

09/509482

422 Rec'd PCT/PTO 29 MAR 2000

SEQUENCE LISTING

<110> Crofts, Linda A
Hancock, Manuella S
Morrison, Nigel A
Eisman, John A

<120> Isoforms of the Human Vitamin D Receptor

<130> 1871-130

<140>
<141>

<150> AU/PO9500
<151> 1997-09-29

<150> PCT/AU98/00817
<151> 1998-09-29

<160> 14

<170> PatentIn Ver. 2.1

<210> 1
<211> 96
<212> DNA
<213> Homo sapiens

<400> 1
gttccttct tctgtcgaaa cgccttgca tggagtggag gaataagaaa aggagcgatt 60
ggctgtcgat ggtgctcaga actgctggag tggaggaagc ctgggtct gaagtgtctg 96

<210> 2
<211> 1463
<212> DNA
<213> Homo sapiens

<400> 2
gttccttct tctgtcgaaa cgccttgca tggagtggag gaataagaaa aggagcgatt 60
ggctgtcgat ggtgctcaga actgctggag tggaggaagc ctgggtct gaagtgtctg 120
tgagacctca cagaagagca cccctggct ccacttaccc gccccctgct cttcaggaa 180
tggaggcaat ggcggccagc acttccctgc ctgaccctgg agactttgac cggAACGTGc 240
cccggatctg tgggtgtgt ggagaccggag ccactggctt tcacttcaat gctatgacct 300
gtgaaggctg caaaggctt ttcaggcgaa gcatgaagcg gaaggcacta ttccacctgcc 360
ccttcaacgg ggactgcccgc atcaccaagg acaaccgacg ccactgccag gcctgcccggc 420
tcaaaccgtg tgtggacatc ggcattatcaggatcat tctgacatc gaggaagtgc 480
agaggaagcg ggagatgtc ctgaaggcgaa aggaggagga ggccttgaag gacagtctgc 540
ggcccaagct gtctgggg cagcagcgca tcattggccat actgctggac gcccaccata 600
agacctacga ccccacctac tccacttccat gccaaggctcg gcctccaggat cgtgtaaatg 660
atggggagg gaggccatc tccaggccca actccagaca cactcccgat ttctctgggg 720
actcctcctc ctcctgctca gatcacttgc tccatcttc agacatgtc gactcgatc 780
gcttctccaa tctggatctg agtgaagaag attcagatgc cccttctgtg accctagacg 840
tgtcccaatcttccatgctg ccccacctgg ctgacctggat cagttacatc atccaaaagg 900
tcattggct tgctaaatgc ataccaggat tcagagacatc cacctctgatc gaccagatcg 960
tactgctgaa gtcaagtgc attgaggatc tcatgttgcg ctccaaatgc tccttcacca 1020
tggacgacat gtcctggacc tggcaacc aagactacaa gtaccgcgtc agtgcgtga 1080
ccaaaggccgg acacagcctg gagctgattt agccctcat caagttccag gtgggactgta 1140
agaagctgaa cttgcatgag gaggagcatg tcctgctcat ggcacatcgc atcgtctccc 1200
cagatcgatc tgggtgcag gacgcccgcg tggatggc catccaggac cgcctgtcca 1260
acacactgca gacgtacatc cgctgcccgc acccgcccccc gggcagccac ctgctctatg 1320

ccaagatgat ccagaagcta gccgacctgc gcaaccaa tgaggagcac tccaaggact 1380
accgctgcct ctcccttccag cctgagtgc gcatgaagct aacgcccctt gtgctcgaag 1440
tgttggcaa tgagatctcc tga 1463

