Architettura dei Calcolatori

Anno accademico 2022/23

Test del 29/05/2023

Quiz

1 LOAD =2 2 STORE 1

Per le seguenti 15 domande avete 20 minuti di tempo. Procede con la prova di esame solo chi totalizza almeno 8 punti. Ogni domanda vale 1 punto.

1) Nell'architettura Risc-V 64 le istruzioni assembler sono lunghe 64 bit.
VERO FALSO
2) L'istruzione assembler ld x9, x10(x22) è un'istruzione sintatticamente corretta.
VERO FALSO
Il numero 1010000001000000000000000000000000000
3) E' un numero dispari nella codifica complemento a 2 VERO FALSO
4) E' un numero negativo nella codifica complemento a 2 VERO FALSO
5) E' un numero maggiore di 000000000100000000000000000000000000
VERO FALSO
6) Il quarto stadio della pipeline di un processore RISC-V non superscalare è sempre eseguito da tutte le istruzioni
VERO FALSO
7) Nell'architettura del processore RISC-V la propagazione tra due istruzioni artimetico-logiche ha sempre l'effetto di evitare lo stallo se la successiva utilizza il risultato di quella precedente
VERO FALSO
8) Non è possibile passare più di otto argomenti ad una funzione nell'assembler del RISC-V dal momento che posso utilizzare solo i registri a0-a7
VERO FALSO
9) Il seguente programma per una macchina a registri (Random Access Machine) dato un valore K in input stampa in output il valore K+1

3 READ 2

3 ADD *1

4 STORE 1

5 WRITE 1

6 HALT

VERO FALSO

10) Nel seguente circuito, costruito con un NMOS e un PMOS, se VIN=0 allora VOUT=VDD

11) Nel seguente circuito vale che z=x1 OR x2

12) La mappa di Karnaugh indicata di seguito rappresenta la formula logica (NOT(w) AND NOT(x) AND NOT(y)) OR (W AND NOT(Z) AND NOT(Y))

13) In un'architettura con indirizzi logici a 32 bit e indirizzi fisici a 20 bit e pagine da 2 Kb quanti bit sono richiesti per gli indirizzi di pagina logica e di pagina fisica?

21 e 9 20 e 10

14) In un sistema di cache ad un livello con write through quanti letture e scritture in memoria si verificano a seguito delle seguenti operazioni: scrivi 1 in X, leggi X, scrivi 2 in X

1 lettura e 0 scritture

1 lettura e 1 scrittura

1 lettura e 2 scritture

15) Considerate il seguente programma multithreaded

array A = {0,0,0}; int i=0;

Thread P1:	Thread P2:	Thread P2:
while (i<2) { A[i]=1; i=i+1; }	A[i]=2;	A[i]=3;

Se tutti i thread sono eseguiti fino alla loro terminazione, quale valore potrebbe assumere A alla fine dell'esecuzione?

Testo

Totale 19 punti. Tempo 90 minuti.

1) Descrivi le caratteristiche principali dell'architettura rappresentata nella figura seguente.

4 punti

2) Scrivi un programma nell'assembler del Risc-V che, dato un vettore A di interi a 12 posizioni (da A[0] a A[11]) ed un vettore B calcoli e memorizzi B[i] = $A[i]^2$ e in B[12] la somma dei valori di A (B[12] = $\Sigma A[i]$)

5 punti

3) Nel caso dell'estensione vettoriale SSE, con vettori da 128 bit, qual è il numero minimo di istruzioni necessarie per effettuare il calcolo di $B[i] = A[i]^2$?

1 punto

4) Scrivere il circuito logico che definisce un multiplexer a 4 ingressi e 2 vie.

5 punti

5) Spiegare il comportamento del seguente programma multithreaded

array A =
$$\{0,0,0\}$$
;
int i,j=0;

Thread P1: Thread P2:	Thread P2:
while (i<2) { A[i]=1; i=i+1;	A[j]=3;

Soluzioni

QUIZ Falso, 32. Falso, un esempio è ld x9, 10(x22) Vero Vero Falso, il primo è negativo. Falso, solo load e store. Vero. Falso, posso usare lo stack. Falso, scrive K+2 (1 contiene 2, *1 punta a REG2 che contiene K) Vero è un inverter CMOS Falso (è AND) VERO 21 e 9 1 lettura e 2 scritture $A={3,2,0}$

Testo

Architettura.

I punti fondamentali da trattare per ricevere una valutazione di 4 punti sono

- 1) E' un'architettura non basata su pipeline, quindi non ho hazard ne registri speciali.
- 2) Il ciclo di clock corrisponde alla durata dell'istruzione che richiede più tempo.
- 3) La CPU è usata da una sola istruzione alla volta.
- 4) Quali parti corrispondono ai passi di IF, ID, EX, MEM, WB
- 5) Qualche segnale di controllo, es zero che governa il MUX in alto a destra.

Assembler

```
li t4, 0 #indice
li t3, 0 #accumulatore
li t1, 12 #numero di elementi
la t0, V #indirizzo di V[0]
```

loop:

```
lw t5,0(t0) #carico V[i]

add t3, t3, t5 #acc += V[i]

mul t5, t5, t5 #V[i]=V[i]*V[i]

addi t4, t4, 1 #i++

addi t0, t0, 4 #indirizzo di V[i+i]

bge t4, t1, end #se i >= 12 salto
```

end:

Vettorizzazione

Invece di 3+(12*5) ne eseguo 3+(3*5).

Il ciclo è composto da 5 istruzioni (tralascio l'accumulatore, seconda istruzione, in grassetto). Posso calcolare 4 valori per volta (128 bit / 32 dell'integer fa 4), per cui eseguo 12/4 iterazioni. Le prime 3 istruzioni di inizializzazione (escludo anche qui l'accumulatore) vanno eseguite in entrambi i casi.

Multiplexer 4 ingressi e 2 vie

Con p=4 e N=2

Multithreading
T1 scrive in ordine su 0 e 1
T3 può scrivere solo in posizione 0
T2 può scrivere in qualsiasi posizione da 0 a 2
il risultato dipende poi dai possibili interleaving