1) На расстоянии от точечного заряда находится равномерно заряженная квадратная пластинка размером $2l \times 2l = 20\,\text{cm} \times 20\,\text{cm}$ (заряд расположен на продолжении нормали к центру пластинки. Во сколько раз изменится сила взаимодействия между пластинкой и зарядом, если заряд пластинки сосредоточить в ее центре?

2) Имеется изолированная равномерно заряженная с поверхностной плотностью σ пластина в виде правильного треугольника ABC со стороной $\sqrt{2}a$. Найти напряженность электрического поля в точке O, если расстояния от нее до вершин пластины равны a.

- 3) Поток напряжённости электрического поля через плоскую поверхность равномерно заряженной с поверхностной плотностью заряда σ , равен $\Phi_{\rm sneul}$ (поток внешнего для данной поверхности поля). Чему равна нормальная плоскости пластины компонента электростатической силы, действующей на пластину?
- 4) С какой силой действует на каждую грань тетраэдра заряд q, помещённый в его центре? Поверхностная плотность заряда граней равна σ .
- 5) С какой силой расталкиваются равномерно заряженные грани куба? Тетраэдра? Поверхностная плотность заряда граней σ , длина ребра l.
- 6) Найдите распределение объёмной плотности электрического заряда $\rho(r)$:
 - а) в шаре радиуса R, при условии, что напряжённость электрического поля шара E_0 направлена вдоль его радиуса и не меняется по модулю;
 - б) в бесконечном цилиндре радиуса R, при условии, что напряжённость электрического поля цилиндра E_0 направлена вдоль радиуса сечения и не меняется по модулю.
- 7) Линия напряжённости электрического поля выходит из положительного заряда $+q_1$ под углом α к прямой, соединяющей его с отрицательным зарядом $-q_2$. Под каким углом β линия напряжённости войдёт в заряд $-q_2$?

- 8) В равномерно заряженной с поверхностной плотностью σ сфере радиуса R вырезано маленькое отверстие. Какова напряженность электрического поля в центре отверстия?
- 9) Тонкая сфера радиуса R заряжена до поверхностной плотности σ . Какое давление испытывает сфера?
- 10) В центр равномерно заряженной полусферы, поверхностная плотность заряда которой равна σ , поместили заряд q. С какой силой этот заряд действует на половину полусферы?

- 11) Определите напряженность электрического поля, создаваемого равномерно заряженной:
 - а) полусферой в центре сферы A;
 - б) половиной полусферы;
 - в) четвертой частью полусферы (два перпендикулярных разреза).

Поверхностная плотность заряда равна σ .

- 12) Определите напряженность электрического поля в центре равномерно заряженного полушария с объемной плотностью заряда ρ .
- 13) Равномерно заряженная зарядом Q сфера радиуса R разрезана на две части по плоскости, отстоящей на расстояние h от центра сферы. Найдите силу, с которой отталкиваются друг от друга эти части. Какой минимальный заряд (по модулю) нужно поместить в центр сферы, чтобы ее части не разлетались?

14) Найдите силу взаимодействия двух непроводящих полусфер радиусами R и r с зарядами Q и q соответственно, распределенными равномерно по поверхностям полусфер. Центры и плоскости максимальных сечений полусфер совпадают.

- 15) В вершинах правильного N-угольника расположены последовательно электрические заряды, величины которых образуют геометрическую прогрессию со знаменателем 2 и равны $q, 2q, \dots, 2^{N-1}q$. Расстояние от центра многоугольника до любой из его вершин равно R. Найдите величину E напряжённости электрического поля в центре многоугольника.
- 16) В вершинах правильного N-угольника расположены последовательно электрические заряды, величины которых образуют арифметическую прогрессию с разностью q и равны q, 2q, ..., Nq. Расстояние от центра многоугольника до любой из его вершин равно R. Найдите величину напряжённости E электрического поля в центре многоугольника.
- 17) В системе из трех концентрических сфер с радиусами r, 2r и 4r по внутренней сфере равномерно распределен заряд Q, по средней заряд -Q, а по внешней снова заряд Q. Найдите потенциалы сфер. Как изменятся заряды сфер, если внутреннюю и внешнюю соединить тонким изолированным проводом, не имеющим контакта со средней сферой и практически не влияющем на распределение поля?
- 18) Точечный заряд q расположен между двумя проводящими незаряженными сферами на расстоянии x от их общего центра. Сферы соединяют тонким проводником, не нарушающим сферическую симметрию задачи. Найдите заряд Δq , протекший по проводнику. Радиусы сфер a и b известны. Какая теплота при этом выделится?

