

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
6. Februar 2003 (06.02.2003)

PCT

(10) Internationale Veröffentlichungsnummer
WO 03/009687 A1

(51) Internationale Patentklassifikation⁷: A01N 43/90,
C07D 487/04 // (C07D 487/04, 249:00, 239:00)

(21) Internationales Aktenzeichen: PCT/EP02/07893

(22) Internationales Anmeldedatum:
16. Juli 2002 (16.07.2002)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
101 36 118.1 26. Juli 2001 (26.07.2001) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): **BASF AKTIENGESELLSCHAFT** [DE/DE]; 67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): **TORMO I BLASCO, Jordi** [ES/DE]; Mühlweg 47, 67117 Limburgerhof (DE). **SAUTER, Hubert** [DE/DE]; Neckarpromenade 20, 68167 Mannheim (DE). **MÜLLER, Bernd** [DE/DE]; Jean-Ganss-Strasse 21, 67227 Frankenthal (DE). **GEWEHR, Markus** [DE/DE]; Goethestrasse 21, 56288 Kastellaun (DE). **GRAMMENOS, Wassilios** [GR/DE]; Samuel-Hahnemann-Weg 9, 67071 Ludwigshafen (DE). **GROTE, Thomas** [DE/DE]; Im Höhnhausen 18, 67157

Wachenheim (DE). **GYPSER, Andreas** [DE/DE]; B 4,4, 68159 Mannheim (DE). **RHEINHEIMER, Joachim** [DE/DE]; Merziger Strasse 24, 67063 Ludwigshafen (DE). **ROSE, Ingo** [DE/DE]; C 2, 19, 68159 Mannheim (DE). **SCHÄFER, Peter** [DE/DE]; Römerstrasse 1, 67308 Ottersheim (DE). **SCHIEWECK, Frank** [DE/DE]; Lindenweg 4, 67258 Hessheim (DE). **AMMERMAN, Eberhard** [DE/DE]; Von-Gagern-Strasse 2, 64646 Heppenheim (DE). **STRATHMANN, Siegfried** [DE/DE]; Donnersbergstrasse 9, 67117 Limburgerhof (DE). **LORENZ, Gisela** [DE/DE]; Erlenweg 13, 67434 Hambach (DE). **STIERL, Reinhard** [DE/DE]; Ginstersstrasse 17, 67112 Mutterstadt (DE).

(74) Gemeinsamer Vertreter: **BASF AKTIENGESELLSCHAFT**; 67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE,

[Fortsetzung auf der nächsten Seite]

(54) Title: 7-AMINO TRIAZOLOPYRIMIDINES FOR CONTROLLING HARMFUL FUNGI

(54) Bezeichnung: 7-AMINOTRIAZOLOPYRIMIDINE ZUR BEKÄMPFUNG VON SCHADPILZEN

(57) Abstract: The invention relates to 7-amino triazolopyrimidines of formula (I), in which the substituents have the following meanings: R¹, R² represent hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, phenyl, naphthyl; or 5-membered or 6-membered heterocycl containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom; or 5-membered or 6-membered heteroaryl containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom, or R¹ and R² can, together with the nitrogen atom, which binds them, form a 5-membered or 6-membered ring containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom; R³ represents alkyl, alkenyl, alkynyl, cycloalkyl, phenylalkyl and alkyl halide; whereby R³ and R² can be unsubstituted or partially or completely substituted according to the description; X represents halogen, cyano, alkoxy, alkyl halide, phenyl or phenyl that is substituted by R^a. The invention also relates to methods and intermediate products for producing said compounds, to agents containing the same, and to their use.

A1

WO 03/009687

(57) Zusammenfassung: 7-Aminotriazolopyrimidine der Formel (I), in der die Substituenten die folgenden Bedeutungen haben: R¹, R² Wasserstoff, Alkyl, Alkenyl, Alkynyl, Cycloalkyl, Phenyl, Naphthyl; oder 5- oder 6-gliedriges Heterocycl enthaltend ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom; oder 5- oder 6-gliedriges Heteroaryl enthaltend ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom, oder R¹ und R² können zusammen mit dem Stickstoffatom, das sie verbindet, einen 5- oder 6-gliedrigen Ring bilden, der ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom enthält; R³ Alkyl, Alkenyl, Alkynyl, Cycloalkyl, Phenylalkyl und Haloalkyl; wobei R³ und R² unsubstituiert oder teilweise oder vollständig gemäß der Beschreibung substituiert sein können; X Halogen, Cyano, Alkoxy, Haloalkyl, Phenyl oder durch R^a substituiertes Phenyl; Verfahren und Zwischenprodukte zu ihrer Herstellung, sie enthaltende Mittel und ihre Verwendung.

DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Zur Erklärung der Zweibuchstaben-Codes und der anderen
Abkürzungen wird auf die Erklärungen ("*Guidance Notes on
Codes and Abbreviations*") am Anfang jeder regulären Ausgabe
der PCT-Gazette verwiesen.

Veröffentlicht:

— *mit internationalem Recherchenbericht*

7-AMINOTRIAZOLOPYRIMIDINE ZUR BEKÄMPFUNG VON SCHADPILZEN

5

Beschreibung

Die vorliegende Erfindung betrifft 7-Aminotriazolopyrimidine der Formel I,

10

15

in der die Substituenten die folgenden Bedeutungen haben:

20 R¹, R² Wasserstoff, C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl,
C₃-C₈-Cycloalkyl, Phenyl, Naphthyl; oder

25 5- oder 6-gliedriges Heterocyclen enthaltend ein bis vier
Stickstoffatome oder ein bis drei Stickstoffatome und ein
Schwefel- oder Sauerstoffatom; oder

30 5- oder 6-gliedriges Heteroaryl enthaltend ein bis vier
Stickstoffatome oder ein bis drei Stickstoffatome und ein
Schwefel- oder Sauerstoffatom,

35 wobei R¹ und R², wenn ungleich Wasserstoff, unabhängig
voneinander teilweise oder vollständig halogeniert sein
können und/oder ein bis drei Reste aus der Gruppe R^a

40 R^a Cyano, Nitro, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Haloalkyl,
C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₁-C₆-Haloalkoxy,
C₁-C₆-Alkylthio, C₁-C₆-Alkylamino, Di-C₁-C₆-alkyla-
mino, C₂-C₆-Alkenyl, C₂-C₆-Alkenyloxy, C₂-C₆-Alkinyl,
C₃-C₆-Alkinyloxy und gegebenenfalls halogeniertes
Oxy-C₁-C₄-alkylenoxy,

45 tragen können; oder

R¹ und R² können zusammen mit dem Stickstoffatom, das sie
verbindet, einen 5- oder 6-gliedrigen Ring bilden, der
ein bis vier Stickstoffatome oder ein bis drei Stick-
stoffatome und ein Schwefel- oder Sauerstoffatom enthält,

2

und der durch ein bis drei Reste aus der Gruppe R^a substituiert sein kann;

R³ C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₃-C₈-Cycloalkyl, Phenyl-C₁-C₁₀-Alkyl,

wobei R³ unsubstituiert oder teilweise oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe R^a tragen kann, oder

C₁-C₁₀-Haloalkyl, das ein bis drei Reste aus der Gruppe R^a tragen kann;

X Halogen, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Haloalkyl, Phenyl oder durch R^a substituiertes Phenyl;

sowie deren Salze.

Zusätzlich betrifft die Erfindung Verfahren und Zwischenprodukte zur Herstellung der Verbindungen I, sowie Mittel und die Verwendung der Verbindungen I zur Bekämpfung von Schadpilzen.

6-Aryl-Triazolopyrimidine werden in WO 98/46608 und EP-A 550 113 offenbart. Durch aromatische Gruppen speziell substituierte 6-Benzyl-Triazolopyrimidine mit pharmazeutischer Wirkung sind aus US 5,231,094 und US 5,387,747 bekannt. EP-A 141 317 offenbart 7-Aminotriazolopyrimidine, welche in 5-Position einen Alkylrest tragen können. 6-Cycloalkyltriazolopyrimidine mit diversen Resten in 5-Position werden in EP-A 613 900 genannt.

Die in WO 98/46608, EP-A 550 113, EP-A 141 317 und EP-A 613 900 beschriebenen Verbindungen sind als Pflanzenschutzmittel gegen Schadpilze geeignet.

Ihre Wirkung ist jedoch in vielen Fällen nicht zufriedenstellend. Daher lag als Aufgabe zugrunde, Verbindungen mit verbesserter Wirksamkeit zu finden.

Demgemäß wurden die 7-Aminotriazolopyrimidine der Formel I gefunden. Weiterhin wurden Zwischenprodukte und Verfahren zur Herstellung der Verbindungen I, sowie die Verwendung der Verbindungen I und diese enthaltende Mittel zur Bekämpfung von Schadpilzen gefunden.

3

Die Verbindungen der Formel I unterscheiden sich von den aus den oben genannten Schriften bekannten Verbindungen durch die Kombination der Substituenten X mit dem Rest R³ am Triazolopyrimidin-gerüst.

5

Verbindungen der Formel I, wobei X Halogen bedeutet, erhält man beispielsweise ausgehend von Dicarbonylverbindungen der Formel II.1, welche man mit 3-Amino-1,2,4-triazol der Formel III zu Hydroxytriazolopyrimidinen der Formel IV.1 cyclisiert:

10

15

Diese Umsetzung erfolgt üblicherweise bei Temperaturen von 25 °C bis 210 °C, vorzugsweise 120 °C bis 180 °C, in Gegenwart einer Base [vgl. EP-A-770615].

Als Basen kommen allgemein organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Triisopropyl-ethylamin, Tributylamin und N-Methylpiperidin, Pyridin in Betracht. Besonders bevorzugt werden Triethylamin und Tributylamin.

Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.

Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, II.1 in einem Überschuß bezogen auf III einzusetzen.

35

Die für die Herstellung der Verbindungen I benötigten Ausgangsstoffe sind in der Literatur bekannt oder können gemäß der zitierten Literatur hergestellt werden [Heterocycl. 1996, pp. 1031 - 1047; Tetrahedron Lett. 1966, 24, 2661 - 2668] oder sind kommerziell zugänglich.

Anschließend setzt man die Hydroxytriazolopyrimidine der Formel IV.1 mit einem Halogenierungsmittel zu Halogentriazolopyrimidinen der Formel V.1 um:

45

4

Diese Umsetzung erfolgt üblicherweise bei Temperaturen von 0 °C bis 150 °C, vorzugsweise 80 °C bis 125 °C, in einem inerten organischen Lösungsmittel oder ohne zusätzliches Lösungsmittel [vgl. EP-A-770 615].

Geeignete Halogenierungsmittel sind bevorzugt Bromierungs- oder Chlorierungsmittel, wie beispielsweise Phosphoroxybromid oder 15 Phosphoroxychlorid, in Substanz oder in Anwesenheit eines Lösungsmittels.

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlen-
20 wasserstoffe wie Toluol, o-, m- und p-Xylool, besonders bevorzugt Toluol, o-, m- und p-Xylool.

Es können auch Gemische der genannten Lösungsmittel verwendet werden. - -

25

Anschließend setzt man die Halogentriazolopyrimidine der Formel V.1 mit einem Amin der Formel VI zu 7-Aminotriazolopyrimidinen der Formel I um, in der X Halogen bedeutet:

30

Diese Umsetzung erfolgt üblicherweise bei Temperaturen von 0 °C bis 70 °C, vorzugsweise 10 °C bis 35 °C, in einem inerten organischen Lösungsmittel in Gegenwart einer Base [vgl. EP-A-550 113].

40

Geeignete Lösungsmittel sind aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylool, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethyl-ether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran.

Als Basen kommen allgemein anorganische Verbindungen wie Alkali-metall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natri-umhydroxid, Kaliumhydroxid und Calziumhydroxid, Alkalimetall- und Erdalkalimetallocxide wie Lithiumoxid, Natriumoxid, Calziumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calziumhydrid, Alkalimetallamide wie Lithiumamid, Natriumamid und Kaliumamid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Kaliumcarbonat und Calziumcarbonat sowie Alkalimetallhydrogen-carbonate wie Natriumhydrogencarbonat, metallorganische Verbin-dungen, insbesondere Alkalimetallalkyle wie Methylolithium, Butyl-lithium und Phenyllithium, Alkylmagnesiumhalogenide wie Methyl-magnesiumchlorid sowie Alkalimetall- und Erdalkalimetallalkoho-late wie Natriummethanolat, Natriummethanolat, Kaliummethanolat, 15 Kalium- tert.-Butanolat und Dimethoxymagnesium, außerdem organi-sche Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Tri-isopropylethylamin und N-Methylpiperidin, Pyridin, substi-tuierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden 20 Triethylamin, Kaliumcarbonat und Natriumcarbonat.

Die Basen werden im allgemeinen in katalytischen Mengen einge-setzt, sie können aber auch äquimolar, im Überschuß oder gegebe-nenfalls als Lösungsmittel verwendet werden. Alternativ dazu kann 25 ein Überschuß der Verbindung VI als Base dienen.

Die Edukte werden im allgemeinen in äquimolaren Mengen miteinan-der umgesetzt. Es kann für die Ausbeute vorteilhaft sein, VI in einem Überschuß bezogen auf V.I einzusetzen.

Um 7-Aminotriazolopyrimidine der Formel I zu erhalten, in denen X Cyano oder C₁-C₄-Alkoxy bedeutet, werden 7-Aminotriazolo-pyrimi-dine der Formel I mit einer Verbindung der Formel VII umgesetzt:

35

Dabei bedeutet M ein Ammonium-, Tetraalkylammonium-, Alkali-metall- oder Erdalkalimetallkation und X' Cyano oder Alkoxy.

6

Diese Umsetzung erfolgt üblicherweise bei Temperaturen von 0 °C bis 150 °C, vorzugsweise 20 °C bis 75 °C, in einem inerten organischen Lösungsmittel [vgl. WO 99/41255].

- 5 Geeignete Lösungsmittel sind Ether wie Diethylether, Diisopropyl-ether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert.-Butanol, sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Diethylether.
- 10 Tetrahydrofuran, Methanol und Dimethylformamid.

Es können auch Gemische der genannten Lösungsmittel verwendet werden.

