1 Poisson-Gleichung

$$\Delta u = f, \quad \Omega$$
$$u = g, \quad \partial \Omega$$

Ω	$\partial\Omega$	f	g	Resultate			
				$U(r) = \begin{cases} \frac{1}{2}r &, n = 1\\ \frac{1}{2\pi}ln(r) &, n = 2 \end{cases} \in L^1_{loc}(\mathbb{R}^n) \dots \text{ FL mit Pol in } 0,$ $\frac{1}{(2-\pi)\cdot s_n}r^{2-n} , n > 2$			
\mathbb{R}^n	-	0	-	$U(r) = \left\{ \frac{1}{2\pi} ln(r) \right\}, n = 2 \in L^1_{loc}(\mathbb{R}^n) \dots \text{ FL mit Pol in } 0,$			
				$\left(\frac{1}{(2-\pi)\cdot s_n}r^{2-n} , n > 2\right)$			
				wobei $r= x ,\ x\in\mathbb{R}^n$ und $s_n=\frac{2\pi^{\frac{3}{2}}}{\Gamma(\frac{3}{2})}$ Kugeloberfläche			
$\subseteq \mathbb{R}^n$ offen	-	$\in \mathcal{D}(\Omega)$	-	$U \in \mathcal{D}'(\mathbb{R}^n)$ FL von Δ mit Pol an $0 \Rightarrow N(x) = (U * f)(x) = \int_{\Omega} U(x-y) f(y) dy$			
				ist klassische Lösung("Newton-Potential")			
$\subseteq \mathbb{R}^n$ offen	$\in C^1$	$\in C(\overline{\Omega})$	$\in C(\partial\Omega)$	$u \in C^2(\overline{\Omega})$ klassische Lsg. $\Rightarrow u(x) = \int_{\partial\Omega} g(y) \cdot \frac{\partial G}{\partial \nu}(x,y) ds(y) + \int_{\Omega} G(x,y) \cdot f(y) dy$			
				wobei G Greensche Funktion $G(x,y)=U_x(y)-h_x(y), \ \Delta h_x=0, \ h_x _{\partial\Omega}=U_x _{\partial\Omega}$			
$\mathbb{R} \times \mathbb{R}^+$	$\mathbb{R} \times \{0\}$	0	$\in C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$	klass. Lösung: $u(x_1, x_2) = \frac{1}{\pi} \int_{\mathbb{R}} \frac{x_2 \cdot g(\xi)}{(x_1 - \xi)^2 + x_2^2} d\xi$ (+ stetig FS auf $\mathbb{R} \times \{0\}$ zu g)			
$B_R(0)$	-	0	$\in C(\partial B_R(0))$	$\exists ! \text{ klass. L\"osung: } u(x) = \frac{R^2 - x ^2}{R \cdot s_n} \int_{\partial B_R(0)} \frac{g(y)}{(x-y)^n} dy \text{ (+ stetig FS auf } \partial B_R(0) \text{ zu g)}$			
beschr.	-	$\in C(\Omega)$	$\in C(\partial\Omega)$	$u_1, u_2 \in C^2(\Omega) \cap C(\overline{\Omega})$ Lösungen $\Rightarrow u_1 = u_2$			
Gebiet							

