Appendix S8: results after Qiime Closed reference clustering. Supplementary Materials of "Finding fungi in a needle stack: high alpha and low beta-diversity of foliar endophytic Ascomycetes revealed by metabarcoding in Corsican pine forests".

Adrien Taudiere*

CEFE - Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier: France

November 9, 2017

Abstract

Plant leaves host highly diverse communities of foliar endophytic fungi (FEF). Compared to the other compartments of the plant microbiome, FEF diversity is poorly known. We here document the communities of FEF associated with the endemic Corsican black pine *Pinus nigra* subsp. *laricio* at three sites across its natural range and examine the effect of tree age and light exposure on FEF composition. Metabarcoding using next-generation sequencing provided 8243608 Ascomycota ITS2 sequences clustered into 642 FEF operational taxonomic units (OTUs). Site is the main determinant to explain the diversity and composition of FEF communities. Tree age somewhat affects FEF community composition, whereas needle location (shade vs canopy) has no effect. Results are robust against the various options of the bioinformatic pipeline specifically developed. This study provides the first picture of FEF diversity in a Mediterranean island and underlines the complementarity of forest massifs for fungal conservation.

Key words: foliar endophyte; fungi; community ecology; metabarcoding; Cyclaneusma minus, Pinus nigra subsp. laricio, Mediterranean, endemism, environmental sequencing

To set the filter parameter, see directly section 'Choice of filter parameters' 2.1.

To read a summary of this appendix, see directly section 'Summary' 7.

^{*}adrien.taudiere@zaclys.net

Contents

1	Intr	Introduction 4										
	1.1	R requirements	4									
	1.2	System and session informations	4									
	1.3	Some usefull functions	6									
_			_									
2	Dat		6									
	2.1	Choice of filter parameters	6									
	2.2	Load and convert loading	6									
		2.2.1 Otu table	6									
		2.2.2 Taxonomy	6									
		· · · · · · · · · · · · · · · · · · ·	7									
		2.2.4 Representative sequences	7									
		2.2.5 Samples information	8									
		2.2.6 Create the phyloseq object	8									
		2.2.7 Caracteristics of the phyloseq data	8									
	2.3	Filter sample by number of sequences	8									
	2.4	Filter OTUs by number of samples	8									
	2.5	Filter OTUs by number of sequences	10									
	2.6	Summary of filtration workflow										
3	Sim	1	1									
	3.1	Number of sequences and OTUs by samples										
	3.2	Number of sequences and samples for each OTUs	12									
	3.3	Distribution of sequences in the taxonomy	14									
	3.4	Focus on the 30 more abundant OTUs (number of sequences)	14									
	3.5	Focus on the 30 more frequent OTUs (number of samples)	16									
4	NT	and an effective of a second of the control of the										
4		mber of sequences and OTUs in function of putative ecology (using FUNGuild ware; Nguyen et al, 2015)	L8									
	SOIT	ware, Nguyen et al, 2013)	.0									
5	Dis	tribution of fungal endophytic alpha-biodiversity	9									
		Local diversity = Diversity by sites	19									
	5.2	Diversity by age of tree										
	5.3	Diversity by elevation of the sample										
	5.4	Which factor affect diversity?										
	0.1	, in the factor and the factor of the factor	-0									
6	Eff€	ect of site, age and elevation on fungal endophytic beta-diversity	28									
	6.1	Venn diagramm	28									
	6.2	Venn diagramm for OTUs present in at least 3 samples	28									
	6.3	Ordination	28									
	6.4	Permanova on sites, host ages and elevation	35									
	6.5	Permanova on sites, host ages and individual trees	35									
	6.6		36									
	6.7	· · · · · · · · · · · · · · · · · · ·	40									
	•		40									
		· · · · · · · · · · · · · · · · · · ·	43									
	6.8		43									
	_											

7	Summary			
	7.1	Filtering summary	47	
	7.2	Alpha diversity	47	
	7.3	Beta diversity	48	

1 Introduction

This supplementary material presents the ecological analysis of endophytic fungal communities in *Pinus nigra* subsp. *laricio*, an endemic species of Corsica. The dataset analysed here was computed using Qiime Closed reference clustering (see main article and Sup. Mat. 1 for more details).

1.1 R requirements

First, set the working directory. In this directory, there is data folder and a R script "functions_for_phyloseq.R".

```
setwd("~/Nextcloud/GitHub/FEF_paper/")
```

Then, we may need to install packages.

1.2 System and session informations

This document was created with R version 3.4.2 (2017-09-28) on Linux the 2017-11-09 15:01:39. See below for more information.

```
## R version 3.4.2 (2017-09-28)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 16.04.3 LTS

## Matrix products: default

## BLAS: /usr/lib/libblas/libblas.so.3.6.0

## LAPACK: /usr/lib/lapack/liblapack.so.3.6.0
```

```
## locale:
                                         LC_NUMERIC=C
LC_COLLATE=fr_FR.UTF-8
##
    [1] LC_CTYPE=fr_FR.UTF-8
    [3] LC TIME=fr FR.UTF-8
##
    [5] LC_MONETARY=fr_FR.UTF-8
                                         LC_MESSAGES=fr_FR.UTF-8
    [7] LC_PAPER=fr_FR.UTF-8
[9] LC_ADDRESS=fr_FR.UTF-8
##
                                         LC_NAME=fr_FR.UTF-8
                                         LC_TELEPHONE=fr_FR.UTF-8
##
## [11] LC_MEASUREMENT=fr_FR.UTF-8
                                        LC_IDENTIFICATION=fr_FR.UTF-8
##
## attached base packages:
## [1] parallel stats4
                                         stats graphics grDevices utils
## [8] datasets methods base
##
## other attached packages:
                                     lattice_0.20-35
gridExtra_2.2.1
    [1] vegan_2.4-4
[3] permute_0.9-4
##
##
##
    [5] venneuler_1.1-0
                                      rJava_0.9-8
                                     data.tree_0.7.0
## [7] d3treeR_0.1
    [9] treemap_2.4-2
                                     networkD3_0.4
## [11] multtest 2.32.0
                                     adegenet_2.1.0
                                     ips_0.0-7
## [13] ade4 1.7-8
## [15] XML_3.98-1.9
                                     colorspace_1.3-2
## [17] DECIPHER_2.4.0
                                     RSQLite_2.0
## [19] Biostrings_2.44.2
                                     XVector_0.16.0
## [21] phangorn_2.2.0
                                     ape_4.1
                                     limma 3.32.5
## [23] edgeR_3.18.1
## [25] mvabund_3.12.3
                                     DESeq2_1.16.1
## [27] SummarizedExperiment_1.6.3 DelayedArray_0.2.7
## [29] matrixStats 0.52.2
                                     Biobase 2.36.2
## [31] GenomicRanges_1.28.4
                                     GenomeInfoDb_1.12.2
## [33] IRanges_2.10.3
                                     S4Vectors_0.14.3
## [35] BiocGenerics_0.22.0
                                     schoRsch 1.4
## [37] xtable_1.8-2
                                     circlize_0.4.1
## [39] VennDiagram_1.6.17
                                     futile.logger_1.4.3
## [41] plyr_1.8.4
                                     cluster_2.0.6
## [43] phyloseq_1.20.0
                                     ggplot2_2.2.1
## [45] knitr_1.17
##
## loaded via a namespace (and not attached):
     [1] backports_1.1.0
[3] fastmatch_1.1-0
                                   Hmisc_4.0-3
igraph_1.1.2
##
##
                                   sp_1.2-5
##
     [5] lazyeval_0.2.0
                                   BiocParallel 1.10.1
##
     [7] splines 3.4.2
     [9] gridBase_0.4-7
                                   digest_0.6.12
##
##
    [11] foreach_1.4.3
                                   htmltools_0.3.6
##
    [13] viridis_0.4.0
                                   gdata_2.18.0
    [15] magrittr_1.5
                                   checkmate_1.8.3
##
    [17] memoise_1.1.0
                                   readr 1.1.1
##
    [19] annotate_1.54.0
                                   gmodels_2.16.2
    [21] blob_1.1.0
                                   dplyr_0.7.2
    [23] RCurl_1.95-4.8
##
                                   isonlite 1.5
    [25] genefilter_1.58.1
                                   bindr_0.1
##
##
    [27] brew_1.0-6
                                   survival_2.41-3
##
    [29] iterators 1.0.8
                                   glue_1.1.1
##
    [31] gtable_0.2.0
                                   zlibbioc_1.22.0
##
    [33] seqinr_3.4-5
                                   Rook_1.1-1
##
    [35] shape_1.4.3
                                   scales 0.5.0
    [37] futile.options_1.0.0
##
    [39] Rcpp_0.12.12
                                   viridisLite_0.2.0
    [41] htmlTable 1.9
##
                                   foreign_0.8-69
                                   spdep_0.6-15
    [43] bit_1.1-12
##
    [45] Formula_1.2-2
                                   tweedie_2.2.5
    [47] htmlwidgets_0.9
##
                                   DiagrammeR_0.9.1
                                   acepack_1.4.1
    [49] RColorBrewer_1.1-2
##
    [51] pkgconfig_2.0.1
[53] deldir_0.1-14
                                   nnet_7.3-12
locfit_1.5-9.1
##
##
    [55] rlang_0.1.2
                                   reshape2_1.4.2
    [57] AnnotationDbi 1.38.2
##
                                   visNetwork 2.0.1
##
    [59] munsell_0.4.3
                                   tools_3.4.2
##
    [61] downloader_0.4
                                   evaluate_0.10.1
##
    [63] biomformat 1.4.0
                                   stringr_1.2.0
purrr_0.2.3
    [65] bit64_0.9-7
##
    [67] bindrcpp_0.2
                                   nlme_3.1-131
    [69] mime 0.5
                                   rstudioapi 0.6
##
    [71] compiler_3.4.2
                                   rgexf_0.15.3
##
    [73] tibble_1.3.4
                                   statmod_1.4.30
    [75] geneplotter_1.54.0
##
                                   stringi 1.1.5
##
    [77] highr_0.6
                                   Matrix_1.2-11
##
    [79] LearnBayes_2.15
                                   GlobalOptions_0.0.12
##
    [81] data.table 1.10.4
                                   bitops 1.0-6
##
    [83] httpuv_1.3.5
                                   R6_2.2.2
    [85] latticeExtra_0.6-28
##
                                   gridSVG_1.5-1
    [87] codetools_0.2-15
                                   lambda.r_1.1.9
##
    [89] boot_1.3-20
                                   MASS_7.3-47
                                   assertthat 0.2.0
##
    [91] gtools_3.5.0
[93] rhdf5_2.20.0
                                   GenomeInfoDbData_0.99.0
##
    [95] mgcv_1.8-22
                                   expm_0.999-2
    [97] hms_0.3
                                   influenceR_0.1.0
##
    [99] quadprog_1.5-5
                                   rpart_4.1-11
## [101] tidyr_0.7.1
## [103] shiny_1.0.5
                                   coda 0.19-1
                                   base64enc_0.1-3
```

