(fo13,527 vs/ sse AN 091314,906 GAU 2853

日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であ<u>ることを証明する。</u>

This is to certify that the fannexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application

998年 7月24日

出 願 番 号 Application Number:

平成10年特許願第209950号

出 願 人 Applicant (s):

キヤノン株式会社

CERTIFIED COPY OF PRIORITY DOCUMENT

1999年 6月11日

特 許 庁 長 官 Commissioner, Patent Office 保佐山建

特平10-209950

【書類名】

特許願

【整理番号】

3792091

【提出日】

平成10年 7月24日

【あて先】

特許庁長官殿

【国際特許分類】

B41J 2/01

【発明の名称】

情報供給装置、情報処理システム及び情報処理方法

【請求項の数】

15

【発明者】

東京都大田区下丸子3丁目30番2号 キヤノン株式会 【住所又は居所】

社内

【氏名】

太田 宗彦

【特許出願人】

【識別番号】

000001007

【氏名又は名称】

キヤノン株式会社

【代理人】

【識別番号】

100076428

【弁理士】

【氏名又は名称】

大塚 康徳

【電話番号】

03-5276-3241

【選任した代理人】

【識別番号】

100093908

【弁理士】

【氏名又は名称】

松本 研一

【電話番号】

03-5276-3241

【選任した代理人】

【識別番号】

100101306

【弁理士】

【氏名又は名称】 丸山 幸雄

【電話番号】

03-5276-3241

特平10-209950

【手数料の表示】

【予納台帳番号】 003458

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9704672

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 情報供給装置、情報処理システム及び情報処理方法 【特許請求の範囲】

【請求項1】 複数の色を記録するための複数の記録素子を所定方向にオフセットして配置した記録ヘッドを用いて出力する記録装置に出力情報を供給する情報供給装置であって、

前記出力情報における複数の色ごとに定められたオフセット量にもとづいて出力情報の複数の色に対応する記録データの転送タイミングを決定するタイミング 決定手段と、

複数の色に対応するページ内ラスタ数をカウントするカウンタと、

前記出力情報を前記複数の色に対応するカウンタのカウント値及び前記タイミング決定手段で決定したタイミングに従って前記記録装置に転送する転送手段と

前記転送手段で1頁分の出力情報を転送した時点で前記定められたオフセット 量にもとづいて前記複数の色に対応するカウンタを初期化する初期化手段とを備 え、長尺状記録媒体に記録可能とすることを特徴とする情報供給装置。

【請求項2】 複数の色に対応する出力情報を記録するFIF〇バッファを備え、

前記カウンタのカウント値は前記FIFOバッファのアドレスを指示しており、前記カウンタのカウント値が指示する前記FIFOバッファのアドレス/長さのフィールドに出力情報を書き込むことにより、転送を制御することを特徴とする請求項1記載の情報供給装置。

【請求項3】 前記FIFOバッファには、1ラスタ単位で出力情報を書込むことを特徴とする請求項2記載の情報供給装置。

【請求項4】 複数種類の記録装置に情報を供給可能であり、情報を供給する記録装置の種類に応じて夫々の記録装置に適した前記請求項1乃至請求項3のいずれかに記載の構成を備え、情報を供給する記録装置の種類に応じて構成を切り替えることを特徴とする情報供給装置。

【請求項5】 前記切り替えは、記録装置の記録ヘッドに合わせて最適なオ

フセット転送可能な構成に切り替えるものであることを特徴とする請求項4記載 の情報供給装置。

【請求項6】 前記記録装置は印刷装置であり、前記各構成は装置に備えられて印刷装置ドライバプログラムであることを特徴とする請求項1乃至請求項5のいずれかに記載の情報供給装置。

【請求項7】 前記記録装置は、インクジェットプリンタであることを特徴とする請求項1乃至請求項6のいずれかに記載の情報供給装置。

【請求項8】 複数の色を記録するための複数の記録素子を所定方向にオフセットして配置した記録ヘッドを備える記録装置と、前記記録装置に出力情報を供給する請求項1乃至請求項7のいずれかに記載の情報供給装置とを含む情報処理システム。

【請求項9】 複数の色を記録するための複数の記録素子を所定方向にオフセットして配置した記録ヘッドを用いて出力する記録装置と、前記記録装置に出力情報を供給する情報供給装置より構成される情報処理システムにおける情報処理方法であって、

前記出力情報を前記複数の色に対応するカウンタのカウント値、及び、前記出力情報における複数の色ごとに定められたオフセット量にもとづいて出力情報の複数の色に対応する記録データの転送タイミングを決定し決定したタイミングに従って前記記録装置に転送する転送工程と、

前記転送工程で1頁分の出力情報を転送した時点で前記定められたオフセット 量にもとづいて前記複数の色に対応するカウンタを初期化することにより、長尺 状記録媒体に記録可能とすることを特徴とする情報処理方法。

【請求項10】 前記情報供給装置は複数の色に対応する出力情報を記録するFIFOバッファを備え、

前記カウンタのカウント値は前記FIFOバッファのアドレスを指示しており、前記カウンタのカウント値が指示する前記FIFOバッファのアドレス/長さのフィールドに出力情報を書き込むことにより、転送を制御することを特徴とする請求項9記載の情報処理方法。

【請求項11】 複数種類の記録装置に情報を供給可能であり、情報を供給

する記録装置の種類に応じて夫々の記録装置に適した前記請求項9又は請求項1 0記載の転送工程を実行可能とし、情報を供給する記録装置の種類に応じて切り 替えることを特徴とする情報処理方法。

【請求項12】 前記切り替えは、記録装置の記録ヘッドに合わせて最適な オフセット転送可能な構成に切り替えるものであることを特徴とする請求項11 記載の情報処理方法。

【請求項13】 前記記録装置は印刷装置であり、前記各構成は装置に備えられて印刷装置ドライバプログラムであることを特徴とする請求項9乃至請求項12のいずれかに記載の情報処理方法。

【請求項14】 前記請求項1乃至請求項13のいずれか1項に記載の機能を実現するコンピュータプログラム列。

【請求項15】 前記請求項1乃至請求項13のいずれか1項に記載の機能 を実現するコンピュータプログラムを記憶したコンピュータ可読記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は情報出力システム及び方法に関し、例えば長尺記録媒体に可視表示可能な情報出力システム及び方法に関するものである。

[0002]

【従来の技術】

近年、パソコンやワードプロセッサ等のOA機器が広く普及しており、これらのOA機器で入力した情報をプリントアウトする方法として、様々な記録方法や記録装置が開発されてきている。

[0003]

プリントアウトする情報は、OA機器の向上とともにカラー化が進んできており、これに伴って安価なカラー記録装置や、或いは記録ヘッドを交換することによってビジュアルなカラー記録と、高速なモノクロ記録を目的に応じて双方使いこなせるような記録装置が開発されている。

[0004]

また、このような記録装置が身近に広まり、日常生活で使用されることが多くなるにつれ、記録に使用される紙型も従来のA4版・B5版といった事務用の定型紙から、垂れ幕・横断幕のような形状の非定型の長尺紙型が多く用いられるようになった。

[0005]

このような記録装置として、当初は各記録色をラスタ方向に並列に並べる横並 びで記録を行う記録装置が一般的であったが、装置をラスタ方向にコンパクトに 設計できること、色域境界部の画像のにじみ、記録画像の走査方向による色ずれ の少なさ、そして印刷記録ヘッド単体でのコスト面での優位性等の利点から、色 毎の記録手段を副走査方向に(縦並びで)配置したヘッド構成がとられることが 多くなってきている。

