

UNIVERSITÀ DEGLI STUDI DI CAGLIARI

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA

Immersioni isometriche del piano iperbolico nello spazio Euclideo

Relatore Prof. Andrea Loi Tesi di laurea di Michela Loi

Indice

In	trod	uzione	3
1	Piano iperbolico, disco e semipiano di Poincarè		5
	1.1	Tre modelli di geometria iperbolica	5
		1.1.1 Isometria tra (D, g_D) e (H, g_H)	6
		1.1.2 Isometria tra (\mathbb{R}^2, g_{hyp}) e (H, g_H)	7
2	Cui	rve asintotiche	9
	2.1	Equazione delle curve asintotiche e parametrizzazione locale	
		asintotica	9
	2.2	Punti iperbolici e curve asintotiche	11
	2.3	La rete di Tchebyshef	12
3	$\mathbf{A}\mathbf{p}_{\mathbf{j}}$	plicazione esponenziale e Teorema di Hadamard	15
	3.1	Definizione e prime proprietà	15
	3.2	Ricoprimenti	17
	3.3	Il Teorema di Hadamard	17
	Il Teorema di Hilbert		20
	<i>4</i> 1	Dimostrazione del Teorema 4 1	20

Introduzione

Lo studio dell'immergibilità isometrica di una data varietà Riemanniana (S, g)nello spazio Euclideo n-dimensionale \mathbb{R}^n (cioè \mathbb{R}^n dotato della metrica piatta) è stato affrontato per la prima volta da John Nash nel suo famoso articolo The embedding problem for Riemannian manifolds (vedi [6]). In questo lavoro viene dimostrato che per un certo n sufficientemente grande (dipendente dalla dimensione della varietà S) esiste un'immersione isometrica di (S, g) in \mathbb{R}^n . Negli anni successivi alla pubblicazione del lavoro di Nash vari matematici hanno cercato di trovare la dimensione ottimale n per la quale una data varietà Riemanniana (S, g) possa essere immersa in \mathbb{R}^n (vedi in particolare il lavoro di Gromov [4]). In generale trovare un tale n è molto complicato e un problema ancora aperto per varietà Riemanniane generali. In questa tesi consideriamo il caso delle immersioni isometriche in uno spazio euclideo \mathbb{R}^n , quando (S,q) è una superficie completa con curvatura di Gauss costante e negativa. Grazie al lavoro di Poznyak (vedi [7]), tale superficie ammette un'immersione isometrica in \mathbb{R}^4 . In effetti il numero 4 è la dimensione ottimale. Infatti questo è una conseguenza del seguente teorema.

Teorema di Hilbert. Sia S una superficie dotata di una metrica Riemanniana ds^2 , rispetto alla quale S è completa e ha curvatura di Gauss costante e negativa. Allora S non può essere immersa isometricamente in \mathbb{R}^3 .

In questa tesi forniamo una dimostrazione di tale teorema. L'idea della dimostrazione è la seguente. Per il Teorema di Hadamard (vedi Capitolo 3) possiamo assumere che la nostra superficie sia il piano iperbolico, cioè $S = \mathbb{R}^2$ e $g = g_{hyp}$, definita come nella (1.5). Se (\mathbb{R}^2, g_{hyp}) ammettesse un'immersione isometrica in \mathbb{R}^3 allora esisterebbe un intorno di un punto $p \in \mathbb{R}^2$ ed una parametrizzazione locale $X: U \subset \mathbb{R}^2 \longrightarrow S$, tale che le curve coordinate siano asintotiche, formino una rete di Tchebyshef, e inoltre ogni quadrilatero formato da esse avrebbe area più piccola di 2π (vedi Capitolo 2 e in particolare il Corollario 2.15). Un'analisi dettagliata di questa parametrizzazione mostra che essa può essere estesa ad una parametrizzazione globale $X: \mathbb{R}^2 \longrightarrow S = \mathbb{R}^2$, tale che le curve coordinate siano parametrizzate con ascissa curvilinea, o equivalentemente, formino una rete di Tchebyshef (vedi Capitolo 4). Allora sarebbe possibile ricoprire $S = \mathbb{R}^2$ con quadrilateri Q_n , formati da curve asintotiche,

Indice 4

tali che $Q_n\subset Q_{n+1}$, con l'area di Q_n minore di 2π ; in contraddizione col fatto che l'area di (\mathbb{R}^2,g_{hyp}) è infinita.

Capitolo 1

Piano iperbolico, disco e semipiano di Poincarè

1.1 Tre modelli di geometria iperbolica

Per i dettagli sul capitolo consultare [2, pag.430-431] e [1, pag.405]. Consideriamo tre modelli di geometria iperbolica

1. disco di Poincarè $(D, g_{\scriptscriptstyle D})$ Sia

$$D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$$
(1.1)

dotato della metrica

$$g_D = 4\frac{dx^2 + dy^2}{(1 - x^2 - y^2)} \tag{1.2}$$

2. semipiano di Poincarè (H, g_H)

Sia

$$H = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$$
 (1.3)

dotato della metrica

$$g_{H} = \frac{dx^2 + dy^2}{y^2} \tag{1.4}$$

3. piano iperbolico (\mathbb{R}^2, g_{hyp}) Sia \mathbb{R}^2 dotato della metrica

$$g_{hyp} = dx^2 + e^{2u}dy^2. (1.5)$$

Entrambi i modelli rappresentano superfici (varietà di dimensione 2) in \mathbb{R}^3 , complete e con curvatura di Gauss K = -1.

1.1.1 Isometria tra (D, g_D) e (H, g_H)

Ricordiamo che una trasformazione di Möebius è una applicazione $T: \mathbb{C} \longrightarrow \mathbb{C}$ tale che $z \longmapsto T(z) = \frac{az+b}{cz+d}$, con $(ad-bc) \neq 0$ dove $a,b,c,d \in \mathbb{C}$. Consideriamo la trasformazione corrispondente alla matrice

$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \tag{1.6}$$

per la quale risulta det(A) = 1.

