Math 222 Problem Set 6

Lev Kruglyak

Due: March 12, 2025

Collaborators: $AJ \ LaMotta$

Problem 1. A torus has a generator. We prove this in a sequence of steps.

Problem 2. True or false. Provide a proof or example.

(a). There is a non-trivial homomorphism $SO_3 \to Sp_1$.

This is false. Since SO_3 is a simple (abstract) group, any non-trivial homomorphism would have to be injective and not surjective. But since Sp_1 is homeomorphic to S^3 , by removing a point not in the image of the homomorphism would give an embedding of SO_3 in \mathbb{R}^3 . However, SO_3 is homeomorphic to \mathbb{RP}^3 which is a closed 3-manifold and thus cannot be embedded in 3-dimensional Euclidean space.

(b). There is a non-trivial homomorphism $Sp_1 \to SO_3$.

Embed $\mathbb{R}^3 \subset \mathbb{H}$ by sending a basis $\{e_1, e_2, e_3\}$ for \mathbb{R}^3 to $\{i, j, k\}$ in \mathbb{H} . Then conjugation by a unit quaternion $q \in \operatorname{Sp}_1$ leaves this hyperplane invariant, since $\Re(qxq^{-1}) = \Re(x)$. Furthermore, conjugation by a unit norm quaternion is an isometry on \mathbb{H} , and so is an isometry on $\mathbb{R}^3 \subset \mathbb{H}$. We thus get a homomorphism

$$\begin{array}{ccc} \operatorname{Sp}_1 & \longrightarrow & \operatorname{SO}_3 \\ q & \longmapsto & (x \mapsto qxq^{-1}). \end{array}$$

- (c). There is a non-trivial homomorphism $SO_5 \to Sp_2$.
- (d). There is a non-trivial homomorphism $\mathrm{Sp}_2 \to \mathrm{SO}_5$.