Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: CS, IS and AI &ML

Course Code: 22MA4BSLIA

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Course: Linear Algebra

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

ages.			UNIT - I	co	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Determine whether the set $V = \{(x, y) \mid x, y \in \mathbb{R}\}$ is a vector space over the field of reals when the vector addition is the standard	CO1	PO1	6
maini			vector addition and the scalar multiplication is defined as			
the re			$k \cdot (x, y) = (0, ky).$			
ss on 1		b)	Find the basis of row space, Column space, null space for the	CO1	PO1	7
ss line			$\begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \end{bmatrix}$			
l cros			matrix $A = \begin{bmatrix} 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & 1 & 9 & 7 \end{bmatrix}$.			
agona alpra			matrix $A = \begin{bmatrix} 1 & -3 & 4 & -2 & 3 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & 1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & 4 \end{bmatrix}$.			
aw diag I as me		c)	Find a homogeneous system whose solution set W is spanned by	CO1	PO1	7
lly dra reatec			$\{u_1, u_2, u_3\} = \{(1, -2, 0, 3), (1, -1, -1, 4), (1, 0, -2, 5)\}.$			
llsori be t						
mpu Will			UNIT - II			
s, co	2	a)	Verify whether the linear transformation $T:P_2(t) \to M_{2\times 2}$ defined	CO1	PO1	6
Important Note: Completing your answers, compulsorily draw diagonal cros Revealing of identification, appeal to evaluator will be treated as malpractice		¢	by $T(at^2 + bt + c) = \begin{bmatrix} a & 2b \\ 0 & a \end{bmatrix}$ is one-one and onto.			
g you		b)	Verify Rank-Nullity theorem for the linear transformation	CO1	PO1	7
oletin ion, a			$G: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $G(x, y, z, t) = (x, y, y, z, t, t, 2x, 2y, t, 2z, t, 4t, 2x, 2y, t, 4z, t, 5t)$			
omp ficati			G(x, y, z, t) = (x - y + z + t, 2x - 2y + 3z + 4t, 3x - 3y + 4z + 5t).	CO1	DO 1	7
te: C lentif		c)	Let T be a linear operator defined on R^3 through	COI	PO1	7
Not of id			T(x, y, z) = (2x, 4x - y, 2x + 3y - z). Is T invertible? If so, find			
rtant ling			a formula for T^{-1} and T^{-2} .			
Impo Revea			OR			

•		001	D 0 1	
3 a)	Discuss the following maps on R^2 and represent them graphically:	CO1	PO1	6
	i) Horizontal contraction ii) Vertical contraction			
	iii) Horizontal shear.			
b)	Let $T: P_1(t) \to P_2(t)$ be the linear transformation defined by	CO1	PO1	7
	T[f(t)] = t f(t). Find the matrix of linear transformation with			
	respect to the standard basis of $P_1(t)$ and $B = \{1+t, t-1, t^2\}$ for			
	$P_2(t)$.	8		
c)	Consider the mapping $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $F(x, y) = (3y, 2x)$.	COI	PO1	7
	Let 'S' be the unit circle in R^2 , that is the solution of $x^2 + y^2 = 1$.	1		
	i) Identify $F(S)$, ii) Find $F^{-1}(S)$.			
	UNIT - III			
4 a)	Apply Cayley –Hamilton theorem to find A^4 if $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$.	CO1	PO1	6
b)	Obtain the Eigen space for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$	CO1	PO1	7
	defined by $T(x, y, z) = (2x + y, y-z, 2y+4z)$.			
c)	Find all possible Jordan canonical form of linear transformation T,	CO1	PO1	7
	whose minimal polynomial is $(t-8)^2 (t+8)^2$ and algebraic			
	multiplicity of the eigen values -8 and 8 are 5 and 4 respectively.			
	OR			
5 a)	Apply Cayley –Hamilton theorem to find	CO1	PO1	6
	A^{-1} and A^{-2} if $A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$.			
Yh	[-1 -4 -3]			
b)	Obtain the Eigen space for the linear transformation $T: P_2 \to P_2$	CO1	PO1	7
	defined by $T(at^2 + bt + c) = (2a - c)t^2 + (2a + b - 2c)t + (-a + 2c)$.			
c)	Find the characteristic and minimal polynomials of the matrix	CO1	PO1	7
	$\begin{bmatrix} 3 & 2 & 0 & 0 & 0 \\ 1 & 1 & 3 & 3 & 3 \end{bmatrix}$			
	$\begin{bmatrix} 1 & 4 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \end{bmatrix}$			
	$A = \begin{bmatrix} 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 \end{bmatrix}$			
	$A = \begin{bmatrix} 3 & 2 & 0 & 0 & 0 \\ 1 & 4 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}.$			

