détermination (continue) du logarithme sur \mathbb{C}^* . Indication : On prendra la détermination du continue du logarithme sur $\mathbb{C}\setminus]-\infty,0]$ donnée par $f_+(re^{i\theta}) = \log(re^{i\theta}) = r+i\theta$ pour $\theta \in]-\pi,\pi[$. En supposant que f est une détermination continue du logarithme sur \mathbb{C}^* on compare f avec f_+ sur $\mathbb{C}\setminus]-\infty,0]$ d'après 8) et on regarde $\lim_{\theta\to\pm\pi} f(e^{i\theta})$.
- 10. Cependant, il existe une détermination du logarithme sur l'ouvert $\Omega = \mathbb{C} \setminus]-\infty,0]$ que l'on dit *principale*. Nous allons la construire.
 - (a) On se retreint à l'ouvert $U = \{x + iy \mid x > 0\}$, et on y définit la fonction $u(x, y) = \frac{1}{2} \log(x^2 + y^2)$. Déterminer l'unique fonction v(x, y) telle que g = u + iv soit holomorphe sur U et telle que g(1) = 0.
 - (b) Que se passe-t-il lorsque y = 0? Sommes-nous sur la bonne voie?
 - (c) Déterminer r et θ tels que l'on puisse écrire $g(z) = \log(r) + i\theta$. Déduire que pour tout $z \in U$,

$$e^{g(z)} = z .$$

En fait, nous aurions pu déduire cette égalité sans calcul. Comment? *Indication : se servir du théorème des zéros isolés.*

(d) Pour $z = x + iy \in \Omega$ on pose

$$r = \sqrt{x^2 + y^2}, \quad \theta = 2 \arctan\left(\frac{y}{x + \sqrt{x^2 + y^2}}\right),$$

et on définit la fonction

$$Log(z) = log(r) + i\theta$$
.

Montrer que Log(z) est bien holomorphe sur Ω et qu'elle est sur cet ouvert l'unique primitive de 1/z s'annulant en 1.

(e) Soit $\epsilon > 0$. Calculer

$$\lim_{\epsilon \to 0} \operatorname{Log}(-1 + i\epsilon) \quad \text{et} \quad \lim_{\epsilon \to 0} \operatorname{Log}(-1 - i\epsilon) .$$

Que remarquez-vous?

- 11. Vérifiez que la détermination principale du logarithme Log est un biholomorphisme de $\mathbb{C}\setminus]-\infty,0]$ sur $\mathbb{R}\times]-\pi,\pi[\subset\mathbb{C}$.
- 12. Surface de Riemann du logarithme : Nous notons $\widehat{\mathbb{C}^*}$ l'ensemble $\mathbb{C}^* \times \mathbb{Z}$ muni de la topologie suivante :
 - Pour $(z_0, k) \in \widehat{\mathbb{C}}^*$ tel que $z_0 \in \mathbb{C} \setminus]-\infty, 0]$ les boules de rayon $\varepsilon > 0$, $\varepsilon < \min(|z_0|, d(z_0,]-\infty, 0])$, sont données par $B((z_0, k), \varepsilon) = \{(z, k), |z z_0| < \varepsilon\}$;
 - Pour $z_0 \in]-\infty,0[$ et $k \in \mathbb{Z}$, la boule de rayon $\varepsilon < |z_0|$ est donnée par

$$B((z_0, k), \varepsilon) = \{(z, k), |z - z_0| < \varepsilon, \text{Im } z > 0\} \cup \{(z, k - 1), |z - z_0| < \varepsilon, \text{Im } z < 0\}.$$

- (a) Prenez une feuille de papier et découpez 3 exemplaires d'une couronne représentant $\{z \in \mathbb{C}, 1/2 < |z| < 2\}$. Coupez ces 3 couronnes le long de [-2, -1/2]. La première représente l'ensemble des (z,0), 1/2 < |z| < 2, la deuxième l'ensemble des (z,1), 1/2 < z < 2 et la troisième l'ensemble des (z,2), 1/2 < z < 2. Collez ces 3 couronnes suivant la topologie de $\widehat{\mathbb{C}}^*$. Visualisez un chemin continu $\gamma(t) = (z(t), k(t))$, $z(t) = e^{it}$, $t \in [0, 4\pi]$, allant de (1,0) à (1,2) et dessinez le (juste le chemin) en perspective sur votre copie, en mettant (1,k) sur le point de \mathbb{R}^3 de coordonnées (1,0,k).
- (b) En étudiant ce qui se passe aux points de raccord, $(x+i0^+,k)=(x+i0^-,k-1)$, $x\in]-\infty,0[$, montrer qu'il existe une application continue sur $\widehat{\mathbb{C}}^*$, $\widehat{\operatorname{Log}}:\widehat{\mathbb{C}}^*\to\mathbb{C}$, dont la restriction sur $\Omega_k=\{(z,k)\,,z\in\mathbb{C}\setminus]-\infty,0]\}$, $k\in\mathbb{Z}$ est donnée par

$$\widehat{\text{Log}}(z,k) = 2ik\pi + \text{Log}(z) \in \mathbb{R} \times](2k-1)\pi, (2k+1)\pi[.$$

