EP 0 943 685 A2 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 22.09.1999 Patentblatt 1999/38

(21) Anmeldenummer: 99101164.4

(22) Anmeldetag: 22.01.1999 |

(51) Int. Cl.6: C12N 15/12, C07K 14/705, C07K 16/28, A61K 48/00, C12Q 1/68, G01N 33/576, G01N 33/68, C12N 5/10

(84) Benannte Vertragsstaaten: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Benannte Erstreckungsstaaten: AL LT LV MK RO SI

(30) Priorität: 11.02.1998 DE 19805351

(71) Anmelder: BASF AKTIENGESELLSCHAFT 67056 Ludwigshafen (DE)

(72) Erfinder:

 Kröger, Burkhard, Dr. 67117 Limburgerhof (DE) · Otterbach, Bernd, Dr.

67061 Ludwigshafen (DE)

Neuer G-Protein-gekoppelter Rezeptor aus menschlichem Gehirn (54)

Neuer G-Protein gekoppelter Rezeptor aus menschlichem Gehirn, das dafür codierendes Gen und seine Verwendung

Beschreibung

- [0001] Die vorliegende Erfindung betrifft einen neuen G-Protein-gekoppelten Rezeptor aus humanem Gehirn, dessen Gene und Verwendung.
- [0002] G-Protein-gekoppelte Rezeptoren stellen eine Superfamilie integraler Membranproteine dar. Familienmitglieder sind Rezeptoren für alle Typen chemischer Botenstoffe, aber auch Sensoren für Licht und Geruch. G-Proteingekoppelte Rezeptoren kommen in fast allen Organismen vor.
 - [0003] Die Rezeptoren sind charakterisiert durch eine Aminosäuresequenz mit 7 ausgeprägt hydrophoben Bereichen. Diese stellen höchstwahrscheinlich memoranständige Domänen dar und geben der Familie ihren zweiten Namen: 7-Transmembran-Domänen Rezeptoren.
 - [0004] Die Liganden dieser Rezeptorfamilie sind mit biogenen Aminen (z.B. Adrenalin, Serotonin, Histamin), Peptidhormonen (z.B. Angiotensin, Endothelin, Bradykinin), Neurotransmittern (z.B. NPY, Substanz P, Opioide) und Proteinen (z.B. Chemokine, Thrombin) sehr vielfältig. Alle diese Messenger sind durch Interaktion mit G-Proteinen an der Signalübertragung in das Innere der Zelle beteiligt. Als Effektoren sind bekannt: Adenylatcyclase, Phospholipase C, Phosphodiesterase.
 - [0005] Die G-Protein-gekoppelten Rezeptoren werden in drei Unterfamilien unterteilt: die Rhodopsin-Unterfamilie, Calcitonin-Unterfamilie und Glutamat/metabotrope-Unterfamilie.
- [0006] Gegenstand der Erfindung ist ein isoliertes Protein, enthaltend die in SEQ ID NO:2 dargestellte Aminosauresequenz oder eine daraus durch Substitution, Insertion oder Deletion von einem oder mehreren Aminosaureresten erhältliche Sequenz, wobei wenigstens noch eine der wesentlichen biologischen Eigenschaften des in SEQ ID NO:2 dargestellten Proteins erhalten bleibt.
- [0007] Die wesentliche biologische Eigenschaft ist in der Aktivität als Rezeptor, insbesondere als G-Protein gekoppelter Rezeptor zu sehen.
- [0008] Ein weiterer Gegenstand der Erfindung sind Proteine mit G-Protein gekoppelter Rezeptoraktivität, die ausgehend von der in SEQ ID NO:2 dargestellten Aminosäuresequenz durch gezielte Veränderungen herstellbar sind. Beispielsweise können bestimmte Aminosäuren durch solche mit ähnlichen physikochemischen Eigenschaften (Raumerfüllung, Basizität) ersetzt werden. Es können aber auch ein oder mehrere Aminosäuren hinzugefügt oder entfernt werden, oder mehrere dieser Maßnahmen miteinander kombiniert werden. Die solchermaßen gegenüber der SEQ ID NO:2 veränderten Proteine besitzen wenigstens 60 %, bevorzugt wenigstens 75 % Homologie zu SEQ ID NO:2, berechnet nach dem Algorithmus von Pearson und Lipman, Proc. Natl. Acad. Sci (USA) 85, 2444-2448.
- [0009] Ein weiterer Gegenstand der Erfindung sind Nukleinsäuresequenzen, die für die o.g. Proteine codieren, insbesondere solche mit der in SEQ ID NO:1 dargestellten Primärstruktur.
- [0010] Die vorliegende cDNA kann durch dem Fachmann geläufige Klonierungs- und Transfektionsmethoden in verschiedenen Expressionssystemen zur Expression gebracht werden. Dies sind beispielsweise pro- oder eukaryotische Vektorsysteme, wie SV40, CMV, Baculovirus, Adenovirus; Plasmide; Phagemide, Phagen.
- [0011] Dazu wird die erfindungsgemäße Nukleinsäuresequenz üblicherweise mit genetischen Regulationselementen wie Transkriptions- und Translationssignalen funktionell verknüpft. Mit den solchermaßen hergestellten rekombinanten Nukleinsäurekonstrukten werden anschließend Wirtsorganismen transformiert.
- [0012] Eine bevorzugte Ausführungsform ist die Verknüpfung der erfindungsgemäßen Nukleinsäuresequenz mit einem Promotor, wobei der Promotor 5' upstream zu liegen kommt. Weitere Regulationssignale wie Terminatoren, Polyadenylierungssignale, Enhancer können in dem Nukleinsäurekonstrukt Anwendung finden.
- [0013] Als Wirtszellen sind Bakterien wie Escherichia coli, eukaryotische Mikroorganismen wie Saccharomyces cerevisiae, höhere eukaryotische Zellen aus Tieren oder Pflanzen, beispielsweise Sf9 oder CHO-Zellen, geeignet.
- [0014] Gewünschtenfalls kann das Genprodukt auch in transgenen Organismen wie transgenen Tieren, z.B. Mäusen, Schafen oder transgenen Pflanzen zur Expression gebracht werden.
- [0015] Bei der vorliegenden Erfindung handelt es sich um eine cDNA, die für ein neues Mitglied der G-Protein-gekoppelten Rezeptorfamilie kodiert. Sequenzvergleiche zeigen Verwandtschaft mit Endothelinrezeptoren und Endothelinrezeptor-ähnlichen Sequenzen.
- [0016] Die vorliegende Nukleotidsequenz wurde ursprünglich in mehreren cDNA-Bibliotheken aus humanem Gehirn und Rückenmark identifiziert. Die Analyse der Verteilung der zugehörigen mRNA in 50 verschiedenen menschlichen Geweben ergab fast ausschließliche Expression im Gehirn.
 - [0017] Das durch die vorliegende cDNA kodierte Polypeptid läßt sich zweifelsfrei als G-Protein-gekoppelter Rezeptor identifizieren. Die 7 Transmembran-Domänen, das Kennzeichen dieser Proteinfamilie, lassen sich leicht im Hydrophilizitäts-Plot (Kyte, J. and R.F. Doolittle, 1982, J. Mol. Biol. 157, 105-132 (1982)) finden. Die größte Verwandtschaft auf
- Aminosaureebene findet sich mit 52 % Identität zu einem putativen Endothelinrezeptor Typ B-ahnlichen Protein humanen Ursprungs (Genbank Accession Nummer U87460, (FastA-Programm, Pearson und Lipman, Proc. Natl. Acad. Sci (USA) 85, 2444-2448).
 - [0018] In besonderen Fällen kann das Genprodukt auch in transgenen Tieren, z.B. Mäusen, Schafen oder transgenen

