Tema 1 Resumen: Inferencia en poblaciones normales

Curso 2017-18

1 Distribución normal

1.1 Caso unidimensional: $X \sim N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}, \quad -\infty < x < \infty$$

1.2 Caso multidimensional: $\underline{X} \sim N_p(\underline{\mu}, \Sigma)$

$$f(\underline{x}) = f(x_1, ..., x_p) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\underline{x} - \underline{\mu})'\mathbf{\Sigma}^{-1}(\underline{x} - \underline{\mu})\right\}, \quad -\infty < x_i < \infty, i = 1, ..., p$$

Distribución ji-cuadrado - Distribución Wishart

Distribución ji-cuadrado

Sea $X_1, ..., X_n$ una m.a. de $N(0, \sigma^2)$.

$$\sum_{i=1}^{n} \frac{X_i^2}{\sigma^2} \sim \chi_n^2$$

$$\sum_{i=1}^{n} \frac{X_i^2}{\sigma^2} \sim \chi_n^2$$

$$\sum_{i=1}^{n} X_i^2 \sim \sigma^2 \chi_n^2$$

Distribución Wishart: W ~ $W_p(n, \Sigma)$

Sea $\underline{X}_1, \ldots, \underline{X}_n$ una m.a. de $N_p(\mathbf{0}, \mathbf{\Sigma})$ y sea $\mathbf{X} = [\underline{X}_1 \ldots \underline{X}_n]'$.

La matriz aleatoria $\mathbf{W} = \mathbf{X}'\mathbf{X} = \sum_{i=1}^{n} \underline{X}_{i}\underline{X}'_{i}$ se dice que se distribuye según una **distribución de** Wishart no singular p-dimensional con n grados de libertad y matriz de escala Σ .

$$\sum_{i=1}^{n} \underline{X_i} \underline{X_i'} \sim W_p(n, \mathbf{\Sigma})$$

3 Distribución t-student - distribución T^2 de Hotelling

3.1 Distribución t-student

Dadas $Z \sim N(0,1)$ y $V \sim \chi_n^2$, independientes

$$T = \frac{Z}{\sqrt{V/n}} \sim t_n$$
 equivalentemente $T^2 = n \frac{Z^2}{V} \sim F_{1,n}$

3.2 Distribución T^2 de Hotelling: $T^2 \sim T_{p,n}^2$.

Sean $\underline{d} \sim N_p(\underline{\mathbf{0}}, \mathbf{I}_p)$ y $\mathbf{W} \sim W_p(n, \mathbf{I}_p)$ independientes.

Se denomina distribución T^2 de Hotelling a la distribución del estadístico

$$T^2 = n\underline{d}^t \mathbf{W}^{-1}\underline{d},$$

Nota. $T_{p,n}^2$ es una distribución unidimensional.

Lema. Sea $\underline{X} \sim N_p(\underline{\mu}, \Sigma)$ y $\mathbf{W} \sim W_p(n, \Sigma)$ independientes.

Entonces

$$T^2 = n(\underline{X} - \underline{\mu})' \mathbf{W}^{-1} (\underline{X} - \underline{\mu}) \sim T_{p,n}^2$$

Lema. Sea $T^2 \sim T_{p,n}^2$. Se verifica

$$\frac{n-p+1}{np}T^2 \sim \mathcal{F}_{p,n-p+1}$$

o equivalentemente

$$T^2 \sim \frac{np}{n-p+1} \mathcal{F}_{p,n-p+1}.$$

4 Estimación de parámetros

Sea $\underline{X}_1, \underline{X}_2, ..., \underline{X}_n$ una muestra aleatoria de una población $N_p(\underline{\mu}, \Sigma)$.

