FISEVIER

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

Left division in the free left distributive algebra on one generator

Richard Laver^a, Sheila K. Miller^{b,c,*}

- ^a Department of Mathematics, Campus Box 395, University of Colorado, Boulder, CO 80309, United States
- ^b University of Colorado, Boulder, United States
- ^c Department of Mathematical Sciences, MADN-MATH, United States Military Academy, 646 Swift Road, West Point, NY 10996, United States

ARTICLE INFO

Article history: Received 14 January 2009 Received in revised form 31 March 2010 Available online 7 June 2010 Communicated by C.A. Weibel

MSC: 08-xx: 06-xx: 20F36: 03E55

ABSTRACT

Let \mathcal{A} be the free algebra on one generator satisfying the left distributive law a(bc) = (ab)(ac). Using a division algorithm for elements of an extension \mathcal{P} of \mathcal{A} , we prove some facts about left division in \mathcal{A} , one consequence of which is a conjecture of J. Moody: If $a, b, c, d \in \mathcal{A}$, ab = cd, a and b have no common left divisors, and c and d have no common left divisors. then a = c and b = d.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A left distributive algebra (LD) is a set L together with a binary operation \cdot on L satisfying the left distributive law: $a \cdot (b \cdot c) = (a \cdot b) \cdot (a \cdot c)$. That is, every left translation is a homomorphism of (L, \cdot) . Examples of LD's are group conjugation (where G is a group with operation * and $g \cdot h = g * h * g^{-1}$) and the weighted mean (on, e.g., the complex numbers): for fixed p, let p is p if p if p if p is p if p if p if p is p if p is p if p is p if p if p is p if p is p if p if p is p if p is p if p is p if p if p is p if p if p is p if p is p if p is p if p is p.

In the two examples above (with $p \neq 1$ in the second) left translation is in fact an automorphism of the algebra. Brieskorn [1] calls such LD's automorphic sets, and gives a number of other examples; see also [9]. The braid groups act on direct products of an automorphic set. Namely for $2 \leq N \leq \infty$ let B_N be the braid group on N strands: B_N is given by generators $\sigma_1, \sigma_2, \ldots, \sigma_i, \ldots (i < N)$ subject to the conditions $\sigma_i \sigma_j = \sigma_j \sigma_i$ when |i - j| > 1 and $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$ when |i - j| = 1. Given an automorphic set (L, \cdot) , then for $2 \leq N \leq \infty$, B_N 's action on L^N is given by

$$(\langle l_0,\ldots,l_{i-1},l_i,\ldots,l_i,\ldots\rangle_{i\leq N})^{\sigma_j}=\langle l_0,\ldots,l_{i-1}l_i,l_{i-1},\ldots,l_i,\ldots\rangle_{i\leq N}.$$

This paper is about a different type of LD—the free LD's, in particular the free left distributive algebra \mathcal{A} on one generator x. Namely, for A = the set of all terms in one generator x and one binary operation, $\mathcal{A} = A/\equiv_{LD}$, where, for $u, v \in A$, $u \equiv_{LD} v$ if v can be obtained from u by a series of substitutions of the form $a(bc) \leftrightarrow (ab)(ac)$. No automorphic set can be free; moreover the two examples above are idempotent (for all a, aa = a) and in a free LD the generators clearly aren't idempotent and indeed (see Theorem 9 below) there are no idempotent elements.

The question arose whether \mathcal{A} has a natural representation. The first example, the algebra generated by a nontrivial elementary embedding of a rank into itself, is due to Laver [12]. That such embeddings exist is a very strong large cardinal axiom, so the algebra can't be proved to exist from the usual axioms of set theory (ZFC). Subsequently Dehornoy [5] found, in ZFC, a representation of \mathcal{A} by a binary operation on a subset of \mathcal{B}_{∞} .

in ZFC, a representation of \mathcal{A} by a binary operation on a subset of B_{∞} . Order \mathcal{A} by iterated left division: $a <_L b$ if and only if there exist $b_1, b_2, \ldots, b_n \in \mathcal{A}$ such that $b = ab_1b_2 \cdots b_n$. Dehornoy's and Laver's proofs involved showing that $<_L$ is a linear ordering of \mathcal{A} [3,6,12]. The ordering satisfies $ca <_L cb$ if and only

E-mail addresses: laver@euclid.colorado.edu (R. Laver), sheila.miller@colorado.edu (S.K. Miller).

^{*} Corresponding author at: Department of Mathematical Sciences, MADN-MATH, United States Military Academy, 646 Swift Road, West Point, NY 10996, United States.

if $a <_L b$, thus $\mathcal A$ satisfies left cancellation: ca = cb implies a = b. Dehornoy [5], weakening the condition on (L, \cdot) from "automorphic set" to "left cancellative LD", then showed that B_N partially acts (as above) on L^N —for $\alpha \in B_N \stackrel{?}{l}^{\alpha}$ is uniquely defined when it exists for some expression for α , but, e.g., $\stackrel{?}{l}^{\alpha_i^{-1}}$ need not exist. He then showed that this action plus the linearity of $<_L$ on $\mathcal A$ induces a linear ordering < of B_∞ , the Dehornoy ordering:

for $\alpha, \beta \in B_{\infty}, \alpha < \beta$ if and only if for some $N < \infty$, there is an $\overrightarrow{l} \in \mathcal{A}^N$ with $\overrightarrow{l}^{\alpha}$ lexicographically less than $\overrightarrow{l}^{\beta}$ with respect to $<_L$.

