Induction, confirmation and choice

Rushworth lab meeting, 28/5/2012

Questions

1/ humans and other primates can exert tasklevel control over behaviour, i.e. use rules But how do we create new task sets?

2/ when learning propositional information, humans are subject to **inductive biases**

among the best-known of these is the **confirmation bias**, whereby agents tend to overweight prior hypotheses in decision-making

Questions

The confirmation bias is often thought of as a bias to **seek** confirmatory evidence, e.g. Wason card selection task

However, humans may also fail to learn from disconfirmatory evidence fail to use this information to rule out incorrect hypotheses

Task

Participants viewed coloured shapes left and right of the screen in blocks of 16 trials

On each trial they had to decide whether the stimulus was a target or not

They received deterministic feedback according to a disjunctive rule e.g.

red left | blue right = target

or

square left | green right =

Symbols instructed the relevant dimension (e.g. shape left/colour right) but

Behaviour

Participants learned across the block

They learned better when the cue was informative

Participants' tendency to respond 'target' began high and declined with time

Models and mechanisms...

ets consider the simple case where you know the dimensions, eg colour-colour le define prior belief in any sub-rule as α

	RED	GREEN	BLUE
LEFT	α	α	α
RIGHT	α	α	α

	RED	GREEN	BLUE
LEFT	-Inf	α	α
RIGHT	α	-Inf	α

Models and mechanisms...

ets consider the simple case where you know the dimensions, eg colour-colour ℓ define prior belief in any sub-rule as α

	RED	GREEN	BLUE
LEFT	α	α	α
RIGHT	α	α	α

	RED	GREEN	BLUE
LEFT	α	α	α
RIGHT	α	α	α

Models and mechanisms...

ets consider the simple case where you know the dimensions, eg colour-colour le define prior belief in any sub-rule as α

nd the increased belief from confirmation as δ

	RED	GREEN	BLUE
LEFT	α	α	α
RIGHT	α	α	α

RED		GREEN	BLUE
LEFT	α+δ	α	α
RIGHT	α	α+δ	α

3 models

confirmation model

	RED	GREEN	BLUE
LEFT	+1	0	0
RIGHT	0	+1	0

disonfirmation model

	RED	GREEN	BLUE
LEFT	-1	0	0
RIGHT	0	-1	0

hybrid model

	RED	GREEN	BLUE
LEFT	+1/-1	0	0
RIGHT	0	+1/-1	0

Further assumptions

confirma	ation model			
	RED	GREEN	BLUE	ф
LEFT	+1	0	0	
RIGHT	0	+1	0	target
disonfirn	nation mod	el		
	RED	GREEN	BLUE	ф
LEFT	-1	0	0	
RIGHT	0	-1	0	nontarget
hybrid n	nodel			
	RED	GREEN	BLUE	φ 📥
LEFT	+1/-1	0	0	
RIGHT	0	+1/-1	0	Target/nontarget

+1410 11100

- 1/ if you have no evidence either way, then assume target
- 2/ no free parameters adding leak/bias does not improve fits
- 3/ hardmax choice rule on expected value: confirmation/disconfirmation: defined as abs MAX of

Model fits

Model fits

3 models

Sampling bias? Eyetracking data...

Eye tracking....is participants' gaze predicted by the strength of confirmatory or disconfirmatory evidence?

Seems to be both (both main effects significant)

3 models: neural data

elates of expected value under the three models

Confirms behavioural data in strongly supporting hybrid model

OK so let's do something more interesting...

Hybrid model is suboptimal

hybrid

optimal

The optimal model is like the disconfirmation model, except that options are ruled out definitively

Confirmation and disconfirmation: choice

Both evidence for confirmation and disconfirmation make a contribution to expected value, so we can look for independent correlates of v[max(confirm)] value of confirmation: value of disconfirmation at the time of choice

< 0.001, entered alongside overall expected value signal, feedback, target, etc

Confirmation and disconfirmation: learning

We can also measure prediction error signals for confirmatory and disconfirmatory learning

For example, confirmation bias might be due to larger prediction error signals for confirmatory than disconfirmatory learning

nteraction between prediction error and arget/nontarget, p < 0.0001

Hybrid model

ROIs in the basal ganglia - putamen

Response to feedback (main effect)

Response to prediction error

Hybrid model

ROIs in the basal ganglia - caudate

Response to feedback (main effect)

Response to prediction error

Hybrid modelWhole brain analysis

action between prediction error, feedback (correct/error) and et/nontarget, p < 0.0001