Dipartimento di Elettronica e Telecomunicazioni - Università di Firenze

Lezione 11

Crosstalk

Stefano Selleri Dipartimento di Elettronica e Telecomunicazioni Università di Firenze

Sommario della Lezione

- Introduzione
- Linee a tre conduttori
- Due fili su piano di massa
- Due fili schermati

Il *crosstalk* è l'accoppiamento indesiderato tra linee o tra linee e piste o piste e massa.

Il crosstalk non può essere visto come un accoppiamento per radiazione elettromagnetica come quello per le antenne in quanto è essenzialmente un fenomeno di campo vicino.

In altre parole vi può essere crosstalk fra linee vicine anche se queste, viste come antenne, non irradiano.

Di conseguenza il crosstalk è principalmente un problema intrasistema. [Non coperto dalle normative]

Ciò non toglie che se il crosstalk interessa il cavo di alimentazione o altri cavi che escono dall'apparato possa diventare un problema intersistema. [Coperto dalle normative]

Per poter avere crosstalk è necessario avere almeno due linee, una su cui viaggia il segnale che crea crosstalk, e una linea "vittima".

Le linee di trasmissione sono fatte minimo da due conduttori, uno che porta il segnale e uno di "massa"

Il conduttore di massa può essere a comune fra più linee, quindi la configurazione minima per studiare il crosstalk è quella di tre conduttori.

Supponiamo quindi che i tre conduttori siano paralleli tra loro, paralleli all'asse z e di sezione uniforme.

Il conduttore "generatore" e il conduttore di riferimento formano una linea bifilare come quella già studiata, con la differenza che, in prossimità, vi è il conduttore "recettore" che perturba i campi della linea "generatrice" accoppiandovisi.

Il conduttore "generatore" è caratterizzato da una tensione rispetto al filo di riferimento e una corrente:

$$V_G(z,t)$$

$$I_G(z,t)$$

$$I_G(z,t)$$

Sul conduttore "recettore" nascono

$$V_R(z,t)$$

$$I_R(z,t)$$

Si noti esplicitamente come entrambe le correnti si richiudano sullo stesso conduttore di riferimento.

Sia infine L la lunghezza complessiva del tratto accoppiato.

L'effetto principale ed indesiderato del crosstalk è la generazione di due tensioni

$$V_{NE}(t)$$

$$V_{FE}(t)$$

Ai carichi ai capi della linea vittima.

Lo scopo dell'analisi crosstalk è quello di determinare (predirre) queste tensioni ai capi della linea vittima.

Dati i tipi di linea, le sezioni, i materiali e

$$V_{\scriptscriptstyle S}(t), R_{\scriptscriptstyle S}, R_{\scriptscriptstyle L}, R_{\scriptscriptstyle NE}, R_{\scriptscriptstyle FE}, L$$

- Università di Firenze

L'analisi può essere eseguita nel dominio del tempo o nel dominio della frequenza.

Nell'analisi nel dominio del tempo si cerca

$$V_{NE}(t)$$

$$V_{FE}(t)$$

Noto

$$V_s(t)$$

Nell'analisi in frequenza si cercano i fasori

$$V_{NF}(\omega)$$

$$V_{NE}(\omega)$$

 $V_{FE}(\omega)$

Dovuti ad un generatore sinusoidale

$$V_{s}(t) = V_{s} \cos(\omega t + \phi)$$

Compatibilità Elettromagnetica II A. A. 2008-09 S. Selleri - Laboratorio di Elettromagnetismo Numerico

Introduzione

Alcuni tipici esempi di linea multiconduttore sono:

Alcuni tipici esempi di linea multiconduttore sono:

Dipartimento di Elettronica e Telecomunicazioni – Università di Firenze

Linee a tre conduttori

Per lo studio supponiamo che le linee supportino comunque il solo modo TEM

In ogni caso consideriamo di avere tre conduttori e di poter di conseguenza definire delle induttanze e delle capacità per unità di lunghezza su ciascuna e tra ciascuna di esse.

Stesse grandezze un Δz più in

Compatibilità Elettromagnetica II.
S. Selleri - Laboratorio di Elettromagnetism
Dipartimento di Elettronica e Telecomunic.