- Vector media muestral: $\underline{\overline{X}} = \frac{1}{n} \sum_{i=1}^{n} \underline{X}_{i}$
- Matriz suma de cuadrados y productos cruzados (s.c.p.c.)

$$\mathbf{S} = \sum_{i=1}^{n} \left(\underline{X}_i - \overline{\underline{X}} \right) \left(\underline{X}_i - \overline{\underline{X}} \right)^t$$

• Matriz de varianzas y covarianzas muestrales

$$\widehat{\Sigma} = \frac{1}{n-1} \mathbf{S}$$

Teorema

- 1. $\underline{\overline{X}} \sim N_p(\underline{\mu}, \frac{1}{n}\Sigma)$.
 - (a) $\overline{\underline{X}}$ es un estimador insesgado de $\underline{\mu}$..
- 2. $(n-1)\widehat{\Sigma} = \mathbf{S} \sim W_p(n-1, \Sigma)$
 - (a) $\widehat{\Sigma}$ es un estimador insesgado de Σ .
- 3. $\overline{\underline{X}}$ y $\widehat{\Sigma}$ son independientes.
- 4. $\overline{\underline{X}}$ y $\widetilde{\Sigma} = \frac{1}{n} \mathbf{S}$ son los estimadores de máxima verosimilitud de $\underline{\mu}$ y Σ .

5 Contraste de hipótesis sobre el vector de medias de una población.

5.1 Caso univariante

Sea $X_1, ..., X_n$ una m.a de una $N(\mu, \sigma^2)$, con σ desconocida.

 \bullet Estadístico del TRV para contrastar $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$

$$\frac{\overline{X} - \mu_0}{S_c} \sqrt{n}$$
 obien $n \left(\frac{\overline{X} - \mu_0}{S_c} \right)^2$

• Distribución del estadístico bajo H_0

$$\frac{\overline{X} - \mu_0}{S_c} \sqrt{n} \stackrel{H_0}{\sim} t_{n-1}$$
 obien $n \left(\frac{\overline{X} - \mu_0}{S_c} \right)^2 \stackrel{H_0}{\sim} \mathcal{F}_{1,n-1}$

ullet Región crítica para un test de tamaño α

$$\left| \frac{\overline{X} - \mu_0}{S_c} \right| \sqrt{n} \ge t_{n-1} \frac{1-\alpha}{2}$$
 obien $n \left(\frac{\overline{X} - \mu_0}{S_c} \right)^2 \ge \mathcal{F}_{1,n-1,1-\alpha}$

5.2 Caso multivariante

Sea $\underline{X}_1,...,\underline{X}_n$ una m.a de una población $N_p\left(\mu,\Sigma\right)$, con Σ desconocida

• Estadístico TRV para contrastar las hipótesis $H_0: \underline{\mu} = \underline{\mu}_0$ vs. $H_1: \underline{\mu} \neq \underline{\mu}_0$

$$n\left(\overline{\underline{X}} - \underline{\mu}_0\right)'\widehat{\mathbf{\Sigma}}^{-1}\left(\overline{\underline{X}} - \underline{\mu}_0\right) = n(n-1)\left[\overline{\underline{X}} - \underline{\mu}_0\right]^t\mathbf{S}^{-1}\left[\overline{\underline{X}} - \underline{\mu}_0\right]$$

• Distribución del estadístico bajo H_0

$$n\left[\overline{\underline{X}} - \underline{\mu}_0\right]^t \widehat{\mathbf{\Sigma}}^{-1} \left[\overline{\underline{X}} - \underline{\mu}_0\right] \stackrel{H_0}{\sim} T_{p,n-1}^2$$

O

$$\frac{n-p}{p} n \left[\underline{\overline{X}} - \underline{\mu}_0 \right]^t \mathbf{S}^{-1} \left[\underline{\overline{X}} - \underline{\mu}_0 \right] \stackrel{H_0}{\sim} \mathcal{F}_{p,n-p}$$

ullet Región crítica para un test de tamaño α

$$\frac{n-p}{p} n \left[\underline{\overline{X}} - \underline{\mu}_0 \right]^t \mathbf{S}^{-1} \left[\underline{\overline{X}} - \underline{\mu}_0 \right] \ge \mathcal{F}_{p,n-p,1-\alpha}$$

 \bullet Región de confianza al nivel $(1-\alpha)$ para el vector de medias $\underline{\mu}$

$$\left\{ \underline{\mu} / \frac{n-p}{p} \ n \ \left[\underline{\overline{X}} - \underline{\mu} \right]^t \mathbf{S}^{-1} \left[\underline{\overline{X}} - \underline{\mu} \right] \le \mathcal{F}_{p,n-p,1-\alpha} \right\}$$

5.3 Contraste y regiones de confianza para transformaciones lineales

Proposición.