Pflanzen zur Expression gebracht werden. Ebenso ist es möglich, zellfreie Translationssysteme mit der entsprechenden RNA zu programmieren.

[0019] Darüberhinaus kann das Genprodukt auch in Form therapeutisch oder diagnostisch geeigneter Fragmente exprimiert werden. Zur Isolation des rekombinanten Proteins können Vektorsysteme oder Oligonukleotide verwendet werden, die die cDNA um bestimmte Nukleotidsequenzen verlängern und damit für veränderte Polypeptide kodieren, die einer einfacheren Reinigung dienen. Als solche "Tags" sind in der Literatur z.B. Hexa-Histidin-Anker bekannt oder Epitope, die als Antigene verschiedener Antikörper erkannt werden können (beschrieben zum Beispiel in Harlow, E. and Lane, D. (1988) Antibodies: A Laboratory Manual. Cold Spring Harbor (N.Y.) Press).

[0020] Ausgehend von der Peptidsequenz können synthetische Peptide generiert werden, die als Antigene für die Produktion von Antikörpern eingesetzt werden. Es ist auch möglich, das Polypeptid oder Bruchstücke davon zur Genenerung von Antikörpern einzusetzen.

[0021] Die Herstellung von Antikörpern ist eine dem Fachmann geläufige Tätigkeit. Mit Antikörpern sind sowohl polyklonale, monoklonale, humane oder humanisierte Antikörper oder Fragmente davon, single chain Antikörper oder auch synthetische Antikörper gemeint.

[0022] Die vorliegende cDNA bietet außerdem die Voraussetzung, die genomische Sequenz dieses neuen G-Proteingekoppelten Rezeptors zu klonieren. Darunter fällt auch die dazugehörige regulatorische oder Promotorsequenz, die beispielsweise durch Sequenzierung des 5' upstream Bereiches der vorliegenden cDNA zugänglich wird. Die Sequenzinformation der cDNA ist auch die Grundlage für die Herstellung von antisense Molekülen oder Ribozymen.

[0023] Eine weitere Möglichkeit des Einsatzes der Nukleotidsequenz oder Teilen davon ist die Erzeugung transgener Tiere. Transgene Überexpression oder genetischer Knockout der Sequenzinformation in geeigneten Tiermodellen kann wertvolle weitere Informationen über die (Patho-)Physiologie des neuen G-Protein-gekoppelten Rezeptors.

[0024] In Situationen, in denen ein Mangel an dem beschriebenen Rezeptor (Protein gemäß Anspruch 1) herrscht, können mehrere Methoden zur Substituierung eingesetzt werden. Zum einen kann das Protein, natürlich oder rekombinant direkt, oder durch geeignete Maßnahmen in Form seiner kodierenden Nukleinsäure (DNA oder RNA) appliziert werden. Dazu können sowohl virale, als auch nichtvirale Vehikel zum Einsatz kommen.

[0025] Ein weiterer Weg bietet sich durch die Stimulation des endogenen, körpereigenen Genes durch geeignete Mittel. Auch der turn-over oder die Inaktivierung z.B. durch Rezeptorkinasen können blockiert werden. Schließlich können Agonisten dieses Rezeptors zum Einsatz gelangen.

