

DLM12024

Basics of deep learning part 2

By

Pierre-Marc Jodoin

Lets start with a simple example

From Wikimedia Commons the free media repository

Lets start with a simple example

7	7
1	
L	J

Patient 1

Patient 2

Patient 3

Patient N

(temp, freq)	diagnostic
(37.5, 72)	Healthy
(39.1, 103)	Sick
(38.3, 100)	Sick
()	•••
(36.7, 88)	Healthy

 $\overline{\dot{x}}$

Lets start with a simple example

A new patient comes to the hospital **How can we determine if he is sick or not?**

From Wikimedia Commons the free media repository

Solution

Divide the feature space in 2 regions: sick and healthy

the free media repository

Solution

Divide the feature space in 2 regions: sick and healthy

From Wikimedia Commons the free media repository

More formally

$$y(\vec{x}) = \begin{cases} H \text{ealthy if } \vec{x} \text{ is in the green region} \\ Sick \text{ otherwise} \end{cases}$$

From Wikimedia Commons the free media repository

How to split the feature space?

Linear function

$$y_{\vec{w}}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_0$$

$$y_{\vec{w}}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_0$$

$$y_{\vec{w}}(\vec{x}) < 0$$

$$y_{\vec{w}}(\vec{x}) > 0$$

$$\vec{N} = (w_1, w_2)$$

$$y_{\vec{w}}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_0$$

$$w_1 = 1.0$$

 $w_2 = -2.0$
 $w_0 = 4.0$

$$y_{\vec{w}}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_0$$

$$= (w_0, w_1, w_2) \cdot (1, x_1, x_2)$$

$$= \vec{w}^T \vec{x}'$$

 $\vec{N} = (w_1, w_2)$

linear classification = dot product with bias included

$$y_{\vec{w}}(\vec{x}) = \vec{w}^T \vec{x}$$

Learning

With the **training dataset** D

the GOAL is to

find the parameters (w_0, w_1, w_2) that would best separate the two classes.

How do we know if a model is good?

Loss function

Good!

Medium

BAD!

Training a machine

Finding the right parameters w0,w1,w2 such that

PATIENTS are WELL CLASSIFIED

SMALL LOSS

So far...

- 1. Training dataset: D
- 2. Classification function (a line in 2D): $y_{\vec{w}}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_0$
- 3. Loss function: $L(y_{\vec{w}}(\vec{x}), D)$

4. Training: find (w_0, w_1, w_2) that minimize $L(y_{\vec{w}}(\vec{x}), D)$

Before deep neural nets were ... linear models

In this session...

Perceptron
Logistic regression
Multi-layer perceptron

Perceptron

Rosenblatt, Frank (1958), **The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain**, Psychological Review, v65, No. 6, pp. 386–408

Perceptron

(2D and 2 classes)

$$y_{\vec{w}}(\vec{x}) = w_0 + w_1 x_1 + w_2 x_1$$
$$= \vec{w}^T \vec{x}$$

Perceptron (2D and 2 classes)

Activation function

$$y_{\vec{w}}(\vec{x}) = sign(\vec{w}^{\mathrm{T}}\vec{x})$$

Perceptron (2D and 2 classes)

Dot product + activation function

 $y_{\vec{w}}(\vec{x}) = 0$

 $y_{\vec{w}}(\vec{x}) > 0$

So far...

- 1. Training dataset: D
- 2. Classification function (a line in 2D) : $y_{\vec{w}}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_0$
- 3. Loss function: $L(y_{\vec{w}}(\vec{x}), D)$

So far...

- 1. Training dataset: D
- 2. Classification function (a line in 2D):
- 3. Loss function: $L(y_{\vec{w}}(\vec{x}), D)$

4. Training: find (w_0, w_1, w_2) that minimize $L(y_{\vec{w}}(\vec{x}), D)$

Linear classifiers have limits

Linear classifier = <u>large error rate</u>

Three classical solutions

- 1. Acquire more observations
- 2. Use a non-linear classifier
- 3. Transform the data

Three classical solutions

- 2. Use a non-linear classifier
- 3. Transform the data

Acquire more data

D

 Patient 1
 (37.5, 72)
 healthy

 Patient 2
 (39.1, 10)
 sick

 Patient 3
 (38.3, 100)
 sick

 Patient N
 (36.7, 88)
 healthy

 \vec{x} t

Patient 1

Patient 2

Patient 3

Patient N

D

(temp, freq, headache)	Diagnostic
(37.5, 72, 2)	healthy
(39.1, 103, 8)	sick
(38.3, 100, 6)	sick
()	•••
(36.7, 88, 0)	healthy

