0.1 Singular Integral Operators

In this section we show how Calderon-Zygmund decomposition is used in estimation of the convolution operator T, which defined on Schwartz space \mathscr{S} , T(f) = K * f(x). The definition of singular integral operator given in book is different from others like that in Stein's Singular Integrals and Differentiability Properties of Functions.

Definition 0.1.0.1. Given a tempered distribution K, the convolution operator

$$Tf(x) = K * f(x) \quad (f \in \mathscr{S}(\mathbb{R}^n))$$

is called a singular integral operator if the following two conditions are satisfied:

- 1. $\hat{K} \in L^{\infty}(\mathbb{R}^n)$
- 2. K coincides in $\mathbb{R}^n \setminus \{0\}$ with a locally integrable function K(x) satisfying Hormander's condition:

$$\int_{|x|>2|y|} |K(x-y) - K(x)| \, dx \le B_k$$

Later we will see these two conditions guarantee the boundedness of T(f).

0.1.1 Hormander's condition

If a locally integrable function k(x) satisfying Hormander's condition and following two conditions:

$$\int_{r<|x|<2r} |k(x)| dx \le C_1$$

$$\begin{cases} \left| \int_{r<|x|$$

Then $Tf(x) = \lim_{\epsilon \to 0} \int_{|y| > \epsilon} k(x-y) f(y) dy$ is a singular integrable operator (Proposition 5.5 in book). In other words, $\|\hat{k}\|_{\infty} < \infty$

If we let a locally integrable function k(x) be $\Omega(x)|x|^{-n}$ with Ω homogeneous of degree 0 ($\Omega(rx) = \Omega(x)$ for $r \neq 0$). Then the following continuity condition on Ω ensures Hormander condition holds:

$$\int_0^1 w_1(\Omega;t) \frac{dt}{t} < \infty$$

where

$$w_1(\Omega;t) = \sup_{h \in \mathbb{R}^n, |h| \le t} \int_{|x'|=1} |\Omega(x'+h) - \Omega(x')| \, d\sigma(x')$$

Then $Tf(x) = \lim_{\epsilon \to 0} \int_{|y| > \epsilon} \Omega(y) |y|^{-n} f(x-y) dy$ is a singular integrable operator. The condition $\|\hat{k}\|_{\infty} < \infty$ is ensured by explict formula for $\hat{k} = m(\xi)$ if Ω is odd:

 $m(\xi) = -\frac{\pi i}{2} \int_{|x'|=1} \Omega(x') \operatorname{sign}(x' \cdot \xi) d\sigma(x')$

where sign $x = \frac{x}{|x|}$ (Proposition 5.6 in book). If Ω is not necessarily odd then the formula for $m(\xi)$ is (refer section 4.2 in chapter 2 in Stein's Singular Integrals and Differentiability Properties of Functions):

$$m(\xi) = \frac{\pi i}{2} \int_{|x'|=1} (\operatorname{sign}(x' \cdot \xi) + \log(\frac{1}{|x' \cdot \xi|})) \Omega(x') d\sigma(x')$$

Remark 0.1.1.1. Equation

$$\frac{\pi}{2}c_n \int_{|x'|=1} (x' \cdot h) \operatorname{sign}(x' \cdot \xi) d\sigma(x') = \frac{\xi \cdot h}{|\xi|}$$

is by riesz representation for Hilbert space. If we fix ξ with $|\xi| = 1$, then left hand side is a linear function of h, say $\ell(h)$. Since

$$|\ell(h)| \le \frac{\pi}{2} c_n \int_{|x'|=1} |x'| |h| d\sigma(x') = \frac{\pi}{2} c_n \int_{|x'|=1} |h| d\sigma(x') = |h|$$

