

# UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERIA

## **SYLLABUS**

# PROYECTO CURRICULAR: INGENIERIA ELECTRONICA

| NOMBRE DEL DOCENTE:<br>ESPACIO ACADÉMICO (Asignatı | ıra): Ondas Electromagnéticas       |                                        |
|----------------------------------------------------|-------------------------------------|----------------------------------------|
|                                                    |                                     | CÓDIGO: 29                             |
| Obligatorio (X): Básico () Comp                    | olementario ( X )                   |                                        |
| Electivo ( ): Intrínsecas (                        | ) Extrínsecas ( )                   |                                        |
| NUMERO DE ESTUDIANTES:                             |                                     | GRUPO:                                 |
| NÚMERO DE CREDITOS: 3                              |                                     |                                        |
| TIPO DE CURSO:                                     | TEÓRICO (X) PRACTICO                | TEO-PRAC:                              |
| Alternativas metodológicas:                        |                                     |                                        |
| Clase Magistral ( X ), Seminario ( X               | ( ), Seminario – Taller ( ), Taller | (), Prácticas (),                      |
| Proyectos tutoriados ( ), Otro:                    |                                     |                                        |
| HORARIO:                                           |                                     |                                        |
| DIA                                                | HORAS                               | SALON                                  |
|                                                    | 2 horas<br>2 horas                  |                                        |
| I. JUSTIFICAC                                      | IÓN DEL ESPACIO ACADÉMI             | CO (¿El Por Qué?)                      |
| Uno de los terrenos de mayor ap                    | licación del estudio de las ono     | las electromagnéticas se halla en las  |
| comunicaciones. Estas son en la ac                 | ctualidad el eje del desarrollo pr  | oductivo y comercial a escala global.  |
| Revistas especializadas en desarroll               | o y economía, coinciden en afirr    | nar que después del año 2000 el 80%    |
| de los empleos serán en telecon                    | municaciones. No obstante, es       | xisten desde luego otras aplicaciones  |
| importantes como en la electromedi                 | cina, y la ecología. Como quiera    | que sea, una buena formación en estos  |
| tópicos es obligatoria para el ingen               | iero electrónico y además le abi    | re un amplio espectro de posibilidades |
| ocupacionales en los diversos campos               | de la investigación, la tecnología  | , la producción y la comercialización. |
| Los programas de Campos Electro                    | magnéticos y Ondas Electromag       | néticas se han elaborado teniendo en   |
| cuenta las exigentes necesidades                   | del ingeniero electrónico conte     | mporáneo y además utilizando como      |
| referencia otros programas de prestig              | giosas universidades del mundo.     |                                        |

## II. PROGRAMACIÓN DEL CONTENIDO

#### OBJETIVO GENERAL

Estudiar, analizar e interpretar las ecuaciones de Maxwell, la propagación, la recepción y radiación electromagnética.

### OBJETIVOS ESPECÍFICOS

Formular, analizar e interpretar las ecuaciones de Maxwell y las ecuaciones de onda electromagnética.

Estudiar, analizar e interpretar físicamente la propagación de ondas electromagnéticas en el vacío y en otros medios.

Desarrollar los modelos físicos de propagación de ondas electromagnéticas en guías de onda electromagnéticas.

Estudiar, analizar e interpretar los modelos físicos de radiación electromagnética.

Desarrollar, analizar e interpretar la física de los dipolos eléctrico y magnético radiando ondas electromagnéticas.

### RESULTADOS DE APRENDIZAJE

Demostrar el conocimiento de las ecuaciones de Maxwell

Explicar las leyes básicas de las ondas eléctricas y magnéticas.

Explicar la propagación de la onda en medios con y sin pérdida.

Explicar el comportamiento de las ondas electromagnéticas en medios guiados.

Emplear las leyes del electromagnetismo en un software de simulación en la solución de problemas.

### PROGRAMA SINTÉTICO

Ecuaciones de Maxwell y ondas electromagnéticas.

