Методы оптимизации

Данил Заблоцкий

9 февраля 2024 г.

Оглавление

1	Линейное программирование			4
	1.1	Постановка задачи, теорема эквивалентности		4
		1.1.1	Примеры моделей ЛП	5

Введение

Лекция 1: Начало

от 9 фев 8:45

Определение 1 (Методы оптимизации). *Методы оптимизации* – раздел прикладной математикик, предметом изучения которого является теория и методы оптимизационных задач.

Определение 2 (Оптимизационная задача). *Оптимизационная задача* – задача выбора из множества возможных ваариантов наилучших в некотором смысле.

Примечание.

$$\begin{cases} f(x) \to \min(\max) \\ x \in D \end{cases},$$

где

D – множество допустимых решений,

 $x \in D$ — допустимое решение,

f(x) — целевая функция (критерий оптимизации)

Задачи математического программирования (МП) и их классификация

Примечание. Немного истории:

1939г. Л.В. Конторович 1947г. Д. Данциг

С 50-х годов – бурное развитие

1975г. Нобелевская премия по экономике Конторовичу и Купмаксу

Примечание (Задача математического программирования).

1. $f(x) \to \max(\min)$.

- 2. g(x)#0, $i = \overline{1,m}$, $\# \in \{ \leq, \geq, = \}$.
- 3. $x_j \in R, \ j = \overline{1, n}.$ $(x \in \mathbb{R}^n)$

$$x = (x_1, \ldots, x_n)$$

Определение 3 (Оптимальное решение, глобальный экстремум). $x^* \in D$ называется *оптимальным решением* задачи 1–3, если $\forall x \in D$

$$f(x^*) \geqslant f(x)$$

для задачи на max и $\forall x \in D$

$$f(x^*) \leqslant f(x)$$

для задачи на min.

 x^* является глобальным экстремумом.

Определение 4 (Разделимая, неразделимая задача). Задача 1–3, которая обладает оптимальным решением, называется *разделимой*, и *неразделимой* в противном случае.

 $D = \mathbb{R}^n$ — задача безусловной оптимизации, в противном случае — задача условной оптимизации.

Примечание (Классификация).

- 1. Если f, g_i являются линейными, то задача является задачей линейного программирования (ЛП).
- 2. Если хотя бы одна из функций f,g_i нелинейная, то задача нели-нейного программирования.

 f,g_i – выпуклые, то выпуклого программирования.

Глава 1

Линейное программирование

1.1 Постановка задачи, теорема эквивалентности

Определение 5 (Общая задача ЛП (ЗЛП)).
$$f(x) = c_0 + \sum_{j=1}^n c_j x_j \longrightarrow \max(\min),$$

$$\sum_{j=1}^n a_{ij} x_j \# b_i, \quad i = \overline{1,n}, \ \# \in \{\leqslant, \geqslant, =\}$$

$$x_j \geqslant 0, \quad j \in \mathfrak{I} \subseteq \{1,\dots,n\}$$

$$A_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, \ b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}, \ x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} - \text{ переменные }$$
 задачи

Примечание (Матричная задача).

$$f(x) = (c, x) \longrightarrow \max(\min)$$

$$Ax \# b$$

$$x_i \ge 0, \quad j \in \Im \subseteq \{1, \dots, n\}$$

Примечание (Каноническая ЗЛП (КЗЛП)).

$$f(x) = (c, x) \longrightarrow \max$$

$$Ax = b$$

$$x \ge \vec{0}, \quad \vec{0} = (0, \dots, 0)$$

Примечание (Симметричная ЗЛП).

$$f(x) = (c, x) \longrightarrow \max$$
 $f(x) = (c, x) \longrightarrow \min$ $Ax \leqslant b$ или $Ax \geqslant b$ $x \geqslant \vec{0}, \quad \vec{0} = (0, \dots, 0)$ $x \geqslant \vec{0}$

Замечание. Без ограничения общности далее положим c_0 = 0, так как добавление константы не влияет на процесс нахождения оптимального решения.

1.1.1 Примеры моделей ЛП

Пример. Задача о составлении оптимального плана производства.

$$m$$
 ресурсов, $i = \overline{1,m}$ n видов продукции, $j = \overline{1,n}$

Известно:

 b_i – запас *i*-го ресурса, $i = \overline{1,m}$

 a_{ij} — количество ресурса i, требуемое для производства 1 единицы продукции вида j

 c_{j} – прибыль от продажи 1 единицы j-го продукта

Необходимо составить план производства, максимализирующий суммарную прибыль.

Переменные: x_i единицы продукции вида j производства, $j = \overline{1, n}$,

$$\sum_{j=1}^{n} c_j x_j \longrightarrow \max,$$

$$\sum_{j=1}^{n} a_{ij} x_j \leqslant b_i, \ i = \overline{1, m},$$

$$x_j \ge 0, \quad j = \overline{1, n}.$$

Пример. О максимальном потоке в сети.

G = (V, E) – ориентированный взвешенный граф $c: E \to R$ — веса дуг — пропускная способность

$$egin{array}{lll} s & - ext{источник} \ t & - ext{сток} \end{array}$$

Пусть x_{ij} – поток по дуге $(i,j) \in E$

$$f = \sum_{j:(s,j)\in E} x_{sj} \longrightarrow \max,$$

$$\sum_{j:(j,i)\in E} x_{ji} = \sum_{k:(i,k)\in E} x_i k, \quad i \in V \setminus \{s,t\},$$
$$0 \le x_{ij} \le c_{ij}, \quad (i,j) \in E.$$