

大二大学物理 (下)期末试题汇总

南洋书院学生会制作

目录

2016 年大学物理	里(下)期末	试题	•••••	• • • • • • • • • • • • • • • • • • • •	• 1
2016 年大学物理	里(下)期末	答案	•••••	• • • • • • • • • • • • • • • • • • • •	• 8
2015 大学物理	(下)期末	式题	• • • • • • • • • • • • • • • • • • • •	•••••	11
2015 年大学物理	里(下)期末空	答案			14
2014 年大学物理 2014 年大学物理	里(下)期を	卡试题	••••••	1/2	17
2014 年大学物理	里(下)期末	答案			22

2016 年大物下期末考试题

一、选择题(每题2分,共20分)

- 1. 两瓶不同摩尔质量的理想气体,温度和压强相同,但体积不同,则关于分子数密度 n、单位体积气体分子总平均动能 (E_{K}/V) 、气体质量密度 ρ ,描述正确的是
 - (A) n 不同, (E_{κ}/V) 不同, ρ 不同;
- (B) n相同, (E_{κ}/V) 相同, ρ 不同;
- (C) n 不同, (E_{κ}/V) 不同, ρ 相同;
- (D) n 相同, (E_{κ}/V) 相同, ρ 相同;
- 2. 设有以下一些过程:
- (1) 两种不同气体在等温下互相混合;
- (2) 理想气体在等容下降温;
- (3) 液体在等温下气化:
- (4) 理想气体在等温下压缩;
- (5) 理想气体绝热自由膨胀。

在这些过程中, 使系统的熵增加的过程是:

(A) (1), (2), (3)

(B) (2), (3), (4)

(C) (1), (4), (5)

(D) (1), (3), (5)

3. 一质点作振幅为 A 的简谐振动,当其速度是最大值的一半时,质点距平衡位置的距离为

- (A)A/2 $(B)A/\sqrt{2}$ $(C)\sqrt{3}A/2$ (D)A
- 4. 平面简谐波在弹性媒质中传播时, 媒质质元在负的最大位移时
- (A) 动能为零,势能为零; (B) 动能为零,势能最大;
- (C) 动能最大,势能为零; (D) 动能最大,势能最大。 []

5. 空气中薄玻珠	离片厚度为 0.4μ	<i>um</i> ,折射率为 1.	5,用白光垂直照射	计, 在可见为	光		
范围内 (400nn	n ~ 760nm) , ,	反射光加强的波					
(A)400nm	(B)480nm	(C)500nm	(D)600nm	[]		
6. 在单缝夫朗	费衍射装置中,	设中央明纹的征		寺使单缝宽 原	度 a		
变为原来的 3/2	2,同时使入射的	的单色光的波长,	λ 变为原来的 3/4,	则屏幕上的	单缝		
衍射条纹中央明	明纹宽度将为原	来的					
(A)3/4倍	(B)2/3倍	(C)9/8倍	(D)1/2倍	1/17]		
7. 自然光以布像	需斯特角入射到·	一玻璃表面上,	则反射光是				
(A)平行于入射	面的振动的线偏	扁报光;					
(B)平行于入射	面的振动占优势	的部分偏振光;	/				
(C)垂直于入射	面振动的线偏振	责光 ;					
(D)垂直于入身	时面的振动占优	势的部分偏振光	;				
8. 波长 λ = 500	Onm 的光沿 x 和	由正向传播,若光	的波长的不确定量	<u></u> 王			
$\Delta \lambda = 10^{-4} nm$,则利用不确定关系 $\Delta p_x \cdot \Delta x \ge h$ 可得光子的 x 坐标的不确定量至少为							
(A)25cm	(B)50cm	(C)250cm	(D)500cm	[]		
9. 将波函数的振幅变为原来的 E 倍,则粒子在空间的分布概率将							
(A) 变为原来的	E ² 倍; (B)变为	为原来的 2E 倍;					
(C)变为原来的	E 倍; (D)不变	;					
10. 下列各组量	子数中,哪一组	且可以描述原子中	中电子的状态	[]		

$$(A)n = 2, l = 2, m_i = 0, m_s = \frac{1}{2};$$

$$(B)n = 3, l = 1, m_i = -1, m_s = -\frac{1}{2};$$

$$(C)n = 1, l = 2, m_i = 1, m_s = \frac{1}{2};$$

$$(D)n = 1, l = 0, m_i = 1, m_s = -\frac{1}{2};$$

二、填空题(共30分)

- 1. (5分) 1mol 氧气(视为刚性双原于分子理想气体)储于一氧气瓶中,温度为
- T,这瓶氧气的内能为_____;分子的平均平动动能为_____;

