G4.P-1

David Emanuel Craciunescu Laura P<e9>rez Medeiro

November 3, 2019

1 Data analysis using Hunt decision algorithm and linear regression

1.1

The data use in this exercise will be nine students marks and califications, as it has been done in the teorical classes. For this analysis, it wil be used the gain information meause, using Gini as the impurity measure.

First step in the analysis is read the data, which is contains in a txt file called qualifications.txt:

```
> library(utils)
> qualifications <- read.table("qualification.txt")
> sample = data.frame(qualifications)
```

In order to make the analysis, the package rpart will be used. this means, that it should be install before working with the dataset. In order to manage R packages, it will be used Packrat == library(utils) library(rpart) clasification = rpart(C.G.,data=sample, method="class", minsplit = 1) clasification

Another package that can be used to do this analysis is tree:

library (tree) (clasificationTree = tree (C.G ., data = sample, mincut = 1, minsize = 2)) clasificationTree

1.2

In this second part, the dataset use is planets.txt. To this dataset, linear regression will be applied.

As it has been done before, the first step consist on reading data from a txt file:

```
> data <- read.table("planets.txt")
> data = data.frame(data)
> names(data)
[1] "Radius" "Density"
```

In order to quantify the correlation between the variables, it will be calculated the coeficient's matrix correlation:

```
> cor(data)
```

```
Radius Density
Radius 1.000000 0.371063
Density 0.371063 1.000000
   Then, it will be calculated and representated the minimun square error line:
> regression <- lm( Density~Radius, data)
> summary(regression)
Call:
lm(formula = Density ~ Radius, data = data)
Residuals:
Mercurio
            Venus
                     Tierra
                               Marte
 0.70312 -0.01253 0.24566 -0.93624
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
              4.3624
                          1.2050
                                   3.620 0.0685 .
Radius
              0.1394
                          0.2466
                                   0.565 0.6289
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.846 on 2 degrees of freedom
Multiple R-squared: 0.1377,
                                     Adjusted R-squared: -0.2935
F-statistic: 0.3193 on 1 and 2 DF, p-value: 0.6289
   The equation's line is y = 4.3624 + 0.1394x
> library(gplots)
> par(mar = rep(2,4))
> plot(data$Density, data$Radius)
> abline(regression)
   Finally, it is necessary to calculate ANOVA in order to analysize correctly
the relation between variables.
> anova <- aov(Density~Radius, data)</pre>
> summary(anova)
            Df Sum Sq Mean Sq F value Pr(>F)
             1 0.2286 0.2286
                                 0.319 0.629
Radius
Residuals
             2 1.4314 0.7157
```

2

The following part consist on doing the same analysis as it has been done before, but now with new datasets. \blacksquare = data <- read.table("vehiculos.txt") sample = data.frame(data) library(rpart) clasification = rpart(TipoVehiculo.,data=sample, method="class", minsplit = 1) clasification