Mathematik Qualifikationsphase 1

1. Übungsblatt

Einführung in die Integralrechnung

Aufgabe 1 (Fläche unter Funktionen)

Ermitteln Sie die Flächen unter den Funktionen in Abb. 1 sowie Abb. 2.

Abbildung 1: gleichförmige Bewegung

To Do: Grafiken einfügen

Aufgabe 2 (Ober- und Untersumme/ Streifenmethode)

- a) Gegeben sei die Funktion $f(x) = x^2$. Zerlegen Sie das Intervall $0 \le x \le 3$
 - 1. in 3 Streifen
 - 2. in 6 Streifen.

Geben Sie jeweils die Ober- und Untersummen an.

- b) Sei wie in Aufgabenteil a) $f(x) = x^2$ und I = [0,3].
 - 1. Leiten Sie ausgehend von der Funktion f(x) folgende Gleichung für die Obersumme her.

$$O_n = \left(\frac{x}{n}\right)^3 \cdot \frac{1}{6}n(n+1)(2n+1)$$

- 2. Bestimmen Sie allgemein die Obersumme O_n bis zur Stelle x=3 in Abhängigkeit von der Streifenbreite n.
- 3. Bestimmen Sie nun die Obersumme O_n bis zur Stelle x in Abhängigkeit von x und n.
- 4. Bilden Sie den Grenzwert $\lim_{n\to\infty}$.
- 5. Bilden Sie die erste Ableitung des Grenzwertes aus Aufgabenteil 4. Was fällt Ihnen auf?

Aufgabe 3 (Stammfunktion)

a) Verbinden Sie jede Funktion f mit möglichen Stammfunktionen F.

$$F(x) = \frac{1}{3}x^{8}$$

$$F(x) = \frac{1}{3}x^{3}$$

$$F(x) = \frac{1}{24}x^{8}$$

$$F(x) = \frac{1}{3}x^{7}$$

$$F(x) = x$$

$$F(x) = \frac{1}{3}x^{3} + 5$$

$$F(x) = \frac{1}{3}x^{3} + 5$$

$$F(x) = e^{x}$$

$$F(x) = e^{x}$$

$$F(x) = 2e^{x} + \frac{3}{4}$$

$$F(x) = \frac{7}{3}x^{6}$$

b) Geben Sie zu den in Teilaufgabe a) noch nicht zugeordneten Stammfunktionen F einen Funktionsterm für f an, sodass F eine Stammfunktion von f ist.

Aufgabe 4 (Erste Integrationsregeln)

a) Bestimmen Sie die folgenden unbestimmten Integrale mit Hilfe der Faktorregel.

$$\int 3x^2 dx \qquad \int 4x^3 dx \qquad \int \frac{2}{x} dx$$
$$\int 3e^x dx \qquad \int \frac{1}{3} \sin(x) dx \qquad \int \frac{4}{v^2} dy$$

b) Bestimmen Sie die folgenden unbestimmten Integrale mit Hilfe der Summenregel.

$$\int x^{2} + 3x^{3} dx \qquad \int \frac{1}{82} x^{16} + x^{7} dx \qquad \int \frac{1}{x} + \ln(x) dx$$
$$\int 5x^{2} + x - 8 dx \qquad \int \sin(x) + \cos(x) dx \qquad \int y + 8y^{2} + 7y^{4} dy$$

Aufgabe 5 (Hauptsatz der Differential- und Integralrechnung)

a) Berechnen Sie mit Hilfe des Hauptsatzes der Differential- und Integralrechnung folgende bestimmte Integrale.

$$\int_{a}^{b} f = [F(x)]_{a}^{b} = F(b) - F(a)$$

$$\int_{1}^{6} \left(\frac{1}{2}x^{3} + 2x\right) dx \qquad \int_{-1}^{1} (x^{6} + 3x^{5} - 2x^{4}) dx \qquad \int_{-2}^{3} x dx$$

$$\int_{3}^{5} (3x + 1) dx \qquad \int_{-3}^{-1} -2(x + 2)^{2} dx \qquad \int_{2}^{5} \xi^{2} d\xi$$

$$\int_{0}^{\pi} \sin(x) dx \qquad \int_{-\pi}^{\pi} \cos(x) dx \qquad \int_{-1}^{1} \frac{dx}{x}$$

Aufgabe 6 (Weiterführende Aufgaben)

a) Die Funktion f ist abschnittsweise definiert. Berechnen Sie das angegebene Integral.

$$\int_{0}^{10} f \, dx \quad \text{mit} \quad f(x) = \begin{cases} \frac{1}{2}x + 1 & \text{für } 0 \le x \le 2\\ 2 & \text{für } 2 \le x \le 4\\ \frac{1}{2} & \text{für } 4 \le x \end{cases}$$

$$\int_{0}^{5} f \, dx \quad \text{mit} \quad f(x) = \begin{cases} 2x + 1 & \text{für } 0 \le x \le 2\\ x + 3 & \text{für } 2 \le x \le 5 \end{cases}$$

$$\int_{1}^{6} f \, dx \quad \text{mit} \quad f(X) = \begin{cases} x - 1 & \text{für } 1 \le x \le 2\\ 1 & \text{für } 2 \le x \le 4\\ 2x - 7 & \text{für } 4 \le x \end{cases}$$

b) Sei $g: [-3,1] \to \mathbb{R}$ mit

$$g(x) = \begin{cases} x^3 + 6x^2 + 12x + 8 & \text{für } -3 \le x \le -1\\ x^2 - \frac{1}{3} & \text{für } -1 \le x \le 1 \end{cases}$$

abschnittsweise definiert. Berechnen Sie $\int_{-3}^{1} g(x) dx$ und interpretieren Sie das Ergebnis.

Anwendungsbeispiel aus der Physik/ Mechanik

Aufgabe 7 (Anwendungsbeispiele des Integrals)

a) In der Physik spielt der magnetische Fluss Φ , der durch eine Leiterschlaufe führt, eine große Rolle.

$$\Phi = \int B \cdot \cos(\varphi) \cdot dA$$

b) In der technischen Mechanik werden Belastungen, die auf Bauteile mit bestimmten Stoffeigenschaften und Geometrien wirken, vor der Konstruktion berechnet. Gegeben sei ein einseitig eingespannter Balken der Länge 3l mit der Torsionssteifigkeit GI_T , die in diesem Beispiel als konstant angenommen werden kann. Auf den Balken wirkt der Torsionsmomentenverlauf $M_{T1} = m_0 x + 2m_0 l$ bei $0 \le x \le 2l$ sowie $M_{T2} = 4m_0 l$ bei $2l \le x \le 3l$. Ferner gilt für den Verdrehwinkel ϑ :

$$\vartheta' = \frac{M_T}{GI_T}$$