CHAPTER FOURTEEN

CYLINDERS AND CONES

The cylinder:

- The above figure is known as a cylinder.
- The height of this cylinder is h and its radius is r.
- The shaded portion is called the total surface area of the cylinder, also referred to as the area of the cylinder.
- The area of a cylinder is made up of three parts and these are:
 - 1. The top circular flat surface area, which is also referred to as the top surface area, and which is indicated in the next diagram, by means of shading:

- The flat top circular surface area = πr^2 , since it is circular in shape where r = the radius.
 - 2. The curved surface area, which is indicated by means of shading, in the next figure:

- The curved surface area = $2 \pi rh$, where h = the height.

The bottom circular surface area, which is indicated in the next diagram by means of shading:

- The bottom surface area = πr^2 , since it is also circular in shape.

The area of a cylinder:

The total surface area of a cylinder is therefore had by adding together all these three surface areas,

i.e

$$\pi r^2 + \pi r^2 + 2\pi rh = 2\pi r^2 + 2\pi rh = 2\pi r(r+h).$$

- Q1. The height of a cylinder is 5cm and its radius is 2cm. Calculate
 - a. its flat top circular area.

- b) its flat bottom circular area.
- c) its curved surface area.
- d)its total surface area. [Take $\pi = 3.14$].

Soln.

h = 5cm, r = 2cm and π = 3.14.

- a. The flat top surface area = $\pi r^2 = 3.14 \times 2^2 = 3.14 \times 4 = 12.56 cm^2$
- b. The flat bottom surface area = $\pi r^2 = 3.14 \times 2^2 = 3.14 \times 4 = 12.56 cm^2$
- c. The curved surface area = $2\pi rh = 2 \times 3.14 \times 2 \times 5 = 62.8cm^2$
- d. The total surface area = top surface area + bottom surface area + curved surface area = $12.56cm^2 + 12.56cm^2 + 62.8cm^2 = 87.9cm^2$.

N/B: Also the total surface area = 2 $\pi r(r + h) = 2 \times 3.14 \times 2(2 + 5) = 12.56(7)$ = 87.9cm².

- Q2. A cylinder has a height of 40m and a diameter of 12m. Determine
 - a. its bottom circular area.
 - b. its curved surface area.
 - c. Its total surface area.

[Take
$$\pi = 3.142$$
]

Soln:

Since d =12m
$$\Longrightarrow r = \frac{12}{2} = 6m$$
.

Also $\pi = 3.142$ and h = 40m.

- a. The bottom circular surface area = $\pi r^2 = 3.142 \times 6^2 = 3.142 \times 36 = 113 m^2$
- b. The curved surface area = $2\pi rh = 2 \times 3.142 \times 6 \times 40 = 1508m^2$
- c. The total surface area = $2\pi r(r + h) = 2 \times 3.142 \times 6(6 + 40) = 1734 \text{m}^2$.
- Q3. A water storage tank is to be constructed using aluminum. If it is to have a diameter of 40m and a height of 120m, determine the amount of aluminum that will be needed to construct

- a. its curved surface area.
- b. the whole tank. [Take π or pie = 3.14].

Soln.

Since d = 40m
$$\Rightarrow r = \frac{40}{2} = 20m$$
. Also pie = 3.14 and h = 120m.

- a. The amount of aluminum which is needed to construct the curved surface area = the curved surface area = $2\pi rh = 2\times 3.14\times 20\times 120 = 15072m^2$
- b. The amount of aluminum needed to construct the whole tank = the total surface area = $2\pi r(r+h) = 2\times 3.14\times 20(20+120)$ = $126(140) = 17640m^2$

Q4.

The given figure is that of a drinking cup, which is to be constructed using plastic. If it is to be 0.12m long and have a diameter of 8cm, determine the quantity of plastic needed for its construction. [Take $\pi = 3.142$].

N/B:

- A drinking cup has no top surface area $\Rightarrow plastic$ will only be needed to construct the curved surface area and the bottom surface area.
- Also since the height is given in metres and the diameter in centimetres, the metres must be converted into centimetres.

Soln.

$$h = 0.12m = 0.12 \times 100 = 12cm$$
.

$$D = 8cm \implies r = 4cm$$
.

The amount of plastic needed to construct the curve surface area = $2\pi rh = 2 \times 3.142 \times 4 \times 12 = 302 cm^2$.

The amount of plastic needed to construct the bottom surface area = bottom surface area = $\pi r^2 = 3.142 \times 4^2 = 3.142 \times 16 = 50 cm^2$.

The quantity of plastic needed to construct the cup = amount of plastic needed to construct the curved portion + the amount of plastic needed to construct the bottom surface = $302 + 50 = 352cm^2$.

Q5. The curved surface area of a cylinder of height 80cm is $2880cm^2$. Calculate

- i. Its total surface area.
- ii. Its circular top surface area. [Take $\pi = 3.14$]

Soln.

The curved surface area = $2\pi rh$, and since the curved surface area of the cylinder is given as $2880cm^2 \Rightarrow 2\pi rh = 2880$, $\Rightarrow 2 \times 3.14 \times r \times 80 = 2880$,

$$\Rightarrow 502r = 2880, \Rightarrow r = \frac{2880}{502} \Rightarrow r = 5.7cm.$$

- i. The total surface area = $2\pi r(r+h) = 2 \times 3.14 \times 5.7(5.7+80) = 36(85.7) = 3085cm^2$
- ii. The top circular surface area = $\pi r^2 = 3.14 \times 5.7^2 = 102 cm^2$.

