TEST COMPLEXOS

1.- Sigui $z \in C$ l'arrel sisena de -1 que té negatives tant la part real com la part imaginària. Assenyala el valor de z^4

a.-
$$\frac{-1-i\sqrt{3}}{2}$$

b.-
$$\frac{\sqrt{3}+i}{2}$$

c.-
$$\frac{-1+i\sqrt{3}}{2}$$

$$\mathbf{d.-}\frac{\sqrt{3}-i}{2}\quad \mathbf{e.-} \ \mathbf{Cap}$$

a.- $\frac{-1-i\sqrt{3}}{2}$ b.- $\frac{\sqrt{3}+i}{2}$ c.- $\frac{-1+i\sqrt{3}}{2}$ d.- $\frac{\sqrt{3}-i}{2}$ e.- Cap de les anteriors.

2.- Calculeu:
$$\frac{e^{i\frac{3\pi}{4}}}{(1-i)^2}$$

a.-
$$\frac{1}{2}e^{-i\frac{7\pi}{4}}$$

b.-
$$\frac{1}{2}e^{i\frac{7\pi}{4}}$$

c.-
$$\frac{-1+i}{2\sqrt{2}}$$

d.-
$$\frac{1-i}{2}$$

a.- $\frac{1}{2}e^{-i\frac{7\pi}{4}}$ **b.-** $\frac{1}{2}e^{i\frac{7\pi}{4}}$ **c.-** $\frac{-1+i}{2\sqrt{2}}$ **d.-** $\frac{1-i}{2}$ **e.-** Cap de les anteriors

3.- Determineu $z \in C$ per tal que la suma de tres de les seves arrels quartes sigui $\frac{1+i}{2}$

a.-
$$z = i$$
 b.- $z = -1$

c.-
$$z = \frac{-1-i}{\sqrt{2}}$$

a.-
$$z = i$$
 b.- $z = -1$ **c.-** $z = \frac{-1-i}{\sqrt{2}}$ **d.-** $\frac{1-i}{\sqrt{2}}$ **e.-** Cap de les anteriors

4.- Essent $z = \frac{1-\alpha i}{\alpha - i}$ assenyala per a quins valor de $\alpha \in R$, resulta $z \in R$

a.-
$$\alpha = \pm 1$$

b.-
$$Cap \ \alpha \in R \quad \mathbf{c.-} \ \alpha$$

d.-
$$\alpha = 0$$

a.-
$$\alpha = \pm 1$$
 b.- $Cap \ \alpha \in R$ **c.**- $\alpha \neq 1$ **d.**- $\alpha = 0$ **e.**- Cap de les anteriors

5.- Trobeu $\alpha \in R$ per tal que $\frac{1+2\alpha i}{1-3i} \in R$

a.-
$$\alpha = \frac{3}{2}$$

b.-
$$\alpha = \frac{2}{3}$$

c.-
$$\alpha = \frac{-3}{2}$$

d.-
$$\alpha = \frac{-2}{3}$$

a.- $\alpha = \frac{3}{2}$ b.- $\alpha = \frac{2}{3}$ c.- $\alpha = \frac{-3}{2}$ d.- $\alpha = \frac{-2}{3}$ e.- Cap de les anteriors

6.- Quins nombre complexos hi ha, tals que ells amb la seva suma i el seu producte formin un quadrat.

a.-
$$1+i$$
 , 2

b.-
$$-1-i$$
, -2

c.-
$$3, 1+2i$$

d.-
$$2, 1-$$

a.- 1+i , 2 **b.**- -1-i , -2 **c.**- 3 , 1+2i **d.**- 2 , 1-i **c.**- Cap de les anteriors

7.- Donada l'equació $2 - e^z = 0$ essent z un nombre complexo la solució es:

b.-
$$\pi i$$

c.-
$$\ln 2 + \pi i$$
 d.-

d.-
$$2 + \pi i$$

b.- πi **c.**- $\ln 2 + \pi i$ **d.**- $2 + \pi i$ **e.**- Cap de les anteriors

8.- El resultat de $(1+\sqrt{3}i)^3 - (1-\sqrt{3}i)^3$ és

a.-
$$\sqrt{3}$$

b.-
$$-i\sqrt{3}$$

a.- $\sqrt{3}$ **b.-** $-i\sqrt{3}$ **c.-** 1 **d.-** 0 **e.-** Cap de les anteriors

9.- El resultat de $\frac{(\sqrt{3}+i)^3}{(1-i)^2}$ és

a.- $8e^{i\frac{4\pi}{3}}$ **b.**- $12e^{-i\frac{4\pi}{3}}$ **c.**- $16e^{i\frac{4\pi}{3}}$ **d.**- $\sqrt{2}e^{i\frac{15\pi}{4}}$ **e.**- Cap de les anteriors

10.- Les solucions de l'equació $4x^2 - 12x + 25 = 0$ són

a. $\frac{3}{2} \pm 2i$ **b.** $\frac{3}{4} \pm 2i$ **c.** $\frac{3 \pm 2i}{4}$ **d.** $\frac{17}{2}$, $-\frac{1}{2}$