Machine Learning

Mohamad Ghassany 2017-03-02

Contents

W	elcor	me	
In	Wha Supe	luction (at is Machine Learning?	
Ι	Su	pervised Learning	19
II	\mathbf{R}	degression	2
1	Line	ear Regression	2
	1.1	Notation	2
	1.2	Model Representation	2^{-1}
	1.3	Why Estimate f ?	2
		Prediction	
		Inference	2
	1.4	Simple Linear Regression Model	2
	1.5	Estimating the Coefficients	2
	1.6	Assessing the Accuracy of the Coefficient Estimates	2
		Hypothesis testing	2
	1.7	ANOVA and model fit	2
		1.7.1 ANOVA	2
		1.7.2 The R^2 Statistic	3
P	W 1		3
	1.8	Some R basics	3
		1.8.1 Basic Commands	3
		1.8.2 Vectors	3
		1.8.3 Matrices, data frames and lists	3
		1.8.4 Graphics	3
		1.8.5 Distributions	4
		1.8.6 Working directory	4
		1.8.7 Loading Data	4
	1.9	Regression	
		1.9.1 The lm function	
		1.9.2 Predicting House Value: Boston dataset	
	3.5		
2		altiple Linear Regression The Model	5 .
	2.1	The Model	5

	2.2 2.3	Some important questions	52 52 54
PV	W 2 2.4 2.5	Reporting Markdown R Markdown The report to be submitted Multiple Linear Regression	57 57 57 58 58 58
II	I (Classification	31
3	Log 3.1 3.2	Introduction . Logistic Regression . 3.2.1 The Logistic Model . 3.2.2 Estimating the Regression Coefficients . 3.2.3 Prediction .	63 63 63 65 65 66
P	-	ort template	69 69 69
4	4.1 4.2 4.3 4.4 4.5 4.6 4.7	Introduction . Bayes' Theorem	77 77 77 78 80 81 82 82 83 83
PV	Deci Line Qua	ort template ision Boundary of Logistic Regression ear Discriminant Analysis (LDA) dratic Discriminant Analysis (QDA)	85 85 85 86 88 88
5	Sup 5.1 5.2 5.3 5.4 5.5 5.6	Maximal Margin Classifier Support Vector Classifier Kernels and Support Vector Machines Example and Comparison with Logistic Regression Lab: Support Vector Machine for Classification	91 91 91 91 91 91
P	W 5	9	93

I	Ί	Jnsupervised Learning	95
6	Din	nensionality Reduction	97
	6.1	Unsupervised Learning	97
	6.2	Principal Components Analysis	97
	6.3	Principal Components	
		Notations and Procedure	98
		First Principal Component (PC ₁): Y_1	
		Second Principal Component (PC ₂): Y_2	99
		i^{th} Principal Component (PC _i): Y_i	
	6.4	How do we find the coefficients?	
		Why It May Be Possible to Reduce Dimensions	
		Procedure	102
	6.5	Standardization of the features	
	6.6	Projection of the data	
		Scores	
		Visualization	
		Extra	104
	6.7	Case study	104
		Employement in European countries in the late 70s	
ΡV	W 6		113
•		Iris Dataset	
		ding the PCA approach	
	Dan	Data pre-processing	
		Eigendecomposition - Computing Eigenvectors and Eigenvalues	
		Selecting Principal Components	
		Projection Matrix	
	Vori	fications with princomp()	
	VCII	incations with princomp()	111
7	Clu	stering: kmeans	119
	7.1	Introduction	
		Hard clustering	120
		Fuzzy clustering	120
	7.2	k-Means	120
	7.3	k-means in R	123
		7.3.1 Cluster Validity, Choosing the Number of Clusters	125

Welcome

Welcome to this course. It is only a little introduction to Machine Learning.

The aim of Machine Learning is to build computer systems that can adapt to their environments and learn form experience. Learning techniques and methods from this field are successfully applied to a variety of learning tasks in a broad range of areas, including, for example, spam recognition, text classification, gene discovery, financial forecasting. The course will give an overview of many concepts, techniques, and algorithms in machine learning, beginning with topics such as linear regression and classification and ending up with topics such as kmeans and Expectation Maximization. The course will give the student the basic ideas and intuition behind these methods, as well as a more formal statistical and computational understanding. Students will have an opportunity to experiment with machine learning techniques in R and apply them to a selected problem.

Introduction

What is Machine Learning?

What is Machine Learning?

Two definitions of Machine Learning are offered. Arthur Samuel described it as: "the field of study that gives computers the ability to learn without being explicitly programmed." This is an older, informal definition.

Tom Mitchell provides a more modern definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

Machine Learning is also called Statistical Learning.

Example: playing checkers.

E = the experience of playing many games of checkers

T =the task of playing checkers.

P = the probability that the program will win the next game.

In general, any machine learning problem can be assigned to one of two broad classifications:

Supervised learning and Unsupervised learning.

Supervised Learning

Supervised Learning is probably the most common type of machine learning problem. Let's start with an example of what is it. Let's say we want to predict housing prices. We plot a data set and it looks like this.

Here on the horizontal axis, the size of different houses in square feet, and on the vertical axis, the price of different houses in thousands of dollars.

So. Given this data, let's say we own a house that is, say 750 square feet and hoping to sell the house and we want to know how much we can get for the house.

So how can the learning algorithm help?

One thing a learning algorithm might be able to do is put a straight line through the data or to "fit" a straight line to the data and, based on that, it looks like maybe the house can be sold for maybe about \$150,000.

But maybe this isn't the only learning algorithm we can use. There might be a better one. For example, instead of sending a straight line to the data, we might decide that it's better to fit a quadratic function or a second-order polynomial to this data.

If we do that, and make a prediction here, then it looks like, well, maybe we can sell the house for closer to \$200,000.

This is an example of a supervised learning algorithm.

The term supervised learning refers to the fact that we gave the algorithm a data set in which the "right answers" were given.

The example above is also called a regression problem. A regression problem is when we try to predict a **continuous** value output. Namely the price in the example.

Here's another supervised learning example. Let's say we want to look at medical records and try to predict

of a breast cancer as malignant or benign. If someone discovers a breast tumor, a lump in their breast, a malignant tumor is a tumor that is harmful and dangerous and a benign tumor is a tumor that is harmless. Let's see a collected data set and suppose in the data set we have the size of the tumor on the horizontal axis and on the vertical axis we plot one or zero, yes or no, whether or not these are examples of tumors we've seen before are malignant (which is one) or zero if not malignant or benign.

Breast cancer (malignant, benign)

In this data set we have five examples of benign tumors, and five examples of malignant tumors.

Let's say a person who tragically has a breast tumor, and let's say her breast tumor size is known (rose arrow in the following figure).

Breast cancer (malignant, benign)

The machine learning question is, can you estimate what is the probability that a tumor is malignant versus benign? To introduce a bit more terminology this is an example of a *classification* problem.

The term classification refers to the fact that here we're trying to predict a **discrete** value output: zero or one, malignant or benign. And it turns out that in classification problems sometimes you can have more than two values for the two possible values for the output.

In classification problems there is another way to plot this data. Let's use a slightly different set of symbols to plot this data. So if tumor size is going to be the attribute that we are going to use to predict malignancy

or benignness, we can also draw the data like this.

All we did was we took the data set on top and just mapped it down using different symbols. So instead of drawing crosses, we are now going to draw 0's for the benign tumors.

Breast cancer (malignant, benign)

Now, in this example we use only one **feature** or one attribute, mainly, the tumor size in order to predict whether the tumor is malignant or benign.

In other machine learning problems we may have more than one feature.

Here's an example. Let's say that instead of just knowing the tumor size, we know both the age of the patients and the tumor size. In that case maybe the data set will look like this.

So, let's say a person who tragically has a tumor. And maybe, their tumor size and age falls around there (rose point):

So given a data set like this, what the learning algorithm might do is throw a straight line through the data to try to separate out the malignant tumors from the benign ones. And with this, hopefully we can decide that the person's tumor falls on this benign side and is therefore more likely to be benign than malignant.

In this example we had **two features**, namely, the age of the patient and the size of the tumor. In other machine learning problems we will often have more features.

Most interesting learning algorithms is a learning algorithm that can deal with, not just two or three or five features, but an **infinite number of features**. So how do you deal with an infinite number of features. How do you even store an infinite number of things on the computer when your computer is gonna run out of memory.

Unsupervised Learning

The second major type of machine learning problem is called Unsupervised Learning.

The difference between Unsupervised Learning and Supervised Learning is that in Supervised Learning we are told explicitly what is the so-called right answers (data are labeled).

In Unsupervised Learning, we're given data that doesn't have any labels or that all has the same label or really no labels. Like in this example:

So we're given the data set and we're not told what to do with it and we're not told what each data point is. Instead we're just told, here is a data set. Can you find some structure in the data?

Given this data set, an Unsupervised Learning algorithm might decide that the data lives in two different clusters.

Unsupervised Learning

This is called a **clustering** algorithm.

Here are two examples where Unsupervised Learning or clustering is used.

Social network analysis:

So given knowledge about which friends you email the most or given your Facebook friends or your Google+circles, can we automatically identify which are cohesive groups of friends, also which are groups of people that all know each other?

Market segmentation:

Market segmentation

Many companies have huge databases of customer information. So, can you look at this customer data set and automatically discover market segments and automatically group your customers into different market segments so that you can automatically and more efficiently sell or market your different market segments together?

This is Unsupervised Learning because we have all this customer data, but we don't know in advance what are the market segments and for the customers in our data set, we don't know in advance who is in market segment one, who is in market segment two, and so on. But we have to let the algorithm discover all this just from the data.

Part I Supervised Learning

Part II Regression

Chapter 1

Linear Regression

1.1 Notation

In general, we will let x_{ij} represent the value of the jth variable for the ith observation, where i = 1, 2, ..., n and j = 1, 2, ..., p. We will use i to index the samples or observations (from 1 tp n) and j will be used to index the variables (or features) (from 1 to p). We let **X** denote a $n \times p$ matrix whose (i, j)th element is x_{ij} . That is,

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & x_{13} & \dots & x_{1p} \\ x_{21} & x_{22} & x_{23} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & x_{n3} & \dots & x_{np} \end{pmatrix}$$

Note that it is useful to visualize **X** as a spreadsheet of numbers with n rows and p columns. We will write the rows of **X** as x_1, x_2, \ldots, x_n . Here x_i is a vector of length p, containing the p variable measurements for the ith observation. That is,

$$x_i = \begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ip} \end{pmatrix}$$

(Vectors are by default represented as columns.)

We will write the columns of **X** as $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p$. Each is a vector of length n. That is,

$$\mathbf{x}_j = egin{pmatrix} \mathbf{x}_{1j} \\ \mathbf{x}_{2j} \\ \vdots \\ \mathbf{x}_{nj} \end{pmatrix}$$

Using this notation, the matrix \mathbf{X} can be written as

$$\mathbf{X} = (\mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_p)$$

or

$$\mathbf{X} = egin{pmatrix} x_1^T \ x_2^T \ dots \ x_n^T \end{pmatrix}$$

The T notation denotes the transpose of a matrix or vector.

We use y_i to denote the *i*th observation of the variable on which we wish to make predictions. We write the set of all n observations in vector form as

$$\mathbf{y} = egin{pmatrix} y_1^T \ y_2^T \ dots \ y_n^T \end{pmatrix}$$

Then the observed data consists of $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, where each x_i is a vector of length p. (If p = 1, then x_i is simply a scalar).

1.2 Model Representation

Let's consider the example about predicting housing prices. We're going to use this data set as an example,

Figure 1.1:

Suppose that there is a person trying to sell a house of size 1250 square feet and he wants to know how much he might be able to sell the house for. One thing we could do is fit a model. Maybe fit a straight line to this data. Looks something like this,

Figure 1.2:

and based on that, maybe he can sell the house for around \$220,000. Recall that this is an example of a supervised learning algorithm. And it's supervised learning because we're given the "right answer" for each of our examples. More precisely, this is an example of a regression problem where the term regression refers to the fact that we are predicting a real-valued output namely the price.

More formally, in supervised learning, we have a data set and this data set is called a **training set**. So for housing prices example, we have a training set of different housing prices and our job is to learn from this data how to predict prices of the houses.

Let's define some notation from this data set:

- The size of the house is the input variable.
- The house price is the output variable.
- The input variables are typically denoted using the variable symbol X,
- The inputs go by different names, such as predictors, independent variables, features, predictor or sometimes just variables.
- The output variable is often called the response, dependent variable or target, and is typically denoted using the symbol Y.
- (x_i, y_i) is the *i*th training example.
- The set of $\{(x_i, y_i)\}$ is the training set.
- n is the number of training examples.

So here's how this supervised learning algorithm works. Suppose that we observe a quantitative response Y and p different predictors, X_1, X_2, \ldots, X_p . We assume that there is some relationship between Y and $X = (X_1, X_2, \ldots, X_p)$, which can be written in the very general form

Here f is some fixed but unknown function of X_1, X_2, \ldots, X_p , and ϵ is a random error term, which is independent of X and has mean zero. The f function is also called hypothesis in Machine Learning. In general, the function f may involve more than one input variable. In essence, Supervised Learning refers to a set of approaches for estimating f.

1.3 Why Estimate f?

There are two main reasons that we may wish to estimate f: prediction and inference.

Prediction

In many situations, a set of inputs X are readily available, but the output Y cannot be easily obtained. In this setting, since the error term averages to zero, we can predict Y using

$$\hat{Y} = \hat{f}(X)$$

where \hat{f} represents our estimate for f, and \hat{Y} represents the resulting prediction for Y. Like in the example above about predicting housing prices.

We can measure the accuracy of \hat{Y} by using a **cost function**. In the regression models, the most commonly-used measure is the mean squared error (MSE), given by

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

Inference

We are often interested in understanding the way that Y is affected as X_1, X_2, \ldots, X_p change. In this situation we wish to estimate f, but our goal is not necessarily to make predictions for Y. We instead want to understand the relationship between X and Y, or more specifically, to understand how Y changes as a function of X_1, X_2, \ldots, X_p . In this case, one may be interested in answering the following questions:

- Which predictors are associated with the response?
- What is the relationship between the response and each predictor?
- Can the relationship between Y and each predictor be adequately summarized using a linear equation, or is the relationship more complicated?

1.4 Simple Linear Regression Model

Simple linear regression is a very straightforward approach for predicting a quantitative response Y on the basis of a single predictor variable X. It assumes that there is approximately a linear relationship between X and Y. Mathematically, we can write this linear relationship as

$$Y = \beta_0 + \beta_1 X + \epsilon$$
$$Y \approx \beta_0 + \beta_1 X$$

where β_0 and β_1 are two unknown constants that represent the intercept and slope, also known as **coefficients** or parameters, and ϵ is the error term.

Given some estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ for the model coefficients, we predict future inputs x using

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x$$

where \hat{y} indicates a prediction of Y on the basis of X = x. The hat symbol, \hat{y} , denotes an estimated value.

1.5 Estimating the Coefficients

Let $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be the prediction for Y based on the ith value of X. Then $e_i = y_i - \hat{y}_i$ represents the ith residual

We define the $residual \ sum \ of \ squares \ (RSS)$ as

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2$$
$$= \sum_{i=1}^n e_i^2$$

or equivantly as

$$RSS = (y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$
$$= \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

The least squares approach chooses $\hat{\beta}_0$ and $\hat{\beta}_1$ to minimize the RSS. The minimizing values can be show to be

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{s_{xy}}{s_x^2}$$
 and
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

where:

- $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is the sample mean. $s_x^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2$ is the sample variance. The sample standard deviation is $s_x = \sqrt{s_x^2}$. $s_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y})$ is the sample covariance. It measures the degree of linear association between x_1, \ldots, x_n and y_1, \ldots, y_n . Once scaled by $s_x s_y$, it gives the sample correlation coefficient,

Click here to see the influence of the distance employed in the sum of squares. Try to minimize the sum of squares for the different datasets. The choices of intercept and slope that minimize the sum of squared distances for a kind of distance are not the optimal for a different kind of distance.

1.6 Assessing the Accuracy of the Coefficient Estimates

The standard error of an estimator reflects how it varies under repeated sampling. We have

$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$SE(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right]$$

where $\sigma^2 = Var(\epsilon)$

In general, σ^2 is know known, but can be estimated from the data. The estimate of σ is known as the residual standard error, and is given by

$$RSE = \sqrt{\frac{RSS}{(n-2)}}$$

These standard errors can be used to compute confidence intervals. A 95% confidence interval is defined as a range of values such that with 95% probability, the range will contain the true unknown value of the parameter. It has the form

$$\hat{\beta_1} \pm 2 \cdot \text{SE}(\hat{\beta_1})$$

That is, there is approximately a 95% chance that the interval

$$\left[\hat{\beta}_1 - 2 \cdot \text{SE}(\hat{\beta}_1), \hat{\beta}_1 + 2 \cdot \text{SE}(\hat{\beta}_1)\right]$$

will contain the true value of β_1 . Similarly, a confidence interval for β_0 approximately takes the form

$$\hat{\beta}_0 \pm 2 \cdot \text{SE}(\hat{\beta}_0)$$

Hypothesis testing

Standard errors can also be used to perform hypothesis tests on the coefficients. The most common hypothesis test involves testing the null hypothesis of

 H_0 : There is no relationship between X and Y

versus the alternative hypothesis

 H_1 : There is some relationship between X and Y

Mathematically, this corresponds to testing

$$H_0: \beta_1 = 0$$

versus

$$H_1: \beta_1 \neq 0$$

since if $\beta_1 = 0$ then the simple linear regression model reduces to $Y = \beta_0 + \epsilon$, and X is not associated with Y.

To test the null hypothesis H_0 , we compute a **t-statistic**, given by

$$t = \frac{\hat{\beta}_1 - 0}{\text{SE}(\hat{\beta}_1)}$$

This will have a t-distribution (Student) with n-2 degrees of freedom, assuming $\beta_1=0$.

Using statistical software, it is easy to compute the probability of observing any value equal to |t| or larger. We call this probability the p-value.

If p-value is small enough (typically under 0.01 (1% error) or 0.05 (5% error)) we reject the null hypothesis, that is we declare a relationship to exist between X and Y.

1.7 ANOVA and model fit

1.7.1 ANOVA

In this section we will see how the variance of Y is decomposed into two parts, each one corresponding to the regression and to the error, respectively. This decomposition is called the ANalysis Of VAriance (ANOVA).

Before explaining ANOVA, it is important to recall an interesting result: the mean of the fitted values $\hat{Y}_1, \dots, \hat{Y}_n$ is the mean of Y_1, \dots, Y_n . This is easily seen if we plug-in the expression of $\hat{\beta}_0$:

$$\frac{1}{n} \sum_{i=1}^{n} \hat{Y}_{i} = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{\beta}_{0} + \hat{\beta}_{1} X_{i} \right) = \hat{\beta}_{0} + \hat{\beta}_{1} \bar{X} = \left(\bar{Y} - \hat{\beta}_{1} \bar{X} \right) + \hat{\beta}_{1} \bar{X} = \bar{Y}.$$

The ANOVA decomposition considers the following measures of variation related with the response:

- SST = $\sum_{i=1}^{n} (Y_i \bar{Y})^2$, the **total sum of squares**. This is the total variation of Y_1, \ldots, Y_n , since SST = ns_y^2 , where s_y^2 is the sample variance of Y_1, \ldots, Y_n .
- SSR = $\sum_{i=1}^{n} (\hat{Y}_i \bar{Y})^2$, the **regression sum of squares**¹. This is the variation explained by the regression line, that is, the variation from \bar{Y} that is explained by the estimated conditional mean $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$. SSR = $ns_{\hat{y}}^2$, where $s_{\hat{y}}^2$ is the sample variance of $\hat{Y}_1, \ldots, \hat{Y}_n$.
- SSE = $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$, the **sum of squared errors**². Is the variation around the conditional mean. Recall that SSE = $\sum_{i=1}^{n} \hat{\varepsilon}_i^2 = (n-2)\hat{\sigma}^2$, where $\hat{\sigma}^2$ is the sample variance of $\hat{\varepsilon}_1, \dots, \hat{\varepsilon}_n$.

