The given problem: Suppose that X is a contractible space. Prove that there is a bijection between [X,Y] and the set of path components of Y.

Name: James Wang

Suppose X is contractible, by definition we know the identity map is nullhomotopic, meaning it is homotopic to a constant map. Translating this, we get a homotopy $F: X \times I \to X$ such that F(x,0) = x and F(x,1) = p, where p is an element of X. Let C(Y) denote the set of path components of Y, so that $y_1, y_2 \in [Y_i] \in C(Y)$ if and only if there is a path between them. Now consider the map $\varphi:[X,Y]\to C(Y)$ defined by $\varphi([f])=[Y_i]$, where $f(p)\in[Y_i]$. We first show that φ is well-defined. Take arbitrary continuous $f_1, f_2: X \to Y$ such that $f_1 \simeq f_2$, then by definition there exists $H: X \times I \to Y$ such that $H(x,0) = f_1(x)$ and $H(x,1) = f_2(x)$ for all $x \in X$. Recall that X is contractible, so we can compose a constant path in Y to H and get a homotopy between $f_1(p)$ and $f_2(p)$. This means there is a path between $f_1(p)$ and $f_2(p)$, so we have shown $\varphi(f_1)$ and $\varphi(f_2)$ are in the same path component. We next show that φ is injective. Take arbitrary continuous $f_1, f_2: X \to Y$ and suppose $\varphi(f_1)=\varphi(f_2),$ which means $f_1(p)$ and $f_2(p)$ are in the same path component. Since Xis contractible, it follows quickly that $f_1(p) \simeq f_2(p)$ and $f_1 \simeq f_2$. We finally show that φ is surjective. Take any $[Y_i] \in C(Y)$, since X is contractible, recall we have defined a homotopy $F: X \times I \to X$ such that F(x,0) = x and F(x,1) = p. We can also define some $g:X\to Y$ so that $g(x)\in [Y_i]$. Together we finally define a homotopy $K:X\times I\to Y$ by K(x,t) = g(F(x,t)), through which we see K(x,0) = g(x) and K(x,1) = g(p). Since $g(x) \in [Y_i]$ by construction, it must also be that $g(p) \in [Y_i]$, and we have found some continuous $g: X \to Y$ such that $\varphi([g]) = [Y_i]$.

Exercise 53.6b):

Let $p: E \to B$ be a covering map. We want to prove that if B is compact and $p^{-1}(b)$ is finite for each $b \in B$, then E is compact.

Let $\{U_{\alpha}\}$ be an open covering of E. Take arbitrary $x \in E$, since $p(x) \in B$ and $p^{-1}(b)$ is finite for each $b \in B$, we can denote $p^{-1}(p(\{x\})) = \{x, x_1, \dots, x_n\}$. Take an open set V' in B that contains p(x), by the definition of a covering map, $p^{-1}(V')$ is divided into disjoint open sets $T_x, T_{x_1}, \dots, T_{x_n}$, with each being homeomorphic to V' through the restriction on p. Since $\{U_{\alpha}\}$ covers E, take $U_{\alpha_x}, U_{\alpha_{x_1}}, \dots, U_{\alpha_{x_n}} \in \{U_{\alpha}\}$ such that $x \in U_{\alpha_x}, x_1 \in U_{\alpha_{x_1}}, \dots, x_n \in U_{\alpha_{x_n}}$. Consider $V_x = p(U_{\alpha_x} \cap T_x) \cap p(U_{\alpha_{x_1}} \cap T_{x_1}) \cap \dots \cap p(U_{\alpha_{x_n}} \cap T_{x_n})$. We know V_x is open in B because p is an open map, and $p^{-1}(V_x)$ is divided into n+1 disjoint open sets in E, each is homeomorphic to V_x . We then repeat the above process for every $x \in E$, then the set $\{V_x\}_{x \in X}$ is an open cover of B. Since B is compact, let $\{V_{x_1}, V_{x_2}, \dots, V_{x_n}\}$ be a finite subcover of B. Denote $p^{-1}(p\{x_1\}) = \{x_1, e_{1,1}, e_{1,2}, \dots, e_{1,n_1}\}$, so we know $p^{-1}(V_{x_1}) \subseteq U_{\alpha_{x_{1,1}}} \cup U_{\alpha_{e_{1,1}}} \cup \dots \cup U_{\alpha_{e_{1,n_1}}}$. Similarly, $p^{-1}(V_{x_2}) \subseteq U_{\alpha_{x_{2,1}}} \cup U_{\alpha_{e_{2,1}}} \cup \dots \cup U_{\alpha_{e_{2,n_2}}}$, and so on. This means each of $p^{-1}(V_{x_1}), p^{-1}(V_{x_2}), \dots, p^{-1}(V_{x_k})$ is covered by a finite number of elements in $\{U_{\alpha}\}$. Hence any open cover of $E = p^{-1}(V_{x_1}) \cup p^{-1}(V_{x_2}) \cup \dots \cup p^{-1}(V_{x_k})$ can be reduced to a finite subcover with elements in $\{U_{\alpha}\}$, so E is compact.

QED

Exercise 52.5:

Let A be a subspace of \mathbb{R}^n ; let $h:(A,a_0)\to (Y,y_0)$. We want to show that if h is extendable to a continuous map of \mathbb{R}^n into Y, then h_* is the trivial homomorphism.

Let $f: \mathbb{R}^n \to Y$ be the extended continuous map of h so that $f|_A = h$, and let $j: A \to \mathbb{R}^n$ be the inclusion map such that j(a) = a for all $a \in A$. Note that $f \circ j = h$. Since both j and f are continuous, $j_*: \pi_1(A, a_0) \to \pi_1(\mathbb{R}^n, a_0)$ and $f_*: \pi_1(\mathbb{R}^n, a_0) \to \pi_1(Y, y_0)$ exist. By the functorial property, we have $f_* \circ j_* = (f \circ j)_* = h_*$. However, $\pi_1(\mathbb{R}^n, a_0)$ must be trivial, so for the maps to be defined, j_* and f_* must be the trivial homomorphism, and h_* is the trivial homomorphism.

QED

Exercise 53.1:

Let Y have the discrete topology. We want to show that if $p: X \times Y \to X$ is projection on the first coordinate, then p is a covering map.

We need to show p is continuous and surjective, and every $x \in X$ has a neighborhood U such that $p^{-1}(U)$ can be written as the union of disjoint open sets V_{α} in X where for each α , the restriction of p to V_{α} is a homeomorphism of V_{α} onto U.

Since $p: X \to Y$ is a projection map, p is clearly continuous and surjective.

Take arbitrary $x \in X$ and consider the entire space X as the neighborhood of x. It follows that $p^{-1}(X) = \{X \times \{y\}\}$ for all $y \in Y$. Clearly, for each $y \in Y$, $X \times \{y\}$ is open by the product topology because X is open and $\{y\}$ is open (Y has the discrete topology). Moreover, take $y_1, y_2 \in Y$, we see that $(X \times \{y_1\}) \cap (X \times \{y_2\}) = \emptyset$, so the open sets are also disjoint. Finally, we claim that in fixing $y \in Y$, $X \times \{y\}$ is homeomorphic to X. This is because $f: X \times \{y\} \to X$ defined by $(x, y) \mapsto x$ is bijective and continuous, and $f^{-1}: X \to X \times \{y\}$ defined by $x \mapsto (x, y)$ is also continuous.

QED