

Type 2DL Wi-FiTM + Bluetooth® Module

NXP IW611 Chipset for 802.11a/b/g/n/ac/ax + Bluetooth 5.4 Datasheet - Rev. 10

Design Name: Type 2DL

P/N: LBEE5PL2DL-921

Table of Contents

1 Scope	8
2 Key Features	8
3 Ordering Information	8
4 Block Diagram	9
5 Certification Information	11
5.1 Radio Certification	11
5.2 Radio Regulatory Certification by Country	11
5.3 Bluetooth Qualification	11
6 Dimensions, Markings, and Terminal Configurations	12
7 Module Pin Description	13
7.1 Pin Assignments	13
7.2 Pin Descriptions	14
7.3 Configuration Pins	18
7.4 Pin States	18
7.5 SDIO Pin Descriptions	19
8 Absolute Maximum Ratings	20
9 Operating Conditions	21
9.1 Operating Conditions	21
9.2 Digital I/O Requirement	21
9.3 Package Thermal Conditions	21
10 Power Sequence	22
10.1 Power-On Sequence	22
10.2 Power-Off Sequence	23
10.3 Host Reset Sequence	24
11 Interface Timing	25
11.1 SDIO Timing	25
11.1.1 Default Speed Mode	25
11.1.2 High Speed Mode	25
11.1.3 SDR12, SDR25, and SDR50 Modes (up to 100 MHz) at 1.8V	26
11.1.4 SDR104 Modes (up to 208 MHz) at 1.8V	27
11.1.5 DDR50 Mode at 50 MHz (1.8V)	28
11.2 UART Timing (Default Mode)	29
11.3 Bluetooth PCM Timing	30
11.3.1 Master Mode	30
11.3.2 Slave Mode	31

12 DC/RF Characteristics	32
12.1 DC/RF Characteristics for IEEE 802.11b - 2.4 GHz	33
12.1.1 High-Rate Condition for IEEE 802.11b - 2.4 GHz	33
12.1.2 Low-Rate Condition for IEEE 802.11b - 2.4 GHz	34
12.2 DC/RF Characteristics for IEEE 802.11g - 2.4 GHz	35
12.2.1 High-Rate Condition for IEEE 802.11g - 2.4 GHz	35
12.2.2 Low-Rate Condition for IEEE 802.11g - 2.4 GHz	36
12.3 DC/RF Characteristics for IEEE 802.11n - 2.4 GHz	37
12.3.1 High-Rate Condition for IEEE 802.11n - 2.4 GHz	37
12.3.2 Low-Rate Condition for IEEE 802.11n - 2.4 GHz	38
12.4 DC/RF Characteristics for IEEE 802.11ax (HE20) - 2.4 GHz	39
12.4.1 High-Rate Condition for IEEE 802.11ax (HE20) - 2.4 GHz	39
12.4.2 Low-Rate Condition for IEEE 802.11ax (HE20) - 2.4 GHz	40
12.5 DC/RF Characteristics for IEEE 802.11n (HT40) - 2.4 GHz	41
12.5.1 High-Rate Condition for IEEE 802.11n (HT40) - 2.4 GHz	41
12.5.2 Low-Rate Condition for IEEE 802.11n (HT40) - 2.4 GHz	42
12.6 DC/RF Characteristics for IEEE 802.11ax (HE40) - 2.4GHz	43
12.6.1 High-Rate Condition for IEEE 802.11ax (HE40) - 2.4GHz	43
12.6.2 Low-Rate Condition for IEEE 802.11ax (HE40) - 2.4GHz	44
12.7 DC/RF Characteristics for IEEE 802.11a - 5 GHz	45
12.7.1 High-Rate Condition for IEEE 802.11a - 5 GHz	45
12.7.2 Low-Rate Condition for IEEE 802.11a - 5 GHz	46
12.8 DC/RF Characteristics for IEEE 802.11n (HT20) - 5 GHz	47
12.8.1 High-Rate Condition for IEEE 802.11n (HT20) - 5 GHz	47
12.8.2 Low-Rate Condition for IEEE 802.11n (HT20) - 5 GHz	48
12.9 DC/RF Characteristics for IEEE 802.11ac (VHT20) - 5 GHz	49
12.9.1 High-Rate Condition for IEEE 802.11ac (VHT20) - 5 GHz	49
12.9.2 Low-Rate Condition for IEEE 802.11ac (VHT20) - 5 GHz	50
12.10 DC/RF Characteristics for IEEE 802.11ax (HE20) - 5 GHz	51
12.10.1 High-Rate Condition for IEEE 802.11ax (HE20) - 5 GHz	51
12.10.2 Low-Rate Condition for IEEE 802.11ax (HE20) - 5 GHz	52
12.11 DC/RF Characteristics for IEEE 802.11n (HT40) - 5 GHz	53
12.11.1 High-Rate Condition for IEEE 802.11n (HT40) - 5 GHz	53
12.11.2 Low-Rate Condition for IEEE 802.11n (HT40) - 5 GHz	54
12.12 DC/RF Characteristics for IEEE 802.11ac (VHT40) - 5 GHz	55
12.12.1 High-Rate Condition for IEEE 802.11ac (VHT40) - 5 GHz	55
12.12.2 Low-Rate Condition for IEEE 802.11ac (VHT40) - 5 GHz	56

12.13 DC/RF Characteristics for IEEE 802.11ax (HE40) - 5 GHz	57
12.13.1 High-Rate Condition for IEEE 802.11ax (HE40) - 5 GHz	57
12.13.2 Low-Rate Condition for IEEE 802.11ax (HE40) - 5 GHz	58
12.14 DC/RF Characteristics for IEEE 802.11ac (VHT80) - 5 GHz	59
12.14.1 High-Rate Condition for IEEE 802.11ac (VHT80) - 5 GHz	59
12.14.2 Low-Rate Condition for IEEE 802.11ac (VHT80) - 5 GHz	60
12.15 DC/RF Characteristics for IEEE 802.11ax (HE80) - 5 GHz	61
12.15.1 High-Rate Condition for IEEE 802.11ax (HE80) - 5 GHz	61
12.15.2 Low-Rate Condition for IEEE 802.11ax (HE80) - 5 GHz	62
12.16 DC/RF Characteristics for Bluetooth	63
12.16.1 Basic Data Rate Condition	63
12.16.2 Enhanced Data Rate Condition	64
12.17 DC/RF Characteristics for Bluetooth Low Energy	65
12.17.1 1 Mbps PHY Condition	65
12.17.2 2 Mbps PHY Condition	66
13 Land Pattern	68
14 Tape and Reel Packing	69
14.1 Dimensions of Tape (Plastic Tape)	69
14.2 Dimensions of Reel	70
14.3 Taping Diagrams	71
14.4 Leader and Tail Tape	72
14.5 Packaging (Humidity Proof Packing)	73
15 Notice	74
15.1 Storage Conditions	74
15.2 Handling Conditions	74
15.3 Standard PCB Design (Land Pattern and Dimensions)	74
15.4 Notice for Chip Placer	75
15.5 Soldering Conditions	75
15.6 Cleaning	75
15.7 Operational Environment Conditions	76
16 Precondition to Use Our Products	77
Revision History	79

Figures

Figure 1: Block Diagram - Shared WLAN Bluetooth Antenna	9
Figure 2: Block Diagram - Dedicated Bluetooth Antenna	10
Figure 3: Dimensions, Markings and Terminal Configurations	12
Figure 4: Structure	13
Figure 5: Pin Assignments - Top View	13
Figure 6: SDIO Pin Modes	20
Figure 7: Package Thermal Conditions	22
Figure 8: Power-On Sequence Graph	22
Figure 9: Power-Off Sequence Graph	23
Figure 10: Host Reset Sequence Graph	24
Figure 11: SDIO Protocol Timing Diagram - Default Speed Mode	25
Figure 12: SDIO Protocol Timing Diagram - High Speed Mode	25
Figure 13: SDIO Protocol Timing Diagram - SDR12, SDR25, and SDR50 Modes	26
Figure 14: SDIO Protocol Timing Diagram - SDR104 Mode	27
Figure 15: SDIO CMD Timing Diagram - DDR50 Mode	28
Figure 16: SDIO DATA Timing Diagram - DDR50 Mode	
Figure 17: UART Timing Diagram - Default Mode	29
Figure 18: Bluetooth PCM Timing Data Signal - Master Mode	30
Figure 19: Bluetooth PCM Timing PCM_SYNC Signal - Master Mode	30
Figure 20: Bluetooth PCM Timing Data Signal - Slave Mode	31
Figure 21: Bluetooth PCM Timing PCM_SYNC Signal - Slave Mode	31
Figure 22: Burst Current Definition	33
Figure 23: Land Pattern (in millimeters)	68
Figure 24: Dimensions of Tape (Plastic Tape)	69
Figure 25: Dimensions of Reel (Unit: mm)	70
Figure 26: Taping Diagrams	71
Figure 27: Leader and Tail Tape	72
Figure 28: Peeling Force	73
Figure 29: Humidity Proof Packing	
Figure 30: Reflow Soldering Standard Conditions (Example)	75

Tables

Table 1: Document Conventions	7
Table 2: Ordering Information	8
Table 3: Certification Information	11
Table 4: Markings	12
Table 5: Dimensions	12
Table 6: Terminal Names	13
Table 7: Pin Descriptions	14
Table 8: Configuration Pins	18
Table 9: Pin States	18
Table 10: SDIO Pin Descriptions	19
Table 11: Absolute Maximum Ratings	20
Table 12: Operating conditions	21
Table 13: Digital I/O Requirements	21
Table 14: Power-On Sequence Parameters	23
Table 15: Power-Off Sequence Parameters	23
Table 16: Host Reset Sequence Parameters	24
Table 17: SDIO Protocol Timing High Speed Mode Parameters	26
Table 18: SDIO Protocol Timings Parameters - SDR12, SDR25, and SDR50 Modes	26
Table 19: SDIO Protocol Timing Parameters - SDR104 Mode	27
Table 20: SDIO Data Timing Parameters - DDR50 Mode	29
Table 21: UART Timing Parameters - Default Mode	30
Table 22: Symbol Definition for Data Signal & PCM_Sync Signal - Master Mode	31
Table 23: Symbol Definition for Data Signal & PCM_SYNC Signal - Slave Mode	32
Table 24: DC/RF Characteristics Files	32
Table 25: Characteristics Values for IEEE 802.11b - 2.4 GHz	33
Table 26: High-Rate Condition for IEEE 802.11b - 2.4 GHz	33
Table 27: Low-Rate Condition for IEEE 802.11b - 2.4 GHz	34
Table 28: Characteristics Values for IEEE 802.11g - 2.4 GHz	35
Table 29: High-Rate Condition for IEEE 802.11g - 2.4 GHz	35
Table 30: Low-Rate Condition for IEEE 802.11g - 2.4 GHz	36
Table 31: Characteristics Values for IEEE 802.11n - 2.4 GHz	37
Table 32: High-Rate Condition for IEEE 802.11n - 2.4 GHz	37
Table 33: Low-Rate Condition for IEEE 802.11n - 2.4 GHz	38
Table 34: Characteristics Values for IEEE 802.11ax (HE20) - 2.4 GHz	39
Table 35: High-Rate Condition for IEEE 802.11ax (HE20) - 2.4 GHz	39
Table 36: Low-Rate Condition for IEEE 802.11ax (HE20) - 2.4 GHz	40
Table 37: Characteristic Values for IEEE 802.11n (HT40) - 2.4 GHz	41
Table 38: High-Rate Condition for IEEE 802.11n (HT40) - 2.4 GHz	41
Table 39: Low-Rate Condition for IEEE 802.11n (HT40) - 2.4 GHz	42

Table 40: Characteristic Values for IEEE 802.11ax (HE40) - 2.4GHz	43
Table 41: High-Rate Condition for IEEE 802.11ax (HE40) - 2.4GHz	43
Table 42: Low-Rate Condition for IEEE 802.11ax (HE40) - 2.4GHz	44
Table 43: Characteristics Values for IEEE 802.11a - 5 GHz	45
Table 44: High-Rate Condition for IEEE 802.11a - 5 GHz	45
Table 45: Low-Rate Condition for IEEE 802. 11a - 5 GHz	46
Table 46: Characteristics Values for IEEE 802.11n (HT20) - 5 GHz	47
Table 47: High-Rate Condition for IEEE 802.11n (HT20) - 5 GHz	47
Table 48: Low-Rate Condition for IEEE 802. 11n (HT20) - 5 GHz	48
Table 49: Characteristics Values for IEEE 802.11ac (VHT20) - 5 GHz	49
Table 50: High-Rate Condition for IEEE 802.11ac (VHT20) - 5 GHz	49
Table 51: Low-Rate Condition for IEEE 802.11ac (VHT20) - 5 GHz	50
Table 52: Characteristics Values for IEEE 802. 11ax (HE20) - 5 GHz	51
Table 53: High-Rate Condition for IEEE 802.11ax (HE20) - 5 GHz	51
Table 54: Low-Rate Condition for IEEE 802.11ax (HE20) - 5 GHz	52
Table 55: Characteristic Values for IEEE 802.11n (HT40) - 5 GHz	53
Table 56: High-Rate Condition for IEEE 802.11n (HT40) - 5 GHz	53
Table 57: Low-Rate Condition for IEEE 802.11n (HT40) - 5 GHz	54
Table 58: Characteristics Values for IEEE 802.11ac (VHT40) - 5 GHz	55
Table 59: High-Rate Condition for IEEE 802.11ac (VHT40) - 5 GHz	55
Table 60: Low-Rate Condition for IEEE 802.11 ac (VHT40) - 5 GHz	56
Table 61: Characteristics Values for IEEE 802.11ax (HE40) - 5 GHz	57
Table 61: High-Rate Condition for IEEE 802.11ax (HE40) - 5 GHz	57
Table 63: Low-Rate Condition for IEEE 802.11ax (HE40) - 5 GHz	58
Table 64: Characteristics Values for IEEE 802.11ac (VHT80) - 5 GHz	59
Table 65: High-Rate Condition for IEEE 802.11ac (VHT80) - 5 GHz	59
Table 66: Low-Rate Condition for IEEE 802.11ac (VHT80) - 5 GHz	60
Table 67: Characteristics Values for IEEE 802.11ax (HE80) - 5 GHz	61
Table 68: High-Rate Condition for IEEE 802.11ax (HE80) - 5 GHz	61
Table 69: Low-Rate Condition for IEEE 802.11ax (HE80) - 5 GHz	62
Table 70: Characteristics Values for Bluetooth	63
Table 71: Basic Data Rate Condition	63
Table 72: Enhanced Data Rate Condition	64
Table 73: Characteristics Values for Bluetooth Low Energy	65
Table 74: 1 Mbps PHY Condition	
Table 75: 2 Mbps PHY Condition	66
Table 76: Taping Specifications	71

About This Document

Murata's Type 2DL is a small and high-performance module based on NXP's IW611 combo chipset, supporting IEEE 802.11a/b/g/n/ac/ax + Bluetooth 5.4 BR/EDR/LE. This datasheet describes Type 2DL module in detail.

Please be aware that an important notice concerning availability, standard warranty and use in critical applications of Murata products and disclaimers thereto appears at the end of this specification sheet.

Audience & Purpose

Intended audience includes any customer looking to integrate this module into their product. In particular, RF, hardware, software, and systems engineers.

Document Conventions

Table 1 describes the document conventions.

Table 1: Document Conventions

Conventions	Description			
	Warning Note Indicates very important note. Users are strongly recommended to review.			
i	Info Note Intended for informational purposes. Users should review.			
lī.	Menu Reference Indicates menu navigation instructions. Example: Insert→Tables→Quick Tables→Save Selection to Gallery □			
ದ 7	External Hyperlink This symbol indicates a hyperlink to an external document or website. Example: Murata Click on the text to open the external link.			
□ _R	Internal Hyperlink This symbol indicates a hyperlink within the document. Example: Scope Click on the text to open the link.			
Console input/output or code snippet	Console I/O or Code Snippet This text <i>Style</i> denotes console input/output or a code snippet.			
# Console I/O comment // Code snippet comment	Console I/O or Code Snippet Comment This text Style denotes a console input/output or code snippet comment. Console I/O comment (preceded by "#") is for informational purposes only and does not denote actual console input/output. Code Snippet comment (preceded by "//") may exist in the original code.			

1 Scope

This specification characterizes the IEEE 802.11a/b/g/n/ac/ax WLAN + Bluetooth 5.4 BR/EDR/LE combo module.

2 Key Features

- NXP IW611 inside
- Supports IEEE 802.11a/b/g/n/ac/ax specifications: Dual band 2.4 GHz and 5 GHz
- ✓ SISO with 20, 40 and 80 MHz channels
- Up to MCS11 data rates (601 Mbps)
- Supports Bluetooth specification version 5.4
- WLAN interface: SDIO 3.0
- Bluetooth interface: HCI UART
- ▼ Temperature Range: 40 °C to 85 °C
- Dimensions: 8.8 x 7.7 x 1.3 mm
- Weight: 0.22 g
- MSL: 3
- Surface-mount type
- RoHS compliant
- Total Fit: 54

3 Ordering Information

The part number and associated ordering information is shown in **Table 2**.

Table 2: Ordering Information

Ordering Part Number	Description
LBEE5PL2DL-921	Module order
LBEE5PL2DL-SMP	Sample module order (If module samples are not available through distribution, contact Murata referencing this part number)
EAR00422	Embedded Artists Type 2DL M.2 EVB (default EVB available through distribution)
LBEE5PL2DL-EVB	Murata Type 2DL EVB (contact Murata as this is special order item)

"Type 2DL" is design name of this module. Design name may be used in certification test report.

4 Block Diagram

The type 2EL block diagram is presented in Figure 1 and Figure 2.

