PROPOSED GUIDE UACE APPLIED MATHEMATICS 2022

SECTION A. (40 MARKS)

QNS	ANSWERS	MARKS
1.	$mgsin\theta$ μR mg $mgcos\theta$	B1
	From Newton's second law, $F = ma$ But $F = F_D - (mgsin\theta + \mu R)$	M1
	$ma = F_D - (1500x9.8xsin\theta + \frac{1}{4}x1500x9.8xcos\theta)$ But, $sin\theta = \frac{3}{5}$, $cos\theta = \frac{4}{5}$	M1
	At steady speed, acceleration, $a = 0ms^{-1}$	M1
	$F_D = 1500x9.8x \frac{3}{5} + \frac{1}{4}x1500x9.8x \frac{4}{5}$ $F_D = 11760N$ Therefore the driving force is 11760N	A1 5 marks
(a)	$\begin{array}{ c c c c c }\hline x & f & fx & fx^2\\\hline 1 & 41 & 41 & 41\\\hline 2 & 33 & 66 & 132\\\hline 3 & 18 & 54 & 162\\\hline 4 & 6 & 24 & 96\\\hline 5 & 2 & 10 & 50\\\hline & \sum f = 100 & \sum fx = 195 & \sum fx^2 = 481\\\hline \end{array}$ From mean, $\bar{x} = \frac{\sum fx}{\sum f}$	B1
(b)	$\bar{x} = \frac{195}{100}$ $\bar{x} = 1.95 \approx 2 \text{ people}$	M1 A1
	From variance, $var(x) = \frac{\sum fx^2}{\sum f} - (\bar{x})^2$ $var(x) = \frac{481}{100} - (1.95)^2$ var(x) = 1.0075	M1 A1 5 marks
3	Since given is the number of ordinates, to get the number of sub- intervals we subtract a one. $h = \frac{2-0}{6} = \frac{1}{3}, \text{ and } f(x) = \frac{1}{3+4x^2}$	M1

					<u> </u>
	x	$f(x) = \frac{1}{3 + 4x^2}$	$f(x) = \frac{1}{3 + 4x^2}$		
	0	0.3333			
	1_		0.2903		
	3		0.2093		
	$\frac{2}{3}$		0.2093		B2
	1		0.1429		
	4		0.0989		
	<u>3</u> 5		0.0707		
	$\frac{3}{3}$		0.0707		
	2	0.0526			
	sum	0.3859	0.8121		
	From \int_0^2	$\frac{1}{1+4x^2}dx \approx \frac{1}{2}h[(f(x))$	$\left(\right) + 2(f(x)) \right]$		N/1
	$\int_{0}^{2} \frac{1}{1} dt$	$x \approx \frac{1}{2}x \frac{1}{3}[(0.3859)]$	+ 2(0.8121)]		M1
		$x \approx 0.335 (3dps)$, ,,,		A1 5 marks
4					
	R a μR a $5gsin30^{\circ}$ $5gcos30^{\circ}$ $3g$ $3g$			B1B1	
	T = 3gsi	30° $3x9.8 = 29.4N$ $n30^{\circ} - \mu R$ $mgcos30^{\circ}$			M1
	T = 3gsin $29.4 = 3n$	n30° – μxmgcos30 x9.8xsin30° – μx5x			M1
	contact is	the coefficient of fri -0.3464		wo surfaces in	A1 5 marks
5		$P(B) = \frac{7}{12}, P(\bar{A}nB)$ $= P(A) - P(AnB)$	$)=\frac{1}{2}$		M1
		nB) = P(B) - P(An	(B)		M1

