Fundação Getúlio Vargas Escola de Matemática Aplicada

Rener Oliveira

Inferência Estatística Trabalho 1: Método Delta

Sumário

L	Teo	rema de Taylor	
2	Método Delta		
	2.1	Condições de Funcionamento	
	2.2	Corolário	
	2.3	Aproximação de Variância	
	2.4	Importância do Método	

1 Teorema de Taylor

Notação: $f(x) \xrightarrow[x \to a]{} b$ representa $\lim_{x \to a} f(x) = b$.

Definição 1.1: (Polinômio de Taylor)[3] Dada uma função $f: I \subset \mathbb{R} \longrightarrow \mathbb{R}$, n vezes derivável no ponto $a \in I$, o Polinômio de Taylor de ordem n de f no ponto a é o polinômio:

$$p(h) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} h^{k}$$

, onde $f^{(k)}(a)$ é a k-ésima derivada de f em a^1 .

Teorema 1.1: (Teorema de Taylor)[3] Dada uma função $f: I \subset \mathbb{R} \to \mathbb{R}$, n vezes derivável no ponto $a \in I$ existe, para todo h tal que $a + h \in I$, um polinômio p de grau $\leq n$ (Polinômio de Taylor de f no ponto a) tal que

$$f(a+h) = p(h) + r(h)$$
, onde $\lim_{h\to 0} \frac{r(h)}{h^n} = 0$

Isso quer dizer, f(a) é igual a p(h) a menos de um resto r(h) infinitesimal, que converge pra zero mais rápido do que potências de h. Ou seja, o polinômio p será uma boa aproximação para f nesse ponto.

Lema 1.1: [3] Seja $r:I\subset\mathbb{R}\longrightarrow\mathbb{R}$, n vezes derivável $(n\geq 1)$ em $0\in I$. São equivalentes:

i)
$$r(0) = r'(0) = \dots = r^{(n)}(0) = 0$$

$$ii) \lim_{h \to 0} \frac{r(h)}{h^n} = 0$$

Demonstração do Lema 1.1:[3] Primeiramente, vamos provar (i) \rightarrow (ii), com um argumento indutivo em n.

(Base) Para n=1, temos de (i) que r(0)=r'(0)=0

Veja então que $\frac{r(h)}{h} = \frac{r(h) - r(0)}{r - 0}$. Ao tomar o limite $h \to 0$, temos por

definição r'(0) que é nula por (i). Logo $\lim_{h\to 0}\frac{r(h)}{h}=0$, o que prova (ii) para n=1

$$^{1}f^{(0)}(a) = f(a)$$

(Hipótese Indutiva) Suponha que $\exists n \in \mathbb{Z}^+$ tal que (i) \rightarrow (ii) para n-1(Passo Indutivo) Queremos provar que (i) \rightarrow (ii) para n.

Sabemos que $r(0) = r'(0) = \dots = r^{(n)}(0) = 0$ e pela **Hipótese Indutiva**:

$$\frac{r'(h)}{h^{n-1}} \xrightarrow[h \to 0]{} 0$$

o que significa que, por definição,

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \text{tal que } \forall h \in I, \ 0 < |h| < \delta \rightarrow \left| \frac{r'(h)}{h^{n-1}} \right| < \varepsilon$$

Pelo Teorema do Valor Médio[3], $\exists c \in (0, h)$ tal que r(h) = r'(c)h; Dividindo por h^n ambos os membros, temos:

$$\frac{r(h)}{h^n} = \frac{r'(c)}{h^{n-1}} \Rightarrow$$

$$\left| \frac{r(h)}{h^n} \right| = \left| \frac{r'(c)}{h^{n-1}} \right| \le \left| \frac{r'(c)}{c^{n-1}} \right| \cdot \left| \frac{c^{n-1}}{h^{n-1}} \right| \le \varepsilon \cdot 1,$$
pois $0 < |c| < |h| < \delta$

Dessa forma $\lim_{h\to 0}\frac{r(h)}{h^n}=0.$ Provaremos agora que (ii) \Rightarrow (i), também usando indução.

