S K Mondal's

Engineering Materials

Contents of this section

Basic Concepts (Structure of Solids)

Hardness Test

Crystalline Material

Plain Carbon Steel

Iron Carbon Equilibrium diagram

Cast Iron

Alloying Element of Steel and alloy Steel

High Speed Steel

Cutting Tool Materials

Heat Treatment of Metals

Plastics

Elastomer

Use of Materials

S K Mondal's

Basic Concepts (Structure of Solids)

Objective Questions (GATE, IES & IAS)

Previous 20-Years GATE Questions

GATE-1. Decreasing grain size in a polycrystalline material

[GATE-1998]

- (a) Increases yield strength and corrosion resistance.
- (b) Decreases yield strength and corrosion resistance
- (c) Decreases yield strength but increases corrosion resistance
- (d) Increases yield strength but decreases corrosion resistance.
- GATE-1. Ans. (a)

GATE-2. When the temperature of a solid metal increases,

[GATE-2005]

- (a) Strength of the metal decreases but ductility increases
- (b) Both strength and ductility of the metal decrease
- (c) Both strength and ductility of the metal increase
- (d) Strength of the metal increases but ductility decreases
- GATE-2. Ans. (a)

Previous 20-Years IES Questions

- IES-1. Which one of the following factors is more relevant to represent complete solubility of two metals in each other? [IES-2006]
 - (a) Chemical affinity
- (b) Valency factor
- (c) Crystal structure factor
- (d) Relative size factor

- IES-1. Ans. (c)
- IES-2. Assertion (A): Elements are classified into metals and non-metals on the basis of their atomic weights.

Reason (R): The valence electron structures contribute to the primary bonding between the atoms to form aggregates. [IES-2008]

- (a) Both A and R are true and R is the correct explanation of A
- (b) Both A and R are true but R is NOT the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true
- IES-2. Ans.(d)
- IES-3. Assertion (A): Unlike in the case of ionic bonds, the co-ordination numbers for covalently bonded atoms are not controlled by the radii ratio. [IES-2003] Reason (R): A covalent bond has a specific direction of bonding in space.
 - (a) Both A and R are individually true and R is the correct explanation of A
 - (b) Both A and R are individually true but R is **not** the correct explanation of A
 - (c) A is true but R is false
 - (d) A is false but R is true
- IES-3. Ans. (c)
- IES-4. Which of the following statement is true about brittle fracture?

IIES-19921

- (a) High temperature and low strain rates favour brittle fracture
- (b) Many metal with HCP crystal structure commonly show brittle fracture
- (c) Brittle fracture is always preceded by noise
- (d) Cup and cone formation is characteristic for brittle materials
- IES-4. Ans. (b)

Basic Concept (Structure of Solids)

S K Mondal's

Previous 20-Years IAS Questions

IAS-5. Magnesium is extruded and not rolled because

[IAS-1998]

- (a) It has a low melting point
- (b) It has a low density
- (c) Its reactivity with roll material is high
- (d) It has a dose-packed hexagonal structure
- IAS-5. Ans. (a)

S K Mondal's

Hardness Test

Objective Questions (GATE, IES & IAS)

Previous 20-Years GATE Questions

2.

Column II

1. Fluidity

3. Formability

4. Toughness

5. Permeability

Match the items in Column I and Column II.

[GATE-2006]

- Column I
- P. Charpy test
- Q. Knoop test
- R. Spiral test
- S. Cupping test
- (a) P 4, Q 5, R 3, S 2
- (c) P 2, Q 4, R 3, S 5

- (b) P 3, Q 5, R 1, S 4

Micro hardness

- (d) P-4, Q-2, R-1, S-3

GATE-1. Ans. (d)

Previous 20-Years IES Questions

IES-1. Hardness as a function of carbon content is shown in [IES-1992]

(a) Fig-A

(b) Fig-B

(c) Fig-C

(d) Fig-D

IES-1. Ans. (b)

IES-2. Assertion (A): The hardness test is a slow, expensive method of assessing the mechanical properties of materials. [IES-2002]

Reason (R): The hardness is a function of yield stress and the work hardening rate of material.

- (a) Both A and R are individually true and R is the correct explanation of A
- (b) Both A and R are individually true but R is **not** the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true

Hardness Test

S K Mondal's

IES-2. Ans. (b)

IES-3. A carbon steel having Brinell Hardness number 100 should ultimate tensile [IES-1992] strength closer it

(a) 100 N/mm²

(b) 200 N/mm²

(c) 350 N/mm²

(d) 1000 N/mm²

IES-3. Ans. (c)

IES-4. Which of the following would you prefer for checking the hardness of very thin [IES-1992]

(a) Hebert cloud burst test

(b) Shore's Scleroscope

(c) Knoop hardness test

(d) Vickers hardness test

IES-4. Ans. (c)

IES-5. Herbert cloudburst Hardness test is conducted to know [IES-1992]

- (a) Uniformity of hardness over a surface
- (b) Softness of non-metallic components
- (c) Hardness of non-metallic components
- (d) Hardness at specified depth inside the surface.

IES-5. Ans. (a)

> In this metal surface is subjected to rain of several hundred thousand 3 mm diameter hard steel balls talling from a known height. The impact of each ball produces an imprint varying inversely in size with the hardness of the material at the point of impact. The imprint-size pattern shows whether or not there is uniformity of hardness over the entire test are.

Previous 20-Years IAS Questions

IAS-1. With the increase of percentage of carbon in the steel, which one of the following properties does increase? [IAS-2001]

(a) Modulus of elasticity

(b) Ductility

(c) Toughness

(d) Hardness

IAS-1. Ans. (d)

IAS-2. A measure of Rockwell hardness is the [IAS-1999]

(a) Depth of penetration of indenter (b) Surface area of indentation

(c) Projected area of indentation

(d) Height of rebound

IAS-2. Ans. (a)

Objective Questions (GATE, IES& IAS)

Previous 20-Years GATE Ouestions

- GATE-1. The material property which depends only on the basic crystal structure is
 - (a) Fatigue strength
- (b) Work hardening

[GATE-2010]

(c) Fracture strength

- (d) Elastic constant
- GATE-1. Ans. (c) The material property which depends only on the basic crystal structure is fracture strength. Elastic constant depends not only on material parameters but also on the experimental geometry.

Previous 20-Years IES Questions

- IES-1. For a Rhombohedral space lattice, which one of the following is correct?
 - (a) $\alpha = \beta = \gamma = 90^{\circ}$
- (b) $\alpha = \beta = \gamma \neq 90^{\circ}$

[IES 2007]

(c) $\alpha = \gamma = 90^{\circ} \neq \beta$

(d) $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

- IES-1. Ans. (b)
- IES-2. Which one of the following pairs of axis lengths (a, b, c) and inter-axial angles (α , β , γ) represents the tetragonal crystal system? [IES-2001]
 - (a) $a = b = c; \alpha = \beta = \gamma = 90^{\circ}$
- (b) $a = b \neq c; \alpha = \beta = \gamma = 90^{\circ}$
- (c) $\alpha \neq b \neq c; \alpha = \beta = \gamma = 90^{\circ}$
- (d) $a = b = c; \alpha = \beta = \gamma \neq 90^{0}$

- IES-2. Ans. (b)
- IES-3. Which one of the following pairs is not correctly matched?

[IES-2006]

Space Lattice

Relation between Atomic radius r and Edge element a

- (a) Simple cubic structure
- : $a^2 = 4 r^2$
- (b) Body-centred cubic structure
- $: 3a^2 = 16r^2$

(c) Triclinic

- $: 2\mathbf{a}^2 = 3\mathbf{r}^2$
- (d) Face-centred cubic structure
- : $\mathbf{a}^2 = 8\mathbf{r}^2$

- IES-3. Ans. (c)
- IES-4. Match List-I (Crystal Structure) with List-II (Example) and select the correct answer using the codes given below the Lists: [IES-2003]

List-I

List-II (Example)

- (Crystal Structure)
- 1. Zinc

A. Simple Cubic

- 1. Zinc 2. Copper
- B. Body-centered CubicC. Face-centered Cubic
- 3. Alpha iron at room temperature

4

3

D. Hexagonal Close Packed

 \mathbf{B}

3

4

4. Manganese A

- Codes: A
 (a) 4
- **C D** 1 2

 2

- (b) (d)
- **C D** 2

1

2

- (c) 3 IES-4. **Ans. (b)**
 - No of lattice point = $1 + \frac{1}{4} \times 1 = 2$;
- area = a^2 : planner densiy = $2/a^2$

В

3

4

SK	Mondal's	S								
IES-5.	correct ans List I	wer us			given k List	elow tl	he lists:		ructure)	and select the [IES-2001]
	A. Fluorspa B. Alpha-Ir C. Silver				2. 3.	Hexagor Simple o		d packe	d	
	D. Zinc Codes: A	В		D	4.	\mathbf{A}	ntered cu B	\mathbf{C}	D	
	(a) 3 (c) 4	$rac{2}{2}$	4 3	1 1	(b) (d)	4	1 1	3 4	$rac{2}{2}$	
IES-5.	Ans. (d)	4	5	1	(u)	5	1	4	4	
IES-6.	What is the			ity of (1	00) pla	ne in I	FCC (fa			e) crystal with [IES-2006]
	(a) $\frac{1.484}{a^2}$		(b) -	$\frac{2}{\alpha^2}$	((c) $\frac{1}{\alpha^2}$		(d) $\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	
IES-6.	Ans. (b) Pla		,			a		(ı	
				`	,					
IES-7.	Match List answer usi List - I				ow the			cture) a	and selec	et the correct [IES-2006]
	A. Alpha Ir B. Copper	on			1. 2. 2.	Hexagor Body-ce	nal close ntred cu		d	
	C. Zinc D. Glass					Amorph Face-cer	ous ntred cul	bic		
	Codes: A	В	\mathbf{C}	D		\mathbf{A}	В	\mathbf{C}	D	
	(a) 2 (c) 2	$\frac{3}{4}$	1 1	$\frac{4}{3}$	(b) (d)	1 1	$\frac{4}{3}$	$\frac{2}{2}$	3 4	
IES-7.	Ans. (c)	4	1	0	(u)	1	5	4	4	
IES-8.	In Zinc Ble kind which									f the opposite [IES-2006]
IES-8.	(a) Tetrahed Ans. (a)	dron ((b) Hexa	ahedron	(c)	Cube	(d) Orth	orhombic	
125-0.	71115. (a)									
IES-9.	Consider th		_	empera		_				[IES-2004]
	1. Room ten 3. 910°C to	-				0 to 910 1400°C 1	°C to below	melting	noint	
	In which of	the ab	ove ten		e range			_	_	bic structure is
	indicated in, (a) 1, 2 and		Fe ₃ C ph (b) 2, 3			1 and 3	((d) 2 an	4 3	
IES-9.	Ans. (a)	T ((5) 2, 6	and 4	(0)	i and o	,	(a) 2 am	u 0	
IES-10.										adius is A and lensity of the [IES-2004]
	(a) $\frac{A}{2\sqrt{2}r^3N}$. ((b) $\frac{A}{\sqrt{9}}$	1 3 N	(c) -	$\frac{A}{2\sqrt{2}r^3N}$		(d) -	$\frac{A}{6\sqrt{2}r^3N}$	
IES-10.			4741	1 V	(5√ ΔI 1V		1	.0741 11	

latice conotant (a) =
$$\left(\frac{nA}{\rho N}\right)^{1/3}$$
 For F.C.C. $n = 4$, $r = \frac{\sqrt{2}}{4}$

Ans. (b)
$$\text{latice conotant (a)} = \left(\frac{nA}{\rho N}\right)^{1/3} \text{ For F.C.C. n = 4, } r = \frac{\sqrt{2}}{4}a$$

$$\text{or } \left(\frac{4r}{\sqrt{2}}\right)^3 = \frac{4A}{\rho N} \qquad \text{or } \rho = \frac{4A}{N \times \frac{4^3r^3}{2\sqrt{2}}} = \frac{A}{4\sqrt{2}r^3N}$$

S K Mondal's

IES-11. In the atomic hard-sphere model of the crystal structure of Copper, what is the edge length of unit cell? [IES-2008]

- (a) 2 x Atomic radius
- (b) $(4/\sqrt{3})$ x Atomic radius
- (c) $(2\sqrt{2})$ x Atomic radius
- (d) J2 x Atomic radius

IES-11. Ans. (c)

Cu - F.C.C Structure

$$4\mathbf{r} = \sqrt{2} \mathbf{a}$$

$$a = \frac{4r}{\sqrt{2}} = 2\sqrt{2}r$$

Edge length of unit all = $(2\sqrt{2})$ × Atomic radius.

IES-12. The microstructure composition of pearlite for a Fe₃C diagram consists of

- (a) Carbon dissolved in alpha iron having a body cantered cubic structure. [IES-1992]
- (b) Carbon dissolved in gama iron having a face cantered cubic structure.
- (c) A mixture of body-cantered alpha iron and face-entered gamma iron
- (d) Carbon dissolved in body-cantered alpha iron and an Fe, Fe₃C.

IES-12. Ans. (d)

IES-13. The coordination number for FCC crystal structure is

[IES-2003]

- (a) 4
- (b) 8
- (c) 12
- (d) 16

IES-13. Ans. (c)

IES-14. The effective number of lattice points in the unit cell of simple cubic, body centered cubic, and face cantered cubic space lattices, respectively, are [GATE-2009]

(a) 1, 2, 2

- (b) 1, 2, 4
- (c) 2, 3, 4
- (d) 2, 4, 4

IES-14. Ans. (b)

IES-15. Assuming atoms to be perfect spheres, what is the value of the highest possible atomic packing factor (APF) in metals? [IES-2004]

(a) 0.95

- (b) 0.74
- (c) 0.66
- (d) 0.5

IES-15. Ans. (b) Packing factor = 0.74 which is maximum and for F.C.C and HCP structure.

IES-16. Atomic packing factor (APF) in the case of copper crystal is

[IES-2000]

- (a) 0.52
- (b) 0.68
- (c) 0.74
- (d) 1.633

IES-16. Ans. (c)

IES-17. Match List-I (Crystal structure) with List-II (Atomic packing factor) and select the correct answer using the codes given below the Lists: [IES-1999]

List-I

List-II

A. Simple cubic

1. 74%

B. Body-centered cubic

2. 74%

S K Mondal's

- C. Face-centered cubic 3. 52%
 D. Hexagonal close packed 4. 68%
 Codes:
 - Α В D Α В \mathbf{C} D (a) 3 2 1 (b) 4 3 2 1 2 2 (c) 3 1 (d) 4 3 1
- **IES-17. Ans.** (a & c) Maximum packing of atoms is in hexagonal closed packed arrangement followed by face-centred cubic, body-centered cubic, and least in simple cubic.
- IES-18. Which one of the following is the correct ascending order of packing density for the given crystal structures of metals? [IES 2007]
 - (a) Simple cubic Face centred cubic Body centred cubic
 - (b) Body centred cubic Simple cubic Face centred cubic
 - (c) Simple cubic Body centred cubic Face centred cubic
 - (d) Body centred cubic Face centred cubic Simple cubic
- IES-18. Ans. (c)
- IES-19. Consider the following statements about FCC and HCP crystal structure:
 - 1. Both have same coordination number and atomic packing fraction.

[IES-2005]

- 2. Both represent closely packed crystal structures.
- 3. Both structures are generated by stacking of close packed plants on top of one another, but only the stacking sequence is different.

Which of the statements given above are correct?

- (a) 1 and 2
- (b) 2 and 3
- (c) 1, 2 and 3
- (d) 1 and 3
- **IES-19.** Ans. (d) Both have same co-ordination number 12 and atomic packing fraction 0.74.

