

Open electronics:

From sensor to readout

Ecole Polytechnique PHY564#2 2017

Yvan BONNASSIEUX, Christophe de LA TAILLE, Jean-Charles VANEL

Organization for Micro-Electronics desiGn and Applications

Measurement setups

Each measurement needs a tool...

0 1 2 3 4 5

mm : 0.1 €

Higgs Boson 1 G€

Image sensors

CMOS technology for cameras

Source: IC Insights

Particle detectors

Measurement of tracks and energy

Single photon sensors

Photomultipliers, silicon photomultipliers

MEMS readout

Accelerometer readout : variation of capacitance

Most front-ends follow a similar architecture

- Very small signals (fC) -> need amplification
- Measurement of amplitude and/or time (ADCs, discris, TDCs)
- Several thousands to millions of channels
- Trends: high speed, low power

Readout electronics : requirements

Modelizing the sensor

Omega

- Vacuum Photomultipliers
- $G = 10^5 10^7$
- Cd ~ 10 pF
- L ~ 10 nH

- Silicon Photomultipliers
- $G = 10^5 10^7$
- C = 10 400 pF
- L = 1 10 nH

SiPM impedance and model

 RLC too simple, inaccurate at high frequency

- C_dR_qC_qLR OK
 - May better explain HF noise behaviour

Measured impedance MPPC HPK 3x3 mm

Line : C = 320 pF

Reading the signal

Signal

- Signal = current source
- Detector = capacitance C_d
- Quantity to measure
- Charge => integrator needed
- Time => discriminator + TDC
- Integrating on Cd
 - Simple : $V = Q/C_d \rightleftharpoons$
 - « Gain » : $1/C_d$: 1 pF -> 1 mV/fC
 - Need a follower to buffer the voltage...=> parasitic capacitance
 - Gain loss, possible non-linearities
 - crosstalk
 - Need to empty Cd…
- Exercise : calculate BW with opamp

Impulse response

Feedback: an essential tool

- Improves gain performance
 - Less sensitivity to open loop gain (2)
 - Better linearity

- Potentially unstable
- Feedback constant : β = E/Xout
- Open loop gain : a = Xout/E
- Closed loop gain : Xout/Xin -> 1/β
- Loop gain : $T = a\beta$

$$\frac{Xout}{Xin} = \frac{a}{1 + a\beta} = \frac{1/\beta}{1 + 1/a\beta}$$

Transimpedance configuration

- Calculate transimpedance
- Calculate β = Vin-/Vout and graphically BW

Transimpedance configuration

- Transfer function
 - Using a VFOA with gain G
 - $V_{out} V_{in} = Z_f i_f$
 - $V_{in} = Z_d (i_{in} i_f) = V_{out}/G$
 - $V_{out}(\omega)/i_{in}(\omega) = -Z_f/(1 + Z_f/GZ_d)$
- $Zf = Rf / (1 + j\omega RfCf)$
 - At f << 1/2πRfCf : $V_{out}(\omega)/i_{in}(\omega) = -R_f$ current preamp
 - At f << 1/2πRfCf : $V_{out}(\omega)/i_{in}(\omega) = -1/j\omega C_f$ charge preamp
- Ballistic defict with charge preamp
 - Effect of finite gain : G₀
 - Output voltage «only» Q C_d/G₀C_f

Charge vs Current preamps

- Charge preamps
 - Best noise performance
 - Best with short signals
 - Best with small capacitance
- Current preamps
 - Best for long signals
 - Best for high counting rate
 - Significant parallel noise
- Charge preamps are <u>not slow</u>, they are <u>long</u>
- Current preamps are <u>not faster</u>, they are <u>shorter</u> (but easily unstable)

f(Hz)

Input impedance

- Input impedance
 - Zin = Zf / G+1
 - Zin->0 virtual ground
 - Minimizes sensitivity to detector impedance
 - Minimizes crosstalk
- Equivalent model

$$- G(\omega) = G_0/(1 + j \omega/\omega_0)$$

- Terms due to Cf
 - $Zin = 1/j\omega G_0C_f + 1/G_0\omega_0 C_f$
 - Virtual resistance : Req = $1/G_0\omega_0$ C_f
- Terms due to Rf
 - $Zin = R_f/G_0 + j \omega R_f/G_0\omega_0$
 - Virtual inductance : Leq = $R_f/G_0\omega_0$
- Possible oscillatory behaviour with capacitive source

