

Vv186 Recitation

Week 9 By Yahoo

Outline

- Differentiability
- Property of differentiability

Differentiability

Definition

Let Ω (a subset of R) be some set, x is an interior point of Ω and $f:\Omega\to R$ a real function. Then f is differentiable at x if there exists a linear map L_x such that for all sufficiently small h in R

$$f(x+h) = f(x) + L_x(h) + o(h)$$
 as $h o 0$. $L_{\mathcal{X}}(h) = L_{\mathcal{X}} \cdot h$

And L_x is called the derivative of f at x.

Uniqueness of derivative

For given f and x, the derivative L_x is unique.

Derivative when mapped to R

Let Ω be a set, $x \in \Omega$ is an interior point and $f: \Omega \to \mathbb{R}$ a function that is differentiable at x with derivative $L_x = f'(x)$. Then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Example

- 1. $f: R \to R$, $f(x) = x^n$, $n \in N$. Then by binomial formula, we have $f'(x) = n \cdot x^{n-1}$.
- 2. $f: R \to R$, $f(x) = x^n$, $n \in R$. Then we also have $f'(x) = n \cdot x^{n-1}$ in domain of f.

Derivative of common functions

- (c)'=0
- $(a^x)'=a^x \ln(a)$
- $(e^x)'=e^x$
- $\ln'(x)=1/x$
- sin'(x)=cos(x)
- cos'(x) = -sin(x)

Practice

Suppose $f(x) = \begin{cases} x^2, x \text{ is } rational \\ 0, \text{ is } irrational \end{cases}$. Find the derivative of f(x) at point 0.

Continuity

Let f be a function that is differentiable at some $x \in \text{dom } f$. Then f is continuous at x.

Practice

Suppose F(x) =
$$\begin{cases} x^2, x \le x_0 \\ ax + b, x > x_0 \end{cases}$$
 has a derivative at point x_0 , find a & b.

Operation on derivative

Let f and g be functions on R, $x \in dom f$ and $x \in dom g$. Assume that f and g are both differentiable at x, then

$$(f+g)'(x) = f'(x) + g'(x)$$
$$(\lambda f)'(x) = \lambda f'(x)$$

Product rule

Let f and g be functions on R, $x \in dom f$ and $x \in dom g$. Assume that f and g are both differentiable at x, then

$$(f \cdot g)'(x) = f'(x)g(x) + g'(x)f(x)$$

Quotient Rule

Let f and g be functions on R, $x \in dom f$ and $x \in dom g$. Assume that f and g are both differentiable at x, then

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{g(x)^2}.$$

Chain Rule

Let f and g be functions on R, $g(x) \in dom f$ and $x \in dom g$. Assume that f is differentiable at g(x) and g is differentiable at x, then

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$

Practice

- 1. Find f'(x) of f(x) = $\frac{2x}{1-x^2}$ by Quotient Rule.
- 2. Find f'(x) of f(x) = $x\sqrt{1 + x^2}$ by Product Rule and Chain Rule.

Practice

Suppose that f(x) is differentiable at a and $f(a)\neq 0$. Show that |f|(x) is also differentiable at a. (Think of the counterexample when f(a)=0. Why under such circumstance |f|(x) is not differentiable?)

Inverse Function Theorem

Let I be an open interval and let $f: I \rightarrow R$ be differentiable and strictly monotonic. Then the inverse map $f^{-1} = g: f(I) \rightarrow I$ exists and is differentiable at all points $y \in f(I)$ for which $f'(g(y)) \neq 0$. Furthermore we have

$$g'(y) = \frac{1}{f'(g(y))}$$

Property of differentiability

Extrema

Let f be a function and Ω is a subset of dom f . Then $x \in \Omega$ is called a (global) maximum point for f on Ω if

$$f(x) \ge f(y)$$

for all $y \in \Omega$

Extrema

Let f be a function and (a, b) in dom f an open interval. If $x \in (a, b)$ is a maximum (or minimum) point for f on (a, b) and if f is differentiable at x, then f'(x) = 0.

