You submitted this quiz on **Sun 13 Apr 2014 1:50 PM IST**. You got a score of **4.50** out of **5.00**. You can attempt again in 10 minutes.

Question 1

Consider the following neural network which takes two binary-valued inputs $x_1, x_2 \in \{0, 1\}$ and outputs $h_{\Theta}(x)$. Which of the following logical functions does it (approximately) compute?

Your Answer	Score	Explanation	
OXOR (exclusive OR)			
NAND (meaning "NOT AND")			
OR			
AND	✓ 1.00	This network outputs approximately 1 only when both inputs are 1.	
Total	1.00 / 1.00		

Question 2

Consider the neural network given below. Which of the following equations correctly computes the activation $a_1^{(3)}$? Note: g(z) is the sigmoid activation function.

Your Answer	Score	Explanation
$a_1^{(3)} = g(\Theta_{1,0}^{(2)}a_0^{(2)} + \Theta_{1,1}^{(2)}a_1^{(2)} + \Theta_{1,2}^{(2)}a_2^{(2)})$	✓ 1.00	This correctly uses the first row of $\Theta^{(2)}$ and includes the "+1" term of $a_0^{(2)}$.
$a_1^{(3)} = g(\Theta_{1,0}^{(1)}a_0^{(1)} + \Theta_{1,1}^{(1)}a_1^{(1)} + \Theta_{1,2}^{(1)}a_2^{(1)})$		
$a_1^{(3)} = g(\Theta_{1,0}^{(1)}a_0^{(2)} + \Theta_{1,1}^{(1)}a_1^{(2)} + \Theta_{1,2}^{(1)}a_2^{(2)})$		
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
Total	1.00 / 1.00	

Question 3

You have the following neural network:

You'd like to compute the activations of the hidden layer $a^{(2)} \in \mathbb{R}^3$. One way to do so is the

following Octave code:

```
% Theta1 is Theta with superscript "(1)" from lecture
% ie, the matrix of parameters for the mapping from layer 1 (input) to layer 2
% Theta1 has size 3x3
% Assume 'sigmoid' is a built-in function to compute 1 / (1 + exp(-z))

a2 = zeros (3, 1);
for i = 1:3
   for j = 1:3
    a2(i) = a2(i) + x(j) * Theta1(i, j);
   end
   a2(i) = sigmoid (a2(i));
end
```

You want to have a vectorized implementation of this (i.e., one that does not use for loops). Which of the following implementations correctly compute $a^{(2)}$? Check all that apply.

Your Answer	Sco	re Explanation
a2 = sigmoid (Thet a2 * x);	✔ 0.25	$\boldsymbol{\Theta}^{(2)}$ specifies the parameters from the second to third layers, not first to second.
z = sigmoid(x); a2 = sigmoid (Theta1 * z);	✔ 0.25	You do not need to apply the sigmoid function to the inputs.
a2 = sigmoid (x * T heta1);	x 0.00	The order of the multiplication is important, this will not work as x is a vector of size 3×1 while Theta1 is a matrix of size $3x3$.
z = Theta1 * x; a2 = sigmoid (z);	✔ 0.25	This version computes $a^{(2)}=g(\Theta^{(1)}x)$ correctly in two steps, first the multiplication and then the sigmoid activation.
Total	0.75 1.00	

Question 4

You are using the neural network pictured below and have learned the parameters

$$\Theta^{(1)}=egin{bmatrix}1&1&2.4\1&1.7&3.2\end{bmatrix}$$
 (used to compute $a^{(2)}$) and $\Theta^{(2)}=[1&0.3&-1.2]$ (used to

compute $a^{(3)}$ } as a function of $a^{(2)}$). Suppose you swap the parameters for the first hidden layer between its two units so $\Theta^{(1)}=\begin{bmatrix}1&1.7&3.2\\1&1&2.4\end{bmatrix}$ and also swap the output layer so

our Answer	Score	Explanation
It will increase.		
Insufficient information tell: it may increase or ecrease.		
It will decrease		
It will stay the same.	✓ 1.00	Swapping $\Theta^{(1)}$ swaps the hidden layers output a'{(2)}. But the swap of $\Theta^{(2)}$ cancels out the change, so the output will remain unchanged.
tal	1.00 / 1.00	

Question 5

Which of the following statements are true? Check all that apply.

Your Answer		Score	Explanation
A two layer (one input layer, one output layer; no hidden layer) neural network can represent the XOR function.	~	0.25	We must compose multiple logical operations by using a hidden layer to represent the XOR function.
✓ If a neural network is overfitting the data, one solution	~	0.25	A larger value of λ will shrink the magnitude of the parameters Θ , thereby reducing the

would be to increase the regularization parameter λ .		chance of overfitting the data.
Suppose you have a multiclass classification problem with three classes, trained with a 3 layer network. Let $a_1^{(3)} = (h_\Theta(x))_1 \text{ be the activation of the first output unit, and similarly } a_2^{(3)} = (h_\Theta(x))_2 \text{ and } a_3^{(3)} = (h_\Theta(x))_3 \cdot \text{Then for any input } x \text{, it must be the case that } a_1^{(3)} + a_2^{(3)} + a_3^{(3)} = 1 \cdot$	x 0.00	The outputs of a neural network are not probabilities, so their sum need not be 1.
The activation values of the hidden units in a neural network, with the sigmoid activation function applied at every layer, are always in the range (0, 1).	✔ 0.25	The activation function $g(z)=rac{1}{1+exp(-z)}$ has a range of (0, 1).
Total	0.75 / 1.00	