(Base) Para n=1, sabemos que $\frac{r(h)}{h} \xrightarrow[h\to 0]{} 0$, e queremos provar r(0)=r'(0) = 0.

Note que $h \neq 0 \Rightarrow r(h) = \frac{r(h)}{h}h$. Assim:

$$\lim_{h \to 0} r(h) = \lim_{h \to 0} \left(\frac{r(h)}{h} h \right) = \lim_{h \to 0} \left(\frac{r(h)}{h} \right) \lim_{h \to 0} h = 0 \cdot 0 = 0$$
Pela continuidade, $r(h) = 0$

Por definição, $r'(0) = \lim_{h \to 0} \frac{r(h) - r(0)}{h - 0}$.

Assim,
$$r'(0) = \lim_{h \to 0} \frac{r(h)}{h} = 0$$

Logo, fica provado (ii) \rightarrow (i) para n = 1.

(Hipótese Indutiva) Suponha que $\exists n \in \mathbb{Z}^+$ tal que (ii) \rightarrow (i) para n-1. (Passo Indutivo) Sabe-se que $r \notin n$ vezes derivável e que

$$\frac{\dot{r}(h)}{h^n} \xrightarrow[h \to 0]{} 0$$

 $\frac{\stackrel{\smile}{r(h)}}{\stackrel{\longrightarrow}{h^n}} \xrightarrow[h \to 0]{0}$ Tomemos $\phi: I \xrightarrow{\stackrel{\smile}{r(h)}} \mathbb{R}$ definida como:

$$\phi(h) = r(h) - \frac{r^{(n)}(0)}{n!}h^n$$

Temos que:

 \bullet ϕ é n vezes derivável

$$\bullet \quad \frac{\phi(h)}{h^{n-1}} \stackrel{h \to 0}{\longrightarrow} 0$$

Usando a **Hipótese Indutiva**, chegaremos em:

$$\phi(0) = \phi'(0) = \dots = \phi^{(n-1)}(0) = 0 \Rightarrow$$

$$r(0) = r'(0) = \dots = r^{(n-1)}(0) = 0$$

Resta provar que $r^{(n)}(0) = 0$.

Veja que $\phi^{(n)}(0) = r^{(n)}(0) - \frac{r^{(n)}(0)}{n!} \cdot n!$, isso pois derivar n vezes h^n nos dá n!.

Dessa forma, $\phi^{(n)}(0) = r^{(n)}(0) - r^{(n)}(0) = 0$

Podemos agora, usar que (i) \Rightarrow (ii) para a função ϕ , obtendo:

$$\frac{\phi(h)}{h^n} \xrightarrow[h \to 0]{} 0$$

ou seja:

$$\left(\frac{r(h)}{h^n} - \frac{r^{(n)}(0)}{n!}\right) \xrightarrow[h \to 0]{} 0$$

Sabemos que $\frac{r(h)}{h^n} \xrightarrow[h \to 0]{} 0$, o que implica em

$$\frac{r^{(n)}(0)}{n!} \xrightarrow[h \to 0]{} 0 \Rightarrow r^{(n)}(0) \xrightarrow[h \to 0]{} 0$$

Pela continuidade de $r^{(n)}(0)$, concluímos que $r^{(n)}(0) = 0$

Demonstração do Teorema 1.1: [3]

Dados $f:I\longrightarrow \mathbb{R},\ a\in I,$ tomemos um polinômio p e escrevamos:

$$f(a+h) = p(h) + r(h)$$

Com isso, define-se $r: J \longrightarrow \mathbb{R}$, onde $J = \{h \in \mathbb{R} | a+h \in I\}$. Zero, claramente pertence a J, dado que h=0 satisfaz a propriedade de pertinência. Sendo assim, como $^2p \in C^{\infty}$ segue que f é n vezes derivável em a, se e somente se, r é n vezes derivável no ponto 0. fazendo essa hipótese, segue do

Lema 1.1 que
$$\frac{r(h)}{h^n} \xrightarrow{h \to 0} 0 \iff r^{(i)}(0) = 0, \ \forall \ 0 \le i \le n$$

Mas $r^{(i)}(0) = f^{(i)}(a) - p^{(i)}(0)$. Assim, temos que, dada as hipóteses acima, $f^{(i)}(a) = p^{(i)}(0), \ \forall \ 0 \le i \le n$

 $^{^{2}}p$, por ser polinômio, é infinitamente derivável e todas as derivadas são contínuas.