2 Elliptische-Gleichungen

$$Lu := -div(A(x)\nabla u) + b(x) \cdot \nabla u + c(x)u = f(x), \quad \Omega$$

Ω	$\partial\Omega$	A	b	c	f	$u _{\partial\Omega}$	Resultate
beschr.	C^1	$L^{\infty}(\Omega)$, symm.	$L^{\infty}(\Omega)$	$L^{\infty}(\Omega)$	$L^2(\Omega)$	0	schwache Formulierung: $\forall v \in H^1_0(\Omega)$:
Gebiet		$\geq \alpha I \geq 0$					$a(u,v) := \int_{\Omega} \nabla u A \nabla v + (b \cdot \nabla u)v + cuv \ dx = \int_{\Omega} fv \ dx =: F(v)$
beschr.	C^1	$C^1(\Omega)$, symm.	$C(\Omega)$	$C(\Omega)$	$C(\Omega)$	0	u schw. Lsg. $\Rightarrow u$ klass. Lsg
Gebiet		$\geq \alpha I \geq 0$					
beschr.	C^1	$L^{\infty}(\Omega)$, symm.	$L^{\infty}(\Omega)$	$L^{\infty}(\Omega)$	$L^2(\Omega)$	0	$(b = 0 \land c_0 = 0) \lor (4\alpha c_0 \ge b_0^2), \ b_0 = b _{L^{\infty}} \implies \exists ! \text{ schw. Lsg } u \in H_0^1(\Omega)$
Gebiet		$\geq \alpha I \geq 0$		$\geq c_0 \geq 0$			und $ u _{H^1} \le C f _{L^2}$
beschr.	C^1	$L^{\infty}(\Omega)$, symm.	$L^{\infty}(\Omega)$	$L^{\infty}(\Omega)$	$H^{-1}(\Omega)$	0	$(b=0 \land c_0=0) \lor (4\alpha c_0 \ge b_0^2) \Rightarrow \exists ! \text{ schw. Lsg } u \in H_0^1(\Omega),$
Gebiet		$\geq \alpha I \geq 0$		$\geq c_0 \geq 0$			Lösung von $a(u, v) = \langle f, v \rangle_{H^{-1}} \forall v \in H_0^1(\Omega)$
beschr.	C^1	$L^{\infty}(\Omega)$, symm.	$L^{\infty}(\Omega)$	$L^{\infty}(\Omega)$	$L^2(\Omega)$	=T(g)	$(b=0 \land c_0=0) \lor (4\alpha c_0 \ge b_0^2) \Rightarrow \exists ! \text{ schw. Lsg } u \in H^1(\Omega),$
Gebiet		$\geq \alpha I \geq 0$		$\geq c_0 \geq 0$		$g \in H^1(\Omega)$	Lösung von: $a(u-g,v) = F(v) - a(g,v) \forall v \in H_0^1(\Omega)$
							und $ u _{H^1} \le C f _{L^2} + g _{H^1}$
beschr.	C^1	$L^{\infty}(\Omega)$, symm.	0	$L^{\infty}(\Omega)$	$L^2(\Omega)$	$A\nabla u) \cdot \nu = T(g)$	$\exists ! \text{ schw. Lsg } u \in H^1(\Omega), \text{ L\"osung von}$
Gebiet		$\geq \alpha I \geq 0$		$\geq c_0 > 0$		$g \in H^1(\Omega)$	$a(u,v) = \int_{\partial\Omega} gv \ ds + \int_{\Omega} fv \ dx \forall v \in H^1(\Omega)$
							und $ u _{H^1} \le \frac{1}{\min\{\alpha, c_0\}} (f _{L^2} + C_2 g _{H^1})$
beschr.	C^1	$L^{\infty}(\Omega)$, symm.	0	0	$L^2(\Omega)$	$(A\nabla u) \cdot \nu = T(g)$	$\int_{\Omega} f dx = -\int_{\partial\Omega} g ds \Rightarrow \exists ! \text{ schw. Lsg. } u \in H^1(\Omega) \text{ mit } \int_{\Omega} u dx = 0, \text{ Lsg von:}$
Gebiet		$\geq \alpha I \geq 0$				$g\in H^1(\Omega)$	$\int_{\Omega} \nabla u A \nabla v \ dx = \int_{\partial \Omega} g v \ ds + \int_{\Omega} f v \ dx \forall v \in H^{1}(\Omega)$
beschr.	C^1	$C(\overline{\Omega})\cap C^1(\Omega)$	$C(\Omega)$	$C(\Omega)$	$C(\Omega)$	=T(g)	$u \in C^2(\Omega) \cap C(\overline{\Omega})$ schw. Lsg. $\Leftrightarrow u$ klass. Lsg
Gebiet		symm. $\geq \alpha I \geq 0$				$g _{\partial\Omega}\in C(\partial\Omega)$	
beschr.	C^{k+2}	$C^{k+1}(\Omega)$, symm.	$C^k(\Omega)$	$C^k(\Omega)$	$H^k(\Omega)$	=T(g)	schw. Lsg. $u \in H^{k+2}(\Omega)$
Gebiet		$\geq \alpha I \geq 0$				$g\in H^{k+2}(\Omega)$	

