ECO 530 - Exercise 1

Fall 2023 - Devan Arnold

Q1

Consider the function:

$$y = f(x) = 8 \cdot x - 3$$

a. Evaluate f(x) at x=3

To evaluate the above expression, I will code the function as an expression and store the value of the expression in that variable y. Setting x=3 yields:

```
y <- expression(8*x-3)
x <- 3
eval(y)</pre>
```

```
## [1] 21
```

Therefore, f(x=3)=21

b. What is the slope of the function?

Utilizing the above expression y=8x-3 we will apply the R derivative function D() to determine the slope of the function

```
y_prime <- D(y,'x')
eval(y_prime)</pre>
```

```
## [1] 8
```

As shown, this yields a constant value of 8

c. How does the slope of the function at x=3 compare to the slope of the function at x=6

Since the slope of y=8x-3 is a constant value of 8, the value of x will not influence the slope of y. To prove this, we will run the below code:

```
x <- 3
eval(y)
```

```
## [1] 21

eval(y_prime)

## [1] 8

x <- 6
  eval(y)

## [1] 45

eval(y_prime)

## [1] 8</pre>
```

As we can see, y^{\prime} is not affected by the value of x, as implied by the claim of constant slope.

Q2

Consider the function:

$$y = f(x) = 3 - x + 2 \cdot x^2$$

a. Evaluate f(x) at x=3

Similar to Question 1 part (a), first we will define y as an expression in terms of x

$$y \leftarrow expression(3 - x + (2*(x^2)))$$

Then, we will set x=3 and then evaulate y(x)

Resulting in y(x=3)=18

b. What is the slope of the function?

To determine the slope of the function y(x)=f(x) we will use the D() function in R to set the value of the expression y', which we will use the variable y_prime to represent:

```
y_prime <- D(y,'x')
print(y_prime)</pre>
```

```
## 2 * (2 * x) - 1
```

Unlike in Question 1, part (b) the slope of $y=3-x+2\cdot x^2$ is NOT a constant value, and is thus dependent on the value of x pursuant to the equation y'=-1+4x.

c. How does the slope of the function at x=3 compare to the slope of the function at x=6

Since y'(x) is not a constant slope, the value of y'(x=3)=/=y'(x=6). We can demonstrate this using the code below:

```
x <- 3
eval(y_prime)
```

```
## [1] 11
```

```
x <- 6
eval(y_prime)
```

```
## [1] 23
```

As this code shows, y'(3)=11 and y'(6)=23. This is consistant with the y' function derived in part (a).

d. Does this function have a maximum or a minimum? What is it?

To determine if the function y has a minimum or maximum we will determine if there exists a root for y' such that y'(x) = 0. If this value does exist, then we will move forward to determine the nature of this point.

```
y_prime_parameters <- c(-1,4)
y_roots <- polyroot(y_prime_parameters)
print(y_roots)</pre>
```

```
## [1] 0.25+0i
```

So from the above code, we can say that there does exist a root for y' at x=0.25. Next, we need to determine if this value represents a minimum or maximum of the function. to do this, we will determine the value of y' at x values greater than and less than the root value of x=0.25.

```
x <- 0.24
y_prime_1 <- eval(y_prime)

x <- 0.26
y_prime_2 <- eval(y_prime)

if (y_prime_1 > y_prime_2){
   inflection <- "Maxima"
} else if (y_prime_2 > y_prime_1){
   inflection <- "Minima"
}

results <- "The point x=0.25 represents a"
results <- paste(results, inflection)

print(results)</pre>
```

```
## [1] "The point x=0.25 represents a Minima"
```

As we can see, the extrema that occurs at x=0.25 represents a minimum of the function $y=3-x+2\cdot x^2$. We can visulize this with the following plot:

Consider the function:

$$y = f(x, z) = 100 + 3 \cdot x^2 + 2 \cdot z - 5 \cdot x \cdot z$$

a. Define and derive the two elements below:

$$\frac{\partial y}{\partial x}$$
 $\frac{\partial y}{\partial z}$

The first element is the partial derivative of y with respect to x. We can evaluate this by treating the variable z as a constant and performing derivation on y with respect to x. This evaluates as follows:

```
y <- expression(100+3*(x^2)+2*(z)-5*(x*z))
partial_yx <- D(y,'x')
print(partial_yx)</pre>
```

The second element is the partial derivative of y with respect to z. As above, this represents the derivative of the y function with respect to z while holding the other variable, x, constant. This results in:

```
partial_yz <- D(y,'z')
print(partial_yz)</pre>
```

Thus,
$$rac{\partial y}{\partial x}=6x-5z$$
 and $rac{\partial y}{\partial z}=2-5x$

b. Define and derive the two elements below:

$$\frac{\partial^2 y}{\partial x^2} \qquad \frac{\partial^2 y}{\partial z \partial x}$$

The element $\frac{\partial^2 y}{\partial x^2}$ represents the second order partial derivative of y with respect to x. We can determine this expression by taking the partial derivative of $\frac{\partial y}{\partial x}$ with respect to x. This evaluates as:

```
partial_yxx <- D(partial_yx,'x')
print(partial_yxx)</pre>
```

```
## 3 * 2
```

Thus $\frac{\partial^2 y}{\partial x^2}=6$, since we again hold z values constant and treat them as such in our derivation.

The second element, $\frac{\partial^2 y}{\partial z \partial x}$ represents the second order partial derivative of y, but this time with respect to z then x. In order to evaluate this, we can take our result from $\frac{\partial y}{\partial z}$ in part (a) and then perform partial derivation again but with respect to x. This evaluates as:

```
partial_yzx <- D(partial_yz,'x')
print(partial_yzx)

## -5</pre>
```

Thus yielding $\frac{\partial^2 y}{\partial z \partial x} = -5$ for similar reasons as above.

