#### 1 **Exploring Interdisciplinary Aspects for Conservation Management:** 2 The Case of Land Hermit Crab Wildlife Trade in Taiwan 3 Chia-Hsun Hsu<sup>1,\*</sup>, Yuan-Mou Chang<sup>2</sup>, Takahiro Kubo<sup>1,3</sup>, Shi-ShengLiu<sup>4,5</sup>, 4 5 Tzu-Pi Chen<sup>4</sup>, Sin-Tung Choi<sup>6</sup> <sup>1</sup> Biodiversity Division, National Institute for Environmental Studies, 6 7 Ibaraki, Japan Department of Ecology and Environmental Resources, National 8 University of Tainan, Tainan, Taiwan 9 10 <sup>3</sup> Department of Zoology, University of Oxford, Oxford, UK <sup>4</sup> Department of Oceanography, National Sun Yat-sen University, 11 12 Kaohsiung, Taiwan 13 <sup>5</sup> Taiwan Kaohsiung Juvenile and Family Court, Kaohsiung, Taiwan <sup>6</sup> Tony's Coenobita Website, Hong Kong, China 14 15 \*Corresponding author. Email: johnson20535@hotmail.com 16 17 18 19 **Author note:** Chia-Hsun Hsu : https://orcid.org/0000-0002-5128-5902 20 Yuan-Mou Chang : https://orcid.org/0000-0002-2804-9266 21 Takahiro Kubo: https://orcid.org/0000-0002-4832-5539 22 23 24 **Conflict interests** 25 The authors have no conflict interests 26 27 **CRediT authorship contribution statement** 28 Conceptualization: Hsu and Kubo; Methodology: Hsu, Chen, and Kubo; 29 Software: Hsu; Validation: Hsu and Chang; Formal analysis: Hsu and Liu; 30 Investigation: Liu, Chen, and Choi; Resources: Hsu and Kubo; Data 31 Curation: Hsu, Liu, Chen, and Choi; Writing - Original Draft: Hsu, Chang, Kubo, and Liu; Writing - Review & Editing: Hsu, Chang, Kubo, and Liu; 32 33 Visualization: Hsu and Liu; Supervision: Hsu and Kubo; Funding 34 acquisition: Kubo 35

### 43

### 44 45

## **Exploring Interdisciplinary Aspects for Conservation Management:**The Case of Land Hermit Crab Wildlife Trade in Taiwan

47

46

48

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

49 Abstract

Most conservation policies and management primarily focus on However, considering the high demand for vertebrate animals. invertebrate species in the exotic pet markets, it is crucial to give them great consideration. This research explores *Coenobita purpureus*, a land hermit crab newly recorded in Taiwan in 2017. We noticed that it has gained popularity in the online pet market recently, despite limited studies confirming its population. To mitigate the potential risks associated with this species, our study investigated online wildlife trade markets, conducted field surveys for its distribution, and scrutinized relevant regulations in Taiwan. The median price of the species significantly increased after its description. This suggests a growing demand in the exotic pet market, potentially leading to unsustainable trade. Besides, the online platform and coloration of individuals also influenced the price. Furthermore, we discovered that *C. purpureus* is more widely distributed in Taiwan than initially described in the literature, confirming its native status, though the population may be small. We also identified limitations in current Taiwanese regulations and policies regarding the risk of unsustainable trade in potentially threatened invertebrate species. Moreover, we found evidence of individuals being smuggled from China through e-commerce channels. Regulatory measures addressing the smuggling of small amounts of wildlife are also insufficient, potentially posing invasion risks from alien species. Finally, we drew upon the conclusions from these aspects to provide integrated and practical management implications for policymakers. Additionally, we aim to offer

74 this valuable case study to spotlight the state of the global invertebrate

### 75 trade.

### **KEYWORDS**

77 Land hermit crabs, *Coenobita purpureus*, wildlife trade, distribution, 78 regulation, conservation management, Taiwan

79

76

80

81

8283

84

86

### 85

#### 1. INTRODUCTION

87 Land hermit crabs belong to the family Coenobitidae, which comprises about 20 species distributed in tropical coastal areas (Burggren & 88 89 McMahon, 1988). Their larval stages occur in the ocean, and they migrate 90 from the ocean to land only at the megalopa stage, becoming what are so-91 called "marine creatures on land." Land hermit crabs, as a type of land 92 crab, play crucial roles in nutrient cycling, serving as a food source for 93 predators, and seed dispersal for coastal forest ecosystems (Alexander et 94 al., 1997; Burggren & McMahon, 1988; Huang & Hsu, 2022; Lindquist et 95 al., 2009). Coastal forests are part of the green infrastructure that helps 96 protect humans against natural hazards, such as storm surges and 97 tsunamis (Hoque et al., 2018; Tanaka et al., 2007). Addressing these issues 98 is crucial for conserving these unique creatures and their ecosystem 99 services. Due to habitat loss and overconsumption, their populations are 100 declining. Regarding overconsumption, only coconut crabs (*Birgus latro*) 101 are considered a food source for humans; other species are kept as exotic pets worldwide (Hsu, 2021). Thus, in the IUCN Red List, only coconut 102 crabs are listed as "Vulnerable" (Cumberlidge, 2020), while other 103 104 Coenobita species are not evaluated. Understanding their populations, regulations, and market conditions is imperative for conservation 105 106 management.

107 Illegal or unsustainable wildlife trades significantly impact wildlife 108 populations (Cardoso et al., 2021; Hinsley et al., 2023). However, the 109 evaluation and regulation for invertebrate species are relatively less compared to vertebrates (Caldas et al., 2018; Cardoso et al., 2011; Caro, 110 2022; Eisenhauer et al., 2019). Land hermit crabs (Coenobita sp.) are 111 popular pets worldwide (Bundhitwongrut, 2020; Marnell, 2016; Sasaki, 112 113 2014). Some reports have highlighted the unsustainable trade of land 114 hermit crabs, e.g., PETA investigation (https://reurl.cc/nDg8g2), Thailand (Bundhitwongrut, 2018), and Taiwan (Hsu & Choi, 2016). Furthermore, a 115 116 recent wildlife smuggling event involving the attempted illegal trafficking 117 of 682 individuals was uncovered in Okinawa, Japan (Hsu, Wang, et al., 118 https://reurl.cc/y7V9oq). 2023; Okinawa Times: Considering consumers' demand for rare and exotic pets is a major driving force behind 119 120 the wildlife trade (Bush et al., 2014), adopting a multiple-dimensional 121 approach in wildlife conservation research for invertebrates is crucial. 122 Unlike certain insect pets, the captive breeding of land hermit crabs for

Unlike certain insect pets, the captive breeding of land hermit crabs for commercial marketing remains challenging, primarily due to the high mortality rate during the larvae stage (Brodie & Harvey, 2001; Liu et al., 2021). Consequently, most land hermit crabs available in the market are sourced through wild capture. This unregulated collection of significant numbers of wild crabs for the pet trade has raised serious concerns. Such practices could lead to the unsustainability of land hermit crab populations (Bundhitwongrut, 2018).

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

This study was initiated based on the observation of peculiar phenomena within the community of land hermit crab enthusiasts on Facebook. In Taiwan, selling land hermit crabs as pets has a long history. In the past, people could easily buy land hermit crabs in markets near coastal areas or even at night markets. However, we believe that due to rising conservation awareness, sellers now tend to sell crabs more discreetly, often using the internet. Most of the species sold are common in Taiwan, such as *C. brevimanus, C. cavipes, C. rugosus,* and *C. violascens.* Recently, we have noticed a significant increase in popularity of the land hermit crab species *C. purpureus,* which is rare in Taiwan, among enthusiasts on Facebook and

in the Taiwanese pet market. After the publication of this new record, we observed lively discussions among people regarding the finding. There was a growing number of individuals trying to locate this species around Taiwan, and more people showcasing their pets of this species.

