D S	C	1
С		
S	\$7\20\	
$L_{\mu e}$	(0)	94
C	2000	8
E /	000000 000 000 000 000 000 000 000 000	
70	0000 0000	13

College., D. S. Senanayake College., D. S. Senan

First Term Test - 2018 November

Combined Mathematics- I

Grade 13

3 hours

Name:	

Instructions:

★ This question paper consists of two parts.

Part A (Questions 1 - 10) and **Part B** (Questions 11 - 16)

★ Part A

Answer all questions. Write your answer in the space provided.

★ Part B

Answer only 5 questions.

- ★ At the end of the time allocated, time the answers of the two parts together so that **Part A** is on top of **Part B** before handing them over to the supervisor.
- ★ You are permitted to remove only **Part B** of the question paper from the Examination Hall.

Part	Question NO.	Marks Awarded
	01	
	02	
	03	
	04	
A	05	
	06	
	07	
	08	
	09	
	10	
	11	
	12	
В	13	
D	14	
	15	
	16	

Final Mark

	Part A
01). L	et $f(x) = ax^2 + bx + c$ where a, b and $c \in \Re$. When $f(x)$ is divided by
	(x-1), $(x+1)$ and $(x-2)$, the remainders are 1, 25 and 1 respectively. Find $f(x)$
• • • • •	
••••	
)2). Fii	and the value of λ , if one root of the equation $3x^2 + 4x - 13 + \lambda^2 - 4\lambda x = 0$ is one third of
	e other root.

03).	Let	f(x)	= {	2px $1-p$	$+3$ px^2	; ;	x < 1	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	Fin	d the v	alue o	f <i>P</i> su	ch tha	t <i>x</i> —	\xrightarrow{lim}]	1	f(x)	exist.
••	• • • • • • •		• • • • • •	• • • • • • • •			•••••	•••••	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••			
••	• • • • • • • •						• • • • • • • • • • • • • • • • • • • •		• • • • • • • •			•••••	• • • • • • • • • • • • • • • • • • • •					
04).	From	the us	ual no	otatio	n for	a tria	angle	ABC	C, if l	3 = 3C	prov	e that	$\sin \frac{A}{2}$	$\frac{A}{2} = \frac{b}{2}$	$\frac{c-c}{2c}$			
04).	From	the us	ual no	otatio 	n for	a tria	angle	ABC	C, if 1	3 = 3C,	prov	e that	sin = 2	$\frac{A}{2} = \frac{b}{a}$	$\frac{c-c}{2c}$	••••		
04). 	From	the us	ual no	otatio	n for 	a tria	angle 	ABC	C, if 1	3 = 3C, 	prov	e that	sin -	$\frac{4}{2} = \frac{b}{2}$	$\frac{c-c}{2c}$			
04). 	From	the us	ual no	otatio	n for	a tria	angle			3 = 3C,	prov	e that	sin = 2	$\frac{4}{2} = \frac{b}{2}$	- <u>c</u> 2c			
04)	From	the us	ual no		n for	a tria	angle	ABC		3 = 3C,	prov	e that	sin ² / ₂	$\frac{4}{2} = \frac{b}{2}$				
04)	From	the us	ual no	otatio	n for	a tria	angle	ABC	C, if 1	3 = 3C,	prov	e that	sin $\frac{1}{2}$	$\frac{A}{2} = \frac{D}{D}$	2c			
04)	From	the us	ual no	otatio	n for	a tria	angle	ABC	C, if 1	3 = 3C,	prov	e that	sin 4	$\frac{A}{2} = \frac{D}{D}$	2c			
04)	From	the us	ual no		n for	a tria	angle	ABC	C, if 1	3 = 3C,	prov	e that	sin -	<u>A</u> = <u>D</u>	2c			
04)	From	the us	ual no		n for	a tria	angle	ABC	C, if 1	3 = 3C,	prov	e that	sin -	<u>A</u> = <u>b</u>				

