CountMin and Count Sketches

Lecture 10 February 14, 2019

Heavy Hitters Problem

Heavy Hitters Problem: Find all items i such that $f_i > m/k$ for some fixed k.

Heavy hitters are very frequent items.

We saw Misra-Gries deterministic algorithm that in O(k) space finds the heavy hitters assuming they exist. Two pass algorithm correctly identifies heavy hitters.

Chandra (UIUC) CS498ABD 2 Spring 2019 2 / 1

(Strict) Turnstile Model

- Turnstile model: each update is (i_j, Δ_j) where Δ_j can be positive or negative
- Strict turnstile: need $x_i > 0$ at all time for all i

In terms of frequent items we want additive error to x_i

Chandra (UIUC) CS498ABD 3 Spring 2019 3 / 18

Basic Hashing/Sampling Idea

Heavy Hitters Problem: Find all items i such that $f_i > m/k$.

- Let b_1, b_2, \ldots, b_k be the k heavy hitters
- Suppose we pick $h:[n] \to [ck]$ for some c>1
- h spreads b_1, \ldots, b_k among the buckets (k balls into ck bins)
- In ideal situation each bucket can be used to count a separate heavy hitter

Part I

CountMin Sketch

CountMin Sketch

[Cormode-Muthukrishnan]

```
\begin{aligned} &\textbf{CountMin-Sketch}(w,d) \colon \\ &\textbf{$h_1,h_2,\dots,h_d$ are pair-wise independent hash functions} \\ &\text{from } [n] \to [w] . \\ &\text{While (stream is not empty) do} \\ &\textbf{$e_t = (i_t, \Delta_t)$ is current item} \\ &\text{for $\ell = 1$ to $d$ do} \\ &\textbf{$C[\ell,h_\ell(i_j)]} \leftarrow \textbf{$C[\ell,h_\ell(i_j)]} + \Delta_t \\ &\text{endWhile} \\ &\text{For $i \in [n]$ set $\tilde{x}_i = \min_{\ell=1}^d \textbf{$C[\ell,h_\ell(i)]}$.} \end{aligned}
```

Counter $C[\ell, j]$ simply counts the sum of all x_i such that $h_{\ell}(i) = j$. That is,

$$C[\ell,j] = \sum_{i:h_{\ell}(i)=j} x_i.$$

Intuition

- Suppose there are k heavy hitters b_1, b_2, \ldots, b_k
- Consider b_i : Hash function h_ℓ sends b_i to $h_\ell(b_i)$. $C[\ell, h(b_i)]$ counts x_{b_i} and also other items that hash to same bucket $h(b_i)$ so we always overcount (since strict turnstile model)
- Repeating with many hash functions and taking minimum is right thing to do: for b_i the goal is to avoid other heavy hitters colliding with it

Property of CountMin Sketch

Lemma

Let $d = \Omega(\log \frac{1}{\delta})$ and $w > \frac{2}{\epsilon}$. Then for any fixed $i \in [n]$, $x_i \leq \tilde{x}_i$ and

$$\Pr[\tilde{x}_i \geq x_i + \epsilon ||x||_1] \leq \delta.$$

Property of CountMin Sketch

Lemma

Let $d = \Omega(\log \frac{1}{\delta})$ and $w > \frac{2}{\epsilon}$. Then for any fixed $i \in [n]$, $x_i \leq \tilde{x}_i$ and

$$\Pr[\tilde{x}_i \geq x_i + \epsilon ||x||_1] \leq \delta.$$

- Unlike Misra-Greis we have over estimates
- Actual items are not stored (requires work to recover heavy hitters)
- Works in strict turnstile model and hence can handle deletions
- Space usage is $O(\frac{\log(1/\delta)}{\epsilon})$ counters and hence $O(\frac{\log(1/\delta)}{\epsilon}\log m)$ bits

Fix ℓ : $h_{\ell}(i)$ is the bucket that h_{ℓ} hashes i to.

Fix ℓ : $h_{\ell}(i)$ is the bucket that h_{ℓ} hashes i to.

 $Z_{\ell} = C[\ell, h_{\ell}(i)]$ is the counter value that *i* is hashed to.

Chandra (UIUC) CS498ABD 9 Spring 2019 9 / 18

Fix ℓ : $h_{\ell}(i)$ is the bucket that h_{ℓ} hashes i to.

