



Please type a plus sign (+) inside this box →  +

PTO/SB/05 (4/98)  
Approved for use through 09/30/2000. OMB 0651-0032

Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

# UTILITY PATENT APPLICATION TRANSMITTAL

(Only for new nonprovisional applications under 37 C.F.R. § 1.53(b))

Attorney Docket No. MO-5998/LeA 34,074

First Inventor or Application Identifier Klaus Raming et al

Title GABA B RECEPTORS

Express Mail Label No. EF080092618US

11/17/00

## APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents.

1.  \* Fee Transmittal Form (e.g., PTO/SB/17)  
(Submit an original and a duplicate for fee processing)
2.  Specification [Total Pages 26]
  - Descriptive title of the Invention
  - Cross References to Related Applications
  - Statement Regarding Fed sponsored R & D
  - Reference to Microfiche Appendix
  - Background of the Invention
  - Brief Summary of the Invention
  - Brief Description of the Drawings (if filed)
  - Detailed Description
  - Claim(s)
  - Abstract of the Disclosure
3.  Drawing(s) (35 U.S.C. 113) [Total Sheets 2]
4. Oath or Declaration [Total Pages 2]
  - a.  Newly executed (original or copy)
  - b.  Copy from a prior application (37 C.F.R. § 1.63(d))  
(for continuation/divisional with Box 16 completed)
    - i.  DELETION OF INVENTOR(S)  
Signed statement attached deleting inventor(s) named in the prior application, see 37 C.F.R. §§ 1.63(d)(2) and 1.33(b).

\* NOTE FOR ITEMS 1 & 13 IN ORDER TO BE ENTITLED TO PAY SMALL ENTITY FEES, A SMALL ENTITY STATEMENT IS REQUIRED (37 C.F.R. § 1.27), EXCEPT IF ONE FILED IN A PRIOR APPLICATION IS RELIED UPON (37 C.F.R. § 1.28).

ADDRESS TO: Assistant Commissioner for Patents  
Box Patent Application  
Washington, DC 20231

5.  Microfiche Computer Program (Appendix)
6. Nucleotide and/or Amino Acid Sequence Submission  
(if applicable, all necessary)
  - a.  Computer Readable Copy
  - b.  Paper Copy (identical to computer copy)
  - c.  Statement verifying identity of above copies

## ACCOMPANYING APPLICATION PARTS

7.  Assignment Papers (cover sheet & document(s))
8.  37 C.F.R. § 3.73(b) Statement  Power of  
(when there is an assignee)  Attorney
9.  English Translation Document (if applicable)
10.  Information Disclosure Statement (IDS)/PTO-1449  Copies of IDS  
Citations
11.  Preliminary Amendment
12.  Return Receipt Postcard (MPEP 503)  
(Should be specifically itemized)
  - \* Small Entity  Statement filed in prior application
13.  Statement(s)  Status still proper and desired  
(PTO/SB/09-12)
14.  Certified Copy of Priority Document(s)  
(if foreign priority is claimed)
15.  Other: \_\_\_\_\_

16. If a CONTINUATING APPLICATION, check appropriate box, and supply the requisite information below and in a preliminary amendment:

Continuation  Divisional  Continuation-in-part (CIP) of prior application No. \_\_\_\_\_ / \_\_\_\_\_

Prior application information: Examiner \_\_\_\_\_

Group / Art Unit: \_\_\_\_\_

For CONTINUATION or DIVISIONAL APPS only: The entire disclosure of the prior application, from which an oath or declaration is supplied under Box 4b, is considered a part of the disclosure of the accompanying continuation or divisional application and is hereby incorporated by reference. The incorporation can only be relied upon if it has not been inadvertently omitted from the submitted application parts.

## 17. CORRESPONDENCE ADDRESS

|                                                                                                                              |  |           |          |                                                       |  |
|------------------------------------------------------------------------------------------------------------------------------|--|-----------|----------|-------------------------------------------------------|--|
| <input checked="" type="checkbox"/> Customer Number or Bar Code Label<br>(Insert Customer No. or Attach bar code label here) |  | 00157     |          | <input type="checkbox"/> Correspondence address below |  |
| Name                                                                                                                         |  |           |          |                                                       |  |
| Address                                                                                                                      |  |           |          |                                                       |  |
| City                                                                                                                         |  | State     | Zip Code |                                                       |  |
| Country                                                                                                                      |  | Telephone | Fax      |                                                       |  |

|                   |               |                                   |        |
|-------------------|---------------|-----------------------------------|--------|
| Name (Print/Type) | Joseph C. Gil | Registration No. (Attorney/Agent) | 26,602 |
| Signature         | Date 11/17/00 |                                   |        |

Burden Hour Statement This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

# FEE TRANSMITTAL

## for FY 2000

Patent fees are subject to annual revision

Small Entity payments **must** be supported by a small entity statement,  
otherwise large entity fees must be paid. See Forms PTO/SB/09-12  
See 37 CFR §§ 1.27 and 1.28.

TOTAL AMOUNT OF PAYMENT (\$ 1,182.00)

**Complete if Known**

|                      |                    |
|----------------------|--------------------|
| Application Number   | To be Assigned     |
| Filing Date          | Herewith           |
| First Named Inventor | Klaus Raming et al |
| Examiner Name        | --                 |
| Group / Art Unit     | --                 |
| Attorney Docket No.  | Mo-5998/LeA 34,074 |

**METHOD OF PAYMENT** (check one)

1.  The Commissioner is hereby authorized to charge indicated fees and credit any overpayments to:

Deposit Account Number 13-3848

Deposit Account Name Bayer Corporation

 Charge Any Additional Fee Required  
Under 37 CFR §§ 1.16 and 1.17

- 2.
- 
- Payment Enclosed:

 Check     Money Order     Other**FEE CALCULATION (continued)****3. ADDITIONAL FEES**

| Large Entity              | Small Entity | Fee Code (\$) | Fee Code (\$) | Fee Description                                                            | Fee Paid |
|---------------------------|--------------|---------------|---------------|----------------------------------------------------------------------------|----------|
| 105                       | 130          | 205           | 65            | Surcharge - late filing fee or oath                                        | 0.00     |
| 127                       | 50           | 227           | 25            | Surcharge - late provisional filing fee or cover sheet.                    | 0.00     |
| 139                       | 130          | 139           | 130           | Non-English specification                                                  | 0.00     |
| 147                       | 2,520        | 147           | 2,520         | For filing a request for reexamination                                     | 0.00     |
| 112                       | 920*         | 112           | 920*          | Requesting publication of SIR prior to Examiner action                     | 0.00     |
| 113                       | 1,840*       | 113           | 1,840*        | Requesting publication of SIR after Examiner action                        | 0.00     |
| 115                       | 110          | 215           | 55            | Extension for reply within first month                                     | 0.00     |
| 116                       | 380          | 216           | 190           | Extension for reply within second month                                    | 0.00     |
| 117                       | 870          | 217           | 435           | Extension for reply within third month                                     | 0.00     |
| 118                       | 1,360        | 218           | 680           | Extension for reply within fourth month                                    | 0.00     |
| 128                       | 1,850        | 228           | 925           | Extension for reply within fifth month                                     | 0.00     |
| 119                       | 300          | 219           | 150           | Notice of Appeal                                                           | 0.00     |
| 120                       | 300          | 220           | 150           | Filing a brief in support of an appeal                                     | 0.00     |
| 121                       | 260          | 221           | 130           | Request for oral hearing                                                   | 0.00     |
| 138                       | 1,510        | 138           | 1,510         | Petition to institute a public use proceeding                              | 0.00     |
| 140                       | 110          | 240           | 55            | Petition to revive - unavoidable                                           | 0.00     |
| 141                       | 1,210        | 241           | 605           | Petition to revive - unintentional                                         | 0.00     |
| 142                       | 1,210        | 242           | 605           | Utility issue fee (or reissue)                                             | 0.00     |
| 143                       | 430          | 243           | 215           | Design issue fee                                                           | 0.00     |
| 144                       | 580          | 244           | 290           | Plant issue fee                                                            | 0.00     |
| 122                       | 130          | 122           | 130           | Petitions to the Commissioner                                              | 0.00     |
| 123                       | 50           | 123           | 50            | Petitions related to provisional applications                              | 0.00     |
| 126                       | 240          | 126           | 240           | Submission of Information Disclosure Stmt                                  | 0.00     |
| 581                       | 40           | 581           | 40            | Recording each patent assignment per property (times number of properties) | 40.00    |
| 146                       | 690          | 246           | 345           | Filing a submission after final rejection (37 CFR § 1.129(a))              | 0.00     |
| 149                       | 690          | 249           | 345           | For each additional invention to be examined (37 CFR § 1.129(b))           | 0.00     |
| Other fee (specify) _____ |              |               |               |                                                                            | 0.00     |
| Other fee (specify) _____ |              |               |               |                                                                            | 0.00     |
| SUBTOTAL (2) (\$ 432.00)  |              |               |               | SUBTOTAL (3) (\$)                                                          | 40.00    |

\* Reduced by Basic Filing Fee Paid

**Complete (if applicable)**

|                   |                                                                                     |                                      |        |           |          |
|-------------------|-------------------------------------------------------------------------------------|--------------------------------------|--------|-----------|----------|
| Name (Print/Type) | Joseph C. Gil                                                                       | Registration No.<br>(Attorney/Agent) | 26,602 | Telephone | 777-2342 |
| Signature         |  |                                      |        | Date      | 11/17/00 |

**WARNING:**

Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

PATENT APPLICATION  
Mo-5998  
LeA 34,074

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICATION OF )  
KLAUS RAMING ET AL. )  
SERIAL NUMBER: TO BE ASSIGNED )  
FILED: HEREWITH )  
TITLE: GABA B RECEPTORS )

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents  
Washington D.C. 20231

Sir:

Upon the granting of a Serial Number and Filing date and prior to the examination of the subject application, kindly amend the application as follows.

IN THE SPECIFICATION:

On page 1, between lines 5 and 6, please insert -- BACKGROUND OF THE INVENTION --.

On page 2, before line 2, please insert -- BRIEF SUMMARY OF THE INVENTION --.

On page 3, before line 2, please insert -- DETAILED DESCRIPTION OF THE INVENTION --.

"Express Mail" mailing label number EFU8U92618US  
Date of Deposit November 17, 2000

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Assistant Commissioner of Patents and Trademarks, Washington, D.C. 20231

Donna J. Veatch

(Name of person mailing paper or fee)

Donna J. Veatch  
Signature of person mailing paper or fee

On page 7, line 4, following "the main operator and promoter regions of", please delete "phase" and insert -- phage --.

On page 21, line 1, please delete "Patent Claims" and insert -- WHAT IS CLAIMED IS: --.  
IN THE CLAIMS:

Please amend Claims 1 - 8 as follows:

1. (Amended) A purified and isolated [P]polypeptide [which exerts] having the biological activity of a GABA B receptor and [which comprises] comprising an amino acid sequence which has at least 70% identity with a sequence of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6.

2. (Amended) The [P]polypeptide according to Claim 1, characterized in that the amino acid sequence corresponds to a sequence of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6.

3. (Amended) A purified and isolated [N]nucleic acid comprising a nucleotide sequence which encodes a polypeptide according to Claim 1.

4. (Amended) The [N]nucleic acid according to Claim 3, characterized in that it is a single- or double-stranded DNA or RNA.

5. (Amended) The [N]nucleic acid according to Claim 4, characterized in that it is a fragment of genomic DNA or cDNA.

6. (Amended) The [N]nucleic acid according to Claim 3, characterized in that the nucleotide sequence corresponds to a sequence of SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5.

7. (Amended) The [N]nucleic acid according to Claim 3, characterized in that it hybridizes under stringent conditions to the sequences of SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5.

8. (Amended) A DNA construct comprising a nucleic acid according to [any of] Claim[s] 3 [to 7] and a heterologous promoter.

Please cancel Claim 9.

Please amend Claims 10 -17 as follows:

10. (Amended) A vector [according to Claim 9], characterized in that the nucleic acid of Claim 3 is [operatively] linked to regulatory sequences which ensure the expression of the nucleic acid in pro-karyotic or eukaryotic cells.

11. (Amended) A [H]host cell [containing] stably transformed or transfected with a nucleic acid according to [any of] Claim[s] 3 [to 7, a DNA construct according to Claim 8 or a vector according to Claim 9 or 10].

12. (Amended) The [H]host cell according to Claim 11, which is a prokaryotic cell[, in particular E. coli].

13. (Amended) A [H]host cell according to Claim 11, which is a eukaryotic cell[, in particular a mammalian or insect cell].

14. (Amended) An [A]antibody substance which binds specifically to a polypeptide according to Claim 1.

15. (Amended) A [T]transgenic invertebrate containing a nucleic acid according to [any of] Claim[s] 3 [to 7].

16. (Amended) The [T]transgenic invertebrate according to Claim 15, which is Drosophila melanogaster or Caenorhabditis elegans.

17. (Amended) The [T]transgenic progeny of an invertebrate according to Claim 15 [or 16].

Please cancel Claims 18, 19, 20, 21, 22, 23, 24 and 25.

Please add Claims 26 - 38 as follows:

-- 26. A vector comprising a nucleic acid according to Claim 3 or the nucleic acid of Claim 3 and a heterologous promoter.

27. The host cell of Claim 11 containing a DNA construct according to Claim 8.

28. The host cell of Claim 11 containing a vector according to Claim 10.

29. The host cell of Claim 11 wherein the prokaryotic cell is E. coli.

30. The host cell of Claim 11 wherein the eukaryotic cell is a mammalian or insect cell.

31. A method of generating a polypeptide having the biological activity of a GABA B receptor and comprising an amino acid sequence which has at least 70% identity with a sequence of SEQ ID NO:2, SEQ ID NO:4 or SEQ ID NO:6, comprising

- a) culturing a host cell stably transformed or transfected with a nucleic acid according to Claim 3 under conditions which ensure the expression of the nucleic acid according to Claim 3, or
- b) expressing a nucleic acid according to Claim 3 in an in-vitro system, and
- c) obtaining the polypeptide from the cell, the culture medium or the in-vitro system.

32. A method of generating a nucleic acid according to Claim 3, comprising the steps selected from the group consisting of:

- (a) full chemical synthesis in a manner known per se,
- (b) chemical synthesis of oligonucleotides further comprising, labelling of the oligonucleotides, hybridizing the oligonucleotides to DNA of a genomic library or cDNA library generated from insect genomic DNA or insect mRNA, respectively, and selecting positive clones and isolating the hybridizing DNA from positive clones, and
- (c) chemical synthesis of oligonucleotides and amplification of the target DNA by PCR.

33. A method of generating a transgenic invertebrate, comprising stably transforming or transfecting an invertebrate cell or organism with a nucleic acid selected from the group consisting of a nucleic acid of Claim 3, a nucleic acid of Claim 3 and a heterologous promoter, and a vector comprising a nucleic acid of Claim 3 operatively linked to regulatory sequences ensuring expression of the nucleic acid of Claim 3 in the invertebrate cell or organism.

34. A method of finding new active compounds for crop protection which alter the properties of polypeptides having the biological activity of a GABA B receptor and comprising an amino acid sequence which has at least 70% identity with a sequence of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6, comprising the steps of:

- a) providing a host cell according to Claim 11,
- b) culturing the host cell in the presence of a chemical or of a sample comprising a multiplicity of chemicals, and
- c) detecting altered properties .

35. A method of finding a chemical which binds to a polypeptide having the biological activity of a GABA B receptor and comprising an amino acid sequence which has at least 70% identity with a sequence of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6, comprising the steps of:

- (a) contacting a polypeptide according to Claim 1 or a host cell according to Claim 11 with a chemical or a mixture of chemicals under conditions which permit the interaction of a chemical with the polypeptide, and
- (b) determining the chemical which binds specifically to the polypeptide.

36. A method of finding a chemical which alters the expression of a polypeptide having the biological activity of a GABA B receptor and comprising an amino acid sequence which has at least 70% identity with a sequence of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6, comprising the steps of :

- (a) contacting a host cell according to Claim 11 or a transgenic invertebrate according to Claim 15 with a chemical or a mixture of chemicals,
- (b) determining the concentration of the polypeptide according to Claim 1, and
- (c) determining the chemical which specifically affects the expression of the polypeptide.

37. A method of finding new active compounds for crop protection or for finding genes which encode polypeptides which participate in the synthesis of functionally similar GABA B receptors in insects comprising selecting for said active compounds with a bio-molecule, cell, or organism selected from the group consisting of:

- (a) a polypeptide according to Claim 1,
- (b) a nucleic acid according to Claim 3,
- (c) a vector according to Claim 26,
- (d) a host cell according to Claim 11,
- (e) an antibody substance according to Claim 14; and
- (f) a transgenic invertebrate according to Claim 15.

38. A method of killing insect pests comprising applying a modulator of a polypeptide according to Claim 1. --

**REMARKS**

The Claims have been amended to put them in a form more commonly used for US filing. Claims 1 to 17 have been amended as to form and to remove multiple dependencies. Claim 9 has been cancelled and rewritten as Claim 26. Claim 11 has been amended to remove multiple dependent form and Claims 27 to 30 added to claim the dependent subject matter. Claims 18 and 19 have been cancelled and rewritten as Claims 31 and 32. Claims 20, 21, 22 and 23 have been cancelled and rewritten as Claim 33, 34, 35, and 36. Claims 24 and 25 have been cancelled and rewritten as Claims 37 and 38.

Applicants attach hereto the Sequence Listing in the form of a Computer readable Copy and Paper Copy. Applicants by their Attorney state that the contents of the Computer Readable Copy and Paper Copy are the same and no new matter has been added.

An action on the merits is respectfully requested.

Respectfully submitted,

KLAUS RAMING  
MARIO MEZLER  
THOMAS MÜLLER

By   
Joseph C. Gil  
Attorney for Applicants  
Reg. No. 26,602

Bayer Corporation  
100 Bayer Road  
Pittsburgh, Pennsylvania 15205-9741  
(412) 777-2342  
FACSIMILE PHONE NUMBER:  
(412) 777-5449  
s:\ksl\JA0057

**GABA B receptors**

The invention relates to polypeptides which exert the biological activity of GABA B receptors and to nucleic acids encoding these polypeptides, and, in particular, to their use for finding active compounds for crop protection.

Gamma-amino-butyric acid (GABA) is the most important inhibitory neurotransmitter in the nervous system of vertebrates and invertebrates. The GABA receptors can be classified into two subfamilies, the GABA A and GABA B receptors. Amongst these, the GABA A receptors are ligand-controlled ion channels, while the GABA B receptors are metabotropic, G-protein-coupled receptors. GABA B receptors affect the release of various neurotransmitters and the activity of ion channels.

GABA B receptors have been studied extensively, in particular in vertebrates. Two subtypes (GABA B1 and GABA B2), which are functionally active as heterodimers, are known here (Jones et al., 1998; Kaupmann et al., 1998; White et al., 1998).

In insects, GABA is the most important inhibitory neurotransmitter of the central nervous system. Accordingly, GABA receptors can be detected electrophysiologically on preparations of insect central ganglia. Both the GABA A receptors and the GABA B receptors are the molecular target of important natural and synthetic insecticidally active compounds (Sattelle, 1990; Fukunaga et al., 1999).

The protein sequence of a number of insect GABA A receptors is already known. Thus, the sequences of three different subunits have been described for *Drosophila melanogaster* (ffrench-Constant et al., 1991; Harvey et al., 1994; Henderson et al., 1993).

The provision of insect GABA B receptors is therefore of great practical importance, for example in the search for new insecticides.

The present invention is therefore based in particular on the object of providing insect GABA B receptors and on assay systems based thereon with a high throughput of test compounds (high throughput screening assays; HTS assays).

5

The object is achieved by providing polypeptides which exert at least one biological activity of a GABA B receptor and which comprise an amino acid sequence having at least 70% identity, preferably at least 80% identity, especially preferably at least 90% identity, very especially preferably at least 95% identity, with a sequence of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6 over a length of at least 20, preferably at least 25, especially preferably at least 30 consecutive amino acids, and very especially preferably over their full lengths.

10

The degree of identity of the amino acid sequences is preferably determined using the program GAP from the package GCG, Version 9.1, with standard settings (Devereux et al., 1984).

15

20

The term "polypeptides" as used in the present context not only relates to short amino acid chains which are usually termed peptides, oligopeptides or oligomers, but also to longer amino acid chains which are usually termed proteins. It encompasses amino acid chains which can be modified either by natural processes, such as post-translational processing, or by chemical prior-art methods. Such modifications may occur at various sites and repeatedly in a polypeptide, such as, for example, on the peptide backbone, on the amino acid side chain, on the amino and/or the carboxyl terminus. For example, they encompass acetylations, acylations, ADP-ribosylations, amidations, covalent linkages to flavins, haem-moieties, nucleotides or nucleotide derivatives, lipids or lipid derivatives or phosphatidylinositol, cyclizations, disulphide bridge formations, demethylations, cystine formations, formylations, gamma-carboxylations, glycosylations, hydroxylations, iodinations, methylations, myristylations, oxidations, proteolytic processings, phosphorylations, selenylations and tRNA-mediated amino acid additions.

25

30

SEARCHED  
INDEXED  
MAILED  
FILED  
JULY 2001  
RECEIVED  
U.S. PATENT AND TRADEMARK OFFICE

The polypeptides according to the invention may exist in the form of "mature" proteins or parts of larger proteins, for example as fusion proteins. They can furthermore exhibit secretion or leader sequences, pro-sequences, sequences which allow simple purification, such as multiple histidine residues, or additional stabilizing amino acids.

The biological activity of the GABA B receptors is preferably achieved by heterodimerization of the polypeptides according to the invention. For example, the polypeptides according to the invention with an amino acid sequence of SEQ ID NO: 2 and SEQ ID NO: 4, SEQ ID NO: 2 and SEQ ID NO: 6 or SEQ ID NO: 4 and SEQ ID NO: 6 can gain receptor activity by dimerization.

The polypeptides according to the invention need not constitute complete receptors, but may also be fragments thereof, as long as they still have at least one biological activity of the complete receptors. Polypeptides which, compared with GABA B receptors, are composed of the polypeptides according to the invention with an amino acid sequence of SEQ ID NO: 2 and SEQ ID NO: 4, which have a 50% higher or reduced activity, are still considered to be in accordance with the invention. The polypeptides according to the invention need not be deducible from Drosophila melanogaster GABA B receptors. Polypeptides which are also considered as being in accordance with the invention are those which correspond to the GABA B receptors of, for example, the following invertebrates, or fragments thereof which can still exert the biological activity of these receptors: arthropods, nematodes, molluscs.

In comparison with the corresponding region of naturally occurring GABA B receptors, the polypeptides according to the invention can have deletions or amino acid substitutions, as long as they still exert at least one biological activity of the complete receptors. Conservative substitutions are preferred. Such conservative substitutions encompass variations, one amino acid being replaced by another amino acid from amongst the following group:

1. small aliphatic residues, unpolar residues or residues of little polarity: Ala, Ser, Thr, Pro and Gly;
2. polar, negatively charged residues and their amides: Asp, Asn, Glu and Gln;
- 5      3. polar, positively charged residues: His, Arg and Lys;
4. large aliphatic unpolar residues: Met, Leu, Ile, Val and Cys; and
5. aromatic residues: Phe, Tyr and Trp.

Preferred conservative substitutions can be seen from the following list:

10

| Original residue | Substitution  |
|------------------|---------------|
| Ala              | Gly, Ser      |
| Arg              | Lys           |
| Asn              | Gln, His      |
| Asp              | Glu           |
| Cys              | Ser           |
| Gln              | Asn           |
| Glu              | Asp           |
| Gly              | Ala, Pro      |
| His              | Asn, Gln      |
| Ile              | Leu, Val      |
| Leu              | Ile, Val      |
| Lys              | Arg, Gln, Glu |
| Met              | Leu, Tyr, Ile |
| Phe              | Met, Leu, Tyr |
| Ser              | Thr           |
| Thr              | Ser           |
| Trp              | Tyr           |
| Tyr              | Trp, Phe      |
| Val              | Ile, Leu      |

The term "biological activity of a GABA B receptor" as used in the present context means binding GABA.

Preferred embodiments of the polypeptides according to the invention are Drosophila melanogaster GABA B receptors which have the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6.

Subject-matter of the present invention are also nucleic acids which encode the polypeptides according to the invention.

The nucleic acids according to the invention are, in particular, single-stranded or double-stranded deoxyribonucleic acids (DNA) or ribonucleic acids (RNA). Preferred embodiments are fragments of genomic DNA which may contain introns, and cDNAs.

cDNAs which have a nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5 constitute preferred embodiments of the nucleic acids according to the invention.

The present invention also encompasses nucleic acids which hybridize under stringent conditions with sequences of SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5.

The term "to hybridize" as used in the present context describes the process during which a single-stranded nucleic acid molecule undergoes base pairing with a complementary strand. Starting from the sequence information disclosed herein, this allows, for example, DNA fragments to be isolated from insects other than Drosophila melanogaster which encode polypeptides with the biological activity of GABA B receptors.

Preferred hybridization conditions are stated hereinbelow:

Hybridization solution: 6X SSC / 0 % formamide, preferred hybridization solution:  
6X SSC / 25 % formamide

Hybridization temperature: 34°C, preferred hybridization temperature: 42°C

5

Wash step 1: 2X SSC at 40°C,

Wash step 2: 2X SSC at 45°C; preferred wash step 2: 0.6X SSC at 55°C,  
especially preferred wash step 2: 0.3 X SSC at 65°C.

10

The present invention encompasses furthermore nucleic acids which have at least 70% identity, preferably at least 80% identity, especially preferably at least 90% identity, very especially preferably at least 95% identity, with a sequence of SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5 over a length of at least 20, preferably at least 25, especially preferably at least 30, consecutive nucleotides, and very especially preferably over their full lengths.

15

The degree of identity of the nucleic acid sequences is preferably determined with the aid of program GAP from the package GCG, Version 9.1, using standard settings.

20

The sequences in accordance with the GenBank accession numbers (Acc. No.) AC002502, AF145639 and AC004420 are incorporated into the present description by reference.

25

Subject-matter of the present invention are furthermore DNA constructs which comprise a nucleic acid according to the invention and a heterologous promoter.

30

The term "heterologous promoter" as used in the present context refers to a promoter which has properties other than the promoter which controls the expression of the gene in question in the original organism. The term "promoter" as used in the present context generally refers to expression control sequences.

The choice of heterologous promoters depends on whether pro- or eukaryotic cells or cell-free systems are used for expression. Examples of heterologous promoters are the SV40, the adenovirus or the cytomegalovirus early or late promoter, the lac system, the trp system, the main operator and promoter regions of phase lambda, the fd coat protein control regions, the 3-phosphoglycerate kinase promoter, the acid phosphatase promoter and the yeast  $\alpha$ -mating factor promoter.

Subject-matter of the present invention are furthermore vectors which contain a nucleic acid according to the invention or a DNA construct according to the invention. All the plasmids, phasmids, cosmids, YACs or artificial chromosomes used in molecular biology laboratories can be used as vectors.

Subject-matter of the present invention are also host cells comprising a nucleic acid according to the invention, a DNA construct according to the invention or a vector according to the invention.

The term "host cell" as used in the present context refers to cells which do not naturally comprise the nucleic acids according to the invention.

Suitable host cells are prokaryotic cells such as bacteria from the genera *Bacillus*, *Pseudomonas*, *Streptomyces*, *Streptococcus*, *Staphylococcus*, preferably *E. coli*, but also eukaryotic cells such as yeasts, mammalian cells, amphibian cells, insect cells or plant cells. Preferred eukaryotic host cells are HEK-293, Schneider S2, *Spodoptera* Sf9, Kc, CHO, COS1, COS7, HeLa, C127, 3T3 or BHK cells and, in particular, 25 *Xenopus* oocytes.

Another subject-matter of the invention are antibodies which specifically bind to the abovementioned polypeptides or receptors. Such antibodies are produced in the customary manner. For example, such antibodies may be produced by injecting a substantially immunocompetent host with such an amount of a polypeptide according to the invention or a fragment thereof which is effective for antibody production, and

subsequently obtaining this antibody. Furthermore, an immortalized cell line which produces monoclonal antibodies may be obtained in a manner known per se. If appropriate, the antibodies may be labelled with a detection reagent. Preferred examples of such a detection reagent are enzymes, radiolabelled elements, 5 fluorescent chemicals or biotin. Instead of the complete antibody, fragments may also be employed which have the desired specific binding properties. The term "antibodies" as used in the present context therefore also extends to parts of complete antibodies, such as Fa, F(ab')<sub>2</sub> or Fv fragments, which are still capable of binding to the epitopes of the polypeptides according to the invention.

10 The nucleic acids according to the invention can be used, in particular, for generating transgenic invertebrates. These may be employed in assay systems which are based on an expression, of the polypeptides according to the invention, which deviates from the wild type. Based on the information disclosed herein, it is furthermore possible to generate transgenic invertebrates where expression of the polypeptides according to the 15 invention is altered owing to the modification of other genes or promoters.

The transgenic invertebrates are generated, for example, in the case of *Drosophila melanogaster*, by P-element-mediated gene transfer (Hay et al., 1997), or, in 20 *Caenorhabditis elegans*, by transposon-mediated gene transfer (for example by Tc1; Plasterk, 1996).

Subject-matter of the invention are therefore also transgenic invertebrates which contain at least one of the nucleic acids according to the invention, preferably 25 transgenic invertebrates of the species *Drosophila melanogaster* or *Caenorhabditis elegans*, and their transgenic progeny. The transgenic invertebrates preferably contain the polypeptides according to the invention in a form which deviates from the wild type.

30 Subject-matter of the present invention are furthermore processes for producing the polypeptides according to the invention. To produce the polypeptides encoded by the

nucleic acids according to the invention, host cells which contain one of the nucleic acids according to the invention can be cultured under suitable conditions, where the nucleic acid to be expressed may be adapted to the codon usage of the host cells. Thereupon, the desired polypeptides can be isolated from the cells or the culture medium in the customary manner. The polypeptides may also be produced in *in vitro* systems.

A rapid method of isolating the polypeptides according to the invention which are synthesized by host cells using a nucleic acid according to the invention starts with the expression of a fusion protein, it being possible for the fusion partner to be affinity-purified in a simple manner. For example, the fusion partner may be glutathione S-transferase. The fusion protein can then be purified on a glutathione affinity column. The fusion partner can then be removed by partial proteolytic cleavage, for example at linkers between the fusion partner and the polypeptide according to the invention to be purified. The linker can be designed such that it includes target amino acids such as arginine and lysine residues, which define sites for trypsin cleavage. To generate such linkers, standard cloning methods using oligonucleotides may be employed.

Other purification methods which are possible are based on preparative electrophoresis, FPLC, HPLC (for example using gel filtration, reversed-phase or moderately hydrophobic columns), gel filtration, differential precipitation, ion-exchange chromatography and affinity chromatography.

Since GABA B receptors constitute membrane proteins, the purification methods preferably involve detergent extractions, for example using detergents which have no, or little, effect on the secondary and tertiary structures of the polypeptides, such as nonionic detergents.

The purification of the polypeptides according to the invention can encompass the isolation of membranes, starting from host cells which express the nucleic acids according to the invention. Such cells preferably express the polypeptides according to

the invention in a sufficiently high copy number, so that the polypeptide quantity in a membrane fraction is at least 10 times higher than that in comparable membranes of cells which naturally express GABA B receptors; especially preferably, the quantity is at least 100 times, very especially preferably at least 1000 times higher.

5

The terms "isolation or purification" as used in the present context mean that the polypeptides according to the invention are separated from other proteins or other macromolecules of the cell or of the tissue. The protein content of a composition containing the polypeptides according to the invention is preferably at least 10 times, especially preferably at least 100 times, higher than in a host cell preparation.

10

The polypeptides according to the invention may also be affinity-purified without a fusion partner with the aid of antibodies which bind to the polypeptides.

15

Another subject-matter of the present invention are processes for the generation of the nucleic acids according to the invention. The nucleic acids according to the invention can be generated in the customary manner. For example, all of the nucleic acid molecules can be synthesized chemically, or else only short sections of the sequences according to the invention can be synthesized chemically, and such oligonucleotides can be radiolabelled or labelled with a fluorescent dye. The labelled oligonucleotides can be used for screening cDNA libraries generated starting from insect mRNA or for screening genomic libraries generated starting from insect genomic DNA. Clones which hybridize with the labelled oligonucleotides are chosen for isolating the DNA in question. After characterization of the DNA which has been isolated, the nucleic acids according to the invention are obtained in a simple manner.

20

25

Alternatively, the nucleic acids according to the invention can also be generated by means of PCR methods using chemically synthesized oligonucleotides.

The term "oligonucleotide(s)" as used in the present context denotes DNA molecules composed of 10 to 50 nucleotides, preferably 15 to 30 nucleotides. They are synthesized chemically and can be used as probes.

5       The nucleic acids or polypeptides according to the invention allow new active compounds for crop protection and/or pharmaceutical active compounds for the treatment of humans and animals to be identified, such as chemical compounds which, being modulators, in particular agonists or antagonists, alter the properties of the GABA B receptors according to the invention. To this end, a recombinant DNA molecule comprising at least one nucleic acid according to the invention is introduced into a suitable host cell. The host cell is grown in the presence of a compound or a sample comprising a variety of compounds under conditions which allow expression of the receptors according to the invention. A change in the receptor properties can be detected for example as described hereinbelow in Example 2. This allows, for example, insecticidal substances to be found.

10

15

GABA B receptors alter the concentration of intracellular cAMP via interaction with G proteins, preferably after previously having been activated. Thus, changes in the receptor properties by chemical compounds can be measured after heterologous expression, for example by measuring the intracellular cAMP concentrations directly via ELISA assay systems (Biomol, Hamburg, Germany) or RIA assay systems (NEN, Schwalbach, Germany) in HTS format. An indirect measurement of the cAMP concentration is possible with the aid of reporter genes (for example luciferase), whose expression depends on the cAMP concentration (Stratowa et al., 20 1995). The coexpression of GABA B receptors with specific G proteins, for example G $\alpha$ 15, G $\alpha$ 15 or else chimeric G proteins, in heterologous systems and measuring the rise in calcium, for example using fluorescent dyes or equorin, is an alternative possibility of carrying out the screening (Stables et al., 1997; Conklin et al., 1993).

25

Furthermore, the binding of GTP to the activated G protein can be used as a read-out-system for assaying substances. Also, binding experiments with labelled GABA can be employed for screening.

- 5      The term "agonist" as used in the present context refers to a molecule which activates GABA B receptors.

The term "antagonist" as used in the present context refers to a molecule which displaces an agonist from its binding site.

- 10     The term "modulator" as used in the present invention constitutes the generic term for agonist and antagonist. Modulators can be small organochemical molecules, peptides or antibodies which bind to the polypeptides according to the invention. Other modulators may be small organochemical molecules, peptides or antibodies which bind to a molecule which, in turn, binds to the polypeptides according to the invention, thus affecting their biological activity. Modulators may constitute mimetics of natural substrates and ligands.

The modulators are preferably small organochemical compounds.

- 20     The binding of the modulators to the polypeptides according to the invention can alter the cellular processes in a manner which leads to the death of the insects treated therewith.

- 25     The present invention therefore also extends to the use of modulators of the polypeptides according to the invention as insecticides.

- 30     The nucleic acids or polypeptides according to the invention also allow compounds to be found which bind to the receptors according to the invention. Again, they can be applied to plants as insecticides. For example, host cells which contain the nucleic acids according to the invention and which express the corresponding receptors or

polypeptides, or the gene products themselves, are brought into contact with a compound or a mixture of compounds under conditions which permit the interaction of at least one compound with the host cells, the receptors or the individual polypeptides.

5

Using host cells or transgenic invertebrates which contain the nucleic acids according to the invention, it is also possible to find substances which alter receptor expression.