[0026] In Situationen, in denen überschüssiger Rezeptor vorliegt, können verschiedene Inhibitoren eingesetzt werden. Diese Inhibition kann sowohl durch antisense Moleküle oder Ribozyme, oder Antikörper und Oligonukleotide, als auch durch niedermolekulare Verbindungen erreicht werden. Darüberhinaus kann der Rezeptor auch durch Antagonisten blockiert werden.

[0027] Weiterhin können die cDNA, die genomische DNA, der Promotor, als auch das Polypeptid, sowie Teilfragmente davon in rekombinanter oder nichtrekombinanter Form zur Ausarbeitung eines Testsystems verwendet werden. Dieses Testsystem ist geeignet, die Aktivität des Promotors oder des Proteins in Anwesenheit einer Testsubstanz zu messen. Bevorzugt handelt es sich dabei um einfache Meßmethoden (colorimetrischer, luminometrischer, fluorimetrischer, immunologischer oder radioaktiver Art,) die die schnelle Meßbarkeit einer Vielzahl von Testsubstanzen erlauben. Die beschriebenen Testsysteme erlauben die Bindung oder Agonisierung oder Antagonisierung von Testsubstanzen in Bezug zum neuen Rezeptor zu beschreiben.

[0028] Die Bestimmung von Menge, Aktivität und Verteilung des Rezeptors oder seiner zugrundeliegenden mRNA im menschlichen Körper kann zur Diagnose, Prädisposition und zum Monitoring bei bestimmten Erkrankungen dienen. Desgleichen kann die Sequenz der cDNA sowie der genomischen Sequenz zu Aussagen über genetische Ursachen und Prädispositionen bestimmter Erkrankungen herangezogen werden. Dazu können sowohl DNA/RNA-Proben, sowie unnatürliche DNA/RNA-Proben, als auch Antikörper verschiedenster Art benutzt werden. Dabei dient die beschriebene Nukleotidsequenz oder Teile davon in Form geeigneter Proben zur Aufdeckung von Punktmutationen oder Deletionen/Insertionen.

[0029] Weiterhin kann das beschriebene Protein benutzt werden, um seine natürlichen Liganden zu bestimmen und zu isolieren. So kann der Rezeptor rekombinant in Zellkultur exprimiert und sein Aktivierungszustand z.B. anhand des cAMP-Spiegels abgeleitet werden. Der cAMP-Spiegel läßt sich immunologisch oder mittels Reportertechnologie ermitteln. Damit ergibt sich auch ein diagnostisches Verfahren den Spiegel des Rezeptorliganden in Körperflüssigkeiten oder Geweben zu bestimmen.

[0030] Die erfindungsgemäße Nukleinsäuresequenz und das von ihr kodierte Protein können zur Entwicklung von Reagenzien, Agonisten und Antagonisten zur Diagnose und Therapie von chronischen und akuten Erkrankungen des zentralen und peripheren Nervensystems, wie Alzheimer's, Depression, Demenz, Motilitätsstörungen, Hirntumore, Schmerz, Schizophrenie, Angstzustände, Schlaganfall, Schlafstörungen, Apnoen, Husten, Psychosen, Parkinson's, Epilepsie, ALS, Drogenabhängigkeit, Lähmungen, sowie zur Cerebroprotektion und bei Erkrankungen mit nervöser Komponente, wie Obesity, Anorexie, Bulimie eingesetzt werden.

[0031] Ein weiterer Gegenstand der Erfindung ist Verfahren zum qualitativen und quantitativen Nachweis einer Nukle-

insaure nach Anspruch 3 in einer biologischen Probe, das folgende Schritte umfaßt:

- a) Inkubation einer biologischen Probe mit einer bekannten Menge an Nukleinsäure gemäß Anspruch 3 oder einer bekannten Menge an Oligonukleotiden, die als Primer für eine Amplifikation der Nukleinsäure gemäß Anspruch 3 geeignet sind,
- b) Nachweis der Nukleinsäure gemäß Anspruch 3 durch spezifische Hybridisierung oder PCR-Amplifikation,
- c) Vergleich der Menge an hybridisierender Nukleinsäure gemäß Anspruch 3 oder an durch PCR Amplifikation
 gewonnener Nukleinsäure gemäß Anspruch 3 mit einem Standard.

[0032] Weiterhin umfaßt die Erfindung ein Verfahren zum qualitativen und quantitativen Nachweis eines Proteins gem‰ß Anspruch 1 in einer biologischen Probe, das folgende Schritte umfaßt:

- a) Inkubation einer biologischen Probe mit einem Antik\u00f6rper, der spezifisch gegen das Protein gem\u00e4\u00df Anspruch 1
 gerichtet ist,
 - d) Nachweis des Antikörper/Antigenkomplexes,
- c) Vergleich der Mengen des Antikorper/Antigenkomplexes mit einem Standard.

[0033] Als Standard können biologische Proben wie Gewebestücke, Serum oder Blut dienen, die von gesunden Probanden entnommen wurden.

5 Beispiel 1

5

Klonierung der Rezeptor cDNA

[0034] Bei der Sequenzanalyse von cDNA-Klonen einer cDNA-Bibliothek aus menschlichem Gehirn wurde zunächst eine Teilsequenz identifiziert. Die Sequenz dieses Teilklones umfaßt den Bereich zwischen Nukleotidposition 352 und 2411 in SEQ ID NO:1.

