ECEn 671 Midterm Exam # 2, Fall 2018 Due at the Beginning of Class, November 27, 2018

Name:	
Instructions:	
• This exam i	s open book, open notes, open computer, open brain, but not open neighbor.
• You will nee	ed Matlab / Python to complete the exam.
• The exam d	oes not have a time limit.
• If you have	questions about the exam, send me an email and I will reply to the entire class.
• Be neat and	thorough. Make your solutions clear, logical, and easy to follow.
• Print this p	age and attach it to your solutions.
• The due date	te will not be extended for any reason.
Problem 1	/ 25
Problem 2	/ 15
Problem 3	/ 25
Problem 4	/ 35
Total	/ 100
	he solutions to this exam represents my own work, and that I did not consult with any other the exam, or seek answers to the exam on the internet or other sources.
Signature	

1. (25 pts) Consider the discrete time state space equations

$$x_{k+1} = Ax_k$$
$$y_k = Cx_k,$$

with initial condition x_0 , where $x_k \in \mathbb{R}^n$ and y_k is a scalar, i.e., $A \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{1 \times n}$.

- (a) (5 pts) Show that $y_k = CA^k x_0$.
- (b) (10 pts) Consider the linear operator $\mathcal{A}: \mathbb{R}^n \to \ell_2$ where

$$A[x_0] = (Cx_0, CAx_0, CA^2x_0, CA^3x_0, \dots).$$

Find the adjoint $\mathcal{A}^*: \ell_2 \to \mathbb{R}^n$ of \mathcal{A} .

- (c) (10 pts) Suppose that you collect an infinite sequence of data $e_k = y_k Cx_k = y_k CA^kx_0$. Find the formula for the least squares solution for the initial condition x_0 that minimizes $\sum_{k=0}^{\infty} ||y_k CA^kx_0||^2$. (HINT: Use the telephone pole diagram, and assume that rank(\mathcal{A}) = n. HINT 2: The answer will not necessarily be computable.)
- **2.** (15 pts) Suppose that $A \in \mathbb{C}^{m \times n}$ and that $\operatorname{rank}(A) = r < \min(m, n)$. Show that the QR factorization of A can be written as

$$A = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 & R_2 \\ 0_{(m-r)\times r} & 0_{(m-r)\times (n-r)} \end{bmatrix},$$

where $Q_1 \in \mathbb{C}^{m \times r}$ and $Q_2 \in \mathbb{C}^{m \times (m-r)}$, $R_1 \in \mathbb{C}^{r \times r}$, and $R_2 \in \mathbb{C}^{r \times (n-r)}$

Show that $\mathcal{R}(A) = \operatorname{span}(Q_1)$ and $\mathcal{N}(A^H) = \operatorname{span}(Q_2)$.

- 3. (25 pts) Write a Matlab/Python function myqr that computes the QR factorization of a matrix $A \in \mathbb{C}^{n \times n}$ that uses only elementary Matlab/Python operations like multiply, add, transpose, etc. Generate 10 random complex matrices and check that Q is unitary, R is upper triangular, and QR = A. Compare myqr to the Matlab function qr. Do you get the same results? Why or why not? Is QR factorization unique?
- 4. (35 pts) Consider the linear time-invariant system that is described by the ordinary differential equation

$$\ddot{y} + a_1 \dot{y} + a_0 y = b_0 u, \tag{1}$$

where y(t) is the output, u(t) is the input, and a_1 , a_0 , and b_0 are constants. In this problem we will consider the problem of system identification which is to determine the system coefficients a_1 , a_0 , and b_0 given known input-output data.

(a) (5 pts) Convert the ordinary differential equation (1) to a difference equation by but using the approximation

$$\dot{z}(t) \approx \frac{z(t) - z(t - T_s)}{T_s}$$
$$\ddot{z}(t) \approx \frac{z(t) - 2z(t - T_s) + z(t - 2T_s)}{T_s^2},$$

and using the notation $z[k] \stackrel{\triangle}{=} z(kT_s)$.

(b) (5 pts) Suppose that you collect N input-output samples, i.e., (y[n], u[n]), n = 0, 1, ..., N - 1, where N > 4. Find the equations that show how to use batch least squares to find the estimated coefficients \hat{a}_1 , \hat{a}_0 , and \hat{b}_0 so that the squared error $\sum_{n=0}^{N-1} (y[k] - \hat{y}[n])^2$ is minimized, where \hat{y} satisfies

$$\ddot{\hat{y}} + \hat{a}_1 \dot{\hat{y}} + \hat{a}_0 \hat{y} = \hat{b}_0 u.$$

(c) (10 pts) Derive the equations for a recursive least squares algorithm that solves the same problem as item (b).

(d) (10 pts) Implement the system and the recursive least squares system identification scheme in Matlab/Python using $T_s = 0.01$ and the real coefficients of $a_1 = 1.0$, $a_0 = 2.0$, $b_0 = 3.0$. Use the input

$$u(t) = \sin(0.01t) + \sin(0.1t) + \sin(t) + \sin(10t)$$

and initialize the estimated parameters at $\hat{a}_1 = \hat{a}_0 = \hat{b}_0 = 0$. Plot the estimated coefficients verses the real coefficients.

(e) (5 pts) Compare the results of batch least squares and recursive least squares.