# 第5-2章 EM算法

- Maximum likelihood estimation (MLE)
- EM算法
- EM for Multinomial distribution

部分Slides来源于 faculty.washington.edu/fxia/courses/LING572/EM\_part2.ppt

#### What is MLE?

- Given
  - A sample  $X=\{X_1, ..., X_n\}$
  - A vector of parameters  $\theta$
- We define
  - Likelihood of the data:  $L(\theta)=P(X \mid \theta)$
  - Log-likelihood of the data:  $I(\theta) = \log P(X \mid \theta)$
- Given X, find

$$\theta_{ML} = \underset{\theta \in \Omega}{\operatorname{arg\,max}} \ l(\Theta)$$

#### MLE (cont)

 Often we assume that X<sub>i</sub>s are independently identically distributed (i.i.d.)

$$\begin{aligned} \theta_{ML} &= \underset{\theta \in \Omega}{\operatorname{arg\,max}} \ l(\Theta) \\ &= \underset{\theta \in \Omega}{\operatorname{arg\,max}} \ \log P(X \mid \Theta) \\ &= \underset{\theta \in \Omega}{\operatorname{arg\,max}} \ \log \prod_{i} \ P(X_{i} \mid \Theta) \\ &= \underset{\theta \in \Omega}{\operatorname{arg\,max}} \ \sum_{i} \log P(X_{i} \mid \Theta) \end{aligned}$$

• Depending on the form of  $p(x|\theta)$ , solving optimization problem can be easy or hard.

#### An Easy Case

- Assuming
  - A coin has a probability p of being heads, 1-p of being tails.
  - Observation: We toss a coin N times, and the result is a set of Hs and Ts, and there are m Hs.
- What is the value of p based on MLE, given the observation?

## An Easy Case (cont)

$$l(\Theta) = \log P(X \mid \Theta) = \log p^{m} (1-p)^{N-m}$$
  
=  $m \log p + (N-m) \log(1-p)$ 

$$\frac{dl(\Theta)}{dp} = \frac{d(m\log p + (N-m)\log(1-p))}{dp} = \frac{m}{p} - \frac{N-m}{1-p} = 0$$



#### Basic Setting in EM

- X is a set of data points: observed data
- Θ is a parameter vector.
- EM is a method to find  $\theta_{MI}$  where

$$\theta_{ML} = \underset{\theta \in \Omega}{\operatorname{arg max}} \ l(\Theta)$$
$$= \underset{\theta \in \Omega}{\operatorname{arg max}} \ \log P(X \mid \Theta)$$

- Calculating  $P(X \mid \theta)$  directly is hard.
- Calculating  $P(X, Z|\theta)$  is much simpler, where Z is "hidden" data (or "missing" data).

## The Basic Setting in EM

- $\bullet \quad Y = (X, Z)$ 
  - Y: complete data ("augmented data")
  - X: observed data ("incomplete" data)
  - Z: hidden data ("missing" data)
- Given a fixed x, there could be many possible z's.
  - Ex: given a sentence x, there could be many state sequences in an HMM that generates x.

#### The Iterative Approach for MLE

 When missing data is available, it's hard to find the MLE directly

$$\theta_{ML} = \underset{\theta}{\operatorname{Argmax}} \log \left( \sum_{Z} P(X, Z | \theta) \right)$$

An alternative is to find a sequence

$$\theta^{(0)}, \theta^{(1)}, \dots, \theta^{(t)}, \dots,$$
  
s.t.  $l(\theta^{(0)}) < l(\theta^{(1)}) < \dots < l(\theta^{(t)}) < \dots$ 

$$l(\theta) - l(\theta^{(t)}) = \log P(X|\theta) - \log P(X|\theta^{(t)})$$

$$= \log \left(\frac{\sum_{Z} P(X, Z|\theta)}{\sum_{Z} P(X, Z|\theta^{(t)})}\right)$$

$$= \log \left(\sum_{Z} \frac{P(X, Z|\theta)}{\sum_{Z'} P(X, Z'|\theta^{(t)})}\right)$$

$$= \log \left(\sum_{Z} \frac{P(X, Z|\theta)}{\sum_{Z'} P(X, Z'|\theta^{(t)})} \times \frac{P(X, Z|\theta^{(t)})}{P(X, Z|\theta^{(t)})}\right)$$

$$= \log \left(\sum_{Z} \frac{P(X, Z|\theta^{(t)})}{\sum_{Z'} P(X, Z'|\theta^{(t)})} \times \frac{P(X, Z|\theta)}{P(X, Z|\theta^{(t)})}\right)$$

$$l(\theta) - l(\theta^{(t)}) = \log \left( \sum_{Z} \frac{P(X, Z|\theta^{(t)})}{\sum_{Z'} P(X, Z'|\theta^{(t)})} \times \frac{P(X, Z|\theta)}{P(X, Z|\theta^{(t)})} \right)$$

