2015年全国统一高考化学试卷(新课标II)

— ,	冼择颙	(共7小题,	每小题 6 分,	满分 42 分)
•			サイルと リ カ カ	109 /1 74 /1 /

- 1. (6分)食品干燥剂应无毒、无味、无腐蚀性及环境友好. 下列说法错误的是()
 - A. 硅胶可用作食品干燥剂
 - B. P_2O_5 不可用作食品干燥剂
 - C. 六水合氯化钙可用作食品干燥剂
 - D. 加工后具有吸水性的植物纤维可用作食品干燥剂
- 2. (6 分)某羧酸酯的分子式为 $C_{18}H_{26}O_5$, 1mol 该酯完全水解可得到 1mol 羧酸和 2mol 乙醇, 该羧酸的分子式为(
 - A. $C_{14}H_{18}O_5$
- B. $C_{14}H_{16}O_4$
- C. $C_{16}H_{22}O_5$
- D. $C_{16}H_{20}O_5$
- 3. (6分)原子序数依次增大的元素 a、b、c、d,它们的最外层电子数分别为 1、6、7、1. a□的电子层结构与氦相同,b和c的次外层有8个电子,c□和d⁺的电子层结构相同.下列叙述错误的是()
 - A. a 和其他 3 种元素均能形成共价化合物
 - B. 元素的非金属性次序为 c>b>a
 - C. d 和其他 3 种元素均能形成离子化合物
 - D. 元素 a、b、c 各自最高和最低化合价的代数和分别为 0、4、6
- 4. $(6 分) N_A$ 代表阿伏加德罗常数的值. 下列叙述正确的是 ()
 - A. 60g 丙醇中存在的共价键总数为 10N_A
 - B. 1L 0.1mol•L□1 的 NaHCO3溶液中 HCO3□和 CO32□离子数之和为 0.1NA
 - C. 钠在空气中燃烧可生成多种氧化物. 23g 钠充分燃烧时转移电子数为 1NA
- D. 235g 核素 $_{92}^{235}$ U 发生裂变反应: $_{92}^{235}$ U+ $_{0}$ ln 製变 $_{38}^{90}$ Sr+ $_{54}^{136}$ Xe+ 10_{0} ln 净产生的中子($_{0}$ ln)数为 $10N_{A}$
- 5. (6 分) 分子式为 $C_5H_{10}O_2$ 且可与碳酸氢钠溶液反应放出气体的有机化合物有()
 - A. 3种
- B. 4种
- C. 5种
- D. 6种
- 6. (6分)海水开发利用的部分过程如图所示. 下列说法错误的是()

- A. 向苦卤中通入Cl₂是为了提取溴
- B. 粗盐可采用除杂和重结晶等过程提纯
- C. 工业生产常选用 NaOH 作为沉淀剂
- D. 富集溴一般先用空气和水蒸气吹出单质溴,再用 SO2 将其还原吸收
- 7. (6分) 用图所示装置进行下列实验:将①中溶液滴入②中,预测的现象与实际相符的是

选项 ①中物质 ②中物质 预测②中的现象 立即产生气泡 稀盐酸 碳酸钠与氢氧化钠的混合溶液 Α В 浓硝酸 用砂纸打磨过的铝条 产生红棕色气体 氯化铝溶液 C 浓氢氧化钠溶液 产生大量白色沉淀 草酸溶液 高锰酸钾酸性溶液 D 溶液逐渐褪色

二、解答题

8. (14分)酸性锌锰干电池是一种一次电池,外壳为金属锌,中间是碳棒,其周围是有碳粉,二氧化锰,氯化锌和氯化铵等组成的填充物,该电池在放电过程产生 MnOOH,回收处理该废电池可以得到多种化工原料,有关数据下表所示:

溶解度/ (g/100g 水)

温度/℃ 化合物	0	20	40	60	80	100
NH ₄ Cl	29.3	37.2	45.8	55.3	65.6	77.3
ZnCl ₂	343	395	452	488	541	614

化合物	Zn (OH) ₂	Fe (OH) ₂	Fe (OH) ₃
K _{sp} 近似值	10217	10 ²¹⁷	10239

回答下列问题:

