Handin 8

Thomas Vinther & Jens Kristian Refsgaard Nielsen

19-11-18

1 Reachability

Let G=(V,E) be a directed graph in which each vertex $u\in V$ is labeled with a unique integer L(u) from the set $\{1,2,\ldots,|V|\}$. For each vertex $u\in V$, let $R(u)=\{v\in V:u\leadsto v\}$ be the set of vertices that are reacheable from u. Define $\min(u)$ to be the vertex in R(U) whose label is minimum. Give an O(V+E)-time algorithm that computes $\min(u)$ for all vertices $v\in V\mathcal{L}$.

1.1 Solution

Consider the following algorithm.

Time	Line nr	Pseudocode
$\Theta(V)$	1	for $v \in V$
1	2	$\min(u) = \infty$
O(V+E)	3	$ \operatorname{SCC}(G) $
O(V+E)	4	Topological-Sort (G^{SCC})
$O(V^{SCC})$	5	for $v \in V^{SCC}$ in reverse Topological order
$O(V^{SCC})$	6	$m = \min\{\mathcal{L}(z) \mid z \in V^{SCC}, (v, z) \in E^{SCC}\}, \text{ under convention } \min(\emptyset) = \infty$
	7	if the SCC v represents conatains a loop in G
$\mathrm{O}(V)$	8	$\mathcal{L}(v) = \min \{ m, \min \{ L(u) \mid u \in v \cap V \} \}$
1	9	else $\mathcal{L}(v) = m$
$\mathrm{O}(V)$	10	for $u \in v \cap V$
1	11	$\min(u) = \mathcal{L}(v)$

Correctness: Note that this problem has optimal substructure, when we calculate the L function we need only consider nodes that are greater in the topological sort of the DAG G^{SCC} , because these are the only nodes we can communicate with