

Data de Emissão: 17/08/2018

Instituto de Informática

Departamento de Informática Teórica

Dados de identificação

Disciplina: TÓPICOS ESPECIAIS EM COMPUTAÇÃO XXVII

Período Letivo: 2018/2 Período de Início de Validade: 2018/2

Professor Responsável pelo Plano de Ensino: LUCIO MAURO DUARTE

Sigla: INF05022 Créditos: 4

Carga Horária: 60h CH Autônoma: 10h CH Coletiva: 50h CH Individual: 0h

Súmula

Assuntos relacionados a inovações tecnológicas decorrentes de pesquisas recentes ou a aplicações específicas, de interesse a um grupo restrito ou tendo caráter de temporalidade, enfocando aspectos não abordados ou abordados superficialmente em disciplinas regulares.

Currículos

Carriodico		
Currículos	Etapa Aconselhada	Natureza
BIOTECNOLOGIA MOLECULAR		Eletiva
BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO		Eletiva

Objetivos

Título: Verificação de Software

O principal objetivo da disciplina é apresentar conceitos e técnicas fundamentais de verificação de software e sua inserção dentro do desenvolvimento de um software, além de oportunizar a aplicação prática destes conceitos e permitir a discussão das vantagens e limitações de cada técnica apresentada.

Ao final da disciplina, espera-se que o aluno: (i) entenda a importância da validação e verificação para a qualidade de sistemas computacionais; (ii) possua capacidade de criar modelos de comportamento para sistemas simples; (iii) compreenda o funcionamento de verificadores de modelo e saiba utilizá-los para verificar propriedades; (iv) possua conhecimentos básicos de prova de teoremas e esteja habilitado a utilizar uma ferramenta que usa esta técnica de verificação; (v) conheça os principais desafios em verificação de software.

Conteúdo Programático

Semana: 1 a 3

Título: Introdução

Conteúdo: - Apresentação da disciplina;

- Conceitos básicos de validação e verificação e sua aplicação no ciclo de desenvolvimento de software;
- Identificação de requisitos funcionais e não funcionais
- Propriedades de sistemas computacionais
- Realização de trabalho sobre requisitos e propriedades

Semana: 4 a 9

Título: Prova de Teoremas

Conteúdo: - Revisão de Teoria dos Conjuntos e Lógica de Primeira Ordem

- Especificação de propriedades
- Introdução à Prova de Teoremas
- Provadores de teoremas
- Exercícios com ferramenta de apoio
- Tópicos avançados em Prova de Teoremas
- Realização de trabalho prático
- Apresentação de trabalhos

Semana: 10 a 15

Data de Emissão: 17/08/2018

Título: Verificação de Modelos

Conteúdo: - Introdução à Verificação de Modelos

- Modelagem de sistemas

- Introdução a Lógica Temporal

- Lógica Temporal Linear (LTL)

- Especificação de propriedades em LTL

- Uso de verificadores de modelos

- Realização de trabalho prático

- Apresentação de trabalhos

Metodologia

Os professores da disciplina conduzirão atividades em sala de aula e proporão atividades extra-classe que estimulem o aluno a: compreender a importância das técnicas estudadas; desenvolver as capacidades necessárias para entender a sua aplicação prática; e utilizar ferramentas de forma efetiva para aplicar os conhecimentos teóricos adquiridos. A disciplina contará com o uso de ferramentas computacionais simples para auxiliar na compreensão dos conceitos teóricos e no desenvolvimento de habilidades necessárias para aplicar as técnicas estudadas. Por este motivo, algumas aulas serão realizadas em laboratório e trabalhos práticos serão propostos e utilizados como instrumento de avaliação do aprendizado.

Carga Horária

Teórica: 44 Prática: 16

Experiências de Aprendizagem

Além das aulas expositivas, os alunos terão oportunidade de utilizar ferramentas computacionais em laboratório para a experimentação dos conteúdos apresentados em aula. Tais ferramentas serão também utilizadas no desenvolvimento dos trabalhos propostos, como atividades autônomas, nos quais basear-se-á a avaliação do desempenho do aluno na disciplina.

