પ્રશ્ન 1(a) [3 ગુણ]

SCR ની બે ટ્રાન્ઝિસ્ટર સામ્યતા સમજાવો.

જવાબ:

SCR એ પરસ્પર જોડાયેલા PNP અને NPN ટ્રાન્ઝિસ્ટર તરીકે રજૂ કરી શકાય છે.

આકૃતિ:

- **પુનઃઉત્પાદક ક્રિયા**: જ્યારે ગેટ પ્રવાહ NPN ને ટ્રિગર કરે છે, તે PNP ને વહન કરવા માટે કારણભૂત બને છે, જે સ્વ-ટકાઉ પ્રવાહ બનાવે છે
- **લેચિંગ મિકેનિઝમ**: એકવાર બંને ટ્રાન્ઝિસ્ટર ચાલુ થઈ જાય, ગેટ નિયંત્રણ ગુમાવે છે કારણ કે ફીડબેક પાથ વહન જાળવી રાખે છે

યાદ રાખવા માટે સૂત્ર: "પુશ-પુલ નેટવર્ક સતત વહન ટ્રિગર કરે છે"

પ્રશ્ન 1(b) [4 ગુણ]

IGBT ની કામગીરી અને લાક્ષણિકતા સમજાવો.

જવાબ:

IGBT (ઇન્સુલેટેડ ગેટ બાયપોલર ટ્રાન્ઝિસ્ટર) MOSFET ઇનપુટ લાક્ષણિકતાઓને BJT આઉટપુટ ક્ષમતાઓ સાથે જોડે છે.

આકૃતિ:

લાક્ષણિકતા કોષ્ટક:

વિશેષતા	લାક୍ષણિકતા
સ્વિચિંગ	ઝડપી ચાલુ થવું, મધ્યમ બંધ થવું
નિયંત્રણ	MOSFET જેવું વોલ્ટેજ-નિયંત્રિત
વહન	BJT જેવું ઓછું ફ્રોરવર્ડ વોલ્ટેજ ડ્રોપ
ઉપયોગો	ઉચ્ચ વોલ્ટેજ, મધ્યમ આવૃત્તિ સ્વિથિંગ

- **ઇનપુર ફાયદો**: ઉચ્ચ અવરોધ સાથે વોલ્ટેજ-નિયંત્રિત ગેટ જેને લઘુત્તમ ડ્રાઇવ પાવરની જરૂર છે
- આઉટપુટ ફાયદો: ઉચ્ચ વિધુત ઘનતા પર પણ ઓછો ઓન-સ્ટેટ વોલ્ટેજ ડ્રોપ

યાદ રાખવા માટે સૂત્ર: "MOSFET ઇનપુર, BJT આઉટપુર, સંપૂર્ણ પાવર સ્વિચ બનાવે છે"

પ્રશ્ન 1(c) [7 ગુણ]

DIAC નું બાંધકામ, કાર્ય અને લાક્ષણિકતા સમજાવો.

જવાબ:

DIAC (ડાયોડ ફોર ઓલ્ટરનેટિંગ કરંટ) એ દ્વિદિશ ટ્રિગરિંગ ઉપકરણ છે જે થાઇરિસ્ટર નિયંત્રણ સર્કિટોમાં વપરાય છે.

આકૃતિ:

લાક્ષણિકતા વક્ર:

બાંધકામ અને કાર્ય કોષ્ટક:

વિશેષતા	વર્ણન
સ્ટ્રક્ચર	ગેટ ટર્મિનલ વગરનું પાંચ સ્તરીય P-N-P-N
કાર્ય	બ્રેક-ઓવર વોલ્ટેજ પહોંચતા સુધી પ્રવાહને અવરોધે છે
બ્રેકઓવર	સામાન્ય રીતે બંને દિશામાં 30-40V
સમમિતિ	બંને દિશાઓમાં સમાન પ્રતિક્રિયા
ઉપયોગ	AC સર્કિટમાં TRIAC માટે ટ્રિગર ઉપકરણ

- અવરોધ અવસ્થા: બ્રેકઓવર વોલ્ટેજથી નીચે, ઉચ્ચ અવરોધ પ્રવાહને રોકે છે
- વહન અવસ્થા: બ્રેકઓવર વોલ્ટેજથી ઉપર, નકારાત્મક અવરોધ વિસ્તાર અચાનક વહન સક્ષમ કરે છે
- દ્વિદિશીય: હકારાત્મક અને નકારાત્મક વોલ્ટેજ માટે સમાન રીતે કાર્ય કરે છે

યાદ રાખવા માટે સૂત્ર: "બંને દિશામાં બ્રેક વોલ્ટેજ, પછી પ્રવાહ વહે છે"

પ્રશ્ન 1(c) OR [7 ગુણ]

ઓપ્ટો-આઇસોલેટર અને ઓપ્ટો-એસસીઆરનું બાંઘકામ અને કાર્ય સમજાવો.

જવાબ:

ઓપ્ટો-ઉપકરણો સર્કિટો વચ્ચે વિદ્યુત અલગાવ જાળવતા સિગ્નલો ટ્રાન્સફર કરવા માટે પ્રકાશનો ઉપયોગ કરે છે.

ઓપ્ટો-આઇસોલેટર આકૃતિ:

ઓપ્ટો-SCR આકૃતિ:

તુલના કોષ્ટક:

વિશેષતા	ઓપ્ટો-આઇસોલેટર	ઓપ્ટો-SCR
ઇનપુટ	LED	LED
આઉટપુટ ઉપકરણ	ફોટોટ્રાન્ઝિસ્ટર/ફોટોડાયોડ	પ્રકાશ-સંવેદનશીલ SCR
અલગાવ	2-5 kV	2-5 kV
વિદ્યુત પ્રવાહ	ઓછો-મધ્યમ (100mA)	ઉચ્ચ (ઘણા એમ્પિયર)
ઉપયોગો	ડિજિટલ સિગ્નલ આઇસોલેશન	પાવર નિયંત્રણ, AC સ્વિચિંગ

- **વિદ્યુત આઇસોલેશન**: સંપૂર્ણ વિદ્યુત અલગતા અવાજ પ્રતિરક્ષા અને સુરક્ષા પ્રદાન કરે છે
- સિગ્નલ ટ્રાન્સફર: પ્રકાશ કપલિંગ ગ્રાઉન્ડ લૂપ્સ અને વોલ્ટેજ સ્તરના મુદ્દાઓને દૂર કરે છે
- **ટ્રિગરિંગ**: ઓપ્ટો-SCRમાં પ્રકાશ ગેટ વિદ્યુત પ્રવાહને SCR સક્રિયકરણ માટે બદલે છે

યાદ રાખવા માટે સૂત્ર: "પ્રકાશ અંતર કૂદે છે જ્યારે વિદ્યુત ઘરે રહે છે"

પ્રશ્ન 2(a) [3 ગુણ]

1) UJT 2) SCS 3) MCT નું પ્રતીક દોરો અને ઉપયોગ આપો.

જવાબ:

UJT (યુનિજંક્શન ટ્રાન્ઝિસ્ટર):

SCS (સિલિકોન કંટ્રોલ્ડ સ્વિય):

MCT (MOS-કંટ્રોલ્ડ થાઇરિસ્ટર):

ઉપયોગ કોષ્ટક:

ઉપકરણ	ઉપયોગો
UJT	રિલેક્સેશન ઓસિલેટર, ટાઇમિંગ સર્કિટ, SCR ટ્રિગરિંગ
SCS	ઓછી પાવર સ્વિચિંગ, લેવલ ડિટેક્શન, પત્સ જનરેશન
MCT	ઉચ્ચ પાવર સ્વિચિંગ, મોટર નિયંત્રણ, ઇન્વર્ટર

યાદ રાખવા માટે સૂત્ર: "અનોખી ટાઇમિંગ, નિયંત્રિત સ્વિચિંગ, મુખ્ય પાવર"

પ્રશ્ન 2(b) [4 ગુણ]

SCR માટે ગેટ પ્રોટેક્શનનું મહત્વ સમજાવો.

જવાબ:

ગેટ પ્રોટેક્શન સર્કિટ SCRને નકલી ટ્રિગરિંગ અને વોલ્ટેજ સ્પાઇક્સથી સુરક્ષિત રાખે છે.

ગેટ પ્રોટેક્શન સર્કિટ:

સુરક્ષા કોષ્ટક:

સમસ્યા	સુરક્ષા પદ્ધતિ	હેતુ
રિવર્સ વોલ્ટેજ	ગેટમાં ડાયોડ	ગેટ-કેથોડ જંક્શન નુકસાન અટકાવે છે
નોઇઝ	RC ફિલ્ટર	ઉચ્ચ-આવૃત્તિ ક્ષણિક અવરોધે છે
dV/dt ટ્રિગરિંગ	RC સ્નબર	વોલ્ટેજ વધારાનો દર નિયંત્રિત કરે છે
ખોટું ટ્રિગરિંગ	ગેટ રેસિસ્ટર	ગેટ કરંટને મર્યાદિત કરે છે અને નોઇઝ ટ્રિગરિંગ ટાળે છે

- જંક્શન સુરક્ષા: ગેટ-કેથોડ જંક્શનને રિવર્સ વોલ્ટેજ નુકસાનથી બચાવે છે
- **નોઇઝ પ્રતિરક્ષા**: વિદ્યુત ઘોંઘાટને ફિલ્ટર કરે છે જે અનિચ્છનીય ટ્રિગરિંગનું કારણ બની શકે છે

યાદ રાખવા માટે સૂત્ર: "ગેટની રક્ષા કરો સમસ્યાઓ અટકાવવા માટે"

પ્રશ્ન 2(c) [7 ગુણ]

SCR ને ટ્રિગર કરવાની વિવિધ પદ્ધતિઓની યાદી બનાવો અને તેમાંથી કોઈપણ ત્રણ સમજાવો.

જવાબ:

SCR ટ્વિગરિંગ પદ્ધતિઓ ગેટ સક્રિયકરણ દ્વારા ઉપકરણને અવરોધનથી વહન અવસ્થામાં રૂપાંતરિત કરે છે.

ટ્રિગરિંગ પદ્ધતિઓ કોષ્ટક:

પદ્ધતિ	સિદ્ધાંત	ઉપયોગો
ગેટ ટ્રિગરિંગ	ગેટમાં સીધો પ્રવાહ	સૌથી સામાન્ય પદ્ધતિ
થર્મલ ટ્રિગરિંગ	તાપમાન વધારો	થર્મલ પ્રોટેક્શન
પ્રકાશ ટ્રિગરિંગ	જંક્શન પર ફોટોન	રિમોટ સક્રિયકરણ
dV/dt ટ્રિગરિંગ	ઝડપી વોલ્ટેજ વદ્યારો	ઘણીવાર અનિચ્છનીય ટ્રિગરિંગ
વોલ્ટેજ ટ્રિગરિંગ	બ્રેકઓવર વોલ્ટેજ ઓળંગવું	પ્રોટેક્શન સર્કિટ
RF ટ્રિગરિંગ	રેડિયો ફ્રિક્વન્સી સિગ્નલ	વાયરલેસ કંટ્રોલ

1. ગેટ કરંટ ટ્રિગરિંગ:

- સીધું નિયંત્રણ: નાનો ગેટ પ્રવાહ મોટા એનોડ પ્રવાહને શરૂ કરે છે
- પ્રવાહ રેન્જ: SCR રેટિંગ પર આધાર રાખીને સામાન્ય રીતે 10-100mA જરૂરી

2. પ્રકાશ ટ્રિગરિંગ (LASCR):

- **ઓપ્ટિકલ કંટ્રોલ**: ફોટોન્સ જંક્શન પર કેરિયર્સ ઉત્પન્ન કરે છે
- અલગાવ: કંટ્રોલ અને પાવર સર્કિટ વચ્ચે વિદ્યુત અલગાવ પ્રદાન કરે છે

3. dV/dt ટ્રિગરિંગ:

- **રેટ સંવેદનશીલતા**: ઝડપી વોલ્ટેજ વધારો જંક્શન કેપેસિટન્સ ચાર્જિંગનું કારણ બને છે
- **નિવારણ**: સ્નબર સર્કિટ (RC નેટવર્ક) વોલ્ટેજ વધારાના દરને નિયંત્રિત કરે છે

યાદ રાખવા માટે સૂત્ર: "ગેટ, પ્રકાશ, અને વોલ્ટેજ પરિવર્તન SCRને ચાલુ કરે છે"

પ્રશ્ન 2(a) OR [3 ગુણ]

ઓપ્ટો-એસસીઆરનો ઉપયોગ કરીને સોલિડ સ્ટેટ રિલેનું કાર્ય સમજાવો.

જવાબ:

સોલિડ સ્ટેટ રિલે (SSRs) વિદ્યુત અલગાવ સાથે સંપર્ક વગરના સ્વિચિંગ માટે ઓપ્ટો-SCRનો ઉપયોગ કરે છે.

SSR બ્લોક ડાયાગ્રામ:

ઓપરેશન કોષ્ટક:

સ્ટેજ	รเช่	લાલ
ઇનપુટ સ્ટેજ	કંટ્રોલ સિગ્નલનો ઉપયોગ કરીને LED ચલાવે છે	ઓછી શક્તિ નિયંત્રણ
અલગાવ	પ્રકાશ વિદ્યુત અંતર પુલ કરે છે	સુરક્ષા અને અવાજ પ્રતિરક્ષા
ટ્રિગરિંગ	પ્રકાશ SCRને સક્રિય કરે છે	યાંત્રિક સંપર્કો નથી
સ્વિચિંગ	થાઇરિસ્ટર લોડ કરંટનું વહન કરે છે	આર્કિંગ કે સંપર્ક ઘસારો નથી

• મૌન ઓપરેશન: સ્વિચિંગ દરમિયાન કોઈ યાંત્રિક અવાજ નથી

• લાંબુ આયુષ્ય: ઇલેક્ટ્રોમેકેનિકલ રિલેની જેમ સંપર્ક અવનતિ નથી

યાદ રાખવા માટે સૂત્ર: "પ્રકાશ લોજિકને લોડ સાથે જોડે છે"

પ્રશ્ન 2(b) OR [4 ગુણ]

સ્નબર સર્કિટ વ્યાખ્યાયિત કરો અને સ્નબર સર્કિટનું મહત્વ સમજાવો.

જવાબ

સ્નબર સર્કિટ એ સુરક્ષાત્મક નેટવર્ક છે જે સ્વિચિંગ ઉપકરણોમાં વોલ્ટેજ અને કરંટ ક્ષણિકોને દબાવે છે.

બેઝિક RC સ્નબર:

K

મહત્વ કોષ્ટક:

รเข้	લાલ	અમલીકરણ
dV/dt દમન	ખોટા ટ્રિગરિંગને રોકે છે	SCR આસપાસ RC સર્કિટ
વોલ્ટેજ સ્પાઇક ઘટાડો	ઓવરવોલ્ટેજથી રક્ષણ	કેપેસિટર ઊર્જા શોષે છે
ઓસીલેશન ડેમ્પિંગ	EMI ઘટાડે છે	રેસિસ્ટર ડેમ્પિંગ પ્રદાન કરે છે
ટર્ન-ઓફ સહાય	કોમ્યુટેશન સુધારે છે	ટર્ન-ઓફ દરમિયાન પ્રવાહ વાળે છે

• **સર્કિટ સુરક્ષા**: ઉપકરણ પર તણાવને મર્યાદિત કરીને થાઇરિસ્ટરનું આયુષ્ય વધારે છે

• અવાજ ઘટાડો: આસપાસની સર્કિટોમાં ઇલેક્ટ્રોમેગ્નેટિક ઇન્ટરફેરન્સ ઘટાડે છે

યાદ રાખવા માટે સૂત્ર: "અવાજ દબાવો, સંતુલિત વર્તન સરળતાથી પુનઃસ્થાપિત થાય"

પ્રશ્ન 2(c) OR [7 ગુણ]

SCR ની વિવિદ્ય કોમ્યુટેશન પદ્ધતિઓની યાદી બનાવો અને તેમાંથી કોઈપણ બે સમજાવો

જવાબ:

કોમ્યુટેશન એ એનોડ પ્રવાહને હોલ્ડિંગ વેલ્યુ નીચે ઘટાડીને SCRને બંધ કરવાની પ્રક્રિયા છે.

કોમ્યુટેશન પદ્ધતિઓ કોષ્ટક:

પદ્ધતિ	સિદ્ધાંત	ઉપયોગો
નૈસર્ગિક	AC શૂન્ય ક્રોસિંગ	AC પાવર કંટ્રોલ
ફોર્સ્ડ	બાહ્ય સર્કિટ	DC એપ્લિકેશન
વર્ગ A	LC રેઝોનન્સ	ઇન્વર્ટર
q၁i B	ઓક્ઝિલરી SCR	DC થોપર
વર્ગ C	લોડ સાથે LC	વેરિએબલ ફ્રિક્વન્સી
qəi D	ઓક્ઝિલરી સ્ત્રોત	મોટર કંટ્રોલ
ပုગ် E	બાહ્ય પલ્સ	ઇલેક્ટ્રોનિક સર્કિટ

1. નૈસર્ગિક કોમ્યુટેશન:

```
AC
--
|
Z SCR
Z
|
R Load
|
---
GND
```

- **શૂન્ય ક્રોસિંગ**: જ્યારે AC શૂન્ય પાર કરે છે અને એનોડ કરંટ હોલ્ડિંગથી નીચે પડે છે ત્યારે SCR બંધ થાય છે
- સરળતા: કોમ્યુટેશન માટે કોઈ વધારાના ઘટકોની જરૂર નથી
- મર્યાદા: ફક્ત AC સર્કિટમાં નિશ્ચિત આવૃત્તિ પર કામ કરે છે

2. ફોર્સ્ડ કોમ્યુટેશન (વર્ગ B):

- **ઓક્ઝિલરી SCR**: બીજું SCR (SCR2) મુખ્ય SCRને રિવર્સ બાયસ કરવા કેપેસિટર ડિસ્ચાર્જ કરે છે
- **ટાઇમિંગ કંટ્રોલ**: SCR ક્યારે બંધ થાય તેના પર ચોક્કસ નિયંત્રણ
- **એપ્લિકેશન**: DC સર્કિટમાં વપરાય છે જ્યાં નૈસર્ગિક કોમ્યુટેશન શક્ય નથી

યાદ રાખવા માટે સૂત્ર: "પ્રકૃતિ પ્રવાહને અનુસરે છે, ફોર્સ્ડ પ્રવાહ કોલેપ્સ બનાવે છે"

પ્રશ્ન 3(a) [3 ગુણ]

સિંગલ ફેઝ રેક્ટિફાયર કરતાં પોલિફેસ રેક્ટિફાયરના ફાયદા સમજાવો.

ઝવાભ

પોલિફેઝ રેક્ટિફાયર પાવર એપ્લિકેશનમાં સિંગલ-ફેઝ ડિઝાઇન કરતાં નોંધપાત્ર સુધારા આપે છે.

ફાયદા કોષ્ટક:

પેરામીટર	સિંગલ ફેઝ	પોલિફેઝ
રિપલ ફેક્ટર	ઊંચો (FW માટે 0.482)	નીચો (3-ફેઝ માટે 0.042)
ફોર્મ ફેક્ટર	ઊંચો	નીચો
કાર્યક્ષમતા	ઓછી	ઊંચી (ટ્રાન્સફોર્મર વધુ સારી રીતે વપરાય છે)
પાવર રેટિંગ	મર્યાદિત	ઊંચું પાવર હેન્ડલિંગ
હાર્મોનિક કન્ટેન્ટ	વધુ	ઓછું (વધુ સરળ DC)

- **આઉટપુટ સ્મૂધનેસ**: નોંધપાત્ર રીતે ઓછો રિપલ જેને નાના ફિલ્ટરિંગ ઘટકોની જરૂર પડે છે
- ટ્રાન્સફોર્મર ઉપયોગ: વધુ સારો ઉપયોગ ફેક્ટર (0.955 vs 0.812) ટ્રાન્સફોર્મર કદ ઘટાડે છે

યાદ રાખવા માટે સૂત્ર: "વધુ ફેઝ એટલે વધુ સરળ પાવર"

પ્રશ્ન 3(b) [4 ગુણ]

UPS પર ટૂંકી નોંધ લખો.

