## Almost multisecant BFGS quasi-Newton method

Mokhwa Lee. Yifan Sun Stony Brook University

October 29, 2024

## Motivation of Quasi-Newton (QN) method



| Main Problem : $\min_{x \in \mathbb{R}^n} f(x)$ where f is differentiable |                                |                                                       |                                                |  |  |
|---------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------|------------------------------------------------|--|--|
| Method                                                                    | Gradient Descent               | Newton                                                | Quasi-Newton(QN)                               |  |  |
| Convergence rate                                                          | linear, $O(C^n)$               | quadratic, $O(C^{n^2})$                               | super-linear <sup>1</sup> , $O(C^{n^{1.618}})$ |  |  |
| Memory                                                                    | O(n)                           | $O(n^2)$                                              | $O(n^2), O(nL)$                                |  |  |
| Update $x_{k+1}$                                                          | $x_k - \alpha_k \nabla f(x_k)$ | $x_k - \alpha_k [\nabla^2 f(x_k)]^{-1} \nabla f(x_k)$ | $x_k - \alpha_k B_k^{-1} \nabla f(x_k)$        |  |  |
| Algorithm                                                                 | Efficient but slow             | converges fast but expensive                          | L-BFGS, Broyden, etc                           |  |  |

¹Anton Rodomanov and Yurii Nesterov, Greedy Quasi-Newton Methods with Explicit Superlinear Convergence

## Single Secant Condition

### Second Order Taylor approximation for Hessian

$$\nabla^2 f(x_{k+1}) \approx B_{k+1} : \underbrace{B_{k+1}}_{\mathbb{R}^{n \times n}} (\underbrace{x_{k+1} - x_k}_{s_k \in \mathbb{R}^{n \times 1}}) = \underbrace{\nabla f(x_{k+1}) - \nabla f(x_k)}_{y_k \in \mathbb{R}^{n \times 1}}$$

Objective function graph

Gradient of objective function





## Quasi-Newton update

#### Iterate update

$$\begin{cases} x_{k+1} = x_k - \alpha B_k^{-1} \nabla f(x_k) \\ B_{k+1}(x_{k+1} - x_k) = \nabla f(x_{k+1}) - \nabla f(x_k) \end{cases}$$
 (secant condition)

- Secant equation is under-determined.
- If B is symmetric,  $\underbrace{\frac{n(n+1)}{2}}_{\text{# of vars}} > n$ , we have  $\frac{n(n-1)}{2}$  free variables.
- Secant equation has a unique solution in 1-dim since  $\frac{1(1+1)}{2} = 1$ .
- Several ways that satisfy secant condition by adding low-rank updates.

#### Multi-Secant Condition

## Second Order Taylor approximation for Hessian

$$\underbrace{\mathcal{B}_{k+1}}_{\mathbb{R}^{n\times n}}\underbrace{\left[\begin{array}{cccc} s_k, \ s_{k-1}, \ \dots, \ s_{k-p} \end{array}\right]}_{S_k \in \mathbb{R}^{n\times p}} = \underbrace{\left[\begin{array}{cccc} y_k, \ y_{k-1}, \ \dots, \ y_{k-p} \end{array}\right]}_{Y_k \in \mathbb{R}^{n\times p}}$$





•  $S, Y \in \mathbb{R}^{n \times p}$  are low rank matrices, where  $p \ll n$ 

## Broyden–Fletcher–Goldfarb–Shanno algorithm(BFGS)

## BFGS (single secant)

$$B_{k+1} = B_k + \underbrace{\frac{y_k y_k^T}{y_k^T s_k} - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k}}_{\text{low rank}}$$

- Rank-2 update and satisfies secant condition.
- Maintain positive semidefiniteness of matrix B.

