Chapter 5

Synchronous Sequential Logic

Contents

- 5-1 Introduction
- 5-2 Sequential Circuits
- 5-3 Storage Elements: Latches
- 5-4 Storage Elements: Flip-Flops
- 5-5 Analysis of Clocked Sequential Circuits
- 5-6 Synthesizable HDL Models of Sequential Circuits
- 5-7 ~ 5-8 Design of Clocked Sequential Circuits

State Reduction and Assignment (5-7)

Design Procedure (5-8)

補充資料

5-1 Introduction

- Combinational circuit: no memory elements
 - The outputs are entirely dependent on the current inputs.

- Sequential circuit:
 - storage elements: devices capable of storing binary information (*state*)
 - (inputs, present state) \Rightarrow (outputs, next state)

5-2 Sequential Circuits

Sequential circuit:

 consists of a combinational circuit to which storage elements are connected to form a feedback path.

- storage elements: devices capable of storing binary information (*state*)
- (inputs, present state) \Rightarrow (outputs, next state)

Types of Sequential Circuits

Classification:

depends on the timing of their signals.

Inputs

Two main types:

- 1. Synchronous seq ckt:
 - Its behavior can be defined from the knowledge of its signals at discrete instants of time.

Combinational circuit

- Storage elements: e.g., flip-flops (§5-4)
- 2. Asynchronous seq ckt: (Ch9, 4th ed.)
 - Its behavior depends upon the input signals at any instant of time and the order in which the inputs change.
 - Storage elements: e.g., latches (§5-3), feedback paths
 - Disadv.: may be unstable & difficult to design

Memory elements

Outputs

Synchronous Sequential Circuits

- Clocked seq ckts: most commonly used sync seq ckts
 - is syn seq ckts that use clock pulses in the inputs of storage elements
 - has a master-clock generator to generate a periodic train of clock pulses
 - ➤ The clock pulses are distributed throughout the system.
 - > Storage elements are affected only w/ the arrival of each pulse.
 - Adv.: seldom manifest instability problems
 - Storage elements: flip-flops
 - > flip-flop: a binary cell capable of storing one bit of information
 - > The state of a flip-flop can change only during a clock pulse transition.
 - ⇒ The transition from one state to the next occurs only at predetermined time intervals dictated by the clock pulses.

Block diagram of a clocked sequential ckt:

5-3 Storage Elements: Latches

Latches:

- are asynchronous seq ckts
- are the basic ckts from which all flip-flops are constructed

A. SR and \overline{SR} Latches

- SR latch
- SR latch
- SR latch w/ control input

SR Latch

SR latch: w/ NOR gates

- (a) Logic diagram
 - Useful states:
 - ightharpoonup Set state: Q = 1, $\overline{Q} = 0$
 - ightharpoonup Reset state: Q = 0, $\overline{Q} = 1$
 - Undefined states: $Q = \overline{Q}$

Q: the normal output

Q' or \overline{Q} : the complement output

S R	Q Q'	
1 0	1 0	
0 0	1 0	(after S = 1, R = 0)
0 1	0 1	
0 0	0 1	(after S = 0, R = 1)
1 1	0 0	(after $S = 0, R = 1$) (forbidden)

(b) Function table

S	R	\mathbf{Q}^{+}
0	0	No change $(Q^+ = Q)$
0	1	Reset $(\mathbf{Q}^+ = 0)$
1	0	$\mathbf{Set}\;(\mathbf{Q}^+=1)$
1	1	Indeterminate
^ +		

Q⁺: next state of **Q**

Characteristic table

S R	Q Q	Q^+ \overline{Q}^+
0 0	0 1	✓
	1 0	\checkmark
0 1	0 1	
	1 0	
1 0	0 1	
	1 0	
1 1	0 1	
	1 0	

S	R	\mathbf{Q}^{+}
0	0	
0	1	
1	0	
1	1	

S R	Q Q	Q^+ \overline{Q}^+
0 0	0 1 1 0	0 1 1 0
0 1	0 1 1 0	✓
1 0	0 1 1 0	√
1 1	0 1 1 0	

S	R	$\mathbf{Q}^{\scriptscriptstyle +}$
0	0	No change $(Q^+ = Q)$
0	1	
1	0	
1	1	

 Q^+ : next state of Q

S R	Q Q	Q^+ \overline{Q}^+
0 0	0 1 1 0	0 1 1 0
0 1	0 1 1 0	0 1
1 0	0 1 1 0	1 0
1 1	0 1 1 0	

S	R	$\mathbf{Q}^{\scriptscriptstyle +}$
0	0	No change $(Q^+ = Q)$
0	1	
1	0	
1	1	

(Case 4)

S R	$Q \overline{Q}$	Q^+ \overline{Q}^+
0 0	0 1	0 1
	1 0	1 0
0 1	0 1	0 1
	1 0	0 1
1 0	0 1	1 0
	1 0	1 0
1 1	0 1	✓
	1 0	✓

S	R	$\mathbf{Q}^{\scriptscriptstyle +}$
0	0	No change $(Q^+ = Q)$
0	1	$\mathbf{Reset}\ (\mathbf{Q}^+ = 0)$
1	0	$\mathbf{Set}\ (\mathbf{Q}^+ = 1)$
1	1	

D (Dogot)	$0 \rightarrow 1 \rightarrow 0 \rightarrow \cdots$
R (Reset)—	Q + Q
	$0 \rightarrow 1$
	$0 \rightarrow 1$
0 (0 1)	\overline{Q}
S (Set)	$0 \longrightarrow 1 \longrightarrow 0 \longrightarrow \dots$

S	R	\mathbf{Q}^{+}
0	0	No change $(Q^+ =$
0	1	Reset $(Q^+ = 0)$
1	0	$\mathbf{Set}\;(\mathbf{Q}^+=1)$
1	1	
	١	

Summary:

Characteristic equation:

$$Q^{+} = S'R'Q + SR'$$

$$= SR' + R'Q$$

$$Q^{+} = S + R'Q \quad (if SR = 0)$$

S R	Q Q	Q^+ \overline{Q}^+
0 0	0 1	0 1
	1 0	1 0
0 1	0 1	0 1
	1 0	0 1
1 0	0 1	1 0
	1 0	1 0
1 1	0 1	0 0
	1 0	0 0

