Clinical Decision Support

Jason Baron, MD

Notice of Faculty Disclosure

In accordance with ACCME guidelines, any individual in a position to influence and/or control the content of this ASCP CME activity has disclosed all relevant financial relationships within the past 12 months with commercial interests that provide products and/or services related to the content of this CME activity.

The individual below has responded that he/she has no relevant financial relationship(s) with commercial interest(s) to disclose:

Jason Baron, MD

- 1. Why do we need decision support?
- 2. A high level view
- 3. Guidelines and quick refs
- 4. Just-in-time knowledge delivery
- 5. Human factors engineering
- 6. Computational knowledge derivation
- 7. Transforming expert knowledge into rule-based alerts
- 8. Computational Pathology—a 3 minute primer
- 9. Selected Challenges
 - a. Clinical data quality
 - b. Implementation—limits of current health IT infrastructure
 - c. Non-technical infrastructure

- 1. Why do we need decision support?
- 2. A high level view
- 3. Guidelines and quick refs
- 4. Just-in-time knowledge delivery
- 5. Human factors engineering
- 6. Computational knowledge derivation
- 7. Transforming expert knowledge into rule-based alerts
- Computational Pathology—a 3 minute primer
- 9. Selected Challenges
 - a. Clinical data quality
 - b. Implementation—limits of current health IT infrastructure
 - c. Non-technical infrastructure

The Need for Informatics

• Millions of results per year

•Rate of *data* production exceeds capacity of clinicians, pathologists and technologists to generate *information*

•The human brain is not well equipped to process high dimensional data

- 1. Why do we need decision support?
- 2. A high level view
- 3. Guidelines and quick refs
- 4. Just-in-time knowledge delivery
- 5. Human factors engineering
- 6. Computational knowledge derivation
- 7. Transforming expert knowledge into rule-based alerts
- 8. Computational Pathology—a 3 minute primer
- 9. Selected Challenges
 - a. Clinical data quality
 - b. Implementation—limits of current health IT infrastructure
 - c. Non-technical infrastructure

A High Level View of Clinical Decision Support

Evolution of Decision Support

- 1. Why do we need decision support?
- 2. A high level view
- 3. Guidelines and quick refs
- 4. Just-in-time knowledge delivery
- 5. Human factors engineering
- 6. Computational knowledge derivation
- 7. Transforming expert knowledge into rule-based alerts
- 8. Computational Pathology—a 3 minute primer
- 9. Selected Challenges
 - a. Clinical data quality
 - b. Implementation—limits of current health IT infrastructure
 - c. Non-technical infrastructure

Guidelines & Quick References

Key Question: What Information Can be Trusted?

Guidelines & Quick References: Laboratory Handbooks

- Trusted Information
- •Institution-specific
- Optimized Search
- Usage Analysis

Knowledge Links

- 1. Why do we need decision support?
- 2. A high level view
- 3. Guidelines and quick refs
- 4. Just-in-time knowledge delivery
- 5. Human factors engineering
- 6. Computational knowledge derivation
- 7. Transforming expert knowledge into rule-based alerts
- 8. Computational Pathology—a 3 minute primer
- 9. Selected Challenges
 - a. Clinical data quality
 - b. Implementation—limits of current health IT infrastructure
 - c. Non-technical infrastructure

Just-in-time Knowledge Delivery: Non-Interruptive Alerts

Just-in-time Knowledge Delivery: Interruptive Alerts

Test: CK isoenzymes (CKMB+CPK)

Just-in-time Knowledge Delivery: Knowledge Management Systems, Pathology Portal

POE Test Name	CK isoenzymes (CKMB+CPK)
Test Active / Orderable	True
Test Orderable in POE	True
Test Orderable Environments	MGHED,MGHIN,MGHOP
Common Test	False,False
Test Population	Adult,Pedi,Neonate
Test Turn Around Time	2 hours
Test is Send Out	False
Cost	\$
Test Preferred Tube	GN3 + P3
Specimen Type	BLD
POE Test Ordering Message	UPDATED R/O MI protocol: Trop