Among the open questions about A and its relation to the B_N 's is the following conjecture: for each $a \in A$, the set of left divisors of a is well ordered under $<_L$. For a related conjecture about braids, see Section 3. In this paper we prove some facts about left division in A; a consequence of them is the one generator case of a conjecture of A. Moody (Theorem 25):

If $a, b, c, d \in A$, ab = cd, a and b have no common left divisors, and c and d have no common left divisors, then a = c and b = d.

The proof gives that a is the $<_L$ -least left divisor of w (which occurs if, e.g., the well ordering conjecture is true) if and only if, writing w=ab, a and b have no common left divisors.

We assume familiarity with LD algebras (see [5,6,12,13,15]). In Section 2 we give a summary of the basic results about \mathcal{A} and an extension \mathcal{P} of \mathcal{A} ; \mathcal{P} is the site of a division algorithm (which is the main tool of Sections 3 and 4). The algorithm yields, for $p <_L q$, a unique "normal" representation of q by a term whose leftmost member is p. In Section 3 left divisors are discussed, and a result is proved about them which is used in Section 4. In Section 4 the main results are proved by controlling the length of normal sequences. Section 5 considers the question of extending from one generator to many generators.

2. Summary of basic results about $\mathcal A$ and $\mathcal P$

In the first part of this section we summarize the results leading up to the linear ordering, $<_L$, of A and P.

Definition 1. For $u, v \in A$, write $u \to^* v$ if v can be obtained from u by replacing a subterm a(bc) of u with (ab)(ac). Write $u \to v$ if there exist $u_0, \ldots, u_n \in A$ such that $u = u_0 \to^* u_1 \to^* \cdots \to^* u_n = v$.

Theorem 2 (Confluence (Dehornoy [5])). A is confluent. That is, given $u, v \in A$, $u \equiv_{LD} v$ if and only if $\exists w \in A$ such that $u \to w$ and $v \to w$.

As mentioned above, the division algorithm (Theorem 12) takes place not in $\mathcal A$ but in an extension $\mathcal P$ of $\mathcal A$. Our basic facts will be in the setting of $\mathcal P$. To define $\mathcal P$, add a composition symbol, \circ , to the language and let Σ be the following set of identities in the language $\{\cdot, \circ\}$:

```
(a \circ b) \circ c = a \circ (b \circ c), (a \circ b)c = a(bc), a(b \circ c) = ab \circ ac, a \circ b = ab \circ a.
```

The first two identities are the normal properties of composition. The second and fourth identities give left distributivity as follows: $a(bc) = (a \circ b)c = (ab \circ a)c = (ab)(ac)$. The third identity gives that left translation is still a homomorphism of the algebra. Examples of algebras satisfying Σ are groups, where \cdot is conjugation and \circ is the group operation, and the algebra of nontrivial elementary embeddings $j: V_{\lambda} \to V_{\lambda}$ (see below).

Let $\mathcal P$ be the free algebra on one generator satisfying the laws of Σ . Namely let P be the collection of all terms, in the language $\{\cdot, \circ\}$, in one generator x; then $\mathcal P = P/\equiv_\Sigma$. $\mathcal P$ serves as a type of completion of $\mathcal A$, adding $<_L$ -least upper bounds which are necessary for the division algorithm. Also, the addition of a composition operation facilitates the expression of connections with the braid groups.

Definition 3. For $p \in \mathcal{P}$, write $p = r_0 r_1 \cdots r_{n-1} * r_n$ to mean that either $p = r_0 r_1 \cdots r_{n-1} r_n$ or $p = r_0 r_1 \cdots r_{n-1} \circ r_n$.

Definition 4. For $p, q \in \mathcal{P}$, $p <_L q$ if and only if there exist $r_1, \ldots, r_n \in \mathcal{P}$ such that $q = pr_1 \cdots r_{n-1} * r_n$.

Lemma 5. For $p, q, r \in \mathcal{P}$, if $q <_L r$, then $pq <_L p \circ q <_L pr$.

Proof. We have $pq <_L pq \circ p = p \circ q$ and, for $r = qs_1s_2 \cdots s_{n-1} * s_n$, $pr = (p \circ q)s_1(ps_2) \cdots (ps_{n-1}) * (ps_n)$. \square

Fact 6. Every $a \in A$ is uniquely expressible in the form $a_0(a_1(a_2 \cdots (a_n x)))$.

Lemma 7. Every $p \in P$ is Σ -equivalent to an expression of the form $a_0 \circ a_1 \circ \cdots \circ a_n$, where each $a_i \in A$ and $n = n_p$ is unique.

