Assignment 04 Trees

BQOM 2578 | Data Mining

Theresa Wohlever

Sunday, October 19, 2025

Table of contents

Executive Summary	2
Predicting Pennsylvania County Suicide Rates from Hospital Data: A Comparative	
Analysis	2
Model Performance	2
Clinical Implications	3
Model Features Impact Comparison	3
Data Preparation	4
Importing Data, Cleaning, & Wrangling	4
Split Dataset into Training and Test	
Preliminary Analysis	
Regression	7
Stepwise Linear Regression	7
Logistic Regression	10
Trees: Regression	12
Cross Validation	14
Trees: Classification	19
Cross-Validation	23
Compare Classification Tree with Logistic regressions	_
References	27

Executive Summary

Predicting Pennsylvania County Suicide Rates from Hospital Data: A Comparative Analysis

This analysis investigates how effectively county suicide rates in Pennsylvania can be predicted using hospital-level data through three distinct modeling approaches: logistic regression, regression trees, and classification trees. The *dependent variable* is county suicide rate, with county hospital characteristics serving as predictors after extensive data preparation including feature reduction, categorical variable encoding, and dataset joining.

discharges1864 (hospital patient discharges ages 18-64) emerges as the dominant predictor across all three modeling approaches, though each method reveals distinct patterns in variable importance and predictive performance.

Model Performance

Logistic Regression Insights

The presence of a children's hospital shows the strongest effect (β = 2.865, p < 0.001), translating to 17.6 times higher odds of elevated suicide rates. Patient discharge volume demonstrates a small but statistically significant effect (β = 0.0001, p = 0.022). Notably, type_of_organization shows marginal significance (β = -0.302, p = 0.070), while variables including psychiatrists, clinic_psychiatric, and comprehensive_rehab demonstrate no significant impact.

Regression Tree Performance

The model relies heavily on discharges1864 as the primary split variable (initial threshold: 2,228), with subsequent splits at 153, 254, 338, 349, and 523. Secondary variables include clinic_psychiatric (threshold: 1.5-2), psychiatrists (thresholds: 7.5, 15.5, 35.5), and comprehensive_rehab (threshold: 2). The model achieves an out-of-sample R² of 0.039 with MAE of 48.32, indicating modest predictive capability.

Classification Tree Results

The classification approach shows the most parsimonious structure, using only discharges1864 (primary split at 8,431) and psychiatrists (splits at 15 and 21) in the features-of-interest model. The simpler all-features tree (Tree 1) achieves 72.73% accuracy using only discharges1864, while

the expanded trees incorporating psychiatrist staffing levels (Trees 2 & 3) reach 77.27% accuracy. However, this still underperforms logistic regression, which achieves 84.09% accuracy.

Clinical Implications

The finding that specialized psychiatric resources (psychiatrists, clinic_psychiatric, psych_over17) show minimal direct predictive value is counterintuitive. The strong signal from general hospital discharge volume suggests that overall healthcare access and utilization may be more informative proxies for community suicide risk than specialized mental health resources alone. The marginal significance of type_of_organization hints that organizational structure may influence outcomes in ways not fully captured by facility-level service indicators.

Model Features Impact Comparison

Feature	Logistic Regression	Regression Tree	Classification Tree
children_hospital	Very large effect (β = 2.849)	Not Used	Not Used
psych_over17	Small effect, but not significant (β = 0.184)	Not Used	Not Used
discharges1864	Very small but significant effect (β = 0.0001)	Primary split variable First split at 2,228 Subsequent splits: 153, 254, 349, 523, 8431, etc. Most important predictor OSR ² = 0.088, MAE = 48.32	Primary and only split variable - Main split at 8,431 discharges - Tree 1 accuracy: 72.73% - Trees 2 & 3 accuracy: 65.91%
psych_over17_beds_lic	Negligible effect ($\beta = 0.001$)	Not Used	Not Used
psychiatrists	Negligible effect (β = 0.000794, p = 0.880) - Not statistically significant	Secondary split variable - Used at multiple thresholds: 7.5, 15.5, 35.5 - Appears in deeper tree nodes	Secondary split variable - Used at thresholds: 15, 21 - Splits high-discharge facilities

