

Class G B/2/9
Book S S

DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY

GEORGE OTIS SMITH, DIRECTOR

WATER-SUPPLY PAPER 274

SOME STREAM WATERS OF THE WESTERN UNITED STATES

WITH CHAPTERS ON

SEDIMENT CARRIED BY THE RIO GRANDE AND THE INDUSTRIAL APPLICATION OF WATER ANALYSES

BY

HERMAN STABLER

Analyses of river waters by chemists of the United States Reclamation Service

WASHINGTON
GOVERNMENT PRINTING OFFICE
1911

DEPARTMENT OF THE INTERIOR

UNITED STATES GEOLOGICAL SURVEY

GEORGE OTIS SMITH, DIRECTOR

WATER-SUPPLY PAPER 274

SOME STREAM WATERS OF THE WESTERN UNITED STATES

WITH CHAPTERS ON

SEDIMENT CARRIED BY THE RIO GRANDE AND THE INDUSTRIAL APPLICATION OF WATER ANALYSES

 \mathbf{BY}

HERMAN STABLER

Analyses of river waters by chemists of the United States Reclamation Service

WASHINGTON
GOVERNMENT PRINTING OFFICE
1911

Opejz

C. 2. 2. 0

...

CONTENTS

ome atream waters of the meaters III-it-1 (it-1	Page
ome stream waters of the western United States	
Introduction	5
History of the investigations	5
Collection of samples	5
Plan of analytical work	9
Methods of analysis. Accuracy of work and tables	
Results at sampling stations.	10
American River near Fairoaks, Cal.	12
Animas River near Durango, Colo	12
Belle Fourche River near Belle Fourche, S. Dak	13
Belle Fourche River at diversion dam near Belle Fourche, S. Dak	15
Bighorn River near Fort Custer, Mont.	
Boise River near Boise, Idaho	19 21
Carson River near Hazen, Nev.	21
Colorado River near Yuma, Ariz	Z5
Elm Fork of Red River near Mangum, Okla	25 28
Feather River near Oroville, Cal	36
Gallinas River near Las Vegas, N. Mex.	38
Gila River near San Carlos, Ariz.	40
Grand River near Kremmling, Colo.	40
Grand River near Palisade, Colo	44
Green River near Green River, Wyo.	
Green River near Jensen, Utah	
Gunnison River near Whitewater, Colo	
Hondo River near Roswell, N. Mex.	
Link River near Klamath Falls, Oreg.	
Little Colorado River near Holbrook, Ariz	
Little Colorado River near Woodruff, Ariz.	
Malheur River near Vale, Oreg.	
Milk River near Havre, Mont	
Missouri River near Williston, N. Dak	
North Fork of Red River near Granite, Okla	
North Fork of Red River near Headrick, Okla	
North Platte River near Fort Laramie, Wyo	
Owens River near Round Valley, Cal	
Owens River near Tinemaha, Cal	
Palouse River near Hooper, Wash	
Payette River near Horseshoe Bend, Idaho	
Pecos River at Carlsbad, N. Mex	83
Pecos River near Dayton, N. Mex	
Pecos River near Santa Rosa, N. Mex	88
Pit River near Bieber, Cal	90
Puta Creek near Winters, Cal	92

CONTENTS

Some stream waters of the western United States—Continued.	Page.
Results at sampling stations—Continued.	
Redwater River near Belle Fourche, S. Dak	94
Rio Grande River near El Paso, Tex.	. 96
Rio Grande River near San Marcial, N. Mex	102
Sacramento River near Red Bluff, Cal	106
Sacramento River at Sacramento, Cal.	109
Salmon Creek near Malott, Wash.	111
Salt River near Roosevelt, Ariz	112
Salt Fork Red River near Mangum, Okla	115
San Francisco River near Alma, N. Mex	118
Sapello River near Los Alamos, N. Mex	120
Shoshone River near Cody, Wyo	122
Stony Creek near Fruto, Cal	124
Truckee River near Derby, Nev	125
Tuolumne River near La Grange, Cal	127
Turkey Creek near Olustee, Okla	129
Verde River near McDowell, Ariz	131
Yellowstone River near Billings, Mont	134
Yellowstone River near Glendive, Mont	135
Yuba River near Smartsville, Cal	137
Summary	139
Miscellaneous analyses	141
Analyses of suspended matter	150
Sediment carried by the Rio Grande.	151
Basic data	151
Tabulated estimates	151
Theoretical extension of estimates	161
Accuracy of data and estimates	162
Rock matter, soil, and sediment.	164
The industrial application of water analysis	165
The analysis	165
Soap-consuming power	168
Water softening	169
Boiler waters.	171
Foaming and priming	171
Corrosion	173
Scale formation.	175
Irrigating waters	177
Applications	180
Index	183

SOME STREAM WATERS OF THE WESTERN UNITED STATES.

