Introduction to Quantum Information and Computing - Lecture 6

Shrikara A, Arnav Negi, Kriti Gupta, Manav Shah, Mohammed Shamil, Shiven Sinha, Swayam Agarwal, Vineeth Bhat, Yash Adivarekar

24th January, 2023

Contents

Joi	nt States
	Product State
	Separable States
	Entangled State

1 Quantum Channel

$$\mathcal{N}_{A \to B} : \mathcal{B}(\mathcal{H}_{\mathcal{A}}) \to B(\mathcal{H}_{\mathcal{B}})$$

where

$$(\mathcal{H}_{\mathcal{A}})$$
 = Hilbert space of input system,
 (\mathcal{B}) = Set of bounded operators

Quantum channel is trace-preserving since it maps trace-class operators to trace-class operators.

A matrix with a finite trace represents a trace-class operator. A finite-dimensional matrix is a trace-class operator if it is bounded.

A **Super Operator** acts on an operator to give an operator.

1.1 Properties of Quantum Channel

For a super operator to be a quantum channel, it has to follow the following properties:

1. Completely positive

$$id_B \otimes \mathcal{N}_{A \to C}(\Phi_{AB}) \geq 0$$

where $\Phi_{AB} \geq 0$ and id = identity super operator, and ϕ_{AB} is a maximally entangled state.

Positivity:
$$X_A \ge 0 \Rightarrow \mathcal{N}_{A \to C}(\mathcal{X}_A) = \mathcal{Y}_C \ge 0$$

2. Trace-preserving map

$$Tr[\rho_A] \Rightarrow Tr[\mathcal{N}_{A \to C}(\rho_A)]$$

2 Joint States

2.1 Product State

The density operator of the product state of A and B is the tensor product of the density operators of A and B.

$$\rho_{AB} = \rho_A \otimes \sigma_B$$

In a product state, there is no correlation between the two states. A and B are independent.

2.2 Separable States

The density operator of a separable state is obtained as:

$$\rho_{AB} = \sum_{x} p_{x} \rho_{A}^{(x)} \otimes \sigma_{B}^{(x)}$$

where p_x is the probability of each state such that

$$\sum p_x = 1, p_x \ge 0$$

Here, $\rho_A^{(x)}$ and $\sigma_B^{(x)}$ may be pure or mixed states.

2.3 Entangled State

State which cannot be written as separable states or product of states is in an entangled state.

$$\mathcal{N}_{A\to C}(\Phi_{AB})$$

Dimension, $d = min(dim(\mathcal{H}_A), dim(\mathcal{H}_B))$

Maximally entangled state: $\Phi_{AB} = \frac{1}{d} \sum_{i,j=0}^{d-1} |i\rangle_A \otimes |i\rangle_B \langle j|_A \otimes \langle j|_B = \frac{1}{d} \sum_{i,j=0}^{d-1} |i\rangle \langle j|_A \otimes |i\rangle \langle j|_B$

3 Kraus Operators: K_i

$$\mathcal{N}_{A \to C}(\cdot) = \sum_{i} K_i(\cdot) K_i^{\dagger}$$

where

$$\sum K_i^{\dagger} K_i = \mathbb{K}$$
$$K_i : \mathcal{H}_A \to \mathcal{H}_C$$

For any completely positive, trace-preserving quantum channel, $\exists Kraus operators$. If an N has Kraus operators \Rightarrow it is completely positive and trace-preserving.

Projective measurement is a special case of quantum channel where Ps are Kraus operators.