

MOSEK Release notes
Release 10.0.20

MOSEK ApS

02 September 2022

Contents

1	Supported platforms	1
2	Major changes	3
3	Known issues	6
4	Bug fixes	7

Supported platforms

Below are the **minimal requirements** for various **MOSEK** interfaces and operating systems. In some cases using **MOSEK** with older versions of the software will be possible, but is neither actively supported nor tested.

Operating systems

Table 1.1: Operating systems

Platform	Minimal OS version	Specific library dependencies		
linux64x86	RHEL 7, Ubuntu 18.04 or compatible	GLIBC 2.17, GLIBCXX 3.4.11		
osx64x86	macOS 10.15			
win64x86	Windows 10, Server 2016			
win32x86	Windows 10, Server 2016			
linuxaarch64	Ubuntu 20.04 or compatible	GLIBC 2.29, GLIBCXX 3.4.21		
osxaarch64	macOS 11			

Optimizer API and Fusion API

Table 1.2: Optimizer API and Fusion API.

Platform	С	C++(Fusion)	Java .NET		.NET Core	Python	
linux64x86	Yes	C++11	1.8	_	netstandard2.1	3.7-3.10	
osx64x86	Yes	C++11	1.8	_	netstandard2.1	3.7-3.10	
win64x86	Yes	C++11	1.8	4.5	netstandard2.1	3.7-3.10	
win32x86	Yes	_	_	4.5	_	_	
linuxaarch64	Yes	C++11	1.8	_	netstandard2.1	3.7-3.10	
osxaarch64	Yes	C++11	17	_	netstandard2.1	3.8-3.10	

Optimization Toolbox for MATLAB, Rmosek and other MOSEK tools

Table 1.3: Other APIs and tools.

Platform	MATLAB	R	AMPL Shell	MOSEK to AMPL link	OptServer	Imgrd
linux64x86	R2017a	3.6		Yes	Yes	Yes
osx64x86	R2017a	3.6	_	Yes	_	Yes
win64x86	R2017a	3.6	_	Yes	_	Yes
win32x86	_	_	_	Yes	_	Yes
linuxaarch64	_	_	_	_	_	Yes
osxaarch64	_	4.1	_	_	_	Yes

Other distribution channels (stable releases only)

- A Python Anaconda package. https://anaconda.org/MOSEK/mosek
- A Python wheels package. https://pypi.org/project/Mosek/
- A NuGet package. https://www.nuget.org/packages/Mosek/
- \bullet A Julia package. https://github.com/MOSEK/Mosek.jl
- A Rust package for the Optimizer API (unofficial). https://lib.rs/crates/mosek

Other remarks

- If you are using a floating license, the license server on Linux requires *Linux Standard Base 3* or newer is installed (package lsb).
- Numpy is required in Python Fusion.

Major changes

Specific information regarding particular APIs, parameters and portability of code from version 9 can be found in the section *Interface changes* towards the end of the respective manual. This section lists general changes throughout **MOSEK**.

2.1 Release notes for 10.0

2.1.1 New features

Platform support

- Introduced native support for Apple Silicon M1 osxaarch64.
- Improved support and introduced multithreading for Linux ARM 64bit linuxaarch64.

Optimizer

• Introduced new cone types: generalized power cone (primal and dual), geometric mean cone (primal and dual) and the cone of vectorized lower-triangular parts of semidefinite matrices.

Presolve

• Presolve has been improved significantly for conic problems.

Interior-point Optimizer

- \bullet Improved performance for large-scale linear problems.
- Significantly improved performance when running on recent AMD CPUs.
- Significantly improved multithreaded performance for a class of SDPs.

Mixed-integer Optimizer

- (Optimizer API and Fusion). Introduced disjunctive constraints (DJC), a language for writing constraints of the form A_1 OR A_2 OR ... OR A_k where A_i are ordinary linear equations or inequalities.
- Improved cutting plane separation; in particular, implied bound cuts, controllable with the parameter MSK_IPAR_MIO_CUT_IMPLIED_BOUND, are used by default.
- Improved presolve, in particular probing and the aggregator. The latter can be controlled with the new parameter MSK_IPAR_MIO_PRESOLVE_AGGREGATOR_USE.
- \bullet Introduced symmetry detection and exploitation, controllable with the parameter MSK_IPAR_MIO_SYMMETRY_LEVEL.