Just-in-time Knowledge Delivery: Knowledge Management Systems

Permits Pathology to have control over Provider Order Entry screens

- 1. Why do we need decision support?
- 2. A high level view
- 3. Guidelines and quick refs
- 4. Just-in-time knowledge delivery
- 5. Human factors engineering
- 6. Computational knowledge derivation
- 7. Transforming expert knowledge into rule-based alerts
- 8. Computational Pathology—a 3 minute primer
- 9. Selected Challenges
 - a. Clinical data quality
 - b. Implementation—limits of current health IT infrastructure
 - c. Non-technical infrastructure

Human Factors Engineering

Design systems to encourage a particular outcome

Examples:

- Design requisitions, templates or quick picks to include tests that are often appropriate and require specific searchers for uncommonly needed tests (that should usually be used by a specialty)
- Use "smart" search to guide clinicians toward the correct test

 Guiding principle: Make it easy to do the right thing and hard to the wrong thing

Human Factors Engineering: Example Quick Picks

Human Factors Engineering: Example LDH Quick Pick

- 1. Why do we need decision support?
- 2. A high level view
- 3. Guidelines and quick refs
- 4. Just-in-time knowledge delivery
- 5. Human factors engineering
- 6. Computational knowledge derivation
- 7. Transforming expert knowledge into rule-based alerts
- 8. Computational Pathology—a 3 minute primer
- 9. Selected Challenges
 - a. Clinical data quality
 - b. Implementation—limits of current health IT infrastructure
 - c. Non-technical infrastructure

Traditional Vs. Computational Derivation of Knowledge

- Traditional Knowledge
 Sources
- Clinical and observational studies
- Clinician experience
- Expert Opinion
- Consensus guidelines

Computational Knowledge Discovery

 Apply statistical and machinelearning approaches to existing clinical data to identify useful patterns

Advantages and Limitations of Traditional Vs. Computational Derivation of Knowledge

	Traditional Knowledge	Computational Knowledge
Advantages •Well established, easily understood •Incorporates clinical intuition	•Can learn from large datasets and potentially identify very subtle patterns	
	•Incorporates clinical intuition	
	Often easily applied	Often comparatively objective
	•In the case of well-defined	•Less expensive than RCTs
	studies, includes high quality	•Provides opportunities for
	evidence	personalized medicine
Limitations	•Can only incorporate high quality evidence for limited circumstances	May be difficult to understand and apply
	•Evidence/ guideline basis for individualizing care often limited	•Limited by overfitting
	•Can only "learn" from a limited dataset → insufficient for complex patterns	

Opinion: Need to Integrate both Types of Knowledge

Computational Knowledge Discovery: Machine Learning

Repository of Patient Data

Machine Learning

Clinical Knowledge

Computational Derivation of Knowledge: Supervised Vs. Unsupervised Machine Learning

Overfitting: A Key Consideration

Avoiding overfitting is a key challenge

- An **overfit** model:
 - Fits to random patterns in the training data that do not generalize
 - Mistakes "noise" for a real pattern
 - Performs better in classifying the training data than independent test data

Overfitting and the Red Sox

- Suppose I'm a superstitious Boston sports fan and want to know what "causes" the Red Sox to win
- I look at 20 games of which the Sox won 15
- I review my daily diary and find that on all 15 wins:
 - I had eggs for breakfast AND
 - Wore my lucky hat OR
 - Wore my lucky shirt (but not both)
- These conditions were not met on the for the losses
- I think I've found a pattern
- Should I bet my savings?

Computational Derivation of Knowledge: Overfitting, An Important Pitfall

- Overfitting tends to
 - Increase with model complexity AND
 - Decrease with the size of the training data set

Computational Derivation of Knowledge: Machine Learning, Sample Methods

- Linear methods
 - Ordinary least squares regression
 - Logistic regression
 - Perceptrons
- Decision trees
 - Recursive portioning trees
 - Ensemble methods (random forest)
- Artificial neural networks
- Support vector machines
- K-means clustering