Characteristic table

	S	R	$\mathbf{Q}^{\scriptscriptstyle +}$
	0	0	No change $(Q^+ = Q)$
٠	0	1	Reset $(Q^+ = 0)$
	1	0	$\mathbf{Set} \; (\mathbf{Q}^+ = 1)$
	1	1	Indeterminate

Logic simulation of SR latch behavior

Characteristic table

\mathbf{S}	R	$\mathbf{Q}^{\scriptscriptstyle +}$
0	0	No change $(\mathbf{Q}^+ = \mathbf{Q})$
0	1	Reset $(Q^+ = 0)$
1	0	$\mathbf{Set}\ (\mathbf{Q}^+ = 1)$
1	1	Indeterminate

S R Latch

■ S R latch: w/ NAND gates

S	\overline{R}	Q	Q'	
1	0	0	1	(after $S = 1$, $R = 0$) (after $S = 0$, $R = 1$) (forbidden)
1	1	0	1	(after $S = 1, R = 0$)
0	1	1	0	
1	1	1	0	(after $S = 0, R = 1$)
0	0	1	1	(forbidden)
				_

(a) Logic diagram

(b) Function table

Characteristic Table

$\overline{\mathbf{S}}$	$\overline{\mathbf{R}}$	$\mathbf{Q}^{\scriptscriptstyle +}$
1	1	No change $(Q^+ = Q)$
1	0	Reset $(\mathbf{Q}^+ = 0)$
0	1	$\mathbf{Set}\ (\mathbf{Q}^+ = 1)$
0	0	Indeterminate

 \overline{R} (Reset)-

$\overline{S} \overline{R}$	QQ	Q^+ \overline{Q}^+
1 1	0 1	
	1 0	
1 0	0 1	
	1 0	
0 1	0 1	
	1 0	
0 0	0 1	
	1 0	

Characteristic Table

$\overline{\mathbf{S}}$	$\overline{\mathbf{R}}$	\mathbf{Q}^{+}
1	1	No change $(Q^+ = Q)$
1	0	Reset $(\mathbf{Q}^+ = 0)$
0	1	$\mathbf{Set} \ (\mathbf{Q}^+ = 1)$
0	0	Indeterminate

<u>s</u>	R	Q⁺
1	1	No change (Q ⁺ = Q)
1	0	Reset $(Q^+ = 0)$
0	1	Set (Q ⁺ = 1)
0	0	Indeterminate

SR latch w/ control input:

- The indeterminate condition makes this ckt difficult to manage & it is seldom used in practice.
- It is an important ckt (other latches & flip-flops are constructed from it)

B. D Latch (Transparent Latch)

$$\mathbf{Q}^+ = \mathbf{D}$$

■ D latch (w/ control input):

	SR latch w/ control input	
_	S :!	1
D ——		2
En	R	2' -
	(a) Logic diagram	

En D	Next state of Q
0 X 1 0 1 1	No change $Q = 0$; reset state $Q = 1$; set state

(b) Function table

- Disadv. of a latch w/ control input:
 - The state of latch may keep changing for as long as the control input (En) stays in the active level.

C. Graphic Symbols for Latches

5-4 Storage Elements: Flip-Flops

- Review: Latch w/ control input
 - can change state in response to the inputs anytime the control input is in the active level.
 - ⇒ The latch is controlled by the "level" of its control input.
- Flip-flop: memory element for *sync* seq ckt
 - responses only to a "transition" of a triggering input called the "clock."
 - Positive-edge trigger: $0 \rightarrow 1$
 - Negative-edge trigger: $1 \rightarrow 0$

Clock response in latch & flip-flop:

4

■ Flip-flop: \leftarrow Latches

- 1. Master-slave flip-flop: pulse-triggered f-f
 Employ two latches in a special configuration that
 isolates the output of the flip-flop from being affected
 while its input is changing.
- 2. Edge-triggered flip-flop:

Produce a flip-flop that triggers only during a signal transition, and is disabled during the rest of the clock pulse duration.

A. Master-Slave Flip-Flops

* Q may change only during the *negative* edge of the clock.

Master-slave D flip-flop:

J.J. Shann 5-27

B. Edge-Triggered D Flip-Flop

 $\mathbf{Q}^+ = \mathbf{D}$

D	Q+
0	0
1	1

D-Type Positive-Edge-Triggered Flip-Flop

	ı		
	ı		
	ı		
T	Ť	ī	

S	R	Q⁺
1	1	No change (Q ⁺ = Q)
1	0	Reset $(Q^+ = 0)$
0	1	Set (Q ⁺ = 1)
0	0	Indeterminate

■ When clock is **LOW**:

- J.J. Shann 5-29

<u>s</u>	R	Q ⁺
1	1	No change $(Q^+ = Q)$
1	0	Reset $(Q^+ = 0)$
0	1	Set (Q ⁺ = 1)
0	0	Indeterminate

■ When clock is **LOW**:

=		- ^	
•			

<u>s</u>	R	Q ⁺
1	1	No change $(Q^+ = Q)$
1	0	Reset $(Q^+ = 0)$
0	1	Set (Q ⁺ = 1)
0	0	Indeterminate

■ When clock goes **LOW-to-HIGH**:

<u>s</u>	R	Q⁺
1	1	No change $(Q^+ = Q)$
1	0	Reset $(Q^+ = 0)$
0	1	Set (Q ⁺ = 1)
0	0	Indeterminate

■ When clock is **HIGH**:

 the minimum time for which the D input must be maintained at a constant value prior to the occurrence of the clock transition

■ Hold time: max(G2, G3)

the minimum time for which the D input must not change after the application of the positive transition of the clock

Propagation delay time:

 the time interval b/t the trigger edge and the stabilization of the output to a new state

■ Setup time: G1 + G4

 the minimum time for which the D input must be maintained at a constant value prior to the occurrence of the clock transition

