practical-05

February 16, 2025

```
[14]: import pandas as pd
      from sklearn.model_selection import train_test_split
      from sklearn.preprocessing import LabelEncoder
      from sklearn.linear_model import LogisticRegression
      from sklearn.metrics import confusion_matrix
[15]: data = pd.read_csv("Social_Network_Ads.csv")
[16]: data.head()
[16]:
         User ID
                  Gender
                                EstimatedSalary Purchased
                           Age
      0 15624510
                     Male
                                          19000
                     Male
      1 15810944
                            35
                                          20000
                                                         0
      2 15668575
                  Female
                            26
                                          43000
                                                         0
      3 15603246
                  Female
                            27
                                          57000
                                                         0
      4 15804002
                     Male
                                          76000
                                                         0
                            19
[17]: data.tail()
[17]:
           User ID
                     Gender
                             Age
                                  EstimatedSalary Purchased
      395 15691863 Female
                              46
                                            41000
      396 15706071
                       Male
                              51
                                            23000
                                                           1
          15654296 Female
                              50
                                            20000
      397
                                                           1
      398 15755018
                       Male
                              36
                                            33000
                                                           0
      399 15594041 Female
                                            36000
                                                           1
                              49
[18]: # Separate the features (X) and the target variable (y)
      X = data.iloc[:, :-1].values
      y = data.iloc[:, -1].values
[19]: print(X)
     [[15624510 'Male' 19 19000]
      [15810944 'Male' 35 20000]
      [15668575 'Female' 26 43000]
      [15654296 'Female' 50 20000]
```

```
[15755018 'Male' 36 33000]
[15594041 'Female' 49 36000]]
```

[20]: print(y)

[21]: # Perform label encoding on the 'Gender' column

11 11 11

In machine learning projects, we usually deal with datasets having different \sqcup \hookrightarrow categorical columns where some columns have their elements in the ordinal \sqcup ovariable category for e.g a column income level having elements as low, □ \neg medium, or high in this case we can replace these elements with 1,2,3. where \Box →1 represents 'low' 2 'medium' and 3 high'. Through this type of encoding,,, we try to preserve the meaning of the element where higher weights are \sqcup ⇒assigned to the elements having higher priority.

Label Encoding :

Label Encoding is a technique that is used to convert categorical columns into \Box \neg numerical ones so that they can be fitted by machine learning models which →only take numerical data. It is an important pre-processing step in a_□ ⇔machine-learning project. 11 11 11

le = LabelEncoder()

 $X[:, 1] = le.fit_transform(X[:, 1])$

[22]: # Split the dataset into training and testing sets

11 11 11

The $train_test_split$ function of the $sklearn.model_selection$ package in $Python_{\sqcup}$ splits arrays or matrices into random subsets for train and test data,,, ⇔respectively.

11 11 11

```
[23]: # Create an instance of the Logistic Regression model
      logistic_regression = LogisticRegression()
[24]: # Train the model on the training data
      logistic_regression.fit(X_train, y_train)
[24]: LogisticRegression()
[25]: # Predict the labels for the test set
      y_pred = logistic_regression.predict(X_test)
[26]: # Compute the confusion matrix
      A confusion matrix is a matrix that summarizes the performance of a machine\sqcup
       \hookrightarrow learning model on a set of test data. It is often used to measure the \sqcup
       \hookrightarrowperformance of classification models, which aim to predict a categorical\sqcup
       \hookrightarrow label for each input instance.
       11 11 11
      confusion = confusion_matrix(y_test, y_pred)
[27]: # Extract the values from the confusion matrix
       11 11 11
      True Positive (TP): It is the total counts having both predicted and actual_{\sqcup}
       \hookrightarrow values are Dog.
      True Negative (TN): It is the total counts having both predicted and actual_{\sqcup}
       \hookrightarrow values are Not Dog.
      False Positive (FP): It is the total counts having prediction is Dog while \Box
       \neg actually Not Dog.
      False Negative (FN): It is the total counts having prediction is Not Dog while,
       ⇔actually, it is Dog.
      11 11 11
      TN = confusion[0, 0] # True Negative
      FP = confusion[0, 1] # False Positive
      FN = confusion[1, 0] # False Negative
      TP = confusion[1, 1] # True Positive
[28]: # Compute the accuracy
      accuracy = (TP + TN) / (TP + TN + FP + FN)
```

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_

→random state=42)

```
# Compute the error rate
      error_rate = (FP + FN) / (TP + TN + FP + FN)
      # Compute the precision
      precision = TP / (TP + FP)
      # Compute the recall
      recall = TP / (TP + FN)
[29]: # display the confusion matrix
      print(confusion)
     [[49 3]
      [18 10]]
[30]: # display the accuracy
      print(accuracy)
     0.7375
[31]: # display the error rate
      print(error_rate)
     0.2625
[32]: # display the precision
      print(precision)
     0.7692307692307693
[33]: # display the recall
```

0.35714285714285715

print(recall)