Solutions:

A Book of Abstract Algebra (2e) by Charles C. Pinter

Mark Watson

June 20, 2018

Many of these solutions are incorrect. Please let me know if you find an error!

Chapter 2 Operations

A. Examples of Operations

1.

$$a*b=\sqrt{|ab|}$$
, on the set \mathbb{Q}

This is not an operation because many roots are irrational

2.

$$a * b = \ln b$$
, on the set $\{x \in \mathbb{R} : x > 0\}$

This is an operation

3.

a*b is a root of the equation $x^2 - a^2b^2 = 0$, on the set \mathbb{R}

This is not an operation because it is not uniquely defined for any $a \neq 0$ $b \neq 0$ because $x = a * b = \pm ab$

4.

Subtraction, on the set \mathbb{Z}

This is an operation.

5.

Subtraction, on the set $\{n \in \mathbb{Z} \ge 0\}$

This is not an operation when $a - b \le 0$

6.

$$a * b = |a - b|$$
, on the set $\{n \in \mathbb{Z} \ge 0\}$

This is an operation

B. Properties of Operations

1.

$$x * y = x + 2y + 4$$

i $y * x = y + 2x + 4 \neq x + 2y + 4$ Not commutative

ii
$$x * (y * z) = x(y + 2z + 4) = xy + 2xz + 4x \neq (x * y) * z = (x + 2y + 4)z = xz + 2yz + 4z$$

Not associative

- iii x*e=x for e:x*e=x+2e+4=x; therefore $e=2\neq e*y=y$ for e:e*y=e+2y+4=y; therefore e=-y-4 Identity does not exist
- iiii Inverse can't exist without an identity

2.

$$x * y = x + 2y - xy$$

i $y * x = y + 2x - yx \neq x + 2y - xy = x * y$ Not commutative

ii
$$x*(y*z) = x*(y+2z-yz) = x+2(y+2z-yz)-x(y+2z-yz) = x+2y+4z-2yz-xy-2xz+xyz \neq (x*y)*z = (x+2y-xy)*z = (x+2y-xy)+2z-(x+2y-xy)z = x+2y-xy+2z-xz-2yz+xyz$$

Not associative

iii
$$x*e=x+2e-xe=x$$
, therefore $e=0$ $e*y=e+2y-ey=y$, therefore $e=\frac{-y}{1-y}$ No identity

iiii No inverse

3.

$$x * y = |x + y|$$

- i y * x = |y + x| = |x + y| = x + yCommutative
- ii x * (y * z) = x * |y + z| = |x + |y + z|| = (x * y) * z = |x + y| * z = ||x + y| + z|Not associative (for example let x = 2, y = -3, z = 5)
- iii x * e = |x + e| = xNo identity
- iiii No inverse

4.

$$x * y = |x - y|$$

- i y * x = |y x| = |x y| = x * yCommutative
- ii x * (y * z) = x * |y z| = |x |y z|| (x * y) * z = |x - y| * z = ||x - y| - z|Not associative (for example let x = 2, y = -3, z = 5)
- iii x * e = |x e| = xNo identity
- iiii No inverse

5.

$$x * y = xy + 1$$

- i y * x = yx + 1 = xy + 1 = x * yCommutative
- ii $x * (y * z) = x * (yz + 1) = x(yz + 1) + 1 = xyz + x + 1 \neq (x * y) * z = (xy + 1) * z = (xy + 1)z + 1 = xyz + z + 1$ Not associative
- iii x * e = xe + 1 = x, therefore $e = \frac{x-1}{x}$ No identity

iiii No inverse

6.

$$x * y = max\{x, y\}$$

i $y * x = max\{y, x\} = max\{x, y\} = x * y$ Commutative

ii
$$x*(y*z) = x*max\{y,z\} = max\{x,max\{y,z\}\} = max\{x,y,z\} = (x*y)*z = max\{x,y\}*z = max\{max\{x,y\},z\} = max\{x,y,z\}$$

Associative

- iii $x * e = max\{x, e\} = x$, therefore $e = -\infty$ No identity
- iiii No inverse

7.

$$x * y = \frac{xy}{x + y + 1}$$
 (on the set of positive real numbers)

i
$$y * x = \frac{yx}{y+x+1} = \frac{xy}{x+y+1} = x * y$$

Commutative

ii

$$x*(y*z) = x*\frac{yz}{y+z+1} = \frac{x\frac{yz}{y+z+1}}{x + \frac{yz}{y+z+1} + 1} = \frac{yzx}{1 + x + y + z + xy + xz + yz} = \frac{x}{1 + x + y + x} = \frac{x}{1 + x + y} = \frac{x}{1 + x + y}$$

$$(x*y)*z = \frac{xy}{x+y+1}*z = \frac{\frac{xy}{x+y+1}z}{\frac{xy}{x+y+1}+z+1} = \frac{xyz}{1+x+y+z+xy+xz+yz}$$

