Übungsblatt 5 zur Algebraischen Zahlentheorie

Aufgabe 1. Dedekindringe mit nur endlich vielen Primidealen

Sei A ein Dedekindring, der nur endlich viele Primideale $\mathfrak{p}_1,\ldots,\mathfrak{p}_n$ besitzt. Begründe kurz:

- a) Es gibt ein Element $\pi \in \mathfrak{p}_1 \setminus \mathfrak{p}_1^2$.
- b) Es gibt ein Element $x \in A$ mit $x \equiv \pi \mod \mathfrak{p}_1$ und $x \equiv 1 \mod \mathfrak{p}_k$ für $k \geq 2$.
- c) Für dieses Element gilt $\mathfrak{p}_1 = (x)$.
- d) Alle Ideale von A sind Hauptideale.

Aufgabe 2. Ideale und Faktorringe von Dedekindringen

Sei A ein Dedekindring.

- a) Sei $\mathfrak{p} \in A$ ein Primideal. Sei $m \geq 0$. Zeige, dass A/\mathfrak{p}^m ein Hauptidealring ist.
- b) Sei $\mathfrak{a} \in A$ ein Ideal mit $\mathfrak{a} \neq (0)$. Zeige, dass A/\mathfrak{a} ein Hauptidealring ist.
- c) Sei $\mathfrak{a} \in A$ ein Ideal. Sei $x \in \mathfrak{a}$ mit $x \neq 0$. Zeige, dass \mathfrak{a} von zwei Elementen erzeugt werden kann, von denen eines x ist.

 $\it Hinweis.$ In einem Faktorring $\it A/\mathfrak{b}$ gibt es genau so viele Primideale, wie es Primideale in $\it A$ gibt, welche $\it b$ umfassen.

Aufgabe 3. Beispiel für eine Volumenberechnung

Sei $K:=\mathbb{Q}[\sqrt{-5}]$. Sei $\mathfrak{p}:=(3,1+2\sqrt{-5})\subseteq\mathcal{O}_K$. Bestimme das Volumen des vollständigen Gitters $j[\mathfrak{p}]\subseteq K_{\mathbb{R}}$, wobei $j:K\hookrightarrow K_{\mathbb{R}}$ die Einbettung in den Minkowskiraum ist.

Aufgabe 4. Charakterisierung von Gittern

Zeige, dass eine Untergruppe $\Gamma \subseteq \mathbb{R}^n$ genau dann ein Gitter ist, wenn sie diskret ist (wenn also zu jedem Punkt $\gamma \in \Gamma$ eine offene Umgebung $U \subseteq \mathbb{R}^n$ von γ mit $U \cap \Gamma = \{\gamma\}$ existiert).

Aufgabe 5. Undiskretheit von Ganzheitsringen

Sei K ein Zahlkörper vom Grad ≥ 3 . Zeige, dass zu jedem $\varepsilon > 0$ ein Element $a \in \mathcal{O}_K \setminus \{0\}$ existiert, dessen komplexer Betrag kleiner als ε ist.

Aufgabe 6. Geradenbündel über dem Spektrum von Ganzheitsringen

Sei A ein Dedekindring. Zeige: Die gebrochenen Ideale von K sind als A-Moduln projektiv.