6

8

10

12

13

14

16

17

18

LECTURE NOTES ON LINEAR ALGEBRA

A. A. ERGÜR, O. ESKEW, AND D.M. GANDHI

4 **Abstract.** Lecture Notes on Linear Algebra given by Dr. A. A. Ergür on 23 January 2025 and 26 January 2025 respectively.

- 1. Vector Space over \mathbb{R} . A vector space over \mathbb{R} is a collection of objects that can be:
- Added to each other.
- Multiplied by a real number.

9 For example, in \mathbb{R}^2 , let $a = (a_1, a_2), b = (b_1, b_2), \text{ and } 3a = (3a_1, 3a_2).$ Then:

$$a + b = (a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

Example (see figure 1): Shapes in \mathbb{R}^2 that include the origin (0,0). A diagram illustrates:

Fig. 1. Shapes in \mathbb{R}^2 including the origin[3]

- Shape K (a square with a dot at (0,0)) plus shape L (a circle with a dot at (0,0)) results in shape K + L (a rounded square with a dot at (0,0)).
- Scalar multiplication: $2 \times K$ (a square with a dot at (0,0)) results in 2K (a larger square with a dot at (0,0)).
- 1.1. Basis of a Vector Space. In \mathbb{R}^2 , consider the standard basis:

$$e_1 = (1,0), \quad e_2 = (0,1)$$

19 Any vector $x = (x_1, x_2) \in \mathbb{R}^2$ can be written as:

$$20 x = x_1 e_1 + x_2 e_2$$

21 **2. Norms.** A norm is a function that attaches a number to each element x of a vector space, 22 intended to measure its size. For $x \in \mathbb{R}^n$, where $x = (x_1, \dots, x_n)$:

^{*}We thank Robbins family for supporting the Algorithmic Foundations of Data Science Course

28

31

32 33

34

36

38

39

40

42

• Euclidean norm (ℓ_2 -norm):

$$||x||_2 = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$$

• ℓ_1 -norm:

$$||x||_1 = |x_1| + |x_2| + \dots + |x_n|$$

• ℓ_p -norm $(1 \le p < \infty)$:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

• Infinity norm (ℓ_{∞} -norm):

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$

• Example: Consider $x = \left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}\right) \in \mathbb{R}^n$.

$$||x||_{2} = \left(\frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n}\right)^{1/2} = \left(n \cdot \frac{1}{n}\right)^{1/2} = 1$$

$$||x||_{1} = \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \dots + \frac{1}{\sqrt{n}} = n \cdot \frac{1}{\sqrt{n}} = \sqrt{n}$$

$$||x||_{\infty} = \frac{1}{\sqrt{n}}$$

Note: Images of ℓ_p -unit balls (Fig 2 and 3) are provided by Kayden Mimmace, with code available on GitHub.

Fig. 2. ℓ_p -unit ball in \mathbb{R}^2 for p = 1.2 generated using the code [2].

2.1. ℓ_p -Unit Balls. The ℓ_p -unit ball in \mathbb{R}^n is defined as:

$$S_p := \{ x \in \mathbb{R}^n : ||x||_p \le 1 \}$$

41 Diagrams illustrate:

- For p = 1: A diamond shape in \mathbb{R}^2 .
- For p = 1.2: A rounded diamond in \mathbb{R}^2 and a 3D plot in \mathbb{R}^3 .

This manuscript is for review purposes only.

Fig. 3. 3D ℓ_p -unit ball for p = 1.2 [2].

2.2. Hölder Inequality. For $x \in \mathbb{R}^n$, and $1 \le p \le q \le \infty$:

$$||x||_q \le ||x||_p \le n^{1/q - 1/p} ||x||_q$$

For p = 1, q = 2, and x as in the example above:

$$||x||_2 \le ||x||_1 \le n^{1/2 - 1} ||x||_2$$

3. Exercise. Show that for $x \in \mathbb{R}^n$, if $p > 2 \log n$, then:

$$||x||_{\infty} \le ||x||_{p} \le c||x||_{\infty}$$

- **4. Inner Product.** For a real vector space V, an inner product $\langle \cdot, \cdot \rangle$ satisfies:
- Symmetry: $\langle x, y \rangle = \langle y, x \rangle$

44

48

50

52

53

56

- Linearity: $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$
 - Positive definiteness: $\langle x, x \rangle \geq 0$, and $\langle x, x \rangle = 0$ if and only if x = 0.
- These properties hold for any $x, y, z \in V$, $a, b \in \mathbb{R}$. The inner product induces a norm:

$$||x|| = \sqrt{\langle x, x \rangle}$$

4.1. Cauchy-Schwarz Inequality.

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$

4.2. Angles. The angle θ between vectors x and y is given by:

$$\frac{\langle x, y \rangle}{\|x\| \cdot \|y\|} = \cos \theta$$

A diagram shows vectors x and y with an angle θ between them.