Frameword from B) = $\frac{1}{2} - \frac{1}{12} = \frac{1}{12}$ Therefore, $P(BnA) = \frac{1}{2} - \frac{1}{12} = \frac{5}{12}$ Therefore, $P(BnA) = \frac{1}{2} - \frac{1}{12} = \frac{5}{12}$ Extract, $\frac{97}{78} + \frac{105}{85} + \frac{92}{92}$ $\frac{x-97}{92-78} = \frac{108-97}{88-78}$ $x = 113$ Therefore 113 dollars are equivalent to 92 Euros Extract, $\frac{79}{64} + \frac{85}{97} = \frac{97}{97-9}$ $y = 68.667$ All Final Point of the boat relative to the river, $v_b^2 = v^2 - v_z^2$ $v_b^2 = 4^2 - 3^2$ $v_b = \sqrt{4^2 - 3^2}$ Therefore the velocity of the boat is; $v_b = \sqrt{7}ms^{-1}$ (b) $d = vxt$ $50 = \sqrt{7}xt$ $t = \frac{50}{\sqrt{7}} = 18.8982seconds$ Therefore the boat takes 18.8982 seconds to cross to a point directly opposite. 8 (a) $P(R removed from B) = P(R_1nR_2) + P(B_1nR_2)$ $= \frac{7}{11}x + \frac{6}{11}x + \frac{4}{11}x + \frac{5}{14}$ $P(R removed from B) = \frac{1}{21}x + \frac{6}{11}x + \frac{4}{11}x + \frac{5}{14}$ $P(R removed from B) = \frac{1}{21}x + \frac{6}{11}x + \frac{4}{11}x + \frac{5}{14}$ $P(R removed from B) = \frac{1}{21}x + \frac{6}{11}x + \frac{4}{11}x + \frac{5}{14}$ $P(R removed from B) = \frac{1}{21}x + \frac{6}{11}x + \frac{4}{11}x + \frac{5}{14}$ $P(R removed from B) = \frac{1}{21}x + \frac{1}{$		$D(A \cap B) = {1 \over 7} = {7 \over 1}$	M1M1
6 Extract,		$P(AnB) = \frac{1}{2} - \frac{7}{12} = \frac{1}{12}$	
$\frac{97 105 x}{78 85 92}$ $\frac{x-97}{92-78} = \frac{108-97}{85-78}$ $x = 113$ Therefore 113dollars are equivalent to 92 Euros $\frac{\text{Extract,}}{79 85 97}$ $\frac{9-64}{85-79} = \frac{78-64}{97-79}$ $y = 68.667$ Therefore 69 Euros are equivalent to 85 dollars $v_r = 3ms^{-1}$ $v_b = ??$ $v_b^2 = v^2 - v_r^2$ $v_b^2 = 4^2 - 3^2$ $v_b = \sqrt{4^2 - 3^2}$ Therefore the velocity of the boat is; $v_b = \sqrt{7}ms^{-1}$ (b) $d = vxt$ $50 = \sqrt{7}xt \ t = \frac{50}{\sqrt{7}} = 18.8982seconds$ Therefore the boat takes 18.8982 seconds to cross to a point directly opposite.		$\Rightarrow \text{ Therefore, } P(\overline{B}nA) = \frac{1}{2} - \frac{1}{12} = \frac{3}{12}$	
$\frac{x-97}{92-78} = \frac{108-97}{85-78}$ $x = 113$ Therefore 113dollars are equivalent to 92 Euros Extract, $\frac{79}{64} = \frac{85}{97-9}$ $y = 68.667$ Therefore 69 Euros are equivalent to 85 dollars $v_r = 3ms^{-1}$ $v_b = ??$ $v_b^2 = v^2 - v_r^2$ $v_b^2 = 4^2 - 3^2$ $v_b = \sqrt{4^2 - 3^2}$ Therefore the velocity of the boat is; $v_b = \sqrt{7}ms^{-1}$ (b) $d = vxt$ $50 = \sqrt{7}xt \ t = \frac{50}{\sqrt{7}} = 18.8982seconds$ Therefore the boat takes 18.8982 seconds to cross to a point directly opposite. M1 A1 A1 A1 A1 A1 A1 A1 A1 A1	6	97 105 <i>x</i>	B1
Therefore 113dollars are equivalent to 92 Euros Extract,		$\frac{x-97}{}=\frac{108-97}{}$	M1
			A1
