Buy-Rent-Sell, Real Estate Property Investments

Personal Investment Opportunity Identifier

Syracuse Applied Data Science, IST-707 Data Analytics

Ryan Timbrook (RTIMBROO)

DATE: 9/8/2019 ASSIGNMENT: Final Project

4			ntro				_ 4 =	4 .	
7		n	1	rn	\sim		CTI	$\boldsymbol{\wedge}$	n
•	- 1			L		u		u	

Targeting low risk property investment opportunities for property management firms or individual investors who buy-rent-sell single family homes throughout the United States.

Given a base set of investment criteria, provide a predicted N-best list of US geolocation regions by zip code that offer the best ROI.

Problem Statement:

- How to predict a low risk / high yield return on property investment in a volatile market.
- Buy low, rent fair, sell high...
- · Where and when to buy and sell that maximizes investment profits.
- Forecast future growth and decline of a region that yields Net Present Value (NPE)
 measurements significant enough to act on.

Base Real Estate data provided by: <u>Zillow</u> (files.zillowstatic.com/research/public/Zip/Zip Zhvi SingleFamilyResidence.csv)

Base Federal Reserve Interest Rates data provided by: <u>kaggle</u> (https://www.kaggle.com/federalreserve/interest-rates)

◆						
1.1 About the Data						
Dataset Info						

Coding Environment Setup

Import packages

```
In [1]: 

# toggle for working with colab
isColab = False
```

ONLY RUN WHEN WORKING ON COLAB

import packages
import pandas as pd

In [5]:

```
import numpy as np
                                            # arrays and match functions
import random
import time
import gc
import os
import pickle
from pathlib import Path
import seaborn as sns
                                               # uses for visualizations
import matplotlib.pyplot as plt
                                               # used for 2D plotting
%matplotlib inline
plt.style.use('fivethirtyeight')
import warnings
from timeit import default timer
                                               # performance processing time
import logging
                                               # Logging framework
# documentation can be found: https://uszipcode.readthedocs.io/index.html
!pip install uszipcode
import uszipcode # programmable zipcode database
from tqdm.autonotebook import tqdm
C:\ProgramData\Anaconda3\lib\site-packages\tqdm\autonotebook\ init .py:1
4: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mod
e. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)
  " (e.g. in jupyter console)", TqdmExperimentalWarning)
Requirement already satisfied: uszipcode in c:\programdata\anaconda3\lib\si
te-packages (0.2.2)
Requirement already satisfied: sqlalchemy in c:\programdata\anaconda3\lib\s
ite-packages (from uszipcode) (1.3.1)
Requirement already satisfied: requests in c:\programdata\anaconda3\lib\sit
e-packages (from uszipcode) (2.21.0)
Requirement already satisfied: pathlib-mate in c:\programdata\anaconda3\lib
\site-packages (from uszipcode) (0.0.15)
Requirement already satisfied: attrs in c:\programdata\anaconda3\lib\site-p
ackages (from uszipcode) (19.1.0)
Requirement already satisfied: idna<2.9,>=2.5 in c:\programdata\anaconda3\l
ib\site-packages (from requests->uszipcode) (2.8)
Requirement already satisfied: certifi>=2017.4.17 in c:\programdata\anacond
a3\lib\site-packages (from requests->uszipcode) (2019.3.9)
Requirement already satisfied: chardet<3.1.0,>=3.0.2 in c:\programdata\anac
onda3\lib\site-packages (from requests->uszipcode) (3.0.4)
Requirement already satisfied: urllib3<1.25,>=1.21.1 in c:\programdata\anac
onda3\lib\site-packages (from requests->uszipcode) (1.24.1)
Requirement already satisfied: autopep8 in c:\programdata\anaconda3\lib\sit
e-packages (from pathlib-mate->uszipcode) (1.4.4)
Requirement already satisfied: six in c:\programdata\anaconda3\lib\site-pac
kages (from pathlib-mate->uszipcode) (1.12.0)
Requirement already satisfied: pycodestyle>=2.4.0 in c:\programdata\anacond
```

a3\lib\site-packages (from autopep8->pathlib-mate->uszipcode) (2.5.0)

data frame operations

Time series models at scale. Based on the research from facebook - <u>Prophet</u> (https://research.fb.com/prophet-forecasting-at-scale/) - allows the user to quickly produce high quality forecasts with the ability to adjust multiple parameters. Initial code modeled after Digital Ocean's tutorial (https://www.digitalocean.com/community/tutorials/a-guide-to-time-series-forecasting-with-prophet-in-python-3).

Data Tranansformations: Prophet requires columns to be in certain formats Use python transpose

*Prophet Quick Start Guide: (https://facebook.github.io/prophet/docs/quick_start.html#python-api)

```
In [8]: 
# timeseries packages
from fbprophet import Prophet
```

ERROR: fbprophet: Importing plotly failed. Interactive plots will not work.

```
In [9]:
         # set global properties
             if not isColab:
                 dataDir = './data'
                 outputDir = './output'
                 configDir = './config'
                 logOutDir = './logs'
                 imageDir = './images'
                 modelDir = './models'
             else:
                 # working within colab
                 dataDir = f'{base dir}data'
                 outputDir = f'{base_dir}output'
                 configDir = f'{base_dir}config'
                 logOutDir = f'{base dir}logs'
                 imageDir = f'{base dir}images'
                 modelDir = f'{base_dir}models'
             modelPerformance = {}
             modelNames = 'zip_time_series'
             appName = 'rt brs time series'
             loglevel = 10 # 10-DEBUG, 20-INFO, 30-WARNING, 40-ERROR, 50-CRITICAL
             # focus in on a single state and selected set of regions for this initial pro
             focus state = 'WA'
             regions = []
             # time series training set years
             ts_col_years = [str(y) for y in range(2000,2019)]
             ts train years = [str(y) for y in range(2000,2018)]
             ts validate year = '2018'
             # sub directory for storing models
             trainDir = 'train'
             future5Dir = 'future_5'
             # time series model projection time
             ts pred periods = 12*5
In [10]:
          # get a logger for troubleshooting / data exploration
             logger = rt.getFileLogger(logOutDir,appName,level=loglevel)
             np.random.seed(42) # NumPy
In [11]:
         # create base output directories if they don't exist
             if not os.path.exists(outputDir): os.mkdir(outputDir)
             if not os.path.exists(logOutDir): os.mkdir(logOutDir)
             if not os.path.exists(imageDir): os.mkdir(imageDir)
             if not os.path.exists(modelDir): os.mkdir(modelDir)
 In [ ]:
```

1.3 Obtain the data

Using the base data available from <u>Zillow</u>
 (files.zillowstatic.com/research/public/Zip/Zip Zhvi SingleFamilyResidence.csv)

Zillow Home Value Index (ZHVI): A smoothed, seasonally adjusted measure of the median estimated home value across a given region and housing type. It is a dollar-denominated alternative to repeat-sales indices (https://wp.zillowstatic.com/3/ZHVI-InfoSheet-04ed2b.pdf).

OBTAIN Interest Rates data from Kaggel

Using the dataset provided by the kaggel <u>Federal Reserve Interest Rates</u>
 (https://www.kaggle.com/federalreserve/interest-rates/downloads/interest-rates.zip/1)

```
In [12]:
          # data files to load
             zip_zillow_sfr_file = 'Zip_Zhvi_SingleFamilyResidence.csv'
             zip zillow all homes file = 'Zip Zhvi AllHomes.csv'
             zip zillow rpsf sfr file = 'Zip MedianRentalPricePerSqft Sfr.csv'
             zip_zillow_rp_all_homes_file = 'Zip_MedianRentalPrice_AllHomes.csv'
             zip zillow lp all homes file = 'Zip MedianListingPrice AllHomes.csv'
             # interest rate data set - kaggel
             interest rates file = 'interest rates kaggel.csv'
             # economic datasets - https://datahub.io/core
             interest_rates_dh = 'interest_rates.csv'
             inflation_consumer = 'inflation-consumer.csv'
             inflation gdp = 'inflation-gdp.csv'
             education budget = 'education budget data.csv'
             population = 'population.csv'
             investor_flow_monthly = 'investor_flow_funds_monthly.csv'
             housing price cities = 'housing price cities.csv'
             household income = 'household-income.csv'
             employment = 'employment.csv'
             cpi = 'cpi.csv'
             cash surp def = 'cash-surp-def csv.csv'
             bonds_yeilds_10y = 'bonds_yields_10y.csv'
             gdp_quarter = 'gdp_quarter.csv'
             gdp_year = 'gdp_year.csv'
```

```
In [13]:
             %%time
             zip_zillow_sfr = pd.read_csv(dataDir+'/'+zip_zillow_sfr_file, error_bad_lines
             zip zillow all = pd.read csv(dataDir+'/'+zip zillow all homes file, error back
             zip zillow rpsf sfr = pd.read csv(dataDir+'/'+zip zillow rpsf sfr file, error
             zip zillow rp all = pd.read csv(dataDir+'/'+zip zillow rp all homes file, er
             zip zillow lp all = pd.read csv(dataDir+'/'+zip zillow lp all homes file, er
             re datasets = {'Single Family Residence':zip zillow sfr,'All Homes':zip zillo
                          'RentalPrice_PSF':zip_zillow_rpsf_sfr,'RentalPrice_All_Homes':zip
                        'ListingPrice_All_Homes':zip_zillow_lp_all}
             # dataset from kaggle
             interest_rates = pd.read_csv(f'{dataDir}/{interest_rates_file}',error_bad_lir
             # economic data from datahub.io/core
             interest_rates_dh = pd.read_csv(f'{dataDir}/{interest_rates_dh}',error_bad_li
             inflation consumer = pd.read csv(f'{dataDir}/{inflation consumer}',error bad
             inflation gdp = pd.read csv(f'{dataDir}/{inflation gdp}',error bad lines=Fals
             education_budget = pd.read_csv(f'{dataDir}/{education_budget}',error_bad_line
             population = pd.read csv(f'{dataDir}/{population}',error bad lines=False, end
             investor_flow_monthly = pd.read_csv(f'{dataDir}/{investor_flow_monthly}',error
             housing_price_cities = pd.read_csv(f'{dataDir}/{housing_price_cities}',error
             household income = pd.read csv(f'{dataDir}/{household income}',error bad line
             employment = pd.read_csv(f'{dataDir}/{employment}',error_bad_lines=False, end
             cpi = pd.read_csv(f'{dataDir}/{cpi}',error_bad_lines=False, encoding = "ISO-{
             cash surp def = pd.read csv(f'{dataDir}/{cash surp def}',error bad lines=Fals
             bonds yeilds 10y = pd.read csv(f'{dataDir}/{bonds yeilds 10y}',error bad line
             gdp_quarter = pd.read_csv(f'{dataDir}/{gdp_quarter}',error_bad_lines=False, 
             gdp year = pd.read csv(f'{dataDir}/{gdp year}',error bad lines=False, encodir
```

