Synchronization Graphs

R-KFC-A

1 Introduction

In this we examine parsing streams of tagged vertices into a canonical synchronization graph.

2 Background

Definition 1 (Dependency Relation). A dependency relation $D \subseteq \Sigma \times \Sigma$ is a *symmetric* and *reflexive* relation on Σ .

Likewise an independence relation of D can be defined as the relative complement $I = (\Sigma \times \Sigma) \setminus D$.

Dependency relations are a general way of talking about equivalence relations between two streams of data $S_1, S_2 \in \Sigma^*$, where we say $S_1 \equiv_D S_2$ if S_2 can be reached from S_1 (and vice versa) by appling permutations based on the independence relation I.

Definition 2 (Tree Dependence Relation). A tree dependence relation $T \subseteq \Sigma \times \Sigma$ is a dependence relation such that (Σ, T) induces a graph with vertices Σ and edges T. The skeleton of (Σ, T) forms a tree with distinguished root σ_{\top} . Furthermore every vertex is upwards connected: if $\sigma_1 \in \mathbf{ancestors}(\sigma_2)$, then $\sigma_1 T \sigma_2$.

Anton: I have trouble describing "skeleton". It's just supposed to mean something similar to the "tree-like" dependency relation I've talked about before on the Jamboad"

There are a few functions we can define on T: Define the predecessor function with respect to this rooting, with $\mathbf{pred}(\sigma_{\top}) = \sigma_{\top}$; recursively define the depth function $\mathbf{depth}(\sigma_{\top}) = 0$ and $\mathbf{depth}(\sigma) = 1 + \mathbf{depth}(\mathbf{pred}(\sigma))$.

We define a *synchronization graph*, which is intended to model data streams that (1) are equipped with a dependence relationship and (2) have "synchronizing" (also: visibly pushdown / parallel / end-marker'd) behavior.

Definition 3 (Synchronization Graph). A synchronization graph G is a directed acyclic graph with a unique source (top) vertex $\vee G$ and a unique sink (bot) vertex $\wedge G$. Recursively define G as follows:

- i. (Base Case): A single vertex is a syncrhonization graph.
- ii. (Sequential Concatenation): If G_1 and G_2 are synchronization graphs, then $G = G_1 \cdot u \cdot G_2$ is also a synchronization graph for a new vertex u, where

$$(\land G_1, u), (u, \lor G_2) \in G, \quad \lor G = \lor G_1, \quad \land G = \land G_2$$

iii. (Parallel Union): If G_1 and G_2 are synchronization graphs, then $G = u[G_1||G_2]v$ is also a synchronization graph for new vertices u, v where

$$(u, \vee G_1), (u, \vee G_2), (\wedge G_1, v), (\wedge G_2, v) \in G, \qquad \vee G = u, \qquad \wedge G = v$$

Note that synchronization graphs induce a natural partial order: $u \leq v$ if either (1) u = v or (2) v is reachable from u.

3 A Parsing Problem

In this problem setting, we are given:

- i. A tree dependency relation T and its alphabet Σ
- ii. A sequence of vertices v_1, v_2, \ldots each labeled with an element of Σ : that is, $\tau(v_i) \in \Sigma$ for all i. This sequence is a linearization of a stream satisfying T.

The task is to generate a *canonical* synchronization graph.

4 A Basic Algorithm

A basic algorithm we have is to iteratively grow G. Let $\mathbf{next}()$ return the next vertex in the stream; iteratively keeping track of a *frontier* of leaf vertices L, every new vertex v has one of three possibilities:

- 1. It depends on exactly one $l \in L$.
- 2. It depends on more than one $M \subseteq L$. Furthermore, $\operatorname{\mathbf{depth}}(\tau(m)) < \operatorname{\mathbf{depth}}(\tau(v))$ for all $m \in M$. In this case v acts as a common "synchronization point" for M.
- 3. v is independent with all of L, in which case the most recent dependency of v, written $u^* = \bigvee \{u \in G : \tau(u)T\tau(v)\}$ is found and v appends to this.

```
Parsing Linearized Stream 1: Algorithm
```

Lemma 3. At the each iteration, (V, E) respects T.

Proof. TODO: Also something about induction

```
Precondition: data stream S begins and ends with a vertex labeled \sigma_{\top}
Initialize L \to \emptyset
Initialize (V, E) \leftarrow (\emptyset, \emptyset).
Pop the first v \leftarrow \mathbf{next}() and set V \leftarrow \{v\}.
while v \leftarrow \mathbf{next}() succeeds do
    Let M = \{l \in L : \tau(l)T\tau(v)\}\ V \leftarrow V \cup \{v\}
    if M = \{l\} then
         E \leftarrow E \cup \{(l, v)\}
         L \leftarrow (L \setminus \{l\}) \cup \{v\}
    else if |M| > 1 then
         E \leftarrow E \cup \{(m, v) : m \in M\}
         L \leftarrow (L \setminus M) \cup \{v\}
    else
         u^* = \bigvee \{ u \in V : \tau(u) T \tau(v) \}
         E \leftarrow E \cup \{(u^\star, v)\}
        L \leftarrow L \cup \{v\}
return G = (V, E)
Lemma 1. Two streams that are T-equivalent have the same decomposition under Algorithm 1.
Proof. TODO
                                                                                                                              Lemma 2. At each iteration of the algorithm, there is at most one l \in L such that \operatorname{depth}(\tau(l)) =
\operatorname{depth}(\tau(v)) and \tau(l)T\tau(v).
                                                                                                                              Proof. TODO: something about induction
```