近代光学基础仿真实验报告 2

何金铭 PB21020660

1 问题 1

1.1 问题描述

利用角谱方法或 RS 衍射积分,采用光场逐层传播的方式(即第一次传播 z_1 ,所得光场乘以透镜位相,然后进行第二次传播 z_2),数值模拟的物体在不同放大倍率下的像: M=1; M=2,M=6. 其中,透镜焦距 $f=100\mu m$,透镜直径孔径 $420\mu m$

1.2 实现方法

选择使用角谱衍射理论来实现

设置波长 $\lambda=633nm$,物体屏的长度为 $L=420\mu m$,孔的形状如下图1所示。**设置像素的大小为** $0.1\mu m$ **每格**

图 1: 入射光场分布

具体数据见 input.mat

1.3 源码说明

- 1. main1.m 主程序
- 2. asm.m 用于获得角谱衍射传输后的光场
- 3. trans.m 用于讲图片转换为 matlab 二维数组的二值化数组

还原的物理过程就更真实, 所以画出的图像更加清晰。

1.4 结果

设置 $z_1 = 200 \mu m$, 即物体于 2 倍交点处, **设置像素的大小为** $0.1 \mu m$ **每格**, 仿真结果见下图234。

1.4.1 M = 1

图 2: M = 1 处的像

具体数据为: M1.mat

1.4.2 M = 2

图 3: M = 2 处的像

具体数据为: M2.mat

1.4.3 M = 6

图 4: M = 6 处的像

具体数据为: M6.mat

1.5 分析讨论

从 M=1 到 M=2,再到 M=6,图像的条纹越来越糊,这是由于角谱衍射传输时,越远离成像面 M=1,光场就越发散。导致衍射的条纹间隔越来越大。