

Pianificare la numerazione di reti IP

Esempio

- Un'azienda possiede tre siti distribuiti su una grande area urbana: S1, S2, S3.
- Ciascun sito aziendale è dotato di infrastrutture informatiche comprendenti, tra l'altro, una LAN ed un router di uscita verso il mondo esterno. Tutti i siti devono essere interconnessi tra loro con una rete a maglia completa.
- I siti sono così divisi:

- S1, S2: 50 host

- S3: 20 host

 Si richiede di progettare una rete di classe C a cui viene assegnato l'indirizzo 196.200.96.0/24 comprensiva della numerazione dei router, definendo le relative netmask

Architettura

La scelta della netmask

Ultimo byte netmask	# host	# subnets
0000000	254	1
1000000	126	2
1100000	62	4
11100000	30	8
11110000	14	16
11111000	6	32
11111100	2	64

Soluzione 1

• Subnets: 196.200.96.0/26 (S1) 196.200.96.64/26 (S2) 196.200.96.128/26 (S3)

196.200.96.192/26 (M)

• Netmask: 255.255.255.192

• Broadcast: 196.200.96.63 (S1)

196.200.96.127 (S2)

196.200.96.191 (S3)

196.200.96.255 (M)

• Routers LAN: 196.200.96.62 (S1)

196.200.96.126 (S2)

196.200.96.190 (S3)

• Routers MAN: qualunque indirizzo tra:

196.200.96.193 e .254 (M)

• IP Hosts: qualunque indirizzo tra:

196.200.96.1 e .61 (S1)

196.200.96.65 e .125 (S2)

196.200.96.129 e .189 (S3)

Scelta di netmask diverse

Ultimo byte netmask	# host	# subnets
0000000	254	1
1000000	126	2
1100000	62	4
11100000	30	8
11110000	14	16
11111000	6	32
11111100	2	64

Soluzione 2

Subnet	# host	Indirizzi	Broadcast
196.200.96.0/26	62	1 – 62	63
196.200.96.64/26	62	65 – 126	127
196.200.96.128/27	30	129 – 158	159
196.200.96.160/27	30	161 – 190	191
196.200.96.192/27	30	193 – 222	223
196.200.96.224/28	14	225 – 238	239
196.200.96.240/30	2	241 – 242	243
196.200.96.244/30	2	245 – 246	247
196.200.96.248/30	2	249 – 250	251
196.200.96.252/30	2	253 – 254	255

Il protocollo ICMP

Il protocollo IP...

- offre un servizio di tipo best effort
 - non garantisce la corretta consegna dei datagrammi
 - se necessario si affida a protocolli affidabili di livello superiore (TCP)
- è comunque necessario un protocollo di controllo
 - gestione di situazioni anomale
 - notifica di errori o di irraggiungibilità della destinazione
 - scambio di informazioni sulla rete

→ ICMP (Internet Control Message Protocol)

- ICMP segnala solamente errori e malfunzionamenti, ma non esegue alcuna correzione
- ICMP non rende affidabile IP

ICMP

- Internet Control Message Protocol (RFC 792) svolge funzioni di controllo per IP
 - IP usa ICMP per la gestione di situazioni anomale, per cui ICMP offre un servizio ad IP
 - i pacchetti ICMP sono incapsulati in datagrammi IP, per cui ICMP è anche utente IP

IP header	20 - 60 byte
Message Type	1 byte
Message Code	1 byte
Checksum	2 byte
Additional Fields (optional)	variabile
Data	variabile

Type definisce il tipo di messaggio ICMP

- messaggi di errore
- messaggi di richiesta di informazioni
- Code descrive il tipo di errore e ulteriori dettagli
- Checksum controlla i bit errati nel messaggio ICMP
- Add. Fields dipendono dal tipo di messaggio ICMP
- Data intestazione e parte dei dati del datagramma che ha generato l'errore

Tipi di errori

- Destination Unreachable (Type = 3)
 - Generato da un gateway quando la sottorete o l'host non sono raggiungibili
 - Generato da un host quando si presenta un errore sull'indirizzo dell'entità di livello superiore a cui trasferire il datagramma
- Codici errore di Destination Unreachable
 - 0 = sottorete non raggiungibile
 - 1 = host non raggiungibile
 - 2 = protocollo non disponibile
 - 3 = porta non disponibile
 - 4 = frammentazione necessaria ma bit don't fragment settato