$$= \log \left( \sum_{Z} P(Z|X, \theta^{(t)}) \times \frac{P(X, Z|\theta)}{P(X, Z|\theta^{(t)})} \right)$$

$$\geq \sum_{Z} P(Z|X, \theta^{(t)}) \times \log \left( \frac{P(X, Z|\theta)}{P(X, Z|\theta^{(t)})} \right)$$

$$= E_{P(Z|X, \theta^{(t)})} \left[ \log \left( \frac{P(X, Z|\theta)}{P(X, Z|\theta^{(t)})} \right) \right]$$

$$= E_{P(Z|X, \theta^{(t)})} \left[ \log P(X, Z|\theta) \right]$$

$$- E_{P(Z|X, \theta^{(t)})} \left[ \log P(X, Z|\theta^{(t)}) \right]$$

Jensen's inequality

#### Maximizing the Lower Bound

 The Jensen's inequality gives a lower bound to maximize,

$$\theta^{(t+1)} = \underset{\theta}{\operatorname{Argmax}} E_{P(Z|X,\theta^{(t)})} [\log P(X,Z|\theta)]$$

Q-function

$$Q(\theta|\theta^{(t)}) = E_{P(Z|X,\theta^{(t)})} \left[ \log P(X,Z|\theta) \right]$$

#### Increasing the Likelihood

Increasing the likelihood by maximizing the lower bound

$$l(\theta) - l(\theta^{(t)}) \ge Q(\theta|\theta^{(t)}) - Q(\theta^{(t)}|\theta^{(t)})$$
$$Q(\theta^{(t+1)}|\theta^{(t)}) > Q(\theta^{(t)}|\theta^{(t)}) \Rightarrow l(\theta^{(t+1)}) > l(\theta^{(t)})$$

Which means that a better estimation of the parameter.

#### Summary: EM Algorithm

Define a auxiliary function

$$Q(\theta|\theta') = \sum_{Z} P(Z|X, \theta') \log P(X, Z|\theta)$$
$$= E_{P(Z|X, \theta')} [\log P(X, Z|\theta)]$$

- EM algorithm iterates with two step
  - E-Step, compute  $Q(\theta|\theta^{(t)})$
  - M-Step:

$$\theta^{(t+1)} = \underset{\theta}{\operatorname{Argmax}} Q(\theta|\theta^{(t)})$$

# Illustration of EM Algorithm



## Jensen's Inequality

#### Convex function

$$\forall x_1, x_2 \in (a, b), \lambda \in [0, 1]$$
  
 $f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$ 



# Jensen's Inequality

For convex function f(x)

$$E[f(X)] \ge f(E[X])$$

 For discrete random variable with two mass points

$$E[X] = p_1 x_1 + p_2 x_2$$

$$E[f(X)] = p_1 f(x_1) + p_2 f(x_2)$$

$$\geq f(p_1 x_1 + p_2 x_2) = f(E[x])$$

 It's easy to induce to random variable with more points

## Jensen's Inequality Corollary

 Log(x) is a concave function, for any positive function g(x)

$$\log(E[g]) \ge E[\log(g)]$$

$$\log\left(\sum_{j} q_{j}g(j)\right) \geq \sum_{j} q_{j}\log(g(j))$$

where

$$q_j \in [0,1], \quad \sum_j q_j = 1$$

#### Example

- Rao (1965, pp.368-369), Genetic Linkage
   Model
- Suppose 197 animals are distributed multinomially into four categories,

$$X = (125, 18, 20, 34) = (x_1, x_2, x_3, x_4)$$

 A genetic model for the population specifies cell probabilities

$$\left(\frac{1}{2} + \frac{\theta}{4}, \frac{1}{4} - \frac{\theta}{4}, \frac{1}{4} - \frac{\theta}{4}, \frac{\theta}{4}\right)$$

#### Multinomial Distribution

Likelihood function

$$L(\theta) = \frac{197!}{x_1! x_2! x_3! x_4!} \left(\frac{1}{2} + \frac{\theta}{4}\right)^{x_1} \left(\frac{1}{4} - \frac{\theta}{4}\right)^{x_2 + x_3} \left(\frac{\theta}{4}\right)^{x_4}$$

log-likelihood function

$$l(\theta) = \log \frac{197!}{x_1! x_2! x_3! x_4!} + x_1 \log(\frac{1}{2} + \frac{\theta}{4}) + (x_2 + x_3) \log(\frac{1}{4} - \frac{\theta}{4}) + x_4 \log(\frac{\theta}{4})$$

#### **MLE**

Take derivative, solve equation

$$\frac{\partial l(\theta)}{\partial \theta} = \frac{1}{4} \times \frac{x_1}{\frac{1}{2} + \frac{\theta}{4}} - \frac{1}{4} \times \frac{x_2 + x_3}{\frac{1}{4} - \frac{\theta}{4}} + \frac{1}{4} \times \frac{x_4}{\frac{\theta}{4}} = 0$$

