Multidisciplinary Project - 18

An Occupational Safety and Health (OSH) assessment of Limestone Mining Industies in Tamil Nadu

Gururanga Ramanujam B^{1a}, Suraj Choudhary^{1a}, Basith Shaik^{1b}, GuvvalaTharun^{1b}, Dr. Vignesh K.S*^b, Dr. S. Vishali*^a, Dr. Muthamil Selvi*^a
Department of Chemical Engineering^a, Department of Mechanical Engineering^b, College of Engineering and Technology, SRM Institute of Science and Technology
Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India.

INTRODUCTION

Fig 1 Areal View of Mine-1

Fig 2 Areal View of Mine-2

- 1. India's infrastructure boom has driven a surge in demand for limestone, a key material for cement production.
- 2. As the result Limestone mining operations have intensified, relying on powerful machinery that expedites production but also generates significant: Dust, Noise and Vibrations.
- 3. Chronic exposure to these elements can severely impact the health and safety of limestone mine workers.
- 4. OSH studies and data in the limestone mining industry, particularly in India, might be limited or outdated. This lack of recent data creates a gap in understanding current risk factors and their prevalence.
- 5. This project aims to comprehensively evaluate occupational safety and health (OSH) risks faced by limestone mine workers in Tamil Nadu.

Fig. 3:Heavy Machineries

Fig. 4: Dust Produced while mining

METHODS

Fig 5: Risk Assessment Flow Chart

Fig. 6: (a) Noise Data Collection, (b) Dust Sample Collection, c) Vibration Exposure measurement
d) Volatile Organic Compounds detection

RESULTS

Fig. 7: (a) Vibration Vs Type of Equipment, (b) Noise Vs Type of Equipment, (c) Location Vs Respirable Dust and Silica Dust Concentration, (d) VOC Vs Concentration

RESULTS

SL.N O	Equipment and Operator	Axis	A _{RMS} m/s ²	Adjustment A(8) m/s2	Expos ure Durati on (hour)	Maximum Vibration Exposure m/s2	Health Risk Exposure
1	Taurus Tipper 10 Wheel	X	0.002	0.002	8	0.002 in X Axis	Below the
		Y	0.0003	0.0004			Exosure Action
		Z	0.00003	0.00003			Value
2	Dozer(KCPL)D50	X	0.0005	0.0006	8	0.0007 in Y Axis	Below the
		Y	0.0005	0.0007			Exosure Action
		Z	0.0002	0.0002			Value
3	Rock Breaker (CK-300)	X	0.00005	0.00007	8	0.0002 in Y Axis	Below the
		Y	0.0001	0.0002			Exosure Action
		Z	0.00003	0.00003			Value
4	Front wheel loader	X	0.23	0.322	8	0.322 in X Axis	Below the
		Y	0.0007	0.0009			Exosure Action
		Z	0.0003	0.0003			Value
5	Excavator	X	0.56	0.784		0.784 in X Axis	Ermanna
		Y	0.0008	0.001	8		Exposure
		Z	0.0003	0.0003			Action Value
6	KSM304(surface minner)	X	0.967	1.354	8	1.3 in X Axis	Above the
		Y	0.00008	0.0001			Exposure
		Z	0.00007	0.00007			Action Value

Table 1:Vibration Exposure of Machinery Operators

CONCLUSIONS

- This particular profile of VOCs is indicative of emissions from heavy machinery used in limestone mining operations and well below the exposure limits
- The (TWA) dust level ranged from 1.42-5.74 mg/m³ with Silica concentration range of 0.13 .03 mg/m³. The highest dust and Silica concentration was found to be 5.74 mg/m³ and 0.03 mg/m³ respectively, near Drill Operator or Rock Breaker which is exceeds the permissible limit for dust (3 mg/m³) and Silica (5% Weight of total Dust conc) given by Director General of Mines Safety (DGMS).
- Providing workers with appropriate respiratory protection such as N95 respirators or powered air-purifying respirators (PAPRs), along with other PPE such as goggles, gloves, and coveralls to prevent dust exposure.

REFERENCES

- Priyanka Mankar: Monitoring and Assessment of Airborne Respirable Dust and Free Silica Content in an Indian Mine Publication: J Health Pollution (June 13 2019) GOOGLE SCHOLAR
- Wang H L, Nie L, Li J, et al. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries. Chin Sci Bull, 2013, 58: 724-730.
- emissions from typical industries. Chin Sci Bull, 2013, 58: 724-730.
 Amit Kumar, Deepak Singh, Krishan Kumar, Braj Bihari Singh, Vinod Kumar Jain, Distribution of VOCs in urban and rural atmospheres of subtropical India: Temporal variation, source attribution,
- ratios, OFP and risk assessment, Science of The Total Environment.
 Dharas, Nandi S. Assessment of silica dust exposure profile in relation to prevalence of silicosis among Indian sandstone workers: Need for review of standards.
- Indian Minerals, Yearbook 2020 (Part-III: Mineral Reviews), Edition: 59, Limestone & Other Calcareous Materials (Advance Release). Priyanka Mankar: Monitoring and Assessment of Airborne Respirable Dust and Free Silica Content in an Indian Mine Publication: J Health Pollution (June 13 2019) 7. Wang H L, Nie L, Li J, et al. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries. Chin Sci Bull, 2013, 58: 724–730
- Amit Kumar, Deepak Singh, Krishan Kumar, Braj Bihari Singh, Vinod Kumar Jain, Distribution of VOCs in urban and rural atmospheres of subtropical India: Temporal variation, source attribution, ratios, OFP and risk assessment, Science of The Total Environment, Volumes 613–614,2018, Pages 492-501, ISSN 0048- 9697.