

### Feature Learning-based Knowledge Distillation to train Teacher and Student Networks

Akshat Maithani (21UCC014)Akshay Anand(21UCC015)

Patel Het Manojkumar (21UCC125)

Supervisor: Dr Upendra Pratap Singh

The LNM Institute Of Information Technology Jaipur



**Datasets** 

- 1 Introduction
- 2 Motivation
- 3 Mathematical Modeling
- 4 Literature Survey
- 6 Data Preprocessing
- Results
- References



#### Introduction

Feature Learning-based Knowledge Distillation to train Teacher and Student Networks

Feature Learning-based Knowledge Distillation to train Teacher and Student Networks

Akshat Maithani (21UCC014) Akshay Anand(21UCC015 Patel Het Manojkumar (21UCC125) Supervisor: Dr Upendra Pratap Singh

Introduction

Motivation

Motivatio

Mathematica Modeling

Literature Surve

Datase

Data

Deep learning models are often too large for resource-limited devices. Knowledge distillation addresses this by training a smaller model(student) with insights from a larger model(teacher). [1]



Figure: Model Distillation Architecture [2]



#### Motivation

Why Knowledge Distillation?

Feature Learning-based Knowledge Distillation to train Teacher and Student Networks

Akshat Maithan (21UCC014) Akshay Anand(21UCC01! Patel Het Manojkumar (21UCC125) Supervisor: Dr

Introductio Motivation

Mathematical

Literature Surve

Datase

Literature Surve

■ Enhance the efficiency and deployment of models.

■ Facilitate integration with other technologies.

To enable the execution of models in environments with limited computational resources.

Data



Feature

### Mathematical Modeling

Formal Definition of KD

Learning-based Knowledge Distillation to train Teacher and Student Networks Akshat Maithani (21UCC014) Akshay Anand(21UCC015) Patel Het Manojkumar (21UCC125) Supervisor: Dr Upendra Pratap Singh

Neural networks use a softmax function to generate logits (zi) (output before softmax) to class probabilities.

$$\sigma(z_i, T) = \frac{e^{z_i/T}}{\sum_j e^{z_j/T}}$$

Here i,j=0,1,2,..,C-1 where C is the number of classes. T is temperature which is normally set to 1.[2]

Introduction

Mathematical Modeling

Literature Surv

Datas

- -



Distillation Loss

Feature Learning-based Knowledge Distillation to train Teacher and Student Networks

Mathematical Modeling

 $L_{\text{distillation}} = \alpha \cdot L_{\text{soft}} + (1 - \alpha) \cdot L_{\text{hard}}$ 

where  $L_{\text{distillation}}$  represents the total loss function, which is a combination of two components:

- L<sub>hard</sub>: Categorical cross-entropy loss computed between the true labels  $(y_{true})$  and the student's predictions  $(y_{pred})$ .
- L<sub>soft</sub>: Categorical cross-entropy loss computed between the softened outputs of the teacher model (teacher preds) and the softened predictions of the student model ( $y_{pred}$ ).

The parameter  $\alpha \in [0,1]$  is a weight that balances the contributions of  $L_{hard}$  and  $L_{soft}$ .



Distillation Loss with Nuclear Norm

Feature Learning-based Knowledge Distillation to train Teacher and Student Networks

Akshat Maithan (21UCC014) Akshay Anand(21UCC01: Patel Het Manojkumar (21UCC125) Supervisor: Dr

Introduction

Motivation

Mathematical Modeling

Literature Survey

The distillation loss can be written as:

$$L_{ ext{distillation}} = \alpha \cdot L_{ ext{soft}} + (1 - \alpha) \cdot L_{ ext{hard}} + \beta \cdot ||W||_{*}$$

Here,

- $ightharpoonup L_{soft}$  is the soft loss,
- $\blacksquare$   $L_{hard}$  is the hard loss,
- $||W||_*$  is the nuclear norm of the first layer's weights of the student model,
- $lacktriangleq \alpha$  is the weight parameter balancing soft and hard losses,
- $\ \ \ \beta$  is the regularization weight (set  $\alpha$  for simplicity).



Significance Of Nuclear Norm

Feature Learning-based Knowledge Distillation to train Teacher and Student Networks

Mathematical Modeling

- Promotes Simplicity: Encourages simpler representations by focusing on the most important features of data.
- **Noise Reduction:** Helps suppress irrelevant details or noise, highlighting meaningful patterns.
- **Improves Generalization:** Prevents overfitting by regularizing the model's weights, making it better at handling new, unseen data.