■ Hold time: max(G2, G3)

the minimum time for which the D input must not change after the application of the positive transition of the clock

Propagation delay time:

 the time interval b/t the trigger edge and the stabilization of the output to a new state

Graphic symbol

Graphic symbol for the edge-triggered D flip-flop:

C. Direct Inputs

- *Direct* inputs: *asynchronous* inputs
 - are used to force the flip-flop to a particular state independent of the clock.
 - ➤ When power is turned on in a digital system, the state of the flip-flops is unknown.
 - The direct inputs are useful for bringing all flip-flops in the system to a known starting state prior to the clocked operation.
 - Types of direct inputs:
 - **Preset**: direct set, sets the f-f to 1 $(Q = 1, \overline{Q} = 0)$
 - > Clear: direct reset, sets the f-f to 0 $(Q = 0, \overline{Q} = 1)$

Example

E.g.:D flip-flop w/asynchronousreset

* Active LOW

 $\begin{array}{c|c}
D & Q \\
Clock & Clk \\
Reset & Q'
\end{array}$ (b) Graphic symbol

(b) Function table

J.J. Shann 5-39

1

D. Other Flip-Flops

- JK flip-flop
- T flip-flop

4

J-K Flip-Flop

SR flip-flop

S	R	Q^+
0	0	Q
0	1	0
1	0	1
1	1	Indeterminate

JK flip-flop

J	K	Q^+
0	0	Q
0	1	0
1	0	1
1	1	Q'

$$\begin{aligned} Q^+ &= J'K'Q + JK' + JKQ' \\ &= JQ' + K'Q \end{aligned}$$

JK flip-flop

J	K	Q^+
0	0	Q
0	1	0
1	0	1
1	1	Q'

$$\mathbf{Q}^+ = \mathbf{J}\mathbf{Q'} + \mathbf{K'Q}$$

JQ' + K'Q

Clk

J.J. Shann 5-42

K

- Q

J	K	D	Q^+	
0	0	Q	Q	
0	1	0	0	
1	0	1	1	
1	1	Q'	Q'	

T Flip-Flop

(a) From JK flip-flop

J	K	Q^+
0	0	Q
0	1	0
1	0	1
1	1	Q'

 $Q^+ = JQ' + K'Q$

$$J = K \qquad T \qquad Q^{+}$$

$$\longrightarrow \qquad 0 \qquad Q$$

$$1 \qquad Q'$$

$$\mathbf{Q}^+ = \mathbf{T'Q} + \mathbf{TQ'}$$

From D flip-flop:

$$Q^{+} = D = TQ' + T'Q$$
$$= T \oplus Q$$

J.J. Shann 5-43

E. Characteristic Tables & Equations

JK Flip-Flop J K Q(t + 1) 0 0 Q(t) No change 0 1 0 Reset 1 0 1 Set

Q'(t)

$$\mathbf{Q}^+ = \mathbf{J}\mathbf{Q'} + \mathbf{K'Q}$$

D Flip-Flop

D	Q(t + 1)	
0	0	Reset
1	1	Set

$$\mathbf{Q}^+ = \mathbf{D}$$

T Flip-Flop

Complement

Т	Q(t + 1)	
0 1	Q(t) $Q'(t)$	No change Complement

$$\mathbf{Q}^+ = \mathbf{T}\mathbf{Q'} + \mathbf{T'Q}$$

5-5 Analysis of Clocked Sequential Ckts

Synchronous seq ckt:

- includes f-fs w/ the clock inputs driven directly or indirectly by a clock signal and the direct sets and resets are unused during the normal functioning of the ckt
- The behavior of a seq ckt is determined from the inputs, outputs, and present state of the ckt.

Analysis of a seq ckt:

 obtain a suitable description that demonstrates the time sequence of inputs, outputs, and states

Analysis procedure:

A. Analysis w/ D Flip-Flops

Flip-Flop Characteristic Equation

For D flip-flops: $Q^+ = D$

Example 1

comb. ckt.

■ E.g. 1:

1. Flip-flop input equations & Output equations:

$$D_{A} = AX + BX$$

$$D_{B} = \overline{A}X$$

$$Y = (A + B)\overline{X}$$

2. Next state equation:

$$(Q^+ = D)$$

$$A(t+1) = D_A = AX + BX$$
$$B(t+1) = D_B = \overline{A}X$$

3. State table:

Next state equations:

$$A(t+1) = AX + BX$$

$$B(t+1) = \overline{A}X$$

$$Y = A\overline{X} + B\overline{X}$$

Present State		Input		ext ate	Output
A	В	x	A^+	B^+	у
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

J.J. Shann 5-51

	Present		ı	Next State			Output	
		ate	$\langle x \rangle$	- 0	X =	1)	$\langle x = 0 \rangle$	x = 1
Two-dimensional	A	В	A^+	B^+	A^+	B^+	у	y
state table	0	0	0	0	0	1	0	0
	0 1	$\frac{1}{0}$						
	1	1						

4. State diagram:

resent	Nex	t Stat	e	Out	put	
State	x = 0	x =	: 1	x = 0	x = 1	
4 <i>B</i>	A^+ B^-	A ⁺	B ⁺	У У	у	
0	0 0	0	1	0	0	0/1
0 1	0 0	1	1	1	0	0/ 1
0	0 0	1	O	1	0	
1	0 0	1	0	1	0	

State table

Example 2

Flip-Flop Characteristic Equation Circuit Flip-flop Next State State (sync seq) input state table diagram **Equations** equations (Transition table) Output equations

E.g. 2:

1. Flip-Flop input equations & Output equations:

$$D_{A} = A \oplus X \oplus Y$$
$$Z = A$$

2. Next-state equation: $Q^+ = D$

$$A^+ = D_A = A \oplus X \oplus Y$$

	Next state Output
--	----------------------

3. State table:

$$A^{+} = A \oplus X \oplus Y$$
$$Z = A$$

resent state	Inp	uts	Next state	Output
Α	Х	Y	A^{\dagger}	Z
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

