Análisis de datos de EEG

Event-Related Potential (ERP)

- Electroencefalografía (EEG)
- Asociada a un evento

("time-locked")

+ Datos comportamentales

Canales

30 of 30 electrode locations shown

Procesamiento de datos de EEG

- Extraer latencias (Matlab)
- Inspección visual manual(EEGlab) + Limpieza de datos: filtros de voltaje, ICA para remover artefactos
- Armar study (condiciones-sujetos)

ERP

Resolución temporal

Componentes específicos del lenguaje (?)

1980 Kutas N400

Sensoriales/Perceptuales Tempranos

Memoria-Lenguaje-Aprendizaje

Extraer ventanas

Por literatura previa

Por potenciales conocidos/buscados

Por la estadística del EEGLAB

Estadística por ventana

Matlab extrae un excel (script)

Canalxcond

Sujetos

fp1a	gabi	f3agabi	c3agabi	p3agabi	o1agabi	f7agabi
-3	,5103	1,0847	-2,2869	0,3389	-3,8123	1,9283
5	,1526	2,0734	-2,264	0,63154	-4,5084	0,83438
-0,	27275	-0,58266	1,2106	-2,4625	-2,4137	-1,8087
-2	,0124	-0,41936	-0,30131	-0,16569	6,7539	2,3291
-1	.,4097	0,89169	1,146	-2,3981	-2,7823	0,12931
0,	36814	2,9455	1,1662	-0,81583	-1,7652	1,0545
1	,6995	6,2642	4,8902	1,2402	3,5924	1,9911
0,	94964	-5,1216	1,4564	0,36969	-1,4606	-8,4325
1	6,645	-2,2484	1,6492	1,6668	-1,868	-5,2493
-0,	26235	0,70458	1,4005	0,55314	2,9077	14,603
		-				
0,0	51807	0,0013509	-0,18453	-1,7931	-2,7306	-0,50706
-7	,9843	-7,0908	-4,9333	-0,29059	3,9895	-8,8385
2	,3616	4,4161	3,7254	1,7455	0,099868	3,0891
8	3,2212	7,2917	1,7414	1,6171	5,3458	8,0404
-3	,8395	-4,8193	-4,764	-3,2825	-3,7878	-3,163
3	,0619	1,244	2,5296	4,8897	3,7955	0,56437
2	,5679	1,8714	2,7502	3,1362	0,66682	1,0402
-2	1,813	-2,1121	-1,772	2,6694	2,1098	-1,694
-3	,4659	-3,1376	-1,9223	-0,80511	-2,3426	-1,2459
8	,0816	-1,2901	1,5263	-0,37336	-1,4695	25,971
1	,2267	2,1078	1,6425	2,0866	-6,137	1,84
-0,	55541	-1,2679	-8,1825	-5,3582	-6,1151	1,6946
-2	,8276	1,5012	-0,27314	1,0019	-0,4485	1,6931
	-2,614	-2,0604	-3,4491	-2,6338	-0,38588	-2,8437

Canales-ROIs

COMPUTE Antizqagabi = MEAN(fp1agabi,f3agabi,fc5agabi,f7agabi,fc1agabi,t7agabi) . COMPUTE Posizagabi = MEAN(cp1agabi,c3agabi,cp5agabi,p7agabi,p3agabi,o1agabi) . COMPUTE Antderagabi = MEAN(f4agabi,fc2agabi,f8agabi,fc6agabi,fp2agabi,t8agabi) . COMPUTE Posderagabi = MEAN(cp2agabi,c4agabi,cp6agabi,p4agabi,p8agabi,o2agabi) .

ANOVA MR

- Medias de voltaje por ROI por condición
- Medidas repetidas porque es la misma población de sujetos (muestras relacionadas)
- ANOVA factorial
 - Factores fijos intra-sujetos: Grupo , Modo, Hemisferio,
 Región
 - Factor aleatorio: sujeto
 - VD: Voltaje

