Parameter Sharing Methods for Multilingual Self-Attentional Translation Models

Devendra Sachan¹ Graham Neubig²

¹Data Solutions Team, Petuum Inc, USA

²Language Technologies Institute, Carnegie Mellon University, USA

Conference on Machine Translation, Nov 2018

► Goal: Train a machine learning system to translate from multiple source languages to multiple target languages.

- ► Goal: Train a machine learning system to translate from multiple source languages to multiple target languages.
- Multilingual models follow the multi-task learning (MTL) paradigm

- ► Goal: Train a machine learning system to translate from multiple source languages to multiple target languages.
- Multilingual models follow the multi-task learning (MTL) paradigm
 - 1. Models are jointly trained on data from several language pairs.

- ► Goal: Train a machine learning system to translate from multiple source languages to multiple target languages.
- Multilingual models follow the multi-task learning (MTL) paradigm
 - 1. Models are jointly trained on data from several language pairs.
 - 2. Incorporate some degree of parameter sharing.

One-to-Many Multilingual Translation

➤ Translation from a common source language ("En") to multiple target languages ("De" and "NI")

One-to-Many Multilingual Translation

- ▶ Translation from a common source language ("En") to multiple target languages ("De" and "NI")
- Difficult task as we need to translate to (or generate) multiple target languages.

One shared encoder and one decoder per target language.¹

¹Multi-Task Learning for Multiple Language Translation, ACL 2015

- ▶ One shared encoder and one decoder per target language.¹
- Advantage: ability to model each target language separately.

¹Multi-Task Learning for Multiple Language Translation, ACL 2015

- One shared encoder and one decoder per target language.¹
- Advantage: ability to model each target language separately.
- Disadvantages:
 - 1. Slower Training

¹Multi-Task Learning for Multiple Language Translation, ACL 2015

- One shared encoder and one decoder per target language.¹
- Advantage: ability to model each target language separately.
- Disadvantages:
 - 1. Slower Training
 - 2. Increased memory requirements

¹Multi-Task Learning for Multiple Language Translation, ACL 2015

► Single *unified* model: shared encoder and shared decoder for all language pairs.²

 $^{^2}$ Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation, ACL 2017

- Single unified model: shared encoder and shared decoder for all language pairs.²
- Advantages:
 - Trivially implementable: using a standard bilingual translation model.

²Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation, ACL 2017

- Single unified model: shared encoder and shared decoder for all language pairs.²
- Advantages:
 - Trivially implementable: using a standard bilingual translation model.
 - Constant number of trainable parameters.

²Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation, ACL 2017

- Single unified model: shared encoder and shared decoder for all language pairs.²
- Advantages:
 - Trivially implementable: using a standard bilingual translation model.
 - Constant number of trainable parameters.
- Disadvantage: decoder's ability to model multiple languages can be significantly reduced.

²Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation, ACL 2017

Our Proposed Approach: Partial Sharing

► Share **some but not all** parameters.

Our Proposed Approach: Partial Sharing

- ► Share **some but not all** parameters.
- Generalizes previous approaches.

Our Proposed Approach: Partial Sharing

- ► Share **some but not all** parameters.
- Generalizes previous approaches.
- We focus on the self-attentional Transformer model.

³Attention is all you need, NIPS 2017

► Embedding Layer

³Attention is all you need, NIPS 2017

- ► Embedding Layer
- ► Encoder Layer (2 sublayers)

³Attention is all you need, NIPS 2017

- ► Embedding Layer
- ► Encoder Layer (2 sublayers)
 - 1. Self-attention

³Attention is all you need, NIPS 2017

- ► Embedding Layer
- Encoder Layer (2 sublayers)
 - Self-attention
 - 2. Feed-forward network

³Attention is all you need, NIPS 2017

- Embedding Layer
- Encoder Layer (2 sublayers)
 - 1. Self-attention
 - 2. Feed-forward network
- Decoder Layer (3 sublayers)

³Attention is all you need, NIPS 2017

- ► Embedding Layer
- Encoder Layer (2 sublayers)
 - 1. Self-attention
 - 2. Feed-forward network
- Decoder Layer (3 sublayers)
 - 1. Masked self-attention

