Estatística Básica I

REPRESENTAÇÕES GRÁFICAS TUANY CASTRO

Representações Gráficas

A representação gráfica da distribuição de uma variável tem a vantagem de, rápida e concisamente, informar sobre sua variabilidade.

- ☐ Gráficos de setores
- ☐ Gráficos de barras

Gráfico de Setores

Indicado especialmente para variáveis qualitativas nominais.

Gráfico de Barras

Para qualitativas ordinais, o gráfico de barras é mais indicado.

Gráfico de barras para Grau de Instrução

- ☐ Gráfico de barras
- Histograma

Gráfico de Barras

Gráfico de barras para Número de Filhos

Pode ser utilizado para variáveis quantitativas discretas.

Gráfico de Barras

Pode ser utilizado para variáveis quantitativas discretas.

Gráfico de barras para Idade

Histograma

Para variáveis quantitativas contínuas.

- Frequência absoluta do intervalo i: n_i
- Total observado: N
- Frequência relativa do intervalo i: f_i

$$f_i = \frac{n_i}{N}$$

Intervalos	Frequência absoluta	Frequência relativa
20 - 25	3	0,02
25 - 30	8	0,06
30 - 35	12	0,09
35 - 40	13	0,10
40 - 45	22	0,17
45 - 50	28	0,21
50 - 55	19	0,14
55 - 60	11	0,08
60 - 65	10	0,08
65 - 70	5	0,04
70 - 75	2	0,02
Total	133	1,00

Histograma

- Frequência absoluta do intervalo i: n_i
- Total observado: N
- Tamanho do intervalo: t_i
- Frequência relativa do intervalo i: f_i
- Densidade de frequência do intervalo i: d_i

$$d_i = \frac{f_i}{t_i}$$

Intervalos	Frequência absoluta	Frequência relativa	Tamanho do intervalo	Densidade de frequência
20 - 30	11	0,08	10	0,01
30 - 35	12	0,09	5	0,02
35 - 40	13	0,10	5	0,02
40 - 45	22	0,17	5	0,03
45 - 50	28	0,21	5	0,04
50 - 55	19	0,14	5	0,03
55 - 60	11	0,08	5	0,02
60 - 65	10	0,08	5	0,02
65 - 75	7	0,05	10	0,01
Total	133	1,00		

Histograma alisado

Histograma para Altura

No R: tabelas e medidas resumo

Função	Variável	R	
Tabela	Quantitativa discreta ou qualitativa	table(dados\$variável)	
	Quantitativa discreta ou quantativa	prop.table(table(dados\$variável))	
Média	Quantitativa	mean(dados\$variável, na.rm=TRUE)	
Mediana	Quantitativa	median(dados\$variável, na.rm=TRUE)	
Desvio-Padrão	Quantitativa	sd(dados\$variável, na.rm=TRUE)	
Medidas Resumo	Quantitativa	summary(dados\$variável)	

1) Suponha que duas empresas desejam empregá-lo e após considerar as vantagens de cada uma, você vai escolher aquela que lhe pagar melhor. Após certa pesquisa, você consegue a distribuição de salário das empresas, dadas segundo os gráficos abaixo:

Com base nas informações de cada gráfico, qual seria sua decisão?

- 2) Num experimento, dois grupos de 15 mulheres foram submetidas a dois diferentes tipos de dietas para emagrecimento. Os dados referentes à perda de peso se encontram em 'dados_dieta.csv'. Compare os histogramas dos pesos perdidos das duas dietas.
- **3)** Uma pesquisa com usuários de transporte coletivo na cidade de São Paulo indagou sobre os diferentes tipos usados nas suas locomoções diárias. Dentre ônibus, metrô e trem, o número de diferentes meios de transporte utilizados encontra-se na planilha *tranpostes.csv.*
- (a) Construa uma tabela de frequência para a variável Transportes.
- (b) Faça uma representação gráfica.
- (c) Admitindo que essa amostra represente bem o comportamento do usuário paulistano, você acha que a porcentagem dos usuários que utilizam mais de um tipo de transporte é grande?

