Ejercicio 1 - BASICO

April 17, 2025

0.1 EJERCICIO 1 - BASICO

El fichero datos_pago_microcreditos.csv contiene 30000 transacciones bancarias relativas al pago o impago de microcreditos. El dataset consta de 62 dimensiones propietarias de las cuales el banco no ha proporcionado informacion por confidencialidad, a parte de su valor. La matriz de entrada se encuentra en x_train, e y_train contiene la etiqueta relativa a esa transaccion, un 1 indica que si se pago el microcredito y un 0 que no se pago.

Considera que el tamaño del dataset es lo suficientemente grande como para, dependiendo de los recursos de la maquina, poder tardar varios minutos en entrenar modelos complejos.

Ejecuta el codigo inicial para estandarizar los dartos y contesta las preguntas.

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier #Knn and tree (Preguntas 1-2)
from sklearn.metrics import classification_report, accuracy_score,
precision_score, recall_score, f1_score
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

from sklearn.model_selection import GridSearchCV #(Pregunta 3)

from sklearn.neural_network import MLPClassifier #(Pregunta 5)

from sklearn.ensemble import GradientBoostingClassifier #(Pregunta 6)
import matplotlib.pyplot as plt
```

```
[2]: data_file='../data/datos_pago_microcreditos.csv'

pdl=pd.read_csv(data_file)
```

```
[3]: print(pdl.head())
```

```
payment var1 var2 var3 var4 var5 var6 var7 var8 var9 ... var21 \ 0 Success qw hk 3.11 16.06 -4.60 22.34 13.53 1.53 nv ... 8.94
```

