Text Input

Interaction Techniques and Technologies (ITT), SS 2015

Session 5 (11.05.2015), Raphael Wimmer

Overview

These are slides/notes for the lecture, automatically generated from the slide set. Please extend this outline with your own notes.

Goals for this Week

Know

- · text input methods
- · typical text input speeds
- · keyboard hardware

Learn

- · measuring typing speed
- PyQT's signals and slots

Practice

- Python
- · text input

Today

- 12:15 12:30 Overview of today's session
- 12:30 12:45 Discussion of previous assignment
- 12:45 13:15 Text input: metrics and numbers
- 13:15 13:45 Keyboards: Technical Background, Layouts
- 14:15 14:45 PyQt, Signals & Slots, Events
- 14:45 15:30 Assignment, Discussion of Previous Assignments

Where are We?

- Conducting and Logging Experiments (+ intro to Python / PyQT)
- Documenting and Visualizing Experiments (+ intro to pylab, matplotlib)
- Pointing (pointing devices, Fitts' Law, Steering Law, CD gain, ...)
- Text Entry (speed, models, keyboard layouts, input techniques)
- Models of Interaction (KLM, GOMS)

Quiz: Which of the following statements is true?

- Fitts' Law says that the time to select a target increases linearly with distance
- Eye movements can be modeled using Fitts' Law
- A high CD gain is important for pointing on large displays
- Touch screens are rate-control, direct, absolute pointing devices
- A t test indicates whether two values are statistically different

Figure 1: http://pingo.upb.de/1903

Assignment 4: Measuring the Effects of Different Transfer Functions

Retrospective: Reaction Times

60,000

Last week I came across an interesting number that is repeated all over Twitter...

Twitter search: "60,000 visual"¹

. . .

Analysis of this urban legend²

The Model Human Processor

Reaction and Processing Times

¹https://twitter.com/search?q=60%2C000%20visual&src=typd

²http://cogdogblog.com/2012/07/06/60000-times-question/

Luke Hartman PhD @LukeHartman7 · Apr 9

Professors, the human brain processes visual information 60,000 times faster than text-based information. Use more images. #deathbypowerpt

Yoav B Guttman @whybegee · Apr 8

'Online audiences can actually process visual data 60,000 times faster than text alone' ow.ly/Lly4B

★ 2 + ...

000

Mario Saverin @Mario Saverin · Apr 5

According to Ekaterina Walter of Sprinklr, "Our brains process visuals 60,000

Figure 2: Card et al, 1983

Operation	Typical Time (ms)
Sensory reception	1 - 38
Neural transmission to brain	2 - 100
Cognitive processing	70 - 300
Neural transmission to muscle	10 - 20
Muscle latency and activation	30 - 70
Total	113 - 528

Table 1: Typical latencies in human sensorimotor control (Bailey, 1996, p.41)

• approximate average reaction times (source³):

visual: 270 msauditory: 150 mstouch: 155 ms

- proprioception: similar to touch?

minimal visually perceptible latency: 5 ms (Ng. et al, 2012⁴)

Text Input / Text Entry

Typing speed

• http://typing-speed-test.aoeu.eu/?lang=en

Hardware

Keyboard implementations

see blackboard

Ghosting / N-key rollover

- simple matrix scanning of contact mats leads to ignored keypresses
- Info in Geekhack.com wiki⁵
- Ghosting Demo by Microsoft Research⁶

³http://biae.clemson.edu/bpc/bp/lab/110/reaction.htm

⁴http://dl.acm.org/citation.cfm?id=2380174

⁵http://geekhack.org/showwiki.php?title=NKey+Rollover+-+Overview+Testing+Methodology+and+Results

 $^{{}^{6}}https://www.microsoft.com/appliedsciences/content/projects/KeyboardGhostingDemo.aspx}\\$