Critical point

A function f is said to have a critical point at $x \in \text{dom } f$ if f'(x) = 0.

Remark

The critical point at $x \in \text{dom } f$ where f'(x) = 0 does not necessarily to be an extrema. However, there are still chances that the critical point is an extrema.

Example: $f(x)=x^3$ has a critical point at 0 but 0 is not extrema point. $f(x)=x^2$ has a critical point at 0 and 0 is an extrema point.

Practice

Find the extrema of $f(x)=x\sqrt[3]{x-1}$.

Remark: What is f'(x)? Does f(x) reach extrema only when f'(x)=0?

Rolle's Theorem

Let f be a real function and $a < b \in R$ such that $[a, b] \in dom f$. Assume that f is continuous on [a, b] and differentiable on (a, b) and f(a)=f(b). Then there exists a number $x \in (a, b)$ such that f'(x) = 0.

Practice

Suppose f''(x) exists on [0,1] for some function f(x) and f(0)=f(1)=0. Let F(x)=xf(x), show that there exists a $t \in R$ such that F''(t)=0.

Solution

- We can easily check F(0)=F(1)=0. Then by Rolle's Theorem, there exists a p ∈ [0,1] such that F'(p)=0.
- Also, we can easily check F'(0)=F'(p)=0. Then by Rolle's Theorem there exists a t ∈ [0,p] such that F'(t)=0.

Mean Value Theorem

Let f be a real function and $a < b \in R$ such that $[a, b] \in dom f$. Assume that f is continuous on [a, b] and differentiable on (a, b). Then there exists a number $x \in (a, b)$ such that

$$f'(x) = \frac{f(b) - f(a)}{b - a}.$$

Corollary

- Let f be a real function and I in dom f.
 Assume that f'(x) = 0 on I. Then f is constant on I.
- Let f and g be real functions and I in dom f and I in dom g. Assume that f'(x)=g'(x) on I. Then there exists some c ∈ R such that f(x)=g(x)+c.

Corollary

3. Let f be a real function and I in dom f. Assume that f'(x) > 0 on I. Then f is strictly increasing on I. If f'(x) < 0 on I, f is strictly decreasing on I.

Practice

Suppose f'(x) exists for some real continuous function f(x), and the limit of f(x) and f'(x) both exist as $x \to +\infty$. Show that the limit of f'(x) as $x \to +\infty$ is actually 0.

Solution

- 1. Suppose the limit of f(x) as $x \to +\infty$ is L. Then the limit of f(x+1) as $x \to +\infty$ is also L.
- 2. By Mean Value Theorem, there exists a number $t \in (x,x+1)$ such that f(x+1)-f(x)=f'(t).
- 3. Since the limit of f'(x) as $x \to +\infty$ exists, take the limit of both sides of eqn f(x+1)-f(x)=f'(t). Then we have the limit of f'(x) as $x \to +\infty$ is actually 0.

Maxima and Minima

Let f be a real function and $x \in \text{dom } f \text{ such}$ that f'(x) = 0. If f''(x) > 0, then f has a local minimum at x. If f''(x) < 0, then f has a local maximum at x.

Maxima and Minima

Let f be a real function and $x \in \text{dom } f$ such that f'(x) = 0. If f has a local minimum at x, then $f''(x) \ge 0$. If f has a local maximum at x, then $f''(x) \le 0$.

Example

- 1. $f(x)=x^2$ has a minimum at 0 because f'(0)=0 and f''(0)=2>0.
- 2. $f(x)=x^3$ does not have a minimum or maximum at 0 because f''(0)=0 even if f'(0)=0.

