Teorema 14 El gradiente es normal a las superficies de nivel Sea $f: \mathbb{R}^3 \to \mathbb{R}$ una aplicación de clase C^1 y sea (x_0, y_0, z_0) un punto de la superficie de nivel S definida por f(x, y, z) = k, para una constante k. Entonces $\nabla f(x_0, y_0, z_0)$ es normal a la superficie de nivel en el sentido siguiente: si \mathbf{v} es el vector tangente en t=0 de una trayectoria $\mathbf{c}(t)$ en S con $\mathbf{c}(0)=(x_0,y_0,z_0)$, entonces $\nabla f(x_0,y_0,z_0)\cdot\mathbf{v}=0$ (véase la Figura 2.6.2).

Figura 2.6.2 Significado geométrico del gradiente: ∇f es ortogonal a la superficie S sobre la que f es constante.

Demostración Sea $\mathbf{c}(t)$ un punto de S; entonces $f(\mathbf{c}(t)) = k$. Sea \mathbf{v} como en la hipótesis; entonces $\mathbf{v} = \mathbf{c}'(0)$. Por tanto, el hecho de que $f(\mathbf{c}(t))$ sea constante en t y la regla de la cadena dan

$$0 = \frac{d}{dt} f(\mathbf{c}(t)) \Big|_{t=0} = \nabla f(\mathbf{c}(0)) \cdot \mathbf{v}.$$

Si estudiamos la conclusión del Teorema 14, vemos que es razonable definir el plano tangente a S como el plano ortogonal al gradiente.

Definición Planos tangente a superficies de nivel Sea S la superficie que está formada por aquellos (x,y,z) tales que f(x,y,z) = k para k constante. El **plano tangente** a S en un punto (x_0,y_0,z_0) de S se define mediante la ecuación

$$\nabla f(x_0, y_0, z_0) \cdot (x - x_0, y - y_0, z - z_0) = 0 \tag{1}$$

si $\nabla f(x_0, y_0, z_0) \neq \mathbf{0}$. Es decir, el plano tangente es el conjunto de puntos (x, y, z) que satisface la Ecuación (1).

Esto extiende la definición de plano tangente a la gráfica de una función que proporcionamos anteriormente (véase el Ejercicio 15 al final de esta sección).