CONFIDENTIAL

			,									
Name of Examination	:	SUPP			END	/	Set-1	✓				
(Please tick, symbol is		LE										
given)												
Name of the School	:											
(Please tick, symbol is		SOAE			SOCS	√	Set-2					
given)												
Programme	:	B.Tech.	CSI	E								
Semester	:	III										
Name of the Course	:	Probabi	ility	and St	atistics							
Course Code	:	CSEG 2	CSEG 2036P									
Name of Question Paper Setter	:	Dr. Mrittunjoy Guha Majumdar										
Employee Code	:	4000397	40003973									
Mobile	:	8595301465										
Note: Please mention addition							amination s	uch as				
Table/Graph Sheet etc. else	mei	ntion "NO	OT A	APPLIC	CABLE"	•						
		FOR SRI	E DI	EPART	MENT							
Date of Examination			:									
Time of Examination			:									
No. of Copies (for Print)			:									

Note: - Pl. start your question paper from next page

Model Question Paper (Blank) is on next page

Name:

Enrolment No:

UPES End Semester Examination, December 2023

Course: Probability and Statistics

Semester: III

Program: B. Tech. CSE **Time:** 3 hrs.

Course Code: CSEG 2036P Max. Marks: 100

		(5	SECTION A 5Qx4M=20Marks	9)		
S. No.					Marks	СО
Q 1	Define sample spadiagram representa	•	wing cases:	vell as Venn		
	2. A or C occurrence for a sample space	4	CO1			
Q 2	Outline what is med b if we have a rand function, and the mean $E[X]$	4	CO1, CO2			
Q 3	Discuss any two punderstanding of jot $(X = 0, Y \le 1)$ and Y with joint probability $X = 0$	4	CO1			

	X = 1	$\frac{1}{\epsilon}$	$\frac{1}{2}$	<u></u>		$\frac{1}{\epsilon}$		
Q 4	Discuss covariance Var(X) for a rando X and Y are independent	4	CO2					
Q 5	Discuss correlation variables <i>X</i> and <i>Y</i> correlation coeffic	4	CO2					
			SECTI	ON R				
		(4	SECTI Qx10M=		ks)			
Q 6	Define and illustra alternative hypothe	ate the concepts	of hypothe	esis, null	hypoth			
	Remember and ex Testing.	plain the genera	alized sche	me for I	Hypothe	sis		
	Apply and discuss samples.	10	CO4					
	Illustrate if the difference between samples A and B is significant (for $\alpha = 0.05$) if $\bar{X}_A = 75$, $\bar{X}_B = 76.5$, $\sigma_A = 8$, $\sigma_B = 10$, $n_A = 150$ and $n_B = 200$, given that for							
	$\begin{array}{c cc} z & -2 \\ \hline p & 0.04 \end{array}$		-	1.25	-1 0.32	-0.5 0.62		
Q 7	Define ANOVA a statistical characte Discuss the difference mean squares. Identify the relevation mean squares, for a squares, for a squares and assembly an assembly cocasions.	rization. In the kinds of sums In the test statistic (ANOVA. $x = 0.05$) to the	s of square ANOVA c times requ	s, degree oefficien	es of freent) in ten	edom and rms of orkers to	10	CO4
	Akas	h Va	sudha	,	Sunil			
	8		8		10			

	10)	9				
	9)	10		_		
	11		3	11		_		
	10		0	9				
						_		
	Given: F-statistic for de	egrees of free	dom (2,12	2) at $\alpha = 0$.	05 is 3	.89.		
Q 8	Choice 1: Define the M sample size $n \le 20$). It statistical test.	-						
	Apply your understand the scores of two group	•		•		_		
	Group A 63	70	77	81		93		
	Group B 66	76	81	78		85		
	Given: For the two-tails 5 for level of significant Choice 2: Define regre Describe what is mean Apply and discuss you curve of the form $y = \frac{x}{y}$ 10 Given: $\log_{10}(9.4795)$	ssion, princip t by multiple r understanding e^{bx} for the $\frac{5}{15}$ = 0.976788	the critical ple of least regression and $\frac{7}{\log_{10} e}$	squares and model. -linear regredata: 9 15 -= 0.05872	d residuession t $\frac{12}{21}$	o fit a	10	CO4
Q 9	Define a Decision Tree. Describe what is node purity and highlight one advantage and one disadvantage of using Decision Trees. Expand on the two ways in which Decision Trees can have variable selection criterion for node allocation. Apply your understanding of the Information Gain and Entropy approach for Decision Trees to analyze 15 students' performance in an online exam. The predictors for this data-set encompass details such as whether the student is enrolled in other online courses, their academic background and whether they are currently employed or not.							CO5

G.M.	Target Variable	Predictor Variables							
S.No.	Result Other Onli		Student	Working					
		Courses	Background	Status					
1.	Pass	Yes	Mathematics	Not Working					
2.	Fail	No	Mathematics	Working					
3.	Fail	Yes	Mathematics	Working					
4.	Pass	Yes	CS	Not Working					
5.	Fail	No	Other	Working					
6.	Fail	Yes	Other	Working					
7.	Pass	Yes	Mathematics	Not Working					
8.	Pass	Yes	CS	Not Working					
9.	Pass	No	Mathematics	Working					
10.	Pass	No	CS	Working					
11.	Pass	Yes	CS	Working					
12.	Pass	No	Mathematics	Not Working					
13.	Fail	Yes	Other	Working					
14.	Fail	No	Other	Not Working					
15.	Fail	No	Mathematics	Working					

SECTION-C (2Qx20M=40 Marks)

Q 10 **Define** a Bernoulli random variable $X \sim \text{Ber}(p)$ and its probability distribution, along with one condition for Bernoulli Distributions.

Derive the mean and standard deviation of the random variable $X \sim \text{Ber}(p)$.

Define a Binomial random variable $X \sim Bin(n, p)$ and its probability distribution. **Highlight** the relation of Binomial distributions with Bernoulli trials.

Derive the mean and standard deviation of $X \sim \text{Bin}(n, p)$.

Given:
$$k. \binom{n}{k} = n. \binom{n-1}{k-1}$$
 and $k^2. \binom{n}{k} = k. n. \binom{n-1}{k-1}$.

Define moment-generating function $M_X(t)$ for a random variable. **Apply** your understanding of Moment-generating function for the case of a Bernoulli random variable.

Given $M_{X+Y}(t) = M_X(t)M_Y(t)$ and considering the relation between Bernoulli random variables and Binomial random variables, **apply** your understanding of the moment-generating function for the case of a Binomial random variable.

20

CO₃

exp Bin Def und pro-	and on omial ra ine a Polerstandincess, cor cuss the	the exprindom variation properties of the exprinding of the exprinciple of the expression of the expr	ression for the residual resi	for the N and its p t-generation $\frac{x^n}{n!}$ of the N	Moment brobabiliting fun	generatity distri	ing fund bution. the case	Apply of a Pois	your sson		
Det stud pero Dis Hig Chan in dist Chan thes men	culate the horter the JPES fold a standard a	rmal distribution of the probation of the probation and 150 color and 150 color and deviate following the height approximately the height approximately the following the following the height approximately the following the following the following the following the height approximately the following the follo	bility that m, given with m, given with the month of a normal distriction (σ) g segment -2 0.023 at (in crust, given mately 0 stics and properties the MoMenticall ethe prosample greater	at a random that the stribution of 10 cm of the ent of	lomly see height n with a m. e standa 0 0.5 eparates e z-score be the Mood estinator of the outed said that the udents to the standard of the content of the outed said that the contents to the content of the con	elected sists of a point in the popular manual in the sample sample	tudent from the pulation eight (μ) al table 2 0.977 20% of conding of Mome sample ation paken from mean here.	om UPI of stud of 160 o	ES lents cm	20	CO3