学院: 数据科学与计算机学院 专业: 计算机类

姓名: 廖永滨 学号: 17341097 日期: 2018 年 6 月 13 日

实验题目: 计数器的设计

实验报告

一. 实验内容:

- 1、(1)使用 JK 触发器设计一个 16 进制异步减法计数器,并用逻辑分析仪观察并记录 CP 和每一位的输出波形。(2)使用 JK 触发器设计一个 16 进制同步加法计数器,并用逻辑分析仪观察并记录 CP 和每一位的输出波形
- 2、使用 JK 触发器和门电路设计实现一个二进制四位计数器模仿 74LS194 功能。要求在实验箱上设计实现左移或右移功能;在 proteus 软件上实现置零,保持,左移,右移,并行送数功能。
- 3、用 JK 触发器和门电路设计一个特殊的 12 进制同步计数器(实验箱完成)
- 4、在 3 基础上增加开关 D, 能控制计数器的计数顺序(用 Basys3 实验板完成)

二. 实验思路:

- 1. (1)由于异步计数器的特性, clk 端存在时延, 将 Q0 接到下一个 jk 触发器的 clk 端, 易得, 前一个 clk 端和后一个 clk 端频率为两倍关系, 以此为基础 进行设计。(2)由于计数器为同步, 故对所有 jk 端, 应该对上一状态进行判 定, 决定是否进行进位(翻转)故需列好对应的驱动方程。
- 2. 根据 741s194 的对应功能,结合 jk 触发器的特性进行设计。考虑到有左移、右移、保持、置数等多种功能,利用 741s153 进行选择操作,功能逐个解决。对比如下:

JK触发器功能表:

Ф	J	Κ	Q	Q^{+1}	功能
1	0	0	0	0	保
1	0	0	1	1	持
1	0	1	0	0	清
1	0	1	1	0	零
1	1	0	0	1	置
1	1	0	1	1	位
1	1	1	0	1	翻
ļ	1	1	1	0	转

表(二)74LS194 功能表

Cr	S_1	S ₀	工作状态	
0	X	X	置零	
1	0	0	保持	
1	0	1	右移	
1	1	0	左移	
1	1	1	并行送数	

- 3. 以 列好状态转化图-> 画次态卡诺图-> 列状态方程-> 列驱动方程-> 连接电路,为顺序,完成对应任务
- 4. 增设开关 D,保留 3 的内容,并设计 3 的内容倒序的电路,利用表达式: F = D * S1 + D * S2,F 为最终表达式,S1 为正序内容,S2 为倒序内容,则 D 的真假值决定了 F 采用哪种内容

三. 实验元件:

内容 1: CLOCK、JK 触发器*4、逻辑开关、逻辑分析仪、(741s08*2)

内容 2: CLOCK, logicstate 若干, NOT (非门) 若干, jk 触发器*4, 74LS153*4

内容 3: CLOCK, logicstate 若干, NOT (非门), 741s08, 741s00, jk 触发器*4,

内容 4: 同 3

四. 实验步骤

内容 1. 实验步骤:

(1) 让 clock 连接第一个 jk 触发器的 clk 端,第一个 jk 触发器的 Q 端连接第二 jk 触发器的 clk 端,依次类推。所有触发 jk 触发器的 j 端和 k 端悬空或者 置高电平(处于翻转状态)如下:

(2) 根据进位要求,即当前面状态均为1时进行进位(翻转)。则有: J0 = K0 = 1 (一直翻转)连高电平,J1 = K1 = Q0(当前面为高电平时翻转),J2 = K2 = Q0*Q1,J3 = K3 = Q0*Q1*Q2,根据表达式连接电路。所有 jk 触发器的 clk 端均与脉冲连接。

内容 2. 实验步骤:

1. 根据右移性质,结合 jk 触发器机制,设计右移接法如下:

- 2. 根据上述连接实验箱
- 3. 对于左移,原理同上,保持端、置数端可使用 741s153 进行选择。接法如下:

根据 A B (也就是 S0 S1) 端的选择,决定 J、K 端所连的端口。例如保持端,即是 S0 = S1 = 0,此时选择 1X0 与 2X0, J = K = 0,实现了储存功能。

内容 3. 实验步骤:

- 1. 先由状态最大状态为 12, 状态数为 12 确定用 4 个触发器。
- 2.画出次态卡诺图

Q	₁ nQ ₀ n				
0.100.1		00	01	11	10
Q ₃ ⁿ Q ₂	00	Х	0010	0100	0011
)	01	0101	0110	1000	0111
	11	0001	х	х	х
	10	1001	1010	1100	1011
				12	

3.求出每个触发器的状态方程

4.求各触发器的驱动方程

$$\begin{cases} Q_0^{n+1} = \overline{Q_0} \\ Q_1^{n+1} = Q_0 \overline{Q_1} + \overline{Q_0} Q_1 \\ Q_2^{n+1} = Q_1 Q_0 \overline{Q_2} + (\overline{Q_3} \overline{Q_1} + \overline{Q_3} \overline{Q_0}) Q_2 \\ Q_3^{n+1} = \overline{Q_2} Q_3 + Q_2 Q_1 Q_0 \overline{Q_3} \end{cases}$$

$$\begin{cases} J_0 = K_0 = 1 \\ J_1 = K_1 = Q_0 \\ J_2 = Q_1 Q_0, \quad K_2 = \overline{\overline{Q_3}} \overline{Q_1} + \overline{Q_3} \overline{Q_0} = \overline{\overline{Q_3}} \overline{Q_1} \overline{Q_0} \\ J_3 = Q_2 Q_1 Q_0, \quad K_3 = Q_2 \end{cases}$$

5.检查自启动

内容 4. 实验步骤: 略

五. 仿真设计图

实验内容 1:

实验内容 2:

实验内容 3:

实验内容 4: 如下

六. 实验结果与分析(波形图)

实验内容 1:

注: 两条白线中间为一个周期,时延太短,故无法看出

(实验内容 1-2)

实验内容 2: (无需波形检查)

实验内容 3:

实验内容 4: basys 板已经检查

七. 实验心得体会:

- 1.basys3 电路设计与 proteus 有不同之处,且纠正很费时间。
- 2.掌握了时序电路的设计方法
- 3.对选择器(74ls153)的使用更得心应手了