Exercices Cours 12

17.11 p. 1027

Exercice Moodle

Énergie cinétique d'un corps rigide

$$T = \frac{1}{2}Mv_{CM}^2 + \frac{1}{2}I_{CM}\omega^2$$

Translation du CM

Rotation autour du CM

Cas particuliers

Rotation non centrale (pivot O)

Si l'on connaît la position du CIR...

$$T = \frac{1}{2} I_{CIR} \omega^2$$

Principe travail-énergie

$$\sum U_{nc} = \sum \int_{\vec{r}_1}^{\vec{r}_2} \vec{F}_{nc} \cdot d\vec{r} + \sum \int_{\theta_1}^{\theta_2} Md\theta = E_2 - E_1$$

Travaux des forces non conservatives

Travaux des couples non conservatifs (frottement, couple externe)

Puissance instantanée

Force

$$P = \vec{F} \cdot \vec{v}$$

Couple

$$P = \overrightarrow{M} \cdot \overrightarrow{\omega}$$

Ressort de torsion

Couple exercé par un ressort de torsion

Constante du ressort [N·m/rad]

Déplacement angulaire $\theta - \theta_0$ par rapport à la position naturelle θ_0 [rad]

Énergie potentielle d'un ressort de torsion

$$V_{res} = \frac{1}{2}\kappa(\Delta\theta)^2$$

On peut définir une énergie potentielle, car le couple exercé par un ressort de torsion est un couple conservatif.

Exercice 17.11 p. 1027

La poulie double illustrée a une masse de 13,6 kg et un rayon de giration de 165 mm par rapport à son centre. Le cylindre *A* et le bloc *B* sont attachés à des cordes enroulées autour des poulies comme l'indique la figure. Le coefficient de frottement cinétique entre le bloc *B* et la surface est de 0,25. Le système se trouve dans la position indiquée lorsqu'il quitte l'état de repos.

Évaluez :

- a) La grandeur de la vitesse du cylindre *A* au moment où il touche le sol;
- b) La distance totale parcourue par le bloc *B* avant qu'il ne s'immobilise.

Exercice Moodle

La poulie A pèse 16 N.

 $I_A = 0.060 \text{ kg} \cdot \text{m}^2$

 $I_B = 0.014 \text{ kg} \cdot \text{m}^2$

Si le système est relâché à partir du repos, quelle est la vitesse de la masse de 8 kg lorsqu'elle est descendue de 0,6 m?

N.B. Le point **A** est un pivot.