<210> 3
<211> 1382
<212> DNA
<213> Homo sapiens

<400> 3
gttccttct tctgtcgaaa cgccattggca tggagtggag gaataagaaa aggagcgatt 60
ggctgtcgat ggtgctcaga actgctggag tggagggat ggaggcaatg gcggccagca 120
cttccctgcc tgaccctgga gactttgacc ggaacgtgcc ccggatctgt ggggtgtgt 180
gagaccgagc cactggctt cacttcaatg ctatgacactg tgaaggctgc aaaggcttct 240
tcaggcgaag catgaagcgg aaggcactat tcacccgtcc cttcaacggg gactgcccga 300
tcaccaagaa caaccgcgc cactgcccgg cctgcccgtt caaacgtgt gtggacatcg 360
gcatgtgatgg gtagttcatt ctgacagatg aggaagtgc gagaagcgg gagatgtcc 420
tgaaggcggaa ggaggaggag gccttggagg acatgtcgcc gccaagctg tctgaggagc 480
agcagcgcatt cattgcataa ctgctggacg cccaccataa gacactacg cccacctact 540
ccgacttctg ccaggccgg cctccaggcc gtgtgaatga tggtgagggg agccatcctt 600
ccaggcccaa ctccagacac actcccaatg tctctggggat ctcctccctc tcctgctcag 660
atcaactgttat cacctttca gacatgtgg actcgccatg cttctccaaat ctggatctga 720
gtgaagaaga ttcaatgtac ccttctgtga cccttagagct gtcccaagtc tccatgtc 780
cccacctggc tgaccctggc agttacagca tccaaaaggt cattggctt gctaagatga 840
taccaggatt cagagacctc acctctgggg accagatctgt actgctgaag tcaagtgc 900
ttgagggtcat catgttgcgc tccaatgttgc cttcaccatg ggacgacatg tcctggac 960
gtggcaaccca agactacaag taccgcgtca gtgacgtgac caaagccgg aacagcctgg 1020
agctgattga gcccctcatc aagttccagg tggactgtaa gaagctgaac ttgcatgagg 1080
aggagcatgt cctgctcatg gccatctgc tcgtctcccc agatcgctt ggggtgcagg 1140
acgcccgcgt gattggggcc atccaggacc gcctgtccaa cacactgcg acgtacatcc 1200
gtgccgcaca cccggccccc ggcagccacc tgctctatgc caagatgatc cagaagctag 1260
ccgacctgcg cagccctaat gaggagactt ccaaggactt ccgctgcctc tccttccagc 1320
ctgagtgccat catgaagctt acggcccttg tgctcgaatg gtttggcaat gagatctcct 1380
ga 1382

<210> 4
<211> 1534
<212> DNA
<213> Homo sapiens

<400> 4
gttccttct tctgtcgaaa cgccattggca tggagtggag gaataagaaa aggagcgatt 60
ggctgtcgat ggtgctcaga actgctggag tggagggat ggaggcaatg gcggccagca 120
cttccctgcc tgaccctgga gactttgacc ggaacgtgcc ccggatctgt ggggtgtgt 180
gagaccgagc cactggctt cacttcaatg ctatgacactg tgaaggctgc aaaggcttct 240
tcaggcgaag cccctccca ggctctcccc agtggaaagg gaggagaag aagcaagggt 300
tttccatgaa gggagccctt gcattttca catctccctc cttacaatgt ccatggaaaca 360
tgcggcgctt acagccacag gaggcaggagg gtcttggcga agcatgaagc ggaaggcact 420
attcacctgc cccttcaacg gggactggcc catcaccaag gacaaccgc gccactgc 480
ggcctggccg ctcaaaccgt gtgtggacat cggcatgtat aaggagtta tttgtacaga 540
ttagggaaatg cagaggaagc gggagatgt cctgaaggcgg aaggaggagg aggcccttggaa 600
ggacagtctg cggcccaagc tggcttggagg gcagcagcgc atcatttcca tactgctgg 660
cgccccaccat aagacactacg accccaccata ctccgacttc tgccagttcc ggcctccagt 720
tcgtgtgaat gatgggtggag ggagccatcc ttccaggccc aactccagac acactccctt 780
cttctctggg gactcccttcc cctccctgtcc agatcactgt atcacccttt cagacatgat 840
ggactcgcttcc agcttcttca atctggatct gaggtaagaa gattcagatg acccttctgt 900
gacccttagag ctgtcccagc tctccatgtt gcccacactg gctgacactgg tcagttacag 960
catccaaaat gtcattggct ttgcttaatg gataccagga ttcaagatc tcacctctga 1020
ggaccagatc gtactgtca agtcaatgtc cattgaggcc atcatgttgc gctccaatg 1080
gtcccttaccat atggacgaca tggcttggac ctgtggcaac caagactaca agtaccgcgt 1140
cagtgcgtt accaaagccg gacacagccctt ggagctgatt gagccctca tcaagttcca 1200

ggtgggactg aagaagctga acttgcata ggaggagcat gtcctgctca tggccatctg 1260
catcgctcc ccagatgtc ctggggtgca ggacgcccgc ctgattgagg ccatccagga 1320
ccgcctgtcc aacacactgc agacgtacat ccgcgtccgc caccggcccc cgggcagcca 1380
cctgctctat gccaagatga tccagaagct agccgacctg cgcaagctca atgaggagca 1440
ctccaagcag taccgctgcc tctccttcca gcctgagtgca agcatgaagc taacgccccct 1500
tgtgctcgaa gtgttggca atgagatctc ctga 1534