Compatibilità Elettromagnetica II A. A. 2008-09 S. Selleri - Laboratorio di Elettromagnetismo Numerico

Dipartimento di Elettronica e Telecomunicazioni - Università di Firenze

Linee a tre conduttori

Dipartimento di Elettronica e Telecomunicazioni – Università di Firenze

Linee a tre conduttori

Per le tensioni

$$\begin{cases} \frac{\partial V_G(z,t)}{\partial z} = -L_G \frac{\partial I_G(z,t)}{\partial t} - L_m \frac{\partial I_R(z,t)}{\partial t} \\ \frac{\partial V_R(z,t)}{\partial z} = -L_R \frac{\partial I_R(z,t)}{\partial t} - L_m \frac{\partial I_G(z,t)}{\partial t} \end{cases}$$

Dipartimento di Elettronica e Telecomunicazioni – Università di Firenze

Linee a tre conduttori

Per le correnti

Ovvero

$$\begin{cases} \frac{\partial I_{G}(z,t)}{\partial z} = -\left(C_{G} + C_{m}\right) \frac{\partial V_{G}(z,t)}{\partial t} + C_{m} \frac{\partial V_{R}(z,t)}{\partial t} \\ \frac{\partial I_{R}(z,t)}{\partial z} = + C_{m} \frac{\partial V_{G}(z,t)}{\partial t} - \left(C_{R} + C_{m}\right) \frac{\partial V_{R}(z,t)}{\partial t} \end{cases}$$

Queste equazioni possono essere messe in forma matriciale

$$\begin{cases} \frac{\partial \mathbf{V}(z,t)}{\partial z} = -\mathbf{L} \frac{\partial \mathbf{I}(z,t)}{\partial t} \\ \frac{\partial \mathbf{I}(z,t)}{\partial z} = -\mathbf{C} \frac{\partial \mathbf{V}(z,t)}{\partial t} \end{cases}$$

Con

$$\mathbf{V}(z,t) = \begin{bmatrix} V_G(z,t) \\ V_R(z,t) \end{bmatrix}; \qquad \mathbf{I}(z,t) = \begin{bmatrix} I_G(z,t) \\ I_R(z,t) \end{bmatrix}$$

E con

$$\mathbf{L} = \begin{bmatrix} L_G & L_m \\ L_m & L_R \end{bmatrix}; \qquad \mathbf{C} = \begin{bmatrix} C_G + C_m & -C_m \\ -C_m & C_R + C_m \end{bmatrix}$$

Le le equazioni dei telegrafisti per le linee a tre conduttori (e in generale multiconduttore – MTL Multiconductor Transmission Line) possono essere scritte in una forma, matriciale, formalmente identica a quella delle equazioni dei telegrafisti standard, ci sarà da aspettarsi che anche la soluzione sia sostanzialmente simile ma in forma matriciale.

Nel dominio della frequenza è

$$\begin{cases} \frac{\partial \mathbf{V}(z)}{\partial z} = -j\omega \mathbf{L} \mathbf{I}(z) \\ \frac{\partial \mathbf{I}(z)}{\partial z} = -j\omega \mathbf{C} \mathbf{V}(z) \end{cases}$$

Con

$$\mathbf{V}(z,t) = \Re \left\{ \mathbf{V}(z)e^{j\omega t} \right\}$$
$$\mathbf{I}(z,t) = \Re \left\{ \mathbf{I}(z)e^{j\omega t} \right\}$$

Per poter proseguire occorre determinare i parametri per unità di lunghezza.

Supponiamo di essere in un mezzo omogeneo, si può dimostrare che:

$$LC = CL = \varepsilon \mu 1$$

E quindi

$$\mathbf{C} = \varepsilon \mu \mathbf{L}^{-1} = \frac{1}{v^2} \mathbf{L}^{-1}$$

$$\mathbf{L} = ; \begin{bmatrix} C_G + C_m & -C_m \\ -C_m & C_R + C_m \end{bmatrix} = \frac{1}{v^2 \left(L_G L_R - L_m^2 \right)} \begin{bmatrix} L_R & -L_m \\ -L_m & L_G \end{bmatrix}$$