5. Linear Maps and Matrices. Every linear map is represented by a matrix. A linear map 60 $f: V \to \mathbb{R}$ satisfies: 61

$$f(ax + by) = af(x) + bf(y)$$

For example, consider: 63

$$f(x) = 3x_1 + 2x_2, \quad x \in \mathbb{R}^2$$

64 65 66

62

$$g(x) = 3x_1 + 2x_2 + 5$$

67

72

77

78

83

86

88

91

$$h(x) = x_1^2 + 3x_2^2$$

68

$$h(x) = x_1^2 + 3x_2^2$$

A linear map $A: x \to Ax$ can be represented by a matrix. For instance:

$$A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}, \quad A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x_1 + x_2 \\ 5x_1 + 2x_2 \end{bmatrix}$$

Define basis vectors:

$$e_1 = \begin{bmatrix} 5 \\ 3 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

The discussion involves the inner product $\langle \cdot, \cdot \rangle$. If A^T is the transpose of A, then:

$$\langle Ax, y \rangle = \langle x, A^T y \rangle$$

- for all x, y. 75
- Question: How to see or hear what a matrix does to a vector?
 - **5.1. Eigenvalues and Eigenvectors.** For $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$, and $\lambda \in \mathbb{R}$:

$$Ax = \lambda x$$

- Here, x is an eigenvector, and λ is an eigenvalue. 79
 - Every $n \times n$ matrix A has n complex eigenvalues.
- **5.2.** Singular Value Decomposition (SVD). Not every matrix A is diagonalizable. Con-81 sider using the eigenvalues of X, where:

$$A^T A = X$$
, $X^T A^T A = X X^T$

Theorem 4.22 (SVD Theorem): Let $A \in \mathbb{R}^{m \times n}$ be a rectangular matrix of rank $r \in [0, \min(m, n)]$. 84 The SVD of A is a decomposition of the form:

$$A = U\Sigma V^T$$

where: 87

- $U \in \mathbb{R}^{m \times m}$ is an orthogonal matrix with column vectors $u_i, i = 1, \dots, m$, satisfying
- $V \in \mathbb{R}^{n \times n}$ is an orthogonal matrix with column vectors v_j , $j = 1, \ldots, n$, satisfying $V^T V =$
- $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix with $\Sigma_{ii} = \sigma_i \geq 0$, and $\Sigma_{ij} = 0$ for $i \neq j$.

93 Thus:

$$A = U\Sigma V^T$$

The σ_i are eigenvalues of $A^T A$.

96
$$A \in \mathbb{R}^{m \times n}, \quad U \in \mathbb{R}^{m \times m}, \quad V \in \mathbb{R}^{n \times n}, \quad \Sigma \in \mathbb{R}^{m \times n}$$

97

98

99

100

110

112113

118

$$\Sigma = \begin{bmatrix} \sigma_1 & & & & \\ & \sigma_2 & & & \\ & & \ddots & & \\ & & & \sigma_r & \\ & & & & 0 \\ & & & & \ddots \\ & & & & 0 \end{bmatrix}$$

5.3. Diagonalization. In general, for any matrix A, if we have:

$$P^TAP = D \quad \Rightarrow \quad A = PDP^{-1}$$

where $P \in \mathbb{R}^{n \times n}$ is invertible, and D is diagonal:

$$D = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

103 we say A is diagonalizable.

