1 Textový popis bez obrázku

Nech (a, b, c) je bod, kde vychádza os motora, nech (A, B, C) je bod na stoličke, R je dĺžka hornej, r je dĺžka dolnej tyče. Os motora smeruje defaultne (bez otočení) do záporného smeru osi y, dolná tyč je v kľude v smere osi x.

1.1 uhly

- i) φ je odchýlenie dolnej tyče od osi x smerom ku kladnej časti osi z (**hľadaný uhol**).
- ii) potom sa celý motor zakloní (zrotuje v rovine zy, od z ku y) o uhol β .
- iii) Potom motor rotuje v rovine xy od x smerom ku y o uhol α .

(pozn. poradie rotácii je dôležité)

2 rovnice

Požadovaný uhol φ sa dá zistiť vyjadrením súradníc (x, y, z) stredného kĺbu (kde sa tyče stretajú) dvoma rovnicami:

- 1) dĺžka hornej tyče je R.
- 2) parametrické vyjadrenie stredného kĺbu pomocou súradníc motora.

2.1 1. rovnica

Matematicky, prvá rovnica je

$$(x-A)^{2} + (y-B)^{2} + (z-C)^{2} = R^{2}$$
(1)

2.2 2. rovnica

Parametrické vyjadrenie dostaneme postupnými rotáciami: Koniec dolnej tyče v kľude má (x, y, z) súradnice

$$(a, b, c) + (r, 0, 0)$$

Aby som nemusel stále písať bod (a, b, c), vyjadrím súradnicovú vzdialenosť bodu (x, y, z) od (a, b, c). Takto sa mení rotáciami:

$$\begin{pmatrix} r \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} r \cdot \cos(\varphi) \\ 0 \\ r \cdot \sin(\varphi) \end{pmatrix} \rightarrow \begin{pmatrix} r \cdot \cos(\varphi) \\ r \cdot \sin(\varphi) \cdot \sin(\beta) \\ r \cdot \sin(\varphi) \cdot \cos(\beta) \end{pmatrix} \rightarrow \begin{pmatrix} r \cdot \cos(\varphi) \cdot \cos(\alpha) - r \cdot \sin(\varphi) \cdot \sin(\beta) \cdot \sin(\alpha) \\ r \cdot \cos(\varphi) \cdot \sin(\alpha) + r \cdot \sin(\varphi) \cdot \sin(\beta) \cdot \cos(\alpha) \\ r \cdot \sin(\varphi) \cdot \cos(\beta) \end{pmatrix}$$

čiže druhá rovnica je

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} + \begin{pmatrix} r \cdot \cos(\varphi) \cdot \cos(\alpha) - r \cdot \sin(\varphi) \cdot \sin(\beta) \cdot \sin(\alpha) \\ r \cdot \cos(\varphi) \cdot \sin(\alpha) + r \cdot \sin(\varphi) \cdot \sin(\beta) \cdot \cos(\alpha) \\ r \cdot \sin(\varphi) \cdot \cos(\beta) \end{pmatrix}$$
 (2)

2.3 1. a 2. rovnica dokopy

Dosadením (2) do (1) získame:

$$[r \cdot \cos(\varphi) \cdot \cos(\alpha) - r \cdot \sin(\varphi) \cdot \sin(\beta) \cdot \sin(\alpha) + a - A]^{2} + [r \cdot \cos(\varphi) \cdot \sin(\alpha) + r \cdot \sin(\varphi) \cdot \sin(\beta) \cdot \cos(\alpha) + b - B]^{2} + [r \cdot \sin(\varphi) \cdot \cos(\beta) + c - C]^{2} = R^{2}$$

$$(3)$$

S využitím identity $\sin^2(\theta) + \cos^2(\theta) = 1$ sa dá rovnica prepísať do tvaru $(a - A \text{ si skrátime na } \Delta a)$

$$\cos(\varphi) \left[2\Delta a \cdot r \cos(\alpha) + 2\Delta b \cdot r \sin(\alpha) \right] + \sin(\varphi) \left[-2\Delta a \cdot r \sin(\beta) \sin(\alpha) + 2\Delta b \cdot r \sin(\beta) \cos(\alpha) + 2\Delta c \cdot r \cos(\beta) \right] = R^2 - r^2 - \Delta a^2 - \Delta b^2 - \Delta c^2$$

