TU Dortmund

V301 - Leerlaufspannung und Innenwiderstand von Spannungsquellen

Korrektur

Markus Stabrin markus.stabrin@tu-dortmund.de

Kevin Heinicke kevin.heinicke@tu-dortmund.de

Versuchsdatum: 7. Mai 2013

Abgabedatum: 14. Mai 2013

1 Einleitung

Eine Spannungsquelle ist hier ein Gerät, welches über einen endlichen Zeitraum eine konstante elektrische Leistung liefern zu können. In diesem Versuch werden die Leerlaufspannung und der Innenwiderstand von Spannungsquellen gemessen, um das Verhalten innerhalb einer elektrischen Schaltung beschreiben zu können.

2 Theorie

2.1 Leerlaufspannung

Die Leerlaufspannung U_0 liegt an den Ausgangsklemmen einer Spannungsquelle an, wenn kein Strom entnommmen wird.

2.2 Innenwiderstand

Fließt ein endlicher Strom I durch Anschluss eines Lastwiderstandes R_a , sinkt die Klemmenspannung U_k auf einen Wert unterhalb von U_0 .

Dies ist erklärbar, wenn der Spannungsquelle ein Innenwiderstand R_i zugeordnet wird.

2.3 Ersatzschaltbild

Der gestrichelte Bereich in Abb. 1 wird als Ersatzschaltbild einer realen Spanningsquelle verwendet. Es besteht aus einer idealen Spannungsquelle, welche eine Leerlaufspannung U_0 liefert, und einem dazu in Reihe geschaltetem ohmschen Widerstand R_i .

2.4 Direkte Messung der Leerlaufspannung

Das zweite Kirchhoffschen Gesetz lautet:

$$\sum_{n} U_{0,n} = \sum_{m} R_{\rm m} I_{\rm m} \qquad . \tag{1}$$

Für das vorliegende Problem in Abb. 1 ergibt sich aus (1):

$$U_0 = IR_i + IR_i$$
 ,
 $U_k = IR_a = U_0 - IR_i$. (2)

Daraus folgt, dass mit zunehmendem Strom I die Klemmenspannung $U_{\mathbf{k}}$ absinkt. Zudem

Abbildung 1: Ersatzschaltbild einer realen Spannungsquelle mit Lastwiderstand R_a [1].

ergibt sich, dass zu einer direkten Messung der Leerlaufspannung U_0 ein hochohmiges Voltmeter erforderlich ist. Im falle eines kleinen Stromes kann so der Term IR_i in Gleichung (2) vernachlässigt werden, sodass gilt $U_k \approx U_0$.

2.5 Leistungsanpassung

Der Innenwiderstand R_i bewirkt, dass sich keine beliebig hohe Leistung der Spannungsquelle entnehmen lässt.

Für die Leistung ergibt sich:

$$N(R_{\rm a}) = I^2 R_{\rm a} = \frac{U_0^2 R_{\rm a}}{(R_{\rm a} + R_{\rm i})^2} \qquad . \tag{3}$$

Die Leistung $N(R_a)$ durchläuft ein Maximum bei $R_{a,\text{max}} = R_i$. Ist gerade $R_a = R_{a,\text{max}}$ gewählt, so wird von Leistungsanpassung gesprochen.

In der Nachrichten- und Messtechnik wird davon viel Gebrauch gemacht. In der Starkstromtechnik hingegen besitzt dies einige Nachteile, da der Innenwiderstand von z.B. RC-Generatoren oder elektronisch geregelten Spannungskonstanthaltern nicht unbedingt dich den Gleichstromwiderstand gegeben ist. In einem solchen Fall ist es notwendig den Innenwiderstand als differentielle Größe einzuführen:

$$R_{\rm i} = \frac{\mathrm{d}U_{\rm k}}{\mathrm{d}I} \qquad . \tag{4}$$

3 Versuchsaufbau und Durchführung

3.1 Direkte Messung der Leerlaufspannung

Die Schaltung wird nach Abb.2 aufgebaut. Der Widerstand $R_{\rm a}$ entspricht hierbei dem Eingangswiderstand $R_{\rm v}$ des hochohmigen Spannungsmessgerätes. Es werden $U_{\rm k}$ und $R_{\rm v}$ notiert.