 $Z_{\ell} = C[\ell, h_{\ell}(i)]$ is the counter value that *i* is hashed to.

$$\mathsf{E}[Z_\ell] = x_i + \sum_{i' \neq i} \mathsf{Pr}[h_\ell(i') = h_\ell(i)] x_{i'}$$

Fix ℓ : $h_{\ell}(i)$ is the bucket that h_{ℓ} hashes i to.

 $Z_{\ell} = C[\ell, h_{\ell}(i)]$ is the counter value that i is hashed to.

$$\mathsf{E}[Z_\ell] = x_i + \sum_{i' \neq i} \mathsf{Pr}[h_\ell(i') = h_\ell(i)] x_{i'}$$

By pairwise-independence

$$\mathbf{E}[Z_{\ell}] = x_i + \sum_{i' \neq i} x_{i'} / w \le x_i + \epsilon ||x||_1 / 2$$

Fix ℓ : $h_{\ell}(i)$ is the bucket that h_{ℓ} hashes i to.

 $Z_{\ell} = C[\ell, h_{\ell}(i)]$ is the counter value that i is hashed to.

$$\mathsf{E}[Z_\ell] = x_i + \sum_{i' \neq i} \mathsf{Pr}[h_\ell(i') = h_\ell(i)] x_{i'}$$

By pairwise-independence

$$E[Z_{\ell}] = x_i + \sum_{i' \neq i} x_{i'} / w \le x_i + \epsilon ||x||_1 / 2$$

Via Markov applied to $Z_{\ell} - x_i$ (we use strict turnstile here) $\Pr[Z_{\ell}] \ge x_i + \epsilon ||x||_1 \le 1/2$

Fix ℓ : $h_{\ell}(i)$ is the bucket that h_{ℓ} hashes i to.

 $Z_{\ell} = C[\ell, h_{\ell}(i)]$ is the counter value that i is hashed to.

$$\mathsf{E}[Z_\ell] = x_i + \sum_{i' \neq i} \mathsf{Pr}[h_\ell(i') = h_\ell(i)] x_{i'}$$

By pairwise-independence

$$\mathbf{E}[Z_{\ell}] = x_i + \sum_{i' \neq i} x_{i'} / w \le x_i + \epsilon ||x||_1 / 2$$

Via Markov applied to $Z_\ell - x_i$ (we use strict turnstile here)

$$\Pr[Z_{\ell}] \ge x_i + \epsilon ||x||_1 \le 1/2$$

Since the **d** hash functions are independent

$$\Pr[\min_{\ell} Z_{\ell} \geq x_i + \epsilon ||x||_1] \leq 1/2^d \leq \delta$$

Summarizing

Lemma

Let $d = \Omega(\log \frac{1}{\delta})$ and $w > \frac{2}{\epsilon}$. Then for any fixed $i \in [n]$, $x_i \leq \tilde{x}_i$ and

$$\Pr[\tilde{x}_i \geq x_i + \epsilon ||x||_1] \leq \delta.$$

Choose $d = 2 \ln n$ and $w = 2/\epsilon$: we have $\Pr[\tilde{x}_i > x_i + \epsilon ||x||_1] < 1/n^2$.

By union bound, with probability (1 - 1/n), for all $i \in [n]$,

$$\tilde{x}_i \leq x_i + \epsilon ||x||_1$$

Summarizing

Lemma

Let $d = \Omega(\log \frac{1}{\delta})$ and $w > \frac{2}{\epsilon}$. Then for any fixed $i \in [n]$, $x_i \leq \tilde{x}_i$ and

$$\Pr[\tilde{x}_i \geq x_i + \epsilon ||x||_1] \leq \delta.$$

Choose $d = 2 \ln n$ and $w = 2/\epsilon$: we have $\Pr[\tilde{x}_i > x_i + \epsilon ||x||_1] < 1/n^2$.

By union bound, with probability (1 - 1/n), for all $i \in [n]$.

$$\tilde{x}_i \leq x_i + \epsilon ||x||_1$$

Total space $O(\frac{1}{\epsilon} \log n)$ counters and hence $O(\frac{1}{\epsilon} \log n \log m)$ bits.

10 / 18

CountMin as a Linear Sketch

Question: Why is CountMin a linear sketch?

CountMin as a Linear Sketch

Question: Why is CountMin a linear sketch?

Recall that for $1 \le \ell \le d$ and $1 \le s \le w$:

$$C[\ell,s] = \sum_{i:h_{\ell}(i)=s} x_i$$

Thus, once hash function h_{ℓ} is fixed:

$$C[\ell,s]=\langle u,x\rangle$$

where u is a row vector in $\{0,1\}^n$ such that $u_i=1$ if $h_\ell(i)=s$ and $u_i=0$ otherwise

Thus, once hash functions are fixed, the counter values can be written as Mx where $M \in \{0,1\}^{wd \times n}$ is the sketch matrix

Part II

Count Sketch

[Charikar-Chen-FarachColton]

```
Count-Sketch(w, d):
     h_1, h_2, \ldots, h_d are pair-wise independent hash functions
           from [n] \rightarrow [w].
     g_1, g_2, \dots, g_d are pair-wise independent hash functions
           from [n] \to \{-1, 1\}.
     While (stream is not empty) do
           e_t = (i_t, \Delta_t) is current item
           for \ell = 1 to d do
                 C[\ell, h_{\ell}(i_i)] \leftarrow C[\ell, h_{\ell}(i_i)] + g(i_t)\Delta_t
     endWhile
     For i \in [n]
           set \tilde{x}_i = \text{median}\{g_1(i)C[1,h_1(i)],\ldots,g_\ell(i)C[\ell,h_\ell(i)]\}.
```

Like CountMin, Count sketch has wd counters. Now counter values can become negative even if x is positive.

Intuition

- ullet Each hash function $oldsymbol{h}_\ell$ spreads the elements across $oldsymbol{w}$ buckets
- The has function g_{ℓ} induces cancellations (inspired by F_2 estimation algorithm)
- Since answer may be negative even if $x \ge 0$, we take the median

Exercise: Show that Count sketch is also a linear sketch.

Count Sketch Analysis

Lemma

Let $d \ge 4 \log \frac{1}{\delta}$ and $w > \frac{3}{\epsilon^2}$. Then for any fixed $i \in [n]$, $\mathbf{E}[\tilde{x}_i] = x_i$ and

$$\Pr[|\tilde{x}_i - x_i| \ge \epsilon ||x||_2] \le \delta.$$

Count Sketch Analysis

Lemma

Let $d \geq 4 \log \frac{1}{\delta}$ and $w > \frac{3}{\epsilon^2}$. Then for any fixed $i \in [n]$, $\mathbf{E}[\tilde{x}_i] = x_i$ and

$$\Pr[|\tilde{x}_i - x_i| \ge \epsilon ||x||_2] \le \delta.$$

Comparison to CountMin

- Error guarantee is with respect to $||x||_2$ instead of $||x||_1$. For $x \ge 0$, $||x||_2 \le ||x||_1$ and in some cases $||x||_2 \ll ||x||_1$.
- Space increases to $O(\frac{1}{\epsilon^2} \log n)$ counters from $O(\frac{1}{\epsilon} \log n)$ counters

Fix an $i \in [n]$. Let $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$.

Fix an $i \in [n]$. Let $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$.

For $i' \in [n]$ let $Y_{i'}$ be the indicator random variable that is 1 if $h_{\ell}(i) = h_{\ell}(i')$; that is i and i' collide in h_{ℓ} . $E[Y_{i'}] = E[Y_{i'}^2] = 1/w$ from pairwise independence of h_{ℓ} .

Fix an $i \in [n]$. Let $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$.

For $i' \in [n]$ let $Y_{i'}$ be the indicator random variable that is 1 if $h_{\ell}(i) = h_{\ell}(i')$; that is i and i' collide in h_{ℓ} . $E[Y_{i'}] = E[Y_{i'}^2] = 1/w$ from pairwise independence of h_{ℓ} .

$$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)] = g_{\ell}(i)\sum_{i'}g_{\ell}(i')x_{i'}Y_{i'}$$

Fix an $i \in [n]$. Let $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$.

For $i' \in [n]$ let $Y_{i'}$ be the indicator random variable that is 1 if $h_{\ell}(i) = h_{\ell}(i')$; that is i and i' collide in h_{ℓ} . $E[Y_{i'}] = E[Y_{i'}^2] = 1/w$ from pairwise independence of h_{ℓ} .

$$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)] = g_{\ell}(i)\sum_{i'}g_{\ell}(i')x_{i'}Y_{i'}$$

Therefore,

$$E[Z_{\ell}] = x_i + \sum_{i' \neq i} E[g_{\ell}(i)g_{\ell}(i')Y_{i'}]x_{i'} = x_i,$$

because $E[g_{\ell}(i)g_{\ell}(i')] = 0$ for $i \neq i'$ from pairwise independence of g_{ℓ} and $Y_{i'}$ is independent of $g_{\ell}(i)$ and $g_{\ell}(i')$.

