Predicting the Performance of Foundation Models via Agreement-on-the-Line

Carnegie Mellon University

Aman Mehra 1* , Rahul Saxena 1* , Taeyoun Kim 1* , Christina Baek 1 , Zico Kolter 1,2 , Aditi Raghunathan 1

¹Carnegie Mellon University, ² Bosch Center for Al

Problem Motivation

Foundation Models (FMs) are pre-trained on vast amounts of open world data, and then fine-tuned on task-specific data. Given a set of foundation models pre-trained on *potentially* different data

$$\mathscr{B} = \{B_1, B_2, \dots, B_m\}$$
 s.t. $B_i : \mathbb{X} \to \mathbb{R}^d$

We obtain a collection of models $\mathcal{H}=\{h_1,h_2,\ldots,h_n\}$ by finetuning models in $\mathcal B$ on in-distribution (ID) data

$$X_{train}, y_{train} \sim \mathcal{D}_{ID} \text{ s.t. } h_i : \mathbb{X} \rightarrow \mathbb{Y}$$

Say we are provided *labeled* ID validation data and *unlabeled* OOD test data

$$X_{val}, y_{val} \sim \mathcal{D}_{ID}$$
 and $X_{test} \sim \mathcal{D}_{OOD}$

Can we predict the OOD performance of models in ${\mathcal H}$ without access to OOD labels?

Agreement-on-the-line (AGL)

For two models h_1, h_2 , some distribution \mathcal{D} , and an appropriate

$$\mathsf{Acc}(h_1) = \mathbb{E}_{x,y \sim \mathcal{D}}[l(h_1(x),y)]$$

$$\mathsf{Agr}(h_1,h_2) = \mathbb{E}_{x \sim \mathcal{D}}[l(h_1(x),h_2(x))]$$

Empirically, in **CNN's trained from scratch**, when ID vs OOD accuracy is <u>strongly</u> linearly correlated [1], ID vs OOD agreement is also <u>strongly</u> linearly correlated with the <u>same slope and bias</u> [2].

$$\begin{split} & \mathsf{Acc}_{\mathsf{OOD}}(h_1, h_2) = a \cdot \mathsf{Acc}_{\mathsf{ID}}(h_1, h_2) + b \\ & \mathsf{Agr}_{\mathsf{OOD}}(h_1, h_2) = c \cdot \mathsf{Agr}_{\mathsf{ID}}(h_1, h_2) + d \\ & \mathsf{where} \quad a \approx c, b \approx d \end{split}$$

ALine [2] linearly transforms ID accuracy using c, d to estimate OOD accuracy.

Using ALine methods for OOD estimation

In **diverse** ensembles, ALine is a good method to estimate OOD accuracy for many datasets and tasks.

Table 1. Mean Absolute Percentage Error of OOD performance estimates.

Dataset		ALine-D	ALine-S	Agr	ATC [3]	AC [4]	Doc [5]
CIFAR-10C		6.99	6.92	44.33	31.28	48.66	32.79
CIFAR-10.1		2.42	3.03	41.52	6.48	54.57	8.51
CIFAR-100C		11.94	12.67	46.13	18.69	80.81	37.36
ImageNetC		10.91	11.04	56.76	27.25	79.00	37.86
ImageNetV2		4.96	5.03	47.65	8.96	77.34	7.86
WILDS	fMoW	2.59	2.74	83.94	9.03	44.59	5.86
	iWildCam	22.05	25.29	46.42	37.25	57.31	69.58
OfficeHome		10.01	12.78	49.76	31.89	79.98	35.92
SQuAD Shifts	Reddit	1.20	2.6	20.21	12.74	49.25	6.09
	Amazon	1.64	3.10	20.40	15.35	51.06	7.39
	NYT	0.82	1.33	18.46	3.11	38.61	3.18
	NewWiki	3.08	3.18	18.87	5.46	41.26	1.50
MNLI-MM		0.49	0.51	6.19	0.55	0.47	0.59
SNLI		2.43	1.88	11.60	3.38	5.19	4.96

AGL when Fine-Tuning a Single Foundation Model

Do models obtained by *lightly* fine-tuning a single FM have diverse enough predictions to observe AGL?

- Light fine-tuning over the same foundation model may yield models that agree too highly ID and/or OOD as they're pretrained on the same corpus
- Thus AGL might not hold due to lack of diversity in predictions

Given a single FM, we introduce this diversity by training an ensemble of fine-tuned models that are:

- 1. Initialized with Random linear heads
- 2. Presented with the training data in **Random order**
- 3. Trained on independently sampled **Random subsets** of the data

Only FMs fine-tuned with random heads exhibit **enough diversity OOD** to observe AGL!

AGL when Fine-Tuning Multiple Foundation Models

Agreement between models fine-tuned from different base FMs have enough diversity to exhibit AGL!

References

- 1. John Miller, et. al. Accuracy on the line: On the strong correlation between out-of-distribution and in-distribution generalization. ICML, 2021.
- 2. Christina Baek, et al. **Agreement-on-the-line: Predicting the performance of neural networks under distribution shift,** Neurips 2022.
- 3. Benjamin Recht, et. al. Do ImageNet classifiers generalize to ImageNet?, ICML 2019.
- 4. Dan Hendrycks and Thomas G. Dietterich. **Benchmarking neural network robustness to common corruptions and perturbations.** ICLR, 2019.
- 5. Gordon Christie, et al. Functional map of the world. CVPR, 2018.