Computational Derivation of Knowledge: Example Spurious Glucose Identification

Commonly problem at many hospitals

 We were seeing spurious critically elevated glucose results about once per day

• Fewer than 10% of these spuriously elevated glucoses were being identified

Spuriously elevated glucose result

Goal: Develop an Algorithmic Protocol to Distinguish Spurious from Real Critically Elevated Glucose Values

Computational Derivation of Knowledge: Example Spurious Glucose Identification, Methods

Prediction as to whether result is real or spurious

Computational Derivation of Knowledge: Example Spurious Glucose Identification, Results

Implementation Discussed Later

	Training Data	Test Data
Spurious Correctly Classified	57	32
Total Spurious	61	37
Sensitivity (95% CI)	93% (84-98%)	86% (72-95%)
Real Correctly Classified	68	5
Total Real	77	6
Specificity (95% CI)	88% (79-9%)	83% (42-99%)

Overview

- 1. Why do we need decision support?
- 2. A high level view
- 3. Guidelines and quick refs
- 4. Just-in-time knowledge delivery
- 5. Human factors engineering
- 6. Computational knowledge derivation
- 7. Transforming expert knowledge into rule-based alerts
- 8. Computational Pathology—a 3 minute primer
- 9. Selected Challenges
 - a. Clinical data quality
 - b. Implementation—limits of current health IT infrastructure
 - c. Non-technical infrastructure

Transforming Expert Knowledge into Rule-based Alerts and Comments

Transforming Expert Knowledge into Rule-based Alerts and Comments

Knowledge acquisition is only part of the battle

Implementation of decision support can be a key challenge

 Many health information systems offer opportunities for rule-base alerts, but may still be limited in what rules can be implemented

Building alerts can be resource intensive

Transforming Expert Knowledge into Rule-based Alerts

Example, Acute Kidney Injury Detection: Background

Acute Kidney Injury (AKI) and Creatinine Reporting Challenges

- AKI can be diagnosed based on trends in creatinine
- However, in standard reporting creatinine values are only flagged if outside of the reference range
- Values indicative of AKI often remain within the reference range
- Clinicians often quickly scan lab values for flagged result outside of reference range

AJCP (2015) 143:42:49

Transforming Expert Knowledge into Rule-based Alerts Example, Acute Kidney Injury Detection: Approach

- Plan: Develop a flag within our LIS
- Challenge: LIS not well equipped for this type of problem
- Example, no function to calculate minimum creatinine over a time period
- Solution: Use "tracked minimum", which can be calculated
- ?: What time period to use for baseline: 24hrs, 48hrs, 7 days

 Final Decision: Flag creatinine values increased significantly from 72 hr tracked minimum

Transforming Expert Knowledge into Rule-based Alerts

Example, Acute Kidney Injury Detection: Tracked Minimums

The tracked minimum is updated to the current creatine result when either

- The new creatinine result is less than or equal to the prior tracked minimum OR
- ii. When the prior tracked minimum "expires" (has not been updated in 72 hours)

Otherwise, each new tracked minimum is just the prior tracked minimum

AJCP (2015) 143:42:49

Transforming Expert Knowledge into Rule-based Alerts

Example, Acute Kidney Injury Detection: Solution

	T=70	T=46 hrs	T=0
CRE	1.49(T)	1.35	1.11
EGFR	see detail	40(T)	50(T)

Transforming Expert Knowledge into Rule-based Alerts A Call for a Better System

 The AKI flag required a large investment of resources in terms of MD and IT time

We need a more streamlined approach

Overview

- 1. Why do we need decision support?
- 2. A high level view
- 3. Guidelines and quick refs
- 4. Just-in-time knowledge delivery
- 5. Human factors engineering
- 6. Computational knowledge derivation
- 7. Transforming expert knowledge into rule-based alerts
- 8. Computational Pathology—a 3 minute primer
- 9. Selected Challenges
 - a. Clinical data quality
 - b. Implementation—limits of current health IT infrastructure
 - c. Non-technical infrastructure

Computational Pathology: Example, Ferritin Result Prediction

Can we predict ferritin results using patient demographics and other current laboratory test data?