Feature	Logistic Regression	Regression Tree	Classification Tree
clinic_psychiatric	Small positive effect (β = 0.120, p = 0.554) - Not statistically significant	Secondary split variable - Split threshold at 1.5 and 2 - Distinguishes facilities with/without psychiatric clinics	Not Used
comprehensive_rehab	Negative effect (β = -0.318, p = 0.104) - Marginally non-significant	Terminal split variable - Threshold at 2 - Used only in deepest nodes	Not Used
type_of_organization	Negative effect (β = -0.302, p = 0.070) - Marginally significant - Certain organization types associated with lower suicide rates	Not Used	Not Used

Tree accuracy figures reflect the features-of-interest (FOI) model. The simpler all-features classification tree using only discharges1864 achieved higher accuracy (72.73%). Logistic regression outperformed both tree approaches with 84.09% accuracy.

Data Preparation

Importing Data, Cleaning, & Wrangling

Set the cut-off value for 1 or 0 (binary) for Logistic regression is the local minimum of county Suicide Rates.

Split Dataset into Training and Test

We will leave 80% of observations in the training set and 20% in the test set.

```
#set.seed keeps results random but constant for all using the same seed (so we all will have the same results)
set.seed(1760, sample.kind = "Rejection")
spl = sample(nrow(df),0.8*nrow(df))
head(spl)
```

```
[1] 193 59 139 177 122 20
```

```
# Split into train and test:
train.df = df[spl,]
test.df = df[-spl,]
```

Preliminary Analysis

Evaluate Correlation Matrix

```
## Prep for correlation

df_cor <- df_clean

cor_mat <- cor(df)

cor_threshold <- 0

cor_threshold_count <- 2

cols_above_threshold <- which( colSums(abs(cor_mat) > cor_threshold, na.rm = TRUE) >= cor_threshold_count)

df <- subset(df, select = colnames(cor_mat)[cols_above_threshold])

cor_mat <- cor(df)

cor_mat_plot <- round(cor_mat, 2)

cor_mat_plot[is.na(cor_mat_plot)] <- 0 # Replace all NA values with zero

cat(paste(colnames(cor_mat_plot), collapse = "\n"))</pre>
```

```
facility_id

type_of_organization

children_hospital
hospital_ltc
discharges1864
alcohol_drug_detox
alcoholdetox_patient_days
alcohol_drug_treat
comprehensive_rehab
psych_0to17
psych_over17
psych_over17
psych_over17_patient_days
detox
clinpsyc
```

clinic_psychiatric
psychiatrists
target

```
corrplot(cor_mat_plot,
  method="square",
  type="upper",
  order="AOE",
  tl.col="darkgrey",
  cl.align.text = "r",
  diag=FALSE,
  number.cex=0.6)
```


Regression

Stepwise Linear Regression

```
model <- lm(target ~ ., data = df)
summary(model)</pre>
```

```
Call:
lm(formula = target \sim ., data = df)
Residuals:
  Min
          10 Median
                        30
                             Max
-98.80 -40.27 -14.39 26.85 132.00
Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
(Intercept)
                         9.837e+01 5.475e+01 1.797 0.073863 .
facility_id
                        5.033e-09 2.712e-07 0.019 0.985212
type_of_organization
                        -4.438e+00 3.035e+00 -1.462 0.145204
children_hospital
                       9.625e+01 2.053e+01 4.688 5.1e-06 ***
hospital_ltc
                        -8.800e+00 1.261e+01 -0.698 0.485998
discharges1864
                         4.268e-03 1.134e-03 3.763 0.000221 ***
alcohol_drug_detox
                         6.592e+00 1.572e+01 0.419 0.675419
alcoholdetox_patient_days 3.616e-03 3.944e-03 0.917 0.360344
alcohol_drug_treat
                        -2.762e+01 1.356e+01 -2.037 0.042938 *
comprehensive_rehab
                        -7.007e+00 4.397e+00 -1.594 0.112576
                        1.157e+01 6.609e+00 1.750 0.081633 .
psych_0to17
psych_over17
                         1.091e+01 4.858e+00 2.245 0.025842 *
psych_over17_beds_lic 3.940e-01 2.758e-01 1.429 0.154690
psych_over17_patient_days -5.272e-04 8.691e-04 -0.607 0.544840
detox
                         8.600e+00 2.020e+01 0.426 0.670717
clinpsyc
                        -8.861e-01 8.850e+00 -0.100 0.920344
clinic_psychiatric
                        -5.928e+00 4.407e+00 -1.345 0.180073
psychiatrists
                        -6.321e-02 1.256e-01 -0.503 0.615476
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 54.57 on 200 degrees of freedom
Multiple R-squared: 0.229, Adjusted R-squared: 0.1634
F-statistic: 3.494 on 17 and 200 DF, p-value: 1.028e-05
# Perform stepwise regression
step_model_back <- step(model, direction = "backward",trace=0)</pre>
summary(step_model_back)
```