Proof. The equivalence is routine. To see the uniqueness of n_p , let, for $p \in P$, #p be the number of essential compositions in p: #x = 0, #uv = #v, #uv = #u + #v + 1. Then #uv = #uv + #uv + #uv = #uv + #uv + #uv = #uv + #u

Note that #u = 0 if and only if u is Σ -equivalent to a term in A.

Theorem 8 (*Laver* [12, *Lemmas 1–3*], *Dehornoy* [6, *Sections VI: 2, 3*]).

(i) For $a_0, a_1, \ldots, a_n, b_0, b_1, \ldots, b_n \in A$, $a_0 \circ a_1 \circ \cdots \circ a_n \equiv_{\Sigma} b_0 \circ b_1 \circ \cdots \circ b_n$ if and only if $a_0(a_1(a_2 \cdots (a_n x))) \equiv_{LD} b_0(b_1(b_2 \cdots (b_n x)))$.

- (ii) Σ is a conservative extension of {LD}, i.e. for $a, b \in A$, $a \equiv_{LD} b \Leftrightarrow a \equiv_{\Sigma} b$. Thus A is a subalgebra of (\mathcal{P}, \cdot) . Moreover, for $a, b \in A$, $a <_{l} b$ via the LD law if and only if $a <_{l} b$ via Σ .
- (iii) If $a_0 \circ a_1 \circ \cdots \circ a_n = b_0 \circ b_1 \circ \cdots \circ b_n$, each $a_i, b_i \in \mathcal{A}$, then for some $\alpha \in B_{n+1}$, $\langle a_0, a_1, \ldots, a_n \rangle^{\alpha} = \langle b_0, b_1, \ldots, b_n \rangle$.

Theorem 9 (Dehornoy [6, Proposition 6.1], Laver [12, Theorem 28]).

- (i) \mathcal{P} is linearly ordered by $<_L$.
- (ii) For $p, q \in \mathcal{P}$, $pq = pr \Leftrightarrow q = r$, $pq <_L pr \Leftrightarrow q <_L r$.

The proofs of Theorem 9(i) in [6,12] have two parts: connectivity ($p \le_L q$ or $q \le_L p$) and irreflexivity ($p \ne_L p$). For irreflexivity it suffices to show that there exists an irreflexive LD; Laver [12] showed that the algebra of all nontrivial elementary embeddings $j: V_\lambda \to V_\lambda$, λ of cofinality ω , under the application operation, is irreflexive under $<_L$. (Application of embeddings is defined by: $jk = \bigcup_{\alpha < \lambda} j(k \cap V_\alpha)$. It is seen that jk is itself an elementary embedding and that the operation is left distributive. Some other facts about this algebra are in [14].) Subsequently Dehornoy [5] showed within ZFC that there is an irreflexive left distributive operation defined on B_∞ . Larue [10] then found a shorter proof of the irreflexivity of Dehornoy's operation, and since then a number of other proofs of irreflexivity have been found (see [7]).

For connectivity, Dehornoy used the confluence theorem. Laver used the division algorithm. In the remainder of this section we state the division algorithm for pairs $p <_L q$ and its equivalent formulation stating that there is a "p-normal sequence" representing q.

Given $p, q \in \mathcal{P}$ with $p <_L q$, the algorithm proceeds as follows. The first assertion of the theorem is that there is a greatest r_1 such that $pr_1 \leq_L q$. If $pr_1 = q$ or if $p \circ r_1 = q$, the algorithm terminates. Otherwise, there is a greatest r_2 such that $pr_1r_2 \leq_L q$. Theorem 12 asserts that after a finite number of steps this algorithm ends with $pr_1r_2 \cdots r_{n-1} * r_n = q$.

The term $pr_1r_2 \cdots r_{n-1} * r_n$ described in the algorithm satisfies a normality condition, where

Definition 10. The representation of a term $w = p_0 p_1 \cdots p_{n-1} * p_n$ in \mathcal{P} is said to be p_0 -**normal** with respect to $<_L$ if $p_2 \le_L p_0, p_3 \le_L p_0 p_1, \ldots, p_i \le_L p_0 p_1 \cdots p_{n-2}$ for all i such that $2 \le i \le n$, and if $n \ge 2$ and $* = \circ$, then $p_n <_L p_0 p_1 \cdots p_{n-2}$.

Note that $w = xx(x \circ x)x$ is normal if $p_0 = xx$ but not if $p_0 = x$, i.e. w is xx-normal but not x-normal. The strict $<_L$ condition in the last line of Definition 10 is for uniqueness; if $n \ge 2$, $w = p_0p_1p_2\cdots p_{n-2}p_{n-1}\circ p_n$ and $p_n = p_0p_1p_2\cdots p_{n-2}$, then $w = p_0p_1p_2\cdots p_{n-2}\circ p_{n-1}$ and the algorithm already terminated.

p-normal terms can be compared lexicographically as follows.