જવાબ:

UPS (અનઇન્ટરપ્ટિબલ પાવર સપ્લાય) મુખ્ય પાવર સપ્લાય નિષ્ફળ થાય ત્યારે સતત પાવર પ્રદાન કરે છે.

UPS બ્લોક ડાયાગ્રામ:

UPS પ્રકાર કોષ્ટક:

увіг	ઓપરેશન	એપ્લિકેશન
ઓનલાઇન	હંમેશા બેટરી/ઇન્વર્ટર દ્વારા	ક્રિટિકલ સિસ્ટમ, મેડિકલ
ઓફલાઇન	નિષ્ફળતા પર બેટરી પર સ્વિચ	પર્સનલ કમ્પ્યુટર, નાના ઓફિસ
લાઇન-ઇન્ટરેક્ટિવ	વોલ્ટેજ રેગ્યુલેશન + બેકઅપ	સર્વર, નેટવર્ક ઇક્વિપમેન્ટ

- બેકઅપ સમય: બેટરી ક્ષમતા પર આધાર રાખીને સામાન્ય રીતે 5-30 મિનિટ
- સુરક્ષા: સર્જ પ્રોટેક્શન, વોલ્ટેજ રેગ્યુલેશન, અને ફ્રિક્વન્સી સ્ટેબિલાઇઝેશન

યાદ રાખવા માટે સૂત્ર: "પાવર સતત સ્વિચ હેઠળ સુરક્ષિત"

પ્રશ્ન 3(c) [7 ગુણ]

ઇન્વર્ટરનું કાર્ય આપો અને ઇન્વર્ટરના મૂળભૂત સિદ્ધાંતને સમજાવો પણ સુઘડ ડાયાગ્રામ અને વેવફોર્મ સાથે શ્રેણી ઇન્વર્ટર સમજાવો.

જવાબ:

ઇન્વર્ટર ડીસી પાવરને એસી પાવરમાં રૂપાંતરિત કરે છે, ડીસીને ટ્રાન્સફોર્મર દ્વારા કે સીધા જ સ્વિચ કરીને વૈકલ્પિક તરંગ બનાવે છે.

કાર્ય કોષ્ટક:

รเข้	વર્ણન
DC થી AC રૂપાંતરણ	સ્થિર DC ને વૈકલ્પિક AC માં રૂપાંતરિત કરે છે
આવૃત્તિ નિયંત્રણ	ચલિત આવૃત્તિ આઉટપુટ ઉત્પન્ન કરે છે
વોલ્ટેજ નિયંત્રણ	લોડ વેરિએશન છતાં સ્થિર આઉટપુટ જાળવે છે
વેવ શેપિંગ	સાઇન, સ્ક્વેર, કે મોડિફાઇડ સાઇન વેવ્સ ઉત્પન્ન કરે છે

બેઝિક સિદ્ધાંત ડાયાગ્રામ:

શ્રેણી ઇન્વર્ટર સર્કિટ:

વેવફોર્મ:

- **ઓસીલેશન**: SCR ટ્રિગર થતાં શ્રેણી LC સર્કિટ રેઝોનન્ટ ઓસીલેશન બનાવે છે
- **કોમ્યુટેશન**: રેઝોનન્સ દ્વારા કરંટ રિવર્સ થાય ત્યારે SCR આપમેળે બંધ થાય છે
- **આવૃત્તિ**: LC વેલ્યુ દ્વારા નક્કી થાય છે: f = 1/(2π√LC)

યાદ રાખવા માટે સૂત્ર: "ડાયરેક્ટ કરંટ સ્વિચ થઈને રેઝોનન્ટ સર્કિટ દ્વારા ઓલ્ટરનેટિંગ કરંટ બને છે"

પ્રશ્ન 3(a) OR [3 ગુણ]

ચોપરના મૂળ સિદ્ધાંતને સમજાવો.

જવાબ:

ચોપર એ DC-થી-DC કન્વર્ટર છે જે નિયંત્રિત સરેરાશ DC આઉટપુટ ઉત્પન્ન કરવા માટે DC ઇનપુટને ચાલુ/બંધ કરે છે.

બેઝિક થોપર સર્કિટ:

સિદ્ધાંત કોષ્ટક:

પેરામીટર	સંબંધ	નિયંત્રણ
આઉટપુટ વોલ્ટેજ	Vo = Vdc × (Ton/T)	ડ્યુટી સાયકલ એડજસ્ટમેન્ટ
ડ્યુટી સાયકલ	k = Ton/T	આઉટપુટ વોલ્ટેજ નિયંત્રિત કરે છે
આવૃત્તિ	f = 1/T	રિપલ પર અસર કરે છે
વોલ્ટેજ રેગ્યુલેશન	લોડ સાથે બદલાય છે	ફીડબેક કંટ્રોલ ડ્યુટી સાયકલ એડજસ્ટ કરે છે

• સ્વિચિંગ એક્શન: DC ઇનપુટને ચોપ કરવા માટે ઝડપથી ON/OFF થાય છે

• **પત્સ વિડ્થ મોક્યુલેશન**: ON-ટાઇમ રેશિઓને બદલીને વોલ્ટેજ નિયંત્રિત કરે છે

યાદ રાખવા માટે સૂત્ર: "ચોપિંગ નિયંત્રિત DC બનાવે છે"

પ્રશ્ન 3(b) OR [4 ગુણ]

SMPS ના બ્લોક ડાયાગ્રામ દોરો અને દરેક બ્લોકનું કાર્ય સમજાવો.

જવાબ:

SMPS (સ્વિચ્ડ મોડ પાવર સપ્લાય) ઉચ્ચ-આવૃત્તિ સ્વિચિંગનો ઉપયોગ કરીને ઇનપુટ પાવરને નિયંત્રિત આઉટપુટમાં રૂપાંતરિત કરે છે.