Miller Indices

- IES-20. The set of Miller indices of the plane shown in the given figure is [IES-1999]
 - (a) (100)
- (b) (1 0 0)
- (c) (1 0 1)
- (d) (1 1 0)
- **IES-20.** Ans. (a) Intercepts on x, y and z axes are -1, ∞ , ∞ . Their reciprocals are $\overline{1}$, 0,
- IES-21. A unit cell of a crystal is shown in the given figure. The Miller indices of the direction (arrow) shown in the figure is
 - (a) [0 1 2]
- (b) [0 2 1]
- (c) [2 1 0]
- (d) [2 0 1]

IES-21. Ans. (c)

S K Mondal's

Defects in crystalline materials

IES-22. Which of the following properties of a solid are dependent on crystal imperfecttions? **IIES-1997**

> 1. Yield stress 2. Melting point 3. Semiconductivity 4. Ductility

Select the correct answer using the codes given below:

(a) 1 and 3

(b) 1, 3 and 4

(c) 2, 3 and 4

(d) 2 and 4

IES-22. Ans. (b)

Schottky defect

IES-23. Which of the following is a point imperfection? [IES-1992]

1. Vacancy

3. Frenkel imperfection

4. Schottky imperfection

(a) 1 and 2 only

(b) 2 and 3 only

2. Interstitialcy

(c) 2, 3 and 4 only

(d) 1, 2, 3 and 4

IES-23. Ans. (d)

IES-24. Which one of the following defects is 'Schottky defect'? [IES-2009]

(a) Vacancy defect

(b) Compositional defect

(c) Interstitial defect

(d) Surface defect

IES-24. Ans. (a) Schottky defect is a type of vacancy defect in which cation vacancy is associated with anion vacancy.

Interstitial

IES-25. Which one of the following pairs is *not* correctly matched? [IES-2003]

(a) Point defect in crystal lattice (b) Linear defect in crystal lattice : Self interstitials : Grain boundary : External surface

(c) Planar defect in crystal lattice (d) Volume defect in crystal lattice

: other phases

IES-25. Ans. (b)

IES-26. Assertion (A): Carbon forms interstitial solid solution when added to iron.

Reason (R): The atomic radius of carbon atom is much smaller than that of iron.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is **not** the correct explanation of A

(c) A is true but R is false

(d) A is false but R is true

[IES-1998; 1999]

IES-26. Ans. (a)

IES-27. Which of the following factors govern solubility of two non-ferrous metals both in liquid state, as well as in solid state? [IES-2001]

1. Crystal structure 3. Chemical-affinity factor 2. Relative size factor 4. Relative valence factor

Select the correct answer using the codes given below:

Codes:

(a) 1, 2 and 3

(b) 2, 3 and 4

(c) 1 and 4

(d) 1, 2, 3 and 4

IES-27. Ans. (d)

Substitution

(b) Line Imperfections

Screw

IES-28. A screw dislocation [IES-2003]

S K Mondal's

1.	Lies paral	llel	to its	Burger's	s vector
----	------------	------	--------	----------	----------

- 2. Lies perpendicular to its Burger's vector
- 3. Moves in a perpendicular direction to the Burger's vector
- 4. Moves in an inclined direction to the Burger's vector

Select the correct answer using the codes given below:

Codes:

(a) 1 and 4

(b) 1 and 3

(c) 2 and 3

(d) 2 and 4

IES-28. Ans. (b)

IES-29. Which one of the following is correct for "Burger's vector" in screw dislocation?

(a) Perpendicular to the dislocation line

[IES-2009]

- (b) Inclined to the dislocation line
- (c) Parallel to the dislocation line
- (d) Opposite to the dislocation line
- IES-29. Ans. (c) In screw dislocation Burger Vector is parallel to the dislocation line whereas in Edge dislocation, dislocation is perpendicular to the dislocation line.

IES-30. Which one of the following statements is correct in the case of screw dislocations? $(\vec{b} = Burgers Vector; \vec{t} = Imaginary Vector)$ [IES-2008]

- (a) \vec{b} is perpendicular to \vec{t}
- (b) \vec{b} is parallel to \vec{t}
- (c) \vec{b} is inclined to \vec{t}
- (d) \vec{b} and \vec{t} are non-coplanar and non-intersecting
- IES-30. **Ans.** (b) Burger vector (\vec{b}) is parallel to imaginary vector (\vec{t}) in case of screw dislocation.

(a)
$$\frac{G^2b}{2}$$

(b)
$$\frac{Gb^2}{2}$$
 (c) $\frac{G^2b}{4}$ (d) $\frac{Gb^2}{4}$

(c)
$$\frac{G^2b}{4}$$

(d)
$$\frac{Gb^2}{4}$$

IES-31. Ans. (b)

IES-32. Assertion (A): Refining the grain size of a polycrystalline material renders it harder and stronger. [IES-1998]

Reason (R): Grain boundaries provide easy paths to dislocation motion.

- (a) Both A and R are individually true and R is the correct explanation of A
- (b) Both A and R are individually true but R is **not** the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true

IES-32. Ans. (c)

IES-33. Chemicals attack atoms within grain boundaries preferentially because they have

(a) Lower energy than those in the grains

[IES-2002]

- (b) Higher energy than those in the grains (c) Higher number of atoms than in the grains
- (d) Lower number of atoms than in the grains
- IES-33. Ans. (b)

Grain boundary

- IES-34. What is a surface imperfection, which separates crystals of different orientations in a poly-crystalline aggregate, called? [IES-2008]
 - (a) Edge dislocation

(b) Stacking fault

(c) Grain boundary

(d) Screw dislocation

S K Mondal's

Ans. (c) There are several types of planar (or surface) defects that occur from a change in the orientation of crystallographic planes across a surface boundary. The most important planar defect is the *grain boundary*, which is the imperfect plane surface that separates two crystals of different orientation in a polycrystalline solid. Grain boundaries originate when the last few remaining atoms of a liquid freeze onto the meeting faces of two adjacent crystals that have grown from the melt or, similarly, when two adjacent crystals that grow by re-crystallization meet each other.

Fig. Grain boundaries

Twin boundary

- IES-35. What is the movement of block of atoms along certain crystallographic planes and directions, termed as? [IES 2007]
 - (a) Glide
- (b) Twinning
- (c) Slip
- (d) Jog

IES-35. Ans. (c)

IES-36. The B.C.C. and H.C.P. metals undergo plastic deformation by:

[IES-2005]

(a) Slip

- (b) Twinning
- (c) Edge dislocation
- (d) Twinning in combination with slip

IES-36. Ans. (d)

Other

IES-37. Which one of the following is correct for 'Climb'?

[IES-2009]

- (a) Dislocation moves parallel to the slip plane
- (b) Dislocation moves perpendicular to the slip plane
- (c) Sliding of one plane of atoms over the other plane
- (d) Dislocation moves from a slip plane to another slip plane
- **IES-37. Ans. (b)** Climb is a dislocation movement in which dislocation moves from one slip plane to another slip plane. Where as Glide is a dislocation movement in which dislocation moves within the same slip plane.
- IES-38. Assertion (A): Plastic deformation in metals and alloys is a permanent deformation under load. This property is useful in obtaining products by cold rolling. [IES-1998]

Reason (R): Plastic or permanent deformation in metal or alloy is caused by movement or dislocations.

- (a) Both A and R are individually true and R is the correct explanation of A
- (b) Both A and R are individually true but R is not the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true
- **IES-38. Ans. (c)** The deformation of metals, which is caused by the displacement of the atom is achieved by one or both of the processes called slip and twinning.

S K Mondal's

Plain Carbon Steel

Objective Questions (GATE, IES & IAS)

Previous 20-Years GATE Questions

The true strain for a low carbon steel bar which is doubled in length by forging is GATE-1. [GATE-1992] (a) 0.307 (b) 0.5 (c) 0.693 (d) 1.0

GATE-1. Ans. (c)

Previous 20-Years IES Questions

IES-1. [IES-2005] Consider the following statements about medium carbon steel:

1. It can be quench-hardened but not case-hardened.

2. It cannot be quench-hardened but case-hardening can be done.

3. It exhibits distinct yield point under tension test.

Which of the following statements given above are correct?

(b) 2 and 3 (d) 1, 2 and 3 (a) 1 and 2 (c) 1 and 3

IES-1. Low carbon steels (less than 0.3%C) cannot be quench hardened but case Ans. (c) hardening can be done.

IES-2. Match List I with List II and select the correct answer using the codes given below the lists: [IES-1995]

List I (Alloy) List II (Use) A. Low carbon steel Bearing 1. B. Hadfield manganese steel Thermocouple C. Constantan Wire nails. D. Babbitt alloy Bulldozer blades. Code: A \mathbf{C} D \mathbf{C} \mathbf{D} A R 1 2 3 (b) 3 4 1 2 (a) 4 3 2 3 2 4 (d) 4 1 (c)

IES-2. Ans. (d)

IES-3. Match List I (Steel) with List II (Application) and select the correct answer using the code given below the Lists: [IES-2005]

> List I List II A. Mild Steel 1. Ball bearing B. Tool Steel Cold chisels C. High Carbon Steel Shaft and axles D. Medium Carbon Steel Rolled steel sections Codes: A В \mathbf{C} D A C D (a) 1 4 3 (b) 4 3 2 1 2 3 2 (c) 1 (d) 4 1 3

IES-3. Ans. (d)

IES-4. In case of power screws, what is the combination of materials used for the screw and the nut? IES-20061

- a) Cast iron screw and mild steel nut
- (b) Carbon steel screw and phosphor bronze nut
- (c) Cast iron screw and cast iron nut
- (d) Aluminium screw and alloy steel nut

IES-4. Ans. (b)

C. 0.60 - 0.70

D. 1·10 - 1·40

3

Codes: A

(a)

C 2

 \mathbf{B}

4

D

(b)

4

SKN	Iondal'	S									
IES-5.	Hot cracks following a 1. Presence 2. High can 3. Moistur	a re the c e of sulpl rbon or a	causes: hur and alloy con	for hot phosphetent of t	crack orus ir he bas	s? n the base		metal	solidifie	s. Which o [IES-	
	4. Joint res		0111011110	ing the	anda m	wan halar					
IES-5.	Select the co (a) 1, 2 and Ans. (d)		b) 1, 2 a			3 and 4		(d) 1, 2,	3 and 4		
IES-6.	Match List the codes g				(App		and so	elect th	e correc		sing 2004]
	A. Silicon s B. High can C. High sp D. Monel n	rbon stee eed steel				List II Marine li Cutting Springs Transfor	tools		S		
	Codes: A	В	\mathbf{C}	\mathbf{D}	1.	A	В	C	D		
	(a) 1	2	3	4	(b)	4	3	2	1		
IES-6.	(c) 4 Ans. (b)	2	3	1	(d)	1	3	2	4		
IES-7.	For the pip (a) Pig iron (c) Spheroid Ans. (b)		_		(b)	ion etc. Malleabl High car	le iron		ollowing	is preferr [IES-1	
IES-8.	Which of the second of the sec	age carbo ing medi ze orrect an only	on a		code gi (b)		w: only	arbon si	teel?	[IES	2007]
IES-8.	Ans. (d)	· ·			` '	ŕ					
IES-9.	Consider to Strength of Young's Mod Young's Mod Which of the (a) 1 only	steel inco dulus of a dulus of a e statem	reases v steel ind steel rea	vith cark creases v nains un en above	oon cor vith ca nchang e is/are	rbon con ged with	variatio	n of cark (d) 1 an			2005]
IES-9.	Ans. (c)										
IES-10.	Presence of (a) Reduced (c) Embritt	d neutron				ion			oved weld sion resis	-	1992]
IES-10.	Ans. (c)										
	Р	revio	ous 2	20-Y	ear	s IES	Que	estio	ns		
IAS-1.	Match List (Application List I (Percentage A. 0·10 - 0·2 B. 0·30 - 0·4	on) and ge of car	select t	he corr	ect a	nswer us	sing the	e codes List (Ap _l 1.]	given be	elow the lis [IAS-2)	sts:

3. Structures

 \mathbf{C}

1

 \mathbf{B}

3

4. Crane hooks

 \mathbf{D} $\overline{2}$

	Cast Iron											
SK	Mon	dal'	S									
•	(c)	3	4	1	2	(d)	4	3	2	1		

(c) 3 Ans. (a)

S K Mondal's

Iron Carbon Equilibrium Diagram

Objective Questions (IES, IAS, GATE)

GATE-1.						ith he	at-trea	tment	of steel	with the micro
	structural	/physica	al chara	acterist						[GATE-1992]
	Terms					racteri		11	.1 1	
	(A) Pearlite						•		tle phase	
	(B) Marten								ersed in f	
	(C) Austeni								entite and	i ierrite
	(D) Eutecto	ıα						bove 723		. b 4
						olid pha		ate of eq	umbrium	between three
								ata of oa	uilihrium	between one
								olid pha		i between one
	Codes: A	В	\mathbf{C}	D	1.	A	B	C C	D	
	(a) R	P	$\ddot{ ext{s}}$	T	(b)	R	S	P	T	
	(c) T	R	$\tilde{\mathrm{P}}$	Š	(d)	T	$\tilde{ m R}$	S	P	
GATE-1.	Ans. (a)				(-)					
	Terms (A) Pearlite (B) Marten (C) Austeni	site ite			(P) F (Q) C (R) A (S) C	Cementi Alternat Can exis	ly hard te is fin e layers t only a ng to sta	ely disposor of cemes bove 723		errite
	(D) Eutecto	iu			s	olid pha				
	(D) Eutecto	Id			(U) F	olid pha Pertaini	ng to sta			n between one
				_	(U) F	olid pha Pertaini Iquid an	ng to sta nd two s	olid pha	se	n between one
	Codes: A	В	C	D	(U) H	olid pha Pertainin Iquid an A	ng to stand two s B	olid pha C	\mathbf{p}	n between one
	Codes: A (a) R	В Р	\mathbf{S}	${f T}$	s (U) H li	olid pha Pertainin Iquid an A R	ng to stand two s B S	olid pha C P	se D T	n between one
CATE 9	Codes: A (a) R (c) T	В			(U) H	olid pha Pertainin Iquid an A	ng to stand two s B	olid pha C	\mathbf{p}	n between one
GATE-2.	Codes: A (a) R	В Р	\mathbf{S}	${f T}$	s (U) H li	olid pha Pertainin Iquid an A R	ng to stand two s B S	olid pha C P	se D T	n between one

Coae	es: A	D	C		A	Ъ	U
(a)	4	2	3	(b)	3	4	1
(c)	4	2	1	(d)	3	1	2
Ans.	(b)						

IES-1.

