Teoretická informatika (TIN) – 2023/2024 Úkol 1

(max. zisk 5 bodů – 10 bodů níže odpovídá 1 bodu v hodnocení předmětu)

- 1. Mějme následující jazyky:
 - (a) $L_1 = \{ww^R \mid w \in \{a, b, c\}^*\}$
 - (b) $L_2 = \{w \mid w \in \{a, b, c\}^* \land \#_a(w) \bmod 2 = \#_b(w) \bmod 2 = 1\}$

Rozhodněte a dokažte, zda jazyky $L_1 \cap L_2$ a $L_1 \cup L_2$ jsou regulární. Pro důkaz regularity sestrojte příslušný konečný automat, nebo gramatiku. Pro důkaz neregularity použijte Pumping lemma, nebo Myhill-Nerodovu větu.

- 2. Uvažujme jazyk $L_3 = \{puvw \mid p, v \in \{a, b\}^*, u, w \in \{c, d\}^*, (p = v^R \lor u = w^R)\}$
 - (a) Sestrojte bezkontextovou gramatiku G_3 takovou, že $L(G_3) = L_3$.
 - (b) Sestrojte zásobníkový automat Z_3 takový, že $L(Z_3) = L_3$.

10 bodů

- 3. Rozhodněte a dokažte následující tvrzení:
 - (a) $\exists L_1 \in \mathcal{L}_2 \setminus \mathcal{L}_3$ takový, že jeho doplněk $\overline{L_1}$ je konečný jazyk.
 - (b) $\exists L_1 \in \mathcal{L}_2 \setminus \mathcal{L}_3$ takový, že $\forall L_2 \in \mathcal{L}_3 : L_1 \cap L_2 \in \mathcal{L}_2 \setminus \mathcal{L}_3$
 - (c) $\exists L_1 \in \mathcal{L}_3$ takový, že $\forall L_2 \in \mathcal{L}_2 \setminus \mathcal{L}_3 : L_1 \cap L_2 \in \mathcal{L}_2 \setminus \mathcal{L}_3$

15 bodů

4. Uvažujme jazyk $L = \{w \in \{a,b\}^* \mid \#_a(w) \geq 2 \lor \#_b(w) = 0\}$. Sestrojte relaci pravé kongruence \sim , která splňuje následující dvě podmínky: 1) L je sjednocením některých tříd rozkladu Σ^*/\sim a 2) index \sim je o jedna vetší než index \sim_L .