- 1. Let $A \in \mathbf{C}^{n \times n}$.
 - (a) A scalar λ is an eigenvalue of an $n \times n$ A and a nonzero vector $x \in \mathbf{C}^n$ is a corresponding (right) eigenvector if

$$Ax = \lambda x$$
.

(b) A nonzero vector y is called a *left eigenvector* if

$$y^H A = \lambda y^H$$
.

- (c) The set of all eigenvalues of A, denoted as $\lambda(A)$, is called the *spectrum* of A.
- (d) The characteristic polynomial of A is a polynomial of degree n, and defined as

$$p(\lambda) = \det(\lambda I - A).$$

- 2. The following is a list of properties straightforwardly from above definitions:
 - (a) λ is A's eigenvalue $\Leftrightarrow \lambda I A$ is singular $\Leftrightarrow \det(\lambda I A) = 0 \Leftrightarrow p(\lambda) = 0$.
 - (b) There is at least one eigenvector x associated with A's eigenvalue λ .
 - (c) Suppose A is real. λ is A's eigenvalue \Leftrightarrow conjugate $\bar{\lambda}$ is also A's eigenvalue.
 - (d) A is singular $\Leftrightarrow 0$ is A's eigenvalue.
 - (e) If A is upper (or lower) triangular, then its eigenvalues consist of its diagonal entries. (Question: what if A is a block upper (or lower) triangular matrix?).
- 3. Schur decomposition.

Let A be of order n. Then there is an $n \times n$ unitary matrix U (i.e., $U^H U = I$) such that

$$A = UTU^H,$$

where T is upper triangular and the diagonal elements of T are the eigenvalues of A.

4. When A is Hermitian, i.e., $A^H = A$, then by Schur decomposition, we know that there exist an unitary matrix U such that

$$A = U\Lambda U^H,$$

where $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ and all eigenvalues λ_i are real.

- 5. $A \in \mathbb{C}^{n \times n}$ is simple if it has n linearly independent eigenvectors; otherwise it is defective. Examples.
 - (a) I and any diagonal matrices is simple. e_1, e_2, \ldots, e_n are n linearly independent eigenvectors.
 - (b) $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$ is simple. It has two different eigenvalues -1 and 5, it has 2 linearly independent eigenvectors: $\frac{1}{\sqrt{2}}\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and $\frac{1}{\sqrt{5}}\begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

- (c) If $A \in \mathbb{C}^{n \times n}$ has n different eigenvalues, then A is simple.
- (d) $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ is defective. It has two repeated eigenvalues 2, but only one eigenvector $e_1 = (1,0)^T$.
- 6. Eigenvalue decomposition

 $A \in \mathbf{C}^{n \times n}$ is simple if and only if there exisits a nonsingular matrix $X \in \mathbf{C}^{n \times n}$ such that

$$A = X\Lambda X^{-1},$$

where $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$. In this case, λ_i are eigenvalues, and the columns of X are eigenvectors, and A is called diagonalizable).

7. An invariant subspace of A is a subspace \mathcal{V} of \mathbb{R}^n , with the property that

$$v \in \mathcal{V}$$
 implies that $Av \in \mathcal{V}$.

We also write this as $AV \subseteq V$.

Examples.

- (a) The simplest, one-dimensional invariant subspace is the set span(x) of all scalar multiples of an eigenvector x.
- (b) Let $x_1, x_2, ..., x_m$ be any set of independent eigenvectors with eigenvalues $\lambda_1, \lambda_2, ..., \lambda_m$. Then $\mathcal{X} = \text{span}(\{x_1, x_2, ..., x_m\})$ is an invariant subspace.

PROPOSITION. Let A be n-by-n, let $V = [v_1, v_2, \ldots, v_m]$ be any n-by-m matrix with linearly independent columns, and let $\mathcal{V} = \operatorname{span}(V)$, the m-dimensional space spanned by the columns of V. Then \mathcal{V} is an invariant subspace if and only if there is an m-by-m matrix B such that

$$AV = VB$$
.

In this case, the m eigenvalues of B are also eigenvalues of A.

8. Two $n \times n$ matrices A and B are similar if there is an $n \times n$ non-singular matrix P such that $B = P^{-1}AP$. We also say A is similar to B, and likewise B is similar to A; P is a similarity transformation. A is unitarily similar to B if P is unitary.

PROPOSITION. Suppose that A and B are similar: $B = P^{-1}AP$.

- (a) A and B have the same eigenvalues. In fact $p_A(\lambda) \equiv p_B(\lambda)$.
- (b) $Ax = \lambda x \Rightarrow B(P^{-1}x) = \lambda(P^{-1}x)$.
- (c) $Bw = \lambda w \Rightarrow A(Pw) = \lambda(Pw)$.