3 Parabolische-Gleichungen mit zeitinvarianten Koeffizienten und b=0

$$u_t(x,t) - div(A(x)\nabla u) + c(x)u(x,t) = f(x,t) , \Omega \times (0,\infty)$$
$$u(.,0) = u_0(.) , \Omega \times \{0\}$$
$$u = g , \partial\Omega \times (0,\infty)$$

Allgemeine VS: $\partial \Omega \in C^1$, $Lu = -div(A\nabla u) + cu$

Ω	A	c	f	g	u_0	Resultate
\mathbb{R}^n	=I	0	0	0	$L^1(\mathbb{R}^n)$	(Wärmeleitungsgleichung) FL: $w(x,t) = (4\pi t)^{-\frac{n}{2}} e^{-\frac{ x ^2}{4t}} \in C^1([0,\infty); \mathcal{D}'(\mathbb{R}^n))$
						Lösung: $u(x,t) = (w * u_0)(x,t) = (4\pi t)^{-\frac{n}{2}} \int_{\mathbb{R}^n} e^{-\frac{ x-y ^2}{4t}} u_0(y) dy$
						$\in C^{\infty}(\mathbb{R}^n \times (0,\infty)) \cap C([0,\infty), L^1(\mathbb{R}^n))$
$\subseteq \mathbb{R}^n$	$A, \nabla A \in L^{\infty}(\Omega)$	$L^{\infty}(\Omega)$	0	0	$L^2(\Omega)$	$\exists \ \mathrm{ONS}\ (v_k) \ \mathrm{von}\ L^2(\Omega)$ aus EVen von L zu den EWen
offen	$\geq \alpha I \geq 0,$	$c \ge 0$				$(\lambda_k) \subseteq \mathbb{R}^+, \lambda_k \nearrow \text{ sodass: } u(x,t) = \sum_{k=1}^{\infty} e^{-\lambda_k t} (u_0, v_k)_{L^2} v_k \text{ eind. Lsg.}$
beschr.	symm.					und: $u \in C(\mathbb{R}_0^+; L^2(\Omega)) \cap C^1(\mathbb{R}^+; L^2(\Omega)), u(t) \in H^2(\Omega) \cap H_0^2(\Omega) \forall t > 0,$
						$u_t(t) + L(u(t)) = 0 \forall t > 0 \text{ f.ü. auf } \Omega, \ u(t)\ _{L^2} \le e^{-\lambda_1 t} \ u_0\ _{L^2}$
$\subseteq \mathbb{R}^n$	$A, \nabla A \in L^{\infty}(\Omega)$	$L^{\infty}(\Omega)$	$C(\mathbb{R}^+; L^2(\Omega))$	0	$L^2(\Omega)$	$\exists ! \text{ Lsg: } u(t) = e^{-Lt}u_0 + \int_0^t e^{-L(t-s)}f(s) \ ds t \ge 0 \text{ (Duhamel-Formel)}$
offen	$\geq \alpha I \geq 0,$	$c \ge 0$				und: $u \in C(\mathbb{R}_0^+; L^2(\Omega)) \cap C^1(\mathbb{R}^+; L^2(\Omega)), u(t) \in H^2(\Omega) \cap H_0^2(\Omega) \forall t > 0,$
beschr.	symm.					$ u(t) _{L^2} \le e^{-\lambda_1 t} u_0 _{L^2} + \frac{1}{\lambda_1} \sup_{0 \le s \le t} f(s) _{L^2}$
$\subseteq \mathbb{R}^n$	$A, \nabla A \in L^{\infty}(\Omega)$	$L^{\infty}(\Omega)$	$C(\mathbb{R}^+; L^2(\Omega))$	$C(\mathbb{R}^+; H^1(\Omega))$	$L^2(\Omega)$	Löse homogens ARWP für $w := u(\cdot, t) - g(\cdot, t)$
offen	$\geq \alpha I \geq 0,$	$c \ge 0$				
beschr.	symm.					
$\subseteq \mathbb{R}^n$	$C^{\infty}(\overline{\Omega})$	$C^{\infty}(\overline{\Omega})$	0	0	$L^2(\Omega)$	$\partial\Omega\in C^{\infty}, u \text{ Lsg. } \Rightarrow u\in C^{\infty}(\mathbb{R}^+; C^{\infty}(\overline{\Omega}))$
offen	$\geq \alpha I \geq 0$, symm.	$c \ge 0$				gilt zus.: $u_0 \in H^2(\Omega) \cap H^1_0(\Omega)$ und $L(u_0) \in H^2(\Omega) \cap H^1_0(\Omega)$
beschr.						$(=$ Kompatibilitätsbed. $)\Rightarrow u\in C^2(\Omega\times\mathbb{R}^+)\cap C(\overline{\Omega}\times\mathbb{R}^+_0)\dots$ klass. Lsg.

4 Parabolische-Gleichungen

$$u_t(x,t) - div(A(x,t)\nabla u) + b(x,t) \cdot \nabla u + c(x,t)u = f(x,t) , G := \Omega \times (0,T)$$

$$u(.,0) = u_0(.) , \Omega \times \{0\}$$

$$u(x,t) = g(x,t) , \partial\Omega \times (0,T)$$

Allgemeine VS: $\partial\Omega\in C^1,\,A\geq\alpha\cdot I>0,\,A$ symmetrisch

Ω	A	b	c	f	g	u_0	Resultate
$\subseteq \mathbb{R}^n$	$L^{\infty}(G)$	$L^{\infty}(G)$	$L^{\infty}(G)$	$L^2((0,T);L^2(\Omega))$	0	$L^2(\Omega)$	$\exists ! \text{ schw. Lsg. } u \in L^2((0,T); H_0^1(\Omega)), u_t \in L^2((0,T); H^{-1}(\Omega)), \text{ Lsg. von:}$
beschr.							$\int_{0}^{T} \langle u_{t}, v \rangle_{H^{-1}} dt + \int_{0}^{T} a(u, v, t) dt = \int_{0}^{T} \int_{\Omega} fv dx dt$
Gebiet							$\forall v \in L^2((0,T); H_0^1(\Omega)), \ a(u,v,t) := \int_{\Omega} \nabla u^T A \nabla v + (b \cdot \nabla u)v + cuv \ dx$
$\subseteq \mathbb{R}^n$	$L^{\infty}(G)$	$L^{\infty}(G)$	$L^{\infty}(G)$	$C(\overline{G})$	$C(\overline{G})$	$C(\overline{G})$	$u \in C^1(G), u_{x_i x_j} \in C(G) \forall i, j \in 1, \dots, n \text{ klass. Lsg.}$
beschr.							$\Rightarrow u \text{ eind.}, sup_G u \le max\{sup_{\Omega} u_0 , sup_{\partial\Omega\times(0,T)} g \} + Csup_G f $
Gebiet							

5 Hyperbolische-Gleichungen

$$u_{tt}(x,t) - div(A(x)\nabla u) + c(x)u = f(x,t) , G := \Omega \times (0,\infty)$$
$$u(.,0) = u_0(.) , \Omega \times \{0\}$$
$$u_t(.,0) = u_1(.) , \Omega \times \{0\}$$
$$u(x,t) = g(x,t) , \partial\Omega \times (0,\infty)$$

