ÉCOLE CENTRALE DE NANTES

MASTER CORO-IMARO "CONTROL AND ROBOTICS"

2016 / 2017

Master Thesis Report

Presented by

Student Name

On Date

The title of the master thesis

Jury

Evaluators: Name Position (Institution)

Name Position (Institution)
Name Position (Institution)

Supervisor(s): Name Position (Institution)

Name Position (Institution)

Laboratory: Laboratoire des Sciences du Numérique de Nantes LS2N

Abstract

Do not forget to check each reference while importing in your Bibtex file. Especially, IEEExplore export may lead to ill-formatted conference name like $Robotics\ and\ Automation,\ IEEE\ International\ Conference\ on.$

Acknowledgements

Notations

Abbreviations

List of Figures

List of Tables

Contents

Introduction

Chapter 1

State of the art

- 1.1 First topic
- 1.2 Second topic

Actual work

When dealing with rectangled triangles (see Figure ??) I sometimes used this theorem from [?]:

$$a^2 + b^2 = c^2 (2.1)$$

The demonstration is in Appendix ??.

Figure 2.1: A triangle with letters

Experiments

When trying to draw a rectangled triangle, my program comes up with Figure ?? that is neither rectangled nor a triangle.

Figure 3.1: Triangle drawn by my program. Note the 4th side.

Unless there is a bug in my program, which is unlikely, this research indicates that the whole theory on triangles having 3 sides has been wrong for years, maybe decades.

Conclusion

Appendix A

Proof of theorem ??

Proof. (??) was already demonstrated in [?].