CS228 : Assignment -1

Kona Pavan Sai Subhash Roll No. 24B0955

> Shaik Suraj Roll No. 24B0907

August 24, 2025

Contents

1	SA	Γ-Based Sudoku Solver	4
	1.1	Approach Overview	4
	1.2	Variable Encoding	
	1.3	Individual Contribution	•
2	Gra	ading Assignments Gone Wrong	4
	2.1	Understanding the Problem	4
	2.2	Variable Encoding	4
		2.2.1 Player Encoding	
		2.2.2 Boxes Encoding	4
	2.3	Approach Overview	ļ
		Decoding the model	
		Individual Contribution	

Chapter 1

SAT-Based Sudoku Solver

1.1 Approach Overview

- We encoded the Sudoku using propositional logic and then found its solution using the PySAT library in Python.
- Our approach is similar to the one discussed in class. We created a propositional variable P(i, j, n) which is true when the number n is at the position (i, j).
- We divided the CNF encoding into 5 parts:

1. Set the initial conditions

- In the Sudoku grid, the number given initially in any position should always be the same. Therefore, we added that propositional variable as a CNF clause to ensure it is true every time.
- $-\mathbf{P}(\mathbf{i},\mathbf{j},\mathbf{n})$ is added for every initial (i,j) where a number n is given.

2. Every row has all the numbers

- We made a clause that is true when each number is present in at least one position of every row.
- It works like this: number n is in the 1st position of row x or the 2nd position of row x or . . .

3. Similarly, every column has all the numbers

- Similar to the row

4. All 3x3 squares given has all the numbers

- There are nine 3×3 squares in the classic Sudoku, which also should contain every number.
- We use the same logic as we did for the row. In a row or column, it was a straight 9 positions with 1 increment in either i or j, but in the case of a square, it's not a direct increment. We need to be careful in that.

5. Every position has exactly one number

- This condition should be implemented because the Solver may produce solutions with multiple numbers in a position.
- This constraint is encoded as follows:
 - * If a number n is present at a position (i, j), i.e., $\mathbf{P}(\mathbf{i}, \mathbf{j}, \mathbf{n})$ is true, then all other numbers shouldn't be present at that position, i.e., $\forall n' \neq n$, $\mathbf{P}(\mathbf{i}, \mathbf{j}, \mathbf{n}')$ is false.

1.2 Variable Encoding

• The variable $\mathbf{P}(\mathbf{i}, \mathbf{j}, \mathbf{n})$ is encoded as 100i + 10j + n, which is a unique integer for all $\forall i, j, n \in \{1, \dots, 9\}$.

1.3 Individual Contribution

• Each of us solved this question separately, and both of us used almost the same variable and CNF encoding with only minor differences.

Chapter 2

Grading Assignments Gone Wrong

2.1 Understanding the Problem

The given problem is a variation of the classical Sokoban puzzle. In this context:

- Boxes represent stacks of grading assignments,
- Walls correspond to the obstructions placed by Yuvaraj, and
- Goals denote the submission desks.

Thus, the task effectively reduces to implementing a SAT-based Sokoban solver.

2.2 Variable Encoding

2.2.1 Player Encoding

The propositional variable of the player at position (i, j) in the grid and at time t is represented as:

$$P(i, j, t) = 17 \cdot 17 \cdot 17 \cdot t + 17 \cdot (i+1) + (j+1).$$

2.2.2 Boxes Encoding

The propositional variable of a box b at position (i, j) in the grid and at time t is represented as:

$$B(b,i,j,t) = 17 \cdot 17 \cdot 17 \cdot t + 17 \cdot 17 \cdot b + 17 \cdot (i+1) + (j+1).$$

We proved that no two variables can overlap with the given constraints.

The constraints are defined as $N, M \leq 10, T \leq 10$, and $B \leq 5$.

Note : Position (i, j) means $(i+1)^{th}$ row and $(j+1)^{th}$ column.

2.3 Approach Overview

- We encoded the Sokoban Puzzle using propositional logic and then found its solution using the PvSAT library in Pvthon.
- To simplify the encoding, we added two borders of walls around the grid and accordingly update the number of rows and columns

For example, if the initial grid is given as:

$$\begin{array}{cccc} P & . & . \\ . & B & . \\ \# & . & G \end{array}$$

then the transformed grid with the extra border becomes:

• The following constraints are used to get the correct CNF formula:

1. Initial Conditions

The initial player position (i_1, j_1) is determined by traversing the grid. This is encoded as $P(i_1, j_1, 0)$ being true. Similarly, the initial positions of the boxes are obtained by traversing the grid. Each box is assigned a unique identifier, which makes it possible to track individual boxes across different time steps.

2. Goal Conditions

A box is considered correctly placed if it occupies at least one goal position. Since each box has a unique position at any time, it can only be on a single goal. To prevent multiple boxes from occupying the same goal, we additionally enforce that no two boxes can share the same position.

