データサイエンス『実践コース』

数理工学PBL

Day 2-2:分散表現

一関高専 小池 敦

分散表現

単語の分散表現とは?

- 単語を低次元の実数値ベクトルで表したもの
 - ∘数10次元から数100次元
 - One-hotベクトルは語彙サイズ分の次元が必要だった
- 意味が似ている単語が近くに配置される
- 深層学習において標準的に使用されている
 - One-hot ⇒ 分散表現 の変換はword2vecと呼ばれる

分散表現の特徴

- ベクトルの足し算に意味づけができる
 - ・概ね以下のような関係が成り立つ

線形結合

線形結合 (行べクトル版)

$$\begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} \alpha_1 & v_1 \\ + \alpha_2 & v_2 \\ \vdots \\ + \alpha_n & v_n \end{bmatrix}$$

参考:線形結合(列ベクトル版)

$$\begin{bmatrix} \boldsymbol{v_1} & \boldsymbol{v_2} & \dots & \boldsymbol{v_n} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \alpha_1 \begin{bmatrix} \boldsymbol{v_1} \\ \boldsymbol{v_1} \end{bmatrix} + \alpha_2 \begin{bmatrix} \boldsymbol{v_2} \\ \end{bmatrix} + \dots + \alpha_n \begin{bmatrix} \boldsymbol{v_n} \\ \boldsymbol{v_n} \end{bmatrix}$$

$$=\sum_{i=1}^n \alpha_i \boldsymbol{v_i}$$

アフィン結合

• 線形結合 $\sum_{i=1}^{n} \alpha_i v_i$ において $\sum_{i=1}^{n} \alpha_i = 1$ の場合

をアフィン結合と言う

アフィン結合

3つのベクトルのアフィン結合

アフィン結合 ⇒ ベクトルのブレンド

線形結合 ⇒ アフィン結合

線形結合の係数をソフトマックスで変換すると、 アフィン結合になる(係数の和が1になる)

One-hotベクトルによる アフィン結合

$$\begin{bmatrix} \alpha_1 & \cdots & \alpha_k & \cdots & \alpha_n \\ [0 & \cdots & 1 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{v_1} \\ \vdots \\ \boldsymbol{v_k} \end{bmatrix} = \begin{bmatrix} \boldsymbol{v_k} \end{bmatrix}$$

値が1のindexに対応するベクトルが 取り出される

分散表現の求め方

分散表現学習の方針

- ニューラルネットワークでOne-hotベクトルから分散表現への変換方法を学習させる
- 分散表現を用いて別の問題を解かせるような ネットワークにする
 - ・文中のある単語を隠して周りの単語から予測させる (CBOW)
 - ・文中のある単語から、周りの単語を予測させる (skip-gram)

単語埋め込み(embedded)層

- 単語IDに対応するOne-hotベクトルを分散表現に変換する層
- 活性化関数のない全結合層となっている(ただし入力は単語ID)
- 複数の単語IDを入力すると複数の分散表現が得られる

One-hotベクトル $\begin{bmatrix} x_1 & x_2 & \cdots & x_v \end{bmatrix}$ n: 語彙数

単語埋め込み (embedded) 層の行列表現

One-hotベクトル

 $\begin{bmatrix} x_1 & \cdots & x_k & \cdots & x_n \\ 0 & 1 & 0 \end{bmatrix}$

分散表現

単語 *k* の分散表現は, 辺の重み行列 *W* の *k* 行目の行べクトルとなる

CBOW (Continuous Bag-of-Words)

- 文中の単語を前後 C 単語ずつから予測する
 - 自己教師あり学習となっている (教師あり学習だがラベルを用意する必要がない)
 - 予測の正解率は100%にならないが問題ない (学習の過程で分散表現が良くなれば十分)

One-hot 単語埋め込み層

実習で作成するモデル

- 映画のレビュー文から、内容がポジティブか ネガティブかを推定する
 - ・入力:文の各単語(最大100単語)
 - 。出力:論理値(ポジティブならTrue)
- CBOWの出力を単語でなく論理値に変える
 - CBOWはソフトマックス計算が重く工夫が必要