³Attention is all you need, NIPS 2017

- ► Embedding Layer
- ► Encoder Layer (2 sublayers)
 - 1. Self-attention
 - 2. Feed-forward network
- Decoder Layer (3 sublayers)
 - 1. Masked self-attention
 - 2. Encoder-decoder attention

³Attention is all you need, NIPS 2017

- ► Embedding Layer
- ► Encoder Layer (2 sublayers)
 - 1. Self-attention
 - 2. Feed-forward network
- Decoder Layer (3 sublayers)
 - 1. Masked self-attention
 - 2. Encoder-decoder attention
 - 3. Feed-forward network

³Attention is all you need, NIPS 2017

- Embedding Layer
- Encoder Layer (2 sublayers)
 - 1. Self-attention
 - 2. Feed-forward network
- Decoder Layer (3 sublayers)
 - 1. Masked self-attention
 - 2. Encoder-decoder attention
 - 3. Feed-forward network
- Output generation layer

³Attention is all you need, NIPS 2017

Embedding Layer

 $m{W}_{E} \in \mathbb{R}^{d_{m} imes V}$

Embedding Layer

 $m{W}_{F} \in \mathbb{R}^{d_{m} imes V}$

Masked Self-Attention

 $lackbox{lackbox{$ackbox{$lackbox{$lackbox{$lackbox{$lackbox{$lackbox{$lackbox{$lackbox{$lackbox{$lackbox{$lackbox{$ackbox{a

Embedding Layer

 $m{W}_{F} \in \mathbb{R}^{d_{m} imes V}$

Masked Self-Attention

 $lackbox{lackbox{$ackbox{$lackbox{$lackbox{$lackbox{$lackbox{$lackbox{$lackbox{$lackbox{$lackbox{$lackbox{$lackbox{$ackbox{a

Encoder-Decoder Attention

 $lacksquare W_{\mathcal{K}}^{oldsymbol{2}}, W_{\mathcal{V}}^{oldsymbol{2}}, W_{\mathcal{Q}}^{oldsymbol{2}}, W_{\mathcal{F}}^{oldsymbol{2}} \in \mathbb{R}^{d_{m} imes d_{m}}$

Embedding Layer

 $m{W}_{F} \in \mathbb{R}^{d_{m} imes V}$

Masked Self-Attention

 $lacksquare W_{\mathcal{K}}^{oldsymbol{1}}, W_{\mathcal{V}}^{oldsymbol{1}}, W_{\mathcal{Q}}^{oldsymbol{1}}, W_{\mathcal{F}}^{oldsymbol{1}} \in \mathbb{R}^{d_m imes d_m}$

Encoder-Decoder Attention

 $lacksquare W_{\mathcal{K}}^2, W_{\mathcal{V}}^2, W_{\mathcal{Q}}^2, W_{\mathcal{F}}^2 \in \mathbb{R}^{d_m imes d_m}$

Feed-Forward Network

- $lackbox{W}_{L_1} \in \mathbb{R}^{d_m imes d_h}$
- $lackbox{W}_{L_2} \in \mathbb{R}^{d_h imes d_m}$

Parameter Sharing Strategies

Shareable parameters: embeddings, attention, embedding, linear layer weights.

Parameter Sharing Strategies

 $ightharpoonup \Theta = \mathsf{set} \ \mathsf{of} \ \mathsf{shared} \ \mathsf{parameters}$

No Parameter Sharing

Separate bilingual translation models

$$\mathbf{\Theta} = \emptyset$$

Embedding Sharing

 $lackbox{lack}$ Common embedding layer $oldsymbol{\Theta} = \{oldsymbol{W}_{oldsymbol{\mathcal{E}}}\}$

+Encoder Sharing

 Common encoder and separate decoder for each target language

$$oldsymbol{\Theta} = \{W_{ extsf{ iny E}}, \, heta_{ extsf{ iny ENC}}\}$$

+Decoder Sharing

► Next, include decoder parameters among the set of shared parameters.

+Decoder Sharing

- Next, include decoder parameters among the set of shared parameters.
- Exponentially many combinations possible: only select a subset.

+Decoder Sharing

- Next, include decoder parameters among the set of shared parameters.
- Exponentially many combinations possible: only select a subset.
- The selected weights are shared in all layers.

