MODUL I

KOMPUTER GRAFIK 2D PENGENALAN PYTHON DAN PROCESSING

D3 TEKNIK INFORMATIKA
JURUSAN TEKNIK KOMPUTER DAN INFORMATIKA
POLITEKNIK NEGERI BANDUNG

CONTENTS

SETUP THONNY & PROCESSING	0
THONNY INTERFACE	I
menambahkan processing dan library lainnya	
KONSEP PROCESSING	3
MODE PROCESSING	3
TASK PRAKTIKUM	4
PENGUMPULAN	9

SETUP THONNY & PROCESSING

Thonny Python IDE (https://thonny.org/) merupakan integrated development environment khusus Bahasa python untuk pemula, Thonny menyediakan interface untuk menambahkan library pendukung dari PyPI (https://pypi.org/) secara langsung. Thonny dapat diinstall secara langsung maupun digunakan secara portable developer tidak perlu dilakukan instalasi; berikut langkah-langkah setup Thonny pada sistem operasi Windows.

1. Buka halaman https://thonny.org/, atau pilih versi Thonny sesuai dengan sistem operasi anda.

Thonny

Official downloads for Windows

Installer with 64-bit Python 3.10, requires 64-bit Windows 8.1 / 10 / 11 thonny-4.1.2.exe (21 MB)

Installer with 32-bit Python 3.8, suitable for all Windows versions since 7 thonny-py38-4.1.2.exe (20 MB)

Portable variant with 64-bit Python 3.10 thonny-4.1.2-windows-portable.zip (31 MB)

Portable variant with 32-bit Python 3.8 thonny-py38-4.1.2-windows-portable.zip (29 MB)

Re-using an existing Python installation (for advanced users) pip install thonny

- 2. Download Portable variant 64-bit (x86_64) Python 3.10, pada praktikum Komputer grafik 2D Bahasa yang digunakan adalah Python
- 3. Jika komputer/laptop anda mengalami kendala saat menjalankan Godot versi 4.0.2 silakan untuk mendowngrade versi Godot yang digunakan; rekomendasi untuk praktikum gunakan Godot 4.0.2-4.1.2 Anda dapat mendownload versi sebelumnya pada tautan berikut: https://github.com/thonny/releases
- 4. Silakan extract file, thonny-4.1.2-windows-portable.zip (31 MB) anda dapat menggunakan 7zip, atau tools lainnya.

5. Jalankan file executable thonny.exe, anda sudah dapat mengoperasikan Thonny IDE.

THONNY INTERFACE

	Main Menu
2	Command
3	Files
4	Text Editor
5	Inspector
6	Shell / Command
7	Active Environment

MENAMBAHKAN PROCESSING DAN LIBRARY LAINNYA

Processing (https://processing.org/) adalah sebuah software yang digunakan untuk creative coding bagi pelajar, artis, designer dan lain-lain. Processing menyediakan fungsi-fungsi dasar untuk membuat sebuah karya 2D maupun Animasi dengan cepat dan mudah. Pada praktikum 2D Komputer Grafik, Py5 yang merupakan Processing Porting dalam Bahasa python (https://py5coding.org/) akan digunakan untuk implementasi algoritma-algoritma primitive 2D hingga membuat karya 2D dan Animasi. Untuk itu berikut langkah-langkah untuk setup py5 pada thonny:

Buka menu manage packages

2) Cari library thonny-py5mode

3) Install library tersebut

- 4) Restart/Close dan Jalankan Kembali Thonny
- 5) Buka menu py5, masuk ke menu imported mode for py5

- 6) Thonny akan meminta user untuk menginstall JDK
- 7) Install JDK yang besarnya 180 mb, JDK akan terinstall di dalam folder Thonny portable
- 8) Restart/Close dan Jalankan Kembali Thonny

- 9) Dengan cara yang sama seperti thonny tambahkan package sbb:
 - a. Jupyter
 - b. Sympy
 - c. Matplotlib