Therefore 69 Euros are equivalent to 85 dollars 7 (a) Velocity of the boat relative to the river, $v_b^2 = v^2 - v_r^2$ $v_b^2 = 4^2 - 3^2$ $v_b = \sqrt{4^2 - 3^2}$ Therefore the velocity of the boat is; $v_b = \sqrt{7}ms^{-1}$ (b) $d = vxt$ $50 = \sqrt{7}xt$ $t = \frac{50}{\sqrt{7}} = 18.8982seconds$ M1 Therefore the boat takes 18.8982 seconds to cross to a point directly opposite. A1 A1 A1 A1 A1 A1 A1 A1 A1 A		79 85 97 64 y 78	M1
Therefore 69 Euros are equivalent to 85 dollars 5 marks 7 (a) Velocity of the boat relative to the river, $v_b^2 = v^2 - v_r^2$ $v_b^2 = 4^2 - 3^2$ $v_b = \sqrt{4^2 - 3^2}$ A1 Therefore the velocity of the boat is; $v_b = \sqrt{7}ms^{-1}$ (b) $d = vxt$ $50 = \sqrt{7}xt$ $t = \frac{50}{\sqrt{7}} = 18.8982 seconds$ Therefore the boat takes 18.8982 seconds to cross to a point directly opposite.		85-79 97-79	A1
(a) Velocity of the boat relative to the river, $v_b^2 = v^2 - v_r^2$ $v_b^2 = 4^2 - 3^2$ $v_b = \sqrt{4^2 - 3^2}$ Therefore the velocity of the boat is; $v_b = \sqrt{7}ms^{-1}$ (b) $d = vxt$ $50 = \sqrt{7}xt \ t = \frac{50}{\sqrt{7}} = 18.8982 seconds$ Therefore the boat takes 18.8982 seconds to cross to a point directly opposite.			
(a) Velocity of the boat relative to the river, $v_b^2 = v^2 - v_r^2$ $v_b^2 = 4^2 - 3^2$ $v_b = \sqrt{4^2 - 3^2}$ Therefore the velocity of the boat is; $v_b = \sqrt{7}ms^{-1}$ (b) $d = vxt$ $50 = \sqrt{7}xt \ t = \frac{50}{\sqrt{7}} = 18.8982 seconds$ Therefore the boat takes 18.8982 seconds to cross to a point directly opposite. M1 A1 M2 M1 A1 Therefore the boat takes 18.8982 seconds to cross to a point directly opposite.	7	Therefore 07 Euros are equivalent to 03 donars	
$v_b^2 = v^2 - v_r^2$ $v_b^2 = 4^2 - 3^2$ $v_b = \sqrt{4^2 - 3^2}$ Therefore the velocity of the boat is; $v_b = \sqrt{7}ms^{-1}$ (b) $d = vxt$ $50 = \sqrt{7}xt \ t = \frac{50}{\sqrt{7}} = 18.8982 seconds$ Therefore the boat takes 18.8982 seconds to cross to a point directly opposite. A1 S marks		$v_b = ??$	B1
$v_b = \sqrt{4^2 - 3^2}$ Therefore the velocity of the boat is; $v_b = \sqrt{7}ms^{-1}$ $d = vxt$ $50 = \sqrt{7}xt \ t = \frac{50}{\sqrt{7}} = 18.8982 seconds$ Therefore the boat takes 18.8982 seconds to cross to a point directly opposite. A1 smarks	(a)	$v_h^2 = v^2 - v_r^2$	M1
		$v_b = \sqrt{4^2 - 3^2}$	A1
	(b)		
opposite. 5 marks		w • ****	M1
8 (a) $P(R \ removed \ from \ B) = P(R_1 n R_2) + P(B_1 n R_2) $ M1			
(a) $P(R \ removed \ from \ B) = P(R_1 n R_2) + P(B_1 n R_2) $ $M1$	8		
	(a)	$P(R removed from B) = P(R_1 n R_2) + P(B_1 n R_2)$ $7 6 4 5$	M1
$=\frac{11}{11}x\frac{1}{14}+\frac{1}{11}x\frac{1}{14}$ M1		$=\frac{1}{11}x\frac{1}{14}+\frac{1}{11}x\frac{1}{14}$	M1
$P(R \ removed \ from \ B) = \frac{31}{77}$		$P(R \ removed \ from \ B) = \frac{31}{77}$	A1
(b) $P\binom{B_1}{R} = \frac{P(B_1 nR)}{P(R)} = \frac{\frac{4}{11}x\frac{5}{14}}{\frac{31}{77}} = \frac{10}{31}$ M1 A1 5 marks	(b)	$P\binom{B_1}{R} = \frac{P(B_1 nR)}{P(R)} = \frac{\frac{4}{11}x\frac{5}{14}}{\frac{31}{77}} = \frac{10}{31}$	