104 Symmetric Matrices: If $A^T = A$, then A has real eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, and eigenvectors

105 u_1, u_2, \ldots, u_n , with:

$$U = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}, \quad \langle u_i, u_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

107 If $U^T U = I_n$, then for all $x \in \mathbb{R}^n$:

$$||Ux||_2 = ||x||_2, \quad \langle Ux, Uy \rangle = \langle x, y \rangle$$

$$x = yz, \quad x = z^T y^T$$

5.4. Eigenbasis. For $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$:

$$x = x_1 u_1 + x_2 u_2 + \dots + x_n u_n$$
 (in *U*-basis, $x = (x_1, x_2, \dots, x_n)$)

$$Ax = (Ax_1u_1 + Ax_2u_2 + \dots + Ax_nu_n)$$

$$Ax = \lambda_1 x_1 u_1 + \lambda_2 x_2 u_2 + \dots + \lambda_n x_n u_n$$

117 In the eigenbasis, A becomes:

$$\Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

$$A = U\Lambda U^{-1}$$

121 This is undoing the change of basis to a diagonal form.

$$U^{T} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \quad U = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$$

123

125

126

127

128

$$UU^{T} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = I_{n}$$

5.5. Symmetric Matrices and Eigenvalues.

• Some eigenvalues may be repeating.

• Example: For $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, what is λ ? Compare with $\begin{bmatrix} 2 & 1 \\ & 2 \end{bmatrix}$.

• If $A^T = A$, i.e., A is symmetric, then all eigenvalues are real.

Let λ_1, λ_2 be distinct eigenvalues of A with eigenvectors x and y:

$$Ax = \lambda_1 x, \quad Ay = \lambda_2 y$$

131 Suppose A is symmetric. Then:

$$\langle Ax, y \rangle = \langle x, A^T y \rangle = \langle x, Ay \rangle$$

133

$$\lambda_1 \langle x, y \rangle = \lambda_2 \langle x, y \rangle$$

135 Since $\lambda_1 \neq \lambda_2$:

136
$$\lambda_1 \langle x, y \rangle = \lambda_2 \langle x, y \rangle \quad \Rightarrow \quad \langle x, y \rangle = 0$$

Fig. 4. Orthogonality and linear transformations[3]

137

Fig. 5. SVD transformation of a unit sphere, adapted from [1]

5.6. SVD and Projections. If A is $n \times n$ and no x exists such that Ax = 0, consider the SVD:

$$A = U\Sigma V^T$$

141 Diagrams illustrate the transformation of a unit sphere under A:

- $V = \{v_1, v_2, v_3\}$, a sphere in \mathbb{R}^3 , transforms via Σ to an ellipsoid with axes $\sigma_1 v_1, \sigma_2 v_2, \sigma_3 v_3$, and then via U^T .
- V^T maps the ellipsoid back to a sphere with axes $\sigma_1 e_1, \sigma_2 e_2$, and U rotates it.

145 **Question:** How about projections?

5.7. Projections. Define a projection:

$$A^2 = A \Leftrightarrow A \cdot (Ax) = Ax \text{ for all } x \in \mathbb{R}^n$$

148 Then A is a projection.

140

142143

144

146

147

150

152

153

Example (Main): Let $y_1, y_2 \in \mathbb{R}^3$, and let H be the span of y_1, y_2 . A represents the projection of x onto H.

Fig. 6. Projection onto a hyperplane H [3]

151 A diagram shows $x \in \mathbb{R}^3$, H as a plane, and Ax as the projection of x onto H.

- Ax is the closest point to x in H.
- For $t \in H$, $x Ax \perp t$, i.e., $\langle x Ax, t \rangle = 0$.

For example: 154

$$y_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad y_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$156$$

$$157$$

$$Y = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{3 \times 2}$$

$$158$$

$$159$$

$$Y = QR$$

$$160 \quad \text{Find } A:$$

$$A = QQ^T$$

$$161$$

$$162$$

$$163$$

$$Q^TQ = I \implies QQ^T = I$$

For $A = U\Sigma V^T$: 164

164 For
$$A = U\Sigma V^T$$
:

165
$$\langle Ax, Ax \rangle = ||Ax||_2^2$$
167
$$||Ax||_2^2 = \langle Ax, Ax \rangle = \langle x, A^T Ax \rangle$$
168
$$||Ax||_2^2 = \lambda \langle x, x \rangle = \lambda ||x||_2^2$$

So, all σ_i are non-negative.