Figure 1: Block Diagram - Shared WLAN Bluetooth Antenna

Figure 2: Block Diagram - Dedicated Bluetooth Antenna

5 Certification Information

This section describes the radio and Bluetooth qualification.

5.1 Radio Certification

Transmit output power setting is defined by "txpower_XX.bin" The transmit power files are hosted at Murata GitHub for Linux 🗗 and FreeRTOS 🗗. **Table 3** shows the transmit power file required for each region.

Table 3: Certification Information

Country	ID	Country Code	Tx Power Limit File		
			Linux	FreeRTOS	
USA (FCC)	VPYLBES5PL2EL	US	txpower_US.bin	wlan_txpwrlimit_cfg_murata_2EL_ US_RU_Tx_power.h	
Canada (IC)	772C-LBES5PL2EL	CA	txpower_CA.bin	wlan_txpwrlimit_cfg_murata_2EL_ CA_RU_Tx_power.h	
Europe	EN300328/301893, EN300440 conducted test report is prepared.	DE	txpower_EU.bin	wlan_txpwrlimit_cfg_murata_2EL_ EU_RU_Tx_power.h	
Japan	Japanese type certification is prepared. R 001-P02019	JP	txpower_JP.bin	wlan_txpwrlimit_cfg_murata_2EL_ JP_RU_Tx_power.h	

5.2 Radio Regulatory Certification by Country

Murata have prepared the document about Radio Regulatory Certification separately.

This document is designed to ensure that module manufacturers correctly communicate the necessary information to host manufacturers that incorporate their modules.

Refer to [Regulatory Information]: Type 2DL Radio Law Approval Application Note for Radio Law Certification user manual.

If you don't follow the rule written in Type 2DL Radio Law Approval Application Note, there is a risk of conflict Radio Law Certification.

Please be sure to check the documents.

5.3 Bluetooth Qualification

- DN: Q302534 (Ver.5.4)
- Set Bluetooth Tx Power to Class 1 by using bt_power_config_1.sh □

6 Dimensions, Markings, and Terminal Configurations

This section provides information about dimensions, markings, and terminal configuration for Type 2DL and the related parameters. **Figure 3** shows the dimensions, markings, and terminal configurations. **Table 4** shows contents of markings. **Table 5** shows dimensions.

Figure 3: Dimensions, Markings and Terminal Configurations

Table 4: Markings

Marking	Meaning
A	Module Type
В	Inspection Number
С	Serial Number
D	2D code
E	Murata Logo
F	Pin 1 Marking

Table 5: Dimensions

Mark	Dimensions (mm)	Mark	Dimensions (mm) Mark		Dimensions (mm)
L	8.8 +/- 0.2	W	7.7 +/- 0.2		
Т	1.3 maximum	T1	0.04 typical (Bump)		
a1	0.25 +/- 0.1	a2	0.25 +/- 0.1	b1	0.3 +/- 0.2
b2	0.3 +/- 0.2	c1	0.55 +/- 0.1	c2	0.55 +/- 0.1
e1	0.25 +/- 0.1	e2	0.25 +/- 0.1	e3	0.4 +/- 0.1
e4	0.25 +/- 0.1	e5	0.375 +/- 0.1	e6	0.875 +/- 0.1
e7	0.475 +/- 0.1	e8	1.375 +/- 0.1	e9	0.9 +/- 0.1
m1	0.55 +/- 0.1	m2	0.25 +/- 0.1		

Figure 4 shows the Type 2DL structure.

Figure 4: Structure

The sides of the module are GND shielded. In order to avoid contact between the GND shield and the electrodes on the mother board, please carefully evaluate the standoff before use the module.

7 Module Pin Description

This section includes the pin descriptions of Type 2DL and pin assignments layout descriptions.

7.1 Pin Assignments

This section describes the pin assignments to terminals. Type 2EL pin-assignment top view is presented in **Figure 5**. **Table 6** describes the terminal names and configurations.

Figure 5: Pin Assignments - Top View

Table 6: Terminal Names

No.	Terminal Name	No.	Terminal Name	No.	Terminal Name
1	GND	29	GND	57	PCM_CLK
2	GND	30	AVDD18_2	58	PCM_MCLK
3	NC	31	AVDD18_1	59	PCM_DOUT

No.	Terminal Name	No.	Terminal Name	No.	Terminal Name
4	Reserved	32	GND	60	PCM_DIN
5	Reserved	33	Reserved	61	PCM_SYNC
6	Reserved	34	Reserved	62	GND
7	Reserved	35	Reserved	63	IND_RST_WL
8	Reserved	36	Reserved	64	IND_RST_BT
9	GND	37	Reserved	65	Reserved
10	PDn	38	Reserved	66	Reserved
11	GND	39	GND	67	GND
12	AVDD33_1	40	SD_VIO	68	GND
13	AVDD33_2	41	GND	69	WCI-2_SIN
14	GND	42	SD_CMD	70	WCI-2_SOUT
15	ANT0	43	GND	71	GND
16	GND	44	SD_CLK	72	SD_INT
17	GND	45	SD_DAT[1]	73	WL_WAKE_OUT
18	BT_IN	46	SD_DAT[3]	74	WL_WAKE_IN
19	GND	47	SD_DAT[2]	75	BT_WAKE_IN
20	GND	48	SD_DAT[0]	76	BT_WAKE_OUT
21	GND	49	UART_TX	77	NC
22	GND	50	UART_CTS	78	NC
23	ANT1	51	UART_RX	79	NC
24	RF_CNTL4	52	UART_RTS	80	NC
25	RF_CNTL3/CONFIG_XOSC_SEL	53	GND	81 - 107	GND
26	RF_CNTL1	54	VIO		
27	RF_CNTL0	55	CONFIG_HOST[0]		
28	GND	56	CONFIG_HOST[1]		

7.2 Pin Descriptions

Table 7 lists the pin descriptions of Type 2DL.

Table 7: Pin Descriptions

No.	Terminal name	Туре	Connection to IC Terminal	Description
1	GND			Ground
2	GND			Ground
3	NC		NC	Not Connected
4	Reserved	I/O	GPIO[20]	Multi-functional pin: GPIO[20]. Input/output NC when not in use.
5	Reserved	I/O	GPIO[14]	Multi-functional pin: GPIO[14]. Input/output NC when not in use.
6	Reserved	I/O	GPIO[15]	Multi-functional pin: GPIO[15]. Input/output NC when not in use.
7	Reserved	I/O	GPIO[12]	Multi-functional pin: GPIO[12]. Input/output NC when not in use.
8	Reserved	I/O	GPIO[13]	Multi-functional pin: GPIO[13]. Input/output NC when not in use.
9	GND			Ground

BT output when SANT mode.	No.	Terminal name	Туре	Connection to IC Terminal	Description
T = normal mode	10	PDn	I	PDn	
PDn may be driven by the host. PDn must be high for normal operation. No internal pull-up on this pin. This pin has an always-on internal weak pull-down.					The state of the s
Month Mont					PDn may be driven by the host. PDn must be high for normal operation. No internal pull-up on this pin.
12					
13	11	GND			Ground
14	12	AVDD33_1	Power	AVDD33	Power supply
15	13	AVDD33_2	Power	AVDD33	Power supply
BT output when SANT mode.	14	GND			Ground
17	15	ANT0	I/O		ANT0 is WLAN output and it's also used for BT output when SANT mode.
18	16	GND			Ground
19	17	GND			Ground
20	18	BT_IN	1		BT in (Feedback)
21	19	GND			Ground
22 GND	20	GND			Ground
23	21	GND			Ground
Connected to BT_IN when SANT mode.	22	GND			Ground
25	23	ANT1	0		
CONFIG_XOSC_SEL XOSC_SEL 1=40 MHz RF control line 3	24	RF_CNTL4	I/O	RF_CNTL4	RF control line 4
26 RF_CNTL1 O RF control line 1 27 RF_CNTL0 O RF control line 0 28 GND Ground 29 GND Ground 30 AVDD18_2 Power Power supply 31 AVDD18_1 Power Power supply 32 GND Ground 33 Reserved I/O GPIO[31]/JTAG_TDO Programable GPIO Pin. (JTAG_TDO) * NXP internal use only * NXP internal use only 35 Reserved I/O GPIO[28]/JTAG_TCK Programable GPIO Pin. (JTAG_TCK) * NXP internal use only * NXP internal use only * NXP internal use only 36 Reserved I/O GPIO[23]/JTAG_TDI Programable GPIO Pin. (JTAG_TDI) * NXP internal use only * NXP internal use only * NXP internal use only 37 Reserved I/O GPIO[22] Programable GPIO Pin. (JTAG_TDI) * NXP internal use only * NXP internal use only * NXP internal use only 37 Reserved I/O GPIO[24] Mu	25	_	I/O		1=40 MHz
27 RF_CNTL0 O RF control line 0 28 GND Ground 29 GND Ground 30 AVDD18_2 Power Power supply 31 AVDD18_1 Power Power supply 32 GND Ground 33 Reserved I/O GPIO[31]/JTAG_TDO Programable GPIO Pin. (JTAG_TDO) 34 Reserved I/O GPIO[29]/JTAG_TMS Programable GPIO Pin. (JTAG_TMS) 35 Reserved I/O GPIO[28]/JTAG_TCK Programable GPIO Pin. (JTAG_TCK) 36 Reserved I/O GPIO[30]/JTAG_TDI Programable GPIO Pin. (JTAG_TDI) 37 Reserved I/O GPIO[22] Programable GPIO Pin. (NC when not in use. 38 Reserved I/O GPIO[24] Multi-functional pin: GPIO[24] input/output NC when not in use. 39 GND Ground 40 SD_VIO Power Power supply	26	RE CNTI 1	0		
28 GND Ground 29 GND Ground 30 AVDD18_2 Power Power supply 31 AVDD18_1 Power Power supply 32 GND Ground 33 Reserved I/O GPIO[31]/JTAG_TDO Programable GPIO Pin. (JTAG_TDO) 34 Reserved I/O GPIO[29]/JTAG_TMS Programable GPIO Pin. (JTAG_TMS) 35 Reserved I/O GPIO[28]/JTAG_TCK Programable GPIO Pin. (JTAG_TCK) 36 Reserved I/O GPIO[30]/JTAG_TDI Programable GPIO Pin. (JTAG_TDI) 37 Reserved I/O GPIO[22] Programable GPIO Pin. (NC when not in use. 38 Reserved I/O GPIO[24] Multi-functional pin: GPIO[24] input/output NC when not in use. 39 GND Ground 40 SD_VIO Power Power supply					
GND Ground AVDD18_2 Power Power supply Ground Ground Reserved I/O GPIO[31]/JTAG_TDO Programable GPIO Pin. (JTAG_TDO) NXP internal use only Reserved I/O GPIO[29]/JTAG_TKS Programable GPIO Pin. (JTAG_TKS) NXP internal use only Reserved I/O GPIO[28]/JTAG_TCK Programable GPIO Pin. (JTAG_TCK) NXP internal use only Reserved I/O GPIO[28]/JTAG_TCK Programable GPIO Pin. (JTAG_TCK) NXP internal use only Reserved I/O GPIO[30]/JTAG_TDI Programable GPIO Pin. (JTAG_TDI) NXP internal use only Reserved I/O GPIO[22] Programable GPIO Pin. (JTAG_TDI) NC when not in use. Reserved I/O GPIO[24] Multi-functional pin: GPIO[24] input/output NC when not in use. GROUND GROUND Power Power supply			-		
30					
31 AVDD18_1 Power Power Supply 32 GND Ground 33 Reserved I/O GPIO[31]/JTAG_TDO Programable GPIO Pin. (JTAG_TDO) * NXP internal use only 34 Reserved I/O GPIO[29]/JTAG_TMS Programable GPIO Pin. (JTAG_TMS) * NXP internal use only 35 Reserved I/O GPIO[28]/JTAG_TCK Programable GPIO Pin. (JTAG_TCK) * NXP internal use only 36 Reserved I/O GPIO[30]/JTAG_TDI Programable GPIO Pin. (JTAG_TDI) * NXP internal use only 37 Reserved I/O GPIO[22] Programable GPIO Pin. NC when not in use. 38 Reserved I/O GPIO[24] Multi-functional pin: GPIO[24] input/output NC when not in use. 39 GND Ground 40 SD_VIO Power Power supply			Power		
GROD Ground Ground Reserved I/O GPIO[31]/JTAG_TDO Programable GPIO Pin. (JTAG_TDO) *NXP internal use only Programable GPIO Pin. (JTAG_TMS) *NXP internal use only I/O GPIO[29]/JTAG_TCK Programable GPIO Pin. (JTAG_TCK) *NXP internal use only I/O GPIO[28]/JTAG_TCK Programable GPIO Pin. (JTAG_TCK) *NXP internal use only Reserved I/O GPIO[30]/JTAG_TDI Programable GPIO Pin. (JTAG_TDI) *NXP internal use only Reserved I/O GPIO[22] Programable GPIO Pin. NC when not in use. Reserved I/O GPIO[24] Multi-functional pin: GPIO[24] input/output NC when not in use. Ground Ground Power Supply		·-			11.7
Reserved I/O GPIO[31]/JTAG_TDO Programable GPIO Pin. (JTAG_TDO)		+	1 OWEI		,
Reserved			I/O	GPIO[31]/JTAG_TDO	Programable GPIO Pin. (JTAG_TDO)
Reserved	34	Reserved	I/O	GPIO[29]/JTAG_TMS	Programable GPIO Pin. (JTAG_TMS)
Reserved	35	Reserved	I/O	GPIO[28]/JTAG_TCK	Programable GPIO Pin. (JTAG_TCK)
Reserved I/O GPIO[22] Programable GPIO Pin. NC when not in use. 38 Reserved I/O GPIO[24] Multi-functional pin: GPIO[24] input/output NC when not in use. 39 GND Ground	36	Reserved	I/O	GPIO[30]/JTAG_TDI	Programable GPIO Pin. (JTAG_TDI)
38 Reserved I/O GPIO[24] Multi-functional pin: GPIO[24] input/output NC when not in use. 39 GND Ground 40 SD_VIO Power Power supply	37	Reserved	I/O	GPIO[22]	Programable GPIO Pin.
39 GND Ground 40 SD_VIO Power Power supply	38	Reserved	I/O	GPIO[24]	Multi-functional pin: GPIO[24] input/output
40 SD_VIO Power Power supply	39	GND			
			Power		
4	41	GND	1 201		Ground

No.	Terminal name	Туре	Connection to IC Terminal	Description
42	SD_CMD	I/O	SD_CMD	SDIO 4-bit mode: Command/response (input/output) SDIO 1-bit mode: Command line (input/output)
43	GND			Ground
44	SD_CLK	1	SD_CLK	SDIO 4-bit mode: Clock input SDIO 1-bit mode: Clock input
45	SD_DAT[1]	I/O	SD_DAT[1]	SDIO 4-bit mode: Data line bit [1] SDIO 1-bit mode: Interrupt
46	SD_DAT[3]	I/O	SD_DAT[3]	SDIO 4-bit mode: Data line bit [3] SDIO 1-bit mode: Reserved
47	SD_DAT[2]	I/O	SD_DAT[2]	SDIO 4-bit mode: Data line bit[2] or read wait (optional) SDIO 1-bit mode: Read wait (optional)
48	SD_DAT[0]	I/O	SD_DAT[0]	SDIO 4-bit mode: Data line bit[0] SDIO 1-bit mode: Interrupt.
49	UART_TX	I/O	UART_TX	UART serial output signal
50	UART_CTS	I/O	UART_CTS	UART clear-to-send input signal.
51	UART_RX	I/O	UART_RX	UART serial input signal
52	UART_RTS	I/O	UART_RTS	UART request-to-send output signal
53	GND			Ground
54	VIO	Power		Power supply.
55	CONFIG_HOST[0]	I	CONFIG_HOST[0]	Firmware Boot Option Refer to Section 7.3 ".
56	CONFIG_HOST[1]	I	CONFIG_HOST[1]	Firmware Boot Option Refer to Section 7.3 □ ^L .
57	PCM_CLK	I/O	GPIO[4]/PCM_CLK	GPIO[4] input/output PCM clock signal. Central mode: output Peripheral mode: input I2S audio bit clock. Central mode: output Peripheral mode: input
58	PCM_MCLK	I/O	GPIO[3]/PCM_MCLK	GPIO[3] input/output PCM codec main clock signal (optional). Optional clock used for some codecs. Derived from PCM_CLK. I2S clock output signal O ptional clock used for some codecs. Derived from I2S_BCLK.
59	PCM_DOUT	I/O	GPIO[5]/PCM_DOUT	GPIO[5] input/output PCM transmit data signal (output). *Connect to PCM audio codec input data (for playback). I2S_DOUT - I2S transmit data signal (output). I2S audio codec input data (for playback).

