Exercícios da Unidade III Fundamentos de Análise de Algoritmos

Camila Morereira Lopes¹

¹Instituto de Ciências Exatas e Informática - Pontífica Universidade Católica de Minas Gerais

```
camila.lopes.1264894@sqa.pucminas.br
```

1. Exercícios Feitos

Exercício resolvido 10 - pg. 59

O aluno deve escolher a primeira opção, pois a pesquisa sequencial tem custo $\Theta(n)$. Já a segunda opção tem $\Theta((n+1) \times \ln n)$

Exercício resolvido 11 - pg. 65

```
a) 3n^2 + 5n + 1 \notin O(n): falsa
b) 3n^2 + 5n + 1 \notin O(n^2): verdadeira
c) 3n^2 + 5n + 1 \notin O(n^3): verdadeira
d) 3n^2 + 5n + 1 \notin \Omega(n): verdadeira
e) 3n^2 + 5n + 1 \notin \Omega(n^2): verdadeira
f) 3n^2 + 5n + 1 \notin \Omega(n^3): falsa
g) 3n^2 + 5n + 1 \notin \Theta(n): falsa
h) 3n^2 + 5n + 1 \notin \Theta(n^2): verdadeira
i) 3n^2 + 5n + 1 \notin \Theta(n^3): falsa
```

1.1. Exercício resolvido 12 - pg. 84

Apresente a função e a complexidade para os números de comparações e movimentações de registros para o pior e melhor caso

```
public static void imprimirMaxMin(int[] array, int n) {
           int maximo, minimo;
2
           if(array[0] > array[1]){
               maximo = array[0]; minimo = array[1];
           }else{
               maximo = array[1]; minimo = array[0];
           for(int i = 2; i < n; i++) {</pre>
10
                if(array[i] > maximo){
11
                    maximo = array[i];
                } else if(array[i] < minimo){</pre>
13
                    minimo = array[i];
14
15
           }
```

Função de complexidade

```
\begin{array}{ccc} & \text{MOV} & \text{CMP} \\ \text{PIOR} & f(n) = 2 + (n\ \ ^2) & f(n) = 1 + 2(n\ \ ^2) \\ \text{MELHOR} & f(n) = 2 + (n\ \ ^2)x0 & f(n) = 1 + (n\ \ ^2) \end{array}
```

Complexidade

```
\begin{array}{ccc} & \text{MOV} & \text{CMP} \\ \text{PIOR} & O(n), \Omega(n)e\Theta(n) & O(n), \Omega(n)e\Theta(n) \\ \text{MELHOR} & O(1), \Omega(1)e\Theta(1) & O(n), \Omega(n)e\Theta(n) \end{array}
```

1.2. Exercício resolvido 13 - pg. 86

Apresente a função e a complexidade para o número de subtrações para o pior e melhor caso

```
i = 0;
2
             while (i < n) {
3
                   i++;
4
                   a--;
5
             }
             if(b > c) {
             i--
9
             } else{
10
11
                   a--;
12
             }
13
                 função
                                 complexidade
                 f(n) = n + 2 O(n), \Omega(n)e\Theta(n)
    PIOR
    MELHOR
                f(n) = n + 1 O(n), \Omega(n)e\Theta(n)
```

1.3. Exercício resolvido 14 - pg. 88

Apresente a função e a complexidade para o número de subtrações para o pior e melhor caso

```
for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
        a--;
        b--;
    }
    c--;
}</pre>
```

```
 \begin{array}{ccc} & \text{função} & \text{complexidade} \\ \text{TODOS} & f(n) = (2n+1) & O(n^2), \Omega(n^2)e\Theta(n^2) \end{array}
```

1.4. Exercício resolvido 15 - pg. 90

Apresente a função e a complexidade para o número de subtrações para o pior e melhor caso

```
for (i = 0; i < n; i++) {
    for (j = 0; j <= n; j*=2) {
        b--;
}
}</pre>
```

$$\begin{array}{ll} & \text{função} & \text{complexidade} \\ \text{TODOS} & f(n) = n * lg(n) + n & O(n \times lg(n)), \Omega(n \times lg(n)) e\Theta(n \times lg(n)) \end{array}$$

1.5. Exercício resolvido 16 - pg. 94

Apresente o tipo de crescimento que melhor caracteriza as funções abaixo (Khan Academy, adaptado)

	Constante	Linear	Polinomial	Exponencial
3n				
1				
(3/2)n 2n ³				
$2n^3$				
2^n				
$3n^2$				
1000				
$(3/2)n^n$				

1.6. Exercício resolvido 17 - pg. 97

Classifique as funções $f_1(n) = n^2$, $f_2(n) = n$, $f_3(n) = 2^n$, $f_4(n) = (3/2)^n$, $f_5(n) = n^3$ e $f_6(n) = 1$ de acordo com o crescimento, do mas lento para o mais rápido (Khan Academy, adaptado)

- 1. $f_6(n) = 1$
- 2. $f_2(n) = n$
- 3. $f_1(n) = n^2$
- 4. $f_5(n) = n^3$
- 5. $f_4(n) = (3/2)^n$
- 6. $f_3(n) = 2^n$