```
31.02
1
   Denied
                 rv 3.35 11.18 -18.55
                                          6.68 12.78 6.62
            qw
                                                             nv
2
  Denied
                     4.15
                           29.19 18.91
                                        16.40
                                                 3.67
                                                      5.72
                                                                    23.26
            qw
                 zg
                                                              ch
3 Success
                     6.23
                          15.70
                                   2.81
                                          4.46
                                                 5.13 8.66
                                                             ja
                                                                    29.25
                 js
            wv
4 Success
                 xn
                    1.28 20.71 14.98 11.19 17.66 1.13
                                                             nv ...
                                                                     2.19
            \mathtt{ma}
  var22 var23
                var24 var25
                             var26 var27 var28
                                                 var29
                                                        var30
                12.06
0 - 12.76
            ub
                        2.46
                               4.73
                                     -1.72
                                            0.91
                                                          8.00
1 34.76
                 1.44
                        9.44 13.56
                                    -2.24
                                           0.24
            cz
                                                     ev
                                                        -2.90
2
  9.50
            ri
                 7.77
                        8.70
                             -1.75
                                      5.96 1.91
                                                        22.67
                                                     ev
3 -1.53
            ri
                 8.94 19.33 23.73
                                      5.54 0.85
                                                        36.31
                                                     ev
4 10.24
            ub
                 8.92
                        5.48 -0.28
                                      4.01 1.21
                                                        11.33
                                                     ev
```

[5 rows x 31 columns]

[4]: print(pdl.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30000 entries, 0 to 29999
Data columns (total 31 columns):

#	Column	Non-Nul	.1 Count	Dtype
0	payment	30000 n	on-null	object
1	var1	30000 n	on-null	object
2	var2	30000 n	on-null	object
3	var3	30000 n	on-null	float64
4	var4	30000 n	on-null	float64
5	var5	30000 n	on-null	float64
6	var6	30000 n	on-null	float64
7	var7	30000 n	on-null	float64
8	var8	30000 n	on-null	float64
9	var9	30000 n	on-null	object
10	var10	30000 n	on-null	object
11	var11	30000 n	on-null	object
12	var12	30000 n	on-null	float64
13	var13	30000 n	on-null	object
14	var14	30000 n	on-null	float64
15	var15	30000 n	on-null	float64
16	var16	30000 n	on-null	float64
17	var17	30000 n	on-null	object
18	var18	30000 n	on-null	float64
19	var19	30000 n	on-null	object
20	var20	30000 n	on-null	float64
21	var21	30000 n	on-null	float64
22	var22	30000 n	on-null	float64
23	var23	30000 n	on-null	object
24	var24	30000 n	on-null	float64
25	var25	30000 n	on-null	float64
26	var26	30000 n	on-null	float64

27 var27 30000 non-null float64 28 var28 30000 non-null float64 29 var29 30000 non-null object 30 var30 30000 non-null float64

dtypes: float64(20), object(11)

memory usage: 7.1+ MB

None

[5]: print(pdl.describe())

	var3	var4	var5	var6	var7	\
count	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	
mean	3.018848	13.941943	19.981561	8.009453	9.110358	
std	3.004458	14.028019	19.866781	8.013395	8.976009	
min	-8.190000	-43.660000	-55.100000	-23.630000	-27.580000	
25%	0.990000	4.450000	6.520000	2.550000	3.050000	
50%	3.040000	13.920000	19.980000	8.010000	9.170000	
75%	5.040000	23.520000	33.452500	13.430000	15.152500	
max	15.160000	76.780000	107.080000	44.330000	48.390000	
	var8	var12	var14	var15	var16	\
count	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	
mean	5.993785	7.020662	2.007760	17.118747	10.919426	
std	6.035204	7.004504	2.001967	16.900037	10.977430	
min	-17.940000	-29.340000	-5.500000	-54.270000	-34.510000	
25%	1.910000	2.320000	0.650000	5.677500	3.470000	
50%	5.960000	7.020000	2.000000	17.120000	10.900000	
75%	10.050000	11.760000	3.370000	28.620000	18.310000	
max	29.100000	37.370000	10.090000	81.410000	60.720000	
	var18	var20	var21	var22	var24	\
count	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	\
count mean						\
	30000.000000 19.040852 18.938509	30000.000000 18.018673 17.990146	30000.000000 15.092997 15.040573	30000.000000 12.958633 12.969523	30000.000000 5.003848 5.017593	\
mean std min	30000.000000 19.040852 18.938509 -52.450000	30000.000000 18.018673 17.990146 -51.930000	30000.000000 15.092997 15.040573 -54.070000	30000.000000 12.958633 12.969523 -37.780000	30000.000000 5.003848 5.017593 -15.890000	\
mean std min 25%	30000.000000 19.040852 18.938509 -52.450000 6.420000	30000.000000 18.018673 17.990146 -51.930000 6.027500	30000.000000 15.092997 15.040573 -54.070000 4.887500	30000.000000 12.958633 12.969523 -37.780000 4.190000	30000.000000 5.003848 5.017593 -15.890000 1.630000	\
mean std min 25% 50%	30000.000000 19.040852 18.938509 -52.450000 6.420000 19.200000	30000.000000 18.018673 17.990146 -51.930000 6.027500 18.015000	30000.000000 15.092997 15.040573 -54.070000	30000.000000 12.958633 12.969523 -37.780000 4.190000 12.910000	30000.000000 5.003848 5.017593 -15.890000 1.630000 5.020000	\
mean std min 25%	30000.000000 19.040852 18.938509 -52.450000 6.420000 19.200000 31.700000	30000.000000 18.018673 17.990146 -51.930000 6.027500 18.015000 30.142500	30000.000000 15.092997 15.040573 -54.070000 4.887500 15.200000 25.220000	30000.000000 12.958633 12.969523 -37.780000 4.190000 12.910000 21.630000	30000.000000 5.003848 5.017593 -15.890000 1.630000 5.020000 8.400000	\
mean std min 25% 50%	30000.000000 19.040852 18.938509 -52.450000 6.420000 19.200000	30000.000000 18.018673 17.990146 -51.930000 6.027500 18.015000	30000.000000 15.092997 15.040573 -54.070000 4.887500 15.200000	30000.000000 12.958633 12.969523 -37.780000 4.190000 12.910000	30000.000000 5.003848 5.017593 -15.890000 1.630000 5.020000	\
mean std min 25% 50% 75%	30000.000000 19.040852 18.938509 -52.450000 6.420000 19.200000 31.700000 101.920000	30000.000000 18.018673 17.990146 -51.930000 6.027500 18.015000 30.142500 97.280000	30000.000000 15.092997 15.040573 -54.070000 4.887500 15.200000 25.220000 77.410000	30000.000000 12.958633 12.969523 -37.780000 4.190000 12.910000 21.630000 75.450000	30000.000000 5.003848 5.017593 -15.890000 1.630000 5.020000 8.400000 24.290000	
mean std min 25% 50% 75%	30000.000000 19.040852 18.938509 -52.450000 6.420000 19.200000 31.700000 101.920000	30000.000000 18.018673 17.990146 -51.930000 6.027500 18.015000 30.142500 97.280000	30000.000000 15.092997 15.040573 -54.070000 4.887500 15.200000 25.220000 77.410000 var27	30000.000000 12.958633 12.969523 -37.780000 4.190000 12.910000 21.630000 75.450000 var28	30000.000000 5.003848 5.017593 -15.890000 1.630000 5.020000 8.400000 24.290000 var30	
mean std min 25% 50% 75%	30000.000000 19.040852 18.938509 -52.450000 6.420000 19.200000 31.700000 101.920000 var25 30000.000000	30000.000000 18.018673 17.990146 -51.930000 6.027500 18.015000 30.142500 97.280000 var26 30000.000000	30000.000000 15.092997 15.040573 -54.070000 4.887500 15.200000 25.220000 77.410000 var27 30000.000000	30000.000000 12.958633 12.969523 -37.780000 4.190000 12.910000 21.630000 75.450000 var28 30000.00000	30000.000000 5.003848 5.017593 -15.890000 1.630000 5.020000 8.400000 24.290000 var30 30000.000000	\
mean std min 25% 50% 75% max	30000.000000 19.040852 18.938509 -52.450000 6.420000 19.200000 31.700000 101.9200000 var25 30000.0000000 9.969102	30000.000000 18.018673 17.990146 -51.930000 6.027500 18.015000 30.142500 97.280000 var26 30000.000000 12.081941	30000.000000 15.092997 15.040573 -54.070000 4.887500 15.200000 25.220000 77.410000 var27 30000.000000 4.015074	30000.000000 12.958633 12.969523 -37.780000 4.190000 12.910000 21.630000 75.450000 var28 30000.00000 1.00956	30000.000000 5.003848 5.017593 -15.890000 1.630000 5.020000 8.400000 24.290000 var30 30000.000000 16.040880	\
mean std min 25% 50% 75% max count mean std	30000.000000 19.040852 18.938509 -52.450000 6.420000 19.200000 31.700000 101.920000 var25 30000.000000	30000.000000 18.018673 17.990146 -51.930000 6.027500 18.015000 30.142500 97.280000 var26 30000.000000 12.081941 12.013399	30000.000000 15.092997 15.040573 -54.070000 4.887500 15.200000 25.220000 77.410000 var27 30000.000000 4.015074 4.010969	30000.000000 12.958633 12.969523 -37.780000 4.190000 12.910000 21.630000 75.450000 var28 30000.00000 1.00956 1.00323	30000.000000 5.003848 5.017593 -15.890000 1.630000 5.020000 8.400000 24.290000 var30 30000.000000 16.040880 16.038787	\
mean std min 25% 50% 75% max count mean std min	30000.000000 19.040852 18.938509 -52.450000 6.420000 19.200000 31.700000 101.920000 var25 30000.000000 9.969102 9.997636 -29.580000	30000.000000 18.018673 17.990146 -51.930000 6.027500 18.015000 30.142500 97.280000 var26 30000.000000 12.081941 12.013399 -46.500000	30000.000000 15.092997 15.040573 -54.070000 4.887500 15.200000 25.220000 77.410000 var27 30000.000000 4.015074 4.010969 -14.170000	30000.000000 12.958633 12.969523 -37.780000 4.190000 12.910000 21.630000 75.450000 var28 30000.00000 1.00956 1.00323 -3.45000	30000.000000 5.003848 5.017593 -15.890000 1.630000 5.020000 8.400000 24.290000 var30 30000.000000 16.040880 16.038787 -49.930000	\
mean std min 25% 50% 75% max count mean std min 25%	30000.000000 19.040852 18.938509 -52.450000 6.420000 19.200000 31.700000 101.9200000 var25 30000.0000000 9.969102 9.997636 -29.580000 3.240000	30000.000000 18.018673 17.990146 -51.930000 6.027500 18.015000 30.142500 97.280000 var26 30000.000000 12.081941 12.013399 -46.500000 3.890000	30000.000000 15.092997 15.040573 -54.070000 4.887500 15.200000 25.220000 77.410000 var27 30000.000000 4.015074 4.010969 -14.170000 1.310000	30000.000000 12.958633 12.969523 -37.780000 4.190000 12.910000 21.630000 75.450000 var28 30000.00000 1.00956 1.00323 -3.45000 0.33000	30000.000000 5.003848 5.017593 -15.890000 1.630000 5.020000 8.400000 24.290000 var30 30000.000000 16.040880 16.038787 -49.930000 5.360000	\
mean std min 25% 50% 75% max count mean std min	30000.000000 19.040852 18.938509 -52.450000 6.420000 19.200000 31.700000 101.920000 var25 30000.000000 9.969102 9.997636 -29.580000	30000.000000 18.018673 17.990146 -51.930000 6.027500 18.015000 30.142500 97.280000 var26 30000.000000 12.081941 12.013399 -46.500000	30000.000000 15.092997 15.040573 -54.070000 4.887500 15.200000 25.220000 77.410000 var27 30000.000000 4.015074 4.010969 -14.170000	30000.000000 12.958633 12.969523 -37.780000 4.190000 12.910000 21.630000 75.450000 var28 30000.00000 1.00956 1.00323 -3.45000	30000.000000 5.003848 5.017593 -15.890000 1.630000 5.020000 8.400000 24.290000 var30 30000.000000 16.040880 16.038787 -49.930000	

max 52.930000 58.830000 20.350000 5.07000 82.050000

