中国科学技术大学期末试卷 2021-2022 学年第一学期 A卷

课程名称:代数拓扑	. 课程编号:	MATH5004P
考试时间:	考试形式:	闭卷
学生姓名:	学 号:	
1. (30 分) 填空:		
(a) 求同调群 $H_1(M_g,\mathbb{Z})=$;	
(b) G 为交换群,求同调群 $ ilde{H}_k(S^n,G)$	G) =;	
(c) 求同调群 H ₃ (RP ⁵ ∨ S ³ ,ℤ) =	;	
(d) 求上同调群 $H^1(N_g,\mathbb{Z})=$;	
(e) 求上同调环 $H^*(RP^n,\mathbb{Z}_2)=$		
(f) 求上同调环 $H^*(T^6,\mathbb{Z})=$	· · · · · · · · · · · · · · · · · · ·	
(g) M 为7维闭流型,求其欧拉示性数	数 $\chi(M) = $;
(h) $n \geq 3, f: S^1 \to \mathbb{R}^n$ 为嵌入映射, X	$=\mathbb{R}^n\backslash f(S^1), H_{n-2}(X,Z)=\underline{\ }$	
(i) 找两个拓扑空间,其上同调群相同:	,但其环结构不同:	;
(j) M 为 n 维连通闭流型,求 $H_n(M-\{x\})$		
2. (10 分) 证明: 若非空开集 $U \subset \mathbb{R}^n$ 和 $V \subset \mathbb{R}^m$ 同胚,则 $m = n$.		

3. (10 分)设 X 为把射影平面的两个不同点等同得到的拓扑空间。构造一个 X 的 CW 复型结构并利用这个 CW 复型结构求 X 的同调群。

4. (10 分) 证明: 设 k, l > 0, $S^{2k+2l} \rightarrow CP^k \times CP^l$ 诱导了平凡的映射

$$H_{2k+2l}(S^{2k+2l}) \to H_{2k+2l}(CP^k \times CP^l).$$

5. (10 分) 证明: 连续映射 $f: RP^{2n} \to RP^{2n}$ 有不动点。

6. $(10\, \mathcal{G})G$ 为交换群,若 A 是 X 的收缩 (retract),证明 $: H^n(X;G)\cong H^n(A;G)\oplus H^n(X,A;G)$.

7. (10 分) 若 F 是域,证明: $H^k(X,F) = Hom_F(H_k(X,F),F)$.

8. (10分)证明带边界的紧流型不能收缩到它的边界。