Internals of SMT Solvers

Leonardo de Moura Microsoft Research

Acknowledgements

- Dejan Jovanovic (SRI International, NYU)
- Grant Passmore (Univ. Edinburgh)

Herbrand Award 2013

Greg Nelson

What is a SMT Solver?

Multiple Approaches

23 is a portfolio of solvers

Preprocessing

Equivalence Preserving Simplifications

Examples:

$$x + y + 1 - x - 2 \mapsto y - 1$$

 $p \land true \land p \mapsto p$

Preprocessor API

Example

$$[a = b + 1, (a < 0 \lor a > 0), b > 3]$$

Variable Elimination

Proof builder

$$[(b+1<0\lor b+1>0), b>3]$$

Model builder

Example

[
$$a = b + 1$$
, $(a < 0 \lor a > 0)$, $b > 3$]

$$M, M(a) = M(b) + 1$$

Proof builder

$$[(b+1<0\lor b+1>0), b>3]$$

Model builder

Example

[
$$a = b + 1$$
, $(a < 0 \lor a > 0)$, $b > 3$]

Variable Elimination

Proof builder

$$[(b+1<0\lor b+1>0), b>3]$$

Model Converters

Extension

Filter

$$M, M(a) = M(b) + 1$$

Model builder

 M

Model Converter: Filter

Model Converter: Filter

Model Converter: Extension + Filter

Bit-blaster

 $x_3 \Leftrightarrow y_1, x_2 \Leftrightarrow y_0,$ $x_1 \Leftrightarrow z_1, x_0 \Leftrightarrow z_0$

Preprocessors

- 1. Produce Equivalent Formula
- 2. Produce Equisatisfiable Formula
- 3. Assume "closed world" (non-incremental)

Example: symmetry reduction

Simple QF_BV (bit-vector) solver

Under-approximation unsat answers cannot be trusted

Over-approximation sat answers cannot be trusted

Under-approximation model finders

Over-approximation proof finders

Under-approximation

$$S \rightarrow S \cup S'$$

Over-approximation

$$S \rightarrow S \setminus S'$$

Under-approximation

Example: QF NIA model finders

add bounds to unbounded variables (and blast)

Over-approximation

Example: Boolean abstraction

Combining under and over is bad! sat and unsat answers cannot be trusted.

Tracking: under/over-approximations

Proof and Model converters can check if the resultant models and proofs are valid.

CEGAR is your friend

Counter-Example Guided Abstract Refinement

Using over-approximation

```
procedure Solver(F)

F_p := Abstract(F)

loop

(R, M) := Solve(F_p)

if R = UNSAT then return UNSAT

R' := Check(F, M)

if R' = SAT then return SAT

F_p := Refine(F, F_p, M)
```

CEGAR is your friend

Counter-Example Guided Abstract Refinement

Using under-approximation

```
procedure Solver(F)

F_p := Abstract(F)

loop

(R, Pr) := Solve(F_p)

if R = SAT then return SAT

R' := Check(F, Pr)

if R' = UNSAT then return UNSAT

F_p := Refine(F, F_p, M)
```

CEGAR is your friend

Counter-Example Guided Abstract Refinement

Refinements:

Incremental Solver

Run over and under-approximation is parallel

Suppose we have a Solver that does not support uninterpreted functions (example: QF_BV solver)

Congruence Rule:

$$x_1 = y_1, ..., x_n = y_n \Rightarrow f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

Congruence Rule:

$$x_1 = y_1, \dots, x_n = y_n \Rightarrow f(x_1, \dots, x_n)$$

Abstract: replace each f-application with a fresh variable (over-approximation)

$$a = b + 1, f(a - 1) = c, f(b) \neq c$$

$$k_1 \equiv f(a - 1),$$

$$k_2 \equiv f(b)$$

$$a = b + 1, k_1 = c, k_2 \neq c$$

Congruence Rule:

$$x_1 = y_1, \dots, x_n = y_n \Rightarrow f(x_1, \dots, x_n)$$

Check: check if congruence rule is satisfied

$$a = b + 1, k_1 = c, k_2 \neq c$$

$$k_1 \equiv f(a - 1),$$

$$k_2 \equiv f(b)$$

$$a \rightarrow 1, b \rightarrow 0, c \rightarrow 0, k_1 \rightarrow 0, k_2 \rightarrow 1$$