Sea $\underline{X}_1, \underline{X}_2, ..., \underline{X}_n$ una muestra aleatoria de $\underline{X} \sim N_p[\underline{\mu}, \Sigma]$.

Sea **A** una matriz $m \times p \pmod{m}$, de rango m, y \underline{d} un vector m-dimensional .

El estadístico del test de razón de verosimilitudes para el contraste:

$$H_0: \mathbf{A}\underline{\mu} = \underline{d} \quad vs. \quad H_1: \mathbf{A}\underline{\mu} \neq \underline{d}$$

viene dado por:

$$T^2 = (n-1)n \left[\mathbf{A} \overline{\underline{X}} - \underline{d} \right]^t \left[\mathbf{A} \mathbf{S} \mathbf{A}^t \right]^{-1} \left[\mathbf{A} \overline{\underline{X}} - \underline{d} \right]$$

У

$$T^2 \stackrel{H_0}{\sim} T_{m,n-1}^2$$
.

5.3.1 Diseño para medidas repetidas

- ullet Consideremos n elementos de una población, sobre los que se realizan p medidas de una misma magnitud en p situaciones experimentales distintas.
- Puede considerarse la siguiente modelización:
 - $-\underline{X}=\left(X_{1},...,X_{p}\right)'$ medidas de la misma magnitud en p situaciones experimentales distintas.
 - $-\underline{X} \sim N_p(\underline{\mu}, \Sigma) \text{ donde } \underline{\mu} = [\mu_1, ..., \mu_p]'.$
 - $-\underline{X}_1,...,\underline{X}_n$ m.a. de \underline{X}
- Hipótesis básica : igualdad de medias de la magnitud en todas las situaciones experimentales

$$H_0: \mu_1 = ... = \mu_p$$

- Equivalentemente

$$H_0: \mu_1 - \mu_p = \dots = \mu_{p-1} - \mu_p = 0 \Leftrightarrow H_0: \mathbf{C}\underline{\mu} = \mathbf{0}$$

siendo

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & \dots & 0 & -1 \\ 0 & 1 & \dots & 0 & -1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -1 \end{bmatrix}_{(p-1) \times p}$$

• Solución del problema

- Transformar los datos $\underline{Y}_1 = \mathbf{C}\underline{X}_1, ..., \underline{Y}_n = \mathbf{C}\underline{X}_n$
- Realizar el contraste

$$H_0: \mu_Y = \mathbf{0}$$

5.3.2 Test para la simetría

- \bullet Consideremos n individuos de una población, sobre los que se consideran p magnitudes o características en una situación A y las mismas magnitudes en otra situación B.
- Puede considerarse la siguiente modelización:
 - $-\underline{X}=(X_1,...,X_{2p})'$, de forma que $X_1,...,X_p$ medidas de p magnitudes en la situación A y $X_{p+1},...,X_{2p}$ medidas de las mismas magnitiudes en la situación B.
 - * X_i y X_{i+p} , i = 1, ..., p corresponden a la misma magnitud en situaciones A y B.
 - $-\underline{X} \sim N_{2p}[\mu, \Sigma]$ donde

$$\underline{\mu} = \left[\underbrace{\mu_1, ..., \mu_p}_{A}, \underbrace{\mu_{p+1}, ..., \mu_{2p}}_{B} \right]'.$$

- $-\underline{X}_1,...,\underline{X}_n$ m.a. de \underline{X}
- La hipótesis de interés es

$$H_0: \mu_i = \mu_{i+p} \ i = 1, ..., p$$

• Equivelentemente

$$H_0: \mathbf{A}\underline{\mu} = \mathbf{0}$$

donde $\mathbf{A} = [\mathbf{I}_p - \mathbf{I}_p].$

- Solución del problema
 - Transformar los datos $\underline{Y}_1 = \mathbf{A}\underline{X}_1, ..., \underline{Y}_n = \mathbf{A}\underline{X}_n$
 - Realizar el contraste

