```
Distinct Elements Window of Size K in C++
#include <iostream>
#include <vector>
#include <unordered_map>
#include <deque>
using namespace std;
vector<int> distinctElementsInWindow(const
vector<int>& arr, int k) {
  vector<int> result;
  unordered map<int, int> frequencyMap;
  int n = arr.size();
  int i = 0;
  // Initialize the frequency map for the first window
  for (i = 0; i < k - 1; ++i) {
    frequencyMap[arr[i]]++;
  for (int j = -1; i < n; ++i, ++j) {
    // Add the next element (i-th element) to the
frequency map
    frequencyMap[arr[i]]++;
    // Record the number of distinct elements in the
current window
    result.push_back(frequencyMap.size());
    // Remove the (j-th element) as the window slides
    if (j \ge 0) {
       if (frequencyMap[arr[j]] == 1) {
         frequencyMap.erase(arr[j]);
       } else {
         frequencyMap[arr[j]]--;
  }
  return result;
}
int main() {
  3, 6};
  int k = 4:
  vector<int> result =
distinctElementsInWindow(arr, k);
  for (int num : result) {
    cout << num << " ";
  cout << endl;
  return 0;
```

Dry Run:

Initialize:

- arr = [2, 5, 5, 6, 3, 2, 3, 2, 4, 5, 2, 2, 2, 2, 3,6]
- k = 4
- frequencyMap = {} (Empty at the start)
- result = [] (Empty at the start)

Step-by-Step Iteration:

i	arr[i]	frequencyMap (Updated)	Distinct Elements	result (after update)	j
0	2	{2: 1}	1		-1
1	5	{2: 1, 5: 1}	2		0
2	5	{2: 1, 5: 2}	2		1
3	6	{2: 1, 5: 2, 6: 1}	3	[3]	2
4	3	{2: 1, 5: 1, 6: 1, 3: 1}	4	[3, 4]	3
5	2	{2: 2, 5: 1, 6: 1, 3: 1}	4	[3, 4, 4]	4
6	3	{2: 2, 5: 1, 6: 1, 3: 2}	3	[3, 4, 4, 3]	5
7	2	{2: 3, 5: 1, 6: 1, 3: 2}	3	[3, 4, 4, 3, 3]	6
8	4	{2: 3, 5: 1, 6: 1, 3: 2, 4: 1}	4	[3, 4, 4, 3, 3, 4]	7
9	5	{2: 3, 5: 2, 6: 1, 3: 2, 4: 1}	4	[3, 4, 4, 3, 3, 4, 4]	8
10	2	{2: 4, 5: 2, 6: 1, 3: 2, 4: 1}	3	[3, 4, 4, 3, 3, 4, 4, 3]	9
11	2	{2: 5, 5: 2, 6: 1, 3: 2, 4: 1}	2	[3, 4, 4, 3, 3, 4, 4, 3, 3]	10
12	2	{2: 6, 5: 2, 6: 1, 3: 2, 4: 1}	1	[3, 4, 4, 3, 3, 4, 4, 3, 3, 2]	11
13	2	{2: 7, 5: 2, 6: 1, 3: 2, 4: 1}	1	[3, 4, 4, 3, 3, 4, 4, 3, 3, 2, 2]	12
14	3	{2: 7, 5: 2, 6: 1, 3: 3, 4: 1}	2	[3, 4, 4, 3, 3, 4, 4, 3, 3, 2, 2,	13

[3] [3, 4, 4, 3, 3, 4, 4, 3, 3, 2, 2, 3] [15 6] [2: 7, 5: 2, 6: 2, 3: 3, 4: 1} [3, 4, 4, 3, 3, 2, 2, 14] [3, 4, 4, 3, 3, 2, 2, 14]		
Final Result:		
The output is the list of distinct elements in each sliding window of size k as the window slides across the array:		

Output:

$3\ 4\ 4\ 4\ 3\ 3\ 4\ 4\ 3\ 3\ 2\ 2\ 3$

Output: 3 4 4 4 3 3 4 4 3 3 2 2 3