TUTTE POWER SERIES AND TUTTE EVALUATIONS ON THE MODULI SPACE OF METRIC GRAPHS

DAVID HARRY RICHMAN

ABSTRACT. We define a Tutte power seris for a metric graph with arbitrary positive real edge lengths, which recovers the usual Tutte polynomial when all edge lengths are positive integers. We prove that evaluation of the Tutte power series defines a continuous function of the moduli space of metric graphs, under certain constraints on the input parameters. The evaluations give rise to a large family of functions generalizing the function that sends a metric graph to the volume of its graph Jacobian.

1. Introduction

Given a graph G, the Tutte polynomial T(G; x, y) is a two-variable polynomial introduced by Tutte in [16]. Many important graph invariants arise as evaluations of the Tutte polynomial at specific integer parameters x, y. For a comprehensive modern overview of the Tutte polynomial see [2, 6].

The following characterization of the Tutte polynomial was initially introduced by Crapo [5], using the rank generating function of G (see also [6], Definition 3]). Given a connected graph G, the Tutte polynomial of G is

eq:tutte-graph

(1)
$$T(G; x, y) = \sum_{A \subset E(G)} (x - 1)^{h_0(G \setminus A) - 1} (y - 1)^{h_1(G \setminus A)}$$

where $G \setminus A$ denotes the graph with edges in A deleted, and h_0 and h_1 denote the zeroth and first Betti numbers of a topological space. In graph theoretic terms,

$$h_0(G) = \#(\text{connected components of } G),$$
 and $h_1(G) = \#E(G) - \#V(G) + h_0(G).$

The purpose of this paper is to explain that this definition of the Tutte polynomial may be extended meaningfully to a metric graph. As a consequence, evaluation of the Tutte polynomial (for certain real parameters) extends to a continuous function on the moduli space of metric graphs.

1.1. **Statement of results.** Suppose Γ is a metric graph with combinatorial model $\Gamma = (G, \ell)$, where $\ell : E(G) \to \mathbb{R}_{>0}$ assigns a positive length to each edge of G. We define the *Tutte power series* $T^+(\Gamma; u, w)$ of Γ as

eq:tutte-power-series

(2)
$$T^{+}(\Gamma; u, w) = \sum_{A \subset E(G)} \left(\prod_{e_i \in A} \llbracket \ell(e_i) \rrbracket_{1+u} \right) u^{h_0(G \setminus A) - 1} w^{h_1(G \setminus A)}$$

 $^{{\}it Date} \hbox{: v1, March 6, 2023 (Preliminary draft, not for circulation)}.$

This work was partially supported by NSF grant DMS-1600223 and a Rackham Predoctoral Fellowship.

where $[\![\alpha]\!]_{1+u}$ is the formal power series

Note this power series converges for |u| < 1, and in this range satisfies

$$[\![\alpha]\!]_1 = \alpha \quad \text{ and } \quad [\![\alpha]\!]_{1+u} = \frac{(1+u)^\alpha - 1}{u} \quad \text{if } u \neq 0.$$
 Our first main result is that the expression $(\![\![\frac{\text{eq:tutte-power-series}}{2}\!]\!]$ does not depend on the chosen

model (G, ℓ) for the metric graph Γ .

thm:intro-tutte-series

Theorem 1 (Tutte power series). Given a metric graph $\Gamma = (G, \ell)$, the expression $T^+(\Gamma; u, w)$ is a well-defined power series in $\mathbb{R}[[u]][w]$; in particular, $T^+(\Gamma; u, w)$ does not depend on the choice of model (G, ℓ) for Γ .

To prove this result, we show that $T^+(\Gamma; u, w)$ satisfies a familiar deletioncontraction identity.

thm:deletion-contraction

Theorem 2 (Deletion-contraction relation). Given a metric graph $\Gamma = (G, \ell)$ and an edge $e \in E(G)$, which is not a loop, the Tutte power series satisfies

(4)
$$T^{+}(\Gamma; u, w) = [\ell(e)]_{1+u} T^{+}(\Gamma \setminus e; u, w) + T^{+}(\Gamma / e; u, w).$$

1.2. Evaluating Tutte power series. Instead of considering a fixed metric graph Γ , we can vary the metric graph over a natural moduli space. As Γ varies, the value of $T^+(\Gamma; u, w)$ also varies continuously under certain mild assumptions on the parameters (u, w).

Let $\mathcal{M}_{a}^{\text{graph}}$ denote the moduli space of metric graphs of genus g.

thm:tutte-eval-moduli

Theorem 3 (Continuity of Tutte evaluation). Let u and w be fixed (nonnegative?) real numbers, with u > -1. The Tutte evaluation at (u, w),

$$\operatorname{ev}^+(u,w):\Gamma\mapsto T^+(\Gamma;u,w),$$

defines a continuous function $\operatorname{ev}^+(u,w):\mathcal{M}_a^{\operatorname{graph}}\to\mathbb{R}.$ Namely.