- (1) 该电池的正极反应式为 , 电池反应的离子方程式为: 。
- (2) 持续电流强度为 0.5A, 电池工作五分钟, 理论消耗锌_____g. (已经 F=96500C/mol)
- (3) 废电池糊状填充物加水处理后,过滤,滤液中主要有 $ZnCl_2$ 和 NH_4Cl ,两者可以通过______ 分离回收,滤渣的主要成分是 MnO_2 、______和_____,欲从中得到较纯的 MnO_2 ,最简便的方法是_____,其原理是_____。
- (4) 用废电池的锌皮制作 $ZnSO_4$ •7 H_2O 的过程中,需除去铁皮中的少量杂质铁,其方法是: 加入稀 H_2SO_4 和 H_2O_2 ,溶解,铁变为______加碱调节 pH 为______时,铁刚好沉淀完全(离子浓度小于 $1\times 10^{-5} mol$ • L^{-1} 时,即可认为该离子沉淀完全)。继续加碱调节 pH 为______时,锌开始沉淀(假定 Zn^{2+} 浓度为 0.1 mol• L^{-1})。若上述过程不加 H_2O_2 的后果是_____,原因是_____。
- 9. (14分) 甲醇既是重要的化工原料,又可作为燃料。利用合成气(主要成分为 CO、 CO_2 和 H_2)在催化剂的作用下合成甲醇,发生的主要反应如下:
- $(1)CO (g) +2H_2 (g) \rightleftharpoons CH_3OH (g) \triangle H_1$
- $\textcircled{2}CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g) \triangle H_2$

回答下列问题:

	化学键	H?H	C?O	c≡o	H②O	C2H	
--	-----	-----	-----	-----	-----	-----	--

E/	436	343	1076	465	413
(kJ. mol ^{©1}					
)					

(1) 已知反应①中的相关的化学键键能数据如下:

由此计算△H₁=_____kJ. mol^{□1},已知△H₂=□58kJ. mol^{□1},则△H₃=____kJ. mol^{□1}

- (3) 合成气的组成 n (H₂) /n (CO+CO₂) = 2.60 时体系中的 CO 平衡转化率 (a) 与温度和压强的 关系 如图 2 所示。 a (CO) 值随温度升高而_____(填"增大"或"减小"), 其原因 是____。图 2 中的压强由大到小为_____, 其判断理由是____

- 10. (15分) 二氧化氯(ClO₂, 黄绿色易溶于水的气体) 是高效、低毒的消毒剂,回答下列问题:
- (1) 工业上可用 $KClO_3$ 与 Na_2SO_3 在 H_2SO_4 存在下制得 ClO_2 ,该反应氧化剂与还原剂物质的量之比为_____.
- (2) 实验室用 NH_4Cl 、盐酸、 $NaClO_2$ (亚氯酸钠)为原料,通过以下过程制备 ClO_2 :

①电解时发生反应的化学方程式为____

- ②溶液 X 中大量存在的阴离子有_____.
- ③除去 ClO_2 中的 NH_3 可选用的试剂是_____ (填标号) a. 水 b. 碱石灰 c. 浓硫酸 d. 饱和食 盐水
- (3) 用如图装置可以测定混合气中 CIO₂ 的含量:
- I. 在锥形瓶中加入足量的碘化钾,用 50mL 水溶解后,再加入 3mL 稀硫酸:
- II. 在玻璃液封装置中加入水. 使液面没过玻璃液封管的管口;
- III. 将一定量的混合气体通入锥形瓶中吸收;
- IV. 将玻璃液封装置中的水倒入锥形瓶中:
- V. 用 0.1000mol•L□¹硫代硫酸钠标准溶液滴定锥形瓶中的溶液(I_2 + $2S_2O_3$ 2□=2I□+ S_4O_6 2□),指示剂显示终点时共用去 20.00mL 硫代硫酸钠溶液.在此过程中:
- ①锥形瓶内 CIO₂ 与碘化钾反应的离子方程式为
- ②玻璃液封装置的作用是
- ③V 中加入的指示剂通常为_____,滴定至终点的现象是____
- ④测得混合气中 ClO₂ 的质量为_____g.
- (4) 用 ClO₂处理过的饮用水会含有一定最的亚氯酸盐. 若要除去超标的亚氯酸盐,下列物质最适宜的是 (填标号) a. 明矾 b. 碘化钾 c. 盐酸 d. 硫酸亚铁.