čo si skrátene označíme ako

$$D\cos(\varphi) + E\sin(\varphi) = G \tag{4}$$

kde

$$D = 2\Delta a \cdot r \cos(\alpha) + 2\Delta b \cdot r \sin(\alpha)$$

$$E = -2\Delta a \cdot r \sin(\beta) \sin(\alpha) + 2\Delta b \cdot r \sin(\beta) \cos(\alpha) + 2\Delta c \cdot r \cos(\beta)$$

$$G = R^2 - r^2 - \Delta a^2 - \Delta b^2 - \Delta c^2$$

Rovnicu (4) teraz predelíme výrazom $\sqrt{D^2 + E^2}$, čím dostaneme

$$\hat{D}\cos(\varphi) + \hat{E}\sin(\varphi) = \hat{G} \tag{5}$$

kde

$$\hat{D} = D/\sqrt{D^2 + E^2}$$

$$\hat{E} = E/\sqrt{D^2 + E^2}$$

$$\hat{G} = G/\sqrt{D^2 + E^2}$$

Keby sa nám teraz podarilo nájsť uhol ω taký, že $\sin(\omega) = \hat{D}$ a $\cos(\omega) = \hat{E}$, mohli by sme využiť súčtový vzorec pre sínusy

$$\hat{G} = \hat{D}\cos(\varphi) + \hat{E}\sin(\varphi) = \sin(\omega)\cos(vp) + \cos(\omega)\sin(\varphi) = \sin(\varphi + \omega)$$

Keďže platí $\hat{D}^2 + \hat{E}^2 = 1$, taký uhol existuje a je to $atan2(\hat{D}, \hat{E})$, t.j. uhol pod ktorým je vektor (\hat{E}, \hat{D}) v rovine. Čiže máme $\omega = atan2(\hat{D}, \hat{E})$, pričom zostáva zriešiť rovnicu

$$\sin(\varphi + \omega) = \hat{G}.$$

kde ω aj \hat{G} poznáme. Inverzný sínus má v jednej perióde 2 riešenia a to

- $arcsin(\hat{G})$
- $\pi arcsin(\hat{G})$

Z čoho konečne dostávame

$$\varphi_{1,2} = \begin{cases} -\omega + \arcsin(\hat{G}) \\ -\omega + \pi - \arcsin(\hat{G}) \end{cases}$$

2.4 Diskusia k počtu riešení

- Ak \hat{G} nie je v intervale [-1,1], neexistuje uhol θ taký, aby $\sin(\theta) = \hat{G}$. \arcsin sa nedá použiť a dá sa teda predpokladať, že úloha nemá riešenie.
- Ak $\hat{G} = -1$ alebo $\hat{G} = 1$, vtedy $\varphi_1 = \varphi_2$ a úloha má teda iba 1 riešenie.
- V ostatných prípadoch (t.j. $\hat{G} \in (-1,1)$) sú φ_1, φ_2 rôzne a úloha má teda 2 riešenia.

3 Zhrnutie (= too long, didn't read)

$$\begin{split} &\Delta a = a - A \\ &\Delta b = b - B \\ &\Delta c = c - C \end{split}$$

$$&D = 2\Delta a \cdot r \cos(\alpha) + 2\Delta b \cdot r \sin(\alpha) \\ &E = -2\Delta a \cdot r \sin(\beta) \sin(\alpha) + 2\Delta b \cdot r \sin(\beta) \cos(\alpha) + 2\Delta c \cdot r \cos(\beta) \\ &G = R^2 - r^2 - \Delta a^2 - \Delta b^2 - \Delta c^2 \end{split}$$

$$&\hat{D} = D/\sqrt{D^2 + E^2} \\ &\hat{E} = E/\sqrt{D^2 + E^2} \\ &\hat{G} = G/\sqrt{D^2 + E^2} \\ &\omega = atan2(\hat{D}, \hat{E}) \\ &\varphi_{1,2} = \begin{cases} -\omega + arcsin(\hat{G}) \\ -\omega + \pi - arcsin(\hat{G}) \end{cases}$$