DILIAN MARROQUIN MATH 440.1001 SCRIBING WEEK 4

Due. 22 February 2021

Review of Last Lecture

Theorem (9.5). Let $A \subseteq X$ be a subset of a topological space X. Then $\overline{A} = A \cup L(A)$.

Lecture 10

Proposition (10.1). Let X be a space, $Y \subseteq X$ a subspace. Then $B \subseteq Y$ is closed in Y if and only if there exists a closed subset $A \subseteq X$ such that $B = Y \cap A$.

10.1. (\Longrightarrow) Suppose *B* ⊆ *Y* is closed. Recall that the subspace topology on *Y*, *W* ⊆ *Y*, is open if and only if $W = Y \cap U$ for some open $U \subseteq X$:

(\Leftarrow) Suppose $B = Y \cap A$, $A \cap X$ closed. We want to show B is closed in Y, that is, Y - B is open in Y. To do this, we work backwards from the picture above.

Closure is a Relative Notion...

Ex (10.2). Find \overline{A} .

- 1. Let $A = [-1, 0) \subseteq \mathbb{R}$. What is \overline{A} ? $\overline{A} = A \cap L(A) = [-1, 0]$ as a subset of \mathbb{R} .
- 2. Let $Y = [-1,0] \cup (0,2] \subseteq \mathbb{R}$. Give Y the subspace topology. Now $A = [-1,0) \subseteq Y$. What is \overline{A} ? Note: $A = Y \cap [-1,0]$. Prop 10.1 implies A is a closed subset of Y which implies $\overline{A} = A$ as a subset of Y.

Definition (10.3). Let *X* be a space, $A \subseteq X$. The <u>interior</u> of *A*, $\underline{\mathring{A} = Int(A)}$, is the union of all open subsets contained in *A*.

The **boundary** of *A* is the subset $\underline{\partial A} := \overline{A} - \mathring{A}$.

Remark (10.4). Facts about \mathring{A} and ∂A .

- 1. \mathring{A} is open in X and is the "largest" open subset of X contained in A.
- 2. $\partial A \subseteq X$ is a closed subset of X: $\partial A = \overline{A} \cap (X \mathring{A})$.

Ex (10.5). A few examples involving \mathring{A} and ∂A .

1.
$$X = \mathbb{R}, \overline{A} = (0,1).$$

 $\mathring{A} = A, \overline{A} = [0,1], \partial A = \overline{A} - \mathring{A} = \{0,1\}.$

2.
$$X = \mathbb{R}^2$$
, $A = \overline{B}_x(\varepsilon)$.

Proposition (10.6). Let X be a space. Let $A \subseteq X$, $x \in X$. Then $x \in \mathring{A}$ if and only if there is an open neighborhood $V \subseteq X$ of x such that $V \subseteq A$.

Proposition (10.7). Let *X* be a space, $A \subseteq X$, $x \in X$. Then $x \in \partial A$ if and only if for every open neighborhood $U \subseteq X$ of x, we have $U \cap A \neq \emptyset$ and $U \cap (X - A) \neq \emptyset$.

Lecture 11

Important Use of Closure

- Recall from Real Analysis: $\forall x \in \mathbb{R}$ and $\forall \varepsilon > 0$, $\exists q \in \mathbb{Q}$ such that $r \varepsilon < q < r + \varepsilon$.
- Important consequence of this: Every continuous function $f : \mathbb{R} \to \mathbb{R}$ is uniquely determined by its value on rationals, i.e. if $f, g : \mathbb{R} \to \mathbb{R}$ are continuous and $\forall q \in \mathbb{Q}$ where f(q) = g(q), then f = g.

Definition (11.1). Let X be a topological space. A subset $A \subseteq X$ is <u>dense</u> if and only if $\overline{A} = X$. We say X is <u>separable</u> if and only if X contains a countable dense subset, i.e. $\exists A \subseteq X$ such that $\operatorname{card}(A) = \operatorname{card}(\mathbb{N})$ and $\overline{A} = X$.

Main Examples

- $\mathbb{Q} \subseteq \mathbb{R}$ is dense and countable in Euclidean space.
- $\mathbb{Q}^n \subseteq \mathbb{R}^n$ is dense and countable. Therefore $(\mathbb{R}^n, \mathcal{T}_{\text{Euclid}})$ is separable.
- $(\mathbb{R}, \mathcal{T}_{cof})$. Let $U \subseteq \mathbb{R}$ be open and non-empty. By definition of \mathcal{T}_{cof} , $\mathbb{R} U$ is a finite subset of \mathbb{R} . $\overline{U} = \mathbb{R} \implies U$ is dense in \mathbb{R} .

Section M13: Basis for Topologies

- In this section, we will generalize open balls in Euclidean space.
- Recall how we characterized open subsets of \mathbb{R}^n : $U \subseteq \mathbb{R}^n$ is open if and only if U = union of open balls.

Definition (11.2). If X is a set, a **basis for a topology** on X is a collection \mathcal{B} of subsets of X such that

- 1. For each $x \in X$, there is at least 1 basis element $B \in \mathcal{B}$ such that $x \in B$.
- 2. If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, then there exists a $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$:

Key Idea: If $\mathcal B$ is a basis for a topology on a set X, then the topology generated by $\mathcal B$, $\mathcal T_{\mathcal B}$, is as follows:

 $U \in \mathcal{T}_{\mathcal{B}}$ is open if and only if $\forall x \in U$, $\exists B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq U$. $(X, \mathcal{T}_{\mathcal{B}})$

Proposition (11.3). $A \subseteq X$ is dense if and only if $A \cap U \neq \emptyset$ when U is any non-empty open subset of X.