Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA

MAT 135 – Geometria Analítica e Álgebra Linear

 $3^{\underline{A}}$ Lista (Espaços Vetoriais) – 2021/1

profa. Lana Mara Rodrigues dos Santos

Atualizada em: 8 de março de 2021

- 1) Em cada item, verifique se os conjunto V com as operações de adição e produto por escalar definidas são espaços vetoriais. Para aquele que não for, cite os axiomas violados.
 - (a) $V = \mathbb{R}^2$; (a, b) + (c, d) = (a + b, 0) e a multiplicação escalar usual.
 - (b) $V = \mathbb{R}^2$; $(a, b) + (c, d) = (a + b, c + d) \in \alpha(a, b) = (\alpha^2 a, \alpha^2 b)$.
- 2) Mostre que os seguintes conjuntos são espaços vetoriais com a soma e produto por escalar usuais.
 - (a) Matrizes quaisquer de ordem 3×2 .
 - (b) Polinômios de grau menor ou igual a 4.
 - (c) Conjunto das funções contínuas de \mathbb{R} em \mathbb{R} .
- 3) Verifique quais dos seguintes subconjuntos são subespaços do \mathbb{R}^3 .
 - (a) $\{(x, y, z) \in \mathbb{R}^3 : x y 3z = 0\}$
 - (b) $\{(x, y, z) \in \mathbb{R}^3 : x y + 2z = 4\}$
 - (c) $\{(x, y, z) \in \mathbb{R}^3 : ax + by + c = 0\}$, em que $a, b \in c$ números reais.
 - (d) $\{(x, y, z) \in \mathbb{R}^3 : x y 3z \le 0\}$
 - (e) $\{(x, y, z) \in \mathbb{R}^3 : 2x^2 + y + z = 0\}$
- 4) Em cada item deste exercício são dados um espaço vetorial V e um subconjunto W de V. Verifique se W é subespaço vetorial V.
 - (a) $V = (\mathbb{R}^3, +, ., \mathbb{R})$ $W = \{(x, y, z) \in \mathbb{R}^3; x + y + z = 0\};$
 - (b) $V = (\mathbb{R}^3, +, ..., \mathbb{R})$ $W = \{(x, y, z) \in \mathbb{R}^3; x + y + z < 1\};$
 - (c) $V = (M_{3\times 3}(\mathbb{R}), +, ., \mathbb{R})$ $W = \{A \in M_{3\times 3}; A = A^T\};$
 - (d) $V = (M_{2\times 2}, +, ., \mathbb{R})$ $W = \{A \in M_{2\times 2}; \det A = 0\}.$
- 5) Mostre que os seguintes subconjuntos de \mathbb{R}^4 são subespaços de \mathbb{R}^4 .
 - (a) $U = \{(x, y, z, t) \in \mathbb{R}^4; x y 3z = 0\};$
 - (b) $W = \{(x, y, z, t) \in \mathbb{R}^4; x y + 2z = 0 \text{ e } t = 0\}$.
 - (c) Determine $U \cap W$.
 - (d) Determine U + W. Esta soma é direta? Justifique.
- 6) Quais dos seguintes subconjuntos são subespaços vetoriais de $M_{3\times3}$?

(a)
$$W = \left\{ \begin{pmatrix} a & b & c \\ 0 & 0 & 0 \\ 0 & d & 0 \end{pmatrix} : d = a + b + c \right\}$$

(b)
$$W = \left\{ \begin{pmatrix} a & b & c \\ 0 & 0 & 0 \\ 0 & d & 0 \end{pmatrix} : d < a + b + c \right\}.$$