Associative

Associative
iii
$$x * e = \frac{xe}{x+e+1} = x$$
, therefore $x = -1$
No identity

iiii No inverse

C. Operations on a Two-Element Set

	1			2			3	
	(x,y)	x*y		(x,y)	x*y		(x,y)	x*y
	(a,a)	а		(a,a)	а		(a,a)	а
	(a,b)	а		(a,b)	а		(a,b)	a
	(b,b)	а		(b,b)	а		(b,b)	b
	(b,a)	а		(b,a)	b		(b,a)	b
	4			5			6	
	(x,y)	x*y		(x,y)	x*y		(x,y)	x*y
	(a,a)	а		(a,a)	а		(a,a)	а
	(a,b)	а		(a,b)	b		(a,b)	b
	(b,b)	b		(b,b)	b		(b,b)	b
	(b,a)	а		(b,a)	а		(b,a)	b
	7			8			9	
	(x,y)	x*y		(x,y)	x*y		(x,y)	x*y
	(a,a)	а		(a,a)	а		(a,a)	b
	(a,b)	b		(a,b)	b		(a,b)	b
	(b,b)	а		(b,b)	а		(b,b)	a
	(b,a)	b		(b,a)	а		(b,a)	а
	10			11			12	
	(x,y)	x*y		(x,y)	x*y		(x,y)	x*y
	(a,a)	b		(a,a)	b		(a,a)	b
	(a,b)	b		(a,b)	b		(a,b)	b
	(b,b)	а		(b,b)	b		(b,b)	b
	(b,a)	b		(b,a)	b		(b,a)	a
1	13			14	-		15	
	(x,y)	x*y		(x,y)	x*y		(x,y)	x*y
	(a,a)	b		(a,a)	b		(a,a)	b
	(a,b)	a		(a,b)	a		(a,b)	a
	(b,b)	b		(b,b)	b		(b,b)	a
	(b,a)	а		(b,a)	b		(b,a)	b
1	16		ı					
	(x,y)	x*y						
	(a,a)	b						
	(a,b)	a						

1.

(b,b) a

2. Commutative: 1, 4, 6, 7, 10, 11, 13, 16 For all of these (a, b) = (b, a)

3. Associative: 1, 3, 4, 5, 6, 7, 11, 13
I used the following Clojure code to solve:

```
(def tables
     (for [aa ['a 'b]
           ab ['a 'b]
           bb ['a 'b]
           ba ['a 'b]]
       {['a 'a] aa
        ['a 'b] ab
        ['b 'b] bb
        ['b 'a] ba}))
   (defn assoc?
     [table]
     (every? identity
              (for [x ['a 'b]
                     y ['a 'b]
                     z ['a 'b]]
                (= (table [(table [x y]) z])
                    (table [x (table [y z])])))))
  (->> tables
        (map (fn [table] [table (assoc? table)]))
        (filter second))
2. Have identity: 4, 6, 7, 13
  I used the following Clojure code to solve:
  ((a, a) = a \cap (a, b) = b \cap (b, a) = b) \cup ((b, b) = b \cap (a, b) = a \cap (b, a) = a)
  (for [aa ['a 'b]
         ab ['a 'b]
         bb ['a 'b]
         ba ['a 'b]
         :when (or (and (= aa 'a)
                           (= ab 'b)
                           (= ba 'b))
```

```
(and (= bb 'b)

(= ab 'a)

(= ba 'a)))]

{['a 'a] aa

['a 'b] ab

['b 'b] bb

['b 'a] ba})
```

2. Have inverse: 7 and 13

4 has identity b: there exists no x where a * x = b 6 has identity a: there exists no x where b * x = a 7 has identity b: a * b = b = e and b * a = b = e 13 has identity a: a * b = a = e and b * a = a = e

D. Automata: The Algebra of Input/Output Sequences

- 1. Let $\mathbf{a} = a_1..a_n$, $\mathbf{b} = b_1..b_m$, $\mathbf{c} = c_1..c_k$ $\mathbf{a} * (\mathbf{b} * \mathbf{c}) = \mathbf{a} * (b_1..b_mc_1..c_k) = a_1..a_nb_1..b_mc_1..c_k$ $(\mathbf{a} * \mathbf{b}) * \mathbf{c} = (a_1..a_nb_1..b_m) * \mathbf{c} = a_1..a_nb_1..b_mc_1..c_k$
- 2. Concatenation is not commutative because placing elements on to the beginning versus the end of a sequence leads to different sequences.
- 3. Let $\mathbf{a} = a_1..a_n$ $\mathbf{a}\lambda = \lambda \mathbf{a} = \mathbf{a}$