- (c) Si $\Pi: \widehat{\mathbb{C}^*} \to \mathbb{C}^*$ est donnée par $\Pi(z,k) = z$, que vaut $\Pi(\widehat{\operatorname{Log}}^{-1}(u))$ pour $u \in \mathbb{C}$?
- (d) Montrer que $\widehat{\mathbb{C}^*}$ est un homéomorphisme de $\widehat{\mathbb{C}^*}$ sur \mathbb{C} .

Devoir maison 2

Correction 1 i) On écrit $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n}$ pour $z \in \mathbb{C}$, ce qui donne le développement de Laurent $\frac{e^z}{z^3} = \sum_{n=0}^{\infty} \frac{z^{n-3}}{n!} = \sum_{n=-3}^{+\infty} \frac{z^n}{(n+3)!}$. Cette fonction est méromorphe sur \mathbb{C} avec un pôle d'ordre 3 en z=0 et le résidu $\frac{1}{(-1+3)!} = \frac{1}{2}$.

- ii) $\frac{z}{z^2+1}=\frac{z}{(z-i)(z+i)}$ est le quotient de deux fonctions holomorphes sur l'ouvert connexe $\mathbb C$. Elle est méromorphe avec deux pôles simples en z=+i et z=-i. Les résidus en ces points sont Rés $\left(\frac{z}{z^2+1},+i\right)=\frac{i}{(i+i)}=\frac{1}{2}$ et Rés $\left(\frac{z}{z^2+1},-i\right)=\frac{-i}{(-i-i)}=\frac{1}{2}$.
- iii) $\partial_{\overline{z}}\overline{z}=1$ et cette fonction n'est jamais holomorphe sur un ouvert de \mathbb{C} et elle n'est donc pas méromorphe sur un ouvert de \mathbb{C} .
- iv) $e^{\frac{1}{z^2+3z}}=e^{\frac{1}{z(z+3)}}$ est holomorphe sur $\mathbb{C}\setminus\{0,-3\}$. Elle admet des singularités essentielles en z=0 et z=-3 car $|t|^Ne^{\frac{1}{t(t+3)}}\to+\infty$ quand $t\to0^+$ et $|t+3|^Ne^{\frac{1}{t(t+3)}}\to+\infty$ quand $t\to-3^-$.
- v) $\partial_{\overline{z}} \operatorname{Re} z = \frac{1}{2}$ et Re z n'est holomorphe sur aucun ouvert de $\mathbb C$. Elle n'est méromorphe sur aucun ouvert de $\mathbb C$.

Correction 2 On suit l'indication. Si il existe $(s_0,t) \in [0,1] \times [0,1]$ tel que $H(s_0,t) = 0$ alors

$$|s_0|\gamma_2(t) - \gamma_1(t)| = |\gamma_1(t)|$$
 et $(1 - s_0)|\gamma_2(t) - \gamma_1(t)| = |\gamma_2(t)|$.

Mais la somme de ces deux égalités contredit

$$\forall t \in [0, 1], |\gamma_2(t) - \gamma_1(t)| < |\gamma_1(t)| + |\gamma_2(t)|.$$

Ainsi $H:[0,1]\times[0,1]\to\mathbb{C}$ est une homotopie de γ_1 (pour s=0) à γ_2 (pour s=1) qui reste dans l'ouvert $\mathbb{C}\setminus\{0\}$.

Correction 3 1. On écrit $\log((-1)\times(-1)) = \log(1) = 2\log(-1)$ et on trouve $\log(-1) = 0$.

- 2. Si on prend $\log(x) = \int_1^x \frac{dt}{t}$ le problème est que $\frac{1}{t}$ n'est pas intégrable au voisinage de 0 et donc l'intégrale n'est pas définie pour x < 0.
- 3. Si on utilise la valeur principale à la « Cauchy » on trouve

$$\lim_{\varepsilon \to 0^+} \int_1^\varepsilon \frac{dt}{t} + \int_{-\varepsilon}^x \frac{dt}{t} = \lim_{\varepsilon \to 0^+} [\log(t)]_1^\varepsilon + [\log|t|]_{-\varepsilon}^x = \log(|x|) \,.$$

Pour x=-1 on trouve $\log(-1)=0$ ce qui est la même valeur qu'à la première question.

- 4. Non $\log(-1)=0$ nous donne $e^{\log(-1)}=e^0=1\neq -1$. Ce n'est donc pas une « bonne définition » du logarithme complexe si on veut « inverser » l'exponentielle.
- 5. Avec $\gamma(t) = e^{it}$ pour $t \in [0, \pi]$, on trouve

$$\int_{\gamma} \frac{dz}{z} = \int_{0}^{\pi} \frac{ie^{it}dt}{e^{it}} = +i\pi.$$

Avec $\gamma(t) = e^{-it}$ pour $t \in [0, \pi]$ on trouve

$$\int_{\gamma} \frac{dz}{z} = \int_0^{\pi} \frac{-ie^{-it}dt}{e^{-it}} = -i\pi.$$

- 6. Non il n'y a pas de contradiction car $z \to \frac{1}{z}$ est holomorphe sur $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ et $\gamma_+(t) = e^{it}$ et $\gamma_-(t) = e^{-it}$, $t \in [0, \pi]$, s'ils sont homotopes dans \mathbb{C} , ne sont pas homotopes dans $\mathbb{C} \setminus \{0\}$.
- 7. Les valeurs obtenues pour $\log(-1)$ au 5) sont différentes mais leur différence est égale à $2i\pi$. Donc l'exponentielle de ces deux valeurs donnent le même résultat. Si on prend $\gamma_1(t) = e^{it}$ pour $t \in [0, (2k+1)\pi]$ on obtient

$$\int_{\gamma_1} \frac{dz}{z} = \int_0^{(2k+1)\pi} \frac{ie^{it}dt}{e^{it}} = i(2k+1)\pi.$$

Pour $\gamma_2(t) = e^{-it}$, $t \in [0, (2k+1)\pi]$, on obtient

$$\int_{\gamma_2} \frac{dz}{z} = \int_0^{2k+1} \frac{-ie^{-it}dt}{e^{-it}} = -i(2k+1)\pi.$$

On obtient donc une infinité de valeurs, toutes les nombres de $i\pi + 2i\pi\mathbb{Z}$, pour $\log(-1)$.

8. Si Ω est un ouvert connexe et f et g sont deux fonctions continues de Ω dans $\mathbb C$ telles que

$$\forall z \in \Omega . e^{f(z)} = z = e^{g(z)}$$
.

alors $e^{f(z)}=e^{g(z)}$ implique $f(z)-g(z)\in 2i\pi\mathbb{Z}$. Ainsi g-f est une fonction continue de Ω connexe à valeurs dans $2i\pi\mathbb{Z}$ qui est discret. Cela implique que g-f est constante. Donc il existe $k\in\mathbb{Z}$ tel que

$$\forall z \in \Omega$$
, $q(z) = f(z) + 2ik\pi$.

9. La fonction $f_+(re^{i\theta}) = \log(r) + i\theta$ est continue sur $\Omega = \mathbb{C} \setminus \mathbb{R}_-$. Si f est une détermination continue du logarithme sur $\mathbb{C} \setminus \{0\}$, alors $f|_{\mathbb{C} \setminus \mathbb{R}}$ est une fonction continue telle que

$$\forall z \in \Omega = \mathbb{C} \setminus \mathbb{R}_{-}, \quad e^{f(z)} = z = e^{f_{+}(z)}.$$

Comme $\Omega = \mathbb{C} \setminus \mathbb{R}_{-}$ est connexe (il est étoilé en 1), la question 8 nous dit qu'il existe $k \in \mathbb{Z}$ telle que

$$\forall z \in \Omega \setminus \mathbb{R}_-, \quad f(z) = f_+(z) + 2ik\pi.$$

Mais alors on obtient

$$\lim_{\theta \to +\pi} f(e^{i\theta}) = \lim_{\theta \to +\pi} f_+(e^{i\theta}) + 2ik\pi = i(2k+1)\pi$$
et
$$\lim_{\theta \to -\pi} f(e^{i\theta}) = \lim_{\theta \to -\pi} f_+(e^{i\theta}) + 2ik\pi = i(2k-1)\pi \neq i(2k+1)\pi.$$

La fonction f n'est pas continue en $-1 = e^{i\pi}$. Il ne peut y avoir de détermination continue du logarithme sur $\mathbb{C} \setminus \{0\}$.

