

Aspectos básicos de networking: Capítulo 9

Cisco | Networking Academy® | Mind Wide Open®

Objetivos

- Identificar las características básicas de los medios de red utilizados en Ethernet.
- Describir las funciones físicas y de enlace de datos de Ethernet.
- Describir la función y las características del método de control de acceso al medio utilizado por el protocolo Ethernet.
- Explicar la importancia del direccionamiento de capa 2 utilizado para la transmisión de datos y determinar cómo los diferentes tipos de direccionamiento afectan el funcionamiento y el rendimiento de la red.
- Indicar las similitudes y diferencias de la aplicación y las ventajas de utilizar switches Ethernet en una LAN en lugar de utilizar hubs.
- Explicar el proceso ARP.

Características de los medios de red utilizados en Ethernet

 Características de Ethernet durante los primeros años de su existencia

Topología y primeros medios de Ethernet

Características de los medios de red utilizados en Ethernet

 Aparición del switch LAN como una innovación clave en la administración de colisiones en redes basadas en Ethernet

Migración a switches Ethernet

Características de los medios de red utilizados en Ethernet

 Características más novedosas de Ethernet y su utilización del cableado y de la topografía de punto a punto

Ethernet Gigabit

La tecnología Ethernet Gigabit se aplica más allá de la LAN empresarial a las redes basadas en WAN y MAN.

Estándares e implementación

 Cómo funciona Ethernet a través de dos capas del modelo OSI

Direcciones de la Capa 2 Limitaciones de la Capa 1

Limitaciones de la Capa 1	Funciones de la Capa 2
No se puede comunicar con capas superiores	Se conecta con las capas superiores mediante control de enlace lógico (LLC
No pueden identificar dispositivos	Utiliza esquemas de direccionamiento para identificar dispositivos
Sólo reconoce streams de bits	Utiliza tramas para organizar los bits er grupos
No puede determinar la fuente de la transmisión cuando transmiten múltiples dispositivos	Utiliza control de acceso al medio (MAC) para identificar fuentes de transmisión

Control de enlace lógico, conexión a las capas superiores

Control de enlace lógico (LLC)

- Establece la conexión con las capas superiores
- Entrama el paquete de la capa de Red
- Identifica el protocolo de capa de Red.
- Permanece relativamente independiente del equipo físico

Control de acceso al medio (MAC)

MAC—Llevar datos a los medios

CONTROL DE ACCESO AL MEDIO

- · Encapsulación de datos
 - · Delimitación de tramas
 - Direccionamiento
 - Detección de errores
- · Control de acceso al medio
 - Control de la colocación de la trama dentro y fuera de los medios
 - Recuperación de medios

Implementaciones físicas de Ethernet

Dispositivos físicos que implementan Ethernet

Patch panels UTP en un bastidor

Switches Ethernet

Conectores de fibra Ethernet

Switch Ethernet

Función y características del método de control del acceso al medio

MAC en Ethernet

Control de acceso al medio en Ethernet

Acceso múltiple por detección de portadora y detección de colisiones (CSMA/CD)

CSMA/CD controla el acceso a los medios compartidos. Si hay una colisión, se detecta y las tramas se retransmiten.

Función y características del método de control del acceso al medio

 Acceso múltiple por detección de portadora con detección de colisiones

Control de acceso al medio en Ethernet

Acceso múltiple con detección de portadora con detección de portadora y detección de colisiones (CSMA/CD)

Función y características del método de control del acceso al medio

Temporización de Ethernet

Retardo Ethernet (latencia)

A una trama Ethernet le lleva un tiempo considerable trasladarse desde el dispositivo emisor hasta el receptor. Cada dispositivo intermediario contribuye a la latencia general.

La trama, encapsulación del paquete

Comparación del tamaño del campo y las estructuras de tramas de Ethernet y 802.3

La dirección MAC Ethernet

La dirección MAC— Direccionamiento en Ethernet

Medios compartidos (acceso múltiple)

Todos los nodos Ethernet comparten los medios.

Para recibir los datos que se le enviaron, cada nodo necesita una dirección única.

Direccionamiento y numeración hexadecimal

Números hexadecimales

Equivalentes decimales y binarios del 0 al F hexadecimal

Decimal	10731070707070	17
	Binario	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Equivalentes decimales, binarios y hexadecimales escogidos

Decimal	Binario	Hexadecimal 00	
0	0000 0000		
1	0000 0001	01	
2	0000 0010	02	
3	0000 0011	03	
4	0000 0100	04	
5	0000 0101	05	
6	0000 0110	06	
7	0000 0111	07	
8	0000 1000	08	
10	0000 1010	0A	
15	0000 1111	0F	
16	0001 0000	10	
32	0010 0000	20	
64	0100 0000	40	
128	1000 0000	80	
192	1100 0000	CO	
202	1100 1010	CA	
240	1111 0000	F0	
255	1111 1111	FF	

Otra capa de direccionamiento

Ethernet unicast, multicast y broadcast

Comparación y diferenciación del uso de switches Ethernet en lugar de hubs en una LAN

Ethernet antigua, utilización de hubs

Rendimiento deficiente de las LAN basadas en hubs

Comparación y diferenciación del uso de switches Ethernet en lugar de hubs en una LAN

Ethernet, utilización de switches

Comparación y diferenciación del uso de switches Ethernet en lugar de hubs en una LAN

 Cómo un switch puede eliminar colisiones, backoffs y retransmisiones, los principales factores que reducen el throughput en una red Ethernet basada en hubs

Asignación de IP a direcciones MAC

ARP, destinos ubicados fuera de la red local

ARP, eliminación de asignaciones de direcciones

Proceso ARP: Eliminación de las asignaciones de direcciones

Broadcasts ARP, problemas

Problemas de ARP:

- · Broadcasts, sobrecarga en la
- · seguridad de los medios

Un mensaje ARP falso puede proporcionar una dirección MAC incorrecta que luego robará las tramas que utilicen esa dirección (denominado suplantación de identidad).

Ethernet					
8	6	6	2	46 a 1500	4
Preámbulo	Dirección de destino	Dirección de origen	Tipo	Datos	Secuencia de verificación de trama

Resumen

En este capítulo, aprendió a:

- Identificar las características básicas de los medios de red utilizados en Ethernet.
- Describir las características de la capa Física y la capa de Enlace de datos de Ethernet.
- Describir el funcionamiento y las características del método de control de acceso al medio utilizado por el protocolo Ethernet.
- Explicar la importancia del direccionamiento de Capa 2 utilizado para la transmisión de datos y determinar cómo los diferentes tipos de direccionamiento afectan el funcionamiento y rendimiento de la red.
- Comparar y contrastar la aplicación y los beneficios de la utilización de switches
 Ethernet en una LAN con la utilización de hubs.
- · Explicar el proceso de ARP.