Identifichiamo $D = \{z \in \mathbb{C} \mid |z| < 1\} \text{ e } H = \{z' \in \mathbb{C} \mid Im(z') > 0\}.$

Sia
$$\psi: D \longrightarrow H$$
 definita da $z \longmapsto \psi(z) = \frac{z+i}{zi+1}$.

Si verifica facilmente che essa è un diffeomorfismo. Dimostriamo invece che per ogni $z \in D$ e $v, w \in T_zD$ si ha

$$g_D(v,w)_z = g_H(d\psi_z(v),d\psi_z(w))_{\psi(z)} \ dove \ d\psi_z: T_zD \longrightarrow T_{\psi(z)}H. \tag{1.7}$$

Un vettore tangente a \mathbb{C} in z, può essere identificato ad un vettore ξ in modo tale che $dT_z(\xi) = \frac{dT(z+t\xi)}{dt}|_{t=0}$, $t \in \mathbb{R}$, da cui $dT_z(\xi) = \frac{a\xi}{cz+d} - \frac{c\xi(az+b)}{(cz+d)^2} = \frac{(ad-bc)\xi}{(cz+d)^2}$.

Tenendo conto di come è stata definita ψ si ottiene:

$$v \longmapsto d\psi_z(v) = \frac{v}{\left(\frac{i}{\sqrt{2}}z + \frac{1}{\sqrt{2}}\right)^2} = \frac{2v}{(iz+1)^2}$$
$$w \longmapsto d\psi_z(w) = \frac{w}{\left(\frac{i}{\sqrt{2}}z + \frac{1}{\sqrt{2}}\right)^2} = \frac{2w}{(iz+1)^2}$$

e, dalle equazioni (1.2) e (1.4), segue

$$g_D(v, w)_z = \frac{4Re(v\bar{w})}{(1 - |z|^2)^2}$$

$$g_H(d\psi(v'), d\psi(w'))_{\psi(z)} = \frac{Re(v'\bar{w'})}{Im(z')} = \frac{4Re(v\bar{w})}{(1+iz)^4} \frac{|1+iz|^4}{(1-|z|^2)^2} = 4\frac{Re(v\bar{w})}{(1-|z|^2)^2}.$$

Si dimostra così l'equazione nella (1.7). Quest'ultima e la proprietà di essere un diffeomorfismo permettono di concludere che il disco e il semipiano di Poincarè sono tra loro isometrici.

1.1.2 Isometria tra (\mathbb{R}^2, g_{hyp}) e (H, g_H)

Consideriamo la mappa $\phi: \mathbb{R}^2 \longrightarrow H$ definita da $(u,v) \mapsto \phi(u,v) = (v,e^{-u})$. ϕ è una applicazione differenziabile, la cui inversa è ancora differenziabile. Pertanto possiamo concludere che ϕ è un diffeomorfismo. Sia

$$< v, w >_p = < (d\phi)_p(v), (d\phi)_p(w) >_{\phi(p)} \forall v, w \in T_p H$$
 (1.8)

la metrica indotta da ϕ su H, dove $\ (d\phi)_p:T_p\mathbb{R}^2\longrightarrow T_{\phi(p)}H$ per la quale

$$jac(\phi) = \frac{\partial(x,y)}{\partial(u,v)} = \begin{pmatrix} 0 & 1\\ -e^{-u} & 0 \end{pmatrix}$$
 (1.9)

Se $v = (v_1, v_2)$ e $w = (w_1, w_2) \in T_p \mathbb{R}^2$ allora le seguenti

$$(d\phi)_p(v) = \frac{\partial}{\partial x} \quad \text{e} \quad (d\phi)_p(w) = \frac{\partial}{\partial y}$$
implicano che $\frac{\partial}{\partial x} = \frac{\partial}{\partial v} , \frac{\partial}{\partial y} = -e^u \frac{\partial}{\partial u} \quad \text{da cui}$

$$\left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial x} \right\rangle = \frac{1}{u^2} = e^{2u} , \quad \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right\rangle = 0 , \quad \left\langle \frac{\partial}{\partial v}, \frac{\partial}{\partial v} \right\rangle = \frac{1}{u^2}.$$

L'equazione (1.8) e la proprietà di essere un diffeomorfismo per ϕ , implicano che il piano iperbolico e il semipiano di Poincarè siano isometrici.

Teorema 1.1. Sia (S, ds^2) una superficie completa e semplicemente connessa, con curvatura costante, negativa. Allora (S, ds^2) è globalmente isometrica a (\mathbb{R}^2, g_{hyp}) .

Osservazione 1.2. Un importante risultato relativo a (\mathbb{R}^2, g_{hyp}) , che sarà utile nell'ambito della dimostrazione del Teorema di Hilbert, è il fatto che la sua area sia infinita.

Ricordiamo che per una varietà (M,g), dotata di metrica $g = Edu^2 + 2Fdudv + Gdv^2$, si definisce $Area(M) = \int \int \sqrt{EG - F^2} dudv$.

Considerando la (1.5) otteniamo

$$Area(\mathbb{R}^2, g_{hyp}) = \int \int \sqrt{e^{2u}} du dv = \int \int e^u du dv = \infty.$$
 (1.10)

Capitolo 2

Curve asintotiche

2.1 Equazione delle curve asintotiche e parametrizzazione locale asintotica

In questo capitolo consideriamo alcuni risultati sulle curve coordinate di una superficie $M \subset \mathbb{R}^3$.

Per i dettagli sul capitolo consultare [2, cap.2-3].

Definizione 2.1. Una direzione L di M in $p \in M$ è un sottospazio unidimensionale dello spazio tangente T_pM .

Definizione 2.2. Sia $v \in T_pM$. Definiamo curvatura normale di M nella direzione di v, la seguente

$$K_N(v) = \frac{\langle S_p(v), v \rangle}{\langle v, v \rangle}$$
 (2.1)

dove $S_p:T_pM\longrightarrow T_pM$ è l'operatore di forma ed N è il vettore normale unitario ad M in p.

Definizione 2.3. Sia p un punto di M. Una direzione asintotica di M in p è una direzione dello spazio tangente lungo la quale la curvatura normale è nulla.