05.	Find the equation	n of the norm	nal drawn to	the Ellips	$e \frac{x^2}{25} + \frac{y^2}{4}$	= 1 at the point	$P(5\cos\theta, 2\sin\theta)$
	Find the value of	f θ such that	at the normal	pass thro	ugh the point	$\left(\frac{21}{10}, 0\right)$. When	$e 0 < \theta < \frac{\pi}{2}$
			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	
06).	Show that $ln_{\sqrt{1}}$	$\frac{1-\cos x}{1+\cos x} =$	$ln(tan \frac{x}{2}).$	Find -	$\frac{d}{dx} \left[ln \sqrt{\frac{1-cos}{1+cos}} \right]$	$\frac{x}{x}$. Hence e	valuate $\int cosecx \ dx$.
06).	Show that ln	$\frac{1 - \cos x}{1 + \cos x} =$	$ln(tan\frac{x}{2}).$	Find -	$\frac{d}{dx} \left[ln \sqrt{\frac{1 - \cos t}{1 + \cos t}} \right]$	$\left[\frac{x}{x}\right]$. Hence e	valuate $\int cosecx \ dx$.
06).	Show that $ln\sqrt{}$	$\frac{1 - \cos x}{1 + \cos x} =$	$ln(tan \frac{x}{2}).$	Find -	$\frac{d}{dx} \left[ln \sqrt{\frac{1 - \cos t}{1 + \cos t}} \right]$	$\left[\frac{x}{x}\right]$. Hence e	valuate ∫ <i>cosecx dx</i> .
06).	Show that $ln\sqrt{}$	$\frac{1 - \cos x}{1 + \cos x} =$	$ln(tan \frac{x}{2}).$	Find -	$\frac{d}{dx} \left[ln \sqrt{\frac{1 - \cos s}{1 + \cos s}} \right]$	$\left[\frac{x}{x}\right]$. Hence e	valuate ∫ cosecx dx.
06).	Show that $ln\sqrt{}$	$\frac{1-\cos x}{1+\cos x} =$	$ln(tan \frac{x}{2}).$	Find -	$\frac{d}{dx} \left[ln \sqrt{\frac{1 - \cos s}{1 + \cos s}} \right]$	$\left[\frac{x}{x}\right]$. Hence e	valuate ∫ cosecx dx.
06).	Show that $ln\sqrt{}$	$\frac{1-\cos x}{1+\cos x} =$	$ln(tan \frac{x}{2}).$	Find -	$\frac{d}{dx} \left[ln \sqrt{\frac{1 - cos}{1 + cos}} \right]$	$\left[\frac{x}{x}\right]$. Hence e	valuate ∫ cosecx dx.
06).	Show that $\ln $	$\frac{\sqrt{1-\cos x}}{1+\cos x} =$	$ln(tan \frac{x}{2}).$	Find -	$\frac{d}{dx} \left[ln \sqrt{\frac{1 - cos}{1 + cos}} \right]$	$\left[\frac{x}{x}\right]$. Hence e	valuate ∫ cosecx dx.
06).	Show that $\ln $	$\frac{1-\cos x}{1+\cos x} =$	$ln(tan \frac{x}{2}).$	Find -	$\frac{d}{dx} \left[ln \sqrt{\frac{1 - cos}{1 + cos}} \right]$	$\left[\frac{x}{x}\right]$. Hence e	valuate ∫ cosecx dx.
06).	Show that $\ln $	$\frac{1-\cos x}{1+\cos x} =$	$ln(tan \frac{x}{2}).$	Find -	$\frac{d}{dx} \left[ln \sqrt{\frac{1 - cos}{1 + cos}} \right]$	$\left[\frac{x}{x}\right]$. Hence e	valuate ∫ cosecx dx.
06).	Show that $ln\sqrt{}$	$\frac{\sqrt{1-\cos x}}{1+\cos x} =$	$ln(tan \frac{x}{2}).$	Find -	$\frac{d}{dx} \left[ln \sqrt{\frac{1 - cos}{1 + cos}} \right]$	Hence e	valuate ∫ cosecx dx.
06).	Show that $ln\sqrt{}$	$\frac{1-\cos x}{1+\cos x} =$	$ln(tan \frac{x}{2}).$	Find -	$\frac{d}{dx} \left[ln \sqrt{\frac{1 - cos}{1 + cos}} \right]$	$\left[\frac{x}{x}\right]$. Hence e	valuate ∫ cosecx dx.
06).	Show that $ln\sqrt{}$	$\frac{\sqrt{1-\cos x}}{1+\cos x} =$	$ln(tan \frac{x}{2}).$	Find -	$\frac{d}{dx} \left[ln \sqrt{\frac{1 - cos}{1 + cos}} \right]$	Hence e	valuate ∫ cosecx dx.
06).	Show that $ln\sqrt{}$	$\frac{1-\cos x}{1+\cos x} =$	$ln(tan \frac{x}{2}).$	Find -	$\frac{d}{dx} \left[ln \sqrt{\frac{1 - cos}{1 + cos}} \right]$	Hence e	valuate ∫ cosecx dx.
06).	Show that $ln\sqrt{}$	$\frac{\sqrt{1-\cos x}}{1+\cos x} =$	$ln(tan \frac{x}{2}).$	Find $\frac{d}{d}$	$\frac{d}{dx} \left[ln \sqrt{\frac{1 - cos}{1 + cos}} \right]$	Hence e	valuate ∫ cosecx dx.
06).	Show that $ln\sqrt{}$	$\frac{\sqrt{1-\cos x}}{1+\cos x} =$	$ln(tan \frac{x}{2}).$	Find $\frac{d}{d}$	$\frac{d}{dx} \left[ln \sqrt{\frac{1 - cos}{1 + cos}} \right]$	Hence e	valuate $\int cosecx \ dx$.
06).	Show that $ln\sqrt{}$	$\frac{\sqrt{1-\cos x}}{1+\cos x} =$	$ln(tan \frac{x}{2}).$	Find $\frac{d}{d}$	$\frac{d}{dx} \left[ln \sqrt{\frac{1 - cos}{1 + cos}} \right]$	Hence e	valuate $\int cosecx \ dx$.