, $\ell(h)$ is continuous linear functional with $\|\ell\| \le 1$. Thus $\ell(h) = (h,g)$ for some $g \in \mathbb{R}^n$ with $|g| = \|\ell\| \le 1$. Notice

$$\ell(\xi) = \frac{\pi}{2} c_n \int_{|x'|=1} (x' \cdot \xi) \operatorname{sign}(x' \cdot \xi) d\sigma(x') = \frac{\pi}{2} c_n \int_{|x'|=1} |x' \cdot \xi| d\sigma(x') = 1$$

Thus $\|\ell\| = 1$ with |g| = 1 and $1 = \ell(\xi) = (\xi, g) \le |\xi| |g| = 1$. The inequality holds if and only if $g = k\xi$ for some $k \in \mathbb{R}$. Thus $g = \xi$ and $\ell(h) = (h, \xi)$

0.1.2 Estimation of singular integral operator

The following theorem is the main result concerning singular integral operators:

Theorem 0.1.2.1 (theorem 5.7 in book). Every singular integral operator satisfies the inequalities

$$||Tf||_p \le C_p ||f||_p \quad (f \in L^2 \cap L^p; 1 (1)$$

$$|\{x: |Tf(x)| > t\}| \le \frac{C_1}{t} ||f||_1 \quad (f \in L^2 \cap L^1)$$
 (2)

$$||Tf||_{\text{BMO}} \le C_{\infty} ||f||_{\infty} \quad (f \in L^2 \cap L^{\infty})$$
(3)

where C_p , $1 \le p \le \infty$, depends only on p, n and on the constants $\|\hat{K}\|_{\infty}$ and B_K of the kernel.

To prove this theorem, we only need to prove three case $p=1,\ p=2,$ and $p=\infty$ and use Marcinkiewicz interpolation theorem in section 2 to derive 1 case. And use another interpolation theorem 3.7 in section 3 to derive <math>2 case.

Remark 0.1.2.1 (notes on proof of inequality (2)). The key idea to prove the case p=1 is Calderon-Zygmund decomposition. First we can split the space into a family of non-overlapping cubes C_t and a set $\mathbb{R}^n \setminus \bigcup_{Q \in C_t} Q$. These sets satisfy:

- 1. For every $Q \in C_t$, $t < \frac{1}{|Q|} \int_{|Q|} |f(x)| dx \le 2^n t$
- 2. For a.e. $X \notin \bigcup_{Q \in C_t} Q$, $|f(x)| \leq t$

Let $\Omega = \bigcup_{Q \in C_t} Q$. For any function $f \in L^1$, the Calderon-Zygmund decomposition of f(x) = g(x) + b(x) is:

$$g(x) = \sum_{j} \left(\frac{1}{|Q_j|} \int_{Q_j} f(t)dt \right) \chi_{Q_j}(x) + f(x) \chi_{\mathbb{R}^n \setminus \Omega}(x)$$

and

$$b(x) = f(x) - g(x) = \sum_{j} b_{j}(x) = \sum_{j} (f(x) - \frac{1}{|Q_{j}|} \int_{Q_{j}} f(t)dt) \chi_{Q_{j}}(x)$$

Generally, to estimate the size of the set $\{x: |f(x)| > c\}$, we can use $(\frac{|f(x)|}{c})^p > 1$ in that set and integral the index function of that set on \mathbb{R}^n :

$$|\{x:|f(x)|>c\}| = \int_{|\{x:|f(x)|>c\}|} 1dt \le \int_{|\{x:|f(x)|>c\}|} \left(\frac{|f(x)|}{c}\right)^p dt \le \frac{1}{c^p} \int |f(x)|^p dt$$

This inequality sometimes called Markov inequality.

