Fixed effect estimation of repayment

July 9, 2024 10:19

Seiro Ito

Need: packages Imtest, sandwich.

This is a file whose regression results to be used in read_admin_data.rnw.

Key variables defined in read_admin_data.rnw:

- adw[, Shortfall := PlannedInstallment value.repay]
- adw[, ShortfallRate := Shortfall/PlannedInstallment]
- PlannedInstallment := 120, with a grace period, PlannedInstallment := 190
- EffectiveRepayment := value.repay + value.NetSaving (same def as value.Paid...)

If I take village*Date fixed effects, mean of Arm*Date becomes zero hence changes by Arm*Year are elimiated. So I will take village fixed effects and date (=year-month) fixed effects (not their interactions).

for (i in which (grep1 ("val | Lag | Shor | Savi | Prof | Miss | Othe | Cum", colnames (X)) &

```
! grep1("GroupShortf | LagGroupNetSav", colnames(X)))) {
 X[, colnames(X)[i] := eval(parse(text=colnames(X)[i])) -
    mean(eval(parse(text=colnames(X)[i])), na.rm = T),
    by = groupid]
 X[, colnames(X)[i] := eval(parse(text=colnames(X)[i])) -
    mean(eval(parse(text=colnames(X)[i])), na.rm = T),
    by = Date]
# take only 1st member to form group level data
X[, gnum := 1:.N, by = .(groupid, Date)]
X[, c("LargeSize", "WithGrace", "InKind") := 0L]
X[!grepl("tra", Arm), LargeSize := 1L]
X[grepl("gr|ca", Arm), WithGrace := 1L]
X[grepl("ca", Arm), InKind := 1L]
X[, Attributes := "traditional"]
X[!grepl("tra", Arm), Attributes := "LargeSize"]
X[grepl("gr|ca", Arm), Attributes := "LargeSizeAndWithGrace"]
X[grepl("ca", Arm), Attributes := "LargeSizeAndWithGraceAndInKind"]
X[, Attributes := factor(Attributes, levels = c("traditional", "LargeSize",
  "LargeSizeAndWithGrace", "LargeSizeAndWithGraceAndInKind"))]
qsave(X, paste0(pathsaveEstimationMemo, "ShortFallRegressionData.qs"))
X \leftarrow qread(paste0(pathsaveEstimationMemo, "ShortFallRegressionData.qs"))
X1 \leftarrow X[gnum == 1, ]
jds ← fread (paste0 (pathreceived, "DataForJDS.prn"))
X[, 0800 := 0L]
# need to use groupid because some hhid in admin record is missing in jds data
X[groupid %in% jds[grepl("trea", treat), groupid], o800 := 1L]
X2 \leftarrow X[0800 == 1L, ]
addmargins(table0(X2[, .(TeeInLY = 1:.N), by = .(groupid, LoanYear)][
  TeeInLY == 1, LoanYear]))
```

```
x 1 2 3 4 Sum
```

```
# group shortfall regressions
vfesg1 \leftarrow lm(Shortfall \sim Arm, data = X1)
vfesg2 ← lm(MeanGroupShortfall ~ Arm +
 GRSR + LagMeanGroupShortfall + GRSR: LagMeanGroupShortfall, data = X1)
vfesg3 ← lm(MeanGroupShortfall ~
 Arm + Arm: SecondYear + Arm: ThirdYear + Arm: FourthYear,
  data = X1
vfesg4 ← lm(MeanGroupShortfall ~
  LargeSize + WithGrace + InKind +
  SecondYear +
  I(LargeSize*SecondYear) + WithGrace: SecondYear + InKind: SecondYear +
  ThirdYear +
  I(LargeSize*ThirdYear) + I(WithGrace*ThirdYear) + I(InKind*ThirdYear) +
  FourthYear +
  I(LargeSize*FourthYear) + I(WithGrace*FourthYear) + I(InKind*FourthYear),
  data = X1
vfesg5 ← lm(MeanGroupShortfall ~
 GRSR + Arm + GRSR: LagMeanGroupShortfall +
 Arm: SecondYear + Arm: ThirdYear + Arm: FourthYear +
  UltraPoor + UltraPoor:Arm +
  UltraPoor: Arm: SecondYear + UltraPoor: Arm: ThirdYear + UltraPoor: Arm: FourthYear +
  LagMeanGroupShortfall +
  LagMeanGroupNetSaving + LagMeanCumGroupNetSaving,
  data = X1
vfesg6 ← lm(MeanGroupShortfall ~
 GRSR + GRSR: LagMeanGroupShortfall +
  SecondYear + LargeSize + WithGrace + InKind +
  I(LargeSize * SecondYear) + I(WithGrace * SecondYear) + I(InKind * SecondYear) +
  ThirdYear +
  I(LargeSize*ThirdYear) + I(WithGrace*ThirdYear) + I(InKind*ThirdYear) +
  UltraPoor +
  I(LargeSize*UltraPoor) + I(WithGrace*UltraPoor) + I(InKind*UltraPoor) +
  I (SecondYear * UltraPoor) +
  FourthYear +
  I(LargeSize*FourthYear) + I(WithGrace*FourthYear) + I(InKind*FourthYear) +
  I(LargeSize*SecondYear*UltraPoor) + I(WithGrace*SecondYear*UltraPoor) +
  I(InKind*SecondYear*UltraPoor) +
  I(ThirdYear * UltraPoor) +
  I(LargeSize*ThirdYear*UltraPoor) + I(WithGrace*ThirdYear*UltraPoor) +
  I(InKind*ThirdYear*UltraPoor) +
  I (Fourth Year * Ultra Poor ) +
  I(LargeSize*FourthYear*UltraPoor) + I(WithGrace*FourthYear*UltraPoor) +
  I(InKind*FourthYear*UltraPoor) +
  LagMeanGroupShortfall +
 LagMeanGroupNetSaving + LagMeanCumGroupNetSaving,
  data = X1
# individual shortfall regressions
vfes1 \leftarrow lm(Shortfall \sim Arm, data = X)
vfes2 \leftarrow lm(Shortfall \sim Arm +
 GRSR + LagMeanGroupShortfall + GRSR: LagMeanGroupShortfall
 + LagShortfall, data = X)
vfes3 ← lm(Shortfall ~
 Arm + Arm: SecondYear + Arm: ThirdYear + Arm: FourthYear,
  data = X
```

```
vfes4 ← lm(MeanGroupShortfall ~
  SecondYear + LargeSize + WithGrace + InKind +
  I(LargeSize * SecondYear) + I(WithGrace * SecondYear) + I(InKind * SecondYear) +
  ThirdYear +
  I(LargeSize*ThirdYear) + I(WithGrace*ThirdYear) + I(InKind*ThirdYear) +
  FourthYear +
  I(LargeSize*FourthYear) + I(WithGrace*FourthYear) + I(InKind*FourthYear),
  data = X
vfes5 ← lm(Shortfall ~
 GRSR + Arm + GRSR: LagMeanGroupShortfall +
 Arm: SecondYear + Arm: ThirdYear + Arm: FourthYear +
  UltraPoor: Arm +
  UltraPoor: SecondYear + UltraPoor: ThirdYear + UltraPoor: FourthYear +
  UltraPoor: Arm: SecondYear + UltraPoor: Arm: ThirdYear + UltraPoor: Arm: FourthYear +
  LagShortfall + LagMeanGroupShortfall +
  LagMeanGroupNetSaving + LagMeanCumGroupNetSaving,
  data = X
vfes6 ← lm(Shortfall ~
 GRSR + GRSR: LagMeanGroupShortfall +
  SecondYear + LargeSize + WithGrace + InKind +
  I(LargeSize*SecondYear) + I(WithGrace*SecondYear) + I(InKind*SecondYear) +
  ThirdYear +
  I(LargeSize*ThirdYear) + I(WithGrace*ThirdYear) + I(InKind*ThirdYear) +
  FourthYear +
  I(LargeSize*FourthYear) + I(WithGrace*FourthYear) + I(InKind*FourthYear) +
  UltraPoor +
  I(LargeSize*UltraPoor) + I(WithGrace*UltraPoor) + I(InKind*UltraPoor) +
  I (SecondYear * UltraPoor) +
  I(LargeSize*SecondYear*UltraPoor) + I(WithGrace*SecondYear*UltraPoor) +
  I(InKind*SecondYear*UltraPoor) +
  I(ThirdYear * UltraPoor) +
  I(LargeSize*ThirdYear*UltraPoor) + I(WithGrace*ThirdYear*UltraPoor) +
  I(InKind*ThirdYear*UltraPoor) +
  I (Fourth Year * Ultra Poor ) +
  I(LargeSize*FourthYear*UltraPoor) + I(WithGrace*FourthYear*UltraPoor) +
  I(InKind*FourthYear*UltraPoor) +
  LagShortfall + LagMeanGroupShortfall +
 LagMeanGroupNetSaving + LagMeanCumGroupNetSaving,
  data = X
# individual shortfall regressions with o800
vfeso1 ← lm(Shortfall ~ Arm, data = X2)
vfeso2 ← lm(Shortfall
  Arm + LagMeanGroupShortfall +
 + LagShortfall, data = X2)
vfeso3 ← lm(Shortfall ~
 Arm + Arm: SecondYear + Arm: ThirdYear + Arm: FourthYear
 + LagShortfall,
  data = X2
vfeso4 ← lm(MeanGroupShortfall ~
  SecondYear + LargeSize + WithGrace + InKind +
  I(LargeSize*SecondYear) + I(WithGrace*SecondYear) + I(InKind*SecondYear) +
 ThirdYear +
  I(LargeSize*ThirdYear) + I(WithGrace*ThirdYear) + I(InKind*ThirdYear) +
  FourthYear +
  I(LargeSize*FourthYear) + I(WithGrace*FourthYear) + I(InKind*FourthYear)
 + LagShortfall,
```

```
data = X2
vfeso5 ← lm(Shortfall ~
 Arm +
 Arm: SecondYear + Arm: ThirdYear + Arm: FourthYear +
 UltraPoor: Arm +
 +I(UltraPoor*SecondYear) + I(UltraPoor*ThirdYear) + I(UltraPoor*FourthYear)+
 UltraPoor*Arm*SecondYear + UltraPoor*Arm*ThirdYear + UltraPoor*Arm*FourthYear +
 LagShortfall + LagMeanGroupShortfall +
 LagMeanGroupNetSaving + LagMeanCumGroupNetSaving,
 data = X2
# vfeso5 \leftarrow update(vfeso5.0,
   +I(UltraPoor*SecondYear) + I(UltraPoor*ThirdYear) + I(UltraPoor*FourthYear)
   - Armtraditional:SecondYear:UltraPoor - Armtraditional:ThirdYear:UltraPoor
    - Armtraditional:FourthYear:UltraPoor)
vfeso6 ← lm(Shortfall ~
 SecondYear + LargeSize + WithGrace + InKind +
 I(LargeSize*SecondYear) + I(WithGrace*SecondYear) + I(InKind*SecondYear) +
 ThirdYear +
 I(LargeSize*ThirdYear) + I(WithGrace*ThirdYear) + I(InKind*ThirdYear) +
 FourthYear +
 I(LargeSize*FourthYear) + I(WithGrace*FourthYear) + I(InKind*FourthYear) +
 UltraPoor +
 I(LargeSize*UltraPoor) + I(WithGrace*UltraPoor) + I(InKind*UltraPoor) +
 I(UltraPoor*SecondYear) + I(UltraPoor*ThirdYear) + I(UltraPoor*FourthYear) +
 I(LargeSize*SecondYear*UltraPoor) + I(WithGrace*SecondYear*UltraPoor) +
 I(InKind*SecondYear*UltraPoor) +
 I(LargeSize*ThirdYear*UltraPoor) + I(WithGrace*ThirdYear*UltraPoor) +
 I(InKind*ThirdYear*UltraPoor) +
 I(LargeSize*FourthYear*UltraPoor) + I(WithGrace*FourthYear*UltraPoor) +
 I(InKind*FourthYear*UltraPoor) +
 LagShortfall + LagMeanGroupShortfall +
 LagMeanGroupNetSaving + LagMeanCumGroupNetSaving,
  data = X2
subst.table ← matrix(
 c ("Arm | poverty status | ^{\land} se \\$.*|^{\land}p\\$.*", "",
    I \setminus ((.*?) \setminus )", "\\1",
    "traditional:", "",
    "large g", "LargeG",
   "large", "Large",
    "cattle", "Cattle",
    "Attributes.*And", "",
   "Attributes", "",
    "LargeSize", "Upfront",
    "^ SecondYear *\\* *(U1.*)", "\\1 $\\\times$ LY2",
   "^ThirdYear *\\* *(U1.*)", "\\1 $\\\\ times$ LY3",
   "^FourthYear *\ *(U1.*)", "\\1 $\\\ times$ LY4",
   "(.*): SecondYear:(.*)", "\\1 \\\\times$ \\2 \\\\times$ LY2",
   "(.*): ThirdYear:(.*)", "\\1 \\\\ times\\\2 \\\\\ times\\LY3",
    "(.*): Fourth Year:(.*)", "\\1 \\\\times\\\2 \\\\times\\LY4",
    "(.*) \ SecondYear \ (.*)", "\\\\ times$ \\\2 $\\\\ times$ LY2",
   "(.*) \ ThirdYear \ (.*)", "\\1 $\\\\ times$ \\2 $\\\\ times$ LY3",
   "(.*) \\* FourthYear \\* (.*)", "\\1 $\\\times$ \\2 $\\\\times$ LY4",
    "(.*): SecondYear$", "\\1 $\\\\times$ LY2",
   "(.*): ThirdYear$", "\\1 $\\\ times$ LY3",
    "(.*): FourthYear$", "\\1 $\\\\times$ LY4",
```

```
"SecondYear", "LY2",
    "ThirdYear", "LY3",
    "FourthYear", "LY4",
    "MonthsE", "Months E",
    "Month([JFMASOND])", "\1",
    "\\*|:", " $\\\times$ ",
    "Lag(.*?)-Lag", "\\1_{-}{t-1}-$Lag",
    "Lag(.*)", "\\1$_{{t-1}}$",
    "Short", "short",
    "value.repay", "repayment",
    \# "MeanGroupS.*1\\$", "per member group shortfall$",
    "MeanGroups.*1\\$", "Group shortfall$", # it is per member, but too long to show
    "^OtherR.*d\\$", "Mean other repayment$",
    "^CumR.*d\\$", "Cumulative repayment$",
    "^CumR.*e\\$", "Cumulative repayment rate$",
    "^CumR.*Q\\$", "Cumulative repayment rate^{2}",
    "^CumN.*g\\$", "Cumulative net saving$",
    "CumOtherO.*d\\$", "Other cumulative repayments$",
    "CumOtherR.*e\\$", "Other cumulative repayment rate$",
    "CumOtherR.*Q\\\$", "Other cumulative repayment rate\$^{2}",
    "MeanCumGroupNet.*g\\$", "Per member cumulative group net saving (BDT1000)$",
    "value.NetSaving \\$", "Net saving $",
    "MeanG.*g\\$", "Per member group net saving$",
    "\\^2", "$^{2}$"), byrow = T, nco1 = 2)
reglists.header ← c("vfesg", "vfes", "vfeso")
# Below is defined in EstimationMemo_OptionSetting.rnw
# ShortfallFileNames ← c("Group", "Individual", "o800")
datas ← c("X1", "X", "X2")
for (m in 1:length(reglists.header)) {
  rlist ← eval(parse(text=paste("list(", paste0(reglists.header[m], 1:6, collapse = ",")
  dataX \leftarrow get(datas[m])
  ClusterList \leftarrow lapply(rlist, function(x))
      if (!is.null(x$na.action)) matrix(dataX[-x$na.action, groupid]) else
      matrix(dataX[, groupid])
   )
 ro \leftarrow lapply(1:length(rlist), function(j)
     clx(rlist[[j]], cluster = ClusterList[[j]], returnV = T, deviation = F))
  ro.estlist \leftarrow lapply(ro, "[[", 1)]
  ro.estlist \leftarrow lapply(ro.estlist, function(x) x[, -3, drop = F])
  # unify covariate names so default (traditional) is not duplicated in latextab
  ro.estlist \leftarrow lapply(ro.estlist, function(x))
   rownames(x) \leftarrow gsub("Arm", "Attributes", rownames(x))
   X
    })
  ro.estlist \leftarrow lapply(ro.estlist, function(x))
   rownames(x) ← gsub("Armtraditional: | Attributestraditional:", "",
      rownames (x))
   X
   })
  ro.estlist \leftarrow lapply(ro.estlist, function(x))
    rownames(x) \leftarrow gsub("^SecondYear: UltraPoor", "I(SecondYear * UltraPoor)",
      rownames(x))
   X
    })
  ro.estlist \leftarrow lapply(ro.estlist, function(x))
    rownames(x) \leftarrow gsub("^ThirdYear: UltraPoor", "I(ThirdYear * UltraPoor")",
```

```
rownames (x))
X
  })
ro.estlist \leftarrow lapply(ro.estlist, function(x))
  rownames(x) ← gsub("^FourthYear: UltraPoor$", "I(FourthYear * UltraPoor)",
    rownames(x))
  X
  })
ro.estlist \leftarrow lapply(ro.estlist, function(x))
  rownames(x) \leftarrow gsub("\(^(.*):(.*)Year\)", "I(\\1 * \\2Year\)",
    rownames(x))
  X
  })
r.N \leftarrow unlist(lapply(ro, "[[", "N"]))
r.M ← unlist(lapply(ro, "[[", "clusters.M"))
r.R \leftarrow unlist(lapply(rlist, function(x) round(summary(x) adj, 3)))
# reorder rows: rn.new #
rtab ← r.tab
rn \leftarrow rownames(r.tab)
rn0 \leftarrow rn
for (i in 1:nrow(subst.table))
  rn \leftarrow gsub(subst.table[i, 1], subst.table[i, 2], rn)
source (paste 0 (pathprogram,
  "ReorderingOfRowsInEstimatedResultsRepaymentTable.R"))
rn \leftarrow rn[rn.new]
r.tab ← r.tab[rn.new,]
rn \leftarrow paste0("\mbox{5cm}{\mbox{5cm}}{\mbox{5cm}}{\mbox{5cm}}{\mbox{11 }", rn, "}")
r.tb \leftarrow rbind(as.matrix(cbind(covariates = rn, r.tab)),
  c("\makebox[3cm]{\\scriptsize\\hfill number of clusters}", r.M),
  c(" \setminus bar\{R\}^{\land}\{2\}", r.R),
  c("N", r.N)
r.ltxtb \leftarrow latextab(r.tb[1:(grep("fill LY3\\)\\", rn)-1), ],
  hleft = "\scriptsize \hfil\s", hcenter = c(6, rep(1.1, ncol(r.tb)-1)), hright = "\s",
  headercolor = "gray90", adjustlineskip = "-.6ex", delimiterline= NULL,
  alternatecolor2 = "gray90")
write.tablev(r.ltxtb,
  paste0 (pathsaveHere, "Shortfall", ShortfallFileNames [m], "EstimationResults1.tex")
  , colnamestrue = F)
write.tablev(r.ltxtb,
  paste0(pathsaveEstimationMemo, "Shortfall", ShortfallFileNames[m], "EstimationResults
  , colnamestrue = F)
r.ltxtb \leftarrow latextab(r.tb[grep("fill LY3\\)\$", rn):(grep("InK.*U.*4\\)\$", rn)+1), ],
  hleft = "\setminus scriptsize \setminus hfils", hcenter = c(6, rep(1.1, ncol(r.tb)-1)), hright = "$",
  headercolor = "gray90", adjustlineskip = "-.6ex", delimiterline= NULL,
  alternatecolor2 = "gray90")
write.tablev(r.ltxtb,
  pasteO(pathsaveHere, "Shortfall", ShortfallFileNames[m], "EstimationResults2.tex")
  \frac{1}{2}, colnamestrue = F)
write.tablev(r.ltxtb,
  paste0(pathsaveEstimationMemo, "Shortfall", ShortfallFileNames[m], "EstimationResults
  , colnamestrue = F)
r.ltxtb ← latextab(r.tb[
\#grep("ll Group s.*1\\}\\$\\}$", rn):nrow(r.tb)
(grep("InK.*U.*4))", rn)+2):nrow(r.tb)
, ],
```

```
hleft = "\scriptsize \hfil\s", hcenter = c(6, rep(1.1, ncol(r.tb)-1)), hright = "\s",
  headercolor = "gray90", adjustlineskip = "-.6ex", delimiterline= NULL,
  alternatecolor2 = "gray90")
write.tablev(r.ltxtb,
  paste0 (pathsaveHere, "Shortfall", ShortfallFileNames [m], "EstimationResults3.tex")
  , colnamestrue = F)
write.tablev(r.ltxtb,
 paste 0 (pathsave Estimation Memo, "Shortfall", Shortfall File Names [m], "Estimation Results
  , colnamestrue = F)
assign(paste0(reglists.header[m], "list"), rlist)
assign(paste0(reglists.header[m], ".estlist"), ro.estlist)
assign(paste0(reglists.header[m], ".N"), r.N)
assign(paste0(reglists.header[m], ".M"), r.M)
assign(paste0(reglists.header[m], ".R"), r.R)
assign(paste0(reglists.header[m], "list"), rlist)
assign(paste0(reglists.header[m], "Xlist"), ClusterList)
```