$y = e^{x}$, $y = e^{-x}$, $x = (-2)$, $x = 3$ and the x-axis.		
y=c, $y=c$, $x=(2)$, $x=3$ and the x axis.		
	•••••	
Let S be the shaded region bounded by the curves	. 1	<u>ላ</u> ኝ
$2y^2 = x$ and $4y = x^2$. Find the value of a .	7C=44	
Show that the volume of the solid generated by	\	
		(1)
rotating S , about the x - axis through 2π radians		
is $\frac{3\pi}{5}$ cubic units.		
5		á
		,
		24=2
	•••••	

09).	Show that	$\frac{\sin 2x - \sin 3x + \sin 4x}{\cos 2x - \cos 3x + \cos 4x}$	= tan 3x.	Hence deduce that $\tan \frac{\pi}{4} = 1$.
10).	If cos	$-1\left(\frac{x}{2}\right) + \cos^{-1}\left(\frac{y}{3}\right) = 6$	θ . Then s	how that $9x^2 + 4y^2 = 36\sin^2\theta + 12xy\cos\theta$

Part - B

11. (a). Let
$$f(x) = x^2 - 2kx - 4 + k^2$$

If k is a rational number, show that the roots of the equation f(x) = 0 are also rational.

Let
$$g(x) = x^2 - 2(k+2)x + 4 + k^2$$

When Let $k \in \Re^+$, show that the roots of the equation g(x) = 0 are real and distinct.

When the above two conditions are satisfied, find the range of values of k, such that the roots of f(x) = 0 lie between the roots of g(x) = 0.

(b). State and prove the Remainder theorem.

When the polynomial function f(x) is divide by (ax - b), the quotient is g(x) and the remainder is $\mathbf{R_1}$. When it is divide by (bx - a), the quotient is h(x) and the remainder is $\mathbf{R_2}$.

If (ax - b) is a factor of h(x), show that $\mathbf{R}_1 = \mathbf{R}_2$.

If p(x) = g(x) + h(x), show that (x - 1) is a factor of p(x).

12. (a). Prove that $log_x y . log_y x = 1$

Let $a=1+\log_p qr$, $b=1+\log_q pr$ and $c=1+\log_r qp$

Show that abc = ab + bc + ca

- (b). Draw the graph of y = 1 |2x 1| and y = |4x 1| 1 in a same diagram. Hence find the range of values of x, satisfy the inequality |2x 1| + |4x 1| > 2
- (c). For what value of k, is the inequality $\frac{x^2 + kx 2}{x^2 x + 1} < 2$ satisfy for all real values of x.

13. (a). Let
$$f(x) = x^3 - 6x^2 + 9x - 1$$
.

Find f'(x). Hence find the all stationary points of the graph y = f(x).

By considering the sign of f'(x), determine the nature of these stationary points.

Find f''(x) and hence show that there exist only one point of inflection to the curve at x = 2.

By considering the sign of f''(x), determine the nature of this point of inflection.

Hence draw the graph of y = f(x), indicating all these properties.

(b). The section of a window consist of a rectangle, surmounted by an equilateral triangular wooden frame of perimeter **16m** as shown in the diagram.

The shaded triangular parts are covered by glass.

Let x be the breadth and y be the length if the window.

Show that
$$A = \frac{2x}{3} (8 - \sqrt{3}x)$$

Where A is the area of the rectangular window.

Hence find the width of the window in order to maximize the amount of air admitted.

14. (a). Separate $\frac{1}{(x-1)(x^2+1)}$ into partial fractions. Hence evaluate the integral $\int \frac{1}{(x-1)(x^2+1)} dx$.

- (b). Using $t = \sqrt{x}$ and then integration by parts, evaluate the integral $\int tan^{-1} \sqrt{x} . dx$.
- (c) . Using the fundamental results of basic trigonometric integrals, show that $\int_{0}^{\pi} \frac{1 \sin x}{\cos^{2} x} dx = 2$

Deduce the value of $\int_{0}^{\pi} \frac{1}{1 + \sin x} dx$. Hence show that , $\int_{0}^{\pi} \frac{\sin x}{1 + \sin x} dx = \pi - 2$

Prove the relation $\int_{0}^{a} f(x).dx = \int_{0}^{a} f(a-x).dx$

Let , $I = \int_{0}^{\pi} \frac{x \cdot \sin x}{1 + \sin x} dx$ Using the above result and the relation show that $I = \frac{\pi^2}{2} - \pi$.

- 15. (a). Show that the equation $6tan2\theta 3tan\theta 5cot\theta = 0$, can write in the form of $3t^2 + 14t 5 = 0$, where $t = tan^2\theta$. Hence find the general solutions of the equation $6tan2\theta - 3tan\theta - 5cot\theta = 0$
 - (b). Show that $f(x) = 4\sqrt{3}\cos^3 x 4\sin^3 x 3\sqrt{3}\cos x + 3\sin x + 1 = \sqrt{3}\cos 3x + \sin 3x + 1$. Find the constants $A, B \text{ and } \alpha \left(0 < \alpha < \frac{\pi}{2}\right)$, such that $f(x) = A + B\cos(3x \alpha)$

Find the maximum and the minimum value of the function f(x).

Hence draw the graph of y = f(x), in the range $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.

Using the graph, find the value of k such that there exist three distinct solutions of the equation $cos(3x - \alpha) = \left(\frac{k - A}{B}\right)$.

(c). State the **cosine rule** for a triangle ABC in usual notation.

The lengths of the sides BC, AC and AB of the triangle ABC are a, (a+d), (a+2d) respectively.

Show that
$$\cos C = \frac{1}{2} - \frac{3d}{2a}$$

Hence find the range of value of $\frac{d}{a}$, when $\frac{2\pi}{3} \le C \le \pi$

16. The equation of the sides OA and OB of the triangle ABO, are $y = m_1 x$ and $y = m_2 x$ respectively. The perpendicular drawn from A to OB is AC and the perpendicular drawn from B to OA is BD. The equation of the side AB is lx + my = 1. Find the equation of the side AC.

Show that
$$m_2 y + x = \frac{1 + m_1 m_2}{l + m_1 m}$$
. Obtain the equation of BD.

The coordinate of the orthocenter of the triangle ABO is H(a, b),

Show that $a = \frac{l(1+m_1 m_2)}{l^2 + m^2(m_1 m_2) + lm(m_1 + m_2)}$. Obtain a similar expression for **b**.

If m_1 and m_2 are the roots of the equation $bx^2 + 2hx + a = 0$.

Show that the equation of AB can be written in the form of (a+b)(ax+by) = ab(a+b-2h).