<210> 5
<211> 207
<212> DNA
<213> Homo sapiens

<400> 5
tgcgaccttgcgggtgagcc tggggacagg ggtgaggcca gagacggacg gacgcagggg 60
cccgcccaa ggcgaggagg aacagcgcctaaggcaga aaggaagagg gcggtgtgtt 120
cacccgcagc ccaatccatc actcagcaac tcctagacgc tgtagaaag ttccctcgag 180
gagcgtccca tccagtcgtc cgtcag 207

<210> 6
<211> 157
<212> DNA
<213> Homo sapiens

<400> 6
aggcagcatg aaacagtggg atgtgcagag agaagatctg gttccagtag ctctgacact 60
cctcagctgt agaaaaccttgc acaactctgc acatcagttg tacaatggaa cggtattttt 120
tactcttcat gtctgaaaag gctatgataa agatcaa 157

<210> 7
<211> 1574
<212> DNA
<213> Homo sapiens

<400> 7
tgcgaccttgcgggtgagcc tggggacagg ggtgaggcca gagacggacg gacgcagggg 60
cccgcccaa ggcgaggagg aacagcgcctaaggcaga aaggaagagg gcggtgtgtt 120
cacccgcagc ccaatccatc actcagcaac tcctagacgc tgtagaaag ttccctcgag 180
gagcgtccca tccagtcgtc cgtcag 240
acagaagagc accctggc tccacttacc tgcccccgc tccttcagg 300
tggcggccag cacttccctg cctgaccctg gagactttga ccggaaatgc ccccgatct 360
gtggggtgtg tggagaccga gccactgct ttcaacttcaa tgctatgacc tggtaaggct 420
gcaaaggctt cttcaggcga agcatgaagc ggaaggactt attcacctgc cccttcaacg 480
gggactgccc catcaccaag gacaaccgc gccactgcca ggcctccgg ctcaaacgct 540
gtgtggacat cggcatgtt aaggagtta ttctgacaga tgaggaatg cagaggaagc 600
gggagatgt cctgaagcgg aaggaggagg aggcttga ggcactgtc cggcccaagc 660
tgtctgagga gcagcagcgc atcattgca tactgttggc cgcacccat aagacctacg 720
accccaccc ctccgacttc tgccagttcc ggcctccagt tcgtgtgaat gatgggtggag 780
ggagccatcc ttccaggccc aactcccgac acatcccgat ttctctggg gactcctcct 840
cctcctgctc agatcactgt atcaccctt cagacatgtt ggactcgtcc agttctcca 900
atctggatct gatgttggaa gattcagatg acccttctgt gacccttagag ctgtcccagc 960
tctccatgt gccccacctg gctgacctgg tcagttacag catccaaag gtcattggct 1020
ttgtctaaat gataccagga ttccagagacc tcacctctga ggaccagatc gtactgctga 1080
atgtcaagtgc cattgagggtc atcatgttgc gctccaatga gtccttccacc atggacgaca 1140
tgtcctggac ctgtggcaac caagactaca agtaccgcgt cagtgcgtc accaaagccg 1200
gacacagcct ggagctgatt gagccctca tcaagttcca ggtgggactg aagaagctga 1260
acttgcata ggaggaggcat gtcctgctca tggccatctg catcgctcc ccagatcg 1320
ctggggtgca ggacgcccgc ctgattgagg ccatccagga ccgcctgtcc aacacactgc 1380
agacgtacat ccgctgcccgc caccggcccc cggcagcca cctgctctat gccaagatga 1440
tccagaagct agccgacctg cgccagctca atgaggagca ctccaagcag taccgctgcc 1500
tctccttcca gcctgagtgca agcatgaagc taacgccccct tggctcgaa gtgtttggca 1560

atgagatctc ctga

1574

<210> 8
<211> 122
<212> DNA
<213> Homo sapiens

<400> 8
ggctcctgaa cctagccag ctggacggag aaatggactc tagcctcctc tgatagcctc 60
atgccaggcc ccgtgcacat tgcttgctt gcctccctca atcctcatag cttctttg 120
gg 122

<210> 9
<211> 477
<212> PRT
<213> Homo sapiens

<400> 9
Met Glu Trp Arg Asn Lys Lys Arg Ser Asp Trp Leu Ser Met Val Leu
1 5 10 15
Arg Thr Ala Gly Val Glu Glu Ala Phe Gly Ser Glu Val Ser Val Arg
20 25 30
Pro His Arg Arg Ala Pro Leu Gly Ser Thr Tyr Leu Pro Pro Ala Pro
35 40 45
Ser Gly Met Glu Ala Met Ala Ala Ser Thr Ser Leu Pro Asp Pro Gly
50 55 60
Asp Phe Asp Arg Asn Val Pro Arg Ile Cys Gly Val Cys Gly Asp Arg
65 70 75 80
Ala Thr Gly Phe His Phe Asn Ala Met Thr Cys Glu Gly Cys Lys Gly
85 90 95
Phe Phe Arg Arg Ser Met Lys Arg Lys Ala Leu Phe Thr Cys Pro Phe
100 105 110
Asn Gly Asp Cys Arg Ile Thr Lys Asp Asn Arg Arg His Cys Gln Ala
115 120 125
Cys Arg Leu Lys Arg Cys Val Asp Ile Gly Met Met Lys Glu Phe Ile
130 135 140
Leu Thr Asp Glu Glu Val Gln Arg Lys Arg Glu Met Ile Leu Lys Arg
145 150 155 160
Lys Glu Glu Glu Ala Leu Lys Asp Ser Leu Arg Pro Lys Leu Ser Glu
165 170 175
Glu Gln Gln Arg Ile Ile Ala Ile Leu Leu Asp Ala His His Lys Thr
180 185 190
Tyr Asp Pro Thr Tyr Ser Asp Phe Cys Gln Phe Arg Pro Pro Val Arg
195 200 205
Val Asn Asp Gly Gly Ser His Pro Ser Arg Pro Asn Ser Arg His
210 215 220

Thr Pro Ser Phe Ser Gly Asp Ser Ser Ser Cys Ser Asp His Cys
 225 230 235 240
 Ile Thr Ser Ser Asp Met Met Asp Ser Ser Ser Phe Ser Asn Leu Asp
 245 250 255
 Leu Ser Glu Glu Asp Ser Asp Asp Pro Ser Val Thr Leu Glu Leu Ser
 260 265 270
 Gln Leu Ser Met Leu Pro His Leu Ala Asp Leu Val Ser Tyr Ser Ile
 275 280 285
 Gln Lys Val Ile Gly Phe Ala Lys Met Ile Pro Gly Phe Arg Asp Leu
 290 295 300
 Thr Ser Glu Asp Gln Ile Val Leu Leu Lys Ser Ser Ala Ile Glu Val
 305 310 315 320
 Ile Met Leu Arg Ser Asn Glu Ser Phe Thr Met Asp Asp Met Ser Trp
 325 330 335
 Thr Cys Gly Asn Gln Asp Tyr Lys Tyr Arg Val Ser Asp Val Thr Lys
 340 345 350
 Ala Gly His Ser Leu Glu Leu Ile Glu Pro Leu Ile Lys Phe Gln Val
 355 360 365
 Gly Leu Lys Lys Leu Asn Leu His Glu Glu Glu His Val Leu Leu Met
 370 375 380
 Ala Ile Cys Ile Val Ser Pro Asp Arg Pro Gly Val Gln Asp Ala Ala
 385 390 395 400
 Leu Ile Glu Ala Ile Gln Asp Arg Leu Ser Asn Thr Leu Gln Thr Tyr
 405 410 415
 Ile Arg Cys Arg His Pro Pro Gly Ser His Leu Leu Tyr Ala Lys
 420 425 430
 Met Ile Gln Lys Leu Ala Asp Leu Arg Ser Leu Asn Glu Glu His Ser
 435 440 445
 Lys Gln Tyr Arg Cys Leu Ser Phe Gln Pro Glu Cys Ser Met Lys Leu
 450 455 460
 Thr Pro Leu Val Leu Glu Val Phe Gly Asn Glu Ile Ser
 465 470 475

