Uncertainty

ECON 420: Game Theory

Spring 2018

Announcements

- ► Homework 3 on Canvas
- ► Due *Monday, May 21*
- ► Reading: Chapter 8

Uncertainty

- ► So far: Strategic uncertainty
 - Some players unaware of the actions of other players
 - ► Example: Simultaneous-move games
- ► Today: External uncertainty
 - ► "Nature" changes aspects of the game
 - Players cannot control external uncertainty, must take it into account when making decisions

Expected Utility Theory

- ► Events that happen according to some probability distribution are called gambles
- gambles
 ▶ Agents are able to rank gambles by comparing the expected utility that they would receive from the potential outcomes of the gamble
- ► The utility that we will use is *von Neumann-Morgenstern (VNM)* utility

Risk preference • When there is uncertainty we can calculate the expected value of a gamble

► Some people might be willing to pay to avoid risk (risk aversion)

- ▶ But people do not just consider expected value when making decisions

- ► Suppose I flip a coin. If heads, you get \$100. If tails, you get \$0.
 - ► What is the expected value?
 - ► How much would you pay to play this game?
- ► Suppose instead the payoffs are \$1 million for heads, \$0 for tails.

VNM Utility and Risk Preference

- \blacktriangleright Outcomes are denoted D (dollars)
- \blacktriangleright Agents in the model have preferences over outcomes represented by utility u=u(D)
- $\,\blacktriangleright\,$ The risk preference of the agent depends on the concavity of the utility function u
- ► Agents with *diminishing marginal utility* are risk averse
 - ► Concave utility function

Risk aversion

$$EV = \frac{1}{2} \cdot 160,000 + \frac{1}{2} \cdot 40,000$$

$$= 80,000 + 20,000$$

$$= 100,000$$

- ► A farmer's crop yield depends on weather
- ► Farmer gets good weather with 50%
- ► Yield with good weather is \$160,000, yield in bad weather is \$40,000

Larick averse

 \blacktriangleright Farmer has VNM utility $u(D) = \sqrt{D}$

$$EU = \frac{1}{2}U(160,000) + \frac{1}{2}U(40,000)$$

$$= \frac{1}{2}\sqrt{160,000} + \frac{1}{2}\sqrt{40,000}$$

$$= \frac{1}{2}400 + \frac{1}{2}.700 = 300$$

$$u(Ev) = \sqrt{100,000}$$

$$= 316.23$$

Risk sharing

Risk averse agents willing to pay to remove risk

you if you have a bad outcome

- Agents can therefore benefit from trading *state-contingent claims* with one
- another

► You agree to pay someone else if you have a good outcome, someone else pays

- Suppose there is another farmer that has the same weather probability and outcomes (weather probability is independent of first farmer)
- ► Farmers agree to a contract: If one farmer gets good luck and the other gets had luck lucky farmer have \$60,000 to the unlucky farmer

Farmer 1 Farmer Z	Probability	payoff
Possible states:		Farmer 13
► Are the farmers better off?		
bad luck, lucky farmer pays \$00,000 t	to the unideky farmer	

Possible	sta	ctes:			Farmer 1s
Farmer	ι	Farmer	Z	Probability	payoff
Good	_	Good		1/4	160,000
- I		2-7		1/4	210000

Cood	God	1/4	(60,000
Bad	Bad	1/4	40000
Good	Bod	1/4	100,000

Farmer 15

Dayoff

- from last

page

Farmer 13

utility

- ► Now suppose the other farmer faces no uncertainty and will earn \$100,000 with probability 1
 - The farmer with risk is willing to accept their certainty equivalence instead of the gamble
 Is the riskless farmer willing to buy the risk in exchange for the certainty

 $EV = \frac{1}{2}(40,000 - 90000) + \frac{1}{2}(160,000 - 90000) + 100,000$ $EV = \frac{1}{2}(40,000) + \frac{1}{2}(160,000) + 100,000 - 90,000$

they don't make the deal:

EU = 5100,000

=316.23

- ▶ Now suppose the farmer without risk is *risk neutral*
- ▶ What is the maximum that this farmer is willing to pay for the gamble?
 - 100,000 -> EV of the gamble

Insurance and risk

- ► Suppose there are thousands of farmers with identical risk/outcomes
- ► A single entity (insurance company) can buy the risk of all of the farmers and make them better off
- ► Law of large numbers says that the insurance company will earn the expected value of the gamble

Manipulating Risk

- ► Sometimes agents have control over risk and can use it to their advantage

- ▶ By increasing risk, the probability of "tail events" increases

- ► This is why underdogs in sports often choose risky actions

▶ How can this team maximize their chances of winning?

- ► A basketball team scores 60 points per game on average

- ▶ They are playing a better opponent and must score at least 80 points to win

Cheap Talk

- ► In coordination games, players may be able to costlessly communicate before

the game begins

- ▶ This might allow players to better coordinate on preferred outcomes

Rollbook 2: H: Ster, local, ster S: local, ster

Rallbook H: textlocal, star if star, local if local
S: Star if star, local if local