Wall time: 2.34 s

```
In [14]:
         # REAL ESTATE DATASET
             # Look over the datasets
             for k,v in re datasets.items():
                 logger.info(f'{k} shape: {v.shape}')
                 logger.info(f'{k} memory usage: {rt.mem usage(v)}')
                 logger.info(f'{k} info: {v.info()}')
                 logger.info(f'{k} NaN Count: {rt.getNaNCount(v)}')
                 rt.findColumnsNaN(v,logger,rowIndex=False)
                 print('')
             INFO:file_logger:Single_Family_Residence shape: (15752, 287)
             INFO: file logger: Single Family Residence memory usage: 38.03 MB
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 15752 entries, 0 to 15751
             Columns: 287 entries, RegionID to 2019-07
             dtypes: float64(231), int64(52), object(4)
             memory usage: 34.5+ MB
             INFO: file logger: Single Family Residence info: None
             INFO:file_logger:Single_Family_Residence NaN Count: (189753, 2399)
             INFO:file_logger:All_Homes shape: (15845, 287)
             INFO:file logger:All Homes memory usage: 38.25 MB
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 15845 entries, 0 to 15844
             Columns: 287 entries, RegionID to 2019-07
             dtypes: float64(231), int64(52), object(4)
             memory usage: 34.7+ MB
             INFO:file logger:All Homes info: None
             INFO: file logger: All Homes NaN Count: (190696, 2408)
             INFO: file logger: RentalPrice PSF shape: (2626, 120)
             INFO: file logger: RentalPrice PSF memory usage: 3.02 MB
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 2626 entries, 0 to 2625
             Columns: 120 entries, RegionName to 2019-07
             dtypes: float64(114), int64(2), object(4)
             memory usage: 2.4+ MB
             INFO:file logger:RentalPrice PSF info: None
             INFO:file logger:RentalPrice PSF NaN Count: (165287, 2622)
             INFO: file logger: Rental Price All Homes shape: (3453, 120)
             INFO:file_logger:RentalPrice_All_Homes memory usage: 3.97 MB
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 3453 entries, 0 to 3452
             Columns: 120 entries, RegionName to 2019-07
```

dtypes: float64(114), int64(2), object(4)

memory usage: 3.2+ MB

INFO:file_logger:RentalPrice_All_Homes info: None

INFO: file logger: RentalPrice All Homes NaN Count: (215022, 3448)

INFO:file_logger:ListingPrice_All_Homes shape: (10839, 121)
INFO:file_logger:ListingPrice_All_Homes memory usage: 12.47 MB

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10839 entries, 0 to 10838

Columns: 121 entries, RegionName to 2019-07 dtypes: float64(115), int64(2), object(4)

memory usage: 10.0+ MB

INFO:file_logger:ListingPrice_All_Homes info: None

INFO:file_logger:ListingPrice_All_Homes NaN Count: (372530, 5488)

In []: ▶

```
In [15]:
             # quick look at interest rates
              logger.info(f'interest_rates shape: {interest_rates.shape}')
             logger.info(f'interest rates memory usage: {rt.mem usage(interest rates)}')
             logger.info(f'interest rates info: {interest rates.info()}')
             logger.info(f'interest rates NaN Count: {rt.getNaNCount(interest rates)}')
             rt.findColumnsNaN(interest rates,logger,rowIndex=False)
             logger.info(f'interest rates head: {interest rates.head()}')
             INFO:file logger:interest rates shape: (904, 10)
             INFO:file_logger:interest_rates memory usage: 0.07 MB
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 904 entries, 0 to 903
             Data columns (total 10 columns):
                                               904 non-null int64
             Year
             Month
                                              904 non-null int64
             Day
                                              904 non-null int64
             Federal Funds Target Rate
                                              462 non-null float64
             Federal Funds Upper Target
                                              103 non-null float64
             Federal Funds Lower Target
                                              103 non-null float64
             Effective Federal Funds Rate
                                              752 non-null float64
             Real GDP (Percent Change)
                                              250 non-null float64
                                               752 non-null float64
             Unemployment Rate
             Inflation Rate
                                              710 non-null float64
             dtypes: float64(7), int64(3)
             memory usage: 70.7 KB
             INFO: file logger: interest rates info: None
             INFO:file logger:interest rates NaN Count: (3196, 904)
             INFO:file_logger:interest rates head:
                                                       Year Month Day Federal Funds Ta
             rget Rate Federal Funds Upper Target \
                1954
             0
                           7
                                1
                                                          NaN
                                                                                       NaN
             1
                1954
                           8
                                1
                                                          NaN
                                                                                       NaN
             2
                1954
                           9
                                1
                                                          NaN
                                                                                       NaN
             3
                1954
                          10
                                1
                                                          NaN
                                                                                       NaN
                1954
             4
                          11
                                1
                                                          NaN
                                                                                       NaN
                Federal Funds Lower Target
                                             Effective Federal Funds Rate \
             0
                                        NaN
                                                                      0.80
                                                                      1.22
             1
                                        NaN
             2
                                        NaN
                                                                      1.06
             3
                                                                      0.85
                                        NaN
             4
                                        NaN
                                                                      0.83
                Real GDP (Percent Change)
                                            Unemployment Rate
                                                                Inflation Rate
             0
                                       4.6
                                                           5.8
                                                                           NaN
             1
                                       NaN
                                                           6.0
                                                                           NaN
             2
                                       NaN
                                                           6.1
                                                                           NaN
             3
                                       8.0
                                                           5.7
                                                                           NaN
             4
                                                           5.3
                                       NaN
                                                                           NaN
```

Economic Data

Look over datasets pre-scrubbing and transformation...

```
In [ ]:
            logger.info(gdp_year.info())
            plt.figure(figsize=(10.5,7))
            sns.lineplot(x='date',y="change-current",
                        data=gdp year);
            plt.title('GDP - Percent change based on current dollars')
            plt.show()
In [ ]: ▶
            plt.figure(figsize=(10.5,7))
            sns.lineplot(x='date',y="level-current",
                        data=gdp_year);
            plt.title('GDP - GDP in billions of current dollars')
            plt.show()
In [ ]:

▶ gdp_year.head()
In [ ]:

■ gdp_quarter.head()
         # interest rate - keep Year, Month, Federal Funds Target Rate - get rid of
In [ ]:
            ir = interest_rates_dh[~interest_rates_dh['Federal Funds Target Rate'].isna()
            logger.info(ir.Year.unique())
            ir.head()
        # inflation consumer - filter on Country = 'United States', keep Year, Inflat
In [ ]:
            ic = inflation consumer[inflation consumer.Country.str.contains('United State
            ic.head()
In [ ]:
        # education budget - keep Year, Value
            education budget.head()
        # population - keep Year, Value - drop the rest
In [ ]:
            pop = population[population['Country Name'].str.contains('United States')]
            pop.head()
In [ ]:

    investor_flow_monthly.head()

In [ ]:

▶ housing price cities.head()
            # household income - keep Year, Number(thousands), Top 5 percent
In [ ]:
            household income.head()
            # employment - interesting attributes year, population, labor force, employed
In [ ]:
            employment.head()
         M cpi.head()
In [ ]:
```

```
In []: M cash_surp_def.head()
In []: M bonds_yeilds_10y.head()
```

SCRUB / CLEAN

Clean and perform initial transformations steps of the data

REAL ESTATE DATATSETS - ZILLOW

```
# REAL ESTATE DATA
In [16]:
             # Region Name is the zip code - rename for clarity
             for k,v in re datasets.items():
                 v = v.rename(index=str, columns={'RegionName':'ZipCode'})
                 v.ZipCode = v.ZipCode.astype(str)
                 re datasets[k] = v
          # REAL ESTATE DATA
In [17]:
             # convert ZipCode field to strings
             keep_year_month_cols = []
             month = 1
             for y in ts_col_years:
                 m = ''
                 for i in range(1,13):
                     if i < 10:
                         m = '0'+str(month)
                     else:
                         m = str(month)
                     month = month+1
                     keep_year_month_cols.append(f'{y}-{m}')
                 month = 1
             #keep_year_month_cols
```

```
In [18]:
          # REAL ESTATE DATA
             # remove certain columns
             # keep years
             #ts col years
             # un needed columns
             dropCols = ['RegionID','SizeRank','City','Metro','CountyName']
             # remove columns dates prior to 1997
             pre1997Cols = ['1996-04','1996-05','1996-06','1996-07','1996-08','1996-09','1
             post2018Cols = ['2019-01','2019-02', '2019-03', '2019-04', '2019-05', '2019-0
             for k,v in re datasets.items():
                 # drop category columns that aren't useful
                 for c in dropCols:
                     if c in v.columns:
                         v = v.drop(columns=c)
                 # drop columns pre 1997
                 for c in pre1997Cols:
                     if c in v.columns:
                         v = v.drop(columns=c)
                 # drop columns post 2018
                 for c in post2018Cols:
                     if c in v.columns:
                         v = v.drop(columns=c)
                 # filter out by selected focus state ('WA')
                 v = v[v.State==focus state]
                 re_datasets[k] = v
```

```
In [20]:
          # REAL ESTATE DATA
             # create a set of training datasets
             re datasets train = {}
             re datasets validate = {}
             for k,v in re_datasets.items():
                 # drop 2018
                 i = 0
                 df = pd.DataFrame(v[['ZipCode', 'State']])
                 for c in v.columns:
                      if ts_validate_year in c:
                          if i == 0:
                              df = v[c]
                          else:
                              df2 = v[c]
                              df = pd.concat([df,df2], axis=1)
                          v = v.drop(columns=c)
                      i=i+1
                 re datasets validate[k] = df
                 re_datasets_train[k] = v
```