```
[6]: pdl["payment"] = np.where(pdl["payment"] == "Success",1,0)

k = pdl.columns

for col in k:
    if pdl[col].dtype == 'object':
        temp = pd.get_dummies(pdl[col],drop_first = True,prefix = col)
        pdl = pd.concat([pdl,temp],axis = 1)
        pdl.drop([col],axis = 1,inplace = True)

pdl.dropna(axis = 0,inplace = True)
```

0.2 Distribución de Clases

Y es que antes de empezar a utilizar los datos, me gustaria saber como estos tendrán un impactó el entrenamiento de los modelos que utilicemos en este notebook.

```
[7]: class_counts = pdl['payment'].value_counts()
    plt.figure(figsize=(8, 6))
    plt.bar(class_counts.index.astype(str), class_counts.values, color='skyblue')

percentages = (class_counts / len(pdl)) * 100
    for i, v in enumerate(class_counts.values):
        plt.text(i, v + 5, f'{percentages[i]:.1f}%', ha='center', va='bottom', usefontsize=10)

plt.title('Distribucion de Clases', fontsize=14)
    plt.xlabel('Clase', fontsize=12)
    plt.ylabel('Frecuencia', fontsize=12)
    plt.tight_layout()
    plt.show()
```


Clase

```
[8]: pdl_train, pdl_test = train_test_split(pdl, test_size = 0.2,random_state=2)

#x_train=pdl_train.drop(["payment"],1)
x_train=pdl_train.drop(columns="payment")
y_train=pdl_train["payment"]

#x_test=pdl_test.drop(["payment"],1)
x_test=pdl_test.drop(columns="payment")
y_test=pdl_test["payment"]

x_train.reset_index(drop=True,inplace=True)
y_train.reset_index(drop=True,inplace=True)
```

ò

[9]: y_train

```
[9]: 0 0
1 1
2 0
3 0
4 1
```

23999

Name: payment, Length: 24000, dtype: int64

[10]: x_train [10]: var12 var14 var15 var3 var4 var5 var6 var7 var8 var16 1.02 22.08 8.69 -9.24 21.06 2.21 1.33 2.00 7.62 -5.77 2.09 11.25 23.46 12.11 29.57 4.77 8.86 2.38 29.48 28.14 1 2 6.77 25.95 3.95 17.74 19.78 9.02 3.76 0.72 34.00 17.19 3 2.75 12.47 -4.54 -1.42 -10.32 9.11 8.37 7.91 4.86 3.67 4.47 2.53 - 12.667.90 31.60 3.64 1.87 5.07 19.04 28.70 ••• ••• ••• ••• ••• ••• 23995 -1.28 9.09 11.89 5.58 17.29 15.65 8.28 0.77 23.06 9.79 23996 1.60 9.52 14.64 6.11 20.14 17.93 0.50 1.19 1.14 8.22 23997 0.54 22.37 42.39 12.41 3.54 5.09 0.22 1.45 24.50 4.45 -2.63 23998 3.37 11.72 0.32 17.49 0.83 12.47 17.58 3.22 11.61 23999 5.21 28.45 27.84 14.82 2.13 0.82 -0.732.27 -4.48 -18.34 var23_da var23_fe var23_po var23_ri var23_qu var23_sy 0 False True False False False False 1 False False False False False False ... 2 False False False False False False 3 False False False False False False 4 False False False False False False 23995 False False False False False False 23996 False False False False False False 23997 False False False False True False 23998 False False False False False True 23999 False False False False False False var23_tf var23_ub var23_yv var29_ev 0 False False False False 1 True False False False 2 False True False True 3 False True False True True False False True 23995 False True False True 23996 True False False True 23997 False False False True False 23998 False False True

True

False

False

True

0.3 Metricas

Se usaran la mayoria de las siguientes metricas en los proximos ejercicios

```
[12]: def comparison metrics(y_test, y_pred_knn, y_pred_tree):
          metrics = {
              "Accuracy": [
                  accuracy_score(y_test, y_pred_knn),
                  accuracy_score(y_test, y_pred_tree)
              ],
              "Precision": [
                  precision_score(y_test, y_pred_knn),
                  precision_score(y_test, y_pred_tree)
              ],
              "Recall": [
                  recall_score(y_test, y_pred_knn),
                  recall_score(y_test, y_pred_tree)
              ],
              "F1-Score": [
                  f1_score(y_test, y_pred_knn),
                  f1_score(y_test, y_pred_tree)
              ]
          }
          metrics_df = pd.DataFrame(metrics, index=["K-NN", "Decision Tree"])
```

```
[14]: def feature_importances(tree, x_train):
    importances = tree.feature_importances_
    features = x_train.columns
    feat_imp_df = pd.DataFrame({'feature': features, 'importance': importances})
    feat_imp_df = feat_imp_df.sort_values(by='importance', ascending=False)

    print(feat_imp_df.head(10))

    feat_imp_df.head(10).plot(kind='barh', x='feature', y='importance',u)
    elegend=False, figsize=(8,5))
    plt.title("Caracteristicas mas importantes (Arbol de Decision)")
    plt.gca().invert_yaxis()
    plt.tight_layout()
    plt.show()
```

1 Pregunta 1:

Construye un clasificador usando K-NN con 3 vecinos y otro usando un arbol de decision. ¿cual produce mejor resultado? ¿que metrica has usado? segun el arbol de decision, ¿que metricas son las mas relevantes?

Se utiliza el clasificador K-NN (KNeighborsClassifier) con n_neighbors=3.

