北京航空航天大学数学科学学院实验报告

课程名称: 科学计算通识实验课 实验名称: 常微分方程的初值问题 实验类型: 演示性实验□ 验证性实验□ 综合性实验☑ 设计性实验□ 班级: 18377475 姓名: 陈博胆 学号: 18377475 实验日期: 2020.07.16 指导教师: 冯成亮 实验成绩:

实验环境: (所用仪器设备及软件)

Windows + Visual Studio 2019, Ubuntu 18.04.1 + g++

实验目的与实验内容

【目的要求】

通过本实验使学生进一步熟悉个人电脑上 C++代码的编写与调试,服务器上的代码编译与运行;了解常微分方程初值问题求解中的微分-积分算法设计基本思想,熟练掌握求解一维常微分方程的向前欧拉方法、向后欧拉方法和梯形方法,了解它们对步长 h的稳定性要求;了解对欧拉方法的精度改进过程,掌握休恩方法(二级迭代法)的求解过程;了解龙格库塔(R-K)方法的构造思路,掌握使用二级、三级和四级 R-K 方法求解常微分方程的能力。

【实验内容】

实验 1.1: (向前欧拉法求解常微分方程 1)

使用向前欧拉法(显式),分别用步长 h= 1,1/2,1/4,…, 1/64 求解常微分方程 $y' = \frac{t-y}{2}$, y(0) = 1 在区间[0,3]上的初值问题,并比较它们的绝对误差。

精确解 $\gamma(t) = 3e^{-t/2} - 2 + t_0$

实验 1.2: (向后欧拉法求解常微分方程 1) (可小组完成)

使用向后欧拉法 (隐式),分别用步长 h= 1,1/2,1/4,…,1/64 求解常微分方程 $y'=\frac{t-y}{2}$, $y^{(0)}=1$ 在区间[0,3]上的初值问题,并比较它们的绝对误差。

精确解 $y(t) = 3e^{-t/2} - 2 + t_o$

实验 1.3: (预估-修正法向后欧拉法求解常微分方程 1) (可小组完成)

使用预估-修正法(迭代欧拉法)(显式),分别用步长 h= 1,1/2,1/4, …, 1/64 求解 常微分方程 $y' = \frac{t-y}{2}$, y(0) = 1 在区间[0,3]上的初值问题,并比较它们的绝对误差。1e-6

精确解 $\gamma(t) = 3e^{-t/2} - 2 + t_0$

实验 2.1: (二级龙格库塔 (R-K) 法求解常微分方程 1)

使用二级龙格库塔(R-K)法(显式),分别用步长 h= 1,1/2,1/4,…,1/64 求解常微分方程 $y = \frac{t-y}{2}$,y(0) = 1 在区间[0,3]上的初值问题,并比较它们的绝对误差。

精确解 $y(t) = 3e^{-t/2} - 2 + t_o$

实验 2.2: (三级龙格库塔 (R-K) 法求解常微分方程 1)

使用三级龙格库塔(R-K)法(显式),分别用步长 h= 1,1/2,1/4,…, 1/64 求解常 微分方程 $\frac{y'=\frac{t-y}{2}}{2}$ 在区间[0,3]上的初值问题,并比较它们的绝对误差。

精确解
$$y(t) = 3e^{-t/2} - 2 + t_0$$

实验 2.3: (四级龙格库塔 (R-K) 法求解常微分方程 1)

使用四级龙格库塔(R-K)法(显式),分别用步长 h= 1,1/2,1/4, …, 1/64 求解常 微分方程 $y' = \frac{t-y}{2}$, y(0) = 1 在区间[0,3]上的初值问题,并比较它们的绝对误差。

精确解
$$y(t) = 3e^{-t/2} - 2 + t_0$$

实验 3.1: (四级龙格库塔 (R-K) 法求解常微分方程组 2) (小组完成) 使用四级龙格库塔 (R-K) 法 (显式), 用步长 h= 0.02 求解常微分方程组

$$\frac{dx}{dt} = x + 2y$$
 $\begin{cases} x(0) = 6 \\ y(0) = 4 \end{cases}$ 在区间[0.0,0.2]上的 $x(0) = 6$, $y(0) = 4$ 初值问题, 并比较它们的绝对误差。

0.004

$$x(t) = 4e^{4t} + 2e^{-t}$$

 $y(t) = 6e^{4t} - 2e^{-t}$

实验过程与结果:

实验 1.1: (向前欧拉法求解常微分方程 1)

[work1@ws1:~/ChenBodan/class7\$./1-11

向前欧拉法求解常微分方程1 步长h 步数M y(3)近似值yM y(3)-yM 0(h) 0.29439048 1.000 3 1.37500000 0.256 0.500 6 1.53393555 0.13545493 0.128 0.250 12 1.60425171 0.06513877 0.064 0.125 24 1.63742910 0.03196138 0.032 0.062 48 1.65355719 0.01583329 0.016 0.031 96 1.66151013 0.00788035 0.008

0.016 192 1.66545931 0.00393117

实验 1.2: (向后欧拉法求解常微分方程 1)

