Семинар 25

1 Повторение

Примеры подпространств. Линейная оболочка конечного набора векторов.

Ранг системы векторов. Утверждение о том, что ранг системы векторов равен рангу матрицы, составленной из столбцов их координат в некотором базисе.

Пересечение подпространств. Сумма и прямая сумма подпространств. Утверждение о связи размерности суммы и пересечения подпространств. Критерий того, что сумма подпространств является прямой.

Билинейная форма и её матрица. Формула для преобразования матрицы билинейной формы при замене базиса.

2 Задачи

Заметим, что множество решений СЛУ Ax=b является подпространством тогда и только тогда, когда b=0.

Задача 1. Является ли подпространством соответствующего векторного пространства каждая из следующих совокупностей векторов:

- 1. все векторы \mathbb{R}^n , координаты которых целые числа;
- 2. все векторы \mathbb{R}^3 , не лежащие на данной прямой?

Задача 2. Перечислить все линейные подпространства пространства \mathbb{R}^3 .

Задача 3. Пусть F – поле. Доказать, что следующие системы векторов образуют подпространства в F^n и найти их базис и размерность:

- 1. все векторы, у которых первая и последняя координаты равны между собой;
- 2. все векторы, у которых координаты с чётными номерами равны между собой.

Пусть F – поле и $n \in \mathbb{N}$. Напомним, что матрица $A \in \mathrm{M}_n(F)$ называется симметричной (кососимметричной), если

$$A^T = A \ (A^T = -A \ \text{соответственно}).$$

Если $\operatorname{char} F = 2$, то понятия симметричности и кососимметричности совпадают.

Обозначим через V множество всех матриц порядка n, через U – множество всех симметричных матриц порядка n и W – множество всех кососимметричных матриц порядка n. Тогда $U,W\subseteq V$ – подпространства. При этом

$$\dim V=n^2, \ \text{базис:} \ E_{ij}, \ 1\leq i,j\leq n;$$

$$\dim U=\frac{n(n+1)}{2}, \ \text{базис:} \ E_{ij}+E_{ji}, \ 1\leq i\leq n, \ i< j\leq n \ \text{и} \ E_{ii}, \ 1\leq i\leq n;$$

$$\dim W=\frac{n(n-1)}{2}, \ \text{базис:} \ E_{ij}-E_{ji}, \ 1\leq i\leq n, \ i< j\leq n \ \text{при char} \ F\neq 2.$$

Пусть char $F \neq 2$. Тогда для любой матрицы $A \in \mathrm{M}_n(F)$ верно разложение

$$A = \frac{1}{2}(A + A^{T}) + \frac{1}{2}(A - A^{T})$$

в сумму симметричной и кососимметричной матриц.

Пусть $U,W \leq V$ — векторные пространства над полем F. Определим cymmy $\operatorname{nodnpo-cmpahcms}$

$$U + W = \{u + w \mid u \in U, w \in W\}.$$

Множества U+W и $U\cap W$ являются подпространствами в V, причём

$$\dim(U+W) + \dim(U\cap W) = \dim U + \dim W.$$

Поэтому, если среди чисел $\dim(U+W)$, $\dim(U\cap W)$, $\dim U$ и $\dim W$ известно три, то четвёртое легко находится по формуле.

Если U и W заданы с помощью ОСЛУ Ax=0 и Bx=0 соответственно, то $U\cap W$ задаётся объединённой ОСЛУ

$$\begin{pmatrix} A \\ B \end{pmatrix} x = 0.$$

Наоборот, если U и W заданы линейными оболочками $\langle u_1, \dots, u_k \rangle$ и $\langle w_1, \dots, w_l \rangle$ соответственно, то U+W задаётся объединённой линейной оболочкой

$$\langle u_1,\ldots,u_k,w_1,\ldots,w_l\rangle.$$

Отсюда получаем и способ находить базисы $U \cap W$ и U + W: нужно просто перейти к нужному способу задания подпространств.

Задача 4. Найти размерность суммы и размерность пересечения подпространств

$$\langle (1,2,0,1), (1,1,1,0) \rangle$$

И

$$\langle (1,0,1,0), (1,3,0,1) \rangle$$
.

Пусть U, W < V. Следующие условия эквивалентны:

- 1. для любого $v \in V$ существуют единственные $u \in U$ и $w \in W$ такие, что v = u + w;
- 2. U + W = V и $U \cap W = \{0\}$;
- 3. $\dim(U+W) = \dim V$ и $\dim(U\cap W) = 0$.

Если пара подпространств $U, W \leq V$ удовлетворяет одному из этих условий, то говорят, что подпространство V является npямой суммой подпространств U и W. Обозначение: $V = U \oplus W$.

Пусть $V = U \oplus W$, $v \in V$ и v = u + w, где $u \in U$ и $w \in W$. Вектор u называется проекцией вектора v на подпространство U вдоль подпространства W, а вектор w называется проекцией вектора v на подпространство W вдоль подпространства U.

