R 프로그래밍 #6

2019.04.10

한국생명공학연구원 김하성

In today's lecture

- To know how to build and optimize a function (No worries if you don't understand all, it's enough to understand why this function is necessary and how to use it. This is why we learn programming!)
- To obtain (rather big) data using the function
- To understand ggplot
- To plot the data

We want to make a generally available function that reads excel formatted victor (plate reader) data.

Excel data

595nm_kk (A) 0.000

0.701	0.752	0.723	0.744	0.706	0.723	0.767	0.777	0.762	0.798	0.793	0.821
0.803	0.775	0.780	0.800	0.758	0.749	0.807	0.787	0.808	0.826	0.824	0.814
0.781	0.799	0.792	0.782	0.758	0.756	0.838	0.788	0.816	0.852	0.834	0.842
0.774	0.805	0.785	0.787	0.739	0.713	0.827	0.835	0.840	0.846	0.863	0.870
0.761	0.758	0.726	0.727	0.668	0.691	0.791	0.803	0.819	0.837	0.820	
0.793	0.779	0.778	0.727	0.703	0.685	0.810	0.805	0.831	0.834	0.851	0.851

EGFP_sulim (Counts)

94

67809	60025	102745	99979	108175	109575	76531	72137	154549	128498	151693	130526
42654	33957	104464	103331	115580	115359	72935	68912	118882	117575	120961	118888
15117	11422	97913	93222	112280	107634	62202	49677	111322	110489	114973	109902
5881	5325	67768	54317	70586	53319	19434	20773	84612	77549	85990	72300
5071	5151	31184	27357	22038	20188	9510	11416	38419	41307	45109	46451
5221	5133	29389	26134	20092	23702	9122	9580	30837	42795	50058	53168

	595nm_kk (A)								
	0.701	0.752	0.723	0.744	0.706		0.777	0.762		
condition A →	0.803	0.775	0.780	0.800	0.758		0.787	0.808		
	0.781	0.799	0.792	0.782	0.758		0.788	0.816		
	0.774	0.805	0.785	0.787	0.739		0.835	0.840		
	0.761	0.758	0.726	0.727	0.668					
						·		·		

Strategy

A function for reading excel files

- Name: multiple_plate_excel_reader
- input parameter: two (a vector of length two)

```
design_file_name <- "exp_design.xlsx"
data_file_name <- "Rprog04-fl.xls"

multiple_plate_excel_reader <- function(design_file_name, data_file_name){
###
### code
###
}

multiple_plate_excel_read(file.names)</pre>
```

Code download & review

```
multiple_plate_excel_reader <- function(design_file_name, data_file_name){</pre>
  require(readx1)
  ## read excel files
  mydesign <- as.data.frame(read excel(design file name, sheet=1, range="A1:L8", skip = 0, col names=F))
  mydata <- as.data.frame(read_excel(data_file_name, sheet=1))</pre>
  ## read data in all wells
  pos1 <- rep(LETTERS[1:8], time=12)</pre>
  pos2 <- rep(sprintf("%02d", 1:12), each=8)
 well_position_labels <- paste(pos1, pos2, sep="")</pre>
 well_position_matrix <- matrix(well_position_labels, nrow=8, ncol=12)</pre>
  ## extract positions from position matrix by using design matrix indexes
  colnames(mydesign) <- as.character(1:12)</pre>
  colnames(well position matrix) <- as.character(1:12)</pre>
  bound_matrix <- rbind(mydesign, well_position_matrix)</pre>
 tmpv <- lapply(bound_matrix, extract_values_from_other_matrix)</pre>
 well names <- unlist(tmpv)</pre>
 ## extract conditions from design matrix by design matrix indexes
  tmpv <- lapply(mydesign, extract_values_from_own_matrix)</pre>
 well_conditions <- unlist(tmpv)</pre>
  ## build well info matrix
 well info <- data.frame(well names, well conditions, stringsAsFactors = F)</pre>
  ## subset of the data filtered by the wells that we are interested in
 tmpidx <- match(mydata$Well, well info$well names)</pre>
 tmp mydata subset <- subset(mydata, !is.na(tmpidx))</pre>
  ## extract OD, GFP, etc if there is any
  sel_column <- c(3, seq(6, ncol(tmp_mydata_subset), by=2))</pre>
  mydata subset <- tmp mydata subset[,sel column]</pre>
 ## to make the condition column more readable
  tmp_final_data <- merge(well_info, mydata_subset, by.x="well_names", by.y="Well")</pre>
 tmpcond <- sapply(tmp_final_data$well_conditions, function(x){</pre>
      tmp <- unlist(strsplit(x, ";"))</pre>
      names(tmp) <- c("sample names", "replication", "concentration")</pre>
      return(tmp)
 ## make final data matrix
 t tmpcond <- t(tmpcond)
 t_tmpcond2 <- cbind(t_tmpcond, rownames(t_tmpcond))</pre>
 t_tmpcond2 <- cbind(t_tmpcond, well_conditions=rownames(t_tmpcond))</pre>
 final_data <- merge(tmp_final_data, t_tmpcond2, by="well_conditions")</pre>
 final_data <- final_data[,-1]</pre>
  return(final_data)
```

