

7⁰ Εξάμηνο, Ακ. Έτος 21-22 Ηλεκτρολογικό Σχέδιο Εξαμηνιαία Εργασία 2022 <u>Βικέντιος Βιτάλης el18803</u>

Θέμα 1°: Μηχανολογικό Σχέδιο

Θέμα 2° : Ηλεκτρολογικό Σχέδιο

Κάτοψη σαν print screen από το PanelCad:

Στο τέλος της παρούσας αναφοράς παρατίθεται η κάτοψη και σε κλίμακα 1:1.50 με το λογότυπο της TiSoft.

Κορμός :: 7° Εξάμηνο, Ακαδημαϊκό Έτος 2021-2022

Υπόμνημα Σχεδίου Κ1...Κ9 : Καλώδια Γενικού Πίνακα Κ10...Κ17 : Καλώδια Υποπινάκων 1 και 2

Μάθημα: Ηλεκτρολογικό Σχέδιο	Ονοματεπώνυμο Βικέντιος Βιτάλης	Υπογραφή Βικέντιος Βιτάλης		
Εθνικό Μετσόβιο	Τύπος Εγγράφου	AM	AA_27	
Πολυτεχνείο	Ηλεκτρολογικό	el18803		
	Σχέδιο			
Σχολή ΗΜΜΥ	Τίτλος, Υπότιτλος	Ημερομηνία	Γλώσσα	Φύλλο
	Αξονομετρικό Γ.Π.	31/1/2022	GR	1/4

Κορμός :: 7° Εξάμηνο, Ακαδημαϊκό Έτος 2021-2022

Υπολογισμοί

Υπολογισμός απορροφόμενης έντασης της κάθε γραμμής για τον υποπίνακα 1:

- Γραμμή φωτιστικών (K11), έχουμε πέντε απλά φωτιστικά x 0.5A = 2.5A
- Γραμμή ρευματοδοτών(K12), έχουμε πέντε ρευματοδότες (3x2)+(2x0.5)A = 7A
- > Γραμμή θερμοσίφωνα(K13) 20 Amp. η οποία είναι τυποποιημένη
- Γραμμή κλιματιστικού έως 15,000 btu/h(K10): 16 Amp.

Γραμμή	I _b (A)	In MCB(A)	In απόζ.(A)	$S(mm^2)$	Σωλήνας (mm^2)	L1	L2	L3
Φωτιστικών	2.5	10	-	3x1.5	16			2.5
Ρευματοδοτών	7	16	-	3x2.5	16			7
Θερμοσίφωνας		20	25	3x4	23		20	
Κλιματιστικού		16	-	3x2.5	16	16		
					_	16	20	9.5

Υπολογισμός απορροφόμενης έντασης της κάθε γραμμής για τον υποπίνακα 2:

- Υπολογισμός απορροφόμενης έντασης της κάθε γραμμής για τον υποπίνακα 1:
- Γραμμή φωτιστικών (K14), έχουμε πέντε απλά φωτιστικά x 0.5A = 2.5A
- Γραμμή ρευματοδοτών(Κ17), έχουμε πέντε ρευματοδότες (3x2)+(2x0.5)A = 7A
- > Γραμμή θερμοσίφωνα(K16) 20 Amp. η οποία είναι τυποποιημένη
- Γραμμή κλιματιστικού έως 15,000 btu/h(K15): 16 Amp.

Γραμμή	I _b (A)	In MCB(A)	In απόζ.(A)	$S(mm^2)$	Σωλήνας (mm^2)	L1	L2	L3
Φωτιστικών	2.5	10	-	3x1.5	16			2.5
Ρευματοδοτών	7	16	-	3x2.5	16			7
Θερμοσίφωνας		20	25	3x4	23		20	
Κλιματιστικού		16	-	3x2.5	16	16		
						16	20	9.5

Ασφάλειες του υποπίνακα 1: Για τον υπολογισμό της γενικής αποχώρησης θεωρούμε την μεγαλύτερη τιμή από τις τρεις φάσεις , άρα 20Α. Η γενική αποχώρηση μπορεί να προστατευθεί με τρεις μικροαυτόματους διακόπτες των 25Amp, αποζεύκτη φορτίου 25Amp και ΔΔΡ τύπου Α με ονομαστικό διαφορικό ρεύμα λειτουργίας $I_{\Delta n} = 30$ mAmp και ονομαστικό ρεύμα λειτουργίας 25Amp. Οι πέντε αγωγοί της παροχής θα έχουν διατομή 5x6 mm^2 ή και ο σωλήνας διάμετρο 23mm. Όμοια για τον υποπίνακα 2.

