

Continuous Assessment Test (CAT-1) - March 2023

Programme	: B.Tech (CSE)	Semester	:	Winter 2022-2023
		Code	:	BECE102L
Course	: Digital System Design	Class Nbr	:	CH2022232300522 CH2022232300543 CH2022232300532, CH2022232300556, CH2022232300195, CH2022232300524
Faculty	: Dr.Nithya Venkatesan, Dr.B.Sri Revathi, Dr.G.Kanimozhi, Dr.S.Angalaeswari, Dr.Ravi Tiwari, Prof. Mohammed Aneesh	Slot		B2+TB2
Time	: 90 minutes	Max. Marks	:	50

Answer Any 5 of the following Questions

S.No.	Question Description	Marks		
1.	An assembly line has 3 fail safe sensors and one emergency shutdown switch. The line should			
	ep moving unless any of the following conditions arise:			
	(i) If the emergency switch is pressed			
	(ii) If the sensor1 and sensor2 are activated at the same time.			
	(iii) If sensor 2 and sensor3 are activated at the same time.			
	(iv) If all the sensors are activated at the same time			
	Draw the truth table and implement a combinational circuit for the above case using only NAND			
	gates. How many minimum number of 2 input NAND gates are required?			
2.	A combinational circuit has 3 inputs A, B, C and output F. F is true for following input			
	combinations			
	A is False, B is True			
	A is False, C is True	[10]		
	A, B, C are False			
	A, B, C are True			
	(i) Write the Truth table for F. Use the convention True=1 and False = 0.			
	(ii) Write the simplified expression for F in SOP form.			
-		-		

	(iii) Write the simplified expression for F in POS form.	
	(iv) Draw logic circuit using minimum number of 2-input NOR gates.	
3.	Design and implement a full subtractor in Verilog using gate level modeling. Draw necessary	[10]
	truth table and logic diagrams.	
4.	Implement the function F (A,B,C,D) = Σ m(2,3,4,5,6,7) using a decoder without using OR gates.	[10]
5.	Implement a full adder using two 4×1 multiplexers. Draw the truth table and necessary k-maps.	[10]
6.	Reduce the following expression using K map both in SOP and POS and implement them using	1
	basic gates. Comment which simplification uses the minimum number of gates.	[10]
	$F = \Sigma m(0,1,2,8,9,10,11,13,14,15).$	
	$F = \Sigma m(0,1,2,8,9,10,11,13,14,15).$	