- 7) Sejam os vetores u = (2, -3, 2) e v = (-1, 2, 4) em \mathbb{R}^3 .
 - (a) Escreva w = (7, -11, 2) como combinação linear de u e v.
 - (b) O vetor t = (2, -5, 4) pode ser escrito como combinação linear de u e v? Por que?
 - (c) Encontre condições sobre x, y, z de modo que (x, y, z) seja uma combinação linear de u e v.
 - (d) Escreva o vetor nulo como combinação linear de u e v.
 - (e) Escreva o vetor nulo como combinação linear de $u, v \in w$.
 - (f) Escreva o vetor nulo como combinação linear de $u, v \in t$.
- 8) Sejam os vetores u = (-1, 2, 1), v = (1, 2, 0) e w = (-2, -1, 0). Escreva os vetores $v_1 = (-8, 4, 1), v_2 = (0, 2, 3)$ e $v_3 = (0, 0, 0)$ como combinação linear de u, v, e w.
- 9) Para qual valor de k o vetor u = (1, -2, k) é combinação linear dos vetores v = (3, 0, -2) e w = (2, -1, -5)?
- 10) Escreva E como combinação linear, se possível de $A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$ e $C = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$, em que

(a)
$$E = \begin{pmatrix} 3 & -1 \\ 1 & -2 \end{pmatrix}$$
 (b) $E = \begin{pmatrix} 2 & 1 \\ -1 & -2 \end{pmatrix}$.

- 11) Seja W o subespaço do definido por $W=\{(x,y,z,t)\in\mathbb{R}^4/x+2y-z=0\ \mathrm{e}\ t=0\}.$ Pergunta-se:
 - (a) (-1, 2, 3, 0) pertence a W?
 - (b) (3, 1, 4, 0) pertence a W?
 - (c) Determine dois vetores que geram W. Eles são os únicos? Se não, apresente outros!
- 12) Mostre que os conjuntos $\{(1, -1, 2), (3, 0, 1)\}$ e $\{(-1, -2, 3), (3, 3, -4)\}$ geram o mesmo subespaço do \mathbb{R}^3 .
- 13) Determine um conjunto de geradores para cada um dos seguintes subespaços de \mathbb{R}^3 .
 - (a) $U = \{(x, y, z) \in \mathbb{R}^3; x 2y = 0\}$
 - (b) $W = \{(x, y, z) \in \mathbb{R}^3; x + z = 0 \text{ e } x + 2y = 0\}$
 - (c) $U \cap W$
 - (d) U + W. Esta soma é direta? Justifique.
- 14) Encontre um vetor em \mathbb{R}^3 que gere a interseção de V e W, em que V é o plano xy e W é o espaço gerado pelos vetores (1,2,3) e (1,-1,1).
- 15) Determine [S], em que $S = \{(1, -2, 5, 4), (2, 3, 1, -4), (3, 8, -3, -5)\}.$
- 16) Mostre que o plano yz, isto é $W = \{(0, b, c), b, c \in \mathbb{R}\}$ pode ser gerado por:
 - (a) $\{(0,1,1),(0,2,-1)\}$
 - (b) $\{(0,1,2),(0,2,3),(0,3,1)\}$