4. State diagram:

Combinational circuit B. Analysis w/ JK Flip-Flop Flip-flops Clock pulses · Flip-Flop Characteristic Equation Circuit Flip-flop State Next State (sync seq) table diagram input state **Equations** (Transition equations table) Output equations

For JK flip-flops: $Q^+ = JQ' + K'Q$

Example

Example:

5-57

R

Flip-flop input equations

& Output equations:

$$J_{A} = B$$

$$K_{A} = B x'$$

$$J_{B} = x'$$

$$K_{B} = A \oplus x = Ax' + A'x$$

2. Next state equations:

$$(Q^{+} = J Q' + K' Q)$$

$$A^{+} = J_{A} A' + K_{A}' A$$

$$= (B) A' + (Bx')' A = A'B + AB' + Ax$$

$$B^{+} = J_{B} B' + K_{B}' B$$

$$= (x') B' + (Ax' + A'x)' B = B'x' + ABx + A'Bx'$$

J.J. Shann 5-58

> Clk

> Clk

K

3. State table:

$$A^{+} = A' B + A B' + A x$$

 $B^{+} = B' x' + A B x + A' B x'$

Present State		Next Input State			Flip-Flop Inputs			
A	В	x	\mathbf{A}^{+}	B +	JA	K _A	J _B	K _B
0	0	0			0	0	1	0
0	0	1			0	0	0	1
0	1	0			1	1	1	0
0	1	1			1	0	0	1
1	0	0			0	0	1	1
1	0	1			0	O	0	0
1	1	0			1	1	1	1
1	1	1			1	0	0	0

J.J. Shann 5-59

4. State diagram

Present State		Next Input State			Flip-Flop Inputs				
A	В	x	A [⊢]	B^+		JA	K _A	J _B	K _B
0	0	0	0	1		0	0	1	0
0	0	1	0	0		0	0	0	1
0	1	0	1	1	ı	1	1	1	0
0	1	1	1	0	ı	1	O	0	1
1	0	0	1	1	ı	O	0	1	1
1	0	1	1	0	ı	O	0	0	0
1	1	0	0	0	1	1	1	1	1
1	1	1	1	1		1	0	0	0

C. Analysis w/ T Flip-Flops

For T flip-flops: $Q^+ = T \oplus Q$

Example

Example:

1. Flip-flop input equations

& Output equations:

$$T_{A} = B x$$

$$T_{B} = x$$

$$y = A B$$

2. Next state equations:

$$(Q^{+} = T Q' + T' Q)$$

$$A^{+} = T_{A} A' + T_{A}' A$$

$$= (Bx) A' + (B x)' A$$

$$= A'Bx + AB' + Ax'$$

$$B^{+} = T_{B} B' + T_{B}' B$$

$$= (x) B' + (x)' B = x \oplus B$$

J.J. Shann 5-63

3. State table:

$$A^{+} = A' B x + A B' + A x'$$

$$B^{+} = x \oplus B$$

$$y = A B$$

Present State		Input	Ne: Sta		Output	
A	В	×	A ⁺	B ⁺	У	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	1	0	
0	1	1	1	0	0	
1	0	0	1	0	0	
1	0	1	1	1	0	
1	1	0	1	1	1	
_ 1	1	1	0	0	1	

Shann 5-64

4. State diagram

Present State		Input	Next State	Output	
A	В	x	A ⁺ B ⁺	у	
0	0	0	0 0	0	
0	0	1	0 1	0	
0	1	0	0 1	0	
0	1	1	1 0	0	
1	0	0	1 0	0	
1	0	1	1 1	0	
1	1	0	1 1	1	
1	1	1	0 0	1	

$$A^{+} = A' B x + A B' + A x'$$

$$B^{+} = x \oplus B$$

$$y = A B$$

D. Mealy & Moore Models of Finite State Machines

Mealy model:

 is a model of seq ckts in which the outputs depend on both the inputs and the present states.

4

Moore model:

 is a model of seq ckts in which the outputs depend only on the present states.

Moore Machine

Moore Machine

_ E.g. 2:

J.J. Shann 5-69

Comparison:

- Moore model: (state) → output
 - ➤ The outputs of the ckt are synchronized w/ the clock.

(\(\subseteq \text{the outputs depend on only flip-flop outputs (states) that are synchronized w/ the clock)

- Mealy model: (input, state) → output
 - The outputs may change if the inputs change during the clock cycle.

 Mealy Machine

補充資料:Sequential Circuit Timing

- Analysis of a sync seq ckt:
 - analyze the function of the ckt \Rightarrow State diagram
 - analyze the performance of the ckt
 - > For comb. ckt: input-to-output delay
 - For sync seq ckt: the max clock frequency, f_{max} , at which the ckt can operate

clock frequency $f = 1/t_p$, t_p : the clock period $f_{max} = 1/t_{p-min}$, t_{p-min} : the min allowable clock period

Shann 5-71

Sequential Circuit Timing Parameters

- Sequential ckt timing parameters:
 - i. f-f propagation delay: $t_{pd,FF}$
 - ii. comb logic delay through the chain of gates along the path: $t_{pd,COMB}$
 - iii. f-f setup time: t_s
 - (iv. slack time, t_{slack} : the extra time allowed in the clock period beyond that required by the path)

For edge-triggered flip-flops:

 determine the longest delay from the triggering edge of the clock to the next triggering edge of the clock.

5-6 Synthesizable HDL Models of Sequential Circuits

- Behavioral Modeling of Sequential Circuit
- HDL Models of Flip-Flops and Latches
- State diagram-Based HDL Models
- Structural Description of Clocked Sequential Circuits

5-7 & 5-8 Design of Clocked Seq Circuits

- Design procedure:
 - 1. Specification: Write a specification for the ckt.
 - 2. Formulation: Obtain either a state diagram or state table from the statement of the problem. (correctness)
 - 3. State reduction: Reduce the # of states if necessary.
 - 4. State assignment: Assign binary codes to the states and obtain the binary-coded state table (or transition table).
 - 5. Flip-flop input equation determination: Select the flip-flop type or types. Derive the flip-flop input equations from the next-state entries in the encoded state table.
 - 6. Output equation determination: Derive output equations from the output entries in the encoded state table.