```
[15]: knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(x_train, y_train)
```

```
tree = DecisionTreeClassifier()
tree.fit(x_train, y_train)
```

[15]: DecisionTreeClassifier()

```
[16]: y_pred_knn = knn.predict(x_test)
f1_Sc_knn = f1_score(y_test, y_pred_knn)

y_pred_tree = tree.predict(x_test)
f1_Sc_tree = f1_score(y_test, y_pred_tree)
```

1.1 Evaluacion y Metricas

Metrica Principal: Se usará el f1-Score como metrica principal, ya que ambas clases son importantes y no queremos que el modelo se enfoque solo en una.

Métricas Complementarias: Además, se utilizará la matriz de confusion, así como las metricas de precisióo, recall y accuracy, con el fin de verificar que tanto afecta a los modelos el pequeño desbalance de clases que existen. Estas metricas ofrecen mayor detalle sobre el desempeño del modelo en cada clase, lo cual nos puede brindar una mejor vision del problema, gracias a esto podremos identificar si existen falsos negativos y falsos positivos.

```
[17]: print("Reporte K-NN:")
    print(classification_report(y_test, y_pred_knn))
    print("\nReporte Arbol de Decision:")
    print(classification_report(y_test, y_pred_tree))

    print(f"f1-Score K-NN: {f1_Sc_knn*100}")
    print(f"f1-Score Árbol de Decisión: {f1_Sc_tree*100:.4f}")
```

Reporte K-NN:

	precision	recall	f1-score	support
0	0.72	0.77	0.74	3762
1	0.56	0.49	0.52	2238
accuracy			0.67	6000
macro avg	0.64	0.63	0.63	6000
weighted avg	0.66	0.67	0.66	6000

Reporte Arbol de Decision:

support	f1-score	recall	precision	
3762	0.82	0.82	0.83	0
2238	0.71	0.72	0.70	1
6000	0.78			accuracy

macro	avg	0.77	0.77	0.77	6000
weighted	avg	0.78	0.78	0.78	6000

f1-Score K-NN: 52.00573065902579 f1-Score Árbol de Decisión: 71.0161

Observación sobre K-NN: Dado que K-NN es sensible a la escala, al no normalizar los datos, es posible que su desempeño no sea el optimo si las variables tienen diferentes rangos. En la pregunta 2 vamos a probar normalizando los datos para ver si el algoritmo mejora.

[18]: confusion_matrices(y_test, y_pred_knn, y_pred_tree)

[19]: feature_importances(tree, x_train)

	feature	importance
15	var25	0.361468
42	var17_bw	0.089241
9	var16	0.076224
4	var7	0.050829
59	var23_ub	0.046809
13	var22	0.021299
14	var24	0.021046
8	var15	0.020265
17	var27	0.019492
12	var21	0.018967

[]:

¿Cuál produce mejor resultado?

Tras entrenar y evaluar ambos modelos en el conjunto de prueba, se hace la comparativa de las

métricas.

Debido a que el Arbol de Decision presenta un mayor F1-score, podemos concluir que, al trabajar con datos sin normalizar, este modelo se beneficia de su capacidad de dividir el espacio de manera no lineal y de ser insensible a la escala. Ademas de esto, y basandonos en la comparacion de metricas entre modelos, podemos observar que el Arbol de Decisión supera al K-NN en todas las metricas evaluadas (Accuracy, Precision, Recall y F1-Score), presentando valores mas equilibrados y consistentes, mientras que el modelo K-NN muestra metricas con mayor variabilidad y un pobre desempeño.

El Arbol de Decisión es el modelo que mejor desempeño global muestra, destacándose especialmente en el F1-score, que fue nuestra métrica principal.

¿Qué métrica has usado?

Se ha utilizado el F1-score como metrica principal, ya que ambas clases son importantes y se busca un equilibrio entre precision y recall. Esta metrica nos permite evaluar el modelo de forma mas robusta en escenarios con cierto desbalance de clases(como es el caso en este ejercicio). Además, se han considerado metricas complementarias como la matriz de confusión, precision, recall y accuracy para un analisis mas detallado del desempeño de los modelos, tal como se explicó anteriormente.

Segun el arbol de decision, ¿que metricas son las mas relevantes?

Como se pudo evidenciar en una de las graficas anteriores las características mas importantes fueron:

var25 con una importancia de: 0.359539

var17_bw con una importancia de: 0.089330

var16 con una importancia de: 0.078087

Estas variables tienen la mayor contribucion a la predicción del modelo, especialmente var25, que domina claramente en importancia.

1.2 Conclusion

Mejor modelo:

En este caso, el Árbol de Decisión fue el modelo que presentó un mejor desempeño general, destacándose por un F1-score mas alto y estable entre clases, lo que lo convierte en la mejor opcion para este problema.

[]:

2 Pregunta 2:

Repite el ejercicio anterior usando normalizacion de los datos y compara los resultados.

Normalizamos los datos, debido a que los algoritmos basados en distancias se benefician mucho de esto (K-NN), usaremos dos metodos para normalizar los datos y sacar mejores conclusiones. Usaremos StandardScaler y MinMaxScaler, ya que este ultimo fue el utilizado en los ejercicios en clase y así nos pueda brindar una mejor perspectiva del comportamiento de ambos algoritmos.