Congruence Rule:

$$x_1 = y_1, \dots, x_n = y_n \Rightarrow f(x_1, \dots, x_n)$$

Refine: expand congruence axiom $a-1=b \Rightarrow k_1=k_2$

$$a = b + 1, k_1 = c, k_2 \neq c$$

$$k_1 \equiv f(a - 1),$$

$$k_2 \equiv f(b)$$

$$a \rightarrow 1, b \rightarrow 0, c \rightarrow 0, k_1 \rightarrow 0, k_2 \rightarrow 1$$

Congruence Rule:

$$x_1 = y_1, \dots, x_n = y_n \Rightarrow f(x_1, \dots, x_n)$$

Refine: expand congruence axiom $a-1=b \Rightarrow k_1=k_2$

$$a = b + 1, k_1 = c, k_2 \neq c, (a - 1 = b \Rightarrow k_1 = k_2)$$

$$a - 1 \neq b \lor k_1 = k_2$$

Simple QF_UFBV Solver

Simple QF_AUFBV Solver arrays on top of UF

Lemmas on Demand For Theory of Arrays [Brummayer-Biere 2009]

Simple UFBV Solver

model-based quantifier instantiation

Efficiently solving quantified bit-vector formulas [Wintersteiger at al 2010]

Simple QF_NIA "solver" by CEGAR nonlinear integer arithmetic

Hilbert's 10th Problem

DPRM theorem: QF_NIA is undecidable

Idea: use (under-approximation) CEGAR

- Add lower/upper bounds to all variables, and convert into QF_BV
- 2. If SAT \rightarrow done
- 3. Otherwise, refine: increase lower/upper bounds

Lazy SMT as CEGAR

Suppose we have a Solver that can only process a conjunction of literals.

Examples:

Congurence Closure (UF),

Simplex (Linear Real Arithmetic)

Lazy SMT as CEGAR: 1. Abstract

Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

$$p_1, p_2, (p_3 \lor p_4)$$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$ $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$

[Audemard et al - 2002], [Barrett et al - 2002], [de Moura et al - 2002] [Flanagan et al - 2003], ...

Lazy SMT as CEGAR: 2. Solve

Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

$$p_1, p_2, (p_3 \vee p_4)$$

$$p_1, p_2, (p_3 \lor p_4)$$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$ $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$

SAT Solver

Lazy SMT as CEGAR: 2. Solve

Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

$$p_1, p_2, (p_3 \lor p_4)$$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$ $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$

SAT Solver Assignment

$$p_1, p_2, \neg p_3, p_4$$

Lazy SMT as CEGAR: 3. Check

Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

$$p_1, p_2, (p_3 \lor p_4)$$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$ $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$

SAT Solver

Assignment
$$y \ge 0, y = x + 1, y \ge 0, y = x + 1, y \ge 0, y \le 1$$

Lazy SMT as CEGAR: 3. Check

SAT

Solver

Basic Idea $x \ge 0$, y = x + 1, $(y > 2 \lor y < 1)$ $p_1, p_2, (p_3 \vee p_4)$ $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$ $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$ $p_1, p_2, \neg p_3, p_4 \longrightarrow x \ge 0, y = x + 1,$ $\neg (y > 2), y < 1$ Unsatisfiable Theory $x \ge 0$, y = x + 1, y < 1

Solver

Lazy SMT as CEGAR: 4. Refine

Basic Idea $x \ge 0$, y = x + 1, $(y > 2 \lor y < 1)$ $p_1, p_2, (p_3 \vee p_4)$ $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$ $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$ Assignment $y \ge 0, y = x + 1, y \ge 0$ SAT $\neg (y > 2), y < 1$ Solver Unsatisfiable New Lemma Theory $x \ge 0$, y = x + 1, y < 1Solver

Lazy SMT as CEGAR: 4. Refine

Basic Idea

AKA
Theory conflict

Lazy SMT as CEGAR: refinements

Many refinements:

Incrementality

Efficient Backtracking

Efficient Lemma Generation

Theory propagation - DPLL(T) [Ganzinger et all – 2004]

Many SMT solvers are based on DPLL(T)

DPLL(T) weakness

Theories are "second-class citizens".

DPLL(T) is not model-driven (key property of CDCL).

CDCL: Conflict Driven Clause Learning

DPLL(T) weakness

DPLL(T) works well only for "easy" theories.

