Algoritmos e Estruturas de Dados III

1 - Apresentação da Disciplina

Prof. Hayala Curto 2022

Sobre o Professor

Graduado em Ciência da Computação pela PUC-MINAS

MBA em Gestão de Projetos pela FGV

MBA em Gestão Empresarial pela FGV

Mestre em Informática pela PUC-MINAS

Certificado como PMP, PMI-SP, PMI-RMP e IPMA-C

Voluntário PMI-MG e PMI Brasil

Experiência como gerente de projetos, gerente funcional, e consultor (em GP)

Professor de Graduação desde 2009

Abriu 3 empresas: AgendaFree, Pentagrama, NetProject

Cruzeirense, ex-jogador de basquete, pai do Yago e da Layla

Referências

- Cormem, T., Leiserson, C., Rivest, R. Algoritmos. Campus, 2012.
- Sedgewick, R. Wayne, K. Algorithms. Addison-Wesley, 2011.
- Ziviani, N. Projeto de Algoritmos com implementações em Pascal e C. Cengage Learning, 2010.
- CORMEN, Thomas H. Desmistificando algoritmos. Rio de Janeiro: Elsevier, 2014. E-book. ISBN 9788595153929.
- GOODRICH, Michael T. Projeto de algoritmos: fundamentos, análise e exemplos da internet. Porto Alegre: Bookman,
- 2004. E-book. ISBN 9788577803422.
- RAMAKRISHNAN, Raghu. Sistemas de gerenciamento de banco de dados. Porto Alegre: AMGH, 2008.
- FOLK, Michael J., ZOELLICK, Bill; RICCARDI, Greg. File Structures: an object-oriented approach with C++.
- Reading: Addison Wesley, 1998. ISBN 0201874016.
- SALZBERG, Betty J. File Structures: an analytic approach. Prentice Hall, 1998. ISBN: 9780133146912.
- LIVADAS, Panos E. File Structures: theory and practice. Prentice Hall, 1990. ISBN 9780133150940

Objetivos

Capacitar o aluno a projetar, implementar e analisar estruturas de dados em memória secundária, dando a ele condições para implementar e analisar algoritmos de ordenação e pesquisa em memória secundária.

Apresentar algoritmos fundamentais de casamento de padrões, compactação e criptografia mostrando sua aplicabilidade em problemas reais.

Estruturas de dados em memória secundária. Algoritmos de ordenação e pesquisa em memória secundária. Árvores Digitais.

Compressão de dados.

Revisão de Pesquisa Digital

Casamento de padrões.

Criptografia.

Estruturas de dados em memória secundária. Algoritmos de ordenação e pesquisa em memória secundária. Árvores Digitais.

Compressão de dados.

Revisão de Pesquisa Digit

Casamento de padrões.

Criptografia.

- Memória secundária Armazenamento permanente com capacidade muito superior à memória principal
- Arquivos Podem ser usados para armazenar dados estruturados em memória secundária e contam com as 4 operações básicas de dados estruturados (CRUD), além de algumas outras de manutenção
- Outras estruturas de dados Semelhantes às de AED2, porém preocupadas com a redução das operações de acesso à memória secundária (árvore B, tabela hash extensível, listas invertidas e árvore digital)

Estruturas de dados em memória secundária. Algoritmos de ordenação e pesquisa em memória secundária. Árvores Digitais.

Compressão de dados.

Revisão de Pesquisa Digita

Casamento de padrões.

Criptografia.

 Compressão de dados – Redução sem perda da quantidade de bytes de um determinado conteúdo

Estruturas de dados em memória secundária. Algoritmos de ordenação e pesquisa em memória secundária. Árvores Digitais.

Compressão de dados.

Revisão de Pesquisa Digital

Casamento de padrões.

Criptografia.

Revisão de Pesquisa Digital (já estudado em AED 2)

Estruturas de dados em memória secundária. Algoritmos de ordenação e pesquisa em memória secundária. Árvores Digitais.

Compressão de dados.

Revisão de Pesquisa Digital

Casamento de padrões.

Criptografia.

Casamento de padrões – Busca de determinadas sequências de símbolos em um conteúdo

Estruturas de dados em memória secundária. Algoritmos de ordenação e pesquisa em memória secundária. Árvores Digitais.

Compressão de dados.

Revisão de Pesquisa Digita

Casamento de padrões.

 Criptografia – Transformações reversíveis de um conteúdo para que se torne sigiloso

Criptografia.

