Generalized linear model

Contents

- 1. Learning targets and the need for GLMs
- 2. Specification of the GLM
- 3. Model selection and diagnostics

Learning targets

- Explaining and applying generalized linear models
- Describe the specifics of GLMs regarding model selection and model assumptions

Learning targets and study questions

- Explaining and applying generalized linear models
 - When should you use a GLM?
 - Outline differences in the model structure between a simple linear model and a GLM.
 - Describe typical error distribution and link functions that you would use for modeling a) species abundances and b) fraction of surviving organisms.
- Describe the specifics of GLMs regarding model selection and model assumptions
 - Describe the methods that can be used for model selection and specifics for GLMs.
 - Which types of model diagnostics are required for a GLM, and which of these are particular for this class of models?

Extending the linear model: Motivation

 Linear model assumes linear relationship between explanatory variable(s) and response variable as well as a constant variance

 For ecological data, the relationship with response variable is often not linear and variance not constant

Extending the linear model: Motivation

<u>Example:</u> Accelerating loss in ecosystem functioning with increasing toxicity

Extending the linear model: Motivation

• Example: Increasing variability in number of offsprings with increasing body size of individuals

Modelling the mean-variance relationship

Model extension: Variance can be expressed as a function of the mean!

Generalised linear models (GLMs)

Models non-constant error variance by expressing the variance as a function of the mean and introduces non-normal error distribution (residuals)

Parameters in logistic regression

Simple linear regression vs. logit model

Parameters of logit model: $b_0 = -15.9$, $b_1 = +0.72$

Which x relates to p = 0.5?

$$\log\left(\frac{0.5}{1-0.5}\right) = -15.9 + 0.72 x$$

$$\Leftrightarrow \log(1) = -15.9 + 0.72 x$$

$$\Leftrightarrow 0 + 15.9 = 0.72 x$$

$$\Leftrightarrow \frac{15.9}{0.72} = x \Rightarrow x = 22.1$$

Calculate p = 0.1 and p = 0.9

Generalized linear model

Contents

- 1. Learning targets and the need for GLMs
- 2. Specification of the GLM
- 3. Model selection and diagnostics

Comparison of LM and GLM

Simple linear model:
$$y = b_0 + b_1 x + error$$

Generalised linear model:

- 1. Linear predictor: $\eta = b_0 + b_1 x$
- 2. Link function: $g(\mu) = \eta$ with $E(Y) = \mu$
- 3. Error distribution of response: $var(\mathbf{Y}) = \phi V(\mathbf{\mu})$

Error distribution with related variance function and typical link function

Family (error structure)	Link	Variance function
normal poisson	$ \eta = \mu \eta = \log \mu $	$\frac{1}{\mu}$
binomial	$\eta = \log(\mu/(n-\mu))$	$\mu(n-\mu)$
Gamma inverse. gaussian	$ \eta = \mu^{-1} \eta = \mu^{-2} $	$\mu^2 \atop \mu^3$

Data type and GLM specification

Response variable	Error distribution	Canonical link function	Alternative link functions
Continuous positive and negative values	Gaussian/Normal	Identity	Log, Inverse
Counts	Poisson	Log	Identity, Sqrt
Counts with over-dispersion	Negative Binomial, Quasi-Poisson	Log Log	As per Poisson
Proportions (no. successes/total trials)	Binomial	Logit	Probit, Cauchit, Log, Complementary Log-Log
Binary (male/female, alive/dead)	Binomial (Bernoulli)	Logit	As per Binomial
Proportions or binary with overdispersion	Quasi-Binomial	logit	As per Binomial
Time to event (germination, death)	Gamma	Inverse	Inverse, Identity, Log

Deviance: Goodness of fit for GLM

- GLMs minimize Deviance instead of Sum of Squares in simple linear regression model
- Deviance derived by maximum likelihood estimation (MLE)

Relation between error distribution, variance function $V(\mu)$ and Deviance

Family (error structure)	Deviance	Variance function
normal poisson	$\sum (y - \hat{y})^2$ $2\sum y \ln(y/\mu) - (y - \mu)$	1 μ
binomial	$2\sum y \ln(y/\mu) + (n-y) \ln(n-y)/(n-\mu)$	$\frac{\mu(n-\mu)}{n}$
Gamma inverse. gaussian	$2\sum (y-\mu)/y - \ln(y/\mu)$ $\sum (y-\mu)^2/(\mu^2 y)$	$\mu^2 \ \mu^3$
	v = observations	

= fitted values using maximum likelihood

= fitted values for y

= binomial denominator

taken from Crawley 2007: 516

13

Generalized linear model

Contents

- 1. Learning targets and the need for GLMs
- 2. Specification of the GLM
- 3. Model selection and diagnostics

Model selection for GLM

- Same methods as for multiple linear regression model
- Best subset and multi-model averaging
- Hypothesis-based stepwise model selection:
 - Wald test for individual regression coefficients
 - Log-likelihood ratio test for complete model comparison
- Information-theoretic stepwise model selection (e.g. AIC, corrected AIC, BIC)
- Post-selection shrinkage and LASSO

GLM assumptions and diagnostics

Assumptions

- Independence of observations
 - Temporal- or spatial autocorrelation: GLMMs (see Bolker 2009)
- Linear relationship between η and predictor
 (→ check with Component-residual plot)
 - Non-linearity: Use nonlinear or nonparametric (e.g. GAMs) regression (see Zuur 2007)
- No observation overly influential (graphical diagnostics and measures e.g. dfbetas, Cooks distance)
- Assumed mean-to-variance relationship matches data (no over- or underdispersion) (graphical diagnostics with q-q plot randomized quantile residuals and calculation of dispersion parameter)

Overdispersion

Fix: Use appropriate error distribution or quasi-likelihood estimation of mean-to-variance relation (e.g. quasibinomial)

Demonstration and Exercise

For the demonstration we will work with a data set on the Southern Corroboree frog. This data is contained in the DAAG package (frogs).

Research question:

Which environmental parameters have the highest explanatory power for the occurrence of the frog?

Source: ABC Natural History Unit

http://www.abc.net.au/science/scribblygum/june2004/frog.htm

Exercise:

Identify the variables with the highest explanatory power for the occurrence of the *Bradypus sp*.

