Analyse Numérique Exercices – Série 4

10 octobre 2019Exercices marqués de \star à rendre le 17 octobre 2019

- 1. (Algorithme de Clenshaw) On note $T_k(x)$ le k-ème polynôme de Chebyshev.

 - (a) Étant donné p∈ P_n, montrer que celui-ci satisfait p(x) = ∑_{k=0}^N c_k T_k(x) pour N∈ N. Trouver le N minimal. Est-ce que le choix des coefficients c_k est unique pour ce N minimal?
 (b) Étant donné x∈ R, montrer que p(x) = ∑_{k=0}^N c_k T_k(x) peut être évalué par le procédé suivant. On fixe u_{n+1} = 0 et u_n = c_n et puis on calcule

$$u_k = 2x u_{k+1} - u_{k+2} + c_k, \quad k = n - 1, n - 2, \dots, 0.$$

Alors

$$p(x) = \frac{1}{2}(c_0 - u_2 + u_0).$$

- 2. (*, tout l'exercice) (Précision double IEEE) Dans cet exercice, on considère la précision double comme définie selon le standard IEEE (voir les exemples 2.2 et 2.3 du polycopié).
 - (a) Représenter en format décimal les nombres suivants

	Signe	Exposant	Mantisse
i.	0	11111111111	000000000
ii.	1	11111111111	001000100
iii.	0	00000000000	010110110
iv.	0	10000110010	001010110
v.	1	10000010110	100111010
vi.	0	00000000000	000000000

en spécifiant s'ils sont normalisés, dénormalisés, NaN (not a number) ou infinis. Justifier vos réponses.

(b) Quelle est la valeur de la précision de la machine $\varepsilon_{\rm mach}$?