Differential Equations in Geophysical Fluid Dynamics

III. Inertial oscillation

Jang-Geun Choi

Center for Ocean Engineering University of New Hampshire

Mar, 2025

This seminar is supported by mathematics community EM (maintained by Prof. Gunhee Cho) and oceanography community COKOAA.

Recap

The primitive equations are given by

$$\frac{\partial u}{\partial t} + \frac{\partial (uu)}{\partial x} + \frac{\partial (uv)}{\partial y} + \frac{\partial (uw)}{\partial z} - fv \\
- \frac{1}{\rho} \frac{\partial P}{\partial x} + \frac{\partial}{\partial x} \left(A_h \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(A_h \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial z} \left(A_z \frac{\partial u}{\partial z} \right)$$
(1a)

$$\frac{\partial v}{\partial t} + \frac{\partial (vu)}{\partial x} + \frac{\partial (vv)}{\partial y} + \frac{\partial (vw)}{\partial z} + fu =$$

$$-\frac{1}{\rho} \frac{\partial P}{\partial y} + \frac{\partial}{\partial x} \left(A_h \frac{\partial v}{\partial x} \right) + \frac{\partial}{\partial y} \left(A_h \frac{\partial v}{\partial y} \right) + \frac{\partial}{\partial z} \left(A_z \frac{\partial v}{\partial z} \right)$$
(1b)

$$\frac{\partial w}{\partial t} + \frac{\partial (wu)}{\partial x} + \frac{\partial (wv)}{\partial y} + \frac{\partial (ww)}{\partial z} =$$

$$-\frac{1}{\rho} \frac{\partial P}{\partial z} + \frac{\partial}{\partial x} \left(A_h \frac{\partial w}{\partial x} \right) + \frac{\partial}{\partial y} \left(A_h \frac{\partial w}{\partial y} \right) + \frac{\partial}{\partial z} \left(A_z \frac{\partial w}{\partial z} \right) - g$$
(1c)

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} = 0 \tag{1d}$$

Recap: Boussinesq approximation $\rho' \ll \rho_0$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} - fv$$

$$- \frac{1}{\rho_0} \frac{\partial P}{\partial x} + \frac{\partial}{\partial x} \left(A_h \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(A_h \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial z} \left(A_z \frac{\partial u}{\partial z} \right) \tag{2a}$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} + fu =
- \frac{1}{\rho_0} \frac{\partial P}{\partial y} + \frac{\partial}{\partial x} \left(A_h \frac{\partial v}{\partial x} \right) + \frac{\partial}{\partial y} \left(A_h \frac{\partial v}{\partial y} \right) + \frac{\partial}{\partial z} \left(A_z \frac{\partial v}{\partial z} \right)$$
(2b)

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} =$$

$$- \frac{1}{\rho_0} \frac{\partial P}{\partial z} + \frac{\partial}{\partial x} \left(A_h \frac{\partial w}{\partial x} \right) + \frac{\partial}{\partial y} \left(A_h \frac{\partial w}{\partial y} \right) + \frac{\partial}{\partial z} \left(A_z \frac{\partial w}{\partial z} \right) - g \frac{\rho}{\rho_0}$$
(2c)

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \qquad \frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + v \frac{\partial \rho}{\partial y} + w \frac{\partial \rho}{\partial z} = 0$$
 (2d)

Recap: hydrostatic approximation $H \ll L$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} - fv \\
- \frac{1}{\rho_0} \frac{\partial P}{\partial x} + \frac{\partial}{\partial x} \left(A_h \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(A_h \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial z} \left(A_z \frac{\partial u}{\partial z} \right)$$
(3a)

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} + fu =$$

$$- \frac{1}{\rho_0} \frac{\partial P}{\partial y} + \frac{\partial}{\partial x} \left(A_h \frac{\partial v}{\partial x} \right) + \frac{\partial}{\partial y} \left(A_h \frac{\partial v}{\partial y} \right) + \frac{\partial}{\partial z} \left(A_z \frac{\partial v}{\partial z} \right)$$
(3b)

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} =$$

$$- \frac{1}{\rho_0} \frac{\partial P}{\partial z} + \frac{\partial}{\partial x} \left(A_h \frac{\partial w}{\partial x} \right) + \frac{\partial}{\partial y} \left(A_h \frac{\partial w}{\partial y} \right) + \frac{\partial}{\partial z} \left(A_z \frac{\partial w}{\partial z} \right) - g \frac{\rho}{\rho_0}$$
(3c)

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \qquad \frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + v \frac{\partial \rho}{\partial y} + w \frac{\partial \rho}{\partial z} = 0 \tag{3d}$$