		UNIT - IV								
6	a)	Consider the following polynomial in $P_2(t)$ with the inner product	CO1	PO1	6					
		$\left\langle f g \right\rangle = \int_{-1}^{1} f(t)g(t)dt f(t) = t+2, \ g(t) = t^{2} - 3t + 4.$								
		Find the matrix of $\langle f \mid g \rangle$ with respect to the basis $\{1, t, t^2\}$.								
b) Find QR decomposition of the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.										
	c)	A sales organization obtains the following data relating the number of salespersons to annual sale. Let x and y denotes the number of salespersons and annual sales respectively. Find the least square line of the form $y = a + bx$ and estimate the annual sales when there are 14 salespersons. x	COI	PO1	7					
		y 2.3 3.2 4.1 5.0 6.1 7.2 UNIT-V								
7	a)	Compute the Hessian matrix at the point $(1, 1, 1)$ of the function $f(x, y, z) = xy^2 + z^3 + 2xy + 3xz + x^2 + 3$.	CO1	PO1	4					
b) Determine the modal matrix that reduces the quadratic form $3x^2 + 3y^2 + 3z^2 - 2yz + 2zx + 2xy$ to its canonical form and hence find the nature of the quadratic form.										
	c)	Given the data in table, reduce the dimension from 2 to 1 using principal component analysis.	CO1	PO1	8					

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: CS cluster except AIML

Course Code: 23MA4BSLAO

Duration: 3 hrs.

Max Marks: 100

Course: Linear Algebra and Optimization

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

ges.			UNIT – 1	со	PO	Marks
naining blank pa	1	a)	Find the gradient of matrix $\mathbf{f} = \begin{bmatrix} x_0^2 x_1 \log(x_2) & \frac{x_1^2 x_2}{x_3} \\ x_3^2 + x_1 x_3 & x_2^3 + x_1 \end{bmatrix}$ with respect to the matrix $\mathbf{x} = \begin{bmatrix} x_0 & x_1 \\ x_2 & x_3 \end{bmatrix}$ and hence verify	1	1	7
ne rei			$\frac{\partial \left[\operatorname{Trace}(f(x))\right]}{\partial x} = \operatorname{Trace}\left(\frac{\partial f(x)}{\partial x}\right).$			
oss lines on tl		b)	Given $f = x^2 + y^2 + z^2 + xy + yz + zx - 4x - 4y - 4z - 5$, i) find all the stationary points of the function, ii) find the Hessian matrix and iii) classify the stationary points and find its extreme value.	1	1	7
liagonal cre malpractice		c)	Find the equation of hyperplane normal to the vector $\mathbf{n} = \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}$ that	1	1	6
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.			separates the sets $A = \left\{ \begin{bmatrix} 2 \\ -1 \\ 5 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 6 \\ 0 \end{bmatrix} \right\}$ and $B = \left\{ \begin{bmatrix} 0 \\ 5 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} \right\}$. Does this hyperplane strictly separate these sets?			
vers, alua			UNIT – 2			
our answ	2	a)	Apply Newtons method to find the minimum value of the function $f = 4x_1^2 + x_2^2 - 2x_1x_2 + x_1 + x_2$ near $(1, 1)$. Carry out two iterations.	1	1	6
ote: Completing you identification, appea		b)	1	1	6	
Important N Revealing of		c)	1	1	8	