- 15 Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, VII in einem Überschuß bezogen auf I einzusetzen.
- 20 7-Aminotriazolopyrimidine der Formel I, in der X C₁-C₄-Haloalkyl oder gegebenenfalls durch R^a substituiertes Phenyl bedeutet, sind erhältlich ausgehend von Dicarbonylverbindungen der Formel II.2, die man mit 3-Amino-1,2,4-triazol der Formel III zu 7-Hydroxytriazolopyrimidinen der Formel IV.2 cyclisiert:

25

- Diese Umsetzung erfolgt unter den gleichen Bedingungen wie die 35 vorstehend beschriebene Umsetzung von II.1 zu IV.1.

Anschließend setzt man die 7-Hydroxytriazolopyrimidine der Formel IV.2 mit einem Halogenierungsmittel zu 7-Halogentriazolopyrimidinen der Formel V.2 um:

40

Diese Umsetzung erfolgt unter den gleichen Bedingungen wie die vorstehend beschriebene Umsetzung von IV.1 zu V.1.

Dann wird Verbindung V.2 mit einem Amin der Formel VI zu Verbindungen der Formel I, umgesetzt:

Diese Umsetzung erfolgt unter den gleichen Bedingungen wie die vorstehend beschriebene Umsetzung von V.1 zu I.

Die Reaktionsgemische werden in üblicher Weise aufgearbeitet, z.B. durch Mischen mit Wasser, Trennung der Phasen und gegebenenfalls chromatographische Reinigung der Rohprodukte. Die Zwischen- und Endprodukte fallen z.T. in Form farbloser oder schwach bräunlicher, zäher Öle an, die unter verminderter Druck und bei mäßig erhöhter Temperatur von flüchtigen Anteilen befreit oder gereinigt werden. Sofern die Zwischen- und Endprodukte als Feststoffe erhalten werden, kann die Reinigung auch durch Umkristallisieren oder Digerieren erfolgen.

Sofern einzelne Verbindungen I nicht auf den voranstehend beschriebenen Wegen zugänglich sind, können sie durch Derivatisierung anderer Verbindungen I hergestellt werden.

30 7-Hydroxy- und 7-Halogentriazolopyrimidine der Formeln IV und V,

wobei Y für eine Hydroxygruppe oder einen Rest aus der Gruppe X gemäß Anspruch 1 steht, Hal Halogen bedeutet und R³ sowie X die in Anspruch 1 genannten Bedeutungen haben, sind neu.

Besonders bevorzugt werden Zwischenprodukte der Formeln IV und V, in denen R³ C₁-C₁₀-Alkyl, insbesondere CH₃, CH₂-CH₃, (CH₂)₃-CH₃, 45 CH₂-CH(CH₃)₂, CH(CH₃)-CH₂-CH₂-CH₃, C(CH₃)₃, (CH₂)₇-CH₃, CH(CH₃)₂, C₂-C₁₀-Alkenyl, insbesondere CH₂-CH=CH₂, C₃-C₈-Cycloalkyl, insbesondere Cyclopropylmethyl, Cyclopentyl, Cyclohexyl, Phe-

nyl-C₁-C₁₀-Alkyl, insbesondere CH₂-C₆H₅, CH₂-o-Cl-C₆H₄, C₁-C₁₀-Halo-alkyl, insbesondere CH₂-CF₃, CH(CH₃)-CF₃, CH(CF₃)₂, und X Halogen, insbesondere Chlor, Cyan, C₁-C₄-Alkoxy, insbesondere OCH₃, C₁-C₄-Haloalkyl, insbesondere CF₃, Phenyl oder durch R^a substi-
5 tuiertes Phenyl, insbesondere Phenyl sind.

Bei den in den vorstehenden Formeln angegebenen Definitionen der Symbole wurden Sammelbegriffe verwendet, die allgemein repräsentativ für die folgenden Substituenten stehen:

10

Halogen: Fluor, Chlor, Brom und Jod;

Alkyl: gesättigte, geradkettige oder verzweigte Kohlenwasser-stoffreste mit 1 bis 4, 6, 8 oder 10 Kohlenstoffatomen, z.B.

15 C₁-C₆-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methyl-propyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl,
20 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Di-methylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl;

25 **Haloalkyl:** geradkettige oder verzweigte Alkylgruppen mit 1 bis 10 Kohlenstoffatomen (wie vorstehend genannt), wobei in diesen Gruppen teilweise, beispielsweise ein- bis dreifach, oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können, z.B. C₁-C₂-Halogenalkyl wie Chlormethyl,

30 Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluor-methyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dich-
35 lor-2-fluorethyl, 2,2,2-Trichlorethyl und Pentafluorethyl;

Alkoxy: geradkettige oder verzweigte Alkylgruppen mit 1 bis 6 Kohlenstoffatomen (wie vorstehend genannt), welche über ein Sauerstoffatom (-O-) an das Gerüst gebunden sind;

40

Haloalkoxy: geradkettige oder verzweigte Halogenalkylgruppen mit 1 bis 6 Kohlenstoffatomen (wie vorstehend genannt), welche über ein Sauerstoffatom (-O-) an das Gerüst gebunden sind;

45

Alkylthio: geradkettige oder verzweigte Alkylgruppen mit 1 bis 6 Kohlenstoffatomen (wie vorstehend genannt), welche über ein Schwefelatom (-S-) an das Gerüst gebunden sind;

5 **Alkylamino:** eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 6 Kohlenstoffatomen (wie vorstehend genannt), welche über eine Aminogruppe (-NH-) an das Gerüst gebunden ist;

Dialkylamino: zwei voneinander unabhängige geradkettige oder verzweigte Alkylgruppen mit jeweils 1 bis 6 Kohlenstoffatomen (wie vorstehend genannt), welche über ein Stickstoffatom an das Gerüst gebunden sind;

Alkenyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 6 oder 10 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z.B. C₂-C₆-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 20 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-1-butenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-1-propenyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 30 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-1-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-1-but enyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1-butenyl, 3,3-Dimethyl-2-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-1-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-1-propenyl und 40 1-Ethyl-2-methyl-2-propenyl;

Alkenyloxy: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 3 bis 6 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen, nicht zum Heteroatom benachbarten, 45 Position (wie vorstehend genannt), welche über ein Sauerstoffatom (-O-) an das Gerüst gebunden sind;

10

Alkinyl: geradkettige oder verzweigte Kohlenwasserstoffgruppen mit 2 bis 6 oder 10 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z.B. C₂-C₆-Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl,
 5 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl,
 10 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-1-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und
 15 1-Ethyl-1-methyl-2-propinyl;

Alkinyloxy: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 3 bis 6 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen, nicht zum Heteroatom benachbarten, Position (wie vorstehend genannt), welche über ein Sauerstoffatom (-O-) an das Gerüst gebunden sind;

Cycloalkyl: monocyclische, gesättigte Kohlenwasserstoffgruppen mit 3 bis 5, 6, oder 8 Kohlenstoffringgliedern, z.B. C₃-C₈-Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl und Cyclooctyl;

5- oder 6-gliedrige Heterocyclen (Heterocyclyl) enthaltend neben Kohlenstoffringgliedern ein bis vier Stickstoffatome und/oder ein Sauerstoff- oder Schwefelatom oder ein Sauerstoff- und/oder Schwefelatom, z.B. 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 2-Tetrahydrothienyl, 3-Tetrahydrothienyl, 2-Pyrrolidinyl, 3-Pyrrolidinyl, 3-Isoxazolidinyl, 4-Isoxazolidinyl, 5-Isoxazolidinyl, 3-Iothiazolidinyl, 4-Iothiazolidinyl, 5-Iothiazolidinyl, 3-Pyrazolidinyl, 4-Pyrazolidinyl, 5-Pyrazolidinyl, 2-Oxazolidinyl, 4-Oxazolidinyl, 5-Oxazolidinyl, 2-Thiazolidinyl, 4-Thiazolidinyl, 5-Thiazolidinyl, 2-Imidazolidinyl, 4-Imidazolidinyl, 1,2,4-Oxadiazolidin-3-yl, 1,2,4-Oxadiazolidin-5-yl, 1,2,4-Thiadiazolidin-3-yl, 1,2,4-Thiadiazolidin-5-yl, 1,2,4-Triazolidin-3-yl, 1,3,4-Oxadiazolidin-2-yl, 1,3,4-Thiadiazolidin-2-yl, 1,3,4-Triazolidin-2-yl, 2,3-Dihydrofuran-2-yl, 2,3-Dihydrofuran-3-yl, 2,4-Dihydrofuran-2-yl, 2,4-Dihydrofuran-3-yl, 2,3-Dihydrothien-2-yl, 2,3-Dihydrothien-3-yl, 2,4-Dihydrothien-2-yl, 2,4-Dihydrothien-3-yl, 2-Pyrrolin-2-yl, 2-Pyrrolin-3-yl, 3-Pyrrolin-2-yl, 45 3-Pyrrolin-3-yl, 2-Isoxazolin-3-yl, 3-Isoxazolin-3-yl, 4-Isoxazolin-3-yl, 2-Isoxazolin-4-yl, 3-Isoxazolin-4-yl, 4-Isoxazolin-4-yl, 2-Isoxazolin-5-yl, 3-Isoxazolin-5-yl, 4-Isoxazolin-

- lin-5-yl, 2-Isothiazolin-3-yl, 3-Isothiazolin-3-yl, 4-Isothiazolin-3-yl, 2-Isothiazolin-4-yl, 3-Isothiazolin-4-yl, 4-Isothiazolin-4-yl, 2-Isothiazolin-5-yl, 3-Isothiazolin-5-yl, 4-Isothiazolin-5-yl, 2,3-Dihydropyrazol-1-yl, 2,3-Dihydropyrazol-2-yl,
- 5 2,3-Dihydropyrazol-3-yl, 2,3-Dihydropyrazol-4-yl, 2,3-Dihydropyrazol-5-yl, 3,4-Dihydropyrazol-1-yl, 3,4-Dihydropyrazol-3-yl, 3,4-Dihydropyrazol-4-yl, 3,4-Dihydropyrazol-5-yl, 4,5-Dihydropyrazol-1-yl, 4,5-Dihydropyrazol-3-yl, 4,5-Dihydropyrazol-4-yl, 4,5-Dihydropyrazol-5-yl, 2,3-Dihydrooxazol-2-yl, 2,3-Dihydrooxa-
- 10 zol-3-yl, 2,3-Dihydrooxazol-4-yl, 2,3-Dihydrooxazol-5-yl, 3,4-Dihydrooxazol-2-yl, 3,4-Dihydrooxazol-3-yl, 3,4-Dihydrooxazol-4-yl, 3,4-Dihydrooxazol-5-yl, 3,4-Dihydrooxazol-2-yl, 3,4-Dihydrooxazol-3-yl, 3,4-Dihydrooxazol-4-yl, 2-Piperidinyl, 3-Piperidinyl, 4-Piperidinyl, 1,3-Dioxan-5-yl, 2-Tetrahydropyranyl, 4-Tetrahydropyran-1-yl, 2-Tetrahydrothienyl, 3-Hexahydropyridazinyl, 4-Hexahydropyridazinyl, 2-Hexahydropyrimidinyl, 4-Hexahydropyrimidinyl, 5-Hexahydropyrimidinyl, 2-Piperazinyl, 1,3,5-Hexahydro-triazin-2-yl und 1,2,4-Hexahydrotriazin-3-yl;
- 15 20 5-gliedriges Heteroaryl, enthaltend ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom: 5-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom als Ringglieder enthalten können, z.B. 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl, 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl, 1,2,4-Triazol-3-yl, 1,3,4-Oxadiazol-2-yl, 1,3,4-Thiadiazol-2-yl und 1,3,4-Triazol-2-yl;
- 25 30 35 40 6-gliedriges Heteroaryl, enthaltend ein bis drei bzw. ein bis vier Stickstoffatome: 6-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis drei bzw. ein bis vier Stickstoffatome als Ringglieder enthalten können, z.B. 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 3-Pyridazinyl, 4-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl und 1,2,4-Triazin-3-yl;

Oxyalkylenoxy: divalente unverzweigte Ketten aus 1 bis 3 CH₂-Gruppen, wobei beide Valenzen über ein Sauerstoffatom an das Gerüst gebunden ist, z.B. OCH₂O, OCH₂CH₂O und OCH₂CH₂CH₂O;

12

Die Verbindungen der Formel I können auch in Form ihrer landwirtschaftlich brauchbaren Salze vorliegen, wobei es in der Regel nicht auf die Art des Salzes ankommt. Im Allgemeinen kommen die Salze derjenigen Kationen oder die Säureadditionssalze derjenigen 5 Säuren in Betracht, deren Kationen beziehungsweise Anionen die fungizide Wirkung der Verbindungen I nicht negativ beeinträchtigen.

Es kommen als Kationen insbesondere Ionen der Alkalimetalle, vor-
10 zugsweise Lithium, Natrium und Kalium, der Erdalkalimetalle, vor-
zugsweise Calcium und Magnesium, und der Übergangsmetalle, vor-
zugsweise Mangan, Kupfer, Zink und Eisen, sowie Ammonium, wobei
hier gewünschtenfalls ein bis vier Wasserstoffatome durch
 C_1-C_4 -Alkyl, Hydroxy- C_1-C_4 -alkyl, C_1-C_4 -Alkoxy- C_1-C_4 -alkyl,
15 Hydroxy- C_1-C_4 -alkoxy- C_1-C_4 -alkyl, Phenyl oder Benzyl ersetzt sein
können, vorzugsweise Ammonium, Dimethylammonium, Diisopropylammo-
nium, Tetramethylammonium, Tetrabutylammonium, 2-(2-Hydro-
xyeth-1-oxy)eth-1-ylammonium, Di(2-hydroxyeth-1-yl)ammonium, Tri-
methylbenzylammonium, des weiteren, Phosphoniumionen, Sulfoniumio-
20 nen, vorzugsweise Tri(C_1-C_4 -alkyl)sulfonium und Sulfoxoniumionen,
vorzugsweise Tri(C_1-C_4 -alkyl)sulfoxonium, in Betracht.

Anionen von brauchbaren Säureadditionssalzen sind in erster Linie
Chlorid, Bromid, Fluorid, Hydrogensulfat, Sulfat, Dihydrogen-
25 phosphat, Hydrogenphosphat, Nitrat, Hydrogencarbonat, Carbonat,
Hexafluorosilikat, Hexafluorophosphat, Benzoat sowie die Anionen
von C_1-C_4 -Alkansäuren, vorzugsweise Formiat, Acetat, Propionat und
Butyrat.