Se impusermos que o grau de p seja menor ou igual à n, podemos mostrar que $\frac{r(h)}{h^n} \xrightarrow[h \to 0]{} 0$, se e somente se, p é o Polinômio de Taylor de ordem n para f no ponto a, o que prova o Teorema.

2 Método Delta

Definição 2.1: [1] Uma sequência X_n de variáveis aleatórias converge em distribuição para X se, dado $F_X:D\subset\mathbb{R}\to\mathbb{R}$ a função de distribuição acumulada (contínua) de X, tem-se

$$\lim_{n \to \infty} \left[Pr(X_n \le x) \right] = F_X(x), \quad \forall x \in D$$

Podemos dizer também, que X_n converge em distribuição para F_X .

Método Delta:[2] Seja Y_n uma sequência de variáveis aleatórias e F^* uma função de densidade acumulada. Dado $\theta \in \mathbb{R}$ e a_n uma sequência monótona crescente de termos positivos, tal que $\lim a_n = \infty$.

Suponhamos que $a_n(Y_n - \theta)$ converge em distribuição para F. Seja g uma função de derivada contínua com $g'(\theta) \neq 0$, então $a_n \frac{g(Y_n) - g(\theta)}{g'(\theta)}$ converge em distribuição para F^* .

Demonstração:[2]

O fato de $a_n \xrightarrow[n \to \infty]{} \infty$, força que $Y_n - \theta \xrightarrow[n \to \infty]{} 0$, pois se $n - \theta \xrightarrow[n \to \infty]{} k$, com $k \in \mathbb{R}^*$ teríamos $a_n(Y_n - \theta) = a_n k \xrightarrow[n \to \infty]{} \infty$, a assim, $\lim_{n \to \infty} [Pr(a_n(Y_n - \theta) \le x] = 0$ e $a_n(Y_n - \theta)$ não convergiria para F^* como é assumido.

A função $g \in C^1$, podemos então, pelo **Teorema 1.1** e **Definição 1.1** aproximar $g(Y_n)$ pelo Polinômio de Taylor de ordem 1 de g no ponto Y_n . Fazendo $h = Y_n - \theta$, temos que:

$$g(\theta + h) \approx g(\theta) + \frac{g'(\theta)}{1!}h \Rightarrow$$

$$g(Y_n) \approx g(\theta) + g'(\theta)(Y_n - \theta)$$

Assim:

$$g(Y_n) - g(\theta) \approx g'(\theta)(Y_n - \theta)$$

Vamos multiplicar ambos os lados por $\frac{a_n}{g'(\theta)}$ (que existe pois $g'(\theta) \neq 0$):

$$a_n \frac{g(Y_n) - g(\theta)}{g'(\theta)} \approx a_n(Y_n - \theta)$$

Como assumimos que $a_n(Y_n-\theta)$ converge em distribuição para F^* , segue que $a_n\frac{g(Y_n)-g(\theta)}{g'(\theta)}$ também converge em distribuição para F^* já que são assintoticamente iguais.

2.1 Condições de Funcionamento

O Teorema assume várias hipóteses e todas elas tem que ser preservadas afim de que possamos aplicá-lo. Hipóteses:

- F* contínua
- $\bullet \ a_n \xrightarrow[n \to \infty]{} \infty$
- $a_n \in \mathbb{Z}^+ \forall n$
- $a_n(Y_n \theta)$ converge em distribuição para F^*
- $g \in C^1$, tal que $g'(\theta) \neq 0$

2.2 Corolário

Corolário 2.1: [2] Seja X_n uma sequência de variáveis aleatórias i.i.d de um distribuição com média μ e variância σ^2 . Dada uma função g derivável, tal que $g'(\theta) \neq 0$, então a distribuição assintótica de

$$\frac{\sqrt{n}}{\sigma g'(\mu)} [g(\overline{X}_n - g(\mu))]$$

é a Normal Padrão.