 \vec{x}

t

Perceptron

 W_2

 $y_{\vec{w}}(\vec{x}) > 0$

$$y_{\vec{w}}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_0$$
(line)

 $y_{\vec{w}}(\vec{x}) = 0$

Perceptron

(3D and 2 classes)

$$y_{\vec{w}}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_0$$
(plane)

Perceptron

(K-D and 2 classes)

$$y_{\vec{w}}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_K x_K + w_0$$
(hyperplane)

How do we train a Perceptron?

$$\overrightarrow{w} = \arg\min_{\overrightarrow{w}} \sum_{n=1}^{N} (\overrightarrow{w}^{T} \overrightarrow{x}_{n} - t_{n})^{2}$$

$$\overrightarrow{w} = (X^{T} X)^{-1} X^{T} T$$

YES! If the data follows a Gaussian distribution

$$\overrightarrow{w} = \arg\min_{\overrightarrow{w}} \sum_{n=1}^{N} (\overrightarrow{w}^{T} \overrightarrow{x}_{n} - t_{n})^{2}$$

$$\overrightarrow{w} = (X^{T} X)^{-1} X^{T} T$$

Loss function

Perceptron

Question: how to find the best solution? $\nabla L(y_{\vec{w}}(\vec{x}), D) = 0$

Random initialization [w1, w2] = np.random.randn(2) $L(y_{\bar{w}}(\vec{x}), D)$ 40 30 20 10 W_1 W_2

Gradient descent

Question: how to find the best solution? $\nabla L(y_{\vec{w}}(\vec{x}), D) = 0$

$$\vec{w}^{[k+1]} = \vec{w}^{[k]} - \eta \nabla L(y_{\vec{w}^{[k]}}(\vec{x}), D)$$

Gradient of the loss function

Learning rate

Optimisation

Stochastic gradient descent (SGD)

```
Init \vec{w}

k=0

DO k=k+1

FOR n=1 to N

\vec{w} = \vec{w} - \eta^{[k]} \nabla L(\vec{x}_n)
```

UNTIL every data is well classified or k== MAX_ITER

Perceptron Criterion (loss)

Observation

A wrongly classified sample is when

$$\vec{w}^{\mathrm{T}}\vec{x}_n > 0 \text{ and } t_n = -1$$

or

$$\vec{w}^{\mathrm{T}}\vec{x}_{n} < 0 \text{ and } t_{n} = +1.$$

Consequently $-\vec{w}^T\vec{\chi}_n t_n$ is **ALWAYS positive for wrongly classified samples**

Perceptron gradient descent

$$L(y_{\vec{w}}(\vec{x}), D) = \sum_{\vec{x}_n \in V} -\vec{w}^T \vec{x}_n t_n$$

$$\nabla L(y_{\vec{w}}(\vec{x}), D) = \sum_{\vec{x}_n \in V} -\vec{x}_n t_n$$

Stochastic gradient descent (SGD)

```
Init \vec{w}

k=0

DO k=k+1

FOR n=1 to N

IF \vec{w}^T \vec{x}_n t_n < 0 THEN /* wrongly classified */

\vec{w} = \vec{w} + \eta t_n \vec{x}_n
```

UNTIL every data is well classified OR k=k_MAX

NOTE : learning rate η :

- **Too low** => slow convergence
- **Too large** => might not converge (even diverge)
- Can **decrease** at each iteration (e.g. $\eta^{[k]} = cst/k$)

So far...

- 1. Training dataset: D
- 2. Linear classification function: $y_{\vec{w}}(\vec{x}) = w_1 x_1 + w_2 x_2 + ... + w_M x_M + w_0$
- 3. Loss function: $L(y_{\vec{w}}(\vec{x}), D) = \sum_{\vec{x}_n \in V} -\vec{w}^T \vec{x}_n t_n$

So far...