By HERMAN STABLER.

[Analyses by chemists of the United States Reclamation Service.]

INTRODUCTION.

HISTORY OF THE INVESTIGATIONS.

A systematic study of the waters likely to be utilized on the Reclamation Service projects was made in order to determine the influence of the salinity of the waters on the growth of vegetation and the effect of suspended matter in silting canals and reservoirs.

The work was begun early in 1905, under the direction of Thomas H. Means, engineer, and was continued during 1906 and until May, 1907, under the direction of W. H. Heileman, engineer. The analyses were made in a laboratory established at quarters provided by the University of California at Berkeley, Cal., by C. H. Stone, P. L. McCreary, F. M. Eaton, O. J. Hawley, W. C. Riddell, F. T. Berry, H. A. Burns, J. H. Hampson, J. A. Pearce, and M. Vaygouny, the greater part of the work being that of the first five named. C. H. Stone was chemist in charge at the beginning of the investigations and is chiefly responsible for the plan of the analytical work and the methods of analysis.

The results of the investigations were prepared for publication under instructions from F. H. Newell, Director of the United States Reclamation Service, by Herman Stabler, assistant engineer, who assembled and checked the analyses, compiled the accompanying stream-flow data from records of the United States Geological Survey, and computed daily discharge of suspended matter and dissolved solids, under the supervision of D. W. Murphy, engineer in charge of Washington office engineering.

COLLECTION OF SAMPLES.

Samples were collected for an extended period at 55 stations, located for the most part at established gaging stations of the United States Geological Survey in order that stream-flow data concurrent with the analyses might be obtained.

The general plan of sample collection provided for the taking of 4 ounces of water each day at each of the regular stations. The point

of collection was selected with a view to obtaining a fair average sample of the water flowing in the stream, and occasionally samples were taken from different parts of the cross section in order to determine any possible local variation in quality of water. The general plan could not be followed absolutely, and the records show numerous gaps caused by noncollection of samples, loss of samples in transit, or by other reasons.

The results of the work are here presented in alphabetical order by stream names and, under the stream names, by station names. following lists classify the stations by drainage basins and by States.

Sampling stations, by drainage basins.

Colorado River basin:

Colorado River near Yuma, Ariz.

Green River near Green River, Wyo.

Jensen, Utah.

Grand River basin:

Grand River near Kremmling, Colo.

Palisade, Colo.

Gunnison River near Whitewater, Colo.

San Juan River basin:

Animas River near Durango, Colo.

Little Colorado River near Holbrook, Ariz.

Woodruff, Ariz.

Gila River basin:

Gila River near San Carlos, Ariz.

San Francisco River near Alma, N. Mex.

Salt River basin—

Salt River near Roosevelt, Ariz.

Verde River near McDowell, Ariz.

Columbia River basin:

Snake River basin:

Boise River near Boise, Idaho.

Malheur River near Vale, Oreg.

Payette River near Horseshoe Bend, Idaho.

Palouse River near Hooper, Wash.

Okanogan River basin:

Salmon Creek near Malott, Wash.

Great Basin:

Carson River near Hazen, Nev.

Truckee River near Derby, Nev.

Owens River near Round Valley, Cal.

Tinemaha, Cal.

Klamath River basin:

Link River near Klamath Falls, Oreg.

Mississippi River basin:

Missouri River basin:

Milk River near Havre, Mont.

Yellowstone River basin:

Yellowstone River near Billings, Mont.

Glendive, Mont.

Mississippi River basin—Continued.

Missouri River basin—Continued.

Yellowstone River basin—Continued.

Bighorn River basin:

Bighorn River near Fort Custer, Mont.

Shoshone River near Cody, Wyo.

Cheyenne River basin:

Belle Fourche River at county bridge near Belle Fourche, S. Dak.

diversion dam near Belle Fourche, S. Dak.

Redwater River near Belle Fourche, S. Dak.

Arkansas River basin:

Canadian River basin:

Sapello River near Los Alamos, N. Mex.

Red River basin:

Salt Fork of Red River-

Salt Fork of Red River near Mangum, Okla.

Turkey Creek near Olustee, Okla.

North Fork of Red River:

North Fork of Red River near Granite, Okla.

Headrick, Okla.

Elm Fork near Mangum, Okla.

Rio Grande basin:

Rio Grande near San Marcial, N. Mex.

El Paso, Tex.

Pecos River basin:

Pecos River near Santa Rosa, N. Mex.

near Dayton, N. Mex.

at Carlsbad, N. Mex.

Gallinas River near Las Vegas, N. Mex.

Hondo River near Roswell, N. Mex.

Sacramento River basin:

Sacramento River near Red Bluff, Cal.

at Sacramento, Cal.

Pit River near Bieber, Cal.

