$$(\Diamond A \land \Diamond B) \rightarrow \Diamond (A \land B)$$
 (in K)

Build a Tableau

To Check Whether it is Valid

Hypothesis

$$(\diamondsuit A \wedge \diamondsuit B) \to \diamondsuit (A \wedge B)$$
 is a theorem of K.

• So we can use the base modal rules.

$$(\Diamond A \land \Diamond B) \rightarrow \Diamond (A \land B)$$

1. 1,
$$\mathbb{F}$$
 ($\Diamond A \land \Diamond B$) $\rightarrow \Diamond (A \land B)$ Assumption

Start with it being false at 1.

$$(\Diamond A \land \Diamond B) \rightarrow \Diamond (A \land B)$$

True antecedent, false consequent.

$$(\Diamond A \land \Diamond B) \rightarrow \Diamond (A \land B)$$

Break up the and.

$$(\Diamond A \land \Diamond B) \rightarrow \Diamond (A \land B)$$

Make $\Diamond A$ true.

$$(\Diamond A \land \Diamond B) \rightarrow \Diamond (A \land B)$$

Since $A \wedge B$ is false everywhere accessible from 1, it is false at 1.1.

$$(\Diamond A \land \Diamond B) \rightarrow \Diamond (A \land B)$$

1.
1,
$$\mathbb{F}$$
 ($\Diamond A \wedge \Diamond B$) $\rightarrow \Diamond (A \wedge B) \checkmark$ Assumption
2.
1, \mathbb{T} $\Diamond A \wedge \Diamond B \checkmark$ $\rightarrow \mathbb{F}$, 1
3.
1, \mathbb{F} $\Diamond (A \wedge B)$ $\rightarrow \mathbb{F}$, 1
4.
1, \mathbb{T} $\Diamond A \checkmark$ $\wedge \mathbb{T}$, 2
5.
1, \mathbb{T} $\Diamond B$ $\wedge \mathbb{T}$, 2
6.
1.1, \mathbb{T} A $\Diamond \mathbb{T}$, 4
7.
1.1, \mathbb{F} $A \wedge B \checkmark$ $\Diamond \mathbb{F}$, 3
8.
1.1, \mathbb{F} A 1.1, \mathbb{F} B $\wedge \mathbb{F}$, 7

Two ways for $A \wedge B$ to fail; only one is possible.

$$(\Diamond A \land \Diamond B) \to \Diamond (A \land B)$$

1.
1,
$$\mathbb{F}$$
 ($\Diamond A \wedge \Diamond B$) $\rightarrow \Diamond (A \wedge B) \checkmark$ Assumption
2.
1, \mathbb{T} $\Diamond A \wedge \Diamond B \checkmark$ $\rightarrow \mathbb{F}$, 1
3.
1, \mathbb{F} $\Diamond (A \wedge B)$ $\rightarrow \mathbb{F}$, 1
4.
1, \mathbb{T} $\Diamond A \checkmark$ $\wedge \mathbb{T}$, 2
5.
1, \mathbb{T} $\Diamond B \checkmark$ $\wedge \mathbb{T}$, 2
6.
1.1, \mathbb{T} A $\Diamond \mathbb{T}$, 4
7.
1.1, \mathbb{F} $A \wedge B \checkmark$ $\Diamond \mathbb{F}$, 3
8.
1.1, \mathbb{F} A 1.1, \mathbb{F} B $\wedge \mathbb{F}$, 7
9.
 \times 1.2, \mathbb{T} B $\Diamond \mathbb{T}$, 5

B has to be possible, so we'll say it is possible at 1.2 - using a name we haven't already used.

$$(\Diamond A \land \Diamond B) \rightarrow \Diamond (A \land B)$$

1.
1,
$$\mathbb{F}$$
 ($\Diamond A \wedge \Diamond B$) $\rightarrow \Diamond (A \wedge B) \checkmark$ Assumption
2.
1, \mathbb{T} $\Diamond A \wedge \Diamond B \checkmark$ $\rightarrow \mathbb{F}$, 1
3.
1, \mathbb{F} $\Diamond (A \wedge B)$ $\rightarrow \mathbb{F}$, 1
4.
1, \mathbb{T} $\Diamond A \checkmark$ $\wedge \mathbb{T}$, 2
5.
1, \mathbb{T} $\Diamond B \checkmark$ $\wedge \mathbb{T}$, 2
6.
1.1, \mathbb{T} A $\Diamond \mathbb{T}$, 4
7.
1.1, \mathbb{F} $A \wedge B \checkmark$ $\Diamond \mathbb{F}$, 3
8.
1.1, \mathbb{F} $A \wedge B \checkmark$ $\Diamond \mathbb{F}$, 3
9.
 X 1.2, \mathbb{T} B $\Diamond \mathbb{T}$, 5
10.
1.2, \mathbb{F} $A \wedge B$ $\Diamond \mathbb{F}$, 3

 $A \wedge B$ is still impossible.

$$(\Diamond A \land \Diamond B) \rightarrow \Diamond (A \land B)$$

1.	1, \mathbb{F} $(\diamondsuit A \land \diamondsuit B) \rightarrow \diamondsuit (A \land B) \checkmark$	Assumption
2.	1, ⊤	→F , 1
3.	1,	→F , 1
4.	1, T ◇ A 🗸	∧ T , 2
5.	1, T ♦ B 🗸	∧ T , 2
6.	1.1, ⊤ A	◇ T, 4
7.	1.1,	◇F , 3
8.	1.1, F A 1.1, F B	∧ F , 7
9.	x 1.2, ⊤ B	♦ T, 5
10.	1.2,	◇F , 3
11.	1.2, F A 1.2,	F B ∧F,7
	X	

And we're done. All the rules have been applied - though you really need to check this - and the middle branch does not close.

When the tableau doesn't close, you should be able to build a model where the sentence is false at w_1 .

In fact, you should be able to read it off the tree.

A Model

- Three worlds, w₁, w_{1,1}, w_{1,2}.
- The only accessibility relations are w₁Rw_{1.1} and w₁Rw_{1.2}.
- In general, the accessibility relations are the ones required by the restrictions (but there are none here), plus the ones required by the numbering, i.e., w_xRw_{x.y}.
- A is true at w_{1.1} and false at w_{1.2}.
- B is true at w_{1.2} and false at w_{1.1}.
- It doesn't matter what atomics are true at w₁.
- But both ♦A and ♦B will be true at w₁, while ♦(A ∧ B) is false there.