P1 de Álgebra Linear I – 2003.2

Data: 15 de setembro de 2003.

Gabarito Prova Tipo C

1)

Itens	V	\mathbf{F}	N
1.a		X	
1.b	X		
1.c	X		
1.d	X		
1.e		X	
1.f		X	
1.g	X		
1.h		X	
1.i		X	
1.j	X		

2) Considere o plano de equação cartesiana

$$\pi\colon x+y-z=1$$

e os pontos A=(2,-1,0) e B=(1,0,0) do plano $\pi.$

- a) Determine o vetor \overline{AB} .
- **b)** Determine um vetor w paralelo ao plano π e ortogonal ao vetor \overline{AB} .
- c) Determine um vetor u paralelo a w e de mesmo módulo que o vetor \overline{AB} .

d) Determine as coordenadas de pontos C e D tais que A, B, C, e D são os vértices de um quadrado contido no plano π .

Respostas:

a)
$$\overline{AB} = (-1, 1, 0)$$
.

b)
$$w = (1, 1, 2)$$

c)
$$u = (1/\sqrt{3}, 1/\sqrt{3}, 2/\sqrt{3}).$$

d)
$$C = (2 + 1/\sqrt{3}, -1 + 1/\sqrt{3}, 2/\sqrt{3}), \qquad D = (1 + 1/\sqrt{3}, 1/\sqrt{3}, 2/\sqrt{3})$$

3) Considere a reta r_1 de equações paramétricas

$$r_1: (2t, 1+t, -1+t) \quad t \in \mathbb{R}$$

e a reta r_2 de equações cartesianas

$$x + 2y - 2z = 2$$
, $x - y = 2$.

- a) Escreva a reta r_1 como interseção de dois planos π e ρ (escritos em equações cartesianas) tais que π seja paralelo ao eixo \mathbb{X} e ρ seja paralelo ao eixo \mathbb{Z} .
- b) Determine uma equação paramétrica da reta r_2 .
- c) Determine a posição relativa das retas r_1 e r_2 (reversas, paralelas ou se interceptam).
- d) Calcule a distância d entre as retas r_1 e r_2 .

Respostas:

a)
$$\pi$$
: $y - z = 2$, ρ : $x - 2y = -2$.

b)
$$r_2$$
: $(2 + 2t, 2t, 3t)$, $t \in \mathbb{R}$.

c) reversas

- **d)** $8/\sqrt{21}$.
 - 4) Considere os pontos A = (1, 1, 1) e B = (2, 0, 1).
- a) Determine uma equação paramétrica da reta r determinada pelos pontos $A \in B$.
- b) Determine o ponto médio M do segmento AB.
- c) Determine a equação cartesiana do plano π cujos pontos são todos equidistantes de A e B.
- d) Considere o ponto C=(19,21,17). Determine explicitamente um ponto D a distância 17 de C.
- e) Considere o plano ρ : x y + z = 0. Determine a equação cartesiana de um plano τ a distância 5 de ρ .

Respostas:

- a) $r: (1+t, 1-t, 1), t \in \mathbb{R}$.
- **b)** M = (3/2, 1/2, 1).
- **c)** π : x y = 1
- d) os seis pontos mais simples são D = (36, 21, 17), D = (2, 21, 17), D = (19, 4, 17), D = (19, 38, 17), D = (19, 21, 0) e D = (19, 21, 34).
- e) τ : $x y + z = \pm 5\sqrt{3}$.