

Workpackage 5: High Performance Mathematical Computing

Clément Pernet

Final OpenDreamKit Project review

Luxembourg, October 30, 2019

Mathematical computing

Computing with a large variety of objects

 $ightharpoonup \mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q,$

17541718814389012164632

Mathematical computing

Computing with a large variety of objects

- $ightharpoonup \mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q,$
- Polynomials over $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q$,

17541718814389012164632

$$\frac{2}{5}x^3 + x^2 - \frac{1}{19}x + 2$$

Mathematical computing

Computing with a large variety of objects

- $\triangleright \mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q,$
- ▶ Polynomials over $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q$,
- ▶ Matrices over $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q$,

17541718814389012164632

$$\begin{bmatrix} \frac{2}{5}x^3 + x^2 - \frac{1}{19}x + 2\\ \begin{bmatrix} 27 & 3 & -1\\ 9 & 0 & 2 \end{bmatrix} \end{bmatrix}$$

Computing with a large variety of objects

- $\triangleright \mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q,$
- ▶ Polynomials over $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q$,
- Matrices over $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q$,
- \blacktriangleright Matrices of polynomials over $\mathbb{Z},\mathbb{Q},\mathbb{Z}/p\mathbb{Z},\mathbb{F}_q,$

17541718814389012164632

$$\begin{bmatrix} \frac{2}{5}x^3 + x^2 - \frac{1}{19}x + 2 \\ \begin{bmatrix} 27 & 3 & -1 \\ 9 & 0 & 2 \end{bmatrix} \end{bmatrix}$$

$$\begin{bmatrix} 3x^2 + 3 & 2x^2 + 3 \\ 4x^2 + 1 & x^2 + 4x + 4 \end{bmatrix}$$

Mathematical computing

Computing with a large variety of objects

- $ightharpoonup \mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q,$
- lacksquare Polynomials over $\mathbb{Z},\mathbb{Q},\mathbb{Z}/p\mathbb{Z},\mathbb{F}_q$,
- lacksquare Matrices over $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q$,
- lacksquare Matrices of polynomials over $\mathbb{Z},\mathbb{Q},\mathbb{Z}/p\mathbb{Z},\mathbb{F}_q$,

17541718814389012164632

$$\frac{2}{5}x^3 + x^2 - \frac{1}{19}x + 2$$

 $\left[\begin{array}{ccc} 27 & 3 & -1 \\ 9 & 0 & 2 \end{array}\right]$

$$\begin{bmatrix} 3x^2 + 3 & 2x^2 + 3 \\ 4x^2 + 1 & x^2 + 4x + 4 \end{bmatrix}$$

$$\frac{3q^2-q^5}{q^5+2q^4+3q^3+3q^2+2q+1} \ \ \overset{(a)}{\underset{(d)}{\bigoplus}} \ + \ \frac{2q}{q^4+q^3+2q^2+q+1} \ \ \overset{(a)}{\underset{(d)}{\bigoplus}} \ \$$

Tree algebras

Need for High performance: applications where size is crucial:

Experimental maths: testing conjectures

larger instances give higher confidence

Need for High performance: applications where size is crucial:

Experimental maths: testing conjectures

larger instances give higher confidence

Algebraic cryptanalysis: security = computational difficulty

key size determined by the largest solvable problem

Example

Breaking RSA by integer factorization: n = pq. Last record:

- ▶ n of 768 bits
- ▶ linear algebra in dimension 192796550 over \mathbb{F}_2 (105Gb)
- ► About 2000 CPU years

Need for High performance: applications where size is crucial:

Experimental maths: testing conjectures

larger instances give higher confidence

Algebraic cryptanalysis: security = computational difficulty

key size determined by the largest solvable problem

Example

Breaking RSA by integer factorization: n = pq. Last record:

- n of 768 bits
- ▶ linear algebra in dimension 192796550 over \mathbb{F}_2 (105Gb)
- ► About 2000 CPU years

3D data analysis, shape recognition:

- via persistent homology
- ightharpoonup large sparse matrices over \mathbb{F}_2 , \mathbb{Z}

Goal: delivering high performance to maths users

Goal: delivering high performance to maths users

Harnessing modern hardware → parallelisation

- in-core parallelism (SIMD vectorisation)
- multi-core parallelism
- distributed computing: clusters, cloud

Architectures :

SIMD

Multicore server

HPC cluster

Cloud

Goal: delivering high performance to maths users

Languages

- Computational Maths software uses high level languages (e.g. Python)
- ▶ High performance delivered by languages close to the metal (C, assembly)

 \leadsto compilation, automated optimisation

Goal:

- ► Improve/Develop parallelization of software components
- Expose them through the software stack
- Offer High Performance Computing to VRE's users

Outcome of WorkPackage 5

Component	Review 1	Review 2	Final review
T5.1 Pari/GP		PAF	D5.16
T5.2 GAP			D5.15
T5.3 LinBox		D5.12	D5.14
T5.4 Singular	D5.6, D5.7		D5.13
T5.5 MPIR	D5.5, D5.7		
T5.6 Combinatorics	D5.1	D5.11	
T5.7 Pythran	D5.2	D5.11	
T5.8 SunGrid Engine	D5.3		