SMPS બ્લોક ડાયાગ્રામ:

બ્લોક્સ કાર્ય કોષ્ટક:

બ્લોક	รเข็
EMI ફિલ્ટર	SMPSમાં પ્રવેશતા/છોડતા અવાજને દબાવે છે
રેક્ટિફાયર અને ફિલ્ટર	ACને અનિયમિત DCમાં રૂપાંતરિત કરે છે
સ્વિચિંગ સર્કિટ	ઉચ્ચ આવૃત્તિ (20-200kHz) પર DC ચોપ કરે છે
ટ્રાન્સફોર્મર	અલગાવ અને વોલ્ટેજ ટ્રાન્સફોર્મેશન પ્રદાન કરે છે
આઉટપુટ રેક્ટિફાયર	ઉચ્ચ-આવૃત્તિ ACને પાછો DCમાં રૂપાંતરિત કરે છે
આઉટપુટ ફિલ્ટર	DC આઉટપુટને સ્મૂધ કરે છે અને રિપલ દૂર કરે છે
ફીડબેક કંટ્રોલ	ક્યુટી સાયકલ એડજસ્ટ કરીને આઉટપુટ નિયંત્રિત કરે છે

• ઉચ્ચ કાર્યક્ષમતા: લિનિયર સપ્લાય માટે 30-60% ની સરખામણીએ 70-90%

• નાનું કદ: ઉચ્ચ આવૃત્તિ નાના ટ્રાન્સફોર્મર અને ઘટકોની મંજૂરી આપે છે

યાદ રાખવા માટે સૂત્ર: "ફિલ્ટર, રેક્ટિફાય, ટ્રાન્સફોર્મર મારફતે સ્વિય, રેક્ટિફાય, ફિલ્ટર"

પ્રશ્ન 3(c) OR [7 ગુણ]

વેવફોર્મ સાથે 1 ફેઝ હાફ વેવ રેક્ટિફાયર સમજાવો પણ વેવફોર્મ સાથે 3 ફેઝ ફુલ વેવ રેક્ટિફાયર સમજાવો.

જવાબ:

રેક્ટિફાયર એક દિશામાં પ્રવાહની મંજૂરી આપીને અને રિવર્સ ફ્લોને અવરોધીને AC થી DC માં રૂપાંતરિત કરે છે.

1-ફેઝ હાફ વેવ રેક્ટિફાયર:

1-ફેઝ હાફ વેવ વેવફોર્મ:

3-ફેઝ ફુલ વેવ રેક્ટિફાયર:

3-ફ્રેઝ ફુલ વેવ વેવફોર્મ:

તુલના કોષ્ટક:

પેરામીટર	1-ફેઝ હાફ વેવ	3-ફેઝ ફુલ વેવ
રિપલ ફેક્ટર	1.21	0.042
રેક્ટિફિકેશન કાર્યક્ષમતા	40.6%	95.5%
TUF	0.287	0.955
પીક ઇન્વર્સ વોલ્ટેજ	Vm	2.09Vm
ફોર્મ ફેક્ટર	1.57	1.0007

- **1-ફેઝ હાફ વેવ**: સૌથી સરળ ડિઝાઇન પરંતુ ઉચ્ચ રિપલ અને ઓછી કાર્યક્ષમતા સાથે
- **3-ફેઝ કુલ વેવ**: એક ચક્ર દીઠ 6 પત્સ સાથે ઘણો સરળ આઉટપુટ

યાદ રાખવા માટે સૂત્ર: "અર્ધ માત્ર શિખરો પસાર કરે છે, ત્રણ ફેઝ ખીણો ભરે છે"

પ્રશ્ન 4(a) [3 ગુણ]

બ્લોક ડાયાગ્રામ સાથે સૌર ફોટોવોલ્ટેઇક આધારિત પાવર જનરેશનની કામગીરીનું વર્ણન કરો.

જવાબ

સોલર PV પાવર જનરેશન ફોટોવોલ્ટાઇક ઇફેક્ટ દ્વારા સૂર્યપ્રકાશને સીધો વિધુતમાં રૂપાંતરિત કરે છે.

સોલર PV સિસ્ટમ બ્લોક ડાયાગ્રામ:

```
graph LR
   S[Solar Panel Array] --> C[Charge Controller]
   C --> B[Battery Bank]
   B --> I[Inverter]
   I --> L[AC Loads]
   C --> D[DC Loads]
```

ઘટક કોષ્ટક:

ยรร	ธเน้
સોલર પેનલ	સૂર્યપ્રકાશને DC વિદ્યુતમાં રૂપાંતરિત કરે છે
ચાર્જ કંટ્રોલર	ચાર્જિંગને નિયંત્રિત કરે છે, ઓવરચાર્જ અટકાવે છે
બેટરી બેંક	પછીના ઉપયોગ માટે ઊર્જા સંગ્રહિત કરે છે
ઇન્વર્ટર	ઘરેલું ઉપકરણો માટે DC ને AC માં રૂપાંતરિત કરે છે
ડિસ્ટ્રિબ્યુશન પેનલ	વિદ્યુતને લોડ તરફ રૂટ કરે છે

- **ઊર્જા રૂપાંતરણ**: ફોટોન્સ અર્ધવાહક સામગ્રીમાં ઇલેક્ટ્રોનને ઉત્તેજિત કરીને પ્રવાહ બનાવે છે
- સ્કેલેબિલિટી: પાવર જરૂરિયાતો અનુસાર સિસ્ટમનું કદ સમાયોજિત કરી શકાય છે

યાદ રાખવા માટે સૂત્ર: "સૂર્યપ્રકાશ વોલ્ટેજ ઉત્પન્ન કરે છે, બેટરી લોડને મદદ કરે છે"

પ્રશ્ન 4(b) [4 ગુણ]

સ્ટેટિક સ્વીય તરીકે SCR નો ઉપયોગ સમજાવો.

જવાબ:

SCR વિશ્વસનીય અને ઝડપી સ્વિચિંગ માટે કોઈ હલનચલન ભાગો વગરના સોલિડ-સ્ટેટ સ્વિય તરીકે કાર્ય કરે છે.