Υπολογισμός πτώσης τάσης για τον υποπίνακα 1:

Θεωρούμε cosφ = 0.8 και sinφ = 0.6

Γραμμή	Μήκος γραμμής I(m)	Διατομή αγωγού S(mm^2)	I(A)	ΔU
Φωτιστικών	21m	1.5	2.5	0.6325
Ρευματοδοτών	16.85m	2.5	7	0.8549
Θερμοσίφωνα	3.45m	4	20	0.3138
Κλιματιστικό	6.6m	2.5	16	0.7653

Για τον φωτισμό ισχύει $\Delta U \leq 3\%$ και για τα υπόλοιπα $\Delta U \leq 5\%$, οπότε βρισκόμαστε εντός ορίων.

Υπολογισμός πτώσης τάσης για τον υποπίνακα 2:

Γραμμή	Μήκος γραμμής l(m)	Διατομή αγωγού $S(mm^2)$	I(A)	ΔU
Φωτιστικών	20.8m	1.5	2.5	0.5011
Ρευματοδοτών	11.75m	2.5	6.5	0.5535
Θερμοσίφωνα	3.1m	4	20	0.2812
Κλιματιστικό	2.1m	2.5	16	1.055

Για τον φωτισμό ισχύει $\Delta U \leq 3\%$ και για τα υπόλοιπα $\Delta U \leq 5\%$, οπότε βρισκόμαστε εντός ορίων.

Υπολογισμός απορροφόμενης έντασης της κάθε γραμμής για τον γενικό πίνακα:

- Γραμμή φωτιστικών (K1), έχουμε πέντε απλά φωτιστικά x 0.5A = 2.5A
- ightharpoonup 1ηγραμμή ρευματοδοτών(K2), έχουμε τέσσερεις ρευματοδότες (3x2)+(1x0.5) = 2.5A
- $ightharpoonup 2^{\eta}$ γραμμή ρευματοδοτών(K5), έχουμε τρεις ρευματοδότες 3x2 = 6A
- > Ψυγείο (K3) 16Amp τυποποιημένη
- > Κουζίνα (K7) 25Amp τυποποιημένη
- > Πλυντήριο πιάτων (K8) 16Amp τυποποιημένη
- Πλυντήριο ρούχων (K9) 16Amp τυποποιημένη
- Γραμμή υποπίνακα 1 (K4) 20Amp
- Γραμμή υποπίνακα 2 (K6) 20Amp

Γραμμή	I _b (A)	In MCB(A)	Ιη απόζ.(Α)	S(mm ²)	Σωλήνας (mm^2)	L1	L2	L3
Φωτιστικών	2.5	10	-	3x1.5	16	2.5		
1 ^η	6.5	16	-	3x2.5	16		6	
Ρευματοδοτών								
2 ^η	6	20	-	3x2.5	16	6.5		
Ρευματοδοτών								
Ψυγείου		16	-	3x2.5	16	16		
Κουζίνας		25	35	3x6	23			25
Πλ. Πιάτων		16	-	3x2.5	16		16	
Πλ. Ρούχων		16	-	3x2.5	16			
Υποπίνακα 1	20	25	25	3x6	23	16	20	9.5
Υποπίνακα 2	20	25	25	3x6	23	16	20	9.5
						56.5	62	44

