NOM:

INTERRO DE COURS – SEMAINE 15

Exercice 1 – Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0 = \frac{1}{2}$ et pour tout $n\in\mathbb{N}$, $u_{n+1} = \frac{1}{4}u_n + \frac{3}{4}$. Montrer que pour tout $n\in\mathbb{N}$, $u_n\leqslant 1$.

Solution:

Je raisonne par récurrence sur $n \in \mathbb{N}$.

Énoncé: Je note \mathcal{P}_n la propriété: $u_n \leq 1$.

Initialisation : Pour n = 0, $u_0 = \frac{1}{2}$ et $\frac{1}{2} \le 1$. Ainsi \mathcal{P}_0 est vraie.

Hérédité : Soit $n \ge 0$. Je suppose que \mathcal{P}_n est vraie et je montre que \mathcal{P}_{n+1} l'est aussi.

Par hypothèse de récurrence $u_n \leq 1$, donc

$$u_{n+1} = \frac{1}{4}u_n + \frac{3}{4} \leqslant \frac{1}{4} \times 1 + \frac{3}{4} = \frac{1+3}{4} = 1.$$

Donc $u_{n+1} \le 1$. Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme elle est héréditaire et vraie pour n = 0, alors par principe de récurrence, la propriété \mathcal{P}_n est vraie pour tout $n \ge 0$, *i.e.*

$$\forall n \in \mathbb{N}, u_n \leq 1.$$

Exercice 2 – Démontrer que pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} (2k+1) = (n+1)^{2}.$$

Solution:

Je raisonne par récurrence sur $n \in \mathbb{N}$.

Énoncé: Je note \mathcal{P}_n la propriété: $\sum_{k=0}^n (2k+1) = (n+1)^2$.

Initialisation : Pour n = 0,

$$\sum_{k=0}^{0} (2k+1) = (2 \times 0 + 1) = 1 \quad \text{et} \quad (0+1)^2 = 1^2 = 1.$$

Ainsi \mathcal{P}_0 est vraie.

Hérédité : Soit $n \ge 0$. Je suppose que \mathcal{P}_n est vraie et je montre que \mathcal{P}_{n+1} l'est aussi.

Par hypothèse de récurrence, je sais que $\sum_{k=0}^{n} (2k+1) = (n+1)^2$. Alors

$$\sum_{k=0}^{n+1} (2k+1) = \left(\sum_{k=0}^{n} (2k+1)\right) + \left(2 \times (n+1) + 1\right) = (n+1)^2 + 2n + 3$$
$$= n^2 + 2n + 1 + 2n + 3 = n^2 + 4n + 4 = (n+2)^2.$$

Donc $\sum_{k=0}^{n+1} (2k+1) = (n+1+1)^2$. Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme elle est héréditaire et vraie pour n = 0, alors par principe de récurrence, la propriété \mathcal{P}_n est vraie pour tout $n \ge 0$, *i.e.*

$$\forall n \in \mathbb{N}, \quad \sum_{k=0}^{n} (2k+1) = (n+1)^{2}.$$