18-640 Foundations of Computer Architecture

Lecture 18: "Performance and Power Iron Laws"

John Paul Shen November 6, 2014

- Required Reading Assignment:
 - "Energy per Instruction Trends in Intel® Microprocessors," by Ed Grochowski, Murali Annavaram, 2006.
- > Recommended Reading Assignments:
 - "Best of Both Latency and Throughput," by E. Grochowski, R. Ronen, J. Shen, H. Wang. In 22nd ICCD 2004.
 - "Mitigating Amdahl's Law through EPI Throttling," by M. Annavaram, E. Grochowski, J. Shen. In 32nd ISCA 2005.

11/6/2014 (© J.P. Shen)

Lecture 18

Carnegie Mellon University 1

18-640 Foundations of Computer Architecture

Lecture 18: "Performance and Power Iron Laws"

- A. Law #1 Processor (Latency) Performance
- B. Law #2 Multiprocessor (Throughput) Performance
- C. Law #3 Multiprocessor Performance Scalability
- D. <u>Law #4</u> Algorithm and Performance
- E. Law #5 Power and Performance

11/6/2014 (© J.P. Shen)

Lecture 18

Latency vs. Throughput Performance

- * Reduce Latency of Application
 - Uni-processor, Single Program
 - Target Single-Thread Performance
 - Examples: SPEC, PC and Workstations
- * Increase Throughput of System
 - Multi-processors, Many Threads/Tasks
 - Target Multi-threaded/Multi-tasking Throughput
 - Example: Database Transaction Processing

11/6/2014 (© J.P. Shen)

Lecture 18

Carnegie Mellon University 5

<u>Law #2</u> – Multiprocessor (Throughput) Performance

Time to process a thread/task: T (latency)

$$T = \frac{instructions}{thread} \times \frac{cycles}{instruction} \times \frac{time}{cycle}$$

 $T = PathLength \times CPI \times CycleTime$

 \star MP (n processors) performance: Perf = 1/T

$$Perf_{MP} = \frac{n \times 1}{PathLength \times CPI \times CycleTime} = \frac{n \times Frequency}{PathLength \times CPI}$$

11/6/2014 (© J.P. Shen)

Lecture 18

Iron Law of Multiprocessor/Multicore Performance

* Multi-Core Performance:

$$Perf_{MC} = \frac{n \times Frequency}{PL(n) \times CPI(n)}$$

- * Can Improve Perf_{MC} by:
 - Increasing: n (no. of CPUs or cores)
 - Increasing: Frequency (CPU clock frequency)
 - Decreasing: PL (dynamic instruction count)
 - Decreasing: CPI (cycles/instruction)

11/6/2014 (© J.P. Shen)

Lecture 18

Carnegie Mellon University 7

Law #3 - Multiprocessor Performance Scalability

Multi-Core <u>Speedup</u>:

$$Speedup(n)_{MC} = \frac{\frac{n \times Frequency}{PL(n) \times CPI(n)}}{\frac{Frequency}{PL(1) \times CPI(1)}} = \frac{n \times \left(\frac{PL_1 \times CPI_1}{PL(n) \times CPI(n)}\right)}{\frac{PL(n) \times CPI(n)}{PL(n) \times CPI(n)}}$$

* A Rigorous Scalability Model:

$$PL(n) \times CPI(n) \cong \frac{n^x PL_1 \times n^y CPI_1}{n^x PL_1 \times n^y CPI_1}$$

11/6/2014 (© J.P. Shen)

Lecture 18

Scalability Impedance Functions

$$Speedup(n)_{MC} = n \times \left(\frac{PL_1 \times CPI_1}{n^x PL_1 \times n^y CPI_1}\right) = \left(\frac{n}{n^x \times n^y}\right)$$

* Scalability Impedance Functions:

$$\begin{cases} n^x \equiv PL(n) \text{ Impedance Function} \\ n^y \equiv CPI(n) \text{ Impedance Function} \end{cases}$$

$$(n^{x} \times n^{y}) = n^{(x+y)}$$
 $\begin{cases} (x+y) = 1.0 \Rightarrow No \ Speedup \\ (x+y) = 0.0 \Rightarrow No \ Impedance \end{cases}$

11/6/2014 (© J.P. Shen)

Lecture 18

Carnegie Mellon University 9

Real World Example: Database Performance Iron Law

* MP Database Performance: TPS

$$TPS = \frac{Transactions}{Second} = \frac{n \times Frequency}{IPX(n) \times CPI(n)} \text{ [Law #2]}$$

- * Can Improve TPS by:
 - Increasing: n (no. of CPUs)
 - Increasing: Frequency (CPU clock frequency)
 - Decreasing: IPX (instructions/transaction) == PL
 - Decreasing: CPI (cycles/instruction)

11/6/2014 (© J.P. Shen)

Lecture 18

Intel® Xeon™ System 4-way SMP, 1.6GHz 256KB L2, 1MB L3 Red Hat® AS 2.1	Intel® Itanium® 2 System 4-way SMP, 900MHz 256KB L2, 3MB L3
256KB L2, 1MB L3	
,	256KB L2, 3MB L3
Red Hat® AS 2.1	
	Red Hat® AS 2.1
24 data + 2 log	32 data + 1 log
4GB	16GB
Oracle® 9ir2	Oracle® 10g
4MB	256MB
3GB	14GB
Events Ind OS components for eacy runs (20-min warm up, 1 and deviation <5% for TPS cution time ~70-90% Indian Annavaram, 2004)	0-min measurement)
	4GB Oracle® 9ir2 4MB 3GB Events and OS components for ear runs (20-min warm up, 1 d deviation <5% for TPS cution time ~70-90%

Conspiring Forces Against Multiprocessor Scaling Three Forms of Scalability Impedance

* Algorithm

- Limitation of Language and Algorithm
- Tyranny of Amdahl's Law (sequential bottleneck)

* Architecture (so far)

- Increase of Path-Length Undermines Scalability
- Increase of CPI Undermines Scalability

* Power/Thermal

- Increased Complexity and Inefficiency of Design
- Super-linear Power Scaling Relative to Performance

11/6/2014 (© J.P. Shen)

Lecture 18

Law #5 — Power and Performance

$$Watt = \frac{Joule}{second} = \frac{Joule}{instruction} \times \frac{instruction}{cycle} \times \frac{cycle}{second}$$
 $Power = EPI \times IPC \times Frequency$
 $Performance = \frac{Frequency}{PathLength \times CPI} = \frac{IPC \times Frequency}{PathLength}$
 $Power = EPI \times Performance \times PathLength$
 $Power = EPI \times Performance \times PathLength$
 $Power = EPI \times Performance \times PathLength$