Table 1: Group level effects of repayment shortfall

TABLE 1. GROOF LEVEL	LITECTS OF	KLIAIMIL	ANI SHOKI	IALL		
covariates	(1)	(2)	(3)	(4)	(5)	(6)
(Intercept)	14.11 (34.8)	28.77 (2.3)	126.04 (0.0)	126.04 (0.0)	71.38 (0.0)	71.38 (0.0)
Large	-19.20 (27.1)	-35.30 (0.0)	-40.93 (3.6)		-24.53 (6.1)	
LargeGrace	-7.65 (72.9)	-19.06 (2.0)	-106.17 (0.0)		-77.62 (0.0)	
Cattle	-18.82 (35.8)	-28.63 (0.1)	-95.74 (0.0)		-59.78 (0.1)	
Upfront				-40.93 (3.6)		-24.53 (6.1)
WithGrace				-65.24 (0.0)		-53.08 (0.0)
InKind				10.43 (44.2)		17.84 (20.0)
UltraPoor					-26.72 (4.8)	-26.72 (4.8)
Large × UltraPoor					11.59 (43.2)	
LargeGrace × UltraPoor					29.31 (8.2)	
Cattle × UltraPoor					5.51 (77.0)	
Upfront × UltraPoor						11.59 (43.2)
WithGrace × UltraPoor						17.72 (12.4)
InKind × UltraPoor						-23.79 (17.0)
LY2			125.57 (0.0)	125.57 (0.0)	38.02 (0.3)	38.02 (0.3)
$Large \times LY2$			114.68 (0.0)		18.76 (0.3)	
LargeGrace × LY2			161.27 (0.0)		96.77 (0.0)	
Cattle × LY2			124.81 (0.0)		65.59 (0.4)	
Upfront \times LY2				-10.89 (60.4)		-19.26 (13.9)
WithGrace × LY2				46.59 (3.5)		78.01 (0.2)
InKind × LY2				-36.46 (5.0)		-31.18 (28.4)
UltraPoor × LY2					0.47 (97.0)	0.47 (97.0)
$Large \times UltraPoor \times LY2$					22.12 (5.7)	
LargeGrace × UltraPoor × LY2					-20.37 (36.7)	
Cattle \times UltraPoor \times LY2					8.77 (69.4)	
$Up front \times Ultra Poor \times LY2$						21.65 (18.6)
WithGrace \times UltraPoor \times LY2						-42.49 (8.8)
InKind × UltraPoor × LY2						29.13 (35.5)

Table 1: Group Level effects of repayment shortfall (continued)

			`			
covariates	(1)	(2)	(3) 84.95	(4) 84.95	(5) 1.23	(6) 1.23
			(0.9)	(0.9)	(96.6)	(96.6)
Large × LY3			-21.59 (68.4)		-270.76 (11.7)	
LargeGrace × LY3			167.79 (0.0)		129.51 (3.7)	
Cattle × LY3			103.72 (0.2)		13.32 (78.2)	
Upfront × LY3				-106.54 (8.7)		-271.99 (11.9)
WithGrace × LY3				189.39 (0.2)		400.28 (2.8)
InKind × LY3				-64.07 (15.5)		-116.20 (15.8)
UltraPoor × LY3					11.59 (73.8)	11.59 (73.8)
$Large \times UltraPoor \times LY3$					251.93 (14.9)	
LargeGrace × UltraPoor × LY3					-72.38 (22.8)	
Cattle \times UltraPoor \times LY3					38.06 (49.3)	
$Upfront \times UltraPoor \times LY3$						240.34 (17.7)
WithGrace \times UltraPoor \times LY3						-324.31 (8.0)
$InKind \times UltraPoor \times LY3$						110.44 (19.7)
LY4			-191.71 (0.0)	-191.71 (0.0)	-190.52 (0.0)	-190.52 (0.0)
Large × LY4			-231.88 (0.0)		-176.62 (0.0)	
LargeGrace × LY4			-54.82 (13.3)		-128.57 (0.0)	
Cattle × LY4			-33.07 (51.4)		-60.28 (0.5)	
Upfront \times LY4				-40.18 (45.4)		13.90 (76.6)
WithGrace × LY4				177.06 (0.0)		48.06 (23.4)
InKind × LY4				21.76 (72.8)		68.29 (0.1)
UltraPoor × LY4					44.08 (41.6)	44.08 (41.6)
$Large \times UltraPoor \times LY4$					5.54 (89.8)	, ,
$LargeGrace \times UltraPoor \times LY4$					59.74 (14.0)	
$Cattle \times UltraPoor \times LY4$					-17.01 (77.9)	
$Upfront \times UltraPoor \times LY4$						-38.54 (58.2)
WithGrace \times UltraPoor \times LY4						54.20 (34.3)
$InKind \times UltraPoor \times LY4$						-76.76 (31.0)
						()

