```
a) (b) weights);
pdate_mini_batch
         print "Epoc
abla_b =
abla_w = [np.zer
    delta_nabla
elf.weights =
elf.biases =
ackprop(self, x,
          in zip(self.biases, self.weights):
ctivation
        np.dot(w, activation)+b
   activations.append(activation)
           2f. cost_derivative(activations(
               np. dot(delta, layers):

np. self.num_layers):
               d-prime(z) activations[-1-1].transpose(), del
```

#### Al 330: Machine Learning

#### Fall 2023

#### **Dr. Wessam EL-Behaidy**

Associate Professor, Computer Science Department,
Faculty of Computers and Artificial Intelligence,
Helwan University.

#### **Dr. Ensaf Hussein**

Associate Professor, Computer Science Department, Faculty of Computers and Artificial Intelligence, Helwan University.



# Lecture 8 Model Evaluation and Diagnosis

#### Slides of:

https://www.coursera.org/learn/machine-learning at Stanford University (Prof. Andrew Ng)

# Hypothesis Evaluation

## To Evaluate hypothesis

- One way to break down our dataset into the three sets is:
- Training set: 60%
- Cross validation set: 20% (This validation set is essentially used as a fake test set to tune the hyper-parameters)
- Test set: 20%

**Idea #3**: Split data into **train**, **val**, and **test**; choose hyperparameters on val and evaluate on test

Better!

| train | validation | test |
|-------|------------|------|
| 60%   | 20%        | 20%  |

## Why validation set is important?

- 1.  $h_{\theta}(x) = \theta_0 + \theta_1 x$
- 2.  $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$
- 3.  $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$
- 10.  $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$

Choose  $\theta_0 + \dots \theta_5 x^5$ 

How well does the model generalize? Report test set error  $J_{test}(\theta^{(5)})$ 

Problem:  $J_{test}(\theta^{(5)})$  is likely to be an optimistic estimate of generalization error. i.e. our extra parameter (d = degree of polynomial) is fit to test set.

## Train/validation/test error for Linear Regression

Training error:

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

**Cross Validation error:** 

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

Test error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

## **Model Selection**

- We can now calculate three separate error values for the three different sets using the following method:
- 1. Optimize the parameters in Θ using the training set for each polynomial degree.
- 2. Find the polynomial degree d with the <u>least</u> error using the cross validation set.
- 3.Estimate the generalization error using the test set with  $J_{test}(\Theta^{(d)})$  ( $\mathbf{d}$  = theta from polynomial with lower error)
- This way, the degree of the polynomial d has not been trained using the test set.

# Train/validation/test error for Logistic Regression

- Learn parameter  $\theta$  from training data.
- Tune hyperparameters using validation data.
- Compute test set error:

$$J_{test}(\theta) = -\frac{1}{m_{test}} \sum_{i=1}^{m_{test}} y_{test}^{(i)} \log h_{\theta}(x_{test}^{(i)}) + (1 - y_{test}^{(i)}) \log h_{\theta}(x_{test}^{(i)})$$

- Misclassification error (0/1 misclassification error):

$$err(h_{\theta}(x), y) = \begin{cases} 1, & if h_{\theta}(x) \ge 0.5, y = 0, or, \\ 0, & otherwise \end{cases}$$
 if  $h_{\theta}(x) \le 0.5, y = 1$  (error)

→ Example: Error = 5%, so accuracy= 95%

### **Cross-Validation**

- For small datasets, sometimes we use a more sophisticated technique for hyperparameter tuning called **cross-validation**.
  - A Instead of arbitrarily picking the first data points to be the validation set and rest training set,
  - **Get a better and less noisy estimate** of how well hyperparameters work by iterating over different validation sets and averaging the performance across these.

#### **Cross-Validation**

- For example: 5-fold cross-validation
- 1. Split the training data into 5 equal folds (parts),
- 2. Use 4 of them for training, and 1 for validation.
- 3. Iterate over which fold is the validation fold, and evaluate the performance,
- 4. Finally average the performance across the different folds.