[work1@ws1:~/ChenBodan/class7\$./1-12 向后欧拉法求解常微分方程1 步 数 M y(3) 近 似 值 yM y(3)-yM 步长h 0(h) 3 1.88888889 0.21949841 6 1.78643200 0.11704152 12 1.72994642 0.06055594 24 1.70020745 0.03081697 1.000 0.256 0.500 6 0.128 0.250 0.064 0.125 0.032 1.68493775 0.062 48 0.01554727 0.016 0.031 96 1.67719933 0.00780885 0.016 192 1.67330378 0.00391329 0.008 0.004

实验 1.3: (预估-修正法向后欧拉法求解常微分方程 1)

预估修正法通过显示 Euler 法进行预估, 在通过隐式梯形法进行不动点的迭代修正, 误差明 显较向前向后 Euler 法减小。

[work1@ws1:~/ChenBodan/class7\$./1-3

预报校正格式(不动点迭代法)求解常微分方程1

步长h	步数M	y(3)近似值yM	y(3)-yM	0(h)
1.000	3	1.64799988	0.02139060	0.256
0.500	6	1.66413214	0.00525834	0.128
0.250	12	1.66808138	0.00130910	0.064
0.125	24	1.66906347	0.00032701	0.032
0.062	48	1.66897658	0.00041390	0.016
0.031	96	1.66928764	0.00010284	0.008
0.016	192	1.66930350	0.00008698	0.004

实验 2.1: (二级龙格库塔 (R-K) 法求解常微分方程 1)

利用改进后的 Euler 法 (二级二阶 R-K 方法) 计算不同步长下的常微分方程数值 解。

work1@ws1:~/ChenBodan/class7\$./2-1

二级龙格库达塔法求解常微分方程1

步长h	步数M	y(3)近似值yM	y(3)-yM	0(h)
1.000	3	1.73242188	6.30313946e-02	0.256
0.500	6	1.68212103	1.27305459e-02	0.128
0.250	12	1.67226878	2.87829577e-03	0.064
0.125	24	1.67007594	6.85459551e-04	0.032
0.062	48	1.66955780	1.67324464e-04	0.016
0.031	96	1.66943182	4.13394065e-05	0.008
0.016	192	1.66940075	1.02742022e-05	0.004

实验 2.2: (三级龙格库塔 (R-K) 法求解常微分方程 1)

利用改进后的 Kutta 法 (三级三阶 R-K 方法) 计算不同步长下的常微分方程数值 解。

[work1@ws1:~/ChenBodan/class7\$./2-2

三级龙格库达塔法求解常微分方程1 步长h 步数M y(3)近似值yM y(3)-yM O(h) 1.000 3 1.66159397 7.79651343e-03 0.256 1.000 3 1.66159397 7.79651343e-03 0.256 0.500 6 1.66859179 7.98691818e-04 0.128 0.250 12 1.66930016 0.125 24 1.66937974 0.062 48 1.66938917 0.031 96 1.66939032 9.03196012e-05 0.064 1.07382504e-05 0.032 1.30909814e-06 0.016 1.61603093e-07 0.008 0.016 192 1.66939046 2.00744816e-08 0.004

实验 2.3: (四级龙格库塔 (R-K) 法求解常微分方程 1)

work1@ws1:~/ChenBodan/class7\$./2-3

四级龙格库达塔法求解常微分方程组2

步长h 步数M y(3)近似值yM t=3处误差二范数 O(h) 0.020 10 11.71578065 4.10009271e-06 0.005

实验 3.1: (四级龙格库塔 (R-K) 法求解常微分方程组 2)

利用四级四阶龙格库塔法求解二元常微分方程组,并输出了右积分端点处(t=3)的近

似值,及二范数意义下的误差 $\sqrt{(x(3)-x_M)^2+(y(3)-y_M)^2}$.

[work1@ws1:~/ChenBodan/class7\$./2-4

四级龙格库达塔法求解常微分方程1

步长h	步数M	y(3)近似值yM	y(3)-yM	0(h)
1.000	3	1.67018599	7.95509358e-04	0.256
0.500	6	1.66943076	4.02813539e-05	0.128
0.250	12	1.66939275	2.26744173e-06	0.064
0.125	24	1.66939061	1.34507324e-07	0.032
0.062	48	1.66939049	8.19037105e-09	0.016
0.031	96	1.66939048	5.05272046e-10	0.008
0.016	192	1.66939048	3.13749027e-11	0.004

实验分析与总结:

本次实验中,我们学习了求解常微分方程初值问题的微分-积分算法设计基本思想 实现了求解一维常微分方程的单步方法——向前欧拉方法、向后欧拉方法和梯形方法。 随着步长 h 的减小,数值解的误差逐渐减小。向后欧拉方法精度高于向前欧拉法,预报 校正格式的精度高于向后欧拉法。

我们还实现了常用的二级二阶、三级三阶及四级四阶龙格库塔法,相同步长下精度比向前向后欧拉法更高,且 R-K 的级数越高精度也越高。对于二维常微分方程组,我们也同样可以使用 R-K 法进行数值计算,只是多一个维度而已。

注: 若填写内容较多, 可在背面继续填写。