Remark 0.1.2.2 (notes on proof of lemma 5.11 in book). In proof of theorem 5.20 in book, it says $f \in L_c^{\infty}$ was only imposed to ensure the $I_{\epsilon} = \int_{|y|>\epsilon} K(-y)f(y)dy$ exists. $M_pf(x)$ increases as p increases by Holder inequality. let r < q, $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$, we have

$$\left(\frac{1}{|Q|} \int_{Q} |f(t)|^{r} dt\right)^{\frac{1}{r}} \leq \frac{1}{|Q|^{\frac{1}{r}}} \left(\int_{Q} |f(t)|^{p} dt\right)^{\frac{1}{p}} \left(\int_{Q} 1^{q} dt\right)^{\frac{1}{q}} = \frac{|Q|^{\frac{1}{q}}}{|Q|^{\frac{1}{r}}} \left(\int_{Q} |f(t)|^{p} dt\right)^{\frac{1}{p}} \\
= \frac{1}{|Q|^{\frac{1}{p}}} \left(\int_{Q} |f(t)|^{p} dt\right)^{\frac{1}{p}} = \left(\frac{1}{|Q|} \int_{Q} |f(t)|^{p} dt\right)^{\frac{1}{p}}$$

Remark 0.1.2.3 (notes on proof of inequality (3)). We have $(Tf)^{\#}(0) = \sup_{0 \in Q} \frac{1}{|Q|} \int_{Q} |Tf(y) - (Tf)_{Q}| dy$ with $(Tf)_{Q} = \frac{1}{|Q|} \int_{Q} Tf(x) dx$

We know $(Tf)^{\#}(x) \cong \sup_{x \in Q} \inf_{a \in \mathbb{R}} \frac{1}{|Q|} \int_{Q} |Tf(y) - a| dy$, where \cong is used to indicate that each side is bounded by the other times an absolute constant (refer equation (3.1) in section 3, chapter 2 in book).

Observe that the cube $[-r,r]^n$ containing 0 is almost everywhere contained in the open ball $B(0,n^{\frac{1}{2}}r)$. Let d be the side length of Q. Let Q^2 be the cube with origin as center and with side length 2 times that of Q. $0 \in Q$ implies $Q \subset Q^2$. Thus

$$(Tf)^{\#}(0) \leq C \sup_{0 \in Q} \inf_{a \in \mathbb{R}} \frac{1}{|Q|} \int_{Q} |Tf(y) - a| \, dy$$

$$\leq C \sup_{r>0} \inf_{a \in \mathbb{R}} \frac{1}{2^{n} r^{n}} \int_{B(0, n^{\frac{1}{2}} r)} |Tf(y) - a| \, dy$$

$$\leq C \sup_{r>0} \frac{1}{2^{n} r^{n}} \int_{|y| \leq n^{\frac{1}{2}} r} |Tf(y) - I_{\epsilon}| \, dy$$

$$= C' \sup_{\epsilon > 0} \epsilon^{-n} \int_{|y| \leq \frac{\epsilon}{2}} |Tf(y) - I_{\epsilon}| \, dy$$

To estimate $\epsilon^{-n} \int_{|x| < \frac{\epsilon}{2}} |Tf(x) - I_{\epsilon}| dx$, we use lemma 7.11 in book and Hormander's condition:

$$\epsilon^{-n} \int_{|x| < \frac{\epsilon}{2}} |Tf(x) - I_{\epsilon}| dx$$

$$\leq C_{p} M_{p} f(0) + \epsilon^{-n} \iint_{2|x| < \epsilon < |y|} |K(x - y) - K(-y)| |f(y)| dxdy$$

$$\leq C_{p} ||f||_{\infty} + ||f||_{\infty} \epsilon^{-n} \iint_{2|x| < \epsilon < |y|} |K(x - y) - K(-y)| dxdy$$

$$\leq C_{p} ||f||_{\infty} + ||f||_{\infty} \epsilon^{-n} \int_{2|x| < \epsilon} \left(\int_{2|x| < |y|} |K(x - y) - K(-y)| dy \right) dx$$

$$= C_{p} ||f||_{\infty} + ||f||_{\infty} \epsilon^{-n} \int_{2|x| < \epsilon} \left(\int_{2|x| < |y|} |K(y - x) - K(y)| dy \right) dx$$

$$\leq C_{p} ||f||_{\infty} + ||f||_{\infty} \epsilon^{-n} \int_{2|x| < \epsilon} B_{k} dx$$

$$= C_{p} ||f||_{\infty} + B_{k} ||f||_{\infty}$$

We can change the sign of x and y in fifth line since the region is symmetric.

