Accidents-Severity-Prediction-Analysis

Yanying Zhou

Introduction

In order to reduce the frequency of car accidents, I would like to use the existing dataset to predict the severity of the accident with the current weather, vehicle speed, road conditions and light conditions. When the prediction are bad, an alarm system will be activated to remind drivers to increase their vigilance or remind local police to make adequate preparations in advance.

Datasource

The dataset is the Example Dataset in Week1 on Applied Data Science Capstone. This dataset provides collisions from 2004 to the present in Seattle.

Data Analysis

First, I read the data and find the attributes related to car accidents, for example, SEVERITYCODE, SEVERITYDESC, WEATHER, ROADCOND and LIGHTCOND.

```
In [4]: import pandas as pd
        df = pd.read csv("https://s3.us.cloud-object-storage.appdomain.cloud/cf-courses-data/CognitiveClass/DP0701EN/version-2/Data
        -Collisions.csv")
        print(df.dtypes)
        SEVERITYCODE
                          float64
                          float64
        OBJECTID
        INCKEY
                           int64
        COLDETKEY
                           int64
        REPORTNO
                           object
       STATUS
                           object
                           object
       INTKEY
                          float64
        LOCATION
                           object
       EXCEPTRSNCODE
                          object
       EXCEPTRSNDESC
       SEVERITYCODE.1
                           int64
        SEVERITYDESC
                           object
        COLLISIONTYPE
                           object
       PERSONCOUNT
                           int64
       PEDCOUNT
       PEDCYLCOUNT
                            int64
       VEHCOUNT
                           int64
       INCDATE
                           object
        INCDTTM
                           object
        JUNCTIONTYPE
                           object
       SDOT COLCODE
                           int64
        SDOT COLDESC
                           object
        INATTENTIONIND
                          object
       UNDERINFL
        WEATHER
                           object
        ROADCOND
                           object
       LIGHTCOND
                           object
       PEDROWNOTGRNT
                          object
        SDOTCOLNUM
                          float64
        SPEEDING
                           object
        ST COLCODE
                           object
        ST COLDESC
                           object
        SEGLANEKEY
                           int64
        CROSSWALKKEY
                           int64
       HITPARKEDCAR
                           object
       dtype: object
```

Then, run the value count on WEATHER, ROADCOND and LIGHTCOND to see which type of roads had more accidents.

			WEATHER	
Clear	73		111135	
Raini	ex.		33145	
Overd	I CONTROL		27714	
Unkn			15091	
Snow	1000		907	
Other	2010 (832	
-	Fog/Smog/Smoke		569	
	Sleet/Hail/Freezing Rain		113	
	ing Sand/Di	0.0000	56	
	re Crosswin	0.7	25	
Partly	y Cloudy	>>>	5	
4	2			
df['F	ROADCOND'	.value_	_counts(
		ROADCO	DND	
Dry		124510		
Wet		47474		
Unkn	own	15078		
Ice		1209		
Snow	//Slush	1004	03	
Othe	r	132		
Stand	ding Water	115		
Sand	/Mud/Dirt	75		
Oil		64		
4				
	IGHTCOND].value	_counts	
:			LIGHTCO	
Dayli	ght		116137	
Dark	- Street Lig	hts On	48507	
Unkn	own		13473	
Dusk	sk		5902	
Dawr	Dawn		2502	
Dark	Dark - No Street Lights		1537	
		2007 300747	0.000	
	- Street Lig	hts Off	1199	
		hts Off	1199 235	

Obviously, clear weather with dry road had the most accidents in day time. So, I create a new dataframe.

SEV	/ERITYCODE	WEATHER	ROADC	OND LIGH	TCOND
0 2	Ĭ.	Overcast	Wet	Daylig	ght
1		Raining	Wet	Dark -	- Street Lights On
2 1		Overcast	Dry	Daylig	ght
3 1		Clear	Dry	Daylig	ght
4 2		Raining	Wet	D!!	200
	+-:1/)	Kallilig	wet	Daylig	ght
	w.tail()	Kanning	wet	Daylış	ght
	w.tail()			ROADCOND	
	SEVERITY		THER R		
lf_nev	SEVERITY 88 2	CODE WEA	THER R	ROADCOND	LIGHTCOND
lf_nev 19466	SEVERITY 88 2 9 1	CODE WEA	THER R	ROADCOND Dry	LIGHTCOND Daylight
lf_nev 19466 19466	SEVERITY 58 2 59 1 70 2	CODE WEA	THER R r D ing W r D	ROADCOND Dry Vet	LIGHTCOND Daylight Daylight

Methodology

I try to use machine learning model to analysis.

