中山大学移动学院 2012 级

《数学基础 II》期中考试试卷(下午)

(考试形式: 闭卷 考试时间:2小时)

姓名:

学号:

班级:

注意: 答案一律写在本试题卷中。请把此卷与草稿纸一并交回

- 1. **(10 points)** Let A, B and C be sets, decide if the following statements are true. Mark the correct statements with √ and false statements with ×.
 - (a) $P(\emptyset) = \emptyset$
 - (b) $\emptyset \in P(\emptyset)$ and $\emptyset \subseteq P(\emptyset)$
 - (c) If $B \neq C$, then $A \cap B \neq A \cap C$
 - (d) If A B = A C, then B = C.
 - (e) If $|A \cap B| = 4$, |A| = 10, |B| = 9, then $|A \cup B| = 15$.
- 2. (10 points) Let $A = \{a, b, c, d\}, B = \{0,1\}.$
 - (a) How many relations there are from A to B?
 - (b) Let $B^A = \{f \mid f : A \rightarrow B, f \text{ is everywhere defined}\}$. Compute $[B^A]$.
 - (c) Is there a bijection $k : B^A \rightarrow 2^A$, where 2^A is the power set of A? If the answer is yes, please define such a function. If the answer is no, explain why.

Answers:

3. (10 points) Let $A = \{1,2,3,4\}$. Define the following binary relations on A:

 $R_1 = \{(1,1),(1,2),(2,2),(3,3),(2,1),(4,4)\};$

 $R_2 = \{(1,2),(3,3),(3,4)\};$

 $R_3 = \{(1,2), (2,3), (4,4)\},\$

 $R_4 = \{(1,2), (2, 1), (3,4), (4,3)\}$

For every relation above state if it is reflexive, symmetric, antisymmetric and transitive by filling table 1. Mark Y for yes and N for no.

1

Table 1

	reflexive	Symmetric	antisymmetric	transitive
R ₁			_	
R₂	*			
R ₃				
R ₄				<u> </u>

- 4. (10 points) Suppose that following assumptions:
 - (1) Logic is not difficult, or not many students like logic;
 - (2) If mathematics is easy, then logic is not difficult.

By translating these assumptions into statements involving propositional variables and connectives, deciding whether each of the following is a valid conclusion of these assumptions:

- (a) That mathematics is not easy, if many students like logic;
- (b) That not many students like logic, if mathematics is not easy;
- (c) That logic is not difficult or mathematics is not easy.

Answer:

5. (10 points) Define the following propositions and answer the following questions by drawing their truth tables.

C.
$$((p \Rightarrow q) \land \sim q) \Rightarrow p$$

D.
$$(p \Rightarrow q) \land (r \Rightarrow q) \land (p \lor r) \Rightarrow q$$

- (a) Which of the propositions above are contingencies?
- (b) Which of the propositions above are tautologies?
- (c) Which of the propositions above are absurdities?

Answers:

- 6. (10 points) Let W be the set of propositions containing three proposition variables \$\delta_1\$, \$\text{p}_2\$ and \$\text{p}_3\$. Define a relation R on W such that \$\text{p}\$ R \$\text{q}\$ if and only if \$\text{p}\$\$\to\$ q is a tautology.
 - (a) Prove that R is an equivalence relation on W.
 - (b) Compute |W/R|.

2