Για τον υπολογισμό της γενικής αναχώρησης λαμβάνουμε την μεγαλύτερη τιμή από τις τρεις φάσεις που είναι τα 62Amp. Στην τιμή αυτή θέλουμε να εφαρμόσουμε έναν συντελεστή ετεροχρονισμού (0.75) αφού πρώτα αφαιρέσουμε από τα 62Amp την τιμή της έντασης που αντιστοιχεί στους ρευματοδότες μιας και σε αυτούς έχει υπολογιστεί ήδη ο ετεροχρονισμός. Δηλαδή έχουμε:

- 62Amp 6Amp = 56Amp
- 56Amp x 0.75Amp = 42Amp
- 42Amp + 6Amp = 48Amp

Επομένως, για τις ασφάλειες θα χρησιμοποιήσουμε τρεις ασφάλειες τήξεως των 50Amp, αποζεύκτη φορτίου 50Amp και ΔΔΡ τύπου Α με ονομαστικό διαφορικό ρεύμα λειτουργίας 30mA και ονομαστικό ρεύμα 63Amp. Οι πέντε αγωγοί της παροχής θα έχουν διατομή

 $5x16mm^2$ και ο σωλήνας διάμετρο 23mm. Το διαμέρισμα βρίσκεται σε περιοχή που η MT και η XT είναι με υπόγεια καλώδια, οπότε δεν χρειαζόμαστε SPDs.

Υπολογισμός πτώσης τάσης για τον γενικό πίνακα:

Γραμμή	Μήκος γραμμής l(m)	Διατομή αγωγού S(mm^2)	I(A)	ΔU
Φωτιστικών	19.35	1.5	2.5	0.5828
1η Ρευματοδοτών	10.5	2.5	6.5	0.4946
2 ^η Ρευματοδοτών	6.4	2.5	6	0.2783
Ψυγείου	7.1	2.5	16	0.8233
Κουζίνας	9.85	6	25	0.75
Πλ. Πιάτων	11.2	2.5	16	1.29
Πλ. Ρούχων	0.9	2.5	16	0.1043
Υποπίνακα 1	6.1	6	20	0.7437
Υποπίνακα 2	7.3	6	20	0.89

Για τον φωτισμό ισχύει $\Delta U \leq 3\%$ και για τα υπόλοιπα $\Delta U \leq 5\%$, οπότε βρισκόμαστε εντός ορίων. Παρακάτω βρίσκονται τα μονογραμμικά διαγράμματα.

Μάθημα: Ηλεκτρολογικό Σχέδιο	Ονοματεπώνυμο Βικέντιος Βιτάλης	Υπογραφή Βικέντιος Βιτάλης		
Εθνικό Μετσόβιο Πολυτεχνείο	Τύπος Εγγράφου Ηλεκτρολογικό Σχέδιο	AM el18803	AA_27	
Σχολή ΗΜΜΥ	Τίτλος, Υπότιτλος Αξονομετρικό Γ.Π.	Ημερομηνία 31/1/2022	Γλώσσα GR	Φύλλο 2/4

Μάθημα: Ηλεκτρολογικό Σχέδιο	Ονοματεπώνυμο Βικέντιος Βιτάλης	Υπογραφή Βικέντιος Βιτάλης		
Εθνικό Μετσόβιο Πολυτεχνείο	Τύπος Εγγράφου Ηλεκτρολογικό Σχέδιο	AM el18803	AA_27	
Σχολή ΗΜΜΥ	Τίτλος, Υπότιτλος Αξονομετρικό Γ.Π.	Ημερομηνία 31/1/2022	Γλώσσα GR	Φύλλο 3/4

Μάθημα: Ηλεκτρολογικό Σχέδιο	Ονοματεπώνυμο Βικέντιος Βιτάλης	Υπογραφή Βικέντιος Βιτάλης		
Εθνικό Μετσόβιο Πολυτεχνείο	Τύπος Εγγράφου Ηλεκτρολογικό Σχέδιο	AM el18803	AA_27	
Σχολή ΗΜΜΥ	Τίτλος, Υπότιτλος Αξονομετρικό Γ.Π.	Ημερομηνία 31/1/2022	Γλώσσα GR	Φύλλο 4/4

Κορμός :: 7° Εξάμηνο, Ακαδημαϊκό Έτος 2021-2022

Βικέντιος Βιτάλης el18803

