

Universidade Federal do Ceará Faculdade de Economia

Métodos Quantitativos

Vicente Lima Crisóstomo

Fortaleza, 2015

Métodos Quantitativos

Amostragem

- Amostragem
 - Técnica de pesquisa na qual um sistema preestabelecido de amostras é considerado idôneo para representar o universo pesquisado, com margem de erro aceitável.
- Inferência Estatística
 - Envolve formulação de juízo sobre um todo a partir do exame de um subconjunto, ou amostra, deste todo.

Sumário

- Introdução
- Estatística Descritiva
- Probabilidade
- Distribuições de Probabilidades
- Amostragem e Distribuições Amostrais
- Estimação
- Testes de Significância
- Análise de Variância
- Teste de Significância para Proporções
- Testes Não Paramétricos
- Correlação e Regressão

Métodos Quantitativos

.

Amostragem

- Exemplos de Amostragem do "cotidiano" e outros
 - Provar um pouco da comida
 - Ouvir uma fração de uma música
 - Assistir uma fração/parte de um filme
 - Ler uma parcela de um livro
 - Provar um pouco de certo vinho
 - Fazer um teste de um carro
 - Hospedar-se alguns dias numa cidade
 - Conhecer alguns moradores da cidade para conhecer os costumes do local
 - Conhecer algumas empresas para saber sobre o conjunto delas

- População
 - Universo completo de estudo
- Censo
 - Exame de todos os elementos do universo, ou população
- Amostragem
 - Exame de uma parcela, ou fração, da população

Métodos Quantitativos

Amostragem

- População Limitada ou finita
 - Produtos disponíveis em um estabelecimento comercial
 - Alunos do curso T da universidade Y
 - Automóveis da cidade de Goiânia
 - Eleitores da cidade de Manaus
 - Eleitores do Brasil

Amostragem

- Finalidade
 - Permitir fazer-se generalizações sobre uma população sem necessitar realizar-se um censo.
- Importante
 - Obter a amostra que melhor represente a população
- É importante definir-se claramente
 - População e amostra em cada estudo
- População pode ser, quanto ao tamanho:
 - Limitada ou finita
 - Ilimitada ou infinita

Métodos Quantitativos 6

Amostragem

- População ilimitada ou infinita
 - Resultados do lance de um dado
 - Resultados do lance de uma moeda
 - Produção de uma indústria ou de um setor
 - Nascimentos de indivíduos de certa espécie
 - Peixes no oceano Atlântico

Métodos Quantitativos 7 Métodos Quantitativos 8

5

- Amostragem X Censo
 - Censo seria o ideal mas nem sempre possível
 - Censo viável quando
 - População muito pequena
 - Um grupo de 20 pessoas reunidas
 - Grande tamanho da amostra em relação à população
 - Uma amostra com grande desvio padrão com tamanho pouco inferior ao da população
 - Precisão completa exigida
 - Levantamento do faturamento de produtos para revenda em uma loja
 - Situações nas quais se dispõe de toda a informação

Métodos Quantitativos 9

Amostragem

- Plano de Amostragem
 - Estratégia para obtenção da amostra ideal, ou, a amostra que melhor represente a população objeto de estudo
- Amostragem Aleatória
 - Cada indivíduo da população tem igual probabilidade de compor a amostra

Amostragem

- Amostragem X Censo
 - Censo seria o ideal mas nem sempre possível
 - Censo inviável para população "infinita"
 - · Habitantes de um país
 - Animais de certa espécie na floresta
 - Censo incompatível com limitação temporal
 - Coleta de dados individuais implicará muito tempo para grande amostra
 - Censo inviável para <u>testes destrutivos</u>
 - Teste de produtos industriais: lâmpadas, alimentos
 - Censo para grande população pode ter custo proibitivo
 - Pesagem e mensuração de animais
 - Censo pode ter menor <u>precisão</u> na coleta de dados
 - Grande quantidade de indivíduos observados pode depreciar precisão dos dados