It's not easy to solve this equation!

$$\frac{x_1}{2+\theta} - \frac{x_2 + x_3}{1-\theta} + \frac{x_4}{\theta} = 0$$

#### Missing Data Problem

Split the first category into two group

$$x_1 = z_1 + z_2, \quad z_1, z_2 \text{ missing}$$

With Probability

$$p(z_1) = \frac{1}{2}, p(z_2) = \frac{\theta}{4}$$

Log-likelihood function of complete data

$$l(\theta) = \log \frac{197!}{z_1! z_2! x_2! x_3! x_4!} + z_1 \log(\frac{1}{2}) + (z_2 + x_4) \log(\frac{\theta}{4}) + (x_2 + x_3) \log(\frac{1}{4} - \frac{\theta}{4})$$

## E Step: Multinomial

$$E\left(\log f(x,\theta)|\theta^{(k)}\right) = E\left(\log \frac{197!}{z_1!z_2!x_2!x_3!x_4!}\right) + z_1^{(k)}\log(\frac{1}{2}) + (z_2^{(k)} + x_4)\log(\frac{\theta}{4}) + (x_2 + x_3)\log(\frac{1}{4} - \frac{\theta}{4})$$

#### Where

$$\begin{cases} E(z_1) = 125 \frac{\frac{1}{2}}{\frac{1}{2} + \frac{\theta^{(k)}}{4}} = z_1^{(k)} \\ E(z_2) = 125 \frac{\frac{\theta^{(k)}}{4}}{\frac{1}{2} + \frac{\theta^{(k)}}{4}} = z_2^{(k)} \end{cases}$$

#### M Step: Multinomial

#### Take derivative

$$E\left(\log f(x,\theta)|\theta^{(k)}\right) = E\left(\log \frac{197!}{z_1!z_2!x_2!x_3!x_4!}\right) + z_1^{(k)}\log(\frac{1}{2}) + (z_2^{(k)} + x_4)\log(\frac{\theta}{4}) + (x_2 + x_3)\log(\frac{1}{4} - \frac{\theta}{4})$$

#### One can obtain

$$\theta^{(k+1)} = \frac{z_2^{(k)} + x_4}{z_2^{(k)} + x_4 + x_2 + x_3} = \frac{z_2^{(k)} + 34}{z_2^{(k)} + 18 + 20 + 34}$$

#### Back to Motif Finding

Given the missing data, it's a multinomial distribution

$$Pr(X_i, Z_{ij} = 1 | P) = \prod_{k=1}^{j-1} p_{x_{ik}, 0} \prod_{k=j}^{j+w-1} p_{x_{ik}, k-j+1} \prod_{k=j+w}^{L} p_{x_{ik}, 0}$$
 before motif motif after motif

 $X_{i}^{}$  is the ith sequence

 $Z_{ij}$  is 1 if motif starts at position j in sequence i

## Log-likelihood

$$l(p) = \sum_{k=1}^{j-1} \log p_{x_{ik},0} + \sum_{k=j}^{j+W-1} \log p_{x_{ik},k-j+1} + \sum_{k=j+W}^{L} \log p_{x_{ik},0}$$

#### Q function

$$Q(p|p^{(t)}) = E_{P(Z|X,p^{(t)})} [\log P(X,Z|p)]$$
$$= \sum_{Z} P(Z|X,p^{(t)}) \log P(X,Z|p)$$

#### Q-function

$$Q(p|p^{(t)}) = \sum_{Z} P(Z|X, p^{(t)}) \log P(X, Z|p)$$

$$= \sum_{Z} P(Z|X, p^{(t)}) \sum_{k=1}^{j-1} \log p_{x_{ik}, 0}$$

$$+ \sum_{Z} P(Z|X, p^{(t)}) \sum_{k=j}^{j+W-1} \log p_{x_{ik}, k-j+1}$$

$$+ \sum_{Z} P(Z|X, p^{(t)}) \sum_{k=j+W}^{L} \log p_{x_{ik}, 0}$$

#### Q-function

• For each sequence i, the missing value  $Z_{ij}$  can take value

$$Z_{i1} = 1, Z_{i2} = 1, \cdots, Z_{i,L-W+1} = 1$$

• So the coefficient of  $\log P_{c,k}$  is

$$\sum_{i} \sum_{m=1}^{L-W+1} P(Z_{im} = 1 | X_i, p^t) \delta(X_{i,m+k}, c)$$

#### Q-function

• The coefficient of  $\log P_{c,0}$  is

$$\sum_{i} \sum_{m=1}^{L-W+1} P(Z_{im} = 1 | X_i, p^t) \left( \sum_{k=1}^{m-1} \delta(X_{i,k}, c) + \sum_{k=m+W}^{L} \delta(X_{i,k}, c) \right)$$