Examples:

Uninterpreted functions

Difference logic $(x - y \le c)$

Linear real arithmetic

"Hard theories":

Linear integer arithmetic

Arrays

Nonlinear real arithmetic

Example: Nonlinear Real Arithmetic

$$x^{2} - 4x + y^{2} - y + 8 < 1$$
$$xy - 2x - 2y + 4 > 1$$

PSPACE membership Canny – 1988, Grigor'ev – 1988

NP-hardness x is "Boolean" \rightarrow x (x-1) = 0 x or y or z \rightarrow x + y + z > 0

The RISE of Model-Driven Techniques in SMT

Saturation x Search

Proof-finding

Model-finding

Two procedures

Resolution	DPLL
Proof-finder	Model-finder
Saturation	Search

CDCL is model-driven proof search

Linear Arithmetic

Fourier-Motzkin	Simplex
Proof-finder	Model-finder
Saturation	Search

Fourier-Motzkin

$$t_1 \le ax$$
, $bx \le t_2$

$$bt_1 \le abx$$
, $abx \le at_2$

$$bt_1 \le at_2$$

Very similar to Resolution

Exponential time and space

Polynomial Constraints

AKA
Existential Theory of the Reals

3R

$$x^{2} - 4x + y^{2} - y + 8 < 1$$
$$xy - 2x - 2y + 4 > 1$$

- 1. Project/Saturate set of polynomials
- 2. Lift/Search: Incrementally build assignment $v: x_k \to \alpha_k$ Isolate roots of polynomials $f_i(\alpha, x)$ Select a feasible cell C, and assign x_k some $\alpha_k \in C$ If there is no feasible cell, then backtrack

$$x^{2} + y^{2} - 1 < 0$$
 $x^{4} - x^{2} + 1$
 $xy - 1 > 0$ 1. Saturate $x^{2} - 1$

2. Search

	(-∞, -1)	-1	(-1, 0)	0	(0, 1)	1	(1,∞)
$x^4 - x^2 + 1$	+	+	+	+	+	+	+
$x^2 - 1$	+	0	-	-	-	0	+
X	-	-	-	0	+	+	+

$$x^{2} + y^{2} - 1 < 0$$
 $x = x^{2} + y^{2} - 1$
 $x = x^{2} + 1$
 $x = x^{2} - 1$
 $x = x^{2} -$

	$(-\infty, -1)$	-1	(-1, 0)	0	(0, 1)	1	(1,∞)
$x^4 - x^2 + 1$	+	+	+	+	+	+	+
$x^2 - 1$	+	0	-	-	-	0	+
\boldsymbol{x}	-	-	-	0	+	+	+

$$x^{2} + y^{2} - 1 < 0$$
 $x^{4} - x^{2} + 1$
 $xy - 1 > 0$
1. Saturate
 $x^{2} - 1$
 x

$$(-\infty, -\frac{1}{2}) -\frac{1}{2} (-\frac{1}{2}, \infty)$$

CONFLICT

$$-2y - 1$$
 + 0
 $x \rightarrow -2$ 2. Search

 $4+y^2-1$

	$(-\infty, -1)$	-1	(-1, 0)	0	(0, 1)	1	(1,∞)
$x^4 - x^2 + 1$	+	+	+	+	+	+	+
$x^2 - 1$	+	0	-	-	-	0	+
x	-	-	-	0	+	+	+

0

NLSat: Model-Driven Search

Static x Dynamic

Optimistic approach

Key ideas

Start the Search before Saturate/Project

We saturate on demand

Model guides the saturation

Experimental Results (1)

OUR NEW ENGINE

	meti-tarski	(1006)	keymaera	(421)	zankl	(166)	hong	(20)	kissin	g (45)	all (1	1658)
solver	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)
nlsat	1002	343	420	5	89	234	10	170	13	95	1534	849
Mathematica	1006	7 96	420	171	50	366	9	208	6	29	1491	1572
QEPCAD	991	2616	368	1331	21	38	6	43	4	5	1390	4036
Redlog-VTS	847	28640	419	78	42	490	6	3	10	275	1324	29488
Redlog-CAD	848	21706	363	730	21	173	6	2	4	0	1242	22613
z3	266	83	379	1216	21	0	1	0	0	0	667	1299
iSAT	203	122	291	16	21	24	20	822	0	0	535	986
cvc3	150	13	361	5	12	3	0	0	0	0	523	22
MiniSmt	40	697	35	0	46	1370	0	0	18	44	139	2112

Experimental Results (2)

Other examples

Delayed
Theory Combination
[Bruttomesso et al 2006]