		UNIT – 3			
3	a)	If $u = (1, 3, -4, 2)$, $v = (4, -2, 2, 1)$ and $w = (5, -1, -2, 6)$ are vectors in \mathbb{R}^4 then: i) verify the $\langle 3u - 2v, w \rangle = 3\langle u, w \rangle - 2\langle v, w \rangle$ and	1	1	6
		ii) find $\frac{\ 3u - 2v\ }{\ w\ }$.			
	b)	Find an orthogonal basis of the subspace W spanned by the following vectors $S = \{1, t, t^2\}$ of $P_2(t)$ given $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$.	1	1	7
	c)	A sales organization obtains the following data relating the number of salespersons to annual sales. x: Number of salespersons 5 6 7 8 9 10	1	1	7
		y:Annual Sales (millions of dollars) $\begin{vmatrix} 2.3 & 3.2 & 4.1 & 5.0 & 6.1 & 7.2 \end{vmatrix}$ Find the least squares line of the form $y = a + bx$ and hence estimate the annual sales when there are 14 salespersons.			
		OR			
4	a)	Find the value of α such that the matrices $A = \begin{bmatrix} \alpha & 8 & -7 \\ 6 & 5\alpha & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & 6\alpha \end{bmatrix}$ are orthogonal with respect to an inner product $\langle A, B \rangle = Tr(B^T A)$. Hence find $ A $ and $ B $.	1	1	6
	b)	Show that $S = \{u_1, u_2, u_3, u_4\}$ where $u_1 = (1,1,1,1)$, $u_2 = (1,1,-1,-1)$, $u_3 = (1,-1,1,-1)$, $u_4 = (1,-1,-1,1)$ is orthogonal and a basis of \mathbb{R}^4 . Find the coordinates of the arbitrary vector $v = (a,b,c,d)$ in \mathbb{R}^4 relative to the basis S .	1	1	7
	c)	Obtain the QR factorization of the following matrix $A = \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ 3 & 1 \end{bmatrix}$.	1	1	7
		UNIT - 4			
5	a)	Apply Cayley-Hamilton theorem to find A^4 given $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$.	1	1	6
	b)	Given $M = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ and eigenvalues of M are $\lambda = 0, 2$. Find the eigenvalues and the eigenspace corresponding to each eigenvalue of $A = M^2 + \frac{1}{2}M$. Hence determine whether A is defective matrix or not.	1	1	7
	c)	Determine all possible Jordan canonical forms or blocks of linear transformation T with characteristic polynomial $f(t) = (t-4)^3$ and specify the geometric multiplicity in each case.	1	1	7

		OR			
6	a)	Determine the inverse of the matrix $A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ by using	1	1	6
	1-1	Cayley-Hamilton theorem.			7
	b)	Find an eigenspace of the linear transformation $T: P_2(t) \rightarrow P_2(t)$ given by $T(at^2 + bt + c) = (a+3b+3c)t^2 - (3a+5b+3c)t + (3a+3b+c)$.	1	1	7
	c)	Find the characteristic and minimal polynomial of the matrix $A = \begin{bmatrix} 2 & 5 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 2 & 0 \\ 0 & 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 0 & 7 \end{bmatrix}.$	1	1	7
		UNIT - 5			
7	a)	Find the nature and write the canonical form of the quadratic form $3x^2 + 3y^2 + 3z^2 + 2xy + 2xz - 2yz$.	1	1	5
	b)	Assume that the USN is XYZ2222 and then construct a matrix A of size 2×2 by taking last four digits of the USN given and hence find the singular value decomposition. Also write comment on the dimension reduction.	1	1	8
	c)	Apply principal component analysis to given data to reduce from two-dimension to 1-dimension:	1	1	7
	3	**************************************			

1
U.S.N.

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E. Semester: IV
Branch: CS / IS / AIML Duration: 3 hrs.
Course Code: 22MA4BSLIA Max Marks: 100