#### M Step: Optimization

For multinomial distribution, the optimization is of form

$$\begin{cases} \operatorname{Max:} \sum_{k} c_k \log x_k \\ \operatorname{subject to:} \sum_{k} x_k = 1 \end{cases}$$

Estimation: 
$$x_i = \frac{c_i}{\sum_k c_k}, i = 1, \dots, N.$$

#### M Step: Optimization

• So the estimation of  $p_{c,k}$  is

$$\frac{\sum_{i} \sum_{m=1}^{L-W+1} P(Z_{im} = 1 | X_i, p^t) \delta(X_{i,m+k}, c)}{\sum_{b} \sum_{i} \sum_{m=1}^{L-W+1} P(Z_{im} = 1 | X_i, p^t) \delta(X_{i,m+k}, b)}$$

• So the estimation of  $p_{c,0}$  is

$$\frac{\sum_{i} \sum_{m=1}^{L-W+1} P(Z_{im} = 1 | X_i, p^t) \left( \sum_{k=1}^{m-1} \delta(X_{i,k}, c) + \sum_{k=m+W}^{L} \delta(X_{i,k}, c) \right)}{\sum_{b} \sum_{i} \sum_{m=1}^{L-W+1} P(Z_{im} = 1 | X_i, p^t) \left( \sum_{k=1}^{m-1} \delta(X_{i,k}, b) + \sum_{k=m+W}^{L} \delta(X_{i,k}, b) \right)}$$

#### Example

 Finding motif (length 3) in following sequences

ACAGCA

A G G C A G

TCAGTC

# **EM** Updating

#### • Let

$$z_{ij}(c) = Pr(Z_{ij} = 1|X_i, p^{(t)})\delta(x_{i,m+k}, c)$$

| 1      | 2      | 3      | 1      | 2      | 3      | 1      | 2      | 3      |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| z11(A) | z11(C) | z11(A) | z21(A) | z21(G) | z21(G) | z31(T) | z31(C) | z31(A) |
| z12(C) | z12(A) | z12(G) | z22(G) | z22(G) | z22(C) | z32(C) | z32(A) | z32(G) |
| z13(A) | z13(G) | z13(C) | z23(G) | z23(C) | z23(A) | z33(A) | z33(G) | z33(T) |
| z14(G) | z14(C) | z14(A) | z24(C) | z24(A) | z24(G) | z34(G) | z34(T) | z34(C) |

#### **EM** Updating

$$p_{A,1} = \frac{z_{11} + z_{13} + z_{21} + z_{33}}{z_{11} + z_{12} + z_{13} + z_{14} + \dots + z_{31} + z_{32} + z_{33} + z_{34}}$$

$$p_{C,1} = \frac{z_{12} + z_{24} + z_{32}}{z_{11} + z_{12} + z_{13} + z_{14} + \dots + z_{31} + z_{32} + z_{33} + z_{34}}$$

$$p_{G,1} = \frac{z_{14} + z_{22} + z_{23} + z_{32}}{z_{11} + z_{12} + z_{13} + z_{14} + \dots + z_{31} + z_{32} + z_{33} + z_{34}}$$

$$p_{T,1} = \frac{z_{31}}{z_{11} + z_{12} + z_{13} + z_{14} + \dots + z_{31} + z_{32} + z_{33} + z_{34}}$$

#### Background

- z11: A,C,G
- z12: 2A,C
- z13:2A,C
- z14: 2A, C
- z21:A,C,G
- z22:2A,G
- z23:A,2G
- z24:A,2G
- z31:C,G,T
- z32:C,2T
- z33:2C,T
- z34:A,C,G

# **Background Updating**

- $A z_{11} + 2z_{12} + 2z_{13} + 2z_{14} + z_{21} + 2z_{22} + z_{23} + z_{24} + z_{34}$
- c  $z_{11} + z_{12} + z_{13} + z_{14} + z_{21} + z_{31} + z_{32} + 2z_{33} + z_{34}$
- **G**  $z_{11} + z_{21} + z_{22} + 2z_{23} + 2z_{24} + z_{31} + z_{34}$
- T  $z_{31} + 2z_{32} + z_{33}$

#### Normalization factor

$$3(z_{11} + z_{12} + z_{13} + z_{14} + z_{21} + z_{22} + z_{23} + z_{24} + z_{31} + z_{32} + z_{33} + z_{34})$$

#### References

Dempster, A.P., Laird, N.M., Rubin, D.B. (1977).
 Maximum Likelihood from Incomplete Data
 via the EM Algorithm. *Journal of the Royal Statistical Society. Series B (Methodological)*,
 Vol. 39, No. 1, , pp. 1-38