Allgemeine VS: $A(x) \ge \alpha \cdot I > 0$, A(x) symmetrisch $\forall x \in \Omega$, $L(u) := -div(A(x)\nabla u) + c(x)u$, $D(x,t) := \{(\xi,\tau) \in \mathbb{R} \times \mathbb{R}^+ : x - ct \le \xi \pm c\tau \le x + ct\}$

Ω	$\partial\Omega$	A	c	f	g	u_0	u_1	Resultate
\mathbb{R}	-	c^2	0	0	-	$C^2(\mathbb{R})$	$C^2(\mathbb{R})$	(eindim. Wellengl.) Lsg.: $u_{hom}(x,t) = \frac{1}{2}(u_0(x-ct) + u_0(x+ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} u_1(\xi) d\xi$
\mathbb{R}	_	c^2	0	0	-	$L^1_{loc}(\mathbb{R})$	$=\pm cu_0'$	$u(x,t) = u_0(x \pm ct)$ ist schw. Lsg., d.h. löst:
								$\int_{\mathbb{R}^2} u(x,t) \cdot (\phi_{tt} - c^2 \phi_{xx}) dx dt = 0 \forall \phi \in \mathcal{D}(\mathbb{R}^2)$
\mathbb{R}	-	c^2	0	$L^1_{loc}(G)$	-	$L^1_{loc}(\mathbb{R})$	$L^1_{loc}(\mathbb{R})$	$U_0(x,t) = \frac{1}{2c}H(ct- x)$ ist FL und daher:
								$u(x,t) = u_{hom}(x,t) + \frac{1}{2c} \int_{D(x,t)} f(\xi,\tau) d\xi d\tau \in L^1_{loc}(\mathbb{R}^2)$ schw. Lsg.
\mathbb{R}^+	-	c^2	0	$L^1_{loc}(G)$	0	$L^1_{loc}(\mathbb{R})$	$L^1_{loc}(\mathbb{R})$	Spiegelungsmethode: Lsg. des Systems auf $\Omega = \mathbb{R}$ (ohne RB, $u_0, u_1, f = 0$ auf \mathbb{R}_0^-): v
								\Rightarrow Lösung: $u(x,t) = v(x,t) - v(-x,t)$
$\subseteq \mathbb{R}^n$	C^1	$L^{\infty}(\Omega)$	$L^{\infty}(\Omega)$	$C([0,\infty];L^2(\Omega))$	0	$L^2(\Omega)$	$L^2(\Omega)$	$u(x,t) = \cos(\sqrt{L}t)u_0(x) + \frac{\sin(\sqrt{L}t)}{\sqrt{L}}u_1(x) + \int_0^t \frac{\sin(\sqrt{L}(t-s))}{\sqrt{L}}f(x,s)ds \in C(\mathbb{R};L^2(\Omega))$
beschr.			≥ 0					ist schw. Lsg.
Gebiet								
$\subseteq \mathbb{R}^n$	C^1	$L^{\infty}(\Omega)$	$L^{\infty}(\Omega)$	$C([0,\infty];L^2(\Omega))$	0	$H_0^1(\Omega)$	$L^2(\Omega)$	schw. Lsg. $u(x,t) \in C^1(\mathbb{R};L^2(\Omega))$ ist eindeutig und es gilt:
beschr.			≥ 0					$u(t) \in H_0^1(\Omega) \ \forall t > 0$
Gebiet								
$\subseteq \mathbb{R}^n$	C^1	$L^{\infty}(\Omega)$	$L^{\infty}(\Omega)$	$C([0,\infty];L^2(\Omega))$	0	$\in D(L)$	$H_0^1(\Omega)$	schw. Lsg. $u(x,t) \in C^2(\mathbb{R};L^2(\Omega))$ ist eindeutig und es gilt:
beschr.			≥ 0					$u(t) \in D(L) \ \forall t > 0, \ u_{tt}(t) + L(u(t)) = f(t) \ \text{gilt im} \ L^2(\Omega) \text{ -Sinne } \forall t > 0$
Gebiet								$(D(L) \subseteq H_0^1(\Omega)$ Definitions bereich des ("schwachen") Differential operators L)