Università degli Studi di Roma "La Sapienza" Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Corsi di laurea in Ingegneria Informatica e automatica

Esame scritto di Fisica

Roma, 09.06.2016

Risolvete, prima analiticamente poi numericamente, gli esercizi seguenti.

- 1. Un punto scivola lungo un piano privo di attrito, inclinato di un angolo θ =0,25rad rispetto all'orizzontale, giungendo al termine con una velocità V_1 =160cm/s, partendo da fermo. Si chiede con quale velocità giungerà al termine del medesimo tratto se l'angolo di inclinazione viene raddoppiato.
- 2. Un recipiente contiene gas alla pressione P=930 mm Hg, ed è collegato ad un manometro ad U a mercurio. Viene posto ascensore che sale verticalmente, con a=3m/s². accelerazione costante Calcolare il dislivello del mercurio tra i due rami del manometro, supponendo che la pressione nell'ascensore sia pari alla pressione
- 3. Sia dato il sistema di quattro condensatori mostrato in figura. La d.d.p. applicata tra i punti P e Q vale 20 V. Determinare la variazione di energia elettrostatica del sistema quando viene chiuso l'interruttore centrale, assumendo che rimanga costante la d.d.p. ai capi del sistema stesso. C_1 = 20 μ F, C_2 = C_4 =15 μ F, C_3 = 10 μ F e V_P =25 V e V_O =5 V.

atmosferica P_o =760 mm Hg (densità mercurio ρ =13600kg/m³).

Rispondete, con essenzialità e correttezza, alle seguenti domande.

- 1. Dimostrate la proprietà di additività del centro di massa per un sistema di punti.
- 2. Illustrate l'esperienza di Joule con cui si prova che l'energia interna di un gas perfetto è solo funzione della temperatura
- 3. Mostrate come il coefficiente di mutua induzione tra due solenoidi coassiali infinitamente estesi sia il medesimo sia che si calcoli per l'effetto induttivo del primo sul secondo, sia viceversa.

SOLUZIONI

Esame Fisica per Ingegneria informatica e automatica, data: 09.06.2016

Esercizio n.1

La velocità terminale del punto dopo un generico tratto di percorso lungo L è data da

$$V = \sqrt{2gh} = \sqrt{2gL\sin\vartheta}$$

essendo h il dislivello corrispondente al tratto L. Si potrà, quindi, scrivere

$$\frac{V_2}{V_1} = \sqrt{\frac{2gL\sin 2\vartheta}{2gL\sin \vartheta}} = \sqrt{2\cos\vartheta}$$

da cui

$$V_2 = V_1 \sqrt{2\cos\vartheta} = 223 \text{cm/s}$$

Esercizio n.2

La differenza di pressione fra il gas nel recipiente e l'esterno è

$$\Delta p = p - p_0 = 930 - 760 = 170 \text{mmHg} = 22659,2 \text{Pa}$$

pari a quella che eserciterà una colonna di mercurio alta Δh , sottoposta alla forza di gravità e alla forza apparente presente nel sistema accelerato dell'ascensore

 $\Delta p = p - p_0 = \rho_{\text{Hg}}(g + a)\Delta h$ $\Delta h = \frac{\Delta p}{\rho_{\text{Hg}}(g + a)} = 130 \text{mm}$

Da cui

Esercizio n.3

Prima della chiusura dell'interruttore è:

$$C_{\text{sup}} = \frac{C_1 C_2}{C_1 + C_2} \qquad C_{\text{inf}} = \frac{C_3 C_4}{C_3 + C_4}$$

$$C_{\text{tot, parallelo}} = C_{\text{sup}} + C_{\text{inf}} = \frac{C_1 C_2}{C_1 + C_2} + \frac{C_3 C_4}{C_3 + C_4} = 1,45 \cdot 10^{-5} \,\text{F}$$

e, quindi:

e quindi:

Dopo la chiusura:

$$C_{\text{dex}} = C_1 + C_3 = 30 \cdot 10^{-6} F$$

$$C_{\text{sin}} = C_2 + C_4 = 30 \cdot 10^{-6} F$$

$$C_{\text{tot, serie}} = \frac{C_{\text{dex}} C_{\text{sin}}}{C_{\text{dex}} + C_{\text{sin}}} = 1,50 \cdot 10^{-5} F$$

Per le espressioni dell'energia elettrostatica, prima e dopo la chiusura dell'interuttore, si ha:

$$U_{\rm iniz} = \frac{1}{2} C_{\rm tot, \, parallelo} \Delta V^2 = 2,91 \cdot 10^{-3} {
m J}$$
 $U_{\rm fin} = \frac{1}{2} C_{\rm tot, \, serie} \Delta V^2 = 3 \cdot 10^{-3} {
m J}$

Quindi $\Delta U = U_{\text{iniz}} - U_{\text{fin}} = 8,57 \cdot 10^{-5} \,\text{J}$