Fundamentals of Wireless Communication

(D. Tse and P. Viswanath, Fundamentals of Wireless Communications.,)

Detection and Estimation in Additive Gaussian Noise

Manya Venissa

Hanbat National University 29/09/2022

Contents

- Gaussian Random Variable
- Detection in Gaussian Noise
- Estimation in Gaussian Noise

Scalar Real Gaussian Random Variable

 A standard Gaussian random variable, w takes values over the real line and has the probability density function:

$$f(w) = \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-w^2}{2}\right), \quad w \in \Re$$

- The standard Gaussian random variable is denoted by $\mathcal{N}(0,1)$.
- This random variable is called a standard Gaussian random variable.

• A general Gaussian random variable, x is of the form:

$$x = \sigma w + \mu$$

• The random variable x is a one-to-one function of w and thus the probability density function is:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{(x-\mu)^2}{2\sigma^2}\right), \qquad x \in \Re$$

• Since the random variable is completely characterized by its mean and variance, we denote, x by $\mathcal{N}(\mu, \sigma^2)$.

- Note: Gaussianity is preserved by linear transformations: linear combinations of independent Gaussian random variables are still Gaussian.
- If $x_1, x_2, ..., x_n$ are independent and $x_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, then:

$$\sum_{i=1}^{n} c_i x_i \sim N \left(\sum_{i=1}^{n} c_i \mu_i \sum_{i=1}^{n} c_i^2 \sigma_i^2 \right)$$

Real Gaussian Random Vector

- A standard Gaussian random vector, w is a collection of n independent and identically distributed (i.i.d) standard Gaussian random variables $w_1, w_2, ..., w_n$.
- The vector $\mathbf{w} = (w_1, w_2, ..., w_n)^t$ takes values in the vector space \Re^n .
- The probability density function of w is:

$$f(w) = \frac{1}{(\sqrt{2\pi})^n} \exp\left(\frac{-||w||^2}{2}\right), \quad w \in \Re$$

• In general, a Gaussian random vector is completely characterized by its mean μ and by the covariance matrix K; we denote the random vector by $\mathcal{N}(\mu, K)$.

Detection in Gaussian Noise

- Consider the real additive Gaussian noise channel: y = u + w
- The transmit symbol u is equally likely to be u_A or u_B ($u_A > u_B \in \Re$) and $w \sim \mathcal{N}\left(0, \frac{N_o}{2}\right)$ is real Gaussian noise.
 - The detection problem involves making a decision on whether u_A or u_B was transmitted based on the observation y.
- The optimal detector, with the least probability of making an erroneous decision, chooses the symbol that is most likely to have been transmitted given the received signal y, i.e., u_A is chosen if

$$\mathbb{P}\{u=u_A|y\}\geq \mathbb{P}\{u=u_B|y\}$$

Detection in Gaussian Noise

• Since the two symbols u_A , u_B are equally likely to have been transmitted, Bayes' rule lets us simplify this to the maximum likelihood (ML) receiver, which chooses the transmit symbol that makes the observation, y most likely. the decision rule is to choose u_A if

$$\frac{1}{\sqrt{\pi N_0}} exp\left(-\frac{(y - u_A)^2}{N_0}\right) \ge \frac{1}{\sqrt{\pi N_0}} exp\left(-\frac{(y - u_B)^2}{N_0}\right)$$

Which can be simplified further as:

$$|y - u_A| < |y - u_B|$$

Detection in Gaussian Noise

Figure A.4: The ML rule is to choose the symbol that is *closest* to the received symbol.

Detection in Vector Space

- Now consider detecting the transmit vector u equally likely to be u_A or u_B (both elements of \Re^n). The received vector is: $\mathbf{y} = \mathbf{u} + \mathbf{w}$
- The ML decision rule is to choose u_A if

$$||y - u_A|| < ||y - u_B||$$

• the same nearest neighbor rule.

Detection in a Vector Space

- Geometrically, this says that the decision regions are the two sides of the hyperplane per pendicular to the vector, $u_B u_A$.
- An error occurs when the received vector lies on the side of the hyperplane opposite to the transmit vector.

Alternative View

• To see how we could have reduced the vector detection problem to the scalar one. We can write the transmit vector u as:

$$u = x(u_A - u_B) + \frac{1}{2}(u_A + u_B)$$

• where the information is in the scalar x, which is equally likely to be $\pm \frac{1}{2}$

$$y - \frac{1}{2}(u_A + u_B) = x(u_A - u_A) + w$$

Alternative View

• We observe that the transmit symbol (a scalar x) is only in a specific direction:

$$v = (u_A - u_B) / ||u_A - u_B||$$

• Therefore, projecting the received vector along the signal direction \boldsymbol{v} provides all the necessary information for detection:

$$\tilde{\mathbf{y}} = v^t \left(y - \frac{1}{2} \left(u_A + u_B \right) \right)$$

Alternative View

Figure A.6: Projecting the received vector \mathbf{y} onto the signal direction \mathbf{v} reduces the vector detection problem to the scalar one.

Estimation in Gaussian Noise

• Consider a zero mean real transmit signal x embedded in independent additive real Gaussian noise $\left(w \sim \mathcal{N}\left(0, \frac{N_0}{2}\right)\right)$

$$y = x + w$$

 Suppose we wish to come up with an estimate ^ x of x and we use the mean squared error (MSE) to evaluate the performance:

$$MSE = \mathbb{E}[(x-x)^2]$$

 The estimate that yields the smallest mean squared error is the classical conditional mean operator:

$$x = \mathbb{E}[x|y]$$

Estimation in Gaussian Noise

• The classical conditional mean operator has the important orthogonality property: the error is independent of the observation. In particular, this implies that:

$$\mathbb{E}[(x-x)y] = 0$$

- The conditional mean operator is some complicated nonlinear function of y. To simplify the analysis, we use the restricted class of linear estimates that minimize the MSE.
- The corresponding minimum mean squared error (MMSE) is:

$$MMSE = \frac{\mathbb{E}[x^2]^{N_0}/_2}{\mathbb{E}[x^2] + \frac{N_0}{_2}}$$