(i) (Continuity on cells) for each combinatorial graph G, the Tutte evaluation $ev^+(u,w)$ restricts to a continuous function

$$\operatorname{ev}^+(u,w): \mathbb{R}^{E(G)}_{>0} \to \mathbb{R},$$

where a point in the domain $\in \mathbb{R}^{E(G)}_{>0}$ represents a choice of (positive, real) edge lengths $\ell: E(G) \to \mathbb{R}_{>0}$.

(ii) (Continuity between cells) If u > -1, then as the length of a non-loop edge $e \in$ E(G) approaches zero in the metric graph $\Gamma = (G, \ell)$ while other edge lengths are fixed, the value of ev(u, w) at (G, ℓ) approaches the value of ev(u, w) at the contraction $\Gamma/e = (G/e, \ell|_{E \setminus e})$.

Example 4 (x = 1, y = 1). The Tutte evaluation ev(1,1) on a graph G gives the number of spanning trees. On a metric graph, ev(1,1) gives the volume of the Jacobian of $\Gamma = (G, \ell)$, which can be expressed as a weighted sum of spanning trees of $G \diamondsuit$ [cite a reference] \diamondsuit . The function $\operatorname{ev}(1,1)$ is continuous on $\mathcal{M}_q^{\operatorname{graph}}$, and extends continuously to $\overline{\mathcal{M}_q^{\text{graph}}}$ (where it has value zero on the boundary).

Example 5 (x=0, y=2). The Tutte evaluation ev(0,2) on $\Gamma=(G,\ell)$ gives the number of totally cyclic orientations of Γ . This number does not depend on the edge lengths of Γ ; i.e. ev(0,2) is constant on metric graphs of a fixed combinatorial model G. However, ev(0,2) is not continuous as some edge length approaches 0. Namely, the value of T(G;0,2) generally differs from the value of T(G/e;0,2) on the contraction.

1.3. Tutte power series coefficients. \Diamond Maybe remove this theorem \Diamond

Theorem 6 (Continuity of Tutte coefficient). For fixed indices $i, j \geq 0$, let $coeff(i, j; \Gamma)$ denote the coefficient of $u^i w^j$ in the power series expansion of $T^+(\Gamma; u, w)$. Then the function $\operatorname{coeff}(i,j)$ defines a polynomial(?) function $\mathcal{M}_q^{\operatorname{graph}} \to \mathbb{R}$. \diamond extra assumptions needed? \Diamond

1.4. Previous work. Several authors have investigated the behavior of the Tutte polynomial under the operation of subdividing an edge into multiple edges.

Previous work on *chain polynomials*:

Traldi 13 considers the weighted Tutte polynomial

$$\widetilde{T}^+(G; u, w) = \sum_{A \subset E} \left(\prod_{e \in A} c(e) \right) u^{h_0(G|A)} w^{h_1(G|A)}.$$

The same weighted polynomial was previously studied by Fortuin–Kasteleyn 7, but in harder-to-understand notation for a modern reader.

The essential contribution of this work is to enforce a dependence of the edge weights $(\alpha(e))$ on the polynomial parameter u, namely $\alpha(e) = [\ell(e)]_{1+u}$.

The identities presented in this paper are essentially in the work of Read and Whitehead TT, but with the restriction that edge lengths are positive integers. In their work, edge lengths are called "chain lengths."

Read and Whitehead [II] [I0, II]

Brylawski [3]

Traldi [13, 14, 15]

Sok-potts

Multivariate Tutte polynomial [12] also known as the *Potts-model partition function*. Sokal [12] asks:

Let me conclude by observing that numerous specific evaluations of the Tutte polynomial have been given combinatorial interpretations, as counting some set of objects associated to the graphs G. It would be an interesting project to seek to extend these counting problems to "counting with weights," i.e., to obtain suitably defined univariate or multivariate generating polynomials for the objects in question as specializations of $Z_G(q, v)$ or $Z_G(q, \mathbf{v})$, respectively.

Application: Zeros of Tutte polynomials? Jackson and Sokal [8] Ok and Perrett [9]

1.5. **Notation.** Γ a compact metric graph

G a finite graph, loops and parallel edges allowed, possibly disconnected

E(G) edge set of G

V(G) vertex set of G

 (G,ℓ) a combinatorial model for a metric graph, where

 $\ell: E(G) \to \mathbb{R}_{>0}$ is a length function on edges of G

T(G;x,y) the Tutte polynomial of G $T^+(G;u,w)=T(G;1+u,1+w)$ "additive" centered Tutte polynomial $T^+(\Gamma;u,w)$ the Tutte power series of Γ

