Secure Firmwares for Internet of Things

— Credential Data Protection and Bug/Flaw Detection on Embedded Systems

Wenhui Zhang, Jun Xu, Lannan Luo, Peng Liu **Pennsylvania State University**

System Model

Figure 1: Testbed --- Security Links for 3D Additive Manufacturing Process Chain

Problem Statement

Goal is to protect sensitive data and resources from **JIT-ROP** attacks on Firmwares.

Vulnerable Architectures:

Don't Have:

ASLR

MMU

Have:

WatchDog

Bootloader and Firmware Separation

Preliminary Result

Adding Barriers:

```
// add asm as tags for pattern recognition
asm volatile("" ::: "memory");
    serial_char = MYSERIAL.read();
asm volatile("" ::: "memory");
```

avr-objdump get Pattern

		-			
15263	87ae:	80 91 6d 0f	lds	r24, 0x0F6D	•
15264	87b2:	90 91 6e 0f	lds	r25, 0x0F6E	•
15265	87b6:	20 91 6b 0f	lds	r18, 0x0F6B	•
15266	87ba:	30 91 6c 0f	lds	r19, 0x0F6C	•
15267	87be:	28 17	ср	r18, r24	
15268	87c0:	39 07	срс	r19, r25	
15269	87c2:	69 f0	breq	.+26	;
45070	07 - 4	C = 04			
15270	87c4:	fc 01	MOVW	r30, r24;	
15271	87c6:	e5 51	subi	r30, 0x15	; 21
15272	87c8:	f1 4f	sbci	r31, 0xF1	; 241
15273	87ca:	20 81	ld	r18, Z	
15274	87cc:	01 96	adiw	r24, 0x01	; 1
15275	87ce:	8f 77	andi	r24, 0x7F	; 127
15276	87d0:	99 27	eor	r25, r25	
15277	87d2:	90 93 6e 0f	sts	0x0F6E, r25	;
15278	87d6:	80 93 6d 0f	sts	0x0F6D, r24	;
15279	87da:	82 2f	mov	r24, r18	
15280	87dc:	02 c0	rjmp	. +4	; 0x87e2
15281	87de:	8f ef	ldi	r24, 0xFF	; 255
15282	87e0:	9f ef	ldi	r25, 0xFF	; 255
15283	87e2:	80 93 e8 04	sts	0x04E8, r24	;

Future Work

- Symbolic execution: limited to vulnerabilities they are using to scan with, and not applicable with vulnerabilities introduced in the runtime environment like JIT-ROP [3].
- ASLR: MPU is widely adopted in time-sensitive embedded systems, which does not support ASLR [4].
- Full memory encryption: takes significant overhead as a security protection trade off [5].
- Control flow integration: does not correct fault routes into valid ones [6].

Goal:

correct Vulnerable Instructions of JIT-ROP:

Read Specifically a part of FLASH, EEPROM, or SRAM where we store credential data (G-Code).

- Read/write EEPROM (and extract cryptography keys)
- Read parts of flash (e.g., reading locked bootloader section)
- Staying persistent (writing flash)

Bibliography

- 1. Wahbe, R., Lucco, S., Anderson, T. E., & Graham, S. L. (1994, January). Efficient software-based
- fault isolation. In ACM SIGOPS Operating Systems Review (Vol. 27, No. 5, pp. 203-216). ACM. 2. Torrance, R., & James, D. (2009). The state-of-the-art in IC reverse engineering. In Cryptographic
- Hardware and Embedded Systems-CHES 2009 (pp. 363-381). Springer Berlin Heidelberg.

 3. Davidson, Drew, et al. "FIE on firmware: Finding vulnerabilities in embedded systems using symbolic execution." Presented as part of the 22nd USENIX Security Symposium (USENIX Security 13). 2013.
- 4. Braden, K., Crane, S., Davi, L., Franz, M., Larsen, P., Liebchen, C., & Sadeghi, A. R. (2016, February). Leakage-resilient layout randomization for mobile devices. In Network and Distributed Systems Security Symposium (NDSS).
- 5. Würstlein, Alexander, et al. "Exzess: Hardware-Based RAM Encryption Against Physical Memory Disclosure." International Conference on Architecture of Computing Systems. Springer International Publishing, 2016.
- 6. Snow, K. Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., & Sadeghi, A. R. (2013, May). Just-in-time code reuse: On the effectiveness of fine-grained address space layout randomization. In Security and Privacy (SP), 2013 IEEE Symposium on (pp. 574-588). IEEE.