Stony Creek near Fruto, Cal.

Feather River basin:

Feather River near Oroville, Cal.

Yuba River near Smartsville, Cal.

American River near Fairoaks, Cal.

Puta Creek near Winters, Cal.

San Joaquin River basin:

Tuolumne River near La Grange, Cal.

Sampling stations and streams, by States.

Arizona:

Holbrook, Little Colorado River.

McDowell, Verde River.

Roosevelt, Salt River.

San Carlos, Gila River.

Woodruff, Little Colorado River.

Yuma, Colorado River.

California:

Bieber, Pit River.

Fairoaks, American River.

Fruto, Stony Creek.

California—Continued.

La Grange, Tuolumne River.

Oroville, Feather River.

Round Valley, Owens River.

Red Bluff, Sacramento River.

Sacramento, Sacramento River

Smartsville, Yuba River.

Tinemaha, Owens River.

Winters, Puta Creek.

Colorado:

Durango, Animas River.

Kremmling, Grand River.

Palisade, Grand River.

Whitewater, Gunnison River.

Idaho:

Boise, Boise River.

Horseshoe Bend, Payette River.

Montana:

Billings, Yellowstone River.

Fort Custer, Bighorn River.

Glendive, Yellowstone River.

Havre, Milk River.

Nevada:

Derby, Truckee River.

Hazen, Carson River.

New Mexico:

Alma, San Francisco River.

Carlsbad, Pecos River.

Dayton, Pecos River.

Las Vegas, Gallinas River.

Los Alamos, Sapello River.

Roswell, Hondo River.

San Marcial, Rio Grande.

Santa Rosa, Pecos River.

North Dakota:

Williston, Missouri River.

Oklahoma:

Granite, North Fork of Red River.

Headrick, North Fork of Red River.

Mangum, Elm Fork.

Mangum, Salt Fork of Red River.

Olustee, Turkey Creek.

Oregon:

Klamath Falls, Link River.

Vale, Malheur River.

South Dakota:

Belle Fourche, Belle Fourche River at county bridge.

Belle Fourche, Belle Fourche River at diversion dam.

Belle Fourche, Redwater River.

Texas:

El Paso, Rio Grande.

Utah:

Jensen, Green River.

Washington:

Hooper, Palouse River. Malott, Salmon Creek.

Wyoming:

Cody, Shoshone River. Fort Laramie, North Platte River. Green River, Green River.

In addition to the analyses of samples taken at these regular stations, many analyses were made of samples collected from various miscellaneous sources. The results of these miscellaneous analyses are tabulated under appropriate headings on pages 141 to 149.

PLAN OF ANALYTICAL WORK.

Equal volumes of the individual samples were united to form composite samples representing the average quality of the water of each stream for a week. The weekly samples were analyzed quantitatively for total solids, dissolved solids, and the carbonate, bicarbonate, and chlorine radicles, and qualitatively for the sulphate radicle. Remainders of the weekly composites were combined in sets of four representing the collections for a month. The monthly composites thus obtained were analyzed quantitatively for dissolved solids and the calcium, magnesium, sodium and potassium, carbonate, bicarbonate, sulphate, chlorine, and nitrate radicles. The suspended matter from the monthly composites for some streams was accumulated and analyzed. Variations from the regular plan of analytical work are shown by the dates of samples in the tables.

METHODS OF ANALYSIS.

The analyses are reported in milligrams per liter, a unit which for little-mineralized water is practically synonymous with parts per million and which was selected because it can more accurately represent the high mineral content of such waters as are found in some of the western streams.

Of the weekly composites 50 cubic centimeters was taken and total solids were determined by evaporating to dryness on a steam bath, drying for one hour at 110° C., cooling in a desiccator, and weighing. Solids were estimated on both filtered and unfiltered samples, and the difference between the two determinations was tabulated as suspended matter. Of the monthly composites 200 cubic centimeters of filtered water was taken for the dissolved solids determination.

Great difficulty was experienced in securing clear filtrates for the determination of dissolved solids and the radicles because of the great quantity of very fine material carried in suspension by many of the streams. For the first few months a filter pump was used successfully and then the Shimer method a was adopted, the procedure being

about as follows: A Swedish filter paper, beaten to a pulp in a paraffin vessel with hydrochloric and hydrofluoric acids and washed, was spread on a felt pad placed in the bottom of a long cylindrical glass tube tightly fitted to a suction flask. The sample to be filtered was placed in the cylindrical tube and suction applied. When sufficient filtrate had been obtained the filter was washed with distilled water to prepare it for the next sample.