Definizione 2.4. Una curva $\alpha: I \longrightarrow M$ è asintotica se per ogni $p \in \alpha(I)$ e per ogni v tangente ad α in p la retta generata da v è una direzione asintotica.

Lemma 2.5. Sia α una curva asintotica contenuta nell'immagine di una parametrizzazione locale X di una superficie M. Poniamo $\alpha(t) = X(u(t), v(t))$, allora queste due condizioni sono tra loro equivalenti:

1.
$$e(\alpha(t))\dot{u}(t)^2 + 2f(\alpha(t))\dot{u}(t)\dot{v}(t) + g(\alpha(t))\dot{v}(t)^2 = 0$$
 per ogni t

2.
$$II(\dot{\alpha}(t), \dot{\alpha}(t)) = 0$$

 $con\ e,f,g\ coefficienti\ della\ seconda\ forma\ fondamentale\ II.$

Dimostrazione. Se $\alpha(t) = X(u(t), v(t))$ si ha $\dot{\alpha}(t) = X_u \dot{u} + X_v \dot{v}$. Sostituendo $\dot{\alpha}(t)$ nella (2.1) ed eseguendo i calcoli si ottiene :

$$k_N(\dot{\alpha}(t)) = \frac{e(\alpha(t))\dot{u}^2 + 2f(\alpha(t))\dot{u}\dot{v} + g(\alpha(t))\dot{v}^2}{E(\alpha)(t)\dot{u}^2 + 2F(\alpha)(t)\dot{u}\dot{v} + G\alpha(t)\dot{v}^2}$$
(2.2)

da cui segue la tesi.

Osservazione 2.6. Dall'equazione (2.2) segue che l'equazione di una curva asintotica è data dalla seguente:

$$e\dot{u}^2 + 2f\dot{u}\dot{v} + g\dot{v}^2 = 0 (2.3)$$

Definizione 2.7. Una parametrizzazione locale asintotica su una superficie regolare $M \subset \mathbb{R}^3$ è una parametrizzazione locale per la quale le linee coordinate sono curve asintotiche per M.

Teorema 2.8. Sia X una parametrizzazione locale per la quale $f \neq 0$. Allora X è una parametrizzazione locale asintotica se e solo se e = g = 0.

 $Dimostrazione.(\Longrightarrow)$ Se X è una parametrizzazione locale asintotica allora per la (2.2) si ha :

per (u₀ , v(t)) , u₀ $\in \mathbb{R}$, la (2.3) implica che $g(\dot{v}^2)=0$ da cui g=0;

per (u(t) , v_0) , v_0 \in \mathbb{R} , la (2.3) implica che $e(\dot{u}^2)=0$ da cui e=0.

(<==) Se e=g=0 dalla (2.3) si ricava $2f\dot{u}\dot{v}=0$ da cui $f\dot{u}\dot{v}=0$.

Per cui le curve coordinate parametrizzate da $(u_0,v(t))$ e $(u(t),v_0)$ sono soluzione dell'equazione (2.3).

2.2 Punti iperbolici e curve asintotiche

Ricordiamo che un punto p $\in M\subset \mathbb{R}^3$ è detto iperbolico se $K_p<0$, dove K_p denota la curvatura di Gauss di M in p.

Teorema 2.9. In un intorno di un punto iperbolico $p \in M$ esistono due famiglie di curve asintotiche.

Dimostrazione. Sia X una parametrizzazione di M per la quale poniamo $p = \mathbf{X}(u_0, v_0)$ e $v \in T_pM$ tale che $v = aX_u(u_0, v_0) + bX_v(u_0, v_0)$.

Affinchè v rappresenti una direzione asintotica, per la Definizione 2.3 e per l'equazione (2.1) si deve avere

$$ea^2 + 2fab + gb^2 = 0. (2.4)$$

Tenendo presente le formule che esprimono i coefficienti della seconda forma fondamentale e, f, g, e ponendo

$$\tilde{e} = \det \begin{pmatrix} X_{uu} \\ X_u \\ X_v \end{pmatrix} \quad \tilde{f} = \det \begin{pmatrix} X_{uv} \\ X_u \\ X_v \end{pmatrix} \quad \tilde{g} = \det \begin{pmatrix} X_{vv} \\ X_u \\ X_v \end{pmatrix} \quad (2.5)$$

l'equazione (2.4) diventa

$$\tilde{e}a^2 + 2\tilde{f}ab + \tilde{g}b^2 = 0. \tag{2.6}$$

In un intorno di un punto iperbolico p l'equazione (2.6) ammette radici reali. Si ha pertanto una fattorizzazione

$$\tilde{e}a^2 + 2\tilde{f}ab + \tilde{g}b^2 = (Aa + Bb)(Cc + Dd)$$

dove A, B, C, D sono funzioni reali.

L'equazione differenziale (2.3) può essere riscritta nella forma seguente: $(A\dot{u} + B\dot{v})(C\dot{u} + D\dot{v}) = 0$.

Una famiglia di curve asintotiche è rappresentata dalle curve soluzione di $(A\dot{u} + B\dot{v}) = 0$ e l'altra dalle curve soluzione di $(C\dot{u} + D\dot{v}) = 0$.

Dal Teorema 2.8 seguono i corollari:

Corollario 2.10. Condizione necessaria e sufficiente affinchè in un punto iperbolico le curve coordinate siano asintotiche è e = g = 0.

Corollario 2.11. Sia $p \in M$, un punto iperbolico. Allora è possibile riparametrizzare un intorno di p in modo tale che le curve coordinate di tale parametrizzazione siano curve asintotiche.

2.3 La rete di Tchebyshef

Sia (M, g) una varietà di dimensione 2.

Definizione 2.12. Le curve coordinate di una parametrizzazione X(u, v) per la varietà costituiscono una rete di Tchebyshef se i lati opposti di un qualunque quadrilatero, formato da essi, hanno lunghezza uguale .

Proposizione 2.13. Condizione necessaria e sufficiente affinchè le curve coordinate formino una rete di Tchebyshef è che :

$$\frac{\partial E}{\partial v} = \frac{\partial G}{\partial u} = 0.$$

Lemma 2.14. Se in $p \in M$ le curve coordinate di una parametrizzazione X(u,v) di M costituiscono una rete di Tchebyshef, allora è possibile riparametrizzare un intorno di p in modo tale che E=1, $F=\cos\theta$, G=1, dove θ sarà l'angolo formato dalle curve coordinate.

Dimostrazione. Siano E, F, G i coefficienti della prima forma fondamentale per una parametrizzazione X(u,v). Indichiamo con \bar{E} , \bar{F} , \bar{G} i coefficienti relativi ad una riparametrizzazione locale di M, $\bar{X}(\bar{u},\bar{v})$.

Il cambiamento di coordinate, espresso da $\bar{X}(\bar{u},\bar{v})=X(u(\bar{u},\bar{v}),v(\bar{u},\bar{v}))$, porta ad avere:

$$\begin{split} \bar{E} &= E \left(\frac{\partial u}{\partial \bar{u}} \right)^2 + G \left(\frac{\partial v}{\partial \bar{u}} \right)^2 + 2F \frac{\partial u}{\partial \bar{u}} \frac{\partial v}{\partial \bar{u}} \\ \bar{G} &= E \left(\frac{\partial u}{\partial \bar{v}} \right)^2 + G \left(\frac{\partial v}{\partial \bar{v}} \right)^2 + 2F \frac{\partial u}{\partial \bar{v}} \\ \bar{F} &= E \frac{\partial u}{\partial \bar{u}} \frac{\partial u}{\partial \bar{v}} + G \frac{\partial v}{\partial \bar{u}} \frac{\partial v}{\partial \bar{v}} + F \frac{\partial u}{\partial \bar{u}} \frac{\partial v}{\partial \bar{v}} + F \frac{\partial v}{\partial \bar{u}} \frac{\partial u}{\partial \bar{v}}. \end{split}$$

Per la Proposizione 2.13 si ha:

$$\frac{\partial E}{\partial v} = 0 \Longrightarrow E = E(u)$$
$$\frac{\partial G}{\partial u} = 0 \Longrightarrow G = G(v)$$

Definiamo $\bar{u} = \int (\sqrt{E}du) e \bar{v} = \int (\sqrt{G}dv)$. Allora le equazioni (2.3) diventano:

$$\bar{E} = E\left(\frac{\partial u}{\partial \bar{u}}\right)^2 = E\left(\frac{1}{E}\right) = 1$$

$$\bar{G} = G\left(\frac{\partial v}{\partial \bar{v}}\right)^2 = G\left(\frac{1}{G}\right) = 1$$

$$\bar{F} = F\frac{\partial u}{\partial \bar{u}}\frac{\partial v}{\partial \bar{v}} = F\left(\frac{1}{\sqrt{EG}}\right) = \frac{F}{\sqrt{EG}} = \cos\theta.$$

L'ultima uguaglianza segue dal fatto che se θ è l'angolo compreso tra X_u e X_v allora

$$\cos \theta = \frac{\langle X_u, X_v \rangle}{||X_u||||X_v||} = \frac{F}{\sqrt{EG}}.$$
 (2.7)

Se le curve coordinate formano una rete di Tchebyshef la curvatura sezionale è data dalla seguente formula:

$$K = -\frac{\theta_{uv}}{\sin \theta}. (2.8)$$

Corollario 2.15. Sia $M \subset \mathbb{R}^3$, una superficie completa con curvatura di Gauss costante e negativa. Allora per ogni punto $p \in M$ esiste una parametrizzazione locale $X: U \subset \mathbb{R}^2 \longrightarrow M$ in cui le curve coordinate sono asintotiche e formano una rete di Tchebyshef. Inoltre l'area di un qualunque quadrilatero formato da tali curve è più piccola di 2π .

Dimostrazione. Osserviamo preliminarmente che possiamo assumere K=-1, in quanto esiste un'immersione di (S,ds^2) in \mathbb{R}^3 se e solo se esiste un'immersione di (S,cds^2) in \mathbb{R}^3 per ogni c>0. Poichè K(p)<0 per ogni $p\in X(U)=V$, per il Corollario 2.11 possiamo riparametrizzare un intorno di p,V', in modo tale che le curve coordinate siano curve asintotiche. Inoltre dal Corollario 2.10 segue e=g=0, con e e g coefficienti della seconda forma fondamentale di M. In V' si ha: $K=\frac{eg-f^2}{EG-F^2}=\frac{N_u\wedge N_v}{X_u\wedge X_v}$ da cui $N_u\wedge N_v=K(X_u\wedge X_v);\; N=\frac{X_u\wedge X_v}{||X_u\wedge X_v||}$ da cui $X_u\wedge X_v=ND$ ponendo $\sqrt{EG-F^2}=D$.

 $N_u \wedge N_v = KND$ può essere riscritta come $(N \wedge N_v)_u - (N \wedge N_u)_v = 2(N_u \wedge N_v) = 2KDN$.

Tenendo conto delle seguenti uguaglianze:

$$N \wedge N_u = \frac{X_u \wedge X_v}{D} \wedge N_u = \frac{1}{D}[(X_u \wedge X_v) \wedge N_u] = \frac{1}{D}[\langle X_u, N_u \rangle X_v - V_u]$$

$$< X_v, N_u > X_u] = \frac{1}{D} (fX_u - eX_v) \quad \text{e} \quad N \wedge N_v = \frac{X_u \wedge X_v}{D} \wedge N_v = \frac{1}{D} [(X_u \wedge X_v) \wedge N_v] = \frac{1}{D} [< X_u, N_v > X_v - < X_v, N_v > X_u] = \frac{1}{D} (gX_u - fX_v)$$
e del fatto che per le nostre ipotesi, $K = -1$, si ricava $-\frac{f^2}{D^2} = -1$ da cui $\frac{f}{D} = \pm 1$.

Segue:
$$N \wedge N_u = \frac{1}{D}(fX_u) = \pm X_u \in N \wedge N_v = \frac{1}{D}(-fX_v) = \mp X_v.$$

$$2KDN = 2(-1)DN = \mp X_{vu} - \pm X_{uv} = \mp X_{vu} \mp X_{uv} = \pm X_{uv}.$$

 $KDN = \pm X_{uv}$ implica che N è parallelo a X_{uv} .

Ma allora da $E=< X_u, X_u>$ segue $E_v=2< X_{uv}, x_u>=0$, e da $G=< X_v, X_v>$ si ha $G_u=2< X_{vu}, X_v>0$.

Poichè vale la Proposizione 2.13, segue la tesi della prima parte del corollario. Poichè le curve coordinate sono asintotiche e formano una rete di Tchebyshef, per il Lemma 2.14, possiamo riparametrizzare un intorno di p in modo tale che $E=1,\ F=\cos\theta,\ G=1.$ Sia Q il quadrilatero formato da tali curve. Calcoliamo l'area di Q, tenendo conto che dall'equazione (2.8), per K=-1, si ricava $\theta_{uv}=\sin\theta$.

$$\begin{split} A(Q) &= \int_{Q} \sqrt{1 - \cos^{2} \theta} du dv = \int_{Q} \sin \theta du dv = \int_{Q} \theta_{uv} = \\ &= \int_{u_{1}}^{u_{2}} \int_{v_{1}}^{v_{2}} \theta_{uv} du dv = \theta(u_{1}, v_{1}) - \theta(u_{2}, v_{2}) + \theta(u_{2}, v_{2}) - \theta(u_{1}, v_{2}) \\ &= \alpha_{1} + \alpha_{3} - (\pi - \alpha_{2}) - (\pi - \alpha_{4}) = \sum_{i=1}^{4} \alpha_{i} - 2\pi < 2\pi. \end{split}$$

Capitolo 3

Applicazione esponenziale e Teorema di Hadamard

In questo capitolo ricordiamo la definizione di mappa esponenziale e dimostriamo il Teorema di Hadamard. Per maggiori dettagli consultare [2] e [3].

3.1 Definizione e prime proprietà

Sia $M \in \mathbb{R}^3$ una superficie regolare e $p \in M$.

Definiamo l'applicazione esponenziale

$$exp_p: T_pM \longrightarrow M, \ v \longmapsto exp_p(v) = \gamma(1, p, v)$$
 (3.1)

la quale associa ad un vettore fissato $v\in T_pM$, un punto di M, ottenuto valutando la geodetica $\gamma:I\in\mathbb{R}\longrightarrow M$

- 1. $\gamma(0) = p$
- 2. $\dot{\gamma}(0) = v$

per il valore del parametro $t = 1, t \in I$.

L'esponenziale è una applicazione che gode delle seguenti proprietà:

- 1. è differenziabile
- 2. è iniettiva se ristretta ad un aperto

$$B_{\varepsilon}(0) = \{ v \in T_p M : ||v|| < \varepsilon \} \subset T_p M, \tag{3.2}$$

con $\varepsilon > 0$, scelto opportunamente.

Diamo ora la definizione di distanza tra due punti, p e q, su una superficie M. Sia $l(\alpha)$ la lunghezza di una qualunque curva α in M, differenziabile a tratti, congiungente p con q, allora:

Definizione 3.1. La distanza d(p,q) dal punto p al punto q è data da $d(p,q) = \inf l(\alpha)$.

Teorema 3.2 (Hopf-Rinow).

Una superficie M è completa (come spazio metrico con la distanza definita sopra) se e solo se per ogni $p \in M$ l'applicazione $exp_p : T_pM \longrightarrow M$ è definita su tutto lo spazio tangente.

Per la dimostrazione del Teorema di Hopf-Rinow si faccia riferimento al [2, cap.5, pag.333,], o al [1, cap.7, pag.343,] oppure al [3, cap.7, pag.146,]. Richiamiamo ora delle importanti nozioni che saranno utili in seguito per la comprensione della dimostrazione del fatto che la mappa esponenziale sia un diffeomorfismo.

Proposizione 3.3. L'applicazione esponenziale è un diffeomorfismo locale, cioè per ogni punto $p \in M$ esiste un aperto $U \subset T_pM$ tale che $(exp_p)_{|U}$: $U \longrightarrow exp_pU$ sia un diffeomorfismo.

Dimostrazione. Sia $B_{\varepsilon}(0)$ definita come nella (3.2), allora $exp_p: B_{\varepsilon}(0) \subseteq T_pM \longrightarrow M$ è ben definita. Per dimostrare la proposizione resta da far vedere che il differenziale $(dexp_p)_0: T_oT_pM \simeq T_pM \longrightarrow T_pM, \ v \longmapsto (dexp_p)_0(v)$, è un isomorfismo di spazi vettoriali. Infatti la conclusione seguirà dal teorema della funzione inversa.

Sia
$$\alpha(t) = tv \subset B_{\varepsilon}(0)$$
, tale che

1.
$$\alpha(0) = 0$$

2.
$$\dot{\alpha}(0) = v$$
.

Allora
$$(dexp_p)_0(v) = \left[\frac{d}{dt}exp_p(tv)\right]_{t=0} = \left[\frac{d}{dt}\gamma(1,p,tv)\right]_{t=0} = \left[\frac{d}{dt}\gamma(t,p,v)\right]_{t=0} = \left[\dot{\gamma}(t,p,v)\right]_{t=0} = v$$
 e quindi $(dexp_p)_0 = id_{T_pM}$

3.2 Ricoprimenti

Consideriamo ora una serie di definizioni e proposizioni che serviranno per la dimostrazione del Teorema di Hadamrd.

Definizione 3.4. Siano M e N due varietà (di dimensione 2). Un'applicazione $\varphi: M \longrightarrow N$ è un ricoprimento se:

- 1. φ è un diffeomorfismo;
- 2. φ è suriettiva, cioè $\varphi(M) = N$;
- 3. per ogni $p \in N$ esiste un intorno $U \subset N$ tale che $\varphi^{-1}(U) = \bigcup_{\alpha} V_{\alpha}$, dove V_{α} sono insiemi aperti e a due a due disgiunti, per i quali la restrizione di φ in V_{α} sia un diffeomorfismo di V_{α} in U.

Definizione 3.5. Sia $\varphi: M \longrightarrow N$ un'applicazione differenziabile tra varietà e sia $\alpha: [0, l] \subset \mathbb{R} \longrightarrow N$ una curva, ossia un arco da $\alpha(0)$ a $\alpha(l)$. Un arco $\tilde{\alpha}: [0, l] \longrightarrow M$ è detto un sollevamento di α se $\varphi(\tilde{\alpha}) = \alpha$.

Definizione 3.6. Sia $\varphi: M \longrightarrow N$ come nella definizione precedente. Diremo che φ ha la proprietà di sollevare gli archi se ogni arco $\alpha: [0, l] \subset \mathbb{R} \longrightarrow N$ ammette un sollevamento.

Proposizione 3.7. $Sia \varphi : M \longrightarrow N$ un diffeomorfismo locale con la proprietà di sollevare gli archi. Allora φ è un ricoprimento. Se inoltre N è semplicemente connesso allora φ è un diffeomorfismo.

3.3 Il Teorema di Hadamard

L'obiettivo di questo paragrafo riguarda la dimostrazione del fatto che sotto l'ipotesi che M sia una superficie di \mathbb{R}^3 , completa e con curvatura di Gauss $K \leq 0$, l'applicazione esponenziale è un diffeomorfismo.

Lemma 3.8. Sia M una superficie completa con curvatura di Gauss $K \leq 0$. L'applicazione esponenziale $exp_p: T_pM \longrightarrow M$, $p \in M$, è tale che se $u, v \in T_pM$, si ha $< (dexp_p)_u(w), (dexp_p)_u(w) > \ge < w, w >$.

Proposizione 3.9. Se M è una superficie completa con curvatura di Gauss $K \leq 0$, allora l'applicazione esponenziale $exp_p : T_pM \longrightarrow M$, $p \in M$, è un ricoprimento.

Dimostrazione. Per la dimostrazione della proposizione, occorre semplicemente mostrare che la mappa esponenziale ha la proprietà di sollevare gli archi. In tal caso, infatti, per la Proposizione 3.7, si avrebbe che $exp_p: T_pM \longrightarrow M$, $p \in M$, è un ricoprimento.

Sia $\alpha : [0, l] \longrightarrow M$ un arco in M.

Poichè M è completa, per ipotesi, esiste un $v \in T_pM$ tale che $exp_p(v) = \alpha(0)$. Inoltre, per la Proposizione 3.3, esiste un intorno U di v, in T_pM , tale che $(exp_p)_{|U}: U \longrightarrow exp_p(U)$ possiede la proprietà di sollevare gli archi. Possiamo dunque definire $\tilde{\alpha}$ in modo tale che $\tilde{\alpha} = exp_p^{-1}(\alpha)$. Cnsideriamo ora l'insieme I, tale che I = [0,t] dove $t \in [0,l]$. Un tale insieme I è non vuoto e, inoltre, se $\tilde{\alpha}(t')$ è definito allora $\tilde{\alpha}$ è definita i un intorno di t'. Segue che I è un insieme aperto in [0,l].

Se si dimostra che l'insieme I è anche chiuso, poichè [0,l] è connesso, segue che I=[0,l], da cui la tesi della proposizione.

Se $t_0 \in [0, l]$ è un punto di accumulazione per I, allora esiste una successione $\{t_n\}$, $t_n \in I$ e $t_n \neq t_0$, tale che $\{t_n\} \longrightarrow t_0$. Mostriamo che $\tilde{\alpha}(t_n)$ ha un punto di accumulazione. Se così non fosse, preso un disco $D \subset T_pM$, centrato in $\tilde{\alpha}(0)$, esisterebbe un n' tale che $\tilde{\alpha}(t_{n'})$ non appartiene a D. Poichè la scelta del disco è arbitraria, segue che in T_pM la distanza da $\tilde{\alpha}(0)$ in $\tilde{\alpha}(t_n)$ diventa arbitrariamente grande. Osserviamo dunque che, per il Lemma 3.8, si avrebbe che $\lim_{n \longrightarrow \infty} d(\alpha(0), \alpha(t_n)) = \infty$ e ciò contraddice il fatto che la distanza tra $\alpha(0)$ e $\alpha(t_0) = \lim_{t_n \longrightarrow t_0} \alpha(t_n)$ è finita.

Sia q un punto di accumulazione per $\tilde{\alpha}(t_n)$ e V un intorno di q in T_pM , tale che esiste n_1 e $\tilde{\alpha}(t_{n_1}) \in V$. Poichè α è continua, esiste un intervallo aperto $A \subset [0, l]$, e per $t_0 \in A$, $\alpha(A) \subset exp_p(V) = U$.

Se consideriamo $(exp_n^{-1})_{|U}$ possiamo definire un sollevamento di α in A.

Poichè la mappa esponenziale è un diffeomorfismo locale, tale sollevamento coincide con $\tilde{\alpha}$ in $[0,t_0)\cap A$ ed è quindi l'estensione di $\tilde{\alpha}$ in un intervallo contenente t_0 . Segue che I è chiuso, da cui la tesi secondo cui la mappa esponenziale è un ricoprimento.

Teorema 3.10 (Hadamard).

Sia M una superficie semplicemente connessa, con curvatura di Gauss $K \leq 0$. Allora l'applicazione esponenziale $exp_p: T_pM \longrightarrow M$, $p \in M$, è un diffeomorfismo.

Dimostrazione. La tesi del teorema segue dalla Proposizione 3.7, in cui

sfruttiamo il risultato ottenuto dalla Proposizione 3.9, per la quale la mappa esponenziale è un ricoprimento.

Capitolo 4

Il Teorema di Hilbert

L'obiettivo del capitolo è la dimostrazione del seguente Teorema di Hilbert. Per ulteriori dettagli consultare il [2, pag.146].

Teorema 4.1 (Hilbert).

Sia S una superficie dotata di una metrica Riemanniana ds^2 , rispetto alla quale S è completa e ha curvatura di Gauss costante e negativa. Allora S non può essere immersa isometricamente in \mathbb{R}^3 .

La dimostrazione del Teorema di Hilbert verrà fornita nel prossimo paragrafo. Osserviamo per il Teorema di Hadamard 3.10, e per i risultati relativi al Capitolo 1, (vedi Teorema 1.1), possiamo assumere, senza ledere le generalità, che $(S, ds^2) = (\mathbb{R}^2, g_{hyp})$, dove g_{hyp} è data dalla (1.5).

