```
In [1]: import pandas as pd
         import numpy as np
         import pandas as pd
         from matplotlib import pyplot as plt
         import seaborn as sns
         from sklearn.preprocessing import StandardScaler
         from sklearn import preprocessing
         %matplotlib inline
        df = pd.read_csv('../high_diamond_ranked_10min.csv')
In [2]:
In [3]: df.head()
Out[3]:
                gameld blueWins blueWardsPlaced blueWardsDestroyed blueFirstBlood blueKills blueC
          0 4519157822
                              0
                                            28
                                                                2
                                                                             1
                                                                                      9
          1 4523371949
                                                                             0
                                                                                      5
                              0
                                             12
                                                                1
          2 4521474530
                                                                                      7
                              0
                                             15
          3 4524384067
                              0
                                                                             0
                                                                                      4
                                             43
                                                                1
            4436033771
                                                                             0
                              0
                                            75
                                                                                      6
         5 rows × 40 columns
```

In [4]: df.isnull().sum() Out[4]: gameId 0 blueWins 0 blueWardsPlaced 0 0 blueWardsDestroyed blueFirstBlood 0 blueKills 0 blueDeaths 0 blueAssists 0 blueEliteMonsters 0 blueDragons 0 blueHeralds 0 0 blueTowersDestroyed blueTotalGold 0 0 blueAvgLevel blueTotalExperience 0 blueTotalMinionsKilled 0 0 blueTotalJungleMinionsKilled blueGoldDiff 0 blueExperienceDiff 0 blueCSPerMin 0 blueGoldPerMin 0 0 redWardsPlaced 0 redWardsDestroyed 0 redFirstBlood redKills 0 redDeaths 0 redAssists 0 redEliteMonsters 0 redDragons 0 redHeralds 0 redTowersDestroyed 0 redTotalGold 0 redAvgLevel 0 redTotalExperience 0 redTotalMinionsKilled 0 redTotalJungleMinionsKilled 0 redGoldDiff 0 redExperienceDiff 0 redCSPerMin 0 redGoldPerMin 0

dtype: int64

In [5]: df.dtypes

Out[5]:	gameId	int64
	blueWins	int64
	blueWardsPlaced	int64
	blueWardsDestroyed	int64
	blueFirstBlood	int64
	blueKills	int64
	blueDeaths	int64
	blueAssists	int64
	blueEliteMonsters	int64
	blueDragons	int64
	blueHeralds	int64
	blueTowersDestroyed	int64
	blueTotalGold	int64
	blueAvgLevel	float64
	blueTotalExperience	int64
	blueTotalMinionsKilled	int64
	blueTotalJungleMinionsKilled	int64
	blueGoldDiff	int64
	blueExperienceDiff	int64
	blueCSPerMin	float64
	blueGoldPerMin	float64
	redWardsPlaced	int64
	redWardsDestroyed	int64
	redFirstBlood	int64
	redKills	int64
	redDeaths	int64
	redAssists	int64
	redEliteMonsters	int64
	redDragons	int64
	redHeralds	int64
	redTowersDestroyed	int64
	redTotalGold	int64
	redAvgLevel	float64
	redTotalExperience	int64
	redTotalMinionsKilled	int64
	redTotalJungleMinionsKilled	int64
	redGoldDiff	int64
	redExperienceDiff	int64
	redCSPerMin	float64
	redGoldPerMin	float64
	dtype: object	

```
In [6]: # Finding the relations between the variables.
   plt.figure(figsize=(20,10))
   sns.heatmap(df.corr(),cmap='RdBu_r',annot=True)
```

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x2bc08ee9ba8>

Some variable pairs are perfectly correlated so they are interchangble:

- 1.redFirstBlood and blueFirstBlood
- 2.redDeaths and blueKills
- 3.redKills and bluDeaths
- 4.blueGoldPerMin and blueTotalGold
- 5.blueCSPerMin and blueTotalMinionsKilled
- 6.redGoldDiff and blueGoldDiff
- 7.redExperienceDiff and blueExperienceDiff
- 8.redGoldPerMin and redTotalGold
- 9.redCSPerMin and redTotalMinionsKilled

Dropping irrelevant columns

Out[7]:

	blueWins	blueWardsPlaced	blueWardsDestroyed	blueFirstBlood	blueKills	blueDeaths	blueA
0	0	28	2	1	9	6	
1	0	12	1	0	5	5	
2	0	15	0	0	7	11	
3	0	43	1	0	4	5	
4	0	75	4	0	6	6	

5 rows × 28 columns

standardize

```
In [8]: scaler = StandardScaler()
    features = df.drop(columns=['blueWins']).values
        x=scaler.fit_transform(features)
        std_df= pd.DataFrame(data = x, columns = df.drop(columns=['blueWins']).columns
    )
    std_df.head()
```

Out[8]:

	blueWardsPlaced	blueWardsDestroyed	blueFirstBlood	blueKills	blueDeaths	blueAssists	blι
0	0.316996	-0.379275	0.990429	0.935301	-0.046926	1.071495	
1	-0.570992	-0.839069	-1.009663	-0.393216	-0.387796	-0.404768	
2	-0.404494	-1.298863	-1.009663	0.271042	1.657424	-0.650812	
3	1.149484	-0.839069	-1.009663	-0.725346	-0.387796	-0.404768	
4	2.925460	0.540312	-1.009663	-0.061087	-0.046926	-0.158724	

5 rows × 27 columns

Normalize

```
In [9]: X = preprocessing.normalize(features)
    norm_df = pd.DataFrame(data = X, columns = df.drop(columns=['blueWins']).colum
    ns)
    norm_df.head()
```

Out[9]:

	blueWardsPlaced	blueWardsDestroyed	blueFirstBlood	blueKills	blueDeaths	blueAssists	blu
0	0.000825	0.000059	0.000029	0.000265	0.000177	0.000324	
1	0.000361	0.000030	0.000000	0.000150	0.000150	0.000150	
2	0.000448	0.000000	0.000000	0.000209	0.000328	0.000119	
3	0.001269	0.000030	0.000000	0.000118	0.000148	0.000148	
4	0.002119	0.000113	0.000000	0.000170	0.000170	0.000170	

5 rows × 27 columns

```
In [10]: df.blueWins.value_counts().plot(kind='bar', figsize=(10,5))
    plt.title('Number of games have won')
    plt.ylabel('winning games')
    plt.xticks([0,1],['red','blue'])
    plt.xlabel('Teams')
```

Out[10]: Text(0.5, 0, 'Teams')

Detecting Outliers

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x2bc09949f60>

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x2bc0b509ba8>

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x2bc0b390630>

In []: