PC机键盘的处理过程

贺利坚 主讲

PC机键盘的处理过程

■键盘输入的处理过程

- 1、键盘输入
- 2、引发9号中断
- 3、执行int 9中断例程

□键盘上的每一个键相当于一个开关,键盘中有一个 芯片对键盘上的每一个键的开关状态进行扫描。

□按下一个键时的操作

- 开关接通,该芯片就产生一个扫描码,扫描码说明了按下的键在键盘上的位置。
- 扫描码被送入主板上的相关接口芯片的寄存器中,该寄存器的端口地址为60H。

□松开按下的键时的操作

- 产生一个扫描码,扫描码说明了松开的键在键盘上的位置。
- 松开按键时产生的扫描码也被送入60H端口中。

□扫描码——长度为一个字节的编码

- 按下一个键时产生的扫描码——通码,通码的第7位为 0
- 松开一个键时产生的扫描码——断码,断码的第7位为1
- 例:g键的通码为22H,断码为a2H

g键的通码	0	0	1	0	0	0	1	0
g键的断码	1	0	1	0	0	0	1	0

键盘上键的扫描码(通码)

键盘上键的扫描码							
键	扫描码	键	扫描码	键	扫描码	键	扫描码
Esc	01		1A	1	2B	NumLock	45
1~9	$02\sim 0A$	l i	1B	Z	2C	ScrollLock	46
0	0B	Enter	1C	X	2D	Home	47
12 <u>-1</u> 2	0C	Ctrl	1D	C	$2\mathbf{E}$	↑	48
=	0D	A	1E	V	2F	PgUp	49
Backspace	0E	5	1F	В	30		4A
Tab	$0\mathbf{F}$	D	_ 20	N	31	-	4B
Q	10	字符键	21	M	32	→	4D
W	11	G	22	控制键	33	+	4E
E	12	Н 7	23		34	End	4F
R	13	J	24		35	. ↓	50
\mathbf{T}	14	K	25	Shift (右)	36	PgDn	51
Y	15	L //	26	PrtSc	37	Ins	52
U	16	; /	27	Alt	38	Del	53
I	17	,	28	Space	39		
0	18	S.	29	CapsLock	3A		
P	19	Shift(左)	2A	F1~F10	3B~44	切换领	

通码 + 80H -----= 断码

PC机键盘的处理过程——引发中断

- □键盘输入的处理过程
 - 1、键盘输入
 - 2、引发9号中断
 - 3、执行int 9中断例程

- □键盘的输入到达60H 端口时,相关的芯片就会向CPU 发出中断类型码为9的可屏蔽中断信息。
- ■CPU检测到该中断信息后,如果IF=1,则响应中断,引发中断过程,转去执行int 9中断例程。
- □输入的字符键值如何保存?
 - ✓ 有BIOS键盘缓冲区!
 - ✓ BIOS键盘缓冲区:是系统启动后, BIOS用于存放 int 9 中断例程所接收的键盘输入的内存区。
 - ✓ BIOS键盘缓冲区:可以存储15 个键盘输入,一个键盘输入用一个字单元存放,高位字节存放扫描码,低位字节存放字符码。

1Eh	61h
30h	62h
2Eh	63h
•••	

输入a,b,c...

□输入了控制键和切换键,如何处理?

0040:17 键盘状态字节

-			4			_	
Insert	CapsLock	NumLock	ScrollLock	Alt	Ctrl	左shift	右shift

PC机键盘的处理过程——执行中断例程

- □键盘输入的处理过程
 - 1、键盘输入
 - 2、引发9号中断
 - 3、执行int 9中断例程

- □BIOS 中提供的处理键盘输入的int 9中断例程的工作
- (1)读出60H端口中的扫描码;
- (2)根据扫描码分情况对待
 - 如果是字符键的扫描码,将该扫描码和它所对应的字符码(即 ASCII码)送入内存中的BIOS键盘缓冲区;

1Eh	61h
30h	62h
2Eh	63h

输入a,b,c...

- 如果是控制键(比如 Ctrl)和切换键(比如 CapsLock)的扫描码,则将其转变为状态字节(用二进制位记录控制键和切换键状态的字节)写入内存中存储状态字节的单元。
- (3)对键盘系统进行相关的控制,如向相关芯片发出应答信息。

输入'a'的处理过程