Chandra (UIUC) CS498ABD 16 Spring 2019 16 / 18

$$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$$
. And $E[Z_{\ell}] = x_i$.

$$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$$
. And $E[Z_{\ell}] = x_i$.

$$Var(Z_{\ell}) = E[(Z_{\ell} - x_{i})^{2}]$$

$$= E[(\sum_{i' \neq i} g_{\ell}(i)g_{\ell}(i')Y_{i'}x_{i'})^{2}]$$

$$= E[\sum_{i' \neq i} x_{i'}^{2}Y_{i'}^{2} + \sum_{i' \neq i''} x_{i'}x_{i''}g_{\ell}(i')g_{\ell}(i'')Y_{i'}Y_{i''}]$$

$$= \sum_{i' \neq i} x_{i'}^{2} E[Y_{i'}^{2}]$$

$$\leq ||x||_{2}^{2}/w.$$

Chandra (UIUC) CS498ABD 17 Spring 2019 17 / 18

$$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)].$$

We have seen: $\mathbf{E}[Z_{\ell}] = x_i$ and $Var(Z_{\ell}) \leq ||x||_2^2/w$.

$$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)].$$

We have seen: $\mathbf{E}[Z_{\ell}] = x_i$ and $Var(Z_{\ell}) \leq ||x||_2^2/w$.

Using Chebyshev:

$$\Pr[|Z_{\ell}-x_i|\geq \epsilon ||x||_2]\leq \frac{Var(Z_{\ell})}{\epsilon^2||x||_2^2}\leq \frac{1}{\epsilon^2 w}\leq 1/3.$$

$$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)].$$

We have seen: $\mathbf{E}[Z_{\ell}] = x_i$ and $Var(Z_{\ell}) \leq ||x||_2^2/w$.

Using Chebyshev:

$$\Pr[|Z_{\ell}-x_i|\geq \epsilon \|x\|_2]\leq \frac{Var(Z_{\ell})}{\epsilon^2\|x\|_2^2}\leq \frac{1}{\epsilon^2 w}\leq 1/3.$$

Via the Chernoff bound,

$$\Pr[|\mathsf{median}\{Z_1,\ldots,Z_d\} - x_i| \geq \epsilon ||x||_2] \leq e^{-cd} \leq \delta.$$

18 / 18

Chandra (UIUC) CS498ABD 18 Spring 2019

Summarizing

Lemma

Let $d \ge 4 \log \frac{1}{\delta}$ and $w > \frac{3}{\epsilon^2}$. Then for any fixed $i \in [n]$, $\mathbf{E}[\tilde{x}_i] = x_i$ and $\Pr[|\tilde{x}_i - x_i| \ge \epsilon ||x||_2] \le \delta$.

Choose $d = \theta(\ln n)$ and $w = 3/\epsilon^2$: we have

$$\Pr[|\tilde{x}_i - x_i| \ge \epsilon ||x||_2] \le 1/n^2.$$

By union bound, with probability (1 - 1/n), for all $i \in [n]$,

$$|\tilde{x}_i - x_i| \le \epsilon ||x||_2$$

Summarizing

Lemma

Let $d \geq 4 \log \frac{1}{\delta}$ and $w > \frac{3}{\epsilon^2}$. Then for any fixed $i \in [n]$, $\mathbf{E}[\tilde{x}_i] = x_i$ and $\Pr[|\tilde{x}_i - x_i| \geq \epsilon ||x||_2] \leq \delta$.

Choose $d = \theta(\ln n)$ and $w = 3/\epsilon^2$: we have

$$\Pr[|\tilde{x}_i - x_i| \ge \epsilon ||x||_2] \le 1/n^2.$$

By union bound, with probability (1 - 1/n), for all $i \in [n]$,

$$|\tilde{x}_i - x_i| \le \epsilon ||x||_2$$

Total space $O(\frac{1}{\epsilon^2} \log n)$ counters and hence $O(\frac{1}{\epsilon^2} \log n \log m)$ bits.

19 / 18