Carbonate, bicarbonate, and chlorine radicles were in general determined as follows: Fifty cubic centimeters of the filtered sample was placed in a dish, phenolphthalein indicator added, and titration made with sodium acid sulphate solution to the end point; methyl orange indicator added and titration continued to a second end point; potassium chromate indicator added and titration with silver nitrate made to a third end point. The titrations with sodium acid sulphate furnished data for the calculation of carbonate and bicarbonate radicles and the titration with silver nitrate furnished data for the calculation of the chlorine radicle. In analyzing some of the more concentrated waters less than 50 cubic centimeters of water was used.

Calcium, magnesium, sodium and potassium, and sulphate radicles were determined gravimetrically by the methods of Fresenius. In a few analyses separation of sodium and potassium was made gravimetrically. The figure representing sodium and potassium together was obtained by calculating the weight of their combined chlorides to sodium. The result is in reality the amount of sodium plus three-fourths the potassium, and is so reported in the tables. Where sodium and potassium were separated these bases are reported in terms of per cent of $(Na + \frac{3}{4}K)$.

The nitrogen and other determinations of sanitary analyses were made in accordance with the standard methods of the American Public Health Association.

Special methods of analysis were used from time to time, and for the Colorado at Yuma the methods used by Forbes^a in previous work on this stream were adopted. These methods differed from those used on other streams as follows: All evaporations were made in porcelain instead of silver or platinum, the liquid was measured in a pipette instead of a flask, the dissolved solids were determined on the clear supernatant liquid after standing several days instead of on a filtered portion of the sample, and 100 cubic centimeters was used for the solids determinations instead of 50 cubic centimeters.

ACCURACY OF WORK AND TABLES.

The partial analyses of weekly composites have been checked as far as possible and the qualitative determinations of sulphates and all apparently erroneous values have been omitted.

a Forbes, R. H., The river irrigating waters of Arizona: Bull. 44, Univ. Arizona Agr. Exper. Sta.

As the remainders of the weekly composites used for the monthly composites were not united in equal parts or in proportion to stream flow, the analytical results may not represent with great accuracy the mean quality of the water or the quality of the mean flow. monthly analyses are therefore presented in terms of per cent of dissolved solids, for the percentage composition varies little with changes in stream flow. The per cents are not intended to indicate the percentage composition of the dissolved solids but are merely ratios, expressed as per cent, of the various radicles to the dissolved solids determinations. The actual quantities in milligrams per liter of the various radicles may be estimated by applying the tabulated per cents to the mean of the dissolved solids results of the weekly analyses for any period. In the summary (pp. 139-140) the quantities of radicles in milligrams per liter were obtained by such a calculation, the mean dissolved solids from the monthly analyses being taken as a basis of computation.

The accuracy of the monthly analyses has been checked by comparing the sum of the radicles with the total solids and the sum of the reacting values of the positive radicles with the sum of the reacting values of the negative radicles; apparently erroneous results that could not be corrected from the original notebooks have been discarded. In checking by reacting values it was found that most of the apparent percentage errors (found by dividing the algebraic sum by the arithmetical sum of the reacting values) were less than the value of

the expression $3 + \frac{1500}{\text{dissolved solids}}$, which was adopted as the maximum allowable error. The word "error" is here applied to apparent lack of closure in the chemical system of dissolved solids. The so-called error may result from undetermined radicles as well as from erroneous analytical results.

The following table shows the maximum error allowed by this expression for various amounts of dissolved solids:

Maximum allowable errors in reacting values.

Dissolved solids (mil- ligrams per liter).	Error (per cent).	Dissolved solids (mil- ligrams per liter).	Error (per cent).
80. 90 100. 110 120. 130 140. 150 180. 220. 220. 240. 300. 300.	16.6 15.5 14.5 13.7 13.0 12.4 11.3	360	7.3 6.8 6.0 5.5 4.7 4.5 4.0 3.8 3.3 3.1

The percentage errors in reacting values are shown in the tables of the analyses. The mean of the errors of analyses arranged by content of dissolved solids of the waters are given in the following table:

Mean errors of analyses of monthly composite samples.

Dissolved solids in milligrams per liter.	Number of analyses.	Mean error (per cent).
75 to 99 (mean 91) 100 to 149 (mean 123) 150 to 199 (mean 169) 200 to 299 (mean 247) 300 to 499 (mean 391) 500 to 999 (mean 730) 1,000 to 4,990 (mean 2,490) 5,000 to 21,600 (mean 9,600)	42 39 50 81 59 73	10.0 7.0 5.9 4.8 3.7 2.4 1.8

Some idea of the accuracy of the individual determinations may be gathered by considering the errors inherent in the methods of analysis employed. Titrations made in the ordinary way are all likely to be in error by 0.05 cubic centimeter of the solution and weighings are likely to be wrong by at least 0.5 milligram.

The following table shows the errors thus likely to be introduced into the tabulated analyses for the amounts of water and strengths of solutions generally used for the analyses. Errors greater than these are, of course, not unlikely through blunders in the analytical work, the table showing merely in a general way the minimum refinement probable in the work at Berkeley:

Error's likely to occur in individual analyses.

