2. Topologische Begriffe

Definition

 (a_n) sei eine Folge in \mathbb{C} .

- (1) (a_n) heißt **beschränkt** $\iff \exists c \geq 0 : |a_n| \leq c \ \forall n \in \mathbb{N}$
- (2) (a_n) heißt eine Cauchy-Folge (CF): $\iff \forall \epsilon > 0 \exists n_0 \in \mathbb{N} : |a_n a_m| < \epsilon \ \forall n, m \geq n_0$
- (3) (a_n) heißt **konvergent** : $\iff \exists a \in \mathbb{C} : |a_n a| \to 0 \ (\iff \forall \epsilon > 0 \exists n_0 \in \mathbb{N} : |a_n a| < \epsilon \forall n \geq n_0)$ In diesem Fall ist a eindeutig bestimmt (Übung) und heißt der **Grenzwert** (GW) oder **Limes** von (a_n) . Man schreibt : $\lim_{n \to \infty} a_n = a$ oder $a_n \to a(n \to \infty)$
- (4) (a_n) heißt **divergent** : \iff (a_n) konvergiert nicht.

Beispiel

$$a_n = \frac{1}{n} + i(1 + \frac{1}{n}); |a_n - i| = |\frac{1}{n} - i\frac{1}{n}| = \frac{|1 - i|}{n} \to 0 (n \to \infty) \Rightarrow a_n \to i$$

Wie in \mathbb{R} bzw. mit 1.3, zeigt man:

Satz 2.1

 $(a_n),(b_n)$ seien Folgen in \mathbb{C} ; $a,b\in\mathbb{C}$

- (1) (a_n) konvergent $\Rightarrow a_n$ ist beschränkt.
- (2) (a_n) konvergent : \iff (Re a_n), (Im a_n) sind konvergent. In diesem Fall gilt $\lim a_n = \lim \operatorname{Re} a_n + i \lim \operatorname{Im} a_n$
- (3) Es gelte $(a_n) \to a, (b_n) \to b$. Dann: $a_n + b_n \to a + b, \ a_n b_n \to ab, \ \bar{a_n} \to \bar{a}, \ |a_n| \to |a|$ Ist $a \neq 0 \Rightarrow \exists m \in \mathbb{N} : a_n \neq 0 \ \forall n \geq m \ \text{und} \ \frac{1}{a_n} \to \frac{1}{a}$ Ist a_{n_k} eine Teilfolge (TF) von $(a_n) \Rightarrow a_{n_k} \to a(k \to \infty)$
- (4) Ist (a_n) beschränkt $\Rightarrow (a_n)$ enthält eine konvergente TF (**Bolzano-Weierstraß**)
- (5) (a_n) ist eine CF \iff (a_n) ist konvergent (Cauchykriterium)

Definition

 (a_n) sei eine Folge in $\mathbb C$ und $s_n:=\sum_{i=1}^n a_i \ n\in\mathbb N$. (s_n) heißt eine **unendliche Reihe** und wird mit $\sum_{n=1}^\infty a_n$ bezeichnet. $\sum_{n=1}^\infty a_n$ heißt konvergent/divergent \iff (s_n) konvergent/divergent. Ist $\sum_{n=1}^\infty a_n$ konvergent, so schreibt man $\sum_{n=1}^\infty a_n:=\lim_{n\to\infty} s_n$

Beispiel (Geometrische Reihe)

 $\sum_{n=0}^{\infty} z^n = 1 + z + \cdots$ $(z \in \mathbb{C})$. Wie in \mathbb{R} zeigt man:

2. Topologische Begriffe

(1)
$$1 + z + \dots + z^n = \begin{cases} \frac{1 - z^{n+1}}{1 - z} & \text{, falls } z \neq 1\\ n + 1 & \text{, falls } z = 1 \end{cases}$$

(2)
$$\sum_{n=0}^{\infty} z^n$$
 konvergent $\iff |z| < 1$. In diesem Fall $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$

Definition

 $\sum_{n=1}^{\infty} a_n$ heißt absolut konvergent : $\iff \sum_{n=1}^{\infty} |a_n|$ konvergent.

