$$Y = aX + b$$

1.) Let X be a random variable with cdf $F_X(x)$. For $a, b \in \mathbb{R}, a \neq 0$ consider the random variable

and show that its cdf is given by:

Probability and Statistics (PAS)

$$F_Y(x) = \begin{cases} F_X(\frac{x-b}{a}) & \text{if } a > 0\\ 1 - F_X(\frac{x-b}{a}) + \Pr(X = \frac{x-b}{a}) & \text{if } a < 0 \end{cases}$$

2.) Let X and Y be as in exercise 1. Furthermore assume that X is continuous with pdf $f_X(x)$. Show that Y is continuous with pdf:

$$f_Y(x) = \frac{1}{|a|} \cdot f_X\left(\frac{x-b}{a}\right)$$

3.) Let X be a continuous random variable with cdf $F_X(x)$ and pdf $f_X(x)$. For $a \in \mathbb{R}^+$ and $b \in \mathbb{R}$ consider the random variable

$$Y = \frac{X - b}{a}$$

and show that its cdf and pdf are given by:

$$F_Y(x) = F_X(ax+b) = F_X\left(a\left(x+\frac{b}{a}\right)\right)$$

 $f_Y(x) = a \cdot f_X(ax+b) = a \cdot f_X\left(a\left(x+\frac{b}{a}\right)\right)$

In particular, if X has finite expectation $\mu = E(X)$ and variance $\sigma^2 = \text{Var}(X)$ then the normalized version of X given by $Y = \frac{X - \mu}{\sigma}$ possesses the pdf:

$$f_Y(x) = \sigma \cdot f_X(\sigma x + \mu) = \sigma \cdot f_X\left(\sigma\left(x + \frac{\mu}{\sigma}\right)\right)$$

4.) Provide a MatLab implementation of a simulation of a random variable having a normal distribution with $\mu = 1500$ and $\sigma = 300$. The simulation shall be based on the simple random number generating function rand and the inverse function of the cdf $\Phi(x)$ of the standard normal distribution.

Generate a plot of 1000 values from the simulation. (The plot should be similar to Fig. 4 in the first chapter of the script.)

- 5.) Packet transmission times on a certain Internet link are independent identical random variables with mean m and variance σ^2 . Suppose n packets are transmitted. Then the total expected transmission time for the n packets is nm. Use the central limit theorem to approximate the probability that the total transmission time for the n packets exceeds twice the expected transmission time.
- 6.) Solve problem 28 and problems 30–33 from [Ross, p.199].
- 7.) Solve problems 13–16 from [Ross, chapter 6, p.225].
- 8.) Let X be a random variable with $X \sim \operatorname{Poisson}(\lambda)$ and X^o be the normalized version of X. The following figure shows the cdf F_{X^o} of X^o for some $\lambda \in \mathbb{N}$ and the cdf Φ of the standard normal distribution.

Determine λ :

Could you justify why F_{X^o} and Φ are so similar?

Now assume $X \sim \text{Poisson}(101.3)$ and calculate:

- 9.) Prove: If X and Y are independent continous random variables with $Y, X \sim \mathcal{N}(0, \sigma^2)$, then $\frac{X}{Y} \sim \text{Cauchy}(1)$.
- 10.) Provide a MatLab script that generates a series of plots for the pdf's of gamma distributions $\Gamma(\frac{n}{2}, \frac{1}{2})$ for a suitable selection of numbers $n \in \mathbb{N}$. (In particular plots should be generated for n = 1, ..., 10 and some numbers greater than 10.) Compare some of these graphs with the graphs of the pdf's of the normal distributions having the same expectations and variances.
- 11.) For $\beta, b \in \mathbb{R}^+$, $n \in \mathbb{N}$:
 - (i) $X \sim \Gamma(\alpha, \beta) \implies b \cdot X \sim \Gamma(\alpha, \beta/b)$
 - (ii) $X \sim \operatorname{Erlang}(n,\beta) \implies 2\beta \cdot X \sim \chi_{2n}^2$
- 12.) Prove: If X and Y are independent continuous random variables with $X \sim \Gamma(\alpha_1, \beta)$ and $Y \sim \Gamma(\alpha_2, \beta)$, then a pdf of $Z = \frac{X}{Y}$ is given by:

$$f_Z(z) = \frac{1}{B(\alpha_1, \alpha_2)} \cdot \frac{z^{\alpha_1 - 1}}{(1 + z)^{\alpha_1 + \alpha_2}} \cdot I_{(0, \infty)}$$

13.) Use (4.86) to provide a new proof of:

$$\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}$$

Values of normcdf(x):

x	$\Phi(x)$	x	$\Phi(x)$:	x	$\Phi(x)$
0.1	0.53983	1.1	0.86433	2.	1	0.98214
0.2	0.57926	1.2	0.88493	2.3	2	0.98610
0.3	0.61791	1.3	0.90320	2.3	3	0.98928
0.4	0.65542	1.4	0.91924	2.	4	0.99180
0.5	0.69146	1.5	0.93319	2.	5	0.99379
0.6	0.72575	1.6	0.94520	2.	6	0.99534
0.7	0.75804	1.7	0.95543	2.	7	0.99653
0.8	0.78814	1.8	0.96407	2.5	8	0.99744
0.9	0.81594	1.9	0.97128	2.9	9	0.99813
1.0	0.84134	2.0	0.97725	3.	0	0.99865

Values of norminv(p):

p = .95	p = .975	p = .99	p = .995	p = .999	p = .9995
1.64485	1.95996	2.32635	2.57583	3.09023	3.29053