- CS Project Final Report -

Game Level Editor & Assist Tools

Contents

Introduction

Problem: The chart (level) file is complicated to modify and difficult to preview

Goal:

- 1. Develop a user-friendly editor for my game
- 2. Design assist tools inside the editor
 - BPM Estimation
 - Main Melody Onset Detection

Hand Tracker Mount

Problem: Hand may be obstructed by the other during

gameplay and make it undetectable to the

tracker

Solution: The tracker is now mounted on a LEGO headset

- sponge is taped to make it more comfortable to wear

- tracker is slightly tilted down to make the hand movements more natural

Level Editor - Interface

Level Editor - Interface

Level Editor - Interface

BPM Estimation – Overview

Goal: Find the drum onsets (time when the drum hit begins) and calculate the most possible BPM

BPM Estimation – Preprocess

Percussion instruments have spectrum with rapid broadband onset

$$P[k] = \sum_{\mu=20}^{2048} \begin{cases} 1, & if \frac{|x[k,\mu]|}{|x[k-1,\mu]|} > 5\\ 0, & otherwise \end{cases}$$

BPM Estimation – Onset Detect

Compare the current value with the average of the past 0.5 seconds

The timing is considered an onset if the ratio is above the threshold

BPM Estimation – Scoring

Old Method: Count the consecutive onsets that match with the BPM

New Method: Apply autocorrelation to the onsets to check periodicity

BPM Estimation – Scoring

The score is computed through adding up the autocorrelation values with the hop size of one beat for a given BPM

The process is tested for all BPM and offsets, and the pair with the highest score is picked

BPM Estimation - Result

The new method gives a more confident and accurate result than the previous method

Old Method (117.5 bpm)

(PIKASONIC – heroine [176 bpm])

New Method (88 bpm)

Melody Onset Detection - Overview

Goal: Find the loudest melody and detect its onset

Aim to improve the detection method in both frequency and time domain

The harmonics of a base frequency make it brighter and louder

Also taking human hearing sensitivity $(W(\mu))$ into consideration

$$W(\mu) = \begin{cases} \frac{\tan\left(2\ln\left(\frac{\mu}{50}\right)\right)}{0.895\pi} + \frac{1}{2}, & if \ 20 \le x < 1000\\ -t^3 - 2.2t^2 - t + 1.2, & if \ 1000 \le x < 10000 \end{cases}$$

$$t = 0.6 \ln \left(\frac{\mu}{5260} \right)$$

The frequency axis is then converted to semitone band

The lowest 1/3 tones (in values) are discarded

To better detect soft onsets, differences of more time frames are considered

Melody Onset Detection - Melody Blocks

BPM is estimated first, then we apply autocorrelation to the processed samples

The best beat gap and offset is chosen to split the samples

Melody Onset Detection - Melody Blocks

The correlation matrix of all blocks are constructed, then we apply hierarchical clustering

Melody Onset Detection - Detection

The onsets in the same clusters are compared, and a melody is detected if over 2/3 of the blocks have onset at that point

Conclusion

BPM estimation overall does well on EDM genre.

Including machine learning into melody detection would greatly increase the performance

The game would be better to publish to the public if we can replace the tracker device

- Thank You -