Completion of Normed Spaces

Definition: Completion

Let E be a normed space over a field $\mathbb F$. To say that a normed space $\tilde E$ is a *completion* of E means:

1). There exists an injective mapping $\Phi: E \to \tilde{E}$ such that $\forall \vec{x}, \vec{y} \in E$ and $\forall \alpha, \beta \in \mathbb{F}$:

$$\Phi(\alpha \vec{x} + \beta \vec{y}) = \alpha \Phi(\vec{x}) + \beta \Phi(\vec{y})$$

- 2). $\|\Phi(\vec{x})\|_{\sim} = \|\vec{x}\|$
- 3). $\Phi(E)$ is dense in \tilde{E} .
- 4). \tilde{E} is complete (Banach).

Definition: Equivalence

Let E be a normed space and let (\vec{x}_n) and (\vec{y}_n) be Cauchy in E. To say that (\vec{x}_n) and (\vec{y}_n) are equivalent in E means:

$$\|\vec{x}_n - \vec{y}_n\| \to 0$$

Theorem

Every normed space E has a completion \tilde{E} .

Proof

Let $[(\vec{x}_n)]$ denote the set of all sequences in E that are equivalent to (\vec{x}_n) . Let \tilde{E} be the set of all equivalence classes of sequences in E.

Equip \tilde{E} with the binary operations:

•
$$[(\vec{x}_n)] + [(\vec{y}_n)] = [(\vec{x}_n + \vec{y}_n)]$$

•
$$\lambda[(\vec{x}_n)] = [(\lambda \vec{x}_n)]$$

Assume $(\vec{x}_n)_1 \sim (\vec{x}_n)_2$ and $(\vec{y}_n)_1 \sim (\vec{y}_n)_2$:

$$\begin{aligned} \|((\vec{x}_n)_1 + (\vec{y}_n)_1) - ((\vec{x}_n)_2 + (\vec{y}_n)_2)\| &= \|((\vec{x}_n)_1 - (\vec{x}_n)_2) + ((\vec{y}_n)_1 - (\vec{y}_n)_2)\| \\ &\leq \|(\vec{x}_n)_1 - (\vec{x}_n)_2\| + \|(\vec{y}_n)_1 - (\vec{y}_n)_2\| \\ &\rightarrow 0 + 0 \\ &= 0 \end{aligned}$$

and:

$$\|\lambda(\vec{x}_n)_1 - \lambda(\vec{x}_n)_2\| = |\lambda| \|(\vec{x}_n)_1 - (\vec{x}_n)_2\| \to 0$$

Therefore, the operations are well-defined and \tilde{E} is a vector space.

Now, define $\|[\vec{x}_n]\|_{\sim} = \|[\vec{x}_n]\|_1 = \lim_{n \to \infty} \|\vec{x}_n\|.$

By previous theorem, this norm always converges for Cauchy (\vec{x}_n) . Furthermore, if $(\vec{x}_n) \sim (\vec{y}_n)$:

$$|||\vec{x}_n|| - ||\vec{y}_n||| \le ||\vec{x}_n - \vec{y}_n|| \to 0$$

And so $\lim_{n\to\infty}\|\vec{x}_n\|=\lim_{n\to\infty}\|\vec{y}_n\|.$

Now, define $\Phi: E \to \tilde{E}$ by $\Phi(\vec{x}) = [(\vec{x}, \vec{x}, \ldots)].$

Clearly, Φ satisfies the linearity conditions under the binary operations.

Since every $[(x_n)]$ is the result of some sequence in E, $\Phi(E)$ is dense in \tilde{E} .

Assume (X_n) be a sequence in \tilde{E} .

Since $\Phi(E)$ is dense in \tilde{E} , $\exists (\vec{x}_n)$ in E such that:

$$\|\Phi(\vec{x}_n) - X_n\| < \frac{1}{n}$$

And so:

$$\|\vec{x}_{n} - \vec{x}_{m}\| = \|\Phi(\vec{x}_{n}) - \Phi(\vec{x}_{m})\|$$

$$= \|(\Phi(\vec{x}_{n}) - X_{n}) + (X_{n} - X_{m}) + (X_{m} - \Phi(\vec{x}_{m}))\|$$

$$\leq \|\Phi(\vec{x}_{n}) - X_{n}\| + \|X_{n} - X_{m}\| + \|X_{m} - \Phi(\vec{x}_{m})\|$$

$$\leq \frac{1}{n} + \|X_{n} - X_{m}\| + \frac{1}{m}$$

$$\to 0 + 0 + 0$$

$$= 0$$

Therefore, (\vec{x}_n) is Cauchy in E.

Finally, let $X = [(\vec{x}_n)]$:

$$||X_n - X|| = ||(X_n - \Phi(\vec{x}_n)) + (\Phi(\vec{x}_n) - X)||$$

$$\leq ||X_n - \Phi(\vec{x}_n)|| + ||\Phi(\vec{x}_n) - X||$$

$$\leq \frac{1}{n} + ||\Phi(\vec{x}_n) - X||$$

$$\to 0 + 0$$

$$= 0$$

Therefore E is complete (Banach).

Therefore there exists \tilde{E} which is a completion of E.