Course: LINEAR ALGEBRA

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

			UNIT - 1	СО	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Check whether $b = \begin{bmatrix} 3 \\ -7 \\ -3 \end{bmatrix}$ can be expressed as a linear combination of	1	1	6
			the columns of $A = \begin{bmatrix} 1 & -4 & 2 \\ 0 & 3 & 5 \\ -2 & 8 & -4 \end{bmatrix}$.			
		b)	Let $v_1 = \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$, $v_2 = \begin{bmatrix} 6 \\ 2 \\ -1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$ and $v_4 = \begin{bmatrix} -4 \\ -8 \\ 9 \end{bmatrix}$. Find a basis for the subspace W spanned by $\{v_1, v_2, v_3, v_4\}$.	1	1	7
al cross line actice.		c)	Given $B = \{t^3 + t^2, t^2 + t, t + 1, 1\}$ is an ordered basis of vector space $P_3(t)$. Find the co-ordinate vector of $f(t)$ relative to B where $f(t) = 2t^3 + t^2 - 4t + 2$.	1	1	7
agon nalpra			UNIT - 2			
rily draw di treated as n	2	a)	Find the matrix of the linear transformation $T: V_2(R) \to V_3(R)$ defined by $T(x,y) = (x+y, x, 3x-y)$ with respect to $B_1 = \{(1,1), (3,1)\}$ and $B_2 = \{(1,1,1), (1,1,0), (1,0,0)\}$.	1	1	6
s, compulso lator will be		b)	Find the basis and dimension of the Image and Kernel of the linear transformation $F: R^4 \to R^3$ defined by $F(x, y, z, t) = (x - y + z + t, 2x - 2y + 3z + 4t, 3x - 3y + 4z + 5t)$.	1	1	7
Important Note: Completing your answers, compulsorily draw diagonal crosRevealing of identification, appeal to evaluator will be treated as malpractice.		c)	Verify rank-nullity theorem for the linear transformation defined by the matrix $A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 3 & 4 & -1 & 2 \\ -1 & -2 & 5 & 4 \end{bmatrix}$.	1	1	7
pletii tion,			OR			
Note: Com	3	a)	Find the linear transformation $T: V_3(R) \to V_4(R)$ which maps $T(1,0,0) = (0,1,0,2), T(0,1,0) = (0,1,1,0)$ and $T(0,0,1) = (0,1,-1,4).$	1	1	6
Important Revealing o		b)	Show that $T: P_1(t) \to P_3(t)$ is a linear transformation if $T(at+b) = at^3 + bt^2 + at + b$ and hence find the image of $p(t) = 2 - t$.	1	1	7

	c)	Determine the basis and dimension of the null space of the linear transformation defined by $A = \begin{bmatrix} 1 & 4 & -1 & 3 \\ 2 & 9 & -1 & 7 \\ 2 & 8 & -2 & 6 \end{bmatrix}$.	1	1	7
		UNIT - 3			
4	a)	Find the eigenvalues and the corresponding eigenspaces of the linear operator $A = \begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix}$.	1	1	6
	b)	Find the characteristic and minimal polynomial of the matrix $A = \begin{bmatrix} 2 & 5 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 2 & 0 \\ 0 & 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 0 & 7 \end{bmatrix}.$	1	1	7
	c)	Determine the Jordan canonical form for the matrix $\begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 4 & 0 & 0 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 2 & -4 \end{bmatrix}.$	1	1	7
		OR			
5	a)	Find the eigenvalue and the corresponding eigenvectors of the linear transformation $T: V_2(R) \to V_2(R)$, given $A = \begin{pmatrix} 3 & 3 \\ 1 & 5 \end{pmatrix}$.	1	1	6
	b)	Apply Cayley-Hamilton theorem to find A^{-1} if $A = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$.	1	1	7
	c)	Compute the Jordan canonical form for the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 1 & 3 \end{bmatrix}$.	1	1	7
		UNIT - 4			
6	a)	Find the projection of $(1,2,3)$ on to the subspace W spanned by	1	1	5
		$S = \{u_1, u_2\}$ where $u_1 = (2, 5, -1)$ and $u_2 = (-2, 1, 1)$.			
	b)	Find the equation of line that will be best approximation of the points $(-3,70)$, $(1,21)$, $(-7,110)$ and $(5,-35)$ using the method of least squares.	2	1	7
	c)	Determine the QR-decomposition of the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 3 \\ 1 & -1 & 4 \end{bmatrix}$.	2	1	8
		UNIT- 5			
7	a)	Orthogonally diagonalize the matrix $A = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$.	2	1	10
	b)	Find the singular value decomposition of $A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$.	2	1	10

U.S.N.					
- 1.5 t= tt					

Autonomous Institute Affiliated to VTU

October 2023 Semester End Main Examinations

Programme: B.E. Semester: IV
Branch: CSE/ISE Duration: 3 hrs.
Course Code: 19MA4BSLIA Max Marks: 100

