See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/257738909

Corrigendum to "Theoretical study of the electronic (hyper)polarizabilities of amino acids in gaseous and aqueous phases" [Comput. Theor. Chem. 976 (2011) 188–190]

ARTICLE in COMPUTATIONAL AND THEORETICAL CHEMISTRY · JANUARY 2012

Impact Factor: 1.55 · DOI: 10.1016/j.comptc.2011.11.033

CITATIONS	READS
6	23

1 AUTHOR:

Andrea Alparone

University of Catania

67 PUBLICATIONS **791** CITATIONS

SEE PROFILE

FISEVIER

Contents lists available at SciVerse ScienceDirect

Computational and Theoretical Chemistry

Corrigendum

Corrigendum to "Theoretical study of the electronic (hyper)polarizabilities of amino acids in gaseous and aqueous phases" [Comput. Theor. Chem. 976 (2011) 188–190]

Andrea Alparone*

Department of Chemistry, University of Catania, Viale A. Doria 6, Catania 95125, Italy

The author regrets that the range of $\langle \alpha \rangle$ values in Fig. 4 was incorrectly presented in the published article. Fig. 4 is correctly

gas phase
-- water solution

3

1

O gas phase
-- water solution

Ala

Gly

Ala

Gly

Fig. 4. Relationship between $\langle \gamma \rangle$ and $\langle \alpha \rangle$ values of the aliphatic amino acids computed at the MP2/aug-cc-pVDZ level. Gas phase $\langle \alpha \rangle$ values are taken from Ref. [1]. Gas phase: $\langle \gamma \rangle$ = $-0.186 + 0.020 \cdot \langle \alpha \rangle$, r = 0.99. Water solution: $\langle \gamma \rangle$ = $-0.594 + 0.034 \cdot \langle \alpha \rangle$, r = 0.99.

80

 $\langle \alpha \rangle$ (a.u.)

100

120

60

reproduced below (with the range for the $\langle\alpha\rangle$ values at 40–130 a.u. instead of 0–100 a.u.).

Reference

[1] S. Millefiori, A. Alparone, A. Millefiori, A. Vanella, Electronic and vibrational polarizabilities of the twenty naturally occurring amino acids, Biophys. Chem. 132 (2008) 139–147 (and references therein).