Remark 0.1.2.4. I don't know why $\frac{1}{\pi} \log \left| \frac{x-a}{x-b} \right|$, with a < b is in weak $-L^1 \cap$ BMO.

0.1.3 Restriction and extension of singular integral operator

To understand the behavior of singular integral operators in L^1 and L^{∞} , we ask if there is a subspace of L^1 , on which the singular integral operator is strong

type (1,1), and if the singular integral operator can "extend" from $L^2 \cap L^{\infty}$ to L^{∞} .

For the first question, we introduce the Banach space H^1_{at} (atomic H^1). More study of H^1_{at} is in Chapter 3. You can also refer section 5 and 6 in chapter 2 in Stein's Functional Analysis.

For the second question, notice $L^p \cap L^\infty$ is not dense in L^∞ . The extension is not a trivial step. However, the function f and f+C with constant C behavior the same in space BMO. Thus we introduce our definition of new T on L^∞ .

Proposition 0.1.3.1 (proposition 5.15 in book). Given a singular integral operator T with kernel K, for each $f \in L^{\infty}$ we define:

$$Tf(x) = \lim_{j \to \infty} (T(f\chi_{B_j})(x) - \int_{1 < |y| < j} K(-y)f(y)dy)$$

The sequence to the right converges locally in L^1 and also pointwise a.e., and the extended operator T satisfies:

$$||Tf||_{\text{BMO}} \le C_{\infty} ||f||_{\infty} \quad (f \in L^{\infty})$$
(4)

Remark 0.1.3.1 (notes on proof of proposition 5.15 in book). It is not clear that $g_j(x)$ converges pointwise. $g_j(x)$ in $L^1(F)$ since $g_l(x) \in L^1(F)$ and the integral is bounded by $B_K ||f||_{\infty}$ and F is compact.

0.1.4 More precise estimation for more regular kernel

If the kernel is more regular, the estimation of operator T can be replaced by maximal function. More precisely:

Definition 0.1.4.1 (definition 5.17 in book). A singular integral operator Tf = K * f is called regular if its kernel satisfies the following two conditions:

- 1. $|K(x)| < B|x|^{-n}$ for $x \neq 0$
- 2. $|K(x-y) K(x)| \le B|y||x|^{-n-1}$ for |x| > 2|y| > 0

Let $T_{\epsilon}f(x)=\int_{|y|>\epsilon}K(y)f(x-y)dy$ and $T^*f(x)=\sup_{\epsilon>0}|T_{\epsilon}f(x)|$. The estimation is the following:

Theorem 0.1.4.2 (theorem 5.20 in book). If T is a regular singular integral operator and $f \in L^p$, $1 \le p < \infty$, then the following inequalities are verified:

- 1. $(Tf)^{\#}(x) \le C_q M_q f(x) \quad (q > 1)$
- 2. $T^*f(x) \le C_q M_q f(x) + CM(Tf)(x) \quad (q > 1)$
- 3. $||T^*f||_p \le C_p ||f||_p$ (1
- 4. $|\{x: T^*f(x) > t\}| \le Ct^{-1}||f||_1$ (t > 0)

Remark 0.1.4.1 (notes on proof of theorem 5.20 in book). 3 is a trivial consequence of 2 and the L^p inequalities for the operators M and T. The L^p inequality for operator M_q is similar with operator M. By 2, $||T^*f||_p \leq ||C_qM_qf||_p + ||CM(Tf)||_p$, and $||CM(Tf)||_p \leq C'||Tf||_p \leq C''||f||_p$.

