caracterización-conjunto-enumerable

Sea $S\subseteq\omega^n\times\Sigma^{*m}$ un conjunto no vacío. Entonces son equivalentes:

(1) S es Σ -enumerable

(es decir) Existe $F:\omega\to\omega^n imes\Sigma^{*m}$ tal que Im(F)=S y las $F_{(i)},\ i=1,\ldots,n+m$ son Σ -computables.

- (2) Hay un programa $\mathcal{P} \in Pro^{\Sigma}$ tal que:
- (a) Para cada $x\in\omega$, tenemos que $\mathcal P$ se detiene partiendo desde el estado ||x|| y llega a un estado de la forma $((x_1,\ldots,x_n),(\alpha_1,\ldots,\alpha_m))$ tal que $(x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m)\in S$
- (b) Para todo $(x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m)\in S$ hay un $x\in\omega$ tal que $\mathcal P$ se detiene partiendo desde el estado ||x|| y llega a un estado de la forma $((x_1,\ldots,x_n),(\alpha_1,\ldots,\alpha_m))$

(Caso n=2, m=1)

$$(1) \implies (2)$$

Por hipótesis existe una función que computa el conjunto S no vacío Podemos definir macros para sus coordenadas Σ -computables Las usamos para dar el programa que cumple con (a) y (b).

Dado que S no es vacío, tenemos por hipótesis tenemos que existe alguna función $F:\omega \to \omega^2 imes \Sigma^{*1}$ tal que $I_F=S$ y $F_{(i)}$ es Σ -computable para cada $i\in\{1,2,3\}$. Luego, por la *Proposición de las Macros* tenemos que existen las siguientes Macros:

$$[V2 \leftarrow F_{(1)}(V1)] \ [V2 \leftarrow F_{(2)}(V1)] \ [W2 \leftarrow F_{(3)}(V1)]$$

Las cuales nos permiten dar el siguiente programa

$$[P3 \leftarrow F_{(3)}(N1)] \ [N2 \leftarrow F_{(2)}(N1)] \ [N1 \leftarrow F_{(1)}(N1)]$$

Que claramente termina para todo estado $||x||, x \in \omega$ y ademas termina en algún estado de la forma $((x_1, x_2, y_1, \ldots), (\alpha_1, \beta_1, \ldots))$ tal que $(x_1, x_2, \alpha_1) \in S$.

$$(2) \implies (1)$$

Suponemos $P \in Pro^{\Sigma}$ cumple con (a) y (b) de 2.

Extraemos del mismo los i sub-programas que calculan las $F_{(i)}$

Notar que las horquillas de los n+m sub-programas resultante tienen las propiedades que hacen que enumere a ${\sf S}$

Suponemos $P \in Pro^{\Sigma}$ cumple con (a) y (b) de 2. Sean:

$$\mathcal{P}_1 = \mathcal{P}N1 \leftarrow N1 \ \mathcal{P}_2 = \mathcal{P}N1 \leftarrow N2 \ \mathcal{P}_3 = \mathcal{P}N1 \leftarrow P1$$

Las concatenaciones del programa con la instrucción que guarda en N1 la coordenada relevante. Usando estos programas podemos definir las n+m funciones Σ -computables

$$egin{aligned} F_{(1)} &= \Psi_{\mathcal{P}_1}^{1,0,\#} \ F_{(2)} &= \Psi_{\mathcal{P}_2}^{1,0,\#} \ F_{(3)} &= \Psi_{\mathcal{P}_3}^{1,0,*} \end{aligned}$$

Tales que definen $F=[F_{(1)},F_{(2)},F_{(3)}]:\omega o\omega^2 imes\Sigma^{*1}$ que computa al conjunto S.

Por hipótesis el programa $\mathcal P$ termina para todo estado inicial $||x||, x \in \omega$ y ademas su estado final es de la forma $((x_1, x_2, y_1, \ldots), (\alpha_1, \beta_1, \ldots))$ tal que $(x_1, x_2, \alpha_1) \in S$.

Es decir cada programa \mathcal{P}_i también termina para todo estado inicial $||x||, x \in \omega$ y la primera coordenada del estado al terminar contiene el i-esimo elemento de $(x_1, x_2, \alpha_1) \in S$, es decir que $I_F = S$.