



**FIG.** 1

## 2/83

KVYLIDEVHMLSRHSFNALL**KTLEEPPEH**VKFLLATTDPQKLPVTILSRCLQFHLKALDV KVYIIDEVHMLSIGAFNALL**KTLEEPPEH**CIFILATTEPHKIPLTIISRCQRFDFKRITS MSYQALYRVFRPQRFEDVVGQEHITKTLQNALLQKKFS**HAYLFS<u>GP**RGTGKT</u>SAAKIFAK GLNCETGITATPCGVCDNCREIEQGRFVDLIEIDAASRTKVEDTRDLLDNVQYAPARGRF MSYQVLARKWRPQTFADVVGQEHVLTALANGLSLGRIH**HAYLFSGT**RGVG<u>KT</u>SIARLLAK AVNCEHAPVDEPCNECAACKGITNGSISDVIEIDAASNNGVDEIRDIRDKVKFAPSAVTY \*\*\*\* \*\* \*\*\*\*\* \*\*\* \*\* \* \* \* \*\*\* \*\*\*\*\* \*
\* \*\*\*\*\*\*\*\*\* \*. \*\*\*\*\* \* \*\*\* \*\*\*\*\*\*\* subtilis subtilis subtilis coli coli coli . М . М . н ш

ATP binding

FIG.



FIG. 3

# 4/83

| 09         | 120        | 180                | 240 (37)               | 300 (57)                 | 360 (77)   | 420 (97)           | 480        | 540<br>(137)                                       |
|------------|------------|--------------------|------------------------|--------------------------|------------|--------------------|------------|----------------------------------------------------|
| TACCCAGGCC | CACGCCCTAT | GTG<br>val         | CAC<br>CAG<br>gln      | GCC<br>ala               | GCG<br>ala | GTG                | AAG<br>1ys | $\frac{C}{AAG}$                                    |
| CCCA       | S.D.       | GTG                | GCC<br>ala             | CTC                      | CAG<br>gln | TCC                | AGG<br>arg | CTC<br>leu                                         |
| TA(        |            | GAG<br>glu         | CTC<br>leu             | CTC<br>leu               | TGC<br>CYS | AAC<br>asn         | CCC        | CTC<br>leu                                         |
| Ē          | Ų          | CAG<br>gln         | AGG<br>arg             | AGG<br>arg               | CAC<br>his | AAC<br>asn         | GCC<br>ala | GCC<br>ala                                         |
| CCCI       | CGCA       | TTC                | $^{\rm GGG}_{\rm g1Y}$ | GCG<br>ala               | CCC        | AGC                | TCT        | AAC<br>asn                                         |
| TGAGCCCCTT | ACGTCCGCAC | ACC<br>thr         | GAG<br>glu             | ACG                      | TGC        | GCC<br>ala         | CTC        | TTC                                                |
| ⊣          | A          | CTC<br>leu         | CGG                    | ACC<br>thr               | GTC<br>val | GCC<br>ala         | CCC        | GCC<br>ala                                         |
| SCG        | GGA        | CCC                | ATC<br>ile             | ACC<br>thr               | GGG<br>gly | GAC<br>asp         | GCC<br>ala | AGC GCC                                            |
| GCCCCTCCCG | aaggagagga | CGC                | GCC<br>ala             | AAG<br>1ys               | TGC        | ATT<br>ile         | CTC        | AAA<br>1ys                                         |
| CCC        | AAG        | TTC                | AAG<br>lys             | GGC<br>gly               | CCT        | GAC<br>asp         | CAC<br>his | TCC                                                |
| Ŋ          | Ç          | CGC                | CTC<br>leu             | GTG<br>val               | CCC        | GTG                | ATC<br>ile | CTC<br>leu                                         |
| GTAGACCCCG | CAAGGCGTGC | CGC                | CTC                    | GGC<br>gly               | GAC<br>asp | GTG<br>val         | AGG<br>arg | ATG<br>met                                         |
| TAGA       | AAGG       | TAC                | CCC                    | AGG<br>arg               | GAA<br>glu | GAC<br>asp         | GAA<br>glu | CAC<br>his                                         |
|            | _          |                    | 3AG<br>glu             | AC<br>CCC<br>pro         | GGG<br>gly | CCG                | AGG<br>arg |                                                    |
| GGGTTCCCAG | ccaggggggc | GCC CTC<br>ala leu | GTG AAG (              | <i>GGS</i><br>GGG<br>gly | CAG<br>gln | CAC<br>his         | CTG        | GAG<br>Glu                                         |
| GTTC       | AGGG       | AGC                | GTG<br>val             | <i>TCC</i><br>TCC<br>Ser | TGC        | GCC                | GAG<br>glu | GAC                                                |
| 99         | S          | <b>GTG</b><br>met  | GAG CAC (glu his       | <i>TTC</i><br>TTC<br>phe | GGG<br>gly | GGC<br>gly         | CGG        | TTC ATC CTG GAC GAG GCC<br>phe ile leu asp Glu ala |
| JG         | CT         |                    | GAG<br>glu             | <i>CTS</i><br>CTC<br>leu | GTG<br>val | AGG GGC<br>arg gly | GTG<br>val | ATC<br>ile                                         |
| 9999       | CCTC       | GCCT               | CAG<br>gln             | $\mathit{TAC}$ TAC tyr   | GCG<br>ala | CAG<br>gln         | GAC<br>asp | TTC                                                |
| тссееееете | GCCACCTCCT | ACTAGCCTT          | GGG                    | <i>GCS</i><br>GCC<br>ala | ATG        | GtG<br>val         | GAG<br>glu | GTC                                                |
|            |            |                    |                        |                          |            |                    |            |                                                    |

# FIG. 4A-1

# 5/83

| 600<br>(157)                                                      | 660<br>(177)                               | 720<br>(197)                               | 780<br>(217)                               | 840<br>(237)                               | 900<br>(257)                               | 960<br>(277)                               | 1020<br>(297)                              | 1080 (317)                                 |
|-------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|
| ACC GAG CCC GAG AGG<br>thr glu pro glu arg                        | CGC CTC ACG GAG GAG<br>arg leu thr glu glu | GAG GCG GAG GAG GAG<br>glu ala glu glu glu | GCG GAA AGC CTC CTG<br>ala glu ser leu leu | GAG CGC GCC CTA GGC<br>glu arg ala leu gly | AGG GGG AAA ACG GCG<br>arg gly lys thr ala | CCG AGG AGC CTG GTC<br>pro arg ser leu val | GGC CTC GCG GGA ACC<br>gly leu ala gly thr | CTG GAC GAG GCC ATG<br>leu asp glu ala met |
| TTC GCC ACC A                                                     | CGC TTC CGC Carg a                         | GTG GGG CGG G<br>val gly arg g             | CTT AGG GAC G<br>leu arg asp a             | AAG GAG GTG C<br>lys glu val g             | TCC CTC GCG A<br>ser leu ala a             | GGG TAC GCC C<br>gly tyr ala p             | GCC GCC TTC G<br>ala ala phe g             | ATG ACC GCC C<br>met thr ala 1             |
| CTC TTC GTC '                                                     | CAG CAC TTC gln his phe                    | CTG GAG GCC (leu glu ala                   | GAC GGG GCC asp gly ala                    | CTC ACC CGG<br>leu thr arg                 | ATC GCC GCC ile ala ala                    | TAC GGG GAA<br>tyr gly glu                 | GGC CTC TAC gly leu tyr                    | ATC GCC GCC                                |
| CTC GTG<br>CCC CAC GTC<br>pro his val                             | TCC CGC ACC<br>ser arg thr                 | CGG CGC ATC<br>arg arg ile                 | CGC CTG GCG<br>arg leu ala                 | GAA GGC CCC<br>glu gly pro                 | GTG GCC GAG<br>val ala glu                 | CGG CGC CTC<br>arg arg leu                 | TTC CGG GAA<br>phe arg glu                 | CAG GCC CTG<br>gln ala leu                 |
| CTS CTC CTC GGS GGS<br>CTG GAG GAG CCC CCG<br>leu glu glu pro pro | CCC CCC ACC ATC CTC pro pro thr ile leu    | ATC GCC TTT AAG CTC ile ala phe lys leu    | CTC CTC CTC GCC<br>leu leu leu leu ala     | CGC TTC CTC CTC CTG<br>arg phe leu leu leu | CCC CCA GGG ACC GGG pro pro gly thr gly    | GCC CTG GGC CTC GCC<br>ala leu gly leu ala | GGC CTT TTG GAG GTG<br>gly leu leu glu val | CTT CCC GCC CCG CCC leu pro ala pro        |
| <i>TGS</i><br>ACC<br>thr                                          | ATG<br>met                                 | GAG<br>glu                                 | GCC<br>ala                                 | GAG                                        | TCC                                        | GAG                                        | TCG                                        | CCC                                        |

# FIG. 4A-2

# 6/83

| 1140<br>(337)                                                                                      | 1200<br>(357) | 1260<br>(377)      | 1320<br>(397) | 1380 (417)         | 1440<br>(437)                      | 1500<br>(457)                                                 |
|----------------------------------------------------------------------------------------------------|---------------|--------------------|---------------|--------------------|------------------------------------|---------------------------------------------------------------|
| GGA<br>gly                                                                                         | GGC<br>gly    | CTG<br>leu         | CGG<br>arg    | GCC<br>ala         | CAT                                | AGG<br>arg                                                    |
| GCG<br>ala                                                                                         | GTC<br>val    | GAC<br>asp         | GTG<br>val    | AAG                | GCC<br>ala                         | CCA                                                           |
| GAG<br>glu                                                                                         | GAG<br>glu    | CCC<br>pro         | TTC           | GAC                | CAG<br>gln                         | <b>A</b> GC<br>ser                                            |
| GAC GCC TTA AGC CTG GAG GTG GCC CTC CTG GAG GCG<br>asp ala leu ser leu glu val ala leu leu glu ala | CCA<br>pro    | GAG GCG<br>glu ala | GCC           | GAG<br>glu         | CTG GCC<br>leu ala                 | C <b>īG</b><br>leu                                            |
| CTC<br>leu                                                                                         | TCC           | GAG<br>glu         | CGG<br>arg    | CCC                | CTG<br>leu                         | te<br>AGC<br>ser                                              |
| GCC<br>ala                                                                                         | CCT           | GAG<br>glu         | CTA<br>leu    | TTC                | CCC                                | frameshift site<br>GGA GAA AAA AAA AGC<br>gly glu lys lys ser |
| GTG<br>val                                                                                         | GCT<br>ala    | CCC                | ACC           | GCT<br>ala         | AGG CTC CTC CCC<br>arg leu leu pro | shif<br>AAA<br>1ys                                            |
| GAG<br>glu                                                                                         | GGC<br>gly    | AGG<br>arg         | CCC           | CTC                | CTC<br>leu                         | rame<br>GAA<br>glu                                            |
| CTG<br>leu                                                                                         | ACG<br>thr    | CCA                | AGG<br>arg    | TGC                | AGG<br>arg                         | f<br>GGA<br>gly                                               |
| AGC<br>ser                                                                                         | CCC           | CCC                | CTC<br>leu    | CTC<br>leu         | GTG<br>val                         | GAG<br>glu                                                    |
| TTA<br>leu                                                                                         | CAG<br>gln    | GAA<br>glu         | GCC<br>ala    | CAG<br>gln         | AAG<br>1ys                         |                                                               |
| GCC<br>ala                                                                                         | CCC           | CCG                | GAG<br>glu    | GGC<br>gly         | CAG<br>gln                         | GTC<br>val                                                    |
| GAC<br>asp                                                                                         | CTA<br>leu    | ACC                | CTC           | GAA<br>glu         | GAA g                              | CTC<br>leu                                                    |
| TCC                                                                                                | GCC<br>ala    | CCG                | TTC<br>phe    | CGG GAA<br>arg glu | TCG                                | GTC CTC GTC CTG<br>val leu val leu                            |
| CGC<br>arg                                                                                         | GAG<br>glu    | CCC                | GCC<br>ala    | GTC                | GCC<br>ala                         | GTC<br>val                                                    |
| GCC CGC<br>ala arg                                                                                 | GCC<br>ala    | AGC                | CGG           | GAG<br>glu         | AAG<br>lys                         | GAG<br>glu                                                    |
| GCC<br>ala                                                                                         | GCC<br>ala    | GAA<br>glu         | TGG<br>trp    | CCG                | CGC                                | GAG<br>glu                                                    |
| CTC<br>leu                                                                                         | CTG<br>leu    | CCG                | CGG           | CGC                | TAC                                | GTG<br>val                                                    |
| CGC CTC arg leu                                                                                    | GCC<br>ala    | AAG<br>1ys         | GAG<br>glu    | GCC<br>ala         | CAC<br>his                         | GGG<br>gly                                                    |
| GAG<br>glu                                                                                         | AGG<br>arg    | CCC                | CGG           | GAG<br>glu         | TTC                                | TTC<br>phe                                                    |
|                                                                                                    |               |                    |               |                    |                                    |                                                               |

# FIG. 4B-1

# 7/83

| 2027          |                            |                                                                                                                                                                    |                            | TCATCTA                            | CTGAAGAACT                                                         | CGCCACCATG                                 |  |
|---------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------|--------------------------------------------------------------------|--------------------------------------------|--|
| 2000          | CCGAGGAGAT                 | CCCAAGAAGC                                                                                                                                                         | CAAGGTGAAC                 | TCTCCGAGGG                         | GCCGCCGAGG                                                         | GAACGTCTGC                                 |  |
| 1940          | ACGAGTTCCT                 | CTGATCCTCC                                                                                                                                                         | GGCGGCCACC                 | CCATGGAGGC                         | ACCAAGAAGG                                                         | GATGACCGCC                                 |  |
| 1880          | TCCTCACCCA                 | TGCGACGAGG                                                                                                                                                         | ವಿವಿವಿಶಿವಿವಿಶಿಶಿಶಿ         | TGGTGGCCGA                         | CTCCAGAAGA                                                         | GGTGCGGGGG                                 |  |
| 1820          | TTGAGGGCCA                 | CTCCGCCGTA                                                                                                                                                         | CCTCAAGCGC                 | TGGACAACAT                         | CAAGAGACCG                                                         | CGACCTCGGA                                 |  |
| 1740<br>(529) | ACGCGGACCAC                | TGGGGGCATG                                                                                                                                                         | GGT ATA TAA gly ile *      | ATA GGG GGT ACT<br>ile gly gly thr | CCC CTG AGC CAA GAC GAG ATA GGG<br>pro leu ser gln asp glu ile gly | CCC CTG AGC<br>pro leu ser                 |  |
| 1680<br>(517) | GAG GAG GAA<br>glu glu glu | ACC CGG GAG GCG CCG GAG GAA<br>thr arg glu ala pro glu glu glu                                                                                                     | CCC AGG<br>pro arg         | TGG GTG CGG CGG<br>trp val arg arg | GTG CTC<br>val leu                                                 | CTG GGG GGG CGG GTG<br>leu gly gly arg val |  |
| 1620<br>(497) | GTC CGC CTC val arg leu    | TTG AGG CGG GTG<br>leu arg arg val                                                                                                                                 | GAG GAG GCC<br>glu glu ala | GAG GAG GCC CCG<br>glu glu ala pro | SAA GCG GCG<br>glu ala ala                                         | GAG GCG GAG glu g                          |  |
| 1560<br>(477) | GAG GAG GTA<br>glu glu val | CCC CGC CCG GCC CCA CCT CCT GAA GCG CCC GCA CCC CCG GGC CCT CCC GAG GAG GAG GTA<br>pro arg pro ala pro pro pro glu ala pro ala pro pro gly pro pro glu glu glu val | GCA CCC CCG<br>ala pro pro | CCT GAA GCG CCC<br>oro glu ala pro | GCC CCA CCT ala pro pro                                            | CCC CGC CCG<br>pro arg pro                 |  |

# FIG. 4B-2

# 8/83

| 51  | 111   | 171 | 231 | 291 | 351 | 411 | 471 | 531 | 591 | 651 | 711 | 771 | 831 | 891 | 951 | 1011 | 1071 | 1131 | 1191 | 1251 | 1311 | 1371  | 1431 | 1491 | 1551 |     |
|-----|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|-------|------|------|------|-----|
| GTG | CAG   | gcc | gcg | GTG | AAG | AAG | AGG | GAG | GAG | CIG | ggc | gce | GTC | ACC | ATG | GGA  | 266  | CTG  | CGG  | CCC  | CAT  | AGG   | GTA  | CIC  | GAA  |     |
|     | gcc   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |       |      |      |      |     |
|     | CIC   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |       |      |      |      | (06 |
|     | AGG   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |       |      |      |      | 10  |
|     | GGG.  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |       |      |      |      |     |
|     | GAG ( |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |       |      |      |      |     |
|     | CGG ( |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |       |      |      |      |     |
|     | ATC ( |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |       |      |      |      |     |
|     | CCC   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |       |      |      |      |     |
|     | AAG ( |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |       |      |      |      |     |
|     | CIC   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |       |      |      |      |     |
|     | CTC   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |       |      |      |      |     |
|     | CCC   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |       |      |      |      |     |
|     | GAG ( |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |       |      |      |      |     |
|     | AAG ( |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |       |      |      |      |     |
|     | GTG.  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |       |      |      |      |     |
|     | CAC   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |       |      |      |      |     |
|     |       |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      | GTG ( |      |      |      | Ū   |
|     |       |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      | 999   |      |      |      |     |
|     |       |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      | TTC   |      |      |      |     |

# FIG. 4C

9/83

gly all a set a se glu con management of the control of a by a control of the thrapped a substitution of the control of the contr pro thr thr gly asp ala ala ala thr thr Met by his by hi

# FIG. 4D

# 10/83

| 00000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11111100000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| y len nana a a a a a a a a a a a a a a a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| dayana da ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| and and a solution an |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| val<br>ala<br>ser<br>ser<br>ser<br>col<br>col<br>col<br>col<br>col<br>col<br>col<br>col<br>col<br>col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| glulen<br>len<br>len<br>len<br>len<br>len<br>len<br>len<br>len<br>len                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| a a b b b b b b b b b b b b b b b b b b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| phe alla ser ser christians ser chri |
| thr land a substitution of the land a substitution of the land a land a lear a  |
| Land Danie of the control of the con |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| property of the control of the contr |
| a a a a a a a a a a a a a a a a a a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| lys agly bhe black of the black |
| land de la land la land la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| value of the control  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| tyr property of the property o |
| leu galu dand dand dand dand dand dand dand dan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| lyys lyys lyys lyys lyys lyys lenn lenn lenn lenn lenn lenn lenn len                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| s s s s s s s s s s s s s s s s s s s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The second of th |
| Σά Δου α το Ερά Το Ερά Ο |

# FIG. 4E

# 11/83

| 20  | 40  | 09  | 80  | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240 | 260 | 280 | 300 | 320 | 340 | 360 | 380 | 400 | 420 | 440 | 454 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| glu | len | val | arg | val | ile | glu | pro | ala | len | phe | pro | len | len | pro | len | len | pro | arg | arg | tyr | val |     |
| gln | tyr | ala | gln | asp | phe | len | pro | ile | len | arg | pro | ala | gly | len | arg | ala | 1ys | glu | ala | his | g1y |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | phe |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | ala |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1ys |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | asp |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | glu |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | pro |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | phe |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | ala |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | leu |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | cys |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | leu |     |     |
| arg | len | val | pro | val | ile | leu | len | gln | leu | asp | leu | ile | tyr | gly | ile | len | gln | glu | ala | gln | 1ys | leu |
| arg | len | gly | asp | val | arg | met | val | thr | ile | ala | pro | glu | leu | glu | leu | ala | pro | pro | glu | gly | gln | val |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | glu |     |     |
| len | glu | pro | gly | pro | arg | ala | pro | ser | arg | arg | glu | val | arg | phe | gln | ser | ala | pro | phe | arg | ser | val |
| ala | lys | gly | gln | his | leu | glu | pro | leu | leu | ala | leu | gly | ala | val | pro | arg | glu | pro | ala | val | ala | val |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | glū |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | pro |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

# FIG. 4F

# 12/83

| E.coli            | ATP SITE<br>MSYOVLARKWRPOTFADVVGOEHVLTALANGLSLGRIHHAYLFSGTRGVGKTSIARLLAK | 09        |
|-------------------|--------------------------------------------------------------------------|-----------|
| H.inf.            |                                                                          | 09        |
| B.sub.<br>C.cres. | DA.TY.R.E.LIAMVRTAF.TAFMLT.VTTR                                          | 60<br>113 |
| M.gen.            |                                                                          | 59        |
| T.th.             |                                                                          | 28        |
|                   | Zn <sup>++</sup> finger                                                  |           |
|                   | * * *                                                                    |           |
| E.coli            | GLNCETGITATPCGVCDNCREIEQGRFVDLIEIDAASRTKVEDTRDLLDNVQYAPA 1               | 116       |
| H.inf.            | VHVE.EKAN.IE.                                                            | 116       |
| B.sub.            | AVHAPVDENE.AA.KG.TN.SIS.VNNG.DEIIR.K.KFS 1                               | 116       |
| C.cres.           | AYDTVK.PSVDLTTEG*HS.IEHM.VL.LDEM.EG.RV 1                                 | 173       |
| M.gen.            | AILNWDQIDV.NSV.KS.NTNSAI.IVKNGIN.I.E.VEFNH.F 1                           | 115       |
| $\mathtt{r.th}$   | AVG.QGEDPPH.QAVQR.AHP.VVDNNSV.E.RERIHLL 11                               | 112       |
| E.coli            | RGRFKVYLIDEVHMLSRHSFNALLKTLEEPPEHVKFLLATTDPQKLPVTILSRCLQFHLK 1           | 9/1       |
| H.inf.            | V $Y$ $Y$ $Y$                                                            | 9/1       |
| B.sub.            | AVTYIIGAIGACI.IE.H.I.LIQR.DF. 1                                          | 176       |
| C.cres.           | EA.YITAAP.AIFEIR.VQR.D.R 2                                               | 233       |
| M.gen.            | TFKKILATTQ.WGGS.PY.L.IFTEFN.I.LQS.FF. 1                                  | 175       |
| T.th.             | SAPR. FIL. A KSA P L. VF E. ERM. P TOH. RFR 1                            | 172       |

# FIG. 5A

# 13/83

| 289 | KE.ERASPPGTGVAEIAASLARGKTAEALG.ARRLYGE.YAPRS.VSGL.EVFREGLY        | T.th.   |
|-----|-------------------------------------------------------------------|---------|
| 260 | MLKKHLISLIEMQNL.L.KQFYQ.I                                         | M.gen.  |
| 353 | TV.RDLA.RS.TIA.Y.HVMAGKTKDALEGFRALWGF.ADPAVVMLDV.DHC.AS.V         | C.cres. |
| 294 | EDALLIT. AVSQLYIGK. AKSLHDK. VSDALETL LLQQ. KDPAK. IED. IFYFRDMLL | B.sub.  |
| 294 | NVNLNYSVDILY.LHQGLL.RTLQRV.DAAGD.DKG.CAEKQL                       | H.inf.  |
| 294 | QAVSAMLGTLDDDQALSLVEAMVEANGERVMALINEAAARGIEWEALLVEMLGLLHRIAM      | E.coli  |
| 229 | R.TE.E.AFK.RREAVGREA.EELL.D.AELERFLLLEGPLTR 229                   | T.th.   |
| 235 | KITSDL.LER.ND.AKK.K.KI.KDIKI.DLSQGLLAI.LIVKKL.LL                  | M.gen.  |
| 293 | RVEPDVLVKHFDR.SAK.GARI.MDA.IVGLVQTERGQT.TS                        | C.cres. |
| 234 | RITSQA.VGRMNK.VDA.QLQV.EGS.EII.SH.GMLSFSGDILKV                    | B.sub.  |
| 234 | ETSQH.ATQ.N.PF.DPVKKQISMRTN                                       | H.inf.  |
| 234 | ALDVEQIRHQLEHILNEEHIAHEPRALQLLARAAEGSLRDALSLTDQAIASGDGQVST        | E.coli  |

14/83



FIG. 6



FIG. 7



FIG. 8A

|                 | READING<br>Frame | BLUE        | WHITE  |
|-----------------|------------------|-------------|--------|
| SHIFTY SEQUENCE | 0<br>-1<br>-2    | +<br>+<br>+ |        |
| MUTANT SEQUENCE | 0<br>-1<br>-2    | ++          | +<br>+ |

FIG. 8B

17/83



FIG. 9

18/83



FIG. 10C







FIG. 11A



FIG. 11B

20/83



FIG. 12A



FIG. 12B



FIG. 12C

21/83

# FIG. 13A



× DNA POLYMERASE ACTIVITY (55°)



FIG. 13B

ATP AGAROSE STEP COLUMN





FIG. 14A



FIG. 14B

# 24/83

| E.coli  | DRYFLELIRTGRPDEESYLHAAVELAEARGLPVV 197 | (ID#72) |
|---------|----------------------------------------|---------|
| V.chol. | DHFYLELIRTGRADEESYLHFALDVAEQYDLPVV 197 | (ID#13) |
| H.inf.  | DHFYLALSRTGRPNEERYIQAALKLAERCDLPLV 197 | (ID#74) |
| R.prow. | DRFYFEIMRHDLPEEQFIENSYIQIASELSIPIV 195 | (ID#12) |
| H.pyl.  | DDFYLEIMRHGILDQRFIDEQVIKMSLETGLKII 213 | (1D#16) |
| S.sp.   | DDYYLEIQDHGSVEDRLVNINLVKIAQELDIKIV 202 | (LD#11) |
| M.tub.  | DNYFLELMDHGLTIERRVRDGLLEIGRALNIPPL 220 | (ID#18) |
| T.th.   | FFIEIQNHGLSEQK                         | (ID#61) |

Alignment of TTH1 with alphas subunits of other organisms.

# FIG. 15A

# Alignment of TTH2 with alphas subunits of other organisms.

| E.coli  | NKRRAKNGEPPLDIAAIPLDDKKSFDMLQRSETTAVFQLESRGMKD 618 (ID#79 | 618 | (ID#18) |
|---------|-----------------------------------------------------------|-----|---------|
| V.chol. | NPRLKKAGKPPVRIEAIPLDDARSFRNLQDAKTTAVFQLESRGMKE            | 618 | (ID#80) |
| H.inf.  |                                                           | 618 | (ID#81) |
| R.prow. | CKKLLKEQGIKIDFDDMTFDDKKTYQMLCKGKGVGVFQFESIGMKD            | 624 | (ID#82) |
| H.pyl.  | LKIIKTQHKISVDFLSLDMDDPKVYKTIQSGDTVGIFQIES-GMFQ            | 648 | (ID#83) |
| S.sp.   | QERKALQIRARTGSKKLPDDVKKTHKLLEAGDLEGIFQLESQGMKQ            | 643 | (ID#84) |
| M.tub.  | IDNVRANRGIDLDLESVPLDDKATYELLGRGDTLGVFQLDGGPMRD 646        | 646 | (ID#82) |
| T.th.   | RVELDYDALTLDD                                             |     | (ID#60) |

# FIG. 15B

| ATGGGCCGGGAGCTCCGCTTCGCCCACCTCCACCAGCACA                                             |      |
|--------------------------------------------------------------------------------------|------|
| CCCAGTTCTCCCTCCTGGACGGGGCGGCGAAGCTTTCCGA                                             |      |
| CCTCCTCAAGTGGGTCAAGGAGACGACCCCGAGGACCCC                                              | 120  |
| GCCTTGGCCATGACCGACCACGGCAACCTCTTCGGGGCCG                                             |      |
| TGGAGTTCTACAAGAAGGCCACCGAAATGGGCATCAAGCC                                             |      |
| CATCCTGGGCTACGAGGCCTACGTGGCGGCGGAAAGCCGC                                             | 240  |
| TTTGACCGCAAGCGGGGAAAGGGCCTAGACGGGGGCTACT                                             |      |
| TTCACCTCACCCTCCCCAAGGACTTCACGGGGTACCA                                                | 2.00 |
| GAACCTGGTGCGCCTGGCGAGCCGGGCTTACCTGGAGGGG                                             | 360  |
| TTTTACGAAAAGCCCCGGATTGACCGGGAGATCCTGCGCG<br>AGCACGCCGAGGGCCTCATCGCCCTCTCGGGGTGCCTCGG |      |
| GGCGGAGATCCCCCAGTTCATCCTCCAGGACCGTCTGGAC                                             | 480  |
| CTGGCCGAGGCCCGGCTCAACGAGTACCTCTCCATCTTCA                                             | 400  |
| AGGACCGCTTCTTCATCGAGATCCAGAACCACGGCCTCCC                                             |      |
| CGAGCAGAAAAAGGTCAACGAGGTCCTCAAGGAGTTCGCC                                             | 600  |
| CGAAAGTACGGCCTGGGGATGGTGGCCACCAACGACGCC                                              |      |
| ATTACGTGAGGAAGGACGCCCGCGCCCACGAGGTCCT                                                |      |
| CCTCGCCATCCAGTCCAAGAGCACCCTGGACGACCCCGGG                                             | 720  |
| CGCTGGCGCTTCCCCTGCGACGAGTTCTACGTGAAGACCC                                             |      |
| CCGAGGAGATGCGGGCCATGTTCCCCGAGGAGGAGTGGGG                                             |      |
| GGACGAGCCCTTTGACAACACCGTGGAGATCGCCCGCATG                                             | 840  |
| TGCAACGTGGAGCTGCCCATCGGGGACAAGATGGTCTACC                                             |      |
| GAATCCCCCGCTTCCCCCTCCCCGAGGGCCGACCGAGGC                                              | 0.60 |
| CCAGTACCTCATGGAGCTCACCTTCAAGGGGCTCCTCCGC                                             | 960  |
| CGCTACCCGGACCGGATCACCGAGGGCTTCTACCGGGAGG TCTTCCGCCTTTTGGGGAAGCTTCCCCCCCACGGGACGG     |      |
| GGAGGCCTTGGCCGAGGCCTTGGCCCAGGTGGAGCGGAG                                              | 1080 |
| GCTTGGGAGAGGCTCATGAAGAGCCTCCCCCCTTTGGCCG                                             | 1000 |
| GGGTCAAGGAGTGGACGGCGGAGGCCATTTTCCACCGGGC                                             |      |
| CCTTTACGAGCTTTCCGTGATAGAGCGCATGGGGTTTCCC                                             | 1200 |
| GGCTACTTCCTCATCGTCCAGGACTACATCAACTGGGCCC                                             |      |
| GGAGAAACGGCGTCTCCGTGGGGCCCGGCAGGGGGAGCGC                                             |      |
| CGCCGGGAGCCTGGTGGCCTACGCCGTGGGGATCACCAAC                                             | 1320 |
| ATTGACCCCCTCCGCTTCGGCCTCCTCTTTGAGCGCTTCC                                             |      |
| TGAACCCGGAGAGGGTCTCCATGCCCGACATTGACACGGA                                             |      |
| CTTCTCCGACCGGGAGCGGGACCGGGTGATCCAGTACGTG                                             | 1440 |
| CGGGAGCGCTACGGCGAGGACAAGGTGGCCCAGATCGGCA                                             |      |
| CCCTGGGAAGCCTCGCCTCCAAGGCCGCCCTCAAGGACGT                                             | 1560 |
| GGCCCGGGTCTACGGCATCCCCCACAAGAAGGCGGAGGAA                                             | 1560 |
| TTGGCCAAGCTCATCCCGGTGCAGTTCGGGAAGCCCAAGC<br>CCCTGCAGGAGGCCATCCAGGTGGTGCCGGAGCTTAGGGC |      |
| GGAGATGGAGAAGGACCCCAAGGTGCGGGAGGTCCTCGAG                                             | 1680 |
| GTGGCCATGCGCCTGGAGGGCCTGAACCGCCACGCCTCCG                                             | 1000 |
| TCCACGCCGCCGGGTGGTGATCGCCGCCGAGCCCCTCAC                                              |      |
| GGACCTCGTCCCCTCATGCGCGACCAGGAAGGGCGGCCC                                              | 1800 |
| GTCACCCAGTACGACATGGGGGCGGTGGAGGCCTTGGGGC                                             |      |
| TTTTGAAGATGGACTTTTTGGGCCTCCGCACCCTCACCTT                                             |      |
|                                                                                      |      |

| CCTGGACGAGGTCAAGCGCATCGTCAAGGCGTCCCAGGGG<br>GTGGAGCTGGACTACGATGCCCTCCCCCTGGACGACCCCA                                              | 1920 |
|-----------------------------------------------------------------------------------------------------------------------------------|------|
| AGACCTTCGCCCTCTCTCCCGGGGGAGACCAAGGGGGT<br>CTTCCAGCTGGAGTCGGGGGGGGATGACCGCCACGCTCCGC<br>GGCCTCAAGCCGCGCGCTTTGAGGACCTGATCGCCATCC    | 2040 |
| TCTCCCTCTACCGCCCCGGGCCCATGGAGCACATCCCCAC<br>CTACATCCGCCGCCACCACGGGCTGGAGCCCGTGAGCTAC<br>AGCGAGTTTCCCCACGCCGAGAAGTACCTAAAGCCCATCC  | 2160 |
| TGGACGAGTTCCCCACGCCGAGAAGTACCTAAAGCCCATCC<br>TGGACGAGACCTACGGCATCCCCGTCTACCAGGAGCAGAT<br>CATGCAGATCGCCTCGGCCGTGGCGGGGTACTCCCTGGGC | 2280 |
| GAGGCGGACCTCCTGCGGCGGTCCATGGGCAAGAAGAAGG<br>TGGAGGAGATGAAGTCCCACCGGGAGCGCTTCGTCCAGGG<br>GGCCAAGGAAAGGGGCGTGCCCGAGGAGGAGGCCAACCGC  | 2400 |
| CTCTTTGACATGCTGGAGGCCTTCGCCAACTACGGCTTCA<br>ACAAATCCCACGCTGCCGCCTACAGCCTCCTCCTACCA                                                | 2400 |
| GACCGCCTACGTGAAGGCCCACTACCCCGTGGAGTTCATG<br>GCCGCCCTCCTCTCGTGGAGCGCACGACTCCGACAAGG<br>TGGCCGAGTACATCCGCGACGCCCGGGCCATGGGCATAGA    | 2520 |
| GGTCCTTCCCCGGACGTCAACCGCTCCGGGTTTGACTTC<br>CTGGTCCAGGGCCGGCAGATCCTTTTCGGCCTCTCCGCGG                                               | 2640 |
| TGAAGAACGTGGGCGAGGCGGCGGGGGGGCCATTCTCCG<br>GGAGCGGGAGCGGGCGCCCCTACCGGAGCCTCGGCGAC<br>TTCCTCAAGCGGCTGGACGAGAAGGTGCTCAACAAGCGGA     | 2760 |
| CCCTGGAGTCCCTCATCAAGGCGGCCCCTGGACGGCTT<br>CGGGGAAAGGGCGCGCCTCCTCGCCTCCCTGGAAGGGCTC                                                | 2880 |
| CTCAAGTGGGCCGAGAACCGGGAGAAGGCCCGCTCGG<br>GCATGATGGGCCTCTTCAGCGAAGTGGAGGAGCCGCCTTT                                                 | 2000 |
| GGCCGAGGCCGCCCCCTGGACGAGATCACCCGGCTCCGC TACGAGAAGGAGGCCCTGGGGATCTACGTCTCCGGCCACC CCATCTTGCGGTACCCCGGGCTCCGGGAGACGGCCACCTG         | 3000 |
| CACCCTGGAGGAGCTTCCCCACCTGGCCCGGGACCTGCCG<br>CCCCGGTCTAGGGTCCTCCTTGCCGGGATGGTGGAGGAGG                                              | 3120 |
| TGGTGCGCAAGCCCACAAAGAGCGGCGGGATGATGGCCCG<br>CTTCGTCCTCCGACGAGACGGGGGCGCTTGAGGCGGTG<br>GCATTCGGCCGGGCCTACGACCAGGTCTCCCCGAGGCTCA    | 3240 |
| AGGAGGACACCCCCGTGCTCGTCCTCGCCGAGGTGGAGCG<br>GGAGGAGGGGGGCGTGCGGGTGCTGGCCCAGGCCGTTTGG<br>ACCTACGAGGAGCTGGAGCAGGTCCCCCGGGCCCTCGAGG  | 3360 |
| TGGAGGTGGAGGCCTCCCTCCTGGACGACCGGGGGGTGGC<br>CCACCTGAAAAGCCTCCTGGACGAGCACGCGGGGACCCTC                                              | 3480 |
| CCCTGTACGTCCGGGTCCAGGGCGCCTTCGGCGAGGCCC<br>TCCTCGCCCTGAGGGAGGTGCGGGTGGGGGAGGAGGCTGT<br>AGGCGGCCGCGTGGTTCCGGGCCTACCTCCTGCCCGACCG   | 3600 |
| GGAGGTCCTTCTCCAGGGCGGCCAGGCGGGGGAGGCCCAG<br>GAGGCGGTGCCCTTCTAGGGGGGTGGCCGTGAGACCTAGC                                              | 3000 |
| GCCATCGTTCTCGCCGGGGGCAAGGAGGCCTGGGCCCGAC<br>CCCTTTTGG                                                                             | 3720 |

