

Exploring Motion Boundary based Sampling and Spatial-Temporal Context Descriptors for Action Recognition

Xiaojiang Peng^{1,2}, Yu Qiao^{2,3}, Qiang Peng¹ and Xianbiao Qi²

¹Southwest Jiaotong University, Chengdu, China ²Shenzhen Institutes of Advanced Technology, CAS, China ³The Chinese University of Hong Kong, China

Introduction

- Goal: Design new sampling strategy and descriptors to improve the recent dense trajectory method in storage and performance.
- Existing works:
- ► Sampling strategy: STIP, Cuboid detector, Dense trajectory (DT) etc. ▶ **Descriptors**: HOG, HOF, HOG3D, MBH etc.
- Our idea:
- ▶ To reduce the number of trajectory yet preserve the power of dense trajectory, we propose a motion boundary based dense sampling strategy, called DT-MB.
- ▶ To enhance the discriminative power of DT, we propose a group of spatial temporal context descriptors, namely spatial co-occurrence HOG (S-CoHOG), S-CoHOF, S-CoMBH, temporal co-occurrence HOG (T-CoHOG), T-CoHOF and T-CoMBH.
- Properties:
- ► Faster: the DT-MB deletes large number of points in sampling step, which sharply reduces the tracking cost for trajectories. It is faster than original DT.
- Discriminative: spatial-temporal motion and appearance context information around pixels can deliver more complex motion and appearance structures.

Dense Trajectory on Motion Boundary

Motion Boundary: the maximum of gradient magnitudes between the horizontal and the vertical components of optical flow.

- Implementation:
- I. Sampling: sample points in current frame on a grid by a step size w at S spatial scales. Two kinds of points will be removed: (1) the minimal eigenvalue of the covariance matrix of derivatives is less than a given threshold T1. (2) in the background of the binary mask estimated from motion boundary.
- 2. Tracking and Filtering: the same with Wang's [1].

(a) Sample frame

(b) Sampled points by DT

(c) Trajectories by DT

(d) Motion boundary image (e) Sampled points by DT-MB (f) Trajectories by DT-MB Figure 1: Comparison of original DT and our Dense Trajectories on Motion Boundary.

Spatial-Temporal Context Descriptors

Spatial Context Descriptors:

Figure 2: An example of spatial co-occurrence feature with grid of size $n_{\sigma} \times n_{\sigma} \times n_{\tau}$.

▶ Co-occurrence matrix for offset (x,y) in a $m \times n$ patch:

$$C_{x,y}(p,q) = \sum_{i=1}^{m} \sum_{j=1}^{n} \begin{cases} \frac{G(i,j) + G(i+x,j+y)}{2}, & \text{if } O(i,j) = p \text{ and } O(i+x,j+y) = q; \\ 0, & \text{otherwise.} \end{cases}$$
 (1)

Temporal Context Descriptors:

(a) T-CoHOG and T-CoMBH

(b) T-CoHOF

Figure 3: Temporal co-occurrence descriptors. (a): pairs of gradient orientations in T-CoHOG or T-CoMBH. (b): pairs of optical flow orientations in T-CoHOF.

Representation:

- ▶ Descriptor dimension: $n_{bin} \times n_{bin} \times n_{offset} \times n_{\sigma} \times n_{\sigma} \times n_{\tau}$ for each type of S-Co ($n_{offset} = 2$) and T-Co ($n_{offset} = 1$) feature.
- ▶ Bag-of-features: we use standard BoF pipeline to represent an action video.
- ▶ Classification: LibSVM and one vs. all multi-channels RBF χ^2 kernel for multi-class classification.

References

- 1. Wang, Heng, Kläser, Alexander, Schmid, Cordelia and Liu, Cheng-Lin. Dense trajectories and motion boundary descriptors for action recognition, IJCV 2013.
- 2. Laptev, I., Marszalek, M., Schmid, C. and Rozenfeld, B. Learning realistic human actions from movies. In CVPR,
- 3. Liu, Jingen, Luo, Jiebo and Shah, Mubarak. Recognizing realistic actions from videos "in the wild". In CVPR, 2009. 4. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T. and Serre, T. HMDB: A large video database for human motion recognition. In ICCV, 2011.
- 5. Le, Quoc V, Zou, Will Y., Yeung, Serena Y and Ng, Andrew Y. Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In CVPR, 2011.
- 6. Sadanand, Sreemanananth and Corso, Jason J. Action bank: A high-level representation of activity in video. In CVPR, 2012.
- 7. Ji, Shuiwang, Xu, Wei and et al. 3D Convolutional Neural Networks for Human Action Recognition. PAMI, 2013.

Experiment Results

- Settings: We conduct experiments on three datasets: KTH, UCF-Youtube, HMDB51.
- DT-MB vs. DT:

Table 1: Comparison of DT and DT-MB with all the raw DT descriptors.

Datasets		$T_{track}(ms)$	Trajectories/clip	fps	Accuracy (%)
HMDB51	DT	46.33	16,133	3.43	46.60
	DT-MB	12.82	4,512	4.63	46.03
YouTube	DT	39.01	37,542	4.71	84.25
	DT-MB	6.60	10,878	5.85	85.10
KTH	DT	11.72	2,185	12.85	94.81
	DT-MB	4.00	1,178	16.05	94.79

Spatio-temporal Context Descriptors:

• Descriptor combination:

Table 2: Different combinations of descriptors using standard BOF.

Combination	KTH	YouTube	HMDB51
Trajectory+HOG+HOF+MBH	93.63	84.25	45.90
HOG+HOF+MBH	93.98	83.48	45.88
Trajectory+S-Co + T-Co	94.79	85.70	48.98
S-Co + T-Co	94.21	85.33	48.89
All combined	94.10	86.30	49.22
Best combined	95.60	86.56	49.22

Comparison:

Table 3: Compare our results to the state-of-the-art results.

KTH		YouTube		HMDB51		
Laptev et al.[2]	91.8	Liu <i>et al</i> .[3]	71.2	Kuehne et al.[4]	23	
Le <i>et al</i> .[5]	93.9	Le <i>et al</i> .[5]	75.8	Sadanand et al.[6]	26.9	
Ji <i>et al</i> .[7]	90.2	B. <i>et al</i> .[8]	76.5	Orit <i>et al</i> .[9]	29.2	
Wang et al.[1]	95	Wang et al.[1]	84.1	Wang et al.[1]	46.6	
Our Method	95.6	Our Method	86.56	Our Method	49.22	

^{8.} Bhattacharya, Subhabrata and Sukthankar, Rahul. A probabilistic representation for efficient large scale visual recognition tasks. In CVPR, 2011.

^{9.} Kliper-Gross, Orit and Gurovich, Yaron. Motion Interchange Patterns for Action Recognition in Unconstrained Videos. In ECCV, 2012.