Notes: 1. Estimates of repayment shortfall controlling for group/village and year-month fixed effects using 48 month administrative records. The estimated model is $\tilde{y}_{ii} = b_1 + b_1' \mathbf{d}_i + b_2 \mathbf{L} \mathbf{Y} 2 + b_2' \mathbf{d}_i \mathbf{L} \mathbf{Y} 2 + b_3' \mathbf{L} \mathbf{Y} 3 + b_3' \mathbf{d}_i \mathbf{L} \mathbf{Y} 3 + b_4' \mathbf{d}_i \mathbf{L} \mathbf{Y} 4 + \tilde{e}_{it}$, where \tilde{x}_{it} is group and time demeaned value of variable $x, t = 1, \dots, 48$ is an ellapsed month index, \mathbf{d}_i is a three element vector of arms or functional attributes, $\mathbf{L} \mathbf{Y} 2, \mathbf{L} \mathbf{Y} 3, \mathbf{L} \mathbf{Y} 4$ are indicator variables of loan years 2, 3, 4. Loan years are defined with the ellapsed months since the first disbursement date, 13-24 for $\mathbf{L} \mathbf{Y} 2, 25$ -36 for $\mathbf{L} \mathbf{Y} 3, \mathbf{Y} 3, \mathbf{Y} 4$ are indicator variables of loan years 2, 3, 4. Loan years are defined with the ellapsed months since the first disbursement date, 13-24 for $\mathbf{L} \mathbf{Y} 2, 25$ -36 for $\mathbf{L} \mathbf{Y} 3, \mathbf{X} 3, \mathbf{Y} 4$ are indicator variables of loan years 2, 3, 4. Loan years are defined with the ellapsed months since the first disbursement date, 13-24 for $\mathbf{L} \mathbf{Y} 2, 25$ -36 for $\mathbf{L} \mathbf{Y} 3, \mathbf{X} 3, \mathbf{Y} 4$ are indicator variables of loan years 2, 3, 4. Loan years are defined with the ellapsed months since the first disbursement date, 13-24 for $\mathbf{L} \mathbf{Y} 2, 25$ -36 for $\mathbf{L} \mathbf{Y} 3, \mathbf{X} 3, \mathbf{Y} 4$ are indicator variables of loan years 2, 3, 4. Loan years are defined with the ellapsed months index, \mathbf{d}_i is a three element vector of arms or functional attributes, $\mathbf{L} \mathbf{Y} 3, \mathbf{L} \mathbf{Y} 4$ are indicator variables of loan years 2, 3, 4. Loan years are defined with the ellapsed month index, \mathbf{d}_i is a three element vector of arms or functional attributes, $\mathbf{L} \mathbf{Y} 3, \mathbf{L} \mathbf{Y} 4$ are indicator variables of loan years 2, 3, 4. Loan years are defined with the ellapsed month index, \mathbf{d}_i is a three element vector of arms of property 2, 25-36 for $\mathbf{L} \mathbf{Y} 3, \mathbf{L} 3, \mathbf{L} 3$ and 37-48 for $\mathbf{L} \mathbf{Y} 4, \mathbf{L} 3, \mathbf{L} 4$ is a three element vector of arms of property 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

Table 1: Group Level effects of repayment shortfall (continued)

covariates	(1)	(2)	(3)	(4)	(5)	(6)
GRSRhigh		31.16 (7.4)			25.37 (12.9)	25.37 (12.9)
Group shortfall,_1		0.78 (0.0)			0.67 (0.0)	0.67 (0.0)
$GRSRhigh \times Group shortfall_{t-1}$		-0.18 (12.6)			-0.17 (12.2)	-0.17 (12.2)
Per member group net saving,_1					-0.02 (0.0)	-0.02 (0.0)
Per member cumulative group net saving $(BDT1000)_{t-1}$					-0.01 (74.9)	-0.01 (74.9)
number of clusters \bar{R}^2	92 0	92 0.211	92 0.128	92 0.128	92 0.256	92 0.256
N	4204	4178	4204	4204	4178	4178

Notes: 1. Estimates of repayment shortfall controlling for group/village and year-month fixed effects using 48 month administrative records. The estimated model is $\tilde{y}_{it} = b_1 + b_1' \mathbf{d}_i + b_2 \mathbf{L} \mathbf{Y} 2 + b_2' \mathbf{d}_i \mathbf{L} \mathbf{Y} 2 + b_3' \mathbf{L} \mathbf{Y} 3 + b_3' \mathbf{d}_i \mathbf{L} \mathbf{Y} 3 + b_4' \mathbf{d}_i \mathbf{L} \mathbf{Y} 4 + \tilde{e}_{it}$, where \tilde{x}_{it} is group and time demeaned value of variable x, $t = 1, \ldots, 48$ is an ellapsed month index, \mathbf{d}_i is a three element vector of arms or functional attributes, $\mathbf{L} \mathbf{Y} 2, \mathbf{L} \mathbf{Y} 3, \mathbf{L} \mathbf{Y} 4$ are indicator variables of loan years 2, 3, 4. Loan years are defined with the ellapsed months since the first disbursement date, 13-24 for $\mathbf{L} \mathbf{Y} 2, 25$ -36 for $\mathbf{L} \mathbf{Y} 3, \mathbf{M} 37$ -48 for $\mathbf{L} \mathbf{Y} 4. \mathbf{Y}$