Usage

- Copy the function code to a new R file named "read_plate.R"
- Place design and data excel files in the same working directory (OR..)

```
source("read_plate.R")

design_file_name <- "exp_design.xlsx"
data_file_name <- "Rprog04-fl.xls"

mydata <- multiple_plate_excel_reader(design_file_name, data_file_name)
args(multiple_plate_excel_reader)</pre>
```

```
> head(mydata)
  well_names 595nm_kk (A) EGFP_sulim (Counts) sample_names replication concentration
1
         B02
                0.9241626
                                           3882
                                                                        1
                                                                                     10
         B03
                0.8793472
                                          94601
                                                                                    100
         B04
                0.6583633
                                         29836
                                                                        1
                                                                                   1000
         C02
                0.9145258
                                           3928
                                                                                     10
         C03
                0.8542024
                                         95085
                                                                                    100
         C04
                0.6515582
                                         41622
                                                                                   1000
```

Experiment design notation rule

1;1;phenol;0
sample no replication no drug name drug dose

10 11 12 2;1;phenol;1000 2;1;phenol;500 3;1;phenol;1000 3;1;phenol;500 4;1;phenol;500 4;1;phenol;1000 5;1;phenol;500 5;1;phenol;1000 6;1;phenol;1000 6;1;phenol;500 1;1;phenol;100 1;1;phenol;50 2;1;phenol;100 2;1;phenol;50 3;1;phenol;100 3;1;phenol;50 4;1;phenol;50 4;1;phenol;100 5;1;phenol;50 5;1;phenol;100 6;1;phenol;100 6;1;phenol;50 1:1:phenol:10 1:1:phenol:5 2:1:phenol:10 2:1:phenol:5 3:1:phenol:10 3:1:phenol:5 4:1:phenol:5 4:1:phenol:10 5:1:phenol:5 5:1:phenol:10 6:1:phenol:10 6:1:phenol:5 1;1;phenol;1 1;1;phenol;0.5 2;1;phenol;1 3;1;phenol;1 3;1;phenol;0.5 4;1;phenol;0.5 5;1;phenol;0.5 5;1;phenol;1 6;1;phenol;1 6;1;phenol;0.5 2;1;phenol;0.5 4;1;phenol;1 2;1;phenol;0.1 3;1;phenol;0.05 4;1;phenol;0.05 1:1;phenol;0 1;1;phenol;0.1 3;1;phenol;0 5;1;phenol;0.1 2;1;phenol;0.1 2;1;phenol;0 3:1:phenol:0.1 4;1;phenol;0 4;1;phenol;0.1 5;1;phenol;0 6;1;phenol;0.1 6;1;phenol;0

G

Н

Update the function

- 1. Add one more condition
- 2. Design file sheet

Update the function

3. Column names (OD, GFP, and possibly RFP...)

여기서 잠깐; String manipulation

```
s <- "This is the sixth lecture of R programming"
substr(s, 0, 11)
nchar(s)
toupper(s)
tolower(s)
strsplit(s, split=" ")
paste(s, " at UST", sep="")
sub("This", "That", s)
## regular expression
sub("This is.+of ", "", s)
grep("This", s)
grep1("This", s)
regexpr("lecture", s)</pre>
```

Exercise 6-1) String functions

s <- "aatgctgtaga"

- Change the letters to capital and save it to 'ss'
- Find start codon "ATG"
- Find stop codon "TAG"
- Extract the ORF

function update

- 1. Add one more condition
- 2. Design file sheet

```
## to make the condition column more readable
tmp_final_data <- merge(well_info, mydata_subset, by.x="well_names", by.y="Well")
tmpcond <- sapply(tmp_final_data$well_conditions, function(x){
    tmp <- unlist(strsplit(x, ";"))
    names(tmp) <- c("sample_names", "replication", "treatment", "concentration")
    return(tmp)
}
</pre>
```

function update

3. Column names (OD, GFP, and possibly RFP...)

```
## column names
cnames <- colnames(final_data)
idx <- grep("595", cnames)
if(length(idx)>0){
   cnames[idx] <- "OD"
}
idx <- grep("EGFP", cnames)
if(length(idx)>0){
   cnames[idx] <- "GFP"
}
colnames(final_data) <- cnames</pre>
```

Read data

```
> head(mydata)
                          GFP sample_names replication treatment concentration
  well_names
                    OD
1
         G02 0.9042823 124002
                                         1
                                                           phenol
                                                                          0e+00
                                         1
                                                          phenol
         F02 0.9368631 127999
                                                                          5e-02
                                                          phenol
                                         1
        E02 0.9228352 44070
                                                                          5e-01
                                         1
                                                          pheno1
         D02 0.8994368
                        4280
                                                                          5e+00
        CO2 0.9145258
                         3928
                                                           phenol
                                                                          5e+01
                                                           phenol
         B02 0.9241626
                        3882
                                                                          5e+02
> dim(mydata)
[1] 224
```

Experiment design

	_										
Α	В	С	D	E	F	G	Н	I	J	K	
1;3;phenol;1000	1;3;phenol;500	2;3;phenol;1000	2;3;phenol;500	3;3;phenol;1000	3;3;phenol;500	4;3;phenol;500	4;3;phenol;1000	5;3;phenol;500	5;3;phenol;1000	6;3;phenol;1000	6;3;p
1;3;phenol;100	1;3;phenol;50	2;3;phenol;100	2;3;phenol;50	3;3;phenol;100	3;3;phenol;50	4;3;phenol;50	4;3;phenol;100	5;3;phenol;50	5;3;phenol;100	6;3;phenol;100	6;3;p
1;3;phenol;10	1;3;phenol;5	2;3;phenol;10	2;3;phenol;5	3;3;phenol;10	3;3;phenol;5	4;3;phenol;5	4;3;phenol;10	5;3;phenol;5	5;3;phenol;10	6;3;phenol;10	6;3;p
1;3;phenol;1	1;3;phenol;0.5	2;3;phenol;1	2;3;phenol;0.5	3;3;phenol;1	3;3;phenol;0.5	4;3;phenol;0.5	4;3;phenol;1	5;3;phenol;0.5	5;3;phenol;1	6;3;phenol;1	6;3;p
1;3;phenol;0.1	1;3;phenol;0.05	2;3;phenol;0.1	2;3;phenol;0.05	3;3;phenol;0.1	3;3;phenol;0.05	4;3;phenol;0.05	4;3;phenol;0.1	5;3;phenol;0.05	5;3;phenol;0.1	6;3;phenol;0.1	6;3;p
1;3;phenol;0.1	1;3;phenol;0	2;3;phenol;0.1	2;3;phenol;0	3;3;phenol;0.1	3;3;phenol;0	4;3;phenol;0	4;3;phenol;0.1	5;3;phenol;0	5;3;phenol;0.1	6;3;phenol;0.1	6;3;p
			찾기	기 및 바꾸기			? ×				
<u> </u>								4			
			쏫	찾기(<u>D</u>) 바꾸기(<u>P</u>)				4			
			· · · · · · · · · · · · · · · · · · ·	찾을 내용(<u>N</u>):			~				
			- H	바꿀 내용(<u>E</u>):			~	4			
<u> </u>	-							4			
	-						옵션(T) >>	4			
								4			-
	-		모	모두 바꾸기(<u>A</u>) 바꾸	구기(<u>R</u>) 모두 찾기	기(l) 다음 찾기(E)	닫기	4			-
			_					4			
	-										

Quiz 6-1) Data structure

- Which object or data structure will you use to compare two groups of datasets?
- How many variables do we need for the comparison in this example?

Data structure for data analysis

x1 1 2	y1 1 6	
5	7	
7	8	

=

variable	value
x1	1
x1	2
x1	5
x1	7
y1	1
y1	6
y1 y1	7
y1	8

Formula

```
a <- y1~x1
class(a)
lm(y1~x1)
lm(y1~x1, data=xymlt)</pre>
```

ggplot2 ggplot2

EDHEC Indexes Return (Rolling 1 Year)

2002

2004

2006

2008

2010

Convertible Arbitrage

CTA Global

Distressed Securities

Emerging Markets

Equity Market Neutral

Event Driven

Fixed Income Arbitrage

Global Macro

Long/Short Equity

Merger Arbitrage

Relative Value

Short Selling

Funds of Funds

ggplot2

https://github.com/rstudio/cheatsheets/blob/master/data-visualization-2.1.pdf

ggplot grammer

- Components
 - data frame (ggplot)
 - aesthetic factors such as color, size, etc (aes)
 - geometric factors such as point, line, bar, etc (geoms)
 - statistical factors (stats)
 - theme or scale to be used in aes
- How to draw
 - Determine what graph do you want
 - Use ggplot to indicate dataset and its aesthetic factors
 - Add layers to indicate geometric factors and appropriate statistics
 - Add layers for scale/theme

barplot

```
> head(mydata)
  well_names
                          GFP sample_names replication treatment concentration
                    OD
                                                            phenol
         G02 0.9042823 124002
                                                                           0e+00
2
         F02 0.9368631 127999
                                          1
                                                            phenol
                                                                           5e-02
                                                            pheno1
         E02 0.9228352 44070
                                          1
                                                                           5e-01
         D02 0.8994368
                         4280
                                          1
                                                            phenol
                                                                           5e+00
                         3928
         CO2 0.9145258
                                          1
                                                            phenol
                                                                           5e+01
         B02 0.9241626
                          3882
                                                            phenol
                                                                           5e+02
```

```
library(ggplot2)
ggplot(data=mydata, aes(x=sample_names, y=GFP))

ggplot(data=mydata, aes(x=sample_names, y=GFP)) +
    geom_bar()

?geom_bar

ggplot(data=mydata, aes(x=sample_names, y=GFP)) +
    geom_bar(stat="identity")

ggplot(data=mydata, aes(x=sample_names, y=GFP, fill=concentration)) +
    geom_bar(stat="identity", position="dodge")
```

Next

- R visualization II
 - ggplot2
- Data manipulation
 - dplyr