SKN	Mondal's
IES-2.	Match List I with List II and select the correct answer: [IES-2002]
	List I (Phase diagram) A. Isomorphous system List II (Characteristic) One liquid decomposes into another liquid and solid
	B. Eutectic system 2. One liquid and another solid combine to form a new solid
	C. Peritectic system 3. Two metals are completely soluble in liquid state And completely insoluble in solid state
	D. Monotectic system 4. Two metals, soluble in solid and liquid state
	Codes: A B C D A B C D (a) 2 3 4 1 (b) 4 1 2 3
	(c) 2 1 4 3 (d) 4 3 2 1
IES-2.	Ans. (d) Two metals are completely soluble in liquid state and completely insoluble in solid state. i.e. $Liquid \rightarrow Solid_1 + Solid_2$
IES-3.	According to Gibbs' phase rule, the number of degrees of freedom of an eutectic point in a binary system is [IES-2003]
IES-3.	(a) 1 (b) 2 (c) 0 (d) 3 Ans. (a) According to Gibb's phase rule,
	Number of degree of freedom, $F = C - P + 2$
	where, C = number of components; P = number of phases
	For binary system, $C = 2$ and for entectic point, $P = 3$ $\therefore F = 2$ - $3 + 2 = 1$
IES-4.	In a eutectic system, two elements are completely (a) Insoluble in solid and liquid states (b) Soluble in liquid state (c) Soluble in solid state (d) Insoluble in liquid state
IES-4.	Ans. (b) In eutectic system, two elements are completely soluble in liquid state.
IES-5.	Eutectic reaction for iron-carbon system occurs at (a) 600°C (b) 723°C (c) 1147°C (d) 1493°C
IES-5.	Ans. (c)
IES-6.	During peritectic solidification, one liquid (a) Combines with one solid to form a second new solid [IES-2000]
	(b) Solidifies into two different solids (c) Forms one solid
IEC 4	(d) Forms one solid and another liquid
IES-6.	Ans. (a) $L + S_1 = S_2$
IES-7.	Which one of the following is the correct statement? [IES 2007] Pearlite in iron-carbon system is a
	(a) Phase consisting of ferrite and cementite at room temperature
	(b) Mechanical mixture of ferrite and cementite at room temperature(c) Eutectic mixture ferrite and cementite at room temperature
	(d) All the above three are correct
IES-7.	Ans. (b) Since the chemical separation occurs entirely within crystalline solids, the resultant structure is a five mechanical mixture of ferrite & cementite. Pearlite is a eutectoid mixture of ferrite and cementite.
IES-8.	Match List I with List II and select the correct answer using the code given below
	the Lists: [IES 2007]

List II (Name of the Invariant Reaction) (Invariant Reaction during cooling) A. Monotectic 1. LIQUID....SOLID1 + SOLID2

S K Mondal's

B. Eutectic LIQUID1.....LIQUID2 + SOLID C. Eutectoid SOLID1....SOLID1 + SOLID2LIQUID + SOLID1.....SOLID2 D. Peritectic \mathbf{D} Code: A В \mathbf{C} В 2 (a) 3 1 4 (b) 2 4 3 1 2 2 (c) 3 4 1 (d) 1 3 4

IES-8. Ans. (d)

IES-9. Increase of ferrite phase in steel increases:

[IES-2005]

- (a) Strength
- (b) Hardness
- (c) Ductility
- (d) Brittleness

IES-9. Ans. (a)

IES-10. A 60 C-plain carbon steel has, approximately:

[IES-2005]

- (a) 75% of pearlite and 25% of ferrite
- (b) 25% of pearlite and 75% of ferrite
- (c) 75% of cementite and 25% of ferrite
- (d) 75% of pearlite and 25% of cementite
- **IES-10. Ans. (a)** pearlite contain 0.8% carbon

Ferrite contain 0.006% carbon

60C plain carbon steel $\equiv 75\% \times 0.8 + 25\% \times 0.006 \approx 0.6\%$ carbon

IES-11. Pearlite consists of

[IES-2000]

- (a) 6.67% C and 93.33% ferrite
- (b) 13% Fe and 87% cementite
- (c) 13% C and 87% ferrite
- (d) 13% cementite and 87% ferrite
- **IES-11.** Ans. (d) $13\% \times 6.67 + 87\% \times 0.02 = 0.8$

IES-12. A given steel test specimen is studied under metallurgical microscope. Magnification used is 100 X. In that different phases are observed. One of them is Fe₃C. The observed phase Fe₃C is also known as [IES-1997]

- (a) Ferrite
- (b) Cementite
- (c) Austenite
- (d) Martensite

IES-12. Ans. (b)

IES-13. Which one of the following sets of constituents is expected in equilibrium cooling of a hypereutectoid steel from austenitic state? [IES-1995]

- (a) Ferrite and pearlite
- (b) Cementite and pearlite
- (c) Ferrite and bainite
- (d) Cementite and martensite

IES-13. Ans. (b)

IES-14. Martensite is a super-saturated solution of carbon in

[IES-2001]

- (a) Alpha iron
- (b) Beta iron
- (c) Gamma iron (d) Delta iron

IES-14. Ans. (a)

IES-15. Consider the following lead-tin phase diagram given below:

For which one of the following alloy compositions, the alloy will have the lowest melting point at $185^{\circ}C$

- (a) 20% Sn and 80% Pb by weight
- (b) 60% Sn and 40% Pb by weight
- (c) 97% Sn and 3% Pb by weight
- (d) 40% Sn and 60% Pb byweight

S K Mondal's

[IES-2004]

IES-15. Ans. (b)

Cast Iron

Objective Questions (IES, IAS, GATE)

Previous 20-Years GATE Ouestions

The percentage of carbon in gray cast iron is in the range of

[GATE-2004]

(a) 0.25 to 0.75 percent

(b) 1.25 to 1.75 percent

(c) 3 to 4 percent

(d) 8 to 10 percent

GATE-1. Ans. (c)

Previous 20-Years IES Questions

IES-1. Vibration damping in machinery is best achieved by means of base structures made of which one of the following materials? [IES 2007]

(a) Low carbon steel

(b) Nodular iron

(c) Grev cast iron

(d) White cast iron

IES-1. Ans. (c) Carbon is in a flake like shape as in grey cast iron; the graphite breaks up the continuity of iron and greatly weakens it. But it also helps in absorbing vibrational energy, as a result of which grey cast iron is normally used for the beds of machine tools.

IES-2. Which of the following materials is used in the manufacture of extrusion nozzles?

(a) Grev cast iron

(b) Malleable cast iron

[IES-2005]

(c) White cast iron

(d) Nodular cast iron

IES-2. Ans. (c)

IES-3. Which one of the following cast irons consists of carbon in rosette form? [IES-2009]

(a) White cast iron

(b) Gray cast iron

(c) Malleable cast iron

(d) Nodular cast iron

IES-3. Ans. (d)

IES-4. Consider the following statements: [IES-2005]

1. Cast Iron has poor ability to damp vibrations.

2. Cast Iron has higher compressive strength compared to that of steel.

3. Cast Iron parts are suitable where permanent deformation is preferred over fracture.

Which of the statements given above is/are correct? (a) 1, 2 and 3

(b) 1 and 3

(c) 3 only

(d) 2 only

IES-4. Ans. (d)

IES-5. Which of the following pairs are correctly matched? [IES-2005]

(Designation of Steel/Cast Iron) (Description)

1. Fe E 250 Minimum tensile strength of 250 N/mm2 2. 40 C 8 Percentage of Manganese is 0.7% - 0.9%

3. FG 200 Grey cast iron with ultimate tensile strength of

200 N/mm²

Select the correct answer using the code given below:

(a) 1 and 2

(b) 2 and 3

(c) 1 and 3

(d) 1, 2 and 3

IES-5. Ans. (c)

S K Mondal's

IES-13.

the lists:

columns and tables because grey cast-iron is 1. Heavy 2. Easily castable 3. Easily weldable 4. Having good damping capacity Select the correct answer using the codes given below: Codes: (a) 1 and 2 (b) 2 and 4 (c) 1 and 3 (d) 3 and 4 IES-6. Ans. (b) IES-7. Piston compression rings are made of which one of the following (a) Cast iron (b) Bronze (c) Aluminium (d) White metal IES-7. Ans.(a) They are subjected to wear, to minimize they are made of wear resistance.	[IES-2003]
3. Easily weldable Select the correct answer using the codes given below: Codes: (a) 1 and 2 (b) 2 and 4 (c) 1 and 3 (d) 3 and 4 IES-6. Ans. (b) IES-7. Piston compression rings are made of which one of the following (a) Cast iron (b) Bronze (c) Aluminium (d) White metal	
Select the correct answer using the codes given below: Codes: (a) 1 and 2 (b) 2 and 4 (c) 1 and 3 (d) 3 and 4 IES-6. Ans. (b) IES-7. Piston compression rings are made of which one of the following (a) Cast iron (b) Bronze (c) Aluminium (d) White metal	
Codes: (a) 1 and 2 (b) 2 and 4 (c) 1 and 3 (d) 3 and 4 IES-6. Ans. (b) IES-7. Piston compression rings are made of which one of the following (a) Cast iron (b) Bronze (c) Aluminium (d) White metal	
(a) 1 and 2 (b) 2 and 4 (c) 1 and 3 (d) 3 and 4 IES-6. Ans. (b) Piston compression rings are made of which one of the following (a) Cast iron (b) Bronze (c) Aluminium (d) White metal	
IES-6. Ans. (b) IES-7. Piston compression rings are made of which one of the following (a) Cast iron (b) Bronze (c) Aluminium (d) White metal	
IES-7. Piston compression rings are made of which one of the following (a) Cast iron (b) Bronze (c) Aluminium (d) White metal	
(a) Cast iron (b) Bronze (c) Aluminium (d) White metal	
(a) Cast iron (b) Bronze (c) Aluminium (d) White metal	
	[IES 2007]
IES-7. Ans.(a) They are subjected to wear, to minimize they are made of wear resistance.	
high quality grey cast iron casting and coated with Nitride or Chrome by PVD	•
	1. 11
IES-8. Nodular grey cast iron is obtained from the grey cast iron by ad	_
amount of	[IES-2001]
(a) Manganese (b) Phosphorus (c) Magnesium (d) Chromium	
IES-8. Ans. (c)	
IES-9. Cast iron is used for machine beds because of its high	[IES-1999]
(a) Tensile strength (b) Endurance strength	[128-1999]
(c) Damping capacity (d) Compressive strength	
IES-9. Ans. (c) & (d)	
1E5-5. Alls. (c) & (u)	
IES-10. Assertion (A): Cast iron is generally hard, brittle and wear resistant.	[IES-1998]
Reason (R): Cast iron contains more than 2% carbon and as such th	
cementite in it is higher.	r Processing.
(a) Both A and R are individually true and R is the correct explanation of A	
(b) Both A and R are individually true but R is not the correct explanation of	A
(c) A is true but R is false	
(d) A is false but R is true	
IES-10. Ans. (a)	
120 101 11101 (4)	
IES-11. Assertion (A): The notch sensitivity of cast iron component is zero.	
Reason (R): Cast iron does not have a yield point.	[IES-1997]
(a) Both A and R are individually true and R is the correct explanation of A	_
(b) Both A and R are individually true but R is not the correct explanation of	A
(c) A is true but R is false	
(d) A is false but R is true	
IES-11. Ans. (a)	
IES-11. Ans. (a)	
IES-12. Consider the following statements:	[IES-1995]
IES-12. Consider the following statements: Addition of silicon to cast iron	[IES-1995]
IES-12. Consider the following statements: Addition of silicon to cast iron 1. Promotes graphite module formation.	[IES-1995]
 IES-12. Consider the following statements: Addition of silicon to cast iron 1. Promotes graphite module formation. 2. Promotes graphite flake formation. 	[IES-1995]
IES-12. Consider the following statements: Addition of silicon to cast iron 1. Promotes graphite module formation. 2. Promotes graphite flake formation. 3. Increases the fluidity of the molten metal.	[IES-1995]
IES-12. Consider the following statements: Addition of silicon to cast iron 1. Promotes graphite module formation. 2. Promotes graphite flake formation. 3. Increases the fluidity of the molten metal. 4. Improves the ductility of cast iron.	[IES-1995]
IES-12. Consider the following statements: Addition of silicon to cast iron 1. Promotes graphite module formation. 2. Promotes graphite flake formation. 3. Increases the fluidity of the molten metal. 4. Improves the ductility of cast iron. Select the correct answer using the codes given below:	[IES-1995]
IES-12. Consider the following statements: Addition of silicon to cast iron 1. Promotes graphite module formation. 2. Promotes graphite flake formation. 3. Increases the fluidity of the molten metal. 4. Improves the ductility of cast iron. Select the correct answer using the codes given below: (a) 1 and 4 (b) 2 and 3 (c) 1 and 3 (d) 3 and 4	[IES-1995]
IES-12. Consider the following statements: Addition of silicon to cast iron 1. Promotes graphite module formation. 2. Promotes graphite flake formation. 3. Increases the fluidity of the molten metal. 4. Improves the ductility of cast iron. Select the correct answer using the codes given below:	[IES-1995]

Match List I with List II and select the correct answer using the codes given below

[IES-1995]

Cast Iron List II (% Carbon Range) 1. 4.3 - 6.67 2. 2.0 - 4.3 $3. \quad 0.8 - 2.0$ 4. 0.008 - 0.8 D A В \mathbf{C} D 1 (b) 1 3 2 4 (d) 1 4 An iron-carbon binary alloy has 0.5% C by weight. What is this alloy called? (b) Eutectic alloy [IES-2004] (d) Hypereutectoid alloy Eutectoid reaction occurs at [IES-1995] (c) 1147°C (d) 1493°C The eutectoid of carbon in iron, above lower critical temperature, when cooled, [IES-2005] (b) Ferrite and cementite (d) Ferrite, cementite and austenite Consider the following work materials: [IES-1995] 2. Mild steel 3. Stainless steel 4. Grey cast iron. The correct sequence of these materials in terms of increasing order of difficulty in (c) 2,4,3,1(d) 2, 4, 1, 3. Ans. (a) Titanium high cost and need 10 times much energy than steel to produce. Light weight, strong, corrosion resistant, properties between steel and aluminium. Addition of magnesium to cast iron increases its [IES-1995] (b) Ductility and strength in tension (d) Creep strength. [IES-1994]

(c) Corrosion resistance IES-18. Ans. (b) IES-19. Assertion (A): Machine tool beds are generally made of grey cast iron. Reason (R): Cast iron possesses good self-lubricating properties. (a) Both A and R are individually true and R is the correct explanation of A (b) Both A and R are individually true but R is **not** the correct explanation of A

(c) A is true but R is false

(d) A is false but R is true

IES-19. **Ans.** (a) Both A and R are true and R provides correct explanation for A.

IES-20. Which of the following pairs are correctly matched? [IES-1994] 1. Lead screw nut...... Phosphor bronze 2. Piston..... Cast iron.

3. CamEN-31 steel

4. Lead screwWrought iron.

Select the correct answer using the codes given below:

Codes:

S K Mondal's

Codes: A

Ans. (a)

Ans. (c)

(a) 600°C

results in:

Ans. (b)

1. Titanium

machining is (a) 4,2,3,1

(a) Hardness

Ans. (b)

4

4

(a) Eutectoid alloy

(c) Hypo-eutectoid alloy

(a) Ferrite and austenite

(c) Cementite and austenite

(a)

(c)

IES-13.

IES-14.

IES-14.

IES-15.

IES-15.

IES-16.

IES-16.

IES-17.

IES-17.

IES-18.

List I (Name of Material)

A. Hypo-eutectoid steel

B. Hyper-eutectoid steel

C. Hypo-eutectic cast iron

D. Hyper-eutectic cast iron

В

3

1

 \mathbf{C}

2

2

(b) 723°C

(b) 4,2, 1,3

(b) 1, 3 and 4 (d) 1, 2 and 3 (a) 2, 3 and 4 (c) 1, 2 and 4

IES-20. Ans. (d)

S K Mondal's

IES-21. Assertion (A): Fracture surface of grey cast iron is dark. [IES-1993] Reason (R): Failure takes place along the weak cementite plates. (a) Both A and R are individually true and R is the correct explanation of A

- (b) Both A and R are individually true but R is **not** the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true
- IES-21. (a) Both A and R are true. Also R gives satisfactory explanation for A.
- IES-23. Which of the following display properties similar to that of steel

[IES-1992]

- 1. Black-heart cast iron
- 2. White-heart cast iron

3. Gray cast iron

- 4. Pig iron
- (a) 1 and 2 only
- (b) 3 and 4 only
- (c) 2 and 4 only (d) 1 and 3 only

- IES-23. Ans. (a)
- IES-24. Which of the following metal shrinks most from molten state to solid state?
 - (a) Cast iron

(b) Cast steel

[IES-1992]

(c) Brass

(d) Admiralty metal

IES-24. Ans. (b)

Previous 20-Years IAS Questions

IAS-1. Consider the following statements:

[IAS-2003]

- 1. From design considerations, it is always advantageous to place cast iron ribs on the tension side rather than on the compression side.
- Cast iron is an excellent choice for machine tool guides and frames.
- 3. Cast iron parts have low notch sensitivity.

Which of these statements are correct?

- (a) 1, 2 and 3
- (b) 2 and 3
- (c) 1 and 3
- (d) 1 and 2

IES-1. Ans. (b)

> Since cast iron is strong in compression and weak in tension. Therefore, statement 1 is wrong.

IAS-2. A cast iron specimen in a torsion test gives a

[IAS-2002]

- (a) Cup-and-cone fracture
- (b) Fracture along a plane normal to the axis of the specimen
- (c) Fracture along a helix of approximately 45°
- (d) Fracture along a plane inclined at 60° to the axis
- IAS-2. Ans. (b) cast iron brittle fracture.

Alloy Steel

S K Mondal's

IES-5.

