Rutgers University: Algebra Written Qualifying Exam August 2018: Problem 2 Solution

Exercise. Let p and q be distinct primes. Let $\overline{q} \in \mathbb{Z}/p\mathbb{Z}$ denote the class q modulo p and let k denote the order of \overline{q} as ab ekenebt if $(\mathbb{Z}/p\mathbb{Z})^*$. Prove that no group of order pq^{ℓ} with $1 \leq \ell \leq k$ is simple.

Solution.

Let $|G| = pq^{\ell}$ such that $1 \le \ell \le k$.

Since k is the order of q in \mathbb{Z}_p ,

$$q^k \equiv 1 \mod p$$
, and $q^j \not\equiv 1 \mod p$ for $1 \le j < k$

$$n_p \cong 1 \mod p \text{ and } n_p \mid q^{\ell}$$

 $\implies n_p = 1 \text{ or } n_p = q^k \text{ and } \ell = k$

If $n_p = 1$, there is a unique Sylow *p*-subgroup

 \implies the Sylow p-subgroup is normal in G

 \implies G is not simple.

If $n_p = q^k$, then $\ell = k$ and $|G| = pq^k$

Since the Sylow p-subgroups have prime order, they are cyclic

If P and Q are two Sylow p-subgroups

$$P \cap Q = \{e\} \text{ or } P.$$

This is because $P \cap Q$ is a subgroup of both P and Q and its order must divide p.

If $n_p = q^k$ then there are q^k Sylow p-subgroups that pairwise only intersect with the identity element.

So, the q^k Sylow p-subgroups contain a total of $(p-1)q^k = pq^k - q^k$ elements of order p.

The remaining q^k elements must be elements of the Sylow q- subgroup:

$$\implies n_q = 1$$

 \implies The Sylow q-subgroup is normal

 $\implies G$ is not simple