Linux Básico Introdução ao Shell e Bash Scripting

Banze, Martílio

MoRENet OpenHPC_2022

Outubro 10, 2022

- Introdução
- Sistema Operacional (SO)
- 3 Linux
- 4 Algumas distribuições Linux
- 6 Linux vs Windows
- O Por que usamos Linux no SISCAD?
- Considerações Finais
- Questoes Preliminares
- Usando Linux
- Auto-Avaliação

- Introdução
- 2 Sistema Operacional (SO)
- 3 Linux
- Algumas distribuições Linux
- 5 Linux vs Windows
- 6 Por que usamos Linux no SISCAD?
- Considerações Finais
- Questoes Preliminares
- Usando Linux
- Auto-Avaliação

Introdução

- Para este tópico os participantes do treinamento em HPC aprenderão a trabalhar com sistemas comuns de computação de alto desempenho.
 Isso inclui navegar em sistemas de arquivos, trabalhar com um sistema operacional HPC típico (Linux) e alguns conceitos básicos de HPC.
- As aulas serão 90% (noventa por cento) práticas e destinam-se a fornecer uma base sólida sobre como usar o terminal, para que o computador faça um trabalho útil para você.
- Uma pergunta que pode ter passado pela sua cabeça é: "Por que devo preocupar-me em aprender a linha de comando?
- A Interface Gráfica do Usuário (GUI) é muito mais fácil e já consigo fazer a maior parte do que preciso lá."

Introdução (Cont.)

- Até certo ponto, você estaria certo! Algumas tarefas são mais adequadas para uma GUI, processamento de texto e edição de vídeo são óptimos exemplos. Ao mesmo tempo, algumas tarefas são mais adequadas à linha de comando, manipulação de dados (relatórios) e de arquivos. Pense na linha de comando como outra ferramenta que você pode adicionar ao seu cinto. Os objectivos que nos levam a aprender o linux são:
 - Navegar em um ambiente típico de HPC baseado em Linux;
 - Demonstrar como executar comandos em um script bash;
 - Criar novos scripts do Bash;
 - Discutir os diferentes locais de armazenamento de arquivos em um sistema HPC; e,
 - Trabalhar com sistemas remotos.

- Introdução
- Sistema Operacional (SO)
- 3 Linux
- Algumas distribuições Linux
- Linux vs Windows
- 6 Por que usamos Linux no SISCAD?
- Considerações Finais
- Questoes Preliminares
- Usando Linux
- Auto-Avaliação

Sistema Operacional (SO)

 Denomina-se SO ao conjunto de programas informáticos que permitem uma administração satisfatória dos recursos que possuem um computador, permitindo também a interação do usuário.

Figure 1: Sistema Operacional

 O SO é responsável por alocar recursos de hardware e escalonar tarefas.

Atribuições SO

Figure 2: Demonstrativo simples da função do S.O

- Gerenciamento de processos e da memória;
- Controlo do sistema de arquivo e fluxo de dados;e,
- Gerenciamento de Hardwares e Softwares.

Tipos de SO: Classificação quanto ao compartilhamento de hardware

• Classificação quanto ao compartilhamento de hardware:

Figure 3: Tipos de S.O

SOs Multiprogramáveis/Multitarefa

 Os SOs Multiprogramáveis/Multitarefa podem ser classificados pela forma com que suas aplicações são gerenciadas, podendo ser divididos conforme mostra o gráfico:

Figure 4: SOs Multiprogramáveis/Multitarefa

Sistema com múltiplos processadores

- Caracterizam-se por possuir duas ou mais CPUs interligadas e trabalhando em conjunto.
- As vantagens:
 - Executar vários programas ao mesmo tempo;
 - Paralelismo dividir a execução de um programa entre vários CPUs.
- São classificados quanto:
 - A forma de comunicação entre as CPUs;
 - O grau de compartilhamento da memória e dos dispositivos de I/O.

Figure 5: Sistema com múltiplos processadores

Estrutura de Sistemas Operacionais

- Como os sistemas operacionais são normalmente grandes e complexas coleções de rotinas de software, os projectistas devem dar grande ênfase a sua organização interna e estrutura:
 - Monolítica
 - Micro-núcleo
 - Camadas
 - Máquina Virtual
- As estruturas destacadas são as mais utilizadas.
- O Linux é um núcleo (kernel) monolítico. Isto é, as funções do núcleo (agendamento de processos, gerenciamento de memória, operações de entrada e saída, acesso ao sistema de arquivos) são executadas no espaço do núcleo.

Estrutura Monolítica

- É a forma mais primitiva de S.O.
- Consiste de um conjunto de programas que executam sobre o hardware, como se fosse um único programa.
- Os programas de usuário podem ser vistos como subrotinas, invocadas pelo S.O., quando este não está executando nenhuma das funções do sistema (Eg: Linux e Windows).