<210> 10
 <211> 434
 <212> PRT
 <213> Homo sapiens

<400> 10 15
 Met Glu Trp Arg Asn Lys Lys Arg Ser Asp Trp Leu Ser Met Val Leu
 5 10
 1
 Arg Thr Ala Gly Val Glu Gly Met Glu Ala Met Ala Ala Ser Thr Ser
 20 25 30

Val Cys Gly Asp Arg Ala Thr Gly Phe His Phe Asn Ala Met Thr Cys
35 40 45

Glu Gly Cys Lys Gly Phe Phe Arg Arg Ser Met Lys Arg Lys Ala Leu
50 55 60

Phe Thr Cys Pro Phe Asn Gly Asp Cys Arg Ile Thr Lys Asp Asn Arg
65 70 75 80

Arg His Cys Gln Ala Cys Arg Leu Lys Arg Cys Val Asp Ile Gly Met
85 90 95

Met Lys Glu Phe Ile Leu Thr Asp Glu Glu Val Gln Arg Lys Arg Glu
100 105 110

Met Ile Leu Lys Arg Lys Glu Glu Ala Leu Lys Asp Ser Leu Arg
115 120 125

Pro Lys Leu Ser Glu Glu Gln Gln Arg Ile Ile Ala Ile Leu Leu Asp
130 135 140

Ala His His Lys Thr Tyr Asp Pro Thr Tyr Ser Asp Phe Cys Gln Phe
145 150 155 160

Arg Pro Pro Val Arg Val Asn Asp Gly Gly Ser His Pro Ser Arg
165 170 175

Pro Asn Ser Arg His Thr Pro Ser Phe Ser Gly Asp Ser Ser Ser Ser
180 185 190

Cys Ser Asp His Cys Ile Thr Ser Ser Asp Met Met Asp Ser Ser Ser
195 200 205

Phe Ser Asn Leu Asp Leu Ser Glu Glu Asp Ser Asp Asp Pro Ser Val
210 215 220

Thr Leu Glu Leu Ser Gln Leu Ser Met Leu Pro His Leu Ala Asp Leu
225 230 235 240

Val Ser Tyr Ser Ile Gln Lys Val Ile Gly Phe Ala Lys Met Ile Pro
245 250 255

Gly Phe Arg Asp Leu Thr Ser Glu Asp Gln Ile Val Leu Leu Lys Ser
260 265 270

Ser Ala Ile Glu Val Ile Met Leu Arg Ser Asn Glu Ser Phe Thr Met
275 280 285

Asp Asp Met Ser Trp Thr Cys Gly Asn Gln Asp Tyr Lys Tyr Arg Val
290 295 300

Ser Asp Val Thr Lys Ala Gly His Ser Leu Glu Leu Ile Glu Pro Leu
305 310 315 320

Ile Lys Phe Gln Val Gly Leu Lys Lys Leu Asn Leu His Glu Glu Glu
325 330 335

His Val Leu Leu Met Ala Ile Cys Ile Val Ser Pro Asp Arg Pro Gly
340 345 350

Val Gln Asp Ala Ala Leu Ile Glu Ala Ile Gln Asp Arg Leu Ser Asn
355 360 365

Thr Leu Gln Thr Tyr Ile Arg Cys Arg His Pro Pro Pro Gly Ser His
 370 375 380
 Leu Leu Tyr Ala Lys Met Ile Gln Lys Leu Ala Asp Leu Arg Ser Leu
 385 390 395 400
 Asn Glu Glu His Ser Lys Gln Tyr Arg Cys Leu Ser Phe Gln Pro Glu
 405 410 415
 Cys Ser Met Lys Leu Thr Pro Leu Val Leu Glu Val Phe Gly Asn Glu
 420 425 430
 Ile Ser

<210> 11
 <211> 72
 <212> PRT
 <213> Homo sapiens

<400> 11 15
 Met Glu Trp Arg Asn Lys Lys Arg Ser Asp Trp Leu Ser Met Val Leu
 1 5 10
 Arg Thr Ala Gly Val Glu Gly Met Glu Ala Met Ala Ala Ser Thr Ser
 20 25 30
 Leu Pro Asp Pro Gly Asp Phe Asp Arg Asn Val Pro Arg Ile Cys Gly
 35 40 45
 Val Cys Gly Asp Arg Ala Thr Gly Phe His Phe Asn Ala Met Thr Cys
 50 55 60
 Glu Gly Cys Lys Gly Phe Phe Arg
 65 70

