Eliminando ruido en imágenes

Métodos Numéricos

Departamento de Computación, FCEyN, Universidad de Buenos Aires.

8 de septiembre de 2017

El problema

 Dada una imagen ruidosa, extraer el ruido de la misma para obtener una imagen similar a la original

- ▶ ¿Qué es una imagen?
- ▶ ¿Qué significa que sea ruidosa?
 - ¿Cómpouedo extraer ruido de una imagen si no conozco la organal?
 - ્રં Que significa que la imagen sea similar a la original?

- ▶ ¿Qué es una imagen?
- ¿Qué significa que sea ruidosa?
 - ¿Cómpouedo extraer ruido de una imagen si no conozco la organa!?
 - ્રે Que signuica que la imagen sea similar a la original?

- ▶ ¿Qué es una imagen?
- ¿Qué significa que sea ruidosa?
- ¿Cómo puedo extraer ruido de una imagen si no conozco la original?
 - ¿Qué signuca que la imagen sea similar a la original

- ▶ ¿Qué es una imagen?
- ¿Qué significa que sea ruidosa?
- ¿Cómo puedo extraer ruido de una imagen si no conozco la original?
- ¿Qué significa que la imagen sea similar a la original?

- ► Para nosotros es simplemente una matriz de píxeles con valores de una escala de grises
- ► La leemos en MATLAB con imread
- La procesamos como cualquier matriz
- ▶ La mostramos con funciones como imshow, image, imagesc
- ► Es decir que cualquier matriz podemos verla como una imagen. (Ejemplo: imagesc(rand(16)), arte, arte, arte...

- ► Para nosotros es simplemente una matriz de píxeles con valores de una escala de grises
- La leemos en MATLAB con imread
- ▶ La procesamos como cualquier matriz
- La mostramos con funciones como imshow, image, imageso
- ► Es decir que cualquier matriz podemos verla como una imagen. (Ejemplo: imagesc(rand(16)), arte, arte, arte...)

- Para nosotros es simplemente una matriz de píxeles con valores de una escala de grises
- ► La leemos en MATLAB con imread
- ► La procesamos como cualquier matriz
- ▶ La mostramos con funciones como imshow, image, imagesc
- ► Es decir que cualquier matriz podemos verla como una imagen. (Ejemplo: imagesc(rand(16)), arte, arte, arte . . .)

- ► Para nosotros es simplemente una matriz de píxeles con valores de una escala de grises
- ► La leemos en MATLAB con imread
- ► La procesamos como cualquier matriz
- La mostramos con funciones como imshow, image, imagesc
- Es decir que cualquier matriz podemos verla como una imagen. (Ejemplo: imagesc(rand(16)), arte, arte, arte . . .)

- Para nosotros es simplemente una matriz de píxeles con valores de una escala de grises
- La leemos en MATLAB con imread
- La procesamos como cualquier matriz
- La mostramos con funciones como imshow, image, imagesc
- Es decir que cualquier matriz podemos verla como una imagen. (Ejemplo: imagesc(rand(16)), arte, arte, arte...)

- Para nosotros es simplemente una matriz de píxeles con valores de una escala de grises
- La leemos en MATLAB con imread
- La procesamos como cualquier matriz
- ▶ La mostramos con funciones como *imshow*, *image*, *imagesc*
- Es decir que cualquier matriz podemos verla como una imagen. (Ejemplo: imagesc(rand(16)), arte, arte, arte...)

¿Qué es el ruido?

 Para nosotros quiere decir que los valores de una imagen difieren del valor real

En MATLAB los simulamos *a mano* o con la funcion *imnoise*

¿Qué es el ruido?

 Para nosotros quiere decir que los valores de una imagen difieren del valor real

Existen varios tipos de ruidos (aditivo, multiplicativo, puntual)

En MATLAB los simulamos a mano o con la funcion imnoise

¿Qué es el ruido?

 Para nosotros quiere decir que los valores de una imagen difieren del valor real

- Existen varios tipos de ruidos (aditivo, multiplicativo, puntual)
- ► En MATLAB los simulamos a mano o con la funcion imnoise

Figura: Salt & Pepper

Figura: Uniforme

Figura: Gaussiano

Figura: Speckle

Diferencias

Figura: Salt & Pepper

Figura: Uniforme

Figura: Gaussiano

Figura: Speckle

- Existen muchos métodos
- Varios de ellos dependen de conocer la distribución de ruido particular de la imagen a procesar
- Filmo pasa ajos
- Filtros bacados en DFT y DCT
- Filtro de mediana

- Existen muchos métodos
- Varios de ellos dependen de conocer la distribución de ruido particular de la imagen a procesar
- Firo pasa ajos
- Filtros basados en DFT y DCT
 - Filtro de mediana

- Existen muchos métodos
- Varios de ellos dependen de conocer la distribución de ruido particular de la imagen a procesar
- Filtro pasabajos
- Filtros pasados en DFT y DCT
 - Filtro de mediana

- Existen muchos métodos
- Varios de ellos dependen de conocer la distribución de ruido particular de la imagen a procesar
- Filtro pasabajos
- Filtros basados en DFT y DCT
- Filtro de mediana

- Existen muchos métodos
- Varios de ellos dependen de conocer la distribución de ruido particular de la imagen a procesar
- Filtro pasabajos
- Filtros basados en DFT y DCT
- Filtro de mediana

Nuestro método

Se puede pensar el problema de filtrar una imagen con ruido como la minimización del siguiente funcional:

$$\Pi = \int_{\Omega} \frac{\lambda}{2} |u - \tilde{u}|^2 + \frac{1}{2} \|\nabla u\|^2 d\Omega, \tag{1}$$

donde $u: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$ describe la imagen filtrada y $\tilde{u}: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$ la imagen a filtrar (con ruido).