Findings

Predicted ferritin classifications
 were highly accurate

- Predicted ferritin values were moderately accurate
- Predicted ferritin may have diagnostic value
- Suggests applications to decision support

Selected Challenges

Overview

- 1. Why do we need decision support?
- 2. A high level view
- 3. Guidelines and quick refs
- 4. Just-in-time knowledge delivery
- 5. Human factors engineering
- 6. Computational knowledge derivation
- 7. Transforming expert knowledge into rule-based alerts
- Computational Pathology—a 3 minute primer
- 9. Selected Challenges
 - a. Clinical data quality
 - b. Implementation—limits of current health IT infrastructure
 - c. Non-technical infrastructure

Challenge: Clinical Data Quality

Challenge: Clinical Data Quality

Patient	Family History
1	DM (mother); heart problems, unknown nature (father)
2	No endocrine problems, prostate CA—brother, colon cancer, mom
100,000	noncontributory

VS

Patient	Family History of DCM
1	Yes
2	No
3	Yes
4	No

- Data quality may be limited by accuracy, completeness or structure
- Tradeoff between manual curation and data size
- Data structure may limit model complexity and reduce overfitting

Challenge: Clinical Data Quality: Is Big Data the Answer?

Can data quantify sometimes substitute for data quality?

Overview

- 1. Why do we need decision support?
- 2. A high level view
- 3. Guidelines and quick refs
- 4. Just-in-time knowledge delivery
- 5. Human factors engineering
- 6. Computational knowledge derivation
- 7. Transforming expert knowledge into rule-based alerts
- 8. Computational Pathology—a 3 minute primer
- 9. Selected Challenges
 - a. Clinical data quality
 - b. Implementation—limits of current health IT infrastructure
 - c. Non-technical infrastructure

Challenge: Implementation of Evolving Decision Support

Implementation Challenge

 Even straightforward rule-based alerts can be challenging to implement (e.g. AKI alert)

 But what about decision support based on machine learning algorithm— is it hopeless?

Implementation Challenge: Current Approaches

- Implementation is difficult
- Manual methods

 flowcharts with e-mails, etc.
- LIS calculation functionality
- EHR alerts
- Transform statistically-based approaches into rule based one (trees do so automatically)

Implementation Challenge: Current Approaches Example, Spurious Glucose

Implementation Challenge: Need for New Technology

 While some machine learning algorithms can be reduced to implementable rules, others cannot

 Highlights a need for new technologic solutions capable of implementing more complex algorithms

Overview

- 1. Why do we need decision support?
- 2. A high level view
- 3. Guidelines and quick refs
- 4. Just-in-time knowledge delivery
- 5. Human factors engineering
- 6. Computational knowledge derivation
- 7. Transforming expert knowledge into rule-based alerts
- 8. Computational Pathology—a 3 minute primer
- 9. Selected Challenges
 - a. Clinical data quality
 - b. Implementation—limits of current health IT infrastructure
 - c. Non-technical infrastructure

Challenge: Integrated Infrastructure

Integrated Infrastructure Challenge

Technical

- What systems will we have for development and implementation?
- How will we get high quality data?

Administrative

- Who signs off?
- How do we fund?
- What type of validation is needed?
- What are the regulatory requirements? (CLIA, FDA, others)
- What are the risk management implications?

Educational

- How should evolving decision support be used to treat patients?
- Can clinicians trust a black box?
- If not, how can we make the box transparent?

Summary and Conclusions

Clinical decision support takes many forms

New opportunities are emerging to apply computational approaches to knowledge acquisition

Decision support implementation remains a key challenge

 We need better integrated systems to couple knowledge discovery and curation with decision support implementation

Acknowledgements

Many Aspects

- Anand Dighe
- John Gilbertson
- Kent Lewandrowski
- Joseph Rudolf
- David Louis

Ferritin Prediction

- Peter Szolovits
- Yuan Luo
- MGH eCore— MGH-MIT Grand
 Challenge Grant

Acute Kidney Injury Alert

- Xingxing Cheng
- Hasan Bazari
- Ishir Bhan
- Rosemary Jaromin
- Chris Lofgren

Spurious Glucose Identification

Craig Mermel

Extra