10. (a) Si g(x+iy) = u(x,y)+iv(x,y) est holomorphe sur U si et seulement si $u,v \in \mathcal{C}^1(U;\mathbb{R})$ avec

$$\partial_x u = \partial_y v$$
 et $\partial_x v = -\partial_y u$.

La première égalité donne $\partial_y v = \frac{x}{x^2 + y^2}$ et

$$v(x,y) = v(x,0) + \int_0^y \frac{xdt}{x^2 + t^2} = v(x,0) + \int_0^{y/x} \frac{ds}{1 + s^2} = v(x,0) + \arctan(\frac{y}{x}).$$

La deuxième égalité donne

$$\partial_x v = \partial_x v(x,0) - \frac{1}{x^2 + y^2} = -\partial_y u = -\frac{1}{x^2 + y^2}$$

et donc $\partial_x v(x,0) = 0$. Avec g(1) = 0 et donc v(1,0) = 0 cela conduit à

$$g(x+iy) = \frac{1}{2}\log(x^2+y^2) + i\arctan(\frac{y}{x}).$$

(b) Pour y = 0 et x > 0 on trouve

$$g(x) = \frac{1}{2}\log(x^2) = \log(x)$$
.

La fonction g est donc bien un prolongement holomorphe sur $U = \{x + iy, x > 0\}$ du logarithme défini sur $[0, +\infty[$.

(c) Si on pose $g(z) = \log(r) + i\theta$ pour $z = x + iy \in U$, on obtient

$$r = e^{u(x,y)} = e^{\frac{1}{2}\log(x^2 + y^2)} = \sqrt{x^2 + y^2} \quad \text{et} \quad \theta = v(x,y) = \arctan(\frac{y}{x}) \in] - \frac{\pi}{2}, \frac{\pi}{2}[$$

Les nombres r > 0 et $\theta \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ ne sont rien d'autre que r = |z| et $\theta = \arg(z) \in]-\frac{\pi}{2}, \frac{\pi}{2}[$. Par conséquent

$$\forall z \in U, \quad e^{g(z)} = re^{i\theta} = z.$$

Pour déduire cette égalité sans calcul, nous pouvions aussi utiliser le fait que $z \mapsto e^{g(z)} - z$ est une fonction holomorphe sur l'ouvert connexe U (U est convexe) telle que

$$\forall x \in]0, +\infty[, \quad e^{g(x)} - x = 0.$$

Le théorème des zéros isolés implique alors que l'égalité $e^{g(z)}-z=0$ est vraie pour tout $z\in U$.

(d) Si on pose

$$\operatorname{Log}(z) = \log(\sqrt{x^2 + y^2}) + i2 \arctan\left(\frac{y}{x + \sqrt{x^2 + y^2}}\right) = P(x, y) + iQ(x, y)$$

pour $x + iy \in \Omega = \mathbb{C} \setminus]-\infty, 0]$, alors $P, Q \in \mathcal{C}^{\infty}(\Omega; \mathbb{R})$ avec

$$\begin{split} \partial_x P &= \frac{x}{x^2 + y^2} \quad , \quad \partial_y P = \frac{y}{x^2 + y^2} \, , \\ \partial_x Q &= -\frac{2y(1 + \frac{x}{\sqrt{x^2 + y^2}})}{(x + \sqrt{x^2 + y^2})^2} \times \frac{1}{1 + \frac{y^2}{(x + \sqrt{x^2 + y^2})^2}} = -\frac{2y(1 + \frac{x}{\sqrt{x^2 + y^2}})}{2(x^2 + y^2 + x\sqrt{x^2 + y^2})} \\ \partial_x Q &= -\frac{y}{\sqrt{x^2 + y^2}} = -\partial_y P \\ \partial_y Q &= \frac{2(x + \sqrt{x^2 + y^2} - \frac{y^2}{\sqrt{x^2 + y^2}})}{(x + \sqrt{x^2 + y^2})^2} \times \frac{1}{1 + \frac{y^2}{(x + \sqrt{x^2 + y^2})^2}} = \frac{x}{\sqrt{x^2 + y^2}} = \partial_x P \, . \end{split}$$

Les relations de Cauchy-Riemann sont satisfaites et Log(x+iy)=P(x,y)+iQ(x,y) est holomorphe sur Ω . Par ailleurs les relations de Cauchy-Riemann avec $\partial_z=\frac{1}{2}(\partial_x-i\partial_y)$ conduisent à

$$\partial_z \operatorname{Log}(x+iy) = \partial_x P + i\partial_x Q = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2} = \frac{\bar{z}}{|z|^2} = \frac{1}{z}.$$

Comme Ω est étoilé en 1 et donc simplement connexe, on sait qu'il existe une unique primitive holomorphe de $\frac{1}{z}$ sur Ω qui s'annule en 1. Le calcul précédent nous dit que cette unique primitive holomorphe est Log.