Propagación de ondas electromagnéticas.

Radiación electromagnética y sistemas radiantes.

Utilización de paquetes sobre Linux para graficar y resolver ecuaciones.

### III. ESTRATEGIAS

El espacio académico se desarrollará semanalmente de la siguiente manera:

Exposición magistral de acuerdo con el desarrollo de los contenidos.

Tareas para desarrollar en casa.

Utilización de paquetes sobre Linux para graficar y resolver ecuaciones.

Uso de programas de computadora para resolver problemas electromagnéticos usuales.

Sesiones de herramientas computacionales.

Trabajo virtual autónomo.

## Metodología Pedagógica y Didáctica:

| Horas |    |    | Horas           | Horas             | Total Horas         | Créditos |
|-------|----|----|-----------------|-------------------|---------------------|----------|
|       | _  |    | profesor/semana | Estudiante/semana | Estudiante/semestre |          |
| TD    | TC | TA | (TD + TC)       | (TD + TC + TA)    | 16 semanas          |          |
| 4     | 2  | 4  | 6               | 10                | 160                 | 2        |

Clases magistrales para proporcionar fundamentos teóricos

Trabajo Presencial Directo (TD): trabajo de aula con plenaria de todos los estudiantes.

Trabajo Mediado Cooperativo (TC): Trabajo de tutoría del docente a pequeños grupos individual a los estudiantes.

Trabajo Autónomo (TA): Trabajo con distintas instancias: en abajo del estudiante sin presencia del docente que se puede r s de trabajo o en forma individual, en casa o en biblioteca.

#### IV. RECURSOS

Aula y recursos de aula.

Video Beam.

Computadora portátil.

Recursos para el estudiante: Vídeos. Software para el trabajo virtual, artículos.

### BIBLIOGRAFIA

### TEXTOS GUÍAS

Lorrain P., Corson D., Campos y ondas electromagnéticos, selecciones científicas, Madrid, 1977.

Jodan E., Balmain K. Ondas electromagnéticas y sistemas radiantes, paraninfo, Barcelona 1978.

### TEXTOS COMPLEMENTARIOS

Balanis C., Advanced engineering electromagnetics, John Wiley, N Y 1998.

Jackson, Electrodinámica clásica, editorial reverte, Barcelona, 1973.

Papas Charles H., Theory of electromagnet of wave propagation, Dover publications, New York 1988.

Salmeron M. J., radiación, propagación y antenas, Editorial trillas, México 1981.

Antennas and propagation, IEEE, U. S. A.

Fields electromagnetics, IEEE, U. S. A.

### REVISTAS

### DIRECCIONES DE INTERNET

| V. ORGANIZACIÓN Y TIEMPOS                                      |                                                                                |                                                              |  |  |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|
| Ecuaciones de Maxwell y ondas electromagnéticas.  3 semanas.   | <ul><li>2. Propagación de ondas electromagnéticas.</li><li>5 semanas</li></ul> | Radiación electromagnética y sistemas radiantes.     semanas |  |  |  |
| 4. Resumen de herramienta computacionales simulación 3 semanas | 5. Revisión de tareas virtuales y computacionales 1 semana                     |                                                              |  |  |  |

| VI. EVALUACIÓN  |                                          |       |                |  |  |
|-----------------|------------------------------------------|-------|----------------|--|--|
| PRIMERA<br>NOTA | TIPO DE EVALUACIÓN Evaluaciones escritas | FECHA | PORCENTAJE 40% |  |  |
| SEGUNDA<br>NOTA | Evaluaciones escritas                    |       | 30%            |  |  |
| EXAMEN<br>FINAL | Evaluación escrita                       |       | 30%            |  |  |

## ASPECTOS PARA EVALUAR DEL CURSO

Evaluación del desempeño docente

Evaluación de los aprendizajes de los estudiantes en sus dimensiones: individual/grupo, teórica/práctica, oral/escrita.

Autoevaluación:

Coevaluación del curso: de forma oral entre estudiantes y docente.