PH126 Logic I Lecture 14

Lecturer: s.butterfill@warwick.ac.uk

"Every time I go to the dentist, somebody dies."

 $\forall t ((Time(t) \land ToDentist(a,t)) \rightarrow \exists x (Person(x) \land DiesAt(x,t)))$

Truth-functional completeness (LPL §7.4)

Preliminary: How many truth-functions can be constructed using 2 sentence letters?

Р	Q	P % Q
T	T	? 📉
T	F	? Each of these
F	Т	? can be T or F
F	F	? 🖍

Truth-functional completeness: For any truth function, we can easily find a logically equivalent one using only \neg , \lor , \land

Better: 'A set of truth-functors is said to be *expressively adequate* (or sometimes *functionally complete*) iff, for every truth-function whatever, there is a formula containing only those truth-functors which express that truth-function, i.e. which has as its truth-table the truth-table specifying that function.' (Bostock, *Intermediate L'gic* p. 45)

Illustration of how the proof that $\{\neg, \land, \lor \text{ is truth-functionally complete}\}$:

$$\begin{array}{c|cccc} P & Q & P \rightarrow Q \\ \hline T & T & T & [P \land Q] \lor \\ T & F & F & F \\ \hline F & T & T & [\neg P \land Q] \lor \\ F & F & T & [\neg P \land \neg Q] \end{array}$$

$$[P \land Q] \lor [\neg P \land Q] \lor [\neg P \land \neg Q]$$

Exercise assuming $\{\neg, \lor, \land\}$ is truth-functionally complete, show that $\{\neg, \lor\}$ is?

Quantifier equivalences

P→Q = |
$$\models \neg Q \rightarrow \neg P$$

 $\forall x \text{ (Square(x) } \rightarrow \text{ Broken(x))}$
= | $\models \forall x \text{ (} \neg \text{Broken(x) } \rightarrow \neg \text{Square(x))}$

$$P \rightarrow Q = | \neg P \lor Q$$

 $\forall x (Square(x) \rightarrow Broken(x))$
 $= | \neg P \lor Q$
 $\forall x (\neg Square(x) \lor Broken(x))$

$$\exists x \neg Created(x) \neq \mid \exists x \neg Created(x)$$
Hybrid example

Every object is either non-square or broken ∀x (¬Square(x) ∨ Broken(x))

Variables

Names: a, b, c, ...

Variables: x, y, z, w, ...

Variables are for saying several things about one thing even without specifying which thing

Optional extra proofs

Some not all are valid. Prove the valid ones, give counterexamples for the non-valid.

1.
$$\exists x \forall y R(x,y) \models \forall y \exists x R(x,y)$$

2. $\forall x \neg F(x) \models \neg \exists x F(x)$
3. $\neg \exists x F(x) \models \forall x \neg F(x)$
4. $\forall x F(x) \mid \forall x G(x) \models \forall x (Fx \lor Gx)$
5. $\forall x (Fx \lor Gx) \models \forall x F(x) \mid \forall x G(x)$
6. $\forall x F(x) \lor \exists y F(y) \models \exists y \forall x (F(x) \lor F(y))$
7. $\forall x (F(x) \leftrightarrow x=a), \forall x (G(x) \leftrightarrow x=b) \models a=b \leftrightarrow G(a)$
8. $\exists y \forall x (F(x) \leftrightarrow x=y) \models (F(a) \land F(b) \rightarrow a=b)$