KNN

```
In [14]: df_new['WEATHER'] = df_new['WEATHER'].astype('category')
    df_new['ROADCOND'] = df_new['ROADCOND'].astype('category')
    df_new['LIGHTCOND'] = df_new['LIGHTCOND'].astype('category')

df_new['WEATHER_CODE'] = df_new['WEATHER'].cat.codes
    df_new['ROADCOND_CODE'] = df_new['ROADCOND'].cat.codes
    df_new['LIGHTCOND_CODE'] = df_new['LIGHTCOND'].cat.codes

df_new.head()
```

Out[14]:

		SEVERITYCODE	WEATHER	ROADCOND	LIGHTCOND	WEATHER_CODE	ROADCOND_CODE	LIGHTCOND_CODE
ĺ	0	2	Overcast	Wet	Daylight	4	8	5
	1	1	Raining	Wet	Dark - Street Lights On	6	8	2
ĺ	2	1	Overcast	Dry	Daylight	4	0	5
	3	1	Clear	Dry	Daylight	1	0	5
	4	2	Raining	Wet	Daylight	6	8	5

In [15]: Feature = df_new[['WEATHER_CODE','ROADCOND_CODE','LIGHTCOND_CODE']]
Feature.head()

Out[15]:

	WEATHER_CODE	ROADCOND_CODE	LIGHTCOND_CODE
0	4	8	5
1	6	8	2
2	4	0	5
3	1	0	5
4	6	8	5

In [24]: X = Feature X[0.5]

Out[24]:

	WEATHER_CODE	ROADCOND_CODE	LIGHTCOND_CODE
0	4	8	5
1	6	8	2
2	4	0	5
3	1	0	5
4	6	8	5

In [25]: y = df_new['SEVERITYCODE'].values
y[0:5]

Out[25]: array([2, 1, 1, 1, 2])

```
In [26]: X= preprocessing.StandardScaler().fit(X).transform(X)
        X[0:5]
Out[26]: array([[ 0.35364615, 1.50545441, 0.3912104 ],
                1.04520829, 1.50545441, -1.18714134],
                0.35364615, -0.68713674, 0.3912104],
               [-0.68369706, -0.68713674, 0.3912104],
               [ 1.04520829, 1.50545441, 0.3912104 ]])
In [27]: from sklearn.model selection import train test split
         x train, x test, y train, y test = train test split( X, y, test size=0.3, random state=4)
        print ('Train set:', x train.shape, y train.shape)
        print ('Test set:', x test.shape, y test.shape)
        Train set: (136271, 3) (136271,)
        Test set: (58402, 3) (58402,)
In [28]: from sklearn.neighbors import KNeighborsClassifier
          from sklearn.metrics import accuracy score
In [51]: k = 14
In [46]: best knn model = KNeighborsClassifier(n neighbors = k).fit(x train, y train)
          best knn model
Out[46]: KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',
                               metric params=None, n jobs=None, n neighbors=25, p=2,
                               weights='uniform')
In [52]: Kyhat = best knn model.predict(x test)
          Kyhat[0:5]
Out[52]: array([1, 1, 1, 1, 1])
In [53]: from sklearn.metrics import jaccard similarity score
          from sklearn.metrics import fl score
          from sklearn.metrics import log loss
In [54]: jaccard similarity score(y test, Kyhat)
          /home/home/anaconda3/lib/python3.7/site-packages/sklearn/metrics/ classificat:
          core has been deprecated and replaced with jaccard score. It will be removed
          sing behavior for binary and multiclass classification tasks.
           FutureWarning)
Out[54]: 0.7034005684736824
In [55]: f1 score(y test, Kyhat, average='macro')
Out[55]: 0.41293902414507144
```

Methodology

I try to use machine learning model to analysis.

Conclusion

Based on historical data related to weather conditions, we can conclude the relationship between the probability of accidents and the special weather conditions.

Thanks for your reading!