TEST 3 TOP UNIVERSITIES CLASS WARDAYA COLLEGE

VECTOR, COMPLEX, MATHEMATICS INDUCTION

2 HOURS – DR. Anton Wardaya, M.Sc

- 1. The complex number z is given by $z = re^{i\theta}$, where r > 0 and $0 \le \theta \le \frac{1}{2}\pi$.
 - a. Given that $w = (1 i\sqrt{3})z$, find |w| in terms of r and arg w in terms of θ .
 - b. Given that r has a fixed value, draw an Argand diagram to show the locus of z as θ varies. On the same diagram, show the corresponding locus of w. You should identify the modulus and argument of the end-points of each locus.
 - c. Given that $\arg\left(\frac{z^{10}}{w^2}\right) = \pi$, find θ .
- 2. Prove by the method of mathematical induction that

$$\sum_{r=1}^{n} r(2r^2+1) = \frac{1}{2}n(n+1)(n^2+n+1).$$

- a. It given that $f(r) = 2r^3 + 3r^2 + r + 24$. Show that $f(r) f(f 1) = ar^2$. For a constant a to be determined. Hence find a formula for $\sum_{r=1}^{n} r^2$, fully factorising
- b. Find $\sum_{r=1}^{n} f(r)$. (You should not simplify your answer).
- 3. Do not use a graphic calculator in answering this question.
 - a. The roots of the equation $z^2 = -8i$ are z_1 and z_2 in cartesian form x + iy, showing your working.
 - b. Hence, or otherwise, find in cartesian form the roots w_1 and w_2 of the equation $w^2 + 4w + (4+2i) = 0$
 - c. Using a single Argand diagram, sketch the loci

i.
$$|z - z_1| = |z - z_2|$$

ii. $|z - w_1| = |z - w_2|$

ii.
$$|z - w_1| = |z - w_2|$$

- d. Give a reason why there are no points wich lie on both of these loci.
- 4. The plane p passes thrugh the points with coordinates (4, -1, -3), (-2, -5, 2) and (4, -3, -2).
 - a. Find a cartesian equation of p

The line l_1 has equation $\frac{x-1}{2} = \frac{y-2}{-4} = \frac{z+3}{1}$ and the line l_2 has equation

 $\frac{x+2}{1} = \frac{y-1}{5} = \frac{z-3}{k}$, where k is a constant. It is given that l_1 and l_2 intersect.

- Show that l_1 lies in p and find the coordinates of the point at which l_2 intersects p.
- d. Find the acute angle between l_2 and p.
- 5. The complex number z_1 and z_2 are given by $1 + i\sqrt{3}$ and -1 i respectively.
 - a. Express each of z_1 and z_1 in polar from $r(\cos\theta+i\sin\theta)$, where r>0 and $-\pi < 0 \le \pi$. Give r and θ in exact from.
 - b. Find the complex conjugate of $\frac{z_1}{z_2}$ in exact polar form.
 - c. On a single Argand diagram, sketch the loci

i.
$$|z - z_1| = 2$$

ii. Arg
$$(z - z_2) = \frac{1}{4}\pi$$

d. Find where the locus $|z - z_1| = 2$ meets the positive real axis.

- 6. The line l has equation $\frac{x-10}{-3} = \frac{y+1}{6} = \frac{z+3}{9}$, and the plane p has equation x 2y 3z = 0.
 - a. Show that l is perpendicular to p.
 - b. Find the coordinates of the point of intersection of l and p.
 - c. Show that the point A with coordinates (-2, 23, 33) ies on l. Find the coordinates of the point B which is the mirror image of A in p.
 - d. Find the area of triangle OAB, where O is the origin, giving your answer to the nearst whole nomber
- 7. .
- a. Solve the equation $z^7 (1+i) = 0$. Giving the roots in the form $re^{i\alpha}$, where r > 0and $-\pi < \alpha < \pi$.
- b. Show the roots on an Argand diagram.
- b. Show the roots on an Argand diagram. c. The roots represented by z_1 and z_2 are such that $0 < \arg(z_1) < \arg(z_2) < \frac{1}{2}\pi$. Explain why the locus of all points z such that $|z-z_1|=|z-z_2|$ passes through the origin. Draw this locus on your Argand diagram and find its exact cartesian equation.
- origin. Draw this locus on your Algund also. 8. The planes p_1 and p_2 have equations $r \cdot \binom{2}{1} = 1$ and $r \cdot \binom{-1}{2} = 2$ respectively, and meet
 - a. Find the acute angle between p_1 and p_2 .
 - b. Find a vector equation of l.
 - c. The plane p_3 has equation 2x + y + 3z 1 + k(-x + 2y + z 2) = 0. Explain why l lies in p_3 for any constant k. Hence or otherwise find a cartesian equation of the plane in wich both l and the point (2, 3, 4) lie.
- 9. The lie l passes through the points A and B with coordinates (1, 2, 4) and (-2, 3, 1)respectively. The plane p has equation 3x - y + 2z = 17. Find;
 - a. The coordinates of the point of intersection of l and p.
 - b. The acute angle between l and p
 - c. The prependicular distance from A to p.
- 10. A sequace u_1,u_2,u_3,\dots is such that $u_l=1$ and $u_{n+1}=u_n-\frac{2n+1}{n^2(n+1)^2}$ for all $n\geq 1$.
 - Use the method of mathematical induction to prove that $u_n = \frac{1}{n^2}$
 - Hence find $\sum_{n=1}^{N} \frac{2n+1}{n^2(n+1)^2}$.

 - c. Give a reason why the series in part (ii) is convergent and state the sum to infinity. d. Use your answer to part (ii) fo find $\sum_{n=2}^{N} \frac{2n-1}{n^2(n-1)}$.