

Loupe: End-to-End Learning of Loop Unrolling Heuristics for Abstract Interpretation

Maykel Mattar^{1,2}, Michele Alberti¹, Valentin Perrelle¹, Salah Sadou²

- 1. Université Paris-Saclay, CEA, List, Palaiseau, France
- 2. Université Bretagne Sud, IRISA, Vannes, France

Agenda

Present an overview of the work

subject.

General context

With great configurability comes great complexity.

REQUIRES **EXTENSIVE USER EXPERTISE**

HANDCRAFTED **HEURISTICS ARE NOT SCALABLE**

FALSE POSITIVES

Example

When Eva is **not** requested unroll the loop:

- **a** and **b** are in the range [1, 2³¹ 1]
- Overflow alarm for the operation a += b.
- The interval abstraction of a and b fails to capture the relationship between these variables and i;
- Eva may not find a precise invariant before considering the entire positive range of 32-bit integers

```
#include <stdio.h>
    int fib(int n) {
           int a = 1, b = 1;
           for (int i = 3; i \le n; i++) {
6.
                      int tmp = a;
                      a += b:
                      b = tmp;
9.
10.
           return a:
11. }
12. void main() {
13.
14.
           for (int i = 1, n; i <= 10; i++) {
15.
               printf("Enter a number <= 30: ");</pre>
               scanf("%d", &n);
16.
17.
               If (n > 0 \&\& n <= 30) {
18.
                      printf("fib(%d)=%d\n", n, fib(n));
19.
                      break:
20.
21.
22. }
```

Example

When Eva is requested to unroll the loop:

- The loop in line.4 is analyzed on iteration basis
- a and b range is precisely approximated.
- The alarms disappear

While loop unrolling can sometimes accelerate the analysis, it often increases computational cost significantly, particularly for nested loops.

```
#include <stdio.h>
    int fib(int n) {
           int a = 1, b = 1;
          //@ loop unroll 100;
           for (int i = 3; i <= n; i++) {
                      int tmp = a;
                      a += b:
                      b = tmp;
9.
10.
           return a;
11. }
12. void main() {
13.
           //@ loop unroll 0;
          for (int i = 1, n; i \le 10; i++) {
14.
15.
               printf("Enter a number <= 30: ");</pre>
16.
               scanf("%d", &n);
17.
               If (n > 0 \&\& n <= 30) {
18.
                      printf("fib(%d)=%d\n", n, fib(n));
19.
                      break:
20.
21.
22. }
```

Parameterization Approaches

Approach Type	Representative Works / Tools	Key Idea / Technique	Limitations	
Hard Coded Heuristics	eva-auto-loop-unroll	According to the user- provided factor, it attempts to unroll all loops that can be unrolled.	Factor-driven; over-unroll simple loops and overlook complex ones; Time consuming	
Automated Tuning (Algorithmic Search)	PARF ¹ ,TAILOR ²	Iterative execution with parameter optimization (local search, probabilistic refinement)	High computation cost; program-specific; no generalization	
Machine Learning	Feature-based ^{3,4}	Learn heuristics from handcrafted program features	Requires feature engineering; not generalizable; expert bias	
, and the second	Automatic Feature Generation – Sparrow ^{5,6}	Attempt to learn or generate features automatically	Limited to specific strategies; poor generality	

Mansur et al., Automatically Tailoring Abstract Interpretation to Custom Usage Scenarios, CAV 2021. 5. Wang et al., Parf: Adaptive Parameter Refining for Abstract Interpretation, ASE 2024.

Wang et al., Part: Adaptive Parameter Refining for Abstract Interpretation, ASE 2024.

Oh et al., Learning a Strategy for Adapting a Program Analysis via Bayesian Optimisation, SIGPLAN

6.

Jeong et al., Data-Driven Context-Sensitivity for Points-to Analysis, Proc. ACM Program. Lang., OOPSLA 2017.

Jeon et al., Learning Graph-Based Heuristics for Pointer Analysis without Handcrafting Features, Proc. ACM Program. Lang., OOPSLA 2020.

Chae et al., Automatically Generating Features for Learning Program Analysis Heuristics for C-Like Languages, Proc. ACM Program. Lang., OOPSLA 2017.

3 Our Approach

Key Objectives

Use loop code; End-to-End learned heuristic

Auto-generate labeled data

Select the appropriate learning methods

Keep the approach modular and adaptable

ing

Loupe: End-to-End Learning of Loop Unrolling Heuristics for Abstract Interpretation

C Datasets

AnghaBench

TRAIN/EVAL/TEST

- Large-Scale Dataset >1M file
- Self-Contained Files
- Direct Processing
- Diverse Code Samples

Open Source Case Studies

REAL-WORD AND PERFORMANCE EVALUATION

- Real-world C projects in their original form.
- Dependencies & complexity as found in actual software.
- Adapted for static analysis with Eva.
- Partially annotated.

Slicing

Differential Analysis

Data Sampling

Since loop unrolling is rarely required, the resulting dataset exhibits a significant imbalance, with ratio around **1:10** of positive to negative cases.