# 27/83

| MGRELRFAHLHQHTQFSLLDGAPKLSDLLKWVEETTPEDP |      |
|------------------------------------------|------|
| ALAMTDHGNLFGAVEFYKKATEMGIKPILGYEAYVAAESR |      |
| FDRKRGKGLDGGYFHLTLLAKDFTGYQNLVRLASRAYLEG | 120  |
| FYEKPRIDREILREHAEGLIALSGCLGAEIPQFILQDRLD |      |
| LAEARLNEYLSIFKDRFFIEIQNHGLPEQKKVNEVLKEFA |      |
| RKYGLGMVATNDGHYVRKEDARAHEVLLAIQSKSTLDDPG | 240  |
| ALALPCEEFYVKTPEEMRAMFPEEEVGGRSPLTTPWRSPH |      |
| VQRGAAIGTRWSTRIPRFPLPEGRTEAQYLMELTFKGLLR |      |
| RYPDRITEGFYREVFRLSGKLPPHGDGEALAEALAQVERE | 360  |
| AWERLMKSLPPLAGVKEWTAEAIFHRALYELSAIERMGFP |      |
| GLLPHRPGLHQLGPEKGVSVGPGRGGAAGSLVAYAVGITN |      |
| IDPLRFGLLFERFLNPERVSMPDIDTDFSDRERDRVIQYV | 480  |
| RERYGEDKVAQIGTLGSLASKAALKEVARVYGIPRKKAEE |      |
| LAKLIPVQFGKPKPLQEAIQVVPELRAEMEKDPKVREVLE |      |
| VAMRLEGLNRHASVHAGRGGVFSEPLTDLVPLCATRKGGP | 600  |
| YTQYDMGAVEALGLLKMDFLGLRTLTFLDEVKRIVKASQG |      |
| VELDYDALPLDDPKTFALLSRGETKGVFQLESGGMTATLR |      |
| GLKPRRFEDLIAILSLYRPGPMEHIPTYIRRHHGLEPVSY | 720  |
| SEFPHAEKYLKPILDETYGIPVYQEQIMQIASAVAGYSLG |      |
| EADLLRRSMGKKKVEEMKSHRERFVQGAKERGVPEEEANR |      |
| LFDMLEAFANYGFNKSHAAAYSLLSYQTAYVKAHYPVEFM | 840  |
| AALLSVERHDSDKVAEYIRDARAMGIEVLPPDVNRSGFDF |      |
| LVQGRQILFGLSAVKNVGEAAAEAILRERERGGPYRSLGD |      |
| FLKRLDEKVLNKRTLESLIKAGALDGFGERARLLASLEGL | 960  |
| LKWAAENREKARSGMMGLFSEVEEPPLAEAAPLDEITRLR |      |
| YEKEALGIYVSGHPILRYPGLRETATCTLEELPHLARDLP |      |
| PRSRVLLAGMVEEVVRKPTKSGGMMARFVLSDETGALEAV | 1080 |
| AFGRAYDQVSPRLKEDTPVLVLAEVEREEGGVRVLAQAVW |      |
| TYQELEQVPRALEVEVEASLPDDRGVAHLKSLLDEHAGTL |      |
| PLYVRVQGAFGEALLALREVRVGEEALGALEAAGFPAYLL | 1200 |
| PNREVSPRLTGSGGPRGRALSTGLALKTYPIALPGGNEAL |      |
| ARPLL                                    |      |

FIG. 16C

28/83

| PF<br>KF<br>KF<br>NX<br>NF<br>RF                                                                                                                                                                                                                                                                                     | EKEEGG                                                                                                                                                                                                                                                                                                                                                                                                                         | SG<br>EK<br>EK<br>DEEE<br>FAME                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RRL<br>IDETL<br>IID<br>YTGN<br>LTGN                                                                                                                                                                                                                                                                                  | PALEG<br>PAGAER<br>WAYKK<br>YEFRK<br>YEFSL                                                                                                                                                                                                                                                                                                                                                                                     | .T<br>.G<br>.A<br>?TNLFD<br>?TSMAF                                                                                                                                                                                                                                                                                                                                                                                       |
| LDEVIEVGLLRLEGGRRLPF<br>SAAIVEIGAVRIVGGQIDETLKF<br>YDTIIELAAVKVKGGEIIDKF<br>HYEGHCIIEIGAVELINRR-YTGNNX<br>HSEGHKIIEIGAVEVVNRR-LTGNNF                                                                                                                                                                                 | O II<br>LGFL-F<br>GGFM-F<br>MGFL-N<br>VGFM-I<br>IGFM-I                                                                                                                                                                                                                                                                                                                                                                         | EVYYMI<br>RLLELI<br>KMLKDP<br>MMTGGÇ<br>AMTGGÇ                                                                                                                                                                                                                                                                                                                                                                           |
| EVGLL<br>EIGAV<br>ELAAV<br>EIGAV<br>EIGAV                                                                                                                                                                                                                                                                            | 3'-Exo II<br>NAAFDLGFL<br>NVSFDGGFM<br>NASFDMGFL<br>NAAFDVGFM<br>NAAFDIGFM                                                                                                                                                                                                                                                                                                                                                     | C<br>LAVVH<br>'AQAYL<br>'AYLLL<br>'ADVYL'<br>'AEVYL'                                                                                                                                                                                                                                                                                                                                                                     |
| -LDEVI<br>-SAAIV<br>-YDTII<br>3GHCII<br>3GHKII                                                                                                                                                                                                                                                                       | ATLV <b>IH</b><br>SAVV <b>AH</b><br>OILV <b>AH</b><br>AELL <b>IH</b><br>AELV <b>IH</b>                                                                                                                                                                                                                                                                                                                                         | 3'-Exo IIIC<br>HRALEDVERTL<br>HRSYGDVQVTA<br>HRAIYDTEATA<br>HGALLDAEILA<br>HGALLDAEILA                                                                                                                                                                                                                                                                                                                                   |
| <br>A<br>V.C<br>I.GAHYI<br>I.GAHSI                                                                                                                                                                                                                                                                                   | PLRGD,<br>DFVDG,<br>EWIGDI<br>DYING,<br>DYIRG,                                                                                                                                                                                                                                                                                                                                                                                 | 3'-E:<br>CHRALI<br>RHRSY<br>HHRALI<br>LHGALI<br>LHGALI<br>SHRAY                                                                                                                                                                                                                                                                                                                                                          |
| TTGLAG<br>FTGLSA<br>FTGLSA<br>FTGMNQ<br>FTGMNQ                                                                                                                                                                                                                                                                       | JLEKAY<br>ZLPDFF<br>ZIRDFR<br>ZAQDFL<br>ZAVEFM                                                                                                                                                                                                                                                                                                                                                                                 | PRRT<br>EFAPGG<br>ELTQ<br>ONSKRT                                                                                                                                                                                                                                                                                                                                                                                         |
| 3'-EXO<br>VLDLETT<br>VEDLETT<br>VLDTETT<br>(VLDTETT                                                                                                                                                                                                                                                                  | PSLEEY<br>PAXKDY<br>PDVVDY<br>PEFKEY<br>PTFAEY                                                                                                                                                                                                                                                                                                                                                                                 | EVLELI<br>KKKDLI<br>DRLGI<br>ARYEII                                                                                                                                                                                                                                                                                                                                                                                      |
| Start1 T.th. VervvrtlidgrflleegvglwewryPfPlegeavvvldlettglagldevievgllrleggrrlpf D.rad. Bac.sub. HGIKMIYGMEANLVDDGVPIAYNAAHRLLEEETYVVFDVETTGLSAVSAAIVEIGAVRIVGGEIIDKF H.inf. E.c. MSTAITRQIVLDTETTGMNQIGAHYEGHCIIEIGAVEVVNRR-YTGNNK E.c. H.pyl. NLEYLKACGLNFIETSENLITLKNLKTPLKDEVFSFIDLETTGSCPIKHEILEIGAVQVKGGEIINRF | 3'-Exo II ARSWNLTGIPREALEEAPSLEEVLEKAYPLRGDATLV <b>IHNAAFDLGF</b> L-RPALEGLG SIPWQAQRVHGISDEMVRRAPAXKDVLPDFFDFVDGSAVV <b>AHNVSFDGG</b> FM-RAGAERLG ATIIELTGITDDMLQDAPDVVDVIRDFREWIGDDILV <b>AHNASFDMGF</b> L-NVAYKKLL PDAIKVHGITDEMLADKPEFKEVAQDFLDYINGAELL <b>IHNAPFDVGF</b> M-DYEFRKLN PEAFGVHGIAVDFLLDKPTFAEVAVEFMDYIRGAELV <b>IHNAAFDIGF</b> M-DYEFSLLK DYIAELTGITYEDTLNAPSAHEALQELRLFLGNSVFV <b>AHNANFDYNF</b> LGRYFVEKLH | 3'-Exo IIICYRLENPVVDSLRLARRGLPGLRRYGLDALSEVLELPRRTC <b>HRALEDV</b> ERTLAVVHEVYYMLTSGLSWAPERELCTMQLSRRAFPRERTHNLTVLAERLGLEFAPGGR <b>HRSYGDV</b> QVTAQAYLRLLELLGER EVEKAKNPVIDTLELGRFLYPEFKNHRLNTLCKKFDIELTQH <b>HRAIYDT</b> EATAYLLLKMLKDAAEK -LNVKTDDICLVTDTLQMARQMYPGKRN-NLDALCDRLGIDNSKRTL <b>HGALLDA</b> EILADVYLMMTGGQTNLFDEEE RDIAKTNTFCKVTDSLAVARKMFPGKRN-SLDALCARYEIDNSKRTL <b>HGALLDA</b> QILAEVYLAMTGGQTSMAFAME |
| RYPFPL<br>PAAHRLL<br>MI<br>MST<br>NLKTPL                                                                                                                                                                                                                                                                             | GIPR<br>VHGISD<br>GITD<br>GIDV                                                                                                                                                                                                                                                                                                                                                                                                 | PGLRRY<br>PRERTH<br>PEFKNH<br>PGKRN-<br>PGKRN-<br>LSMRY-                                                                                                                                                                                                                                                                                                                                                                 |
| Start2<br>VGLWEWI<br>VPIAYNI                                                                                                                                                                                                                                                                                         | ARSWNLT<br>SIPWQAQR\<br>ATIIELT<br>PDAIKVH<br>PEAFGVH<br>DYIAELT                                                                                                                                                                                                                                                                                                                                                               | ARRGLI<br>SRRAFI<br>GRFLYI<br>BRQMYI<br>ARKMFI                                                                                                                                                                                                                                                                                                                                                                           |
| S<br>LLEEG <b>V</b><br>LVDDGV                                                                                                                                                                                                                                                                                        | -AEARS<br>SMLSIF<br>-LSATI<br>-XDPDP<br>DPEP                                                                                                                                                                                                                                                                                                                                                                                   | VDSLRI<br>LCTMQI<br>IDTLEI<br>TDTLQN<br>TDSLAV<br>LCTLDI                                                                                                                                                                                                                                                                                                                                                                 |
| LLDGRF'<br>GMEAN                                                                                                                                                                                                                                                                                                     | LPP PTRPDG PHRP PDRP PDRP                                                                                                                                                                                                                                                                                                                                                                                                      | LLENPV<br>JAPERE,<br>JAKNPV<br>DDICLV'<br>TTFCKV'                                                                                                                                                                                                                                                                                                                                                                        |
| Start1 VERVVRTLLDGRFLLE HGIKMIYGMEANLVD NLEYLKACGLNFIET                                                                                                                                                                                                                                                              | QSLVR-PLPPAE<br>ETLVR-PTRPDGSML<br>EAFAN-PHRPLS<br>HIYIK-PDRPXD<br>HVYLK-DRLVD                                                                                                                                                                                                                                                                                                                                                 | YRLENPVVDS<br>LSWAPERELCT<br>EVEKAKNPVIDT<br>-LNVKTDDICLVTDT<br>RDIAKTNTFCKVTDS                                                                                                                                                                                                                                                                                                                                          |
| St<br>VE                                                                                                                                                                                                                                                                                                             | Q                                                                                                                                                                                                                                                                                                                                                                                                                              | વ                                                                                                                                                                                                                                                                                                                                                                                                                        |
| T.th.<br>D.rad.<br>Bac.su<br>H.inf.<br>E.c.<br>H.pyl.                                                                                                                                                                                                                                                                | T.th.<br>D.rad.<br>Bac.sub.<br>H.inf.<br>E.c.<br>H.pyl.                                                                                                                                                                                                                                                                                                                                                                        | T.th.<br>D.rad.<br>Bac.sub.<br>H.inf.<br>E.c.<br>H.pyl.                                                                                                                                                                                                                                                                                                                                                                  |

# FIG. 17

## 29/83

| ATGGTGGAGCGGGTGGTGCGGACCCTTCTGGACGGGAGGT  | 40  |
|-------------------------------------------|-----|
| TCCTCCTGGAGGAGGGGGTGGGGCTTTGGGAGTGGCGCTA  |     |
| CCCCTTTCCCCTGGAGGGGGAGGCGGTGGTGGTCCTGGAC  | 120 |
| CTGGAGACCACGGGCTTGCCGGCCTGGACGAGGTGATTG   |     |
| AGGTGGGCCTCCTCCGCCTGGAGGGGGGGGGGGCGCCTCCC | 200 |
| CTTCCAGAGCCTCGTCCGGCCCTCCCGCCGCCGAAGCC    |     |
| CGTTCGTGGAACCTCACCGGCATCCCCCGGGAGGCCCTGG  | 280 |
| AGGAGGCCCCCTCCCTGGAGGAGGTTCTGGAGAAGGCCTA  |     |
| CCCCTCCGCGCGACGCCACCTTGGTGATCCACAACGCC    | 360 |
| GCCTTTGACCTGGGCTTCCTCCGCCCGGCCTTGGAGGGCC  |     |
| TGGGCTACCGCCTGGAAAACCCCGTGGTGGACTCCCTGCG  | 440 |
| CTTGGCCAGACGGGCTTACCAGGCCTTAGGCGCTACGGC   |     |
| CTGGACGCCCTCTCCGAGGTCCTGGAGCTTCCCCGAAGGA  | 520 |
| CCTGCCACCGGGCCCTCGAGGACGTGGAGCGCACCCTCGC  |     |
| CGTGGTGCACGAGGTATACTATATGCTTACGTCCGGCCGT  | 600 |
| CCCCGCACGCTTTGGGAACTCGGGAGGTAG            |     |

# FIG. 18A

| MVERVVRTLLDGRFLLEEGVGLWEWRYPFPLEGEAVVVLD | 40  |
|------------------------------------------|-----|
| LETTGLAGLDEVIEVGLLRLEGGRRLPFQSLVRPLPPAEA |     |
| RSWNLTGIPREALEEAPSLEEVLEKAYPLRGDATLVIHNA | 120 |
| AFDLGFLRPALEGLGYRLENPVVDSLRLARRGLPGLRRYG |     |
| LDALSEVLELPRRTCHRALEDVERTLAVVHEVYYMLTSGR | 200 |
| PRTLWELGRZ                               |     |

# FIG. 18B

| 30/83                   | 65<br>67<br>87<br>87<br>64<br>61<br>72                                                                                                                                                                                                                                                                                                                                                                         | 130<br>115<br>119<br>176<br>108<br>108<br>118                                                                                                            | 217<br>202<br>208<br>206<br>263<br>196<br>193<br>203                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | -PSYE TWIRPTEFSGFKN GELTLIAPNSFSSAW LKNNYSQTIQETAEPAFD TWIKASVLISLGD GVATIQVENGFVLNH LQKSYGPLLMEVLTPSFE TWMKSTKAHSLQG DTLTITAPNEFARDW LESRYLHLIADTIY- TPQQR AWLNLVQPLTIVE GFALLSVPSSFVQNE IERHLRAPITDALSVEFH TWFERIRPLGIRD GVLELAVPTSFALDW IRRHYAGLIQEGPRTEFS MWIRPLQAELSD NTLALYAPNRFVLDW VRDKYLNNINGLLTKSWE LWFSSFDVKSIEG NKVVFSVGNLFIKEW LEKKYYSVLSKAVKIEYE NYFSQLKYNPNASKS DIAFFYAPNQVLCTT ITAKYGALLKEILSQ | ITPPLEASPGSV DSSGSSLRLSKKTLPLLNLRYVFNR FPQN MLNPKYTFDT TDND EIDDSAAARGDNQHS WPSYFTERPHNTDSA TAGVTSLNRRYTFDT EDTFKT PQRA APSTRSGWDNVPAPA EPTYRSNVNVKHTFDN | IQAI GHYRLEIDPGAKVSY VSTETFTNDLILA IRQDRMQAFRDRYR-IQAI AHYRLEMYPNAKVYY VSTERFTNDLITA IRQDNMEDFRSYYR-IHAI GHYVIDHNPSAKVVY LSSEKFTNEFINS IRDNKAVDFRNRYR-IHAA GNYAQRLFPGMRVKY VSTEEFTNDFINS LRDDRKVAFKRSYR-IHAV GPLRAKRFPHMRLEY VSTETFTNELINRPS AR-DRMTEFRERYR-IHAV GNGIMARKPNAKVVY MHSERFVQDMVKA LQNNAIEEFKRYYR-QSI GNYVVQNEPDLRVMY ITSEKFLNDLVDS MKEGKLNEFREKYRKINAI GNHALEKHKKVVL VTSEDFLTDFLKH LDNKTMDSFKAKYR- |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                | P E VKKAVKEDTSDFPQN ENPATTSPDTTTDND PPAQAQP VAAPAQVAQTQPQRA KKRAVLLTP                                                                                    | CGGVGLGKTHLMQAI<br>CGGVGLGKTHLMAAI<br>YGGVGLGKTHLLHAAI<br>WGESGLGKTHLLHAA<br>YGGRGLGKTYLMHAV<br>YGGYGLGKTHLLHAV<br>YGGYGLGKTHLLHAV                                                                                                                                                                                                                                                                              |
| ν <u>α</u>              | K VQSSLKQNLSK Q ALAILATQLTK Q ALAQIEKKLSK A VVSELNGDPKVDDGP H VLEHIRRSITE Q CLARL-QDELPA R ILQEIKTRVNR E ILALVKQNPKVSL                                                                                                                                                                                                                                                                                         | K VKANAESSDEHYSSA I TDGLEPHSLIGQ V IPQNQDVEDFMPKPQ A PPATDEADDTTVPPS V PGVVVQEDIFQPPPS G TKPVTQTPQAAVTSN T YEAFEPHSSYSEPLV R IEVAPKIQINAQSNI             | M AVAESPGREFNPLFI L AVAESPGREFNPLFL L AVAEAPARAYNPLFI L AIAEAPARAYNPLFI V AVAESPGRAYNPLFI R QVADNPGGAYNPLFI L EVAKHPGR-YNPLFI K KVAQSDTPPYNPVLFI                                                                                                                                                                                                                                                                |
| Alignment of dnaA genes | MLEASWEK<br>MVSCENLWQQ<br>MENILDLWNQ<br>MTDDPGSGFTTVWNA<br>MSHEAVWQH<br>MSLSLWQQ<br>MSLSLWQQ<br>MSLSLWQQ                                                                                                                                                                                                                                                                                                       | EIFGEPVTVHVK DLTGQEITVKLI ELTGEELSIKFV RRLGH-QIQLGVRIA LLGAQ-APRFELRVV SFCGADAPQLRFEVG VVLGNDATFEIT NKVG-MHLAHSVDVR                                      | FVVGPNSRMAHAAAN<br>FVVGPTNRMAHAASL<br>FVIGSGNRFAHAAAL<br>FVIGASNRFAHAAAL<br>SWWGPTTPWPHGGAV<br>FVEGKSNQLARAAAR<br>FVVGPGNSFAYHAAL                                                                                                                                                                                                                                                                               |
| Alignme                 | P.mar.<br>Syn.sp.<br>B.sut.<br>M.tub.<br>T.th.<br>E.coli<br>T.mar.                                                                                                                                                                                                                                                                                                                                             | P.mar.<br>Syn.sp.<br>B.sut.<br>M.tub.<br>T.th.<br>E.coli<br>T.mar.<br>H.pyl.                                                                             | P.mar.<br>Syn.sp.<br>B.sut.<br>M.tub.<br>T.th.<br>E.coli<br>T.mar.                                                                                                                                                                                                                                                                                                                                              |

# FIG. 19A

31/83

| 307<br>200<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300                                                                            | 33333333333333333333333333333333333333                                                                                                               |                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAILQKKAEHERVGL<br>MAILQKKAEYDRIRL<br>IAILRKKAKAEGLDI<br>IAILKKKAQMERLAV<br>IAILKMNAS-SGPED<br>VAILMKKADENDIRL<br>KSIARKMLEIEHGEL<br>LSIVKQKCQLNQITL | PDEMRSASRRR-PVS VEELLSNSRRR-EVS LEDFKAKKRTK-SVA VEELRGPGKTR-ALA TPGGAHGERRKKEVV VADLLSKRRSR-SVA REEILSNSRNV-KAL SSEIKVSSRQK-NVA                      | 461<br>447<br>446<br>507<br>446<br>440                                                                                                               |
| MAILQK<br>MAILQK<br>IAILRK<br>IAILKK<br>IAILKW<br>VAILMK<br>KSIARK                                                                                   | PDEMRS<br>VEELLS<br>LEDFKA<br>VEELRG<br>TPGGAH<br>VADLLS<br>REEILS                                                                                   | RKR APES R R NLWITCG                                                                                                                                 |
| MGLIADVQAPDLETR<br>MGLIADIQVPDLETR<br>WGLITDVQPPELETR<br>WGLITDNPAPDLETR<br>WGLITDNPAPDLETR<br>WGLTVAIEPPELETR<br>MGLVAKLEPPDEETR                    | PKQVLDKVAEVFKVT<br>PETIITIVAQHYQLK<br>IKEIQRVVGQQFNIK<br>AATIMAATAEYFDTT<br>PLEIIRKAAGPVRPE<br>IDNIQKTVAEYYKIK<br>IDELIEIVAKVTGVP<br>LENILLAVAQSINLK | SQVQKIRDLLQIDSR<br>QTLTSLSHRINIAGQ<br>QHVKEIKEQLK<br>DHVKELTTRIRQRSK<br>GLLRTLREACTDPVD<br>EDFSNLIRTLSS<br>ALIDEVIGEISRRAL<br>NRLNELNDKKTAFNS        |
| SQIPRLQERLMSRFS<br>QRIPGLQDRLISRFS<br>KEIPTLEDRLRSRFE<br>KQLATLEDRLRTRFE<br>KDILTLEARLRSRFE<br>KEINGVEDRLKSRFG<br>QKLSEFQDRLVSRFQ                    | LDPNGQGVEVT LNPNGQGVEVT LKDII-PSSKPKVIT LRDLI-ADANTMQIS LRHLR-PRELEAD LRDLL-A-LQEKLVT LKDFIKPNRVKAMDP LEDLQKDHAEGSS                                  | SDPQIA KDWETS DBREVE EBREVQ ESHDIK KGSHDIK KGNKQLK                                                                                                   |
| HDAGSQIVLASDRPP<br>HEAGKQVVVASDRAP<br>HEESKQIVISSDRPP<br>HNANKQIVISSDRPP<br>YEAHKQIILTSDRPP<br>LEGNQQIILTSDRYP<br>HDSGKQIVICSDREP                    | SITGLPMTVDSIAPM<br>SLSNVAMTVENIAPV<br>SLINKDINADLAAEA<br>SLNKTPIDKALAEIV<br>SLNGVELTRAVAAKA<br>NFTGRAITIDFVREA<br>ETTGKEVDLKEAILL                    | TTVMYAIEQVEKKLS TTVMYSCDKITQLQQ TTVIHAHEKISKLLA TTVMYAQRKILSEMA TTVRYAIQKVQELAG TTVLHACRKIEQLRE PVVVDSVKKVKDSLL SSISKMYSGVKMLE                       |
| KEYTQEEFFHTFNAL KEYTQEEFFHTFNSL KEQTQEEFFHTFNTL KEGIQEEFFHTFNAL KERTQEEFFHTFNAL KERSQEEFFHTFNAL KTGVQTELFHTFNAL                                      | IRELEGALTRAIAFA IRELEGALIRAIAYT IRELEGALIRVVAYS IRELEGALIRVTAFA IREWEGALMRASPFA VRELEGALNRVIANA LRRLRGAIIKLLVYK IRQMEGAIIKISVNA                      | LSLPRIGDTFGGKDH LSLPRIGEAFGGKDH SSLPKIGEEFGGRDH LSLPKIGQAFG-RDH ASLPEIGQLFGGRDH HSLPEIGDAFGGRDH SSLRTIAEKFN-RSH NPTLSLAQFLDLKDH                      |
| AADLILVDDIQFIEG<br>SADFLLIDDIQFIKG<br>NVDVLLIDDIQFLAG<br>DVDVLLVDDIQFIEG<br>SVDLLLVDDVQFFAN<br>KVDILLIDDIQFFAN<br>KVDILLIDDVQFLIG                    | PRDLIQFIAGRFTSN PKEVIEYIASHYTSN PNEVMLYIANQIDSN PDDVLELIASSIERN PEDALEYIARQVTSN PGEVAFFIAKRLKSN PEEVLNFVAENVDDN PEEVMEYIAQHISDN                      | QARQVGMYLMRQGTN<br>LARQVGMYLMRQHTD<br>FPRQIAMYLSREMTD<br>QSRQIAMYLCRELTD<br>LPRQLAMYLVRELTP<br>RPRQMAMALAKELTN<br>TARRIGMYVAKNYLK<br>LARKLVVYFARLYTP |
| P.mar. Syn.sp. B.sut. M.tub. T.th. E.coli T.mar.                                                                                                     | P.mar.<br>Syn.sp.<br>B.sut.<br>M.tub.<br>T.th.<br>E.coli<br>T.mar.<br>H.pyl.                                                                         | P.mar.<br>Syn.sp.<br>B.sut.<br>M.tub.<br>T.th.<br>E.coli<br>T.mar.                                                                                   |

# FIG. 19B

#### 32/83

GTGTCGCACGAGGCCGTCTGGCAACACGTTCTGGAGCACA TCCGCCGCAGCATCACCGAGGTGGAGTTCCACACCTGGTT TGAAAGGATCCGCCCCTTGGGGATCCGGGACGGGTGCTG 120 GAGCTCGCCGTGCCCACCTCCTTTGCCCTGGACTGGATCC GGCGCCACTACGCCGGCCTCATCCAGGAGGGCCCTCGGCT CCTCGGGGCCCAGGCGCCCCGGTTTGAGCTCCGGGTGGTG CCCGGGGTCGTAGTCCAGGAGACATCTTCCAGCCCCCGC CGAGCCCCCGGCCCAAGCTCAACCCGAAGATACCTTTAA 360 AACTTCGTGGTGGGGCCCAACAACTCCATGGCCCCACGGC GGCGCCGTGGCCGAGTCCCCCGGCCGGCCTACA ACCCCTCTTCATCTACGGGGCCGTGGCCTGGGAAAGAC CTACCTGATGCACGCCGTGGGCCCACTCCGTGCGAAGCGC 480 TTCCCCCACATGAGATTAGAGTACGTTTCCACGGAAACTT TCACCAACGAGCTCATCAACCGGCCATCCGCGAGGGACCG GATGACGGAGTTCCGGGAGCGGTACCGCTCCGTGGACCTC 600 CTGCTGGTGGACGACGTCCAGTTCATCGCCGGAAAGGAGC GCACCCAGGAGGAGTTTTTCCACACCTTCAACGCCCTTTA CGAGGCCCACAAGCAGATCATCCTCTCCTCCGACCGGCCG 720 CCCAAGGACATCCTCACCCTGGAGGCGCGCCTGCGGAGCC GCTTTGAGTGGGGCCTGATCACCGACAATCCAGCCCCCGA CCTGGAAACCCGGATCGCCATCCTGAAGATGAACGCCAGC 840 AGCGGGCCTGAGGATCCCGAGGACGCCCTGGAGTACATCG CCCGCAGGTCACCTCCAACATCCGGGAGTGGGAAGGGGC CCTCATGCGGCATCGCCTTTCGCCTCCCTCAACGGCGTT 960 GAGCTGACCCGCGCCGTGGCGGCCAAGGCTCTCCGACATC TTCGCCCCAGGGAGCTGGAGGCGGACCCCTTGGAGATCAT CCGCAAAGCGGCGGACCAGTTCGGCCTGAAACCCCGGGA 1080 GGAGCTCACGGGGAGCGCCGCAAGAAGGAGGTGGTCCTCC CCCGGCAGCTCGCCATGTACCTGGTGCGGGAGCTCACCCC GGCCTCCCTGCCCGAGATCGACCAGCTCAACGACGACCGG 1200 GACCACACCACGGTCCTCTACGCCATCCAGAAGGTCCAGG AGCTCGCGGAAAGCGACCGGGAGGTGCAGGGCCTCCTCCG CACCCTCCGGGAGGCGTGCACATGA

33/83

| VSHEAVWQHVLEHIRRSITEVEFHTWFERIRPLGIRDGVL |     |
|------------------------------------------|-----|
| ELAVPTSFALDWIRRHYAGLIQEGPRLLGAQAPRFELRVV |     |
| PGVVVQEDIFQPPPSPPAQAQPEDTFKTSWWGPTTPWPHG | 120 |
| GAVAVAESPGRAYNPLFIYGGRGLGKTYLMHAVGPLRAKR |     |
| FPHMRLEYVSTETFTNELINRPSARDRMTEFRERYRSVDL |     |
| LLVDDVQFIAGKERTQEEFFHTFNALYEAHKQIILSSDRP | 240 |
| PKDILTLEARLRSRFEWGLITDNPAPDLETRIAILKMNAS |     |
| SGPEDPEDALEYIARQVTSNIREWEGALMRASPFASLNGV |     |
| ELTRAVAAKALRHLRPRELEADPLEIIRKAAGPVRPETPG | 360 |
| GAHGERRKKEVVLPRQLAMYLVRELTPASLPEIDQLNDDR |     |
| DHTTVLYAIOKVOELAESDREVOGLLRTLREACT       |     |

FIG. 20B

# 34/83

| ATGAACATAACGGTTCCCAAAAAACTCCTCTCGGACCAGC    | 40    |
|---------------------------------------------|-------|
| TTTCCCTCCTGGAGCGCATCGTCCCCTCTAGAAGCGCCAA    |       |
| CCCCTCTACACCTACCTGGGGCTTTACGCCGAGGAAGGG     | 120   |
| GCCTTGATCCTCTTCGGGACCAACGGGGAGGTGGACCTCG    |       |
| AGGTCCGCCTCCCCGCCGAGGCCCAAAGCCTTCCCCGGGT    | 200   |
| GCTCGTCCCCGCCCAGCCCTTCTTCCAGCTGGTGCGGAGC    |       |
| CTTCCTGGGGACCTCGTGGCCCTCGGCCTCGCAGC         | 280   |
| CGGGCCAGGGGGGCAGCTGGAGCTCTCCTCCGGGCGTTT     |       |
| CCGCACCCGGCTCAGCCTGGCCCTGCCGAGGGCTACCCC     | 360   |
| GAGCTTCTGGTGCCCGAGGGGGAGGACAAGGGGGCCTTCC    |       |
| CCCTCCGGACGCGGATGCCCTCCGGGGAGCTCGTCAAGGC    | 440   |
| CTTGACCCACGTGCGCTACGCCGCGAGCAACGAGGAGTAC    |       |
| CGGGCCATCTTCCGCGGGGTGCAGCTGGAGTTCTCCCCCC    | 520   |
| AGGGCTTCCGGGCGTGGCCTCCGACGGGTACCGCCTCGC     |       |
| CCTCTACGACCTGCCCCTGCCCCAAGGGTTCCAGGCCAAG    | 600   |
| GCCGTGGTCCCCGCCCGGAGCGTGGACGAGATGGTGCGGG    |       |
| TCCTGAAGGGGGCGGACGGGCCGAGGCCGTCCTCGCCCT     | 680   |
| GGGCGAGGGGTGTTGGCCCTGGCCCTCGAGGGCGGAAGC     |       |
| GGGGTCCGGATGGCCCTCCGCCTCATGGAAGGGGAGTTCC    | 760   |
| CCGACTACCAGAGGTCATCCCCCAGGAGTTCGCCCTCAA     |       |
| GGTCCAGGTGGAGGGGGGGGGGGGGGGGGGGGGGGGGGG     | 840   |
| CGGGTGAGCGTCCTCTCCGACCGGCAGAACCACCGGGTGG    |       |
| ACCTCCTTTTGGAGGAAGGCCGGATCCTCCTCTCCGCCGA    | 920   |
| GGGGGACTACGGCAAGGGGCAGGAGGAGGTGCCCCAG       |       |
| GTGGAGGGCCGGACATGGCCGTGGCCTACAACGCCCGCT     | 1000  |
| ACCTCCTCGAGGCCCTCGCCCCCGTGGGGGACCGGGCCCA    |       |
| ${\tt CCTGGGCATCTCCGGGCCCCACGAGCCTCATCTGG}$ | 1080  |
| GGGGACGGGGGGTACCGGGCGGTGGTGCCCCTCA          |       |
| GGGTCTAG                                    | .1128 |

# FIG. 21A

35/83

| MNITVPKKLLSDQLSLLERIVPSRSANPLYTYLGLYAEEG | 40  |
|------------------------------------------|-----|
| ALILFGTNGEVDLEVRLPAEAQSLPRVLVPAQPFFQLVRS |     |
| LPGDLVALGLASEPGQGGQLELSSGRFRTRLSLAPAEGYP | 120 |
| ELLVPEGEDKGAFPLRTRMPSGELVKALTHVRYAASNEEY |     |
| RAIFRGVQLEFSPQGFRAVASDGYRLALYDLPLPQGFQAK | 200 |
| AVVPARSVDEMVRVLKGADGAEAVLALGEGVLALALEGGS |     |
| GVRMALRLMEGEFPDYQRVIPQEFALKVQVEGEALREAVR | 280 |
| RVSVLSDRQNHRVDLLLEEGRILLSAEGDYGKGQEEVPAQ |     |
| VEGPDMAVAYNARYLLEALAPVGDRAHLGISGPTSPSLIW | 360 |
| GDGEGYRAV/VPLRVZ                         |     |

FIG. 21B

36/83

MHFTIQREALLKPLQLVAGVVERRQTLPVLSNVLLVVQGQQLSLTGTDLEVELVGRVQLE MITVPKKLLSDQLSLLERIVPSRSANPLYTYLGLYAEEGALILFGTNGEVDLEVRLPAE MKFTVEREHLLKPLQQVSGPLGGRPTLPILGNLLLQVADGTLSLTGTDLEMEMVARVALV MQFSISRENLLKPLQQVCGVLSNRPNIPVLNNVLLQIEDYRLTITGTDLEVELSSQTQLS QSHEIGATTVPARKFFDIWRGLP-EGAEISVELD---GDRLLVRSGRSRFSLSTLPASDF MKFIIEREQLLKPLQQVSGPLGGRPTLPILGNLLLKVTENTLSLTGTDLEMEMMARVSLS MKFTIQNDILTKNLKKITRVLVKNISFPILENILIQVEDGTLSLTTTNLEIELISKIEII QPHEPGATTVPARKFFDICRGLP-EGAEIAVQLE---GERMLVRSGRSRFSLSTLPAADF EPAEPGEITVPARKLMDICKSLP-NDALIDIKVD---EQKLLVKAGRSRFTLSTLPANDF TKYIPGKTTISGRKILNICRTLS-EKSKIKMQLK---NKKMYISSENSNYILSTLSADTF AQSLP-RVLVPAQPFFQLVRSLPGDLVALGLASEPGQGGQLELSSGRFRTRLSLAPAEGY SSSENGTFTIPAKKFLDICRTLS-DDSEITVTFE---QDRALVQSGRSRFTLATQPAEEY E.coli.bet P.mirab.be H.infl.bet P.put.beta P.mirab.be B.cap.beta E.coli.bet H.infl.bet P.put.beta B.cap.beta T.th.beta T.th.beta

PTVEE--GPGSLTCNLEQSK----LRRLIERTSFAMAQQDVRYYLNGMLLEVSRNTLRAV PNHQN--FDYISKFDISSNI----LKEMIEKTEFSMGKQDVRYYLNGMLLEKKDKFLRSV PELLVPEGEDKGAFPLRTRMPSGELVKALTHVRYAASNEEYRAIFRGVQLEFSPQGFRAV PNLDD--WQSEVEFTLPQAT----MKRLIEATQFSMAHQDVRYYLNGMLFETEGEELRTV PNLDD--WQSEVEFTLPQAT----LKRLIESTQFSMAHQDVRYYLNGMLFETENTELRTV PNLTD--WQSEVDFELPQNT----LRRLIEATQFSMANQDARYFLNGMKFETEGNLLRTV

P.mirab.be

H.infl.bet

E.coli.bet

T.th.beta

P.put.beta

B.cap.beta

ATDGHRLAVCSMPIGQSLPS-HSVIVPRKGVIELMRMLDG-GDNPLRVQIGSNNIRAHVG ATDGHRLAVCAMDIGQSLPG-HSVIVPRKGVIELMRLLDGSGESLLQLQIGSNNLRAHVG STDGHRLALCSMSAPIEQEDRHQVIVPRKGILELARLLTD-PEGMVSIVLGQHHIRATTG ASDGYRLALYDLPLPQGFQA--KAVVPARSVDEMVRVLKGADGAEAVLALGEGVLALALE ATDGHRLAVCTISLEQELQN-HSVILPRKGVLELVRLLET-NDEPARLQIGTNNLRVHLK ATDGYRLAISYTQLKKDINF-FSIIIPNKAVMELLKLLNT-QPQLLNILIGSNSIRIYTK

P.mirab.be

E.coli.bet

T.th.beta

H.infl.bet P.put.beta B.cap.beta

# FIG. 22A

#### 37/83

| T.th.beta E.coli.bet P.mirab.be H.infl.bet P.put.beta B.cap.beta | GGSGVRMALRLMEGEFPDYQRVIPQEDFIFTSKLVDGRFPDYRRVLPKNDFIFTSKLVDGRFPDYRRVLPKNNTVFTSKLIDGRFPDYRRVLPRNEFTFTSKLVDGKFPDYERVLPKNNLIFTTQLIEGEYPDYKSVLFK                        | GGSGVRMALRLMEGEFPDYQRVIPQEFALKVQVEGEALREAVRRVSVLSDRQNHRVDLLLDFIFTSKLVDGRFPDYRRVLPKNPDKHLEAGCDLLKQAFARAAILSNEKFRGVRLYVDFIFTSKLVDGRFPDYRRVLPKNPTKTVIAGCDILKQAFSRAAILSNEKFRGVRINLNTVFTSKLIDGRFPDYRRVLPRNATKIVEGNWEMLKQAFARASILSNERARSVRLSLEFTFTSKLVDGKFPDYERVLPKGGDKLVVGDRQALREAFSRTAILSNEKYRGIRLQLEFTFTSKLVDGKFPDYERVLFKEKKNPIITNSILLKKSLLRVAILAHEKFCGIEIKI                      |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T.th.beta E.coli.bet P.mirab.be H.infl.bet P.put.beta B.cap.beta | EEGRILLSAEGDYGK-GQEEVPAQ<br>SENQLKITANNPEQEEAEEILDVT<br>TNGQLKITANNPEQEEAEEIVDVQ<br>KENQLKITASNTEHEEAEEIVDVN<br>AAGQLKIQANNPEQEEAEEISVD<br>ENGKFKVLSDNQEEETAEDLFEID | EEGRILLSAEGDYGK-GQEEVPAQVEGPDMAVAYNARYLLEALAPVG-DRAHLGISGPTS SENQLKITANNPEQEEAEEILDVTYSGAEMEIGFNVSYVLDVLNALKCENVRMMLTDSVS TNGQLKITANNPEQEEAEEIVDVQYQGEEMEIGFNVSYLLDVLNTLKCEEVKLLLTDAVS KENQLKITASNTEHEEAEEIVDVNYNGEELEVGFNVTYILDVLNALKCNQVRMCLTDAFS AAGQLKIQANNPEQEEAEEEISVDYBGGSSLEIGFNVSYLLDVLGVMTTEQVRLILSDSNS ENGKFKVLSDNQEEETAEDLFEIDYFGEKIEISINVYYLLDVINNIKSENIALFLNKSKS |
| T.th.beta<br>E.coli.bet                                          | PSLIWGDG-EGYRAVVVPLRVZ<br>SVQIEDAASQSAAYVVMPMRLZ                                                                                                                    | (ID#108)<br>(ID#109)                                                                                                                                                                                                                                                                                                                                                           |
| P.mirab.be<br>H.infl.bet<br>P.m. beta                            | SVQVENVASAAAAYVVMPMRL-<br>SCLIENCEDSSCEYVIMPMRL-<br>SALLOFAGNDDSSYVVMPMRL-                                                                                          | (ID#IIU)<br>(ID#I11)<br>(TD#112)                                                                                                                                                                                                                                                                                                                                               |
| B. cap. beta                                                     | SIQIEAENNSSNAYVVMLLKR-                                                                                                                                              | (ID#113)                                                                                                                                                                                                                                                                                                                                                                       |

# FIG. 22B







FIG. 25A



FIG. 25B



FIG. 26A



FIG. 26B



FIG. 27



FIG. 28



FIG. 29



FIG. 30



FIG. 31



FIG. 32



FIG. 33A



FIG. 33B



FIG. 33C



FIG. 33D



FIG. 33E

| ATGAGTAAGGATTTCGTCCACCTTCACCTGCACACCCAGTTCTCACTCCT  |                    |
|-----------------------------------------------------|--------------------|
| GGACGGGGCTATAAAGATAGACGAGCTCGTGAAAAAAGGCAAAGGAGTATG | 100                |
| GATACAAAGCTGTCGGAATGTCAGACCACGGAAACCTCTTCGGTTCGTAT  |                    |
| AAATTCTACAAAGCCCTGAAGGCGGAAGGAATTAAGCCCATAATCGGCAT  | 200                |
| GGAAGCCTACTTTACCACGGGTTCGAGGTTTGACAGAAAGACTAAAACGA  |                    |
| GCGAGGACAACATAACCGACAAGTACAACCACCACCTCATACTTATAGCA  | 300                |
| AAGGACGAAAAGGTCTAAAGAACTTAATGAAGCTCTCAACCCTCGCCTAC  |                    |
| AAAGAAGGTTTTTACTACAAACCCAGAATTGATTACGAACTCCTTGAAAA  | 400                |
| GTACGGGGAGGCCTAATAGCCCTTACCGCATGCCTGAAAGGTGTTCCCA   |                    |
| CCTACTACGCTTCTATAAACGAAGTGAAAAAAGGCGGAGGAATGGGTAAAG | 500                |
| AAGTTCAAGGATATATTCGGAGATGACCTTTATTTAGAACTTCAAGCGAA  |                    |
| CAACATTCCAGAACAGGAAGTGGCAAACAGGAACTTAATAGAGATAGCCA  | 600                |
| AAAAGTACGATGTGAAACTCATAGCGACGCAGGACGCCCACTACCTCAAT  |                    |
| CCCGAAGACAGGTACGCCCACACGGTTCTTATGGCACTTCAAATGAAAAA  | 700                |
| GACCATTCACGAACTGAGTTCGGGAAACTTCAAGTGTTCAAACGAAGACC  |                    |
| TTCACTTTGCTCCACCCGAGTACATGTGGAAAAAGTTTGAAGGTAAGTTC  | 800                |
| GAAGGCTGGGAAAAGGCACTCCTGAACACTCTCGAGGTAATGGAAAAGAC  |                    |
| AGCGGACAGCTTTGAGATATTTGAAAACTCCACCTACCTCCTTCCCAAGT  | 900                |
| ACGACGTTCCGCCCGACAAAACCCTTGAGGAATACCTCAGAGAACTCGCG  |                    |
| TACAAAGGTTTAAGACAGAGGATAGAAAGGGGACAAGCTAAGGATACTAA  | 1000               |
| AGAGTACTGGGAGGGCTCGAGTACGAACTGGAAGTTATAAACAAAATGG   |                    |
| GCTTTGCGGGATACTTCTTGATAGTTCAGGACTTCATAAACTGGGCTAAG  | 1100               |
| AAAAACGACATACCTGTTGGACCCGGAAGGGGAAGTGCTGGAGGTTCCCT  |                    |
| CGTCGCATACGCCATCGGAATAACGGACGTTGACCCTATAAAGCACGGAT  | 1200               |
| TCCTTTTTGAGAGGTTCTTAAACCCCGAAAGGGTTTCCATGCCGGATATA  |                    |
| GACGTGGATTTCTGTCAGGACAACAGGGAAAAGGTCATAGAGTACGTAAG  | 1300               |
| GAACAAGTACGGACACGACAACGTAGCTCAGATAATCACCTACAACGTAA  |                    |
| TGAAGGCGAAGCAAACACTGAGAGACGTCGCAAGGGCCATGGGACTCCCC  | 1400               |
| TACTCCACCGCGACAAACTCGCAAAACTCATTCCTCAGGGGGACGTTCA   |                    |
| GGGAACGTGGCTCAGTCTGGAAGAGATGTACAAAACGCCTGTGGAGGAAC  | 1500               |
| TCCTTCAGAAGTACGGAGAACACAGAACGGACATAGAGGACAACGTAAAG  |                    |
| AAGTTCAGACAGATATGCGAAGAAAGTCCGGAGATAAAACAGCTCGTTGA  | 1600               |
| GACGGCCCTGAAGCTTGAAGGTCTCACGAGACACACCTCCCTC         |                    |
| CGGGAGTGGTTATAGCACCAAAGCCCTTGAGCGAGCTCGTTCCCCTCTAC  | 1700               |
| TACGATAAAGAGGGCGAAGTCGCAACCCAGTACGACATGGTTCAGCTCGA  |                    |
| AGAACTCGGTCTCCTGAAGATGGACTTCCTCGGACTCAAAACCCTCACAG  | 1800               |
| AACTGAAACTCATGAAAGAACTCATAAAGGAAAGACACGGAGTGGATATA  |                    |
| AACTTCCTTGAACTTCCCCTTGACGACCCGAAAGTTTACAAACTCCTTCA  | 1900               |
| GGAAGGAAAACCACGGGAGTGTTCCAGCTCGAAAGCAGGGGAATGAAAG   |                    |
| AACTCCTGAAGAACTAAAGCCCGACAGCTTTGACGACATCGTTGCGGTC   | 2000               |
| CTCGCACTCTACAGACCCGGACCTCTAAAGAGCGGACTCGTTGACACATA  | 2000               |
| CATTAAGAGAAAGCACGGAAAAGAACCCGTTGAGTACCCCTTCCCGGAGC  | 2100               |
| TTGAACCCGTCCTTAAGGAAACCTACGGAGTAATCGTTTATCAGGAACAG  | 2200               |
| GTGATGAAGATGTCTCAGATACTTTCCGGCTTTACTCCCGGAGAGGCGGA  | 2200               |
| TACCCTCAGAAAGGCGATAGGTAAGAAGAAAGCGGATTTAATGGCTCAGA  | 2200               |
| TGAAAGACAAGTTCATACAGGGAGCGGTGGAAAGGGGGATACCCTGAAGAA | 2300               |
| AAGATAAGGAAGCTCTGGGAAGACATAGAGAAGTTCGCTTCCTACTCCTT  | 2300               |
| CAACAAGTCTCACTCGGTAGCTTACGGGTACATCTCCTACTGGACCGCCT  | 2400               |
| CWICKNOTCICUCICOGIUGCIIUCCIIUCUICICCIUCIGUCCCCI     | 2 <del>4</del> 0 0 |

#### 49/83

| ACGTTAAAGCCCACTATCCCGCGGAGTTCTTCGCGGTAAAACTCACAACT  |      |
|-----------------------------------------------------|------|
| GAAAAGAACGACAACAAGTTCCTCAACCTCATAAAAGACGCTAAACTCTT  | 2500 |
| CGGATTTGAGATACTTCCCCCCGACATAAACAAGAGTGATGTAGGATTTA  |      |
| CGATAGAAGGTGAAAACAGGATAAGGTTCGGGCTTGCGAGGATAAAGGGA  | 2600 |
| GTGGGAGAGGAAACTGCTAAGATAATCGTTGAAGCTAGAAAGAA        |      |
| GCAGTTCAAAGGGCTTGCGGACTTCATAAACAAAACCAAGAACAGGAAGA  | 2700 |
| TAAACAAGAAAGTCGTGGAAGCACTCGTAAAGGCAGGGGCTTTTGACTTT  |      |
| ACTAAGAAAAAGAGGAAAGAACTACTCGCTAAAGTGGCAAACTCTGAAAA  | 2800 |
| AGCATTAATGGCTACACAAAACTCCCTTTTCGGTGCACCGAAAGAAGAAG  |      |
| TGGAAGAACTCGACCCCTTAAAGCTTGAAAAGGAAGTTCTCGGTTTTTAC  | 2900 |
| ATTTCAGGGCACCCCTTGACAACTACGAAAAGCTCCTCAAGAACCGCTA   |      |
| CACACCCATTGAAGATTTAGAAGAGTGGGACAAGGAAAGCGAAGCGGTGC  | 3000 |
| TTACAGGAGTTATCACGGAACTCAAAGTAAAAAAGACGAAAAACGGAGAT  |      |
| TACATGGCGGTCTTCAACCTCGTTGACAAGACGGGACTAATAGAGTGTGT  | 3100 |
| CGTCTTCCCGGGAGTTTACGAAGAGGCAAAGGAACTGATAGAAGAGGACA  |      |
| GAGTAGTGGTAGTCAAAGGTTTTCTGGACGAGGACCTTGAAACGGAAAAT  | 3200 |
| GTCAAGTTCGTGGTGAAAGAGGTTTTCTCCCCTGAGGAGTTCGCAAAGGA  |      |
| GATGAGGAATACCCTTTATATATTCTTAAAAAGAGAGCCAAGCCCTAAACG | 3300 |
| GCGTTGCCGAAAAACTAAAGGGAATTATTGAAAACAACAGGACGGAGGAC  |      |
| GGATACAACTTGGTTCTCACGGTTGATCTGGGAGACTACTTCGTTGATTT  | 3400 |
| AGCACTCCCACAAGATATGAAACTAAAGGCTGACAGAAAGGTTGTAGAGG  |      |
| AGATAGAAAAACTGGGAGTGAAGGTCATAATTTAGTAAATAACCCTTACT  | 3500 |
| ጥሮርርልርጥልርጥሮርር                                       |      |

FIG. 34B

### 50/83

| MSKDFVHLHLHTOFSLLDGAIKIDELVKKAKEYGYKAVGMSDHGNLFGSY |      |
|----------------------------------------------------|------|
| KFYKALKAEGIKPIIGMEAYFTTGSRFDRKTKTSEDNITDKYNHHLILIA | 100  |
| KDDKGLKNLMKLSTLAYKEGFYYKPRIDYELLEKYGEGLIALTACLKGVP |      |
| TYYASINEVKKAEEWVKKFKDIFGDDLYLELQANNIPEQEVANRNLIEIA | 200  |
| KKYDVKLIATQDAHYLNPEDRYAHTVLMALQMKKTIHELSSGNFKCSNED |      |
| LHFAPPEYMWKKFEGKFEGWEKALLNTLEVMEKTADSFEIFENSTYLLPK | 300  |
| YDVPPDKTLEEYLRELAYKGLRQRIERGQAKDTKEYWERLEYELEVINKM |      |
| GFAGYFLIVQDFINWAKKNDIPVGPGRGSAGGSLVAYAIGITDVDPIKHG | 400  |
| FLFERFLNPERVSMPDIDVDFCQDNREKVIEYVRNKYGHDNVAQIITYNV |      |
| MKAKQTLRDVARAMGLPYSTADKLAKLIPQGDVQGTWLSLEEMYKTPVEE | 500  |
| LLQKYGEHRTDIEDNVKKFRQICEESPEIKQLVETALKLEGLTRHTSLHA |      |
| AGVVIAPKPLSELVPLYYDKEGEVATQYDMVQLEELGLLKMDFLGLKTLT | 600  |
| ELKLMKELIKERHGVDINFLELPLDDPKVYKLLQEGKTTGVFQLESRGMK |      |
| ELLKKLKPDSFDDIVAVLALYRPGPLKSGLVDTYIKRKHGKEPVEYPFPE | 700  |
| LEPVLKETYGVIVYQEQVMKMSQILSGFTPGEADTLRKAIGKKKADLMAQ |      |
| MKDKFIQGAVERGYPEEKIRKLWEDIEKFASYSFNKSHSVAYGYISYWTA | 800  |
| YVKAHYPAEFFAVKLTTEKNDNKFLNLIKDAKLFGFEILPPDINKSDVGF |      |
| TIEGENRIRFGLARIKGVGEETAKIIVEARKKYKQFKGLADFINKTKNRK | 900  |
| INKKVVEALVKAGAFDFTKKKRKELLAKVANSEKALMATQNSLFGAPKEE |      |
| VEELDPLKLEKEVLGFYISGHPLDNYEKLLKNRYTPIEDLEEWDKESEAV | 1000 |
| LTGVITELKVKKTKNGDYMAVFNLVDKTGLIECVVFPGVYEEAKELIEED |      |
| RVVVVKGFLDEDLETENVKFVVKEVFSPEEFAKEMRNTLYIFLKREQALN | 1100 |
| GVAEKLKGIIENNRTEDGYNLVLTVDLGDYFVDLALPQDMKLKADRKVVE |      |
| EIEKLGVKVII                                        | 1161 |

| ATGAACTACGTTCCCTTCGCGAGAAAGTACAGACCGAAATTCTTCAGGGA |       |
|----------------------------------------------------|-------|
| AGTAATAGGACAGGAAGCTCCCGTAAGGATACTCAAAAACGCTATAAAAA | 100   |
| ACGACAGAGTGGCTCACGCCTACCTCTTTGCCGGACCGAGGGGGGTTGGG |       |
| AAGACGACTATTGCAAGAATTCTCGCAAAAGCTTTGAACTGTAAAAATCC | 200   |
| CTCCAAAGGTGAGCCCTGCGGTGAGTGCGAAAACTGCAGGGAGATAGACA |       |
| GGGGTGTGTTCCCTGACTTAATTGAAATGGATGCCGCCTCAAACAGGGGT | 300   |
| ATAGACGACGTAAGGGCATTAAAAGAAGCGGTCAATTACAAACCTATAAA |       |
| AGGAAAGTACAAGGTTTACATAATAGACGAAGCTCACATGCTCACGAAAG | 400   |
| AAGCTTTCAACGCTCTCTTAAAAACCCTCGAAGAGCCCCCTCCCAGAACT |       |
| GTTTTCGTCCTTTGTACCACGGAGTACGACAAAATTCTTCCCACGATACT | 500   |
| CTCAAGGTGTCAGAGGATAATCTTCTCAAAGGTAAGAAAGGAAAAAGTAA |       |
| TAGAGTATCTAAAAAAGATATGTGAAAAGGAAGGGATTGAGTGCGAAGAG | 600   |
| GGAGCCCTTGAGGTTCTGGCTCATGCCTCTGAAGGGTGCATGAGGGATGC |       |
| AGCCTCTCTCCTGGACCAGGCGAGCGTTTACGGGGAAGGCAGGGTAACAA | 700   |
| AAGAAGTAGTGGAGAACTTCCTCGGAATTCTCAGTCAGGAAAGCGTTAGG | . • • |
| AGTTTTCTGAAATTGCTTCTGAACTCAGAAGTGGACGAAGCTATAAAGTT | 800   |
| CCTCAGAGAACTCTCAGAAAAGGGCTACAACCTGACCAAGTTTTGGGAGA |       |
| TGTTAGAAGAGGAAGTGAGAAACGCAATTTTAGTAAAGAGCCTGAAAAAT | 900   |
| CCCGAAAGCGTGGTTCAGAACTGGCAGGATTACGAAGACTTCAAAGACTA | 300   |
| CCCTCTGGAAGCCCTCCTCTACGTTGAGAACCTGATAAACAGGGGTAAAG | 1000  |
| TTGAAGCGAGAACGAGAACCCTTAAGAGCCTTTGAACTCGCGGTAATA   | 1000  |
| AAGAGCCTTATAGTCAAAGACATAATTCCCGTATCCCAGCTCGGAAGTGT | 1100  |
| GGTAAAGGAAACCAAAAAGGAAGAAAAGAAAGTTGAAGTAAAAGAAGAGC | 1100  |
| CAAAAGTAAAAGAAGAAAACCAAAGGAGCAGGAAGAGGACAGGTTCCAG  | 1200  |
| AAAGTTTTAAACGCTGTGGACGGCAAAATCCTTAAAAGAATACTTGAAGG | 1200  |
| GGCAAAAAGGGAAGAAGAGACGGAAAAATCGTCCTAAAGATAGAAGCCT  | 1300  |
| CTTATCTGAGAACCATGAAAAAGGAATTTGACTCACTAAAGGAGACTTTT |       |
| CCTTTTTTAGAGTTTGAACCCGTGGAGGATAAAAAAAAAA           | 1400  |
| CAGCGGGACGAGGCTGTTTTAAAGGTAAAGGAGCTCTTCAATGCAAAAAT |       |
| ACTCAAAGTACGAAGTAAAAGCTAAGGTCATAAAGGTGAGAATGCCCGTG | 1500  |
| GAAGAGATAGGGCTGTTTAACGCACTAATAGACGGCTTGCCCAGGTACGC | 1300  |
| ACTCACGAGGACGAAGGAAAAGGGAAAGGGAGAAGTTTTCGTTTTAGCGA | 1600  |
| CTCCTTATAAAGTCAAGGAATTGATGGAAGCTATGGAGGGTATGAAAAA  | 1000  |
| CACATAAAGGATTTAGAAATCCTCGGAGAGACGGATGAGGATTTAACTTT | 1700  |
| TTAAAGTATGGGTGTATCTGAGCAAAGGTTTAAGCTAAAAACAAAC     | 1700  |
| AACCCGCAGGGGACCAGCCGAAAGCCATAAAAAAACTCCTTGAAAACCTA | 1800  |
| AGGAAAGGCGTAAAAGAACAAACACTTCTCGGAGTCACGGGAAGCGGAAA | 1000  |
| GACTTTTACTCTAGCAAACGTAATAGCGAAGTACAACAAACCAACTCTTG | 1900  |
| TGGTAGTTCACAACAAAATTCTCGCGGCACAGCTATACAGGGAGTTTAAA | 1300  |
| GAACTATTCCCTGAAAACGCTGTAGAGTACTTTGTCTCTTACTACGACTA | 2000  |
| TTACCAACCTGAAGCCTACATTCCCGAAAAAGATTTATACATAGAAAAGG | 2000  |
| ACGCGAGTATAAACGAAAGCTGGAACGTTTCAGACACTCCGCCACGATAT | 2100  |
| CCGTTCTAGAAAGGAGGGACGTTATAGTAGTTGCTTCAGTTTCTTGCATA |       |
| TACGGACTCGGGAAACCTGAGCACTACGAAAACCTGAGGATAAAACTCCA | 2200  |
| AAGGGGAATAAGACTGAACTTGAGTAAGCTCCTGAGGAAACTCGTTGAGC |       |
| TAGGATATCAGAGAAATGACTTTGCCATAAAGAGGGCTACCTTCTCGGTT | 2300  |
| AGGGGAGACGTGGTTGAGATAGTCCCTTCTCACACGGAAGATTACCTCGT |       |
| GAGGGTAGAGTTCTGGGACGACGAAGTTGAAAGAATAGTCCTCATGGACG | 2400  |
| CTCTGAAC                                           |       |
|                                                    |       |

52/83

| MNYVPFARKYRPKFFREVIGQEAPVRILKNAIKNDRVAHAYLFAGPRGVG |     |
|----------------------------------------------------|-----|
| KTTIARILAKALNCKNPSKGEPCGECENCREIDRGVFPDLIEMDAASNRG | 100 |
| IDDVRALKEAVNYKPIKGKYKVYIIDEAHMLTKEAFNALLKTLEEPPPRT |     |
| VFVLCTTEYDKILPTILSRCQRIIFSKVRKEKVIEYLKKICEKEGIECEE | 200 |
| GALEVLAHASEGCMRDAASLLDQASVYGEGRVTKEVVENFLGILSQESVR |     |
| SFLKLLLNSEVDEAIKFLRELSEKGYNLTKFWEMLEEEVRNAILVKSLKN | 300 |
| PESVVQNWQDYEDFKDYPLEALLYVENLINRGKVEARTREPLRAFELAVI |     |
| KSLIVKDIIPVSQLGSVVKETKKEEKKVEVKEEPKVKEEKPKEQEEDRFQ | 400 |
| KVLNAVDGKILKRILEGAKREERDGKIVLKIEASYLRTMKKEFDSLKETF |     |
| PFLEFEPVEDKKKPQKSSGTRLF                            | 473 |

#### 53/83

| ATGCGCGTTAAGGTGGACAGGGAGGAGCTTGAAGAGGGTTCTTAAAAAAGC |      |
|-----------------------------------------------------|------|
| AAGAGAAAGCACGGAAAAAAAAGCCGCACTCCCGATACTCGCGAACTTCT  | 100  |
| TACTCTCCGCAAAAGAGGAAAACTTAATCGTAAGGGCAACGGACTTGGAA  |      |
| AACTACCTTGTAGTCTCCGTAAAGGGGGAGGTTGAAGAGGAAGGA       | 200  |
| TTGCGTCCACTCTCAAAAACTCTACGATATAGTCAAGAACTTAAATTCCG  |      |
| CTTACGTTTACCTTCATACGGAAGGTGAAAAACTCGTCATAACGGGAGGA  | 300  |
| AAGAGTACGTACAAACTTCCGACAGCTCCCGCGGAGGACTTTCCCGAATT  |      |
| TCCAGAAATCGTAGAAGGAGGAGAAACACTTTCGGGAAACCTTCTCGTTA  | 400  |
| ACGGAATAGAAAAGGTAGAGTACGCCATAGCGAAGGAAGAAGCGAACATA  |      |
| GCCCTTCAGGGAATGTATCTGAGAGGATACGAGGACAGAATTCACTTTGT  | 500  |
| GTTCGGACGGTCACAGGCTTGCACTTTATGAACCTCTACGTAAACATTGA  |      |
| AAAGAGTGAAGACGAGTCTTTTGCTTACTTCTCCACTCCCGAGTGGAAAC  | 600  |
| TCGCCGTTAGCTCCTGGAAGGAGAATTCCCGGACTACATGAGTGTCATCC  |      |
| CTGAGGAGTTTTCGGCGGAAGTCTTGTTTGAGACAGAGGAAGTCTTAAAG  | 700  |
| GTTTTAAAGAGGTTGAAGGCTTTAAGCGAAGGAAAAGTTTTTCCCGTGAA  |      |
| GATTACCTTAAGCGAAAACCTTGCCATCTTTGAGTTCGCGGATCCGGAGT  | 800  |
| TCGGAGAAGCGAGAGAGAATTGAAGTGGAGTACACGGGAGAGCCCTTT    |      |
| GAGATAGGATTCAACGGAAATACCTTATGGAGGCGCTTGACGCCTACGAC  | 900  |
| AGCGAAAGAGTGTGGTTCAAGTTCACAACCCCCGACACGGCCACTTTATT  |      |
| GGAGGCTGAAGATTACGAAAAGGAACCTTACAAGTGCATAATAATGCCGA  | 1000 |
| TGAGGGTGTAGCCATGAAAAAAGCTTTAATCTTTTTATTGAGCTTGAGCC  |      |
| TTTTAATTCCTGCGTTTAGCGAAGCCAAACCCAAGTCTTC            | 1090 |

# FIG. 38

| MRVKVDREELEEVLKKARESTEKKAALPILANFLLSAKEENLIVRATDLE |     |
|----------------------------------------------------|-----|
| NYLVVSVKGEVEEEGEVCVHSQKLYDIVKNLNSAYVYLHTEGEKLVITGG | 100 |
| KSTYKLPTAPAEDFPEFPEIVEGGETLSGNLLVNGIEKVEYAIAKEEANI |     |
| ALQGMYLRGYEDRIHFVGSDGHRLALYEPLGEFSKELLIPRKSLKVLKKL | 200 |
| ITGIEDVNIEKSEDESFAYFSTPEWKLAVRLLEGEFPDYMSVIPEEFSAE |     |
| VLFETEEVLKVLKRLKALSEGKVFPVKITLSENLAIFEFADPEFGEAREE | 300 |
| IEVEYTGEPFEIGFNGKYLMEALDAYDSERVWFKFTTPDTATLLEAEDYE |     |
| KEPYKCIIMPMRV                                      | 363 |
|                                                    |     |

#### 54/83

| GTGGAAACCACAATATTCCAGTTCCAGAAAACTTTTTTCACAAAACCTCC |      |
|----------------------------------------------------|------|
| GAAGGAGAGGTCTTCGTCCTTCATGGAGAAGAGCAGTATCTCATAAGAA  | 100  |
| CCTTTTTGTCTAAGCTGAAGGAAAAGTACGGGGAGAATTACACGGTTCTG |      |
| TGGGGGGATGAGATAAGCGAGGAGGAATTCTACACTGCCCTTTCCGAGAC | 200  |
| CAGTATATTCGGCGGTTCAAAGGAAAAAGCGGTGGTCATTTACAACTTCG |      |
| GGGATTTCCTGAAGAAGCTCGGAAGGAAGAAAAAGGAAAAAGAAAG     | 300  |
| ATAAAAGTCCTCAGAAACGTAAAGAGTAACTACGTATTTATAGTGTACGA |      |
| TGCGAAACTCCAGAAACAGGAACTTTCTTCGGAACCTCTGAAATCCGTAG | 400  |
| CGTCTTTCGGCGGTATAGTGGTAGCAAACAGGCTGAGCAAGGAGAGATA  |      |
| AAACAGCTCGTCCTTAAGAAGTTCAAAGAAAAAGGGATAAACGTAGAAAA | 500  |
| CGATGCCCTTGAATACCTTCTCCAGCTCACGGGTTACAACTTGATGGAGC |      |
| TCAAACTTGAGGTTGAAAAACTGATAGATTACGCAAGTGAAAAGAAAATT | 600  |
| TTAACACTCGATGAGGTAAAGAGAGTAGCCTTCTCAGTCTCAGAAAACGT |      |
| AAACGTATTTGAGTTCGTTGATTTACTCCTCTTAAAAGATTACGAAAAGG | 700  |
| CTCTTAAAGTTTTGGACTCCCTCATTTCCTTCGGAATACACCCCCTCCAG |      |
| ATTATGAAAATCCTGTCCTCTATGCTCTAAAACTTTACACCCTCAAGAG  | 800  |
| GCTTGAAGAGAAGGGAGGACCTGAATAAGGCGATGGAAAGCGTGGGAA   |      |
| TAAAGAACAACTTTCTCAAGATGAAGTTCAAATCTTACTTA          | 900  |
| TCTAAAGAGGACTTGAAGAACCTAATCCTCTCCCTCCAGAGGATAGACGC |      |
| TTTTTCTAAACTTTACTTTCAGGACACAGTGCAGTTGCTGGGGATTTCTT | 1000 |
| GACCTCAAGACTGGAGAGGGAAGTTGTGAAAAATACTTCTCATGGTGGAT |      |
| AATCTTTTTTATGAAGTTTGCGGTTTGCGTTTTTCCCGGTTCT        | 1093 |

## FIG. 40

| VETTIFQFQKTFFTKPPKERVFVLHGEEQYLIRTFLSKLKEKYGENYTVL |     |
|----------------------------------------------------|-----|
| WGDEISEEEFYTALSETSIFGGSKEKAVVIYNFGDFLKKLGRKKKEKERL | 100 |
| IKVLRNVKSNYVFIVYDAKLQKQELSSEPLKSVASFGGIVVANRLSKERI |     |
| KQLVLKKFKEKGINVENDALEYLLQLTGYNLMELKLEVEKLIDYASEKKI | 200 |
| LTLDEVKRVAFSVSENVNVFEFVDLLLLKDYEKALKVLDSLISFGIHPLQ |     |
| IMKILSSYALKLYTLKRLEEKGEDLNKAMESVGIKNNFLKMKFKSYLKAN | 300 |
| SKEDLKNLILSLQRIDAFSKLYFQDTVQLLRDFLTSRLEREVVKNTSHGG |     |