Theorem 11 ([13]). Let $w = pw_1 \cdots w_n * w_{n+1}$, $u = pu_1 \cdots u_m * u_{m+1}$ be p-normal terms. Then $w <_L u$ if and only if

- (1) For some i $w_i \neq u_i$; and for the least such i, $w_i <_L u_i$, or
- (2) For all $i \leq \min\{m+1, n+1\}$, $w_i = u_i$ and $*_w = \cdot$, and either n < m or $(n \geq m$ and $*_u = \circ)$.

Theorem 12 (Division Algorithm). If $p, w \in \mathcal{P}$, $p <_L w$, then there is a (unique) p-normal term $pp_1 \dots p_{n-1} * p_n$ representing w

The original proof of this theorem is due to Laver [12,13] and utilizes results on another normal form. For a direct proof, see [19] or [16].

Definition 13.

- (i) DF ("division form") is the set of *x*-normal terms, $xa_1a_2 \dots a_{n-1} * a_n$. For $w \in \mathcal{P}$, let |w| be the member of DF that represents w.
- (ii) More generally, for $p \in \mathcal{P}$, p-division form is defined as follows. For $w \in \mathcal{P}$, let $|w|^p$ be the p-normal term representing w if $p \leq_L w$, and the x-normal term representing w if $w <_L p$. Then p-DF = $\{|w|^p : w \in \mathcal{P}\}$.

Thus. DF = x-DF.

Definition 14. The sequence of iterates of $\langle a, b \rangle$ is

```
a, ab, aba, aba(ab), aba(ab)(aba), ...,
```

i.e.,
$$I_1 = a$$
, $I_2 = ab$, $I_{n+2} = I_{n+1}I_n$.

The iterates of $\langle a,b\rangle$ are a-normal, each $I_n <_L I_{n+1}$, each $I_{n+1} \circ I_n = a \circ b$, and it is a consequence of Theorems 9, 11 and 12 that $a \circ b$ is the $<_L$ -least upper bound of the set of I_n 's.

For completeness we mention another consequence of the way Theorem 12 was proved (which won't be used in the sequel). Part (i) of Theorem 15 says that every $p \in \mathcal{P}$ can be put into hereditary division form, and (ii) gives a related well-founded partial ordering on \mathcal{P} which has been useful in inductive proofs about \mathcal{P} .

Theorem 15.

- (i) For every p in \mathcal{P} there is a (unique) term w in P representing p such that every subterm of w is x-normal.
- (ii) Let R be the binary relation on \mathcal{P} given by the following rules; if $|w| = xa_1a_2 \cdots a_{n-1} * a_n$ then $xa_1a_2 \cdots a_{n-1}Rw$, a_nRw , and if $* = \circ$, each iterate $I_k(xa_1a_2 \cdots a_{n-1}, a_n)Rw$. Then the transitivization of R is a well-founded partial ordering of \mathcal{P} .

Similar results hold for *p*-division form.

3. Left divisors

A stronger condition than $p <_L q$ is that p is a left divisor of q. In this section, after some basics about left division, we state a conjecture about well-orderings in the braid groups and derive from the division algorithm that if p left divides a composition it left divides all the composands.

Definition 16.

```
(i) For p, q \in \mathcal{P}, p \mid q \Leftrightarrow \exists r(pr = q).

(ii) For q \in \mathcal{P}, D_q = \{p \in \mathcal{P} : p \mid q\}.
```

Let $E_q = \{p \in \mathcal{P} : p <_L q\}$. Then E_q is linearly ordered by $<_L$ since \mathcal{P} is, but E_q need not be well-ordered by $<_L$. For example suppose q is of the form r(st). We have $r(st) = (r \circ s)t$, and $r \circ s = rs \circ r = rsr \circ rs = rsr(rs) \circ rsr$. Thus $rsr(rs) <_L r \circ s <_L r(st)$, and rsr(rs) is of the form R(ST). Continuing in this manner, an infinite descending sequence from E_q is obtained.

The question of whether every D_q ($q \in \mathcal{P}$) is well-ordered under $<_L$ reduces to the version given in the introduction: for any $a \in \mathcal{A}$, $D_a \cap \mathcal{A}$ is well-ordered (see Theorem 26 below).

Given $a \in \mathcal{A}$, if D_a is not well-ordered, then by Theorems 12, 24 and 26, there is an infinite descending sequence constructed in a natural way, namely $a = b_0c_0 = b_1c_1 = b_2c_2 = \cdots$, where $b_{i+1}c_{i+1} = b_{i+1}(u_{i+1}v_{i+1})$, and $b_i = b_{i+1}u_{i+1}$, $c_i = b_{i+1}v_{i+1}$.

The well-ordering of the D_q 's is a consequence of the following conjecture:

If $a_i \in \mathcal{A}$ (i < n) then $\{\alpha \in B_n : \langle a_0, a_1, \dots a_{n-1} \rangle^{\alpha} \text{ exists} \}$ is well-ordered under the Dehornoy ordering. See [15,11,2,8] for results on this problem.

Lemma 17. If $p, w \in \mathcal{P}$, $p \mid w$ then $|w|^p = pv$ for some v.

```
Lemma 18. Let p, s, t \in \mathcal{P}.
```

```
(i) If p \mid s and p \mid t, then p \mid st.
```

(ii) If $p \mid s$ and $p \mid st$, then $p \mid t$.

Proof. (i) Trivial.

```
(ii) Given s = pr, st = pu. Suppose p \nmid t.
```

Case 1: $t \leq_L p$. Then st = prt is p-normal. This implies $p \nmid st$ by Lemma 17. Contradiction.

Case 2: $t >_L p$. Then, since $p \nmid t$, $|t|^p = pt_1 \cdots t_{k-1} * t_k$ where either $k \geq 2$ or k = 1 and $k = \infty$.

Case 2.1: $|t|^p = pt_1 \cdots t_{k-1}t_k, k > 2$.

```
st = pr(pt_1 \cdots t_{k-1}t_k)
= pr(pt_1t_2)(prt_3) \cdots (prt_k)
= (pr \circ pt_1)t_2(prt_3) \cdots (prt_k)
= p(r \circ t_1)t_2(prt_3) \cdots (prt_k).
```

This term is *p*-normal, thus is $|st|^p$. This implies that $p \nmid st$ by Lemma 17. Contradiction.

Case 2.2: $|t|^p = pt_1 \cdots t_{k-1} \circ t_k$. For $k \ge 2$, the argument is the same as in Case 2.1. Consider then the case k = 1.

```
st = pr(p \circ t_1)
= pr(pt_1p \circ pt_1)
= pr(pt_1p) \circ pr(pt_1)
= (pr \circ pt_1)p \circ p(rt_1)
= p(r \circ t_1)p \circ p(rt_1).
```

The final term is *p*-normal, thus is $|st|^p$. By Lemma 17 we have $p \nmid st$, a contradiction. \Box

The analogous lemma for composition has a stronger conclusion.

```
Lemma 19. Given p, r_0, \ldots, r_n \in \mathcal{P}, if p \mid r_0 \circ r_1 \circ \cdots \circ r_n then p \mid r_i for all i.
```

Proof. Each $r \in \mathcal{P}$ is a composition of members of \mathcal{A} , so we may assume each $r_i \in \mathcal{A}$. Since, by Lemma 7, the number of composands from \mathcal{A} making up $r \in \mathcal{P}$ is an invariant, there exist $a_0, a_1, \ldots, a_n \in \mathcal{A}$ such that $r_0 \circ r_1 \circ \cdots \circ r_n = p(a_0 \circ \cdots \circ a_n) = pa_0 \circ \cdots \circ pa_n$.

Then by Theorem 8 $\langle pa_0, pa_1, \ldots, pa_n \rangle^{\alpha} = \langle r_0, r_1, \ldots, r_n \rangle$ for some $\alpha \in B_{n+1}$. By Lemma 18 we have $p \mid u$ and $p \mid v$ if and only if $p \mid uv$ and $p \mid u$. Therefore p divides each member of $\langle u_0, u_1, \ldots, u_n \rangle$ if and only if p divides every member of $\langle u_0, u_1, \ldots, u_n \rangle^{\pm \sigma_i}$. Thus p divides every member of $\langle pa_0, pa_1, \ldots, pa_n \rangle^{\alpha}$, giving the lemma. \square

4. Proofs of the main theorems

In this section the division algorithm is used to get lower bounds on the length of some normal sequences, from which we derive that if $a, b, c, d \in \mathcal{A}$, ab = cd, and $a <_L c$, then $\langle a, b \rangle$ can be transformed to $\langle c, d \rangle$ by a sequence of forward applications of the LD law.

Definition 20. If $w = p_0 p_1 \cdots p_{n-1} * p_n$ is p_0 -normal, define length(w) = n + 1.

For $w, z, v \in \mathcal{P}$, the length of $|w|^z$ can be greater than the length of $|w|^{zv}$. The next theorem gives, under certain conditions, a bound below which the length cannot collapse in passage from z-DF to zv-DF.

Theorem 21. Suppose $|w|^z = zs_1s_2 \cdots s_{m-1} * s_m$, $v <_L s_1$, $|s_1|^v = vt_1 \cdots t_{n-1} * t_n$ (with n > 1 if $*_{s_1} = \circ$; i.e., $s_1 \neq v \circ t_1$). Then $|w|^{2v}$ begins with

$$(zv)(zt_1)\cdots(zt_{n-1})$$

and if $*_{s_1} = \cdot$, $|w|^{zv}$ begins with

$$(zv)(zt_1)\cdots(zt_{n-1})(zt_n).$$

Proof. $w = [zv(zt_1)\cdots(zt_{n-1})*(zt_n)]s_2\cdots s_{m-1}*s_m$, where the expression in brackets is zv-normal. We have that $n \ge 1$, since $v <_t s_1$.

Case 1: $*_{s_1} = \cdot$. Then $w = zv(zt_1) \cdot \cdot \cdot (zt_{n-1})(zt_n)s_2 \cdot \cdot \cdot s_{m-1} * s_m$ is zv-normal and satisfies the conclusion.