List I

A. Vanadium

D. Chromium

C. Silicon

Codes: A

B. Molybdenum

В

Alloying Element of Steel and alloy Steel

Objective Questions (GATE, IES & IAS)

Previous 20-Years GATE Questions

GATE-1. GATE-1.	The alloying materials is (a) Nickel Ans. (b)		nt mainly Vanadium		o improv Molybden				trength of s [GATE-	
	Pr	eviou	ıs 20-`	Year	s IES	Que	estio	ns		
IES-1.	Alloy steel v bulldozers, l iron, carbon	bucket w								
IES-1.	(a) Chromiun Ans. (c) Mans	` '	Silicon creases tou		Mangane and ductili		d) Magn	nesium.		
IES-2.	The alloy ste (a) 0.4% C, 18 (c) 0.4% C, 1.	8% Cr and	ł 2% Ni	(b)	Ni 2 by B i 4.0% C, 1 0.4% C, 1	.8% Cr	and 0.20	% Ni	ndards conta [IES-2	
IES-2.	Ans. (a)									
IES-3.	Match List I correct answ List I A. Invar B. Hadfield s C. Stellite D. Stainless	ver using		s given Lis 1. 2.		e Lists se m		ements	s) and select [IES-:	
	Codes: A	В	C D	0.	A	В	\mathbf{C}	D		
	(a) 5		4 2	(b)	3	2	5	1		
TEC 6	(c) 5	_	4 1	(d)	3	1	5	2		
IES-3.	Ans. (d) Invar Hadfield steel			ese incre	eases tough	nness a	nd ducti	lity.		

Match List I (Alloying Element) with List II (Effect on Steel) and select the correct

1. Increases endurance strength

 \mathbf{B}

3

4. Increases resistance to high temperature

 \mathbf{C}

D

4

2. Improves creep properties

3. Increases hardness

oxidation

Α

List II

[IES-2005]

answer using the code given below the Lists:

 \mathbf{C}

D

				A	lloy	Steel				
SKI	Mondal's			-	(1)	-	2	-		
IES-5.	(c) 2 Ans. (d)	1	4	3	(d)	1	2	3	4	
IES-6.										erred on steel ven below the
	List-I A. Nickel B. Chromiun C. Tungsten	ı			Li 1. 2. 3.	st-II Corrosio Magneti Heat res	c perme			
	D. Silicon					Hardena				
	Codes: A	\mathbf{B}	\mathbf{C}	D		A	В	\mathbf{C}	D	
	(a) 4	1	3	2	(b)	4	1	2	3	
IES-6.	(c) 1 Ans. (a)	4	3	2	(d)	1	4	2	3	
eleme Ti, Ni • These	2. Austenit Which of the (a) 1 only Ans. (c) enitic stainless ents. Ni stabiliz b, Mo (prevent e steels are very e steels cannot)	steels to weld de	less stee ents giv b) 2 on usually austeni cay), Mi and can	els canno ven above ly contain tic phas n and Cu	ot be q e is/ar (c) 18% (e assis a (help	uenched a e correct? Both 1 a Cr and 89 sted by C s in stabi rolled bu	and tem nd 2 (% Ni in and N. lizing aut offer g	pered. d) Neit additio Other ustenite reat dif	her 1 nor 2 n to other alloying ac). ficulty in n	minor alloying dditions include
IES-8.	retains its au Reason (R): thin film of c (a) Both A a (b) Both A a	stenitic Chrom hromiu nd R ar nd R ar	e structu ium pre m oxide e indivi e indivi	ure at ro esent in t on the s dually to	om tei the ste surface rue an	mperature eel improve. e. d R is the	e, it is ca ves its co correct	alled au orrosion explana	stenitic staresistance	by forming a [IES-1997]
IES-8.	retains its au Reason (R): thin film of c (a) Both A a	stenition Chrome hromiund R arund R arund R arund but R i	e structuium pre m oxide e indivi e indivi s false	ure at ro esent in t on the s dually to	om tei the ste surface rue an	mperature eel improve. e. d R is the	e, it is ca ves its co correct	alled au orrosion explana	stenitic staresistance	ainless steel. by forming a [IES-1997]
	retains its au Reason (R): thin film of c (a) Both A a (b) Both A a (c) A is true (d) A is false Ans. (a)	stenition Chromium thromium thromium throws the control of the con	c structuium pre m oxide e indivi e indivi s false is true	ure at ro esent in the con the s dually to dually to	om tei the ste surface rue an rue bu	mperatur eel improve. d R is the t R is not	e, it is caves its correct the correct	alled au orrosion explana rect exp	stenitic staresistance	ainless steel. by forming a [IES-1997]
IES-8.	retains its au Reason (R): thin film of c (a) Both A a (b) Both A a (c) A is true (d) A is false Ans. (a)	stenition Chromium thromium thromium throws the control of the con	c structuium pre m oxide e indivi e indivi s false is true l contai % chron	ure at ro esent in the con the s dually to dually to dually to ins nium.	om tei the ste surface rue an rue bu	mperature eel improve. e. d R is the	e, it is caves its correct to the correct corr	alled au orrosion explana rect exp	stenitic staresistance ation of A lanation of	ainless steel. by forming a [IES-1997]
IES-8. IES-9.	retains its au Reason (R): thin film of c (a) Both A a (b) Both A a (c) A is true (d) A is false Ans. (a) 18/8 stainle (a) 18% stain (c) 18% tung Ans. (b) Match List below the li List-I (Material) A. Charcoal B. Graphite C. Chromiu	stenition Chromium thromium thromium throws the state of	e structuium pre m oxide e indivi e indivi s false is true l contai % chron % nicke	ure at ro esent in the on the si dually to dually to dually to ins nium.	om tei the ste surface rue an rue bu (b) (d) select Lis (St 1. 2. 3.	nperature el improve e	e, it is caves its correct to the correct omium, gsten, 8	alled au orrosion explana rect exp 8% nick % chron	stenitic stares resistance ation of A lanation of el. nium.	ainless steel. by forming a [IES-1997] f A [IES-1996] e codes given
IES-8. IES-9.	retains its au Reason (R): thin film of c (a) Both A a (b) Both A a (c) A is true (d) A is false Ans. (a) 18/8 stainle (a) 18% stain (c) 18% tung Ans. (b) Match List below the li List-I (Material) A. Charcoal B. Graphite C. Chromiu D. Copper	stenitic Chrom hromiu nd R ar nd R ar but R i but R i ss stee nless, 8 gsten, 8	c structuium pre m oxide e indivi e indivi s false is true l contai % chron % nicke	ure at roesent in the on the second dually to	om tei the ste surface rue an rue bu (b) (d) select Lis (St 1. 2. 3.	nperature el improve. d R is the t R is not 18% chre 18% tun the con st-II ructure) F.C.C H.C.P Amorphe B.C.C	e, it is caves its coverent to the correct or the correct are correct.	alled au orrosion explana rect exp 8% nick % chron	stenitic staresistance ation of A lanation of el. nium.	ainless steel. by forming a [IES-1997] f A [IES-1996] e codes given
IES-8. IES-9.	retains its au Reason (R): thin film of c (a) Both A a (b) Both A a (c) A is true (d) A is false Ans. (a) 18/8 stainle (a) 18% stain (c) 18% tung Ans. (b) Match List below the li List-I (Material) A. Charcoal B. Graphite C. Chromiu D. Copper Code: A	stenitic Chrom hromiu nd R ar nd R ar but R i but R i but R i ss stee nless, 8 gsten, 8	c structuium pre ium pre m oxide e indivi e indivi s false is true l contai % chron % nicke	ure at roesent in the on the second dually to	(b) (d) select	18% chre 18% tun the con st-II ructure) F.C.C H.C.P Amorphe B.C.C A	e, it is caves its coverent to the correct arms omium, gsten, 8 crect arms ous	alled au orrosion explana rect exp 8% nick % chron	stenitic staresistance ation of A lanation of el. nium. using the	ainless steel. by forming a [IES-1997] f A [IES-1996]
IES-8. IES-9.	retains its au Reason (R): thin film of c (a) Both A a (b) Both A a (c) A is true (d) A is false Ans. (a) 18/8 stainle (a) 18% stain (c) 18% tung Ans. (b) Match List below the li List-I (Material) A. Charcoal B. Graphite C. Chromiu D. Copper	stenitic Chrom hromiu nd R ar nd R ar but R i but R i ss stee nless, 8 gsten, 8	c structuium pre m oxide e indivi e indivi s false is true l contai % chron % nicke	ure at roesent in the on the second dually to	om tei the ste surface rue an rue bu (b) (d) select Lis (St 1. 2. 3.	nperature el improve. d R is the t R is not 18% chre 18% tun the con st-II ructure) F.C.C H.C.P Amorphe B.C.C	e, it is caves its coverent to the correct or the correct are correct.	alled au orrosion explana rect exp 8% nick % chron	stenitic staresistance ation of A lanation of el. nium.	ainless steel. by forming a [IES-1997] f A [IES-1996] e codes given

Alloy Steel

IES-11.	Match List I (Allan)	with I ist II	(Maior	· Consti	tuenti	and an	ect the -	orrect engage
1ES-11.	Match List I (Alloy) using the code given			consti	ıuent)	and se	iect the c	orrect answer [IES-2005]
	using the code given List I	r perow tue :	Lists: List	ŢŢ				[112/S-2005]
	A. Babbitt			: 11 Nickel				
					204			
	B. Invar			Tin and l				
	C. Gun Metal D. Duralumin			Aluminiu Coppor	ш			
	D. Duralumin Code: A B	C D	4. (Copper A	В	\mathbf{C}	D	
		C D 3	(h)	A 3	В 1			
	` /	1 3 4 3	(b) (d)	3 3	1 4	4 1	$rac{2}{2}$	
IEC 11	(-) –		` '	_	_			
IES-11.	Ans. (c) A. Babbitt - 86		лп, 1U%	anunnon	y, and (ച.⊍% COൃ	hhet.	
	B. Invar - 64% Fe, 369		30% C 1	1 /10/2 T:	30/ 7:	2 U 607	Phoonba	8
	C. Gun metal is a typ D. Duralumin - Al 949					., 0.0%	. mospnoru	
	ש. Durarumin - Al 94'	⁄0, ∪u 470, 0tľ	161 (OI, IV	.111, 1V1g) 2	. / U			
IES-12.	Monel metal is an al	lov of						[IES-2003]
	(a) Iron and carbon		(b) (Copper aı	nd zine			[110-2000]
	(c) Aluminium and co	pper		Copper ai Copper ai		əl		
IES-12.	Ans. (d) Monel metal		, ,					
	, -, zonor motal .	W UI	50.	. , ou	_ 3 / 0	/		
IES-13.	Invar is used or mea		s prima	arily the	to its			
	(a) Non-magnetic prop	perties		_				
	(b) High nickel conten	it						
	(c) Low coefficient of t		nsion					
	(d) Hardenability	1 -~						
IES-13.	Ans. (c)							
TEC:	O 00						**	. ,
IES-14.	Coefficient of Expan		-		partic	ular all	oy. What	-
	(a) Hadfield Mangane	se Steel	` '	Invar				[IES-2008]
TEC - :	(c) Vitallium	1 11		Stellite	1		• =	1 1
IES-14.	Ans. (b) A nickel stee							
	coefficient of expansion					urıng ir	ıstruments	ana standards
	of lengths for everyday	use. (Invar -	04% F'€	e, 36% Ni)			
IES-15.	For improving the	strength of	steel o	it elevet	ted ten	perst	ires whi	ch one of the
	following alloying el			oreval	vel	p-iat		[IES-2004]
		Tungsten		Aluminiu	m (d) Zinc		[===0-2004]
IES-15.	Ans. (b)	1 4116 DUCH	(0) 1		(-	مر ح سان		
-10·	(N)							
IES-16.	Addition of vanadiu	m to steel re	esults i	n impro	vemen	t of		[IES-2000]
- *	(a) Heat-treatability b			Hardenak				
	(c) Fatigue strength					dation	at elevated	l temperature
IES-16.	Ans. (b)		` / -	-,1				-
	• •							
IES-17.	Addition of which of		ng imp	roves m				[IES-1992]
	(a) Sulphur (b)	Vanadium	(c) '			d) Zinc		_
IES-17.	Ans. (d)							
				_	_			_
IES-18.	Which of the followi				ched?			[IES-1994]
	1. Silicon steels	Transforme	er stamp					
	2. DuraluminCo		s.					
	3. Gun metal							
	Select the correct answ		codes gi	iven belov	w.			
			_					
	Codes:							

Alloy Steel

S K Mondal's

Codes: A

1

(a)

C 3

В $\overline{2}$

 \mathbf{D}

IES-18.	Ans. (c)		
IES-19.	 straight carbide grades of carbide Increases the hardness. Decreases the hardness. Increases the transverse rupture 	strength	ent in the [IES-2005]
	4. Lowers the transverse rupture str Which of the statements given above	_	
	(a) 1 and 3 (b) 2 and 4	(c) 1 and 4 (d) 2 and 3	
IES-19.	Ans. (d)		
IES-20.	Disruptive strength is the maxim (a) Subjected to 3 principal tensile magnitude (b) Loaded in tension	um strength of a metal, when stresses at right angles to one another a	[IES-2006] and of equal
	(c) Loaded in compression		
IES-20.	(d) Loaded in shear Ans. (a)		
IES-21.	Which one of the following eleme: (a) Chromium (b) Tungsten	nts is an austenitic stabilizer? (c) Nickel (d) Molybdenum	[IES-2009]
IES-21.	Ans. (c) Nickel and Manganese are A	austenitic stabilizers.	
IES-22.	Which one of the following elemen	nts is a ferritic stabilizer?	[IES-2009]
IEG aa	(a) Nickel (b) Manganese	(c) Copper (d) Chromium	
IES-22.	Ans. (d) Chromium, Tungsten and M	lolybdenum are ferritic stabilizer.	
IES-23.		ents given below determine(s) the	
	attainable hardness in steel? 1. Chromium 2. Manganese	3. Carbon 4. Molybdenum	[IES-2008]
	elect the correct answer using the cod	le given below:	
IES-23.		this lowering of the transformation point, molybo	
	effective in producing desirable oil-harden greatest hardening effect.	ning and air-hardening properties. Except for care	oon, it has the
		rove hardenability of Medium carbon steels ave forgotten the effect of carbon on steel.	
	Thorotoro I and The correct but we ha	tre long of the cheet of carbon on section	
IES-24.	Small percentage of boron is adde		[IES-1992]
	(a) Increases hardenability(c) Increases wear resistance	(b) Reduce machinability(d) Increase endurance strength	
IES-24.	Ans. (a)	-	0
	hardness steels. With austenitic 18/8	g of constructional steels and produces the 8 crome-nickel, steels can achieve higher ening, but the corrosion resistance is lowered	elastic limits
IES-25.	Match the following:		[IES-1992]
	List I (Alloying element in steel)	List II (Effect)	· •
	A. Lead B. Aluminium	 Restricts grain growth Raises yield point 	
	C. Copper	3. Reduces strength to impact	
	D. Phosphorus	4. Free machining	

A 2

(b)

B

 \mathbf{C}

4

D 1

Alloy Steel S K Mondal's 3 4 (d) 3 (c) 1 IES-25. Ans. (d) Previous 20-Years IAS Questions IAS-1. Assertion(A): In high speed steels, alloying elements tungsten, chromium and vanadium are added to make them suitable to work at higher speeds than tool steel or low alloy steels. Reason(R): Vanadium adds to the property of red hardness and tungsten and chromium add to high wear resistance. (a) Both A and R are individually true and R is the correct explanation of A (b) Both A and R are individually true but R is **not** the correct explanation of A (c) A is true but R is false (d) A is false but R is true IAS-1. Ans. (a) Both A and R are true and R is the correct explanation of A IAS-2. Watch List I (Alloying elements for tool steel) with List II (Improved mechanical property) and select the correct answer using the codes given below the Lists List I [IAS-2002] List II (Alloying elements for tool steel) (Improved mechanical property) A. Carbon 1. Hardness B. Manganese 2. Hot Hardness C. Chromium 3. Lower Critical Temp D. Vanadium Toughness \mathbf{C} D D Codes: A В A В \mathbf{C} 2 2 (a) 1 3 4 (b) 4 3 1 2 2 (c) 1 4 3 (d) 3 4 1 IAS-2. Ans. (c) IAS-3. Match List I with List II and select the correct answer using the codes given below the lists: [IAS-1996] List I (Cutting tools) List II (Major constituent) A. Stellite Tungsten B. H.S.S. 2. Cobalt C. Ceramic Alumina D. DCON Columbium Titanium Codes: A \mathbf{C} \mathbf{C} D В D \mathbf{B} Α 2 (a) 5 1 3 4 (b) 1 4 3 2 (c) 3 (d) IAS-3. Ans. (c) IAS-4. Which of the following methods are suitable for the production of super alloys? [IAS-1998] 1. Atomization from molten state using inert gas. 2. Atomization using plasma arc and rotating electrode. 3. Reduction and crushing.