KONSEP PROCESSING

Setup	
Draw	

Dokumentasi Processing:

https://processing.org/reference, https://py5coding.org/reference/summary.html

MODE PROCESSING

1) Import Mode

Mode import adalah sebuah mode programming / sketching processing seperti menggunakan processing ide dengan menggunakan perintah seminimal mungkin.

```
The Portable Thonny - D:\Tutorial\pertemuan1\main.py @ 11:60
File Edit View Run Tools Help py5
                       □
                                                                                                                              Object inspector
Files ×
                    main.py >
This computer D: \ Tutorial \
                                                                                                                              1 def setup():
                              size(400, 400)
pertemuan1
                               rect_mode(CENTER)
 e main.py
                      6 def draw():
                               square(mouse_x, mouse_y, 10)
                     10 def mouse_clicked():
                              fill(random_int(255), random_int(255), random_int(255))
                    Shell
                    Python 3.10.11 (D:\Tutorial\thonny-4.1.2-windows-portable\python.exe)
                    >>>
                                                                                                                      Local Python 3 • Thonny's Pyth
```

2) Module Mode

Mode module adalah sebuah mode programming / sketching processing menggunakan kapasitas maksimal dari pemrograman python seperti memanggil library numpy, pandas dan lain-lain kedalam processing.

TASK PRAKTIKUM

TASK 0: HELLO WORLD

- I. Buka Folder [KG2024_2X_001_D3_2023]_Modul1
- 2. Amati dan jalankan script tersebut
- 3. Modifikasi gunakan identitas pribadi
- 4. Konversikan mode import ke mode module

TASK I: PYTHON: BASIC

Perbandingan C++ dan Python

Komentar	<pre>// C++ is _almost_ a superset of C and shares its basic syntax for // variable declarations, primitive types, and functions.</pre>	
Variabel	<pre>int x_int = 0; short x_short = 0; char x_char = 0; long x_long = 0; long long x_long_long = 0; float x_float = 0.0f; double x_double = 0.0; int my array[20] = {0};</pre>	
Control Flow		

Loop		
Switch	switch (x) {	
Case	case 0:	
	printf()	
	break;	
	•	
	default :	
	exit(-1)	
	}	
Function	int add two ints(int x1, int x2)	
	{	
	return x1 + x2; $//$ Use return to return a	
	value	
	}	
	void	

TASK 1: PY5 1: MEMBUAT BINGKAI DAN KARTESIAN

Built in	
Function	
PutPixel	

Tugas Task I

- I. Pelajari code berikut
 - a. Bingkai / Margin menggunakan fungsi putpixel, fungsi garis vertical dan fungsi garis horizontal.
 - b. Kartesian menggunakan fungsi garis vertical dan fungsi garis horizontal

```
Lesson Learnt (Code, Print Screen Hasil Karya, dan Komentar)

main.py:
import py5
import primitif.line
import primitif.basic
import karya.pertemuan1

import math

def setup():
    py5.size(800, 600)
    py5.rect_mode(py5.CENTER)
    py5.background(191)

def draw():
    primitif.basic.draw_margin(py5.width, py5.height, 25, c=[0,0,0,255])
    primitif.basic.draw_kartesian(py5.width, py5.height, 25, c=[0,0,0,255])
```

basic.py: py5.run sketch() import primitif.line import py5 def draw margin (width, height, margin, c=[0,0,0,255]): py5.stroke(c[0], c[1], c[2], c[3]) py5.points(primitif.line.line dda(margin, margin, width-margin, margin)) py5.points(primitif.line.line dda(margin,margin,margin,height-margin)) py5.points(primitif.line.line dda(margin, height-margin, width-margin, height-margin)) py5.points(primitif.line.line dda(width-margin,height-margin,width-margin,margin)) def draw kartesian(width, height, margin, c=[0,0,0,255]): py5.stroke(c[0], c[1], c[2], c[3]) py5.points(primitif.line.line dda(margin,height/2,width-margin,height/2)) py5.points(primitif.line.line_dda(width/2, margin, width/2, height-margin)) Sketch