- 7. Optimization: Optimize the flip-flop input equations and output equations. (2-level or multiple-level)
- 8. Technology mapping: Draw a logic diagram of the ckt using flip-flops, ANDs, ORs, and inverters. Transform the logic diagram to a new diagram using the available flip-flop and gate technology.
- 9. Verification: Verify the correctness of the final design. (analysis of the sync seq circuit)

equations

J.J. Shann 5-77

8. Technology mapping

9. Verification

7. Optimization

A. Finding State Diagrams and State Tables

- E.g.: Sequence recognizer of "1101"
 - Problem description:
 - Recognize the occurrence of the sequence of bits 1101 on input X by making output Z equal to 1 when the previous three inputs to the circuit were 110 and current input is a 1, regardless of where it occurs in a sequence. Otherwise, Z equals 0.

(Mealy-type FSM)

The circuit has *direct resets* on its flip-flops to initialize the state of the circuit to all zeros. (Initial state = 0...0)

State B = State E

■ E.g.: Sequence detector of three or more consecutive 1's (Moore-type)

Design a ckt that detects three or more consecutive 1's in a string of bits coming through an input line.

<Ans>

State diagram

State table:

F	Present	Input	Next	Output
	state	\mathcal{X}	state	y
_	S_0	0	S_0	0
	S_0	1	S_1	0
	$egin{array}{c} \mathbf{S}_0 \ \mathbf{S}_0 \ \mathbf{S}_1 \end{array}$	0	S_0	0
	S_1	1	S_2	0
	S_2	0	S_0	0
	\mathbf{S}_2	1	S_3	0
	S_3	0	S_0	1
	S_3 S_3	1	S_3	1

- E.g.: 3-bit sequence detector (Mealy-type)
 - Single input X, Single output Z.

 Output a 1 whenever the serial sequence 010 or 110 has been observed at the inputs.

Input Sequence	Prsent State	Next State $X = 0$ $X = 1$	Output (Z) $X = 0$ $X = 1$
Reset (Init)	S_0		
0	S_1	_	
1	S_2	_	
00	S_3	_	
01	S_4	_	
10	S_5	_	
11	S_6		

J.J. Shann 5-85

B. State Reduction \rightarrow Minimal State Table

State reduction:

- Implement a seq ckt with fewest possible states
- ⇒ Least number of flip-flops
 - > Boundaries are power of two number of states
- ⇒ Usually leads to more opportunities for don't cares
 - Reduce the number of gates needed for implementation (combinational ckt)

Goal:

- Identify and combine states that have "equivalent" behavior
- Equivalent States: for all input combinations,
 states transition to the same or equivalent states &
 outputs are the same or compatible

State B = State E

State Reduction Methods (補充資料)

- State reduction methods:
 - Row matching method{equal states} ⇒ {equal states} ⇒ ...
 - Implication chart method{unequivalent states} ⇒ {unequivalent states} ⇒ ...

Reference:

 Randy H. Katz & Gaetano Borriello, Contemporary Logic Design, Prentice Hall.

(a) Row Matching Method

Equivalent States:

for all input combinations,

Row matching method

states transition to the same or equivalent states & outputs are the same or compatible

Identify states w/ same output behavior.

If such states transition to the *same* next state, they are equivalent.

Combine into a single new renamed state.

Repeat until no new states are combined.

- Adv.: Straightforward to understand and easy to implement
- Problem: does not always yield the most reduced state table!

 $\{equal \ states\} \Rightarrow \{equal \ states\} \Rightarrow \dots$

- E.g.: 3-bit sequence detector
 - Single input X, Single output Z.

 Output a 1 whenever the serial sequence 010 or 110 has been observed at the inputs.

Input Sequence

Reset (Init)

State table:

00

01

10

11

<u>Input</u>

	Next State		Output (Z)	
Prsent State	X = 0	X = 1	X = 0	
$\mathbf{S_0}$	S_1	S _{x 1}	0	0
\mathbf{S}_1	S_3	S_4	0	0
$-S_2$	S ₃ 3	S _{6\ 4}	0	
\mathbf{S}_{3}	S_0	S_0	0	0
$-S_4$	S_0	$\mathbf{S_0}$	1	0
$S_{\overline{5}}$	S_0	S	0	_0_
S ₆	S_0	S_0	1	-0

Reduced state table: (S1, S2) (S3, S5) (S4, S6)

	Sequence
	Reset (Init)
(S1, S2)	0 or 1
(S3, S5)	00 or 10
(S4, S6)	01 or 11

Prsent State	Next State $X = 0$ $X = 1$		Output $X = 0$	
$egin{array}{c} \mathbf{S_0} \\ \mathbf{S_1'} \\ \mathbf{S_3'} \\ \mathbf{S_4'} \end{array}$				

Original state diagram: 7 states

J.J. Shann 5-93

■ E.g.: 3-state odd parity checker (Moore type)

	Next	State	
Present State	X = 0	X = 1	Output
S_0	S_0	S_1	0
S_1	S_1	S_2	1
S ₂	S ₂	$\mathbf{S_1}$	0

^{*} None of the states may be reduced by the "Row Matching" Method.

(b) Implication Chart Method

- $\{unequivalent states\} \Rightarrow \{unequivalent states\} \Rightarrow ...$
- Enumerate all possible combinations of states taken two at a time.

e.g.:

 x_{ii} can be eliminated (the diagonal) x_{ij} will be the same as x_{ji}

Implication Chart

J.J. Shann 5-95

$\{unequivalent states\} \Rightarrow \{unequivalent states\} \Rightarrow ...$

- Filling in the implication chart:
 - $-x_{ij}$: row is S_i , column is S_j
 - $-S_i$ is equivalent to S_j if their outputs are the same and next states are equivalent for each input combination
 - \triangleright If S_i & S_j have different output behavior, then x_{ij} is crossed out.
 - $\triangleright x_{ij}$ contains the next states of S_i and S_j which must be equivalent if S_i and S_j are equivalent
- Eg.:

Present State	Next State $x = 0$ $x = 1$	Output
S_0	S_1 S_2	0
\mathbf{S}_1	S_3 S_4	0
•••	•••	•••

* Cross out x_{ij} if S_i and S_j is not possible to be equivalent.

