Randomness Deficiency Overlap

Samuel Epstein*

July 5, 2023

Abstract

In this paper we prove a lower bound on the computable measure of sets with high randomness deficiency with respect to two computable measures.

In this paper, we show a succinct proof to the randomness deficiency overlap theorem. The proof is a straightforward modification to Theorems 4, 5, and 6 in [Eps22]. In [Eps23], an extended version of the results of this paper can be found. It includes extensions for uncomputable λ as well as a statement using universal uniform tests and computable metric spaces. It also includes a result (with tight bounds) using the traditional definition of randomness deficiency. The paper also proves that synchronized oscillation of algorithmic thermodynamic entropies with respect to different measures must occur.

Let $\mu = \mu_1, \mu_2, \ldots$ be a computable sequence of measures over infinite sequences. A conditionally bounded μ -test is a lower semi-continuous function $t : \{0,1\}^{\infty} \times \mathbb{N} \to \mathbb{R}_{\geq 0} \cup \infty$ such that for all $n \in \mathbb{N}$ and positive real number r, we have $\mu_n(\{\alpha : t(x|n) \geq r\}) \leq 1/r$. If μ_1, μ_2, \ldots is uniformly computable, then there exists a lower-semicomputable μ -test t that is "maximal" (i.e. for which $t' \leq O(t)$ for every other test t'). We fix such a t and let $\overline{\mathbf{D}}_n(\alpha|\mu) = \log t(\alpha|n)$.

Theorem.Let $\lambda = \lambda_1, \lambda_2, \ldots, \mu = \mu_1, \mu_2, \ldots,$ and $\nu = \nu_1, \nu_2, \ldots$ be three uniformly computable sequences of measures over infinite sequences. Each λ_n is non-atomic. There is a constant $c \in \mathbb{N}$, where for all $n \in \mathbb{N}$, $\lambda_n \left\{ \alpha : \overline{\mathbf{D}}_n(\alpha | \mu) > n - c \text{ and } \overline{\mathbf{D}}_n(\alpha | \nu) > n - c \right\} > 2^{-n-1}$.

1 Results

A sampling method A is a probabilistic function that maps an integer N with probability 1 to a set containing N different strings.

Lemma 1 Let P and Q be two probability measures on strings and let A be a sampling method. For all integers N, there exists a finite set $S \subset \{0,1\}^*$ such that $P(S) \leq 32/N$, $Q(S) \leq 32/N$, and with probability strictly more than 0.99: A(N) intersects S.

Proof. We show that some possibly infinite set S satisfies the conditions, and thus, some finite subset also satisfies the conditions due to the strict inequality. We use the probabilistic method: we select each string to be in S with probability 8/N and show that the three conditions are satisfied with positive probability. The expected value of P(S) and Q(S) is 8/N. By the Markov inequality, the probability that P(S) > 32/N is at most 1/4 and the probability that Q(S) > 32/N is at most 1/4. For any set D containing N strings, the probability that S is disjoint from S is

$$(1 - 8/N)^N < e^{-8}.$$

^{*}JP Theory Group. samepst@jptheorygroup.org

Let Q be the measure over N-element sets of strings generated by the sampling algorithm A(N). The left-hand side above is equal to the expected value of

$$Q({D:D \text{ is disjoint from } S}).$$

Again by the Markov inequality, with probability greater than 3/4, this measure is less than $4e^{-8} < 0.01$. By the union bound, the probability that at least one of the conditions is violated is less than 1/4 + 1/4 + 1/4. Thus, with positive probability a required set is generated, and thus such a set exists.

Let $P=P_1,P_2,...$ be a sequence of measures over strings. For example, one may choose $P_1=P_2...$ or choose P_n to be the uniform measure over n-bit strings. A conditional probability bounded P-test is a function $t:\{0,1\}^*\times\mathbb{N}\to\mathbb{R}_{\geq 0}$ such that for all $n\in\mathbb{N}$ and positive real number r, we have $P_n(\{x:t(x|n)\geq r\})\leq 1/r$. If $P_1,P_2,...$ is uniformly computable, then there exists a lower-semicomputable such P-test t that is "maximal" (i.e., for which $t'\leq O(t)$ for every other such test t'). We fix such a t, and let $\overline{\mathbf{d}}_n(x|P)=\log t(x|n)$.

Theorem 1 Let $P = P_1, P_2...$ and $Q = Q_1, Q_2...$ be a two uniformly computable sequence of measures on strings and let A be a sampling method. There exists $c \in \mathbb{N}$ such that for all n:

$$\Pr\left(\max_{a\in A(2^n)}\min\{\overline{\mathbf{d}}_n(a|P),\overline{\mathbf{d}}_n(a|Q)\}>n-c\right)\geq 0.99.$$

Proof. We now fix a search procedure that on input N finds a set S_N that satisfies the conditions of Lemma 1. Let t'(a|n) be the maximal value of $2^n/64$ such that $a \in S_{2^n}$. By construction, t' is a computable probability bounded test for both P and Q, because $P_n(\{x:t'(x|n)=2^\ell\}) \leq 2^{-\ell-1}$, and thus $P_n(t'(x|n) \geq 2^\ell) \leq 2^{-\ell-1} + 2^{-\ell-2} + \dots$ and similarly for Q. With probability 0.99, the set $A(2^n)$ intersects S_{2^n} . For any number a in the intersection, we have $t'(x|n) \geq 2^{n-6}$, thus by the optimality of t and definition of $\overline{\mathbf{d}}$, we have $\overline{\mathbf{d}}_n(a|P) > n - O(1)$ and $\overline{\mathbf{d}}_n(a|Q) > n - O(1)$.

