REPRESENTATIONS FOR (INORGANIC) MATERIALS

Logan Ward Asst. Computational Scientist Argonne National Laboratory

29 January 2021

What sets "materials" apart?

Relationships between "processing," "structure," and "properties"

Ref: Sun. J. Phar. Sci., (2009)

Complication: Materials are multi-scale

	Zr	Al,Zr	Al ₄ Zr	Al	Fe
Available Information	Element	Phase Diagram	Composition	Crystal Structure	μ- Structure
Example Properties	Dilute ΔH_{mix}	# Eutectics	Glass-Forming Ability	ΔH_f	σ_Y
Common Representations	Element Property	Elemental Properties	Elemental Properties	Local Environment	n-Body Statistics

Element-property based features are very common

Composition

Property Statistics

$$x_{\text{avg}} = \frac{1}{\sum_{i=1}^{N} \alpha_i} \sum_{i=1}^{N} \alpha_i x_i \tag{5}$$

$$x_{\text{red}} = \frac{1}{(N-1)\sum_{i=1}^{N} \alpha_i} \sum_{i \neq j}^{N} \left(\alpha_i + \alpha_j\right) \frac{x_i x_j}{x_i + x_j} \tag{6}$$

$$x_{\text{diff}} = \frac{1}{(N-1)\sum_{i=1}^{N} \alpha_i} \sum_{i \neq j}^{N} \left(\alpha_i + \alpha_j\right) |x_i - x_j| \tag{7}$$

where when considering a compound, $A_aB_bC_c$, we define α as the vector of coefficients [a, b, c] and N as the length of α . For example, for CaTiO₃, $\alpha = [1,1,3]$ and N = 3.

Ref: Meredig and Wolverton. Chem. Mat. (2014)

-0.5

Oxygen volume (Å3)

-1.0

Oxygen charge (e)

-1.5

Ref: Villars. JLCM. (1985)

Ref: Bartel et al. Nat. Comm. (2018)

There is also much room for creativity

Intuition-based features

(Similar spirit to chemical descriptors)

Cluster Packing Efficiencies: Laws et al. MMTA (2010)

Many available in matminer

Creative Deep Learning Architectures

Ref: Goodall and Lee. Nat Comm. (2020)

Learning from Data

Ref: Zhou et al. PNAS. (2018)

Ref: <u>Tshitoyan et al. Nature. (2019)</u>

Further complication: Processing and structure

Other factors beside composition...

Ref: Song and Xiso. Sci. China. E. (2006)

Ref: Wikipedia

... and you must consider them

Ignoring processing or structure has given me problems in identifying materials

Ex: not accounting for casting method, alloys fractured on casting

but you can ignore and succeed

Ex: discovering new thermoelectrics based on material composition

There are ways for accounting for processing

Processing parameters are easy to add to a model's inputs

Ref: Chatterjee (2010)

Ref: Raccuglia (2016)

Ref: Ren (2018)

structure properties performance

Many techniques for incorporating structure at different scales

Ref: Schütt (2018)

Ref: <u>Jalem (2018)</u>

Ref: <u>Kondo (2017)</u>

Still a new field, but already many open codes

There may be a code that does what you need

RELATED CONTENT: TESTING YOUR MODEL ADEQUATELY

The standard approach: Random split cross-validation

Source: Scikit-learn Docs

Randomized cross-validation can be a big problem

Source: Ward et al, in preparation

Source: Cubuk et al. JCP. (2019)

Designing validation to mimic practice

Time Series

X Predicting past and future

Split 1:	Test set	Training set				
Split 2:	Training set	Test set	Training set			
Split 3:	Traini	ng set <u>Test set</u> Training s		ng set		
Split 4:	Training set			Test set	Training set	
Split 5:		Test set				
	Time 1	Time 2	Time 3	Time 4	Time 5	

✓ Predict only the future

Clustered data

X Ignoring clustering in data

✓ Leave out by cluster

Alloy materials

Excluding an alloy system

Wrap up and take-home points

Main Lecture: Machine learning for materials

• Materials have *processing* and *structure*

- Descriptors for inorganics are similar:
 - Elemental-property-based features for compositions
 - Account for structure and properties <u>if needed</u> (e.g., n-point correlation features)
- Many codes exist!

QML: A Python Toolkit

Side note: Validate like you mean to use it

Scientific data is often biased.

Combinatorial Dataset

Ref: Zahrt et al. ACS Combi. (2020)

Consider that bias in your validation