The combination of the high market price and the potential for a low population in the wild in Taiwan (Chia-Hsuan Hsu, personal observation) gives rise to a significant concern known as the Anthropogenic Allee Effect (Courchamp et al., 2006). This effect suggests a positive feedback loop between rarity and price across diverse taxa and geographic regions (Holden & McDonald-Madden, 2017; Siriwat et al., 2019). This interplay ultimately leads to the value rising of a species with its rarity, consequently generating motives for increased exploitation. The impact could worsen by the rise of the Internet, which significantly facilitates the exotic pet trade through extensive advertising and transportation of traded species (Fink et al., 2021; Stringham et al., 2021). The market conditions of *C. purpureus* and identify any advertising effects that may have emerged since the publication of new records (Hsu & Soong, 2017) (i.e., post-2017). We also aimed to evaluate any observed price increases for this species. Additionally, we explored whether other factors, such as the trading platform or the characteristics of individual crabs, influenced the price of C. purpureus.

Although *C. purpureus* is becoming popular in Taiwan's pet market, little is known about their current population distribution in Taiwan. Such uncertainty will cause great challenges for their subsequent conservation and management. *Coenobita purpureus* was previously considered an endemic species in Japan (Sanda et al., 2019). However, Hsu & Soong (2017) published the first scientific record of *C. purpureus*, which described a male individual with a light-blue coloration, from Dongji Island in Taiwan. In 2019, an ovigerous female and two male individuals were discovered on Dongsha Island, Taiwan (Hsu et al., 2019). These findings are important because they suggest that *C. purpureus* does inhabit the surrounding islands of Taiwan and they can breed there. However, there are no other further records regarding the distribution of this hermit crab

species in mainland Taiwan. Therefore, our second research objective is to confirm the distribution of this species in Taiwan, as a basis for future conservation and management.

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

Regulations concerning invertebrates have received limited attention worldwide (Cardoso et al., 2011; Caro, 2022). Legal regulation is a crucial aspect of conservation (Oldfield, 2003). Legislation aimed at controlling the exploitation and trade of land hermit crabs from natural habitats is currently limited to only a few countries (Table 1). Therefore, the third objective of this study was to conduct an inventory of the relevant laws and regulations about all land hermit crabs and other invertebrates in Taiwan. This is particularly important due to their increasing popularity as pets worldwide (Bundhitwongrut, 2018; Sasaki, 2014), despite the current inability to commercially breed them. In the absence of pertinent regulations for conserving land hermit crabs or other invertebrates, a significant gap in conservation management could emerge. Besides, due to the popularity of *C. purpureus* in the pet market and its high price, there may be smuggling of this species from other countries into Taiwan. Thus, we also documented cases of animal smuggling and presented relevant regulations in Taiwan.

Table 1. The regulation related to land hermit crabs in different countries.

| Countr       | Target        | Related regulation                    | Reference   |
|--------------|---------------|---------------------------------------|-------------|
| $\mathbf{y}$ | species       |                                       |             |
| Australi     | Coenobi       | Companies wish to sell the Australian | Australian  |
| a            | ta            | land hermit crab must obtain approval | Government  |
|              | variabili     | from the Wildlife Trade Operation     | :           |
|              | $\mathcal{S}$ | under Part 13A, Section 303FN of the  | https://www |
|              |               | Environment Protection and            | .dcceew.go  |
|              |               | Biodiversity Conservation Act 1999    | v.au/       |
| Bermud       | Coenobi       | Coenobita clypeatus is legally        | (Copeland,  |
| a            | ta            | protected as a Level 2 species under  | 2020)       |
|              | clypeat       | the Protected Species Act 2003,       |             |
|              | US            | prohibiting local collection and the  |             |

|        |               | sale of the species sourced from     |             |
|--------|---------------|--------------------------------------|-------------|
|        |               | overseas.                            |             |
| Japan  | Coenobi       | All species of land hermit crabs are | (Nakasone,  |
|        | ta sp.        | designated as Natural Monuments      | 2001)       |
|        |               | under the Law for the Protection of  |             |
|        |               | Cultural Properties. The sellers are |             |
|        |               | required to obtain permits to catch  |             |
|        |               | and sell these species in Japan.     |             |
| Taiwan | <b>Birgus</b> | Only coconut crabs (which belong to  | (Hsu, 2018) |
|        | latro         | the same Family, Coenobitidae, as    |             |
|        |               | land hermit crabs) are prohibited    |             |
|        |               | from being caught under the Wildlife |             |
|        |               | Conservation Act                     |             |

Wildlife trade research should be cross-disciplinary, combining various variables to provide management recommendations for policymakers (Blair et al., 2017). Our research objectives encompass the following disciplines: (1) Market: Investigating market conditions, such as price disparities before and after the publication of the new record (advertising effect), across different platforms, and among individuals with varying coloration scales; (2) Ecology: Gaining an understanding of the distribution of *C. purpureus* and ascertaining their settlement in Taiwan; (3) Regulation: Making an inventory of the relevant laws and regulations applicable to our case. Ultimately, the paramount goal is to offer management implications that can help policymakers in advancing effective conservation strategies.

#### 2. METHOD

The methodology for the study consisted of three main aspects: using the online platforms to understand trading conditions (market aspect), conducting field surveys to investigate the population distribution (ecology

aspect) and compiling an inventory of the relevant laws and regulations applicable to our case. The details of each methodology are as follows.

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

# 2.1 Market aspect: Prices and numbers of *C. purpureus* in online platform

To explore the trade conditions of *C. purpureus*, we followed the guidelines for internet monitoring and quantification of wildlife trade provided by (Stringham et al., 2021). We manually examined the prices and counted the number of individuals of the species listed on popular ecommerce platforms such as Yahoo, Shopee, and Ruten in Taiwan, as well as on the social media platform such as Facebook. We used keywords such as " $\Pi\Pi\Pi\Pi\Pi\Pi\Pi$ ", " $\Pi\Pi\Pi\Pi\Pi\Pi$ ", and "C. purpureus". The manual data collection took place from June 1st to July 30th, 2023. However, we observed that some sellers were offering the species for sale on Facebook without specifying the price. To gather pricing information in such cases, we utilized anonymous accounts to inquire about the prices. Furthermore, due to the rarity and uniqueness of *C. purpureus* in the past, some of the sale posts with photos and prices were captured and stored as screenshots by one of the authors (Choi). Finally, we recorded the number of individuals, prices, and colors from both sold and unsold crab individuals. We acknowledge that collecting data in this manner may introduce certain biases because some sellers might delete their sales posts after the land hermit crabs are sold, which may lead to underestimations of the sales count.

To analyze all the factors influencing the price of *C. purpureus*, we employed a Generalized Linear Model (GLM) with a Gaussian family distribution, appropriate for continuous dependent variables. The dependent variable in our model was "Price," while the independent variables included "Body size," "Color," "Pub," and "Year." The model fitting was conducted using standard statistical software, ensuring that the assumptions of the GLM were checked and validated. The results from the GLM provided insights into how each independent variable affects the price, allowing us to interpret the significance and magnitude of these effects.

247 The GLM was formulated as follows:

### 249 Where:

- is the dependent variable representing the price of the crabs.
- is a continuous variable measuring the size of the crabs.
- is a categorical variable with levels indicating the color of the crabs (e.g., dark, light).
- is a categorical variable representing different selling platforms.
- is a continuous variable indicating the year of the sale.
- $\beta$ 0,  $\beta$ 1,  $\beta$ 2,  $\beta$ 3,  $\beta$ 4 are the coefficients estimated by the model.
- $\epsilon$  is the error term.

