Probabilistic Robotics*

Non-parametric Bayes Filter Implementations

Particle filters

Mohan Sridharan

University of Birmingham, UK

m.sridharan@bham.ac.uk

^{*}Revised original slides that accompany the book by Thrun, Burgard and Fox.

Sample-based Localization (sonar)

Particle Filters

- Represent belief by random samples.
- Estimation of non-Gaussian, nonlinear processes.
- Monte Carlo filter, survival of the fittest, I-condensation, bootstrap filter, particle filter.
- Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96].
- Computer vision: [Isard and Blake 96, 98].
- Dynamic Bayesian Networks: [Kanazawa et al., 95].

Particle Filter Algorithm (basic)

Algorithm **particle_filter**(χ_{t-1}, u_t, z_t):

- 1. $\overline{\chi}_t = \chi_t = \emptyset$
- **2.** For m = 1...M
- 3. Sample $x_t^{[m]} \sim p(x_t \mid x_{t-1}^{[m]}, u_t)$
- **4.** $w_t^{[m]} = p(z_t \mid x_t^{[m]})$
- $\overline{\chi}_t = \overline{\chi}_t + \left\langle x_t^{[m]}, w_t^{[m]} \right\rangle$
- **6. For** m=1...M
- 7. Draw *i* with probability $\propto w_t^{[i]}$
- 8. Add $x_t^{[i]}$ to χ_t
- 9. Return

Importance Sampling

Weight samples: w = f/g

Importance Sampling

$$f(.) = bel(x_t) = \eta \ p(z \mid x) \overline{bel}(x_t)$$
$$g(.) = \overline{bel}(x_t) = \sum p(x_t \mid u_t, x_{t-1}) bel(x_{t-1})$$

Function f(.): target distribution.

Function g(.): proposal distribution.

Weights: w(x) = f(x)/g(x)

Need: $f(x) > 0 \rightarrow g(x) > 0$

Converges to desired distribution iteratively.

PF derivation (Section 4.3.3, PR)

Importance Sampling with Resampling: Landmark Detection Example

Distributions

Distributions

Wanted: samples distributed according to $p(x | z_1, z_2, z_3)$

This is Easy!

We can draw samples from $p(x|z_l)$ by adding noise to the detection parameters.

Importance Sampling with Resampling

Target distribution f :
$$p(x | z_1, z_2, ..., z_n) = \frac{\prod_{k} p(z_k | x) p(x)}{p(z_1, z_2, ..., z_n)}$$

Sampling distribution g:
$$p(x | z_l) = \frac{p(z_l | x)p(x)}{p(z_l)}$$

Importance weights w:
$$\frac{f}{g} = \frac{p(x \mid z_1, z_2, ..., z_n)}{p(x \mid z_l)} = \frac{p(z_l) \prod_{k \neq l} p(z_k \mid x)}{p(z_1, z_2, ..., z_n)}$$

Importance Sampling with Resampling

Weighted samples

After resampling

Particle Filters

Sensor Information: Importance Sampling

$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$

Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x|u,x') Bel(x') dx'$$

Sensor Information: Importance Sampling

$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$

Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x|u,x') Bel(x') dx'$$

Particle Filter Algorithm

$$w_{t}^{i} = \frac{\text{target distribution}}{\text{proposal distribution}}$$

$$= \frac{\eta \ p(z_{t} \mid x_{t}) \ p(x_{t} \mid x_{t-1}, u_{t}) \ Bel \ (x_{t-1})}{p(x_{t} \mid x_{t-1}, u_{t}) \ Bel \ (x_{t-1})}$$

$$\propto p(z_{t} \mid x_{t})$$

Resampling

• **Given**: Set *S* of weighted samples.

• Wanted: Random sample, where the probability of drawing x_i is given by w_i .

 Typically done M times with replacement to generate new sample set S'.

Resampling

- Roulette wheel
- Binary search, n log n
- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Resampling Algorithm

- 1. Algorithm **systematic_resampling**(*S*, *M*):
- **1.** $S' = \emptyset, c_1 = w^1$
- **2.** For i = 2...M
- 3. $c_i = c_{i-1} + w^i$
- **4.** $u_1 \sim U(0, M^{-1}], i = 1$
- **1.** For j=1...M
- **2.While**(u_i > c_i)
- 3. i = i + 1
- 4. $S' = S' \cup \{ \langle x^i, M^{-1} \rangle \}$
- $5. u_{j+1} = u_j + M^{-1}$

6. Return S'

Generate cdf

Initialize threshold

Draw samples ...

Skip until next threshold reached

Insert

Increment threshold

Initial Distribution

After Incorporating Ten Ultrasound Scans

After Incorporating 65 Ultrasound Scans

Estimated Path

Using Ceiling Maps for Localization

Under a Light

Measurement

Z:

P(z/x):

Next to a Light

Measurement

Z:

P(z/x):

Elsewhere

Measurement

Z:

P(z/x):

Global Localization Using Vision

Localization for AIBO robots

Limitations

- The approach described so far is able to:
 - Track the pose of a mobile robot.
 - Globally localize the robot.
- Can amplify sampling variance, i.e., variability from original distribution due to random sampling.
- Sampling bias and particle deprivation.
- How can we deal with localization errors, e.g., the kidnapped robot problem?

Approaches

- Randomly insert samples;
 - Robot can be "teleported" at any point in time

- Insert random samples proportional to the average likelihood of the particles:
 - Robot has been teleported with higher probability when the likelihood of its observations drops.

Summary

- Particle filters instance of recursive Bayesian filtering.
- Represent the posterior by a set of weighted samples.
- In the context of localization, particles are propagated according to the motion model.
- Particles are then weighted according to the likelihood of the observations.
- During re-sampling, new particles are drawn with probability proportional to the weights.

What Next?

SLAM!

EKF-SLAM and Fast-SLAM.

Probabilistic sequential decision making.