Tipi di errori

- Time Exceeded (Type = 11)
 - generato da un router quando il Time-to-Live di un datagramma si azzera ed il datagramma viene distrutto (Code = 0)
 - generato da un host quando un timer si azzera in attesa dei frammenti per riassemblare un datagramma ricevuto in parte (Code = 1)
- Source Quench (Type = 4)
 - i datagrammi arrivano troppo velocemente rispetto alla capacità di essere processati: l'host sorgente deve ridurre la velocità di trasmissione (obsoleto)
- Redirect (Type = 5)
 - generato da un router per indicare all'host sorgente un'altra strada più conveniente per raggiungere l'host destinazione

Informazioni

- Echo (Type = 8)
- Echo Reply (Type = 0)
 - l'host sorgente invia la richiesta ad un altro host o ad un gateway
 - la destinazione deve rispondere immediatamente
 - metodo usato per determinare lo stato di una rete e dei suoi host, la loro raggiungibilità e il tempo di transito nella rete

Additional Fields:

- Identifier: identifica l'insieme degli echo appartenenti allo stesso test
- Sequence Number: identifica ciascun echo nell'insieme
- Optional Data: usato per inserire eventuali dati di verifica

Informazioni

- Timestamp Request (Type = 13)
- Timestamp Reply (Type = 14)
 - l'host sorgente invia all'host destinazione un Originate Timestamp che indica l'istante in cui la richiesta è partita
 - l'host destinazione risponde inviando un
 - Receive Timestamp che indica l'istante in cui la richiesta è stata ricevuta
 - Transmit Timestamp che indica l'istante in cui la risposta è stata inviata
 - serve per valutare il tempo di transito nella rete, al netto del tempo di processamento = T_{Transmit} -T_{Receive}

Informazioni

- Address Mask Request (Type = 17)
- Address Mask Reply (Type = 18)
 inviato dall'host sorgente all'indirizzo di broadcast
 (255.255.255.255) per ottenere la subnet mask da
 usare dopo aver ottenuto il proprio indirizzo IP
 tramite RARP o BOOTP

- Router Solicitation (Type = 10)
- Router Advertisement (Type = 9)
 utilizzato per localizzare i router connessi alla rete

Applicazioni di ICMP

ping DEST

Permette di controllare se l'host DEST è raggiungibile o meno da SORG

- SORG invia a DEST un pacchetto ICMP di tipo "echo"
- Se l'host DEST è raggiungibile da SORG, DEST risponde inviando indietro un pacchetto ICMP di tipo "echo reply"

Opzioni


```
permette di specificare quanti pacchetti inviare
• -n N
               (un pacchetto al secondo)
• -1 M
               specifica la dimensione in byte di ciascun
               pacchetto
               esegue ping finché interrotto con
 Ctrl-C
               traduce l'indirizzo IP in nome DNS
               setta il bit don 't fragment a 1
               setta time-to-live = \mathbf{T}
• -w T<sub>out</sub>
               specifica un timeout in millisecondi
```

Per maggiori informazioni consultare l'help: ping /?

Comando PING – Output

L'output mostra

- la dimensione del pacchetto "echo reply"
- I' indirizzo IP di DEST
- il numero di sequenza della risposta (solo UNIX-LINUX)
- il "time-to-live" (TTL)
- il "round-trip time" (RTT)
- alcuni risultati statistici: N° pacchetti persi, MIN, MAX e media del RTT

Comando TRACEROUTE

tracert DEST

Permette di conoscere il percorso seguito dai pacchetti inviati da SORG e diretti verso DEST

- SORG invia a DEST una serie di pacchetti ICMP di tipo ECHO con un TIME-TO-LIVE (TTL) progressivo da 1 a 30 (per default)
- Ciascun nodo intermedio decrementa TTL
- Il nodo che rileva TTL = 0 invia a SORG un pacchetto ICMP di tipo
 TIME EXCEEDED
- SORG costruisce una lista dei nodi attraversati fino a DEST
- L'output mostra il TTL, il nome DNS e l'indirizzo IP dei nodi intermedi ed il ROUND-TRIP TIME (RTT)

