Universidade Federal de Pernambuco - UFPE

Centro de Informática - CIn

Disciplina: Métodos Numéricos Computacionais

Professor: Ricardo Martins Alunos: Danilo William (dwpl) José Ricardo (jraf) Marcos William (mwac)

Relatório Final

2ª Parte - Projeto

Relatório referente aos três problemas propostos(Modelagem, e dois problemas envolvendo Circuitos, utilizando as técnicas descritas em sala de aula), além do problema proposto na dissertação de mestrado, envolvendo alguns modelos de equações diferenciais.

13 de Julho de 2018 Recife - PE

Sumário

Questão 1	3
Questão 2	16
Questão 3	28
Problema - Dissertação	40

Foram apresentadas 3 questões, além das equações da dissertação do mestrado.

Suas descrições estão contidas a seguir:

1. Considere os dois tanques mostrados na figura. O tanque A possui 50 Litros de água no qual 25 quilogramas de sal são dissolvidos. Suponha que o tanque B contenha 50 Litros de água pura inicialmente e que o líquido é bombeado para dentro e para fora dos tanques como mostrado na figura. A mistura trocada entre os dois tanques e o líquido bombeado para fora do tanque B são assumidos como estando bem misturados.

Dela se extraiu o seguinte modelo:

A) Como no tanque A perde-se 4 unidades de mistura, mas se ganha 1 por conta do outro tanque por minuto e no tanque B se ganha 4 unidades do tanque A, mas se perde 4 unidades do próprio tanque, temos a seguinte matriz:

$$\vec{x}' = \frac{1}{50} \begin{bmatrix} -4 & 1\\ 4 & -4 \end{bmatrix} \vec{x}$$

Usando as técnicas vistas em sala, sabemos que x(t) será algo da forma c1e^r1t + c2e^r2t.

O coeficiente da exponencial pode ser obtido através da seguinte identidade:

$$\frac{1}{50} * \begin{vmatrix} -4-r & 1\\ 4 & -4-r \end{vmatrix} = \frac{(-4-1)^2 - 4}{50} = 0$$

Portanto, obtém-se que r1 = -6 e r2 = -2

Logo,

$$\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \vec{0}$$

е

$$\begin{bmatrix} -2 & 1 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} \beta_3 \\ \beta_4 \end{bmatrix} = \vec{0}$$

Então,

$$\vec{x}(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-\frac{1}{25}t} + c_2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-\frac{3}{25}t}$$

Dado que:

$$\vec{x}(0) = \begin{bmatrix} 25 \\ 0 \end{bmatrix}$$

Portanto:

$$\vec{x}(t) = \begin{bmatrix} 25/2 \\ 25 \end{bmatrix} e^{-t/25} + \begin{bmatrix} 25/2 \\ -25 \end{bmatrix} e^{-3t/25}$$

$$x1 = "(\frac{1}{4} * \exp(-\frac{1}{25} * x) + \frac{1}{4} * \exp(-\frac{3}{25} * x))"$$

 $x2 = "(\frac{1}{2} * \exp(-\frac{1}{25} * x) - \frac{1}{2} * \exp(-\frac{3}{25} * x))"$

Na letra B) temos uma tabela com os valores exatos, aproximados e os valores de erro de x1(t) e x2(t) para cada método, assim como a plotagem dos gráficos referentes a x1(t) e x2(t), com todos os métodos aplicados a ambas:

Tabela referente aos valores de x1(t), com h=0.01

Solução Exata = 23.114490148510384

Métodos	Aproximações	Erro
Euler	23.09542714908733	0.019062999423052673
Euler Inverso	23.09731939534081	0.01717075316957306
Euler Aprimorado	23.096373272214056	0.018116876296328854
Runge-Kutta	23.096373448368514	0.018116700141870723
Adams-Bashforth	23.158348178781548	0.04385803027116353
Adams-Moulton	23.095184537316765	0.0193056111936194

Tabela referente aos valores de x2(t), com h=0.01

Solução Exata = 1.829711293048664

Métodos	Aproximações	Erro

Euler	1.8482255276926425	0.01851423464397839
Euler Inverso	1.8467253870476381	0.017014093998974023
Euler Aprimorado	1.845225246402634	0.015513953353969878
Runge-Kutta	1.8467250608791441	0.01701376783048003
Adams-Bashforth	1.7867006030454589	0.04301069000320523
Adams-Moulton	1.8486093333731888	0.01889804032452469

Obs: Todos os gráficos estão com o tamanho do passo, (h), igual a 0,01.

Gráfico x1(t) : Método de Euler

Gráfico x2(t) : Método de Euler

Gráfico x1(t): Método de Euler Inverso

Gráfico x2(t): Método de Euler Inverso

Gráfico de x1(t): Método de Euler Aprimorado

Gráfico de x2(t): Método de Euler Aprimorado

Gráfico x1(t): Método de Runge-Kutta

Gráfico de x2(t): Método de Runge-Kutta

Gráfico de x1(t): Método de Adams-Bashforth

Gráfico de x2(t): Método de Adams-Bashforth

Gráfico de x1(t): Método de Adams-Moulton

Gráfico de x2(t): Método de Adams-Moulton

Gráfico de x1(t): Métodos Agrupados

Gráfico de x2(t): Métodos Agrupados

Gráfico de x1(t): Erros Agrupados

Gráfico de x2(t): Erros Agrupados

Obs: Após as análises dos dados nas tabelas e dos gráficos, de x1(t) e x2(t), comparando o valor exato de x1(t) com cada método numérico, podemos constatar que o método que mais se aproxima da solução exata, é o **Método de Euler Inverso**, para o h=0,01. Já para x2(t), o método que mais se aproxima da solução exata, é o **Método de Euler Aprimorado**, para o h=0,01.

A seguir, uma comparação entre dois gráficos de x2(t). No primeiro, com o valor de h = 0.25, 25 vezes maior que o segundo gráfico, com valor de h = 0.01. A comparação é feita para os *Métodos Agrupados*.

C) Quando t tende ao infinito, observa-se que:

$$\vec{x}(t) \xrightarrow[t \to \infty]{} \vec{0}$$

2. Na segunda questão temos um circuito RLC, como i1=i2=0 e i3 = i1-i2, então i3=0. É o suficiente para aplicar Lei das Malhas, Laplace e Regra de Cramer.

Na letra A) temos o problema descrito por:

$$\begin{bmatrix} -i_1 + i_2 + i_3 \\ Li'_1 + Ri_2 + 0 \\ 0 + -Ri_2 + \frac{q_3}{c} \end{bmatrix} = \begin{bmatrix} 0 \\ \epsilon \\ 0 \end{bmatrix}$$

Na letra B) do problema, aplicando Laplace e algumas operações algébricas, temos a seguinte equação:

$$\begin{bmatrix} -s & s & s \\ s^2 L & sR & 0 \\ 0 & -sR & \frac{1}{c} \end{bmatrix} \begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \end{bmatrix} = \begin{bmatrix} 0 \\ \mathcal{L}\{\epsilon\} \\ 0 \end{bmatrix}$$

Como epsilon é constante, veja que:

$$Q_k = \mathcal{L}\{q_k\}; \mathcal{L}\{\epsilon\} = \frac{\epsilon}{s}$$

Usando Regra de Cramer:

$$\begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} \frac{6t}{5} + \frac{9e^{-100t}}{500} + \frac{3e^{-100t}t}{5} - \frac{9}{500} \\ \frac{6t}{5} + \frac{3e^{-100t}}{125} + \frac{6e^{-100t}t}{5} - \frac{3}{125} \\ -\frac{3e^{-100t}}{500} - \frac{3e^{-100t}t}{5} + \frac{3}{500} \end{bmatrix}$$

е

$$\begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} \frac{6(1-e^{-100t}) - 300e^{-100t}t}{5} \\ \frac{6(1-e^{-100t}) - 600e^{-100t}t}{5} \\ 60e^{-100t}t \end{bmatrix}$$

Na letra C) temos de início as tabelas com os valores de i1(t) e i2(t) para cada método numérico, seguido por seu respectivo erro, bem como o comportamento de i1(t) e i2(t) observados a partir de vários gráficos que provém da aplicação dos métodos numéricos.