[0006]

従来の横並びヘッド構成の記録装置では、「線順次形式」として知られている、記録ヘッドの主走査方向(以後、「ラスタ方向」と称す)に、1ラスタ毎、もしくは複数ラスタをまとめた一行単位で色毎の画像情報が転送される方法、すなわち、同一ラスタ、もしくは同一行のY, M, C, Bkの画像データが送受信され、その後に次のラスタ、もしくは行のY, M, C, Bkの画像データが送受信される方法を用いることが一般的であった。

[0007]

具体的には、ラスタ画像データ転送命令、ラスタ(副走査方向)位置移動命令 、頁内ラスタ数設定命令、改頁命令等の組み合わせにより実現される。

[0008]

他方、従来の縦並びヘッド構成の記録装置では、カラー記録を行う際のカラー データの転送を、上記「線順次方式」を用いて行った場合には、画像データを展 開したビットマップのメモリーエリア(以後、「プリントバッファ」と称する) について、横並びヘッドの場合と比べて格段に多くの領域が必要となった。

[0009]

この課題を解決しようと試みた例が、特開平08-142349号,あるいは特開平08-150735号に見られるような、記録装置に転送する画像情報を

、あらかじめ記録ヘッドの基準色に対する位置オフセット分だけタイミングを移動させて転送する方法である。

[0010]

すなわち、仮に図14に示すような構造を持つ記録ヘッドを用いて、図15に示すような画像の画像情報を転送する場合、図16に示すようにYの先頭ラスタを基準にして、Mは32ラスタ、Cは64ラスタ、Bkは96ラスタ分の位置オフセットを付加して送付される。

[0011]

つまり、Yの33ラスタ目の画像データに引き続いて、Mの1ラスタ目の画像 データが、Yの97ラスタ目の画像データに引き続いて、Mの65ラスタ目の画 像データ、Cの33ラスタ目の画像データ、Bkの1ラスタ目の画像データが送 付される方法である(以後、このような画像情報の転送方法を「オフセット転送 」と称する)。

[0012]

このようなオフセット転送を用いることで、記録装置において画像データを展開したビットマップのメモリーエリアを大幅に削減することを可能としていた。 この場合であっても、記録媒体の紙型が単票である限りは、上記のラスタ画像データ転送命令、ラスタ(副走査方向)位置移動命令、頁内ラスタ数指定命令、改頁命令を組み合わせることにより、同一ラスタを構成する各色が同時に送られる方法と同様の命令体系で記録装置の制御が可能であった。

[0013]

また従来は、OA機器を利用してプリントアウトを行う場合、その内部に設置された応用ソフトウェアを通じてこれを行なっていた。例えば、非定型の長尺紙型に対して記録を行う場合には、大別して、応用ソフトウェアに非定型の長尺紙型を用いて記録する設定を行ない、記録する方法と、応用ソフトウェアには、A4版・B5版等の、日常使用される定型紙型を用いて記録する設定を行なっていた。

[0014]

そして、パソコンやワードプロセッサ等のホスト装置内に設置されたプリンタ

ドライバソフトウェアにおいて、長尺紙型を、定型紙型がすきまなく副走査方向 に連続したものとして処理することにより記録していた。

[0015]

前者の方法を採用した場合、長尺紙型に記録することのできる応用ソフトウェアは、予め長尺紙型への記録を前提として設計されたものに限られてしまう。この点、後者の方法では、応用ソフトウェアは定型紙型に記録することが可能なものであれば、全てのソフトウェアについて長尺紙型への記録が可能となる利点がある。

[0016]

よって、従来は後者の方法を用いて長尺紙型への記録を行うことが、一般的に 行われていた。

[0017]

【発明が解決しようとする課題】

しかしながら、従来の「オフセット転送」方式を用いて、ホスト装置内に設置されたプリンタドライバソフトウェアにおいて、長尺紙型を、定型紙型がすきまなく副走査方向に連続したものとして処理することにより記録する方法を採用する場合、前後のページの間の繋ぎの部分での改頁命令の処理方法において問題が発生する。

[0018]

例えば、図17に示すような、副走査方向に複数頁が連続した画像の画像情報を、つなぎ目のないように転送する場合、画像データは図18に示すように、改 頁命令によって発生する空白領域も、各色毎にオフセットを持った形で送られる べきである。

[0019]

ところが色毎に基準位置が異なっているために、例えばYを基準色として、この基準色に合わせて改頁命令が送られたとしても、他の色については、基準色よりそれぞれのオフセット値分だけ遅れたラスタデータが送付されているために、直ちに基準色のタイミングに合わせた改頁命令の処理を行うことができない。

[0020]

【課題を解決するための手段】

本発明は上述した課題を解決することを目的としてなされたもので、かかる目的を達成する一手段として例えば以下の構成を備える。

[0021]

即ち、複数の色を記録するための複数の記録素子を所定方向にオフセットして配置した記録へッドを用いて出力する記録装置に出力情報を供給する情報供給装置であって、前記出力情報における複数の色ごとに定められたオフセット量にもとづいて出力情報の複数の色に対応する記録データの転送タイミングを決定するタイミング決定手段と、複数の色に対応するページ内ラスタ数をカウントするカウンタと、前記出力情報を前記複数の色に対応するカウンタのカウント値及び前記タイミング決定手段で決定したタイミングに従って前記記録装置に転送する転送手段と、前記転送手段で1頁分の出力情報を転送した時点で前記定められたオフセット量にもとづいて前記複数の色に対応するカウンタを初期化する初期化手段とを備え、長尺状記録媒体に記録可能とすることを特徴とする。

[0022]

また、複数の色を記録するための複数の記録素子を所定方向にオフセットして配置した記録へッドを用いて出力する記録装置と、前記記録装置に出力情報を供給する情報供給装置より構成される情報処理システムであって、前記出力情報を前記複数の色に対応するカウンタのカウント値、及び、前記出力情報における複数の色ごとに定められたオフセット量にもとづいて出力情報の複数の色に対応する記録データの転送タイミングを決定し決定したタイミングに従って前記記録装置に転送する転送手段と、前記転送手段で1頁分の出力情報を転送した時点で前記定められたオフセット量にもとづいて前記複数の色に対応するカウンタを初期化することにより、長尺状記録媒体に記録可能とすることを特徴とする。

[0023]

そして例えば、複数の色に対応する出力情報を記録するFIFOバッファを備え、前記カウンタのカウント値は前記FIFOバッファのアドレスを指示しており、前記カウンタのカウント値が指示する前記FIFOバッファのアドレス/長さのフィールドに出力情報を書き込むことにより、転送を制御することを特徴と

する。あるいは、前記FIFOバッファには、1ラスタ単位で出力情報を書込む ことを特徴とする。

[0024]

また例えば、複数種類の記録装置に情報を供給可能であり、情報を供給する記録装置の種類に応じて夫々の記録装置に適した上記各構成を備え、情報を供給する記録装置の種類に応じて構成を切り替えることを特徴とする。あるいは、前記切り替えは、記録装置の記録ヘッドに合わせて最適なオフセット転送可能な構成に切り替えるものであることを特徴とする。

[0025]

更に例えば、前記記録装置は印刷装置であり、前記各構成は装置に備えられて 印刷装置ドライバプログラムであることを特徴とする。あるいは、前記記録装置 は、インクジェットプリンタであることを特徴とする。