The ANOVA decomposition is

$$\underbrace{\text{SST}}_{\text{Variation of } Y_i's} = \underbrace{\text{SSR}}_{\text{Variation of } \hat{Y}_i's} + \underbrace{\text{SSE}}_{\text{Variation of } \hat{\varepsilon}_i's}$$

The graphical interpretation of this equation is shown in the following figures.

¹Recall that SSR is different from RSS (Residual Sum of Squares

²Recall that SSE and RSS (for $(\hat{\beta}_0, \hat{\beta}_1)$) are just different names for referring to the same quantity: SSE = $\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)^2 = \text{RSS}(\hat{\beta}_0, \hat{\beta}_1)$.

Figure 1.3: Visualization of the ANOVA decomposition. SST measures the variation of Y_1, \ldots, Y_n with respect to \bar{Y} . SST measures the variation with respect to the conditional means, $\hat{\beta}_0 + \hat{\beta}_1 X_i$. SSE collects the variation of the residuals.

Click here to see the ANOVA decomposition and its dependence on σ^2 and $\hat{\sigma}^2$.

The ANOVA table summarizes the decomposition of the variance. Here is given in the layout employed by R.

	Degrees of freedom	Sum Squares	Mean Squares	F-value	<i>p</i> -value
Predictor	1	SSR	$\frac{\text{SSR}}{1}$	$\frac{SSR/1}{SSE/(n-2)}$	p
Residuals	n-2	SSE	$\frac{\text{SSE}}{n-2}$, , ,	

The anova function in R takes a model as an input and returns the ANOVA table.

The "F-value" of the ANOVA table represents the value of the F-statistic $\frac{SSR/1}{SSE/(n-2)}$. This statistic is employed to test

$$H_0: \beta_1 = 0$$
 vs. $H_1: \beta_1 \neq 0$,

that is, the hypothesis of no linear dependence of Y on X. The result of this test is completely equivalent to the t-test for β_1 that we saw previously in the Hypothesis testing (this is something specific for simple linear regression – the F-test will not be equivalent to the t-test for β_1 in the Mulitple Linear Regression).

It happens that

$$F = \frac{\text{SSR/1}}{\text{SSE}/(n-2)} \stackrel{H_0}{\sim} F_{1,n-2},$$

where $F_{1,n-2}$ is the Snedecor's F distribution³ with 1 and n-2 degrees of freedom.

If H_0 is true, then F is expected to be small since SSR will be close to zero. The p-value of this test is the same as the p-value of the t-test for $H_0: \beta_1 = 0$.

1.7.2 The R^2 Statistic

To calculate R^2 , we use the formula

$$R^2 = \frac{\text{TSS} - \text{RSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}}$$

where $TSS = \sum (y_i - \bar{y})^2$ is the total sum of squared.

 R^2 measures the proportion of variability in Y that can be explained using X. An R^2 statistic that is close to 1 indicates that a large proportion of the variability in the response has been explained by the regression. A number near 0 indicates that the regression did not explain much of the variability in the response; this might occur because the linear model is wrong, or the inherent error σ^2 is high, or both.

It can be shown that in this simple linear linear regression setting that $R^2 = r^2$, where r is the correlation between X and Y:

³The $F_{n,m}$ distribution arises as the quotient of two independent random variables χ_n^2 and χ_m^2 , $\frac{\chi_n^2/n}{\chi_m^2/m}$

$$r = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

 R^2 does not measure the correctness of a linear model but its **usefulness** (for prediction, for explaining the variance of Y), assuming the model is correct.

Trusting blindly the R^2 can lead to catastrophic conclusions, since the model may not be correct.

So remember:

A large R^2 means nothing if the assumptions of the model do not hold. R^2 is the proportion of variance of Y explained by X, but, of course, only when the linear model is correct.

PW 1

1.8 Some R basics

1.8.1 Basic Commands

R uses functions to perform operations. To run a function called funcname, we type funcname(input1, input2), where the inputs (or arguments) input1 and input2 tell R how to run the function. A function can have any number of inputs. For example, to create a vector of numbers, we use the function c() (for concatenate).

```
x <- c(1,3,2,5)
x
#ans> [1] 1 3 2 5
```

Note that the > is not part of the command; rather, it is printed by R to indicate that it is ready for another command to be entered. We can also save things using = rather than <-. Note that the answer in the code above is followed by #ans> while in the R console it is not.

```
x = c(1,6,2)
x
#ans> [1] 1 6 2
y = c(1,4,3)
length(x)
#ans> [1] 3
length(y)
#ans> [1] 3
x+y
#ans> [1] 2 10 5
```

Hitting the up arrow multiple times will display the previous commands, which can then be edited. This is useful since one often wishes to repeat a similar command.

The ls() function allows us to look at a list of all of the objects, such ls() as data and functions, that we have saved so far. The rm() function can be used to delete any object that we don't want.

```
ls()
#ans> [1] "x" "y"
rm(x)
ls()
#ans> [1] "y"
```

1.8.2 Vectors

```
# A handy way of creating sequences is the operator :
# Sequence from 1 to 5
1:5
#ans> [1] 1 2 3 4 5
# Storing some vectors
vec \leftarrow c(-4.12, 0, 1.1, 1, 3, 4)
vec
#ans> [1] -4.12 0.00 1.10 1.00 3.00 4.00
# Entry-wise operations
vec + 1
#ans> [1] -3.12 1.00 2.10 2.00 4.00 5.00
#ans> [1] 16.97 0.00 1.21 1.00 9.00 16.00
# If you want to access a position of a vector, use [position]
vec[6]
#ans> [1] 4
# You also can change elements
vec[2] <- -1
#ans> [1] -4.12 -1.00 1.10 1.00 3.00 4.00
# If you want to access all the elements except a position, use [-position]
vec[-2]
#ans> [1] -4.12 1.10 1.00 3.00 4.00
# Also with vectors as indexes
vec[1:2]
#ans> [1] -4.12 -1.00
# And also
vec[-c(1, 2)]
#ans> [1] 1.1 1.0 3.0 4.0
```

```
Do the following:

- Create the vector x = (1, 7, 3, 4).

- Create the vector y = (100, 99, 98, ..., 2, 1).

- Compute x_3 + y_4 and \cos(x_3) + \sin(x_2)e^{-y_2}. (Answers: 100, -0.9899925)

- Set x_3 = 0 and y_2 = -1. Recompute the previous expressions. (Answers: 97, 2.785875)

- Index y by x + 1 and store it as z. What is the output? (Answer: z is c(-1, 93, 100, 96))
```

1.8.3 Matrices, data frames and lists

```
# A matrix is an array of vectors
A <- matrix(1:4, nrow = 2, ncol = 2)</pre>
```

1.8. SOME R BASICS 37

```
#ans> [,1] [,2]
#ans> [1,] 1 3
#ans> [2,] 2 4
# Another matrix
B <- matrix(1:4, nrow = 2, ncol = 2, byrow = TRUE)
#ans> [,1] [,2]
#ans> [1,] 1 2
#ans> [2,] 3 4
# Binding by rows or columns
rbind(1:3, 4:6)
#ans> [,1] [,2] [,3]
#ans> [1,] 1 2 3
#ans> [2,] 4 5 6
cbind(1:3, 4:6)
#ans> [,1] [,2]
#ans> [1,] 1 4
#ans> [2,] 2 5
#ans> [3,] 3 6
# Entry-wise operations
A + 1
#ans> [,1] [,2]
#ans> [1,] 2 4
#ans> [2,] 3 5
A * B
#ans> [,1] [,2]
#ans> [1,] 1 6
#ans> [2,] 6 16
# Accessing elements
A[2, 1] # Element (2, 1)
#ans> [1] 2
A[1, ] # First row
#ans> [1] 1 3
A[, 2] # First column
#ans> [1] 3 4
# A data frame is a matrix with column names
# Useful when you have multiple variables
myDf <- data.frame(var1 = 1:2, var2 = 3:4)
myDf
#ans> var1 var2
#ans> 1 1 3
#ans> 2 2 4
# You can change names
names(myDf) <- c("newname1", "newname2")</pre>
myDf
#ans> newname1 newname2
```

```
#ans> 2
                      4
# The nice thing is that you can access variables by its name with the $ operator
myDf$newname1
#ans> [1] 1 2
# And create new variables also (it has to be of the same
# length as the rest of variables)
myDf$myNewVariable <- c(0, 1)</pre>
myDf
#ans> newname1 newname2 myNewVariable
#ans> 1 1
                    3
                                 0
#ans> 2
             2
                      4
                                   1
# A list is a collection of arbitrary variables
myList <- list(vec = vec, A = A, myDf = myDf)</pre>
# Access elements by names
myList$vec
#ans> [1] -4.12 -1.00 1.10 1.00 3.00 4.00
myList$A
#ans>
      [,1] [,2]
#ans> [1,] 1 3
#ans> [2,] 2 4
myList$myDf
#ans> newname1 newname2 myNewVariable
#ans> 1 1 3 0
#ans> 2
            2
                      4
# Reveal the structure of an object
str(myList)
#ans> List of 3
#ans> $ vec : num [1:6] -4.12 -1 1.1 1 3 4
#ans> $ A : int [1:2, 1:2] 1 2 3 4
#ans> $ myDf:'data.frame': 2 obs. of 3 variables:
#ans> ..$ newname1 : int [1:2] 1 2 #ans> ..$ newname2 : int [1:2] 3 4
#ans> ..$ myNewVariable: num [1:2] 0 1
str(myDf)
#ans> 'data.frame': 2 obs. of 3 variables:
\#ans> $ newname1 : int 12
#ans> $ myNewVariable: num 0 1
# A less lengthy output
names(myList)
#ans> [1] "vec" "A" "myDf"
```

1.8. SOME R BASICS 39

1.8.4 Graphics

The plot() function is the primary way to plot data in R. For instance, plot(x,y) produces a scatterplot of the numbers in x versus the numbers in y. There are many additional options that can be passed in to the plot() function. For example, passing in the argument xlab will result in a label on the x-axis. To find out more information about the plot() function, type ?plot.

```
x=rnorm(100)
# The rnorm() function generates a vector of random normal variables,
# rnorm() with first argument n the sample size. Each time we call this
# function, we will get a different answer.
y=rnorm(100)
plot(x,y)
```



```
# with titles
plot(x,y,xlab="this is the x-axis",ylab="this is the y-axis",
main="Plot of X vs Y")
```


1.8.5 Distributions

```
# R allows to sample [r], compute density/probability mass [d],
# compute distribution function [p] and compute quantiles [q] for several
# continuous and discrete distributions. The format employed is [rdpq]name,
# where name stands for:
# - norm -> Normal
# - unif -> Uniform
# - exp -> Exponential
# - t -> Student's t
# - f -> Snedecor's F (Fisher)
# - chisq -> Chi squared
# - pois -> Poisson
# - binom -> Binomial
# More distributions: ?Distributions
# Sampling from a Normal - 100 random points from a N(0, 1)
rnorm(n = 10, mean = 0, sd = 1)
#ans> [1] 1.7638 -0.5396 0.0142 1.9150 2.2755 0.4853 -0.1211 0.2047
#ans> [9] -0.3699 0.4550
# If you want to have always the same result, set the seed of the random number
# generator
set.seed(45678)
rnorm(n = 10, mean = 0, sd = 1)
#ans> [1] 1.440 -0.720 0.671 -0.422 0.378 -1.667 -0.508 0.443 -1.799 -0.618
# Plotting the density of a N(0, 1) - the Gauss bell
x \leftarrow seq(-4, 4, 1 = 100)
y \leftarrow dnorm(x = x, mean = 0, sd = 1)
plot(x, y, type = "l")
```



```
# Plotting the distribution function of a N(0, 1)
x <- seq(-4, 4, 1 = 100)
y <- pnorm(q = x, mean = 0, sd = 1)</pre>
```

1.8. SOME R BASICS 41

```
plot(x, y, type = "l", lwd = 3, main="The distribution function of a N(0, 1)")
```

The distribution function of a N(0, 1)


```
# Computing the 95% quantile for a N(0, 1)
qnorm(p = 0.95, mean = 0, sd = 1)
#ans> [1] 1.64

# All distributions have the same syntax: rname(n,...), dname(x,...), dname(p,...)
# and qname(p,...), but the parameters in ... change. Look them in ?Distributions
# For example, here is que same for the uniform distribution

# Sampling from a U(0, 1)
set.seed(45678)
runif(n = 10, min = 0, max = 1)
#ans> [1] 0.9251 0.3340 0.2359 0.3366 0.7489 0.9327 0.3365 0.2246 0.6474 0.0808

# Plotting the density of a U(0, 1)
x <- seq(-2, 2, 1 = 100)
y <- dunif(x = x, min = 0, max = 1)
plot(x, y, type = "1")
```



```
# Computing the 95% quantile for a U(0, 1)
qunif(p = 0.95, min = 0, max = 1)
#ans> [1] 0.95
```


Do the following:

- Compute the 90%, 95% and 99% quantiles of a F distribution with df1 = 1 and df2 = 5. (Answer: c(4.060420, 6.607891, 16.258177))
- Sample 100 points from a Poisson with lambda = 5.
- Plot the density of a t distribution with df = 1 (use a sequence spanning from -4 to 4). Add lines of different colors with the densities for df = 5, df = 10, df = 50 and df = 100.

1.8.6 Working directory

Your working directory is the folder on your computer in which you are currently working. When you ask R to open a certain file, it will look in the working directory for this file, and when you tell R to save a data file or figure, it will save it in the working directory.

To set your working directory within RStudio you can go to Tools / Set working directory, or use the command setwd(), we put the complete path of the directory between the brackets, do not forget to put the path into quotation marks "".

To know the actual working directory we use getwd().

1.8.7 Loading Data

The read.table() function is one of the primary ways to import a data set into R. The help file ?read.table() contains details about how to use this function. We can use the function write.table() to export data.

Next we will show how to load the data set Auto.data.

```
Auto=read.table("Auto.data",header=T,na.strings ="?")

# For this file we needed to tell R that the first row is the
# names of the variables.
```

1.9. REGRESSION 43

```
# na.strings tells R that any time it sees a particular character
# or set of characters (such as a question mark), it should be
# treated as a missing element of the data matrix.
```


- If the file is of csv format, we use read.csv.
- Always try to look to the file before importing it to R (Open it in a text editor. See for example if the first row containes the variables names, if the columns are separated by , or ; or ..
- For text editors, I suggest Sublime Text or Atom.

```
dim(Auto) # To see the dimensions of the data set
#ans> [1] 397
nrow(Auto) # To see the number of rows
#ans> [1] 397
ncol(Auto) # To see the number of columns
#ans> [1] 9
Auto[1:4,] # The first 4 rows of the data set
#ans> mpg cylinders displacement horsepower weight acceleration year origin
                                       130 3504
#ans> 1 18
                   8
                             307
                                                           12.0 70
#ans> 2 15
                   8
                              350
                                        165
                                              3693
                                                           11.5
                                                                  70
                                                                          1
#ans> 3 18
                   8
                             318
                                        150 3436
                                                          11.0
                                                                  70
                                                                          1
                   8
#ans> 4 16
                              304
                                        150 3433
                                                           12.0
                                                                  70
                                                                          1
#ans>
#ans> 1 chevrolet chevelle malibu
#ans> 2 buick skylark 320
#ans> 3
              plymouth satellite
#ans> 4
                   amc rebel sst
# Once the data are loaded correctly, we can use names()
# to check the variable names.
names (Auto)
#ans> [1] "mpg"
                        "cylinders"
                                       "displacement" "horsepower"
#ans> [5] "weight"
                        "acceleration" "year"
#ans> [9] "name"
```


Take a look at this (very) short introduction to R. It can be useful.

1.9 Regression

1.9.1 The lm function

We are going to employ the EU dataset. The EU dataset contains 28 rows with the member states of the European Union (Country), the number of seats assigned under different years (Seats2011, Seats2014), the Cambridge Compromise apportionment (CamCom2011), and the countries population (Population2010, Population2013).

```
# Load the dataset, when we load an .RData using load()
# function we do not attribute it to a name like we did
# when we used read.table() or when we use read.csv()
```

load("EU.RData")

There is two ways to tell R where is the file you want to load/use/import or where to save a file when you write/export/save :

- 1. write the complete path of the files.
- 2. set a working directory and put the files in it.

```
# lm (for linear model) has the syntax:
# lm(formula = response ~ predictor, data = data)
# The response is the y in the model. The predictor is x.
# For example (after loading the EU dataset)
mod <- lm(formula = Seats2011 ~ Population2010, data = EU)
# We have saved the linear model into mod, which now contains all the output of lm
# You can see it by typing
mod
#ans>
#ans> Call:
#ans> lm(formula = Seats2011 ~ Population2010, data = EU)
#ans>
#ans> Coefficients:
      (Intercept) Population2010
#ans>
#an.s>
          7.91e+00
                        1.08e-06
# mod is indeed a list of objects whose names are
names (mod)
#ans> [1] "coefficients" "residuals"
                                       "effects"
                                                     "rank"
#ans> [5] "fitted.values" "assign"
                                       "qr"
                                                      "df.residual"
#ans> [9] "na.action" "xlevels"
                                       "call"
                                                      "terms"
#ans> [13] "model"
# We can access these elements by $
# For example
mod$coefficients
      (Intercept) Population2010
#ans>
          7.91e+00 1.08e-06
#ans>
# The residuals
mod$residuals
                      France United Kingdom
                                                                    Spain
#ans> Germany
                                                     Italy
          2.8675
                        -3.7031 -1.7847
                                                    0.0139
                                                                   -3.5084
#ans>
           Poland
                        Romania Netherlands
                                                                  Belgium
#ans>
                                                     Greece
            1.9272
                         1.9434
#ans>
                                       0.2142
                                                     1.8977
                                                                   2.3994
        1.9272 1.9434
Portugal Czech Republic
#ans>
                                      Hungary
                                                     Sweden
                                                                  Austria
#ans>
           2.6175 2.7587
                                       3.2898
                                                     2.0163
                                                                   2.0575
                                   Slovakia
#ans>
         Bulgaria
                       Denmark
                                                    Finland
                                                                   Ireland
                        -0.8790
#ans>
           1.9328
                                      -0.7606
                                                    -0.6813
                                                                  -0.7284
        Lithuania
#ans>
                         Latvia
                                     Slovenia
                                                    Estonia
                                                                   Cyprus
#ans>
           0.4998
                        -1.3347
                                      -2.1175
                                                     -3.3552
                                                                   -2.7761
#ans>
      Luxembourg
                          Malta
                        -2.3553
#ans>
           -2.4514
```

1.9. REGRESSION 45

```
# The fitted values
mod$fitted.values
                            France United Kingdom
#ans>
            Germany
                                                            Italy
                                                                           Spain
                             77.70 74.78
#ans>
             96.13
                                                           72.99
                                                                           57.51
#ans>
             Poland
                            Romania
                                      Netherlands
                                                           Greece
                                                                         Belgium
#ans>
              49.07
                              31.06
                                            25.79
                                                            20.10
                                                                           19.60
#ans>
           Portugal Czech Republic
                                          Hungary
                                                           Sweden
                                                                         Austria
#ans>
              19.38
                            19.24
                                           18.71
                                                           17.98
                                                                           16.94
           Bulgaria
                           Denmark
                                         Slovakia
                                                                         Ireland
#ans>
                                                         Finland
#ans>
              16.07
                             13.88
                                            13.76
                                                            13.68
                                                                           12.73
#ans>
          Lithuania
                           Latvia
                                         Slovenia
                                                         Estonia
                                                                          Cyprus
#ans>
              11.50
                            10.33
                                           10.12
                                                             9.36
                                                                           8.78
#ans>
         Luxembourg
                             Malta
#ans>
               8.45
                              8.36
# Summary of the model
sumMod <- summary(mod)</pre>
sumMod
#ans>
#ans> Call:
#ans> lm(formula = Seats2011 ~ Population2010, data = EU)
#ans>
#ans> Residuals:
#ans>
       Min
                1Q Median
                               3Q
                                     Max
#ans> -3.703 -1.951 0.014 1.980 3.290
#ans>
#ans> Coefficients:
#ans>
                     Estimate Std. Error t value Pr(>|t|)
#ans> (Intercept)
                     7.91e+00 5.66e-01
                                           14.0 2.6e-13 ***
#ans> Population2010 1.08e-06
                               1.92e-08
                                            56.3 < 2e-16 ***
#ans> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#ans>
#ans> Residual standard error: 2.29 on 25 degrees of freedom
     (1 observation deleted due to missingness)
#ans> Multiple R-squared: 0.992,
                                   Adjusted R-squared: 0.992
\#ans > F-statistic: 3.17e+03 \ on \ 1 \ and \ 25 \ DF, \quad p-value: <2e-16
```

The following table contains a handy cheat sheet of equivalences between R code and some of the statistical concepts associated to linear regression.