[0035] Aus einer cDNA-Bibliothek aus menschlichem Gehirn (Human Brain 5'Stretch Plus cDNA Library, # HL5018t, Fa. Clontech, Jahr 1997) wurde die Gesamtsequenz SEQ ID NO:1 mittels geschachtelter Polymerase Chain Reaktion amplifiziert. Dazu kamen folgende Oligonukleotidprimer zur Anwendung:

PCR1: mit SEQ ID NO: 3 und SEQ ID NO: 4; PCR2: mit SEQ ID NO: 3 und SEQ ID NO: 5.

Beispiel 2

35

40

50

55

Expression des neuen Rezeptors in menschlichen Geweben

[0036] Die Expression des neuen Rezeptors wurde in 50 verschiedenen menschlichen Geweben mittels RNA-Dotblot-Analyse untersucht. Ein Blot der Firma Clontech (#7770-1) wurde dazu mit einer Rezeptor-Probe hybridisiert. Die Probe wurde durch in vitro Transkription der entsprechenden cDNA in Anwesenheit Digoxigenin-markierter Nukleotide hergestellt. Nach stringentem Waschen wurde das Transkript hauptsächlich in Gehirngewebe nachgewiesen.

SEQUENCE LISTING

5 .	<110> BASF Aktiengesellschaft
	<120> Neuer G-Protein gekoppelter Rezeptor aus menschlichem Hirn
10	<130> OZ 0050/48774
	140
	<140> <141>
	<141>
٠	<150> DE 19805351.7
15	<151> 1998-02-11
	<u><160> 5</u>
20	<170> PatentIn Ver. 2.0
	<210> 1
	<211> 2411
	<212> DNA
25	<213> Homo sapiens
	<220>
	<221> 5'UTR
30	<222> (1)(19)
30	.000
	<220>
	<222> (20) . (1462)
	72687 (2071) (2-1-7)
35	<220>
	<221> 3'UTR
	<222> (1463)(2411)
40	<pre><400> 1 gtctcctgct catccagcc atg cgg tgg ctg tgg ccc ctg gct gtc tct ctt 52</pre>
	Met Arg Trp Leu Trp Pro Leu Ala Val Ser Leu
	1 5 10
	and and are story and got acc ccc 100
45	THE SEE SEE FER OCE OF ORD CEA AGE AGE GGG GEC CEE 999 990 900
	Ala Val Ile Leu Ala Val Gly Leu Ser Arg Val Ser Gly Gly Ala Pro
	15 20 23
	ctg cac ctg ggc agg cac aga gcc gag acc cag gag cag c
50	Leu His Leu Gly Arg His Arg Ala Glu Thr Gln Glu Gln Ser Arg
•	30 35 40

5	S	er	Lys 45		g G	ly 1	hr	gag Glu	ga As; 5	D GI	ig ga	ag g lu A	ycc Ala	aag Lys	G1 ₂ 55	/ Va	g c	ag (cag Sln	tat Tyr	196
10		tg al 60	cct Pro	ga Gl	g ga u Gl	ig t .u T	gg (gcg Ala 65	gaq Glu	g ta 1 Ty	c co	C C	rg rg	ccc Pro 70	att Ile	ca Hi	c co	ct g	la	ggc Gly 75	244
	Ct Le	tg (cag Gln	Pro	a ac	T 17	ag o Ys P 90	ro	ttg Leu	gte Val	g go l Al	a T	cc hr : 85	agc Ser	cct Pro	aa Ası	c cc	O A	ac sp 90	aag Lys	292
	ga As	it g	ggg Sly	ggo	ac Th:		a g	ac sp	agt Ser	ggg Gly	Gl:	n Gl	aa d lu 1	ctg Leu	agg Arg	ggc Gly	aa As	n Le	tg a	aca Thr	340
20	gg G1	97 A		cca Pro 110	G17	g ca ⁄G1	g ag n Ai	gg rg i	cta Leu	cag Gln 115	ato Ile	ca e Gl	ng a	ac sn	ccc Pro	ctg Leu 120	Ту	t co	g g 7 o:	gtg /al	388
25	ac. Thi	_	ag lu 25	agc Ser	Ser	ta Ty	c_ag r Se	:L A	gcc Ala 130	tat Tyr	gcc	at	с <u>а</u> е М	et 1	ctt Leu L35	ctg Leu	gcg	z ct Le	a S	rtg Val	436
30	gtg Val 140		tt g	gcg Ala	gtg Val	ggo Gly	c at / Il 14	e v	ntg Val	ggc Gly	aac Asn	Ct:	u S	cg g er V 50	jtc /al:	atg Met	tgc Cys	at Il	e V	tg al 55	484
35	tgg Trp	I Ca Hi	ac a	igc Ser	tac Tyr	tac Tyr 160	. Te	ga u L	ag Ys	agc Ser	gcc Ala	tgg Trp	As C	ac t sn S	ec a	atc Ile	ctt Leu	gc Ala	a S	gc er	532
	ctg Leu	gc Al	c c		tgg Trp 175	gat Asp	tt: Pho	t c	tg (vaı	ctc Leu 180	ttt Phe	tt Ph	c t le C	gc (ctc	cct Pro 185	ati	c gʻ e Va	tc al	580
40	atc Ile	t t Ph		ac g sn (gag Glu	atc Ile	acc Thr	c aa	/S (ag 31n 195	agg Arg	cta Leu	ct Le	g g u G	ly A	ac sp	gtt Val	tct	tç C	gt ⁄s	628
45	cgt Arg	gc: Al: 20!	- "	tg d	ecc Pro	ttc Phe	atg Met	ga : G1 21	u v	rtc al:	tcc Ser	tct Ser	ct. Le	g gg u G] 21	Ly V	tc al	acg Thr	act Thr	t t	c ie	676
50	agc Ser 220	c to	to LCy	jt g /s A	icc (ctg Leu	ggc Gly 225	at Il	t g e A	ac d sp 1	egc Arg	ttc Phe	Cac His 230	s Va	g g	cc a la ?	acc Thr	agc Ser	ac Th 23	r	724
5 <i>5</i>	ctg	ccc	aa	g g	tg a	agg	ccc	at	c g	ag c	gg	tgc	caa	a to	c at	te c	tg	gcc	aa	g	772