分子的平均总动能为____。

2. (3 分) 如图所示曲线为处于同一温度 T 时氦(原子量 4)、氖(原子量 20) 和氩(原子量 40) 三种气体分子的速率分布曲线,曲线(a) 是_______分子的速率分布曲线。曲线(c) 是__________分子的速率分布曲线。

3. $(5\,\%)$ 有三个同方向的简谐振动,以(SI)为单位它们的振动方程分别为

 $x_1 = 0.06\cos(15t + 5\pi/4), x_2 = 0.06\cos(15 + 3\pi/4), x_3 = 0.06\cos(15t + \varphi)$ 。则以余弦函数表示的 $x_1 + x_2$ 合振动的振幅为_______; 合振动的初相为______。 为使 $x_1 + x_2 + x_3$ 合振动振幅最大,则 x_3 中的 $\varphi =$ ______; 为使 $x_1 + x_2 + x_3$ 合振动振幅最小,则 x_3 中的 $\varphi =$ ______;

4. (3分) A、B 是简谐波波线上距离小于波长的两点,已知B 点振动的相位比A 点落后 $\pi/3$,波长为 $\lambda=3m$.则A、B 两点相距L=_____。

5. (3 分) 火	车 A 以 20m/s 的速度	向前行驶,	A车司机。	听到本车的汽笛顿率为
120Hz,另一:	火车以 25m/s 的这度	, <i>A</i> 向 迎面驶	$\mathbb{R}_{\mathbb{R}}, \mathbb{R}^{B}$	车司机听到车汽笛的频
率为	(空气中声速	为 340m/s)	0	
6(3分) 用真	真空中波长为 λ 的单位	色光垂直照	射如图	n_1 \downarrow \downarrow
所示的劈尖膊		见察其反射光	光的干涉	n ₂
情况,则劈头	兴顶角的条纹是	(暗、明)	;从劈尖	-
顶角算起, 第	第2条明纹中心对应的	力膜厚为		VAT
o			<	X
7. (5分)用行	母毫米 500 条的光栅双	见察钠光光;	普 (<i>λ</i> = 590	Onm),则当光线垂直入
射时,最多能	定看到条条纹	文; 当光线以	以入射角30	0入射时,最多能看到
条条	长纹, 此时可能看到	的条纹的最	大级次是_	o

8. (3 分)波长为300nm的单色光垂直入射到 $4cm^2$ 的表面上,设光强是

(普朗克常量 $h = 6.63 \times 10^{-34} J \cdot s$, 空气中光速为 $3 \times 10^8 m \cdot s^{-1}$)

_____;每秒撞击表面的光子教为

三计算题(共50分)

 $0.15W \cdot m^{-2}$.则每个光子的能量为

 $1.(10\ \mathcal{H})$ 一定量氢气在保持压强为 4.0×10^5 Pa 不变的情况下,温度由 $0^\circ C$ 升高到 $50^\circ C$ 时,吸收了 6.0×10^4 J 的热量。(1)氢气的量是多少摩尔?(2)氢气内能变化多少?(3)氢气对外做了多少功?(4)如果该氯气的体积保持不变而温度发生同样的变化,则吸收多少热量?

2. (10 分) 平面简谐波沿 x 轴正向传播,如图所示,振幅为 A 。频率为 ν ,

传播速度为u。(1)t=0时,在原点O处的质元由平衡位置向y轴正方向运动,试写出此波的波函数:(2)若经界面反射的波的振幅入射波的振幅相等,试写出反射波的波函数:(3)求在x 轴上因入射波和反射波叠加而静止的各点的位置。

3. $(10\ \mathcal{G})$ 如留所示,波长为 λ 的平面单色光以倾角 $\varphi(\varphi$ 接近 $90^0)$ 照到间距为d 的双缝 S_1 、 S_2 上,双缝到屏的距离为 D(D>>d),在仅考虑屏上O 点附近形成干涉条纹的情况下,求(1) 屏上

南洋出品, 必属精品

各级明纹的位置;(2)相邻明条纹的间距;(3)若将厚度为l,折射率为n的透明薄片置于一个缝后, 使原有的零级明条纹移至屏幕O点处,则倾角 φ 为多少?应加在哪一缝后?

4. $(10\ \beta)$ 双缝中央间距 d=0.1mm,缝宽 a=0.02mm.用波长 $\lambda=600nm$ 的平行单色光垂直入射,双缝后放焦距为 f=2.0m 的透镜,观测屏位于焦平面上,求 (1) 单缝行射中央亮条纹的宽度内有几条干涉主极大条纹?分别是第几级? (2) 在这双缝的中间再开条相同的狭缝。中央亮条纹的宽度内又有几条干涉主极大条纹?分别是第几级?

