

Art of Problem Solving 2001 USA Team Selection Test

USA Team Selection Test 2001

et $\{a_n\}_{n\geq 0}$ be a sequence of real numbers such that $a_{n+1}\geq a_n^2+\frac{1}{5}$ for all ≥ 0 . Prove that $\sqrt{a_{n+5}}\geq a_{n-5}^2$ for all $n\geq 5$. Express $\sum_{k=0}^n (-1)^k (n-k)!(n+k)!$ or a set S , let $ S $ denote the number of elements in S . Let A be a set of ositive integers with $ A =2001$. Prove that there exists a set B such that
$\sum_{k=0}^n (-1)^k (n-k)! (n+k)!$ or a set S , let $ S $ denote the number of elements in S . Let A be a set of
for a set S , let $ S $ denote the number of elements in S . Let A be a set of
·
) $B \subseteq A$; i) $ B \ge 668$; ii) for any $u, v \in B$ (not necessarily distinct), $u + v \notin B$.
une 10th
There are 51 senators in a senate. The senate needs to be divided into n emmittees so that each senator is on one committee. Each senator hates eachly three other senators. (If senator A hates senator B, then senator B does not necessarily hate senator A.) Find the smallest n such that it is always ossible to arrange the committees so that no senator hates another senator on is or her committee.
In triangle ABC , $\angle B = 2\angle C$. Let P and Q be points on the perpendicular is is is external as AB and AQ trisect $\angle A$. Prove that AB if and only if AB is obtuse.
et a, b, c be positive real numbers such that
$a+b+c \ge abc$.
rove that at least two of the inequalities
$\frac{2}{a} + \frac{3}{b} + \frac{6}{c} \ge 6, \qquad \frac{2}{b} + \frac{3}{c} + \frac{6}{a} \ge 6, \qquad \frac{2}{c} + \frac{3}{a} + \frac{6}{b} \ge 6$ re true.

Art of Problem Solving

2001 USA Team Selection Test

Day 3

7 Let ABCD be a convex quadrilateral such that $\angle ABC = \angle ADC = 135^{\circ}$ and

$$AC^2 \cdot BD^2 = 2 \cdot AB \cdot BC \cdot CD \cdot DA.$$

Prove that the diagonals of the quadrilateral ABCD are perpendicular.

8 Find all pairs of nonnegative integers (m, n) such that

$$(m+n-5)^2 = 9mn.$$

9 Let A be a finite set of positive integers. Prove that there exists a finite set B of positive integers such that $A \subseteq B$ and

$$\prod_{x \in B} x = \sum_{x \in B} x^2.$$

These problems are copyright © Mathematical Association of America (http://maa.org).