- 17) Verifique se o vetor (1,2,3) poder ser obtido como combinação linear dos vetores (0,1,2) e (1,0,1).
- 18) Verifique se o conjunto $C = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} \right\}$ gera o espaço vetorial $M_2(I\!\!R)$.
- 19) Verifique se o vetor $p(t) = t^3 2t$ pertence ao subespaço de \mathbb{P}_3 gerado por $\{t^3 1, t^2 + 1, t\}$.
- 20) Verifique se os conjuntos são linearmente independente (LI) ou linearmente dependente (LD).
 - (a) $\{(1,3),(2,6)\}$
 - (b) $\{(2,-1,3)\}$
 - (c) $\{(2,-1,0),(-1,3,0),(3,5,0)\}$
 - (d) $\{(2,1,3),(0,0,0),(1,5,2)\}$
 - (e) $\{(2,1,1,0),(1,0,2,1),(-1,2,0,-1)\}$
 - (f) $\{(0,1,0,-1),(1,1,1,1),(-1,2,0,1),(1,2,1,0)\}$
- 21) Para cada item abaixo, determine os valores de k para que os conjuntos sejam LI ou LD.
 - (a) $S_1 = \{(1,1,2), (-1,2,3), (k,-1,1)\}$
 - (b) $S_2 = \{(-1,0,7), (-4,5,-3k), (0,4,-2), (2k,3,1)\}$
- 22) Mostre que:
 - (a) Se u, v, w são L.I. então u + v, u + w, v + w são L.I.
 - (b) Se um conjunto $A \subset V$ contém o vetor nulo, então A é L.D.
 - (c) Se uma parte de um conjunto $A \subset V$ é L.D. então A é L.D.
- 23) Consideremos no espaço vetorial \mathbb{R}^2 os vetores u=(1-a,1+a) e v=(1+a,1-a), onde $a\neq 0$. Mostre que $\{u,v\}$ é L.I.
- 24) Quais dos seguintes conjuntos formam uma base de \mathbb{R}^3 ? Nestes casos, escreva um vetor genérico (x, y, z) do \mathbb{R}^3 como combinação linear dos elementos desse conjunto.
 - (a) $S_1 = \{(1,0,1), (0,-1,2), (-2,1,-4)\}$
 - (b) $S_2 = \{(2, 1, -1), (-1, 0, 1), (0, 0, 1)\}$
 - (c) $S_3 = \{(2,3,-1), (-2,1,1), (2,0,1)\}$
- 25) Mostre que os vetores $v_1 = (1, 1, 1)$, $v_2 = (1, 2, 3)$, $v_3 = (3, 0, 2)$ e $v_4 = (2, -1, 1)$ geram o \mathbb{R}^3 . Encontre uma base dentre esses vetores.
- 26) Determine uma base e a dimensão dos subespaços vetoriais.
 - (a) $U = \{(x, y) \in \mathbb{R}^2; x y = 0\}.$
 - (b) $W = \{(x, y, z, t) \in \mathbb{R}^4; x y = 0, x + t = z\}.$
- 27) Sendo u=(1,2), encontre um vetor v tal que $\{u,v\}$ seja base do \mathbb{R}^2 .
- 28) Determine uma base do \mathbb{R}^4 que contenha os seguintes vetores (1,1,1,0) e (1,1,2,1).

29) Determine se o vetor $b = \begin{bmatrix} 4 \\ 3 \\ 5 \\ 7 \end{bmatrix}$ é combinação linear das colunas da matriz $A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 2 & 1 \\ 1 & 2 & 1 & 3 \\ 0 & 1 & 2 & 2 \end{bmatrix}$.

O que se pode concluir a respeito do sistema linear representado pela equação matricial AX = b, em que X é um vetor coluna?

