

Parallel Algorithms

Shehzan Mohammed CIS 5650 - Fall 2024

Agenda - Parallel Algorithms

- Parallel Reduction
- Scan (Naive and Work Efficient)
- Applications of Scan
 - Stream Compaction
 - Summed Area Tables (SAT)
 - Radix Sort

- Given an array of numbers, design a parallel algorithm to find the sum.
- Consider:
 - Arithmetic intensity: compute to memory access ratio

- Given an array of numbers, design a parallel algorithm to find:
 - The sum
 - The maximum value
 - The product of values
 - The average value
- How different are these algorithms?

- **Reduction**: An operation that computes a single result from a set of data
- Parallel Reduction: Do it in parallel.

• Example: Find the sum:

0 1 2 3 4 5 6 7

- Similar to brackets for a basketball tournament
- log(n) passes for n elements

- d = 0, $2^{d+1} = 2$
- $2^{d+1} 1 = 1$
- $2^d 1 = 0$

```
for d = 0 to \log_2 n - 1

for all k = 0 to n - 1 by 2^{d+1} in parallel x[k + 2^{d+1} - 1] += x[k + 2^d - 1];

// In this pass, for k = (0, 2, 4, 6)

// x[k + 1] += x[k];
```


- $d = 1, 2^{d+1} = 4$
- $2^{d+1} 1 = 3$
- $2^d 1 = 1$

```
for d = 0 to \log_2 n - 1

for all k = 0 to n - 1 by 2^{d+1} in parallel x[k + 2^{d+1} - 1] += x[k + 2^d - 1];

// In this pass, for k = (0, 4)

// x[k + 3] += x[k + 1];
```


- d = 2, $2^{d+1} = 8$ $2^{d+1} 1 = 7$
- $2^d 1 = 3$

```
for d = 0 to log_2 n - 1
  for all k = 0 to n - 1 by 2^{d+1} in parallel
   x[k + 2^{d+1} - 1] += x[k + 2^{d} - 1];
// In this pass, for k = (0)
// x[k + 7] += x[k + 3];
```


Note the +=

for
$$d = 0$$
 to $log_2 n - 1$
for all $k = 0$ to $n - 1$ by 2^{d+1} in parallel $x[k + 2^{d+1} - 1] += x[k + 2^d - 1]$

• The array is modified in place $x[k + 2^{d+1} - 1] += x[k + 2^d - 1]$

All-Prefix-Sums

- All-Prefix-Sums
- Input
 - Array of n elements: [a0, a1, a2,...., an-1]
 - Binary associate operator: (9)
 - Identity: I
- Outputs the array:

$$[I,a_0,(a_0\oplus a_1),(a_0\oplus a_1\oplus a_2),...,(a_0\oplus a_1\oplus a_2\oplus a_{n-2})]$$

All-Prefix-Sums

- Example
 - If ⊕ is addition, the array
 - [3 1 7 0 4 1 6 3]
 - is transformed to
 - [0 3 4 11 11 15 16 22]
- Seems sequential, but there is an efficient parallel solution

• Exclusive Scan: Element j of the result does not include element j of the input:

```
- In: [ 3 1 7 0 4 1 6 3]

- Out: [ 0 3 4 11 11 15 16 22]
```

• Inclusive Scan (Prescan): All elements including j are summed

```
-In: [ 3 1 7 0 4 1 6 3]
```

- Out: [3 4 11 11 15 16 22 25]

 How do you generate an exclusive scan from an inclusive scan?

```
- Input: [ 3 1 7 0 4 1 6 3]
- Inclusive: [ 3 4 11 11 15 16 22 25]
- Exclusive: [ 0 3 4 11 11 15 16 22]
- // Shift right, insert identity
```

• How do you go in the opposite direction?

• Design a parallel algorithm for Inclusive Scan

```
-In: [3 1 7 0 4 1 6 3]
```

- Out: [3 4 11 11 15 16 22 25]

- Consider:
 - Total number of additions

Single thread is straightforward

```
out[0] = in[0]; // assuming n > 0
for (int k = 1; k < n; ++k)
  out[k] = out[k - 1] + in[k];</pre>
```

- n I adds for an array of length n
 - (ignoring array indices)

How many adds will our parallel version have?