#### 55/83

| ATGGAAAAAGTTTTTTTGGAAAAACTCCAGAAAACCTTGCACATACCCGG |      |
|----------------------------------------------------|------|
| AGGACTCCTTTTTTACGGCAAAGAAGGAAGCGGAAAGACGAAAACAGCTT | 100  |
| TTGAATTTGCAAAAGGTATTTTATGTAAGGAAAACGTACCTGGGGATGCG |      |
| GAAGTTGTCCCTCCTGCAAACACGTAAACGAGCTGGAGGAAGCCTTCTTT | 200  |
| AAAGGAGAAATAGAAGACTTTAAAGTTTATAAGACAAGGACGGTAAAAAG |      |
| CACTTCGTTTACCTTATGGGCGAACATCCCGACTTTGTGGTAATAATCCC | 300  |
| GAGCGGACATTACATAAAGATAGAACAGATAAGGGAAGTTAAGAACTTTG |      |
| CCTATGTGAAGCCCGCACTAAGCAGGAGAAAAGTAATTATAATAGACGAC | 400  |
| GCCCACGCGATGACCTCTCAGGCGGCAAACGCTCTTTTAAAGGTATTGGA |      |
| AGAGCCACCTGCGGACACCACCTTTATCTTGACCACGAACAGGCGTTCTG | 500  |
| CAATCCTGCCGACTATCCTCTCCAGAACTTTTCAAGTGGAGTTCAAGGGC |      |
| TTTTCAGTAAAAGAGGTTATGGAAATAGCGAAAGTAGACGAGGAAATAGC | 600  |
| GAAACTCTCTGGAGGCAGTCTAAAAAGGGCTATCTTACTAAAGGAAAACA |      |
| AAGATATCCTAAACAAAGTAAAGGAATTCTTGGAAAACGAGCCGTTAAAA | 700  |
| GTTTACAAGCTTGCAAGTGAATTCGAAAAGTGGGAACCTGAAAAGCAAAA |      |
| ACTCTTCCTTGAAATTATGGAAGAATTGGTATCTCAAAAATTGACCGAAG | 800  |
| AGAAAAAAGACAATTACACCTACCTTCTTGATACGATCAGACTCTTTAAA |      |
| GACGGACTCGCAAGGGGTGTAAACGAACCTCTGTGGCTGTTTACGTTAGC | 900  |
| CGTTCAGGCGGATTAATAAACCGTTATTGATTCCGTAACATTTAAACCTT |      |
| AATCTAAATTATGAGAGCCTTTGAAGGAGGTCTGGTATGGAAAATTTGAA | 1000 |
| GATTAGATATAGATACGAGGAAGATAGGAACCGTGAGCGGTGTAAAAG   |      |
| T                                                  | 1051 |

## FIG. 42

| MEKVFLEKLQKTLHIPGGLLFYGKEGSGKTKTAFEFAKGILCKENVPWGC |     |
|----------------------------------------------------|-----|
| GSCPSCKHVNELEEAFFKGEIEDFKVYKDKDGKKHFVYLMGEHPDFVVII | 100 |
| PSGHYIKIEQIREVKNFAYVKPALSRRKVIIIDDAHAMTSQAANALLKVL |     |
| EEPPADTTFILTTNRRSAILPTILSRTFQVEFKGFSVKEVMEIAKVDEEI | 200 |
| AKLSGGSLKRAILLKENKDILNKVKEFLENEPLKVYKLASEFEKWEPEKQ |     |
| KLFLEIMEELVSQKLTEEKKDNYTYLLDTIRLFKDGLARGVNEPLWLFTL | 300 |
| AVQAD                                              |     |

| ATGAACTTCCTGAAAAAGTTCCTTTTACTGAGAAAAGCTCAAAAGTCTCC |     |
|----------------------------------------------------|-----|
| TTACTTCGAAGAGTTCTACGAAGAAATCGATTTGAACCAGAAGGTGAAAG | 100 |
| ATGCAAGGTTTGTAGTTTTTGACTGCGAAGCCACAGAACTCGACGTAAAG |     |
| AAGGCAAAACTCCTTTCAATAGGTGCGGTTGAGGTTAAAAACCTGGAAAT | 200 |
| AGACCTCTCTAAATCTTTTTACGAGATACTCAAAAGTGACGAGATAAAGG |     |
| CGGCGGAGATACATGGAATAACCAGGGAAGACGTTGAAAAGTACGGAAAG | 300 |
| GAACCAAAGGAAGTAATATACGACTTTCTGAAGTACATAAAGGGAAGCGT |     |
| TCTCGTTGGCTACTACGTGAAGTTTGACGTCTCACTCGTTGAGAAGTACT | 400 |
| CCATAAAGTACTTCCAGTATCCAATCATCAACTACAAGTTAGACCTGTTT |     |
| AGTTTCGTGAAGAGAGAGTACCAGAGTGGCAGGAGTCTTGACGACCTTAT | 500 |
| GAAGGAACTCGGTGTAGAAATAAGGGCAAGGCACAACGCCCTTGAAGATG |     |
| CCTACATAACCGCTCTTCTTTTCCTAAAGTACGTTTACCCGAACAGGGAG | 600 |
| ТАСАGAСТА A AGGATСТССGATTTTССТТ                    |     |

# FIG. 44

| MNFLKKFLLLRKAQKSPYFEEFYEEIDLNQKVKDARFVVFDCEATELDVK |     |
|----------------------------------------------------|-----|
| KAKLLSIGAVEVKNLEIDLSKSFYEILKSDEIKAAEIHGITREDVEKYGK | 100 |
| EPKEVIYDFLKYIKGSVLVGYYVKFDVSLVEKYSIKYFQYPIINYKLDLF |     |
| SFVKREYQSGRSLDDLMKELGVEIRARHNALEDAYITALLFLKYVYPNRE | 200 |
| YRLKDLPIFL                                         |     |

#### 57/83

| ATGCTCAATAAGGTTTTTTATAATAGGAAGACTTACGGGTGACCCCGTTAT |     |
|-----------------------------------------------------|-----|
| AACTTATCTACCGAGCGGAACGCCCGTAGTAGAGTTTACTCTGGCTTACA  | 100 |
| ACAGAAGGTATAAAAACCAGAACGGTGAATTTCAGGAGGAAAGTCACTTC  |     |
| TTTGACGTAAAGGCGTACGGAAAAATGGCTGAAGACTGGGCTACACGCTT  | 200 |
| CTCGAAAGGATACCTCGTACTCGTAGAGGGAAGACTCTCCCAGGAAAAGT  |     |
| GGGAGAAAGAAGAAGTTCTCAAAGGTCAGGATAATAGCGGAAAAC       | 300 |
| GTAAGATTAATAAACAGGCCGAAAGGTGCTGAACTTCAAGCAGAAGAAGA  |     |
| GGAGGAAGTTCCTCCCATTGAGGAGGAAATTGAAAAACTCGGTAAAGAGG  | 400 |
| AAGAGAAGCCTTTTACCGATGAAGAGGACGAAATACCTTTTTAATTTTGA  |     |
| GGAGGTTAAAGTATGGTAGTGAGAGCTCCTAAGAAGAAGTTTGTATGTA   | 500 |
| СТСТСА АСА А А АСАСАСАСССАСАТТ                      |     |

#### FIG. 46

MLNKVFIIGRLTGDPVITYLPSGTPVVEFTLAYNRRYKNQNGEFQEESHF FDVKAYGKMAEDWATRFSKGYLVLVEGRLSQEKWEKEGKKFSKVRIIAEN 100 VRLINRPKGAELQAEEEEEVPPIEEEIEKLGKEEEKPFTDEEDEIPF

#### 58/83

| ATGCAATTTGTGGATAAACTTCCCTGTGACGAATCCGCCGAGAGGGCGGT    |      |
|-------------------------------------------------------|------|
| TCTTGGCAGTATGCTTGAAGACCCCGAAAACATACCTCTGGTACTTGAAT    | 100  |
| ACCTTAAAGAAGAAGACTTCTGCATAGACGAGCACAAGCTACTTTTCAGG    |      |
| GTTCTTACAAACCTCTGGTCCGAGTACGGCAATAAGCTCGATTTCGTATT    | 200  |
| AATAAAGGATCACCTTGAAAAGAAAAACTTACTCCAGAAAATACCTATAG    |      |
| ACTGGCTCGAAGAACTCTACGAGGAGGCGGTATCCCCTGACACGCTTGAG    | 300  |
| GAAGTCTGCAAAATAGTAAAACAACGTTCCGCACAGAGGGCGATAATTCA    |      |
| ACTCGGTATAGAACTCATTCACAAAGGAAAGGAAAACAAAGACTTTCACA    | 400  |
| CATTAATCGAGGAAGCCCAGAGCAGGATATTTTCCATAGCGGAAAGTGCT    |      |
| ACATCTACGCAGTTTTACCATGTGAAAGACGTTGCGGAAGAAGTTATAGA    | 500  |
| ACTCATTTATAAATTCAAAAGCTCTGACAGGCTAGTCACGGGACTCCCAA    |      |
| GCGGTTTCACGGAACTCGATCTAAAGACGACGGGATTCCACCCTGGAGAC    | 600  |
| TTAATAATACTCGCCGCAAGACCCGGTATGGGGAAAACCGCCTTTATGCT    |      |
| CTCCATAATCTACAATCTCGCAAAAGACGAGGGAAAACCCTCAGCTGTAT    | 700  |
| TTTCCTTGGAAATGAGCAAGGAACAGCTCGTTATGAGACTCCTCTCTATG    |      |
| ATGTCGGAGGTCCCACTTTTCAAGATAAGGTCTGGAAGTATATCGAATGA    | 800  |
| AGATTTAAAGAAGCTTGAAGCAAGCGCAATAGAACTCGCAAAGTACGACA    |      |
| TATACCTCGACGACACCCCGCTCTCACTACAACGGATTTAAGGATAAGG     | 900  |
| GCAAGAAAGCTCAGAAAGGAAAAGGAAGTTGAGTTCGTGGCGGTGGACTA    |      |
| CTTGCAACTTCTGAGACCGCCAGTCCGAAAGAGTTCAAGACAGGAGGAAG    | 1000 |
| TGGCAGAGGTTTCAAGAAACTTAAAAGCCCCTTGCAAAGGAACTTCACATT   |      |
| CCCGTTATGGCACTTGCGCAGCTCTCCCGTGAGGTGGAAAAGAGAGGAGTGA  | 1100 |
| TAAAAGACCCCAGCTTGCGGACCTCAGAGAATCCGGACAGATAGAACAGG    |      |
| ACGCAGACCTAATCCTTTTCCTCCACAGACCCGAGTACTACAAGAAAAAG    | 1200 |
| CCAAATCCCGAAGAGCAGGGTATAGCGGAAGTGATAATAGCCAAGCAAAG    |      |
| GCAAGGACCCACGGACATTGTGAAGCTCGCATTTATTAAGGAGTACACTA    | 1300 |
| AGTTTGCAAACCTAGAAGCCCTTCCTGAACAACCTCCTGAAGAAGAAGAAGAA |      |
| CTTTCCGAAATTATTGAAACACAGGAGGATGAAGGATTCGAAGATATTGA    | 1400 |
| CTTCTGAAAATTAAGGTTTTATAATTTTATCTTGGCTATCCGGGGTAGCT    |      |
| CAATCGGCAGAGCGGGTGGCTG                                | 1472 |
|                                                       |      |

| MQFVDKLPCDESAERAVLGSMLEDPENIPLVLEYLKEEDFCIDEHKLLFR |     |
|----------------------------------------------------|-----|
| VLTNLWSEYGNKLDFVLIKDHLEKKNLLQKIPIDWLEELYEEAVSPDTLE | 100 |
| EVCKIVKQRSAQRAIIQLGITSTQFYHVKDVAEEVIELIYKFKSSDRLVT |     |
| GLPSGFTELDLKTTGFHPGDLIILAARPGMGKTAFMLSIIYNLAKDEGKP | 200 |
| SAVFSLEMSKEQLVMRLLSMMSEVPLFKIRSGSISNEDLKKLEASAIELA |     |
| KYDIYLDDTPALTTTDLRIRARKLRKEKEVEFVAVDYLQLLRPPVRKSSR | 300 |
| QEEVAEVSRNLKALAKELHIPVMALAQLSREVEKRSDKRPQLADLRESGQ |     |
| IEQDADLILFLHRPEYYKKKPNPEEQGIAEVIIAKQRQGPTDIVKLAFIK | 400 |
| EYTKFANLEALPEOPPEEELSEIIETOEDEGFEDIDF              |     |

#### 59/83

| ATGTCCTCGGACATAGACGAACTTAGACGGGAAATA | GATATAGTAGACGT  |      |
|--------------------------------------|-----------------|------|
| CATTTCCGAATACTTAAACTTAGAGAAGGTAGGTTC | CAATTACAGAACGA  | 100  |
| ACTGTCCCTTTCACCCTGACGATACACCCTCCTTTT | ACGTGTCTCCAAGT  |      |
| AAACAAATATTCAAGTGTTTCGGTTGCGGGGTAGGG | GGAGACGCGATAAA  | 200  |
| GTTCGTTTCCCTTTACGAGGACATCTCCTATTTTGA | AGCCGCCCTTGAAC  |      |
| TCGCAAAACGCTACGGAAAGAAATTAGACCTTGAAA | AGATATCAAAAGAC  | 300  |
| GAAAAGGTATACGTGGCTCTTGACAGGGTTTGTGAT | TTCTACAGGGAAAG  |      |
| CCTTCTCAAAAACAGAGAGGCAAGTGAGTACGTAAA | GAGTAGGGGAATAG  | 400  |
| ACCCTAAAGTAGCGAGGAAGTTTGATCTTGGGTACG | CACCTTCCAGTGAA  |      |
| GCACTCGTAAAAGTCTTAAAAGAGAACGATCTTTTA | GAGGCTTACCTTGA  | 500  |
| AACTAAAAACCTCCTTTCTCCTACGAAGGGTGTTTA | CAGGGATCTCTTTC  |      |
| TTCGGCGTGTCGTGATCCCGATAAAGGATCCGAGGG | GAAGAGTTATAGGT  | 600  |
| TTCGGTGGAAGGAGGATAGTAGAGGACAAATCTCCC | CAAGTACATAAACTC |      |
| TCCAGACAGCAGGGTATTTAAAAAGGGGGAGAACTT | ATTCGGTCTTTACG  | 700  |
| AGGCAAAGGAGTATATAAAGGAAGAAGGATTTGCGA | TACTTGTGGAAGGG  |      |
| TACTTTGACCTTTTGAGACTTTTTTCCGAGGGAATA | AGGAACGTTGTTGC  | 800  |
| ACCCCTCGGTACAGCCCTGACCCAAAATCAGGCAAA | CCTCCTTTCCAAGT  |      |
| TCACAAAAAGGTCTACATCCTTTACGACGGAGATG  | ATGCGGGAAGAAAG  | 900  |
| GCTATGAAAAGTGCCATTCCCCTACTCCTCAGTGCA | GGAGTGGAAGTTTA  |      |
| TCCCGTTTACCTCCCGAAGGATACGATCCCGACGA  | GTTTATAAAGGAAT  | 1000 |
| TCGGGAAAGAGAATTAAGAAGACTGATAAACAGCT  | CAGGGGAGCTCTTT  |      |
| GAAACGCTCATAAAAACCGCAAGGGAAAACTTAGAG | GAGAAAACGCGTGA  | 1100 |
| GTTCAGGTATTATCTGGGCTTTATTTCCGATGGAGT | AAGGCGCTTTGCTC  |      |
| TGGCTTCGGAGTTTCACACCAAGTACAAAGTTCCTA | TGGAAATTTTATTA  | 1200 |
| ATGAAAATTGAAAAAATTCTCAAGAAAAAGAAATT  | PAAACTCTCCTTTAA |      |
| GGAAAAAATCTTCCTGAAAGGACTGATAGAATTAAA | ACCAAAAATAGACC  | 1300 |
| TTGAAGTCCTGAACTTAAGTCCTGAGTTAAAGGAAC | TCGCAGTTAACGCC  |      |
| TTAAACGGAGAGGAGCATTTACTTCCAAAAGAAGTT |                 | 1400 |
| GGATAACTTGGAGAAACTTTTTAACAACATCCTTAG | GGATTTACAAAAAT  |      |
| CTGGGAAAAAGAGAGAAAAAGAGGGTTGAAAAATG  | TAAATACTTAATTA  | 1500 |
| ACTTTAATAAATTTTTAGAGTTAGGA           |                 |      |

| MSSDIDELRREIDIVDVISEYLNLEKVGSNYRTNCPFHPDDTPSFYVSPS |     |
|----------------------------------------------------|-----|
| KQIFKCFGCGVGGDAIKFVSLYEDISYFEAALELAKRYGKKLDLEKISKD | 100 |
| EKVYVALDRVCDFYRESLLKNREASEYVKSRGIDPKVARKFDLGYAPSSE |     |
| ALVKVLKENDLLEAYLETKNLLSPTKGVYRDLFLRRVVIPIKDPRGRVIG | 200 |
| FGGRRIVEDKSPKYINSPDSRVFKKGENLFGLYEAKEYIKEEGFAILVEG |     |
| YFDLLRLFSEGIRNVVAPLGTALTQNQANLLSKFTKKVYILYDGDDAGRK | 300 |
| AMKSAIPLLLSAGVEVYPVYLPEGYDPDEFIKEFGKEELRRLINSSGELF |     |
| ETLIKTARENLEEKTREFRYYLGFISDGVRRFALASEFHTKYKVPMEILL | 400 |
| MKIEKNSQEKEIKLSFKEKIFLKGLIELKPKIDLEVLNLSPELKELAVNA |     |
| LNGEEHLLPKEVLEYQVDNLEKLFNNILRDLQKSGKKRKKRGLKNVNT   | 498 |

#### 60/83

| ATGCAAGATACCGCTACCTGCAGTATTTGTCAGGGGACGGGATTCGTAAA |     |
|----------------------------------------------------|-----|
| GACCGAAGACAACGTAAGGCTCTGCGAATGCAGGTTCAAGAAAAGGG    | 100 |
| ATGTAAACAGGGAACTAAACATCCCAAAGAGGTACTGGAACGCCAACTTA |     |
| GACACTTACCACCCCAAGAACGTATCCCAGAACAGGGCACTTTTGACGAT | 200 |
| AAGGGTCTTCGTCCACAACTTCAATCCCGAGGAAGGGAAAGGGCTTACCT |     |
| TTGTAGGATCTCCTGGAGTCGGCAAAACTCACCTTGCGGTTGCAACATTA | 300 |
| AAAGCGATTTATGAGAAGAAGGGAATCAGAGGATACTTCTTCGATACGAA |     |
| GGATCTAATATTCAGGTTAAAACACTTAATGGACGAGGGAAAGGATACAA | 400 |
| AGTTTTTAAAAACTGTCTTAAACTCACCGGTTTTGGTTCTCGACGACCTC |     |
| GGTTCTGAGAGGCTCAGTGACTGGCAGAGGGAACTCATCTCTTACATAAT | 500 |
| CACTTACAGGTATAACAACCTTAAGAGCACGATAATAACCACGAATTACT |     |
| CACTCCAGAGGGAAGAAGAGAGTAGCGTGAGGATAAGTGCGGATCTTGCA | 600 |
| AGCAGACTCGGAGAAAACGTAGTTTCAAAAATTTACGAGATGAACGAGTT |     |
| GCTCGTTATAAAGGGTTCCGACCTCAGGAAGTCTAAAAAGCTATCAACCC | 700 |
| CATCT                                              | ,   |

## FIG. 52

| MQDTATCSICQGTGFVKTEDNKVRLCECRFKKRDVNRELNIPKRYWNANL |     |
|----------------------------------------------------|-----|
| DTYHPKNVSQNRALLTIRVFVHNFNPEEGKGLTFVGSPGVGKTHLAVATL | 100 |
| KAIYEKKGIRGYFFDTKDLIFRLKHLMDEGKDTKFLKTVLNSPVLVLDDL |     |
| GSERLSDWQRELISYIITYRYNNLKSTIITTNYSLQREEESSVRISADLA | 200 |
| SRLGENVVSKIYEMNELLVIKGSDLRKSKKLSTPS                |     |

| ATGAAAAAGATTGAAAATTTGAAGTGGAAAAATGTCTCGTTTAAAAGCCT  |       |
|-----------------------------------------------------|-------|
| GGAAATAGATCCCGATGCAGGTGTGGTTCTCGTTTCCGTGGAAAATTCT   | 100   |
|                                                     | 100   |
| CCGAAGAGATAGAAGACCTTGTGCGTTTACTGGAGAAGAAGACGCGGTTT  | 200   |
| CGAGTCATCGTGAACGGTGTTCAAAAAAGTAACGGGGATCTAAGGGGAAA  | 200   |
| GATACTTTCCCTTCTCAACGGTAATGTGCCTTACATAAAAGATGTTGTTT  |       |
| TCGAAGGAAACAGGCTGATTCTGAAAGTGCTTGGAGATTTCGCGCGGGAC  | 300   |
| AGGATCGCCTCCAAACTCAGAAGCACGAAAAAAACAGCTCGATGAACTGCT |       |
| GCCTCCCGGAACAGAGATCATGCTGGAGGTTGTGGAGCCTCCGGAAGATC  | 400   |
| TTTTGAAAAAGGAAGTACCACAACCAGAAAAGAGAGAAGAACCAAAGGGT  |       |
| GAAGAATTGAAGATCGAGGATGAAAACCACATCTTTGGACAGAAACCCAG  | 500   |
| AAAGATCGTCTTCACCCCCTCAAAAATCTTTGAGTACAACAAAAAGACAT  |       |
| CGGTGAAGGCCAAGATCTTCAAAATAGAGAAGATCGAGGGGAAAAGAACG  | 600   |
| GTCCTTCTGATTTACCTGACAGACGGAGAAGATTCTCTGATCTGCAAAGT  | 000   |
| CTTCAACGACGTTGAAAAGGTCGAAGGGAAAGTATCGGTGGGAGACGTGA  | 700   |
| TCGTTGCCACAGGAGACCTCCTTCTCGAAAACGGGGAGCCCACCCTTTAC  | 700   |
|                                                     | 000   |
| GTGAAGGGAATCACAAAACTTCCCGAAGCGAAAAGGATGGACAAATCTCC  | 800   |
| GGTTAAGAGGGTGGAGCTCCACGCCCATACCAAGTTCAGCGATCAGGACG  | 000   |
| CAATAACAGATGTGAACGAATATGTGAAACGAGCCAAGGAATGGGGCTTT  | 900   |
| CCCGCGATAGCCCTCACGGATCATGGGAACGTTCAGGCCATACCTTACTT  |       |
| CTACGACGCGCGAAAGAAGCTGGAATAAAGCCCATTTTCGGTATCGAAG   | 1000  |
| CGTATCTGGTGAGTGACGTGGAGCCCGTCATAAGGAATCTCTCCGACGAT  |       |
| TCGACGTTTGGAGATGCCACGTTCGTCGTCCTCGACTTCGAGACGACGGG  | 1100  |
| TCTCGACCCGCAGGTGGATGAGATCATCGAGATAGGAGCGGTGAAGATAC  |       |
| AGGGTGGCCAGATAGTGGACGAGTACCACACTCTCATAAAGCCTTCCAGG  | 1200  |
| GAGATCTCAAGAAAAGTTCGGAGATCACCGGAATCACTCAAGAGATGCT   |       |
| GGAAAACAAGAGAAGCATCGAGGAAGTTCTGCCGGAGTTCCTCGGTTTTC  | 1300  |
| TGGAAGATTCCATCGTAGCACACAACGCCAACTTCGACTACAGATTT     | 1300  |
| CTGAGGCTGTGGATCAAAAAAGTGATGGGATTGGACTGGGAAAGACCCTA  | 1400  |
| CATAGATACGCTCGCCTCGCAAAGTCCCTTCTCAAACTGAGAAGCTACT   | 1400  |
| CTCTGGATTCCGTTGTGGAAAAGCTCGGATTGGGTCCCTTCCGGCACCAC  | 1500  |
|                                                     | 1200  |
| AGGGCCCTGGATGACGCGAGGGTCACCGCTCAGGTTTCCTCAGGTTCGT   | 1.600 |
| TGAGATGATGAAGAAGATCGGTATCACGAAGCTTTCAGAAATGGAGAAGT  | 1600  |
| TGAAGGATACGATAGACTACACCGCGTTGAAACCCTTCCACTGCACGATC  |       |
| CTCGTTCAGAACAAAAGGGATTGAAAAACCTATACAAACTGGTTTCTGA   | 1700  |
| TTCCTATATAAAGTACTTCTACGGTGTTCCGAGGATCCTCAAAAGTGAGC  |       |
| TCATCGAGAACAGAAGGACTGCTCGTGGGTAGCGCGTGTATCTCCGGT    | 1800  |
| GAGCTCGGACGTGCCGCCCTCGAAGGAGCGAGTGATTCAGAACTCGAAGA  |       |
| GATCGCGAAGTTCTACGACTACATAGAAGTCATGCCGCTCGACGTTATAG  | 1900  |
| CCGAAGATGAAGAAGACCTAGACAGAGAAAGACTGAAAGAAGTGTACCGA  |       |
| AAACTCTACAGAATAGCGAAAAAATTGAACAAGTTCGTCGTCATGACCGG  | 2000  |
| TGATGTTCATTTCCTCGATCCCGAAGATGCCAGGGGCAGAGCTGCACTTC  |       |
| TGGCACCTCAGGGAAACAGAAACTTCGAGAATCAGCCCGCACTCTACCTC  | 2100  |
| AGAACGACCGAAGAAATGCTCGAGAAGGCGATAGAGATATTCGAAGATGA  | 2100  |
| AGAGATCGCGAGGGAAGTCGTGATAGAGATATCCCAACAGATAGCCGATA  | 2200  |
|                                                     | ZZUU  |
| TGATCGAGGAAGTGCAGCCGCTCGAGAAAAAACTTCACCCGCCGATCATA  | 2222  |
| GAGAACGCCGATGAAATAGTGAGAAACCTCACCATGAAGCGGGCGTACGA  | 2300  |
| GATCTACGGTGATCCGCTTCCCGAAATCGTCCAGAAGCGTGTGGAAAAGG  |       |

#### 62/83

| AACTGAACGCCATCATAAATCATGGATACGCCGTTCTCTATCTCATCGCT  | 2400 |
|-----------------------------------------------------|------|
| CAGGAGCTCGTTCAGAAATCTATGAGCGATGGTTACGTGGTTGGATCCAG  |      |
| AGGATCCGTCGGGTCTTCACTCGTGGCCAATCTCCTCGGAATAACAGAGG  | 2500 |
| TGAATCCCCTACCACCACATTACAGGTGTCCAGAGTGCAAATACTTTGAA  |      |
| GTTGTCGAAGACGACAGATACGGAGCGGGTTACGACCTTCCCAACAAGAA  | 2600 |
| CTGTCCAAGATGTGGGGCTCCTCTCAGAAAAGACGGCCACGGCATACCGT  |      |
| TTGAAACGTTCATGGGGTTCGAGGGTGACAAGGTCCCCGACATAGATCTC  | 2700 |
| AACTTCTCAGGAGAGTATCAGGAACGTGCTCATCGTTTTGTGGAAGAACT  |      |
| CTTCGGTAAAGACCACGTCTATAGGGCGGGAACCATAAACACCATCGCGG  | 2800 |
| AAAGAAGTGCGGTGGGTTACGTGAGAAGCTACGAAGAGAAAACCGGAAAG  |      |
| AAGCTCAGAAAGGCGGAAATGGAAAGACTCGTTTCCATGATCACGGGAGT  | 2900 |
| GAAGAGAACGACGGGTCAGCACCCAGGGGGGCTCATGATCATACCGAAAG  |      |
| ACAAAGAAGTCTACGATTTCACTCCCATACAGTATCCAGCCAACGATAGA  | 3000 |
| AACGCAGGTGTGTTCACCACGCACTTCGCATACGAGACGATCCATGATGA  |      |
| CCTGGTGAAGATAGATGCGCTCGGCCACGATGATCCCACTTTCATCAAGA  | 3100 |
| TGCTCAAGGACCTCACCGGAATCGATCCCATGACGATTCCCATGGATGAC  |      |
| CCCGATACGCTCGCCATATTCAGTTCTGTGAAGCCTCTTGGTGTGGATCC  | 3200 |
| CGTTGAGCTGGAAAGCGATGTGGGAACGTACGGAATTCCGGAGTTCGGAA  |      |
| CCGAGTTTGTGAGGGGAATGCTCGTTGAAACGAGACCAAAGAGTTTCGCC  | 3300 |
| GAGCTTGTGAGAATCTCAGGACTGTCACACGGTACGGACGTCTGGTTGAA  |      |
| CAACGCACGTGATTGGATAAACCTCGGCTACGCCAAGCTCTCCGAGGTTA  | 3400 |
| TCTCGTGTAGGGACGACATCATGAACTTCCTCATACACAAAGGAATGGAA  |      |
| CCGTCACTTGCCTTCAAGATCATGGAAAACGTCAGGAAGGGAAAGGGTAT  | 3500 |
| CACAGAAGAGATGGAGAGCGAGATGAGAAGGCTGAAGGTTCCAGAATGGT  |      |
| TCATCGAATCCTGTAAAAGGATCAAATATCTCTTCCCGAAAGCTCACGCT  | 3600 |
| GTGGCTTACGTGAGTATGGCCTTCAGAATTGCTTACTTCAAGGTTCACTA  |      |
| TCCTCTTCAGTTTTACGCGGCGTACTTCACGATAAAAGGTGATCAGTTCG  | 3700 |
| ATCCGGTTCTCGTACTCAGGGGAAAAGAAGCCATAAAGAGGCGCTTGAGA  |      |
| GAACTCAAAGCGATGCCTGCCAAAGACGCCCCAGAAGAAAAACGAAGTGAG | 3800 |
| TGTTCTGGAGGTTGCCCTGGAAATGATACTGAGAGGTTTTTCCTTCC     |      |
| CGCCCGACATCTTCAAATCCGACGCGAAGAAATTTCTGATAGAAGGAAAC  | 3900 |
| TCGCTGAGAATTCCGTTCAACAAACTTCCAGGACTGGGTGACAGCGTTGC  |      |
| CGAGTCGATAATCAGAGCCAGGGAAGAAAAGCCGTTCACTTCGGTGGAAG  | 4000 |
| ATCTCATGAAGAGGACCAAGGTCAACAAAAATCACATAGAGCTGATGAAA  |      |
| AGCCTGGGTGTTCTCGGGGACCTTCCAGAGACGGAACAGTTCACGCTTTT  | 4100 |
| C                                                   |      |

FIG. 54B

#### 63/83

| MKKIENLKWKNVSFKSLEIDPDAGVVLVSVEKFSEEIEDLVRLLEKKTRF |      |
|----------------------------------------------------|------|
| RVIVNGVQKSNGDLRGKILSLLNGNVPYIKDVVFEGNRLILKVLGDFARD | 100  |
| RIASKLRSTKKOLDELLPPGTEIMLEVVEPPEDLLKKEVPOPEKREEPKG |      |
| EELKIEDENHIFGQKPRKIVFTPSKIFEYNKKTSVKGKIFKIEKIEGKRT | 200  |
| VLLIYLTDGEDSLICKVFNDVEKVEGKVSVGDVIVATGDLLLENGEPTLY |      |
| VKGITKLPEAKRMDKSPVKRVELHAHTKFSDQDAITDVNEYVKRAKEWGF | 300  |
| PAIALTDHGNVQAIPYFYDAAKEAGIKPIFGIEAYLVSDVEPVIRNLSDD |      |
| STFGDATFVVLDFETTGLDPQVDEIIEIGAVKIQGGQIVDEYHTLIKPSR | 400  |
| EISRKSSEITGITQEMLENKRSIEEVLPEFLGFLEDSIIVAHNANFDYRF |      |
| LRLWIKKVMGLDWERPYIDTLALAKSLLKLRSYSLDSVVEKLGLGPFRHH | 500  |
| RALDDARVTAQVFLRFVEMMKKIGITKLSEMEKLKDTIDYTALKPFHCTI |      |
| LVQNKKGLKNLYKLVSDSYIKYFYGVPRILKSELIENREGLLVGSACISG | 600  |
| ELGRAALEGASDSELEEIAKFYDYIEVMPLDVIAEDEEDLDRERLKEVYR |      |
| KLYRIAKKLNKFVVMTGDVHFLDPEDARGRAALLAPQGNRNFENQPALYL | 700  |
| RTTEEMLEKAIEIFEDEEIAREVVIENPNRIADMIEEVQPLEKKLHPPII |      |
| ENADEIVRNLTMKRAYEIYGDPLPEIVQKRVEKELNAIINHGYAVLYLIA | 800  |
| QELVQKSMSDGYVVGSRGSVGSSLVANLLGITEVNPLPPHYRCPECKYFE |      |
| VVEDDRYGAGYDLPNKNCPRCGAPLRKDGHGIPFETFMGFEGDKVPDIDL | 900  |
| NFSGEYQERAHRFVEELFGKDHVYRAGTINTIAERSAVGYVRSYEEKTGK |      |
| KLRKAEMERLVSMITGVKRTTGQHPGGLMIIPKDKEVYDFTPIQYPANDR | 1000 |
| NAGVFTTHFAYETIHDDLVKIDALGHDDPTFIKMLKDLTGIDPMTIPMDD |      |
| PDTLAIFSSVKPLGVDPVELESDVGTYGIPEFGTEFVRGMLVETRPKSFA | 1100 |
| ELVRISGLSHGTDVWLNNARDWINLGYAKLSEVISCRDDIMNFLIHKGME |      |
| PSLAFKIMENVRKGKGITEEMESEMRRLKVPEWFIESCKRIKYLFPKAHA | 1200 |
| VAYVSMAFRIAYFKVHYPLQFYAAYFTIKGDQFDPVLVLRGKEAIKRRLR |      |
| ELKAMPAKDAQKKNEVSVLEVALEMILRGFSFLPPDIFKSDAKKFLIEGN | 1300 |
| SLRIPFNKLPGLGDSVAESIIRAREEKPFTSVEDLMKRTKVNKNHIELMK |      |
| SLGVLGDLPETEQFTLF                                  | 1367 |

#### 64/83

| GTGCTCGCCATGATATGGAACGACACCGTTTTTTTGCGTCGTAGACACAGA |       |
|-----------------------------------------------------|-------|
| AACCACGGGAACCGATCCCTTTGCCGGAGACCGGATAGTTGAAATAGCCG  | 100   |
| CTGTTCCTGTCTTCAAGGGGAAGATCTACAGAAACAAAGCGTTTCACTCT  |       |
| CTCGTGAATCCCAGAATAAGAATCCCTGCGCTGATTCAGAAAGTTCACGG  | 200   |
| TATCAGCAACATGGACATCGTGGAAGCGCCAGACATGGACACAGTTTACG  |       |
| ATCTTTTCAGGGATTACGTGAAGGGAACGGTGCTCGTGTTTCACAACGCC  | 300   |
| AACTTCGACCTCACTTTTCTGGATATGATGGCAAAGGAAACGGGAAACTT  |       |
| TCCAATAACGAATCCCTACATCGACACACTCGATCTTTCAGAAGAGATCT  | 400   |
| TTGGAAGGCCTCATTCTCTCAAATGGCTCTCCGAAAGACTTGGAATAAAA  |       |
| ACCACGATACGGCACCGTGCTCTTCCAGATGCCCTGGTGACCGCAAGAGT  | 500   |
| TTTTGTGAAGCTTGTTGAATTTCTTGGTGAAAACAGGGTCAACGAATTCA  |       |
| TACGTGGAAAACGGGGG                                   | ່ 567 |
|                                                     |       |