$$\Sigma = \begin{bmatrix} \sigma_1 & & & & \\ & \sigma_2 & & & \\ & & \ddots & & \\ & & & \sigma_r & \\ & & & & \sigma_r & \\ & & & & \ddots \\ & & & & 0 \end{bmatrix} \in \mathbb{R}^{m \times n}$$

172
173
$$||Ax||_2^2 = 0 \Rightarrow Ux||_2 = 0 \Rightarrow Ax = 0$$

• The number of zeros is related to the kernel of A, i.e., $\{x:Ax=0\}$. 174

175
$$A = U\Sigma V^{T}$$
177
$$Ax = U\Sigma V^{T}x = U\begin{bmatrix} \sigma_{1} & & & \\ & \sigma_{2} & & \\ & & \ddots & \\ & & & 0 \end{bmatrix} V^{T}x$$

- **6. Tensors.** An order-d tensor with n variables is an $n \times n \times \cdots \times n$ (d times) data array. 178
 - d = 3: Very common, e.g., $\mathbb{R}^{n \times n \times n}$.
- d=2: Matrix, $\mathbb{R}^{n\times n}$. 181
- 182 • d = 1: Vector, \mathbb{R}^n .

179

180

Fig. 7. A 3 x 3 x 3 tensor [3]

7. QR Decomposition. For $Y \in \mathbb{R}^{m \times n}$, $m \ge n$:

$$Y = QR, \quad Q \in \mathbb{R}^{m \times n}, \quad R \in \mathbb{R}^{n \times n}$$

where $Q^TQ = I_n$, Q is orthogonal, and R is upper triangular. 185

A diagram illustrates: 186

183

184

187

191

195

202

$$Y \in \mathbb{R}^{m \times n}, \quad Q \in \mathbb{R}^{m \times n}, \quad R \in \mathbb{R}^{n \times n}$$

with R having n - rank(Y) zero rows. 188

• Suppose rank $(Y) = n, m \ge n$. Then $Y = QR, Y \in \mathbb{R}^{m \times n}, R \in \mathbb{R}^{n \times n}$ is invertible. 189

Goal: Given $x \in \mathbb{R}^m$, find $w \in \mathbb{R}^n$ such that: 190

$$||x - Yw||_2^2 = \min_{t \in \text{span}(Y)} ||x - t||_2^2$$

192
193
$$Yw = QQ^Tx, \quad w = R^{-1}Q^Tx$$

193 194

$$Y\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = w_1 y_1 + w_2 y_2 + \dots + w_n y_n$$

Using Singular Values to Analyze A. Let A be an $m \times n$ matrix. The singular value 196 decomposition (SVD) of A is given by: 197

$$A = U \begin{bmatrix} \delta_1 & & \\ & \ddots & \\ & & \delta_n \end{bmatrix} V^T$$

where U is $m \times m$, $U^TU = I_m$, V is $n \times n$, $V^TV = I_n$, and $\delta_1, \delta_2, \dots, \delta_n$ are the singular values of 199 200

• For $x \in \mathbb{R}^n$, 201

$$||x||_2 \cdot \delta_n(A) \le ||Ax||_2 \le \delta_1(A) \cdot ||x||_2$$

• $\delta_1(A)$ is called the **operator norm** of A, denoted by $||A||_2$ or $||A||_{\text{op}}$. 203

207

208

209

210

214

227

230231

- The ratio $\frac{\delta_1(A)}{\delta_n(A)}$ is called the **condition number** of A, denoted by $\kappa(A)$. This is used in LAPACK.
 - The sum $\delta_1(A) + \delta_2(A) + \cdots + \delta_n(A)$ is called the **nuclear norm**, denoted by $||A||_*$.
 - The sum $\delta_1(A)^2 + \delta_2(A)^2 + \cdots + \delta_n(A)^2$ is called the **Frobenius norm** or **Hilbert-Schmidt norm**, denoted by $||A||_F$ or $||A||_{HS}$.
 - **Trace Norm or** $||A||_2$. This has a specific meaning. Consider a matrix A:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

211 Then the Frobenius norm squared is:

212
$$||A||_F^2 = \delta_1(A)^2 + \dots + \delta_n(A)^2 = \sum_{1 \le i, j \le n} a_{ij}^2$$

What's up with trace-norm naming?. The trace of a matrix X is defined as:

$$\operatorname{Tr}(X) = x_{11} + x_{22} + \dots + x_{nn} \quad \text{for} \quad X = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{bmatrix}$$

