

Ex. 08 - DBC

Exercício 01. Planeje um experimento na sua área de atuação no delineamento em blocos casualizado.

Exercício 02. Obtenha um conjunto de dados da sua área, coletado num experimento instalado no delineamento em blocos casualizado, faça a análise de variância e interprete os resultados.

EXERCÍCIO 01

Áreas de atuação:

- 1. Genética Quantitativa;
- 2. Melhoramento de Plantas;
- 3. Hortaliças;

• Título do experimento:

o Desempenho produtivo de diferentes acessos (genótipos) de Solanum lycopersicum cultivado no município de Anhumas-SP.

· Hipóteses testadas:

- H0: Os acessos não se diferem quanto ao peso total de frutos comerciais;
- o Ha: Há, entre pelo menos dois acessos, diferenças no peso total dos frutos comerciais;

Objetivos:

 Verificar o potencial produtivo de acessos de Solanum lycopersicum como métrica para o emissão do "VCU" dos respectivos materiais produzidos pelo programa de melhoramento de hortaliças da Esalq-USP.

• Fatores e níveis:

- $\circ \quad \text{Acessos de tomate utilizados nos experimentos com clones avançados;} \\$
- o Níveis do tratamento:
 - a. Sl-31;
 - b. Sl-57;
 - c. Sl-60;
 - d. Sl-62;
 - e. Sl-98;f. Sl-112;

Variável resposta:

o Peso, em quilogramas, de todos os frutos com padrão comercial colhidos em um ciclo do material;

• Design Experimental:

```
# Aleatorização dos genótipos
set.seed(1704)
SampleDBCtomato <- DBCtomato[sample(nrow(DBCtomato)), ]

# Para que cada bloco contenha um número igual de colunas, esse foi colocado em ordem mas os genótip
SampleDBCtomato <- SampleDBCtomato[order(SampleDBCtomato$Bloco), ]

# Assim, criamos um dataframe com as colunas para associarmos ao DBCtomato
Coluna <- rep(1:6, times = 5)
Arranjo <- data.frame(COLUNA = Coluna)
SampleDBCtomato <- cbind(SampleDBCtomato, Arranjo)

# Transforma dose em um fator
SampleDBCtomato$Genotype <- as.factor(SampleDBCtomato$Genotype)

# Paleta do RColorBrewer</pre>
```

```
paleta <- brewer.pal(9, "Purples")[4:9]</pre>
# Determinando os intervalos para os marcadores do eixo x e y
intervalos_x < - seq(1, 6, by = 1)
intervalos_y \leftarrow seq(1, 5, by = 1)
# Plota o croqui da área
croquiDBCtomato <- ggplot(SampleDBCtomato, aes(x = COLUNA, y = 1, fill = Genotype)) +</pre>
  geom_tile(color = "white",lwd = 1) +
  facet_grid(Bloco ~ ., switch = "y", labeller = labeller(
    Bloco = c("1" = "Bloco 01", "2" = "Bloco 02", "3" = "Bloco 03", "4" = "Bloco 04", "5" = "Bloco 0
 geom_text(aes(label = Genotype), color = "Black", size = 4) +
 scale_fill_manual(values = paleta) +
 scale_y_reverse(breaks = intervalos_y) +
  scale_x_continuous(breaks = intervalos_x) +
   x = NULL,
   y = NULL,
   title = "DBC Tomate | Croqui",
   fill = NULL) +
  theme_light() +
  theme(
    legend.position = "none",
    axis.text.x = element_text(angle = 0, vjust = 0.5, hjust = 0.5), # Ajustar a posição dos rótulo
    axis.text.y = element_blank(),
                                                                        # Retira o rótulo do eixo y
   axis.ticks.y = element_blank(),
                                                                        # Retira o marcador de rótiulo
   panel.grid = element_blank(),
   plot.title = element_text(hjust = 0.5)
print(croquiDBCtomato)
```


Observe a distribuição em função dos blocos e, dentro de cada bloco, há a presença de todos os tratamentos. A coloração foi feita em função dos diferentes genótipos para facilitar essa distinção dentro do bloco.

EXERCÍCIO 02

Para esse exercício, será utilizada a variável peso de frutos comerciais.

▼ Análise exploratória:

1. Gráfico de pontos:

```
ggplot(DBCtomato, aes(x = Genotype, y = pFruto)) +
  geom_point() +
  expand_limits(y = 0) +
  labs(
    x = "Genótipo",
    y = "Peso de frutos comerciais (kg/parcela)",
    title = "DBC Tomate | Gráfico de Pontos") +
  theme(
    plot.title = element_text(hjust = 0.5))
```


Gráfico de pontos para dados de peso total de frutos comerciais para diferentes genótipos de tomate.