```
[21]: scaler = StandardScaler()
      x_train_norm = scaler.fit_transform(x_train)
      x_test_norm = scaler.transform(x_test)
[22]: knn_norm = KNeighborsClassifier(n_neighbors=3)
      knn_norm.fit(x_train_norm, y_train)
      tree_norm = DecisionTreeClassifier()
      tree_norm.fit(x_train_norm, y_train)
[22]: DecisionTreeClassifier()
[23]: y_pred_knn_norm = knn_norm.predict(x_test_norm)
      f1_Sc_knn_norm = f1_score(y_test, y_pred_knn_norm)
      y_pred_tree_norm = tree_norm.predict(x_test_norm)
      f1_Sc_tree_norm = f1_score(y_test, y_pred_tree_norm)
[24]: print("Reporte K-NN (Normalizado):")
      print(classification_report(y_test, y_pred_knn_norm))
      print("\nReporte Arbol de Decision (Normalizado):")
      print(classification_report(y_test, y_pred_tree_norm))
      print(f"f1-Score K-NN (Normalizado): {f1_Sc_knn_norm*100}")
      print(f"f1-Score Arbol de Decision (Normalizado): {f1_Sc_tree_norm*100}",)
     Reporte K-NN (Normalizado):
                   precision
                                recall f1-score
                                                    support
                0
                        0.71
                                   0.77
                                             0.74
                                                       3762
                1
                        0.55
                                   0.48
                                             0.51
                                                       2238
         accuracy
                                             0.66
                                                       6000
                                             0.63
                                                       6000
                        0.63
                                   0.62
        macro avg
                                   0.66
                                             0.65
                                                       6000
     weighted avg
                        0.65
     Reporte Arbol de Decision (Normalizado):
                   precision
                                recall f1-score
                                                    support
                0
                        0.83
                                   0.83
                                             0.83
                                                       3762
                1
                        0.71
                                   0.72
                                             0.71
                                                       2238
                                                       6000
                                             0.79
         accuracy
                                  0.77
                                                       6000
                        0.77
                                             0.77
        macro avg
     weighted avg
                        0.79
                                   0.79
                                             0.79
                                                       6000
```

f1-Score K-NN (Normalizado): 51.18619698058951
f1-Score Arbol de Decision (Normalizado): 71.43491781430475

[25]: confusion_matrices(y_test, y_pred_knn_norm, y_pred_tree_norm)

[26]: feature_importances(tree_norm, pd.DataFrame(x_train_norm, columns=x_train.

	feature	importance
15	var25	0.360610
42	var17_bw	0.089472
9	var16	0.078432
4	var7	0.050757
59	var23_ub	0.046942
13	var22	0.020133
3	var6	0.019981
16	var26	0.019684
14	var24	0.019442
12	var21	0.019265

[]:

Al no haber mejoria (especialmente en K-NN) utilizaremos otro metodo para normalizar los datos

```
[28]: scaler_mm = MinMaxScaler()
      x_train_mm = scaler_mm.fit_transform(x_train)
      x_test_mm = scaler_mm.transform(x_test)
[29]: knn_mm = KNeighborsClassifier(n_neighbors=3)
      knn_mm.fit(x_train_mm, y_train)
      tree_mm = DecisionTreeClassifier()
      tree_mm.fit(x_train_mm, y_train)
[29]: DecisionTreeClassifier()
[30]: y_pred_knn_mm = knn_mm.predict(x_test_mm)
      f1_Sc_knn_mm = f1_score(y_test, y_pred_knn_mm)
      y_pred_tree_mm = tree_mm.predict(x_test_mm)
      f1_Sc_tree_mm = f1_score(y_test, y_pred_tree_mm)
[31]: print("Reporte K-NN (Normalizado):")
      print(classification_report(y_test, y_pred_knn_mm))
      print("\nReporte Arbol de Decision (Normalizado):")
      print(classification_report(y_test, y_pred_tree_mm))
      print("K-NN f1-Score (MinMaxScaler):", f1_Sc_knn_mm*100)
      print("Decision Tree f1-Score (MinMaxScaler):", f1_Sc_tree_mm*100)
     Reporte K-NN (Normalizado):
                   precision
                                 recall f1-score
                                                    support
                0
                        0.68
                                   0.72
                                             0.70
                                                       3762
                1
                        0.48
                                   0.44
                                             0.46
                                                       2238
                                             0.62
                                                       6000
         accuracy
        macro avg
                        0.58
                                   0.58
                                             0.58
                                                       6000
     weighted avg
                        0.61
                                   0.62
                                             0.61
                                                       6000
     Reporte Arbol de Decision (Normalizado):
                   precision
                                recall f1-score
                                                    support
                0
                        0.83
                                   0.82
                                             0.82
                                                       3762
                        0.70
                                   0.72
                                             0.71
                                                       2238
                                             0.78
                                                       6000
         accuracy
                        0.77
                                   0.77
                                             0.77
                                                       6000
        macro avg
                         0.78
                                                       6000
     weighted avg
                                   0.78
                                             0.78
```

K-NN f1-Score (MinMaxScaler): 46.09613130128957

Decision Tree f1-Score (MinMaxScaler): 70.99471830985915

[32]: confusion_matrices(y_test, y_pred_knn_mm, y_pred_tree_mm)

[33]: feature_importances(tree_mm, pd.DataFrame(x_train_mm, columns=x_train.columns))

	feature	importance
15	var25	0.359599
42	var17_bw	0.089241
9	var16	0.074997
4	var7	0.050909
59	var23_ub	0.047058
13	var22	0.021034
16	var26	0.020659
3	var6	0.020557
14	var24	0.020517
8	var15	0.020205

2.0.1 Comparativa General entre K-NN vs Árboles de Decisión

Modelo	Normalización	F1-Score (%)	Mejores Métricas
K-NN	Sin normalizar	52.01	Ninguna
Árbol de Decisión	Sin normalizar	70.80	Todas
K-NN	StandardScaler	51.19	Ninguna
Árbol de Decisión	StandardScaler	71.00	Todas
K-NN	MinMaxScaler	46.10	Ninguna
Árbol de Decisión	${\bf Min Max Scaler}$	71.31	Todas

2.1 K-NN

- Desempeño inconsistente: Aunque K-NN es un algoritmo que se beneficia del escalado de caracteristicas, en este caso, ni el uso de StandardScaler ni de MinMaxScaler logro mejorar sustancialmente su rendimiento en terminos de F1-Score.
- Peor rendimiento con MinMaxScaler: El modelo alcanza su F1-Score más bajo con MinMaxScaler (46.1%), lo que indica que este tipo de normalizacion no fue la acertada en este ejercicio.
- Métricas más bajas y dispersas: Las metricas de precisión, recall y F1-Score, especialmente en la clase minoritaria (1 = "pago"), son considerablemente más bajas y variables, lo que refleja un desempeño inestable frente a los diferentes metodos de normalización.

2.2 Arbol de Decision

- Rendimiento robusto y estable: No importa si los datos están normalizados o no, el rendimiento del árbol de decisión se mantiene constante logrando F1-Scores en torno al 71% en todos los casos.
- Superioridad frente a K-NN: Supera ampliamente a K-NN en F1-Score, mostrando una mayor capacidad para capturar correctamente ambas clases, incluso en contextos desbalanceados
- Metricas equilibradas: Las métricas de precisión, recall y F1-Score se mantienen altas y bien distribuidas entre las clases, lo que indica una buena generalizacion del modelo sin importar el escalado de los datos.
- Insensible a la escala: Como se explico en clase y se observo en este experimento, el árbol de decisión no se ve afectado negativamente por la normalizacion de los datos, lo que refuerza su utilidad cuando no se tiene un preprocesamiento.

El **Arbol de Decision** es superior en este problema:

- Presenta mejores resultados en F1-Score, nuestra métrica principal, en todos los escenarios evaluados.
- Es menos sensible a la escala de los datos, lo cual lo hace más robusto ante distintos tipos de normalización.
- K-NN no muestra mejoras consistentes tras la normalización y su rendimiento, medido por F1-Score, es significativamente mas bajo.

[]:

3 Pregunta 3:

Usando GridSearchCV, identifica para un clasificador K-NN el numero de vecinos entre 1 y 30 que optimiza el resultado usando como scoring la precision y con 10 folds para la validación cruzada.

```
[35]: param_grid = {"n_neighbors": range(1, 31)} #usamos el rango que nos dice elu
       ⇔problema [1,30]
[36]: knn_grid = KNeighborsClassifier()
      grid_search = GridSearchCV(knn_grid, param_grid, scoring='precision', cv=10)
       →#usamos como scoring la precision como dice el ejercicio
      grid_search.fit(x_train, y_train)
[36]: GridSearchCV(cv=10, estimator=KNeighborsClassifier(),
                   param_grid={'n_neighbors': range(1, 31)}, scoring='precision')
[37]: print(f"Mejores parametros: {grid_search.best_params_}")
      print("Mejor numero de vecinos:", grid_search.best_params_["n_neighbors"])
      print("Mejor puntuación de Precision:", grid_search.best_score_)
     Mejores parametros: {'n_neighbors': 30}
     Mejor numero de vecinos: 30
     Mejor puntuación de Precision: 0.7500582858438695
[38]: results = pd.DataFrame(grid_search.cv_results_)
      print(results[['param_n_neighbors', 'mean_test_score', 'std_test_score']])
      plt.figure(figsize=(12, 6))
      plt.title("Evolucion de la precision vs Numero de vecinos en K-NN")
      plt.plot(results['param_n_neighbors'], results['mean_test_score'], marker='o', __
       ⇔linestyle='--', color='red')
      plt.xlabel("Numero de vecinos")
      plt.ylabel("Precision promedio")
      plt.grid(True)
      plt.show()
         param_n_neighbors mean_test_score std_test_score
     0
                         1
                                    0.507101
                                                    0.012435
                         2
     1
                                    0.608855
                                                    0.030492
     2
                         3
                                    0.564343
                                                    0.012154
                                   0.633937
     3
                         4
                                                    0.010825
     4
                         5
                                    0.601585
                                                    0.010697
     5
                         6
                                    0.659321
                                                    0.017382
                         7
     6
                                    0.628059
                                                    0.015268
     7
                         8
                                    0.681559
                                                    0.016964
```

8	9	0.649042	0.010360
9	10	0.695191	0.013453
10	11	0.667326	0.009601
11	12	0.705188	0.013784
12	13	0.683982	0.017287
13	14	0.708334	0.015504
14	15	0.685179	0.015216
15	16	0.714625	0.011513
16	17	0.693249	0.012579
17	18	0.718397	0.016811
18	19	0.699034	0.017769
19	20	0.725723	0.014110
20	21	0.705695	0.016733
21	22	0.725554	0.019065
22	23	0.714155	0.017960
23	24	0.735397	0.016763
24	25	0.720554	0.020867
25	26	0.739297	0.023108
26	27	0.731804	0.023180
27	28	0.746177	0.020671
28	29	0.732333	0.021915
29	30	0.750058	0.021684

3.1 Conclusiones

El algoritmo tiende a mejorar

A medida que el número de vecinos aumenta (1 a 30), la precisión promedio tambien evidencia una

mejora, lo cual es (en teoria) coherente con el comportamiento esperado de K-NN:

- Con valores bajos de k, el modelo puede tener un alto riesgo de sobre ajuste.
- Al aumentar k, se empieza a estabilizar y de esta manera se reduce el sobreajuste, mejorando la precision.

Variaciones suaves: Hay algunos cambios sucesivos (por ejemplo, en k=3, 5, 9, etc.), que son normales en validación cruzada. Estas oscilaciones indican que en algunos folds, la precisión varia ligeramente, pero la tendencia global sigue siendo ascendente.

```
[]:
```

4 Pregunta 4:

0

1

0.71

0.74

0.93

0.37

Obten la matriz de confusion del clasificador optimo anterior. ¿como lees cada uno de los valores?¿que valor de precission y recall tiene el clasificador optimizado con precission?

```
[39]: best_knn = grid_search.best_estimator_ #guardamos el mejor modelo dado por elu
       \hookrightarrow qridSearch
     y_pred_best = best_knn.predict(x_test)
[41]: cm = confusion_matrix(y_test, y_pred_best)
      prec = precision score(y test, y pred best)
      acc1 = accuracy_score(y_test, y_pred_best)
      rec = recall_score(y_test, y_pred_best)
      f1 = f1_score(y_test, y_pred_best)
      best = best_knn.n_neighbors
      print("K-NN")
      print(f"Accuracy: {acc1:.4f}")
      print(f"Precision: {prec:.4f}")
      print(f"Recall:
                         {rec:.4f}")
      print(f"F1-Score: {f1:.4f}")
      print(classification_report(y_test, y_pred_best))
      plot_confusion_matrix(y_test, y_pred_best, title=f"K-NN (k={best}) - Matriz de_u

¬Confusión", cmap=plt.cm.Reds)
     K-NN
     Accuracy: 0.7163
     Precision: 0.7436
     Recall:
                 0.3655
     F1-Score:
                0.4901
                   precision
                                 recall f1-score
                                                     support
```

0.80

0.49

3762

2238

accuracy			0.72	6000
macro avg	0.73	0.65	0.65	6000
weighted avg	0.72	0.72	0.69	6000

4.1 Conclusiones

Dada la matriz de confusion se puede decir que:

- El modelo se vuelve conservador al predecir "Pago" .
- Solo predice "Pago" si está muy seguro (por eso alta precisión, pocos falsos positivos).
- Pero a cambio, pierde muchos verdaderos positivos: no detecta bien todos los que sí pagan eso confirma el bajo recall.

Alta precisión (0.74): Cuando el modelo predice que alguien pagará, es confiable: el 74% de esas predicciones son correctas.

Bajo recall (0.36): El modelo solo detecta el 36.5% de todos los pagos reales. Es decir, muchos clientes buenos estan siendo ignorados.

Bajo F1-Score (0.4901): El modelo no esta teniendo buena generalizacion entre ambas clases objetivo, unicamente un 49%. Lo cual no es suficiente.

[]:

5 Pregunta 5:

Construye ahora una red neuronal usando MLPClassifier de dos capas. Prueba diferente numero de neuronas por capa. ¿afecta al resultado?

Dado que las redes neuronales son muy sensibles a la escala, trabajaré con los datos anteriormente normalizados para no tener que repetir el mismo proceso, ademas, utilizaré la tecnica de Grid-SearchCV. Con el fin explorar diferentes numeros de neuronas en cada capa. En este ejemplo voy a evaluar diversas configuraciones de la forma:

hidden_layer_sizes=(neuronas_capa1,neuronas_capa2)

