Pseudorandom Generator

Chanathip Namprempre

Computer Science Reed College

Agenda: Pseudorandom Generator

- 1. What is a PRG?
- 2. PRG-based stream cipher
- 3. Next-bit unpredictability
- 4. PRG security notion
- 5. Examples of PRGs
 - 5.1 Toy
 - 5.2 MS-PPTP
 - 5.3 802.11b WEP
 - 5.4 eStream
- 6. PRG security vs. unpredictability

Pseudorandom Generator

Let
$$n > s$$
.

$$G: \{0,1\}^s \longrightarrow \{0,1\}^n$$

Use PRG to approximate OTP.

We call this a PRG-based stream cipher.

$$C \leftarrow G(K) \oplus M$$

Unpredictability is important

Sendmail: fixed format e.g. email messages begin with "From:"

- 1. Snoop ciphertext C
- 2. $X \leftarrow C \oplus$ "From:"
- 3. X is the first part of the output of G(K)

Bottom line: If G is predictable, then a small prefix reveals entire message.

PRG security notion

Definition (PRG)

Let s, n be positive integers.

Subroutines

Subroutine Initialize

$$\begin{array}{l} b \overset{\$}{\leftarrow} \{0,1\} \\ \text{If } b = 1 \\ \text{then } x \overset{\$}{\leftarrow} \{0,1\}^s \; ; \; y \; \leftarrow \; G(x) \\ \text{else } y \overset{\$}{\leftarrow} \{0,1\}^n \\ \text{Return } y \end{array}$$

Subroutine Finalize(d)

Return (d = b)

Experiment

Experiment $\operatorname{Exp}_G^{\operatorname{prg}}(A)$

$$y \xleftarrow{\$} \text{Initialize}$$
 $d \xleftarrow{\$} A(y)$
Return Finalize(d)

We define the prg advantage of an adversary A attacking G as

$$\mathbf{Adv}_{\mathcal{G}}^{\mathrm{prg}}(\mathit{A}) = 2 \cdot \mathsf{Pr} \left[\; \mathbf{Exp}_{\mathcal{G}}^{\mathrm{prg}}(\mathit{A}) \Rightarrow \mathsf{true} \; \right] - 1 \; .$$

Next-Bit Unpredictability

Definition (Unpredictability)

Let s, n, i be positive integers.

Subroutines

Subroutine Initialize

$$x \leftarrow \{0,1\}^s ; y \leftarrow G(x)$$

Return $y[1,\ldots,i]$

Subroutine Finalize(z) Return (z = v[i+1])

Experiment

Experiment $\mathsf{Exp}^{\mathrm{unp}}_{\mathcal{G}}(A)$

$$y' \overset{\$}{\leftarrow} \text{Initialize}$$
 $z \overset{\$}{\leftarrow} A(y')$
Return Finalize(z)

We define the next-bit unpredictability advantage of an adversary A attacking G as

$$\mathbf{Adv}^{\mathrm{unp}}_{\mathcal{G}}(\mathit{A}) = 2 \cdot \mathsf{Pr} \left[\; \mathbf{Exp}^{\mathrm{unp}}_{\mathcal{G}}(\mathit{A}) \Rightarrow \mathsf{true} \; \right] - 1 \; .$$

Examples

1. A generator G such that, for all K,

$$XOR(G(K)) = 1$$
.

- 2. MS-PPTP in Windows NT
- 3. 802.11b WEP
- 4. eStream

Toy Example

Consider a generator G such that, for all K,

$$XOR(G(K)) = 1$$
.

Is G secure under the PRG notion? Prove your answer!

Two-Time Pad is insecure

Bottom line: The secret key is being used twice, one for each direction. This is a two-time pad.

Two-Time pad spelled out

Let $G: \{0,1\}^s \to \{0,1\}^n$ be a PRG. We define a symmetric encryption scheme $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ as follows.

$$\mathcal{K}: S \overset{\$}{\leftarrow} \{0,1\}^s$$
; return K .

$$\begin{array}{c|c} \mathcal{E}_S(M): & & \mathcal{D}_S(C): \\ \text{if } (|M| > n \text{ or } |M| = 0) & \text{return } \bot \\ K \leftarrow \text{ first } |M| \text{ bits of } G(S) \\ \text{return } K \oplus M & \text{return } K \oplus C \\ \end{array}$$
Can you prove that this encryption scheme is insecure under IND-CPA?

WEP is insecure

- For WEP-40, |IV|=24 bits. |k|=40 bits.
- ► For WEP-104, |V| = 24 bits. |k| = 104 bits.
- ► For WEP-104, PRG: $\{0,1\}^{128} \rightarrow 2048$ is RC4.
- ▶ IV is incremented by 1 per frame.
- ▶ IV repeats after $2^{24} \approx 16M$ frames.
- ▶ On some 802.11 cards, IV resets to 0 after power cycle.

Bottom line:

Problem #1: The pad is being used twice whenever IV is reset.

WEP issues

Actually, the picture is misleading. An 802.11 packet is usually 2000 bytes long. So, WEP breaks up each packet into frames.

frame #	key stream
1	PRG(1 k)
2	PRG(2 k)
3	PRG(3 k)

- Problem #2: The seeds are very much related. This breaks security assumption underlying PRG security definition.
- ► Attacks exploiting this using 1M frames were found in 2001.
- Recent attacks use about 40K frames.

The Big Question remains: How do we use a PRG to encrypt a long stream of data?

Modern PRGs

Question: How do we use a PRG to encrypt a long stream of data?

Answer: Cheat! Add a "nonce."

Old:

$$\mathsf{PRG}:\{0,1\}^{\mathfrak s}\to\{0,1\}^{\mathfrak n}$$

New:

$$\mathsf{PRG}: \{0,1\}^{\mathfrak{s}} \times \mathcal{N} \to \{0,1\}^{L}$$

- \triangleright \mathcal{N} is the nonce space, e.g., $\{0,1\}^{64}$ (Salsa and Chacha).
- ▶ *L* is much larger than n, e.g., 2^{73} bits (Salsa and Chacha).

Restriction: Nonces are not allowed to repeat.

Nonce-Based Stream Cipher

$$Enc'(K, N, M) = M \oplus PRG'(K, N)$$
$$Dec'(K, N, C) = C \oplus PRG'(K, N)$$

Compare old-style PRG vs. new-style PRG for building stream cipher

Typical Stream Cipher: SE

$$Enc(K, M) = M \oplus PRG(K)$$
$$Dec(K, C) = C \oplus PRG(K)$$

This construction is insecure against IND-CPA!

Nonce-Based Stream Cipher: SE'

$$Enc'(K, N, M) = M \oplus PRG'(K, N)$$
$$Dec'(K, N, C) = C \oplus PRG'(K, N)$$

IND-CPA security proofs for this construction model PRG' as a PRF!

Pattern emerging

PRG security vs. Unpredictability

They are equivalent!

Theorem

Let G be a PRG. Then, it is secure if and only if it is unpredictable.

 $[\Longrightarrow]$ Easy.

[←] Hybrid proof, e.g., Boneh-Shoup Theorem 3.6.