Rank-67115 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_3^3 + X_0^2 X_2 + X_1^2 X_3 + X_0 X_2^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(2)$ is 67115

General information

Number of lines	6
Number of points	9
Number of singular points	3
Number of Eckardt points	0
Number of double points	9
Number of single points	0
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{6}
Type of lines on points	2^{9}

Singular Points

The surface has 3 singular points:

$$0: P_{10} = \mathbf{P}(0,1,0,1) = \mathbf{P}(0,1,0,1)$$
 $2: P_{14} = \mathbf{P}(0,1,1,1) = \mathbf{P}(0,1,1,1)$ $1: P_{11} = \mathbf{P}(1,1,0,1) = \mathbf{P}(1,1,0,1)$

The 6 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]_0 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]_0 = \mathbf{Pl}(1,0,0,0,0,0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{8} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{8} = \mathbf{Pl}(1,0,1,0,0,1)_{23}$$

$$\ell_{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{28} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{28} = \mathbf{Pl}(0,0,0,0,0,1)_{19}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{2} = \mathbf{Pl}(1,0,0,0,1,0)_{10}$$

$$\ell_{4} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{31} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{31} = \mathbf{Pl}(0,1,0,0,0,1)_{21}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{10} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{10} = \mathbf{Pl}(1,1,1,0,1,1)_{30}$$

Rank of lines: (0, 8, 28, 2, 31, 10)

Rank of points on Klein quadric: (0, 23, 19, 10, 21, 30)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 9 Double points: The double points on the surface are:

$$P_5 = (1, 1, 0, 0) = \ell_0 \cap \ell_1$$

$$P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_2$$

$$P_0 = (1, 0, 0, 0) = \ell_0 \cap \ell_3$$

$$P_7 = (0, 1, 1, 0) = \ell_1 \cap \ell_2$$

$$P_6 = (1, 0, 1, 0) = \ell_1 \cap \ell_5$$

$$P_2 = (0,0,1,0) = \ell_2 \cap \ell_4$$

$$P_{10} = (0,1,0,1) = \ell_3 \cap \ell_4$$

$$P_{11} = (1,1,0,1) = \ell_3 \cap \ell_5$$

$$P_{14} = (0,1,1,1) = \ell_4 \cap \ell_5$$

Single Points

The surface has 0 single points:

The single points on the surface are:

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

	012345
$\overline{0}$	011100
1	101001
2	110010
3	100011
4	001101
5	$\begin{array}{c} 0.11100 \\ 101001 \\ 10010 \\ 100011 \\ 001101 \\ 010110 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_5	P_1	P_0

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_5
in point	P_5	P_7	P_6

 ${\bf Line~2~intersects}$

Line	ℓ_0	ℓ_1	ℓ_4
in point	P_1	P_7	P_2

Line 3 intersects

Line	ℓ_0	ℓ_4	ℓ_5
in point	P_0	P_{10}	P_{11}

Line 4 intersects

Line	ℓ_2	ℓ_3	ℓ_5
in point	P_2	P_{10}	P_{14}

Line 5 intersects

Line	ℓ_1	ℓ_3	ℓ_4
in point	P_6	P_{11}	P_{14}

 $8: P_{14} = (0, 1, 1, 1)$

The surface has 9 points:

The points on the surface are:

$$\begin{array}{lll} 0: \ P_0 = (1,0,0,0) & 4: \ P_6 = (1,0,1,0) \\ 1: \ P_1 = (0,1,0,0) & 5: \ P_7 = (0,1,1,0) \\ 2: \ P_2 = (0,0,1,0) & 6: \ P_{10} = (0,1,0,1) \\ 3: \ P_5 = (1,1,0,0) & 7: \ P_{11} = (1,1,0,1) \end{array}$$

$$P_1 : P_2 = (0, 0, 1, 0)$$
 $P_2 : P_3 = (0, 0, 1, 0)$
 $P_4 : P_5 = (1, 1, 0, 0)$
 $P_5 : P_{11} = (1, 1, 0, 1)$