Select the correct answer using the codes given below:

(c) 1 and 3

(b) 2 and 3

(d) 1, 2 and 3

Codes: (a) 1 and 2

Ans. (b)

IAS-4.

S K Mondal's

High Speed Steel

C. Nimonic alloy

Objective Questions (IES, IAS, GATE)

	Previous 20-Years IES Questions	
IES-1.	Cutting tool material 18-4-1 HSS has which one of the following comp (a) 18% W, 4% Cr, 1% V (b) 18% Cr, 4% W, 1% V (c) 18% W, 4% Ni, 1% V (d) 18% Cr, 4% Ni, 1% V	oositions? [IES 2007]
IES-1.	Ans. (a)	
IES-2.	The correct sequence of elements of 18-4-1 HSS tool is (a) W, Cr, V (b) Mo, Cr, V (c) Cr, Ni, C (d) Cu, Zn, Sn	[IES-2003]
IES-2.	Ans. (a)	
IES-3.	The limit to the maximum hardness of a work material which can with HSS tools even at low speeds is set by which one of the following mechanisms? (a) Attrition (b) Abrasion	
IES-3.	(c) Diffusion (d) Plastic deformation under compresentation (a)	ssion.
IES-4.	The blade of a power saw is made of (a) Boron steel (b) High speed steel	[IES-1993]
IES-4.	(c) Stainless steel (d) Malleable cast iron Ans. (b) The blade of a power saw is made of high speed steel.	
IES-5.	The compositions of some of the alloy steels are as under: 1. 18 W 4 Cr 1 V 2. 12 Mo 1 W 4 Cr 1 V 3. 6 Mo 6 W 4 Cr 1 V 4. 18 W 8 Cr 1 V The compositions of commonly used high speed steels would include (a) 1 and 2 (b) 2 and 2 (c) 1 and 4 (d) 1 and 2	[IES-1995]
IES-5.	(a) 1 and 2 (b) 2 and 3 (c) 1 and 4 (d) 1 and 3 Ans. (d)	
IES-6.	Percentage of various alloying elements present in different steel given below: 1. 18% W; 4% Cr; 1% V; 5% Co; 0.7% C 2. 8% Mo; 4% Cr; 2% V; 6% W; 0.7% C 3. 27% Cr; 3% Ni; 5% Mo; 0.25% C 4. 18% Cr; 8% Ni; 0.15% C Which of these relate to that of high speed steel?	materials are [IES-2000]
IES-6.	(a) 1 and 3 (b) 1 and 2 (c) 2 and 3 (d) 2 and 4 Ans. (b)	
IES-7.	Match List-I (Alloys) with List-II (Applications) and select the cousing the codes given below the lists: List-I List-II A. Chromel 1. Journal bearing B. Babbit alloy 2. Milling cutter	orrect answer [IES-1998]

3. Thermocouple wire

S K Mondal's

D. High speed steel					4. Gas turbine blades				
Code	: A	\mathbf{B}	\mathbf{C}	\mathbf{D}		\mathbf{A}	В	\mathbf{C}	D
(a)	3	1	4	2	(b)	3	4	1	2
(c)	2	4	1	3	(d)	2	1	4	3

- IES-7. Ans. (a)
- IES-8. The main alloying elements in high speed Steel in order of increasing proportion are [IES-1992]
 - (a) Vanadium, chromium, tungsten
 - (b) Tungsten, titanium, vanadium
 - (c) Chromium, titanium, vanadium
 - (d) Tungsten, chromium, titanium
- IES-8. Ans. (a)

Previous 20-Years IAS Questions

- IAS-1. Assertion (A): The characteristic feature of High speed Steel is its red hardness.

 Reason (R): Chromium and cobalt in High Speed promote martensite formation when the tool is cold worked.

 [IAS 1994]
 - (a) Both A and R are individually true and R is the correct explanation of A
 - (b) Both A and R are individually true but R is **not** the correct explanation of A
 - (c) A is true but R is false
 - (d) A is false but R is true
- IAS-1. Ans. (b)
- IAS-2. Assertion (A): For high-speed turning of magnesium alloys, the coolant or cutting fluid preferred is water-miscible mineral fatty oil. [IAS-2001]

 Reason (R): As a rule, water-based oils are recommended for high-speed operations in which high temperatures are generated due to high frictional heat. Water being a good coolant, the heat dissipation is efficient.
 - (a) Both A and R are individually true and R is the correct explanation of A
 - (b) Both A and R are individually true but R is **not** the correct explanation of A
 - (c) A is true but R is false
 - (d) A is false but R is true
- IAS-2. Ans. (a)
- IAS-3. Which of the following processes can be used for production thin, hard, heat resistant coating at TiN, on HSS? [IAS-1997]
 - 1. Physical vapour deposition.
 - 2. Sintering under reducing atmosphere.
 - 3. Chemical vapour deposition with post treatment
 - 4. Plasma spraying.

Select the correct answer using the codes given below:

Codes:

- (a) 1 and 3
- (b) 2 and 3
- (c) 2 and 4
- (d) 1 and 4

IAS-3. Ans. (a)

S K Mondal's

Cutting Tool Materials

Objective Questions (GATE, IES & IAS)

	Previous 20-Yea	ars IES Questions							
IES-1.	Match List I with List IT and select the correct answer using the codes given below the lists: [IES-1993]								
		List - I I(Major characteristic constituent)							
	8 1	1. Carbon							
		2. Molybdenum 3. Nitride							
		5. Nitride 4. Columbium							
		5. Cobalt							
	Codes: A B C D	A B C D							
		(b) 2 5 1 3							
	` '	(d) 5 4 2 3							
IES-1.	` '	on to W, Cr & V, has Mo as the most influencing							
	Non ferrous alloys (stellites) are high in	n cobalt. Thus B matches with 5.							
	The major constituent of diamond is car								
	Coated carbide tools are treated by nitr	riding. Thus D matches with 3.							
IES-2.	Which one of the following is the hardest cutting tool material next onl diamond? [IES-								
	(a) Cemented carbides	(b) Ceramics							
	• *	(d) Cubic boron nitride							
IES-2.	Ans. (d)								
IES-3.		arbide cutting tool materials contain [IES-1995]							
		(b) Tungsten carbide and titanium carbide							
TEC		(d) Tungsten carbide and cobalt carbide.							
IES-3.	Ans. (c)								
IES-4.	Which of the following given the cutting tool material?	e correct order of increasing hot hardness of [IES-1992]							
	_	(b) Carbide, Diamond, HSS							
	· · ·	(d) HSS, Diamond, Carbide							
IES-4.	Ans. (d)								
IES-6.	Match List-I with List-II and seld below the Lists:	ect the correct answer using the codes given [IES-1999]							
	List I List II								
	(Materials)	(Applications)							
	1 1	1. Abrasive wheels							
		2. Heating elements							
	C. Aluminium oxide	3. Pipes for conveying liquid metals							
		4. Drawing dies							
	Code: A B C D	A B C D							
	(a) 3 4 1 2	(b) 4 3 2 1							

S K Mondal's

(c) 3 4 2 1 (d) 4 3 1 2

IES-6. Ans. (d) WC is used for drawing dies, silicone nitride for pipes to carry liquid metal, Al₂O₃ for abrasive wheels, and silicon carbide for heating elements.

IES-7. Cubic boron nitride

[IES-1996]

- (a) Has a very high hardness which is comparable to that of diamond.
- (b) Has a hardness which is slightly more than that of HSS
- (c) Is used for making cylinder blocks of aircraft engines
- (d) Is used for making optical glasses.
- IES-7. Ans. (a) Hardness of CBN is comparable to diamond

IES-8. Cubic boron nitride is used

[IES-1994]

- (a) As lining material in induction furnace
- (b) For making optical quality glass.
- (c) For heat treatment
- (d) For none of the above.
- **IES-8. Ans. (d)** None of the uses is true for CBN.

IES-9. Which one of the following is not a synthetic abrasive material?

[IES-2003]

(a) Silicon Carbide

- (b) Aluminium Oxide
- (c) Titanium Nitride
- (d) Cubic Boron Nitride

IES-9. Ans. (b)

IES-10.

 $Alu\min iumoxide(Al_2O_3)$ This is one of the natural abrasives found, and is also called corundum and emery. However, the natural abrasives generally have impurities and, as a result, their performance is inconsistent. Hence the abrasive used in grinding wheels is generally manufactured from the aluminium ore, bauxite,

Silicon carbide (SiC) Silicon carbide is made from silica sand and coke with small amounts of common salt.

IES-10. Which one of the following is not a ceramic?

[IES 2007]

[IES-2000]

(a) Alumina Ans. (d)

1. HSS

- (b) Porcelain
- (c) Whisker
- (d) Pyrosil
- IES-11. Consider the following tool materials:

2. Cemented carbide

3. Ceramics

4. Diamond

The correct sequence of these materials in decreasing order of their cutting speed is

(a) 4, 3, 1, 2

(b) 4, 3, 2, 1

(c) 3, 4, 2, 1

- (d) 3, 4, 1, 2
- **IES-11. Ans. (c)** Why Diamond is not used in high speed? Diamond has a tendency to revert at high temperatures (700°C) to graphite and/or to oxidize in air. But ceramics are applicable upto 1300°C. So highest cutting speed with ceramics.

IES-12. Cermets are

[IES-2000]

- (a) Metals for high temperature use with ceramic like properties
- (b) Ceramics with metallic strength and luster
- (c) Coated tool materials
- (d) Metal-ceramic composites
- IES-12. Ans. (d)
- IES-13. Assertion (A): Ceramic tools are used only for light, smooth and continuous cuts at high speeds. [IES-1997]

Reason (R): Ceramics have a high wear resistance and high temperature resistance.

(a) Both A and R are individually true and R is the correct explanation of A

S K Mondal's

- (b) Both A and R are individually true but R is **not** the correct explanation of A (c) A is true but R is false (d) A is false but R is true IES-13. Ans. (b) IES-14. A machinist desires to turn a round steel stock of outside diameter 100 mm at 1000 rpm. The material has tensile strength of 75 kg/mm². The depth of cut chosen is 3 mm at a feed rate of 0.3 mm/rev. Which one of the following tool materials will be suitable for machining the component under the specified cutting conditions? [IES-1996] (a) Sintered carbides (b) Ceramic (c) HSS (d) Diamond. IES-14. Ans. (b) Cutting speed in this case is 314 m/min, at which ceramic is suited. IES-15. Consider the following tool materials: [IES-1994] 1. Carbide 2. Cermet 3. Ceramic 4. Borazon. Correct sequence of these tool materials in increasing order of their ability to retain their hot hardness is (a) 1,2,3,4 (b) 1,2,4,3 (c) 2, 1, 3, 4 (d) 2, 1, 4, 3 IES-15. Ans. (a) IES-16. Assertion (A): Diamond tools can be used at high speeds. [IES-2001] Reason (R): Diamond tools have very low coefficient of friction. (a) Both A and R are individually true and R is the correct explanation of A (b) Both A and R are individually true but R is **not** the correct explanation of A (c) A is true but R is false (d) A is false but R is true IES-16. Ans. (c) IES-17. Match List-I (ISO classification of carbide tools) with List-II (Applications) and select the correct answer using the codes given below the Lists: [IES-1999] List-I List-II A. P-10 1. Non-ferrous, roughing cut B. P-50 2. Non-ferrous, finishing cut C. K-10 3. Ferrous material, roughing cut D. K-50 4. Ferrous material, finishing cut Code: A В \mathbf{C} D Α \mathbf{B} \mathbf{C} D 2 (a) 3 1 2 3 4 1 4 (b) 2 3 3 4 1 (c) (d) IES-17. Ans. (c) **IES-18.** Assertion (A): Non-ferrous materials are best machined with diamond tools. Reason (R): Diamond tools are suitable for high speed machining. [IES-1995]

- (a) Both A and R are individually true and R is the correct explanation of A
- (b) Both A and R are individually true but R is **not** the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true
- IES-18. Ans. (b)

Previous 20-Years IAS Questions

IAS-1. Match. List I (Cutting tool materials) with List II (Manufacturing methods) and select the correct answer using the codes given below the Lists: [IAS-2001] List I List II