Q4

Evaluate the following expressions. Show your work where necessary.

a.
$$\sum_{y=1}^{10} y$$

A summation function from y=1 to y=10 of y. This evaluates to:

```
y <- function(lower,upper){
  output <- 0
  for(i in lower:upper){
    output <- output + i
  }
  return(output)
}</pre>
```

```
## [1] 55
```

Thus,
$$\sum_{y=1}^{10}y=55$$

b. $\sum_{i=1}^{10} 5$ (or, more generally, any constant c)

A summation function from i=1 to i=10 of 5. This evaluates to:

```
con <- function(const,lower,upper){
  output <- 0
  for(i in lower:upper){
    output <- output + const
  }
  return(output)
}</pre>
```

```
## [1] 50
```

This implies that $\sum_{i=1}^{10} 5 = 50$. More broadly, any constant value that has the summation operation performed over it is equal to that constant times the number of occurrences in the summation. Another way to say that is the range over which the constant is summed times the constant is the result of this operation.

```
con(10,9,10)
```

```
## [1] 20
```

```
con(3,5,10)
```

```
## [1] 18
```

```
con(2,1,2)
```

c.
$$rac{df}{dx}$$
 where $f(x)=(12x+3)(6x^2+8x-x^3)$

As seen in Questions 1 & 2, derivation of functions can be performed by R, resulting in:

```
f <- expression((12*x+3)*(6*(x^2)+8*(x)-(x^3)))
D(f,'x')
```

Thus,
$$rac{df}{dx}=12(6x^2+8x-x^3)+(12x+3)(12x+8-3x^2)$$
 . Simplifying yields $rac{df}{dx}=-48x^3+207x^2+228x+24$

d.
$$rac{df}{dx}$$
 where $f(x)=rac{12x+3}{(6x^2+8x-x^3)}$

In order for us to evaluate this derivative we must employ the quotient rule, which is:

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f(x)'g(x) - f(x)g(x)'}{g(x)^2}$$

Where f(x)=12x+3, $f(x)^\prime=12$, $g(x)=6x^2+8x-x^3$, and $g(x)^\prime=12x+8-3x^2$.

Plugging these values into the quotient rule yields:

$$\frac{df}{dx} = \frac{12(6x^2 + 8x - x^3) - (12x + 3)(12x + 8 - 3x^2)}{(6x^2 + 8x - x^3)^2}$$

Which simplifies to:

$$\frac{df}{dx} = \frac{24x^3 - 117x^2 - 36x - 24}{(6x^2 + 8x - x^3)^2}$$

As with prior parts, R can also perform this evaluation. Doing so yields:

e.
$$rac{df}{dx}$$
 where $f(x)=e^{-6x+2}$

For the equation $y=e^{f(x)}$, we employ a method similar to the product rule used in part (c). Since $e^{f(x)}$ follows the pattern $\frac{dy}{dx}=\frac{df(x)}{dx}e^{f(x)}$ in its derivation, we can apply this form to the equation in part (e) f(x)=-6x+2 f'(x)=-6 Thus, $\frac{df(x)}{dx}=-6e^{-6x+2}$

And once again, in R

Since the above log operation would be in base e (In), the function then is just multipled by the constant 6, yielding the same result as my derivation.

Indicate whether the following expressions are correct or incorrect. If incorrect, briefly explain why.

a.
$$log(x^{eta}) = eta \cdot log(x)$$

CORRECT. This follows the power rule of logarithms

b.
$$log(0) = 1$$

INCORRECT. log(1) = 0, but log(0) = undefined as no base can be raised to a power to achieve a value of 0.

c.
$$log(6x) = 6 \cdot log(x)$$

INCORRECT. The product rule of logarithms states that $log(A \cdot B) = log(A) + log(B)$.

d.
$$log(xyz) = log(x) + log(y) + log(z)$$

CORRECT. This follows the product rule of logarithms.

e.
$$log(x^2) = log(x)log(x)$$

INCORRECT. Per the power rule of logarithms, $log(A^B) = B \cdot log(A)$. The above represents $(log(x))^2$.

f.
$$\sum_{i=1}^{100} \left(X_i + Y_i + Z_i
ight) = \sum_{i=1}^{100} X_i + \sum_{i=1}^{100} Y_i + \sum_{i=1}^{100} Z_i$$

CORRECT. The summation of addition is the same as the addition of summation.

g.
$$\sum_{i=1}^{100} \left(X_i \cdot Y_i + Z_i
ight) = \sum_{i=1}^{100} X_i \cdot \sum_{i=1}^{100} Y_i + \sum_{i=1}^{100} Z_i$$

INCORRECT. The summation of a product is not equal to the product of summation. For example:

```
a <- 1:15
b <- 16:30

for(i in 1:length(a)){
   sum_product <- a[i]*b[i]
}
sum_product</pre>
```

[1] 450

```
product_sum <- sum(a)*sum(b)
product_sum</pre>
```

h.
$$\lim_{n o\infty}rac{6}{n}=0$$

CORRECT. Dividing a constant by a large number approaching infinity approaches 0.

i.
$$\lim_{n o\infty}rac{6n^2+n}{n^2}=0$$

INCORRECT. Since the numerator and denominator are both growing at the same exponential rate of n^2 and the numerator has an additional n term, the limit as this approaches infinity would be greater than 0.

j.
$$\prod_{i=1}^5 y_i = y_1 \cdot y_2 \cdot y_3 \cdot y_4 \cdot y_5$$

CORRECT. This demonstrates the correct usage of the product operation.

k.
$$\prod_{i=1}^5 e^{y_i} = e^{(y_1+y_2+y_3+y_4+y_5)}$$

CORRECT. Multiplication of like bases allows you to instead add the exponents and then use the resulting sum on the base. In other words, $e^{y_1} + e^{y_2} + e^{y_3} + e^{y_4} + e^{y_5} = e^{(y_1 + y_2 + y_3 + y_4 + y_5)}$. This is the proper usage of the product function.

For the Questions that Follow:

Assume that the X,Y, and Z are independent random variables with expected values μ_X , μ_Y , and μ_Z and variances σ_X^2 , σ_Y^2 , and σ_Z^2 respectively.

Q6

Let W be a new random variable defined as:

$$W = 6X + Y - Z$$

a. What is E[W]?

Since $E[X]=\mu_x$, and by the properties of the expected value function E[A+B]=E[A]+E[B] and $E[aA]=a\cdot E[A]$ we can determine that:

$$E[W] = E[6X + Y - Z]$$
 $E[W] = E[6x] + E[Y] + E[-Z]$
 $E[W] = 6E[X] + E[Y] - E[Z]$
 $E[W] = 6\mu_x + \mu_y - \mu_z$

b. What is σ_W^2 ?

Variance has the following properties that I will utilize to evaluate σ_w^2 . First, the scalar translations of random variables affect the variance by a squared factor of the scalar, such that $\sigma_{a\cdot A}^2=a^2\cdot\sigma_A^2$. Secondly, for independent random variables A and B, the variance of their sum or difference is equal to the sum of their variances, such that $\sigma_{A\pm B}^2=\sigma_A^2+\sigma_B^2$. With these properties in mind, we can now evaluate σ_W^2 .

$$egin{aligned} \sigma_{W}^{2} &= \sigma_{6X+Y-Z}^{2} \ \sigma_{W}^{2} &= \sigma_{6X}^{2} + \sigma_{Y}^{2} + \sigma_{Z}^{2} \ \sigma_{W}^{2} &= 6^{2} \cdot \sigma_{X}^{2} + \sigma_{Y}^{2} + \sigma_{Z}^{2} \end{aligned}$$

Q7

Let R be a new random variable defined as:

$$R = Y - 12$$

a. What is ${\cal E}[R]$?

Since the expected value of a constant is a constant and a linear function, we know that

E[A+a]=E[A]+a. Thus, the expected value of R can be determined as follows:

$$E[R] = E[Y-12]$$

$$E[R] = E[Y] + E[-12]$$

From question 6 above, we know that $E[Y]=\mu_y$, thus

$$E[R] = \mu_y - 12$$

b. What is σ_R^2 ?

As an additional property of variance, we know that a random variable that is subjected to addition or subtraction does NOT experience changes to its variance. This is because the variation of data from the population mean is not affected by shifting the function up or down the number line by a constant - the spread of the data around the mean remains the same. Thus, $\sigma_{A+a}^2=\sigma_A^2$, allowing us to solve for σ_R^2 as follows:

$$egin{aligned} \sigma_R^2 &= \sigma_{Y-12}^2 \ \sigma_R^2 &= \sigma_{Y}^2 \end{aligned}$$

c. Assume that Y was normally distributed. Sketch the probability density functions for Y and R.

Q8

Let Q be a new random variable defined as:

$$Q=rac{Z-\mu_Z}{\sigma_Z}$$

a. What is E[Q]?

Since μ_Z and σ_Z are both constant, as in they don't vary as Z varies, they can be treated as some rational constant. Thus:

rational constant. Thus:
$$E[Q] = E[rac{Z-\mu_z}{\sigma_Z}]$$
 $E[Q] = rac{1}{\sigma_z}E[Z-\mu_z]$ $E[Q] = rac{1}{\sigma_z}(E[Z]-\mu_Z)$ $E[Q] = rac{1}{\sigma_z}(\mu_z-\mu_z)$ $E[Q] = rac{1}{\sigma_z}(0)$ $E[Q] = 0$

b. What is σ_Q^2 ?

Using the previously derived properties of variance:

$$\sigma_Q^2=\sigma_Q^2=\sigma_Z^2$$
 $\sigma_Q^2=\sigma_Q^2=\sigma_Q^2$ $\sigma_Q^2=\sigma_Z^2$ $\sigma_Q^2=\sigma_Z^2\cdotrac{\mu_Z}{\sigma_Z}$ $\sigma_Q^2=\sigma_Z^2\cdotrac{1}{\sigma_z}^2$ $\sigma_Q^2=1$

c. Assume that Y was normally distributed. Sketch the probability density function for Z and Q.

R Exercises

Write a script that allows you to answer the questions below. Submit both a text version of your answers and the (heavily commented) script that you used to generate your answers.

a. Load the tidyverse and vtable libraries.

```
#(a) Install/Load packages
#install.packages("tidyverse")
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.3.1
## Warning: package 'ggplot2' was built under R version 4.3.1
## Warning: package 'tibble' was built under R version 4.3.1
## Warning: package 'tidyr' was built under R version 4.3.1
## Warning: package 'readr' was built under R version 4.3.1
## Warning: package 'purrr' was built under R version 4.3.1
## Warning: package 'dplyr' was built under R version 4.3.1
## Warning: package 'stringr' was built under R version 4.3.1
## Warning: package 'forcats' was built under R version 4.3.1
## Warning: package 'lubridate' was built under R version 4.3.1
## — Attaching core tidyverse packages —
                                                           ----- tidyverse 2.0.0 --
## √ dplyr 1.1.2 √ readr 2.1.4
## \checkmark forcats 1.0.0 \checkmark stringr 1.5.0
## √ ggplot2 3.4.2 √ tibble 3.2.1
                        √ tidyr
## ✓ lubridate 1.9.2
                                     1.3.0
## √ purrr 1.0.1
                                                       ---- tidyverse_conflicts() --
## -- Conflicts --
## X dplyr::filter() masks stats::filter()
## X dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts
to become errors
#install.packages("vtable")
library(vtable)
## Warning: package 'vtable' was built under R version 4.3.1
```

```
## Loading required package: kableExtra

## Warning: package 'kableExtra' was built under R version 4.3.1

##
## Attaching package: 'kableExtra'
##
## The following object is masked from 'package:dplyr':
##
## group_rows

library(ggplot2)
# Above code only requires that the install.packages() functions be removed from
# comment status to be run for the first time (user should delete the leading '#')
```

b. Set pathways to the data'', scripts', and ``tables and figures' folders associated with Exercise 1.

```
#(b) Sets the file paths for data, scripts, and tables and figures
datapath <- "F:/Users/Devan/Documents/Education/ECO530/Assignments/Assignment 1/data"
scriptpath <- "F:/Users/Devan/Documents/Education/ECO530/Assignments/Assignment 1/script
s"
tablesfigurespath <- "F:/Users/Devan/Documents/Education/ECO530/Assignments/Assignment 1
/tables and figures"</pre>
```

c. Change the directory to the data'' folder and read in the cars.csv" data file.

```
#(c) Sets the working directory to the data folder
setwd(datapath)
# Reads the csv file name 'cars' in the datapath folder and stores the data into a
# new data frame name cars.data
cars.data <- read.csv("cars.csv",header=TRUE)</pre>
```

d. Use the summary table command () to report the contents of the data.

```
#(d) Creates a summary table of the cars.data data frame st(cars.data)
```

Summary Statistics

Variable N Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max

Variable	N	Mean	Std. Dev.	Min	Pctl. 25	Pctl. 75	Max
price	74	6165	2949	3291	4220	6332	15906
mpg	74	21	5.8	12	18	25	41
rep78	69	3.4	0.99	1	3	4	5
headroom	74	3	0.85	1.5	2.5	3.5	5
trunk	74	14	4.3	5	10	17	23
weight	74	3019	777	1760	2250	3600	4840
length	74	188	22	142	170	204	233
turn	74	40	4.4	31	36	43	51
displacement	74	197	92	79	119	245	425
gear_ratio	74	3	0.46	2.2	2.7	3.4	3.9
foreign	74						
Domestic	52	70%					
Foreign	22	30%					