Case 2:
$$*_{s_1} = \circ$$
. So $w = [zv(zt_1)\cdots(zt_{n-1})\circ(zt_n)]s_2\cdots s_{m-1}*s_m$.

We have:

(i)
$$(zv)(zt_1)\cdots(zt_{n-1})$$

is zv-normal and $<_L w$.

We find a zv-normal term beginning with (i) which is an upper bound for w. Since $|w|^z = zs_1s_2\cdots s_{m-1}*s_m$ is z-normal, by Theorem 11 we have $w \le_L z \circ s_1$. Computing $|z \circ s_1|^{zv}$, we have $z \circ s_1 = zs_1 \circ z = ((zv)(zt_1)\cdots(zt_{n-1})\circ(zt_n))\circ z$, which is equal to

(ii)
$$(zv)(zt_1)\cdots(zt_{n-1})\circ((zt_n)\circ z)$$
,

which we claim is zv-normal. We are to show that $zt_n \circ z <_L (zv)(zt_1) \cdots (zt_{n-2})$ (recall n > 1). Given $t_n <_L vt_1 \cdots t_{n-2}$, then $vt_1 \cdots t_{n-2} = t_n c_1 c_2 \cdots c_{k-1} * c_k$. Then $z(vt_1 \cdots t_{n-2}) = (zt_n)(zc_1) \cdots >_L zt_n \circ z$. Thus (ii) is zv-normal.

So (i) and (ii) are zv-normal terms with (i) an initial segment of (ii), such that (i) $<_L w \le_L$ (ii). Thus by Theorem 11, $|w|^{zv}$ begins with (i).

This proves the theorem. \Box

Theorem 22. Suppose $p \in \mathcal{P}$, $a, b \in \mathcal{A}$, and suppose that $pa = (pu_1u_2 \cdots u_n)b$, where $pu_1u_2 \cdots u_n$ is p-normal. Then $u_1 \mid a$.

Proof. Suppose $u_1 \nmid a$. We claim that $|pa|^{pu_1 \cdots u_i}$ has length greater than or equal to three for all $i \leq n$. This will be a contradiction, since length($|pa|^{pu_1 \cdots u_n}$) = 2. The cases i = 1, 2 are first checked separately.

We have $u_1 <_L a$ since $pu_1 \cdots u_n <_L pa$ and both are p-normal. Thus $|a|^{u_1} = u_1 a_2 \cdots a_{k-1} a_k$, since $a \in A$. Also $k \ge 3$, namely $a \ne u_1$ since $u_1 <_L a$, and $a \ne u_1 u_2$ since $u_1 \nmid a$.

Thus $|pa|^{pu_1} = pu_1(pa_2) \cdots (pa_k)$ has length greater than or equal to 3.

To compute $|pa|^{pu_1u_2}$: by normality of $pu_1 \cdots u_n$ we know that $u_2 \leq_L p$.

Therefore $u_2 <_L pa_2$ which implies that $|pa_2|^{u_2} = u_2t_2\cdots t_{m-1}*t_m$, so

$$pa = pu_1(u_2t_1\cdots t_{m-1}*t_m)(pa_3)\cdots(pa_k)$$

= $[pu_1u_2(pu_1t_1)\cdots(pu_1t_{m-1})*(pu_1t_m)](pa_3)\cdots(pa_k)$

where the expression in brackets is pu_1u_2 -normal.

We claim that the expression in brackets is not $pu_1u_2 \circ pu_1t_1$. Otherwise $pa_2 = u_2 \circ t_1$. By Lemma 19 we would have $p \mid u_2$, but $u_2 \leq_L p$, a contradiction. Thus Theorem 21 (with w = pa, $z = pu_1$, $v = u_2$) gives that $|pa|^{pu_1u_2}$ begins with $(pu_1u_2)(pu_1t_1)$ and, since $k \geq 3$, is $<_L$ -larger than $(pu_1u_2)(pu_1t_1)$. So length($|pa|^{pu_1u_2}) \geq 3$.

Suppose now inductively that $2 \le i < n$ and

$$|pa|^{pu_1u_2\cdots u_i}=(pu_1\cdots u_i)(pu_1\cdots u_{i-1}s)c_3\cdots c_l$$

for some $l \ge 3$ and some s. We have $u_{i+1} \le_L pu_1 \cdots u_{i-1}$, so $u_{i+1} <_L pu_1 \cdots u_{i-1}$ s. So

$$pa = pu_1 \cdots u_i (u_{i+1}t_1 \cdots t_{m-1} * t_m)c_3 \cdots c_l.$$

We claim the expression in parentheses is not $u_{i+1} \circ t_1$. For if $pu_1 \cdots u_{i-1}s = u_{i+1} \circ t_1$, then $pu_1 \cdots u_{i-1} \mid u_{i+1}$ by Lemma 19, but $u_{i+1} \leq_L pu_1 \cdots u_{i-1}$, a contradiction.