4.1 Dimostrazione del Teorema 4.1

Supponiamo che S ammetta un'immersione isometrica in \mathbb{R}^3 . Mostriamo che esiste una parametrizzazione globale $X: \mathbb{R}^2 \longrightarrow S$ tale che X(s,t) è una curva asintotica, per ogni s e t fissato, rispettivamente, con ascissa curvilinea.

Dimostrazione. Definiamo la mappa $X : \mathbb{R}^2 \longrightarrow S$ nel modo seguente. Fissato un punto $o \in S$, si scelgano le orientazioni per le curve asintotiche, l_1 e l_2 . Per ogni $(s,t) \in \mathbb{R}^2$ si prenda su l_1 una lunghezza s a partire dal punto o; sia p_1 il punto così ottenuto. Per p_1 passano due curve asintotiche: una sarà proprio l_1 , l'altra avrà la stessa orientazione di l_2 . Su questa seconda curva si prenda una lunghezza pari a t, a partire dal punto p. Sia X(s,t) il punto ottenuto su S con questa costruzione.

X(s,t) è ben definito per ogni $(s,t) \in \mathbb{R}^2$.

Infatti se X(s,0) non fosse definito, esisterebbe un s' tale che la curva $l_1(s)$ sarebbe definita per ogni s < s' ma non per s = s'. Sia $q = \lim_{s \to s'} l_1(s)$.

Poichè S è completa, $q \in S$, e dal Corollario 2.15 seguirebbe che $l_1(s')$ è definito. Ciò contraddice l'ipotesi iniziale fatta su $l_1(s)$ in s'; per cui concludiamo che X(s,0) è definito per ogni $s \in \mathbb{R}$. Allo stesso modo si dimostra che X(0,t) è definita per ogni $t \in \mathbb{R}$. Per il Corollario 2.15 si ha che in ogni $X(s',t') \in S$ esiste un intorno rettangolare, per $t_a < t < t_b$ e $s_a < s < s_b$, in cui le curve asintotiche formano una rete di Tchebyshef. Se per qualche $t_0, t_a < t_0 < t_b$, la curva $X(s,t_0), s_a < s < s_b$, è asintotica, allora lo stesso si può dire per le curve $X(s,\bar{t}), t_a < \bar{t} < t_b$. Si osserva infatti che il punto $X(s,t_0)$ si ottiene stendendo un segmento di lunghezza \bar{t} da X(s,0), che è equivalente ad un segmento di lunghezza $\bar{t}-t_0$ steso dal punto $X(s,t_0)$. Le curve asintotiche in tale intorno formano una rete di Tchebyshef, e per il Corollario 2.10 segue che la curva $X(s,\bar{t}), t_a < \bar{t} < t_b$ è ancora asintotica. Sia X(s',t') un punto arbitrario in S. Poichè il segmento $X(s',t), 0 \le t \le t'$, è compatto, è possibile ricoprirlo con un numero finito di intorni rettangolari, in modo tale che le curve asintotiche di ciascuno di questi formino una rete di Tchebyshef.

Per questa osservazione e poichè la curva X(s,0) è asintotica, possiamo ripetere il ragionamento precedente, in cui però ora fissiamo $t' \in (0,\infty)$, per concludere che X(s,t') è una curva asintotica in un intorno di s'. Dal Lemma 2.14 e dal fatto che la scelta fatta per (s',t') è arbitraria, segue la tesi.

Dimostriamo che $X: \mathbb{R}^2 \longrightarrow S$ è una parametrizzazione globale di S.

Dal Corollario 2.15 esiste un aperto $U \subset \mathbb{R}^2$ tale che se $X: U \subset \mathbb{R}^2 \longrightarrow X(U) \subset S$ rappresenta una parametrizzazione locale di S, rispetto alla quale valgono le condizioni del Lemma 2.14, allora la restrizione di $X_{|U}$ è un diffeomorfismo. Segue che X è un diffeomorfismo locale. $X(\mathbb{R}^2)$ è, quindi, aperto in S. Poniamo $X(\mathbb{R}^2) = Q$. Se $q \in Q$ allora per tale punto passano due curve asintotiche, interamente contenute in Q.

Ragioniamo per assurdo e supponiamo che $Q \neq S$. S connessa implica che il $\partial Q \neq \emptyset$. Sia $p \in \partial Q$, dato che Q è aperto, p non può appartenere a Q.

Si consideri un intorno rettangolare R di p, in cui le curve asintotiche formano una rete di Tchebyshef. Preso $p' \in Q \cap R$, si ha che le curve asintotiche per p' sono interamente contenute in Q, poichè $p' \in Q$; e una delle due interseca una di quelle passanti per p, che quindi, dovrebbe appartenere a Q.

Ciò contraddice l'ipotesi da noi fatta.

Concludiamo che $X(\mathbb{R}^2) = S$ e quindi X è suriettiva.

In S ci sono due campi di vettori differenziabili, linearmente indipendenti, tangenti alle curve asintotiche di S. Fissato $p \in S$, scegliamo due vettori unitari, v_p e w_p , tangenti alle curve asintotiche per p. Se $q \in S$ è un punto arbitrario, si consideri l'arco $\alpha : [0, l] \longrightarrow S$ in modo tale che $\alpha(0) = p$ e $\alpha(l) = q$.

Definiamo il campo $V(\alpha(t))$ lungo α , per $t \in [0, l]$, tangente ad una delle due curve asintotiche in p, in modo tale che $V(\alpha(t))_{|_{t=0}} = V(\alpha(o)) = v_p$.

Definiamo il campo $W(\alpha(t))$ lungo α , per $t \in [0, l]$, tangente all'altra curva asintotica, in modo tale che $W(\alpha(t))_{|_{t=o}} = W(\alpha(0)) = w_p$.