For the inner product on matrices $\langle A, B \rangle = \text{Tr}(B^T A)$, the Frobenius norm can be expressed as:

$$||A||_F = \sqrt{\langle A, A \rangle} = \sqrt{\text{Tr}(A^T A)}$$

When Do Eigenvalues and Singular Values Coincide?. Let A be a symmetric matrix with singular value decomposition (SVD) $A = U\Sigma V^T$. Then:

$$A^T = V \Sigma U^T$$

220 Since A is symmetric, $A^T = A$, so:

$$221 V\Sigma U^T = U\Sigma V^T$$

This implies V = U. Thus, the SVD becomes:

$$A = U\Sigma U^T$$

Now consider the eigenvalue decomposition of A:

$$A = V\Lambda V^T$$

226 Since V = U, we have:

$$\Lambda=\Sigma$$

- Thus, $\Lambda = \Sigma$, meaning the eigenvalues of A must coincide with the singular values. Additionally, since Σ contains non-negative values, all eigenvalues of A are non-negative.
 - If all eigenvalues are non-negative, A is positive semidefinite (PSD).
 - If all eigenvalues are positive, A is positive definite (PD).

Cholesky Decomposition. If A is an $n \times n$ positive definite matrix, then it has a Cholesky 232 decomposition: 233

 $A = RR^T$ 234

- where R is a real, upper triangular matrix with positive diagonal entries. 235
- If A is PD and has the form $A = RR^T$, then for any $x, y \in \mathbb{R}^n$: 236

$$\langle Ax, y \rangle = \langle x, Ay \rangle = \langle x, RR^T y \rangle$$

238 239

243

245

$$\langle Ax, y \rangle = \langle Rx, Ry \rangle$$

Thus, if we define a new inner product $\langle \cdot, \cdot \rangle_R$ such that: 240

$$\langle x, y \rangle_R = \langle Rx, Ry \rangle$$

we have: 242

$$\langle Ax, y \rangle = \langle x, y \rangle_R$$

- This implies: 244
 - All possible inner products on $\mathbb{R}^n \leftrightarrow \text{all PD matrices } A$.
- All similarity measures using angles. 246
- **Linear Regression. Input:** Labeled vectors (x_i, y_i) , i = 1, 2, ..., N, where $x_i \in \mathbb{R}^n$ (vector 247 with n coordinates) and $y_i \in \mathbb{R}$. 248
- **Goal:** Develop a linear model to predict the output value y given $x = (x_1, \dots, x_n)$. 249
- In other words, find a linear function $f: \mathbb{R}^n \to \mathbb{R}$ that best fits the data. 250
- What does "best" mean? 251
- For now, define the residual sum of squares (RSS): 252

253
$$RSS(f) = \sum_{i=1}^{N} (y_i - f(x_i))^2$$

- The goal is to minimize RSS(f) among all linear functions f. 254
- In this context, "linear" is used in a restrictive way to mean: 255

$$f(x) = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + w_0$$

So the model is: 257

258

$$y_i \approx w_1 x_{i1} + w_2 x_{i2} + \dots + w_n x_{in} + w_0 \quad (\star)$$

Let $w = (w_1, w_2, ..., w_n, w_0)$, and define: 259

$$\tilde{x}_i = (x_{i1}, x_{i2}, \dots, x_{in}, 1)$$

261 (\star) becomes $\langle w, \tilde{x}_i \rangle \approx w^T \tilde{x}_i$ 262

The RSS can be written as: 263

264
$$RSS(f) = \sum_{i=1}^{N} (y_i - w^T \tilde{x}_i)^2$$

265 More concisely, define:

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}, \quad X = \begin{bmatrix} x_{11} & x_{21} & \cdots & x_{N1} \\ x_{12} & x_{22} & \cdots & x_{N2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$

267 Then:

271

272

276

281

$$RSS(f) = ||y - X^T w||^2$$

This means projecting $y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$ into the span of the rows of X.

270 If $X^T = QR$, where Q is $N \times (n+1)$ and R is $(n+1) \times (n+1)$, then:

$$X^T w = QRw$$
 and $w = R^{-1}Q^T y$

Fig. 8. Second example of a projection onto a hyperplane[3]

A diagram illustrates this: y (real labels) is projected onto the column span of X, with X^Tw being the best linear approximation.