<210> 12
 <211> 427
 <212> PRT
 <213> Homo sapiens

<400> 12 15
 Met Glu Ala Met Ala Ala Ser Thr Ser Leu Pro Asp Pro Gly Asp Phe
 1 5 10
 Asp Arg Asn Val Pro Arg Ile Cys Gly Val Cys Gly Asp Arg Ala Thr
 20 25 30
 Gly Phe His Phe Asn Ala Met Thr Cys Glu Gly Cys Lys Gly Phe Phe
 35 40 45
 Arg Arg Ser Met Lys Arg Lys Ala Leu Phe Thr Cys Pro Phe Asn Gly
 50 55 60
 Asp Cys Arg Ile Thr Lys Asp Asn Arg Arg His Cys Gln Ala Cys Arg
 65 70 75 80
 Leu Lys Arg Cys Val Asp Ile Gly Met Met Lys Glu Phe Ile Leu Thr
 85 90 95

Asp Glu Glu Val Gln Arg Lys Arg Glu Met Ile Leu Lys Arg Lys Glu
100 105 110

Glu Glu Ala Leu Lys Asp Ser Leu Arg Pro Lys Leu Ser Glu Glu Gln
115 120 125

Gln Arg Ile Ile Ala Ile Leu Leu Asp Ala His His Lys Thr Tyr Asp
130 135 140

Pro Thr Tyr Ser Asp Phe Cys Gln Phe Arg Pro Pro Val Arg Val Asn
145 150 155 160

Asp Gly Gly Ser His Pro Ser Arg Pro Asn Ser Arg His Thr Pro
165 170 175

Ser Phe Ser Gly Asp Ser Ser Ser Cys Ser Asp His Cys Ile Thr
180 185 190

Ser Ser Asp Met Met Asp Ser Ser Ser Phe Ser Asn Leu Asp Leu Ser
195 200 205

Glu Glu Asp Ser Asp Asp Pro Ser Val Thr Leu Glu Leu Ser Gln Leu
210 215 220

Ser Met Leu Pro His Leu Ala Asp Leu Val Ser Tyr Ser Ile Gln Lys
225 230 235 240

Val Ile Gly Phe Ala Lys Met Ile Pro Gly Phe Arg Asp Leu Thr Ser
245 250 255

Glu Asp Gln Ile Val Leu Leu Lys Ser Ser Ala Ile Glu Val Ile Met
260 265 270

Leu Arg Ser Asn Glu Ser Phe Thr Met Asp Asp Met Ser Trp Thr Cys
275 280 285

Gly Asn Gln Asp Tyr Lys Tyr Arg Val Ser Asp Val Thr Lys Ala Gly
290 295 300

His Ser Leu Glu Leu Ile Glu Pro Leu Ile Lys Phe Gln Val Gly Leu
305 310 315 320

Lys Lys Leu Asn Leu His Glu Glu Glu His Val Leu Leu Met Ala Ile
325 330 335

Cys Ile Val Ser Pro Asp Arg Pro Gly Val Gln Asp Ala Ala Leu Ile
340 345 350

Glu Ala Ile Gln Asp Arg Leu Ser Asn Thr Leu Gln Thr Tyr Ile Arg
355 360 365

Cys Arg His Pro Pro Pro Gly Ser His Leu Leu Tyr Ala Lys Met Ile
370 375 380

Gln Lys Leu Ala Asp Leu Arg Ser Leu Asn Glu Glu His Ser Lys Gln
385 390 395 400

Tyr Arg Cys Leu Ser Phe Gln Pro Glu Cys Ser Met Lys Leu Thr Pro
405 410 415

Leu Val Leu Glu Val Phe Gly Asn Glu Ile Ser
420 425

<210> 13
<211> 22
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(22)
<223> Forward Primer for R T-PCR for exon 1d

<400> 13
ggctgtcgat ggtgctcaga ac 22

<210> 14
<211> 22
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(22)
<223> Forward Primer for RT-PCR for exon 1f

<400> 14
aagttcctcc gaggagcctg c 22