Course: Linear Algebra

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

			UNIT - I	со	PO	Marks
lank	1	a)	Solve the system of equations $x + 2y + 3z = 14$,	CO1	PO1	7
[d g ₁]			4x + 5y + 7z = 35 and $3x + 3y + 4z = 21$ for complete			
inin			solution. Also mention the free variables and the pivot variables.			
ema		b)	Solve the system of equations $x + y + z = 1, 3x + y - 3z = 5$	CO1	PO1	7
he r			and $x - 2y - 5z = 10$ by LU-Decomposition method.			
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.		c)	Find the basis and dimension for Column space and Row space of the matrix $A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$.	CO1	PO1	6
nal cr as ma			OR			
agor ted a	2	a)	Solve the system of equations $u + 3v + 3w + 2y = 1$,	CO1	PO1	7
v dia trea			2u + 6v + 9w + 7y = 5 and $-u - 3v + 3w + 4y = 5$ for the			
drav be			complete solution.			
ily (b)	Solve the system of equations $x + y + z = 9$, $2x + 5y + 7z = 52$	CO1	PO1	7
llsor			and $2x + y - z = 0$ by Gauss elimination method.			
mpu alua		c)	Check linearly dependency or linearly independency of following	CO1	PO1	6
, co			set of vectors.			
vers			i) $A = \{(1, -3, 2), (2, 1, -3), (-3, 2, 1)\}$ and			
ansv			ii) $B = \{(2,1,3), (1,3,2), (3,2,1)\}.$			
your a			UNIT - II			
ting ifica	3	a)	Find the matrix representation of linear transformation	CO1	PO1	7
iple lenti			$T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x, y) = (2x + 3y, 4x - 5y)$ relative to			
Cont			$\{(1,2),(2,5)\}$ for both vector space in domain and codomain.			
lote:		b)	If $T: \mathbb{R}^2 \to \mathbb{R}^3$ is defined by $T(x,y) = (x,y,x+y)$. Show that T is	CO1	PO1	7
nt N evea			linear transformation and also find its kernel.			
rta R		c)	Show that the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined as	CO1	PO1	6
Import pages.			$T(x,y) = (3x - 5y, -3x - 6y)$ is invertible and find T^{-1} .			
I D						

		UNIT – III			
4	a)	Find all the eigenvalues and corresponding eigenvectors of the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$.	CO2	PO1	7
	b)	Diagonalize the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$ and hence find A^4 .	CO2	PO1	7
	c)	Find minimal polynomial and characteristic polynomial of the matrix $A = \begin{bmatrix} 3 & -1 & 0 \\ 0 & 2 & 0 \\ 1 & -1 & 2 \end{bmatrix}$.	CO2	PO1	6
		OR			
5	a)	Compute the eigenspace of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by the matrix $A = \begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix}$.	CO2	PO1	7
	b)	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$ also compute A^{-1} and A^{4} .	CO2	PO1	7
	c)	Write the Jordan canonical form of matrix whose characteristic and minimal polynomial are respectively $(x-1)^3(x-2)^2$ and $(x-1)^2(x-2)$.	CO2	PO1	6
		UNIT – IV			
6	a)	Apply Gram-Schmidt orthogonalization to construct the orthonormal basis of the vector space spanned by the vectors (1 0 1), (1,0,0), (2,1,0).	CO3	PO1	7
	b)	Find QR decomposition of the matrix $\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$.	CO3	PO1	7
	c)	Find the least square solution of the system of equations $-x+2y=3$, $x+y=4$, $x-2y=0$ and $3x+2y=2$.	СОЗ	PO1	7
		UNIT – IV			
7	a)	Determine the orthogonal modal matrix and hence diagonalize the matrix $\begin{bmatrix} 1 & 5 & -2 \\ 5 & 4 & 5 \\ -2 & 5 & 1 \end{bmatrix}$.	CO3	PO1	8
	b)	Obtain the canonical form and hence classify the nature of the quadratic form $7x^2 + 6y^2 + 5z^2 - 4xy - 4yz$.	СОЗ	PO1	4
	c)	Find singular value decomposition of the matrix $A = \begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix}$.	СОЗ	PO1	8