R	Statistical concept
x	Predictor X_1, \ldots, X_n
У	Response Y_1, \ldots, Y_n
data \leftarrow data.frame(x = x, y = y)	Sample $(X_1, Y_1), \ldots, (X_n, Y_n)$
<pre>model <- lm(y ~ x, data = data)</pre>	Fitted linear model
model\$coefficients	Fitted coefficients $\hat{\beta}_0, \hat{\beta}_1$
model\$residuals	Fitted residuals $\hat{\varepsilon}_1, \dots, \hat{\varepsilon}_n$
model\$fitted.values	Fitted values $\hat{Y}_1, \dots, \hat{Y}_n$
model\$df.residual	Degrees of freedom $n-2$
<pre>summaryModel <- summary(model)</pre>	Summary of the fitted linear model
summaryModel\$sigma	Fitted residual standard deviation $\hat{\sigma}$
summaryModel\$r.squared	Coefficient of determination \mathbb{R}^2

R	Statistical concept
summaryModel\$fstatistic anova(model)	F-test ANOVA table

Do the following:

- Download The 'EU' dataset from here as an .RData file and load it using the function load.
- Compute the regression of CamCom2011 into Population2010. Save that model as the variable myModel.
- Access the objects residuals and coefficients of myModel.
- Compute the summary of myModel and store it as the variable summaryMyModel.
- Access the object sigma of myModel.

1.9.2 Predicting House Value: Boston dataset

We are going to use a dataset called Boston which is part of the MASS package. It recordes the median value of houses for 506 neighborhoods around Boston. Our task is to predict the median house value (medv) using only one predictor (lstat: percent of households with low socioeconomic status).

```
# First, install the MASS package using the command: install.packages("MASS")

# load MASS package
library(MASS)

# Check the dimensions of the Boston dataset
dim(Boston)
#ans> [1] 506 14
```

STEP 1: Split the dataset

```
# Split the data by using the first 400 observations as the training
# data and the remaining as the testing data
train = 1:400
test = -train

# Speficy that we are going to use only two variables (lstat and medv)
variables = which(names(Boston) ==c("lstat", "medv"))
training_data = Boston[train, variables]
testing_data = Boston[test, variables]

# Check the dimensions of the new dataset
dim(training_data)
#ans> [1] 400 2
```

STEP 2: Check for Linearity

In order to perfom linear regression in R, we will use the function lm() to fit a simple linear regression with medv as the response (dependent variable) and lstat as the predictor or independent variable, and then save it in model.

But before we run our model, let's visually check if the relationship between x and y is linear.

1.9. REGRESSION 47

```
# Scatterplot of lstat vs. medv
plot(training_data$lstat, training_data$medv)
```


According to the plot, we see that the relationship is not linear. Let's try a transformation of our explanatory variable lstat.

```
# Scatterplot of log(lstat) vs. medv
plot(log(training_data$lstat), training_data$medv)
```


Look at the plot, it is more linear, so we can proceed and perform lm():

STEP 3: Run the linear regression model

```
model = lm(medv ~ log(lstat), data = training_data)
model
#ans>
#ans> Call:
#ans> lm(formula = medv ~ log(lstat), data = training_data)
#ans>
#ans> Coefficients:
```

```
#ans> (Intercept) log(lstat)
#ans> 51.8 -12.2
```

Notice that basic information when we print model. This only give us the slope (-12.2) and the intercept (51.8) of the linear model. Note that here we are looking at log(lstat) and not lstat anymore. So for every one unit increase in lstat, the median value of the house will decrease by $e^{12.2}$. For more detailed information, we can use the summary() function:

```
summary(model)
#ans>
#ans> Call:
#ans> lm(formula = medv ~ log(lstat), data = training data)
#ans>
#ans> Residuals:
#ans>
        Min
                  1Q Median
                                   30
                                         Max
#ans> -11.385 -3.908 -0.779
                               2.245 25.728
#ans>
#ans> Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
#ans>
#ans> (Intercept) 51.783
                               1.097
                                        47.2
                                               <2e-16 ***
                                       -25.9
#ans> log(lstat) -12.203
                               0.472
                                               <2e-16 ***
#ans> ---
#ans> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#ans>
#ans> Residual standard error: 5.6 on 398 degrees of freedom
#ans> Multiple R-squared: 0.627, Adjusted R-squared: 0.626
#ans> F-statistic: 669 on 1 and 398 DF, p-value: <2e-16
```

Now, we have access to p-values and standard errors for the coefficients, as well as the R^2 .

- The output states that the slope is statistically significant and different from 0 and with a t-value=-25.9 (p-value < 0.05), which means that there is a significant relationship between the percentage of households with low socioeconomic income and the median house value.
- This relationship is negative. That is as the percantage of household with low socioeconomic income increases, the median house value decreases.
- Looking at R^2 , we can deduce that 62.7% of the model variation is being explained by the predictor log(lstat). This is probably low, but indeed it would increase if we had more independent (explanatory) variables. We can use the names() function to see what other pieces of information are stored in our linear model (model).

```
names(model)
       [1] "coefficients" "residuals"
                                                            "rank"
                                            "effects"
                                            "gr"
#ans>
       [5] "fitted.values" "assign"
                                                            "df.residual"
                                                            "model"
      [9] "xlevels"
                           "call"
#ans>
                                            "terms"
model $ coefficients
#ans> (Intercept) log(lstat)
#ans>
            51.8 -12.2
```

To obtain the confidence intervel for the linear model (model), we can use the confint() function:

So, a 95% confidence interval for the slope of log(lstat) is (-13.13, -11.28). Notice that this confidence

1.9. REGRESSION 49

interval gives us the same result as the hypothesis test performed earlier, by stating that we are 95% confident that the slope of lstat is not zero (in fact it is less than zero, which means that the relationship is negative.)

STEP 4: Plot the regression model

Now, let's plot our regression line on top of our data.

```
# Scatterplot of lstat vs. medv
plot(log(training_data$lstat), training_data$medv)

# Add the regression line to the existing scatterplot
abline(model)
```


Let's play with the look of the plot, and makes it perttier!

```
# Scatterplot of lstat vs. medv
plot(log(training_data$lstat), training_data$medv,
xlab = "Log Transform of % of Houshold with Low Socioeconomic Income",
ylab = "Median House Value",
col = "red",
pch = 20)

# Make the line color blue, and the line's width =3 (play with the width!)
abline(model, col = "blue", lwd =3)
```


Log Transform of % of Houshold with Low Socioeconomic Income

STEP 5: Assess the model

Final thing we will do is to predict using our fitted model. We can use the **predict()** function for this purpose:

```
# Predict what is the median value of the house with lstat= 5%
predict(model, data.frame(lstat = c(5)))
#ans> 1
#ans> 32.1

# Predict what is the median values of houses with lstat= 5%, 10%, and 15%
predict(model, data.frame(lstat = c(5,10,15), interval = "prediction"))
#ans> 1 2 3
#ans> 32.1 23.7 18.7
```

Now let's assess our model, by computing the mean squared error (MSE). To assess the model we created, then we will be using the test data!

```
# Save the testing median values for houses (testing y) in y
y = testing_data$medv

# Compute the predicted value for this y (y hat)
y_hat = predict(model, data.frame(lstat = testing_data$lstat))

# Now we have both y and y_hat for our testing data.
# let's find the mean square error
error = y-y_hat
error_squared = error^2
MSE = mean(error_squared)
MSE
#ans> [1] 17.7
```

Chapter 2

Multiple Linear Regression

Simple linear regression is a useful approach for predicting a response on the basis of a single predictor variable. However, in practice we often have more than one predictor. In the previous chapter, we took for example the prediction of housing prices considering we had the size of each house. We had a single feature X, the size of the house. But now imagine if we had not only the size of the house as a feature but we also knew the number of bedrooms, the number of flours and the age of the house in years. It seems like this would give us a lot more information with which to predict the price.

2.1 The Model

In general, suppose that we have p distinct predictors. Then the multiple linear regression model takes the form

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

where X_j represents the jth predictor and β_j quantifies the association between that variable and the response. We interpret β_j as the average effect on Y of a one unit increase in X_j , holding all other predictors fixed.

In matrix terms, supposing we have n observations and p variables, we need to define the following matrices:

$$\mathbf{Y}_{n\times 1} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} \qquad \mathbf{X}_{n\times (p+1)} = \begin{pmatrix} 1 & X_{11} & X_{12} & \dots & X_{1p} \\ 1 & X_{21} & X_{22} & \dots & X_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{np} \end{pmatrix}$$
(2.1)

$$\beta_{(p+1)\times 1} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} \qquad \epsilon_{n\times 1} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$$
 (2.2)

In matrix terms, the general linear regression model is

$$\mathbf{Y}_{n\times 1} = \mathbf{X}_{n\times (p+1)}\beta_{(p+1)\times 1} + \epsilon_{n\times 1}$$

where,

- Y is a vector of responses.
- β is a vector of parameters.
- X is a matrix of constants.
- ϵ is a vector of independent normal (Gaussian) random variables.

2.2 Estimating the Regression Coefficients

As was the case in the simple linear regression setting, the regression coefficients $\beta_0, \beta_1, \dots, \beta_p$ are unknown, and must be estimated. Given estimates $\hat{\beta_0}, \hat{\beta_1}, \dots, \hat{\beta_p}$, we can make predictions using the formula

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots, \hat{\beta}_p x_p$$

We choose $\beta_0, \beta_1, \dots, \beta_p$ to minimize the sum of squared residuals

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$= \sum_{i=1}^{n} (y_1 - \hat{\beta}_0 - \hat{\beta}_1 \hat{x}_{i1} - \hat{\beta}_2 \hat{x}_{i2} - \dots - \hat{\beta}_p \hat{x}_{ip})^2$$

The values $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ that minimize the RSS are the multiple least squares regression coefficient estimates, they are calculated using this formula (in matrix terms):

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

Note 1:

It is a remarkable property of matrix algebra that the results for the general linear regression model in matrix notation appear exactly as those for the simple linear regression model. Only the degrees of freedom and other constants related to the number of X variables and the dimensions of some matrices are different.

Note 2:

If $\mathbf{X}^T \mathbf{X}$ is noninvertible, the common causes might be having:

- Redundant features, where two features are very closely related (i.e. they are linearly dependent)
- Too many features (e.g. $p \ge n$). In this case, we delete some features or we use "regularization" (to be, maybe, explained in a later lesson).

2.3 Some important questions

When we perform multiple linear regression, we usually are interested in answering a few important questions.

- 1. Is at least one of the predictors X_1, X_2, \ldots, X_p useful in predicting the response?
- 2. Do all the predictors help to explain Y, or is only a subset of the predictors useful?
- 3. How well does the model fit the data?

4. Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

Relationship Between the Response and Predictors?

F-Statistic

Recall that in the simple linear regression setting, in order to determine whether there is a relationship between the response and the predictor we can simply check whether $\beta_1 = 0$. In the multiple regression setting with p predictors, we need to ask whether all of the regression coefficients are zero, i.e. whether $\beta_1 = \beta_2 = \ldots = \beta_p = 0$. As in the simple linear regression setting, we use a hypothesis test to answer this question. We test the null hypothesis,

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_p = 0$$

versus the alternative hypothesis

 H_1 : at least one β_j is non-zero

This hypothesis test is performed by computing the F-statistic (Fisher):

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)} \sim F_{p,n-p-1}$$

where, as with simple linear regression, $TSS = \sum (y_i - \bar{y})^2$ and $RSS = \sum (y_i - \hat{y}_i)^2$.

When the F-statistic value is close to 1, then H_0 is true, which means there is no relationship between the response and predictors. On the other hand, if H_1 is true, so we expect F to be greater than 1.

So the question we ask here: Is the whole regression explaining anything at all? The answer comes from the F-test in the ANOVA (ANalysis Of VAriance) table. This is what we get in an ANOVA table:

Source	$\mathrm{d}\mathrm{f}$	SS	MS	F	p-value
Factor (Explained) Error (Unexplained) Total		SSE	, , , ,	MST/MSE	p-value

The ANOVA table has many pieces of information. What we care about is the F Ratio and the corresponding p-value. We compare the F Ratio with $F_{(p-1,n-p)}$ and a corresponding α value (error).

p-values

The p-values provide information about whether each individual predictor is related to the response, after adjusting for the other predictors. Let's look at the following table we obtain in general using a statistical software for example

	Coefficient	Std. error	t-statistic	p-value
Constant	2.939	0.3119	9.42	< 0.0001
X_1	0.046	0.0014	32.81	< 0.0001
X_2	0.189	0.0086	21.89	< 0.0001
X_3	-0.001	0.0059	-0.18	0.8599

In this table we have the following model

$$Y = 2.939 + 0.046X_1 + 0.189X_2 - 0.001X_3$$

Note that for each individual predictor a t-statistic and a p-value were reported. These p-values indicate that X_1 and X_2 are related to Y, but that there is no evidence that X_3 is associated with Y, in the presence of these two.

Deciding on Important Variables

The most direct approach is called all subsets or best subsets regression: we compute the least squares fit for all possible subsets and then choose between them based on some criterion that balances training error with model size.

However we often can't examine all possible models, since they are 2^p of them; for example when p=40 there are over a billion models! Instead we need an automated approach that searches through a subset of them. Here are two commonly use approaches:

Forward selection:

- Begin with the null model a model that contains an intercept (constant) but no predictors.
- Fit p simple linear regressions and add to the null model the variable that results in the lowest RSS.
- Add to that model the variable that results in the lowest RSS amongst all two-variable models.
- Continue until some stopping rule is satisfied, for example when all remaining variables have a p-value above some threshold.

Backward selection:

- Start with all variables in the model.
- Remove the variable with the largest p-value that is, the variable that is the least statistically significant.
- The new (p1)-variable model is fit, and the variable with the largest p-value is removed.
- Continue until a stopping rule is reached. For instance, we may stop when all remaining variables have a significant p-value defined by some significance threshold.

There are more systematic criteria for choosing an "optimal" member in the path of models produced by forward or backward stepwise selection. These include Mallow's C_p , Akaike information criterion (AIC), Bayesian information criterion (BIC), adjusted R^2 and Cross-validation (CV).

Model Fit

Two of the most common numerical measures of model fit are the RSE and R^2 , the fraction of variance explained. These quantities are computed and interpreted in the same fashion as for simple linear regression. Recall that in simple regression, R^2 is the square of the correlation of the response and the variable. In multiple linear regression, it turns out that it equals $Cor(Y,\hat{Y})^2$, the square of the correlation between the response and the fitted linear model; in fact one property of the fitted linear model is that it maximizes this correlation among all possible linear models. An R^2 value close to 1 indicates that the model explains a large portion of the variance in the response variable.

In general RSE is defined as

$$RSE = \sqrt{\frac{1}{n-p-1}RSS}$$

2.3.1 Other Considerations in Regression Model

Qualitative Predictors

- If we have a categorial (qualitative) variable (feature), how do we fit into a regression equation?
- For example, if X_1 is the gender (male or female).
- We can code, for example, male = 0 and female = 1.
- Suppose X_2 is a quantitative variable, the regression equation becomes:

$$Y_i \approx \beta_0 + \beta_1 X_1 + \beta_2 X_2 = \begin{cases} \beta_0 + \beta_2 X_2 & \text{if male} \\ \beta_0 + \beta_1 X_1 + \beta_2 X_2 & \text{if female} \end{cases}$$

• Another possible coding scheme is to let male = -1 and female = 1, the regression equation is then:

$$Y_i \approx \beta_0 + \beta_1 X_1 + \beta_2 X_2 = \begin{cases} \beta_0 - \beta_1 X_1 + \beta_2 X_2 & \text{if male} \\ \beta_0 + \beta_1 X_1 + \beta_2 X_2 & \text{if female} \end{cases}$$

Interaction Terms

- When the effect on Y of increasing X_1 depends on another X_2 .
- We may in this case try the model

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$$

• X_1X_2 is the Interaction term.

PW 2

2.4 Reporting

Markdown

Markdown is a lightweight markup language with plain text formatting syntax designed so that it can be converted to HTML and many other formats (pdf, docx, etc..).

Click here to see an example of a markdown (.md) syntaxes and the result in HTML. The markdown syntaxes are on right and their HTML result is on left. You can modify the source text to see the result.

Extra: There is some markdown online editors you can use, like dillinger.io/. See the Markdown source file and the HTML preview. Play with the source text to see the result in the preview.

R Markdown

R Markdown is a variant of Markdown that has embedded R code chunks, to be used with the knitr package to make it easy to create reproducible web-based reports.

First, in Rstudio create a new R Markdown file. A default template will be opened. There is some R code in R chunks. Clink on knit, save your file and see the produced output. The output is a html report containing the results of the R codes. If your file is named report.Rmd, your report is named report.html.

- Make sure to have the latest version of Rstudio.
- If you have problems creating a R Markdown file (problem in installing packages, etc..) close your Rstudio and reopen it with administrative tools and retry.
- If it doesn't work and in order to not lose more time, write your script in an .R file with your comments and submit it.

- Be ready to submit your report (your .html file) at the end of each class.
- You report must be named:

YouLastName_YourFirstName_WeekNumber.html

You can find all the informations about R Markdown on this site: rmarkdown.rstudio.com.

You may also find the following resources helpful:

- The R Markdown Reference Guide
- The R Markdown Cheatsheet

The report to be submitted

In Rstudio, start by creating a R Markdown file. When you create it a default template will be opened with the following first lines:

title: "Untitled"
output: html document

These lines are the YAML header in which you choose the settings of your report (title, author, date, appearance, etc..)

For your submitted report, use the following YAML header:

title: "Week 2"
subtitle: "Multiple Linear Regression"
author: LastName FirstName
date: "2017-03-02 15:35:18"
output:
 html_document:
 toc: true
 toc_depth: 2
 theme: flatly

In the core of your report:

- Put every exercise in a section, name the section Exercise i (i is the exercise's number).
- Paste the exercise content.
- Write the code of the exercise in R chunks.
- Run the chunk to make sure it works.
- If there is a need, explain the results.
- · Click on knit

2.5 Multiple Linear Regression

Submit a report following the instructions above. In the first exercise you must continue the analysis of the Boston data set.

The exercises

Continue what we started last week with the Boston dataset which is part of the MASS package. Recall that this dataset records the median value of houses for 506 neighborhoods around Boston.

- 1. Load the Boston dataset from MASS package.
- 2. Split the dataset into training set and testing set. (keep all the variables of the Boston data set)
- 3. Check if there is a linear relationship between the variables med and age. (use cor() function).
- 4. Plot medv in function of age.
- 5. Train a regression model using both lstat and age as predictors of median house value. (Remember that we transformed lstat, use the same transformation here). What is the obtained model?

- 6. Print the summary of the obtained regression model.
- 7. Are the predictors significant?
- 8. Is the model as a whole significant?
- 9. Train a new model using all the variables of the dataset. (We can use . as a short cut instead of writing down all the variables names)
- 10. When using all the variables as predictors, we didn't transform lstat. Re train the model using log(lstat) instead of lstat.
- 11. Did R^2 improve?
- 12. To see if there is correlated variables print the correlation matrix using the cor() function (round the correlations with 2 digits).
- 13. Visualize the correlations using the corrplot package. To do so, install the corrplot package, load it, then use the function corrplot.mixed(). See this link for examples and to understand how to use it.
- 14. What is the correlation between tax and rad?
- 15. Run the model again without rad. What happens to the R^2 ? and for the F-statistic?

Of course R^2 should go a little lower because we deleted one of the variables. But check for the model significance (F-statistic) gets higher, which means the p-values gets lower and thus the model is more significant without rad.

16. Calculate the mean squared error (MSE) for the last model.

ANOVA

- 17. In the Boston data set there is a categorical variable chas which corresponds to Charles River (= 1 if a suburb bounds the river; 0 otherwise). How many of the suburbs in this data set bound the Charles river?
- 18. Create Boxplots of the median value of houses with respect to the variable chas. Do we observe some difference between the median value of houses with respect to the neighborhood to Charles River?
- 19. Next we will apply an analysis of variances (ANOVA) in order to test if there is a significant difference of means between two groups i and j (Consider group i is the suburbs bounding the river and j the suburbs which not). The hypotheses are

$$H_0: \mu_i = \mu_i$$

$$H_1: \mu_i \neq \mu_j$$

Where μ_i is the mean of med in group i.

Calculate μ_i and μ_j (in one line using the function aggregate()).

20. Apply an ANOVA test of medv whith respect to chas (use the function aov()). Print the result and the summary of it. what do you conclude?

Part III Classification

Chapter 3

Logistic Regression

3.1 Introduction

In the previous chapters we discussed the linear regression model, which assumes that the response variable Y is quantitative. But in many situations, the response variable is instead qualitative (categorical). For example, eye color is qualitative, taking on values blue, brown, or green.

The process for predicting qualitative responses is known as *classification*.

Given a feature vector X and a qualitative response Y taking values in the set C, the classification task is to build a function C(X) that takes as input the feature vector X and predicts its value for Y; i.e. $C(X) \in C$. We are often more interested in estimating the probabilities that X belongs to each category in C.

If c is a category $(c \in \mathcal{C})$, by the probability that X belongs to c we mean $p(X \in c) = \mathbb{P}(Y = c|X)$.

In the binomial or binary logistic regression, the outcome can have only two possible types of values (e.g. "Yes" or "No", "Success" or "Failure"). Multinomial logistic refers to cases where the outcome can have three or more possible types of values (e.g., "good" vs. "very good" vs. "best"). Generally outcome is coded as "0" and "1" in binary logistic regression.

3.2 Logistic Regression

Consider a data set where the response falls into one of two categories, Yes or No. Rather than modeling the response Y directly, logistic regression models the probability that Y belongs to a particular category.

3.2.1 The Logistic Model

Let us suppose the response has two categories and we use the generic 0/1 coding for the response. How should we model the relationship between $p(X) = \mathbb{P}(Y = 1|X)$ and X?

The simplest situation is when Y is binary: it can only take two values, codified for convenience as 0 (success) and 1 (failure).

More formally, a binary variable is known as a Bernoulli variable, which is the simplest non-trivial random variable. We say that $Y \sim \text{Ber}(p)$, $0 \le p \le 1$, if

$$Y = \begin{cases} 1, & \text{with probability } p, \\ 0, & \text{with probability } 1 - p, \end{cases}$$

or, equivalently, if $\mathbb{P}[Y=1]=p$ and $\mathbb{P}[Y=0]=1-p$, which can be written compactly as

$$\mathbb{P}[Y = y] = p^y (1 - p)^{1 - y}, \quad y = 0, 1.$$

Recall that a binomial variable with size n and probability p, Bi(n, p), was obtained by adding n independent Ber(p) (so Ber(p) is the same as Bi(1, p)).

A Bernoulli variable Y is completely determined by p. So its mean and variance:

$$- \mathbb{E}[Y] = p \times 1 + (1 - p) \times 0 = p$$
$$- \mathbb{V}\operatorname{ar}[Y] = p(1 - p).$$

In particular, recall that $\mathbb{P}[Y=1] = \mathbb{E}[Y] = p$.

Assume then that Y is a binary/Bernoulli variable and that X are predictors associated to them (no particular assumptions on them). The purpose in logistic regression is to estimate

$$p(x) = \mathbb{P}[Y = 1|X = x] = \mathbb{E}[Y|X = x],$$

this is, how the probability of Y = 1 is changing according to particular values, denoted by x, of the random variables X.

Why not linear regression? A tempting possibility is to consider the model

$$p(x) = \beta_0 + \beta_1 x.$$

However, such a model will run into problems inevitably: negative probabilities and probabilities larger than one (p(x) < 0 for some values of X and p(X) > 1 for others). To avoid this problem, the solution is to consider a function to encapsulate the value of $z = \beta_0 + \beta_1 x$, in \mathbb{R} , and map it to [0,1]. There are several alternatives to do so, based on distribution functions $F : \mathbb{R} \longrightarrow [0,1]$ that deliver $y = F(z) \in [0,1]$. Many functions meet this description. In logistic regression, we use the logistic function,

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

- No matter what values β_0 , β_1 or X take, p(X) will have values between 0 and 1.
- The logistic function will always produce an S-shaped curve.
- The logistic distribution function is:

$$F(z) = \text{logistic}(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}.$$

After a bit of manipulation of the previous equation, we find that

$$\frac{p(X)}{1 - p(X)} = e^{\beta_0 + \beta_1 X}$$

The quantity p(X)/[1p(X)] is called the odds, and can take on any value between 0 and ∞ .

By taking the logarithm of both sides of the equation, we arrive at

$$\log(\frac{p(X)}{1 - p(X)}) = \beta_0 + \beta_1 X$$

The left-hand side is called the log-odds or logit. We see that the logistic regression model has a logit that is linear in X.

3.2.2 Estimating the Regression Coefficients

We estimate β_0 and β_1 using the Maximum Likelihood Estimation method (MLE). The basic intuition behind using maximum likelihood to fit a logistic regression model is as follows: we seek estimates for β_0 and β_1 such that the predicted probability $\hat{p}(x_i)$ of the response for each individual, corresponds as closely as possible to the individual's observed response status (recall that the response Y is categorical). The likelihood function is

$$l(\beta_0, \beta_1) = \prod_{i=1}^n p(x_i)^{Y_i} (1 - p(x_i))^{1 - Y_i}.$$

This likelihood is **the probability of the data based on the model**. It gives the probability of the observed zeros and ones in the data. The estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ are chosen to maximize this likelihood function. The interpretation of the likelihood function is the following:

- $\prod_{i=1}^n$ appears because the sample elements are assumed to be independent and we are computing the probability of observing the whole sample $(x_1, y_1), \ldots, (x_n, y_n)$. This probability is equal to the product of the probabilities of observing each (x_i, y_i) .
- $p(x_i)^{Y_i}(1-p(x_i))^{1-Y_i}$ is the probability of observing (x_i, Y_i) .

In the linear regression setting, the least squares approach is a special case of maximum likelihood.

We will not give mathematical details about the maximum likelihood and how to estimate the parameters. We will use R to fit the logistic regression models (using glm function).

Click here to see how the log-likelihood changes with respect to the values for (β_0, β_1) in three data patterns. The logistic regression fit and its dependence on β_0 (horizontal displacement) and β_1 (steepness of the curve). Recall the effect of the sign of β_1 in the curve: if positive, the logistic curve has an s form; if negative, the form is a reflected s.'

3.2.3 Prediction

Example

	Coefficient	Std. error	Z-statistic	p-value
$\frac{\text{Constant}}{X}$	-10.6513	0.3612	-29.5	<0.0001
	0.0055	0.0002	24.9	<0.0001

In this example, $\hat{\beta}_0 = -10.6513$ and $\hat{\beta}_1 = 0.0055$. It produces the blue curve that separates that data in the following figure,

Figure 3.1:

As for prediction, we use the model built with the estimated parameters to predict probabilities. For example, If X = 1000,

$$\hat{p}(X) = \frac{e^{\hat{\beta_0} + \hat{\beta_1}X}}{1 + e^{\hat{\beta_0} + \hat{\beta_1}X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.006$$

If X = 2000,

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 2000}}{1 + e^{-10.6513 + 0.0055 \times 2000}} = 0.586$$

3.3 Multiple Logistic Regression

We now consider the problem of predicting a binary response using multiple predictors. By analogy with the extension from simple to multiple linear regression in the previous chapters, we can generalize the simple logistic regression equation as follows:

$$\log(\frac{p(X)}{1-p(X)}) = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$$

where $X=(X_1,\ldots,X_p)$ are p predictors. The equation above can be rewritten as

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

Just as in the simple logistic regression we use the maximum likelihood method to estimate $\beta_0, \beta_1, \dots, \beta_p$.

PW3

Report template

Create a new RMarkdown file and replace the YAML header with these lines:

title: "Week 3"
subtitle: "Logistic Regression"
author: LastName FirstName
date: "23/01/2017"
output:
 html_document:
 toc: true
 toc_depth: 2
 toc_float: true
 theme: united
 highlight: zenburn

Name the file LastName_FirstName_Week3 and submit the html output.

Social Networks Ads

In this PW we are going to analyse the Social_Network_Ads dataset. This dataset contains informations of users of a social network. The social network has several business clients and its business clients put ads on the social network for marketing compaigns purposes. For this dataset, a company has put ads for one of its new products and the social network gathered some informations about wich users responded positively to the ad by buying the product and those who responded negatively by not buying the product.

- 1. Download the Social_Network_Ads dataset from here and import it into R.
- 2. Describe the dataset (you can use str() and summary() functions).

We will consider the variables Age and EstimatedSalary as input variables (features) to see the correlations between them and the decision of the user to buy (or not) the product.

3. Now we are going to split the dataset into training set and test set. Last week we did it manually. From now on we will split it randomly with this code,

```
library(caTools) # install it first in the console
set.seed(123)
# we use this function with the same number
# to randomly generate the same values
split = sample.split(dataset$Purchased, SplitRatio = 0.75)
```

```
# here we chose the SplitRatio to 75% of the dataset,
# and 25% for the test set.
training_set = subset(dataset, split == TRUE)
# we use subset to split the dataset
test_set = subset(dataset, split == FALSE)
```

4. Scale the input variables in both training set and test set.

First let us fit a simple logistic regression model of Purchased in function of Age. We do it with this line of code.

```
classifier <- glm(Purchased ~ Age , family = binomial, data=training_set)
# glm goes for generalized linear model</pre>
```

- 5. In the argument family of the function glm we chose binomial. Why?
- **6.** What is the equation of the obtained model in the question **4**?
- 7. Is the feature Age significant?

The AIC is the Akaike Information Criterion. You will use this while comparing multiple models. The model with lower value of AIC is better. Suppose that we have a statistical model of some data. Let \hat{L} be the maximum value of the likelihood function for the model; let k be the number of estimated parameters in the model. Then the AIC value of the model is the following.

$$AIC = 2k - 2\ln(\hat{L})$$

where

- $-\hat{L}$ = the maximized value of the likelihood function of the model M, i.e. $\hat{L} = p(x|\hat{\beta}, M)$, where $\hat{\beta}$ are the parameter values that maximize the likelihood function.
- -x =the observed data.
- -k = the number of free parameters to be estimated. If the model under consideration is a linear regression, k is the number of regressors, including the intercept.
- 8. Plot Purchased in function of Age and add the curve of the obtained logistic regression model.

(**Hints**: First plot the point, then use the curve() function with oprtion add=TRUE to add the curve to the plot. The argument "type" of the function predit() must be "reponse")

You must obtain something like

Figure 3.2:

I obtained the last figure with these lines of code,

```
library(ggplot2)
ggplot(training_set, aes(x=Age, y=Purchased)) +
  geom_point() +
  stat_smooth(method="glm", method.args=list(family="binomial"), se=FALSE)
```

9. Now let us take another feature into account in the model. Fit a logistic regression model of purchasing

the product in function of the age of the user and its salary.

- 10. Are the predictors significant? Did the model get better by adding the estimated salary?
- 11. On the test set, predict the probability of purchasing the product by the users using the obtained model.
- 12. Take a look on your predicted values for the variable Purchased. We predicted the probability that the user will purchase the product right? Now in order to compare your results with the real answers, transform the predicted values to 0 or 1 (1 if >0.5).

Hint: You can easily do it with the ifelse() function.

Now read the following about the evaluation of a classifier (of a classification model).

Confusion matrix: is a tabular representation of Actual vs Predicted values. This helps us to find the accuracy of the model. The different results from a binary classifier are true positives, true negatives, false positives, and false negatives. This is how the confusion matrix looks like:

		True co	endition		
	Total population	Condition positive	Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	
Predicted condition	Predicted condition positive	True positive	False positive (Type I error)	Positive predictive value (PPV), Precision $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$	$\begin{aligned} & \text{False discovery rate (FDR)} = \\ & \frac{\Sigma \text{ False positive}}{\Sigma \text{ Test outcome positive}} \end{aligned}$
	Predicted condition negative	False negative (Type II error)	True negative	$= \frac{\text{False omission rate (FOR)}}{\Sigma \text{ False negative}}$	$\begin{aligned} & \text{Negative predictive value} \\ & & \text{(NPV)} \\ & = \frac{\Sigma \text{ True negative}}{\Sigma \text{ Test outcome negative}} \end{aligned}$
Σ	$\begin{array}{c} \text{Accuracy (ACC)} = \\ \underline{\Sigma \text{ True positive}} + \underline{\Sigma \text{ True negative}} \\ \underline{\Sigma \text{ Total population}} \end{array}$	True positive rate (TPR), Sensitivity, Recall $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	$\begin{aligned} & \text{True negative rate (TNR),} \\ & \text{Specificity (SPC)} \\ & = \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}} \end{aligned}$	$\label{eq:Negative likelihood ratio (LR-)} \begin{split} &\text{Negative likelihood ratio (LR-)} \\ &= \frac{FNR}{TNR} \end{split}$	

(Image source: Wikipedia)

You can calculate the **accuracy** of your model with:

True Positive + True Negatives

True Positive + True Negatives + False Positives + False Negatives

Figure 3.4:

Accuracy is a key measure of performance, and is more specifically the rate at which the model is able to predict the correct value (classification or regression) for a given data point or observation. In other words, accuracy is the proportion of correct predictions out of all predictions made.

The other two metrics from the confusion matrix worth discussing are **precision** and **recall**. Precision (positive predictive value) is the ratio of true positives to the total amount of positive predictions made (i.e., true or false). Said another way, precision measures the proportion of accurate positive predictions out of all positive predictions made.

Figure 3.5:

An AUC of 0.5 is essentially the same as random guessing without a model, whereas an AUC of 1.0 is considered a perfect classifier. Generally, the higher the AUC value the better, and an AUC above 0.8 is considered quite good.

The higher the AUC value, the closer the curve gets to the upper left corner of the plot. One can easily see from the ROC curves then that the goal is to find and tune a model that maximizes the true positive rate, while simultaneously minimizing the false positive rate. Said another way, the goal as shown by the ROC curve is to correctly predict as many of the actual positives as possible, while also predicting as many of the actual negatives as possible, and therefore minimize errors (incorrect classifications) for both.

13. Now to evaluate the predictions, compute the confusion matrix. What do you obtain?

(**Hint**: you can use the table() function).

- 14. Calculate the accuracy, specificity, sensitivity and the precision of the model.
- 15. Plot the ROC curve and calculate AUC value.

Hints: to plot it, install the ROCR package. Load and use the functions:

- prediction() to calculate the elements of the confusion matrix.
- performance() to calculate the AUC.
- ${\tt plot}()$ to plot the ROC curve, you can plot the performance calculated before.
- abline() to plot a line of equation y=x.
- 16. Compare the AUC of the two models you fitted (one with only age and one with age and estimated salary) and plot their ROC curves in the same figure.

Chapter 4

Linear Discriminant Analysis

Discriminant analysis is a popular method for multiple-class classification. We will start first by the Linear Discriminant Analysis (LDA).

4.1 Introduction

As we saw in the previous chapter, Logistic regression involves directly modeling $\mathbb{P}(Y=k|X=x)$ using the logistic function, for the case of two response classes. In logistic regression, we model the conditional distribution of the response Y, given the predictor(s) X. We now consider an alternative and less direct approach to estimating these probabilities. In this alternative approach, we model the distribution of the predictors X separately in each of the response classes (i.e. given Y), and then use Bayes' theorem to flip these around into estimates for $\mathbb{P}(Y=k|X=x)$. When these distributions are assumed to be Normal, it turns out that the model is very similar in form to logistic regression.

Why not logistic regression? Why do we need another method, when we have logistic regression? There are several reasons:

- When the classes are well-separated, the parameter estimates for the logistic regression model are surprisingly unstable. Linear discriminant analysis does not suffer from this problem.
- If n is small and the distribution of the predictors X is approximately normal in each of the classes, the linear discriminant model is again more stable than the logistic regression model.
- Linear discriminant analysis is popular when we have more than two response classes.

4.2 Bayes' Theorem

Bayes' theorem is stated mathematically as the following equation:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

where A and B are events and $P(B) \neq 0$.