Naive Parallel Scan


```
for d = 1 to log_2 n

for all k in parallel

if (k >= 2^{d-1})

x[k] = x[k - 2^{d-1}] + x[k];
```

- Is this exclusive or inclusive?
- Each thread
 - Writes one sum
 - Reads two values

• Naive Parallel Scan: Input

0 1 2 3 4 5 6 7

for all k in parallel
 if (k >= 2^{d-1})
 x[k] = x[k - 2^{d-1}] + x[k];

for d = 1 to $\log_2 n$

• Naive Parallel Scan: d = 1, $2^{d-1} = 1^{x[k] = x[k' - 2^{d-1}] + x[k]}$;

0 1 2 3 4 5 6 7

for all k in parallel
 if (k >= 2^{d-1})
 x[k] = x[k - 2^{d-1}] + x[k];

for d = 1 to $\log_2 n$

• Naive Parallel Scan:
$$d = 1$$
, $2^{d-1} = 1^{x[k] = x[k - 2^{d-1}] + x[k]}$;

for all k in parallel
 if (k >= 2^{d-1})
 x[k] = x[k - 2^{d-1}] + x[k];

for d = 1 to $\log_2 n$

• Naive Parallel Scan:
$$d = 1$$
, $2^{d-1} = 1^{x[k] = x[k - 2^{d-1}] + x[k]}$;

• Naive Parallel Scan: d = 1, $2^{d-1} = 1^{if (k >= 2^{d-1})}$

for d = 1 to $\log_2 n$

• Naive Parallel Scan: d = 1, $2^{d-1} = 1^{if (k >= 2^{d-1})}$

for d = 1 to $\log_2 n$

• Naive Parallel Scan: d = 1, $2^{d-1} = 1^{if (k >= 2^{d-1})}$

for d = 1 to $\log_2 n$

• Naive Parallel Scan: d = 1, $2^{d-1} = 1^{if (k >= 2^{d-1})}$

for d = 1 to $\log_2 n$

• Naive Parallel Scan: d = 1, $2^{d-1} = 1^{if (k >= 2^{d-1})}$

for d = 1 to $\log_2 n$

for d = 1 to log₂n
 for all k in parallel
 if (k >= 2^{d-1})
 x[k] = x[k - 2^{d-1}] + x[k];

• Naive Parallel Scan:
$$d = 1$$
, $2^{d-1} = 1^{x[k] = x[k - 2^{d-1}] + x[k]}$;

• But remember, it runs in parallel!

• Naive Parallel Scan: d = 1, $2^{d-1} = 1$

for
$$d = 1$$
 to $log_2 n$
for all k in parallel
if $(k >= 2^{d-1})$
 $x[k] = x[k - 2^{d-1}] + x[k];$

• But remember, it runs in parallel!

for d = 1 to log₂n
 for all k in parallel
 if (k >= 2^{d-1})
 x[k] = x[k - 2^{d-1}] + x[k];

• Naive Parallel Scan:
$$d = 2$$
, $2^{d-1} = 2^{x[k] = x[k - 2^{d-1}] + x[k]}$;

for all k in parallel
 if (k >= 2^{d-1})
 x[k] = x[k - 2^{d-1}] + x[k];

for d = 1 to $\log_2 n$

• Naive Parallel Scan:
$$d = 2$$
, $2^{d-1} = 2^{x[k] = x[k - 2^{d-1}] + x[k]}$;

Consider k=7

if
$$(7 \ge 2^2-1)$$

 $\times [7] = \times [7 - 2^2-1] + \times [7]$

for d = 1 to log₂n
 for all k in parallel
 if (k >= 2^{d-1})
 x[k] = x[k - 2^{d-1}] + x[k];

• Naive Parallel Scan: d = 2, $2^{d-1} = 2^{x[k] = x[k - 2^{d-1}] + x[k]}$;

Consider k=7

if
$$(7 \ge 2^{(2-1)})$$

 $\times [7] = \times [7 - 2^{(2-1)}] + \times [7]$

for d = 1 to log₂n
 for all k in parallel
 if (k >= 2^{d-1})
 x[k] = x[k - 2^{d-1}] + x[k];

• Naive Parallel Scan: d = 2, $2^{d-1} = 2^{x[k] = x[k - 2^{d-1}] + x[k]}$;

for d = 1 to log₂n
 for all k in parallel
 if (k >= 2^{d-1})
 x[k] = x[k - 2^{d-1}] + x[k];

• Naive Parallel Scan: d = 3, $2^{d-1} = 4^{x[k] = x[k - 2^{d-1}] + x[k]}$;

for d = 1 to log₂n
 for all k in parallel
 if (k >= 2^{d-1})
 x[k] = x[k - 2^{d-1}] + x[k];

• Naive Parallel Scan: d = 3, $2^{d-1} = 4$

if
$$(7 \ge 2^{(3-1)})$$

 $x[7] = x[7 - 2^{(3-1)}] + x[7]$

for d = 1 to $log_2 n$ for all k in parallel if $(k >= 2^{d-1})$ $x[k] = x[k - 2^{d-1}] + x[k];$

Naive Parallel Scan: Final

Naive Parallel Scan

Number of adds

- Sequential Scan: O(n)
- Naive Parallel Scan: O(nlog2(n))

Algorithmic Complexity

- Sequential Scan: O(n)
- Naive Parallel Scan: O(log2(n))

Naive Parallel Scan

Number of adds

- Sequential Scan: O(n)
- Naive Parallel Scan: O(nlog2(n))
- Algorithmic Complexity
 - Sequential Scan: O(n)
 - Naive Parallel Scan: O(log2(n))
- Can we make it faster?