Table 2: Individual level effects of repayment shortfall, all individuals

	o. Kermi	DII	·····		0.120	
covariates	(1)	(2)	(3)	(4)	(5)	(6)
(Intercept)	-0.80 (56.2)	2.77 (74.0)	0.06 (99.7)	144.89 (0.0)	20.49 (14.4)	20.49 (14.4)
Large	1.19 (49.5)	-3.80 (25.6)	57.64 (0.1)		40.69 (0.6)	
LargeGrace	0.73 (69.8)	-5.07 (14.7)	-146.35 (0.0)		-142.43 (0.0)	
Cattle	1.31 (47.9)	-6.20 (16.6)	-140.97 (0.0)		-143.24 (0.0)	
Upfront				-37.79 (0.1)		40.69 (0.6)
WithGrace				-60.86 (0.0)		-183.12 (0.0)
InKind				-0.32 (96.4)		-0.81 (95.6)
UltraPoor					3.91 (57.7)	3.91 (57.7)
Large × UltraPoor					-4.71 (50.9)	
LargeGrace × UltraPoor					5.93 (3.6)	
Cattle × UltraPoor					9.43 (1.4)	
Upfront × UltraPoor						-8.62 (38.9)
WithGrace × UltraPoor						10.64 (16.6)
InKind × UltraPoor						3.51 (44.9)
LY2			49.49 (0.2)	103.10 (0.0)	56.96 (0.0)	56.96 (0.0)
Large × LY2			-17.02 (12.5)		-0.81 (94.4)	
LargeGrace × LY2			248.71 (0.0)		223.19 (0.0)	
Cattle × LY2			263.69 (0.0)		234.96 (0.0)	
Upfront × LY2				-10.22 (44.5)		-57.78 (0.2)
WithGrace × LY2				45.66 (0.0)		224.00 (0.0)
InKind × LY2				-25.07 (10.5)		11.77 (57.5)
UltraPoor × LY2					-14.18 (11.9)	-14.18 (11.9)
$Large \times UltraPoor \times LY2$					13.55 (29.4)	
LargeGrace × UltraPoor × LY2					13.23 (29.1)	
$Cattle \times UltraPoor \times LY2$					9.15 (47.4)	
$Up front \times Ultra Poor \times LY2$						13.55 (29.4)
WithGrace \times UltraPoor \times LY2						-0.32 (97.9)
$InKind \times UltraPoor \times LY2$						-4.08 (74.2)

TABLE 2: INDIVIDUAL LEVEL EFFECTS OF REPAYMENT SHORTFALL, ALL INDIVIDUALS (CONTINUED)

			<i>'</i>		`	,
covariates LY3	(1)	(2)	(3) 98.17	(4) 87.29	(5) 102.95	(6) 102.95
			(0.0)	(0.0)	(0.0)	(0.0)
Large × LY3			-11.29 (39.0)		-17.20 (31.5)	
LargeGrace × LY3			346.60 (0.0)		288.53 (0.0)	
Cattle × LY3			344.54 (0.0)		308.25 (0.0)	
Upfront \times LY3				-101.72 (0.0)		-120.15 (0.0)
WithGrace × LY3				144.31 (0.0)		305.73 (0.0)
InKind × LY3				-22.12 (30.2)		19.72 (53.8)
UltraPoor × LY3					-19.87 (1.0)	-19.87 (1.0)
$Large \times UltraPoor \times LY3$					33.15 (6.1)	
LargeGrace × UltraPoor × LY3					27.82 (1.8)	
$Cattle \times UltraPoor \times LY3$					-7.45 (72.6)	
$Up front \times Ultra Poor \times LY3$					(, =, 0)	33.15 (6.1)
WithGrace \times UltraPoor \times LY3						-5.33 (77.1)
$InKind \times UltraPoor \times LY3$						-35.27 (10.7)
LY4			-307.26 (0.0)	-179.04 (0.0)	-239.19 (0.0)	-239.19 (0.0)
Large × LY4			-330.16 (0.0)		-265.83 (0.0)	
LargeGrace × LY4			-119.24 (0.0)		-98.42 (0.4)	
Cattle × LY4			-172.15 (0.0)		-116.65 (1.8)	
Upfront × LY4				-120.51 (0.5)		-26.64 (54.4)
WithGrace × LY4				238.31 (0.0)		167.41 (0.0)
InKind × LY4				-12.25 (82.1)		-18.23 (75.7)
UltraPoor × LY4					-20.33 (45.0)	-20.33 (45.0)
$Large \times UltraPoor \times LY4$					10.32 (76.9)	
LargeGrace × UltraPoor × LY4					39.79 (24.6)	
Cattle \times UltraPoor \times LY4					13.85 (69.5)	
Upfront × UltraPoor × LY4						10.32 (76.9)
WithGrace \times UltraPoor \times LY4						29.47 (34.3)
$InKind \times UltraPoor \times LY4$						-25.94 (41.4)
						, ,

Notes: 1. Estimates of repayment shortfall controlling for group/village and year-month fixed effects using 48 month administrative records. The estimated model is $\tilde{y}_{it} = b_1 + b_1' \mathbf{d}_i + b_2 \mathbf{L} \mathbf{Y} 2 + b_2' \mathbf{d}_i \mathbf{L} \mathbf{Y} 2 + b_3' \mathbf{L} \mathbf{Y} 3 + b_4' \mathbf{L} \mathbf{Y} 4 + b_4' \mathbf{d}_i \mathbf{L} \mathbf{Y} 4 + \tilde{e}_{it}$, where \tilde{x}_{it} is group and time demeaned value of variable x, $t = 1, \ldots, 48$ is an ellapsed month index, \mathbf{d}_i is a three element vector of arms or functional attributes, $\mathbf{L} \mathbf{Y} 2$, $\mathbf{L} \mathbf{Y} 3$, $\mathbf{L} \mathbf{Y} 4$ are indicator variables of loan years 2, 3, 4. Loan years are defined with the ellapsed months since the first disbursement date, 13-24 for $\mathbf{L} \mathbf{Y} 2$, 25-36 for $\mathbf{L} \mathbf{Y} 3$, and 37-48 for $\mathbf{L} \mathbf{Y} 4$. Fixed effects are controlled by differencing out respective means from the data matrix. Shortfall y_{it} is (planned installment) - (actual repayment). Group shortfall t_{i-1} indicates a one month lagged mean shortfall amount of a group. Per member group net saving t_{i-1} and Per member cumulative group net saving (BDT1000) t_{i-1} give one month lagged average net saving in a group and their accumulated sums, respectively. Median group repayent shortfall rate is -1.42. 69 groups participated in the lending program.