10

The above-described nucleic acids according to the invention, vectors and regulatory regions can furthermore be used for finding genes which encode polypeptides which participate in the synthesis, in insects, of functionally similar GABA B receptors. Functionally similar receptors are to be understood as meaning in accordance with the present invention receptors which comprise polypeptides which, while differing from the amino acid sequence of the polypeptides described herein, essentially have the same functions.

15

**Information on the sequence listing and the figures**

20

SEQ ID NO: 1, SEQ ID NO: 3 and SEQ ID NO: 5 show the nucleotide and amino acid sequences of the isolated GABA B cDNAs. SEQ ID NO: 2, SEQ ID NO: 4 and SEQ ID NO: 6 furthermore show the amino acid sequences of the proteins deduced from the GABA B cDNA sequences.

25

Figure 1 shows a dose-effect curve of GABA and 3-APMPA on the Drosophila GABA B receptor composed of the polypeptides according to the invention with the amino acid sequences of SEQ ID NO: 2 and SEQ ID NO: 4, expressed in Xenopus oocytes.

30

Figure 2 shows the functional coupling to the intracellular cAMP system of the coexpressed D-GABA B receptors R1/R2 composed of the polypeptides according to the invention with the amino acid sequences of SEQ ID NO: 2 and SEQ ID NO: 4.

HEK293 luc cells which have been stably transfected with D-GABA B R1/R2 (D-GABA R1/2) and untransfected control cells (control) were stimulated with forskolin, forskolin and GABA, and also with GABA alone, and the intracellular cAMP concentration was measured. The D-GABA B-R1/2-transfected cells showed a marked reduction in forskolin-induced cAMP response, while the control cells were unresponsive.

**Examples**

**Example 1**

5 Isolation of the above-described polynucleotide sequences

Polynucleotides were manipulated by standard methods of recombinant DNA technology (Sambrook et al., 1989). Nucleotide and protein sequences were processed in terms of bioinformatics using the package GCG Version 9.1 (GCG 10 Genetics Computer Group, Inc., Madison Wisconsin, USA).

**Example 2**

**Generation of the expression constructs**

15 The sequence regions of SEQ ID NO: 1, SEQ ID NO: 3 and SEQ ID NO: 5 were amplified by means of polymerase chain reaction (PCR) and cloned into the vector pcDNA3.1/Neo (Invitrogen, Groningen).

20 **Heterologous expression**

HEK293 cells were cultured at 5% CO<sub>2</sub> and 37°C in Dulbecco's modified Eagle's medium and 10% foetal calf serum. MBS (Stratagene, La Jolla, USA) was used for the gene transfer, following the manufacturer's instructions. 24 h to 48 h after the 25 gene transfer, the cells were sown into microtiter plates at various densities. Recombinant cells were selected over 3 to 4 weeks by growth in Dulbecco's modified Eagles medium and 10% foetal calf serum and 700 µg/ml Geneticin (G418, Life Technologies, Karlsruhe) as selection marker. Individual resistant clones were analysed as described below.

Insect GABA B receptors were also expressed functionally in Xenopus oocytes. To this end, G-protein-activatable potassium channels (GIRK1 and GIRK4) were coexpressed in order to measure activation of the GABA B receptors (White et al., 1998).

5

### cAMP measurements

HEK293 cell strains were used for determining the cAMP concentration. On the one hand, HEK293 cells stably coexpressed the two Drosophila melanogaster receptors D-GABA B R1 and D-GABA B R2 (D-GABA R1/2). On the other hand, untransfected control cells were incorporated into the assay (control). In each case, the cells were plated into 96-well-plates at a density of 20,000 cells per cavity. Control cells were incubated in culture medium (DMEM, 10% FCS, penicillin and streptomycin, 50 U/ml and 50 µg/ml (Life Technologies)) and D-GABA-R1/2 expressing cells in selection medium (culture medium with 0.5 mg/ml Geneticin (G418, Life Technologies)) for 48 hours at 37°C until a cell density of approximately 80% was reached. Thereupon, the medium was removed, and the cells were washed once with unsupplemented DMEM. After incubation for 30 minutes with IBMX (300 µM) at 37°C, cells were stimulated for 30 minutes with GABA (100 µM) and/or forskolin (10 µM) at 37°C. All incubation steps were carried out in unsupplemented DMEM (Life Technologies). Then, the stimulation medium was removed and the cells were lysed with 50 µl of HCl (0.1 N) per cavity. The cells were lysed for 20 minutes at room temperature with shaking, and the cAMP concentration of the cell lysates were determined in triplicate using the enzyme immunoassay (EIA) kit AK-200 (Biomol, Hamburg, Germany) following the manufacturer's description.

10  
15  
20  
25

**Oocyte measurements**

1. Oocyte preparation

5       The oocytes were obtained from an adult female *Xenopus laevis* frog (Horst Kähler, Hamburg, Germany). The frogs were kept in large tanks with circulating water at a water temperature of 20 - 24°C. Parts of the frog ovary were removed through a small incision in the abdomen (approx. 1 cm), with full anaesthesia. The ovary was then treated for approximately 140 minutes with 25 ml collagenase (type I, C-0130, SIGMA-ALDRICH CHEMIE GmbH, Deisenhofen, Germany; 355 U/ml, prepared with Barth's solution without calcium in mM: NaCl 88, KCl 1, MgSO<sub>4</sub> 0.82, NaHCO<sub>3</sub> 2.4, Tris/HCl 5, pH7.4), with constant shaking. Then, the oocytes were washed with Barth's solution without calcium. Only oocytes at maturity stage V (Dumont, 1972) were selected for the further treatment and transferred into microtiter plates (Nunc MicroWell™ plates, cat. No. 245128 + 263339 (lid), Nunc GmbH & Co. KG, Wiesbaden, Germany) filled with Barth's solution (in mM: NaCl 88, KCl 1, MgSO<sub>4</sub> 0.82, Ca(NO<sub>3</sub>)<sub>2</sub> 0.33, CaCl<sub>2</sub> 0.41, NaHCO<sub>3</sub> 2.4, Tris/HCl 5, pH7.4) and gentamicin (gentamicin sulphate, G-3632, SIGMA-ALDRICH CHEMIE GmbH, Deisenhofen, Germany; 100 U/ml).

10      Then, the oocytes were kept in a cooling incubator (type KB 53, WTB Binder Labortechnik GmbH, Tuttlingen, Germany) at 19.2°C.

15

20

25

2. Injecting the oocytes

25      Injection electrodes of diameter 10 - 15 µm were prepared using a pipette-drawing device (type L/M-3P-A, List-electronic, Darmstadt-Eberstadt, Germany). Prior to injection, aliquots with the D-GABA B DNA or GIRK1/4 DNA were defrosted and diluted with water to a final concentration of 10 ng/µl. The DNA samples were centrifuged for 120 seconds at 3200 g (type Biofuge 13, Heraeus Instruments GmbH, Hanau, Germany). An extended PE

30

tube was subsequently used as transfer tube to fill the pipettes from the rear end. The injection electrodes were attached to a X,Y,Z positioning system (treatment centre EP1090, isel-automation, Eiterfeld, Germany). With the aid of a Macintosh computer, the oocytes in the microtiter plate wells were approached, and approximately 50 nl of the DNA solution were injected into the oocytes by briefly applying a pressure (0.5-3.0 bar, 3-6 seconds).

### 3. Electrophysiological measurements

A two-electrode voltage terminal equipped with a TURBO TEC-10CD (npi electronic GmbH, Tamm, Germany) amplifier was used to carry out the electrophysiological measurements. The micropipettes required for this purpose were drawn in two movements from aluminium silicate glass (capillary tube, Article No. 14 630 29, l=100 mm,  $\varnothing_{\text{ext}}=1.60$  mm,  $\varnothing_{\text{int}}=1.22$  mm, Hilgenberg GmbH, Malsfeld, Germany) (Hamill et al., 1981). Current and voltage electrodes had a diameter of 1-3  $\mu\text{m}$  and were filled with 1.5 M KCl and 1.5 M potassium acetate. The pipettes had a capacitance of 0.2-0.5 MW. To carry out the electrophysiological measurements, the oocytes were transferred into a small chamber which was flushed continuously with normal Rimland solution (in mM: KCl 90, MgCl<sub>2</sub> 3, HEPES 5, pH 7.2). To apply a substance, the perfusion solution was exchanged for a substance solution with the same composition and additionally the desired substance concentration. The successful expression of the D-GABA B DNA was checked after one week at a terminal potential of -60 mV. Unresponsive oocytes were discarded. All the others were used for substance testing. The data were documented by means of a YT plotter (YT plotter, Model BD 111, Kipp & Zonen Delft BV, AM Delft, Netherlands). When test substances were assayed in concentration series, these measurements were carried out on at least two different oocytes and at least five different concentrations. The substances have been assayed directly without preincubation in the presence of GABA (gamma-amino-N-butyric acid, A2129, SIGMA-ALDRICH

CHEMIE GmbH, Deisenhofen, Germany) for their antagonism. The individual data were entered in Origin (evaluation software Microcal Origin, Microcal Software, Inc., Northampton, MA 01060-4410 USA) (Additive GmbH, Friedrichsdorf/Ts, Germany). Means, standard deviation, IC<sub>50</sub> values and IC<sub>50</sub> curves were calculated using Origin. These measurements were carried out at least in duplicate.

### References:

- 10 Conklin et al. (1993) Substitution of three amino acids switches receptor specificity of Gq alpha to that of Gi alpha, *Nature* 363, 274-276
- Devereux et al. (1984) *Nucleic Acids Research* 12, 387
- 15 Dumont, J. N. (1972) Oogenesis in *Xenopus laevis* (Daudin). 1. Stages of oocyte development in laboratory maintained animals, *J. Morphol.* 136, 153-180
- Fukunaga, A. et al. (1999) Insecticidal properties of 3-aminopropyl(methyl)-phosphinic acid and its effect on K<sup>+</sup>-evoked release of acetylcholine from cockroach synaptosomes, *Comp. Biochem. and Physiol. Part C* 122, 283-286
- 20 ffrench-Constant, R. H. et al. (1991) Molecular cloning and transformation of cyclodiene resistance in *Drosophila*: an invertebrate gamma-aminobutyric acid subtype A receptor locus, *Proc. Natl. Acad. Sci. U.S.A.* 88, 7209-7213
- 25 Hamill, O.P. et al. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, *Pfügers Arch.* 391, 85-100
- 30 Harvey, R. J. et al. (1994) Sequence of a *Drosophila* ligand-gated ion-channel polypeptide with an unusual amino-terminal extracellular domain, *J. Neurochem.* 62, 2480-2483

Hay et al. (1997) P element insertion-dependent gene activation in the Drosophila eye, *Proceedings of The National Academy of Sciences of The United States of America* 94 (10), 5195-5200

5

Henderson, J. E. et al. (1993) Characterization of a putative gamma-aminobutyric acid (GABA) receptor beta subunit gene from *Drosophila melanogaster*, *Biochem. Biophys. Res. Commun.* 193, 474-482

10 Jones K. A. et al. (1998) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2, *Nature* 396, 674-679

Kaupmann K. et al. (1998) GABA(B)-receptor subtypes assemble into functional heteromeric complexes, *Nature* 396, 683-687

15 Plasterk (1996) The Tc1/mariner transposon family, *Transposable Elements/Current Topics in Microbiology and Immunology* 204, 125-143

20 Sambrook et al. (1989) Molecular Cloning, A Laboratory Manual, 2nd ed. Cold Spring Harbour Press

Sattelle D. B. (1990) GABA Receptors of Insects, *Advances in Insect Physiology* 22, 1-113

25 Stables et al. (1997) A Bioluminescent Assay for Agonist Activity at Potentially Any G-protein coupled Receptor, *Analytical Biochemistry* 252, 115-126

Stratowa C. et al. (1995) Use of a luciferase reporter system for characterizing G-protein-linked receptors, *Current Opinion in Biotechnology* 6, 574-581

**Patent Claims**

1. Polypeptide which exerts the biological activity of a GABA B receptor and which comprises an amino acid sequence which has at least 70% identity with a sequence of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6.  
5
2. Polypeptide according to Claim 1, characterized in that the amino acid sequence corresponds to a sequence of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6.  
10
3. Nucleic acid comprising a nucleotide sequence which encodes a polypeptide according to Claim 1.  
15
4. Nucleic acid according to Claim 3, characterized in that it is single- or double-stranded DNA or RNA.  
15
5. Nucleic acid according to Claim 4, characterized in that it is a fragment of genomic DNA or cDNA.  
20
6. Nucleic acid according to Claim 3, characterized in that the nucleotide sequence corresponds to a sequence of SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5.  
25
7. Nucleic acid according to Claim 3, characterized in that it hybridizes under stringent conditions to the sequences of SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5.  
25
8. DNA construct comprising a nucleic acid according to any of Claims 3 to 7 and a heterologous promoter.  
30

9. Vector comprising a nucleic acid according to any of Claims 3 to 7 or a DNA construct according to Claim 8.
10. A vector according to Claim 9, characterized in that the nucleic acid is operatively linked to regulatory sequences which ensure the expression of the nucleic acid in pro- or eukaryotic cells.
11. Host cell containing a nucleic acid according to any of Claims 3 to 7, a DNA construct according to Claim 8 or a vector according to Claim 9 or 10.
12. Host cell according to Claim 11, which is a prokaryotic cell, in particular *E. coli*.
13. Host cell according to Claim 11, which is a eukaryotic cell, in particular a mammalian or insect cell.
14. Antibody which binds specifically to a polypeptide according to Claim 1.
15. Transgenic invertebrate containing a nucleic acid according to any of Claims 3 to 7.
16. Transgenic invertebrate according to Claim 15, which is *Drosophila melanogaster* or *Caenorhabditis elegans*.
17. Transgenic progeny of an invertebrate according to Claim 15 or 16.
18. Method of generating a polypeptide according to Claim 1, comprising
- 30 (a) culturing a host cell according to any of Claims 11 to 13 under conditions which ensure the expression of the nucleic acid according to any of Claims 3 to 7, or

- (b) expressing a nucleic acid according to any of Claims 3 to 7 in an in-vitro system, and
- 5 (c) obtaining the polypeptide from the cell, the culture medium or the in-vitro system.
- 10 19. Method of generating a nucleic acid according to any of Claims 3 to 7, comprising the following steps:
- 15 (a) full chemical synthesis in a manner known per se, or
- (b) chemical synthesis of oligonucleotides, labelling of the oligonucleotides, hybridizing the oligonucleotides to DNA of a genomic library or cDNA library generated from insect genomic DNA or insect mRNA, respectively, selecting positive clones and isolating the hybridizing DNA from positive clones, or
- 20 (c) chemical synthesis of oligonucleotides and amplification of the target DNA by means of PCR.
- 25 20. Method of generating a transgenic invertebrate according to Claim 15 or 16, which comprises introducing a nucleic acid according to any of Claims 3 to 7 or a vector of Claim 9 or 10.
21. Method of finding new active compounds for crop protection, in particular compounds which alter the properties of polypeptides according to Claim 1, comprising the following steps:
- 30 (a) providing a host cell according to any of Claims 11 to 13,

- (b) culturing the host cell in the presence of a chemical or of a sample comprising a multiplicity of chemicals, and
- (c) detecting altered properties.

5

22. A method of finding a chemical which binds to a polypeptide according to Claim 1, comprising the following steps:

- (a) contacting a polypeptide according to Claim 1 or a host cell according to any of Claims 11 to 13 with a chemical or a mixture of chemicals under conditions which permit the interaction of a chemical with the polypeptide, and
- (b) determining the chemical which binds specifically to the polypeptide.

15

23. Method of finding a chemical which alters the expression of a polypeptide according to Claim 1, comprising the following steps:

- (a) contacting a host cell according to any of Claims 11 to 13 or a transgenic invertebrate according to Claim 15 or 16 with a chemical or a mixture of chemicals,

20

- (b) determining the concentration of the polypeptide according to Claim 1, and

25

- (c) determining the chemical which specifically affects the expression of the polypeptide.

30

24. Use of a polypeptide according to Claim 1, of a nucleic acid according to any of Claims 3 to 7, of a vector according to Claim 9 or 10, of a host cell according to any of Claims 11 to 13, of an antibody according to Claim 14 or

of a transgenic invertebrate according to Claim 15 or 16 for finding new active compounds for crop protection or for finding genes which encode polypeptides which participate in the synthesis of functionally similar GABA B receptors in insects.

5

25. Use of a modulator of a polypeptide according to Claim 1 as insecticide.

PCT/GB2003/003336

**GABA B Receptors**

**A b s t r a c t**

The invention relates to polypeptides which exert the biological activity of GABA B receptors, and to nucleic acids which encode these polypeptides, and in particular to their use for finding active compounds for crop protection.

**Fig. 1**



**Fig. 2**



**COMBINED DECLARATION AND POWER OF ATTORNEY**

ATTORNEY DOCKET NO

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name. I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

**GABA B receptors**

the specification of which is attached hereto,

or was filed on \_\_\_\_\_ as

Application Serial No. \_\_\_\_\_

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims.

I acknowledge the duty to disclose information which is material to the patentability of this application in accordance with Title 37, Code of Federal Regulations, §1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, §119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior Foreign Application(s), the priority(ies) of which is/are to be claimed:

19955408.0                    Germany                    November 18, 1999  
(Number)                        (Country)                    (Month/Day/Year Filed)

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose the material information as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

| (Application Serial No.) | (Filing Date) | (Status) |
|--------------------------|---------------|----------|
|--------------------------|---------------|----------|

(patented, pending, abandoned)

|                          |               |          |
|--------------------------|---------------|----------|
| (Application Serial No.) | (Filing Date) | (Status) |
|--------------------------|---------------|----------|

(patented, pending, abandoned)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

**POWER OF ATTORNEY:** As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith:

**JOSEPH C. GIL**, Patent Office Registration Number 26,602  
**ARON PREIS**, Patent Office Registration Number 29,426  
**LYNDANNE M. WHALEN**, Patent Office Registration Number 29,457  
**THOMAS W. ROY**, Patent Office Registration Number 29,582  
**RICHARD E. L. HENDERSON**, Patent Office Registration Number 31,619  
**GODFRIED R. AKORLI**, Patent Office Registration Number 28,779  
**N. DENISE BROWN**, Patent Office Registration Number 36,097  
**NOLAND J. CHEUNG**, Patent Office Registration Number 39,138  
**DIDERICO VAN EYL**, Patent Office Registration Number 38,641  
**CAROLYN M. SLOANE**, Patent Office Registration Number 44,339  
**JAMES R. FRANKS**, Patent Office Registration Number 42,552

**all of Bayer Corporation, Pittsburgh, Pennsylvania 15205-9741**

|                                                                                                                                                                          |                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| <p><b>Send Correspondence To:</b><br/><b>Patent Department</b><br/><b>Bayer Corporation</b><br/><b>100 Bayer Road</b><br/><b>Pittsburgh, Pennsylvania 15205-9741</b></p> | <p><b>Direct Telephone Calls To:</b><br/><b>(412) 777-2349</b></p> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|

|                                                                  |                                              |                    |
|------------------------------------------------------------------|----------------------------------------------|--------------------|
| FULL NAME OF SOLE OR FIRST INVENTOR<br>Klaus RAMING              | INVENTOR'S SIGNATURE<br><i>Klaus Raming</i>  | DATE<br>12.10.00   |
| RESIDENCE<br>51375 Leverkusen, Germany                           | CITIZENSHIP<br>German                        |                    |
| POST OFFICE ADDRESS<br>Lortzingstr.35, 51375 Leverkusen, Germany |                                              |                    |
| FULL NAME OF SECOND INVENTOR<br>Mario MEZLER                     | INVENTOR'S SIGNATURE<br><i>Mario Mezler</i>  | DATE<br>06.10.2000 |
| RESIDENCE<br>51371 Leverkusen, Germany                           | CITIZENSHIP<br>German                        |                    |
| POST OFFICE ADDRESS<br>Lohrstr. 72 E, 51371 Leverkusen, Germany  |                                              |                    |
| FULL NAME OF THIRD INVENTOR<br>Thomas MÜLLER                     | INVENTOR'S SIGNATURE<br><i>Thomas Müller</i> | DATE<br>05.10.2000 |
| RESIDENCE<br>53225 Bonn, Germany                                 | CITIZENSHIP<br>German                        |                    |
| POST OFFICE ADDRESS<br>Rilkestr.86, 53225 Bonn, Germany          |                                              |                    |

## SEQUENZPROTOKOLL

&lt;110&gt; Bayer Aktiengesellschaft

&lt;120&gt; GABA-B-Rezeptoren

&lt;130&gt; Le A 34 074

&lt;140&gt;

&lt;141&gt;

&lt;150&gt; DE 199 55 408.0

&lt;151&gt; 1999-11-18

&lt;160&gt; 6

&lt;170&gt; PatentIn Ver. 2.1

&lt;210&gt; 1

&lt;211&gt; 2523

&lt;212&gt; DNA

&lt;213&gt; Drosophila melanogaster

&lt;220&gt;

&lt;221&gt; CDS

&lt;222&gt; (1)..(2520)

&lt;400&gt; 1

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |    |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|----|
| atg | cgc | aaa | gat | atg | aca | agt | gat | ggt | gct | gtt | acg | ttt | tgg | ata | ttt |  | 48 |
| Met | Arg | Lys | Asp | Met | Thr | Ser | Asp | Gly | Ala | Val | Thr | Phe | Trp | Ile | Phe |  |    |
| 1   | 5   |     |     |     | 10  |     |     |     |     |     |     |     |     | 15  |     |  |    |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |    |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|----|
| ttg | ctt | tgt | tta | atc | gcc | tcg | ccg | cac | ctg | caa | ggg | ggc | gtg | gcc | ggg |  | 96 |
| Leu | Leu | Cys | Leu | Ile | Ala | Ser | Pro | His | Leu | Gln | Gly | Gly | Val | Ala | Gly |  |    |
| 20  | 25  |     |     |     | 30  |     |     |     |     |     |     |     |     |     |     |  |    |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|-----|
| agg | ccc | gat | gaa | ctg | cac | atc | ggc | ggc | atc | ttt | ccg | ata | gcc | ggc | aaa |  | 144 |
| Arg | Pro | Asp | Glu | Leu | His | Ile | Gly | Gly | Ile | Phe | Pro | Ile | Ala | Gly | Lys |  |     |
| 35  | 40  |     |     |     | 45  |     |     |     |     |     |     |     |     |     |     |  |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
| gga | gga | tgg | cag | ggc | ggc | cag | gcf | tgt | atg | cct | gcc | aca | aga | ctg | gcf |     | 192 |  |
| Gly | Gly | Trp | Gln | Gly | Gly | Gly | Gly | Gly | Ala | Cys | Met | Pro | Ala | Thr | Arg | Leu | Ala |  |
| 50  | 55  |     |     |     | 60  |     |     |     |     |     |     |     |     |     |     |     |     |  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|-----|
| ttg | gat | gat | gtc | aac | aag | cag | ccg | aat | ctg | ctg | ccg | ggc | ttc | aag | ctc |  | 240 |
| Leu | Asp | Asp | Val | Asn | Lys | Gln | Pro | Asn | Leu | Leu | Pro | Gly | Phe | Lys | Leu |  |     |
| 65  | 70  |     |     |     | 75  |     |     |     |     |     |     |     | 80  |     |     |  |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|-----|
| atc | ctg | cac | agc | aac | gac | agc | gag | tgt | gag | ccc | ggf | ttg | ggc | gcc | agc |  | 288 |
| Ile | Leu | His | Ser | Asn | Asp | Ser | Glu | Cys | Glu | Pro | Gly | Leu | Gly | Ala | Ser |  |     |
| 85  | 90  |     |     |     | 95  |     |     |     |     |     |     |     |     |     |     |  |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|-----|
| gtg | atg | tac | aat | ctg | ctc | tat | aat | aaa | ccg | caa | aag | ctg | atg | ctg | ttg |  | 336 |
| Val | Met | Tyr | Asn | Leu | Leu | Tyr | Asn | Lys | Pro | Gln | Lys | Leu | Met | Leu | Leu |  |     |
| 100 | 105 |     |     |     | 110 |     |     |     |     |     |     |     |     |     |     |  |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|-----|
| gca | gga | tgc | agc | acg | gtc | tgc | acc | act | gta | gcc | gag | gct | gcc | aaa | atg |  | 384 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|-----|

Ala Gly Cys Ser Thr Val Cys Thr Val Ala Glu Ala Ala Lys Met  
 115 120 125  
 tgg aat cta att gtg ctc tgc tac ggg gcc tcg agt ccg gct ctt tcg 432  
 Trp Asn Leu Ile Val Leu Cys Tyr Gly Ala Ser Ser Pro Ala Leu Ser  
 130 135 140  
 gat cgc aaa cga ttc ccc act cta ttc cgc acc cat cca tcg gcc acg 480  
 Asp Arg Lys Arg Phe Pro Thr Leu Phe Arg Thr His Pro Ser Ala Thr  
 145 150 155 160  
 gtg cac aat cca acg cgc atc aag ctg atg aag aaa ttc ggc tgg tcc 528  
 Val His Asn Pro Thr Arg Ile Lys Leu Met Lys Lys Phe Gly Trp Ser  
 165 170 175  
 cggtg gcc att ctg cag cag gcg gag gag gtc ttt ata tcg acc gta 576  
 Arg Val Ala Ile Leu Gln Gln Ala Glu Glu Val Phe Ile Ser Thr Val  
 180 185 190  
 gag gat ctc gag aat cga tgc atg gag gct ggc gtt gaa atc gta act 624  
 Glu Asp Leu Glu Asn Arg Cys Met Glu Ala Gly Val Glu Ile Val Thr  
 195 200 205  
 aga caa tca ttt cta tcc gat cca aca gac gcc gtg cgc aat ttg cga 672  
 Arg Gln Ser Phe Leu Ser Asp Pro Thr Asp Ala Val Arg Asn Leu Arg  
 210 215 220  
 cgc cag gat gca cgc atc att gtg gga ctc ttc tat gtg gtg gcc gcc 720  
 Arg Gln Asp Ala Arg Ile Ile Val Gly Leu Phe Tyr Val Val Ala Ala  
 225 230 235 240  
 agg agg gtg ctc tgc gaa atg tac aaa cag cag cta tat ggc cga gct 768  
 Arg Arg Val Leu Cys Glu Met Tyr Lys Gln Gln Leu Tyr Gly Arg Ala  
 245 250 255  
 cat gtg tgg ttc ttt att ggc tgg tac gag gac aac tgg tac gag gtg 816  
 His Val Trp Phe Phe Ile Gly Trp Tyr Glu Asp Asn Trp Tyr Glu Val  
 260 265 270  
 aat ctg aaa gca gag ggc atc acc tgc act gtt gaa cag atg cga ata 864  
 Asn Leu Lys Ala Glu Gly Ile Thr Cys Thr Val Glu Gln Met Arg Ile  
 275 280 285  
 gct gcc gaa gga cat ctg aca acg gaa gcg ctc atg tgg aat cag aac 912  
 Ala Ala Glu Gly His Leu Thr Thr Glu Ala Leu Met Trp Asn Gln Asn  
 290 295 300  
 aat cag aca act ata tcc gga atg act gca gag gaa ttt cga cat cga 960  
 Asn Gln Thr Thr Ile Ser Gly Met Thr Ala Glu Glu Phe Arg His Arg  
 305 310 315 320  
 ctg aat cag gcg cta atc gag gag ggt tac gac att aac cac gat cgc 1008  
 Leu Asn Gln Ala Leu Ile Glu Glu Gly Tyr Asp Ile Asn His Asp Arg  
 325 330 335  
 tat ccg gag gga tat cag gag gcg cca ctc gcc tac gat gca gtg tgg 1056  
 Tyr Pro Glu Gly Tyr Gln Glu Ala Pro Leu Ala Tyr Asp Ala Val Trp

| 340                                                                                                                                | 345 | 350 |      |
|------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|
| agt gtg gct ttg gct ttc aac aag acc atg gaa cga ttg aca acc ggg<br>Ser Val Ala Leu Ala Phe Asn Lys Thr Met Glu Arg Leu Thr Thr Gly |     |     | 1104 |
| 355                                                                                                                                | 360 | 365 |      |
| aag aaa tct ctg agg gat ttt acc tat acg gac aag gag att gcc gat<br>Lys Lys Ser Leu Arg Asp Phe Thr Tyr Thr Asp Lys Glu Ile Ala Asp |     |     | 1152 |
| 370                                                                                                                                | 375 | 380 |      |
| gaa atc tac gct gcc atg aac tcc aca caa ttt ctg ggt gta tcg ggt<br>Glu Ile Tyr Ala Ala Met Asn Ser Thr Gln Phe Leu Gly Val Ser Gly |     |     | 1200 |
| 385                                                                                                                                | 390 | 395 | 400  |
| gtg gtg gca ttc agt tct cag ggc gat cgt att gct ctt aca cag atc<br>Val Val Ala Phe Ser Ser Gln Gly Asp Arg Ile Ala Leu Thr Gln Ile |     |     | 1248 |
| 405                                                                                                                                | 410 | 415 |      |
| gaa cag atg ata gac ggc aag tac gag aag ttg ggt tac tac gat act<br>Glu Gln Met Ile Asp Gly Lys Tyr Glu Lys Leu Gly Tyr Tyr Asp Thr |     |     | 1296 |
| 420                                                                                                                                | 425 | 430 |      |
| cag ttg gat aac cta tcc tgg ttg aat act gaa cag tgg att ggt ggc<br>Gln Leu Asp Asn Leu Ser Trp Leu Asn Thr Glu Gln Trp Ile Gly Gly |     |     | 1344 |
| 435                                                                                                                                | 440 | 445 |      |
| aag gtt cctcaa gat cgc aca att gtc acc cat gtt cta cgc acc gtg<br>Lys Val Pro Gln Asp Arg Thr Ile Val Thr His Val Leu Arg Thr Val  |     |     | 1392 |
| 450                                                                                                                                | 455 | 460 |      |
| tcc ttg cca tta ttt gtg tgc atg tgc aca ata tcc agt tgt ggc ata<br>Ser Leu Pro Leu Phe Val Cys Met Cys Thr Ile Ser Ser Cys Gly Ile |     |     | 1440 |
| 465                                                                                                                                | 470 | 475 | 480  |
| ttc gtt gcc ttc gcc ttg atc atc ttt aat ata tgg aat aag cat aga<br>Phe Val Ala Phe Ala Leu Ile Ile Phe Asn Ile Trp Asn Lys His Arg |     |     | 1488 |
| 485                                                                                                                                | 490 | 495 |      |
| aga gta ata caa tcc tcg cat ccc gtt tgc aat acg atc atg tta ttt<br>Arg Val Ile Gln Ser Ser His Pro Val Cys Asn Thr Ile Met Leu Phe |     |     | 1536 |
| 500                                                                                                                                | 505 | 510 |      |
| gg tgc atc atc tgt cta ata tct gtc atc tta ctg ggc atc gac gga<br>Gly Val Ile Ile Cys Leu Ile Ser Val Ile Leu Leu Gly Ile Asp Gly  |     |     | 1584 |
| 515                                                                                                                                | 520 | 525 |      |
| cgc ttt gtc agc ccc gag gaa tat cca aag ata tgt caa gcg cgg gct<br>Arg Phe Val Ser Pro Glu Glu Tyr Pro Lys Ile Cys Gln Ala Arg Ala |     |     | 1632 |
| 530                                                                                                                                | 535 | 540 |      |
| tgg tta cta tcc acc ggt ttt aca cta gca tac ggt gct atg ttc agc<br>Trp Leu Leu Ser Thr Gly Phe Thr Leu Ala Tyr Gly Ala Met Phe Ser |     |     | 1680 |
| 545                                                                                                                                | 550 | 555 | 560  |
| aag gtc tgg cgt gtg cat cgt ttt aca aca aaa gca aaa act gac cca<br>Lys Val Trp Arg Val His Arg Phe Thr Thr Lys Ala Lys Thr Asp Pro |     |     | 1728 |
| 565                                                                                                                                | 570 | 575 |      |

|                                                                                                                                                       |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| aag aaa aaa gtg gaa cct tgg aag cta tac acc atg gtt tcg ggg cta<br>Lys Lys Lys Val Glu Pro Trp Lys Leu Tyr Thr Met Val Ser Gly Leu<br>580 585 590     | 1776 |
| tta tca ata gat tta gtg ata tta ctc tca tgg cag atc ttt gat ccg<br>Leu Ser Ile Asp Leu Val Ile Leu Ser Trp Gln Ile Phe Asp Pro<br>595 600 605         | 1824 |
| ctg cag cgt tat ctc gaa aca ttc cca ctc gaa gat cca gta tct act<br>Leu Gln Arg Tyr Leu Glu Thr Phe Pro Leu Glu Asp Pro Val Ser Thr<br>610 615 620     | 1872 |
| act gat gat att aaa ata cgt cca gag ctt gag cat tgt gaa agt caa<br>Thr Asp Asp Ile Lys Ile Arg Pro Glu Leu Glu His Cys Glu Ser Gln<br>625 630 635 640 | 1920 |
| cgc aac tcc atg tgg ttg ggt ctt gta tac ggc ttc aag ggg cta atc<br>Arg Asn Ser Met Trp Leu Gly Leu Val Tyr Gly Phe Lys Gly Leu Ile<br>645 650 655     | 1968 |
| ctg gtg ttt ggc ctc ttt ttg gcg tac gag acg cgc tcc att aaa gtg<br>Leu Val Phe Gly Leu Phe Leu Ala Tyr Glu Thr Arg Ser Ile Lys Val<br>660 665 670     | 2016 |
| aaa cag atc aac gat tcg cgt tat gtg ggc atg agc atc tat aac gtg<br>Lys Gln Ile Asn Asp Ser Arg Tyr Val Gly Met Ser Ile Tyr Asn Val<br>675 680 685     | 2064 |
| gtc gtc ctt tgc ctg ata aca gct ccg gtg ggc atg gtc att gca tcg<br>Val Val Leu Cys Leu Ile Thr Ala Pro Val Gly Met Val Ile Ala Ser<br>690 695 700     | 2112 |
| caa cag gac gcg tcc ttt gcc ttc gtt gct cta gct gtg ata ttc tgt<br>Gln Gln Asp Ala Ser Phe Ala Phe Val Ala Leu Ala Val Ile Phe Cys<br>705 710 715 720 | 2160 |
| tgt ttc cta agc atg ctg ctg ata ttt gtg cca aag gtc att gag gtt<br>Cys Phe Leu Ser Met Leu Leu Ile Phe Val Pro Lys Val Ile Glu Val<br>725 730 735     | 2208 |
| ata cgt cat ccc aag gat aag gcc gaa tcg aaa tac aat ccc gat tca<br>Ile Arg His Pro Lys Asp Lys Ala Glu Ser Lys Tyr Asn Pro Asp Ser<br>740 745 750     | 2256 |
| gcc ata tcg aaa gag gac gaa gaa cgc tat cag aaa ctt gtt acc gaa<br>Ala Ile Ser Lys Glu Asp Glu Glu Arg Tyr Gln Lys Leu Val Thr Glu<br>755 760 765     | 2304 |
| aac gag caa ttg caa cga tta ata aca cag aag gag gaa aag att cga<br>Asn Glu Gln Leu Gln Arg Leu Ile Thr Gln Lys Glu Glu Lys Ile Arg<br>770 775 780     | 2352 |
| gtc ctg cga cag cgt ctg gtg gag cgg ggc gac gcc aag ggc aca gaa<br>Val Leu Arg Gln Arg Leu Val Glu Arg Gly Asp Ala Lys Gly Thr Glu<br>785 790 795 800 | 2400 |

ctg aat ggt gca aca ggt gtc gcc tcc gcc gtt gca aca act tcg 2448  
Leu Asn Gly Ala Thr Gly Val Ala Ser Ala Ala Val Ala Thr Thr Ser  
805 810 815

cag ccc gct tcc ctc atc aac tca tca gca cat gcc acg ccc gca gcc 2496  
Gln Pro Ala Ser Leu Ile Asn Ser Ser Ala His Ala Thr Pro Ala Ala  
820 825 830

aca ctc gca atc aca caa ggt gag tag 2523  
Thr Leu Ala Ile Thr Gln Gly Glu  
835 840

