Вычитание - это обратная операция к суммированию. Поэтому совершенно естественно желание использовать в реализации вычитателя те же приемы что и в сумматоре, либо по возможности задействовать в выполнении обеих операций один механизм.

Когда мы изучали арифмометры, то могли наблюдать два варианта:

- 1. вычитание это то же суммирование, просто надо крутить ручку в обратном направлении.
- 2. вычитание делается суммированием с дополнением (дополнительным кодом) вычитаемого (Паскалина).

Сейчас же, когда сумматор состоит из электронных компонентов, прокрутить ручку назад не получится, нужен параллельный механизм. А вот суммирование с дополнением нас вполне устраивает, необходимо только разобраться что это за дополнение такое и как его получить. Отметим, что электронный сумматор работает точно как механический в Паскалине - в каждом разряде увеличивает цифру, при переходе через 0 - добавляет единицу в старший разряд. Система счисления другая - 2 вместо 10, но, как мы увидим, это не важно.

Пусть сумматор имеет ограничение в <u>три десятичные цифры</u> (три колеса с цифрами). В этом случае 999 + 1 (+1 соответствует вращению на одно деление младшего колеса) приведет к переполнению и если ничего не предпринять, число обратится в 0. Так и должно быть, если мы работаем с беззнаковыми числами. А что в случае отрицательных чисел?

Что, если мы станем хранить знак в виде дополнительного четвёртого колеса, на котором вместо цифр чередуются знаки +-+-...? Первая проблема, которая бросается в глаза - теперь у нас два ноля, +000 и -000! Вторая - если к -001 прибавить 1, получится -2. Это неприемлемо.

Данные проблемы возникают из-за того, что числа одновременно выступают в двух ролях: во первых - это собственно значение числа, во-вторых - приемлемый для сумматора способ хранения числа. Для отрицательных чисел роли разошлись - сумматор вместо суммирования начал отнимать. Надо договориться о таком способе хранения отрицательных чисел, с которыми он умеет работать.

Если к числу 999 добавить 1, произойдет переполнение и мы увидим на колёсах -000. Было бы логично, если бы код -000 означал самое маленькое отрицательное число. Наоборот, если бы мы могли от 000 отнять 1 (прокрутить младшее колесо назад), получили бы -999, логично обозначить этим кодом число -1.

Теперь противоречие исправлено - если к самому маленькому числу (код -000) добавлять по единице, рано или поздно придём к -1 (код -999). Если добавить еще 1, получим 0, как и ожидали. Круг замкнулся.

Осталось понять что это за самое маленькое число. Чтобы получить -1 (хранится как

-999) из -000 и к нему надо прибавить 999. Или от -1 отнять 999, получим -1000. Вот наше самое маленькое число. Кажется странным, что оно не соответствует самому большому положительному 999. Это плата за отсутствие значение -0. Мы сдвинули весь диапазон отрицательных чисел вперёд на единицу, в результате отрицательных чисел стало больше чем положительных.

Итак, мы придумали способ хранения отрицательных чисел. Это и называется "дополнительным кодом". Дополнительный код - это то, как придётся хранить число, если его умножить на -1. Но как получить дополнительный код - вот берём число 123, какой у него дополнительный код?

1) Надо каждую цифру заменить на ее дополнение. Дополнением цифры называется ее разность с максимальной цифрой в системе счисления.

В десятичной системе счисления

Доп
$$(A) = 9 - A$$
.

После этого число 123 превращается в 876.

- 2) Сменим знак 876 превратится в -876. Это так называемое простое дополнение. Теперь если 123 (или любое другое число) сложить со своим простым дополнением, получим -999, это простое дополнение 0, фактически -0.
- 3) Отнимаем единицу, чтобы сдвинуть диапазон чисел и избавиться от значения -0. -876 превратится в -877. Вот мы и получили расширенное дополнение. Теперь если сложить 123 (или любое другое число) со своим расширенным дополнением, получим 0. Что и требовалось.

Обычно, когда говорят просто дополнительный код или дополнение, имеют ввиду именно расширенное дополнение.

Число	Простое дополнение	Расширенное дополнение	
1000		-000	
999	-000	-001	
100	-899	-900	
010	-989	-990	
001	-998	-999	
000	000	000	
-000	-999	000	

Как насчет двоичной системы счисления? Всё то же самое с учетом того, что дополнения цифр считаются не от 9, но от 1.

Приятный бонус в двоичной системе то, что одноразрядный флаг переполнения естественным образом вписывается в двоичное же представление значащих цифр. Построим таблицу кодов для восьмиразрядных чисел.

Число	Двоичное представление	Простое дополнение	Расширенное дополнение
128			1000 00002
127	0111 11112	1000 00002	1000 00012
80	0101 00002	1010 11112	1011 0000 ₂
20	0001 01002	1110 1011 ₂	1110 1100 ₂
2	0000 00102	1111 1101 ₂	1111 1110 ₂
1	0000 00012	1111 1110 ₂	1111 1111 ₂
0	0000 00002	0000 00002	0000 00002

Итого: в восьми разрядах кодируются знаковые числа от -128 до +127.

Обратите внимание, как естественно и логично старший - знаковый разряд вписался в формат хранения знаковых целых чисел.

А также не пропустите тот факт, что простое дополнение числа получается инверсией разрядов. В самом деле дополнением для двоичной системы счисления будет

Для 0: 1 - 0 = 1Для 1: 1 - 1 = 0

Иными словами, умножение целого знакового числа val на -1 равносильно выражению val * -1 = negate(val) + 1

```
Проверим, умножим -20 на -1: -20 = 1110 \ 1100_2 negate (1110 1100<sub>2</sub>) = 0001 0011<sub>2</sub> 0001 \ 0011_2 + 1 = 0001 \ 0100_2 = 2^4 + 2^2 = 16 + 4 = 20
```

И, наконец, последнее, на что стоит обратить внимание, знак числа определяется по значению самого старшего разряда, для положительных чисел (включая 0) этот разряд нулевой, для отрицательных чисел, равен единице.

Собственно, поэтому он и называется - знаковый разряд.