1.3 Some usefull functions

The function as.binary0tuTable converts a phyloseq object into a phyloseq object with binary (i.e. 0/1) OTU table. It allows to suppress effect due to the number of sequences wich may be the result of a lot of molecular artefact (Lindhal et al., 2013).

funky.color and transpa allow to create nice color palette.

accu_plot allows to plot accumulation curves in fonction of a factor in samples data (@sam_data of phyloseq object).

otu_circle uses the package circlize to plot circle of OTUs/sequences distributions in samples. sankey_phyloseq is an alternative using Sankey plot.

phyloseq_to_edgeR, wrote by Paul J. McMurdie, converts phyloseq OTU count data into DGEList for edgeR package.

plot_deseq2_phyloseq and plot_edgeR_phyloseq plot the result of differential analysis of count data (using either the package DESeq2 or edgeR).

```
source(file = "functions_for_phyloseq.R")
```

2 Data

2.1 Choice of filter parameters

```
#Choose the dataset folder
data_folder <- "Closed_ref"

#Choose the minimum number of sequences by sample.

N_sam_min <- 20000

#Choose the minimum number of samples by OTU.

N_otu_sam_min <- 1

#Choose the minimum number of sequences by OTU.

N_seq_otu_min <- 5
```

2.2 Load and convert loading

2.2.1 Otu table

```
#Import biom data
dataBiom <- import_biom(paste("data/", data_folder, "/otu_table.biom", sep=""))</pre>
```

2.2.2 Taxonomy

2.2.3 Add FUNguild information to taxonomy Table

```
taxRDP2 <- as.data.frame(taxRDP)</pre>
funguild <- read.delim(paste("data/", data_folder, "/FUNGUILD.guilds.txt", sep = ""))</pre>
match_interm <- match(rownames(taxRDP2), funguild$OTU_ID)</pre>
taxRDP2$Trophic_Mode <- NA
taxRDP2$Trophic_Mode <- as.character(funguild$Trophic.Mode)[match_interm]
taxRDP2$Guild <- NA
taxRDP2$Guild <- as.character(funguild$Guild)[match_interm]</pre>
taxRDP2$Confidence_Ranking <- NA
taxRDP2$Confidence_Ranking <- as.character(funguild$Confidence.Ranking)[match_interm]</pre>
taxRDP2$Growth_Morphology <- NA
taxRDP2$Growth_Morphology <- as.character(funguild$Growth.Morphology)[match_interm]
taxRDP2$Trait <- NA
taxRDP2$Trait <- as.character(funguild$Trait)[match_interm]</pre>
taxRDP2 <- tax_table(as.matrix(taxRDP2))</pre>
taxa_names(taxRDP2) <- taxa_names(dataBiom)</pre>
colnames(taxRDP2) <- c("Species Hypothesis", "Domain", "Phylum", "Class", "Order", "Family", "Genus"</pre>
                        "Trophic_Mode", "Guild", "Confidence_Ranking", "Growth_Morphology",
                        "Trait")
```

2.2.4 Representative sequences

```
map_endo <-
   import_qiime(map = "data/map_qiimedata.txt")

## Processing map file...

map_endo <- map_endo[order(rownames(map_endo)),]</pre>
```

2.2.5 Samples information

2.2.6 Create the phyloseq object

```
data_all <- merge_phyloseq(dataBiom, repset, taxRDP2)
sample_data(data_all) <- map_endo
data_all@tax_table[data_all@tax_table == ""] <- NA</pre>
```

2.2.7 Caracteristics of the phyloseq data

The data are made of 6.473782×10^6 sequences representing 256 OTUs allocate to 80 samples.

2.3 Filter sample by number of sequences

If we discard samples with less than 2×10^4 sequences, we keep 72 on the 80 samples (90%).

```
barplot(sort(sample_sums(data_all)))
abline(h = N_sam_min)
data.f1 <- prune_samples(sample_sums(data_all) > N_sam_min, data_all)
data.f1 <- prune_taxa(taxa_sums(data.f1) >= 1, data.f1)
```

2.4 Filter OTUs by number of samples

First, we can visualize the number of OTUs in a given number of samples (Figure 2.2).

Figure 2.1: Number of sequences by sample. Horizontal line indicates the filtering parameter.

```
df_nbOtu_sample <- data.frame("Nb of OTUs" = table(rowSums(as.binaryOtuTable(</pre>
  data.f1)@otu_table))[table(rowSums(as.binaryOtuTable(data.f1)@otu_table)) > 1],
  "Nb samples" = as.numeric(names(table(rowSums(as.binaryOtuTable(data.f1)@otu_table))
                            [table(rowSums(as.binaryOtuTable(data.f1)@otu_table)) > 1])))
g <- ggplot(df_nbOtu_sample, aes(y = Nb.of.OTUs.Freq, x = Nb.samples))
g + geom_point(size = 4, col = rgb(0.1, 0.1, 0.1, 0.5)) +
  scale_y_continuous(trans = 'log10') +
  geom\_smooth(size = 2, col = rgb(0.1, 0.1, 0.1, 0.5)) +
  geom_vline(xintercept= N_otu_sam_min)
## 'geom_smooth()' using method = 'loess'
summary(df_nb0tu_sample$Nb.samples)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
##
      1.00 7.75 16.00
                             25.93 40.50
                                             72.00
```

```
N_otu_sam_min
## [1] 1
```

If we discard OTUs present in less than 1 sample, we keep 252 on the 252 OTUs (100%).

Figure 2.2: Number of OTU present in a given number of samples. Vertical bar illustrates the filtering parameter.

2.5 Filter OTUs by number of sequences

We can visualize the number of sequences by OTU (Figure 2.3).

```
df_nbseq_Otu <- data.frame("Nb of sequences by OTUs" = rowSums(data.f2@otu_table))</pre>
g <- ggplot(df_nbseq_Otu, aes(x = Nb.of.sequences.by.OTUs))</pre>
g + geom_histogram(size = 2, col = rgb(0.8, 0.8, 0.8, 0.3)) +
  scale_x_continuous(trans = 'log10') +
  geom_vline(xintercept= N_seq_otu_min)
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
summary(df_nbseq_Otu[, 1])
##
        Min.
               1st Qu.
                          Median
                                              3rd Qu.
                                                            Max.
                                       Mean
                  32.8
                           203.5
                                    25637.0 1856.5 2291731.0
```

If we discard OTUs with less than 1 sequences, we keep 233 on the 256 OTUs (91.02%).

```
data.f3 <- prune_taxa(rowSums(data.f2@otu_table) >= N_seq_otu_min, data.f2)
```


Figure 2.3: Number of sequences by OTU (log10 transformed). Horizontal bar illustrates the filtering parameter.

2.6 Summary of filtration workflow

The filtered data are made of 6.460489×10^6 sequences representing 233 OTUs allocate to 72 samples.

	Nb.of.OTUs	Nb.of.samples	Nb.of.sequences
No filter	256	80	6473782.00
Nb of sequences by sample ≥ 20000	252	72	6460532.00
Nb of sample by $OTUs >= 1$	252	72	6460532.00
Nb of sequences by OTUs $>= 5$	233	72	6460489.00

Table 1: Number of OTUs, samples and sequences after filtering

3 Simple description of the dataset

3.1 Number of sequences and OTUs by samples

Figure 3.1: Number of OTUs by sample in fonction of the number of sequences by sample (log10 axe). The tendency is represented by the line obtained from loess (Local Polynomial Regression Fitting).

```
geom_smooth(size = 2, col = rgb(0.1, 0.1, 0.1, 0.5))
## 'geom_smooth()' using method = 'loess'
```

```
ggplot(as.data.frame(data.f3@refseq@ranges), aes(x = width)) + geom_density() +
   ylab("Reference sequences length")
```

3.2 Number of sequences and samples for each OTUs

Figure 3.2: Distribution of reference sequences length.

Figure 3.3: Number of sequences by OTUs (log10 axe) in fonction of the number of samples where OTUs were found. The tendency is represented by the line obtain from gam (Generalized additive models with integrated smoothness estimation).

Figure 3.4: Distribution of the number of sequences in the Ascomycota taxonomy. Colors represent Class, bold lines delimit Order and thick line delimit species.

3.3 Distribution of sequences in the taxonomy

3.4 Focus on the 30 more abundant OTUs (number of sequences)

```
the30mostfrequents <- sort(decreasing = T, rowSums(data.f3@otu_table))[1:30]
barplot(the30mostfrequents, horiz = T, cex.names = 0.4, las = 2)</pre>
```

Domain	Phylum	Class	Order	Family	Genus	Species	Trophic_Mode	Trait
Fungi	Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	-	-
Fungi	Ascomycota	Dothideomycetes	Dothideales	Dothioraceae	unidentified	Dothioraceae sp	-	-
Fungi	Ascomycota	Leotiomycetes	unidentified	unidentified	unidentified	Leotiomycetes sp BLD3	-	-
Fungi	Ascomycota	Dothideomycetes	Pleosporales				-	-
Fungi	Ascomycota	Dothideomycetes	Capnodiales				=	-
Fungi	Ascomycota	Dothideomycetes	Capnodiales	Incertae sedis	Capnobotryella	Capnobotryella sp MA 4642	Saprotroph	NULL
Fungi	Ascomycota						=	-
Fungi	Ascomycota	Leotiomycetes	Rhytismatales	Rhytismataceae	Lophodermium		Pathotroph	NULL
Fungi	Ascomycota	Dothideomycetes	Capnodiales	Mycosphaerellaceae	Phaeothecoidea	Phaeothecoidea sp	Saprotroph	NULL
Fungi	Ascomycota	Dothideomycetes	Capnodiales				_	-
Fungi	Ascomycota	Leotiomycetes	Helotiales	Hyaloscyphaceae	Lachnellula	Lachnellula calyciformis	Saprotroph	NULL
Fungi							=	-
Fungi	Ascomycota	Eurotiomycetes	Chaetothyriales	Herpotrichiellaceae	Phaeomoniella	Phaeomoniella sp	Saprotroph	NULL
Fungi	Ascomycota	Eurotiomycetes	Chaetothyriales	Herpotrichiellaceae	Phaeomoniella	Phaeomoniella sp	Saprotroph	NULL
Fungi	Ascomycota	Dothideomycetes	Capnodiales	Incertae sedis	Phaeotheca	Phaeotheca sp	-	-
Fungi	Ascomycota						-	-
Fungi	Ascomycota	Dothideomycetes	Capnodiales	Davidiellaceae	Davidiella	Davidiella tassiana	Saprotroph	NULL
Fungi	Ascomycota						=	-
Fungi	Ascomycota						-	-
Fungi	Ascomycota	Eurotiomycetes	Chaetothyriales	Herpotrichiellaceae			-	-
Fungi	Ascomycota	Dothideomycetes	Pleosporales	Sporormiaceae	unidentified	Sporormiaceae sp	-	-
Fungi	Ascomycota	Lecanoromycetes	Lecanorales	Parmeliaceae	Pseudevernia	Pseudevernia furfuracea	Symbiotroph	NULL
Fungi							_	-
Fungi	Ascomycota	Leotiomycetes	Helotiales	Hyaloscyphaceae	Lachnellula		Saprotroph	NULL
Fungi	Ascomycota	Leotiomycetes					_	-
Fungi	Ascomycota	Dothideomycetes	Dothideales	Dothioraceae	Aureobasidium	Aureobasidium pullulans	Saprotroph	NULL
Fungi	Ascomycota	Dothideomycetes	Pleosporales	Sporormiaceae	unidentified	Sporormiaceae sp	-	-
Fungi	Ascomycota	Dothideomycetes	Pleosporales	Sporormiaceae	unidentified		-	-
Fungi	unidentified	unidentified	unidentified	unidentified	unidentified	fungal sp agrD488	-	-

Table 2: Taxonomie of the 30 more abundant OTUs (number of sequences)

Figure 3.5: Number of sequences of the 30 most abundant OTUs (number of sequences). Colors indicate Order, bold lines delimit Class and thick lines delimit species.

3.5 Focus on the 30 more frequent OTUs (number of samples)

Domain	Phylum	Class	Order	Family	Genus	Species	Trophic_Mode	Trait
Fungi	Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	=	=
Fungi	Ascomycota						=	-
Fungi	Ascomycota						-	-
Fungi	Ascomycota	Dothideomycetes	Capnodiales				=	-
Fungi	Ascomycota	Leotiomycetes	Rhytismatales	Rhytismataceae	Lophodermium		Pathotroph	NULL
Fungi	Ascomycota	Leotiomycetes	unidentified	unidentified	unidentified	Leotiomycetes sp BLD3	-	-
Fungi	Ascomycota	Dothideomycetes	Dothideales	Dothioraceae	unidentified	Dothioraceae sp	-	=.
Fungi	Ascomycota	Dothideomycetes	Capnodiales	Davidiellaceae	Davidiella	Davidiella tassiana	Saprotroph	NULL
Fungi	Ascomycota	Dothideomycetes	Capnodiales				=	-
Fungi	Ascomycota	Dothideomycetes	Pleosporales				-	-
Fungi	Ascomycota	Dothideomycetes	Capnodiales	Mycosphaerellaceae	Phaeothecoidea	Phaeothecoidea sp	Saprotroph	NULL
Fungi	Ascomycota	Dothideomycetes	Capnodiales	Mycosphaerellaceae	Phaeothecoidea		Saprotroph	NULL
Fungi	Ascomycota	Dothideomycetes	Capnodiales	Incertae sedis	Capnobotryella	Capnobotryella sp MA 4642	Saprotroph	NULL
Fungi	Ascomycota	Eurotiomycetes	Chaetothyriales	Herpotrichiellaceae	Phaeomoniella	Phaeomoniella sp	Saprotroph	NULL
Fungi	Ascomycota	Leotiomycetes	unidentified	unidentified	unidentified	Leotiomycetes sp BLD3	-	=.
Fungi	Ascomycota	Eurotiomycetes	Chaetothyriales	Herpotrichiellaceae	Phaeomoniella	Phaeomoniella sp	Saprotroph	NULL
Fungi	Ascomycota	Dothideomycetes	Capnodiales				= "	-
Fungi	Ascomycota						_	-
Fungi	Ascomycota	Dothideomycetes	Capnodiales	Incertae sedis	Phaeotheca	Phaeotheca sp	_	_
Fungi	Ascomycota	Eurotiomycetes	Chaetothyriales	Herpotrichiellaceae	Phaeomoniella	Phaeomoniella sp	Saprotroph	NULL
Fungi	Ascomycota	Leotiomycetes	Helotiales	Hyaloscyphaceae	Lachnellula	Lachnellula calyciformis	Saprotroph	NULL
Fungi	Ascomycota	Leotiomycetes	Helotiales	Hyaloscyphaceae	Lachnellula		Saprotroph	NULL
Fungi	Ascomycota	Dothideomycetes	Pleosporales				=	-
Fungi							_	-
Fungi	Ascomycota	Leotiomycetes	Helotiales	Hyaloscyphaceae			-	-
Fungi	Ascomycota	Eurotiomycetes	Chaetothyriales				_	-
Fungi	Ascomycota	Eurotiomycetes	Chaetothyriales	Herpotrichiellaceae			-	=.
Fungi	unidentified	unidentified	unidentified	unidentified	unidentified	fungal sp TRN256	-	-
Fungi	Ascomycota	Dothideomycetes	Pleosporales	Pleosporaceae	Alternaria		Pathotroph	NULL

Table 3: Taxonomie of the 30 more frequent OTUs (number of samples)

Figure 4.1: Distribution of OTUs into functional Guild.