INTEREST RATE DATASET - KAGGEL

```
In [ ]:  

# INTEREST RATE DATASET
            # Rename column names - easier to work with...
            logger.info(f'interest rates.columns before renaming... \n{list(interest rate
            interest rates = interest rates.rename(index=str, columns={'Federal Funds Tar
                                                                       'Federal Funds Uppe
                                                                       'Federal Funds Lowe
                                                                       'Effective Federal
                                                                       'Real GDP (Percent
                                                                       'Unemployment Rate
                                                                       'Inflation Rate':']
            logger.info(f'interest rates.columns after renaming... \n{list(interest rates
In [ ]:
        # INTEREST RATE DATASET
            rt.plot corr heatmap(interest rates,interest rates.drop(columns=['Year', 'Mor
In [ ]:
            # look at distributions of dataset elements, determin best methods for clean
            cols =['Inflation_Rate','FF_Target_Rate', 'FF_Upper_Target', 'FF_Lower_Target
            sns.boxplot(data=interest rates[cols], orient='h',palette='Set2');
            sns.swarmplot(data=interest_rates[cols], orient='h',palette='Set2');
```

ECONOMIC DATASETS - DATAHUB.IO

```
In [ ]:
           # interest rates
           # interest rate - keep Year, Month, Federal Funds Target Rate - get rid of t
           ir = interest rates dh[~interest rates dh['Federal Funds Target Rate'].isna()
           ir = ir[['Year','Month','Federal Funds Target Rate']]
           ir = ir.rename(index=str, columns={'Federal Funds Target Rate':'FF_Target_Rat
           logger.debug(ir.Year.unique())
           ir.head()
ir y = pd.DataFrame(ir.groupby('Year').mean()['FF Target Rate'])
           ir y = ir y.rename(index=str, columns={'FF Target Rate':'FF Target Rate Avg')
           ir y = ir y.reset index()
           ir_y.head()
In [ ]:
        # inflation consumer - filter on Country = 'United States', keep Year, Inflat
            ic = inflation consumer[inflation consumer.Country.str.contains('United State
           ic = ic[['Year','Inflation']]
           ic.head()
In [ ]:
       ₩ # gdp_year
           level-current -> GDP in billions of current dollars
           change-current -> GDP percent change based on current dollars
           gdp_y = gdp_year[['date','level-current','change-current']]
           gdp y = gdp y.rename(index=str, columns={'date':'Year', 'level-current':'GDP'
           gdp_y.head()
gdp q = gdp quarter[['date','level-current','change-current']]
           gdp q = gdp q.rename(index=str, columns={'date':'Date', 'level-current':'GDP'
           gdp_q['Date'] = pd.to_datetime(gdp_q['Date'])
           gdp q['Year'], gdp q['Month'] = gdp q['Date'].dt.year, gdp q['Date'].dt.month
           gdp q = gdp q.drop(columns=['Date'])
           gdp_q = gdp_q[['Year','Month','GDP','GDP_Percent_Change']]
           gdp_q.head()
In []: № # create a gdp_monthly by averaging the quarterly for the year
           # TODO - need to group by year, then quarter, take average and span that over
           gdp_m = pd.DataFrame(gdp_q.groupby('Year', as_index=False)['GDP','GDP_Percent
           gdp_m = gdp_m.rename(index=str, columns={'GDP':'GDP_Avg', 'GDP_Percent_Change
            gdp m.head()
```

```
In [ ]:
            # education budget
            United States of America education budget analysis
            United States of America Education budget to GDP analysis Data Data comes fro
            BUDGET ON EDUCATION -> budget in millions of dollars
            GDP -> GDP in millions of dollars
            RATIO -> education expendature / GDP in percentage
            logger.debug(f'education budget, before... \n{education budget.head()}')
            eb = education_budget[['YEAR', 'BUDGET_ON_EDUCATION']]
            eb = eb.rename(index=str, columns={'YEAR':'Year', 'BUDGET ON EDUCATION':'Educ
            logger.debug(f'education budget, after... \n{eb.head()}')
            eb.head()
In [ ]:
            # population
            Population figures for countries, regions (e.g. Asia) and the world.
            # population - keep Year, Value - drop the rest
            pop = population[population['Country Name'].str.contains('United States')]
            pop = pop[['Year','Value']]
            pop = pop.rename(index=str, columns={'Value':'Population'})
            pop.head()
In [ ]:
            # investor flow monthly
            Monthly net new cash flow by US investors into various mutual fund investment
            logger.debug(f'us investor flow monthly ... {investor flow monthly.head()}')
            ifm t = investor flow monthly[['Date','Total']]
            ifm t = ifm t.rename(index=str, columns={'Total':'Investor Flow'})
            ifm_t['Date'] = pd.to_datetime(ifm_t['Date'])
            ifm t['Year'], ifm t['Month'] = ifm t['Date'].dt.year, ifm t['Date'].dt.month
            ifm_t = ifm_t[['Year','Month','Investor_Flow']]
            logger.debug(f'us investor flow monthly total ... {investor flow monthly.head
            ifm t.head()
In [ ]:

₩ # investor_flow_monthly - average out to yea

            ifm t y = pd.DataFrame(ifm t.groupby('Year').mean()['Investor Flow'])
            ifm t y = ifm t y.rename(index=str, columns={'Investor Flow':'Investor Flow A
            ifm t y = ifm t y.reset index()
            ifm_t_y.head()
```

```
In [ ]:
           # housing price city
            US House Price Index (Case-Shiller) - narrow down to national index
            logger.debug(f'US House Price Index ... {housing price cities.head()}')
            hp index m = housing price cities[['Date', 'National-US']]
            hp index m = hp index m.rename(index=str, columns={'National-US':'National Hd
            hp_index_m['Date'] = pd.to_datetime(hp_index_m['Date'])
            hp_index_m['Year'], hp_index_m['Month'] = hp_index_m['Date'].dt.year, hp_index_m['Date']
            hp_index_m = hp_index_m[['Year','Month','National_House_Price_Index']]
            hp_index_m.head()
In [ ]:
        hp idex y = pd.DataFrame(hp index m.groupby('Year').mean()['National House Pr
            hp_idex_y = hp_idex_y.rename(index=str, columns={'National_House_Price_Index'
            hp_idex_y = hp_idex_y.reset_index()
            hp idex y.head()
           # household income - keep Year, Number(thousands), Top 5 percent
In [ ]:
            . . .
            logger.debug(f'{household income.head()}')
            hh_i = household_income[['Year','Number (thousands)']]
            hh i = hh i.rename(index=str, columns={'Number (thousands)':'House Hold Incom
            hh i = hh i.sort values('Year')
            hh_i.head()
In [ ]:
       # employment
            US Employment and Unemployment rates since 1940. Official title:
            *Employment status of the civilian noninstitutional population, 1940 to date*
            logger.debug(f'employment ... {employment.head()}')
            emp = employment[['year','employed_total','employed_percent','unemployed','ur
            emp = emp.rename(index=str, columns={'year':'Year','employed total':'Employed
            emp.head()
Consumer Price Index for All Urban Consumers (CPI-U) from U.S. Department Of
            This is a monthly time series from January 1913. Values are U.S. city average
            logger.debug(f'cpi ... {cpi.head()}')
            cpi_m = cpi[['Date','Index']]
            cpi_m['Date'] = pd.to_datetime(cpi_m['Date'])
            cpi_m['Year'], cpi_m['Month'] = cpi_m['Date'].dt.year, cpi_m['Date'].dt.month
            cpi_m = cpi_m.rename(index=str, columns={'Index':'CPI_Index'})
            cpi_m = cpi_m[['Year','Month','CPI_Index']]
            cpi m.head()
```

```
In [ ]:
       # cpi - yearly average
           cpi_y = pd.DataFrame(cpi_m.groupby('Year').mean()['CPI_Index'])
           cpi y = cpi y.rename(index=str, columns={'CPI Index':'CPI Index Avg'})
           cpi y = cpi y.reset index()
           cpi_y.head()
In [ ]:
           # cash_surp_def
            1.1.1
           csd = cash_surp_def[cash_surp_def['Country Name'].str.contains('United States
           csd = csd[['Year','Value']]
           csd = csd.rename(index=str, columns={'Value':'Cash_Surp_Def'})
           csd.head()
In [ ]: # bonds_yeilds_10y
           10 year US Government Bond Yields (long-term interest rate)
           10 year nominal yields on US government bonds from the Federal Reserve.
           The 10 year government bond yield is considered a standard indicator of long-
           logger.debug(f'bonds yeilds 10y:\n{bonds yeilds 10y.head()}')
           by 10y m = bonds yeilds 10y[['Date', 'Rate']]
           by_10y_m['Date'] = pd.to_datetime(by_10y_m['Date'])
           by_10y_m['Year'], by_10y_m['Month'] = by_10y_m['Date'].dt.year, by_10y_m['Date']
           by_10y_m = by_10y_m[['Year','Month','Rate']]
           by_10y_m = by_10y_m.rename(index=str, columns={'Rate':'Bond_Yield_10y'})
           by 10y m.head()
by 10y y = pd.DataFrame(by 10y m.groupby('Year').mean()['Bond Yield 10y'])
           by_10y_y = by_10y_y.rename(index=str, columns={'Bond_Yield_10y':'Bond_Yield_1
           by_10y_y = by_10y_y.reset_index()
           by 10y y.head()
```

```
In [ ]:
        # merge tables by year
            ir_y['Year'] = ir_y['Year'].astype(str)
            ic['Year'] = ic['Year'].astype(str)
            gdp y['Year'] = gdp y['Year'].astype(str)
            eb['Year'] = eb['Year'].astype(str)
            pop['Year'] = pop['Year'].astype(str)
            ifm_t_y['Year'] = ifm_t_y['Year'].astype(str)
            hp idex y['Year'] = hp idex y['Year'].astype(str)
            hh_i['Year'] = hh_i['Year'].astype(str)
            emp['Year'] = emp['Year'].astype(str)
            cpi y['Year'] = cpi y['Year'].astype(str)
            csd['Year'] = csd['Year'].astype(str)
            by_10y_y['Year'] = by_10y_y['Year'].astype(str)
            ir['Year'] = ir['Year'].astype(str)
            gdp_m['Year'] = gdp_m['Year'].astype(str)
            ifm_t['Year'] = ifm_t['Year'].astype(str)
            hp_index_m['Year'] = hp_index_m['Year'].astype(str)
            cpi m['Year'] = cpi m['Year'].astype(str)
            by 10y m['Year'] = by 10y m['Year'].astype(str)
            datasets_to_merge_year = [ir_y,ic,gdp_y,eb,pop,ifm_t_y,hp_idex_y,hh_i,emp,cpi
            datasets_to_merge_month = [ir,gdp_m,ifm_t,hp_index_m,cpi_m,by_10y_m]
            # merge by year, first get overall range of overlapping years for each set
            #ir_y.head()
In [ ]:

    | d = pd.merge(ir_y, ic, on='Year', how='left')

            d = pd.merge(d, gdp_y, on='Year', how='left')
            d = pd.merge(d, eb, on='Year', how='left')
            d = pd.merge(d, pop, on='Year', how='left')
            d = pd.merge(d, ifm_t_y, on='Year', how='left')
            d = pd.merge(d, hp_idex_y, on='Year', how='left')
            d = pd.merge(d, hh_i, on='Year', how='left')
            d = pd.merge(d, emp, on='Year', how='left')
            d = pd.merge(d, cpi_y, on='Year', how='left')
            d = pd.merge(d, csd, on='Year', how='left')
            d = pd.merge(d, by 10y y, on='Year', how='left')
            d.head()
#d = d.drop(columns=['CPI Index Avg x'])
            #d = d.rename(index=str, columns={'CPI Index Avg y':'CPI Index Avg'})
            #d.head()
            economicDf year = d
            del d
```

```
ir = ir.sort_values(['Year', 'Month'])
In [ ]:
            #gdp_m = gdp_m.sort_values(['Year', 'Month'])
            ifm_t = ifm_t.sort_values(['Year', 'Month'])
            hp index m = hp index m.sort values(['Year', 'Month'])
            cpi_m = cpi_m.sort_values(['Year','Month'])
            by_10y_m = by_10y_m.sort_values(['Year','Month'])
In [ ]:
        ₩ | #d = pd.merge(ir, gdp_m, on='Year', how='Left')
            d = pd.merge(ir, ifm_t, on='Year', how='left')
            d = pd.merge(d, hp_index_m, on='Year', how='left')
            d = pd.merge(d, cpi_m, on='Year', how='left')
            d = pd.merge(d, by 10y m, on='Year', how='left')
            #d
In [ ]:
        # cleanup memory
            del interest rates dh
In [ ]:
            economicDf_year.head()
            economicDf year.shape
In [ ]:
            economicDf year
In [ ]:
         rt.plot corr heatmap(economicDf year,economicDf year.drop(columns=['Year']).d
In [ ]:
            p = economicDf year
            p['National_HPI_Avg'] = np.log(p['National_HPI_Avg'])
            plt.figure(figsize=(16,6))
            ax = sns.lineplot(x='Year',y='National_HPI_Avg',data=p)
            plt.title('National House Price Index over Time')
            plt.ylabel('Log National House Price Index')
            plt.show()
            del p
In [ ]: ▶ | p = economicDf year
            p['FF_Target_Rate_Avg'] = np.log(p['FF_Target_Rate_Avg'])
            plt.figure(figsize=(16,6))
            ax = sns.lineplot(x='Year',y='FF_Target_Rate_Avg',data=p)
            plt.title('Federal Target Interest over Time')
            plt.ylabel('Log Interest Rate Avg')
            plt.show()
            del p
```

```
In [ ]:

▶ | factors = ['Year', 'FF_Target_Rate_Avg', 'GDP', 'GDP_Percent_Change', 'Inflation'

            melt = pd.melt(economicDf year[factors], ['Year'])
            melt['value'] = np.log(melt['value'])
            plt.figure(figsize=(16,6))
            sns.lineplot(x='Year',y='value',hue='variable',
                         data=melt)
            plt.title('Federal Target Interest over Time')
            plt.ylabel('Interest Rate Avg')
            plt.show()
            del melt
In [ ]: plt.figure(figsize=(16,6))
            sns.lmplot(x='FF_Target_Rate_Avg',y='National_HPI_Avg',data=economicDf_year)
            plt.title('National Housing Price Value\nwith Interest Rates')
            plt.xlabel('Federal Target Interest Rate')
            plt.ylabel('National House Price Index Avg')
            plt.show();
In [ ]:
            plt.figure(figsize=(16,6))
            sns.lmplot(x='Inflation',y='FF_Target_Rate_Avg',data=economicDf_year)
            plt.title('Inflation compared to Interest Rates')
            plt.xlabel('Inflation')
            plt.ylabel('Federal Interest Rate')
            plt.show();
```