No.	Terminal name	Туре	Connection to IC Terminal	Description
60	PCM_DIN	I/O	GPIO[6]/PCM_DIN	GPIO[6] input/output PCM transmit data signal (input). *Connect to PCM audio codec output data (for recording). I2S_DIN - I2S receive data signal (input). PCM audio codec output data (for
61	PCM_SYNC	I/O	GPIO[7]/PCM_SYNC	recording). GPIO[7] input/output PCM sync pulse signal (output if master, input if slave). Central mode: output Peripheral mode: input 12S_LRCLK - 12S left/right clock (output if master, input if slave). Central mode: output Peripheral mode: input
62	GND			Ground.
63	IND_RST_WL	I/O	GPIO[1]/ IND_RST_WL	Independent software reset for Wi-Fi Multi- functional pin: GPIO[1] input/output.
64	IND_RST_BT	I/O	GPIO[2]/ IND_RST_BT	Independent software reset for Bluetooth ¹ . Multi-functional pin: GPIO[2] input/output.
65	Reserved	I/O	GPIO[27]	Programable GPIO Pin ²
66	Reserved	I/O	GPIO[23]	Programable GPIO Pin ³
67	GND			Ground
68	GND			Ground
69	WCI-2_SIN	I/O	GPIO[25]/ WCI-2_SIN	Input signal from external radio. Multi-functional pin: GPIO[25] input/output
70	WCI-2_SOUT	I/O	GPIO[26]/ WCI-2_SOUT	Output signal to external radio. Multi- functional pin: GPIO[26] input/output External radio coexistence interface
71	GND			Ground
72	SD_INT	I/O	GPIO[21]/SD_INT	Out-of-band SDIO interface interrupt signal output. Multi-functional pin: GPIO[21] input/output.
73	WL_WAKE_OUT	I/O	GPIO[17]/ WL_WAKE_OUT	Wi-Fi radio wake-up output signal. Multi-functional pin: GPIO[17] input/output.
74	WL_WAKE_IN	I/O	GPIO[16]/ WL_WAKE_IN	Wi-Fi radio wake-up input signal. Multi-functional pin: GPIO[16] input/output.
75	BT_WAKE_IN	I/O	GPIO[18]/ BT_WAKE_IN	Bluetooth radio wake-up input signal. Multi-functional pin: GPIO[18] input/output.
76	BT_WAKE_OUT	I/O	GPIO[19]/ BT_WAKE_OUT	Bluetooth radio wake-up output signal. Multi-functional pin: GPIO[19] input/output
77	NC		NC	Not connected
78	NC		NC	Not connected
79	NC		NC	Not connected
80	NC		NC	Not connected
81-107	GND			Ground

 $^{^{\}rm 1}$ The request to reset either Bluetooth radio leads to reinitialization of both radios. $^{\rm 2}$ NC when not in use. $^{\rm 3}$ NC when not in use.

7.3 Configuration Pins

Table 8 describes the configuration pins.

Table 8: Configuration Pins

CONFIG_HOST [0]	CONFIG_HOST [1]	WLAN	Bluetooth/ Bluetooth LE	Remarks
1	1	SDIO	UART	Default
Others	Others	Reserved	Reserved	Reserved

7.4 Pin States

Pin states information for the tables below include:

- After firmware is downloaded, the pads (GPIO, Serial interface, RF control) are programmed in functional mode per the functionality of the pins.
- For SDIO, once the command is received from the host, the pads are configured accordingly.
- Pull-up and pull-down are only effective when the pad is in input mode.
- The power-down state shown is the default configuration. Many pads have programmable power-down values, which can be set by firmware.
- Do not need any termination to the open pins that have an Internal Pull-up/Pull-down resistor (PU/PD). Do not need any termination to the open pins in output mode.

Table 9 describes the pin states.

Table 9: Pin States

Pin Name	Supply	No Pad Power State	Reset State	HW State	PD State	PD Prog	Internal PU/PD	Internal Pull Value[Ω]
GPIO[13]	VIO	tristate	input	input	drive high	yes	nominal PU	60k-120kΩ
GPIO[20]	VIO	tristate	input	input	Drive low	yes	nominal PU	60k-120kΩ
GPIO[14]	VIO	tristate	input	input	tristate	yes	nominal PU	60k-120kΩ
GPIO[15]	VIO	tristate	output low	output low	drive low	yes	nominal PU	60k-120kΩ
GPIO[12]	VIO	tristate	input	input	tristate	yes	nominal PU	60k-120kΩ
GPIO[22]	VIO	tristate	output high	output low	tristate	yes	nominal PU	60k-120kΩ
UART_TX	VIO	tristate	output high	output high	drive low	yes	nominal PU	60k-120kΩ
UART_CTS	VIO	tristate	input	input	tristate	yes	nominal PU	60k-120kΩ
UART_RX	VIO	tristate	input	input	tristate	yes	nominal PU	60k-120kΩ
UART_RTS	VIO	tristate	output high	output high	drive high	yes	nominal PU	60k-120kΩ
PCM_CLK	VIO	tristate	input	input	tristate	yes	weak PU	500k- 1200kΩ
PCM_MCLK	VIO	tristate	input	input	tristate	yes	nominal PU	60k-120kΩ
PCM_DOUT	VIO	tristate	input	input	tristate	yes	weak PU	500k- 1200kΩ
PCM_DIN	VIO	tristate	input	input	tristate	yes	weak PU	500k- 1200kΩ
PCM_SYNC	VIO	tristate	input	input	tristate	yes	nominal PU	60k-120kΩ
IND_RST_WL	VIO	tristate	input	input	tristate	yes	nominal PU	60k-120kΩ
IND_RST_BT	VIO	tristate	input	input	tristate	yes	nominal PU	60k-120kΩ
GPIO[27]	VIO	tristate	input	input	tristate	yes	weak PU	500k- 1200kΩ
GPIO[23]	VIO	tristate	input	input	tristate	yes	nominal PU	60k-120kΩ

Pin Name	Supply	No Pad Power State	Reset State	HW State	PD State	PD Prog	Internal PU/PD	Internal Pull Value[Ω]
WCI-2_SIN	VIO	tristate	input	input	tristate	yes	nominal PU	60k-120kΩ
WCI-2_SOUT	VIO	tristate	input	input	tristate	yes	nominal PU	60k-120kΩ
SD_INT	VIO	tristate	output high	output low	drive low	yes	nominal PU	60k-120kΩ
WL_WAKE_OUT	VIO	tristate	input	input	drive low	yes	nominal PU	60k-120kΩ
WL_WAKE_IN	VIO	tristate	input	input	tristate	yes	weak PU	800k Ω
BT_WAKE_IN	VIO	tristate	input	input	tristate	yes	weak PU	800k Ω
BT_WAKE_OUT	VIO	tristate	input	input	drive low	yes	nominal PU	60k-120kΩ
XOSC_EN	VIO	tristate	input	input	drive low	yes	nominal PU	60k-120kΩ
RF_CNTL4	VIO	tristate	input	input	drive low	yes	weak PU	500k- 1200kΩ
RF_CNTL3/CONFIG_ XOSC_SEL	VIO	tristate	input	input	drive high	yes	weak PU	500k- 1200kΩ
RF_CNTL1	VIO	tristate	output high	output high	drive high	yes	weak PU	500k- 1200kΩ
RF_CNTL0	VIO	tristate	output low	output low	drive low	yes	nominal PU	60k-120kΩ
SD_CMD	VIO_SD	tristate	input	input	tristate	yes	nominal PU	60k-120kΩ
SD_CLK	VIO_SD	tristate	input	input	tristate	yes	nominal PU	60k-120kΩ
SD_DAT[1]	VIO_SD	tristate	input	input	tristate	yes	nominal PU	60k-120kΩ
SD_DAT[3]	VIO_SD	tristate	input	input	tristate	yes	nominal PU	60k-120kΩ
SD_DAT[2]	VIO_SD	tristate	input	input	tristate	yes	nominal PU	60k-120kΩ
SD_DAT[0]	VIO_SD	tristate	Input	Input	Tristate	yes	nominal PU	60k-120kΩ
CONFIG_HOST[0]	AVDD18	tristate	Input	Input	Tristate	no	weak PU	500k- 1200kΩ
CONFIG_HOST[1]	AVDD18	tristate	Input	Input	Tristate	no	weak PU	500k- 1200kΩ
PDn	AVDD33						weak PD	51kΩ

7.5 SDIO Pin Descriptions

SDIO pins are described in Table 10.

Table 10: SDIO Pin Descriptions

No.	Pin Name	(i) SD 4-bit Mode		(ii) SD 1-bit Mode	
4	SDIO_CLK	CLK	Clock	CLK	Clock
5	SDIO_D0	DATA0	Data line 0	DATA	Data line
45	SDIO_D1	DATA1	Data line 1	IRQ	Interrupt
3	SDIO_D2	DATA2	Data line 2	RW	Read wait (optional)
46	SDIO_D3	DATA3	Data line 3	NC	Reserved
6	SDIO_CMD	CMD	Command/response	CMD	Command line

Figure 6 shows the SDIO Pin Modes.

Figure 6: SDIO Pin Modes

8 Absolute Maximum Ratings

Table 11 Shows the absolute maximum rating values.

Table 11: Absolute Maximum Ratings

Parameter		Minimum	Maximum	Unit
Storage Temperature		-50	+85	°C
Supply Voltage	AVDD33		3.96	V
	AVDD18		2.16	V
	SD_VIO 1.8V/3.3V		2.16	V
			3.96	V
	VIO 1.8V/3.3V		2.16	V
			3.96	V

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability. No damage assuming only one parameter is set at limit at a time with all other parameters are set within operating condition.

9 Operating Conditions

9.1 Operating Conditions

Table 12 shows the operating conditions for Type 2DL.

Table 12: Operating conditions

Parameter		Minimum	Typical	Maximum	Unit
Operating Temperature		-40	25	+85	°C
	AVDD33	3.14	3.3	3.46	V
Cupply Voltage	AVDD18	1.71	1.8	1.89	V
Supply Voltage	SD_VIO/VIO = 1.8V	1.71	1.8	1.89	V
	SD_VIO/VIO = 3.3V	3.14	3.3	3.46	V
Peak Current	AVDD33			420	mA
	AVDD18			1009	mA

Operation beyond the recommended operating conditions is neither recommended nor guaranteed. Peak current happened during DPD calibration when the firmware is downloaded.

9.2 Digital I/O Requirement

Table 13 describes the digital input and output requirements.

Table 13: Digital I/O Requirements

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
V _{IO} ,	I/O pad supply voltage		1.71	1.8	1.89	V
V _{IH}	Input high voltage		0.7*VIO		VIO+0.4	V
VIL	Input low voltage		-0.4		0.3*VIO	V
V _H ys	Input hysteresis		100			mV
Vон	Output high voltage		VIO-0.4			V
V _{OL}	Output low voltage				0.4	V

9.3 Package Thermal Conditions

RΨjt: 3.12 °C/W

• RΨjt = (Tj - Tt)/P

Tj: Junction temperature (°C), Tt: Top temperature (°C), P: Total Power Consumption (W)

Figure 7: Package Thermal Conditions

10 Power Sequence

This section describes the power on and power off sequences and host rest sequence.

10.1 Power-On Sequence

VIO, VIO_SD, AVDD33, and AVDD18 can be power upped with 0 second minimum. The PDn signal when it is asserted (low) while all power supplies to the devices are high.

The power-on sequence graph is shown in Figure 8.

Figure 8: Power-On Sequence Graph

PDn pin (power-off) specifications - Power remains high at PDn assertion.

The power-on sequence parameters are described in **Table 14**.

Table 14: Power-On Sequence Parameters

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
T _{VIO_AVDD}	Power up timing of VIO, VIO_SD, AVDD33, and VIO18		0			ms
T _{PU_RESET}	Valid power to PDn de-asserted		0			ms
V _{IH}	Input high voltage		1.4		4.5	V
VIL	Input low voltage		-0.4		0.5	V

Minimum value guaranteed for a valid rest. Smaller values may put the device in an undefined state.

10.2 Power-Off Sequence

The power-off sequence graph is shown in **Figure 9**.

Figure 9: Power-Off Sequence Graph

The power-off sequence parameters are described in **Table 15**.

Table 15: Power-Off Sequence Parameters

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
TVIO_AVDD	Power up timing of VIO, VIO_SD, AVDD33, and VIO18		0			ms
T _{PU_RESET}	Valid power to PDn de-asserted		0			ms
ViH	Input high voltage		1.4		4.5	V
V _{IL}	Input low voltage		-0.4		0.5	V

Minimum value guaranteed for a valid rest. Smaller values may put the device in an undefined state.

10.3 Host Reset Sequence

Figure 10 shows the host reset sequence graph.

Figure 10: Host Reset Sequence Graph

The host sequence parameters are described in **Table 16**.

Table 16: Host Reset Sequence Parameters

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
tpu_reset	Valid power to PDn de-asserted		0			ms
t _{PRW}	PDn pulse width		14			μs
tinit	From PDn de-assertion to device ready (SDIO bus enumeration)		20			ms
ViH	Input high voltage		1.4		4.5	V
VIL	Input low voltage		-0.4		0.5	V

Minimum value guaranteed for a valid rest. Smaller values may put the device in an undefined state.

⁴ Minimum value guaranteed for a valid rest. Smaller values may put the device in an undefined state.

11 Interface Timing

This section describes interface timings:

- SDIO timing (default and high-speed modes)
- SDIO protocol timings
- UART timing (default mode)
- Bluetooth PCM timing (master and slave mode)

11.1 SDIO Timing

11.1.1 Default Speed Mode

This section describes the SDIO protocol timing diagram in default speed mode. The sequence is shown in **Figure 11**.

Figure 11: SDIO Protocol Timing Diagram - Default Speed Mode

11.1.2 High Speed Mode

Figure 12 describes the SDIO protocol timing diagram - high speed mode parameters.

Figure 12: SDIO Protocol Timing Diagram - High Speed Mode

Table 17 describes the SDIO protocol high speed mode parameters.

Table 17: SDIO Protocol Timing High Speed Mode Parameters

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
f _{PP}	Clock frequency	Normal	0		25	MHz
		High-speed	0		50	MHz
	Clock low time	Normal	10			ns
T _{WL}		High-speed	7			ns
	Clock high time	Normal	10			ns
Twn		High-speed	7			ns
T _{ISU}	Input setup time	Normal	5			ns
		High-speed	6			ns
Тін	Input hold time	Normal	5			ns
		High-speed	2			ns
	Output delay time	Normal			14	ns
Todly	CL ≤ 40 pF (1 card)	High-speed			14	ns
Тон	Output put hold time	High-speed	2.5			ns

For SDIO 2.0 running at 25 and 50 MHz clock frequency, VIO_SD must be 3.3V.

11.1.3 SDR12, SDR25, and SDR50 Modes (up to 100 MHz) at 1.8V

Figure 13 shows the SDIO protocol timing diagram for SDR12, SDR25, and SDR50 modes at 1.8V (up to 100 MHz).

Figure 13: SDIO Protocol Timing Diagram - SDR12, SDR25, and SDR50 Modes

Table 18 describes the SDIO protocol timing data for SDR12, SDR25, and SDR50 parameters (up to 100 MHz) at 1.8V.

Table 18: SDIO Protocol Timings Parameters - SDR12, SDR25, and SDR50 Modes

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
fPP	Clock frequency	SDR12/25/50	25		100	MHz
TIS	Input setup time	SDR12/25/50	3			MHz

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
TIH	Input hold time	SDR12/25/50	0.8			ns
TCLK	Clock time	SDR12/25/50	10		40	ns
TCR, TCF	Rise time, fall time. TCR, TCF < 2 ns (maximum) at 100 MHz CCARD = 10 pF	SDR12/25/50			0.2*TCLK	ns
TOLDY	Output delay time CL ≤ 15 pF	SDR12/25/50			7.5	ns
ТОН	Input setup time	SDR12/25/50	1.5			ns

11.1.4 SDR104 Modes (up to 208 MHz) at 1.8V

Figure 14 shows SDIO protocol timing diagram for SDR104 Mode (up to 208 MHz) at 1.8V.

Figure 14: SDIO Protocol Timing Diagram - SDR104 Mode

Table 19 describes the SDIO protocol timing parameters for SDR104 mode (up to 208 MHz) at 1.8V.

Table 19: SDIO Protocol Timing Parameters - SDR104 Mode

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
f _{PP}	Clock frequency	SDR104	0		208	MHz
T _{IS}	Input setup time	SDR104	1.4			MHz
TiH	Input hold time	SDR104	0.8			ns
T _{CLK}	Clock time	SDR104	4.8			ns
T _{CR} , T _{CF}	Rise time, fall time T _{CR} , T _{CF} < 0.96 ns (maximum) at 208 MHz C _{CARD} = 10 pF	SDR104			0.2*Тськ	ns
TOP	Card output phase	SDR104			2	ns
Todw	Output timing of variable data window	SDR104	2.88			ns

11.1.5 DDR50 Mode at 50 MHz (1.8V)

Figure 15 shows the SDIO CMD timing diagram for DDR50 mode at 1.8V (50 MHz).

Figure 15: SDIO CMD Timing Diagram - DDR50 Mode

In DDR50 mode, DAT[3:0] lines are sampled on both edges of the clock (not applicable for CMD line).

Figure 16 shows the SDIO DATA timing diagram at DDR50 mode.

Figure 16: SDIO DATA Timing Diagram - DDR50 Mode

Table 20 describes the parameters for SDIO data timing for DDR50 mode at 1.8V (50 MHz).

Table 20: SDIO Data Timing Parameters - DDR50 Mode

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
Clock						
T _{CLK}	Clock time 50 MHz (maximum) between rising edge	DDR50	20			ns
T _{CR} , T _{CF}	Rise time, fall time. T _{CR} , T _{CF} < 4.00 ms (maximum) at 50 MHz	DDR50	3		0.2*T _{CLK}	ns
		DDR50	45		55	%
CMD Inp	ut (referenced to clock rising edge)			-		•
T _{IS}	Input setup time C _{CARD} ≤ 10 pF (1 card)	DDR50	6			ns
T _{IH}	Input hold time C _{CARD} ≤ 10 pF (1 card)	DDR50	0.8			ns
CMD Out	put (referenced to clock rising edge)					
Todly	Output delay time during data transfer mode CL ≤ 30 pF (1card)	DDR50			13.7	ns
T _{OHLD}	Output hold time CL ≤ 30 pF (1 card)	DDR50	1.5			ns
DAT[3:0]	Input (referenced to clock rising and falling	edges)				
T _{IS2X}	Input setup time C _{CARD} ≤ 10 pF (1 card)	DDR50	3			ns
T _{IH2X}	Input hold time C _{CARD} ≤ 10 pF (1 card)	DDR50	0.8			ns
DAT[3:0]	Output (referenced to clock rising and falling	g edges)		'	<u>'</u>	
T _{OLD2x} (maxi)	Output delay time during data transfer mode CL ≤ 25 pF (1 card)	DDR50			7.0	ns
T _{OLDY2x} (min)	Output hold time CL ≤ 15 pF (1 card)	DDR50	1.5			ns

11.2 UART Timing (Default Mode)

Default bard rate is 115200 bps. Baud rate is configurable by the host stack.