# FIG. 56

| MLAMIWNDIVFCVVDIETIGIDPFAGDRIVETAAVPVFKGKIYRNKAFHS   |     |
|------------------------------------------------------|-----|
| LVNPRIRIPALIQKVHGISNMDIVEAPDMDTVYDLFRDYVKGTVLVFHNA 1 | 100 |
| NFDLTFLDMMAKETGNFPITNPYIDTLDLSEEIFGRPHSLKWLSERLGIK   |     |
| TTIRHRALPDALVTARVFVKLVEFLGENRVNEFIRGKRG 1            | 189 |

#### 65/83

| GTGGAAGTTCTTTACAGGAAGTACAGGCCAAAGACTTTTTCTGAGGTTGT |      |
|----------------------------------------------------|------|
| CAATCAGGATCATGTGAAGAAGGCAATAATCGGTGCTATTCAGAAGAACA | 100  |
| GCGTGGCCCACGGATACATATTCGCCGGTCCGAGGGGAACGGGGAAGACT |      |
| ACTCTTGCCAGAATTCTCGCAAAATCCCTGAACTGTGAGAACAGAAAGGG | 200  |
| AGTTGAACCCTGCAATTCCTGCAGAGCCTGCAGAGAGATAGACGAGGGAA |      |
| CCTTCATGGACGTGATAGAGCTCGACGCGGCCTCCAACAGAGGAATAGAC | 300  |
| GAGATCAGAAGAATCAGAGACGCCGTTGGATACAGGCCGATGGAAGGTAA |      |
| ATACAAAGTCTACATAATAGACGAAGTTCACATGCTCACGAAAGAAGCCT | 400  |
| TCAACGCGCTCCTCAAAACACTCGAAGAACCTCCTTCCCACGTCGTGTTC |      |
| GTGCTGGCAACGACAAACCTTGAGAAGGTTCCTCCCACGATTATCTCGAG | 500  |
| ATGTCAGGTTTTCGAGTTCAGAAACATTCCCGACGAGCTCATCGAAAAGA | •    |
| GGCTCCAGGAAGTTGCGGAGGCTGAAGGAATAGAGATAGACAGGGAAGCT | 600  |
| CTGAGCTTCATCGCAAAAAGAGCCTCTGGAGGCTTGAGAGACGCGCTCAC |      |
| CATGCTCGAGCAGGTGTGGAAGTTCTCGGAAGGAAAGATAGAT        | 700  |
| CGGTACACAGGCCCTCGGGTTGATACCGATACAGGTTGTTCGCGATTAC  |      |
| GTGAACGCTATCTTTTCTGGTGATGTGAAAAGGGTCTTCACCGTTCTCGA | 800  |
| CGACGTCTATTACAGCGGGAAGGACTACGAGGTGCTCATTCAGGAAGCAG |      |
| TCGAGGATCTGGTCGAAGACCTGGAAAGGGAGAGAGGGGTTTACCAGGTT | 900  |
| TCAGCGAACGATATAGTTCAGGTTTCGAGACAACTTCTGAATCTTCTGAG |      |
| AGAGATAAAGTTCGCCGAAGAAAAACGACTCGTCTGTAAAGTGGGTTCGG | 1000 |
| CTTACATAGCGACGAGGTTCTCCACCACAAACGTTCAGGAAAACGATGTC |      |
| AGAGAAAAAACGATAATTCAAATGTACAGCAGAAAGAAGAAGAAAAAA   | 1100 |
| AACGGTGAAGGCAAAAGAAGAAAAACAGGAAGACAGCGAGTTCGAGAAAC |      |
| GCTTCAAAGAACTCATGGAAGAACTGAAAGAAAAGGGCGATCTCTATC   | 1200 |
| TTTGTCGCTCTCAGCCTCTCAGAGGTGCAGTTTGACGGAGAAAAGGTGAT |      |
| TATTTCTTTTGATTCATCGAAAGCTATGCATTACGAGTTGATGAAGAAAA | 1300 |
| AACTGCCTGAGCTGGAAAACATTTTTTCTAGAAAACTCGGGAAAAAAGTA |      |
| GAAGTTGAACTTCGACTGATGGGAAAAGAAGAACAATCGAGAAGGTTTC  | 1400 |
| TCAGAAGATCCTGAGATTGTTTGAACAGGAGGGA                 |      |

| MEVLYRKYRPKTFSEVVNQDHVKKAIIGAIQKNSVAHGYIFAGPRGTGKT |     |
|----------------------------------------------------|-----|
| TLARILAKSLNCENRKGVEPCNSCRACREIDEGTFMDVIELDAASNRGID | 100 |
| EIRRIRDAVGYRPMEGKYKVYIIDEVHMLTKEAFNALLKTLEEPPSHVVF |     |
| VLATTNLEKVPPTIISRCQVFEFRNIPDELIEKRLQEVAEAEGIEIDREA | 200 |
| LSFIAKRASGGLRDALTMLEQVWKFSEGKIDLETVHRALGLIPIQVVRDY |     |
| VNAIFSGDVKRVFTVLDDVYYSGKDYEVLIQEAVEDLVEDLERERGVYQV | 300 |
| SANDIVQVSRQLLNLLREIKFAEEKRLVCKVGSAYIATRFSTTNVQENDV |     |
| REKNDNSNVQQKEEKKETVKAKEEKQEDSEFEKRFKELMEELKEKGDLSI | 400 |
| FVALSLSEVQFDGEKVIISFDSSKAMHYELMKKKLPELENIFSRKLGKKV |     |
| EVELRLMGKEETIEKVSQKILRLFEQEG                       | 478 |
|                                                    |     |

#### 66/83

| TTTTCGAAGTGAAAGATGGAAATTTCTACATCTGCGCGACCGATCTCGAG ACCGGAGTCAAAGCAACCGTGAATGCCGCTGAAATCTCCGGTGAGGCACG TTTTGTGGTACCAGGAGATGTCATTCAGAAGATGGTCAAGGTTCTCCCAG ATGAGATAACGGAACTTTCTTTAGAGGGGGATGCTCTTTGTTATAAGTTCT GGAAGCACCGTTTTCAGGATCACCACCATGCCCGCGGACGAATTTCCAGA GATAACGCCTGCCGAGTCTGGAATAACCTTCGAAGTTGACACTTCGCTCC TCGAGGAAATCTGAAAAGGTCATCTTCGCCGCTGCCAAAGACGAGTTC ATGCGAAATCTGAATGGAGTTTCTGGGAACTCCACAAGAATCTTCTCAG GCTGGTTGCAAGTGATGGTTTCAGACTTGCACTTGCTGAAGAGCAGATAG AAAACGAGGAAGAGGCGAGTTTCTTGCTCTCTTTTGAAGAGCAGTAAAAACGAGGTA CGATGGAAGAGGGTTTCTCTGTCGACAAATGATGTAGAAAACGGTGATGA CGATGGACGCTGAATTTCCCGATTACAAAAGGGTGATCCCCGAAACT TTCAAAACGAAAGTGGTTGTCCAGAAAAAGAACTCAGGGAATCTTTGAA GAGGGTGATGGTGATTCCCAGAAAAAGAACTCAGGGAATTCTTAAA GAGGGTGATGGTGATTCCAGAAAAAGAACTCAGGGAATTCTTTGAA GAGGGTGATGGTGATTCCAGCAAAAGAACCCGGATTCCAAAA TAGAAGAAAACGTTATGAGACTTGTGAGCAAGAGCCCGGATTATGGAGAA GTGGTCGATGAAGTTGAAGATTCCAAAAAGGGGGAAGTCCCGTGAAGTTCGAAA TAGAAGAAAACGTTATGAGACTTGTGAGCAAGAGCCCGGATTATGGAGAA GTGGTCGATGAAGTTGAAGATTCAAAAAGAAGACCCCGGATTATGGAGAA TAGAAGAAAACGTTATGAAGACTTCAAAAAGGGGGAAGATCCCCGTGAACTCGCC |                                                     |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------|
| TTTTCGAAGTGAAAGATGGAAATTTCTACATCTGCGCGACCGATCTCGAG ACCGGAGTCAAAGCAACCGTGAATGCCGCTGAAATCTCCGGTGAGGCACG TTTTGTGGTACCAGGAGATGTCATTCAGAAGATGGTCAAGGTTCTCCCAG ATGAGATAACGGAACTTTCTTTAGAGGGGGATGCTCTTGTTATAAGTTCT GGAAGCACCGTTTTCAGGATCACCACCATGCCCGCGGACGAATTTCCAGA GATAACGCCTGCCGAGTCTGGAATAACCTTCGAAGTTGACACTTCGCTCC TCGAGGAAATCGTGAAAAAGGTCATCTTCGCCGCTGCCAAAGACGAGTTC ATGCGAAATCTGAATGGAGTTTTCTGGGAACTCCACAAGAATCTTCTCAG GCTGGTTGCAAGTGGTTTCAGACTTGCACTTGCTGAAGACAGATAG AAAACGAGGAAGAGGCGAGTTCTTTGCTCTCTTTTGAAGAGACAGAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATGAAAGTAACCGTCACGACTCTTGAATTGAAAGACAAAATAACCATCGC  |      |
| ACCGGAGTCAAAGCAACCGTGAATGCCGCTGAAATCTCCGGTGAGGCACG TTTTGTGGTACCAGGAGATGTCATTCAGAAGATGGTCAAGGTTCTCCAG ATGAGATAACGGAACTTTCTTTAGAGGGGGATGCTCTTGTTATAAGTTCT GGAAGCACCGTTTTCAGGATCACCACCATGCCCGCGGACGAATTTCCAGA GATAACGCCTGCCGAGTCTGGAATAACCTTCGAAGTTGACACTTCGCTCC TCGAGGAAATCTGAAAAGGTCATCTTCGCCGCTGCCAAAGACGAGTTC ATGCGAAATCTGAATGGAGTTTCTGGGAACTCCACAAGAATCTTCTCAG GCTGGTTGCAAGTGGTTTCAGACTTGCACTTGCTGAAGAGCAGATAG AAAACGAGGAAGAGGCGAGTTTCTTGCTCTCTTTGAAGAGCAGAGAA GTTCAAAACGTGCTGGACAACACACACGGAGCCGACTATAACGGTGATGA CGATGGACGACGTTTCTCTGTCGACAAATGATGTAGAAACGGTGATGA GAGTGGTCGACGCTGAATTTCCCGATTACAAAAGGGTGATCCCCGAAACT TTCAAAACGAAAGTGGTTGTTCCAGAAAAAGAACTCAGGGAATCTTTGAA GAGGGTGATGGTGATTCCAGCAAGAGCCCGGATTATGAAA TAGAAGAAAACGTTATGAGACTTGTGAGCCAGGAAGTCCCGTGATCGC TTTCAACCCCGAAGTTCATCAAAAAGAAGACCCCGGATTATGGAGAA 1000  200                                                                                                                                                                                                                                                                           | CTCAAAAGCGCTCGCAAAGAAATCCGTGAAACCCATTCTTGCTGGATTTC  | 100  |
| TTTTGTGGTACCAGGAGATGTCATTCAGAAGATGGTCAAGGTTCTCCCAG ATGAGATAACGGAACTTTCTTTAGAGGGGGGATGCTCTTGTTATAAGTTCT GGAAGCACCGTTTTCAGGATCACCACCATGCCCGCGGACGAATTTCCAGA GATAACGCCTGCCGAGTCTGGAATAACCTTCGAAGATTGACACTTCGCTCC TCGAGGAAATCGTAGAAAAGGTCATCTTCGCCGCTGCCAAAGACGAGTTC ATGCGAAATCTGAATGGAGTTTCTGGGAACTCCACAAGAATCTTCTCAG GCTGGTTGCAAGTGATGGTTTCAGACTTGCACTTGCTGAAGAGCAGATAG AAAACGAGGAGAGAGGCGAGTTTCTTGCTCTCTTTTGAAGAGCAGATAG GTTCAAAACGTGCTGGACAACAACGAGAGCCGACTATAACGGTGAGAA GAGTGGTCGACGCTGAATTTCCCGATTACAAAAGGGTGATCCCCGAAACT TTCAAAACGAAAGTGGTGTTTCCAGAAAAAGAACTCAGGGAATCTTTGAA GAGGGTGATGGTGATTTCCCGATTACAAAAGGGTGATCCCCGAAACT TTCAAAACGAAAGTGGTGGTTTCCAGAAAAAGAACTCAGGGAATCTTTGAA GAGGGTGATGGTGATTGCCAGCAAGGGAAGCCCGGATTATGAAAA TAGAAGAAAACGTTATGAGACTTGTGAGCAAGAGCCCGGATTATGGAGAA GTGGTCGATGAAGTTCAAAAAGAAGAGCCCGGATTATGAGAA GTGGTCGATGAAGTTCAAAAAGAAGAGCCCCGGATTATGAGAA GTGGTCGATGAAGTTCAAAAAGAAGAAGCCCCGGATTATGAGAA TAGAACCCCGAAGTTCATCAAAAAGAAGAACCCCTGAAGTTCGCC TTTCAACCCCGAAGTTCATCGAGGCACGTTTTTGAAGCCCTGAAGTTCCCC TTTCAACCCCGAAGTTCATCGAGGCACGTTTTTGAAGCCACATTGAGACTTCAAAA                       | TTTTCGAAGTGAAAGATGGAAATTTCTACATCTGCGCGACCGATCTCGAG  |      |
| ATGAGATAACGGAACTTTCTTTAGAGGGGGGATGCTCTTGTTATAAGTTCT GGAAGCACCGTTTTCAGGATCACCACCATGCCCGCGGACGAATTTCCAGA GATAACGCCTGCCGAGTCTGGAATAACCTTCGAAGTTGACACTTCGCTCC TCGAGGAAATGGTTGAAAAGGTCATCTTCGCCGCTGCCAAAGACGAGTTC ATGCGAAATCTGAATGGAGTTTCTGGGAACTCCACAAGAATCTTCTCAG GCTGGTTGCAAGTGATGGTTTCAGACTTGCACTTGCTGAAGAGCAGATAG AAAACGAGGAAGAGGCGAGTTTCTTGCTCTCTTTTGAAGAGACAACACAAAAACGTGCTGGACAACACAACGAGGCCGACTATAACGGTGAAGAA GTTCAAAAACGTGCTGGACAACACAAAAGAATGATGTAGAAAACGGTGATGA CGATGGAAGAAGGGTTTCTCTGTCGACAAATGATGTAGAAACGGTGATGA GAGTGGTCGACGCTGAATTTCCCGATTACAAAAGGGTGATCCCCGAAACT TTCAAAACGAAAGTGGTGGTTTCCAGAAAAAGAACTCAGGGAATCTTTGAA GAGGGTGATGGTGATTGCCAGCAAGGGAAGCCCGGATTATGGAGAA TAGAAGAAAACGTTATGAGACTTGTGAGCAAGAGCCCGGATTATGGAGAA GTGGTCGATGAAGTTCAAAAAAGAAGAGGGGAAGATCTCGTGATCGC TTTCAACCCGAAGTTCATCGAGGACGTTTTGAAGCACATTGAGACTGAAG 1000                                                                                                                                                                                                                                                               | ACCGGAGTCAAAGCAACCGTGAATGCCGCTGAAATCTCCGGTGAGGCACG  | 200  |
| GGAAGCACCGTTTTCAGGATCACCACCATGCCCGCGGACGAATTTCCAGA GATAACGCCTGCCGAGTCTGGAATAACCTTCGAAGTTGACACTTCGCTCC TCGAGGAAATGGTTGAAAAGGTCATCTTCGCCGCTGCCAAAGACGAGTTC ATGCGAAATCTGAATGGAGTTTTCTGGGGAACTCCACAAGAATCTTCTCAG GCTGGTTGCAAGTGATGGTTTCAGACTTGCACTTGCTGAAGAGCAGATAG AAAACGAGGAAGAGGCGAGTTTCTTGCTCTCTTTTGAAGAGCATGAAAGAA GTTCAAAACGTGCTGGACAACACAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TTTTGTGGTACCAGGAGATGTCATTCAGAAGATGGTCAAGGTTCTCCCAG  |      |
| GATAACGCCTGCCGAGTCTGGAATAACCTTCGAAGTTGACACTTCGCTCC TCGAGGAAATGGTTGAAAAGGTCATCTTCGCCGCTGCCAAAGACGAGTTC ATGCGAAATCTGAATGGAGTTTTCTGGGAACTCCACAAGAATCTTCTCAG GCTGGTTGCAAGTGATGGTTTCAGACTTGCACTTGCTGAAGAGCAGATAG AAAACGAGGAAGAGGCGAGTTTCTTGCTCTCTTTTGAAGAGACACACAAAAAACGAGGAAAACGTGCTGGACAACACAAACGGAGCCGACTATAACGGTGAAGAA CGATGGAAGAAGGGTTTCTTGTCGACAAATGATGTAGAAACGGTGATGA CGATGGAAGAAGGGTTTCCTGTCGACAAATGATGTAGAAACGGTGATGA GAGTGGTCGACGCTGAATTTCCCGATTACAAAAGGGTGATCCCCGAAACT TTCAAAAACGAAAGTGGTGGTTTCCAGAAAAAGAACTCAGGGAATCTTTGAA GAGGGTGATGGTGATTGCCAGCAAGGGAAGCCAGTCCGTGAAGTTCGAAA TAGAAGAAAAACGTTATGAGACTTGTGAGCAAGAGCCCGGATTATGGAGAA GTGGTCGATGAAGTTCAAAAAAGAAGAGGGGAAGATCTCGTGATCGC TTTCAACCCGAAGTTCATCGAGGACGTTTTGAAGCACATTGAGACTGAAG 1000                                                                                                                                                                                                                                                                                                                                                         | ATGAGATAACGGAACTTTCTTTAGAGGGGGGATGCTCTTGTTATAAGTTCT | 300  |
| TCGAGGAAATGGTTGAAAAGGTCATCTTCGCCGCTGCCAAAGACGAGTTC ATGCGAAATCTGAATGGAGTTTTCTGGGAACTCCACAAGAATCTTCTCAG GCTGGTTGCAAGTGATGGTTTCAGACTTGCACTTGCTGAAGAGCAGATAG AAAACGAGGAAGAGGCGAGTTTCTTGCTCTCTTTGAAGAGCAGTAAAAACGTGCTGGACAACACAACGGAGCCGACTATAACGGTGAGGTA CGATGGAAGAAGGGTTTCTCTGTCGACAAATGATGTAGAAACGGTGATGA GAGTGGTCGACGCTGAATTTCCCGATTACAAAAGGGTGATCCCCGAAACT TTCAAAACGAAAGTGGTGGTTTCCAGAAAAAGAACTCAGGGAATCTTTGAA GAGGGTGATGGTGATTGCCAGCAAGGGAAGCCCGGATTATGGAGAA TAGAAGAAAACGTTATGAGACTTGTGAGCAAGAGCCCGGATTATGGAGAA GTGGTCGATGAAGTTCAAAAAAGAAGAGCCCCGGATTATGGAGAA GTGGTCGATGAAGTTCAAAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GGAAGCACCGTTTTCAGGATCACCACCATGCCCGCGGACGAATTTCCAGA  |      |
| ATGCGAAATCTGAATGGAGTTTTCTGGGAACTCCACAAGAATCTTCTCAG GCTGGTTGCAAGTGATGGTTTCAGACTTGCACTTGCTGAAGAGCAGATAG AAAACGAGGAAGAGGCGAGTTTCTTGCTCTCTTTTGAAGAGCAGATAG GTTCAAAACGTGCTGGACAACACAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GATAACGCCTGCCGAGTCTGGAATAACCTTCGAAGTTGACACTTCGCTCC  | 400  |
| GCTGGTTGCAAGTGATGGTTTCAGACTTGCACTTGCTGAAGAGCAGATAG AAAACGAGGAAGAGCGAGTTTCTTGCTCTCTTTTGAAGAGCATGAAAGAA GTTCAAAACGTGCTGGACAACACAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TCGAGGAAATGGTTGAAAAGGTCATCTTCGCCGCTGCCAAAGACGAGTTC  |      |
| AAAACGAGGAAGAGGCGAGTTTCTTGCTCTCTTTTGAAGAGCATGAAAGAA GTTCAAAACGTGCTGGACAACACAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATGCGAAATCTGAATGGAGTTTTCTGGGAACTCCACAAGAATCTTCTCAG  | 500  |
| GTTCAAAACGTGCTGGACAACACAACGGAGCCGACTATAACGGTGAGGTA CGATGGAAGAAGGGTTTCTCTGTCGACAAATGATGTAGAAACGGTGATGA GAGTGGTCGACGCTGAATTTCCCGATTACAAAAGGGTGATCCCCGAAACT TTCAAAACGAAAGTGGTGGTTTCCAGAAAAGAACTCAGGGAATCTTTGAA GAGGGTGATGGTGATTGCCAGCAAGGGAAGCCAGTCCGTGAAGTTCGAAA TAGAAGAAAACGTTATGAGACTTGTGAGCAAGAGCCCGGATTATGGAGAA GTGGTCGATGAAGTTCAAAAAAGAAGGGGAAGATCTCGTGATCGC TTTCAACCCGAAGTTCATCGAGGACGTTTTGAAGCACATTGAGACTGAAG 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GCTGGTTGCAAGTGATGGTTTCAGACTTGCACTTGCTGAAGAGCAGATAG  |      |
| CGATGGAAGAAGGGTTTCTCTGTCGACAAATGATGTAGAAACGGTGATGA GAGTGGTCGACGCTGAATTTCCCGATTACAAAAGGGTGATCCCCGAAACT TTCAAAACGAAAGTGGTGGTTTCCAGAAAAGAACTCAGGGAATCTTTGAA GAGGGTGATGGTGATTGCCAGCAAGGGAAGCCGAGTCCGTGAAGTTCGAAA TAGAAGAAAACGTTATGAGACTTGTGAGCAAGAGCCCGGATTATGGAGAA GTGGTCGATGAAGTTCAAAAAAGAAGGGGAAGATCTCGTGATCGC TTTCAACCCGAAGTTCATCGAGGACGTTTTGAAGCACATTGAGACTGAAG 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AAAACGAGGAAGAGCGAGTTTCTTGCTCTCTTTGAAGAGCATGAAAGAA   | 600  |
| GAGTGGTCGACGCTGAATTTCCCGATTACAAAAGGGTGATCCCCGAAACT TTCAAAACGAAAGTGGTGGTTTCCAGAAAAGAACTCAGGGAATCTTTGAA 800 GAGGGTGATGGTGATTGCCAGCAAGGGAAGCCGAGTCCGTGAAGTTCGAAA TAGAAGAAAACGTTATGAGACTTGTGAGCAAGAGCCCGGATTATGGAGAA 900 GTGGTCGATGAAGTTCAAAAAAGAAGGGGAAGATCTCGTGATCGC TTTCAACCCGAAGTTCATCGAGGACGTTTTGAAGCACATTGAGACTGAAG 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GTTCAAAACGTGCTGGACAACACAACGGAGCCGACTATAACGGTGAGGTA  |      |
| TTCAAAACGAAAGTGGTGGTTTCCAGAAAAGAACTCAGGGAATCTTTGAA GAGGGTGATGGTGATTGCCAGCAAGGGAAGCCGAGTCCGTGAAGTTCGAAA TAGAAGAAAACGTTATGAGACTTGTGAGCAAGAGCCCGGATTATGGAGAA GTGGTCGATGAAGTTCAAAAAAGAAGGGGAAGATCTCGTGATCGC TTTCAACCCGAAGTTCATCGAGGACGTTTTGAAGCACATTGAGACTGAAG 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CGATGGAAGAAGGGTTTCTCTGTCGACAAATGATGTAGAAACGGTGATGA  | 700  |
| GAGGGTGATGGTGATTGCCAGCAAGGGAAGCGAGTCCGTGAAGTTCGAAA TAGAAGAAAACGTTATGAGACTTGTGAGCAAGAGCCCGGATTATGGAGAA 900 GTGGTCGATGAAGTTGAAGTTCAAAAAAGAAGGGGAAGATCTCGTGATCGC TTTCAACCCGAAGTTCATCGAGGACGTTTTGAAGCACATTGAGACTGAAG 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GAGTGGTCGACGCTGAATTTCCCGATTACAAAAGGGTGATCCCCGAAACT  |      |
| TAGAAGAAAACGTTATGAGACTTGTGAGCAAGAGCCCGGATTATGGAGAA 900<br>GTGGTCGATGAAGTTCAAAAAAGAAGGGGAAGATCTCGTGATCGC<br>TTTCAACCCGAAGTTCATCGAGGACGTTTTGAAGCACATTGAGACTGAAG 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TTCAAAACGAAAGTGGTGGTTTCCAGAAAAGAACTCAGGGAATCTTTGAA  | 800  |
| GTGGTCGATGAAGTTCAAAAAGAAGGGGAAGATCTCGTGATCGC TTTCAACCCGAAGTTCATCGAGGACGTTTTGAAGCACATTGAGACTGAAG 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GAGGGTGATGGTGATTGCCAGCAAGGGAAGCGAGTCCGTGAAGTTCGAAA  |      |
| TTTCAACCCGAAGTTCATCGAGGACGTTTTGAAGCACATTGAGACTGAAG 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TAGAAGAAAACGTTATGAGACTTGTGAGCAAGAGCCCGGATTATGGAGAA  | 900  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GTGGTCGATGAAGTTGAAGTTCAAAAAGAAGGGGGAAGATCTCGTGATCGC |      |
| AAATCGAAATGAACTTCGTTGATTCTACCAGTCCATGTCAGATAAATCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TTTCAACCCGAAGTTCATCGAGGACGTTTTGAAGCACATTGAGACTGAAG  | 1000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AAATCGAAATGAACTTCGTTGATTCTACCAGTCCATGTCAGATAAATCCA  |      |
| CTCGATATTTCTGGATACCTTTACATAGTGATGCCCATCAGACTGGCA 1098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CTCGATATTTCTGGATACCTTTACATAGTGATGCCCATCAGACTGGCA    | 1098 |

# FIG. 60

| MKVTVTTLELKDKITIASKALAKKSVKPILAGFLFEVKDGNFYICATDLE |     |
|----------------------------------------------------|-----|
| TGVKATVNAAEISGEARFVVPGDVIQKMVKVLPDEITELSLEGDALVISS | 100 |
| GSTVFRITTMPADEFPEITPAESGITFEVDTSLLEEMVEKVIFAAAKDEF |     |
| MRNLNGVFWELHKNLLRLVASDGFRLALAEEQIENEEEASFLLSLKSMKE | 200 |
| VQNVLDNTTEPTITVRYDGRRVSLSTNDVETVMRVVDAEFPDYKRVIPET |     |
| FKTKVVVSRKELRESLKRVMVIASKGSESVKFEIEENVMRLVSKSPDYGE | 300 |
| VVDEVEVQKEGEDLVIAFNPKFIEDVLKHIETEEIEMNFVDSTSPCQINP |     |
| LDISGYLYIVMPIRLA                                   | 366 |

#### 67/83

| ATGCCAGTCACGTTTCTCACAGGTACTGCAGAAACTCAGAAGGAAG      |     |
|-----------------------------------------------------|-----|
| GATAAAGAAACTCCTGAAGGATGGTAACGTGGAGTACATAAGGATCCATC  | 100 |
| CGGAGGATCCCGACAAGATCGATTTCATAAGGTCTTTACTCAGGACAAAG  |     |
| ACGATCTTTTCCAACAAGACGATCATTGACATCGTCAATTTCGATGAGTG  | 200 |
| GAAAGCACAGGAGCAGAAGCGTCTCGTTGAACTTTTGAAAAAACGTACCGG |     |
| AAGACGTTCATATCTTCATCCGTTCTCAAAAAACAGGTGGAAAGGGAGTA  | 300 |
| GCGCTGGAGCTTCCGAAGCCATGGGAAACGGACAAGTGGCTTGAGTGGAT  |     |
| AGAAAAGCGCTTCAGGGAGAATGGTTTGCTCATCGATAAAGATGCCCTTC  | 400 |
| AGCTGTTTTTCTCCAAGGTTGGAACGAACGACCTGATCATAGAAAGGGAG  |     |
| ATTGAAAAACTGAAAGCTTATTCCGAGGACAGAAAGATAACGGTAGAAGA  | 500 |
| CGTGGAAGAGGTCGTTTTTACCTATCAGACTCCGGGATACGATGATTTTT  |     |
| GCTTTGCTGTTTCCGAAGGAAAAAGGAAGCTCGCTCACTCTCTTCTGTCG  | 600 |
| CAGCTGTGGAAAACCACAGAGTCCGTGGTGATTGCCACTGTCCTTGCGAA  |     |
| TCACTTCTTGGATCTCTTCAAAATCCTCGTTCTTGTGACAAAGAAAAGAT  | 700 |
| ACTACACCTGGCCTGATGTCTCCAGGGTGTCCAAAGAGCTGGGAATTCCC  |     |
| GTTCCTCGTGTGGCTCGTTTCCTCGGTTTCTCCTTTAAGACCTGGAAATT  | 800 |
| CAAGGTGATGAACCACCTCCTCTACTACGATGTGAAGAAGGTTAGAAAGA  |     |
| TACTGAGGGATCTCTACGATCTGGACAGAGCCGTGAAAAAGCGAAGAAGAT | 900 |
| CCAAAACCGTTCTTCCACGAGTTCATAGAAGAGGTGGCACTGGATGTATA  |     |
| TTCTCTTCAGAGAGAAGAA                                 | 972 |

## FIG. 62

| MPVTFLTGTAETOKEELIKKLLKDGNVEYIRIHPEDPDKIDFIRSLLRTK |     |
|----------------------------------------------------|-----|
| ~                                                  |     |
| TIFSNKTIIDIVNFDEWKAQEQKRLVELLKNVPEDVHIFIRSQKTGGKGV | 100 |
| ALELPKPWETDKWLEWIEKRFRENGLLIDKDALQLFFSKVGTNDLIIERE |     |
| IEKLKAYSEDRKITVEDVEEVVFTYQTPGYDDFCFAVSEGKRKLAHSLLS | 200 |
| QLWKTTESVVIATVLANHFLDLFKILVLVTKKRYYTWPDVSRVSKELGIP |     |
| VPRVARFLGFSFKTWKFKVMNHLLYYDVKKVRKILRDLYDLDRAVKSEED | 300 |
| PKPEFHEFTEEVALDVYSLORDEE                           |     |

#### 68/83

| ATGAACGATTTGATCAGAAAGTACGCTAAAGATCAACTGGAAACTTTGAA | Δ     |
|----------------------------------------------------|-------|
| AAGGATCATAGAAAAGTCTGAAGGAATATCCATCCTCATAAATGGAGAAG | 100   |
| ATCTCTCGTATCCGAGAGAAGTATCCCTTGAACTTCCCGAGTACGTGGAG | }     |
| AAATTTCCCCCGAAGGCCTCGGATGTTCTGGAGATAGATCCCGAGGGGG  | 200   |
| GAACATAGGCATAGACGACATCAGAACGATAAAGGACTTCCTGAACTACA | 7     |
| GCCCCGAGCTCTACACGAGAAAGTACGTGATAGTCCACGACTGTGAAAGA | 300   |
| ATGACCCAGCAGGCGCGAACGCGTTTCTGAAGGCCCCTTGAAGAACCACG | 2     |
| AGAATACGCTGTGATCGTTCTGAACACTCGCCGCTGGCATTATCTACTGC | 400   |
| CGACGATAAAGAGCCGAGTGTTCAGAGTGGTTGTGAACGTTCCAAAGGAC | 3     |
| TTCAGAGATCTCGTGAAAGAGAAAATAGGAGATCTCTGGGAGGAACTTCC | 500   |
| ACTTCTTGAGAGAGACTTCAAAACGGCTCTCGAAGCCTACAAACTTGGTC | 3     |
| CGGAAAAACTTTCTGGATTGATGGAAAGTCTCAAAGTTTTTGGAGACGGA | 4 600 |
| AAACTCTTGAAAAAGGTCCTTTCAAAAGGCCTCGAAGGTTATCTCGCATC | •     |
| TAGGGAGCTCCTGGAGAGATTTTCAAAGGTGGAATCGAAGGAATTCTTTC | 700   |
| CGCTTTTTGATCAGGTGACTAACACGATAACAGGAAAAGACGCGTTTCTT | -     |
| TTGATCCAGAGACTGACAAGAATCATTCTCCACGAAAACACATGGGAAAC |       |
| CGTTGAAGATCAAAAAAGCGTGTCTTTCCTCGATTCAATTCTCAGGGTG  | _     |
| AGATAGCGAATCTGAACAACAACTCACTCTGATGAACATCCTCGCGATA  | 900   |
| CACAGAGAGAGAAAGAGGTGTCAACGCTTGGAGC                 |       |

## FIG. 64

| MNDLIRKYAKDQLETLKRIIEKSEGISILINGEDLSYPREVSLELPEYVE |     |
|----------------------------------------------------|-----|
| KFPPKASDVLEIDPEGENIGIDDIRTIKDFLNYSPELYTRKYVIVHDCER | 100 |
| MTQQAANAFLKALEEPPEYAVIVLNTRRWHYLLPTIKSRVFRVVVNVPKE |     |
| FRDLVKEKIGDLWEELPLLERDFKTALEAYKLGAEKLSGLMESLKVLETE | 200 |
| KLLKKVLSKGLEGYLACRELLERFSKVESKEFFALFDQVTNTITGKDAFL |     |
| LIQRLTRIILHENTWESVEDKSVSFLDSILRVKIANLNNKLTLMNILAIH | 300 |
| RERKRGVNAWS                                        |     |

#### 69/83

| ATGTCTTTCTTCAACAAGATCATACTCATAGGAAGACTCGTGAGAGATCC |     |
|----------------------------------------------------|-----|
| CGAAGAGAGATACACGCTCAGCGGAACTCCAGTCACCACCTTCACCATAG | 100 |
| CGGTGGACAGGGTTCCCAGAAAGAACGCGCCGGACGACGCTCAAACGACT |     |
| GATTTCTTCAGGATCGTCACCTTTGGAAGACTGGCAGAGTTCGCTAGAAC | 200 |
| CTATCTCACCAAAGGAAGGCTCGTTCTCGTCGAAGGTGAAATGAGAATGA |     |
| GAAGATGGGAAACACCCACTGGAGAAAAGAGGGTATCTCCGGAGGTTGTC | 300 |
| GCAAACGTTGTTAGATTCATGGACAGAAAACCTGCTGAAACAGTTAGCGA |     |
| GACTGAAGAGGAGCTGGAAATACCGGAAGAAGACTTTTCCAGCGATACCT | 400 |
| ጥሮልርጥርል ልርልጥርል ልሮሮልሮሮልጥጥጥ                          |     |

