

CS/SE 3340 Computer Architecture

Other Number Representations

Adapted from "Computer Organization and Design, 4th Ed." by D. Patterson and J. Hennessy

Questions

- How to represent negative integers?
- What is sign-magnitude, 1-complement and 2complement representations and which on we should use?
- What is sign-extension for integers and how to do it?
- How to represent floating-point numbers?
- How to convert floating-point numbers represented in binary to decimal and vice-versa?

Negative Integers

- Natural (positive) integer numbers can be represented easily in memory of a computer in bits (binary format)
- But what about negative integers?
 - How do we handle negative integer numbers in a computer?
- How do we encode negative integers in binary format?
 - Can we just think of negative numbers as a positive one with the '-' sign in front of it?

Representing Negative Integers

- Two common methods: sign-magnitude representation and complementary representation
- Sign-magnitude representation
 - Encode sign (+/-) information separately
- Complementary representation
 - Do not encode sign information separately, use a complementary number
 - The complementary has a special relationship (complementary) to the original number and can be derived from it easily

5

Sign-Magnitude Representation

- The MSb (Most Significant bit) is used to encode the sign
 - '1' means negative, '0' means positive
 - The rest is used to encode the magnitude
- Thus an n-bit word can be used to represent $-(2^{(N-1)}-1)$ to $+(2^{(N-1)}-1)$
 - For example an 8-bit word: -127 to +127
 - Why only 255 possibilities with 8-bit?

Sign-Magnitude Representation Issues

- Zero (0) is represented twice!
 - +0 and -0
 - No such thing as two zeros in math!
- Not intuitive
 - Direct adding a number I and its negative (-I) in binary does not yield 0!
 - Have to treat the sign bit separately
- Not efficient to implement sign handling in hardware!

,

1-complement Representation

- Recall that in complementary representation N
 (positive) and –N (negative) has a special relationship
 - Must be easy to derive -N from N
- How about reversing all bits of N to get –N?
 - Replacing '1' with '0' and '0' with '1' in N to get -N
 - E.g., in 8-bit words: 9 = 00001001, -9 = 11110110
- This is 1-complement representation
 - Efficient hardware implementation using a NOT (inverse) gate for each bit

1-Complement Representation – cont'd

An n-bit word can be used to represent

```
from -(2^{(N-1)}-1) to +(2^{(N-1)}-1)
```

255 possibilities for 8-bit words, still missing one possibility!

• For 8-bit words

```
+127 = 01111111, -127 = 10000000
+0 = 00000000, -0 = 11111111
```

- Still having the problem of two '0's!
- But at least now I − I = -0!
- How about I + 0?
 - Only works with +0!!!

ç

2-complement Representation

- Let tweak the relationship in 1-complement scheme a bit: get –N by inversing all bits and then add 1
 - That is, get 1-complement of N and then add 1 to it
 - For example: with 8-bit words, 9 = 00001001, -9 = 11110111 (11110110 + 1)
- This is 2-complement representation
 - Can be implemented easily and efficiently in hardware (inverse and then +1)
- An n-bit word can be used to represent numbers from -2^(N-1) to +(2^(N-1) - 1)

2-complement Representation – cont'd

```
+10 = 00001010

-10 = 11110110

+127 = 01111111

-127 = 10000001

+0 = 00000000

-0 = 00000000
```

- No more two '0's problem!!!
- And I I = 0!
- Complementary representation's added benefit: the MSb can be used to determine whether a number is positive or negative!

11

Integer Representations

Example: Using 4 bit numbers

unsigned	sign/magnitude	1's complement	2's complement	
1111 [15]	0111 [7]	0111 [7]	0111	[7]
1110	0110	0110	0110	[6]
1101	0101	0101	0101	[5]
1100	0100	0100	0100	[4]
1011	0011	0011	0011	[3]
1010	0010	0010	0010	[2]
1001	0001	0001	0001	[1]
1000	0000, 1 000 [-0]	0000, 1 111 [-0]	0000	[0]
0111	1 001	1 110	1 111	[-1]
0110	1 010	1 101	1 110	[-2]
0101	1 011	1 100	1 101	[-3]
0100	1 100	1 011	1 100	[-4]
0011	1 101	1 010	1 011	[-5]
0010	1 110	1 001	1 010	[-6]
0001	1 111 [-7]	1 000 [-7]	1 001	[-7]
0000 [0]			1 000	[-8]
				1

Sign Extension

- Representing a number using more bits
 - Preserve the numeric value
- Replicate the sign bit to the left
 - c.f. unsigned values: extend with 0s
- Examples: 8-bit to 16-bit
 - **+2**: 0000 0010 => 0000 0000 0000 0010
 - -2: 1111 1110 => 1111 1111 1111 1110
- In MIPS instruction set
 - addi: extend immediate value
 - beq, bne: extend the displacement

13

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation (in base 10)

```
■ -2.34 × 10^{56} normalized

■ +0.002 × 10^{-4} not normalized

■ +987.02 × 10^{9}
```

- In binary (base 2)
 - $\pm 1.xxxxxxx_2 \times 2^{yyyy}$
- Types **float** and **double** in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

14

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

 $x = (-1)^S \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

- S: sign bit (0 ⇒ non-negative, 1 ⇒ negative)
- Normalize significand: 1.0 ≤ |significand | < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
 - Fraction: 000...00 ⇒ significand = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110⇒ actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

17

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001 ⇒ actual exponent = 1 - 1023 = -1022
 - Fraction: 000...00 ⇒ significand = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110 ⇒ actual exponent = 2046 – 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 × log₁₀2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 × log₁₀2 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

19

Floating-Point Example

• Represent -0.625 in floating point binary

```
-0.625 = -5/8 = -1 \times 101_2 \times 2^{-3} = -1 \times 1.01_2 \times 2^{-1}
```

- S = 1

normalized

- Fraction = $01000...00_2 = (0/2^1 + 1/2^2 + 0/2^3 + ...)$
- Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 10111111001000...00
- Double: 101111111111001000...00

Floating-Point Example – cont'd

 What number is represented by the single-precision float below?

11000000101000...00

- -S = 1
- Fraction = 01000...00₂
- Exponent = 10000001₂ = 129
- $X = (-1)^1 \times (1 + 0.01_2) \times 2^{(129 127)}$ = $(-1) \times 1.25 \times 2^2$ Was removed when encoded = -5.0

Intel C8087 FPU

- Introduced by Intel in 1980, cost ~\$150
- Runs at 4MHz ~ 10MHz
- Can perform 50,000 FLOPS using around 2.4 watts
- Boost application performance by %20 to %500

http://en.wikipedia.org/wiki/Intel_8087

