Greedy

Huffman coding.

Coreman section 16.3

Divide and Conquer

Local Minimal: The local minimal of a sequence

$$P_1, P_2, P_3, \ldots, P_n$$

is P_i such that

- _{1.} 1 < i < n
- 2. $P_{i-1} > P_i$ and $P_i < P_{i+1}$

Input:

- 1. An integer, $n \ge 3$ representing the number of coins.
- 2. A sequence

$$P_1, P_2, P_3, \ldots, P_n$$

Here, $P_1 > P_2 \& P_n > P_{n-1}$

NB: this condition ensures that there is always a local minimal.

Output:

A local minimal of the sequence.

Solution:

Similar to: https://drive.google.com/open?id=0By-BfovJ3XAWVXF6OUMwb0hyVG8

Online - 3

Dynamic Programming

Input:

- 3. An integer, n representing the number of coins.
- 4. A sequence

$$P_1, P_2, P_3, \ldots, P_n$$

Here P_i = probability of getting head if i-th coin is flipped.

5. An integer, k <= n

Output:

- 1. The probability of getting exactly k heads if all the coins are flipped.
- 2. Print the DP table.

NB: the problem must be solved using bottom up approach.

Solution:

Recurrence relation: [see from offline folder]

T(n, k) = Probability if n th coin gives head + Probability if n th coin does not give head

$$= P_n * T (n - 1, k - 1) + (1 - P_n) * T(n - 1, k)$$

Base Cases:

- 1. T(n, n)
- 2. T(n, 0)

Code: http://ideone.com/ylt19F

Running Time: O(nk)

Branch & Bound

Input:

- 1. An integer, n, the number of processors
- 2. An array of times taken by some processes

$$A_1, A_2, A_3, \ldots, A_n$$

Where Ai = time taken by i-th process

Output:

1. Output according to the greedy algorithm.

Solution:

[see greedy algorithm from offline – 4 folder]

Graph

Input:

- 1. An undirected unweighted graph
- 2. A node, u

Output:

- 1. Whether it has a spanning tree
- 2. Shortest path from the node u to all the other vertices.

Solution:

See the "online 5" folder.