## **Directed Graphs**

## **Terminology**

• multiset : a set-like collection that allows duplicate elements

• directed graph (digraph) : G = (V, E) where V is a set of vertices (or nodes) and E is a multiset of elements of V×V

• **simple graph:** a graph G = (V, E) where E is a set (and not a multiset)

• path : Given graph G = (V, E) and  $u, v \in V$ , the path from u to v is a sequence of edges such that

- u is where v of v edge.

- length of a path: the number of edges in the path
- cycle: a path of length > 0 that begins and ends at the same vertex

## **Directed graph example**



$$V = \{a,b,c,d\}$$
  
 $E = \{(b,a),(a,c),(b,c),(c,b),(b,d),(\underline{d,c)},(\underline{d,c)}\}$   
 $E = \{(b,a),(a,c),(b,c),(c,b),(b,d),(\underline{d,c)},(\underline{d,c)}\}$   
 $E = \{(b,a),(a,c),(b,c),(c,b),(b,d),(\underline{d,c)},(\underline{d,c)}\}$   
 $E = \{(b,a),(a,c),(b,c),(c,b),(b,d),(\underline{d,c)},(\underline{d,c)}\}$ 

| Path | start<br>vertex | end<br>vertex | sequence of edges      | length |
|------|-----------------|---------------|------------------------|--------|
| P1   | Δ               | a             | empty sequence         | 0      |
| P2   | a               | 6             | er, 64                 | 2      |
| Р3   | a               | d             | ez, e4, e5, l6, e4, e5 | Ь      |
| P4   | a               | a             | lz, eu, ei             | 3      |

Eznot a cycle

### **Transitive closure**

7 (GIB) FR

transitive closure: the relation R on V where aRb if and only if there exists a path in G from a to b

Is transitive closure reflexive? Yat V, (a,a) GR (a,b), (d,a) are in transitive closure of Yer, three always exists a path of length o from a vertex to itself exemple

Is transitive closure transitive?  $(a,b) \in \mathcal{R} \land (b,c) \subseteq \mathcal{R} \Rightarrow (a,c) \in \mathcal{R}$ .

Yes. If I a porth from a to b and I a path from b to c, there is a path from a to c.

Is transitive closure symmetric?  $(a,b) \in \mathbb{R} \iff (b,a) \in \mathbb{R}$ .

No, if I is a path from at to b, not necessarily a path from b to a.



anti-symmetric?

# **More terminology**

• DAG: Directed Acyclic Graph = digraph with no cycles

• in-degree of a vertex  $v = \# edgec = \# Wh V as an end vertex <math display="block">= \left| \left\{ (X,V) \mid (Y,V) \notin F \right\} \right|$ 

• out-degree of a vertex  $v = \overline{y}$  edges in E with V is stant vertex.

= | { ( Y, Y ) | ( V, Y ) & E } |

• **topological ordering** of a graph G = (V, E) is a total order  $\lessdot$  on V such that if  $(u, v) \in E$  for  $u, v \in V$ ,  $u \neq v$ , then  $u \lessdot v$ .

transitive & antisymmetric.

any 2 distinct element can be compared.

i.e.  $\forall u, v \in V$ ,  $u \neq v$ , either  $u \leq v \notin v \leq u$ 



really nears orders is.

{ (ws, sw), (ws, sp),
 (ws, b), (ws, b), (hs, c),
 (ws, m) (ws, sc), (sw, sp. ).

I m the edges points to the right.

topological ordering to boots that = coat < mitters = smeat.

not recessify unique!

Theorem! every PAG has a topological ordering

# **Proving a Graph Property**

#### Recall

- in-degree of vertex v: # of edges in E with v as the end vertex
- out-degree of vertex v: # of edges in E with v as the start vertex (v) y

Lemma: Every finite non-empty DAG has a vertex with in-degree 0.

#### **Proof by contradiction**

Suppose G = (V, E) is a finite non-empty DAG. Assume G has **no** vertices that have in-degree 0. Let n = |V|.

The following invariant holds at the beginning of stage *i* for  $1 \le i \le n$ :

There exist distinct vertices  $v_1$ ,  $v_2$ , ...  $v_i$  such that there exists a path from  $v_i$  to  $v_1$ .

Let i = 1: picks any vertexes to be  $V_i$ 

I empty puth (ef length 0) from VI to VI so invariants holds

Suppose the invariant holds at the beginning of stage i where i < n, so there exists a path from  $v_i$  to  $v_1$ .

In degree 
$$Vi7)$$
 |  $\exists u \in V$  sit.  $(u, vi) \in E$ .

 $(vi) \longrightarrow (vi-1) \longrightarrow --- (vk+1) \longrightarrow (vk) \longrightarrow (vk+1) \longrightarrow (vk)$ 

If  $a = V_k$  for some  $k \in \{1, 2, ---, i\}$ , then.

 $(vi, vi-1)$   $(vi-1, vi-2) --- (vk+1, vk)$ ,  $(vk, vi)$ . is a cycle.

Which contraditt  $G$  being  $DAG$ .

- so essume  $u \neq V_k$  for any  $k \in \{1, 2, 3, ---, i\}$ .

Then define  $vi+1 = vk \in V_k$  now we have the path  $(vi+1, vi) \in V_i, vi-1) --- (v2, vi)$ 
 $k \in V_i$  invariant hords.

Consider the beginning of stage n. By the invariant, there exists a path from  $v_n$  to  $v_1$ .