第三讲、 反函数和隐函数定理

基本内容: 隐函数求导、微分变换、压缩映射、反函数和隐函数定理

压缩映射定理 设 f 是 E 到 E 的映射, 其中 E 是完备度量空间, 且存在 $0 < \rho < 1$, 使得 $|f(x) - f(y)| \le \rho |x - y|, \quad \forall x, y \in E.$

则存在惟一的 $x_0 \in E$, 使 $f(x_0) = x_0$.

映射的中值不等式 设凸区域 $D \subset \mathbb{R}^n$, f 在 D 上可微, $a, b \in D$, 则 $\exists \theta \in (0, 1)$, 使

$$|f(b) - f(a)| \le ||J(a + \theta(b - a))|| \cdot |b - a|,$$

其中
$$J(\cdot)$$
 是 Jacobi 矩阵 $f'(\cdot) = \left(\frac{\partial f_i}{\partial x_j}(\cdot)\right)_{m \times n}$ 且 $\|J(\cdot)\| = \max_{1 \leqslant i \leqslant m, \ 1 \leqslant j \leqslant n} \left|\frac{\partial f_i}{\partial x_j}(\cdot)\right|$.

反函数存在定理 (局部逆映射存在定理) 设 $f: E \subset \mathbf{R}^n \to \mathbf{R}^n$ 是 C^1 映射, $a \in E$, b = f(a), 并且 Jacobi 矩阵 f'(a) 可逆. 则

- (1) 存在开集 $U \subset E$ 和 V, 使得 $\boldsymbol{a} \in U$, $\boldsymbol{b} \in V$, 并且 $\boldsymbol{f} : U \to V$ 是 1–1 满映射;
- (2) 设 $g = f^{-1}: V \to U$, 则 g 是 C^1 映射, 并且

$$g'(y) = (f'(g(y)))^{-1}, y \in V.$$

隐函数存在定理 (局部隐映射存在定理) 设 $f: E \subset \mathbf{R}^{n+m} \to \mathbf{R}^n$ 是 C^1 映射, $(a,b) \in E$, f(a,b)=0, 并且 Jacobi 矩阵 $f_x'(a,b)$ 可逆, 其中 " $f_x'(a,b)$ " 表示固定 y 而把 x 看成自变量而得 到的 Jacobi 矩阵,则

- (1) 存在开集 $U \subset E$ 和 W, 使得 $(a,b) \in U$, $b \in W$, 且 $\forall y \in W$, 存在惟一的 x, 使 得 $(x, y) \in U$, f(x, y) = 0;

$$\begin{cases} F(x, y, u, v, w) = 0, \\ G(x, y, u, v, w) = 0, \\ H(x, y, u, v, w) = 0. \end{cases}$$

设

- (1) F(x,y,u,v,w), G(x,y,u,v,w) 和 H(x,y,u,v,w)在点 $p_0(x_0,y_0,u_0,v_0,w_0)$ 的一个邻域内对 各个变元有连续的偏导数;
 - (2) $F(x_0, y_0, u_0, v_0, w_0) = G(x_0, y_0, u_0, v_0, w_0) = H(x_0, y_0, u_0, v_0, w_0) =$

(3) Jacobi 行列式
$$J(\boldsymbol{p}_0) = \frac{\partial(F,G,H)}{\partial(u,v,W)}\Big|_{\boldsymbol{p}_0} = \begin{vmatrix} F_u(\boldsymbol{p}_0) & F_v(\boldsymbol{p}_0) & F_w(\boldsymbol{p}_0) \\ G_u(\boldsymbol{p}_0) & G_v(\boldsymbol{p}_0) & G_w(\boldsymbol{p}_0) \\ H_u(\boldsymbol{p}_0) & H_v(\boldsymbol{p}_0) & H_w(\boldsymbol{p}_0) \end{vmatrix} \neq 0.$$
 则存在 \boldsymbol{p}_0

点的一个邻域, 在此邻域内由方程组

$$\begin{cases} F(x, y, u, v, w) = 0, \\ G(x, y, u, v, w) = 0, \\ H(x, y, u, v, w) = 0 \end{cases}$$

可以惟一确定隐函数组

$$u = u(x, y), \quad v = v(x, y), \quad w = w(x, y),$$

使满足 F(x,y,u(x,y),v(x,y),w(x,y)) = G(x,y,u(x,y),v(x,y),w(x,y)) = H(x,y,u(x,y),v(x,y),w(x,y)) = 0及 $u_0 = u(x_0, y_0)$, $v_0 = v(x_0, y_0)$ 和 $w_0 = w(x_0, y_0)$, 且 u, v, w 具有关于 x, y 的连续偏导数, 满足

$$\begin{pmatrix} F_u & F_v & F_w \\ G_u & G_v & G_w \\ H_u & H_v & H_w \end{pmatrix} \cdot \begin{pmatrix} u_x & u_y \\ v_x & v_y \\ w_x & w_y \end{pmatrix} = \begin{pmatrix} F_x & F_y \\ G_x & G_y \\ H_x & H_y \end{pmatrix}.$$

§3.1 隐函数求导(形式计算)

隐函数求导时, 涉及到一系列的复合的隐函数. 必须明辨函数关系, 弄清哪些是自变量, 哪些是因变量, 以免漏项.

例 1 设 z = f(x, y) 是由方程 F(x - y, y - z) = 0 确定的隐函数, 试求 z_x, z_y 及 z_{xy} .

例 2 设 u(x,y) 是由方程组 u=f(x,y,z,t), g(y,z,t)=0, h(z,t)=0 确定的函数, 其中 $f,\ g,\ h$ 关于其各变量均连续可微, 且 $\frac{\partial(g,h)}{\partial(z,t)}\neq0$, 求 $\frac{\partial u}{\partial y}$.

例 3 设 u(x,y) 的所有二阶偏导数都连续,且 $u(x,2x)=x,\ u'_x(x,2x)=x^2$ 以及 $u''_{xx}=u''_{yy}.$ 求 $u''_{xx}(x,2x),\ u''_{yy}(x,2x)$ 和 $u''_{xy}(x,2x).$

例 4 设 $x = \cos \varphi \cos \psi$, $y = \cos \varphi \sin \psi$, $z = \sin \varphi$, 求 $\frac{\partial^2 z}{\partial x^2}$

例 5 设 $u=f(x-ut,y-ut,z-ut),\ g(x,y,z)=0,\ \bar{x}u_x,\ u_y.$ 这时 t 是自变量还是因变量?

§3.2 微分式变换

1. 在李義自任前的 $\left(\frac{\delta u}{\partial x}\right)^r + \left(\frac{\partial u}{\partial y}\right)^r = u$ 甲作极坐标代换 $x = r\cos\theta$, $y = r\sin\theta$, 试求万程在变换后的形式.

例 2 通过代换 $x = uv, y = \frac{1}{2}(u^2 - v^2)$, 变换方程

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \frac{1}{\sqrt{x^2 + y^2}}.$$

例 3 设方程

$$a\frac{\partial^2 z}{\partial x^2} + 2b\frac{\partial^2 z}{\partial x \partial y} + c\frac{\partial^2 z}{\partial y^2} = 0,$$

其中 a, b, c 都是常数, $b^2 - ac = 0, c \neq 0$, 作代换

$$u = x + \alpha y, \quad v = x + \beta y.$$

问如何选择 α, β , 能使代换后的方程有简单的形式?

2. 自变量与函数一起变换的情形(这种情况比只变自变量的情况稍复杂些,它要多一个函数关系分析的步骤).

例 4 通过代换 $x=t,y=\frac{t}{1+tu},z=\frac{t}{1+tv}$ 把方程 $x^2z_x+y^2z_y=z^2$ 变为以 v 为函数, t, u 为自变量的形式.

§3.3 压缩映射、反函数和隐函数定理

反函数存在定理的证明 (1) 设 A = f'(a), 取 $\lambda > 0$, 使得 $2\lambda ||A^{-1}|| = 1$, 其中 $||\cdot||$ 表 示矩阵的模(如 $||A|| = \max_{1 \le i,j \le n} |a_{i,j}|$). 因为 f' 在 a 连续, 故可取以 a 为中心的开球 U, 使得 $||f'(x) - A|| < \lambda$, $x \in U$.

对 $y \in \mathbb{R}^n$, 定义带参数 y 的映射

$$\varphi(x) = x + A^{-1}(y - f(x)), \ x \in U.$$
(2)

则 f(x) = y 当且仅当 $x \in \varphi$ 的不动点. 再记 V = f(U), 下面证明由 (2) 定义的映射 对每一个任意固定的 $y \in V$ 有惟一不动点 x, 即存在惟一的 x 满足 f(x) = y. 这就证明 了 $f \in U$ 到 V 的 1-1 可逆映射.

为此, 先对 φ 作估计, 其 Jacobi 矩阵为

$$\varphi'(x) = I - A^{-1}f'(x) = A^{-1}(A - f'(x)).$$

由公式 (1) 及 Schwarz 不等式得 $\|\varphi'(x)\| < \frac{1}{2}, x \in U$. 再由映射的中值不等式得 $|\varphi(x_1) - \varphi(x_2)| \le \frac{1}{2}|x_1 - x_2|, x_1, x_2 \in U$. (3)

因此 φ 是一个压缩映射. 这说明对每一个 $y \in V$, 最多存在一个 $x \in U$, 满足 $\varphi(x) = x$.

其次, 注意到 $\forall y_0 \in V$, 存在 $x_0 \in U$, 使 $f(x_0) = y_0$. 取 r 足够小, 使以 x_0 为中心 r 为半径的开球 B 的闭包 $\overline{B} \subset U$. 限制 y 满足 $|y - y_0| < \lambda r$, 此时对于 \overline{B} 中的点 x 有

$$\begin{aligned} |\boldsymbol{\varphi}(\boldsymbol{x}) - \boldsymbol{x}_0| &\leqslant |\boldsymbol{\varphi}(\boldsymbol{x}) - \boldsymbol{\varphi}(\boldsymbol{x}_0)| + |\boldsymbol{\varphi}(\boldsymbol{x}_0) - \boldsymbol{x}_0| \leqslant \frac{1}{2}|\boldsymbol{x} - \boldsymbol{x}_0| + |\boldsymbol{A}^{-1}(\boldsymbol{y} - \boldsymbol{y}_0)| \\ &\leqslant \frac{r}{2} + \|\boldsymbol{A}^{-1}\| \cdot \lambda r \leqslant r, \end{aligned}$$

因此 $\varphi(x) \in \overline{B}$, 从而 φ 是 \overline{B} 上的压缩映射. 故存在 $x \in \overline{B}$, 使 $\varphi(x) = x$. 也即只要 y 满足 $|y-y| < \lambda r$ 就存在 $x \in \overline{B}$ 使 f(x) = y, 即 $y \in f(\overline{B}) \subset f(U) = V$. 结合上面两条 就证明了 Y := V 任 惟一 内 $x \in U$,使 Y := y, 为以 Y := V 证 他一 内 $x \in U$,使 Y := y, 为以 Y := y 的开联位 Y := y , 为 Y := y 是 Y := y 。 Y := y 是 Y := y 是

(2) 因为 f 是 C^1 映射, 故 $\det f'(x)$ 是 x 的连续函数. f'(a) 可逆, 即 $\det f'(a) \neq 0$, 故不妨认为在公式 (1) 中给出的邻域 U 内, 都有 $\det f'(x) \neq 0$. 即 f'(x) 可逆. 记其逆为 T. 设 g 是 f 的逆, 即 x = g(y). 取 $y \in V$, $y + k \in V$. 于是 $\exists h \in \mathbf{R}^n$, 使 $x \in U$, $x + h \in U$ 及 y = f(x), y + k = f(x + h). 用公式 (2) 估计有

$$\varphi(x+h) - \varphi(x) = h + A^{-1}(f(x) - f(x+h)) = h - A^{-1}k,$$

由 公式(3) 得 $|h - A^{-1}k| \leq \frac{1}{2}|h|$, 即 $|A^{-1}k| \geq \frac{1}{2}|h|$, 从而 $|k| \geq \lambda |h|$. (4)

于是

$$g(y+k) - g(y) - Ty = h - Tk = -T(f(x+h) - f(x) - f'(x)h).$$

所以

$$\frac{|g(y+k)-g(y)-Ty|}{|k|}\leqslant \frac{\|T\|\cdot|f(x+h)-f(x)-f'(x)h|}{\lambda|h|},$$

且当 $|\mathbf{k}| \to 0$,由 (4) 也有 $|\mathbf{h}| \to 0$,上式右边的极限为 0. 这就证明了 \mathbf{g} 是可微映射,且 $\mathbf{g}'(\mathbf{y}) = \mathbf{T} = (\mathbf{f}'(\mathbf{g}(\mathbf{y})))^{-1}$. 容易验证 $\mathbf{g}'(\mathbf{y})$ 为连续的.

注 设 $f: E \subset \mathbf{R}^{n+m} \to \mathbf{R}^n$ 是 C^1 映射, $(a,b) \in E$,使 $f(a,b) = \mathbf{0}$,并且 Jacobi 矩阵 $f'_x(a,b)$ 可逆. 这时方程 $f(x,y) = \mathbf{0}$ 在 (a,b) 的邻域内存在惟一 C^1 隐映射 x = g(y) 的隐函数存在定理可通过定义 F(x,y) = (f(x,y),y) 而转化为 F 的反函数存在定理. 事实上可检验反函数存在定理的条件成立,因此存在 (a,b) 的开邻域 U 和 $(\mathbf{0},b)$ 的开邻域 V,使 F 是 U 到 V 的 1—1 映射. 再设 W 是满足 $(\mathbf{0},y) \in V$ 的一切 $y \in \mathbb{R}^m$ 组成的集合即可.

§3.4 若干应用的例子

例 1 设 f(x,y)存在二阶连续偏导数,且 $f''_{xx}f''_{yy} - (f''_{xy})^2 \neq 0$,证明变换

$$\begin{cases} u = f'_x(x, y), \\ v = f'_y(x, y), \\ w = -z + xf'_x(x, y) + yf'_y(x, y) \end{cases}$$

存在唯一的逆变换

$$\begin{cases} x = g'_u(u, v), \\ y = g'_v(u, v), \\ z = -w + ug'_u(u, v) + vg'_v(u, v) \end{cases}.$$

例 2 设 f 为 \mathbb{R}^2 上的连续可微函数, 已知 f(x,y)=0 为 8 字形的曲线. 问

$$f_x(x,y) = 0, \quad f_y(x,y) = 0$$

在 \mathbb{R}^2 中至少有几组解?

例 3 设函数 f(x,y), g(x,y) 是定义在平面开区域 G 内的两个函数, 在 G 内均有连续 的一阶偏导数, 且在 G 内任意点处均有

$$\frac{\partial f}{\partial x}\frac{\partial g}{\partial y} - \frac{\partial f}{\partial y}\frac{\partial g}{\partial x} \neq 0.$$

又设有界闭区域 $D \subset C$. 试证在 D 中满足方程组 $\left\{ \begin{array}{c} (x,y) = 0 \\ g(x,y) = 0 \end{array} \right.$

的点至多有有限个.

第三讲练习题

1. 设二元函数 u = F(x,y) 满足方程

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0,$$

证明: F(x,y) 在极坐标系下只是 θ 的函数.

2. 设 $A = (a_{ij})_{n \times n}$ 是正交矩阵, f(y) 是定义在 \mathbf{R}^n 上的二次可微函数, F(x) = f(Ax).

(a)
$$\sum_{i=1}^{n} \left(\frac{\partial f}{\partial y_i} \right)^2 = \sum_{i=1}^{n} \left(\frac{\partial F}{\partial x_i} \right)^2; \quad \text{(b)} \quad \sum_{i=1}^{n} \frac{\partial^2 f}{\partial y_i^2} = \sum_{i=1}^{n} \frac{\partial^2 F}{\partial x_i^2}.$$

3. 设 z = z(x, y) 二阶连续可微, 对微分方程

$$\frac{1}{(x+y)^2}\left(\frac{\partial^2 z}{\partial x^2} + 2\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2}\right) - \frac{1}{(x+y)^3}\left(\frac{\partial z}{\partial x} + \frac{\partial z}{\partial x}\right) = 0$$

作变量代换

$$u = xy, \quad v = x - y.$$

求变换后的方程.

4. 对方程组

对方程组
$$\begin{cases} x^3 + y^3 + z^3 = 3xyz, \\ x + y + z = c \end{cases}$$
 确元的图函数组 $y = y(x), z = z(x), x \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{z}{\mathrm{d}x}, \frac{\mathrm{d}'}{\mathrm{d}x^2}, 1, \frac{\mathrm{d}^2z}{\mathrm{d}x^2}$

- 5. 以 $\xi = x + y, \eta = x y$ 为新自变量, 变换方程 $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y}$.
- 6. 设 $u=xe^z, v=ye^z, w=ze^z$. 以 w 为新的函数, u,v 为新的自变量, 变换方程 $\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y}$.
- 7. 设 $f: \mathbb{R}^2 \to \mathbb{R}$ 为连续可微函数. 证明存在连续的单射 $g: [0,1] \to \mathbb{R}^2$ 使得 $f \circ g$ 为常值.