- Università di Firenze

Linee a tre conduttori

Questo è un risultato notevole che fornisce:

$$C_{m} = \frac{L_{m}}{v^{2} \left(L_{G} L_{R} - L_{m}^{2} \right)}$$

$$C_{G} + C_{m} = \frac{L_{R}}{v^{2} \left(L_{G} L_{R} - L_{m}^{2} \right)} \implies C_{G} = \frac{L_{R} - L_{m}}{v^{2} \left(L_{G} L_{R} - L_{m}^{2} \right)}$$

$$C_{R} + C_{m} = \frac{L_{G}}{v^{2} \left(L_{G} L_{R} - L_{m}^{2} \right)} \implies C_{R} = \frac{L_{G} - L_{m}}{v^{2} \left(L_{G} L_{R} - L_{m}^{2} \right)}$$

Questo è un risultato notevole perché la maggior parte dei dielettrici ha permittività pari a quella del vuoto. Di conseguenza se si è in grado di calcolare L allora si è in grado di calcolare, data la conoscenza di *v*, C per ogni dielettrico.

D'altronde C nel vuoto è particolarmente facile da calcolare, per cui da essa si può risalire a L e, da quest'ultima, a C per dielettrici generici

Torniamo a considerare i risultati teorici ottenuti per le linee bifilari nell'ipotesi di conduttori sufficientemente distanti da poter considerare imperturbata la simmetria circolare delle distribuzioni di correnti e cariche.

Per il flusso dell'induzione magnetica

$$\psi_m = \frac{\mu I}{2\pi} \ln \left(\frac{R_2}{R_1} \right)$$

- Università di Firenze

Per il potenziale elettrico

$$V = \frac{q}{2\pi\varepsilon} \ln\left(\frac{R_2}{R_1}\right)$$

Sia per il flusso, sia per il potenziale, è fondamentale considerare correttamente il verso!

In forma matriciale

$\Psi = LI$

$$\begin{bmatrix} \Psi_G \\ \Psi_R \end{bmatrix} = \begin{bmatrix} L_G & L_m \\ L_m & L_R \end{bmatrix} \begin{bmatrix} I_G \\ I_R \end{bmatrix}$$

Da cui

$$\Psi_G = L_G I_G + L_m I_R$$

$$\Psi_R = L_m I_G + L_R I_R$$

Ovvero

$$L_G = \frac{\Psi_G}{I_G} \bigg|_{I_R=0}$$

$$L_m = \frac{\Psi_R}{I_G} \bigg|_{I_R=0}$$

$$L_m = \frac{\Psi_G}{I_R} \bigg|_{I_G = 0}$$

$$L_R = \frac{\Psi_R}{I_R} \bigg|_{I_G = 0}$$

$$L_R = \frac{\Psi_R}{I_R} \bigg|_{I_G = 0}$$

e Telecomunicazioni – Università di Firenze

Linee a tre conduttori

Torniamo a considerare i risultati teorici ottenuti per le linee bifilari nell'ipotesi di conduttori sufficientemente distanti da poter considerare imperturbata la simmetria circolare delle distribuzioni di correnti e cariche.

Per il flusso dell'induzione magnetica

$$\psi_{G} = \frac{\mu I_{G}}{2\pi} \ln \left(\frac{d_{G} - r_{w0}}{r_{wG}} \right) + \frac{\mu I_{G}}{2\pi} \ln \left(\frac{d_{G} - r_{wG}}{r_{w0}} \right) \implies L_{G} \cong \frac{\mu}{2\pi} \ln \left(\frac{d_{G}^{2}}{r_{w0} r_{wG}} \right)$$

$$\psi_{R} = \frac{\mu I_{R}}{2\pi} \ln \left(\frac{d_{R} - r_{w0}}{r_{wR}} \right) + \frac{\mu I_{R}}{2\pi} \ln \left(\frac{d_{R} - r_{wR}}{r_{w0}} \right) \implies L_{R} \cong \frac{\mu}{2\pi} \ln \left(\frac{d_{R}^{2}}{r_{w0} r_{wR}} \right)$$

$$\psi_{m} = \frac{\mu I_{G}}{2\pi} \ln \left(\frac{d_{G}}{d_{GR}} \right) + \frac{\mu I_{G}}{2\pi} \ln \left(\frac{d_{R} - r_{wR}}{r_{w0}} \right) \implies L_{m} \cong \frac{\mu}{2\pi} \ln \left(\frac{d_{G} d_{R}}{d_{GR} r_{w0}} \right)$$

