CS70 - Lecture 24 Notes

Name: Felix Su SID: 25794773

Spring 2016 GSI: Gerald Zhang

Two State Markov Chain

1. Describes a random motion in $\{0,1\}$

Finite Markov Chain

1. What happens in the future only depends on the current state (amnesic, but successive states are dependent on previous value)

2. A finite set of states: $\mathcal{X} = \{1, 2, \dots, K\}$

3. A probability distribution π_0 on $\mathscr{X}: \pi_0(i) \geq 0, \sum_i \pi_0(i) = 1$

4. Transition probabilities: P(i,j) for $i,j \in \mathcal{X}$

• $P(i,j) \ge 0, \forall j; jP(i,j) = 1, \forall i$

5. $\{X_n, n \ge 0\}$ is defined so that

• X_n = state at time n from time 0, 1, ...

• Define how you start: $\Pr[X_0 = i] = \pi_0(i), i \in \mathcal{X}$ (initial distribution)

• Define how you move: $\Pr[X_{n+1}=j|X_0,\ldots,X_n=i]=P(i,j), i,j\in\mathscr{X}$

-P(i,j) does not depend on what happened in the past or time.

Markov Chain Calculations

First Passage Time: Example 1

• Flip a coin with $\Pr[H] = p$ until we get H (Use Markov Chain to determine why it will take $\frac{1}{p}$ flips on average (G(p))

• Define a Markov Chain:

 $-X_0 = S \text{ (start)}$

 $-X_n = S$ for $n \ge 1$ if the last flip was T w. no H yet

 $-X_n = E$ for $n \ge 1$, if we already got H (end)

- Let $\beta(S)$ = the avg. time until we reach E, starting from S, then...
- Claim: $\beta(S) = 1 + q\beta(S) + p0$ decomposes into:
 - First step (1)
 - Returns to S: still need $\beta(S)$ steps to get to E w. prob. $q(q\beta(S))$
 - Got to E (Found heads, needs 0 steps to get to E w. prob p(p0)
- Subtract $q\beta(S)$ from both sides to get $\beta(S) = \frac{1}{p}$
- Time until E is G(p), so the mean of G(p) is $\frac{1}{p}$

First Passage Time: Example 2

S: Start

H: Last flip = H

T: Last flip = T

E: Done

- Let $\beta(i)$ = avg. time from state i until E (end)
- First Step Equations

$$-\beta(S) = 1 + p\beta(H) + q\beta(T)$$

$$-\beta(H) = 1 + p0 + q\beta(T)$$

$$-\beta(T) = 1 + p\beta(H) + q\beta(T)$$

• Solve: $\beta(S) = 2 + 3qp^{-1} + q^2p^{-2}$ (E.g., $\beta(S) = 6$ if p = 1/2)

First Passage Time: Example 3

The arrows out of $3, \ldots, 6$ (not shown) are similar to those out of 2.

•
$$\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j)$$

•
$$\beta(1) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j)$$

•
$$\beta(i) = 1 + \frac{1}{6} \sum_{j=1,\dots,6; j \neq 8i} \beta(j), i = 2,\dots,6$$

• Symmetry:
$$\beta(2) = \cdots = \beta(6) = \gamma$$
. Also, $\beta(1) = \beta(S)$.

– Thus,
$$\beta(S) = 1 + (5/6)\gamma + \beta(S)/6; \gamma = 1 + (4/6)\gamma + (1/6)\beta(S)$$

$$- \implies \cdots \beta(S) = 8.4$$

Summary:

First Step Equations

 \bullet Given X_n is a Markov Chain on $\mathscr X$ and $A,B\subset \mathscr X$ with $A\cap B=\emptyset$

- Define $T_A = min\{n \ge 0 | X_n \in A\}$ and $T_B = min\{n \ge 0 | X_n \in B\}$
- Let $\beta(i) = E[T_A|X_0 = i]$ and $\alpha(i) = \Pr[T_A < T_B|X_0 = i], i \in X$
- $\beta(i)$ denotes a timestep so it adds 1

$$-\beta(i) = 0, i \in A$$

$$-\beta(i) = 1 + \sum_{j} P(i,j)\beta(j), i \notin A$$

• $\alpha(i)$ denotes probabilities, so there is no 1

$$-\alpha(i)=1, i\in A$$

$$-\alpha(i)=0, i\in B$$

$$-\alpha(i) = \sum_{j} P(i,j)\alpha(j), i \notin A \cup B$$