Точечным диполем называется система из двух связанных зарядов, равных по величине и противоположных по знаку, расположенных на малом расстоянии друг от друга.

1.5 Двум небольшим одинаковым шарикам, находящимся на расстоянии h друг от друга, сообщают разноименные электрические заряды, равные по величине. Шарики начинают сближаться. Время t, через которое шарики столкнуться, зависит от начального расстояния h между шариками по формуле

$$t = Ch^{\lambda}$$

где C - постоянная величина. Докажите справедливость приведенной формулы, определите показатель степени λ .

Задача 11.2 «Тепловой двигатель»

Внутри закрытого с одной стороны рабочего цилиндра расположен плотно пригнанный поршень, соединенный с помощью стержня с рабочим устройством, (на рисунках не показано). При движении поршня вправо на поршень действует дополнительная сила со стороны рабочего механизма, при его движении влево эта дополнительная сила отсутствует². поршнем и основанием цилиндра находится рабочий газ. На расстоянии l_0 от основания цилиндра закреплен кольцевой упор. В основание цилиндра вмонтированы *нагреватель* постоянной мощности q_1 (т.е. сообщающий газу в единицу времени постоянное количество теплоты q) и холодильник, забирающий от газа в единицу времени количество теплоты q_2 , не зависимо от состояния газа. На упоре и в стенке цилиндра на расстоянии $l_1 = m l_0$ от цилиндра вмонтированы датчики, способные основания включать И холодильник Поршень выключать нагреватель. соединен c противоположной стенкой возвращающей пружиной. Длина недеформированной пружины равна длине рабочего цилиндра.

Рабочий газ можно считать идеальным двухатомным (его молярная теплоемкость равна $C_V = \frac{5}{2}R$). Теплоемкостью цилиндра и поршня, потерями теплоты в окружающее пространство можно q_1

² На досуге можете подумать о конструкции такого устройства, но «досуг» не оценивается.

пренебречь, также можно пренебречь инерционностью поршня и рабочего устройства.

Началом цикла будем считать состояние, когда поршень доходит до упора, в этот момент включается нагреватель (а холодильник отключается). В этом положении пружина сжата на величину l_0 , и ее сила упругости равна F_0 .

Во время движения поршня вправо на него со стороны рабочего устройства действует постоянная сила $F_1 = nF_0$ (помимо силы упругости пружины).

В исходное положение поршень возвращается действием пружины при работающем холодильнике.

Параметры двигателя $n = 2,0; m = 2,0; q_1 = q_2 = q$.

Коэффициентом полезного действия будем считать отношение работы, совершенной *над рабочим устройством*, к количеству теплоты, полученной газом от нагревателя

В ходе решения допускается и рекомендуется выполнение промежуточных численных расчетов.

Часть 1.

В этой части необходимо рассчитать характеристики двигателя в рамках следующих допущений:

- атмосферное давление значительно меньше давления рабочего газа в цикле;
- трение пренебрежимо мало;
- все процессы являются равновесными и обратимыми.
- 1.1. Изобразите на диаграмме (P,V) изменения состояния рабочего газа за цикл работы двигателя.
- **1.2.** Найдите коэффициент полезного действия двигателя η .
- 1.3. Найдите среднюю мощность, развиваемую двигателем (ответ выразите через мощность нагревателя q).

<u>Часть 2.</u>

Рассмотрите работу двигателя в рамках следующих допущений:

- сила атмосферного давления на поршень постоянна и равна силе упругости пружины в начальной точке цикла F_0 ;
- трение пренебрежимо мало;
- все процессы являются равновесными и обратимыми.

- **2.1.** Изобразите на диаграмме (P,V) изменения состояния рабочего газа за цикл работы двигателя.
- **2.2.** Найдите коэффициент полезного действия двигателя η .

Часть 3.

Рассмотрите работу двигателя в рамках следующих допущений:

- сила атмосферного давления на поршень постоянна и равна силе упругости пружины в начальной точке цикла F_0 ;
- сила трения, действующая на поршень со стороны стенок, постоянна по модулю и равна $0.10F_0$;
- все газовые процессы являются равновесными и обратимыми.
- 3.1. Изобразите на диаграмме (P,V) изменения состояния рабочего газа за цикл работы двигателя.
- 3.2. На сколько процентов изменится коэффициент полезного действия устройства из-за наличия трения?

Часть 4

Сейчас вам предстоит оценить влияние неравновесности реально протекающих процессов.

4.1. По очень длинной горизонтальной трубе может двигаться без трения поршень. С обеих сторон поршня находится воздух (средняя молярная масса $M = 29 \cdot Monb^{-1}$) при температуре T = 800 K. Давление газа с одной стороны поршня равно $P = 5,0 \cdot 10^5 \, \Pi a$, а с

другой на $\Delta P = 5.0 \cdot 10^2 \, \Pi a$ больше. Оцените скорость установившегося движения поршня.

4.2. Оцените, на сколько изменится КПД рассматриваемого двигателя при учете неравновесности процесса расширения, процесс сжатия считайте равновесным. Считайте, что рабочим газом является воздух, средняя температура газа в этом процессе T = 800K, среднее давление $P = 5.0 \cdot 10^5 \, \Pi a$.

Задача 11-3. «Магнитная регулировка»

В данной задаче исследуется возможность управлением течением жидкости помощью магнитного поля. В качестве жидкости используется растительное масло, смешанное с железными опилками. Эта мелкими протекает по длинной узкой горизонтальной

трубке, которая проходит через тонкую кольцевую катушку, по которой пропускают постоянный электрический ток. Ось катушки совпадает с осью трубки.

Параметры устройства: