PROBABILITY THEORY LECTURE 5

	LECTURE 5		
	Per Sidén		
	Division of Statistics		
Dept. of C	omputer and Information Science Linköping University		
PER SIDÉN (STATISTICS, LIU)	PROBABILITY THEORY - L5	1 / 13	
OVERVIEW LECTURE 5			Notes
► Linear algebra recap			
Multivariate normal dist	tribution		
PER SIDÉN (STATISTICS, LIU)	Probability Theory - L5	2 / 13	
LINEAR ALGEBRA RE	C A D		Notes
LINEAR ALGEBRA RI	CAI		
► Eigen-decomposition	of an $n \times n$ symmetric matrix A		
	C'AC = D		
	., λ_n) and C is an orthogonal matrix.		
Orthogonal matrix:C'C = I			
► C ⁻¹ = C' ► det C = ±1			
► The columns of C = (c	$(1,,\mathbf{c}_n)$ are the eigenvectors, and λ_i is th	e <i>i</i> th	
largest eigenvalue. \blacktriangleright det $\mathbf{A} = \lambda_1 \cdot \lambda_2 \cdots \lambda_n$.			
PER SIDÉN (STATISTICS, LIU)	PROBABILITY THEORY - L5	3 / 13	
OHADDATIC FORMS	AND DOCUMENT DEFINITENESS		Notes
QUADRATIC FORMS	AND POSITIVE-DEFINITENESS		Notes
QUADRATIC FORMS	AND POSITIVE-DEFINITENESS		Notes
QUADRATIC FORMS • Quadratic form			Notes
► Quadratic form	$Q(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x}$		Notes
 ▶ Quadratic form ▶ Q(x) is positive-defini ▶ Q(x) is positive-semic 	$Q(\mathbf{x})=\mathbf{x}'\mathbf{A}\mathbf{x}$ te if $Q(\mathbf{x})>0$ for all $\mathbf{x}\neq0$. lefinite if $Q(\mathbf{x})\geq0$ for all $\mathbf{x}\neq0$.		Notes
 ▶ Quadratic form ▶ Q(x) is positive-defini ▶ Q(x) is positive-semic ▶ Q(x) is positive-defini 	$Q(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x}$ te if $Q(\mathbf{x}) > 0$ for all $\mathbf{x} \neq 0$.		Notes

Notes

PER SIDÉN (STATISTICS, LIU) PROBABILITY THEORY - L5

4 / 13

MATRIX SQUARE ROOT

▶ If $D = diag(\lambda_1, ..., \lambda_n)$ is diagonal, then $\tilde{D} = diag(\sqrt{\lambda_1}, ..., \sqrt{\lambda_n})$ is the square root of D:

$$\tilde{D}\tilde{D}=D$$

and we can write $D^{1/2} = \tilde{D}$.

► The square root of a positive definite matrix A

$$A = CDC'$$

can be defined as

$$A^{1/2} = C\tilde{D}C'$$

where $\tilde{D} == diag(\sqrt{\lambda_1},...,\sqrt{\lambda_n})$.

▶ Check:

$$A^{1/2}A^{1/2} = C\tilde{D}C'C\tilde{D}C' = C\tilde{D}\tilde{D}C' = CDC' = A$$

▶ We also have

$$(A^{-1})^{1/2} = (A^{1/2})^{-1}$$

which is denoted by $A^{-1/2}$.
SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L5

5 / 13

Notes

Notes

COVARIANCE MATRIX

► Mean vector

$$\mu = \mathbf{EX} = \begin{pmatrix} EX_1 \\ \vdots \\ EX_n \end{pmatrix}$$

► Covariance matrix

$$\Lambda = \textit{Cov}(\mathbf{X}) = \textit{E}(\mathbf{X} - \mu)(\mathbf{X} - \mu)'$$

TH Every covariance matrix is positive semidefinite.

 $\blacktriangleright \ \det \Lambda \geq 0.$

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L5

6 / 13

LINEAR TRANSFORMATIONS

lacktriangledown Recall that if Y=aX+b, where $E(X)=\mu$ and $Var(X)=\sigma^2$ then

$$E(Y) = a\mu + b$$
$$Var(Y) = a^2\sigma^2$$

TH Multivariate linear transformation

Let Y = BX + b, where X is $n \times 1$ and B is $m \times n$. Assume $E\mathbf{X}=\mu$ and $\mathit{Cov}(\mathbf{X})=\Lambda.$ Then,

$$E(\mathbf{Y}) = \mathbf{B}\mu + \mathbf{b}$$

 $Cov(\mathbf{Y}) = \mathbf{B}\Lambda\mathbf{B}'$

TH Let $\mathbf{X}=(X_1,...,X_n)'$ where $X_1,...,X_n\stackrel{iid}{\sim} \mathcal{N}(0,1).$ Then

$$\mathbf{Y} = \mu + \Lambda^{1/2} \mathbf{X} \sim N(\mu, \Lambda)$$

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L5

7 / 13

8 / 13

Notes

MULTIVARIATE NORMAL DISTRIBUTION

- ▶ Multivariate normal $\mathbf{X} \sim N(\mu, \Lambda)$, where \mathbf{X} is a $n \times 1$ random vector.
- ► Three equivalent definitions:
 - ▶ X is (multivariate) normal iff a'X is (univariate) normal for all a.
 - lacktriangle X is multivariate normal iff its characteristic function is

$$arphi_{\mathbf{X}}(\mathbf{t}) = \mathit{Ee}^{i\mathbf{t}'\mathbf{X}} = \exp\left(i\mathbf{t}'\mu - rac{1}{2}\mathbf{t}'\Lambda\mathbf{t}
ight)$$

▶ **X** is multivariate normal iff its density function is of the form

$$\mathit{f}_{\mathbf{X}}(\mathbf{x}) = \left(\frac{1}{2\pi}\right)^{n/2} \frac{1}{\sqrt{\det \Lambda}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})' \Lambda^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}$$

▶ Bivariate normal (n = 2)

$$\Lambda = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

where $-1 \le \rho \le 1$ is the correlation coefficient.