 $lm(formula = target \sim type_of_organization + children_hospital +\\$

```
discharges1864 + alcohol_drug_treat + comprehensive_rehab +
   psych_0to17 + psych_over17 + psych_over17_beds_lic + clinic_psychiatric,
   data = df
Residuals:
   Min
           1Q Median
                          30
                                Max
-106.02 -40.33 -10.98 28.88 134.42
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    1.295e+02 3.853e+01 3.361 0.000924 ***
type_of_organization -5.079e+00 2.881e+00 -1.763 0.079397 .
children_hospital
                    9.551e+01 1.995e+01 4.788 3.20e-06 ***
discharges1864
                  4.001e-03 8.419e-04 4.753 3.74e-06 ***
comprehensive_rehab -6.924e+00 4.281e+00 -1.617 0.107307
psych_0to17
                    9.837e+00 6.380e+00 1.542 0.124614
psych_over17
                   1.085e+01 4.695e+00 2.312 0.021772 *
psych_over17_beds_lic 2.496e-01 9.096e-02 2.744 0.006595 **
clinic_psychiatric -6.337e+00 4.253e+00 -1.490 0.137781
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 53.87 on 208 degrees of freedom
Multiple R-squared: 0.2186, Adjusted R-squared: 0.1848
F-statistic: 6.466 on 9 and 208 DF, p-value: 4.224e-08
step_model_forward <- step(model, direction = "forward",trace=0)</pre>
summary(step_model_forward)
Call:
```

```
lm(formula = target ~ facility_id + type_of_organization + children_hospital +
hospital_ltc + discharges1864 + alcohol_drug_detox + alcoholdetox_patient_days +
alcohol_drug_treat + comprehensive_rehab + psych_0to17 +
psych_over17 + psych_over17_beds_lic + psych_over17_patient_days +
detox + clinpsyc + clinic_psychiatric + psychiatrists, data = df)
```

Residuals:

Min 10 Median 30 Max -98.80 -40.27 -14.39 26.85 132.00

```
Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
                        9.837e+01 5.475e+01 1.797 0.073863 .
(Intercept)
facility_id
                        5.033e-09 2.712e-07 0.019 0.985212
type_of_organization -4.438e+00 3.035e+00 -1.462 0.145204
                       9.625e+01 2.053e+01 4.688 5.1e-06 ***
children_hospital
hospital_ltc
                       -8.800e+00 1.261e+01 -0.698 0.485998
discharges1864
                       4.268e-03 1.134e-03 3.763 0.000221 ***
                       6.592e+00 1.572e+01 0.419 0.675419
alcohol_drug_detox
alcoholdetox_patient_days 3.616e-03 3.944e-03 0.917 0.360344
alcohol_drug_treat
                       -2.762e+01 1.356e+01 -2.037 0.042938 *
comprehensive_rehab
                      -7.007e+00 4.397e+00 -1.594 0.112576
psych_0to17
                       1.157e+01 6.609e+00 1.750 0.081633 .
psych_over17
                       1.091e+01 4.858e+00 2.245 0.025842 *
                       3.940e-01 2.758e-01 1.429 0.154690
psych_over17_beds_lic
psych_over17_patient_days -5.272e-04 8.691e-04 -0.607 0.544840
detox
                       8.600e+00 2.020e+01 0.426 0.670717
clinpsyc
                       -8.861e-01 8.850e+00 -0.100 0.920344
clinic_psychiatric
                     -5.928e+00 4.407e+00 -1.345 0.180073
psychiatrists
                       -6.321e-02 1.256e-01 -0.503 0.615476
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 54.57 on 200 degrees of freedom
Multiple R-squared: 0.229, Adjusted R-squared: 0.1634
F-statistic: 3.494 on 17 and 200 DF, p-value: 1.028e-05
```

