Analiza

Bartosz Kucypera, bk439964

20 maja 2023

Rozwiązanie przygotowałem samodzielnie, ze świadomością, iż etyczne zdobywanie zaliczeń jest, zgodnie z Regulaminem Studiów, obowiązkiem studentek i studentów UW.

Zadanie 1

Ciąg $(a_n)_{n=1}^{\infty}$ jest dany wzorem $a_n = \sqrt[2n+1]{(2n)!}$. Niech

$$b_n = \sup_{x \in [0, a_n]} \left| \cos x - \sum_{k=0}^n \frac{(-1)^k}{(2k)!} x^{2k} \right|$$

Udownodnić, że $\lim_{n\to\infty} b_n = 0$.

Skorzystajmy z rozwinięcia $\cos x$ w szereg Taylora w zerze z resztą w postaci Lagrange'a, by zapisać b_n w inny, równoważny sposób.

$$b_n = \sup_{x \in [0, a_n]} \left| \frac{\cos^{(2n+1)}(c(x))}{(2n+1)!} x^{2n+1} \right|,$$

gdzie c(x) to funkcja stałej reszty Lagrange'a, $c(x) \in [0, x]$.

Oczywiście $b_n \geq 0$. Zachodzi następujący ciąg nierówności

$$\sup_{x \in [0,a_n]} \left| \frac{\cos^{(2n+1)}(c(x))}{(2n+1)!} x^{2n+1} \right| \leq \sup_{x \in [0,a_n]} \left| \frac{1}{(2n+1)!} x^{2n+1} \right| \leq \frac{(a_n)^{2n+1}}{(2n+1)!}$$

czyli,

$$0 \le b_n \le \frac{1}{2n+1}$$

Skoro $\lim_{n\to\infty} \frac{1}{2n+1} = 0$, to z trzech ciągów

$$\lim_{n \to \infty} b_n = 0$$