Abbildung 2: Schaltbild zur direkten Messung der Leerlaufspannung.
[1]

3.2 Messung der Leerlaufspannung und des Innenwiderstandes mittels eines variablen Widerstandes

Die Schaltung wir nach Abb.3 aufgebaut. Der variable Belastungswiderstand liegt dabei in einem Bereich von $0\,\Omega$ bis $50\,\Omega$. Es werden bei 10 verschiedenen Belastungswiderständen $R_{\rm k}$ die Klemmenspannung $U_{\rm k}$ in Abhängigkeit von dem Belastungsstrom I aufgenommen.

3.3 Messung der Leerlaufspannung und des Innenwiderstandes mittels eines variablen Widerstandes und einer Gegenspannung

Abbildung 3: Messchaltung zur Bestimmung von U_0 und R_i [1].

Die Schaltung wird nach Abb.4 aufgebaut. Die Gegenspannung soll dabei etwa 2 V größer sein als die Leerlaufspannung U_0 . Es werden bei 10 verschiedenen Belastungswiderständen R_k die Klemmenspannung U_k in Abhängigkeit von dem Belastungsstrom I aufgenommen.

3.4 Sinus- und Rechteckausgang

Die Schaltung wird nach Abb.3 aufgebaut. Nun wird jedoch ein Sinus- bzw. Rechtecksspannungsgenerator angeschlossen.

Für die Messung mit der Rechtecksspannung wird ein variabler Widerstand von $20\,\Omega$ bis

Abbildung 4: Messchaltung zur Bestimmung von U_0 und R_i mittels einer Gegenspannung [1].

 $250\,\Omega$ benutzt.

Bei der Messung mit der Sinusspannung hingegen einer mit einem Bereich von $0.1~\mathrm{k}\Omega$ bis $5~\mathrm{k}\Omega$

Es werden bei 10 verschiedenen Belastungswiderständen $R_{\rm k}$ die Klemmenspannung $U_{\rm k}$ in Abhängigkeit von dem Belastungsstrom I aufgenommen.

4 Auswertung

4.1 Klemmspannungskurven

Zunächst wird für jede Spannungsquelle eine lineare Ausgleichsrechnung mit Hilfe von phython für die Funktion (??) durchgeführt. Der y-Achsenabschnitt entpricht dabei der Leerlaufspannung U_0 und die Steigung dem Innenwiderstand R_i der jeweiligen Spannungsquelle. Abbildungen 5 bis 7 zeigen die Graphen, Tabelle 1 beinhaltet die Messwerte. Die Ungenauigkeit der Messgeräte liegt bei

$$\Delta I = \pm 1.5 \%,$$

$$\Delta U = \pm 2 \%.$$

Zudem gilt für die Leistung P:

$$\begin{array}{rcl} P & = & UI \,, \\ \Delta P & = & \sqrt{(I\Delta U)^2 + (U\Delta I)^2} \,. \end{array}$$

Tabelle 1: Strom- und Spannungswerte der verschiedenen Spannungsquellen bei variierten Lastwiderständen $R_{\rm a}.$

Monozelle			Rechteckspannung			Sinusspannung		
I[mA]	$U_{\rm k}[{ m V}]$	P[mW]	I[mA]	$U_{\rm k}[{ m mV}]$	$P[\mu W]$	I[mA]	$U_{\rm k}[{ m V}]$	$P[\mu W]$
84	0,083	$6,97 \pm 0,17$	7,7	40	308 ± 8	1,80	0,09	162 ± 4
76	0,240	$18,24 \pm 0,46$	6,5	50	325 ± 8	1,50	0,12	180 ± 4
66	0,280	$18,48 \pm 0,46$	5,1	65	332 ± 8	1,00	0,17	170 ± 4
58	0,570	$33,06 \pm 0,83$	4,2	70	294 ± 7	0,70	0,20	140 ± 4
54	0,640	$34,56 \pm 0,86$	3,5	75	263 ± 7	0,60	$0,\!22$	132 ± 3
47	0,750	$35,25 \pm 0,88$	3,1	80	248 ± 6	0,55	0,23	127 ± 3
43	0,770	$33,11 \pm 0.83$	2,7	85	230 ± 6	0,45	0,24	108 ± 3
41	0,780	$31,98 \pm 0,80$	2,3	85	196 ± 5	0,38	0,24	91 ± 2
38	0,810	$30,78 \pm 0,77$	2,0	90	180 ± 4	0,32	$0,\!25$	80 ± 2
36	0,820	$29,52 \pm 0,74$	1,8	90	162 ± 4	0,27	$0,\!25$	$ 68 \pm 2 $
34	0,820	$27,88 \pm 0,70$	1,7	90	153 ± 4	0,25	0,25	62 ± 2

Abbildung 5: Spannungs- Stromkurve der Monozelle.