- Introduced reformulation methods for MIQCQO problems, controllable with the parameter MSK_IPAR_MIO_QCQO_REFORMULATION_METHOD. This allows the solution of non-convex MIQCQO problems that are amenable to such a reformulation.
- Introduced parameters MSK_IPAR_MIO_NUMERICAL_EMPHASIS_LEVEL and MSK_IPAR_MIO_MEMORY_EMPHASIS_LEVEL that may be used to reduce numerical and memory issues, respectively.
- Distinction between complete and partial initial user solutions, the exploitation of the latter being controllable with the parameter MSK_IPAR_MIO_CONSTRUCT_SOL.

Multithreading

- Switch from Cilk to the oneTBB library for multithreading in the interior-point optimizer. The reason is Cilk has been deprecated in the Intel C compiler tool chain. Moreover, compared to Cilk oneTBB allows fine grained control of the number of threads employed in each optimization.
- Introduce parallel optimization of a number of tasks in the Optimizer API (optimizebatch) and Fusion (solveBatch).
- Previously missing support for multithreading has been enabled on the linuxaarch64 (Linux ARM64) platform.

Licensing

- Updated FLEXIm to version 11.18.3. Upgrade of floating license servers is required to use **MOSEK** 10 clients.
- License server available for all platforms.

Interface

- (Optimizer API). Introduced affine conic constraints (ACC) as a preferred method of expressing conic problems. An affine conic constraints allows the user to directly write $Fx + g \in \mathcal{K}$ without introducing slack variables.
- (Optimizer API). Introduced the possibility to create tasks without an environment.
- (Optimizer API, Python, Java, .NET). Methods can return arrays and tuples instead of taking them as arguments.
- (Fusion). Allow more flexible naming in Fusion.

1/0

- Faster I/O across all file formats.
- Fixed interpretation of integer keyword in LP files.
- The PTF format replaces the OPF format as a read/write human-readable file format for conic problems, supporting also semidefinite variables.
- (Optimizer API and Fusion) Allow writing data files to streams instead of files.

2.1.2 Changes compared to version 9

• The function computesparsecholesky has changed API: the argument previously indicating whether to use multiple threads or not is now an integer denoting the number of threads to use, with 0 meaning that MOSEK makes the choice.

2.1.3 Removed features

- Support for Python 2.7 on all platforms.
- Support for Java on Windows 32 bit.
- Support for all versions of Python on Windows 32 bit.

2.1.4 Deprecated features

- Conic constraints restricted to $x \in \mathcal{K}$ for a variable x are deprecated as a method of representing conic problems in favor of affine conic constraints (ACC) of the form $Fx + g \in \mathcal{K}$. This affects mainly the Optimizer API, in a minor degree the Optimization Toolbox for MATLAB and Rmosek, and does not affect Fusion where this language was already used.
- The OPF file format for conic problems is deprecated in favor of PTF.
- It is recommended to move away from Windows 32 bit platform.

Known issues

Bug fixes

10.0.20

- \bullet Fixed a bug occurring for certain ways to call BLAS/LAPACK functions on AMD.
- Fixed a bug in mixed-integer optimizer setup for quadratic problems (QO).
- Fixed some minor bugs in the presolve occuring on conic problems.

10.0.18

- First stable release.
- Fixed an issue with propagating initial solutions for MIQO and MIQCQO problems.
- Improved efficiency of file I/O.

10.0.17(BETA)

- Fixed a bug that could causing invalid infeasibility certificates to be reported for quadratic optimization problems.
- Improved presolve slightly for conic problems.
- Improved performance for some semi-definite problems, particularly when using multiple threads.

10.0.16(BETA)

- Improved performance for some semi-definite problems, particularly when using multiple threads.
- Fixed some issues related to file formats.

10.0.15(BETA)

- Improved documentation.
- Environment-free task creation in optimizer API.
- Fixed a multithreading issue on Linux ARM64.

10.0.14(BETA)

- The (plain) solution file now contains the solution for the affine conic constraints when present.
- Fixed a bug occurring when deleting one or more variables.
- Documented new naming possibilities in Fusion.
- Removed some debug output.

10.0.13(BETA)

- Downgrade Linux 64x86 platform requirements to RHEL 7, Ubuntu 18.04.
- Downgrade MATLAB version requirement to R2017a.
- Fixes in the remote optimization server and improved communication with the server.
- Writing files to streams.
- Batch optimization also available in Fusion.
- Fixed a bug that in rare cases caused an assert in the interior-point optimizer.

10.0.12(BETA)

- First beta release.
- See Sec. 2 and the *Interface changes* section towards the end of your API manual.