	Leu	Pro	Lys [']		Arg 240	Pro	Ile	Glu		Cys 245	Gln	Ser	Ile	Leu	Ala 250	Lys	
5	ttg Leu	gct Ala	gtċ Val	atc Ile 255	tgg Trp	gtg Val	ggc Gly	tcc Ser	atg Met 260	acg Thr	ctg Leu	gct Ala	Val	cct Pro 265	gag Glu	ctc Leu	820
10	ctg Leu	ctg Leu	tgg Trp 270	cag Gln	ctg Leu	gca Ala	cag Gln	gag Glu 275	cct Pro	gcc Ala	ccc Pro	Thr	atg Met 280	ggc Gly	acc Thr	ctg Leu	868
15	gac Asp	tca Ser 285	tgc Cys	atc Ile	atg Met	aaa Lys	ccc Pro 290	tca Ser	gcc Ala	agc Ser	ctg Leu	ecc Pro 295	gag Glu	tcc Ser	ctg Leu	tat Tyr	916
20	tca Ser 300	ctg Leu	gtg Val	atg. Met	acc Thr	tac Tyr 305	Gln	_aac Asn	gcc Ala	cgc	atg Met 310	tgg Trp	tgg_ Trp	tac Tyr	ttt Phe	ggc Gly 315	964
	tgc Cys	tac Tyr	ttc .Phe	tgc Cys	ctg Leu 320	ccc Pro	atc Ile	ctc Leu	ttc Phe	aca Thr 325	gtc Val	acc Thr	tgc Cys.	cag Gln	ctg Leu 330	gtg Val	1012
25	aca Thr	tgg Trp	cgg Arg	gtg Val 335	.cga Arg	ggc Gly	cct Pro	cca Pro	ggg Gly 340	agg Arg	aag Lys	tca Ser	gag Glu	tgc Cys 345	agg Arg	gcc Ala	1'060
30	agc Ser	aag Lys	cac His 350	Glu	cag Gln	tgt Cys	gag Glu	agc Ser 355	cag G1n	ctc Leu	aac Asn	agc Ser	acc Thr 360	gtg Val	gtg Val	ggc Gly	1108
35	ctg Leu	acc Thr 365	gtg Val	gtc Val	tac Tyr	gcc Ala	Phe 370	Cys	acc Thr	ctc	cca Pro	gag Glu 375	Asn	gtc Val	tgc Cys	aac Asn	1156
40	atc Ile 380	Val	gtg Val	gcc Ala	tac Tyr	ctc Leu 385	Ser	acc Thr	gag Glu	ctg Lev	acc Thr 390	Arg	cag Gln	acc	ctg Leu	gac Asp 395	1204
45	ctc Leu	ctg Leu	ggc Gly	cto Lev	ato 11e 400	Asr	caç ı Glı	g tto n Phe	tcc Ser	acc Thi	Phe	tto Phe	aag Lys	ggc Gly	gcc Ala 410	atc a Ile	1252
	acc Thr	cca Pro	gtç Val	g cto L Leu 419	ı Lev	ctt Lei	tge	c ato	tgo Cys 420	s Ar	g ccq	g cto Lei	g ggc	cag Gl: 425	1 AL	ttc a Phe	1300
50	ct <u>c</u> Lev	gaq Ası	c tgo	c tgo s Cys	tgo S Cys	tgo Cy:	c tg s Cy	c tgo	tg:	t gag	g gaq u Gl	g tgo u Cy:	c ggc s Gly	gg Gl	g gc	t tcg a Ser	1348

	430	435	. 440	
' 5	gag gcc tct gct gcc Glu Ala Ser Ala Ala 445	aat ggg tcg gac a Asn Gly Ser Asp 2 450	aac aag ctc aag acc gag g Asn Lys Leu Lys Thr Glu V 455	tg 1396 al
10	460	465	agg gag tca ccc cca ctc ct arg Glu Ser Pro Pro Leu Le 470	eu.
15 _.	480	cys .	aggggtgg ggagggaggg	1492
	agaggccgcc acccccgco	g gtgtctgctg ttct	ttcccc ataggtcttg ctttgtt	gcc 1552
20		•	tgtcaa ggtttgggaa tgtcaaa	
	ccctccccac acagggcct	t tootgtooot tgtgg	ggcct tecaaceetg teettte	cac 1672
	•		gcccag aaactctgag tcccagca	
25	tgggagccag aactttgcc	geeeteeett ggtte	cagte tetettetet etetetge	ct 1792
			ggcat catectecta ccaccaac	
30	ggggccccat cttggaatgo	gggctccttg gggcc	agece agtgtggete accacact	ct 1912
	totttttttt tttttttt	gagatggagt cttgc	tetgt tgeecagget ggagtaca	tt 1972
	tgcctgatgt cageteectg	caacctecge ctect	gggtt caágcgattc teetgeet	ca 2032
35	gcctcctgag tagctgggat	tacaggtgtg caccad	acaca eceggetaat ttttgtat	tt 2092
	gtagaagagg cggggtttca	ccatgttggc cagget	tggtg ttgaactcct gacctcaa	gt 2152
40			tacag gtgtgagetg ceaegeee	
			agtee tggatgeete etectaet	
45			ectec teetttettt gggateec	
		cttgttaggt gctttc	ccat aggaggccct tcttgagaa	aa 2392
	caataaacta ggtagaact			2411
50	<210> 2 <211> 481			