5. $(5\, \beta)$ 室温 (300K) 下的中子称为热中子。试求热中子的德布罗意波长。(不 考虑相对论效应,中子的质量 $m_n=1.67\times 10^{-27}\,kg$,被耳兹曼常量 $k=1.38\times 10^{-23}J/K$,普朗克常量 $h=6.63\times 10^{-34}J\cdot s$ 。

6. $(5\, \beta)$ 一粒子被限制在相距为l 的两个不可穿透的壁之间,描写粒子状态的 波函数为 $\psi = Cx(l-x)$,式中C 为待定常量,求在 $0\sim l/3$ 发现粒子的概率。

2016 大物下期末参考答案

一、选择题

- 1. B $(p = nkT, \frac{E_K}{V} = n\frac{3}{2}kT, p\mu = \rho RT)$
- 2. D
- 3. C(由定义计算)
- 4. A (以绳为例, 绳质点在最大位移处无形变, 无势能)
- 5. A (考虑半波损失, $2nd = (k + \frac{1}{2})\lambda$)
- 6. D $(a \sin \theta = a \frac{x}{D} = \lambda)$
- 7. C
- 8. C $(p = \frac{h}{\lambda} \rightarrow \rightarrow \Delta p = \frac{h}{\lambda^2} \Delta \lambda)$
- 9. A (概率密度为波函数振幅的平方)
- 10. B

二、填空题

- 1. $\frac{5}{2}RT$; $\frac{3}{2}KT$; $\frac{5}{2}KT$ (平动动能只有 3 个自由度; 注意后两个问的是单个分子)
- 2. 氫;氦 (最概然速率 $V_p = \sqrt{\frac{2RT}{M}}$)
- 3. $0.06\sqrt{2}$ m; π; π; 0 (向量合成或代数合成均可)
- 4. 0.5m (2π对应 3m, 那么π/3 对应 1/2m)
- 5. 136.875Hz (多普勒频移公式)
- 6. 明; $\frac{\lambda}{2n_2}$ (注意到 $n_1 > n_2 > n_3$,反射面均无半波损失;劈尖顶角处为第 1 条明纹,也即零级明纹,第 2 条明纹为一级明纹)
- 7. 7; 万 ($d\sin\theta = k\lambda$, $\sin\theta \le 1$ 解得 k 的范围; 第 2、3 问所列方程变为 $d(\sin\theta + \sin 30^\circ) = k\lambda$)
- 8. 6.63×10^{-19} ; 9.05×10^{13} (第一问E = $h\gamma = \frac{hc}{\lambda}$; 第二问NE = PS)

三、计算题

- 1.
- (1) y=41.24mol

解析: 对氢气, 双原子分子, $C_v = \frac{5}{2} R$; 等压膨胀, $Q = \gamma \left(\frac{5}{2} R + R\right) \Delta T$, 由 此解得 γ

(2) $\Delta E = 4.29 \times 10^4 J$

解析: $\Delta E = \gamma \frac{5}{2} R \Delta T$

(3) $A = 1.71 \times 10^4 J$

解析: $A = Q - \Delta E$

(4) $Q' = 4.29 \times 10^4 J$

解析: 等体膨胀, A = 0, $Q' = \Delta E = \gamma \frac{5}{2} R \Delta T$

2.

(1)
$$y(x,t) = A \sin \left[2\pi \gamma \left(t - \frac{x}{u} \right) \right]$$

解析: 按照波函数定义写出即可

(2)
$$y'(x,t) = A \sin \left[2\pi \gamma \left(t + \frac{x}{u} \right) \right]$$

解析: 先写出入射波在界面 $\mathbf{x} = \frac{3}{4}\lambda$ 处的波函数, $y_{x=\frac{3}{4}\lambda} = Asin\left[2\pi\gamma t - \frac{3}{2}\pi\right]$

再由此写出反射波函数,同时考虑到半波损失, $y'^{(x,t)} = Asin \left[2\pi \gamma \left(t - \frac{1}{2\pi \gamma} \right) \right]$

$$\left| \frac{\frac{3}{4}\lambda - x}{u} \right| - \frac{3}{2}\pi + \pi \right| = A\sin\left[2\pi\gamma\left(t + \frac{x}{u}\right)\right]$$

(3)
$$x = \frac{2k+1}{4}\lambda \ (k = 1, 0, -1, -2 \cdots)$$

解析: $Y(x,t) = y(x,t) + y'^{(x,t)} = 2A\sin(2\pi\gamma t)\cos\left(\frac{2\pi x}{\lambda}\right)$, 然后由 $\cos\left(\frac{2\pi x}{\lambda}\right) = 0$ 求解即可

3.

$$(1) x = k \frac{D\lambda}{d} - D\cos\varphi$$

解析: 明纹条件: $d(\cos \varphi + \sin \theta) = k\lambda$, $\nabla \sin \theta \approx \theta \approx tan\theta = \frac{x}{D}$

(2)
$$\Delta x = \frac{D\lambda}{d}$$

(3)
$$\varphi = \arccos \frac{(n-1)l}{d}, S_2$$

解析: 光程差抵消,则有: $d\cos\varphi = (n-1)l$

4.

