MATH 180 - Homework 7

Lixiao Yang - 1y364@drexel.edu

March 10, 2023

Question 1

x	y	$x \Leftrightarrow y$	$x \Rightarrow y$	$y \Rightarrow x$	$(x \Rightarrow y) \land (y \Rightarrow x)$
Т	Τ	Τ	Τ	Τ	${ m T}$
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$	${ m F}$
\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	${ m T}$

Question 2

x	y	z	$(x \lor y) \Leftrightarrow z$	$x \Rightarrow z$	$y \Rightarrow z$	$(x \Rightarrow z) \land (y \Rightarrow z)$
T	Τ	Τ	${ m T}$	Τ	Τ	T
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}
\mathbf{F}	${\rm T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$
\mathbf{F}	${\rm T}$	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	${ m T}$

Question 3

\boldsymbol{x}	y	$x \Rightarrow y$	$x \land (x \Rightarrow y)$	$(x \land (x \Rightarrow y)) \Rightarrow y$
T	Τ	Τ	${ m T}$	T
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$
\mathbf{F}	${ m T}$	${ m T}$	\mathbf{F}	${ m T}$
\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$

Question 4

Let m, n be an interger

- $\therefore x, y \text{ can be written as } x = 2m + 1, y = 2n.$
- $\therefore x + y = 2m + 2n + 1 = 2(m+n) + 1$
- \therefore For $x, y \in \mathbb{Z}, x + y$ is an odd integer.

Question 5

Let m, n be an interger

- $\therefore x, y \text{ can be written as } x = 2m + 1, y = 2n + 1.$
- $\therefore x \times y = (2m+1)(2n+1) = 4mn + 2m + 2n + 1 = 2(2mn + m + n) + 1$
- ... The product of two odd integers is odd.

Question 6

Let $k \in \mathbb{Z}$

- $\therefore a|b \text{ can be written as } b=ka$
- $\therefore bc = (ka)c = a(kc)$
- \therefore If a|b then a|bc.

Question 7

Let $j, k \in \mathbb{Z}$

- $\therefore b = ja, d = kc$
- $\therefore bd = (ja)(kc) = jk(ac)$
- \therefore If a|b and c|d, then ac|bd.

Question 8

- Let n = m + k for m^2, n^2 . $\therefore n^2 m^2 = 2mk + k^2$ for some $k \ge 2$.
- $\therefore 2mk + k^2 = k(2m + k)$
- ... The difference between distinct, nonconsecutive perfect squares is composite.

Question 9

The statement is equal to: $(a, b \in \mathbb{R}) \land (ab = 0) \Rightarrow (a = 0) \lor (b = 0)$ Its contradiction: $\neg (a, b \in \mathbb{R}) \lor \neg (ab = 0) \Rightarrow (a = 0) \lor (b = 0)$. If $\neg (a, b \in \mathbb{R})$, then $a, b \neq 0$. If $ab \neq 0$, then $a, b \neq 0$.

So the contradiction is false, the statement is true.

Question 10

Part a

Suppose not. Then $\sqrt{3}$ is equal to a fraction $\frac{a}{b}$. Without loss of generality, assume $\frac{a}{b}$ is in lowest terms. So,

$$3 = \frac{a^2}{b^2}$$

$$3b^2 = a^2$$

Thus a^2 is divisible by 3. So a=3k for some integer k, and $a^2=9k^2$. We then have, $3b^2=9k^2, b^2=3k^2$ which is a contradiction. $\therefore \sqrt{3}$ is irrational.

Part b

Suppose not. Then $\sqrt[3]{2}$ is equal to a fraction $\frac{a}{b}$. Without loss of generality, assume $\frac{a}{b}$ is in lowest terms. So,

$$2 = \frac{a^3}{b^3}$$

$$2b^3 = a^3$$

Thus a^3 is even. So a=2k for some integer k, and $a^3=8k^3$. We then have, $2b^3=8k^3, b^3=2k^3$ which is a contradiction. $\therefore \sqrt[3]{2}$ is irrational.