3

(e) On calcule

$$\lim_{\varepsilon \to 0^{+}} \operatorname{Log}(-1 + i\varepsilon) = \lim_{\varepsilon \to 0^{+}} \log(1 + \varepsilon^{2}) + 2i \arctan\left(\frac{\varepsilon}{-1 + \sqrt{1 + \varepsilon^{2}}}\right)$$

$$= 0 + 2i \times \frac{\pi}{2} = i\pi$$

$$\lim_{\varepsilon \to 0^{+}} \operatorname{Log}(-1 - i\varepsilon) = \lim_{\varepsilon \to 0^{+}} \log(1 + \varepsilon^{2}) + 2i \arctan\left(\frac{-\varepsilon}{-1 + \sqrt{1 + \varepsilon^{2}}}\right)$$

$$= 0 + 2i \times (-\frac{\pi}{2}) = -i\pi.$$

D'une part $e^{\text{Log}(z)} - z$ est une fonction holomorphe sur l'ouvert connexe $\Omega = \mathbb{C} \setminus]-\infty, 0$] qui s'annule sur $]0, +\infty[$ et donc

$$\forall z \in \Omega$$
, $e^{\text{Log}(z)} = z$.

De plus Log a une discontinuité de $2i\pi$ en -1 et même en tout point de $]-\infty,0[$.

- 11. L'application Log est une fonction holomorphe injective sur l'ouvert connexe Ω . En effet $\text{Log}(z_1) = \text{Log}(z_2)$ pour $z_1, z_2 \in \Omega$ implique $z_1 = e^{\text{Log}(z_1)} = e^{\text{Log}(z_2)} = z_2$. On sait alors que c'est un biholomorphisme de Ω sur l'image de Ω qui n'est rien d'autre que $\{(\log(r), \theta), r > 0, \theta \in]-\pi, \pi[\} = \mathbb{R} \times]-\pi, \pi[$. On note que l'application réciproque n'est rien d'autre que exp : $t + i\theta \in \mathbb{R} \times]-\pi, \pi[\to e^{t+i\theta} \in \mathbb{C} \setminus]-\infty, 0]$.
- 12. (a) Le dessin représente deux tours d'une hélice qui fait monter d'un étage à chaque tour.
 - (b) L'application $\widehat{\text{Log}}$ est continue sur chaque Ω_k et la topologie de $\widehat{\mathbb{C}}^*$ est justement faite pour $\widehat{\text{Log}}$ soit continue aux raccords le long de $\mathbb{R}_- \times \{k\}$ pour $k \in \mathbb{Z}$.
 - (c) $\pi(\widehat{\text{Log}}^{-1}(u)) = \text{Log}^{-1}(u) = \exp(u)$.
 - (d) Le point b) de cette question nous assure que $\widehat{\operatorname{Log}}:\widehat{\mathbb{C}^*}\to\mathbb{C}$ est continu. De plus $\widehat{\operatorname{Log}}$ est une bijection de $\widehat{\mathbb{C}^*}$ sur \mathbb{C} , vu que c'est une bijection de $\Omega_k\cup\{(z,k)\,,z\in]-\infty,0[\}$ sur $\mathbb{R}\times](2k-1)\pi,(2k+1)\pi]$. La continuité de $\widehat{\operatorname{Log}}^{-1}$ sur $\mathbb{R}\times](2k-1)\pi,(2k+1)\pi[$ vient de la continuité de l'application exponentielle (voir le c)). Ensuite la topologie de $\widehat{\mathbb{C}^*}$ et notamment les conditions de raccords de Ω_{k-1} avec Ω_k le long de $]-\infty,0[$ assurent la continuité de $\widehat{\operatorname{Log}}^{-1}$ le long de $\mathbb{R}\times\{(2k-1)\pi\}$. L'application $\widehat{\operatorname{Log}}$ est donc un homéomorphisme de $\widehat{\mathbb{C}^*}$ sur \mathbb{C} .

D'un point de vue topologique, on dit que $\widehat{\mathbb{C}^*}$ est le revêtement universel de $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. Du point de vue des fonctions holomorphes, on appelle $\widehat{\mathbb{C}^*}$ la surface de Riemann du logarithme, où chaque point a un voisinage qui correspond à un disque ouvert de \mathbb{C}^* . On peut donc définir et étudier des fonctions holomorphes sur $\widehat{\mathbb{C}^*}$.