Métodos Quantitativos 10

Amostragem

- Amostragem Aleatória
 - Cada indivíduo da população tem igual probabilidade de compor a amostra
 - Populações com variável discreta
 - Cada valor tem a mesma chance de compor a amostra
 - Populações com variável contínua
 - A probabilidade de incluir na amostra qualquer intervalo de valores é igual à percentagem da população que se encontra naquele intervalo

Métodos Quantitativos 11 Métodos Quantitativos 12

- Amostragem Aleatória
 - O processo de escolha de indivíduos é aleatório
 - Assim a amostra será aleatória
 - Cada indivíduo tem a mesma possibilidade de figurar na amostra a cada prova (teste): (1 / n)
 - Grupos de indivíduos têm a mesma chance que outros do mesmo tamanho de figurar na amostra
 - Grupos maiores têm maior probabilidade de compor a amostra

Métodos Quantitativos 13

Amostragem

- Amostragem Aleatória
 - Probabilística
 - Sempre mais recomendável
- Amostragem Não Probabilística
 - Subjetiva
 - Por julgamento
 - Julga-se a priori
 - os elementos mais representativos
 - · indivíduos que devem ser representados na amostra
 - Conhece-se bem a população e quer-se ter elementos representativos de cada sub grupo
 - Populações e/ou amostras pequenas

Amostragem

- Amostragem Aleatória
 - Há processos naturalmente aleatórios
 - Chegada de clientes a uma loja
 - Chamadas telefônicas a um help-desk
 - Número de mensagens eletrônicas que chegam por dia
 - Compra de produtos em uma loja virtual
 - Outros casos
 - Conhece-se o universo de pesquisa
 - Pode-se enumerar os indivíduos
 - · Escolha aleatória de componentes da amostra

Métodos Quantitativos 14

Amostragem

- Amostragem Não Probabilística
 - Por julgamento
 - Exemplos
 - Matriz de uma empresa pesquisando filiais
 - · Pesquisa sobre determinada terapia médica
 - Pesquisa de um novo medicamento
 - · Pesquisa em um determinado grupo de pessoas
 - Pesquisa em um determinado grupo de trabalhadores

Métodos Quantitativos 15 Métodos Quantitativos 16

- Amostragem Probabilística (Aleatória)
 - Sistemática
 - Sistematização da escolha aleatória
 - Estratificada
 - Segmentação da população em grupos homogêneos
 - Por conglomerado
 - Formação de grupos heterogêneos

Métodos Quantitativos 17 Métodos Quantitativos 18

Amostragem

- Amostragem Probabilística (Aleatória)
 - Estratificada
 - Divide-se a população em subgrupos (estratos)
 - Grupos de características similares
 - Pouca variabilidade em amostras do mesmo grupo
 - Exemplos
 - Tempo de lazer de pessoas de distintas faixas de renda
 - Duração de férias de pessoas de distintas faixas de renda
 - Hábitos de lazer por faixa etária
 - Pode-se compor a amostra com alguns elementos de cada subgrupo?

Amostragem

- Amostragem Probabilística (Aleatória)
 - Sistemática
 - Sistematiza-se a escolha aleatória
 - Aleatoriza-se os indivíduos
 - Escolhe-se cada k-ésimo elemento
 - K = tamanho população / tamanho amostra
 - Exemplo
 - Pesquisa sobre funcionários da empresa X

Amostragem

- Amostragem Probabilística (Aleatória)
 - Por conglomerado
 - Formação de grupos heterogêneos
 - Ideal é que cada grupo represente bem a população
 - Seria uma minipopulação
 - Exemplo
 - Pesquisa de intenção de voto
 - Coloca-se na amostra um grupo de indivíduos heterogêneos que represente a população
 - Pesquisa sobre municípios brasileiros
 - A amostra deve conter municípios com características distintas de modo a bem representar o conjunto
 - Pesquisa sobre satisfação de funcionários
 - Deve-se ter funcionários de todas as categorias?

Métodos Quantitativos 19 Métodos Quantitativos 20

- Amostragem tem como finalidade
 - Obter uma indicação de valores de parâmetros da população
 - Média
 - Mediana
 - Desvio padrão (variabilidade)
 - Proporção de elementos com certa característica
 - Haverá divergência entre valores
 - Amostral e populacional?
 - De distintas amostras da mesma população?
 - Qual a proximidade entre parâmetro populacional e amostral?

