ĆWICZENIE NR 100 A

WYZNACZANIE GĘSTOŚCI CIAŁ STAŁYCH

I. Zestaw przyrządów

- 1. Śruba mikrometryczna
- 2. Suwmiarka
- 3. Waga
- 4. Mierzone elementy
- 5. Menzurka

II. Cel ćwiczenia

1. Wyznaczenie gęstości badanego elementu. Zapoznanie się z podstawowymi narzędziami inżynierskimi (sposobem pomiaru oraz niedokładnościami przyrządów). Analiza otrzymanych wyników i nauka pisania sprawozdań.

III. Wykonanie pomiarów

- 1. Zmierzyć objętość badanego elementu:
 - a) Za pomocą śruby mikrometrycznej i suwmiarki. Pomiary wykonać kilkakrotnie w kilku miejscach zwłaszcza przy elementach nieregularnych
 - b) Za pomocą menzurki z wodą (objętość elementu równa się objętości wypartej cieczy).
- 2. Zważyć badane elementy lub prowadzący poda masę danego elementu.

IV. Opracowanie wyników pomiarów

- 1. Wyznaczyć średnią wartość objętości elementu mierzonego i jej niepewność.
- 2. Wyznaczyć średnią wartość masy elementu mierzonego oraz jej niepewność.
- 3. Obliczyć gestość elementu mierzonego:

$$\rho = \frac{m}{V}$$

gdzie:

m – masa mierzonego elementu

V – objetość mierzonego elementu

4. Wyznaczyć niepewności Δρ (np. metodą różniczki zupełnej).

VI. Proponowane tabele pomiarowe

m	Δm	V_1	ΔV_{1}			V_n	ΔV_{n}	ΣV	$\Sigma \Delta V$	$\overline{\mathbf{V}}$	$\Delta \overline{ ext{V}}$	ρ	Δρ
[kg]	[kg]	[m ³]	$[m^3]$	[m ³]	[m ³]	$\left[\frac{kg}{m^3}\right]$	$\left[\frac{kg}{m^3}\right]$						

$V_1 \; ; \; ...; \; V_n \;$ - objętości cząstkowe przy złożonych elementach.

	a	Δa	b	Δb	lub r	lub∆r	h	Δh	V	ΔV
	m·10 ⁻³									
V_1										
•••										
V_n										

ĆWICZENIE NR 100 B

PODSTAWOWE POMIARY ELEKTRYCZNE

I. Zestaw przyrządów:

- 1. Zestaw z opornikami i żarówką wraz z gniazdami montażowymi
- 2. Zasilacz stabilizowany
- 3. 2 mierniki uniwersalne
- 4. Przewody elektryczne

II. Cel ćwiczenia:

Zapoznanie się z podstawowymi pomiarami elektrycznymi na przykładzie:

- a) pomiaru wartości oporu oporników pojedynczych, połączonych szeregowo i połączonych równolegle, oporu regulowanego i oporu włókna żarówki
 - b) wyznaczenia zależności $\mathbf{i} = \mathbf{f}(\mathbf{U})$ dla oporników i dla żarówki.

III. Pomiary

Propozycje zadań do wykonania – wg prowadzącego zajęcia:

- 1. Ustawić miernik uniwersalny na pomiar oporu i zmierzyć wartości oporu:
 - a) oporników pojedynczych R_1 , R_2 , $R_{reg.}$ i włókna żarówki $R_{\dot{z}}$ rys. 1
 - b) oporników R₁ i R₂ połączonych szeregowo rys. 2
 - c) oporników R_1 i R_2 połączonych równolegle rys. 3

- 2. Zmontować układ pomiarowy wg rys. 4 zawierający połączone szeregowo oporniki $\mathbf{R_1}$ i $\mathbf{R_2}$, zasilacz stabilizowany i 2 mierniki uniwersalne ustawione na pomiar wartości stałych natężenia i napięcia
 - a) Zmieniać napięcie podawane z zasilacza na układ oporników i dla każdej wartości napięcia U_i odczytywać wartość pradu i_i
- 3. Zmontować układ pomiarowy wg rys. 5- układ z żarówką.
 - a) Zmieniać napięcie podawane z zasilacza na żarówkę i dla każdej wartości napięcia $\,U_{i}\,$ odczytywać wartość prądu $\,i_{i}\,$

IV. Opracowanie wyników.

Uwaga do wszystkich pomiarów:

Informacje o niepewnościach pomiaru wartości oporów, natężeń i napięć odczytywanych bezpośrednio z mierników są dostępne w laboratorium.