$$H_0: \mu_{\underline{Y}} = \mathbf{0}$$

6 Contraste de hipótesis sobre la igualdad de medias de dos poblaciones

6.1 Caso unidimesional

- Muestras independientes: $X_1, ..., X_n$ de $N(\mu_1, \sigma_1^2)$ y $Y_1, ..., Y_m$ de $N(\mu_2, \sigma_2^2)$
- Hipótesis básica

$$H_0: \mu_1 = \mu_2$$

$$H_1: \mu_1 \neq \mu_2$$

— Estadístico (supuesto $\sigma_1^2 = \sigma_2^2$) y distribución bajo H_0

$$T = \frac{\overline{X} - \overline{Y}}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \stackrel{H_0}{\sim} t_{n+m-2}$$

con

$$S_p^2 = \frac{(n-1)S_{c1}^2 + (m-1)S_{c2}^2}{n+m-2}$$

— Región crítica a un nivel α

$$|T| \ge t_{n+m-2,1-\alpha/2}$$

6.2 Caso multidimensional

• Dos muestras independientes procedentes de dos poblaciones normales p-variantes con la misma matriz de varianzas y covarianzas

$$\underline{X}_1, \underline{X}_2, ..., \underline{X}_{n_1} \text{ i.i.d. } N_p\left(\underline{\mu}_1, \Sigma\right)$$
 $\underline{Z}_1, \underline{Z}_2, ..., \underline{Z}_{n_2} \text{ i.i.d. } N_p\left(\underline{\mu}_2, \Sigma\right)$

- El problema fundamental a abordar es el contraste $H_0: \underline{\mu}_1 = \underline{\mu}_2$.
- Resultados previos y notación

$$- \underline{\overline{X}} \sim N_{p}[\underline{\mu}_{1}, \frac{1}{n_{1}}\Sigma],$$

$$- \underline{\overline{Z}} \sim N_{p}[\underline{\mu}_{1}, \frac{1}{n_{2}}\Sigma]$$

$$- \mathbf{S}_{1} = (n_{1} - 1) \widehat{\Sigma}_{1}^{-1} = \sum_{j=1}^{n_{1}} (\underline{X}_{j} - \underline{\overline{X}}) (\underline{X}_{j} - \underline{\overline{X}})^{t} \sim W_{p}(n_{1} - 1, \Sigma)$$

$$- \mathbf{S}_{2} = (n_{2} - 1) \widehat{\Sigma}_{2}^{-1} = \sum_{j=1}^{n_{2}} (\underline{Z}_{j} - \underline{\overline{Z}}) (\underline{Z}_{j} - \underline{\overline{Z}})^{t} \sim W_{p}(n_{2} - 1, \Sigma)$$

$$- \operatorname{Sea}$$

$$\mathbf{S}_{p} = \mathbf{S}_{1} + \mathbf{S}_{2}$$

- La matriz

$$\widehat{\mathbf{\Sigma}} = \frac{1}{n_1 + n_2 - 2} \, \mathbf{S}_p$$

es un estimador insesgado de Σ .

Teorema

1.
$$\overline{\underline{X}} - \overline{\underline{Z}} \sim N_p \left(\underline{\mu}_1 - \underline{\mu}_2, \left(\frac{1}{n_1} + \frac{1}{n_2} \right) \Sigma \right)$$

2.
$$\mathbf{S}_1 + \mathbf{S}_2 \sim W_p(n_1 + n_2 - 2, \Sigma)$$

3. $\overline{X} - \overline{Z}$ es independiente de $S_1 + S_2$

4.
$$\frac{n_1 n_2 (n_1 + n_2 - 2)}{n_1 + n_2} \left(\overline{\underline{X}} - \overline{\underline{Z}} - \left(\underline{\mu}_1 - \underline{\mu}_2 \right) \right)^t \mathbf{S}_p^{-1} \left(\overline{\underline{X}} - \overline{\underline{Z}} - \left(\underline{\mu}_1 - \underline{\mu}_2 \right) \right)^t \sim T_{p, n_1 + n_2 - 2}^2$$

Teorema En las condiciones anteriores,

1. El estadístico del TRV para el contraste:

$$H_0: \underline{\mu}_1 = \underline{\mu}_2 \quad vs. \quad H_1: \underline{\mu}_1 \neq \underline{\mu}_2$$

viene dado por

$$T^{2} = \frac{n_{1}n_{2}(n_{1} + n_{2} - 2)}{n_{1} + n_{2}} \left[\underline{X} - \underline{Z} \right]^{t} \mathbf{S}_{p}^{-1} \left[\underline{X} - \underline{Z} \right]$$