Starting with the ``cars" data frame:

a. Use <code>group_by()</code> and summarize() to create a data frame called ``summary" containing the average price, mpg, and weight of Foreign/Domestic cars in the data.

```
## # A tibble: 2 × 4
   foreign `Avg. MPG` `Avg. Weight` `Avg. Price`
##
##
    <chr>
                <dbl>
                              <dbl>
                                          <dbl>
## 1 Domestic
                 19.8
                               3317
                                          6072.
## 2 Foreign
                 24.8
                               2316
                                          6385.
```

b. Use kable() to make a nicely formatted version of your ``summary()" data frame.

```
#(b) Creates a formatted table from the summary.data data frame kable(summary.data)
```

foreign Avg. MPGAvg. WeightAvg. Price

Domestic 19.8 3317 6072.42 Foreign 24.8 2316 6384.68

c. Make a new data frame containing only Domestic Cars called "domestic.cars"

```
#(c) Creates a new data frame named domestic.cars with only information from cars.data
# on domestically manufactured cars.
domestic.cars <- cars.data[cars.data$foreign=="Domestic",]
domestic.cars</pre>
```

##			•	. •	•	headroom		_	_	
##		AMC Concord	4099	22	3	2.5	11	2930	186	40
##		AMC Pacer	4749	17	3	3.0	11	3350	173	40
##		AMC Spirit		22	NA	3.0	12	2640	168	35
##		Buick Century		20	3	4.5	16	3250	196	40
##		Buick Electra	7827	15	4	4.0	20	4080	222	43
##		Buick LeSabre	5788	18	3	4.0	21	3670	218	43
##		Buick Opel		26	NA	3.0	10	2230	170	34
##		Buick Regal		20	3	2.0	16	3280	200	42
##		Buick Riviera		16	3	3.5	17	3880	207	43
##		Buick Skylark	4082	19	3	3.5	13	3400	200	42
##		Cad. Deville		14	3	4.0	20	4330	221	44
##		Cad. Eldorado		14	2	3.5	16	3900	204	43
##		Cad. Seville		21	3	3.0	13	4290	204	45
##		Chev. Chevette	3299	29	3	2.5	9	2110	163	34
##		Chev. Impala	5705	16	4	4.0	20	3690	212	43
##		Chev. Malibu	4504	22	3	3.5	17	3180	193	31
		Chev. Monte Carlo	5104	22	2	2.0	16	3220	200	41
##		Chev. Monza	3667	24	2	2.0	7	2750	179	40
##		Chev. Nova	3955	19	3	3.5	13	3430	197	43
##		Dodge Colt	3984	30	5	2.0	8	2120	163	35
##		Dodge Diplomat	4010	18	2	4.0	17	3600	206	46
##		Dodge Magnum	5886	16	2	4.0	17	3600	206	46
##		Dodge St. Regis	6342	17	2	4.5	21	3740	220	46
##		Ford Fiesta	4389	28	4	1.5	9	1800	147	33
##		Ford Mustang	4187	21	3	2.0	10	2650	179	43
		Linc. Continental		12	3	3.5	22	4840	233	51
##		Linc. Mark V		12	3	2.5	18	4720	230	48
##		Linc. Versailles		14	3	3.5	15	3830	201	41
##		Merc. Bobcat	3829	22	4	3.0	9	2580	169	39
##		Merc. Cougar	5379	14	4	3.5	16	4060	221	48
##		Merc. Marquis		15	3	3.5	23	3720	212	44
##		Merc. Monarch	4516	18	3	3.0	15	3370	198	41
##		Merc. XR-7		14	4	3.0	16	4130	217	45
##		Merc. Zephyr	3291	20	3	3.5	17	2830	195	43
##		01ds 98	8814	21	4	4.0	20	4060	220	43
##		Olds Cutl Supr	5172	19	3	2.0	16	3310	198	42
##		Olds Cutlass	4733	19	3	4.5	16	3300	198	42
##		Olds Delta 88	4890	18	4	4.0	20	3690	218	42
##		Olds Omega	4181	19	3	4.5	14	3370	200	43
##		Olds Starfire	4195	24	1	2.0	10	2730	180	40
##		Olds Toronado		16	3	3.5	17	4030	206	43
##		Plym. Arrow	4647	28	3	2.0	11	3260	170	37
##		Plym. Champ	4425	34	5	2.5	11	1800	157	37
##		Plym. Horizon	4482	25	3	4.0	17	2200	165	36
##		Plym. Sapporo	6486	26	NA	1.5	8	2520	182	38
##		Plym. Volare	4060	18	2	5.0	16	3330	201	44
##		Pont. Catalina	5798	18	4	4.0	20	3700	214	42
##		Pont. Firebird	4934	18	1	1.5	7	3470	198	42
##		Pont. Grand Prix	5222	19	3	2.0	16	3210	201	45
##	50	Pont. Le Mans	4723	19	3	3.5	17	3200	199	40

	51	Pont. Phoenix			NA	3.5	13	3420	203	43
##	52		4172	24	2	2.0	7	2690	179	41
##		displacement gear_			•					
##		121		Domes						
##		258		Domes						
##		121		Domes						
##	4	196	2.93	Domes	tic					
##		350		Domes						
##	6	231	2.73	Domes	tic					
##	7	304	2.87	Domes	tic					
##	8	196		Domes						
##	9	231		Domes						
##		231		Domes						
##		425		Domes						
##		350		Domes						
##		350		Domes						
	14	231		Domes						
##		250		Domes						
##		200		Domes						
##		200		Domes						
##		151		Domes						
##		250		Domes						
##		98		Domes						
##		318		Domes						
	22	318		Domes						
##		225		Domes						
	24	98		Domes						
##	_	140		Domes						
##		400		Domes						
##		400		Domes						
##		302		Domes						
	29			Domes						
	30	302		Domes						
##		302		Domes						
	32	250		Domes						
##		302		Domes						
	34	140		Domes						
## ##	35	350 221		Domes Domes						
## ##		231 231		Domes						
## ##		231		Domes						
##		231		Domes						
##		151		Domes						
##		350		Domes						
	42	156		Domes						
##		86		Domes						
	44	105		Domes						
##		119		Domes						
##		225		Domes						
	47			Domes						
	48	231		Domes						
	. •			_ 5						

