MODULE 2

Key Terms

- Relation
 - · Table in a database
- Attribute
 - · Column in a relation (table)
- Tuple
 - Row in a relation (table)
- Candidate key
 - Means of uniquely identifying a tuple in a relation based on one or more of its attributes
- Primary key
 - · One of the candidate keys selected to be primary key
- Surrogate key
 - Created when none of the candidate keys is deemed to be suitable (autonumber or identity columns commonly used)
 - · Performance, convenience
 - Can still enforce uniqueness on candidate keys
- · Foreign key
 - An attribute or group of attributes that contain primary key value of another relation

Relational Theory

- · Tables are relations
- · Columns are attributes
- · Rows are tuples
- · Tuples must be unique
 - · Need to be able to find a tuple to work with it
 - Need a way to uniquely identify it based on one or more attributes
 - Any unique combination of attributes is a candidate key
 - · One of the candidate keys becomes the primary key

Surrogate Keys Identity Keys, etc.

- · Should never be necessary in a perfect world
- Every tuple should have an attribute or set of attributes that uniquely identifies it
 - · Reflect characteristics of entity in the real world
- If databases were perfect, wouldn't need surrogate keys
 - · But are often used as a concession
- Foreign key attributes let you reference tuples in another relation

Data Integrity Tuesday, May 16, 2017 4:04 PM Data Integrity Data Integrity Data Integrity validates the data before getting stored in the columns of the table. SQL Server supports four type of data integrity: Data Integrity Entity Domain Referential
Entity Integrity
Entity Integrity can be enforced through indexes, UNIQUE constraints and PRIMARY KEY constraints.
Domain Integrity
Domain integrity validates data for a column of the table.
It can be enforced using: Foreign key constraints, Check constraints, Default definitions NOT NULL.
Referential Integrity
FOREIGN KEY and CHECK constraints are used to enforce Referential Integrity.

User-Defined Integrity

It enables you to create business logic which is not possible to develop using system constraints. You can use stored procedure, trigger and functions to create user-defined integrity.

3.22 PM

- Breaking information down into the most atomic units necessary to solve the business Solution;
 - Address Location separated into 2 fields is Over-Normalizing
 1001 Fair Way Rd.
 (Address Num and Address Street)

Not First Normal Form1

First Normal Form1

Not First Normal Form2

First Normal Form2

Second Normal Form

The database should be in first normal form, and every attribute should be functionally dependent on the entire primary key.

Separation of Information to separate Table/Relations

Not Second Normal Form

EmployeeID and ProjectID are a composite Primary

Second Normal Form1

Tuesday, May 16, 2017

12:35 PM

Third Normal Form

The database should be in second normal form, and no attribute should be functionally dependent on an attribute that isn't in the primary key.

In Correlation:

Don't store calculated values. Store the raw data, and use queries to perform calculations as needed.

Not Third Normal Form1

LABS\SQLEXPRESS0Not-3rd-Normal1 + × LABS\SQLEXPRESS0Not-3rd-Normal1					
	EmployeelD	ProjectID	Hours	Rate	Total
	101	201	8	10	80
	102	201	5	20	1000
Þ#	NULL	NULL	NULL	NULL	NULL

Not Third Normal Form2

Third Normal Form2

.ABS\	SQLEXPRESS0	dbo.3rd-Normal2 💠	× LABS\SQLEXPF	
	EmployeelD	EmployeelD Address ZipCoo		
	101	P.O. Box 1000	98530	
	102	1021 Fort Street	95667	
* *	NULL	NULL	NULL	

Primary Candidate Keys

Sunday, May 21, 2017 11:37 AM

File is: PrimaryCandidate.SQL

```
PrimaryCandadate.s...s (LABS\dellp (52))* X
    USE Schools;
    ----Create Test Table for with default columns values
  □ CREATE TABLE PrimaryCandidateKeys
         EmployeeID uniqueidentifier DEFAULT NEWID(),
         LastName varchar(255) NOT NULL,
        FirstName varchar(255),
        PRIMARY KEY (EmployeeID)
    GO
  □INSERT INTO PrimaryCandidateKeys(LastName, FirstName)
    VALUES ('Mouse', 'Mickey');
    Select * From PrimaryCandidateKeys
    Drop Table PrimaryCandidateKeys;
    GO.
🔤 Results 🔓 Messages
    EmployeeID
                                    LastName FirstName
    DCB424DA-2F1F-44D6-A1DA-319524F08DF1 Mouse
```

Primary Surrogate Keys

Saturday, December 2, 2017 7:16 PM

```
PrimarySurrogate.sq...r (LABS\dellp (58)) X DateTypes.sql - (lo...er (LABS\dellp (51))
    USE Schools;
    GO
    ----Create Test Table for with default columns values
   □ CREATE TABLE PrimarySurrogateKeys
    (
         EmployeeID int identity(1,1),
         LastName varchar(255) NOT NULL,
         FirstName varchar(255),
         PRIMARY KEY (EmployeeID)
    GO
   □INSERT INTO PrimarySurrogateKeys(LastName, FirstName)
    VALUES ('Mouse', 'Mickey');
    Select * From PrimarySurrogateKeys
    Drop Table PrimarySurrogateKeys;
    G0
```

File: Schemas.sql

A **schema** is a distinct namespace to facilitate the separation, management, and ownership of database objects.

Add Technical.Events to the Equation

Schema Object Transfer

Friday, May 26, 2017 6:30 PM

