Sheet 12

Exercise 32

Show: $\exists W \in \Sigma^+, i, j \in \mathbb{N} : W^i = X, W^j = Y.$

Proof: $S := XY = YX \Rightarrow X \sqsubset S \land Y \sqsubset S \land X \sqsubset S \land Y \sqsubset S \Rightarrow (X \sqsubset Y \lor Y \sqsubset X)$

Case 2:
$$X \sqsubset Y \land X \sqsupset Y$$

 $X = AB \Rightarrow Y = ABCAB$
 $XY = ABABCAB \land YX = ABCABAB$
 $\Rightarrow C = AB, \ W = AB, \ i = 1, \ j \ge 2$

Exercise 33

$$P = babacabab$$

$$\sigma(x) = \max\{k|P_k \supset x\}$$

$$\delta(q, a) = \sigma(P_q a)$$

δ	0	1	2	3	4	5	6	7	8	9
a	0	2	0	4	0	6	0	8	0	4
b	1	1	3	1	3	1	7	1	9	1
c	0	0	0	0	5	0	0	0	0	0

$$\delta(0, a) = \sigma(P_0 a)$$

$$\delta(1, a) = \sigma(P_1 a)$$

$$= \sigma(bc)$$

$$\delta(2, a) = \sigma(P_2 a)$$

$$= \sigma(bac)$$

$$\delta(3, a) = \sigma(babc)$$

Exercise 34

Let $P \in \Sigma^* \cup \{ \lozenge \}, T \in \Sigma^*$

- (1) Split P into $k \in \mathbb{N}$ substrings $P^{(1)}, \ldots, P^{(k)}$ by using \Diamond as split symbol.
- (2) Construct a string matching automaton M_i for every $P^{(i)}, i \in [k]$
- (3) Concatenate automaton M_i with $M_{i+1} (i \in [k-1])$ by merging the final state q of M_i with the initial state t of M_{i-1} by removing all transitions from q and keeping all transitions of t.
- (4) Choose the initial state of M_1 as the initial state of the constructed automaton and the final state of M_k as final state.

Proof: by induction on k

(IB)
$$k=1 \Rightarrow M=M_1 \checkmark$$

(IS) $k \to k + 1$.

$$P = P^{(1)} \Diamond P^{(2)} \Diamond \dots \Diamond P^{(k)} \Diamond P^{(k+1)}$$

Assume the automaton for $P^{(1)} \lozenge \dots \lozenge P^{(k)}$ works correct. Show the automaton for $P^{(1)} \lozenge \dots \lozenge P^{(k)} \lozenge P^{(k+1)}$ works correct. I.e. show that $M = \underbrace{M_1 \circ \dots \circ M_k}_{\text{corr}} \circ M_{k+1}$ works correct.

Show: If τ contains an occurance of P, then M reaches the final state. δ/ω it doesnt \square