## 50 231 2.93 Domestic ## 51 231 3.08 Domestic ## 52 151 2.73 Domestic	##	49	231	2.93 Domestic
	##	50	231	2.93 Domestic
## 52 151 2.73 Domestic	##	51	231	3.08 Domestic
	##	52	151	2.73 Domestic

d. Add a variable (using the mutate() function) to the domestic.cars data frame that is equal to price'' divided by mpg".

```
#(d) Adds a column to the domestic.cars data frame that contains the value of
# that car's price divided by its mpg rating. Rounds to 1 digit after the decimal.
domestic.cars<- domestic.cars %>% mutate(pricepermpg = round(price/mpg,digits=1))
domestic.cars
```

##			•	. •	•	headroom		_	_	
##		AMC Concord	4099	22	3	2.5	11	2930	186	40
##		AMC Pacer	4749	17	3	3.0	11	3350	173	40
##		AMC Spirit		22	NA	3.0	12	2640	168	35
##		Buick Century		20	3	4.5	16	3250	196	40
##		Buick Electra	7827	15	4	4.0	20	4080	222	43
##		Buick LeSabre	5788	18	3	4.0	21	3670	218	43
##		Buick Opel		26	NA	3.0	10	2230	170	34
##		Buick Regal		20	3	2.0	16	3280	200	42
##		Buick Riviera		16	3	3.5	17	3880	207	43
##		Buick Skylark	4082	19	3	3.5	13	3400	200	42
##		Cad. Deville		14	3	4.0	20	4330	221	44
##		Cad. Eldorado		14	2	3.5	16	3900	204	43
##		Cad. Seville		21	3	3.0	13	4290	204	45
##		Chev. Chevette	3299	29	3	2.5	9	2110	163	34
##		Chev. Impala	5705	16	4	4.0	20	3690	212	43
##		Chev. Malibu	4504	22	3	3.5	17	3180	193	31
		Chev. Monte Carlo	5104	22	2	2.0	16	3220	200	41
##		Chev. Monza	3667	24	2	2.0	7	2750	179	40
##		Chev. Nova	3955	19	3	3.5	13	3430	197	43
##		Dodge Colt	3984	30	5	2.0	8	2120	163	35
##		Dodge Diplomat	4010	18	2	4.0	17	3600	206	46
##		Dodge Magnum	5886	16	2	4.0	17	3600	206	46
##		Dodge St. Regis	6342	17	2	4.5	21	3740	220	46
##		Ford Fiesta	4389	28	4	1.5	9	1800	147	33
##		Ford Mustang	4187	21	3	2.0	10	2650	179	43
		Linc. Continental		12	3	3.5	22	4840	233	51
##		Linc. Mark V		12	3	2.5	18	4720	230	48
##		Linc. Versailles		14	3	3.5	15	3830	201	41
##		Merc. Bobcat	3829	22	4	3.0	9	2580	169	39
##		Merc. Cougar	5379	14	4	3.5	16	4060	221	48
##		Merc. Marquis		15	3	3.5	23	3720	212	44
##		Merc. Monarch	4516	18	3	3.0	15	3370	198	41
##		Merc. XR-7		14	4	3.0	16	4130	217	45
##		Merc. Zephyr	3291	20	3	3.5	17	2830	195	43
##		01ds 98	8814	21	4	4.0	20	4060	220	43
##		Olds Cutl Supr	5172	19	3	2.0	16	3310	198	42
##		Olds Cutlass	4733	19	3	4.5	16	3300	198	42
##		Olds Delta 88	4890	18	4	4.0	20	3690	218	42
##		Olds Omega	4181	19	3	4.5	14	3370	200	43
##		Olds Starfire	4195	24	1	2.0	10	2730	180	40
##		Olds Toronado		16	3	3.5	17	4030	206	43
##		Plym. Arrow	4647	28	3	2.0	11	3260	170	37
##		Plym. Champ	4425	34	5	2.5	11	1800	157	37
##		Plym. Horizon	4482	25	3	4.0	17	2200	165	36
##		Plym. Sapporo	6486	26	NA	1.5	8	2520	182	38
##		Plym. Volare	4060	18	2	5.0	16	3330	201	44
##		Pont. Catalina	5798	18	4	4.0	20	3700	214	42
##		Pont. Firebird	4934	18	1	1.5	7	3470	198	42
##		Pont. Grand Prix	5222	19	3	2.0	16	3210	201	45
##	50	Pont. Le Mans	4723	19	3	3.5	17	3200	199	40

##	51	Pont. Phoenix	4424	19 N	NA 3.	5	13	3420	203	43
##	52	Pont. Sunbird	4172	24	2 2.6	0	7	2690	179	41
##		displacement gear_	ratio	foreigr	n priceper	npg				
##	1	121	3.58	Domestic	186	6.3				
##	2	258	2.53	Domestic	279	9.4				
##	3	121	3.08	Domestic	172	2.7				
##	4	196	2.93	Domestic	240	0.8				
##	5	350	2.41	Domestic	52:	1.8				
##	6	231	2.73	Domestic	32:	1.6				
##	7	304	2.87	Domestic	17:	1.3				
##	8	196	2.93	Domestic	259	9.4				
##	9	231	2.93	Domestic	648	8.2				
##	10	231	3.08	Domestic	214	4.8				
##	11	425	2.28	Domestic	813	3.2				
##	12	350	2.19	Domestic	103	5.7				
##	13	350	2.24	Domestic	75	7.4				
##	14	231	2.93	Domestic	113	3.8				
##	15	250	2.56	Domestic	356	6.6				
##	16	200	2.73	Domestic	204	4.7				
##	17	200	2.73	Domestic	232	2.0				
##	18	151	2.73	Domestic	152	2.8				
##	19	250	2.56	Domestic	208	8.2				
##	20	98	3.54	Domestic	132	2.8				
##	21	318	2.47	Domestic	222	2.8				
##	22	318	2.47	Domestic	36	7.9				
##	23	225	2.94	Domestic	37	3.1				
##	24	98	3.15	Domestic	156	6.8				
##	25	140	3.08	Domestic		9.4				
##	26	400	2.47	Domestic		8.1				
##	27	400	2.47	Domestic	1132	2.8				
##	28	302	2.47	Domestic	96:	1.9				
##	29	140	2.73	Domestic	174	4.0				
##	30	302	2.75	Domestic	384	4.2				
##	31	302	2.26	Domestic	41:	1.0				
##	32	250	2.43	Domestic	250	0.9				
##	33	302	2.75	Domestic	450	0.2				
##	34	140	3.08	Domestic	164	4.6				
##	35	350	2.41	Domestic	419	9.7				
##	36	231	2.93	Domestic	272	2.2				
##	37	231	2.93	Domestic	249	9.1				
##	38	231	2.73	Domestic	27:	1.7				
##	39	231	3.08	Domestic	220	0.1				
##	40	151	2.73	Domestic	174	4.8				
##	41	350	2.41	Domestic	648	8.2				
##	42	156	3.05	Domestic	166	6.0				
##	43	86	2.97	Domestic	130	0.1				
##	44	105	3.37	Domestic		9.3				
##	45	119	3.54	Domestic	249	9.5				
##	46	225	3.23	Domestic	22!	5.6				
##	47	231	2.73	Domestic		2.1				
##	48	231	3.08	Domestic	274	4.1				

