MAT 1348 - Winter 2023

Exercises 4 – Solutions

Professor: Antoine Poirier

Questions are taken from Discrete Mathematics 8th edition, by Kenneth H. Rosen.

QUESTION 1 (1.7 # 1). Use a direct proof to show that the sum of two odd numbers is even.

Solution: Let n and m two odd numbers. Then, there exists an integer k such that n = 2k + 1 and there exists an integer l such that m = 2l + 1. Therefore, m + n = 2(k + l + 1). Since k + l + 1 is an integer, we conclude that m + n is even.

QUESTION 2 (1.7 # 3). Use a direct proof to show that the square of an even number is also even.

Solution: Let n be an even number. Then, there exists an integer k such that n = 2k. Therefore, $n^2 = (2k)^2 = 2(2k^2)$. Since $2k^2$ is an integer, we conclude n^2 is even.

QUESTION 3 (1.7 # 5). Show that if m + n and n + p are even, and if m, n and p are integers, then m + p is also even. What type of proof did you use?

Solution: We use a direct proof. Suppose m+n and n+p are even. There exists an integer k such that m+n=2k and an integer l such that n+p=l. If we add the two numbers together, we get m+2n+p=2(k+l), which becomes m+p=2(k+l-n). Since k+l-n is an integer, we conclude that m+p is even.

QUESTION 4 (1.7 # 7). Use a direct proof to show that every odd number is the difference of two square numbers. (Hint: compute the difference between the square of k + 1 and the square of k, where k is any positive integer.)

Solution: Let *n* be an odd number. Therefore, the exists an integer *k* such that n = 2k + 1. Therefore, $(k + 1)^2 - k^2 = 2k + 1 = n$, so *n* is the difference between two squares, namely $(k + 1)^2$ and k^2 .

QUESTION 5 (1.7 # 13). Show that if x is irrationnal, then $\frac{1}{x}$ is irrationnal.

Solution: We use an indirect proof. Suppose $\frac{1}{x}$ is rationnal. There exists two integers p and $q \neq 0$ such that $\frac{1}{x} = \frac{p}{q}$. Since $\frac{1}{x}$ cannot be equal to 0, we get that $p \neq 0$. In this case, $x = \frac{q}{p}$. Therefore, x is rationnal.

QUESTION 6 (1.7 # 17). Use an indirect proof to show that if $x + y \ge 2$, where x and y are real numbers, then $x \ge 1$ or $y \ge 1$.

Solution: Suppose " $x \ge 1$ or $y \ge 1$ " is false, so suppose x < 1 and y < 1. In this case, x + y < 1 + 1 = 2, which is the negation of $x + y \ge 2$

QUESTION 7 (1.7 # 18). Show that if m and n are integers and mn is even, then m is even or n is even.

Solution: We use an indirect proof. Suppose "m is even or n is even" is false, so m is odd and n is odd. There exists an integer k such that m = 2k + 1 and an integer l such that n = 2l + 1. In this case, mn = (2k + 1)(2l + 1) = 2(2kl + k + l) + 1. Since 2kl + k + l is an integer, we conclude mn is odd, which is the negation of "mn is even".

QUESTION 8 (1.7 # 19). Show that if n is an integer and $n^3 + 5$ is odd, then n is even.

Solution: We use an indirect proof. Suppose n is odd, so there exists an integer k such that n = 2k + 1. In this case, $n^3 + 5 = (2k + 1)^3 + 5 = 2(4k^3 + 6k^2 + 3k + 3)$. Since $4k^3 + 6k^2 + 3k + 3$ is an integer, we conclude $n^3 + 5$ is even, which is the negation of $n^3 + 5$ is odd".

QUESTION 9 (1.7 # 29). Let n be a positive integer. Show that n is odd if and only if 5n + 6 is odd.

Solution: Let P = "n is odd" and Q = "5n + 6 is odd". We must show $P \leftrightarrow Q$, which is equivalent to $(P \to Q) \land (Q \to P)$. We have two implications to prove.

To show $P \to Q$, we use a direct proof. Suppose n is odd, so there exists an integer k such that n = 2k + 1. In that case, 5n + 6 = 2(5k + 5) + 1. Since 5k + 5 is an integer, we conclude that 5n + 6 is odd.

To show $Q \to P$, we use an indirect proof (we show $\neg P \to \neg Q$). Suppose n is even, so there exists an integer m such that n = 2m. In that case, 5n + 6 = 2(5m + 3). Since 5m + 3 is an integer, we conclude that 5n + 6 is even, which is the negation of Q.

QUESTION 10 (1.7 # 41). Let $a_1, a_2, ..., a_n$ be real numbers. Show that at least one of these numbers is greater or equal to their average.

Solution: Let A be the average of $a_1, a_2, ..., a_n$. So, $A = \frac{1}{n}(a_1 + a_2 + ... + a_n)$. We use a proof by contradiction. Suppose $a_1, a_2, ..., a_n$ are all less than A. In other words, suppose $a_1 < A$, $a_2 < A$,..., $a_n < A$. In this case, $a_1 + a_2 + ... + a_n < nA$, and so $A = \frac{1}{n}(a_1 + a_2 + ... + a_n) < A$. We get a contradiction (A < A). We conclude that the statement must be true.

QUESTION 11 (1.8 # 1). Show that $n^2 + 1 \ge 2^n$ whenever n is a positive integer such that $1 \le n \le 4$.

Solution: We do a proof by cases. If n = 1, the inequality $n^2 + 1 \ge 2^n$ becomes $2 \ge 2$, which is true. If n = 2, the inequality becomes $5 \ge 4$, which is true. If n = 3, the inequality becomes $10 \ge 8$, which is true. If n = 4, the inequality becomes 17 > 16, which is true. We conclude the statement is true.

QUESTION 12 (1.8 # 3). Show that there are no positive integers n such that $n^3 = 100$.

Solution: We show that if n is a positive integer, then $n^3 \neq 100$. We split the proof into two cases: $n \leq 4$ and $n \geq 5$. Suppose first that $n \leq 4$. In this case, $n^3 \leq 4^3 = 64 \leq 100$, and so $n^3 \neq 100$. Suppose now $n \geq 5$. In this case, $n^3 \geq 5^3 = 125 \geq 100$, and so $n^3 \neq 100$.