数字电路与数字系统实验报告

实验二: 组合逻辑电路

院系: 人工智能学院

姓名: 方盛俊

学号: 201300035

班级: 人工智能 20 级 2 班

邮箱: 201300035@smail.nju.edu.cn

时间: 2021年4月7日

目录

- 实验二: 组合逻辑电路
 - 。目录
 - 。一、实验目的
 - 。二、实验环境/器材
 - 。 三、实验内容
 - 1.3-8译码器
 - (a) 实验原理
 - (b) 实验步骤
 - (c) 仿真验证
 - (d) 实验结果
 - 2.8-3 优先编码器
 - (a) 实验原理
 - (b) 实验步骤
 - (c) 仿真验证
 - (d) 实验结果
 - 3.4 选 1 多路选择器
 - (a) 实验原理
 - (b) 实验步骤
 - (c) 仿真验证
 - (d) 实验结果
 - 。 四、实验中遇到的问题和解决方法
 - 1. 不知道如何给逻辑门的输入引脚加入"非", 即小圆圈
 - 2. 在顶层模块中不能使用 "手指" 更改输入引脚的内容

一、实验目的

- 1. 掌握使用 Logisim 软件设计、实现组合逻辑电路的方法
- 2. 熟练应用 Logisim 输入、输出部件
- 3. 掌握译码器、编码器、多路选择器的设计方法和实现步骤
- 4. 学习组合逻辑电路的级联方法

二、 实验环境 / 器材

Logisim-ITA V2.16.1.2

https://sourceforge.net/projects/logisimit/

头歌线上评测平台

https://www.educoder.net/classrooms/10924/

三、实验内容

1.3-8 译码器

(a) 实验原理

译码器 (decoder): 一种多输入, 多输出的组合电路.

最常见的是 $n-2^n$ 译码器, 输入为 n 位二进制编码, 输出为 2^n 中取 1 码.

- 为多输入端, 多输出端电路, 且输入端数比输出端数少
- 电路功能反映输入编码与输出编码之间的映射关系
- 通常输出编码采用 2^n 中取 1 码,即单热点 (one-hot) 编码
- 可以通过使能端 En 来控制电路实现映射功能

下图所示的是 3-8 译码器原理图.

輸入信号 G_1,G_2A_L,G_2B_L 为使能端. 其中 G_1 为高电有效, G_2A_L,G_2B_L 为低电平有效 (在本题中似乎没什么用处).

输入信号 A,B,C 为二进制编码, 最高位为 C, 最低位为 A, 高电平有效.

输出信号 Y_{0L} 至 Y_{7L} 可以视为数字 0 - 7 的指示位, 低电平有效.

(b) 实验步骤

- 1. 先放入 8 个输入引脚数为 4 的非门和一个输入引脚数为 3 的与门.
- 2. 再放入七个非门.
- 3. 安装原理图小心翼翼地连好线.

最后结果如下:

(c) 仿真验证

按下 Ctrl + K 开始本地仿真, 结果良好.

运行代码

java -jar logisim.jar exp2/exp2-1.circ -tty table

(ba	ase) PS D:\	Project\	Circ> i	ava -iar	logisim	.iar exp	2/exp2-1	.circ -t	tv table					
											the URL :	requeste	d by the	auto-update
\mathbf{r}														
	the error			contact	the soft	tware ma	intainer							
	AUTO-UPDAT	E ABORTE	ED											
0	0	0	0	Θ	0	1	1	1	1	1	1	1	1	
0	0	0	1	Θ	0	1	1	1	1	1	1	1	1	
0	0	0	0	1	0	1	1	1	1	1	1	1	1	
0	0	0	1	1	0	1	1	1	1	1	1	1	1	
0	0	0	0	Θ	1	1	1	1	1	1	1	1	1	
0	0	0	1	Θ	1	1	1	1	1	1	1	1	1	
0	0	0	0	1	1	1	1	1	1	1	1	1	1	
0	0	0	1	1	1	1	1	1	1	1	1	1	1	
1	0	Θ	0	0	0	0	1	1	1	1	1	1	1	
1	0	0	1	0	0	1	Θ	1	1	1	1	1	1	

可见也有正常的输出.

(d) 实验结果

通过了头歌平台的验证.

2.8-3 优先编码器

(a) 实验原理

编码器 (encoder): 译码器的逆向电路, 即输出是输入信号的二进制编码.