## 40	221	2 02 Domostis	274 0
## 49	231	2.93 Domestic	274.8
## 50	231	2.93 Domestic	248.6
## 51	231	3.08 Domestic	232.8
## 52	151	2.73 Domestic	173.8

Generate vectors containing 250 draws from each of the following normal distributions:

- $ullet \ var1 \sim N(3,1)$
- $ullet \ var2 \sim N(-1,2)$
- $ullet \ var3 \sim N(2,3)$

Place all three variables in a data frame together called ``random.draws". Include in your data frame a variable called "id" that indicates an observations row number.

```
```r
Creates var1, var2, and var3. Performs 250 draws from a normal distribution
based on the mean and standard deviation provided
var1 <- rnorm(250,mean=3,sd=sqrt(1))</pre>
var2 <- rnorm(250, mean=-1, sd=sqrt(2))</pre>
var3 <- rnorm(250,mean=2,sd=sqrt(3))</pre>
Creates the id variable for later use
id <- 1:250
Creates the 'random.draws' data frame by combining the vectors var1, var2, and var3
random.draws <- data.frame(id,var1,var2,var3)</pre>
random.draws
. . .
##
 id
 var1
 var2
 var3
1
 1 2.3406391
 0.46490414
 5.374726871
2
 2 4.1584851 -2.76329634 1.366386524
3
 3 3.7083028 1.86820118 5.260092569
4
 4 1.6986142 -1.29788536 2.849975597
5
 5 4.2638219 0.39146543 3.850547383
 6 2.4595408 1.00276420 -2.793867550
6
7
 7 2.3945001 -0.83954071 1.814266826
8
 8 4.2481664 -0.18249298
 5.259665086
9
 9 3.1326033 0.05280666 -1.215262315
 10 3.7339385 -1.77505830 2.410117185
10
11
 11 2.2416654 -1.74207398 2.636635646
12
 12 3.5446571 -1.05874223 5.827492428
13
 13 3.3160953 -1.63036969 1.888556329
 14 3.3749880 -1.21667793 0.195070517
14
15
 15 4.2724221 -0.49169971 3.805155101
 16 2.4106619 -4.04304343 7.686624526
16
17
 17 4.1521901 1.31464423 -0.817553050
 18 2.3213758 -0.31989191 1.040014893
18
##
 19
 19 3.0093241 -0.10972609 -0.237746339
 20 2.8010698 -0.93145613 2.674389929
20
21
 21 3.3040054 -1.63125729
 2.560896191
##
 22
 22 3.2493362 -2.38904336 2.339524663
23
 23 3.4819438 -3.82023192 -0.227130776
24
 24 2.0719775 0.97485942 1.772051755
25
 25 2.2253335 -0.26596263 1.645701059
26
 26 3.5118037 -1.44701092 1.871523219
27
 27 2.6464869
 1.54476957 4.940668392
28
 28 2.2715900 1.23778816 1.075669197
##
 29
 29 1.9458871 -0.48711852 2.196643642
30
 30 3.6406332 -0.51716699 4.047465335
31
 31 3.4318606 -0.17090211 -0.165327295
32
 32 2.2345026 -2.67656309 -0.137488964
33
 33 2.4099141 -2.32698940 1.315235112
34
 34 2.3112589 -2.62379895
 2.401467568
```

```
35
 35 2.6687803 0.39045519 4.811161885
36
 36 4.8379192 -0.09741336 -2.130957680
37
 37 0.8864581 -1.25340039 4.284323822
38
 38 4.8410500 -2.85106560 1.861851111
 39 2.5601531 2.03881130 -0.257969151
39
 40 3.6374408 -2.75647136 1.791679786
40
41
 41 3.0331648 -0.53351911 -0.165620966
42
 42 2.6394468 -0.12896756 0.824371820
43
 43 2.0444426 -4.11330587 6.106475652
44
 44 2.4620564 -0.48740760 0.535228897
45
 45 0.6386191 -1.03497458 3.408719754
46
 46 3.7177482 -0.03659012 2.110166647
47
 47 4.6164864 -2.18522180 2.972442185
48
 48 1.5609729 0.66663094
 3.475679352
49
 49 2.1736694 0.54083761 2.477908662
50
 50 5.0282428 -1.95577589 1.071786410
 51 3.0389713 -1.50885324 2.685779307
51
 52 3.4467969 -1.10456063 -0.548361588
52
 53 2.2550954 -2.51459146 2.539800170
53
54
 54 3.4844987 -1.56972932 -0.185380928
55
 55 5.6436888 -1.48254450 2.542833573
56
 56 2.4318607 0.09367543 -1.510131667
57
 57 3.1783977 -1.35403983 2.990127201
58
 58 3.5862842 -1.01875650 2.719176245
59
 59 2.1446753 -3.00860785 2.253043059
60
 60 1.2930866 0.27947737 2.381447661
61
 61 2.5391142 1.31062503 -0.440006017
62
 62 2.7496083 0.74267218 1.990085915
63
 63 4.1857750 1.20884517 -0.278432143
64
 64 2.1101243 -1.34502470 4.488931872
65
 65 2.6100962 -0.06737674 0.405276527
66
 66 1.6108610 -3.83841590 0.771036702
 67 2.3238506 -0.92469994 1.935558004
67
68
 68 3.4181948 -1.71584599 3.232155650
69
 69 1.4478418 1.42661622 4.025367279
70
 70 3.6967678 0.42923920 4.298649334
71
 71 1.1317960 -2.60396317
 0.757428076
72
 72 3.7676487 -1.27480658 0.774765624
73
 73 1.7286794 -1.15029607 -0.325372085
 74 1.4906844 -0.79699175 -0.234405010
74
 75 1.4884850 -3.39665459 1.102274604
75
76
 76 3.3551154 -2.92340644 -0.003664721
77
 77 3.8019597 -0.60674000 1.511886905
78
 78 4.2366532 -0.95211590 2.489506873
79
 79 2.6679904 -2.30465240 0.530604387
 80 2.8985913 -0.68627507 1.208328091
80
81
 81 1.7277361 -2.72209718
 3.177820794
82
 82 3.8573044 -0.71404849 1.964605008
83
 83 3.4623827 -2.19703092 -0.058679394
84
 84 2.1329039 -2.37377062 2.582100931
85
 85 3.3049417 0.66224023 4.087393791
```