3. Wall Conditions

Neither the player nor any box may occupy a wall position. For every cell (i, j) containing a wall symbol '#', and for all times t, we encode

$$\neg P(i, j, t), \quad \neg B(b, i, j, t) \ \forall b.$$

4. Player Movement

The following restrictions are imposed on the player's movement:

- At time t, if the player is at (i, j), then at time t + 1 the player may be at one of

$$(i,j), (i+1,j), (i-1,j), (i,j+1), (i,j-1).$$

- The player cannot move into a wall position. This is already enforced by the wall constraints.
- The player cannot push a box into an invalid position. Specifically, if the player attempts to move into a box, then the box must be pushed into the adjacent cell in the same direction. This move is only valid if the target cell is not occupied by another box or a wall. Otherwise, it would create a contradiction with the previously defined constraints.

5. Box Movement

The movement of a box b from time t to t+1 can be described as follows:

- At time t+1, if a box is located at position (i,j), then either:
 - (a) The box was already at (i, j) at time t, or

- (b) A valid push condition at time t caused the box to move into (i, j).
- Formally, for all b, i, j, t:

$$B(b,i,j,t+1) \Rightarrow B(b,i,j,t) \vee \Phi_{\mathbf{R}}(b,i,j,t) \vee \Phi_{\mathbf{L}}(b,i,j,t) \vee \Phi_{\mathbf{U}}(b,i,j,t) \vee \Phi_{\mathbf{D}}(b,i,j,t)$$

- The push conditions are defined as:

$$\begin{split} & \Phi_{\rm R}(b,i,j,t) := B(b,i,j+1,t) \ \land \ P(i,j+2,t) \ \land \ P(i,j+1,t+1) \end{split} \qquad \text{(pushed from the right)} \\ & \Phi_{\rm L}(b,i,j,t) := B(b,i,j-1,t) \ \land \ P(i,j-2,t) \ \land \ P(i,j-1,t+1) \end{split} \qquad \text{(pushed from the left)}$$

$$\Phi_{\rm U}(b,i,j,t) := B(b,i+1,j,t) \wedge P(i+2,j,t) \wedge P(i+1,j,t+1)$$
 (pushed from below)

$$\Phi_{D}(b, i, j, t) := B(b, i - 1, j, t) \land P(i - 2, j, t) \land P(i - 1, j, t + 1)$$
 (pushed from above).

6. Player Uniqueness

At every time step t, the player must occupy exactly one position. Formally, for all $(i, j) \neq (x, y)$,

$$\neg (P(i,j,t) \land P(x,y,t)).$$

7. Box Uniqueness

At every time step t, each box b must occupy exactly one position. Formally, for all $(i, j) \neq (x, y)$,

$$\neg (B(b, i, j, t) \land B(b, x, y, t)).$$

8. Collision Avoidance

No two boxes may occupy the same position at any time. Likewise, the player and a box cannot occupy the same position simultaneously.

Formally, for all boxes b_1, b_2 with $b_1 \neq b_2$, and for all positions (i, j) at time t:

$$\neg (B(b_1, i, j, t) \land B(b_2, i, j, t))$$

Additionally, for all boxes b and positions (i, j) at time t:

$$\neg (P(i,j,t) \land B(b,i,j,t))$$

2.4 Decoding the model

Since we extended the grid by adding additional rows and columns, we must also update the decoding process accordingly.

The decoding procedure is as follows:

1. Identify the Initial Player Position

Traverse the grid and determine the initial position (i_1, j_1) of the player by checking whether P(i, j, 0) is satisfied in the model.

2. Trace Player Movement

Starting from (i_1, j_1) at time t = 0, check which of the neighboring positions

$$(i_1+1,j_1), (i_1-1,j_1), (i_1,j_1+1), (i_1,j_1-1)$$

is true at time t = 1 in the model.

3. Update Position and Record Direction

If a neighboring position (i', j') is satisfied at time t+1, update the player position as $(i_1, j_1) \leftarrow (i', j')$. Append the corresponding movement direction (up, down, left, or right) to the move sequence.

4. Iterate Until Termination

Increment $t \leftarrow t+1$ and repeat the above step until t reaches the given maximum time T.

2.5 Individual Contribution

- Pavan proposed the idea of adding two layers of boundary walls around the grid in order to eliminate edge cases.
- The encoding of the initial conditions, goal conditions, wall conditions, and player movements was relatively straightforward and was implemented collaboratively by both of us.
- For the box movement rules, we initially developed multiple approaches, many of which contained flaws. Combining our individual ideas, we arrived at a correct formulation.
- We experimented with different strategies for variable encoding before finalizing the most efficient one:
 - Pavan encoded the variables as integers, assigning two positions in the integer to each of the i, j, t, b.
 - Suraj encoded the variables as $p \cdot p \cdot p \cdot t + p \cdot p \cdot b + p \cdot i + j$, where p is a prime number. This scheme treats the variable as a player if b = 0, and as a box otherwise. Compared to Pavan's encoding, this approach significantly reduced the size of the integers.
 - We finalized Suraj's encoding scheme, fixing the value of p to 17 in accordance with the given constraints.
- The constraints for Player Uniqueness, Box Uniqueness, and Collision Avoidance were implemented by Pavan and thoroughly reviewed by both of us before execution.
- The **Decoder function** was implemented by Suraj and similarly verified by both of us prior to running the code.