SECTION B. (60 MARKS)

QNS	ANSWERS	MARKS
9 (a)	#5	
(b)(i)	$\begin{array}{ c c c c }\hline R_{T_1} & R_{T_1} & d & d^2 \\\hline 4 & 1 & 3 & 9 \\\hline 3 & 4 & -1 & 1 \\\hline 5 & 6 & -1 & 1 \\\hline 1.5 & 3 & -1.5 & 2.25 \\\hline 7 & 8 & -1 & 1 \\\hline 6 & 6 & 0 & 0 \\\hline 1.5 & 2 & -0.5 & 0.25 \\\hline 8 & 6 & 2 & 4 \\\hline & & & & & & \\\hline From, $\rho = 1 - \frac{6\sum d^2}{8(8^2-1)}$}\\ \rho = 1 - \frac{6(18.5)}{8(8^2-1)} = 0.7798 \\\hline \end{array}$	
(ii)	Significant at 5% level	

Total			12 Marks
10	(a)	$r_0 = (2i - 2j + 8k)m$	
		$F = (4ti + t^2j + 5k)$	
		From, $F = ma$	
		$(4ti + t^2j + 5k) = 4a$	
		$a = \frac{1}{4}(4ti + t^2j + 5k)$	
		$a = \left(ti + \frac{t^2}{4}j + \frac{5}{4}k\right) ms^{-2}$	
	(b)	From, $a = \frac{dv}{dt}$	
		$\int dv = \int a dt$	
		$v = \int_0^3 a dt$	
		$v = \int_0^3 \left(ti + \frac{t^2}{4} j + \frac{5}{4} k \right) dt$	
		$v = \left(\frac{t^2}{2}i + \frac{t^3}{12}j + \frac{5t}{4}k\right) \begin{vmatrix} 3\\0 \end{vmatrix}$	
		$v = \left(\frac{3^2}{2}i + \frac{3^3}{12}j + \frac{5(3)}{4}k\right) - \left(\frac{0^2}{2}i + \frac{0^3}{12}j + \frac{5(0)}{4}k\right)$	
		$v = \left(\frac{9}{2}i + \frac{27}{12}j + \frac{15}{4}k\right)ms^{-1}$	
		$ v = \sqrt{\left(\frac{9}{2}\right)^2 + \left(\frac{27}{12}\right)^2 + \left(\frac{15}{4}\right)^2} = 6.27495 ms^{-1}$	
	(a)	From, $v = \frac{dr}{dt}$	
	(c)	ui	
		$r = \int vdt$ $r_{(t)} = \int \left(\frac{t^2}{2}i + \frac{t^3}{12}j + \frac{5t}{4}k\right)dt$	
		$r_{(t)} = \int \left(\frac{t^3}{6} i + \frac{t^4}{48} j + \frac{5t^2}{8} k \right) + c$	
		where c is a constant of integration	
		But; at $t = 0$, $r_0 = 2i - 2j + 3k$, $c = 2i - 2j + 3k$	
		$r_{(t)} = \left(\frac{t^3}{6}i + \frac{t^4}{48}j + \frac{5t^2}{8}k\right) + (2i - 2j + 3k)$	
		$r_{(t)} = \left(\frac{t^3 + 2}{6}i + \frac{t^4 - 2}{48}j + \frac{5t^2 + 3}{8}k\right)\Big _{t=3}$	
		$r_{(t)} = \left(\frac{3^3 + 2}{6}i + \frac{3^4 - 2}{48}j + \frac{5(3)^2 + 3}{8}k\right)$	
		$r_{(t=3)} = \left(\frac{29}{6}i + \frac{79}{48}j + \frac{48}{8}k\right)m$	
		Therefore, the particle is at $\left(\frac{29}{6}, \frac{79}{48}, \frac{48}{8}\right)$ from the start after 3 seconds	
Total			12 Marks
11	(a)	Let, $m = \frac{x}{y}$, if the M is used to approximate m with small change Δm	
		then, $(M + \Delta m) = \frac{(X + \Delta x)}{(Y + \Delta y)}$	
		$\Delta m = \frac{X + \Delta x}{Y + \Delta y} - M$ $\Delta m = \frac{X + \Delta x}{Y + \Delta y} - \frac{X}{Y}$	
		$\Delta m = \frac{X + \Delta x}{Y + \Delta x} - \frac{X}{Y}$	
		$Y + \Delta Y$	

