Traffic
Optimization
Using
Machine
Learning

MAKING INTERSECTIONS SMARTER TO REDUCE DRIVER FRUSTRATION

JOE KESSLER – PRINCIPAL SOFTWARE DEVELOPER

Heavy Traffic Sucks

- Very frustrating at times
 - ► Leads to road rage
 - Makes us late to the dog groomer
- Ever get "all the red lights"? It really does matter
 - ▶ Travel time
 - ▶ Sense of victimhood
 - Harder on vehicles
- Increases fuel consumption and therefore cost

Reasons for Annoying Traffic

- ▶ Volume, obviously
- Overly simple traffic control signals
 - Often sensor based with timer component
 - Sometimes only timers
- Rubber banding
 - ► Getting "out of sync" with lights causes stop-and-go

What Can We Do to Help?

- Make intersections smarter
 - Control traffic more like a person would
 - Incorporate "common sense"
- Concepts
 - Avoid unnecessary red lights
 - ▶ Retain traffic momentum where possible
 - Reduce rubber banding

Simulated Neighborhood

- Simple "city" grid interconnected by lights
- Each agent/component with independent logic
 - ► Intersections (Stock)
 - ► Intersections (Enhanced/ML)
 - Cars
 - ▶ Left turn lanes
 - Sensors
 - Cameras
 - ▶ Etc...

Simulation Characteristics

- ▶ The environment simulates
 - Intersection logic
 - Typical car/driver behavior and reactions
 - Traffic volume at a variety of times,
 - Sensors at each stop line, including distinct left lane sensors
 - Speed limits
 - Etc...
- Virtual cameras to provide images of oncoming traffic

Driver Behavior

- Self-contained agents (disconnected from intersection logic, etc)
- All follow same rules there is no road rage!
- Have a "GPS" telling them the route at start of travel
 - ▶ That is, travel directions are not fixed
- Can turn left or right at intersections
- ▶ Max speed is 40 MPH for entire town but doesn't have to be

Technical Pieces

- Simulator (Python)
- CNN/ML model training (Python/Keras/TensorFlow)
- Training Data Generator (C#/WinForms)
- Traffic Visualizer (C#/WinForms)
- Traffic Camera WS (C#/ASP.NET)
- Runtime hardware
 - ▶ 12th Gen Intel Core i7-12700K
 - ▶ 128GB DDR4-3600
 - Nvidia RTX 3090ti (24GB onboard)

CNN Construction

- ▶ CNN learns how to translate an image into usable output
- Can classify (dog, cat, etc) or regress (produce values)
- ▶ In our case, we want to count/locate cars

What Does CNN Buy Us?

- The CNN can process this image and understand
 - ▶ How many cars
 - Rough idea of distances
 - Like having sensors on the entire road segment
- Combined with stop line sensors
 - We get a decent idea of situation
- From there all that is required is some simple logic

(Sample CameraWS image)

Generating Data via Random Sampling

- Training a neural network requires lots of data
- Generate annotated sample for a neural net
 - Create image from random traffic data (interpretation -> image)
 - Annotate automatically
- Neural net learns to perform inverse (image -> interpretation)

CNN Training Data Generator

 Generates and annotates sample traffic images

 For training CNN to understand camera frame captures

Distance Zones

- ► The CNN can see rough distance of cars via "zones"
 - A single frame is processed by the CNN and assigned to these zones
 - Zones exist for each of three lanes (therefore 9 regions)
- CNN understands perspective
- Actual intersection logic is extremely simple

CNN Model in Keras (Python)

Training on Roughly 20,000 Sample Images

```
# Load up the training data.
data, labels = myutils.load training data(outputPath)
# Partition the data into training and testing splits using 75% of
# the data for training and the remaining 25% for testing
(trainX, testX, trainY, testY) = train test split(data, labels, test size=0.25, random state=42)
# Set up the CNN model. Sometimes layers/settings are trial and error.
model = Sequential()
model.add(Conv2D(32, kernel size=(5, 5), strides=(1, 1), activation='relu',
input shape=imageShape))
model.add(MaxPooling2D(pool size=(2, 2), strides=(2, 2)))
model.add(Conv2D(32, (5, 5), activation='relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Flatten())
model.add(Dense(100, activation='relu'))
model.add(Dense(100, activation='relu'))
model.add(Dense(9, activation='sigmoid')) # Trains on 9 "zones" on 3 lanes.
# Train the model. Yoiks!
model.compile(optimizer='rmsprop', loss='mean_squared_error', metrics=['accuracy'])
model.fit(trainX, trainY, batch size=1, epochs=250, verbose=1)
```

Applying the CNN in Simulator

Pretty easy once we have all the pieces!

```
# This code is going images in each direction from the perspective of the
# intersection. It will then use the CNN model to decode it into usable data.
model cnn = model functions.load camera model(self.global ctx, False)
# Capture the images in each oncoming direction via CameraWS. This accesses
# four cameras mounted at the intersection.
predictions by oncoming direction = { 'north': None, 'south': None, 'east': None, 'west': None };
images by oncoming direction = capture image(myconstants.camera ws url)
# Convert each image to usable values.
for oncoming direction in images by oncoming direction:
    image for this direction = images by oncoming direction[oncoming direction]
    # Prediction (camera image -> data) from the trained CNN model.
    predicted data from image = model cnn.predict(direction, verbose = 0)
    # Wrap it up nicely.
    traffic scenario = TrafficScenario(self, predicted frustration level, road lanes, self.global ctx)
    predictions by oncoming direction[orientation] = traffic scenario
return predictions by oncoming direction
```