Overall

- ▶ 31 software releases
- ▶ 16 research papers

Outline

Context and Focus

T5.1: Number theory with PARI/GP

T5.2: Group theory with GAP

T5.3: Exact linear algebra with LinBox

T5.4: Polynomial arithmetic with Singular

Outline

Context and Focus

T5.1: Number theory with PARI/GP

T5.2: Group theory with GAP

T5.3: Exact linear algebra with LinBox

T5.4: Polynomial arithmetic with Singular

Computational Kernels: linear algebra

Mathematics is the art of reducing any problem to linear algebra

SINGULA- W. Stein

Computational Kernels: linear algebra

Mathematics is the art of reducing any problem to linear algebra

SINGULA= W. Stein

Linear algebra: a key building block for HPC

Similarities with numerical HPC

- central elementary problem to which others reduce to
- (rather) simple algorithmic
- high compute/memory intensity

Computational Kernels: linear algebra

Mathematics is the art of reducing any problem to linear algebra Singul – W. Stein

Linear algebra: a key building block for HPC

Similarities with numerical HPC

- central elementary problem to which others reduce to
- (rather) simple algorithmic
- high compute/memory intensity

Specificities

- lacktriangle Multiprecision arithmetic \Rightarrow lifting from finite precision (\mathbb{F}_p)
- ▶ Rank deficiency ⇒ unbalanced dynamic blocking
- ► Early adopter of subcubic matrix arithemtic ⇒ recursion

 C. Pernet: WP 5

 9

 Luxembourg, 2019-10-30

Computational kernels: arithmetic

- lacksquare Wide variety of computing domains: $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q, \mathbb{F}_q[X], \mathbb{Z}[X, Y, Z], ...$
- possibly with dynamic size

Challenge

- ➤ most often memory intensive operations → hard to parallelize
- ▶ very fine grain, but billions of instance → fine tuning

Outline

Context and Focus

T5.2: Group theory with GAP

T5.3: Exact linear algebra with LinBox

T5.4: Polynomial arithmetic with Singular

PARI-GP

PARI ecosystem

PARI library: dedicated routines for number theory

PARI-GP: an interactive system

GP2C: a GP to C compiler

Generic parallelization engine for the whole suite

Delivers support for

- sequential computations
- POSIX threads
- MPI for distributed computing

Features:

- Same code base
- automated parallelization
- full control for power users/developpers

- ► Fast linear algebra over the rationals and cyclotomic fields
- Fast Chinese remainders and multimodular reduction
- Parallel polynomial resultant
- Fast modular polynomials and applications
- ► MPQS integer factorization rewrite

Well-honed strategy after preliminary assessment

- Creation of "worker" functions from existing code
- Insertion of actual parallel instructions
- Incremental buildup, independently instrumenting one high-level function at a time.

Highlight

Linear algebra over rationals:

- Required for cyclotomic rings (Allombert, 2016-17)
- ► Fast Chinese remaindering (Allombert, 2017)
- ► Fast CUP decomposition over finite fields (Bruin, 2018)
- ► Parallelization (Allombert, Belabas, 2017-19)

Fourier transform of L-functions

Outline

Context and Focus

T5.1: Number theory with PARI/GP

T5.2: Group theory with GAP

T5.3: Exact linear algebra with LinBox

T5.4: Polynomial arithmetic with Singular

HPC GAP

* 3.

jupyte

HPC-GAP

- Multi-threaded GAP.
- Targets:
 - multicore servers.
 - good speedups
 - high level abstraction

C Pernet: WP 5

Achievement

- Fork from GAP, diverged for a long time
- Huge effort to bring it back in: GAP 4.9.1 (Month 33).
 - → first GAP release with HPCGAP integrated as a compile-time option

Dense linear algebra over small finite fields

- Matrix multiplication, Gaussian elimination, echelon forms, etc
- ► A key kernel for many GAP computations

MeatAxe64

A new C and assembler library, tuned for performance at all levels:

- new data representations and assembler kernels
- new algorithms for many fields
- control of cache usage and memory bandwidth
 - → allowing for sharing between threads and cores
- purpose built highly efficient task farm
 - \rightarrow 1M x 1M dense matrix multiply over GF(2) in 8 hours (64 core AMD bulldozer).

Fully available from GAP.

