LIE ALGEBRA COHOMOLOGY

YANNIS BÄHNI

Abstract. Aim of this talk is to give a short overview of the *cohomology of Lie algebras* with coefficients in modules. We follow the original construction of Chevalley-Eilenberg via complexes. We then state two results concerning *semisimple* Lie algebras, known as the *first and second Whitehead lemma*, and calculate an example.

Contents

Introduction	l
The Chevalley-Eilenberg Complex	1
Left g-Modules and the Cohomology of Lie Algebras	4
The Whitehead Lemmas	6
References	7

Introduction

The archetypal example of a *cohomology theory* arises in differential topology: The *de Rham cohomology*. Given a smooth manifold M, we define $\Omega^n(M) := \Gamma(\Lambda^n T^{\vee} M)$ for each $n \in \omega$, the space of *smooth differential n-forms on M*. Moreover, is a sequence of mappings $(d^n : \Omega^n(M) \to \Omega^{n+1}(M))_{n \in \omega}$, called *exterior differentiation operators*, which roughly speaking generalize the notion of a differential of a function. They do satisfy the relation $d^n \circ d^{n-1} = 0$ and thus we can define the *n-th de Rham cohomology group* to be the quotient space

$$H_{\mathrm{dR}}^n(M) := \ker d^n / \operatorname{im} d^{n-1}$$
.

The Chevalley-Eilenberg Complex

The definition of the n-th de Rham cohomology group $H^n_{dR}(M)$ can actually be thought of a two-stage process: First we go from Diff to an intermediate category and then we apply a *homology functor*, which is a purely algebraic construct, to go from this intermediate

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

category to \mathbb{R} Vect. Aim of this section is to give the definition of this intermediate category and then to define such a functor explicitly for the case of Lie algebras.

Definition 1.1 (Chain Complex in $_R$ Mod). Let $R \in \text{Ring. } A \mathbb{Z}$ -graded chain complex in $_R$ Mod is defined to be a tuple $(C_{\bullet}, \partial_{\bullet})$, consisting of an infinite sequence

$$\ldots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \longrightarrow \ldots$$

in $_R$ Mod such that $\partial_n \circ \partial_{n+1} = 0$ holds for all $n \in \mathbb{Z}$.

Dually, a \mathbb{Z} -graded cochain complex in $_R$ Mod is simply a \mathbb{Z} -graded chain complex in $_R$ Mod^{op}, i.e. a tuple $(C^{\bullet}, d^{\bullet})$ consisting of an infinite sequence

$$\cdots \longrightarrow C^{n-1} \xrightarrow{d^n} C^n \xrightarrow{d^{n+1}} C^{n+1} \longrightarrow \cdots$$

such that $d^{n+1} \circ d^n = 0$ holds for all $n \in \mathbb{Z}$.

In a more general setting, this translates as follows.

Definition 1.2 (Chain Complex). Let \mathcal{A} be an abelian category. A \mathbb{Z} -graded chain complex in \mathcal{A} is defined to be a tuple $((C_n)_{n\in\mathbb{Z}}, (\partial_n)_{n\in\mathbb{Z}})$, consisting of a sequence $(C_n)_{n\in\mathbb{Z}}$ of objects in \mathcal{A} and a sequence $(\partial_n)_{n\in\mathbb{Z}}$ of morphisms in \mathcal{A} , such that

$$\partial_n \in \operatorname{Hom}_{\mathcal{A}}(C_n, C_{n-1})$$
 and $\partial_n \circ \partial_{n+1} = 0$

for all $n \in \mathbb{Z}$.

Dually, a \mathbb{Z} -graded cochain complex in \mathbb{A} is a \mathbb{Z} -graded chain complex in \mathbb{A}^{op} .

Remark 1.1. For notational simplicity, we will write $(C_{\bullet}, \partial_{\bullet})$ for a chain complex in A.

Remark 1.2. The notions of chain and cochain complexes are actually equivalent. Indeed, changing from one to the other amounts simply to a reversing of the \mathbb{Z} -grading.

Remark 1.3. For each abelian category A, there is an abelian category Ch(A) of chain complexes in A (see [Wei94, p. 7]).

Definition 1.3 (Non-Negative Chain Complex). Let \mathcal{A} be an abelian category. A chain complex $(C_{\bullet}, \partial_{\bullet}) \in Ch(\mathcal{A})$ is said to be **non-negative**, iff $C_n = 0$ for all n < 0. We denote by $Ch_{>0}(\mathcal{A})$ the full subcategory of $Ch(\mathcal{A})$ of non-negative chain complexes.