(se asume supuesto de esfericidad y normalidad)

```
22
23 GLM
24
     Antizgagabi Antizgagcerr Antizgmetabi Antizgmetcerr Antderagabi Antderagcerr Antdermetak
25
     Antdermetcerr Posizagabi Posizagcerr Posizmetabi Posizmetcerr Posderagabi
26
     Posderagcerr Posdermetabi Posdermetcerr
     /WSFACTOR = region 2 Polynomial hemsiferid 2 Polynomial grupo 2
27
     Polynomial mode 2 Polynomial
28
     /METHOD = SSTYPE(3)
29
30
     /EMMEANS = TABLES (OVERALL)
31
     /EMMEANS = TABLES (region) COMPARE ADJ (BONFERRONI)
                                                                         Diseño 2x2x2x2
32
     /EMMEANS = TABLES (hemsiferio) COMPARE ADJ (BONFERRONI)
33
     /EMMEANS = TABLES(grupo) COMPARE ADJ(BONFERRONI)
                                                                         VD:voltaje (mediaxROI)
34
     /EMMEANS = TABLES (modo) COMPARE ADJ (BONFERRONI)
35
     /EMMEANS = TABLES(region*hemsiferio)
36
     /EMMEANS = TABLES(region*grupo)
37
     /EMMEANS = TABLES(hemsiferio*grupo)
     /EMMEANS = TABLES(region*hemsiferio*grupo)
39
     /EMMEANS = TABLES(region*modo)
     /EMMEANS = TABLES(hemsiferio*modo)
40
41
     /EMMEANS = TABLES(region*hemsiferio*modo)
     /EMMEANS = TABLES(grupo*modo) COMPARE (modo) ADJ(BONFERRONI)
42
43
     /EMMEANS = TABLES(grupo*modo) COMPARE (grupo) ADJ(BONFERRONI)
44
     /EMMEANS = TABLES(region*grupo*modo) COMPARE (modo) ADJ(BONFERRONI)
45
     /EMMEANS = TABLES (region*grupo*modo) COMPARE (grupo) ADJ (BONFERRONI)
     /EMMEANS = TABLES(hemsiferio*grupo*modo)
46
47
     /EMMEANS = TABLES(region*hemsiferio*grupo*modo) COMPARE (modo) ADJ(BONFERRONI)
    /EMMEANS = TABLES(region*hemsiferio*grupo*modo) COMPARE (grupo) ADJ(BONFERRONI)
48
49
     /PRINT = DESCRIPTIVE ETASO
     /CRITERIA = ALPHA(.05)
     /WSDESIGN = region hemsiferio grupo modo region*hemsiferio
51
52
     region*grupo hemsiferio*grupo region*hemsiferio*grupo
53
     region*modo hemsiferio*modo region*hemsiferio*modo
54
     grupo*modo region*grupo*modo hemsiferio*grupo
55
    *modo region*hemsiferio*grupo*modo .
56
57
58
```

Prueba de esfericidad (Mauchly)

			Prueba de esferici	idad de Mauchly(b)			
Medida: MEASURE_1							
						Epsilon(a)	
Efecto intra-sujetos	W de Mauchly	Chi-cuadrado aprox.	gl	Significación	Huynh-Feldt	Límite-inferior	Greenhouse-Geisser
region	1,000	0,000	0		1,000	1,000	1,000
hemisferio	1,000	0,000	0		1,000	1,000	1,000
condicion	0,935	1,614	2	0,446	0,939	1,000	0,500
region * hemisferio	1,000	0,000	0		1,000	1,000	1,000
region * condicion	0,917	2,078	2	0,354	0,923	0,994	0,500
hemisferio * condicion	0,854	3,787	2	0,151	0,873	0,933	0,500
region * hemisferio * condicion	0,840	4,191	2	0,123	0,862	0,920	0,500

Si es significativo, se reporta el ajuste de GG

Resultados

			Pruebas de efect	os intra-sujetos.			
Medida: MEASUR	E_1						
		Suma de cuadrados					Eta al cuadrado
Fuente		tipo III	gl	Media cuadrática	F	Significación	parcial
region	Esfericidad asumida	68,035	1	68,035	12,712	0,001	0,33
	Greenhouse-Geisser	68,035	1,000	68,035	12,712	0,001	0,33
	Huynh-Feldt	68,035	1,000	68,035	12,712	0,001	0,33
	Límite-inferior	68,035	1,000	68,035	12,712	0,001	0,33
Error(region)	Esfericidad asumida	133,798	25	5,352			
	Greenhouse-Geisser	133,798	25,000	5,352			
	Huynh-Feldt	133,798	25,000	5,352			
	Límite-inferior	133,798	25,000	5,352			
iemisferio	Esfericidad asumida	2,750	1	2,750	0,752	0,394	0,02
	Greenhouse-Geisser	2,750	1,000	2,750	0,752	0,394	0,02
	Huynh-Feldt	2,750	1,000	2,750	0,752	0,394	0,02
	Límite-inferior	2,750	1,000	2,750	0,752	0,394	0,02
rror(hemisferio)	Esfericidad asumida	91,437	25	3,657			
	Greenhouse-Geisser	91,437	25,000	3,657			
	Huynh-Feldt	91,437	25,000	3,657	Se report	a igual la c	orrección (
	Límite-inferior	91,437	25,000	3,657		U	
ondicion	Esfericidad asumida	158,660	2	79,330	4,657	0,014	0,15
	Greenhouse-Geisser	158,660	1,878	84,490	4,657	0,016	0,15
	Huynh-Feldt	158,660	2,000	79,330	4,657	0,014	0,15
	Límite-inferior	158,660	1,000	158,660	4,657	0,041	0,15
rror(condicion)	Esfericidad asumida	851,757	50	17,035			
	Greenhouse-Geisser	851,757	46,946	18,143			
	Huynh-Feldt	851,757	50,000	17,035			
	Límite-inferior	851,757	25,000	34,070			

