WorkShop 4. MKT.

Задача 1. В сосуде объемом V~=~1 л под находится m=1 к Γ водорода $\left(\mu=2~rac{\Gamma}{MOJE}
ight)$. Найти

- 1. Плотность ρ
- 2. Количество вещества ν
- 3. Число молекул N
- 4. Концентрацию молекул водорода n
- 5. Массу молекулы водорода m_0

Задача 2. Струя воды налетает на стену и после неупругого столкновения растекается вдоль стены. Найдите давление струи на стену. Плотность воды ρ , скорость течения воды в струе равна v.

Ответ:
$$p = \rho v^2$$

Задача 3. В объеме $V=1~{
m cm}^3$ при давлении $p=20~{
m к}\Pi$ а находится $N=5\cdot 10^{19}$ молекул гелия.

- 1. Определите температуру гелия.
- 2. Определите среднюю квадратичную скорость молекул гелия.
- 3. Определите среднюю кинетическую энергию молекул гелия.

Задача 4. В сосуде объемом V=110 л находится $m_1=1$ кг водорода $\left(\mu_1=2\,rac{\Gamma}{\text{моль}}\right)$ и $m_2=2$ кг кислорода $\left(\mu_2=32\,rac{\Gamma}{\text{моль}}\right)$. Определите давление смеси, если температура окружающей среды $T=27\,^{\circ}\text{C}$.

- 1. Определите давление смеси.
- 2. Определите среднюю молярную массу.
- 3. Определите среднюю плотность.

Задача 5. Определите давление газа при температуре T=127 °C, если концентрация молекул в нем $n=10^{21}$ м $^{-3}$.

Изо- и не изопроцессы

Задача 6. Сосуд имеет 2 отсека объемами V_1 и V_2 . В первом отсеке находится идеальный газ под давлением p_1 . Во втором отсеке вакуум. Перегородку, разделяющую отсеки, убирают.

- 1. Указать тип процесса (изобарный, изотермический или изохорный)
- 2. Найти давление p_2 , которое установится в сосуде после убирания перегородки.

Задача 7. Пузырек воздуха объемом $V_1=2\,\mathrm{mm}^3$ всплывает с глубины озера в $h=20\,\mathrm{m}$, где температура воды $4^\circ\mathrm{C}$ на поверхность, где температура $20^\circ\mathrm{C}$. Атмосферное давление нормальное.

- 1. Указать тип процесса (изобарный, изотермический или изохорный)
- 2. Определить количество вещества воздуха ν внутри пузырька.
- 3. Каков объем пузырька V_2 у поверхности?

Задача 8. В цилиндре под поршнем площадью $S=30~{\rm cm^2}$ находится воздух при давлении $p_1=2\cdot 10^5~{\rm \Pi a}$ и температуре $T_1=270~{\rm C}$. Цилиндр медленно нагревают, насыпая песок на поршень таким образом, чтобы он все время оставался на одном уровне.

- 1. Указать тип процесса (изобарный, изотермический или изохорный)
- 2. Какой груз надо положить на поршень после нагревания воздуха до $T_2 = 500$ °C, чтобы поршень остался на прежнем уровне?

Задача 9. При изобарическом охлаждении температура газа уменьшилась от значения T_1 до значения T_2 , при этом объём газа уменьшился на величину ΔV . Найти конечный объём газа.

Задача 10. Из основного уравнения МКТ получить уравнение Менделеева-Клапейрона.

Краткая теоретическая сводка

Основное уравнение МКТ	$p = \frac{1}{3} m n \overline{v^2}$
Закон Дальтона для давления смеси газов	$p = p_1 + p_2 + \dots$
Постоянные Больцмана, число Авогадро и универсальная газовая постоянная	$N_A = 6 \cdot 10^{23} \frac{1}{\text{моль}}$ $k = 1.38 \cdot 10^{-23} \frac{\text{Дж}}{\text{К}}$ $R = k \cdot N_A = 8.31 \frac{\text{Дж}}{\text{К · моль}}$
Уравнение Менделеева-Клапейрона (уравнение состояния ид. газа)	$pV = \nu RT$
Абсолютная температура. Связь с кинетической энергией.	$T = t(^{\circ}C) + 273$ $\overline{E_{\kappa}} = \frac{i}{2}kT$
Нормальные условия	1. $p = p_{\text{atm}} = 10^5 \text{ Ha}$ 2. $T = 273 \text{ K}$
Изотермический процесс $(T = const, v = const)$	pV = const
Изобарный процесс $(p = const, v = const)$	$\frac{V}{T} = const$
Изохорный процесс $(V = const, v = const)$	$\frac{p}{T} = const$