- 1. Training dataset: D
- 2. Linear classification function:
- 3. Loss function: $L(y_{\vec{w}}(\vec{x}), D) = \sum_{\vec{x}_n \in V} -\vec{w}^T \vec{x}_n t_n$

4. Training: find \vec{w} that minimizes $L(y_{\vec{w}}(\vec{x}), D)$

$$\nabla L(y_{\vec{w}}(\vec{x}), D) = 0$$

(2D and 3 classes)

$$y_{\vec{w},0}(\vec{x}) = \vec{w}_0^T \vec{x} = w_{0,0} + w_{0,1} x_1 + w_{0,2} x_2$$
$$y_{\vec{w},1}(\vec{x}) = \vec{w}_1^T \vec{x} = w_{1,0} + w_{1,1} x_1 + w_{1,2} x_2$$
$$y_{\vec{w},2}(\vec{x}) = \vec{w}_2^T \vec{x} = w_{2,0} + w_{2,1} x_1 + w_{2,2} x_2$$

(2D and 3 classes)

$$y_W(\vec{x}) = W\vec{x}$$

$$y_{W}(\vec{x}) = \begin{bmatrix} w_{0,0} & w_{0,1} & w_{0,2} \\ w_{1,0} & w_{1,1} & w_{1,2} \\ w_{2,0} & w_{2,1} & w_{2,2} \end{bmatrix} \begin{bmatrix} 1 \\ x_{1} \\ x_{2} \end{bmatrix}$$

(2D and 3 classes)

Example

$$(1.1, -2.0)$$

Loss function

$$L(y_W(\vec{x}), D) = \sum_{\vec{x} \in V} (\vec{w}_j^T \vec{x}_n - \vec{w}_{t_n}^T \vec{x}_n)$$

Sum over all wrongly classified samples

Score of the true class

Score of the wrong class

$$\nabla L(y_{\vec{w}}(\vec{x}), D) = \sum_{\vec{x}_n \in V} \vec{x}_n$$

Stochastic gradient descent (SGD)

```
init W
k=0, i=0
DO k=k+1
FOR n = 1 \text{ to N}
j = \arg\max \mathbf{W}^T \vec{x}_n
IF \ j \neq t_i \ \text{THEN } /* \text{ wrongly classified sample } */
\vec{w}_j = \vec{w}_j - \eta \vec{x}_n
\vec{w}_{t_n} = \vec{w}_{t_n} + \eta \vec{x}_n
```

UNTIL every data is well classified or $k > K_MAX$.

Perceptron

Advantages:

- Very simple
- Does **NOT** assume the data follows a **Gaussian distribution**.
- If data is **linearly separable**, convergence is **guaranteed**.

Limitations:

- Zero gradient for many solutions => several "perfect solutions"
- Data must be **linearly separable**

Two famous ways of improving the Perceptron

1. New activation function + new Loss

1. New network architecture

Logistic regression

Multilayer Perceptron / CNN

(2D, 2 classes)

New activation function: sigmoid

$$\sigma(t) = \frac{1}{1 + e^{-t}}$$

(2D, 2 classes)

New activation function: sigmoid

$$\sigma(t) = \frac{1}{1 + e^{-t}}$$

62

$$y_{\vec{w}}(\vec{x}) = \sigma(\vec{w}^T \vec{x}) = \frac{1}{1 + e^{-\vec{w}^T \vec{x}}}$$

(2D, 2 classes)

New activation function: sigmoid

$$y_{\vec{w}}(\vec{x}) = \sigma(\vec{w}^T \vec{x})$$

(2D, 2 classes)

Example

$$\vec{x}_n = (0.4, -1.0), \vec{w} = [2.0, -3.6, 0.5]$$

Since 0.125 is lower than 0.5, \vec{x}_n is **behind** the plane.

(K-D, 2 classes)

Like the Perceptron the logistic regression accomodates for K-D vectors

What is the loss function?

With a sigmoid, we can simulate a conditional probability of c₁ GIVEN \vec{x}

With a sigmoid, we can simulate a conditional probability of c₁ GIVEN \vec{x}

Cost function is —In of the prediction

$$L(y_{\vec{w}}(\vec{x}), D) = -\sum_{n=1}^{N} t_n \ln(y_{\vec{w}}(\vec{x}_n)) + (1 - t_n) \ln(1 - y_{\vec{w}}(\vec{x}_n))$$

We can also show that

$$\nabla_{\overrightarrow{w}}L(y_{\overrightarrow{w}}(\overrightarrow{x}),D) = \sum_{n=1} (y_{\overrightarrow{w}}(\overrightarrow{x}_n) - t_n) \overrightarrow{x}_n$$

Logistic Network

Advantages:

- More stable than the Perceptron
- More effective when the data is **non separable**

And for K>2 classes?