三、化学——选修 2: 化学与技术。(满分 15 分)

11. (15分)苯酚和丙酮都是重要的化工原料,工业上可用异丙苯氧化法生产苯酚和丙酮,其反应和工艺流程示意图如图:

相关化合物的物理常数

物质	相对分子质量	密度(g/cm [®] 3)	沸点/℃
异丙苯	120	0.8640	153
丙酮	58	0.7898	56.5
苯酚	94	1.0722	182

回答下列问题:

- (1) 在反应器 A 中通入的 X 是。
- (2) 反应①和②分别在装置 和 中进行(填装置符号)。
- (3) 在分解釜 C中加入的 Y 为少置浓硫酸,其作用是_____,优点是用量少,缺点是____。
- (4) 反应②为_____(填"放热"或"吸热") 反应。反应温度控制在 50□60°C, 温度过高的安全 隐患是____。
- (5) 中和釜 D 中加入的 Z 最适宜的是 (填编号。已知苯酚是一种弱酸)。
- a. NaOHb. CaCO3c. NaHCO3d. CaO
- (6)蒸馏塔 F 中的馏出物 T 和 P 分别为 和 , 判断的依据是 。

(7) 用该方法合成苯酚和丙酮的优点是____。

四、化学-选修 3: 物质结构与性质。(满分 15 分)

- 12. (15 分) A、B、C、D 为原子序数依次增大的四种元素, A^{2□}和 B⁺具有相同的电子构型; C、D 为同周期元素, C 核外电子总数是最外层电子数的 3 倍; D 元素最外层有一个未成对电子. 回答下列问题:
- (1) 四种元素中电负性最大的是_____(填元素符号),其中 C 原子的核外电子排布式为_____.
- (2) 单质 A 有两种同素异形体,其中沸点高的是_____(填分子式),原因是_____; A 和 B 的氢化物所属的晶体类型分别为_____和___.
- (3) C和D反应可生成组成比为1:3 的化合物 E, E 的立体构型为_____, 中心原子的杂化轨道类型为 .
- (4) 化合物 D_2A 的立体构型为______,中心原子的价层电子对数为______,单质 D 与湿润的 Na_2CO_3 反应可制备 D_2A ,其化学方程式为 .
- (5) A和B能够形成化合物 F, 其晶胞结构如图所示, 晶胞边长 a=0.566nm, F的化学式为______; 晶胞中 A原子的配位数为______; 列式计算晶体 F的密度(g•cm□³)______ (保留小数点后两位数字).

五、化学一选修 5: 有机化学基础 (满分 15 分)

13. (15分)聚戊二酸丙二醇酯 (PPG) 是一种可降解的聚酯类高分子材料,在材料的生物相容性方面有很好的应用前景. PPG 的一种合成路线如下:

己知:

- ① A 的相对分子质量为 70, 核磁共振氢谱显示只有一种化学环境的氢
- ②化合物 B 为单氯代烃: 化合物 C 的分子式为 C_5H_8
- ③E、F 为相对分子质量差 14 的同系物, F 是福尔马林的溶质

$$\begin{array}{c} \text{R}_1\text{CHO} + \text{R}_2\text{CH}_2\text{CHO} \xrightarrow{ \stackrel{\textstyle \kappa}{\longleftarrow} \text{NaOH} } \begin{array}{c} \text{R}_1 \\ \text{CH-CH} \end{array}$$

回答下列问题:

- (1) A 的结构简式为 .
- (2) 由 B 生成 C 的化学方程式为 .
- (3)由E和F生成G的反应类型为_____,G的化学名称为____.
- (4) ①由 D 和 H 生成 PPG 的化学方程式为:

②若 PPG 平均相对分子质量为 10000,则其平均聚合度约为 (填标号).

- a. 48b. 58c. 76 d. 122
- (5) D的同分异构体中能同时满足下列条件的共有 种(不含立体异构):
- ①能与饱和 NaHCO3 溶液反应产生气体②既能发生银镜反应,又能发生水解反应

其中核磁共振氢谱显示为3组峰,且峰面积比为6:1:1的是____(写结构简式)

- D的所有同分异构体在下列一种表征仪器中显示的信号(或数据)完全相同,该仪器是____(填标号).
- a. 质谱仪 b. 红外光谱仪 c. 元素分析仪 d. 核磁共振仪.