Métodos Quantitativos 21

Distribuições Amostrais

Uma distribuição amostral é uma distribuição de probabilidades que indica até que ponto uma estatística amostral tende a variar devido a variações casuais na amostragem aleatória

Amostragem

- Qual a proximidade entre parâmetro populacional e amostral?
 - Fatores que influem na resposta
 - Tamanho da amostra
 - Menor variabilidade entre estatísticas de grandes amostras
 - Variabilidade da população em si
 - População com alta variabilidade leva a estatísticas amostrais com elevada variabilidade
 - A estatística sendo considerada
 - Variabilidade de distintas estatísticas são descritas por distintas distribuições de probabilidades
 - Populações com muita variabilidade geram estatísticas amostrais com maior variabilidade

Métodos Quantitativos 22

Distribuições Amostrais

- Pode usar-se parâmetros amostrais para inferir-se sobre parâmetros populacionais?
- Inferência Estatística (raciocínio indutivo)
 - Envolve formulação de juízo sobre a população a partir do exame de uma amostra extraída desta população
- Uma Distribuição Amostral é
 - uma distribuição de probabilidades que indica até que ponto uma estatística amostral tende a variar devido a variações casuais na amostragem aleatória

Métodos Quantitativos 23 Métodos Quantitativos 24

- Suponha uma população sobre a qual quer-se saber algo
 - Comprimento e peso de peixes de um lago
 - Peso dos animais de um rebanho
 - Altura dos alunos de determinada faixa etária
 - Salário dos trabalhadores de determinada categoria no país
 - Rentabilidade das empresas de um setor
 - Nível de recolhimento de impostos de empresas de certo setor

Métodos Quantitativos 25

■ Amostras de 3 indivíduos => 10 combinações

Animal	Peso	Amostras	Pesos			Média amostral				proporção abaixo de 205			
Α	200	ABC	200	203	206	203	1	1	0	2/3	0,1	0,3	
В	203	ABD	200	203	209	204,5	1	1	0	2/3	0,1		
С	206	ABE	200	203	212	206	1	1	0	2/3	0,1		
D	209	ACD	200	206	209	204,5	1	0	0	1/3	0,1	0,6	
E	212	ACE	200	206	212	206	1	0	0	1/3	0,1		
Média:	206	ADE	200	209	212	206	1	0	0	1/3	0,1		
		BCD	203	206	209	206	1	0	0	1/3	0,1		
		BCE	203	206	212	207,5	1	0	0	1/3	0,1		
		BDE	203	209	212	207,5	1	0	0	1/3	0,1		
		CDE	206	209	212	209	0	0	0	0/3	0.1	0.1	

Distribuições Amostrais

- Se é viável fazer-se um censo, ok
- Se não é viável o censo
 - Tem-se que usar amostras
 - Peso dos animais de um rebanho de 1.000 cabeças
 - Pode-se escolher amostras de 2, 3, 4... 1.000 animais
 - Exemplo: população de 5 animais com pesos de 200, 203, 206, 209, 212
 - Amostras de 3 indivíduos
 - Qual a <u>Proporção de animais com peso inferior a</u> 205?
 - Analisar todas as amostras possíveis

Métodos Quantitativos 26

Distribuições Amostrais

- Efeito do tamanho da amostra sobre uma distribuição amostral
 - Parâmetro amostral X populacional
 - Amostragem aleatória
 - Alta propensão a que a estatística amostral se aproxime do parâmetro populacional

28

- Quanto maior a amostra
 - Mais próximo Parâmetro amostral do populacional

Métodos Quantitativos 0/3 1/3 2/3 3/3 27 Métodos Quantitativos

- Efeito do tamanho da amostra sobre uma Distribuição Amostral
 - Maior amostra => Mais proximidade da Normal
 - Exemplo: Distribuição Binomial com p = 0,5 e crescente n