- 30) Verifique como o posto da matriz $A = \begin{pmatrix} 1 & 1 & t \\ 1 & t & 1 \\ 1 & 1 & t \end{pmatrix}$ varia com t.
- 31) Determine uma base e a dimensão dos seguintes subespaços do \mathbb{R}^4 :
 - (a) $U = \{(x, y, z, t) \in \mathbb{R}^4; x y = 0, x + 2y + t = 0\}.$
 - (b) $W = \{(x, y, z, t) \in \mathbb{R}^4; 2x y + z = 0\}.$
 - (c) $U \cap W$.
 - (d) U + W. Esta soma é direta? Justifique.
- 32) Sejam os subespaços $U = \{(x, y, z) \in \mathbb{R}^3 : x = 0\}$ e $V = \{(x, y, z) \in \mathbb{R}^3 : y 2z = 0\}$. Determine uma base e a dimensão dos subespaços $U, V, U \cap V$ e U + V.
- 33) Seja um espaço V de dimensão 5. Responda as perguntas abaixo, justificando sua resposta:
 - (a) Um conjunto de vetores de V com 8 vetores, pode ser LI?
 - (b) Um conjunto de vetores de V com 5 vetores, pode ser LD?
 - (c) Se S é um conjunto LD, pode existir um conjunto que contenha S e que seja LI?
- 34) Seja W o subespaço do \mathbb{R}^4 gerado pelos vetores (1, -2, 5, -3), (2, 3, 1, -4) e (3, 8, -3, -5).
 - (a) Encontre uma base e a dimensão de W.
 - (b) Estenda a base de W a uma base do \mathbb{R}^4 .
 - (c) Faça agora o caminho inverso. Encontre os vetores da base canônica do que geram W. Qualquer combinação de três vetores da base canônica do vai gerar W?
- 35) Sejam $B = \{(1, 2, 1, 1), (0, 1, 2, 1), (1, 0, 1, 0)\}$ e $W = \{(x, y, z, t) \in \mathbb{R}^4; 2x + y z + 3t = 0\}.$
 - (a) B é um conjunto linearmente independente? Justifique.
 - (b) Escreva o vetor v = (1, 0, 5, 1) como combinação linear dos vetores de B.
 - (c) O vetor v do item (b) pertence a W?
 - (d) Usando apenas as respostas dos itens (a), (b) e (c) e sem fazer qualquer conta adicional é possível garantir que B é uma base de W? Justifique!
 - (e) Encontre uma base para o subespaço W.
- 36) Determine:
 - (a) Um subconjunto do \mathbb{R}^3 com 3 de vetores e que não é base do \mathbb{R}^3 .
 - (b) Um conjunto do \mathbb{R}^3 linearmente independente e que não é base do \mathbb{R}^3 .
 - (c) Um conjunto de vetores do \mathbb{R}^3 que gera o \mathbb{R}^3 mas não é base do $\mathbb{R}^3.$

- 37) Determinar as coordenadas do vetor v=(6,2) em relação às bases:
 - (a) $\alpha = \{(3,0), (0,2)\}$
 - (b) $\beta = \{(1,2),(2,1)\}$
 - (c) $\gamma = \{(1,0), (0,1)\}$
- 38) Seja $B = \{(1,0,0), (0,1,0), (1,-1,1)\}$ uma base de \mathbb{R}^3 . Determine as coordenadas de v em relação a B se:
 - (a) v = (2, -3, 4)
 - (b) v = (3, 5, 6)
 - (c) v = (1, -2, 1)
- 39) Determine as coordenadas do vetor u=(4,5,3) de \mathbb{R}^3 em relação às seguintes bases:
 - (a) canônica;
 - (b) $\alpha = \{(1,1,1), (1,2,0), (3,1,0)\};$
 - (c) $\beta = \{(1,2,1), (0,3,2), (1,1,4)\}.$
- 40) Considere o espaço vetorial \mathbb{R}^2 . A matriz da mudança da base $\gamma = \{(1,1), (-2,2)\}$, para a base $\alpha = \{v_1, v_2\}$ é dada por $\begin{bmatrix} 1 & 0 \\ 4 & -2 \end{bmatrix}$.
 - (a) Determine a base α .
 - (b) Determine o vetor $u \in \mathbb{R}^2$ tal que $[u]_{\alpha} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
- 41) Considere as bases $\beta = \{u_1, u_2, u_3\}$ e $\gamma = \{w_1, w_2, w_3\}$ de \mathbb{R}^3 , relacionadas da seguinte forma:

$$\begin{cases} w_1 = u_1 - u_2 - u_3 \\ w_2 = 2u_2 + 3u_3 \\ w_3 = 3u_1 + u_3 \end{cases}$$

Pede-se:

- (a) Determine as matrizes de mudança de base $[I]_{\gamma}^{\beta}$ e $[I]_{\beta}^{\gamma}.$
- (b) Sabendo que

$$[u]_{eta} = \left[egin{array}{c} 1 \ 2 \ 3 \end{array}
ight],$$

determine o vetor u com relação à base γ .

- 42) Considere a seguinte matriz de mudança de base $[I]_{\beta'}^{\beta} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$. Encontre:
 - (a) $[v]_{\beta}$, onde $[v]_{\beta'} = \begin{bmatrix} -1\\2\\3 \end{bmatrix}$
 - (b) $[v]_{\beta'}$, onde $[v]_{\beta} = \begin{bmatrix} -1\\2\\3 \end{bmatrix}$

Gabarito

- $1)\,$ Não são espaços vetoriais.
- 2)
- 3) (a) sim
 - (b) não
 - (c) sim
 - (d) não
 - (e) não
- 4) (a) e (c) são espaços vetoriais, mas (b) e (d) não são espaços vetoriais.
- 5) (c) $\{(x, x, 0, 0), x \in \mathbb{R}\}$
 - (d) \mathbb{R}^4
- 6) somente o item (a)
- 7) (a) w = 3u 1v
 - (b) Não.
 - (c) c = 16a + 10b
 - (d) 0 = 0u + 0v
 - (e) 0 = 3u v w, dentre outras infinitas possibilidades.
 - (f) 0 = 0u + 0v + 0t
- 8) $v_1 = u + \frac{11}{3}v + \frac{16}{3}w$, $v_2 = 3u \frac{11}{3}v \frac{10}{3}w$, $v_3 = 0u + 0v + 0w$.
- 9) k = -8
- 10) (a) E = 2A B + 2C;
 - (b) Não é possível.
- 11) (a) sim
 - (b) não
 - (c) Escreva um vetor genérico do conjunto para obter um conjunto gerador de W. Verifique que não são únicos.
- 12) Ambos geram o espaço vetorial $\{(x,y,z)\in\mathbb{R}^3: x=5y+3z\}$
- 13) (a) $\{(2,1,0),(0,0,1)\}$
 - (b) $\{(-2,1,2)\}$
 - (c) $\{(0,0,0)\}$
 - (d) R3. A soma é direta pois $U\cap W=\{(0,0,0)\}$

A resposta não é única.

14) $\{(-2,5,0)\}.$

- 15) $[S] = \{(x, y, z, t) \in \mathbb{R}^4; -17x + 9y + 7z = 0\}.$
- 16) Mostre que W pode ser gerado pela combinação linear dos vetores do conjunto.
- 17) não
- 18) sim
- 19) não.
- 20) (a) linearmente dependente
 - (b) linearmente independente
 - (c) linearmente dependente
 - (d) linearmente dependente
 - (e) linearmente independente
 - (f) linearmente dependente
- 21) (a) somente para k = 8 o conjunto é linearmente dependente.
 - (b) qualquer que seja k o conjunto é linearmente dependente.
- 22) Use a definição de conjunto LI para mostrar os itens.
- 23)
- 24) (a) Não é base.
 - (b) (x, y, z) = -y(2, 1, -1) + (2y x)(-1, 0, 1) + (x y + z)(0, 0, 1).
 - (c) $(x, y, z) = \frac{1}{16}(x + 4y 2z)(2, 3, -1) + \frac{1}{16}(-3x + 4y + 6z)(-2, 1, 1) + \frac{1}{4}(x + 2z)(2, 0, 1)$
- 25)
- 26) (a) $\dim U=1$, $B=\{(1,1)\}$
 - (b) $\dim W = 2$, $B = \{(1, 1, 1, 0), (-1, -1, 0, 1)\}$
- 27) Por exemplo, v = (2, 3).
- 28) $B = \{(1, 1, 1, 0), (1, 1, 2, 1), (2, 1, 0, 3), (0, 0, 0, 1)\}$
- 29) $b = -26a_1 + 13a_2 7a_3 + 4a_4$ em que $a_1, ..., a_4$ são as colunas da matriz A.
- 30) t = 1, posto(A) = 1; t = -2, posto(A) = 2. Para $t \notin \{-2, 1\}$, posto(A) = 3.
- 31) (a) $B_U = \{(1,0,1,-1), (0,1,0,-2)\}, \dim U = 2.$
 - (b) $B_W = \{(1, 2, 0, 0), (0, 1, 1, 0), (0, 0, 0, 1)\}, \dim W = 3.$
 - (c) $B_{U \cap W} = \{(1, 1, -1, -3)\}, \dim(U \cap W) = 1.$
 - (d) Como $U+W=\mathbb{R}^4$, qualquer base do \mathbb{R}^4 serve. A soma não é direta pois $\dim U+\dim W>\dim (U+W)$.
- 32) $B_U = \{(0,1,0), (0,0,1)\}, \dim = 2;$ $B_V = \{(1,0,0), (0,2,1)\}, \dim = 2;$ $B_{U\cap V} = \{(0,2,1)\}, \dim = 1.$ $\dim(U+V) = \dim(U) + \dim(V) - \dim(U\cap V), \text{ então } \dim(U+V) = 3. \text{ Logo, } U+V = \mathbb{R}^3.$

