Clase 2

Cálculo 3

Carlos Martínez Ranero

Departamento de Matemática Universidad de Concepción

Recordatorio de la clase anterior.

- Puntos interiores, exteriores y frontera.
- · Conjuntos abiertos y conjuntos cerrados.
- Conjuntos acotados y no acotados.

Plan de la clase de hoy.

- Puntos aislados y puntos de acumulación.
- · Gráficas de funciones y conjuntos de nivel.
- · Límites.

Topología.

Definición

Sea $S \subset \mathbb{R}^n$ y $\vec{x_0} \in \mathbb{R}^n$. Decimos que $\vec{x_0}$ es un punto de acumulación si para $\forall \epsilon > 0$ ($B_{\epsilon}(x_0) \setminus \{x_0\}$) $\cap S \neq \emptyset$. En otro caso, decimos que $\vec{x_0}$ es un punto aislado.

3

Topología.

Ejemplo 1

Determinar los puntos de acumulación del conjunto $S = \{(\frac{1}{n^2}, \frac{1}{n^2}) : n \in \mathbb{N}\}.$

Solución:

El origen es el único punto de acumulación.

Gráficas y conjuntos de nivel.

Nuestro objetivo es entender como visualizar funciones de varias variables, esto requiere las nociones de gráfica de una función y de curvas (o superficies) de nivel.

Definición

Sea $f: \mathbb{R}^2 \to \mathbb{R}$. La gráfica de f es el conjunto $\Gamma_f = \{(x, y, z) \in \mathbb{R}^3 : z = f(x, y)\}.$

Definición

Sea $f: \mathbb{R}^2 \to \mathbb{R}$. Una curva de nivel es el conjunto $\{(x,y) \in \mathbb{R}^2: f(x,y) = c\}$ donde c es una constante.

5

Gráficas de funciones y curvas de nivel.

Ejemplo 2

Encontrar las curvas de nivel de la función $f(x, y) = \sqrt{36 - 4x^2 - y^2}$.

Solución:

• Las curvas de nivel corresponden a elipses.

Gráficas y curvas de nivel.

Ejemplo 3

Bosquejar la gráfica de la función $f(x, y) = \sqrt{36 - 4x^2 - y^2}$.

Gráficas y conjuntos de nivel.

Definición

Sea $f: \mathbb{R}^n \to \mathbb{R}$

- 1. La gráfica de f es el conjunto $\Gamma_f = \{(x_1, ..., x_n, x_{n+1}) \in \mathbb{R}^{n+1} : x_{n+1} = f(x_1, ..., x_n)\}.$
- 2. Un conjunto de nivel es el conjunto $\{(x_1, ..., x_n) \in \mathbb{R}^n : f(x_1, ..., x_n) = c\}$ donde c es una constante.

Limites

Sea $A \subset \mathbb{R}^n$, denotamos por A' el conjunto de sus puntos de acumulación.

Definición

Sea $A \subseteq \mathbb{R}^n$, $\vec{a} \in A'$, y $f: A \to \mathbb{R}^m$. Decimos que $\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = \vec{L}$ si $\forall \epsilon > 0$, $\exists \delta > 0$ tal que si $\vec{x} \in A$, $0 < \|\vec{x} - \vec{a}\| < \delta$, entonces $\|f(\vec{x}) - \vec{L}\| < \epsilon$.

Intuitivamente si \vec{x} es muy cercano a \vec{a} , entonces $\vec{f}(\vec{x})$ es muy cercano a \vec{L} .

9