Introduction to Machine Learning

```
In [1]: # Process ==> Data Preparation ===> ML Model ===> Performance Evaluation
```

(1). Data Preparation

```
In [2]: \# Data ===> Independent data (x) + Dependent Data (y)
        # x ===> x_train , x_test
        # y ===> y_train , y_test
        # Data Prepare ===> ML Model ===> Performance Evaluation
In [3]: import numpy as np
        import pandas as pd
In [4]: | df = pd.read_csv("D:\\Summer Training Video\\ML\\placement.csv")
In [5]: df
```

Out[5]:

	cgpa	resume_score	placed
0	8.14	6.52	1
1	6.17	5.17	0
2	8.27	8.86	1
3	6.88	7.27	1
4	7.52	7.30	1
95	6.33	6.38	0
96	8.23	7.76	1
97	6.65	7.78	0
98	8.14	5.63	1
99	6.09	6.61	0

100 rows × 3 columns

```
In [6]: df.head()
 Out[6]:
             cgpa resume_score placed
             8.14
                          6.52
                                   1
                                   0
          1
             6.17
                          5.17
             8.27
                          8.86
                                   1
                                   1
             6.88
                          7.27
            7.52
                          7.30
                                   1
 In [7]:
          df.shape
Out[7]: (100, 3)
 In [8]: df.size
Out[8]: 300
 In [9]: | x = df.drop(columns = ['placed'] , axis = 1)
                                                             # Independent Columns
         y = df['placed']
                           # Target Column
         print(x.shape)
In [10]:
         print(y.shape)
          (100, 2)
          (100,)
In [11]: from sklearn.model_selection import train_test_split
In [12]: x_train , x_test , y_train , y_test = train_test_split(x,y,test_size = 0.2 , ra
In [13]:
         print(x_train.shape)
         print(x_test.shape)
         print(y_train.shape)
         print(y_test.shape)
          (80, 2)
          (20, 2)
          (80,)
          (20,)
In [14]: # Standarzation ===> Data Mean = 0 , Standard Deviation = 1
```

```
In [15]: np.round(x_train.describe(), 1)
```

Out[15]:

	cgpa	resume_score
count	80.0	80.0
mean	6.9	7.0
std	1.1	1.0
min	5.3	5.0
25%	6.0	6.3
50%	6.6	7.2
75%	8.1	7.7
max	9.3	9.1

In [16]: np.round(x_train.describe(), 3)

Out[16]:

	cgpa	resume_score
count	80.000	80.000
mean	6.950	7.000
std	1.126	1.011
min	5.270	4.950
25%	5.998	6.280
50%	6.620	7.155
75%	8.062	7.692
max	9.310	9.060

```
In [17]: from sklearn.preprocessing import StandardScaler
```

```
In [18]: | sc = StandardScaler()
```

In [19]: sc = sc.fit_transform(x_train) # fit means learn the parameter and transform n

In [20]: x_train_new = pd.DataFrame(x_train_sc , columns = x_train.columns)

```
In [21]: x_train_new.head(3)
```

Out[21]:

	cgpa	resume_score
0	-0.008602	-0.128926
1	1.001293	-0.925381
2	-0.607389	-0.527154

In [22]: np.round(x_train_new.describe() , 1)

Out[22]:

	cgpa	resume_score
count	80.0	80.0
mean	-0.0	-0.0
std	1.0	1.0
min	-1.5	-2.0
25%	-0.9	-0.7
50%	-0.3	0.2
75%	1.0	0.7
max	2.1	2.1

In [23]: | df = pd.read_csv("D:\\Summer Training Video\\ML\\insurance.csv")

In [24]: | df.head()

Out[24]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

In [25]: df = df.drop(columns = ['sex', 'smoker', 'region'])

```
In [26]: df.head()
Out[26]:
                    bmi children
                                    charges
             age
                              0 16884.92400
              19 27.900
          1
              18 33.770
                              1
                                 1725.55230
              28 33.000
                                 4449.46200
              33 22.705
                              0 21984.47061
          3
                                 3866.85520
              32 28.880
In [27]: x = df.drop(columns = ['charges'], axis = 1)
                                                                # Independent Data
         y = df['charges']
                                       # Target Data
In [28]: from sklearn.model_selection import train_test_split
In [29]: x_train , x_test , y_train , y_test = train_test_split(x,y,test_size = 0.2 , ra
In [30]:
         print(df.shape)
         print(x.shape)
          print(x_train.shape)
          print(x_test.shape)
         print(y.shape)
         print(y_train.shape)
          print(y_test.shape)
          (1338, 4)
          (1338, 3)
          (1070, 3)
          (268, 3)
          (1338,)
          (1070,)
          (268,)
         np.round(x_train.describe() , 1)
In [31]:
Out[31]:
                             children
```

	age	ıma	cniiaren
count	1070.0	1070.0	1070.0
mean	39.4	30.6	1.1
std	14.1	6.0	1.2
min	18.0	16.0	0.0
25%	27.0	26.2	0.0
50%	39.5	30.2	1.0
75%	51.0	34.5	2.0
max	64.0	53.1	5.0

```
In [32]: | from sklearn.preprocessing import StandardScaler
In [35]: | sc = StandardScaler()
In [36]: x_train_sc = sc.fit_transform(x_train)
In [37]: | x_train_sc
Out[37]: array([[ 0.47222651, -1.75652513, 0.73433626],
                 [0.54331294, -1.03308239, -0.91119211],
                 [0.8987451, -0.94368672, -0.91119211],
                 [1.3252637, -0.89153925, -0.91119211],
                 [-0.16755139, 2.82086429, 0.73433626],
                 [ 1.1120044 , -0.10932713, -0.91119211]])
In [39]: x_train_new = pd.DataFrame(x_train_sc , columns = x_train.columns)
In [42]: np.round(x_train_new.describe() , 1)
Out[42]:
                         bmi children
                   age
           count 1070.0 1070.0
                               1070.0
                   -0.0
                         -0.0
                                  -0.0
           mean
            std
                   1.0
                          1.0
                                  1.0
                   -1.5
                         -2.4
            min
                                 -0.9
            25%
                   -0.9
                         -0.7
                                 -0.9
                         -0.1
            50%
                   0.0
                                  -0.1
            75%
                   8.0
                          0.7
                                  0.7
                          3.7
                   1.8
                                  3.2
            max
```

Normalization ==> min = 0, max = 1

```
In [43]: from sklearn.preprocessing import MinMaxScaler
In [44]: mn = MinMaxScaler()
In [45]: x_train_mn = mn.fit_transform(x_train)
```

```
In [46]: x_train_new = pd.DataFrame(x_train_mn , columns = x_train.columns)
```

In [47]: np.round(x_train.describe() , 1)

Out[47]:

	age	bmi	children
count	1070.0	1070.0	1070.0
mean	39.4	30.6	1.1
std	14.1	6.0	1.2
min	18.0	16.0	0.0
25%	27.0	26.2	0.0
50%	39.5	30.2	1.0
75%	51.0	34.5	2.0
max	64.0	53.1	5.0

In [48]: np.round(x_train_new.describe() ,1)

Out[48]:

		age	ıma	cniiaren
C	ount	1070.0	1070.0	1070.0
m	ean	0.5	0.4	0.2
	std	0.3	0.2	0.2
	min	0.0	0.0	0.0
:	25%	0.2	0.3	0.0
	50%	0.5	0.4	0.2
	75%	0.7	0.5	0.4
ı	max	1.0	1.0	1.0

In []: