MATH 601 HOMEWORK (DUE 9/4)

HIDENORI SHINOHARA

Exercise. (2.1) Show that the function $g: \mathbb{R} \to S^1$, $g(r) = \exp(2\pi i r)$, where $i^2 = -1$, satisfies the property that g(r) = g(r') if and only if $r \sim r'$. Use this to explicitly construct a bijective map from the orbit space of the action to S^1 , $g: \mathbb{R}/\sim \mathbb{Z} \mathbb{R} \to S^1$.

Proof. • Let $r, r' \in \mathbb{R}$ such that $r \sim r'$. Then $\mathbb{Z} * r = \mathbb{Z} * r'$. Since $0 * r = 0 + r = r \in \mathbb{Z} * r$, there must exist a $k \in \mathbb{Z}$ such that k * r' = r. Therefore, k + r' = r.

$$g(r) = \exp(2\pi i r)$$

$$= \exp(2\pi i (k + r'))$$

$$= \exp(2\pi i k + 2\pi i r')$$

$$= \exp(2\pi i k) \exp(2\pi i r')$$

$$= \exp(2\pi i r')$$

$$= g(r').$$

• Let $r, r' \in \mathbb{R}$ such that g(r) = g(r').

$$\exp(2\pi i r) = \exp(2\pi i r') \implies \exp(2\pi i (r - r')) = 1$$

$$\implies \cos(2\pi (r - r')) + i \sin(2\pi (r - r')) = 1$$

$$\implies \sin(2\pi (r - r')) = 0$$

$$\implies r - r' \in \mathbb{Z}.$$

Let k = r - r'. Since $r = 0 + r = 0 * r \in \mathbb{Z} * r$ and $r = k + r' = k * r' \in \mathbb{Z} * r'$, $(\mathbb{Z} * r) \cap (\mathbb{Z} * r') \neq \emptyset$. Since two equivalence classes are either disjoint or identical, this implies that $\mathbb{Z} * r = \mathbb{Z} * r'$. In other words, $r \sim r'$.

TODO

Exercise. (2.2) Let $*: G \times S \to S$ be a left action of G. Show that $s \star g = g^{-1} * s$ defines a right action of G on S.

Proof. Let $s \in S, g, h \in G$ be given.

$$(s \star g) \star h = h^{-1} * (s \star g)$$

$$= h^{-1} * (g^{-1} * s)$$

$$= (h^{-1}g^{-1}) * s$$

$$= (gh)^{-1} * s$$

$$= s \star (gh).$$

Let $e \in G$ denote the identity element and let $s \in S$ be given.

$$s \star e = e^{-1} * s$$
$$= e * s$$
$$= s.$$

Therefore, \star is indeed a right action of G on S.