- 1. Obliczyć wartość oporu oporników $\mathbf{R_1}$ i $\mathbf{R_2}$ połączonych:
 - a) szeregowo $R_s = R_1 + R_2$
 - b) równolegle $R_r = R_1 \cdot R_2 / R_1 + R_2$

i porównać z wartościami zmierzonymi bezpośrednio.

Niepewność $\Delta \mathbf{R}_s = \Delta \mathbf{R}_1 + \Delta \mathbf{R}_2$

Niepewność $\Delta R_r = (R_2)^2 \cdot \Delta R_1 / (R_1 + R_2)^2 + (R_1)^2 \cdot \Delta R_2 / (R_1 + R_2)^2$

- 2. Narysować wykres zależności $\mathbf{i} = \mathbf{f}(\mathbf{U})$ dla połączonych szeregowo oporników \mathbf{R}_1 i \mathbf{R}_2 (wartości napięcia zaznaczamy na osi \mathbf{x} , wartości natężenia na osi \mathbf{y} pamiętać o jednostkach). Zaobserwować czy jest to zależność liniowa. Z nachylenia \mathbf{a} prostej obliczyć wartość sumy oporu oporników \mathbf{R}_1 i \mathbf{R}_2 połączonych szeregowo. W tym celu wybieramy dwa punkty leżące na narysowanej prostej (nie są to punkty pomiarowe), na osiach \mathbf{U} i \mathbf{i} odczytujemy ich współrzędne :(\mathbf{U}_1 , \mathbf{i}_1 \mathbf{U}_2 , \mathbf{i}_2). Wartość nachylenia $\mathbf{a} = \mathbf{i}_2 \mathbf{i}_1$ / \mathbf{U}_2 \mathbf{U}_1 , szukana wartość $\mathbf{R}_1 + \mathbf{R}_2 = \mathbf{1}/\mathbf{a}$. Nachylenie \mathbf{a} można również wyznaczyć metodą regresji liniowej. Niepewność $\Delta \mathbf{a} = |\Delta \mathbf{i}_2|/|\mathbf{U}_2 \mathbf{U}_1| + |\Delta \mathbf{i}_1|/|\mathbf{U}_2 \mathbf{U}_1| + \{|(\mathbf{i}_2 \mathbf{i}_1)/(\mathbf{U}_2 \mathbf{U}_1)^2|\}|\Delta \mathbf{U}_2| + \{|(\mathbf{i}_2 \mathbf{i}_1)/(\mathbf{U}_2 \mathbf{U}_1)^2|\}|\Delta \mathbf{U}_1|$. Niepewność względna $\Delta(\mathbf{R}_1 + \mathbf{R}_2)/\mathbf{R}_1 + \mathbf{R}_2 = \Delta \mathbf{a}/\mathbf{a}$
- 3. Narysować wykres zależności $\mathbf{i} = \mathbf{f}(\mathbf{U})$ dla żarówki. Zinterpretować otrzymany wykres. Czy jest to zależność liniowa?

V. Proponowane tabele pomiarowe:

Tabela 1

Wiel- kość	R_1	ΔR_1	R ₂	ΔR_2	Rż	$\Delta R_{\dot{z}}$	R _{reg.}	ΔR_{reg}	R_s	ΔR_s	R_r	ΔR_r
Jednostka	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω
Ukł.pom. wg rys.		1							2		3	
W. zmierzone												
W.obliczone												

Tabela 2

Mierzony opór	Układ pomiarowy wg rys.	Ui	ΔU_i	i _i	Δi_i	a	Δa	R _s	ΔR_s
		V	V	A	A	A/V	A/V	$\Omega = V/A$	Ω
R _s	4					-			
$\mathbf{R}_{\dot{\mathbf{z}}}$	5								