(1) 11条; 零到五级

解析: 单缝衍射中央亮条纹的边缘对应一级暗纹位置, $a\sin\varphi=\lambda$, $\nabla\sin\varphi\approx\varphi\approx\frac{x}{f}$, 解得x=60mm, 因此单缝衍射中央亮条纹的位置为- $60mm\sim60mm$ 。

双缝干涉公式,亮纹位置 $\mathbf{x}=\mathbf{k}\frac{f}{a}\lambda=12k\;mm$ 。因此在-60mm~60mm 范围内,k 可取 0,±1,±2,±3,±4,±5,总共有 11 条亮纹,对应零级到五级

(2) 5条; 零到二级

解析:此时 d 变为原来的一半。因为 a 不变,单缝衍射中央亮条纹的位置为-60mm~60mm 不变。而 $\mathbf{x}=\mathbf{k}\frac{f}{d'}\lambda=24k$ mm, k 可取 0, ±1, ±2

5.

$$1.58 \times 10^{-10} \text{ m}$$

解析: 由 $\mathbf{p} = \frac{h}{\lambda}$, 德布罗意波长 $\lambda = \frac{h}{p} = \frac{h}{mv}$, 计算动量时, v取平均速率 $\bar{v} = \sqrt{\frac{8kT}{TT}}$

6. 20.99%

解析: 粒子在各点出现的概率总和为 1,则 $\int_0^l \psi^2 dx = \int_0^l C^2 x^2 (l-x)^2 dx = 1$,解得 $C^2 = \frac{30}{l^5}, \quad \text{则在}0 \sim \frac{l}{3} \text{处},$

$$\int_0^{\frac{l}{3}} \psi^2 dx = \int_0^{\frac{l}{3}} C^2 x^2 (l-x)^2 dx = \frac{30}{l^5} \times \int_0^{l/3} x^2 (l-x)^2 dx = \frac{17}{81} \approx 20.99\%$$

大学物理(下)2015年期末

一.填空题

1. 平面简谐波沿x轴正向传播,在t=0s时的波形曲 线如图所示,则函数波的表达式为_____,距原点 $\frac{2\lambda}{3}$

的 P 点处的振动方程为。

2.如图所示,分别为两种介质, $(折射率分别为<math>n_1$, n_2)

分界面处的入射波和反射波的波形图,则 n

 n_{2} (>,<,=),反射点 P 处入射波和反射波的相位差

为。

3.如图所示为一条绳子上形成的驻波,则此刻波腹处 振动的动能为 (最大,最小,零)势能为 (最

大,最小,零),相距 $\frac{\lambda}{6}$ 的P、Q两点间的相位差

为

4.杨氏双缝实验中,光源 S 向下做微小位移,干涉条纹 (向上向下不)移动; 双缝间距 d 减小,干涉条纹间距 (变宽,变窄,不变)。

5.在折射率 n, -1.60 的玻璃表面镀一层折射率 n, =1.38 的 MgF, 薄膜作为增透

膜。波长 $\lambda = 5000 \, \text{A}$ 的光从空气垂直入射到玻璃片上,为使反射光尽可能减小,

MgF,薄膜厚度至少是__

6.图(a)为一块光学平板玻璃与一个加工过的平面一端接 触构成空气劈尖,用波长为 2 的单色光垂直照射,看到 反射光干涉条纹(实为暗条纹)如图 (b),则干涉条纹说明 平板在 A 处存在 (凸、凹)状缺陷; A 点处对应的空气 薄膜厚度为。

7.迈克尔逊干涉实验中, 若一个反射镜移动 0.066mm, 则 测得干涉条纹移动 192 条,则入射光波长等于 8.若把单缝夫琅费衍射实验装置浸在折射率为 n 的透明液

体中,波长为 λ 的光线垂直入射到宽度为 α 的单缝上,衍射角用 φ 表示,则暗

条纹公式为_____,中央主极大宽度为_

9.若光栅的光栅常数 d、缝宽 a 和入射光波长 λ 都保持不变,而使其缝数 N 增

南洋出品, 必属精品

二.计算题

- 1.杨氏双缝干涉实验中,设两缝间距 d=0.2mm,双缝到观察屏的距离 D=100cm,
 - (1) 以波长 λ =550nm 的单色光垂直入射, 求 第 10 级明纹离开中央明纹中心的距离 x 是多少?

