3

9

10

11

12

13

14

15

16

17

19

20

22

23

25

26

28

29

31

An Updated Detection Pipeline for Precursor Emission in Type II Supernova 2020tlf

```
W. V. Jacobson-Galán ^{\bigcirc}, ^{1,2} L. Dessart ^{\bigcirc}, ^{3} D. O. Jones ^{\bigcirc}, ^{4} R. Margutti ^{\bigcirc}, ^{5} D. L. Coppejans ^{\bigcirc}, ^{6} G. Dimitriadis ^{\bigcirc}, ^{7} R. J. Foley ^{\bigcirc}, ^{8} C. D. Kilpatrick ^{\bigcirc}, ^{6} D. J. Matthews ^{\bigcirc}, ^{5} S. Rest ^{\bigcirc}, ^{9} G. Terreran ^{\bigcirc}, ^{10} P. D. Aleo ^{\bigcirc}, ^{11,12} K. Auchettl ^{\bigcirc}, ^{13,14,8,15}
   P. K. Blanchard , C. D. Kilpairick , D. J. Maithews , S. Kest , G. Terrera, G. D. Alebo , T. D. Alebo , K. Adchetil , P. K. Blanchard , C. D. Kilpairick , R. Adchetil , P. K. Blanchard , C. D. A. Coulter , S. K. W. Davis , S. K. J. L. de Boer , G. T. D. Alebo , T. D. Alebo , K. Adchetil , R. A. Coulter , R. Adchetil , R. Adchetil , R. A. Coulter , R. Adchetil 
                                                                                                                  O. Wang D. 9 AND Y. ZENATI D9
                                                  <sup>1</sup>Department of Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA
                                                                                                                                 <sup>2</sup>NASA Hubble Fellow
                                               <sup>3</sup>Institut d'Astrophysique de Paris, CNRS-Sorbonne Université, 98 bis boulevard Arago, F-75014 Paris, France
                                                                   <sup>4</sup>Institute for Astronomy, University of Hawai'i, 640 N. A'ohoku Pl., Hilo, HI 96720, USA
                                                            <sup>5</sup>Department of Astronomy and Astrophysics, University of California, Berkeley, CA 94720, USA
<sup>6</sup>Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), and Department of Physics and Astronomy, Northwestern University, Evanston,
                                                                                                                                         IL 60208, USA
                                                                       <sup>7</sup>School of Physics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
                                                          <sup>8</sup>Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA
                                                         <sup>9</sup>Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA
                                                                    <sup>10</sup>Las Cumbres Observatory, 6740 Cortona Dr, Suite 102, Goleta, CA 93117-5575, USA
                                                 <sup>11</sup>Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green St., IL 61801, USA
                                              <sup>12</sup>Center for Astrophysical Surveys, National Center for Supercomputing Applications, Urbana, IL, 61801, USA
                                                                                    <sup>13</sup>School of Physics, The University of Melbourne, VIC 3010, Australia
                                                                         <sup>14</sup>ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D)
                                                          <sup>15</sup>DARK, Niels Bohr Institute, University of Copenhagen, Jagtvej 128, 2200 Copenhagen, Denmark
                                                           <sup>16</sup>Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
              <sup>17</sup>David A. Dunlap Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario, M5S 3H4, Canada
                                        <sup>18</sup>Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907, USA
                                         <sup>19</sup>Graduate Institute of Astronomy, National Central University, 300 Zhongda Road, Zhongli, Taoyuan 32001, Taiwan
                                                                                               <sup>20</sup>Space Telescope Science Institute, Baltimore, MD 21218
                  <sup>21</sup>School of Physical and Chemical Sciences — Te Kura Matū, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
                                       <sup>22</sup>Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, UK
```

1. SUPPLEMENTARY FIGURES & DATA

Figure 1. Pre-explosion *griz*-band light curve of SN 2020tlf. Detections above 80% and 50% recovery levels shown as cyan and magenta stars, respectively. Calculated flux at the SN location that is below these recovery levels is shown as grey stars. Minimum fluxes for 80% and 50% injected source recovery shown as blue dotted and red dashed lines, respectively.

Figure 2. Pre-explosion *griz*-band light curve of SN 2020tlf where the flux has been stacked in 50 day bins. Detections above 80% and 50% recovery levels shown as cyan and magenta stars, respectively. Calculated flux at the SN location that is below these recovery levels is shown as grey stars. Minimum fluxes for 80% and 50% injected source recovery shown as blue dotted and red dashed lines, respectively.

Figure 3. Pre-explosion *griz*-band light curve of SN 2020tlf where the flux has been stacked in 100 day bins. Detections above 80% and 50% recovery levels shown as cyan and magenta stars, respectively. Calculated flux at the SN location that is below these recovery levels is shown as grey stars. Minimum fluxes for 80% and 50% injected source recovery shown as blue dotted and red dashed lines, respectively.

Figure 4. (a) Spectral energy distribution using *griz*-band limits and detections in 50 day pre-SN light curve bins. Best-fitting blackbody models shown as solid lines. Pre-explosion (a) bolometric luminosity, (b) blackbody radius, and (c) blackbody temperature as a function of phase. These parameters were derived from blackbody model fits to the 50 day binned SED.