Figure 17 shows the UART timing default mode signals for default mode.

Figure 17: UART Timing Diagram - Default Mode

Table 21 describes the UART timing default mode parameters.

Table 21: UART Timing Parameters - Default Mode

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
TBAUD	Baud rate	38.4 MHz	250			ns

The acceptable deviation from the UART Rx target baud rate is ±3%.

11.3 Bluetooth PCM Timing

This section describes the Bluetooth PCM timing master mode and slave mode data signals and PCM_SYNC signals.

11.3.1 Master Mode

Figure 18 and Figure 19 show the Bluetooth PCM timing signals in master mode.

Figure 18: Bluetooth PCM Timing Data Signal - Master Mode

Figure 19: Bluetooth PCM Timing PCM_SYNC Signal - Master Mode

Table 22 describes the Bluetooth PCM timing master mode parameters.

Table 22: Symbol Definition for Data Signal & PCM_Sync Signal - Master Mode

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
F _{BCLK}	Bit clock frequency			2/2.048		MHz
Duty Cycle _{BCLK}	Bit clock duty cycle		0.4	0.5	0.6	
TBCLK rise/fall	PCM_CLK rise/fall time.			3		ns
T _{DO}	Delay from PCM_CLK rising edge to PCM_DOUT rising edge.				15	ns
T _{DISU}	Setup time for PCM_DIN before PCM_CLK falling edge.		20			ns
Тыно	Hold time for PCM_DIN after PCM_CLK falling edge.		15			ns
T _{BF}	Delay from PCM_CLK rising edge to PCM_SYNC rising edge				15	ns

11.3.2 Slave Mode

Figure 20 and Figure 21 show the Bluetooth PCM timing signals in slave mode.

Figure 20: Bluetooth PCM Timing Data Signal - Slave Mode

Figure 21: Bluetooth PCM Timing PCM_SYNC Signal - Slave Mode

Table 23 describes the slave mode parameters.

Table 23: Symbol Definition for Data Signal & PCM_SYNC Signal - Slave Mode

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
F _{BCLK}	Bit clock frequency			2/2.048		MHz
Duty Cycle _{BCLK}	Bit clock duty cycle		0.4	0.5	0.6	
T _{BCLK rise/fal} l	PCM_CLK rise/fall time.			3		ns
T _{DO}	Delay from PCM_CLK rising edge to PCM_DOUT rising edge.				30	ns
T _{DISU}	Setup time for PCM_DIN before PCM_CLK falling edge.		15			ns
Тыно	Hold time for PCM_DIN after PCM_CLK falling edge.		10			ns
T _{BFSU}	Setup time for PCM_SYNC before PCM_CLK falling edge.		15			ns
Твгно	Hold time for PCM_SYNC after PCM_CLK falling edge		10			ns

12 DC/RF Characteristics

All DC/RF characteristics are defined by following files.

Table 24: DC/RF Characteristics Files

Names	Country	Country Code	Configuration Files
WLAN Tx power configuration files	USA	US	txpower_US.bin
	Canada	CA	txpower_CA.bin
	Europe	DE	txpower_EU.bin
	Japan	JP	txpower_JP.bin
WLAN OFDMA RU Tx power	USA	US	rutxpower_US.bin
configuration files	Canada	CA	rutxpower_CA.bin
	Europe	DE	rutxpower_EU.bin
	Japan	JP	rutxpower_JP.bin
WLAN Regulatory Limit			db.txt
Energy Detect			ed_mac.bin
Bluetooth Power	USA	US	bt_power_config_US_CA.sh
	Canada	CA	bt_power_config_US_CA.sh
	Europe	DE	bt_power_config_EU.sh
	Japan	JP	bt_power_config _JP.sh

Burst current definition is shown in Figure 22.

Figure 22: Burst Current Definition

12.1 DC/RF Characteristics for IEEE 802.11b - 2.4 GHz

Table 25: Characteristics Values for IEEE 802.11b - 2.4 GHz

Contents	Items
Specification	IEEE 802.11b
Mode	DSSS / CCK
Channel Frequency	2412 to 2472 MHz
Data Rate	1, 2, 5.5, 11 Mbps

12.1.1 High-Rate Condition for IEEE 802.11b - 2.4 GHz

Conditions: 25 $^{\circ}$ C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 18 dBm at module pad, 11 Mbps mode.

Table 26: High-Rate Condition for IEEE 802.11b - 2.4 GHz

Item	Contents						
DC Characteristics	Minimum	Typical	Maximum	Unit			
DC Current							
Tx mode Current 1.8V		148	180	mA			
Tx mode Current 3.3V		234	290	mA			
Rx mode Current 1.8V		101	130	mA			
Rx mode Current 3.3V		0.2	10	mA			
Tx Characteristics	Minimum	Typical	Maximum	Unit			
Output Power	16	18	20	dBm			
Spectrum Mask Margin							
1st side lobes (-30 dBr)	0			dB			
2nd side lobes (-50 dBr)	0			dB			
Power-on/off ramp			2.0	μs			
RF Carrier Suppression	15			dB			
Modulation Accuracy			35	%			
Frequency Tolerance	-20		20	ppm			
Spurious Emissions							
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm			
• 47 - 74 MHz (BW = 100 kHz)			-54	dBm			

Item	Contents			
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm
• 87.5 - 118 MHz (BW =100 kHz)			-54	dBm
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm
• 174 - 230 MHz (BW = 100 kHz)			-54	dBm
• 230 - 470 MHz (BW = 100 kHz)			-36	dBm
• 470 - 862 MHz (BW = 100 kHz)			-54	dBm
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm
• 1000 - 12750 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit
Minimum Input Level (FER ≤ 8%)			-76	dBm
Maximum Input Level (FER ≤ 8%)	-10			dBm
Adjacent Channel Rejection (FER < 8%)	35			dB

12.1.2 Low-Rate Condition for IEEE 802.11b - 2.4 GHz

Conditions: 25 $^{\circ}$ C, VBAT =3.3V, VIO = 1.8V, Output power setting = 18 dBm at module pad, 1 Mbps mode.

Table 27: Low-Rate Condition for IEEE 802.11b - 2.4 GHz

Item	Contents						
DC Characteristics	Minimum	Typical	Maximum	Unit			
DC Current							
Tx mode Current 1.8V		146	180	mA			
Tx mode Current 3.3V		225	270	mA			
Rx mode Current 1.8V		101	130	mA			
Rx mode Current 3.3V		0.2	10	mA			
Tx Characteristics	Minimum	Typical	Maximum	Unit			
Output Power	16	18	20	dBm			
Spectrum Mask Margin							
1st side lobes (-30 dBr)	0			dB			
2nd side lobes (-50 dBr)	0			dB			
Power-on/off ramp			2.0	μs			
RF Carrier Suppression	15			dB			
Modulation Accuracy			35	%			
Frequency Tolerance	-20		20	ppm			
Spurious Emissions							
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm			
 47 - 74 MHz (BW = 100 kHz) 			-54	dBm			
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm			
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm			
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm			
• 174 - 230 MHz (BW = 100 kHz)			-54	dBm			
• 230 - 470 MHz (BW = 100 kHz)			-36	dBm			
• 470 - 862 MHz (BW = 100 kHz)			-54	dBm			
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm			
• 1000 - 12750 MHz (BW = 1 MHz)			-30	dBm			
Rx Characteristics	Minimum	Typical	Maximum	Unit			
Minimum Input Level (FER ≤ 8%)			-80	dBm			

Item	Contents		
Maximum Input Level (FER ≤ 8%)	-4		dBm
Adjacent Channel Rejection (FER< 8%)	35		dB

12.2 DC/RF Characteristics for IEEE 802.11g - 2.4 GHz

Table 28: Characteristics Values for IEEE 802.11g - 2.4 GHz

Contents	Items
Specification	IEEE 802.11g
Mode	OFDM
Channel Frequency	2412 to 2472 MHz
Data Rate	6, 9, 12, 18, 24, 36, 48, 54 Mbps

12.2.1 High-Rate Condition for IEEE 802.11g - 2.4 GHz

Conditions: 25 $^{\circ}$ C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 16 dBm at module pad, 54 Mbps mode.

Table 29: High-Rate Condition for IEEE 802.11g - 2.4 GHz

Items	Contents				
DC Characteristics	Minimum	Typical	Maximum		Unit
DC Current	-		•		
 Tx mode Current 1.8V 		163		200	mA
Tx mode Current 3.3V		197		240	mA
 Rx mode Current 1.8V 		102		130	mA
Rx mode Current 3.3V		0.2		10	mA
Tx Characteristics	Minimum	Typical		Maximum	Unit
Output Power	14	16		18	dBm
Spectrum Mask Margin	-			1	-
 9 MHz to 11 MHz (0~ -20 dBr) 	0				dB
 11 MHz to 20 MHz (-20~ -28 dBr) 	0				dB
 20 MHz to 30 MHz (-28~ -40 dBr) 	0				dB
 30 MHz to 33 MHz (-40 dBr) 	0				dB
Constellation Error (EVM)			-25		dB
Frequency Tolerance	-20		20		ppm
Spurious Emissions					
• 30 - 47 MHz			-36		dBm
• 47 - 74 MHz			-54		dBm
• 74 - 87.5 MHz			-36		dBm
• 87.5 - 118 MHz			-54		dBm
• 118 - 174 MHz			-36		dBm
• 174 - 230 MHz			-54		dBm
• 230 - 470 MHz			-36		dBm
• 470 - 862 MHz			-54		dBm
• 862 - 1000 MHz			-36		dBm
• 1000-12750 MHz (BW = 1 MHz)			-30		dBm
Rx Characteristics	Minimum	Typical	Maximum		Unit

Items	Contents		
Minimum Input Level (FER < 10%)		-65	dBm
Maximum Input Level (FER < 10%)	-20		dBm
Adjacent Channel Rejection (FER < 10%)	-1		dB

12.2.2 Low-Rate Condition for IEEE 802.11g - 2.4 GHz

Conditions: 25 $^{\circ}$ C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 16 dBm at module pad, 6 Mbps mode.

Table 30: Low-Rate Condition for IEEE 802.11g - 2.4 GHz

Items	Contents				
DC Characteristics	Minimum	Typical	Maximum	Unit	
DC Current					
Tx mode Current 1.8V		164	200	mA	
Tx mode Current 3.3V		201	260	mA	
Rx mode Current 1.8V		102	130	mA	
Rx mode Current 3.3V		0.2	10	mA	
Tx Characteristics	Minimum	Typical	Maximum	Unit	
Output Power	14	16	18	dBm	
Spectrum Mask Margin					
1. 9 MHz to 11 MHz (0~ -20 dBr)	0			dB	
2. 11 MHz to 20 MHz (-20~ -28 dBr)	0			dB	
3. 20 MHz to 30 MHz (-28~ -40 dBr)	0			dB	
4. 30 MHz to 33 MHz (-40 dBr)	0			dB	
Constellation Error (EVM)			-25	dB	
Frequency Tolerance	-20		20	ppm	
Spurious Emissions				1	
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm	
• 47 - 74 MHz (BW = 100 kHz)			-54	dBm	
 74 - 87.5 MHz (BW = 100 kHz) 			-36	dBm	
• 87.5 - 11 8 MHz (BW = 10 kHz)			-54	dBm	
 118 - 174 MHz (BW = 100 kHz) 			-36	dBm	
 174 - 230 MHz (BW = 100 kHz) 			-54	dBm	
• 230 - 470 MHz (BW = 100 kHz)			-36	dBm	
• 470 - 862 MHz (BW = 100 kHz)			-54	dBm	
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm	
• 1000 - 12750 MHz (BW = 1 MHz)			-30	dBm	
Rx Characteristics	Minimum	Typical	Maximum	Unit	
Minimum Input Level (PER < 10%)			-82	dBm	
Maximum Input Level (PER < 10%)	-20			dBm	
Adjacent Channel Rejection (PER < 10%)	-1			dB	

12.3 DC/RF Characteristics for IEEE 802.11n - 2.4 GHz

Table 31: Characteristics Values for IEEE 802.11n - 2.4 GHz

Characteristics	Value
Specification	IEEE 802.11n
Mode	OFDM
Channel Frequency	2412 - 2472 MHz
Data rate	MCS0-MCS7

12.3.1 High-Rate Condition for IEEE 802.11n - 2.4 GHz

Conditions: 25°C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 15 dBm at module pad, MCS7 mode.

Table 32: High-Rate Condition for IEEE 802.11n - 2.4 GHz

Items	Contents				
DC Characteristics	Minimum	Typical	Maximum	Unit	
DC Current		•			
Tx mode Current 1.8V		164	200	mA	
Tx mode Current 3.3V		188	230	mA	
Rx mode Current 1.8V		102	130	mA	
Rx mode Current 3.3V		0.2	10	mA	
Tx Characteristics	Minimum	Typical	Maximum	Unit	
Output Power	13	15	17	dBm	
Spectrum Mask Margin					
• 9 MHz to 11 MHz (0~ -20 dBr)	0			dB	
• 11 MHz to 20 MHz (-20~ -28 dBr)	0			dB	
• 20 MHz to 30 MHz (-28~ -40 dBr)	0			dB	
• 30 MHz to 33 MHz (-45 dBr)	0			dB	
Constellation Error (EVM)			-27	dB	
(Measured at enhanced mode)					
Frequency Tolerance	-20		20	ppm	
Spurious Emissions	1	1	ı	1	
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm	
• 47 - 74 MHz (BW = 100 kHz)			-54	dBm	
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm	
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm	
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm	
• 174 - 230 MHz (BW = 100 kHz)			-54	dBm	
• 230 - 470 MHz (BW = 100 kHz)			-36	dBm	
• 470 - 862 MHz (BW = 100 kHz)			-54	dBm	
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm	
• 1000 - 12750 MHz (BW = 1 MHz)			-30	dBm	
Rx Characteristics	Minimum	Typical	Maximum	Unit	
Minimum Input Level (PER ≤ 10%)			-64	dBm	
Maximum Input Level (PER < 10%)	-20			dBm	
Adjacent Channel Rejection (PER ≤ 10%)	-2			dB	

12.3.2 Low-Rate Condition for IEEE 802.11n - 2.4 GHz

Conditions: 25°C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 15 dBm at module pad, MCS0 mode.

Table 33: Low-Rate Condition for IEEE 802.11n - 2.4 GHz

Items	Contents			
DC Characteristics	Minimum	Typical	Maximum	Unit
DC Current		•	-	
Tx mode Current 1.8V		164	200	mA
Tx mode Current 3.3V		188	230	mA
Rx mode Current 1.8V		102	130	mA
Rx mode Current 3.3V		0.2	10	mA
Tx Characteristics	Minimum	Typical	Maximum	Unit
Output Power	13	15	17	dBm
Spectrum Mask Margin				•
 9 MHz to 11 MHz (0~ -20 dBr) 	0			dB
 11 MHz to 20 MHz (-20~ -28 dBr) 	0			dB
 20 MHz to 30 MHz (-28~ -45 dBr) 	0			dB
• 30 MHz to 33 MHz (-45 dBr)	0			dB
Constellation Error (EVM)			-27	dB
(Measured at enhanced mode)				
Frequency Tolerance	-20		20	ppm
Spurious Emissions	1			
• 30 - 47 MHz (BW = 100kHz)			-36	dBm
 47 - 74 MHz (BW = 100kHz) 			-54	dBm
 74 - 87.5 MHz (BW = 100kHz) 			-36	dBm
 87.5 - 118 MHz (BW = 100kHz) 			-54	dBm
 118 - 174 MHz (BW = 100kHz) 			-36	dBm
 174 - 230 MHz (BW = 100kHz) 			-54	dBm
 230 - 470 MHz (BW = 100kHz) 			-36	dBm
• 470 - 862 MHz (BW = 100kHz)			-54	dBm
• 862 - 1000 MHz (BW = 100kHz)			-36	dBm
• 1000 - 12750 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit
Minimum Input Level (PER < 10%)			-82	dBm
Maximum Input Level (PER < 10%)	-20			dBm
Adjacent Channel Rejection (PER < 10%)	-2			dB

12.4 DC/RF Characteristics for IEEE 802.11ax (HE20) - 2.4 GHz

Table 34: Characteristics Values for IEEE 802.11ax (HE20) - 2.4 GHz

Contents	Items
Specification	IEEE 802.11ax
Mode	OFDM
Channel Frequency	2412 to 2472 MHz
Data Rate	MCS0-MCS11

12.4.1 High-Rate Condition for IEEE 802.11ax (HE20) - 2.4 GHz

Conditions: 25°C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 13 dBm at module pad, MCS11 mode.

Table 35: High-Rate Condition for IEEE 802.11ax (HE20) - 2.4 GHz

Item	Contents			
DC Characteristics	Minimum	Typical	Maximum	Unit
DC Current	<u> </u>	•	<u>'</u>	<u> </u>
Tx mode Current 1.8V		165	200	mA
Tx mode Current 3.3V		170	210	mA
Rx mode Current 1.8V		102	130	mA
Rx mode Current 3.3V		0.2	10	mA
Tx Characteristics	Minimum	Typical	Maximum	Unit
Output Power	11	13	15	dBm
Spectrum Mask Margin	·	•		
• 9 MHz to 11 MHz (0 ~ -20 dBr)	0			dB
• 11 MHz to 20 MHz (-20 ~ -28 dBr)	0			dB
• 20 MHz to 30 MHz (-28 ~ -40 dBr)	0			dB
 30 MHz to 33 MHz (-40 dBr) 	0			dB
Constellation Error (EVM) (Measured at enhanced mode)			-35	dB
Frequency Tolerance	-20		20	ppm
Spurious Emissions				
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm
• 47 - 74 MHz (BW = 100 kHz)			-54	dBm
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm
• 174 - 230 MHz (BW = 100 kHz)			-54	dBm
• 230 - 470 MHz (BW = 100 kHz)			-36	dBm
• 470 - 862 MHz (BW = 100 kHz)			-54	dBm
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit
Minimum Input Level (PER ≤ 10%)			-52	dBm

Maximum Input Level (PER < 10%)	-30		dBm
Adjacent Channel Rejection (PER ≤ 10%)	-7		dB

12.4.2 Low-Rate Condition for IEEE 802.11ax (HE20) - 2.4 GHz

Conditions: 25° C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 15 dBm at module pad, MCS0 mode.

