Количество выравниваний.

Лазарева София

8 февраля 2023 г.

Условие:

Выведите рекуррентную формулу количества всех возможных выравниваний последовательностей длины n и m пользуясь разбиением всех выравниваний на непересекающиеся блоки. $(1.5\ балл)$

Получите точную формулу, основываясь на начальные условия и рекуррентную формулу. $(1.5 \, \text{балл})$ Воспользуйтесь приближением Стирлинга чтобы получить приближенную формулу количества выравниваний. (1)

Решение:

1. Применим динамику. Для того, чтобы посчитать число всех возможных выравниваний строк |a|=n, |b|=m воспользуемся динамикой по подстрокам.

Базой динамики будет число выравниваний строк $a_{1...i}$ и b_1 для всех i=1...n равное единице. Аналогично число выравниваний для a_1 и $b_{1...j}$ для всех j=1...m.

Предположим, что на момент подсчёта всех выравниваний строк $a_{1...i}$ и $b_{1...j}$, мы уже знаем количество выравниваний строк $a_{1...i-1}, b_{1...j}, a_{1...i-1}, b_{1...j-1}, a_{1...i}, b_{1...j-1}$. Тогда для того, чтобы посчитать число выравниваний строк $a_{1...i}$ и $b_{1...j}$ необходимо просуммировать выравнивания их подстрок, т.е. count[i][j] = count[i-1][j] + count[i-1][j-1].

Число выравниваний исходных строк будет лежать в элементе count[n][m].

2. Обозначим $M = \min(n, m)$, а $N = \max(n, m)$. Тогда если записать данную рекуррентную формулу через биномиальные коэффициенты, то получим следующее соотношение:

$$\mathtt{count[i][j]} = \sum_{i=0}^M C_M^i \cdot C_{N+M-i}^M = \sum_{i=0}^M \frac{(N+M-i)!}{i! \cdot (M-i)! \cdot (N-i)!}$$

3. Воспользуемся приближением Стирлинга для вычисления факториалов: $n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$:

$$\texttt{count[i][j]} = \sum_{i=0}^{M} \frac{\sqrt{2\pi(M+N-i)}(M+N-i)^{M+N-i}}{\sqrt{2\pi(M-i)}\sqrt{2\pi(N-i)}\sqrt{2\pi i}(M-i)^{M-i}(N-i)^{N-i}(i)^{i}}$$