PROVA SCRITTA DI ELABORAZIONE DI SEGNALI MULTIMEDIALI del 16.6.14 (Ingegneria delle Telecomunicazioni)

Tempo: 2 ore e mezza. NON è consentito l'uso di materiale didattico e appunti propri.

EX. 1 Data l'immagine a colori test_color.jpg, si vuole migliorare l'aspetto dell'immagine realizzando l'equalizzazione dell'istogramma nello spazio HSI. A tale scopo scrivete una funzione con il seguente prototipo: function y = histeqcolor(x) in cui effettuate l'equalizzazione dell'istogramma solo sulla componente di intensità I dell'immagine x; visualizzate l'immagine originale, quella elaborata e l'istogramma della componente I prima e dopo l'equalizzazione.

Si vuole realizzare poi il filtraggio dell'immagine y operando su ognuna delle componenti RGB con un filtro polinomiale con risposta in frequenza: $H_{n,T}(\mu,\nu) = \max\left[1-\left(\frac{\mu^2+\nu^2}{T^2}\right)^{n/2},0\right]$, dove n>0. A tale scopo, scrivete una funzione: function $\mathbf{z}=\mathsf{pcolor}(\mathbf{y},\mathbf{n},\mathbf{T})$ e visualizzate l'immagine filtrata per n=1 e T=2.

EX. 2 Esistono diverse tecniche per cercare di scoprire se un'impronta digitale è autentica o contraffatta. Una delle più semplici opera nel dominio di Fourier, calcolando la frazione di energia contenuta alle medie frequenze, e dichiarando l'immagine autentica se tale frazione supera una certa soglia.

Scrivete una funzione function EM = elabora(x, r1, r2) che calcola la DFT-2D, $X(\mu, \nu)$, di un'immagine x(m,n), valuta l'energia alle medie frequenze come $E_M = \frac{1}{|\Omega|} \sum_{\Omega} |X(\mu, \nu)|^2$ dove $\Omega = \{(\mu, \nu) : r_1 \leq \sqrt{\mu^2 + \nu^2} \leq r_2\}$ e $|\Omega|$ è la cardinalità di Ω , cioè il numero di punti che soddisfano questa condizione.

Applicate la funzione alle due immagini impronta
1.tif e impronta 2.tif, usando raggio interno $r_1 = 0.10$ e raggio esterno $r_2 = 0.25$ ed etichet
tate come vera quella che fornisce il valore maggiore di
 E_M/E , con E energia dell'immagine.

- **EX. 3** Scrivete una funzione function Y = coder(X) che comprime l'immagine X attraverso le seguenti operazioni. L'immagine è divisa in blocchi 8×8 , quindi per ogni blocco:
 - 1. si effettua la DCT;
 - 2. si conserva solo la continua (DC);
 - 3. si effettua la codifica predittiva delle componenti DC, cioè si trasmette DC_cur DC_old (eccetto per il primo blocco);
 - 4. l'errore di predizione è quantizzato uniformemente con passo $\Delta = 2$;

Scrivete quindi una funzione function Xrec = decoder(Y) che realizza le operazioni inverse e ricostruisce una versione distorta di X a partire da Y.

Nello script ex3.m usate le funzioni descritte sopra per codificare e decodificare l'immagine Lena.y (di dimensioni 512×512 e formato unsigned char), valutate l'MSE tra immagine originale e decodificata e mostrate il risultato.