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

| fold 1 | fold 2 | fold 3 | fold 4 | fold 5 | test |
|--------|--------|--------|--------|--------|------|
| fold 1 | fold 2 | fold 3 | fold 4 | fold 5 | test |
| fold 1 | fold 2 | fold 3 | fold 4 | fold 5 | test |

Useful for small datasets, but not used too frequently in deep learning

# Performance Metrics

# Accuracy in a Classification Model

• **Accuracy** is measured as the percentage of predicted results that match the expected results.

• Ex: if there are 1000 results and 850 predicted results match the expected results, then the accuracy is 85%

# Problem with accuracy metric (measure): Skewed classes

- Skewed classes basically refer to a dataset, wherein the number of training example belonging to one class out-numbers heavily the number of training examples belonging to the other.
- Consider a binary classification (cancer is labelled 1 and not cancer labelled 0), where a cancerous patient is to be detected based on some features.
  - only 1 % of the data provided has cancer positive.
- If a system naively gives the prediction as all 0's, still the prediction accuracy will be 99%.

# Problem with accuracy metric (measure): Irrelevant features

The data may be fitted against a feature that is not relevant.

#### Ex:

• In image classification, if all images of one class have small/similar background, the model may match based on the background, not the object in the image.

## Commonly used Metrics

Accuracy is only one metric.

#### Other metrics commonly used are:

- Precision
- Recall (Sensitivity)
- Specificity
- F1-score
- ROC AUC

## **Confusion Matrix**

- The confusion matrix is a performance measurement technique that visualizes the accuracy of a classifier by comparing the actual and predicted classes.
- It is called a confusion matrix because it shows how confused the model is between the classes.
- The class of interest is commonly called the positive class, and the rest negative class

## **Binary Confusion Matrix**

| Confusio        | n matrix | Predict  | ed class |
|-----------------|----------|----------|----------|
|                 |          | Positive | Negative |
| s               | Positive | TP       | FN       |
| Actual<br>Class | Negative | FP       | TN       |

- True Positive (TP): The outcome is correctly classified as positive.
- False Negative (FN): The outcome is incorrectly classified as negative when it is positive.
- False positive (FP): The outcome is incorrectly classified as positive when it is negative.
- True Negative (TN): The outcome is correctly classified as negative.

## **Example of Confusion Matrix**

• If class "Daisy" is the positive class (y=1), so:

• TP=9 FN=1

• FP=2 TN=8

**Predicted Label** 

|       | Daisy | Tulip |
|-------|-------|-------|
| Daisy | 9     | 1     |
| Tulip | 2     | 8     |

**True Label** 

#### Accuracy

**True Label** 

0

- Accuracy is calculated as the number of all correct predictions divided by the total number of the dataset
- The best ACC is 1.0, whereas the worst is 0.0



### Precision

- Precision is calculated as the number of correct positive predictions divided by the total number of positive predictions (predicted as positives)
- The best precision is 1.0, whereas the worst is 0.0



|   | 1 | 0 |
|---|---|---|
| 1 | 9 | 1 |
| 0 | 2 | 8 |

**True Label** 

$$Precision = \frac{tp}{tp + fp}$$

## Recall

- Sensitivity = Recall = True Positive Rate
- Recall is calculated as the number of correct positive predictions divided by the total number of positives (true positives)
- > The best recall is 1.0, whereas the worst is 0.0



## Specificity

Specificity= True Negative Rate

Specificity is calculated as the number of correct negative predictions divided by the total number of negatives (true negatives)



## Precision/Recall for skewed data

y=1 in presence of **rare class** (i.e. has cancer) that we want to detect



#### **Precision**

(Of all patients where we predicted y=1, what fraction actually has cancer?)

$$\frac{\textit{True positive}}{\textit{\# predicted positive}} = \frac{\textit{True positive}}{\textit{True positive}} + \frac{\textit{True positive}}{\textit{True positive}}$$

#### Recall

(Of all patients that actually have cancer, what fraction did we correctly detect as having cancer?)

$$\frac{\textit{True positive}}{\textit{\# actual positive}} = \frac{\textit{True positive}}{\textit{True positive} + \textit{False negative}}$$

Now, if we evaluate a scenario where the classifier predicts all 0's then TP=0, and the recall of the model will be 0, which then points out the inability of the system.

