Interactive Machine Learning Detection Assessment (IMLDA)

Recap, improved process, insights, future work

"Unlike other artificial intelligence techniques, machine learning uses specialized algorithms to make decisions by learning from data. It is a subset of artificial intelligence."

- Bea Stollnitz, Principal Cloud Advocate at Microsoft

https://www.youtube.com/watch?v=6mSx_KJxcHI&t=64s

Objectives

 Build a machine learning model that learns to predict pesticide detections & non-detections from Upstate NY monitoring data

2. Use the machine learning model as a **companion analysis** with TGUS

1. Learn leaching patterns

We are here

1. Learn pizza like/dislike patterns

Possible outcomes

		Your Real Pizza Opinion		
		Like	Don't Like	
Machinioni's Prediction	Like	True Positive (TP)	False Positive (FP)	
	Don't Like	False Negative (FN)	True Negative (TN)	

$$Result = \begin{cases} Like, & P \ge 50\% \\ Dislike, & P < 50\% \end{cases}$$

Possible outcomes

		Analytical Test Result		
		Detect	Non-Detect	
Machine Learning Prediction	Detect	True Positive (TP)	False Positive (FP)	
	Non- Detect	False Negative (FN)	True Negative (TN)	

		Analytical Test Result		
		Detect	Non-Detect	
TGUS	Detect	True Positive (TP)	False Positive (FP)	
Prediction	Non- Detect	False Negative (FN)	True Negative (TN)	

$$Result = \begin{cases} Detect, & P \ge threshold \\ Non_Detect, & P < threshold \end{cases}$$

$$Result = \begin{cases} Detect, & LRP \ge threshold \\ Non_Detect, & LRP < threshold \end{cases}$$

Machine learning findings - 2023

- Balanced performance on average
- High potential ceiling
- Ranked TGUS features

Improved process

- Extreme Gradient Boosting (XGB)
- General machine learning techniques
- Dataset doubled in size

Performance metrics

•
$$Accuracy(Acc) = \frac{TP+TN}{TP+TN+FP+FN}$$

• Precision
$$(Pr) = \frac{TP}{TP + FP}$$

•
$$Recall(Re) = \frac{TP}{TP + FN}$$

• Harmonic Mean
$$(F_{\beta}) = \frac{(1+\beta^2)*Pr*Re}{\beta^2*Pr+Re}$$

• β is weight of Re vs Pr

		Analytical Test Result		
		Detect	Non-Detect	
Prediction	Detect	True Positive (TP)	False Positive (FP)	
	Non- Detect	False Negative (FN)	True Negative (TN)	

$$Result = \begin{cases} Detect, & P \geq threshold \\ Non_Detect, & P < threshold \end{cases}$$

Upstate monitoring data for machine learning

- 107 detects
 - 21 unique pesticides
 - 24 unique sites
- 654 non-detects
 - 46 unique pesticides
 - 11 unique sites

Results for Upstate monitoring data

Models	Performance Metrics			
	Accuracy [%]	Precision [%]	Recall [%]	$F_{oldsymbol{eta}}$ [%]
TGUS LRP > 100 <i>Protective, β=4</i>	45.6	20.4	99.1	80.8
ML avg Protective, β=4	88.8	61.6	87.1	84.4
ML avg Balanced, β=1	93.0	77.8	74.5	74.6

High ceiling for machine learning

Models	Performance Metrics			
	Accuracy [%]	Precision [%]	Recall [%]	$F_{oldsymbol{eta}}$ [%]

Insights into feature (variable) importance

ML learns TGUS theory

Sub-patterns available

Future work

- Paper
- Ethics assessment
- Additional data/features
- Hybrid-ML
- Suggestions?