3.8 Trobeu, en cada cas, una base i la dimensió dels subespais vectorials U, V, U+V i $U \cap V$. Determineu, en cada cas, si U = V, si l'espai total és suma dels subespais U i V i si l'espai total és suma directa dels subespais U i V.

- 1) En \mathbb{R}^3 : $U = \langle (1,2,-1), (2,-3,2) \rangle$ i $V = \langle (4,1,3), (-3,1,2) \rangle$.
- 2) En \mathbb{R}^4 : $U = \langle (1, -1, 1, 1), (2, 0, 1, 0), (1, 2, 1, 2) \rangle$ i $V = \{(a, b, c, d) \in \mathbb{R}^4 : a + b + c = 0, b + d = 0\}$.
- 3) En \mathbb{R}^4 : $U = \{(x, y, z, t) \in \mathbb{R}^4 : x + y + z + t = 0\}$ i $V = \{(\lambda a + a(2 + a)\mu, 0, 0, \lambda + \mu) \in \mathbb{R}^4 : \lambda, \mu \in \mathbb{R}\}$,

for a Troban was bose de V, cal solutional el sistem, so a dir, Troban els componats de Tots els vectors que complexen:

$$x+y+2=0$$
 $x+y+2=0$

A: $x=-y-2$
 $x=-x-y$
 $x=-x-y-1$
 $x=-x-y$

Robborivin:
$$(R, y, 2, 1) = \lambda(-1, 1, 0, -1) + \mu(-1, 0, 1, 0)$$

Tots els vectors que siguin C. L. or $\lambda \cdot v_1 + \mu \cdot v_2$ sois or V .
Is The , In mostra force sois, por definició, $\langle v_1, v_2 \rangle$, i $V = Nul \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = Cal \begin{pmatrix} -1 & -1 \\ 0 & 0 \end{pmatrix} \sim Rang = 2 = dim(V)$

Ex. 3.1

$$\begin{array}{l} x + y + z = 0 = \text{Nul}(111) \text{ subes pois de } F \\ z = \lambda \\ y = \mu \\ z = -\lambda - \mu \end{array}$$

$$\begin{array}{l} (x, y, z) = \lambda(-1, 0, 1) + \mu(-1, 1, 0) \Rightarrow F = \langle (-1, 0, 1), (-1, 1, 0) \rangle = Gl \begin{pmatrix} -1 & -1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$

3,S

Tenim un espai col format per dos vectors. Sabem que per a que un vector sigui de l'espai Nul, ha de ser combinació lineal dels vectors que compleixen les equacions (en aquest cas combinació lineal dels

Afegim el vector x, y, z a col, anomenem-lo w

$$\begin{pmatrix} 1 & 1 & 9 \\ 1 & 0 & 9 \\ 0 & 1 & 2 \end{pmatrix}$$

Cal que aquest sigui combinació lineal dels altres, i per tant que la matriu tingui rang 2. Fem gauss, i com que volem que el rang sigui dos, cal que la fila de dalt de tot sigui 0. Per tant, x-y-z ha de ser 0.

Escrit en forma d'equació, x - y - z = 0 = col(V).

És a dir, l'espai columna de V (pensem, tot l'espai que poden "abastar" els vectors de V, tots els punts de l'espai on es pot arribar amb ells, i per tant totes les combinacions lineals de v1,v2) és també tots els vectors que compleixen l'equació x-y-z = 0, ja que no modifiquen el rang de la matriu i per tant és cert

Per comprovar, ara invertim el procés per a trobar una base d'aquest espai nul, com en els exemples anteriors: