

Лекция 4 Визуализация результатов кластеризации

Николай Анохин

23 марта 2015 г.

Краткое содержание предыдущих лекций

Дано. N обучающих D-мерных объектов $\mathbf{x}_i \in \mathcal{X}$, образующих тренировочный набор данных (training data set) X.

Найти. Модель $h^*(\mathbf{x})$ из семейства параметрических функций $H = \{h(\mathbf{x}, \theta): \mathcal{X} \times \Theta \to \mathbb{N}\}$, ставящую в соответствие произвольному $\mathbf{x} \in \mathcal{X}$ один из K кластеров так, чтобы объекты внутри одного кластера были похожи, а объекты из разных кластеров различались.

Краткое содержание предыдущих лекций

Рассмотрели классические алгоритмы кластеризации

- 1. Смесь гауссовских распределений и k-means
- 2. Hierarchical Clustering
- 3. DBSCAN

Multidimensional Scaling

Идея метода

Перейти в пространство меньшей размерности так, чтобы расстояния между объектами в новом пространстве были подобны расстояниям в исходном пространстве.

Обозначения

- ullet $\mathbf{x}_i \in \mathcal{X} \subset R^D$ объекты в исходном многомерном пространстве
- ▶ δ_{ii} расстояние между \mathbf{x}_i и \mathbf{x}_i
- $\mathbf{y}_i \in \mathcal{Y} \subset R^E$ объекты в целевом пространстве (E=2) или E=3
- ▶ d_{ij} расстояние между \mathbf{y}_i и \mathbf{y}_j

Критерии

Выбираем кофигурацию \mathbf{y}_i , соответствующую минимуму критерия

$$J_{ee} = rac{\sum_{i < j} (d_{ij} - \delta_{ij})^2}{\sum_{i < j} \delta_{ij}^2}$$

$$J_{ff} = \sum_{i < j} rac{(d_{ij} - \delta_{ij})^2}{\delta_{ij}^2}$$

$$J_{ef} = rac{1}{\sum_{i < j} \delta_{ij}} \sum_{i < j} rac{(d_{ij} - \delta_{ij})^2}{\delta_{ij}}$$

Градиентный спуск

Требуется найти минимум функции $f(\mathbf{a})$, при этом

- 1. мы умеем вычислять градиент функции $\nabla f(\mathbf{a})$
- 2. задана начальная точка \mathbf{a}_0
- 3. выбрана функция learning rate $\eta(k)$

```
function gd(grad, a0, epsilon):
    initialise eta(k)
    k = 0
    a = a0
    do:
        k = k + 1
        a = a - eta(k) grad(a)
    until |eta(k) grad(a)| < epsilon
    return a</pre>
```

(демо)

Градиенты критериев

$$\nabla_{\mathbf{y}_{k}}J_{ee} = \frac{2}{\sum_{i < j} \delta_{ij}^{2}} \sum_{j \neq k} (d_{kj} - \delta_{kj}) \frac{\mathbf{y}_{k} - \mathbf{y}_{j}}{d_{kj}}$$

$$\nabla_{\mathbf{y}_{k}}J_{ff} = 2 \sum_{j \neq k} \frac{d_{kj} - \delta_{kj}}{\delta_{kj}^{2}} \frac{\mathbf{y}_{k} - \mathbf{y}_{j}}{d_{kj}}$$

$$\nabla_{\mathbf{y}_{k}}J_{ef} = \frac{2}{\sum_{i < j} \delta_{ij}} \sum_{j \neq k} \frac{d_{kj} - \delta_{kj}}{\delta_{kj}} \frac{\mathbf{y}_{k} - \mathbf{y}_{j}}{d_{kj}}$$

Результаты применения

$\mathsf{t}\text{-}\mathsf{SNE}$

Stochastic Neighbor Embedding

Идея метода

Та же, что в MDS, но определяется необычная (вероятностная) схожесть между объектами в исходном и целевом пространствах, а также критерий оптимизации.

Схожесть между объектами \mathbf{x}_i и $\mathbf{x}_j \sim$ вероятность того, что \mathbf{x}_i "выберет" \mathbf{x}_j из остальных соседей, будучи центром некоторого нормального распределения.

Схожесть между объектами

В исходном пространстве

$$p(j|i) = \frac{\exp(-\|\mathbf{x}_j - \mathbf{x}_i\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|\mathbf{x}_k - \mathbf{x}_i\|^2 / 2\sigma_i^2)}$$

В целевом пространстве

$$q(j|i) = \frac{\exp(-\|\mathbf{y}_j - \mathbf{y}_i\|^2)}{\sum_{k \neq i} \exp(-\|\mathbf{y}_k - \mathbf{y}_i\|^2)}$$

Критерий оптимизации

Дивергенция Кульбака-Лейблера

Насколько распределение P отличается от распределения Q?

$$KL(P||Q) = \sum_{z} P(z) \log \frac{P(z)}{Q(z)}$$

Критерий

$$J_{SNE} = \sum_{i} KL(P_i || Q_i) = \sum_{i} \sum_{j} p(j|i) \log \frac{p(j|i)}{q(j|i)} \rightarrow \min_{\mathbf{y}_1, \dots, \mathbf{y}_n}$$

Градиент

$$\nabla_{\mathbf{y}_i} J_{SNE} = 2 \sum_j \left(p(j|i) - q(j|i) + p(i|j) - q(i|j) \right) \left(\mathbf{y}_i - \mathbf{y}_j \right)$$

Параметры алгоритма

Идея

В областях высокой плотности выбрать σ_i маленьким, а в областях низкой плотности — большим.

$$Perp(P_i) = 2^{H(P_i)}, \quad H(P_i) = -\sum_{i} p(j|i) \log p(j|i)$$

На практике выбираем фиксированное perplexity в интервале (5, 50).

t-distributed SNE

Недостатки SNE

- Трудно оптимизировать критерий
- "Crowding problem"

Отличия t-SNE от SNE

- Использует симметризованный критерий с более простым градиентом
- В целевом пространстве схожесть основана на t-распределении, а не на распределении Гаусса

Критерий t-SNE

Схожесть между объектами в исходном пространстве

$$p(i,j) = \frac{p(i|j) + p(j|i)}{2n}$$

Схожесть между объектами в целевом пространстве

$$q(i,j) = \frac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_{k \neq l} (1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}}$$

Критерий

$$J_{t-SNE} = KL(P||Q) = \sum_{i} \sum_{j} p(i,j) \log \frac{p(i,j)}{q(i,j)}$$

t-распределение

$$au(\mu, \sigma^2,
u) \propto \left[1 + \frac{1}{
u} \left(\frac{x - \mu}{\sigma}\right)^2\right]^{-\frac{
u + 1}{2}}$$

Уильям Госсет 1908 (Student)

Свойства критерия

$$abla_{\mathbf{y}_i}J_{t-\mathsf{SNE}} = 4\sum_{i}(p(i,j)-q(i,j))(1+\|\mathbf{y}_i-\mathbf{y}_j\|^2)^{-1}(\mathbf{y}_i-\mathbf{y}_j)$$

Digits Dataset

около 1800 картинок 8х8 с рукописными цифрами

t-SNE

MNIST Dataset

70000 картинок 20x20 с рукописными цифрами

t-SNE

Еще примеры

CalTech

S&P 500

Words

Заключение

Вопросы