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Branch: CS, IS and AI&ML

Course Code: 22MA4BSLIA

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Course: Linear Algebra

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

V			UNIT - I	со	PO	Marks
ning blank	1	a)	Show that the set $M = \left\{ \begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix} \middle/ a, b \in \mathbb{R} \right\} \subset M_{2 \times 2}$ satisfies all	CO1	PO1	6
remair			the properties of a vector space over the field of reals under standard matrix addition and scalar multiplication.			
n the		b)	Does there exist non-zero scalars c_1 , c_2 , c_3 and c_4 which proves	CO1	PO1	7
nes o ice.			that the vectors $v_1 = (0,1,2,3,0)$, $v_2 = (1,3,-1,2,1)$, $v_3 = (2,6,-1,-3,1)$			
cross lin			and $v_4 = (4,0,1,0,2)$ in \mathbb{R}^5 are linearly dependent? If yes, find them.			
onal d as r		c)	Determine a subset of $S = \{p_1, p_2, p_3, p_4\} \subset P_3(t)$, the vector	CO1	PO1	7
diag reate			space of polynomials that forms a basis of $W = span(S)$ if			
rily draw will be tı			$p_1 = t^3 + t^2$, $p_2 = 2t^3 + 2t - 2$, $p_3 = t^3 - 6t^2 + 3t - 3$ and $3t^2 - t + 1$			
npulso			UNIT – II			
vers, con	2	a)	Consider the matrix $A = \begin{bmatrix} 2 & 4 \\ 5 & 6 \end{bmatrix}$ which defines a linear operator	CO1	PO1	6
our ansv on, appe			on \mathbb{R}^2 . Find the matrix of the linear transformation relative to the basis $S = \{u_1, u_2\} = \{(1, -2), (3, -7)\}$.			
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.		b)	Find the basis for the range space $R(T)$, null space $N(T)$ for the linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$ given by $T(x, y, z, t) = (x - y + z + t, x + 2z + t, x + y + 3z - 3t)$ and also verify rank-nullity theorem.	COI	PO1	7
. Not		c)	Let $G: \mathbb{R}^3 \to \mathbb{R}^3$ given by $G(x, y, z) = (x+y, x+z, y+z)$.	CO1	PO1	7
rtant Rev			(i) Show that G is invertible. (ii) Find G^{-1} .			
Impor pages.			OR			

3	a)	Let $A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$, $u = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $b = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$ and $c = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$. Define a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ by $T(X) = AX$, for $X \in \mathbb{R}^2$. (i) Find the image of u under the transformation T . (ii) Find an $X \in \mathbb{R}^2$ whose image is b . Is there more than one $X \in \mathbb{R}^2$ whose image is b ? (iii) Determine if c is in the range of the transformation.	COI	PO1	6
	b)	Derive the matrix of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, which results in horizontal shear of $(x, y) \in \mathbb{R}^2$ by 0.5 units. Determine if there exist i) a preimage of $(1, -3)$. ii) an image of $(3, -1)$.	COI	PO1	7
	c)	Find the basis for the range space $R(T)$ and the Kernel $N(T)$ of the linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$ given by the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3 \end{bmatrix}$. Hence verify the rank-nullity theorem. Is T a one-one mapping? Justify. UNIT - III	COI	PO1	7
4	a)	Apply Cayley-Hamilton theorem to compute A^{-1} of $A = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}.$	CO1	PO1	6
	b)	Find the eigenvalues and the eigenvectors of the linear transformation $T: P_1(t) \rightarrow P_1(t)$ defined $T(at+b) = (a+2b)t + (4a+3b)$.	COI	PO1	7
C	c)	Find the characteristic and minimal polynomial of $\begin{bmatrix} 2 & 5 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 2 & 0 \\ 0 & 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 0 & -7 \end{bmatrix}$	COI	POI	7
,		OR			
5	a)	Apply Cayley-Hamilton theorem to compute A^4 if $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}.$	COI	PO1	6
	b)	Determine the eigenspaces of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x, y, z) = (x + y - z, 0, x + 2y + 3z)$.	CO1	PO1	7

	c)	Write all possible Jordan canonical form of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ when $\Delta(t) = (t+5)^2 (t-7)^3$ is the	CO1	PO1	7
		characteristic polynomial.			
		UNIT – IV			
6	a)	Find a basis of W of \mathbb{R}^4 orthogonal to $u_1 = (1, -2, 3, 4)$ and $u_2 = (3, -5, 7, 8)$.	CO1	PO1	4
	b)	Find an orthogonal basis and hence an orthonormal basis of the subspace W spanned by $S = \{1, 1-t, t^2\}$ of $P_2(t)$ given $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$.	COI	POI	9
	c)	In an experiment designed to determine the extent of a person's natural orientation, a subject is put in a special room and kept there for a certain length of time. He is then asked to find a way of a maze and record is made of the time it takes the subject to accomplish this task. The following data are obtained. Time in Room (hours) 1 2 3 4 5 6 Time to find way out of maze(minutes) 1 2 3 4 5 6 1 2.6 2.0 3.1 3.3 Let x denote the number of hours in the room and let y denote the number of minutes that it takes the subject to find his way	COI	POI	7
		 i.Find the least squares line of the form y = a + bx. ii.Estimate the time it will take the subject to find his way out of the maze after 10 hours in the room using the equation obtained. 			
		UNIT – V			
7	a)	Determine the modal matrix that reduces the quadratic form $x^2 + 3y^2 + 3z^2 - 2yz$ to its canonical form and hence discuss the nature the quadratic form.	CO1	PO1	10
C	b)	Obtain the singular value decomposition of $A = \begin{bmatrix} -3 & 1 \\ 6 & -2 \\ 6 & -2 \end{bmatrix}$.	CO1	PO1	10

U.S.N.