Table 36: Low-Rate Condition for IEEE 802.11ax (HE20) - 2.4 GHz

Items	Contents				
DC Characteristics	Minimum	Typical	Maximum	Unit	
DC Current					
Tx mode Current 1.8V		164	200	mA	
Tx mode Current 3.3V		192	240	mA	
Rx mode Current 1.8V		102	130	mA	
Rx mode Current 3.3V		0.2	10	mA	
Tx Characteristics	Minimum	Typical	Maximum	Unit	
Output Power	13	15	17	dBm	
Spectrum Mask Margin					
• 9 MHz to 11 MHz (0~ -20 dBr)	0			dB	
• 11 MHz to 20 MHz (-20~ -28 dBr)	0			dB	
 20 MHz to 30 MHz (-28~ -40 dBr) 	0			dB	
 30 MHz to 33 MHz (-40 dBr) 	0			dB	
Constellation Error (EVM)			-5	dB	
(Measured at enhanced mode)					
Frequency Tolerance	-20		20	ppm	
Spurious Emissions	1		1		
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm	
• 47 - 74 MHz (BW = 100 kHz)			-54	dBm	
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm	
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm	
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm	
• 174 - 230 MHz (BW = 100 kHz)			-54	dBm	
• 230 - 470 MHz (BW = 100 kHz)			-36	dBm	
• 470 - 862 MHz (BW = 100 kHz)			-54	dBm	
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm	
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm	
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm	
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm	
Rx Characteristics	Minimum	Typical	Maximum	Unit	
Minimum Input Level (PER ≤ 10%)			-82	dBm	
Maximum Input Level (PER < 10%)	-30			dBm	
Adjacent Channel Rejection (PER ≤ 10%)	-7			dB	

12.5 DC/RF Characteristics for IEEE 802.11n (HT40) - 2.4 GHz

Table 37: Characteristic Values for IEEE 802.11n (HT40) - 2.4 GHz

Contents	Items
Specification	IEEE 802.11n
Mode	OFDM
Channel Frequency	2412 to 2472 MHz
Data Rate	MCS0 - MCS7

12.5.1 High-Rate Condition for IEEE 802.11n (HT40) - 2.4 GHz

Conditions: 25 °C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 15 dBm at module pad, MCS7 mode

Table 38: High-Rate Condition for IEEE 802.11n (HT40) - 2.4 GHz

Item	Contents			
DC Characteristics	Minimum	Typical	Maximum	Unit
DC Current		'	'	'
Tx mode Current 1.8V		170	200	mA
Tx mode Current 3.3V		185	230	mA
Rx mode Current 1.8V		112	140	mA
 Rx mode Current 3.3V 		0.2	10	mA
Tx Characteristics	Minimum	Typical	Maximum	Unit
Output Power	13	15	17	dBm
Spectrum Mask Margin	·			
 19 MHz to 21 MHz (0 ~ -20 dBr) 	0			dB
 21 MHz to 40 MHz (-20 ~ -28 dBr) 	0			dB
 40 MHz to 60 MHz (-28 ~ -40 dBr) 	0			dB
• 60 MHz to 80 MHz (-40 dBr)	0			dB
Constellation Error (EVM) (Measured at enhanced mode)			-27	dB
Frequency Tolerance	-20		20	ppm
Spurious Emissions	·		·	•
 30 - 47 MHz (BW = 100 kHz) 			-36	dBm
 47 - 74 MHz (BW = 100 kHz) 			-54	dBm
 74 - 87.5 MHz (BW = 100 kHz) 			-36	dBm
 87.5 - 118 MHz (BW = 100 kHz) 			-54	dBm
 118 - 174 MHz (BW = 100 kHz) 			-36	dBm
 174 - 230 MHz (BW = 100 kHz) 			-54	dBm
 230 - 470 MHz (BW = 100 kHz) 			-36	dBm
• 470 - 862 MHz (BW = 100 kHz)			-54	dBm
• 862 - 1000 MHz (BW = 1 00 kHz)			-36	dBm
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit
Minimum Input Level (PER ≤ 10%)			-61	dBm

Maximum Input Level (PER ≤ 10%)	-20		dBm
Adjacent Channel Rejection (PER ≤ 10%)	-2		dB

12.5.2 Low-Rate Condition for IEEE 802.11n (HT40) - 2.4 GHz

Conditions: 25 °C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 15dBm at module pad, MCS0 mode

Table 39: Low-Rate Condition for IEEE 802.11n (HT40) - 2.4 GHz

Item	Contents							
DC Characteristics	Minimum	Typical	Maximum	Unit				
DC Current	DC Current							
Tx mode Current 1.8V		170	200	mA				
Tx mode Current 3.3V		188	230	mA				
Rx mode Current 1.8V		112	140	mA				
Rx mode Current 3.3V		0.2	10	mA				
Tx Characteristics	Minimum	Typical	Maximum	Unit				
Output Power	13	15	17	dBm				
Spectrum Mask Margin								
 19 MHz to 21 MHz (0 ~ -20 dBr) 	0			dB				
• 21 MHz to 40 MHz (-20 ~ -28 dBr)	0			dB				
• 40 MHz to 60 MHz (-28 ~ -40 dBr)	0			dB				
 60 MHz to 80 MHz (-40 dBr) 	0			dB				
Constellation Error (EVM) (Measured at enhanced mode)			-5	dB				
Frequency Tolerance	-20		20	ppm				
Spurious Emissions								
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm				
• 47 - 74 MHz (BW = 100 kHz)			-54	dBm				
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm				
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm				
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm				
• 174 - 230 MHz (BW = 100 kHz)			-54	dBm				
• 230 - 470 MHz (BW = 100 kHz)			-36	dBm				
• 470 - 862 MHz (BW = 100 kHz)			-54	dBm				
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm				
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm				
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm				
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm				
Rx Characteristics	Minimum	Typical	Maximum	Unit				
Minimum Input Level (PER ≤ 10%)			-79	dBm				
Maximum Input Level (PER ≤ 10%)	-20			dBm				
Adjacent Channel Rejection (PER ≤ 10%)	16			dB				

12.6 DC/RF Characteristics for IEEE 802.11ax (HE40) - 2.4GHz

Table 40: Characteristic Values for IEEE 802.11ax (HE40) - 2.4GHz

Contents	Items
Specification	IEEE 802.11ax
Mode	OFDM
Channel Frequency	2412 to 2472 MHz
Data Rate	MCS0 - MCS11

12.6.1 High-Rate Condition for IEEE 802.11ax (HE40) - 2.4GHz

Conditions: 25 °C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 13 dBm at module pad, MCS11 mode

Table 41: High-Rate Condition for IEEE 802.11ax (HE40) - 2.4GHz

Item	Contents			
DC Characteristics	Minimum	Typical	Maximum	Unit
DC Current	<u> </u>	<u> </u>	<u> </u>	-
Tx mode Current 1.8V		158	190	mA
Tx mode Current 3.3V		151	200	mA
Rx mode Current 1.8V		112	140	mA
Rx mode Current 3.3V		0.2	10	mA
Tx Characteristics	Minimum	Typical	Maximum	Unit
Output Power	11	13	15	dBm
Spectrum Mask Margin			•	
• 19 MHz to 21 MHz (0 ~ -20 dBr)	0			dB
 21 MHz to 40 MHz (-20 ~ -28 dBr) 	0			dB
 40 MHz to 60 MHz (-28 ~ -40 dBr) 	0			dB
• 60 MHz to 80 MHz (-40 dBr)	0			dB
Constellation Error (EVM) (Measured at enhanced mode)			-35	dB
Frequency Tolerance	-20		20	ppm
Spurious Emissions				
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm
• 47 - 74 MHz (BW = 100 kHz)			-54	dBm
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm
• 174 - 230 MHz (BW = 100 kHz)			-54	dBm
 230 - 470 MHz (BW = 100 kHz) 			-36	dBm
• 470 - 862 MHz (BW = 100 kHz)			-54	dBm
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit
Minimum Input Level (PER ≤ 10%)			-49	dBm

Maximum Input Level (PER ≤ 10%)	-20		dBm

12.6.2 Low-Rate Condition for IEEE 802.11ax (HE40) - 2.4GHz

Conditions: 25 °C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 15 dBm at module pad, MCS0 mode

Table 42: Low-Rate Condition for IEEE 802.11ax (HE40) - 2.4GHz

Item	Contents			
DC Characteristics	Minimum	Typical	Maximum	Unit
DC Current				_
Tx mode Current 1.8V		172	200	mA
Tx mode Current 3.3V		188	230	mA
Rx mode Current 1.8V		112	140	mA
Rx mode Current 3.3V		0.2	10	mA
Tx Characteristics	Minimum	Typical	Maximum	Unit
Output Power	13	15	17	dBm
Spectrum Mask Margin	·	·	·	
• 19 MHz to 21 MHz (0 ~ -20 dBr)	0			dB
• 21 MHz to 40 MHz (-20 ~ -28 dBr)	0			dB
• 40 MHz to 60 MHz (-28 ~ -40 dBr)	0			dB
• 60 MHz to 80 MHz (-40 dBr)	0			dB
Constellation Error (EVM) (Measured at enhanced mode)			-5	dB
Frequency Tolerance	-20		20	ppm
Spurious Emissions				
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm
• 47 - 74 MHz (BW = 100 kHz)			-54	dBm
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm
• 174 - 230 MHz (BW = 100 kHz)			-54	dBm
• 230 - 470 MHz (BW = 100 kHz)			-36	dBm
• 470 - 862 MHz (BW = 100 kHz)			-54	dBm
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit
Minimum Input Level (PER ≤ 10%)			-79	dBm
Maximum Input Level (PER ≤ 10%)	-20			dBm
Adjacent Channel Rejection (PER ≤ 10%)	-16			dB

12.7 DC/RF Characteristics for IEEE 802.11a - 5 GHz

Table 43: Characteristics Values for IEEE 802.11a - 5 GHz

Contents	Items
Specification	IEEE 802.11a
Mode	OFDM
Channel Frequency	5180 to 5240 MHz, 5260 to 5320 MHz, 5500 to 5720 MHz, 5745 to 5825 MHz
Data Rate	6, 9, 12, 18, 24, 36, 48, 54 Mbps

12.7.1 High-Rate Condition for IEEE 802.11a - 5 GHz

Conditions: 25°C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 16dBm at module pad, 54 Mbps mode.

Table 44: High-Rate Condition for IEEE 802.11a - 5 GHz

Item	Contents			
DC Characteristics	Minimum	Typical	Maximum	Unit
DC Current		_	<u>'</u>	
Tx mode Current 1.8V		248	300	mA
Tx mode Current 3.3V		240	310	mA
Rx mode Current 1.8V		122	150	mA
 Rx mode Current 3.3V 		0.2	10	mA
Tx Characteristics	Minimum	Typical	Maximum	Unit
Output Power	14	16	18	dBm
Spectrum Mask Margin		·		
 9 MHz to 11 MHz (0 ~ -20 dBr) 	0			dB
 11 MHz to 20 MHz (-20 ~ -28 dBr) 	0			dB
 20 MHz to 30 MHz (-28 ~ -40 dBr) 	0			dB
 30 MHz to 33 MHz (-40 dBr) 	0			dB
Constellation Error (EVM) (Measured at enhanced mode)			-25	dB
Frequency Tolerance	-20		20	ppm
Spurious Emissions				
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm
 47 - 74 MHz (BW = 100 kHz) 			-54	dBm
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm
 118 - 174 MHz (BW = 100 kHz) 			-36	dBm
 174 - 230 MHz (BW = 100 kHz) 			-54	dBm
 230 - 470 MHz (BW = 100 kHz) 			-36	dBm
 470 - 862 MHz (BW = 100 kHz) 			-54	dBm
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit
Minimum Input Level (PER ≤ 10%)			-65	dBm
Maximum Input Level (PER < 10%)	-30			dBm
Adjacent Channel Rejection (PER ≤ 10%)	-1			dB

12.7.2 Low-Rate Condition for IEEE 802.11a - 5 GHz

Conditions: 25° C, VBAT = 3.3V, VIO =1.8V, Output power setting = 16 dBm at module pad, 6 Mbps mode.

Table 45: Low-Rate Condition for IEEE 802. 11a - 5 GHz

Items	Contents			
DC Characteristics	Minimum	Typical	Maximum	Unit
DC Current		<u> </u>		
Tx mode Current 1.8V		250	300	mA
Tx mode Current 3.3V		245	310	mA
Rx mode Current 1.8V		122	150	mA
Rx mode Current 3.3V		0.2	10	mA
Tx Characteristics	Minimum	Typical	Maximum	Unit
Output Power	14	16	18	dBm
Spectrum Mask Margin	1	1	1	1
 9 MHz to 11 MHz (0~ -20 dBr) 	0			dB
• 11 MHz to 20 MHz (-20~ -28 dBr)	0			dB
• 20 MHz to 30 MHz (-28~ -40 dBr)	0			dB
• 30 MHz to 33 MHz (-40 dBr)	0			dB
Constellation Error (EVM) (Measured at enhanced mode)			-25	dB
Frequency Tolerance	-20		20	ppm
Spurious Emissions	1	1	<u>'</u>	- 1
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm
• 47 - 74 MHz (BW = 100 kHz)			-54	dBm
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm
• 174 - 230 MHz (BW = 100 kHz)			-54	dBm
• 230 - 470 MHz (BW = 100 kHz)			-36	dBm
• 470 - 862 MHz (BW = 100 kHz)			-54	dBm
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit
Minimum Input Level (PER ≤ 10%)			-82	dBm
Maximum Input Level (PER < 10%)	-30			dBm
Adjacent Channel Rejection (PER ≤ 10%)	-1			dB

12.8 DC/RF Characteristics for IEEE 802.11n (HT20) - 5 GHz

Table 46: Characteristics Values for IEEE 802.11n (HT20) - 5 GHz

Contents	Items
Specification	IEEE 802.11n
Mode	OFDM
Channel Frequency	5180 to 5240 MHz, 5260 to 5320 MHz, 5500 to 5720 MHz, 5745 to 5825 MHz
Data Rate	MCS0 - MCS7

12.8.1 High-Rate Condition for IEEE 802.11n (HT20) - 5 GHz

Conditions: 25 °C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 14 dBm at module pad, MCS7 mode.

Table 47: High-Rate Condition for IEEE 802.11n (HT20) - 5 GHz

Item	Contents			
DC Characteristics	Minimum	Typical	Maximum	Unit
DC Current	•	<u> </u>		<u> </u>
Tx mode Current 1.8V		221	280	mA
 Tx mode Current 3.3V 		209	280	mA
 Rx mode Current 1.8V 		121	150	mA
 Rx mode Current 3.3V 		0.2	10	mA
Tx Characteristics	Minimum	Typical	Maximum	Unit
Output Power	12	14	16	dBm
Spectrum Mask Margin				
 9 MHz to 11 MHz (0 ~ -20 dBr) 	0			dB
 11 MHz to 20 MHz (-20 ~ -28 dBr) 	0			dB
 20 MHz to 30 MHz (-28 ~ -40 dBr) 	0			dB
 30 MHz to 33 MHz (-40 dBr) 	0			dB
Constellation Error (EVM) (Measured at enhanced mode)			-27	dB
Frequency Tolerance	-20		20	ppm
Spurious Emissions				
 30 - 47 MHz (BW = 100 kHz) 			-36	dBm
 47 - 74 MHz (BW = 100 kHz) 			-54	dBm
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm
 118 - 174 MHz (BW = 100 kHz) 			-36	dBm
 174 - 230 MHz (BW = 100 kHz) 			-54	dBm
 230 - 470 MHz (BW = 100 kHz) 			-36	dBm
 470 - 862 MHz (BW = 100 kHz) 			-54	dBm
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit
Minimum Input Level (PER ≤ 10%)			-64	dBm

Item	Contents		
Maximum Input Level (PER < 10%)	-30		dBm
Adjacent Channel Rejection (PER ≤ 10%)	-2		dB

12.8.2 Low-Rate Condition for IEEE 802.11n (HT20) - 5 GHz

Conditions: 25 °C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 14 dBm at module pad, MCS0 mode.