4 Number of sequences and OTUs in function of putative ecology (using FUNGuild software; Nguyen et al, 2015)

```
tabPutativeEcology <- apply(data.f3@tax_table, 2, function(x) table(x))
tabPutativeEcology_percent <- apply(data.f3@tax_table, 2, function(x)
    round(table(x)/dim(data.f3@tax_table)[1]*100, 3))
sum(data.f3@otu_table[data.f3@tax_table[,"Trophic_Mode"] == "-"]) /
    sum(data.f3@otu_table)*100

## [1] 79.43185

tmdata <- as.data.frame(data.f3@tax_table[data.f3@tax_table[,"Trophic_Mode"] != "-"])
tmdata$Nb.sequences <- rowSums(data.f3@otu_table[data.f3@tax_table[,"Trophic_Mode"] != "-"])
tmdata$Nb.OTU <- rep(1, length(tmdata$Nb.sequences))</pre>
```

```
ggplot(tmdata) + geom_bar(aes(x = Trophic_Mode, fill=Guild), position = "dodge") +
scale_fill_discrete("Paired") + theme_grey()
```

```
ggplot(tmdata, stat = "identity") +
  geom_bar(aes(x = Trophic_Mode, weight = Nb.sequences, fill = Guild), position = "dodge") +
  scale_fill_discrete("Paired") + scale_y_log10() + theme_grey()
```


Figure 4.2: Distribution of sequences (log10 transformed) into functional Guild.

5 Distribution of fungal endophytic alpha-biodiversity

5.1 Local diversity = Diversity by sites

```
accu_plot(data.f3, "Sites", nbSeq = FALSE)

accu_plot(data.f3, "Sites", step = 5000)

measures_index <- c("Observed", "Chao1", "Shannon", "Simpson")
p <- plot_richness(data.f3, x = "Sites", color = "Sites", measures = measures_index)
p + geom_boxplot(data = p$data, alpha = 0.5)</pre>
```

5.2 Diversity by age of tree

Figure 5.1: Rarefaction curves for each site. Note that if singletons were removed, these curves are biaised.

5.3 Diversity by elevation of the sample

5.4 Which factor affect diversity?

Figure 5.2: Rarefaction curves for each sample using sequences number on x-axes. Note that if singletons were removed, these curves are biaised.

Figure 5.3: Diversity of each sites

Figure 5.4: Rarefaction curves for each host age. Note that if singletons were removed, these curves are biaised.

```
hill.2.m1 = lm(hill.2 ~ sqrt(readNumbers) + data.f3@sam_data$Sites +
data.f3@sam_data$Age + data.f3@sam_data$Elevation)
hill.3.m1 = lm(hill.3 ~ sqrt(readNumbers) + data.f3@sam_data$Sites +
data.f3@sam_data$Age + data.f3@sam_data$Elevation)
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	27.0377659	9.4442299	2.8628873	0.0056684
sqrt(readNumbers)	0.0755160	0.0279419	2.7026053	0.0087990
$data.f3@sam_data\$SitesBavella$	1.0370913	4.2018371	0.2468185	0.8058387
$data.f3@sam_data\$SitesVerghello$	-6.8254256	4.2448276	-1.6079394	0.1127711
$data.f3@sam_data\$AgeOld$	-1.1132151	4.2063030	-0.2646540	0.7921265
$data.f3@sam_data\$AgeYoung$	-7.4022901	4.3206519	-1.7132346	0.0915101
$data.f3@sam_data\$ElevationMiddle$	6.6296207	4.2620963	1.5554835	0.1247625
data.f3@sam_data\$ElevationTop	4.1963758	4.2136880	0.9958914	0.3230534

Table 4: Summary of the linear model of species richness (Hill number with q = 0)

Post-hoc Tukey tests among the three experimental treatments with partial residuals, after accounting for differential sequencing success.

```
tuk1 <- TukeyHSD(aov(lm(hill.1 ~ sqrt(readNumbers))$residuals ~ data.f3@sam_data$Site))
tuk2 <- TukeyHSD(aov(lm(hill.2 ~ sqrt(readNumbers))$residuals ~ data.f3@sam_data$Site))
tuk3 <- TukeyHSD(aov(lm(hill.3 ~ sqrt(readNumbers))$residuals ~ data.f3@sam_data$Site))</pre>
```


Figure 5.5: Diversity in function of tree age. Color represent sites.

Figure 5.6: Rarefaction curves for each elevation. Notes that if singletons were removed, these curves are biaised.

```
ggplot(data = df) + geom_linerange(aes(ymax = xSup, ymin = xInf, x = y), size = 2) +
geom_point(aes(x=y, y=x), size=4, shape=21, fill="white") +
coord_flip() + theme_gray() + geom_hline(yintercept = 0) +
ylab("Differences in mean levels") + xlab("")
```


Figure 5.7: Diversity in function of elevation. Color represent sites.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.7457312	1.8007852	5.4119343	0.0000010
sqrt(readNumbers)	0.0016818	0.0053278	0.3156609	0.7532870
$data.f3@sam_data\$SitesBavella$	-6.0579667	0.8011882	-7.5612276	0.0000000
$data.f3@sam_data\$SitesVerghello$	-2.8490706	0.8093855	-3.5200416	0.0008006
$data.f3@sam_data\$AgeOld$	0.8624918	0.8020398	1.0753729	0.2862452
$data.f3@sam_data\$AgeYoung$	0.9578824	0.8238433	1.1626997	0.2492685
$data.f3@sam_data\$ElevationMiddle$	1.3526575	0.8126782	1.6644442	0.1009127
$data.f3@sam_data\$ElevationTop$	1.0510900	0.8034479	1.3082242	0.1954764

Table 5: Summary of the linear model of the exponential of Shannon's entropy index (Hill number with q = 1)

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	6.3011288	1.0754044	5.8593111	0.0000002
sqrt(readNumbers)	-0.0006218	0.0031817	-0.1954387	0.8456687
$data.f3@sam_data\$SitesBavella$	-3.7412953	0.4784587	-7.8194739	0.0000000
$data.f3@sam_data\$SitesVerghello$	-1.9015445	0.4833540	-3.9340618	0.0002082
$data.f3@sam_data\$AgeOld$	0.5320685	0.4789672	1.1108662	0.2707820
$data.f3@sam_data\$AgeYoung$	1.0402492	0.4919880	2.1143792	0.0383839
$data.f3@sam_data\$ElevationMiddle$	0.4753999	0.4853204	0.9795590	0.3309923
$data.f3@sam_data\$ElevationTop$	0.4678373	0.4798081	0.9750507	0.3332062

Table 6: Summary of the linear model of inverse of Simpson's concentration index (Hill number with q=2)

Figure 5.8: Results of the Tuckey HSD testing for differences in mean Hill numbers among pairs of modalities

Figure 6.1: Venn diagramm of the distribution of OTUs among Sites

6 Effect of site, age and elevation on fungal endophytic betadiversity

6.1 Venn diagramm

```
venn_phyloseq(data.f3, "Sites", printValues = F)
venn_phyloseq(data.f3, "Age", printValues = F)
venn_phyloseq(data.f3, "Elevation", printValues = F)
```

6.2 Venn diagramm for OTUs present in at least 3 samples

```
data.f3_3samp <- subset_taxa(data.f3, rowSums(data.f3@otu_table>0)>2)
venn_phyloseq(data.f3_3samp, "Sites", printValues = F)

venn_phyloseq(data.f3_3samp, "Age", printValues = F)

venn_phyloseq(data.f3_3samp, "Elevation", printValues = F)
```

6.3 Ordination

Ordination of the OTUs table using NMDS (Non-metric MultiDimensional Scaling).

Figure 6.2: Venn diagramm of the distribution of OTUs among host age

Figure 6.3: Venn diagramm of the distribution of OTUs among elevation of samples

Figure 6.4: Venn diagramm of the distribution of OTUs among Sites

Figure 6.5: Venn diagramm of the distribution of OTUs among host age

Figure 6.6: Venn diagramm of the distribution of OTUs among elevation of samples whitin the tree

```
my.ord.nmds <- ordinate(data.f3, method = "NMDS")
my.ord.nmds$stress</pre>
```

```
stressplot(my.ord.nmds)
```

```
my.ord.nmds_gower <- ordinate(data.f3, distance = "gower", method = "NMDS")</pre>
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.2451014
## Run 1 stress 0.2483763
## Run 2 stress 0.2443706
## ... New best solution
## ... Procrustes: rmse 0.04031939 max resid 0.1755517
## Run 3 stress 0.2429748
## ... New best solution
## ... Procrustes: rmse 0.03382549 max resid 0.1397093
## Run 4 stress 0.2518202
## Run 5 stress 0.2604871
## Run 6 stress 0.2548659
## Run 7 stress 0.2464947
## Run 8 stress 0.2439988
## Run 9 stress 0.2560798
## Run 10 stress 0.2466527
```


Figure 6.7: Stress plot of the NMDS

Figure 6.8: NMDS of OTU table. Colors represent sites and shape the age of tree.

```
## Run 11 stress 0.2514242
## Run 12 stress 0.2565368
## Run 13 stress 0.260919
## Run 14 stress 0.2453975
## Run 15 stress 0.2592331
## Run 16 stress 0.244006
## Run 17 stress 0.246079
## Run 18 stress 0.2635747
## Run 19 stress 0.2442591
## Run 20 stress 0.2448261
## *** No convergence -- monoMDS stopping criteria:
       1: no. of iterations >= maxit
       19: stress ratio > sratmax
##
my.ord.PCoA <- ordinate(data.f3, method = "PCoA")</pre>
my.ord.PCoA_gower <- ordinate(data.f3, distance = "gower", method = "PCoA")</pre>
my.ord.DCA <- ordinate(data.f3, method = "DCA")</pre>
my.ord.DCA_gower <- ordinate(data.f3, distance = "gower", method = "DCA")
p_NMDS_BRAY <- plot_ordination(data.f3, my.ord.nmds, color = "Sites",</pre>
                                shape = "Age", label = "CODE") + geom_point(size = 5)
p_NMDS_GOWER <- plot_ordination(data.f3, my.ord.nmds_gower, color = "Sites",
                                 shape = "Age", label = "CODE") + geom_point(size = 5)
p_PCoA_BRAY <- plot_ordination(data.f3, my.ord.PCoA, color = "Sites",</pre>
                                shape = "Age", label = "CODE") + geom_point(size = 5)
p_PCoA_GOWER <- plot_ordination(data.f3, my.ord.PCoA_gower, color = "Sites",
                                 shape = "Age", label = "CODE") + geom_point(size = 5)
p_DCA_BRAY <- plot_ordination(data.f3, my.ord.DCA, color = "Sites",</pre>
                               shape = "Age", label = "CODE") + geom_point(size = 5)
p_DCA_GOWER <- plot_ordination(data.f3, my.ord.DCA_gower, color = "Sites",
                                shape = "Age", label = "CODE") + geom_point(size = 5)
```


Figure 6.9: Comparison of different distances (bray (up) and gower (bottom)) and ordination methods (NMDS (left), PCoA (center) and DCA (right)).

6.4 Permanova on sites, host ages and elevation

If we only keep the 50 OTUs present in more than 30 sample, the Permanova results is the following:

```
res.ado_sampMin30 <- adonis(t(data.f3@otu_table[rowSums(data.f3@otu_table>0)>=30,]) ~
Sites * Age * Elevation, sam_data, permutation = 9999)
```

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)
Sites	2	1.61	0.81	5.30	0.13	0.0001
Age	2	0.55	0.28	1.82	0.04	0.0141
Elevation	2	0.43	0.21	1.41	0.03	0.1014
Sites:Age	4	1.31	0.33	2.15	0.10	0.0002
Sites:Elevation	4	0.52	0.13	0.85	0.04	0.7380
Age:Elevation	4	0.53	0.13	0.87	0.04	0.7054
Sites:Age:Elevation	8	1.06	0.13	0.87	0.08	0.7873
Residuals	45	6.84	0.15		0.53	
Total	71	12.85			1.00	

Table 7: Result of the permanova on abundances (number of sequence).

6.5 Permanova on sites, host ages and individual trees

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)
Sites	2	1.59	0.79	5.42	0.13	0.0001
Age	2	0.54	0.27	1.84	0.04	0.0170
Elevation	2	0.42	0.21	1.43	0.03	0.1085
Sites:Age	4	1.28	0.32	2.18	0.10	0.0004
Sites:Elevation	4	0.49	0.12	0.84	0.04	0.7482
Age:Elevation	4	0.51	0.13	0.86	0.04	0.6972
Sites:Age:Elevation	8	1.01	0.13	0.86	0.08	0.7926
Residuals	45	6.59	0.15		0.53	
Total	71	12.41			1.00	

Table 8: Result of the permanova on abundances (number of sequence) using only OTUs present in more than 30 samples

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)
Sites	2	0.52	0.26	2.84	0.08	0.0002
Age	2	0.31	0.16	1.72	0.05	0.0183
Elevation	2	0.18	0.09	0.96	0.03	0.5061
Sites:Age	4	0.45	0.11	1.22	0.07	0.1353
Sites:Elevation	4	0.29	0.07	0.80	0.04	0.8563
Age:Elevation	4	0.35	0.09	0.95	0.05	0.5578
Sites:Age:Elevation	8	0.61	0.08	0.84	0.09	0.8720
Residuals	45	4.10	0.09		0.60	
Total	71	6.81			1.00	

Table 9: Result of the permanova on OTUs (each OTU is representing by one sequence)).

6.6 Differences in abundances and OTUs number by Order.

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)
Sites	2	1.61	0.81	6.50	0.13	0.0001
Age	2	0.55	0.28	2.23	0.04	0.0032
Sites:Age	4	1.32	0.33	2.67	0.10	0.0001
Sites:Age:IndividualTree	18	3.78	0.21	1.69	0.29	0.0001
Residuals	45	5.59	0.12		0.43	
Total	71	12.85			1.00	

Table 10: Result of the permanova on abundances (number of sequence).

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)
Sites	2	1.59	0.79	6.65	0.13	0.0001
Age	2	0.54	0.27	2.26	0.04	0.0022
Sites:Age	4	1.29	0.32	2.71	0.10	0.0001
Sites:Age:IndividualTree	18	3.63	0.20	1.69	0.29	0.0001
Residuals	45	5.37	0.12		0.43	
Total	71	12.41			1.00	

Table 11: Result of the permanova on abundances (number of sequence) using only OTUs present in more than 30 samples

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)
Sites	2	0.52	0.26	3.40	0.08	0.0001
Age	2	0.31	0.16	2.06	0.05	0.0038
Sites:Age	4	0.46	0.12	1.51	0.07	0.0153
Sites:Age:IndividualTree	18	2.08	0.12	1.52	0.31	0.0001
Residuals	45	3.43	0.08		0.50	
Total	71	6.81			1.00	

Table 12: Result of the permanova on OTUs (each OTU is representing by one sequence)).

Figure 6.10: Taxonomic distribution of sequences in the different site * age combinaison.

Figure 6.11: Taxonomic distribution of OTUs in the different site * age combinaison.

Change in abundance for Sites (Verghello vs Asco)

Figure 6.12: OTUs significantly different in terms of abundances between Verghello (positive values) and Asco (negative values)

6.7 Differences in abundances for each OTUs

6.7.1 Pairwise comparison of the OTUs composition by sites

```
library("DESeq2")
packageVersion("DESeq2")

