Zadanie 22.

Wiazka zadań Schemat Hornera

Schemat Hornera jest bardzo efektywną metodą obliczania wartości wielomianu

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0,$$

gdzie dane liczby rzeczywiste a_0, a_1, \dots, a_n nazywamy współczynnikami, a liczba całkowita $n \geq 0$ oznacza stopień wielomianu.

Schemat bazuje na zależności

$$P(x) = x(a_n x^{n-1} + a_{n-1} x^{n-2} + \dots + a_2 x^1 + a_1) + a_0 = x \cdot Q(x) + a_0,$$

gdzie

$$Q(x) = a_n x^{n-1} + a_{n-1} x^{n-2} + \dots + a_2 x^1 + a_1.$$

Stad otrzymujemy następujący schemat obliczania wartości P(x):

Dane:

n — liczba całkowita, $n \ge 0$,

x — liczba rzeczywista,

 a_0, a_1, \dots, a_n — liczby rzeczywiste.

Wynik:

wartość P(x)

Algorytm (schemat Hornera):

$$w \leftarrow a_n$$

 $\mathbf{dla} \ k = n - 1, n - 2, ..., 0 \ \mathbf{wykonuj}$
(*) $w \leftarrow x \cdot w + a_k$
 $\mathbf{zwr\acute{o}\acute{c}} \ w \ \mathbf{i} \ \mathbf{zako\acute{n}cz}$

22.1.

Uzupełnij poniższą tabelkę, podając wartości danych, jakie należy przyjąć w powyższym schemacie, aby wyznaczyć wartość P(6) dla wielomianu

$$P(x) = 10x^5 - 13x^4 + x^3 + 2x^2 - 8x + 7.$$

Dane	Wartości
liczba naturalna n	
liczba rzeczywista x	
liczby rzeczywiste $a_0, a_1,, a_n$	

22.2.

Uzupełnij poniższą tabelkę, wyrażając wzorem liczbę operacji mnożenia i dodawania, jaka zostanie wykonana przez schemat Hornera (w wierszu oznaczonej przez (*)) dla danego wielomianu

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0.$$

Działanie	Liczba operacji
Dodawanie	
Mnożenie	

22.3.

Przeanalizuj działanie schematu Hornera podczas obliczania wartości P(2) dla wielomianu

$$P(x) = 4x^6 - 3x^5 + 2x^3 - 5x^2 + 7x + 9.$$

W poniższej tabeli wpisz wartości w obliczane przez algorytm w linii (*)

	Wartość w
k = 5	
k = 4	
k = 3	
k = 2	
k = 1	
k = 0	

Podaj wynik, jaki zwróci algorytm:

22.4.

Wielomianem parzystym nazywamy wielomian stopnia 2n postaci

$$R(x) = a_n x^{2n} + a_{n-1} x^{2n-2} + \dots + a_2 x^4 + a_1 x^2 + a_0,$$

tzn. taki, w którym występują tylko parzyste potęgi zmiennej x.

Bazując na schemacie Hornera, napisz algorytm o poniższej specyfikacji (w pseudokodzie lub wybranym języku programowania), który oblicza wartość parzystego wielomianu R(x).

Dane:

n — liczba całkowita, $n \ge 0$, x — liczba rzeczywista, a_0, a_1, \dots, a_n — liczby rzeczywiste. Wynik: wartość R(x).

Przy ocenie rozwiązania będzie brana pod uwagę liczba operacji mnożenia i dodawania wykonywanych przez algorytm.

Publikacja opracowana przez zespół koordynowany przez **Renatę Świrko** działający w ramach projektu *Budowa banków zadań* realizowanego przez Centralną Komisję Egzaminacyjną pod kierunkiem Janiny Grzegorek.

Autorzy

dr Lech Duraj dr Ewa Kołczyk Agata Kordas-Łata dr Beata Laszkiewicz Michał Malarski dr Rafał Nowak Rita Pluta Dorota Roman-Jurdzińska

Komentatorzy

prof. dr hab. Krzysztof Diks prof. dr hab. Krzysztof Loryś Romualda Laskowska Joanna Śmigielska

Opracowanie redakcyjne

Jakub Pochrybniak

Redaktor naczelny

Julia Konkołowicz-Pniewska

Zbiory zadań opracowano w ramach projektu Budowa banków zadań,
Działanie 3.2 Rozwój systemu egzaminów zewnętrznych,
Priorytet III Wysoka jakość systemu oświaty,
Program Operacyjny Kapitał Ludzki

