UCB008 - APPLIED CHEMISTRY

Atomic Emission Spectroscopy

Instrumentation – Types of Burners

by

Prof. Ranjana Prakash

School of Chemistry and Biochemistry
Thapar Institute of Engineering and Technology
Patiala -147004, India

Learning Outcomes

At the end of this session participants should be able to:

 Understand the working of various types of burners used for atomic spectroscopic techiques

Types of burner

Mecker burner
Total consumption burner
Laminar flow burner

Mecker Burner-

- •Natural gas and oxygen are used as fuel and oxidant.
- •Produces low temp, and low excitation energies.
- Used for alkali metals only.

Total consumption Burner

- As soon as liquid sample is drawn in the flame, oxygen aspirates the sample solution.
- Desolvation
- Vapourisation
- Atomization
- Excitation
- Emission process
- Flame is noisy and turbulent but can be adjusted to produce high temperature by controlling fuel to oxidant ratio.

Laminar-flow Burner (pre-mix)

- Sample, fuel and oxidant are thoroughly mixed THAPAR INSTITUTE OF EXCIPCION OF THE PROPERTY OF
- Gases move in non-turbulent fashion laminar flow
- Only 5 percent of the sample in the form of small droplets reaches to the flame and gets decomposed
- Efficient atomization
- Larger droplets move out as condensate
- Flame is non-turbulent, noiseless and stable
- Disadvantages
 - When sample contains two solvents, more volatile solvent evaporates leaving sample in less volatile solvent
 - Therefore, smaller number of atoms would reach to the flame and emission intensity reduces

Comparison – Total Consumption & Pre-mix Burner

Total Consumption Burner	Pre-mix Burner
Fuel, oxidant and sample meet together at the base of the flame	Nebulized sample get mixed thouroughly with fuel and oxidant then this mixture goes in the flame
The flame is turbulent, noisy and non-homogeneous	The flame is non-turbulent, noiseless, stable and laminar flow
Entire sample that entered through the capiallary tube reaches to the flame and get burnt regardless of dropsize	Only 5% of the sample in the form of smaller droplets reaches to the flame and burnt
Atomization is non homogenous	Efficient and homogenous atomization takes place
Preferred for flame photometry	Perferred for atomic absorption spectroscopy
Cost-effective	Expansive

jana Prakash

In the next session.....

• Principles associated with atomic absorption spectroscopy