How to convert the chemical free energy to mechanical work?

What is the simplest molecular robot that can move?

Energy transducer

The free energy gain

$$A \rightleftharpoons B$$

$$\Delta G = \Delta G^0 + k_B T \ln \left(\frac{[B]}{[A]} \right)$$

$$\Delta G^{0} = -k_{B}T \ln \left(\frac{[B]_{eq}}{[A]_{eq}}\right)$$

This is chemical energy. How to convert to mechanical work?

$$A \rightleftharpoons B$$

$$\Delta G = \Delta G^0 + k_B T \ln \left(\frac{[B]}{[A]}\right)$$

$$\Delta G^{0} = -k_{B}T \ln \left(\frac{[B]_{eq}}{[A]_{eq}}\right)$$

Actin is probably the simplest machine

Actin is a protein

Many actin monomers selfassemble and form long filaments

These filaments generate force

Actin polymerisation can push cell membrane

White blood cell chasing bacteria

Cells can generate force and move

Mouse fibroblasts: Wound healing

Mouse melanoma cell

Chick fibroblast

Trout epidermal keratocyte

When actin polymerises how is chemical energy getting converted to mechanical energy?

Polymerisation

Monomer

⇒ Dimer

$$kmer \rightleftharpoons (k + 1)mer$$

Consider the following reaction

Imagine you put a bunch of monomers into a beaker

What will happen?

Imagine you put a bunch of monomers into a beaker

What will happen?

They will polymerise

Imagine length vs time of the polymer, and plot

Rate of polymerisation

$$k_{\rm on} = k_0[c]$$

Rate of polymerisation

$$k_{\rm on} = k_0[c]$$

Rate of de-polymerisation

$$k_{
m off}$$

As concentration of monomers decrease, rate of polymerisation will decrease, and will be equal to rate of depolymerisation

$$k_0[c] = k_{\text{off}}$$

When,
$$[c] = \frac{k_{\text{off}}}{k_0}$$

Critical concentration. At this [c], there is no average growth. Filament will just fluctuate around a constant length.

When,
$$[c] = \frac{k_{\text{off}}}{k_0}$$

Critical concentration. At this [c], there is no average growth. Filament will just fluctuate around a constant length.

Actin,
$$k_0 \approx 12 \ \mu M^{-1} s^{-1}$$

Actin, $k_{off} \approx 2 \ s^{-1}$

Polymerization can push against a wall = generate force

Imagine an experimental setup where you apply an external force, f, against a polymerising actin

If the external force is high, what happens to the polymerisation rate?

Can you think of a functional form using which polymerisation force will decrease.

Can you think of a functional form using which polymerisation force will decrease.

$$k_{on} = k_0[c] \exp\left(\frac{-fd}{k_BT}\right)$$

$$k_{off} = k_{off}^0$$
 Apply external force, f
$$k_{off} = \exp\left(\frac{-\Delta G}{k_BT}\right) \propto \exp\left(\frac{-fd}{k_BT}\right)$$

What is the maximum force it can generate?

What is the maximum force it can generate?

What is the maximum force it can generate?

How much force will it generate, if [c]= 10 micro molar?

$$f_{max} = -\frac{k_B T}{d} \ln \left(\frac{k_{off}^0}{k_0[c]} \right)$$

$$f_{max} = -\frac{k_B T}{d} \ln \left(\frac{k_{off}^0}{k_0[c]} \right)$$
 Actin, $k_0 \approx 12 \ \mu M^{-1} s^{-1}$ Actin, $k_{off}^0 \approx 2 \ s^{-1}$

$$f_{max} = -\frac{4 \text{ pN nm}}{3 \text{nm}} \ln \left(\frac{2 \text{s}^{-1}}{12 \mu \text{M}^{-1} \text{s}^{-1} \times 10 \mu \text{M}} \right) \approx 5 \text{pN}$$

This actin transducer converts free energy to mechanical force

$$f_{max} = -\frac{k_B T}{d} \ln \left(\frac{k_{off}^0}{k_0[c]} \right) \qquad f_{max} = -\frac{\Delta G}{d}$$

This is theoretical maximum!

Practically, it will generate a bit less than this

Wait! What I showed was a simplified version of how it works! Reality is more complex (and interesting!)

Actin monomers in solution is bound to ATP

ATP-bound actin polymerise

On the polymer, ATP become ADP

On the polymer, ATP become ADP

This has broken the symmetry — front and back!

Asymmetric rates

Centre of mass motion!

What is the velocity at "ATP" end (+ end)?

What is the velocity at the "ADP" end (minus end)?

What is the concentration at which the whole filament velocity is zero?

Compare the critical concentration of the whole filament with that of the plus end

Centre of mass motion!

Treadmilling of actin

If you block one end, force generation here too

Microtubules are another set of filaments; they have some similarity with actin the way they convert chemical energy to mechanical energy

It uses energy (hydrolysis) to bend

Bending and dynamics together can pull a ring

Summary

- Chemical energy to mechanical energy
- Transducer
- Actin
- Polymerisation/depolymerisation
- Maximum force generated