

TOKYO 2020

메달 개수에 따른 순위예측 모델 & 정보입력시 해당 팀명 출력 모델

멋쟁이사자처럼 13회차 **전 예슬**

2 1 3 CONTENTS

도쿄 올림픽 2020 EDA

- 데이터 개요
- 선수 분석
- 메달분석
- 참가자 성별 분석

데이터 전처리

- 데이터 라벨링

머신러닝 모델 만들기

- (1) 메달 개수에 따른 순위예측 모델
 - 기본모델(KNN모델) 성능개선
 - 여러가지 모델 비교
- (2) 정보입력시 해당 팀명 출력 모델
 - 기본모델(KNN모델) 만들기

도쿄올림띡 EDA

도쿄올림픽EDA 데이터개요

: 2021(2020) 도쿄 올림픽에 참가하는 743개 팀과 함께 47개 종목의 11,000명이 넘는 선수의 세부 정보를 담고 있다.

데이터 정보확인

```
athlete.info(), gender.info(), medal.info()
```

컬럼 정보 및 결측치 확인

데이터요약표

	column 정보	column 수	data type	결측치
선수	선수이름,나라,출전종목	3 column	object(문자열)	X
메달	출전종목,성별(남,여,합계)	7 column	object(문자열), int(정수형)	X
성별	순위,나라,메달개수 (금,은,동,합계)	4 column	object(문자열), int(정수형)	X

1 3

세 데이터 모두 결측치가 없으며, 선수 데이터는 모든 column이 문자열로 이루어졌었다.
 메달과 성별 데이터는 종목/팀 column을 제외 모두 정수형으로 이루어져 있음.

도쿄올림픽EDA 선수분석

x = athlete.NOC.value_counts()

px.bar(x[:20], title="나라별 참가자수 상위 20")

나라별 참가자수 상위 20

- 미국,일본,호주 순으로 많은 선수가 참가하였다.
- 참가자 상위20위 안에 일본을 제외한 아시아 국가는 없다.

도쿄올림픽 EDA **메달분석**

- 올림픽 랭크 순위대로 금메달이 많다.
- 올림픽 랭크는 전체 메달 수와 무관하다.

도쿄*올*림픽 EDA **메달분석**

px.bar(medal[:20], x="Team/NOC", y="Total", color="Silver", title="상위 20개국의 전체 메달 및 은메달 비율 ")

상위 20개국의 전체 메달 및 은메달 비율

px.bar(medal[:20], x="Team/NOC", y="Total", color="Bronze", title="상위 20개국의 전체 메달 및 동메달 비율 ")

상위 20개국의 전체 메달 및 동메달 비율

● 올림픽 랭크 순위는 **은메달 동메달 비율과 무관**하다.

2 1 3

도쿄올림픽 EDA 성별분석

sns.Implot(x='Female', y='Male', data=gender, size=7) plt.title("남성참가자와 여성참가자의 수의 따른 그래프", fontsize=15) plt.show()

400

Female

1000

● 남성참가자와 여성참가자의 수는 대등하다.

600

Male

200

400

- 400명 이상 참가하는 종목은 거의 없다.
- 종목별로 여성 참가자는 [100명 이하 참가자] 남성 참가자는 [약70명 이하] 참가자가 가장 많다.

1 3

도쿄올림픽 EDA 성별분석

여성은 전종목에 참여하였지만, 남성은 두 종목의 경기([Artistic Swimming], [Rhythmic Gymnastics])에 참가하지 않았다.
 대부분 종목에서 남성의 비율이 절반(50%) 이상이다. 그 중 가장 많은 비율의 남성이 참가한 종목은 [Wrestling]이다.

2 1 3

도쿄올림픽EDA 성별분석

[성별 비율] 새로운 column 추가

```
gender["Female(%)"] = gender['Female'] / gender['Total'] * 100
gender["Male(%)"] = gender['Male'] / gender['Total'] * 100
gender.head()
```

[여성>남성]데이터추출

```
gender_2 = gender.loc[(gender.Female > gender.Male), :]
gender_2
```

	Discipline	Female	Male	Total	Female(%)	Male(%)
3	Artistic Swimming	105	0	105	100.000000	0.000000
12	Cycling BMX Freestyle	10	9	19	52.631579	47.368421
17	Diving	72	71	143	50.349650	49.650350
28	Rhythmic Gymnastics	96	0	96	100.000000	0.000000

종목별 참가자

- 전체 46종목중 **여성** 참가자가 **더 많은 종목은 4종목**이다.
- 그중 [Artistic Swimming]과 [Rhythmic Gymnastics]는 여성 참가자만 있다.

