- · First Let's do some analysis of the problem. Is it convex? Yes, it is.
 - = We know from problem #1 that f(x) = x12 x2 is convex.
 - = $g_1(x) = x_1 10$ is linear and thus convex, $g_2(x) = -x_1 + x_2^2 + 4$ has $\sqrt{g_2(x)} = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$ which is PSD making 92(x) convex also. So the Thequality constraints are convex.
 - = hrx = 0 is trivally affine.
- = Thus, if I a cardidate that satisfies optimality conditions it is a guaranteed global min.
- $L(x) = \lambda_0 x_1^2 + \lambda_0 x_2^2 + \lambda_1 (x_1 10) + \lambda_2 (-x_1 + x_2^2 + 4)$
- · 2L/2x, = 2 \ 0 \ x, + \ , \ 2 \ 0 [eq 1]
 - $\partial L/\partial x_2 = 2 \lambda_0 x_2 + 2 \lambda_2 x_2 \stackrel{\text{set}}{=} 0 [eq2]$
- · Complimentarity: $\lambda_1(x_1-10)=0$ and $\lambda_2(-x_1+x_2^2+4)=0$
- · CASE1: No = 0
- eq1 becomes $\lambda_1 = \lambda_2$, eq2 becomes $2\lambda_2 \times_2 = 0 \implies$ either $\lambda_2 = 0$ or $\times_2 = 0$. We can't let $\lambda_2 = 0$ since that makes $\lambda_1 = 0$ which gives $\lambda_0 = \lambda_1 = \lambda_2 = 0$ which is trivial. Thus let X2 =0.
- With $x_2=0$ let's book at complementarity: $\lambda_1(x_1-10)=0$ and $\lambda_2(-x_1+4)=0 \Rightarrow$ $\lambda_1(x_1-10)=0$ and $\lambda_2(x_1+4)=0$. Since λ_1 and λ_2 cannot =0 this means that $x_1-10=0 \Rightarrow x_1=10$ and $-x_1+4=0 \Rightarrow x_1=4$. Since x_1 connot = 4 and 10 we know that $\lambda_0 = 0$ won't work, and any feasible candidates must be normal ($\lambda_0 = 1$).
- · CASE2: lo=1
- eg1 becomes: $2x_1 + \lambda_1 \lambda_2 = 0$, eg2 becomes: $2x_2 + 2\lambda_2 x_2 = 0 \rightarrow 2x_2(1 + \lambda_2) = 0$ means either $x_2=0$ or $\lambda_2=-1$, but $\lambda=0$ is required, so we must let $x_2=0$.
- Now the complimentarity conditions: $\lambda_2(-x_1+0^2+4)=0$ and $\lambda_1(x_1-10)=0$ These conditions will give us 4 sub-cases to check when $\lambda_0 = 1$:

(A)
$$x_1 = 4$$
, (B) $x_1 = 10$, (C) $\lambda_1 = 0$, (D) $\lambda_2 = 0$

- · CASE 2A: (\(\lambda_0 = 1\), \(\lambda_1 = 4\)
- · If x=4 > x + 10 > (from complimentarity)
- · Using eg1: 2x,+ 1,-12=0 -> 2(4)+0=12 -> 12=8)

• This condidate, $(x_1 = 4, x_2 = 0, \lambda_0 = 1, \lambda_1 = 0, \lambda_2 = 8)$ satisfies all conditions. Since the problem is convex, we know [xi = 4] is a global optimizer of f in this case. We'll check the remaining 3 cases to see if I any other optima that achieve f([4,0]) = 16 optimum given the constraints.

- · CASE 2B: (\(\), \(\)_=1), \(\)_1=10
- If $x_1=10 \Rightarrow x_1 \neq 4 \Rightarrow (\lambda_2=0)$ (from complomentarity). Using eq1: $2x_1 + \lambda_1 = 0 \Rightarrow 20 = -\lambda_1$ $\Rightarrow \lambda_1 = -20$ which violates $\lambda \ge 0 \Rightarrow X_1 \ne 10$.
- · CASE 2C: (\lambda_0=1), \lambda_1=0
- If $\lambda_1=0$, eq1 says $2x_1=\lambda_2 \rightarrow \text{plugged into compl. conds gives } 2x_1(-x_1+4) \Rightarrow x_1 is either$ O or 4. We've already Cooked at X1=4 (see CASE 2A), so let X1=0.
- If $x_1=0$, in the other compl. cond we have λ_2 (0+4)=0 \Rightarrow $\lambda_2=0$. But is $x_1=x_2=0$ feasible? No. Consider $g_2(x) = x_1 - x_2^2 - 4 \ge 0 \Rightarrow g_2([0,0]) = -4 \not\ge 0 \Rightarrow \lambda_1 = 0$ isn't feasible here.
- CASE 2D: $(\lambda_0=1)$, $\lambda_2=0$
- If $\lambda_2 = 0$, eq.1 gives $2x + \lambda_1 = 0 \Rightarrow \lambda_1 = -2x_1$. Plugging This compl. cond.1 gives: $-2x_1(X_1-10)=0$. From CASE 2c we know XI=X2=O 13 n't feasible, so let XI=10 to sootisty this.
- · As above in CASE 2B, if $x_i=10$ we have $\lambda_i=-2(10)=-20$, and $\lambda_i=-20$ violates $\lambda \geq 0$.
 - · FINAL: based on all of these cases, and the fact that our problem is convex, we can guarantee that the point $[(x_1^*=4, x_2^*=0)]$ is a global optimizer of $f(x) = x_1^2 + x_2^2$ for given constraints. This x^* gives $f(x^*) = 16$ as the global aptimum, and soutisfies optimality conditions with $\lambda_0 = 1, \quad \lambda^T = [\lambda_1 = 0, \lambda_2 = 8].$