COVID-19 EDA Sample Project

February 2, 2023

1 Covid-19 EDA (Exploratory Data Analysis)

1.1 Workflow Stages

- 1. Question or problem definition.
- 2. Accquire training and testing data.
- 3. Wrangle, prepare, cleanse the data.
- 4. Analyze, identify patterns, and explore the data.
- 5. Conclusion

1.1.1 Question or Problem Defination

Give the estimation of death statewise with all doses and population

- 1. Analyze the association between the number of doses taken and the number of deaths in each state.
- 2. Calculate the growth rate of confirmed cases and death rate by state.
- 3. Calculate the distribution of doses among the population of each state.
- 4. Compare the population of each state based on the different doses taken.

Estimate the relationship between following

- deaths with state, dose1, dose2, dose3, and precaution
- state with the highest and lowest of death, active, dose1, dose2, dose3, precaution dose, and population

```
[]: # data analysis and wranglin
import pandas as pd
import numpy as np

# visualization
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
%reload_ext autoreload
%autoreload 2
```

1.1.2 Acquire data

1.1.3 Analyze by describing data

```
[]: # Which features are available in the dataset?
print(covid.columns.values)
```

```
['state' 'confirmed' 'active' 'passive' 'deaths' 'dose1' 'dose2' 'dose3' 'precaution_dose' 'total_doses' 'population']
```

Categorical features are

• Our data is statewise so has no categorical features.so Categorical Values: None

Numerical feature are

• Continous Values: confirmed, active, passive, deaths, dose1, dose2, dose3, precaution_dose, total doses, population

```
[]:  # preview the data covid.head()
```

[]:			state	confirmed	activ	е	passive	deaths	dose1	\
	0	Andaman a	nd Nicobar	10742		1	10612	129	313284	
	1	Andh	ra Pradesh	2339067	;	3	2324331	14733	40643161	
	2	Arunach	al Pradesh	66890		0	66594	296	860442	
	3		Assam	746100		0	738065	8035	22549957	
	4		Bihar	851379	1	5	839062	12302	62944633	
		dose2	dose3	precaution_	dose	tot	al_doses	popula	tion	
	0	320383	236936	5	3427		991263	42	6251	
	1	43549055	11703273	657	9565	1	10556756	5288	3163	
	2	747177	72403	5	8618		1911760	152	8296	
	3	20561790	2082670	125	9853		50284713	3458	6234	

3868082

Which features are mixed data types?

11983504

4 59144387

• There is no feature of mixed data type.

Which features may contain error or typos?

• State feature may contain error or typos as there are several ways used to describe a name including titles, round brackets, and quotes used for alternative or short names.

157197041

119461013

Which features contain blank, null or empty values?

• There is no such feature.

What are the data types for various features?

- 10 features are integer
- 1 feature is string(object)

[]: covid.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 36 entries, 0 to 35
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	state	36 non-null	object
1	confirmed	36 non-null	int64
2	active	36 non-null	int64
3	passive	36 non-null	int64
4	deaths	36 non-null	int64
5	dose1	36 non-null	int64
6	dose2	36 non-null	int64
7	dose3	36 non-null	int64
8	<pre>precaution_dose</pre>	36 non-null	int64
9	total_doses	36 non-null	int64
10	population	36 non-null	int64

dtypes: int64(10), object(1)

memory usage: 3.2+ KB

Assumptions based on the data analysis following assumptions based on the data analysis done so far.

Correlating - We want to know how well does each feature correlate with Deaths.

Completing

- 1. We may want to complete the dose feature as it is definitely correlated with death.
- 2. We may want to complete the active feature as it my also correlate with death.

Correcting

1. state feature is relatively non-standard, may not contribute directly to deaths, so maybe droped.

Creating

1. We may want to create a new feature called real_total_dose based on the dose1, dose2, dose3, precaution dose to get the total count of all 3 doses.

Classifying

We may also add to our assumptions based on the probelm description noted earlier.

1. Population range of state

- 2. total doses
- 3. active cases in each state

1.1.4 Analyze by pivoting features

To confirm some of our observations and assumption, we can analyze our feature correlation by pivoting features against each other.

```
[]: # relationship between death and state
     data = pd.DataFrame()
     data['deaths'] = covid.sort_values('deaths', ascending=False).deaths.values[:10]
     data['state'] = covid.sort_values('deaths',ascending=False).state.values[:10]
[]: # relationship between death and population
     population = pd.DataFrame()
     population['population'] = covid.sort_values('population', ascending=False).
      →population.values[:10]
     population['state'] = covid.sort_values('population',ascending=False).state.
      yalues[:10]
[]: cases = pd.DataFrame()
     cases['state'] = covid.sort_values(by='confirmed',ascending=False).state.
      ⇔values[:10]
     cases['case1'] = covid.sort values(by='confirmed',ascending=False).confirmed.
      →values[:10]
[]: dose = pd.DataFrame()
     dose['total dose'] = covid['dose1'] + covid['dose2'] + covid['dose3'] +
      ⇔covid['precaution_dose']
     covid[['dose1','dose2','dose3','precaution_dose','total_doses','deaths']].corr()
[]:
                         dose1
                                   dose2
                                             dose3
                                                   precaution_dose
                                                                     total_doses
     dose1
                      1.000000 0.997478 0.886536
                                                           0.913766
                                                                        0.995872
     dose2
                               1.000000 0.908188
                     0.997478
                                                           0.930180
                                                                        0.998916
     dose3
                     0.886536 0.908188 1.000000
                                                           0.897297
                                                                        0.922680
     precaution_dose 0.913766 0.930180 0.897297
                                                           1.000000
                                                                        0.928383
     total doses
                     0.995872 0.998916 0.922680
                                                           0.928383
                                                                        1.000000
     deaths
                     0.501551 0.461720 0.157094
                                                           0.403252
                                                                        0.439675
                        deaths
                     0.501551
     dose1
     dose2
                     0.461720
     dose3
                     0.157094
    precaution_dose 0.403252
     total_doses
                     0.439675
     deaths
                      1.000000
```

1.1.5 Analyze by visualizing data

Now we can continue confirming some of our assumptions using visualization for analyzing the data

<Figure size 1008x576 with 0 Axes>

<Figure size 1008x576 with 0 Axes>

States with Confirmed Cases

plt.show()

<Figure size 1008x576 with 0 Axes>

Maximum Deaths by States


```
high_PR = []
low_PR = []
for i,a in zip(states_pos_high,states_pos_least):
    high_PR.append(covid[covid['state'] == str(i)]['Positivity rate'].values[0])
    low_PR.append(covid[covid['state'] == str(a)]['Positivity rate'].values[0])

# chart
fig,ax4 = plt.subplots(nrows=1,ncols=2,figsize=(16,6))
fig.suptitle("State with Highest and lowest Positivity Rate",fontsize=20)
ax4[0].set_title("Highest Positivity Rate")
ax4[1].set_title("Lowest Positivity Rate")
colr = sns.color_palette('rocket')
ax4[1].bar(states_pos_least,low_PR,color=colr)
ax4[0].bar(states_pos_high,high_PR,color=colr)
plt.show()
```

State with Highest and lowest Positivity Rate


```
fig,ax4 = plt.subplots(nrows=1,ncols=2,figsize=(16,6))
fig.suptitle("State with Highest and lowest Death Rate",fontsize=20)
ax4[0].set_title("Highest Death Rate")
ax4[1].set_title("Lowest Death Rate")
colr = sns.color_palette('tab10')
ax4[0].bar(states_death_high,high_DR,color=colr)
ax4[0].set_xticklabels(states_death_high,rotation=90)
ax4[1].set_xticklabels(states_death_least,rotation=90)
ax4[1].bar(states_death_least,low_DR,color=colr)
plt.show()
```

State with Highest and lowest Death Rate


```
[]: # Population vaccinated according to the doses

pop = covid.sum()['population']
  dose1 = covid.sum()['dose1']
  dose2 = covid.sum()['dose2']
  dose3 = covid.sum()['dose3']
  dose4 = covid.sum()['precaution_dose']

fig, ax1 = plt.subplots(1,4,figsize=(18,5.1))
  fig.suptitle("Distribution of different Doses among population",fontsize=20)
  ax1[0].pie(x=[pop - dose1,dose1],shadow=True,autopct='%1.2f%%',explode=(0,0.1))
```

```
ax1[0].set_title('Dose1 Distribution')
ax1[0].legend(['No Dose1', 'Dose1'],loc=1)

ax1[1].pie(x=[pop - dose2,dose2],autopct='%1.2f%%',shadow=True,explode=(0,0.1))
ax1[1].set_title('Dose2 Distribution')
ax1[1].legend(['No Dose2', 'Dose2'])

ax1[2].pie(x=[pop - dose3,dose3],autopct='%1.2f%%',explode=(0,0.1),shadow=True)
ax1[2].set_title('Dose3 Distribution')
ax1[2].legend(['No Dose3', 'Dose3'],loc=0)

ax1[3].pie(x=[pop - dose4,dose4],autopct='%1.2f%%',explode=(0,0.1),shadow=True)
ax1[3].set_title('Precaution Dose Distribution')
ax1[3].legend(['No Precaution Dose','Precaution Dose'],loc=0)

plt.show()
```

Distribution of different Doses among population


```
[]: # States according to the doses
state_dose_most = covid.sort_values(by='total_doses',ascending=False)['state'].

values[:5]
state_popu_most = covid.

vsort_values(by='total_doses',ascending=False)['population'].values[:5]

state_popu_least = covid.sort_values(by='total_doses')['population'].values[:5]

state_dose_least = covid.sort_values(by='total_doses')['state'].values[:5]

fig,ax = plt.subplots(1,2,figsize=(16,6))
fig.suptitle("States with Most and Least Vaccination Count",fontsize=20)

colr = sns.color_palette('tab10')
ax[0].set_title('State With Most Vaccination')
ax[0].bar(state_dose_most,state_popu_most,color=colr)
ax[1].set_title('State With Least Vaccination')
ax[1].bar(state_dose_least,state_popu_least,color=colr)
ax[1].set_xticklabels(state_dose_least,rotation=90)
```

```
ax[0].set_xticklabels(state_dose_most,rotation=90)
plt.show()
```



```
[]: # heatmap
plt.figure(figsize=(10,10))
sns.heatmap(covid.corr(),cmap='bwr_r',annot=True)
plt.title('Correlation heatmap',fontsize=20)
plt.show()
```


1.1.6 Conclusion

- The state with the dense population have the higher confirmed cases and higher death ratio in comparision to others state
- The state with higher population have the higher amount of the vaccination
- Vaccination of Dose1, Dose2 is done among the approx 65% of population
- Vaccination of Dose3, Precaution Dose is done among the only 20% of population
- Dose1 and Dose2 is highly correlated to the population