ООО "ЗНГА Анодъ" 614030, г. Пермь, а/я 900

ОКП 14 6990

Протекторы алюминиевые ПАП, ПАКР, ПАКМ

по ТУ 1469-010-73892839-2008

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

ПА.1469.01РЭ

Пермь

УВАЖАЕМЫЕ КЛИЕНТЫ!

Мы стремимся поднять уровень качества нашей продукции для BAC!

Если Вы хотите оценить качество нашей продукции или у Вас есть какие-то жалобы, замечания или предложения, пожалуйста, сообщите нам об этом по e-mail: otk@pss.ru.

Мы детально рассмотрим все обращения и пришлем Вам ответ.

Ваши отзывы и замечания помогут нам понять, какие стороны нашей работы требуют улучшения и усовершенствования.

Спасибо за сотрудничество с нами!

Содержание

1 Описание и работа	
1.1 Назначение	
1.2 Технические характеристики	
1.3 Конструкция протектора	
1.4 Принцип действия протектора	
1.5 Комплектность	
2 Использование по назначению	10
2.1 Требования безопасности	10
2.2 Указания по установке	10
3 Транспортирование и хранение	10
4 Гарантии изготовителя	10
5 Свидетельство о приемке	11
6 Заметки по эксплуатации и хранению изделия	12

1 Описание и работа

1.1 Назначение

- 1.1.1 Протекторы алюминиевые короткозамкнутые резервуарные ПАКР, протекторы алюминиевые протяженные ПАП, протекторы алюминиевые короткозамкнутые морские ПАКМ, в дальнейшем изделия. ПАП, ПАКР предназначены для защиты от коррозии внутренних поверхностей резервуаров, нефтеотстойников, сепараторов и других сооружений. Протекторы устанавливаются на днище РВС горизонтально в виде сборки (гирлянды) стержней, соединенных друг с другом сваркой. ПАКМ предназначены для защиты гидротехнических сооружений, постоянно эксплуатирующихся в морской воде: свайных оснований портов, стационарных морских платформ, шпунтовых стенок, причальных групп, нефтяных вышек, кранов и т.п.
 - 1.1.2 Структура условного обозначения типоисполнения протекторов

ПА	X	X	X
1	2	3	4

- $1 \Pi A$ протектор алюминиевый
- $2 a) \Pi протяженный$
 - б) КР короткозамкнутый резервуарный
 - в) КМ -короткозамкнутый морской
- 3 возможные сечения: КТ, Т, К, ПК
- 4 типоисполнение
- 1.1.3 Предприятие-изготовитель постоянно совершенствует изделие и оставляет за собой право на внесение незначительных изменений в его конструкцию, которая может быть не отражена в настоящем руководстве по эксплуатации.

1.2 Технические характеристики

- 1.2.1 Изделия должны соответствовать требованиям технических условий ТУ 1469-010-73892839-2008.
 - 1.2.2 Химический состав протекторного сплава приведен в таблицах 1 и 2.

Таблица 1 – Характеристики протекторных сплавов

Марка	Основные компоненты, массовая доля, %							
сплава	Алюми-	Цинк	Маг-	Цирко-	Олово	Галий	Индий	Марганец
	ний		ний	ний				
АЦЦ-1	Основа	2,0-4,0	-	0,003-0,02	-	-	-	-
АЦ5Мг5	Основа	4,0-6,0	3,0-5,0	-	-	-	-	-
АП-1	Основа	4,0-6,0	-	-	-	-	-	-
АП-2	Основа	0,6-1,0	-	-	-	-	-	0,01-0,2
АП-3	Основа	4,0-6,0	-	0,001-0,1	-	-	-	-
АП-4	Основа	2,5-4,5	0,05-0,2	-	0,1-0,2	0,01-0,05	0,01-0,05	-
АП4Н	Основа	4,0-5,0	-	0,01-0,1	0,01-0,1	-	-	-
AK5 M2	Основа	0,022	1,0-2,0	-	-	-	-	0,191
АЦ5МГ5ч	Основа	4,0-6,0	3,0-5,0	0,001-0,01	-	-	-	0,1-0,5