- P(A|B), a conditional probability, is the probability of observing event A given that B is true. It is called the **posterior** probability.
- P(A), is called the **prior**, is the initial degree of belief in A.
- P(B) is the *likelihood*.

The posterior probability can be written in the memorable form as:

Posterior probability \propto Likelihood \times Prior probability.

Extended form:

Suppose we have a partition $\{A_i\}$ of the sample space, the even space is given or conceptualized in terms of $P(A_i)$ and $P(B|A_i)$. It is then useful to compute P(B) using the law of total probability:

$$P(B) = \sum_{j} P(B|A_{j})P(A_{j})$$

$$\Rightarrow P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_j P(B|A_j)P(A_j)}$$

Bayes' Theorem for Classification:

Suppose that we wish to classify an observation into one of K classes, where $K \geq 2$. In other words, the qualitative response variable Y can take on K possible distinct and unordered values.

Let π_k represent the overall or prior probability that a randomly chosen observation comes from the k-th class; this is the probability that a given observation is associated with the k-th category of the response variable Y.

Let $f_k(X) \equiv P(X = x | Y = k)$ denote the density function of X for an observation that comes from the k-th class. In other words, $f_k(x)$ is relatively large if there is a high probability that an observation in the k-th class has $X \approx x$, and $f_k(x)$ is small if it is very unlikely that an observation in the k-th class has $X \approx x$. Then Bayes' theorem states that

$$P(Y = k|X = x) = \frac{\pi_k f_k(x)}{\sum_{c=1}^K \pi_c f_c(x)}$$
(4.1)

As we did in the last chapter, we will use the abbreviation $p_k(X) = P(Y = k|X)$.

The equation above stated by Bayes' theorem suggests that instead of directly computing $p_k(X)$ as we did in the logistic regression, we can simply plug in estimates of π_k and $f_k(X)$ into the equation. In general, estimating π_k is easy (the fraction of the training observations that belong to the k-th class). But estimating $f_k(X)$ tends to be more challenging.

Recall that $p_k(x)$ is the posterior probability that an observation X = x belongs to k-th class.

If we can find a way to estimate $f_k(X)$, we can develop a classifier with the lowest possible error rate out of all classifiers.

4.3 LDA for p = 1

Assume that p = 1, which mean we have only one predictor. We would like to obtain an estimate for $f_k(x)$ that we can plug into the Equation (4.1) in order to estimate $p_k(x)$. We will then classify an observation to the class for which $p_k(x)$ is greatest.

In order to estimate $f_k(x)$, we will first make some assumptions about its form.

Suppose we assume that $f_k(x)$ is normal (Gaussian). In the one-dimensional setting, the normal density take the form

4.3. LDA FOR P = 179

$$f_k(x) = \frac{1}{\sigma_k \sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma_k^2} (x - \mu_k)^2\right)$$
 (4.2)

where μ_k and σ_k^2 are the mean and variance parameters for k-th class. Let us assume that $\sigma_1^2 = \ldots = \sigma_K^2 = \sigma$ (which means there is a shared variance term across all K classes). Plugging Eq. (4.2) into the Bayes formula in Eq. (4.1) we get,

$$p_k(x) = \frac{\pi_k \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x - \mu_k}{\sigma}\right)^2}}{\sum_{c=1}^K \pi_c \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x - \mu_c}{\sigma}\right)^2}}$$
(4.3)

Note that π_k and π_c denote the prior probabilities. And π is the mathematical constant $\pi \approx$ 3.14159.

To classify at the value X = x, we need to see which of the $p_k(x)$ is largest. Taking logs, and discarding terms that do not depend on k, we see that this is equivalent to assigning x to the class with the largest $discriminant\ score:$

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$
(4.4)

Note that $\delta_k(x)$ is a linear function of x.

- The decision surfaces for a linear discriminant classifiers are defined by the linear equations
- Example: If K=2 and $\pi_1=\pi_2$, then the **desicion boundary** is at $x=\frac{\mu_1+\mu_2}{2}$ (**Prove it!**). An example where $\mu_1=-1.5, \mu_2=1.5, \mu_1=\mu_2=0.5$ and $\sigma^2=1$ is shown in this following

- See this video to understand more about decision boundary.
- As we classify a new point according to which density is highest, when the priors are different we take them into account as well, and compare $\pi_k f_k(x)$. On the right of the following figure, we favor the pink class (remark that the decision boundary has shifted to the left).

4.4 Estimating the parameters

Typically we don't know these parameters; we just have the training data. In that case we simply estimate the parameters and plug them into the rule.

Let n the total number of training observations, and n_k the number of training observations in the k-th class. The following estimates are used:

$$\hat{\pi}_k = \frac{n_k}{n}$$

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i:y_i = k} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n - K} \sum_{k=1}^K \sum_{i:y_i = k} (x_i - \hat{\mu}_k)^2$$

$$= \sum_{k=1}^K \frac{n_k - 1}{n - K} . \hat{\sigma}_k^2$$

where $\hat{\sigma}_k^2 = \frac{1}{n_k - 1} \sum_{i:y_i = k} (x_i - \hat{\mu}_k)^2$ is the usual formula for the estimated variance in the -k-th class.

The linear discriminant analysis (LDA) classifier plugs these estimates in Eq. (4.4) and assigns an observation X = x to the class for which

$$\hat{\delta}_k(x) = x \cdot \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_k)$$

$$\tag{4.5}$$

is largest.

The discriminant functions in Eq. (4.5) are linear functions of x.

Recall that we assumed that the observations come from a normal distribution with a common variance σ^2 .

4.5. $LDA \ FOR \ P > 1$

4.5 LDA for p > 1

Let us now suppose that we have multiple predictors. We assume that $X = (X_1, X_2, ..., X_p)$ is drawn from multivariate Gaussian distribution (assuming they have a common covariance matrix, e.g. same variances as in the case of p = 1). The multivariate Gaussian distribution assumes that each individual predictor follows a one-dimensional normal distribution as in Eq. (4.2), with some correlation between each pair of predictors.

To indicate that a p-dimensional random variable X has a multivariate Gaussian distribution, we write $X \sim \mathcal{N}(\mu, \Sigma)$. Where

$$\mu = E(X) = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_p \end{pmatrix}$$

and,

$$\Sigma = Cov(X) = \begin{pmatrix} \sigma_1^2 & Cov[X_1, X_2] & \dots & Cov[X_1, X_p] \\ Cov[X_2, X_1] & \sigma_2^2 & \dots & Cov[X_2, X_p] \\ \vdots & \vdots & \ddots & \vdots \\ Cov[X_p, X_1] & Cov[X_p, X_2] & \dots & \sigma_p^2 \end{pmatrix}$$

 Σ is the $p \times p$ covariance matrix of X.

Formally, the multivariate Gaussian density is defined as

$$f(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Plugging the density function for the k-th class, $f_k(X = x)$, into Eq. (4.1) reveals that the Bayes classifier assigns an observation X = x to the class for which

$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k$$
 (4.6)

is largest. This is the vector/matrix version of (4.4).

An example is shown in the following figure. Three equally-sized Gaussian classes are shown with class-specific mean vectors and a common covariance matrix ($\pi_1 = \pi_2 = \pi_3 = 1/3$). The three ellipses represent regions that contain 95% of the probability for each of the three classes. The dashed lines are the Bayes decision boundaries.

Recall that the decision boundaries represent the set of values x for which $\delta_k(x) = \delta_c(x)$; i.e. for $k \neq c$

$$x^{T} \Sigma^{-1} \mu_{k} - \frac{1}{2} \mu_{k}^{T} \Sigma^{-1} \mu_{k} = x^{T} \Sigma^{-1} \mu_{c} - \frac{1}{2} \mu_{c}^{T} \Sigma^{-1} \mu_{c}$$

Note that there are three lines representing the Bayes decision boundaries because there are three pairs of classes among the three classes. That is, one Bayes decision boundary separates class 1 from class 2, one separates class 1 from class 3, and one separates class 2 from class 3. These three Bayes decision boundaries divide the predictor space into three regions. The Bayes classifier will classify an observation according to the region in which it is located.

Once again, we need to estimate the unknown parameters μ_1, \ldots, μ_k , and π_1, \ldots, π_k , and Σ ; the formulas are similar to those used in the one-dimensional case. To assign a new observation X = x, LDA plugs these estimates into Eq. (4.6) and classifies to the class for which $\delta_k(x)$ is largest.

Note that in Eq. (4.6) $\delta_k(x)$ is a linear function of x; that is, the LDA decision rule depends on x only through a linear combination of its elements. This is the reason for the word linear in LDA.

4.6 Making predictions

Once we have estimates $\hat{\delta}_k(x)$, we can turn these into estimates for class probabilities:

$$\hat{P}(Y=k|X=x) = \frac{e^{\hat{\delta}_k(x)}}{\sum_{k=1}^K e^{\hat{\delta}_k(x)}}$$

So classifying to the largest $\hat{\delta}_k(x)$ amounts to classifying to the class for which $\hat{P}(Y=k|X=x)$ is largest. When K=2, we classify to class 2 if $\hat{P}(Y=2|X=x) \ge 0.5$, else to class 1.

4.7 Other forms of Discriminant Analysis

$$P(Y = k|X = x) = \frac{\pi_k f_k(x)}{\sum_{c=1}^K \pi_c f_c(x)}$$

We saw before that when $f_k(x)$ are Gaussian densities, which the same covariance matrix Σ in each class, this leads to Linear Discriminant Analysis (LDA).

By altering the forms for $f_k(x)$, we get different classifiers.

- With Gaussians but different Σ_k in each class, we get Quadratic Discriminant Analysis (QDA).
- With $f_k(x) = \prod_{j=1}^p f_{jk}(x_j)$ (conditional independence model) in each class we get Naive Bayes. (For Gaussian, this mean the Σ_k are diagonal, e.g. $Cov(X_i, X_j) = 0 \ \forall \ 1 \le i, j \le p$).
- Many other forms by proposing specific density models for $f_k(x)$, including nonparametric approaches.

4.7.1 Quadratic Discriminant Analysis (QDA)

Like LDA, the QDA classifier results from assuming that the observations from each class are drawn from a Gaussian distribution, and plugging estimates for the parameters into Bayes' theorem in order to perform prediction.

However, unlike LDA, QDA assumes that each class has its own covariance matrix. Under this assumption, the Bayes classifier assigns an observation X = x to the class for which

$$\delta_k(x) = -\frac{1}{2}(x - \mu)^T \Sigma_k^{-1}(x - \mu) - \frac{1}{2}\log|\Sigma_k| + \log \pi_k$$
$$= -\frac{1}{2}x^T \Sigma_k^{-1} x + \frac{1}{2}x^T \Sigma_k^{-1} \mu_k - \frac{1}{2}\mu_k^T \Sigma_k^{-1} \mu_k - \frac{1}{2}\log|\Sigma_k| + \log \pi_k$$

is largest.

Unlike in LDA, the quantity x appears as a quadratic function in QDA. This is where QDA gets its name.

The decision boundary in QDA is non-linear. It is quadratic (a curve).

4.7.2 Naive Bayes

We use Naive Bayes classifier if the features are independent in each class. It is useful when p is large (unklike LDA and QDA).

Naive Bayes assumes that each Σ_k is diagonal, so

$$\delta_k(x) \propto \log \left[\pi_k \prod_{j=1}^p f_{kj}(x_j) \right]$$
$$= -\frac{1}{2} \sum_{j=1}^p \frac{(x_j - \mu_{kj})^2}{\sigma_{kj}^2} + \log \pi_k$$

It can used for mixed feature vectors (qualitative and quantitative). If X_j is qualitative, we replace $f_{kj}(x_j)$ by probability mass function (histogram) over discrete categories.

4.8 LDA vs Logistic Regression

the logistic regression and LDA methods are closely connected. Consider the two-class setting with p = 1 predictor, and let $p_1(x)$ and $p_2(x) = 1p_1(x)$ be the probabilities that the observation X = x belongs to class

1 and class 2, respectively. In the LDA framework, we can see from Eq. (4.4) (and a bit of simple algebra) that the log odds is given by

$$\log\left(\frac{p_1(x)}{1 - p_1(x)}\right) = \log\left(\frac{p_1(x)}{p_2(x)}\right) = c_0 + c_1 x$$

where c_0 and c_1 are functions of μ_1, μ_2 , and σ^2 .

On the other hand, we know that in logistic regression

$$\log\left(\frac{p_1}{1-p_1}\right) = \beta_0 + \beta_1 x$$

Both of the equations above are linear functions of x. Hence both logistic regression and LDA produce linear decision boundaries. The only difference between the two approaches lies in the fact that β_0 and β_1 are estimated using maximum likelihood, whereas c_0 and c_1 are computed using the estimated mean and variance from a normal distribution. This same connection between LDA and logistic regression also holds for multidimensional data with p > 1.

- Logistic regression uses the conditional likelihood based on P(Y|X) (known as discriminative learning).
- LDA uses the full likelihood based on P(X,Y) (known as generative learning).
- Despite these differences, in practice the results are often very similar.

Remark: Logistic regression can also

fit quadratic boundaries like QDA, by explicitly including quadratic terms in the model.

PW4

This week we are going to continue the analysis of the Social_Network_Ads dataset. Recall that this dataset contains informations of users of a social network and if they bought a specified product. Last week we built a Logistic Regression model for the variable Purchased in function of Age and EstimatedSalary. We will consider the same variables this week but we will fit different models using methods such as LDA, QDA, and Naive Bayes.

Report template

For this week, use these YAML settings for your RMarkdown file:

```
title: "Week 4"
subtitle: "Discriminant Analysis"
author: LastName FirstName
date: "30/01/2017"
output:
  html_document:
   toc: true
   toc_depth: 2
   toc_float: true
   theme: cerulean
  highlight: espresso
```

Decision Boundary of Logistic Regression

1. First, re-do the pre-processing steps you did last week (remove the first two columns from the dataset as we are not going to use them) and fit a logistic regression model of Purchased in function of Age and EstimatedSalary. Name your model classifier.logreg. If you need the dataset again, you can download it from here.

Now you are going to visualize the decision boundary for logistic regression.

- Since the decision boundary of logistic regression is a linear (you know why right?) and the dimension of the feature space is 2 (Age and EstimatedSalary), the decision boundary in this 2-dimensional space is a line that separates the predicted classes "0" and "1" (values of the response Purchased).
- For logistic regression, we predict y=1 if $\beta^T X \geq 0$ (right side of the line) and y=0 if $\beta^T X < 0$ (left side of the line). Where

$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta 2 \end{pmatrix} \text{ and } X = \begin{pmatrix} 1 \\ X_1 \\ X_2 \end{pmatrix}$$

So we predict y=1 if $\beta_0+\beta_1X_1+\beta_2X_2\geq 0$ which means that the equation of the decision boundary (a line here) is $X_2=-\frac{\beta_1}{\beta_2}X_1-\frac{\beta_0}{\beta_2}$

- 2. Plot the decision boundary obtained with logistic regression. In order to do so, calculate the intercept and the slope of the line presenting the decision boundary, then plot EstimatedSalary in function of Age (from the test_set) and add the line using abline().
- **3.** In order to verify that your line (decision boundary) is well plotted, color the points on the last Figure with respect to the predicted response.

Hints:

- If your predictions are stored in y_pred, you can do it using bg = ifelse(y_pred == 1, 'color1', 'color2'), and precise the argument pch to be 21 (you can choose pch to be a value between 21 and 25, try it).
- Then, add the line using abline(), put the line width = 2 to make it more visible. Do not forget to title the Figure).
- 4. Now make the same plot but color the points with respect to their real labels (the variable Purchased). From this figure, count the number of the false positive predictions and compare it to the value obtained in the confusion matrix.

Linear Discriminant Analysis (LDA)

Let us apply linear discriminant analysis (LDA) now. First we will make use of the lda() function in the package MASS. Second, you are going to create the model and predict the classes by yourself without using the lda() function. And we will visualize the decision boundary of LDA.

5. Fit a LDA model of Purchased in function of Age and EstimatedSalary. Name the model classifier.lda.

```
library(MASS)
classifier.lda <- lda(Purchased~Age+EstimatedSalary, data=training_set)</pre>
```

6. Call classifier.lda and see what does it compute.

Plus: If you enter the following you will be returned with a list of summary information concerning the computation:

```
classifier.lda$prior
classifier.lda$means
```

7. On the test set, predict the probability of purchasing the product by the users using the model classifier.lda. Remark that when we predict using LDA, we obtain a list instead of a matrix, do str() for your predictions to see what do you get.

Remark: we get the predicted class here, without being obligated to round the predictions as we did for logistic regression.

8. Compute the confusion matrix and compare the predictions results obtained by LDA to the ones obtained by logistic regression. What do you remark?

(**Hint**: compare the accuracy)

9. Now let us plot the decision boundary obtained with LDA. You saw in the course that decision boundary for LDA represent the set of values x where $\delta_k(x) = \delta_c(x)$. Recall that

$$\delta_k(X) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k$$

Here in our case, we have 2 classes (K=2) and 2 predictors (p=2). So the decision boundary (which is linear in the case of LDA, and line in our case since p=2) will verify the equation $\delta_0(x)=\delta_1(x)$ Since we have two classes "0" and "1". In the case of LDA this leads to linear boundary and is easy to be plotted. But in more complicated cases it is difficult to manually simplify the equations and plot the decision boundary. Anyway, there is a smart method to plot (but a little bit costy) the decision boundary in R using the function contour(), the corresponding code is the following (you must adapt it and use it to plot your decision boundary):

```
# create a grid corresponding to the scales of Age and EstimatedSalary
# and fill this grid with lot of points
X1 = seq(min(training_set[, 1]) - 1, max(training_set[, 1]) + 1, by = 0.01)
X2 = seq(min(training_set[, 2]) - 1, max(training_set[, 2]) + 1, by = 0.01)
grid_set = expand.grid(X1, X2)
# Adapt the variable names
colnames(grid_set) = c('Age', 'EstimatedSalary')
# plot 'Estimated Salary' ~ 'Age'
plot(test_set[, -3],
    main = 'Decision Boundary LDA',
     xlab = 'Age', ylab = 'Estimated Salary',
     xlim = range(X1), ylim = range(X2))
# color the plotted points with their real label (class)
points(test_set, pch = 21, bg = ifelse(test_set[, 3] == 1, 'green4', 'red3'))
# Make predictions on the points of the grid, this will take some time
pred_grid = predict(classifier.lda, newdata = grid_set)$class
# Separate the predictions by a contour
contour(X1, X2, matrix(as.numeric(pred_grid), length(X1), length(X2)), add = TRUE)
```

10. Now let us build a LDA model for our data set without using the lda() function. You are free to do it by creating a function or without creating one. Go back to question 6 and see what did you obtain by using lda(). It computes the prior probability of group membership and the estimated group means for each of the two groups. Additional information that is not provided, but may be important, is the single covariance matrix that is being used for the various groupings.

In LDA, we compute for every observation x its discriminant score $\delta_k(x)$. Then we attribute x to the class that has the highest δ . Recall that

$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k$$

So to compute $\delta_k(x)$ we need to estimate π_k , μ_k and Σ .

Note that

$$x = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$

and here X_1 =Age and X_2 =EstimatedSalary.