Input impedance or TZA

Equivalent circuit at the input

Current preamplifiers:

- Easily oscillatory
 - Unstable with capacitive detector
 - Inductive input impedance : = R_f / ω_C
 - Resonance at : $f_{res} = 1/2\pi \sqrt{L_{eq}C_d}$
 - Quality factor : Q = R / $\sqrt{L_{eq}/C_d}$
 - Q > 1/2 -> ringing
 - Damping with capacitance C_f
 - $C_f=2 \sqrt{(C_d/R_f G_0\omega_0)}$
 - Easier with fast amplifiers
- In frequency domain
 - $H(j\omega) = -Rf / (1 + j\omega RfC_d/G(\omega))$
 - $G(\omega) = G_0 / (1+j\omega/\omega_0)$

$$H = -Rf / (1 + j\omega R_f C_d / G_0 - \omega^2 R_f C_d / G_0 \omega_0)$$

Step response of current sensitive preamp

Signal integrity

- Determine the current path...
- Effect of inductors in various parts

Decoupling capacitors

- Exhibit parasitic resistance (ESR) and inductance
- Pay attention to components and PCB layout

Radiated and conducted noise

Coupling by common impedance

- Parasitic signals from ground/substrate currents
- Star configuration (Single Ground Point) for DC or low frequency

Pick-up noise

- Noise coupling in loops
 - Reduce loop area, use coax or twisted pairs in long distances
 - Avoid floating the shield « breaking the ground loop » : works only at very low frequency

Ground impedance

- Ground plane impedance, current return, ground slit = 1 nH/mm
- Line impedance : $R = 0.5 \text{ L/W m}\Omega$ L = 1 nH/mm
- Skin depth : $\delta \sim 2 / \sqrt{F(GHz)}$ (µm) (1 GHz = 2 µm)

Transmission lines

- Ideal line: R = 0, G = 0
 - Characteristic impecance : Zc = sqrt(L/C)
 - Delay: td = sqrt(LC)
 - Speed depends only on dielectric $v = c/\sqrt{\epsilon_r}$
 - delay td = L / v, typically 5 ns/m (FR4)
- Real line : R \neq 0 and R(ω)

Equivalent circuit per unit length

R is resistance of wire/track

L is the inductance

C is the capacitance

G is the conductance of the dielectric

Transmission lines

Strip lines, microstrip

Crosstalk between lines

- Capacitive/inductive coupling
 - Capacitive as dV/dt
 - Inductive as dl/dt
- Capacitive coupling easier to shield
- Prefer microstrip lines
- Rule of thumb :
 - Spacing = 5 * distance to ground plane

Vvict= Rv C1-2 ΔV/Δt

Mixed signal boards

- Component placement
 - Separate analog and digital parts
 - Place analog on one side
 - Bring power supplies from the digital side
- Ground management
 - Use a common ground plane analog/digital
 - Avoid ground splits

Field bus

- GPIB
- |2C
- CAN
- JTAG
- USB
- Ethernet

GPIB bus

- General Purpose Interface Bus IEEE488 1975
 - Connection between computer and measurement apparatus
 - Bi-directional, asynchronous, 8bits parallel,
 - 1 Mbyte/s, 24 instruments, 20 m open collector 5 V
 - Instruments (slaves) are controlled by the computer (master)

GPIB bus description

Omega

- 8 data lines (OC)
- 3 control lines (OC): DAV (data valid), NRFD (not ready for data), NDAC (no data accepted)
- 5 management lines: ATN, IFC, REN, SRQ, EOI

• No conflicts possible: instruments talk only when requested to do so

- Inter Integrated Circuits
 - Connection between chips in televisions (Philips 1982)
 - Bidirectionnal, synchronous, 8 bits serial
 - 2 lines : SDA (serial data) and SCL (serial clock)
 - 400 kb/s, 1024 instruments

- Conflit management
 - Any circuit can broadcast when the line is free
 - In case of collisions, the most important recipient (lowest address) is prioritary

CAN bus

- Controller Area Network (Bosch Gmbh 1983)
 - Serial bus to reduce amount of cables in cars
 - Bi-directionnal, synchronous, serial 100 bits
 - 2 wires 100 Ω line, 1 Mbits/s, 64 circuits, 2048 messages, 1 km
- Conflit management
 - Any circuit can broadcast when the line is free
 - In case of collisions, the most important message is prioritary