Tugas Task 2

- 1. Eksplorasi Contoh Processing pada Task 0 Sketch 2
- 2. Siswa terbagi menjadi kelompok 3-4 Orang
- 3. Lihat inspirasi design dari jamboard berikut https://jamboard.google.com/d/12mzV_4j0XMg8SkoTd92OeqBylsX599sXm0eWZkn9lf8/viewer?pli=1 https://jamboard.google.com/d/10WPywducxdLzz0X0CVcnCkrfS33T5rsyljSX4DfFliU/viewer
- 4. Pilih 2 Buah Karya 2D dan reka ulang menggunakan fungsi dari py5
- 5. Copy Tugas Karya I (Task I), kerjakanlah tugas ini pada template tersebut.

Lesson Learnt (Code, Print Screen Hasil Karya, dan Komentar)

```
import py5
import primitif.line
import primitif.basic
import math
def setup():
  py5.size(800, 600)
  py5.rect mode(py5.CENTER)
  py5.background(191)
def draw():
  primitif.basic.draw_margin(py5.width, py5.height, 25, c=[0,0,0,255])
  primitif.basic.draw kartesian(py5.width, py5.height, 25, c=[0,0,0,255])
  primitif.basic.draw HP(py5.width, py5.height, 25, c=[0,0,0,255])
  primitif.basic.draw bob(py5.width, py5.height, 25, c=[0,0,0,255])
  primitif.basic.draw freddy fnaf(py5.width, py5.height, 25, c=[0,0,0,255])
py5.run_sketch()
import primitif.line
import py5
def draw_margin(width, height, margin, c=[0,0,0,255]):
  py5.stroke(c[0], c[1], c[2], c[3])
  py5.points(primitif.line.line dda(10,10,790,10))
  py5.points(primitif.line.line dda(10,10,10,590))
  py5.points(primitif.line.line dda(10,590,790,590))
  py5.points(primitif.line.line dda(790,590,790,10))
def draw kartesian(width, height, margin, c=[0,0,0,255]):
  py5.stroke(c[0], c[1], c[2], c[3])
  py5.points(primitif.line.line dda(10,300,790,300))
  py5.points(primitif.line.line dda(400,10,400,590))
def draw_HP(width, height, margin,c=[0,0,0,255]):
  py5.stroke(c[0], c[1], c[2], c[3])
  py5.fill(0,113,45)
  py5.square(620, 150, 200)
  py5.rect(620,275, 130,50)
  py5.no stroke()
  py5.fill(30,32,30)
  py5.square(570, 100, 50)
  py5.square(670, 100, 50)
  py5.fill(30,32,30)
  py5.rect(578, 210, 35, 81)
  py5.rect(662, 210, 35, 81)
  py5.rect(620,175, 50,100)
```

```
def draw_bob(width, height, margin, c=[0,0,0,255]):
  py5.fill(255, 255, 0)
  py5.rect(200, 450, 150, 150)
  py5.fill(165, 42, 42)
  py5.rect(200, 500, 150, 50)
  py5.fill(255)
  py5.circle(150, 400, 35)
  py5.circle(250, 400, 35)
  py5.fill(255)
  py5.ellipse(200, 450, 55, 35)
  py5.fill(255, 0, 0)
  py5.triangle(175, 475, 200, 525, 225, 475)
def draw_freddy_fnaf(width, height, margin, c=[0,0,0,255]):
  py5.stroke(c[0], c[1], c[2], c[3])
  py5.no_stroke()
  py5.fill(145, 79, 30)
  py5.ellipse(200, 150, 250, 150)
  py5.fill(222, 172, 128)
  py5.circle(100, 75, 55)
  py5.circle(300, 75, 55)
  py5.fill(247, 220, 185)
  py5.circle(140, 125, 55)
  py5.circle(260, 125, 55)
  py5.fill(60, 61, 55)
  py5.triangle(170, 140, 230, 140, 200, 190)
  py5.fill(145, 79, 30)
  py5.ellipse(200, 260, 120, 70)
```


PENGUMPULAN

Ikuti Format yang diberikan di Google Classroom.