Gestione della numerazione

- DHCP
 - Permette ad un Host di ottenere una configurazione IP
- Packet Filter
 - Permette/blocca l'invio di pacchetti da/verso determinati indirizzi
 - Protegge la rete dal traffico "vagante"
- Application Layer Gateway (ALG) / Proxy
 - Controlla la comunicazione a livello applicativo
- Firewall
 - Combinazione dei dispositivi descritti sopra
 - Protegge le risorse interne da accessi esterni
- Network Address Translator (NAT)
 - Riduce la richiesta dello spazio di indirizzamento Internet
 - Nasconde gli indirizzi IP interni
 - Esegue un packet filtering per il traffico sconosciuto

DHCP – RFC 2131,2132 Dynamic Host Configuration Protocol

Configurazione automatica e dinamica di

- Indirizzo IP
- Netmask
- Broadcast
- Host name
- Default gateway
- Server DNS

Server su porta 67 UDP

 Quando un host attiva l'interfaccia di rete, invia in modalità broadcast un messaggio DHCPDISCOVER in cerca di un server DHCP

DHCP-2

 Ciascun server DHCP presente risponde all'host con un messaggio DHCPOFFER con cui propone un indirizzo IP

• L'host accetta una delle offerte proposte dai server e manda un messaggio **DHCPREQUEST** in cui richiede la configurazione, specificando il server

• Il server DHCP risponde all'host con un messaggio **DHCPACK** specificando i parametri di configurazione

Ulteriori dettagli

- Un' analisi dettagliata del protocollo DHCP che include:
 - Esempi operativi
 - Catture di traffico
- Si può trovare alla seguente pagina web http://deisnet.deis.unibo.it/DHCP

Packet Filter e Firewall

Metodologie di filtraggio dei datagrammi

- Protocollo (TCP, UDP, ICMP)
- Porta sorgente e destinazione
- Direzione del traffico

Può essere configurato dinamicamente

Instradamento selettivo: packet filter

Stateful Packet Inspection

Application Layer Gateway (Proxy)

Application Layer Gateway (Proxy)

Firewall

- Packet Filter: filtra i pacchetti seguendo la politiche stabilite
 - Filtri: generalmente configurati staticamente
 - La maggioranza delle configurazioni non permettono pacchetti per porte "non-standard" (Internet Assigned Numbers Authority IANA)
- Stateful Packet Inspection
 - Mantiene il contesto dei pacchetti sia nel trasporto che nello strato applicativo
 - Adatta dinamicamente le specifiche dei filtri
- Application Layer Gateway (trasparente o proxy esplicito)
 - Monitora le connessioni: analizza il contenuto dei protocolli applicativi
 - · A scapito della sicurezza di comunicazione end-to-end
 - Adatta dinamicamente le specifiche dei filtri
- Per ogni strato (layer) dello stack possono essere applicate politiche (policies) differenti

Protezione di host: firewall

- Un firewall è un filtro software/hardware che serve a proteggersi da accessi indesiderati provenienti dall' esterno della rete
- Può essere semplicemente un programma installato sul proprio PC che protegge quest' ultimo da attacchi esterni
 - tipicamente usato in accessi domestici a larga banda (ADSL, FTTH)

 Oppure può essere una macchina dedicata che filtra tutto il traffico da e per una rete locale

- Tutto il traffico fra la rete locale ed Internet deve essere filtrato dal firewall
- Solo il traffico autorizzato deve attraversare il firewall
- Si deve comunque permettere che i servizi di rete ritenuti necessari siano mantenuti
- Il firewall deve essere per quanto possibile immune da problemi di sicurezza sull' host
- In fase di configurazione di un firewall, per prima cosa si deve decidere la politica di default per i servizi di rete
 - default deny: tutti servizi non esplicitamente permessi sono negati
 - default permit: tutti i servizi non esplicitamente negati sono permessi

- Un firewall può essere implementato come
 - packet filter
 - proxy server
 - application gateway
 - · circuit-level gateway