S K Mondal's

	A. HSS					Casting				
	B. Stellite				2.	Forging				
	C. Cemente	d carbide			3.					
	D. UCON					Extrusion	n			
	D. CCON					Powder r		2017		
	Codes: A	D	\mathbf{C}	D	ο.		петапиг В	c C	D	
		В		D	4.)	A			D	
	(a) 3	1	5	2	(b)		5	4	3	
	(c) 3	5	4	2	(d)	2	1	5	3	
IAS-1.	Ans. (c)									
IAS-2.	Consider th	e follow	ing cu	tting t	ool m	aterials i	used fo	r meta	l-cutting	operation at
1110 2.	high speed:		ing cu			acci iais .	useu 10	1 111000	cutting	[IAS-2000]
	1. Tungster				9	Cemente	d titani		side.	[1A3-2000]
							a mam	um cari	oiae	
	3. High-spe					Ceramic				
		_	ın incr	easing	order	of the rai	nge of c	utting s	speeds for	optimum use of
	these materia									
	(a) $3,1,4,2$	(b)	1,3,2,	4	(c)	3,1,2,4	(d) 1,3,4	1,2	
IAS-2.	Ans. (c) H.S	.S < Cast	alloy <	Carbic	de < C	emented c	arbide <	< Cerme	ets < cerar	nics
	` '									
IAS-3.	Which of th	C 11	_	_						
	**************************************	e tollow	ing too	ol mate	erials	have cob	alt as a	a const	ituent ele	ement?
				ol mate			alt as a	a const	ituent ele	
	1. Cemente			ol mate	2.	CBN	alt as a	a const	ituent ele	ement? [IAS-1998]
	 Cemente Stellite 	d carbide	_		2. 4.	CBN UCON		a const	ituent ele	
	 Cemente Stellite Select the con 	d carbide	_		2. 4.	CBN UCON		a const	ituent ele	
	 Cemente Stellite Select the cor Codes: 	d carbide rrect ansv	ver usi	ng the	2. 4. codes	CBN UCON given belo	w:			
	 Cemente Stellite Select the cor Codes: (a) 1 and 2 	d carbide rrect ansv	_	ng the	2. 4. codes	CBN UCON	w:	a const d) 2 an		
IAS-3.	 Cemente Stellite Select the cor Codes: 	d carbide rrect ansv	ver usi	ng the	2. 4. codes	CBN UCON given belo	w:			
	 Cemente Stellite Select the cor Codes: (a) 1 and 2 	d carbide rrect ansv	ver usi	ng the	2. 4. codes	CBN UCON given belo	w:			
IAS-3.	 Cemente Stellite Select the corcodes: (a) 1 and 2 Ans. (b) 	d carbide rrect ansv (b)	wer usi 1 and	ng the	2. 4. codes (c)	CBN UCON given belo 1 and 4	w:	d) 2 an	d 3	[IAS-1998]
	 Cemente Stellite Select the corcodes: (a) 1 and 2 Ans. (b) 	d carbide rrect ansv (b)	wer usi 1 and	ng the	2. 4. codes (c)	CBN UCON given belo 1 and 4	w:	d) 2 an	d 3	[IAS-1998]
IAS-3.	 Cemente Stellite Select the corcodes: (a) 1 and 2 Ans. (b) At room tennersing	d carbide rrect ansv (b) emperati	wer usi 1 and ure, we sof the	ng the	2. 4. codes (c) one omater	CBN UCON given belo 1 and 4 of the forials?	w: (llowing	d) 2 an g is th	d 3 e correc	[IAS-1998]
IAS-3.	 Cemente Stellite Select the corcodes: (a) 1 and 2 Ans. (b) At room tennersing	d carbide rrect ansv (b) emperati	wer usi 1 and ure, we sof the	ng the	2. 4. codes (c) one omater	CBN UCON given belo 1 and 4 of the forials?	w: (llowing	d) 2 an g is th	d 3 e correc	[IAS-1998]
IAS-3.	 Cemente Stellite Select the corcodes: (a) 1 and 2 Ans. (b) At room teincreasing in the contraction of the	d carbide rrect ansv (b) emperatu hardness	ver usi 1 and 1 are, we sof the cramic-	ng the	2. 4. codes (c) one omater (e)	CBN UCON given belo 1 and 4 of the foi ials? HH-Cast	w: (d llowing alloy-C	d) 2 an g is th	d 3 e correc ·Carbide	[IAS-1998]
IAS-3.	1. Cemente 3. Stellite Select the cor Codes: (a) 1 and 2 Ans. (b) At room te increasing 1 (a) Cast allo (c) HSS-Cas	d carbide rrect ansv (b) emperatu hardness	ver usi 1 and 1 are, we sof the cramic-	ng the	2. 4. codes (c) one omater (e)	CBN UCON given belo 1 and 4 of the foi ials? HH-Cast	w: (d llowing alloy-C	d) 2 an g is th	d 3 e correc ·Carbide	[IAS-1998]
IAS-3.	 Cemente Stellite Select the corcodes: (a) 1 and 2 Ans. (b) At room teincreasing in the contraction of the	d carbide rrect ansv (b) emperatu hardness	ver usi 1 and 1 are, we sof the cramic-	ng the	2. 4. codes (c) one omater (e)	CBN UCON given belo 1 and 4 of the foi ials? HH-Cast	w: (d llowing alloy-C	d) 2 an g is th	d 3 e correc ·Carbide	[IAS-1998]
IAS-3.	1. Cemente 3. Stellite Select the cor Codes: (a) 1 and 2 Ans. (b) At room te increasing 1 (a) Cast allo (c) HSS-Cas	d carbide rrect ansv (b) emperatu hardness	ver usi 1 and 1 are, we sof the cramic-	ng the	2. 4. codes (c) one omater (e)	CBN UCON given belo 1 and 4 of the foi ials? HH-Cast	w: (d llowing alloy-C	d) 2 an g is th	d 3 e correc ·Carbide	[IAS-1998]
IAS-3. IAS-4.	1. Cemente 3. Stellite Select the cor Codes: (a) 1 and 2 Ans. (b) At room te increasing 1 (a) Cast allo (c) HSS-Cas Ans. (d)	d carbide rrect ansv (b) emperatu hardness y-HSS-Ce t alloy-Ce	1 and ure, we softheramicarbide-	ng the a hich of the tool of the control of the co	2. 4. codes (c) one omater e (b) ic (d)	CBN UCON given belo 1 and 4 of the forials? HH-Cast Cast allo	w: llowing alloy-C y-HSS-0	d) 2 an g is the eramic- Carbide	d 3 e correc ·Carbide	[IAS-1998] t sequence of [IAS-2003]
IAS-3.	1. Cemente 3. Stellite Select the cor Codes: (a) 1 and 2 Ans. (b) At room te increasing 1 (a) Cast allo (c) HSS-Cas Ans. (d) The coating	d carbide rrect ansv (b) emperatu hardness y-HSS-Ce t alloy-Ce	1 and ure, we softheramicarbide-	ng the a hich of the tool of the control of the co	2. 4. codes (c) one of mater (e) (d) d carb	CBN UCON given belo 1 and 4 of the forials? HH-Cast Cast allo	w: llowing alloy-C y-HSS-0	d) 2 an g is the eramic- Carbide	d 3 e correc ·Carbide	[IAS-1998]
IAS-3. IAS-4.	1. Cemente 3. Stellite Select the cor Codes: (a) 1 and 2 Ans. (b) At room te increasing (a) Cast allo (c) HSS-Cas Ans. (d) The coating (a) TiC, TiN	d carbide rrect ansv (b) emperati hardness y-HSS-Ce t alloy-Ca	1 and ure, we softheramicarbide-	ng the a hich of the tool of the control of the co	2. 4. codes (c) one of mater (e) (d) d carb (b)	CBN UCON given belo 1 and 4 of the foials? HH-Cast Cast allo ide tools TiC and	w: llowing alloy-C y-HSS-0 , includ	d) 2 an g is the eramic- Carbide	d 3 e correc ·Carbide	[IAS-1998] t sequence of [IAS-2003]
IAS-3. IAS-4. IAS-5.	1. Cemente 3. Stellite Select the cor Codes: (a) 1 and 2 Ans. (b) At room te increasing 1 (a) Cast allo (c) HSS-Cas Ans. (d) The coating (a) TiC, TiN (c) TiN and	d carbide rrect ansv (b) emperati hardness y-HSS-Ce t alloy-Ca	1 and ure, we softheramicarbide-	ng the a hich of the tool of the control of the co	2. 4. codes (c) one of mater (e) (d) d carb (b)	CBN UCON given belo 1 and 4 of the forials? HH-Cast Cast allo	w: llowing alloy-C y-HSS-0 , includ	d) 2 an g is the eramic- Carbide	d 3 e correc ·Carbide	[IAS-1998] t sequence of [IAS-2003]
IAS-3. IAS-4.	1. Cemente 3. Stellite Select the cor Codes: (a) 1 and 2 Ans. (b) At room te increasing (a) Cast allo (c) HSS-Cas Ans. (d) The coating (a) TiC, TiN	d carbide rrect ansv (b) emperati hardness y-HSS-Ce t alloy-Ca	1 and ure, we softheramicarbide-	ng the a hich of the tool of the control of the co	2. 4. codes (c) one of mater (e) (d) d carb (b)	CBN UCON given belo 1 and 4 of the foials? HH-Cast Cast allo ide tools TiC and	w: llowing alloy-C y-HSS-0 , includ	d) 2 an g is the eramic- Carbide	d 3 e correc ·Carbide	[IAS-1998] t sequence of [IAS-2003]

Heat Treatment of Metals

S K Mondal's

Heat Treatment of Metals Objective Questions (IES, IAS, GATE)

Previous 20-Years GATE Ouestions [GATE-2002] The ductility of a material with work hardening (a) Increases (b) Decreases (c) Remains unaffected (d) Unpredictable GATE-1. Ans. (b) [GATE-2000] GATE-2. Cast steel crankshaft surface is hardened by (a) Nitriding (b) Normalising (c) Carburising (d) Induction heating GATE-2. Ans. (d) GATE-3. From the lists given below, choose the most appropriate set of heat treatment process and the corresponding process characteristics [GATE-2004] **Process** Characteristics P. Tempering 1. Austenite is converted into bainite 2. Austenite is converted into martensite Q. Austempering R. Martempering 3. Cementite is converted into globular structure 4. Both hardness and brittleness are reduced 5. Carbon is absorbed into the metal (b) P-4 Q-3 R-2 (a) P-3 Q-1 R-5 (c) P-4 Q-1 R-2 (d) P-1 Q-5 R-4 GATE-3. Ans. (c) GATE-4. Hardness of steel greatly improves with [GATE-2003] (a) Annealing (b) Cyaniding (c) Normalising (d) Tempering GATE-4. Ans. (b) GATE-5. On completion of heat treatment, the resulting structure will have retained Austenite if [GATE-1997] (a) Rate of cooling is greater than the critical cooling rate (b) Rate of cooling is less than the critical cooling rate (c) Martensite formation starting temperature is above the room temperature (d) Martensite formation finish temperature is below the room temperature GATE-5. Ans. (c) GATE-6. Carburized machine endurance limit because components have high carburization [GATE-1992] (a) Raises the yield point of the material (b) Produces a better surface finish (c) Introduces a compressive layer on the surface (d) Suppresses any stress's, concentration produced in the component. GATE-6. Ans. (c)

GATE-7. During heat treatment of steel, the hardness of various structures in increasing

(a) Martensite, fine pearlite, coarse pearlite, spherodite

[GATE-2003]

Heat Treatment of Metals

S K Mondal's

- (b) Fine pearlite, coarse pearlite, spherodite, martensite
- (c) Martensite, coarse pearlite, fine pearlite, spherodite
- (d) Spherodite, coarse pearlite, fine pearlite, martensite

GATE-7. Ans. (d)

- GATE-8. The iron-carbon diagram and the TTT curves are determined under [GATE-1996]
 - (a) Equilibrium and non-equilibrium conditions respectively
 - (b) Non-equilibrium and equilibrium conditions respectively
 - (c) Equilibrium conditions for both
 - (d) Non-equilibrium conditions for both.

GATE-8. Ans. (a)

Previous 20-Years IES Questions

Transformation Curves

- IES-1. TTT diagram indicates time and temperature transformation of [IES-2002]
 - (a) Cementite

(b) Pearlite

(c) Ferrite

(d) Austenite

- IES-1. Ans. (d)
- IES-2. Assertion (A): Lever Rule can be applied to determine relative amounts of phases present at any temperature. [IES-2008]

Reason (R): Lever Rule is restricted to estimate relative phases, only if they are solid phases.

- (a) Both A and R are true and R is the correct explanation of A
- (b) Both A and R are true but R is NOT the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true
- IES-2. Ans. (c)

- At a point in a phase diagram, phases present and their composition (tie-line method) along with relative fraction of phases (lever rule) can be computed.
- Relative amount of liquid and solid phases is given respectively by:

$$C_L = \frac{cV}{UV}$$

$$C_S = \frac{Uc}{UV}$$

$$C_L + C_S = 1$$

Therefore it is not restricted to solid phases only.

Heat Treatment of Metals

S K Mondal's

S K Mondal's

IES-9. Two cooling curves A and B for a eutectoid ironcarbon alloy are superimposed on a continuous cooling transformation diagram as shown in the given figure. Fine pearlite microstructure is represented by the points labelled [IES-1998]

- (a) I and III
- (b) II
- (c) IV
- (d) I

IES-9. Ans. (c) Fine pearlite structure is formed below eutectoid temperature and on moderate cooling.

IES-10. Which one of the following materials can be subjected to an age hardening process? [IES-2009]

- (a) HSS
- (b) Aluminium
- (c) Pure iron
- (d) Stellite

IES-10. Ans. (b)

- Precipitation hardening is also called age hardening because strength increases with time.
- Requisite for precipitation hardening is that second phase must be soluble at an
 elevated temperature but precipitates upon quenching and aging at a lower
 temperature.
- E.g.: Al-alloys, Cu-Be alloys, Mg-Al alloys, Cu-Sn alloys
- If aging occurs at room temperature Natural aging
- If material need to be heated during aging Artificial aging.

Tempering

IES-11. Tempering is a process of annealing

[IES-2006]

- (a) Martensite at low temperatures(c) Bainite at low temperatures
- (b) Martensite at higher temperatures(d) Bainite at higher temperatures

IES-11. Ans. (a)

IES-12. Austempering is employed to obtain:

[IES-2005]

- (a) 100% martensitic structure
- (b) 100% bainitic structure
- (c) 50% martensitic and 50% bainitic structure
- (d) 100% pearlitic structure

IES-12. Ans. (b)

IES-13. Consider the following pairs:

[IES-2004]

Heat treatment Effect on medium carbon steel

1. Normalizing : Grain refinement

Full annealing
 Uniform grain structure
 Martempering
 Decreased ductility
 Spheroidizing
 Maximum softness

Which of the pairs given above are correctly matched?

which of the pairs given above are correctly matched:

- (a) 1 and 2 (b) 2 and 3 (c) 3 and 4 (d) 1, 2, 3 and 4
- IES-13. Ans. (d)

IES-14. 'Tempering' of quenched martensitic steel is necessary to improve the [IES-2001]

- (a) Hardness of the metal
- (b) Surface texture or the metal
- (c) Corrosion resistance of the metal (d) Ductility or the metal

S K Mondal's

IES-14. Ans. (d)

IES-15.	Match List I with List II and select the correct answer using the codes given below the lists: [IES-1995]												
	List I (Heat treatment)		t II (Eff			perties)							
	A. Annealing		Refined	_									
	B. Nitriding		_			of the whole	mass						
	C. Martempering		Increase			ess							
	D. Normalising Codes: A B C D	4.	Improve A	s auctin B	ty C	D							
	(a) 4 3 2 1	(b)	1	3	4	2							
	c) 4 2 1 3	(d)	$\overset{1}{2}$	1	3	4							
IES-15.	Ans. (a)	` /											
Annea	aling and Normalising												
IES-16.	The pattern known as Widmans				counte	ered in:	[IES-2006]						
	(a) Tempering	, ,	Normali	_									
IES-16.	(c) Spheroidizing Ans. (a)	(d)	Anneali	ng									
IES-17.	The complete phase recrystal casting, forging and rolled part		n and	fine gr	ain stı	ructure is	obtained in [IES-2005]						
	(a) Recrystallization annealing		Normali										
IES-17.	(c) Spheroidizing Ans. (a)	(d)	Austenia	sing									
IES-18.	Heating the hypoeutectoid stelline, soaking at that temperatus form a pearlite and ferrite stru (a) Hardening	re and cture, i	l then co i s know : Normali	ooling s n as zing									
TEG 40	(c) Tempering	. ,	Anneali	ng									
IES-18.	Ans. (d) The process described is a	nnealın	ıg.										
IES-19.	Which of the following stateme 1. Steels are heated to 500 to 700° 3. Internal stresses are relieved.	°C. 2. 4.	Cooling Ductility	is done s y of steel	slowly a	nd steadily.	[IES-1993]						
	Select the correct answer using the	codes g	given bel	ow:									
	Codes: (a) 2, 3 and 4	(b)	1, 3 and	1									
	(a) 2, 3 and 4 (c) 1, 2 and 4		1, 3 and 1, 2 and										
IES-19.	Ans. (a) Steels are heated to 30 to				itical te	mperature.							
IES-20.	Temperature required for full a	anneali	ing in hy	yper-eu	tectoid	steel is	[IES-1992]						
	 (a) 50°C above upper critical temp (b) 50°C below upper critical temp (c) 50°C above lower critical temper 	erate (A	AC3)										
	(d) 50°C below lower critical temper												
IES-20.	Ans. (c)		•										
IES-21.	Assertion (A): Normalized steel	will ha	ave lowe	er hardı	ness th	an anneale	ed steel.						
	Reason (R): The pearlite of nor space.	malize	d steel i	is finer	and ha	s lower in	termolecular [IES-2000]						

(a) Both A and R are individually true and R is the correct explanation of A(b) Both A and R are individually true but R is **not** the correct explanation of A

S K Mondal's

- (c) A is true but R is false
- (d) A is false but R is true

IES-21. Ans. (d)

Spheroidising

IES-22. Globular form of cementite in the structure of steel is obtained through [IES-2003]

(a) Normalizing

(b) Malleabilising

(c) Spheroidizing

(d) Carbonizing

IES-22. Ans. (c)

Case Hardening

IES-23. In case carburising Carbon is introduced to form a high carbon layer at the surface. The carbon is introduce in the form of [IES-1992]

(a) Graphite flakes

(b) Pearlite

(c) Cementite

(d) Free carbon

IES-23. Ans. (d)

IES-24. Match List I (Name of treatment) with List II (Media used) and select the correct [IES-2004] answer using the codes given below the Lists

List I

List II

A. Pack carburizing B. Gas carburizing

1. Ammonia gas 2. Sodium cyanide

C. Cyaniding

3. Carburizing compound

D. Nitriding

4. Ethane

Codes: A \mathbf{B} \mathbf{C} D (a) 3 4 2 1

Α В \mathbf{C} D (b) 2 1 3 4 (d) 2

IES-24. Ans. (a)

(c)

IES-25. Induction hardening is basically a [IES-1992]

(a) Carburising process

(b) Surface hardening process

(c) Core-hardening process

(d) None of the above

Ans. (b) IES-25.