Logistic Regression

```
df <- df_clean
# Update target to be binomial

df$target <- ifelse(df$target < target_bin_cutoff, 0, 1)

train.df = df[spl,]

test.df = df[-spl,]

# Logistic Regression with FOI

logreg <- glm(model_feature_input, data=df, family="binomial")
summary(logreg)</pre>
```

```
Call:
glm(formula = model_feature_input, family = "binomial", data = df)
Coefficients:
                      Estimate Std. Error z value Pr(>|z|)
(Intercept)
                    -1.288e+00 8.774e-01 -1.468 0.142029
children_hospital 2.865e+00 8.650e-01 3.313 0.000925 ***
psych_over17
                    3.007e-01 2.305e-01 1.305 0.192016
                     1.023e-04 4.452e-05 2.298 0.021540 *
discharges1864
psych_over17_beds_lic 5.740e-03 4.584e-03 1.252 0.210548
                    7.944e-04 5.246e-03 0.151 0.879633
psychiatrists
clinic_psychiatric 1.199e-01 2.028e-01 0.591 0.554350
comprehensive_rehab -3.175e-01 1.955e-01 -1.624 0.104344
type_of_organization -3.022e-01 1.666e-01 -1.814 0.069601 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 229.83 on 217 degrees of freedom
Residual deviance: 199.78 on 209 degrees of freedom
AIC: 217.78
Number of Fisher Scoring iterations: 5
coeftable <- data.frame(col1=coef(logreg),col2=exp(coef(logreg)))</pre>
colnames(coeftable)<-c('Coefficient (log-odds)','e^coefficient (odds)')</pre>
coeftable
```

	Coefficient (log-odds)	e^coefficient (odds)
(Intercept)	-1.2882266421	0.2757594
children_hospital	2.8654745262	17.5573827
psych_over17	0.3007478757	1.3508687
discharges1864	0.0001023188	1.0001023
psych_over17_beds_lic	0.0057395644	1.0057561
psychiatrists	0.0007943842	1.0007947
clinic_psychiatric	0.1198965844	1.1273803
comprehensive_rehab	-0.3175226706	0.7279502
type_of_organization	-0.3022347150	0.7391646

```
#
# Confusion Matrix
#

df$PredLogOdds <- df$PredProbs <- predict(logreg, newdata=df)
df$PredProbs <- predict(logreg, newdata=df, type="response")
# type="response" gives the probability
summary(df$PredProbs)</pre>
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.01934 0.12504 0.17154 0.22018 0.25243 0.87779
```

Trees: Regression

```
df <- df_clean</pre>
train.df = df[spl,]
test.df = df[-spl,]
rpart(model_feature_input, data=train.df)
n= 174
node), split, n, deviance, yval
     \ast denotes terminal node
 1) root 174 611057.600 73.31609
   2) discharges1864< 2228 110 348748.300 61.28182
    4) clinic_psychiatric>=1.5 45 127295.800 45.22222
      8) discharges1864< 337.5 21 28082.670 26.66667 *
      9) discharges1864>=337.5 24 85655.960 61.45833 *
    5) clinic_psychiatric< 1.5 65 201811.600 72.40000
     11) psychiatrists< 35.5 57 185187.100 78.26316
       22) psychiatrists< 15.5 49 143652.000 71.79592
         44) discharges1864< 153 20 46627.800 52.90000
           88) discharges1864>=68 10 8729.600 32.20000 *
           89) discharges1864< 68 10 29328.400 73.60000 *
         45) discharges1864>=153 29 84958.140 84.82759
           90) discharges1864>=254 21 54546.950 75.38095 *
```

```
23) psychiatrists>=15.5 8 26932.880 117.87500 *

3) discharges1864>=2228 64 218998.000 94.00000

6) psych_over17_beds_lic< 62 57 194989.700 88.59649

12) psychiatrists< 7.5 11 13195.640 45.81818 *

13) psychiatrists>=7.5 46 156850.600 98.82609

26) psych_over17_beds_lic>=27 16 43872.000 72.00000 *

27) psych_over17_beds_lic< 27 30 95323.470 113.13330

54) comprehensive_rehab>=2 18 49460.940 96.05556 *

55) comprehensive_rehab<=2 12 32738.250 138.75000 *

7) psych_over17_beds_lic>=62 7 8792.000 138.00000 *

(train.df%%filter(children_hospital==1))$target%~*mean()

[1] 134.6

(train.df%%filter(children_hospital==0))$target%~*mean()
```