## [1] '1.16.1'

data.f3_deseq2 <- phyloseq_to_deseq2(data.f3, ~ Sites)
data.f3_deseq2 <- DESeq(data.f3_deseq2, test = "Wald", fitType = "parametric")
res.f3_deseq2 <- results(data.f3_deseq2)</pre>
```


Figure 6.13: OTUs significantly different in terms of abundances between Verghello (positive values) and Bavella (negative values)

Figure 6.14: OTUs significantly different in terms of abundances between Asco (positive values) and Bavella (negative values)

Verghello vs Asco SH020264.07FU.KF800472.reps.singleton Verghello vs Asco SH18491.07FU.JN053173.reps.singleton SH04201.07FU.AV843105.reps Dothideomycetes 2-4.9011554391882 Verghello vs Asco SH202297.07FU.KF675366.reps Verghello vs Bavella SH017706.07FU.AV843074.reps Phaeomoniella sp Dothideomycetes Dothid	re on second lev
3 Verghello vs Asco	
Verghello vs Asco SH205426.07FU_AY843155.reps 5	
Second SH202297.07FU_KF675366_reps SH202297.07FU_KF675366_reps SH201976_reps SH2019776_reps SH20197	
Fig. 10	
Verghello vs Bavella SH00064.07FU_AS43074_reps Verghello vs Bavella SH001670.07FU_AJ971406_reps_singleton Verghello vs Bavella SH001706.07FU_AJ971406_reps_singleton SH04201.07FU_AM901716_reps SH04201.07FU_AM901716_reps SH04201.07FU_AM901716_reps SH017712_07FU_AJ971406_reps_singleton SH04201.07FU_AM901716_reps SH017712_07FU_AJ971406_reps_singleton SH017712_07FU_AJ971406_reps_singleton SH04201.07FU_AM901716_reps SH017712_07FU_AJ971406_reps_singleton SH017712_07FU_AJ971406_reps_singleton SH017712_07FU_AJ971406_reps_singleton SH017712_07FU_AJ971406_reps_singleton SH017712_07FU_AJ971740_reps_singleton SH017712_07FU_AJ971740_reps_singleton SH017712_07FU_AJ971740_reps_singleton SH017740_07FU_AJ971406_reps_singleton SH	
Second S	
9	
10	
11 Verghello vs Bavella SH04201.07FU_AM901923_reps_singleton 12 Verghello vs Bavella SH189181.07FU_AM9011716_reps SH017712.07FU_KJ406777_reps_singleton SH017712.07FU_KJ406777_reps_singleton SH017712.07FU_KJ406777_reps_singleton SH017712.07FU_KJ406777_reps_singleton SH017708.07FU_AY843125_reps_singleton SH01708.07FU_AY843125_reps_singleton SH018408.07FU_FN435818_reps SH018408.07FU_FN435818_reps SH018408.07FU_FN435818_reps SH018408.07FU_FN435818_reps SH018408.07FU_FN435818_reps SH018408.07FU_FN435818_reps SH018408.07FU_FN435818_reps SH018408.07FU_FN43568_reps_singleton SH018408.07FU_FN43568_reps_singleton SH018408.07FU_FN43568_reps_singleton SH018408.07FU_FN43074_reps SH018408.07FU_FN43074_reps SH018408.07FU_FN43074_reps SH00664.07FU_FN43074_reps SH00664.07FU_FN43074_reps SH00664.07FU_FN43074_reps SH00664.07FU_FN43074_reps SH00664.07FU_FN43074_reps SH00664.07FU_FN43074_reps SH00664.07FU_FN43074_reps SH0064008_reps_singleton SH006400_reps_singleton SH	
12 Verghello vs Bavella SH189181.07FU_KJ406777_reps Sh017712.07FU_KJ406777_reps_singleton Sh017712.07FU_KJ406777_reps_singleton Sh017712.07FU_KJ406777_reps_singleton Sh017712.07FU_KJ406871_reps Eurotiomycetes 2.70668773083002 Sh017510.07FU_KJ406871_reps Eurotiomycetes 2.0068773083002 Sh017612.07FU_KJ406871_reps Eurotiomycetes 2.0068773083002 Sh017612.07FU_KJ4506812_Pops_singleton Eurotiomycetes 2.0068773083002 Sh017612.07FU_KJ4506871_reps Sh017612.07FU_KJ450871_reps Sh017612.07FU_KJ45081_reps Sh017612.07FU_KJ45081_reps Sh017612.07FU_KJ45081_reps S	
13 Verghello vs Bavella SH017712.07FU.KJ406777.reps.singleton Verghello vs Bavella SH211751.07FU.KJ406871.reps SH017608.07FU.AY843125_reps.singleton SH34078.07FU.FV435818_reps SH017608.07FU.AY843125_reps.singleton SH34038.07FU.FV435818_reps Lectiomycetes sp BLD3 Lectiomycetes L	
14 Verghello vs Bavella SH211751.07FU_KJ406871_reps SH017608.07FU_AY843125_reps_singleton SH017608.07FU_FW435818_reps Leotiomycetes sp BLD3 Leotiomycetes 2.94834147549805 Leotiomycetes SH01375.07FU_FW435818_reps Leotiomycetes sp BLD3 Leotiomycetes 2.94834147549805 Leotiomycetes SH013575.07FU_FW605938_reps_singleton SH013575.07FU_FW605938_reps_singleton SH013575.07FU_FW605938_reps_singleton SH013575.07FU_FW605938_reps_singleton SH013575.07FU_FW605938_reps_singleton SH017704.07FU_FW605938_reps_singleton SH017704.07FU_FW605938_reps_singleton SH017704.07FU_FW605938_reps_singleton SH017704.07FU_FW605938_reps_singleton SH017704.07FU_FW605938_reps_singleton SH017704.07FU_FW605938_reps_singleton SH017704.07FU_FW605938_reps_singleton SH00664.07FU_FW6059438_reps_singleton SH00664.07FU_FW6059438_reps_singleton SH00664.07FU_FW6059438_reps_singleton SH006400.07FU_FW6059438_reps_singleton SH00640.07FU_FW6059438_reps_singleton SH00640.07FU_FW6059438_reps_singleton SH00640.07FU_FW6059438_reps_singleton SH00640.07FU_FW6059438_reps_singleton SH00640.07FU_FW6064.07FU	
Summer S	
16 Verghello vs Bavella SH184038.07FU_FN435818_reps Leotiomycetes sp BLD3 Leotiomycetes 2.94834147549805 7.1024418420342 7.102418420342 7.1024418420342 7.102418420342 7.102418420342 7.102418420342 7.102418420342 7.102418420342 7.102418420342 7.102418420342 7.102418420342 7.102418420342 7.102418420342 7.102418420342 7.102418420342 7.102418420342 7.1024184203424203424242420342424242424242424242	
17	
18	
19	
20	
21	
22 Asco vs Bavella SH200057.07FU_AY843076_reps 4.13735870298141 23 Asco vs Bavella SH017706.07FU_AJ971406_reps_singleton Capnobotryella sp MA 4642 Dothideomycetes 4.97577936963069 24 Asco vs Bavella SH006502.07FU_FN868467_reps_singleton Leotiomycetes sp BLD3 Leotiomycetes 2.48560370010328 25 Asco vs Bavella SH206392.07FU_AM901923_reps_singleton Dothioraceae sp Dothideomycetes 2.47894056064314 26 Asco vs Bavella SH211751.07FU_KJ4066871_reps Dothioraceae sp Dothideomycetes 2.47894056064314 28 Asco vs Bavella SH127907.07FU_DQ780388_refs Davidiella tassiana Dothideomycetes 2.42586179159098 29 Asco vs Bavella SH023168.07FU_AY843079_reps_singleton fungal sp TRN213 unidentified 3.85464235927135 31 Asco vs Bavella SH184038.07FU_FN435818_reps Leotiomycetes sp BLD3 Leotiomycetes 2.34473164793211 32 Asco vs Bavella SH027337.07FU_EU707898_reps_singleton Aureobasidium pullulans Dothideomycetes 2.77325759863912 34 Asco vs Bavella SH02	
23 Asco vs Bavella SH017706.07FU_AJ971406_reps_singleton Capnobotryella sp MA 4642 Dothideomycetes 4.97577936963069 24 Asco vs Bavella SH006502.07FU_FN868467_reps_singleton Leotiomycetes sp BLD3 Leotiomycetes 2.48560370010328 25 Asco vs Bavella SH206392.07FU_AM901923_reps_singleton Dothioraceae sp Dothideomycetes 2.47894056064314 27 Asco vs Bavella SH211751.07FU_KJ406871_reps Dothideomycetes 5.0996489147093 28 Asco vs Bavella SH127907.07FU_DQ780388_refs Davidiella tassiana Dothideomycetes 2.42586179159098 30 Asco vs Bavella SH017608.07FU_AY843125_reps_singleton fungal sp TRN213 unidentified 3.85464235927135 31 Asco vs Bavella SH184038.07FU_FN435818_reps Leotiomycetes sp BLD3 Leotiomycetes 2.34473164793211 32 Asco vs Bavella SH027337.07FU_EU707898_reps_singleton Aureobasidium pullulans Dothideomycetes 25.2823841356578 34 Asco vs Bavella SH020264.07FU_KF800472_reps_singleton Aureobasidium pullulans Dothideomycetes 4.27262265532015	
24 Asco vs Bavella SH006502.07FU_FN868467_reps_singleton Leotiomycetes sp BLD3 Leotiomycetes 2.48560370010328 25 Asco vs Bavella SH004201.07FU_AM901923_reps_singleton Dothioraceae sp Dothideomycetes 2.47894056064314 26 Asco vs Bavella SH211751.07FU_KJ406871_reps Eurotiomycetes 5.0996489147093 28 Asco vs Bavella SH127907.07FU_DQ780388_refs Davidiella tassiana Dothideomycetes 2.42586179159098 29 Asco vs Bavella SH023168.07FU_AY843079_reps_singleton fungal sp TRN213 unidentified 3.85464235927135 30 Asco vs Bavella SH017608.07FU_AY843125_reps_singleton Leotiomycetes sp BLD3 Leotiomycetes 2.34473164793211 31 Asco vs Bavella SH027337.07FU_EU707898_reps_singleton Leotiomycetes sp BLD3 Leotiomycetes 2.34473164793211 32 Asco vs Bavella SH020264.07FU_KF800472_reps_singleton Aureobasidium pullulans Dothideomycetes 25.2823841356578 34 Asco vs Bavella SH195774.07FU_AJ244232_refs Aureobasidium pullulans Dothideomycetes 4.27262265532015	
25 Asco vs Bavella SH004201.07FU_AM901923_reps_singleton 26 Asco vs Bavella SH206392.07FU_AM921728_reps Dothioraceae sp Dothiodeomycetes 27 Asco vs Bavella SH21751.07FU_KJ406871_reps Eurotiomycetes 5.0996489147093 Dothideomycetes 5.0996489147093 Dothideomycetes 2.42586179159098 SH127907.07FU_DQ780388_refs Davidiella tassiana Dothideomycetes 2.42586179159098 Unidentified 3.85464235927135 Uniden	
26 Asco vs Bavella SH206392.07FU_AM921728_reps Dothioraceae sp Dothideomycetes 2.47894056064314 27 Asco vs Bavella SH211751.07FU_KJ406871_reps Eurotiomycetes 5.0996489147093 28 Asco vs Bavella SH127907.07FU_DQ780388_refs Davidiella tassiana Dothideomycetes 2.42586179159098 29 Asco vs Bavella SH023168.07FU_AY843079_reps_singleton fungal sp TRN213 unidentified 23.85464235927135 30 Asco vs Bavella SH184038.07FU_FN435818_reps Leotiomycetes sp BLD3 Leotiomycetes 2.34473164793211 31 Asco vs Bavella SH027337.07FU_EU7077898_reps_singleton Dothideomycetes 2.34473164793211 32 Asco vs Bavella SH020264.07FU_KF800472_reps_singleton Aureobasidium pullulans Dothideomycetes 25.2823841356578 34 Asco vs Bavella SH195774.07FU_AJ244232_refs Aureobasidium pullulans Dothideomycetes 4.27262265532015	
27 Asco vs Bavella SH211751.07FU_KJ406871_reps Eurotiomycetes 5.0996489147093 28 Asco vs Bavella SH127907.07FU_DQ780388_refs Davidiella tassiana Dothideomycetes 2.42586179159098 29 Asco vs Bavella SH023168.07FU_AY843079_reps_singleton fungal sp TRN213 unidentified 3.85464235927135 30 Asco vs Bavella SH017608.07FU_AY843125_reps_singleton fungal sp TRN287 unidentified 24.2630375758631 31 Asco vs Bavella SH184038.07FU_FN435818_reps Leotiomycetes sp BLD3 Leotiomycetes 2.34473164793211 32 Asco vs Bavella SH027337.07FU_EU707898_reps_singleton Aureobasidium pullulans Dothideomycetes 25.282381356578 34 Asco vs Bavella SH195774.07FU_AJ244232_refs Aureobasidium pullulans Dothideomycetes 4.27262265532015	
28 Asco vs Bavella SH127907.07FU_DQ780388_refs Davidiella tassiana Dothideomycetes 2.42586179159098 29 Asco vs Bavella SH023168.07FU_AY843079_reps_singleton fungal sp TRN213 unidentified 3.85464235927135 30 Asco vs Bavella SH017608.07FU_AY843125_reps_singleton fungal sp TRN287 unidentified 24.2630375758631 31 Asco vs Bavella SH184038.07FU_FN435818_reps Lectiomycetes sp BLD3 Lectiomycetes 2.34473164793211 32 Asco vs Bavella SH027337.07FU_EU707898_reps_singleton 3 Asco vs Bavella SH020264.07FU_KF800472_reps_singleton 3 Asco vs Bavella SH0274274.07FU_AJ244232_refs Aureobasidium pullulans Dothideomycetes 4.27262265532015	
29 Asco vs Bavella SH023168.07FU_AY843079_reps_singleton fungal sp TRN213 unidentified 3.85464235927135 30 Asco vs Bavella SH017608.07FU_AY843125_reps_singleton fungal sp TRN287 unidentified 24.2630375758631 31 Asco vs Bavella SH184038.07FU_FN435818_reps Leotiomycetes sp BLD3 Leotiomycetes 2.34473164793211 32 Asco vs Bavella SH027337.07FU_EU707789s_reps_singleton Dothideomycetes -2.77325759863912 33 Asco vs Bavella SH020264.07FU_KF800472_reps_singleton Aureobasidium pullulans Dothideomycetes 25.2823841356578 34 Asco vs Bavella SH195774.07FU_AJ244232_refs Aureobasidium pullulans Dothideomycetes 4.27262265532015	
30 Asco vs Bavella SH017608.07FU_AY843125_reps_singleton fungal sp TRN287 unidentified 24.2630375758631 31 Asco vs Bavella SH184038.07FU_FN435818_reps Leotiomycetes sp BLD3 Leotiomycetes 2.34473164793211 32 Asco vs Bavella SH027337.07FU_EU707898_reps_singleton Dothideomycetes -2.77325759863912 33 Asco vs Bavella SH020264.07FU_KF800472_reps_singleton Aureobasidium pullulans Dothideomycetes 25.2823841356578 34 Asco vs Bavella SH195774.07FU_AJ244232_refs Aureobasidium pullulans Dothideomycetes 4.27262265532015	
31 Asco vs Bavella SH184038.07FU_FN435818_reps Leotiomycetes sp BLD3 Leotiomycetes 2.34473164793211 32 Asco vs Bavella SH027337.07FU_EU707898_reps_singleton Dothideomycetes -2.77325759863912 33 Asco vs Bavella SH020264.07FU_KF800472_reps_singleton Aureobasidium pullulans Dothideomycetes 25.2823841356578 34 Asco vs Bavella SH195774.07FU_AJ244232_refs Aureobasidium pullulans Dothideomycetes 4.27262265532015	
32 Asco vs Bavella SH027337.07FU_EU707898_reps_singleton 33 Asco vs Bavella SH020264.07FU_KF800472_reps_singleton 34 Asco vs Bavella SH195774.07FU_AJ244232_refs Aureobasidium pullulans Dothideomycetes 25.2823841356578 Aureobasidium pullulans Dothideomycetes 25.2823841356578 Dothideomycetes 4.27262265532015	
33 Asco vs Bavella SH020264.07FU_KF800472_reps_singleton Aureobasidium pullulans Dothideomycetes 25.2823841356578 34 Asco vs Bavella SH195774.07FU_AJ244232_refs Aureobasidium pullulans Dothideomycetes 4.27262265532015	
34 Asco vs Bavella SH195774.07FU_AJ244232_refs Aureobasidium pullulans Dothideomycetes 4.27262265532015	
36 Asco vs Bavella SH209326.07FU_JN053133_reps Lecanoromycetes 6.79055875149354	
37 Asco vs Bavella SH184176.07FU_GU909656_reps Sporormiaceae sp Dothideomycetes 6.95375964063089	
38 Asco vs Bavella SH205426.07FU_AY843155_reps 25.6970707902463	
39 Asco vs Bavella SH202297.07FU_KF675366_reps Dothideomycetes -22.4062762093678	

Table 13: OTUs showing differential abundances in the different sites.

6.7.2 Pairwise comparison of Order composition by sites

	Comparison	Order	Class	log2FoldChange (negative = more on second levels)
1	Verghello vs Asco	Botryosphaeriales	Dothideomycetes	-24.5249819855987
2	Verghello vs Asco	Ostropales	Lecanoromycetes	23.4855131491163
3	Verghello vs Bavella	Botryosphaeriales	Dothideomycetes	-16.6345809184226
4	Verghello vs Bavella	Dothideales	Dothideomycetes	2.01225332737348
5	Verghello vs Bavella	Eurotiales	Eurotiomycetes	1.68439599616236
6	Verghello vs Bavella	Incertae sedis	Leotiomycetes	-0.567752191873621
7	Verghello vs Bavella	Ostropales	Lecanoromycetes	29.0241120523582
8	Verghello vs Bavella	Rhytismatales	Leotiomycetes	3.19485840143062
9	Verghello vs Bavella	unidentified	Leotiomycetes	2.3727066682193
10	Asco vs Bavella	Agyriales	Lecanoromycetes	7.0973636413091
11	Asco vs Bavella	Capnodiales	Dothideomycetes	0.712165754006809
12	Asco vs Bavella	Chaetothyriales	Eurotiomycetes	1.81475008606722
13	Asco vs Bavella	Dothideales	Dothideomycetes	2.15424108078424
14	Asco vs Bavella	Eurotiales	Eurotiomycetes	2.36148954531956
15	Asco vs Bavella	Incertae sedis	Leotiomycetes	-0.822561360482083
16	Asco vs Bavella	Rhytismatales	Leotiomycetes	3.38436652075133
17	Asco vs Bavella	unidentified	Leotiomycetes	2.01203541569241

Table 14: Order showing differential abundances in the different sites.

6.8 Distribution of OTUs abundance in the fungal phylogeny

```
library("cluster")
library("phytools")
 ## Loading required package: maps
 ##
 ## Attaching package: 'maps'
 ## The following object is masked from 'package:plyr':
 ##
 ##
                  ozone
 ## The following object is masked from 'package:cluster':
 ##
 ##
                 votes.repub
data.f3_interm <- data.f3</pre>
data.f3_interm@otu_table <- otu_table(apply(data.f3@otu_table, 2, function(x) tapply(x, as.factor(data.f3_interm@otu_table))
data.f3_interm@tax_table <- tax_table(apply(data.f3@tax_table, 2, function(x) tapply(x, as.factor(data.f3_intermotax_table))
data.f3_interm@refseq <- NULL
data.f3_interm <- subset_taxa(data.f3_interm, !grepl("uncultured", data.f3_interm@tax_table[, "Specion of the content of the c
data.f3_interm <- subset_taxa(data.f3_interm, !grepl("sp$", data.f3_interm@tax_table[, "Species"]))
data.f3_interm <- subset_taxa(data.f3_interm, !grepl("unidentified", data.f3_interm@tax_table[,"Fam:
data.f3_interm <- subset_taxa(data.f3_interm, !grepl("unidentified", data.f3_interm@tax_table[,"Orde
data.f3_interm <- subset_taxa(data.f3_interm, !grepl("unidentified", data.f3_interm@tax_table[,"Class
data.f3_interm <- subset_taxa(data.f3_interm, !grepl("Myxotrichaceae", data.f3_interm@tax_table[,"Spinore taxatable subset_taxatable subset_ta
data.f3_interm <- subset_taxa(data.f3_interm, rowSums(data.f3_interm@otu_table)>100)
tree_tax_interm <- as.data.frame(unclass(data.f3_interm@tax_table))</pre>
tree_tax_interm$OTUs <- rownames(tree_tax_interm)</pre>
tree_tax_interm <- as.data.frame(replace(as.matrix(tree_tax_interm), which(is.na(tree_tax_interm)),</pre>
data.f3_interm@tax_table <- tax_table(as.matrix(tree_tax_interm))</pre>
tree_tax_interm$pathString <- paste("Fungi",</pre>
                                                                               tree_tax_interm$Phylum,
                                                                               tree_tax_interm$Class,
                                                                               tree_tax_interm$Order,
                                                                                tree_tax_interm$Family,
                                                                                tree_tax_interm$Genus,
                                                                                tree_tax_interm$OTUs,
                                                                                sep = "/")
write(ToNewick(as.Node(tree_tax_interm, na.rm = TRUE)), file="tree.txt")
tree <- phytools::read.newick(file="tree.txt")</pre>
tree <- ape::collapse.singles(tree)</pre>
data.f3_interm@phy_tree <- tree</pre>
taxa_names(data.f3_interm@phy_tree) <- gsub("_", " ", taxa_names(data.f3_interm@phy_tree))</pre>
taxa_names(data.f3_interm@otu_table) <- gsub("_", " ", taxa_names(data.f3_interm@otu_table))</pre>
taxa_names(data.f3_interm@tax_table) <- gsub("_", " ", taxa_names(data.f3_interm@tax_table))</pre>
taxa_names(data.f3_interm@phy_tree) <- gsub(",", "", taxa_names(data.f3_interm@phy_tree))</pre>
```