<210> 2  
<211> 840  
<212> PRT  
<213> Drosophila melanogaster

<400> 2  
Met Arg Lys Asp Met Thr Ser Asp Gly Ala Val Thr Phe Trp Ile Phe  
1 5 10 15

Leu Leu Cys Leu Ile Ala Ser Pro His Leu Gln Gly Gly Val Ala Gly  
20 25 30

Arg Pro Asp Glu Leu His Ile Gly Gly Ile Phe Pro Ile Ala Gly Lys  
35 40 45

Gly Gly Trp Gln Gly Gly Gln Ala Cys Met Pro Ala Thr Arg Leu Ala  
50 55 60

Leu Asp Asp Val Asn Lys Gln Pro Asn Leu Leu Pro Gly Phe Lys Leu  
65 70 75 80

Ile Leu His Ser Asn Asp Ser Glu Cys Glu Pro Gly Leu Gly Ala Ser  
85 90 95

Val Met Tyr Asn Leu Leu Tyr Asn Lys Pro Gln Lys Leu Met Leu Leu  
100 105 110

Ala Gly Cys Ser Thr Val Cys Thr Thr Val Ala Glu Ala Ala Lys Met  
115 120 125

Trp Asn Leu Ile Val Leu Cys Tyr Gly Ala Ser Ser Pro Ala Leu Ser  
130 135 140

Asp Arg Lys Arg Phe Pro Thr Leu Phe Arg Thr His Pro Ser Ala Thr  
145 150 155 160

Val His Asn Pro Thr Arg Ile Lys Leu Met Lys Lys Phe Gly Trp Ser  
165 170 175

Arg Val Ala Ile Leu Gln Gln Ala Glu Glu Val Phe Ile Ser Thr Val  
180 185 190

Glu Asp Leu Glu Asn Arg Cys Met Glu Ala Gly Val Glu Ile Val Thr  
195 200 205

Arg Gln Ser Phe Leu Ser Asp Pro Thr Asp Ala Val Arg Asn Leu Arg  
210 215 220

Arg Gln Asp Ala Arg Ile Ile Val Gly Leu Phe Tyr Val Val Ala Ala  
225 230 235 240

Arg Arg Val Leu Cys Glu Met Tyr Lys Gln Gln Leu Tyr Gly Arg Ala  
245 250 255

His Val Trp Phe Phe Ile Gly Trp Tyr Glu Asp Asn Trp Tyr Glu Val  
260 265 270

Asn Leu Lys Ala Glu Gly Ile Thr Cys Thr Val Glu Gln Met Arg Ile  
275 280 285

Ala Ala Glu Gly His Leu Thr Thr Glu Ala Leu Met Trp Asn Gln Asn  
290 295 300

Asn Gln Thr Thr Ile Ser Gly Met Thr Ala Glu Glu Phe Arg His Arg  
305 310 315 320

Leu Asn Gln Ala Leu Ile Glu Glu Gly Tyr Asp Ile Asn His Asp Arg  
325 330 335

Tyr Pro Glu Gly Tyr Gln Glu Ala Pro Leu Ala Tyr Asp Ala Val Trp  
340 345 350

Ser Val Ala Leu Ala Phe Asn Lys Thr Met Glu Arg Leu Thr Thr Gly  
355 360 365

Lys Lys Ser Leu Arg Asp Phe Thr Tyr Thr Asp Lys Glu Ile Ala Asp  
370 375 380

Glu Ile Tyr Ala Ala Met Asn Ser Thr Gln Phe Leu Gly Val Ser Gly  
385 390 395 400

Val Val Ala Phe Ser Ser Gln Gly Asp Arg Ile Ala Leu Thr Gln Ile  
405 410 415

Glu Gln Met Ile Asp Gly Lys Tyr Glu Lys Leu Gly Tyr Tyr Asp Thr  
420 425 430

Gln Leu Asp Asn Leu Ser Trp Leu Asn Thr Glu Gln Trp Ile Gly Gly  
435 440 445

Lys Val Pro Gln Asp Arg Thr Ile Val Thr His Val Leu Arg Thr Val  
450 455 460

Ser Leu Pro Leu Phe Val Cys Met Cys Thr Ile Ser Ser Cys Gly Ile  
465 470 475 480

Phe Val Ala Phe Ala Leu Ile Ile Phe Asn Ile Trp Asn Lys His Arg  
485 490 495

Arg Val Ile Gln Ser Ser His Pro Val Cys Asn Thr Ile Met Leu Phe  
500 505 510

Gly Val Ile Ile Cys Leu Ile Ser Val Ile Leu Leu Gly Ile Asp Gly  
515 520 525

Arg Phe Val Ser Pro Glu Glu Tyr Pro Lys Ile Cys Gln Ala Arg Ala  
530 535 540

Trp Leu Leu Ser Thr Gly Phe Thr Leu Ala Tyr Gly Ala Met Phe Ser  
545 550 555 560

Lys Val Trp Arg Val His Arg Phe Thr Thr Lys Ala Lys Thr Asp Pro  
565 570 575

Lys Lys Lys Val Glu Pro Trp Lys Leu Tyr Thr Met Val Ser Gly Leu  
580 585 590

Leu Ser Ile Asp Leu Val Ile Leu Leu Ser Trp Gln Ile Phe Asp Pro  
595 600 605

Leu Gln Arg Tyr Leu Glu Thr Phe Pro Leu Glu Asp Pro Val Ser Thr  
610 615 620

Thr Asp Asp Ile Lys Ile Arg Pro Glu Leu Glu His Cys Glu Ser Gln  
625 630 635 640

Arg Asn Ser Met Trp Leu Gly Leu Val Tyr Gly Phe Lys Gly Leu Ile  
645 650 655

Leu Val Phe Gly Leu Phe Leu Ala Tyr Glu Thr Arg Ser Ile Lys Val  
660 665 670

Lys Gln Ile Asn Asp Ser Arg Tyr Val Gly Met Ser Ile Tyr Asn Val  
675 680 685

Val Val Leu Cys Leu Ile Thr Ala Pro Val Gly Met Val Ile Ala Ser  
690 695 700

Gln Gln Asp Ala Ser Phe Ala Phe Val Ala Leu Ala Val Ile Phe Cys  
705 710 715 720

Cys Phe Leu Ser Met Leu Leu Ile Phe Val Pro Lys Val Ile Glu Val  
725 730 735

Ile Arg His Pro Lys Asp Lys Ala Glu Ser Lys Tyr Asn Pro Asp Ser  
740 745 750

Ala Ile Ser Lys Glu Asp Glu Glu Arg Tyr Gln Lys Leu Val Thr Glu  
755 760 765

Asn Glu Gln Leu Gln Arg Leu Ile Thr Gln Lys Glu Glu Lys Ile Arg  
770 775 780

Val Leu Arg Gln Arg Leu Val Glu Arg Gly Asp Ala Lys Gly Thr Glu  
785 790 795 800

Leu Asn Gly Ala Thr Gly Val Ala Ser Ala Ala Val Ala Thr Thr Ser  
805 810 815

Gln Pro Ala Ser Leu Ile Asn Ser Ser Ala His Ala Thr Pro Ala Ala  
820 825 830

Thr Leu Ala Ile Thr Gln Gly Glu  
835 840

<210> 3  
<211> 3663  
<212> DNA  
<213> Drosophila melanogaster

<220>  
<221> CDS  
<222> (1)..(3660)

<400> 3  
atg ttc cgg cca agt tgg ttt cca ttc gcc agc ctg ctg ttc ctg ctc 48  
Met Phe Arg Pro Ser Trp Phe Pro Phe Ala Ser Leu Leu Phe Leu Leu  
1 5 10 15  
ctt tgg agc acc gcc tgt ggc agg aca gcc aag aga tcg gac gtc tac 96  
Leu Trp Ser Thr Ala Cys Gly Arg Thr Ala Lys Arg Ser Asp Val Tyr  
20 25 30  
ata gcg gga ttc ttc ccg tac ggg gat ggc gtg gaa aac tcc tac acc 144  
Ile Ala Gly Phe Phe Pro Tyr Gly Asp Gly Val Glu Asn Ser Tyr Thr  
35 40 45  
ggt cgg ggc gtt atg ccc agt gta aag ctc gcc ttg ggt cac gtt aat 192  
Gly Arg Gly Val Met Pro Ser Val Lys Leu Ala Leu Gly His Val Asn  
50 55 60  
gag cat gga aag ata ctg gcc aac tac agg ctg cac atg tgg tgg aac 240  
Glu His Gly Ile Leu Ala Asn Tyr Arg Leu His Met Trp Trp Asn  
65 70 75 80  
gac act cag tgc aat gct gct gtg ggc gta aag tcc ttc ttc gat atg 288  
Asp Thr Gln Cys Asn Ala Ala Val Gly Val Lys Ser Phe Phe Asp Met  
85 90 95  
atg cat tcg ggt ccc aat aaa gtg atg ctc ttc ggc gct gcg tgc acc 336  
Met His Ser Gly Pro Asn Lys Val Met Leu Phe Gly Ala Ala Cys Thr  
100 105 110  
cat gtg acc gat ccc ata gcc aag gcc agc aag cac tgg cac ctc acc 384  
His Val Thr Asp Pro Ile Ala Lys Ala Ser Lys His Trp His Leu Thr  
115 120 125  
cag ctc agc tac gcg gac acc cat ccc atg ttc acc aag gat gcg ttt 432  
Gln Leu Ser Tyr Ala Asp Thr His Pro Met Phe Thr Lys Asp Ala Phe  
130 135 140  
ccg aat ttc ttt cgc gtg gta ccc tcg gag aat gcc ttt aat gcg ccg 480  
Pro Asn Phe Phe Arg Val Val Pro Ser Glu Asn Ala Phe Asn Ala Pro

| 145                                                                                                                                | 150 | 155 | 160 |      |
|------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| cga ctg gcc ttg ctg aag gag ttc aat tgg acc aga gtg ggc act gtc<br>Arg Leu Ala Leu Leu Lys Glu Phe Asn Trp Thr Arg Val Gly Thr Val |     |     |     | 528  |
| 165                                                                                                                                |     | 170 | 175 |      |
| tac cag aat gag cca cgc tat tcg ctg ccc cac aat cac atg gtg gct<br>Tyr Gln Asn Glu Pro Arg Tyr Ser Leu Pro His Asn His Met Val Ala | 180 | 185 | 190 | 576  |
| Asp Leu Asp Ala Met Glu Val Glu Val Val Glu Thr Gln Ser Phe Val                                                                    | 195 | 200 | 205 |      |
| aac gat gtg gct gaa tca ttg aag aaa ctg cgc gag aag gac gtg agg<br>Asn Asp Val Ala Glu Ser Leu Lys Lys Leu Arg Glu Lys Asp Val Arg | 210 | 215 | 220 | 672  |
| atc att ctg ggc aac ttt aac gag cac ttt gca cgc aag gca ttc tgt<br>Ile Ile Leu Gly Asn Phe Asn Glu His Phe Ala Arg Lys Ala Phe Cys | 225 | 230 | 235 | 720  |
| 240                                                                                                                                |     |     |     |      |
| gag gct tat aaa ttg gat atg tat ggc aga gcc tat caa tgg ctg atc<br>Glu Ala Tyr Lys Leu Asp Met Tyr Gly Arg Ala Tyr Gln Trp Leu Ile | 245 | 250 | 255 | 768  |
| 275                                                                                                                                |     |     |     |      |
| atg gct acc tat tcc acg gat tgg tgg aat gtc acg cag gac agc gag<br>Met Ala Thr Tyr Ser Thr Asp Trp Trp Asn Val Thr Gln Asp Ser Glu | 260 | 265 | 270 | 816  |
| 285                                                                                                                                |     |     |     |      |
| tgc agt gtg gag gag atc gct aca gcc ttg gaa ggt gcc att cta gtg<br>Cys Ser Val Glu Glu Ile Ala Thr Ala Leu Glu Gly Ala Ile Leu Val | 275 | 280 | 285 | 864  |
| 290                                                                                                                                |     |     |     |      |
| gat ctt ttg ccc ttg tcc acc agt ggt gac atc aca gtg gct ggc att<br>Asp Leu Leu Pro Leu Ser Thr Ser Gly Asp Ile Thr Val Ala Gly Ile | 295 | 300 |     | 912  |
| 305                                                                                                                                |     |     |     |      |
| act gct gat gag tat ctt gtg gag tac gac aga ctg cga ggc act gaa<br>Thr Ala Asp Glu Tyr Leu Val Glu Tyr Asp Arg Leu Arg Gly Thr Glu | 310 | 315 | 320 | 960  |
| 325                                                                                                                                |     |     |     |      |
| tat tcc cgc ttt cat ggc tat acc tac gat ggt atc tgg gca gct gcc<br>Tyr Ser Arg Phe His Gly Tyr Thr Tyr Asp Gly Ile Trp Ala Ala Ala | 330 | 335 |     | 1008 |
| 340                                                                                                                                |     |     |     |      |
| ctg gcc att cag tat gtg gcc gaa aag cga gag gat ctg cta aca cat<br>Leu Ala Ile Gln Tyr Val Ala Glu Lys Arg Glu Asp Leu Leu Thr His | 345 | 350 |     | 1056 |
| 355                                                                                                                                |     |     |     |      |
| ttt gat tat cgc gtg aag gac tgg gag agt gtc ttc ctt gag gct cta<br>Phe Asp Tyr Arg Val Lys Asp Trp Glu Ser Val Phe Leu Glu Ala Leu | 360 | 365 |     | 1104 |
| 370                                                                                                                                |     |     |     |      |
| cgt aat aca tcc ttc gag ggt gtg acg gga ccc gtg cgt ttc tac aac<br>Arg Asn Thr Ser Phe Glu Gly Val Thr Gly Pro Val Arg Phe Tyr Asn | 375 | 380 |     | 1152 |

|                                                                                                                                           |     |     |     |      |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| aac gag cgc aag gcc aac atc ctg atc aat cag ttt cag ctg gga caa<br>Asn Glu Arg Lys Ala Asn Ile Leu Ile Asn Gln Phe Gln Leu Gly Gln<br>385 | 390 | 395 | 400 | 1200 |
| atg gaa aag atc ggg gaa tac cac tca cag aag tca cac ttg gat tta<br>Met Glu Lys Ile Gly Glu Tyr His Ser Gln Lys Ser His Leu Asp Leu<br>405 | 410 |     | 415 | 1248 |
| agc ttg gga aaa cca gtc aaa tgg gtg ggg aaa act cct ccc aag gat<br>Ser Leu Gly Lys Pro Val Lys Trp Val Gly Lys Thr Pro Pro Lys Asp<br>420 | 425 |     | 430 | 1296 |
| cgc act ttg atc tac atc gag cac agt cag gtc aat cca acc ata tat<br>Arg Thr Leu Ile Tyr Ile Glu His Ser Gln Val Asn Pro Thr Ile Tyr<br>435 | 440 |     | 445 | 1344 |
| att gta tcg gct agt gct tcg gtc att gga gtg att att gcc aca gtt<br>Ile Val Ser Ala Ser Ala Ser Val Ile Gly Val Ile Ile Ala Thr Val<br>450 | 455 |     | 460 | 1392 |
| ttt ctg gcc ttt aac att aag tat cgc aatcaa aga tac atc aag atg<br>Phe Leu Ala Phe Asn Ile Lys Tyr Arg Asn Gln Arg Tyr Ile Lys Met<br>465  | 470 | 475 | 480 | 1440 |
| tcc agt ccc cat ttg aac aat ctg atc att gtg ggc tgt atg att acc<br>Ser Ser Pro His Leu Asn Asn Leu Ile Ile Val Gly Cys Met Ile Thr<br>485 | 490 |     | 495 | 1488 |
| tat ttg agc atc att ttc ctg ggt ctc gat acc aca tta agt agt gtg<br>Tyr Leu Ser Ile Ile Phe Leu Gly Leu Asp Thr Thr Leu Ser Ser Val<br>500 | 505 |     | 510 | 1536 |
| gca gct ttt ccc tat atc tgc aca gct cga gcc tgg atc ttg atg gct<br>Ala Ala Phe Pro Tyr Ile Cys Thr Ala Arg Ala Trp Ile Leu Met Ala<br>515 | 520 |     | 525 | 1584 |
| gga ttc agt ctc agt ttt gga gcc atg ttc tcg aag acg tgg cggt<br>Gly Phe Ser Leu Ser Phe Gly Ala Met Phe Ser Lys Thr Trp Arg Val<br>530    | 535 |     | 540 | 1632 |
| cat tcg ata ttc acc gat ctg aag ctc aat aag aag gtg atc aag gac<br>His Ser Ile Phe Thr Asp Leu Lys Leu Asn Lys Lys Val Ile Lys Asp<br>545 | 550 | 555 | 560 | 1680 |
| tat caa ttg ttt atg gtt gtg ggc gtg ctt ttg gcc att gat ata gcc<br>Tyr Gln Leu Phe Met Val Val Gly Val Leu Leu Ala Ile Asp Ile Ala<br>565 | 570 |     | 575 | 1728 |
| att ata acc acc tgg cag att gcc gat ccc ttt tac cgc gaa act aaa<br>Ile Ile Thr Thr Trp Gln Ile Ala Asp Pro Phe Tyr Arg Glu Thr Lys<br>580 | 585 |     | 590 | 1776 |
| cag ttg gaa ccc ttg cat cac gag aat att gat gat gtc ttg gtg atc<br>Gln Leu Glu Pro Leu His His Glu Asn Ile Asp Asp Val Leu Val Ile<br>595 | 600 |     | 605 | 1824 |