Determination or radicle.	Assumed error of analytical work.	Quantity of water used (cubic centi- meters).	Resulting error in analysis (milligrams per liter).
Suspended matter. Do Dissolved solids. Do Calcium Magnesium Sodium and potassium Carbonate a Bicarbonate a Sulphate Chlorine a.	0.5 mg 0.5 mg 0.5 mg 0.5 mg 0.5 mg 0.05 c. c 0.05 c. c 0.05 c. c	100 50 200 200 200 200 50 50 50 200	10 5 10 2.5 1.8 .5 1.0 2.3-3.2 2.4-3.3 1.0 2.3-5.0

a The range in resulting errors is due to the use of solutions of different strengths.

RESULTS AT SAMPLING STATIONS.

AMERICAN RIVER NEAR FAIROAKS, CAL.

Samples of water were collected from American River at Fairoaks Bridge, near Fairoaks, Cal., from July 9 to August 12, 1905, near the gaging station established by the United States Geological Survey November 3, 1904. Stream-flow data, including gage heights,

rating tables, and estimates of discharge, for the gaging station have been published by the Survey in the following reports:

Water-Supply Papers: 134, pp. 145–146; 177, pp. 176–178; 213, pp. 146–147; 251, pp. 221–225.

Additional information in regard to the quality of the water of American River is contained in Water-Supply Paper 237, "Quality of California surface waters," pages 41–43.

Partial analyses, gage heights, and rates of discharge of water and solids for American River at Fairoaks Bridge, near Fairoaks, Cal.

[Prainage area, 1,900 square miles.]

	An	alysis (n	nilligram	s per lite	er).	(feet).	-puoses)	Solids (tons per day).		
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height	Mean discharge (a	Suspended mat- ter.	Dissolved solids.	
1905.										
July 9, 10, 11, 12, 14, 15 July 16, 17, 18, 19 August 6, 7, 8, 9, 10, 11, 12	0 0 0	47 68 71	9 16 11	92 20 144	80 106 116	2. 15 1. 75 1. 30	815 530 295	202 29 115	176 152 92	

Note.—Analysis of a composite of the 17 daily samples collected between July 9 and August 12 gives dissolved solids 125 milligrams per liter; and radicles, in per cent of dissolved solids, as follows: Ca, 10; Mg, 3.8; Na+\frac{3}{4}K, 18; CO_3, 0.00; HCO_3, 46; SO_4, 13; Cl, 10; and NO_3, 0.18; Na is 96 per cent of the Na+\frac{3}{4}K and K is 6.3 per cent.

Monthly discharge, in second-feet, of American River near Fairoaks, Cal.

Month.	1904.	1905.	1906.	1907.	1908.	Mean.
fanuary		3,550	7,010	3,750	2,860	4, 29
February		4,630	5,830	14,400	2,090	6,74
March		6,920	13,900	23,900	3,640	12, 10
April		7,740	12, 100	15,600	5,150	10, 10
May		6,720	15,000	12,200	5,300	9,8
une:		3,230	15,900	11, 100	2,780	8, 2
[uly		719	6, 180	5,290	970	3, 29
Augușt		255	1,010	1,290	250	70
September		126	433	565	134	3
October		138	338	438	446.	3.
November	a 896	181	567	573	504	54
December	1,400	242	3,900	1,560	641	1,5
The year		2,870	6,850	7,560	2,060	4,8

a November 4-30.

ANIMAS RIVER NEAR DURANGO, COLO.

Samples of water were collected from Animas River at a highway bridge near Durango, Colo., between March 19 and December 18, 1905. A gaging station was established at this bridge by the United States Geological Survey June 20, 1895, and was discontinued December 31, 1905. Stream-flow data, including gage heights, rating tables, and

estimates of discharge, for the station have been published by the Survey in the following reports:

Annual Reports: 18, IV, pp. 283-285; 19, IV, pp. 414-415; 20, IV, pp. 59, 379, 403; 21, IV, p. 301; 22, IV, p. 394.

Bulletin 140, pp. 198-200.

Water-Supply Papers: 11, p. 72; 16, p. 146; 28, pp. 132, 139, 142, 145; 38, pp. 310-311; 39, p. 452; 50, pp. 383-384; 52, p. 520; 66, pp. 97, 174; 74, p. 122; 85, pp. 35-37; 100, pp. 51-54; 133, pp. 183-186; 175, pp. 134-137.

Partial analyses, gage heights, and rates of discharge of water and solids for Animas River at highway bridge near Durango, Colo.

[Drainage area, 810 square miles.]