$$\Delta m = \frac{Y(X + \Delta x) - X(Y + \Delta y)}{Y(Y + \Delta y)}$$

$$\Delta m = \frac{Y \Delta x - X \Delta y}{Y^2 (1 + \frac{\Delta y}{Y})}$$
Since, $\Delta y \ll y$ then, $\frac{\Delta y}{Y} \approx 0$

$$\Delta m = \frac{Y \Delta x - X \Delta y}{Y^2}$$

$$\frac{\Delta m}{M} = \frac{\left[\frac{Y \Delta x - X \Delta y}{Y^2 (1 + \frac{\Delta y}{Y})}\right]}{\frac{X}{Y}}$$

$$\frac{\Delta m}{M} = \frac{Y \Delta x - X \Delta y}{Y X}$$

$$\frac{\Delta m}{M} = \frac{\Delta x}{X} - \frac{\Delta y}{Y}$$

$$\left|\frac{\Delta m}{M}\right| = \left|\frac{\Delta x}{X} - \frac{\Delta y}{Y}\right|$$

$$\left|\frac{\Delta m}{M}\right| \leq \left|\frac{\Delta x}{X}\right| + \left|\frac{\Delta y}{Y}\right|$$
Therefore the relative error

Therefore the relative error in approximating $\frac{x}{y}$ is $\left|\frac{\Delta x}{x}\right| + \left|\frac{\Delta y}{y}\right|$

(b) From,
$$T = \frac{673.16}{40.345}$$

Let $x = 673.16$, $y = 40.345$
then,
 $\Delta x = 0.5x10^{-2} = 0.005$, $\Delta y = 0.5x10^{-3} = 0.0005$
 $upper\ limit = \frac{673.16+0.005}{40.345-0.0005} = 16.6854$
 $lower\ limit = \frac{673-0.005}{40.345+0.0005} = 16.6848$

Therefore the interval within which the exact value of T can be expected to lie is [16.6848, 16.6854]

Total			12 Marks
12	(a)	$(kx^2; x = 1,2,3)$	
		From $f(x) = \begin{cases} k(7-x)^2 \\ x = 4.5.6 \end{cases}$	
	(•)	From $f(x) = \begin{cases} k(7-x)^2; & x = 4,5,6 \\ 0; & else \ where \end{cases}$	
	(i)	x 1 2 3 4 5 6	
		P(X=x) k $4k$ $9k$ $9k$ $4k$ k	
		From, $\sum_{all \ x} P(X = x) = 1$ (k + 4k + 9k) + (9k + 4k + k) = 1 28k = 1 $k = \frac{1}{28}$	
	(ii)	x 1 2 3 4 5 6	
		P(X = x) 1 4 9 9 4 1	
		$ \overline{28} \overline{28} \overline{28} \overline{28} \overline{28} \overline{28} \overline{28} $	

	From, $E(x) = \sum_{all \ x} xP(X = x)$	
	$E(x) = 1\left(\frac{1}{28}\right) + 2\left(\frac{4}{28}\right) + 3\left(\frac{9}{28}\right) + 4\left(\frac{9}{28}\right) + 5\left(\frac{4}{28}\right) + 6\left(\frac{1}{28}\right) = 3.5$	
	(20) (20) (20) (20)	
(iii	From, $var(x) = E(x^2) - ((E(x)^2))$	
	But, $E(x^2) = \sum_{all \ x} x^2 P(X = x)$	
	$E(x^2) = 1\left(\frac{1}{28}\right) + 4\left(\frac{4}{28}\right) + 9\left(\frac{9}{28}\right) + 16\left(\frac{9}{28}\right) + 25\left(\frac{4}{28}\right) + 36\left(\frac{1}{28}\right)$	
	$E(x^2) = 13.5$	
	$var(x) = 13.5 - ((3.5^2))$	
	var(x) = 1.25 x 1 2 3 4 5 6	
(b	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	F(x)	
	$ $ $ $	
	27	
	$\frac{1}{28}$	
	23	
	$\frac{25}{28}$	
	14	
	$\frac{14}{28}$	
	$\frac{5}{20}$	
	28	
	$\frac{1}{20}$ +	
	$\overline{28}$	
Total	0	10 Mayles
Total		12 Marks
13 (a	$D \longrightarrow S \longrightarrow C$	
	$\sqrt{2}N$	
	4N 2N	
	$2\sqrt{2}N$	
	$A = \frac{1}{2N}$	
	2m	