2. Background

2.1. q-analogs. For a positive integer ℓ , the q-analog $[\ell]_q$ is defined as the polynomial

$$[\ell]_q = \frac{q^{\ell} - 1}{q - 1} = 1 + q + q^2 + \dots + q^{\ell - 1} \in \mathbb{Z}[q].$$

When ℓ is not an integer, $[\ell]_q$ does not admit a Laurent expansion in the variable q. However, we can obtain a well-defined power series under a change of variable. Namely, note that

$$[\alpha]_{1+u} = \frac{(1+u)^{\alpha} - 1}{u} = \sum_{k>0} {\alpha \choose k+1} u^k$$

so we have

(5)
$$[\![\alpha]\!]_{1+u} = \alpha + \binom{\alpha}{2} u + \binom{\alpha}{3} u^2 + \dots \in \mathbb{R}[[u]].$$

Here α can be any real number, and $\binom{\alpha}{k}$ is the real number

(6)
$$\binom{\alpha}{k} = \frac{\alpha(\alpha - 1)\cdots(\alpha - k + 1)}{k!}$$

[TODO: decide on notation $[\![\alpha]\!]_q \ [\![\alpha]\!]_q \ [\![\alpha]\!]_q$

Fact 7.

- (1) For a positive integer n, the expression $[n]_q$ is a polynomial in $\mathbb{Z}[q]$. As $q \to 1$, we have $[n]_q \to n$. As $q \to 0$, we have $[n]_q \to 1$.
- (2) For a real number α , the expression $[\![\alpha]\!]_{1+u}$ is a power series in $\mathbb{R}[[u]]$. As $u \to 0$, we have $[\![\alpha]\!]_{1+u} \to \alpha$. \diamond If α is positive, then as $u \to -1$, we have $[\![\alpha]\!]_{1+u} \to 1$. \diamond

For positive integers n, m we have

$$[n+m]_q = [n]_q + [m]_q + (q-1)[n]_q[m]_q.$$

The analogous identity holds for power series $[\![\alpha]\!]_{1+u}$.

Proposition 8. For \Diamond positive ? \Diamond real numbers α, β , we have

$$[\![\alpha+\beta]\!]_{1+u} = [\![\alpha]\!]_{1+u} + [\![\beta]\!]_{1+u} + u[\![\alpha]\!]_{1+u}[\![\beta]\!]_{1+u}.$$

as elements of $\mathbb{R}[[u]]$.

Proof. Observe that on the open disc |u| < 1,

$$[\![\alpha + \beta]\!]_{1+u} = \frac{(1+u)^{\alpha+\beta} - 1}{u}$$

$$= \frac{(1+u)^{\alpha+\beta} - (1+u)^{\alpha}}{u} + \frac{(1+u)^{\alpha} - 1}{u}$$

$$= (1+u)^{\alpha} [\![\beta]\!]_{1+u} + [\![\alpha]\!]_{1+u}$$

and
$$(1+u)^{\alpha} = u[\![\alpha]\!]_{1+u} + 1$$
.

Note that the q-analog satisfies the following properties

(1) (Varying the edge length) If $q_0 > 0$ is fixed and $q_0 \neq 1$, the map

$$\ell \mapsto [\ell]_{q_0} = \frac{q_0^{\ell} - 1}{q_0 - 1}$$

defines a continuous function from \mathbb{R} to \mathbb{R} , which sends $1 \mapsto 1$ and $0 \mapsto 0$.

If $q_0 = 1$, we use the convention that $[\ell]_1 = \ell$.

If $q_0 = 0$, we have $[\ell]_0 = 1$ for any $\ell > 0$.

(2) (Varying the formal q-parameter) If $\ell_0 \geq 0$ is fixed and q > 0, the map

$$q \mapsto [\ell_0]_q = \frac{q^{\ell_0} - 1}{q - 1}$$

defines a continuous function from $\mathbb{R}_{>0} \setminus \{1\}$ to \mathbb{R} , which satisfies

$$\lim_{q \to 0^+} [\ell_0]_q = \lim_{q \to 0^+} \frac{q^{\ell_0} - 1}{q - 1} = \begin{cases} 1 & \text{if } \ell_0 > 0 \\ 0 & \text{if } \ell_0 = 0 \\ -\infty & \text{if } \ell_0 < 0. \end{cases}$$

and has a continuous extension to $\mathbb{R}_{>0} \to \mathbb{R}$ that sends $1 \mapsto \ell_0$.

(3) In particular, for $\ell, q > 0$ we have

$$[\ell]_0=1 \qquad \text{and} \qquad [0]_q=0.$$

$$\lim_{\ell\to 0}[\ell]_0=1 \qquad \text{and} \qquad \lim_{q\to 0}[0]_q=0.$$
 Considering $[\alpha]_{1+u}$ as a power series in u and α :

where $x^{\underline{k}} = x(x-1)(x-2)\cdots(x-k+1)$ denotes the falling factorial and s(k,j)denotes the Stirling number of the first kind.