【発明の実施の形態】

以下図面を参照して本発明に係る一発明の実施の形態例を詳細に説明する。

[0026]

<装置本体の概略説明>

図1は、本発明の代表的な実施の形態であるインクジェットプリンタIJRAの構成の概要を示す外観斜視図である。図1において、駆動モータ5013の正逆回転に連動して駆動力伝達ギア5009~5011を介して回転するリードスクリュー5005の螺旋溝5004に対して係合するキャリッジHCはピン(不図示)を有し、ガイドレール5003に支持されて矢印a, b方向を往復移動する。キャリッジHCには、記録ヘッドIJHとインクタンクITとを内蔵した一体型インクジェットカートリッジIJCが搭載されている。5002は紙押え板であり、キャリッジHCの移動方向にわたって記録用紙Pをプラテン5000に対して押圧する。5007,5008はフォトカプラで、キャリッジのレバー5006のこの域での存在を確認して、モータ5013の回転方向切り換え等を行うためのホームポジション検知器である。5016は記録ヘッドIJHの前面をキャップするキャップ部材5022を支持する部材で、5015はこのキャップ内を吸引する吸引器で、キャップ内開口5023を介して記録ヘッドの吸引回復

を行う。5017はクリーニングブレードで、5019はこのブレードを前後方向に移動可能にする部材であり、本体支持板5018にこれらが支持されている。ブレードは、この形態でなく周知のクリーニングブレードが本例に適用できることは言うまでもない。又、5021は、吸引回復の吸引を開始するためのレバーで、キャリッジと係合するカム5020の移動に伴って移動し、駆動モータからの駆動力がクラッチ切り換え等の公知の伝達機構で移動制御される。

[0027]

これらのキャッピング、クリーニング、吸引回復は、キャリッジがホームポジション側の領域に来た時にリードスクリュー5005の作用によってそれらの対応位置で所望の処理が行えるように構成されているが、周知のタイミングで所望の動作を行うようにすれば、本例にはいずれも適用できる。

[0028]

<制御構成の説明>

次に、上述した装置の記録制御を実行するための制御構成について説明する。

[0029]

図2はインクジェットプリンタIJRAの制御回路の構成を示すブロック図である。制御回路を示す同図において、1700は記録信号を入力するインタフェース、1701はMPU、1702はMPU1701が実行する制御プログラムを格納するROM、1703は各種データ(上記記録信号やヘッドに供給される記録データ等)を保存しておくDRAMである。1704は記録ヘッド1708に対する記録データの供給制御を行うゲートアレイ(G. A.)であり、インタフェース1700、MPU1701、RAM1703間のデータ転送制御も行う。1710は記録ヘッド1708を搬送するためのキャリアモータ、1709は記録紙搬送のための搬送モータである。1705は記録ヘッドを駆動するヘッドドライバ、1706、1707はそれぞれ搬送モータ1709、キャリアモータ1710を駆動するためのモータドライバである。

[0030]

上記制御構成の動作を説明すると、インタフェース1700に記録信号が入るとゲートアレイ1704とMPU1701との間で記録信号がプリント用の記録

データに変換される。そして、モータドライバ1706、1707が駆動される と共に、ヘッドドライバ1705に送られた記録データに従って記録ヘッドが駆 動され、記録が行われる。

[0031]

なお、上述のように、インクタンクITと記録ヘッドIJHとは一体的に形成されて交換可能なインクカートリッジIJCを構成しても良いが、これらインクタンクITと記録ヘッドIJHとを分離可能に構成して、インクがなくなったときにインクタンクITだけを交換できるようにしても良い。

[0032]

図3は、インクタンクとヘッドとが分離可能なインクカートリッジIJCの構成を示す外観斜視図である。インクカートリッジIJCは、図3に示すように、境界線Kの位置でインクタンクITと記録ヘッドIJHとが分離可能である。インクカートリッジIJCにはこれがキャリッジHCに搭載されたときには、キャリッジHC側から供給される電気信号を受け取るための電極(不図示)が設けられており、この電気信号によって、前述のように記録ヘッドIJHが駆動されてインクが吐出される。

[0033]

なお、図3において、500はインク吐出口列である。また、インクタンクI Tにはインクを保持するために繊維質状もしくは多孔質状のインク吸収体が設け られており、そのインク吸収体によってインクが保持される。

[0034]

なお、以上の実施形態において、記録ヘッドから吐出される液滴はインクであるとして説明し、さらにインクタンクに収容される液体はインクであるとして説明したが、その収容物はインクに限定されるものではない。例えば、記録画像の定着性や耐水性を高めたり、その画像品質を高めたりするために記録媒体に対して吐出される処理液のようなものがインクタンクに収容されていても良い。

[0035]

以上の実施形態は、特にインクジェット記録方式の中でも、インク吐出を行わせるために利用されるエネルギーとして熱エネルギーを発生する手段(例えば電

気熱変換体やレーザ光等)を備え、前記熱エネルギーによりインクの状態変化を 生起させる方式を用いることにより記録の高密度化、高精細化が達成できる。

[0036]

その代表的な構成や原理については、例えば、米国特許第4723129号明細書、同第4740796号明細書に開示されている基本的な原理を用いて行うものが好ましい。この方式はいわゆるオンデマンド型、コンティニュアス型のいずれにも適用可能であるが、特に、オンデマンド型の場合には、液体(インク)が保持されているシートや液路に対応して配置されている電気熱変換体に、記録情報に対応していて膜沸騰を越える急速な温度上昇を与える少なくとも1つの駆動信号を印加することによって、電気熱変換体に熱エネルギーを発生せしめ、記録へッドの熱作用面に膜沸騰を生じさせて、結果的にこの駆動信号に1対1で対応した液体(インク)内の気泡を形成できるので有効である。この気泡の成長、収縮により吐出用開口を介して液体(インク)を吐出させて、少なくとも1つの滴を形成する。この駆動信号をパルス形状とすると、即時適切に気泡の成長収縮が行われるので、特に応答性に優れた液体(インク)の吐出が達成でき、より好ましい。

[0037]

このパルス形状の駆動信号としては、米国特許第4463359号明細書、同第4345262号明細書に記載されているようなものが適している。なお、上記熱作用面の温度上昇率に関する発明の米国特許第4313124号明細書に記載されている条件を採用すると、さらに優れた記録を行うことができる。

[0038]

記録ヘッドの構成としては、上述の各明細書に開示されているような吐出口、 液路、電気熱変換体の組み合わせ構成(直線状液流路または直角液流路)の他に 熱作用面が屈曲する領域に配置されている構成を開示する米国特許第45583 33号明細書、米国特許第4459600号明細書を用いた構成も本発明に含ま れるものである。加えて、複数の電気熱変換体に対して、共通するスロットを電 気熱変換体の吐出部とする構成を開示する特開昭59-123670号公報や熱 エネルギーの圧力波を吸収する開口を吐出部に対応させる構成を開示する特開昭 59-138461号公報に基づいた構成としても良い。

[0039]

さらに、記録装置が記録できる最大記録媒体の幅に対応した長さを有するフルラインタイプの記録ヘッドとしては、上述した明細書に開示されているような複数記録ヘッドの組み合わせによってその長さを満たす構成や、一体的に形成された1個の記録ヘッドとしての構成のいずれでもよい。

[0040]