Электростатика

1) Два металлических одинаковых полушара радиуса R расположены так, что между ними имеется очень небольшой зазор. Полушары заряжают зарядами -Q и 3Q (Q > 0). Найти напряжённость электрического поля в зазоре между полушарами.

2) Распространено мнение, что тела с одноимёнными зарядами всегда отталкиваются друг от друга. Вовсе нет! Такой эффект наблюдается далеко не всегда. Представьте себе, что сплошной металлический шар радиуса R распилили пополам, а получившиеся половины сблизили плоскими сторонами так, что зазор d между ними оказался предельно мал $(d \ll R)$. Найдите силу электростатического взаимодействия полушарий с одноимёнными зарядами q_1 и q_2 . При каком отношении зарядов они будут притягиваться?

Примечание: Сила, действующая на единицу поверхности заряженного проводника произвольной формы, связана с напряжённостью электрического поля вблизи поверхности тем же соотношением, что и в плоском конденсаторе.

- 3) Некоторое вещество обладает нелинейной проводимостью. Удельное сопротивление ρ этого вещества зависит от напряжённости E электрического поля по следующему закону: $\rho = \rho_0 + AE^2$, где $\rho_0 = 10^7 \, \frac{\mathrm{Om}}{\mathrm{m}} \,$ и $A = 10^{-3} \, \frac{\mathrm{Om} \cdot \mathrm{m}^3}{\mathrm{B}^2}$. Этим веществом заполнено всё пространство между пластинами плоского конденсатора. Площадь пластин $S = 1 \, \mathrm{m}^2$.
 - а) Через конденсатор течёт ток. Найдите максимально возможное значение силы тока $I_{\rm max}$.
 - б) Предполагая, что расстояние между пластинами конденсатора $d=1\,\mathrm{cm}$, определите максимальную тепловую мощность, которая может выделяться внутри конденсатора при изменении напряжения между пластинами. Постройте качественный график зависимости мощности P от напряжения U.
 - в) Пусть теперь напряжение на конденсаторе постоянно: $U_1 = 2 \, \mathrm{kB}$. Какая максимальная мощность может выделяться внутри конденсатора, если изменять расстояние между пластинами? При каком значении $d = d_1$ достигается максимальная мощность? Предполагается, что конденсатор заполнен веществом при любых значениях d. Постройте качественный график зависимости выделяемой мощности P от расстояния d между пластинами.

4) Сферический конденсатор с радиусами обкладок $R_1 = R$ и $R_3 = 3R$ подсоединён к источнику с постоянным напряжением U. Пространство между обкладками заполнено двумя слоями различных веществ с удельными сопротивлениями $\rho_1 = \rho$ и $\rho_2 = 2\rho$ и диэлектрическими проницаемостями $\varepsilon_1 = \varepsilon_2 = 1$. Радиус сферической границы между слоями $R_2 = 2R$. Удельная проводимость слоёв между обкладками конденсатора намного меньше удельной проводимости материала обкладок.

- Найдите заряд на границе между слоями различных веществ.
- б) Найдите силу тока, протекающего через конденсатор.
- Плоский конденсатор ёмкостью C_0 заполнен слабопроводящей 5) слоистой средой с $\varepsilon = 1$, удельное сопротивление которой зависит от расстояния x до одной из пластин по закону $\rho = \rho_0 (1 + \frac{2x}{d})$, где d – расстояние между пластинами конденсатора. Конденсатор подключён к батарее с напряжением $U_{\scriptscriptstyle 0}$. Найдите:
 - силу тока, протекающего через конденсатор; a)
 - б) заряды нижней (q_1) и верхней (q_2) пластин конденсатора;
 - заряд q внутри конденсатора (т. е. в среде между пластинами); в)
 - L) электрическую энергию $W_{\rm e}$, запасённую в конденсаторе.
- 6) Найдите напряженность электрического диполя, обладающего дипольным моментом $\vec{p} = q\vec{l}$ в точке, отстоящей от диполя на расстояние r ($d \ll r$), в случаях, если:
 - точка лежит на оси диполя; a)
 - б) точка лежит в плоскости, перпендикулярной оси диполя;
 - в общем случае. в)
- 7) Найдите силу и момент сил, действующих на диполь с моментом \vec{p} в однородном поле \vec{E} .
- Диполь с моментом \vec{p} находится на расстоянии r от точечного заряда q . Какая сила 8) действует на диполь? Выразите ответ через радиус-вектор \vec{r} и вектор дипольного момента \vec{p} диполя.