JTAG

- Join Test Action Group (1990) IEEE 1149.1
 - Goal : probeless test of digital Ics on a PCB (boundary scan)
 - Unidirectional, synchronous, serial, 5 lines, 50 Mbit/s
 - 5 lines : TDI (test data in) TDO (test data out) TMS (test mode select)
 TCK (clock) TRST* (resetb)

USB

- Universal Serial Bus (1996)
 - goal : replace various incompatible I/O ports on computers
 - USB1 (96): 12 Mb/s, USB2 (01): 480 Mb/s, USB3 (08) 4.8 Gb/s
 - Low cost, wide use, power service 5 V 500 mA
 - High rate, autodetection of devices, hot plug&play
 - Up to 127 devices per computer, but limited to 5 m
- Architecture : master/slave
 - tree-based (host), point to point connection
 - 3 transfer types : isochronous, interrupt, bulk

Ethernet

- Network connection for computers (1985) IEEE 802.3
 - Created in 1970, normalized in 1985
 - Unique MAC address, serial transmission (frames)
 - Coaxial cable or twisted pairs, optical fiber or wireless
 - CSMA-CD : Carrier Sense (listen before talking) Multiple Access (anyone can talk) Collision Detection (detect multiple talkers)

Amplifiers : a large zoo

Omega

- Voltage feedback operationnal amplifier (VFOA)
- Voltage amplifiers, RF amplifiers (VA,LNA)
- Current feedback operationnal amplifiers (CFOA)
- Current conveyors (CCI, CCII +/-)
- Current (pre)amplifiers (ISA,PAI)
- Charge (pre)amplifiers (CPA,CSA,PAC)
- Transconductance amplifiers (OTA)
- Transimpedance amplifiers (TZA,TIA, OTZ)
- Mixing up open loop (OL) and closed loop (CL) configurations!

Only 4 open-loop configurations

- Voltage operationnal amplifiers (OA, VFOA)
 - Vout = $G(\omega)$ Vin diff
 - Zin+ = Zin- = ∞ Zout = 0

- Transimpedance operationnal amplifier (CFOA!)
 - Vout = $Z(\omega)$ iin
 - Zin- = 0

Zout = 0

- Current conveyor (CCI,CCII)
 - lout = $G(\omega)$ lin
 - Zin = 0
- Zout = ∞
- Transconductance amplifier (OTA)
 - Iout = $Gm(\omega)$ Vin diff
 - Zin+ = Zin- = ∞ Zout = ∞

Only 4 feedback configurations

- Shunt-shunt = transimpedance
 - Small Zin (= Zin(OL)/T) -> current input
 - small Zout (= Zout(OL)/T) -> voltage output
 - De-sensitizes transimpedance = $1/\beta = Zf$
- Series-shunt
 - Large Zin (= Zin(OL)*T) -> voltage input
 - Small Zout (= Zout(OL)/T) -> voltage output
 - Optimizes voltage gain (= $1/\beta$)
- Shunt series
 - Small Zin (= Zin(OL)/T) -> current input
 - Large Zout (= Zout(OL)*T) -> current output
 - Current conveyor
- Series-series
 - Large Zin (= Zin(OL)*T) -> voltage input
 - Large Zout (= Zout(OL)*T) -> current output
 - Transconductance
 - Ex : common emitter with emitter degenration

Voltage Feedback Operationnal Amplifiers (1)

- Back to the 70's: LM741
 - 3 stages : Paraphase=CE, Darlington=CE,
 - $G0 = 200\ 000, f0 = 5Hz, GBW = 1 MHz, Pd$

Schematic diagramm of a LM741 (1970) **©National Semiconductors**

Voltage Feedback Operationnal Amplifiers (2)

- Breakthrough in the 90's: OP620-621
 - 2 stages :Cascode=CE, Push-pull= CC
 - Pd = 250 mW
 - G0 = 1000

Frequency / Hertz

- f0 = 500kHz

Open loop frequency response of OP620

Transconductance amplifier (OTA)

Omega

- Voltage input : large Zin
- Current output : large Zout
- V2I conversion : Iout= Gm(ω) Vin diff

- Differential pair for voltage to current conversion
- Active load for differential to unipolar
- Current mirrors for symmetrical output