## Trading off precision and recall

Logistic regression:  $0 \le h_{\theta}(x) \le 1$ 

Predict 1 if  $h_{\theta}(x) \ge 0.5$  , 0.7, 0.9, 0.3

Predict 0 if  $h_{\theta}(x) < 0.5$ , 0.7, 0.9, 0.3

Suppose we want to predict y = 1 (cancer)only if very confident.

→ Higher precision, lower recall Suppose we want to avoid missing too many cases of cancer (avoid false negatives).

→ Higher recall, lower precision

$$ext{Recall} = rac{tp}{tp + fn}$$
  $ext{Precision} = rac{tp}{tp + fp}$ 



## Threshold

• More generally: Predict 1 if  $h_{\theta}(x) \geq$  threshold.

$$Recall = \frac{tp}{tp + fn}$$

$$\text{Precision} = \frac{tp}{tp + fp}$$



# F<sub>1</sub> Score (F score)

How to compare precision/recall numbers?

|             | Precision(P) | Recall (R) | Average | F <sub>1</sub> Score |
|-------------|--------------|------------|---------|----------------------|
| Algorithm 1 | 0.5          | 0.4        | 0.45    | 0.444                |
| Algorithm 2 | 0.7          | 0.1        | 0.4     | 0.175                |
| Algorithm 3 | 0.02         | 1.0        | 0.51    | 0.0392               |

Average:  $\frac{P+R}{2}$ 

 $\mathsf{F_1}$  Score:  $2\frac{PR}{P+R}$ 

### **ROC Curve**

- The Receiver Operating Characteristics(ROC) curve
- The ROC curve is a evaluation measure that is based on two basic evaluation measures
  - Specificity = True Negative Rate
  - Sensitivity = Recall = True Positive Rate



### **ROC Curve**

- > A classifier with the random performance level always shows a straight line
- Two areas separated by this ROC curve
  - ROC curves in the area with the top left corner indicate good performance levels
  - ROC curves in the other area with the bottom right corner indicate poor performance levels



## How to Plot ROC Curve?

#### Dynamic cut-off thresholds

Cut-off = 0.020

Cut-off = 0.015

Cut-off = 0.010

| Instance | Yes   | No    | Actual | Instance | Predict | Туре | Instance | Predict | Туре | Instance | Predict | Туре |
|----------|-------|-------|--------|----------|---------|------|----------|---------|------|----------|---------|------|
| 1        | 0.008 | 0.992 | N      | 1        | N       | TN   | 1        | N       | TN   | 1        | N       | TN   |
| 2        | 0.011 | 0.989 | N      | 2        | N       | TN   | 2        | N       | TN   | 2        | Υ       | FP   |
| 3        | 0.021 | 0.979 | Υ      | 3        | Υ       | TP   | 3        | Υ       | TP   | 3        | Υ       | TP   |
| 4        | 0.009 | 0.991 | N      | 4        | N       | TN   | 4        | N       | TN   | 4        | N       | TN   |
| 5        | 0.014 | 0.986 | N      | 5        | N       | TN   | 5        | N       | TN   | 5        | Υ       | FP   |
| 6        | 0.015 | 0.985 | N      | 6        | N       | TN   | 6        | Υ       | FP   | 6        | Υ       | FP   |
| 7        | 0.012 | 0.988 | N      | 7        | N       | TN   | 7        | N       | TN   | 7        | Υ       | FP   |
| 8        | 0.015 | 0.985 | Y      | 8        | N       | FN   | 8        | Υ       | TP   | 8        | Υ       | TP   |

| TP=1 | FN=1 |
|------|------|
| FP=0 | TN=6 |

| TP=2 | FN=0 |
|------|------|
| FP=1 | TN=5 |

| TP=2 | FN=0 |
|------|------|
| FP=4 | TN=2 |

### How to Plot ROC Curve?

- True positive rate (TPR) = TP/(TP+FN)

