In a MCQ a student randomly guesses from the options if she does not know. Given that there were [m] choices in a question and that [p] is the chance she knows the answer, what is the probability that she knew the answer if she answered correctly?

- (A) $\frac{[m*p]}{[1+m*p]}$ (B) $\frac{1}{[1+(m-1)*p]}$
- (C) $\frac{1}{[1+m*p]}$
- (D) [Ans] $\frac{[m*p]}{[1+(m-1)*p]}$

Bag I contain $[w_1]$ white and $[b_1]$ black balls. Bag II contains $[w_2]$ white and $[b_2]$ black balls.

A ball is drawn at random from one of the bags, and it is found to be white. What is the probability that it was drawn from Bag I.

(A)
$$\frac{[w_1]}{[w_1+b_1]}$$

(B) $\frac{[w_1*(w_1+b_1)]}{[w_1*(w_1+b_1)+w_2*(w_2+b_2)]}$

(C)
$$\frac{[w_1*(b_1+b_2)]}{[w_1*(b_1+b_2)+w_2*(b_1+b_2)]}$$

(D) [Ans]
$$\frac{[w_1*(w_2+b_2)]}{[w_1*(w_2+b_2)+w_2*(w_1+b_1)]}$$

A man is known to speak truth [K] out of 10 times. He throws a die and reports that number obtained is a four. Find the probability that the number obtained is actually a four.

- (A) $\frac{1}{6}$
- (B) $\frac{[K]}{[60-5*K]}$ (C) $\frac{[K]}{[40-3*K]}$
- (C) $\frac{1}{[40-3*K]}$
- (D) [Ans] $\frac{[\mathcal{K}]}{[50-4*\mathcal{K}]}$

Given the following confusion matrix what is the precision?

	Predicted +ve	Predicted -ve
Actual +ve	[A]	[B]
Actual -ve	[C]	[D]

(A)
$$\frac{[A]}{[A+B]}$$

(B) **[Ans]**
$$\frac{[A]}{[A+C]}$$

(C)
$$\frac{[A+D]}{[A+B+C+D]}$$

(D)
$$\frac{[D]}{[D+C]}$$

Consider that numbers from 1 to [N**2] are arranged in a [N] by [M] dimensional square matrix M in a way such that first [M] numbers are in row 1, next [M] numbers in row 2 and so on. The rank of M is

(D) [A -- -1

(A) 1

- (B) **[Ans]** 2
- (C) [M]
- (D) None of these