NAÏVE METHODS

- Undersampling
- Oversampling
- α-undersampling
- α-oversampling

DURING TRAINING

- Weight Balancing
- Focal Loss

GENERATION

- SMOTE
- SMOTE+TOMEK

h_G1

4 Results

Results

Family	Models Tested	Key Feature / Representation
	VOD (O) /// /	Uses IR2Vec or handcrafted
Vector-based	XGBoost, SVM	features (SPARROW) on linear code representations.
Code Language Models (CodeLLM)	GraphCodeBERT, CodeBERT	Transformer models pre-trained on code. Leverage pre-trained representations via fine-tuning.
Graph Neural Networks (GNN)	DGCNN, GAT, GIN, GINE	Programs represented CPG. Captures structural relationships in the code.

Results

TABLE I: Performance comparison of loop unrolling heuristic learning on preprocessed and real-world imbalanced datasets

Model	ANGHA	plit)	OSCS					
	P / R	F1	F2	B-ACC	P / R	F1	F2	B-ACC
Random	8.4 / 50.3	14.3	25.1	50.1	11.5 / 48.2	18.6	29.5	49.2
XGBoost- ir2vec	28.3 / 33.5	30.7	32.3	62.7	54.9 / 14.7	23.2	17.2	56.3
SVM- SPARROW	8.2 / 88.6	15.0	29.9	49.2	7.2 / 41.3	12.3	21.3	35.1
GRAPHCODEBERT	20.4 / 81.8	32.7	51.1	76.6	23.3 / 80.7	36.1	54.0	66.2
DGCNN	24.3 / 79.3	37.4	54.8	78.7	21.7 / 50.8	26.6	34.70	58.3
GAT	22.8 / 73.6	35.6	52.2	76.7	21.8 / 68.7	31.1	51.27	66.7
GIN	11.1 / 77.1	34.8	52.1	76.9	23.1 / 49.1	33.4	48.95	67.0
GINE	26.8 / 81.6	40.4	57.98	80.85	26.9 / 79.1	40.1	57.01	70.06

	Ī			F	RAMA-	C (RQ2)			
Project	<u> </u>			Т	Al	Lu-100	LOUPE (GINE)		
	#	Time	#	Time	#	Time	#	Time	Alignment
ioccc mini-gmp									
genann									
papabench									
chrony									
kgflags									
libspng									
gnugo									
debie1									
basic-cwe-examples									
jsmn									
microstrain	1								
bench-moerman2018									
khash									
c-testsuite									
icpc									
solitaire									
line-following-robot									
safestringlib									
stmr									
powerwindow									
tweetnacl-usable									
qlz									
2048									
hiredis									
verisec									
c-utils	<u> </u>					l			
Total**						I			

		i		F	RAMA-(C (RQ2)			
Project		1		Т	Al	u-100	LOUPE (GINE)		
	#	Time	#	Time	#	Time	#	Time	Alignment
ioccc									
mini-gmp									:
genann									
papabench				÷		.;			<u></u>
chrony									
kgflags									
libspng									
gnugo									
debie1									
basic-cwe-examples									
jsmn									
microstrain						3		•••••	÷
bench-moerman2018									
khash									
c-testsuite									
icpc									
solitaire									
line-following-robot									
safestringlib									
stmr									
powerwindow									
tweetnacl-usable									
qlz									
2048									
hiredis									
verisec									
c-utils									
Total**	ı						ı		

T (Analyzer with All Unrolling): The configuration where all loops in the program are fully unrolled.

ALU-100: Eva built in heuristic *-eva-auto-loop-unroll* with 100 as a factor

Loupe (GINE): Our approach with the best performing model

					FRAM	A-C (RQ2)			
Project				Т		Alu-100		LOUPE (GINE)	
	#	Time	#	Time	#	Time	#	Time	Alignment
ioccc		†							
mini-gmp									
genann									
papabench		i							
chrony									
kgflags	İ								
libspng									
gnugo									
debie1									
basic-cwe-examples	İ								
jsmn									
microstrain	1								
bench-moerman2018									
khash	İ								
c-testsuite	İ								
icpc									
solitaire									
line-following-robot									
safestringlib	İ								
stmr									
powerwindow									
tweetnacl-usable									
qlz									
2048									
hiredis									
verisec									
c-utils									
Total**	I						l		

Alarms: The number of alarms reported by the analyzer (Lower is better/more precise).

Time (s): The total analysis time in seconds (Lower is better).

Alignment: Loupe (GINE) predictions vs. expert annotations. Higher ratio (closer to 1/1) is better.