An incomplete sampling method A takes in a natural number N and outputs, with probability f(N), a set of N numbers. Otherwise A outputs \bot . f is computable.

Corollary 1 Let $P = P_1, P_2...$ and $Q = Q_1, Q_2...$ be two uniformly computable sequences of measures on strings and let A be an incomplete sampling method. There exists $c \in \mathbb{N}$ such that for all n:

$$\Pr_{D=A(n)}\left(D\neq \perp \ and \ \max_{a\in D}\min\{\overline{\mathbf{d}}_n(a|P),\overline{\mathbf{d}}_n(a|Q)\} \leq n-c\right) < 0.01.$$

A continuous sampling method C is a probabilistic function that maps, with probability 1, an integer N to an infinite encoding of N different sequences.

Theorem 2 Let $\mu = \mu_1, \mu_2, \ldots$ and $\nu = \nu_1, \nu_2, \ldots$ be two uniformly computable sequences of measures over infinite sequences. Let C be a continuous sampling method. There exists $c \in \mathbb{N}$ where for all n:

$$\Pr\left(\max_{\alpha \in C(2^n)} \min\{\overline{\mathbf{D}}_n(\alpha|\mu), \overline{\mathbf{D}}_n(\alpha|\nu)\} > n - c\right) \ge 0.98.$$

Proof. For $D \subseteq \{0,1\}^{\infty}$, $D_m = \{\omega[0..m] : \omega \in D\}$. Let $g(n) = \arg\min_{m} \Pr_{D=C(n)}(|D_m| < n) < 0.01$ be the smallest number m such that the initial m-segment of C(n) are sets of n strings with probability > 0.99. g is computable, because C outputs a set of distinct infinite sequences with probability 1. For probability ψ over $\{0,1\}^{\infty}$, let $\psi^m(x) = [|x| = m]\psi(\{\omega : x \sqsubset \omega\})$. Let $\mu^g = \mu_1^{g(1)}, \mu_2^{g(2)}, \ldots$ and $\nu^g = \nu_1^{g(1)}, \nu_2^{g(2)}, \ldots$ be two uniformly computable sequences of discrete probability measures and let A be a discrete incomplete sampling method, where for random seed $\omega \in \{0,1\}^{\infty}$, $A(n,\omega) = C(n,\omega)_{g(n)}$ if $|C(n,\omega)_{g(n)}| = n$; otherwise $A(n,\omega) = \bot$. So $\Pr[A(n) = \bot] < 0.01$. There exists a constant $c \in \mathbb{N}$ such that,

$$\Pr\left(\max_{\alpha \in C(2^{n})} \min\{\overline{\mathbf{D}}_{n}(\alpha|\mu), \overline{\mathbf{D}}_{n}(\alpha|\nu)\} \leq n - c\right)$$

$$\leq \Pr_{Z=C(2^{n})} \left((|Z_{g(n)}| < 2^{n}) \text{ or } (|Z_{g(n)}| = 2^{n} \text{ and } \max_{\alpha \in Z} \min\{\overline{\mathbf{D}}_{n}(\alpha|\mu), \overline{\mathbf{D}}_{n}(\alpha|\nu)\} \leq n - c\right)$$

$$\leq \Pr_{D=A(2^{n})} \left(D = \bot \text{ or } (D \neq \bot \text{ and } \max_{x \in D} \min\{\overline{\mathbf{d}}_{n}(x|\mu^{g}), \overline{\mathbf{d}}_{n}(x|\nu^{g})\} \leq n - c\right)$$

$$< 0.01 + 0.01$$

$$< 0.02,$$

$$(1)$$

where Equation 1 is due to Corollary 1.

Theorem 3 Let $\lambda = \lambda_1, \lambda_2, \ldots, \mu = \mu_1, \mu_2, \ldots$, and $\nu = \nu_1, \nu_2, \ldots$ be three uniformly computable sequences of measures over infinite sequences. Each λ_n is non-atomic. There is a constant $c \in \mathbb{N}$, dependent on μ , ν and λ , where for all $n \in \mathbb{N}$, $\lambda_n \{\alpha : \overline{\mathbf{D}}_n(\alpha|\mu) > n - c \text{ and } \overline{\mathbf{D}}_n(\alpha|\nu) > n - c\} > 2^{-n-1}$.

Proof. We define the continuous sampling method C, where on input n, randomly samples n elements from λ_n . Let $d_n = \lambda_n\{\alpha : \min\{\overline{\mathbf{D}}_n(\alpha|\mu), \overline{\mathbf{D}}_n(\alpha|\nu)\} > n-c\}$, where c is the constant in Theorem 2. By that theorem,

$$\Pr\left(\max_{\alpha \in C(2^n)} \min\{\overline{\mathbf{D}}_n(\alpha|\mu), \overline{\mathbf{D}}_n(\alpha|\nu)\} > n - c\right) > 0.98$$

$$1 - (1 - d_n)^{2^n} > 0.98$$

$$1 - 2^n d_n < 0.02$$

$$d_n > (0.98)2^{-n}$$

$$\lambda_n\{\alpha : \min\{\overline{\mathbf{D}}_n(\alpha|\mu), \overline{\mathbf{D}}_n(\alpha|\nu)\} > n - c\} > 2^{-n-1}.$$

References

[Eps22] S. Epstein. The outlier theorem revisited. CoRR, abs/2203.08733, 2022.

[Eps23] S. Epstein. Randomness Deficiency Overlap (Extended Version), 2023. http://www.jptheorygroup.org/doc/DeficiencyOverlap.pdf.