  and False positive rate (FPR) = FP/(FP+TN)
- Use different cut-off thresholds (0.00, 0.01, 0.02,..., 1.00), calculate the TPR and FPR, and plot them into graph. That is receiver operating characteristic (ROC) curve.
- Example







| TP=2 | FN=0 |
|------|------|
| FP=4 | TN=2 |

## AUC

#### AUC(Area under the ROC curve) score

- An advantage of using ROC curve is a single measure called AUC score
- As the name indicates, it is an area under the curve calculated in the ROC space
- Although the theoretical range of AUC score is between 0 and 1, the actual scores of meaningful classifiers are greater than 0.5, which is the AUC score of a random classifier
- ROC curves clearly shows classifiers A outperforms classifier B

The ROC curve is a useful tool for a few reasons:

- •The curves of different models can be compared directly in general or for different thresholds.
- •The area under the curve (AUC) can be used as a summary of the model skill.



# Confusion Matrix with 3 Classes True Positives

 The True positive value is where the actual value and predicted value are the same. They exists at diagonal.

|           |        | Apple | Orange | Pear |
|-----------|--------|-------|--------|------|
|           | Apple  | 50    | 5      | 50   |
| ual class | Orange | 10    | 50     | 20   |
|           | Pear   | 5     | 5      | 0    |

## True Negatives for Class Apple

 The True Negative value for a class will be the sum of values of all columns and rows except the values of that class that we are calculating the values for.

|              |        | Apple | Orange | Pear |
|--------------|--------|-------|--------|------|
|              | Apple  | 50    | 5      | 50   |
| Actual class | Orange | 10    | 50     | 20   |
|              | Pear   | 5     | 5      | 0    |

## True Negatives for Class Orange



## True Negatives for Class Pear



#### False Positives of Class Apple

 The False-positive value for a class will be the sum of values of the corresponding column except for the TP value.



### False Positives of Class Orange

|              |        | Apple | Orange | Pear |
|--------------|--------|-------|--------|------|
|              | Apple  | 50    | 5      | 50   |
| Actual class | Orange | 10    | 50     | 20   |
|              | Pear   | 5     | 5      | 0    |

#### False Positives of Class Pear

|              |        | Apple | Orange | Pear |
|--------------|--------|-------|--------|------|
|              | Apple  | 50    | 5      | 50   |
| Actual class | Orange | 10    | 50     | 20   |
|              | Pear   | 5     | 5      | 0    |

#### False Negatives of Class Apple

 The False-negative value for a class will be the sum of values of corresponding rows except for the TP value.

|              |        | Apple | Orange | Pear |
|--------------|--------|-------|--------|------|
|              | Apple  | 50    | 5:     | 50   |
| Actual class | Orange | 10    | 50     | 20   |
|              | Pear   | 5     | 5      | 0    |

### False Negatives of Class Orange

| 30           |        |       | Predicted class |      |
|--------------|--------|-------|-----------------|------|
|              |        | Apple | Orange          | Pear |
|              | Apple  | 50    | 5               | 50   |
| Actual class | Orange | 10    | 50              | 20   |
|              | Pear   | 5     | 5               | 0    |

### False Negatives of Class Pear

|              | <u> </u> |       | Predicted class |      |
|--------------|----------|-------|-----------------|------|
|              |          | Apple | Orange          | Pear |
|              | Apple    | 50    | 5               | 50   |
| Actual class | Orange   | 10    | 50              | 20   |
|              | Pear     | 5     | 5               | 0    |

#### Example 2

$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN} = \frac{30+60+80}{300} = 170/300 = .556$$

$$Recall_{class=0} = \frac{TP_{class=0}}{TP_{class=0} + FN_{class=0}} = \frac{30}{30 + 20 + 10} = .5$$
 $Recall_{class=1} = \frac{TP_{class=1}}{TP_{class=1} + FN_{class=1}} = \frac{60}{60 + 50 + 10} = .5$ 
 $Recall_{class=2} = \frac{TP_{class=2}}{TP_{class=2} + FN_{class=2}} = \frac{80}{80 + 20 + 20} = .667$ 
 $Recall = \frac{.5 + .5 + .667}{3} = 0.556$ 