■ E.g.: 3-bit sequence detector

Single input X, Single output Z.

Output a 1 whenever the serial sequence 010 or 110 has been observed at the inputs.

<Ans.>

State table:

Input		Next	State	Outpu	ıt (Z)
Sequence	Prsent State	X = 0	X = 1	X = 0	X = 1
Reset (Init)	S_0	S_1	S_2	0	0
0	S_1	S_3	S_4	0	0
1	S_2	S_5	S_6	0	0
00	S_3	S_0	S_0	0	0
01	S_4	S_0	S_0	1	0
10	S_5	S_0	S_0	0	0
11	S_6	S ₀	S_0	1	0

J.J. Shann 5-97

<u>S</u>1

S2

S3

S4

S5

0 0 0 0 0 0 0 0 0 0 0 0 * If S_i & S_i have different output behavior, then x_{ij} is crossed out.

Output (Z)

 $X = 0 \quad X = 1$

 x_{ij} contains the next states of S_i and S_i which must be equivalent if S_i and S_j are equivalent

4

Marking passes:

till no new "x" is added

4

Determining equivalent states:

 S_4 and S_6 are equivalent S_3 and S_5 are equivalent $\Rightarrow S_1$ and S_2 are too!

Reduced state table:

Original State Table

Input Sequence			
Reset (Init)			
0			
1			
00			
01			

10

11

Prsent State	Next State $X = 0$ $X = 1$		Output (Z) $X = 0 X = 1$	
S_0	S_1	$\mathbf{S_2}$	0	0
$\mathbf{S_1}$	S_3	S_4	0	0
$\mathbf{S_2}$	S_5	$\mathbf{S_6}$	0	0
S_3	S_0	$\mathbf{S_0}$	0	0
S_4	S_0	$\mathbf{S_0}$	1	0
S_5	S_0	$\mathbf{S_0}$	0	0
S_6	S_0	$\mathbf{S_0}$	1	0

Equivalent states: (1,2), (3,5), (4,6)

	Input Sequence
	Reset (Init)
(S1, S2)	0 or 1
(S3, S5)	00 or 10
(S4, S6)	01 or 11

Prsent State		State X = 1	•	ut (Z) X = 1
S_0	S_1'	S_1'	0	0
$\mathbf{S_1}'$	S_3'	S_4'	0	0
S ₃ '	$\mathbf{S_0}$	$\mathbf{S_0}$	0	0
$\mathbf{S_4}'$	$\mathbf{S_0}$	$\mathbf{S_0}$	1	0

■ E.g.: 3-state odd parity checker

* None of the states may be reduced by the Row Matching Method.

	Next State		
Prsent State	X = 0	X = 1	Output
S_0	S_0	$\mathbf{S_1}$	0
S_1	S_1	S _{2.0}	1
S_2	S_2	S_1	0

Multiple Input State Diagram Example

■ E.g.: Multiple Input State Diagram Example

Prsent State	Next State $xy = 00 01 10 11$	Output (Z)
S_0	S_0 S_1 S_2 S_3	1
$\mathbf{S_1}$	S_0 S_3 S_1 S_5	0
S_2	S_1 S_3 S_2 S_4	1
S_3	$S_1 S_0 S_4 S_5$	0
S_4	S_0 S_1 S_2 S_5	1
S_5	S_1 S_4 S_0 S_5	0

Symbolic State Table

Detailed Algorithm of Imp. Chart Method

- 1. Construct implication chart, one square for each combination of states taken two at a time.
- 2. For each square labeled (S_i, S_j) , if outputs differ then mark the square w/ "x". Otherwise write down implied state pairs for all input combinations
- 3. Advance through chart top-to-bottom and left-to-right. If square (S_i, S_j) contains an implied pair S_m - S_n and square (S_m, S_n) already labeled "x", then (S_i, S_j) is labeled "x".
- 4. Continue executing Step 3 until no new squares are marked with "x".
- 5. For each remaining unmarked square (S_i, S_j) , then S_i and S_j are equivalent.

 J.J. Shann 5-105

State Table

	Next State		Output	
Present State	x = 0	x = 1	x = 0	<i>x</i> = 1
а	а	b	0	0
b	c	d	0	0
c	а	d	0	0
- d	e	$rac{1}{2}d$	0	1
— e	а	$rac{1}{2}d$	0	1
f	-	f	0	1
, ,	a a	f	0	1

Reduced State Table

state reduction (d, f) (e, g)

	Next State		Output	
Present State	x = 0	x = 1	x = 0	<i>x</i> = 1
а	а	b	0	0
b	c	d	0	0
c	а	d	0	0
d	e	d	0	1
e	a	d	0	1

C. State Assignment

State Assignment

- State assignment:
 - —assign unique coded binary values to the states
 - —For a circuit with m states, the codes must contain n bits, $2^n \ge m$. $(n \ge \lceil \log_2 m \rceil)$
- Transition table: Binary coded state table
 - —a state table w/ a binary assignment
- When a seq ckt implemented w/ gate logic, # gates will depend on mapping b/t symbolic state names and binary encodings.