## Approximate Hessian inverse(Sherman–Morrison–Woodbury formula)

$$\mathsf{B}_{k+1}^{-1} = (I - \frac{\mathsf{s}_k \mathsf{y}_k^\mathsf{T}}{\mathsf{y}_k^\mathsf{T} \mathsf{s}_k}) B_k^{-1} (I - \frac{\mathsf{y}_k \mathsf{s}_k^\mathsf{T}}{\mathsf{y}_k^\mathsf{T} \mathsf{s}_k}) + \frac{\mathsf{s}_k \mathsf{s}_k^\mathsf{T}}{\mathsf{y}_k^\mathsf{T} \mathsf{s}_k}$$

- Iterate Update :  $x_{k+1} = x_k \alpha B_k^{-1} \nabla f(x_k)$
- Woodbury Matrix Inversion Lemma :  $(A + UCV)^{-1} = A^{-1} A^{-1}(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$

#### **Quasi-Newton methods**



- Use iterate and first order gradient information (no second order info)
- $\bullet$  To maintain positive semidefinite hessian approximation, add  $\mu>0$
- Achieve stable and descent direction at each iteration (e.g. BFGS)
- Almost multisecant approximates the secant condition but maintain descent direction  $(B_k \succeq 0 \Rightarrow -\nabla f_k^T B_k^{-1} \nabla f_k \leq 0)$

## Quasi-Newton method comparison

#### Quasi-Newton: Update Hessian estimate

$$B_{k+1} = B_k + \underbrace{f(B_k)}_{low\ rank}$$

| Method            | Symmetric | PSD          | Multisecant | $rank(f(B_k))$ |
|-------------------|-----------|--------------|-------------|----------------|
| Broyden's         | ×         | ×            | ×           | 1              |
| $PSB^2$           | ✓         | ×            | ×           | 3              |
| DFP <sup>3</sup>  | ✓         | $\checkmark$ | ×           | 3              |
| BFGS <sup>4</sup> | ✓         | $\checkmark$ | ×           | 2              |
| Multisecant QN    | ×         | ×            | ✓           | 2 <i>p</i>     |
| Ours              | ✓         | ✓            | ≈           | 2 <i>p</i>     |

Table: Our method sacrifices the multisecant condition for PSD. The value p is a small number where  $p \ll n$  and 2p is a low rank.



<sup>&</sup>lt;sup>2</sup>PSB : Powell Symmetric Broyden

<sup>&</sup>lt;sup>3</sup>DFP : Davidson Fletcher and Powell

<sup>&</sup>lt;sup>4</sup>BFGS: Broyden, Fletcher, Goldfarb, Shannon

#### Multisecant BFGS

#### Multisecant BFGS: Hessian estimation

$$B_{k+1} = B_k + Y_k (Y_k^T S_k)^{-1} Y_k^T - B_k S_k (S_k^T B_k S_k)^{-1} S_k^T B_k$$

• Update  $x_{k+1} = x_k - \alpha_k B_k^{-1} \nabla f(x_k)$ , where  $B_k^{-1}$  is derived from

$$\begin{vmatrix} \arg\min_{B \in \mathbb{R}^{n \times n}} & ||B - B_k|| \\ \text{s.t.} & Bs = y \\ & B \succeq 0 \end{vmatrix}$$
 single secant $(p = 1)$ 

where

$$S = [x_{k+1} - x_k, \ldots, x_{k+1-p} - x_{k-p}] \in \mathbb{R}^{n \times p}$$

$$Y = \left[\nabla f(x_{k+1}) - \nabla f(x_k), \ldots, \nabla f(x_{k+1-p}) - \nabla f(x_{k-p})\right] \in \mathbb{R}^{n \times p}$$

ullet Only maintain the positive (semi)definiteness when f(x) is quadratic.

### Our Contribution: Almost Multisecant BFGS

#### Multisecant BFGS update

$$B_{k+1} = B_k + Y_k (Y_k^T S_k)^{-1} Y_k^T - B_k S_k (S_k^T B_k S_k)^{-1} S_k^T B_k$$

$$= B_k + (Y_k, B_k S_k) \begin{pmatrix} (Y_k^T S_k)^{-1} & 0 \\ 0 & -(S_k^T B_k S_k)^{-1} \end{pmatrix} \begin{pmatrix} Y_k^T \\ S_k^T B_k \end{pmatrix}$$

$$= B_k - D_1 W^{-1} D_2^T$$

- Multisecant QN does not guarantee symmetric positive semidefinite (PSD) Hessian estimate update.
- We symmetrize it and add  $\mu I$  to guarantee the positive semidefinite hessian estimate update (descent direction).

• 
$$\bar{B}_{k+1} = \bar{B}_k - \frac{D_1 W^{-1} D_2^T + (D_1 W^{-1} D_2^T)^T}{2} + \mu I \in \mathbb{R}^{n \times n}$$

$$\Delta \succ 0$$

• Find  $\mu$  such that  $\Delta$  is symmetric positive semidefinite (PSD)

## Why did we choose BFGS for Multisecant extension?

$$B_{k+1} = B_k - D_1 W^{-1} D_2^T$$
 where  $Z_k = Y_k - B_k S_k$ 

|           | $D_1$                                           | $D_2$                                           | W                                                                                                                                                            |
|-----------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Broyden's | $Z_k$                                           | $S_k$                                           | $-S_k^T S_k \in {}^{p \times p}$                                                                                                                             |
| PSB       |                                                 |                                                 | $\begin{bmatrix} -S_k^T S_k & 0 & 0 \\ 0 & -S_k^T S_k & 0 & 0 \\ 0 & 0 & S_k^T S_k (Z_k^T S_k)^{-1} S_k^T S_k \end{bmatrix} \in {}^{3p \times 3p}$           |
| DFP       | $\begin{bmatrix} Z_k & Y_k & Y_k \end{bmatrix}$ | $\begin{bmatrix} Y_k & Z_k & Y_k \end{bmatrix}$ | $\begin{bmatrix} -Y_k^T S_k & 0 & 0 \\ 0 & -Y_k^T S_k & 0 & 0 \\ 0 & 0 & (Y_k^T S_k) (Z_k^T S_k)^{-1} (Y_k^T S_k) \end{bmatrix} \in {}^{3\rho \times 3\rho}$ |
| BFGS      | $[Y_k  B_k S_k]$                                | $[Y_k  B_k S_k]$                                | $\begin{bmatrix} -Y_k^T S_k & 0 \\ 0 & S_k^T B_k S_k \end{bmatrix} \in {}^{2p \times 2p}$                                                                    |
| BFGS inv  | $[H_kY_k  S_k]$                                 | $[H_k^T Y_k  S_k]$                              | $\begin{bmatrix} Y_k^T H_k Y_k + Y_k^T S & Y_k^T S_k \\ S_k^T Y_k & 0 \end{bmatrix} \in {}^{2p \times 2p}$                                                   |

- $H_k = B_k^{-1}$
- W is not assumed to be symmetric nor PSD
- Challenging to apply Woodbury inversion lemma for other methods (Broyden, PSB, DFP).
- Woodbury approach is only possible for almost multisecant BFGS and BFGS inverse methods to compute  $W^{-1}$ .

October 29, 2024

## Find $\mu$ by Schur Complement

By the Woodbury Inversion Lemma, we get almost multisecant BFGS

$$\bar{B}_{k+1}^{-1} = \bar{B}_k^{-1} - \frac{1}{2} \underbrace{\begin{bmatrix} D_1 & D_2 \end{bmatrix}}_{D \in \mathbb{R}^{n \times 2p}} \underbrace{\begin{bmatrix} A_1 & W_k^{-1} \\ W_k^{-T} & A_2 \end{bmatrix}}_{E \in \mathbb{R}^{2p \times 2p}} \underbrace{\begin{bmatrix} D_1^T \\ D_2^T \end{bmatrix}}_{D^T \in \mathbb{R}^{2p \times n}} + \mu I$$

where  $p \ll n$  (low rank update) for updating Hessian estimation.



•  $\mu>0$  satisfies  $\Delta=\mu I-\frac{DED^T}{2}\succeq 0$  that ensures  $B_{k+1}^{-1}\succeq 0$ .





## Computation time of $\mu$

| m        | n        | р  | AvgElapsedTime | StdElapsedTime |
|----------|----------|----|----------------|----------------|
| 1000000  | 10000    | 5  | 0.082302468    | 0.012805515    |
| 1000000  | 10000    | 10 | 0.221266418    | 0.028299678    |
| 1000000  | 10000    | 15 | 0.342352725    | 0.045314651    |
| 1000000  | 100000   | 5  | 0.080595594    | 0.011917645    |
| 1000000  | 100000   | 10 | 0.262840806    | 0.067522336    |
| 1000000  | 100000   | 15 | 0.364708011    | 0.072498293    |
| 1000000  | 1000000  | 5  | 0.085991793    | 0.015292603    |
| 1000000  | 1000000  | 10 | 0.210551169    | 0.005418038    |
| 1000000  | 1000000  | 15 | 0.337621207    | 0.047064496    |
| 1000000  | 10000000 | 5  | 0.092226403    | 0.014109881    |
| 1000000  | 10000000 | 10 | 0.212651257    | 0.010707978    |
| 1000000  | 10000000 | 15 | 0.324698479    | 0.023220863    |
| 10000000 | 10000    | 5  | 1.342049018    | 0.198843912    |
| 10000000 | 10000    | 10 | 6.636063824    | 3.20097481     |
| 10000000 | 10000    | 15 | 27.95639044    | 11.13167948    |
| 10000000 | 100000   | 5  | 1.301018696    | 0.043209811    |
| 10000000 | 100000   | 10 | 3.268083497    | 0.705042952    |
| 10000000 | 100000   | 15 | 22.02416865    | 3.679317822    |
| 10000000 | 1000000  | 5  | 1.272271718    | 0.017935229    |
| 10000000 | 1000000  | 10 | 3.171529688    | 0.669478347    |
| 10000000 | 1000000  | 15 | 20.27326716    | 3.104544556    |
| 10000000 | 10000000 | 5  | 1.266372267    | 0.036094488    |
| 10000000 | 10000000 | 10 | 3.305674246    | 0.609465359    |
| 10000000 | 10000000 | 15 | 23.30601301    | 6.178500094    |

Table: Performance metrics for various values of m (number of data), n (number of features), and p (rank of the updated Hessian approximation) over 30 trials each in seconds.

## Sensing Problem (Binary Classification)

#### Logistic Regression Problem

$$f_{\text{logreg}}(x) := -\frac{1}{m} \sum_{i=1}^{p} \log(\sigma(b_i a_i^T x))$$

- ullet Labels  $b_i \in \{1, -1\}$  with equal probability (class balanced)
- Decay rate  $c_i = \exp(-\beta_i), i = 1, ..., n$
- Noise decaying with feature  $N_{ij} = z_{ij}c_j$ , where  $z_{ij} \sim \mathcal{N}(0,1)$
- High signal regime  $A_{ij} = b_i z_{ij} + N_{ij}$
- Low signal regime:  $A_{ij} = b_i z_{ij} (1 c_j) + N_{ij}$



## Quadratic vs non-Quadratic (Logsitic Regression)

$$f_{\text{quad}}(x) := \frac{1}{2m} ||Ax - b||_2^2,$$
  
 $f_{\text{logreg}}(x) := -\frac{1}{p} \sum_{i=1}^m \log(\sigma(b_i a_i^T x)).$ 

- Quadratic problems : Hessian and  $Y^TS$  are always PSD
- Logistic regression: Not guaranteed to be descent step and unstable (sometimes diverge).