Per la capacità

$$Q = CV$$

$$\begin{bmatrix} Q_G \\ Q_R \end{bmatrix} = \begin{bmatrix} C_G + C_m & -C_m \\ -C_m & C_R + C_m \end{bmatrix} \begin{bmatrix} V_G \\ V_R \end{bmatrix}$$

Questa è di applicazione meno immediata. Invertiamola

$$\begin{bmatrix} V_G \\ V_R \end{bmatrix} = \begin{bmatrix} p_G & p_m \\ p_m & p_R \end{bmatrix} \begin{bmatrix} Q_G \\ Q_R \end{bmatrix}$$

$$V_G = p_G Q_G + p_m Q_R$$

$$V_R = p_m Q_G + p_R Q_R$$

Ovvero

$$p_{G} = \frac{V_{G}}{Q_{G}} \bigg|_{Q_{R}=0}$$

$$p_{m} = \frac{V_{G}}{Q_{R}} \bigg|_{Q_{G}=0}$$

$$p_{R} = \frac{V_{R}}{Q_{R}} \bigg|_{Q_{G}=0}$$

$$p_{R} = \frac{V_{R}}{Q_{R}} \bigg|_{Q_{G}=0}$$

Dipartimento di Elettronica e Telecomunicazioni – Università di Firenze

Linee a tre conduttori

Quindi

$$\begin{split} V_G &= \frac{Q_G}{2\pi\varepsilon} \ln\left(\frac{d_G - r_{w0}}{r_{wG}}\right) + \frac{Q_G}{2\pi\varepsilon} \ln\left(\frac{d_G - r_{wG}}{r_{w0}}\right) \quad \Rightarrow \quad p_G \cong \frac{1}{2\pi\varepsilon} \ln\left(\frac{d_G^2}{r_{w0}r_{wG}}\right) \\ V_R &= \frac{Q_R}{2\pi\varepsilon} \ln\left(\frac{d_R - r_{w0}}{r_{wR}}\right) + \frac{Q_R}{2\pi\varepsilon} \ln\left(\frac{d_R - r_{wR}}{r_{w0}}\right) \quad \Rightarrow \quad p_R \cong \frac{1}{2\pi\varepsilon} \ln\left(\frac{d_R^2}{r_{w0}r_{wR}}\right) \\ V_m &= \frac{Q_G}{2\pi\varepsilon} \ln\left(\frac{d_G}{d_{GR}}\right) + \frac{Q_G}{2\pi\varepsilon} \ln\left(\frac{d_R - r_{wR}}{r_{w0}}\right) \quad \Rightarrow \quad p_m \cong \frac{1}{2\pi\varepsilon} \ln\left(\frac{d_G d_R}{d_{GR}r_{w0}}\right) \end{split}$$

$$n\left(\frac{d_R-r_{_{wR}}}{r_{_{w0}}}\right) \Rightarrow$$

$$p_m \cong \frac{1}{2\pi\varepsilon} \ln \left(\frac{d_G d_R}{d_{GR} r_{w0}} \right)$$

Infine C si ottiene invertendo P.

Si noti che

$$\mathbf{L} = \boldsymbol{\varepsilon}_0 \boldsymbol{\mu}_0 \mathbf{P}$$

Il che è confortante, dovendo essere

$$\mathbf{C} = \mathbf{P}^{-1}$$

Esempio

Prendiamo una piattina a tre cavi. Siano i cavi di calibro 28 7x36, siano i cavi separati da 50mils

FLAT MODULAR TELEPHONE AND DATA CABLE

This modular telephone cable is available in 4, 6, and 8 conductor in three colors: silver satin, black and white. It is sold in 1000' spools.

Features:

- Available in black, white, or silver satin
- Tinned copper conductors prevent corrosion
- Compatible with all USOC modular plugs
- RoHS Compliant per Kobiconn documentation

Specifications:

- 26 AWG, 7 x 34 stranding
- Conductors are USOC color coded
- PVC jacket

© Copyright 2007 Mouser Electronics

1000' Spool For quantities of 10 and up, call for quote. Price Per 1000' Spool MOUSER No. of Color STOCK NO. Cond. 1 172-UL4010-E 116.21 108.05 Silver 172-UL6010-E 141.51 134.06 6 Silver 172-UL8010-E Silver 231.18 215.55 172-UL4110-E 108.05 Black 116.21 172-UL6110-E Black 141.51 134.06 172-UL8110-E Black 231.18 215.55 172-UL4210-E White 116.21 108.05 172-UL6210-E White 141.51 134.06 172-UL8210-E White 231.18 215.55

Cable Diagrams		
Black Red Green Yellow		
White Red Yellow Black Green		
Gray Orange Red Green Blue Yellow		

© Copyright 2007 Mouser Electronics

(800) 346-6873

835

www.mouser.com

I dati sono realistici, anche se normalmente le piattine sono a 4 o più cavi...

- Università di Firenze

Linee a tre conduttori

Esempio

La prima cosa fondamentale è scegliere il cavo di riferimento, perché questo si riflette notevolmente sul valore delle mute induttanze e capacità, dove compare d_{GR}

Poniamo il riferimento centrale

Università di Firenze

Linee a tre conduttori

Esempio

Per la simmetria del problema si avrà

$$L_G = L_R \cong \frac{\mu}{2\pi} \ln\left(\frac{d^2}{r_w r_w}\right) = \frac{\mu}{\pi} \ln\left(\frac{d}{r_w}\right)$$
$$p_G = p_R \cong \frac{1}{2\pi\varepsilon} \ln\left(\frac{d^2}{r_w r_w}\right) = \frac{1}{\pi\varepsilon} \ln\left(\frac{d}{r_w}\right)$$

Le grandezze mutue

$$L_{m} \approx -\frac{\mu}{2\pi} \ln\left(\frac{2d}{d}\right) + \frac{\mu}{2\pi} \ln\left(\frac{d}{r_{w}}\right) = \frac{\mu}{2\pi} \ln\left(\frac{d}{2r_{w}}\right)$$

$$p_{m} = -\frac{1}{2\pi\varepsilon} \ln\left(\frac{2d}{d}\right) + \frac{1}{2\pi\varepsilon} \ln\left(\frac{d}{r_{w}}\right) = \frac{1}{2\pi\varepsilon} \ln\left(\frac{d}{2r_{w}}\right)$$

Esempio

Nel caso in esame il calibro 28 (multifilo) ha un raggio di 7.5 mils

$$D(AWG) = 0.005 \times 92^{\frac{36 - AWG}{39}}$$
pollici

$$D(28) = 0.005 \times 92^{\frac{30-28}{39}} = 0.005 \times 92^{0.2051} = 0.005 \times 2.528 = 12.64$$

Il raggio sarebbe 6.3 mils per il MONOFILO

Wire Gauge	Wire Diameter (mils)	
	Solid	Stranded
		20.0 (19 × 38)
		$21.0 (10 \times 36)$
28	12.6	$16.0 (19 \times 40)$
		$15.0 (7 \times 36)$
30	10.0	$12.0\ (7\times38)$
32	8.0	$8.0~(7 \times 40)$
34	6.3	$7.5 (7 \times 42)$
36	5.0	$6.0 (7 \times 44)$
38	4.0	, ,

Esempio

Quindi

$$r_w = 7.5 mils;$$
 $d = 50 mils$

$$L_G = L_R = \frac{\mu}{\pi} \ln \left(\frac{d}{r_w} \right) = 0.759 \,\mu Hm^{-1}$$

$$p_G = p_R = \frac{1}{\pi \varepsilon} \ln \left(\frac{d}{r_w} \right) = 6.829 \times 10^{10}$$

$$C_G = C_R = 11.1 pFm^{-1}$$

$$\mathbf{C} = \begin{bmatrix} C_G + C_m & -C_m \\ -C_m & C_G + C_m \end{bmatrix} = \mathbf{P}^{-1} = \begin{bmatrix} 0.1628 & -0.0517 \\ -0.0517 & 0.1628 \end{bmatrix} \times 10^{-10}$$

