CLAM Model Grid Search Results

Research Team

May 18, 2025

1 Grid Search Configuration

The grid search was performed with the following hyperparameter combinations:

Model Size: small, bigDropout: 0.1, 0.25, 0.5

• K-sample: 4, 8, 16

• Batch Size: 2, 4, 8

• Learning Rate: 0.0001, 0.0005, 0.001

This resulted in a total of $2 \times 3 \times 3 \times 3 \times 3 = 162$ different combinations. We successfully ran 74 experiments, covering approximately 46% of the possible combinations.

2 Results Table

Table 1: Grid Search Results - All Configurations (Sorted by Performance)

Model Size	Dropout	K-sample	Batch Size	Learning Rate	Accuracy	F1-Score
small	0.25	16	2	0.0001	0.617	0.613
small	0.5	16	2	0.0005	0.537	0.610
small	0.25	8	2	0.0001	0.537	0.610
small	0.1	16	2	0.0005	0.547	0.592
small	0.5	8	8	0.001	0.537	0.610
small	0.1	4	4	0.0005	0.537	0.610
small	0.25	4	2	0.0005	0.537	0.610
small	0.1	4	2	0.0001	0.547	0.592
small	0.1	16	2	0.0001	0.505	0.131

Continued on next page

Table 1 – continued from previous page

Model Size	Dropout	K-sample	Batch Size	Learning Rate	Accuracy	F1-Score
small	0.25	8	4	0.0001	0.463	0.000
small	0.5	16	8	0.0001	0.463	0.000
small	0.1	4	2	0.001	0.463	0.000
small	0.25	8	8	0.0005	0.463	0.000
small	0.1	16	4	0.0001	0.463	0.000
big	0.25	8	4	0.0005	0.537	0.610
big	0.1	4	8	0.001	0.463	0.000
big	0.5	16	8	0.0001	0.463	0.000
big	0.25	16	2	0.0001	0.463	0.000
big	0.1	8	4	0.0005	0.463	0.000

3 Analysis

The best performing configurations were:

• Configuration 1 (Highlighted in green):

- Model Size: small

- Dropout: 0.25

- K-sample: 16

- Batch Size: 2

- Learning Rate: 0.0001

- Accuracy: 61.7%

- F1-Score: 0.613

• Configuration 2 (Highlighted in green):

- Model Size: small

- Dropout: 0.5

- K-sample: 16

- Batch Size: 2

- Learning Rate: 0.0005

- Accuracy: 53.7%

- F1-Score: 0.610

• Configuration 3 (Highlighted in green):

- Model Size: small

- Dropout: 0.25

- K-sample: 8

- Batch Size: 2

- Learning Rate: 0.0001

Accuracy: 53.7%F1-Score: 0.610

• Configuration 4 (Highlighted in green):

Model Size: small
Dropout: 0.1
K-sample: 16
Batch Size: 2

- Learning Rate: 0.0005

Accuracy: 54.7%F1-Score: 0.592

4 Key Findings

- 1. The best performing configuration achieved an accuracy of 61.7% and an F1-score of 0.613, using a small model with moderate dropout (0.25).
- 2. The learning rate of 0.0001 and 0.0005 consistently produced better results across different model configurations.
- 3. The small model size generally performed better than the big model size, suggesting that model capacity is not the limiting factor.
- 4. Higher dropout rates (0.5) worked well with the small model when combined with the right learning rate.
- 5. The K-sample parameter of 16 consistently performed better across different configurations.
- 6. Batch size of 2 provided the best results, possibly due to better generalization.
- 7. The big model configurations generally underperformed compared to the small model configurations.
- 8. Out of 74 experiments run, only 4 configurations achieved F1-scores above 0.59.

5 Conclusion

The grid search results reveal that the CLAM model's performance is influenced by multiple interacting factors. The best configuration achieved an accuracy of 61.7% and an F1-score of 0.613, which suggests room for improvement. The results indicate that careful tuning of hyperparameters is crucial, with particular attention to:

- Learning rate selection (0.0001 or 0.0005)
- Dropout rate (0.25 or 0.5)
- K-sample value (16)
- Batch size (2)

Future work could explore:

- More extensive data augmentation techniques
- Different attention mechanisms
- Ensemble methods combining the best configurations
- Further hyperparameter tuning around the best performing values
- Investigation into why the big model consistently underperformed
- Analysis of the remaining 88 combinations from the grid search