(Zoomed)

Results – Delta % from Stock

С	Crossings		Conge	stion	L	ight Cl	nanges	5	Trave	Time	e Cars		
110	Cum	Bam	9am	10am	11am	12pm	1pm	2pn	n 3pm	4pm	5pm	6pm	7pm
11	. 0%	33	-43	-43	-1.53	-95	03	1.3	185	-83	235	13	35
12	73	53	-153	343	10%	223	43	-27	-13	253	23	5%	95
13	1.3%	-43	54	1.33	273	363	1.03	1.63	573	-1.5	373	53	-145
1.4	-1.53	-43	-9%	-263	-1.35	-323	-1.43	-348	-9%	-1.93	-1.43	1.5	-125
1.5	-63	-9%	-43	-35	-275	-143	143	-221	-13	-263	-9%	35	235
16	-73	-1.25	13	-213	-295	153	-353	34	0.5	43	-35	-35	-53
17	3%	-83	29%	-63	383	35	-123	213	-25	1.0%	73	-1.23	-63
18	-63	1.23	-1.13	-213	-1.35	-1.33	263	-1.73	-25	-253	-1.23	16%	-1.05
19	103	-78	123	183	253	43	1.3%	1.43	235	-35	2.35	-73	1.3%
	_												
	03	-2%	03	-35	-25	-15	-13	-39	63	-63	43	15	03

	Cars		Travel Time			anges	ght Ch	Li	Congestion			Crossings	
7pa	6pm	5pm	4pm	3pm	2pm	1pm	12pm	11am	10am	9am	8am	Cum	ID
155	105	-145	-105	-135	05	155	335	05	-215	-315	-105	05	11
35	-53	-61	161	-10%	-221	0%	-155	45	-65	-115	-30%	-35	12
0.3	0.5	0.5	60%	03	-501	-25%	0%	145	215	-225	-291	55	13
-273	-75	-20%	-30%	-85	45	-13%	-3%	-8%	-325	-75	-30%	-155	14
-271	-30%	-325	-395	-155	-41	-6%	-26%	-28%	-235	-155	-345	-225	15
-115	-155	-20%	-191	-131	-18%	-28%	-8%	-195	10%	-135	-165	-115	16
161	63	0.5	0.5	-51	-211	-23%	-28%	55	-11%	103	0%	0.5	17
-35	-25%	-27%	-31%	-125	-225	-5%	-165	-255	-275	-145	-10%	-15%	IB.
-215	-155	-145	-345	-13%	-7%	-14%	05	-11%	-85	35	-55	-95	19
-113	-13%	-17%	-195	-191	-221	-17%	-18%	-145	-16%	-155	-245	-14%	

Crossings		1	Congestion		Light Changes				Travel Time			Cars	
ID	Cum	8am	9am	10am	11am	12pm	1pm	2pm	Зрт	4pm	5pm	6pm	7pm
11	-445	-425	-395	-503	-365	-615	-315	-50%	-35%	-425	-50%	-445	-441
12	-425	-485	-441	-465	-53%	-361	-22%	-24%	-611	-50%	-35%	-365	-50%
13	-515	-431	-38%	-563	-465	-52%	-53%	-401	-58%	-60%	-641	-50%	-545
14	-35%	-40%	-4H%	-425	-215	-46%	-25%	-26%	-335	-505	-26%	-425	-18%
15	-38%	-425	-335	-305	-30%	-56%	-46%	-39%	-39%	-295	-41%	-425	-205
Ifi	-34%	-315	-55%	-325	-145	-33%	-421	-33%	-261	-391	-42%	-30%	-30%
17	-43%	-541	-36%	-50%	-48%	-355	-37%	-411	-20%	-555	-50%	-38%	-465
IB.	-39%	-533	-425	-1.85	-485	-30%	-25%	-40%	-40%	-445	-35%	-485	-463
19	-435	-53%	-425	-535	-345	-48%	-35%	-40%	-46%	-385	-48%	-44%	-325
						-						-	
	-415	-453	-425	-425	-375	-45%	-35%	-371	-411	-46%	-445	-425	-38%

Crossings		Congestion		Lig	Light Changes			Travel Time			
Bam	9am	10am	11am	12pm	lpm	2pm	3pm	4pm	5pm	брт	7pm
-110	-178	-114	-84	-13%	-16%	-13%	-13%	-178	-20%	-15%	-11%

Results - Interpretation

- Same throughput since cars on the road are same (0% diff)
- Fewer signal changes (by almost 50%!)
 - Drivers more likely to maintain momentum as the ML changes states at better times
- Lower congestion (-14% overall)
- ► Lower travel times (-11% overall)