Packet filter

- si interpone un router fra la rete locale ed Internet
- sul router si configura un filtro sui datagrammi IP da trasferire attraverso le varie interfacce
- il filtro scarta i datagrammi sulla base di
 - · indirizzo IP sorgente o destinazione
 - · tipo di servizio a cui il datagramma è destinato (porta TCP/UDP)
 - · interfaccia di provenienza o destinazione

Proxy server

- nella rete protetta l'accesso ad Internet è consentito solo ad alcuni host
- si interpone un server apposito detto proxy server per realizzare la comunicazione per tutti gli host
- il proxy server evita un flusso diretto di datagrammi fra Internet e le macchine della rete locale

- application level

 viene impiegato un proxy server dedicato per ogni servizio che si vuole garantire

- circuit level gateway

• è un proxy server generico in grado di inoltrare le richieste relative a molti servizi

Configurazione di packet filter e

Network Address Translation

Prof. Franco Callegati
DEIS Università di Bologna
http://deisnet.deis.unibo.it

Network Address Translation (NAT)

- Tecnica per il filtraggio di pacchetti IP con sostituzione degli indirizzi (mascheramento)
 - Indirizzi e porte
- Definito nella RFC 3022 per permettere a reti IP private
 l'accesso a reti IP pubbliche tramite un apposito gateway
- Utile per il risparmio di indirizzi IP pubblici e il riutilizzo di indirizzi IP privati

- Efficiente uso della spazio degli indirizzi
- Condividere uno o pochi indirizzi
- Uso di indirizzi privati nella LAN locale (10.x.x.x, 192.168.x.x, ...)
- Security
 - Rendere gli host interni non accessibili dall' esterno
 - Nascondere gli indirizzi e la struttura della rete
- Include un packet filter, stateful packet inspection configurati dinamicamente

Network (+Port) Address Translator (NAT)

Basic NAT – Conversione di indirizzo

- Il NAT può fornire una semplice conversione di indirizzo IP (statica o dinamica)
- Conversioni contemporanee limitate dal numero di indirizzi IP pubblici a disposizione del gateway NAT

Conversione di indirizzo e porta

- Il NAT può fornire anche conversione di indirizzo IP e porta TCP o UDP
- Conversioni contemporanee possibili anche con un unico indirizzo IP pubblico del gateway NAT

Direzione delle connessioni

- Tipicamente da rete privata verso rete pubblica
 - Il NAT si preoccupa di effettuare la conversione inversa quando arrivano le risposte
 - Registra le corrispondenze in corso in una tabella
- E' possibile contattare dalla rete pubblica un host sulla rete privata?
 - Dipende dal tipo di NAT e dalla relativa configurazione

Port forwarding

• Il NAT permette l'ingresso di pacchetti destinati a porte specifiche effettuando la traduzione opportuna

Analisi di connessioni attraverso NAT

@ NA	r-int.cap - E	thereal				_ U ×
File	Edit Car	oture <u>D</u> isplay <u>T</u> ools				Help —
No	Time	Source	Destination	Protocol	Info	
1	0.000000	192.168.10.174	137.204.24.12	HTTP	GET /Ingegneria+Cesena/default.htm HTTP/1.	
2	0.034608	3 137.204.24.12	192.168.10.174	TCP	80 > 3770 [ACK] Seq=3665385073 Ack=46511275	Win=1
3	0.89681	5 137.204.24.12	192.168.10.174	HTTP	HTTP/1.1 200 OK	L
4	0.896908	3 137.204.24.12	192.168.10.174	HTTP	Continuation	
		3 192.168.10.174	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665387993	Win=6
6	0.899848	3 137.204.24.12	192.168.10.174	HTTP	Continuation	
7	0.899971	L 137.204.24.12	192.168.10.174	HTTP	Continuation	
8	0.90009	5 137.204.24.12	192.168.10.174	HTTP	Continuation	
		3 192.168.10.174	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665389453	
		5 192.168.10.174	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665392373	Win=6
		5 137.204.24.12	192.168.10.174	HTTP	Continuation	
12	0.902798	3 137.204.24.12	192.168.10.174	HTTP	Continuation	
		L 137.204.24.12	192.168.10.174	HTTP	Continuation	
		5 137.204.24.12	192.168.10.174	HTTP	Continuation	
		3 137.204.24.12	192.168.10.174	HTTP	Continuation	
		5 192.168.10.174	137.204.24.12	HTTP	GET /NR/Custom/web/Common/css/stile_main.c	
		3 192.168.10.174	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665393833	
		192.168.10.174	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665396753	
		2 192.168.10.174	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665398213	
•	0.905643	3 192.168.10.174	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665399673	Win=6∫7