How do you compute that Q?

PCA (Principal Component Analysis). For d = 1:

277 **Input:** $x_1, x_2, ..., x_N \in \mathbb{R}^n$.

Goal: Find a d-dimensional vector space $L \subset \mathbb{R}^n$ such that:

$$\sum_{i=1}^{N} \|x_i - P_L(x_i)\|^2$$

is minimized, where $P_L(x_i)$ is the projection of x_i onto L.

• **Simplification 1:** Define the mean of the data:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

So the centered data is:

$$(0,0,\ldots,0) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)$$

285 We'll assume $\mu = (0, ..., 0)$.

• Simplification 2: If $v_1, v_2, \ldots, v_d \in \mathbb{R}^n$ is an orthonormal basis for the vector space L, and we set:

$$W = \begin{bmatrix} v_1 & v_2 & \cdots & v_d \end{bmatrix}$$
 (an $n \times d$ matrix)

then the projection is:

$$P_L(x) = WW^T x$$

291 **Goal:** Find $W = \begin{bmatrix} v_1 & v_2 & \cdots & v_d \end{bmatrix}$, an $n \times d$ matrix, such that $W^T W = I_d$, and:

$$\sum_{i=1}^{N} \|x_i - WW^T x_i\|^2 = \min_{L} \sum_{i=1}^{N} \|x_i - P_L(x_i)\|^2$$

Objective Function Restated.

$$\sum_{i=1}^{N} \|x_i - WW^T x_i\|^2 = \sum_{i=1}^{N} \tilde{x}_i^T (I - WW^T) \tilde{x}_i$$

294 where:

295

299

286

2.87

288

290

$$\tilde{x}_i = (x_i - \mu)$$
 (but we assumed $\mu = 0$, so $\tilde{x}_i = x_i$).

296 Define the data matrix:

$$X = \begin{bmatrix} x_1 & x_2 & \cdots & x_N \end{bmatrix} \quad (\text{an } n \times N \text{ matrix}).$$

298 Then:

$$X^{T}(I-WW^{T})X$$
 (an $N\times N$ matrix).

300 The trace of the objective function is:

301
$$\operatorname{Trace}(X^{T}(I - WW^{T})X) = \sum_{i=1}^{N} ||x_{i} - WW^{T}x_{i}||^{2}$$

302 So the optimization problem becomes:

$$\min_{W \in \mathbb{R}^{n \times d}, W^T W = I_d} \operatorname{Trace}(X^T (I - W W^T) X)$$

304 This is equivalent to:

$$\min_{W \in \mathbb{R}^{n \times d}, W^T W = I_d} \operatorname{Trace}(X^T X) - \operatorname{Trace}(X^T W W^T X)$$

306 which is equivalent to:

$$\max_{W \in \mathbb{R}^{n \times d}, W^T W = I_d} \operatorname{Trace}(X^T W W^T X) \quad \langle A, A \rangle \quad \text{where} \quad A^T = W^T X, \quad A = X^T W$$

308 Alternatively:

$$\max_{W \in \mathbb{R}^{n \times d}, W^T W = I_d} \|W^T X\|_F^2$$

where W^TX is a $d \times N$ matrix, and X is an $n \times N$ matrix with d singular values.

311 This can also be written as:

$$\max_{W \in \mathbb{R}^{n \times d}, W^T W = I_d} \sum_{i=1}^d \delta_i(W^T X)^2$$

313 Given the SVD of X:

314
$$X = U\Sigma V^T$$
 (where U is $n \times n$, Σ is $n \times N$, V is $N \times N$),

315

321

317
318 $U = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix},$

we pick the best d column vectors from U, i.e., $W^T = \begin{bmatrix} u_1 & u_2 & \cdots & u_d \end{bmatrix}$.

Recap: Linear Regression.

320
$$x_1, x_2, \dots, x_N \in \mathbb{R}^n, \quad y_1, y_2, \dots, y_N \in \mathbb{R}, \quad (y_1, y_2, \dots, y_N) \in \mathbb{R}^N$$

Fig. 9. Basis of a subspace and projection onto it/3/.

