画像処理の概要

画像処理のフレームワーク

画像の入力処理

- 2次元データの入力
 - サンプリング
 - 量子化
- 3次元世界からの画像入力
 - 投影モデル
 - 反射モデル
- 3次元世界の距離情報の獲得
 - 視点を動かす(ステレオ)
 - 物体を動かす(動きからの形の獲得)
 - 光源を動かす(照度差ステレオ)

画像の出力処理

- 擬似濃淡表示法(digital halftoning, pseudo continuous tone)
- 色変換(color transformation)
- ステレオスコープ(stereo scope)
 - 左右の目に互いに視点が少しだけ違う画像を表示させる技術

画像処理の一般的な流れ

画像復元

- 画像復元
 - 入力デバイスに起因する歪み
 - デバイスの不具合や調整不備により生じたひずみ
- 画像復元手法
 - 周波数帯域における処理
 - 幾何変換と濃淡値補間

前処理

• 不必要であるような情報を取り除く処理

セグメンテーション

- トークン(token)を抽出する処理
 - 規則性を持ったパターンとして定義
 - 代表例:線分と領域
- セグメンテーションの主な手法
 - 線分抽出
 - 領域抽出

特徵抽出

- トークンの特徴を計測する処理
 - 大きく分けて線分特徴と領域特徴

パターン認識処理

抽出されたパターンを予め定義されているオブジェクトに対応付け

