TALENTO TECH 2025-MINTIC FORMATO DE PRESENTACIÓN "PLAN DE PROYECTO TI"

Contexto específico de aplicación del proyecto (Marque con una X)

AGRO	EDUCACIÓN	TURISMO	GOBIERNO	FINANZAS	MARKETIN G	SALUD	OTRO
							Х

Cohorte #:

Año: 2025

Tutor: ANDRÉS FELIPE ESCALLÓN PORTILLA

Septiembre

NOMBRE DEL PROYECTO (Y DEL PRODUCTO /SERVICIO

CHATBOT FAQ PARA DISEÑO DE PLATINAS Y ESTUDIOS DE SUELO EN CONSTRUCCIÓN METÁLICA

Departamento de residencia del estudiante:

NARIÑO

Municipio de residencia del estudiante:

PASTO

Rural: (Marque con una X)

SI		NO	Х			
Vere	da o Co	orregir	niento	:		

Autor (es):

No.	Nombres y Apellidos	Tipo de identificació n	No. identificación	Curso: Programació n, Inteligencia Artificial, Análisis Datos, Block Chain, Arquitectura Nub e	Nivel: Explorado r, Integrador , Innovador	Modalidad: Virtual, Semipresencial o Presencial
	DERLY VANESSA RAMIREZ AGREDA	CC	59312684	X		

• Palabra clave 1: Chatbot

• Palabra clave 2: Construcción Metálica

• Palabra clave 3: Estudios de Suelo

• Palabra clave 4: Inteligencia Artificial

Planteamiento del problema que solucionará el producto/servicio:

Oué sucede?

En los proyectos de construcción metálica se pierde tiempo buscando información repetida en informes de suelo, planos, normas y diseños de platinas.

Por qué sucede?

La información está dispersa en múltiples documentos y no existe un sistema centralizado que resuelva preguntas frecuentes de manera rápida.

A quiénes afecta?

A ingenieros, arquitectos, técnicos y administrativos encargados del diseño y construcción metálica.

De qué manera?

Genera retrasos en la toma de decisiones, errores en cálculos y mayores costos por reprocesos.

Pertinencia del proyecto TI:

El chatbot permite centralizar información técnica y económica del proyecto, reduciendo tiempos de consulta y mejorando la calidad de las decisiones.

- **Cómo funciona?**: Un asistente virtual (chatbot FAQ) entrenado con dataset propio (estudios de suelo, normas, costos, características de platinas) que responde preguntas frecuentes vía Telegram o interfaz web.
- **En qué beneficia?**: Ahorra tiempo, aumenta la autonomía de los equipos y garantiza acceso rápido a datos clave del diseño estructural.

Mercado:

- Tamaño del mercado y oportunidad: Ingenieros civiles, estudiantes de ingeniería, empresas de construcción metálica, consultores en suelos. Son clientes potenciales del sector de infraestructura, un mercado amplio y en constante demanda.
- Es un mercado en crecimiento? Sí. El sector de la construcción metálica está en expansión debido a su eficiencia y sostenibilidad.
- **Tendencias:** Digitalización de la construcción (BIM, IA, chatbots), integración de big data en ingeniería, automatización de procesos.

Estado del Arte y ventajas comparativas:							
Nombre producto	Fabricante/País	Qué ventajas tiene frente a mi producto	Qué ventaja tiene mi producto frente a este	Competidor			
AWS Lex	LAMazon / USA		Nuestro enfoque usa dataset técnico especializado en platinas y suelos	Indirecto			
Dialogflow	Google / USA	IAMNIIA SANARTE EN NILP	Chatbot diseñado para ingeniería estructural específica	Indirecto			
Bots Telegram	Comunidad global	leacil de implementar	Se integra con datos técnicos normativos y de costos	Directo			

Marco Legal y Ético

- Cumplimiento de NSR-10 (Norma Sismo Resistente en Colombia).
- Normas **ASTM** para caracterización de aceros.
- Ley 1581 de 2012 sobre protección de datos personales en Colombia.
- Transparencia en uso de datos, evitando manipulación o sesgo.
- Consentimiento informado si se usan datos sensibles.

Análisis de Riesgos:

- Datos insuficientes: baja precisión en respuestas.
- Costos en la nube: riesgo de sobrecostos si no se controla el uso.
- OCR de planos: errores en el reconocimiento de texto.
- Resistencia al cambio: usuarios que no adopten el chatbot.
- **Privacidad:** manejo cuidadoso de datos técnicos y personales.

Complejidad tecnológica

- **Riesgo:** El chatbot requiere integrar datos de suelo, normas y cálculos de platinas, lo que implica un alto nivel técnico.
- **Impacto:** Si no se dominan las tecnologías (NLP, AWS, OCR), puede haber retrasos o baja precisión en respuestas.
- **Mitigación:** Capacitación previa del equipo en herramientas clave (Python, AWS Lex, OCR), iniciar con un prototipo ligero y escalar gradualmente.

2. Entorno organizacional

- Riesgo: Cambios en lineamientos del proyecto o falta de apoyo de la organización.
- Impacto: Reducción en recursos asignados o pérdida de continuidad.
- **Mitigación:** Mantener comunicación constante con tutor/mentor, documentar avances semanales y alinear entregables al cronograma.

3. Equipo de trabajo

- Riesgo: Falta de experiencia en inteligencia artificial aplicada a ingeniería civil.
- Impacto: Curva de aprendizaje larga, retrasos en fases críticas.
- **Mitigación:** Apoyarse en bibliografía, tutoriales, comunidad académica y dividir tareas por especialidad (datos, programación, validación técnica).

4. Planificación y control

- Riesgo: Estimaciones de tiempo poco realistas o entregas no controladas.
- Impacto: Atraso en fases y acumulación de trabajo.
- **Mitigación:** Usar metodología ágil (Kanban), con backlog de tareas semanales y definición clara de "hecho".

5. Requerimientos

- **Riesgo:** Cambios constantes en los requerimientos del chatbot (ejemplo: añadir nuevas preguntas sin priorización).
- Impacto: Incremento en complejidad y costos.
- **Mitigación:** Definir FAQs prioritarias desde la fase 1 y congelar requerimientos principales hasta completar el MVP.

6. Usuarios

- Riesgo: Resistencia de los usuarios (ingenieros/técnicos) a usar el chatbot, prefiriendo métodos tradicionales.
- Impacto: Baja adopción del sistema y pérdida de valor del proyecto.
- **Mitigación:** Hacer pruebas piloto con usuarios, demostrar beneficios de ahorro de tiempo y dar una guía clara de uso.

Qué podría suceder?	¿Cuál sería el efecto/impacto en los objetivos del proyecto?	¿Cuándo, dónde, por qué y cuál es la probabilidad de que ocurran estos riesgos?	¿Quién puede estar involucrado o impactado?	¿Cuál puede ser la fuente del riesgo?
Los datos de suelo y platinas son insuficientes o incompletos.	El chatbot no responde de forma precisa a las preguntas frecuentes.	Durante la fase de recolección de datos (S1-S2). Probabilidad media.	Equipo de desarrollo, ingenieros estructurales.	Calidad y disponibilidad limitada de datos.
El equipo no domina totalmente la tecnología de AWS o NLP.	Retrasos en la integración del prototipo y baja calidad en la escalabilidad.	Durante S2 (integración en la nube). Probabilidad media.	Desarrollador, tutor, equipo técnico.	Complejidad tecnológica y curva de aprendizaje.
Se cambian o aumentan los requerimientos de FAQs sin priorización.	Sobrecarga de trabajo y retrasos en el cronograma.	Durante el desarrollo (S1-S3). Probabilidad alta.	Usuario final, desarrollador.	Requerimientos mal definidos o en constante cambio.
Los usuarios no adoptan el chatbot y prefieren procesos tradicionales.	El sistema pierde valor y no se cumplen objetivos de impacto.	En la fase de pruebas y validación (S3). Probabilidad media.	Ingenieros, técnicos de obra, monitores.	Resistencia al cambio y falta de capacitación.
El uso de la nube (AWS) genera costos más altos de lo esperado.	El proyecto se vuelve financieramente insostenible.	Durante S2-S3, al escalar la solución. Probabilidad baja- media.	Responsable del proyecto, área administrativa.	Abuso de recursos en la nube y mala gestión de costos.
Fallos en OCR o procesamiento de planos.	Respuestas incorrectas al interpretar documentos.	En la carga de datos técnicos (S1-S2). Probabilidad media.	Equipo de datos, usuarios del chatbot.	Limitaciones técnicas de OCR y calidad de documentos.
Qué podría suceder?	¿Cuál sería el efecto/impacto en los objetivos del proyecto?	¿Cuándo, dónde, por qué y cuál es la probabilidad de que ocurran estos riesgos?	¿Quién puede estar involucrado o impactado?	¿Cuál puede ser la fuente del riesgo?
Los datos de suelo y platinas son insuficientes o incompletos.	El chatbot no responde de forma precisa a las preguntas frecuentes.	Durante la fase de recolección de datos (S1-S2). Probabilidad media.	Equipo de desarrollo, ingenieros estructurales.	Calidad y disponibilidad limitada de datos.
El equipo no domina totalmente la tecnología de AWS o NLP.	Retrasos en la integración del prototipo y baja calidad en la escalabilidad.	Durante S2 (integración en la nube). Probabilidad media.	Desarrollador, tutor, equipo técnico.	Complejidad tecnológica y curva de aprendizaje.
Se cambian o aumentan los requerimientos de FAQs sin priorización.	Sobrecarga de trabajo y retrasos en el cronograma.	Durante el desarrollo (S1-S3). Probabilidad alta.	Usuario final, desarrollador.	Requerimientos mal definidos o en constante cambio.
Los usuarios no adoptan el chatbot y prefieren procesos	El sistema pierde valor y no se cumplen objetivos de impacto.	En la fase de pruebas y validación (S3). Probabilidad media.	Ingenieros, técnicos de obra, monitores.	Resistencia al cambio y falta de capacitación.

Qué podría suceder?	¿Cuál sería el efecto/impacto en los objetivos del proyecto?	¿Cuándo, dónde, por qué y cuál es la probabilidad de que ocurran estos riesgos?	¿Quién puede estar involucrado o impactado?	¿Cuál puede ser la fuente del riesgo?
tradicionales.				
El uso de la nube (AWS) genera costos más altos de lo esperado.	El proyecto se vuelve financieramente insostenible.	Durante S2-S3, al escalar la solución. Probabilidad baja- media.	Responsable del proyecto, área administrativa.	Abuso de recursos en la nube y mala gestión de costos.
Fallos en OCR o procesamiento de planos.	Respuestas incorrectas al interpretar documentos.	En la carga de datos técnicos (S1-S2). Probabilidad media.	Equipo de datos, usuarios del chatbot.	Limitaciones técnicas de OCR y calidad de documentos.

General: Desarrollar un chatbot FAQ que centralice información de diseño de platinas y estudios de suelo para optimizar decisiones en construcción metálica.

Específicos:

- Crear un dataset con variables de suelo, acero, costos y normativa.
- Desarrollar un prototipo con TF-IDF y similitud coseno (fase 1).
- Integrar el sistema con AWS (Lex, Lambda, S3) para escalabilidad (fase 2).
- Presentar un demo con métricas de eficiencia y ahorro de tiempo (fase 3).

Metodología:

Enfoque ágil (Kanban) con iteraciones semanales:

- 1. Recolección de datos.
- 2. Desarrollo del dataset.
- 3. Entrenamiento y prueba del chatbot.
- 4. Integración con interfaz.
- 5. Validación y presentación final.

Plazo: Duración del proyecto.

SEMANAS	DIAS
8	

CRONOGRAMA DE ACTIVIDADES (Diagrama de Gantt):

No.	Actividad	S1	S2	\$3	S 4	S 5	S6	S7	S8	Responsable
1	Recolección de datos	x	Х							
2	Dataset y limpieza		x	Х						
	Desarrollo chatbot (MVP)			Х	Х					
4	Integración AWS				Х	Х				
5	Pruebas y validación					Х	Х			
6	Demo final e informe							Х	Х	

PRESUPUESTO: PROYECTO.xls"

Revisar Anexo "Plantilla Presupuesto desarrollo de

Categoría	Recurso / Concepto	Costo Estimado (COP)	Justificación
Recursos Humanos	Desarrollador (1 persona, 2 meses, medio tiempo)	\$ 6.000.000	Diseño del dataset, programación del chatbot, integración AWS.
Recursos Humanos	Ingeniero civil/estructural (consultor técnico)	\$ 3.200.000	Validar criterios técnicos (platinas, estudios de suelo, normas).
Recursos Humanos	Tutor / Monitor académico	\$ 1.600.000	Seguimiento metodológico y técnico.
Infraestructura TI	Cuenta AWS Free Tier (extra consumo nube)	\$ 800.000	Servicios Lex, Lambda, S3, almacenamiento.
Infraestructura TI	Colab Pro / Servidor local para entrenamiento	\$ 400.000	Procesamiento inicial de dataset y pruebas NLP.
Datos y Documentación	Adquisición de normas técnicas (NSR-10, ASTM, manuales)	\$ 600.000	Recolección de información de referencia para dataset.
Datos y Documentación	Digitalización/OCR de planos e informes	\$ 400.000	Procesar documentos físicos para alimentar dataset.
Capacitación	Taller corto en AWS Lex y NLP aplicada	\$ 1.000.000	Reducir riesgo tecnológico por falta de dominio.
Otros	Contingencias (10% del total)	\$ 1.500.000	Cubre imprevistos técnicos, de tiempo o

			documentación.
TOTAL	\$	15.500.000	Costo total estimado del proyecto