322 A diagram illustrates \mathbb{R}^N with the *n*-dimensional row span of X:

$$X = \begin{bmatrix} x_1 & x_2 & \cdots & x_N \end{bmatrix}$$
 (an $n \times N$ matrix).

324 Another diagram shows $x_1, x_2, \dots, x_N \in \mathbb{R}^n$ projected onto an n-dimensional subspace (PCA):

$$X = \begin{bmatrix} x_1 & x_2 & \cdots & x_N \end{bmatrix}$$
 (an $n \times N$ matrix).

Fig. 10. Projection of vectors onto a plane[3].

326 The SVD of X:

327

 $X = U \begin{bmatrix} \delta_1 & & & & & \\ & \delta_2 & & & & \\ & & \ddots & & & \\ & & & \delta_r & & \\ & & & & 0 & \\ & & & & \ddots & \\ & & & & 0 \end{bmatrix} V^T$

where U is $n \times n$, and we pick the first r columns corresponding to non-zero singular values.

329 Exercises.

330 **Problem 1.** Let A be a symmetric matrix $(A^T = A)$, and let $\langle \cdot, \cdot \rangle$ be an inner product. Show 331 that $\langle x, Ay \rangle = \langle Ax, y \rangle$.

Since A is symmetric, $A^T = A$. Using the standard inner product $\langle x, y \rangle = x^T y$, we have:

$$\langle x, Ay \rangle = x^T (Ay) = x^T Ay$$

334
335 $\langle Ax, y \rangle = (Ax)^T y = x^T A^T y = x^T A y \quad \text{(since } A^T = A\text{)}$

336 Thus:

$$\langle x, Ay \rangle = x^T A y = \langle Ax, y \rangle$$

338

339

Problem 2. Define the function $f: \mathbb{R}^2 \to \mathbb{R}^2$, where f(x) is obtained by turning x counterclockwise by 45°. Find the matrix that represents this function using the standard basis $e_1 = (1,0)$ and $e_2 = (0,1)$.

343 A counter-clockwise rotation by 45° in \mathbb{R}^2 is represented by the matrix:

$$R = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

345 For $\theta=45^{\circ}$, we have $\cos 45^{\circ}=\sin 45^{\circ}=\frac{\sqrt{2}}{2},$ so:

$$R = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

Problem 3. Let $Q \in \mathbb{R}^{n \times n}$ be a matrix such that $Q^TQ = I_n$. Show that for any $x, y \in \mathbb{R}^n$, the angle between x and y is the same as the angle between Qx and Qy.

349 The angle θ between x and y is given by:

$$\cos \theta = \frac{\langle x, y \rangle}{\|x\| \|y\|} = \frac{x^T y}{\|x\| \|y\|}$$

For Qx and Qy, compute the inner product:

$$\langle Qx, Qy \rangle = (Qx)^T (Qy) = x^T Q^T Qy = x^T I_n y = x^T y = \langle x, y \rangle$$

353 The norms are:

352

354

362

$$\|Qx\| = \sqrt{(Qx)^T(Qx)} = \sqrt{x^TQ^TQx} = \sqrt{x^Tx} = \|x\|$$

355 Similarly, ||Qy|| = ||y||. Thus:

$$\cos \theta' = \frac{\langle Qx, Qy \rangle}{\|Qx\| \|Qy\|} = \frac{x^T y}{\|x\| \|y\|} = \cos \theta$$

357 The angles are the same.

Problem 4. Recall that for $1 \le p < \infty$ and $x \in \mathbb{R}^n$, we define $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$.

Part a. Let $x \in \mathbb{R}^n$ be a vector with 100 non-zero entries. Show that $\frac{1}{10} \leq \frac{\|x\|_1}{\|x\|_{\infty}}$.

We have $||x||_1 = \sum_{i=1}^n |x_i|$ and $||x||_{\infty} = \max_i |x_i|$. Let x have 100 non-zero entries, say $|x_i| = a_i$ for i = 1 to 100, and $x_i = 0$ otherwise. Then:

$$||x||_1 = \sum_{i=1}^{100} a_i, \quad ||x||_{\infty} = \max_{i=1}^{100} a_i = M$$

363 If all non-zero entries are equal to M, then:

364
$$||x||_1 = 100M, \quad ||x||_{\infty} = M \implies \frac{||x||_1}{||x||_{\infty}} = 100 \ge \frac{1}{10}$$

In the minimal case (e.g., one entry is M, others smaller), $||x||_1 \geq M$, so:

$$\frac{\|x\|_1}{\|x\|_{\infty}} \ge 1 \ge \frac{1}{10}$$

The inequality holds.