Model-Based
Theory Combination

Other examples

Array Theory by Axiom Instantiation

X

Lemmas on Demand For Theory of Array [Brummayer-Biere 2009]

```
\forall a, i, v: a[i \coloneqq v][i] = v

\forall a, i, j, v: i = j \lor a[i \coloneqq v][j] = a[j]
```

Other examples

(for linear arithmetic)

Fourier-Motzkin

X

Generalizing DPLL to richer logics
[McMillan et al 2009]

Conflict Resolution [Korovin et al 2009]

Saturation: successful instances

Polynomial time procedures

Gaussian Elimination

Congruence Closure

Model-Driven SMT

Lift ideas from CDCL to SMT

Generalize ideas found in model-driven approaches

Easier to implement

Model construction is explicit

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$

Propagations

Propagations

Propagations

Boolean Decisions

Semantic Decisions

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad$$

Conflict

We can't find a value for y s.t. $4 + y^2 \le 1$

Conflict

We can't find a value for
$$y$$
 s.t. $4 + y^2 \le 1$

Learning that
$$\neg(x^2 + y^2 \le 1) \lor \neg(x=2)$$
 is not productive

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$

$$x \ge 2 \rightarrow x \ge 1 \rightarrow y \ge 1 \quad x^2 + y^2 \le 1 \rightarrow \neg(x = 2) \quad x \to 3$$

$$\neg(x^2 + y^2 \le 1) \lor \neg(x = 2)$$
Learning that
$$\neg(x^2 + y^2 \le 1) \lor \neg(x = 2)$$
is not productive

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2 \longrightarrow x \ge 1 \longrightarrow y \ge 1$ $x^2 + y^2 \le 1 \longrightarrow \neg(x = 2)$ $x \to 3$

"Same" Conflict $\neg(x^2 + y^2 \le 1) \lor \neg(x = 2)$

We can't find a value for y s.t. $9 + y^2 \le 1$

Learning that $\neg(x^2 + y^2 \le 1) \lor \neg(x=2)$ is not productive

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$

$$x \ge 2 \longrightarrow x \ge 1 \longrightarrow y \ge 1 \quad x^2 + y^2 \le 1 \quad x \to 2$$

$$\neg(x^2 + y^2 \le 1) \lor x \le 1$$

Learned by resolution

$$\neg(x \ge 2) \lor \neg(x^2 + y^2 \le 1)$$

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2 \to x \ge 1 \to y \ge 1$ $\neg (x^2 + y^2 \le 1)$
 $\neg (x \ge 2) \lor \neg (x^2 + y^2 \le 1)$ $\neg (x^2 + y^2 \le 1) \lor x \le 1$

$$-x + z + 1 \le 0 \quad z \to 0 \quad x - y \le 0 \quad y \to 0$$

$$-x + z + 1 \le 0$$
, $x - y \le 0$ $z \to 0$, $y \to 0$

$$\equiv$$

$$z + 1 \le x$$
, $x \le y$

$$1 \le x, \quad x \le 0$$

We can't find a value of x

$$-x + z + 1 \le 0 \quad z \to 0 \quad x - y \le 0 \quad y \to 0$$

$$-x + z + 1 \le 0, \quad x - y \le 0 \qquad z \to 0, \qquad y \to 0$$

$$\exists x : -x + z + 1 \le 0 \land x - y \le 0$$

$$z + 1 - y \le 0$$

Fourier-Motzkin

$$\neg(-x + z + 1 \le 0) \lor \neg(x - y \le 0) \lor z + 1 - y \le 0$$

$$-x + z + 1 \le 0 \quad z \to 0 \quad x - y \le 0 \quad z + 1 - y \le 0 \quad y \to 1$$

$$\neg(-x + z + 1 \le 0) \lor \neg(x - y \le 0) \lor z + 1 - y \le 0$$

$$-x + z + 1 \le 0$$
, $x - y \le 0$ $z \to 0$, $y \to 1$
 \equiv
 $z + 1 \le x$, $x \le y$

$$1 \le x$$
, $x \le 1$

$$-x + z + 1 \le 0 \quad z \to 0 \quad x - y \le 0 \longrightarrow z + 1 - y \le 0 \quad y \to 1 \quad x \to 1$$

$$\neg(-x + z + 1 \le 0) \lor \neg(x - y \le 0) \lor z + 1 - y \le 0$$

$$-x + z + 1 \le 0, \quad x - y \le 0 \qquad z \to 0, \quad y \to 1$$

$$\equiv$$

$$z + 1 \le x, \quad x \le y$$

$$1 \le x, \quad x \le 1$$

MCSat: Another Example

$$-4xy - 4x + y > 1$$
, $x^2 + y^2 < 1$, $x^3 + 2x^2 + 3y^2 - 5 < 0$

MCSat: Another Example

$$-4xy - 4x + y > 1,$$

$$x^2 + y^2 < 1,$$

$$-4xy - 4x + y > 1$$
, $x^2 + y^2 < 1$, $x^3 + 2x^2 + 3y^2 - 5 < 0$

Feasible Region

-4xy - 4x + y > 1

Starting search Partial solution:

$$x \rightarrow 0.5$$

What is the core?