30 Im Hinblick auf ihre bestimmungsgemäße Verwendung der 7-Amino-
triazolopyrimidine der Formel I sind die folgenden Bedeutungen
der Substituenten, und zwar jeweils für sich allein oder in Kom-
bination, besonders bevorzugt:

35 Verbindungen I, in denen R¹, R² für Wasserstoff, C_1-C_{10} -Alkyl oder
 C_1-C_6 -Haloalkyl, insbesondere für Wasserstoff, C_1-C_6 -Alkyl,
 C_1-C_4 -Haloalkyl, besonders bevorzugt für Wasserstoff, 1-Methylpro-
pyl, Isopropyl oder 1,1,1-Trifluor-2-propyl steht, oder

40 R¹ und R² zusammen mit dem Stickstoffatom, das sie verbindet,
einen 5-oder 6-gliedrigen Ring bilden, der ein Sauerstoffatom
enthalten kann und/oder einen C_1-C_4 -Alkylrest tragen kann, bei-
spielsweise Pyrrolidin-1-yl, Pyrrol-1-yl, Pyrazol-1-yl, Imida-
zol-1-yl, Piperidin-1-yl, Morpholin-4-yl, wobei die genannten
45 Reste durch ein bis drei Reste R^a, insbesondere C_1-C_4 -Alkyl, wie
beispielsweise Methyl oder Ethyl, substituiert sein können.

13

Daneben werden auch Verbindungen I besonders bevorzugt, in denen R¹ Wasserstoff, C₁-C₆-Alkyl und C₁-C₄-Haloalkyl und R² Wasserstoff bedeutet.

5 Ganz besonders werden auch Verbindungen I bevorzugt, in denen R¹ und R² Wasserstoff und R³ C₃-C₈-Cycloalkyl, bevorzugt Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeuten.

Außerdem werden Verbindungen I besonders bevorzugt, in denen R³ 10 C₁-C₈-Alkyl, insbesondere Isopropyl oder n-Octyl, C₃-C₆-Cycloalkyl, besonders bevorzugt Cyclopropyl, Cyclopentyl oder Cyclohexyl, oder CH₂-C₆H₅ bedeutet.

15 Insbesondere werden auch Verbindungen I bevorzugt, in denen R³ C₃-C₈-Cycloalkyl, insbesondere C₃-C₆-Cycloalkyl, besonders bevorzugt Cyclopropyl, Cyclopropylmethyl, Cyclopentyl oder Cyclohexyl, und X Cyano, C₁-C₄-Alkoxy, beispielsweise OCH₃, C₁-C₄-Haloalkyl, beispielsweise CF₃ oder ein gegebenenfalls durch R^a substituiertes Phenylalkyl, beispielsweise CH₂-C₆H₅ oder CH₂-O-Cl-C₆H₄, bedeutet.

20 20 Außerdem werden Verbindungen I besonders bevorzugt, in denen R³ C₃-C₈-Cycloalkyl, insbesondere C₃-C₆-Cycloalkyl, besonders bevorzugt Cyclopropyl, Cyclopentyl oder Cyclohexyl, und X Halogen, insbesondere Chlor, bedeutet.

25 Gleichermaßen besonders bevorzugt sind Verbindungen I, in denen X Halogen, wie Chlor oder Brom, insbesondere Chlor bedeutet.

30 Insbesondere sind im Hinblick auf ihre Verwendung die in den folgenden Tabellen zusammengestellten Verbindungen I bevorzugt. Die in den Tabellen für einen Substituenten genannten Gruppen stellen außerdem für sich betrachtet, unabhängig von der Kombination, in der sie genannt sind, eine besonders bevorzugte Ausgestaltung des betreffenden Substituenten dar.

35 Tabelle 1
Verbindungen der Formel I, in denen R³ für CH₃ und X für Cl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40 Tabelle 2
Verbindungen der Formel I, in denen R³ für CH₂-CH₃ und X für Cl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

45

Tabelle 3

Verbindungen der Formel I, in denen R³ für (CH₂)₃-CH₃ und X für Cl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 4

Verbindungen der Formel I, in denen R³ für CH₂-CH(CH₃)₂ und X für Cl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 5

Verbindungen der Formel I, in denen R³ für CH(CH₃)-CH₂-CH₂-CH₃ und X für Cl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 6

Verbindungen der Formel I, in denen R³ für C(CH₃)₃ und X für Cl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 7

Verbindungen der Formel I, in denen R³ für (CH₂)₇-CH₃ und X für Cl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 8

Verbindungen der Formel I, in denen R³ für CH(CH₃)₂ und X für Cl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 9

Verbindungen der Formel I, in denen R³ für Cyclopentyl und X für Cl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 10

Verbindungen der Formel I, in denen R³ für Cyclohexyl und X für Cl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 11

Verbindungen der Formel I, in denen R³ für CH₂-C₆H₅ und X für Cl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

45

Tabelle 12

Verbindungen der Formel I, in denen R³ für CH₂-O-Cl-C₆H₄ und X für Cl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 13

Verbindungen der Formel I, in denen R³ für (CH₂)₂-CH₃ und X für Cl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 14

Verbindungen der Formel I, in denen R³ für CH₂-CH=CH₂ und X für Cl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 15

Verbindungen der Formel I, in denen R³ für Cyclopropyl-methyl und X für Cl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 16

Verbindungen der Formel I, in denen R³ für CH₂-CH₂-CN und X für Cl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 17

Verbindungen der Formel I, in denen R³ für CH₂-CF₃ und X für Cl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 18

Verbindungen der Formel I, in denen R³ für CH(CH₃)-CF₃ und X für Cl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 19

Verbindungen der Formel I, in denen R³ für CH(CF₃)₂ und X für Cl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 20

Verbindungen der Formel I, in denen R³ für CH₃ und X für CF₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

45

Tabelle 21

Verbindungen der Formel I, in denen R³ für CH₂-CH₃ und X für CF₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 22

Verbindungen der Formel I, in denen R³ für (CH₂)₃-CH₃ und X für CF₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 23

Verbindungen der Formel I, in denen R³ für CH₂-CH(CH₃)₂ und X für CF₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 24

Verbindungen der Formel I, in denen R³ für CH(CH₃)-CH₂-CH₂-CH₃ und X für CF₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 25

Verbindungen der Formel I, in denen R³ für CH(CH₃)₃ und X für CF₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 26

Verbindungen der Formel I, in denen R³ für (CH₂)₇-CH₃ und X für CF₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 27

Verbindungen der Formel I, in denen R³ für CH(CH₃)₂ und X für CF₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 28

Verbindungen der Formel I, in denen R³ für Cyclopentyl und X für CF₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 29

Verbindungen der Formel I, in denen R³ für Cyclohexyl und X für CF₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

45

Tabelle 30

Verbindungen der Formel I, in denen R³ für CH₂-C₆H₅ und X für CF₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 31

Verbindungen der Formel I, in denen R³ für CH₂-p-Cl-C₆H₄ und X für CF₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 32

Verbindungen der Formel I, in denen R³ für (CH₂)₂-CH₃ und X für CF₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 33

Verbindungen der Formel I, in denen R³ für CH₂-CH=CH₂ und X für CF₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 34

Verbindungen der Formel I, in denen R³ für Cyclopropyl-methyl und X für CF₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 35

Verbindungen der Formel I, in denen R³ für CH₂-CH₂-CN und X für CF₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 36

Verbindungen der Formel I, in denen R³ für CH₂-CF₃ und X für CF₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 37

Verbindungen der Formel I, in denen R³ für CH(CH₃)-CF₃ und X für CF₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 38

Verbindungen der Formel I, in denen R³ für CH(CF₃)₂ und X für CF₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

45

Tabelle 39

Verbindungen der Formel I, in denen R³ für CH₃ und X für Phenyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 40

Verbindungen der Formel I, in denen R³ für CH₂-CH₃ und X für Phenyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 41

Verbindungen der Formel I, in denen R³ für (CH₂)₃-CH₃ und X für Phenyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 42

Verbindungen der Formel I, in denen R³ für CH₂-CH(CH₃)₂ und X für Phenyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 43

Verbindungen der Formel I, in denen R³ für CH(CH₃)-CH₂-CH₂-CH₃ und X für Phenyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 44

Verbindungen der Formel I, in denen R³ für CH(CH₃)₃ und X für Phenyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 45

Verbindungen der Formel I, in denen R³ für (CH₂)₇-CH₃ und X für Phenyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 46

Verbindungen der Formel I, in denen R³ für CH(CH₃)₂ und X für Phenyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 47

Verbindungen der Formel I, in denen R³ für Cyclopentyl und X für Phenyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

45

Tabelle 48

Verbindungen der Formel I, in denen R³ für Cyclohexyl und X für Phenyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 49

Verbindungen der Formel I, in denen R³ für CH₂-C₆H₅ und X für Phenyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 50

Verbindungen der Formel I, in denen R³ für CH₂-p-Cl-C₆H₄ und X für Phenyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 51

Verbindungen der Formel I, in denen R³ für (CH₂)₂-CH₃ und X für Phenyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 52

Verbindungen der Formel I, in denen R³ für CH₂-CH=CH₂ und X für Phenyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 53

Verbindungen der Formel I, in denen R³ für Cyclopropyl-methyl und X für Phenyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 54

Verbindungen der Formel I, in denen R³ für -CH₂-CH₂-CN und X für Phenyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 55

Verbindungen der Formel I, in denen R³ für CH₂-CF₃ und X für Phenyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 56

Verbindungen der Formel I, in denen R³ für CH(CH₃)-CF₃ und X für Phenyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

45

Tabelle 57

Verbindungen der Formel I, in denen R³ für CH(CF₃)₂ und X für Phenyl steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 58

Verbindungen der Formel I, in denen R³ für CH₃ und X für CN steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 59

Verbindungen der Formel I, in denen R³ für CH₂-CH₃ und X für CN steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 60

Verbindungen der Formel I, in denen R³ für (CH₂)₃-CH₃ und X für CN steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 61

Verbindungen der Formel I, in denen R³ für CH₂-CH(CH₃)₂ und X für CN steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 62

Verbindungen der Formel I, in denen R³ für CH(CH₃)-CH₂-CH₂-CH₃ und X für CN steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 63

Verbindungen der Formel I, in denen R³ für CH(CH₃)₃ und X für CN steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 64

Verbindungen der Formel I, in denen R³ für (CH₂)₇-CH₃ und X für CN steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 65

Verbindungen der Formel I, in denen R³ für CH(CH₃)₂ und X für CN steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

45

Tabelle 66

Verbindungen der Formel I, in denen R³ für Cyclopentyl und X für CN steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 67

Verbindungen der Formel I, in denen R³ für Cyclohexyl und X für CN steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 68

Verbindungen der Formel I, in denen R³ für CH₂-C₆H₅ und X für CN steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 69

Verbindungen der Formel I, in denen R³ für CH₂-p-Cl-C₆H₄ und X für CN steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht.

20

Tabelle 70

Verbindungen der Formel I, in denen R³ für (CH₂)₂-CH₃ und X für CN steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 71

Verbindungen der Formel I, in denen R³ für CH₂-CH=CH₂ und X für CN steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 72

Verbindungen der Formel I, in denen R³ für Cyclopropyl-methyl und X für CN steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 73

Verbindungen der Formel I, in denen R³ für CH₂-CH₂-CN und X für CN steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 74

Verbindungen der Formel I, in denen R³ für CH₂-CF₃ und X für CN steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

45

Tabelle 75

Verbindungen der Formel I, in denen R³ für CH(CH₃)-CF₃ und X für CN steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 76

Verbindungen der Formel I, in denen R³ für CH(CF₃)₂ und X für CN steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 77

Verbindungen der Formel I, in denen R³ für CH₃ und X für OCH₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 78

Verbindungen der Formel I, in denen R³ für CH₂-CH₃ und X für OCH₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 79

Verbindungen der Formel I, in denen R³ für (CH₂)₃-CH₃ und X für OCH₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 80

Verbindungen der Formel I, in denen R³ für CH₂-CH(CH₃)₂ und X für OCH₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 81

Verbindungen der Formel I, in denen R³ für CH(CH₃)-CH₂-CH₂-CH₃ und X für OCH₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 82

Verbindungen der Formel I, in denen R³ für CH(CH₃)₃ und X für OCH₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 83

Verbindungen der Formel I, in denen R³ für (CH₂)₇-CH₃ und X für OCH₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

45

Tabelle 84

Verbindungen der Formel I, in denen R³ für CH(CH₃)₂ und X für OCH₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 85

Verbindungen der Formel I, in denen R³ für Cyclopentyl und X für OCH₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 86

Verbindungen der Formel I, in denen R³ für Cyclohexyl und X für OCH₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 87

Verbindungen der Formel I, in denen R³ für CH₂-C₆H₅ und X für OCH₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 88

Verbindungen der Formel I, in denen R³ für CH₂-p-Cl-C₆H₄ und X für OCH₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 89

Verbindungen der Formel I, in denen R³ für (CH₂)₂-CH₃ und X für OCH₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 90

Verbindungen der Formel I, in denen R³ für CH₂-CH=CH₂ und X für OCH₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 91

Verbindungen der Formel I, in denen R³ für Cyclopropyl-methyl und X für OCH₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 92

Verbindungen der Formel I, in denen R³ für CH₂-CH₂-CN und X für OCH₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

45

Tabelle 93

Verbindungen der Formel I, in denen R³ für CH₂-CF₃ und X für OCH₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 94

Verbindungen der Formel I, in denen R³ für CH(CH₃)-CF₃ und X für OCH₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 95

Verbindungen der Formel I, in denen R³ für CH(CF₃)₂ und X für OCH₃ steht und die Kombination der Reste R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

