

Telecomunicaciones

Proyecto Integrador I

El protocolo Lora/LoraWan

LoRa / LoRa WAN

1. Introducción

 LoRa (Long Range) y LoRaWAN son tecnologías complementarias utilizadas para redes de área amplia de baja potencia (LPWAN), desarrolladas por Semtech y estandarizadas por la LoRa Alliance. Estas tecnologías son esenciales en el ámbito del Internet de las Cosas (IoT) debido a su capacidad para comunicación a larga distancia y bajo consumo de energía.

2. LoRa & LoRaWAN

LoRa:

- **Definición:** Tecnología de modulación por espectro ensanchado (Chirp Spread Spectrum CSS).
- Uso: Proporciona la capa física para la comunicación inalámbrica.
- **Aplicaciones:** Comunicación punto a punto (P2P) y comunicación a larga distancia en entornos rurales y urbanos.

LoRaWAN:

- **Definición:** Protocolo de red de larga distancia que opera sobre la modulación LoRa.
- Uso: Define la arquitectura de la red, incluyendo la gestión de los nodos, gateways y servidores de red.
- Aplicaciones: Implementación de redes IoT, monitoreo de sensores, automatización industrial, ciudades inteligentes.

3. Estándar y Especificaciones

Bandas de Frecuencia:

• Europa: 868 MHz

América del Norte: 915 MHz

Asia: 433 MHz

• Global: 2.4 GHz (para aplicaciones específicas)

Modulación:

 Chirp Spread Spectrum (CSS) que permite una alta sensibilidad y robustez frente a interferencias.

Topología de Red:

- Estrella: Nodos se comunican directamente con gateways.
- Punto a Punto (P2P): Comunicación directa entre dos nodos sin intermediarios.

4. Características de LoRa

Larga Distancia:

Hasta 15 km en áreas rurales y 5 km en áreas urbanas.

Bajo Consumo de Energía:

Ideal para dispositivos alimentados por batería con años de duración.

Capacidad de Penetración:

Excelente penetración en entornos densos como edificios.

Seguridad:

Cifrado AES de extremo a extremo.

5. Ventajas de LoRa

Cobertura Extensa:

Cubre grandes áreas geográficas con pocos gateways.

Alta Capacidad de Conexión:

Soporta miles de dispositivos conectados a un solo gateway.

Costo Efectivo:

Uso de bandas de frecuencia no licenciadas reduce costos operativos.

Flexibilidad:

 Adecuado para diversas aplicaciones IoT, desde monitoreo ambiental hasta gestión de infraestructura.

6. Limitaciones de LoRa

Ancho de Banda Limitado:

 Solo puede transmitir pequeñas cantidades de datos, no adecuado para aplicaciones que requieren alta velocidad de datos.

Latencia:

 Puede ser alta, no adecuado para aplicaciones en tiempo real que requieren respuestas inmediatas.

Interferencia:

 Uso de bandas de frecuencia no licenciadas puede llevar a interferencias con otros dispositivos que utilizan las mismas bandas.

Capacidad de Escalabilidad:

 Aunque puede soportar muchos dispositivos, en entornos con alta densidad de dispositivos puede haber colisiones y pérdida de paquetes.

7. Competencia con Otros Protocolos

Sigfox:

- Cobertura Similar: Larga distancia, bajo consumo de energía.
- Protocolo Propietario: Sigfox opera su propia red global.
- Limitación: Muy baja capacidad de datos (12 bytes por mensaje).

NB-IoT (Narrowband IoT):

- Basado en LTE: Usa redes celulares existentes, excelente cobertura y penetración.
- Alta Capacidad de Datos: Más capacidad de datos comparado con LoRa.
- Consumo de Energía: Mayor consumo de energía comparado con LoRa y Sigfox.
- Costo: Requiere infraestructura de red celular, puede ser más caro.

7. Competencia con Otros Protocolos

- Zigbee:
 - Distancia Cortas: Menor alcance comparado con LoRa.
 - Alta Velocidad de Datos: Mayor capacidad de transmisión de datos.
 - Topología de Red: Mesh, permite cobertura en áreas pequeñas pero densas.
- Bluetooth Low Energy (BLE):
 - Corto Alcance: Ideal para comunicaciones en proximidad cercana.
 - Bajo Consumo de Energía: Similar a LoRa en términos de ahorro de energía.
 - Velocidad de Datos: Mayor que LoRa, pero menor alcance.

Comparison of Wireless Technologies

Range Capability

- 8. Aplicaciones de LoRa y LoRaWAN
 - 1. Monitoreo Ambiental: Sensores de temperatura, humedad, calidad del aire.
 - 2. Agricultura Inteligente: Monitoreo de cultivos, gestión de riego.
 - Ciudades Inteligentes: Gestión de alumbrado público, monitoreo de tráfico, gestión de residuos.
 - 4. Automatización Industrial: Monitoreo de equipos, mantenimiento predictivo.
 - 5. Salud: Monitoreo remoto de pacientes, dispositivos médicos portátiles.
 - 6. Transporte y Logística: Seguimiento de activos, gestión de flotas.

- Practica 1: Conectividad Lora
- 1. Objetivo
- Configurar una red mesh básica entre varios módulos ESP32 con transceptores LoRa SX1278 y baterías, para permitir la comunicación entre todos los dispositivos en el grupo de alumnos.
- 2. Hardware Necesario
- **ESP32:** ESP32S
- Módulo LoRa: SX1278
 - Modelo Recomendado: SX1278
 - Frecuencia: 433 MHz
- Batería:
 - Modelo Recomendado: Batería LiPo 3.7V 1000mAh
 - Características: Ligera, recargable, proporciona suficiente energía para largas sesiones de trabajo.

Dudas o Consultas

¡Muchas gracias!