Notes

PER SIDÉN (STATISTICS, LIU) Probability Theory - L5

PROPERTIES OF THE NORMAL DISTRIBUTION

▶ Let $X \sim N(\mu, \Lambda)$.

TH Linear combinations: $\mathbf{Y} = \mathbf{B}\mathbf{X} + \mathbf{b}$, where \mathbf{X} is $n \times 1$ and \mathbf{B} is $m \times n$. Then

$$\mathbf{Y} \sim \mathcal{N}(\mathbf{B}\mu + \mathbf{b}, \mathbf{B}\Lambda\mathbf{B}')$$

COR The components of X are all normal (B = (0, ...1, 0, ..., 0))

$$Y_i \sim N(\mu_i, \Lambda_{ii})$$

COR Let
$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{pmatrix}$$
 where \mathbf{X}_1 is $n_1 \times 1$ and \mathbf{X}_2 is $n_2 \times 1$ $(n_1 + n_2 = n)$.

$$\mathbf{X}_1 \sim \mathcal{N}(\mu_1, \Lambda_1)$$

where μ_1 are the n_1 first elements of μ and Λ_1 is the $n_1 \times n_1$ submatrix of Λ .

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L5

9 / 13

MARGINAL NORMAL MAY NOT BE JOINTLY NORMAL

- lacktriangle We know that $f X \sim N(\mu, \Lambda)$ implies that all marginals are normal.
- ► The converse does not hold. Normal marginals does not imply that the joint distribution is normal.

Marginals are normal, joint is not normal

PER SIDÉN (STATISTICS, LIU)

Probability Theory - L5

10 / 13

CONDITIONAL DISTRIBUTIONS FROM $N(\mu, \Lambda)$

▶ Let $\begin{pmatrix} X \\ Y \end{pmatrix} \sim N_2(\mu, \Lambda)$, where

$$\mu = \left(\begin{array}{c} \mu_{\rm x} \\ \mu_{\rm y} \end{array} \right) \quad {\rm and} \quad \ \Lambda = \left(\begin{array}{cc} \sigma_{\rm x}^2 & \rho \sigma_{\rm x} \sigma_{\rm y} \\ \rho \sigma_{\rm x} \sigma_{\rm y} & \sigma_{\rm y}^2 \end{array} \right) \label{eq:mu_x}$$

► Then

$$Y|X = x \sim N \left[\mu_y + \rho \frac{\sigma_y}{\sigma_x} (x - \mu_x), \ \sigma_y^2 (1 - \rho^2) \right]$$

▶ The regression function E(Y|X) is linear and Var(Y|X) =residual

TH Let $\mathbf{X}=\left(\begin{array}{c}\mathbf{X}_1\\\mathbf{X}_2\end{array}\right)$ and partition μ and Λ accordingly as

$$\mu=\left(egin{array}{c} \mu_1 \\ \mu_2 \end{array}
ight)$$
 and $\Lambda=\left(egin{array}{cc} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{21} & \Lambda_{22} \end{array}
ight)$. Then

$$\mathbf{X}_1 | \mathbf{X}_2 = \mathbf{x}_2 \sim N \left[\mu_1 + \Lambda_{12} \Lambda_{22}^{-1} (\mathbf{x}_2 - \mu_2), \ \Lambda_{11} - \Lambda_{12} \Lambda_{22}^{-1} \Lambda_{21} \right]$$

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L5

11 / 13

INDEPENDENCE AND NORMALITY

- ► Correlation measures linear association (dependence).
- \blacktriangleright In general: Uncorrelated \nrightarrow Independence.
- ▶ In the normal distribution: Uncorrelated \leftrightarrow Independence.
- ▶ Remember that: X and Y are jointly normal \rightarrow the regression function is linear \rightarrow the linear predictor is optimal.
- ▶ $X_1, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, then $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$ are independent.

N	<u>~</u> +	^c

Notes

Notes

Notes

12 / 13

PRINCIPAL COMPONENTS

 $\begin{tabular}{ll} \blacktriangleright & \mbox{Let } \mathbf{C}\Lambda\mathbf{C}' = \mathbf{D} = \textit{diag}\left(\lambda_1,...,\lambda_n\right). \\ \mbox{TH } & \mbox{Let } \mathbf{X} \sim \mathcal{N}(\mu,\Lambda) \mbox{ and set } \mathbf{Y} = \mathbf{C}'\mathbf{X}, \mbox{ then} \\ \end{tabular}$

$$\mathbf{Y} \sim \mathit{N}(\mathbf{C}'\mu, \mathbf{D})$$

so that the components of \mathbf{Y} are independent and $\mathit{Var}(Y_i) = \lambda_i$.

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L5

Votes	
Notes	
votes	
Notes	
Votes	
	_