### FIG. 66

MSFFNKIILIGRLVRDPEERYTLSGTPVTTFTIAVDRVPRKNAPDDAQTT DFFRIVTFGRLAEFARTYLTKGRLVLVEGEMRMRRWETPTGEKRVSPEVV ANVVRFMDRKPAETVSETEEELEIPEEDFSSDTFSEDEPPF

FIG. 67

100

### 70/83

| ATGCGTGTTCCCCCGCACAACTTAGAGGCCGAAGTTGCTGTGCTC  |            |
|------------------------------------------------|------------|
| CATATTGATAGATCCGTCGGTAATAAACGACGTTCTTGAAATTTT  |            |
| ACGAAGATTTCTATCTGAAAAAACACCAACACATCTTCAGAGCGA' | I'GGAA     |
| GAGCTTTACGACGAAGGAAAACCGGTGGACGTGGTTTCCGTCTGT  | GACAA 200  |
| GCTTCAAAGCATGGGAAAACTCGAGGAAGTAGGTGGAGATCTGGA  | AGTGG      |
| CCCAGCTCGCTGAGGCTGTGCCCAGTTCTGCACACGCACTTCACT  | ACGCG 300  |
| GAGATCGTCAAGGAAAAATCCATTCTGAGGAAACTCATTGAGATC' | ICCAG      |
| AAAAATCTCAGAAAGTGCCTACATGGAAGAAGATGTGGAGATCCT  | GCTCG 400  |
| ACAACGCAGAAAAGATGATCTTCGAGATCTCAGAGATGAAAACGA  | CAAAA      |
| TCCTACGATCATCTGAGAGGCATCATGCACCGGGTGTTTGAAAAC  | CTGGA 500  |
| GAACTTCAGGGAAAGAGCCAACCTTATAGAACCCGGTGTGCTCATA | AACGG      |
| GACTACCAACGGGATTCAAAAGTCTGGACAAACAGACCACAGGGT' | TCCAC 600  |
| AGCTCCGATCTGGTGATAATAGCAGCGAGACCCTCCATGGGAAAAA | ACCTC      |
| CTTCGCACTCTCAATAGCGAGGAACATGGCTGTCAATTTCGAAAT  | CCCCG 700  |
| TCGGAATATTCAGTCTCGAGATGTCCAAGGAACAGCTCGCTC     | GACTA      |
| CTCAGCATGGAGTCCGGTGTGGATCTTTACAGCATCAGAACAGGA' | TACCT 800  |
| GGATCAGGAGAAGTGGGAAAGACTCACAATAGCGGCTTCTAAACT  | CTACA      |
| AAGCACCCATAGTTGTGGACGATGAGTCACTCCTCGATCCGCGAT  | CGTTG 900  |
| AGGGCAAAAGCGAGAAGGATGAAAAAAGAATACGATGTAAAAGCC  | ATTTT      |
| TGTCGACTATCTCCAGCTCATGCACCTGAAAGGAAGAAAAGAAAG  | CAGAC 1000 |
| AGCAGGAGATATCCGAGATCTCGAGATCTCTGAAGCTCCTTGCGA  | GGGAA      |
| CTCGACATAGTGGTGATAGCGCTTTCACAGCTTTCGAGGGCCGTA  | GAACA 1100 |
| GAGAGAAGACAAAAGACCGAGGCTGAGTGACCTCAGGGAATCCGG' | IGCGA      |
| TAGAACAGGACGCAGACACAGTCATCTTCATCTACAGGGAGGAAT  | ATTAC 1200 |
| AGGAGCAAAAAATCCAAAGAGGAAAGCAAGCTTCACGAACCTCAC  | GAAGC      |
| TGAAATCATAATAGGTAAACAGAGAAACGGTCCCGTTGGAACGAT  | CACTC 1300 |
| TGATCTTCGACCCCAGAACGGTTACGTTCCATGAAGTCGATGTGG' | TGCAT      |
| TCA                                            | 1353       |
|                                                |            |

| MRVPPHNLEAEVAVLGSILIDPSVINDVLEILSHEDFYLKKHQHIFRAME |     |
|----------------------------------------------------|-----|
| ELYDEGKPVDVVSVCDKLQSMGKLEEVGGDLEVAQLAEAVPSSAHALHYA | 100 |
| EIVKEKSILRKLIEISRKISESAYMEEDVEILLDNAEKMIFEISEMKTTK |     |
| SYDHLRGIMHRVFENLENFRERANLIEPGVLITGLPTGFKSLDKQTTGFH | 200 |
| SSDLVIIAARPSMGKTSFALSIARNMAVNFEIPVGIFSLEMSKEQLAQRL |     |
| LSMESGVDLYSIRTGYLDQEKWERLTIAASKLYKAPIVVDDESLLDPRSL | 300 |
| RAKARRMKKEYDVKAIFVDYLQLMHLKGRKESRQQEISEISRSLKLLARE |     |
| LDIVVIALSQLSRAVEQREDKRPRLSDLRESGAIEQDADTVIFIYREEYY | 400 |
| RSKKSKEESKLHEPHEAEIIIGKQRNGPVGTITLIFDPRTVTFHEVDVVH |     |
| S                                                  | 451 |

## 71/83

| GTGATTCCTCGAGAGGTCATCGAGGAAATAAAAGAAAAG             |      |
|-----------------------------------------------------|------|
| AGAGGTCATTTCCGAGTACGTGAATCTTACCCGGGTAGGTTCCTCCTACA  | 100  |
| GGGCTCTCTGTCCCTTTCATTCAGAAACCAATCCTTCTTTCT          |      |
| CCGGGTTTGAAGATATACCATTGTTTCGGCTGCGGTGCGAGTGGAGACGT  | 200  |
| CATCAAATTTCTTCAAGAAATGGAAGGGATCAGTTTCCAGGAAGCGCTGG  |      |
| AAAGACTTGCCAAAAGAGCTGGGATTGATCTTTCTCTCTACAGAACAGAA  | 300  |
| GGGACTTCTGAATACGGAAAATACATTCGTTTGTACGAAGAAACGTGGAA  |      |
| AAGGTACGTCAAAGAGCTGGAGAAATCGAAAGAGGCAAAAGACTATTTAA  | 400  |
| AAAGCAGAGGCTTCTCTGAAGAAGATATAGCAAAGTTCGGCTTTGGGTAC  |      |
| GTCCCCAAGAGATCCAGCATCTCTATAGAAGTTGCAGAAGGCATGAACAT  | 500  |
| AACACTGGAAGAACTTGTCAGATACGGTATCGCGCTGAAAAAGGGTGATC  |      |
| GATTCGTTGATAGATTCGAAGGAAGAATCGTTGTTCCAATAAAGAACGAC  | 600  |
| AGTGGTCATATTGTGGCTTTTTGGTGGGCGTGCTCTCGGCAACGAAGAACC |      |
| GAAGTATTTGAACTCTCCAGAGACCAGGTATTTTTCGAAGAAGAAGACCC  | 700  |
| TTTTTCTCTTCGATGAGGCGAAAAAGTGGCAAAAGAGGTTGGTT        |      |
| GTCATCACCGAAGGCTACTTCGACGCGCTCGCATTCAGAAAGGATGGAAT  | 800  |
| ACCAACGGCGGTCGCTGTTCTTGGGGCGAGTCTTTCAAGAGAGGCGATTC  |      |
| TAAAACTTTCGGCGTATTCGAAAAACGTCATACTGTGTTTCGATAATGAC  | 900  |
| AAAGCAGGCTTCAGAGCCACTCTCAAATCCCTCGAGGATCTCCTAGACTA  |      |
| CGAATTCAACGTGCTTGTGGCAACCCCCTCTCCTTACAAAGACCCAGATG  | 1000 |
| AACTCTTTCAGAAAGAAGGAGAAGGTTCATTGAAAAAGATGCTGAAAAAC  |      |
| TCGCGTTCGTTCGAATATTTTCTGGTGACGGCTGGTGAGGTCTTCTTTGA  | 1100 |
| CAGGAACAGCCCCGCGGGTGTGAGATCCTACCTTTCTTTC            |      |
| GGGTCCAAAAGATGAGAAGGAAAGGATATTTGAAACACATAGAAAATCTC  | 1200 |
| GTGAATGAGGTTTCATCTTCTCTCCAGATACCAGAAAACCAGATTTTGAA  |      |
| CTTTTTTGAAAGCGACAGGTCTAACACTATGCCTGTTCATGAGACCAAGT  | 1300 |
| CGTCAAAGGTTTACGATGAGGGGAGAGGACTGGCTTATTTGTTTTTGAAC  |      |
| TACGAGGATTTGAGGGAAAAGATTCTGGAACTGGACTTAGAGGTACTGGA  | 1400 |
| AGATAAAAACGCGAGGGAGTTTTTCAAGAGAGTCTCACTGGGAGAAGATT  |      |
| TGAACAAAGTCATAGAAAACTTCCCAAAAGAGCTGAAAGACTGGATTTTT  | 1500 |
| GAGACAATAGAAAGCATTCCTCCTCCAAAGGATCCCGAGAAATTCCTCGG  |      |
| TGACCTCTCCGAAAAGTTGAAAATCCGACGGATAGAGAGACGTATCGCAG  | 1600 |
| AAATAGATGATATGATAAAGAAAGCTTCAAACGATGAAGAAAGGCGTCTT  |      |
| CTTCTCTCTTATGAAGTCTGCATCTCCTCAGAAAAAAAAA            | 1695 |

| MIPREVIEEIKEKVDIVEVISEYVNLTRVGSSYRALCPFHSETNPSFYVH PGLKIYHCFGCGASGDVIKFLQEMEGISFQEALERLAKRAGIDLSLYRTE GTSEYGKYIRLYEETWKRYVKELEKSKEAKDVLKSRGFSEDIAKFGFGY VPKRSSISIEVAEGMNITLEELVRYGIALKKGDRFVDRFEGRIVVPIKND SGHIVAFGGRALGNEEPKYLNSPETRYFSKKKTLFLFDEAKKVAKEVGFF VITEYFDALAFRKDGIPTAVAVLGASLSREAILKLSAYSKNVILCFDND KAGFRATLKSLEDLLDYEFNVLVATPSPYKDPDELFQKEGEGSLKKMLKN SRSFEYFLVTAGEVEFPORNSPAGVSYLSFLKGWVQKMRKGYLKHIENL VNEVSSSLQIPENQILNFFESDRSNTMPVHETKSSKVYDEGRGLAYLFLN YEDLREKILELDLEVLEDKNAREFFKRVSLGEDLNKVIENFPKELKDMIF ETIESIPPFKDPEKFLGDLSEKLKIRRIERRIAEIDDMIKKASNDEERRL LLSMKVDLLRKIKRR  **FIG. 71**  ATGGCTCTACACCCGGCTCACCCTGGGGCAATAATCGGGCACGAGGCCGT TCTCGCCCTCCTTCCCCGCCTCCCTCGGGGAGCCCTCGGGCCCCC CGAGGGGGTGGGGCGCGCCCCCCCCCC                                                                                                                                                                                                                                        |                                                       |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------|
| GTSEYGKYIRLYEETWKRYVKĒLEKSKEAKDYLKSRGFSEEDIAKFGFGY VPKRSSISIEVABGMNITLEELVRYGIALKKGDRFVDRFEGRIVVPIKND SGHIVAPGGRALGNEEPKYLINSPETRYFSKKRILFLFDEAKKVAKEVGFF VITEGYFDALAFRKDGIPTAVAVLGASLSREAILKLSAYSKNVILCFDND KAGFRATLKSLEDLLDYEFNVLVATFSPYKDPDELFÇKEEGSLKKMLKN SRSFEYTUVTAGEVFFDRNSPAGVRSYLSFLKGWVQKMRRKGYLKHEENL VNEVSSSLQIPENQILNFFESDRSNTMPVHETKSSKVYDEGRGLAYLFLN YEDLREKILELDLEVLEDKNAREFFKRVSLGEDLNKVIENFPKELKDWIF ETIESTPPPKDEEKFLGDLSEKLKIRRIERRIAEIDDMIKKASNDEERRL LLSMKVDLLRKIKRR  **FIG. 71**  ATGGCTCTACACCCGGCTCACCCTGGGGCAATAATCGGGCACGAGGCCGT TCTCGCCCTCCTTCCCCGCCTCCCTGGGGCACCAGCCCTCGAGGCCCCC CCGAGGGGGTGGGCGCACCGTGGCCCCGCTGGTACGCCTCGAG GGTGGGGCCCCTCCTTGGAGTGGGGACCACCGCACCTCCCAGA GGTGAGGGTGCCCCCCCCCC                                                                                                                                                                                                                                                      | MIPREVIEEIKEKVDIVEVISEYVNLTRVGSSYRALCPFHSETNPSFYVH    |       |
| VPKRSSISIEVAEGMNITLEELVRYGIALKKGDRFVDRFEGRIVVPIKND SGHIVAFGGRALGNEEPKYLNSPETRYFSKKKTLFLFDEAKKVAKEVGFF VITEGYPDALAFRKDGIPTAVAVLGASLSREATLKLSAYSKNVILCFDND KAGFRATLKSLEDLLDYEFNVLVATBSPYKDPDELFQKEGEGSLKKMLKN SRSFEYFLVTAGEVFFDRNSPAGVRSYLSFLKGWVQKMRRKGYLKHIENL VNEVSSSLQIPENQILNFFESDRSNTMPVHETKSSKVYDEGRGLAYLFIN YEDLREKILELDLEVLEDKNAREFFKRVSLGEDLNKVIEMFPKELKDWIF ETIESIPPPKDPEKFLGDLSEKLKIRRIERRIAEIDDMIKKASNDEERRL LLSMKVDLLRKIKRR  **FIG. 71**  ATGGCTCTACACCCGGCTCACCCCTGGGGCAATAATCGGGCACGAGGCCGT TCTCGCCCTCCTTCCCCGCCTCCCTGGGGCAATCATCGGCCCAGACCCTGGGGCTC AACGCGGGTTCCCCCGCCTCCCTGGGGCCGAGGTGCCCGC AGGGGGGGGGG                                                                                                                                                                                                                                                                                                                                                         | <del></del>                                           | 100   |
| SGHIVAFGGRALGNEEPKYLNSPETRYFSKKKTLFLFDEAKKVAKEVGFF VITEGYFDALAFRKDGIPTAVAVLGASLSREAILKLSAYSKNVILCFDND KAGFRATUKSLEDLDVEFNVLVATPSPYKDPDELFQKEGEGSLKKHLKN SRSFEYFLVTAGEVFFDRNSPAGVRSYLSFLKGWVQKMRKGYLKHIENL VNEVSSSLJIPENQILNFFESDRSNTMPVHETKSSKVYDEGRGLAYLFLN YEDLREKTLELDLEVLEDKNAREFFFKVSLGEDLNKVIENFPKELKDWIF ETIESIPPPKDPEKFLGDLSEKLKIRRIERRIAEIDDMIKKASNDEERRL LLSMKVDLLRKIKRR  ATGGCTCTACACCCGGCTCACCCTGGGGCAATAATCGGGCACGAGGCCGT TCTCGCCCTCCTTCCCCGGCCTCACCGCCAGACCCTGCTCTTCCCGGC CCGAGGGGTGGGCGCACCTCCCTGGGGCACCTTCCTCGA GGTGGGCCCAAGCCCTCCTCGGGGCCGAGCTCCTCAACGGCCCGGACCTTCCAACGGGCCCCCCGGACCTCCCAACGCCCAACGCCCCGGACCTCCCAACGGGCCGCCCCCCGGACCCTCCCCGGACCCTCCCAACGCCCCGGACCGCCCCCCGGACCCTCCCCGGACCCCCCGGACCCTCCCCGGACCCCCCGGACCCCCCCGGACCCCCCCGGACCCCCC                                                                                                                                                                                                                  |                                                       |       |
| VITEGYFDALAFRKDGIPTAVAVLGASLSREAILKLSAYSKNVILCFDND KAGFRATLKSLEDLLDYEFNVLVATFSPYKDPDELFQKEGGGIKKMLKN SRSFEYFLVTAGEVFFDRNSPAGVRSYLSFLKGWVQKMRKGYLKHIENL VNEVSSSLQIPENQILNFFESDRSNTMPVHETKSSKVYDEGRGLAYLFLN YEDLREKILELDLEVLEDKNAREFFKRVSLGEDLNKVIENFFKELKDWIF ETIESIPPKDPEKFLGDLSEKLKIRRIERRIAEIDDMIKKASNDEERRL LLSMKVDLLRKIKRR  FIG. 71  ATGGCTCTACACCCGGCTCACCCTGGGGCAATAATCGGGCACGAGGCCGT TCTCGCCCTCCTCCCGGCCTCACCCCGAGACCCTGCTCTTCCCGGCC CCGAGGGGGTGGGCGCGCCCCCCCGGCCCAGACCCTCCTCCAGGCCCAGGCCCCC CCGAGGGGTTCCCCCCGCCCTCCCTGGGGGAGCACCCCGGACGTCCTCAACCCGGGCCCAAGGCCCTCCTCGGGGCCCGGGCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                   |                                                       | 200   |
| RAGFRATLKSLEDLLDYEFNVLVATPSPYKDPDELFQKEGEGSLKKMLKN SRSFEYFLVTAGEVFFDRNSPAGVRSYLSFLKGWVQKMRRKGYLKHIENL VNEVSSSLQIPENQILMFFESDRSNTMPVHETKSSKVYDEGRGLAYLFLN YEDLREKILELDLEVLEDKNAREFFKRVSLGEDLNKVIENFPKELKDWIF ETIESIPPFKDPEKFLGDLSEKLKIRRIERRIAEIDDMIKKASNDEERRL LLSMKVDLLRKIKRR  FIG. 71  ATGGCTCTACACCCGGCTCACCCTGGGGCAATAATCGGGCACGAGGCCGT TCTCGCCCTCCTTCCCCGCCTCACGCCCAGACCCTGCTCTCTCCCGGC CCGAGGGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |       |
| SRSFEYFLVTAGEVFFDRNSPAGVRSYLSFLKGWVQKMRRKGYLKHIENL VNEVSSLQIFENQILNFFESDRSNTMPVHETKSSKYYDEGRGLAYLFILN SEDLEKKILELDLEVLEDKNAREFFKRVSLGEDLNKVILENPKELKKDWIF ETIESIPPKDPEKFLGDLSEKLKIRRIERRIAEIDDMIKKASNDEERRL LLSMKVDLLRKIKRR  FIG. 71  ATGGCTCTACACCCGGCTCACCCCTGGGGCAATAATCGGGCACGAGGCCGT TCTCGCCCTCCTTCCCCGCCTCACCGCCCAGACCCTGCTCTTCTCCCGGC CGAGGGGGTGGGGCGCACCGTGGCCCGCTGGTACGCCTGGGGCTC AACCGCGGCTTCCCCCGCCCTCCTGGGGGACCCCGGAGGTCCTGA AGGGGCCCAAGGCCCGGGACCTCCTGGGGGACCCCGGAGGCCGAGGTCCGGA GGGAGGTGGCCCCTCTTGGAGTGCCCCACCTCCTCACCGAGGCCGCG CTGAAGGTGGCCACTCTTGGACCACCTCCTCACCGAGGCCGCC CCACGGAGCTCCTCAAGCTCCTGGACCCCCTCCCCACCTTGGCCCCCC CCACGGAGGTGGCACTCCTCCCACCTCCTCACCGAGGCCCCC CCACGGAGGTGCCCACCTCCTCCCCACCTTGCCCCACCTCCCCACCTTCCCACCACCTCCCCGG CCACGGAGCCCCCAGGCCCCCCTCCCCCACCCTTGGCCCCCCCC                                                                                                                                                                             |                                                       | 300   |
| VNEVSSSLQIPENQILNFFESDRSNTMPVHETKSSKVYDEGRGLAYLFLN YEDLREKILELDLEVLEDKNAREFFKRVSLGEDLNKVIENFPKELKDWIF ETIESIPPPKDPEKFLGDLSEKLKIRRIERRIAEIDDMIKKASNDEERRL LLSMKVDLLRKIKRR  FIG. 71  ATGGCTCTACACCCGGCTCACCCTGGGGCAATAATCGGGCACGAGGCCGT TCTCGCCTCCTTCCCCGCCTCACCGCCCAAACCCTGCTCTTCTCCCGGCC CCGAGGGGTGGGCGGCCACCCTGGCCCTGGTACGCCTCGAA GGGGGTGGGGCGCCCCTCCCTGGGGAAGACCCTGGAGGCCGCC AACCGCGCCTACCCCCGCCCTCCCTGGGGAGACCCCCGGACGTCCTCAA GGTGGGGCCCAAGGCCCGGGACCCTCCGGGGCCGC CAACGCCCTCCTTGGAGTGGTTCCCACCCCCGGAACGCCCCCCCAAGGCCCCCCCAAGGCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                          | ······································                | 400   |
| YEDLREKITELDLEVLEDKNAREFFKRVSLGEDLNKVIENFPKELKDWIF ETIESIPPPKDPEKFLGDLSEKLKIRRIERRIAEIDDMIKKASNDEERRL LLSMKVDLLRKIKRR  FIG. 71  ATGGCTCTACACCCGGCTCACCCTGGGGCAATAATCGGGCACGAGGCCGT TCTCGCCCTCCTTCCCGGCCTCACCGCCAGACCCTGCTCTTCTCCGGCC CCGAGGGGGTGGGCCGCCCCCCGCCCCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~                                                     | 400   |
| TIESIPPKDPEKFLGDLSEKLKIRRIERRIAEIDDMIKKASNDEERRL LLSMKVDLLRKIKRR  FIG. 71  ATGGCTCTACACCCGGCTCACCCTGGGGCAATAATCGGGCACGAGGCCGT TCTCGCCCTCCTTCCCCGCCTCACCGCCAGACCCTGCTCTTCTCCCGGC CCGAGGGGGTGGGGCGCACCGTGGCCCGCTGGTACGCCTGGGGCCTC AACCGCGGCTTCCCCCCGCCCTCCCTGGGGACGCCTCGA GGTGGGGCCCAAGGCCCGCGCCTCCCTGGGGGACGCCTCGA AGGAGGTGGCGCCCTCCTTGGAGTGGCCCACCCCCGGAGCGCTCGA GGTGAAGGTGGCCCCTCTTGGAGTGGCCCACCCCCGGGACGC CAACGCCCTCCTCAAGCTCCTGGAGCAGCCCCCCCGGGACGC CAACGCCTCCTCAAGCTCCTGGAGCAGCCCCCCCCGGAGCGCC CACCCAGGACCCCCCAAGCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~                                                     | E 0 0 |
| FIG. 71  ATGGCTCTACACCCGGCTCACCCTGGGGCAATAATCGGGCACGAGGCCGT TCTCGCCCTCCTTCCCCGCCTCACCGCCCAGACCCTGCTCTTCTCCGGCC CCGAGGGGGTGGGGCGCACCCTGGCCCGCTTGTACGCCTTCTCCCGGCC AACCGCGGCTTCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       | 500   |
| ATGGCTCTACACCCGGCTCACCCTGGGGCAATAATCGGGCACGAGGCCGT TCTCGCCCTCCTTCCCCGCCTCACCGCCCAGACCCTGCTCTTCTCCGGCC CGAGGGGGTGGGGCGCACCCTGGCCCTGGTACCCCTGGGGGCTC AACCGCGGCTTCCCCCGCCCTCCCTGGGGGACCCCCGGACCCTCCAC GGTGGGCCCAAGGCCCGGACCTCCGGGGCCGCCCCCGGACCCCCCGGACGTCCCACCCCGGACGCCCCCCCGGACCCCCCGGACCCCCCGGACCGCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       | 565   |
| ATGGCTCTACACCCGGCTCACCCTGGGGCAATAATCGGGCACGAGGCCGT TCTCGCCCTCCTTCCCCGCCTCACCGCCCAGACCCTGCTCTTCTCCGGCC CCGAGGGGTGGGCGGCGCACCGTGGCCCCTGGTACGCCTGGGCCCCCAACCCCTGGGGGCTCC AACCGCGGCTTCCCCCGCCCTCCCTGGGGGACCCCGGACGTCCTCGA 200 GGTGGGGCCCAAGGCCCGGGACCTCCGGGGCCGAGGTGCGCCGC AGGAGGTGGCCCCCTCTTGGAGTGGTCCCAGCCACCCCGGGACGTC AGCAAGGTGGCCCCCTCTTGGAGTGGTCCCACCCCCGGAGCGC CAACGCCCTCCTCAAGCTCCTGGAGGAGGCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PPSMKADPPKKIVKK                                       | 565   |
| ATGGCTCTACACCCGGCTCACCCTGGGGCAATAATCGGGCACGAGGCCGT TCTCGCCCTCCTTCCCCGCCTCACCGCCCAGACCCTGCTCTTCTCCGGCC CCGAGGGGTGGGCGGCGCACCGTGGCCCCTGGTACGCCTGGGCCCCCAACCCCTGGGGGCTCC AACCGCGGCTTCCCCCGCCCTCCCTGGGGGACCCCGGACGTCCTCGA 200 GGTGGGGCCCAAGGCCCGGGACCTCCGGGGCCGAGGTGCGCCGC AGGAGGTGGCCCCCTCTTGGAGTGGTCCCAGCCACCCCGGGACGTC AGCAAGGTGGCCCCCTCTTGGAGTGGTCCCACCCCCGGAGCGC CAACGCCCTCCTCAAGCTCCTGGAGGAGGCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FIG 71                                                |       |
| TCTCGCCTTCCTTCCCGCCTCACCGCCCAGACCCTGCTCTTCTCCGGCC CCGAGGGGGTGGGCGCACCGTGGCCCGCTGGTACGCCTGGGGGCTC AACCGCGGCTTCCCCCGCCCTCCCTGGGGGACCCTCGA CGTGGGGCCCAAGGCCCGGACCTTCCGGGGCCGAGCGTCCTCGA CGTGGGGCCCAAGGCCCGGACCTCCGGGGCCGAGCTGCGCCTGG CGAGGGTGGCCCCTCTTGGAGTGGTCCCACCCCCCGGGAGCGC CAACGCCTCCTCAAGCTCCTGGACGACCCCCCGGAGCCCC CAACGCCTCCTCAAGCTCCTGGAGGAGCCCCCCTTCCTACGCCCGCATCG CCACGCCACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.10. 11                                              |       |
| TCTCGCCTTCCTTCCCGCCTCACCGCCCAGACCCTGCTCTTCTCCGGCC CCGAGGGGGTGGGCGCACCGTGGCCCGCTGGTACGCCTGGGGGCTC AACCGCGGCTTCCCCCGCCCTCCCTGGGGGACCCTCGA CGTGGGGCCCAAGGCCCGGACCTTCCGGGGCCGAGCGTCCTCGA CGTGGGGCCCAAGGCCCGGACCTCCGGGGCCGAGCTGCGCCTGG CGAGGGTGGCCCCTCTTGGAGTGGTCCCACCCCCCGGGAGCGC CAACGCCTCCTCAAGCTCCTGGACGACCCCCCGGAGCCCC CAACGCCTCCTCAAGCTCCTGGAGGAGCCCCCCTTCCTACGCCCGCATCG CCACGCCACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |       |
| TCTCGCCTTCCTTCCCGCCTCACCGCCCAGACCCTGCTCTTCTCCGGCC CCGAGGGGGTGGGCGCACCGTGGCCCGCTGGTACGCCTGGGGGCTC AACCGCGGCTTCCCCCGCCCTCCCTGGGGGACCCTCGA CGTGGGGCCCAAGGCCCGGACCTTCCGGGGCCGAGCGTCCTCGA CGTGGGGCCCAAGGCCCGGACCTCCGGGGCCGAGCTGCGCCTGG CGAGGGTGGCCCCTCTTGGAGTGGTCCCACCCCCCGGGAGCGC CAACGCCTCCTCAAGCTCCTGGACGACCCCCCGGAGCCCC CAACGCCTCCTCAAGCTCCTGGAGGAGCCCCCCTTCCTACGCCCGCATCG CCACGCCACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |       |
| TCTCGCCTTCCTTCCCGCCTCACCGCCCAGACCCTGCTCTTCTCCGGCC CCGAGGGGGTGGGCGCACCGTGGCCCGCTGGTACGCCTGGGGGCTC AACCGCGGCTTCCCCCGCCCTCCCTGGGGGACCCTCGA CGTGGGGCCCAAGGCCCGGACCTTCCGGGGCCGAGCGTCCTCGA CGTGGGGCCCAAGGCCCGGACCTCCGGGGCCGAGCTGCGCCTGG CGAGGGTGGCCCCTCTTGGAGTGGTCCCACCCCCCGGGAGCGC CAACGCCTCCTCAAGCTCCTGGACGACCCCCCGGAGCCCC CAACGCCTCCTCAAGCTCCTGGAGGAGCCCCCCTTCCTACGCCCGCATCG CCACGCCACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\lambda$ ጥርርር ጥርጥ እ ር እ ር ር ር ር ር ር ር ር ር ር ር ር      |       |
| CCGAGGGGTTGGGGCGCCACCGTGGCCGCTTGTACGCCTGGGGGCTC AACCGCGGCTTCCCCGCCCTCCCTGGGGGACACCCGGACGTCCTCGA CGTGGGGCCCAAGGCCCGGACCTCCTGGGGGCCGAGGTGCGGCTGG AGGAGGTGGCGCCCTCTTTGGAGTGTGCTCCACCCCCGGGAGCGC AGGAGGTGGCGCCCTCTTTGAGTGTGTTCCACCCACCCCCGGAGCGC CAACGCCCTCCTCAAGCTCCTCGACCCCCCCGCACCC CAACGCCCTCCTCAAGCTCCTGAAGCCCCCCCTTCCTCACCGCACCC CACCCAGGAGCTGCCCACCCTCCTCCCCACCCTTGCCCCACCC GCCACGGAGGTGGCATTCGCCCCCGTGCCCGAGGAGGCCCCCT CACCCAGGACCCGGAGCTCCTCCGCAGCCGCCCC CACCCAGGACCCGAGCTCCTCCGCAGCGGCCCC CCCTTAGGCCCTCCAGGACCCGCAGGGCCCCCTCCAGGCCCCC CCCTTAGGCCCTCCAGGACCCGCAGGGCCCCCCTGCAAGCCGCCCCCTGCAGGCCCCCTCCAGGCCGCCC GCGCAAAGGGTCCTCAAGACCCGCCCCTGGAGCCCCCCCTCCAACCCAGCGCCCTCCAAAAGCCCCCCCTCGAGCAGCGCCCCCTCCAAAAGCCCCCCCTGGAGCGCCCCTCCAAAAGCCCCCCCTGGAGCGCCCTCCAAAAGCCCCCCCTGGAGCGCCCTCCAAAAGCCCCCCCTGGAGCGCCCTCCAAAAGCCCCCCCTGGAGCGGCCCCTCCAAAAGCCCCCCCTCCAAAACCCCCCCC                                                                                                           |                                                       | 100   |
| AACCGCGGCTTCCCCGGCCTCCCTGGGGGAGCACCCGGACGTCCTCGA GGTGGGGCCCAAGGCCCGGGACCTCCGGGGCCGGGCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       | 100   |
| GGTTGGGCCCAAGGCCCGGGACCTCCGGGGCCGAGGTTGCGCTTGG AGGAGGTGGCGCCCCTCTTTGGAGTGGTCTCCAGCCACCCCCGGGAGCGG GTGAAGGTGGCCATCCTTGGACTCGGCCCACCTCCTCACCGAGGCCGCC CAACGCCCTCCTCAAGCTCCTGGAGGAGCCCCCTCCTCACCGAGGCCGCCC CAACGCCCTCCTCAAGCTCCTGGAGGAGCCCCCTTCCTACGCCCGCATCG TCCTCATCGCCCCAAGCCGCCCACCCTCCTCCCCACCCTGGCCTCCCGG GCCACGGAGGTGGCATTCGCCCCCGTGCCCGAGGAGCCCCTCCCGG CCACCGGAGCCCCGAGGACCCCTCCGCTACGCCCGGGCCCCC TCCTTAGGGCCCTCCAGGACCCGGAGGGGTACCGGGCCCCCGGCCCC TCCTTAGGGCCCTCCAGGACCCGGAGGGGTACCGGGCCCCCGGCCCC GCGCAAAGGGTCCTGAAAGCCCCGCCCTTGGAGCGCCCTCCACGCCTTTGCTTCG GGAGCTTTTGGCCGAGGAGGAGGAGGGGTCCACGCCCTCCACGCCGTCCTAA AGCGCCCGGAGCACCTCCTTGCCCTGGAGCGGCGCGGGAGGCCCTGGAG GGGTACGTGAGCCCCGAGCTGCTTAGACTTAGA FIG. 72  MALHPAHPGAIIGHEAVLALLPRLTAQTLLFSGPEGVGRRTVARWYAWGL NRGFPPPSLGEHPDVLEVGPKARDLRGRAEVRLEEVAPLLEWCSSHPRER VKVAILDSAHLLTEAAANALLKLLEEPPSYARIVLIAPSRATLLPTLASR ATEVAFAPVPEEALRALTQDPELLRYAAGAPGRLLRALQDPEGYRARMAR AQRVLKAPPLERLALLRELLAEEEGVHALHAVLKRPEHLLALERAREALE |                                                       | 200   |
| AGGAGGTGGCCCCTCTTGGAGTGGTGCTCCAGCCACCCCCGGGAGCGG GTGAAGGTGGCCATCTTGGACTCGGCCCACCTCCTCACCGAGGCCGCC CAACGCCCTCCTCAAGCTCCTGGAGGAGCCCCCCTCCTCACCGAGGCCGCCC CAACGCCCTCCTCAAGCTCCTGGAGGAGCCCCCTTCCTACGCCCGCATCG TCCTCATCGCCCCAAGCCGCCCCCCTCCTCCCCACCCTGGCCTCCCGG GCCACGGAGGTGGCATTCGCCCCCGTGCCCGAGGAGGCCCCCT CACCAGGACCCGGAGCTCCTCCGCTACGCCGCGCGCCCCC TCCTTAGGGCCCTCCAGGACCCGAGGGGTACCGGCCCCCTCCATGGCCAGG GCGCAAAGGGTCCTCAAGACCCGGAGGGGTACCGGCCCTTGCATGCCAGG GCGCAAAGGGTCCTGAAAGCCCCGCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |       |
| GTGAAGGTGGCCATCCTGGACTCGGCCCACCTCCTCACCGAGGCCGCCC CAACGCCTCCTCAAGCTCCTGGAGGAGCCCCTTTCTACGCCCGCATCG TCCTCATCGCCCCAAGCCGCGCCACCCTTCCTCCCCACCCTGGCCTCCCGG GCCACGGAGGTGGCATTCGCCCCGTGCCCGAGGAGGCCCCTCCCGG GCCACGGAGGTGGCATTCGCCCCGTGCCCGAGGAGGCCCCCTCCACCCAGGCCCCCTCCACCCAGGCCCCCTCCACCCAGGCCCCCCTCCACGCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       | 300   |
| TCCTCATCGCCCCAAGCCGCGCCACCCTCCTCCCCACCCTTGGCCTCCCGG GCCACGGAGGTGGCATTCGCCCCGTGCCCGAGGAGGGCCTTCCCGG GCCACGGAGGTGGCATTCGCCCCCGTGCCCGAGGAGGGCCCCT CACCCAGGACCCGGAGCTCCTCCGCTACGCCGCCGGGGCCCCC TCCTTAGGGCCCTCCAGGACCCGGAGGGGTACCGGGCCCGCATGGCCAGG GCGCAAAGGGTCCTGAAAGCCCCGCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |       |
| GCCACGGAGGTGGCATTCGCCCCCGTGCCCGAGGAGGCCCTGCGCGCCCT CACCCAGGACCCGGAGCTCCTCCGCTACGCCGCGGGGCCCCC TCCTTAGGGCCCTCCAGGACCCGGAGGGGTACCGGGGCCCCCTCCTTAGGCCAGG GCGCAAAGGGTCCTGAAAGCCCCGCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       | 400   |
| CACCCAGGACCCGGAGCTCCTCCGCTACGCCGCGGGGCCCCCCTCCTTAGGGCCCTCCAGGACCCGGAGGGGTACCGGGGCCCCCATGGCCAGG 600 GCGCAAAGGGTCCTGAAAGCCCCGCCCCTGGAGCGCCTCGCTTTGCTTCG GGAGCTTTTGGCCGAGGAGGAGGAGGGGTCCACGCCCTCCACGCCGTCCTAA AGCGCCCGGAGCACCTCCTTGCCCTGGAGCGGGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TCCTCATCGCCCCAAGCCGCGCCACCCTCCTCCCCACCCTGGCCTCCCGG    |       |
| TCCTTAGGGCCCTCCAGGACCCGGAGGGGTACCGGGCCCGCATGGCCAGG GCGCAAAGGGTCCTGAAAGCCCCGCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GCCACGGAGGTGGCATTCGCCCCCGTGCCCGAGGAGGCCCTGCGCGCCCT    | 500   |
| GCGCAAAGGGTCCTGAAAGCCCCGCCCTGGAGCGCCTCGCTTTGCTTCG GGAGCTTTTGGCCGAGGAGGAGGAGGGGGTCCACGCCCTCCACGCCGTCCTAA AGCGCCCGGAGCACCTCCTTGCCCTGGAGCGGGCGCGGGAGGCCCTGGAG GGGTACGTGAGCCCCGAGCTGGTCCTCGCCCGGCTGGCCTTAGACTTAGA GACA  **FIG. 72**  MALHPAHPGAIIGHEAVLALLPRLTAQTLLFSGPEGVGRRTVARWYAWGL NRGFPPPSLGEHPDVLEVGPKARDLRGRAEVRLEEVAPLLEWCSSHPRER VKVAILDSAHLLTEAAANALLKLLEEPPSYARIVLIAPSRATLLPTLASR ATEVAFAPVPEEALRALTQDPELLRYAAGAPGRLLRALQDPEGYRARMAR AQRVLKAPPLERLALLRELLAEEEGVHALHAVLKRPEHLLALERAREALE  700  700  700  700  700  700  700  7                                                                                                                                                                                                                                                                                                                                                                                                                                           | CACCCAGGACCCGGAGCTCCTCCGCTACGCCGCCGGGGCCCCCGGGCCCCC   |       |
| GGAGCTTTTGGCCGAGGAGGAGGGGGTCCACGCCCTCCACGCCGTCCTAA AGCGCCCGGAGCACCTCCTTGCCCTGGAGCGGGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       | 600   |
| AGCGCCCGGAGCACCTCCTTGCCCTGGAGCGGCGCGGGAGGCCCTGGAG GGGTACGTGAGCCCCGAGCTGGTCCTCGCCCGGCTGGCCTTAGACTTAGA  FIG. 72  MALHPAHPGAIIGHEAVLALLPRLTAQTLLFSGPEGVGRRTVARWYAWGL NRGFPPPSLGEHPDVLEVGPKARDLRGRAEVRLEEVAPLLEWCSSHPRER VKVAILDSAHLLTEAAANALLKLLEEPPSYARIVLIAPSRATLLPTLASR ATEVAFAPVPEEALRALTQDPELLRYAAGAPGRLLRALQDPEGYRARMAR AQRVLKAPPLERLALLRELLAEEEGVHALHAVLKRPEHLLALERAREALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |       |
| GGGTACGTGAGCCCCGAGCTGGTCCTCGCCCGGCTGGCCTTAGACTTAGA  FIG. 72  MALHPAHPGAIIGHEAVLALLPRLTAQTLLFSGPEGVGRRTVARWYAWGL NRGFPPPSLGEHPDVLEVGPKARDLRGRAEVRLEEVAPLLEWCSSHPRER VKVAILDSAHLLTEAAANALLKLLEEPPSYARIVLIAPSRATLLPTLASR ATEVAFAPVPEEALRALTQDPELLRYAAGAPGRLLRALQDPEGYRARMAR AQRVLKAPPLERLALLRELLAEEEGVHALHAVLKRPEHLLALERAREALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       | 700   |
| FIG. 72  MALHPAHPGAIIGHEAVLALLPRLTAQTLLFSGPEGVGRRTVARWYAWGL NRGFPPPSLGEHPDVLEVGPKARDLRGRAEVRLEEVAPLLEWCSSHPRER VKVAILDSAHLLTEAAANALLKLLEEPPSYARIVLIAPSRATLLPTLASR ATEVAFAPVPEEALRALTQDPELLRYAAGAPGRLLRALQDPEGYRARMAR AQRVLKAPPLERLALLRELLAEEEGVHALHAVLKRPEHLLALERAREALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |       |
| FIG. 72  MALHPAHPGAIIGHEAVLALLPRLTAQTLLFSGPEGVGRRTVARWYAWGL NRGFPPPSLGEHPDVLEVGPKARDLRGRAEVRLEEVAPLLEWCSSHPRER VKVAILDSAHLLTEAAANALLKLLEEPPSYARIVLIAPSRATLLPTLASR ATEVAFAPVPEEALRALTQDPELLRYAAGAPGRLLRALQDPEGYRARMAR AQRVLKAPPLERLALLRELLAEEEGVHALHAVLKRPEHLLALERAREALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 800   |
| MALHPAHPGAIIGHEAVLALLPRLTAQTLLFSGPEGVGRRTVARWYAWGL NRGFPPPSLGEHPDVLEVGPKARDLRGRAEVRLEEVAPLLEWCSSHPRER VKVAILDSAHLLTEAAANALLKLLEEPPSYARIVLIAPSRATLLPTLASR ATEVAFAPVPEEALRALTQDPELLRYAAGAPGRLLRALQDPEGYRARMAR AQRVLKAPPLERLALLRELLAEEEGVHALHAVLKRPEHLLALERAREALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GACA                                                  |       |
| MALHPAHPGAIIGHEAVLALLPRLTAQTLLFSGPEGVGRRTVARWYAWGL NRGFPPPSLGEHPDVLEVGPKARDLRGRAEVRLEEVAPLLEWCSSHPRER VKVAILDSAHLLTEAAANALLKLLEEPPSYARIVLIAPSRATLLPTLASR ATEVAFAPVPEEALRALTQDPELLRYAAGAPGRLLRALQDPEGYRARMAR AQRVLKAPPLERLALLRELLAEEEGVHALHAVLKRPEHLLALERAREALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FIC 79                                                |       |
| NRGFPPPSLGEHPDVLEVGPKARDLRGRAEVRLEEVAPLLEWCSSHPRER VKVAILDSAHLLTEAAANALLKLLEEPPSYARIVLIAPSRATLLPTLASR ATEVAFAPVPEEALRALTQDPELLRYAAGAPGRLLRALQDPEGYRARMAR 200 AQRVLKAPPLERLALLRELLAEEEGVHALHAVLKRPEHLLALERAREALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FIG. 12                                               |       |
| NRGFPPPSLGEHPDVLEVGPKARDLRGRAEVRLEEVAPLLEWCSSHPRER VKVAILDSAHLLTEAAANALLKLLEEPPSYARIVLIAPSRATLLPTLASR ATEVAFAPVPEEALRALTQDPELLRYAAGAPGRLLRALQDPEGYRARMAR 200 AQRVLKAPPLERLALLRELLAEEEGVHALHAVLKRPEHLLALERAREALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |       |
| NRGFPPPSLGEHPDVLEVGPKARDLRGRAEVRLEEVAPLLEWCSSHPRER VKVAILDSAHLLTEAAANALLKLLEEPPSYARIVLIAPSRATLLPTLASR ATEVAFAPVPEEALRALTQDPELLRYAAGAPGRLLRALQDPEGYRARMAR 200 AQRVLKAPPLERLALLRELLAEEEGVHALHAVLKRPEHLLALERAREALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |       |
| NRGFPPPSLGEHPDVLEVGPKARDLRGRAEVRLEEVAPLLEWCSSHPRER VKVAILDSAHLLTEAAANALLKLLEEPPSYARIVLIAPSRATLLPTLASR ATEVAFAPVPEEALRALTQDPELLRYAAGAPGRLLRALQDPEGYRARMAR 200 AQRVLKAPPLERLALLRELLAEEEGVHALHAVLKRPEHLLALERAREALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAT.HPAHPGATTCHEAVI.AT.I.PRI.TAOTT.I.ECCDECVCRRTVANGI |       |
| VKVAILDSAHLLTEAAANALLKLLEEPPSYARIVLIAPSRATLLPTLASR<br>ATEVAFAPVPEEALRALTQDPELLRYAAGAPGRLLRALQDPEGYRARMAR<br>AQRVLKAPPLERLALLRELLAEEEGVHALHAVLKRPEHLLALERAREALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del></del>                                           | 100   |
| ATEVAFAPVPEEALRALTQDPELLRYAAGAPGRLLRALQDPEGYRARMAR 200<br>AQRVLKAPPLERLALLRELLAEEEGVHALHAVLKRPEHLLALERAREALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | 100   |
| AQRVLKAPPLERLALLRELLAEEEGVHALHAVLKRPEHLLALERAREALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       | 200   |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~                                                     | 200   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del></del>                                           | 268   |