SCR સ્ટેટિક સ્વિય સર્કિટ:

એપ્લિકેશન કોષ્ટક:

એપ્લિકેશન	ફાયદો	અમલીકરણ
પાવર કંટ્રોલ	ચોક્સાઈપૂર્ણ નિયંત્રણ, આર્કિંગ નથી	ફેઝ એંગલ કંટ્રોલ
મોટર સ્ટાર્ટિંગ	સરળ એક્સેલરેશન	ક્રમશઃ વોલ્ટેજ વધારો
સર્કિટ પ્રોટેક્શન	ઝડપી પ્રતિસાદ	કરંટ સેન્સિંગ ટ્રિગર
હીટિંગ કંટ્રોલ	ઊર્જા કાર્યક્ષમ	શૂન્ય-ક્રોસિંગ સ્વિચિંગ

- **લેચિંગ એક્શન**: એકવાર ટ્રિગર થયા પછી, પ્રવાહ હોલ્ડિંગ વેલ્યુથી નીચે પડે ત્યાં સુધી વહન ચાલુ રાખે છે
- ઉચ્ચ વિશ્વસનીયતા: હલનચલન ભાગોની ગેરહાજરીને કારણે કોઈ યાંત્રિક ઘસારો નથી

યાદ રાખવા માટે સૂત્ર: "સેમિકન્ડક્ટર સ્વિચિંગ ચાલતા લોડને નિયંત્રિત કરે છે"

પ્રશ્ન 4(c) [7 ગુણ]

ઇન્ડક્શન હીટિંગ અને ડાઇલેક્ટ્રિક હીટિંગના કાર્ય સિદ્ધાંતનું વર્ણન કરો પણ ઇન્ડક્શન હીટિંગ અને ડાઇલેક્ટ્રિક હીટિંગની તુલના આપો.

જવાબ

બંને હીટિંગ પદ્ધતિઓ સીધા સંપર્ક વિના ગરમી ઉત્પન્ન કરવા માટે વિધુતચુંબકીય સિદ્ધાંતોનો ઉપયોગ કરે છે.

ઇન્ડક્શન હીટિંગ ડાયાગ્રામ:

ડાઇલેક્ટ્રિક હીટિંગ ડાયાગ્રામ:

તુલના કોષ્ટક:

પેરામીટર	ઇન્ડક્શન હીટિંગ	ડાઇલેક્ટ્રિક હીટિંગ
સિદ્ધાંત	એડી કરંટ અને હિસ્ટેરેસિસ	દોલન ક્ષેત્રથી અણુ ઘર્ષણ
સામગ્રી	વાહક ધાતુઓ	અવાહક સામગ્રી (પ્લાસ્ટિક, લાકડું)
આવૃત્તિ	1-100 kHz	10-100 MHz
પ્રવેશ	સપાટી અને છીછરી ઊંડાઈ	સામગ્રી દ્વારા એકસરખું
કાર્યક્ષમતા	80-90%	50-70%
ઉપયોગો	ધાતુ હાર્ડનિંગ, ઓગાળવું, ફોર્જિંગ	પ્લાસ્ટિક વેલ્ડિંગ, ફૂડ પ્રોસેસિંગ, સૂકવવું

- **ઇન્ડક્શન હીટિંગ**: વાહક સામગ્રીમાં એડી કરંટ બનાવતા વિદ્યુતચુંબકીય પ્રેરણ દ્વારા કાર્ય કરે છે
- **ડાઇલેક્ટ્રિક હીટિંગ**: પોલર અણુઓના ઝડપી દોલનનું કારણ બને છે જે આંતરિક ઘર્ષણ અને ગરમી પેદા કરે છે

યાદ રાખવા માટે સૂત્ર: "ઇન્ડક્શન ધાતુઓને ગરમ કરે છે, ડાઇલેક્ટ્રિક્સ બિન-ધાતુઓને ગરમ કરે છે"

પ્રશ્ન 4(a) OR [3 ગુણ]

ફોટો ડાયોડનો ઉપયોગ કરીને ફોટો ઇલેક્ટ્રિક રિલેના સર્કિટ ડાયાગ્રામ દોરો અને સમજાવો.

જવાબ:

ફોટો-ઇલેક્ટ્રિક રિલે આપમેળે સ્વિચિંગ ઓપરેશન નિયંત્રિત કરવા માટે પ્રકાશ શોધનો ઉપયોગ કરે છે.

સર્કિટ ડાયાગ્રામ:

ઓપરેશન કોષ્ટક:

પ્રકાશ સ્થિતિ	ફોટોડાયોડ સ્થિતિ	ટ્રાન્ઝિસ્ટર સ્થિતિ	રિલે એક્શન
અંધાટું	ઉચ્ચ અવરોધ	બંધ	ડી-એનર્જાઇઝ્ડ
પ્રકાશ	ઓછો અવરોધ (વહન કરે છે)	યાલુ	એનર્જાઇઝ્ડ

- **પ્રકાશ શોધ**: પ્રકાશિત થયેલ ફોટોડાયોડ વહન કરે છે, ટ્રાન્ઝિસ્ટર પર બાયસ બદલે છે
- સ્વિચિંગ: ટ્રાન્ઝિસ્ટર રિલે કોઇલ ચલાવવા માટે નાના ફોટોડાયોડ પ્રવાહને વધારે છે

યાદ રાખવા માટે સૂત્ર: "પ્રકાશ ડાયોડને ચલાવે છે, ડાયોડ ટ્રાન્ઝિસ્ટરને ચલાવે છે, ટ્રાન્ઝિસ્ટર રિલેને ચલાવે છે"

પ્રશ્ન 4(b) OR [4 ગુણ]

DIAC-TRIAC નો ઉપયોગ કરીને AC પાવર કંટ્રોલનો સર્કિટ ડાયાગ્રામ દોરો અને તેને સમજાવો.

જવાબ:

DIAC-TRIAC સર્કિટ ફેઝ એંગલ એડજસ્ટમેન્ટ દ્વારા AC પાવરને સરળ રીતે નિયંત્રિત કરવા દે છે.

સર્કિટ ડાયાગ્રામ:

ઓપરેશન કોષ્ટક:

ยรร	รเช่
R1-C	ફેઝ વિલંબ માટે વેરિએબલ ટાઇમ કોન્સ્ટન્ટ
DIAC	કેપેસિટર વોલ્ટેજ બ્રેકઓવર પહોંચે ત્યારે TRIAC ટ્રિગર કરે છે
TRIAC	ટ્રિગરિંગ પોઇન્ટ પર આધારિત લોડ કરંટ નિયંત્રિત કરે છે
લોડ	ફેઝ કંટ્રોલ પર આધારિત આંશિક AC વેવફોર્મ પ્રાપ્ત કરે છે

- ફેઝ કંટ્રોલ: RC નેટવર્ક AC સાયકલની અંદર ટ્રિગરિંગ પોઇન્ટમાં વિલંબ બનાવે છે
- **દ્વિદિશીય ઓપરેશન**: AC સાયકલના બંને અર્ધ પર કામ કરે છે

યાદ રાખવા માટે સૂત્ર: "વિલંબ કેપેસિટર પર શરૂ થાય છે, વિશ્વસનીય સ્વતંત્ર AC કંટ્રોલ ટ્રિગર કરે છે"

પ્રશ્ન 4(c) OR [7 ગુણ]

વેવફોર્મ સાથે કામ કરતા IC555 ત્રણ તબક્કાના ક્રમિક ટાઈમરને સમજાવો.

