

Problem R-00 provided.	DD (C ₇ H ₁₄ O). Determine the structure of R-00D from the ¹ H NMR, ¹³ C NMR and IR spectra
(a) DBE	
(b) What infor	mation can you obtain from the IR spectrum (give frequency and peak assignment).
	ne 13 C NMR spectrum, showing any part structures that can be identified. After you have decided ssign the resonances by writing δ values next to the individual carbons.
standard format (be 1 H NMR spectrum. For each of the signals listed below, report the multiplet structure in the (e.g., 0.0 δ , dtd, J = 0.0, 0.0, 0.0 Hz, 2H) and any part structure you could obtain from the signal(s)
1.7 δ	
4.0 δ	
5.5 δ	
(e) Give your	answer below.
. , ,	

Problem R-00D (C₇H₁₄O). Determine the structure of **R-00D** from the ¹H NMR, ¹³C NMR and IR spectra provided.

2 (a) DBE 1

6

(b) What information can you obtain from the IR spectrum (give frequency and peak assignment).

3350 cm⁻¹ broad peak means H-bonded OH

1660 cm⁻¹ C=C stretch

970 cm⁻¹ possible trans double bond

No peak 1700-1800 not a ketone or aldehyde

(c) Interpret the 13 C NMR spectrum, showing any part structures that can be identified. After you have decided on a structure, assign the resonances by writing δ values next to the individual carbons.

Calc this chemical shift: 72.1 (d) OH 125.5 72.1 18.3 9.1 (
$$\alpha$$
) 9.1 (α) 9.4 (α) 9.5 (α) 9.5 (α) 9.7 (α) 9.9 (α) 19.0

(d) Analyze the ^{1}H NMR spectrum. For each of the signals listed below, report the multiplet structure in the standard format (e.g., $0.0 \, \delta$, dtd, $J = 0.0, 0.0, 0.0 \, Hz$, 2H) and any part structure you could obtain from the signal(s).

1.0
$$\delta$$

1.0 δ

1.5 δ , m, 5H

1.7 δ

1.68 δ , dd, $J = 7$, 1 Hz, 3H CH₃-CH=CH

Chem shift requires allylic CH₃ group

4.02 δ , q (distorted, maybe dt), $J = 7$ Hz, 1H CH₃-C-C or CH₂-C-CH

4.0 δ

1.68 δ , dq, $J = 16$, 7 Hz, 1H

5.63 δ , dq, $J = 16$, 7 Hz, 1H

5.63 δ , ddq, $J = 16$, 7, 1 Hz

CH₃

CH₃

H

(e) Give your answer below.

7