设
$$A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$
, 若 $A^{100} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, 则 $a = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

(A) 1; (B) -1; (C)
$$\frac{1}{2}$$
; (D) 0.

[解析] 本题考查矩阵高次幂的运算,可用归纳法进行分析.

由
$$A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$
 得 $A^2 = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2a \\ 0 & 1 \end{pmatrix}$

$$A^3 = \begin{pmatrix} 1 & 2a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3a \\ 0 & 1 \end{pmatrix}$$

设
$$A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$
, 若 $A^{100} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, 则 $a = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

(A) 1; (B)
$$-1$$
; (C) $\frac{1}{2}$; (D) 0.

[解析]

假设
$$A^{n-1} = \begin{pmatrix} 1 & (n-1)a \\ 0 & 1 \end{pmatrix}$$
 则 $A^n = \begin{pmatrix} 1 & (n-1)a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & na \\ 0 & 1 \end{pmatrix}$

故
$$A^{100} = \begin{pmatrix} 1 & 100a \\ 0 & 1 \end{pmatrix}$$
 又 $A^{100} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 所以 $a=0$.