Convexity and Concavity

Let Ω be a subset of R and $I \in \Omega$ an interval. A function $f : \Omega \to R$ is called strictly convex on I if for all a, x, b $\in I$ with a < x < b

$$\frac{f(x)-f(a)}{x-a}<\frac{f(b)-f(a)}{b-a}.$$

Convexity and Concavity

Let $f: I \rightarrow R$ be be strictly convex on I and differentiable at a, b $\in I$. Then

- 1. For any h > 0 such that $a + h \in I$, the graph of f over the interval (a, a + h) lies below the secant line through the points (a, f(a)), (a + h, f(a + h)).
- 2. The graph of f over all of I lies above the tangent line through the point (a, f(a)).
- 3. If a < b, then f'(a) < f'(b).

Convexity and Concavity

Let I be an open interval, $f : I \rightarrow R$ differentiable and f'(x) strictly increasing. If a, b $\in I$, a < b, and f (a) = f (b), then f (x) < f (a) = f (b) for all $x \in (a, b)$.

Example

 $f(x) = x^3 - x^2 - 8x + 1$ on [-2,2] is concave on [-2,1/3) and convex on (1/3,2], where point x=1/3 is the inflection point.

Graph of $f(x) = x^3 - x^2 - 8x + 1$

Curve Sketching

- 1. Ruler & pencil
- 2. Don't draw small graphs. At least 8 cm wide.
- 3. Label the function
- 4. Title the graph

Curve Sketching

- 1. Coordinate system: origin, the domain and range
- 2. Continuity and behavior near points of discontinuity
- 3. The behavior as $x \to \pm \infty$; in particular asymptotes
- 4. Local and global extrema
- 5. Intervals where the function is increasing, decreasing or constant
- 6. Inflection points, where the second derivative changes sign

Example

Draw the graph of $f(x) = x^3 - x^2 - 8x + 1$, where the domain is R.

Cauchy Mean Value Theorem

Let f and g be real functions and [a, b] in dom $f \cap dom g$. If f and g are continuous on [a, b] and differentiable on (a, b), then there exists an $x \in (a, b)$ such that

$$(f(b)-f(a))g'(x)=(g(b)-g(a))f'(x).$$

Practice

Suppose f'(x) exists for some continuous f(x) on [0,1] and $f(0) \neq f(1)$. Show that there exists $p,q \in (0,1)$ such that $f'(p) = \frac{f'(q)}{2q}$.

Solution

- Let g(x)=x, then by Cauchy Mean Value
 Theorem, there exists p ∈ (0,1) such that f(1)-f(0)=(b-a)f'(p)
- 2. Let $h(x)=x^2$, then by Cauchy Mean Value Theorem, there exists $q \in (0,1)$ such that [f(1)-f(0)]2q=(b-a)f'(q)
- 3. To sum, f'(q)/f'(p)=2q

L'Hôpital's Rule

Let f and g be real functions and $b \in \text{dom } f$ \cap dom g with

and

$$\lim_{x \searrow b} f(x) = 0$$

$$\lim_{x \searrow b} g(x) = 0.$$

Suppose that there exists a $\delta > 0$ such that f and g are defined and differentiable on the interval $(b,b+\delta)$ and $g'(x)\neq 0$ for all $x \in (b,b+\delta)$. Suppose the limit $\lim_{x \to b} f'(x)/g'(x) =: L$ exists. Then

$$\lim_{x \searrow b} \frac{f(x)}{g(x)} = L.$$

Example

1.
$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = \lim_{x \to 0} \frac{\frac{1}{x+1}}{1} = 1$$

2.
$$\lim_{x \to 1} \frac{x-1}{x^2-1} = \lim_{x \to 1} \frac{1}{2x} = \frac{1}{2}$$

3.
$$\lim_{x \to 1} \frac{x-1}{x^2 - 1} = \lim_{x \to 1} \frac{x-1}{(x+1)(x-1)} = \lim_{x \to 1} \frac{1}{x+1} = \frac{1}{2}$$

4.
$$\lim_{x \to 1} x = \lim_{x \to 1} \frac{x^2}{x} = \lim_{x \to 1} \frac{2x}{1} = 2.$$
??

Thank you for your attention!