Parameterized Modular Inverse Reinforcement Learning

Shun Zhang

Introduction

Literature Review

2.1 Overview

Markov Decision Process MDP:

- \bullet State: S.
- \bullet Action: A.
- Transition: $P: S \times A \times S \to \mathcal{R}$.
- Reward: $R: S \times A \times S \to \mathcal{R}$.

2.2 Forward Model

Abstraction on MDP

- Aggregate states: feature extraction.
- Aggregate actions: **option**.
- Decompose transition: factored MDP.
- Decompose value (abstract MDP): **HAM**, hierarchical RL, modular RL.

Approaches	State	Action	Reward	Reward Value/Q
MDP with Option		Aggregated actions	/	
Factored MDP	Decomposed states		/	Decomposed or not
HAM			/	
Modular RL			/	

Table 2.1: Overview of decomposition or aggregation of the components of MDP.

2.2. FORWARD MODEL

7

4 stochastic primitive actions

8 multi-step options (to each room's 2 hallways)

 MDP with Option

• Option: (start state, policy, termination condition).

 \bullet State: S.

• Action: A, O.

• Transition: $P: S \times \{A, O\} \times S \to \mathcal{R}$.

• Reward: $R: S \times \{A, O\} \times S \to \mathcal{R}$.

STOP

Hierarchies of Abstract Machines (HAM)

• State machine of MDPs.

Hierarchical RL

Hierarchical RL MDP:

• State: \mathcal{S} .

• Action: \mathcal{A} .

• Transition: \mathcal{T} .

• Reward: \mathcal{R} .

Fig. 1. MMRL.

Modular RL MDP:

• State: $S_1 \times S_2 \cdots \times S_M$.

• Action: A.

• Transition: $P_1 \times P_2 \cdots \times P_M$.

• Reward: $R_1 \times R_2 \cdots \times R_M$.

2.3 Ideas in Recent Work

Not fix a model.

Learn the components,

Dynamic.

Parameterized Modular Inverse Reinforcement Learning

3.1 Modular Inverse Reinforcement Learning

12CHAPTER 3. PARAMETERIZED MODULAR INVERSE REINFORCEMENT LEARNING

Application: Human Behavior Modeling

- 4.1 Experiments
- 4.1.1 Grid World
- 4.1.2 Human Motion

Application: Influencing Agents in a Flock

5.1 Introduction

Weighted sum of actions [1].

Conclusion

Bibliography

[1] Katie Genter, Shun Zhang, and Peter Stone. Determining placements of influencing agents in a flock. 2015.