Таблица 2 – Допустимая доля примесей в протекторных сплавах

Марка	Примеси, массовая доля, %				
сплава	Железо	Медь	Никель	Кремний	
АЦЦ-1	0,1	0,01	-	0,010	
АЦ5Мг5	0,1	0,01	0,1	0,15	
АП-1	0,10	0,01	-	0,10	
АП-2	0,10	0,01	-	0,10	
АП-3	0,10	0,01	-	0,10	
АП-4	0,10	0,01	-	0,10	
АП4Н	0,10	0,01	-	0,10	
AK5 M2	0,290	0,169	0,083	4,66	
АЦ5МГ5ч	0,10	0,01	0,10	0,10	

- 1.2.4 В приготовлении протекторного сплава применен первичный алюминий технической чистоты по ГОСТ 11069.
- 1.2.5 Поверхность протекторов не должна иметь флюсовых и оксидных включений и загрязнений. На литниковой части допускаются шлаковые и оксидные включения на глубину не более 15 мм. Утяжины и раковины допускаются глубиной не более 10 мм. На поверхности протекторов допускаются трещины длиной не более 100 мм и шириной не более 1 мм.

Следы вырубки и зачистки поверхности глубиной не более 10 мм браковочным признаком не являются.

1.2.6 Предельные отклонения размеров, мм:

по длине ± 6

по ширине ± 5

по высоте ± 5

на радиусы монтажных отверстий± 2

на смещение осей отверстий ± 1

на расположение арматуры ± 5

1.2.7 Предельные отклонения по массе протекторов от номинальной, %, не должны превышать:

для протекторов массой до $20~{\rm kr} \pm 10$ для протекторов массой свыше $20~{\rm kr} \pm 5$

1.2.8 Средний срок службы алюминиевых протекторов составляет от 3 до 10 лет, в зависимости от химического состава сплава, сопротивления грунта, кислотности среды, массы протектора и т.д.

1.3 Конструкция протектора

- 1.3.1 Протектор представляет собой соединение сердечника из стального круглого горячекатаного проката диаметром 5 мм и оболочки из протекторного сплава. Габаритные размеры и масса разных протекторов приведены в таблицах 3, 4 и на рисунках 1, 3, 4, 5, 6. Возможные сечения протекторов ПАП, ПАКР представлены на рисунке 2.
- 1.3.2 По согласованию с Заказчиком допускается изготовление сердечника из стали по другой нормативной документации. Сердечник перед установкой в кристаллизатор подвергается механической очистке от загрязнений и коррозии. Появление следов коррозии на свободных концах сердечника готовых протекторов браковочным признаком не является.
- 1.3.2 По согласованию с Заказчиком допускается иная форма и размеры протекторов, чем изображенная на рисунке 1 и 2.

Рисунок 1 – Форма протекторов ПАП, ПАКР, ПАКМ

Рисунок 2 – Возможные сечения протекторов ПАП, ПАКР

Таблица 3 – Размеры протекторов ПАКР, ПАП

Типоразмер протектора	Размеры, мм			Масса, кг, не
	$A^{\pm 10}$	В, не менее	Размер профиля	менее
			сечения (\emptyset, \square) , мм	(справочно)
ПАП-К	B+150	Указывает	40	3,5/1 м
ПАП-Т		заказчик	высота-40, основание -	1,8/1 м
			40, основание - 30	
ПАП-ПК			40	3,9/1 м
ПАКР-5-КТ (К, Т, ПК)	950	550	60	5,5
ПАКР-8-1-КТ (К, Т, ПК)	910	310	100	9,0
ПАКР-8-2-КТ (К, Т, ПК)	1450	850	60	8,8
ПАКР-10-1-КТ (К, Т, ПК)	980	380	100	11,0
ПАКР-10-2-КТ (К, Т, ПК)	1650	1050	60	10,8
ПАКР-12-1-КТ (К, Т, ПК)	1060	460	100	13,0
ПАКР-12-2-КТ (К, Т, ПК)	1850	1250	60	12,8
ПАКР-15-1-КТ (К, Т, ПК)	1170	570	100	16,0
ПАКР-15-2-КТ (К, Т, ПК)	2160	1560	60	16,0
ПАКР-18-КТ (К, Т, ПК)	1280	680	100	19,0
ПАКР-20-КТ (К, Т, ПК)	1350	750	100	21,0