Experimento VN 1 Decisión léxica + EEG

Participantes

26 sujetos de 19 a 34 años (diestros, ecolarizados, sin problemas neurológicos ni medicación psicoactiva)

- Materiales
- 1. Agentivos (+afectado/ con cambio de estado)
 - Instrumentos o agentes → abrelatas, pintalabios, cortacésped
- 2. Locativos: lugar en donde se produce el evento
 - Nombres de lugares , objetos locativos → apoyabrazos, posavasos
- 3. Metafóricos (-afectado/sin cambio de estado/metáfora)
 - Objetos o nombres de persona calificativos → tragaluz , buscavidas
- 75 ítems experimentales (25 AG, 25 LOC, 25 MET)
- Fillers: compuestos VN NN, AN, palabras complejas largas. Pseudopalabras creadas con la misma estructura morfológica.
- 240 palabras y 240 no palabras
- Variables de control: frecuencia, longitud, familia morfológica, vecinos ortográficos

Resultados comportamentales

Aciertos

Tiempos de respuesta

• 220-350 ms

Efecto principal de Grupo (F (2, 50) = 5,04, p < 0,02).

Los compuestos MET elicitaron una mayor positividad respecto de los AG y LOC [P300]

• 350-450 ms

Interacción significativa de Grupo x Región x Hemisferio (F (2, 50) = 3,88, p<0,05). Negatividad significativamente mayor (p<0,05) en la región Al para compuestos AG y LOC vs. MET [LAN]

600 a 800 ms

Interacción significativa Grupo x Región (F (2,50) = 4,68, p<0,05). Los compuestos MET elicitaron una positividad mayor (p<0,05) en las regiones anteriores (AI y AD) comparados con los AG y LOC [P600]

- El procesamiento de los rasgos metafóricos: evidencias del P300
 - Saliencia del estímulo
 - Dificultad de procesamiento
- Procesos combinatorios y estructura argumental: evidencias del LAN (Left Anterior Negativity)
 - Integración de los constituyentes
 - Procesos morfosintácticos
- Positividad tardía como evidencia del reanálisis temático: el P600
 - Inhibición del significado literal del compuesto
 - Dificultad en la asignación temática

Datos con los que contamos

Experimento 2014- INCIHUSA-

Director: A.Wainselboim (último autor)

 Datos preprocesados: Fillers no pal VN de tres grupos- Controlados en Frecuencia y longitud

Pasos

1. Armar study- Ver ventanas de interés-Formular hipótesis.

2. Extraer datos

 Análisis ANOVA MR y Modelos de efectos mixtos de las mismas ventanas. Ver y buscar trabajos

PROPUESTA

Artículo

"Métodos de análisis estadístico para señales de electroencefalografía/datos neurofisiológicos: procesamiento de compuestos nuevos verbo-nombre del español"

- Introducción
- 2. Probrema e hipótesis

Plantear el fin exploratorio del análisis de datos a través de dos métodos.

Además de buscar o contrastar los tipos de VN

- 3. Método
 - 1. Materiales
 - 1. Grupos de VN con 45 items: con afectación (juegadamas) y locativos (buceamares)
 - 2. Sujetos prueba y todo lo demás (copiar de paper anterior)
- 4. Resultados
 - 1. Comportamentales
 - 2. EEG
 - 1. Con ANOVA
 - 2. Con MM
- 5. Conclusiones

(Mayoritariamente sobre el método. Breve sobre compuestos)

For the statistical analysis, a 200 ms baseline window preceding target word onset was not subtracted a priori but rather used as a covariate in linear mixed-effects models (Alday, in press) using the Ime4 package (v.1.1.19, Bates, Maechler, Bolker & Walker, 2014) in R (v.3.4.1, R Core Team, 2013). The mixed-effects models were computed using the singletrial mean-voltage in the N400 time window, with condition sequential difference coded and continuous covariates for word frequency, phonological neighborhood size, semantic distance, concreteness and plausibility. Sequential difference coding represents the differences between "sequential" conditions directly; here this means that the contrasts intermediate > congruent and incongruent > intermediate are directly represented in the model, with the congruent condition being implicitly encoded in the intercept. By using this coding scheme, the main effects in our model correspond directly to our pairwise hypotheses of interest across the entire the scalp. As such, all statistics reported here correspond directly to model coefficients and no post hoc tests were necessary