$$L_m = \frac{\mu}{2\pi} \ln\left(\frac{d}{2r_w}\right) = 0.24 \,\mu Hm^{-1}$$

$$p_m = \frac{1}{2\pi\varepsilon} \ln\left(\frac{d}{2r_w}\right) = 2.167 \times 10^{10}$$

$$C_m = 5.17 \, pFm^{-1}$$

Esempio

Riassumendo

$$L_G = L_R = 0.759 \mu H m^{-1}$$
 $L_m = 0.24 \mu H m^{-1}$

$$C_G = C_R = 11.1 pFm^{-1}$$
 $C_m = 5.17 pFm^{-1}$

Questo ci consente di calcolare l'impedenza caratteristica della linea in presenza del terzo filo

$$Z_0 = \sqrt{L_G/(C_G + C_m)} = 216\Omega$$

Invece di

$$Z_0 = \sqrt{L_G/C_G} = 261\Omega$$

La presenza del terzo filo altera quindi sensibilmente l'impedenza della linea!

Compatibilità Elettromagnetica II A. A. 2008-09

Esempio Modello spice 3Line in1 out1 50 out2 in2 RLT2coupled 0 Rne 50 Rfe 50 36/12

Dipartimento di Elettronica e Telecomunicazioni – Università di Firenze

Compatibilità Elettromagnetica II A. A. 2008-09

Linee a tre conduttori

Esempio

A 1MHz

Dipartimento di Elettronica e Telecomunicazioni - Università di Firenze

Linee a tre conduttori

Dipartimento di Elettronica e Telecomunicazioni – Università di Firenze

Dipartimento di Elettronica e Telecomunicazioni – Università di Firenze

EM

Linee a tre conduttori

Compatibilità Elettromagnetica II A. A. 2008-09

Linee a tre conduttori

Esempio

In funzione della Frequenza...

Compatibilità Elettromagnetica II A. A. 2008-09

Linee a tre conduttori

Esempio

Ma se avessi scelto di utilizzare il TERZO cavo come riferimento?

$$r_w = 7.5 mils;$$
 $d = 50 mils$

$$d = 50mils$$

Più grande!

$$L_G = \frac{\mu}{2\pi} \ln\left(\frac{2d}{r_w}\right) + \frac{\mu}{2\pi} \ln\left(\frac{2d}{r_w}\right) = \frac{\mu}{\pi} \ln\left(\frac{2d}{r_w}\right) = 1.036 \mu Hm^{-1}$$

$$L_R = \frac{\mu}{2\pi} \ln\left(\frac{d}{r_w}\right) + \frac{\mu}{2\pi} \ln\left(\frac{d}{r_w}\right) = \frac{\mu}{\pi} \ln\left(\frac{d}{r_w}\right) = 0.759 \,\mu Hm^{-1}$$

$$L_{m} = \frac{\mu}{2\pi} \ln\left(\frac{2d}{d}\right) + \frac{\mu}{2\pi} \ln\left(\frac{d}{r_{w}}\right) = \frac{\mu}{2\pi} \ln\left(\frac{2d}{r_{w}}\right) = 0.518 \mu H m^{-1} \circ \bigcirc$$

Molto più grande!

$$\mathbf{P} = \frac{1}{\varepsilon \mu} \mathbf{L} = c^2 \begin{bmatrix} 1.036 & 0.518 \\ 0.518 & 0.759 \end{bmatrix} \times 10^{-6}$$

$$\mathbf{P} = \begin{bmatrix} 9.312 & 4.656 \\ 4.656 & 6.822 \end{bmatrix} \times 10^{10}$$

Dipartimento di Elettronica e Telecomunicazioni - Università di Firenze

Linee a tre conduttori

Esempio

Quindi

$$\mathbf{C} = \begin{bmatrix} C_G + C_m & -C_m \\ -C_m & C_G + C_m \end{bmatrix} = \mathbf{P}^{-1} = \begin{bmatrix} 0.1630 & -0.1113 \\ -0.1113 & 0.2225 \end{bmatrix} \times 10^{-10}$$

$$C_G = 5.17 \, pFm^{-1}$$

$$C_R = 11.12 \, pFm^{-1}$$

$$C_m = 11.13 \, pFm^{-1}$$

Molto più grande!