FFN sublayer parameters are shared $\Theta = \{W_E, \theta_{ENC}, W_{L_1}, W_{L_2}\}$

Sharing the weights of the self-attention sublayer $\Theta = \left\{ W_{E}, \ \theta_{ENC}, \ W_{K}^{1}, \ W_{Q}^{1}, \ W_{V}^{1}, \ W_{F}^{1} \right\}$

Sharing the weights of the encoder-decoder attention sublayer $\Theta = \left\{ W_{E},~\theta_{ENC},~W_{K}^{2},~W_{Q}^{2},~W_{V}^{2},~W_{F}^{2}
ight\}$

Limit the attention weights to the key and query weights $\Theta = \left\{ W_{E}, \ \theta_{\textit{ENC}}, \ W_{K}^{1}, \ W_{Q}^{1}, \ W_{K}^{2}, \ W_{Q}^{2} \right\}$

Limit the attention weights to the key and value weights $\Theta = \left\{ W_{E}, \ \theta_{ENC}, \ W_{K}^{1}, \ W_{V}^{1}, \ W_{K}^{2}, \ W_{V}^{2} \right\}$

Sharing all the decoder parameters to have a single unified model $(\Theta = \{W_{\textit{E}}, \, \theta_{\textit{ENC}}, \, \theta_{\textit{DEC}}\})$

Six language pairs from the TED talks dataset.⁴
 https://github.com/neulab/word-embeddings-for-nmt

⁴When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation?, NAACL 2018

- Six language pairs from the TED talks dataset.⁴
 https://github.com/neulab/word-embeddings-for-nmt
- Languages belong to different linguistic families

⁴When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation?, NAACL 2018

- Six language pairs from the TED talks dataset.⁴
 https://github.com/neulab/word-embeddings-for-nmt
- ► Languages belong to different linguistic families
 - ▶ Romanian (Ro) and French (FR) are *Romance* languages

⁴When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation?, NAACL 2018

- Six language pairs from the TED talks dataset.⁴
 https://github.com/neulab/word-embeddings-for-nmt
- Languages belong to different linguistic families
 - ▶ Romanian (Ro) and French (FR) are *Romance* languages
 - ightharpoonup German (DE) and Dutch (NL) are *Germanic* languages

⁴When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation?, NAACL 2018

- Six language pairs from the TED talks dataset.⁴
 https://github.com/neulab/word-embeddings-for-nmt
- Languages belong to different linguistic families
 - ▶ Romanian (Ro) and French (FR) are *Romance* languages
 - lacktriangle German (DE) and Dutch (NL) are *Germanic* languages
 - lacktriangle Turkish (TR) and Japanese (JA) are unrelated languages
 - ► Turkish: Turkic family
 - Japanese: Japonic family

⁴When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation?, NAACL 2018

Extra target language token at the start of source sentence.

- Extra target language token at the start of source sentence.
- Trained using balanced mini-batches for every target language.

- Extra target language token at the start of source sentence.
- ► Trained using balanced mini-batches for every target language.
- Minimize weighted average cross-entropy loss.

- Extra target language token at the start of source sentence.
- ► Trained using balanced mini-batches for every target language.
- Minimize weighted average cross-entropy loss.
 - Weighting term is proportional to word count in target languages.

Baselines

► **GNMT Model**: Based on recurrent LSTMs, residual connections, attention

Baselines

► **GNMT Model**: Based on recurrent LSTMs, residual connections, attention

1. **GNMT NS**: No Sharing

Baselines

► **GNMT Model**: Based on recurrent LSTMs, residual connections, attention

GNMT NS: No Sharing
 GNMT FS: Full Sharing

Baselines

► Transformer NS: Separate models for each language pair

Baselines

- ► Transformer NS: Separate models for each language pair
- ▶ Transformer FS: One model for all language pairs

Results: Target languages are from the same family

Results: Target languages are from the same family

BLEU Scores

ightharpoonup GNMT NS \ll GNMT FS < TF NS \ll TF FS

Results: Target languages are from different families

Results: Target languages are from different families

BLEU Scores

- ▶ GNMT NS \ll GNMT FS $< \approx$ TF NS
- ▶ TF NS \geq TF FS for En \rightarrow De + Tr
- ▶ TF NS \approx TF FS for En \rightarrow De + Ja

Results: Target languages are from the same family

Transformer Partial Sharing: $\Theta = \{W_{\it E}\}$

BLEU Scores:

