DIGITAL LOGIC SYSTEMS: ASSIGNMENT 4

AAKASH JOG ID : 989323563 &

DUSTIN CHALCHINSKY

ID : 209741891 & PAUL MIERAU

ID: 932384233

Exercise 1.

Let p, q, r denote boolean formulas. Prove that if p is logically equivalent to q, and q is logically equivalent to r, then p is logically equivalent to r.

Solution 1.

p	q	r	$p \leftrightarrow q$	$q \leftrightarrow r$	$(p \leftrightarrow q) \land (q \leftrightarrow r)$	$p \leftrightarrow r$
0	0	0	1	1	1	1
0	0	$\mid 1 \mid$	1	0	0	0
0	1	0	0	0	1	1
0	1	1	0	1	0	0
1	0	0	0	1	0	0
1	0	$\mid 1 \mid$	0	0	1	1
1	1	0	1	0	0	0
1	1	1	1	1	1	1

Therefore, as the columns of $((p \leftrightarrow q) \land (q \leftrightarrow r))$ and $(p \leftrightarrow r)$ are identical, they are equivalent. Hence, if p is logically equivalent to q, and q is logically equivalent to r, then p is logically equivalent to r.

Exercise 2.

Let $L(\varphi)$ denote the number of vertices in the parse tree of φ that are not labelled by negation. Prove that $L\left(\mathrm{DM}(\varphi)\right) = L(\varphi)$, for every boolean formula φ that uses the logical connectives $\{$ NOT , OR , AND $\}$.

Solution 2.

In the De Morgan dual of φ , all vertices labeled by OR are changed to vertices labeled by AND, and vice-versa. Depending on φ , vertices labelled by NOT are be added or removed.

Therefore, the number of vertices labelled by AND in φ is equal to the number of vertices labelled by OR in $DM(\varphi)$. Similarly for OR in φ and AND in $DM(\varphi)$.

Date: Tuesday 21st April, 2015.

The number of vertices labelled by variables is unchanged in φ and $\mathrm{DM}(\varphi)$.

Therefore, the total number of vertices not labelled by negation, i.e. labelled only be variables, AND, and OR is the same in the parse trees of φ and DM(φ). Therefore, $L\left(\mathrm{DM}(\varphi)\right) = L(\varphi)$.

Exercise 4.

Add the following two reduction rules to Algorithm $DM(\varphi)$ so that you can also deal with the XOR and NXOR connectives:

- (1) If $\varphi = (\varphi_1 \text{ XOR } \varphi_2)$, then return $(DM(\varphi_1) \text{ NXOR } DM(\varphi_2))$.
- (2) If $\varphi = (\varphi_1 \text{ NXOR } \varphi_2)$, then return $(DM(\varphi_1) \text{ XOR } DM(\varphi_2))$.

Prove that, even after this modification, $DM(\varphi) \leftrightarrow \neg \varphi$ is a tautology.

Solution 4.

$$x \text{ XOR } y = (x \lor y) \land (x \land (\neg y))$$

 $x \text{ NXOR } y = \neg((x \lor y) \land (x \land (\neg y)))$

Therefore, if

$$\varphi \equiv \varphi_1 \text{ XOR } \varphi_2$$

$$\therefore \varphi \equiv (\varphi_1 \vee \varphi_2) \wedge (\varphi_1 \wedge \neg \varphi_2)$$

$$\therefore DM(\varphi) \equiv DM((\varphi_1 \vee \varphi_2) \wedge (\varphi_1 \wedge \neg \varphi_2))$$

$$\equiv (\neg \varphi_1 \wedge \neg \varphi_2) \vee (\neg \varphi_1 \vee \varphi_2)$$

$$\equiv \neg(\varphi_1 \vee \varphi_2) \vee \neg(\varphi_1 \wedge \neg \varphi_2)$$

$$\equiv \neg((\varphi_1 \vee \varphi_2) \wedge (\varphi_1 \wedge \neg \varphi_2))$$

$$\equiv \neg(\varphi_1 \text{ XOR } \varphi_2)$$

$$\equiv \neg(\varphi)$$

Therefore, as $DM(\varphi) \equiv \neg \varphi$, $DM(\varphi) \leftrightarrow \neg \varphi$ is a tautology.

Similarly, if

$$\varphi \equiv \varphi_1 \text{ NXOR } \varphi_2$$

$$\therefore \varphi \equiv \neg((\varphi_1 \lor \varphi_2) \land (\varphi_1 \land \neg \varphi_2))$$

$$\therefore DM(\varphi) \equiv DM(\neg((\varphi_1 \lor \varphi_2) \land (\varphi_1 \land \neg \varphi_2)))$$

$$\equiv DM(\neg(\varphi_1 \lor \varphi_2) \lor \neg(\varphi_1 \land \neg \varphi_2))$$

$$\equiv DM((\neg \varphi_1 \land \neg \varphi_2) \lor (\neg \varphi_1 \lor \varphi_2))$$

$$\equiv (\varphi_1 \lor \varphi_2) \land (\varphi_1 \land \neg \varphi_2)$$

$$\equiv \varphi_1 \text{ XOR } \varphi_2$$

$$\equiv \neg(\varphi_1 \text{ NXOR } \varphi_2)$$

$$\equiv \neg(\varphi)$$

Therefore, as $DM(\varphi) \equiv \neg \varphi$, $DM(\varphi) \leftrightarrow \neg \varphi$ is a tautology.

Exercise 5.

Let φ_k denote the boolean formula in which the variable X is negated k times. Run algorithm $\text{NNF}(\varphi_k)$. What is the outcome? Prove your result. Hint: distinguish between an even k and an odd k.

Solution 5.

$$\varphi_{k} = \underbrace{\neg(\neg(\dots(\neg X)))}_{k \text{ times}}$$

$$\therefore \text{NNF}(\varphi_{k}) = \text{DM}(\text{NNF}(\underbrace{\neg(\neg(\dots(\neg X)))}_{k-1 \text{ times}}))$$

$$= \underbrace{\text{DM}(\text{DM}(\dots(\text{DM}(\text{NNF}(X)))))}_{k-1 \text{ times}}$$

$$= \underbrace{\text{DM}(\text{DM}(\dots(\text{DM}(\neg X))))}_{k-1 \text{ times}}$$

Case 1 (k is odd). If k is odd, k-1 must be even.

Therefore, as $DM(DM(\varphi))$ is logically equivalent to φ , the $\frac{k-1}{2}$ pairs of DM will be cancelled out. Hence, $NNF(\varphi_k)$ is logically equivalent to $\neg k$.

Therefore,

$$NNF(\varphi_k) \equiv \neg k$$

Case 2 (k is even). If k is odd, k-1 must be odd.

Therefore, as $DM(DM(\varphi))$ is logically equivalent to φ , the $\frac{k-2}{2}$ pairs of DM will be cancelled out. Hence, $NNF(\varphi_k)$ is logically equivalent to $DM(\neg k)$.

Therefore,

$$NNF(\varphi_k) \equiv k$$