1.7. Exercício resolvido 18 - pg. 99

Classifique as funções $f_1(n) = n * log_6(n)$, $f_2(n) = lg(n)$, $f_3(n) = log_8(n)$, $f_4(n) = 8n^2$, $f_5(n) = n * lg(n)$, $f_6(n) = 64$, $f_7(n) = 6n^3$, $f_8(n) = 8^{2n}$ e $f_9(n) = 4n$ de acordo com o crescimento, do mas lento para o mais rápido (Khan Academy, adaptado)

- 1. $f_6(n) = 64$
- 2. $f_3(n) = log_8(n)$
- 3. $f_2(n) = \lg(n)$
- 4. $f_9(n) = 4n$
- 5. $f_1(n) = n * log_6(n)$
- 6. $f_5(n) = n * lg(n)$
- 7. $f_4(n) = 8n^2$
- 8. $f_7(n) = 6n^3$
- 9. $f_8(n) = 8^{2n}$

1.8. Exercício resolvido 19 - pg. 100

Faça a correspondência entre cada função f(n) com sua g(n) equivalente, em termos de Θ . Essa correspondência acontece quando $f(n) = \Theta(g(n))$ ()Khan Academy, adaptado)

f(n)	g(n)
n + 30	3n - 1
$n^2 + 2n - 10$	$n^2 + 3n$
$n^3 * 3$	n^4
lg(n)	lg(2n)

2. Exercícios

Exercício 01 e 02 - pg. 56 e 57

Segundo o livro: Projeto de Algoritmos com Implementações em JAVA e C++ do autor Ziviani o código criado, responsável por encontrar o maior e menor valor em um array de inteiros, possui as seguintes funções de complexidade de tempo:

- Pior caso O: 2(n 1)
- Caso Médio Θ: ³ⁿ⁻³/₂
 Melhor Caso Ω: n 1

Exercício 03 - pg. 69

	O(1)	O(lg n)	O(n)	O(n.lg(n))	$O(n^2)$	$O(n^3)$	$O(n^5)$	$O(n^{20})$
$f(n) = \lg(n)$								
$f(n) = n \cdot \lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

Exercício 04 - pg. 70

	$\Omega(1)$	$\Omega(\lg n)$	$\Omega(\mathbf{n})$	$\Omega(\text{n.lg(n)})$	$\Omega(n^2)$	$\Omega(n^3)$	$\Omega(n^5)$	$\Omega(n^{20})$
$f(n) = \lg(n)$								
$f(n) = n \cdot \lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

Exercício 05 - pg. 71

	$\Theta(1)$	$\Theta(\lg n)$	$\Theta(n)$	$\Theta(\text{n.lg}(\text{n}))$	$\Theta(n^2)$	$\Theta(n^3)$	$\Theta(n^5)$	$\Theta(n^{20})$
$f(n) = \lg(n)$								
$f(n) = n \cdot \lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

Exercício 06 - pg. 73

Qual é a ordem de complexidade das operações:

- a) 02 -> f(n) + g(n) h(n)
- b) 01 -> O(f(n) + O(g(n)) O(h(n))
- c) $04 -> f(n) \times g(n)$
- d) $06 -> g(n) \times l(n) + h(n)$
- e) $05 \rightarrow f(n) \times g(n) \times l(n)$
- f) 03 -> O(O(O(O(f(n)))))

Exercício 07 - pg. 76

Dada a definição da notação O:

a) Mostre um valor c e outro m tal que, para $n \geq m$, $|3n^2+5n+1| \leq c \ x \ |n^2|$, provando que $3n^2+5n+1$ é $O(n^2)$

Consideramos que o valor de c é 4 e m ocorre entre os valores 5 e 6 de n

n	$3n^2 + 5n + 1$	$4 \times n^2$
1	9	4
2	23	16
3	43	36
4	69	64
5	101	100
6	139	144
7	183	196

b) Mostre um valor c e outro m tal que, para n \geq m, |3^2 + 5n + 1| \leq c x |n^3|, provando que 3n^2 + 5n + 1 é $O(n^3)$

Consideramos que o valor de c é 1 e m ocorre entre os valores 4 e 5 de n

n	$3^2 + 5n + 1$	1 x n ³
1	9	1
2	23	8
3	43	27
4	69	64
5	101	125
6	139	216
7	183	343

c) Prove que 3² + 5n + 1 não é O(n)
 Para a função ser O(n) seria necessário que em algum momento o valor de n fosse maior que o valor de f(n)

n	$3^2 + 5n + 1$	n
1	9	1
2	23	2
3	43	3
4	69	4
5	101	5
6	139	6
7	183	7

Exercício 08 - pg. 78

Dada a definição da notação Ω :

a) Mostre um valor c e outro m tal que, para $n \ge m,\, |g(n)| \le c \; x \; |f(n)|,$ provando que $3n^2+5n+1 \; \acute{\rm e} \; \Omega(n^2)$