2 1 3

데이터전처리

___ 데이터 전처리 **데이터 라벨링**

[나라명 라벨링] 새로운 컬럼 추가

```
ex_x = LabelEncoder()
medal['Team/NOC_Ibl'] = ex_x.fit_transform(medal['Team/NOC'])
medal
```

	Rank	Team/NOC	Gold	Silver	Bronze	Total	Rank by Total	Team/NOC_lbl
0	1	United States of America	39	41	33	113	1	90
1	2	People's Republic of China	38	32	18	88	2	64
2	3	Japan	27	14	17	58	5	45
3	4	Great Britain	22	21	22	65	4	33
4	5	ROC	20	28	23	71	3	70
88	86	Ghana	0	0	1	1	77	32
89	86	Grenada	О	0	1	1	77	35
90	86	Kuwait	О	0	1	1	77	50
91	86	Republic of Moldova	О	0	1	1	77	72
92	86	Syrian Arab Republic	0	0	1	1	77	83

1 3

- 범주형 column(나라명)을 수치형column(나라명 라벨링) 으로 변경
- 두 번째 모델(정보입력시 해당 팀명 출력 모델)의 정확도를 높이기 위함

머신러닝모델 (1) 메달 개수에 따른 순위예측 모델

- 기본모델(KNN모델) 만들기

1.데이터 나누기

```
sel = ['Gold', "Silver", "Bronze"]

X_n = medal[sel]
y_n = medal['Rank']

X_n_train, X_n_test, y_n_train, y_n_test = train_test_split(X_n,y_n, random_state=1)
```

2. KNN 모델 학습

```
knn = KNeighborsClassifier()
knn.fit(X_n_train,y_n_train)
```

3. KNN 모델 적합도(결정계수) 구하기

```
knn_tr = knn.score(X_n_train, y_n_train)
knn_test = knn.score(X_n_test, y_n_test)
```

```
print("훈련 데이터셋 적합도 : {:.2f}".format(knn_tr))
print("테스트 데이터 셋 적합도도 : {:.2f}".format(knn_test))
```

훈련 데이터셋 적합도 : 0.41 테스트 데이터 셋 적합도도 : 0.25

머신러닝모델 **기본모델(KNN모델) 성능 개선**

-k값에 따른 적합도 구하기

```
tr_knn = []
test_knn = []
k_nums = range(1,22,2)

for n in k_nums:
    knn = KNeighborsClassifier(n_neighbors=n)
    knn.fit(X_n_train,y_n_train)

    knn_tr = knn.score(X_n_train, y_n_train)
    knn_test = knn.score(X_n_test, y_n_test)

    tr_knn.append(knn_tr)
    test_knn.append(knn_test)

print("k :", n)
    print("학습용셋 적합도 : {:.3f}".format(knn_tr))
    print("테스트용 셋 적합도 : {:.3f}".format(knn_test))
```

		train_score	test_score
	1	1.000000	0.416667
	3	0.463768	0.291667
П	5	0.405797	0.250000
	7	0.376812	0.250000
	9	0.246377	0.208333
	11	0.188406	0.208333
	13	0.159420	0.208333
	15	0.159420	0.208333
	17	0.086957	0.041667
	19	0.086957	0.041667
	21	0.086957	0.041667

1 3

train 적합도는 k=1일때 가장 높지만, test 셋과의 **적합도 차이가 많이**나므로 **과적합됨**을 알 수 있다. 따라서, k=3일 때 가장 높은 적합도를 보이므로 **k=3을 채택**한다.

머신러닝모델 기본모델(KNN모델) 성능 개선

기본 모델 적합도 훈련 데이터셋 적합도: 0.41 테스트 데이터셋 적합도: 0.25

-test_size에 따른 적합도 구하기

```
for i in range(1,6,1):
    X_n_train, X_n_test, y_n_train, y_n_test = train_test_split(X_n,y_n, test_size=(i/10), random_state=3)
    knn = KNeighborsClassifier(n_neighbors=1).fit(X_n_train,y_n_train)
    tr_score = knn.score(X_n_train,y_n_train)
    test_score = knn.score(X_n_test,y_n_test)
    print("학습용: {}, 테스트용: {}".format(10-i, i))
    print("학습용: {:.3f}, 테스트용: {:.3f}m ".format(tr_score, test_score))

학습용: 9, 테스트용: 1
    학습용: 1.000, 테스트용: 0.500

학습용: 8, 테스트용: 2
    학습용: 7, 테스트용: 3
    학습용: 7, 테스트용: 3
    학습용: 7, 테스트용: 3
```