Now we prove the L^p inequality for operator M_q . We choose q with 1 < q < p:

$$\begin{split} \int_{\mathbb{R}^n} (M_q f(x))^p dx &= p \int_0^\infty t^{p-1} \left| \{x : M_q f(x) > t\} \right| dt \\ &= p \int_0^\infty t^{p-1} \left| \{x : \sup((\frac{1}{|Q|} \int_Q |f(t)|^q dt)^{\frac{1}{q}}) > t\} \right| dt \\ &= p \int_0^\infty t^{p-1} \left| \{x : \sup((\frac{1}{|Q|} \int_Q |f(t)|^q dt)) > t^q\} \right| dt \\ &\leq C p \int_0^\infty t^{p-1} \int_{\{x : |f(x)|^q > \frac{t^q}{2}\}} \frac{|f(x)|^q}{t^q} dx dt \\ &= C p \int_0^\infty \int_{\mathbb{R}^n} t^{p-1} \frac{|f(x)|^q}{t^q} \chi_{\{x : |f(x)|^q > \frac{t^q}{2}\}} dx dt \\ &= C p \int_{\mathbb{R}^n} \int_0^{|f(x)|^{\frac{1}{q}}} t^{p-1-q} |f(x)|^q dx dt \\ &= \frac{C p}{p-q} \int_{\mathbb{R}^n} (|f(x)|^{\frac{1}{q}})^{p-q} |f(x)|^q dt \\ &= \frac{C p 2^{\frac{p-q}{q}}}{p-q} \int_{\mathbb{R}^n} |f(x)|^p dt \end{split}$$

Thus $||T^*f||_p \le ||C_q M_q f||_p + ||CM(Tf)||_p \le C||f||_p$

Remark 0.1.4.2 (notes on corollary 5.22 in book). Notice (5.19) implies (b) in definition 5.1. By easy computation (5.18) implies (5.3). By proposition 5.5 in book, 5.1(b), (5.3) and (5.4) implies that T = k * f is a singular integral operator. It is not clear how to pass $\mathscr{S}(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$.

0.1.5 Proof of proposition 5.5 and 5.6 in book

Remark 0.1.5.1 (notes on proof of proposition 5.5 in book). Let $A = \{x : \epsilon < |x| < R\}, B = \{x : \epsilon < |x-y| < R\}, C = \{x : |x-y| \le \epsilon\} \text{ and }$

$$\begin{split} &B = \{x: |x-y| \geq R\} \\ &\int_{\mathbb{R}^n} \left| k_{\epsilon}^R(x-y) - k_{\epsilon}^R(x) \right| dx \\ &= \int_{A \cap B} \left| k_{\epsilon}^R(x-y) - k_{\epsilon}^R(x) \right| dx + \int_{\mathbb{R}^n \backslash (A \cap B)} \left| k_{\epsilon}^R(x-y) - k_{\epsilon}^R(x) \right| dx \\ &= \int_{A \cap B} \left| k(x-y) - k(x) \right| dx + \int_{A^c \cup B^c} \left| k_{\epsilon}^R(x-y) - k_{\epsilon}^R(x) \right| dx \\ &\leq \int_{A} \left| k(x-y) - k(x) \right| dx + \int_{A^c} \left| k_{\epsilon}^R(x-y) - k_{\epsilon}^R(x) \right| dx + \int_{B^c} \left| k_{\epsilon}^R(x-y) - k_{\epsilon}^R(x) \right| dx \\ &= \int_{A} \left| k(x-y) - k(x) \right| dx + \int_{A^c} \left| k_{\epsilon}^R(x-y) \right| dx + \int_{B^c} \left| k_{\epsilon}^R(x) \right| dx \\ &= \int_{A} \left| k(x-y) - k(x) \right| dx + \int_{A^c \cap B} \left| k(x-y) \right| dx + \int_{B^c \cap A} \left| k(x) \right| dx \\ &= \int_{A} \left| k(x-y) - k(x) \right| dx + \int_{A^c \cap B} \left| k(x-y) \right| dx + \int_{B^c \cap A} \left| k(x) \right| dx \\ &= \int_{A} \left| k(x-y) - k(x) \right| dx + \int_{A^c \cap B} \left| k(x-y) \right| dx + \int_{C \cap A} \left| k(x) \right| dx \\ &= \int_{A} \left| k(x-y) - k(x) \right| dx + \int_{A^c \cap B} \left| k(x-y) \right| dx + \int_{B^c \cap A} \left| k(x) \right| dx \\ &= \int_{A} \left| k(x-y) - k(x) \right| dx + \int_{A^c \cap B} \left| k(x-y) \right| dx + \int_{B^c \cap A} \left| k(x) \right| dx \\ &= \int_{A} \left| k(x-y) - k(x) \right| dx + \int_{A^c \cap B} \left| k(x-y) \right| dx + \int_{B^c \cap A} \left| k(x) \right| dx \\ &= \int_{A} \left| k(x-y) - k(x) \right| dx + \int_{A^c \cap B} \left| k(x-y) \right| dx + \int_{B^c \cap A} \left| k(x) \right| dx \\ &= \int_{A} \left| k(x-y) - k(x) \right| dx + \int_{A^c \cap B} \left| k(x-y) \right| dx + \int_{B^c \cap A} \left| k(x) \right| dx \\ &= \int_{A} \left| k(x-y) - k(x) \right| dx + \int_{A^c \cap B} \left| k(x-y) \right| dx + \int_{B^c \cap A} \left| k(x) \right| dx \\ &= \int_{A} \left| k(x-y) - k(x) \right| dx + \int_{A^c \cap B} \left| k(x-y) \right| dx + \int_{B^c \cap A} \left| k(x) \right| dx \\ &= \int_{A} \left| k(x-y) - k(x) \right| dx + \int_{A^c \cap B} \left| k(x-y) \right| dx + \int_{B^c \cap A} \left| k(x) \right| dx \\ &= \int_{A} \left| k(x-y) - k(x) \right| dx + \int_{A^c \cap B} \left| k(x-y) \right| dx + \int_{B^c \cap A} \left| k(x) \right| dx \\ &= \int_{A} \left| k(x-y) - k(x) \right| dx + \int_{A^c \cap B} \left| k(x-y) \right| dx + \int_{B^c \cap A} \left| k(x) \right| dx \\ &= \int_{A} \left| k(x-y) - k(x) \right| dx + \int_{A^c \cap B} \left| k(x-y) \right| dx + \int_{B^c \cap A} \left| k(x) \right| dx \\ &= \int_{A} \left| k(x-y) - k(x) \right| dx + \int_{A^c \cap B} \left| k(x-y) \right| dx + \int_{B^c \cap A} \left| k(x) \right| dx \\ &= \int_{A} \left| k(x-y) - k(x) \right| dx + \int_{A^c \cap B} \left| k(x-y) \right| dx + \int_{B^c \cap A} \left| k(x) \right| dx \\ &= \int_{A} \left| k(x-y) - k(x) \right| dx + \int_{A^c \cap B} \left| k(x-y) \right| dx \\ &= \int_{A} \left| k(x-y) -$$

$$\int_{C\cap A} |k(x)| \, dx + \int_{D\cap A} |k(x)| \, dx \leq \int_{\epsilon < |x| \leq \epsilon + |y|} |k(x)| \, dx + \int_{R - |y| \leq |x| < R} |k(x)| \, dx$$

Let x - y = t,

$$\int_{A^c \cap B} |k(x-y)| \, dx = \int_{\epsilon < |t| < R \ and \ |t+y| \le \epsilon} |k(t)| \, dt + \int_{\epsilon < |t| < R \ and \ |t+y| \ge R} |k(t)| \, dt$$

