Naïve Bayesians

Back to Basics Series

20 Feb 2021

Developing the Bayesian muscle to solve a wide range of problems

Naïve Bayesian Philosophy

Intuitive (Visual)
Understanding of the
Bayesian Reasoning

Ability to model real world problems in a Bayesian Setting

Starting from Simple Probabilistic modelling

Adapting it in a a Bayesian setting
And moving towards ML models

Fluency in the Calculus of Bayesian Stats & ML model

Season 2: Back to Basics

Back to Basics

		Canonical Problem	Applications
Ep 1	Bayes Theorem	There are 2 boxes from which cookies can be taken from. Box A and Box B. Box A contains 10 chocolate cookies, Box B contains 5 ginger cookies. Given that you get a chocolate cookie which box was it taken from?	The Shy Librarian Problem Naive Bayes algorithm
Ep 2	Problems with Binomial Likelihoods	You have 2 coins C1 and C2. p(heads for C1) = .7 & P(heads for C2) = 0.6 You flip the coin 10 times. What is the probability that the given coin you picked is C1 given you have 7 heads and 3 tails?	A/B Testing
Ep 4	Disease Detection	A particular disease affects 1% of the population. There is an imperfect test for this disease: The test gives a positive result for 90% of people who have the disease, and 5% of the people who are disease-free. Given a positive test result – what is the probability of having the disease?	COVID Tests (PCR & Antibody)! Fraud Detection
Ep 5	Naive Bayes Classification	Given these words occur in this text what's the probability it's spam?	
Ep 6	Gaussian Naive Bayes Classification	Given the weights and heights of basketball players, what's the probability that person a is a basketball player given weight = w and height = h?	Any Classification Problem

		Canonical Problem	Applications
Ep 7	German Tank Problem	Suppose tanks were given a serial number based on the order in which they were manufactured. Given that you've observed a tank with serial number "10", how many tanks were actually manufactured in total?	?
Ep 8	Waiting Times (Continuous Distributions)	Time between receiving a spam email, t _i was recorded on a random day. How long do you have to wait to get your next spam email?	Planning Trials Estimating Queues

Bayes Rule

Posterior Likelihood Prior
$$P(\theta \mid D) = P(D \mid \theta) P(\theta)$$

$$P(D)$$

$$P(D)$$
Normalising Constant

Bayes Rule

Posterior Likelihood Prior
$$P(\theta_i \mid D) = P(D \mid \theta_i) P(\theta_i)$$

$$\sum_{all j} P(D \mid \theta_j) P(\theta_j)$$
Normalising Constant

Canonical Problem Simplified

Time between receiving a spam email, t_i was recorded on a random day. How long do you have to wait to get your next spam email?

9.9

12

5.1

12

4.5

8.2

9.3

11

mins

Canonical Problem Simplified

Time between receiving a spam email, t_i was recorded on a random day. How long do you have to wait to get your next spam email?

How long do you have to wait to get your next spam email?

Before

$$\sum t_i = 72 \text{ mins, n} = 8$$

Expected value:

$$72/8 = 9 \text{ mins}$$

- How confident are you?
- What if you had more data?
- What if you knew that it was more likely for the data to tampered?

Exponential Distribution

- t ~ Exponential($1/\mu$)
 - t > 0
 - $\mu > 0$

$$P(t \mid \mu) = (1/\mu) e^{(t/\mu)}$$

Exponential Distribution

- t ~ Exponential($1/\mu$)
 - t > 0
 - $\mu > 0$

$$P(t \mid \mu) = (1/\mu) e^{(t/\mu)}$$

Inverse Gamma Distribution

- θ ~ InvGamma(a, b)
 - $| \bullet | \theta > 0$
 - a > 0, b > 0

$$\theta \sim \text{InvGamma(a, b)}$$

- $a = 1 b = 1$

- $a = 2 b = 1$

- $a = 3, b = 2$

- $a = 2, b = 0.5$

0.0 0.6 1.2 1.8 2.4 3.1 3.7 4.3 4.9 5.5 6.1 6.7 7.3

$$P(\theta) = c (1/\theta)^{a+1}e^{-b/x}$$

$$E(\theta) = b \quad Mode = b$$

$$a - 1$$

Bayes Rule

Posterior Likelihood Prior
$$P(\theta \mid D) = P(D \mid \theta) P(\theta)$$

$$P(D)$$

$$P(D)$$
Normalising Constant

Conjugate Prior

What is the probability of getting a head?

- 1. Let μ the average waiting time between 2 emails
 - Assume μ follows a InvGamma(2, 2) distribution
- 2. Let $t_{1...}t_N$ be the intervals between spam emails
 - Assume t are independent and identically distributed
 - $t_i \sim Exponential(1/\mu)$ for all i

$$P(\mu \mid t_{1...}t_{N}) = P(t_{1...}t_{N} \mid \mu) P(\mu)$$

$$P(t_{1} \mid t_{N})$$

Conjugate prior proof

$$P(\mu \mid t_{1...}t_{N}) \propto P(t_{1...}t_{N} \mid \mu) P(\mu)$$

$$\propto (1/\mu)^{N} e^{-(\sum t_{i}/\mu)} (1/\mu)^{a+1} e^{-(b/\mu)}$$

$$\propto (1/\mu)^{a+N+1} e^{-(b+\sum t_{i}/\mu)}$$

$$= (1/\mu)^{a'+1} e^{-b'/\mu}$$

$$= \ln v Gamma(a', b')$$

$$= \ln v Gamma(a+n, b+ \sum t_{i})$$

How long do you have to wait to get your next spam email?

Before

$$\sum t_i = 72 \text{ mins, } n = 8$$

Expected value

- 72/8 = 9 mins
- How confident are you?
- What if you had more data?
- What if you knew that it was more likely for the data to tampered?

After

- Start with InvGamma(2, 2)
- Update prior belief with InvGamma(2+8, 2+72)
- Expected value: 74/(10-1) = 8.2