片,o 光和 e 光的相位差为。

(2) 若 改 为 白 光 入 射 (波 长 范 围 为 400nm~760nm), 求第十级光谱的宽度;

- (3) 为测量一块厚度为 $I=1.89\times10^{-2}$ mm 的透明薄片的折射率,将它放在双缝的一条缝后,以波长 $\lambda=550$ mm 的单色光垂直入射,观察到第 20 级亮纹移到了原来中央明纹的位置处,求波片的折射率。
- 2.波长 λ =630nm 的单色平行光垂直入射到宽度为 a=1.0mm 的单缝上,单缝后有一个焦距 f=100cm 的凸透镜,是光线聚焦于屏上。
 - (1) 求第一级极小和第三级亮纹距中央明纹中心的距离是多杀?
 - (2) 若改为 λ' 的单色光垂直入射,其第三级明纹与 λ =630nm 的第二级明纹恰 好重合,求波长 λ' 等于多少?
- 3.如图,一个发射频率为 v_0 =1500Hz 的声源 S,以速度 v=5m/s 向一个固定的反射面运动,已知声波在空气中传播速度为u=340m/s,求声源运动后方 O 点的静止观察者接收到声源发射波的频率、被反射面反射的反射波频率、声源发射波和反射波形成的拍频 v_b 。

 $4.为了测定一个光栅的光栅常数,用波长<math>\lambda = 600$ nm 的平面单色光垂直照射光

- 栅,观察到第二级主级大出现在衍射角 $\varphi=30^\circ$ 的方向上,且第三级缺级。
 - (1) 光栅常数 d 和透光缝可能的最小宽度 a 等于多少?
 - (2) 在选定上述 d 和 a 之后, 能观察到的光谱线主级大的最高级次是多少?
 - (3) 若光线以与光栅平面法线的夹角 $\theta = 30^{\circ}$ 的方向入射,能观察到的光谱线主级大的最高级次是多少?

2015 大物下期末

一、填空题

1. $y(x,t) = 0.5 \cos\left[\frac{\pi}{2}(t-x) + \frac{\pi}{2}\right] \text{ m} ; 0.5 \cos\left(\frac{\pi}{2}t - \frac{5}{6}\pi\right) \text{ m}$

解析:由图像可知 A=0.5, $\lambda=4$, u=1m/s。由 $u=\lambda f$ 解得 f, 则角频率 $\omega=2\pi f$ 。可先写出 O 点的振动方程,然后根据延时性写出 y (x, t) 的方程。第二问取 $x=2\lambda/3$ 代入即可。

2. $< ; \pi$

解析: 界面 P 点处, 入射波与反射波叠加, P 点位移始终为 0, 表明有反射有半波损失。

3. 零; 零; 0

解析: 各质元达到最大位移, 速度为 0, 动能为 0。此时波腹处无形变, 势能也为 0 (实际上势能主要在波节处)。驻波中同一段上各质点的振动相位相同。

4. 向上; 变宽

解析: 零级明纹处, 两束光走过的光程应该相同; $\Delta x = \frac{D}{d}\lambda$

5. 905.8 Å

解析: 两表面均有半波损失,反射光干涉相消: $2n_2d=\left(k+\frac{1}{2}\right)\lambda$, k 取 0 时,d 有最小值

6. \triangle , $\frac{3}{2}\lambda$

解析:干涉条纹上各点对应的空气厚度是相等的。若为凹状缺陷,凹坑里的点的空气厚度比两侧深,需要往左边(劈尖侧)靠 才能出现与两侧的相同空气厚度,那么干涉条纹应向左突出。同理可分析凸状缺陷导致条纹向右突出。注意到半波损失,

暗纹条件为2d = $k\lambda$ 。

7. 687.5nm

解析: 迈克尔逊干涉仪 2d=kλ, 此处 d=0.066mm, k=192

8. $na \sin \varphi = k\lambda$; $\frac{2f\lambda}{na}$

解析:此时光程由 $a\sin\varphi$ 变为 $na\sin\varphi$ 。第二问取 k=1,利用 $\sin\varphi\approx\varphi\approx\frac{x}{f}$ 即可,中

央主极大宽度为2x

9. 更窄; 更亮

解析:由衍射光强与暗纹宽度的公式可推导

10. 完全; 部分; 56.31°

解析: $\tan i_b = \frac{n_2}{n_1} = 1.5$

11. 60°; $\frac{9}{32}I_0$

解析: 自然光通过第一个偏振片后光强为 $\frac{1}{2}I_0$, $\frac{1}{2}I_0cos^2\alpha = \frac{1}{8}I_0$, $\alpha = 60^\circ$ 。第二问,

三个偏振片前后夹角均为 30°,因此 $\frac{1}{2}I_0 \times cos^2 30^\circ \times cos^2 30^\circ = \frac{9}{32}I_0$

12. 垂直; 平行; π/2

二、计算题

1.