Figure 6: Estrutura Monolítica

- Introdução
- 2 Sistema Operacional (SO)
- 3 Linux
- Algumas distribuições Linux
- Linux vs Windows
- 6 Por que usamos Linux no SISCAD?
- Considerações Finais
- Questoes Preliminares
- Usando Linux
- Auto-Avaliação

Linux

- **Linux** é um sistema operacional multi-tarefa (executa várias tarefas ao mesmo tempo) multi-usuario (onde várias pessoas usam ao mesmo tempo). Linux foi baseado no Unix (vide a Figura 7).
- Linux pode ser livremente modificado e distribuído.

Figure 7: Arquitectura do sistema Linux/Unix

Linux: Kernel e Shell

- Kernel-O núcleo do SO, é o componente central do sistema, ele serve de ponte entre aplicativos e o processamento real de dados feitos a nível de hardware. As responsabilidades do núcleo incluem gerenciar os recursos do sistema: comunicação entre hardware e software, forma a estrutura base do sistema operacional. Ver: https://guialinux.uniriotec.br/kernel/
- Desenvolvido por Linus Torvalds, estritamente falando, 'Linux' é apenas o kernel.
- Éum software livre ou open source,com o código fonte disponível em www.kernel.org.
- Shell- O interpretador de comandos (Interpretador de uma linguagem de programação). É capaz de executar uma sequência de comandos (programa) armazenados em um arquivo e descrita na linguagem shell apropriada (Estes programas shell são chamados "shell scripts")

Shells

 Principais shells existentes actualmente (Muitas partes importantes vêm do projecto GNU, projecto da Free Software Foundation para fazer um Unix gratuito):

Table 1: Shells existentes actualmente

Shell	Origem
Bourne Shell(Sh)	Original UNIX
C-Shell(csh)	BSD UNIX
Korn Shell(ksh)	Mistura sh/csh
Bourne again Shell (bash)	Shell GNU
T C Shell (tcsh)	Baseado no C Shell

- Introdução
- Sistema Operacional (SO)
- 3 Linux
- 4 Algumas distribuições Linux
- Linux vs Windows
- 6 Por que usamos Linux no SISCAD?
- Considerações Finais
- Questoes Preliminares
- Usando Linux
- Auto-Avaliação

Algumas distribuições Linux

Figure 8: Distribuições Linux

Entenda a árvore de arquivos do Linux

Figure 9: Linux File Tree

- No topo está o diretório raiz que contém todo o resto. Nós nos referimos a ele usando um caractere de barra (slash), /.
 - Observe que há dois significados para o caractere /. (i) Quando aparece na frente do nome do arquivo ou diretório, refere-se ao nome do diretório raiz; e, (ii) Quando aparece dentro de um caminho, é apenas um separador.

- Introdução
- 2 Sistema Operacional (SO)
- 3 Linux
- 4 Algumas distribuições Linux
- 6 Linux vs Windows
- 6 Por que usamos Linux no SISCAD?
- Considerações Finais
- Questoes Preliminares
- Usando Linux
- Auto-Avaliação

Linux vs Windows

Table 2: Linux vs Windows

Tópico	Linux	Windows
Preço	A maioria das variantes do Linux estão disponíveis gratuitamente ou a um preço muito menor do que o Microsoft Windows	Microsoft Windows pode correr entre 50, 00—150,00 dólares por cada cópia de licença
Confiança	Linux tem uma grande variedade de disposições de software programas, utilitários e jogos. No entanto, o Windows tem uma selecção muito maior de software disponível	Por causa da grande quantidade de usuários do M.Windows, há uma selecção muito maior disponíveis de softwares, utilitários e jogos para Windows
Software	Muitos dos disponíveis de software utilitários e jogos disponíveis no Linux são de freeware ou código aberto. Mesmo tais programas complexos como o Gimp, OpenOffice, StarOffice, e vinho estão disponíveis gratuitamente ou a baixo custo	Embora o Windows tem software, utilitários e jogos de graça, a maioria dos programas vai custar entre 20, 00–200, 00+ US dólares por cópia
Segurnaça	Embora a Microsoft tenha feito grandes melhorias ao longo dos anos com a segurança em seu SO, ele continua a ser mais vulnerável a vírus e outros ataques	Embora a Microsoft tenha feito grandes melhorias ao longo dos anos com a segurança em seu SO, ele continua a ser mais vulnerável a vírus e outros ataques
Open Source	Muitas das variantes do Linux e muitos programas Linux são de código aberto e permitem aos utilizado- res personalizar ou modificar o código	Microsoft Windows não é open source e da maioria dos programas não são de código aberto

- Introdução
- 2 Sistema Operacional (SO)
- 3 Linux
- 4 Algumas distribuições Linux
- 6 Linux vs Windows
- 6 Por que usamos Linux no SISCAD?
- Considerações Finais
- Questoes Preliminares
- Usando Linux
- Auto-Avaliação

Por que usamos Linux na Infraestrutura de HPC?

