* Exercice 1 (Cours)

Donner et prouver le théorème faisant le lien entre applications alternées et antisymétriques.

* Exercice 2 (Cours)

Donner et prouver la propriété concernant le déterminant de Vandermonde.

* Exercice 3 (Cours)

Donner et prouver le résultat sur la solution d'un système de Cramer.

* Exercice 4

Les deux questions sont indépendantes.

- 1. Calculer le déterminant $\Delta = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{vmatrix}$.
- 2. Soit E un \mathbb{R} -espace vectoriel et $f \in \mathcal{L}(E)$ tel que $f^2 = -\operatorname{Id}_E$. Que peut-on dire de la dimension de E?

* EXERCICE 5

Calculer sans le développer le déterminant

$$\Delta = \begin{vmatrix} 1+a & a & a \\ b & 1+b & b \\ c & c & 1+c \end{vmatrix}.$$

* Exercice 6

Soit Δ_n le déterminant de taille $n \in \mathbb{N}^*$ suivant :

$$\Delta_n = \begin{vmatrix} 3 & 1 & 0 & \cdots & 0 \\ 2 & 3 & 1 & \ddots & \vdots \\ 0 & 2 & 3 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & 2 & 3 \end{vmatrix}.$$

1. Démontrer que, pour tout $n \in \mathbb{N}^*$, on a $\Delta_{n+2} = 3\Delta_{n+1} - 2\Delta_n$.

2. En déduire la valeur de Δ_n pour tout $n \in \mathbb{N}^*$.

* Exercice 7

Soit dans \mathbb{R}^3 la famille de vecteurs (e_1, e_2, e_3) donnée par

$$e_1 = (1, 1, t)$$
 $e_2 = (1, t, 1)$ $e_3 = (t, 1, 1).$

Dire pour quelles valeurs de $t \in \mathbb{R}$ la famille (e_1, e_2, e_3) est libre.

* Exercice 8

Étudier, suivant la valeur des paramètres $a,b\in\mathbb{R}$, l'inversibilité des matrices suivantes.

$$A = \begin{pmatrix} a & -1 & 0 & -1 \\ -1 & a & -1 & 0 \\ 0 & -1 & a & -1 \\ -1 & 0 & -1 & a \end{pmatrix} \qquad B = \begin{pmatrix} 0 & b & b & b^2 - b \\ 1 & b - 1 & 2b - 1 & b^2 - b \\ 0 & b & b & 0 \\ 1 & b & 3b - 1 & 0 \end{pmatrix}$$

* Exercice 9

Trouver une condition nécessaire et suffisante pour qu'une matrice $M \in \mathcal{M}_n(\mathbb{Z})$ à coefficients dans \mathbb{Z} soit inversible.

* Exercice 10

Soit $n \in \mathbb{N}$ et $u \in \mathcal{L}(\mathbb{R}_n[X])$. Calculer $\det(u)$ dans chacun des cas suivants.

$$u: P \mapsto P + P'$$
 $v: P \mapsto P(X+1) - P(X)$ $w: XP' + P(1)$

* Exercice 11

Soit $n \in \mathbb{N}^*$ un entier et $a_0, \dots, a_{n-1} \in \mathbb{C}$ des nombres complexes. On pose

$$C = \begin{pmatrix} 0 & \cdots & \cdots & 0 & a_0 \\ 1 & \ddots & & \vdots & a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & a_{n-1} \end{pmatrix}.$$

Calculer $\det(C - xI_n)$, où x est une indéterminée.

* Exercice 12

Soient $n, p \in \mathbb{N}^*$ des entiers tels que p < n. Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$ et $B \in \mathcal{M}_{p,n}(\mathbb{R})$. Calculer le déterminant de AB.