最常见是 2^n-n 编码器,也称为二进制编码器,有着 2^n 个输入端,n 个输出端.

下图所示的是8-3优先编码器原理图.

I0	I ₁ ·	I2	I3	<i>I</i> 4	<i>I</i> 5	<i>I</i> 6	<i>I</i> 7	00	01	02
1	х	х	х	х	Х	х	х	0	0	0
0	1	X	X	X	X	X	x	0	0	1
0	0	1	х	х	X	X	X	0	1	0
0	0	0	1	х	X	X	х	0	1	1
0	0	0	0	1	X	X	X	1	0	0
0	0	0	0	0	1	X	X	1	0	1
0	0	0	0	0	0	1	X	1	1	0
0	0	0	0	0	0	0	1	1	1	1

多个输入可同时为1,但只对优先级最高的输入进行编码输出

常见优先级顺序为 $I_0>I_1>I_2>I_3>I_4>I_5>I_6>I_7$

输入信号从 I_0 至 I_7 为高电平有效, 可以视作数字 0 至数字 7 的指示位.

输出信号为二进制编码结果,编码的最高位为 O_0 ,最低位为 O_2 .

(b) 实验步骤

1. 依次放入 7 个输入引脚数不同的与门和 3 个4输入或门, 其中与门除了底部的输入, 均要做一次翻转.

朝向	右 (东)
数据位宽	1
门尺寸	小尺寸
输入引脚数	3
输出值	0/1
标签	
标签字体	Dialog 标准 12
标签颜色	#000000
反转 1 (顶部)	是
反转 2	☆
反转 3 (底部)	是否
	否

2. 进行小心翼翼的连线.

(c) 仿真验证

按下 Ctrl + K 开始本地仿真,结果良好.

运行代码

java -jar logisim.jar exp2/exp2-2.circ -tty table

可见也有正常的输出.

(d) 实验结果

通过了头歌平台的验证.

3. 4 选 1 多路选择器

(a) 实验原理

2-路选择器有两个输入端和一个输出端,有一个控制端,用于控制选择哪一路输出.

公式如下:

$$F = A \cdot \overline{S} + B \cdot S$$

2-路选择器的符号和逻辑电路如下:

2-路选择器符号

一位2-路选择器逻辑电路

4选1选择器可以由多个2选1选择器组成,并且这种级联可以继续扩展.

多层次级联

(b) 实验步骤

1. 使用 2 个与门和 1 个或门, 搭建 2 - 路选择器.

2. 使用 3 个 2 - 路选择器进行多层次级联, 搭建 4 - 路选择器.

(c) 仿真验证

按下 Ctrl + K 开始本地仿真, 结果良好.

运行代码

java -jar logisim.jar exp2/exp2-1.circ -tty table

可见也有正常的输出.

(d) 实验结果

通过了头歌平台的验证.

四、实验中遇到的问题和解决方法

1. 不知道如何给逻辑门的输入引脚加入"非", 即小圆圈

本来我的打算直接拿非门来当输入引脚的非,就像这样:

非常地不美观.

经过助教提醒,可以在逻辑门的设置位置,将"反转"选为"是",

朝向	右 (东)	
数据位宽	1	
门尺寸	小尺寸	
输入引脚数	3	
输出值	0/1	
标签		
标签字体	Dialog 标准 12	
标签颜色	#000000	
反转 1 (顶部)	是	
反转 2	是	
反转 3 (底部)	是	V
	是	
	否	

即可和电路图一样,拥有美观的输入引脚"非".

2. 在顶层模块中不能使用 "手指" 更改输入引脚的内容

在**顶层模块**中, 我像在子模块中一样, 自然而然地想要用 "手指" 更改输入引脚的内容.

但出乎我意料的是,没有任何反应,我一度怀疑是不是卡死了.发现电脑没问题之后,我开始迷惑不解.

询问过身边的同学后,我才知道,在顶层模块中是不能用"手指"点输入引脚的,只能用另一种方式更改输入引脚:使用"手指"点击时钟.

每点一次, 时钟信号就会改变一次, 和 Ctrl + K 之后时钟信号周期性改变的效果是一样的.

所以, 要在顶层模块更改输入引脚内容, 有两种办法:

- 1. 使用 "手指" 点击时钟
- 2. 按下 Ctrl + K, 让时钟自己周期性改变