Critérios de avaliação

Serão realizados três trabalhos, T1, T2 e T3, considerando os seguintes conteúdos:

T1: Especificação de propriedades

T2: Prova de Teoremas

T3: Verificação de Modelos

Todos os 3 trabalhos incluem a confecção de um relatório, o qual é avaliado. Além disso, os trabalhos T2 e T3 são práticos, utilizando as ferramentas computacionais de apoio da disciplina, e incluem apresentação em aula para discussão dos resultados.

A média final (M) será calculada da seguinte forma:

M = (0.2 * T1) + (0.4 * T2) + (0.4 * T3)

A conversão da média M para conceitos será realizada como descrito a seguir:

Faltas > 25% : FF (reprovado)

M < 6.0 : sem conceito (recuperação) - ver Atividades de Recuperação Previstas

6.0<= M < 7.5 : C (aprovado) 7.5 <= M < 9.0 : B (aprovado) 9.0 <= M : A (aprovado)

Obs: Somente serão calculadas as médias finais daqueles alunos que obtiverem, ao longo do semestre, um índice de frequência às aulas igual ou superior a 75% das aulas previstas. Aos que não satisfizerem este requisito, será atribuído o conceito FF (Falta de Frequência).

Data de Emissão: 17/08/2018

Atividades de Recuperação Previstas

Para poder realizar a prova de recuperação, o aluno deve ter um índice de frequência de no mínimo 75% das aulas. Os que não se enquadrarem nesta situação terão conceito FF.

A recuperação versará sobre toda a matéria da disciplina. Serão considerados aprovados na recuperação os alunos que obtiverem um aproveitamento de, no mínimo, 60% da prova. A estes será atribuído o conceito C; aos demais, será atribuído o conceito D.

Não há recuperação dos trabalhos por não comparecimento/entrega, exceto nos casos previstos na legislação (saúde, parto, serviço militar, convocação judicial, luto, etc.), sendo necessária a devida comprovação.

Prazo para Divulgação dos Resultados das Avaliações

Em torno de duas semanas após a entrega/apresentação.

Bibliografia

Básica Essencial

Clarke, E. M.; Grumberg, O.; Peled, D. A.. Model Checking. The MIT Press, 1999. ISBN 0262032708.

Jastram, M.; Butler, M.. Rodin User's Handbook v.2.8. CreateSpace Independent Publishing Platform, 2014. ISBN 978-1495438141. Disponível em: http://handbookevent-borg

Básica

- . Event-B (Rodin platform). Disponível em: http://wwwevent-borg/
- . Rodin (project Deploy). Disponível em: http://wwwdeploy-projecteu/

Magee, J.; Kramer, J.. Concurrency: State Models and Java Programming. Wiley, 2006. ISBN 978-0-470-09355-9.

Complementar

Abrial, J.R.. Modeling in Event-B: System and Software Engineering. Cambridge University Press, 2010. ISBN 9780521895569. Disponível em: http://www.event-borg/abookhtml

Bérard, B.; Bidoit, M.; Finkel, A.; et al.. Systems and Software Verification: Model-Checking Techniques and Tools. Springer, ISBN 3-540-41523-8. Peled, D.. Software Reliability Methods. Springer, 2001. ISBN 0387951067.

Outras Referências	
Título	Texto
Artigos publicados em conferências da área de Verificação	- SBMF
	- SBES
	- ICSE
	- FSE
	- ASE
	- FASE
	- VMCAI
	- MoDELS
	- etc.
Artigos publicados em periódicos da área de Verificação de	- ENTCS
	- SoSyM
	- ToSEM
	- TSE
	- etc.

Observações

- As 60 horas previstas para atividades teóricas e práticas indicadas neste Plano de Ensino incluem 30 encontros de 100 minutos de duração (2 períodos de 50 minutos por encontro, 2 encontros por semana, durante 15 semanas), em um total de 3.000 minutos.
- Estão previstas Atividades Autônomas do Aluno, realizadas sem contato direto com o professor, com uma carga horária de 10 (dez) horas, totalizando 600 minutos, a serem desenvolvidas ao longo do semestre. As atividades previstas incluem a realização de trabalhos práticos extraclasse a serem entregues/apresentados e avaliados.

Data de Emissão: 17/08/2018

- O Professor poderá se valer de aulas presenciais ou à distância (utilização de recursos da EAD).
- A Disciplina poderá contar com o apoio de Professores Assistentes (Alunos de Pós-Graduação) em Atividades Didáticas.