KLASTERISASI MENGGUNAKAN AGGLOMERATIVE HIERARCHICAL CLUSTERING UNTUK MEMODELKAN WILAYAH BANJIR

Abstrak	pendahuluan	metode	hasil	Kesimpulan
Penelitian	Banjir di Jawa	curah hujan (BMKG),	- Data akhir: 950	AHC dengan
memodelkan	Timur sering	kepadatan	record.	average linkage
wilayah potensi	terjadi, dengan	penduduk (BPS),	- Cluster optimal =	efektif untuk
banjir di Jawa	574 kejadian	data banjir, korban	3 (rendah, sedang,	pemodelan daerah
Timur dengan	(2014–2018).	mengungsi, rumah	tinggi).	rawan banjir di
metode	Penyebab	terendam (BNPB)	- C1: Bojonegoro	Jawa Timur,
Agglomerative	utama: curah	periode 2014–2018.	(cukup rawan), C2:	dengan nilai
Hierarchical	hujan, minimnya	Preprocessing: data	34 daerah aman,	cophenetic 0,924.
Clustering (AHC).	resapan air,	cleaning (hilangkan	C3: Pasuruan &	Aplikasi GIS yang
Menggunakan	perilaku	nilai 8888, 9999),	Sampang (rawan).	dibangun
elbow method,	masyarakat, dan	integrasi,		membantu
wilayah terbagi	lemahnya	normalisasi Z-score.		identifikasi
menjadi 3 cluster	infrastruktur			wilayah rawan
(rendah, sedang,	pengendali.			
tinggi)				

Sitasi (APA):

Pratikto, R. O., & Damastuti, N. (2021). *Klasterisasi Menggunakan Agglomerative Hierarchical Clustering untuk Memodelkan Wilayah Banjir*. Jurnal JOINTECS, 6(1), 13–20.

Latar belakang & Tujuan:

Banjir merupakan salah satu bencana dengan frekuensi tinggi di Jawa Timur, tercatat 574 kejadian pada periode 2014–2018. Faktor penyebab meliputi curah hujan, kepadatan penduduk, kerusakan lingkungan, serta minimnya infrastruktur pengendali. Penelitian ini bertujuan memodelkan wilayah rawan banjir menggunakan metode *Agglomerative Hierarchical Clustering* (AHC) dan menyajikannya dalam bentuk Sistem Informasi Geografis (SIG).

Metode:

- Data: curah hujan (BMKG), kepadatan penduduk (BPS), data banjir, jumlah korban mengungsi, rumah terendam (BNPB) periode 2014–2018.
- Preprocessing: data cleaning (hapus nilai error 8888 & 9999), integrasi, normalisasi Z-score.
- Algoritma: AHC dengan tiga pendekatan linkage (single, complete, average).
- Penentuan jumlah cluster: elbow method.
- Evaluasi: cophenetic correlation coefficient.
- Implementasi: aplikasi berbasis web dengan Python + Flask, visualisasi peta GIS.

Hasil:

- Data akhir: 950 record.
- Cluster optimal = 3 kategori (rawan rendah, sedang, tinggi).
- Average linkage menghasilkan cophenetic coefficient = 0,924 (terbaik).

Kontribusi & Keterbatasan:

- Kontribusi: Memberikan model pemetaan wilayah rawan banjir berbasis clustering yang terintegrasi dengan GIS, dapat digunakan sebagai alat bantu pengambilan keputusan mitigasi bencana.
- Keterbatasan: Variabel terbatas (hanya curah hujan, banjir, kepadatan penduduk, korban, rumah), belum mempertimbangkan faktor lingkungan lain (misalnya tata guna lahan, infrastruktur drainase). Dataset hanya mencakup 2014–2018.

Takeaway:

AHC dengan average linkage terbukti efektif untuk memodelkan wilayah rawan banjir (cophenetic = 0,924) dan hasil dapat divisualisasikan dengan baik dalam SIG. Namun, untuk prediksi dan pemodelan yang lebih komprehensif, perlu memperluas variabel, menambah rentang waktu data, serta uji validasi dengan kondisi lapangan.