학습용: 1,000, 테스트용: 0.395

학습용 : 1,000, 테스트용 : 0,362

학습용 : 6, 테스트용 : 4

학습용 : 5, 테스트용 : 5

- total feature 추가

```
sel_t = ['Gold', "Silver", "Bronze" ,"Total"]

X_t = medal[sel_t]
y_t = medal['Rank']

X_t_train, X_t_test, y_t_train,|
y_t_test=train_test_split(X_t,y_t,random_state=1)
```

```
print("훈련 데이터셋 적합도 : {:.2f}".format(knn_t_tr))
print("테스트 데이터 셋 적합도 : {:.2f}".format(knn_t_test))
```

훈련 데이터셋 적합도 : 0.41 테스트 데이터 셋 적합도 : 0.29

test_size와 관계없이 학습용 셋의 적합도는 변화가 없으므로 테스트용 셋 적합도가 가장 높은 **8:2 비율**을 채택한다. total(전체메달수)를 feature에 추가함으로서 성능이 약간 향상됨을 알 수 있다.

머신러닝모델 기본모델(KNN모델) 성능 개선

-가중치 값을 통한 성능개선

```
medal['Gold_1000'] = medal['Gold'] * 1000
medal['Silver_100'] = medal['Silver'] * 100
medal['Bronze_10'] = medal['Bronze'] * 10
```

Gold X 1000, Silver X 100, Bronze X 10 각 각 가중치를 두어 새로운 colmn 생성

- 가중치 값 조절 후 적합도

```
knn_1000_tr = knn_1000.score(X_1000_train, y_1000_train)
knn_1000_test = knn_1000.score(X_1000_test, y_1000_test)
```

```
print("훈련 데이터셋 적합도 : {:.2f}".format(knn_1000_tr))
print("테스트 데이터 셋 적합도 : {:.2f}".format(knn_1000_test))
```

훈련 데이터셋 적합도 : 0.41 테스트 데이터 셋 적합도 : 0.25

1 3

가중치 값과 무관하게 이전 기본모델과 적합도가 같음. 따라서 **가중치값에 따른 성능개선이 되지 않음**.

머신러닝모델 **다양한모델비교**

KNeighborsClassifier, LogisticRegression, LinearSVC, RandomForestClassifier, DecisionTreeClassifier, GradientBoostingClassifier 모델

	모델	적합도	오차	MSE
0	KNN 모델	0.7	0.300000	29.7
1	Logistic 모델	0.2	0.378313	314.9
2	SVC 모델	0.5	-0.078313	151.9
3	RF 모델	0.7	0.300000	1.8
4	D.tree모델	0.7	0.300000	56.3
5	Gradient 모델	0.7	0.300000	18.2

1 3

logistic 모델과 SVC 모델을 제외한 모든 모델들의 적합도도가 0.7로 가장 높았다. MSE가 가장 낮게 나온 모델은 RandomForestClassifier 모델로 수치는 1.8이다. 따라서, 가장 최적의 모델은 RandomForestClassifier이다.

머신러닝모델 (2) 정보입력시 해당 팀명 출력 모델

금,은,동 메달 개수입력 시 해당 나라명 출력하는 모델

1. 데이터 나누기

2. 데이터 입력받기

```
print("금,은,동메달의 개수를 입력하세요")
a, b, c = input().split()
inp_value = [a,b,c]
```

3. 데이터 출력

```
pred = model.predict([inp_value])
pred[0]
```

4. loc를 통해 해당 출력받은 데이터와 일치하는 나라명 출력

```
sel_medal = medal.loc[medal['Team/NOC_lbl'] == pred[0], "Team/NOC"]
print("예측 나라는 :", sel_medal.values)
예측 나라는 : ['Botswana']
```


도쿄올림픽 대부분 출전국가는 유럽 및 아메리카이며, 선수 성비는 남자 가 약간 우세하다. 또한 여성은 올림 픽 전종목에 출전하였다.

최적의 모델의 위한 K값은 3이며, 학습용과 테스트용셋의 최적 비율은 8:2이다. 대부분 모델이 정확도가 비슷하지만 R/F모델 이 mse가 가장 낮아 최적모델이다.

- EDA : 지도 시각화 및 가설설정하여 심도있는 분석 진행

- 머신러닝 : feature 추가를 통한 성

능개선 및 추가 모델 비교

파이썬 라이브러리를 활용하여 데이터를 분석 하면서 그간 배웠던 내용을 복습할 수 있었다. 또한 머신러닝 모델을 만들고 성능개선 및 비교 를 통해 ML 기본에 대해 이해할 수 있었다.

멋쟁이사자처럼 13회차 **전 예슬**