Keyboard Layouts

QWERTY

- ~1870
- staggered rows required for key levers
- · de-facto standard

Dvorak

Figure 3: Wikimedia Commons, PD

- ~ 1936
- optimize key locations to minimize finger movement
- shown to be faster than QWERTY (disputed!⁷)

Neo

• since 2004

⁷http://www.utdallas.edu/~liebowit/keys1.html

Figure 4: neo-layout.org

- http://www.neo-layout.org/
- optimized for German language
- 6 layers, with many Unicode symbols, foreign characters

Colemak

Figure 5: colemak.com

- since 2006
- http://colemak.com
- keys used for common shortcuts (Ctrl+Z/X/C/V) same as in QWERTY
- designed for English language

QFMLWY & Co.

Figure 6: carpalx project

- since 2005
- CarpalX project⁸
- · automatically optimized layouts based on different corpora

Stenotype

Figure 7: Wikimedia Commons, PD

Open Steno Project⁹

Typical Text Entry Speeds

Source: WP:Words per minute¹⁰

• 1 word per minute (WPM) = 5 characters per minute (CPM)

• Handwriting: 30 wpm

• Stenography: 350 wpm

• Speaking: avg. 150 wpm, pro: 350-500 wpm, record: 637 wpm

• Reading: 250-300 wpm (typical adult)

• Morse: good: 20 wpm, pro: 60 wpm, record: 76 wpm

• One-key-keyboard (MacKenzie, 2010)¹¹: 5 wpm

QWERTY

Hunt-and-peck: 30-40 wpmProfessional Typist: 50-80 wpm

• World Record: 216 wpm (1946, using the Dvorak layout)

Stenotype

· Beginner: 100 wpm

• Professional Stenotypist: 200 wpm

• World Record: 360 wpm

⁸http://mkweb.bcgsc.ca/carpalx/

⁹http://openstenoproject.org/

¹⁰ https://en.wikipedia.org/wiki%20/Words_per_minute

¹¹http://www.yorku.ca/mack/TOCHI2010.html

Novel Keyboard Layouts

Chording Keyboards

Figure 8: Buxton, 2010

http://research.microsoft.com/en-us/um/people/bibuxton/buxtoncollection/detail.aspx?id=7

See also: http://www.loper-os.org/?p=861

PianoText

https://www.youtube.com/watch?v=-ykkTXo2Zyg http://pianotext.mpi-inf.mpg.de/

Tera-Keyboard (Ghost in the Shell)

https://youtu.be/YZX58fDhebc?t=14

Discussion on the SciFi Interfaces blog¹²

Mobile Phone Keyboards

Gizmodo: 12 smartphone keyboards that are trying to reinvent mobile text input¹³

¹²https://scifiinterfaces.wordpress.com/2013/07/24/the-secret-of-the-tera-keyboard/

 $^{^{13}} http://gizmodo.com/12-smartphone-keyboards-that-are-trying-to-reinvent-mob-1695151919$

Learning Trade-off

Figure 5. Keying rates for alphabetic characters on both keyboards for all A-Q subjects in each third of the rank order.

Figure 9: Michaels, 1971

S. Eugene Michaels (1971). Qwerty Versus Alphabetic Keyboards as a Function of Typing Skill. In *Human Factors: The Journal of the Human Factors and Ergonomics Society* 1971 13:DOI: 10.1177/001872087101300504

Slow Improvement

Outlook

Quiz: Which of the following statements is true?

- · A chording keyboard with seven buttons could replace a standard QWERTY keyboard
- A person's text input speed is generally correlated with their reaction speed to visual stimuli
- Handwriting is generally slower than touch typing
- · Ghosting allows for typing faster
- 120 wpm equals 100 ms per keypress

Next Session

- Keystroke Level Model (KLM)
- Goals, Operators, Methods, Selection Rules (GOMS)

Course Assignment

ENDE

Figure 10: Johannes Jüngst, Diplomarbeit, 2010

Figure 11: http://pingo.upb.de/1903