Use almost the same argument, we can show:

$$\int_{A^c \cap B} \left| k(x-y) \right| dx \leq \int_{\epsilon < |x| \leq \epsilon + |y|} \left| k(x) \right| dx + \int_{R - |y| \leq |x| < R} \left| k(x) \right| dx$$

Thus

$$\begin{split} \int_{\mathbb{R}^n} \left| k_{\epsilon}^R(x-y) - k_{\epsilon}^R(x) \right| dx &\leq 2 \int_{\epsilon < |x| \leq \epsilon + |y|} |k(x)| \, dx + 2 \int_{R - |y| \leq |x| < R} |k(x)| \, dx \\ &+ \int_{A} |k(x-y) - k(x)| \, dx \end{split}$$

 $\int_{r < |x| < 2r} |k(x)| dx \le C_1 \text{ implies } \int_{|x| < r} |k(x)| |x| dx \le 4C_1 r$:

$$\int_{|x| < r} |k(x)| |x| dx = \sum_{j=0}^{\infty} \int_{\frac{r}{2^{j+1}}|x| < \frac{r}{2^{j}}} |k(x)| |x| dx \le \sum_{j=0}^{\infty} \int_{\frac{r}{2^{j+1}}|x| < \frac{r}{2^{j}}} |k(x)| \frac{r}{2^{j}} dx$$

$$= \sum_{j=0}^{\infty} C_{1} \frac{r}{2^{j}} = 2C_{1}r$$

 $\int_{|x| < r} |k(x)| |x| dx \le 4C_1 r \text{ implies } \int_{r < |x| < 2r} |k(x)| dx \le C_1$:

$$\int_{r<|x|<2r} |k(x)| \, dx \le \int_{r<|x|<2r} |k(x)| \, \frac{|x|}{r} dx = \frac{1}{r} \int_{r<|x|<2r} |k(x)| \, |x| \, dx$$

$$\le \frac{1}{r} \int_{|x|<2r} |k(x)| \, |x| \, dx \le \frac{1}{r} 8C_1 r = 8C_1$$

Thus $\int_{r<|x|<2r} |k(x)| dx \le C_1$ and $\int_{|x|<r} |k(x)| |x| dx \le 4C_1 r$ are equivalent.

Remark 0.1.5.2 (notes on proof of proposition 5.6 in book). Let tx' = x - y, we have:

$$\begin{split} \int_{|x|>2|y|} \frac{|\Omega(x-y) - \Omega(x)|}{|x-y|^n} dx &= \int_{|tx'+y|>2|y|} \frac{|\Omega(tx') - \Omega(tx'+y)|}{t^n} d(tx'+y) \\ &\leq \int_{|tx'|+|y|>2|y|} \frac{|\Omega(tx') - \Omega(tx'+y)|}{t^n} d(tx') \\ &= \iint_{t>|y|} \frac{|\Omega(tx') - \Omega(tx'+y)|}{t^n} t^{n-1} dt d\sigma(x') \\ &= \int_{t>|y|} \int_{|x'|=1} |\Omega(tx') - \Omega(tx'+y)| d\sigma(x') \frac{dt}{t} \end{split}$$

By mean value theorem, we have $|x-y|^{-n} - |x|^{-n} = n \frac{y \cdot \xi}{|\xi|^{n+2}}$ with $\xi = (1-c)(x-y) + cx = x - (1-c)y$. Notice $|\xi| \ge |x| - (1-c)|y| \ge |x| - |y|$. Since $|y| \le \frac{|x|}{2}$, $|\xi| \ge \frac{|x|}{2}$. Thus

$$\left| \left| x - y \right|^{-n} - \left| x \right|^{-n} \right| \le n \frac{|y| |\xi|}{|\xi|^{n+2}} \le n 2^{n+1} \frac{|y|}{|x|^{n+1}}$$