	A、有序数据元素 B、无序数据元素
	C、元素之间具有分支层次关系的数据 D、元素之间无联系的数据
2.	二叉树的第 k 层的结点数最多为 $($ $)$.
	A, $2^{k}-1$ B, $2K+1$ C, $2K-1$ D, 2^{k-1}
3.	设哈夫曼树中的叶子结点总数为m,若用二叉链表作为存储结构,则该哈夫曼树中总共
	有()个空指针域。
	A, 2m-1 B, 2m C, 2m+1 D, 4m
4.	设某棵二叉树的中序遍历序列为 ABCD,前序遍历序列为 CABD,则后序遍历该二叉树得
	到序列为()。
	A, BADC B, BCDA C, CDAB D, CBDA
5.	设某棵二叉树中有 2000 个结点,则该二叉树的最小高度为()。
	A, 9 B, 10 C, 11 D, 12
6.	将含 100 个结点的完全二叉树从根这一层开始,每层上从左到右依次对结点编号,根结
٠.	点的编号为 1. 编号为 89 的结点 X 的双亲的编号为()。
	A、44 B、45 C、43 D、无法确定
7	若 X 是二叉中序线索树中一个有右孩子的结点,且 X 不是根结点,则 X 的直接后继为
	().
	A、X 的双亲 B、X 的右子树中最左的结点
	C、X 的左子树中最右结点 D、X 的左子树中最右叶子结点
8.	把一棵树转换为二叉树后,这棵二叉树的形态是()。
	A、有多种,但根结点没有右孩子 B、唯一的,且根结点没有右孩子
	C、唯一的,且根结点可能有右孩子 D、有多种,但根结点都没有右孩子
	解释:转换规则是唯一的,所以转换成的二叉树是唯一的
9.	一棵二叉树 Tree,度为 2 的结点数为 100 个,则叶子结点数为()。
	A、99 个 B、100 个 C、101 个 D、102 个
10	. 在一棵度为 3 的树中,度为 3 的结点数为 2 个,度为 2 的结点数为 1 个,度为 1 的结点
	数为 2 个,则度为 0 的结点数为 () 个。
	A、4 B、5 C、6 D、8
11	. 算法阅读题:
	void ABC(BTNode * BT)
	{
	if (BT) {
	ABC (BT->left);
	ABC (BT->right);
	printf(BT->data);
	}
	}
4.0	该算法的功能是:
12	. 应用题: 某子系统在通信联络中 2 可能出现 8 种字符, 其出现的概率分别为 0.05, 0.29,
10	0.07, 0.08, 0.14, 0.23, 0.03, 0.11, 试设计哈夫曼编码。
13	. 已知用一维数组存放的一棵完全二叉树:ABCDEFGHIJKL,写出该二叉树的先序、中序和
1 4	后序遍历序列。 公共拥工及树的内壳没压序列为 DDFAC,前点没压序列为 ADDFC,再式画出这二叉树。
14	. 设某棵二叉树的中序遍历序列为 DBEAC,前序遍历序列为 ABDEC,要求画出该二叉树;
	求出二叉树的后序遍历序列;

1. 树最适合用来表示()。

15. 将 14 题的二叉树转换成树