San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Formal Languages

(Part 1)

Lecture 04 Day 04/31

CS 154
Formal Languages and Computability
Spring 2019

1

Agenda of Day 04

- Waiting List Enrollment ...
- Summary of Lecture 03
- Lecture 04: Teaching ...
 - Formal Languages (Part 1)

Summary of Lecture 03: We learned ...

Cartesian Products

- In many cases, we need ordered collections.
- We use Cartesian product to produce ordered collections.
- The Cartesian product of two sets
 A and B is ...
 - ... the set of all ordered pairs (a , b),
 where a ∈ A and b ∈ B.

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

- Does Cartesian product have commutative property?
 - In general, no, but in the following special cases, yes:

$$- (A = B) \lor (A = \phi) \lor (B = \phi)$$

 We extend the Cartesian product to n sets to produce n-tuple.

$$S_1 \times S_2 \times ... \times S_n = \{(x_1, x_2, ..., x_n) : x_1 \in S_1, ..., x_n \in S_n\}$$

Any question?

Summary of Lecture 03: We learned ...

Functions

- A function f from D to R is ...
 - a rule that assigns to some elements of D (domain) a unique element of R (range).
 - Denoted by: $f: D \rightarrow R$
- A total function is ...
 - a function that all of its domain elements are defined.
- A partial function is ...
 - a function that at least one member of its domain is "undefined".

Any question?

Summary of Lecture 03: We learned ...

Graphs

- A graph is a mathematical construct consisting of two sets:
 - A non-empty and finite set of verticesV = {v₁, v₂, ..., v_n}
 - A finite set of edges $E = \{e_1, e_2, ..., e_m\}$
- A walk is ...
 - ... a sequence of edges from v_i to v_n . $(v_i, v_j), (v_j, v_k), ..., (v_m, v_n)$
- The length of a walk is ...
 - ... the number of edges traversed.
- A path is ...
 - ... a walk that no edge is repeated.

- A simple path is ...
 - a path that no vertex is repeated.
- A loop is ...
 - ... an edge from a vertex to itself.
- A cycle is ...
 - a path from a vertex (called base) to itself.
- A simple cycle is ...
 - a cycle that no vertex other than base is repeated.

Any question?

Objective of This and Next Lecture

- Reviewing alphabets
- Reviewing strings
- Introducing formal languages
- Examining some surprising languages

1 The Big Picture of the Course

The foundation of the computer science is called:
 "Theory of Computation".

This theory is divided into four branches:

① The Big Picture of the Course

The first three from the bottom show:

"What can be done with computers?"

The forth one, complexity, shows:

"What can be done in practice?"

① The Big Picture of the Course

- Let's start with "Formal Languages"!
- But first, we need to introduce "alphabets" and "strings".

Alphabets & Strings

Alphabets

Definition

- An alphabet is a nonempty and finite set of "symbols".
- It is denoted by Σ.
- Symbols are assumed to be indivisible.
- In this course, we use lowercase letters a, b, c, ... for alphabets' symbols.
- In some cases, we might use digits like 0, and 1 or other symbols as well.

Alphabets Example

Example 1

• $\Sigma = \{a, b\}$

This is our celebrity alphabet!

- $\Sigma = \{0, 1\}$
- $\Sigma = \{\varepsilon, \alpha, \beta\}$

- Can the following set be an alphabet? $\Sigma = \{ \mathcal{E}, \mathcal{K}, \psi, \Gamma \}$

Strings

Definition

- A string is a finite sequence of symbols from the alphabet.
- So, we do NOT have a string of infinite sequence of symbols.

Example 2

```
Let \Sigma = \{a, c, d, e, g, h, l, o, p, r, s, t, u\}. Are the following strings valid strings over \Sigma? cat , dog , horse , house , apple
```

Strings Examples

Example 3

 $\stackrel{\bullet}{\mathbf{r}} \bullet \text{Let } \Sigma = \{a, b\}.$

- Are the following strings valid strings over Σ?
- baba , aabb , bbbbbbbbbbbbbb , ...
- Not all of them!
 - "..." is not a valid string because "." is not in the alphabet!
 - Note that in formal languages arena,
 we don't care whether the strings are meaningful or not!
- We use lowercase letters w, u, v, ... for "string variables".
- w = baba
- u = bbbbbbbbbbbb

Strings Size (aka Length)

Definition

- The size of a string is the number of its symbols.
- The size of string w is denoted by |w|.