In what follows, suppose that all rings admit an identity element and all modules are unital. Recall, that for $R \in CRing$ and $\mathfrak{g} \in {}_{R}LieAlg$, the *universal envelopping algebra* $U\mathfrak{g}$ of \mathfrak{g} is defined to be the quotient of the *tensor algebra* $T\mathfrak{g}$

$$T\mathfrak{g} := \bigoplus_{n \in \omega} \mathfrak{g}^{\otimes n}$$

by the 2-sided ideal generated by the relations

$$\iota[x, y] = \iota(x)\iota(y) - \iota(y)\iota(x),$$

for all $x, y \in \mathfrak{g}$, where $\iota : \mathfrak{g} \hookrightarrow T\mathfrak{g}$ denotes inclusion. Moreover, U is a functor from RLieAlg to associative R-algebras. Hence we can define a $U\mathfrak{g}$ -action on $U\mathfrak{g} \otimes_R \Lambda^n\mathfrak{g}$ simply by

$$u(v \otimes x_1 \wedge \cdots \wedge x_n) := uv \otimes x_1 \wedge \cdots \wedge x_n$$

for all $n \in \omega$.

Definition 1.4 (Chevalley-Eilenberg Complex). Let $R \in \mathsf{CRing}$ and $\mathfrak{g} \in {}_R\mathsf{LieAlg}$ which is free as an R-module. Denote by $U\mathfrak{g}$ the universal envelopping algebra of \mathfrak{g} . Define a non-negative chain complex $(C_{\bullet}, \partial_{\bullet}) \in \mathsf{Ch}_{>0}(U_{\mathfrak{g}}\mathsf{Mod})$ by

$$C_n := U\mathfrak{g} \otimes_R \Lambda^n \mathfrak{g}$$

for all $n \in \omega$ and

$$\partial_n(u \otimes x_1 \wedge \cdots \wedge x_n) := \begin{cases} ux_1 & n = 1, \\ \theta_1 + \theta_2 & n > 1, \end{cases}$$

where

$$\theta_1 := \sum_{i=0}^n (-1)^{i+1} u x_i \otimes x_1 \wedge \dots \wedge \widehat{x_i} \wedge \dots \wedge x_n,$$

and

$$\theta_2 := \sum_{1 \le i < j \le n} (-1)^{i+j} u \otimes [x_i, x_j] \wedge x_1 \wedge \cdots \wedge \widehat{x_i} \wedge \cdots \wedge \widehat{x_j} \wedge \cdots \wedge x_n.$$

Remark 1.4. It is by no means obvious, that $\partial_n \circ \partial_{n+1} = 0$ holds for the Chevalley-Eilenberg complex 1.4. However, it is a tedious computation, and we will only demonstrate the case n = 1. In this case

$$(\partial_1 \circ \partial_2)(u \otimes x \wedge y) = \partial_1(ux \otimes y - uy \otimes x - u \otimes [x, y])$$

= $u(xy - yx) - u[x, y]$
= 0 .

for all $u \in U\mathfrak{g}$ and $x, y \in \mathfrak{g}$.

Remark 1.5. The definition of the boundary map ∂_n in the Chevalley-Eilenberg complex 1.4 is not as arbitrary at it might seem at first sight. Given $\alpha \in \Omega^n(M)$ for a smooth manifold M, then we have that $d\alpha(X_1, \ldots, X_{n+1})$ is of the same form for any $X_1, \ldots, X_{n+1} \in \mathfrak{X}(M)$. Actually, this formula can be used to give an invariant definition of the exterior derivative d in the de Rham theory (see [Lee13, pp. 370–372]).

Left g-Modules and the Cohomology of Lie Algebras

Definition 1.5 (Category of Left g-Modules). Let $R \in \mathsf{CRing}$ and $\mathfrak{g} \in {}_R\mathsf{LieAlg.}$ The category of left g-modules, written ${}_{\mathfrak{g}}\mathsf{Mod}$, is defined to be the category with objects left g-modules, i.e. modules $M \in {}_R\mathsf{Mod}$ equipped with an R-bilinear product $\mathfrak{g} \times M \to M$, $(x,m) \mapsto xm$, such that

$$[x, y]m = x(ym) - y(xm)$$

holds for all $x, y \in \mathfrak{g}$ and $m \in M$, and **left \mathfrak{g}-module homomorphisms** as morphisms, i.e. morphisms $f \in \operatorname{Hom}_R(M, N)$ such that

$$f(xm) = xf(m)$$

holds for all $x \in \mathfrak{g}$ and $m \in M$.

Examples 1.1.

- (a) A *trivial* \mathfrak{g} -module is an R-module M where xm := 0 for all $x \in \mathfrak{g}$ and $m \in M$.
- (b) The Lie bracket makes \mathfrak{g} itself into a left \mathfrak{g} -module by the Jacobi identity. This module is usually called the *adjoint representation of* \mathfrak{g} .

Proposition 1.1. Let $R \in CRing$ and $\mathfrak{g} \in {}_{R}LieAlg$. Then ${}_{\mathfrak{g}}Mod$ is an abelian category.

We follow [KS06, p. 178].

Proposition 1.2. Let A be an abelian category and $(C_{\bullet}, \partial_{\bullet}) \in Ch(A)$. Then for every $n \in \mathbb{Z}$, there exists a unique monic

$$\operatorname{im} \partial_{n+1} \to \ker \partial_n$$

where im $\partial_{n+1} := \ker(\operatorname{coker} \partial_{n+1})$.

Exercise 1.1. Prove proposition 1.2. *Hint:* Use that im $\partial_{n+1} \to C_n$ is monic by [Lan78, p. 199].

Definition 1.6 (Homology of a Chain Complex). Let \mathcal{A} be an abelian category and $(C_{\bullet}, \partial_{\bullet}) \in \operatorname{Ch}(\mathcal{A})$. Moreover, let $n \in \mathbb{Z}$ and im $\partial_{n+1} \to \ker \partial_n$ be the unique morphism assured by lemma 1.2. Then we define the *n*-th homology object, written $H_n(C_{\bullet}, \partial_{\bullet})$, by

$$H_n(C_{\bullet}, \partial_{\bullet}) := \operatorname{coker}(\operatorname{im} \partial_{n+1} \to \ker \partial_n) \in \operatorname{ob}(A).$$

Explicitely, in our setting this translates as follows.

Definition 1.7 (Homology of a Chain Complex in $_R$ Mod). Let $R \in \text{Ring } and \, n \in \mathbb{Z}$. The **n-th homology module** of a chain complex $(C_{\bullet}, \partial_{\bullet})$, written $H_n(C_{\bullet}, \partial_{\bullet})$, is defined to be

$$H_n(C_{\bullet}, \partial_{\bullet}) := \ker \partial_n / \operatorname{im} \partial_{n+1}$$
.

Dually, the **n-th cohomology module** of a cochain complex $(C^{\bullet}, d^{\bullet})$ in ${}_{R}\text{Mod}$, written $H^{n}(C^{\bullet}, d^{\bullet})$, is defined to be

$$H^n(C^{\bullet}, d^{\bullet}) := \ker d^{n+1} / \operatorname{im} d^n.$$

Observe, that for each $n \in \omega$, we have that $C_n \in {}_{\mathfrak{g}}\mathsf{Mod}$ via $\iota : \mathfrak{g} \hookrightarrow U\mathfrak{g}$.

Definition 1.8 (Cohomology of Lie Algebras). Let $R \in \text{CRing } and \mathfrak{g} \in R$ LieAlg which is free as an R-module. Moreover, let $M \in {}_{\mathfrak{g}}\text{Mod } and (C_{\bullet}, \partial_{\bullet})$ denote the Chevalley-Eilenberg complex 1.4. For $n \in \omega$, define the n-th cohomology group of \mathfrak{g} with coefficients in M, written $H^n(\mathfrak{g}, M)$, to be the n-th cohomology module of the cochain complex $\text{Hom}_{\mathfrak{g}}((C_{\bullet}, \partial_{\bullet}), M)$.

Remark 1.6. Actually, for $n \in \omega$ we have that

$$\operatorname{Hom}_{\mathfrak{a}}(C_n, M) \cong \operatorname{Hom}_{R}(\Lambda^n \mathfrak{g}, M),$$

in $_R$ Mod. Indeed, if $n \geq 1$ and $\varphi \in \operatorname{Hom}_{\mathfrak{g}}(C_n, M)$, define $\overline{\varphi} \in \operatorname{Hom}_R(\Lambda^n \mathfrak{g}, M)$ by

$$\overline{\varphi}(x_1 \wedge \cdots \wedge x_n) := \varphi(1 \otimes x_1 \wedge \cdots \wedge x_n),$$

and conversly, if $\varphi \in \operatorname{Hom}_R(\Lambda^n \mathfrak{g}, M)$, define $\overline{\varphi} \in \operatorname{Hom}_{\mathfrak{g}}(C_n, M)$ by

$$\overline{\varphi}(u \otimes x_1 \wedge \cdots \wedge x_n) := u\varphi(x_1 \wedge \cdots \wedge x_n).$$

This is possible, since every left \mathfrak{g} -module is naturally a left $U\mathfrak{g}$ -module (see [Wei94, pp. 224–225]). If n=0, we define $\overline{\varphi}\in \operatorname{Hom}_R(R,M)$ by

$$\bar{\varphi}(r) := r\varphi(1),$$

for $\varphi \in \operatorname{Hom}_{\mathfrak{g}}(U\mathfrak{g} \otimes_R R, M) \cong \operatorname{Hom}_{\mathfrak{g}}(U\mathfrak{g}, M)$ and for $\varphi \in \operatorname{Hom}_R(R, M)$ define similarly $\overline{\varphi} \in \operatorname{Hom}_{\mathfrak{g}}(U\mathfrak{g}, M)$ by

$$\overline{\varphi}(u) := u\varphi(1).$$

Hence we get an induced morphism

$$\operatorname{Hom}_{\mathfrak{g}}(C_{n-1},M) \xrightarrow{d^n} \operatorname{Hom}_{\mathfrak{g}}(C_n,M)$$

$$\downarrow \qquad \qquad \qquad \downarrow \neg$$
 $\operatorname{Hom}_R(\Lambda^{n-1}\mathfrak{g},M) \xrightarrow{----} \operatorname{Hom}_R(\Lambda^n\mathfrak{g},M).$

Explicitely

$$d^{n} f(x_{1},...,x_{n}) = \sum_{i=1}^{n} (-1)^{i+1} x_{i} f(x_{1},...,\hat{x_{i}},...,x_{n}) + \sum_{1 \leq i < j \leq n} (-1)^{i+j} f([x_{i},x_{j}],x_{1},...,\hat{x_{i}},...,\hat{x_{j}},...,x_{n}),$$

for n > 1 and

$$d^1 f(x_1) = x_1 f(1).$$

Remark 1.7. There is a more general approach to the definition of the cohomology of Lie algebras via the notion of *right derived functors* which does not use the intermediate step of the Chevalley-Eilenberg complex.

Example 1.1 $(H^3(\mathfrak{sl}_2, k))$. Let k be a field with characteristic not equal to two and consider the *special linear Lie algebra over* k, i.e. $A \in M_2(k)$ such that tr A = 0. This is a three dimensional Lie algebra with ordered basis

$$e_1 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 $e_2 := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $e_3 := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

Hence the crucial portion of the Eilenberg-Chevalley cochain complex is given by

$$\dots \longrightarrow \operatorname{Hom}_k(\Lambda^2 \mathfrak{sl}_2, k) \stackrel{d}{\longrightarrow} \operatorname{Hom}_k(\Lambda^3 \mathfrak{sl}_2, k) \longrightarrow 0.$$

We compute

$$df(e_1, e_2, e_3) = e_1 f(e_2, e_3) - e_2 f(e_1, e_3) + e_3 f(e_1, e_2)$$

$$- f([e_1, e_2], e_3) + f([e_1, e_3], e_2) - f([e_2, e_3], e_1)$$

$$= -2f(e_2, e_3) - 2f(e_3, e_2) - f(e_1, e_1)$$

$$= -2f(e_2, e_3) + 2f(e_2, e_3)$$

$$= 0.$$

since k is interpreted as a trivial \mathfrak{sl}_2 -module and by the alternating k-multilinear properties of f. Hence

$$H^3(\mathfrak{sl}_2, k) \cong \operatorname{Hom}_k(\Lambda^3 \mathfrak{sl}_2, k) \cong k$$

since dim $\operatorname{Hom}_k(\Lambda^3\mathfrak{sl}_2, k) = 1$.

