# **PCB ROUTING TECHNIQUES**

# 1. Component Placement



#### • Strategic Placement:

- a. Plan placement based on signal flow.
- b. Group components by function (analog, digital, power) to minimize interference.

#### • Minimize Trace Lengths:

a. Place components to shorten trace lengths.

## • Sensitive Components:

a. Keep sensitive components away from high-frequency and high-power traces.

#### • Thermal Considerations:

a. Place heat-generating components to optimize thermal management.

#### • Accessibility:

a. Ensure critical components are accessible for testing and debugging.

## • Power Supply Proximity:

a. Place power supply components close to the load to reduce voltage drop.

#### • Signal Path Optimization:

a. Arrange components to maintain a direct and clear signal path.

#### • Grounding:

a. Place grounding components close to related parts to minimize noise.



# 2. Trace Length



#### • Keep Traces Short:

a. Minimize trace lengths to reduce signal delay and interference.

# • Consistent Lengths:

a. Maintain consistent lengths for parallel high-speed signals to ensure timing integrity.

#### • Direct Paths:

a. Use direct routing paths to minimize overall trace length.

#### • Avoid Loops:

a. Avoid unnecessary loops in trace routing to reduce inductance and noise.

#### • Length Matching:

a. Match lengths of differential pair traces (e.g., USB, HDMI) to maintain signal quality.



# 3. Trace Width and Clearance



#### Appropriate Widths:

a. Choose trace widths based on current carrying capacity and impedance requirements.

#### Clearance:

a. Maintain adequate spacing between traces to prevent crosstalk and shorts.

#### • High Current Traces:

a. Use wider traces for high-current paths to minimize resistance and heating.

#### • High-Frequency Signals:

a. Ensure consistent trace width for high-frequency signals to maintain impedance.

#### • Manufacturing Tolerances:

a. Adhere to manufacturer's specifications for minimum trace width and clearance.

#### Safety Standards:

a. Follow safety standards for spacing between high-voltage traces and other components.



# 4. Signal Integrity



#### • Uniform Trace Widths:

a. Use consistent trace widths to maintain controlled impedance.

#### • Avoid Sharp Bends:

a. Use smooth, gradual bends instead of sharp angles to prevent signal reflection.

## • Differential Pair Routing:

a. Route differential pairs (e.g., LVDS, USB) with consistent spacing and parallelism.

#### • Minimize Via Usage:

a. Reduce the number of vias to avoid impedance discontinuities and signal degradation.

#### • Controlled Impedance:

a. Design traces with controlled impedance, especially for high-frequency signals.

# • Proper Grounding:

a. Use continuous ground planes to provide a stable reference and reduce noise.

## • Isolate High-Speed Traces:

a. Keep high-speed signal traces away from noisy components and power lines.

## • Match Trace Lengths:

a. Ensure matched trace lengths for critical high-speed signals to maintain timing integrity.



# 5. Layer Management



# • Separate Signal Types:

a. Use different layers for different signal types (e.g., analog, digital, power).

## • Dedicated Power and Ground Planes:

a. Allocate entire layers for power and ground to ensure low impedance and stable reference.

#### • Signal Layer Arrangement:

a. Organize signal layers to minimize crosstalk and interference (e.g., high-speed signals between ground planes).

# • Stack-Up Planning:

a. Plan the layer stack-up to balance signal integrity, thermal performance, and manufacturability.

## • Minimize Layer Switching:

a. Reduce the number of layer changes for critical signals to maintain signal integrity.

## • Adjacent Ground Planes:

a. Place ground planes adjacent to signal layers to provide consistent return paths.

## • Isolation of Noisy Signals:

a. Isolate noisy signals on separate layers to prevent interference with sensitive signals.

## • Thermal Management:

a. Use thermal vias and planes to manage heat dissipation across layers.



## 6. Via Placement



#### • Minimize Via Use:

a. Reduce the number of vias to avoid impedance discontinuities and signal integrity issues.

#### • Avoid Critical Paths:

a. Place vias away from high-frequency and high-speed signal paths to prevent signal degradation.

#### • Thermal Management:

a. Use thermal vias to help dissipate heat from high-power components.

## • Ground and Power Connections:

a. Ensure robust connections with multiple vias for ground and power planes.

#### • Via-in-Pad Design:

a. Use via-in-pad for high-density designs but ensure proper filling and capping to avoid solder issues.

#### • Strategic Placement:

a. Place vias strategically to optimize routing efficiency and reduce trace length.

#### • Staggered Vias:

a. Use staggered vias for differential pairs to maintain trace length matching.

#### • Manufacturing Constraints:

a. Follow manufacturer guidelines for via sizes, aspect ratios, and annular ring requirements.



## 7. Power and Ground Distribution



#### • Dedicated Planes:

a. Use entire layers dedicated to power and ground to ensure low impedance and stable voltage distribution.

#### • Wide Traces:

a. Use wide traces for power and ground connections to minimize voltage drop and resistance.

