

Exact Solutions > Functional Equations > Linear Difference and Functional Equations with One Independent Variable > Second-Order Constant-Coefficient Linear Nonhomogeneous Difference Equation

4. y(x+2) + ay(x+1) + by(x) = f(x).

Second-order constant-coefficient linear nonhomogeneous difference equation.

1°. Solution:

$$y(x) = Y(x) + \bar{y}(x),$$

where Y(x) is the general solution of the corresponding homogeneous equation Y(x+2)aY(x+1)+bY(x)=0 (see the preceding equation), and $\bar{y}(x)$ is any particular solution of the nonhomogeneous equation.

2°. If $f(x) = \sum_{k=0}^{n} A_k x^k$ and $a+b+1 \neq 1$, the nonhomogeneous equation has a particular solution

 $\bar{y}(x) = \sum_{k=0}^{n} B_k x^n$, where the constants B_k are found by the method of undetermined coefficients.

3°. If $f(x) = \sum_{k=1}^{n} A_k \exp(\lambda_k x)$, the nonhomogeneous equation has a particular solution $\bar{y}(x) =$

 $\sum_{k=1}^{n} B_k \exp(\lambda_k x)$, where the constants B_k are found by the method of undetermined coefficients.

 4° . If $f(x) = \sum_{k=1}^{n} A_k \cos(\lambda_k x)$, the nonhomogeneous equation has a particular solution $\bar{y}(x) =$

 $\sum_{k=1}^{n} B_k \cos(\lambda_k x) + \sum_{k=1}^{n} D_k \sin(\lambda_k x),$ where the constants B_k and D_k are found by the method of undetermined coefficients.

5°. If $f(x) = \sum_{k=1}^{n} A_k \sin(\lambda_k x)$, the nonhomogeneous equation has a particular solution $\bar{y}(x) =$

 $\sum_{k=1}^{n} B_k \cos(\lambda_k x) + \sum_{k=1}^{n} D_k \sin(\lambda_k x),$ where the constants B_k and D_k are found by the method of undetermined coefficients.

Reference

Kuczma, M., Functional Equations in a Single Variable, Polish Scientific Publishers, 1968.

Mirolyubov, A. A., and Soldatov, M. A., Linear Nonhomogeneous Difference Equations [in Russian], Nauka, Moscow, 1986.

Polyanin, A. D. and Manzhirov, A. V., Handbook of Integral Equations: Exact Solutions (Supplement. Some Functional Equations) [in Russian], Faktorial, Moscow, 1998.

2nd-Order Constant-Coefficient Linear Difference Equation 2