N/B: Since in the question the heights as well as the curved surface areas were given, we must first determine the radius.

- In the next question, the curved surface area is given as well as the radius. We must therefore first determine the height.

Q6. The curved surface area of a cylinder whose radius is 5cm is $628cm^2$. Determine its total surface area.

Soln.

r = 5cm and h = ?

Since the curved surface area = $628cm^2$, then $2\pi rh = 628 \Rightarrow 2 \times 3.14 \times 5 \times h = 628$, $\Rightarrow 31.4h = 628 \Rightarrow h = \frac{628}{3.14} = 20$.

Total surface area = $2\pi r(r + h) = 2 \times 3.14 \times 5(5 + 20) = 31.4(25) = 785cm^2$

Q7. A cylinder has a top surface area of 12.56cm² and a height of 0.8m. Calculate

- a. its curved surface area.
- b. its total surface area.

[Take
$$\pi = 3.142$$
]

Soln.

Top surface area = 12.56cm^2 , h = $0.8 \text{m} = 0.8 \text{m} \times 100 = 80 \text{cm}$.

$$\pi = 3.142$$
 and $r = ?$

The top surface area is given by πr^2 , and since this = 12.56cm², then

$$\pi r^2 = 12.56$$
, $\Rightarrow r^2 = \frac{12.56}{3.142} = 4$.

Since
$$r^2 = 4 \Rightarrow r = \sqrt{4} = 2$$
.

- a. Curved surface area = $2\pi rh = 2 \times 3.142 \times 2 \times 80 = 1005 cm^2$
- b. The total surface area = $2\pi r(r+h) = 2 \times 3.142 \times 2(2+80) = 12.56(82) = 1030 cm^2$.

The volume of cylinder:

- The volume of a cylinder is the amount of gas, liquid or solid which it can contain or hold.
- The volume of a cylinder is given by $v=\pi r^2 h$, where r = the radius and h = the height.

Q1. A cylinder has a height of 80cm and a diameter of 20cm. Calculate

- a. its volume
- b. the volume of air it will contain when it is
 - i. full ii. half full.

[Take
$$\pi = 3.143$$
]

Soln.

 $d = 20cm \Rightarrow r = 10cm$.

- a. Volume = $\pi r^2 h = 3.14 \times 10^2 \times 80 = 25120 cm^3$.
- b. i. The volume of air it will contain when it is full = $25120cm^3$.
- ii. The volume of air it will contain when it is half full $=\frac{1}{2}\times 25120=12560cm^2$.
- Q2. A cylinder is to be constructed in order to have a volume of 5540cm³. If it is to have a radius is 20cm, calculate its height.

Soln.

$$v = 5540cm^3$$
, $r = 20cm$ and $h = ?$

Since
$$v = \pi r^2 h$$
, then 5540 = 3.14× 20² × h , \Rightarrow 5540 = 1256 h \Rightarrow $h = \frac{5540}{1256} = 4.4$,

- ∴ the height = 4.4cm
- Q3. A cylindrically shaped water tank, can hold 7000cm³ of water when it is full. If it has a height of 50cm, determine its radius.

Soln.

$$v = 7000cm^3$$
, $h = 50cm$ and $r = ?$

Since
$$v = \pi r^2 h$$
, then $7000 = 3.14 \times r^2 \times 50$, $\Rightarrow 7000 = 157 r^2$, $\Rightarrow r^2 = \frac{7000}{157}$, $\Rightarrow r^2 = 44.5$, $\Rightarrow r = \sqrt{44.5} = r = 6.6 cm$

Q4. Water for sale is stored in a cylindrically shaped tank, of height 120m and diameter 40m. If the tank is full and a bucket whose volume id $200m^3$, is used to sell the water at a price of ¢2 per bucket, calculate the total amount expected if all the water was sold. [Take $\pi = 3.142$]

Soln.

 $D = 40m \Rightarrow r = 20m$.

Also h = $120m \ and \ \pi = 3.142$

The amount of water the tank will contain when full = the volume of the tank = $\pi r^2 h = 3.142 \times 20^2 \times 120 = 3.142 \times 400 \times 120 = 150816 m^3$.

The volume of the bucket used in selling the water = $200\text{m}^3 \Rightarrow$ the number of buckets of water which can be had from the tank = $\frac{150816}{200} = 754$ buckets.

Since the price of water per bucket = ¢2, then the total amount had = $754 \times 2 = ¢1508$.

Q5. The total surface area of a closed circular cylinder of radius 3.5cm is 1320cm². Calculate the volume of the cylinder.

Soln

Area of the cylinder = 1320cm^2 .

Radius = r = 3.5cm

Height = h = ?

We must first find the height

Area of cylinder = $2\pi r(r+h)$.

Since the area of the given cylinder = 1320cm², then $2\pi r(r+h) = 1320,=> 2 \times 3.14 \times 3.5(3.5+h) = 1320, \Longrightarrow 77+22h=1320,$

$$\Rightarrow$$
 22 $h = 1320 - 77 \Rightarrow$ 22 $h = 1243, \Rightarrow h = $\frac{1243}{22}$$

$$\Rightarrow h = 56.5.$$

Volume of cylinder = $\pi r^2 h = 3.14 \times 3.5^2 \times 56.5 = 2173 cm^3$.