Networks II: Market Design—Lecture 5 Matching Markets with Non-transferable Utilities: One-sided Preferences

ARPITA GHOSH

Dept. Of Information Science, Cornell University

Logistics

- Any late joiners: Welcome!
 - Catch up on CMS: Lectures; general information handouts
 - Course information and policies; homework policies and guidelines
- Office hours: Now on CMS (plenty of TA office hours!)
- HW1 coming up: Due Thursday Feb 7th noon
 - Electronic upload (by you!) on CMS
 - Reminders:
 - HW late policy
 - Note: Screenshots as proof-of-time do not work!
 - Academic integrity: Do not cheat (duh), and in particular, acknowledge discussants at top of HW
 - See homework guidelines document on CMS

Recap: Last time

- Generalizing from binary to rank-order preferences: Market (A, H, \succ)
- Rank-order preferences ≻: What is a 'good' matching?
 - Not enough information to choose 'best' matching
 - Instead ask: Which are bad matchings?
 - 'Good' matchings: 'Not-bad' matchings
- Pareto-efficient matchings

- Mechanisms
- What are good mechanisms?
- The serial dictatorship mechanism

Checking in: Pareto efficiency

- Market (A, H, ≻)
 - Agents A = $\{a,b,c\}$; houses H = $\{x,y,z\}$
 - Preferences: a: $x \succ z \succ y$; b: $y \succ z \succ x$
 - c's preferences are missing
- Is matching $M_1 = (a-x, b-z, c-y)$ Pareto-efficient?
 - A Yes
 - B No
 - C I can't decide
- Is matching $M_2 = (a-z, b-x, c-y)$ Pareto-efficient?
 - A Yes
 - B No
 - C I can't decide

Checking in: Pareto efficiency

- Consider a market (A, H, \succ) , and two distinct matchings M and \hat{M} in this market. If matching M is Pareto-efficient, it must Pareto-dominate matching \hat{M} .
 - A True
 - B False
- Can a market (A, H, ≻) have two different Pareto-efficient matchings?
 - A Yes
 - B No
- Is every market (A, H, \succ) certain to have at least one Pareto-efficient matching?
 - A Yes
 - B No
 - C Shouldn't there be a law against too many questions?

Rank-order preferences: What is a 'good' matching?

- Recall market: 3 agents A,B,C and 3 houses x,y,z
- Preferences are A: $x \succ y$; B: $x \succ z$; C: $z \succ x$
- Three matchings: $M_2=$ (A-x, B-z), $M_3=$ (A-x, C-z), $M_4=$ (A-y, B-x, C-z)
- Which of these is Pareto-efficient?
 - A M_2 only
 - B M_2 and M_3 only
 - \subset All of M_2, M_3, M_4
 - D M_4 only

- Mechanisms
- Pareto-efficiency and mechanisms
- The serial dictatorship mechanism

Allocating houses to agents: Mechanisms

- (Deterministic) mechanism: Rule that assigns a matching for each tuple (A, H, \succ)
 - Mechanism takes tuple (A, H, \succ) as input
 - Returns matching M as output
- Mechanisms: Algorithms with input coming from agents
- Matchings and mechanisms are both functions: How are they different?
 - Matching: Function from (set of) agents to (set of) objects
 - Mechanism: Function from (set of) preference profiles $\succ = (\succ_a)_{a \in A}$ to (set of) matchings

Mechanisms: An example

- Mechanisms for housing markets: Tuple (A, H, \succ)
 - An example market: Three agents a,b,c; three houses x,y,z
 - Which of these adequately specifies a mechanism for this market?
 - ① Return matching a x, b z, c y when input preference profile is a: $x \succ z \succ y$; b: $x \succ z \succ y$; c: $x \succ y \succ z$
 - ② Return matching a x, b z, c y for all input preference profiles
 - A Only (1)
 - B Only (2)
 - C Both (1) and (2)
 - D Neither (1) nor (2)

Choosing an allocation in a market: Mechanisms

- Mechanism: Rule to decide which matching M to choose given market (A, H, \succ)
 - Does not have to produce a 'good' matching to be a mechanism
 - But: Has to tell you 'what to do' for any possible input
- Recall: Matchings and mechanisms are both functions
 - Matching: Function from agents to objects
 - Mechanism: Function from (set of) preferences to (set of) matchings

Mechanisms: Another example

- Rewind for a moment: Binary (0-1) preferences
 - Aside 1: Binary preferences as (weak) rank-order preferences
 - Aside 2: Term "mechanism" applies generally, beyond rank-order preferences!
- Is this a mechanism under binary preferences?
 (Assume some tie-breaking rule amongst matchings is specified)
 - Return a perfect matching if one exists
 - A Yes (i.e., is a mechanism)
 - B No
 - Return a maximum matching
 - A Yes
 - B No

- Mechanisms
- Good mechanisms: Pareto-efficiency
- The serial dictatorship mechanism

Pareto-efficient mechanisms

- Mechanism: Assigns a matching for each preference profile
 - $\varphi(A, H, \succ)$: Matching returned by mechanism φ on input (A, H, \succ)
 - Notation: Sometimes use $\varphi(\succ)$ when (A, H) is clear from context
- So far, no requirements on goodness of matchings produced by mechanism: What are 'good' mechanisms?
 - Good mechanisms: Return 'good' matchings
- Mechanism φ is **Pareto-efficient** if $\varphi(\succ)$ is Pareto-efficient for every input preference profile \succ

Pareto-efficient mechanisms

- Pareto-efficient matchings versus Pareto-efficient mechanisms
- Matching M: Pareto-efficient if there is no other matching \hat{M} that Pareto-dominates it
- Mechanism φ: Pareto-efficient if for every input tuple (A, H, ≻), it returns a Pareto-efficient matching M = φ(≻) as output

An example

- Example: Agents a,b,c; houses x,y,z
- Preferences \succ are a: $x \succ z \succ y$; b: $x \succ z \succ y$; c: $x \succ y \succ z$
- $\varphi(\succ)$ returns matching a-x, b-z, c-y: Is φ Pareto-efficient?
 - A Yes
 - B No
 - C I don't know
 - D I don't like thinking
 - Mechanism φ is Pareto-efficient if it returns a Pareto-efficient matching for *every* input: Need to know output for *all* inputs!
- $\varphi'(\succ)$ returns matching a-y, b-x, c-z: Is φ' Pareto-efficient?
 - A Yes
 - B No
 - C I don't know
 - D I really don't like thinking!

- Mechanisms
- Good mechanisms: Pareto-efficiency
- The serial dictatorship mechanism

A specific mechanism: Serial dictatorship

- Serial dictatorship, or priority mechanisms:
 - Specifies an order amongst agents
 - First agent receives her favorite good, second agent his favorite among remaining ones, ...
- Formally: Given a market (A, H, \succ) , serial dictatorship mechanisms specifies priority order f over A
 - f(i): Agent with i^{th} priority
 - Agent f(i) receives item ranked highest in her preference list amongst all items except those already taken by agents $f(1), \ldots, f(i-1)$

Serial dictatorship

- Serial dictatorship very easy to implement:
 - Decide order: Randomly, using existing priority order (e.g. seniority), . . .
 - Let highest remaining applicant in order choose amongst remaining items
- Used in many applications (with variations):
 - NYC school choice system
 - Columbia and Harvard housing allocation (Pathak 2008, Kojima and Manea 2006, Che and Kojima 2008)
 - Office space allocation
 - ...
- Mechanism has many desirable properties: Perhaps related to wide use