Set 07: Priority Queue ADT, and Heap DS

CS240: Data Structures and Data Management

Jérémy Barbay

Outline

Priority Queue ADT

Abstract Data Type Data Structure: Heaps

Heaps implemented in array

Binary Trees in Array New operators Heapify

Heap Sort

Sorting with Priority queues Sorting with a Heap implemented in an array

Mid-Summary about Abstract Data Types

Min (or Max) Priority Queue ADT

- Container of prioritized elements called keys
- supporting two operations:
 - ▶ insert(x): Inserts key x into the data structure.
 - extractMin(): (or extractMax) Returns the smallest (largest) key and removes it from the data structure.
 - isEmpty(): Returns false if the queue contains at least one key.
- ▶ In practice, an element is associated to each key.
- Here, we assume keys are distinct and totally ordered.

Min-Heap and Max-Heap

A min-heap (resp. max-heap) is a data structure that implements the abstract data type priority queue in a tree such that:

- 1. Value of key x is smaller (resp. larger) than the value of its descendants.
- 2. All levels but the last are complete.
- 3. Last level is filled from left to right.

Example:

Examples:

Heap Properties

Theorem

A heap with n internal nodes has height

$$h = \lceil \lg(n+1) \rceil$$
.

Proof: Note, $x \leq \lceil x \rceil < x + 1$

Corollary

A heap with n internal nodes has height $h \in \Theta(\log n)$.

Inserting element into heap.

- Add the element to the left-most empty position at the bottom level (or start a new level if the bottom level is full)
- ► This may lead to violation of the heap property
- "Sift the element up" to restore the heap property

SiftUp(v) for a MaxHeap

```
if v has a parent then
  if the value of v's parent < v's value then
    exchange their values;
    SiftUp(parent(v));
  end if
end if</pre>
```

Example: insert(44)

How many swaps? $O(\lg n)$

Extracting the minimum element from the heap.

- Minimum is stored in the root of the tree: removeit.
- ▶ Fill the gap with the right-most element at the bottom level.
- ► Restore the heap property by "sinking" the element down.

SiftDown(v) for a MaxHeap

```
if v has at least a child then
  if a child of v has a larger value then
    find the child w with the largest value;
    exchange the value of v and w;
    SiftDown(w);
  end if
end if
```

Example: extractMax()

How many swaps? $O(\lg n)$.

Optimisation

- SiftUp and SiftDown are recursive but particular:
- only one recursive call in the function.
- Remove the recursion with a while loop.

Other optimisation: implement the binary tree in an array...

Summary for Heaps

- Priority Queue is an Abstract Data Type
- Heap is a Data Structure based on binary trees.
- Recursive function can be derecursived.

Outline

Priority Queue ADT

Abstract Data Type
Data Structure: Heaps

Heaps implemented in array

Binary Trees in Array New operators Heapify

Heap Sort

Sorting with Priority queues Sorting with a Heap implemented in an array

Mid-Summary about Abstract Data Types

Binary Trees in Array

▶ We can represent a binary tree with an array

- ▶ Given an array index *i*, what is the index of:
 - ▶ left child: 2i
 - right child: 2i + 1
 - ▶ parent: [*i*/2]

Binary Trees in Array (cont')

- ▶ Why do we not generally represent trees with arrays?
 - Only efficient for Complete Trees.
 - Only practical for trees of bounded degrees.
- A heap is a complete tree, though
- We will usually draw heaps as a tree structure
- ▶ However, we will implement the heap with
 - ► An array *A*[1..*N*]
 - ▶ An integer representing the *size* of the current heap

Implement heaps in an array.

Store root in A[1] and continue with elements level-by-level from top to bottom, in each level left-to-right:

SiftDown

SiftUp

```
To Insert, use SiftUp:
SiftUp(A[1..n], i)
  if i is not the root, and A[i] < \text{key}(|i/2|) then
     swap (i, |i/2|)
     SiftUp(i)
  end if
Complexity: O(\lg n) To build a heap from n elements, use Insert n
times?
It costs O(n \lg n).
```

Heapify

We can build a heap faster than by n insertions.

BottomUpHeapify(A[1..n])

for $i = \lfloor \frac{n}{2} \rfloor$ down to 1 do SiftDown from A[i]end for

Theorem

The complexity of BottomUpHeapify is O(n)

Example:

Heapify this array in a MaxHeap:

1	2	3	4	5	6	7	8	9
7	1	9	4	6	3	2	8	5

As an exercise, Heapify it as a MinHeap.

You should get 1 4 2 5 6 3 9 8 7

Proof of the Complexity of BottomUpHeapify

Proof.