The Whitehead Lemmas

Let $M \in {}_{\mathfrak{g}}\mathsf{Mod}$ and denote by $\mathrm{Der}(\mathfrak{g},M)$ the *derivations from* \mathfrak{g} *to* M, i.e. mappings $D \in {}_{R}\mathsf{Mod}$, such that D[x,y] = x(Dy) - y(Dx) holds for all $x,y \in \mathfrak{g}$. If $m \in M$, define $D_m(x) := xm$ for $x \in \mathfrak{g}$. This is called an *inner derivation*. The R-module of all inner derivations from \mathfrak{g} to M is denoted by $\mathrm{Der}_{\mathrm{Inn}}(\mathfrak{g},M)$. Clearly, $\mathrm{Der}_{\mathrm{Inn}}(\mathfrak{g},M)$ is an R-submodule of $\mathrm{Der}(\mathfrak{g},M)$. By [Wei94, p. 230] we have that

$$H^1(\mathfrak{g}, M) \cong \operatorname{Der}(\mathfrak{g}, M)/\operatorname{Der}_{\operatorname{Inn}}(\mathfrak{g}, M).$$

Let $M \in {}_{R}\text{LieAlg}$ be abelian. An extension of g by M is a short exact sequence

$$0 \longrightarrow M \longrightarrow \mathfrak{e} \stackrel{\pi}{\longrightarrow} \mathfrak{g} \longrightarrow 0$$

in $_R$ LieAlg. There is a notion of equivalence classes of extensions of $\mathfrak g$ by M. Denote by $\operatorname{Ext}(\mathfrak g,M)$ the set of all such equivalence classes. Then there is a one-to-one correspondence

$$\operatorname{Ext}(\mathfrak{g},M) \stackrel{1:1}{\longleftrightarrow} H^2(\mathfrak{g},M)$$

if $M \in {}_{\mathfrak{g}}\mathsf{Mod}$ (see [Wei94, p. 235]).

However, the situation gets much more easier if we make some assumptions.

Theorem 1.2 (Whitehead's First Lemma). Let k be a field of characteristic zero and $g \in {}_k\text{LieAlg }$ semisimple. Then for any finite-dimensional $M \in {}_g\text{Mod }$ we have that

$$H^1(\mathfrak{g}, M) = 0.$$

That is, every derivation from \mathfrak{g} into M is an inner derivation.

Theorem 1.3 (Whitehead's Second Lemma). *Let* k *be a field of characteristic zero and* $g \in {}_k\text{LieAlg}$ *semisimple. Then for any finite-dimensional* $M \in {}_g\text{Mod}$ *we have that*

$$H^2(\mathfrak{q}, M) = 0.$$

Remark 1.8. There cannot be a third Whitehead lemma, since

$$H^3(\mathfrak{sl}_2,k)\cong k$$
,

by exercise 1.1.

There is a quite strong result obtained via the second Whitehead lemma, which gives rise to the *structure theory of Lie algebras*.

Theorem 1.4 (Levi's Theorem). Let k be a field of characteristic zero and $\mathfrak{g} \in {}_k \text{LieAlg}$ finite dimensional. Then there exists a semisimple Lie subalgebra $\mathcal{L} \subseteq \mathfrak{g}$ (called a **Levi factor**), such that

$$\mathfrak{g} \cong \mathcal{L} \ltimes \operatorname{rad}(\mathfrak{g}).$$

Proof. We only provide a sketch. For full details see [Wei94, p. 247]. We know that $\mathfrak{g}/\mathrm{rad}(\mathfrak{g})$ is semisimple, so it suffices to show that the Lie algebra extension

$$0 \longrightarrow \operatorname{rad}(\mathfrak{g}) \longrightarrow \mathfrak{g} \longrightarrow \mathfrak{g}/\operatorname{rad}(\mathfrak{g}) \longrightarrow 0$$

splits. If $rad(\mathfrak{g})$ is abelian, we are done by Whitehead's second lemma 1.3. If $rad(\mathfrak{g})$ is not abelian, proceed by induction on the derived length of $rad(\mathfrak{g})$.

References

- [KS06] Masaki Kashiwara and Pierre Schapira. Categories and Sheaves. Vol. 332. A Series of Comprehensive Studies in Mathematics. Springer-Verlag Berlin Heidelberg, 2006.
- [Lan78] Saunders Mac Lane. *Categories for the Working Mathematician*. Second Edition. Graduate Texts in Mathematics 5. Springer Science+Business Media New York, 1978.
- [Lee13] John M. Lee. *Introduction to Smooth Manifolds*. Second Edition. Graduate Texts in Mathematics. Springer, 2013.
- [Wei94] Charles A. Weibel. *An introduction to homological algebra*. Vol. 38. Cambridge studies in advanced mathematics. Cambridge University Press, 1994.