Example: Natural Images Data

Input: 4 million data points on \mathbb{S}^7 , coming from high-contrast 3×3 image patches

(source: [Lee, Pederson, Mumford 03])

Example: Natural Images Data

Example: Natural Images Data

Topology from Data

Input: point cloud $P \subset \mathbb{R}^d$

- → uncover the topological structure of the space(s) underlying the data
- → inspect data at all scales and see what 'persists'

provide theoretical guarantees

(sufficient sampling conditions under which the barcode of d_P reveals the homology of the underlying space)

In practice: The inference pipeline

Čech and Rips filtrations

Input: 4 million data points on \mathbb{S}^7 , coming from high-contrast 3×3 image patches

(source: [Lee, Pederson, Mumford 03])

Preprocessing: - select bottom x% of data points according to k-NN distance - sample 5000 points uniformly at random from filtered point set

Preprocessing: - select bottom x% of data points according to k-NN distance - sample 5000 points uniformly at random from filtered point set

Preprocessing: - select bottom x% of data points according to k-NN distance

- sample 5000 points uniformly at random from filtered point set

(source: [Carlsson, Ishkhanov, de Silva, Zomorodian 2008])

Preprocessing: - select bottom x% of data points according to k-NN distance

- sample 5000 points uniformly at random from filtered point set

(source: [Carlsson, Ishkhanov, de Silva, Zomorodian 2008])

$$f: \mathbb{N} \to \mathbb{R}$$

$$TD_{m,\tau}(f) := \begin{bmatrix} f(t) \\ f(t+\tau) \\ \vdots \\ f(t+m\tau) \end{bmatrix}$$

au: step / delay

 $m\tau$: window size

m+1: embedding dimension

signal

periodicity

prominent harmonics (N)

non-commensurate freq.

embedded data

circularity

min. ambient dimension $(m \ge 2N)$

intrinsic dimension $(\mathbb{S}^1 \times \cdots \times \mathbb{S}^1)$

Contributions of TDA:

inference of:

- periodicity
- harmonics
- non-commensurate freq.
- underlying state space

no Fourier transform needed

Dynamical system:

$$f_x(n) := \alpha(\phi^n(x))$$

Contributions of TDA:

inference of:

- periodicity
- harmonics
- non-commensurate freq.
- underlying state space

no Fourier transform needed

Dynamical system:

Thm: [Nash, Takens]

Given a Riemannian manifold X of dimension $\frac{m}{2}$, it is a **generic property** of $\phi \in \mathrm{Diff}_2(X)$ and $\alpha \in C^2(X,\mathbb{R})$ that

$$X \to \mathbb{R}^{m+1}$$

 $x \mapsto (\alpha(x), \alpha \circ \phi(x), \cdots, \alpha \circ \phi^m(x))$

is an embedding.

method / dataset	Gyro sensor	EEG dataset	EMG dataset
SVM + statistical features	67.6 ± 4.7	44.4 ± 19.8	15.0 ± 10.0
SVM + Betti sequence	63.5 ± 11.3	66.7 ± 5.6	49.6 ± 18.2
1-d CNN $+$ dynamic time warping	6.4 ± 5.1	72.4 ± 6.1	15.0 ± 10.0
imaging CNN	18.9 ± 5.2	48.9 ± 4.2	10.0 ± 0.0
1-d CNN + Betti sequence	79.8 ± 5.0	75.38 ± 5.7	74.4 ± 10.6

[Y. Umeda:"Time Series Classification via Topological Data Analysis", 2017]