Reduced State Table

Present State	Next State		Output	
	x = 0	x = 1	x = 0	<i>x</i> = 1
а	а	b	0	0
b	c	d	0	0
c	а	d	0	0
d	e	d	0	1
e	а	d	0	1

Three Possible Binary State Assignments

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot
а	000	000	00001
b	001	001	00010
c	010	011	00100
d	011	010	01000
e	100	110	10000

Three Possible Binary State Assignments

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot
a	000	000	00001
b	001	001	00010
c	010	011	00100
d	011	010	01000
e	100	110	10000

- Binary assignment
- Gray code assignment:
 - > only one bit in the code group changes when going from one number to the next
 - > makes it easier for the Boolean functions to be placed in the map for simplification
- One-hot assignment: one flip-flop per state
 - > uses as many bits as there are states in the ckt
 At any given time, only one bit is equal to 1 while all others are kept at 0.
 - > usually leads to simpler decoding logic for the next state and output

	Next S	State	Out	put
Present State	x = 0	x = 1	x = 0	$x = \frac{1}{2}$
а	а	b	0	0
b	c	d	0	0
C	а	d	0	0
d	e	d	0	1

State	Assignment 1, Binary
а	000
b	001
c	010
d	011
e	100

transition table

Reduced State Table with Binary Assignment 1

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
000	000	001	0	0	
001	010	011	0	0	
010	000	011	0	0	
011	100	011	0	1	
100	000	011	0	1	

* Effect of Different Assignments on Next State Map

Construct the Binary-coded State Table

State assignment

Minimal state table

➤ Transition table

(Binary-coded state table)

Unused states: don't-care conditions

■ Eg.:

Dunnant	Next	State	Output Z		
Present State	$\overline{\mathbf{x}} = 0$	X = 1	x = 0	X = 1	
A	A	В	0	0	
В	A	C	0	0	
C	D	C	0	0	
D	A	В	0	1	

$$\bigvee$$
 A = 00, B = 01, C = 11, D = 10

Transition table (Binary-coded state table)

	Next	State	Output Z		
Present State	X = 0	X = 1	$\overline{\mathbf{x}} = 0$	X = 1	
00	00	01	0	0	
01	00	11	0	0	
11	10	11	0	0	
10	00	01	0	1	

Example

■ E.g.: 4 states — S_0 , S_1 , S_2 , S_3 4 coded binary values — 00, 01, 10, 11

4 states ⇒ 4 choices for first state, 3 for second, 2 for third, 1 for last ⇒ 24 different encodings (4!)

	S_0	\mathbf{S}_1	S_2	S_3	$\mathbf{S_0}$	\mathbf{S}_1	$\mathbf{S_2}$	S_3	
•	00	01	10	11	10	00	01	11	
	00	01	11	10	10	00	11	01	Symbolic State Names:
	00	10	01	11	10	01	00	11	S_0, S_1, S_2, S_3
	00	10	11	01	10	01	11	00	S_0, S_1, S_2, S_3
	00	11	01	10	10	11	00	01	24 state assignments
	00	11	10	01	10	11	01	00	24 state assignments
	01	00	10	11	11	00	01	10	
	01	00	11	10	11	00	10	01	
	01	10	00	11	11	01	00	10	
	01	10	11	00	11	01	10	00	
	01	11	00	10	11	10	00	01	
	01	11	10	00	11	10	01	00	J.J. Shann 5-114

State Assignment (補充資料)

■ When a seq ckt implemented w/ gate logic, # gates will depend on mapping b/t symbolic state names and binary encodings.

Reference:

 Randy H. Katz & Gaetano Borriello, Contemporary Logic Design, Prentice Hall.

D. Derive Flip-Flop Input Eqs & Output Eqs E. Circuit

Flip-Flop Excitation Tables

Select the flip-flop type or types

/a\ IV Elia Elan

 \Rightarrow Flip-flop excitation tables: (p.5-45)

	(a) JK Flip-F		(b) SH	Flip-Fl	ор			
Q(t)	Q(t+1)	J	K	Q(t)	Q ((t+1)	s	R
0	0	0	X	0	0		0	X
0	1	1	X	0	1		1	0
1	0	X	1	1	0		0	1
1	1	X	0	1	1		X	0
(0) D Flip-Flop				(d)	T Flip-	Flo	p
Q (t)	Q(t+1)	D			Q (t)	Q (t	+ 1) T
0	0	0			0	0		0
0	1	1			0	1		1
1	0	0		İ	1	0		1
1	1	1		į .	1	1		0

Excitation Table of D Flip-Flop

Characteristic table

Excitation table

Q	\mathbf{Q}^{+}	D
0	0	
0	1	
1	0	
1	1	

4

Excitation Table of JK Flip-Flop

Characteristic table

J	K	\mathbf{Q}^{+}	
0	0	Q	
0	1	0	
1	0	1	
1	1	Q'	

Excitation table

Q	\mathbf{Q}^{+}	J	K	
0	0			$\Rightarrow 0 \times$
0	1			⇒1 ×
1	0			⇒× 1
1	1			$\Rightarrow \times 0$

Excitation Table of T Flip-Flop

Characteristic table

T Q⁺ 0 Q 1 O'

Excitation table

Q	\mathbf{Q}^{+}	T
0	0	
0	1	
1	0	
1	1	

(a) Designing Using D Flip-Flops

■ Example: Sequence detector (p.5-79)

State diagram:

State table:

Present	Next	State	Out	out Z
State	X = 0	X = 0 X = 1		X = 1
A	A	В	0	0
В	Α	С	0	0
C	D	С	0	0
D	A	В	0	1

Duccout	Next	State	Out	put Z
Present State	X = 0	X = 1	X = 0	X = 1
A	A	В	0	0
В	A	С	0	0
\mathbf{C}	D	С	0	0
D	A	В	0	1

State assignment:

$$A = 00, B = 01,$$

$$C = 11, D = 10$$

Binary coded state table:

Present State	Next S	State	Output Z		
AB	X = 0	X = 1	X = 0	X = 1	
00	00	01	0	0	
01	00	11	0	0	
11	10	11	0	0	
10	00	01	0	1	

J.J. Shann 5-136

Logic diagram:

$$D_A = AB + BX$$

$$D_B = X$$

$$Z = A\overline{B}X$$

Example

■ E.g.: Sequence detector

State diagram:

State assignment:

$$S_0 = 00, S_1 = 01,$$

$$S_2 = 10$$
, $S_3 = 11$

Binary coded state table:

Present State		Input		ext ate	Output	
A	В	x	A ⁺	B ⁺	у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	1	1	0	
1	1	0	0	0	1	
1	1	1	1	1	1	