- ▶ TF FS > TF PS for En \rightarrow Ro + Fr
- ▶ TF FS \approx TF PS for En \rightarrow De + NI

Results: Target languages are from different families

Transformer Partial Sharing: $\Theta = \{W_{\it E}\}$

BLEU Scores

- ▶ TF FS < TF PS for En \rightarrow De + Tr
- ▶ TF FS \approx TF PS for En \rightarrow De + Ja

Results: Target languages are from the same family

Transformer Partial Sharing: $\mathbf{\Theta} = \{\mathbf{W}_{\mathit{E}}\} + \{\mathbf{ heta}_{\mathit{ENC}}\}$

BLEU Scores:

▶ TF FS > TF PS for En \rightarrow Ro + Fr and En \rightarrow De + NI

Results: Target languages are from different families

Transformer Partial Sharing: $\mathbf{\Theta} = \{ \mathbf{W}_{\mathit{E}} \} + \{ \mathbf{\theta}_{\mathit{ENC}} \}$

BLEU Scores:

- ▶ TF FS < TF PS for En \rightarrow De + Tr
- ▶ TF FS \approx TF PS for En \rightarrow De + Ja

Results: Target languages are from the same family

Transformer Partial Sharing: $\Theta = \{W_E, \theta_{ENC}\} + \{W_{L_1}, W_{L_2}\}$

BLEU Scores:

▶ TF FS > TF PS for En \rightarrow Ro + Fr and En \rightarrow De + NI

Results: Target languages are from different families

Transformer Partial Sharing: $\Theta = \{W_E, \theta_{ENC}\} + \{W_{L_1}, W_{L_2}\}$

BLEU Scores:

▶ TF FS < TF PS for En \rightarrow De + Tr and En \rightarrow De + Ja

Results: Target languages are from the same family

Transformer Partial Sharing: $\Theta = \{W_E, \theta_{ENC}\} + \{W_K^1, W_O^1, W_V^1, W_E^1\}$

BLEU Scores:

- ▶ TF FS > TF PS for En \rightarrow Ro + Fr
- ▶ TF FS \approx TF PS for En \rightarrow De + NI

Results: Target languages are from different families

Transformer Partial Sharing: $\Theta = \{W_E, \theta_{ENC}\} + \{W_K^1, W_O^1, W_V^1, W_E^1\}$

BLEU Scores:

- ▶ TF FS < TF PS for En \rightarrow De + Tr
- ▶ TF FS \approx TF PS for En \rightarrow De + Ja

Transformer Partial Sharing: $\Theta = \left\{ W_{E}, \ \theta_{ENC} \right\} + \left\{ W_{K}^{2}, \ W_{Q}^{2}, \ W_{V}^{2}, \ W_{F}^{2} \right\}$

BLEU Scores:

▶ TF FS \approx TF PS for En \rightarrow Ro + Fr and En \rightarrow De + NI

Results: Target languages are from different families

Transformer Partial Sharing:

$$\Theta = \left\{ oldsymbol{W}_{ extsf{ iny F}}, \, oldsymbol{ heta}_{ extsf{ iny F}N}
ight\} + \left\{ oldsymbol{W}_{ extsf{ iny K}}^{oldsymbol{2}}, \, oldsymbol{W}_{ extsf{ iny Q}}^{oldsymbol{2}}, \, oldsymbol{W}_{ extsf{ iny F}}^{oldsymbol{2}}, \, olds$$

BLEU Scores:

- ▶ TF FS < TF PS for En \rightarrow De + Tr
- ▶ TF FS \approx TF PS for En \rightarrow De + Ja

Transformer Partial Sharing:

$$\Theta = \left\{ oldsymbol{W}_{ extsf{ iny K}}, \, oldsymbol{ heta}_{ extsf{ iny K}}, \, oldsymbol{W}_{ extsf{ iny K}}^1, \, oldsymbol{W}_{ extsf{ iny V}}^2, \, oldsymbol{W}_{ extsf{ iny V}}^2
ight\}$$

BLEU Scores:

- ▶ TF FS > TF PS for En \rightarrow Ro + Fr
- ▶ TF FS \approx TF PS for En \rightarrow De + NI