		2> PF						1								
	<213	8> Hc	omo s	sapie	ens											•
5	<400)> 2											ı			•
	Met 1	Arg	Trp	Leu	Trp 5	Pro	Leu	Ala	Val	Ser 10	Leu	Ala	Val	Ile	Leu 15	Ala
10	Val	Gly	Leu	Ser 20	Arg	Val	Ser	Gly	Gly '25	Ala	Pro	Leu	His	Leu 30	Gly	Arg
	His	Arg	Ala 35	Glu	Thr	Gln	Glu	Gln 40	Gln	Ser	Arg	Ser	Lys 45	Arg	Gly	Thr
15	Glu	Asp 50	Glu	Glu	Ala	Lys	Gly 55	Val	Gln	Gln	Tyr	Val 60	Pro	Glu	Glu	Trp
20	Ala 65	Glu	Tyr	Pro	Arg	Pro 70	Ile	His	Pro	Ala	Gly 75	Leu	Gln	Pro	Thr	Lys 80
	Pro	Leu	Val	Ala	Thr 85	Ser	Pro	Asn	Pro	Asp 90	Lys	Asp	Gly	Gly	Thr 95	Pro
25	Asp	Ser	Gly	Gln 100	Glu	Leu	Arg	Gly	Asn 105	Leu	Thr	Gly	Ala	Pro 110	Gly	Gln
30	Arg	Leu	Gln 115	Ile	Gln	Asn	Pro	Leu 120	Туг	Pro	Val	Thr	Glu 125	Ser	Ser	Tyr
	Ser	Ala 130	Tyr	Ala	Ile		Leu 135	Leu	Ala	Leu	Val	Val 140	Phe	Ala	Val	Gly
35	Ile 145	Val	Gly	Asn	Leu	Ser 150	Val	Met	Cys	Ile	Val 155	Trp	His	Ser	Tyr	Туг 160
	Leu	Lys	Ser	Ala	Trp 165	Asn	Ser	Ile		Ala 170	Ser	Leu	Ala	Leu	Trp 175	Asp
40	Phe	Leu	Val	Leu 180	Phe	Phe	Cys	Leu	Pro 185	Ile	Va1	Ile	Phe	Asn 190	Glu	Ile
45	Thr	Lys	Gln 195	Arg	Leu	Leu	Gly	Asp 200	Val	Ser	Cys	Arg	Ala 205	Val	Pro	Phe
·	Met	Glu 210	Val	Ser	Ser	Leu	Gly 215	Val	Thr	Thr	Phe	Ser 220	Leu	Cys	Ala	Leu
50	Gly 225		Asp	Arg	Phe	His 230	Val	Ala	Thr	Ser	Thr 235	Leu	Pro	Lys	Val	Arg 240

	Pr	o Il	e Gl	u Arg	245		ı Sei	r Ile	e Lei	Ala 250		Let	ı Ala	ı Val	. Ile 255	
· 5	Va	1 G1	y Sei	r Met 260	Thr	Leu	Ala	a Val	Pro 265		. Leu	Leu	Leu	7rp		Leu
10	Al	a Gl	n Glu 275	ı Pro	Ala	Pro	Thr	Met 280		Thr	Leu	Asp	Ser 285		Ile	Met
	Ly:	9 Pro	o Ser O	Ala	Ser	Leu	Pro 295	Glu	Ser	Leu	Tyr	Ser 300		Val	Met	Thr
15 _.	Ту: 305	c Gli	n Asn	Ala	Arg	Met 310	Trp	Trp	туг	Phe	Gly 315	Cys	Tyr	Phe	Cys	Leu 320
20	Pro	Ile	Leu	Phe	Thr 325	Val	Thr	Cys	Gln	Leu 330	Val	Thr	Trp	Arg	Val 335	Ārg
	G1y	Pro	Pro	Gly 340	Arg	Lys	Ser	Glu	Cys 345	Arg	Ala	Ser	Lys	His 350	Glu	Gln
25	Cys	Glu	Ser 355	G1n	Leu	Asn	Ser	Thr 360		Val	Gly ,	Leu	Thr 365	Val	Val	Tyr
30 ·	Ala	Phe 370	Cys	Thr	Leu	Pro	Glu 375	Asn	Val	Cys	Asn	Ile 380	Val	Val	Ala	Tyr
·	Leu 385	Ser	Thr	Glu		Thr 390	Arg	Gln	Thr		Asp 395	Leu	Leu	Gly		Ile 400
35	Asn	Gln	Phe	Ser	Thr :	Phe	Phe	Lys	Gly	Ala 410	Ile	Thr	Pro		Leu 415	Leu
40	Leu	Cys	Ile	Cys 420	Arg 1	Pro	Leu	Gly	Gln 425	Ala	Phe	Leu	qaA	Cys 430	Cys	Cys
-	Cys	Суѕ	Cys 435	Cys (Glu (Glu		Gly 440	Gly	Ala	Ser		Ala 445	Ser	Ala	Ala
15	Asn	Gly 450	Ser	Asp /	Asn I	ys :	Leu 455	Lys	Thr	Glu '		Ser 460	Ser	Ser	Ile '	Tyr
50	Phe 465	His	Lys	Pro 2	Arg 6	31u 3 170	Ser	Pro	Pro		Leu : 475	Pro	Leu	Gly '		Pro 480
	Cys															

