1 (IMO2018PL3). An anti-Pascal triangle is an equilateral triangular array of numbers such that, except for the numbers in the bottom row, each number is the absolute value of the difference of the two numbers immediately below it. For example, the following is an anti-Pascal triangle with four rows which contains every integer from 1 to 10

Does there exist an anti-Pascal triangle with 2018 rows which contains every integer from 1 to $1+2+3+\cdots+2018$?

- **2** (IMO2019PL3). A social network has 2019 users, some pairs of whom are friends. Whenever user A is friends with user B, user B is also friends with user A. Events of the following kind may happen repeatedly, one at a time: Three users A, B, and C such that A is friends with both B and C, but B and C are not friends, change their friendship statuses such that B and C are now friends, but A is no longer friends with B, and no longer friends with C. All other friendship statuses are unchanged. Initially, 1010 users have 1009 friends each, and 1009 users have 1010 friends each. Prove that there exists a sequence of such events after which each user is friends with at most one other user.
- **3** (IMO2016PL3). Let $P = A_1 A_2 \cdots A_k$ be a convex polygon in the plane. The vertices A_1, A_2, \ldots, A_k have integral coordinates and lie on a circle. Let S be the area of P. An odd positive integer n is given such that the squares of the side lengths of P are integers divisible by n. Prove that 2S is an integer divisible by n.
- 4 (IMO2016PL6). There are $n \geq 2$ line segments in the plane such that every two segments cross and no three segments meet at a point. Geoff has to choose an endpoint of each segment and place a frog on it facing the other endpoint. Then he will clap his hands n-1 times. Every time he claps, each frog will immediately jump forward to the next intersection point on its segment. Frogs never change the direction of their jumps. Geoff wishes to place the frogs in such a way that no two of them will ever occupy the same intersection point at the same time.
 - (a) Prove that Geoff can always fulfill his wish if n is odd.
 - (b) Prove that Geoff can never fulfill his wish if n is even.
- **5** (IMO2013PL6). Let $n \ge 3$ be an integer, and consider a circle with n+1 equally spaced points marked on it. Consider all labellings of these points with the numbers 0, 1, ..., n such that each label is used exactly once; two such labellings are considered to be the same if one can be obtained from the other by a rotation of the circle. A labelling is called beautiful if, for any four labels a < b < c < d with a+d=b+c, the chord joining the points labelled a and d does not intersect the chord joining the points labelled b and c.

Let M be the number of beautiful labelings, and let N be the number of ordered pairs (x, y) of positive integers such that $x + y \le n$ and gcd(x, y) = 1. Prove that

$$M = N + 1$$
.