加えて、上記の実施形態で説明した記録ヘッド自体に一体的にインクタンクが 設けられたカートリッジタイプの記録ヘッドのみならず、装置本体に装着される ことで、装置本体との電気的な接続や装置本体からのインクの供給が可能になる 交換自在のチップタイプの記録ヘッドを用いてもよい。

[0041]

また、以上説明した記録装置の構成に、記録ヘッドに対する回復手段、予備的な手段等を付加することは記録動作を一層安定にできるので好ましいものである。これらを具体的に挙げれば、記録ヘッドに対してのキャッピング手段、クリーニング手段、加圧あるいは吸引手段、電気熱変換体あるいはこれとは別の加熱素子あるいはこれらの組み合わせによる予備加熱手段などがある。また、記録とは別の吐出を行う予備吐出モードを備えることも安定した記録を行うために有効である。

[0042]

さらに、記録装置の記録モードとしては黒色等の主流色のみの記録モードだけではなく、記録ヘッドを一体的に構成するか複数個の組み合わせによってでも良いが、異なる色の複色カラー、または混色によるフルカラーの少なくとも1つを備えた装置とすることもできる。

[0043]

以上説明した実施の形態においては、インクが液体であることを前提として説明しているが、室温やそれ以下で固化するインクであっても、室温で軟化もしくは液化するものを用いても良く、あるいはインクジェット方式ではインク自体を30°C以上70°C以下の範囲内で温度調整を行ってインクの粘性を安定吐出

範囲にあるように温度制御するものが一般的であるから、使用記録信号付与時に インクが液状をなすものであればよい。

[0044]

加えて、積極的に熱エネルギーによる昇温をインクの固形状態から液体状態への状態変化のエネルギーとして使用せしめることで積極的に防止するため、またはインクの蒸発を防止するため、放置状態で固化し加熱によって液化するインクを用いても良い。いずれにしても熱エネルギーの記録信号に応じた付与によってインクが液化し、液状インクが吐出されるものや、記録媒体に到達する時点では既に固化し始めるもの等のような、熱エネルギーの付与によって初めて液化する性質のインクを使用する場合も本発明は適用可能である。このような場合インクは、特開昭54-56847号公報あるいは特開昭60-71260号公報に記載されるような、多孔質シート凹部または貫通孔に液状または固形物として保持された状態で、電気熱変換体に対して対向するような形態としてもよい。本発明においては、上述した各インクに対して最も有効なものは、上述した膜沸騰方式を実行するものである。

[0045]

さらに加えて、本発明に係る記録装置の形態としては、コンピュータ等の情報 処理機器の画像出力端末として一体または別体に設けられるものの他、リーダ等 と組み合わせた複写装置、さらには送受信機能を有するファクシミリ装置の形態 を取るものであっても良い。

[0046]

〔第1の実施形態例〕

本発明に係る第1の発明の実施の形態例を説明する。図4は第1の実施の形態 例のシステムブロック図であり、図1乃至図3に示す記録装置を含む記録システ ムの全体構成を示している。

[0047]

図4において、1000はホスト装置本体、2000は周辺装置を含めたホスト装置全体である。また、3000は記録装置本体、3010は印刷記録ヘッド、3011は印刷ヘッドを搬送するキャリアを駆動するキャリアモータ、301

2は用紙を搬送する搬送モータである。記録装置本体3000は、上述した図2 に示す概略構成を具体的な構成として達成した例を示している。

[0048]

ホスト装置本体1000において、1001はDRAM1003に格納されている制御手順に従ってホスト装置の全体制御を司るMPU、1002はシステム全体を接続するバス、1003はMPU1001が実行するプログラムやデータ等を一時記憶するDRAM、1004はシステムバスとメモリバス、MPUを接続するブリッジ、1005はCRTにグラフィック情報を表示するための制御機能を備えたグラフィックアダプタである。

[0049]

又、1006はHDD装置2002とのインタフェースを司るHDDコントローラ、1007はキーボードとのインタフェースを司るキーボードコントローラ、1008はIEEE1284規格に従って記録装置3000との間の通信を司る、パラレルインターフェイスである通信I/Fである。

[0050]

ホスト装置本体1000には、グラフィックアダプタ1005を介して操作者にグラフィック情報等を表示する表示装置2001が接続されており、本実施の形態例では接続陰極線管(CRT)表示装置となっている。更に、プログラムやデータが格納された大容量記憶装置であるハードディスクドライブ(HDD)装置2002、キーボード2003が接続されている。

[0051]

記録装置本体3000において、3001は制御プログラム実行機能と周辺装置制御機能とを兼ね備えた、記録装置本体3000の全体制御を司るMCU(マイクロコントローラユニット)、3002はシステムバス、3003は記録データの印刷ヘッドへの供給、メモリアドレスデコーディング、キャリアモータへの制御パルス発生機構等を制御回路として内部に納めたゲートアレイである。

[0052]

また、3004はMCU3001が実行する制御プログラムやホスト印刷情報等を格納するROM、3005はDRAMであり、DRAM3005には各種デ

ータ(画像記録情報やヘッドに供給される記録データ等)を保存する。

[0053]

3006はIEEE1284規格に則り記録装置2000との間の通信を司るパラレルインターフェイスである通信I/F、3007はゲートアレイ3003から出力されたヘッド記録信号に基づき、記録ヘッドを駆動する電気信号に変換するヘッドドライバである。

[0054]

3008はゲートアレイ3003から出力されるキャリアモータ制御パルスを、実際にキャリアモータを駆動する電気信号に変換するモータドライバ、300 9は前記MCUから出力された搬送モータ制御パルスを、実際に搬送モータを駆動する電気信号に変換するモータドライバである。

[0055]

つぎに、本実施例で用いる記録ヘッドを図5を参照して説明する。図5は第1 の実施の形態例の記録装置で用いる記録ヘッドの構成例を示す図である。

[0056]

図5に示す本実施の形態例の記録装置3000の記録ヘッド3010は、Y, M, Cの記録色を記録する記録素子各24素子、Bkの記録色を記録する記録素子64素子を、1チップに構成した記録ヘッドであり、各記録色間の色間に8素子(画素)相当分の色間隙間がある。

[0057]

図5の(a)に示すように、上からY, M, C, Bkの順にノズルn1~n160が形成されている。また図7の(b)は上記構成の記録ヘッドのチップの例を示しており、Y, M, C, Bkの記録素子としての発熱体Hが配され、各色毎の記録素子のグループ間に8画素(ノズル間隔)相当分の隙間が構成されている

[0058]

この隙間は必ずしも必要なものではないが、記録ヘッド3010のチップ上に 色毎のインク室を構成していく上で、色間隙間はあった方が構成が容易であるの で設けている。 [0059]

尚、本実施例では各色毎のインク室や各ノズル、インク注入路などは型成型によるモールド部材で構成し、モールド成型された部材を上記記録ヘッドチップに不図示のバネで押しつけ、バネを含めて封止材で封止することにより構成する。ドライフィルムで上記インク室やノズルを構成する手段であっても、その他の方式で構成する手段であっても本発明に適用可能であるので、詳細な説明は省略する。

[0060]

次いで、以上の構成を備える本実施の形態例における制御ソフトウェアの構成 を具体的に図面を参照しつつ説明する。まず、ホスト装置1000に設置される ドライバソフトウェアを図6を参照して説明する。図6は本実施の形態例のドラ イバソフトウェアの構成を説明するための図である。

[0061]

本実施の形態例のドライバソフトウェアは、図6のCに示される階層で表わされる。

[0062]