Thus, as in the case i=2, Theorem 21 applies. Unlike the case computing $|pa|^{pu_1u_2}$ from $|pa|^{pu_1}$, here $pu_1\cdots u_{i-1}s$ might equal $u_{i+1}t_1$; but also unlike that case there is at least one c_j at the end of $|pa|^{pu_1\cdots u_i}$, so the application of Theorem 21 yields $|pa|^{pu_1\cdots u_{i+1}}=(pu_1\cdots u_iu_{i+1})(pu_1\cdots u_it_1)d_3\cdots d_l$ for some $l\geq 3$. \square

Definition 23. For $p, r \in \mathcal{P}$, a forward application of the LD law on $\langle p, r \rangle$ is a transformation $\langle p, r \rangle \mapsto^* \langle pr_1, pr_2 \rangle$, where $r = r_1 r_2$. Define $\langle p, r \rangle \mapsto \langle u, v \rangle$ if and only if there exists a chain $\langle p, r \rangle \mapsto^* \langle p_0, r_0 \rangle \mapsto^* \langle p_n, r_n \rangle \mapsto^* \langle u, v \rangle$. So if $\langle p, r \rangle \mapsto \langle u, v \rangle$ then pr = uv.

Theorem 24. If $a, b, c, d \in A$, ab = cd and $a <_L c$, then $\langle a, b \rangle \mapsto \langle c, d \rangle$.

Proof. As $a <_L c$ and $c \in \mathcal{A}$, $|c|^a$ is of the form $ac_1c_2 \cdots c_{n-1}c_n$. By Theorem 22, we have $c_1 \mid b$, so $b = c_1b_1$. This gives

```
ab = a(c_1b_1) = ac_1(ab_1) = cd = ac_1 \cdots c_nd.
```

As $ac_1 \cdots c_n$ is a-normal it is also $ac_1 \cdots c_i$ -normal for all i, $1 \le i \le n$. Letting i = 1 Theorem 22 yields that $c_2 \mid ab_1$, so $ab_1 = c_2b_2$. By repeating this process we get:

```
ab = ac_1(ab_1)
= ac_1(c_2b_2)
= ac_1c_2(ac_1b_2)
= ac_1c_2(c_3b_3)
= \vdots
= ac_1c_2\cdots c_{n-1}c_n(ac_1c_2\cdots c_{n-1}b_n),
```

where $ac_1c_2\cdots c_{n-1}c_n=c$ and (by left cancellation) $ac_1c_2\cdots c_{n-1}b_n=d$. \square

The conjecture of Moody for A follows.

Theorem 25. Given $a, b, c, d \in A$, ab = cd, $D_a \cap D_b \cap A = \emptyset = D_c \cap D_d \cap A$, then a = c and b = d.

Proof. If a=c, then by left cancellation b=d. Thus assume for a contradiction that $a \neq c$. Without loss of generality, $a <_L c$.

By Theorem 24, $\langle a,b\rangle \mapsto \langle c,d\rangle$. Thus there exist some u,v in the penultimate step such that $\langle u,v\rangle \mapsto^* \langle c,d\rangle$. So $u\mid c$ and $u\mid d$. Either $u\in A$ or $u=e\circ q$ with $e\in A$, and thus $e\mid c$ and $e\mid d$. In either case $D_c\cap D_d\cap A\neq\emptyset$, a contradiction. \square

5. Concluding remarks

Let \mathcal{A}_{κ} (respectively \mathcal{P}_{κ}) be the free left distributive algebra (respectively the free algebra satisfying Σ) on κ generators. We have that \mathcal{P}_{κ} ($\kappa > 1$) is not linearly ordered by $<_L$ since the generators are not ordered. More generally, say that u and v have a variable clash($u \nsim v$) if and only if there exists some (possibly empty) $w \in \mathcal{P}_{\kappa}$ such that for distinct generators, κ and κ 0, κ 1 and κ 2 u and κ 3 and κ 4 v. Then members of κ 4 with a variable clash are not ordered; in place of the linear ordering we have (see [4,5,15]) quadrichotomy: for κ 4 v κ 5 exactly one of κ 6 v, κ 7 v κ 8 and κ 9 v holds.

The well ordering question for \mathcal{P}_{κ} reduces to the one for \mathcal{A} .

Theorem 26. If for all $a \in A$, $D_a \cap A$ is well ordered under $<_L$, then for all $p \in \mathcal{P}_K$, D_p is well ordered under $<_L$.

Proof. We claim that, for $a \in \mathcal{A}$, if $D_a \cap \mathcal{A}$ is well ordered then D_a is well ordered. It suffices for the claim to show that if $p, q \in \mathcal{P}$ are members of D_a with $p <_L q$ then there's a b in $D_a \cap \mathcal{A}$ with $p \leq_L b \leq_L q$. If $q \notin \mathcal{A}$, write $q = r \circ s$ where $r \in \mathcal{P}$ and $s \in \mathcal{A}$. Then the even iterates $I_{2n}\langle r, s \rangle$ are in \mathcal{A} and their least upper bound is $r \circ s = q$. Pick an n such that $b = I_{2n}\langle r, s \rangle$ is greater than p. Then $a = qc = (r \circ s)c = I_{2n}(I_{2n-1}c) = b(I_{2n-1}c)$. So $b \in D_a \cap \mathcal{A}$ and $p <_L b <_L q$.