Maior amostra => Mais proximidade da Normal

Maior amostra => Mais proximidade da Normal

Métodos Quantitativos 30

Distribuições Amostrais

- Efeito do tamanho da amostra sobre uma distribuição amostral
 - Aumento no tamanho da amostra
 - Distribuição tende para a Normalidade
 - População mais simétrica em relação à média
 - · Mais acelerada normalidade
 - Menos variabilidade entre proporções amostrais
 - Erro do parâmetro amostral em relação ao populacional decresce
 - Distribuição Normal
 - Adequada para descrever distribuições de Médias Amostrais

Métodos Quantitativos 31 Métodos Quantitativos 32

Distribuições de Médias Amostrais

- Uma Distribuição Amostral de Médias
 - Indica probabilidade de diversas médias amostrais
 - Distribuição de Freqüências de médias amostrais
 - Tende à Normalidade
 - Média da Distribuição Amostral de Médias é igual à média populacional
 - Aumentando-se o número de observações por amostra
 - Há uma redução do desvio padrão da distribuição amostral

Métodos Quantitativos 33

Média amostral

Fregüência

População de 5 animais com pesos de 200, 203, 206, 209, 212

Pesos

Amostras de 3 indivíduos => 10 combinações

Amostras

Peso

Α	200	ABC	200	203	206	20	3 1	203
В	203	ABD	200	203	209	204,	5 2	409
С	206	ABE	200	203	212	20	6 4	824
D	209	ACD	200	206	209	204,	5	
E	212	ACE	200	206	212	20	6	
Média:	206	ADE	200	209	212	20	6	
		BCD	203	206	209	20	6	
		BCE	203	206	212	207,	5 2	415
		BDE	203	209	212	207,	5	
		CDE	206	209	212	20	9 1	209
		4,5 4 3,5 3 2,5 2 1,5 1 0,5				20	6 10	2060
Métodos Qu	uantitativ	/OS média	=203 méd	lia=204,!	5 média=	206 média=207,5 mé	dia=209	35

Amostra representa bem a população?

indiv	peso		pesos Média amo		stral Fr		An	Amostras Pesos			Média amostral			Fr	
Α	200	AB	200	203	201,5	MA=201,5	1		ABC	200	203	206	203	MA=203	1
В	203	AC	200	206	203	MA=203	1		ABD	200	203	209	204,5	MA=204,5	2
С	206	AD	200	209	204,5	MA=204,5	2		ABE	200	203	212	206	MA=206	4
D	209	ΑE	200	212	206	MA=206	2		ACD	200	206	209	204,5	MA=207,5	2
E	212	ВС	203	206	204,5	MA=207,5	2		ACE	200	206	212	206	MA=209	1
Méd	206	BD	203	209	206	MA=209	1		ADE	200	209	212	206		
DP	4,243	BE	203	212	207,5	MA=210,5	1		BCD	203	206	209	206		
		CD	206	209	207,5				BCE	203	206	212	207,5		
		CE	206	212	209				BDE	203	209	212	207,5		
		DE	209	212	210,5				CDE	206	209	212	209		
				Méd	206							Méd	206		
				DP	2,598							DP	1,643		

Métodos Quantitativos 36

 Média da Distribuição Amostral é igual à Média Populacional

$$\mu_{\bar{x}} = \mu_x$$

■ Para população muito grande, desvio padrão amostral será: $\sigma_{\bar{x}} = \frac{\sigma_x}{\sqrt{L_x}}$

- Onde:
 - Desvio Padrão da distribuição amostral (
 - Desvio Padrão da distribuição populacional (♥₃)

Métodos Quantitativos 37

Distribuições Amostrais

- Teorema do Limite Central
 - Não é necessário conhecer a distribuição de uma população para fazer-se inferências sobre ela a partir de amostras
 - Pode-se fazer inferência a partir de amostras "grandes"
 - 30 (trinta) ou mais observações

Distribuições Amostrais

■ Teorema do Limite Central

- 1- Se População em estudo tem Distribuição Normal, a Distribuição de Médias Amostrais será Normal para todos os tamanhos de amostra
- 2- Se População em estudo não é Normal, a Distribuição de Médias Amostrais será aproximadamente Normal para grandes amostras