図6において、Aはアプリケーションソフトウェア(以下「App」と称す)の階層、Bはオペレーティングシステム(以下「OS」と称す)を構成する階層、Cはドライバソフトウェアの階層を示す。

[0063]

記録装置にAppのA1に示すプログラムにおいて、画像を出力しようとする場合、AppはOSの描画処理インターフェイスB1を通じて、文字・線分・図形・ビットマップなどの描画命令を発行する。

[0064]

画面/紙面を構成する描画命令が完結すると、OSは各描画命令を、C11~C1nで表されるドライバ内部の装置固有の描画手段を呼び出しつつ、OSの内部形式から装置固有の表現形式(各描画単位を線分化したもの)に変換する。この場合には、RGB各色を8ビット/画素で表現される点順次のラスタデータとしてC3の色補正/色変換手段に渡す。

[0065]

C3の色補正/色変換手段では、デバイスの色特性を補正/ドライバ内部の表色系からデバイス固有の表色系への変換を行い、この場合にはKCMY各色8ビット/画素で表現される点順次のラスタデータとしてハーフトーニング手段C4に渡す。

[0066]

ハーフトーニング手段C4では、デバイスの各画素の状態を表す量子化量への変換を行い、各色1ビット乃至4ビット/ピクセルの線順次データとして、オフセット処理手段C51に渡す。オフセット処理手段C51においては、印刷ヘッドの構成に応じたオフセット量に従って、色毎に固有の副走査方向オフセットのついたKCMY各色1ビット乃至4ビット/ピクセルの線順次データとして、データ圧縮/コマンド付加手段C62に渡す。

[0067]

データ圧縮/コマンド付加手段C62では、渡された画像データに基づき、画像転送効率を向上するためにパックビット(PackBits)形式による圧縮を施し、印刷コマンドヘッダを付加して、システムのプリントスプーラB2に渡す。

[0068]

システムのプリンタスプーラB2は、通信I/F1008を介してIEEE1 284に定められた手順に従って、画像データの記録装置3000への転送を行なう。

[0069]

上述したオフセット処理手段C51の内部の詳細な構成を、図7を参照して具体的に説明する。図7は本実施の形態例におけるオフセット処理手段C51で用いるFIFOバッファの詳細構成を説明するための図である。

[0070]

図7のFIFOバッファ9001は、Bkラスタについての情報を96本分蓄 えることが可能なFIFOバッファであり、1ラスタの入力に対し、1ラスタの 出力を得ることができる。FIFOバッファ9002は、同様に、Mラスタにつ いての情報を64本分蓄えることのできるFIFOバッファである。FIFOバッファ9003は、同様にCラスタについての情報を32本分蓄えることのできるFIFOバッファである。

[0071]

上記3つのFIFOバッファ9001~9003は、先入れ/先出し手順に従い、ラスタ単位でデータを管理することのできるバッファである。具体的には、各FIFOバッファ9001~9003は、実際にデータが格納されている領域の先頭アドレスと、データの長さを各バッファの深さ分の組と、バッファ管理用カウンタ(複数の色に対応するページ内ラスタ数カウンタ)CBk(n)、CM(n')、CC(n")とを持つ。

[0072]

FIFOバッファに対してデータを入出力する際には、例えばBkラスタについて言えば、CBkn番目のアドレス/長さのフィールドに、バッファに登録すべき不図示のデータの所在を書き込み、しかるのちにCBk(n+1)に記述されたアドレス/長さで示されるデータを取り出し、カウンタをインクリメントする。

[0073]

上記各色に対応するカウンタの値がバッファ容量(深さ)(例えばBkの場合には95)を超えた場合には、カウンタの値を0にリセットする。これらのバッファの内部は、データを扱う前には全てクリアされている。また、1頁分のデータの送出終了による改頁命令の転送時点でも次のデータを扱うことになり、このタイミングでもクリアされる。

[0074]

ハーフトーニング手段C4から渡されたBk,M,Cのラスタは、各FIFOバッファの末尾に蓄積され、各FIFOバッファの先頭にあるラスタ、及びハーフトーニング手段C4から渡されたYラスタを一組として取り出す。このFIFOバッファ管理機構により、印刷ヘッドの物理的な構成に合わせたラスタデータの作成が可能となる。

[0075]

次に、本実施の形態例におけるプリンタドライバにおける全体制御を図8及び図9のフローチャートを参照して説明する。図8は本実施の形態例の図6に示すプリンタドライバの全体制御を示すフローチャート、図9は本実施の形態例のプリンタドライバにおけるギャップ処理を示すフローチャートである。

[0076]

本実施の形態例のプリンタドライバにおいて、記録装置3000に対して送付されるコマンドとしては各種存在するが、以下の説明は「頁長設定コマンド」、「ラスタ位置移動コマンド」、「ラスタデータ転送コマンド」、「改頁コマンド」の4つのコマンドを送付した場合を例に説明を行なう。

[0077]

まず、最初に、ステップS100において、ページ長設定コマンドを送付する。次いでステップS102において、プリンタドライバのハーフトーニング手段 C4から、必要に応じて2値化されたnラスタ目のラスタデータ(Bk, Y, M, C)を受け取る。

[0078]

次に、ステップS103において、直前のラスタとの間にギャップが存在するか否かを調べる。ギャップが存在する場合には、図9のステップS200に処理を移す。ちなみに、ページ内で受け取った最初のラスタについては、ページの先頭の1ラスタ目のラスタとの間でギャップを計算する。図9におけるギャップ処理については後述する。

[0079]

一方、ステップS103において直前のラスタとの間にギャップが存在しない場合にはステップS105に進み、スキップ量1のラスタ位置移動コマンドを送出する。続いてステップS106では、図7に示すラスタデータ格納用のFIF〇管理バッファに、受け取ったBk,M,C、各ラスタについてのデータを登録する。

[0080]

つぎにステップS107において、FIFO管理バッファの先頭から、保管されていたBk, M, C、の各ラスタを取り出す。ステップS108では、取り出

したBk, M, C、の各ラスタ、及び受け取ったYのラスタをそれぞれデータ圧縮する。

[0081]

続いてステップS109において、圧縮された各ラスタデータをプリンタに対して転送できるように、ラスタデータ転送コマンドのコマンドヘッダを付加する。ステップS110では、コマンドヘッダを付加した各色ラスタデータをプリントスプーラB2に渡すことによってOSに送出する。

[0082]

つぎにステップS111で、現在のラスタがページ内の画像データを含む最後のラスタかどうかを判別する。頁内の最後の画像データを含むラスでない場合にはステップS101に戻る。

[0083]

一方、ステップS111において、頁内の最後の画像データを含むラスタの場合にはS112へ進み、頁内の最後の画像データを含むラスタと判定されたラスタと、頁長設定コマンドにて設定されたページ内の最終ラスタとの間にギャップがあるかどうかを判定する。ギャップがある場合には、後述する図9のステップS200のギャップ処理に移る。

[0084]

一方、ステップS112において、頁長設定コマンドにて設定されたページ内の最終ラスタとの間にギャップがない場合にはステップS114に進み、改ページコマンドを送出する。次いで、ステップS115において、現在のページが最終ページであるかどうかを判定する。最終ページでない場合にはステップS101に戻り、次のページのための処理を引き続き継続する。

[0085]

一方、ステップS115で現在の頁が最終ページである場合には、FIFO管理バッファに蓄積されている画像データを、全て記録装置3000に送付して当該処理を終了する。

[0086]