Figure 5. Pan-STARRS *g*-band pre-explosion images of SN 2020tlf. Images with pre-SN emission detected at above 80 and 50% recovery levels labeled with cyan and magenta, respectively.

Figure 6. Pan-STARRS *r*-band pre-explosion images of SN 2020tlf. Images with pre-SN emission detected at above 80 and 50% recovery levels labeled with cyan and magenta, respectively.

Figure 7. Pan-STARRS *i*-band pre-explosion images of SN 2020tlf. Images with pre-SN emission detected at above 80 and 50% recovery levels labeled with cyan and magenta, respectively.

Figure 8. Pan-STARRS z-band pre-explosion images of SN 2020tlf. Images with pre-SN emission detected at above 80 and 50% recovery levels labeled with cyan and magenta, respectively.

 $\textbf{Table 1.} \ Pre\text{-SN PS1/YSE Photometry of SN } 2020tlf$

MJD	Phase ^a	Filter	Magnitude	Uncertainty	Recovery Efficiency
58866.7	-232.1	g	21.9	_	< 50%
58958.5	-140.2	g	22.0	_	< 50%
58982.5	-116.3	g	21.8	_	< 50%
58984.3	-114.4	g	22.2	_	< 50%
59017.3	-81.4	g	22.0	_	< 50%
59042.3	-56.4	g	22.3	_	< 50%
59051.3	-47.5	g	22.2	_	< 50%
59074.3	-24.5	g	21.8	_	< 50%
59081.2	-17.5	g	21.8	_	< 50%
58868.7	-230.1	r	21.8	_	< 50%
58929.5	-169.2	r	21.7	_	< 50%
58933.5	-165.2	r	21.8	_	< 50%
58974.4	-124.3	r	21.4	_	< 50%
58980.4	-118.4	r	21.8	0.3	> 50%
59003.4	-95.3	r	20.8	_	< 50%
59005.3	-93.4	r	21.2	_	< 50%
59009.4	-89.4	r	22.0	_	< 50%
59017.3	-81.4	r	22.1	_	< 50%
59033.3	-65.5	r	21.7	_	< 50%
59037.3	-61.5	r	22.2	_	< 50%
59040.3	-58.5	r	21.9	_	< 50%
59047.3	-51.5	r	21.2	_	< 50%
59053.3	-45.5	r	21.8	_	< 50%
59064.3	-34.4	r	21.3	_	< 50%
59066.3	-32.5	r	21.8	_	< 50%
59070.3	-28.4	r	21.6	_	< 50%
59081.2	-17.5	r	21.6	_	< 50%
59093.2	-5.5	r	21.3	_	< 50%
59095.2	-3.5	r	21.7	_	< 50%
59097.2	-1.5	r	21.4	0.2	> 80%

^aRelative to first light (MJD 59098.74)

 Table 2. Pre-SN PS1/YSE Photometry of SN 2020tlf (cont.)

MJD	Phase ^a	Filter	Magnitude	Uncertainty	Recovery Efficiency
				Uncertainty	
58877.6	-221.1	i	21.4	_	< 50%
58942.5	-156.3	i	20.8	_	< 50%
58971.4	-127.3	i	21.7	_	< 50%
58975.4	-123.3	i	21.6	_	< 50%
58980.4	-118.4	i	21.9	_	< 50%
58982.5	-116.3	i	21.4	0.3	> 50%
59014.4	-84.3	i	21.5	0.3	> 50%
59026.3	-72.4	i	21.1	0.2	> 80%
59037.3	-61.5	i	21.3	0.2	> 80%
59042.3	-56.4	i	21.3	0.2	> 80%
59051.3	-47.5	i	21.3	0.1	> 80%
59058.3	-40.4	i	21.5	_	< 50%
59066.3	-32.5	i	21.7	0.4	> 50%
59070.3	-28.5	i	21.1	_	< 50%
59074.3	-24.5	i	21.6	0.3	> 80%
59078.3	-20.5	i	21.8	_	< 50%
59095.2	-3.5	i	21.7	0.3	> 50%
58866.7	-232.1	z	21.6	_	< 50%
58883.7	-215.1	z	21.4	_	< 50%
58947.5	-151.2	z	21.1	_	< 50%
58969.4	-129.4	z	20.8	_	< 50%
58974.4	-124.3	z	20.7	0.3	> 50%
58984.3	-114.4	z	21.3	0.3	> 50%
59003.4	-95.3	z	20.4	_	< 50%
59009.4	-89.4	z	20.9	0.3	> 80%
59028.3	-70.5	z	21.6	_	< 50%
59033.3	-65.5	z	21.4	0.4	> 50%
59040.3	-58.5	z	21.1	0.3	> 80%
59064.3	-34.4	z	21.2	_	< 50%
59072.3	-26.5	z	21.3	0.4	> 50%
59093.2	-5.5	z	21.2	_	< 50%
59097.2	-1.5	z	20.7	0.2	> 80%

^aRelative to first light (MJD 59098.74)