Sprawozdanie z projektu nr 2

Mateusz Lisowski

Wstęp

Treścią projektu było zapoznanie się oraz zaimplementowanie 3 różnych metod rozwiązywania macierzy: Jacobiego, Gaussa–Seidla, i faktoryzacji LU. Dodatkowo należało sprawdzić działanie każdej metody w różnych warunkach i określić, kiedy pewne z nich mogą sprawdzić się lepiej niż inne.

Rozwiązywane równanie macierzowe w postacie $\mathbf{A}\mathbf{x} = \mathbf{b}$ składa się z: \mathbf{A} to tzw. macierz pasmowa o rozmiarze 963. Zawiera ona pięć diagonali - główna z elementami a1 = 8, dwie sąsiednie z elementami a2 = -1 i dwie skrajne diagonale z elementami a3 = -1. \mathbf{X} to wektor zawierający rozwiązania, a prawa strona równania (\mathbf{b}) została wygenerowana na podstawie funkcji sinusoidalnej.

Porównanie metod Jacobiego i Gaussa-Seidla

Wyniki poszczególnych algorytmów:

- Jacobi: **4.33** s- Gauss-Seidel: **3.09s**

Na podstawie wykresu oraz wyników czasowych dwóch algorytmów można zauważyć, iż norma residuum w kolejnych iteracjach w kolejnych iteracjach zmniejsza się i dąży do ustalonego przez nasz limitu 10e-9. Widać również, że metoda Gaussa-Seidela szybciej zbiega do limitu niż metoda Jacobiego.

Zbieżność metod metod Jacobiego i Gaussa-Seidla

Na powyższym wykresie da się zauważyć, że dla podanych a1 = 3, a2 = a3 = −1, zarówno metoda Jacobiego i Gaussa–Seidla na początku zbiega się do rozwiązania, ale niedługo potem dąży do nieskończoności, przy czym pierwsza rozbiega się wolniej niż druga. Powyższe niepoprawne działanie metod wynika z niedoskonałości metod iteracyjnych, które dla pewnych macierzy nie działają poprawnie.

Metoda faktoryzacji LU

Inną metodą rozwiązywania macierzowych układów równań, jest tzw. metoda faktoryzacji LU. Metoda faktoryzacji LU (Lower-Upper) jest jedną z technik rozwiązywania układów równań liniowych, w której macierz współczynników *A* jest faktoryzowana na iloczyn dwóch macierzy: macierzy trójkątnej dolnej (Lower) L i macierzy trójkątnej górnej (Upper) U.

Norma residuum dla równania podanego w poprzednim podpunkcie wynosi: **2.2860925311621933e-13**

Można więc zauważyć, że metoda faktoryzacji LU poradziła sobie z rozwiązaniem równania, które nie było dostępne dla metod iteracyjnych, dodatkowo osiągając dużo wyższą dokładność.

Porównanie czasu wykonania metod dla różnych wielkości macierzy

Na powyższym wykresie można zaobserwować wzrost czasu potrzebnego na obliczenie danego równania macierzowego w zależności od wielkości macierzy A. Widać na nim, że metody iteracyjne wraz ze wzrostem wielkości macierzy nie potrzebują dużo więcej czasu na obliczenia $(O(n^2))$, natomiast czas zużywany przez metodę faktoryzacji LU rośnie dużo szybciej $(O(n^3))$.

Podsumowanie

Podsumowując, powyższe badania pozwoliły zrozumieć skuteczność różnych metod rozwiązywania układów równań liniowych oraz ich zależność od rozmiaru macierzy i struktury problemu. Metody iteracyjne mogą być szybkie dla odpowiednio dobranych macierzy, ale metoda faktoryzacji LU zapewnia dokładne rozwiązania, choć może być bardziej kosztowna obliczeniowo. Ważne jest, aby wybierać odpowiednią metodę z uwzględnieniem specyfiki problemu oraz dostępnych zasobów obliczeniowych.