|                                                                                                                                    |     |     |     |      |
|------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| ccc gaa aac gag tac tgc cag tct gag cac atg acc ata ttc gtt agc<br>Pro Glu Asn Glu Tyr Cys Gln Ser Glu His Met Thr Ile Phe Val Ser | 610 | 615 | 620 | 1872 |
| att att tat gcc tac aag gga ctg ttg ttg gtt ttt ggc gcc ttt ttg<br>Ile Ile Tyr Ala Tyr Lys Gly Leu Leu Leu Val Phe Gly Ala Phe Leu | 625 | 630 | 635 | 640  |
| 645                                                                                                                                |     |     |     | 1920 |
| gcc tgg gaa act cga cat gtt tct ata ccg gct ctg aac gat tcc aag<br>Ala Trp Glu Thr Arg His Val Ser Ile Pro Ala Leu Asn Asp Ser Lys | 645 | 650 | 655 | 1968 |
| cat att ggt ttc tcc gtt tat aac gtg ttc atc act tgt ctg gcc gga<br>His Ile Gly Phe Ser Val Tyr Asn Val Phe Ile Thr Cys Leu Ala Gly | 660 | 665 | 670 | 2016 |
| 675                                                                                                                                |     |     |     | 2064 |
| gct ata tcc ctg gtg cta tcg gat cga aag gat tta gtt ttt gtc<br>Ala Ala Ile Ser Leu Val Leu Ser Asp Arg Lys Asp Leu Val Phe Val     | 675 | 680 | 685 |      |
| tta ctc tcg ttt ttt atc att ttt tgt acg aca gcc act ttg tgt ttg<br>Leu Leu Ser Phe Phe Ile Ile Phe Cys Thr Thr Ala Thr Leu Cys Leu | 690 | 695 | 700 | 2112 |
| 705                                                                                                                                |     |     |     | 2160 |
| gtg ttc gta ccg aaa ttg gtg gag ctg aag cgg aat ccc cag ggc gtg<br>Val Phe Val Pro Lys Leu Val Glu Leu Lys Arg Asn Pro Gln Gly Val | 705 | 710 | 715 |      |
| 720                                                                                                                                |     |     |     | 2208 |
| gtg gac aaa cgc gtt agg gcc acg ttg aga ccc atg tcc aaa aac gga<br>Val Asp Lys Arg Val Arg Ala Thr Leu Arg Pro Met Ser Lys Asn Gly | 725 | 730 | 735 |      |
| 740                                                                                                                                |     |     |     | 2256 |
| cgc cgg gat tcc tcg gtg tgc gaa ctg gag caa cga ttg cga gat gta<br>Arg Arg Asp Ser Ser Val Cys Glu Leu Glu Gln Arg Leu Arg Asp Val | 740 | 745 | 750 |      |
| 755                                                                                                                                |     |     |     | 2304 |
| aag aac aca aac tgc cga ttc cga aag gcg ctg atg gag aag gag aac<br>Lys Asn Thr Asn Cys Arg Phe Arg Lys Ala Leu Met Glu Lys Glu Asn | 755 | 760 | 765 |      |
| 770                                                                                                                                |     |     |     | 2352 |
| gag ctg cag gcc tta atc cgc aag ctg gga ccc gag gca cgc aaa tgg<br>Glu Leu Gln Ala Leu Ile Arg Lys Leu Gly Pro Glu Ala Arg Lys Trp | 770 | 775 | 780 |      |
| 785                                                                                                                                |     |     |     | 2400 |
| atc gat ggg gtg acc tgc aca ggt ggc tcc aac gtc ggt agc gaa ctg<br>Ile Asp Gly Val Thr Cys Thr Gly Gly Ser Asn Val Gly Ser Glu Leu | 790 | 795 | 800 |      |
| cgt cga gag atg ccc agc acc aca gtt acc gag atg acg tcc gtg gat<br>Arg Arg Glu Met Pro Ser Thr Thr Val Thr Glu Met Thr Ser Val Asp | 805 | 810 | 815 | 2448 |
| 820                                                                                                                                |     |     |     | 2496 |
| agt gtg acc tcg act cat gtg gag atg gat aac tcc ttt gtg tcg gtg<br>arg arg glu met pro ser thr thr val thr glu met thr ser val asp | 820 | 825 | 830 |      |
| 845                                                                                                                                |     |     |     | 2544 |

|                                                                 |      |      |      |
|-----------------------------------------------------------------|------|------|------|
| Ser Val Thr Ser Thr His Val Glu Met Asp Asn Ser Phe Val Ser Val |      |      |      |
| 835                                                             | 840  | 845  |      |
| cag tct aca gtg atg gcg cca tcg ctt cct ccc aaa aag aaa aag caa | 2592 |      |      |
| Gln Ser Thr Val Met Ala Pro Ser Leu Pro Pro Lys Lys Lys Gln     |      |      |      |
| 850                                                             | 855  | 860  |      |
| tcg att gta gag cac cac tcg cat gcc cct gct cca act atg atg cag | 2640 |      |      |
| Ser Ile Val Glu His His Ser His Ala Pro Ala Pro Thr Met Met Gln |      |      |      |
| 865                                                             | 870  | 875  | 880  |
| ccc atc cag cag caa ctg cag cag cac tta cag caa cat cag cag atg | 2688 |      |      |
| Pro Ile Gln Gln Gln Leu Gln Gln His Leu Gln Gln His Gln Gln Met |      |      |      |
| 885                                                             | 890  | 895  |      |
| cag cag cag cac ctg cag cag caa cac cag cag atg caa cag caa     | 2736 |      |      |
| Gln Gln Gln His Leu Gln Gln Gln His Gln Gln Met Gln Gln Gln     |      |      |      |
| 900                                                             | 905  | 910  |      |
| cag cag cag cag cat cat cat cgc cat ctg gag aag aga aac tcg     | 2784 |      |      |
| Gln Gln Gln Gln His His His Arg His Leu Glu Lys Arg Asn Ser     |      |      |      |
| 915                                                             | 920  | 925  |      |
| gtg tcc gct cag acc gat gat aat ata ggc agc atc acc agt acg gcg | 2832 |      |      |
| Val Ser Ala Gln Thr Asp Asp Asn Ile Gly Ser Ile Thr Ser Thr Ala |      |      |      |
| 930                                                             | 935  | 940  |      |
| ggc aag cgg agc gga gga gac tgc tcc agc atg cgg gag agg cgt caa | 2880 |      |      |
| Gly Lys Arg Ser Gly Gly Asp Cys Ser Ser Met Arg Glu Arg Arg Gln |      |      |      |
| 945                                                             | 950  | 955  | 960  |
| tcg acc gcc tcc agg cac tac gac agt ggc agc cag acg ccc acc gcc | 2928 |      |      |
| Ser Thr Ala Ser Arg His Tyr Asp Ser Gly Ser Gln Thr Pro Thr Ala |      |      |      |
| 965                                                             | 970  | 975  |      |
| cgg cca aag tac agc agc tcg cac cgg aac tcc tcc acc aac atc tcc | 2976 |      |      |
| Arg Pro Lys Tyr Ser Ser His Arg Asn Ser Ser Thr Asn Ile Ser     |      |      |      |
| 980                                                             | 985  | 990  |      |
| aca tcg caa tcg gag ttg agc aac atg tgt cca cac tca aag ccc agt | 3024 |      |      |
| Thr Ser Gln Ser Glu Leu Ser Asn Met Cys Pro His Ser Lys Pro Ser |      |      |      |
| 995                                                             | 1000 | 1005 |      |
| act ccg gct gtg att aag act ccc act gcc tcc gac cat cgc cgc acc | 3072 |      |      |
| Thr Pro Ala Val Ile Lys Thr Pro Thr Ala Ser Asp His Arg Arg Thr |      |      |      |
| 1010                                                            | 1015 | 1020 |      |
| agc atg ggc tcc gct ctg aag tcc aat ttc gtg gtt tca cag agt gac | 3120 |      |      |
| Ser Met Gly Ser Ala Leu Lys Ser Asn Phe Val Val Ser Gln Ser Asp |      |      |      |
| 1025                                                            | 1030 | 1035 | 1040 |
| ctc tgg gac acg cac acg ctg tcg cac gcc aag cag cgc cag tcg ccg | 3168 |      |      |
| Leu Trp Asp Thr His Thr Leu Ser His Ala Lys Gln Arg Gln Ser Pro |      |      |      |
| 1045                                                            | 1050 | 1055 |      |
| cgg aac tac gcc agt ccg cag cgc tgt gcg gaa cat cat ggc ggc cac | 3216 |      |      |
| Arg Asn Tyr Ala Ser Pro Gln Arg Cys Ala Glu His His Gly His     |      |      |      |

| 1060                                                                                                                                           | 1065 | 1070 |      |
|------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|
| ggg atg acc tat gac ccg aac acc acc tcg ccc atc cag cg <sup>g</sup> tcc gtc<br>Gly Met Thr Tyr Asp Pro Asn Thr Ser Pro Ile Gln Arg Ser Val     |      |      | 3264 |
| 1075                                                                                                                                           | 1080 | 1085 |      |
| tcc gag aag aac cgc aac aaa cat cg <sup>g</sup> cca aaa ccg caa aag ggc acc<br>Ser Glu Lys Asn Arg Asn Lys His Arg Pro Lys Pro Gln Lys Gly Thr |      |      | 3312 |
| 1090                                                                                                                                           | 1095 | 1100 |      |
| gtt tgc cag agc gag acg gac agc gaa cg <sup>g</sup> gaa cga gat ccg ccg ccc<br>Val Cys Gln Ser Glu Thr Asp Ser Glu Arg Glu Arg Asp Pro Pro Pro |      |      | 3360 |
| 1105                                                                                                                                           | 1110 | 1115 | 1120 |
| aac agt cag ccg tgc gtc cag ccg cgt aag gtc agc ccg agc tct aac<br>Asn Ser Gln Pro Cys Val Gln Pro Arg Lys Val Ser Arg Ser Ser Asn             |      |      | 3408 |
| 1125                                                                                                                                           | 1130 | 1135 |      |
| atc cag cac gcc gcc cac cac agt tcg ccc aat gtg gcg ccc gat<br>Ile Gln His Ala Ala His His Ser Ser Pro Asn Val Ala Pro Asp                     |      |      | 3456 |
| 1140                                                                                                                                           | 1145 | 1150 |      |
| aag cag ccg agc agg cag ccg ggc aag cag gat agc agc atc tac ggc<br>Lys Gln Arg Ser Arg Gln Arg Gly Lys Gln Asp Ser Ser Ile Tyr Gly             |      |      | 3504 |
| 1155                                                                                                                                           | 1160 | 1165 |      |
| gcc agc agc gag acg gaa ctg ctc gag ggc gag acg gca att ttg ccc<br>Ala Ser Ser Glu Thr Glu Leu Leu Glu Gly Glu Thr Ala Ile Leu Pro             |      |      | 3552 |
| 1170                                                                                                                                           | 1175 | 1180 |      |
| atc ttc cgg aaa ctc ctc acc gag aag agt ccc aac tat cg <sup>g</sup> ggc cgc<br>Ile Phe Arg Lys Leu Leu Thr Glu Lys Ser Pro Asn Tyr Arg Gly Arg |      |      | 3600 |
| 1185                                                                                                                                           | 1190 | 1195 | 1200 |
| agt gcc gtg ggc cag agc tgt ccg aat ata tcc atc aaa tgc gat atc<br>Ser Ala Val Gly Gln Ser Cys Pro Asn Ile Ser Ile Lys Cys Asp Ile             |      |      | 3648 |
| 1205                                                                                                                                           | 1210 | 1215 |      |
| gtc gag tac ttg tag<br>Val Glu Tyr Leu                                                                                                         |      |      | 3663 |
| 1220                                                                                                                                           |      |      |      |

<210> 4  
<211> 1220  
<212> PRT  
<213> Drosophila melanogaster

<400> 4  
Met Phe Arg Pro Ser Trp Phe Pro Phe Ala Ser Leu Leu Phe Leu Leu  
1 5 10 15

Leu Trp Ser Thr Ala Cys Gly Arg Thr Ala Lys Arg Ser Asp Val Tyr  
20 25 30

Ile Ala Gly Phe Phe Pro Tyr Gly Asp Gly Val Glu Asn Ser Tyr Thr  
35 40 45

Gly Arg Gly Val Met Pro Ser Val Lys Leu Ala Leu Gly His Val Asn  
50 55 60

Glu His Gly Lys Ile Leu Ala Asn Tyr Arg Leu His Met Trp Trp Asn  
65 70 75 80

Asp Thr Gln Cys Asn Ala Ala Val Gly Val Lys Ser Phe Phe Asp Met  
85 90 95

Met His Ser Gly Pro Asn Lys Val Met Leu Phe Gly Ala Ala Cys Thr  
100 105 110

His Val Thr Asp Pro Ile Ala Lys Ala Ser Lys His Trp His Leu Thr  
115 120 125

Gln Leu Ser Tyr Ala Asp Thr His Pro Met Phe Thr Lys Asp Ala Phe  
130 135 140

Pro Asn Phe Phe Arg Val Val Pro Ser Glu Asn Ala Phe Asn Ala Pro  
145 150 155 160

Arg Leu Ala Leu Leu Lys Glu Phe Asn Trp Thr Arg Val Gly Thr Val  
165 170 175

Tyr Gln Asn Glu Pro Arg Tyr Ser Leu Pro His Asn His Met Val Ala  
180 185 190

Asp Leu Asp Ala Met Glu Val Glu Val Val Glu Thr Gln Ser Phe Val  
195 200 205

Asn Asp Val Ala Glu Ser Leu Lys Lys Leu Arg Glu Lys Asp Val Arg  
210 215 220

Ile Ile Leu Gly Asn Phe Asn Glu His Phe Ala Arg Lys Ala Phe Cys  
225 230 235 240

Glu Ala Tyr Lys Leu Asp Met Tyr Gly Arg Ala Tyr Gln Trp Leu Ile  
245 250 255

Met Ala Thr Tyr Ser Thr Asp Trp Trp Asn Val Thr Gln Asp Ser Glu  
260 265 270

Cys Ser Val Glu Glu Ile Ala Thr Ala Leu Glu Gly Ala Ile Leu Val  
275 280 285

Asp Leu Leu Pro Leu Ser Thr Ser Gly Asp Ile Thr Val Ala Gly Ile  
290 295 300

Thr Ala Asp Glu Tyr Leu Val Glu Tyr Asp Arg Leu Arg Gly Thr Glu  
305 310 315 320

Tyr Ser Arg Phe His Gly Tyr Thr Tyr Asp Gly Ile Trp Ala Ala Ala  
325 330 335

Leu Ala Ile Gln Tyr Val Ala Glu Lys Arg Glu Asp Leu Leu Thr His  
340 345 350

Phe Asp Tyr Arg Val Lys Asp Trp Glu Ser Val Phe Leu Glu Ala Leu  
355 360 365

Arg Asn Thr Ser Phe Glu Gly Val Thr Gly Pro Val Arg Phe Tyr Asn  
370 375 380

Asn Glu Arg Lys Ala Asn Ile Leu Ile Asn Gln Phe Gln Leu Gly Gln  
385 390 395 400

Met Glu Lys Ile Gly Glu Tyr His Ser Gln Lys Ser His Leu Asp Leu  
405 410 415

Ser Leu Gly Lys Pro Val Lys Trp Val Gly Lys Thr Pro Pro Lys Asp  
420 425 430

Arg Thr Leu Ile Tyr Ile Glu His Ser Gln Val Asn Pro Thr Ile Tyr  
435 440 445

Ile Val Ser Ala Ser Ala Ser Val Ile Gly Val Ile Ile Ala Thr Val  
450 455 460

Phe Leu Ala Phe Asn Ile Lys Tyr Arg Asn Gln Arg Tyr Ile Lys Met  
465 470 475 480

Ser Ser Pro His Leu Asn Asn Leu Ile Ile Val Gly Cys Met Ile Thr  
485 490 495

Tyr Leu Ser Ile Ile Phe Leu Gly Leu Asp Thr Thr Leu Ser Ser Val  
500 505 510

Ala Ala Phe Pro Tyr Ile Cys Thr Ala Arg Ala Trp Ile Leu Met Ala  
515 520 525

Gly Phe Ser Leu Ser Phe Gly Ala Met Phe Ser Lys Thr Trp Arg Val  
530 535 540

His Ser Ile Phe Thr Asp Leu Lys Leu Asn Lys Lys Val Ile Lys Asp  
545 550 555 560

Tyr Gln Leu Phe Met Val Val Gly Val Leu Leu Ala Ile Asp Ile Ala  
565 570 575

Ile Ile Thr Thr Trp Gln Ile Ala Asp Pro Phe Tyr Arg Glu Thr Lys  
580 585 590

Gln Leu Glu Pro Leu His His Glu Asn Ile Asp Asp Val Leu Val Ile  
595 600 605

Pro Glu Asn Glu Tyr Cys Gln Ser Glu His Met Thr Ile Phe Val Ser  
610 615 620

Ile Ile Tyr Ala Tyr Lys Gly Leu Leu Leu Val Phe Gly Ala Phe Leu  
625 630 635 640

Ala Trp Glu Thr Arg His Val Ser Ile Pro Ala Leu Asn Asp Ser Lys  
645 650 655

His Ile Gly Phe Ser Val Tyr Asn Val Phe Ile Thr Cys Leu Ala Gly  
660 665 670

Ala Ala Ile Ser Leu Val Leu Ser Asp Arg Lys Asp Leu Val Phe Val  
675 680 685

Leu Leu Ser Phe Phe Ile Ile Phe Cys Thr Thr Ala Thr Leu Cys Leu  
690 695 700

Val Phe Val Pro Lys Leu Val Glu Leu Lys Arg Asn Pro Gln Gly Val  
705 710 715 720

Val Asp Lys Arg Val Arg Ala Thr Leu Arg Pro Met Ser Lys Asn Gly  
725 730 735

Arg Arg Asp Ser Ser Val Cys Glu Leu Glu Gln Arg Leu Arg Asp Val  
740 745 750

Lys Asn Thr Asn Cys Arg Phe Arg Lys Ala Leu Met Glu Lys Glu Asn  
755 760 765

Glu Leu Gln Ala Leu Ile Arg Lys Leu Gly Pro Glu Ala Arg Lys Trp  
770 775 780

Ile Asp Gly Val Thr Cys Thr Gly Ser Asn Val Gly Ser Glu Leu  
785 790 795 800

Glu Pro Ile Leu Asn Asp Asp Ile Val Arg Leu Ser Ala Pro Pro Val  
805 810 815

Arg Arg Glu Met Pro Ser Thr Thr Val Thr Glu Met Thr Ser Val Asp  
820 825 830

Ser Val Thr Ser Thr His Val Glu Met Asp Asn Ser Phe Val Ser Val  
835 840 845

Gln Ser Thr Val Met Ala Pro Ser Leu Pro Pro Lys Lys Lys Lys Gln  
850 855 860

Ser Ile Val Glu His His Ser His Ala Pro Ala Pro Thr Met Met Gln  
865 870 875 880

