Supervised ML (training)

Sentiment analysis

Tweet: I am happy because I am learning NLP

Logistic regression

Sentiment analysis

Vocabulary

Tweets:

[tweet_1, tweet_2, ..., tweet_m]

I am happy because I am learning NLP
...
...
I hated the movie

$$V =$$

[I, am, happy, because, learning, NLP, ... hated, the, movie]

I am happy because I am learning NLP

A lot of zeros! That's a sparse representation.

Problems with sparse representations

Problems with sparse representations

$$[\theta_0, \theta_1, \theta_2, \dots, \theta_n]$$
$$n = |V|$$

Problems with sparse representations

Corpus

I am happy because I am learning NLP

I am happy

I am sad, I am not learning NLP

I am sad

Corpus

I am happy because I am learning NLP

I am happy

I am sad, I am not learning NLP

I am sad

```
Vocabulary
    am
   happy
  because
  learning
   NLP
    sad
    not
```

Positive tweets

I am happy because I am learning NLP

I am happy

Negative tweets

I am sad, I am not learning NLP

I am sad

Positive tweets

I am happy because I am learning NLP

I am happy

Vocabulary am happy because learning NLP sad not

Positive tweets

I am happy because I am learning NLP

I am <u>happy</u>

Vocabulary	PosFreq (1)
I	3
am	3
happy	2
because	1
learning	1
NLP	1
sad	0
not	0

Vocabulary	NegFreq (0)
I	3
am	3
happy	0
because	0
learning	1
NLP	1
sad	2
not	1

Negative tweets
I am sad, I am not learning NLP
I am sad

Word frequency in classes

Vocabulary	PosFreq (1)	NegFreq (0)
1	3	3
am	3	3
happy	2	0
because	1	0
learning	1	1
NLP	1	1
sad	0	1
not	0	1

Word frequency in classes

Vocabulary	PosFreq (1)	NegFreq (0)
I	3	3
am	3	3
happy	2	0
because	1	0
learning	1	1
NLP	1	1
sad	0	1
not	0	1

Word frequency in classes

Vocabulary	PosFreq (1)	NegFreq (0)
I	3	3
am	3	3
happy	2	0
because	1	0
learning	1	1
NLP	1	1
sad	0	2
not	0	1

freqs: dictionary mapping from (word, class) to frequency

Features of tweet m

$$X_m = [1, \sum_w freqs(w, 1), \\ \text{Features of tweet m} \\ \text{Bias} \\ \text{Frequencies} \\ \text{Sum Pos.} \\ \text{Frequencies}$$

Vocabulary	PosFreq (1)
1	3
am	3
happy	2
because	1
learning	1
NLP	1
sad	0
not	0

Vocabulary	PosFreq (1)
I	3
am	3
happy	2
because	1
learning	1
NLP	1
sad	0
not	0

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

Vocabulary	PosFreq (1)
	3
am	_3_
happy	2
because	1
learning	_1_
NLP	_1_
sad	0
not	0

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

Vocabulary	PosFreq (1)
I	3
am	3
happy	2
because	1
learning	_1_
NLP	_1_
sad	0
not	0

$$X_m = [1, \sum_{w} \frac{freqs}{(w, 1)}, \sum_{w} \frac{freqs}{(w, 0)}]$$

Vocabulary	NegFreq (0)
I	3
am	3
happy	0
because	0
learning	_1_
NLP	_1_
sad	2
not	_1_

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

Vocabulary	NegFreq (0)
1	3
am	3
happy	0
because	0
learning	_1_
NLP	_1_
sad	2
not	_1_

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

$$X_{m} = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

$$X_{m} = [1, 8, 11]$$

@YMourri and @AndrewYNg are tuning a GREAT AI model at https://deeplearning.ai!!!

@YMourri and @AndrewYNg are tuning a GREAT AI model at https://deeplearning.ai!!!

Stop words	Punctuation
and	,
is	
are	:
at	!
has	ee
for	
a	

@YMourri and @AndrewYNg are tuning a GREAT AI model at https://deeplearning.ai!!!

Stop words	
<u>and</u>	
is	
<u>are</u>	
<u>at</u>	
has	
for	
<u>a</u>	

@YMourri and @AndrewYNg are tuning a GREAT AI model at https://deeplearning.ai!!!

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai!!!

Stop words
and
is
<u>are</u>
<u>at</u>
has
for
<u>a</u>

Punctuation	
,	
:	
!	
ee	
(

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai!!!

Stop words	Punctuation
and	,
is	
а	:
at	!
has	æ
for	
of	

Preprocessing: stop words and punctuation

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai!!!

Preprocessing: stop words and punctuation

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai!!!

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai Stop words

and
is
a
at
has
for
of

Punctuation , . : !

Preprocessing: Handles and URLs

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai

Preprocessing: Handles and URLs

<u>@YMourri</u> @AndrewYNg tuning GREAT AI model https://deeplearning.ai

Preprocessing: Handles and URLs

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai
tuning GREAT AI model

tuning GREAT AI model

GREAT

Great

great

Preprocessed tweet: [tun, great, ai, model]

I am Happy Because i am learning NLP @deeplearning Preprocessing [happy, learn, nlp]

I am Happy Because i am learning NLP @deeplearning Preprocessing

[happy, learn, nlp]

Feature Extraction

[1, 4, 2]

I am Happy Because i am learning NLP @deeplearning Preprocessing

[happy, learn, nlp]

↓ Feature Extraction

Bias ← [1, 4, 2]

I am Happy Because i am learning NLP @deeplearning Preprocessing [happy, learn, nlp] Feature Extraction Bias $\leftarrow -[1, 4, 2]$ Sum positive frequencies


```
I am Happy Because i am
learning NLP
@deeplearning
I am sad not learning NLP
```

I am sad :(

```
I am Happy Because i am

learning NLP

@deeplearning

[sad, not, learn, nlp]

I am sad not learning NLP → ...

[sad]

I am sad :(
```

```
I am Happy Because i am

learning NLP

@deeplearning

[1, 40, 20],
[sad, not, learn, nlp]

I am sad not learning NLP → ...

[sad]

[1, 5, 35]]
```

$$\begin{bmatrix} 1 & X_1^{(1)} & X_2^{(1)} \\ 1 & X_1^{(2)} & X_2^{(2)} \\ \vdots & \vdots & \vdots \\ 1 & X_1^{(m)} & X_2^{(m)} \end{bmatrix} \qquad [[1, 40, 20], [1, 20, 50], \dots]$$

General Implementation