IES-26. Guideways of lathe beds are hardened by [IES-1996; 1997]

(a) Carburising

(b) Cyaniding

(c) Nitriding

(d) Flame hardening

IES-26. Ans. (d)

Heat Treatment of Non-Ferrous Alloys

IES-27. Which one of the following elements/ alloy exhibits season cracking? [IES 2007]

(a) Iron

(b) Brass

(c) Aluminium

(d) Steel

IES-27. Ans. (b)

Copper alloys cracks in ammonaical solution (Season Cracking)

ii. Stainless steel and Aluminium cracks in the presence of chlorides, Steel cracks in the presence of alkali (Boiler Cracking) or Caustic Cracking.

IES-28. Which one among the following is the most effective strengthening mechanism of non-ferrous metal? [IES 2007]

(a) Solid solution hardening

(b) Strain hardening

(c) Grain size refinement (d) Precipitation hardening

S K Mondal's

IES-28. Ans. (d)

IES-29.	Which o	one of the	following	pairs is	correctl	y matched?
---------	---------	------------	-----------	----------	----------	------------

[IES-2001]

- (a) Solid solution strengthening... Increasing density of dislocations
- (b) Dispersion hardeningCreating strained region in the crystal
- (c) Strain-hardeningCreating particles to resist the movement of dislocations
- (d) Precipitation-hardening..... Creating particles by decreasing solubility of one phase in another
- IES-29. Ans. (d)
- IES-30. Assertion (A): Carburizing is done on non-ferrous alloys to increase the surface hardness. [IES-1994; 2005]

Reason (R): Precipitation hardening of non-ferrous alloys involves solution heat treatment followed by precipitation heat treatment.

- (a) Both A and R are individually true and R is the correct explanation of A
- (b) Both A and R are individually true but R is **not** the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true

IES-30. Ans. (d) *A is false.* Carburizing is done only on ferrous alloys to increase the surface hardenss but it is not done on non-

- IES-31. If the surface of a component is heavily stressed while the stresses in the core are of comparative small magnitude, which one of the following heat treatment methods is employed? [IES-2005]
 - (a) Annealing

(b) Tempering

(c) Quenching

- (d) Case hardening
- **IES-31.** Ans. (c) case carburizing if they do not respond to quenching process.

Previous 20-Years IAS Questions

IAS-1. Major operations in the manufacture of steel balls used for Ball bearings are given below [IAS 1994]

1. Oil lapping

2. Cold heading

3. Annealing

4. Hardening

5. Rough grinding

The correct sequence of these operations is

(a) 3,2,4,1,5

(b) 3,2,1,4,5

(c) 2,3,4,5,1

(d) 2,3,5,4,1

IAS-1. Ans. (c)

IAS-2. Two plain carbon steel specimens having 0.8% carbon content are welded. If we observe the weldment under Metallurgical Microscope from centre towards either side, the following structures are observed at different zones: [IAS-2002]

1. Fine Pearlite

- 2. Coarse Pearlite
- 3. Martensite

Select the correct sequence using the codes given below:

Codes:

(a) 1, 2, 3

(b) 1, 3, 2

(c) 2, 1, 3

(d) 3, 1, 2

IAS-2. Ans. (d)

Maximum cooling rate produces Martensite Medium cooling rate produces Fine pearlite Low cooling rate produces coarse pearlite.

Objective Questions (IES, IAS, GATE)

Previous 20-Years IES Questions

IES-1. Structure of a polymer is:

[IES-2008]

(a) Long chain (b) Rhombic

(c) Cubic

(d) Closed pack hexagonal

IES-1. Ans. (a) Polymers:

- Commercially called *plastics*; noted for their low density, flexibility and use as insulators.
- Mostly are of organic compounds i.e. based on carbon, oxygen and other nonmetallic elements.
- Consists large molecular structures bonded by covalent and van der Waals forces.
- That is why structure of polymer is long chain.
- IES-2. Assertion (A): Linear polymers are rigid at low temperatures but soft and mouldable at elevated temperatures. [IES-1992]

Reason (R): Linear polymers are thermo-setting.

- (a) Both A and R are individually true and R is the correct explanation of A
- (b) Both A and R are individually true but R is **not** the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true
- **IES-2. Ans. (c)** A is true but R is false
- IES-3. Teflon is a [IES-2003]
 - (a) Thermosetting fluorocarbon polymer
 - (b) Thermo-plastic fluorocarbon polymer
 - (c) Inorganic compound of fluorine and carbon
 - (d) Laminated phenolic material
- **IES-3. Ans. (b)** Remember it.

List I

Thermoplast: Thermoplast have the property of increasing plasticity that is increasing ability to deform plastically with increasing temperature.

Thermosets: It has a three dimensional network of primary bonds. They are relatively hard and rigid at room temperature and do not soften on heating.

IES-4. Match List I with List II and select the correct answer using the code given below the Lists: [IES 2007]

List II

(Material) (Application) A. Fibre reinforced plastics 1. Automobile tyres B. Acrylics 2. Aircraft C. Phenolics 3. Lenses D. Butadiene rubber 4. Electric switch cover Code: A \mathbf{C} D \mathbf{R} D A \mathbf{R} C 2 (a) 1 4 3 2 (b) 3 4 1 2 (c) 1 (d)

IES-4. Ans. (b)

IES-5. Phenol formaldehyde is a/an

(b) Thermoset polymer

(a) Thermoplastic polymer(c) Elastomer

(d) Rubber

IES-5. Ans. (b)

IES-6. Thermoplastic materials cannot be produced by:

[IES-2005]

[IES-2006]

(a) Injection moulding process

(b) Extrusion process

Plastics S K Mondal's (c) Blow moulding process (d) Both (a) and (b) above IES-6. Ans. (b) For thermoplastic extrusion we have to feed thermoplastic pellets or powders through a hoper into a barrel chamber of a screw extruder. So it is not conventional extrusion process. IES-7. Which of the following are fabricated using engineering plastics? [IES-2002] 1. Surface plate 2. Gears 4. Foundry patterns 3. Guide ways for machine tools Select the correct answer using the codes given below: (a) 1, 2 and 3 (b) 1 (c) 2, 3 and 4 (d) 1, 2, 3 and 4 **IES-7.** Ans. (c) IES-8. Consider the following statements: [IES-2002] Polytetrafluoroethene is 1. A thermoplastic material 2. Having high friction coefficient 3. A thermosetting material 4. Having low friction coefficient 5. An electric insulator 6. Non sticking to surfaces Which of the above statements are correct? (a) 1, 2 and 5 (b) 2, 3 and 6 (c) 3, 4 and 5 (d) 3, 2 and 5 IES-8. Ans. (a) IES-9. The molecular weight of vinyl chloride is 62.5. Thus the molecular weight or a polyvinyl chloride with a degree of polymerization of 20000 is [IES-2001] 20000 62.5(c) 62.5×20000 (d) 20000 62.5 20000 IES-9. Ans. (c) IES-10. Consider the following pairs of plastics and their distinct characteristics: 1. Acrylics Very good transparency to light [IES-1999] 2. Polycarbonate.... Poor impact resistance 3. PTFELow coefficient of friction. 4. Polypropylene.... . Excellent fatigue strength Which of these pairs are correctly matched? (a) 2 and 3 (b) 1 and 3 (c) 1 and 4 (d) 2 and 4 IES-10. Ans. (c) PTFE is used for high temperature applications. Polycarbon has good impact resistance. IES-11. Consider the following statements: Thermosetting plastics are 1. Formed by addition polymerisation. 2. Formed by condensation polymerisation. 3. Softened on heating and hardened on cooling for any number of times 4. Moulded by heating and cooling. Select the correct answer using the codes given below:

IES-12. Match List I with List II and select the correct answer

(b) 2 and 4

(a) 1 and 3

Ans. (b)

IES-11.

List I (Material) List II (Nature of product) A. Polyethylene 1. Adhesive B. Polyurethane 2. Film 3. Wire C. Cyano-acrylate D. Nylon Foam Codes: A В \mathbf{C} \mathbf{D} \mathbf{B} \mathbf{C} D Α 4 3 1 (a) 2 (b) 4 3 (c) 2 4 1 3 (d) 2 1 3

(c) 1 and 4

(d) 2 and 3

S K Mondal's

IES-12. Ans. (c)

IES-13. Consider the following statements:

Fibre Reinforced Plastics are

- 1. Made of thermosetting resins and glass fibre
- 2. Made of thermoplastic resins and glass fibre
- 3. Anisotropic

4. isotropic

Select the correct answer using the codes given below:

- (a) 1 and 4
- (b) 1 and 3
- (c) 2 and 3
- (d) 2 and 4

IES-13. Ans. (b)

IES-14. Which of the following pairs of plastics and their modes of formation are correctly matched? [IES-1994]

- 1. Polythene...... Condensation polymerization.
- 2. PolycarbonateAddition polymerisation.
- 3. Polystyrene............Addition polymerisation.
- 4. PolyamideEither by addition or by condensation polymerisation.

Select the correct answer using the codes given below:

- (a) 1 and 2
- (b) 2 and 4
- (c) 1 and 4
- (d) 3 and 4

IES-14. Ans. (d)

IES-15. What is the process by which two or more chemically different monomers are polymerised to form a cross link polymer together with a by-product such as water or ammonia, known as? [IES-2008]

- (a) Addition polymerization
- (b) Co-polymerisation
- (c) Linear polymerisation
- (d) Condensation polymerization

IES-15. Ans. (d)

- Condensation polymerization process involves more then one monomer species. This process is also known as step growth polymerization.
- In condensation polymerization, smaller macromolecule by-product such as water is eliminated.
- No resultant product has the chemical formula of mere one monomer.
- Repeat unit in condensation process itself is product of polymerization involving basic constituents.
- Reaction times for condensation polymerization are usually longer than those for additional polymerization.

E.g.: Formation of a polyester from Ethylene glycol and Adipic acid

E.g.: Formation of a polyester from Ethylene glycol and Adipic acid

IES-16. Polyamides are characterized by

(a) Flexible chain

(b) Rigid chain

(c) Amorphous structure

(d) Crystalline structure

IES-16. Ans. (d)

S K Mondal's

IES-17. Polyesters can be defined as the condensation products of [IES-2003]

- (a) Dicarboxylic acids with dihydroxy alcohols
- (b) Bisphenol-A and epichloro-hydrin
- (c) Phenol and formaldehyde
- (d) Benzene and toluene
- IES-17. Ans. (a) Polyester resins are quite common. The process often begins with molecules like a dialcohol, and diacid. These then cure into a solid polymer.

- IES-18. Assertion (A) In Addition Polymerization method, polymer is produced by adding a second monomer to the first, then a third monomer to this dimmer and so on. Reason (R): There must exist at least one double bond in the monomer for Addition Polymerization reaction. [IES-2006]
 - (a) Both A and R are individually true and R is the correct explanation of A
 - (b) Both A and R are individually true but R is **not** the correct explanation of A
 - (c) A is true but R is false
 - (d) A is false but R is true
- IES-18. Ans. (a)
- **IES-19.** Assertion (A): Addition polymerization is a primary summation of individual molecules into long chains, [IES-2000]

Reason (R): In addition polymerization, the reaction produces a small molecule as by-product.

- (a) Both A and R are individually true and R is the correct explanation of A
- (b) Both A and R are individually true but R is **not** the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true
- IES-19. Ans. (c)
- **IES-20.** Match List I (materials) with List II (applications) and select the correct answer using the codes given below the Lists: [IES-1994]

List I

A. Engineering ceramics

- B. Fibre reinforced plastics
- C. Synthetic carbon
- D. Boron

Code	es: A	В	\mathbf{C}	\mathbf{D}
(a)	1	2	3	4
(c)	2	3	1	4

Fillers are added to plastics to

IES-20. Ans. (d)

IES-21.

- 1. Bearings
- 2. Control rods in nuclear reactors
- Aerospace industry
- 4. Electrical insulator

	\mathbf{A}	В	\mathbf{C}	D
(b)	1	4	3	2
(d)	4	3	1	2

5 K N	Iondal's								
IES-21.	(a) Improve flow(c) Facilitate process aboAns. (d)	llity		Reduce d		ss			
1123-41.	Alls. (u)								
IES-22.	Match List I (Type of r answer using the code List I		List II (Mechanism involved) and select the collect low the Lists: [IES-2004] List II						
	A. Compression moulding	ng	1.	Mould ca forced in		st be he	ated t	to cure t	he plastic
	B. Injected mouldingC. Jet moulding		2. 3.	Similar t					red metals
	D. Extrusion moulding A B C	D	4.	Analogo A	us to die B	$\begin{array}{c} \text{casting} \\ \textbf{C} \end{array}$	of me D	tals	
	(a) 2 4 1	_	(b)		1	4	2		
IES-22.	(c) 2 1 4 Ans. (d)	3	(d)	3	4	1	2		
IES-23.	Match List-I with List the Lists:	-II and sele	ct tł	ne correc	et answ	er usin	g the	code g	iven below [IES-2009]
	List-I (Article)			st-II rocessing	« Motha	.4)			
	A. Disposable coffee cup	s	1.	Rotomov		ou)			
	B. Large water tanks		2.	Expanda		d mouldi	ng		
	C. Plastic sheetsD. Cushion pads		3. 4.	Thermof Blow mo					
IES-24.	Match List I (Type of ranswer using the code List I A. Compression moulding B. Injected moulding C. Jet moulding D. Extrusion moulding Codes: A B Codes: A B Codes: A Codes: A	s given bel	ow t Lis	he Lists: st II Mould ca forced in Similar	avity mu ito it. to Hydra us to the	st be he	ated t rusior ssing	to cure to n of power	the collect [IES-2004] he plastic red metals
	(a) 2 4 1	3	(b)	3	1	4	2		
IES-24.	(c) 2 1 4 Ans. (d)		3	(d)	3	4 1		2	
IES-25.	Match List-I with List the Lists:	-II and sele			et answ	er usin	g the	code g	iven below [IES-2009]
	List-I (Article)			st-II rocessing	r Motha	·4)			
	A. Disposable coffee cup	s	1.	Rotomou		,u)			
	B. Large water tanks		2.	Expanda		d mouldi	ng		
	C. Plastic sheetsD. Cushion pads		3. 4. 5.	Thermof Blow mo Calender	ulding				
	Code: A B C			A	В	\mathbf{C}	D		
	(a) 3 5 1 (c) 4 3 2		(b) (d)	$\frac{4}{3}$	$\frac{5}{1}$	$\frac{1}{5}$	$\frac{2}{2}$		
IES-25.	Ans. (d)	1	(u)	J	1	J	4		

S K Mondal's

Previous 20-Years IAS Questions

IAS-1.	 Compression Injection moulding 	te processes for thermosetting mater 2. Transfer moulding 4. Extrusion	ials? [IAS-1999]					
IAS-1.	Select the correct answer using the c (a) 1 and 4 (b) 1 and 2 Ans. (b)	(c) 2 and 3 (d) 2, 3 and 4						
IAS-2.	(b) Injection die moulding is general(c) Thermosetting plastics are more	mount of material to fill the cylinder is d ly limited to forming thermoplastic mate	rial					
IAS-2.	Ans. (c) Thermoplastics are made su	itable for extrusion moulding.						
IAS-3.	the Lists:	ect the correct answer using the cod	e given below [IAS-2007]					
	List I	List II						
	(Additive for Polymers)	(Purpose)						
	A. Plasticizer	1. Allows polymerization to begin						
	B. Filler	2. Colours the material						
	C. Initiator	3. Acts as internal lubricants						
	Code: A B C	4. Improves strength A B C						
	(a) 1 4 3 (b)	3 2 1						
	(c) 1 2 3 (d)	3 4 1						
IAS-3.	Ans. (d) IAS-4.	Ans. (a)						
IAS-4.	Which of the following are th	e characteristics of the injection	moulding of					
	plastics?	0 0141 40001 150105 01 0110 111 , 000101	[IAS-2004]					
	1. It is the most economical method	of mass producing a single item						
	2. In most cases finished products a							
	3. There is lot of waste of thermopla	astic since the runners and sprues can no	t be reused.					
	Select the correct answer by using th							
	(a) 1 and 2 (b) 2 and 3	(c) 1 and 3 (d) 1, 2 and 3						
IAS-5.	Consider the following statemen	ts:	[IAS-2003]					
	1. Thermoplastics possess a str thermosetting plastics.	ong intermolecular bonding compare						
	2. Plastics have a high creep under3. Embrittlement occurs in plasticsWhich of these statements are correct	at low temperature.						
	(a) 1 and 2 (b) 2 and 3	(c) 1 and 3 (d) 1, 2 and 3						
IAS-5.	Ans. (b)	(a) 1, 2 and 5						
IAS-6.	Weldable type plastic(s) include	(s)	[IAS-2000]					
	(a) Thermosets alone							
	(b) Thermoplastics alone							
	(c) Both thermosets and thermoplas							
	(d) Neither thermosets and thermop							
IAS-6.	Ans. (b) only the thermoplastic poly	ners can be welded, since these material	s can be melted					

or softened by heat without degradation. The thermosetting polymers do not soften with

heat but tend only to char or burn.