Performance Metrics (Part 1)

Feature Learning-based Knowledge Distillation to train Teacher and Student Networks

Mathematical Modeling

#### 1. Precision

- **Definition**: Precision measures the proportion of true positive predictions among all positive predictions. It indicates how many of the predicted positive cases were actually correct.
- Mathematical Formula:

$$Precision = \frac{TP}{TP + FP}$$

- 2. Recall (Sensitivity)
  - **Definition**: Recall measures the proportion of true positive cases that were correctly identified by the model.
  - Mathematical Formula:

$$_{\mathsf{Recall}} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$



Performance Metrics (Part 2)

Feature Learning-based Knowledge Distillation to train Teacher and Student Networks

Akshat Maithani (21UCC014) Akshay Anand(21UCC015) Patel Het Manojkumar (21UCC125) Supervisor: Dr

Introduction

Motivation

Mathematical Modeling

Literature Surve

Datase

Data

#### 3. Accuracy

- Definition: Accuracy is the ratio of correctly predicted observations to the total observations.
- Mathematical Formula:

$$_{\mathsf{Accuracy}} = \frac{\mathsf{TP} + \mathsf{TN}}{\mathsf{Total} \; \mathsf{Number} \; \mathsf{of} \; \mathsf{Samples}}$$





Performance Metrics (Part 3)

Feature Learning-based Knowledge Distillation to train Teacher and Student Networks

Akshat Maithani (21UCC014) Akshay Anand(21UCC015 Patel Het Manojkumar (21UCC125) Supervisor: Dr Upendra Pratap

Introduction

Motivatio

Mathematical Modeling

Literature Surve

Datase

Data

4. F1 Score

- Definition: The F1 score is the harmonic mean of precision and recall. It provides a balance between precision and recall.
- Mathematical Formula:

F1 Score = 
$$2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

- 5. Inference Time
  - Definition: Inference time is the time it takes for the trained model to make a prediction on new data.



# Literature Survey

Classification

Feature Learning-based Knowledge Distillation to train Teacher and Student Networks

Akshat Maithani (21UCC014) Akshay Anand(21UCC015 Patel Het Manojkumar (21UCC125) Supervisor: Dr Upendra Pratap Singh

miroduct

......

Mathematical Modeling

Literature Survey

Datase

Data

Knowledge Distillation can be subdivided into:

- Offline Distillation is the process of training a smaller student model using a pre-trained larger teacher model's outputs as targets. [2]
- Online Distillation is a training technique where both the teacher and student models are updated simultaneously, allowing for real-time learning and improvement of the student model's performance. [2]
- 3 <u>Self-Distillation</u> involves a model learning from its own predictions, using them to generate soft labels for its data, and then refining itself based on these labels, resulting in enhanced accuracy and robustness.[2]



### Literature Survey

Research Prospects

Feature Learning-based Knowledge Distillation to train Teacher and Student Networks

Akshat Maithani (21UCC014) Akshay Anand(21UCC015 Patel Het Manojkumar (21UCC125) Supervisor: Dr Upendra Pratap Singh

meroducen

Masimasian

Mathematical Modeling

Literature Survey

Datas

Data

- Image Classification: For incomplete and ambiguous images knowledge distillation is proposed to increase efficiency for complex image classification.[2]
- NLP: Future advancements in KD can lead to better model compression, deployment, and efficient training.[2]
- Object Detection: Future advancements can lead to better efficieny, speed, adaptability, and generalization.[3]



#### **Datasets Used**

Feature Learning-based Knowledge Distillation to train Teacher and Student Networks

Akshat Maithani
(21UCC014)
Akshay
Anand(21UCC015
Patel Het
Manojkumar
(21UCC125)
Supervisor: Dr
Upendra Pratap

Motivatio

Mathematical Modeling

Literature Survey

Datasets

)ata

| Dataset       | Classes | Images        | Image Size | Source            | Application Focus         |
|---------------|---------|---------------|------------|-------------------|---------------------------|
| UC Merced     | 21      | 2,100         | 256 × 256  | USGS National Map | Land-use pattern analysis |
| EuroSAT       | 10      | 27,000+       | 64 × 64    | Sentinel-2        | Land cover classification |
| AID           | 30      | $\sim$ 10,000 | 600 × 600  | Google Earth      | Land-use classification   |
| NWPU-RESISC45 | 45      | 31,500        | 256 × 256  | Google Earth      | Scene classification      |

Table: Datasets Used



### Data Preprocessing

Feature
Learning-based
Knowledge
Distillation to
train Teacher and
Student Networks

Akshat Maithani (21UCC014) Akshay Anand(21UCC015 Patel Het Manojkumar (21UCC125) Supervisor: Dr Upendra Pratap Singh

Introduction

Motivatio

Mathematical Modeling

Literature Survey

Datase

Data

- **Image Resizing:** All images are resized to 32×32 pixels to:
  - Reduce memory usage for handling large datasets.
  - Speed up computations during model training and inference.
  - Ensure consistent dimensions for batch processing in neural networks.
- Normalization: Pixel values are normalized to a [0, 1] range for faster and more stable model convergence.



#### Results

#### Model Distillation On UC Merced Dataset

Feature Learning-based Knowledge Distillation to train Teacher and Student Networks



Figure: Plots of Alpha vs F1-Score and Alpha vs Accuracy. The x-axis represents the alpha values, and the y-axis represents the F1-score and Accuracy.