2. Time Series Analysis

Time series analysis on real estate median average price by zipcode

- Single Family Home Value
- · Rental Price psf
- · Listing Price

Description: ...

2.1 Analysis

Transform Data

Transform Real Estate data for time series analysis

```
In [21]:  # Transform Datasets for Prophet Timeseries Analysis
  # training datasets
  re_datasets_train_prophet = {}
  for k,v in re_datasets_train.items():
        re_datasets_train_prophet[k] = brs.dfTransformForProphet(v,['State'],'Zint')

# validation datasets
  re_datasets_validate_prophet = {}
  for k,v in re_datasets_validate.items():
        re_datasets_validate_prophet[k] = brs.dfTransformForProphet(v,['State'],'

# full datasets
  re_datasets_full_prophet = {}
  for k,v in re_datasets.items():
        re_datasets_full_prophet[k] = brs.dfTransformForProphet(v,['State'],'Zint')
```

In []: ▶

2.2 Exploration

```
# have a look over the datasets shape after transformation
In [22]:
             for k,v in re datasets train prophet.items():
                 logger.info(f'{k} shape: {v.shape}')
             for k,v in re datasets validate prophet.items():
                  logger.info(f'{k} shape: {v.shape}')
             for k,v in re datasets full prophet.items():
                 logger.info(f'{k} shape: {v.shape}')
             INFO: file logger: Single Family Residence shape: (252, 351)
             INFO:file logger:All Homes shape: (252, 353)
             INFO:file_logger:RentalPrice_PSF shape: (95, 66)
             INFO:file logger:RentalPrice All Homes shape: (95, 82)
             INFO: file logger: ListingPrice All Homes shape: (96, 261)
             INFO: file logger: Single Family Residence shape: (12, 351)
             INFO:file logger:All Homes shape: (12, 353)
             INFO:file logger:RentalPrice PSF shape: (12, 66)
             INFO:file_logger:RentalPrice_All_Homes shape: (12, 82)
             INFO: file logger: ListingPrice All Homes shape: (12, 261)
             INFO: file logger: Single Family Residence shape: (264, 351)
             INFO: file logger: All Homes shape: (264, 353)
             INFO: file logger: RentalPrice PSF shape: (107, 66)
             INFO: file logger: Rental Price All Homes shape: (107, 82)
             INFO:file_logger:ListingPrice_All_Homes shape: (108, 261)
```

2.3 Model

```
In [ ]:
           # build time series models
           # perform exploratory data analysis techiques
           # Build prophet timeseries models for the metro area, save to dictionary obje
           zipCodeModels = {}
           t = 0.0
           trainDir = 'train'
           #make directories
           for k in datasets.keys():
               if not os.path.exists(f'{modelDir}/{trainDir}/{k}'):
                   os.makedirs(f'{modelDir}/{trainDir}/{k}')
           with rt.elapsed timer() as elapsed:
               for k,v in datasets_train_prophet.items():
                   logger.info(f'Starting... {k} prophet modeling... elapsed time: {elap
                  for zipcode, price in tqdm(v.items()):
                      logger.info(f'Starting... {zipcode} prophet modeling... elapsed t
                      model = brs.beProphet(zipcode,price,f'{modelDir}/{trainDir}/{k}/{
               logger.info(f'total elapsed time: {elapsed()}')
```

```
In [ ]:
            # train and predict future zipcode performance
            zipCodeModels = {}
            t = 0.0
            future5Dir = 'future_5'
            # time series model projection time
            ts pred periods = 12*5
            #make directories
            for k in datasets.keys():
                if not os.path.exists(f'{modelDir}/{future5Dir}/{k}'):
                    os.makedirs(f'{modelDir}/{future5Dir}/{k}')
            with rt.elapsed_timer() as elapsed:
                for k,v in datasets full prophet.items():
                    logger.info(f'Starting... {k} prophet modeling... elapsed time: {elap
                    for zipcode, price in tqdm(v.items()):
                        logger.info(f'Starting... {zipcode} prophet modeling... elapsed t
                        model = brs.beProphet(zipcode,price,f'{modelDir}/{future5Dir}/{k)
                logger.info(f'total elapsed time: {elapsed()}')
```

```
In []:  #make directories
for k in datasets.keys():
    if not os.path.exists(f'{imageDir}/{future5Dir}/{k}'):
        os.makedirs(f'{imageDir}/{future5Dir}/{k}')
```

