总线系统

1. 总线概述

1.1. 总线概念

1 总线:连接多个部件,是各部件共享的传输介质

2 总线的分时&共享

1. 分时: 同一时刻只许一个部件向总线发信

2. 共享: 总线可以挂在多个不见, 还是只允许一个部件发送, 但是同时可以有多个部件接收

3 总线特性

类别	特性
机械特性	尺寸、形状
电气特性	传输方向和有效的电平范围
功能特性	传送地址/数据/控制信号
时间特性	哪根线在什么时间内有效

1.2. 总线类型

1按数据传送方式:并行总线/串行总线,并行又可分为8/32/64位总线

2 按照使用范围: 计算机/测控总线

3 按照连接部件

1. 片内总线: 芯片内的总线, 如CPU内部/连接寄存器-寄存器/寄存器-ALU

2. 系统总线: 连接了计算机五大部件, 按照传输的不同内容又可分三种

类型	方向	描述		
数据总线	双向传 输	在各部件间传输数据,数据总线的宽度是指总线位数		
地址总线	单向传 输	指出数据总线上,源数据/目的数据的主存地址/IO设备地址		
控制总线	不特定	用来发出各种控制信号,来决定数据/地址总线分配给哪个 设备		

总线的组成就是:控制线+数据线+地址线 3. 通信总线:在不同计算机系统间传输信息

₹按传输方向: 单向/双向, 单论总线种的一条则都是单向的, 双向传输是对于总体而言的

1.3. 总线指标

2. 过程

阶段名称	简要描述
申请分配	主模块/设备,申请使用总线,总线仲裁决定使用权
寻址	使用权获得者发出目标地址和命令,启动从模块
传送数据	主从模块之间进行数据交换
结束	主模块撤除信息,让出总线使用权

2 总线宽度

1. 总线结构:由众多线构成,每根线一位位的传输二进制数,比如16条线可同时传16位二进制代码

2. 总线宽度: 有多少根线

3 总线带宽:单位时间内总线能传输多少位数据,等于**频率*总线宽度**(单位bit)

1.4. 总线结构

1.4.1. 单总线结构

1含义:将CPU/主存/IO接口连在一根线上

2 特点

- 1. 允许IO设备-IO设备 / IO设备-CPU / IO设备-主存通信
- 2. 所有IO设备同一编制
- 3. CPU访问IO和访问内存的方式一样

3 缺点

- 1. 总线是分时的, 所以效率低
- 2. 总线连接的三者速率不匹配

1.4.2. 双总线结构

1 结构:将低速的IO另立总线,单总线变为主存总线

2 缺点: 主存-IO设备的通信效率极低

1.4.3. 三总线结构

1结构:既然双总线主存-IO效率低,那就在二者间再加一条DMA总线,专门给二者交换数

据

2 特点: 三者间同一时刻只能使用一者

2. 总线仲裁

2.0. 前置概念

1 连接总线的两种设备

1. 主设备:对总线有控制权,由主设备启动总线的数据传输

2. 从设备:对总线无控制权,只能响应从设备发来的总线命令

2 总线仲裁:

1. 背景: 一个总线传输周期内,只能由一个主设备控制一个总线

2. 仲裁: 多主设备同时要求使用总线时, 由总线控制器根据优先级, 来确定哪个主设备能用

总线

2.1. 集中仲裁方式

2.1.1. 链式查询方式

1 结构: 总线上所有部件共用一根总线请求线

2 仲裁过程

- 1. 部件需要请求总线时,总线请求线——)总线控制器
- 3. 查询的部件无总线请求则跳过,有总线请求则劫持该信号
- 3 判优: 离总线越控制器越近优先级越高

4 特点

1. 优点:只需三根控制线,结合简单

2. 缺点: 一个设备故障后其之后所有设备都无法工作, 优先级低的设备长期不能使用总线

2.1.2. 计数器查询方式

1 结构:

- 1. 总线控制器内置一个计数器
- 2. 相对于链式查询多了 $\log_2 n$ 根设备地址线来表示n个设备,少了1根总线同意线
- 3. 多个设备共用一条请求线

2 仲裁过程

- 1. 总线控制器收到请求后, 若判断总线不忙, 则开始计数
- 2. 计数值通过地址线发往各个部件

- 3. 计数值=请求使用总线设备的地址时,设备获得总线使用权
- 4. 计数器随后终止工作

3 判优:

- 1. 优先级由设备的地址值决定
- 2. 优先级谁高取决于计数器工作方式,可以从0开始/从上次结束时的值开始

4特点:

1. 优点: 优先级可变, 对电路故障的敏感度降低

2. 缺点:控制线增加,控制更复杂

2.1.3. 独立请求方式

- 1 结构:控制器内置排队器,每个设备有独立的总线请求/同意线
- 2 仲裁过程
 - 1. 设备通过各自的总线请求线, 发送请求信号到控制器
 - 2. 通过排队器, 所有请求在控制器处形成队列
 - 3. 部件按照队列获得总线使用权

3 特点

1. 优点:响应快,优先级灵活

2. 缺点: n个设备就要2n+1根控制线,太复杂

2.2. 分布式仲裁

- 1 无中央仲裁器,每个模块都有自己的仲裁号和仲裁器,多个仲裁器竞争使用总线
- 2 要请求总线时, 仲裁器将仲裁号发往仲裁总线
- 3 仲裁器从仲裁线中获得仲裁号,若获得的号优先级比自己高,则总线不予相应

3. 总线通信方式

主要解决:通信双方如何获知传输开始/结束,双方如何协调配合

3.2. 同步定时方式

1 概念:通过CPU总线控制器发出的时钟信号,同一协调总线收发两方的传送定时关系

2 同步式数据输入/输出: **不论输入输出, 地址信号都伴随全程**

输入: 注意以下行为的前提是设备已获得总线控制权

时间	主模块输入时的行为(外设→CPU)	主模块输出时的行为(CPU→ 外设)
T_1 上升 沿	发送地址信息	发送地址信息
T_2 上升 沿	发出读命令(低电平有效),设备将数据塞 进总线	提供数据到总线
T_3 周期	数据线上信息塞进CPU寄存器	发出写命令
T_4 上升 沿	撤销CPU的读命令	撤销写命令

3.3. 异步定时方式

11核心:克服各模块速度不一致的情况,而采用主模块发信→从模块响应后才开始通信模式

2 三种方式:

图 6-10 异步通信的应答方式

- a) 不互锁方式 b) 半互锁方式 c) 全互锁方式
- 3 三种方式的过程

方式	主模块	从模块
不互 锁	发出①后,过段时间默认对方收到了 ①	发出②后,过段时间默认对方收到了 ②
半互 锁	发出①后,收到②后才认定对方收到 ①	发出②后,过段时间默认对方收到了 ②
全互锁	发出①后,收到②后才认定对方收到	发出②后,收到③后才认定对方收到 ②

确认对方收到①后,主模块撤销请求信号 确认对方收到②后,从模块撤销ACK信号

4. 总线标准

1 系统总线

名称	描述
ISA	最早的微型计算机系统总线,应用在IBM的AT机上。
EISA	扩展的ISA总线,适用于32位CPU,与ISA完全兼容。
VESA(VL-BUS)	32位计算机局部总线,针对多媒体PC的高速传送需求设计。
PCI	高性能的32位或64位总线,适用于外围部件和处理器/存储器系统的互连。
PCI-Express	最新的总线和接口标准,将全面取代PCI和AGP。

2 设备总线

名称	描述
IDE	集成设备电路接口,用于处理器和磁盘驱动器间的连接。
AGP	加速图形接口,专用于连接主存和图形存储器。

名称	描述
USB	用于外部设备的快速连接。
SATA	串行高级技术附件,一种行业标准的串行硬件驱动器接口。