As a power series in α :

$$[\![\alpha]\!]_{1+u} = \frac{(1+u)^{\alpha} - 1}{u} = \frac{\exp(\alpha \log(1+u)) - 1}{u}$$
$$= \frac{1}{u} \left(-1 + \sum_{j \ge 0} \frac{\log(1+u)^j}{j!} \alpha^j \right)$$
$$= \sum_{j \ge 1} \frac{\log(1+u)^j}{j! u} \alpha^j.$$

2.2. Graph theory.

$$h_0(G|A) - 1 = rk(G) - rk(A)$$
, and $h_1(G|A) = \#(A) - rk(A)$.

2.3. Tutte polynomial.

6

3. Metric graphs

A metric graph is a compact, connected metric space which comes from assigning edge lengths to a finite, connected graph. If the metric graph Γ comes from a combinatorial graph G by assigning edge lengths $\ell: E(G) \to \mathbb{R}_{>0}$, we say (G,ℓ) is a combinatorial model for Γ and we write $\Gamma = (G,\ell)$.

- 3.1. **Deletion and contraction.** Suppose $\Gamma = (G, \ell)$, and $e \in E(G)$. \diamond TODO \diamond define $\Gamma \setminus e$ and Γ / e .
- 3.2 Moduli spaces of metric graphs. See Melody Chan [4].

 \diamondsuit is it natural here to restrict to stable graphs, or have infinitely many graphs per genus? \diamondsuit

3.3. **Tropical curves.** ♦ consider deleting ♦ Here we use "tropical curve" to refer to a metric graph which possibly has contracted loops, which we think of as "infinitesimally small" loops attached to a vertex. We record the number of

4. Tutte power series

Let $T^+(\Gamma; u, w)$ be the power series in $\mathbb{R}[[u]][w]$ defined by

(7)
$$T^{+}(\Gamma; u, w) = \sum_{A \subset E(G)} \left(\prod_{e \in A} \llbracket \ell(e) \rrbracket_{1+u} \right) u^{h_0(G \setminus A) - 1} w^{h_1(G \setminus A)}.$$

Proposition 9.

(1) Let $\Gamma = \Gamma_1 \vee \Gamma_2$ denote the wedge sum of two metric graphs. Then

$$T^+(\Gamma_1 \vee \Gamma_2; u, w) = T^+(\Gamma_1; u, w)T^+(\Gamma_2; u, w)$$

(2) Let $\Gamma = \Gamma_1 \bigsqcup \Gamma_2$ denote the (disconnected) disjoint union of two metric graphs. Then

$$T^{+}(\Gamma_1 \sqcup \Gamma_2; u, w) = u T^{+}(\Gamma; u, w) T^{+}(\Gamma; u, w)$$

4.1. **Deletion-contraction.** The Tutte polynomial T(G; x, y) can be characterized inductively by the deletion-contraction relation:

$$T(G; x, y) = T(G \backslash e; x, y) + T(G/e; x, y).$$

if e is not a loop or bridge, along with the base cases

$$T(G; x, y) = x^i y^j$$
 if G consists of i bridges and j loops.

The Tutte power series $T^+(\Gamma; u, w)$ satisfies a similar deletion-contraction relation.

Theorem 10. For a metric graph Γ ,

(8)
$$T^{+}(\Gamma; u, w) = [\![\ell(e)]\!]_{1+u} T^{+}(\Gamma \backslash e; u, w) + T^{+}(\Gamma / e; u, w).$$

Proof. Observe that

$$T^+(\Gamma; u, w) = \sum_{\substack{A \subset E \\ e_0 \in A}} (\cdots) + \sum_{\substack{A \subset E \\ e_0 \notin A}} (\cdots).$$

The first sum reduces to

$$\sum_{\substack{A \subset E \\ e_0 \in A}} \left(\prod_{e \in A} \llbracket \ell(e) \rrbracket_{1+u} \right) u^{h_0(G \setminus A) - 1} w^{h_1(G \setminus A)}
= \llbracket \ell(e_0) \rrbracket_{1+u} \sum_{\substack{A' \subset E \setminus e_0}} \left(\prod_{e \in A'} \llbracket \ell(e) \rrbracket_{1+u} \right) u^{h_0(G \setminus e_0 \setminus A) - 1} w^{h_1(G \setminus e_0 \setminus A)}
= \llbracket \ell(e_0) \rrbracket_{1+u} T^+(G \setminus e_0; u, w),$$

while the second sum reduces to

$$\sum_{\substack{A \subset E \\ e_0 \notin A}} \left(\prod_{e \in A} \llbracket \ell(e) \rrbracket_{1+u} \right) u^{h_0(G \setminus A) - 1} w^{h_1(G \setminus A)}$$

$$= \sum_{\substack{A \subset E \setminus e_0}} \left(\prod_{e \in A} \llbracket \ell(e) \rrbracket_{1+u} \right) u^{h_0(G \setminus A/e_0) - 1} w^{h_1(G \setminus A/e_0)}$$

$$= T^+(G/e_0; u, w).$$

In the second equality, we use the fact that the quotient map $(G \setminus A) \to (G \setminus A)/e_0$ is a homotopy equivalence, so it preserves homology groups. The third line uses the fact that deletion and contraction commute, $(G \setminus A)/e_0 = (G/e_0) \setminus A$.