To assess the impact of the publication of the new record of *C. purpureus* on January 1st, 2017, on market pricing, we conducted a statistical test comparing prices before and after that specific point in time. Before performing the statistical test, we checked the normality of the data using the Shapiro-Wilk test. If the data were normally distributed, we proceeded with the t-test. However, if the data did not follow a normal distribution, we used non-parametric tests instead. We also compared the different platforms (Facebook and Shopee) to understand whether the prices differ across various online platforms. Additionally, the sellers provided photos of each individual, allowing us to identify the colors. Two researchers then examined the photos and recorded the colors to ensure consistency. If discrepancies arose between researchers' identifications, they discussed them together to ensure consistency, a process that can be considered a form of triangulation. Subsequently, we compared the price between different coloration scales of individuals (Light color and dark color).

Fisher's exact test was employed to assess whether the sale of *C. purpureus* individuals before and after 2017 was related to the publication of the new record of the species on January 1st, 2017, and the platforms (i.e., Shopee and Facebook). Additionally, we also utilized Fisher's exact test to investigate the potential association between publication time (i.e., the publication of the new record of the species) and the coloration scale (dark and light colors) of the crab individuals. Furthermore, we utilized

Fisher's exact test to explore whether distinct platforms exhibited variations in the coloration scale of the individuals for sale.

In this section, all the statistical tests were conducted using R 4.2.1(R Core Team, 2022) for analysis. Additionally, R was also utilized for the visualization of the results, providing a comprehensive and coherent representation of the findings.

### 2.2 Ecology aspect: Distribution survey of *C. purpureus* in Taiwan

To determine the extent of *C. purpureus* distribution in Taiwan, we conducted an unsystematic survey to investigate settled populations of *C. purpureus* between 2018 and 2023. Due to the unsystematic nature of the surveys, the selection of survey locations and times was non-randomized. Consequently, the survey efforts, timing, and locations may lack standardization, making it challenging to directly compare abundance and density across different sites. When encountering the target species, we temporarily placed them in a box due to the small number of individuals. After counting and double-checking the species, we released them and recorded the numbers. Species identification was done by referencing previous literature (Yukio, 1988), and the distinct characteristics of *C. purpureus* made them easy to recognize. Any uncertainty was addressed by taking photos and confirming with other team members. We identified *C. purpureus* on beaches through visual examination.

Considering the potential risk of poaching, we chose not to disclose the exact locations in this paper, as recommended by Lindenmayer & Scheele (2017). Instead, we present descriptive statistics and maps at the city, county, or island level to illustrate the number of individuals observed at each location.

# 2.3 Law and Regulation Aspect: Regulations and Cases about *C. purpureus* in Taiwan

To understand the regulations related to this case, we provided some relevant regulations and previous cases associated with our target species for this study. As our target species is not a protected species in Taiwan,

the regulations might not be specific to *C. purpureus*, but could potentially apply to other species of land hermit crabs or even other animals. First, we identified potential regulations that pertain to the wild catching or the smuggling. The corresponding laws and regulations were searched using the Laws & Regulation Database of Taiwan (https://law.moj.gov.tw/ENG/Index.aspx). Subsequently, we searched the Judicial Yuan Law and Regulations Retrieving System (https://judgment.judicial.gov.tw/FJUD/default.aspx) to find similar cases to provide implications for our case.

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

313

314

315

316

317

318

319

320

321

### 3. RESULT

# 3.1 Market aspect: prices and counts of *C. purpureus* in the online platform

Based on GLM conducted, several key factors were found to significantly influence the pricing of products. The intercept suggests a baseline price of -35995.864 units, with a t-value of -6.188 (p < 0.001), indicating a strong negative relationship. Body size positively correlates with price (t = 4.824, p < 0.001), implying that larger crabs tend to command higher prices. Selling platform also plays a role, as products listed on Shopee are associated with lower prices (t = -2.125, p = 0.037), albeit with a modest effect. Moreover, products in lighter colors tend to be priced lower (t = -2.234, p = 0.029), reflecting consumer preferences. Finally, Year adds approximately 17.760 units to the price (t = 6.160, p < 0.001), indicating a positive trend over time. The summary of the GLM is presented in Table 2. TABLE 2 Generalized Linear Model summary including coefficients, standard errors, t-values, and p-values for variables predicting the dependent variable. Significance codes indicate the level of statistical significance (\* p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001). Additional model diagnostics Akaike Information Criterion (AIC) = 900.84.

|           | Coeffici |        |         |          |
|-----------|----------|--------|---------|----------|
| Variable  | ent      | SE     | t-value | p-value  |
|           | -35995.8 | 5817.0 |         | <        |
| Intercept | 64       | 37     | -6.188  | 0.001*** |
| Body size | 206.757  | 42.856 | 4.824   | <        |

|                  |         |        |        | 0.001*** |
|------------------|---------|--------|--------|----------|
| Selling platform |         |        |        |          |
| (Shopee)         | -66.856 | 31.455 | -2.125 | 0.037*   |
| Color (light)    | -78.605 | 35.184 | -2.234 | 0.029*   |
|                  |         |        |        | <        |
| Year             | 17.76   | 2.883  | 6.16   | 0.001*** |

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

As the price data for *C. purpureus* exhibited a non-normal distribution (p < 0.001, Shapiro-Wilk test), we employed the Mann-Whitney test to compare price variations. The time series price plot revealing the data distribution is included in the supplementary materials (S1). Since no selling cases were found on platforms like Rutan and Yahoo, we only analyzed data from Shopee and Facebook. Regarding the price fluctuations before and after the publication of the new record in 2017, it is noteworthy that the price exhibited a significant increase compared to the price prior to the publication of the new record, with the median price being five times higher than that before 2017 (p < 0.001, Mann-Whitney test) (Figure 1; Table 3). In terms of the platform effect, because no crab individuals were sold on Shopee before the new record was published in 2017, we only compared the prices on different platforms after 2017. The prices of *C. purpureus* showed significant differences (p = 0.012, Mann-Whitney test), with the median price being 33% higher on Facebook than on Shopee (Figure 2; Table 3). Furthermore, when comparing the prices of C. purpureus with different colorations, the prices of dark-colored individuals were significantly higher than those of their light-colored counterparts, with the median price of dark-colored individuals being 1.5 and 3.7 times higher than that of light-colored ones before 2017 and after 2017, respectively (p < 0.001, Mann-Whitney test) (Figure. 3; Table 3).



FIGURE 1. The difference in  $\it C. purpureus$  prices before and after the publication of the new record in 2017 ( $\it p < 0.0001$ , Mann-Whitney test). The colored areas represent density plots of frequency.



FIGURE 2. Comparison of *C. purpureus* prices between different online platforms (Facebook and Shopee) after the publication of the new record in 2017 (p = 0.012, Mann-Whitney test). The colored areas represent density plots of frequency.



FIGURE 3. Comparing the prices of individuals with different colorations. The prices of dark-colored individuals were significantly higher than light-colored individuals, both before and after the publication of the new record publishing in 2017 (p < 0.001, Mann-Whitney test). The colored areas represent density plots of frequency.

TABLE 3. The information on C. purpureus prices among variables (\*<0.05, \*\*<0.01, \*\*\*<0.001). The publication of the new record of C. purpureus in Taiwan is on January 1st, 2017.

|                        |                | P                      | rice (USI | <b>)</b> )             |                 |                                  |
|------------------------|----------------|------------------------|-----------|------------------------|-----------------|----------------------------------|
|                        |                | 25th<br>percent<br>ile | Median    | 75th<br>percent<br>ile | Sample size (n) | <i>p</i> -value<br>(M-W<br>test) |
| Time<br>categor        | Before<br>2017 | 33.33                  | 33.33     | 33.33                  | 31              |                                  |
| y                      | After<br>2017  | 308.33                 | 150       | 95.83                  | 44              | <<br>0.001***                    |
| Platfor<br>m<br>(after | Facebo<br>ok   | 600                    | 166.67    | 116.67                 | 29              |                                  |
| 2017)                  | Shopee         | 166.67                 | 125       | 70                     | 15              | 0.012*                           |
| Colorati               | Dark           | 50                     | 50        | 50                     | 4               |                                  |
| (before 2017)          | Light          | 33.33                  | 33.33     | 33.33                  | 27              | < 0.001***                       |
| Colorati<br>on         | Dark           | 600                    | 366.67    | 206.67                 | 20              |                                  |
| (after<br>2017)        | Light          | 128.33                 | 100       | 83.33                  | 24              | < 0.001***                       |

A statistically significant dependence was observed between the publication time and the platforms, indicating that the proportion of  $\mathcal{C}$ . purpureus individuals for sale on Shopee increased after 2017 (p < 0.001, Fisher's exact test, Table 4). Furthermore, a significant dependence was noted between the publication time and the color scale of the specimens, indicating that the proportion of dark-colored individuals being sold increased after 2017 (p < 0.001, Fisher's exact test, Table 4). However, no statistically significant dependence was observed between the selling platforms and the color scale (p = 1, Fisher's exact test, Table 4), indicating that the proportion of dark-colored individuals and light-colored individuals being sold was similar on each platform.