Resolving horizontally,

$$F_x = 2 + 3 + 2\sqrt{2}\cos 45^0 + \sqrt{2}\cos 45^0 = 8N$$
Resolving vertically

Resolving vertically,

$$F_{y} = 4 + 2 + 2\sqrt{2}\sin 45^{0} - \sqrt{2}\sin 45^{0} = 7N$$

$$\vec{F}_R = \begin{bmatrix} 8 \\ 7 \end{bmatrix}$$

$$\left|\overrightarrow{F_R}\right| = \sqrt{(F_x)^2 + (F_y)^2}$$

$$|\overrightarrow{F_R}| = \sqrt{(8)^2 + (7)^2} = 10.6301N$$

$$|\overrightarrow{F_R}| = \sqrt{(8)^2 + (7)^2} = 10.6301N$$

From, $\theta = tan^{-1} \left(\frac{F_y}{F_x}\right) = tan^{-1} \left(\frac{7}{8}\right) = 41.2^0$

Therefore the resultant force is 10N and acts at 41.20 above the positive x-axis.

(b)

From the figure, $G = yF_x - xF_y$ (Clockwise moments about A) But taking clockwise moments about A;

$$(G) = 3x^2 - 2x^2 + (\sqrt{2})x^{\frac{\sqrt{8}}{2}} = 4Nm$$

$$yF_x - xF_y = 8y - 7x = 4$$

Therefore the equation of line of action of the resultant force is;

$$8y - 7x = 4$$

Total 12 Marks (a) (ii) To calculate the tax paid (T) in dollars based on the amount (A) earned by 200 employees,

(b)

N	A	T
1	1500	0
2	3500	70
3	9000	260

$$P(X > x) = \frac{7}{100}$$

$$\frac{x-600}{20} = 1.476$$

$$x = 20x(1.476) + 600$$

$$x = 629.52g$$

(b)
$$n = 1000$$

$$P\left(Z < \frac{545 - 600}{20}\right)$$

$$P(Z < -2.75) = 2.98 \times 10^{-3}$$

Number of packets that weighed less than 545g is;

 $2.98x10^{-3}x1000 = 2.98 \approx 3$ packets

Total

16 (a)

600

20

From,
$$s = ut + \frac{1}{2}at^2$$

For P,
$$s = (49sin30^{\circ})(t) - \frac{1}{2}x9.8xt^{2}$$

For Q,
$$s = (49sin30^{0})(t-2) - \frac{1}{2}x9.8x(t-2)^{2}$$

At the point they met, they had travelled the same distance, therefore;

$$(49sin30^{0})(t) - \frac{1}{2}x9.8xt^{2} = (49sin30^{0})(t-2) - \frac{1}{2}x9.8x(t-2)^{2}$$

$$68.6 = 19.6t$$

$$t = 3.5$$
seconds

$$h = (49\sin 30^{0})(3.5) - \frac{1}{2}x9.8x3.5^{2} = 25.725m$$

Therefore the two met at 25.725m from the start.

(b)	Distance between A and B is $d = d_1 + d_2$	
	From, $s = ut + \frac{1}{2}at^2$	
	Horizontally there is no acceleration.	
	$d_1 = (49\cos 30^0)(3.5) = 148.5234m$	
	$d_2 = (49\cos 30^0)(3.5 - 2) = 63.6529m$	
	d = 148.5234 + 63.6529 = m	
	Therefore the distance between A and B is 212.1763m	
Total		12 Marks