New activation function: Softmax

$$y_{\vec{w}_i}(\vec{x}) = \frac{e^{w_i x}}{\sum_{c} e^{\vec{w}_c^T \vec{x}}}$$

And for K>2 classes?

New activation function: Softmax

Softmax

$$y_{\vec{w}_i}(\vec{x}) = \frac{e^{\vec{w}_i^T \vec{x}}}{\sum_{c} e^{\vec{w}_c^T \vec{x}}}$$

And for K>2 classes?

Class labels : one-hot vectors

K>2 classes

Cross entropy Loss

$$L(y_W(\vec{x}), D) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \ln y_{W_k}(\vec{x}_n)$$

Regularization

Different weights may give the same score

$$\vec{x} = (1.0, 1.0, 1.0)$$

$$\vec{w}_1^T = [1, 0, 0]$$

$$\vec{w}_2^T = [1/3, 1/3, 1/3]$$

$$\vec{w}_1^T \vec{x} = \vec{w}_2^T \vec{x} = 1$$

Maximum a posteriori

Regularization

$$\arg\min_{W} = L(y_{\vec{w}}(\vec{x}), D) + \lambda R(W)$$

$$Loss function$$

$$Regularization$$

In general L1 or L2
$$R(\theta) = \|\mathbf{W}\|_1$$
 ou $\|\mathbf{W}\|_2$

Wow! Loooots of information!

Lets recap...

Neural networks

2 classes

Perceptron

Logistic regression

K-Class Neural networks

Perceptron

Softmax activation

Logistic regression

Loss functions

2 classes

$$L(y_{\vec{w}}(\vec{x}), D) = \sum_{\vec{x}_n \in V} -t_n \vec{w}^T \vec{x}_n \quad \text{where V is the set of wrongly classified samples}$$

$$L(y_{\vec{w}}(\vec{x}), D) = -\sum_{n=1}^{N} t_n \ln(y_{\vec{w}}(\vec{x}_n)) + (1 - t_n) \ln(1 - y_{\vec{w}}(\vec{x}_n)) \quad \text{Cross entropy loss}$$

$$L(y_{\vec{w}}(\vec{x}), D) = -\sum_{n=1}^{N} t_n \ln(y_{\vec{w}}(\vec{x}_n)) + (1 - t_n) \ln(1 - y_{\vec{w}}(\vec{x}_n))$$
 Cross entropy loss

Loss functions

K classes

$$L(y_{\vec{w}}(\vec{x}), D) = \sum_{\vec{x}_n \in V} (\vec{w}_j^T \vec{x}_n - \vec{w}_{t_n}^T \vec{x}_n) \quad \text{where V } i \text{s the set of wrongly classified samples}$$

$$L(y_{\vec{w}}(\vec{x}), D) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \ln y_{W_k}(\vec{x}_n) \quad Cross \ entropy \ loss \ with \ a \ Softmax$$

$$L(y_{\vec{w}}(\vec{x}), D) = -\sum_{k=0}^{N} \sum_{k=0}^{K} t_{kn} \ln y_{W_k}(\vec{x}_n)$$
 Cross entropy loss with a Softmax

Constant

$$L(y_{\vec{w}}(\vec{x}), D) = \sum_{n=1}^{N} l(y_{W}(\vec{x}_{n}), t_{n}) + \lambda R(W)$$
Loss function

$$R(W) = ||W||_1 \text{ or } ||W||_2$$

Now, lets go DEEPER DEEDEL DEELEB Now' lets go

Non-linearly separable training data

Three classical solutions

- 1. Acquire more data
- 2. Use a non-linear classifier
- 3. Transform the data

Non-linearly separable training data

Three classical solutions

- 1. Acquire more data
- 2. Use a non-linear classifier
- 3. Transform the data

2D, 2Classes, Linear logistic regression

Output layer (1 neuron with sigmoid)

Let's add 3 neurons

Input layer

NOTE: The output of the first layer is a vector of <u>3 real</u> values

$$\sigma \begin{pmatrix} \begin{bmatrix} w_{0,0} & w_{0,1} & w_{0,2} \\ w_{1,0} & w_{1,1} & w_{1,2} \\ w_{2,0} & w_{2,1} & w_{2,2} \end{bmatrix} \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^3$$

NOTE: The output of the first layer is a vector of <u>3 real</u> values

$$\sigma(W^{[0]}\vec{x})$$

If we want a **2-class Classification** via a **logistic regression** (a **cross entropy loss**) we must add an **output neuron**.

