1 Дрейф-диффузионная модель транспорта

1.1 Общее описание

Основная часть модели лазерного диода в \mathtt{ldsim} – это дрейф-диффузионная модель транспорта свободных носителей заряда в полупроводнике. Эта модель состоит из уравнений непрерывности плотностей тока электронов $\mathbf{j_n}$ и дырок $\mathbf{j_p}$, а также уравнения Пуассона:

$$\begin{split} -\nabla(\varepsilon\varepsilon_0\nabla\psi) &= q\left(C-n+p\right).\\ \nabla\mathbf{j_n} &- q\frac{\partial n}{\partial t} = qR,\\ \nabla\mathbf{j_p} &+ q\frac{\partial p}{\partial t} = -qR, \end{split}$$

Здесь n, p — концентрации свободных электронов и дырок, соответственно; ψ — электростатический потенциал; $C=N_D^+-N_A^-$ — концентрация ионизированных примесей; R — скорость рекомбинации; q — элементарный заряд; $\varepsilon\varepsilon_0$ — диэлектрическая проницаемость.

Мы рассматриваем только стационарную задачу, поэтому производные концентраций по времени $(\frac{\partial n}{\partial t}$ и $\frac{\partial p}{\partial t})$ везде равны 0. Также в текущей версии ldsim моделирование транспорта осуществляется только в вертикальном направлении x, т.е. в направлении роста эпитаксиальной структуры. В результате получается одномерная стационарная модель, описываемая следующими уравнениями:

$$-\frac{d}{dx}\left(\varepsilon\varepsilon_0\frac{d\psi}{dx}\right) = q\left(C - n + p\right). \tag{1}$$

$$\frac{dj_n}{dx} = qR, (2)$$

$$\frac{dj_p}{dx} = -qR,\tag{3}$$

1.2 Вид решения и граничные условия

Расчёт концентраций свободных носителей заряда осуществляется по следующим формулам:

$$n = N_c F_{1/2}(\eta_n),$$
 $\eta_n = \frac{E_{fn} - E_c}{kT} = \frac{q(\psi - \varphi_n) - E_c}{kT};$
 $p = N_v F_{1/2}(\eta_p),$ $\eta_p = \frac{E_v - E_{fp}}{kT} = \frac{E_v - q(\psi - \varphi_p)}{kT}.$

Здесь $N_{c,v}=2\left(\frac{2\pi m_{n,p}^*kT}{h^2}\right)^{3/2}$ — эффективные плотности состояний в зоне проводимости и валентной зоне; $F_{1/2}(\eta)=\frac{2}{\sqrt{\pi}}\int_0^\infty \frac{x^{1/2}dx}{1+\exp(x-\eta)}$ — интеграл Ферми степени 1/2; $E_{fn,fp}$ — квазиуровни Ферми для электронов и дырок; E_c — дно зоны проводимости; E_v — потолок валентной зоны; $\varphi_{n,p}$ — квазипотенциалы Ферми для электронов и дырок; k — постоянная Больцмана; T — температура.

В результате решением системы (1–3) является тройка значений $(\psi, \varphi_n, \varphi_p)$ для всех точек структуры. Граничные условия для решения такого вида запишутся как:

$$\psi(0) = \psi_{bi}(0) + V_1, \qquad \varphi_n(0) = \varphi_p(0) = V_1,
\psi(d) = \psi_{bi}(d) + V_2, \qquad \varphi_n(d) = \varphi_p(d) = V_2.$$

Здесь d – толщина эпитаксиальной структуры; $V_{1,2}$ – напряжения (потенциалы) прикладываемые в x=0 и x=d, т.е. внешнее напряжение $V_{ext}=V_2-V_2$; ψ_{bi} – встроенный потенциал, получаемый при решении уравнения Пуассона (1) для $V_{ext}=0$. Из выбранного вида решения следуют граничные условия на гетеропереходах – непрерывность квазиуровней Ферми E_{fn} и E_{fp} .

1.3 Спонтанная рекомбинация

При расчёте скорости рекомбинации R учитываются 3 механизма:

$$R = R_{SRH} + R_{rad} + R_{Aug}$$

рекомбинация Шокли-Рида-Холла (R_{SRH}) , излучательная рекомбинация (R_{rad}) и Оже-рекомбинация (R_{Aug}) . Для их расчёта используются следующие формулы:

$$R_{SRH} = \frac{np - n_1 p_1}{(n + n_1)\tau_p + (p + n_1)\tau_n}, \quad n_1 = n_0 \frac{1 - f_{t0}}{f_{t0}}, \quad p_1 = p_0 \frac{f_{t0}}{1 - f_{t0}}, \quad f_{t0} = \frac{1}{1 + \exp\left(\frac{E_t - E_f}{kT}\right)};$$

$$R_{rad} = B(np - n_0 p_0);$$

$$R_{Aug} = (C_n n + C_p p)(np - n_0 p_0).$$

Здесь n_0 , p_0 – равновесные концентрации; $\tau_{n,p}$ – временя захвата электронов и дырок на глубокие уровни (ловушики захвата); f_{t0} – доля заполненных ловушек захвата, расположенных на уровне E_t ; B – коэффициент излучательной рекомбинации; $C_{n,p}$ – коэффициенты Оже-рекомбинации.