2. Gráfico BoxPlot:

```
ggplot(DBCtomato, aes(x = Genotype, y = pFruto)) +
geom_boxplot() +
expand_limits(y = 0) +
labs(
x = "Genótipo",
y = "Peso de frutos comerciais (kg/parcela)",
title = "DBC Tomate | BoxPlot") +
theme(
plot.title = element_text(hjust = 0.5))
```


Gráfico BoxPlot para dados de peso total de frutos comerciais para diferentes genótipos de tomate.

▼ Validação das pressuposições da ANOVA:

Para realizar a validação das pressuposições da ANOVA, primeiro é necessário criar um modelo de ajuste linear para o conjunto de dados e depois prosseguir com os testes de normalidade e homogeneidade.

• Ajuste do modelo linear:

```
lmDBCtomato = lm(pFruto~Bloco+Genotype, DBCtomato)
resDBCtomato <- residuals(lmDBCtomato)  # Residuos
resStudDBCtomato <- rstandard(lmDBCtomato)  # Residuos studentizados</pre>
```

• Shapiro-Wilk | Teste de normalidade dos resíduos

```
shapiro.test(resStudDBCtomato)
```

Resultado:

```
data: resStudDBCtomato
W = 0.98276, p-value = 0.8932
```

Portanto → De acordo com o teste de Shapiro-Wilk a 5% de probabilidade de erro, os resíduos podem ser considerados normais.

• Breusch-Pagan | Teste de homogeneidade de variâncias

```
bptest(lmDBCtomato)
```

Resultado:

```
data: lmDBCtomato
BP = 6.435, df = 6, p-value = 0.3763
```

Portanto → De acordo com o teste de Breusch-Pagan a 5% de probabilidade de erro, as variâncias podem ser consideradas homogêneas.

Visto que o conjunto de dados atendem as pressuposições da ANOVA, não há necessidade de realizar uma transformação de dados e é possível seguir para a Análise de Variância.

▼ ANOVA - Análise de variância e teste de Tukey

• ANOVA e Tukey utilizando funções do pacote ExpDes.pt:

```
# Code:
DICpotato$Genotype <- as.numeric(DICpotato$Genotype)</pre>
with(DICpotato,
    dic(Genotype, nTub, hvar = "levene", quali = T, mcomp = "tukey", sigF = 0.05, sigT = 0.05))
# ANOVA por meio do ExpDes.pt:
Ouadro da analise de variancia
         GL
               SQ
                      QM
                            Fc Pr>Fc
Tratamento 5 1066.10 213.220 8.6292 0.00017
        4 45.62 11.404 0.4615 0.76307
Residuo 20 494.18 24.709
Total
        29 1605.90
CV = 27.11 \%
[...]
Teste de Tukey
Grupos Tratamentos Medias
a
     Sl-112 25.73395
     S1-057 23.684
abc
      S1-060 22.57282
bcd
       S1-031 15.42526
 cd
       Sl-098 12.75601
  d
        S1-062
                  9.831283
```

• Interpretações:

- Não foi observado efeito para o bloco a 5% de probabilidade de erro.
- A hipótese nula é rejeitada, aceitando-se a hipótese alternativa de que há diferenças significativas a 5% de probabilidade de erro entre, pelo menos, dois tratamentos.
- Pelo **teste Tukey**, é possível inferir que, em relação a produção de frutos comerciais:
 - Sl-112 é superior aos genótipos Sl-031, Sl-098 e Sl-062.
 - Sl-112, Sl-057 e Sl-060 não se diferem estatisticamente a 5% de probabilidade de erro.
 - Sl-062 é o genótipo com pior desempenho e difere, estatisticamente a 5% de probabilidade de erro, de Sl-112, Sl-057 e Sl-060.

▼ Representação gráfica dos resultados

• Cálculo das médias observadas:

```
meanDBCt <- DBCtomato %>%
  group_by(Genotype) %>%
  summarise(meanHarvest = mean(pFruto, na.rm = TRUE)
```

• Associação entre o resultado do Tukey e os genótipos:

```
# Cria um dataframe com o resultado do teste Tukey;
Tukey <- tibble(
   Genotype = c("Sl-031", "Sl-057", "Sl-060", "Sl-062", "Sl-098", "Sl-112"),
   tTest = c("bcd", "ab", "abc", "d", "cd", "a")
)

# Adiciona os grupos Tukey às médias
meanDBCt <- left_join(meanDBCt, Tukey, by="Genotype")</pre>
```

• Gráfico de barras com o resultado do Tukey:

Gráfico de barras com as médias de produção de frutos comerciais por parcela para cada genótipo seguidas pelo resultado do teste Tukey.

III CONCLUSÕES

• Não há efeito de bloco nos dados coletados para esse experimento.

- Há diferenças entre, pelo menos dois genótipos testados para a variável produção de frutos com padrão comercial por parcela. Portanto, foi realizado um teste de comparação múltipla adequado para o conjunto de dados, a fim de visualizar quais essas diferenças.
- O genótipo com maior desempenho produtivo foi o Sl-112, enquanto o pior desempenho foi registrado para o acesso Sl-062.