Results: Target languages are from different families

Transformer Partial Sharing: $O = (W - Q) + (W^{1})$

$$\Theta = \left\{ oldsymbol{W}_{ extsf{ iny K}}, \, oldsymbol{ heta}_{ extsf{ iny K}}, \, oldsymbol{W}_{ extsf{ iny K}}^1, \, oldsymbol{W}_{ extsf{ iny V}}^2, \, oldsymbol{W}_{ extsf{ iny V}}^2
ight\}$$

BLEU Scores:

▶ TF FS < TF PS for En \rightarrow De + Tr and En \rightarrow De + Ja

Transformer Partial Sharing: $\Theta = \left\{ W_{E}, \ \theta_{ENC} \right\} + \left\{ W_{K}^{1}, \ W_{Q}^{1}, \ W_{K}^{2}, \ W_{Q}^{2} \right\}$

BLEU Scores:

▶ TF FS \approx TF PS for En \rightarrow Ro + Fr and En \rightarrow De + NI

Results: Target languages are from different families

Transformer Partial Sharing:

$$\Theta = \left\{ oldsymbol{W}_{ extsf{ iny K}}, \, oldsymbol{ heta}_{ extsf{ iny K}}, \, oldsymbol{W}_{ extsf{ iny K}}^1, \, oldsymbol{W}_{ extsf{ iny Q}}^2, \, oldsymbol{W}_{ extsf$$

BLEU Scores:

▶ TF FS \ll TF PS for En \rightarrow De + Tr and En \rightarrow De + Ja

▶ Sharing all parameters leads to the best BLEU scores for $E_N \rightarrow Ro + F_R$

- ▶ Sharing all parameters leads to the best BLEU scores for $E_N \rightarrow Ro + F_R$
- Sharing only the key, query from both the decoder attention layers leads to the best BLEU scores for $\rm EN{\to}DE{+}NL$

Results: Target languages are from distant families

► Sharing all the parameters leads to a noticeable drop in the BLEU scores for both the considered language pairs.

Results: Target languages are from distant families

- ► Sharing all the parameters leads to a noticeable drop in the BLEU scores for both the considered language pairs.
- ► Sharing the key, query parameters results in a large increase in the BLEU scores.

► We explore parameter sharing strategies for multilingual translation using self-attentional models.

- ► We explore parameter sharing strategies for multilingual translation using self-attentional models.
- ► We examine the case when the target languages come from the same or distant language families.

- We explore parameter sharing strategies for multilingual translation using self-attentional models.
- We examine the case when the target languages come from the same or distant language families.
- The popular approach of full parameter sharing may perform well only when the target languages belong to the same family.

- We explore parameter sharing strategies for multilingual translation using self-attentional models.
- ▶ We examine the case when the target languages come from the same or distant language families.
- The popular approach of full parameter sharing may perform well only when the target languages belong to the same family.
- Partial parameter sharing of embedding, encoder, decoder's key, query weights is applicable to all kinds of language pairs.

- We explore parameter sharing strategies for multilingual translation using self-attentional models.
- ▶ We examine the case when the target languages come from the same or distant language families.
- The popular approach of full parameter sharing may perform well only when the target languages belong to the same family.
- Partial parameter sharing of embedding, encoder, decoder's key, query weights is applicable to all kinds of language pairs.
- Partial parameter sharing achieves the best BLEU scores when the target languages are from distant families.

- We explore parameter sharing strategies for multilingual translation using self-attentional models.
- ► We examine the case when the target languages come from the same or distant language families.
- The popular approach of full parameter sharing may perform well only when the target languages belong to the same family.
- Partial parameter sharing of embedding, encoder, decoder's key, query weights is applicable to all kinds of language pairs.
- Partial parameter sharing achieves the best BLEU scores when the target languages are from distant families.

Code: https://github.com/DevSinghSachan/multilingual_nmt

- We explore parameter sharing strategies for multilingual translation using self-attentional models.
- We examine the case when the target languages come from the same or distant language families.
- The popular approach of full parameter sharing may perform well only when the target languages belong to the same family.
- Partial parameter sharing of embedding, encoder, decoder's key, query weights is applicable to all kinds of language pairs.
- Partial parameter sharing achieves the best BLEU scores when the target languages are from distant families.

Code: https://github.com/DevSinghSachan/multilingual_nmt

Thank you! Questions?