Recap: shallow water equations

What is the simplest approximated solution high-school student can solve?

$$\frac{\partial \bar{u}}{\partial t} + \bar{u}\frac{\partial \bar{u}}{\partial x} + \bar{v}\frac{\partial \bar{u}}{\partial y} - f\bar{v} =
- g\frac{\partial \eta}{\partial x} + \frac{A_h}{h}\left(\frac{\partial}{\partial x}\left(h\frac{\partial \bar{u}}{\partial x}\right) + \frac{\partial}{\partial y}\left(h\frac{\partial \bar{u}}{\partial y}\right)\right) + \frac{\tau_x^s}{\rho_0 h} - \frac{\tau_x^b}{\rho_0 h}$$
(4a)

$$\frac{\partial \bar{v}}{\partial t} + \bar{u}\frac{\partial \bar{v}}{\partial x} + \bar{v}\frac{\partial \bar{v}}{\partial y} + f\bar{u} =
- g\frac{\partial \eta}{\partial y} + \frac{A_h}{h}\left(\frac{\partial}{\partial x}\left(h\frac{\partial \bar{v}}{\partial x}\right) + \frac{\partial}{\partial y}\left(h\frac{\partial \bar{v}}{\partial y}\right)\right) + \frac{\tau_y^s}{\rho_0 h} - \frac{\tau_y^b}{\rho_0 h}$$
(4b)

$$\frac{\partial \eta}{\partial t} + \frac{\partial ((\eta + h)\bar{u})}{\partial x} + \frac{\partial ((\eta + h)\bar{v})}{\partial y} = 0$$
 (4c)

Recap: shallow water equations

What is the simplest approximated solution high-school student can solve?

$$\begin{split} \frac{\partial \bar{u}}{\partial t} + \bar{u} \frac{\partial \bar{u}}{\partial x} + \bar{v} \frac{\partial \bar{u}}{\partial y} - f \bar{v} = \\ - g \frac{\partial \eta}{\partial x} + \frac{A_h}{h} \left(\frac{\partial}{\partial x} \left(h \frac{\partial \bar{u}}{\partial x} \right) + \frac{\partial}{\partial y} \left(h \frac{\partial \bar{u}}{\partial y} \right) \right) + \frac{\tau_x^s}{\rho_0 h} - \frac{\tau_x^b}{\rho_0 h} \end{split} \tag{5a}$$

$$\frac{\partial \bar{v}}{\partial t} + \bar{u}\frac{\partial \bar{v}}{\partial x} + \bar{v}\frac{\partial \bar{v}}{\partial y} + f\bar{u} =
- g\frac{\partial \eta}{\partial y} + \frac{A_h}{h}\left(\frac{\partial}{\partial x}\left(h\frac{\partial \bar{v}}{\partial x}\right) + \frac{\partial}{\partial y}\left(h\frac{\partial \bar{v}}{\partial y}\right)\right) + \frac{\tau_y^s}{\rho_0 h} - \frac{\tau_y^b}{\rho_0 h}$$
(5b)

$$\frac{\partial \eta}{\partial t} + \frac{\partial ((\eta + h)\bar{u})}{\partial x} + \frac{\partial ((\eta + h)\bar{v})}{\partial y} = 0$$
 (5c)

Inertial motion in fixed coordinate

This is not trivial and has physical meaning (uniform linear motion)!

$$\frac{d\bar{u}}{dt} = 0 (6a)$$

$$\frac{d\bar{v}}{dt} = 0 \tag{6b}$$

$$\bar{u}|_{t=0} = U_0, \quad \bar{v}|_{t=0} = V_0$$
 (6c)

Solutions to the equations are given by

$$\bar{u} = U_0, \quad \bar{v} = V_0 \tag{7}$$

 \bar{u} and \bar{v} can be considered as velocity components of a water parcel, so equations for its position are $dX/dt=\bar{u}$ and $dY/dt=\bar{v}$.

$$X = U_0 t + X_0, \quad Y = V_0 t + Y_0 \tag{8}$$

Inertial motion in rotating coordinate

What if we consider Coriolis force (rotation of coordinate)?