20

Tabelle A

25

No.	R ¹	R ²
A-1	H	H
A-2	CH ₂ CH ₃	H
A-3	CH ₂ CH ₃	CH ₃
A-4	CH ₂ CH ₃	CH ₂ CH ₃
A-5	CH ₂ CF ₃	H
A-6	CH ₂ CF ₃	CH ₃
A-7	CH ₂ CF ₃	CH ₂ CH ₃
A-8	CH ₂ CCl ₃	H
A-9	CH ₂ CCl ₃	CH ₃
A-10	CH ₂ CCl ₃	CH ₂ CH ₃
A-11	CH ₂ CH ₂ CH ₃	H
A-12	CH ₂ CH ₂ CH ₃	CH ₃
A-13	CH ₂ CH ₂ CH ₃	CH ₂ CH ₃
A-14	CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₃
A-15	CH(CH ₃) ₂	H
A-16	CH(CH ₃) ₂	CH ₃
A-17	CH(CH ₃) ₂	CH ₂ CH ₃
A-18	(R/S) CH(CH ₃)-CH ₂ CH ₃	H
A-19	(R/S) CH(CH ₃)-CH ₂ CH ₃	CH ₃
A-20	(R/S) CH(CH ₃)-CH ₂ CH ₃	CH ₂ CH ₃
A-21	(R) CH(CH ₃)-CH ₂ CH ₃	H

No.	R ¹	R ²
A-22	(R) CH(CH ₃) -CH ₂ CH ₃	CH ₃
A-23	(R) CH(CH ₃) -CH ₂ CH ₃	CH ₂ CH ₃
A-24	(S) CH(CH ₃) -CH ₂ CH ₃	H
A-25	(S) CH(CH ₃) -CH ₂ CH ₃	CH ₃
A-26	(S) CH(CH ₃) -CH ₂ CH ₃	CH ₂ CH ₃
A-27	(R/S) CH(CH ₃) -CH(CH ₃) ₂	H
A-28	(R/S) CH(CH ₃) -CH(CH ₃) ₂	CH ₃
A-29	(R/S) CH(CH ₃) -CH(CH ₃) ₂	CH ₂ CH ₃
A-30	(R) CH(CH ₃) -CH(CH ₃) ₂	H
A-31	(R) CH(CH ₃) -CH(CH ₃) ₂	CH ₃
A-32	(R) CH(CH ₃) -CH(CH ₃) ₂	CH ₂ CH ₃
A-33	(S) CH(CH ₃) -CH(CH ₃) ₂	H
A-34	(S) CH(CH ₃) -CH(CH ₃) ₂	CH ₃
A-35	(S) CH(CH ₃) -CH(CH ₃) ₂	CH ₂ CH ₃
A-36	(R/S) CH(CH ₃) -C(CH ₃) ₃	H
A-37	(R/S) CH(CH ₃) -C(CH ₃) ₃	CH ₃
A-38	(R/S) CH(CH ₃) -C(CH ₃) ₃	CH ₂ CH ₃
A-39	(R) CH(CH ₃) -C(CH ₃) ₃	H
A-40	(R) CH(CH ₃) -C(CH ₃) ₃	CH ₃
A-41	(R) CH(CH ₃) -C(CH ₃) ₃	CH ₂ CH ₃
A-42	(S) CH(CH ₃) -C(CH ₃) ₃	H
A-43	(S) CH(CH ₃) -C(CH ₃) ₃	CH ₃
A-44	(S) CH(CH ₃) -C(CH ₃) ₃	CH ₂ CH ₃
A-45	(R/S) CH(CH ₃) -CF ₃	H
A-46	(R/S) CH(CH ₃) -CF ₃	CH ₃
A-47	(R/S) CH(CH ₃) -CF ₃	CH ₂ CH ₃
A-48	(R) CH(CH ₃) -CF ₃	H
A-49	(R) CH(CH ₃) -CF ₃	CH ₃
A-50	(R) CH(CH ₃) -CF ₃	CH ₂ CH ₃
A-51	(S) CH(CH ₃) -CF ₃	H
A-52	(S) CH(CH ₃) -CF ₃	CH ₃
A-53	(S) CH(CH ₃) -CF ₃	CH ₂ CH ₃
A-54	(R/S) CH(CH ₃) -CCl ₃	H
A-55	(R/S) CH(CH ₃) -CCl ₃	CH ₃
A-56	(R/S) CH(CH ₃) -CCl ₃	CH ₂ CH ₃
A-57	(R) CH(CH ₃) -CCl ₃	H
A-58	(R) CH(CH ₃) -CCl ₃	CH ₃
A-59	(R) CH(CH ₃) -CCl ₃	CH ₂ CH ₃
A-60	(S) CH(CH ₃) -CCl ₃	H
A-61	(S) CH(CH ₃) -CCl ₃	CH ₃
A-62	(S) CH(CH ₃) -CCl ₃	CH ₂ CH ₃
A-63	CH ₂ C(CH ₃)=CH ₂	H
A-64	CH ₂ C(CH ₃)=CH ₂	CH ₃
A-65	CH ₂ C(CH ₃)=CH ₂	CH ₂ CH ₃

No.	R ¹	R ²
A-66	cyclopentyl	H
A-67	cyclopentyl	CH ₃
A-68	cyclopentyl	CH ₂ CH ₃
5 A-69	-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ -	

Die besonders bevorzugten Ausführungsformen der Zwischenprodukte in Bezug auf die Variablen entsprechen denen der Reste R¹, R², R^a, 10 R³ und X der Formel I.

Die Verbindungen I eignen sich als Fungizide. Sie zeichnen sich durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der 15 Ascomyceten, Deuteromyceten, Phycomyceten und Basidiomyceten, aus. Sie sind zum Teil systemisch wirksam und können im Pflanzenschutz als Blatt- und Bodenfungizide eingesetzt werden.

Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl 20 von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Gras, Bananen, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen, Tomaten, Kartoffeln und Kürbisgewächsen, sowie an den Samen dieser Pflanzen.

25 Speziell eignen sie sich zur Bekämpfung folgender Pflanzenkrankheiten:

- Alternaria-Arten, Podosphaera-Arten, Sclerotinia-Arten, Phy-
- 30 salospora canker an Gemüse und Obst,
- Botrytis cinerea (Grauschimmel) an Erdbeeren, Gemüse, Zierpflanzen und Reben,
- Corynespora cassiicola an Gurken,
- Colletotrichum-Arten an Obst und Gemüse,
- 35 · Diplocarpon rosae an Rosen,
- Elsinoe fawcetti und Diaporthe citri an Citrus-Früchten,
- Sphaerotheca-Arten an Kürbisgewächsen, Erdbeeren und Rosen,
- Cercospora-Arten an Erdnüssen, Zuckerrüben und Auberginen,
- Erysiphe cichoracearum an Kürbisgewächsen,
- 40 · Leveillula taurica an Paprika, Tomaten und Auberginen,
- Mycosphaerella-Arten an Äpfeln und japanischer Aprikose,
- Phyllactinia kakicola, Gloesporium kaki, an japanischer Aprikose,
- Gymnosporangium yamadae, Leptothyrium pomi, Podosphaera leucotricha und Gloedes pomigena an Äpfeln,
- 45 · Cladosporium carpophilum an Birnen und japanischer Aprikose,
- Phomopsis-Arten an Birnen,

- Phytophthora-Arten an Citrusfrüchten, Kartoffeln, Zwiebeln, insbesondere Phytophthora infestans an Kartoffeln und Tomaten,
- Blumeria graminis (echter Mehltau) an Getreide,
- 5 · Fusarium- und Verticillium-Arten an verschiedenen Pflanzen, Glomerella cingulata an Tee,
- Drechslera- und Bipolaris- Arten an Getreide und Reis,
- Mycosphaerella-Arten an Bananen und Erdnüssen,
- Plasmopara viticola an Reben,
- 10 · Personospora-Arten an Zwiebeln, Spinat und Chrysantemen, Phaeoisariopsis vitis und Sphaceloma ampelina an Grapefruits,
- Pseudocercosporella herpotrichoides an Weizen und Gerste,
- Pseudoperonospora-Arten an Hopfen und Gurken,
- Puccinia-Arten und Typhula-Arten an Getreide und Rasen,
- 15 · Pyricularia oryzae an Reis,
- Rhizoctonia-Arten an Baumwolle, Reis und Rasen,
- Stagonospora nodorum und Septoria tritici an Weizen,
- Uncinula necator an Reben,
- Ustilago-Arten an Getreide und Zuckerrohr, sowie
- 20 · Venturia-Arten (Schorf) an Äpfeln und Birnen.

Die Verbindungen I eignen sich außerdem zur Bekämpfung von Schadpilzen wie Paecilomyces variotii im Materialschutz (z.B. Holz, Papier, Dispersionen für den Anstrich, Fasern bzw. Gewebe) und im 25 Vorratsschutz.

Die Verbindungen I werden angewendet, indem man die Pilze oder die vor Pilzbefall zu schützenden Pflanzen, Saatgüter, Materialien oder den Erdboden mit einer fungizid wirksamen Menge der 30 Wirkstoffe behandelt. Die Anwendung kann sowohl vor als auch nach der Infektion der Materialien, Pflanzen oder Samen durch die Pilze erfolgen.

Die fungiziden Mittel enthalten im allgemeinen zwischen 0,1 und 35 95, vorzugsweise zwischen 0,5 und 90 Gew.-% Wirkstoff.

Die Aufwandmengen liegen bei der Anwendung im Pflanzenschutz je nach Art des gewünschten Effektes zwischen 0,01 und 2 kg Wirkstoff pro ha.

40 Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 0,1 g, vorzugsweise 0,01 bis 0,05 g je Kilogramm Saatgut benötigt.

45 Bei der Anwendung im Material- bzw. Vorratsschutz richtet sich die Aufwandmenge an Wirkstoff nach der Art des Einsatzgebietes und des gewünschten Effekts. Übliche Aufwandmengen sind im Mate-

rialschutz beispielsweise 0,001 g bis 2 kg, vorzugsweise 0,005 g bis 1 kg Wirkstoff pro Kubikmeter behandelten Materials.

Die Verbindungen I können in die üblichen Formulierungen über-
5 führt werden, z.B. Lösungen, Emulsionen, Suspensionen, Stäube,
Pulver, Pasten und Granulate. Die Anwendungsform richtet sich
nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine
feine und gleichmäßige Verteilung der erfindungsgemäßen Verbin-
dung gewährleisten.

10

Die Formulierungen werden in bekannter Weise hergestellt, z.B.
durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trä-
gerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln
und Dispergiermitteln, wobei im Falle von Wasser als Verdünnungs-
15 mittel auch andere organische Lösungsmittel als Hilfslösungs-
mittel verwendet werden können. Als Hilfsstoffe kommen dafür im
wesentlichen in Betracht: Lösungsmittel wie Aromaten (z.B.
Xylool), chlorierte Aromaten (z.B. Chlorbenzole), Paraffine (z.B.
Erdölfraktionen), Alkohole (z.B. Methanol, Butanol), Ketone (z.B.
20 Cyclohexanon), Amine (z.B. Ethanolamin, Dimethylformamid) und
Wasser; Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline,
Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B.
hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nicht-
ionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fett-
25 alkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergier-
mittel wie Lignin-Sulfitablaugen und Methylcellulose.

Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammo-
niumsalze von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenol-
30 sulfonsäure, Dibutynaphthalinsulfonsäure, Alkylarylsulfonate,
Alkylsulfate, Alkylsulfonate, Fettalkoholsulfate und Fettsäuren
sowie deren Alkali- und Erdalkalisalze, Salze von sulfatiertem
Fettalkoholglykolether, Kondensationsprodukte von sulfonierte
Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensi-
35 onsprodukte des Naphthalins bzw. der Naphthalinsulfonsäure mit
Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxy-
liertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenol-
polyglykolether, Tributylphenylpolyglykolether, Alkylarylpoly-
etheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Konden-
40 sate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxy-
liertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sor-
bitester, Ligninsulfitablaugen und Methylcellulose in Betracht.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen,
45 Pasten oder Öldispersionen kommen Mineralölfractionen von mittlerem
bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Koh-
lenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, ali-

phatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Benzol, Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Chloroform, Tetrachlorkohlenstoff, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron, stark polare Lösungsmittel, z.B. Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon, Wasser, in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden, wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver und andere feste Trägerstoffe.

Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 25 95 Gew.-%, vorzugsweise zwischen 0,1 und 90 Gew.-% des Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

Beispiele für Formulierungen sind:

- 30 I. 5 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit 95 Gew.-Teilen feinteiligem Kaolin innig vermischt. Man erhält auf diese Weise ein Stäubemittel, das 5 Gew.-% des Wirkstoffs enthält.
- 35 II. 30 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit einer Mischung aus 92 Gew.-Teilen pulverförmigem Kieselsäuregel und 8 Gew.-Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit (Wirkstoffgehalt 23 Gew.-%).
- 40 III. 10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 90 Gew.-Teilen Xylol, 6 Gew.-Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 2 Gew.-Teilen Calciumsalz der Dodecylbenzolsulfonsäure und 2 Gew.-Teilen

30

des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht (Wirkstoffgehalt 9 Gew.-%).

- IV. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in
5 einer Mischung gelöst, die aus 60 Gew.-Teilen Cyclohexanon,
30 Gew.-Teilen Isobutanol, 5 Gew.-Teilen des Anlagerungs-
produktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol
und 5Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethy-
lenoxid an 1 Mol Ricinusöl besteht (Wirkstoffgehalt 16
10 Gew.-%).
- V. 80 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit
3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin-
alpha-sulfonsäure, 10 Gew.-Teilen des Natriumsalzes einer
15 Ligninsulfonsäure aus einer Sulfit-Ablauge und 7 Gew.-
Teilen pulverförmigem Kieselsäuregel gut vermischt und in
einer Hammermühle vermahlen (Wirkstoffgehalt 80 Gew.-%).
- VI. Man vermischt 90 Gew.-Teile einer erfindungsgemäßen Verbin-
20 dung mit 10 Gew.-Teilen N-Methyl-a-pyrrolidon und erhält
eine Lösung, die zur Anwendung in Form kleinster Tropfen
geeignet ist (Wirkstoffgehalt 90 Gew.-%).
- VII. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in
25 einer Mischung gelöst, die aus 40 Gew.-Teilen Cyclohexanon,
30Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungs-
produktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol
und 10 Gew.-Teilen des Anlagerungsproduktes von 40 Mol
Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und
30 feines Verteilen der Lösung in 100 000 Gew.-Teilen Wasser
erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des
Wirkstoffs enthält.
- VIII. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit
35 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin-a-
sulfonsäure, 17 Gew.-Teilen des Natriumsalzes einer Lignin-
sulfonsäure aus einer Sulfit-Ablauge und 60 Gew.-Teilen
pulverförmigem Kieselsäuregel gut vermischt und in einer
40 Hammermühle vermahlen. Durch feines Verteilen der Mischung
in 20000 Gew.-Teilen Wasser erhält man eine Spritzbrühe,
die 0,1 Gew.-% des Wirkstoffs enthält.