Dimostriamo che $v_q = V(\alpha(l))$ e $w_q = W(\alpha(l))$ non dipendono dalla scelta dell'arco congiungente i punti p e q. Consideriamo un altro arco $\beta : [0, l] \longrightarrow S$ tale che $\beta(0) = p$ e $\beta(l) = q$. Poichè S è omeomorfa al piano, esiste un'omotopia tra gli archi α e β , così definita:

 $H: [0,1] \times [0,l] \longrightarrow S$, $(s,t) \longmapsto H(s,t)$ tale che $H(o,t) = \alpha(t)$ per ogni $t \in [0,l]$; $H(1,t) = \beta(t)$ per ogni $t \in [0,l]$ H(s,0) = H(s,l) per ogni $s \in [0,1]$.

 $H(s,t) = \gamma_s(t)$, per ogni $s \in [0,1]$, è una famiglia continua di archi congiungenti p e q, definita su un compatto. Dato $\varepsilon > 0$ esiste $\bar{s} \in [0,1]$ tale che se $s < \bar{s}$ allora $|V(\gamma_s(l)) - V(\gamma_o(l))| < \varepsilon$. Per \bar{s} piccolo quanto basta, si ha che $V(\gamma_s(l)) = V(\gamma_o(l))$, con $s < \bar{s}$. Poichè [0, 1] è compatto, possiamo ragionare così $\forall s \in [0,1]$. Dunque, $V(\alpha(l)) = V(\beta(l))$. Con un ragionamento analogo si può concludere che $W(\alpha(l)) = W(\beta(l))$. Come campi di vettori continui e tangenti alle curve asintotiche, V e W sono differenziabili. Concludiamo la dimostrazione, verificando che $X:\mathbb{R}^2\longrightarrow S$ è anche iniettiva. Supponiamo che $X(s_0,t_0)=X(s_1,t_0), s_0 < s_1$. Una curva asintotica, in S, non può autointersecarsi se le linee tangenti hanno un punto d'intersezione. Poichè Xè un diffeomorfismo locale, esiste un $\varepsilon > 0$ tale che $X(s_0,t) = X(s_1,t)$, per $t_0 - \varepsilon < t < t_1 - \varepsilon$. Segue che i punti della curva $X(s_0, t)$ formano un insieme che è aperto e chiuso, quindi $X(s_0,t)=X(s_1,t)$, per ogni t. Risulta anche che, per $0 \le a \le s_1 - s_0$, $X(s_0 + a, t_0) = X(s_1 + a, t_0)$; da cui, per le considerazioni precedenti, segue che $X(s_0 + a, t) = X(s_1 + a, t)$. Distinguiamo due casi: se $X(s_0,t_0) \neq X(s_0,t)$, per ogni $t > t_0$, Xrappresenterebbe ogni striscia di \mathbb{R}^2 , compresa tra due linee verticali, su S, identificando punti di tali linee che hanno la stessa t. X sarebbe omeomorfa ad un cilindro, il che è una contraddizione.

Se fosse $X(s_0, t_0) = X(s_0, t_1)$ per un $t_1 > t_0$, risulterebbe allora $X(s, t_0 + b) = X(s, t_1 + b)$, per $0 \le b \le t_1 - t_0$ e per ogni s. X rappresenterebbe ogni quadrato di \mathbb{R}^2 con i lati distanti $s_1 - s_0$ e $t_1 - t_0$, rispettivamente, su S, identificando i punti corrispondenti nelle parti opposte del bordo.

X sarebbe omeomorfa ad un toro, il che è una contraddizione.

Se ora si ripete lo stesso ragionamento fatto fino ad adesso, con l'ipotesi che $X(s_0, t_0) = X(s_0, t_1)$, per $t_1 > t_0$, si arriva ad una stessa contraddizione.

Consideriamo ora il caso in cui sia $X(s_0, t_0) = X(s_1, t_1)$, con $s_1 > s_0$ e $t_1 > t_0$. Poichè X è un diffeomorfismo locale, rappresenterebbe, su S, una striscia di \mathbb{R}^2 tra due linee perpendicolari al vettore $(s_1 - s_0, t_1 - t_0)$, e distanti $\sqrt{(s_1 - s_0)^2 + (t_1 - t_0)^2}$.

Con un ragionamento analogo a quello precedente, S risulterebbe ancora omeomorfa ad un cilindro o ad un toro, rispettivamente. Da tali contraddizioni segue che X è iniettiva.

Conclusione della dimostrazione del Teorema 4.1. Assumiamo che $(S, ds^2) = (\mathbb{R}^2, g_{hyp})$ possa essere immersa isometricamente in \mathbb{R}^3 . Per ciò che si è appena dimostrato esisterebbe una parametrizzazione $X : \mathbb{R}^2 \longrightarrow S$, globale di S, tale che per ogni punto $p \in S$ esisterebbe un intorno rettangolare costituito da curve coordinate che sarebbero asintotiche e parametrizzate con ascissa curvilinea. Quindi le curve coordinate formerebbero una rete di Tchebyshef e quindi, per il Corollario 2.15, tale intorno rettangolare avrebbe area minore di 2π . Poichè sarebbe possibile ricoprire $S = \mathbb{R}^2$ con un unione di quadrilateri, Q_n , costituiti da curve asintotiche, tali che $Q_n \subset Q_{n+1}$ si otterrebbe la contraddizione: $+\infty = A(S) = \lim_{n \longrightarrow \infty} A(Q) < +\infty$.

Bibliografia

- [1] W.M. Boothby. An introduction to differentiable manifolds and Riemannian geometry, second edition, Academic Press, 1986.
- [2] M.P. Docarmo. Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976.
- [3] M.P. Docarmo. Riemannian Geometry, Birkähuser, 1979.
- [4] M.L. Gromov. *Isometric embeddings and immersions*, Dok1. Akad. Nauk 192, 1970, 1206-1209.
- [5] C. Kosniowski. Introduzione alla topologia algebrica, Zanichelli, 1988.
- [6] J. Nash. The embedding problem for Riemannian manifolds, Ann. of Math.(2) 63, 1956, 20-63.
- [7] E.G. Poznyak. Regular realization in the large of two-dimensional metric of alternating curvature, Third All-Union Symposium on Geometry in the Large (abstracts), Petrozavodsk, 1969, 55-56.