

Real-time Motion Effect Enhancement Based on Fluid Dynamics in Figure Animation

Tian-Chen Xu¹, En-Hua Wu^{1, 2}, Mo Chen¹, Ming Xie¹

- 1. Faculty of Science and Technology, University of Macau, Macao, China
- 2. State Key Lab of CS, Institute of Software, Chinese Academy of Sciences, Beijing, China

Outline

- Introduction
- Geometry-based Trajectory Construction
- Fluid Simulation & Interaction
- Results & Demos
- Summary

Real-time Motion Effects

Motion effects

- Enhance motion perception motion blur
- Exaggerative & surrealistic performance

Real-time rendering

Interactive system

Motivations

- Generation of high-quality motion effects
- Real-time animated figure interaction
- Fluid effect support

Related Work

- Ray tracing with accumulative buffer (Haeberli & Akeley)
 - Ray tracing
 - Perform Monte Carlo evaluation of integrals
 - Accumulative buffer tech.
- Image tracing & processing (Brostow & Essa)
 - Better for live-action footage & smoothness
- Geometry Shader (Sander et al.)
 - Efficient traversal of mesh edges
 - Identify shared edges (avoid redundant extrusion)
 - Internal optimization in shaders (pipeline)

Related Work (Cont')

- Time Aggregate Object (Schmid et al.)
 - 4D data structure
 - Insertion between adjacent time segments
 - Ray tracing

Drawbacks

- Limitation of image processing (inflexible for extension)
- Obsolete accumulative buffer
- Cost of ray tracing

Our method

- Geometry-based trajectory construction
 - GPU acceleration (Geometry Shader)
 - Split trajectory (pipeline acceleration)
- Effect enhancement using fluid dynamics
 - Combine physical model
 - Figure motion interact with fluid
- For complex scenes in real-time rendering
 - Complex scenes & figure animations
 - Compatible with common real-time rendering tech.

Geometry Based Trajectory Construction

Geometry Based Trajectory Construction (cont')

Split Trajectory Method

- Generate effect prototype efficiently
- Motion states in current and previous frames
- One segment at one frame
- Reduce complexity
- Segment linkage

Structure of Trajectory Segments

• Trajectory segment

- Quaternion blending skinning
- Keep record of previous frame
- Link boundary vertices

Taxonomy

- Particles (SPH)
- Lines (speed lines)
- Volumes (motion blur)
- Trajectory volume Trajectory
 - Prototype of motion blur
 - Geometry volume (high-density shading)

Trajectory Construction

• Trajectory Segment Construction

- GPU Geometry Shader
- According to motion states
- Construct volume in real-time

Segment linkage

- Queue of buffers (Memory)
- Stream output (GPU)

Trajectory Construction (cont')

Fluid Simulation & Interaction

Based on fluid dynamics

- Fluid characteristics accord
- Prototype → motion effects
- Simulation: solve N-S equation
 - Numerically
 - Efficiently

$$\begin{cases} \rho \left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \Box \nabla \vec{u} \right) = -\nabla p + \mu \nabla^2 \vec{u} + \vec{F} \\ \nabla \Box \vec{u} = 0 \end{cases}$$

Simplified equation

$$\frac{D\vec{u}}{Dt} = -\frac{1}{\rho}\nabla p + \vec{a}$$

Fluid Simulation & Interaction (cont')

Simulation circle

Fluid Simulation

- Advection
 - Semi-Lagrangian method
- Poisson Pressure
 - Linear system
 - Jacobi Iteration
- External force
- Projection
 - Acceleration of internal & external forces

$D\vec{u}$	$=-\frac{1}{\sqrt{p+\bar{c}}}$	Ì
\overline{Dt}	$\frac{1}{\rho}$	ı

	p	
р	-∇ - u(t)	р
	р	

Fluid - Figure Motion Interaction

External force term

- Gravity, air buoyancy, etc.
- Motion impulse (mainly)

• Impulse with trajectory

- Trajectory segment → prototype
- Shaded segment → pigment
- Motion direction → impulse direction
- Segment length → impulse strength (impulse speed)
- Data in trajectory → substance & driving force in fluid

$$\frac{D\vec{u}}{Dt} = -\frac{1}{\rho}\nabla p + \vec{a}$$

Results & Demos

Results & Demos (Analysis)

Advantages of split trajectory

- Pipeline acceleration macroscopically
- Reduce generation burden each frame
- Reduce frequency of complex algorithms (skinning)
- Break limitation of Stream Output
- Trajectory in long lifetime (possibility for fluid effects)

Results & Demos (Motion Blur)

Results & Demos (System)

Results & Demos (System Screenshots)

Summary

Current

- Fast 3D geometric motion effect generation with GPU
- Advanced motion effect generation based on fluid dynamics
- An attempt for fluid complex figure motion interaction
- Application for real-time complex scene rendering

Future work

- Emphasize fluid animated figure interaction
- Particle-based compatible (Lagrangian space, SPH)
- Apply to real game engine or other interactive systems

Acknowledgements

- The Science and Technology Fundamental 973 program of China (2009CB320802)
- NSFC (60833007)
- The grant of University of Macau

The End Thank you! Q&A