(1) 2.75cm

解析: $x = k \frac{D}{d} \lambda$

(2) 1.8cm

解析: $l = k \frac{D}{d} \Delta \lambda$

(3) 1.58

解析: $(n-1)l = 20\lambda$

2.

(1) 0.63mm; 2.205mm

解析: 暗纹条件: $a\sin\varphi=a\frac{x}{f}=k\lambda$, 则 $x=k\frac{\lambda f}{a}$, 此处取 k=1。明纹同理有

$$x = \left(k + \frac{1}{2}\right) \frac{\lambda f}{a}$$
,此处取 k=3

(2) 450nm

解析:
$$\left(3 + \frac{1}{2}\right) \frac{\lambda' f}{a} = \left(2 + \frac{1}{2}\right) \frac{\lambda f}{a}$$

3.

(1) 1478.26Hz

解析: $\gamma_1 = \frac{u}{u+v} \gamma_0$

(2) 1522.39Hz

解析: $\gamma_2 = \frac{u}{u-v} \gamma_0$

(3) 44.13Hz

解析: $\gamma_b = \gamma_2 - \gamma_1$

4.

(1) 2.4μm, 0.8μm

解析: 光栅方程 $d\sin\varphi=k\lambda$,此处取 $\phi=30^\circ$,k=2。缺级数 $k=\frac{d}{a}k'$,k=3时缺级,则 $k\frac{a}{d}=3\frac{a}{d}=k'=1,2,3,4\cdots\geq 1$,解得 $a\geq \frac{d}{3}$

(2) \equiv

解析: $|k| < \frac{d}{\lambda} = 4$ 。缺级数 $k = \frac{d}{a}k' = 3k'$,因此 $k = \pm 3$ 缺级。所以 k 最大

取 2, 最多观察到二级明纹

(3) 五

解析: 此时光栅方程d $(\sin \varphi + \sin \theta) = k\lambda$, 由 $|\sin \varphi| < 1$, 解得-2 < k < 6。 单缝衍射暗纹公式a $(\sin \varphi + \sin \theta) = k'\lambda$, 解得k = 3k'缺级。所以k = 5可取,能观察到五级明纹

2014年大学物理下期末试题

一、填空(共40分)(本题3分)

1. 在容积为 10^{-2} m^3 的容器中,装有质量 200 g 的气体,若气体分子的方

均根速率为 200 m • s ⁻¹ ,	则气体的压强为	

2	(本题3	(分)
≠•		, ,, ,

理想气体分子的平均平动动能与热力学温度 T 的关	系式是
,此式所揭示的气体温度的统计意义是	

3. (本题 4 分)

氮气在标准状态下的分子平均碰撞频率为 $5.42\times10^8~\mathrm{s}^{-1}$,分子平均自由程为

6×10^{-6} cm,	若温度不变,	气压降为	0.2 atm	,	则分子的平均碰撞频率变为
440	, 平均自	由程变为			•

4. (本题 3 分)

如图所示,一平面简谐波沿 Ox 轴负方向传播,波长为 λ ,若 P 处质点的 振 动 方 程 是 $y_P = A\cos(2\pi u + \frac{1}{2}\pi)$, 则 该 波 的 表 达 式 是

		;	P	处	质	点
	_时刻的	的振动壮	犬态与	O 处质点	t1 时刻	的振动
状态相同.						
5. (本题 4 分)						
要使一热力学系统的内能增加,	可以追	通过		或		
两种方式,或者两种方式兼用来完成	戈. 热力	力学系统	充的状态	态发生变化	2时,其	内能的
改变量只决定,	而与_				_无关.	

6. (本题 4 分)

用方解石晶体(负晶体)切成一个截面为正三角形的 棱镜,光轴方向如图.若自然光以入射角 *i* 入射并产生 双折射.试定性地分别画出 *o* 光和 *e* 光的光路及振动方 向.

