

Università degli Studi di Trento Fisica Computazionale

Corso di Laurea Triennale in Fisica

Relazione di laboratorio

Progetto finale: Equazione di Schrödinger in 1D

January 10, 2025

Candidato:

Giorgio Micaglio, giorgio.micaglio@studenti.unitn.it Matricola 227051

Docente:

Prof. Alessandro Roggero

Anno Accademico 2023-2024

1 Introduzione

L'obiettivo di questo progetto è risolvere numericamente l'equazione di Schrödinger in una dimensione:

$$i\frac{\partial}{\partial t}\psi(x,t) = \left[-\frac{\partial^2}{\partial x^2} + V(x)\right]\psi(x,t). \tag{1}$$

Per semplicità, si sono posti $\hbar = m = 1$. Si è interessati alla regione $x \in [-L, L]$ e si impongono le condizioni al contorno $\psi(-L, t) = \psi(L, t) = 0$. Si vogliono studiare i casi di particella libera V(x) = 0 e di potenziale a doppia buca $V(x) = V_0(x^2 - a^2)^2$.

1.1 Metodo di Eulero esplicito

Il primo approccio è quello di utilizzare il metodo di Eulero esplicito. Per prima cosa, si usano le differenze finite per stimare le derivate della funzione d'onda che compaiono in (1). Siano $x = x_0 + \Delta x$ e $t = t_0 + \Delta t$, si ottiene:

$$\begin{split} \frac{\partial \psi(x,t)}{\partial t} &= \frac{\psi(x_0,t_0+\Delta t) - \psi(x_0,t_0)}{\Delta t} + \mathcal{O}(\Delta t) \,, \\ \frac{\partial^2 \psi(x,t)}{\partial x^2} &= \frac{\psi(x_0+\Delta x,t_0) - 2\psi(x_0,t_0) + \psi(x_0-\Delta x,t)}{\Delta x^2} + \mathcal{O}(\Delta x^2) \,. \end{split}$$

L'equazione di Schrödinger diventa quindi:

$$i\frac{\psi(x_0,t_0+\Delta t)-\psi(x_0,t_0)}{\Delta t} = -\frac{\psi(x_0+\Delta x,t_0)-2\psi(x_0,t_0)+\psi(x_0-\Delta x,t_0)}{\Delta x^2} + V(x_0)\psi(x_0,t_0).$$

Prendendo $\Delta x = 2L/(N+1)$, si possono definire la funzione d'onda e il potenziale calcolati sui punti della griglia come

$$\psi_i^k = \psi(-L + i\Delta x, t_0 + k\Delta t)$$
 $i = 0, 1, ..., N + 1$ $k = 0, 1, ..., M$
 $V_i = V(-L + i\Delta x)$ $i = 0, 1, ..., N + 1$

e si può scrivere l'equazione in modo più chiaro:

$$i \frac{\psi_i^{k+1} - \psi_i^k}{\Delta t} = - \frac{\psi_{i+1}^k - 2\psi_i^k + \psi_{i-1}^k}{\Delta x^2} + V_i \psi_i^k \; .$$

Isolando il termine ψ_i^{k+1} e semplificando, si ottiene

$$\psi_i^{k+1} = \eta \psi_{i+1}^k + (1 - 2\eta + \Delta \tau V_i) \psi_i^k + \eta \psi_{i-1}^k,$$
(2)

dove $\Delta \tau = -i\Delta t$ e $\eta = -\Delta \tau/\Delta x^2$. L'equazione (2) rappresenta l'evoluzione temporale della funzione d'onda. Come ultimo passaggio, si può definire il vettore

$$\boldsymbol{\psi}_k = (\psi_1^k, \psi_2^k, \dots, \psi_N^k)^T$$

e l'equazione (2) diventa

$$\psi_{k+1} = A\psi_k \tag{3}$$

con

$$A = \begin{pmatrix} 1 - 2\eta + \Delta \tau V_1 & \eta & 0 & \cdots & 0 \\ \eta & 1 - 2\eta + \Delta \tau V_2 & \eta & \cdots & 0 \\ 0 & \eta & 1 - 2\eta + \Delta \tau V_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \eta \\ 0 & 0 & 0 & \eta & 1 - 2\eta + \Delta \tau V_N \end{pmatrix}$$

La matrice A è tridiagonale: ciò semplifica molto la computazione della moltiplicazione matrice per vettore. Inoltre, scrivendo $A = \mathbb{1} + i\Delta tH$, si ottiene direttamente la matrice Hamiltioniana, che è indipendente dal passo temporale Δt .

1.2 Metodo di Crank-Nicolson

Il metodo di Crank-Nicolson combina mezzo passo del metodo di Eulero esplicito con mezzo passo del metodo implicito. Utilizzando la matrice H appena calcolata, il passo esplicito da fare è 1

$$\psi_{k+1/2} = \left(\mathbb{1} + i\frac{\Delta t}{2}H\right)\psi_k\,,$$

seguito dal passo implicito, cioè

$$\left(\mathbb{1} - i\frac{\Delta t}{2}H\right)\psi_{k+1} = \psi_{k+1/2}.$$

Per risolvere il passo implicito, sia $M = (1 - i\frac{\Delta t}{2}H)$. Come si è già visto, questa matrice è tridiagonale e può essere fattorizzata nel seguente modo:

$$M = \begin{pmatrix} a_1 & c_1 & 0 & 0 & \cdots \\ e_2 & a_2 & c_2 & 0 & \cdots \\ 0 & e_3 & a_3 & c_3 & \cdots \\ 0 & 0 & e_4 & a_4 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots \\ \beta_2 & 1 & 0 & 0 & \cdots \\ 0 & \beta_3 & 1 & 0 & \cdots \\ 0 & 0 & \beta_4 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \alpha_1 & \gamma_1 & 0 & 0 & \cdots \\ 0 & \alpha_2 & \gamma_2 & 0 & \cdots \\ 0 & 0 & \alpha_3 & \gamma_3 & \cdots \\ 0 & 0 & 0 & \alpha_4 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} = LU.$$

Nel caso considerato, i coefficienti di M sono

$$a_i = 1 + \eta - V_i \frac{\Delta \tau}{2}$$
, $c_i = e_i = -\frac{\eta}{2}$

e da questi si possono ricavare quelli di L e U partendo da $\alpha_1 = a_1$:

$$\beta_i = -\frac{\eta}{2\alpha_{i-1}}, \qquad \gamma_i = -\frac{\eta}{2}, \qquad \alpha_i = a_i - \frac{\eta^2}{4\alpha_{i-1}}. \tag{4}$$

Infine, per risolvere $LU\mathbf{x} = \mathbf{b}$, con $\mathbf{x} = \psi_{k+1}$ e $\mathbf{b} = \psi_{k+1/2}$, si risolve prima ricorsivamente $L\mathbf{y} = \mathbf{b}$:

$$y_1 = b_1$$
 $y_i = b_i - \beta_i y_{i-1}$ $i = 2, \dots, N$ (5)

e poi ricorsivamente $U\mathbf{x} = \mathbf{y}$:

$$x_N = \frac{y_N}{\alpha_N} \qquad x_i = \frac{y_i}{\alpha_i} - \frac{x_{i+1}\gamma_i}{\alpha_i} \qquad i = N - 1, \dots, 0.$$
 (6)

2 Simulazione di particella libera

Il caso in cui V(x)=0 è quello di particella libera. Si usa come condizione iniziale $\psi(0,0)=1$ e $\psi(x,0)=0 \ \forall x\neq 0$. Si fanno andare le simulazioni con N=100 divisioni spaziali, $L=1,\ M=3\times 10^4$ passi temporali, $\Delta t=1\times 10^{-6}$.

La struttura delle simulazioni con i due metodi è semplice:

- Nel caso del metodo di Eulero esplicito, ad ogni passo basta effettuare la moltiplicazione matrice per vettore di equazione (3). Come già accennato, siccome la matrice è tridiagonale, la computazione è meno dispendiosa: si tratta di un algoritmo $\mathcal{O}(N)$ invece che $\mathcal{O}(N^2)$, dove la matrice è $N \times N$.
- Per il metodo di Crank-Nicolson invece, per ogni passo della simulazione si esegue il mezzo passo esplicito allo stesso modo di Eulero e poi si inverte la matrice del passo implicito con le regole di ricorsione (4), (5) e (6), che sono anch'esse $\mathcal{O}(N)$.

¹Mentre la notazione ψ_k corrisponde a $\psi(t)$, la notazione $\psi_{k+1/2}$ corrisponde a $\psi(t+\Delta t/2)$

Per studiare il comportamento di entrambi i metodi, si calcola ad ogni passo temporale la normalizzazione della funzione d'onda, cioè

$$\mathcal{N}(t) = \int_{-L}^{L} |\psi(x,t)|^2 \,\mathrm{d}x \ .$$

Naturalmente ci si aspetta di avere $\mathcal{N}(t) = 1$, ma come si può notare in figura 1 il metodo di Eulero viola questa condizione! Il problema risiede proprio nel fatto che il metodo è di tipo esplicito e, come per le equazioni differenziali ordinarie, la convergenza non è garantita.

Figura 1: Evoluzione temporale della normalizzazione della Figura 2: Evoluzione temporale dei valori di aspettazione $\langle x \rangle$ funzione d'onda nei due metodi e $\langle x^2 \rangle$ nella simulazione con Crank-Nicolson

È conveniente dunque affidarsi al metodo di Crank-Nicolson, del quale si verifica la corretta implementazione mostrando l'evoluzione temporale dei valori medi $\langle x \rangle$ e $\langle x^2 \rangle$ in figura 2.

3 Simulazione con potenziale a doppia buca