TABLE 2: INDIVIDUAL LEVEL EFFECTS OF REPAYMENT SHORTFALL, ALL INDIVIDUALS (CONTINUED)

covariates	(1)	(2)	(3)	(4)	(5)	(6)
GRSRhigh		15.89 (13.9)			20.85 (5.2)	20.85 (5.2)
Group shortfall,_1		0.01 (88.6)			-0.12 (1.9)	-0.12 (1.9)
$GRSRhigh \times Group \ shortfall_{t-1}$		-0.11 (14.4)			-0.14 (6.9)	-0.14 (6.9)
shortfall,_1		0.44 (0.0)			0.30 (0.0)	0.30 (0.0)
Per member group net saving $_{t-1}$					-0.04 (13.5)	-0.04 (13.5)
Per member cumulative group net saving (BDT1000),_1					-0.04 (29.0)	-0.04 (29.0)
number of clusters $ar{R}^2$	92 0	92 0.097	92 0.133	92 0.136	92 0.173	92 0.173
N	55352	55170	55352	55352	55170	55170

Notes: 1. Estimates of repayment shortfall controlling for group/village and year-month fixed effects using 48 month administrative records. The estimated model is $\tilde{y}_{it} = b_1 + b_1' \mathbf{d}_i + b_2 \mathbf{L} \mathbf{Y} 2 + b_2' \mathbf{d}_i \mathbf{L} \mathbf{Y} 2 + b_3' \mathbf{L} \mathbf{Y} 3 + b_3' \mathbf{d}_i \mathbf{L} \mathbf{Y} 3 + b_4' \mathbf{d}_i \mathbf{L} \mathbf{Y} 4 + \tilde{e}_{it}$, where \tilde{x}_{it} is group and time demeaned value of variable x, $t = 1, \ldots, 48$ is an ellapsed month index, \mathbf{d}_i is a three element vector of arms or functional attributes, $\mathbf{L} \mathbf{Y} 2, \mathbf{L} \mathbf{Y} 3, \mathbf{L} \mathbf{Y} 4$ are indicator variables of loan years 2, 3, 4. Loan years are defined with the ellapsed months since the first disbursement date, 13-24 for $\mathbf{L} \mathbf{Y} 2, 25$ -36 for $\mathbf{L} \mathbf{Y} 3, \mathbf{M} 37$ -48 for $\mathbf{L} \mathbf{Y} 4. \mathbf{M} 4. \mathbf{M}$

Table 3: Individual level effects of repayment shortfall

TABLE 3. INDIVIDUAL LEV	LL LITLOTS (J. KLIAII	VIENT SHOP	KIIALL		
covariates	(1)	(2)	(3)	(4)	(5)	(6)
(Intercept)	3.11 (3.9)	14.20 (12.6)	31.23 (0.8)	131.82 (0.0)	51.21 (0.0)	51.21 (0.0)
Large	-1.13 (53.2)	-4.99 (9.9)	23.71 (9.6)		21.65 (18.2)	
LargeGrace	-1.21 (53.5)	-6.71 (3.6)	-138.02 (0.0)		-148.27 (0.0)	
Cattle	-1.37 (46.8)	-6.65 (5.0)	-140.01 (0.0)		-152.05 (0.0)	
Upfront				-16.99 (9.6)		21.65 (18.2)
WithGrace				-75.48 (0.0)		-169.92 (0.0)
InKind				2.08 (75.4)		-3.78 (80.0)
UltraPoor					-0.07 (99.5)	-0.07 (99.5)
$Large \times UltraPoor$					-4.07 (75.7)	
LargeGrace × UltraPoor					7.80 (49.0)	
Cattle × UltraPoor					10.38 (37.3)	
Upfront × UltraPoor						-4.07 (75.7)
WithGrace × UltraPoor						11.87 (14.1)
InKind × UltraPoor						2.57 (64.3)
LY2			21.94 (7.6)	86.56 (0.0)	53.91 (0.2)	53.91 (0.2)
Large × LY2			-20.54 (1.5)		-47.15 (1.7)	
LargeGrace × LY2			202.85 (0.0)		166.12 (0.0)	
Cattle × LY2			216.04 (0.0)		182.78 (0.0)	
Upfront \times LY2				-1.51 (91.5)		-47.15 (1.7)
WithGrace × LY2				54.29 (0.1)		213.27 (0.0)
InKind × LY2				-15.18 (36.8)		16.65 (46.7)
UltraPoor × LY2					-7.27 (54.8)	-7.27 (54.8)
Large \times UltraPoor \times LY2					5.27 (70.3)	
LargeGrace × UltraPoor × LY2					6.76 (63.9)	
$Cattle \times UltraPoor \times LY2$					-1.32 (93.3)	
$Up front \times Ultra Poor \times LY2$						5.27 (70.3)
WithGrace \times UltraPoor \times LY2						1.49 (88.5)
$InKind \times UltraPoor \times LY2$						-8.09 (53.6)

TABLE 3: INDIVIDUAL LEVEL EFFECTS OF REPAYMENT SHORTFALL (CONTINUED)

covariates	(1)	(2)	(3)	(4)	(5)	(6)
LY3			43.46 (0.4)	70.77 (0.0)	76.73 (0.0)	76.73 (0.0)
Large × LY3			-17.04 (17.2)		-83.16 (0.1)	
LargeGrace × LY3			242.61 (0.0)		184.25 (0.0)	
Cattle × LY3			260.48 (0.0)		225.16 (0.0)	
Upfront \times LY3				-89.08 (0.0)		-83.16 (0.1)
WithGrace × LY3				140.00 (0.0)		267.41 (0.0)
InKind × LY3				-9.03 (68.9)		40.91 (23.6)
UltraPoor × LY3					-10.02 (26.8)	-10.02 (26.8)
$Large \times UltraPoor \times LY3$					17.87 (33.4)	
LargeGrace × UltraPoor × LY3					7.12 (60.8)	
Cattle \times UltraPoor \times LY3					-29.52 (20.0)	
$Up front \times Ultra Poor \times LY3$						17.87 (33.4)
WithGrace \times UltraPoor \times LY3						-10.75 (58.1)
InKind × UltraPoor × LY3						-36.64 (12.3)
LY4			-283.74 (0.0)	-168.44 (0.0)	-269.18 (0.0)	-269.18 (0.0)
Large × LY4			-264.49 (0.0)		-7.66 (87.4)	
LargeGrace × LY4			-91.78 (0.2)		155.19 (0.1)	
Cattle × LY4			-136.17 (0.1)		141.55 (2.3)	
Upfront \times LY4				-125.24 (0.8)		-7.66 (87.4)
WithGrace × LY4				227.68 (0.0)		162.85 (0.2)
InKind × LY4				-13.03 (83.0)		-13.63 (83.2)
UltraPoor × LY4					-13.10 (69.5)	-13.10 (69.5)
$Large \times UltraPoor \times LY4$					17.81 (67.1)	
LargeGrace × UltraPoor × LY4					43.79 (27.6)	
Cattle \times UltraPoor \times LY4					13.61 (73.8)	
$Up front \times Ultra Poor \times LY4$						17.81 (67.1)
WithGrace \times UltraPoor \times LY4						25.98 (44.8)
InKind × UltraPoor × LY4						-30.18 (36.6)