Analisi di connessioni attraverso NAT

@ NAT	-ext.cap - Et	hereal			<u> </u>	N
File	Edit Capt	ture <u>Di</u> splay <u>T</u> ool	s		He —	lр
No	Time	Source	Destination	Protocol	Info	A
1	0.000000	137.204.57.76	137.204.24.12	HTTP	GET /Ingegneria+Cesena/default.htm HTTP/1.	
2	0.034559	137.204.24.12	137.204.57.76	TCP	80 > 3770 [ACK] Seq=3665385073 Ack=46511275 win=1128	
3	0.896736	137.204.24.12	137.204.57.76	HTTP	HTTP/1.1 200 OK	ш
4	0.896859	137.204.24.12	137.204.57.76	HTTP	Continuation	
5	0.898045	137.204.57.76	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665387993 win=6424	
		137.204.24.12	137.204.57.76	HTTP	Continuation	
		137.204.24.12	137.204.57.76	HTTP	Continuation	
		137.204.24.12	137.204.57.76	HTTP	Continuation	
		137.204.57.76	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665389453 win=6424	
		137.204.57.76	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665392373 win=6424	4
		137.204.24.12	137.204.57.76	HTTP	Continuation	
		137.204.24.12	137.204.57.76	HTTP	Continuation	
		137.204.24.12	137.204.57.76	HTTP	Continuation	
		137.204.24.12	137.204.57.76	HTTP	Continuation	
		137.204.24.12	137.204.57.76	HTTP	Continuation	
		137.204.57.76	137.204.24.12	HTTP	GET /NR/Custom/web/Common/css/stile_main.c	
		137.204.57.76	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665393833 Win=6424	
		137.204.57.76	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665396753 Win=6424	
		137.204.57.76	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665398213 win=6424	
] 20	0.905619	137.204.57.76	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665399673 win=6424	IJZ.

- Il NAT è trasparente per l'applicazione
 - Modifica l'intestazione IP e TCP/UDP ma non il payload
- Questo è un problema in alcuni casi specifici
 - Applicazioni non sono trasparenti al NAT
 - · Contengono indirizzi IP e numeri di porta nel payload
 - · FTP utilizza due connessioni parallele
 - connessione per l'interazione con il server tramite linea di comando (porta TCP 21)
 - connessione per il trasferimento dei dati da e verso il server
 - i parametri della seconda sono specificati nei dati trasmessi dalla prima
 - Il tipo di traffico permesso dipende dal tipo di NAT
 - · Full Cone NAT
 - · (Port) Restricted Cone NAT
 - Symmetric NAT

IPv6

Prof. Franco Callegati
DEIS Università di Bologna
http://deisnet.deis.unibo.it

Problematiche dell'indirizzamento IP

- Mobilità
 - Indirizzi riferiti alla rete di appartenenza
 - Se un host viene spostato in un' altra rete, il suo indirizzo IP deve cambiare
 - Configurazione automatica con DHCP
 - Mobile IP
- Sicurezza
 - Scarsa protezione del datagramma IP (intestazione in chiaro)
 - IPSec applicabile anche a IPv4
- Dimensioni delle reti prefissate
 - Subnetting e CIDR
- Data l'enorme diffusione di Internet, il numero di indirizzi possibili è troppo basso
 - Reti IP private NAT

IPv6

- Stanti i problemi dell' IPv4 attualmente in uso si è lavorato su una nuova versione con i seguenti obiettivi
 - Supportare molti miliardi di host
 - Semplificare il routing
 - Offrire meccanismi di sicurezza
 - Offrire qualità di servizio (multimedialità)
 - Gestire bene multicast e broadcast
 - Consentire la mobilità
 - Fare tutto questo consentendo future evoluzioni e garantendo compatibilità col passato