Problem General Info

Team Members

Copy from signup list, Student 1 Highlighted

Student 1	Nihal Ernest
Student 2	Krishan Patel

Problem Topic(s)

Copy from topic list, Focus Highlighted

Topic#	Suggestion
3	Composite kinematics graphs (eg object travels down a ramp onto a level surface)
23	Simple Conservation of Energy (Ug to K) and Ug reference points
7	Relative motion (VAB=VAC+VCB)

Prior Knowledge

- Kinematic Equations
- Rectilinear Motion
- Conservation of Energy

Common Misconceptions

- Initial velocity "at rest"
- The frame of reference is often confused in relative motion problems
- The use of direction rather than indicating that through the sign of the number.

Reference Problems

N/A

Preliminary Problem Statement

[Problem statement submitted for peer review] [Supporting Images]

In Mission Impossible 6, Ethan Hunt, who has a mass of 75 kilograms, has to fall out of an aircraft at an altitude of 4,000 meters as a part of his mission, should he choose to accept it. Assume no drag force or terminal velocity

- a) Draw a graph of his acceleration and sketch a graph of his velocity after he jumps out of the aircraft. (Positive direction is downwards).
- b) Calculate his potential energy at the moment he jumps out of the aircraft. Assuming he was landing in a lake and did not pull his parachute, calculate his velocity at the moment he touches the water. If he reaches terminal velocity (134 meters/second), state so and justify.
- c) While skydiving, Agent Hunt sees his partner fly past him at 27 meters/second relative to him. If Agent Hunt is flying at twice that velocity relative to the ground, then what is his partner's velocity relative to the ground at that moment?
- d) At 3000 ft from the ground, Agent Hunt pulls his parachute. Hunts acceleration is now 9.65 meters/seconds² in the upward direction. Will Agent hunt survive the impact? (Max Velocity for survival upon impact with water is 14 meters/second)

Your Preliminary Solution

[Image(s) of handwritten solution or typed solution]

Answers

- a) The acceleration graph would have a straight line at 9.81 meters/second². The velocity graph would show a linear function, ideally, until terminal velocity is reached. Then velocity would flatten.
- b) Potential Energy = U = mass x gravity x height = 75 x 9.81 x 4000 = 294300 Joules. $U_1 + K_1 = U_f + K_f$, $U_f = 0$ and $K_i = 0$ so $U_1 = K_f$, mgh = 0.5mv², gh = v²/2, v = sqrt(2gh). V = 280 m/s.
- c) A is Agent hunt, B is his partner and C is the ground. $V_{BA} = 27$ m/s. $V_{AC} = 54$ m/s. $V_{BC} = V_{BA} + V_{AC} = 27 + 54 = 81$ meters/second
- d) Potential energy is 294300 joules. So Ui = Uf+Kf. $(75 \times 9.81 \times 4000 75 \times 9.81 \times 3000)/(.5 \times 75)$ would = v^2 at 3000 meters. V would = 140 m/s so using vf^2 = vi^2 + 2ax vf = $(140)^2 2(9.65)(1000)$. Vf = 17.32 m/s. Since 17.32 is greater than 14 m/s Agent hunt dies on impact with the surface water.

Creating a PDF

- Ctrl+P to print this document
- Select "Save as PDF" for destination
- Select the page numbers that correspond with the sections you want to be part of the PDF

Peer Review Solution

[Peer Reviewer Name]
[Peer reviewer notes]
[Time to Complete]
[Image(s) of handwritten solution]

Final Problem Statement

[Revised Problem statement] [Supporting Images]

Your Final Solution

[Image(s) of new / updated handwritten solution or typed solution]