		•	
	<210> 3	•	
	<211> 26	ı	
5	<212> DNA	r - 1	·
	<213> Homo sapiens		
	<400> 3		, 0.0
10	ctcgggaagc gcgccattgt gttggt	,	26
10	r i	1	`
	<210> 4		
	<211> 26	1	
15	<212> DNA		
	<213> Homo sapiens	1	
	<400> 4		•
20	gageceacee agatgacage caactt	•	26
		t ·	
	<210> 5	, , , , , , , , , , , , , , , , , , ,	i
25	<211> 26		
	<212> DNA	· ·	i
	<213> Homo sapiens	1	
	<400> 5	•	
30	tgaagggcac ggcacgacaa gaaacg		26
	2 222 22 2	1	
		'	1
			!

Patentansprüche

35

- Isoliertes Protein, enthaltend die in SEQ ID NO:2 dargestellte Aminos\u00e4uresequenz oder eine daraus durch Substitution, Insertion oder Deletion von einem oder mehreren Aminos\u00e4ureresten erh\u00e4ltliche Sequenz, wobei wenigstens noch eine der wesentlichen biologischen Eigenschaften des in SEQ ID NO:2 dargestellten Proteins erhalten bleibt.
 - 2. Protein nach Anspruch 1, dadurch gekennzeichnet, daß es sich um ein humanes Protein handelt.
- 45 3. Nukleinsäuresequenz codierend für ein Protein nach Anspruch 1.
 - Nukleinsäuresequenz nach Anspruch 3, dadurch gekennzeichnet, daß sie für ein Protein codiert, das wenigstens 60 % Identität mit der in SEQ ID NO:2 dargestellten Sequenz hat.
- 50 5. Nukleinsäuresequenz nach Anspruch 4, dadurch gekennzeichnet, daß sie die in SEQ ID NO:1 dargestellte Sequenz enthält.
 - 6. Rekombinantes Nukleinsäurekonstrukt, enthaltend eine Nukleinsäuresequenz gemäß Anspruch 3 funktionell verknüpft mit mindestens einem genetischen Regulationselement.
 - 7. Wirtsorganismus, transformiert mit einer Nukleinsäuresequenz nach Anspruch 3.
 - 8. Wirtsorganismus, transformiert mit einem rekombinanten Nukleinsäurekonstrukt nach Anspruch 6.

- 9. Verwendung eines Proteins nach Anspruch 1 als Antigen zur Erzeugung von spezifischen Antikörpern.
- 10. Antikörper, die spezifisch das Protein nach Anspruch 1 erkennen.
- Verwendung einer Nukleinsäuresequenz zur Gentherapie.
 - 12. Verwendung einer zu der Sequenz gemäß Anspruch 3 komplementären Nukleinsäuresequenz zur Gentherapie.
- 13. Verfahren zur Identifizierung von Antagonisten und Agonisten für das Protein gemäß Anspruch 1 indem man Zellen, die das Protein gemäß Anspruch 1 auf der Zelloberfläche tragen mit einer Vielzahl zu untersuchender Substanzen (Testsubstanzen) zusammenbringt, und anschließend die biologische Aktivität des Rezeptors in An- und Abwesenheit der Testsubstanz vergleicht.
- 14. Verfahren zum Testen von Substanzen hinsichtlich ihrer Eigenschaft als Ligand für das Protein gemäß Anspruch 1
 zu fungieren, das folgende Schritte umfaßt:
 - a) Expression des Proteins nach Anspruch 1 in eukaryontischen Zellen,
 - b) Inkubation dieser Zellen mit Proteinextrakten, bevorzugt aus Gehirngewebe stammend,
 - c) Ermittlung der Bindung der zu untersuchenden Substanz an das Protein gemäß Anspruch 1 und und der Aktivierung durch Messung der cAMP Konzentration oder des Calciumflusses in der Zelle.
 - 15. Verfahren zum qualitativen und quantitativen Nachweis einer Nukleinsäure nach Anspruch 3 in einer biologischen Probe, das folgende Schritte umfaßt:
 - a) Inkubation einer biologischen Probe mit einer bekannten Menge an Nukleinsäure gemäß Anspruch 3 oder einer bekannten Menge an Oligonukleotiden, die als Primer für eine Amplifikation der Nukleinsäure gemäß Anspruch 3 geeignet sind,
 - b) Nachweis der Nukleinsäure gemäß Anspruch 3 durch spezifische Hybridisierung oder PCR-Amplifikation,
 - c) Vergleich der Menge an hybridisierender Nukleinsäure gemäß Anspruch 3 oder an durch PCR Amplifikation gewonnener Nukleinsäure gemäß Anspruch 3 mit einem Standard.
 - 16. Verfahren zum qualitativen und quantitativen Nachweis eines Proteins gemäß Anspruch 1 in einer biologischen Probe, das folgende Schritte umfaßt:
 - a) Inkubation einer biologischen Probe mit einem Antikörper, der spezifisch gegen das Protein gemäß Anspruch 1 gerichtet ist,
 - b) Nachweis des Antikörper/Antigenkomplexes,
- c) Vergleich der Mengen des Antik\u00f6rper/Antigenkomplexes mit einem Standard.