Die Wirkstoffe können als solche, in Form ihrer Formulierungen
oder den daraus bereiteten Anwendungsformen, z.B. in Form von di-
45 rekt versprühbaren Lösungen, Pulvern, Suspensionen oder Disper-
sionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streu-
mitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Ver-

streuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

5

Wässrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder 10 in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit 15 Wasser geeignet sind.

Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10%, vorzugsweise zwischen 20 0,01 und 1%.

Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-% Wirkstoff oder sogar den Wirkstoff 25 ohne Zusätze auszubringen.

Zu den Wirkstoffen können Öle verschiedenen Typs, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zuge 30 setzt werden. Diese Mittel können zu den erfindungsgemäßen Mitteln im Gewichtsverhältnis 1:10 bis 10:1 zugemischt werden.

Die erfindungsgemäßen Mittel können in der Anwendungsform als Fungizide auch zusammen mit anderen Wirkstoffen vorliegen, der 35 z.B. mit Herbiziden, Insektiziden, Wachstumsregulatoren, Fungiziden oder auch mit Düngemitteln. Beim Vermischen der Verbindungen I bzw. der sie enthaltenden Mittel in der Anwendungsform als Fungizide mit anderen Fungiziden erhält man in vielen Fällen eine Vergrößerung des fungiziden Wirkungsspektrums.

40

Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken:

45 · Schwefel, Dithiocarbamate und deren Derivate, wie Ferridimethylidithiocarbamat, Zinkdimethylidithiocarbamat, Zinkethylenbisdithiocarbamat, Manganethylenbisdithiocarbamat, Mangan-

- Zink-ethylendiamin-bis-dithiocarbamat, Tetramethylthiuramdisulfide, Ammoniak-Komplex von Zink-(N,N-ethylen-bis-dithiocarbamat), Ammoniak-Komplex von Zink-(N,N'-propylen-bis-dithiocarbamat), Zink-(N,N'-propylenbis-dithiocarbamat), N,N'-Polypropylen-bis-(thiocarbamoyl)disulfid;
- Nitroderivate, wie Dinitro-(1-methylheptyl)-phenylcrotonat, 2-sec-Butyl-4,6-dinitrophenyl-3,3-dimethylacrylat, 2-sec-Butyl-4,6-dinitrophenyl-isopropylcarbonat, 5-Nitro-isophthal-säure-di-isopropylester;
- heterocyclische Substanzen, wie 2-Heptadecyl-2-imidazolin-acetat, 2-Chlor-N-(4'-chlor-biphenyl-2-yl)-nicotinamid, 2,4-Dichlor-6-(o-chloranilino)-s-triazin, O,O-Diethyl-phthal-imidophosphonothioat, 5-Amino-1-[bis-(dimethylamino)-phosphinyl]-3-phenyl-1,2,4-triazol, 2,3-Dicyano-1,4-dithio-anthrachinon, 2-Thio-1,3-dithiolo[4,5-b]chinoxalin, 1-(Butylcarbamoyl)-2-benzimidazol-carbaminsäuremethylester, 2-Methoxycarbonylamino-benzimidazol, 2-(Furyl-(2))-benzimidazol, 2-(Thiazolyl-(4))-benzimidazol, N-(1,1,2,2-Tetrachlorethyl-thio)-tetrahydropthalimid, N-Trichlormethylthio-tetrahydropthalimid, N-Trichlormethylthio-phthalimid,
- N=Dichlorfluormethylthio-N'',N'-dimethyl-N-phenyl-schwefelsäure-diamid, 5-Ethoxy-3-trichlormethyl-1,2,3-thiadiazol, 2-Rhodanmethyliothiobenzthiazol, 1,4-Dichlor-2,5-dimethoxybenzol, 4-(2-Chlorphenylhydrazono)-3-methyl-5-isoxazolon, Pyridin-2-thio-1-oxid, 8-Hydroxychinolin bzw. dessen Kupfersalz, 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin, 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin-4,4-dioxid, 2-Methyl-5,6-dihydro-4H-pyran-3-carbonsäure-anilid, 2-Methyl-furan-3-carbonsäureanilid, 2,5-Dimethyl-furan-3-carbonsäureanilid, 2,4,5-Trimethyl-furan-3-carbonsäureanilid, 2,5-Dimethyl-furan-3-carbonsäurecyclohexylamid, N-Cyclohexyl-N-methoxy-2,5-dimethyl-furan-3-carbonsäureamid, 2-Methyl-benzosäure-anilid, 2-Iod-benzoesäure-anilid, N-Formyl-N-morpholin-2,2,2-trichlorethylacet, Piperazin-1,4-diylbis-1-(2,2,2-trichlorethyl)-formamid, 1-(3,4-Dichloranilino)-1-formylamino-2,2,2-trichlorethan, 2,6-Dimethyl-N-tridecyl-morpholin bzw. dessen Salze, 2,6-Dimethyl-N-cyclododecyl-morpholin bzw. dessen Salze, N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-cis-2,6-dimethyl-morpholin, N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-piperidin, 1-[2-(2,4-Dichlorophenyl)-4-ethyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol, 1-[2-(2,4-Dichlorophenyl)-4-n-propyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol, N-(n-Propyl)-N-(2,4,6-trichlorphenoxyethyl)-N'-imidazol-yl-harnstoff, 1-(4-Chlorphenoxy)-3,3-

- dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanon, 1-(4-Chlorphenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanol,
 (2RS,3RS)-1-[3-(2-Chlorphenyl)-2-(4-fluorophenyl)-oxiran-2-yl-methyl]-1H-1,2,4-triazol, a-(2-Chlorphenyl)-a-(4-chlorphenyl)-5-pyrimidin-methanol, 5-Butyl-2-dimethylamino-4-hydroxy-6-methyl-pyrimidin, Bis-(p-chlorphenyl)-3-pyridinmethanol, 1,2-Bis-(3-ethoxycarbonyl-2-thioureido)-benzol, 1,2-Bis-(3-methoxycarbonyl-2-thioureido)-benzol,
- 10 . Strobilurine wie Methyl-E-methoxyimino-[a-(o-tolyloxy)-o-tolyl]acetat, Methyl-E-2-{2-[6-(2-cyanophenoxy)-pyrimidin-4-yloxy]-phenyl}-3-methoxyacrylat, Methyl-E-methoxyimino-[a-(2-phenoxyphenyl)]-acetamid, Methyl-E-methoxyimino-[a-(2,5-dimethylphenoxy)-o-tolyl]-acetamid, Methyl-E-2-{2-[2-trifluormethylpyridyl-6]-oxymethyl}-phenyl}3-methoxyacrylat, (E,E)-Methoximino-{2-[1-(3-trifluormethylphenyl)-ethylidenaminooxymethyl]-phenyl}-essigsäuremethylester, Methyl-N-(2-[(1-(4-chlorphenyl)-1H-pyrazol-3-yl]oxymethyl)-phenyl)N-methoxy-carbamat,
- 15 . Anilinopyrimidine wie N-(4,6-Dimethylpyrimidin-2-yl)-anilin, N-[4-Methyl-6-(1-propinyl)-pyrimidin-2-yl]-anilin, N-[4-Methyl-6-cyclopropyl-pyrimidin-2-yl]-anilin,
- 20 . Phenylpyrrole wie 4-(2,2-Difluor-1,3-benzodioxol-4-yl)-pyrrol-3-carbonitril,
- 25 . Zimtsäureamide wie 3-(4-Chlorphenyl)-3-(3,4-dimethoxyphenyl)-acrylsäuremorpholid, 3-(4-Fluorphenyl)-3-(3,4-dimethoxyphenyl)-acrylsäuremorpholid,
- 30 . sowie verschiedene Fungizide, wie Dodecylguanidinacetat, 1-(3-Brom-6-methoxy-2-methyl-phenyl)-1-(2,3,4-trimethoxy-6-methyl-phenyl)-methanon, 3-[3-(3,5-Dimethyl-2-oxyhexyl)-2-hydroxyethyl]-glutarimid, Hexachlorbenzol, DL-Methyl-N-(2,6-dimethyl-phenyl)-N-furoyl(2)-alaninat, DL-N-(2,6-Dimethyl-phenyl)-N-(2'-methoxyacetyl)-alanin-methyl-ester, N-(2,6-Dimethylphenyl)-N-chloracetyl-D,L-2-amino-butyrolacton, DL-N-(2,6-Dimethylphenyl)-N-(phenylacetyl)-alaninmethylester, 5-Methyl-5-vinyl-3-(3,5-dichlorphenyl)-2,4-dioxo-1,3-oxazolidin, 3-(3,5-Dichlorphenyl)-5-methyl-5-methoxymethyl-1,3-oxazolidin-2,4-dion, 3-(3,5-Dichlorphenyl)-1-isopropylcarbamoylhydantoin, N-(3,5-Dichlorphenyl)-1,2-dimethylcyclopropan-1,2-dicarbon-säureimid, 2-Cyano-[N-(ethylaminocarbo-nyl)-2-methoximino]-acetamid, 1-[2-(2,4-Dichlorphenyl)-pen-tyl]-1H-1,2,4-triazol, 2,4-Difluor-a-(1H-1,2,4-triazolyl-1-methyl)-benzhydrylalko-

34

hol, N-(3-Chlor-2,6-dinitro-4-trifluormethyl-phenyl)-5-trifluormethyl-3-chlor-2-aminopyridin, 1-((bis-(4-Fluorophenyl)-methylsilyl)-methyl)-1H-1,2,4-triazol, 5-Chlor-2-cyano-4-p-tolyl-imidazol-1-sulfonsäuredimethylamid, 3,5-Dichlor-5-(3-chlor-1-ethyl-1-methyl-2-oxo-propyl)-4-methyl-benzamid.

5
Synthesebeispiele

Die in den nachstehenden Synthesebeispielen wiedergegebenen Vorschriften wurden unter entsprechender Abwandlung der Ausgangsverbindungen zur Gewinnung weiterer Verbindungen I benutzt. Die so erhaltenen Verbindungen sind in der anschließenden Tabelle mit physikalischen Angaben aufgeführt.

15 Beispiel 1 Herstellung von 5,7-Dihydroxy-6-isopropyl-[1,2,4]-triazolo-[1,5- α]-pyrimidin

20

Eine Mischung von 14 g (0,17 mol) 3-Amino-1,2,4-triazol, 34,3 g (0,17 mol) Diethyl-2-isopropylmalonat und 50 ml Tributylamin wurden 6 h bei 180 °C gerührt. Dann wurde die Reaktionsmischung auf 25 70 °C abgekühlt, eine wäßrige Lösung von Natriumhydroxid (21g/200ml Wasser) zugegeben und die Mischung 30 min gerührt. Die organische Phase wurde abgetrennt und die wäßrige Phase wurde mit Diethylether extrahiert. Anschließend wurde die wäßrige Phase mit 30 konz. Salzsäure angesäuert und der sich bildende Niederschlag durch Filtration gesammelt. Nach Trocknen erhielt man 27 g (0,14 mol) der Titelverbindung.

Beispiel 2 Herstellung von 5,7-Dichlor-6-isopropyl-[1,2,4]-triazolo-[1,5- α]-pyrimidin

40

Eine Mischung von 25 g (0,13 mol) 5,7-Dichlor-6-isopropyl-[1,2,4]-triazolo[1,5- α]-pyrimidin (vgl. Bsp. 1) und 50 ml 45 Phosphoroxychlorid wurden 8 h refluxiert. Dann wurde das Phosphoroxychlorid teilweise abdestilliert und der Rückstand in eine Mischung aus Methylenchlorid und Wasser gegossen. Die orga-

35

nische Phase wurde abgetrennt, getrocknet und filtriert. Das Filtrat wurde vom Lösungsmittel befreit. Man erhielt 16 g (0,07 mol) der Titelverbindung (Schmelzpunkt 119 °C).

5 Beispiel 3 Herstellung von 5-Chlor-6-isopropyl-7-cyclopentylamino-[1,2,4]-triazolo-[1,5-a]-pyrimidin

10

Eine Mischung von 0,13 g (1,5 mmol) Cyclopentylamin, 0,15 g (1,5 mmol) Triethylamin in 10 ml Methylenchlorid wurde unter Rühren zu einer Mischung von 0,34 g (1,5 mmol) 5,7-Dichlor-6-isopropyl-[1,2,4]-triazolo-[1,5-a]-pyrimidin (vgl. Bsp. 2) in 20 ml Methylenchlorid gegeben. Die Reaktionsmischung wurde bei Raumtemperatur 16 h gerührt und anschließend mit 5%iger Salzsäure gewaschen. Die organische Phase wurde abgetrennt, über Natriumsulfat getrocknet und filtriert. Das Filtrat wurde vom Lösungsmittel befreit und der Rückstand chromatographisch gereinigt. Man erhielt 0,32 g (1,14 mmol) der Titelverbindung (Schmelzpunkt 139 °C).

25 Beispiel 4 Herstellung von 7-Hydroxy-6-propyl-5-trifluoromethyl-[1,2,4]-triazolo[1,5-a]-pyrimidin

30

Eine Mischung von 14 g (0,17 mol) 3-Amino-1,2,4-triazol, 38,4 g (0,17 mol) 3-Oxo-2-propyl-4,4,4-trifluorobutanoat und 50 ml Triethylamin wurden 6 h bei 180 °C gerührt. Die Aufarbeitung erfolgte analog zu Bsp. 1. Nach Trocknen erhielt man 33 g (0,13 mol) der Titelverbindung.

40

45

36

Beispiel 5 Herstellung von 7-Chlor-6-propyl-5-trifluormethyl-[1,2,4]-triazolo-[1,5-a]-pyrimidin

5

Eine Mischung von 25 g (0,10 mol) 5,7-Dichlor-6-isopropyl-[1,2,4]-triazolo[1,5-a]-pyrimidin (vgl. Bsp. 4) und 50 ml Phosphoroxychlorid wurden 8 h refluxiert. Die Aufarbeitung erfolgte analog zu Bsp. 2. Man erhielt 23 g (0,086 mol) der Titelverbindung (Schmelzpunkt 63 °C).