34) (a)
$$B = \{(1, -2, 5, -3), (2, 3, 1, -4)\}, \dim = 2$$

(b)
$$\{(1, -2, 5, -3), (2, 3, 1, -4), (1, 0, 0, 0), (0, 1, 1, 0)\}$$

- (c) não
- 35) (a) sim
 - (b) v = 1(1, 2, 1, -1) + 2(0, -1, 2, 0) + 0(-1, 0, 1, 0)
 - (c) sim
 - (d) não
 - (e) $B_w = \{(1,0,2,0), (0,1,1,0), (0,0,3,1)\}$
- 36) (a) $\{(1,0,0),(2,0,0),(0,1,0)\}$
 - (b) $\{(1,0,0),(0,1,0)\}$
 - (c) $\{(1,0,0),(0,1,0),(1,2,-1),(-3,2,1)\}$
- 37) (a) $[(6,2)]_B = \begin{bmatrix} 2\\1 \end{bmatrix}$
 - (b) $[(6,2)]_B = \begin{bmatrix} -2/3 \\ 10/3 \end{bmatrix}$
 - (c) $[(6,2)]_B = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$
- 38) (a) $[(2, -3, 4)]_B = \begin{bmatrix} -2\\1\\4 \end{bmatrix}$
 - (b) $[(2, -3, 4)]_B = \begin{bmatrix} -3\\11\\6 \end{bmatrix}$
 - (c) $[(2, -3, 4)]_B = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$
- 39) (a) $[(4,5,3)]_C = \begin{bmatrix} 4 \\ 5 \\ 3 \end{bmatrix}$
 - (b) $[(4,5,3)]_C = \begin{bmatrix} 3\\1\\0 \end{bmatrix}$
 - (c) $[(4,5,3)]_C = \begin{bmatrix} 41/11 \\ -10/11 \\ 3/11 \end{bmatrix}$
- 40) (a) $\alpha = \{(-3,5), (1,-1)\}$
 - (b) u = (-1, 3)

$$41) \ \ [I]_{\gamma}^{\beta} = \left[\begin{array}{ccc} -2 & -9 & 6 \\ -1 & -4 & 3 \\ 1 & 3 & -2 \end{array} \right], \quad [I]_{\beta}^{\gamma} = \left[\begin{array}{ccc} 1 & 0 & 3 \\ -1 & 2 & 0 \\ -1 & 3 & 1 \end{array} \right], \quad [u]_{\gamma} = \left[\begin{array}{ccc} 10 \\ 3 \\ 8 \end{array} \right].$$

42) (a)
$$[v]_{\beta} = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$$

(b)
$$[v]_{\beta'} = \begin{bmatrix} 1 \\ 1 \\ -4 \end{bmatrix}$$