### 73/83

| ATGCTGGACCTGAGGGAGGTGGGAGGCGGAGTGGAAGGCCCTAAAGCC   |     |
|----------------------------------------------------|-----|
| CCTTTTGGAAAGCGTGCCCGAGGGCGTCCCCGTCCTCCTGGACCCTA    | 100 |
| AGCCAAGCCCCTCCCGGGCGGCCTTCTACCGGAACCGGGAAAGGCGGGAC |     |
| TTCCCCACCCCAAGGGGAAGGACCTGGTGCGGCACCTGGAAAACCGGGC  | 200 |
| CAAGCGCCTGGGGCTCAGGCTCCCGGGCGGGGTGGCCCAGTACCTGGCCT |     |
| CCCTGGAGGGGACCTCGAGGCCCTGGAGCGGGAGCTGGAGAAGCTTGCC  | 300 |
| CTCCTCTCCCCACCCTCACCCTGGAGAAGGTGGAGAAGGTGGTGGCCCT  |     |
| GAGGCCCCCCTCACGGGCTTTGACCTGGTGCGCTCCGTCCTGGAGAAGG  | 400 |
| ACCCCAAGGAGGCCCTCCTGCGCCTAGGCGGCCTCAAGGAGGAGGGGGAG |     |
| GAGCCCTCAGGCTCCTCGGGGCCCTCTCCTGGCAGTTCGCCCTCCTCGC  | 500 |
| CCGGGCCTTCTTCCTCCTCCGGGAAAACCCCAGGCCCAAGGAGGAGGACC |     |
| TCGCCCGCCTCGAGGCCCACCCCTACGCCGCCCCGCCGCCCCTGGAGGCG | 600 |
| GCGAAGCGCCTCACGGAAGAGGCCCTCAAGGAGGCCCTGGACGCCCTCAT |     |
| GGAGGCGGAAAAGAGGCCCAAGGGGGGGAAAGACCCGTGGCTCGCCCTGG | 700 |
| AGGCGGCGGTCCTCCGCCCGTTGA                           |     |

# FIG. 74

| MVIAFTGDPFLAREALLEEARLRGLSRFTEPTPEALAQALAPGLFGGGGA |     |
|----------------------------------------------------|-----|
| MLDLREVGEAEWKALKPLLESVPEGVPVLLLDPKPSPSRAAFYRNRERRD | 100 |
| FPTPKGKDLVRHLENRAKRLGLRLPGGVAQYLASLEGDLEALERELEKLA |     |
| LLSPPLTLEKVEKVVALRPPLTGFDLVRSVLEKDPKEALLRLGGLKEEGE | 200 |
| EPLRLLGALSWQFALLARAFFLLRENPRPKEEDLARLEAHPYAARRALEA |     |
| AKRLTEEALKEALDALMEAEKRAKGGKDPWLALEAAVLRLAR         | 292 |

#### 74/83

| ATGGCTCGAGGCCTGAACCGCGTTTTCCTCATCGGCGCCCCTCGCCACCCG |     |
|-----------------------------------------------------|-----|
| GCCGGACATGCGCTACACCCCGGCGGGGCTCGCCATTTTGGACCTGACCC  | 100 |
| TCGCCGGTCAGGACCTGCTTCTTTCCGATAACGGGGGGGAACCGGAGGTG  |     |
| TCCTGGTACCACCGGGTGAGGCTCTTAGGCCGCCAGGCGGAGATGTGGGG  | 200 |
| CGACCTCTTGGACCAAGGGCAGCTCGTCTTCGTGGAGGCCCGCCTGGAGT  |     |
| ACCGCCAGTGGGAAAGGGAGGGGAGAAGCGGAGCTCCAGATCCGG       | 300 |
| GCCGACTTCCGGACCCCTGGACGACCGGGGGAAGAAGCGGGCGG        |     |
| AGCCGGGGCCAGCCCAGGCTCCGCGCCCTGAACCAGGTCTTCCTCAT     | 400 |
| GGGCAACCTGACCCGGGACCCGGAACTCCGCTACACCCCCCAGGGCACCG  |     |
| CGGTGGCCCGGCTGGCGGTGAACGAGCGCCCAGGGGGCGGAG          | 500 |
| GAGCGCACCCACTTCGTGGAGGTTCAGGCCTGGCGCGACCTGGCGGAGTG  |     |
| GGCCGCCGAGCTGAGGAAGGGCGACGGCCTTTTCGTGATCGGCAGGTTGG  | 600 |
| TGAACGACTCCTGGACCAGCTCCAGCGGCGAGCGGCGCTTCCAGACCCGT  | •   |
| GTGGAGGCCCTCAGGCTGGAGCCCCACCCGTGGACCTGCCCAGGCCTG    | 700 |
| CCCAGGCCGGAACAGGTCCCGCGAAGTCCAGACGGGTGGGGTGGACA     |     |
| TTGACGAAGGCTTGGAAGACTTTCCGCCGGAGGAGGATTTGCCGTTTTGA  | 800 |
| GCACGAA                                             |     |

# FIG. 76

| MARGLNRVFLIGALATRPDMRYTPAGLAILDLTLAGQDLLLSDNGGEPEV |     |
|----------------------------------------------------|-----|
| SWYHRVRLLGRQAEMWGDLLDQGQLVFVEGRLEYRQWEREGEKRSELQIR | 100 |
| ADFLDPLDDRGKKRAEDSRGQPRLRAALNQVFLMGNLTRDPELRYTPQGT |     |
| AVARLGLAVNERRQGAEERTHFVEVQAWRDLAEWAAELRKGDGLFVIGRL | 200 |
| VNDSWTSSSGERRFQTRVEALRLERPTRGPAQACPGRRNRSREVQTGGVD |     |
| IDEGLEDFPPEEDLPF                                   | 266 |

### 75/83

| AATTCCGACATTTCAATTGAATCGTTTATTCCGCTTGAAAAAGAAGGCAA  |     |
|-----------------------------------------------------|-----|
| GTTGCTCGTTGATGTGAAAAGACCGGGGGGGCATCGTACTGCAGGCGCGCT | 100 |
| TTTTCTCTGAAATCGTGAAAAAACTGCCGCAACAAACGGTGGAAATCGAA  |     |
| ACGGAAGACAACTTTTTGACGATCATCCGCTCGGGGCACTCAGAATTCCG  | 200 |
| CCTCAATGGGCTAAACGCCGACGAATATCCGCGCCTGCCGCAAATTGAAG  |     |
| AAGAAAACGTGTTTCAAATCCCGGCTGATTTATTGAAAACCGTGATTCGG  | 300 |
| CAAACGGTGTTCGCCGTTTCTACATCGGAAACGCGCCCAATCTTGACAGG  |     |
| TGTCAACTGGAAAGTTGAACATGGCGAGCTTGTCTGCACAGCGACCGAC   | 400 |
| GTCATCGCTTAGCCATGCGCAAAGTGAAAATTGAGTCGGAAAATGAAGTA  |     |
| TCATACAACGTCGTCATCCCTGGAAAAAGTCTTAATGAGCTCAGCAAAAT  | 500 |
| TTTGGATGACGGCAACCACCCGGTGGACATCGTCATGACAGCCAATCAAG  |     |
| TGCTATTTAAGGCCGAGCACCTTCTCTTCTTTTTCCCGGCTGCTTGACGGC | 600 |
| AACTATCCGGAGACGGCCCGCTTGATTCCAACAGAAAGCAAAACGACCAT  |     |
| GATCGTCAATGCAAAAGAGTTTCTGCAGGCAATCGACCGAGCGTCCTTGC  | 700 |
| TTGCTCGAGAAGGAACAACGTTGTGAAACTGACGACGCTTCCTGGA      |     |
| GGAATGCTCGAAATTTCTTCGATTTCTCCGAGATCGGGAAAGTGACGGAG  | 800 |
| CAGCTGCAAACGGAGTCTCTTGAAGGGGAAGAGTTGAACATTTCGTTCAG  |     |
| CGCGAAATATATGATGGACGCGTTGCGGGCGCTTGATGGAACAGACATTT  | 900 |
| CAAATCAGCTTCACTGGGGCCATGCGGCCGTTCCTGTTGCGCCCGCTTCA  |     |
| ACCGATTCGATGCTTCAGCTCATTTTGCCGGTGAGAACATAT          | 992 |

# FIG. 78

| NSDISIIESFIPLEKEGKLLVDVKRPGSIVLQARFFSEIVKKLPQQTVEI |     |
|----------------------------------------------------|-----|
| ETEDNFLTIIRSGHSEFRLNGLNADEYPRLPQIEEENVFQIPADLLKTVI | 100 |
| RQTVFAVSTSETRPILTGVNWKVEHGELVCTATDSHRLAMRKVKIIESEN |     |
| EVSYNVVIPGKSLNELSKIILDDGNHPVDIVMTANQVLFKAEHLLFFSRL | 200 |
| LDGNYPETARLIPTESKTTMIVNAKEFLQAIDRASLLAREGRNNVVKLTT |     |
| LPGGMLEISSISPEIGKVTEQLQTESLEGEELNISFSAKYMMDALRALDG | 300 |
| TDIOISFTGAMRPFLLRPLHTDSMLOLILPVRTY                 |     |

#### 76/83

| ATGATTAACCGCGTCATTTTGGTCGGCAGGTTAACGAGAGATCCGGAGTT |     |
|----------------------------------------------------|-----|
| GCGTTACACTCCAAGCGGAGTGGCTGTTGCCACGTTTACGCTCGCGGTCA | 100 |
| ACCGTCCGTTTACAAATCAGCAGGGCGAGCGGGAAACGGATTTTATTCAA |     |
| TGTGTCGTTTGGCGCCGCCAGGCGGAAAACGTCGCCAACTTTTTGAAAAA | 200 |
| GGGGAGCTTGGCTGTCGATGGCCGACTGCAAACCCGCAGCTATGAAA    |     |
| ATCAAGAAGGTCGGCGTGTGTACGTGACGGAAGTGGTGGCTGATAGCGTC | 300 |
| CAATTTCTTGAGCCGAAAGGAACGAGCGAGCAGCGAGGGGGCGACAGCAG |     |
| CGGCTACTATGGGGATCCATTCCCATTCGGGCAAGATCAGAACCACCAAT | 400 |
| ATCCGAACGAAAAAGGGTTTGGCCGCATCGATGACGATCCTTTCGCCAAT |     |
| GACGGCCAGCCGATCGATATTTCTGATGATGATTTGCCGTTT         | 492 |

# FIG. 80

| MINKVILVGRLTRDPELRYTPSGVAVATFTLAVNRPFTNQSYENQEGRRV |     |
|----------------------------------------------------|-----|
| YVTEVVADSVQFLEPKGTSEQRGATAGGYYQGERETDFIQCVVWRRQAEN | 100 |
| VANFLKKGSLAGVDGRLQTRGDPFPFGQDQNHQYPNEKGFGRIDDDPFAN |     |
| DGQPIDISDDDLPF                                     | 164 |

### 77/83

| ATGCTGGAACGCGTATGGGGAAACATTGAAAAACGGCGTTTTTCTCCCCT  |      |
|-----------------------------------------------------|------|
| TTATTTATTATACGGCAATGAGCCGTTTTTTATTAACGGAAACGTATGAGC | 100  |
| GATTGGTGAACGCAGCGCTTGGCCCCGAGGAGCGGGAGTGGAACTTGGCT  |      |
| GTGTACGACTGCGAGGAAACGCCGATCGAGGCGGCGCTTGAGGAGGCCGA  | 200  |
| GACGGTGCCGTTTTTCGGCGAGCGGCGTGTCATTCTCATCAAGCATCCAT  |      |
| ATTTTTTTACGTCTGAAAAAGAGAAGGAGATCGAACATGATTTGGCGAAG  | 300  |
| CTGGAGGCGTACTTGAAGGCGCCGTCGCCGTTTTCGATCGTCGTCTTTTT  |      |
| CGCGCCGTACGAGAAGCTTGATGAGCGAAAAAAAATTACGAAGCTCGCCA  | 400  |
| AAGAGCAAAGCGAAGTCGTCATCGCCGCCCCCGCTCGCCGAAGCGGAGCTG |      |
| CGTGCCTGGGTGCGGCGCCGCATCGAGAGCCAAGGGGCGCAAGCAA      | 500  |
| CGAGGCGATTGATGTCCTGTTGCGGCGGGCCGGGACGCAGCTTTCCGCCT  |      |
| TGGCGAATGAAATCGATAAATTGGCCCTGTTTGCCGGATCGGGCGGAACC  | 600  |
| ATCGAGGCGGCGGTTGAGCGGCTTGTCGCCCGCACGCCGGAAGAAAA     |      |
| CGTATTTGTGCTTGTCGAGCAAGTGGCGAAGCGCGACATTCCAGCAGCGT  | 700  |
| TGCAGACGTTTTATGATCTGCTTGAAAACAATGAAGAGCCGATCAAAATT  |      |
| TTGGCGTTGCTCGCCGCCCATTTCCGCTTGCTTTCGCAAGTGAAATGGCT  | 800  |
| TGCCTCCTTAGGCTACGGACAGGCGCAAATTGCTGCGGCGCTCAAGGTGC  |      |
| ACCCGTTCCGCGTCAAGCTCGCTCTTGCTCAAGCGGCCCGCTTCGCTGAC  | 900  |
| GGAGAGCTTGCTGAGGCGATCAACGAGCTCGCTGACGCCGATTACGAAGT  |      |
| GAAAAGCGGGGCGGTCGATCGCCGGTTGGCCGTTGAGCTGCTTCTGATGC  | 1000 |
| GCTGGGGCGCCCGGCGCAAGCGGGCGCCACGGCCGGCGG             |      |

# FIG. 82

| MLERVWGNIEKRRFSPLYLLYGNEPFLLTETYERLVNAALGPEEREWNLA |     |
|----------------------------------------------------|-----|
| VYDCEETPIEAALEEAETVPFFGERRVILIKHPYFFTSEKEKEIEHDLAK | 100 |
| LEAYLKAPSPFSIVVFFAPYEKLDERKKITKLAKEQSEVVIAAPLAEAEL |     |
| RAWVRRRIESQGAQASDEAIDVLLRRAGTQLSALANEIDKLALFAGSGGT | 200 |
| IEAAAVERLVARTPEENVFVLVEQVAKRDIPAALQTFYDLLENNEEPIKI |     |
| LALLAAHFRLLSQVKWLASLGYGQAQIAAALKVHPFRVKLALAQAARFAD | 300 |
| GELAEATNELADADYEVKSGAVDRRLAVELLLMRWGARPAOAGRHGRR   |     |

## 78/83

| ATGCGATGGGAACAGCTAGCGAAACGCCAGCCGGTGGTGGCGAAAATGCT  |     |
|-----------------------------------------------------|-----|
| GCAAAGCGGCTTGGAAAAAGGGCGGATTTCTCATGCGTACTTGTTTGAGG  | 100 |
| GGCAGCGGGGACGGCCAAAAAAGCGGCCAGTTTGTTGTTGGCGAAACGT   |     |
| TTGTTTTGTCTGTCCCCAATCGGAGTTTCCCCGTGTCTAGAGTGCCGCAA  | 200 |
| CTGCCGGCGCATCGACTCCGGCAACCACCCTGACGTCCGGGTGATCGGCC  |     |
| CAGATGGAGGATCAATCAAAAAGGAACAAATCGAATGGCTGCAGCAAGAG  | 300 |
| TTCTCGAAAACAGCGGTCGAGTCGGATAAAAAAATGTACATCGTTGAGCA  |     |
| CGCCGATCAAATGACGACAAGCGCTGCCAACAGCCTTCTGAAATTTTTTGG | 400 |
| AAGAGCCGCATCCGGGGACGGTGGCGGTATTGCTGACTGA            |     |
| CGCCTGCTAGGGACGATCGTTTCCCGCTGTCAAGTGCTTTCGTTCCGGCC  | 500 |
| GTTGCCGCCGGCAGAGCTCGCCCAGGGACTTGTCGAGGAGCACGTGCCGT  |     |
| TGCCGTTGGCGCTGTTGGCCCCATTTGACAAACAGCTTCGAGGAAGCA    | 600 |
| CTGGCGCTTGCCAAAGATAGTTGGTTTGCCGAGGCGCGAACATTAGTGCT  |     |
| ACAATGGTATGAGATGCTGGGCAAGCCGGAGCTGCAGCTTTTGTTTTCA   | 700 |
| TCCACGACCGCTTGTTTCCGCATTTTTTTGGAAAGCCATCAGCTTGACCTT |     |
| GGACTTG                                             | 757 |
|                                                     |     |

# FIG. 84

| MRWEQLAKRQPVVAKMLQSGLEKGRISHAYLFEGQRGTGKKAASLLLAKR |     |
|----------------------------------------------------|-----|
| LFCLSPIGVSPCLECRNCRRIDSGNHPDVRVIGPDGGSIKKEQIEWLQQE | 100 |
| FSKTAVESDKKMYIVEHADQMTTSAANSLLKFLEEPHPGTVAVLLTEQYH |     |
| RLLGTIVSRCQVLSFRPLPPAELAQGLVEEHVPLPLALLAAHLTNSFEEA | 200 |
| LALAKDSWFAEARTLVLQWYEMLGKPELQLLFFIHDRLFPHFLESHQLDL |     |
| $\operatorname{GL}$                                | 252 |

## 79/83

| GTGGCATACCAAGCGTTATATCGCGTGTTTTCGGCCGCAGCGCTTTGCGGA |      |
|-----------------------------------------------------|------|
| CATGGTCGGCCAAGAACACGTGACCAAGACGTTGCAAAGCGCCCTGCTTC  | 100  |
| AACATAAAATATCGCACGCTTACTTATTTTCCGGCCCGCGCGCG        |      |
| AAAACGAGCGCAGCGAAAATTTTCGCCAAGGCGGTCAACTGTGAACAGGC  | 200  |
| GCCAGCGGCGGAGCCATGCAATGAGTGTCCAGCTTGCCTCGGCATTACGA  |      |
| ATGGAACGGTTCCCGATGTGCTGGAAATTGACGCTGCTTCCAACAACCGC  | 300  |
| GTCGATGAAATTCGTGATATCCGTGAGAAGGTGAAATTTGCGCCAACGTC  |      |
| GGCCCGCTACAAAGTGTATATCATCGACGAGGTGCATATGCTGTCGATCG  | 400  |
| GTGCGTTTAACGCGCTGTTGAAAACGTTGGAGGAGCCGCCGAAACACGTC  |      |
| ATTTTCATTTTGGCCACGACCGAGCCGCACAAAATTCCGGCGACGATCAT  | 500  |
| TTCCCGCTGCCAACGGTTCGATTTTCGCCGCATCCCGCTTCAGGCGATCG  |      |
| TTTCACGGCTAAAGTACGTCGCAAGCGCCCAAGGTGTCGAGGCGTCAGAT  | 600  |
| GAGGCATTGTCCGCCATCGCCCGTGCTGCAGACGGGGGGATGCGCGATGC  |      |
| GCTCAGCTTGCTTGATCAAGCCATTTCGTTCAGCGACGGGAAACTTCGGC  | 700  |
| TCGACGACGTGCTGGCGATGACCGGGGCTGCATCATTTGCCGCCTTATCG  |      |
| AGCTTCATCGAAGCCATCCACCGCAAAGATACAGCGGCGGTTCTTCAGCA  | 800  |
| CTTGGAAACGATGATGGCGCAAGGGAAAGATCCGCATCGTTTGGTTGAAG  |      |
| ACTTGATTTTGTACTATCGCGATTTATTGCTGTACAAAACCGCTCCCTAT  | 900  |
| GTGGAGGGAGCGATTCAAATTGCTGTCGTTGACGAAGCGTTCACTTCACT  |      |
| GTCGGAAATGATTCCGGTTTCCAATTTATACGAGGCCATCGAGTTGCTGA  | 1000 |
| ACAAAAGCCAGCAAGAGATGAAGTGGACAAACCACCCGCGCCTTCTGTTG  |      |
| GAAGTGGCGCTTGTGAAACTTTGCCATCCATCAGCCGCCGCCCCGTCGCT  | 1100 |
| GTCGGCTTCCGAGTTGGAACCGTTGATAAAGCGGATTGAAACGCTGGAGG  |      |
| CGGAATTGCGGCGCCTGAAGGAACAACCGCCTGCCCCTCCGTCGACCGCC  | 1200 |
| GCGCCGGTGAAAAACTGTCCAAACCGATGAAAACGGGGGGATATAAAGC   |      |
| CCCGGTTGGCCGCATTTACGAGCTGTTGAAACAGGCGACGCATGAAGATT  | 1300 |
| TAGCTTTGGTGAAAGGATGCTGGGCGGATGTGCTCGACACGTTGAAACGG  |      |
| CAGCATAAAGTGTCGCACGCTGCCTTGCTGCAAGAGAGCGAGC         | 1400 |
| AGCGAGCGCCTCAGCGTTTGTATTAAAATTCAAATACGAAATCCACTGCA  |      |
| AAATGGCGACCGATCCCACAAGTTCGGTCAAAGAAAACGTCGAAGCGATT  | 1500 |
| TTGTTTGAGCTGACAAACCGCCGCTTTGAAATGGTAGCCATTCCGGAGGG  |      |
| AGAATGGGGAAAAATAAGAGAAGAGTTCATCCGCAATAAGGACGCCATGG  | 1600 |
| TGGAAAAAAGCGAAGAAGATCCGTTAATCGCCGAAGCGAAGCGGCTGTTT  |      |
| GGCGAAGAGCTGATCGAAATTAAAGAA                         | 1677 |

