

Università degli Studi di Padova

Random subsampling techniques for sea bass mortality prediction

Giovanni Gaio, Simone Moretti July 24, 2025

Overview

- 1. Introduction
- Methodology
 Datasets description
 Subsampling techniques
- 3. Results
 Uniform subsampling
 Uniform over chromosomes
 Annotated subsampling
- 4. Conclusions

VNN and Sea Basses

Viral nervous necrosis (**VNN**) is a highly spread disease among sealife.

We concentrate our efforts on predicting the mortality of a population of **sea basses** affected by VNN.

SNPs for predicting mortality

The **genome** might be useful to predict mortality.

SNPs: Single nucleotide polymorphisms.

Machine Learning Approach

Predict if a sea bass will die by watching its genome: **Machine Learning**.

In particular, we use the XGBoost classifier.

dmlc **XGBoost**

Challenges with Genomic Data

- Each fish: over 6 million SNP positions.
- Sample size: only 990 sea bass individuals.
- Traditional models may overfit due to high dimensionality.
- We mitigate through subsampling.

Pipeline Overview

Input Datasets

SNP Dataset Structure

- 990 rows (fish), each with 6,072,853 SNP features.
- SNP values: 0 (no mutation), 1 (heterozygous), 2 (homozygous alt).
- Each fish is paired with a mortality label.

id	mortality
PL06-B12	1
PL06-B06	1
PL06-E06	1
PL08n-B05	0
PL08n-G09	0
:	:

	CAJNNU010000001.1:299	CAJNNU010000001.1:903	CAJNNU010000001.1:986	
PL04-A06	1	0	0	
PL04-A08	0	0	1	
PL04-A09	0	1	1	
PL04-A10	0	0	0	
PL04-A11	2	2	1	
:	:	:	:	
•	•	•		

Annotation Metadata

- Annotations include function: Promoter, Enhancer, Open Chromatin.
- Tissue number (0–25) indicates location-specific relevance.

snp_id	funct	n_tissue
CAJNNU010000001.1:7825	Open_chromatin	10
CAJNNU010000001.1:7865	Open_chromatin	4
CAJNNU010000001.1:8046	Enhancer	21
CAJNNU010000001.1:8084	Open_chromatin	5
CAJNNU010000001.1:8116	Promoter	12
:	i :	:

Subsampling techniques

Uniform Subsampling

- Randomly sample a fixed proportion p of all SNPs.
- Simple but may cause imbalance across chromosomes.

Per-Chromosome Subsampling

- Ensures balanced representation from each chromosome.
- Randomly sample same number of SNPs per chromosome.

Annotation-Based Subsampling

- Filter SNPs by biological annotation.
- Then apply uniform subsampling to relevant regions.

Parameter Evaluation

Let's get to the substance

Subsampling Ratios and baseline results

• Subsampled with multiple subasmpling ratio values: log-spaced varying from the whole genome to few SNPs.

- Trained model for each combination of model and subsample rate.
- Multiple runs for each pair of parameters.
- Comparison with baseline results from a "dumb" classifier, always guessing the most common class.

Control of Randomness

In order to limit the variance of results we impose:

- XGBoost random seed and train-test split are fixed.
- Subsampling is the only random component varying between experiments.

Results: uniform subsampling

Results: subsampling uniformly on chromosomes

Results: annotated subsampling (function)

Results: annotated subsampling (tissue number)

Conclusions

- Random SNP subsampling retains model effectiveness.
- No strong trend between rate and accuracy (outside extremes): this may be good.
- There doesn't seem to be specific regions of the genome containing the information determining the disease effects.

The results don't show any meaningful trend

We showed that subsampling allows the use of more complex models

Thank You!