So let us do it step by step, first we will do the estimates:

- 10.1 Subset the training set into two sets: class0 where Purchased = 0 and class1 where Purchased = 1).
- **10.2** Compute π_0 and π_1 .

 $\pi_i = N_i/N$, where N_i is the number of data points in group i

10.3 Compute μ_0 and μ_1 .

$$\mu_0 = \begin{pmatrix} \mu_0(X_1) \\ \mu_0(X_2) \end{pmatrix}$$
 and $\mu_1 = \begin{pmatrix} \mu_1(X_1) \\ \mu_1(X_2) \end{pmatrix}$

where, for example, $\mu_0(X_1)$ is the mean of the variable X_1 in the group 0 (the subset class0).

10.4 Compute Σ . In the case of two classes like here, it is computed by calculating the following:

$$\Sigma = \frac{(N_0 - 1)\Sigma_0 + (N_1 - 1)\Sigma_1}{N_0 + N_1 - 2}$$

where Σ_i is the estimated covariance matrix for specific group i.

Remark: Recall that in LDA we use the same Σ . But in QDA we do not.

- **10.5.** Now that we have computed all the needed estimates, we can calculate $\delta_0(x)$ and $\delta_1(x)$ for any observation x. And we will attribute x to the class with the highest δ . First, try it for x where $x^T = (1, 1.5)$, what is class prediction for this spesific x?
- **10.6.** Compute the discriminant scores δ for the test set (a matrix 100×2), predict the classes and compare your results with the results obtained with the lda() function.

Quadratic Discriminant Analysis (QDA)

Training and assessing a QDA model in R is very similar in syntax to training and assessing a LDA model. The only difference is in the function name qda()

11. Fit a QDA model of Purchased in function of Age and EstimatedSalary. Name the model classifier.qda.

```
# qda() is a function of library(MASS)
classifier.qda <- qda(Purchased~., data = training_set)</pre>
```

- 12. Make predictions on the test_set using the QDA model classifier.qda. Show the computation matrix and compare the results with the predictions obtained using the LDA model classifier.lda.
- 13. Plot the decision boundary obtained with QDA. Color the points with the real labels.

Comparison

14. In order to compare the methods we used, plot on the same Figure the ROC curve for each classifier we fitted and compare the correspondant AUC. What was the best model for this dataset?

Remark: If you use the ROCR package:

• For Logistic regression, use the predicted probabilities in the **prediction()** (and not the round values "0" or "1").

• For LDA and QDA, put pred.lda\$posterior[,2] in the prediction() function (those are the posterior probabilities that observations belong to class "1").

Chapter 5

Support Vector Machines

- 5.1 Maximal Margin Classifier
- 5.2 Support Vector Classifier
- 5.3 Kernels and Support Vector Machines
- 5.4 Example and Comparison with Logistic Regression
- 5.5 Lab: Support Vector Machine for Classification
- 5.6 Lab: Nonlinear Support Vector Machine

PW5

This session is special. You are given a dataset on moodle, go download it and analyze it. You must submit a report (html) of your analysis at the end of the session. This report is the most important one for your evaluation.

The data analysis must include all the following steps: importing the dataset, exploring the dataset and describing it, data preprocessing, data splitting, building models and assessing models.

Here are somes rules for this special session:

- The dataset will be available on moodle during the session.
- You can ask questions. But the professor will not answer all of your questions. It depends on the question.
- Of course every student must work individually and no discussions are allowed.
- You have the right to access internet, the course's website, and even googling some R tips for your codes. But you are not allowed to open any Social Network website neither your email. If you open one of these you will get directly zero.
- The professor has the right to verify by himself if you are opening any Social network/email website.
- The report must be written in english of course.
- There won't be a quiz in this special session in order to give you the complete 3 hours to analyze the dataset. But you must apply SVM (chapter 5) if there is a need. The quiz of week 6 will be about SVM (chapter 5) and about the upcoming chapter 6.
- Your report must be clear. Every step or decision you make must be explained. Your code must be commented and your results must be interpreted.

Good Luck!

Part IV Unsupervised Learning

Chapter 6

Dimensionality Reduction

6.1 Unsupervised Learning

Previously we considered supervised learning methods such as regression and classification, where we typically have access to a set of p features X_1, X_2, \ldots, X_p , measured on n observations, and a response Y also measured on those same n observations (what we call **labels**). The goal was then to predict Y using X_1, X_2, \ldots, X_p . From now on we will instead focus on **unsupervised** learning, a set of statistical tools where we have only a set of features X_1, X_2, \ldots, X_p measured on n observations. We are not interested in prediction, because we do not have an associated response variable Y. Rather, the goal is to discover interesting things about the measurements on X_1, X_2, \ldots, X_p . Is there an informative way to visualize the data? Can we discover subgroups among the variables or among the observations? Unsupervised learning refers to a diverse set of techniques for answering questions such as these. In this chapter, we will focus on a particular type of unsupervised learning: Principal Components Analysis (PCA), a tool used for data visualization or data pre-processing before supervised techniques are applied. In the next chapters, we will talk about clustering, another particular type of unsupervised learning. Clustering is a broad class of methods for discovering unknown subgroups in data.

Unsupervised learning is often much more challenging than supervised learning. The exercise tends to be more subjective, and there is no simple goal for the analysis, such as prediction of a response. Unsupervised learning is often performed as part of an exploratory data analysis. It is hard to assess the results obtained from unsupervised learning methods. If we fit a predictive model using a supervised learning technique, then it is possible to check our work by seeing how well our model predicts the response Y on observations not used in fitting the model. But in unsupervised learning, there is no way to check our work because we don't know the true answer: the problem is unsupervised.

6.2 Principal Components Analysis

The central idea of principal component analysis (PCA) is to reduce the dimensionality of a data set consisting of a large number of interrelated variables, while retaining as much as possible of the variation present in the data set. This is achieved by transforming to a new set of variables, the principal components (PCs), which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables.

Suppose that we wish to visualize n observations with measurements on a set of p features, X_1, X_2, \ldots, X_p , as part of an exploratory data analysis. We could do this by examining two-dimensional scatterplots of the data, each of which contains the n observations' measurements on two of the features. However, there are $C_p^2 = p(p1)/2$ such scatterplots. For example, with p = 10 there are 45 plots! If p is large, then it will

certainly not be possible to look at all of them; moreover, most likely none of them will be informative since they each contain just a small fraction of the total information present in the data set. Clearly, a better method is required to visualize the n observations when p is large. In particular, we would like to find a low-dimensional representation of the data that captures as much of the information as possible. PCA provides a tool to do just this.

PCA finds a low-dimensional representation of a data set that contains as much as possible of the variation. The idea is that each of the n observations lives in p-dimensional space, but not all of these dimensions are equally interesting. PCA seeks a small number of dimensions that are as interesting as possible, where the concept of interesting is measured by the amount that the observations vary along each dimension. Each of the dimensions found by PCA is a **linear combination of the** p **features**. We now explain the manner in which these dimensions, or principal components, are found.

6.3 Principal Components

Notations and Procedure

Suppose that we have a random vector of the features X.

$$\mathbf{X} = \left(\begin{array}{c} X_1 \\ X_2 \\ \vdots \\ X_p \end{array}\right)$$

with population variance-covariance matrix

$$\operatorname{var}(\mathbf{X}) = \Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1p} \\ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \dots & \sigma_p^2 \end{pmatrix}$$

Consider the linear combinations

$$Y_1 = a_{11}X_1 + a_{12}X_2 + \dots + a_{1p}X_p$$

$$Y_2 = a_{21}X_1 + a_{22}X_2 + \dots + a_{2p}X_p$$

$$\vdots$$

$$Y_p = a_{p1}X_1 + a_{p2}X_2 + \dots + a_{pp}X_p$$

Note that Y_i is a function of our random data, and so is also random. Therefore it has a population variance

$$var(Y_i) = \sum_{k=1}^{p} \sum_{l=1}^{p} a_{ik} a_{il} \sigma_{kl} = \mathbf{a}_i^T \Sigma \mathbf{a}_i$$

Moreover, Y_i and Y_j will have a population covariance

$$cov(Y_i, Y_j) = \sum_{k=1}^{p} \sum_{l=1}^{p} a_{ik} a_{jl} \sigma_{kl} = \mathbf{a}_i^T \Sigma \mathbf{a}_j$$

and a correlation

$$cor(Y_i, Y_j) = \frac{cov(Y_i, Y_j)}{\sigma_i^2 \sigma_j^2}$$

Here the coefficients a_{ij} are collected into the vector

$$\mathbf{a}_i = \left(\begin{array}{c} a_{i1} \\ a_{i2} \\ \vdots \\ a_{ip} \end{array}\right)$$

The coefficients a_{ij} are also called loadings of the principal component i and \mathbf{a}_i is a principal component loading vector.

- The total variation of X is the trace of the variance-covariance matrix Σ .
- The trace of Σ is the sum of the variances of the individual variables. $trace(\Sigma) = \sigma_1^2 + \sigma_2^2 + \cdots + \sigma_p^2$

First Principal Component (PC₁): Y_1

The first principal component is the normalized linear combination of the features X_1, X_2, \ldots, X_p that has maximum variance (among all linear combinations), so it accounts for as much variation in the data as possible.

Specifically we will define coefficients $a_{11}, a_{12}, \ldots, a_{1p}$ for that component in such a way that its variance is maximized, subject to the constraint that the sum of the squared coefficients is equal to one (that is what we mean by normalized). This constraint is required so that a unique answer may be obtained.

More formally, select $a_{11}, a_{12}, \ldots, a_{1p}$ that maximizes

$$\operatorname{var}(Y_1) = \mathbf{a}_1^T \Sigma \mathbf{a}_1 = \sum_{k=1}^p \sum_{l=1}^p a_{1k} a_{1l} \sigma_{kl}$$

subject to the constraint that

$$\sum_{i=1}^{p} a_{1j}^2 = \mathbf{a}_1^T \mathbf{a}_1 = 1$$

Second Principal Component (PC₂): Y_2

The second principal component is the linear combination of the features X_1, X_2, \ldots, X_p that accounts for as much of the remaining variation as possible, with the constraint that the correlation between the first and second component is 0. So the second principal component has maximal variance out of all linear combinations that are uncorrelated with Y_1 .

To compute the coefficients of the second principal component, we select $a_{21}, a_{22}, \ldots, a_{2p}$ that maximizes the variance of this new component

$$\operatorname{var}(Y_2) = \sum_{k=1}^{p} \sum_{l=1}^{p} a_{2k} a_{2l} \sigma_{kl} = \mathbf{a}_2^T \Sigma \mathbf{a}_2$$

subject to:

- The constraint that the sums of squared coefficients add up to one, $\sum_{j=1}^{p} a_{2j}^2 = \mathbf{a}_2^T \mathbf{a}_2 = 1$.
- Along with the additional constraint that these two components will be uncorrelated with one another:

$$cov(Y_1, Y_2) = \mathbf{a}_1^T \Sigma \mathbf{a}_2 = \sum_{k=1}^p \sum_{l=1}^p a_{1k} a_{2l} \sigma_{kl} = 0$$

All subsequent principal components have this same property: they are linear combinations that account for as much of the remaining variation as possible and they are not correlated with the other principal components.

We will do this in the same way with each additional component. For instance:

i^{th} Principal Component (PC_i): Y_i

We select $a_{i1}, a_{i2}, \ldots, a_{ip}$ that maximizes

$$var(Y_i) = \sum_{k=1}^{p} \sum_{l=1}^{p} a_{ik} a_{il} \sigma_{kl} = \mathbf{a}_i^T \Sigma \mathbf{a}_i$$

subject to the constraint that the sums of squared coefficients add up to one, along with the additional constraint that this new component will be uncorrelated with all the previously defined components:

$$\sum_{j=1}^{p} a_{ij}^{2} \mathbf{a}_{i}^{T} \mathbf{a}_{i} = \mathbf{a}_{i}^{T} \mathbf{a}_{i} = 1$$

$$\operatorname{cov}(Y_{1}, Y_{i}) = \sum_{k=1}^{p} \sum_{l=1}^{p} a_{1k} a_{il} \sigma_{kl} = \mathbf{a}_{1}^{T} \Sigma \mathbf{a}_{i} = 0$$

$$\operatorname{cov}(Y_{2}, Y_{i}) = \sum_{k=1}^{p} \sum_{l=1}^{p} a_{2k} a_{il} \sigma_{kl} = \mathbf{a}_{2}^{T} \Sigma \mathbf{a}_{i} = 0$$

$$\vdots$$

$$\operatorname{cov}(Y_{i-1}, Y_{i}) = \sum_{k=1}^{p} \sum_{l=1}^{p} a_{i-1,k} a_{il} \sigma_{kl} = \mathbf{a}_{i-1}^{T} \Sigma \mathbf{a}_{i} = 0$$

Therefore all principal components are uncorrelated with one another.

6.4 How do we find the coefficients?

How do we find the coefficients a_{ij} for a principal component? The solution involves the **eigenvalues** and **eigenvectors** of the variance-covariance matrix Σ .

Let $\lambda_1, \ldots, \lambda_p$ denote the eigenvalues of the variance-covariance matrix Σ . These are ordered so that λ_1 has the largest eigenvalue and λ_p is the smallest.

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$$

We are also going to let the vectors $\mathbf{a}_1, \dots, \mathbf{a}_p$ denote the corresponding eigenvectors.

It turns out that the elements for these eigenvectors will be the coefficients of the principal components.

The elements for the eigenvectors of Σ are the coefficients of the principal components.

The variance for the *i*th principal component is equal to the *i*th eigenvalue.

$$var(Y_i) = var(a_{i1}X_1 + a_{i2}X_2 + \dots a_{ip}X_p) = \lambda_i$$

Moreover, the principal components are uncorrelated with one another.

$$cov(Y_i, Y_i) = 0$$

The variance-covariance matrix may be written as a function of the eigenvalues and their corresponding eigenvectors. In fact, the variance-covariance matrix can be written as the sum over the p eigenvalues, multiplied by the product of the corresponding eigenvector times its transpose as shown in the following expression

$$\Sigma = \sum_{i=1}^{p} \lambda_i \mathbf{a}_i \mathbf{a}_i^T$$

If $\lambda_{k+1}, \lambda_{k+2}, \dots, \lambda_p$ are small, we might approximate Σ by

$$\Sigma \cong \sum_{i=1}^k \lambda_i \mathbf{a}_i \mathbf{a}_i^T$$

Earlier in the chapter we defined the total variation of X as the trace of the variance-covariance matrix. This is also equal to the sum of the eigenvalues as shown below:

$$trace(\Sigma) = \sigma_1^2 + \sigma_2^2 + \dots + \sigma_p^2$$

= $\lambda_1 + \lambda_2 + \dots + \lambda_p$

This will give us an interpretation of the components in terms of the amount of the full variation explained by each component. The proportion of variation explained by the *i*th principal component is then going to be defined to be the eigenvalue for that component divided by the sum of the eigenvalues. In other words, the *i*th principal component explains the following proportion of the total variation:

$$\frac{\lambda_i}{\lambda_1 + \lambda_2 + \dots + \lambda_p}$$

A related quantity is the proportion of variation explained by the first k principal component. This would be the sum of the first k eigenvalues divided by its total variation.

$$\frac{\lambda_1 + \lambda_2 + \dots + \lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_n}$$

In practice, these proportions are often expressed as percentages.

Naturally, if the proportion of variation explained by the first k principal components is large, then not much information is lost by considering only the first k principal components.

Why It May Be Possible to Reduce Dimensions

When we have correlations (multicollinarity) between the features, the data may more or less fall on a line or plane in a lower number of dimensions. For instance, imagine a plot of two features that have a nearly perfect correlation. The data points will fall close to a straight line. That line could be used as a new (one-dimensional) axis to represent the variation among data points.

All of this is defined in terms of the population variance-covariance matrix Σ which is unknown. However, we may estimate Σ by the sample variance-covariance matrix which is given in the standard formula here:

$$\mathbf{S} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{X}_i - \bar{\mathbf{x}}) (\mathbf{X}_i - \bar{\mathbf{x}})^T$$

Procedure

Compute the eigenvalues $\hat{\lambda}_1, \hat{\lambda}_2, \dots, \hat{\lambda}_p$ of the sample variance-covariance matrix **S**, and the corresponding eigenvectors $\hat{\mathbf{a}}_1, \hat{\mathbf{a}}_2, \dots, \hat{\mathbf{a}}_p$.

Then we will define our estimated principal components using the eigenvectors as our coefficients:

$$\begin{array}{rcl} \hat{Y}_1 & = & \hat{a}_{11}X_1 + \hat{a}_{12}X_2 + \dots + \hat{a}_{1p}X_p \\ \hat{Y}_2 & = & \hat{a}_{21}X_1 + \hat{a}_{22}X_2 + \dots + \hat{a}_{2p}X_p \\ & & \vdots \\ \hat{Y}_p & = & \hat{a}_{p1}X_1 + \hat{a}_{p2}X_2 + \dots + \hat{a}_{pp}X_p \end{array}$$

Generally, we only retain the first k principal component. There are a number of criteria that may be used to decide how many components should be retained:

- 1. To obtain the simplest possible interpretation, we want k to be as small as possible. If we can explain most of the variation just by **two** principal components then this would give us a much simpler description of the data.
- 2. Retain the first k components which explain a "large" proportion of the total variation, say 70 80%.
- 3. Examine a scree plot. This is a plot of the eigenvalues versus the component number. The idea is to look for the "elbow" which corresponds to the point after which the eigenvalues decrease more slowly. Adding components after this point explains relatively little more of the variance. See the next figure for an example of a scree plot.

Scree plot showing eigenvalue by number of principal component.

6.5 Standardization of the features

If we use the raw data, the principal component analysis will tend to give more emphasis to the variables that have higher variances than to those variables that have very low variances.

In effect the results of the analysis will depend on what units of measurement are used to measure each variable. That would imply that a principal component analysis should only be used with the raw data if all variables have the same units of measure. And even in this case, only if you wish to give those variables which have higher variances more weight in the analysis.

- The results of principal component analysis depend on the scales at which the variables are measured.
- Variables with the highest sample variances will tend to be emphasized in the first few principal components.
- Principal component analysis using the covariance function should only be considered if all
 of the variables have the same units of measurement.

If the variables either have different units of measurement, or if we wish each variable to receive equal weight in the analysis, then the variables should be **standardized** (scaled) before a principal components analysis is carried out. Standardize the variables by subtracting its mean from that variable and dividing it by its standard deviation:

$$Z_{ij} = \frac{X_{ij} - \bar{x}_j}{\sigma_j}$$

where

- $X_{ij} = \text{Data for variable } j \text{ in sample unit } i$
- $\bar{x}_j = \text{Sample mean for variable } j$
- σ_j = Sample standard deviation for variable j

Note: Z_j has mean = 0 and variance = 1.

The variance-covariance matrix of the standardized data is equal to the correlation matrix for the unstandardized data. Therefore, principal component analysis using the standardized data is equivalent to principal component analysis using the correlation matrix.

6.6 Projection of the data

Scores

Using the coefficients (loadings) of every principal component, we can project the observations on the axis of the principal component, those projections are called scores. For example, the scores of the first principal component are

$$\forall 1 \le i \le n \quad \hat{Y}_1^i = \hat{a}_{11} X_1^i + \hat{a}_{12} X_2^i + \dots + \hat{a}_{1p} X_p^i$$

 (X_1^i) is the value of feature 1 for the observation i)

This can be written for all observations and all the principal components using the matrix formulation

$$\hat{\mathbf{Y}} = \hat{\mathbf{A}}X$$

where $\hat{\mathbf{A}}$ is the matrix of the coefficients \hat{a}_{ij} .