```
86
 86 3.1530188 -1.97656061 1.286697985
87
 87 3.6645094 -0.27730771 2.465737182
88
 88 4.3400146 -1.30728094 1.731987921
89
 89 4.3454108 -2.18738039 3.804669733
90
 90 3.8303533 -1.58398479 4.556461678
91
 91 3.6553977 -0.94643861 3.201299655
92
 92 4.3586748 -1.13518071 0.151602048
93
 93 1.3213564 0.82178796 1.508099252
94
 94 3.8968970 -0.57968415 0.852734056
95
 95 1.1289800 -1.29138954 2.367415121
96
 96 3.7202125 -0.42998146 2.825527429
97
 97 2.4654164 -1.46773207 1.161161244
 98 3.0180332 -0.15637301 2.329866090
98
99
 99 4.3615217 -2.85987796 1.171197614
100 100 3.5097910 -0.89820263 -0.293086966
101 101 2.9680694 -0.67814023 2.447573124
102 102 5.6996832 -0.91132462 0.958024719
103 103 3.9240192 -1.52608013 1.829397715
104 104 2.1703895 -3.48259096 1.505236100
105 105 2.2974114 0.18910121 1.381193351
106 106 4.3706061 -0.93986360 1.186533375
107 107 3.7084236 -0.65711119 -0.515883828
108 108 3.6433099 -2.07185823 1.822868934
109 109 3.6368532 -0.76109549 6.803451065
110 110 3.9615594 -2.72091080 1.810803008
111 111 4.5413570 0.19184959 3.693557269
112 112 2.6842351 -0.59477486 0.053029262
113 113 3.0973255 -1.50307831 -2.910722142
114 114 2.7808387 -1.68586421 4.726437408
115 115 4.4655897 -0.62256662 2.369982632
116 116 4.9248422 -1.34883170 4.127635109
117 117 2.3874604 3.04942290 -2.171243222
118 118 2.2193305 -1.00028089 4.387297098
119 119 3.7079846 -3.30269834 -2.045259915
120 120 2.0900897 -1.61027168 2.567763666
121 121 2.5355019 -0.89580652 2.752734064
122 122 3.2546358 -1.85939260 0.869048721
123 123 1.5681212 -1.54511061 1.212414191
124 124 5.1613758 0.77755437 -1.025864624
125 125 3.8514311 1.38461483 2.330707840
126 126 3.1452648 -0.96007648 3.522715464
127 127 4.1176548 -0.43409244 1.864874173
128 128 3.4896020 0.09977402 2.972072566
129 129 2.3811066 -1.93498846 2.889943902
130 130 3.4339098 0.14871784 1.801483393
131 131 3.3625692 -0.54089277 1.101415858
132 132 2.0967136 -1.69466895 2.388696438
133 133 4.7855621 -0.19491332 2.365336328
134 134 1.7465504 0.03863181 0.151587694
135 135 4.9328789 -0.40575920 -0.127639385
136 136 2.2199372 -1.31256632 4.521242592
```

```
137 137 4.1225183 -1.19452514 1.799620151
138 138 1.9501096 -0.36472410 2.969817668
139 139 1.4689719 -2.37837906 4.049884649
140 140 3.6495796 -0.27536693 -0.135757521
141 141 4.0798462 -2.03851204 1.939080739
142 142 2.4340098 -0.50482837 1.624537344
143 143 3.9870481 -1.90524007 2.069365945
144 144 2.5378565 2.12838971 1.193046740
145 145 3.8421679 1.19831685 4.004269619
146 146 3.8502573 -0.64929068 -0.130401330
147 147 3.3100238 -1.80733499 1.522225738
148 148 2.8508458 -0.83639811 2.460753590
149 149 3.6937165 -1.78118966 1.644147096
150 150 4.4733310 -3.01628393 0.957947572
151 151 2.1090241 -1.43525699 0.634645683
152 152 2.9513976 -2.32596408 1.582600853
153 153 2.3567002 0.56532699 1.450871477
154 154 1.6969808 0.43392182 0.279469635
155 155 1.9011182 0.05760114 3.563472238
156 156 1.7092503 0.99038992 4.166562817
157 157 3.7871191 -0.42557313 2.539972336
158 158 3.5316692 -0.87111700 -0.119288849
159 159 4.1610813 -0.13031935 -1.479050240
160 160 4.0904419 0.89673430 2.308109258
161 161 1.4839443 -3.44726179 2.569418033
162 162 4.4469075 -2.33294184 2.141536949
163 163 1.3728467 -0.29009770 4.798740108
164 164 2.7864967 -0.12385917 3.018555426
165 165 4.2702699 -2.10795015 2.140614207
166 166 3.8081393 -3.38682977 1.976733226
167 167 2.4348547 0.30359204 1.472670434
168 168 4.4339205 -2.68510226 2.095346975
169 169 1.6458827 -1.89406090 3.452224139
170 170 4.1382490 -1.53696469 3.992446752
171 171 2.9028764 -1.72572655 1.477790470
172 172 2.0141719 -2.48036908 4.098746719
173 173 2.2776278 -1.64375422 4.716069983
174 174 2.2510162 -0.11116854 0.848922328
175 175 2.2255744 2.15548351 4.455701362
176 176 1.9665040 -1.48090601 2.266940937
177 177 3.7273687 1.76220661 3.491240015
178 178 3.7749585 -2.43709963 2.468743303
179 179 2.1536034 -1.93941145 3.593149238
180 180 2.4693451 0.23440483 1.189995109
181 181 2.7199348 -1.21243288 6.119654648
182 182 1.9401715 -1.46601045 2.562581732
183 183 4.6249937 -1.00506956 -0.288881638
184 184 4.1312076 2.74739269 3.436588967
185 185 3.0645149 -4.45105115 2.043436934
186 186 0.9979898 -0.65191503 2.832342285
187 187 4.2263074 -0.35694618 3.032392294
```