Примечание – Протекторы могут изготавливаться любого сечения. Сечение КТ распространяется только на протекторы ПАКР. Размер профиля сечения Т для протекторов ПАКР – высота и верхнее основание раны указанному в таблице, нижнее основание равно указанному в таблице минус 10. Размеры профиля сечения приведены для конструирования кристаллизаторов и на изделии не контролируются.

1. Поз 1 – протектор. Материал – сплав АЦ5МГ5. 2. Поз.2 – арматура. Материал – сталь Ст.З по ГОСТ380–94.

Рисунок 3 – Протектор ПАКР-8

1 - арматура, 2 – протекторный сплав

Рисунок 4 — Протектор ПАКМ-40

1, 2 – арматура, 3 – сплав протекторный

Рисунок 5 – Протектор ПАКМ-65

1, 2 – арматура, 3 – сплав протекторный

Рисунок 6 – Протектор ПАКМ-80

Таблица 4 – Массы протекторов типов ПАКМ

Типоразмер протектора	Масса протекторного сплава, кг	Масса арматуры, кг	Масса петли, кг	Масса в сборе, кг
ПАКМ-40	37±2	5,09	-	42,09±2
ПАКМ-65	57±3	9,38	0,26	66,64±3
ПАКМ-80	72±4	9,38	0,26	81,64±4

1.4 Принцип действия протектора

1.4.1 Принцип действия протекторной защиты заключается в создании защитного потенциала при протекании тока в гальванической паре сооружение-протектор.

В цепи сооружение-протектор протектор является анодом, а сооружение – катодом.

Ток, стекая с протектора, входит в сооружение и подавляет или ограничивает действие коррозионных элементов на его поверхности, а, следовательно, и предотвращает коррозионное разрушение сооружения.

1.5 Комплектность

В комплект изделия должны входить:

- партия протекторов;
- руководство по эксплуатации.

2 Использование по назначению

Протектор рекомендуется использовать для защиты от коррозии подводной части строящихся и эксплуатирующихся сооружений.

2.1 Требования безопасности

- 2.1.1 Алюминий и его сплавы в виде слитков малотоксичны, пожаровзрывобезопасны.
- 2.1.2 Не следует допускать контакта продукции с проводами, находящимися под электрическим напряжением.
- 2.1.3 При соблюдении правил хранения и транспортировки протекторы вредного воздействия на окружающую среду не оказывают.

2.2 Указания по установке

2.2.1 Монтаж протектора производится в соответствии с рабочим проектом на организацию катодной защиты.

3 Транспортирование и хранение

- 3.1 Протекторы транспортируют в крытых вагонах, контейнерах, судах и автомашинах, защищенных от атмосферных осадков, при соблюдении условий хранения 5 по ГОСТ 15150.
- 3.2 Протекторы должны храниться в сухом, закрытом, вентилируемом помещении, разложенные по типоразмерам, а в пределах каждого типоразмера по маркам сплавов. Условия хранения 3 по ГОСТ 15150 в помещениях, защищенных от действия активных реагентов.