Plano de ensino

Memória Secundária

- Estrutura dos discos rígidos e SSD
- Arquivos e fluxos de entrada e saída
 - Arquivos como vetores de bytes
 - CRUD
- Arquivo de dados estruturados

Tipos de arquivos

- Sequenciais
 - ordenação externa por intercalação balanceada
 - segmentos tamanho variável
 - seleção por substituição
- Indexados
- Árvore B e B+
- Tabelas Hash Extensível
- Listas invertidas

Plano de ensino

- Compressão
 - Estatística
 - Elias Gama
 - Entropia
 - Huffman
 - Run-Length Encoding
 - Shannon-Fano
 - Dicionários
 - LZ77, LZ78 e LZW
- Revisão de Pesquisa Digital
 - o Trie, Árvore Digital Binária, Árvore de Prefixo e Árvore PATRICIA

Plano de ensino

Casamento de Padrões

- Força bruta
- o KMP
- Shift-And
- o Boyer Moore
- Aho Corasick
- Casamento aproximado

Criptografia

- o cifras de substituição
- o cifras de transposição
- o cifras de fluxo
- o cifras de bloco
- DES, 3DES, TDES, AES

Plano de Ensino

→ Memória Secundária

- → Estrutura dos discos rígidos e SSD
 - → Tempo das operações
- Arquivos e fluxos de entrada e saída
 - Arquivos como vetores de bytes
 - → CRUD
- → Arquivo de dados estruturados

→ Tipos de arquivos

- → Arquivos Sequenciais
 - → Ordenação externa
 - Intercalação balanceada
 - → segmentos tamanho variável
 - → seleção por substituição
- Arquivos Indexados
- → Árvore B e B+
- → Tabelas Hash Extensível
- Listas invertidas

→ Compressão

- → Estatística
 - → Flias Gama
 - → Entropia
 - → Huffman
 - Run-Length Encoding
 - → Shannon-Fano
- → Dicionários
 - → LZ77
 - -_.. → LZ78
 - → LZW

→ Criptografia

- → Cifras de substituição
- → Cifras de transposição
- → Cifras de fluxo
- → Cifras de bloco
- DES, 3DES, TDES, AES

→ Revisão de Pesquisa Digital

- → Trie
- → Árvore Digital Binária
- → Árvore de Prefixo
- → Árvore PATRICIA

→ Casamento

de

Padrões

- → Força bruta
- → KMP
- → Shift-And
- → Boyer Moore
- → Aho Corasick
- → Casamento aproximado

Spoilers..

Por que o novo SSD da Samsung é diferente de todos do mercado?

A partir de uma parceria com a AMD Xilinx, a Samsung lançou a segunda versão do seu SmartSSD, uma unidade SSD que promete muito mais do que apenas armazenar arquivos.

Lançado pela primeira vez em 2020, o produto é chamado "inteligente" porque tem a capacidade de processar os dados armazenados por conta própria, sem depender da CPU, GPU e RAM do computador.

https://gizmodo.uol.com.br/por-que-o-novo-ssd-da-samsung-e-diferente-de-todos-do-mercado/

Spoilers..

Mas para que serve a criptografia?

Criptografia é o processo de cifrar dados para que possam ser lidos apenas por alguém com os meios para decifrá-los.

Apesar de muitas vezes imperceptível, a criptografia faz parte da rotina de bilhões de pessoas. A segurança de dados é central não só para o sigilo das comunicações e do bem-estar individual, mas também para a estabilidade e continuidade da oferta de produtos e serviços no meio digital. Ela é cada vez mais importante à medida que conectamos serviços essenciais para a sociedade à rede. Isso inclui serviços de saúde, bancários, de provimento de energia e de comércio eletrônico.

APLICATIVOS DE MENSAGENS

A criptografia garante o sigilo e a integridade das mensagens em aplicativos

SERVIÇOS DE SAÚDE

A criptografia protege dados sensíveis de pacientes e sistemas digitais hospitalares

INTERNET BANKING

A criptografia protege informações em ferramentas de Internet banking

COMÉRCIO ELETRÔNICO

A criptografia é usada nas transações comerciais digitais

CENTRAIS DE ENERGIA

A criptografia garante a estabilidade e segurança de redes elétricas

direitosnarede.org.br

Processo de avaliação

- Provas $3 \times 20 = 60$
- ADA = 5
- Trabalhos Práticos 25 pontos e parte teórica 1 ponto
 - onde NOTA[TP] x NOTA[TT]
- Trabalho sobre artigo científico 7
- Exercícios 3 pontos

Total 100

Reavaliação ≡ 20 pontos para substituir a nota da menor prova sendo que o aluno aprovado na reavaliação terá nota igual a 60

Cronograma

Disponível no Canvas.

Como serão os encontros?

1 aula presencial + 1 aula síncrona

Conteúdos + implementações + análises de complexidade

Os Trabalhos Práticos (TP) serão discutidos nos nossos encontros.

Obrigado!

Hayala.curto@sga.pucminas.br

https://br.linkedin.com/in/hayala/