Math 217: The Proof of the spectral Theorem Professor Karen Smith

(c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License.

THE SPECTRAL THEOREM:

A square matrix is symmetric if and only if it has an orthonormal eigenbasis.

Equivalently, a square matrix is symmetric if and only if there exists an *orthogonal* matrix S such that S^TAS is diagonal.

That is, a matrix is orthogonally diagonalizable if and only if it is symmetric.

A. For each item, find an explicit example, or explain why none exists.

- 1. An orthonormal eigenbasis for an arbitrary 3×3 diagonal matrix;
- 2. A non-diagonal 2×2 matrix for which there exists an orthonormal eigenbasis (you do not have to find the eigenbasis, only the matrix)
- 3. A non-symmetric matrix which admits an orthonormal eigenbasis.
- 4. A non-diagonalizable 2×2 matrix
- 5. A non-symmetric but diagonalizable 2×2 matrix.
- 6. A square matrix Q such that Q^TQ has no real eigenvalues.
- 7. A 2×2 symmetric matrix with an eigenvalue of algebraic multiplicity 2 and geometric multiplicity 1.
- 8. A 2×2 non-invertible matrix with an eigenvalue of algebraic multiplicity 2 and geometric multiplicity 1.

Solution note:

- 1. The standard basis always works.
- 2. Any symmetric matrix, such as $\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$.
- 3. No such thing, by spectral theorem.
- $4. \quad \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}.$
- $5. \quad \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}.$
- 6. No such thing: Q^TQ is symmetric (check $(Q^TQ)^T=Q^TQ$), so the Spectral theorem says all its eigenvalues are real.
- 7. No such matrix by spectral theorem. Spectral theorem tells us a symmetric matrix is diagonalizable, but this would mean that the geometric multiplicities need to equal the algebraic multiplicities for all eigenvalues, in order to add up to 2.
- 8. $\begin{bmatrix} 0 & 0 \\ \pi & 0 \end{bmatrix}$

B. The proof of the spectral theorem. Part I.

- 1. Show that if A can be orthogonally diagonalized, then A is symmetric. [Hint: write A as product of matrices you can easily transpose.] This proves one direction of the spectral theorem.
- 2. Suppose A is symmetric. Let λ_1 and λ_2 be distinct eigenvalues. Show that the corresponding eigenspaces are orthogonal. [Hint: Take v and w eigenvectors with different eigenvalues and compute $\vec{w} \cdot A\vec{v}$ using matrix multiplication¹.]
- 3. Prove that a symmetric matrix is diagonalizable, then it is orthogonally diagonalizable. (Hint: use Gram-Schmidt on each eigenspace).

(This not a complete proof of the Spectral Theorem—we still need to see why a symmetric matrix is diagonalizable).

Solution note:

- 1. Suppose A can be orthogonally diagonalized. This means $S^TAS = D$ where S is orthogonal (So $S^T = S^{-1}$) and D is diagonal. Transpose both sides: $(S^TAS)^T = D^T$. For a diagonal matrix D, we have $D = D^T$, so $(S^TAS)^T = S^TA^TS = D$. Rearranging, we see that both A and A^T are equal to SDS^T (using again that $S^T = S^{-1}$). So $A = A^T$.
- 2. Let v be a λ_1 eigenvector and w a λ_2 eigenvector. We need to show that $\vec{v} \cdot \vec{w} = 0$. Using the hint, compute $\vec{v} \cdot (A\vec{w}) = \vec{v}^T A \vec{w}$, which equals $(A^T \vec{v})^T \vec{w}$. Using $A = A^T$, we have $\vec{v} \cdot (A\vec{w}) = (A\vec{v}) \cdot \vec{w}$. Now using that \vec{v} and \vec{w} are eigenvectors, we have $\vec{v} \cdot \lambda_2 \vec{w} = \lambda_1 \vec{v} \cdot \vec{w}$, which means $\lambda_2 \vec{v} \cdot \vec{w} = \lambda_1 \vec{v} \cdot \vec{w}$. So either $\vec{v} \cdot \vec{w} = 0$, in which case the eigenvalues are orthogonal (so we are done!) or we can divide both sides by $\vec{v} \cdot \vec{w} = 0$ to get $\lambda_2 = \lambda_1$, which is a contradition.
- 3. Let $\lambda_1, \ldots, \lambda_r$ be the distinct eigenvalues of A. Let E_1, \ldots, E_r be the associated eigenspaces. We know their dimensions add up to n (where A is $n \times n$.) Each E_i has a basis, which we can assume is orthonormal by Gram Schmidt. But also, the vectors in E_i and E_j , if i j, are always orthogonal, so putting together these orthonormal eigenbases for the various E_i we have an orthonormal set (hence linearly independent set). The must span \mathbb{R}^n since there are n of them. This is an orthonormal eigenbasis.

¹If you still need a hint: figure out how to take advantage of the symmetry of A