- **4)** Os dados do arquivo *comunidade.csv* contém parte dos dados de uma pesquisa sobre aspectos socioeconômicos e culturais de comunidades de baixa renda da região do Butantã em São Paulo. Os dados estão organizados da seguinte forma:
- Coluna 1: número do questionário (Num)
- Coluna 2: Sexo:
 - 1: masculino
 - 2: feminino
- Coluna 3: Idade que começou a trabalhar, em anos

- Colune 4: Série em que parou de estudar
 - N: Não parou de estudar
 - F: parou de estudar no ensino fundamental
 - M: parou de estudar no ensino médio

Caracterize a amostra segundo as variáveis Sexo, Idade e Série por meio de gráficos, tabelas e medidas resumo.

5) No arquivo *temperatura.csv* encontram-se os dados de temperaturas mínimas observadas na cidade de São Paulo em 120 dias de inverno. Construa gráficos adequados para a análise da temperatura.

- **6)** O arquivo *cancer.csv* contém os dados de uma pesquisa sobre incidência de câncer e é apresentado em 4 colunas representando as seguintes variáveis de interesse:
- coluna 1: identificação do paciente
- coluna 2: diagnóstico:
 - 1 = falso-negativo
 - 2 = negativo
 - 3 = positivo
 - 4 = falso-positivo
- •coluna 3: idade
- coluna 4: glicose (GL)

- (A) Construa gráficos adequados para a análise das variáveis Grupo, Idade e Glicose (GL).
- (B) Uma afirmação feita por alguns médicos é a de que o grupo dos falso-positivos é mais jovem do que o dos falso-negativos. Para os dados dessa pesquisa, o que você diria a respeito? Justifique sua resposta baseando-se em gráficos.

Quantis

Medidas de locação calculadas para variáveis quantitativas.

Um quantil de ordem p é o valor tal que p% das observações são menores do que ela.

Alguns quantis têm nomes específicos:

- ☐ Quartis: quantis de ordem 4, pois dividem os dados em 4 intervalos
- ☐ **Percentis**: quantis de ordem 100, pois dividem os dados em 100 intervalos

Quartis

Assim como a mediana que divide o conjunto de dados em duas metades, os quartis dividem este conjunto em quartos.

- 1° Quartil é o valor que deixa 25 % dos dados abaixo e 75% acima dele.
- 2° Quartil Mediana.
- **3° Quartil** é o valor que deixa 25% dos dados acima e 75% abaixo dele.

Percentis

Os percentis dividem o conjunto de dados em 100 partes.

1° Percentil – é o valor que deixa 1 % dos dados abaixo e 99% acima dele.

2° Percentil – é o valor que deixa 2 % dos dados abaixo e 98% acima dele.

50° Percentil – mediana.

99° Percentil – é o valor que deixa 99 % dos dados abaixo e 1% acima dele.

Cálculo de quartis e percentis no R

Medidas de posição (média, mediana, primeiro e terceiro quartis):

summary(dados\$variável)

• Quartis:

quantile(dados\$variável, probs = seq(0, 1, 0.25), na.rm=TRUE)

Percentis:

quantile(dados\$variável, probs = seq(0, 1, 0.01), na.rm=TRUE)

Box-Plot

Box-plot para Peso

Representação gráfica envolvendo quartis.

Box-Plot

> Possibilidade observação da variabilidade e da simetria dos dados.

Distribuição simétrica

Distâncias iguais da mediana para os quartis

Distâncias iguais dos pontos de mínimo e máximo em relação à mediana

➤ Identificação de valores discrepantes
valores acima de Q3 +1,5*(Q3-Q1)
valores abaixo de Q1-1,5*(Q3-Q1)

Box-Plot

Box-plot para horas de Exercício

Comparação de Box-Plot

Box-plot para Peso por Sexo

Box-Plot no R

Box-Plot para uma variável:

boxplot(dados\$variável, main = "Título do gráfico"

Box-Plot de uma variável dentro dos grupos de outra variável:

boxplot(dados\$variável ~ dados\$grupo, main = "Título do Gráfico", names = c(nomes das categorias)

O arquivo cancer.csv contém os dados de uma pesquisa sobre incidência de câncer e é apresentado em 4 colunas representando as seguintes variáveis de interesse:

- coluna 1: identificação do paciente
- coluna 2: diagnóstico:
 - 1 = falso-negativo
 - 2 = negativo
 - 3 = positivo
 - 4 = falso-positivo
- coluna 3: idade
- coluna 4: glicose (GL)

Compare as distribuições de Glicose entre os grupos por meio do gráfico box-plot.