Solução Exata = 1.2

Tabela referente aos valores de i1(t), com h=0.01

Métodos	Aproximações	Erro
Euler	1.5015901806462726	0.30159018064627263
Euler Inverso	0.9015901806462709	0.298409819353729
Euler Aprimorado	1.2015901806462725	0.0015901806462725876
Runge-Kutta	1.1996071906058494	0.0003928093941505395
Adams-Bashforth	1.2056699246938802	0.005669924693880279
Adams-Moulton	1.2121977433672504	0.012197743367250435

Tabela referente aos valores de i2(t), com h=0.01

Solução exata = 1.2

Métodos	Aproximações	Erro
Euler	1.104808313049348	0.09519168695065194
Euler Inverso	1.104808313049348	0.09519168695065194
Euler Aprimorado	1.104808313049348	0.09519168695065194
Runge-Kutta	1.1988097979299879	0.0011902020700120808
Adams-Bashforth	1.225524472407813	0.02552447240781297
Adams-Moulton	1.2191232026345324	0.019123202634532488

Gráfico de i1(t): Método de Euler

Gráfico de i2(t): Método de Euler

Gráfico de i1(t): Método de Euler Inverso

Gráfico de i2(t): Método de Euler Inverso

Gráfico de i1(t): Método de Euler Aprimorado

Gráfico de i2(t): Método de Euler Aprimorado

Gráfico de i1(t): Método de Runge-Kutta

Gráfico de i2(t): Método de Runge-Kutta

Gráfico de i1(t): Método de Adams-Bashforth

Gráfico de i2(t): Método de Adams-Bashforth

Gráfico de i1(t): Método de Adams-Moulton

Gráfico de i2(t): Método de Adams-Moulton

Gráfico de i1(t): Métodos Agrupados

Gráfico de i2(t): Métodos Agrupados

Gráfico de i1(t): Erros Agrupados

Gráfico de i2(t): Erros Agrupados

Daí se observa que quando t tende ao infinito, i3 tenderá a zero, e i1 e i2 tenderão para o mesmo valor.

3. Na letra A) temos o sistema de equações abaixo, com os valores já aplicados:

$$\vec{x}'(t) = \begin{bmatrix} -11 & 3 \\ 3 & -3 \end{bmatrix} \vec{x}(t) + \begin{bmatrix} 100sint \\ 0 \end{bmatrix}$$

Na letra B) utilizamos a variação de parâmetros para resolver o problema:

$$\vec{x}_0 = \vec{0} : \vec{x}(t) = \vec{\Psi}(t) \int_{t_0}^t \vec{\Psi}^{-1}(s) \vec{g}(s) ds$$

Note que, logo:

$$\vec{x}_0 = \vec{0} : \vec{x}(t) = \vec{\Psi}(t) \int_0^t \vec{\Psi}^{-1}(s) \vec{g}(s) ds$$

A matriz fundamental (Ψ) é dada por:

$$\vec{\Psi}(t) = \begin{bmatrix} 3e^{-12t} & e^{-2t} \\ -e^{-12t} & 3e^{-2t} \end{bmatrix}$$

E sua transposta por:

$$\vec{\Psi}^{-1}(t) = \frac{1}{10} \begin{bmatrix} 9e^{12t} & -3e^{12t} \\ e^{2t} & 3e^{2t} \end{bmatrix}$$

$$\vec{\Psi}^{-1}(t) = \frac{1}{10} \begin{bmatrix} 9e^{12t} & -3e^{12t} \\ e^{2t} & 3e^{2t} \end{bmatrix}$$
$$\vec{u}(t) = \int_0^t \vec{\Psi}^{-1}(s) \vec{g}(s) ds$$

$$\vec{u}(t) = \begin{bmatrix} \frac{e^{12t}(216sint - 18cost) + 18}{29} \\ e^{2t}(4sint - 2cost) + 2 \end{bmatrix}$$

Por fim:

$$\vec{x}(t) = \vec{\Psi}(t)\vec{u}(t) = \begin{bmatrix} \frac{2}{29}(9e^{-12t} + 29e^{-2t} + 166sint - 38cost) \\ \frac{6}{29}(-e^{-12t} + 29e^{-2t} + 46sint - 28cost) \end{bmatrix}$$

$$\frac{d\vec{x}}{dt} = \vec{0}$$

Na letra C) temos duas tabelas, uma com o valor exato, aproximações e erros com cada método numérico, para i1(t), e outra com os mesmos dados para i2(t). Logo após as duas tabelas, analisamos o comportamento de i1(t) e i2(t) nos gráficos referentes a cada método numérico.

Tabela referente aos valores de i1(t), com o h=0.001

Solução Exata = 11.539559532997954

Métodos	Aproximações	Erro
Euler	11.538328710854818	0.0012308221431354127

Euler Inverso	11.535874270875022	0.003685262122932187
Euler Aprimorado	11.537101490864892	0.0024580421330622215
Runge-Kutta	11.537110770338742	0.0024487626592115674
Adams-Bashforth	11.136525406338578	0.4030341266593762
Adams-Moulton	11.539092044227786	0.0004674887701678898

Tabela referente aos valores de i2(t), com o h=0.001

Solução Exata	= 5.3773295944393	7
---------------	-------------------	---

Métodos	Aproximação	Erro
Euler	5.860193575673216	0.4828639812338462
Euler Inverso	6.777453752165407	1.4001241577260366
Euler Aprimorado	6.318823663919316	0.9414940694799458
Runge-Kutta	6.324798623349087	0.9474690289097172
Adams-Bashforth	6.187783047880661	0.8104534534412906
Adams-Moulton	6.146355247172278	0.7690256527329078

Gráfico de i1(t): Método de Euler

Gráfico de i2(t): Método de Euler

Gráfico de i1(t): Método de Euler Inverso

Gráfico de i2(t): Método de Euler Inverso

Gráfico de i1(t): Método de Euler Aprimorado

Gráfico de i2(t): Método de Euler Aprimorado

Gráfico de i1(t): Método de Runge-Kutta

Gráfico de i2(t): Método de Runge-Kutta

Gráfico de i1(t): Método de Adams-Bashforth

Gráfico de i2(t): Método de Adams-Bashforth

Gráfico de i1(t): Método de Adams-Moulton

Gráfico de i2(t): Método de Adams-Moulton

Gráfico de i1(t): Métodos Agrupados

Gráfico de i2(t): Métodos Agrupados

Gráfico de i1(t): Erros Agrupados

Gráfico de i2(t): Erros Agrupados

Quando t tende ao infinito, as parcelas exponenciais tendem a zero restando apenas as funções trigonométricas.

Para se obter o máximo e o mínimo, é necessário que:

$$\frac{d\vec{x}}{dt} = \vec{0}$$

Uma forma mais simples de se obter o máximo e o mínimo, uma vez que se tem a solução exata, é fazer uma busca nos resultados. Como, quando t tende a infinito, temos uma função trigonométrica, que por si só já é menor para t pequeno, então esta solução nos dá uma aproximação:

	Max	Min
i1(t)	11.8	-11.7
i2(t)	11.2	-11.1

Problema - Dissertação de Mestrado sobre Análise Comportamental de Micro e Pequenas Empresas

Modelo SIR:

Dele se extrai as seguintes taxas:

$$\frac{dIn}{dt} = -\beta InMic + \mu(Mic + Pe) \qquad (4.1)$$

$$\frac{dMic}{dt} = \beta InMic - \gamma Mic - \mu Mic \eqno(4.2)$$

$$\frac{dPe}{dt} = \gamma Mic - \mu Pe \tag{4.3}$$

As taxas anteriores são suficiente para se obter os seguintes algoritmos:

```
def dIn(t):
    return -beta*In[t]*Mic[t] + mi*(Mic[t] + Pe[t])
def dMic(t):
    return beta*In[t]*Mic[t] - Mic[t]*(gama + mi)
def dPe(t):
    return gama*Mic[t]-mi*Pe[t]
```

Onde In, Mic, Pe são arranjos contendo os valores calculados anteriormente.

Usando o beta, gama e mi obtidos no mestrado, e um passo de:

 $\frac{1}{12*30}$, ou seja, a quantidade aproximada de dias

num ano

É possível observar os seguintes valores ao longo de um ano.

Obs: Os métodos usados para este problema foram: Euler, Euler Inverso e Euler Aprimorado.

Empresa Incubada

Micro Empresa

Pequena Empresa

Valores agrupados

Análise comportamental de Empresas

Apesar de valores iniciais diferentes, ambos os casos tendem para o mesmo valor.

Problema: Se observa uma clara diferença entre o gráfico apresentado e o do mestrado, uma possível casa foi o erro ao codificar e entender os problemas.