2.4 Results

Training Data Sets

Price Trend from 1997 through 2017 - With a 12 month future prediction...

```
In [ ]:
        # pull in forecast samples
            ran_zips = np.random.choice(re_datasets['Single_Family_Residence'].ZipCode,100
            zipcode eval = [] #
            i = 0
            m fit = None
            m_forecast = None
            for data_key in re_datasets.keys():
                for z in ran_zips:
                    try:
                        fitFile = f'{modelDir}/{trainDir}/{data_key}/{z}_fit'
                        forecastFile = f'{modelDir}/{trainDir}/{data_key}/{z}_forecast'
                        with open(fitFile,'rb') as f:
                            m_fit = pickle.load(f)
                            logger.info(f'saved pickled timeseries model [{fitFile}] data
                        with open(forecastFile, 'rb') as f:
                            m forecast = pickle.load(f)
                            logger.info(f'saved pickled timeseries model [{forecastFile}]
                        brs.plotFit(z,m_fit,m_forecast,f'{z} Random {str(i+1)} Subset San
                        i = i+1
                        #if i >= 5: break
                    except FileNotFoundError:
                        logger.info('file not found...')
```

Future Prediction Trends

Price Trend from 1997 through 2018 - With a 5 year future prediction...

```
In [ ]:
        # pull in forecast samples
            ran_zips = np.random.choice(re_datasets['Single_Family_Residence'].ZipCode,1@
            zipcode eval = [] #
            i = 0
            m fit = None
            m_forecast = None
            for data_key in re_datasets.keys():
                for z in ran_zips:
                    try:
                        fitFile = f'{modelDir}/{future5Dir}/{data_key}/{z}_fit'
                        forecastFile = f'{modelDir}/{future5Dir}/{data_key}/{z}_forecast
                        with open(fitFile,'rb') as f:
                            m_fit = pickle.load(f)
                            logger.info(f'saved pickled timeseries model [{fitFile}] data
                        with open(forecastFile, 'rb') as f:
                            m forecast = pickle.load(f)
                            logger.info(f'saved pickled timeseries model [{forecastFile}]
                        brs.plotFit(z,m_fit,m_forecast,f'{z} Random {str(i+1)} Subset San
                        #Sif i >= 5: break
                    except FileNotFoundError:
                        logger.info('file not found...')
In [ ]:

▶ from fbprophet.diagnostics import cross_validation, performance_metrics

            df_cv = cross_validation(m_fit, horizon='90 days')
            df p = performance metrics(df cv)
            #df_p.head(5)
```

2.5 Interpret

In []:

3. Clustering

.....

from fbprophet.plot import plot_cross_validation_metric fig = plot_cross_validation_metric(df_cv, metric='mape')

- K-means unsupervised
- · Mean-Shift unsupervised

Description: Run k-means for three choices for k and choose the best.

3.1 K-means Clustering

Python package: scikit-learn v0.21.3 <u>sklearn.cluster.KMeans (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html</u>#sklearn.cluster.KMeans)

Description: ...

3.1.1 Analysis

```
# which are the best forecasters - group into 4 classes
In [37]:
             #from fbprophet.diagnostics import cross validation, performance metrics
             #df cv = cross validation()
             # focus on single familey homes
             zipcodes = re_datasets['Single_Family_Residence'].ZipCode
             data_key = 'Single_Family_Residence'
             zip ts forcasts = {}
             # get zip forcasts
             for z in zipcodes:
                 forecastFile = f'{modelDir}/{future5Dir}/{data key}/{z} forecast'
                 with open(forecastFile, 'rb') as f:
                         m forcast = pickle.load(f)
                         zip_ts_forcasts[z] = m_forcast
                         logger.info(f'saved pickled timeseries model [{forecastFile}] dat
             #m forecast[['ds', 'yhat', 'yhat lower', 'yhat upper']]
             INFO:file logger:saved pickled timeseries model [./models/future 5/Single
              _Family_Residence/98925_fit] dataset found...
             INFO:file_logger:saved pickled timeseries model [./models/future_5/Single
              Family Residence/98925 fit] dataset found...
             INFO:file logger:saved pickled timeseries model [./models/future 5/Single
              _Family_Residence/98925_fit] dataset found...
             INFO:file logger:saved pickled timeseries model [./models/future 5/Single
             _Family_Residence/98925_fit] dataset found...
             INFO:file_logger:saved pickled timeseries model [./models/future_5/Single
              Family Residence/98925 fit] dataset found...
             INFO:file logger:saved pickled timeseries model [./models/future 5/Single
             _Family_Residence/98925_fit] dataset found...
             INFO:file logger:saved pickled timeseries model [./models/future 5/Single
             _Family_Residence/98925_fit] dataset found...
             INFO:file_logger:saved pickled timeseries model [./models/future_5/Single
              Family Residence/98925 fit] dataset found...
             INFO:file logger:saved pickled timeseries model [./models/future 5/Single
             _Family_Residence/98925_fit] dataset found...
             INFO:file_logger:saved pickled timeseries model [./models/future_5/Single
```

Eamily Dacidanca/0002E field datacat found

```
In [38]:
              98052
                          ds
                                   trend
                                          yhat_lower
                                                       yhat_upper
                                                                    trend_lower
                                                                                  trend_upper
                                                                      13.423305
              319 2023-07-31
                               14.332032
                                           13.409492
                                                        15.102551
                                                                                    15.095156
              320 2023-08-31
                               14.342047
                                           13.414233
                                                        15.142978
                                                                      13.402184
                                                                                    15.121482
              321 2023-09-30
                               14.351739
                                           13.395264
                                                        15.168953
                                                                      13.382132
                                                                                    15.155094
              322 2023-10-31
                               14.361753
                                           13.372179
                                                        15.208130
                                                                      13.361862
                                                                                    15.189825
              323 2023-11-30
                               14.371445
                                           13.345755
                                                        15.215508
                                                                      13.342156
                                                                                    15.223437
                                   additive terms lower
                   additive terms
                                                           additive terms upper
                                                                                     yearly
              \
                         0.003592
              319
                                                 0.003592
                                                                        0.003592
                                                                                   0.003592
              320
                         0.007343
                                                 0.007343
                                                                        0.007343
                                                                                   0.007343
              321
                         0.003960
                                                 0.003960
                                                                        0.003960
                                                                                   0.003960
              322
                         -0.001307
                                                -0.001307
                                                                       -0.001307 -0.001307
              323
                        -0.005750
                                                -0.005750
                                                                       -0.005750 -0.005750
                   yearly_lower
                                  yearly_upper
                                                multiplicative_terms
              319
                       0.003592
                                      0.003592
                                                                   0.0
                                                                   0.0
              320
                       0.007343
                                      0.007343
              321
                       0.003960
                                                                   0.0
                                      0.003960
              322
                                                                   0.0
                      -0.001307
                                     -0.001307
              323
                      -0.005750
                                     -0.005750
                                                                   0.0
                   multiplicative_terms_lower
                                                 multiplicative terms upper
                                                                                    yhat
              319
                                            0.0
                                                                         0.0
                                                                               14.335625
                                           0.0
              320
                                                                         0.0
                                                                               14.349390
              321
                                           0.0
                                                                         0.0
                                                                              14.355698
              322
                                           0.0
                                                                         0.0
                                                                              14.360447
              323
                                           0.0
                                                                         0.0
                                                                              14.365695
```

3.1.2 Exploration

4

In [110]:

```
zip forecasts = None
              i = 0
              for k,v in zip ts forcasts.items(): #351
                  p = zip_ts_forcasts[k]
                  p = p.drop(columns=['ds']) #drop the date field, adds no value for cluste
                  p['ZipCode'] = z
                  if i == 0:
                       zip_forecasts = p
                  else:
                       zip_forecasts = pd.concat([zip_forecasts,p])
                  i=i+1
              rt.save df(zip forecasts, f'{dataDir}/zip forecasts.pkl')
In [105]:

    | zip forecasts.info()
              <class 'pandas.core.frame.DataFrame'>
              Int64Index: 113724 entries, 0 to 323
              Data columns (total 16 columns):
                                             113724 non-null float64
              trend
                                             113724 non-null float64
              yhat lower
                                             113724 non-null float64
              yhat upper
              trend lower
                                             113724 non-null float64
              trend_upper
                                             113724 non-null float64
              additive terms
                                             113724 non-null float64
```