#### • Short and Direct Paths:

a. Keep power and ground paths as short and direct as possible to reduce inductance and noise.

#### • Multiple Vias:

a. Use multiple vias to connect power and ground planes, improving current handling and thermal performance.

## • Decoupling Capacitors:

a. Place decoupling capacitors close to IC power pins to filter noise and stabilize the power supply.

# • Star Routing:

a. Implement star routing for power distribution to prevent ground loops and ensure even power distribution.

## • Ground Plane Continuity:

a. Ensure continuity of ground planes across layers to provide a solid reference and reduce EMI.

#### Avoid Ground Loops:

a. Design the layout to avoid ground loops, which can introduce noise and interfere with signal integrity.



# 8. Crosstalk and Electromagnetic Interference (EMI)



#### • Adequate Spacing:

a. Maintain sufficient spacing between high-speed or high-current traces to reduce crosstalk.

#### • Shielding:

a. Use ground planes or guard traces to shield sensitive signals from noisy ones.

#### • Proper Trace Routing:

a. Route high-speed signals on internal layers between ground planes to reduce EMI.

#### • Differential Pairs:

a. Route differential pairs together with consistent spacing to cancel out noise.

#### • Perpendicular Routing:

a. Route adjacent signal layers perpendicularly to minimize coupling and crosstalk.

#### • Isolate Noisy Components:

a. Place noisy components away from sensitive circuits to reduce EMI.

#### • Decoupling Capacitors:

a. Use decoupling capacitors to filter noise on power lines and stabilize voltage.

#### • Minimize Loop Areas:

a. Reduce the loop area of signal paths to minimize the potential for EMI.

#### • Controlled Impedance:

a. Design traces with controlled impedance to maintain signal integrity and reduce reflections.

#### • Use of Ferrite Beads:

a. Incorporate ferrite beads on power lines to suppress high-frequency noise.



# 9. Routing Order

## • Critical Signals First:

a. Route critical signals such as clocks and high-speed data lines first to ensure proper timing and signal integrity.

#### • Efficient Paths:

a. Plan efficient routing paths to minimize trace length and interference.

#### • High-Speed Signals:

a. Prioritize routing high-speed signals before lower-frequency signals to prevent signal degradation.

## • Power and Ground Traces:

a. Route power and ground traces after critical signals to provide stable power distribution and grounding.

# • Signal Groups:

a. Route signals in groups based on functionality to optimize signal flow and reduce crosstalk.

#### • Differential Pairs:

a. Route differential pairs together with consistent spacing to maintain signal integrity.

# • Layer Switching:

a. Minimize layer changes for critical signals to avoid impedance mismatches.

#### • Final Routing Pass:

a. Fill in remaining routing areas with less critical signals, considering manufacturability and space constraints.

# 10. Decoupling Capacitors



#### Close Proximity:

a. Place decoupling capacitors as close as possible to the power pins of ICs to minimize loop inductance.

#### Across Power Rails:

a. Connect decoupling capacitors across the power rails of ICs to provide a stable power supply and filter out noise.

## Multiple Capacitors:

a. Use multiple capacitors of different values (e.g., ceramic and electrolytic) to address a wide frequency range of noise.

## • Diverse Capacitor Types:

a. Employ a combination of low-ESR ceramic capacitors for high-frequency noise and bulk electrolytic capacitors for low-frequency noise.

#### • Parallel Paths:

a. Place decoupling capacitors in parallel paths for high-current components to ensure adequate power delivery.

## • Via Stitching:

a. Use via stitching around decoupling capacitors to enhance their performance and reduce parasitic inductance.



## • Strategic Placement:

a. Distribute decoupling capacitors evenly across the PCB layout to provide uniform power distribution.

# • Signal Integrity Consideration:

a. Ensure that decoupling capacitors do not interfere with signal traces and routing.



# 11. Thermal Management



## • Component Placement:

a. Strategically place high-power components to optimize heat dissipation.

#### • Heat Dissipation Paths:

a. Route high-power traces to distribute heat evenly across the PCB.

#### • Thermal Vias:

a. Use thermal vias to connect heat-generating components to internal or external copper layers for improved heat dissipation.

## • Thermal Relief:

a. Implement thermal relief connections for vias connected to copper pours to minimize thermal stress during soldering.

#### • Thermal Pads:

a. Use thermal pads or exposed copper areas to enhance heat transfer from components to the PCB.

#### • Keepout Zones:

a. Create keepout zones around heat-sensitive components to prevent them from being affected by nearby heat sources.

#### • Heat Sinks:

a. Utilize heat sinks on components with high thermal dissipation requirements to further enhance cooling.

#### • Simulation Tools:

a. Use thermal simulation tools to predict and optimize heat dissipation before PCB fabrication.



## 12. Design Rule Check (DRC)



#### Automated Verification:

a. Use DRC tools to automatically check the PCB design against predefined design rules and constraints.