```
taxa_names(data.f3_interm@otu_table) <- gsub(",", "", taxa_names(data.f3_interm@otu_table))
taxa_names(data.f3_interm@tax_table) <- gsub(",", "", taxa_names(data.f3_interm@tax_table))

ptree <- plot_tree(data.f3_interm, color = "Class", shape = "Sites", ladderize = "left", justify = "cond <- gsub(",", "", rownames(data.f3_interm@otu_table)[rowSums(data.f3_interm@otu_table) >= 1])

df_cond <- as.data.frame(ptree$data)[ptree$data$0TU %in% cond,]

df_cond$Species <- data.f3_interm@tax_table[taxa_names(data.f3_interm) %in% cond,"OTUs"]

cond_Deseq <- levels(df$Species)

df_cond_Deseq <- as.data.frame(ptree$data)[ptree$data$0TU %in% cond_Deseq,]

df_cond_Deseq$Species <- data.f3_interm@tax_table[gsub("_", " ", taxa_names(data.f3_interm)) %in% cond_Deseq$Species <- data.f3_interm@tax_table[gsub("_", " ", taxa_names(data.f3_interm)) %in% cond_Deseq$Species <- data.f3_interm@tax_table[gsub("_", " ", taxa_names(data.f3_interm)) %in% cond_Deseq$Species <- data.f3_interm@tax_table[gsub("_", " ", taxa_names(data.f3_interm)) %in% cond_Deseq.

ptree + geom_text(data = df_cond, aes(x = 215, y = y, label = OTU), hjust = "left") + scale_shape_mesum(!is.na(match(gsub("_", " ", data.f3@tax_table[,"Species"]), gsub("_", " ", tree$tip.label))))

## [1] 44

sum(rowSums(data.f3@otu_table)[gsub("_", " ", data.f3@tax_table[,"Species"]) %in% gsub("_", " ", tree
## [1] 46.05385</pre>
```



```
ptree + geom_text(data = df_cond, aes(x = 585, y = y, label = OTU), hjust = "left") + scale_shape_maggsave("phylo_map.pdf", width = 20, height = 15)
```


7 Summary

7.1 Filtering summary

The raw data are made of 6.473782×10^6 sequences representing 256 OTUs allocated to 80 samples. After filtering, the dataset includes 6.460489×10^6 sequences representing 233 OTUs allocated to 72 samples.

7.2 Alpha diversity

Host age and elevation within tree do not impact any aspect of fungal local diversity. Despite similar OTUs richness, Asco is a site more diverse than Verghello and Bavella.

	Nb.of.OTUs	Nb.of.samples	Nb.of.sequences
No filter	256	80	6473782.00
Nb of sequences by sample ≥ 20000	252	72	6460532.00
Nb of sample by $OTUs >= 1$	252	72	6460532.00
Nb of sequences by $OTUs >= 5$	233	72	6460489.00

Table 15: Number of OTUs, samples and sequences after filtering

7.3 Beta diversity

Site (R2 = 0.126), age (R2 = 0.043) and interaction age*site (R2 = 0.102) statistically structured the fungal endophytic beta-diversity.

List of Figures

2.1	Number of sequences by sample	9
2.2	Number of OTU present in a given number of samples	10
2.3	Number of sequences by OTU (log10 transformed)	11
3.1	Number of OTUs by sample in fonction of the number of sequences by sample (log10 axe)	12
3.2	Distribution of reference sequences length	13
3.3	Number of sequences by OTUs (log10 axe) in fonction of the number of samples where	
	OTUs were found	13
3.4	Distribution of the number of sequences in the Ascomycota taxonomy	14
3.5	Number of sequences of the 30 most abundant OTUs (number of sequences)	16
4.1	Distribution of OTUs into functional Guild	18
4.2	Distribution of sequences (log10 transformed) into functional Guild	19
5.1	Rarefaction curves for each site	20
5.2	Rarefaction curves for each sample using sequences number on x-axes	21
5.3	Diversity of each sites	22
5.4	Rarefaction curves for each host age	23
5.5	Diversity in function of tree age	24
5.6	Rarefaction curves for each elevation	25
5.7	Diversity in function of elevation	26
5.8	Results of the Tuckey HSD testing for differences in mean Hill numbers among pairs of modalities	27
6.1	Venn diagramm of the distribution of OTUs among Sites	28
6.2	Venn diagramm of the distribution of OTUs among host age	29
6.3	Venn diagramm of the distribution of OTUs among elevation of samples	29
6.4	Venn diagramm of the distribution of OTUs among Sites	30
6.5	Venn diagramm of the distribution of OTUs among host age	30
6.6	Venn diagramm of the distribution of OTUs among elevation of samples whitin the tree.	31
6.7	Stress plot of the NMDS	32
6.8	NMDS of OTU table	32
6.9	Comparison of different distances (bray (up) and gower (bottom)) and ordination methods	
	(NMDS (left), PCoA (center) and DCA (right))	34
6.10	Taxonomic distribution of sequences in the different site * age combinaison	
	Taxonomic distribution of OTUs in the different site * age combinaison	
	OTUs significantly different in terms of abundances between Verghello (positive values)	
	and Asco (negative values)	40
6.13	OTUs significantly different in terms of abundances between Verghello (positive values)	
	and Bavella (negative values)	41
6.14	OTUs significantly different in terms of abundances between Asco (positive values) and	
	Bavella (negative values)	42
List	of Tables	
1	Number of OTUs, samples and sequences after filtering	11
$\frac{1}{2}$	Taxonomie of the 30 more abundant OTUs (number of sequences)	15
$\frac{2}{3}$	Taxonomie of the 30 more frequent OTUs (number of samples)	17
$\frac{3}{4}$	Summary of the linear model of species richness (Hill number with $q = 0$)	
-	building of the initial model of species fieldess (this number with $q=0$)	40

5	Summary of the linear model of the exponential of Shannon's entropy index (Hill number	
	with $q = 1$)	27
6	Summary of the linear model of inverse of Simpson's concentration index (Hill number	
	with $q = 2$)	27
7	Result of the permanova on abundances (number of sequence)	35
8	Result of the permanova on abundances (number of sequence) using only OTUs present	
	in more than 30 samples	36
9	Result of the permanova on OTUs (each OTU is representing by one sequence))	36
10	Result of the permanova on abundances (number of sequence)	37
11	Result of the permanova on abundances (number of sequence) using only OTUs present	
	in more than 30 samples	37
12	Result of the permanova on OTUs (each OTU is representing by one sequence))	37
13	OTUs showing differential abundances in the different sites.	43
14	Order showing differential abundances in the different sites	43
15	Number of OTUs, samples and sequences after filtering	48