113724 non-null float64

113724 non-null float64 113724 non-null float64

113724 non-null float64

113724 non-null float64

113724 non-null float64

113724 non-null float64 113724 non-null float64

113724 non-null float64

113724 non-null object

get all of the zip code forecast predictions and prep for kmea

3.1.3 Model

yearly

yhat

ZipCode

yearly_lower

yearly_upper

additive terms lower

additive_terms_upper

multiplicative_terms

memory usage: 14.7+ MB

multiplicative terms lower

multiplicative terms upper

dtypes: float64(15), object(1)

```
In [106]:
           ▶ from sklearn.cluster import KMeans, SpectralClustering
              from sklearn.preprocessing import StandardScaler
              from sklearn.metrics import silhouette samples, silhouette score
              def build kmeans(n clusters, random state, n jobs):
                   km = KMeans(
                       n clusters=8,
                       init="k-means++",
                       n init=10,
                       max_iter=300,
                       tol=0.0001,
                       precompute_distances="auto",
                       verbose=0,
                       random state=None,
                       copy x=True,
                       n_jobs=None,
                       algorithm="auto")
                   return km
```

```
In [118]:
              %%time
              # build a kmeans clustering model
              # cluster at 3 classes that will represent buy - rent - sell
              # standardize the data
              #X_std = fit_transform(zip_forecasts)
              sse = \{\}
              for k in range(1,10):
                  km = build kmeans(n clusters=k,random state=42,n jobs=None)
                  X_std = km.fit_transform(zip_forecasts)
                  kmeans = km.fit(X std)
                  zip_forecasts['label'] = kmeans.labels_
                   sse[k] = kmeans.inertia_ # Inertia: sum of distances of samples to their
              plt.figure()
              plt.plot(list(sse.keys()), list(sse.values()))
              plt.xlabel('Number of clusters')
              plt.ylabel('SSE')
              plt.show()
```

```
AttributeError Traceback (most recent call last)
<timed exec> in <module>

AttributeError: 'numpy.ndarray' object has no attribute 'labels_'
```

```
In [ ]:
        sse = \{\}
            for k in range(2,6):
                fig, (ax1, ax2) = plt.subplots(1, 2)
                fig.set_size_inches(18, 7)
                km = build kmeans(n clusters=k,random state=42,n jobs=None)
                X std = km.fit transform(zip forecasts)
                labels = km.fit_predict(X_std)
                centroids = km.cluster centers
                # Get silhouette samples
                silhouette vals = silhouette samples(X std, labels)
                # Silhouette plot
                y ticks = []
                y_lower, y_upper = 0, 0
                for i, cluster in enumerate(np.unique(labels)):
                    cluster silhouette vals = silhouette vals[labels == cluster]
                    cluster silhouette vals.sort()
                    y_upper += len(cluster_silhouette_vals)
                    ax1.barh(range(y lower, y upper), cluster silhouette vals, edgecolor=
                    ax1.text(-0.03, (y_lower + y_upper) / 2, str(i + 1))
                    y_lower += len(cluster_silhouette_vals)
                # Get the average silhouette score and plot it
                avg score = np.mean(silhouette vals)
                ax1.axvline(avg score, linestyle='--', linewidth=2, color='green')
                ax1.set yticks([])
                ax1.set_xlim([-0.1, 1])
                ax1.set xlabel('Silhouette coefficient values')
                ax1.set ylabel('Cluster labels')
                ax1.set_title('Silhouette plot for the various clusters', y=1.02);
                # Scatter plot of data colored with labels
                ax2.scatter(X_std[:, 0], X_std[:, 1], c=labels)
                ax2.scatter(centroids[:, 0], centroids[:, 1], marker='*', c='r', s=250)
                ax2.set xlim([-2, 2])
                ax2.set_xlim([-2, 2])
                ax2.set_xlabel('Eruption time in mins')
                ax2.set ylabel('Waiting time to next eruption')
                ax2.set title('Visualization of clustered data', y=1.02)
                ax2.set aspect('equal')
                plt.tight layout()
                plt.suptitle(f'Silhouette analysis using k = {k}',
                             fontsize=16, fontweight='semibold', y=1.05);
```

```
In [115]:
              logger.info(f'kmeans class labels... {kmeans.labels_}')
              logger.info(f'kmeans parameters... {kmeans.get_params()}')
              logger.info(f'{zip forecasts["label"].unique()}')
              kmeans.cluster centers [kmeans.labels ]
              INFO:file logger:kmeans class labels... [1 2 1 ... 7 7 7]
              INFO:file_logger:kmeans parameters... {'algorithm': 'auto', 'copy_x': True,
              'init': 'k-means++', 'max iter': 300, 'n clusters': 8, 'n init': 10, 'n job
              s': None, 'precompute_distances': 'auto', 'random_state': None, 'tol': 0.00
              01, 'verbose': 0}
              INFO:file logger:[1 2 3 5 4 6 7 0]
   Out[115]: array([[-0.16592725, -0.0576433 , -0.23247871, ..., 0.
                      -0.16555623, 0.
                                             ],
                     [-0.97768016, -0.94461094, -0.898865 , ...,
                      -0.97401381, 0.
                                              ],
                     [-0.16592725, -0.0576433, -0.23247871, ..., 0.
                      -0.16555623, 0.
                                              ٦,
                     [ 0.45248853, -0.06616244, 0.83422806, ...,
                       0.46847868, 0.
                                              ],
                     [ 0.45248853, -0.06616244, 0.83422806, ...,
                       0.46847868, 0.
                                              ],
                     [ 0.45248853, -0.06616244, 0.83422806, ..., 0.
                       0.46847868, 0.
                                              11)
In [113]:
              km centroids = kmeans.centroids
              # Plot the clustered data
              fig, ax = plt.subplots(figsize=(6, 6))
              plt.scatter(zip_forecasts[kmeans.labels == 0, 0], zip_forecasts[kmeans.labels
                          c='green', label='cluster 1')
              plt.scatter(zip_forecasts[kmeans.labels == 1, 0], zip_forecasts[kmeans.labels
                          c='blue', label='cluster 2')
              plt.scatter(centroids[:, 0], centroids[:, 1], marker='*', s=300,
                          c='r', label='centroid')
              plt.legend()
              plt.xlim([-2, 2])
              plt.ylim([-2, 2])
              plt.xlabel('')
              plt.vlabel('')
              plt.title('Visualization of clustered data', fontweight='bold')
              ax.set_aspect('equal');
              AttributeError
                                                        Traceback (most recent call last)
              <ipython-input-113-b5a26286db74> in <module>
              ----> 1 km centroids = kmeans.centroids
                    2 # Plot the clustered data
                    3 fig, ax = plt.subplots(figsize=(6, 6))
                    4 plt.scatter(zip forecasts[kmeans.labels == 0, 0], zip forecasts[kme
              ans.labels == 0, 1],
                                  c='green', label='cluster 1')
                    5
              AttributeError: 'KMeans' object has no attribute 'centroids'
```

3.1.4 Results

3.1.5 Interpret

```
In []: N
```

3.2 Mean Shift Clustering

Python package: scikit-learn v0.21.3 <u>sklearn.cluster.MeanShift (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html#sklearn.cluster.MeanShift)</u>

Description: ...

3.2.1 Analysis

```
In []: ▶
```

3.2.2 Exploration

```
In []: ▶
```

3.2.3 Model

```
In [ ]: ▶ _______
```

In []:	N K
In []:	N
±11 [].	
	3.2.4 Results
In []:	M
In []:	M
In []:	M
III [].	и
In []:	M
In []:	M
	3.2.5 Interpret
In []:	M
In []:	N
In []:	Н
	4

4. Decision Tree

.....

- Decision Tree supervised
 - Include three different trees and their visualizations

Python package: <u>scikit-learn sklearn.tree.DecisionTreeClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html)</u>

Build a decision tree model. Tune the parameters, such as the pruning options, and report the 3-fold CV accuracy.

4.1 Analysis

In []: ▶

4.2 Exploration

```
In []: ▶
```

4.3 Model

```
In [ ]:
        def build_tree(random_state, max_depth, min_samples_split):
                tree = DecisionTreeClassifier(
                    criterion="gini",
                     splitter="best",
                    max depth=None,
                    min_samples_split=2,
                    min samples leaf=1,
                    min_weight_fraction_leaf=0.0,
                    max_features=None,
                    random state=None,
                    max leaf nodes=None,
                    min_impurity_decrease=0.0,
                    min_impurity_split=None,
                    class_weight=None,
                     presort=False)
                return tree
In [ ]:
In [ ]:
In [ ]:
        4.4 Results
```

4.5 Interpret

```
In [ ]: ▶
```

5. Naive Bayes

Python Package: SciKit-Learn <u>Gaussian Naive Bayes (https://scikit-</u>

<u>learn.org/stable/modules/naive_bayes.html#gaussian-naive-bayes)</u>

Build a naïve Bayes model. Tune the parameters, such as the discretization options, to compare results.

_	4	-						
F	7	Л	n	2	•	ıc		C
IJ.		A		a	v	<i>1</i> 3	ı	3
_	-			•	_	_	-	_

5.2 Exploration

```
In []: M
```

5.3 Model

```
In [ ]: M def build_nb(priors):
    nb = GaussianNB(priors=None, var_smoothing=1e-09)
    return nb

In [ ]: M

In [ ]: M
In [ ]: M
```

5.4 Results

5.5 Interpret

```
In [ ]: 🔰
```

ist707_prj 9/8/2019

```
In [ ]:
```

6. Support Vector Classification - SVMs

Python Package: scikit-learn v0.21.3 sklearn.svm.SVC (https://scikitlearn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC)

6.1 Analysis

```
In [ ]:
```

6.2 Exploration

```
In [ ]:
```

6.3 Model

```
In [ ]:

    def build svm(kernel, verbose=True):

                 # base SVC model
                 svc base = SVC(C=1.0,
                                                                # Penalty parameter C of th
                                                                # Specify the size of the k
                                cache_size=200,
                                class weight=None,
                                                                # Set the parameter C of cl
                                                                # Independent term in kerne
                                coef0=0.0,
                                decision function shape='ovr', # Whether to return a one-v
                                                                # Degree of the polynomial
                                degree=3,
                                                                # Kernel coefficient for 'r
                                gamma='auto',
                                kernel=kernel,
                                                                # Specifies the kernel type
                                max iter=-1,
                                                                # Hard limit on iterations
                                                                # Whether to enable probabi
                                probability=False,
                                random state=None,
                                                                # The seed of the pseudo rd
                                shrinking=True,
                                                                # Whether to use the shrink
                                tol=0.001,
                                                                # Tolerance for stopping cr
                                verbose=verbose
                                                                # Enable verbose output. No
                 return svc_base
In [ ]:
```

```
In [ ]:
```

In []:

```
In [ ]:
```

6.4	Resu	lts
U. T	11000	

In []:	M
In []:	N
In []:	M
In []:	N
	6.5 Interpret
In []:	M
	7. Association Rule Mining
	Unsupervised
	Description: Offer the top 10 rules for the highest sup, the top 10 for conf, and the top 10 for
	lift. All rules must have at least one element on the left and one on the right. Also choose to
	set the left as a given value and show the top 10 (based on the dataset and determinations.)
	7.1 Analysis
In []:	N
	7.2 Exploration
In []:	M
	7.3 Model
In []:	M
	7.4 Results
Tn []:	N

7.5 Interpret

```
In [ ]: ▶
```

2. Support Vector Classification - SVMs

Python Package: scikit-learn v0.21.3 <u>sklearn.svm.SVC (https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC)</u>

Modeling & Evaluation Functions

Python package sklearn.metrics.confusion_matrix.html)learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html)

2.1 Model - Support Vector Classification

Python package:

2.1.1 Create Base SVC model

```
# base SVC model
In [ ]:
            svc_base = SVC(C=1.0,
                                                           # Penalty parameter C of the er
                            cache size=200,
                                                           # Specify the size of the kerne
                                                           # Set the parameter C of class
                            class weight=None,
                            coef0=0.0,
                                                           # Independent term in kernel fi
                            decision function shape='ovr', # Whether to return a one-vs-re
                            degree=3,
                                                           # Degree of the polynomial kerr
                            gamma='auto',
                                                           # Kernel coefficient for 'rbf',
                                                           # Specifies the kernel type to
                            kernel='rbf',
                                                           # Hard limit on iterations with
                            max iter=-1,
                            probability=False,
                                                           # Whether to enable probability
                                                           # The seed of the pseudo randon
                            random_state=None,
                            shrinking=True,
                                                           # Whether to use the shrinking
                            tol=0.001,
                                                           # Tolerance for stopping criter
                            verbose=True
                                                           # Enable verbose output. Note t
```

```
In []: | # fit the svc model
    t = 0.0
    with rt.elapsed_timer() as elapsed:
        #
        svc_fit = svc_base.fit(X_train, y_train)
        t = elapsed()
        if sh_logger.debug: print(f'Support Vector Classification Model Build Tin
        modelsPerformance['Name'].append('svc_base')
        modelsPerformance['FitTime'].append(t)

#save model to file
    with open(modelBaselineDir+'svc_base','wb') as f:
        pickle.dump(svc_base,f)

with open(modelBaselineDir+'svc_fit','wb') as f:
        pickle.dump(svc_fit,f)
```

```
In []: # Score the svc model
    t = 0.0
    with rt.elapsed_timer() as elapsed:
        svc_score = svc_base.score(X_val, y_val)
        t = elapsed()
        if sh_logger.info: print(f'Support Vector Classification Model Fit Score:
        if sh_logger.debug: print(f'Support Vector Classification Model Fit Score
        modelsPerformance['TestAccuracyScore'].append(svc_score)
        modelsPerformance['ScoreTime'].append(t)

# save score to file
with open(modelBaselineDir+'svc_score','wb') as f:
        pickle.dump(svc_score,f)
```

2.1.2 Fit Model Prediciton - SVC

%%time

In []:

```
if sh_logger.debug: print(f'y_val size: {y_val.size} svc_pred size: {svc_pred
            #correct and inccorrect
            correct = np.nonzero(svc_pred==y_val)[0]
            incorrect = np.nonzero(svc_pred!=y_val)[0]
            d = {'Label':y val, 'Prediction':svc pred}
            svcPredictionsDf = pd.DataFrame(data=d)
            if sh_logger.debug: print(f'Support Vector Classification DF Shape: {svcPredi
            # which test observations were miss classified
            svc missClassified DT = svcPredictionsDf[(svcPredictionsDf['Label'] != svcPre
            if sh logger.debug: print(f'Miss Classified DF Shape: {svc missClassified DT.
            if sh_logger.debug: print(f'Miss Classified Percent: {svc_missClassified_DT.s
            if sh logger.info: print(f'Total Number of points: [{X val.shape[0]}] Mislat
In [ ]:
        # sample plot of correctly predicted images
            plt.figure(figsize=(10, 7.5))
            for i, cor in enumerate(np.random.choice(correct,9,replace=False)):
                # plot subplot of incorrect predictions
                plt.subplot(3,3,i+1)
                plt.imshow(X_val[cor].reshape(28,28), cmap='gray', interpolation='none')
                plt.title(f'Predicted: {svc_pred[cor]}, Predicted Label: {class_to_label|
                          \nClass: {y val[cor]} Class Label:{class to label[y val[cor]]}'
                          fontsize=10)
            plt.tight layout()
            plt.savefig(f'{imageDir}svc_sample_correct_images.png', dpi=300)
            plt.show()
In []: ▶ # plot sample of incorrect
            plt.figure(figsize=(10, 7.5))
            for i, inc in enumerate(np.random.choice(incorrect,9,replace=False)):
                # plot subplot of incorrect predictions
                plt.subplot(3,3,i+1)
                plt.imshow(X_val[inc].reshape(28,28), cmap='gray', interpolation='none')
                plt.title(f'Predicted: {svc pred[inc]}, Predicted Label: {class to label|
                          \nClass: {y_val[inc]} Class Label:{class_to_label[y_val[inc]]}
                          fontsize=10)
            plt.tight layout()
            plt.savefig(f'{imageDir}svc sample incorrect images.png', dpi=300)
            plt.show()
```

2.1.3 Evaluate Model

```
In [ ]:
            misLabeled = (y val != svc pred).sum()/X val.shape[0]
            svmAccuractelyLabeled = 1-misLabeled
            if sh logger.info: print(f'Total Number of points: [{X val.shape[0]}] Mislat
            if sh logger.info: print(f'Percent Mislabeled: [{((y val != svc pred).sum()/)
            if sh_logger.info: print(f'Percent Accurately Labeled: [{svmAccuractelyLabele}
            modelsPerformance['PredictAccuracyScore'].append(svmAccuractelyLabeled)
            #print classification report table
            targetNames = ["Class{}".format(i) for i in range(n classes)]
            if sh_logger.info: print(f'\n{classification_report(y_val, svc_pred, target_r
            #print confusion matrix report
            cm = confusion matrix(y val,svc pred, labels=[0,1,2,3,4,5,6,7,8,9])
            if sh_logger.info: print(f'\nSVM Base Confusion Matrix Report:\n{cm}')
            # plot confusion matrix evaluation
            if sh_logger.info: rt.plot_confusion_matrix(cm,classes=[0,1,2,3,4,5,6,7,8,9])
In [ ]:

▶ sns.swarmplot(x='Label',y='Prediction',data=svc missClassified DT);
```

2.1.4 Tune Model Performance

For more information on tuning an SVM classifier, go https://scikit-learn.org/stable/modules/svm.html#svm-classification) for details. Tips:

- Consider performing dimensionality reduction (PCA, ICA, or Feature selection) beforehand to give your tree a better chance of finding features that are discriminative.
- Balance your dataset before training to prevent the tree from being biased toward the classes that are dominant.
- All decision trees use np.float32 arrays internally.
- If the input matrix X is very sparse, it is recommended to convert to sparse csc_matrix before
 calling fit and sparse csr_matrix before calling predict. Training time can be orders of
 magnitude faster for a sparse matrix input compared to a dense matrix when features have
 zero values in most of the samples.

```
In [ ]: ▶ # tune model
```

3. Model - RandomForestClassifier

Python Package: scikit-learn v0.21.3 <u>sklearn.ensemble.RandomForestClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html)</u>

A random forest is a meta estimator that fits a number of decision tree classifiers on various subsamples of the dataset and uses averaging to improve the predictive accuracy and control overfitting. The sub-sample size is always the same as the original input sample size but the samples

are drawn with replacement if bootstrap=True (default).

3.1 Create Models - RandomForestClassifier

Cross-Validate at 3 folds...

```
In [ ]: ▶ # pre-process datasets
```

Random Forest Attributes

See scikit learn glossary (https://scikit-learn.org/stable/glossary.html#term-warm-start) for indepth details.

```
In [ ]:
                                                                                  # The number of
                                                 criterion="gini",
                                                                                 # The function
                                                 max depth=None,
                                                                                 # The maximum
                                                 min_samples_split=2, # The minimum
min samples leaf=1, # The minimum
                                                 min_samples_leaf=1,
                                                 min weight fraction leaf=0.0, # The minimum
                                                 max_features="auto", # The number of max_leaf_nodes=None, # Grow trees with min_impurity_decrease=0.0, # A node will
                                                 min_impurity_split=None, # Threshold for
                                                                                 # Whether boot
                                                 bootstrap=True,
                                                 oob score=False,
                                                                                 # Whether to u
                                                                                 # The number of
                                                 n jobs=None,
                                                 random_state=None,
                                                                                 # if int, rand
                                                                                 # Controls the
                                                 verbose=2,
                                                 warm start=False,
                                                                                 # When set to
                                                 class weight=None
                                                                                 # Weights asso
```

modelsPerformance

In []:

```
In []: | Score the Random Forest model
    t = 0.0
    with rt.elapsed_timer() as elapsed:
        rf_base_score = rf_base.score(X_val, y_val)
        t = elapsed()
        if sh_logger.info: print(f'Random Forest Base Classification Model Fit Sometime in the state of the
```

3.2 Fit Model Prediction - Random Forest

```
In [ ]:
            %%time
            if sh_logger.debug: print(f'y_val size: {y_val.size} rf_base_pred size: {rf_k
            #correct and inccorrect
            correct = np.nonzero(rf_base_pred==y_val)[0]
            incorrect = np.nonzero(rf_base_pred!=y_val)[0]
            d = {'Label':y val, 'Prediction':rf base pred}
            rf base PredictionsDf = pd.DataFrame(data=d)
            if sh_logger.debug: print(f'Random Forest Base Classification DF Shape: {rf_t
            # which test observations were miss classified
            rf_base_missClassified_DT = rf_base_PredictionsDf[(rf_base_PredictionsDf['Lat
            if sh logger.debug: print(f'Miss Classified DF Shape: {rf base missClassified
            if sh_logger.debug: print(f'Miss Classified Percent: {rf_base_missClassified}
            if sh logger.info: print(f'Total Number of points: [{X val.shape[0]}] Mislat
In [ ]:
            # sample plot of correctly predicted images
            plt.figure(figsize=(10, 7.5))
            for i, cor in enumerate(np.random.choice(correct,9,replace=False)):
                # plot subplot of incorrect predictions
                plt.subplot(3,3,i+1)
                plt.imshow(X_val[cor].reshape(28,28), cmap='gray', interpolation='none')
                plt.title(f'Predicted: {rf base pred[cor]}, Predicted Label: {class to label: }
                           \nClass: {y val[cor]} Class Label:{class to label[y val[cor]]}'
                          fontsize=10)
            plt.tight_layout()
            plt.savefig(f'{imageDir}rf base sample correct images.png', dpi=300)
            plt.show()
        # plot sample of incorrect
In [ ]:
            plt.figure(figsize=(10, 7.5))
            for i, inc in enumerate(np.random.choice(incorrect,9,replace=False)):
                # plot subplot of incorrect predictions
                plt.subplot(3,3,i+1)
                plt.imshow(X val[inc].reshape(28,28), cmap='gray', interpolation='none')
                plt.title(f'Predicted: {rf base pred[inc]}, Predicted Label: {class to label: }
                           \nClass: {y_val[inc]} Class Label:{class_to_label[y_val[inc]]}'
                          fontsize=10)
            plt.tight layout()
            plt.savefig(f'{imageDir}rf base sample incorrect images.png', dpi=300)
            plt.show()
```

