PRELIM 1

V١	ER	SI	10	1:	DE	ΞĽ	TA-	2
----	----	----	----	----	----	----	-----	---

NAME:

- 1. Prelim 1 has two problems and is worth a total of 50 points.
- 2. You may use your course notes (on the computer, iPad, etc., or paper) or other course materials, e.g., discussion problems, to formulate your solutions.
- 3. Do not consult with any other person regarding the prelim (except the TAs or JV), or use *any form of electronic communication* to discuss the prelim questions. Violation of this policy will result in a ZERO for the prelim.
- 4. Do not consult the interwebs to search for the prelim questions/solutions. Violation of this policy will result in a ZERO for the prelim.
- 5. Show your work and state all assumptions or simplifications.
- 6. Good luck!

Figure 1: Starting material(s) A and B are converted to product P by enzyme E in a well-mixed reactor with volume V. The reactor is well insulated. The output from the reactor is fed into a filtration unit that separates reactants and products.

1. (20 pt) Consider the reaction/separation process shown in Fig. 1. In a well-mixed and well-insulated reactor, starting material(s) A and B are converted to the product P by enzyme E. The enzyme E is immobilized in the reactor (does not flow out) and is stable. Downstream of the reactor, a filtration device separates unreacted starting material(s) A and B from product P.

Assume: (i) the reactor and filtration units operate at steady-state; (ii) let species (A, B, P) have indexes (1, 2, 3); (iii) there is no product in the input streams

- a) (16 pt) Compute the missing values in Table 1 if the open extent of reaction $\dot{\epsilon}_1$ was measured to be 26.8 mmol min⁻¹.
- b) (2 pt) Derive an expression for the fractional conversion of species i, denoted by $f_i \ge 0$ for the reactor configuration shown in Fig. 1.
- c) (2 pt) Using the expression from b), compute the fractional conversion for species A and B.

Table 1: State table for the reaction/filtration problem; $\dot{n}_{s,T}$ denotes the total mole flow rate in stream $s, x_{s,1}$ denotes the mole fraction of component 1 (A) in stream $s, x_{s,2}$ denotes the mole fraction of component 2 (B) in stream s, and $x_{s,3}$ denotes the mole fraction of component 3 (P) in stream s.

Stream i	$\dot{n}_{s,T}$ (mmol/min)	$x_{s,1}$	$x_{s,2}$	$x_{s,3}$
1	95	1.0	0.0	0.0
2	45	0.11	0.89	0.0
3				
4				
5	59.54	0.77	0.22	0.01

Figure 2: Schematic of the unit operations of a modified organic Rankine cycle in which a fraction of the heat from the condenser is recycled to the boiler through a heat exchanger.

2. (30 pt) The Organic Rankine Cycle (ORC) is an *open* four step thermodynamic process used to generate power that uses organic compounds as working fluids (Fig. 2). In the cycle, path \mathcal{P}_{ij} connects operating point \mathcal{O}_i to \mathcal{O}_j :

 $\mathcal{P}_{41} \ (4 \rightarrow 1)$: *isobaric* heating in a boiler from operating point \mathcal{O}_4 to \mathcal{O}_1

 $\mathcal{P}_{12} \ (1 \ o \ 2)$: adiabatic expansion in a turbine from operating point \mathcal{O}_1 to \mathcal{O}_2

 $\mathcal{P}_{23}~(2~\rightarrow~3)$: isobaric cooling in a condenser from operating point \mathcal{O}_2 to \mathcal{O}_3

 $\mathcal{P}_{34} \ (3 \ o \ 4)$: adiabatic compression in a pump from operating point \mathcal{O}_3 to \mathcal{O}_4

Nomenclature: $\dot{W}_{s,T}$ denotes the rate of turbine shaft work (units: kJ s⁻¹); $\dot{W}_{s,P}$ denotes the rate of pump shaft work (units: kJ s⁻¹); \dot{Q}_B denotes the rate of heat input/output to/from the boiler (units: kJ s⁻¹); \dot{Q}_C denotes the rate of heat input/output to/from the condenser (units: kJ s⁻¹)

Assume: (i) the cycle operates at steady-state; (ii) the working fluid (HFC-134A) has a mass flow rate of \dot{m} = 2.25 kg s⁻¹; (iii) *neglect* the enthalpy and temperature change from the pump (assume T₃ \simeq T₄ and H₃ \simeq H₄); (iv) neglect changes in the kinetic and potential energy in the system and streams; (v) the turbine efficiency η_T = 85%.

5

- a) (12 pt) Compute the missing state values in Table 2.
- b) (12 pt) Compute the missing values in Table 3 without heat recycle ($\alpha = 0$).
- c) (3 pt) Compute the ideal organic Rankine cycle efficiency: $\eta = -\dot{W}_{net}/\dot{Q}_B$ if there is no heat recycle (α = 0).
- d) (3 pt) Compute the ideal organic Rankine cycle efficiency if α = 0.33. Does the efficiency increase, decrease or stay the same when compared with c)?

Table 2: State table for the ideal Rankine cycle problem with heat recycle.

O	T (°C)	P (MPa/kPa)	$igg $ H (kJ kg $^{-1}$)	$igg $ S (kJ kg $^{-1}$ K $^{-1}$)	Quality θ
\mathcal{O}_1	80.0	2.0 MPa		1.75	1.0
\mathcal{O}_2		29.41 kPa		1.75	
\mathcal{O}_3					
\mathcal{O}_4				0.7428	0.0

Table 3: Heat and work table for the Rankine cycle problem with heat recycle ($\alpha = 0$).

Path	\dot{Q} (kW)	(ideal) \dot{W}_s (kW)	(actual) \dot{W}_{s}^{*} (kW)
\mathcal{P}_{12}	0		
\mathcal{P}_{23}		0	0
\mathcal{P}_{34}	N/A	N/A	N/A
\mathcal{P}_{41}		0	0
Cycle			N/A