Visualization

Once we have computed the principal components, we can plot them against each other in order to produce low-dimensional views of the data.

We can plot the score vector Y_1 against Y_2 , Y_1 against Y_3 , Y_2 against Y_3 , and so forth. Geometrically, this amounts to projecting the original data down onto the subspace spanned by \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 , and plotting the projected points.

To interpret the results obtained by PCA, we plot on the same figure both the principal component scores and the loading vectors. This figure is called a biplot. An example is given later in this chapter.

Extra

- You can read this tutorial ☒ . In the document, there is an introduction about the mathematical concepts used in PCA. Plus a detailed example of PCA.
- You can watch these videos for a nice explanation of PCA 1 2.

6.7 Case study

Employement in European countries in the late 70s

The purpose of this case study is to reveal the structure of the job market and economy in different developed countries. The final aim is to have a meaningful and rigorous plot that is able to show the most important features of the countries in a concise form.

The dataset eurojob (download) contains the data employed in this case study. It contains the percentage of workforce employed in 1979 in 9 industries for 26 European countries. The industries measured are:

- Agriculture (Agr)
- Mining (Min)
- Manufacturing (Man)
- Power supply industries (Pow)
- Construction (Con)
- Service industries (Ser)
- Finance (Fin)
- Social and personal services (Soc)
- Transport and communications (Tra)

If the dataset is imported into R and the case names are set as Country (important in order to have only numerical variables), then the data should look like this:

Country	Agr	Min	Man	Pow	Con	Ser	Fin	Soc	Tra
Belgium	3.3	0.9	27.6	0.9	8.2	19.1	6.2	26.6	7.2
Denmark	9.2	0.1	21.8	0.6	8.3	14.6	6.5	32.2	7.1
France	10.8	0.8	27.5	0.9	8.9	16.8	6.0	22.6	5.7
WGerm	6.7	1.3	35.8	0.9	7.3	14.4	5.0	22.3	6.1
Ireland	23.2	1.0	20.7	1.3	7.5	16.8	2.8	20.8	6.1
Italy	15.9	0.6	27.6	0.5	10.0	18.1	1.6	20.1	5.7
Luxem	77	3.1	30.8	0.8	92	18.5	4.6	19.2	6.2

Table 6.1: The 'eurojob' dataset.

6.7. CASE STUDY 105

Nether	6.3	0.1	22.5	1.0	9.9	18.0	6.8	28.5	6.8
UK	2.7	1.4	30.2	1.4	6.9	16.9	5.7	28.3	6.4
Austria	12.7	1.1	30.2	1.4	9.0	16.8	4.9	16.8	7.0
Finland	13.0	0.4	25.9	1.3	7.4	14.7	5.5	24.3	7.6
Greece	41.4	0.6	17.6	0.6	8.1	11.5	2.4	11.0	6.7
Norway	9.0	0.5	22.4	0.8	8.6	16.9	4.7	27.6	9.4
Portugal	27.8	0.3	24.5	0.6	8.4	13.3	2.7	16.7	5.7
Spain	22.9	0.8	28.5	0.7	11.5	9.7	8.5	11.8	5.5
Sweden	6.1	0.4	25.9	0.8	7.2	14.4	6.0	32.4	6.8
Switz	7.7	0.2	37.8	0.8	9.5	17.5	5.3	15.4	5.7
Turkey	66.8	0.7	7.9	0.1	2.8	5.2	1.1	11.9	3.2
Bulgaria	23.6	1.9	32.3	0.6	7.9	8.0	0.7	18.2	6.7
Czech	16.5	2.9	35.5	1.2	8.7	9.2	0.9	17.9	7.0
EGerm	4.2	2.9	41.2	1.3	7.6	11.2	1.2	22.1	8.4
Hungary	21.7	3.1	29.6	1.9	8.2	9.4	0.9	17.2	8.0
Poland	31.1	2.5	25.7	0.9	8.4	7.5	0.9	16.1	6.9
Romania	34.7	2.1	30.1	0.6	8.7	5.9	1.3	11.7	5.0
USSR	23.7	1.4	25.8	0.6	9.2	6.1	0.5	23.6	9.3
Yugoslavia	48.7	1.5	16.8	1.1	4.9	6.4	11.3	5.3	4.0

Note: To set the case names as Country, we do

```
row.names(eurojob) <- eurojob$Country
eurojob$Country <- NULL</pre>
```

So far, we know how to compute summaries for each variable, and how to quantify and visualize relations between variables with the correlation matrix and the scatterplot matrix. But even for a moderate number of variables like this, their results are hard to process.

```
# Summary of the data - marginal
summary(eurojob)
#ans>
                                                       Pow
           Aqr
                         Min
                                         Man
                                          : 7.9
#ans> Min. : 2.7
                    Min.
                           :0.100
                                    Min.
                                                  Min.
                                                         :0.100
#ans> 1st Qu.: 7.7
                    1st Qu.:0.525
                                    1st Qu.:23.0
                                                  1st Qu.:0.600
                                                  Median :0.850
#ans> Median :14.4
                    Median :0.950
                                    Median :27.6
#ans> Mean
             :19.1
                    Mean
                           :1.254
                                    Mean
                                          :27.0
                                                  Mean
                                                         :0.908
#ans> 3rd Qu.:23.7
                    3rd Qu.:1.800
                                    3rd Qu.:30.2
                                                  3rd Qu.:1.175
#ans> Max. :66.8
                          :3.100
                                         :41.2
                    Max.
                                    Max.
                                                  Max. :1.900
#ans>
           Con
                          Ser
                                          Fin
                                                         Soc
                                                    Min. : 5.3
#ans> Min.
            : 2.80
                     Min.
                           : 5.20
                                     Min. : 0.50
#ans> 1st Qu.: 7.53
                     1st Qu.: 9.25
                                     1st Qu.: 1.23
                                                    1st Qu.:16.2
#ans> Median : 8.35
                     Median :14.40
                                     Median : 4.65
                                                    Median:19.6
#ans> Mean : 8.17
                      Mean
                           :12.96
                                     Mean : 4.00
                                                    Mean :20.0
#ans> 3rd Qu.: 8.97
                      3rd Qu.:16.88
                                     3rd Qu.: 5.92
                                                     3rd Qu.:24.1
#ans> Max.
             :11.50
                      Max.
                            :19.10
                                     Max. :11.30
                                                          :32.4
                                                    Max.
#ans>
           Tra
             :3.20
#ans> Min.
#ans> 1st Qu.:5.70
#ans> Median :6.70
#ans> Mean
            :6.55
#ans> 3rd Qu.:7.08
#ans> Max.
             :9.40
```

```
# Correlation matrix
cor(eurojob)
#ans>
                    Min
                           Man
                                   Pow
                                           Con
                                                 Ser
                                                         Fin
                                                                Soc
                                                                       Tra
             Agr
#ans> Agr 1.0000 0.0358 -0.671 -0.4001 -0.5383 -0.737 -0.2198 -0.747 -0.565
#ans> Min 0.0358
                 1.0000
                         #ans> Man -0.6711
                 0.4452
                         1.000
                                0.3853
                                        0.4945
                                               0.204 -0.1558
#ans> Pow -0.4001 0.4055
                         0.385
                                1.0000
                                        0.0599
                                               0.202
                                                      0.1099
                                                             0.132
                                                                    0.375
                         0.494
                                               0.356
#ans> Con -0.5383 -0.0256
                                0.0599
                                        1.0000
                                                      0.0163
                                                             0.158
                                                                    0.388
#ans> Ser -0.7370 -0.3966 0.204
                                0.2019
                                        0.3560
                                               1.000
                                                              0.572
                                                      0.3656
                                                                    0.188
#ans> Fin -0.2198 -0.4427 -0.156
                                0.1099
                                        0.0163
                                               0.366
                                                      1.0000
                                                             0.108 - 0.246
#ans> Soc -0.7468 -0.2810 0.154 0.1324
                                        0.1582
                                               0.572
                                                      0.1076
                                                             1.000 0.568
#ans> Tra -0.5649 0.1566 0.351 0.3752 0.3877 0.188 -0.2459
# Scatterplot matrix
library(car)
scatterplotMatrix(eurojob, reg.line = lm, smooth = FALSE, spread = FALSE,
                 span = 0.5, ellipse = FALSE, levels = c(.5, .9), id.n = 0,
                 diagonal = 'histogram')
```


We definitely need a way of visualizing and quantifying the relations between variables for a moderate to large amount of variables. PCA will be a handy way. Recall what PCA does:

- 1. Takes the data for the variables X_1, \ldots, X_p .
- 2. Using this data, looks for new variables $PC_1, \dots PC_p$ such that:
 - PC_j is a linear combination of $X_1, \ldots, X_k, 1 \le j \le p$. This is, PC_j = $a_{1j}X_1 + a_{2j}X_2 + \ldots + a_{pj}X_p$.

6.7. CASE STUDY 107

• $PC_1, \dots PC_p$ are sorted decreasingly in terms of variance. Hence PC_j has more variance than PC_{j+1} , $1 \le j \le p-1$,

- PC_{j_1} and PC_{j_2} are **uncorrelated**, for $j_1 \neq j_2$.
- $PC_1, \dots PC_p$ have the **same information**, measured in terms of **total variance**, as X_1, \dots, X_p . 3. Produces three key objects:
 - Variances of the PCs. They are sorted decreasingly and give an idea of which PCs are contain most of the information of the data (the ones with more variance).
 - Weights of the variables in the PCs. They give the interpretation of the PCs in terms of the original variables, as they are the coefficients of the linear combination. The weights of the variables X_1, \ldots, X_p on the PC_j, a_{1j}, \ldots, a_{pj} , are normalized: $a_{1j}^2 + \ldots + a_{pj}^2 = 1$, $j = 1, \ldots, p$. In R, they are called loadings.
 - Scores of the data in the PCs: this is the data with $PC_1, \dots PC_p$ variables instead of X_1, \dots, X_p . The scores are uncorrelated. Useful for knowing which PCs have more effect on a certain observation.

Hence, PCA rearranges our variables in an information-equivalent, but more convenient, layout where the variables are **sorted according to the ammount of information they are able to explain**. From this position, the next step is clear: **stick only with a limited number of PCs such that they explain most of the information** (e.g., 70% of the total variance) and do dimension reduction. The effectiveness of PCA in practice varies from the structure present in the dataset. For example, in the case of highly dependent data, it could explain more than the 90% of variability of a dataset with tens of variables with just two PCs.

Let's see how to compute a full PCA in R.

```
# The main function - use cor = TRUE to avoid scale distortions
pca <- princomp(eurojob, cor = TRUE)</pre>
# What is inside?
str(pca)
#ans> List of 7
              : Named num [1:9] 1.867 1.46 1.048 0.997 0.737 ...
#ans> $ sdev
       ..- attr(*, "names")= chr [1:9] "Comp.1" "Comp.2" "Comp.3" "Comp.4" ...
#ans> $ loadings: loadings [1:9, 1:9] -0.52379 -0.00132 0.3475 0.25572 0.32518 ...
      ..- attr(*, "dimnames")=List of 2
       ....$ : chr [1:9] "Agr" "Min" "Man" "Pow" ...
#ans>
       ....$ : chr [1:9] "Comp.1" "Comp.2" "Comp.3" "Comp.4" ...
#ans>
#ans> $ center : Named num [1:9] 19.131 1.254 27.008 0.908 8.165 ...
      ..- attr(*, "names")= chr [1:9] "Agr" "Min" "Man" "Pow" ...
      $ scale : Named num [1:9] 15.245 0.951 6.872 0.369 1.614 ...
#ans>
      ..- attr(*, "names")= chr [1:9] "Agr" "Min" "Man" "Pow" ...
#a.n.s>
#ans> $ n.obs : int 26
#ans> $ scores : num [1:26, 1:9] 1.71 0.953 0.755 0.853 -0.104 ...
#ans>
       ..- attr(*, "dimnames")=List of 2
#ans>
       ....$ : chr [1:26] "Belgium" "Denmark" "France" "WGerm" ...
      ....$ : chr [1:9] "Comp.1" "Comp.2" "Comp.3" "Comp.4" ...
                : language princomp(x = eurojob, cor = TRUE)
#ans> $ call
      - attr(*, "class")= chr "princomp"
# The standard deviation of each PC
pca$sdev
      Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9
#ans> 1.86739 1.45951 1.04831 0.99724 0.73703 0.61922 0.47514 0.36985 0.00675
# Weights: the expression of the original variables in the PCs
```

```
\# E.q. Aqr = -0.524 * PC1 + 0.213 * PC5 - 0.152 * PC6 + 0.806 * PC9
# And also: PC1 = -0.524 * Agr + 0.347 * Man + 0256 * Pow + 0.325 * Con + ...
# (Because the matrix is orthogonal, so the transpose is the inverse)
pca$loadings
#ans>
#ans> Loadings:
       Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9
#ans> Agr -0.524
                                   0.213 - 0.153
#ans> Min -0.618 -0.201
                                   -0.164 0.101 0.726
#ans> Man 0.347 -0.355 -0.150 0.346 -0.385 0.288 -0.479 0.126 0.366
#ans> Pow 0.256 -0.261 -0.561 -0.393 0.295 -0.357 -0.256 -0.341
#ans> Con 0.325 0.153 0.668 0.472 -0.130 0.221 -0.356
#ans> Ser 0.379 0.350 -0.115
                                  -0.284 -0.615 0.229 0.388 0.238
                                   0.280 0.526 0.187 0.174 0.145
#ans> Fin
                0.454 -0.587
#ans> Soc 0.387 0.222 0.312 -0.412 -0.220 0.263 0.191 -0.506 0.351
#ans> Tra 0.367 -0.203 0.375 -0.314 0.513 0.124
                                                       0.545
#ans>
#ans>
                  Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
#ans> SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000
#ans> Proportion Var 0.111 0.111 0.111 0.111 0.111 0.111 0.111
#ans> Cumulative Var 0.111 0.222 0.333 0.444 0.556 0.667 0.778 0.889
#ans>
                  Comp.9
#ans> SS loadings
                   1.000
#ans> Proportion Var 0.111
#ans> Cumulative Var 1.000
# Scores of the data on the PCs: how is the data reexpressed into PCs
head(pca$scores, 10)
            Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
#ans> Belgium 1.710 1.2218 -0.1148 -0.3395 -0.3245 0.0473 0.3401 0.403
#ans> Denmark 0.953 2.1278 0.9507 -0.5939 0.1027 0.8273 0.3029 -0.352
#ans> France 0.755 1.1212 -0.4980 0.5003 -0.2997 -0.1158 0.1855 -0.266
#ans> WGerm 0.853 0.0114 -0.5795 0.1105 -1.1652 0.6181 -0.4446 0.194
#ans> Ireland -0.104 0.4140 -0.3840 -0.9267 0.0152 -1.4242 0.0370 -0.334
#ans> Italy 0.375 0.7695 1.0606 1.4772 -0.6452 -1.0021 0.1418 -0.130
#ans> Luxem 1.059 -0.7558 -0.6515 0.8352 -0.8659 -0.2188 1.6942 0.547
#ans> Nether 1.688 2.0048 0.0637 0.0235 0.6352 -0.2120 0.3034 -0.591
#ans> UK 1.630 0.3731 -1.1409 -1.2669 -0.8129 0.0361 -0.0413 -0.349
#ans> Austria 1.176 -0.1431 -1.0434 0.1577 0.5210 -0.8019 -0.4150 0.215
#ans>
             Comp.9
#ans> Belgium -0.001090
#ans> Denmark 0.015619
#ans> France -0.000507
#ans> WGerm -0.006539
#ans> Ireland 0.010879
#ans> Italy 0.005602
#ans> Luxem 0.003453
#ans> Nether -0.010931
#ans> UK -0.005478
#ans> Austria -0.002816
# Scatterplot matrix of the scores - they are uncorrelated!
scatterplotMatrix(pca$scores, reg.line = lm, smooth = FALSE, spread = FALSE,
```

```
span = 0.5, ellipse = FALSE, levels = c(.5, .9), id.n = 0,
diagonal = 'histogram')
```

```
# Means of the variables - before PCA the variables are centered
pca$center
             \mathit{Min} \quad \mathit{Man}
#ans>
        Agr
                           Pow
                                  Con
                                          Ser
                                               Fin
                                                        Soc
#ans> 19.131 1.254 27.008 0.908 8.165 12.958 4.000 20.023 6.546
# Rescalation done to each variable
# - if cor = FALSE (default), a vector of ones
# - if cor = TRUE, a vector with the standard deviations of the variables
pca$scale
#ans> Aqr
             Min
                    Man
                            Pow
                                    Con
                                          Ser
                                                 Fin
                                                        Soc
#ans> 15.245 0.951 6.872 0.369 1.614 4.486 2.752 6.697 1.364
# Summary of the importance of components - the third row is key
summary(pca)
#ans> Importance of components:
#ans>
                            Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
#ans> Standard deviation
                           1.867 1.460 1.048 0.997 0.7370 0.6192 0.4751
#ans> Proportion of Variance 0.387 0.237 0.122 0.110 0.0604 0.0426 0.0251
#ans> Cumulative Proportion 0.387 0.624 0.746 0.857 0.9171 0.9597 0.9848
#ans>
                           Comp.8 Comp.9
#ans> Standard deviation 0.3699 6.75e-03
#ans> Proportion of Variance 0.0152 5.07e-06
```

```
#ans> Cumulative Proportion 1.0000 1.00e+00

# Scree plot - the variance of each component
plot(pca)
```



```
# With connected lines - useful for looking for the "elbow"
plot(pca, type = "1")
```



```
# PC1 and PC2
pca$loadings[, 1:2]
#ans>
            Comp.1 Comp.2
#ans> Agr -0.52379 -0.0536
#ans> Min -0.00132 -0.6178
#ans> Man 0.34750 -0.3551
#ans> Pow
          0.25572 -0.2611
#ans> Con
           0.32518 -0.0513
#ans> Ser
           0.37892 0.3502
#ans> Fin
           0.07437 0.4537
                   0.2215
          0.38741
#ans> Soc
           0.36682 -0.2026
```


PCA produces uncorrelated variables from the original set X_1, \ldots, X_p . This implies that:

- The PCs are uncorrelated, **but not independent** (uncorrelated does not imply independent).
- An uncorrelated or independent variable in X_1, \ldots, X_p will get a PC only associated to it. In the extreme case where all the X_1, \ldots, X_p are uncorrelated, these coincide with the PCs (up to sign flips).

Based on the weights of the variables on the PCs, we can extract the following interpretation:

• PC1 is roughly a linear combination of Agr, with negative weight, and (Man, Pow, Con, Ser, Soc, Tra), with positive weights. So it can be interpreted as an indicator of the kind of economy of the country: agricultural (negative values) or industrial (positive values).

• PC2 has negative weights on (Min, Man, Pow, Tra) and positive weights in (Ser, Fin, Soc). It can be interpreted as the contrast between relatively large or small service sectors. So it tends to be negative in communist countries and positive in capitalist countries.

The interpretation of the PCs involves inspecting the weights and interpreting the linear combination of the original variables, which might be separating between two clear characteristics of the data

To conclude, let's see how we can represent our original data into a plot called biplot that summarizes all the analysis for two PCs.

```
# Biplot - plot together the scores for PC1 and PC2 and the
# variables expressed in terms of PC1 and PC2
biplot(pca)
```


PW 6

The Iris Dataset

The iris dataset contains measurements for 150 iris flowers from three different species.

The three classes in the Iris dataset are:

- 1. Iris-setosa $(n_1 = 50)$
- 2. Iris-versicolor $(n_2 = 50)$
- 3. Iris-virginica $(n_3 = 50)$

And the four features in Iris dataset are:

- 1. sepal length in cm
- 2. sepal width in cm
- 3. petal length in cm
- 4. petal width in cm

Figure 6.1:

Building the PCA approach

Summary of the PCA Approach:

- Standardize the data.
- Obtain the Eigenvectors and Eigenvalues from the covariance matrix or correlation matrix.
- Sort eigenvalues in descending order and choose the k eigenvectors that correspond to the k largest eigenvalues, where k is the number of dimensions of the new feature subspace $(k \le p)$.
- Construct the projection matrix **A** from the selected k eigenvectors.
- Transform the original dataset X via A to obtain a k-dimensional feature subspace Y.

Data pre-processing

- **2.** Show the last 5 rows of the iris dataset.

Exploratory analysis

3. To explore how the 3 different flower classes are distributed along the 4 different features, visualize them via histograms.

```
# load ggplot2, install it if needed
library(ggplot2)

# histogram of sepal_length
ggplot(iris, aes(x=sepal_length, fill=class)) +
    geom_histogram(binwidth=.2, alpha=.5)

# histogram of sepal_width
ggplot(iris, aes(x=sepal_width, fill=class)) +
    geom_histogram(binwidth=.2, alpha=.5)

# histogram of petal_length
ggplot(iris, aes(x=petal_length, fill=class)) +
    geom_histogram(binwidth=.2, alpha=.5)

# histogram of petal_width
ggplot(iris, aes(x=petal_width, fill=class)) +
    geom_histogram(binwidth=.2, alpha=.5)
```

- **4.** Compare the means and the quartiles of the 3 different flower classes for the 4 different features (Plot 4 boxplots into the same figure).
- **5.** Split the iris dataset into data X and class labels y.

The iris dataset is now stored in form of a 150×4 matrix where the columns are the different features, and every row represents a separate flower sample. Each sample row X^i can be pictured as a 4-dimensional vector

$$(X^{i})^{T} = \begin{pmatrix} X_{1}^{i} \\ X_{2}^{i} \\ X_{3}^{i} \\ X_{4}^{i} \end{pmatrix} = \begin{pmatrix} \text{sepal length} \\ \text{sepal width} \\ \text{petal length} \\ \text{petal width} \end{pmatrix}$$

Eigendecomposition - Computing Eigenvectors and Eigenvalues

The eigenvectors and eigenvalues of a covariance (or correlation) matrix represent the "core" of a PCA: The eigenvectors (principal components) determine the directions of the new feature space, and the eigenvalues determine their magnitude. In other words, the eigenvalues explain the variance of the data along the new feature axes.

Standardizing

6. Scale the 4 features. Store the scaled matrix into a new one (for example, name it x_scaled).

Covariance Matrix

7. The classic approach to PCA is to perform the eigendecomposition on the covariance matrix Σ , which is a $p \times p$ matrix where each element represents the covariance between two features. Compute the Covariance Matrix of the scaled features (Print the results).

We can summarize the calculation of the covariance matrix via the following matrix equation:

$$\Sigma = \frac{1}{n-1} \left((\mathbf{X} - \bar{\mathbf{X}})^T (\mathbf{X} - \bar{\mathbf{X}}) \right)$$

where $\bar{\mathbf{X}}$ is the mean vector $\bar{\mathbf{X}} = \frac{1}{n} \sum_{k=1}^{n} x_k$.

The mean vector is a p-dimensional vector where each value in this vector represents the sample mean of a feature column in the dataset.

8. Perform an eigendecomposition on the covariance matrix. Compute the Eigenvectors and the Eigenvalues (you can use the eigen() function). What do you obtain?

Correlation Matrix

Especially, in the field of "Finance", the correlation matrix typically used instead of the covariance matrix. However, the eigendecomposition of the covariance matrix (if the input data was standardized) yields the same results as a eigendecomposition on the correlation matrix, since the correlation matrix can be understood as the normalized covariance matrix.

- 9. Perform an eigendecomposition of the standardized data based on the correlation matrix.
- 10. Perform an eigendecomposition of the raw data based on the correlation matrix. Compare the obtained results with the previous question.

We should see that all three approaches yield the same eigenvectors and eigenvalue pairs:

- Eigendecomposition of the covariance matrix after standardizing the data.
- Eigendecomposition of the correlation matrix.
- Eigendecomposition of the correlation matrix after standardizing the data.

Selecting Principal Components

The eigen() function will, by default, sort the eigenvalues in decreasing order.

Explained Variance

- 11. Calculate the individual explained variation and the cumulative explained variation of each principal component. Show the results.
- 12. Plot the individual explained variation. (scree plot)

Projection Matrix

13. Construct the projection matrix that will be used to transform the Iris data onto the new feature subspace.

The "projection matrix" is basically just a matrix of our concatenated top k eigenvectors. Here, the projection matrix \mathbf{A} is a 4×2 -dimensional matrix.

Projection Onto the New Feature Space

In this last step we will use the 4×2 -dimensional projection matrix **A** to transform our samples (observations) onto the new subspace via the equation $\mathbf{Y} = X \times \mathbf{A}$ where **Y** is a 150×2 matrix of our transformed samples.

14. Compute Y (Recall the Y is the matrix of scores, A is the matrix of loadings).

Visualization

- 15. Plot the observations on the new feature space. Name the axis PC1 and PC2.
- 16. On the same plot, color the observations (the flowers) with respect to their flower classes.

Verifications with princomp()

- 17. Use the princomp() function as explained in Chapter 6. Compare the first 5 scores obtained using princomp() with your results above.
- 18. Plot together the scores for PC1 and PC2 and the variables expressed in terms of PC1 and PC2 using biplot().
- **29.** Interpret the results.

Chapter 7

Clustering: kmeans

Clustering (or Cluster analysis) is the collection of techniques designed to find subgroups or clusters in a dataset of variables X_1, \ldots, X_p . Depending on the similarities between the observations, these are partitioned in homogeneous groups as separated as possible between them. Clustering methods can be classified into two main categories:

- Partition methods. Given a fixed number of cluster k, these methods aim to assign each observation of X_1, \ldots, X_p to a unique cluster, in such a way that the within-cluster variation is as small as possible (the clusters are as homogeneous as possible) while the between cluster variation is as large as possible (the clusters are as separated as possible).
- **Hierarchical methods**. These methods construct a hierarchy for the observations in terms of their similitudes. This results in a tree-based representation of the data in terms of a dendogram, which depicts how the observations are clustered at different levels from the smallest groups of one element to the largest representing the whole dataset.

In this chapter we will see the basics of the most well-known partition method, namely k-means clustering.

7.1 Introduction

Clustering (or Cluster analysis) is the process of partitioning a set of data objects (observations) into subsets. Each subset is a **cluster**, such that objects in a cluster are similar to one another, yet dissimilar to objects in other clusters.

The set of clusters resulting from a cluster analysis can be referred to as a clustering. In this context, different clustering methods may generate different clusterings on the same data set. The partitioning is not performed by humans, but by the clustering algorithm. Hence, clustering is useful in that it can lead to the discovery of previously unknown groups within the data.

Example: Imagine a Director of Customer Relationships at an Electronics magazine, and he has five managers working for him. He would like to organize all the company's customers into five groups so that each group can be assigned to a different manager. Strategically, he would like that the customers in each group are as similar as possible. Moreover, two given customers having very different business patterns should not be placed in the same group. His intention behind this business strategy is to develop customer relationship campaigns that specifically target each group, based on common features shared by the customers per group. Unlike in classification, the class label of each customer is unknown. He needs to discover these groupings. Given a large number of customers and many attributes describing customer profiles, it can be very costly or even infeasible to have a human study the data and manually come up with a way to partition the customers into strategic groups. He needs a clustering tool to help.

Clustering has been widely used in many applications such as business intelligence, image pattern recognition, Web search, biology, and security. In business intelligence, clustering can be used to organize a large number of customers into groups, where customers within a group share strong similar characteristics. In image recognition, clustering can be used to discover clusters or "subclasses" in handwritten character recognition systems. Suppose we have a data set of handwritten digits, where each digit is labeled as either 1, 2, 3, and so on. Clustering has also found many applications in Web search. For example, a keyword search may often return a very large number of hits (i.e., pages relevant to the search) due to the extremely large number of web pages. Clustering can be used to organize the search results into groups and present the results in a concise and easily accessible way. Moreover, clustering techniques have been developed to cluster documents into topics, which are commonly used in information retrieval practice.

Clustering is also called **data segmentation** in some applications because clustering partitions large data sets into groups according to their similarity.

As a branch of statistics, clustering has been extensively studied, with the main focus on distance-based cluster analysis. Clustering tools were proposed like k-means, fuzzy c-means, and several other methods.

Many clustering algorithms have been introduced in the literature. Since clusters can formally be seen as subsets of the data set, one possible classification of clustering methods can be according to whether the subsets are **fuzzy** or **crisp** (hard).

Hard clustering

Hard clustering methods are based on classical set theory, and require that an object either does or does not belong to a cluster. Hard clustering means partitioning the data into a specified number of mutually exclusive subsets. The most common hard clustering method is k-means.

Fuzzy clustering

Fuzzy clustering methods, however, allow the objects to belong to several clusters simultaneously, with different degrees of membership. In many situations, fuzzy clustering is more natural than hard clustering. The most know technique of fuzzy clustering is the fuzzy c-means.

7.2 k-Means

If you have ever watched a group of tourists with a couple of tour guides who hold umbrellas up so that everybody can see them and follow them, then you have seen a dynamic version of the k-means algorithm. k-means is even simpler, because the data (playing the part of the tourists) does not move, only the tour guides move.

Suppose that we want to divide our input data into K categories, where we know the value of K. We allocate K cluster centres (also called prototypes or centroids) to our input space, and we would like to position these centres so that there is one cluster centre in the middle of each cluster. However, we don't know where the clusters are, let alone where their 'middle' is, so we need an algorithm that will find them. Learning algorithms generally try to minimize some sort of error, so we need to think of an error criterion that describes this aim. There are two things that we need to define:

A distance measure: In order to talk about distances between points, we need some way to measure distances. It is often the normal **Euclidean** distance, but there are other alternatives like Manhattan distance, Correlation distance, Chessboard distance and other.

The Euclidean distance: Let $x = (x_1, x_2)$ and $y = (y_1, y_2)$ two observations in a two-dimensional space. The Euclidean distance $d_{x,y}$ between x and y is

7.2. K-MEANS 121

$$d_{x,y}^2 = (x_1 - y_1)^2 + (x_2 - y_2)^2$$

$$d_{x,y} = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

The mean average: Once we have a distance measure, we can compute the central point of a set of data points, which is the mean average. Actually, this is only true in Euclidean space, which is the one we are used to, where everything is nice and flat.

We can now think about a suitable way of positioning the cluster centres: we compute the mean point of each cluster, \mathbf{v}_k , $i=1,\ldots,K$, and put the cluster centre there. This is equivalent to minimizing the Euclidean distance (which is the sum-of-squares error) from each data point to its cluster centre. Then we decide which points belong to which clusters by associating each point with the cluster centre that it is closest to. This changes as the algorithm iterates. We start by positioning the cluster centres **randomly** though the input space, since we don't know where to put them, and we update their positions according to the data. We decide which cluster each data point belongs to by computing the distance between each data point and all of the cluster centres, and assigning it to the cluster that is the closest. For all the point that are assigned to a cluster, we then compute the mean of them, and move the cluster centre to that place. We iterate the algorithm until the cluster centres stop moving.

It is convenient at this point to define some notation to describe the assignment of data points to clusters. For each data point x_i , we introduce a corresponding set of binary indicator variables $u_{ki} \in 0, 1$, where k = 1, ..., K describing which of the K clusters the data point x_i is assigned to, so that if data point x_i is assigned to cluster k then $u_{ki} = 1$, and $u_{kj} = 0$ for $j \neq i$. This is known as the 1-of-K coding scheme. We can then define an objective function (and sometimes called a distortion measure), given by

$$J = \sum_{i=1}^{N} \sum_{i=k=1}^{K} u_{ki} ||x_i - \mathbf{v}_k||^2$$

which represents the sum of the squares of the distances of each data point to its assigned vector \mathbf{v}_k . The goal is to find values for the $\{u_{ki}\}$ and the $\{\mathbf{v}_k\}$ so as to minimize J. We can do this through an iterative procedure in which each iteration involves two successive steps corresponding to successive optimizations with respect to the u_{ki} and the \mathbf{v}_k . The algorithm of k-means is described in the following algorithm:

The k-means algorithm

Data:

Result:

Initialization:

 $\mathbf{X} = \{x_{ij}, i = 1, \dots, n, j = 1, \dots, p\}$ Cluster centres (Prototypes)

- Choose a value for K.
- Choose *K* random positions in the input space.
- Assign the prototypes \mathbf{v}_k to those positions

The k-means algorithm

Learning: repeat

for each data point x_i do

• compute the distance to each prototype:

$$d_{ki} = \min_k d(x_i, \mathbf{v}_k)$$

• assign the data point to the nearest prototype with distance

$$u_{ki} = \begin{cases} 1 & \text{if } k = argmin_j ||x_i - \mathbf{v}_k||^2 \\ 0 & \text{otherwise} \end{cases}$$

for each prototype do

• move the position of the prototype to the mean of the points in that cluster:

$$\mathbf{v}_k = \frac{\sum_i u_{ki} x_i}{\sum_i u_{ki}}$$

Until the prototypes stop moving.

The k-means algorithm produces

- A final estimate of cluster centroids (i.e. their coordinates).
- An assignment of each point to their respective cluster.

The denominator in the expression $\mathbf{v}_k = \frac{\sum_i u_{ki} x_i}{\sum_i u_{ki}}$ is equal to the number of points assigned to cluster k, and so this result has a simple interpretation, namely set \mathbf{v}_k equal to the mean of all of the data points x_i assigned to cluster k. For this reason, the procedure is known as the k-means algorithm.

The two phases of re-assigning data points to clusters and re-computing the cluster means are repeated in turn until there is no further change in the assignments (or until some maximum number of iterations is exceeded). Because each phase reduces the value of the objective function J, convergence of the algorithm is assured. However, it may converge to a local rather than global minimum of J.

The k-means algorithm is illustrated using the Old Faithful data set 1 in following figure.

¹Old Faithful, is a hydrothermal geyser in Yellowstone National Park in the state of Wyoming, U.S.A., and is a popular tourist attraction. Its name stems from the supposed regularity of its eruptions. The data set comprises 272 observations, each of which represents a single eruption and contains two variables corresponding to the duration in minutes of the eruption, and the time until the next eruption, also in minutes.

7.3. K-MEANS IN R 123

Figure 7.1: Illustration of the k-means algorithm using the re-scaled Old Faithful data set, where k=2. We can see how the k-means algorithm works. (a) The first thing k-means has to do is assign an initial set of centroids. (b) The next stage in the algorithm assigns every point in the dataset to the closest centroid. (c) The next stage is the re-calculate the centroids based on the new cluster assignments of the data points. (d) Now we have completed one full cycle of the algorithm we can continue and re-assign points to their (new) closest cluster centroid. (e) And we can update the centroid positions one more time based on the re-assigned points. (g)(h)(f) The algorithm stops when we obtain the same results in consecutive iterations.

The k-means algorithm is illustrated using the Iris data set in following interactive figure². (Try to modify the X and Y variables and the numbers of chosen clusters and see the result)

#ans> PhantomJS not found. You can install it with webshot::install_phantomjs(). If it is installed, pl

7.3 k-means in R

We will use an example with simulated data to demonstrate how the k-means algorithm works. Here we simulate some data from three clusters and plot the dataset below.

²Made by Joseph J. Allaire https://github.com/jjallaire

```
set.seed(1234)
x <- rnorm(12,mean=rep(1:3,each=4),sd=0.2)
y <- rnorm(12,mean=rep(c(1,2,1),each=4),sd=0.2)
plot(x,y,col="blue",pch=19,cex=2)
text(x+0.05,y+0.05,labels=as.character(1:12))</pre>
```


Figure 7.2: Simulated dataset

The kmeans() function in R implements the k-means algorithm and can be found in the stats package, which comes with R and is usually already loaded when you start R. Two key parameters that you have to specify are x, which is a matrix or data frame of data, and centers which is either an integer indicating the number of clusters or a matrix indicating the locations of the initial cluster centroids. The data should be organized so that each row is an observation and each column is a variable or feature of that observation.

```
dataFrame <- data.frame(x,y)
kmeansObj <- kmeans(dataFrame,centers=3)
names(kmeansObj)
#ans> [1] "cluster" "centers" "totss" "withinss"
#ans> [5] "tot.withinss" "betweenss" "size" "iter"
#ans> [9] "ifault"
```

You can see which cluster each data point got assigned to by looking at the cluster element of the list returned by the kmeans() function.

```
kmeansObj$cluster
#ans> [1] 3 3 3 3 1 1 1 1 2 2 2 2
```

Here is a plot of the k-means clustering solution.

```
plot(x,y,col=kmeansObj$cluster,pch=19,cex=2)
points(kmeansObj$centers,col=1:3,pch=3,cex=3,lwd=3)
```

7.3. K-MEANS IN R 125

Figure 7.3: k-means clustering solution

7.3.1 Cluster Validity, Choosing the Number of Clusters

The result of a clustering algorithm can be very different from each other on the same data set as the other input parameters of an algorithm can extremely modify the behavior and execution of the algorithm. The aim of the cluster validity is to find the partitioning that best fits the underlying data. Usually 2D data sets are used for evaluating clustering algorithms as the reader easily can verify the result. But in case of high dimensional data the visualization and visual validation is not a trivial tasks therefore some formal methods are needed.

The process of evaluating the results of a clustering algorithm is called cluster validity assessment. Two measurement criteria have been proposed for evaluating and selecting an optimal clustering scheme:

- Compactness: The member of each cluster should be as close to each other as possible. A common measure of compactness is the variance.
- Separation: The clusters themselves should be widely separated. There are three common approaches measuring the distance between two different clusters: distance between the closest member of the clusters, distance between the most distant members and distance between the centres of the clusters.

There are three different techniques for evaluating the result of the clustering algorithms, and several Validity measures are proposed: Validity measures are scalar indices that assess the goodness of the obtained partition. Clustering algorithms generally aim at locating well separated and compact clusters. When the number of clusters is chosen equal to the number of groups that actually exist in the data, it can be expected that the clustering algorithm will identify them correctly. When this is not the case, misclassifications appear, and the clusters are not likely to be well separated and compact. Hence, most cluster validity measures are designed to quantify the separation and the compactness of the clusters.

Check this answer on stackoverflow containing R code for several methods of computing an optimal value of k for k-means cluster analysis: $\stackrel{\triangle}{\cong}$ here.