Example 4

```
|aaa| = 3
|babba| = 5
|aaba| = 4
```

In general:

$$|a_1 a_2 ... a_n| = n$$

Empty String

Definition

- An empty string is a string with no symbol.
 - In other words: A sequence of zero symbols
- Empty string is denoted by λ (pronounced "lambda").
- What is the length of λ ? $|\lambda| = ?$ $|\lambda| = 0$

Notes

- 1. In some books, empty string might be shown as: ε (epsilon)
- 2. λ cannot be used as a symbol in alphabet.

Operations on Strings

Concatenation of Strings

Definition

Concatenation of two strings u and v is the string uv.

Example 5

```
Let u = aaba and v = bb ; uv = ?

uv = aababb
```

The length of concatenation:

$$|uv| = |u| + |v|$$

λ is the neutral element for concatenation:

$$\lambda w = w\lambda = w$$

Example 6

 $\lambda aabb = aab\lambda b = a\lambda abb = a\lambda abb\lambda = aabb$

Reverse of Strings

Definition

- Reverse of a string w is obtained by writing the symbols in reverse order.
- Reverse of w is denoted by w^R. (pronounced "w reverse")
- If $w = a_1 a_2 ... a_{n-1} a_n$, then $w^R = a_n a_{n-1} ... a_2 a_1$

Example 7

```
Let w = aaba; w^R = ?
w^R = abaa
```

A Side Note: Palindrome

 The string w is called palindrome if w reads the same from left to right as from right to left.

Examples

radar, reviver, rotator

Some Funny Palindromes (Ignore spaces, apostrophes, commas)

- MADAM I'M ADAM
- STEP NOT ON PETS
- NO LEMONS, NO MELON
- DENNIS AND EDNA SINNED
- A MAN, A PLAN, A CANAL, PANAMA

Homework

• Prove that $(uv)^R = v^R u^R$

Substring

Definition

Substring of a string w is any string of consecutive symbols of w.

Example 8

String	Substring
<u>aa</u> babb	aa
a <u>ab</u> abb	ab
aa <u>bab</u> b	bab
aaba <u>b</u> b	b
aababb	λ
aababb	aababb

Prefix and Suffix

v is called "suffix".

Definition

Let w be a string. If w = uv, then ...u is called "prefix".

Example 9

Let w = aababb

If we consider u = aa as a prefix of w, then the rest would be the suffix.

v = babb.

• Are these the only prefix and suffix?

Prefix and Suffix

Example 9 (cont'd)

The complete list of all possible prefixes and suffixes of w are:

Prefix = u	$\underline{Suffix} = v$
λ	aababb
a	ababb
aa	babb
aab	abb
aaba	bb
aabab	b
aababb	λ

• So, λ is prefix and suffix of every string (NOT at the same time). because: $w = \lambda w = w \lambda$

Exponential Operator

Definition

- Let w be a string and n be a natural number.
- wⁿ is defined as the concatenation of n copies of w.

$$w^n = w w w ... w$$
n times

Example 10

Let
$$w = a$$
; $w^2 = ?$; $w^3 = ?$
 $w^2 = w w = aa = a^2$
 $w^3 = w w w = aaa = a^3$

 Concatenation in formal languages looks like multiplication in elementary algebra.

Exponential Operator

Example 11

```
Let w = aaba; w^2 = ?; w^3 = ?

w^2 = w w = aabaaaba = a^2ba^3ba

w^3 = w w w = aabaaabaaaba = a^2ba^3ba^3ba
```

In general: w wⁿ = wⁿ w = wⁿ⁺¹
 where n ∈ N (natural numbers)

Example 12

```
Let w = a^m b^m where m is a constant.

|w| = ?

|w| = |a^m b^m| = 2m
```

Exponential Operator

Special case

- $W^0 = ?$
- - How can you prove this?
 - Hint: use w wⁿ = wⁿ w = wⁿ⁺¹

Example 13

$$(aaba)^0 = \lambda$$

O Note that aaba⁰ = aab

Formal Languages

Introduction of Two New Operations on Sets

- Before introducing formal languages,
 we need to introduce two new operations on sets.
- We did not mention them because we needed the concept of concatenation.

Star Operator on Alphabets

Definition

- Let Σ be an alphabet.
- Σ* is the set of "all possible strings" obtained by concatenating "ZERO or more" symbols from Σ.

Example 14

```
Let \Sigma = \{a\}; \Sigma^* = ?

\Sigma^* = \{a\}^* = \{\lambda, a, aa, aaa, aaaa, ...\}
```


Star Operator on Alphabets

Example 15

Let
$$\Sigma = \{a, b\}$$
; $\Sigma^* = ?$
 $\Sigma^* = \{a, b\}^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, ...\}$

Note what strategy we used to enumerate all combinations.

• Let $\Sigma = \{a, b, c\}$; $\Sigma^* = ?$

0

Plus Operator on Alphabets

Definition

- Let Σ be an alphabet.
- Σ^+ is the set of "all possible strings" obtained by concatenating "ONE or more" symbols from Σ .

Example 16

Let
$$\Sigma = \{a\}$$
; $\Sigma^+ = ?$
 $\Sigma^+ = \{a\}^+ = \{a, aa, aaa, aaaa, ...\}$

• Note that the only difference between Σ^+ and Σ^* is that Σ^+ does NOT contain λ .

(1)

Plus Operator on Alphabets

Example 17

Let
$$\Sigma = \{a, b\}$$
; $\Sigma^+ = ?$
 $\Sigma^+ = \{a, b\}^+ = \{a, b, aa, ab, ba, bb, aaa, aab, ...\}$

• Since the only difference between Σ^+ and Σ^* is that Σ^+ does NOT contain λ , hence:

$$\Sigma^+ = \Sigma^* - \{\lambda\}$$

 $\Sigma^* = \Sigma^+ \cup \{\lambda\}$

Also note that Σ is finite but both Σ⁺ and Σ^{*} are infinite.

(1) Formal Languages Definition

Definition

- Let Σ be an alphabet.
- S Any
 - Any subset of Σ* is called a "formal language" over Σ.

- Σ* contains all possible strings that can be made by the symbols of Σ.
- That's why it's called the "universal formal language" over Σ.
 - Recall the definition of "universal set".

① Formal Languages Example

Example 18

Let $\Sigma = \{a, b\}$ be an alphabet.

Then:

$$\Sigma^* = \{a, b\}^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, ...\}$$

 The following subsets of Σ* are examples of formal languages over Σ :

L₁ = {a, b, aa, aab}

- because $L_1 \subseteq \Sigma^*$
- $L_2 = \{\lambda, ba, bb, bbb, aaa, aab\}$

because $L_2 \subseteq \Sigma^*$

Formal Languages

Example 18 (cont'd)

How about the following sets? Are they formal languages? Why?

$$L_3 = \phi = \{ \}$$

$$L_4 = \{\lambda\}$$

Yes they are because both are subsets of Σ^* .

Two Special Formal Languages

- Empty language : { } or •
- Language containing only empty string : {λ}

0

Formal Languages Notes

- 1. For simplicity, we use "language" to refer to the formal language.
 - To refer natural languages, we specifically will mention "natural" word.
- A language is a "set".So, it has all properties of sets.
- 3. $\{\lambda\}$ is a language while λ is a string.
 - $|\lambda| = 0$; This is the size of the string λ .
 - $|\{\lambda\}| = 1$

Formal Languages Notes

- 4. In some books, strings are called "sentences" to analogize the formal languages with the natural languages.
 - In this course, we mostly use strings!
- 5. Like sets, we have both "finite" and "infinite" languages.
 - This is our first categorization of formal languages.

Formal Languages Exercises

Example 19

Given the following languages by set-builder over $\Sigma = \{a, b\}$.

Represent them by using roster method (enumerate the strings):

This is our celebrity language!

2.
$$L_2 = \{a^nb^{2n} : n \ge 0\}$$

3.
$$L_3 = \{a^{n+2}b^n : n \ge 0\}$$

① 4.
$$L_4 = \{a^nb^m : n \ge 0, m \ge 0\}$$

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Kenneth H. Rosen, "Discrete Mathematics and Its Applications, 7th ed.," McGraw Hill, New York, United States, 2012
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790