Network 20q HW4

ZHANG Xiao Research Intern in IBM CRL September 16, 2017

1 Voting

1.1 Plurality voting

In plurality voting, only the first place of the positional voting counts, so in this voting 8/31 voters put A first, 12/31 put B first and 11 voters put C first. So the voting result is B > C > A.

1.2 Condorcet voting

While adapting this method, we need to count every validate pairwise comparison count, so for we could have the following counts:

Comparison Preference	Count	•
A > B	9 + 8 + 0 = 17	•
B > A	7 + 5 + 2 = 14	
A > C	8+5+0 = 13	(1)
C > A	9+7+2=18	
B > C	8+7+5=20	
C > B	9+2+0 = 11	

So we could get A > B, C > A and B > C, then we could get a cycle as A > B > C > A.

1.3 Borda Count

In this method, every first place in the voting could get 2 points, second place could get 1 points, and the final result will be extracted from the points each candidates got.

Then $P_A = 9*1+8*2+7*0+5*1+2*0+0*2 = 30$, $P_B = 9*0+8*1+7*2+5*2+2*1+0*0 = 34$, $P_C = 9*2+8*0+7*1+5*0+2*2+0*1 = 29$. Because $P_B > P_A > P_C$, we could conclude that B > A > C.

2 Perturbing flipping behaviors

a. In the first graph, while we start with p(0) = 0.01, the line would perturb up to the next equilibrium, that is $\frac{1}{3}$ which meet with the 45-degree line. So $p_{\infty} = \frac{1}{3}$.

b. Under this condition, the equilibrium at 0 do not exist any more, but the line would still perturb up to the next equilibrium, that is $\frac{1}{3}$ which meet with the 45-degree line. So $p_{\infty} = \frac{1}{3}$

c. In this graph, the equilibrium at $\frac{1}{3}and\frac{2}{3}$ do not exist any more, so when flip up, the line would not encounter the 45-degree line until when p=1. So $p_{\infty}=1$.