જવાબ:

ત્રણ-તબક્કાનો ક્રમિક ટાઇમર પ્રક્રિયા નિયંત્રણ માટે સમયબદ્ધ ક્રમ બનાવવા માટે બહુવિધ 555 ICનો ઉપયોગ કરે છે.

સર્કિટ ડાયાગ્રામ:

વેવકોર્મ:

ક્રમિક ઓપરેશન કોષ્ટક:

તબક્કો	ક્રિયા	અવધિ	આગલા તબક્કા ટ્રિગર
પ્રારંભિક	બધા આઉટપુર્સ LOW	-	બાહ્ય ટ્રિગર
તબક્કો 1	આઉટપુટ 1 HIGH	T1 (R1×C1)	આઉટપુટ 1 ફોલિંગ એજ
તબક્કો 2	આઉટપુટ 2 HIGH	T2 (R2×C2)	આઉટપુટ 2 ફોલિંગ એજ
તબક્કો 3	આઉટપુટ 3 HIGH	T3 (R3×C3)	આઉટપુટ 3 ફોલિંગ એજ
રીસેટ	બધા આઉટપુર્સ LOW	T4 (રીસેટ સમય)	નવો બાહ્ય ટ્રિગર

- **કેસ્કેડિંગ કનેક્શન**: પહેલા ટાઇમરનો આઉટપુટ બીજાને ટ્રિગર કરે છે, અને આ રીતે આગળ વધે છે
- **ટાઇમિંગ કંટ્રોલ**: RC વેલ્યુ સાથે દરેક તબક્કાનો સમયગાળો સ્વતંત્ર રીતે સમાયોજિત કરી શકાય છે
- ઉપયોગો: ઔદ્યોગિક સિક્વન્સિંગ, પ્રક્રિયા નિયંત્રણ, સ્વયાલિત સિસ્ટમ

યાદ રાખવા માટે સૂત્ર: "પ્રથમ તબક્કો સમાપ્ત થાય, બીજો શરૂ થાય, ત્રીજો અનુસરે"

પ્રશ્ન 5(a) [3 ગુણ]

ડીસી શંટ મોટરના સોલિડ સ્ટેટ કંટ્રોલ દોરો અને સમજાવો.

જવાબ:

સોલિડ-સ્ટેટ DC મોટર કંટ્રોલ મોટરને આપવામાં આવતા વોલ્ટેજને નિયંત્રિત કરવા માટે SCRનો ઉપયોગ કરે છે.

સર્કિટ ડાયાગ્રામ:

કંટ્રોલ પદ્ધતિ કોષ્ટક:

પદ્ધતિ	ઓપરેશન	ફાયદો
ફેઝ કંટ્રોલ	SCR ફાયરિંગ એંગલ બદલે છે	સરળ ગતિ નિયંત્રણ
ચોપર કંટ્રોલ	પત્સ વિડ્થ મોક્યુલેશન	ઉચ્ચ કાર્યક્ષમતા
ક્લોઝ્ડ-લૂપ	ટેકોમીટરથી ફીડબેક	સચોટ ગતિ નિયમન

- ગતિ નિયમન: મોટરની ગતિ બદલવા માટે આર્મેચર વોલ્ટેજ નિયંત્રિત કરે છે
- ટોર્ક કંટ્રોલ: કરંટ મર્યાદિત કરીને ઉચ્ચ સ્ટાર્ટિંગ ટોર્ક જાળવે છે

યાદ રાખવા માટે સૂત્ર: "SCR પ્રવાહ નિયંત્રિત કરે છે મોટર પાવર વિતરણ માટે"

પ્રશ્ન 5(b) [4 ગુણ]

સ્ટેપર મોટરના કામના સિદ્ધાંતને સમજાવો.

જવાબ:

સ્ટેપર મોટર્સ વિદ્યુતચુંબકીય સિદ્ધાંતો દ્વારા ડિજિટલ પલ્સને યોક્કસ યાંત્રિક ફેરફારમાં રૂપાંતરિત કરે છે.

સ્ટેપર મોટર સ્ટ્રક્ચર:

ઓપરેશન સિદ્ધાંત કોષ્ટક:

સ્ટેપ પ્રકાર	રોટેશન એંગલ	કંટ્રોલ પદ્ધતિ
ફુલ સ્ટેપ	સામાન્ય રીતે 1.8° કે 0.9°	એક સમયે એક ફેઝ
હાફ સ્ટેપ	ફુલ સ્ટેપનો અર્ધો	બે ફેઝ વૈકલ્પિક
માઇક્રો-સ્ટેપ	કુલ સ્ટેપનો અંશ	PWM કરંટ કંટ્રોલ
વેવ ડ્રાઇવ	ફુલ સ્ટેપ એંગલ	એક ફેઝ એનર્જાઇઝ્ડ

- **ડિજિટલ પોઝિશનિંગ**: દરેક પત્સ મોટરને ચોક્કસ ખૂણે ફેરવે છે
- **હોલ્કિંગ ટોર્ક**: ફેરફાર વિના સ્થિતિ જાળવે છે જ્યારે એનર્જાઇઝ્ડ હોય

યાદ રાખવા માટે સૂત્ર: "પલ્સ યોક્કસ સ્થિતિગત સ્ટેપ્સ ઉત્પન્ન કરે છે"

પ્રશ્ન 5(c) [7 ગુણ]

PLC ના બ્લોક ડાયાગ્રામ દોરો અને દરેક બ્લોકનું કાર્ય સમજાવો.

જવાબ:

પ્રોગ્રામેબલ લોજિક કંટ્રોલર (PLC) એ ઓટોમેશન કંટ્રોલ માટેનું ઔદ્યોગિક ડિજિટલ કમ્પ્યુટર છે.

PLC બ્લોક ડાયાગ્રામ:

PLC ઘટકો કોષ્ટક:

ยรร	รเข้
પાવર સપ્લાય	મુખ્ય પાવરને PLC માટે જરૂરી DC માં રૂપાંતરિત કરે છે
CPU	પ્રોગ્રામ ચલાવે છે અને I/O પર આધારિત નિર્ણયો કરે છે
મેમરી	પ્રોગ્રામ અને ડેટા સંગ્રહિત કરે છે (ROM, RAM, EEPROM)
ઇનપુટ મોક્યુલ	સેન્સર, સ્વિય, એન્કોડર સાથે ઇન્ટરફેસ કરે છે
આઉટપુટ મોક્યુલ	એક્યુએટર, મોટર, વાલ્વ, ઇન્ડિકેટર નિયંત્રિત કરે છે
કમ્યુનિકેશન મોડ્યુલ	અન્ય PLC, કમ્પ્યુટર, નેટવર્ક સાથે જોડાય છે
પ્રોગ્રામિંગ ડિવાઇસ	PLC પ્રોગ્રામ લખવા, એડિટ કરવા, મોનિટર કરવા માટે વપરાય છે