Outline

Context and Focus

T5.1: Number theory with PARI/GP

T5.2: Group theory with GAP

T5.3: Exact linear algebra with LinBox

T5.4: Polynomial arithmetic with Singular

Parallel Rational solver algorithmic

Method	Bit complexity
Gauss over \mathbb{Q} Gauss mod bound (sol) Chinese Remaindering p -adic lifting	$2^{O(n)}$ $O(n^5)$ $O^{}(n^4)$ $O^{}(n^3)$

- 1. Solve the system independently modulo p_1, p_2, \ldots, p_k
- 2. Reconstruct a solution modulo $p_1 \times p_2 \times \dots, p_k$.
- 3. Reconstruct over O

p-adic lifting

- 1. Solve the system modulo p
- 2. Iteratively lift the solution modulo p^2, p^3, \dots, p^k
- 3. Reconstruct over Q

Distributed memory Chinese Remaindering

Conclusions

- (almost) embarrassingly parallel
- but overwhelming computational cost $(O^{\tilde{}}(n^4))$
- hybrid OpenMP-MPI version slightly slower but better memory efficiency

Shared memory p-adic lifting

A new hybrid algorithm: Chinese Remaindering within p-adic lifting

- Smaller critical path
- Higher degree of parallelism

Shared memory p-adic lifting

A new hybrid algorithm: Chinese Remaindering within p-adic lifting

- Smaller critical path
- Higher degree of parallelism

Improving state of the art efficiency

- Improved sequential efficiency (improved memory access pattern, BLAS3)
- Chinese remaindering delivers good parallel scaling

GPU enabled fflas-ffpack

GPU enabled fflas-ffpack

- Matrix product over $\mathbb{Z}/131071\mathbb{Z}$
- > 32 Skylake-X cores (AVX512)
- ▶ 1 Nvidia Tesla V100 GPU

Limitations and perspectives

Bottleneck in the transfer between GPU and RAM

- deport more computations to the GPU
 - communication avoiding block scheduling

- → dedicated GPU kernels
- → deep structural change

Outline

Context and Focus

T5.1: Number theory with PARI/GP

T5.2: Group theory with GAP

T5.3: Exact linear algebra with LinBox

T5.4: Polynomial arithmetic with Singular

jupyte

Multivariate Polynomial Multiplication in FLINT

- over \mathbb{Z} , \mathbb{Q} , \mathbb{F}_p , \mathbb{F}_{p^n} for $p < 2^{64}$.
- Lex, degLex and degGrevLex ordering supported
- Sequential alg: improves Singular's
- Close to linear scaling
 - Singular now relies on FLINT

Multivariate Polynomial Multiplication in FLINT

- over \mathbb{Z} , \mathbb{Q} , \mathbb{F}_p , \mathbb{F}_{p^n} for $p < 2^{64}$.
- Lex, degLex and degGrevLex ordering supported
- Sequential alg: improves Singular's
- Close to linear scaling
- Singular now relies on FLINT

Multivariate Polynomial GCD in FLINT

- over \mathbb{Z} , \mathbb{Q} , \mathbb{F}_p , \mathbb{F}_{p^n} for $p < 2^{64}$.
- Lex, degLex and degGrevLex ordering supported
- Sequential alg: improves Singular's
- Close to linear scaling
 - Singular now relies on FLINT

jupyte

Multivariate Polynomial GCD in FLINT

- over \mathbb{Z} , \mathbb{Q} , \mathbb{F}_p , \mathbb{F}_{p^n} for $p < 2^{64}$.
- Lex, degLex and degGrevLex ordering supported
- Sequential alg: improves Singular's
 - Close to linear scaling
 - Singular now relies on FLINT

New Perspectives and directions

Parallelizing memory intensive kernels

- Overhead of split and combine
- Only amortized for large instances
- Parallelization at a coarser grain

New Perspectives and directions

Parallelizing memory intensive kernels

- Overhead of split and combine
- Only amortized for large instances
- Parallelization at a coarser grain

Data placement

- Heavy use of dynamic allocation (malloc)
- Causes performances fickle
- To be used with parsimony
- Investigate dedicated allocators

New Perspectives and directions

- Overhead of split and combine
- Only amortized for large instances
- Parallelization at a coarser grain

Data placement

- Heavy use of dynamic allocation (malloc)
- Causes performances fickle
- ► To be used with parsimony
- Investigate dedicated allocators

New directions

Application driven:

- More orderings: block, weighted
- ► Factorization: (harnessing most T5.4 contributions)

Conclusion

Outcome of WorkPackage 5

		- 110	
	Review 1	Review 2	Final review
T5.1 Pari/GP	-	A M	D5.16
T5.2 GAP			D5.15
T5.3 LinBox		D5.12	D5.14
T5.4 Singular	D5.6, D5.7		D5.13
T5.5 MPIR	D5.5, D5.7		
T5.6 Combinatorics	D5.1	D5.11	
T5.7 Pythran	D5.2	D5.11	
T5.8 SunGrid Engine	D5.3		

Overall

- ▶ 31 software relases
- ▶ 16 research papers

Lessons learnt

From dedicated to general purpose HPC components: SINGULAR &

- ► Early instances of HPC computer algebra: dedicated to some target application (breaking RSA, etc)
- Building a general purpose HPC component:
 - challenging
 - longer term sustainability

Identifying the right place to focus efforts on

- Premature focus on embarassingly parallel distributed computing
- Might as well improve a more difficult algorithm on multicore servers

Risk of technology dependency

- Cilk: from success to shut-down
- Interchangeability and modularity (PARI, LinBox)

Perspectives

- dynamic runtime configuration
 - → user decision based on algorithms (high level), not systems (low level)
 - → compilation hurdle, vs slick interface of the VRE
- extend high level control over parallel resources: GPUs, cluster nodes, etc
- keep as much HPC features as possible in virtualization images