Example 11 (Tutte power series of a line). Suppose Γ is a segment of length α , then

$$T^{+}(\Gamma; u, w) = 1 + [\alpha]_{1+u}u = (1+u)^{\alpha},$$

which has power series expansion $T^+(\Gamma; u, w) = 1 + \alpha u + {\alpha \choose 2} u^2 + \cdots$

If G is a line graph consisting of n edges, then

$$T(G; x, y) = x^n$$
 and $T^+(G; u, w) = (1 + u)^n = 1 + nu + \binom{n}{2}u^2 + \dots + u^n$.

Example 12 (Tutte power series of a circle). If Γ is a circle of length λ , then

$$T^{+}(\Gamma; u, w) = w + [\![\lambda]\!]_{1+u} = w + \frac{(1+u)^{\lambda} - 1}{u}$$

which has power series expansion

$$T^+(\Gamma; u, w) = w + \lambda + {\lambda \choose 2} u + {\lambda \choose 3} u^2 + \cdots$$

Suppose G is a cycle graph consisting of n edges. Then

$$T(G; x, y) = x + x^{2} + \dots + x^{n-2} + x^{n-1} + y = \frac{x^{n} - 1}{x - 1} + y - 1.$$

and

$$T^{+}(G; u, w) = n + \binom{n}{2}u + \binom{n}{3}u^{2} + \dots + nu^{n-2} + u^{n-1} + w = \frac{(1+u)^{n} - 1}{u} + w$$

Example 13 (Tutte power series of theta graph). Suppose G is the graph with two vertices connected by three edges. Suppose Γ is the metric graph which assigns lengths a, b, c to the edges of G. Then

$$T^{+}(G; u, w) = (\llbracket a \rrbracket_{1+u} \llbracket b \rrbracket_{1+u} + \llbracket a \rrbracket_{1+u} \llbracket c \rrbracket_{1+u} + \llbracket b \rrbracket_{1+u} \llbracket c \rrbracket_{1+u})$$
$$+ (\llbracket a \rrbracket_{1+u} \llbracket b \rrbracket_{1+u} \llbracket c \rrbracket_{1+u}) u + (\llbracket a \rrbracket_{1+u} + \llbracket b \rrbracket_{1+u} + \llbracket c \rrbracket_{1+u}) w + w^{2}.$$

Example 14 (Tutte power series of K_4). Suppose $G = K_4$, the complete graph on four vertices. Suppose Γ is the metric graph assigning edge lengths a, b, c, d, e, f to G, as shown in Figure \Diamond [fill in] \Diamond .

Then we have

Compare to the Example in Read–Whitehead [II, p. 272].

4.2. **Deleting bridges and contracting loops.** In this section we describe how the definition of Tutte power series $T^+(\Gamma; u, w)$ may be extended to a more general concept of metric graphs.

Definition 15. A genus-weighted metric graph $\Gamma = (G, \ell, \mathfrak{g})$ consists of a graph G = (V, E), a length function $\ell : E \to \mathbb{R}_{>0}$ on edges, and a genus function $\mathfrak{g} : V \to \mathbb{Z}_{>0}$ on vertices.

• If $\Gamma = \bigcup_{i=1}^k \Gamma_i$ is a disjoint union of k connected metric graphs Γ_i , then

$$T^+ \left(\bigcup_{i=1}^k \Gamma_i; u, w \right) = u^{k-1} T^+ \left(\vee_{i=1}^k \Gamma_i; u, w \right).$$

• If $\Gamma^{\mathfrak{g}}=(G,\ell,\mathfrak{g})$ is a genus-weighted metric graph, with underlying metric graph $\Gamma^0=(G,\ell)$, then

$$T^+(\Gamma^{\mathfrak{g}};u,w) = w^{\sum \mathfrak{g}(v)} \, T^+(\Gamma^0;u,w).$$

5. Proofs

Proof of Theorem II. It sufficies to show that the Tutte power series is invariant under an edge subdivision. Suppose G = (V, E) contains the edge e_0 , which we subdivide into $e_1 \cup e_2$ to obtain the graph G'.

By the deletion-contraction relation, Theorem 2, we have

$$T^{+}(G; u, w) = [a + b]_{1+u}T^{+}(G \setminus e_0; u, w) + T^{+}(G/e_0; u, w)$$

and

$$\begin{split} T^+(G';u,w) &= [\![a]\!]_{1+u} T^+(G \setminus e_1;u,w) + T^+(G/e_1;u,w) \\ &= [\![a]\!]_{1+u} \left([\![b]\!]_{1+u} T^+(G \setminus \{e_1,e_2\};u,w) + T^+(G \setminus e_1/e_2;u,w) \right) \\ &+ \left([\![b]\!]_{1+u} T^+(G/e_1 \setminus e_2;u,w) + T^+(G/\{e_1,e_2\};u,w) \right) \\ &= ([\![a]\!]_{1+u} + [\![b]\!]_{1+u} + u [\![a]\!]_{1+u} [\![b]\!]_{1+u}) T^+(G \setminus e_0;u,w) + T^+(G/e_0;u,w). \end{split}$$

Therefore. ...

$$[\![a]\!]_{1+u}+[\![b]\!]_{1+u}+u[\![a]\!]_{1+u}[\![b]\!]_{1+u}$$

6. Specializations of the Tutte Polynomial

6.1. Constants. For a graph G = (V, E), the Tutte polynomial has the following specializations to graph invariants when evaluated at particular integer points.

- $T^+(G; 1, 1) = \text{the number of edge subsets}; T_G(2, 2) = 2^{\#E}.$
- $T^+(G;0,0)$ = the number of spanning trees.
- $T^+(G;0,1)$ = the number of connected spanning subgraphs.
- $T^+(G; 1, 0)$ = the number of acyclic spanning subgraphs.
- $T^+(G; -1, 1)$ = the number of totally cyclic orientations.
- $T^+(G; 1, -1)$ = the number of acyclic orientations.
- $T^+(G; -k, -1) = (\pm 1/k)$ · the number of k-colorings.

For a metric graph $\Gamma = (G, \ell)$,

$$T^{+}(\Gamma; 1, 1) = \sum_{A \subset E(G)} \prod_{e_i \in A} [\ell(e_i)]_2 = \sum_{A \subset E(G)} \prod_{e_i \in A} (2^{\ell(e_i)} - 1).$$
$$= \prod_{e_i \in E(G)} (1 + (2^{\ell(e_i)} - 1)) = 2^{\sum_i \ell(e_i)}$$

- $T^+(\Gamma; 1, 1) = 2^{\text{vol}(\Gamma)}$
- $T^+(\Gamma; 0, 0) = \operatorname{vol}(\operatorname{Jac}(\Gamma))$
- $T^+(\Gamma; 0, 1) = \sum_{k=0}^g \operatorname{vol}(\operatorname{Eff}^k(\Gamma))$?

Example 16. Suppose Γ is the theta graph with edge lengths a, b and c,

$$eval(\Gamma; 2, 2) = 2^{a+b+c}$$
.

Number of spanning trees:

$$T^{+}(\Gamma; 0, 0) = ab + ac + bc.$$

Number of connected spanning subgraphs:

$$T^{+}(\Gamma; 0, 1) = 1 + (a+b+c) + (ab+ac+bc).$$

Number of acyclic spanning subgraphs:

$$T^{+}(\Gamma; 1, 0) = 2^{a+b+c} - 2^a - 2^b - 2^c + 2.$$

Number of totally cyclic orientations:

$$T^+(\Gamma; -1, 1) = 1 + 3 + 3 - 1 = 6.$$

Number of totally acyclic orientations:

$$T^{+}(\Gamma; 1, -1) = 2^{a+b+c} - 2(2^{a} + 2^{b} + 2^{c}) + 6.$$

Example 17. For the theta graph, we have

$$\begin{split} T^+(\Gamma;u,w) &= w^2 + ([\![a]\!]_{1+u} + [\![b]\!]_{1+u} + [\![c]\!]_{1+u})w \\ &\quad + ([\![a]\!]_{1+u}[\![b]\!]_{1+u} + [\![a]\!]_{1+u}[\![c]\!]_{1+u} + [\![b]\!]_{1+u}[\![c]\!]_{1+u}) \\ &\quad + ([\![a]\!]_{1+u}[\![b]\!]_{1+u}[\![c]\!]_{1+u})u \\ \\ &\quad \operatorname{coeff}(0,0;\Gamma) = ab + ac + bc. \\ \\ &\quad \operatorname{coeff}(0,1;\Gamma) = a + b + c. \\ \\ &\quad \operatorname{coeff}(0,k;\Gamma) = \\ \\ &\quad \operatorname{coeff}(0,k;\Gamma) = \\ \\ &\quad \operatorname{coeff}(0,2;\Gamma) = 1. \end{split}$$