- સ્કેન સાયકલ: સતત ઇનપુટ વાંચે છે, પ્રોગ્રામ ચલાવે છે, આઉટપુટ અપડેટ કરે છે
- પ્રોગ્રામિંગ લાષાઓ: લેડર લોજિક, ફંક્શન બ્લોક, સ્ટ્રક્યર્ડ ટેક્સ્ટ, વગેરે
- ફાયદાઓ: વિશ્વસનીયતા, લચીલાપણું, વિસ્તરણશીલતા, નિદાન ક્ષમતાઓ

યાદ રાખવા માટે સૂત્ર: "પાવર પ્રોસેસિંગને કેન્દ્રિત કરે છે, ઇનપુટ/આઉટપુટ ઓટોમેશન બનાવે છે"

પ્રશ્ન 5(a) OR [3 ગુણ]

ડીસી સર્વો મોટરનું બાંધકામ દોરો અને સમજાવો.

જવાબ:

DC સર્વો મોટર્સ ઓટોમેશન અને રોબોટિક્સ માટે ફીડબેક સાથે ચોક્કસ પોઝિશન કંટ્રોલ પ્રદાન કરે છે.

બાંધકામ ડાયાગ્રામ:

બાંધકામ કોષ્ટક:

ยรร	ธเน้	
આર્મેચર	યુંબકીય ક્ષેત્રની અંદર ફરે છે	
ફીલ્ડ મેગ્નેટ્સ	ચુંબકીય ક્ષેત્ર બનાવે છે (ઘણીવાર કાયમી ચુંબક)	
કમ્યુટેટર	ફરતા આર્મેચરને પાવર ટ્રાન્સફર કરે છે	
ફીડબેક ડિવાઇસ	પોઝિશન/સ્પીડ ફીડબેક માટે એન્કોડર/ટેકોમીટર	
બ્રેશ	કમ્યુટેટરને પાવર કનેક્ટ કરે છે	

- **ઓછી જડતા**: ખાસ ડિઝાઇન ઝડપી એક્સેલરેશન/ડિસેલરેશનની મંજૂરી આપે છે
- ઉચ્ચ ટોર્ક-ટુ-ઇનર્શિયા રેશિઓ: કંટ્રોલ સિગ્નલનો ઝડપથી જવાબ આપે છે

યાદ રાખવા માટે સૂત્ર: "યોક્સાઈભર્યું પોઝિશન ફીડબેક સટીક નિયંત્રણ ચલાવે છે"

પ્રશ્ન 5(b) OR [4 ગુણ]

BLDC મોટરની કામગીરી સમજાવો.

જવાબ

બ્રશલેસ DC (BLDC) મોટર્સ યાંત્રિક બ્રશ અને કમ્યુટેટરને બદલે ઇલેક્ટ્રોનિક કમ્યુટેશનનો ઉપયોગ કરે છે.

BLDC ઓપરેશન ડાયાગ્રામ:

કામગીરી સિદ્ધાંત કોષ્ટક:

ยรร	รเข้	
સ્ટેટર	ફિક્સ્ડ વાઇન્ડિંગ્સ જે ફરતું ચુંબકીય ક્ષેત્ર ઉત્પન્ન કરે છે	
રોટર	કાયમી યુંબક જે ફરતા ક્ષેત્રને અનુસરે છે	
ઇલેક્ટ્રોનિક કંટ્રોલર	યાંત્રિક કમ્યુટેશનનું સ્થાન લે છે	
હોલ સેન્સર	સિન્ક્રોનાઇઝ્ડ સ્વિચિંગ માટે રોટર પોઝિશન શોધે છે	
ડ્રાઇવર સર્કિટ	સ્ટેટર કોઇલ્સમાં પ્રવાહનો ક્રમ પ્રદાન કરે છે	

- ક્રમ્યુટેશન: ઇલેક્ટ્રોનિક સ્વિચિંગ સિક્વન્સ સ્ટેટર વાઇન્ડિંગ્સમાં પાવર આપે છે
- કાર્યક્ષમતા: બ્રશ લોસિસના નિર્મૂલનને કારણે ઉચ્ચ કાર્યક્ષમતા
- વિશ્વસનીયતા: બ્રશનો ઘસારો કે સ્પાર્કિંગ નથી, લાંબુ આયુષ્ય

યાદ રાખવા માટે સૂત્ર: "ઇલેક્ટ્રોનિક સ્વિચિંગ બ્રશ વગર ફેરફાર બનાવે છે"

પ્રશ્ન 5(c) OR [7 ગુણ]

VFD નું બાંધકામ અને કાર્ય સમજાવો.

જવાબ:

વેરિએબલ ફ્રિક્વન્સી ડ્રાઇવ (VFD) આવૃત્તિ અને વોલ્ટેજમાં ફેરફાર કરીને AC મોટરની ગતિ નિયંત્રિત કરે છે.

VFD બાંધકામ ડાયાગ્રામ:

બાંધકામ અને કામગીરી કોષ્ટક:

વિભાગ	ઘટકો	รเช้
રેક્ટિફાયર	ડાયોs/SCRs	AC ને DC માં રૂપાંતરિત કરે છે
DC બસ	કેપેસિટર, ઇન્ડક્ટર	DC ને ફિલ્ટર અને સ્મૂધ કરે છે
ઇન્વર્ટર	IGBTs/ટ્રાન્ઝિસ્ટર	DC ને ચલિત આવૃત્તિ AC માં રૂપાંતરિત કરે છે
કંટ્રોલ સર્કિટ	માઇક્રોપ્રોસેસર	સ્વિચિંગ આવૃત્તિ અને પેટર્નને નિયંત્રિત કરે છે
કૂલિંગ સિસ્ટમ	ફેન, હીટ સિંક	સુરક્ષિત ઓપરેટિંગ તાપમાન જાળવે છે
પ્રોટેક્શન સર્કિટ	સેન્સર, રિલે	ફોલ્ટથી નુકસાન અટકાવે છે

• ગતિ નિયંત્રણ: સતત ટોર્ક પ્રદાન કરવા માટે V/f રેશિઓ જાળવવામાં આવે છે

• **ઊર્જા બચત**: વાસ્તવિક લોડ જરૂરિયાતો અનુસાર પાવર સમાયોજિત કરે છે

• સોફ્ટ સ્ટાર્ટ: ક્રમશઃ એક્સેલરેશન યાંત્રિક આઘાતને અટકાવે છે

યાદ રાખવા માટે સૂત્ર: "રેક્ટિફાય, ફિલ્ટર, મોટર કંટ્રોલ માટે આવૃત્તિ બદલો"