Part b. Let $x \in \mathbb{R}^{8000}$. Show that $\ell \cdot ||x||_q \le ||x||_\infty \le ||x||_q$, where e denotes the natural base. (Note: Assuming ℓ is a typo or constant; interpreting as a norm comparison.) For $||x||_\infty = \max_i |x_i|$ and $||x||_q = \left(\sum_{i=1}^{8000} |x_i|^q\right)^{1/q}$, we have:

$$||x||_{\infty} \le ||x||_q \le 8000^{1/q} ||x||_{\infty}$$

The exact role of ℓ or e is unclear, but the standard norm comparison holds as shown.

Exercises (First Set).

Exercise 1. Let L be the line spanned by the vector $(-1,1,0) \in \mathbb{R}^3$. Let A be the matrix that represents the projection onto this line. Compute A.

The vector v = (-1, 1, 0) spans the line. The projection matrix is:

377
$$A = \frac{vv^{T}}{v^{T}v}$$
378
379
380
$$v^{T}v = (-1)^{2} + 1^{2} + 0^{2} = 2$$
381
$$vv^{T} = \begin{pmatrix} -1\\1\\0 \end{pmatrix} \begin{pmatrix} -1&1&0 \end{pmatrix} = \begin{pmatrix} 1&-1&0\\-1&1&0\\0&0&0 \end{pmatrix}$$
382
383
$$A = \frac{1}{2} \begin{pmatrix} 1&-1&0\\-1&1&0\\0&0&0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}&-\frac{1}{2}&0\\-\frac{1}{2}&\frac{1}{2}&0\\0&0&0 \end{pmatrix}$$

Exercise 2. Generate 100 random Gaussian five-dimensional vectors. Compute the matrix that represents the projection onto the span of $x_1, x_2, \dots, x_{100} \in \mathbb{R}^5$ using QR decomposition.

386 Using Python with NumPy:

387 import numpy as np

388 np.random.seed(42)

393

389 X = np.random.randn(5, 100) # 5x100 matrix

390 Q, R = np.linalg.qr(X)

391 A = Q @ Q.T # Projection matrix

The matrix A is 5×5 and projects onto the span of the columns of X.

Exercises (Second Set).

Exercise 2. We define the Hilbert-Schmidt norm as $||A||_{HS} = \left(\sum_{i,j} a_{ij}^2\right)^{1/2}$, and the trace inner product as $\langle A, B \rangle = \text{Trace}(B^T A)$, with norm $||A||_2 = \sqrt{\langle A, A \rangle}$. Show $||A||_{HS} = ||A||_2$.

$$/ \qquad \qquad ^{1/2}$$

$$||A||_{HS} = \left(\sum_{i,j} a_{ij}^2\right)^{1/2}$$

397
398
$$||A||_2 = \sqrt{\text{Trace}(A^T A)}$$

399 The (i, i)-th entry of $A^T A$ is $\sum_i a_{ji}^2$, so:

400
$$\operatorname{Trace}(A^{T}A) = \sum_{i} \sum_{j} a_{ji}^{2} = \sum_{i,j} a_{ij}^{2}$$

401 402

$$||A||_2 = \sqrt{\text{Trace}(A^T A)} = \sqrt{\sum_{i,j} a_{ij}^2} = ||A||_{HS}$$

For further study, we recommend the textbooks by Murphy [3] and Streil [4].

404 REFERENCES

- 405 [1] M. P. Deisenroth, A. A. Faisal, and C. S. Ong, *Mathematics for machine learning*, Cambridge University 406 Press, 2020.
- 407 [2] K. MIMMACE, Unit ball visualizations. https://github.com/kaydenmimmace/unit-ball-visualizations, 2025. Accessed: 2025-05-14.
- 409 [3] K. P. Murphy, Probabilistic Machine Learning: An Introduction, 2023, https://probml.github.io/pml-book/410 book1.html. Available online.
- 411 [4] S. STREIL, Linear algebra done wrong, 2023, https://www.math.brown.edu/streil/papers/LADW/LADW.html. 412 Available online.