Métodos Quantitativos 38

Distribuições Amostrais

- Fórmulas para cálculos com Distribuições Amostrais de Médias
 - Média da Distribuição Amostral = Média da População

$$\mu_{\bar{x}} = \mu_x$$

 Desvio Padrão da Distribuição Amostral (DA) (população grande)

$$\sigma_{\bar{x}} = \frac{\sigma_x}{\sqrt{n}}$$

- Aplicação
 - Grande população com:
 - Média = 20; Desvio Padrão = 1,4
 - Amostra de 49 observações

$$\mu_{\overline{x}} = \mu_{x} = 20$$

$$\sigma_{\overline{x}} = \frac{\sigma_{x}}{\sqrt{n}} = \frac{1.4}{\sqrt{49}} = \frac{1.4}{7} = 0.2$$

 Variabilidade das médias amostrais com relação à média populacional

Métodos Quantitativos

$$\frac{19,8-20}{0.2} = -1\sigma_{\bar{x}}$$

$$\frac{20,2-20}{0,2} = +1\sigma_{\bar{x}}$$

41

P(x<19.8 ou x > 20.2) = P(x < 19.8) + P(x > 20.2) =P(z < -1) + P(z > +1) = 0.1587 + 0.1587 = 0.3174

■
$$P(x < 19,8) = P(z < -1) =$$
 $0.5 - 0.3413 = 0.1587$
■ $P(x > 20,2) = P(z > +1) =$
 $0.5 - 0.3413 = 0.1587$

Distribuições Amostrais

- Aplicação
 - Grande população com:
 - Média = 20; Desvio Padrão = 1,4
 - Amostra de 49 observações
 - N > 30 => Distribuição Amostral Normal
 - Porcentagem de possíveis médias amostrais que diferem por mais 0,2 da média populacional
 - % de médias acima de 20,2, mais o % de médias abaixo de 19,8 Equivale a
 - % de médias acima de +1DPA (Desvio Padrão Amostral) (x=20,2) mais % de médias abaixo de +1DPA (x=19.8)

42 Métodos Quantitativos

- Um fabricante declara que sua pilha tem vida esperada (média) de 12 meses. Sabe-se que o desvio padrão (populacional) correspondente é de 2 meses. Que porcentagem de amostras de pilhas de N observações terá vida média de 1/3 de mês em torno da média?
 - N = 36: N = 64: ...

- Média Populacional = 12 meses
- Desvio Padrão Populacional = 2 meses
- % de amostras de pilhas com vida média variando 1/3 de mês (0,3333 mês) em torno da média?
- N = 32; N = 64; N = 128; N = 256; N = 512.

Métodos Quantitativos 45

Distribuições Amostrais

- Distribuições de Proporções Amostrais
 - Uma DPA indica quão provável é determinado conjunto de proporções amostrais, conhecidos o Tamanho da Amostra e a Proporção Populacional
 - Média (proporção ou porcentagem média) da DA é igual à proporção populacional

$$\bar{p} = p$$

Para grande população, fórmula do DP Amostral

$$\sigma_p = \sqrt{\frac{p(1-p)}{n}}$$

Métodos Quantitativos 47

Distribuições Amostrais

- Média Populacional = 12 meses
- Desvio Padrão Populacional = 2 meses
- % de amostras de pilhas com vida média variando 1/3 de mês (0,3333 mês) em torno da média?
- N = 32; N = 64; N = 128; N = 256; N = 512.

N	Média DA	$\sigma_{\bar{x}} = \frac{\sigma_x}{\sqrt{n}}$ DP DA	MDA inferior	MDA superior	z = - Z	$\frac{\frac{x-\bar{x}}{\frac{\sigma_x}{\sqrt{n}}}}{z}$ superior	,	^f < MDA < (inf < z < s	' '
32	12	0,354	11,67	12,33	-0,93	0,93	0,3238	0,3238	<u>0,6476</u>
64	12	0,250	11,67	12,33	-1,32	1,32	0,4049	0,4049	0,8098
128	12	0,177	11,67	12,33	-1,87	1,87	0,4693	0,4693	<u>0,9386</u>
256	12	0,125	11,67	12,33	-2,64	2,64	0,4959	0,4959	<u>0,9918</u>
512	12	0,088	11,67	12,33	-3,73	3,73	0,4999	0,4999	0,9998

Métodos Quantitativos 46