15 **Beispiel 6 Herstellung von 7-Cyclopentylamino-6-propyl-5-trifluormethyl-[1,2,4]-triazolo-[1,5-a]-pyrimidin**

20

Eine Mischung von 0,13 g (1,5 mmol) Cyclopentylamin, 0,15 g (1,5 mmol) Triethylamin in 10 ml Methylenchlorid wurde unter Rühren zu einer Mischung von 0,40 g (1,5 mmol) 7-Chlor-6-propyl-5-trifluormethyl-[1,2,4]-triazolo-[1,5-a]-pyrimidin (vgl. Bsp. 5) in 20 ml Methylenchlorid gegeben. Die Reaktionsmischung wurde bei Raumtemperatur 16 h gerührt, die Aufarbeitung erfolgt analog zu Bsp. 3. Man erhielt 0,39 g (1,24 mmol) der Titelverbindung (Schmelzpunkt 179 °C).

Beispiel 7 Herstellung von 7-Hydroxy-6-octyl-5-phenyl-[1,2,4]-triazolo-[1,5-a]-pyrimidin

35

40

Eine Mischung von 14,0 g (0,17 mol) 3-Amino-1,2,4-triazol, 51,7 g (0,17 mol) 3-Oxo-2-octyl-4-phenylbutanoat und 3 g p-Toluolsulfonsäure wurden 6 h refluxiert. Die Aufarbeitung erfolgte analog zu Bsp. 1. Nach Trocknen erhielt man 37 g (0,11 mol) der Titelverbindung.

45

37

Beispiel 8 Herstellung von 7-Chlor-6-octyl-5-phenyl-[1,2,4]-triazolo-[1,5-a]-pyrimidin

5

10 Eine Mischung von 17 g (0,05 mol) 7-Hydroxy-6-octyl-5-phenyl-[1,2,4]-triazolo-[1,5-a]-pyrimidin (vgl. Bsp. 7) und 50 ml Phosphoroxychlorid wurden 8 h refluxiert. Die Aufarbeitung erfolgte analog zu Bsp. 2. Man erhielt 16 g (0,046 mol) der Titelverbindung.

15

Beispiel 9 Herstellung von 7-Cyclopentylamino-6-octyl-5-phenyl-[1,2,4]-triazolo-[1,5-a]-pyrimidin

20

25

Eine Mischung von 0,13 g (1,5 mmol) Cyclopentylamin, 0,15 g (1,5 mmol) Triethylamin in 10 ml Methylenchlorid wurde unter Rühren zu einer Mischung von 0,52 g (1,5 mmol) 7-Chloro-6-octyl-5-phenyl-[1,2,4]-triazolo-[1,5-a]-pyrimidin (vgl. Bsp. 8) in 30 20 ml Methylenchlorid gegeben. Die Reaktionsmischung wurde bei Raumtemperatur 16 h gerührt, die Aufarbeitung erfolgt analog zu Bsp. 3. Man erhielt 0,52 g (1,3 mmol) der Titelverbindung (Schmelzpunkt 81 °C).

35 Beispiel 10 Herstellung von 5-Cyano-6-octyl-7-diethylamino-[1,2,4]-triazolo-[1,5-a]-pyrimidin [I-167]

40

Eine Mischung von 0,1 mol der Verbindung I-48 und 0,25 mol Tetraethylammoniumcyanid in 750 ml Dimethylformamid wurde etwa 16 Std. bei 20 bis 25 °C gerührt. Nach Zusatz von Wasser und Me-
45 thyl-tert. Butylether wurden die Phasen getrennt. Die organische Phase wurde nach Waschen mit Wasser und Trocknen vom Lösungsmittel.

38

tel befreit. Aus dem Rückstand erhielt man nach Chromatographie an Kieselgel 8,33 g der Titelverbindung.

¹H-NMR: δ in ppm: 8,5 (s); 3,65 (q); 2,9 (m); 1,7 (m); 1,3 (m);
 5 1,2 (t); 0,9 (t).

Beispiel 11 Herstellung von 5-Methoxy-6-octyl-7-diethyl-amino-[1,2,4]-triazolo-[1,5-a]-pyrimidin [I-168]

10

Eine Lösung von 65 mmol der Verbindung I-48 in 400 ml wasserfr.
 15 Methanol wurde bei 20 bis 25°C mit 71,5 mmol einer 30 %igen Natriummethanolat-Lösung versetzt, dann etwa 16 Std. bei 20 bis 25°C gerührt. Nach Abdestillieren des Lösungsmittels wurde der Rückstand in Dichlormethan aufgenommen. Diese Lösung wurde mit Wasser gewaschen, dann getrocknet und vom Lösungsmittel befreit. Nach
 20 Chromatographie an Kieselgel wurden 7,5 g der Titelverbindung erhalten.

¹H-NMR: δ in ppm: 8,18 (s); 4,09 (s); 3,41 (q); 2,65 (m);
 1,55 (m); 1,3 (m); 1,1 (t); 0,9 (t).

25

30

35

40

45

Tabelle 1

Nr.	R ¹	R ²	R ³	X	phys. Daten (m.p. [°C]; IR [cm^{-1}]; $^1\text{H-NMR } \delta$ [ppm])
I-1	CH(CH ₃) ₂	H	CH ₃	C1	169
I-2	-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ -		CH ₃	C1	125
I-3	Cyclopentyl	H	CH ₃	C1	172
I-4	CH ₂ -CH ₃	CH ₂ -CH ₃	CH ₃	C1	96
I-5	CH(CH ₃)-CF ₃	H	CH ₃	C1	209
I-6	CH ₂ -CF ₃	H	CH ₃	C1	133
I-7	CH ₂ -C(CH ₃)=CH ₂	CH ₂ -CH ₃	CH ₂ -CH ₃	C1	55
I-8	CH(CH ₃) ₂		CH ₂ -CH ₃	C1	152
I-9	-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ -		CH ₂ -CH ₃	C1	1543, 1521, 1451
I-10	Cyclopentyl	H	CH ₂ -CH ₃	C1	136
I-11	CH ₂ -CH ₃	CH ₂ -CH ₃	CH ₂ -CH ₃	C1	1596, 1511, 1464
I-12	(CH ₂) ₂ -CH ₃	(CH ₂) ₂ -CH ₃	CH ₂ -CH ₃	C1	1595, 1511, 1456
I-13	CH-(CH ₃) ₂	CH ₃	CH ₂ -CH ₃	C1	1593, 1513, 1097
I-14	(R/S) CH(CH ₃)-CH ₂ -CH ₃	H	CH ₂ -CH ₃	C1	145
I-15	(R) CH(CH ₃)-CH ₂ -CH ₃	H	CH ₂ -CH ₃	C1	140
I-16	(S) CH(CH ₃)-CH ₂ -CH ₃	H	CH ₂ -CH ₃	C1	140
I-17	(R/S) CH(CH ₃)-CH(CH ₃) ₂	H	CH ₂ -CH ₃	C1	119
I-18	(R) CH(CH ₃)-CH(CH ₃) ₂	H	CH ₂ -CH ₃	C1	102
I-19	(S) CH(CH ₃)-CH(CH ₃) ₂	H	CH ₂ -CH ₃	C1	102

Nr.	R ¹	R ²	R ³	X	phys. Daten (m.p. [°C]; IR [cm^{-1}]; $^1\text{H-NMR}$ δ [ppm])
I-20	(R/S) CH(CH ₃) -C(CH ₃) ₃	H	CH ₂ -CH ₃	C1	116
I-21	(R) CH(CH ₃) -C(CH ₃) ₃	H	CH ₂ -CH ₃	C1	1613, 1555, 1464
I-22	(S) CH(CH ₃) -C(CH ₃) ₃	H	CH ₂ -CH ₃	C1	1612, 1554, 1464
I-23	(R/S) CH(CH ₃) -CF ₃	H	CH ₂ -CH ₃	C1	169
I-24	(R) CH(CH ₃) -CF ₃	H	CH ₂ -CH ₃	C1	140
I-25	(S) CH(CH ₃) -CF ₃	H	CH ₂ -CH ₃	C1	140
I-26	H	H	CH ₂ -CH ₃	C1	263
I-27	- (CH ₂) ₂ CH(CH ₃) (CH ₂) ₂ -		(CH ₂) ₃ -CH ₃	C1	91
I-28	(R/S) CH(CH ₃) -CF ₃	H	(CH ₂) ₃ -CH ₃	C1	125
I-29	(R) CH(CH ₃) -CF ₃	H	(CH ₂) ₃ -CH ₃	C1	121
I-30	(S) CH(CH ₃) -CF ₃	H	(CH ₂) ₃ -CH ₃	C1	121
I-31	CH ₂ -CF ₃	H	(CH ₂) ₃ -CH ₃	C1	156
I-32	CH ₂ -C(CH ₃)=CH ₂	H	CH ₂ -CH(CH ₃) ₂	C1	180
I-33	CH(CH ₃) ₂	H	CH ₂ -CH(CH ₃) ₂	C1	127
I-34	cyclopentyl	H	CH ₂ -CH(CH ₃) ₂	C1	56
I-35	CH ₂ CH ₃	CH ₂ CH ₃	CH ₂ -CH(CH ₃) ₂	C1	163
I-36	CH(CH ₃) -CH ₂ -CH ₃	H	CH ₂ -CH(CH ₃) ₂	C1	159
I-37	CH(CH ₃) ₂	H	CH(CH ₃) -CH ₂ -CH ₂ -CH ₃	C1	180
I-38	cyclopentyl	H	CH(CH ₃) -CH ₂ -CH ₂ -CH ₃	C1	127
I-39	CH ₂ CH ₃	CH ₂ CH ₃	CH(CH ₃) -CH ₂ -CH ₂ -CH ₃	C1	56
I-40	(R/S) CH(CH ₃) -CF ₃	H	CH(CH ₃) -CH ₂ -CH ₂ -CH ₃	C1	163

Nr.	R ¹	R ²	R ³	X	phys. Daten (m.p. [°C]; IR [cm ⁻¹]; ¹ H-NMR δ [ppm])
I-41	CH ₂ -CF ₃	H	CH(CH ₃) -CH ₂ -CH ₂ -CH ₃	C1	159
I-42	CH(CH ₃) ₂	H	C(CH ₃) ₃	C1	136
I-43	-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ -		C(CH ₃) ₃	C1	140
I-44	CH ₂ -C(CH ₃)=CH ₂	CH ₂ -CH ₃	(CH ₂) ₇ -CH ₃	C1	2927, 1597, 1508, 1462
I-45	CH(CH ₃) ₂	H	(CH ₂) ₇ -CH ₃	C1	2926, 1613, 1553, 1464
I-46	-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ -		(CH ₂) ₇ -CH ₃	C1	2925, 1594, 1520, 1192
I-47	Cyclopentyl	H	(CH ₂) ₇ -CH ₃	C1	2927, 1612, 1554, 1059
I-48	CH ₂ -CH ₃	CH ₂ -CH ₃	(CH ₂) ₇ -CH ₃	C1	2927, 1598, 1511, 1466
I-49	(CH ₂) ₂ -CH ₃	(CH ₂) ₂ -CH ₃	(CH ₂) ₇ -CH ₃	C1	2927, 1597, 1561, 1457
I-50	CH-(CH ₃) ₂	CH ₃	(CH ₂) ₇ -CH ₃	C1	2926, 1595, 1514, 1467
I-51	(R/S) CH(CH ₃)-CH(CH ₃) ₂	H	(CH ₂) ₇ -CH ₃	C1	2926, 1613, 1553, 1464
I-52	(R) CH(CH ₃)-CH(CH ₃) ₂	H	(CH ₂) ₇ -CH ₃	C1	2926, 1612, 1553, 1464
I-53	(S) CH(CH ₃)-CH(CH ₃) ₂	H	(CH ₂) ₇ -CH ₃	C1	2926, 1612, 1552, 1463
I-54	(R/S) CH(CH ₃)-C(CH ₃) ₃	H	(CH ₂) ₇ -CH ₃	C1	2926, 1613, 1555, 1464
I-55	(R) CH(CH ₃)-C(CH ₃) ₃	H	(CH ₂) ₇ -CH ₃	C1	2926, 1612, 1553, 1464
I-56	(S) CH(CH ₃)-C(CH ₃) ₃	H	(CH ₂) ₇ -CH ₃	C1	2926, 1613, 1556, 1467
I-57	(R/S) CH(CH ₃)-CF ₃	H	(CH ₂) ₇ -CH ₃	C1	2925, 1612, 1556, 1466
I-58	(R) CH(CH ₃)-CF ₃	H	(CH ₂) ₇ -CH ₃	C1	1619, 1533, 1146
I-59	(S) CH(CH ₃)-CF ₃	H	(CH ₂) ₇ -CH ₃	C1	1620, 1542, 1146
I-60	CH ₂ -C(CH ₃)=CH ₂	CH ₂ -CH ₃	CH(CH ₃) ₂	C1	1619, 1541, 1146
I-61	CH(CH ₃) ₂	H	CH(CH ₃) ₂	C1	71
				C1	180