91) discharges1864< 254 8 23617.880 109.62500 *

prp(rpart(target ~ .,data=df, method="anova",minbucket=5,cp=0.0001),digits=-5)

Cross Validation

```
set.seed(1760, sample.kind = "Rejection")

tree_cv_all <- rpart(target ~ ., data=train.df, method="anova")
rpart.plot(tree_cv_all, digits=-2, extra=101)</pre>
```


tree_cv_foi <- rpart(model_feature_input,data=train.df, method="anova")
rpart.plot(tree_cv_foi, digits=-2, extra=101)</pre>

plotcp(tree_cv_foi)


```
mean_train = mean(train.df$target)
SST = sum((test.df$target - mean_train)^2)

## Predictions
test.df$pred_cv_all = predict(tree_cv_all, newdata=test.df)
test.df$pred_cv_foi = predict(tree_cv_foi, newdata=test.df)

# Compute the sum of squared errors (SSE) using our tree:
```

```
SSE_all = sum((test.df$target - test.df$pred_cv_all)^2)
print(paste("Tree All has a SSE of", SSE_all))

[1] "Tree All has a SSE of 186610.784586498"

OSR2_all = 1 - SSE_all/SST
OSR2_all

[1] -0.1561529

# Compute the sum of squared errors (SSE) using our tree:
SSE_foi = sum((test.df$target - test.df$pred_cv_foi)^2)
print(paste("Tree FOI has a SSE of", SSE_foi))

[1] "Tree FOI has a SSE of 155112.10444095"

OSR2_foi = 1 - SSE_foi/SST
OSR2_foi
```

[1] 0.03899819

Let's see the MAE for comparisons:

```
MAE = mean(abs(test.df$target - test.df$pred01))
MAE
```

[1] NaN

Trees: Classification

```
df <- df_clean
# Update target to be binomial

df$target <- ifelse(df$target < target_bin_cutoff, 0, 1)

train.df = df[spl,]

test.df = df[-spl,]

#It is always a good practice to see the proportion of observations we have for each case
table(df$target)</pre>
```

```
0 1
170 48
prop.table(table(df$target)) # prop is "proportion"
      0
              1
0.7798165 0.2201835
For the train dataset:
prop.table(table(train.df$target))
      0
0.7816092 0.2183908
cat("\n For the test dataset: ")
For the test dataset:
prop.table(table(test.df$target))
      0
0.7727273 0.2272727
tree_all <-rpart(target ~ ., data=train.df, method="class",cp=0.05)</pre>
rpart.plot(tree_all, digits=-2)
```


prp(tree_all)

tree_foi<-rpart(model_feature_input, data=train.df, method="class", cp=0.05)
rpart.plot(tree_foi,digits=-2)</pre>

Cross-Validation

```
cat("All Features Tree:")
```

All Features Tree:

```
test.df$pred_all = predict(tree_all, newdata = test.df, type="class")
confusionMatrix(test.df$pred_all,as.factor(test.df$target), positive="1")
```

Confusion Matrix and Statistics

Reference

1 4 2

Prediction 0 1 0 30 8

Accuracy : 0.7273

95% CI : (0.5721, 0.8504)

No Information Rate : 0.7727 P-Value [Acc > NIR] : 0.8176

Kappa : 0.0959

Mcnemar's Test P-Value : 0.3865

```
Sensitivity: 0.20000
            Specificity: 0.88235
         Pos Pred Value : 0.33333
         Neg Pred Value : 0.78947
             Prevalence: 0.22727
         Detection Rate: 0.04545
   Detection Prevalence: 0.13636
      Balanced Accuracy : 0.54118
       'Positive' Class : 1
acc_tree_all <- sum(test.df$pred_all == test.df$target) / nrow(test.df)</pre>
print(paste("Accuracy for All Features Tree", round(acc_tree_all * 100, 2), "%"))
[1] "Accuracy for All Features Tree 72.73 %"
cat("F0I Tree:")
FOI Tree:
test.df$pred_foi = predict(tree_foi, newdata = test.df, type="class")
confusionMatrix(test.df$pred_foi,as.factor(test.df$target), positive="1")
Confusion Matrix and Statistics
          Reference
Prediction 0 1
         0 27 8
         1 7 2
               Accuracy : 0.6591
                95% CI: (0.5008, 0.7951)
   No Information Rate : 0.7727
   P-Value [Acc > NIR] : 0.9717
                  Kappa : -0.0061
Mcnemar's Test P-Value : 1.0000
```