The accuracy of the teacher model is 63.57%. The plot illustrates that both  $\alpha$ and  $1-\alpha$  play significant roles in the student model's performance. For certain values of  $\alpha$ , the F1-score and accuracy are higher, while for others, they are lower. This highlights the balanced contribution of both  $\alpha$  and  $1-\alpha$ .



#### Results

#### Model Distillation On UC Merced Dataset Considering Nuclear Norm

Feature
Learning-based
Knowledge
Distillation to
train Teacher and
Student Networks

Akshat Maithani
(21UCC014)
Akshay
Anand(21UCC015)
Patel Het
Manojkumar
(21UCC125)
Supervisor: Dr
Upendra Pratap



Mathematica Modeling

Literature Survey

Datas

ata



Figure: Plots of Alpha vs F1-Score and Alpha vs Accuracy. The x-axis represents the alpha values, and the y-axis represents the F1-score and Accuracy.

The accuracy of the teacher model is 65.48%. The plot illustrates that both  $\alpha$  and  $1-\alpha$  play significant roles in the student model's performance. For certain values of  $\alpha$ , the F1-score and accuracy are higher, while for others, they are lower. This highlights the balanced contribution of both  $\alpha$  and  $1-\alpha$ .



### Results and Analysis

Performance Metrics from Model Distillation

Feature Learning-based Knowledge Distillation to train Teacher and Student Networks

| 5 Alpha UC Merced             | Precision | Recall | F1 Score | Inference Time (s) |
|-------------------------------|-----------|--------|----------|--------------------|
| Teacher                       | 0.68      | 0.65   | 0.65     | 20.6               |
| Student                       | 0.71      | 0.69   | 0.69     | 5.8                |
|                               |           |        |          |                    |
|                               |           |        | F1 Score | Inference Time (s) |
| 11 Alpha UC Merced<br>Teacher |           | Recall | F1 Score | Inference Time (s) |

| Model                | Alpha Values | Accuracy | F1 Score |
|----------------------|--------------|----------|----------|
|                      | 0            | 0.66     | 0.65     |
|                      | 0.05         | 0.65     | 0.65     |
|                      | 0.1          | 0.64     | 0.6      |
|                      | 0.15         | 0.63     | 0.63     |
| 11 Alpha             | 0.2          | 0.65     | 0.64     |
| UC                   | 0.25         | 0.66     | 0.65     |
| Merced               | 0.3          | 0.64     | 0.63     |
|                      | 0.35         | 0.62     | 0.63     |
|                      | 0.4          | 0.62     | 0.6      |
|                      | 0.45         | 0.64     | 0.69     |
|                      | 0.5          | 0.62     | 0.63     |
| 5 Alpha UC<br>Merced | 0.1          | 0.67     | 0.6      |
|                      | 0.2          | 0.66     | 0.6      |
|                      | 0.3          | 0.65     | 0.6      |
|                      | 0.4          | 0.64     | 0.6      |
|                      | 0.5          | 0.59     | 0.0      |

Figure: Tabular Representation of Alpha Values vs Performance Metrics. Metrics include Accuracy, F1-Score, Precision, Recall, and Inference Time.

Detailed plots and tables for other datasets are available in the project report for further reference.



Akshat Maithani
(21UCC014)
Akshay
Anand(21UCC015)
Patel Het
Manojkumar
(21UCC125)
Supervisor: Dr
Upendra Pratap
Singh

miroducti

Motivation

Mathematical Modeling

Literature Survey

Datase

A. Alkhulaifi, F. Alsahli, and I. Ahmad, "Knowledge distillation in deep learning and its applications," *PeerJ Computer Science*, vol. 7, p. e474, 2021.

J. Gou, B. Yu, S. J. Maybank, and D. Tao, "Knowledge distillation: A survey," *International Journal of Computer Vision*, vol. 129, no. 6, pp. 1789–1819, 2021.

G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker, "Learning efficient object detection models with knowledge distillation," in *Advances in Neural Information Processing Systems* (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,



Akshat Maithani (21UCC014) Akshay Anand(21UCC015 Patel Het Manojkumar (21UCC125) Supervisor: Dr Upendra Pratap Singh

Introduc

Motivation

Mathematical Modeling

Literature Surve

Datase

. .

S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.



Y. Zhu, "Research on remote sensing image classification based on transfer learning and data augmentation," in *International Conference on Knowledge Science, Engineering and Management*, pp. 99–111, Springer, 2023.

X. Liu, K. H. Ghazali, F. Han, and I. I. Mohamed, "Review of cnn in aerial image processing," *The* 

*Imaging Science Journal*, vol. 71, no. 1, pp. 1–13, 2023.



Akshat Maithani (21UCC014) Akshay Anand(21UCC015) Patel Het Manojkumar (21UCC125) Supervisor: Dr

Introductio

Mathematic

Literature Surve

Datase

Data