$$Precision_{class=0} = \frac{TP_{class=0}}{TP_{class=0} + FP_{class=0}} = \frac{30}{30 + 50 + 20} = .3$$

$$Precision_{class=1} = \frac{TP_{class=1}}{TP_{class=1} + FP_{class=1}} = \frac{60}{60 + 20 + 20} = .6$$

$$Precision_{class=2} = \frac{TP_{class=2}}{TP_{class=2} + FP_{class=2}} = \frac{80}{80 + 10 + 10} = 0.8$$

$$Precision = \frac{.3 + .6 + .8}{3} = 0.556$$



## Model Diagnosis

#### Debugging a learning algorithm

- However, when you test your hypothesis on a new test set, you find that it makes unacceptably large errors in its predictions. What should you try next?
  - Get more training examples
  - Try smaller sets of features
  - Try getting additional features
  - Try adding polynomial features  $(x_1^2, x_2^2, x_1x_2, \text{etc.})$
  - Try decreasing  $\lambda$
  - Try increasing  $\lambda$

#### Machine Learning Diagnostic

• Diagnostic: A test that you can run to gain insight into what is/isn't working with a learning algorithm, and gain guidance as to how best to improve its performance.

• Diagnostics can take time to implement, but doing so can be a very good use of your time.

#### Model selection (Degree of the polynomial)

- 1.  $h_{\theta}(x) = \theta_0 + \theta_1 x$
- 2.  $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$
- 3.  $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$
- **10.**  $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$

#### Bias/variance



High bias (underfit)





"Just right"



High variance (overfit)

#### Bias/variance

Training error: 
$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross validation error:  $J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$ 



#### Diagnosing bias vs. variance

Suppose your learning algorithm is performing less well than you were hoping. ( $J_{cv}(\theta)$  or  $J_{test}(\theta)$  is high.) Is it a bias problem or a variance problem?



Bias (underfit):

Variance (overfit):

#### Choosing the regularization parameter $\lambda$

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

These will be our cost function and we try to find the best regularization parameter

#### Linear regression with regularization

Large  $\lambda$ High bias (underfit)

$$\lambda = 10000. \ \theta_1 \approx 0, \theta_2 \approx 0, \dots$$

Intermediate  $\lambda$  "Just right"

Small  $\lambda$  High variance (overfit)

#### Choosing the regularization parameter $\lambda$

Model: 
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

- 1. Try  $\lambda = 0$
- 2. Try  $\lambda = 0.01$
- 3. Try  $\lambda = 0.02$
- 4. Try  $\lambda = 0.04$
- 5. Try  $\lambda = 0.08$

•

**12.** Try 
$$\lambda = 10$$

# Bias/variance as a function of the regularization parameter $\boldsymbol{\lambda}$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^{2}$$



#### Learning curves

$$J_{train}(\theta) = \frac{1}{2m} \sum_{\substack{i=1 \ m_{cv}}}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^{2}$$





#### High bias



If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.



#### High variance



If a learning algorithm is suffering from high variance, getting more training data is likely to help.



#### Designing a high accuracy learning system

E.g. Classify between confusable words.
{to, two, too}, {then, than}

For breakfast I ate \_\_\_\_\_ eggs.

#### Algorithms

- Perceptron (Logistic regression)
- Winnow
- Memory-based
- Naïve Bayes



"It's not who has the best algorithm that wins.

It's who has the most data."

[Banko and Brill, 2001]

#### Large data rationale

Use a learning algorithm with many parameters (e.g. logistic regression/linear regression with many features; neural network with many hidden units).

Use a very large training set (unlikely to overfit)

#### Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict housing prices. However, when you test your hypothesis in a new set of houses, you find that it makes unacceptably large errors in its prediction. What should you try next?

- Get more training examples fix high variance
- Try smaller sets of features fix high variance
- Try getting additional features fix high bias
- Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, {
  m etc})$  fix high bias
- Try decreasing  $\lambda$  fix high bias
- Try increasing  $\lambda$  fix high variance

# Thanks