Balanced binary tree

- -n leafs = $log_2 n$ levels
- Each level, **d**, has **2**^d nodes

Balanced binary tree

- -n leafs = $log_2 n$ levels
- Each level, d, has 2^d nodes

- Use a *balanced binary tree* (in concept) to perform Scan in two phases:
 - Up-Sweep (Parallel Reduction)
 - Down-Sweep

Up-Sweep

```
// Same code as our Parallel Reduction for d = 0 to log_2n - 1 for all k = 0 to n - 1 by 2^{d+1} in parallel x[k + 2^{d+1} - 1] += x[k + 2^d - 1];
```


- Imagine array as a tree
 - Array stores only left child
 - Right child is the element itself
- For node at index n
 - Left child index = n/2 (rounds down)
 - Right child index = n

Up-Sweep

```
// Same code as our Parallel Reduction for d = 0 to log_2 n - 1 for all k = 0 to n - 1 by 2^{d+1} in parallel x[k + 2^{d+1} - 1] += x[k + 2^d - 1];
```


Down-Sweep

- "Traverse" back down tree using partial sums to build the scan in place.
 - Set root to zero
 - At each pass, a node passes its value to its left child, and sets the right child to the sum of the previous left child's value and its value

Down-Sweep

- "Traverse" back down tree using partial sums to build the scan in place.
 - Set root to zero
 - At each pass, a node passes its value to its left child, and sets the right child to the sum of the previous left child's value and its value

```
x[n-1] = 0 for d = \log_2 n - 1 to 0 for all k = 0 to n - 1 by 2^{d+1} in parallel t = x[k+2^d-1]; \qquad // \text{ Save left child} x[k+2^d-1] = x[k+2^{d+1}-1]; // \text{ Set left child to this node's value} x[k+2^{d+1}-1] += t; \qquad // \text{ Set right child to old left value} + // \text{ this node's value}
```

Down-Sweep

• Remember: This is a tree, but stored as linear array Penn Engineering

Down-Sweep

At each level

- Left child: **Copy** the parent value
- Right child: Add the parent value and left child value copying root value.

Remember to think of this as a tree, not as array

Orange Arrow = Copy
Green Arrow + Black Arrow = Add

Down-Sweep

At each level

- Left child: Copy the parent value
- Right child: Add the parent value and left child value copying root value.

Remember to think of this as a tree, not as array

Orange Arrow = Copy
Green Arrow + Black Arrow = Add

Down-Sweep

At each level

- Left child: Copy the parent value
- Right child: **Add** the parent value and left child value copying root value.

Remember to think of this as a tree, not as array

Orange Arrow = Copy
Green Arrow + Black Arrow = Add

- Up-Sweep
 - -O(n) adds
- Down-Sweep
 - -O(n) adds
 - -O(n) swaps
- This *Exclusive Scan* can then be converted to an *Inclusive Scan*

- •Given an array of elements
 - -Create a new array with elements that meet a certain criteria, e.g. non null
 - -Preserve order

a b c d e f g h

- •Given an array of elements
 - -Create a new array with elements that meet a certain criteria, e.g. non null
 - -Preserve order

- •Used in path tracing, collision detection, sparse matrix compression, etc.
- Can reduce data transferred from GPU to CPU

- •Step 1: Compute temporary array containing
 - I if corresponding element meets criteria
 - -0 if element does not meet criteria

- •Step 1: Compute temporary array containing
 - I if corresponding element meets criteria
 - -0 if element does not meet criteria

- •Step 1: Compute temporary array containing
 - I if corresponding element meets criteria
 - -0 if element does not meet criteria

- •Step 1: Compute temporary array containing
 - I if corresponding element meets criteria
 - -0 if element does not meet criteria

- •Step 1: Compute temporary array containing
 - I if corresponding element meets criteria
 - 0 if element does not meet criteria
- Runs in parallel !!

- •Step 1: Compute temporary array containing
 - I if corresponding element meets criteria
 - 0 if element does not meet criteria
- Runs in parallel !!

• Step 2: Run exclusive scan on temporary array

- Step 2: Run exclusive scan on temporary array
- Scan also runs in parallel
- What can we do with the result?

