Types of Outcomes

continuous, binary, time to event, categorical, counts not recommended to convert continuous to binary outcomes because arbitrary thresholds are set and information is lost

Continuous Outcomes

Parametric Tests

 $H_0: \mu_A = \mu_B$ $H_A: \mu_A \neq \mu_B$

two-sided α =0.05 to allow if new drug is statistically more harmful than the control two-sided α =0.05 requires larger sample size than one-sided α =0.05 level of significance two-sample t-test compares mean of two treatment group with equal variances Welch's t-test compares means of two treatment group with different variances

Non-Parametric Tests

 H_0 : $median_A = median_B$ H_A : $median_A \neq median_B$

Wilcoxon rank-sum test compares median of two identical but shifted distributions

if the data is actually normally distributed, the Wilcoxon rank-sum test is 95% as effective as a ttest

Logarithmic Transformation

assumes that data follows a natural log distribution can only be used with positive values

Bootstrap Confidence Intervals

obtain 95% confidence interval around the estimate for the original data multiple resamples with replacement from a single set of observations calculate effect size of interest on each resample and determine 95% confidence interval resampling distribution approaches a normal distribution due to Central Limit Theorem

Binary Outcomes

determine if two or more treatments differ significantly with respect to the risk of the outcome yes/no outcome, e.g. incidence of disease, cancer recurrence, hospitalization

 H_0 : $\pi_A = \pi_P$. The population risk for disease is the same for treatment and placebo groups.

 H_A : $\pi_A \neq \pi_P$. The population risk for disease is not the same for treatment and placebo groups.

 H_0 : $p_A = p_P$. The risk for disease is the same for treatment and placebo groups.

 H_A : $p_A \neq p_B$. The risk for disease is not the same for treatment and placebo groups.

	No Disease	Disease	
Placebo	а	b	m_0
Treatment	С	d	m_1
	n_0	n_1	n

Crude Measures of Association

$$p_P = P(dis = 1, trt = P) = \frac{b}{m} = risk$$
 of disease in placebo group

$$p_P = P(dis = 1, trt = P) = \frac{b}{m_0} = \text{risk of disease in placebo group}$$

$$p_A = P(dis = 1, trt = A) = \frac{d}{m_1} = \text{risk of disease in treatment group}$$

Risk Difference

$$RD = P(dis = 1, trt = A) - P(dis = 1, trt = P) = \frac{d}{m_1} - \frac{b}{m_0}$$

There are RD% fewer cases of disease in the treatment group than in the placebo group.

 $H_0: RD = 0$

The risk for the disease is the same for both treatment and placebo group.

 H_A : $RD \neq 0$

There is a lower/higher risk for the disease in the treatment group than the placebo group.

Number Needed to Treat

$$NNT = \frac{1}{RD}$$

average number of individuals needed to treat to prevent 1 additional outcome event *NNT* are needed to be treated in order to prevent 1 disease outcome event.

Risk Ratio/Relative Risk

$$RR = \frac{P(dis = 1, trt = A)}{P(dis = 1, trt = P)} = \frac{\frac{d}{m_1}}{\frac{b}{m_0}}$$

The risk of disease in the treatment group is RR% of the risk in the placebo group.

 $H_0: RR = 1$

The risk for the disease is the same for both treatment and placebo group.

 $H_A: RR \neq 1$

There is a lower/higher risk for the disease in the treatment group than the placebo group.

Odds Ratio

$$\frac{P(dis = 1, trt = A)}{P(dis = 0, trt = A)} = \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

$$\frac{P(dis = 1, trt = P)}{P(dis = 0, trt = P)}$$

The odds of the disease in the treatment group is OR% of the odds in the placebo group. can only interpret OR as if it were RR when outcome is uncommon, <2%

 H_0 : OR = 1

The odds of the disease is the same for both treatment and placebo group.

 $H_A: OR \neq 1$

There is a lower/higher odds of the disease in the treatment group than the placebo group.

Logistic Regression

$$logit(p) = log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X$$
$$p = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

p = probability of the disease outcome

X = treatment indicator dummy variable

X = 0 for control group

X = 1 for treatment group

 $H_0: \beta_1 = 0$

 $H_A: \beta_1 \neq 0$

Probabilities

$$\hat{p}_{P} = \frac{e^{\beta_{0} + \beta_{1}(0)}}{1 + e^{\beta_{0} + \beta_{1}(0)}} = \frac{e^{\beta_{0}}}{1 + e^{\beta_{0}}}$$

$$\hat{p}_{A} = \frac{e^{\beta_{0} + \beta_{1}(1)}}{1 + e^{\beta_{0} + \beta_{1}(1)}} = \frac{e^{\beta_{0}}}{1 + e^{\beta_{0} + \beta_{1}}}$$

Odds

$$log \ odds_P = log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1(0) = \beta_0$$
$$odds_P = \left(\frac{p}{1-p}\right) = e^{\beta_0 + \beta_1(0)} = e^{\beta_0}$$

$$log \ odds_A = log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1(1) = \beta_0 + \beta_1$$
$$odds_A = \left(\frac{p}{1-p}\right) = e^{\beta_0 + \beta_1(1)} = e^{\beta_0 + \beta_1}$$

Odds Ratio

$$OR = \frac{odds_A}{odds_P} = \frac{e^{\beta_0 + \beta_1}}{e^{\beta_0}} = e^{\beta_1}$$