- **TO**: Timeout of 2700s
- Bold values: Best performing result w.r.t. metric
- Underlined values: Better than ⊥, but worse than ⊤
- *: Loupe (GINE) outperforms or matches Alu-100

				F	RAMA-(C (RQ2)			
Project				Т	Al	u-100		LOUPE (G	INE)
	#	Time	#	Time	#	Time	#	Time	Alignment
ioccc	81	114.25	77	675.94	80	110.20	<u>78</u> *	127.56	
mini-gmp	64	1.88	64	TO	64	2.02	64*	1.45	
genann	235	3.38	136	58.76	232	4.18	<u>169</u> *	4.80	
papabench	40	5.15	40	54.92	40	5.15	40*	3.68	1/1
chrony		TO		TO		TO		TO	27/38
kgflags	4	4.69	4	976.12	4	4.80	4*	102.05	
libspng	237	11.17	233	44.59	237	11.58	237*	8.43	
gnugo	114	21.84	114	TO	114	TO	100*	27.22	4/4
debie1	31	39.54	9	1158.30	20	81.53	11*	110.77	5/6
basic-cwe-examples	1	1.62	1	1.17	1	1.69	1*	0.70	
jsmn	68	20.83	2	12.54	68	21.14	2*	66.35	
microstrain	1287	36.51	1287	TO	699	25.61	700	19.35	
bench-moerman2018	3	39.29	3	28.88	3	41.49	3*	34.74	
khash	1	0.13	0	0.05	1	0.12	1*	0.03	1/1
c-testsuite	0	34.32	0	TO	0	TO	0*	23.49	
icpc	1	3.17	1	7.72	1	3.10	1*	2.30	
solitaire	182	2.31	182	TO	173	4.17	173*	18.46	6/6
line-following-robot	2	0.94	2	4.22	2	0.94	2*	0.64	
safestringlib	987	39.94	987	TO	845	69.19	453*	267.48	
stmr	67	5.21	67	602.19	67	5.38	67*	4.94	
powerwindow	1	18.18	1	67.33	1	18.17	1*	14.27	
tweetnacl-usable	99	3.26	3	26.32	4	25.54	56	4.96	2/2
qlz	26	11.13	26	TO	26	39.02	26*	130.15	
2048	30	0.99	10	55.19	13	4.54	12*	1.18	5/5
hiredis	248	110.69	210	244.97	224	101.75	241	92.39	
verisec							_		
c-utils									
Total**	3809	3230.488	3459	28319,22	2919	8681,39	2442*	3766,84	51/63 (81%

- ✓ Matches approximately 67% of the alarms reduced by T
- √ 7.5x faster than T
- ✓ **5 TO** less than T
- ✓ Reduce around 35% of alarms compared to ⊥
- ✓ Outperforms or matches Alu-100 87% of the time with almost half the time.
- ✓ Aligns with **51 out of 63** manually labeled unrolling decisions (81%)

Loupe (GINE) VS Alu

Let's examine how the learned heuristic Loupe (GINE) stacks up against the built-in heuristic (Alu) across varying unrolling factors.

- Increasing precision (low alarms) costs a massive,
 non-linear increase in time for Alu
- The learned model achieves consistent efficiency while maintaining high precision.
- ✓ Loupe (GINE) selectively unrolls required loops.
- ✓ Loupe (GINE) provides the superior balance, beating the built-in heuristic even at its extreme settings.

Consistency w.r.t Abstract Domains

Let's examine the consistency of our approach and how its alarm reduction trends perform across different abstract domain settings

- Alarm reduction trends remain uniform and predictable
- ✓ Loupe (GINE) consistently outperforms the built-in Alu heuristic in total alarm count on all configurations
- ✓ The absence of anomalies confirms the approach's robustness and scalability across varied configurations.

Transferability

Mopsa (RQ3)										
	L		Т		LOUPE (GINE)					
#	Time	#	Time	FRAMA-C #	Time	Mopsa #	Time			
398	5.75	337	1877.12	386	338.83	383	489.98			
15	1.60	15	1.82	15	7.90	15	1.67			
5700	20.59	5700	58.65	5700	47.02	5700	43.74			
3	0.04	3	0.14	3	0.03	3	0.04			
42	1.18	40	2.22	40	1.00	40	1.00			
64	0.36	61	1.12	64	0.25	64	0.24			
392	21.32	213	18.04	249	16.21	245	15.98			
19	0.34	19	TO	19	0.26	19	0.25			
156	2.58	65	432.85	<u>117</u>	3.22	<u>112</u>	3.26			
1	0.25	1	0.51	1	0.18	1	0.51			
729	1.03	729	ТО	692	194.98	692	567.24			
55	0.42	55	46.74	55	0.32	55	0.35			
11	0.28	11	0.62	11	0.26	11	0.21			
142	3.68	68	9.16	106	3.78	68	8.76			
1112	11.50	702	69.55	074	11 10	0.52	20.25			
1113	11.52	793	68.55	$\frac{974}{377}$	11.18	853 375	39.25			
380	2.87	375	33.26	311	17.79	3/3	22.00			
9220	73.88	8485	7950.86	8809	636.93	<u>8636</u>	1194.5			

- ✓ Retraining Loupe (GINE) for MOPSA achieved **75%** of T's alarm reduction.
- ✓ The MOPSA-specific model was 6.5x faster than the ⊤
 strategy.

Merci

Maykel Mattar^{1,2}, Michele Alberti¹, Valentin Perrelle¹, Salah Sadou²

- Université Paris-Saclay, CEA, List, Palaiseau, France
- Université Bretagne Sud, IRISA, Vannes, France