80/83

| VAYQALYRVFRPQRFADMVGQEHVTKTLQSALLQHKISHAYLFSGPRGTG |     |
|----------------------------------------------------|-----|
| KTSAAKIFAKAVNCEQAPAAEPCNECPACLGITNGTVPDVLEIDAASNNR | 100 |
| VDEIRDIREKVKFAPTSARYKVYIIDEVHMLSIGAFNALLKTLEEPPKHV |     |
| IFILATTEPHKIPATIISRCQRFDFRRIPLQAIVSRLKYVASAQGVEASD | 200 |
| EALSAIARAADGGMRDALSLLDQAISFSDGKLRLDDVLAMTGAASFAALS |     |
| SFIEAIHRKDTAAVLQHLETMMAQGKDPHRLVEDLILYYRDLLLYKTAPY | 300 |
| VEGAIQIAVVDEAFTSLSEMIPVSNLYEAIELLNKSQQEMKWTNHPRLLL |     |
| EVALVKLCHPSAAAPSLSASELEPLIKRIETLEAELRRLKEQPPAPPSTA | 400 |
| APVKKLSKPMKTGGYKAPVGRIYELLKQATHEDLALVKGCWADVLDTLKR |     |
| QHKVSHAALLQESEPVAASASAFVLKFKYEIHCKMATDPTSSVKENVEAI | 500 |
| LFELTNRRFEMVAIPEGEWGKIREEFIRNKDAMVEKSEEDPLIAEAKRLF |     |
| GEELIEIKE                                          | 559 |

| ATGGTGACAAAGAGCAAAAAGAGCGGTTTCTCATCCTGCTTGAGCAGCT GAAAGATGACGTCGGACGAATGCCGCATTTTCGTGAGGCAGCCATTC GCAAAGTCGTGATCGATAAAGAGGAGAAAAGCTGGCATTTTATTTTCAG TTCGACAACGTGCTGCCGGTTCATGTATACAAAACGTTTTGCCGATCGGCT GCAGACGGCGTTCCGCCATATCGCCGCCGCATACGATCGGCT GCAGACGCCGCCGCATACGCCGCCGCATACGATGAGGTCG AAGCGCCGCGCGTAACTGAGGCGATGTCGCCGCATACGATGAGGTCG CTTGCCGAGCTGAAAAGGCAATGTCGCCGCCTTTGTCCTTTGCCCGACTG GCAGACGCCTGAAAAAGGCAATGTCGCCGCTTTGTCCTTTGCCCGCCATG AAGCGCAGCCTGAAAAGGAAACAGCTGCTTTGCCCGCCATG AAGCGAAGCCTTGGCTTTGGGTTTCCCCCCCTTCAGCTTGACCTGAT GTTACGCTTCGTTTGGGTTTCCCCCCCTTCAGCTTGACGTAGCTGAAGAGAGACAGAAAAAAAA                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GCAAAGTCGTGATCATAAAGAGGAGAAAAGCTGGCATTTTTATTTCAG TTCGACAACCGTGCTGCCGGTTCATGTATACAAAACGTTTGCCGATCGGCT GCAGACGGCGTTCCGCCATATCGCCGCCTTCGCCATACGATCGGCT AAGCGCCGCGCGTAACTGAGGCCGCGCCTTGCCGCATACGATCGGCCG CTTGCCGAGCTGCAGAGAGGCGGATGTCGCCGCATACGATCGACCG GCAGACGCCTGCAAGAAGGCATGTCGCCGCTTGTCCATTGCCCGCCTTTGC GCAGACGCCTGCAAGAAGGCATGTCGCCGCTTGTCGATTGGCCCGCTTGC GCAGACGCCTGAGCTGAAAGAAGCACACCTGCTTGTCGATTGCCCCACAC AAGCGCAAGCGCTGCAAAAACAGCTGCTTGTCGTTGCCCACACGACACGACACGACGCACACACA                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TTCGACAACGTGCTGCCGGTTCATGTATACAAAACGTTTGCCGATCGGCT GCAGACGGCGTTCCGCCATATCGCCGCCGTCCGCCATACGATGGAGGTCG AGCGCCGCGTACTGAGGCGGATGTCCAGCCGCTTTTGC CTTGCCGAGCTGCAACAGAAGGCGATGTCCAGCCGCTTTGCCGATCGCCGCTTTGCCGAGCTGCAGAAACGCCCTGAACAGAAGGCAACACACATGCCCGCTTGTCGATTGGCTCAGCCG GCAGACGCCTGAACAGAAGAACAACACACCATCGACTAGACAACACACAACAACAACAACAACAACAACAACAACAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GCAGACGGCGTTCCGCCATATCGCCGCCGTCCGCCATACGATGGAGGTCG AAGCGCCGCGCGTAACTGAGCGGATGTCAGCCG CTTGCCGAGCTGCAAGAAGGCATGTCGCCGCTTTGCCGATTGCCCGCTTTGCC GCAGACGCTGCAAGAAGGCATGTCGCCGCTTTGTCGATTGCCTCAGCCG AAGCGGCAGCGCTGAAAAGGAAACAAGCTGCTTGTCGTTGCCCATG AAGCGGAAGCGCTGGAAAAAACAGCAGCTTGTCGTTTGCCCACATG AAGCGGAAGCGCTTGTCGGATCAAACGGCGGTTCGCCAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AAGCGCCGCGCTAACTGAGGCGGATGTGCAGGCGTATTGGCCGCTTTGC CTTGCCGAGCTGCAAGAAGGCATGTCGCCGCTTGTCGATTGGCCCGCATG GCAGACGCCTGAGCTGAAAAGAACAAGCTGCTTGTCGTTGCCCGCCATG AAGCGGAAGCGCTGGCGATCAAACGGCGGTTCGCCAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CTTGCCGAGCTGCAAGAAGGCATGTCGCCGCTTGTCGATTGGCTCAGCCG GCAGACGCCTGAGCTGAAAGGAAACAAGCTGCTTGTCGTTGCCCGCCATG AAGCGGAAGCGCTGACAAAAGGAAACAAGCTGCTTGTCGTTGCCCGCCATG AAGCGGAAGCGCTGGCGATCAAACGGCGGTTCGCCAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| GCAGACGCCTGAGCTGAAAGGAAACAAGCTGCTTGTCGTTGCCCGCCATG AAGCGGAAGCGCTGGCGATCAAACGGCGGTTCGCCAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AAGCGGAAGCGCTGGCGATCAAACGGCGGTTCGCCAAAAAAATCGCTGAT GTGTACGCTTCGTTTGGGTTTCCCCCCCTTCAGCTTGACGTCAGCGTCGA GCCGTCCAAGCAAGAAATGGAACAGTTTTTTGCCGCAAAAACAGCAAGAG ACGAAGAGCGAGCGCTTGCTGTACTGACCGATTTAGCGAGGGAAGAAAAAAACAGCAAGAGA AAGGCCGCGTCTGGCCGCGCGTCCGGTTCGCTTGAACCAGACACCACGATCCGAT CCGCGACGAGGAGCCGCGTCCGGCTCCGCTTGTCATCGGATACCGAT CCGCGACGAGGAGCCGGTGCGGCGCGCTCGCTTGAACAAGACC GGCGCGTCGTTGTGCAAGCACAAAACAGATTACACGAACTC GGCGCGTCGTTGTGCAAGCCATGAAAATCACAGATTACACGAACTC GATTTTAGTCAAAATGTTCTCGCGCGACAAAAACAGATTACACGAACTC GATACGTTCGTCCGTGATTTGGTCATCATCGCCAACGATTTGAACGAAAT CGCCGCAAAACAAAA                                                                                                                                                                                                                                                                                                         |
| GTGTACGCTTCGTTTGGGTTTCCCCCCCTTCAGCTTGACGTCAGCGTCGA GCCGTCCAAGCAAGAAATGGAACAGTTTTTTGGCGCAAAAACAGCAAGAGG ACGAAGAGCGAGCGCTTGCTGTACTGACCGATTTAGCGAGGGAAGAAAA AAGGCCGCGTCTGCGCCGCCGTCCGGTCCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GCCGTCCAAGCAAGAAATGGAACAGTTTTTGGCGCAAAAACAGCAAGAGG ACGAAGAGCGAGCGCTTGCTGTACTGACCGATTTAGCGAGGGAAGAAGAA AAGGCCGCGTCTGCGCCGCCGTCCGGTCCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ACGAAGAGCGAGCGCTTGCTGTACTGACCGATTTAGCGAGGGAAGAAGAA AAGGCCGCGTCTGCGCCGCCGTCCGGTCCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AAGGCCGCGTCTGCGCCGCCGTCCGGTCCGCTTGTCATCCGAT CCGCGACGAGGAGCCGGTGCGGCGCGTTGAAACGATCGTCGAAGAAGAGC GGCGCGTCGTTGTGCAAGGCTATGTATTTGACGCCGAAGTGAGCGAATTA AAAAGCGGCCGCACGCTGTTGACCATGAAAATCACAGATTACACGAACTC GATTTTAGTCAAAATGTTCTCGCGCGACAAAGAGGACGCCGAGCTTATGA GCGGCGTCAAAAAAAGGCATGTGGGTGAAAAGTGCGCGGCAGCGTGCAAAAC GATACGTTCGTCCGTGATTTGGTCATCATCGCCAACGATTTGAACGAAAT CGCCGCAAACGAACGCAAGATACGCCGAACGATTTGAACGAAAT CGCCGCAAACGAACGCCAAGATACGCCAACGATTTGAACGAAAT CGCCGCAAACGAACGCCAAGATACGCCGAAAGAGGGAAAAACCCATTTGCATCACCCGAAACGAAAACCCGCGCGCAAAACGAAAACCCATTTGCAAAAAAAA                                                                                                                                                                                                                                                                                                                                 |
| CCGCGACGAGGAGCCGGTGCGGCGCTTGAAACGATCGTCGAAGAAGAGC GGCGCGTCGTTGTCAAGGCTATGTATTTGACGCCGAAGTGAGCAATTA AAAAGCGGCCGCACGCTGTTGACCATGAAAATCACAGATTACACGAACTC GATTTTAGTCAAAATGTTCTCGCGCGACAAAGAGGACGCCGAGCTTATGA GCGGCGTCAAAAAAAGGCATGTGGGTGAAAGTGCGCGGCAGCGTGCAAAAC GATACGTTCGTCCGTGATTTGGTCATCATCGCCAACGATTTGAACGAAAT CGCCGCAAACGAACGGCAAGATACGGCGCGCGAAGCGTGCAAAAC GACCCAAACGAACGACAACGACTCCGGCGCAACGATTTGAACGAAAT CGCCGCAAACGAACGACAACGACAAACGAAATGGACGCGCGGAAAAGAGGGTCG ACAAAACTCATTGAGCAAGCGAAAAAAATGGGGGCAACACGCCGCGT CACCGACCATGCCGTTGTTCAGTCGTTTCCGGAGGCCTACAGCGCGGCGA AAAAACACGGCATGAAGGTCATTTACGGCCTTGAGGCGAACATCGTCGAC GATGGCGTGCCGATCGCCTACAATGAGACGACGCGCGTCTTTCGGAGGA AACGTACGTCGTCTTTGACGTCGAGACGACGCCGCTGTTCGACC GACCGATCATTTGACGTCGAGACGACGCCCCGCAACC GATGGACCATGCCGTTTTTGACACCCTGGACATCCGTTGTCGGTGACAAC GATGGAGCTGACTGGCACCCCTGGACATCCGTTGTCGGTGACAAC GATGGAGCTGACTGGGATCACCGATGAGATGA |
| GGCGCGTCGTTGTGCAAGGCTATGTATTTGACGCCGAAGTGAGCGAATTA AAAAGCGGCCGCACGCTGTTGACCATGAAAATCACAGATTACACGAACTC GATTTTAGTCAAAATGTTCTCGCGCGACAAAGAGGACGCCGAGCTTATGA GCGGCGTCAAAAAAAGGCATGTGGGTGAAAGTGCGCGGCAGCGTGCAAAAC GATACGTTCGTCCGTGATTTGGTCATCATCGCCAACGATTTGAACGAAAT CGCCGCAAACGAACGGCAAGATACGGCGCCGGAAGGGGAAAAGAGGGTCG AGCTCCATTTGCATACCCCGATGAGCCAAATGGACGGGTCACCTCGGTG ACAAAACTCATTGAGCAAGCGAAAAAAATGGGGGCATCCGGCGAACGGTCACCTCGGTG CACCGACCATGCCGTTGTTCAGTCGTTTCCGGAGGCCTACAGCGCGGCGAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                        |
| AAAAGCGGCCGCACGCTGTTGACCATGAAAATCACAGATTACACGAACTC GATTTTAGTCAAAATGTTCTCGCGCGACAAAGAGGACGCCGAGCTTATGA GCGGCGTCAAAAAAAGGCATGTGGGTGAAAGTGCGCGGCAGCGTGCAAAAC GATACGTTCGTCCGTGATTTGGTCATCATCGCCAACGATTTGAACGAAAT CGCCGCAAACGAACGCCAAGATACGGCGCCGGAAGGGGAAAAGAGGGTCG AGCTCCATTTGCATACCCCGATGAGCCAAAATGGACGCGGTCACCTCGGTG ACAAAACTCATTGAGCAAGCGAAAAAAATGGGGGCATCCGCCGT CACCGACCATGCCGTTGTTCAGTCGTTTCCGGAGGCCTACAGCGCGCA AAAAACACGGCATGAAGGTCATTTACGGCCTTGAGGCGAACATCGTCGAC GATGGCGTGCCGATCGCCTACAATGAGACGCACCGCCGTCTTTCGGAGGA AACGTACGTCGTCTTTGACGTCGAGACGACCGCCGTCTTTCGGAGGA ATACGATCATTGAGCTCGAGACACCCTGGACATCGTCGTCGTCACACC GATGGAGCTGACTGGCTTTTGCCAACCCTGGACATCGTTGTCGGTGACAAC GATGGAGCTGACTGGGTTTTGTTGACATCGGTCGACCCCGAAGC CGGACGAGGTGCTAGCCCGTTTTTGTTGACTGGGCCGCGATGCGACCTCCCCCCCC                                                                                                                |
| GATTTTAGTCAAAATGTTCTCGCGCGACAAAGAGGACGCCGAGCTTATGA GCGGCGTCAAAAAAGGCATGTGGGTGAAAGTGCGCGGCAGCGTGCAAAAC GATACGTTCGTCCGTGATTTGGTCATCATCGCCAACGATTTGAACGAAAT CGCCGCAAACGAACGCCAAGATACGGCGCGCGGAAGGGTCG AGCTCCATTTGCATACCCCGATGAGCCAAATGGACGCGGTCACCTCGGTG ACAAAACTCATTGAGCAAGCGAAAAAATGGGGCATCCGCGTACAGCCGGTACACCGCGAAAAAAACACGCGATGAGCCAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GCGGCGTCAAAAAAGGCATGTGGGTGAAAGTGCGCGGCAGCGTGCAAAAC GATACGTTCGTCCGTGATTTGGTCATCATCGCCAACGATTTGAACGAAAT CGCCGCAAACGAACGGCAAGATACGGCGCCGGAAGGGGAAAAGAGGGTCG AGCTCCATTTGCATACCCCGATGAGCCAAATGGACGCGGTCACCTCGGTG ACAAAACTCATTGAGCAAGCGAAAAAATGGGGGCATCCGCGT CACCGACCATGCCGTTGTTCAGTCGTTTCCGGAGGCCTACAGCGCGGCA AAAAACACGGCATGAAGGTCATTTACGGCCTTGAGGCGAACATCGTCGAC GATGGCGTGCCGATCGCCTACAATGAGACGACCGCCGTCTTTCGGAGGA AACGTACGTCGTCTTTGACGTCGAGACGACCGCCGTCTTTCGGAGGA AACGTACGTCGTCTTTGACGTCGAGACGACGGCCTGTCGGCTGTACA ATACGATCATTGAGCTGGCGGCGGTGAAAGTGAAAGACGGCGAGATCATC GACCGATTCATGTCGTTTGCCAACCCTGGACATCCGTTGTCGGTGACAAC GATGGAGCTGACTGGGATCACCGATGAGATGGTGAAAGACGCCCCGAAGC CGGACGAGGTGCTAGCCCGTTTTTTTTTT                                                                                                                                                                                              |
| GATACGTTCGTCCGTGATTTGGTCATCATCGCCAACGATTTGAACGAAAT CGCCGCAAACGAACGCCAAGATACGGCGCCGGAAGGGGAAAAGAGGGTCG AGCTCCATTTGCATACCCCGATGAGCCAAATGGACGCGGTCACCTCGGTG ACAAAACTCATTGAGCAAGCGAAAAAATGGGGGCCATCCGCGTCCACCGACCATGCCGTTGTTCAGTCGTTTCCGGAGGCCTACAGCGCGGCGAAAAAAACACGGCATGAAGGTCATTTACGGCCTTGAGGCGAACATCGTCGAC GATGGCGTGCCGATCGACAATGAGACGCACCGCCGTCTTTCGGAAGAAACGGCGTCTTTGACGTCGACAATGAGACGACCGCCGTCTTTCGGAAGAAAACGTACGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CGCCGCAAACGAACGCCAAGATACGGCGCCGGAAGGGGAAAAGAGGGGTCG AGCTCCATTTGCATACCCCGATGAGCCAAATGGACGCGGTCACCTCGGTG ACAAAACTCATTGAGCAAGCGAAAAAATGGGGGCATCCGGCGATCGCCGT CACCGACCATGCCGTTGTTCAGTCGTTTCCGGAGGCCTACAGCGCGGCGA AAAAACACGGCATGAAGGTCATTTACGGCCTTGAGGCGAACATCGTCGAC GATGGCGTGCCGATCGCCTACAATGAGACGCACCGCCGTCTTTCGGAGGA AACGTACGTCGTCTTTGACGTCGAGACGACCGCCGTCTTTCGGAGGA ATACGATCATTGAGCTCGAGACGACGGGCCTGTCGGCTGTACA ATACGATCATTGAGCTCGCGGCGGTGAAAGTGAAAGACGGCGAGATCATC GACCGATTCATGTCGTTTGCCAACCCTGGACATCCGTTGTCGGTGACAAC GATGGAGCTGACTGGGATCACCGATGAGATGGTGAAAGACGCCCCGAAGC CGGACGAGGTGCTAGCCCGTTTTGTTGACTTGGCCGGCGGCGATGCGACGCTT GTTGCCCACAACGCCAGCTTTTGACATCGGTTTTTTAAACGCGGGCCTCGC TCGCATGGGGCCGCGCAAAATCCGGATTCATCGATACATTG 1000                                                                                                                                                                  |
| AGCTCCATTTGCATACCCCGATGAGCCAAATGGACGCGGTCACCTCGGTG ACAAAACTCATTGAGCAAGCGAAAAAATGGGGGCATCCGGCGATCGCCGT CACCGACCATGCCGTTGTTCAGTCGTTTCCGGAGGCCTACAGCGCGGCGA AAAAACACGGCATGAAGGTCATTTACGGCCTTGAGGCCGAACATCGTCGAC GATGGCGTGCCGATCGCCTACAATGAGACGCACCGCCGTCTTTCGGAGGA AACGTACGTCGTCTTTGACGTCGAGACGACCGCCGTCTTTCGGAGGA AACGTACGTCGTCTTTGACGTCGAGACGACGGCCTGTCGGCTGTACA ATACGATCATTGAGCTGGCGGCGGTGAAAGTGAAAGACGCCGAGACACC GACCGATTCATGTCGTTTGCCAACCCTGGACATCCGTTGTCGGTGACAAC GATGGAGCTGACTGGGATCACCGATGAGATGGTGAAAGACGCCCCGAAGC CGGACGAGGTGCTAGCCCGTTTTTGTTGACTGGGCCGGCGATGCGACGCTT GTTGCCCACAACGCCAGCTTTTGACATCGGTTTTTTAAACGCGGGCCTCGC TCGCATGGGGCGCGCAAAATCCGGATTCAATACGCTCGAGC TGGCCCGTTTTTTTATACCCGGATTTGAAAAAACCATCGGCTCAATACATTG                                                                                                                                                                    |
| ACAAAACTCATTGAGCAAGCGAAAAAATGGGGGCATCCGGCGATCGCCGT CACCGACCATGCCGTTGTTCAGTCGTTTCCGGAGGCCTACAGCGCGGCA AAAAACACGGCATGAAGGTCATTTACGGCCTTGAGGCGAACATCGTCGAC GATGGCGTGCCGATCGCCTACAATGAGACGCACCGCCGTCTTTCGGAGGA AACGTACGTCGTCTTTGACGTCGAGACGACGGCCTGTCGGCTGTGTACA ATACGATCATTGAGCTGGCGGCGGTGAAAGTGAAAGACGGCGAGATCATC GACCGATTCATGTCGTTTGCCAACCCTGGACATCCGTTGTCGGTGACAAC GATGGAGCTGACTGGGATCACCGATGAGATGGTGAAAGACGCCCCGAAGC CGGACGAGGTGCTAGCCCGTTTTTGTTGACTGGGCCGGCGATGCGACGCTT GTTGCCCACAACGCCAGCTTTTGACATCGGTTTTTAAACGCGGGCCTCGC TCGCATGGGGCGCGCAAAATCGCGAATCCAGTCATCGATACGCTCGAGC TGGCCCGTTTTTTATACCCGGATTTGAAAAAACCATCGGCTCAATACATTG                                                                                                                                                                                                                                                                |
| CACCGACCATGCCGTTGTTCAGTCGTTTCCGGAGGCCTACAGCGCGGCGA AAAAACACGGCATGAAGGTCATTTACGGCCTTGAGGCGAACATCGTCGAC GATGGCGTGCCGATCGCCTACAATGAGACGCACCGCCGTCTTTCGGAGGA AACGTACGTCGTCTTTGACGTCGAGACGGCCTGTCGGCTGTGTACA ATACGATCATTGAGCTGGCGGCGGTGAAAGTGAAAGACGGCGAGATCATC GACCGATTCATGTCGTTTGCCAACCCTGGACATCCGTTGTCGGTGACAAC GATGGAGCTGACTGGGATCACCGATGAGATGGTGAAAGACGCCCCGAAGC CGGACGAGGTGCTAGCCCGTTTTTGTTGACTGGGCCGGCGATGCGACGCTT GTTGCCCACAACGCCAGCTTTTGACATCGGTTTTTTAAACGCGGGCCTCGC TCGCATGGGGCGGCAAAATCGCGAATCCAGTCATCGATACGCTCGAGC TGGCCCGTTTTTTATACCCGGATTTGAAAAAACCATCGGCTCAATACATTG                                                                                                                                                                                                                                                                                                                     |
| AAAAACACGGCATGAAGGTCATTTACGGCCTTGAGGCGAACATCGTCGAC GATGGCGTGCCGATCGCCTACAATGAGACGCACCGCCGTCTTTCGGAGA AACGTACGTCGTCTTTGACGTCGAGACGACGGGCCTGTCGGCTGTGTACA ATACGATCATTGAGCTGGCGGCGGTGAAAGTGAAAGACGGCGAGATCATC GACCGATTCATGTCGTTTGCCAACCCTGGACATCCGTTGTCGGTGACAAC GATGGAGCTGACTGGGATCACCGATGAGATGGTGAAAGACGCCCCGAAGC CGGACGAGGTGCTAGCCCGTTTTGTTGACTGGGCCGGCGATGCGACGCTT GTTGCCCACAACGCCAGCTTTTGACATCGGTTTTTTAAACGCGGGCCTCGC TCGCATGGGGCGCGCAAAATCGCGAATCCAGTCATCGATACGCTCGAGC TGGCCCGTTTTTTATACCCGGATTTGAAAAAACCATCGGCTCAATACATTG                                                                                                                                                                                                                                                                                                                                                                     |
| GATGGCGTGCCGATCGCCTACAATGAGACGCACCGCCGTCTTTCGGAGGA AACGTACGTCGTCTTTGACGTCGAGACGACGGGCCTGTCGGCTGTACA ATACGATCATTGAGCTGGCGGCGGTGAAAGTGAAAGACGGCGAGATCATC GACCGATTCATGTCGTTTGCCAACCCTGGACATCCGTTGTCGGTGACAAC GATGGAGCTGACTGGGATCACCGATGAGATGGTGAAAGACGCCCCGAAGC CGGACGAGGTGCTAGCCCGTTTTGTTGACTGGGCCGGCGATGCGACGCTT GTTGCCCACAACGCCAGCTTTTGACATCGGTTTTTTAAACGCGGGCCTCGC TCGCATGGGGCGCGCAAAATCGCGAATCCAGTCATCGATACGCTCGAGC TGGCCCGTTTTTTATACCCGGATTTGAAAAAACCATCGGCTCAATACATTG                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AACGTACGTCGTCTTTGACGTCGAGACGACGGCCTGTCGGCTGTGTACA ATACGATCATTGAGCTGGCGGCGGTGAAAGTGAAAGACGGCGAGATCATC GACCGATTCATGTCGTTTGCCAACCCTGGACATCCGTTGTCGGTGACAAC GATGGAGCTGACTGGGATCACCGATGAGATGGTGAAAGACGCCCCGAAGC CGGACGAGGTGCTAGCCCGTTTTTGTTGACTGGGCCGGCGATGCGACGCTT GTTGCCCACAACGCCAGCTTTTGACATCGGTTTTTAAACGCGGGCCTCGC TCGCATGGGGCGCGAAAATCGCGAATCCAGTCATCGATACGCTCGAGC TGGCCCGTTTTTTATACCCGGATTTGAAAAAACCATCGGCTCAATACATTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ATACGATCATTGAGCTGGCGGCGGTGAAAGTGAAAGACGGCGAGATCATC GACCGATTCATGTCGTTTGCCAACCCTGGACATCCGTTGTCGGTGACAAC GATGGAGCTGACTGGGATCACCGATGAGATGGTGAAAGACGCCCCGAAGC CGGACGAGGTGCTAGCCCGTTTTTGTTGACTGGGCCGGCGATGCGACGCTT GTTGCCCACAACGCCAGCTTTTGACATCGGTTTTTTAAACGCGGGCCTCGC TCGCATGGGGCGCGCAAAATCGCGAATCCAGTCATCGATACGCTCGAGC TGGCCCGTTTTTTATACCCGGATTTGAAAAAACCATCGGCTCAATACATTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GACCGATTCATGTCGTTTGCCAACCCTGGACATCCGTTGTCGGTGACAAC GATGGAGCTGACTGCGATCACCGATGAGATGGTGAAAGACGCCCCGAAGC CGGACGAGGTGCTAGCCCGTTTTGTTGACTGGGCCGGCGATGCGACGCTT GTTGCCCACAACGCCAGCTTTGACATCGGTTTTTTAAACGCGGGCCTCGC TCGCATGGGGCGCGCAAAATCGCGAATCCAGTCATCGATACGCTCGAGC TGGCCCGTTTTTTATACCCGGATTTGAAAAAACCATCGGCTCAATACATTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| GATGGAGCTGACTGGGATCACCGATGAGATGGTGAAAGACGCCCCGAAGC CGGACGAGGTGCTAGCCCGTTTTGTTGACTGGGCCGGCGATGCGACGCTT GTTGCCCACAACGCCAGCTTTGACATCGGTTTTTTAAACGCGGGCCTCGC TCGCATGGGGCGCGCAAAATCGCGAATCCAGTCATCGATACGCTCGAGC TGGCCCGTTTTTTATACCCGGATTTGAAAAAACCATCGGCTCAATACATTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CGGACGAGGTGCTAGCCCGTTTTGTTGACTGGGCCGGCGATGCGACGCTT  GTTGCCCACAACGCCAGCTTTGACATCGGTTTTTTAAACGCGGGCCTCGC  TCGCATGGGGCGCGCAAAATCGCGAATCCAGTCATCGATACGCTCGAGC  TGGCCCGTTTTTTATACCCGGATTTGAAAAACCATCGGCTCAATACATTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| GTTGCCCACAACGCCAGCTTTGACATCGGTTTTTTAAACGCGGGCCTCGC TCGCATGGGGCGCGCAAAATCGCGAATCCAGTCATCGATACGCTCGAGC TGGCCCGTTTTTTATACCCGGATTTGAAAAACCATCGGCTCAATACATTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TCGCATGGGGCGCGCAAAATCGCGAATCCAGTCATCGATACGCTCGAGC 1600<br>TGGCCCGTTTTTTATACCCGGATTTGAAAAACCATCGGCTCAATACATTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TGGCCCGTTTTTTATACCCGGATTTGAAAAACCATCGGCTCAATACATTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TGCAAAAATTTGACATTGAATTGACGCAGCATCACCGCGCCATCTACGA 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CGCGGAGGCGACCGGGCATTTGCTTATGCGGCTGTTGAAGGAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AGCGCGCATACTGTTTCATGACGAATTAAACAGCCGCACGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GCGTCCTATCGGCTTGCGCGCCCGTTCCATGTGACGCTGTTGGCGCAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CGAGACTGGATTGAAAAATTTGTTCAAGCTTGTGTCATTGTCGCACATTC 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AATATTTCACCGTGTGCCGCGCATCCCGCGCTCCGTGCTCAAGCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CGCGACGGCCTGCTTGTCGGCTCGGGCTGCGACAAAGGAGAGCTGTTTGA 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CAACTTGATCCAAAAGGCGCCGGAAGAAGTCGAAGACATCGCCCGTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ACGATTTTCTTGAAGTGCATCCGCCGGACGTGTACAAGCCGCTCATCGAG 2100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ATGGATTATGTGAAAGACGAAGAGATGATCAAAAACATCATCCGCAGCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CGTCGCCCTTGGTGAGAAGCTTGACATCCCGGTTGTCGCCACTGGCAACG 2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| TCCATTACTTGAACCCAGAAGATAAAATTTACCGGAAAATCTTAATCCAT                                                   |                  |
|------------------------------------------------------------------------------------------------------|------------------|
| TCGCAAGGCGGGCGAATCCGCTCAACCGCCATGAACTGCCGGATGTÀTA                                                    | 2300             |
| TTTCCGTACGACGAATGAAATGCTTGACTGCTTCTCGTTTTTAGGGCCCGG                                                  |                  |
| AAAAAGCGAAGGAAATCGTCGTTGACAACACGCAAAAAATCGCTTCGTTA                                                   | 2400             |
| ATCGGCGATGTCAAGCCGATCAAAGATGAGCTGTATACGCCGCGCATTGA                                                   |                  |
| AGGGGCGGACGAGAAATCAGGGAAATGAGCTACCGGCGGGCG                                                           | 2500             |
| TTTACGGCGACCCGTTGCCGAAACTTGTTGAAGAGCGGCTTGAGAAGGAG                                                   |                  |
| CTAAAAAGCATCATCGGCCATGGCTTTGCCGTCATTTATTT                                                            | 2600             |
| CAAGCTTGTGAAAAAATCGCTCGATGACGGCTACCTTGTCGGGTCGCGCG                                                   |                  |
| GATCGGTCGCTCGTTTGTCGCGACGATGACGGAAATCACCGAGGTC                                                       | 2700             |
| AATCCGCTGCCGCCATTACGTTTGCCCGAACTGCAAGCATTCGGAGTT                                                     |                  |
| CTTTAACGACGGTTCAGTCGGCTCAGGGTTTGATTTGCCGGATAAAAACT                                                   | 2800             |
| GCCCGCGATGTGGGACGAAATACAAGAAGACGGGCACGACATCCCGTTT                                                    |                  |
| GAGACGTTTCTCGGCTTTAAAGGCGACAAAGTGCCGGATATCGACTTGAA                                                   | 2900             |
| CTTTTCCGGCGAATACCAGCCGCGCGCCCACAACTATACGAAAGTGCTGT                                                   |                  |
| TTGGCGAAGACAACGTCTACCGCGCCGGGACGATTGGCACGGTCGCTGAC                                                   | 3000             |
| AAAACGGCGTACGGATTTGTCAAAGCGTATGCGAGCGACCATAACTTAGA                                                   |                  |
| GCTGCGCGCGCGAAATCGACGGCTCGCGGCTGCCTGCACCGGGGTGAA                                                     | 3100             |
| GCGGACGACCGGCATCCGGGCGCATCATCGTCCCCGGATTATA                                                          |                  |
| TGGAAATTTACGATTTTACGCCGATTCAATATCCGGCCGATGACACGTCC                                                   | 3200             |
| TCTGAATGGCGGACGACCCATTTCGACTTCCATTCGATCCACGACAATTT                                                   |                  |
| GTTGAAGCTCGATATTCTCGGGCACGACGATCCGACGGTCATTCGCATGC                                                   | 3300             |
| TGCAAGATTTAAGCGGCATCGATCCGAAAACGATCCCGACCGA                                                          | 2.400            |
| GATGTGATGGGCATTTTCAGCAGCACCGAGCCGCTTGGCGTTACGCCGGA                                                   | 3400             |
| GCAAATCATGTGCAATGTCGGCACGATCGGCATTCCGGAGTTTGGCACGC                                                   | 2500             |
| GCTTCGTTCGGCAAATGTTGGAAGACAAGGCCAAAAACGTTTTCCGAA                                                     | 3500             |
| CTCGTGCAAATTTCCGGCTTGTCGCACGGCACCGATGTGTGGCTCGGCAA                                                   | 2600             |
| CGCGCAAGAGCTCATTCAAAACGGCACGTGTACGTTATCGGAAGTCATCG                                                   | 3600             |
| GCTGCCGCGACGACATTATGGTCTATTTGATTTACCGCGGGCTCGAGCCG                                                   | 2700             |
| TCGCTCGCTTTTAAAATCATGGAATCCGTGCGCAAAGGAAAAGGCTTAAC                                                   | 3700             |
| GCCGGAGTTTGAAGCAGAAATGCGCAAACATGACGTGCCGGAGTGGTACA                                                   | 2000             |
| TCGATTCATGCAAAAAATCAAGTACATGTTCCCGAAAGCGCACGCCGCC                                                    | 3800             |
| GCCTACGTGTTAATGGCGGTGCGCATCGCCTACTTTAAGGTGCACCATCC                                                   | 3900             |
| GCTTTTGTATTACGCGTCGTACTTTACGGTGCGGGCGGAGGACTTTGACC                                                   | 3900             |
| TTGACGCCATGATCAAAGGATCACCCGCCATTCGCAAGCGGATTGAGGAA                                                   | 4000             |
| ATCAACGCCAAAGGCATTCAGGCGACGGCGAAAGAAAAAAGCTTGCTCAC                                                   | 4000             |
| GGTTCTTGAGGTGGCCTTAGAGATGTGCGAGCGCGCTTTTCCTTTAAAA ATATCGATTTGTACCGCTCGCAGGCGACGGAATTCGTCATTGACGGCAAT | 4100             |
| TCTCTCATTCCGCCGCTCAACGCCATTCCGGGGCTTGGGACGAACGTGGC                                                   | 4100             |
| GCAGGCGATCGTGCGCGCCCGCGAGGAAGGCGAGTTTTTGTCGAAGGAGG                                                   | 4200             |
| ATTTGCAACAGCGCGGCAAATTGTCGAAAACGCTGCTCGAGTATCTAGAA                                                   | 4200             |
| AGCCGCGCTGCCTTGACTCGCTTCCAGACCATAACCAGCTGTCGCTGTT                                                    | 4300             |
| T                                                                                                    | <del>4</del> 200 |
| <b>1</b>                                                                                             |                  |

### 83/83

| MVTKEQKERFLILLEQLKMTSDEWMPHFREAAIRKVVIDKEEKSWHFYFQ |      |
|----------------------------------------------------|------|
| FDNVLPVHVYKTFADRLQTAFRHIAAVRHTMEVEAPRVTEADVQAYWPLC | 100  |
| LAELQEGMSPLVDWLSRQTPELKGNKLLVVARHEAEALAIKRRFAKKIAD |      |
| VYASFGFPPLQLDVSVEPSKQEMEQFLAQKQQEDEERALAVLTDLAREEE | 200  |
| KAASAPPSGPLVIGYPIRDEEPVRRLETIVEEERRVVVQGYVFDAEVSEL |      |
| KSGRTLLTMKITDYTNSILVKMFSRDKEDAELMSGVKKGMWVKVRGSVQN | 300  |
| DTFVRDLVIIANDLNEIAANERQDTAPEGEKRVELHLHTPMSQMDAVTSV |      |
| TKLIEQAKKWGHPAIAVTDHAVVQSFPEAYSAAKKHGMKVIYGLEANIVD | 400  |
| DGVPIAYNETHRRLSEETYVVFDVETTGLSAVYNTIIELAAVKVKDGEII |      |
| DRFMSFANPGHPLSVTTMELTGITDEMVKDAPKPDEVLARFVDWAGDATL | 500  |
| VAHNASFDIGFLNAGLARMGRGKIANPVIDTLELARFLYPDLKNHRLNTL |      |
| CKKFDIELTQHHRAIYDAEATGHLLMRLLKEAEERGILFHDELNSRTHSE | 600  |
| ASYRLARPFHVTLLAQNETGLKNLFKLVSLSHIQYFHRVPRIPRSVLVKH |      |
| RDGLLVGSGCDKGELFDNLIQKAPEEVEDIARFYDFLEVHPPDVYKPLIE | 700  |
| MDYVKDEEMIKNIIRSIVALGEKLDIPVVATGNVHYLNPEDKIYRKILIH |      |
| SQGGANPLNRHELPDVYFRTTNEMLDCFSFLGPEKAKEIVVDNTQKIASL | 800  |
| IGDVKPIKDELYTPRIEGADEEIREMSYRRAKEIYGDPLPKLVEERLEKE |      |
| LKSIIGHGFAVIYLISHKLVKKSLDDGYLVGSRGSVGSSFVATMTEITEV | 900  |
| NPLPPHYVCPNCKHSEFFNDGSVGSGFDLPDKNCPRCGTKYKKDGHDIPF |      |
| ETFLGFKGDKVPDIDLNFSGEYQPRAHNYTKVLFGEDNVYRAGTIGTVAD | 1000 |
| KTAYGFVKAYASDHNLELRGAEIDLAAGCTGVKRTTGQHPGGIIVVPDYM |      |
| EIYDFTPIQYPADDTSSEWRTTHFDFHSIHDNLLKLDILGHDDPTVIRML | 1100 |
| QDLSGIDPKTIPTDDPDVMGIFSSTEPLGVTPEQIMCNVGTIGIPEFGTR |      |
| FVRQMLEETRPKTFSELVQISGLSHGTDVWLGNAQELIQNGTCTLSEVIG | 1200 |
| CRDDIMVYLIYRGLEPSLAFKIMESVRKGKGLTPEFEAEMRKHDVPEWYI |      |
| DSCKKIKYMFPKAHAAAYVLMAVRIAYFKVHHPLLYYASYFTVRAEDFDL | 1300 |
| DAMIKGSPAIRKRIEEINAKGIQATAKEKSLLTVLEVALEMCERGFSFKN |      |
| IDLYRSQATEFVIDGNSLIPPFNAIPGLGTNVAQAIVRAREEGEFLSKED | 1400 |
| LOORGKLSKTLLEYLESRGCLDSLPDHNOLSLF                  |      |