Le impedenze sono

$$Z_G = \sqrt{L_G(C_G + C_m)} = 288\Omega$$

$$Z_R = \sqrt{L_R(C_R + C_m)} = 185\Omega$$

DIVERSE!

Dipartimento di Elettronica e Telecomunicazioni – Università di Firenze Compatibilità Elettromagnetica II A. A. 2008-09

Linee a tre conduttori

Se poi considertiamo due fili su un paino di massa... possiamo ancora utilizzare il principio delle immagini

Dipartimento di Elettronica e Telecomunicazioni – Università di Firenze

Linee a tre conduttori

Per il flusso dell'induzione magnetica

$$\psi_{G} = \frac{\mu I_{G}}{2\pi} \ln\left(\frac{h_{G}}{r_{wG}}\right) + \frac{\mu I_{G}}{2\pi} \ln\left(\frac{2h_{G} - r_{wG}}{h_{G}}\right) \implies L_{G} \cong \frac{\mu}{2\pi} \ln\left(\frac{2h_{G}}{r_{wG}}\right)$$

$$\psi_{R} = \frac{\mu I_{R}}{2\pi} \ln\left(\frac{h_{R}}{r_{wR}}\right) + \frac{\mu I_{R}}{2\pi} \ln\left(\frac{2h_{R} - r_{wR}}{h_{R}}\right) \implies L_{R} \cong \frac{\mu}{2\pi} \ln\left(\frac{2h_{R}}{r_{wR}}\right)$$

Per la mutua induzione entra in gioco il flusso concatenato

$$\psi_m = \frac{\mu I_G}{2\pi} \ln\left(\frac{s_1}{s}\right) + \frac{\mu I_G}{2\pi} \ln\left(\frac{s_2}{s_3}\right) \implies L_m \cong \frac{\mu}{2\pi} \ln\left(\frac{s_2}{s}\right)$$

essendo

$$S_1 = S_3$$

Non c'è bisogno di calcolare esplicitamente P, poiché già sappiamo che è

$$\mathbf{P} = \frac{1}{\varepsilon\mu}\mathbf{L}$$

Da cui poi si ricava C

Dipartimento di Elettronica e Telecomunicazioni - Università di Firenze

Esempio

Prendiamo due fili in monofilo di rame di calibro 20 e 20mm sopra al piano di massa. Sia 20mm la distanza interasse.

Il calibro 20 corrisponde a un raggio di 16 mils, ovvero di 0.41mm

Le formule danno

$$L_{G} = L_{R} \cong \frac{\mu}{2\pi} \ln\left(\frac{2h}{r_{w}}\right) = 0.918 \mu H m^{-1}$$

$$C_{G} = C_{R} = 10.3 p F m^{-1}$$

$$L_{m} \cong \frac{\mu}{2\pi} \ln\left(\frac{\sqrt{h^{2} + d^{2}}}{d}\right) = 0.161 \mu H m^{-1}$$

$$C_{m} = 2.19 p F m^{-1}$$

$$L_m \cong \frac{\mu}{2\pi} \ln \left(\frac{\sqrt{h^2 + d^2}}{d} \right) = 0.161 \mu H m^{-1}$$

$$C_m = 2.19 \, pFm^{-1}$$

Esempio

Ancora una volta l'impedenza caratteristica della linea in presenza del terzo filo

$$Z_0 = \sqrt{L_G(C_G + C_m)} = 271\Omega$$

Nettamente diversa da

$$Z_0 = \sqrt{L_G C_G} = 275.4\Omega$$

Dipartimento di Elettronica e Telecomunicazioni - Università di Firenze

Linee a tre conduttori

L'ultima configurazione interessante è quella di due cavi completamente schermati

Lo schermo ha ancora un effetto analogo a quello del teorema delle immagini ma, essendo curvo, l'immagine è posta a una distanza