Note that at w = 0, we have

$$T^{+}(G; u, 0) = [a]_{1+u}[b+c]_{1+u} + [b]_{1+u}[c]_{1+u}$$

$$= \sum_{k\geq 0} {a \choose k+1} u^{k} \sum_{k\geq 0} {b+c \choose k+1} u^{k} + \sum_{k\geq 0} {b \choose k+1} u^{k} \sum_{k\geq 0} {c \choose k+1} u^{k}$$

$$= (a+{a \choose 2}u+\cdots) (b+c+{b+c \choose 2}u+\cdots) + (b+{b \choose 2}u+\cdots) (c+{c \choose 2}u+\cdots)$$

$$= (ab+ac+bc) + (a{b+c \choose 2} + {a \choose 2}(b+c) + b{c \choose 2} + {b \choose 2}c) u + ()u^{2} + \cdots$$

$$= (ab+ac+bc) + \frac{1}{2}(a(b+c)(a+b+c-2) + bc(b+c-2)) u + \cdots$$

$$= (ab+ac+bc) + \frac{1}{2}(a^{2}b+a^{2}c+ab^{2}+ac^{2}+b^{2}c+bc^{2}+2abc-2ab-2ac-2bc) u + \cdots$$

$$= (ab+ac+bc) + (abc+\frac{1}{2}(a^{2}b+ab^{2}+a^{2}c+ac^{2}+b^{2}c+bc^{2}) - ab-ac-bc) u + \cdots$$

$$T^{+}(G; u, 0) = [a]_{1+u}[b+c]_{1+u} + [b]_{1+u}[c]_{1+u}$$

$$= [a]_{1+u} ([b]_{1+u} + [c]_{1+u} + u[b]_{1+u}[c]_{1+u}) + [b]_{1+u}[c]_{1+u}$$

$$= [a][b] + [a][c] + [b][c] + u[a][b][c].$$

6.2. Chromatic polynomial. At y = 0 we obtain the chromatic polynomial of a (connected) graph:

$$\chi(G;\lambda) = (-1)^{\#V}(-\lambda)T(G;1-\lambda,0)$$

For a metric graph,

$$\chi(\Gamma;\lambda) = (-\lambda) \, T^+(\Gamma;-\lambda,-1) = \sum_{A \subset E} (-\lambda)^{h_0(\Gamma \setminus A)} (-1)^{h_1(\Gamma \setminus A)} \prod_{e \in A} \llbracket \ell(e) \rrbracket_{1-\lambda}.$$

6.3. Flow polynomial. At x = 0 we obtain the flow polynomial of a graph:

$$F(G; \lambda) = (-1)^{h_1(G)} T(G; 0, 1 - \lambda)$$

For a metric graph,

$$\begin{split} F(\Gamma;\lambda) &= (-1)^{h_1(\Gamma)} T^+(\Gamma;-1,-\lambda) = \sum_{A\subset E} (-1)^{h_0(\Gamma\backslash A)-1} (-\lambda)^{h_1(\Gamma\backslash A)} \prod_{e\in A} \llbracket \ell(e) \rrbracket_0 \\ &= \sum_{A\subset E} (-1)^{\chi(\Gamma\backslash A)} \lambda^{h_1(\Gamma\backslash A)} \end{split}$$

Conclusion: (positive) edge lengths don't change the flow polynomial.

6.4. Reliability polynomial. The reliability polynomial of a graph satisfies

$$R(G; p) = (1 - p)^{\#V - h_0(G)} p^{h_1(G)} T\left(G; 1, \frac{1}{p}\right)$$

For a metric graph,

$$R(\Gamma; p) = (1 - p)^{\infty} p^{h_1(\Gamma)} T^+ \left(\Gamma; 0, \frac{1 - p}{p}\right)$$

$$= (1 - p)^{\infty} p^{h_1(\Gamma)} \sum_{\substack{A \subset E \\ \Gamma \backslash A \text{ connected}}} \left(\frac{1 - p}{p}\right)^{h_1(\Gamma \backslash A)} \prod_{e \in A} \llbracket \ell(e) \rrbracket_1$$

$$= (1 - p)^{\infty} \sum_{\substack{A \subset E \\ \Gamma \backslash A \text{ connected}}} p^{\#A} (1 - p)^{h_1(\Gamma \backslash A) - \#A} \prod_{e \in A} \ell(e)$$

6.5. Potts model polynomial. Following Sokal [12, Section 2.5]

The (modified) Potts model polynomial, or cluster-generating function, $\widetilde{Z}(G;q,v)$ is

$$\begin{split} \widetilde{Z}(G;q,v) &= \sum_{A \subset E} q^{h_0(G|A) - |V|} v^{|A|} = \sum_{A \subset E} q^{h_1(G|A)} (v/q)^{|A|} \\ \widetilde{Z}(G;q,v) &= (q/v)^{h_0(G)} (v/q)^{|V|} T(G;1 + \frac{q}{v},1 + v) = (v/q)^{|V| - h_0(G)} T^+(G;\frac{q}{v},v). \\ Z(\Gamma;q,v) &= (v/q)^{\infty} T^+(\Gamma;q/v,v) \\ &= (v/q)^{\infty} \sum_{A \subset E} (q/v)^{h_0(\Gamma \setminus A) - 1} v^{h_1(\Gamma \setminus A)} \prod_{e \in A} [\![\ell(e)]\!]_{1 + q/v} \end{split}$$

