

Practical Machine Learning

Day 17: Mar23 DBDA

Kiran Waghmare

Agenda

- Association
 - Apriori
 - Market Basket Analysis

16-22 March 2015

NESTLE School Pack 140g

5 99 /eac

Tempura Chicken Nugget (Assorted) 600g-1kg Non-Member: RM13.50

GOODY Pudding (Mango/Mix) 12x80g Non-Member: RM9.90

Normal Price: RM7.60

SUSTAGEN

Junior 1+/ Kid 3+ 650g Normal Price: RM32.99

NESCAFE Gold Blend 200g Normal Price: RM32.80

Powder Detergent (Assorted) 3.6kg - 4kg Normal Price: RM22.90

*The promotion above is available at all AEON Stores.

FREE HOME

U03. Italy Cluster, International City, Dubai, U.A.E. DO DISCHARGE THE DISCRESS SEAL ORDINGS STORY

Offers & promotions

send your 'Name' to +971 56 858 1222

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining

- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

Why Is Freq. Pattern Mining Important?

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, timeseries, and stream data

Basket data

A very common type of data; often also called *transaction data*.

Each record in a supermarket's transaction DB, for example, corresponds to a basket of specific items.

ID apples, beer, cheese, dates, eggs, fish, glue, honey, ice-cream

Execution of Apriori algorithm, $\varepsilon = 1$

Iteration	on 1	
Candidates of size 1	Support	
A	4	
В	3	
C	5	
D	3	
E		

Iteration 2	
Candidates of size 2	Support
АВ	3
A C	4
A D	2
BC	3
BD-	
CD	3

Iteration 3	
Candidates of size 3	Support
ABC ABD ACD	3 1 2

$$Support = \frac{frq(X,Y)}{N}$$

Rule:
$$X \Rightarrow Y \longrightarrow Confidence = \frac{frq(X,Y)}{frq(X)}$$

$$Lift = \frac{Support}{Supp(X) \times Supp(Y)}$$

Discovering Rules

A common and useful application of data mining

A `rule' is something like this:

If a basket contains apples and cheese, then it also contains beer

Any such rule has two associated measures:

- confidence when the `if' part is true, how often is the `then' bit true? This is the same as accuracy.
- coverage or support how much of the database contains the `if' part?

- If **Lift= 1**: The probability of occurrence of antecedent and consequent is independent of each other.
- Lift>1: It determines the degree to which the two itemsets are dependent to each other.
- **Lift<1**: It tells us that one item is a substitute for other items, which means one item has a negative effect on another.

Item set	Sup-count
Hot Dogs	4
Buns	2
Ketchup	2
Coke	3
Chips	4

Item set	Sup-count
Hot Dogs	4
Buns	2
Ketchup	2
Coke	3
Chips	4

Item set	Sup-count
Hot Dogs, Buns	2
Hot Dogs, Coke	2
Hot Dogs, Chips	2
Coke, Chips	3

Item set	Sup-count
Hot Dogs, Buns	2
Hot Dogs, Ketchup	1
Hot Dogs, Coke	2
Hot Dogs, Chips	2
Buns, Ketchup	1
Buns, Coke	0
Buns, Chips	0
Ketchup, Coke	0
Ketchup, Chips	1
Coke, Chips	3

Item set	Sup-count
Hot Dogs, Buns, Coke	0
Hot Dogs, Buns, Chips	0
Hot Dogs, Coke, Chips	2

Item set	Sup-count
Hot Dogs, Coke, Chips	2