次に、プリンタードライバ処理におけるギャップ処理に関する処理を図9フロ

ーチャートを参照して説明する。図9の処理を実行するのは、ステップS103の判定において直前のラスタとの間にギャップが存在する場合、及びステップS112において頁内の最後の画像データを含むラスタと判定されたラスタと、頁長設定コマンドにて設定されたページ内の最終ラスタとの間にギャップがある場合である。

[0087]

まず、ステップS200において、ギャップ量が0より大きいかどうかを判定する。ここでギャップ量が0の場合にはステップS201に進み、図8のステップS103の処理から当該処理に移行したか否かを調べる。ステップS103の処理から当該処理に移行した場合にはステップS105に進む。

[0088]

一方、ステップS201でステップS103の処理から当該処理に移行したのではなく、ステップS112の処理から当該処理に移行した場合にはステップS114に進む。

[0089]

ステップS200の判定でギャップ量が0より大きい場合にはステップS20 3に進み、ギャップ量から1を減ずる演算を行う。続いてステップS204においてスキップ量1のラスタ位置移動コマンドを、プリントスプーラB2を介して記録装置3000に送出する。

[0090]

次いでステップS205において、FIFO管理バッファの末尾に、各色とも 白で構成される(画像データを含まない)ラスタを格納する。続いてステップS 206において、FIFO管理バッファの先頭から画像データを取り出す。そし て、ステップS207においてBk、C、MについてはFIFO管理バッファを 通じて取り出した画像データを、Yについては画像データを含まない白(空白) ラスタをデータ圧縮する。

[0091]

つぎにステップS208において、プリンタに転送可能なように、作成した圧縮データに対してコマンドヘッダを付加する。ステップS209においては、圧

縮/コマンドヘッダ付加された画像データをプリンタに送付すべく、プリンタスプーラB2に渡しステップS201の処理に戻る。

[0092]

次に、以上に説明した処理に従って通信 I / F 1 0 0 8 を介して送られてくるこの印刷データ及び印刷制御情報を受取る記録装置 3 0 0 0 の制御を図 1 0 のフローチャートを参照して以下に説明する。図 1 0 は本実施の形態例の記録装置 3 0 0 0 のコマンド処理を説明するためのフローチャートである。

[0093]

図10において、まずステップS301でホスト装置本体1000のプリンタスプーラB2からコマンドデータを受取る。続いてステップS302以下の処理において受け取ったデータ列がどのコマンドであるかを判別するコマンド種別判別処理を行う。次にそれぞれのコマンドについての制御内容を簡潔に記載する。

[0094]

まずステップS302において受信したコマンドが頁長設定コマンドか否かを判別する。受信したコマンドが頁長設定コマンドであった場合には頁長設定コマンド処理に移行し、現在の基準色(本実施の形態例ではYとする)についての頁内のラスタ位置カウンタが0であり、かつ未だ印刷データを受領していない場合についてのみ、頁長をコマンドで指定された値に設定する。上記の条件を満たしていない場合については、コマンドを無視する。

[0095]

次に、ステップS302において受信したコマンドが頁長設定コマンドでなかった場合にはステップS303に進み、受信コマンドがラスタ位置移動コマンドか否かを判別する。受信したコマンドがラスタ位置移動コマンドであった場合にはラスタ位置移動コマンド処理に移行する。

[0096]

本実施の形態例においては、印刷ラスタデータは1ラスタずつ送付されるのに対し、印刷動作自体は各色複数ノズルを有しているので、次回の印刷動作において、受け取ったラスタデータが、先頭ノズルから何番目のノズルによって印刷されるかを示すカウンタを設けることによって、実際に設置されているノズル数分

のラスタデータが揃ってはじめて、印刷を開始することができる。

[0097]

仮に現在のラスタ位置がn番目のノズル位置に対応していると考えて

(n+ラスタ位置移動量 ≦ 各色のノズル総数)の場合、

n+ラスタ位置移動量に、ノズル位置指定カウンタを更新する。

[0098]

一方、(n+ラスタ位置移動量 > 各色のノズル総数)の場合、

印刷バッファの画像データを印刷した後、

(ラスタ位置移動量+ノズル位置指定カウンタの値-1)

分だけ、印刷用紙を副走査方向に移動する制御を行う。

[0099]

しかるのちに、各色それぞれに用意してある、頁内のラスタ位置カウンタに対 し、ラスタ位置移動量を加算する。処理を行う。

[0100]

一方、ステップS303で受信コマンドがラスタ位置移動コマンドでなかった 場合にはステップS304に進み、コマンドがラスタデータ転送コマンドか否か を判別する。受信したコマンドがラスタデータ転送コマンドであった場合にはラ スタデータ転送コマンド処理に移行する。

[0101]

まず前述のノズル位置指定カウンタによって示される、現在のラスタイメージを転送すべき印刷バッファ内部の領域に、受領したK,Y,M,C各色のラスタデータを展開する。但し、前述の頁内のラスタ位置カウンタが頁長設定コマンドによって設定されていた値を超えていた場合には、印刷バッファに対してのラスタデータの展開を行わずに、無視する。

[0102]

一方、ステップS304で受信したコマンドがラスタデータ転送コマンドでなかった場合にはステップS305に進み、受信したコマンドが改頁コマンドか否かを判別する。受信したコマンドが改頁コマンドであった場合には改頁コマンド処理に移行する。

[0103]

そして、前述の頁内のラスタ位置カウンタを、基準色のYについて(0)、Mについて(-32)、Cについて(-64)、Bkについて(-96)の値に初期化する。この操作によって、例えば基準色が2ページ目の1ラスタ目についての処理を行っている際に、他のM、C、Bkについては、前のページの末尾のデータを処理している矛盾を解決している。

[0104]

一方、ステップS306において、受信したコマンドが改頁コマンドでなかった場合には本実施の形態例の記録装置3000で処理可能なコマンドでないため、受信したデータを読み捨てて再びステップS301に戻り、次のデータの受信に備える。

[0105]

以上説明したように本実施の形態例によれば、パソコンやワープロなどのホスト装置内に設置されたプリンタドライバソフトウェアを用いて、基準色について、改頁命令を発生する直前に、現在設定されている頁内ラスタ数の内の最下端ラスタに対するラスタ(副走査方向)位置移動命令を、ドライバソフトウェアにて内部的に生成し、しかるのちに記録装置に対して改頁命令を送付し、一方、記録装置においては、改頁命令を受信した時点で、頁内部での現在のラスタ位置を管理するカウンタを、それぞれの色毎に定められたオフセット値に応じて初期化することができ、記録装置3000内のメモリ使用量をオフセット転送を行うことにより削減しつつ、長尺の印刷用紙に対して、これを仮想的に短い紙が連続してすきまなく連結したものとして印刷することが可能になる。

[0106]

[第2の実施の形態例]

次に本発明に係る第2の実施の形態例を説明する。第2の実施の形態例においては、記録装置の対象機種ごとに交換可能な2値化データを受け取り、加工してスプーラに渡す構造のモジュールに対し、上述した第1の実施の形態例に示す、オフセット転送を行い、かつ長尺用紙に対応していない応用ソフトウェアから、長尺用紙に対しての印刷が出来るような制御内容を組み込んだものである。

[0107]

図11は、本発明に係る第2の実施の形態例に係るドライバソフトウェアの構成を説明するための図である。図11において上述した第1の実施の形態例の図6に示す構成と同様構成には同一番号を付し詳細説明を省略する。

[0108]