Notes: 1. Estimates of repayment shortfall controlling for group/village and year-month fixed effects using 48 month administrative records. The estimated model is $\tilde{y}_{it} = b_1 + b_1' \mathbf{d}_i + b_2 \mathbf{L} \mathbf{Y} 2 + b_2' \mathbf{d}_i \mathbf{L} \mathbf{Y} 2 + b_3' \mathbf{L} \mathbf{Y} 3 + b_4' \mathbf{L} \mathbf{Y} 4 + b_4' \mathbf{d}_i \mathbf{L} \mathbf{Y} 4 + \tilde{e}_{it}$, where \tilde{x}_{it} is group and time demeaned value of variable x, $t = 1, \ldots, 48$ is an ellapsed month index, \mathbf{d}_i is a three element vector of arms or functional attributes, $\mathbf{L} \mathbf{Y} 2$, $\mathbf{L} \mathbf{Y} 3$, $\mathbf{L} \mathbf{Y} 4$ are indicator variables of loan years 2, 3, 4. Loan years are defined with the ellapsed months since the first disbursement date, 13-24 for $\mathbf{L} \mathbf{Y} 2$, 25-36 for $\mathbf{L} \mathbf{Y} 3$, and 37-48 for $\mathbf{L} \mathbf{Y} 4$. Fixed effects are controlled by differencing out respective means from the data matrix. Shortfall y_{it} is (planned installment) - (actual repayment). Group shortfall t_{i-1} indicates a one month lagged mean shortfall amount of a group. Per member group net saving t_{i-1} and Per member cumulative group net saving (BDT1000) t_{i-1} give one month lagged average net saving in a group and their accumulated sums, respectively. Median group repayent shortfall rate is -1.42. 69 groups participated in the lending program.

TABLE 3: INDIVIDUAL LEVEL EFFECTS OF REPAYMENT SHORTFALL (CONTINUED)

covariates	(1)	(2)	(3)	(4)	(5)	(6)
Group shortfall $_{t-1}$		-0.07 (23.6)			-0.22 (0.0)	-0.22 (0.0)
shortfall _{r-1}		0.45 (0.0)	0.27 (0.0)	-0.05 (0.0)	0.30 (0.0)	0.30 (0.0)
Per member group net saving $_{t-1}$					-0.11 (0.0)	-0.11 (0.0)
Per member cumulative group net saving (BDT1000) _{r-1}					-0.03 (41.0)	-0.03 (41.0)
number of clusters $ar{R}^2$	69 0	69 0.102	69 0.172	69 0.121	69 0.179	69 0.179
N	41901	41722	41722	41722	41722	41722

Notes: 1. Estimates of repayment shortfall controlling for group/village and year-month fixed effects using 48 month administrative records. The estimated model is $\tilde{y}_{it} = b_1 + b_1' \mathbf{d}_i + b_2 \mathbf{L} \mathbf{Y} 2 + b_2' \mathbf{d}_i \mathbf{L} \mathbf{Y} 2 + b_3' \mathbf{L} \mathbf{Y} 3 + b_3' \mathbf{d}_i \mathbf{L} \mathbf{Y} 3 + b_4 \mathbf{L} \mathbf{Y} 4 + b_4' \mathbf{d}_i \mathbf{L} \mathbf{Y} 4 + \tilde{e}_{it}$, where \tilde{x}_{it} is group and time demeaned value of variable $x, t = 1, \dots, 48$ is an ellapsed month index, \mathbf{d}_i is a three element vector of arms or functional attributes, $\mathbf{L} \mathbf{Y} 2, \mathbf{L} \mathbf{Y} 3, \mathbf{L} \mathbf{Y} 4$ are indicator variables of loan years 2, 3, 4. Loan years are defined with the ellapsed months since the first disbursement date, 13-24 for $\mathbf{L} \mathbf{Y} 2, 25$ -36 for $\mathbf{L} \mathbf{Y} 3, \mathbf{M} 37$ -48 for $\mathbf{L} \mathbf{Y} 4$. Fixed effects are controlled by differencing out respective means from the data matrix. Shortfall y_{it} is (planned installment) - (actual repayment). Group shortfall_{t-1} indicates a one month lagged mean shortfall amount of a group. Per member group net saving_{t-1} and Per member cumulative group net saving (BDT1000)_{t-1} give one month lagged average net saving in a group and their accumulated sums, respectively. Median group repayent shortfall rate is -1.42. 69 groups participated in the lending program.

2. Standard errors are clustered at group (village) level.

Finding .1 Table 1 shows group level repayment shortfall has a positive autocorrelation hence is persistent. In (1), the coefficient is smaller in groups with high shortfall rates, hinting loan repayment discipline as a group at some intermediate level. In (2) and (3), group level shortfall gets smaller in the third year than in the second year for all arms, indicating stronger efforts in repayment in the final loan year. In (4) and (5), the UltraPoor is found to have no larger repayment shortfall than the moderately poor, except for the Large arm or Upfront attribute in the second loan year. Table 2 (1), (4) and (5) also show persistence for individuals, although the magnitude is much smaller. In (1), lagged shortfall of others decreases with own shortfall only in high GRSR group. This confirms the group level repayment discipline that is consistent with a steady state short fall rate at an intermediate level as a group. In (2), shortfall is larger in the second and third year for the arms with a grace period. This reflects that a grace period does not necessarily help the borrowers to prepare repayments, which is against the intention to match the repayment with the cash flow. The ultra poor has smaller shortfall in all arms in year 2 except in the large grace arm in year 3. The results on the ultra poor may indicate the difference with the moderately poor is nominal.