	A	nalysis (milligran	ns per li	ter).	t).	-puoses)	Solid per	s (tons day).
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (s	Suspended matter.	Dissolved solids.
1905.									
March 19, 20, 21, 22, 23, 24 March 26, 27, 28, 29, 30, 31 April 2, 3, 4, 5, 6, 7 April 10, 11, 22 April 30, May 1, 2, 3, 4, 5, 6 May 14, 18, 19, 20, 21 May 22, 23, 24, 25, 26, 27 May 22, 23, 24, 25, 26, 27 May 28, 29, 30, 31, June 1, 2 May 7, 8, 9, 11, 12, June 1, 3 June 17, 18, 19, 20, 21, 22, 23 July 24, 25, 26, 27, 28, 29 July 30, 31, August 1, 2, 3, 4, 5 August 6, 7, 8, 9, 10, 11 August 13, 14, 15, 16, 17, 18, 19 August 27, 28, 29, 30, 31, September 1, 2 September 3, 4, 5, 6, 7, 8, 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	169 159 142 142 134 109 97 84 89 112 79 131 161 116 122 116	22 22 20 15 10 13 8 8 10 9 26 18 20 25 42	159 386 1,270 536 308 176 186 238 202 176 74 28 38 78 8 8 18	458 388 294 290 244 226 146 148 194 168 310 236 308 348 396	7.5 8.0 8.6 9.3 9.7 10.9 11.7 11.2 8.0 8.3 7.7 7.2 7.0	500 525 777 1,270 2,110 2,810 5,060 6,500 6,020 3,070 6,230 1,470 1,840 1,100 647 490	215 547 2,660 1,840 1,760 1,340 2,520 4,180 3,280 1,460 1,250 111 189 231 14 24	619 550 617 994 1,720 1,990 2,460 2,410 1,610 2,830 1,230 1,230 1,915 608 525
representation 10, 11, 12, 13, 14,	2	136	30	48 42	$\frac{322}{346}$	7. 0 7. 0	470 470	61 53	408 439
15, 16 September 17, 18, 19, 20, 21, 22, 23	12	124	28	56	390	6.9	427	65	450
eptember 24, 25, 26, 27, 28, 29,30	0	167	27	0	460	6.8	359	0	446
October 1,2,3,4,5,6,7 October 8,9,10,11,12,13,14 October 15,16,27,28	0 10 5 0	112 115 138 84	21 24 28 30	190 106 36 122	254 318 390 368	7. 4 7. 5 7. 0 6. 9	897 876 510 395	460 251 49 130	615 752 536 392
1,2,4. Tovember 18, 19, 20, 21, 22, 24 25	6	159	33	198	282	6.8	360	193	274
ovember 26, 27, 28, 20, 30	0	176	30	36	460	6.7	283	28	352
becember 3, 4, 5, 6, 7, 8, 9 ecember 10, 11, 12, 13, 14,	0 0	178 187	42 42	16 0	564 524	6. 7 6. 6	290 240	13 0	442 339
ecember 17,18	0 0	161 175	37 36	32 36	532 452	6. 6 6. 6	240 240	21 23	344 293

Relative amount of substances in solution in water from Animas River at highway bridge near Durango, Colo.

	ples.		(mil-		Radicl	es in p	er cen	t of dis	solved	solids.	
Limiting dates of composite.	Number of daily samples.	Errors.	Dissolved solids (Ds) ligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+3K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO ₄).	Chlorîne (Cl).	Nitrate (NO ₃).
1905.		•									
March 19-April 28 April 30-May 27 May 28-August 5 August 6-September 2 September 3-30 October 1-November 4 November 18-December 16	27 25 26 27 28 24 28	+2.8 +3.8 + .7	328 174 197 328 373 408 458	22 22 23 23 21 21	4.0 5.1 3.3 4.0 3.0 3.9 3.5	7. 0 6. 3 8. 5 8. 0	0.00 .00 .00 .00 .00 .00	47 61 48 	35 25 26 34 38 33 37	4.3 6.3 6.6 6.7 8.6 8.6 8.5	0.08 .02 .07 .05 .05 .07
Mean		2. 4	324	22	3.8	7.6	.00	46	33	7.1	.06

Monthly discharge, in second-feet, of Animas River near Durango, Colo.

Month.	1895.	1896.	1897.	1898.	1899.	1900.	1902.	1903.	1904.	1905.	Mean.
January. February. March April May June July August September October November December	c 646 388 510 363 307		a 310 a 284 a 374 2, 610 4, 500 3, 220 1, 120 534 875 1, 380 553 430	a 378 a 267 a 306 1, 510 1, 760 3, 430 1, 360 263 161 158 c 250	584 1,730 1,800 668 691 276 297 267 267	a 179 a 133 a 224 335 2,180 1,990 409 179 231 252 205 c 272		3,240 4,130 2,450 554 542 347			289 228 301 1,220 2,670 2,620 929 502 512 568 368 313 277
The year			1,350	851		549					869

a Approximate.

