Theoretical guarantees for EM under misspecified Gaussian mixture models

Raaz Dwivedi*, Nhat Ho*, Koulik Khamaru*, Martin Wainwright and Michael Jordan

{raaz.rsk, minhnhat, koulik, wainwrig}@berkeley.edu, jordan@cs.berkeley.edu

Objective

Goal: Understand parameter estimation for mixture models when the number of mixtures is not correctly-specified Model set-up:

True Model:
$$\mathbb{P}_{\theta^*} = \sum_{i=1}^{\mathbf{k}^*} \pi_i \mathcal{N}(\theta_i^*, \sigma^2)$$

Fitted Model:
$$\mathbb{P}_{\theta} = \sum_{i=1}^{K} \pi_i \mathcal{N}(\theta_i, \sigma^2)$$

Algorithm: Run Expectation-Maximization (EM) to estimate the parameters of model \mathbb{P}_{θ} given n i.i.d. samples from \mathbb{P}_{θ^*}

EM on Gaussian mixture models

	Correctly- specified k=k* [1]	Over-specified k>k* [3]	Under-specified k <k* (This poster, [2])</k*
Bias	Zero bias	Zero bias	Non-zero bias
Convergence rate of EM iterates	Fast rate e^{-cT}	Slow rate $\frac{c}{\sqrt{T}}$	Fast rate $e^{-c'T}$
Statistical Error of EM estimate	Parametric $n^{-1/2}$	Non-parametric $n^{-1/4}$	Parametric $n^{-1/2}$
True parameter A*			

Under-specified mixtures: Simple settings

Case 1: Three-Gaussian mixture with two close components $\mathbb{P}_{\theta^*} = \frac{1}{2} \mathcal{N}(-\theta^*, 1) + \frac{1}{4} \mathcal{N}(\theta^*(1+\rho), 1) + \frac{1}{4} \mathcal{N}(\theta^*(1-\rho), 1)$

Case 2: Three-Gaussian mixture with one small component

$$\mathbb{P}_{\theta^*} = \frac{1-\omega}{2} \mathcal{N}(-\theta^*, 1) + \frac{1-\omega}{2} \mathcal{N}(\theta^*, 1) + \omega \mathcal{N}(0, 1).$$

where ω and ρ are small positive scalars.

The model fit: Using EM, fit a two Gaussian mixture

$$\mathbb{P}_{\theta} = \frac{1}{2} \mathcal{N}(-\theta, 1) + \frac{1}{2} \mathcal{N}(\theta, 1).$$

Quantities of interest:

- Algorithmic rate of convergence of EM
- **2** Final statistical error $|\widehat{\theta}_n \theta^*|$ where $\widehat{\theta}_n$ is the final EM estimate

$$\underbrace{|\widehat{\theta}_n - \theta^*|}_{Estimation\ error} \leq \underbrace{|\widehat{\theta}_n - \overline{\theta}|}_{Statistical\ error} + \underbrace{|\theta^* - \overline{\theta}|}_{Bias}$$

Theoretical Results

- **1** How fast do the EM iterates converge to $\widehat{\theta}_n$?
- —Exponentially fast, $\log n$ steps at most!
- 2 What is the scaling of the error $|\widehat{\theta}_n \overline{\theta}|$ with sample size n?

 The usual $n^{-1/2}$ scaling!
- **3** How large is the bias term $|\theta^* \overline{\theta}|$?
- $-\mathcal{O}(\rho^{1/4})$ for case 1, and $\mathcal{O}(\omega^{1/8})$ for case 2. (Upper bounds)

Numerical Experiments

Figure 1: Illustration of our main results. While the statistical error of order $n^{-1/2}$ (panel (a)) matches our theoretical predictions, in panels (b) and (c), we observe that the biases for cases 1 and 2 have a scaling of $\mathcal{O}(\rho^2)$ and $\mathcal{O}(\omega)$ which suggest the potential looseness of our theoretical bounds for the biases.

References

- [1] S.Balakrishnan, M. J. Wainwright and B. Yu, Statistical Guarantees for the EM Algorithm: From Population to Sample-based Analysis, AoS (2017).
- [2] R. Dwivedi*, N. Ho*, K. Khamaru*, M. J. Wainwright and M. I. Jordan, *Theoretical guarantees for EM under misspecified Gaussian mixture models*, NIPS 2018.
- [3] R. Dwivedi*, N. Ho*, K. Khamaru*, M. J. Wainwright, M. I. Jordan and Bin Yu, Singularity, misspecification and the convergence rate of EM, arXiv:1810.00828