Tutoría 2

Elementos Activos

Problema 1. Determine el potencial de contacto y el ancho de la zona de agotamiento (x_n, x_p, W) para un diodo de silicio a 300 K, con N_A=10¹⁷ cm⁻³ y N_D=10¹⁴ cm⁻³

Problema 2. Para formar contactos MS, se utilizan distintos substratos de germanio a temperatura ambiente (n_i =2.5×10¹³ cm-3, E_G =0.66 eV). Dos posibles combinaciones con metales se muestran a continuación.

Combinación A	$\phi_M = 4.75 eV$	$\chi_{Ge} = 4.00 eV$	$N_D = 10^{16} cm^{-3}$
Combinación B	$\phi_M = 4.75 eV$	$\chi_{Ge} = 4.00 \ eV$	$N_A = 10^{15} cm^{-3}$

Dibuje el diagrama de bandas de energía en equilibrio, para las combinaciones A y B. Para esto determine los siguientes parámetros:

- Nivel de energía de *Ei*
- Nivel de energía de *E_F* con respecto a *Ei*
- Función de trabajo del semiconductor ϕs
- Determine si el contacto es de tipo óhmico o Schottky.

Problema 3. Cierta empresa requiere diseñar una compuerta OR de dos entradas con diodos Schottky como se muestra en la figura:

Para ello, cuenta con los materiales metálicos enlistados en la siguiente tabla:

Elemento	φM [eV]	
Hafnio	3.9	
Tungsteno	4.55	
Níquel	5.15	

Además, cuenta con silicio dopado con una concentración de donadores $ND = 9x10^{15}$ cm⁻³. Se establece que los diodos de la compuerta deben tener un potencial de contacto menor a 0.3 V. Recuerde que la afinidad electrónica del silicio es de 4.05 eV y la banda prohibida tiene un ancho de 1.12 eV. Determine:

- a) ¿Qué metal debe escogerse para el ánodo de los diodos? Justifique con diagrama de bandas de energía.
- b) Calcule la barrera Schottky resultante en ambos diodos.

Problema 4.

Se tiene una oblea de Si de tipo P dopada con boro, con una concentración de aceptores dada por $N_A = 2 \times 10^{15} \text{ cm}^{-3}$. Para fabricar un diodo Schottky (ver Figura 1.1) se requiere dopar una pequeña región con arsénico, con el propósito de invertir su dopado a N, por medio de implantación iónica con una concentración de donadores dada por $N_D = 4 \times 10^{15} \text{ cm}^{-3}$. La oblea final está a temperatura ambiente.

Figura 1.1: Fabricación de un diodo Schottky en una oblea P.

- Calcule la concentración de electrones y de huecos en la oblea P original (región 1).
- 1.2. Calcule el dopado efectivo, la concentración de electrones y la concentración de huecos en la región N (región 2), considerando que esta región tiene ambos tipos de dopado.
 3 Pts
- 1.3. Calcule la posición del Nivel de Fermi con respecto a Ei en la oblea P (región 1) y en la región N (región 2).
 2 Pts
- 1.4. Calcule la resistividad de la oblea P (región 1) y la resistividad de la región N (región 2). Asuma que el dopado es relativamente ligero en ambas regiones y no afecta el valor de las movilidades intrínsecas (μ_n = 1350 cm²/Vs, μ_p = 480 cm²/Vs).
 2 Pts
- 1.5. Calcule cuál es la concentración máxima permitida de átomos de arsénico que se podría implantar para crear una región n+ (región 3), cumpliendo la condición de que el silicio siga siendo un material no-degenerado (E_C E_F > 3kT).
 1 Pt