```
188 188 3.5055028 -2.23293688 2.663297506
189 189 2.0637296 -1.22486581 2.931972356
190 190 2.6044970 -1.23911855 -1.077195564
191 191 2.5076496 0.96859164 -0.533603510
192 192 3.8796115 -0.85087284 -0.520982795
193 193 3.0072800 -2.42693514 1.575751686
194 194 3.1558667 -0.69451796 0.784070782
195 195 1.9359587 -1.41586764 1.273827896
196 196 3.9105010 -2.62911990 -0.110310231
197 197 2.3778319 0.43119416 2.003090731
198 198 2.7779552 -0.16295723 1.896514050
199 199 2.8854024 -0.36299792 2.653760223
200 200 2.3825735 -2.46223723 3.339754202
201 201 3.4546565 -0.28073167 1.024046385
202 202 3.6616661 -0.59742253 3.772969574
203 203 3.8793264 1.59810842 2.249145936
204 204 3.3888127 2.37363855 1.134187877
205 205 3.3282333 -0.54687923 2.220393516
206 206 2.5363598 -0.14997864 0.634405401
207 207 1.9636876 -2.46711379 0.275894633
208 208 2.7180401 0.11249630 3.002500724
209 209 2.3614748 -0.90060219 0.773625853
210 210 2.7402490 1.17252139 2.477254409
211 211 3.0779090 -2.84435663 0.442263101
212 212 1.7534337 -0.63242008 -1.078124072
213 213 3.3752313 -0.72280655 1.698194831
214 214 4.0668094 2.21833315 1.714531146
215 215 2.9489013 3.03326084 2.929171866
216 216 2.6389585 -0.20163116 3.451378299
217 217 2.7746594 -1.90470212 1.116961065
218 218 4.0595564 -2.35916083 0.741508187
219 219 3.8522095 -0.46339348 2.079610156
220 220 3.3120428 0.37836084 2.100491310
221 221 3.1411880 -1.55727111 0.264677096
222 222 3.2406915 -0.33000100 -1.407198162
223 223 2.2938487 -1.05084804 4.502615375
224 224 1.7200654 1.55867696 2.962379966
225 225 3.5117919 -2.74775890 4.326418039
226 226 3.4519592 -1.08356357 -1.592525945
227 227 3.7345215 -2.15975535 0.229149390
228 228 1.7317686 -2.11604288 3.449765355
229 229 4.0937645 -0.70319347 -2.888873391
230 230 2.8241075 -2.37201145 3.117612773
231 231 4.0713683 -0.75327998 0.046244283
232 232 3.3689491 -0.93608619 1.949876928
233 233 3.8606570 0.22158248 1.207296497
234 234 3.0775890 -0.96701826 -0.415168354
235 235 4.0965670 -1.23852383 0.896419323
236 236 4.8590189 -2.05353440 1.647317872
237 237 1.2520256 1.60468891 4.921587356
238 238 3.9498457 -0.13472283 2.584324963
```

```
239 239 2.7439308 -0.90514650
 3.990705856
240 240 1.5629543 -2.17645785
 4.187936136
241 241 1.5512238 -0.85110292
 1.434321618
242 242 2.9252098
 3.83897151
 1.972211830
243 243 1.5981426
 1.50193651
 2.967081344
 244 244 3.5842115
 4.389265809
 0.17170505
 245 245 3.3972767
 1.14311186
 2.820916055
 0.98199998
246 246 3.8761750
 2.390900227
247 247 3.2238741
 0.18368541 -0.953079464
248 248 1.6197673 -0.63969394
 2.667149146
249 249 3.3109228 -1.49408181
 3.384539733
250 250 3.2641871 -0.37092738
 3.368560976
```

Generate a scatter plot of var1 . Make sure that your scatter plot has a title and informative labels on the axes.

#### Scatter Plot of Var1



Generate a density plot of var2. Choose a fill color different than ggplot()'s default.





## R6

Create a new variable in your data frame called var4 that is equal to the sum of the other three.

"""

# Creates var4 as a summation of vars 1, 2, & 3 and assigns it to the random.draws data frame random.draws <- random.draws %>% mutate(var4 = var1 + var2 + var3)
"""

a. Where do you expect it's density to be centered when you plot it? Since var4 is a combination of vars 1-3, I suspect that the expected value of var4 should be equal to 4. This is because  $E[var1]=\mu_{var1}$ , and since var4=var1+var2+var3 ->

$$E[var4] = E[var1 + var2 + var3]$$

$$egin{aligned} E[var4] &= E[var1] + E[var2] + E[var3] \ E[var4] &= \mu_{var1} + \mu_{var2} + \mu_{var3} \ E[var4] &= 3 + (-1) + 2 \ E[var4] &= 4 \end{aligned}$$

b. Create a density plot of your new variable, placing a dashed, vertical line at it's expected value.

#### Density Plot of Var4



## R7

Create a new variable in your data frame called var5 by subtracting one from each element in var3 and dividing each element by 2.

a. Where do you expect the new variable's density to be centered? I expect that the new density plot will be centered around x=0.5. This represents the expected value of var5, which is E[var5]=E[(var3-1)/2]

$$egin{aligned} E[var5] &= rac{1}{2} E[var3-1] \ E[var5] &= rac{1}{2} (E[var3]-1) \ E[var5] &= rac{1}{2} (2-1) \ E[var5] &= rac{1}{2} (1) = 0.5 \end{aligned}$$

#### b. How else do you expect it to change?

Since the coefficient of  $\frac{1}{2}$  is part of the var5 transformation, I expect to see tighter grouping of values around the mean. In other words,  $\sigma_{var5}^2 < \sigma_{var3}^2$ . This is drawn from the variance properties utilized earlier in the excerise.

c. Create a density plot of your new variable placing a dashed, vertical line at it's expected value.