- ▶ In a heap of *n* keys, at most $\lceil n/2^{h+1} \rceil$ nodes of height *h*.
- ► Each call to SiftDown on a subtree of height *h* is taking at most 2*h* comparisons.
- ► BottomUpHeapify performs at most one SiftDown call per sub-tree

Hence the total complexity of BottomUpHeapify is at most

$$C(n) \leq \sum_{h=0}^{\lfloor \lg n \rfloor} 2h \lceil \frac{n}{2^{h+1}} \rceil$$

$$= 2n \sum_{h=0}^{\lfloor \lg n \rfloor} \lceil \frac{h}{2^{h+1}} \rceil$$

$$\leq 2n \sum_{h=0}^{\infty} \lceil \frac{h}{2^{h+1}} \rceil < 4n \in O(n)$$

How NOT to Heapify

```
Use SiftDown, and not SiftUp!  \begin{aligned} & \mathsf{TopDownHeapify}(A[1..n]) \\ & \mathbf{for} \ i \leftarrow 1 \ \mathsf{to} \ n \ \mathbf{do} \\ & & \mathsf{SIFTUP} \ \mathsf{from} \ A[i] \\ & \mathbf{end} \ \mathbf{for} \end{aligned}
```

Theorem

The complexity of TopDownHeapify is $O(n \lg n)$

Exercise:

Heapify this array:

The difference between TopDown and BottomUp

- ▶ TopDown has a few SiftUp calls of complexity O(1) and many of complexity $O(\lg n)$;
- ▶ BottomUp has a few SiftDown calls of complexity $O(\lg n)$ and many of complexity O(1).

Summary for Heaps in arrays

Heaps implemented in arrays:

- ▶ use less space
- ▶ and can be build faster, using BottomUpHeapify.
- ▶ Do not use the other method!.

Outline

Priority Queue ADT

Abstract Data Type
Data Structure: Heaps

Heaps implemented in array

Binary Trees in Array New operators Heapify

Heap Sort

Sorting with Priority queues
Sorting with a Heap implemented in an array

Mid-Summary about Abstract Data Types

Sorting with Priority queues

```
PQ	ext{-}Sort(A[1..n])

for i \leftarrow 1 to n do

PQ	ext{.INSERT}(A[i])

end for

for i \leftarrow n downto 1 do

A[i] \leftarrow PQ	ext{.EXTRACTMAX}()

end for
```

Heap Sort

```
HeapSort(A[1..n])

for i \leftarrow 1 to n do

HEAP.INSERT(A[i])

end for

for i \leftarrow n downto 1 do

A[i] \leftarrow \text{HEAP.EXTRACTMAX}()

end for
```

- ▶ Running Time? $O(n \lg n)$
- ▶ Space Usage? O(n)

HeapSort and MaxHeaps

On arrays, several modifications to improve the space:

- ► Sort "in place". At step i:
 - ▶ the last *i* elements are sorted.
 - ▶ the first n i elements represent the heap.
- MaxHeap versus MinHeap.

HeapSort "in place"

```
HeapSort:
  for i:=n/2 downto 1
  | SiftUp(i,n)
  for i:=n downto 1
  | Swap(A[1],A[i]);
  | SiftUp(1,i-1);
SiftUp(node, size):
  while (2*node<=size and A[node]<A[2*node])
     or (2*node+1<=size and A[node]<A[2*node+1])
  | if 2*node+1>size or A[2*node]>A[2*node+1]
    | k:=2*node
  l else
    k:=2*node+1
    swap(A[node],A[k]); node:=k
```

Summary for HeapSort

Heaps implemented in arrays permits to

- ▶ sort in time $O(n \lg n)$.
- ▶ with space exactly *n*.

Outline

Priority Queue ADT

Abstract Data Type
Data Structure: Heaps

Heaps implemented in array

Binary Trees in Array New operators Heapify

Heap Sort

Sorting with Priority queues Sorting with a Heap implemented in an array

Mid-Summary about Abstract Data Types

Mid-Summary about Abstract Data Types

	Topic	Concept(s)		
5	What's an ADT?	Abstract the "What" of the "How".		
	Stacks (LIFO)	Pile of plates		
	Queue (FIFO)	People waiting in line		
	Graphs	(non)oriented, (un)weighted		
	Adjacency list DS	O(m), good for sparse graphs.		
	Adjacency matrix DS	O(1) or $O(n)$, good for dense graphs.		
	Algorithms on graphs	Depth First and Breadth First Traversal.		
6	Trees	Cardinal/Ordinal, many variants		
	Binary Trees	Can represent other trees.		
7	Priority Queue ADT	Find Min or Max.		
	Heap DS	Based on Binary Tree.		
	Sift up/down	To correct the heap.		
	Heapify	To build a heap from an array.		
		do it BottomUp!		
	Heapsort	Sort in $O(n \lg n)$, and in place.		

Reading Materials

	Topic			GT	CLRS	
5	What's an ADT?			56-74	200-209	
	Graphs			288-306, 313-316	527-552	
6	Trees			75-93	214-216	
	Binary Trees			(same)	(same)	
7	Priority	Queue	and	94-112	127-140	
	Heaps					

- ▶ GT = Algorithm Design, by Goodrich & Tamassia
- ► CLRS = Introduction to Algorithms, by Cormen, Leisersen, Rivest & Stein