#### • Electrical Integrity:

a. Ensure proper clearance between traces, minimum trace widths, and correct layer assignments to maintain electrical integrity.

## • Manufacturability:

a. Verify design compliance with manufacturing constraints such as minimum annular ring size, drill-to-copper spacing, and solder mask clearances.

#### • Signal Integrity:

a. Check for impedance mismatches, signal length matching, and proper termination to maintain signal integrity.

#### • Layer Stackup:

a. Validate layer stackup configurations, including layer thicknesses, materials, and dielectric constants.

#### • Spacing and Clearance:

a. Verify adequate spacing and clearance between components, vias, and board edges to prevent shorts and ensure manufacturability.

#### • Mask and Silkscreen Alignment:

a. Check alignment of solder mask openings and silkscreen markings with component footprints to avoid misalignment during manufacturing.

#### • Comprehensive Analysis:

a. Conduct a comprehensive analysis of the entire PCB layout to identify and resolve potential design violations and errors.



#### REFERENCES

- 1. <a href="https://www.protoexpress.com/blog/component-placement-guidelines-pcb-design-assembly/#">https://www.protoexpress.com/blog/component-placement-guidelines-pcb-design-assembly/#</a>
- 2. https://www.protoexpress.com/blog/best-high-speed-pcb-routing-practices/
- 3. https://www.integrasources.com/blog/high-speed-pcb-design-guidelines/
- 4. <a href="https://www.autodesk.com/products/fusion-360/blog/trace-length-and-high-speed-designs/">https://www.autodesk.com/products/fusion-360/blog/trace-length-and-high-speed-designs/</a>
- 5. https://www.protoexpress.com/blog/understanding-signal-integrity/
- 6. https://www.protoexpress.com/blog/best-high-speed-pcb-routing-practices/
- 7. <a href="https://circuitdigest.com/article/an-overview-of-layer-stack-management-in-pcb-design">https://circuitdigest.com/article/an-overview-of-layer-stack-management-in-pcb-design</a>
- 8. <a href="https://docs.ultrazohm.com/hardware/altium/altium">https://docs.ultrazohm.com/hardware/altium/altium</a> db lib/altium Layer Stack.html
- 9. https://www.protoexpress.com/blog/pcb-stack-up-plan-design-manufacture-repeat/
- 10. https://resources.altium.com/p/pcb-via
- 11. https://www.pcbgogo.com/blog/What Is Via in Pad .html

- 12. <a href="https://www.4pcb.com/blog/the-importance-of-power-and-ground-planes-in-pcb-design/">https://www.4pcb.com/blog/the-importance-of-power-and-ground-planes-in-pcb-design/</a>
- 13. https://resources.altium.com/p/should-you-use-your-power-plane-as-a-return-path
- 14. <a href="https://www.autodesk.com/products/fusion-360/blog/electromagnetic-interference-emi-effects-on-circuit-board-pcb/">https://www.autodesk.com/products/fusion-360/blog/electromagnetic-interference-emi-effects-on-circuit-board-pcb/</a>
- 15. <a href="https://www.nextpcb.com/blog/pcb-crosstalk">https://www.nextpcb.com/blog/pcb-crosstalk</a>
- 16. https://www.protoexpress.com/blog/7-pcb-design-tips-solve-emi-emc-issues/
- 17. https://www.protoexpress.com/blog/decoupling-capacitor-use/
- 18. <a href="https://e2e.ti.com/blogs\_/archives/b/precisionhub/posts/the-decoupling-capacitor-is-it-really-necessary">https://e2e.ti.com/blogs\_/archives/b/precisionhub/posts/the-decoupling-capacitor-is-it-really-necessary</a>
- 19. <a href="https://www.protoexpress.com/blog/12-pcb-thermal-management-techniques-to-reduce-pcb-heating/">https://www.protoexpress.com/blog/12-pcb-thermal-management-techniques-to-reduce-pcb-heating/</a>
- 20. <a href="https://www.powerelectronicsnews.com/high-power-dissipation-copper-filled-thermal-vias-by-kuprion/">https://www.powerelectronicsnews.com/high-power-dissipation-copper-filled-thermal-vias-by-kuprion/</a>
- 21. <a href="https://www.pcbway.com/blog/PCB\_Basic\_Information/Copper\_Coin\_Embedded\_PC">https://www.pcbway.com/blog/PCB\_Basic\_Information/Copper\_Coin\_Embedded\_PC</a>
  B for Heat Dissipation PCB Knowledge 00c055cb.html
- 22. <a href="https://www.altium.com/documentation/altium-designer/pcb-design-rule-checking?version=18.1">https://www.altium.com/documentation/altium-designer/pcb-design-rule-checking?version=18.1</a>
- 23. <a href="https://www.altium.com/documentation/altium-designer/setting-up-running-pcb-design-rule-check">https://www.altium.com/documentation/altium-designer/setting-up-running-pcb-design-rule-check</a>