Abbildung 6: Spannungs- Stromkurve der Rechteckspannung

Abbildung 7: Spannungs- Stromkurve der Sinusspannung

4.2 Innenwiderstand $R_{\rm i}$ und Leerlaufspannung U_0

Die Ausgleichsrechnung in Kapitel 4.1 liefert die Werte für die jeweiligen Innenwiderstände R_i und Leerlaufspannungen U_0 der verschiedenen Spannungsquellen. Tabelle 2 beinhaltet die Werte.

Tabelle 2: Innenwiderstand R_i und Leerlaufspannung U_0 .

Spannungsquelle	$R_{ m i}[\Omega]$	$U_0[V]$
Monozelle	$15,7 \pm 1,1$	$1,418 \pm 0,060$
Monozelle, Gegenspannung	$20,1 \pm 0,6$	$1,676 \pm 0,034$
Rechteckspannung	$107,6 \pm 3,0$	$0,106 \pm 0,001$
Sinusspannung	$8,5 \pm 0,2$	$0,282 \pm 0,003$

4.3 Systematische Fehler

Der Systematische Fehler $\Delta_s U_0$ bei der direkten Messung der Leerlaufspannung beträgt nach Umstellen von Gleichung (??):

$$\Delta_{\rm s} U_0 = U_{\rm k} \frac{R_{\rm i}}{R_{\rm a}} \,.$$

Mit einem Außenwiderstand im Voltmeter von $R_{\rm a}\approx 10\,{\rm M}\Omega$ und der direkt gemessenen Spannung

$$U_0 = 1.65 \,\mathrm{V}$$
,

folgt der Fehler

$$\Delta_{\rm s} U_0 = 2.59 \, \mu \Omega$$
.

Das entspricht einem relativen Fehler δ_s von $\delta_s = 1,57 \cdot 10^{-4} \%$. Schließt man das Voltmeter nicht wie vorgegeben an, sondern hinter dem Amperemeter, fällt in diesem – zusätzlich zur Leerlaufspannung U_0 – eine Spannung U_A ab.

4.4 Leistungsdiagramm

Im folgenden Diagramm 8 ist die Leistung P, die im Belastungswiderstand R_a umgesetzt wird, aufgetragen. Zusätzlich ist der Graph der theoretisch errechneten Leistungskurve $N = f(R_a)$ eingetragen. Die Leistungskurve berechnet sich mit Gleichung (??) nach

$$N = I^2 R_{\rm a} = \frac{{U_0}^2 R_{\rm a}}{(R_{\rm i} + R_{\rm a})^2} \,.$$

Hierbei werden die Werte des Innenwiderstandes R_i und der Leerlaufspannung U_0 ohne Gegenspannung aus Kapitel 4.2 verwendet.

Abbildung 8: Leistungsdiagramm der Monozelle mit theoretischer Leistungskurve.

5 Diskussion

Wie in Kapitel 4.3 dargestellt, sind die bekannten Systematischen Fehler gering. Dennoch weichen die gemessenen Leistungswerte der Monozelle von der Theoriekurve ab. Die lässt möglicherweise sich durch Messfehler und nicht berücksichtigte Kabelwiderstände erklären. Ein weiterer Indiz für fehlerhafte Messung ist das Ergebnis der Leerlaufspannung der Monozelle mit und ohne Gegenspannung. Während ohne Gegenspannung ein Wert von

Literatur

[1] Physikalisches Anfängerpraktikum der TU Dortmund: Versuch Nr.301 - Leerlaufspannung und Innenwiderstand von Spannungsquellen. http://129.217.224.2/HOMEPAGE/PHYSIKER/BACHELOR/AP/SKRIPT/V301.pdf. Stand: Mai 2013.