Pro Ile Gln Gln Gln Leu Gln Gln His Leu Gln Gln His Gln Gln Met  
885 890 895

Gln Gln Gln His Leu Gln Gln Gln His Gln Gln Met Gln Gln Gln  
900 905 910

Gln Gln Gln Gln His His Arg His Leu Glu Lys Arg Asn Ser  
915 920 925

Val Ser Ala Gln Thr Asp Asp Asn Ile Gly Ser Ile Thr Ser Thr Ala  
930 935 940

Gly Lys Arg Ser Gly Gly Asp Cys Ser Ser Met Arg Glu Arg Arg Gln  
945 950 955 960

Ser Thr Ala Ser Arg His Tyr Asp Ser Gly Ser Gln Thr Pro Thr Ala  
965 970 975

Arg Pro Lys Tyr Ser Ser Ser His Arg Asn Ser Ser Thr Asn Ile Ser  
980 985 990

Thr Ser Gln Ser Glu Leu Ser Asn Met Cys Pro His Ser Lys Pro Ser  
995 1000 1005

Thr Pro Ala Val Ile Lys Thr Pro Thr Ala Ser Asp His Arg Arg Thr  
1010 1015 1020

Ser Met Gly Ser Ala Leu Lys Ser Asn Phe Val Val Ser Gln Ser Asp  
025 1030 1035 1040

Leu Trp Asp Thr His Thr Leu Ser His Ala Lys Gln Arg Gln Ser Pro  
1045 1050 1055

Arg Asn Tyr Ala Ser Pro Gln Arg Cys Ala Glu His His Gly Gly His  
1060 1065 1070

Gly Met Thr Tyr Asp Pro Asn Thr Thr Ser Pro Ile Gln Arg Ser Val  
1075 1080 1085

Ser Glu Lys Asn Arg Asn Lys His Arg Pro Lys Pro Gln Lys Gly Thr  
1090 1095 1100

Val Cys Gln Ser Glu Thr Asp Ser Glu Arg Glu Arg Asp Pro Pro Pro  
105 1110 1115 1120

Asn Ser Gln Pro Cys Val Gln Pro Arg Lys Val Ser Arg Ser Ser Asn  
1125 1130 1135

Ile Gln His Ala Ala His His Ser Ser Pro Asn Val Ala Pro Asp  
1140 1145 1150

Lys Gln Arg Ser Arg Gln Arg Gly Lys Gln Asp Ser Ser Ile Tyr Gly  
1155 1160 1165

Ala Ser Ser Glu Thr Glu Leu Leu Glu Gly Glu Thr Ala Ile Leu Pro  
1170 1175 1180

Ile Phe Arg Lys Leu Leu Thr Glu Lys Ser Pro Asn Tyr Arg Gly Arg  
185 1190 1195 1200

Ser Ala Val Gly Gln Ser Cys Pro Asn Ile Ser Ile Lys Cys Asp Ile  
1205 1210 1215

Val Glu Tyr Leu  
1220

<210> 5  
<211> 3918  
<212> DNA

<213> Drosophila melanogaster

<220>

<221> CDS

<222> (1)..(3915)

<400> 5

atg cgc ata att caa ccg gtc caa ggg acc aga tac ggt cca tgg ccg 48  
Met Arg Ile Ile Gln Pro Val Gln Gly Thr Arg Tyr Gly Pro Trp Pro  
1 5 10 15

gcc gtg gga ctg agg cta gtc ctg gcc ctt gcc tgg gca acg tcg gca 96  
Ala Val Gly Leu Arg Leu Val Ala Leu Ala Trp Ala Thr Ser Ala  
20 25 30

gct gcc atg gag tca tca gcc gag ctg cag gcc ctg ggc cac gag 144  
Ala Ala Ala Met Glu Ser Ser Ala Glu Leu Gln Ala Leu Gly His Glu  
35 40 45

gca att agg cca ggt gct gcc tca att agc aca tcc agc cca tcc agc 192  
Ala Ile Arg Pro Gly Ala Ala Ser Ile Ser Thr Ser Pro Ser Ser  
50 55 60

tcg cca ccc gga gaa tcg gca tcg act gtg act gca ggg ggg act ccg 240  
Ser Pro Pro Gly Glu Ser Ala Ser Thr Val Ala Gly Gly Thr Pro  
65 70 75 80

att cca ccg cgc tcc gat tgg aag tac aaa cgg acg aaa gtc aaa cgc 288  
Ile Pro Pro Arg Ser Asp Trp Lys Tyr Lys Arg Thr Lys Val Lys Arg  
85 90 95

cgg cag cag cgc ctc aat tcg cac agc aat ctg ccc gga agc acc aat 336  
Arg Gln Gln Arg Leu Asn Ser His Ser Asn Leu Pro Gly Ser Thr Asn  
100 105 110

gcc tcc cac gct cac cac ctc ctc aat ctg ccc ccc agg cag cga tac 384  
Ala Ser His Ala His His Leu Leu Asn Leu Pro Pro Arg Gln Arg Tyr  
115 120 125

ttg aag gtc aac cag gtg ttc gaa agc gaa cgc cgc atg tcg ccg gcc 432  
Leu Lys Val Asn Gln Val Phe Glu Ser Glu Arg Arg Met Ser Pro Ala  
130 135 140

gaa atg cag cgc aat cat ggc aaa atc gtg ctg ctc gga ctc ttt gag 480  
Glu Met Gln Arg Asn His Gly Lys Ile Val Leu Leu Gly Leu Phe Glu  
145 150 155 160

ctg tcc aca tcg cgg gga cca cgt ccg gat ggt ctg agc gaa ttg gga 528  
Leu Ser Thr Ser Arg Gly Pro Arg Pro Asp Gly Leu Ser Glu Leu Gly  
165 170 175

gct gcc acc atg gcc gtg gaa cac atc aac cgc aag cgc ctg ctg ccg 576  
Ala Ala Thr Met Ala Val Glu His Ile Asn Arg Lys Arg Leu Leu Pro  
180 185 190

ggc tac acc ctc gag ctc gtg acc aac gat act cag tgt gat cct gga 624  
Gly Tyr Thr Leu Glu Leu Val Thr Asn Asp Thr Gln Cys Asp Pro Gly

195

200

205

gtg ggc gtg gat cgc ttc cac gcc atc tac aca cag ccc tcg acg 672  
 Val Gly Val Asp Arg Phe Phe His Ala Ile Tyr Thr Gln Pro Ser Thr  
 210 215 220

agg atg gtg atg ctg ctg gga tcg gcc tgc tcg gag gtc acc gag agc 720  
 Arg Met Val Met Leu Leu Gly Ser Ala Cys Ser Glu Val Thr Glu Ser  
 225 230 235 240

ctg gcg aag gtg gtg ccc tac tgg aac atc gtg cag gta tcc ttc ggt 768  
 Leu Ala Lys Val Val Pro Tyr Trp Asn Ile Val Gln Val Ser Phe Gly  
 245 250 255

tcc aca tcg ccg gcg ttg agc gac agg cggttccccc tac ttc tac 816  
 Ser Thr Ser Pro Ala Leu Ser Asp Arg Arg Glu Phe Pro Tyr Phe Tyr  
 260 265 270

agg aca gtg gcc ccg gac tcc tca cac aat ccg gcg cgc atc gct ttc 864  
 Arg Thr Val Ala Pro Asp Ser Ser His Asn Pro Ala Arg Ile Ala Phe  
 275 280 285

att cgg aag ttt ggc tgg ggc acg gtg acc act ttc tcg cag aac gag 912  
 Ile Arg Lys Phe Gly Trp Gly Thr Val Thr Phe Ser Gln Asn Glu  
 290 295 300

gag gtt cac tcg ctg gcg gtg aac aac ctg gtc acc gaa ctg gag gcg 960  
 Glu Val His Ser Leu Ala Val Asn Asn Leu Val Thr Glu Leu Glu Ala  
 305 310 315 320

gcc aac ata tcc tgt gcc acc atc acc ttt gcg gcc acc gac ttc 1008  
 Ala Asn Ile Ser Cys Ala Ala Thr Ile Thr Phe Ala Ala Thr Asp Phe  
 325 330 335

aag gag cag ctg ctg cta ctt agg gag acg gac acg cgc atc atc atc 1056  
 Lys Glu Gln Leu Leu Leu Arg Glu Thr Asp Thr Arg Ile Ile Ile  
 340 345 350

ggc agc ttc tcg cag gag ctg gcc ccc cag atc ctg tgc gag gcc tac 1104  
 Gly Ser Phe Ser Gln Glu Leu Ala Pro Gln Ile Leu Cys Glu Ala Tyr  
 355 360 365

agg ctt cga atg ttc ggg gcg gac tac gcc tgg atc ctc cac gag agc 1152  
 Arg Leu Arg Met Phe Gly Ala Asp Tyr Ala Trp Ile Leu His Glu Ser  
 370 375 380

atg ggg gct ccg tgg tgg ccg gac cag cgc acc gcc tgc tct aac cac 1200  
 Met Gly Ala Pro Trp Trp Pro Asp Gln Arg Thr Ala Cys Ser Asn His  
 385 390 395 400

gaa ctg cag ctg gcc gtc gag aac ctc atc gtg gtc tca acg cac aac 1248  
 Glu Leu Gln Leu Ala Val Glu Asn Leu Ile Val Val Ser Thr His Asn  
 405 410 415

agc atc gtt gga aat aac gtc agc tat agt gga ctg aac aat cac atg 1296  
 Ser Ile Val Gly Asn Asn Val Ser Tyr Ser Gly Leu Asn Asn His Met  
 420 425 430

|                                                                                                                                    |     |     |     |      |
|------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| ttc aac tcc cag ctg cgc aag caa tcc gcc cag ttc cac ggc cag gat<br>Phe Asn Ser Gln Leu Arg Lys Gln Ser Ala Gln Phe His Gly Gln Asp | 435 | 440 | 445 | 1344 |
| gga ttt ggc tcc ggt tat ggt ccc agg atc agt atc gct gca acg caa<br>Gly Phe Gly Ser Gly Tyr Gly Pro Arg Ile Ser Ile Ala Ala Thr Gln | 450 | 455 | 460 | 1392 |
| tct gac tct cgt cgg cg agg aga agg ggc gtg gta ggc acc agc gga<br>Ser Asp Ser Arg Arg Arg Arg Gly Val Val Gly Thr Ser Gly          | 465 | 470 | 475 | 1440 |
| ggg cac ctc ttt ccg gag gcg atc tcg cag tac gcg ccg caa acc tac<br>Gly His Leu Phe Pro Glu Ala Ile Ser Gln Tyr Ala Pro Gln Thr Tyr | 485 | 490 | 495 | 1488 |
| gac gcc gtg tgg gcc atc gcc ctg gcc ttg aga gcc gct gag gag cac<br>Asp Ala Val Trp Ala Ile Ala Leu Ala Leu Arg Ala Ala Glu Glu His | 500 | 505 | 510 | 1536 |
| tgg cgg cgg aac gag gag cag tcg aag ctg gac gga ttc gat tac acc<br>Trp Arg Arg Asn Glu Glu Gln Ser Lys Leu Asp Gly Phe Asp Tyr Thr | 515 | 520 | 525 | 1584 |
| cgc agc gac atg gcc tgg gag ttc ctg cag caa atg ggc aag ctc cac<br>Arg Ser Asp Met Ala Trp Glu Phe Leu Gln Gln Met Gly Lys Leu His | 530 | 535 | 540 | 1632 |
| ttc ctg gga gtg tcg ggc ccc gtt tcc atc gac ggc cca gat cgc gtt<br>Phe Leu Gly Val Ser Gly Pro Val Ser Phe Ser Gly Pro Asp Arg Val | 545 | 550 | 555 | 1680 |
| ggc acc act gcc ttc tat caa atc cag cgc ggt ttg ctg gaa ccg gtg<br>Gly Thr Thr Ala Phe Tyr Gln Ile Gln Arg Gly Leu Leu Glu Pro Val | 565 | 570 | 575 | 1728 |
| gcc ctc tac tat ccg gcc acg gat gcc ctg gac ttc cgg tgt ccc cgc<br>Ala Leu Tyr Tyr Pro Ala Thr Asp Ala Leu Asp Phe Arg Cys Pro Arg | 580 | 585 | 590 | 1776 |
| tgc cgg ccg gtg aag tgg cac agc ggg cag gta ccc atc gcc aag ccg<br>Cys Arg Pro Val Lys Trp His Ser Gly Gln Val Pro Ile Ala Lys Arg | 595 | 600 | 605 | 1824 |
| gtg ttc aag ctg cgg gtg gcg acc atc gct cca ctg gcc ttc tac acc<br>Val Phe Lys Leu Arg Val Ala Thr Ile Ala Pro Leu Ala Phe Tyr Thr | 610 | 615 | 620 | 1872 |
| atc gcc acc ctc tcc agc gtg gga atc gct ctg gcc atc acc ttc ctg<br>Ile Ala Thr Leu Ser Ser Val Gly Ile Ala Leu Ala Ile Thr Phe Leu | 625 | 630 | 635 | 1920 |
| gcg ttc aat ctg cac ttt cgg aag ctg aag gca att aaa ctt tcc agc<br>Ala Phe Asn Leu His Phe Arg Lys Leu Lys Ala Ile Lys Leu Ser Ser | 645 | 650 | 655 | 1968 |

|                                                                                                                                    |     |     |     |      |
|------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| ccg aag ctg agc aac atc acc gca gtg ggc tgc atc ttt gtg tac gcc<br>Pro Lys Leu Ser Asn Ile Thr Ala Val Gly Cys Ile Phe Val Tyr Ala | 660 | 665 | 670 | 2016 |
| acc gtc atc ctt ttg ggc ttg gac cac tcg acg ctg ccc tcg gcg gag<br>Thr Val Ile Leu Leu Gly Leu Asp His Ser Thr Leu Pro Ser Ala Glu | 675 | 680 | 685 | 2064 |
| gac tct ttc gca acg gtc tgc acg gcc cgc gtc tat ctg ctc tcc gcc<br>Asp Ser Phe Ala Thr Val Cys Thr Ala Arg Val Tyr Leu Leu Ser Ala | 690 | 695 | 700 | 2112 |
| gga ttc tcg ttg gcc ttt gga tcg atg ttt gcc aag acc tac aga gtg<br>Gly Phe Ser Leu Ala Phe Gly Ser Met Phe Ala Lys Thr Tyr Arg Val | 705 | 710 | 715 | 2160 |
| cat cgg ata ttc act cgt acc ggc agc gtt ttc aag gac aag atg ctg<br>His Arg Ile Phe Thr Arg Thr Gly Ser Val Phe Lys Asp Lys Met Leu | 725 | 730 | 735 | 2208 |
| cag gac att caa ctg atc ttg ctc gtc ggc gga ttg ctt ctg gtg gat<br>Gln Asp Ile Gln Leu Ile Leu Val Gly Gly Leu Leu Leu Val Asp     | 740 | 745 | 750 | 2256 |
| gcg ctg ctc gta acc ctt tgg gtg gtc acc gat cca atg gag cgc cat<br>Ala Leu Leu Val Thr Leu Trp Val Val Thr Asp Pro Met Glu Arg His | 755 | 760 | 765 | 2304 |
| ctt cac aac ctg acg ctc gag atc agt gcg act gat aga agt gtc gtt<br>Leu His Asn Leu Thr Leu Glu Ile Ser Ala Thr Asp Arg Ser Val Val | 770 | 775 | 780 | 2352 |
| tac cag cct cag gtt gaa gtt tgc cgt tcg cag cac acg caa acg tgg<br>Tyr Gln Pro Gln Val Glu Val Cys Arg Ser Gln His Thr Gln Thr Trp | 785 | 790 | 795 | 2400 |
| ttg agt gtc ctg tac gcc tac aaa ggc ctt ctt gtg gtg ggt gtc<br>Leu Ser Val Leu Tyr Ala Tyr Lys Gly Leu Leu Leu Val Val Gly Val     | 805 | 810 | 815 | 2448 |
| tat atg gcc tgg gag acg cgc cac gta aaa ata cct gct ctc aat gac<br>Tyr Met Ala Trp Glu Thr Arg His Val Lys Ile Pro Ala Leu Asn Asp | 820 | 825 | 830 | 2496 |
| tcg cag tac atc gga gtg tct gta tac agt gtg gtc atc acc agc gcc<br>Ser Gln Tyr Ile Gly Val Ser Val Tyr Ser Val Val Ile Thr Ser Ala | 835 | 840 | 845 | 2544 |
| atc gtc gtg gtg ctg gcc aac ttg att tcg gag cga gtc acc ctc gcc<br>Ile Val Val Val Leu Ala Asn Leu Ile Ser Glu Arg Val Thr Leu Ala | 850 | 855 | 860 | 2592 |
| ttc atc aca atc aca gct ctg att tta acc agc acc act gca acc ctt<br>Phe Ile Thr Ile Thr Ala Leu Ile Leu Thr Ser Thr Thr Ala Thr Leu | 865 | 870 | 875 | 2640 |
| tgt ctg ctt ttc atc cca aaa ctc cat gat att tgg gca aga aac gat                                                                    |     |     |     | 2688 |