Scan Result:

- Step 3: Scatter
 - Result of scan is index into final array
 - Only write an element if temporary array has a I

- Step 3: Scatter
 - Result of scan is index into final array
 - Only write an element if temporary array has a I

- Step 3: Scatter
 - Result of scan is index into final array
 - Only write an element if temporary array has a I

- Step 3: Scatter
 - Result of scan is index into final array
 - Only write an element if temporary array has a I

- Step 3: Scatter
 - Result of scan is index into final array
 - Only write an element if temporary array has a I

- Step 3: Scatter
 - Result of scan is index into final array
 - Only write an element if temporary array has a I

Step 3: Scatter – Runs in parallel !!

Step 3: Scatter – Runs in parallel !!

Summed Area Table (SAT)

• Summed Area Table (SAT): 2D table where each element stores the sum of all elements in an input image between the lower left corner and the entry location.

Example

$$(1 + 1 + 0) + (1 + 2 + 1) + (0 + 1 + 2) = 9$$
Penn Engineering

Benefit

- Used to perform different width filters at every pixel in the image in constant time per pixel
- Just sample four pixels in SAT:

$$s_{filter} = \frac{s_{ur} - s_{ul} - s_{lr} + s_{ll}}{w \times h},$$

- Uses
 - Approximate depth of field
 - Glossy environment
 reflections and refractions

How would implement this on the GPU?

How would implement this on the GPU?

Hint: Inclusive Scan

• Step I of 2: Row wise inclusive scan

• Step 2 of 2: Column wise inclusive scan

One inclusive scan for each column

- Efficient for small sort keys
 - k-bit keys require k passes

- Each radix sort pass partitions its input based on one bit
- First pass starts with the *l*east *s*ignificant *b*it (*LSB*).

 Subsequent passes move towards the *m*ost *s*ignificant *b*it (*MSB*)

MSB **0110** LSB

Example input:

 100
 111
 010
 110
 011
 101
 001
 000

• First pass: partition based on LSB

Second pass: partition based on middle bit

• Final pass: partition based on MSB

Completed

Completed

Parallel Radix Sort

Where is the parallelism?

Parallel Radix Sort

- I. Break input arrays into tiles
 - Each tile fits into shared memory for an SM
- 2. Sort tiles in parallel with radix sort
- 3. Merge pairs of tiles using a parallel bitonic merge until all tiles are merged.

Our focus is on Step 2

Parallel Radix Sort

- Where is the parallelism?
 - Each tile is sorted in parallel
 - Where is the parallelism within a tile?

- Where is the parallelism?
 - Each tile is sorted in parallel
 - Where is the parallelism within a tile?
 - Each pass is done in sequence after the previous pass. No parallelism
 - Can we parallelize an individual pass? How?
 - Merge also has parallelism

- Implement spilt. Given:
 - Array, i, at pass n:

```
        100
        111
        010
        110
        011
        101
        001
        000
```

Array, b, which is true/false for bit n:

```
0 1 0 0 1 1 0
```

Output array with false keys before true keys:

```
100 010 110 000 111 011 101 001
```


• Step 1: Compute e array

• Step 2: Exclusive scan e array and store it in f

• Step 3: Compute totalFalses

- Step 4: Compute t array
 - t array is address for writing true keys

totalFalses = 4

t[i] = i - f[i] + totalFalses

Penn Engineering

- Step 4: Compute t array
 - t array is address for writing true keys

totalFalses = 4 t[i] = i - f[i] + totalFalses ==> t[0] = 0 - 0 + 4Penn Engineering

- Step 4: Compute t array
 - t array is address for writing true keys

totalFalses = 4 t[i] = i - f[i] + totalFalses ==> t[1] = 1 - 1 + 4Penn Engineering

- Step 4: Compute t array
 - t array is address for writing true keys

totalFalses = 4 t[i] = i - f[i] + totalFalses ==> t[2] = 2 - 1 + 4Penn Engineering

- Step 4: Compute t array
 - t array is address for writing true keys

totalFalses = 4

t[i] = i - f[i] + totalFalses

Penn Engineering

Step 5: Scatter based on address d

Renn Engineering

 Given k-bit keys, how do we sort using our new split function?

 Once each tile is sorted, how do we merge tiles to provide the final sorted array?

Scan Revisited

Scan Limitations

- Requires power-of-two length
- Executes in one block (unless only using global memory)
 - Length up to twice the number of threads in a block

I. Divide the array into blocks

2. Run scan on each block

Run in parallel over many SMs

3. Write total sum of each block into a new array

4. Exclusive scan block sums to compute block increments

Add block increments to each element in the corresponding block

- Non-power-of-two length:
- Pad last block with zeros up until the block size

Summary

- Parallel reduction, scan, and sort are building blocks for many algorithms
- An understanding of parallel programming and GPU architecture yields efficient GPU implementations