NR.	R ¹	R ²	R ³	X	phys. Daten (m.p. [°C]; IR [cm^{-1}]; $^1\text{H-NMR } \delta$ [ppm])
I-62	CH ₂ -CH ₃	CH ₂ -CH ₃	CH(C ₂ H ₅) ₂	C1	91
I-63	(CH ₂) ₂ -CH ₃	(CH ₂) ₂ -CH ₃	CH(C ₂ H ₅) ₂	C1	1592, 1506, 1454
I-64	CH-(CH ₃) ₂	CH ₃	CH(C ₂ H ₅) ₂	C1	85
I-65	(R/S) CH(CH ₃)-CH ₂ -CH ₃	H	CH(C ₂ H ₅) ₂	C1	1616, 1544, 1463
I-66	(R) CH(CH ₃)-CH ₂ -CH ₃	H	CH(C ₂ H ₅) ₂	C1	160
I-67	(S) CH(CH ₃)-CH ₂ -CH ₃	H	CH(C ₂ H ₅) ₂	C1	160
I-68	(R/S) CH(CH ₃)-CH(CH ₃) ₂	H	CH(C ₂ H ₅) ₂	C1	134
I-69	(R) CH(CH ₃)-CH(CH ₃) ₂	H	CH(C ₂ H ₅) ₂	C1	120
I-70	(S) CH(CH ₃)-CH(CH ₃) ₂	H	CH(C ₂ H ₅) ₂	C1	120
I-71	(R/S) CH(CH ₃)-C(CH ₃) ₃	H	CH(C ₂ H ₅) ₂	C1	2964, 1611, 1551
I-72	(R) CH(CH ₃)-C(CH ₃) ₃	H	CH(C ₂ H ₅) ₂	C1	64
I-73	(S) CH(CH ₃)-C(CH ₃) ₃	H	CH(C ₂ H ₅) ₂	C1	64
I-74	(R/S) CH(CH ₃)-CF ₃	H	CH(C ₂ H ₅) ₂	C1	1616, 1527, 1147
I-75	(R) CH(CH ₃)-CF ₃	H	CH(C ₂ H ₅) ₂	C1	70
I-76	(S) CH(CH ₃)-CF ₃	H	CH(C ₂ H ₅) ₂	C1	70
I-77	H	H	CH(C ₂ H ₅) ₂	C1	271
I-78	CH ₂ -C(CH ₃)=CH ₂	CH ₂ -CH ₃	Cyclopentyl	C1	66
I-79	CH(CH ₃) ₂	H	Cyclopentyl	C1	136
I-80	CH ₂ -CH ₃	CH ₂ -CH ₃	Cyclopentyl	C1	78
I-81	(CH ₂) ₂ -CH ₃	(CH ₂) ₂ -CH ₃	Cyclopentyl	C1	87
I-82	CH ₂ -C(CH ₃)=CH ₂	CH ₂ -CH ₃	Cyclohexyl	C1	136

Nr.	R ¹	R ²	R ³	X	phys. Daten (m.p. [°C]; IR [cm ⁻¹]; ¹ H-NMR δ [ppm])
I-83	CH(CH ₃) ₂	H	Cyclohexyl	C1	156
I-84	-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ −		Cyclohexyl	C1	151
I-85	Cyclopentyl	H	Cyclohexyl	C1	158
I-86	CH ₂ −CH ₃	CH ₂ −CH ₃	Cyclohexyl	C1	103
I-87	(CH ₂) ₂ −CH ₃	(CH ₂) ₂ −CH ₃	Cyclohexyl	C1	139
I-88	CH−(CH ₃) ₂	CH ₃	Cyclohexyl	C1	134
I-89	(R/S) CH(CH ₃)−CH ₂ −CH ₃	H	Cyclohexyl	C1	155
I-90	(R) CH(CH ₃)−CH ₂ −CH ₃	H	Cyclohexyl	C1	155
I-91	(S) CH(CH ₃)−CH ₂ −CH ₃	H	Cyclohexyl	C1	155
I-92	(R/S) CH(CH ₃)−CH(CH ₃) ₂	H	Cyclohexyl	C1	114
I-93	(R) CH(CH ₃)−CH(CH ₃) ₂	H	Cyclohexyl	C1	110
I-94	(S) CH(CH ₃)−CH(CH ₃) ₂	H	Cyclohexyl	C1	110
I-95	(R/S) CH(CH ₃)−C(CH ₃) ₃	H	Cyclohexyl	C1	134
I-96	(R) CH(CH ₃)−C(CH ₃) ₃	H	Cyclohexyl	C1	116
I-97	(S) CH(CH ₃)−C(CH ₃) ₃	H	Cyclohexyl	C1	116
I-98	(R/S) CH(CH ₃)−CF ₃	H	Cyclohexyl	C1	160
I-99	(R) CH(CH ₃)−CF ₃	H	Cyclohexyl	C1	130
I-100	(S) CH(CH ₃)−CF ₃	H	Cyclohexyl	C1	130
I-101	CH ₂ −CF ₃	H	Cyclohexyl	C1	167
I-102	-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ −		CH ₂ −C ₆ H ₅	C1	144
I-103	CH ₂ −C(CH ₃)=CH ₂	CH ₂ −CH ₃	CH ₂ −(2-C ₁ −C ₆ H ₄)	C1	114

Nr.	R ¹	R ²	R ³	λ	phys. Daten [m.p. [°C]; IR [cm^{-1}]; $^1\text{H-NMR } \delta$ [ppm])
I-104	- (CH_2) ₂ CH(CH ₃) (CH ₂) ₂ -		CH ₂ - (2-Cl-C ₆ H ₄)	C1	164
I-105	CH ₂ -C(CH ₃)=CH ₂	CH ₂ -CH ₃	CH ₂ -CH=CH ₂	C1	55
I-106	- (CH_2) ₂ CH(CH ₃) (CH ₂) ₂ -		CH ₂ -CH=CH ₂	C1	37
I-107	Cyclopentyl	H	CH ₂ -CH=CH ₂	C1	43
I-108	(R/S) CH(CH ₃)-CF ₃	H	Cyclopropyl-methyl	C1	150
I-109	CH ₂ -CF ₃	H	Cyclopropyl-methyl	C1	144
I-110	CH(CH ₃) ₂	H	CH ₂ -CH ₂ -CN	C1	211
I-111	CH ₂ -C(CH ₃)=CH ₂	CH ₂ -CH ₃	CH ₂ -CF ₃	C1	84
I-112	CH(CH ₃) ₂	H	CH ₂ -CF ₃	C1	151
I-113	Cyclopentyl	H	CH ₂ -CF ₃	C1	163
I-114	CH ₂ -CH ₃	CH ₂ -CH ₃	CH ₂ -CF ₃	C1	103
I-115	(CH ₂) ₂ -CH ₃	(CH ₂) ₂ -CH ₃	CH ₂ -CF ₃	C1	107
I-116	CH-(CH ₃) ₂	CH ₃	CH ₂ -CF ₃	C1	88
I-117	(R/S) CH(CH ₃)-CH ₂ -CH ₃	H	CH ₂ -CF ₃	C1	131
I-118	(R) CH(CH ₃)-CH ₂ -CH ₃	H	CH ₂ -CF ₃	C1	126
I-119	(S) CH(CH ₃)-CH ₂ -CH ₃	H	CH ₂ -CF ₃	C1	126
I-120	(R/S) CH(CH ₃)-CH(CH ₃) ₂	H	CH ₂ -CF ₃	C1	114
I-121	(R) CH(CH ₃)-CH(CH ₃) ₂	H	CH ₂ -CF ₃	C1	112
I-122	(S) CH(CH ₃)-CH(CH ₃) ₂	H	CH ₂ -CF ₃	C1	112
I-123	(R/S) CH(CH ₃)-C(CH ₃) ₃	H	CH ₂ -CF ₃	C1	110
I-124	(R) CH(CH ₃)-C(CH ₃) ₃	H	CH ₂ -CF ₃	C1	105

Nr.	R ¹	R ²	R ³	X	phys. Daten (m.p. [°C]; IR [cm^{-1}]; $^1\text{H-NMR}$ δ [ppm])
I-125	(S) CH (CH ₃) -C (CH ₃) ₃	H	CH ₂ -CF ₃	C1	105
I-126	(R/S) CH (CH ₃) -CF ₃	H	CH ₂ -CF ₃	C1	179
I-127	(R) CH (CH ₃) -CF ₃	H	CH ₂ -CF ₃	C1	125
I-128	(S) CH (CH ₃) -CF ₃	H	CH ₂ -CF ₃	C1	125
I-129	H	H	CH ₂ -CF ₃	C1	243
I-130	CH (CH ₃) ₂	H	(CH ₂) ₇ -CH ₃	CF ₃	91
I-131	-(CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ ⁻		(CH ₂) ₇ -CH ₃	CF ₃	64
I-132	Cyclopentyl	H	(CH ₂) ₇ -CH ₃	CF ₃	84
I-133	H	H	(CH ₂) ₇ -CH ₃	CF ₃	177
I-134	CH (CH ₃) ₂	H	(CH ₂) ₂ -CH ₃	CF ₃	162
I-135	-(CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ ⁻		(CH ₂) ₂ -CH ₃	CF ₃	108
I-136	(R) CH (CH ₃) -C (CH ₃) ₃	H	(CH ₂) ₂ -CH ₃	CF ₃	101
I-137	(S) CH (CH ₃) -C (CH ₃) ₃	H	(CH ₂) ₂ -CH ₃	CF ₃	101
I-138	H	H	(CH ₂) ₂ -CH ₃	CF ₃	241
I-139	CH (CH ₃) ₂	H	(CH ₂) ₇ -CH ₃	C ₆ H ₅	83
I-140	-(CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ ⁻		(CH ₂) ₇ -CH ₃	C ₆ H ₅	63
I-141	H	H	(CH ₂) ₇ -CH ₃	C ₆ H ₅	163
I-142	-(CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ ⁻		Cyclopentyl	C1	2960, 1610, 1550, 1241
I-143	Cyclopentyl	H	Cyclopentyl	C1	154
I-144	CH- (CH ₃) ₂	CH ₃	Cyclopentyl	C1	2958, 1610, 1548, 1239
I-145	(R/S) CH (CH ₃) -CH ₂ -CH ₃	H	Cyclopentyl	C1	143

W.R.	R ¹	R ²	R ³	X	phys. Daten (m.p. [°C]; IR [cm ⁻¹]; ¹ H-NMR δ [ppm])
I-146	(S) CH(CH ₃) -CH ₂ -CH ₃	H	Cyclopentyl	C1	137
I-147	(R) CH(CH ₃) -CH ₂ -CH ₃	H	Cyclopentyl	C1	137
I-148	(R/S) CH(CH ₃) -CH(CH ₃) ₂	H	Cyclopentyl	C1	124
I-149	(S) CH(CH ₃) -CH(CH ₃) ₂	H	Cyclopentyl	C1	110
I-150	(R) CH(CH ₃) -CH(CH ₃) ₂	H	Cyclopentyl	C1	110
I-151	(R/S) CH(CH ₃) -C(CH ₃) ₃	H	Cyclopentyl	C1	113
I-152	(S) CH(CH ₃) -C(CH ₃) ₃	H	Cyclopentyl	C1	2962, 1610, 1550, 1241
I-153	(R) CH(CH ₃) -C(CH ₃) ₃	H	Cyclopentyl	C1	2960, 1610, 1549, 1241
I-154	(R/S) CH(CH ₃) -CF ₃	H	Cyclopentyl	C1	129
I-155	(S) CH(CH ₃) -CF ₃	H	Cyclopentyl	C1	135
I-156	(R) CH(CH ₃) -CF ₃	H	Cyclopentyl	C1	135
I-157	H	H	CH(CH ₃) - (CH ₂) ₅ -CH ₃	CF ₃	129
I-158	H	H	(CH ₂) ₃ -CH(CH ₃) ₂	CF ₃	213
I-159	H	H	(CH ₂) ₆ -CH ₃	CF ₃	180
I-160	H	H	(CH ₂) ₅ -CH ₃	CF ₃	208
I-161	H	H	CH(CH ₂ CH ₃) - (CH ₂) ₃ -CH ₃	CF ₃	162
I-162	H	H	CH(CH ₂ CH ₂ CH ₃) ₂	CF ₃	164
I-163	H	H	CH(CH ₃) - (CH ₂) ₃ -CH ₃	CF ₃	148
I-164	H	H	(CH ₂) ₇ -CH ₃	C1	277
I-165	H	H	Cyclopentyl	C1	8,4(s); 8,2(m); 3,45(m); 1,95(m); 1,8(m); 1,6(m)

Nr.	R ¹	R ²	R ³	X	Phys. Daten (m.p. [°C], IR [cm^{-1}]; $^1\text{H-NMR}$ δ [ppm])
I-166	H	H	Cyclohexyl	C1	8,45(s); 8,2(m); 3,1(m); 2,1(m); 1,8(m); 1,55(m); 1,4(m)
I-167	CH ₂ -CH ₃	CH ₂ -CH ₃	(CH ₂) ₇ -CH ₃	CN	s. Beispiel 10
I-168	CH ₂ -CH ₃	CH ₂ -CH ₃	(CH ₂) ₇ -CH ₃	OCH ₃	s. Beispiel 11

Beispiele für die Wirkung gegen Schadpilze

Die fungizide Wirkung der Verbindungen der allgemeinen Formel I 5 ließ sich durch die folgenden Versuche zeigen:

Die Wirkstoffe wurden getrennt oder gemeinsam als 10%ige Emulsion in einem Gemisch aus 70 Gew.-% Cyclohexanon, 20 Gew.-% NekanilR LN (Lutensol® AP6, Netzmittel mit Emulgier- und Dispergierwirkung 10 auf der Basis ethoxylierter Alkylphenole) und 10 Gew.-% WettolR EM (nichtionischer Emulgator auf der Basis von ethoxyliertem Ricinusöl) aufbereitet und entsprechend der gewünschten Konzentration mit Wasser verdünnt.

15 Anwendungsbeispiel 1 - Wirksamkeit gegen *Botrytis cinerea* an Paprikablättern

Paprikasämlinge der Sorte "Neusiedler Ideal Elite" wurden, nachdem sich 4 - 5 Blätter gut entwickelt hatten, mit einer wäßrigen 20 Wirkstoffaufbereitung, die aus einer Stammlösung aus 10 % Wirkstoff, 85 % Cyclohexanon und 5 % Emulgiermittel angesetzt wurde, bis zur Tropfnässe besprüht. Am nächsten Tag wurden die behandelten Pflanzen mit einer Sporensuspension von *Botrytis cinerea*, die $1,7 \times 10^6$ Sporen/ml in einer 2 %igen wäßrigen Biomalzlösung ent- 25 hielt, inkuliert. Anschließend wurden die Versuchspflanzen in eine Klimakammer mit 22 bis 24 °C und hoher Luftfeuchtigkeit gestellt. Nach 5 Tagen konnte das Ausmaß des Pilzbefall auf den Blättern visuell in % ermittelt werden.

30 In diesem Test zeigten die mit 250 ppm der Wirkstoffe I-10, I-61, I-65, I-66, I-68, I-69, I-76, I-78; I-84, I-100, I-101, I-146 und I-153 bis I-155 keinen oder bis zu 15 % Befall, während die unbehandelten Pflanzen zu 90 % befallen waren.

