E. Little Girl and Problem on Trees

time limit per test: 2 seconds
memory limit per test: 256 megabytes
input: standard input
output: standard output

A little girl loves problems on trees very much. Here's one of them.

A tree is an undirected connected graph, not containing cycles. The degree of node x in the tree is the number of nodes y of the tree, such that each of them is connected with node x by some edge of the tree.

Let's consider a tree that consists of *n* nodes. We'll consider the tree's nodes indexed from 1 to*n*. The cosidered tree has the following property: each node except for node number 1 has the degree of at most 2.

Initially, each node of the tree contains number 0. Your task is to quickly process the requests of two types:

- Request of form: $0 \ v \ x \ d$. In reply to the request you should add x to all numbers that are written in the nodes that are located at the distance of at most d from node v. The distance between two nodes is the number of edges on the shortest path between them.
- Request of form: 1 v. In reply to the request you should print the current number that is written in node v.

Input

The first line contains integers n ($2 \le n \le 10^5$) and q ($1 \le q \le 10^5$) — the number of tree nodes and the number of requests, correspondingly.

Each of the next n-1 lines contains two integers u_i and v_i ($1 \le u_i$, $v_i \le n$, $u_i \ne v_i$), that show that there is an edge between nodes u_i and v_i . Each edge's description occurs in the input exactly once. It is guaranteed that the given graph is a tree that has the property that is described in the statement.

Next *q* lines describe the requests.

- The request to add has the following format: $0 \ v \ x \ d \ (1 \le v \le n, \ 1 \le x \le 10^4, \ 1 \le d < n)$.
- The request to print the node value has the following format: $1 v (1 \le v \le n)$.

The numbers in the lines are separated by single spaces.

Output

For each request to print the node value print an integer — the reply to the request.

Examples

```
input

3 6
1 2
1 3
0 3 1 2
0 2 3 1
0 1 5 2
1 1
1 2
1 3

output

9
9
6
```

input

6 11 1 2 2 5 5 4 1 6 1 3 0 3 1 3 0 3 4 5 0 2 1 4 0 1 5 5 0 4 6 2 1 1 1 2 1 3 1 4 1 5 1 6	
output	
11	
17	
11	
16	
17	
11	