

Appl. No. 09/909,394
Reply to Examiner's Action dated 11/28/2005

IN THE CLAIMS:

1. (currently amended) A system for recognizing zero-amplitude symbols in a quadrature amplitude modulated (QAM) signal, comprising:

~~an amplitude detector that extracts a candidate symbol from said signal and locates said candidate symbol relative to a constellation of symbols; and~~

~~a zero-amplitude symbol interpreter, associated with said amplitude detector, that recognizes a said candidate symbol extracted from said signal as being a zero-amplitude symbol based on when said candidate symbol is closer to an origin of a said constellation of symbols than to symbols proximate thereto.~~

2. (currently amended) The system as recited in Claim 1 wherein said zero-amplitude symbol interpreter determines said candidate symbol is closer to said origin than to said symbols proximate thereto when a sum of an absolute value of A and B coordinates of said candidate symbol is less than one constitutes an end-of-file symbol according to a Home Phoneline Networking Alliance standard.

3. (currently amended) The system as recited in Claim 1 wherein a plurality of said zero-amplitude symbol separates symbols separate subframes or constitutes an end-of-file symbol according to a Home Phoneline Networking Alliance standard.

4. (currently amended) The system as recited in Claim 1 wherein said zero-amplitude symbol interpreter employs a linear algorithm to determine said candidate symbol is closer to said origin than to said symbols proximate thereto symbols proximate said origin number four in quantity.

5. (original) The system as recited in Claim 1 wherein said symbols proximate said origin are located at relative amplitudes of:

Appl. No. 09/909,394
Reply to Examiner's Action dated 11/28/2005

1,1,

1,-1,

-1,1, and

-1,-1.

6. (original) The system as recited in Claim 1 wherein said constellation is arranged on a Cartesian plane.

7. (currently amended) The system as recited in Claim 1 wherein said zero-amplitude symbol interpreter determines if said candidate symbol is closer to said origin without employing is free of a slicer table.

8. (currently amended) A method of recognizing zero-amplitude symbols in a quadrature amplitude modulated (QAM) signal, comprising:

extracting a candidate symbol from said signal;
locating said candidate symbol relative to a constellation of symbols; and
determining if said candidate symbol is closer to an origin of said constellation than to symbols proximate thereto; and

recognizing said candidate symbol as being a zero-amplitude symbol when said candidate symbol is closer to said an origin of said constellation than to said symbols proximate thereto.

9. (currently amended) The method as recited in Claim 8 wherein said candidate symbol is closer to said origin when a sum of an absolute value of A and B coordinates of said candidate symbol is less than one zero-amplitude symbol constitutes an end-of-file symbol according to a Home Phoneline Networking Alliance standard.

Appl. No. 09/909,394
Reply to Examiner's Action dated 11/28/2005

10. (original) The method as recited in Claim 8 wherein a plurality of said zero-amplitude symbols separate subframes according to a Home Phoneline Networking Alliance standard.

11. (original) The method as recited in Claim 8 wherein said symbols proximate said origin number four in quantity.

12. (original) The method as recited in Claim 8 wherein said symbols proximate said origin are located at relative amplitudes of:

1,1,

1,-1,

-1,1, and

-1,-1.

13. (original) The method as recited in Claim 8 wherein said constellation is arranged on a Cartesian plane.

14. (currently amended) The method as recited in Claim 8 wherein if said candidate symbol is not closer to said origin than to said symbols proximate thereto, employing a slicer table to recognize said candidate symbol zero amplitude symbol interpreter is free of a slicer table.

15. (currently amended) A digital receiver, comprising:

a digital-to-analog (D/A) converter that converts a received quadrature amplitude modulated (QAM) signal in digital form to analog form;

a demodulator, coupled to said D/A converter, that demodulates said QAM signal;

an equalizer, coupled to said demodulator, that equalizes said QAM signal;

Appl. No. 09/909,394
Reply to Examiner's Action dated 11/28/2005

a slicer, coupled to said equalizer, that recognizes nonzero- and zero-amplitude symbols in said QAM signal, said slicer having a system for recognizing said zero-amplitude symbols, including:

an amplitude detector that extracts a candidate symbol from said signal and locates said candidate symbol relative to a constellation of symbols, and

a zero-amplitude symbol interpreter, associated with said amplitude detector, that recognizes said candidate symbol as being a zero-amplitude symbol based on when said candidate symbol is closer to an origin of said constellation than to symbols proximate thereto; and

a decoder, coupled to said slicer, that decodes said nonzero- and zero-amplitude symbols to yield data.

16. (currently amended) The receiver as recited in Claim 15 wherein said zero-amplitude symbol interpreter determines said candidate symbol is closer to said origin than to said symbols proximate thereto when a sum of an absolute value of A and B coordinates of said candidate symbol is less than one constitutes an end-of-file symbol according to a Home Phoneline Networking Alliance standard.

17. (currently amended) The receiver as recited in Claim 15 wherein a plurality of said zero-amplitude symbols separate subframes or constitute an end-of-file symbol according to a Home Phoneline Networking Alliance standard.

18. (original) The receiver as recited in Claim 15 wherein said symbols proximate said origin number four in quantity.

19. (original) The receiver as recited in Claim 15 wherein said symbols proximate said origin are located at relative amplitudes of:

Appl. No. 09/909,394
Reply to Examiner's Action dated 11/28/2005

1,1,

1,-1,

-1,1, and

-1,-1.

20. (original) The receiver as recited in Claim 15 wherein said constellation is arranged on a Cartesian plane.

21. (currently amended) The receiver as recited in Claim 15 wherein said slicer employs a slicer table to interpret said nonzero symbols, ~~but and~~ said zero-amplitude symbol interpreter employs a linear algorithm, is free of said slicer table, to determine if said candidate symbol is closer to said origin than to said symbols proximate thereto.