Training Scalability of QRNNs

Erik Connerty & Michael Stewart

Idea

Training Data

The train data set will be the chaotic Kuramoto Sivashinsky 2-D System.

Hybrid QRNN

Data will be fed into a hybrid PyTorch model and trained using SPSA² and Parameter-shift³ as quantum gradient calculation methods.

Predicted Results

The accuracy of the model will be assessed on its time-series prediction accuracy and efficiency with the two training methods "SPSA" and "Parameter-shift"

- 1. Connerty, E.L., Evans, E.N., Angelatos, G., Narayanan, V. (2025). Quantum Observers: A NISQ Hardware Demonstration of Chaotic State Prediction Using Quantum Echo-state Networks. arXiv preprint arXiv:2505.06799.
- 2. Spall, J.C. (1998). AN OVERVIEW OF THE SIMULTANEOUS PERTURBATION METHOD FOR EFFICIENT OPTIMIZATION. Johns Hopkins Apl Technical Digest, 19, 482-492.
- 3. Mitarai, K., Negoro, M., Kitagawa, M., & Fujii, K. (2018). Quantum circuit learning. Physical Review. A/Physical Review, A, 98(3). https://doi.org/10.1103/physreva.98.032309

Milestones

1. Quantum NN Layer

use IBM's Qiskit to simulate the Quantum circuit in python.

2. PyTorch Integration

Wrap simulated quantum circuitry in PyTorch NN layer. Allowing an effective way to train and analyze a quantum based model.

3. Analysis

Compare Quantum
Neural network
performance and cost
with different training
methods.

Challenges

- Simulating quantum circuits is very difficult for classical computers and will take a lot of time.
- 2. The hybrid PyTorch layer for the QRNN is still not developed
- 3. Training recurrent models comes with its own difficulties¹

1. Pascanu, R., Mikolov, T., Bengio, Y. (2012). On the difficulty of training Recurrent Neural Networks. arXiv preprint arXiv:1211.5063.

Goal

Determine which QNN training methods are best for hybrid models