S K Mondal's

IAS-7.	7. Match List- I (Name of moulding composition to prepare plastics) with Lis (Property of moulding composition) and select the correct answer using the co										
	given bel			npositio)11 <i>)</i>	ina serec	t the	correct	answer us	[IAS-1998]	
	List - I	ow the n	303.		List – II						
	A. Binder	1			1.	Reduce co	nst sh	rinkage			
	B. Filler				2.				lastic easier	•	
	C. Plastic	izer			3.	Cellulose			iastic casici		
	D. Lubric				4.				and polym	orization	
	D. Bublic	ano			5.				ce to tempe		
	Codes: A B C D				ο.	A	в ана В	C	D	rature.	
	(a) 3	1	$\frac{c}{2}$	5	(b)	3	1	5	2		
	(a) 5 (c) 5	3	1	4	(d)	3	5	1	4		
IAS-7.	Ans. (b)	0	1	4	(u)	0	9	1	4		
1710-7.	Alis. (b)										
IAS-8.	1. Compr	ession moulding is on mouldier moulding these state	oulding is a modific ing is ana ng is sim	analogoration of collogous to ilar to hy	us to comp die dra ?	hot press pression m casting of	ing of oulding metal	powdere 1g.		products: [IAS-2003]	
IAS-9.	S-9. Which of the following processes can be used for mass product containers (with lid) of 5 liter capacity? 1. Injection moulding 2. Jolt moulding 3. Blow moulding Select the correct answer using the codes given below: Codes:								production	on of plastic [IAS-1997]	
IAS-9.	(a) 1 and 2 Ans. (c)	2 (b) 2 and	3	(c)	1 and 3		(d) 1, 2	and 3		
IAS-9.	Alis. (c)										
IAS-10.	To reduce (a) Acceler		sumptio b) Elasto			tic resins Modifier	, the i	i ngredie (d) Fille	ent added i er	s [IAS 1994]	
IAS-10.	Ans. (d)		` ,		` '			` ,			
IAS-11.	2. Ease o	he followi esistance f fabricati esistance correct ar	ng proper to corros on into co to shocks	ive atmost complex slass and vib- ng the co	sphe hape ratio de g	re es. ons.	7 :	s? (d) 1 an	d 2 only	[IAS-2007]	
IAS-11.	Ans. (a)			-					-		

Elastomer

Objective Questions (IES, IAS, GATE)

Previous 20-Years IES Questions

IES-1.	In the case o	f rubber, vulc	anization ref	ers to the p	process of p	producing a	[IES-2003]
--------	---------------	----------------	---------------	--------------	--------------	-------------	------------

(a) Linear polymer

(b) Branched polymer

(c) Cross-linked polymer

(d) Net-work polymer

IES-1. Ans. (c) An elastomer is produced by heating raw rubber with sulphur. Sulphur forms covalent bonds with the carbon, by saturating the remaining double bond in each monomer. This reaction, known as vulcanization, produces additional link between chains called cross links.

Ceramics

IES-2. Consider the following statements relating to mechanical properties of ceramics:

1. Tensile strength is theoretically high but in practice quite low.

[IES-2008]

- 2. Compressive strength is many times lower than tensile strength.
- 3. Shear strength is high.
- 4. Transverse strength is easy to ascertain.

Which of the statements given above are correct?

(a) 1 and 3

(b) 1 and 4

(c) 2 and 3

(d) 2 and 4

IES-2. Ans. (a) 2. Compressive strength is many times higher than tensile strength.

Ceramics

- 1. They contain both metallic and non-metallic elements.
- 2. Characterized by their higher resistance to high temperatures and harsh environments than metals and polymers.
- 3. Typically good insulators to passage of both heat and electricity.
- 4. Less dense than most metals and alloys.
- 5. They are harder and stiffer, but brittle in nature.
- 6. They are mostly oxides, nitrides, and carbides of metals.
- 7. Wide range: traditional (clay, silicate glass, cement) to advanced (carbides, pure oxides, non-silicate glasses).

IES-3. Match List I with List II and select the correct answer:

[IES-2002]

List I (Material) A. Ceramics

List II (Application)

1. Construction of chemical plants

D

3

1

B. Refractory

2. Columns and pillars

C. Stones

- 3. Lining of furnaces
- D. High silica glass

4

4. Tiles

Codes	s: A	\mathbf{B}	(
(a)	4	3	9

(b) 2 1 4 (d) 2 3 4

IES-3. Ans. (d)

(c)

IES-4. Which one of the following is true?

1

[IES-2002]

- (a) Structure of metallic materials consists of atoms having valence of 5, 6 or 7
- (b) Ceramic materials have long range electron matrix bond
- (c) Polymers are composed of long chain of repeating molecules

D

1

3

(d) Ceramics are weaker than metals because of weak electrostatic bond

IES-4. Ans. (c)

IES-5. Which one of the following is correct?

[IES-2008]

When "devitrification" of inorganic glasses is done,

(a) Glass transforms from crystalline to non-crystalline state

Elastomer

S K Mondal's

- (b) Glass transforms into a fully transparent material
- (c) Glass transforms from non-crystalline state to poly-crystalline state
- (d) Glass is relieved of internal stresses
- IES-5. **Ans.** (c) Inorganic glasses can be made to transform from a non crystalline state to one that crystalline by the proper high – temperature heat treatment which is called devitrification.

Composite Materials

IES-6. Which of the following fibre materials are used for reinforcement in composite materials? [IES-2002]

1. Glass

2. Boron carbide 3. Graphite

Select the correct answer using the codes given below: (a) 1 and 2

(b) 1 and 3

(c) 2 and 3

(d) 1, 2 and 3

IES-6. Ans. (d)

IES-7. Consider the following statements: [IES-1999]

The strength of the fibre reinforced plastic product

- 1. Depends upon the strength of the fibre alone
- 2. Depends upon the fibre and plastic
- 3. Is isotropic
- 4. Is anisotropic

Which of these statements are correct?

(a) 1 and 3

- (b) 1 and 4
- (c) 2 and 3

(d) 2 and 4

- IES-7. Ans. (d) Fibre Reinforced plastics are composite materials possessing additional and/or superior properties to individual components.
- IES-8. Wood is a natural composite consisting of which of the following?

[IES 2007]

- (a) Lignin fibres in collagen matrix
- (b) Lignin fibres in apatite matrix
- (c) Cellulose fibres in apatite matrix
- (d) Cellulose fibres in lignin matrix
- IES-8. Ans. (d)
- IES-9. Nano composite materials are highly preferable in design consideration for their
 - (a) High resistance to crack propagation

[IES-2009]

- (b) Vibration resistance
- (c) Impact resistance
- (d) High resilience
- IES-9. Ans. (b)
- IES-10. Which one of the following materials is not a composite?

[IES-2009]

(a) Wood

- (b) Concrete
- (c) Plywood
- (d) Sialon
- IES-10. Ans. (d) SIALON: Hot pressing and sintering of an appropriate mix of Al₂O₃ and Si₃N₄ powders yielded an excellent composite ceramic tool called SIALON which are very hot hard, quite tough and wear resistant. These tools can machine steel and cast irons at high speeds (250 - 300 m/min). But machining of steels by such tools at too high speeds reduces the tool life by rapid diffusion.
- IES-11. Which of the following composites are 'dispersion-strengthened composites'?
 - (a) Particulate composites
- (b) Laminar composites

[IES-2009]

- (c) Fiber reinforced composites
- (d) Short-fiber discontinuous composites

- IES-11. Ans. (a)
 - 1. Particulate composites consist of discrete particles of one material surrounded by a matrix of another material.

Elastomer

S K Mondal's

2. Dispersion-strengthened materials are particulate composites where a small amount of hard, brittle, small particles (typically, oxides or carbides) are dispersed through-out a softer, more ductile matrix.

Objective Questions (IES, IAS, GATE)

Previous 20-Years GATE Questions

Machine tool structures are madefor high process capability. (tough/strong/rigid) [GATE-1995]

GATE-1. Ans. Rigid

Previous 20-Years IES Questions

IES-1. Match List I with List II and select the correct answer using the code given below [IES 2007]

the Lists: List I List II (Component) (Required Property) A. Blades of bulldozer 1. High wear resistance and high toughness B. Gas turbine blades 2. Low Young's modulus and high fatigue strength C. Drill bit 3. High wear and abrasion resistance D. Springs of automobiles High creep strength and good corrosion resistance Code: A \mathbf{B} \mathbf{C} D В \mathbf{D} Α \mathbf{C} 2 4 1 4 3 2 (a) 3 1 (b) 2 3 4 1 3 4 (b) (d)

IES-1. Ans. (c)

IES-2. Match List-I (Composition) with List-II (Application) and select the correct answer using the code given below the Lists: [IES-2006]

List- I List-II A. Commercial bronze (10% Zn) 1. Radiator B. Red brass (15% Zn) 2. Spring metal C. Aluminium brass (22% Zn, 2% Al) 3. Forging and stamping D. P-bronze (11 % tin) small amount of P) 4. Power plant and chemical equipment Codes: A В \mathbf{C} D Α В \mathbf{C} D 2 3 3 1 2 (a) 4 (b) 4 1 2 2 3 1 1 4 3 (d) 4 (c)

IES-2. Ans. (b)

IES-3. The structure of a polymer is shown in the given figure. This polymer

Finds special application in

[IES-1995]

(a) Packaging

(b) Adhesives

(c) Bearings

(d) Fertilizer

IES-3. Ans. (c)

IES-4. Which one of the following possesses the property of nonsparking character?

(a) Hadfield's manganese steel

(b) Spring steel

S K Mondal's

(c) Stellite (d) Invar Ans. (b) IES-4. IES-5. Match List I (Material) with List II (Typical use) and the correct answer using the codes given below the Lists: [IES-2004] List II List I A. Branched polyethylene 1. Bottles Textile fibres B. Polyester 2.C. Polyvinylidene chloride Films for packaging D. Linear Polyethylene Transparent film A В D \mathbf{A} В \mathbf{C} \mathbf{D} \mathbf{C} 2 (a) 3 4 1 (b) 3 2 1 4 2 3 1 3 2 (c) (d) IES-5. Ans. (b) IES-6. Gunmetal, which is used in journal bearings, contains [IES-2003] (a) 88% Cu, 10% Sn, 2% Zn (b) 80% Cu, 10% Zn, 10% Al (c) 85% Cu, 5% Mg, 10% Al (d) 85% Cu, 5% Sn, 10% Pb IES-6. **Ans.** (a) 83% Cu + 14% Sn + 3% Zinc + 0.8 Phosphorus **IES-7.** The correct composition of austenitic stainless steel used for domestic utensils is (a) 0.08% C, 18% Cr, .8% Ni, 2% Mn, 1% Si [IES-2002] (b) 0.08% C, 24% Cr, 12% Ni, 2% Mn, 1% Si (c) 0.15% C, 12% Cr, 0.5% Ni, 1% Mn, 1% Si (d) 0.30% C, 12% Cr, 0.4% Ni, 1% Mn, 1% Si **IES-7.** Ans. (a) 18/8 austenitic stainless steel IES-8. Quartz is a [IES-1993] (a) Ferroelectric material (b) Ferromagnetic material (c) Piezoelectric material (d) Diamagnetic material IES-8. Ans. (c) Quartz is a piezoelectric material. IES-9. Duralumin Alloy contains aluminium and copper in the ratio of [IES-1993] %A1 %Cu (a) 94 4 8 (b) 90 10 (c) 88 (d) 86 12 IES-9. Ans. (a) Duralumin alloy contains aluminium and copper in the ratio of 94% aluminium and 4% copper. Which one of the following is correct? [IES-2008] IES-10. Babbitt are used for (a) Gears (b) Bearings (c) Bolts (d) Clutch liners **IES-10.** Ans. (b) A tin base alloy containing 88% tin, 8% antimony and 4% copper is called babbit metal. It is a soft material with a low coefficient of friction and has little strength. It is the most common bearing metal used with cast iron boxes where the bearings are subjected to high pressure and load. Note: Those alloys in which lead and tin are predominating are designated as white metal bearing alloys. This alloy is used for lining bearings subjected to high speeds like the

IES-11. Babbit lining is used on brass/bronze bearings to

[IES-1995]

(a) Increase bearing resistance(c) Provide anti-friction properties

bearings of aero-engines.

- (b) Increase compressive strength
- (d) Increase wear resistance.

S K Mondal's

IES-11.	Ans. (c)										
IES-12.	Why are (a) They (b) They (c) They (d) They	[IES-2009]									
IES-12.	Ans. (a) metal. It most cor	A ti is a nmoressure	n base soft man bearing and l	alloy co aterial v ng meta oad. A	ontainin with a le il used v babbit c	g 88% ow coef vith ca overlay	fficient of st iron bo	friction	n and ha	as little st bearings	is called <i>babbit</i> rength. It is the are subjected to y and corrosion
IES-13.	Match below t			List-I	I and	select	the cor	rect a	nswer	using th	e codes given [IES-1997]
	List-I A. Neop B. Bake						t-II Electric s Adhesive		s		
	C. Foar		olvuret	thane			Thermal		or		
	D. Aral		v				Oil seal				
	Code: A		В	C	D	<i>a</i> >	A	В	\mathbf{C}	D	
	a) 4		1	$\frac{2}{3}$	$\frac{3}{2}$	(b)	1	4	$\frac{2}{3}$	$\frac{3}{2}$	
IES-13.	c) 4 Ans. (c)	_	1	ъ	2	(d)	1	4	Э	2	
IES-14.	(a) Styre (b) Buty (c) Nitri (d) Any Ans. (a)	ene-b d rub ile ru of the	utadier ber bber	ne rubb	er (SBR))		or car t	yres as	s a standa	rd material? [IES-1997]
IES-15.	(a) Gun	meta		used fo	or bush	(b)	Plastic		type of	flexible o	coupling? [IES-2008]
IES-15.	(c) Rubl Ans. (c)		ber is u	sed for	bushes i	, ,	Aluminiu oushed pii		lexible o	coupling.	
IES-16.	The per (a) 0.1	cent		phospl	horous		osphor b 11.1		is (d) 98		[IES-1992]
IES-16.	Ans. (a)		()	0) 1		(0)	11.1	`	α, σο		
IES-17.	(a) Larg (c) Ligh	e sur t loac	face we	ear		(b)	the bear Elevated High pre	temper	ratures.		
IES-17.	Ans. (d)										
IES-18.	Machin (a) High (c) Low	rigio	dity to v			(b)	Graphite High wor			nodules	[IES-1992]
IES-18.	Ans. (a)					(4)	8-101				

IES-19. Which of the following statement is incorrect about duralumin?

[IES-1992]

- (a) It is prone to age hardening
- (b) It can be forged
- (c) It has good machining properties (d) It is lighter than pure aluminium

[IES-1992]

S K Mondal's

IES-19. Ans. (c)

IES-20. Cartridge brass can be

(a) Cold rolled into sheets (b) Drawn into wires

(a) Cold rolled into sheets(b)(c) Formed into tubes(d)

(c) Formed into tubes (d) Any of the above. $\textbf{IES-20.} \qquad \textbf{Ans. (d)}$