2. Distribución bajo H_0

$$T^2 \stackrel{H_0}{\sim} T^2_{p,n_1+n_2-2}.$$

o equivalentemente

$$F = \frac{(n_1 + n_2 - p - 1)}{p} \frac{n_1 n_2}{n_1 + n_2} \left[\underline{\overline{X}} - \underline{\overline{Z}} \right]^t \mathbf{S}_p^{-1} \left[\underline{\overline{X}} - \underline{\overline{Z}} \right] \stackrel{H_0}{\sim} \mathcal{F}_{p,(n_1 + n_2 - p - 1)},$$

3. Región crítica para un test de tamaño α

$$F \geq \mathcal{F}_{p,(n_1+n_2-p-1),1-\alpha}.$$

6.3 Contraste para transformaciones lineales

Proposición. Sean dos muestras independientes:

$$\underline{X}_1, \underline{X}_2, ..., \underline{X}_{n_1} \sim N_p[\underline{\mu}_1, \Sigma] ; \underline{Z}_1, \underline{Z}_2, ..., \underline{Z}_{n_2} \sim N_p[\underline{\mu}_2, \Sigma]$$

y sea **A** una matriz de dimensiones $m \times p (m \le p)$, de rango m.

El estadístico del test de razón de verosimilitudes para el contraste:

$$H_0: \mathbf{A}\underline{\mu}_1 = \mathbf{A}\underline{\mu}_2 \quad vs. \quad H_1: \mathbf{A}\underline{\mu}_1 \neq \mathbf{A}\underline{\mu}_2$$

viene dado por:

$$F = \frac{(n_1 + n_2 - m - 1)}{m(n_1 + n_2 - 2)} \frac{n_1 n_2}{n_1 + n_2} \left[\mathbf{A} (\overline{\underline{X}} - \overline{\underline{Z}}) \right]^t (\mathbf{A} \mathbf{S}_p \mathbf{A}^t)^{-1} \left[\mathbf{A} (\overline{\underline{X}} - \overline{\underline{Z}}) \right]$$

У

$$F \stackrel{H_0}{\sim} \mathcal{F}_{m,(n_1+n_2-m-1)}$$

6.3.1 Análisis de perfiles de dos poblaciones.

Consideremos una batería de p magnitudes medidas sobre muestras de tamaño n_1 y n_2 , obtenidas de dos poblaciones con vectores medias $\mu_1 = (\mu_{11},, \mu_{1p})^t$ y $\mu_2 = (\mu_{21},, \mu_{2p})^t$, respectivamente.

El gráfico obtenido por la unión de los puntos $(1, \mu_{11}), (2, \mu_{12}),, (p, \mu_{1p})$ se denomina perfil de la primera población.

Análogamente, la unión de los puntos $(1, \mu_{21}), (2, \mu_{22}),, (p, \mu_{2p})$ constituye el perfil de la segunda población.

- Cuestiones de interés sobre los perfiles
 - ¿Son paralelos?
 - − ¿Tienen idéntico perfil medio?

• Paralelismo de perfiles

La hipótesis de paralelismo se puede expresar como

$$H_0: \mu_{1k} - \mu_{1(k-1)} = \mu_{2k} - \mu_{2(k-1)} \quad \forall k = 2, ..., p$$

o equivalentemente

$$H_0: \mathbf{A}\underline{\mu}_1 = \mathbf{A}\underline{\mu}_2$$

donde

$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -1 & 1 \end{bmatrix} \in \mathcal{M}_{(p-1)\times p}$$

• Mismo perfil medio

La hipótesis se puede expresar como

$$H_0: rac{1}{p} \sum_{i=1}^p \mu_{1i} = rac{1}{p} \sum_{i=1}^p \mu_{2i} \Leftrightarrow H_0: 1_p \underline{\mu}_1 = 1_p \underline{\mu}_2$$

donde

$$1_p = [1 \dots 1] \in \mathcal{M}_{1 \times p}$$