7. (本题 4 分)

氢原子的运动速率等于它在 $300 \,\mathrm{K}$ 时的方均根速率时,它的德布罗意波长是_______. 质量为 $m=1 \,\mathrm{g}$,以速度 $v=1 \,\mathrm{cm} \cdot \mathrm{s}^{-1}$ 运动的小球的德布罗意波长是______. (普朗克常量为 $h=6.63\times 10^{-34} \,\mathrm{J} \cdot \mathrm{s}$,玻尔兹曼常量 $k=1.38\times 10^{-23} \,\mathrm{J} \cdot \mathrm{K}^{-1}$,氢原子质量 $m_{\mathrm{H}}=1.67\times 10^{-27} \,\mathrm{kg}$)

8. (本题 3 分)

如果电子被限制在边界 x 与 $x+\Delta x$ 之间, Δx =0.5 Å,则电子动量 x 分量的不确定量近似地为______kg • m / s. (不确定关系式 Δx • Δp \geq h ,普朗克常量 h =6.63×10⁻³⁴ J • s)

9. (本题 3 分)

粒子在一维无限深方势阱中运动(势阱宽度为 a), 其波函数为

$$\psi(x) = \sqrt{\frac{2}{a}} \sin \frac{3\pi x}{a} \qquad (0 < x < a),$$

粒子出现的概率最大的各个位置是 x = 。

10. (本题 2 分)

热力学第二定律的实质是,一切实际宏观过程都是_ 过程。

11. (本题 4 分)

根据量子力学理论,原子内电子的量子态由 (n, l, m_l, m_s) 四个量子数表

南洋出品, 必属精品

征 , 那 么 , 处 于 基 态 的 氦 原 子 内 两 个 电 子 的 量 子 态 可 由 和 两组量子数表征。

12. (本题 3 分)

设描述微观粒子运动的波函数为 $\psi(\overset{
m Y}{r},t)$,则 $\psi\psi^*$ 表示______

______, $\psi(\overset{\mathsf{v}}{r},t)$ 须满足的条件

是_____。

二、计算题(共60分)

13. (本题 6 分)

己知某粒子系统中粒子的速率分布曲线如图

所示,即

$$f(v) = \begin{cases} Kv^3, & 0 < v < v_0 \\ 0, & v_0 < v < \infty \end{cases}$$

求: (1) 比例常数 K=?

- (2) 粒子的平均速率 $\bar{v}=?$
- (3) 速率在 $0\sim v_1$ 之间的粒子占总粒子数的 1/16 时,

 v_1 =? (答案均以 v_0 表示)

14. (本题 10 分)

1 mol 氦气作如图所示的可逆循环过程,其中 ab 和 cd 是绝热过程, bc 和 da 为等体过程,已知 $V_1 = 16.4$ L, $V_2 = 32.8$ L, $p_a = 1$ atm, $p_b = 3.18$ atm, $p_c = 4$ atm, $p_d = 1.26$ atm,试求: (1) 在各态氦气的温度; (2) bc 过程的熵变 ΔS_{bc} ; (3) 循环效率。

(1 atm =
$$1.013 \times 10^5$$
 Pa , $R = 8.31$ J· mol⁻¹· K⁻¹)

15. (本题 6 分)

用单色光照射某一金属产生光电效应,如果入射光的波长从 $\lambda_1 = 400 \text{ nm}$ 减到 $\lambda_2 = 360 \text{ nm}$ (1 nm = 10^{-9} m),遏止电压改变多少?数值加大还是减小?

(普朗克常量 $h = 6.63 \times 10^{-34} \,\text{J} \cdot \text{s}$, 基本电荷 $e = 1.60 \times 10^{-19} \,\text{C}$)

16. (本题 10 分)

已知氢电离能为 13.60 eV。设氢原子从某一定态移去一个电子所需要的能量是 0.85 eV。试问从上述定态向激 发能为 10.20eV 的另一定态跃迁时,所产生的谱线的波长是多少?属什么线系?

17. (本题 5 分)

已知 X 射线光子的能量为 0.60 MeV, 若在康普顿散射中散射光子的波长为入射光子的 1.2 倍, 试求反冲电子的动能.

18. (本题 6 分)

水的折射率为 1.33, 玻璃的折射率为 1.50, 当光由水中射向玻璃而反射时, 布儒斯特角是多少? 当光由玻璃射向水中而反射时, 布儒斯特角又是多少?

19. (本题 7分)

如图所示,牛顿环装置中的平凸透镜与平板玻璃有一小缝隙 e_0 。现用波长为 λ 的单色光垂直照射,已知平凸透镜的曲率半径为 R,求反射光形成的牛顿环的各暗环半径。

20. (本题 10 分)

南洋出品, 必属精品

波长为 600nm 的单色光垂直入射到一光栅上,第二级、第三级分别出现在 $\sin\theta_2=0.20$ 和 $\sin\theta_3=0.30$ 处,第四级缺级,求(1)光栅常数是多少?(2)狭 缝最小可能宽度有多大?(3)按上述选定 a、b 值,实际呈现的全部级次是什么?

14 年大物下期末答案

一、填空

1. $\frac{8}{3} \times 10^5 (2.67 \times 10^5)$

解析: $p = \frac{1}{3}nm\bar{v}^2 = \frac{1}{3}\frac{N}{V}m\bar{v}^2 = \frac{1}{3}\frac{\Sigma m}{V}\bar{v}^2$ 。

- 2. $\bar{\varepsilon} = \frac{3}{2}kT$; 温度是大量分子热运动的集体表现
- 3. $1.084 \times 10^8 \ s^{-1}$; $3 \times 10^{-5} \ cm$ 解析: \bar{v} 只与温度有关,不变。p = nkT,n变为 0.2 倍。
- 4. $y = A\cos\left(2\pi\gamma t + \frac{1}{2}\pi + 2\pi\frac{L+x}{\lambda}\right); \quad t_1 + \frac{L}{\lambda\gamma} + \frac{k}{\gamma} \quad (k \in \mathbb{Z})$
- 5. 做功; 热传递; 初末状态的温度差; 过程
- 6.

7. $1.46 \times 10^{-10} \ m$; $6.63 \times 10^{-29} \ m$

解析:
$$\lambda = \frac{h}{p} = \frac{h}{mv}$$
。

- 8. 1.326×10^{-23}
- 9. $\frac{1}{6}a$, $\frac{3}{6}a$, $\frac{5}{6}a$

解析: $|\varphi(x)|^2$ 取最大值点。

- 10. 不可逆
- 11. $\left(1,0,0,+\frac{1}{2}\right)$, $\left(1,0,0,-\frac{1}{2}\right)$
- 12. 概率密度;单值、有限、连续

二、计算题

13. $\frac{4}{v_0^4}$, $\frac{4}{5}v_0$, $\frac{1}{2}v_0$

解析:
$$\int_0^{v_0} K v^3 dv = \frac{K}{4} v_0^4 = 1$$
, $K = \frac{4}{v_0^4}$;

$$\bar{v} = \int_0^\infty v f(v) dv = \int_0^{v_0} K v^4 dv = \frac{4}{5} v_0;$$

$$\int_0^{v_1} K v^3 dv = \frac{v_1^4}{v_0^4} = \frac{1}{16}, \quad v_1 = \frac{1}{2} v_0^{\circ}$$

14. $T_a = 399.84~K$, $T_b = 635.74K$, $T_c = 799.67K$, $T_d = 503.79K$, $\Delta S_{bc} = 2.86~J \cdot K^{-1}$, 36.59%

解析:
$$T = \frac{pV}{R}$$
;

$$dS = \frac{1}{T}dQ = \frac{1}{T}C_v dT, \quad \Delta S_{bc} = \frac{3}{2}R \times ln \frac{T_c}{T_b};$$

$$\eta = 1 - \frac{Q_{\dot{B}\dot{C}}}{Q_{dB}} = 1 - \frac{Q_{da}}{Q_{bc}} = 36.59\%_{\circ}$$

15. 0.345V, 加大

解析:
$$h\gamma = h\frac{c}{\lambda} = E_k - W = eU_c - W$$
, λ 减小, U_c 加大。

16. 487.5nm, 巴耳末系

解析: 定态一的能量为-0.85eV,定态二的能量为-13.60+10.20eV=-3.40eV。而 $E=h\gamma=\frac{hc}{\lambda}, \text{因为}\sqrt{\frac{13.6}{0.85}}=4, \sqrt{\frac{13.6}{3.4}}=2, \text{从第四能级向第二能级跃迁,属巴耳末系。}$

17. 0.10MeV

解析: $E = h\gamma = \frac{hc}{\lambda}$, λ 变为 1.2 倍, E 变为 $\frac{5}{6}$ 倍, 光子能量由 0.60 MeV 变为 0.50 MeV, 由能量守恒知电子动能为 0.10MeV。

18. 48.44°, 41.56°

解析:
$$i_1 = \tan^{-1} \frac{1.5}{1.33} = 48.44^{\circ}$$
, $i_2 = \tan^{-1} \frac{1.33}{1.5} = 41.56^{\circ}$ 。

19. r = $\sqrt{(k\lambda - 2e_0)R}$

解析:与牛顿环类似,将d换为 $d+e_0$ 即可。

20. $6 \times 10^{-6} \, m$, $1.5 \times 10^{-6} \, m$, $k = 0, \pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 7, \pm 9$

解析:
$$d = \frac{k\lambda}{\sin\theta}$$
;

$$k = \frac{d}{a}k'$$
缺级, $k = 4$ 时, $k' = 4\frac{a}{d}$ 为整数, $a_{min} = \frac{1 \times d}{4} = \frac{d}{4}$

$$k < \frac{d}{\lambda} = 10$$
,且 $k = \frac{d}{a}k' = 4k'$ 缺级。

更多精彩,尽在南洋书院学生会微信公众 号的南卷汇专栏,欢迎通过公众号提供题目或 反馈错题信息,南卷汇需要您的支持。