第2の実施の形態例においては、ドライバソフトウェアにおける、記録装置3000の機種に依存した画像情報加工作業の多くが、量子化された画像情報に対して行われることに着目し、ここの部分に統一された入出力インターフェイスを持つ複数のモジュール群(図11のC71, C72)を導入することにより、記録装置に個別に依存する部分を統一的に扱い得るプログラム上のインターフェイス手段を提供することにより、情報供給装置1000の個別の実装に依存するプログラム部品の作成を容易なものとし、かつドライバソフトウェアの根幹処理部分を個別の情報供給装置1000から独立した構造にすることが可能である。

[0109]

図11においては、ハーフトレーニングC4よりの例えば量子化量に変換された線分割化画像は、統一された入出力インターフェイスを持つモジュール群の何れかにて記録装置固有の画像処理が施され、さらにデータ圧縮/印刷コマンドを付加して記録データとしてOS (オペレーティングシステム) に用意されたプリンタスプーラB2を通じて記録装置3000へ渡すことになる。

[0110]

図11に示すように、アプリケーションソフトウェアの階層Aには、アプリケーションソフトウェアA1が設けられ、OSの階層Bには、アプリケーションソフトウェアA1からの描画命令を受け取る描画処理インターフェースB1と、生成した画像データをインクジェットプリンタ等の記録装置3000へ渡すプリンタスプーラB2とが設けられている。

[0111]

そして、ドライバソフトウェアの階層Cには、装置固有の表現形式が記憶された装置固有描画手段C1、C2、…、C3と、OSからの線分割化画像情報を受け取る線分割化画像情報受取り手段C2と、ドライバ内部の表色系からデバイス

固有の表色系への変換を行う色特性変換手段C3と、デバイスの各画素の状態を表す量子化量への変換を行うハーフトーニング手段C4と、上述した複数のモジュールC71、C72と、モジュールC71、C72の切り替えを行う仮想スイッチC81、C82とが設けられている。

[0112]

ここで、モジュールC 7 1、C 7 2 は、上述したように統一された入出力インターフェイスを持つモジュール群であり、この各モジュールには上述した第1の実施の形態例のC 5 1 のオフセット処理手段とC 6 2 に示すデータ圧縮/コマンド付加手段C 6 2 が夫々組込まれており、夫々のヘッド特性に応じたオフセット処理を行なう。

[0113]

このモジュール群の種類としては、例えばモジュールC71として耐水強化剤用の吐出データを必要としない通常のYMCKヘッドの記録装置のためのモジュール、モジュールC72として通常のYMCKヘッドと耐水強化剤用ヘッドとから構成される記録装置の耐水強化剤用の吐出パターンを決定する論理手段を備えたモジュール等があるが種々のモジュールを採用できることは勿論である。

[0114]

なお、耐水強化剤用の吐出データとは、通常のYMCKヘッド用の2値データにYMCKのデータの論理和を取った耐水強化剤用ヘッド用のデータが追加されたデータのことである。

[0115]

また、仮想スイッチC81、C82は、プログラム内に設けられた仮想のスイッチであり、どの記録装置を対象とするか、あるいはその画像を生成する際に記録装置のどの機能を用いるかに応じて、モジュールC71、C72を切り替える

[0116]

このモジュールC71、C72の切り替えは、例えば、画像を出力しようとする利用者が記録装置3000を選択する際に、仮想スイッチC81、C82を用いて記録装置3000の種類に応じてモジュールC71、C72を切り替えるよ

うに構成することができる。

[0117]

あるいは、ホスト装置1000と記録装置3000を結ぶ双方向インターフェイスを介して現在接続されている記録装置3000の種類を自動的に受取り、モジュールC71、C72を切り替える様に制御してもよい。この場合には、OSのプリンタスプーラB2が接続されている記録装置3000からその種類を表すデータを受取り、これを基に仮想スイッチC81、C82の切り替えを行う。

[0118]

以下、図11と共に図12及び図13のフローチャートを参照して、第2の実施の形態例におけるアプリケーションソフトウェアが記録装置へ画像を出力する場合について、具体的に説明する。図12及び図13は第2の実施の形態例におけるプリンタドライバの全体制御を示すフローチヤートである。第2の実施の形態例の処理においては、主に上述した第1の実施の形態例と異なる部分を説明する。第2の実施の形態例においても、上述した第1の実施の形態例と同様にオフセット処理を行なうことは勿論である。

[0119]

第2の実施の形態例におけるアプリケーションソフトウェアが記録装置へ画像を出力する場合において、アプリケーンョンソフトウェアA1が記録装置3000へ画像を出力する場合は、まず図12のステップS1において、アプリケーションソフトウェアA1がOSの描画処理インターフェースB1を通じて、文字・線分・図形・ビットマップなどの描画命令を発行する。

[0120]

続いてステップS2において、画面/紙面を構成する描画命令が完結したか否か (1頁分の描画が完了したか否か)を調べる。完結していない場合には完結するのを持つ。

[0121]

ステップS2において、画面/紙面を構成する描画命令が完結した場合にはステップS3に進み、OSはドライバソフトウェア内部の装置固有描画手段C11、C12、C1nを順次選択して駆動し、各描画命令をOSの内部形式から装置

固有の表現形式(各描画単位を線分割化したもの)に変換する。

[0122]

その後ステップS4に進み、画面/紙面を線分割化した画像情報としてドライバソフトウェアへ渡す。これを受取ったプリンタドライバソフトウェアCでは、ステップS5において色特性変換手段C3によってデバイスの色特性を補正すると共に、ドライバソフトウェア内部の表色系からデバイス固有の表色系への変換を行なう。

[0123]

さらにステップS6において、ハーフトーニング手段C4によってデバイスの各画素の状態を表す量子化量への変換(ハーフトーニング)を行なう。続いて、モジュールC71、C72は、図13のステップS7においていずれも量子化(2値化)された画像データを受け取る。

[0124]

続くステップS8においてモジュールC71、C72は、量子化された画像情報を相異なる方法にて記録装置の特性に合わせて加工する。例えば、モジュールC72においては、受領した量子化データを参照しつつ耐水強化剤の吐出パターンを決定し、更に両モジュールともにデータ圧縮、コマンドヘッダの付加を行なう。

[0125]

そしてステップS9において、連動して動作する仮想スイッチC81、C82は、画像を出力しようとする利用者に選択された記録装置3000の種類に応じてモジュールC71、C72を切り替える。

[0126]

その後、モジュールC71、C72は、ステップS10においてOS内部に設けられたプリンタスプーラB2に生成したデータを受け渡ステップ。そしてステップS11において、記録装置3000へのデータ出力を行なう。

[0127]

なお、第2の実施形態では、図12及び図13のフローチャートに従ったプログラムをホスト装置1000の記憶装置3000に格納し動作することにより、

上述の制御方法を実現させることが可能となる。

[0128]

このように第2の実施形態では、記録装置に個別に依存する部分を統一的に扱い得るプログラム上のインターフェース手段であるモジュールC71、C72を設けたので、画像処理装置の個別の実装に依存するプログラム部品の作成を容易にすることができる。これにより、記録装置内部で行っていた処理の一部をドライバソフトウェアに移行する場合において、ドライバソフトウェアのコード量の増大を抑制することができる。

[0129]

また、ドライバソフトウェアの根幹処理部分を個別の画像処理装置から独立した構造にすることができるので、ドライバソフトウェアと記録装置間のデータ処理の分担を、ドライバソフトウェアの構成を損なうことなく柔軟に変更することが可能になり、ソフトウェアの保守及び管理面で有利となる。