De esta manera, el primer término pesa cuánto ruido tiene \tilde{u} y el segundo pesa la suavidad de la imagen obtenida. La constante λ controla la importancia relativa de los dos términos.

Minimizando...

La minimización del funcional de la ecuación (1) da lugar a la siguiente ecuación diferencial:

$$\lambda \left(u - \tilde{u} \right) - \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = 0.$$
 (2)

Discretizando...

La solución de la ecuación (2) que representa la imagen filtrada se puede aproximar de manera discreta utilizando el método de diferencias finitas, lo cual conduce al siguiente sistema de ecuaciones:

$$\lambda u_{i,j} - (u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j}) = \lambda \tilde{u}_{i,j}$$
 (3)

donde ahora $u, \tilde{u}: \Omega \subset \mathbb{Z}^2 \to [0\dots 255]$ son las versiones discretas de la imagen filtrada y la imagen original, respectivamente. Viendo la imagen u como una matriz, i,j son los índices de fila y columna de cada elemento (píxel) de la matriz y donde el valor 0 representa al color negro y el 255 al blanco.

Codeando...

```
% Armado del sistema
Lambda = 1;
Dim = size(IR);
NInc = prod(Dim);
% Armado del vector resultado
Utilde = Lambda*double(IR(:));
% Armado de la matriz a resolver
B = -1*ones(NInc,5);
B(:,3) = (Lambda+4)*ones(NInc,1);
d = [-Dim(1) -1 0 1 Dim(1)];
A = spdiags(B,d,NInc,NInc);
```

- $\lambda u_{i,j} (u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} 4u_{i,j}) = \lambda \tilde{u}_{i,j}$
- IR es la imagen con ruido
- spdiags(B, d, m, n) crea una matriz esparsa de $m \times n$ colocando las columnas de B como diagonales de acuerdo a las posiciones indicadas en d como relativas a la diagonal principal

¿Quedó mejor?

Una vez que filtramos la imagen, ¿cómo medimos qué tan similar quedó a la original?

El PSNR se define como:

$$PSNR = 10 \cdot \log_{10} \left(\frac{MAX_u^2}{ECM} \right)$$

donde MAC, define el rango máximo de la imagen (para nuestro caso sena 255) y ECM es el error cuadrático medio, definido como:

$$\frac{1}{N} \sum_{i,j} (u_{i,j}^0 - u_{i,j})^2$$

don le N es la cantidad de píxeles de la imagen, u^0 es la imagen recuperada).

¿Quedó mejor?

Una vez que filtramos la imagen, ¿cómo medimos qué tan similar quedó a la original?

El PSNR se define como:

$$\textit{PSNR} = 10 \cdot \log_{10} \left(\frac{\textit{MAX}_u^2}{\textit{ECM}} \right)$$

donde MAX_u define el rango máximo de la imagen (para nuestro caso sería 255) y ECM es el *error cuadrático medio*, definido como:

$$\frac{1}{N} \sum_{i,j} (u_{i,j}^0 - u_{i,j})^2$$

donde N es la cantidad de píxeles de la imagen, u^0 es la imagen original y u es la imagen perturbada (o en nuestro caso, la imagen recuperada).

(a) Original

(b) Salt & Pepper PSNR: 18.3201 ECM: 957.567

(c) Denoised $\lambda = 1$ PSNR: 22.8122 ECM: 341.34

(a) Original

(b) Uniforme PSNR: 16.8928 ECM: 1329.86

(c) Denoised $\lambda = 1$ PSNR: 23.6228 ECM: 283.32

(a) Original

(b) Gaussiano PSNR: 20.1515 ECM: 627.972

(c) Denoised $\lambda = 1$ PSNR: 24.2042 ECM: 248.407

(a) Original

(b) Speckle PSNR: 18.8881 ECM: 839.999

(c) Denoised $\lambda = 1$ PSNR: 24.8398 ECM: 214.28

Experimentos

Γ		Salt & Pepper		Uniforme		Gaussiano		Speckle	
		PSNR	ECM	PSNR	ECM	PSNR	ECM	PSNR	ECM
ľ	λ	18.32	957.56	16.89	1329.86	20.15	627.97	18.88	839.99
	1	22.79	342.65	23.60	284.75	24.24	245.98	24.84	214.21
	2	22.83	339.45	22.87	335.99	24.65	223.34	24.71	220.08
	3	22.42	372.09	22.00	410.15	24.34	239.36	23.94	261.97
	4	21.98	411.53	21.33	478.06	23.98	260.00	23.28	305.48
	5	21.62	447.31	20.80	539.77	23.61	282.81	22.74	345.38
	6	21.30	481.21	20.39	594.10	23.31	303.92	22.32	380.99
1	7	21.04	511.41	20.06	641.26	23.03	323.12	21.97	412.23
	8	20.81	538.75	19.78	683.45	22.81	340.61	21.69	439.89
	9	20.62	563.07	19.55	720.33	22.61	356.36	21.46	464.38
	10	20.46	584.71	19.35	754.36	22.43	370.87	21.26	486.47

Experimentos

Experimentos

Pasemos al taller