Sensitivity: 0.20000

```
Specificity: 0.79412
Pos Pred Value: 0.22222
Neg Pred Value: 0.77143
Prevalence: 0.22727
Detection Rate: 0.04545
Detection Prevalence: 0.20455
Balanced Accuracy: 0.49706
```

```
acc_tree_foi <- sum(test.df$pred_foi == test.df$target) / nrow(test.df)
print(paste("Accuracy for FOI Tree:", round(acc_tree_foi * 100, 2), "%"))</pre>
```

[1] "Accuracy for FOI Tree: 65.91 %"

Compare Classification Tree with Logistic regressions

```
## Logistic Regression
test.df$predregprobs_foi = predict(logreg, newdata = test.df, type="response")
test.df$predreg1<-ifelse(test.df$predregprobs_foi>0.5,1,0)
acc_reg <- sum(test.df$predregprobs_foi == test.df$target) / nrow(test.df)</pre>
print(paste("Accuracy for Logistic Regression 1:", round(acc_reg * 100, 2), "%"))
[1] "Accuracy for Logistic Regression 1: 0 %"
ConfMatReg <- confusionMatrix(data=as.factor(test.df$predreg1),reference=as.factor(test.df$target), positive = "1")</pre>
ConfMatReg
Confusion Matrix and Statistics
          Reference
Prediction 0 1
         0 33 6
         1 1 4
               Accuracy : 0.8409
                 95% CI: (0.6993, 0.9336)
    No Information Rate : 0.7727
```

```
P-Value [Acc > NIR] : 0.1859
                  Kappa : 0.45
Mcnemar's Test P-Value : 0.1306
            Sensitivity: 0.40000
            Specificity: 0.97059
         Pos Pred Value: 0.80000
         Neg Pred Value : 0.84615
             Prevalence: 0.22727
         Detection Rate: 0.09091
   Detection Prevalence: 0.11364
      Balanced Accuracy: 0.68529
       'Positive' Class : 1
# Classification Tree
test.df$predregtreeprobs_foi = predict(tree_foi, newdata = test.df, type="class")
test.df$predreg2 <- ifelse(test.df$predregtreeprobs_foi >0.5 ,1 ,0)
acc_reg_tree <- sum(test.df$predregtreeprobs_foi == test.df$target) / nrow(test.df)</pre>
\label{eq:print(paste("Accuracy for Classification Tree:", round(acc\_reg\_tree * 100, 2), "%"))} \\
[1] "Accuracy for Classification Tree: 65.91 %"
ConfMatTreeReg <-confusionMatrix(data=as.factor(test.df$predregtreeprobs_foi),reference=as.factor(test.df$target), positive = "1")</pre>
ConfMatTreeReg
Confusion Matrix and Statistics
          Reference
Prediction 0 1
         0 27 8
         1 7 2
               Accuracy : 0.6591
                 95% CI: (0.5008, 0.7951)
    No Information Rate : 0.7727
    P-Value [Acc > NIR] : 0.9717
```

```
Kappa : -0.0061

Mcnemar's Test P-Value : 1.0000

Sensitivity : 0.20000
Specificity : 0.79412
Pos Pred Value : 0.22222
Neg Pred Value : 0.77143
Prevalence : 0.2277
```

'Positive' Class : 1

Detection Rate : 0.04545

Detection Prevalence : 0.20455

Balanced Accuracy : 0.49706

References

Hospital Data: https://www.pa.gov/psych_over17ncies/health/health-statistics/health-facilities/hospital-reports

Suicide by County Data: https://www.phaim.health.pa.gov/EDD/WebForms/DeathCntySt.aspx