Table 48: Low-Rate Condition for IEEE 802. 11n (HT20) - 5 GHz

Items	Contents			
DC Characteristics	Minimum	Typical	Maximum	Unit
DC Current	_			
Tx mode Current 1.8V		221	280	mA
Tx mode Current 3.3V		214	280	mA
Rx mode Current 1.8V		121	150	mA
Rx mode Current 3.3V		0.2	10	mA
Tx Characteristics	Minimum	Typical	Maximum	Unit
Output Power	12	14	16	dBm
Spectrum Mask Margin	1			
• 9 MHz to 11 MHz (0~ -20 dBr)	0			dB
• 11 MHz to 20 MHz (-20~ -28 dBr)	0			dB
• 20 MHz to 30 MHz (-28~ -40 dBr)	0			dB
• 30 MHz to 33 MHz (-40 dBr)	0			dB
Constellation Error (EVM) (Measured at enhanced mode)			-27	dB
Frequency Tolerance	-20		20	ppm
Spurious Emissions	1	1	1	1
• 30-47 MHz (BW = 100 kHz)			-36	dBm
• 47-74 MHz (BW = 100 kHz)			-54	dBm
• 74-87.5 MHz (BW = 100 kHz)			-36	dBm
• 87.5-118 MHz (BW = 100 kHz)			-54	dBm
• 118-174 MHz (BW = 100 kHz)			-36	dBm
• 174-230 MHz (BW = 100 kHz)			-54	dBm
• 230-470 MHz (BW = 100 kHz)			-36	dBm
• 470-862 MHz (BW = 100 kHz)			-54	dBm
• 862-1000 MHz (BW = 100 kHz)			-36	dBm
• 1000-5150 MHz (BW = 1 MHz)			-30	dBm
• 5350-5470 MHz (BW = 1 MHz)			-30	dBm
• 5725-26000 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit
Minimum Input Level (PER ≤ 10%)			-82	dBm
Maximum Input Level (PER < 10%)	-30			dBm
Adjacent Channel Rejection (PER ≤ 10%)	-2			dBm

12.9 DC/RF Characteristics for IEEE 802.11ac (VHT20) - 5 GHz

Table 49: Characteristics Values for IEEE 802.11ac (VHT20) - 5 GHz

Contents	Items
Specification	IEEE 802.11ac
Mode	OFDM
Channel Frequency	5180 to 5240 MHz, 5260 to 5320 MHz, 5500 to 5720 MHz, 5745 to 5825 MHz
Data Rate	MCS0 - MCS8

12.9.1 High-Rate Condition for IEEE 802.11ac (VHT20) - 5 GHz

Conditions: 25 °C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 14 dBm at module pad, MCS8 mode.

Table 50: High-Rate Condition for IEEE 802.11ac (VHT20) - 5 GHz

Item	Contents			
DC Characteristics	Minimum	Typical	Maximum	Unit
DC Current	_	_	<u>'</u>	
Tx mode Current 1.8V		221	280	mA
Tx mode Current 3.3V		209	280	mA
Rx mode Current 1.8V		121	150	mA
Rx mode Current 3.3V		0.2	10	mA
Tx Characteristics	Minimum	Typical	Maximum	Unit
Output Power	12	14	16	dBm
Spectrum Mask Margin				
 9 MHz to 11 MHz (0 ~ -20 dBr) 	0			dB
 11 MHz to 20 MHz (-20 ~ -28 dBr) 	0			dB
 20 MHz to 30 MHz (-28 ~ -40 dBr) 	0			dB
• 30 MHz to 33 MHz (-40 dBr)	0			dB
Constellation Error (EVM) (Measured at enhanced mode)			-30	dB
Frequency Tolerance	-20		20	ppm
Spurious Emissions				
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm
• 47 - 74 MHz (BW = 100 kHz)			-54	dBm
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm
• 174 - 230 MHz (BW = 100 kHz)			-54	dBm
• 230 - 470 MHz (BW = 100 kHz)			-36	dBm
• 470 - 862 MHz (BW = 100 kHz)			-54	dBm
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit
Minimum Input Level (PER ≤ 10%)			-59	dBm

Maximum Input Level (PER < 10%)	-30		dBm
Adjacent Channel Rejection (PER ≤ 10%)	-7		dB

12.9.2 Low-Rate Condition for IEEE 802.11ac (VHT20) - 5 GHz

Conditions: 25 $^{\circ}$ C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 14 dBm at module pad, MCS0 mode.

Table 51: Low-Rate Condition for IEEE 802.11ac (VHT20) - 5 GHz

Items	Contents			
DC Characteristics	Minimum	Typical	Maximum	Unit
DC Current			-	
Tx mode Current 1.8V		221	280	mA
 Tx mode Current 3.3V 		212	280	mA
 Rx mode Current 1.8V 		121	150	mA
Rx mode Current 3.3V		0.2	10	mA
Tx Characteristics	Minimum	Typical	Maximum	Unit
Output Power	12	14	16	dBm
Spectrum Mask Margin	·			
 9 MHz to 11 MHz (0~ -20 dBr) 	0			dB
 11 MHz to 20 MHz (-20~ -28 dBr) 	0			dB
 20 MHz to 30 MHz (-28~ -40 dBr) 	0			dB
 30 MHz to 33 MHz (-40 dBr) 	0			dB
Constellation Error (EVM)			-30	dB
(Measured at enhanced mode)				
Frequency Tolerance	-20		20	ppm
Spurious Emissions				
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm
• 47 - 74 MHz (BW = 100 kHz)			-54	dBm
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm
• 174 - 230 MHz (BW = 100 kHz)			-54	dBm
• 230 - 470 MHz (BW = 100 kHz)			-36	dBm
• 470 - 862 MHz (BW = 100 kHz)			-54	dBm
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit
Minimum Input Level (PER ≤ 10%)			-82	dBm
Maximum Input Level (PER < 10%)	-30			dBm
Adjacent Channel Rejection (PER ≤ 10%)	-7			dB

12.10 DC/RF Characteristics for IEEE 802.11ax (HE20) - 5 GHz

Table 52: Characteristics Values for IEEE 802. 11ax (HE20) - 5 GHz

Contents	Items
Specification	IEEE 802.11ax
Mode	OFDM
Channel Frequency	5180 to 5240 MHz, 5260 to 5320 MHz, 5500 to 5720 MHz, 5745 to 5825 MHz
Data Rate	MCS0 - MCS11

12.10.1 High-Rate Condition for IEEE 802.11ax (HE20) - 5 GHz

Conditions: 25°C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 10 dBm at module pad, MCS11 mode.

Table 53: High-Rate Condition for IEEE 802.11ax (HE20) - 5 GHz

Item	Contents					
DC Characteristics	Minimum	Typical	Maximum	Unit		
DC Current	<u>'</u>	'	'			
Tx mode Current 1.8V		207	280	mA		
Tx mode Current 3.3V		169	230	mA		
Rx mode Current 1.8V		121	150	mA		
Rx mode Current 3.3V		0.2	10	mA		
Tx Characteristics	Minimum	Typical	Maximum	Unit		
Output Power	8	10	12	dBm		
Spectrum Mask Margin						
 9 MHz to 11 MHz (0 ~ -20 dBr) 	0			dB		
• 11 MHz to 20 MHz (-20 ~ -28 dBr)	0			dB		
• 20 MHz to 30 MHz (-28 ~ -40 dBr)	0			dB		
• 30 MHz to 33 MHz (-40 dBr)	0			dB		
Constellation Error (EVM) (Measured at enhanced mode)			-35	dB		
Frequency Tolerance	-20		20	ppm		
Spurious Emissions						
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm		
• 47 - 74 MHz (BW = 100 kHz)			-54	dBm		
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm		
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm		
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm		
• 174 - 230 MHz (BW = 100 kHz)			-54	dBm		
• 230 - 470 MHz (BW = 100 kHz)			-36	dBm		
• 470 - 862 MHz (BW = 100 kHz)			-54	dBm		
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm		
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm		
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm		
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm		
Rx Characteristics	Minimum	Typical	Maximum	Unit		
Minimum Input Level (PER ≤ 10%)			-52	dBm		

Item	Contents		
Maximum Input Level (PER < 10%)	-30		dBm
Adjacent Channel Rejection (PER ≤ 10%)	-7		dB

12.10.2 Low-Rate Condition for IEEE 802.11ax (HE20) - 5 GHz

Conditions: 25 $^{\circ}$ C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 14 dBm at module pad, MCS0 mode.

Table 54: Low-Rate Condition for IEEE 802.11ax (HE20) - 5 GHz

Items	Contents			
DC Characteristics	Minimum	Typical	Maximum	Unit
DC Current				
Tx mode Current 1.8V		222	280	mA
Tx mode Current 3.3V		216	280	mA
Rx mode Current 1.8V		121	150	mA
Rx mode Current 3.3V		0.2	10	mA
Tx Characteristics	Minimum	Typical	Maximum	Unit
Output Power	12	14	16	dBm
Spectrum Mask Margin				
 9 MHz to 11 MHz (0~ -20 dBr) 	0			dB
 11 MHz to 20 MHz (-20~ -28 dBr) 	0			dB
 20 MHz to 30 MHz (-28~ -40 dBr) 	0			dB
• 30 MHz to 33 MHz (-40 dBr)	0			dB
Constellation Error (EVM)			-5	dB
(Measured at enhanced mode)				
Frequency Tolerance	-20		20	ppm
Spurious Emissions				
• 30 - 47 MHz (BW = 100 KHz)			-36	dBm
 47 - 74 MHz (BW = 100 KHz) 			-54	dBm
• 74 - 87.5 MHz (BW = 100 KHz)			-36	dBm
• 87.5 - 118 MHz (BW = 100 KHz)			-54	dBm
• 118 - 174 MHz (BW = 100 KHz)			-36	dBm
• 174 - 230 MHz (BW = 100 KHz)			-54	dBm
• 230 - 470 MHz (BW = 100 KHz)			-36	dBm
• 470 - 862 MHz (BW = 100 KHz)			-54	dBm
• 862 - 1000 MHz (BW = 100 KHz)			-36	dBm
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit
Minimum Input Level (PER ≤ 10%)			-82	dBm
Maximum Input Level (PER < 10%)	-30			dBm
Adjacent Channel Rejection (PER ≤ 10%)	-7			dB

12.11 DC/RF Characteristics for IEEE 802.11n (HT40) - 5 GHz

Table 55: Characteristic Values for IEEE 802.11n (HT40) - 5 GHz

Contents	Items
Specification	IEEE 802.11n
Mode	OFDM
Channel Frequency	5190 to 5795 MHz
Data Rate	MCS0 - MCS7

12.11.1 High-Rate Condition for IEEE 802.11n (HT40) - 5 GHz

Conditions: 25 °C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 14 dBm at module pad, MCS7 mode

Table 56: High-Rate Condition for IEEE 802.11n (HT40) - 5 GHz

Item	Contents			
DC Characteristics	Minimum	Typical	Maximum	Unit
DC Current		<u>'</u>		<u>'</u>
Tx mode Current 1.8V		231	290	mA
Tx mode Current 3.3V		203	280	mA
Rx mode Current 1.8V		140	170	mA
Rx mode Current 3.3V		0.2	10	mA
Tx Characteristics	Minimum	Typical	Maximum	Unit
Output Power	12	14	16	dBm
Spectrum Mask Margin				
 19 MHz to 21 MHz (0 ~ -20 dBr) 	0			dB
 21 MHz to 40 MHz (-20 ~ -28 dBr) 	0			dB
 40 MHz to 60 MHz (-28 ~ -40 dBr) 	0			dB
• 60 MHz to 80 MHz (-40 dBr)	0			dB
Constellation Error (EVM) (Measured at enhanced mode)			-27	dB
Frequency Tolerance	-20		20	ppm
Spurious Emissions				
 30 - 47 MHz (BW = 100 kHz) 			-36	dBm
 47 - 74 MHz (BW = 100 kHz) 			-54	dBm
 74 - 87.5 MHz (BW = 100 kHz) 			-36	dBm
 87.5 - 118 MHz (BW = 100 kHz) 			-54	dBm
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm
 174 - 230 MHz (BW = 100 kHz) 			-54	dBm
 230 - 470 MHz (BW = 100 kHz) 			-36	dBm
 470 - 862 MHz (BW = 100 kHz) 			-54	dBm
• 862 - 1000 MHz (BW = 1 00 kHz)			-36	dBm
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit
Minimum Input Level (PER ≤ 10%)			-61	dBm

Item	Contents		
Maximum Input Level (PER ≤ 10%)	-30		dBm
Adjacent Channel Rejection (PER ≤ 10%)	-2		dB

12.11.2 Low-Rate Condition for IEEE 802.11n (HT40) - 5 GHz

Conditions: 25 °C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 14dBm at module pad, MCS0 mode

Table 57: Low-Rate Condition for IEEE 802.11n (HT40) - 5 GHz

Item	Contents							
DC Characteristics	Minimum	Typical	Maximum	Unit				
DC Current	DC Current							
Tx mode Current 1.8V		232	290	mA				
Tx mode Current 3.3V		205	280	mA				
Rx mode Current 1.8V		140	170	mA				
Rx mode Current 3.3V		0.2	10	mA				
Tx Characteristics	Minimum	Typical	Maximum	Unit				
Output Power	12	14	16	dBm				
Spectrum Mask Margin								
• 19 MHz to 21 MHz (0 ~ -20 dBr)	0			dB				
• 21 MHz to 40 MHz (-20 ~ -28 dBr)	0			dB				
• 40 MHz to 60 MHz (-28 ~ -40 dBr)	0			dB				
• 60 MHz to 80 MHz (-40 dBr)	0			dB				
Constellation Error (EVM) (Measured at enhanced mode)			-27	dB				
Frequency Tolerance	-20		20	ppm				
Spurious Emissions								
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm				
• 47 - 74 MHz (BW = 100 kHz)			-54	dBm				
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm				
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm				
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm				
 174 - 230 MHz (BW = 100 kHz) 			-54	dBm				
 230 - 470 MHz (BW = 100 kHz) 			-36	dBm				
 470 - 862 MHz (BW = 100 kHz) 			-54	dBm				
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm				
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm				
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm				
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm				
Rx Characteristics	Minimum	Typical	Maximum	Unit				
Minimum Input Level (PER ≤ 10%)			-79	dBm				
Maximum Input Level (PER ≤ 10%)	-30			dBm				
Adjacent Channel Rejection (PER ≤ 10%)	-2			dB				

12.12 DC/RF Characteristics for IEEE 802.11ac (VHT40) - 5 GHz

Table 58: Characteristics Values for IEEE 802.11ac (VHT40) - 5 GHz

Contents	Items
Specification	IEEE 802.11ac
Mode	OFDM
Channel Frequency	5190 to 5795 MHz
Data Rate	MCS0 - MCS9

12.12.1 High-Rate Condition for IEEE 802.11ac (VHT40) - 5 GHz

Conditions: 25 °C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 12 dBm at module pad, MCS9 mode.

Table 59: High-Rate Condition for IEEE 802.11ac (VHT40) - 5 GHz

Item	Contents			
DC Characteristics	Minimum	Typical	Maximum	Unit
DC Current			I	
Tx mode Current 1.8V		225	290	mA
Tx mode Current 3.3V		179	250	mA
Rx mode Current 1.8V		141	170	mA
Rx mode Current 3.3V		0.2	10	mA
Tx Characteristics	Minimum	Typical	Maximum	Unit
Output Power	10	12	14	dBm
Spectrum Mask Margin	·	·	·	·
 19 MHz to 21 MHz (0 ~ -20 dBr) 	0			dB
 21 MHz to 40 MHz (-20 ~ -28 dBr) 	0			dB
 40 MHz to 60 MHz (-28 ~ -40 dBr) 	0			dB
 60 MHz to 80 MHz (-40 dBr) 	0			dB
Constellation Error (EVM) (Measured at enhanced mode)			-32	dB
Frequency Tolerance	-20		20	ppm
Spurious Emissions	·	·	·	·
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm
 47 - 74 MHz (BW = 100 kHz) 			-54	dBm
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm
 118 - 174 MHz (BW = 100 kHz) 			-36	dBm
 174 - 230 MHz (BW = 100 kHz) 			-54	dBm
 230 - 470 MHz (BW = 100 kHz) 			-36	dBm
 470 - 862 MHz (BW = 100 kHz) 			-54	dBm
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit
Minimum Input Level (PER ≤ 10%)			-54	dBm

Maximum Input Level (PER ≤ 10%)	-30		dBm
Adjacent Channel Rejection (PER ≤ 10%)	-9		dB

12.12.2 Low-Rate Condition for IEEE 802.11ac (VHT40) - 5 GHz

Conditions: 25 $^{\circ}$ C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 14 dBm at module pad, MCS0 mode.

Table 60: Low-Rate Condition for IEEE 802.11 ac (VHT40) - 5 GHz

Items Contents				
DC Characteristics	Minimum	Typical	Maximum	Unit
DC Current			•	<u>'</u>
Tx mode Current 1.8V		232	290	mA
Tx mode Current 3.3V		206	280	mA
Rx mode Current 1.8V		141	170	mA
Rx mode Current 3.3V		0.2	10	mA
Tx Characteristics	Minimum	Typical	Maximum	Unit
Output Power	12	14	16	dBm
Spectrum Mask Margin		·		
 19 MHz to 21 MHz (0~ -20 dBr) 	0			dB
 21MHz to 40 MHz (-20~ -28 dBr) 	0			dB
• 40 MHz to 60 MHz (-28~ -40 dBr)	0			dB
• 60 MHz to 80 MHz (-40 dBr)	0			dB
Constellation Error (EVM)			-32	dB
(Measured at enhanced mode)				
Frequency Tolerance	-20		20	ppm
Spurious Emissions				
• 30 - 47 MHz (BW = 100 KHz)			-36	dBm
 47 - 74 MHz (BW = 100 KHz) 			-54	dBm
• 74 - 87.5 MHz (BW = 100 KHz)			-36	dBm
• 87.5 - 118 MHz (BW = 100 KHz)			-54	dBm
• 118 - 174 MHz (BW = 100 KHz)			-36	dBm
• 174 - 230 MHz (BW = 100 KHz)			-54	dBm
 230 - 470 MHz (BW = 100 KHz) 			-36	dBm
 470 - 862 MHz (BW = 100 KHz) 			-54	dBm
• 862 - 1000 MHz (BW = 100 KHz)			-36	dBm
 1000 - 5150 MHz (BW = 1 MHz) 			-30	dBm
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit
Minimum Input Level (PER ≤ 10%)			-79	dBm
Maximum Input Level (PER < 10%)	-30			dBm
Adjacent Channel Rejection (PER ≤ 10%)	-9			dB

12.13 DC/RF Characteristics for IEEE 802.11ax (HE40) - 5 GHz

Table 61: Characteristics Values for IEEE 802.11ax (HE40) - 5 GHz

Characteristics	Value
Specification	IEEE 802.11ax
Mode	OFDM
Channel Frequency	5190 - 5795 MHz
Data rate	MCS0 - MCS11

12.13.1 High-Rate Condition for IEEE 802.11ax (HE40) - 5 GHz

Conditions: 25 °C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 10 dBm at module pad, MCS11 mode.