Excitation table of D f-f

Q	Q ⁺	D
0	0	0
0	1	1
1	0	0
1	1	1

Present State		Input		xt ite		Output
A	В	×	/A ⁺	B		y
0	0	0	0	0	ì	0
0	0	1	0	1	1	0
0	1	0	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	0	i	0
1	0	1	1	1	;	0
1	1	0	0	0	,"	1
1	1	1	1	1		1

F-F input eqs & output eq:

$$A(t+1) = D_A(A, B, x) = \Sigma m(3,5,7)$$

$$B(t+1) = D_B(A, B, x) = \Sigma m(1,5,7)$$

$$y(A, B, x) = \Sigma m(6,7)$$

A = Ax + Bx

 \equiv D f-f input values

J.J. Shann 5-139

Logic diagram:

$$D_A = Ax + Bx$$

$$D_B = Ax + B'x$$

$$y = AB$$

J.J. Shann 5-140

Designing w/ Unused States

Example:

State table:

3 unused states

000

110

111

Present State		State	Input	Nex	Next State		
A	В	С	X	\mathbf{A}^{+}	B ⁺	С	
0	0	1	0	0	0	1	
0	0	1	1	0	1	0	
0	1	0	0	 0	1	1	
0	1	0	1	1	0	0	
0	1	1	0	 0	0	1	
0	1	1	1	1	0	0	
1	0	0	0	 1	0	1	
1	0	0	1	1	0	0	
1	0	1	0	0	0	1	
1	0	1	1	1	0	0	

3 unused states: 000, 110,111

Maps for optimizing flip-flop input equations:

– Logic diagram:

$$D_{A} = AX + BX + B C$$

$$D_{B} = \overline{A} \overline{C} \overline{X} + \overline{A} \overline{B} X$$

$$\overline{X}$$

(b) Synthesis Using JK Flip-Flops

Example:

State diagram:

State table:

	Present State Input		Ne Sta	
A	В	X	A^+	B +
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

Excitation table of JK f-f

Q	Q ⁺	J	K
0	0		
0	1		
1	0		
1	1		

State table and JK flip-flop inputs:

State Table and JK Flip-Flop Inputs

	sent ate	Input		xt ate	Flip-Flop Inpu		ts	
A	В	x	A +	B +	JA	K _A	J _B	K _B
0 0 0 0 1 1 1	0 0 1 0 0 1	0 1 0 1 0 1	0 1 0 1 1 1 1 0	0 1 0 1 1 1 0	0	×	1 × ×	x 1 0

Present State		Input	Next State		Fli	p-Flop	Input	ts
Α	В	x	A	В	JA	K _A	J _B	K _B
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

 $K_B = (A \oplus x)'$

1ann 5-146

– Circuit:

$$J_{A} = B x' \qquad K_{A} = B x$$

$$J_{B} = x K_{B} = Ax + A' x' = (A \oplus x)'$$

Shann 5-147

4

(c) Synthesis Using T Flip-Flops

■ Example: 3-bit binary counter

State diagram:

State table:

Present State		tate	N	ext St	tate
A ₂	<i>A</i> ₁	A_0	A ₂	<i>A</i> ₁	A_0
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	O
1	1	O	1	1	1
1	1	1	0	0	0

Q	\mathbf{Q}^{+}	T
0	0	
0	1	
1	0	
1	1	

– State table and T flip-flop inputs:

State Table for Three-Bit Counter

Present State		Next State			Flip-Flop Inputs			
A ₂	A ₁	<i>A</i> ₀	A ₂	<i>A</i> ₁	A ₀	T _{A2}	<i>T</i> _{A1}	<i>T</i> _{A0}
0	0	0	(0)	0	(1)	$\langle \hat{0} \rangle$		(1)
0	0	1	0	1	0	744		1
0	1.	0	0	1	1		(0)	7447
0	1	1	1	0	0			
1	O	0	1	0	1			
1	O	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			
10								95.

– Maps for flip-flop input equations:

State Table for Three-Bit Counter					
Present State	Next State	Flip-F			

Present State		Next State			Flip-Flop Inputs			
A ₂	A ₁	A ₀	A ₂	<i>A</i> ₁	A ₀	T _{A2}	<i>T</i> _{A1}	T _{A0}
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	O	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

Shann 5-150

F. Verification

- Verification of sync seq ckts:
 - show that the ckt produces the original state diagram or state table
 - > used states
 - > unused states
 - Manual verification: for small ckts
 - > analyze the ckt
 - Verification w/ simulation
 - > requires a sequence of input combinations and applied clocks

Example: Manual Verification

Example: Verification w/ simulation

■ E.g.: Verifying the sequence recognizer

State (A,B): \times ,×

Output Z: ×

補充資料: Word Problems

Example: Vending Machine

Deliver a package of gum after 15 cents received in coins. Has a single coin slot for dimes and nickels, one coin at a time. No change.

<Ans.>

Understand the problem:

Draw state diagram:

State Minimization:

9 states

 \Rightarrow 5 states: 0¢, 5¢, 10¢, 15¢, 20¢

 \Rightarrow 4 states: 0ϕ , 5ϕ , 10ϕ , $\geq 15\phi$

State Table:

Present	Input		Next	Output
State	D	N	State	Open
0¢	0	0	0¢	0
	0	1	5¢	0
	1	0	10¢	0
	1	1	×	×
5¢	0	0	5¢	0
	0	1	10¢	0
	1	0	≥15¢	0
	1	1	×	×
10¢	0	0	10¢	0
	0	1	≥15¢	0
	1	0	≥15¢	0
	1	1	×	×
≥15¢	×	×	≥15¢	1

Chapter Summary

- **Sequential Circuits**
- Latches
- Flip-Flops: master-slave, edge-triggered
- Analysis of Clocked Seq Ckts

- Design of Clocked Seq Ckts
 - State Reduction
 - State Assignment

A.

State

Problems & Homework (6th ed)

Sections	Exercises	Homework
§5-3	5.1	5.1(a)
§5-4	5.2~5.5	5.4
§5-5	5.6~5.10	5.6
§5-7	5.11~5.14	5.11 (by implication chart method)
§5-8	5.15~5.20	5.18*, 5.19(a)*
HDL	5.21~5.60	