Wörtlich wie in \mathbb{R} beweist, bzw. formuliert man:

Satz 2.2

 (a_n) sei eine Folge in \mathbb{C}

- (1) Ist $\sum_{n=1}^{\infty} a_n$ konvergent $\Rightarrow a_n \to 0$
- (2) Ist $\sum_{n=1}^{\infty} a_n$ absolut konvergent $\Rightarrow \sum_{n=1}^{\infty} a_n$ konvergent und $|\sum_{n=1}^{\infty} a_n| \le \sum_{n=1}^{\infty} |a_n|$
- (3) Es gelten Cauchykriterium, Majorantenkriterium, Minorantenkriterium, Wurzelkriterium, Quotientenkriterium und der Satz über das Cauchyprodukt.

Definition

Sei $A \subseteq \mathbb{C}, z_0 \in \mathbb{C}$ und $\epsilon > 0$

- (1) $U_{\epsilon}(z_0) := \{z \in \mathbb{C} : |z z_0| < \epsilon\}$ ϵ -Umgebung von z_0 oder offene Kreisscheibe von z_0 mit Radius ϵ $\overline{U_{\epsilon}(z_0)} := \{z \in \mathbb{C} | |z z_0| \le \epsilon\} \text{ (abgeschlossene Kreisscheibe von } z_0 \text{ mit Radius } \epsilon \text{)}$
 - $U_{\epsilon}(z_0) := \{z \in \mathbb{C} | |z z_0| \le \epsilon\}$ (abgeschlossene Kreisscheibe von z_0 mit Radius ϵ) $\dot{U}_{\epsilon}(z_0) := U_{\epsilon}(z_0) \setminus \{z_0\}$ (punktierte Kreisschreibe)
- (2) $z_0 \in A$ heißt innerer Punkt von $\mathbf{A} : \iff \exists \epsilon > 0 : U_{\epsilon}(z_0) \subseteq A$ $A^o := \{z \in A | z \text{ innerer Punkt von A} \}$ heißt das Innere von \mathbf{A} . Klar ist: $A^o \subseteq A$ A heißt offen : $\iff A = A^o$
- (3) A heißt abgeschlossen : $\iff \mathbb{C}\backslash A$ ist offen.
- (4) A heißt **beschränkt**: $\iff \exists c \geq 0 : |a| \leq c \ \forall a \in A$
- (5) A heißt **kompakt** : \iff A ist beschränkt und abgeschlossen.
- (6) z_0 heißt ein **Häufungspunkt** von $A : \iff \forall \epsilon > 0 : U_{\epsilon}(z_0) \cap A \neq \emptyset$. $\bar{A} := \{z \in \mathbb{C} | z \text{ ist HP von } A\} \cup A \text{ heißt die } \mathbf{Abschließung} \text{ von } A$
- (7) z_0 heißt ein **Randpunkt** von A: $\iff \forall \epsilon > 0 : U_{\epsilon}(z_0) \cap A \neq \emptyset$ und $U_{\epsilon}(z_0) \cap (\mathbb{C} \backslash A) \neq \emptyset$ $\partial A := \{z \in \mathbb{C} | z \text{ ist Randpunkt von } A \}$ wird als **Rand von A** bezeichnet

Wie in \mathbb{R} zeigt man:

Satz 2.3

- (1) A heißt abgeschlossen \iff $A=\bar{A}$ \iff der Grenzwert jeder konvergenten Folge aus A gehört zu A.
- (2) z_0 ist HP von $A \iff \exists$ Folge (z_n) in $A \setminus \{z_0\} : z_n \to z_0$
- (3) Aist kompakt : \iff jede Folge in Aenthält eine konvergente Teilfolge deren Limes zu Agehört
 - \iff jede offene Überdeckung von A enthält eine endliche Überdeckung von A.