4 Гарантии изготовителя

- 4.1 Изготовитель гарантирует соответствие изделий требованиям технических условий ТУ 1469-010-73892839-2008 при соблюдении потребителем условий транспортирования, хранения, монтажа и эксплуатации.
- 4.2 Гарантийный срок с момента ввода в эксплуатацию, с учетом комплектности изделия 3 года. Срок хранения у потребителя 1 год.
- 4.3 Гарантийный срок эксплуатации изделий, поставляемых в пределах Российской Федерации, устанавливается 2 года со дня ввода изделий в эксплуатацию, но не более 2,5 лет со дня передачи (отгрузки) потребителю при хранении изделий в условиях, установленных техническими условиями, и эксплуатации в условиях и режимах, установленных техническими условиями.
- 4.4 Гарантийный срок эксплуатации изделий, поставляемых на экспорт, устанавливается 2 года со дня ввода в эксплуатацию, но не более 2,5 лет с момента проследования изделий через государственную границу Российской Федерации, при хранении изделий в условиях, установленных техническими условиями, и эксплуатации в условиях и режимах, установленных техническими условиями.

4.5 Гарантийный срок эксплуатации изделий, поставляемых в ОАО АК «Транснефть» и ОАО «Газпром» устанавливается 3 лет, но не более 3,5 лет, с учетом срока хранения, после покупки изделий у изготовителя, при хранении изделий в условиях, установленных техническими условиями, и эксплуатации в условиях и режимах, установленных техническими условиями.

5 Свидетельство о приемке

Партия протекторов		в количестве	
т)	тип)		
№ партии			
Контролер ОТК)
МП	(лата)		

6 Заметки по эксплуатации и хранению изделия

После доставки протектора и размещения его на хранение организация потребитель заполняет таблицу 5.

Таблица 5 – Учет сроков и условий хранения протектора

Дата		Условия	- F	
приемки на	снятия с	хранения	Вид хранения	Примечание
хранение	хранения			

СИСТЕМА СЕРТИФИКАЦИИ ГОСТ Р

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СЕРТИФИКАТ СООТВЕТСТВИЯ

No

РОСС RU.ПЩ01.Н14383

Срок действия с 14.04.2017

по 13.04.2020

№ 2220036

ОРГАН ПО СЕРТИФИКАЦИИ

рег. № RA.RU.11ПЩ01

Орган по сертификации продукции "Контур" ООО "Контур-Сертификация", адрес: Россия, 101000, город Москва, улица Мясницкая, дом 41, строение 4. Телефон (495) 665-21-90. Адрес электронной почты: info.kontur.rus@gmail.com

продукция

Протекторы алюминиевные. Серийный выпуск.

код ОК 005 (ОКП): 24.20.40.000 (ОКПД 2)

СООТВЕТСТВУЕТ ТРЕБОВАНИЯМ НОРМАТИВНЫХ ДОКУМЕНТОВ

ТУ 1469-010-73892839-2008 Протекторы алюминиевые

код ТН ВЭД России:

Общество с ограниченной ответственностью «Завод нефтегазовой аппаратуры Анодъ». ОГРН: **ИЗГОТОВИТЕЛЬ** Общество с ограниченной ответственностью «Завод нефтегазовой аппаратуры Аноды 1055903910204, ИНН: 5907027941, КПП: 590701001. Адрес: 614112, РОССИЯ, г. Пермь, ул. Репина, д. 115. Телефон/Факс: 8 (342) 274-59-85, 8 (342) 294-08-27, E-mail: anod@pss.ru.

Общество с ограниченной ответственностью «Завод нефтегазовой аппаратуры СЕРТИФИКАТ ВЫДАН Анодь». ОГРН: 1055903910204, ИНН: 5907027941, КПП: 590701001. Адрес: 614112, РОССИЯ, г. Пермь, ул. Репина, д. 115. Телефон/Факс: 8 (342) 274-59-85, 8 (342) 294-08-27, E-mail: anod@pss.ru.

Протокол испытаний № 16/2519 от 29.03.2017 года, Испытательной лаборатории "Тестна основании Эксперт" (Аттестат аккредитации № POCC RU.31578.04ОЛНО.ИЛОЗ от 09.01.2017 года по 09.01.2020).

дополнительная информация

Схема сертификации: 3

Руководитель органа

Эксперт

С.А. Никифоров

И.А. Александрова инициалы, фамилия

Сертификат не применяется при обязательной сертификации