```
[42]: param_grid = {
          "hidden_layer_sizes": [
               (5,),
               (10,),
               (15,),
               (5, 5),
               (10, 5),
               (10, 10),
               (20, 20),
               (30, 30),
               (50, 50),
               (100, 100),
               (50, 25),
               (100, 50),
               (30, 20),
               (20, 10)
          ]
      }
      #Se coloca ese numero de iteraciones para asegurar la convergencia
      mlp = MLPClassifier(max_iter=10000, random_state=42)
      grid search mlp = GridSearchCV(mlp, param grid, scoring='f1', cv=10, ...
       →return_train_score=True, verbose=True, n_jobs=-1)
      grid_search_mlp.fit(x_train_norm, y_train)
```

Fitting 10 folds for each of 14 candidates, totalling 140 fits

```
[43]: results mlp = pd.DataFrame(grid search mlp.cv results)
[54]: print(results_mlp[['param_hidden_layer_sizes', 'mean_test_score', __
       plt.figure(figsize=(10, 6))
      plt.plot(results mlp['param hidden layer sizes'].astype(str),___
       Gresults_mlp['mean_test_score'], marker='o', linestyle='--', color='red')
      plt.xlabel("Configuracion (capa 1 y capa 2)")
      plt.ylabel("Precision promedio (CV 10-fold)")
      plt.title("Evolucion de la precision vs Configuracion de neuronas en MLP")
      plt.xticks(rotation=45)
      plt.grid(True)
      plt.tight_layout()
      plt.show()
      best_hidden_ly = grid_search_mlp.best_params_
      print("Mejor configuracion:", best_hidden_ly)
      print("Mejor f1-Score promedio:", grid_search_mlp.best_score_)
        param_hidden_layer_sizes mean_test_score
                                                    std_test_score
     0
                            (5,)
                                          0.812203
                                                          0.010184
                           (10,)
     1
                                          0.830892
                                                          0.008850
     2
                           (15,)
                                          0.821733
                                                          0.005987
     3
                          (5, 5)
                                          0.823258
                                                          0.008956
     4
                         (10, 5)
                                          0.834220
                                                          0.007455
     5
                        (10, 10)
                                          0.835397
                                                          0.006465
     6
                        (20, 20)
                                          0.803391
                                                          0.013524
     7
                        (30, 30)
                                          0.769335
                                                          0.009457
                        (50, 50)
     8
                                          0.690363
                                                          0.014243
                      (100, 100)
     9
                                          0.724692
                                                          0.012458
     10
                        (50, 25)
                                          0.712434
                                                          0.010244
     11
                       (100, 50)
                                         0.715542
                                                          0.011355
     12
                        (30, 20)
                                         0.780308
                                                          0.006075
     13
                        (20, 10)
                                         0.820156
                                                          0.009752
```



```
Mejor configuracion: {'hidden_layer_sizes': (10, 10)}
Mejor f1-Score promedio: 0.8353965604186275
```

5.1 Pequeño test

Se hará un pequeño test con los datos de testeo para poder visualizar que la arquitectura funcione correctamente

```
[46]: acc = accuracy_score(y_test, y_pred_final)
prec = precision_score(y_test, y_pred_final)
rec = recall_score(y_test, y_pred_final)
f1 = f1_score(y_test, y_pred_final)
```

```
[56]: print("MLP")
    print(f"Accuracy: {acc:.4f}")
    print(f"Precision: {prec:.4f}")
    print(f"Recall: {rec:.4f}")
    print(f"F1-Score: {f1:.4f}")
    print("\nReporte completo:")
```

MLP

Accuracy: 0.8687 Precision: 0.8356 Recall: 0.8065 F1-Score: 0.8208

Reporte completo:

ll f1-score support
0.91 3762
35 0.85 2238
0.88 6000
88 0.88 6000
0.88 6000

5.2 Conclusiones

Tendencia general no lineal:

A diferencia de modelos como K-NN, aqui no hay una mejora progresiva con mas neuronas. De hecho, un modelo intermedio (10, 10) es el que mejor funciona

Redes más complejas empeoran: Al aumentar el tamaño de las capas ocultas a (50, 50) o (100, 100), la precision cae considerablemente (menor al 78%), lo cual indica que el modelo:

- Está sobreajustando al conjunto de entrenamiento.
- Puede estar atrapado en minimos pobres o sin converger bien.

Configuraciones mas sencillas funcionan mejor:

- (10, 10) fue el mejor modelo.
- (10, 5) también tuvo un desempeño excelente (0.863), mostrando que estructuras más pequeñas y simples generalizan mejor en este caso.

5.3 Pregunta 6:

GradientBoostingClasifier es uno de los metodos de scikitlearn que mejor resultados suelen producir. Implementa un clasificador utilizando GradientBoostingClasifier considerando 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 como learning rate.; que learning rate produce un resultado optimo usando recall?

```
[48]: param_grid_lr = {
    "learning_rate": [0.05, 0.1, 0.15, 0.2, 0.25, 0.3]
}

gb = GradientBoostingClassifier(random_state=42)
grid_search_gb = GridSearchCV(
    estimator=gb,
    param_grid=param_grid_lr,
    scoring="recall",
    cv=10,
    return_train_score=True,n_jobs=-1,verbose=True
)
grid_search_gb.fit(x_train_norm, y_train)
```

Fitting 10 folds for each of 6 candidates, totalling 60 fits

Resultados por learning_rate:

	<pre>param_learning_rate</pre>	mean_test_score	std_test_score
0	0.05	0.778398	0.016080
1	0.10	0.793165	0.016951
2	0.15	0.795274	0.013919
3	0.20	0.798494	0.011301
4	0.25	0.793165	0.012651
5	0.30	0.794496	0.011838


```
Mejor learning rate: 0.2
     Mejor recall promedio (CV): 0.7985
[57]: gb_final = GradientBoostingClassifier(learning_rate=best_rate, random_state=42)
      gb_final.fit(x_train_norm, y_train)
      y_pred_gb = gb_final.predict(x_test_norm)
[51]: acc = accuracy_score(y_test, y_pred_gb)
      prec = precision_score(y_test, y_pred_gb)
      rec = recall_score(y_test, y_pred_gb)
      f1 = f1_score(y_test, y_pred_gb)
[58]: print("GradientBoostingClassifier")
      print(f"Accuracy: {acc:.4f}")
      print(f"Precision: {prec:.4f}")
      print(f"Recall:
                       {rec:.4f}")
      print(f"F1-Score: {f1:.4f}")
      print("\nReporte completo:")
      print(classification_report(y_test, y_pred_gb))
      plot_confusion_matrix(y_test, y_pred_gb, title=f"Matriz de Confusion - Gradient⊔
       ⇒Boosting (learning_rate={best_rate})", cmap=plt.cm.Reds)
```

GradientBoostingClassifier

Accuracy: 0.8687 Precision: 0.8356 Recall: 0.8065 F1-Score: 0.8208

Reporte completo:

support	f1-score	recall	precision	
3762	0.90	0.91	0.89	0
2238	0.82	0.81	0.84	1
6000	0.87			accuracy
6000	0.86	0.86	0.86	macro avg
6000	0.87	0.87	0.87	weighted avg

5.4 Conclusiones

Mejor parámetro encontrado: El valor óptimo de learning rate fue 0.2, ya que produjo el mejor recall promedio en validación cruzada: 0.7985.

Desempeño en el conjunto de prueba:

Accuracy: 86.87%Precision: 83.56%Recall: 80.65%F1-Score: 82.08%

Rendimiento:

- En general el modelo logra una alta precisión y buen recall, lo cual es importante especialmente cuando la clase 1 (casos positivos) representa situaciones críticas (en este caso detectar pagos).
- El f1-score también es elevado, indicando que el modelo mantiene un balance adecuado entre precisión y recall.

Generalización efectiva:

• Las metricas del conjunto de prueba son consistentes con las obtenidas en la validación cruzada, lo que sugiere que el modelo generaliza bien y no esta presentando un sobreajuste.

[]:

5.4.1 Pregunta 6:

Usando la matriz de confusion de los tres casos (GradientBoosting, MLP y K-NN) y derivando las metricas que te parezcan oportunas ¿Que clasificador de los 3 seleccionarias y porque?

```
[59]: cm_knn = confusion_matrix(y_test, y_pred_best)
      cm_mlp = confusion_matrix(y_test, y_pred_final)
      cm_gb = confusion_matrix(y_test, y_pred_gb)
      fig, axes = plt.subplots(1, 3, figsize=(18, 6))
      labels = ["No pago", "Pago"]
      #KNN
      disp_knn = ConfusionMatrixDisplay(confusion_matrix=cm_knn,__

display_labels=labels)

      disp_knn.plot(cmap=plt.cm.Blues, ax=axes[0], colorbar=False)
      axes[0].set_title("K-NN (k=30)")
      #MLP
      disp_mlp = ConfusionMatrixDisplay(confusion_matrix=cm_mlp,__
       ⇔display labels=labels)
      disp_mlp.plot(cmap=plt.cm.Greens, ax=axes[1], colorbar=False)
      axes[1].set_title(f"MLPClassifier {best_hidden_ly['hidden_layer_sizes']}")
      #Gradient Boosting
      disp_gb = ConfusionMatrixDisplay(confusion_matrix=cm_gb, display_labels=labels)
      disp_gb.plot(cmap=plt.cm.Reds, ax=axes[2], colorbar=False)
      axes[2].set_title(f"Gradient Boosting (lr={best_rate})")
      plt.suptitle("KNN vs MLP vs Gradient Boosting", fontsize=14)
      plt.tight_layout()
      plt.show()
```


5.4.2 Análisis Comparativo

K-NN (k=30)

Métrica	Valor
Accuracy	0.7163
Precision	0.7436
Recall	0.3655
F1-Score	0.4901

- Problema principal: contiene un número muy alto de falsos negativos (FN = 1420).
- Solo acierta 818 pagos reales de 2238, además de un recall muy bajo ($\sim 36\%$).
- Aunque tiene pocos falsos positivos, no es adecuado si queremos detectar pagadores confiables.

Conclusión: no es un modelo adecuado cuando es vital no dejar pasar casos positivos.

MLPClassifier (10, 5)

Métrica	Valor			
Accuracy	0.8842			
Precision	0.8388			
Recall	0.8534			
F1-Score	0.8461			

- Mejor recall de todos (85.4%), con solo 328 FN.
- Acierta 1910 de 2238 pagos reales.
- Tiene un poco mas de falsos positivos (367), pero es un excelente compromiso.
- La mejor capacidad para detectar clientes que sí pagan, lo que es clave para el negocio.

Conclusión: ofrece el mejor equilibrio entre sensibilidad y precisión, ideal para minimizar riesgos y capturar clientes buenos.

Gradient Boosting (lr=0.2)

Métrica	Valor
Accuracy	0.8687
Precision	0.8356
Recall	0.8065
F1-Score	0.8208

- Muy buen desempeño también: 1805 TP y 433 FN.
- Recall 81%, alta precisión, y balance muy solido entre errores.
- Tiene una matriz equilibrada, y seria lo ideal si buscaramos consistencia y robustez.

Conclusión: excelente opción si se prioriza robustez y estabilidad, aunque MLP lo supera levemente en la mayoria de las metricas.

5.5 Modelo Seleccionado

5.5.1 MLPClassifier

Justificación final:

- El MLPClassifier logra el mayor recall (85.34%), lo que lo convierte en el modelo que mejor identifica a los clientes que efectivamente pagan sus microcréditos.
- Su F1-score (84.61%) también es el más alto, reflejando el mejor equilibrio global entre precisión y sensibilidad, ademas de que esta metrica se escogio como la principal en este problema.
- La cantidad de falsos negativos (328) es la mas baja, lo cual es fundamental para este problema: rechazar clientes que sí pagarían genera pérdida de oportunidad.

Conclusión: MLPClassifier es el modelo más adecuado para este caso, ya que maximiza la detección de clientes pagadores con excelente precisión, manteniendo el mejor equilibrio entre errores tipo I y II. En este caso, donde se debe aceptar buenos clientes es el objetivo, este modelo optimiza la toma de decisiones de forma clara y efectiva.

г п.					
1 1:					