Table 62: High-Rate Condition for IEEE 802.11ax (HE40) - 5 GHz

Item	Contents				
DC Characteristics	Minimum	Typical	Maximum	Unit	
DC Current		Туріош	Maximani	- Crim	
Tx mode Current 1.8V		217	290	mA	
Tx mode Current 3.3V		162	230	mA	
Rx mode Current 1.8V		141	170	mA	
Rx mode Current 1.8V Rx mode Current 3.3V		0.2	10	mA	
Tx Characteristics	Minimum	Typical	Maximum	Unit	
Output Power	8	10	12	dBm	
Spectrum Mask Margin					
 19 MHz to 21 MHz (0 ~ -20 dBr) 	0			dB	
 21 MHz to 40 MHz (-20 ~ -28 dBr) 	0			dB	
 40 MHz to 60 MHz (-28 ~ -40 dBr) 	0			dB	
 60 MHz to 80 MHz (-40 dBr) 	0			dB	
Constellation Error (EVM)			-32	dB	
(Measured at enhanced mode)					
Frequency Tolerance	-20		20	ppm	
Spurious Emissions					
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm	
• 47 - 74 MHz (BW = 100 kHz)			-54	dBm	
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm	
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm	
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm	
 174 - 230 MHz (BW = 100 kHz) 			-54	dBm	
 230 - 470 MHz (BW = 100 kHz) 			-36	dBm	
 470 - 862 MHz (BW = 100 kHz) 			-54	dBm	
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm	
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm	
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm	
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm	
Rx Characteristics	Minimum	Typical	Maximum	Unit	
Minimum Input Level (PER ≤ 10%)			-54	dBm	

Maximum Input Level (PER ≤ 10%)	-30		dBm
Adjacent Channel Rejection (PER ≤ 10%)	-9		dB

12.13.2 Low-Rate Condition for IEEE 802.11ax (HE40) - 5 GHz

Conditions: 25 $^{\circ}$ C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 14 dBm at module pad, MCS0 mode.

Table 63: Low-Rate Condition for IEEE 802.11ax (HE40) - 5 GHz

Items	Contents				
DC Characteristics	Minimum	Typical	Maximum	Unit	
DC Current		'	<u>'</u>		
Tx mode Current 1.8V		234	290	mA	
Tx mode Current 3.3V		212	280	mA	
Rx mode Current 1.8V		141	170	mA	
Rx mode Current 3.3V		0.2	10	mA	
Tx Characteristics	Minimum	Typical	Maximum	Unit	
Output Power	12	14	16	dBm	
Spectrum Mask Margin					
• 19 MHz to 21 MHz (0~ -20 dBr)	0			dB	
• 21 MHz to 40 MHz (-20~ -28 dBr)	0			dB	
• 40 MHz to 60 MHz (-28~ -40 dBr)	0			dB	
• 60 MHz to 80 MHz (-40 dBr)	0			dB	
Constellation Error (EVM) (Measured at enhanced mode)			-32	dB	
Frequency Tolerance	-20		20	ppm	
Spurious Emissions	•	•	-	•	
• 30 - 47 MHz (BW = 100 KHz)			-36	dBm	
• 47 - 74 MHz (BW = 100 KHz)			-54	dBm	
• 74 - 87.5 MHz (BW = 100 KHz)			-36	dBm	
• 87.5 - 118 MHz (BW = 100 KHz)			-54	dBm	
• 118 - 174 MHz (BW = 100 KHz)			-36	dBm	
• 174 - 230 MHz (BW = 100 KHz)			-54	dBm	
• 230 - 470 MHz (BW = 100 KHz)			-36	dBm	
• 470 - 862 MHz (BW = 100 KHz)			-54	dBm	
• 862 - 1000 MHz (BW = 100 KHz)			-36	dBm	
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm	
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm	
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm	
Rx Characteristics	Minimum	Typical	Maximum	Unit	
Minimum Input Level (PER ≤ 10%)			-79	dBm	
Maximum Input Level (PER < 10%)	-30			dBm	
Adjacent Channel Rejection (PER ≤ 10%)	-9			dB	

12.14 DC/RF Characteristics for IEEE 802.11ac (VHT80) - 5 GHz

Table 64: Characteristics Values for IEEE 802.11ac (VHT80) - 5 GHz

Characteristics	Value
Specification	IEEE 802.11ac
Mode	OFDM
Channel Frequency	5210 - 5775 MHz
Data rate	MCS0-MCS9

12.14.1 High-Rate Condition for IEEE 802.11ac (VHT80) - 5 GHz

Conditions: 25 °C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 12 dBm at module pad, MCS9 mode.

Table 65: High-Rate Condition for IEEE 802.11ac (VHT80) - 5 GHz

Item	Contents					
DC Characteristics	Minimum	Typical	Maximum	Unit		
DC Current	•	<u> </u>	•	<u>'</u>		
Tx mode Current 1.8V		243	310	mA		
Tx mode Current 3.3V		177	250	mA		
Rx mode Current 1.8V		172	200	mA		
Rx mode Current 3.3V		0.2	10	mA		
Tx Characteristics	Minimum	Typical	Maximum	Unit		
Output Power	10	12	14	dBm		
Spectrum Mask Margin						
• 39 MHz to 41 MHz (0 ~ -20 dBr)	0			dB		
• 41 MHz to 80 MHz (-20 ~ -28 dBr)	0			dB		
 80 MHz to 120 MHz (-28 ~ -40 dBr) 	0			dB		
• 120 MHz to 140 MHz (-40 dBr)	0			dB		
Constellation Error (EVM) (Measured at enhanced mode)			-32	dB		
Frequency Tolerance	-20		20	ppm		
Spurious Emissions						
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm		
• 47 - 74 MHz (BW = 100 kHz)			-54	dBm		
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm		
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm		
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm		
• 174 - 230 MHz (BW = 100 kHz)			-54	dBm		
 230 - 470 MHz (BW = 100 kHz) 			-36	dBm		
• 470 - 862 MHz (BW = 100 kHz)			-54	dBm		
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm		
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm		
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm		
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm		
Rx Characteristics	Minimum	Typical	Maximum	Unit		
Minimum Input Level (PER ≤ 10%)			-51	dBm		

Item	Contents		
Maximum Input Level (PER ≤ 10%)	-30		dBm
Adjacent Channel Rejection (PER ≤ 10%)	-9		dB

12.14.2 Low-Rate Condition for IEEE 802.11ac (VHT80) - 5 GHz

Conditions: 25 $^{\circ}$ C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 14 dBm at module pad, MCS0 mode.

Table 66: Low-Rate Condition for IEEE 802.11ac (VHT80) - 5 GHz

Items	Contents			
DC Characteristics	Minimum	Typical	Maximum	Unit
DC Current				
Tx mode Current 1.8V		250	310	mA
Tx mode Current 3.3V		208	290	mA
Rx mode Current 1.8V		172	200	mA
Rx mode Current 3.3V		0.2	10	mA
Tx Characteristics	Minimum	Typical	Maximum	Unit
Output Power	12	14	16	dBm
Spectrum Mask Margin				
• 39 MHz to 41 MHz (0~ -20 dBr)	0			dB
 41 MHz to 80 MHz (-20~ -28 dBr) 	0			dB
• 80 MHz to 120 MHz (-28~ -40 dBr)	0			dB
• 120 MHz to 140 MHz (-40 dBr)	0			dB
Constellation Error (EVM)			-32	dB
(Measured at enhanced mode)				
Frequency Tolerance	-20		20	ppm
Spurious Emissions				
• 30 - 47 MHz (BW = 100 KHz)			-36	dBm
• 47 - 74 MHz (BW = 100 KHz)			-54	dBm
• 74 - 87.5 MHz (BW = 100 KHz)			-36	dBm
• 87.5 - 118 MHz (BW = 100 KHz)			-54	dBm
• 118 - 174 MHz (BW = 100 KHz)			-36	dBm
• 174 - 230 MHz (BW = 100 KHz)			-54	dBm
• 230 - 470 MHz (BW = 100 KHz)			-36	dBm
• 470 - 862 MHz (BW = 100 KHz)			-54	dBm
• 862 - 1000 MHz (BW = 100 KHz)			-36	dBm
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit
Minimum Input Level (PER ≤ 10%)			-76	dBm
Maximum Input Level (PER < 10%)	-30			dBm
Adjacent Channel Rejection (PER ≤ 10%)	-9			dB

12.15 DC/RF Characteristics for IEEE 802.11ax (HE80) - 5 GHz

Table 67: Characteristics Values for IEEE 802.11ax (HE80) - 5 GHz

Characteristics	Value
Specification	IEEE 802.11ax
Mode	OFDM
Channel Frequency	5210 - 5775 MHz
Data rate	MCS0 - MCS9

12.15.1 High-Rate Condition for IEEE 802.11ax (HE80) - 5 GHz

Conditions: 25 °C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 10 dBm at module pad, MCS11 mode.

Table 68: High-Rate Condition for IEEE 802.11ax (HE80) - 5 GHz

Item	Contents			
DC Characteristics	Minimum	Typical	Maximum	Unit
DC Current	•		•	-
Tx mode Current 1.8V		236	310	mA
Tx mode Current 3.3V		161	220	mA
Rx mode Current 1.8V		172	200	mA
Rx mode Current 3.3V		0.2	10	mA
Tx Characteristics	Minimum	Typical	Maximum	Unit
Output Power	8	10	12	dBm
Spectrum Mask Margin		·	·	
• 39 MHz to 41 MHz (0 ~ -20 dBr)	0			dB
• 41 MHz to 80 MHz (-20 ~ -28 dBr)	0			dB
• 80 MHz to 120 MHz (-28 ~ -40 dBr)	0			dB
 120 MHz to 140 MHz (-40 dBr) 	0			dB
Constellation Error (EVM) (Measured at enhanced mode)			-32	dB
Frequency Tolerance	-20		20	ppm
Spurious Emissions				
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm
• 47 - 74 MHz (BW = 100 kHz)			-54	dBm
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm
• 174 - 230 MHz (BW = 100 kHz)			-54	dBm
• 230 - 470 MHz (BW = 100 kHz)			-36	dBm
• 470 - 862 MHz (BW = 100 kHz)			-54	dBm
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit
Minimum Input Level (PER ≤ 10%)			-51	dBm

Item	Contents		
Maximum Input Level (PER ≤ 10%)	-30		dBm
Adjacent Channel Rejection (PER ≤ 10%)	-9		dB

12.15.2 Low-Rate Condition for IEEE 802.11ax (HE80) - 5 GHz

Normal Condition: 25 °C, VBAT = 3.3V. MCS0 mode unless otherwise specified.

Conditions: 25 °C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 14 dBm at module pad,

MCS0 mode.

Table 69: Low-Rate Condition for IEEE 802.11ax (HE80) - 5 GHz

Item	Contents			
DC Characteristics	Minimum	Typical	Maximum	Unit
DC Current	<u> </u>	<u> </u>	<u> </u>	•
Tx mode Current 1.8V		254	310	mA
Tx mode Current 3.3V		211	290	mA
Rx mode Current 1.8V		172	200	mA
 Rx mode Current 3.3V 		0.2	10	mA
Tx Characteristics	Minimum	Typical	Maximum	Unit
Output Power	12	14	16	dBm
Spectrum Mask Margin				
 39 MHz to 41 MHz (0 ~ -20 dBr) 	0			dB
 41 MHz to 80 MHz (-20 ~ -28 dBr) 	0			dB
 80 MHz to 120 MHz (-28 ~ -40 dBr) 	0			dB
 120 MHz to 140 MHz (-40 dBr) 	0			dB
Constellation Error (EVM) (Measured at enhanced mode)			-32	dB
Frequency Tolerance	-20		20	ppm
Spurious Emissions				
 30 - 47 MHz (BW = 100 kHz) 			-36	dBm
 47 - 74 MHz (BW = 100 kHz) 			-54	dBm
 74 - 87.5 MHz (BW = 100 kHz) 			-36	dBm
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm
 118 - 174 MHz (BW = 100 kHz) 			-36	dBm
 174 - 230 MHz (BW = 100 kHz) 			-54	dBm
 230 - 470 MHz (BW = 100 kHz) 			-36	dBm
 470 - 862 MHz (BW = 100 kHz) 			-54	dBm
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm
• 1000 - 5150 MHz (BW = 1 MHz)			-30	dBm
• 5350 - 5470 MHz (BW = 1 MHz)			-30	dBm
• 5725 - 26000 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit
Minimum Input Level (PER ≤ 10%)			-76	dBm
Maximum Input Level (PER ≤ 10%)	-30			dBm
Adjacent Channel Rejection (PER ≤ 10%)	-9			dB

12.16 DC/RF Characteristics for Bluetooth

Table 70: Characteristics Values for Bluetooth

Characteristics	Value
Bluetooth specification (power class)	Version 5.4 (Class1)
Channel frequency (spacing)	2402 - 2480 MHz (1 MHz)
Number of RF Channel	79

12.16.1 Basic Data Rate Condition

Conditions: 25 °C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 13dBm at module pad

Table 71: Basic Data Rate Condition

Items		Contents	Contents		
Current Consumption	Minimum	Typical	Maximum	Unit	
Tx mode DH5 Current 1.8V		323	390	mA	
Tx mode DH5 Current 3.3V		0.2	3	mA	
Rx mode DH5 Current 1.8V		123	150	mA	
Rx mode DH5 Current 3.3V		0.2	3	mA	
Tx Characteristics	Minimum	Typical	Maximum	Unit	
Output Power@DH5		13	16	dBm	
Frequency Range	2400		2483.5	MHz	
20 dB Bandwidth			1	MHz	
Adjacent Channel Power5					
• [M-N] = 2			-20	dBm	
• [M-N] ≥ 3			-40	dBm	
Modulation Characteristics	·	·	•		
Modulation Δf1avg	140	151	175	kHz	
Modulation Δf2max	115			kHz	
 Modulation Δf2avg / Δf1avg 	0.8	1			
Carrier Frequency Drift	•			•	
• 1 slot	-25		25	kHz	
• 3 slot / 5 slot	-40		40	kHz	
Maximum Drift Rate			20	kHz/50µs	
Rx Characteristics	Minimum	Typical	Maximum	Unit	
BR Sensitivity (BER ≤ 0.1%)		-96	-70	dBm	
Maximum Input Level (BER ≤ 0.1%)	-20			dBm	

_

⁵ Up to three spurious responses within Bluetooth limits are allowed.

12.16.2 Enhanced Data Rate Condition

Conditions: 25 °C, VBAT=3.3V, VIO=1.8V, Output power setting = 5dBm at module pad

Table 72: Enhanced Data Rate Condition

Item	Contents	Contents				
Current Consumption	Minimum	Typical	Maximum	Unit		
Tx mode 2DH5 Current 1.8V		192	240	mA		
Tx mode 2DH5 Current 3.3V		0.2	3	mA		
Rx mode 2DH5 Current 1.8V		123	150	mA		
Rx mode 2DH5 Current 3.3V		0.2	3	mA		
Tx mode 3DH5 Current 1.8V		191	240	mA		
Tx mode 3DH5 Current 3.3V		0.2	3	mA		
Rx mode 3DH5 Current 1.8V		123	150	mA		
Rx mode 3DH5 Current 3.3V		0.2	3	mA		
Tx Characteristics	Minimum	Typical	Maximum	Unit		
Output Power@2DH5/3DH5		5	8	dBm		
Frequency Range	2400		2483.5	MHz		
20 dB bandwidth	1 2 100		1	MHz		
Adjacent Channel Power ⁶			I			
• [M-N] = 2			-20	dBm		
• [M-N] ≥ 3			-40	dBm		
EDR Relative Power	-4		1	dB		
EDR Carrier Frequency Stability and Modula	ation Accuracy	<u>'</u>	-	<u>'</u>		
• ωi	-75		75	kHz		
• ωi+ωo	-75		75	kHz		
• ωο	-10		10	kHz		
RMS DEVM (DQPSK)			20	%		
Peak DEVM (DQPSK)			35	%		
 99% DEVM (DQPSK) 			30	%		
RMS DEVM (8 DPSK)			13	%		
Peak DEVM (8 DPSK)			25	%		
• 99% DEVM (8 DPSK)			20	%		
Spurious Emissions	'	-	1	1		
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm		
• 47 - 74 MHz (BW = 100 kHz)			-54	dBm		
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm		
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm		
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm		
• 174 - 230 MHz (BW = 100 kHz)			-54	dBm		
• 230 - 470 MHz (BW = 100 kHz)			-36	dBm		
• 470 - 862 MHz (BW = 100 kHz)			-54	dBm		
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm		
• 1000 - 12750 MHz (BW = 1 MHz)			-30	dBm		
Rx Characteristics	Minimum	Typical	Maximum	Unit		
EDR Sensitivity (BER ≤ 0.007%) @ 8DPSK		-88	-70	dBm		
Maximum Input Level (BER ≤ 0.1%)	-20			dBm		

⁶ Up to three spurious responses within Bluetooth limits are allowed.

12.17 DC/RF Characteristics for Bluetooth Low Energy

Table 73: Characteristics Values for Bluetooth Low Energy

Characteristics	Value
Bluetooth specification (power class)	Version 5.4 (Class1.5)
Channel frequency (spacing)	2402 - 2480 MHz (2 MHz)
Number of RF Channel	40

12.17.1 1 Mbps PHY Condition

Conditions: 25 °C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 13dBm at module pad

Table 74: 1 Mbps PHY Condition

Item	Contents			
Current Consumption	Minimum	Typical	Maximum	Unit
Tx mode Current 1.8V		325	390	mA
Tx mode Current 3.3V		0.2	3	
Rx mode Current 1.8V		123	150	mA
Rx mode Current 3.3V		0.2	3	
Tx Characteristics	Minimum	Typical	Maximum	Unit
Center Frequency	2402		2480	MHz
Channel Spacing		2		MHz
Number of RF channel		40		
Output power		13	16	dBm
In-band emission				
 f_{TX} +/-2 MHz 			-20	dBm
• f _{TX} +/-[3+n] MHz; n = 0,1,2			-30	dBm
Modulation Characteristics				
• Δf1 _{avg}	225		275	kHz
 Δf2_{max} (at 99.9%) 	185			kHz
 Δf2_{avg} / Δf1_{avg} 	0.8			
Carrier Frequency Offset and Drift				
 Frequency offset (f_n); n = 0,1, 2, 3k 	-150		150	kHz
• Frequency drift (f ₀ -f _n); n = 2, 3, 4k			50	kHz
Drift Rate		·		
1. f ₁ - f ₀			23	kHz
2. f _n -f _{n-5} ; n = 6, 7, 8 k			20	kHz
Spurious Emissions				
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm
 47 - 74 MHz (BW = 100 kHz) 			-54	dBm
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm
• 174 - 230 MHz (BW = 100 kHz)			-54	dBm
• 230 - 470 MHz (BW = 100 kHz)			-36	dBm
• 470 - 862 MHz (BW = 100 kHz)			-54	dBm
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm
• 1000 - 12750 MHz (BW = 1 MHz)			-30	dBm

Item	Contents					
Rx Characteristics	Minimum	Typical	Maximum	Unit		
Receiver sensitivity (PER < 30.8%)		-97	-70	dBm		
Maximum input signal level (PER < 30.8%)	-10			dBm		
PER Report Integrity (-30 dBm input)	50		65.4	%		

12.17.2 2 Mbps PHY Condition

Conditions: 25 °C, VBAT = 3.3V, VIO = 1.8V, Output power setting = 13dBm at module pad

Table 75: 2 Mbps PHY Condition

Item	Contents			
Current Consumption	Minimum	Typical	Maximum	Unit
Tx mode Current 1.8V		344	390	mA
Tx mode Current 3.3V		0.2	3	mA
Rx mode Current 1.8V		123	150	mA
Rx mode Current 3.3V		0.2	3	mA
Tx Characteristics	Minimum	Typical	Maximum	Unit
Center Frequency	2402		2480	MHz
Channel Spacing		2		MHz
Number of RF channel		40		
Output power		13	16	dBm
In-band emission				
• f _{TX} +/-4 MHz			-20	dBm
• f _{TX} +/-5 MHz			-20	dBm
• f _{TX} +/-[6+n] MHz; n=0,1,2			-30	dBm
Modulation Characteristics				•
• Δf1 _{avg}	450		550	kHz
 Δf2_{max} (at 99.9%) 	370			kHz
• Δf2 _{avg} / Δf1 _{avg}	0.8			
Carrier Frequency Offset and Drift				•
 Frequency offset (f_n); n = 0, 1, 2, 3k 	-150		150	kHz
 Frequency drift (f₀-f_n); n = 2, 3, 4k 			50	kHz
Drift Rate		·		•
1. f1-f0			23	kHz
2. fn-fn-5 ; n = 6, 7, 8k			20	kHz
Spurious Emissions				
• 30 - 47 MHz (BW = 100 kHz)			-36	dBm
 47 - 74 MHz (BW = 100 kHz) 			-54	dBm
• 74 - 87.5 MHz (BW = 100 kHz)			-36	dBm
• 87.5 - 118 MHz (BW = 100 kHz)			-54	dBm
• 118 - 174 MHz (BW = 100 kHz)			-36	dBm
• 174 - 230 MHz (BW = 100 kHz)			-54	dBm
• 230 - 470 MHz (BW = 100 kHz)			-36	dBm
• 470 - 862 MHz (BW = 100 kHz)			-54	dBm
• 862 - 1000 MHz (BW = 100 kHz)			-36	dBm
• 1000 - 12750 MHz (BW = 1 MHz)			-30	dBm
Rx Characteristics	Minimum	Typical	Maximum	Unit

Item	Contents			
Receiver sensitivity (PER < 30.8%)		-97	-70	dBm
Maximum input signal level (PER < 30.8%)	-10			dBm
PER Report Integrity (-30 dBm input)	50		65.4	%

13 Land Pattern

Figure 23 shows the land pattern of Type 2DL.

Figure 23: Land Pattern (in millimeters)

To avoid the short-circuit between the side shielding and a solder on the module land after the reflow, please locate the module land at 0.2 mm away from module outline as above figure.

14 Tape and Reel Packing

This section provides the general specifications for tape and reel packing.

14.1 Dimensions of Tape (Plastic Tape)

Figure 24 is a graphical representation of the tape dimension (plastic tape)⁷.

Figure 24: Dimensions of Tape (Plastic Tape)

, ,

 $^{^{7}}$ Cumulative tolerance of maximum 40.0 \pm 0.15 every 10 pitches.

14.2 Dimensions of Reel

Figure 25 shows the reel dimensions.

Figure 25: Dimensions of Reel (Unit: mm)

14.3 Taping Diagrams

Figure 26 shows the taping diagrams.

Figure 26: Taping Diagrams

Table 76: Taping Specifications

Mark	Description
1	Feeding Hole. As specified in Dimensions of Tape (Plastic Tape) □.
2	Hole for chip. As specified in Dimensions of Tape (Plastic Tape) ロド.
3	Cover tape. 62 µm in thickness.
4	Base tape. As specified in Dimensions of Tape (Plastic Tape) □.

14.4 Leader and Tail Tape

The leader and tail tape are shown in Figure 27.

Figure 27: Leader and Tail Tape

- The tape for chips is wound clockwise, the feeding holes to the right side as the tape is pulled toward the user.
- The cover tape and base tape are not adhered at no components area for 250 milimiters minimum.
- Tear off strength against pulling of cover tape: 5 N minimum.
- Packaging unit: 1000 pcs./ reel
- Material
 - Base tape: Plastic
 - Real: Plastic
 - Cover tape, cavity tape and reel are made the anti-static processing.
- Peeling off force: 1.1 N maximum. in the direction of peeling as shown in Figure 28.

Figure 28: Peeling Force

14.5 Packaging (Humidity Proof Packing)

The packaging is shown in Figure 29.

Figure 29: Humidity Proof Packing

Tape and reel must be sealed with the anti-humidity plastic bag. The bag contains the desiccant and the humidity indicator.

15 Notice

15.1 Storage Conditions

- Please use this product within 6 months after receipt.
- The product shall be stored without opening the packing under the ambient temperature from 5 to 35 °C and humidity from 20 ~ 70 %RH (Packing materials, in particular, may be deformed at the temperature over 40 °C).
- The product left more than 6 months after reception; it needs to be confirmed the solderability before used.
- The product shall be stored in noncorrosive gas (Cl₂, NH₃, SO₂, NO_X, etc.).
- Any excess mechanical shock including, but not limited to, sticking the packing materials by sharp object, and dropping the product, shall not be applied in order not to damage the packing materials.
- This product is applicable to MSL3 (Based on IPC/JEDEC J-STD-020)
- After the packing opened, the product shall be stored at <30 °C / <60 %RH and the product shall be used within 168 hours.
- When the color of the indicator in the packing changed, the product shall be baked before soldering.
- Baking condition: 125 +5/-0 °C, 24 hours, 1 time
- The products shall be baked on the heat-resistant tray because the materials (Base Tape, Reel Tape and Cover Tape) are not heat-resistant.

15.2 Handling Conditions

- Be careful in handling or transporting products because excessive stress or mechanical shock may break products.
- Handle with care if products may have cracks or damages on their terminals. If there is any such damage, the characteristics of products may change. Do not touch products with bare hands that may result in poor solder ability and destroy by static electrical charge.

15.3 Standard PCB Design (Land Pattern and Dimensions)

- All the ground terminals should be connected to the ground patterns. Furthermore, the ground pattern should be provided between IN and OUT terminals. Please refer to the specifications for the standard land dimensions.
- The recommended land pattern and dimensions is as Murata's standard. The characteristics
 of products may vary depending on the pattern drawing method, grounding method, land
 dimensions, land forming method of the NC terminals and the PCB material and thickness.
 Therefore, be sure to verify the characteristics in the actual set. When using non-standard
 lands, contact Murata beforehand.

15.4 Notice for Chip Placer

When placing products on the PCB, products may be stressed and broken by uneven forces from a worn-out chucking locating claw or a suction nozzle. To prevent products from damages, be sure to follow the specifications for the maintenance of the chip placer being used. For the positioning of products on the PCB, be aware that mechanical chucking may damage products.

15.5 Soldering Conditions

The recommendation conditions of soldering are shown in **Figure 30**.

Soldering must be carried out by the above-mentioned conditions to prevent products from damage. Set up the highest temperature of reflow within 260 °C. Contact Murata before use if concerning other soldering conditions.

Figure 30: Reflow Soldering Standard Conditions (Example)

Please use the reflow within 2 times.

Use rosin type flux or weakly active flux with a chlorine content of 0.2 wt. % or less.

15.6 Cleaning

This product is moisture sensitive; therefore, any cleaning is not recommended. If any cleaning process is done the customer is responsible for any issues or failures caused by the cleaning process.

15.7 Operational Environment Conditions

Products are designed to work for electronic products under normal environmental conditions (ambient temperature, humidity, and pressure). Therefore, products have no problems to be used under the similar conditions to the above-mentioned. However, if products are used under the following circumstances, it may damage products and leakage of electricity and abnormal temperature may occur.

- In an atmosphere containing corrosive gas (Cl2, NH3, SOX, NOX etc.).
- In an atmosphere containing combustible and volatile gases.
- Dusty place.
- Direct sunlight place.
- Water splashing place.
- Humid place where water condenses.
- Freezing place.

If there are possibilities for products to be used under the preceding clause, consult with Murata before actual use.

Do not apply static electricity or excessive voltage while assembling and measuring, as it might be a cause of degradation or destruction to apply static electricity to products.

16 Precondition to Use Our Products

PLEASE READ THIS NOTICE BEFORE USING OUR PRODUCTS.

Please make sure that your product has been evaluated and confirmed from the aspect of the fitness for the specifications of our product when our product is mounted to your product.

All the items and parameters in this product specification/datasheet/catalog have been prescribed on the premise that our product is used for the purpose, under the condition and in the environment specified in this specification. You are requested not to use our product deviating from the condition and the environment specified in this specification.

Please note that the only warranty that we provide regarding the products is its conformance to the specifications provided herein. Accordingly, we shall not be responsible for any defects in products or equipment incorporating such products, which are caused under the conditions other than those specified in this specification.

WE HEREBY DISCLAIM ALL OTHER WARRANTIES REGARDING THE PRODUCTS, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, THAT THEY ARE DEFECT-FREE, OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

You agree that you will use any and all software or program code (including but not limited to firmware, and radio configuration files) we may provide or to be embedded into our product ("Software") provided that you use the Software bundled with our product. YOU AGREE THAT THE SOFTWARE SHALL BE PROVIDED TO YOU "AS IS" BASIS, MURATA MAKES NO REPRESENTATIONS OR WARRANTIES THAT THE SOFTWARE IS ERROR-FREE OR WILL OPERATE WITHOUT INTERRUPTION. AND MORE, MURATA MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED WITH RESPECT TO THE SOFTWARE. MURATA EXPRESSLY DISCLAIM ANY AND ALL WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE NOR THE WARRANTY OF TITLE OR NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

You shall indemnify and hold harmless us, our affiliates, and our licensor from and against any and all claims, costs, expenses and liabilities (including attorney's fees), which arise in connection with the using the Software.

The product shall not be used in any application listed below which requires especially high reliability for the prevention of such defect as may directly cause damage to the third party's life, body or property. You acknowledge and agree that, if you use our products in such applications, we will not be responsible for any failure to meet such requirements. Furthermore, YOU AGREE TO INDEMNIFY AND DEFEND US AND OUR AFFILIATES AGAINST ALL CLAIMS, DAMAGES, COSTS, AND EXPENSES THAT MAY BE INCURRED, INCLUDING WITHOUT LIMITATION, ATTORNEY FEES AND COSTS, DUE TO THE USE OF OUR PRODUCTS AND THE SOFTWARE IN SUCH APPLICATIONS.

- Aircraft equipment.
- Aerospace equipment.
- Undersea equipment.
- Power plant control equipment.
- Medical equipment.
- Traffic signal equipment.

- Burning / explosion control equipment.
- Disaster prevention / crime prevention equipment.
- Transportation equipment (vehicles, trains, ships, elevator, etc.).
- Application of similar complexity and/ or reliability requirements to the applications listed in the above.
- We expressly prohibit you from analyzing, breaking, reverse-engineering, remodeling altering, and reproducing our product. Our product cannot be used for the product which is prohibited from being manufactured, used, and sold by the regulations and laws in the world.

Even in the unlikely event that an abnormality or malfunction occurs in this product under operating conditions that conform to the specifications, be sure to add an appropriate fail-safe function to the system to prevent secondary accidents.

We do not warrant or represent that any license, either express or implied, is granted under any our patent right, copyright, mask work right, or our other intellectual property right relating to any combination, machine, or process in which our products or services are used. Information provided by us regarding third-party products or services does not constitute a license from us to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from us under our patents or other intellectual property.

Please do not use our products, our technical information and other data provided by us for the purpose of developing of mass-destruction weapons and the purpose of military use.

Moreover, you must comply with "foreign exchange and foreign trade law", the "U.S. export administration regulations", etc.

Please note that we may discontinue the manufacture of our products, due to reasons such as end of supply of materials and/or components from our suppliers.

By signing on specification sheet or approval sheet, you acknowledge that you are the legal representative for your company and that you understand and accept the validity of the contents herein. When you are not able to return the signed version of specification sheet or approval sheet within 30 days from receiving date of specification sheet or approval sheet, it shall be deemed to be your consent on the content of specification sheet or approval sheet. Customer acknowledges that engineering samples may deviate from specifications and may contain defects due to their development status. We reject any liability or product warranty for engineering samples. In particular we disclaim liability for damages caused by

- The use of the engineering sample other than for evaluation purposes, particularly the installation or integration in the product to be sold by you,
- Deviation or lapse in function of engineering sample,
- Improper use of engineering samples.
- We disclaim any liability for consequential and incidental damages.

This Precondition to Use Our Products stipulated in this datasheet can only be modified, amended or altered by documents that explicitly reflect the mutual consent of both parties (including instances where one party explicitly indicates its acceptance of terms provided by the other party through click-through agreements).

If you can't agree with the above contents, please contact sales.

Revision History

Revision Code	Date	Change	Change Description
1	2023.1.27		Initial Release
2 (A)	2023.3.29		Converted to new template
3 (B)	2023.5.22	2 Key Features 5.1 Radio Certification 9.1 External Sleep Clock Requirements 10.1 10 Power On/ Power Off Sequence 11.1.4 SDR104 mode 12 DC/RF Characteristics	 Add Fit value Update ID Remove External Sleep Clock Requirements Revise figure Update SDR104 mode Add Characteristics
4 (C)	2023.10.11	4 Block Diagram 5.1 Radio Certification 5.2 Radio Regulatory Certification by Country 6 Dimensions, Markings and Terminal Configurations 7.1 Pin Assignments 7.2 Pin Descriptions 9.3 Package Thermal Conditions	 Revise figure Update Japan certification ID Add new information. Revise figure Revise figure Revise list Add new information
5 (D)	2023.11.1	5.1 Radio Certification	Revie ISED No.
6 (E)	2024.1.25	5.2 Radio Regulatory Certification by Country 12 DC/RF Characteristics 12.4.1 High-Rate Condition for IEEE 802.11ax (HE20) – 2.4GHz 12.5 DC/RF Characteristics for IEEE 802.11n (HT40) – 2.4 GHz 12.6 DC/RF Characteristics for IEEE 802.11ax (HE40) – 2.4GHz 12.8.1 High-Rate Condition for IEEE 802.11ax (HE20) – 5GHz	 Revise link name Add configuration files information. Revise Minimum Input Level typo. Add spec information. Add spec information. Revise Minimum Input Level typo. (Base IC datasheet revision : 4)
7 (F)	2024.6.24	4 Block Diagram 12.16.1 Basic Data Rate Condition	Add Figure2 Changed Output power value
8 (G)	2024.7.29	4 Block Diagram 5.3 Bluetooth Qualification	 Updated Figure 1 Added DN of Bluetooth Ver.5.4 Removed DN of Bluetooth Ver.5.3 * Changed Bluetooth version of all sections

Revision Code	Date	Change	Change Description
9 (H)	2025.1.15	3 Ordering information 5.1 Radio Certification 6. Dimensions, Marking, and Terminal Configurations 7.4 Pin States 10.3 Host Reset Sequence 11.2 UART Timing (Default Mode) 12 12 DC/RF Characteristics 16 Precondition to Use Our Products Revision History (Rev.F)	 Added Embedded Artists' M.2-EVB Added freeRTOS file names Added a Warning note Updated PU/PD values Added "Information" Added "Information" Updated Bluetooth script name Updated Conditions of subsections Updated Added a missing update (BR output power)
10	2025.2.14	Revision History 12. DC/RF Characteristics	Changed Revision rule Corrected typo of spectrum mask Removed stable modulation spec

Copyright © Murata Manufacturing Co., Ltd. All rights reserved. The information and content in this document are provided "as-is" with no warranties of any kind and are for informational purpose only. Data and information have been carefully checked and are believed to be accurate; however, no liability or responsibility for any errors, omissions, or inaccuracies is assumed.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. Other brand and product names are trademarks or registered trademarks of their respective owners.

Specifications are subject to change without notice.