$$\frac{\partial \bar{u}}{\partial t} + \bar{u}\frac{\partial \bar{u}}{\partial x} + \bar{v}\frac{\partial \bar{u}}{\partial y} - f\bar{v} =
- g\frac{\partial \eta}{\partial x} + \frac{A_h}{h}\left(\frac{\partial}{\partial x}\left(h\frac{\partial \bar{u}}{\partial x}\right) + \frac{\partial}{\partial y}\left(h\frac{\partial \bar{u}}{\partial y}\right)\right) + \frac{\tau_x^s}{\rho_0 h} - \frac{\tau_x^b}{\rho_0 h}$$
(9a)

$$\frac{\partial \bar{v}}{\partial t} + \bar{u}\frac{\partial \bar{v}}{\partial x} + \bar{v}\frac{\partial \bar{v}}{\partial y} + f\bar{u} =
- g\frac{\partial \eta}{\partial y} + \frac{A_h}{h}\left(\frac{\partial}{\partial x}\left(h\frac{\partial \bar{v}}{\partial x}\right) + \frac{\partial}{\partial y}\left(h\frac{\partial \bar{v}}{\partial y}\right)\right) + \frac{\tau_y^s}{\rho_0 h} - \frac{\tau_y^b}{\rho_0 h}$$
(9b)

$$\frac{\partial \eta}{\partial t} + \frac{\partial ((\eta + h)\bar{u})}{\partial x} + \frac{\partial ((\eta + h)\bar{v})}{\partial y} = 0$$
 (9c)

Inertial motion in rotating coordinate

$$\frac{d\bar{u}}{dt} - f\bar{v} = 0 \tag{10a}$$

$$\frac{d\bar{v}}{dt} + f\bar{u} = 0 \tag{10b}$$

$$\bar{u}|_{t=0} = U_0, \quad \bar{v}|_{t=0} = V_0$$
 (10c)

Solution to the equations are given by

$$\bar{u} = V_0 \sin(f t) + U_0 \cos(f t) \tag{11a}$$

$$\bar{v} = V_0 \cos(f t) - U_0 \sin(f t) \tag{11b}$$
Oscillation with frequency f (period $2\pi/f$)

This is what we call "inertial oscillation".

Inertial motion in rotating coordinate

Governing equations for the position of water mass are

$$\frac{dX}{dt} = \bar{u} \tag{12a}$$

$$\frac{dY}{dt} = \bar{v} \tag{12b}$$

$$X|_{t=0} = X_0 Y|_{t=0} = Y_0 (12c)$$

and the solutions with constant f are given by

$$X = \frac{U_0}{f}\sin(ft) - \frac{V_0}{f}\cos(ft) + X_0 + \frac{V_0}{f}$$
 (13a)

$$Y = \frac{V_0}{f}\sin(ft) + \frac{U_0}{f}\cos(ft) + Y_0 - \frac{U_0}{f}$$
 (13b)

that can be rewritten as

$$\left(X - \left(X_0 + \frac{V_0}{f}\right)\right)^2 + \left(X - \left(Y_0 - \frac{U_0}{f}\right)\right)^2 = \left(\begin{array}{c} \sqrt{\left(U_0^2 + V_0^2\right)} \\ f \end{array}\right)^2.$$
Radius of water mass trajectory (14)

This is equation of a circle!

A visualization of the analytical solution: (11) in lower panel and (14) in upper panel

Drifter observation in the East Sea

 $(available\ at\ https://www.khoa.go.kr/oceangrid/gis/category/observe/observeSearch.do?type=EYS\#none)$

Drifter observation in the East Sea (Drifter ID: 300234063741310 in 2016)

Summary

In rotating coordinate, not uniform linear motion but inerial oscillation.

Governing equation:

$$\frac{d\vec{u}}{\partial t} + if\vec{u} = 0 \tag{15a}$$

$$\vec{u}|_{t=0} = \vec{U}_0 \tag{15b}$$

$$\vec{u}|_{t=0} = \vec{U}_0$$
 (15b)

Solution:

$$\vec{u} = \vec{U}_0 \frac{e^{-ift}}{\text{Oscillation with frequency } f}$$
 (16)

that yields circle trajectory of which radius is $|\vec{U_0}|/f$.

Assignment

Let us consider one more term, bottom stress (friction; $\tau^b/(\rho_0 h)$ in (5)). The governing equations are given by

$$\frac{d\bar{u}}{dt} - f\bar{v} = -\frac{\tau_x^b}{\rho_0 h} = -\frac{\gamma}{h}\bar{u} \tag{17a}$$

$$\frac{d\bar{v}}{dt} + f\bar{u} = -\frac{\tau_y^b}{\rho_0 h} = -\frac{\gamma}{h}\bar{v}$$
 (17b)

$$\bar{u}|_{t=0} = U_0, \quad \bar{v}|_{t=0} = V_0$$
 (17c)

where bottom stress is modeled by linear friction bottom boundary condition and γ is linear friction coefficient, that is a constant.

- 1. Find two important time scales governing the equations.
- 2. Analytically solve above equations.
- 3. Under presence of friction, what kind of condition is required for inertial oscillations to be observed?