1.4 Плотность тока и схема дискретизации

Приведём по две формулы для плотностей тока электронов j_n и дырок j_p , первая записывается как сумма дрейфовой и диффузионной компонент, вторая определяет плотность тока через изменение квазипотенциала.

$$j_n = -q\mu_n n \frac{d\psi}{dx} + qD_n \frac{dn}{dx} = -q\mu_n n \frac{d\varphi_n}{dx}; \qquad j_p = -q\mu_p p \frac{d\psi}{dx} - qD_p \frac{dp}{dx} = -q\mu_p p \frac{d\varphi_p}{dx}.$$

В уравнения (2, 3) входят производные плотностей тока по координате x. Из-за того, что стандартная дискретизация с помощью конечных разностей приводит к нестабильности системы, обычно при моделировании дрейф-диффузионного транспорта используют схему Шарфеттера—Гуммеля:

$$j_{n;i,i+1} = -\frac{q\mu_n V_T}{h_{i,i+1}} \left[\mathcal{B} \left(-\frac{\psi_{i+1} - \psi_i}{V_T} \right) n_i - \mathcal{B} \left(\frac{\psi_{i+1} - \psi_i}{V_T} \right) n_{i+1} \right];$$

$$j_{p;i,i+1} = \frac{q\mu_p V_T}{h_{i,i+1}} \left[\mathcal{B}\left(\frac{\psi_{i+1} - \psi_i}{V_T}\right) p_i - \mathcal{B}\left(-\frac{\psi_{i+1} - \psi_i}{V_T}\right) p_{i+1} \right].$$

Здесь $\mathcal{B}(x) = x/(\exp x - 1)$ – функция Бернулли, $V_T = kT/q$ – тепловой потенциал. Таким образом, используется метод конечных объёмов – значения плотностей тока определяются только на границах объёмов через потенциалы внутри объёмов.

$$j_{n;i,i+1} = -\frac{q\mu_n V_T}{h_{i,i+1}} N_c \sqrt{\frac{F_{1/2}(\eta_{n;i}) F_{1/2}(\eta_{n;i+1})}{\exp(\eta_{n;i}) \exp(\eta_{n;i+1})}} \left[\mathcal{B}\left(-\frac{\psi_{i+1} - \psi_i}{V_T}\right) \exp(\eta_{n;i}) - \mathcal{B}\left(\frac{\psi_{i+1} - \psi_i}{V_T}\right) \exp(\eta_{n;i+1}) \right].$$

Аналогичная формула используется для расчёта плотности тока дырок.

В результате система (1–3) запишется в следующем виде:

$$\varepsilon_{i} \left(\frac{1}{h_{i,i+1}} \psi_{i+1} - \left[\frac{1}{h_{i,i+1}} + \frac{1}{h_{i-1,i}} \right] \psi_{i} + \frac{1}{h_{i-1,i}} \psi_{i-1} \right) + \frac{q}{\varepsilon_{0}} \left(C_{i} + p(\psi_{i}, \varphi_{p;i}) - n(\psi_{i}, \varphi_{n;i}) \right) \omega_{i} = 0; \tag{4}$$

$$qR\omega_i - (j_{n:i,i+1} - j_{n:i-1,i}) = 0; (5)$$

$$-qR\omega_i - (j_{p:i,i+1} - j_{p:i-1,i}) = 0. (6)$$

Здесь $h_{i,i+1}=x_{i+1}-x_i$ – расстояние между узлами сетки, $\omega_i=x_{i;i+1}-x_{i-1;i}$ – 1-мерный объём.

2 Лазерная генерация

В этом разделе описаны модификации, вносимые в описанную выше дрейф-диффузионную систему для моделирования полупроводникового лазера. Рассматриваются две модели: 1-мерная (1D) и 2-мерная (2D). В 1D случае уравнение, описывающее лазерную генерацию, нульмерное, поэтому решение описывается единственным числом – концентрацией фотонов в волноводе S – а также зависимостями $\psi(x)$, $\varphi_n(x)$ и $\varphi_p(x)$. Именно из-за наличия зависимости части решения от x эта модель и называется 1-мерной. В 2-мерном случае все перечисленные параметры являются функциями от продольной (вдоль оси резонатора) координаты z. При этом соседние точки по z-координате связаны только через концентрацию фотонов, продольный транспорт не учитывается. Такое упрощение не является критичным, при используемой формулировке задачи в большинстве случаев транспорт относительно z действительно будет пренебрежимо мал.

2.1 1D модель

В данном случае лазерная генерация описывается с помощью скоростного уравнения для концентрации фотонов в резонаторе S:

 $\frac{\partial S}{\partial t} = v_g (\Gamma g - \alpha_{int} - \alpha_m) S + \beta_{sp} R_{rad}. \tag{7}$

Здесь v_g – групповая скорость фотонов в резонаторе; Γ – коэффициент оптического ограничения, т.е. доля лазерной моды, располагающаяся в активной области лазера; g – материальное усиление; α_{int} – внутренние оптические потери; $\alpha_m = \frac{1}{2L} \ln \frac{1}{R_1 R_2}$ – потери на вывод излучения, L – длина резонатора, $R_{1,2}$ – коэффициенты отражения зеркал; β_{sp} – коэффициент спонтанного излучения, т.е. доля спонтанного излучения, входящего в лазерную моду.

Материальное усиление g зависит от концентраций электронов и дырок. В ldsim для его расчёта используется следующая модификация стандартной логарифмической формулы

$$g(n,p) = g_0 \ln \frac{\min (n,p)}{n_{tr}},$$

где коэффициент усиления g_0 и концентрация прозрачности n_{tr} являются характеристиками активной области.

. . .

2.2 2D модель

. . .