#### Simulation Results

• Average number of iterations to reach  $f(x_k) - f^* \le \epsilon := 10^{-9}$ , over 10 trials.

|                                    | Low signal regime |       |       | High signal regime |       |       |
|------------------------------------|-------------------|-------|-------|--------------------|-------|-------|
|                                    | Easy Med. Hard    |       |       | Easy               | Med.  | Hard  |
| Single Broyden                     | 77.3              | 81.1  | 92.1  | 69.6               | 69.6  | 69.6  |
| MS Broyden (Vanilla)               | 67.5              | 65.9  | 83.4  | 55.7               | 59.4  | 51.6  |
| MS Broyden (Symmetric)             | _                 | _     | _     | _                  | _     | _     |
| MS Broyden (PSD)                   | 81.9              | 95.1  | 84.8  | 89.9               | 81.2  | 74.7  |
| Our Broyden (Backsolve, $B^{-1}$ ) | 60.1              | 65.9  | 71.8  | 57.8               | 54.6  | 62.3  |
| Single PSB                         | 77.3              | 81.1  | 92.1  | 69.6               | 69.6  | 69.5  |
| MS PSB (V)                         | 80.5              | 78.0  | 83.4  | 62.3               | 64.1  | 57.9  |
| MS PSB (S)                         | 227.9             | 207.3 | 285.6 | 115.4              | 123.7 | 214.5 |
| MS PSB (P)                         | 66.0              | 71.4  | 83.1  | 58.8               | 62.8  | 53.4  |
| Our PSB (B)                        | 71.8              | 97.5  | 102.0 | 85.3               | 74.6  | 61.2  |
| Single DFP                         | 77.3              | 81.1  | 92.1  | 69.6               | 69.6  | 69.6  |
| MS DFP (V)                         | 133.5             | 169.6 | 151.6 | 108.1              | 128.6 | 107.7 |
| MS DFP (S)                         | 128.3             | 248.2 | 213.3 | 158.5              | 252.5 | 117.2 |
| MS DFP (P)                         | 94.3              | 103.8 | 114.7 | 105.7              | 81.7  | 110.8 |
| Our DFP (B)                        | 165.9             | 172.3 | 142.8 | 120.6              | 153.6 | 120.8 |
| Single BFGS                        | 77.3              | 81.1  | 92.1  | 69.6               | 69.6  | 69.6  |
| MS BFGS (V)                        | 69.9              | 84.9  | 72.7  | 67.6               | 57.3  | 59.5  |
| MS BFGS (S)                        | 249.7             | 182.9 | 296.6 | 144.2              | 192.0 | 252.6 |
| MS BFGS (P)                        | 76.5              | 75.0  | 92.4  | 64.0               | 68.7  | 76.3  |
| Ours (B)                           | 65.6              | 65.7  | 88.3  | 65.0               | 62.6  | 64.2  |
| Ours (Woodbury)                    | 45.0              | 51.0  | 60.2  | 26.4               | 27.6  | 27.7  |

• Failure rate (diverge or didn't converge in 500 iter) over 18 problems, 10 trials each

|         | single secant | (V)   | (S)  | (P)   | our(B) | our(W)                                     |
|---------|---------------|-------|------|-------|--------|--------------------------------------------|
| Broyden | 0             | 0.18  | 1.00 | 0.072 | 0.11   | - (not executed)                           |
| PSB     | 0             | 0.028 | 0.67 | 0     | 0.0056 | <ul><li>(not executed)</li></ul>           |
| DFP     | 0             | 0.039 | 0.79 | 0.028 | 0.050  | <ul><li>(not executed)</li></ul>           |
| BFGS    | 0             | 0.017 | 0.68 | 0     | 0.0056 | →0.01 <b>7</b> 0 → ∢ <b>글</b> → ∢ <b>글</b> |

#### Conclusion and Future Direction

- Multisecant methods are potentially powerful but not popular because non-quadratic problems are not stable.
- Almost multisecant quasi-Newton BFGS method approximates curvature (second-order) information, sacrificing secant conditions but it guarantees descent direction (stable).
- Getting  $\mu$  is computationally far cheaper to achieve PSD hessian compared to the singular value decomposition on the full matrix.
- Expand our methods to limited memory version : "Almost multisecant L-BFGS quasi-Newton method".
- Apply to non-convex problems such as Neural Network.
   Stochastic QN method, Sketching QN method, etc

# Thank you