$$x^2 + y^2 < 1$$

Can we extend it to y?

MCSat: Another Example

$$-4xy - 4x + y > 1, \qquad x^2 + y^2 < 1, \qquad x^3 + 2x^2 + 3y^2 - 5 < 0$$
Feasible Region
$$x^3 + 2x^2 + 3y^2 - 5 < 0$$
Starting search Partial solution: $x \to 0.5$
What is the core?

Can we extend it to y ?

Every theory that admits quantifier elimination has a finite basis (given a fixed assignment order)

$$F[x, y_1, ..., y_m]$$

$$\exists x: F[x, y_1, ..., y_m]$$

$$C_1[y_1, ..., y_m] \land \cdots \land C_k[y_1, ..., y_m]$$

$$\neg F[x, y_1, ..., y_m] \lor C_k[y_1, ..., y_m]$$

Every "finite" theory has a finite basis

Example: Fixed size Bit-vectors

$$F[x, y_1, \dots, y_m]$$
 $y_1 \to \alpha_1, \dots, y_m \to \alpha_m$

$$\neg F[x, y_1, \dots, y_m] \lor \neg (y_1 = \alpha_1) \lor \dots \lor \neg (y_m = \alpha_m)$$

Theory of uninterpreted functions has a finite basis

Theory of arrays has a finite basis [Brummayer- Biere 2009]

In both cases the Finite Basis is essentially composed of equalities between existing terms.

$$a = b + 1, f(a - 1) < c, f(b) > a$$

$$a = b + 1, f(k) < c, f(b) > a, k = a - 1$$

$$a = b + 1, f(k) < c, f(b) > a, k = a - 1$$

Treat f(k) and f(b) as variables

Generalized variables

$$a = b + 1, f(k) < c, f(b) > a, k = a - 1$$

$$k \to 0$$
 $b \to 0$ $f(k) \to 0$ $f(b) \to 2$

Conflict: f(k) and f(b) must be equal

$$\neg(k=b) \lor f(k) = f(b)$$

$$a = b + 1, f(k) < c, f(b) > a, k = a - 1$$

(Semantic) Propagation

$$\neg(k=b) \lor f(k) = f(b)$$

$$a = b + 1, f(k) < c, f(b) > a, k = a - 1$$

$$a = b + 1, f(k) < c, f(b) > a, k = a - 1$$

We can also use literals from the finite basis in decisions.

Application: simulate branch&bound for bounded linear integer arithmetic

MCSat: Termination

Propagations

Boolean Decisions

Semantic Decisions

Propagations

Boolean Decisions

Semantic Decisions

Maximal Elements

|FiniteBasis|

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2 \longrightarrow x \ge 1 \longrightarrow y \ge 1$ $x^2 + y^2 \le 1 \longrightarrow x \le 1$
Conflict
 $\neg (x \ge 2) \lor \neg (x \le 1)$ $\neg (x^2 + y^2 \le 1) \lor x \le 1$

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2 \longrightarrow x \ge 1 \longrightarrow y \ge 1$ $x^2 + y^2 \le 1 \longrightarrow x \le 1$
Conflict
 $\neg (x \ge 2) \lor \neg (x \le 1)$ $\neg (x^2 + y^2 \le 1) \lor x \le 1$

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2 \to x \ge 1 \to y \ge 1 \quad \neg(x^2 + y^2 \le 1)$
 $x \ge 2 \to x \ge 1 \to y \ge 1 \quad \neg(x^2 + y^2 \le 1)$

$$x \ge 2, \qquad (\neg x \ge 1 \lor y \ge 1), \qquad (x^2 + y^2 \le 1 \lor xy > 1)$$

$$x^2 \qquad \le 1$$
Conflict
$$\neg (x \ge 2) \lor \neg (x \le 1) \qquad \neg (x^2 + y^2 \le 1) \lor x \le 1$$

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2$, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2$, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1)$
 $x \ge 2$, $(x^2 + y^2 \le 1)$

$$x < 1 \lor p$$
, $\neg p \lor x = 2$

 $x \rightarrow 1$

$$x < 1 \lor p, \qquad \neg p \lor x = 2$$

$$x \to 1 \qquad p$$

Conflict (evaluates to false)

New clause

$$x < 1 \lor x = 2$$

New clause

$$x < 1 \lor x = 2$$

x < 1

New clause

$$x < 1 \lor x = 2$$

MCSat: Architecture

MCSat: development

MCSat prototype: 7k lines of code

Deduction Rules

$$\frac{C \vee L \qquad \neg L \vee D}{C \vee D}$$
 Boolean Resolution

$$\neg (p_L < x) \lor \neg (x < p_U) \lor (p_L < p_U)$$
 Fourier-Motzkin

$$(p = q) \lor (q < p) \lor (p < q)$$
 Equality Split

$$x_1 \neq y_1 \vee \cdots \vee x_k \neq y_k \vee f(x_1, \dots, x_k) = f(y_1, \dots, y_k)$$

Ackermann expansion aka Congruence

$$\neg (p < q) \lor x \lor x$$
 Normalization

MCSat: preliminary results

prototype: 7k lines of code

QF_LRA

	n	mcsat cvc4		z3		mathsat5		yices		
set	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)
clocksynchro (36)	36	123.11	36	1166.55	36	1828.74	36	1732.59	36	1093.80
DTPScheduling (91)	91	31.33	91	72.92	91	100.55	89	1980.96	91	926.22
miplib (42)	8	97.16	27	3359.40	23	3307.92	19	5447.46	23	466.44
sal (107)	107	12.68	107	13.46	107	6.37	107	7.99	107	2.45
sc (144)	144	1655.06	144	1389.72	144	954.42	144	880.27	144	401.64
spiderbenchmarks (42)	42	2.38	42	2.47	42	1.66	42	1.22	42	0.44
TM (25)	25	1125.21	25	82.12	25	51.64	25	1142.98	25	55.32
ttastartup (72)	70	4443.72	72	1305.93	72	1647.94	72	2607.49	72	1218.68
uart (73)	73	5244.70	73	1439.89	73	1379.90	73	1481.86	73	679.54
	596	12735.35	617	8832.46	613	9279.14	607	15282.82	613	4844.53

MCSat: preliminary results

prototype: 7k lines of code

QF_UFLRA and QF_UFLIA

	mcsat		cvc4		z3		mathsat5		yices	
set	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)
EufLaArithmetic (33)	33	39.57	33	49.11	33	2.53	33	20.18	33	4.61
Hash (198)	198	34.81	198	10.60	198	7.18	198	1330.88	198	2.64
RandomCoupled (400)	400	68.04	400	35.90	400	31.44	400	18.56	384	39903.78
RandomDecoupled (500)	500	34.95	500	40.63	500	30.98	500	21.86	500	3863.79
Wisa (223)	223	9.18	223	87.35	223	10.80	223	65.27	223	2.80
wisas (108)	108	40.17	108	5221.37	108	443.36	106	1737.41	108	736.98
	1462	226.72	1462	5444.96	1462	526.29	1460	3194.16	1446	44514.60

Conclusion

Mode-driven techniques are very promising

Preprocessing

CEGAR

MCSat: new framework for developing SMT solvers MCSat generalizes NLSat

Modular architecture

Resources: Papers

The Strategy Challenge in SMT Solving, L. de Moura and G. Passmore. http://research.microsoft.com/en-us/um/people/leonardo/files/smt-strategy.pdf

Solving non-linear arithmetic, D. Jovanovic and L. de Moura http://research.microsoft.com/en-us/um/people/leonardo/files/IJCAR2012.pdf

A Model Constructing Satisfiability Calculus, L. de Moura and D. Jovanonic http://research.microsoft.com/en-us/um/people/leonardo/files/mcsat.pdf

The Design and Implementation of the Model Constructing Satisfiability Calculus, D. Jovanovic, C. Barrett, L. de Moura http://research.microsoft.com/en-us/um/people/leonardo/mcsat_design.pdf

Resources: Source Code

nlsat

https://z3.codeplex.com/SourceControl/latest#src/nlsat/

mcsat

https://github.com/dddejan/CVC4/tree/mcsat

tactic/preprocessors

https://z3.codeplex.com/SourceControl/latest#src/tactic/