Pinezki

XVI OIJ, zawody I stopnia, tura otwarta

26 października 2021 – 6 grudnia 2021

Limit czasu: 2 s (C++) / 15 s (Python)

Limit pamięci: 256 MB

Bajtosia wbija pinezki w oś liczbową – dokładniej mówiąc, wybiera sobie pewne N i wbija pinezki w swój ulubiony odcinek $[0,3^N]$ na osi. Pierwsze dwie pinezki trafiają na na początek i koniec odcinka, a następnie Bajtosia działa według następującego planu:

Najpierw wbija nowe pinezki w jednej trzeciej długości od początku swojego odcinka oraz w jednej trzeciej długości od końca. Tak wyznaczone punkty dzielą odcinek na trzy części równej długości: lewą, środkową i prawą. Następnie Bajtosia powtarza cały proces najpierw dla części lewej (jej początek i koniec już ma zaznaczony), a potem dla części prawej (ale nie dla środkowej!). Po drodze w obu tych częściach pojawią się mniejsze części, w których Bajtosia będzie znowu powtarzać swój plan, i tak dopóki się da – ponieważ Bajtosia wbija pinezki tylko w punkty całkowite, nie będzie już dalej dzielić odcinków, które mają długość 1.

Końcowy układ pinezek otrzymany przez Bajtosię nazywa się fraktalem¹.

Przykładowo, jeśli N=3, na odcinku zaznaczone będą następujące punkty:

Bajtosia zastanawia się czy się nie pomyliła, sprawdzając dla różnych K pozycję K-tej pinezki od lewej. Pomożesz jej? Napisz program, który wczyta wartość N oraz zapytania Bajtosi i dla każdego zapytania K_i wyznaczy, gdzie leży K_i -ta pinezka.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba naturalna N ($1 \le N \le 36$). W drugim wierszu wejścia znajduje się jedna liczba naturalna Q ($1 \le Q \le 200\,000$) określająca liczbę zapytań Bajtosi. W kolejnych Q wierszach znajduje się opis kolejnych zapytań, po jednym w wierszu. Opis każdego zapytania składa się z jednej liczby K_i ($1 \le K_i \le 10^{18}$) określającej zapytanie Bajtosi jaka jest pozycja K_i -tej od lewej pinezki wbitej na jej odcinku.

Wbite przez Bajtosię pinezki numerujemy kolejnymi liczbami naturalnymi zaczynając od 1.

Wyjście

Twój program powinien wypisać dokładnie Q wierszy. W i-tym wierszu powinna się znaleźć odpowiedź dla i-tego zapytania Bajtosi – pozycja K_i -tej pinezki na odcinku. Jeżeli Bajtosia wbiła mniej niż K_i pinezek, zamiast tego należy wypisać (dla tego zapytania) odpowiedź NIE.

Ocenianie

Możesz rozwiązać zadanie w kilku prostszych wariantach – niektóre grupy testów spełniają pewne dodatkowe ograniczenia. Poniższa tabela pokazuje, ile punktów otrzyma Twój program, jeśli przejdzie testy z takim ograniczeniem.

Dodatkowe ograniczenia	Liczba punktów
$N \leq 4$	10
<i>N</i> ≤ 18	50

¹Obiekt, w którym mniejsze części są podobne do całości, zobacz także https://pl.wikipedia.org/wiki/Fraktal.

Przykłady

Wejście dla testu pin0a:

3			
3			
10			
2			
50			

Wyjście dla testu pin0a:

19		
1		
NIE		

Wyjaśnienie do przykładu: Rysunek przedstawiający odcinek wraz z wbitymi przez Bajtosię pinezkami znajduje się w treści powyżej. Ponieważ wbitych pinezek jest mniej niż 50, to odpowiedź na ostatnie zapytanie to NIE.

Wejście dla testu pin0b:

Wyjście dla testu pin0b:

Wyjaśnienie do przykładu: Odcinek wraz z wbitymi przez Bajtosię pinezkami:

Wejście dla testu pin0c:

2	
2	
1	
1000000000000000000	

Wyjście dla testu pin0c:

0		
NIE		

Pozostałe testy przykładowe

- test pin0d: N = 18, Q = 100 000, $K_i = i^2$.
- test pin0e: N = 36, $Q = 200\ 000$, $K_i = 10^6 \cdot i$.