DSI Capstone
US Population
Mortality Analysis

Scott Wright October 2018

SSA Mortality Rates: https://www.ssa.gov/OACT/HistEst/Death/2018/DeathProbabilities2018.html

Life expectancy

- Difficult to analyze 100 ages for years of duration for both sexes
- Also, looking at improvement or deterioration (year-overyear percentage change in mortality) is tough
- Instead, look at life expectancy at age 0:

$$e_o = \sum_{t=1}^{\infty} p_0(t)$$

Where $p_x(t)$ is the probability someone aged x lives for t years

Life expectancy over time (1900 – 2015)

Life expectancy over time – recent years

Initial question / modeling

- It's an arduous process to compute mortality tables.
- Are there external factors that can help predict life expectancy before tables are completed?

 Looked at an ARIMA model with exogenous variables (features)

Features explored for ARIMA model

Feature collected	Male model	Female model
First difference	[•]	[√]
GDP	[]	[]
GDP per capita	[]	[]
GDP increase yr over yr	[]	[]
Household income 40th percentile	[]	[]
Household income 95th percentile	[]	[]
Income inequality measure	[✓]	[]
Labor participation rate	[✓]	[]
Military spending - dollars	[]	[]
Military spending as a percent of GDP	[]	[]
Military spending per capita	[]	[]

Feature collected	Male model	Female model
Military spending yr over yr increase	[•]	[]
Inflation	[]	[]
Performance of S&P 500	[•]	[•]
Return on 3mo T-bill	[]	[]
Return on 10y T-bond	[]	[]
Health insurance coverage percent	[]	[]
Overweight	[~]	[•]
Obese	[]	[]
Severely obese	[]	[]
Alcohol consumption per capita	[~]	[•]
Tobacco usage percent	[]	[]

Sources for feature variables

- Mainly US governmental data sources (CDC, Census Bureau, Health & Human Services, Federal Reserve Bank of St. Louis' FRED)
- Also used data from the World Bank
- Main limitation: annual data that only goes back to the 1960s.
- Had to impute values for some missing data (mainly interpolated between observations)

ARIMA model exploration

- Life expectancy did not exhibit stationarity
- Dickey-Fuller test showed p-value of 0.95 and 0.22 for male and female, respectively
- First difference did exhibit stationarity at alpha = 0.05 with p-values of 0.013 and 0.002.
- Conclusion → start with ARIMA parameter d = 1.

ACF and PACF Plots

- Both male & female plots were similar (showing female here)
- Based on ACF and PACF plots, initial p and q values set to 0.
- Also added in a duration 11 lag variable of the target

Model Testing and Fit

- Tried many combinations of features to arrive at 7 for the male model and 4 for the female mode
- Hyper-parameter tuning on p, q, and d did not improve the initial ARIMA(0,1,0) model.
- Model fit based on R-squared:

R squared	Male model	Female model
train	99.1%	99.1%
test	97.8%	96.6%

Features explored for ARIMA model

Feature collected	Male model	Female model
First difference	[•]	[√]
GDP	[]	[]
GDP per capita	[]	[]
GDP increase yr over yr	[]	[]
Household income 40th percentile	[]	[]
Household income 95th percentile	[]	[]
Income inequality measure	[✓]	[]
Labor participation rate	[✓]	[]
Military spending - dollars	[]	[]
Military spending as a percent of GDP	[]	[]
Military spending per capita	[]	[]

Feature collected	Male model	Female model
Military spending yr over yr increase	[•]	[]
Inflation	[]	[]
Performance of S&P 500	[•]	[•]
Return on 3mo T-bill	[]	[]
Return on 10y T-bond	[]	[]
Health insurance coverage percent	[]	[]
Overweight	[~]	[/]
Obese	[]	[]
Severely obese	[]	[]
Alcohol consumption per capita	[~]	[•]
Tobacco usage percent	[]	[]

Conclusions

- It is possible to see a relationship between macroeconomic variables and life expectancy in the US
- The overall model was only slightly better than a pure auto-regressive model in terms of R-squared fit.
- The question is difficult to answer due to a low number of observations (<60).
- It is worthwhile to continue to look at these variables, but be willing to adapt over time since some male/female diffference could change due to chaning social norms.

Thank you for your time

Questions?