**Publication time** 

|            |                | (20)           | L7)           |                                             |
|------------|----------------|----------------|---------------|---------------------------------------------|
|            |                | Before<br>2017 | After<br>2017 | <i>p</i> -value<br>(Fisher's exact<br>test) |
| Selling    | Facebook       | 31             | 29            |                                             |
| platform   | Shopee         | 0              | 15            | < 0.001***                                  |
|            | Dark<br>color  | 4              | 20            |                                             |
| Coloration | Light<br>color | 27             | 24            | 0.005**                                     |
|            |                | Selling p      | latforms      |                                             |
|            |                | T l l-         | C1            | _                                           |

# 3.2 Ecological aspect: Current Distribution of *C. purpureus* in Taiwan

We identified the distribution of *C. purpureus* in numerous locations across Taiwan (Figure. 4, Table 5). Following the discovery sequence, subsequent locations included Lanyu, New Taipei City, Keelung, Yilan County, Green Island, and Kaohsiung City. We have also integrated the prior discovery sites identified by our team, namely Dongji Island (Hsu & Soong, 2017) and Dongsha Island (Hsu et al., 2019) (Figure 4; Table 4). Due to variations in survey efforts at each location, determining the exact population size is not feasible; however, we have provided this information as a reference in Table 4.



FIGURE 4. The Current distribution of *C. purpureus* in Taiwan. A: Dongji Island; B: Dongsha Island; C: Lanyu; D: New Taipei City; E: Keelung; F: Yilan County; G: Green Island; H: Kaohsiung City.

| Cod<br>e | Location           | Finding<br>years | Total<br>number<br>of<br>individu<br>als | Data<br>source           | Memo<br>(approxima<br>te survey<br>efforts)                                            |
|----------|--------------------|------------------|------------------------------------------|--------------------------|----------------------------------------------------------------------------------------|
| A        | Dongji<br>Island   | 2015             | 1                                        | Hsu &<br>Soong<br>(2017) | Three<br>nights (6<br>hours) of<br>survey                                              |
| В        | Dongsha<br>Island  | 2018             | 3                                        | Hsu et al.<br>(2019)     | Five days<br>(15 hours)<br>of survey for<br>one year, a<br>total 4 years<br>(60 hours) |
| С        | Lanyu              | 2019             | 4                                        | This study               | Surveyed 4<br>times (20<br>hours)                                                      |
| D        | New Taipei<br>City | 2019-2023        | 28                                       | This study               | Surveyed 53<br>times (65<br>hours)                                                     |
| Е        | Keelung            | 2021             | 2                                        | From<br>Hung-Chi<br>Tu   | Every<br>month<br>survey 2<br>times (4<br>hours) for<br>one year (48<br>hours)         |
| F        | Yilan<br>County    | 2022, 2023       | 4                                        | This study               | Survey 5<br>times (5<br>hours)                                                         |
| G        | Green              | 2022             | 1                                        | From Yi-                 | Occasionally                                                                           |

|   | Island            |      |   | Xuan Xiao  |                                  |
|---|-------------------|------|---|------------|----------------------------------|
| Н | Kaohsiung<br>City | 2023 | 1 | This study | Surveyed 9<br>days (18<br>hours) |

### 3.3 Laws and regulations aspect: Regulations and cases related to

### *C. purpureus* in Taiwan

### 3.3.1 Wild-catch using prohibited methods

Since *C. purpureus* is not a protected species under the Wildlife Conservation Act in Taiwan, there are no restrictions on wild catching in normal situations. The only relevant Articles under the Wildlife Conservation Act are Article 19, which states that wildlife of general species shall not be captured using explosives, other blasting devices, poisons, electricity, narcotics, or paralysis methods, setting nets, firearms other than authorized hunting rifle, traps, snares, or other prohibited items or methods announced by the authorities, and Article 49, which specifies that violators shall be subjected a penalty ranging from NT\$60,000 (2,000 USD) to NT\$300,000 (10,000 USD).

#### 3.3.2 Wild-catch in the National Park

If people catch land hermit crabs in the National Parks, they will be in violation of the National Park Law. According to Article 13, Subsection 2 of the National Parks Law, it is prohibited to hunt animals or catch fish in National Parks, and Article 25 states that violators of Section 2 of Article 13 shall be punished up to NT\$ 3,000 (approximately 100 USD). If the circumstances of the offense are serious and result in severe damage, the offender shall be sentenced to imprisonment of up to one year or receive a fine of up to NT\$ 3,000. Criminal offenses can only be established if they are recognized as having severe circumstances by the National Parks Agency and confirmed by the court. Most of these cases fined by this regulation involved illegal coral harvesting.

Additionally, according to the Directions for Fines for Cases of Violation of the National Park Law, for those who hunt animals or catch fish, the fine for the first offense is NT\$3000 (100 USD), and for subsequent offenses, the fine remains at NT\$3000. Some real cases of people being fined under the National Park Law for catching land hermit crabs. For instance, in 2020, a man was fined NT\$3000 for catching 30 individuals of land hermit crabs (News: https://reurl.cc/mDOeoG).

### 3.3.3 Selling the wildlife

470

484

485

486

487

488

489

490

471 According to Article 36, Paragraph 1 of the Wildlife Conservation Act, 472 those who engage in the commercial activities of for-profit raising, 473 breeding, trading, processing, import, or export of wildlife shall be 474 approved by municipal or county (city) authorities and shall obtain a 475 business license according to the law. Violators shall be subjected to a fine 476 of not less than NT\$60,000 and not more than NT\$300,000 (approximately 477 2,000 to 10,000 USD), as stipulated in Article 49, Paragraph 1, 478 Subparagraph 1 of the Wildlife Conservation Act.

In one case, a person was reported for selling general wildlife and cobras online without permission. The man violated Article 36, Paragraph 1 of the Wildlife Conservation Act and, according to Article 49, Paragraph 1, Subparagraph 6 of the same act, was fined NT\$60,000 (approximately 2,000 USD).

### 3.3.4 Smuggling from other countries

Due to the limited population of *C. purpureus* in Taiwan, it is possible that individuals of this species are being smuggled from China. How do we know it's from China and not Japan? We asked several online sellers in China if they had experience shipping *C. purpureus* to Taiwan. Some of them responded affirmatively, stating a success rate of 50%. That's why we have to include the relevant laws related to smuggling in our study.