3.3 Evaluate Model - Random Forest Base

```
In [ ]:
           misLabeled = (y_val != rf_base_pred).sum()/X_val.shape[0]
           rfBaseAccuractelyLabeled = 1-misLabeled
           if sh logger.info: print(f'Total Number of points: [{X val.shape[0]}] Mislat
           if sh logger.info: print(f'Percent Mislabeled: [{((y val != rf base pred).sum
           if sh_logger.info: print(f'Percent Accurately Labeled: [{rfBaseAccuractelyLak
           modelsPerformance['PredictAccuracyScore'].append(rfBaseAccuractelyLabeled)
           #print classification report table
           targetNames = ["Class{}".format(i) for i in range(n classes)]
           if sh_logger.info: print(f'\n{classification_report(y_val, rf_base_pred, targ
           #print confusion matrix report
           cm = confusion_matrix(y_val,rf_base_pred, labels=[0,1,2,3,4,5,6,7,8,9])
           if sh_logger.info: print(f'\nSVM Base Confusion Matrix Report:\n{cm}')
           # plot confusion matrix evaluation
           if sh_logger.info: rt.plot_confusion_matrix(cm,classes=[0,1,2,3,4,5,6,7,8,9])
In [ ]:
        In [ ]:
           sns.barplot(x='Label',y='Prediction',data=rf base missClassified DT);
In [ ]:
           sns.swarmplot(x='Label',y='Prediction',data=rf base missClassified DT);
```

3.4 Tune Models

For details on how to tune a Random Forest Classifier, go https://scikit-learn.org/stable/modules/ensemble.html#random-forest-parameters) for details.

```
In [ ]: ▶ # perform model creation and validation techniques
```

3.5 iNterpret Models

Interpret the model results, make knowledge based recommendations

```
In [ ]: ▶ # perform interpretation steps
```

4. K Neighbors Classifier

Python Package: scikit-learn v0.21.3 sklearn.neighbors.KNeighborsClassifier (<a href="https://scikit-learn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.kneighbors

4.1 Explore

Explore the datasets

4.2 Model

Create models

4.2.1 Create Base KNeighborsClassifier Model

```
In [ ]:
            modelsPerformance
In [ ]:
         # initialize base KNeighborsClassifier
            kNN base = KNeighborsClassifier(n neighbors=5,
                                            weights="uniform",
                                                                 # weight function used i
                                            algorithm="auto", # Algorithm used to comp
                                                                 # Leaf size passed to Bd
                                            leaf size=30,
                                                                 # Power parameter for th
                                            p=2,
                                            metric="minkowski", # the distance metric to
                                            metric params=None, # Additional keyword and
                                                                 # The number of parallel
                                            n jobs=None)
In []: ▶ # fit the kNN model
            t = 0.0
            with rt.elapsed timer() as elapsed:
                kNN_fit = kNN_base.fit(X_train, y_train)
                t = elapsed()
                if sh logger.debug: print(f'K-Nearest Neighbors Classification Model Buil
            modelsPerformance['Name'].append('kNN base')
            modelsPerformance['FitTime'].append(t)
            #save model to file
            with open(modelBaselineDir+'kNN base','wb') as f:
                pickle.dump(kNN_base,f)
            with open(modelBaselineDir+'kNN fit','wb') as f:
                pickle.dump(kNN fit,f)
```

```
In [ ]: ▶
            # Score the kNN base model
            t = 0.0
            with rt.elapsed timer() as elapsed:
                kNN base score = kNN base.score(X val, y val)
                t = elapsed()
                if sh_logger.info: print(f'K-Nearest Neighbors Classification Model Fit S
                if sh logger.debug: print(f'K-Nearest Neighbors Classification Model Fit
            modelsPerformance['TestAccuracyScore'].append(kNN_base_score)
            modelsPerformance['ScoreTime'].append(t)
            # save score to file
            with open(modelBaselineDir+'kNN_base_score','wb') as f:
                pickle.dump(kNN base score,f)
         ▶ kNN_base.get_params(deep=True)
In [ ]:
In [ ]:
```

4.2.2 Fit Model Prediction - kNN Base

```
In [ ]:
            %%time
            if sh_logger.debug: print(f'y_val size: {y_val.size} svc_pred size: {kNN_base
            #correct and inccorrect
            correct = np.nonzero(kNN_base_pred==y_val)[0]
            incorrect = np.nonzero(kNN_base_pred!=y_val)[0]
            d = {'Label':y val, 'Prediction':kNN base pred}
            kNNPredictionsDf = pd.DataFrame(data=d)
            if sh_logger.debug: print(f'K-Nearest Neighbors Classification Model DF Shape
            # which test observations were miss classified
            kNN missClassified DT = kNNPredictionsDf[(kNNPredictionsDf['Label'] != kNNPre
            if sh logger.debug: print(f'Miss Classified DF Shape: {kNN missClassified DT.
            if sh_logger.debug: print(f'Miss Classified Percent: {kNN_missClassified_DT.s
            if sh logger.info: print(f'Total Number of points: [{X val.shape[0]}] Mislat
In [ ]:
            # sample plot of correctly predicted images
            plt.figure(figsize=(10, 7.5))
            for i, cor in enumerate(np.random.choice(correct,9,replace=False)):
                # plot subplot of incorrect predictions
                plt.subplot(3,3,i+1)
                plt.imshow(X_val[cor].reshape(28,28), cmap='gray', interpolation='none')
                plt.title(f'Predicted: {kNN_base_pred[cor]}, Predicted Label: {class_to_l
                          \nClass: {y val[cor]} Class Label:{class to label[y val[cor]]}'
                          fontsize=10)
            plt.tight_layout()
            plt.savefig(f'{imageDir}kNN base sample correct images.png', dpi=300)
            plt.show()
        # plot sample of incorrect
In [ ]:
            plt.figure(figsize=(10, 7.5))
            for i, inc in enumerate(np.random.choice(incorrect,9,replace=False)):
                # plot subplot of incorrect predictions
                plt.subplot(3,3,i+1)
                plt.imshow(X val[inc].reshape(28,28), cmap='gray', interpolation='none')
                plt.title(f'Predicted: {kNN base pred[inc]}, Predicted Label: {class to ]
                          \nClass: {y_val[inc]} Class Label:{class_to_label[y_val[inc]]}'
                          fontsize=10)
            plt.tight layout()
            plt.savefig(f'{imageDir}kNN base sample incorrect images.png', dpi=300)
            plt.show()
```

4.2.3 Evaluate Models - kNN Base

```
In []: | misLabeled = (y_val != kNN_base_pred).sum()/X_val.shape[0]
kNNAccuractelyLabeled = 1-misLabeled

if sh_logger.info: print(f'Total Number of points: [{X_val.shape[0]}] Mislat
if sh_logger.info: print(f'Percent Mislabeled: [{((y_val != kNN_base_pred).st
if sh_logger.info: print(f'Percent Accurately Labeled: [{kNNAccuractelyLabeled}]

modelsPerformance['PredictAccuracyScore'].append(kNNAccuractelyLabeled)

#print classification report table
targetNames = ["Class{}".format(i) for i in range(n_classes)]
if sh_logger.info: print(f'\n{classification_report(y_val, kNN_base_pred, tar

#print confusion matrix report
cm = confusion_matrix(y_val,kNN_base_pred, labels=[0,1,2,3,4,5,6,7,8,9])
if sh_logger.info: print(f'\nK-Nearest Neighbors Base Classification:\n{cm}')

# plot confusion matrix evaluation
if sh_logger.info: rt.plot_confusion_matrix(cm,classes=[0,1,2,3,4,5,6,7,8,9])
```

4.2.4 Tune Models

5. Algorithm Performance Comparison

Compare the results from the two algorithms. Which one reached higher accuracy? Which one runs faster? Can you explain why?

```
In [ ]:  

# Plotting decision regions
            x_{min}, x_{max} = X_{train}[:, 0].min() - 1, <math>X_{train}[:, 0].max() + 1
            y_min, y_max = X_train[:, 1].min() - 1, X_train[:, 1].max() + 1
            xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
                                  np.arange(y_min, y_max, 0.1))
            f, axarr = plt.subplots(2, 2, sharex='col', sharey='row', figsize=(10, 8))
            for idx, clf, tt in zip(product([0, 1], [0, 1]),
                                     [kNN_fit, rf_base_fit, svc_fit, eclf],
                                     ['KNN (k=5)', 'Random Forest (forests=100)',
                                       'Kernel SVM', 'Soft Voting']):
                Z = clf.predict(np.c [xx.ravel(), yy.ravel()])
                Z = Z.reshape(xx.shape)
                axarr[idx[0], idx[1]].contourf(xx, yy, Z, alpha=0.4)
                axarr[idx[0], idx[1]].scatter(X_train[:, 0], X_train[:, 1], c=y,
                                                s=20, edgecolor='k')
                axarr[idx[0], idx[1]].set_title(tt)
            plt.show()
```

5. Kaggle Test Results

5.1 Submission File Format

The submission file should be in the following format: For each of the 28000 images in the test set, output a single line containing the Imageld and the digit predicted. For example, if predict that the first image is of a 3, the second image is of a 7, and the third image is of a 8, then the submission file would look like:

```
Imageld,Label
1,3
2,7
3,8
(27997 more lines)
```

The evaluation metric for this contest is the categorization accuracy, or the proportion of test images that are correctly classified. For example, a categorization accuracy of 0.97 indicates that, all but 3% of the images have been correctly classified.