[0130]

以上詳述したように、モジュールは、記録装置3000に個別に依存する部分を統一的に扱い得るインターフェース手段として機能するので、記録装置30000個別の実装に依存するプログラム部品の作成を容易化でき、例えばドライバソフトウェアで構成される生成手段のコード量の増大を抑制することが可能になる。さらに、ドライバソフトウェアの根幹処理部分を個別の出力装置から独立した構造にすることができるので、ドライバソフトウェアと出力装置間のデータ処理の分担を、ドライバソフトウェアの構成を損なうことなく柔軟に変更することができ、ソフトウェアの保守及び管理面において有利となる。

[0131]

[他の実施の形態例]

なお、本発明は、複数の機器(例えばホストコンピュータ,インタフェイス機器,リーダ,プリンタなど)から構成されるシステムに適用しても、一つの機器からなる装置(例えば、複写機,ファクシミリ装置など)に適用してもよい。

[0132]

また、本発明の目的は、前述した実施形態の機能を実現するソフトウェアのプ

ログラムコードを記録した記憶媒体を、システムあるいは装置に供給し、そのシステムあるいは装置のコンピュータ(またはCPUやMPU)が記憶媒体に格納されたプログラムコードを読出し実行することによっても、達成されることは言うまでもない。

[0133]

この場合、記憶媒体から読出されたプログラムコード自体が前述した実施形態 の機能を実現することになり、そのプログラムコードを記憶した記憶媒体は本発 明を構成することになる。

[0134]

プログラムコードを供給するための記憶媒体としては、例えば、フロッピディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、磁気テープ、不揮発性のメモリカード、ROMなどを用いることができる。

[0135]

また、コンピュータが読出したプログラムコードを実行することにより、前述した実施形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼働しているOS(オペレーティングシステム)などが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。

[0136]

さらに、記憶媒体から読出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。

[0137]

本発明を上記記憶媒体に適用する場合、その記憶媒体には、先に説明したフローチャートに対応するプログラムコードを格納することになる。

[0138]

【発明の効果】

以上説明したように本発明によれば、記録装置内のメモリ使用量をオフセット 転送を行うことにより削減しつつ、長尺の印刷用媒体に対して、これを仮想的に 短い媒体が連続してすきまなく連結したものとして印刷することが可能になる。 更に、処理モジュールを記録装置により交換可能な構成を取った場合には、長尺 記録媒体に印刷可能でかつ、オフセット転送をするシステムとオフセット転送を しないシステムを柔軟に切り替えることが可能となる。

[0139]

【図面の簡単な説明】

【図1】

本発明の代表的な実施の形態であるインクジェットプリンタ I J R A の構成の概要を示す外観斜視図である。

【図2】

図1に示すインクジェットプリンタ I J R A の制御回路の構成を示すブロック 図である。

【図3】

インクタンクとヘッドとが分離可能なインクカートリッジIJCの構成を示す 外観斜視図である。

【図4】

本発明に係る第1の実施の形態例のシステムブロック図である。

【図5】

本実施の形態例の記録装置で用いる記録ヘッドの構成例を示す図である。

【図6】

本実施の形態例のドライバソフトウェアの構成を説明するための図である。

【図7】

本実施の形態例におけるオフセット処理手段で用いるFIF〇バッファの詳細 を説明するための図である。

[図8]

本実施の形態例の図6に示すプリンタドライバの全体制御を示すフローチヤー

トである。

【図9】

本実施の形態例のプリンタドライバにおけるギャップ処理を示すフローチャートである。

【図10】

本実施の形態例の記録装置のコマンド処理を説明するためのフローチャートである。

【図11】

本発明に係る第2の実施の形態例に係るドライバソフトウェアの構成を説明するための図である。

【図12】、【図13】

第2の実施の形態例におけるプリンタドライバの全体制御を示すフローチヤートである。

【図14】

一般的な記録ヘッドの構造例を示す図である。

【図15】

記録紙上の色の並列例を示す図である。

【図16】

図15のデータをオフセット転送した場合の例を示す図である。記録紙上の色 の並列例を示す図である。

【図17】

副走査方向に複数頁が連続した画像の画像情報の例を示す図である。

【図18】

改頁領域を含む長尺紙のオフセット転送の例を示す図である。

【符号の説明】

1000 ホスト装置本体

1001 MPU

1002 バス

1003 DRAM

- 1004 ブリッジ
- 1005グラフィックアダプタ
- 1006 HDDコントローラ
- 1007 キーボードコントローラ
- 1008、3006 通信I/F
- 2000 ホスト装置全体
- 2001 表示装置
- 2002 ハードディスクドライブ (HDD) 装置
- 2003 キーボード
- 3000 記録装置本体
- 3001 MCU (マイクロコントローラユニット)
- 3002 システムバス
- 3003 ゲートアレイ
- 3004 ROM
- 3005 DRAM
- 3007 ヘッドドライバ
- 3008、3009 モータドライバ
- 3010 印刷記録ヘッド
- 3011 キャリアモータ
- 3012 搬送モータ
- A アプリケーションソフトウェア
- B1 描画処理インターフェース
- B2 プリンタスプーラ
- C1、C2、Cn 装置固有描画手段
- C 2 線分割化画像情報受取り手段
- C3 色補正(特性)変換手段
- C4 ハーフトーニング手段
- C5 オフセット処理手段
 - C62 出た圧縮/コマンド付加手段

特平10-209950

C71、C72 モジュール

C81、C82 仮想スイッチ

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

紙面上の色の配列例

【図16】

【図17】

【図18】

【書類名】 要約書

【要約】

【課題】 長尺の印刷用紙に対して、これを仮想的に短い紙が連続してすきまな く連結したものとして印刷することにより長尺状記録媒体に記録可能とする。

【解決手段】 ホスト装置より複数の色を記録するための複数の記録素子を所定 方向にオフセットして配置した記録ヘッドを用いて出力する記録装置に出力情報 を供給する際にプリンタドライバモジュールにおいて、印刷情報の出力に際して オフセット処理C51を行ない、複数の色に対応するページ内ラスタ数をカウントするカウンタのカウント値及び出力情報における複数の色ごとにそれぞれ前もって定められたオフセット量にもとづいて決定した出力情報の複数の色に対応する記録データの転送タイミングに従ってデータを記録装置に転送する。この際、1頁分の出力情報を転送した時点で前記定めらたオフセット量にもとづいて前記 複数の色に対応するカウンタを初期化する。

【選択図】 図6

特平10-209950

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】

【識別番号】

000001007

【住所又は居所】

東京都大田区下丸子3丁目30番2号

【氏名又は名称】

キヤノン株式会社

【代理人】

申請人

【識別番号】

100076428

【住所又は居所】

東京都千代田区麹町5丁目7番地 紀尾井町TBR

ビル507号室

【氏名又は名称】

大塚 康徳

【選任した代理人】

【識別番号】

100093908

【住所又は居所】

東京都千代田区麹町5丁目7番地 紀尾井町TBR

ビル507号室

【氏名又は名称】

松本 研一

【選任した代理人】

【識別番号】

100101306

【住所又は居所】

東京都千代田区麹町5丁目7番地 紀尾井町TBR

ビル507号室

【氏名又は名称】

丸山 幸雄

出 願 人 履 歴 情 報

識別番号

[000001007]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住 所

東京都大田区下丸子3丁目30番2号

氏 名

キヤノン株式会社