Consideramos que o valor de c é 3

n	$3n^2 + 5n + 1$	$3 \times n^2$
1	9	3
2	23	6
3	43	27
4	69	48
5	101	75
6	139	108
7	183	147

b) Mostre um valor c e outro m tal que, para $n \ge m$, $|g(n)| \le c \ x \ |f(n)|$, provando que $3n^2+5n+1 \notin \Omega(n)$ Consideramos que o valor de c é 1

n	$3^2 + 5n + 1$	1 x n
1	9	1
2	23	2
3	43	3
4	69	4
5	101	5
6	139	6
7	183	7

c) Prove que $3^2 + 5n + 1$ não é $\Omega(n^3)$ Para a função ser $\Omega(n)$ seria necessário que em algum momento o valor de n^3 se tornasse menor que o valor de f(n)

n	$3^2 + 5n + 1$	n^3
1	9	1
2	23	8
3	43	27
4	69	64
5	101	125
6	139	216
7	183	343

Exercício 09 - pg. 80

Dada a definição da notação Θ :

a) Mostre um valor c_1 , c_2 e m tal que, para $n \ge m$, c_1 x $|f(n)| \le |g(n)| \le c_2$ x |f(n)|, provando que $3n^2 + 5n + 1$ é $\Theta(n^2)$ Consideramos que o valor de c_1 é 3 e c_2 é 4

n	$3n^2 + 5n + 1$	$3 \times n^2$	4 x n ²
1	9	3	4
2	23	6	16
3	43	27	36
4	69	48	64
5	101	75	100
6	139	108	144
7	183	147	196

b) Prove que $3n^2 + 5n + 1$ não é $\Theta(n)$

Consideramos que o valor de c_1 é 1 e c_2 é 4. Para a função ser $\Theta(n)$ seria necessário que em algum momento o valor de c_2 x n se tornasse maior que o valor de f(n)

n	$3^2 + 5n + 1$	1 x n	4 x n
1	9	1	4
2	23	2	8
3	43	3	12
4	69	4	16
5	101	5	20
6	139	6	24
7	183	7	28

c) Prove que $3^2 + 5n + 1$ não é $\Theta(n^3)$

Consideramos que o valores de c_1 e c_2 são igual a 1. Para a função ser $\Theta(n^3)$ seria necessário que em algum momento o valor de c_1 x n^3 se tornasse menor que o valor de f(n)

n	$3^2 + 5n + 1$	n^3
1	9	1
2	23	8
3	43	27
4	69	64
5	101	125
6	139	216
7	183	343

Exercício 10 - pg. 83

Presente em outro pdf com o nome Análise de Algoritmos

Exercício 11 - pg. 92

Suponha um sistema de monitoramento contendo os métodos telefone, luz, alarme, sensor e câmera, apresente a função e ordem de complexidade para o pior e melhor caso: (a) método alarme; (b) outros métodos;

```
public static void sistemaMonitoramento() {
    if(telefone() == true && luz() = true) alarme(0);
    else alarme(1);
    for(int i = 2; i < n; i++ {
        if(sensor(i-2) == true) alarme(i-2);
        else if(camera(i-2) == true) alarme(i-2+n);
    }
}</pre>
```

	Melhor Caso	Pior Caso
Telefone	$1, O(1)\Theta(1)\Omega(1)$	$1, O(1)\Theta(1)\Omega(1)$
Alarme	$1, O(1)\Theta(1)\Omega(1)$	$1 + 2(n-2), O(n)\Theta(n)\Omega(n)$
Luz	$0, O(0)\Theta(0)\Omega(0)$	$O(1)\Theta(1)\Omega(1)$
Sensor	$(n-2), O(n)\Theta(n)\Omega(n)$	$(n-2), O(n)\Theta(n)\Omega(n)$
Câmera	$(n-2), O(n)\Theta(n)\Omega(n)$	$(n-2), O(n)\Theta(n)\Omega(n)$

Exercício 12 - pg. 93

Apresente um código, defina duas operações relevantes e apresente a função e a complexidade para as operações escolhidas no pior e melhor caso.

Exercício 13 - pg. 102

No Exercício Resolvido (10), verificamos que quando desejamos pesquisar a existência de **um** elemento em um array de números reais é adequado executar uma pesquisa sequencial cujo custo é $\Theta(n)$. Nesse caso, o custo de ordenar o array e, em seguida, aplicar uma pesquisa binária é mais elevado, $\Theta(n * \lg(n)) + \Theta(\lg(n)) = \Theta(n * \lg(n))$. Agora, supondo que desejamos efetuar **n** pesquisas, responda qual das duas soluções é mais eficiente

R.: No caso apresentado a solução mais eficiente é ordenar o array e aplicar a pesquisa binária, pois ao realizar as **n** pesquisas sequenciais, a complexidade seria de $\Theta(n^2)$. Já a complexidade ao ordenar e pesquisar binariamente seria de $\Theta(n * lg(n))$;

Referências

Nivio Ziviani. *PROJETO DE ALGORITMOS COM IMPLEMENTAÇÕES EM JAVA E C++*. Cengage Learning Edições Ltda., October 2006. ISBN 978-8522105250. book.