Next we claim that if, for all $a \in \mathcal{A}$, $D_a \cap \mathcal{A}$ is well ordered then for all $p \in \mathcal{P}$, D_p is well ordered. Given $p \in \mathcal{P} \setminus \mathcal{A}$, write $p = c \circ s$ with $c \in \mathcal{A}$. By Lemma 19, $D_p \subseteq D_c$. D_c is well ordered by the assumption of the theorem and the first claim. Thus D_p is well ordered.

To prove the theorem, let $p \in \mathcal{P}_{\kappa}$. Thus D_p is linearly ordered by $<_L$ (if not, by quadrichotomy we would have p = qr = q'r' where $q \sim q'$. But then $p \sim p$, contradicting quadrichotomy.). Thus if D_p weren't well ordered there would be a $<_L$ -descending sequence $w_0, w_1, \ldots, w_n, \ldots$ of members of D_p . Let H be the homomorphism from \mathcal{P}_{κ} to \mathcal{P} obtained by sending each generator to x. Then $H(w_0), H(w_1), \ldots, H(w_n), \ldots$ is a $<_L$ -descending sequence of members of $D_{H(p)}$. This contradicts the assumption of the theorem and the second claim. \square

What about an analogue for \mathcal{P}_{κ} of the division algorithm? Let $u \lhd v$ denote that either $u \lhd_{L} v$ or $u \nsim v$. We can generalize the idea of normal terms to \mathcal{P}_{κ} by permitting in the definition of normal sequence the condition $a_{i} \unlhd a_{0}a_{1} \cdots a_{i-2}$ in place of $a_{i} \leq_{L} a_{0}a_{1} \cdots a_{i-2}$. We have that a term in P_{κ} can have at most one normal representation with respect to its leftmost generator [19]. It is not known whether there always is such a representation. In the one generator case, two normal terms can be compared lexicographically to determine their relation under \lhd_{L} . In P_{κ} , however, for a generator, y, there are two y-normal terms between which lexicographic comparison fails.

The conjectured division algorithm above is examined in [19] and shown, in a more complicated way, to prove the conjecture of J. Moody for many generators. See [17–19] for results on these and related topics for many generators.

References

- [1] E. Brieskorn, Automorphic sets and braids and singularities, in: Braids, in: Contemporary Math., vol. 78, American Math. Soc., 1988.
- [2] S. Burckel, The well-ordering on positive braids, Journal of Pure and Applied Algebra 120 (1997) 1–17.
- [3] P. Dehornoy, Sur la structure des gerbes libres, Comptes-rendu Acad Sci Paris (1989) 143-148.
- [4] P. Dehornoy, The adjoint representation of left-distributive structures, Communications in Algebra 20-4 (1992) 1201–1215.
- [5] P. Dehornov, Braid groups and left-distributive structures, Transactions of the American Mathematical Society 345 (1994) 115–150.
- [6] P. Dehornoy, Braids and Self-Distributivity, in: Progress in Mathematics, vol. 192, Birkhäuser, 2000.
- [7] P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Why are Braids Orderable? in: Panoramas et Syntheses, vol. 14, Soc. Math Francais, 2002.
- [8] J. Fromentin, A well-ordering of dual braid monoids, Comptes Rendus Mathematics 346 (2008) 729-734.
- [9] D. Joyce, A classifying invariant of knots: the knot quandle, Journal of Pure and Applied Algebra 23 (1982) 37-65.
- [10] D. Larue, Braid words and irreflexivity, Algebra Universalis 31 (1994) 104–112.
- [11] D. Larue, Left distributive algebras and left distributive idempotent algebras, Ph.D. thesis, University of Colorado, 1994.
- [12] R. Laver, The left-distributive law and the freeness of an elgebra of elementary embeddings, Advances in Mathematics 91 (1992) 209–231.
- [13] R. Laver, A division algorithm for the free left distributive algebra, in: Lecture Notes in Logic 2, Logic Colloquim'90, Springer-Verlag, 1993.
- [14] R. Laver, On the algebra of elementary embeddings of a rank into itself, Advances in Mathematics 110 (1995) 334–346.
- [15] R. Laver, Braid group actions on left distributive structures and well-orderings in the braid groups, Journal of Pure and Applied Algebra 108 (1996) 81–98
- [16] R. Laver, S. Miller, Left distributive algebras and the division algorithm (submitted for publication).
- [17] R. Laver, J. Moody, Well-foundedness conditions connected with left-distributivity, Algebra Univsersalis 27 (2002) 65-68.
- [18] S. Miller, Free left distributive algebras on κ generators (in preparation).
- [19] S. Miller, Free left distributive algebras, Ph.D. Thesis, University of Colorado, Boulder, 2007.