Article 2, paragraph 1 of the Smuggling Penalty Act states: "Offenders of illegally import or export controlled articles are subject to a fixed-term imprisonment of 7 years maximum, and may be fined no more than three million New Taiwan Dollars (approximately 100,000 USD)." Constituent elements:

- 496 a. The customs taxable value must exceed one hundred thousand New
- 497 Taiwan Dollars or the weight must exceed one thousand kilograms.
- 498 b. The goods are smuggled from Mainland China in a single shipment.
- 499 c. The items, rice, rice flour, peanuts, tea leaves, or seeds (bulbs) have not
- 500 been allowed for import by the competent authority.
- In these criminal penalties of smuggling cases, the verdicts are as
- 502 follows: Clams (*Mercenaria mercenarius*) (total weight 9,808.9 kilograms,
- 503 836 bags) resulted in a 5-month imprisonment. 154 various breeds of cats
- led to a sentence of 6 months of imprisonment with probation. As for the
- 505 smuggling of 8,086 kilograms of clams (*M. mercenaria*), the sentence was
- 506 7 months of imprisonment.
- Another related to smuggling belongs to administrative sanction is
- 508 Article 51, Subparagraph 3 of the Wildlife Conservation Act states:
- 509 Violation of Article 24, Paragraph 1 by import or export of General Wildlife
- 510 without the approval of the National Principal Authority (NPA), shall be
- 511 subjected to a fine of not less than NT\$10,000 and not more than
- 512 NT\$50,000 (approximately 333 to 1667 USD).
- 513 (1) Constituent elements: In accordance with Article 3, Subparagraph 1,
- and Article 24, Paragraph 1 of the Wildlife Conservation Act.
- 515 a. No import or export of live wildlife or Protected Wildlife products is
- allowed without prior approval from the NPA.
- 517 b. Wildlife: In common circumstances, any animal living in a natural
- 518 habitat, including mammals, birds, reptiles, amphibians, fish, insects, and
- 519 other kinds of animals.
- 520 (2) Seizing live animals: According to the "Procedure for Handling Seized
- 521 Animals and Related Goods in Smuggling Cases," all confiscated live
- 522 animals shall be destroyed.
- In conclusion, our study has identified two laws that may be relevant to
- 524 our research. The first is the Smuggling Penalty Act, which deals with
- 525 criminal penalties for smuggling activities. The second is the Wildlife
- 526 Conservation Act, which imposes administrative sanctions for violations
- 527 related to wildlife conservation. In the next section, we will delve into a

detailed discussion of these two laws and their implications for the management of land hermit crabs in Taiwan.

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

528

529

### 4. DISCUSSION

### 4.1 Wildlife trade of *C. purpureus*

We confirmed a significant rise in the price of *C. purpureus* for sale on platforms, notably following the year 2017, which coincides with the publication of the new record in Taiwan during that same year. This suggests that the publication of this new record may have triggered an "advertising effect", potentially leading to increased public notice and interest. Such an effect can be further supported by other aspects that we found the publication in 2017 did ignite discussions within various hermit crab enthusiast communities in Taiwan (personal observation). We attempted to conduct text or content analysis using communities' discussion posts. However, we encountered challenges as some of the communities changed or closed, resulting in the disappearance of discussion posts. Consequently, we could only rely on "Personal observation" to describe this phenomenon. The advertising effect has not only occurred in *C. purpureus* but has been documented in other taxa, e.g., spiders (Henriques, 2020) and amphibians (Gluszek et al., 2021), that they become targets for poaching in the pet market after their publication as new species. The substantial rising prices strongly suggest a continued upward trend in species demand. Policymakers should direct their attention toward the decline in local populations and occurrences of smuggling.

We found a significant dependence between the selling platform and publication time (Table 4), with the proportion of *C. purpureus* individuals for sale on Shopee increasing after 2017, whereas no such increase was observed on Facebook. This discrepancy could potentially be attributed to the fact that the Shopee company was established in 2015 and gained more popularity by 2017. Consequently, sellers predominantly utilized Shopee as a selling platform only after 2017. In contrast, with Facebook, sellers used it as a selling platform irrespective of whether it was before or after

2017. In the realm of e-commerce wildlife trade, Taiwan's renowned shopping website, Shopee, has made a declaration that prohibits sellers from vending live animals on their platform. However, sellers have adopted the strategy of labeling their offerings as "models" or "toys" to evade detection by the website's policies and still sell live species. We recommend that the company and policymakers devise strategies to counteract sellers who exploit these loopholes.

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

Regarding the price of body coloration, we discovered that the price of dark-colored individuals was significantly higher than that of light-colored individuals. This discrepancy is logically understandable, as dark-colored individuals tend to be more vivid and attractive, thus commanding a higher selling price. However, it's important to take into account that darkcolored individuals also tend to exhibit larger body sizes [personal observation for *C. purpureus* and evidence for marine hermit crab Clibanarius virescens (Yoshikawa et al., 2020)], and consequently, their higher pricing can also be attributed to their larger size. In Table 3, we found a significant dependence between publication time and coloration, highlighting a prevalence of dark-colored individuals post-2017. This finding suggests that following the publication of the new record, there was a preference for darker and larger individuals. Consequently, policymakers should pay more attention to larger-sized individuals, as they tend to exhibit greater fecundity potential, similar to other crustaceans (Hamasaki et al., 2006; Mantelatto et al., 2002). Moreover, land hermit crabs are long-lived and slow-maturing animals. Liu et al. (2021) revealed that *C. rugosus* takes 8 years to reach maturity in captivity. If larger and older individuals are caught, this could potentially have a severe impact on the population, similar to the situation with coconut crabs. While we acknowledge that the time factor might influence the price analysis when considering the coloration of individuals, it does not affect the outcome that darker and larger individuals tend to command higher prices in this study.

In terms of statistical methods in this study, we acknowledge that Fisher's exact test does not account for the temporal sequence of events. Establishing causality often requires demonstrating that changes in one variable precede changes in another, a consideration not addressed by Fisher's exact test. Furthermore, this test does not ascertain the direction of the relationship between variables; it merely indicates whether an association exists. Without knowledge of the direction of the relationship, inferring causality becomes challenging.

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

In addition, we found an intriguing phenomenon on these e-commerce platforms involves the sale of species not native to Taiwan, such as C. clypeatus and C. lila, which raises smuggling concerns related to C. *purpureus* on these platforms. We searched the database of the Taiwanese Bureau of Foreign Trade and found no records of legally imported land hermit crabs. Therefore, species sold online in Taiwan but not naturally distributed here must be the result of smuggling. Our target species, C. purpureus, also carries a significant potential for smuggling, either directly or indirectly from Japan (Environmental Information Center News: https://e-info.org.tw/node/77197), given the limited populations found in Taiwan. We noted numerous sellers offering *C. purpureus* on Taobao, the largest online shopping platform in China. The current event involved a couple who were land hermit crab sellers on Taobao in China, and they intended to smuggle 682 individuals of *C. purpureus* from Okinawa, Japan (Hsu, Wang, et al., 2023; Okinawa Times: https://reurl.cc/y7V9og). We gathered information from sellers on Taobao who admitted to smuggling live land hermit crabs into Taiwan from Hong Kong and mainland China through messages on online platforms. Furthermore, the smuggling event may not just occur directly from Okinawa to China; a local person told us that she had been asked to catch the *C. purpureus* from Okinawa and send them to mainland Japan by Chinese people. Thus, we provided the potential smuggling path of *C. purpureus* can be found in Figure 5.



FIGURE 5. The potential smuggling path of *C. purpureus*.

We suggest that managers take the issue of illegal wildlife trade seriously, since land hermit crabs are relatively small and cold-blooded, which increases the difficulty of detecting smuggling (Fukushima et al., 2021). While land hermit crabs are not classified as an invasive species in Taiwan, we recommend that policymakers focus on regulating animal smuggling, particularly for invertebrates. This is crucial to prevent other potentially invasive species from negatively impacting local ecosystems, such as the case of crayfish (Chucholl, 2013; Faulkes, 2010) and the spider (Shivambu et al., 2020).

Furthermore, not only *C. purpureus* but also other species of land hermit crab, *C. perlatus* and *C. pseudorugosus*, have been newly recorded in Taiwan (Chen et al., 2024; Hsu et al., 2022). Especially, the population of *C. perlatus* is much smaller than that of *C. purpureus*, it is also popular on online shopping platforms (Personal observation). Hence, a similar

640 situation might potentially occur with C. perlatus, warranting further

641 attention and concern.

### 642 **4.2 Distribution of** *C. purpureus* **in Taiwan**

We conducted unsystematic surveys focusing on *C. purpureus*, spanning

644 the years 2018 to 2023, across the main island and neighboring islands of

645 Taiwan. To our surprise, the presence of *C. purpureus* encompasses New

646 Taipei, Yilan, and Kaohsiung, along with adjacent islands like Lanyu, Green

647 Island, and Dongsha Island. As a result, we can definitively affirm the

648 natural distribution of *C. purpureus* in Taiwan.

Although *C. purpureus* can be found in Taiwan, information regarding its population size remains limited. It appears that the population is higher in

Northern Taiwan; however, this observation might be biased because the

652 surveyors reside in Northern Taiwan. It is not possible to directly compare

the population sizes among survey locations due to variations in survey

654 efforts. Nevertheless, it seems that the population of *C. purpureus* is

655 relatively limited when compared to the sympatric land hermit crab

656 species, *C. rugosus* (personal observation). From 2018 to 2023, there are

657 some systematic survey studies about land hermit crabs in Taiwan,

658 including Kenting (Hsu et al., 2018), Wang-An Island (Hsu, Fang, Jiang, et

659 al., 2023), Dongsha Island (Hsu, Liang, et al., 2019), and Yilan Dakenggu

660 Community (Hsu, Fang, Chiu, et al., 2023). Nevertheless, only three

661 individuals of *C. purpureus* were found on Donsha Island (Hsu, Liang, et

al., 2019). This indicates that the population size of *C. purpureus* is quite

663 low in Taiwan.

653

670

As *C. purpureus* has gained significant popularity among the Taiwanese hermit crab enthusiast community, conducting further ecological research to comprehensively understand the population dynamics and distribution patterns of *C. purpureus*. This is imperative for accurately assessing the conservation status of this species. Notably, the commercial captive breeding of land hermit crabs remains an unachieved feat at present (Liu

et al., 2021). Given this circumstance, any involvement of this species in

671 the wildlife trade could potentially result in overexploitation, further

exacerbating the risk of regional extinction. Besides, Thus, the relevant regulation and management strategy should be imperative.

### 4.3 Laws and regulations related to our case

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

In terms of improper methods to catch land hermit crabs, it is known that most of the land hermit crab poaching is done using food bait or direct capture, and not by using methods prohibited by the law, such as anesthetics or paralysis, setting nets, firearms other than hunting guns, traps, snares, or other specially prohibited hunting tools. Therefore, Article 19 of the Wildlife Conservation Act may not be applicable to land hermit crab poaching cases, and there have been no precedents of such cases being penalized under this Act.

The National Park areas are the most abundant habitats for land hermit crabs. According to the National Park Law, criminal penalties are imposed only in severe circumstances. The capture of land hermit crabs is generally not considered a serious offense; most serious poaching cases are related to corals. Currently, there is one reported case of 9 hermit crabs being captured in Kenting National Park (it is uncertain whether they were marine hermit crabs or land hermit crabs). However, the prosecutor did not find the case to involve serious circumstances and decided not to pursue prosecution. For the general circumstances of poaching the land hermit crabs in the National Park, according to the Directions for Fines for Cases of Violation of the National Park Law, regardless of whether it is the first offense or a repeat offense, the fine for each violation is only NT\$3,000 (about 100 USD), which lacks any deterrent effect. Due to the high prices of individual *C. purpureus*, one violation may surpass the penalty, while for other species like C. brevimanus, just 5 individuals could exceed the penalty. The profitability often outweighs the penalty in illegal or unsustainable wildlife trades (Hsu, 2024; Van Song, 2008; Wellsmith, 2011), which is believed to be a significant reason for the frequent occurrence of such trades. However, we don't know if higher penalties can increase the deterrent effect. At least, a higher fine can be used as funding for wildlife conservation and restoration.

In terms of smuggling, we believe that constituting a criminal penalty under the Smuggling Penalty Act for smuggling land hermit crabs is extremely difficult, almost impossible, due to the requirement of a large quantity.

708

704

705

706

707

709

710

711

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

### 5. MANAGEMENT IMPLICATION

According to our study, we offer some suggestions for policymakers. 712 First, ecological information is crucial. We need to conduct further 713 research to understand habitat preferences, hotspots, population sizes, 714 and more. The significance of scientific knowledge is evident in Aichi 715 Target 19, which emphasizes enhancing "scientific knowledge about 716 biodiversity and its applicability in decision-making" as a fundamental 717 factor for shaping the Strategic Plan for Biodiversity's development 718 (Margues et al., 2014). With this information, we can determine the 719 conservation status of *C. purpureus* or establish wildlife refuges as 720 needed.

Based on our preliminary findings, we believe that the population of C. purpureus is low in Taiwan. Conducting an ecological study requires a certain amount of time; however, the capturing and wildlife trading of this species is still ongoing. Thus, we suggest considering referencing the Japanese policy applied to certain species, which involves one giant centipede (Scolopendra alcyona), two cockroaches (Eucorydia donanensis and Eucorydia miyakoensis), and one damselfly (Platycnemis phyllopoda). This policy involves the implementation of a temporary ban on capturing, importing, exporting, transferring, and displaying or advertising the species after its discovery, to ensure its conservation status (From Ministry of Environment, Japan: https://www.env.go.jp/nature/kisho/kinkyushiteishu.html). Besides, there is another Japanese policy known as the "Specified Type 2 Domestic Endangered Species of Wild Fauna and Flora," which allows individuals to use the species for research, environmental education, breeding, and other non-commercial purposes, while imposing restrictions on their transfer, display, or advertisement. This policy involves 13 salamander species belonging to the Family Hynobiidae, one freshwater fish (*Hemigrammocypris neglectus*), and one insect (*Kirkaldyia deyrolli*) (From Ministry of Environment, Japan: <a href="https://www.env.go.jp/page\_00707.html">https://www.env.go.jp/page\_00707.html</a>). We believe that this regulation is reasonable and recommend its reference, as introducing a species to the market could lead to a higher demand than personal small-scale catching.

Regarding the risk of potential smuggling, we propose that policymakers establish regulations for wildlife smuggling, even in the case of small quantities. This precaution is crucial due to the possible introduction of invasive species into Taiwan. Furthermore, we suggest the revision of wildlife conservation regulations to suit current requirements better, particularly emphasizing the importance of invertebrates and ensuring that these regulations carry a robust deterrent effect. Additionally, a focus on enhancing technological advancements in detection and enforcement is necessary to effectively combat illegal wildlife smuggling.

Preserving intact habitats for land hermit crabs is of utmost importance. These crab species inhabit coastal forests and migrate to the seashore during the breeding season. However, numerous coastal forests are under threat due to tourism development, solar panel installations, road construction, and unnecessary building projects. An encouraging example comes from the Dakenggu community in Yilan County, where residents-initiated surveys and restoration efforts for the coastal forest. They aim to bolster the population of land crabs for environmental education and ecotourism purposes (Hsu, Fang, Chiu, et al., 2023). Collaboration with residents and developing a citizen science project for long-term monitoring and guarding against poaching are essential for effective conservation (Hsu, Chang, et al., 2019).

Education plays a crucial role in raising public conservation awareness.
We firmly believe that the ecology of land hermit crabs offers valuable
material for environmental education. Their life cycle spans both the ocean
and land, providing insights into marine and coastal forest ecosystems.

- 770 Ultimately, the key objective is to shift public behavior towards conserving
- 771 land hermit crab species and other wildlife.

- 773 **Declaration of competing interest**
- 774 The authors have no conflict of interest.

775

- 776 **Data availability**
- 777 Data will be made available on request.

778

779

### **6. REFERENCE**

- 781 Alexander, H. G. L., Stoddart, D. R., & Westoll, T. S. (1997). A preliminary
- assessment of the rôle of the terrestrial decapod crustaceans in the
- Aldabran ecosystem. *Philosophical Transactions of the Royal Society*
- 784 of London. Series B, Biological Sciences, 286(1011), 241-246.
- 785 Blair, M. E., Le, M. D., Sethi, G., Thach, H. M., Nguyen, V. T. H., Amato, G.,
- Birchette, M., & Sterling, E. J. (2017). The Importance of an
- 787 Interdisciplinary Research Approach to Inform Wildlife Trade
- Management in Southeast Asia. *Bioscience*, *67*(11), 995–1003.
- 789 Brodie, R., & Harvey, A. W. (2001). Larval Development of the Land Hermit
- 790 Crab Coenobita Compressus H. Milne Edwards Reared in the
- Telephone Teleph
- 792 Bundhitwongrut, T. (2018). Unregulated trade in land hermit crabs in
- 793 Thailand. The Natural History Bulletin of the Siam Society, 63(1), 27-
- 794 40.
- 795 Bundhitwongrut, T. (2020). Notes on the current trade in land hermit crabs
- in Thailand. The Natural History Bulletin of the Siam Society, 64(1),
- 797 43-46.
- 798 Burggren, W. W., & McMahon, B. R. (1988). Biology of the Land Crabs.
- 799 Cambridge University Press.
- 800 Bush, E. R., Baker, S. E., & Macdonald, D. W. (2014). Global trade in exotic
- 801 pets 2006-2012. Conservation Biology, 28(3), 663-676.
- 802 Caldas, A. T. M., Dias, M. A., & Peres, M. (2018). Invertebrate (Araenae:

- Mygamolomorphae) Illegal Trade: An Ignored Side of Wildlife
- Trafficking. *American Journal of Zoology, 1*(1), 20–23.
- 805 Cardoso, P., Amponsah-Mensah, K., Barreiros, J. P., Bouhuys, J., Cheung,
- H., Davies, A., Kumschick, S., Longhorn, S. J., Martínez-Muñoz, C. A.,
- Morcatty, T. Q., Peters, G., Ripple, W. J., Rivera-Téllez, E., Stringham,
- 808 O. C., Toomes, A., Tricorache, P., & Fukushima, C. S. (2021).
- Scientists' warning to humanity on illegal or unsustainable wildlife
- trade. *Biological Conservation*, 263, 109341.
- 811 Cardoso, P., Erwin, T. L., Borges, P. A. V., & New, Tim R. (2011). The seven
- impediments in invertebrate conservation and how to overcome them.
- 813 *Biological Conservation, 144*(11), 2647–2655.
- 814 Caro, T. (2022). Commentary to biodiversity and conservation Upgrading
- Birgus: lessons for invertebrate conservation. *Biodiversity and*
- 816 *Conservation, 31*(13), 3285–3289.
- 817 Chen, T. P., Hsu, C. H., Chang, Y. M., Choi, S. T., & Liu, S. S. (2024). New
- Record of Land Hermit Crabs Coenobita pseudorugosus Nakasone,
- 819 1988 (Crustacea: Decapoda: Anomura: Coenobitidae) from Taiwan.
- 820 Biology Bulletin, 1-6.
- 821 Chucholl, C. (2013). Invaders for sale: trade and determinants of
- introduction of ornamental freshwater crayfish. *Biological Invasions*,
- 823 *15*(1), 125–141.
- 824 Copeland, A.I. 2020. Management plan for the Land Hermit Crab
- 825 (Coenobita clypeatus) in Bermuda. Department of Environment and
- Natural Resources, Government of Bermuda. 39 pp
- 827 Courchamp, F., Angulo, E., Rivalan, P., Hall, R. J., Signoret, L., Bull, L., &
- Meinard, Y. (2006). Rarity value and species extinction: the
- anthropogenic Allee effect. *PLoS Biology, 4*(12), e415.
- 830 Cumberlidge, N. 2020. Birgus latro. The IUCN Red List of Threatened
- 831 Species 2020: e.T2811A126813586. Accessed on 23 April 2024.
- 832 Eisenhauer, N., Bonn, A., & A Guerra, C. (2019). Recognizing the quiet
- extinction of invertebrates. *Nature Communications*, *10*(1), 50.
- 834 Faulkes, Z. (2010). The spread of the parthenogenetic marbled crayfish,
- Marmorkrebs (*Procambarus* sp.), in the North American pet trade.

- 836 Aquatic Invasions / European Research Network on Aquatic Invasive
- 837 *Species, 5*(4), 447.
- 838 Fink, C., Toivonen, T., Correia, R. A., & Di Minin, E. (2021). Mapping the
- online songbird trade in Indonesia. *Applied Geography* , 134, 102505.
- 840 Fukushima, C. S., Tricorache, P., Toomes, A., Stringham, O. C., Rivera-
- Téllez, E., Ripple, W. J., Peters, G., Orenstein, R. I., Morcatty, T. Q.,
- Longhorn, S. J., Lee, C., Kumschick, S., de Freitas, M. A., Duffy, R. V.,
- Davies, A., Cheung, H., Cheyne, S. M., Bouhuys, J., Barreiros, J. P., ...
- Cardoso, P. (2021). Challenges and perspectives on tackling illegal or
- unsustainable wildlife trade. *Biological Conservation*, 263, 109342.
- 846 Gluszek, S., Ariano-Sánchez, D., Cremona, P., Goyenechea, A., Vergara, D.
- A. L., Mcloughlin, L., Morales, A., Cortes, A. R., Fonseca, J. R.,
- Radachowsky, J., & Knight, A. (2021). Emerging trends of the illegal
- wildlife trade in Mesoamerica. *Oryx*, *55*(5), 708-716.
- 850 Hamasaki, K., Fukunaga, K., & Kitada, S. (2006). Batch fecundity of the
- swimming crab Portunus trituberculatus (Brachyura: Portunidae).
- 852 *Aquaculture*, *253*(1), 359–365.
- 853 Henriques, S. (2020). A survey of the Loureedia genus (Araneae, Eresidae)
- with a new species from Iran and the first assessment of illegal wildlife
- 855 trade as a threat to the group. In *bioRxiv* (p. 2020.05.07.082891).
- https://doi.org/10.1101/2020.05.07.082891
- 857 Hinsley, A., Willis, J., Dent, A. R., Oyanedel, R., Kubo, T., & Challender, D.
- W. S. (2023). Trading species to extinction: evidence of extinction
- linked to the wildlife trade. *Cambridge Prisms: Extinction, 1,* e10.
- 860 Holden, M. H., & McDonald-Madden, E. (2017). High prices for rare
- species can drive large populations extinct: the anthropogenic Allee
- effect revisited. *Journal of Theoretical Biology, 429,* 170-180.
- 863 Hoque, A., Husrin, S., & Oumeraci, H. (2018). Laboratory studies of wave
- attenuation by coastal forest under storm surge. *Coastal Engineering*
- 865 *Journal*, 60(2), 225–238.
- 866 Hsu, C.-H. (2024). An update on the incident involving illegal catching of
- land hermit crabs in Okinawa, Japan. *Crustaceana*, 97(1-2), 159-160.
- 868 Hsu, C.-H. (2021). Stop eating the largest land-dwelling marine creatures.