7. Miscellaneous

7.1. Tutte power series as real function. Given real parameters x, y with x > 0, let

(9)
$$T(\Gamma; x, y) = \sum_{A \subset E(G)} \left(\prod_{e \in A} [\![\ell(e)]\!]_x \right) (x - 1)^{h_0(G \setminus A) - 1} (y - 1)^{h_1(G \setminus A)}$$

where the notation $[\alpha]_x$ for real $\alpha, x > 0$ means

$$[\alpha]_x = \frac{x^{\alpha} - 1}{x - 1}$$
 if $x \neq 1$, $[\alpha]_1 = \alpha$.

For a fixed metric graph Γ , the expression (9) defines a function $\mathbb{R}_{>0} \times \mathbb{R} \to \mathbb{R}$ by associating $(x,y) \mapsto T(\Gamma;x,y)$. This function is generally not a polynomial in x;

ACP

Bry

Cha

Cra

EMM

FΚ

JS

OP

RW1

RW2

Tra1

Tra2

Tra3

Tut

Sok-potts

moreover, it does not admit a formal power series expansion in x if any edge length $\ell(e_i)$ is non-integral.

It is straightforward to verify that the Tutte power series $T^+(\Gamma; u, w)$ converges to a real value when |u| < 1. For a generic choice of edge lengths, the radius of convergence in u is equal to 1.

8. Further questions

Observation: for a fixed combinatorial graph G, the (i, j)-coefficient of the Tutte power series $T^+(\Gamma; u, w)$ is a polynomial in the edge lengths.

Acknowledgements

The author would like to thank Will Dana, Leo Jiang, and David Speyer for helpful discussion.

References

[1] D. Abramovich, L. Caporaso, and S. Payne. The tropicalization of the moduli space of curves.

Ann. Sci. Éc. Norm. Supér. (4), 48(4):765–809, 2015.

BO [2] T. Brylawski and J. Oxley. The Tutte polynomial and its applications. In *Matroid applications*, volume 40 of *Encyclopedia Math. Appl.*, pages 123–225. Cambridge Univ. Press, Cambridge, 1992.

[3] T. H. Brylawski. A combinatorial model for series-parallel networks. Trans. Amer. Math. Soc., 154:1–22, 1971.

[4] M. Chan. Lectures on tropical curves and their moduli spaces. In Moduli of curves, volume 21 of Lect. Notes Unione Mat. Ital., pages 1–26. Springer, Cham, 2017.

[5] H. H. Crapo. The Tutte polynomial. Aequationes Math., 3:211-229, 1969.

[6] J. A. Ellis-Monaghan and C. Merino. Graph polynomials and their applications I: The Tutte polynomial. In *Structural analysis of complex networks*, pages 219–255. Birkhäuser/Springer, New York, 2011.

[7] C. M. Fortuin and P. W. Kasteleyn. On the random-cluster model I. Introduction and relation to other models. *Physica*, 57:536–564, 1972.

[8] B. Jackson and A. D. Sokal. Zero-free regions for multivariate Tutte polynomials (alias Pottsmodel partition functions) of graphs and matroids. J. Combin. Theory Ser. B, 99(6):869–903, 2009.

[9] S. Ok and T. J. Perrett. Density of real zeros of the Tutte polynomial. Combin. Probab. Comput., 27(3):398-410, 2018.

[10] R. C. Read and E. G. Whitehead, Jr. Chromatic polynomials of homeomorphism classes of graphs. Discrete Math., 204(1-3):337–356, 1999.

[11] R. C. Read and E. G. Whitehead, Jr. The Tutte polynomial for homeomorphism classes of graphs. Discrete Math., 243(1-3):267–272, 2002.

[12] A. D. Sokal. The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In Surveys in combinatorics 2005, volume 327 of London Math. Soc. Lecture Note Ser., pages 173–226. Cambridge Univ. Press, Cambridge, 2005.

[13] L. Traldi. A dichromatic polynomial for weighted graphs and link polynomials. *Proc. Amer. Math. Soc.*, 106(1):279-286, 1989.

[14] L. Traldi. Series and parallel reductions for the Tutte polynomial. Discrete Math., 220(1-3):291–297, 2000.

[15] L. Traldi. Chain polynomials and Tutte polynomials. Discrete Math., 248(1-3):279–282, 2002.
[16] W. T. Tutte. A contribution to the theory of chromatic polynomials. Canadian J. Math., 6:80–91, 1954.