I calcoli sono più complessi in questo caso:

$$L_G \cong rac{\mu}{2\pi} \ln \left(rac{r_{SH}^2 - d_G^2}{r_{SH}r_{wG}}
ight)$$
 $L_R \cong rac{\mu}{2\pi} \ln \left(rac{r_{SH}^2 - d_R^2}{r_{SH}r_{wR}}
ight)$

e

$$L_{m} \cong \frac{\mu}{2\pi} \ln \left(\frac{d_{R}}{r_{SH}} \sqrt{\frac{(d_{G}d_{R})^{2} + r_{SH}^{4} - 2d_{G}d_{R}r_{SH}^{2}\cos\theta_{GR}}{(d_{G}d_{R})^{2} + d_{R}^{4} - 2d_{G}d_{R}^{3}\cos\theta_{GR}}} \right)$$

Vediamo un esempio per due cavi di calibro 28 (7x36) schermati

MICROPHONE CABLES

Specifications:

Insulation: Polyethylene

- Conductor: Stranded Tinned Copper
- Jacket: Gray PVC
- Operating Temperature: -20°C to 60°C
- Voltage Rating: 3500V (1703), 1000V (1710) Shields: Braided Tinned Copper

Alpha Part No.	No. of Cond.	Conductor		Nom O.D.	MOUSER	Price Per	MOUSER	Price Per	MOUSER	Price Per
		AWG	Strand	(ln.)	STOCK NO.	100' Spool	STOCK NO.	500' Spool	STOCK NO.	1000' Spool
1703	1	24	10/34	.15	602-1703-100	65.61	602-1703-500	261.65	602-1703-1000	475.56
1710	2	22	19/34	.23	602-1710-100	109.35	602-1710-500	450.14	602-1710-1000	667.80

Specifications:

- Conductor: Stranded Tinned Copper
- Jacket: Black Rubber (1448/20), Black Neoprene (1448/18)
- Shields: Braided Tinned Copper (85% Coverage)

- Insulation: Rubber
- Operating Temperature: -20°C to 60°C

1448/20	2	20	26/34	.26					602-1448/20-1000	919.71
1448/18	2	18	41/34	.29					602-1448/18-1000	1338.75

E' ragionevole assumere che l'angolo tra i cavi sia 180°, così come è logico supporre che la distanza tra i cavi sia pari allo spessore dell'isolante

$$d_G = d_R = 2r_w$$

$$r_w = 7.5 mils$$

Se lo spessore dell'isolante è pari al raggio allora il diametro complessivo di ogni cavo è 4 volte il raggio ed è ragionevole supporre che il raggio dello schermo sia pari a tale diametro

$$r_{SH} = 4r_w$$

Quindi

$$L_G = L_R \cong \frac{\mu}{2\pi} \ln \left(\frac{16r_{SH}^2 - 4r_w^2}{4r_w r_w} \right) = 220nHm^{-1}$$

$$L_{m} \approx 2 \times 10^{-7} \ln \left(\frac{2r_{w}}{4r_{w}} \sqrt{\frac{(4r_{w}^{2})^{2} + 256r_{w}^{4} - 2(4r_{w}^{2})16r_{w}^{2} \cos 180^{\circ}}{(4r_{w}^{2})^{2} + (2r_{w})^{4} - 2(2r_{w})(2r_{w})^{3} \cos 180^{\circ}}} \right) =$$

$$= 2 \times 10^{-7} \ln \left(\frac{2r_{w}}{4r_{w}} \sqrt{\frac{((2r_{w})^{2} + (4r_{w})^{2})^{2}}{((2r_{w})^{2} + (2r_{w})^{2})^{2}}} \right) = 2 \times 10^{-7} \ln \left(\frac{2r_{w}}{4r_{w}} \frac{20r_{w}^{2}}{8r_{w}^{2}} \right) =$$

$$= 2 \times 10^{-7} \ln \left(\frac{5}{4} \right) = 44.6nHm^{-1}$$

Con la solita tecnica si può risalire alle capacità

$$C_G = C_R = 42 \, pFm^{-1}$$

$$C_m = 10.7 \, pFm^{-1}$$

L'impedenza caratteristica della linea isolata è

$$Z = 65.9\Omega$$

Della linea in presenza dell'altra è

$$Z = 64.5\Omega$$