Demonstração: Façamos $a_n = \sqrt{n}/\sigma$, $F^* = \Phi(x)^3$, $\theta = \mu$ e $Y_n = \overline{X}_n$. Do Teorema Central do Limite[2] temos que

$$\lim_{n \to \infty} \Pr\left[\sqrt{n} \frac{\overline{X}_n - \mu}{\sigma} \le x\right] = \Phi(x)$$

Temos então todas as hipóteses para aplicar o Método Delta, que afirmará:

$$^{3}\Phi(x) = Pr(\mathcal{Z} \le x), \text{ com } \mathcal{Z} \sim \mathcal{N}(0,1)$$

$$\lim_{n \to \infty} \Pr\left[\sqrt{n} \frac{g(\overline{X}_n) - g(\mu)}{\sigma g'(\mu)} \le x\right] = \Phi(x)$$

Podemos concluir também, que $g(\overline{X}_n)$ terá uma distribuição normal com média $g(\mu)$ e variância $\sigma^2[g'(\mu)]^2$.

2.3 Aproximação de Variância

Suponha que observamos n variáveis aleatórias Bernoulli independentes e identicamente distribuídas com parâmetro p, denotadas por $X_1, X_2, ..., X_n$. Suponha que estamos interessados no parâmetro $\omega = \frac{p}{1-p}$, geralmente chamado de chance (em inglês, odds). E natural utilizar o estimador plug-in $\hat{\omega} = \frac{\hat{p}}{1-\hat{p}}$, com $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Utilizaremos o Método Delta para encontrar uma aproximação para a variância de $\hat{\omega}$

Temos uma função $g(\theta) = \frac{\theta}{1-\theta}$ diferenciável e $g'(\theta) = \frac{1}{(1-\theta)^2}$. Cada $X_i \sim be(p)$, onde $E[X_i] = p$ e $Var[X_i] = p(1-p)$. Todos os X_i 's são i.i.d's com essa média e variância. Dado que $g'(\theta) \neq 0 \ \forall \theta$, Podemos aplicar o **Corolário 2.1** e concluir que

 $g(\hat{p})=\hat{\omega}$ tem distribuição (assintótica) normal com média $\frac{p}{1-p}$ e variância igual a:

$$Var[\hat{p}] \cdot [g'(p)]^{2} = Var\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right] \cdot \left(\frac{1}{(1-p)^{2}}\right)^{2} = \frac{Var[X_{i}]}{n} \cdot \frac{1}{(1-p)^{4}} = \frac{p(1-p)}{n(1-p)^{3}} = \frac{p}{n(1-p)^{3}}$$

2.4 Importância do Método

Como vimos a partir do Corolário, é possível estabelecer distribuições para funções da média amostral, uma variável aleatória muito importante. De forma geral, o método é importante pois conseguimos caracterizar distribuições de funções (deriváveis, e de derivada não nula) de variáveis aleatórias e não somente das próprias variáveis, como foi o caso do exemplo acima que estávamos interessados no *odds*.

De certa forma podemos enxergar o Método Delta como uma generalização do Teorema Central do Limite, que dá aproximações assintóticas normais para variáveis iid, hipótese que não é exigida diretamente pelo Método Delta.

Referências

- [1] George Casella and Roger Berger. Statistical Inference, pages 235 243. Duxbury Resource Center, June 2001.
- [2] M.H. DeGroot and M.J. Schervish. *Probability and Statistics*, 4th ed., pages 361–365. Addison-Wesley, 2012.
- [3] E.L. Lima. Curso de Análise Vol. 1, 15^a ed., pages 184–185,190–197. Instituto de Matemática Pura e Aplicada, CNPq, 2019.