Сначала докажем, что последовательность сходится. Если $a_n<0$, то $a_{n+1}<0$, поэтому она ограниченна сверху. Сравним a_n и a_{n+1} :

$$a_n ? \frac{a_n^2 - 3}{4} \Leftrightarrow 0 ? a_n^3 - 3a_n^2 - 4a_n \Leftrightarrow 0 ? a_n(a_n + 1)(a_n - 4).$$

Видим, что при $a_n \in (-1;0)$ имеет место неравенство $a_n < a_{n+1}$, то есть последовательность возрастает. По теореме Вейерштрасса она имеет предел. Чтобы его найти, перейдем к пределу в нашем рекуррентном соотношении:

$$a = \frac{a^2(a-3)}{4} \Leftrightarrow a^3 - 3a^2 - 4a = 0,$$

откуда предел может быть одним из чисел $0,\,-1$ и 4. Нетрудно понять, что это 0.