Assignment 5

Gui Wenxuan, 2016302580142 ${\rm April}\ 19,\ 2019$

1 Problem1 and 2

Looking at Figure 5.3, enumerate the paths from y to u that do not contain any loops

And repeat Problem P1 for paths from x to z, z to u, and z to w.

Figure 5.3 ◆ Abstract graph model of a computer network

Figure 1: Figure 5.3

Solution:

1. y to u

Figure 2: y to u

2. x to z

Figure 3: x to z

3. z to u

Figure 4: z to u

4. z to w

Figure 5: z to w

Consider the following network. With the indicated link costs, use Dijkstra's shortest-path algorithm to compute the shortest path from x to all network nodes. Show how the algorithm works by computing a table similar to Table 5.1.

Figure 6: Problem3

Solution:

step	N'	D(v),p(v)	D(w),p(w)	D(y),p(y)	D(z),p(z)	D(t),p(t)	$\overline{D(u),p(u)}$
0	X	3,x	6,x	6,x	8,x	max	max
1	xv		$_{6,x}$	$_{6,x}$	8,x	$_{7,\mathrm{v}}$	$_{6,\mathrm{v}}$
2	xvu		$_{6,x}$	$_{6,x}$	8,x	$_{7,\mathrm{v}}$	
3	xvuw			$_{6,x}$	8,x	$_{7,\mathrm{v}}$	
4	xvuwy				8,x	$_{7,\mathrm{v}}$	
5	xvuwyt				8,x		
6	xvuwytz						

Consider the network shown below, and assume that each node initially knows the costs to each of its neighbors. Consider the distance-vector algo- rithm and show the distance table entries at node z.

Figure 7: Problem5

Solution:

destination	hit	cost
X		2
У	X	5
u	X-V	6
v	X	5

Table 1: TableCaption

What is the message complexity of LS routing algorithm?

Solution: We have seen that LS requires each node to know the cost of each link in the network. This requires O(|N| |E|) messages to be sent. Also, whenever a link cost changes, the new link cost must be sent to all nodes. With n nodes, with an average of l links/node, each node sends O(nl). Total messages $O(n^2l)$

Consider the network shown below. Suppose AS3 and AS2 are running OSPF for their intra-AS routing protocol. Suppose AS1 and AS4 are running RIP for their intra-AS routing protocol. Suppose eBGP and iBGP are used for the inter-AS routing protocol. Initially suppose there is no physical link between AS2 and AS4.

- a. Router 3c learns about prefix x from which routing protocol: OSPF, RIP, eBGP, or iBGP?
- b. Router 3a learns about x from which routing protocol?
- c. Router 1c learns about x from which routing protocol?
- d. Router 1d learns about x from which routing protocol?

Figure 8: Problem14

Solution:

- 1. eBGP because 3c spans two ASs
- 2. iBGP because 3a learns about x from 3c, they are in the same AS.
- 3. eBGP
- 4. iBGP because 1a and 1b are in the same AS and 1d is between them