MATRICES SIMÉTRICAS Y ORTOGONALES

Dada la matriz
$$A = \frac{1}{3} \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{pmatrix}$$

1. Verificar que es una matriz ortogonal y caracterizar la isometría $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por T(x) = Ax .

Para ver si es una matriz ortogonal vemos si verifica: $AA^T = I$

O bien observamos que sus columnas forman una base ortonormal de \mathbb{R}^3 .

Para caracterizar la isometría ($\|T(x)\| = \|x\|$, esto se cumple por matriz ortogonal) observamos:

 $\det(A)=-1$ o bien $A^2=I$ puesto que la matriz es simétrica: $AA^T=AA=I\longrightarrow T$ es una SIMETRÍA

Calculamos sus autovalores: $\lambda_1=1$ doble y $\lambda_2=-1$ simple.

Con esto tenemos que el eje de simetría será $S_{\lambda=1}$ y la dirección la dará $S_{\lambda=-1}$.

 $Calculamos\ los\ autoespacios:\ S_{\lambda=1}=gen\left\{\left(1\ 1\ 0\right)^T;\left(-1\ 0\ 1\right)^T\right\}\ y\ S_{\lambda=-1}=gen\left\{\left(1\ -1\ 1\right)^T\right\}$

2. Ya observamos que la matriz A es simétrica, diagonalizarla ortogonalmente.

Tenemos que factorizar $A = PDP^T$, con P ortogonal y D diagonal.

Ya tenemos los autovalores y autoespacios de A,

necesitamos una BON de \mathbb{R}^3 formada por autovectores de A, observamos que $S_{\lambda=1} = (S_{\lambda=-1})^{\perp}$ como los vectores que generan $S_{\lambda=1}$ no son ortogonales aplicamos el proceso de G-S

por ejemplo:
$$S_{\lambda=1} = gen \left\{ \frac{1}{\sqrt{2}} (1 \ 1 \ 0)^T; \frac{1}{\sqrt{6}} (-1 \ 1 \ 2)^T \right\}$$

Así: $B = \left\{ \frac{1}{\sqrt{2}} (1 \ 1 \ 0)^T; \frac{1}{\sqrt{6}} (-1 \ 1 \ 2)^T; \frac{1}{\sqrt{3}} (1 \ -1 \ 1)^T \right\}$ es la base que necesitamos.

Con esto podemos armar las matrices P y D:

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} \text{ y D} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \text{ tales que A} = PDP^{T}.$$

3. Hallar la matriz de rotación de ángulo $\frac{\pi}{6}$ alrededor del eje generado por $(1\ 1\ 0)^{\mathrm{T}}$.

Llamemos
$$S = gen \left\{ (1\ 1\ 0)^T \right\} (eje\ de\ rotación)$$
 calculamos $S^{\perp} = gen \left\{ (1\ -1\ 0)^T ; (0\ 0\ 1)^T \right\}$

Así tenemos una base ortonormal del espacio: $B = \left\{ \frac{1}{\sqrt{2}} \left(1 - 1 \ 0 \right)^T; \left(0 \ 0 \ 1 \right)^T; \frac{1}{\sqrt{2}} \left(1 \ 1 \ 0 \right)^T \right\} = \left\{ v_1; v_2; v_3 \right\}$ Definimos la rotación:

$$T\left(v_{1}\right)=\cos\!\phi\;v_{1}+\sin\!\phi\;v_{2}$$

$$T\left(v_{2}\right)=-\mathrm{sen}\phi\:v_{1}+\mathrm{cos}\phi\:v_{2}$$

$$T\left(v_{3}\right)=v_{3}$$

$$\operatorname{con}\,\phi = \frac{\pi}{6}$$
:

$$T(v_1) = \frac{\sqrt{3}}{2} v_1 + \frac{1}{2} v_2$$

$$T(v_2) = -\frac{1}{2}v_1 + \frac{\sqrt{3}}{2}v_2$$

$$T\left(v_3\right) = v_3$$

De aquí es inmediata la matriz:
$$[T]_{B}^{B} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

con cambios de base obtenemos la matriz de la rotación en base canónica:

$$A = C_{B}^{E} [T]_{B}^{B} C_{E}^{B} = C_{B}^{E} [T]_{B}^{B} (C_{B}^{E})^{T} = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix}$$