Today:

- · group theory (continued)

- · Dixrete, Continuous, infinitesimal symmetries

- · Summetries of an action

Quotient group and isomorphism theorem

Definition (normal subgroup)

Let G be a group. A subgroup $N \leq G$ is called normal if

$$gng^{-1} \in N$$
, $\forall g \in G$, $\forall n \in N$.

The notation $N \subseteq G$ is commonly used to indicate that N is a normal subgroup of G.

Definition (quotient group)

Let N be a normal subgroup of a group G. We can define an equivalence relation on G as

$$g\sim h\iff h^{-1}g\in N,$$

with equivalence classes

$$[g] = \{ h \in G \mid h^{-1}g \in N \}.$$

The quotient group G/N (pronounced " $G \mod N$ ") is the set of equivalence classes

$$G/N = \{ [g] \mid g \in G \}$$

which is made into a group by defining

$$[g][h] = [gh], \quad [g]^{-1} = [g^{-1}], \quad e_{G/N} = [e_G].$$

& closed under canjugation

> 8~h if JaeN st. h= 8a

ansofrom 8 to h by multiplying

with something in N

· we do not use the fact flet Wis normal (set)

ned to neve sure that [8h]=[877h] does not depend on representatives

> is ox if N normal

Exercise

Show that the $2\mathbb{Z}=\{2n\,|\,n\in\mathbb{Z}\}$ is a normal subgroup of $(\mathbb{Z},+)$ and that $\mathbb{Z}_2=\mathbb{Z}/2\mathbb{Z}$.

.

Theorem (first isomorphism theorem)

Let $\varphi: \mathsf{G} \to \mathsf{H}$ be a group homomorphism. Then:

- $\operatorname{Im} \varphi$ is a subgroup of H
- $\ker \varphi$ is a normal subgroup of G
- ${\color{red} \bullet} \hspace{0.1cm} \operatorname{Im} \varphi$ is isomorphic to the quotient group ${\rm G}/\ker \varphi$

 $N = \ker \varphi$ $[8] = ? = \{ h \in G \mid h' \} \in \ker \varphi \}$

Exercise

Prove the first two points of the isomorphism theorem.

$$\Rightarrow \varphi(8) = \varphi(h)$$

$$Z_2 = \{ [0], [1] \}$$

$$[0] = \{ [2k | k \in \mathbb{Z}] \}$$

$$[0] + [1] = [1] + [0] = [1] \}$$

$$[1] + [1] = [0] \}$$

$$Z_2 = \{ [2k | k \in \mathbb{Z}] \}$$

$$Z_3 = \{ [2k | k \in \mathbb{Z}] \}$$

$$Z_4 = \{ [2k | k \in \mathbb{Z}] \}$$

$$Z_5 = \{ [2k | k \in \mathbb{Z}] \}$$

$$Z_6 = \{ [2k | k \in \mathbb{Z}] \}$$

$$Z_6 = \{ [2k | k \in \mathbb{Z}] \}$$

$$Z_6 = \{ [2k | k \in \mathbb{Z}] \}$$

$$Z_6 = \{ [2k | k \in \mathbb{Z}] \}$$

$$Z_7 = \{ [2k | k \in \mathbb{Z}] \}$$

$$Z_7 = \{ [2k | k \in \mathbb{Z}] \}$$

$$Z_7 = \{ [2k | k \in \mathbb{Z}] \}$$

$$Z_7 = \{ [2k | k \in \mathbb{Z}] \}$$

$$Z_7 = \{ [2k | k \in \mathbb{Z}] \}$$

$$Z_7 = \{ [2k | k \in \mathbb{Z}] \}$$

$$Z_7 = \{ [2k | k \in \mathbb{Z}] \}$$

$$Z_7 = \{ [2k | k \in \mathbb{Z}] \}$$

$$Z_7 = \{ [2k | k \in \mathbb{Z}] \}$$

Discrete us ontimons symmetries · continuous if there is a continuous pereneter for the group elements · discrete otherwise $\Psi: \varepsilon \in (\mathbb{R},+) \mapsto 8\varepsilon \in G$ (group homomorphism) if there is a topology on G such that It is ontinuous > {8; | E EIR} = Iny is 62:mous one peremeter subgroup \ 80 = eg $\delta\theta = \begin{pmatrix} 650 & 5.40 \\ -5.40 & 650 \end{pmatrix}$ $\delta - \epsilon = \delta \epsilon$ SETE - SESE => ONE-REVEN is sallien 80 = (10) infinilesimel essure that $\varepsilon \in \mathbb{R} \mapsto \delta_{\varepsilon} \in G$ is smooth" 80+0, = 80 80. 8-0 = 80 stracture la be linerise: $\delta_{\varepsilon} = \delta_{o} + \varepsilon \frac{1}{\delta \varepsilon} \delta_{\varepsilon} + o(\varepsilon^{2})$ infrinctisinal squartry inf symmetry: $e + \varepsilon \times + o(\varepsilon^2)$ where X = 3 SE denivative entry by entry $\frac{e\times :}{R_{\theta}} = \begin{pmatrix} cs\theta & sin\theta \\ -sin\theta & cs\theta \end{pmatrix} \qquad \frac{d}{d\theta} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