Задача 5. Пусть char F не делит n. Доказать, что пространство F^n является прямой суммой подпространств, заданных ОСЛУ

$$x_1 + \ldots + x_n = 0$$

И

$$x_1 = \ldots = x_n$$
.

Найти обе проекции векторов e_1, \ldots, e_n стандартного базиса.

Пусть $V = U \oplus W$, $v \in V$, $U = \langle u_1, \dots, u_k \rangle$ и $W = \langle w_1, \dots, w_l \rangle$. Чтобы найти проекции v на U и W, достаточно решить СЛУ

$$x_1u_1 + \ldots + x_ku_k + y_1w_1 + \ldots + y_lw_l = v$$

относительно переменных $x_1,\dots,x_k,y_1,\dots,y_l$. Тогда проекции v на U и W равны соответственно

$$x_1u_1 + \ldots + x_ku_k \text{ if } y_1w_1 + \ldots + y_lw_l.$$

Есть альтернативный способ нахождения базиса пересечения двух подпространств $U,W \leq F^n$, заданных линейными оболочками:

$$U = \langle u_1, \dots, u_k \rangle$$
 и $W = \langle w_1, \dots, w_l \rangle$.

Для любого вектора $v \in U \cap W$ найдутся скаляры λ_i, μ_i , для которых

$$v = \lambda_1 u_1 + \ldots + \lambda_k u_k = \mu_1 w_1 + \ldots + \mu_l w_l.$$

Это означает, что данные наборы скаляров представляют собой решение уравнения

$$\sum_{i=1}^{k} \lambda_i u_i = \sum_{j=1}^{l} \mu_j w_j,$$

то есть ОСЛУ.

Получаем следующий алгоритм нахождения базиса в $U \cap W$:

- 1. записываем векторы u_1, \ldots, u_k в столбцы матрицы A, а векторы w_1, \ldots, w_l в столбцы матрицы B;
- 2. приводим матрицу $(A \mid B)$ к улучшенному ступенчатому виду;
- 3. по улучшенному ступенчатому виду выписываем ФСР для нашей ОСЛУ первые k коэффициентов отвечают скалярам λ_i , а последние l скалярам $-\mu_j$;
- 4. для каждого элемента найденной Φ CP находим вектор v по одной из формул

$$v = \sum_{i=1}^k \lambda_i u_i$$
 или $v = \sum_{j=1}^l \mu_j w_j$

(здесь можно себя проверить);

5. для всех полученных векторов v выбираем базис их линейной оболочки: это и будет базис в $U \cap W$.

Приятный бонус: чтобы найти базис в U+W, нужно всё ту же матрицу $(A\mid B)$ привести к ступенчатому виду. Таким образом, описанный альтернативный алгоритм даёт возможность найти базис в U+W и $U\cap W$, используя одну и ту же матрицу $(A\mid B)$.

Задача 6. Найти базис суммы и пересечения подпространств

$$U = \langle (1, 2, 1), (1, 1, -1), (1, 3, 3) \rangle$$

И

$$W = \langle (2,3,-1), (1,2,2), (1,1,-3) \rangle$$

в \mathbb{R}^3 .

Peшение. Составим матрицу $(A \mid B)$, записав наши векторы по столбцам, и приведём её к улучшенному ступенчатому виду:

$$\begin{pmatrix} 1 & 1 & 1 & 2 & 1 & 1 \\ 2 & 1 & 3 & 3 & 2 & 1 \\ 1 & -1 & 3 & -1 & 2 & -3 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 2 & 0 & 2 & -2 \\ 0 & 1 & -1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & -1 & 2 \end{pmatrix}.$$

Отсюда сразу получаем, что базисом суммы U+W являются первый, второй и четвёртый векторы:

$$(1,2,1), (1,1,-1), (2,3,-1).$$

Далее, находим ФСР:

$$(-2, 1, 1, 0, 0, 0), (-2, -1, 0, 1, 1, 0), (2, 1, 0, -2, 0, 1).$$

Значит, пересечение $U \cap W$ порождено векторами

$$(0,0,0) = (-2) \cdot (1,2,1) + 1 \cdot (1,1,-1) + 1 \cdot (1,3,3) =$$
$$= (-0) \cdot (2,3,-1) + (-0) \cdot (1,2,2) + (-0) \cdot (1,1,-3);$$

$$(-3, -5, -1) = (-2) \cdot (1, 2, 1) + (-1) \cdot (1, 1, -1) + 0 \cdot (1, 3, 3) =$$
$$= (-1) \cdot (2, 3, -1) + (-1) \cdot (1, 2, 2) + (-0) \cdot (1, 1, -3)$$

И

$$(3,5,1) = 2 \cdot (1,2,1) + 1 \cdot (1,1,-1) + 0 \cdot (1,3,3) =$$

= $2 \cdot (2,3,-1) + (-0) \cdot (1,2,2) + (-1) \cdot (1,1,-3).$

Выделяем из этой системы линейно независимую подсистему и получаем, что базисом $U\cap W$ является вектор

(3, 5, 1).