35 Anwendungsbeispiel 2 - Wirksamkeit gegen den falschen Mehltau an Reben (*Plasmopara viticola*)

Blätter von Topfreben der Sorte "Müller-Thurgau" wurden mit wäßriger Wirkstoffaufbereitung, die mit einer Stammlösung aus 10 % 40 Wirkstoff, 85 % Cyclohexanon und 5 % Emulgiermittel angesetzt wurde, bis zur Tropfnässe besprüht. Am folgenden Tag wurden die Blätter mit einer wäßrigen Zoosporenaufschwemmung von *Plasmopara viticola* inkuliert. Danach wurden die Reben zunächst für 48 Stunden in einer wasserdampfgesättigten Kammer bei 24 °C und anschließend für 5 Tage im Gewächshaus bei Temperaturen zwischen 20 und 30 °C aufgestellt. Nach dieser Zeit wurden die Pflanzen zur Beschleunigung des Sporangienträgerausbruchs abermals für 16

49

Stunden in eine feuchte Kammer gestellt. Dann wurde das Ausmaß der Befallsentwicklung auf den Blattunterseiten visuell ermittelt.

- 5 In diesem Test zeigten die mit 250 ppm der Wirkstoffe I-8 bis I-10, I-19, I-25, I-27, I-49, I-60 bis I-62, I-69, I-84, I-101, I-113, I-133, I-146, und I-153 bis I-155 keinen oder bis zu 15 % Befall, während die unbehandelten Pflanzen zu 85 % befallen waren.

10

15

20

25

30

35

40

45

Patentansprüche

1. 7-Aminotriazolopyrimidine der Formel I,

5

10

in der die Substituenten die folgenden Bedeutungen haben:

15 R¹, R² Wasserstoff, C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl,
 C₂-C₁₀-Alkinyl, C₃-C₈-Cycloalkyl, Phenyl, Naphthyl;
 oder20 5- oder 6-gliedriges Heterocyclyl enthaltend ein bis
 vier Stickstoffatome oder ein bis drei Stickstoffa-
 tome und ein Schwefel- oder Sauerstoffatom; oder25 5- oder 6-gliedriges Heteroaryl enthaltend ein bis
 vier Stickstoffatome oder ein bis drei Stickstoff-
 atome und ein Schwefel- oder Sauerstoffatom,30 wobei R¹ und R², wenn ungleich Wasserstoff, unab-
 hängig voneinander teilweise oder vollständig haloge-
 niert sein können und/oder ein bis drei Reste aus der
 Gruppe R^a35 R^a Cyano, Nitro, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Halo-
 alkyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₁-C₆-Ha-
 loalkoxy, C₁-C₆-Alkylthio, C₁-C₆-Alkylamino, Di-
 C₁-C₆-alkylamino, C₂-C₆-Alkenyl, C₂-C₆-Alkenyl-
 oxy, C₂-C₆-Alkinyl, C₃-C₆-Alkinyloxy und gegebe-
 nenfalls halogeniertes Oxy-C₁-C₄-alkylenoxy,

40 tragen können; oder

45 R¹ und R² können zusammen mit dem Stickstoffatom, das
 sie verbindet, einen 5- oder 6-gliedrigen Ring bil-
 den, der ein bis vier Stickstoffatome oder ein bis
 drei Stickstoffatome und ein Schwefel- oder Sauer-
 stoffatom enthält, und der durch ein bis drei Reste
 aus der Gruppe R^a substituiert sein kann;

51

R³ C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl-,
C₃-C₈-Cycloalkyl, Phenyl-C₁-C₁₀-Alkyl,

wobei R³ unsubstituiert oder teilweise oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe R^a tragen kann, oder

C₁-C₁₀-Haloalkyl, das ein bis drei Reste aus der Gruppe R^a tragen kann;

X Halogen, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Haloalkyl, Phenyl oder durch R^a substituiertes Phenyl;
sowie deren Salze.

- 15 2. 7-Aminotriazolopyrimidine der Formel I gemäß Anspruch 1, in der X für Halogen steht.
- 20 3. Verfahren zur Herstellung von 7-Aminotriazolopyrimidinen der Formel I nach Anspruch 1, in der X Halogen, Cyano oder C₁-C₄-Alkoxy bedeutet, dadurch gekennzeichnet, daß man Dicarbonyl-verbindungen der Formel II.1,

30 wobei A¹ und A² für C₁-C₁₀-Alkoxy stehen, mit 3-Amino-1,2,4-triazol der Formel III

zu Hydroxytriazolopyrimidinen der Formel IV.1

52

cyclisiert, die Hydroxytriazolopyrimidine der Formel IV.1 mit einem Halogenierungsmittel zu Halogentriazolopyrimidinen der Formel V.1

5

10

halogeniert, wobei Hal für Halogen steht, und anschließend mit einem Amin der Formel VI

15

20

zu 7-Aminotriazolopyrimidinen der Formel I , in denen X Halogen bedeutet, umsetzt, und zur Herstellung von 7-Amino-triazolopyrimidinen der Formel I, in denen X Cyano oder C₁-C₄-Alkoxy bedeutet, mit einer Verbindung der Formel VII

25

30

in der M ein Ammonium-, Tetraalkylammonium-, Alkalimetall- oder Erdalkalimetallkation und X' Cyano oder Alkoxy bedeutet, umsetzt.

35

4. Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 1, in der X C₁-C₄-Haloalkyl oder gegebenenfalls durch R^a substituiertes Phenyl bedeutet, dadurch gekennzeichnet, daß man Dicarbonylverbindungen der Formel II.2

40

45

53

wobei A¹ für C₁-C₁₀-Alkoxy und X für C₁-C₄-Haloalkyl oder gegebenenfalls durch R^a substituiertes Phenyl steht, mit 3-Amino-1,2,4-triazol der Formel III nach Anspruch 3 zu 7-Hydroxytriazolopyrimidinen der Formel IV.2

5

10

15

cyclisiert, die 7-Hydroxytriazolopyrimidine der Formel IV.2 mit einem Halogenierungsmittel zu 7-Halogentriazolopyrimidinen der Formel V.2

20

25

halogeniert, wobei Hal für Halogen steht; und anschließend mit einem Amin der Formel VI gemäß Anspruch 3 zu 7-Aminotriazolo-pyrimidinen der Formel I umsetzt.

30

35

40

wobei Y für eine Hydroxygruppe oder einen Rest aus der Gruppe X steht, Hal Halogen bedeutet und R³ sowie X die folgenden Bedeutungen haben:

R³ C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl-, C₃-C₈-Cycloalkyl, Phenyl-C₁-C₁₀-Alkyl,

45

wobei R³ unsubstituiert oder teilweise oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe R^a tragen kann; und ferner

C₁-C₁₀-Haloalkyl, das ein bis drei Reste aus der Gruppe R^a tragen kann;

- 5 R^a Cyano, Nitro, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Haloalkyl,
C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₁-C₆-Haloalkoxy,
C₁-C₆-Alkylthio, C₁-C₆-Alkylamino, Di-C₁-C₆-alkyl-
amino, C₂-C₆-Alkenyl, C₂-C₆-Alkenyloxy, C₂-C₆-Alkinyl,
C₃-C₆-Alkinyloxy und gegebenenfalls halogeniertes
Oxy-C₁-C₄-alkylenoxy,
- 10 X Halogen, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Haloalkyl, Phenyl
oder durch R^a substituiertes Phenyl;
- 15 6. Zur Bekämpfung von Schadpilzen geeignetes Mittel, enthaltend
einen festen oder flüssigen Trägerstoff und ein 7-Amino-
triazolo-pyrimidin der allgemeinen Formel I gemäß Anspruch 1.
- 20 7. Verwendung der 7-Aminotriazolopyrimidine der allgemeinen For-
mel I gemäß Anspruch 1 zur Herstellung eines zur Bekämpfung
von Schadpilzen geeigneten Mittels.
- 25 8. Verfahren zur Bekämpfung von Schadpilzen, dadurch gekenn-
zeichnet, daß man die Pilze oder die vor Pilzbefall zu
schützenden Materialien, Pflanzen, den Boden oder Saatgüter
mit einer wirksamen Menge der 7-Aminotriazolopyrimidine der
allgemeinen Formel I gemäß Anspruch 1 behandelt.

30

35

40

45

INTERNATIONAL SEARCH REPORT

Internal	Application No
PCT/EP 02/07893	

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 A01N43/90 C07D487/04 // (C07D487/04, 249:00, 239:00)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 A01N C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 613 900 A (SHELL INT RESEARCH) 7 September 1994 (1994-09-07) abstract; claim 1	1-9
X	US 5 612 345 A (BECHER HEINZ-MANFRED ET AL) 18 March 1997 (1997-03-18) examples 32,33,51,52	5
X	WO 94 20501 A (SHELL INT RESEARCH ;PEES KLAUS JUERGEN (DE); BECHER HEINZ MANFRED) 15 September 1994 (1994-09-15) examples 32,33,51,52	5

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

1 October 2002

Date of mailing of the international search report

09/10/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Fritz, M

INTERNATIONAL SEARCH REPORT

Interr	Aplication No
PCT/EP 02/07893	

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
EP 0613900	A	07-09-1994		EP 0613900 A1		07-09-1994
				AT 153025 T		15-05-1997
				AU 672267 B2		26-09-1996
				AU 5633294 A		08-09-1994
				BG 61647 B1		27-02-1998
				BG 98637 A		31-01-1995
				BR 9400808 A		01-11-1994
				CA 2116946 A1		05-09-1994
				CN 1094407 A		02-11-1994
				DE 69403119 D1		19-06-1997
				DE 69403119 T2		28-08-1997
				DK 613900 T3		23-06-1997
				ES 2101429 T3		01-07-1997
				GR 3023587 T3		29-08-1997
				HK 1001054 A1		22-05-1998
				HU 68050 A2		29-05-1995
				IL 108731 A		18-03-1997
				JP 7002861 A		06-01-1995
				NZ 250955 A		27-04-1995
				OA 9891 A		15-09-1994
				RO 112869 B1		30-01-1998
				RU 2126408 C1		20-02-1999
				SG 48897 A1		18-05-1998
				US 5756509 A		26-05-1998
				ZA 9401484 A		10-11-1994
US 5612345	A	18-03-1997		NONE		
WO 9420501	A	15-09-1994		AT 159722 T		15-11-1997
				AU 690899 B2		07-05-1998
				AU 6258094 A		26-09-1994
				BR 9405988 A		26-12-1995
				CA 2157293 A1		15-09-1994
				CN 1119015 A , B		20-03-1996
				CZ 9502233 A3		17-01-1996
				DE 69406538 D1		04-12-1997
				DK 699200 T3		20-07-1998
				WO 9420501 A1		15-09-1994
				EP 0699200 A1		06-03-1996
				HK 1004332 A1		20-11-1998
				HU 73163 A2		28-06-1996
				IL 108747 A		12-03-1999
				JP 8507505 T		13-08-1996
				NZ 262729 A		26-01-1996
				PL 310467 A1		11-12-1995
				RU 2130459 C1		20-05-1999
				SG 48860 A1		18-05-1998
				SK 106895 A3		05-06-1996
				US 5854252 A		29-12-1998
				ZA 9401485 A		10-11-1994

INTERNATIONALER RECHERCHENBERICHT

Intern	Ktenzeichen
PCT/EP 02/07893	

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 A01N43/90 C07D487/04 // (C07D487/04, 249:00, 239:00)

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprästoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 A01N C07D

Recherchierte aber nicht zum Mindestprästoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 0 613 900 A (SHELL INT RESEARCH) 7. September 1994 (1994-09-07) Zusammenfassung; Anspruch 1 ---	1-9
X	US 5 612 345 A (BECHER HEINZ-MANFRED ET AL) 18. März 1997 (1997-03-18) Beispiele 32,33,51,52 ---	5
X	WO 94 20501 A (SHELL INT RESEARCH ;PEES KLAUS JUERGEN (DE); BECHER HEINZ MANFRED) 15. September 1994 (1994-09-15) Beispiele 32,33,51,52 ---	5

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

T Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

Y Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
1. Oktober 2002	09/10/2002
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl Fax (+31-70) 340-3016	Bevollmächtigter Bediensteter Fritz, M

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internat.	Aktenzeichen
PCT/EP 02/07893	

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0613900	A	07-09-1994	EP 0613900 A1 AT 153025 T 15-05-1997 AU 672267 B2 26-09-1996 AU 5633294 A 08-09-1994 BG 61647 B1 27-02-1998 BG 98637 A 31-01-1995 BR 9400808 A 01-11-1994 CA 2116946 A1 05-09-1994 CN 1094407 A 02-11-1994 DE 69403119 D1 19-06-1997 DE 69403119 T2 28-08-1997 DK 613900 T3 23-06-1997 ES 2101429 T3 01-07-1997 GR 3023587 T3 29-08-1997 HK 1001054 A1 22-05-1998 HU 68050 A2 29-05-1995 IL 108731 A 18-03-1997 JP 7002861 A 06-01-1995 NZ 250955 A 27-04-1995 OA 9891 A 15-09-1994 RO 112869 B1 30-01-1998 RU 2126408 C1 20-02-1999 SG 48897 A1 18-05-1998 US 5756509 A 26-05-1998 ZA 9401484 A 10-11-1994	
US 5612345	A	18-03-1997	KEINE	
WO 9420501	A	15-09-1994	AT 159722 T 15-11-1997 AU 690899 B2 07-05-1998 AU 6258094 A 26-09-1994 BR 9405988 A 26-12-1995 CA 2157293 A1 15-09-1994 CN 1119015 A ,B 20-03-1996 CZ 9502233 A3 17-01-1996 DE 69406538 D1 04-12-1997 DK 699200 T3 20-07-1998 WO 9420501 A1 15-09-1994 EP 0699200 A1 06-03-1996 HK 1004332 A1 20-11-1998 HU 73163 A2 28-06-1996 IL 108747 A 12-03-1999 JP 8507505 T 13-08-1996 NZ 262729 A 26-01-1996 PL 310467 A1 11-12-1995 RU 2130459 C1 20-05-1999 SG 48860 -A1 18-05-1998 SK 106895 A3 05-06-1996 US 5854252 A 29-12-1998 ZA 9401485 A 10-11-1994	