

tensor product of subspaces of vector spaces

 ${\bf Canonical\ name} \quad {\bf Tensor Product Of Subspaces Of Vector Spaces}$

Date of creation 2013-03-22 18:49:16 Last modified on 2013-03-22 18:49:16

 $\begin{array}{ll} \text{Owner} & \text{joking (16130)} \\ \text{Last modified by} & \text{joking (16130)} \end{array}$

Numerical id 4

Author joking (16130) Entry type Theorem Classification msc 15A69 **Proposition.** Let V, W be vector spaces over a field k. Moreover let $A \subseteq V$, $B \subseteq W$ be subspaces. Then $V \otimes B \cap A \otimes W = A \otimes B$.

Proof. The inclusion $,,\supseteq$ " is obvious. We will show the inclusion $,,\subseteq$ ".

Let $\{e_i\}_{i\in I}$ and $\{e'_j\}_{j\in P}$ be bases of A and B respectively. Moreover let $\{e_i\}_{i\in I'}$ be a completion of given basis of A to the basis of V, i.e. $\{e_i\}_{i\in I\cup I'}$ is a basis of V. Analogously let $\{e'_j\}_{j\in P'}$ be a completion of a basis of B to the basis of W. Then each element $q\in V\otimes W$ can be uniquely written in a form

$$q = \sum_{i \in I, j \in P} \alpha_{i,j} e_i \otimes e'_j + \sum_{i \in I', j \in P} \beta_{i,j} e_i \otimes e'_j + \sum_{i \in I, j \in P'} \delta_{i,j} e_i \otimes e'_j + \sum_{i \in I', j \in P'} \gamma_{i,j} e_i \otimes e'_j.$$

Assume that $q \in V \otimes B \cap A \otimes W$. Let $i \in I'$ and $j \in P'$. Consider the following linear map: $f_i : V \to k$ such that $f_i(e_t) = 1$ if i = t and $f_i(e_t) = 0$ if $i \neq t$. Analogously we define $g_j : W \to k$. Then we combine these two mappings into one, i.e.

$$f_i \otimes g_j : V \otimes W \to k;$$

 $(f_i \otimes g_j)(v \otimes w) = f_i(v)g_j(w).$

Furthermore we have

$$(f_i \otimes g_j)(q) = \gamma_{i,j}.$$

Note that since $q \in V \otimes B$, then $(f_i \otimes g_j)(q) = 0$ and thus

$$\gamma_{i,j} = 0.$$

Similarly we obtain that all $\beta_{i,j}$ and $\delta_{i,j}$ are equal to 0. Thus

$$q = \sum_{i \in I, j \in P} \alpha_{i,j} \, e_i \otimes e'_j \in A \otimes B,$$

which completes the proof. \square