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E

Branch: CS/IS/AIML

Course Code: 19MA4BSLIA

Course: Linear Algebra

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Date: 14.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Apply LU decomposition method to solve the system of equations 2x+y+4z=12, 4x+11y-z=33 and 8x-3y+2z=20.

b) Express the polynomial $v = t^2 + 4t - 3$ in p(t) as a linear combination of the polynomials $p_1 = t^2 - 2t + 5$, $p_2 = 2t^2 - 3t$, $p_3 = t + 3$.

c) Let W be a subspace of \mathbb{R}^4 spanned by the vectors $u_1 = (1, -2, 5, -3)$, $u_2 = (2, 3, 1, -4)$ and $u_3 = (3, 8, -3, -5)$.

i) Find the basis and dimension of W.

ii) Extend the basis of W to a basis of \mathbb{R}^4 .

OR

2 a) Show that the vectors $u_1 = (1,1,1)$, $u_2 = (1,2,3)$, $u_3 = (1,5,8)$ span \mathbb{R}^3 .

b) Show that the set $V = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ is a vector space over the field of rationals.

7

7

c) Find the dimension and a basis of the solution space W of the system of equations x+2y+2z-s+3t=0; x+2y+3z+s+t=0 and 3x+6y+8z+s+5t=0.

UNIT-II

3 a) If $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x - y, y + z, x + z), find R(T), N(T) and hence verify Rank-Nullity theorem.

b) Let T be a linear operator defined on \mathbb{R}^3 through T(x, y, z) = (2x+3y-z, 4y-z, 2z). Is T invertible? If so, then find a formula for T^{-1} .

c) Find the matrix of linear transformation $T: V_2(\mathbb{R}) \to V_3(\mathbb{R})$ defined by T(x, y) = (-x+2y, y, -3x+3y) relative to the basis $B_1 = \{(1,1), (-1,1)\}$ and $B_2 = \{(1,1,1), (1,-1,1), (0,0,1)\}$.

UNIT-III

- Find A^4 given $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$ using Cayley-Hamilton theorem. 6
 - Find the eigen space of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by 7 b) T(x, y, z) = (3x+2y+z, x+4y+z, 2y+4z).

7

Determine all possible Jordan canonical forms of the linear operator c) $T: V \to V$ whose characteristic polynomial is $\Delta(t) = (t-2)^3 (t-5)^2$.

OR

- Find the characteristic and minimal polynomial of $A = \begin{bmatrix} 3 & 2 & 0 & 0 & 0 \\ 1 & 4 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$. 5 6 a)
 - and eigenvectors of the linear transformation Find eigenvalues 7 b) $T: V_2(\mathbb{R}) \to V_2(\mathbb{R})$ defined by T(x, y) = (2x+5y, 4x+3y).
 - Express the initial-value problem $\frac{d^2x(t)}{dt^2} 2\frac{dx(t)}{dt} 3x(t) = 0$ subjected to 7 x(0) = 4, $\frac{dx(0)}{dt} = 5$ into fundamental form and hence solve. **UNIT-IV**

- Let W be a subspace of \mathbb{R}^5 spanned by u = (1, 2, 3, -1, 2) and v = (2, 4, 7, 2, -1). 6 6 Find a basis of the orthogonal compliment W^{\perp} of W.
 - 7 Find an orthogonal basis and hence an orthonormal basis of U, the subspace of \mathbb{R}^4 spanned by the vectors $v_1 = (1,1,1,1)$, $v_2 = (1,1,2,4)$ and =(1,2,-4,-3) using Gram-Schmidt orthogonalization process.
 - Obtain the *QR* factorization of $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. 7

- Orthogonally diagonalize $\begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$. 10
 - Find a singular value decomposition of $\begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix}$. 10