|                                                                 |      |      |      |
|-----------------------------------------------------------------|------|------|------|
| Cys Leu Leu Phe Ile Pro Lys Leu His Asp Ile Trp Ala Arg Asn Asp |      |      |      |
| 885                                                             | 890  | 895  |      |
| att atc gat ccg gtt atc cac agt atg ggc ctt aag atg gag tgc aac | 2736 |      |      |
| Ile Ile Asp Pro Val Ile His Ser Met Gly Leu Lys Met Glu Cys Asn |      |      |      |
| 900                                                             | 905  | 910  |      |
| aca cgc cga ttc gtg gtc gat gat cgc cga gaa ctg cag tat cga gtg | 2784 |      |      |
| Thr Arg Arg Phe Val Val Asp Asp Arg Arg Glu Leu Gln Tyr Arg Val |      |      |      |
| 915                                                             | 920  | 925  |      |
| gag gtg caa aac agg gtc tat aag aag gaa atc cag gct ctg gac gcc | 2832 |      |      |
| Glu Val Gln Asn Arg Val Tyr Lys Glu Ile Gln Ala Leu Asp Ala     |      |      |      |
| 930                                                             | 935  | 940  |      |
| gag att cga aag ctg gag agg cta ctc gag tcg gga cta acc acc acc | 2880 |      |      |
| Glu Ile Arg Lys Leu Glu Arg Leu Leu Ser Gly Leu Thr Thr Thr     |      |      |      |
| 945                                                             | 950  | 955  | 960  |
| tcc acc aca act tcg tcg tcc aca tca ctc tta act ggg gga ggt cat | 2928 |      |      |
| Ser Thr Thr Ser Ser Thr Ser Leu Leu Thr Gly Gly Gly His         |      |      |      |
| 965                                                             | 970  | 975  |      |
| cta aag cca gaa ctg acg gta acc agt ggc atc tcg cag act ccg gct | 2976 |      |      |
| Leu Lys Pro Glu Leu Thr Val Thr Ser Gly Ile Ser Gln Thr Pro Ala |      |      |      |
| 980                                                             | 985  | 990  |      |
| gca agt aaa aac aga act cca agt atc tcg gga ata ctg ccc aat ctc | 3024 |      |      |
| Ala Ser Lys Asn Arg Thr Pro Ser Ile Ser Gly Ile Leu Pro Asn Leu |      |      |      |
| 995                                                             | 1000 | 1005 |      |
| ctg ctt tcc gtg ctg cct gtg att cca cggt gcc agt tgg ccg tca    | 3072 |      |      |
| Leu Leu Ser Val Leu Pro Pro Val Ile Pro Arg Ala Ser Trp Pro Ser |      |      |      |
| 1010                                                            | 1015 | 1020 |      |
| gca gag tac atg cag atc ccg atg agg cgt tct gtt acc ttt gcc tcc | 3120 |      |      |
| Ala Glu Tyr Met Gln Ile Pro Met Arg Arg Ser Val Thr Phe Ala Ser |      |      |      |
| 1025                                                            | 1030 | 1035 | 1040 |
| cag ccc caa tta gag gag gcc tgc cct gca cag gac ttg att aac     | 3168 |      |      |
| Gln Pro Gln Leu Glu Ala Cys Leu Pro Ala Gln Asp Leu Ile Asn     |      |      |      |
| 1045                                                            | 1050 | 1055 |      |
| ctc cgt tta gcc cac cag cag gcc acg gag gct aag acg ggc ttg ata | 3216 |      |      |
| Leu Arg Leu Ala His Gln Gln Ala Thr Glu Ala Lys Thr Gly Leu Ile |      |      |      |
| 1060                                                            | 1065 | 1070 |      |
| aac cga tta cga ggg ata ttt tct cgc acc act tcg agc aac aag gga | 3264 |      |      |
| Asn Arg Leu Arg Gly Ile Phe Ser Arg Thr Thr Ser Ser Asn Lys Gly |      |      |      |
| 1075                                                            | 1080 | 1085 |      |
| tcc acc gcc agc ttg gcg gac caa aag ggt ctg aag gcg gcc ttt aaa | 3312 |      |      |
| Ser Thr Ala Ser Leu Ala Asp Gln Lys Gly Leu Lys Ala Ala Phe Lys |      |      |      |
| 1090                                                            | 1095 | 1100 |      |
| tcg cac atg gga ctg ttc acc cgc ctg att ccc tcc tct caa acg gcg | 3360 |      |      |
| Ser His Met Gly Leu Phe Thr Arg Leu Ile Pro Ser Ser Gln Thr Ala |      |      |      |

|                                                                                                                                    |      |      |      |      |
|------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| 1105                                                                                                                               | 1110 | 1115 | 1120 |      |
| tcc tgc aat gcc ata tac aat aat cca aat cag gat tcc att ccc tca<br>Ser Cys Asn Ala Ile Tyr Asn Asn Pro Asn Gln Asp Ser Ile Pro Ser |      |      |      | 3408 |
| 1125                                                                                                                               | 1130 |      | 1135 |      |
| gag gcg tcc tcc cac ccg aat ggt aac cac cta aag ccc atc cat agg<br>Glu Ala Ser Ser His Pro Asn Gly Asn His Leu Lys Pro Ile His Arg |      |      |      | 3456 |
| 1140                                                                                                                               | 1145 | 1150 |      |      |
| ggt tca ttg acc aaa agc ggt act cac ctg gat cac ctt acc aag gat<br>Gly Ser Leu Thr Lys Ser Gly Thr His Leu Asp His Leu Thr Lys Asp |      |      |      | 3504 |
| 1155                                                                                                                               | 1160 | 1165 |      |      |
| ccg aat ttc ctg cct atc ccc act att tct ggc ggt gaa cag ggg gac<br>Pro Asn Phe Leu Pro Ile Pro Thr Ile Ser Gly Gly Glu Gln Gly Asp |      |      |      | 3552 |
| 1170                                                                                                                               | 1175 | 1180 |      |      |
| caa acg ttg ggt gga aag tat gtg aaa ctg ctg gag acc aag gtg aac<br>Gln Thr Leu Gly Gly Lys Tyr Val Lys Leu Leu Glu Thr Lys Val Asn |      |      |      | 3600 |
| 1185                                                                                                                               | 1190 | 1195 | 1200 |      |
| ttc caa ttg ccc agc aac cgg aga cct tcg gtg gtg cag cag cca ccc<br>Phe Gln Leu Pro Ser Asn Arg Arg Pro Ser Val Val Gln Gln Pro Pro |      |      |      | 3648 |
| 1205                                                                                                                               | 1210 | 1215 |      |      |
| agt tta agg gaa agg gta agg ggt tcg cca cgc ttt cca cac cgc atc<br>Ser Leu Arg Glu Arg Val Arg Gly Ser Pro Arg Phe Pro His Arg Ile |      |      |      | 3696 |
| 1220                                                                                                                               | 1225 | 1230 |      |      |
| ctg ccg ccc act tgc agt ctc agc gcc ctg gcc gaa tcc gag gac cgt<br>Leu Pro Pro Thr Cys Ser Leu Ser Ala Leu Ala Glu Ser Glu Asp Arg |      |      |      | 3744 |
| 1235                                                                                                                               | 1240 | 1245 |      |      |
| ccc gga gat agc acc tct atc ttg ggc agc tgc aag tcc ata cct cgc<br>Pro Gly Asp Ser Thr Ser Ile Leu Gly Ser Cys Lys Ser Ile Pro Arg |      |      |      | 3792 |
| 1250                                                                                                                               | 1255 | 1260 |      |      |
| att tcg ctg cag cag gtc acc agt gga ggc acc tgg aaa tcg atg gaa<br>Ile Ser Leu Gln Gln Val Thr Ser Gly Gly Thr Trp Lys Ser Met Glu |      |      |      | 3840 |
| 1265                                                                                                                               | 1270 | 1275 | 1280 |      |
| aca gtg ggc aag tcg agg ctt tcc ctc ggc gat tcc cag gaa gag gag<br>Thr Val Gly Lys Ser Arg Leu Ser Leu Gly Asp Ser Gln Glu Glu     |      |      |      | 3888 |
| 1285                                                                                                                               | 1290 | 1295 |      |      |
| cag cag gcg cct ggc aat ggc acc gaa taa<br>Gln Gln Ala Pro Ala Asn Gly Thr Glu                                                     |      |      |      | 3918 |
| 1300                                                                                                                               | 1305 |      |      |      |

<210> 6  
 <211> 1305  
 <212> PRT  
 <213> Drosophila melanogaster

<400> 6

Met Arg Ile Ile Gln Pro Val Gln Gly Thr Arg Tyr Gly Pro Trp Pro  
1 5 10 15

Ala Val Gly Leu Arg Leu Val Leu Ala Leu Ala Trp Ala Thr Ser Ala  
20 25 30

Ala Ala Ala Met Glu Ser Ser Ala Glu Leu Gln Ala Leu Gly His Glu  
35 40 45

Ala Ile Arg Pro Gly Ala Ala Ser Ile Ser Thr Ser Ser Pro Ser Ser  
50 55 60

Ser Pro Pro Gly Glu Ser Ala Ser Thr Val Thr Ala Gly Gly Thr Pro  
65 70 75 80

Ile Pro Pro Arg Ser Asp Trp Lys Tyr Lys Arg Thr Lys Val Lys Arg  
85 90 95

Arg Gln Gln Arg Leu Asn Ser His Ser Asn Leu Pro Gly Ser Thr Asn  
100 105 110

Ala Ser His Ala His His Leu Leu Asn Leu Pro Pro Arg Gln Arg Tyr  
115 120 125

Leu Lys Val Asn Gln Val Phe Glu Ser Glu Arg Arg Met Ser Pro Ala  
130 135 140

Glu Met Gln Arg Asn His Gly Lys Ile Val Leu Leu Gly Leu Phe Glu  
145 150 155 160

Leu Ser Thr Ser Arg Gly Pro Arg Pro Asp Gly Leu Ser Glu Leu Gly  
165 170 175

Ala Ala Thr Met Ala Val Glu His Ile Asn Arg Lys Arg Leu Leu Pro  
180 185 190

Gly Tyr Thr Leu Glu Leu Val Thr Asn Asp Thr Gln Cys Asp Pro Gly  
195 200 205

Val Gly Val Asp Arg Phe Phe His Ala Ile Tyr Thr Gln Pro Ser Thr  
210 215 220

Arg Met Val Met Leu Leu Gly Ser Ala Cys Ser Glu Val Thr Glu Ser  
225 230 235 240

Leu Ala Lys Val Val Pro Tyr Trp Asn Ile Val Gln Val Ser Phe Gly  
245 250 255

Ser Thr Ser Pro Ala Leu Ser Asp Arg Arg Glu Phe Pro Tyr Phe Tyr  
260 265 270

Arg Thr Val Ala Pro Asp Ser Ser His Asn Pro Ala Arg Ile Ala Phe  
275 280 285

Ile Arg Lys Phe Gly Trp Gly Thr Val Thr Phe Ser Gln Asn Glu  
290 295 300

Glu Val His Ser Leu Ala Val Asn Asn Leu Val Thr Glu Leu Glu Ala  
305 310 315 320

Ala Asn Ile Ser Cys Ala Ala Thr Ile Thr Phe Ala Ala Thr Asp Phe  
325 330 335

Lys Glu Gln Leu Leu Leu Arg Glu Thr Asp Thr Arg Ile Ile Ile  
340 345 350

Gly Ser Phe Ser Gln Glu Leu Ala Pro Gln Ile Leu Cys Glu Ala Tyr  
355 360 365

Arg Leu Arg Met Phe Gly Ala Asp Tyr Ala Trp Ile Leu His Glu Ser  
370 375 380

Met Gly Ala Pro Trp Trp Pro Asp Gln Arg Thr Ala Cys Ser Asn His  
385 390 395 400

Glu Leu Gln Leu Ala Val Glu Asn Leu Ile Val Val Ser Thr His Asn  
405 410 415

Ser Ile Val Gly Asn Asn Val Ser Tyr Ser Gly Leu Asn Asn His Met  
420 425 430

Phe Asn Ser Gln Leu Arg Lys Gln Ser Ala Gln Phe His Gly Gln Asp  
435 440 445

Gly Phe Gly Ser Gly Tyr Gly Pro Arg Ile Ser Ile Ala Ala Thr Gln  
450 455 460

Ser Asp Ser Arg Arg Arg Arg Arg Gly Val Val Gly Thr Ser Gly  
465 470 475 480

Gly His Leu Phe Pro Glu Ala Ile Ser Gln Tyr Ala Pro Gln Thr Tyr  
485 490 495

Asp Ala Val Trp Ala Ile Ala Leu Ala Leu Arg Ala Ala Glu Glu His  
500 505 510

Trp Arg Arg Asn Glu Glu Gln Ser Lys Leu Asp Gly Phe Asp Tyr Thr  
515 520 525

Arg Ser Asp Met Ala Trp Glu Phe Leu Gln Gln Met Gly Lys Leu His  
530 535 540

Phe Leu Gly Val Ser Gly Pro Val Ser Phe Ser Gly Pro Asp Arg Val  
545 550 555 560

Gly Thr Thr Ala Phe Tyr Gln Ile Gln Arg Gly Leu Leu Glu Pro Val  
565 570 575

Ala Leu Tyr Tyr Pro Ala Thr Asp Ala Leu Asp Phe Arg Cys Pro Arg  
580 585 590

Cys Arg Pro Val Lys Trp His Ser Gly Gln Val Pro Ile Ala Lys Arg  
595 600 605

Val Phe Lys Leu Arg Val Ala Thr Ile Ala Pro Leu Ala Phe Tyr Thr  
610 615 620

Ile Ala Thr Leu Ser Ser Val Gly Ile Ala Leu Ala Ile Thr Phe Leu  
625 630 635 640

Ala Phe Asn Leu His Phe Arg Lys Leu Lys Ala Ile Lys Leu Ser Ser  
645 650 655

Pro Lys Leu Ser Asn Ile Thr Ala Val Gly Cys Ile Phe Val Tyr Ala  
660 665 670

Thr Val Ile Leu Leu Gly Leu Asp His Ser Thr Leu Pro Ser Ala Glu  
675 680 685

Asp Ser Phe Ala Thr Val Cys Thr Ala Arg Val Tyr Leu Leu Ser Ala  
690 695 700

Gly Phe Ser Leu Ala Phe Gly Ser Met Phe Ala Lys Thr Tyr Arg Val  
705 710 715 720

His Arg Ile Phe Thr Arg Thr Gly Ser Val Phe Lys Asp Lys Met Leu  
725 730 735

Gln Asp Ile Gln Leu Ile Leu Leu Val Gly Gly Leu Leu Val Asp  
740 745 750

Ala Leu Leu Val Thr Leu Trp Val Val Thr Asp Pro Met Glu Arg His  
755 760 765

Leu His Asn Leu Thr Leu Glu Ile Ser Ala Thr Asp Arg Ser Val Val  
770 775 780

Tyr Gln Pro Gln Val Glu Val Cys Arg Ser Gln His Thr Gln Thr Trp  
785 790 795 800

Leu Ser Val Leu Tyr Ala Tyr Lys Gly Leu Leu Leu Val Val Gly Val  
805 810 815

Tyr Met Ala Trp Glu Thr Arg His Val Lys Ile Pro Ala Leu Asn Asp  
820 825 830

Ser Gln Tyr Ile Gly Val Ser Val Tyr Ser Val Val Ile Thr Ser Ala  
835 840 845

Ile Val Val Val Leu Ala Asn Leu Ile Ser Glu Arg Val Thr Leu Ala  
850 855 860

Phe Ile Thr Ile Thr Ala Leu Ile Leu Thr Ser Thr Thr Ala Thr Leu  
865 870 875 880

Cys Leu Leu Phe Ile Pro Lys Leu His Asp Ile Trp Ala Arg Asn Asp  
885 890 895

Ile Ile Asp Pro Val Ile His Ser Met Gly Leu Lys Met Glu Cys Asn  
900 905 910

Thr Arg Arg Phe Val Val Asp Asp Arg Arg Glu Leu Gln Tyr Arg Val  
915 920 925

Glu Val Gln Asn Arg Val Tyr Lys Lys Glu Ile Gln Ala Leu Asp Ala  
930 935 940

Glu Ile Arg Lys Leu Glu Arg Leu Leu Glu Ser Gly Leu Thr Thr Thr  
945 950 955 960

Ser Thr Thr Thr Ser Ser Ser Thr Ser Leu Leu Thr Gly Gly Gly His  
965 970 975

Leu Lys Pro Glu Leu Thr Val Thr Ser Gly Ile Ser Gln Thr Pro Ala  
980 985 990

Ala Ser Lys Asn Arg Thr Pro Ser Ile Ser Gly Ile Leu Pro Asn Leu  
995 1000 1005

Leu Leu Ser Val Leu Pro Pro Val Ile Pro Arg Ala Ser Trp Pro Ser  
1010 1015 1020

Ala Glu Tyr Met Gln Ile Pro Met Arg Arg Ser Val Thr Phe Ala Ser  
025 1030 1035 1040

Gln Pro Gln Leu Glu Glu Ala Cys Leu Pro Ala Gln Asp Leu Ile Asn  
1045 1050 1055

Leu Arg Leu Ala His Gln Gln Ala Thr Glu Ala Lys Thr Gly Leu Ile  
1060 1065 1070

Asn Arg Leu Arg Gly Ile Phe Ser Arg Thr Thr Ser Ser Asn Lys Gly  
1075 1080 1085

Ser Thr Ala Ser Leu Ala Asp Gln Lys Gly Leu Lys Ala Ala Phe Lys  
1090 1095 1100

Ser His Met Gly Leu Phe Thr Arg Leu Ile Pro Ser Ser Gln Thr Ala  
105 1110 1115 1120

Ser Cys Asn Ala Ile Tyr Asn Asn Pro Asn Gln Asp Ser Ile Pro Ser  
1125 1130 1135

Glu Ala Ser Ser His Pro Asn Gly Asn His Leu Lys Pro Ile His Arg  
1140 1145 1150

Gly Ser Leu Thr Lys Ser Gly Thr His Leu Asp His Leu Thr Lys Asp  
1155 1160 1165

Pro Asn Phe Leu Pro Ile Pro Thr Ile Ser Gly Gly Glu Gln Gly Asp  
1170 1175 1180

Gln Thr Leu Gly Gly Lys Tyr Val Lys Leu Leu Glu Thr Lys Val Asn  
1185 1190 1195 1200

Phe Gln Leu Pro Ser Asn Arg Arg Pro Ser Val Val Gln Gln Pro Pro  
1205 1210 1215