12

20

25

30

35

40

45

50

(11) EP 0 943 685 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

- (88) Veröffentlichungstag A3: 16.08.2000 Patentblatt 2000/33
- (43) Veröffentlichungstag A2: 22.09.1999 Patentblatt 1999/38
- (21) Anmeldenummer: 99101164.4
- (22) Anmeldetag: 22.01.1999

- (51) Int. CI.⁷: **C12N 15/12**, C07K 14/705, C07K 16/28, A61K 48/00, C12Q 1/68, G01N 33/576, G01N 33/68, C12N 5/10
- (84) Benannte Vertragsstaaten:
 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
 MC NL PT SE
 Benannte Erstreckungsstaaten:
 AL LT LV MK RO SI
- (30) Priorität: 11.02.1998 DE 19805351

- (71) Anmelder:

 BASF AKTIENGESELLSCHAFT
 67056 Ludwigshafen (DE)
- (72) Erfinder:
 - Kröger, Burkhard, Dr. 67117 Limburgerhof (DE)
 - Otterbach, Bernd, Dr.
 67061 Ludwigshafen (DE)
- (54) Neuer G-Protein-gekoppelter Rezeptor aus menschlichem Gehirn
- (57) Neuer G-Protein gekoppelter Rezeptor aus menschlichem Gehirn, das dafür codierendes Gen und seine Verwendung

EUROPÄISCHER TEILRECHERCHENBERICHT

Nummer der Anmeidung

der nach Regel 45 des Europäischen Patentübereinkommens für das weitere Verfahren als europäischer Recherchenbericht gilt

EP 99 10 1164

		E DOKUMENTE		
Kategorie	Kennzeichnung des Dok der maßgeblic	ments mit Angabe, soweit enforderlich hen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (InLCL6)
P,X	LTD) 3. Juni 1998 * Abbildung 1 * * Seite 14, Zeile * Ansprüche 1,12,1	28 - Zeile 30 * 8 *	1-16,	C12N15/12 C07K14/705 C07K16/28 A61K48/00 C12Q1/68 G01N33/576
P,X	orphan G protein-c	essed in the brain." 1998 (1998-03-13), 002140114	1-10,14, 15	G01N33/68 C12N5/10
	ENCODING A NOVEL P G-PROTEIN-COUPLED SPECIFIC RAT BRAIN DNA AND CELL BIOLO Bd. 10, 1. Novembe Seiten 689-694, XP ISSN: 1044-5498 * Seite 690, Spalt	RECEPTOR EXPRESSED IN REGIONS" GY,US,NEW YORK, NY, r 1991 (1991-11-01), 000612837 e 1, Absatz 2 *	1-10, 13-15	RECHERCHIERTE SACHGEBIETE (Int.CI.6) C12N C07K C12Q G01N
Die Reche	LLSTÄNDIGE RECHE	of all adversariants desired	en dea EDO	
der Techni Vollständig	olohen Undeng nioht enteprioht bzw. It für diese Ansprüche nioht, bzw. ni mecherohierie Pelentansprüche: dig recherohierte Pelentansprüche:		den Stand	
Nicht reche	erohierte Patentansprüche;			
Obwol zur l bezi durci	Behandlung des men: ehen (Artikel 52(4)	und 12 sich auf ein Ver schlichen/tierischen Körp EPÜ), wurde die Recherc ete sich auf die angeführ ng/Zusammensetzung.	ers he	
	Recherchenort	Abschlußdatum der Recherche		Prüfer
1	DEN HAAG	14. Juni 2000	Mata	a-Vicente, M
X : von be Y : von be andere A : techno O : nichts	EGORIE DER GENANNTEN DOK seonderer Bedeutung in Verbindung seonderer Bedeutung in Verbindung en Veröffentlichung demelben Kateg obgischer Hintergrund dentitische Offenbarung hentberatur	E : Alteres Patenticious nach dem Anmelde mit einer D : In der Anmelden	unde flegende Tr ment, das jedoot datum veröffenti angeführtes Dolo ien angeführtes i	neorien oder Grundsätze n ernt am oder icht worden ist ument Dokument

EPO FORM 1503 03.82 (POLCOB)

EUROPÄISCHER TEILRECHERCHENBERICHT

Nummer der Anmeldung

EP 99 10 1164

	EINSCHLÄGIGE DOKUMENTE		KLASSIFIKATION DER ANMELDUNG (MILCLS)
Categorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich der maßgeblichen Teile	Betrifft Anspruch	
A	HATA, S. ET AL.: "cDNA cloning of a putative G protein-coupled receptor from brain." BIOCHIM. ET BIOPHYS. ACTA, Bd. 1261, 1995, Seiten 121-125, XP000914574	1-10', 15	(
	* Zusammenfassung *		
		'	·
	'		RECHERCHIERTE
			SACHGEBIETE (Int.CL6)
	·		
	·		

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 99 10 1164

1 // 3 //

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokuments angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

14-06-2000

im Recherchenberic angeführtes Patentdok		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0845529	A	03-06-1998	JP US	10127289 A 6048711 A	19-05-1998 11-04-2000
					1
					-
		I			1
•		1			,
					·
					·

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82