Visual simplification

This network contains a total of 13 parameters

Increasing the number of neurons = increasing the capacity of the model

This network has 5x3+1x6=21 parameters

Nb neurons VS Capacity

No hidden neuron

Linear classification
Underfitting
(low capacity)

12 hidden neurons

Non linear classification **Good result**(good capacity)

60 hidden neurons

Non linear classification

Over fitting

(too large capacity)

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Increasing the dimensionality of the data = more columns in $W^{[0]}$

This network has 5x(k+1)+1x6 parameters

kD, 2Classes, 2 hidden layers

Adding an hidden layer = Adding a matrix multiplication

kD, 2 Classes, 4 hidden layer network

Input Hidden Hidden Hidden Output layer Layer 1 Layer 2 Layer 3 Layer 4 layer

$$W^{[0]} \in R^{5 \times k + 1}$$

$$W^{[1]} \in R^{3 \times 6}$$

$$W^{[2]} \in R^{4 \times 4}$$

$$W^{[3]} \in \mathbb{R}^{7 \times 5}$$

$$\vec{w}^{[4]} \in R^8$$

$$y_W(\vec{x}) = \sigma(\vec{w}^{[4]T}\sigma(W^{[3]}\sigma(W^{[2]}\sigma(W^{[1]}\sigma(W^{[0]}\vec{x}))))$$

99

kD, 2 Classes, 4 hidden layer network

NOTE: More hidden layers = **deeper** network = **more capacity**.

Multilayer Perceptron

A classification neural network is a linear classifier with a bunch of neurons that act as a basis function.

kD, 4 Classes, 4 hidden layer network

$$W^{[0]} \in R^{5 \times k+1}$$
 $W^{[1]} \in R^{3 \times 6}$
 $W^{[2]} \in R^{4 \times 4}$
 $W^{[3]} \in R^{7 \times 5}$
 $W^{[4]} \in R^{8 \times 4}$

$$y_{W}\left(\vec{x}\right) = W^{[4]}\sigma\left(W^{[3]}\sigma\left(W^{[2]}\sigma\left(W^{[1]}\sigma\left(W^{[0]}\vec{x}\right)\right)\right)\right)$$

kD, 4 Classes, 4 hidden layer network

$$y_{W}\left(\vec{x}\right) = W^{[4]}\sigma\left(W^{[3]}\sigma\left(W^{[2]}\sigma\left(W^{[1]}\sigma\left(W^{[0]}\vec{x}\right)\right)\right)\right)$$

In conclusion

- Linear classifiers
 - Perceptron
 - Logistic regression
- 2-Class vs K-Class neural nets
- Loss function
 - Hinge Loss
 - Cross-entropy loss
- Gradient descent
- Multi-layer perceptron.

Extra slides

Better understand

Cross entropy vs Hinge loss

Cross entropy vs Hinge loss

Different *loss* = different **network output**

- Hinge loss : output = matrix-vector
- Cross entrpty: sortie = <u>softmax</u>

Increase the number of neurons

Increase the capacity of the network

Increase the number of layers

Increasing the capacity of the network can lead to **over-fitting**

Under-fitting

Precision on the training set = 52.2%

Precision on the test set = 51.2%

Could do better...

Precision on the training set = 82%

Precision on the test set = 80%

Overfitting

Precision on the training set = 99.6%

Precision on the test setb= 78%

SUPER!!!

Precision on the training set =97.8%

Precision on the test set = 96.2%

kD, 2 Classes, 4 hidden layer network

Hidden Hidden Hidden Input Hidden Output Layer 2 Layer 3 layer Layer 1 Layer 4 layer

 $y_W(\vec{x})$

$$W^{[0]} \in R^{5 \times k + 1}$$

$$W^{[1]} \in R^{3 \times 6}$$

$$W^{[2]} \in R^{4 \times 4}$$

$$W^{[3]} \in \mathbb{R}^{7 \times 5}$$

$$\vec{w}^{[4]} \in R^8$$

$$L(y_{\vec{w}}(\vec{x}), D)$$

$$\frac{\partial (L(y_W(\vec{x})))}{\partial W_{j_w}^{[l}(\vec{x}),D)}$$