- 869 *Zoo's Print*, 36(4), 3-5.
- 870 Hsu, C.-H. (2018). The coconut crab is in danger of vanishing in Taiwan.
- Nature Conservation Quarterly, 102, 36-41.
- 872 Hsu, C.-H., Chang, Y.-M., & Liu, C.-C. (2019). Can Short-Term Citizen
- 873 Science Training Increase Knowledge, Improve Attitudes, and Change
- Behavior to Protect Land Crabs? *Sustainability*, 11(14), 3918.
- 875 Hsu, C.-H., & Choi, S.-T. (2016). The paradise of *Coenobita brevimanus*-
- 876 Dongji Island, Taiwan. *Nature Conservation Quarterly*, 96, 28-35.
- 877 Hsu, C.-H., Choi, S.-T., & Lin, C.-T. (2022). New Record of Land Hermit
- 878 Crab, Coenobita perlatus (H. Milne Edwads, 1837), from Taiwan
- Island. Thalassas: An International Journal of Marine Sciences, 38(1),
- 880 445-450.
- 881 Hsu, C.-H., Fang, W.-T., Chiu, H.-K., Kao, W.-C., & Huang, T.-S. (2023).
- Coastal Forest Structure Survey and Associated Land Crab Population
- in Suao Dakenggu Community, Yilan, Taiwan. *Diversity*, 15(4), 515.
- 884 Hsu, C.-H., Fang, W.-T., Jiang, B.-R., Chai, L., Kao, W.-C., & Huang, T.-S.
- 885 (2023). Seasonal variation in the land hermit crab, *Coenobita rugosus*
- H. Milne Edwards, 1837 (Decapoda, Anomura) and a preliminary study
- of land hermit crabs as a bioindicator of turtle nesting at Penghu
- 888 County Wang-An Island green turtle nesting refuge, Taiwan.
- 889 *Crustaceana*, *96*(6), 547–563.
- 890 Hsu, C.-H., Liang, Y.-B., Li, J.-J., & Liu, C.-C. (2019). Ecological information
- of land hermit crabs (Crustacea: Decapoda: Anomura: Coenobitidae)
- and new record in Dongsha Atoll National Park, Taiwan. Taiwania,
- 893 *64*(3), 299-306.
- 894 Hsu, C.-H., Otte, M. L., Liu, C.-C., Chou, J.-Y., & Fang, W.-T. (2018). What
- are the sympatric mechanisms for three species of terrestrial hermit
- crab (Coenobita rugosus, C. brevimanus, and C. cavipes) in coastal
- 897 forests? *PLoS One, 13*(12), e0207640.
- 898 Hsu, C.-H., & Soong, K. (2017). Has the land hermit crab Coenobita
- 899 purpureus settled in Taiwan? Crustaceana, 90(1), 111-118.
- 900 Hsu, C. H., Wang, J., Kubo, T., Chang, Y. M., Liu, S. S., Chen, T. P., & Choi,
- 901 S. T. (2023). Highlighting the urgency of conservation strategies for

- land hermit crabs in the light of current incidents. *Crustaceana*, 96(11-
- 903 12), 1191-1194.
- 904 Huang, S.-H., & Hsu, C.-H. (2022). First record of crab-eating mongoose
- 905 (Herpestes urva formosanus) in coastal forest and use of anvils during
- predation on land hermit crabs in Taiwan. Acta Ethologica, 25(3), 185-
- 907 189.
- 908 Lindenmayer, D., & Scheele, B. (2017). Do not publish. Science,
- 909 *356*(6340), 800-801.
- 910 Lindquist, E. S., Krauss, K. W., Green, P. T., O'Dowd, D. J., Sherman, P. M.,
- 8 Smith, T. J., 3rd. (2009). Land crabs as key drivers in tropical coastal
- forest recruitment. Biological Reviews of the Cambridge Philosophical
- 913 *Society, 84*(2), 203–223.
- 914 Liu, S.-S., Fang, W.-T., & Hsu, C.-H. (2021). Filling the knowledge gap in
- the reproductive biology of land hermit crabs (Decapoda: Anomura:
- Ocenobitidae): captive breeding to explore incubation times and
- 917 frequency. Journal of Crustacean Biology, 41(4), ruab056.
- 918 Mantelatto, F. L. M., Alarcon, V. F., & Garcia, R. B. (2002). Egg Production
- 919 Strategies of the Tropical Hermit Crab Paguristes Tortugae from
- 920 Brazil. Journal of Crustacean Biology, 22(2), 390-397.
- 921 Marnell, C. (2016). Tarantula and Hermit Crab Emergency Care. The
- 922 Veterinary Clinics of North America. Exotic Animal Practice, 19(2),
- 923 627-646.
- 924 Marques, A., Pereira, H. M., Krug, C., Leadley, P. W., Visconti, P.,
- Januchowski-Hartley, S. R., Krug, R. M., Alkemade, R., Bellard, C.,
- Cheung, W. W. L., Christensen, V., Cooper, H. D., Hirsch, T., Hoft, R.,
- van Kolck, J., Newbold, T., Noonan-Mooney, K., Regan, E. C.,
- Rondinini, C., ... Walpole, M. (2014). A framework to identify enabling
- and urgent actions for the 2020 Aichi Targets. Basic and Applied
- 930 *Ecology, 15*(8), 633-638.
- 931 Nakasone, Y. (2001). Reproductive Biology of Three Land Hermit Crabs
- 932 (Decapoda: Anomura: Coenobitidae) in Okinawa, Japan. Pacific
- 933 *Science*, *55*(2), 157-169.
- 934 Oldfield, S. (2003). The Trade in Wildlife: Regulation for Conservation.

- 935 Routledge.
- 936 R Core Team. (2022). R: A language and environment for statistical
- computing. R Foundation for Statistical Computing, Vienna, Austria.
- 938 *http://www.R-Project.org/.*
- 939 https://cir.nii.ac.jp/crid/1574231874043578752
- 940 Sanda, T., Hamasaki, K., Dan, S., & Kitada, S. (2019). Expansion of the
- Northern Geographical Distribution of Land Hermit Crab Populations:
- Olonization and Overwintering Success of *Coenobita purpureus* on
- the Coast of the Boso Peninsula, Japan. Zoological Studies, 58, e25.
- 944 Sasaki, J. (2014). Present state of ornamental crustaceans in Japan:
- symposium objectives and contents. *Cancer*, *23*, 63-88.
- 946 Shivambu, T. C., Shivambu, N., Lyle, R., Jacobs, A., Kumschick, S., Foord,
- 947 S. H., & Robertson, M. P. (2020). Tarantulas (Araneae: Theraphosidae)
- in the pet trade in South Africa. *African Zoology*, 55(4), 323–336.
- 949 Siriwat, P., Nekaris, K. A. I., & Nijman, V. (2019). The role of the
- anthropogenic Allee effect in the exotic pet trade on Facebook in
- 951 Thailand. Journal for Nature Conservation, 51, 125726.
- 952 Stringham, O. C., Toomes, A., Kanishka, A. M., Mitchell, L., Heinrich, S.,
- Ross, J. V., & Cassey, P. (2021). A guide to using the internet to monitor
- and quantify the wildlife trade. Conservation Biology, 35(4), 1130-
- 955 1139.
- 956 Tanaka, N., Sasaki, Y., Mowjood, M. I. M., Jinadasa, K. B. S. N., &
- 957 Homchuen, S. (2007). Coastal vegetation structures and their
- 958 functions in tsunami protection: experience of the recent Indian Ocean
- tsunami. Landscape and Ecological Engineering, 3(1), 33-45.
- 960 Van Song, N. (2008). Wildlife Trading in Vietnam: Situation, Causes, and
- 961 Solutions. Journal of Environment & Development, 17(2), 145-165.
- 962 Wellsmith, M. (2011). Wildlife Crime: The Problems of Enforcement.
- 963 European Journal on Criminal Policy and Research, 17(2), 125–148.
- 964 Yoshikawa, A., Ikeo, K., Imoto, J., Jaingam, W., Putri, L. S. E., Mardiansyah,
- Nakano, T., Shimomura, M., & Asakura, A. (2020). Colour variation of
- the intertidal hermit crab Clibanarius virescens considering growth
- stage, geographic area in the Indo-West Pacific Ocean, and molecular

| 968 | phylogeny. Journal of the Marine Biological Association of the United |
|-----|-----------------------------------------------------------------------|
| 969 | Kingdom, 100(7), 1107–1121.                                           |
| 970 | Yukio, N. (1988). Land hermit crabs from the Ryukyus, Japan, with a   |
| 971 | description of a new species from the Philippines (Crustacea,         |
| 972 | Decapoda, Coenobitidae). Zoological Science, 5(1), 165-178.           |
| 973 |                                                                       |
| 974 |                                                                       |
| 975 |                                                                       |