 Devido à dificuldade de ter um número muito grande de núcleos de CPU em um único computador de memória compartilhada, todos os supercomputadores de hoje usam a mesma abordagem básica para construir um sistema muito grande: pega muitos computadores separados e conecta-se com uma rede rápida (vide a figura 10).

Figure 10: Memória Distribuída

Por que usamos Linux na Infraestrutura de HPC?

- A maior desvantagem, pode ser um problema quando faz-se actualizações de software.
- Tem que se actualizar milhares de cópias do sistema operacional!
- No entanto, não tem implicações directas de custo, pois quase todos os supercomputadores usam alguma versão do sistema operacional Linux que é gratuita.
- Acontece que é muito mais fácil construir redes que possam conectar um grande número de computadores do que ter um grande número de núcleos de CPU em um único computador de memória compartilhada.

Por que usamos Linux na Infraestrutura de HPC?

- Em todos os nós do cluster SISCAD-A corre CentOS (abreviação de "Community ENTerprise Operating System").
- Uma distribuição Linux de classe corporativa derivada de códigos fonte gratuitamente distribuídos pela Red Hat Enterprise Linux e mantida pelo CentOS Project.
- Em sistemas com base no Red Hat, que é o caso do Fedora e CentOS por exemplo, o usuário tem um programa de instalação com muitas opções, tais como a criação de uma instalação para estação de trabalho ou servidor, assim como selecionar pacotes individualmente para serem instalados, e configurar opções administrativas.
- Garante um funcionamento adequado e sem falhas, pois, não necessita de muita memória para sua operação e conforme os programas vão sendo abertos, mais memória vai sendo alocada de forma mais eficiente porque o sistema lida bem em casos de sobras de memória, utilizando os MBytes dos módulos como cache de discos.

- Introdução
- 2 Sistema Operacional (SO)
- 3 Linux
- 4 Algumas distribuições Linux
- 6 Linux vs Windows
- 6 Por que usamos Linux no SISCAD?
- Considerações Finais
- Questoes Preliminares
- Usando Linux
- Auto-Avaliação

Considerações Finais

- As organizações estão cada vez mais recorrendo à HPC para resolver os desafios mais complexos relacionados a decisões orientadas por dados.
- O SO desempenha um papel importante para determinar como sua infra-estrutura de HPC está se saindo em termos de desempenho e operação. Ele conecta hardware, software, rede e interfaces para criar um ambiente unificado e orquestrado. Quando você escolhe o SO adequado, valoriza tanto dos clusters de HPC quanto o ambiente de TI como um todo.
- Linux é um SO que oferece uma base consistente e flexível para você executar cargas de trabalho de computação de alto desempenho.
- Todos os supercomputadores da TOP500 usam o Linux, e muitos dos melhores sistemas executam o Red Hat Enterprise Linux.
 See: https://www.youtube.com/watch?v=ERQyhX561oY&t=52s

- Introdução
- 2 Sistema Operacional (SO
- 3 Linux
- 4 Algumas distribuições Linux
- 6 Linux vs Windows
- 6 Por que usamos Linux no SISCAD?
- Considerações Finais
- Questoes Preliminares
- Usando Linux
- Auto-Avaliação

Questões Preliminares

Obrigado!

Figure 11: Quer Ajuda?

- Introdução
- 2 Sistema Operacional (SO)
- 3 Linux
- 4 Algumas distribuições Linux
- 6 Linux vs Windows
- 6 Por que usamos Linux no SISCAD?
- Considerações Finais
- Questoes Preliminares
- Usando Linux
- Auto-Avaliação

Usando Linux System

- Para quem já instalou as distribuições comuns de Linux como Fedora, CentOS, Ubuntu, Linux Mint ou tenha instalado Mac OS X da Apple Inc., mãos a obras!
- Para quem usa M.Windows pode baixar MobaXTerm:

https://mobaxterm.mobatek.net/

Pode usar o terminal do servidor remoto d

 Pode usar o terminal do servidor remoto de Collaborative Calculation and Data Science:

https://cocalc.com/

- Introdução
- 2 Sistema Operacional (SO)
- 3 Linux
- 4 Algumas distribuições Linux
- 6 Linux vs Windows
- 6 Por que usamos Linux no SISCAD?
- Considerações Finais
- Questoes Preliminares
- Usando Linux
- Auto-Avaliação

Perguntas de Avaliação de "Linux Professional Institute

Acesse o link abaixo: https://www.lpi.org/