BELLE FOURCHE RIVER NEAR BELLE FOURCHE, S. DAK.

Samples of water were collected from Belle Fourche River at a county bridge near Belle Fourche, S. Dak., between April 15, 1905, and June 23, 1906. A gaging station was established at this bridge by the United States Geological Survey May 26, 1903, and was discontinued June 23, 1906. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports:

Water-Supply Papers: 99, pp. 57-59; 130, pp. 169-172; 172, pp. 156-159; 208, pp. 128-129.

b April 12-30.

c June 20-30.

d December 1-17.

Partial analyses, gage heights, and rates of discharge of water and solids for Belle Fourche River at county bridge near Belle Fourche, S. Dak.

[Drainage area, 3,250 square miles.]

	An	alysis (n	nilligra	ms per li	iter).	t).	d-feet).	Solids (tons per
Dates.	Carbonate radicle (CO3).	Bicarbonate radicle (HCO ³).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet)	Mean discharge (second-feet)	Suspended matter.	Dissolved solids.
1905-6. April 15, 16, 17, 18	0 0 0	174 172 187 181 122 155 169 144 175 144 138 149 130 172 170 125 138 126 139 172 227 177 185 229 227 177 186 234 222 247 208 140 188 140 188 140 188 140 188 188 189 189 189 189 189 189 189 189	10 7 13 14 7 7 14 11 11 14 10 8 15 13 8 14 12 6 16 8 8 13 7 8 16 10 9 9 11 12 8 11 12 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	58 82 58 2,810 986 262 3,270 1,520 2,910 7,120 1,150 1,380 2,730 2,730 3,910 434 1,490 302 140 58 634 142 484 118 64 118 64 156 1,780 7,520 1,780 7,520 1,520	1,300 1,220 1,290 934 912 788 844 1,100 936 504 696 522 650 724 520 492 454 484 678 880 888 1,040 1,050 880 862 856 1,120 1,140 1,170 1,120 524 784 687 884 884 885 864 865 874 684 884 884 884 884 884 884 886 886 88	1.7 1.6 2.3 2.0 2.3 1.7 2.5 2.6 2.3 2.6 2.3 3.4 2.6 3.3 2.6 3.4 3.6	95 85 82 270 236 142 270 147 93 382 598 365 927 360 238 670 699 379 1,110 165 129 86 62 63 170 87 90 90 90 90 90 90 80 80 80 80 80 80 80 80 80 80 80 80 80	15 19 13 2,050 629 100 2,380 9,960 2,870 17,800 1,120 887 17,800 2,790 11,700 194 520 72 23 10 291 118 29 16 13 32 4,430 670 620 5,780 9,390 9,3440	333 281 289 680 581 302 615 282 275 965 815 686 1, 310 632 465 940 929 465 1, 450 302 291 234 174 178 404 201 201 208 271 251 251 251 271 251 251 271 251 271 251 271 271 271 271 271 271 271 271 271 27

Relative amount of substances in solution in water from Belle Fourche River at county bridge near Belle Fourche, S. Dak.

	samples.		(mil-	Radicles in per cent of dissolved solids.								
Limiting dates of composite.	Number of daily sam	Errors.	Dissolved solids (Ds) ligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+3K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NO ₃).	
1905-6.												
April 15-May 6. May 7-June 3. June 5-July 1. July 2-29. July 30-August 26. August 27-September 28. October 3-November 4. November 6-25. April 1-May 19. May 20-June 16. June 17-23.	27	$ \begin{array}{c} -1.8 \\ +0.4 \\ -5.3 \\ \end{array} $	1,160 800 804 592 546 1,020 946 1,210 728 689 788	17 16 16 14 15 15 15 15	4. 5 4. 4 4. 3 4. 2 4. 4 4. 5 4. 8 5. 0 4. 1 4. 1 4. 3	5.9 5.5 7.7 a 7.3 7.5 5.5 4.8 5.8 3.7 12 6.8	0.00 1.00 .00 .00 .00 .00 .00 .00	20 21 27 28 19 21 19 21 20	54 49 52 47 47 53 53 48 48 53 51	0.84 .96 1.6 2.5 1.3 .83 1.5 5.6	0.01 .04 .03 .05 .02 .03 .04	

a Sodium is 86 per cent and potassium is 18 per cent of this amount.

Monthly discharge, in second-feet, of Belle Fourche River at highway bridge near Belle Fourche, S. Dak.

•	Month.	٠	1903.	1904.	1905.	1906.	Mean.
			: -				
January			·				a 15
February							a 15
March				a~803	a 127		a 45
April				277	88	473	41
Ла́v				373	219	606	39
				1.500	344	594	62
ulv			117	148	531		26
				38	531		44
September				67	77		25
				102	105		8
				68	84		7
				77			7
Mean							a 28

a Approximate.

81210°—wsp 274—11——2

BELLE FOURCHE RIVER AT DIVERSION DAM NEAR BELLE FOURCHE, S. DAK.

Samples of water were collected from Belle Fourche River at the diversion dam of the United States Reclamation Service near Belle Fourche, S. Dak., between July 27 and November 13, 1906. A gaging station was established by the United States Geological Survey May 10, 1906, below the diversion dam and inlet canal of Belle Fourche project, United States Reclamation Service. Streamflow data, including gage heights and estimates of discharge, for that point have been published by the Survey in the following report:

Water-Supply Paper 208, pp. 129-131.

Data from July, 1903, to June, 1906, may be obtained by adding discharge for Belle Fourche and Redwater rivers at Belle Fourche. See the following reports:

Annual Reports United States Reclamation Service: 3, pp. 488–489; 4, p. 325. Water-Supply Papers: 99, pp. 57–60; 130, pp. 169–175; 172, pp. 156–161; 208, pp. 128–129, 131–132.

Partial analyses, gage heights, and rates of discharge of water and solids for Belle Fourche
River at diversion dam near Belle Fourche.

[Drainage	area,	4,270	square	miles.]
-----------	-------	-------	--------	---------

	An	alysis (milligi	rams per	liter).	et).	d-feet).	Solids per da	
Dates.		Bicarbonate radicle (IICO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm),	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (second-feet).	Suspended matter.	Dissolved solids.
1906.									
July 27, 29, 30, 31, August 3, 4 August 7, 8, 9, 10, 11 August 16, 17, 18. August 19, 20, 21, 22, 23, 24, 25 August 26, 27, 28, 29, 30, 31, September 1. September 4, 5, 7, 8. September 9, 10, 11, 12, 13, 14, 15. September 16, 18, 19, 21. September 23, 24, 25, 26, 27, 28, 29. September 30, October 1, 2, 3, 4, 5, 6 October 7, 9, 10, 11, 12 October 14, 15, 16, 17, 18, 19. October 21, 22, 23, 24, 25, 26, 27, 28, 29, 31. November 3. November 3. November 4, 5, 6, 7, 9, 10.	0 0 19 0 0 0 0 7 0 0 0 0 0 0 0 12 0 12 0 14	209 170 186 170 219 211 	10 3 5 10 6 11 12 5 4 9 15 6 8 15	26 3, 160 124 1, 810 976 108 292 120 100 22 16 52 26 68 58	1,230 814 898 898 862 894 940 916 916 904 910 978 880 870 890	1.0 2.3 1.2 1.6 1.7 1.3 1.4 1.5 1.5 1.4 1.6 1.6 1.6	88 550 136 259 280 156 208 276 232 213 201 208 258 258 250 247 247	6 4,680 46 1,260 738 46 164 90. 63 13 9 29 18 46 39	293 1,210 329 628 652 376 528 683 548 528 491 512 681 594

Relative amount of substances in solution in water from Belle Fourche River at diversion dam near Belle Fourche, S. Dak.

	oles.		mil-	Radicles in per cent of dissolved solids.							
Limiting dates of composite.	Number of daily samples.	Errors.	Dissolved solids (Ds) ligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+ $\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO3).	Sulphate radicle (SO4).	Chlorine (CI).	Nitrate (NO3).
1906.				•							
July 27-August 25	21 22 25 20	$+3.4 \\ +4.1 \\ +3.5 \\ +1.9$	968 970 920 894	18 18 20 19	5. 0 4. 9 4. 9 5. 4	5. 0 4. 8 2. 9 4. 7	0.00 .00 .00	19 22 23 24	52 48 48 52	1.5 1.0 1.1 2.0	0.01 .02 .00 .25
Mean		3.2	938	19	5.0	4.4	.00	22	50	1.4	. 07

Monthly discharge, in second-feet, of Belle Fourche River at diversion dam near Belle Fourche, S. Dak.

. Month.	1903.a	1904.a	1905.a	1906.a	Mean.
January February					b 350 b·350
MarchApril		b 1,070 521	b 318 288	692	694 500
May June	b 184	532 2,6 70	762 603	939 711	1,040
JulyAugust	913	338 126	1,040 789	148 266	43: 52
September October		248 346	255 401	223 225	28
NovemberDecember		294 329	529	221	34 32
Mean					b 50

a Sum of discharges of Belle Fourche and Redwater Rivers to May, 1906. Values to September, 1905, taken from Fourth Ann. Rept. U. S. Reclamation Service, p. 325.

b Approximate.

BIGHORN RIVER NEAR FORT CUSTER, MONT.

Samples of water were collected from Bighorn River at a railroad bridge near Fort Custer, Mont., between June 10, 1905, and June 8, 1906. A gaging station was established at this bridge by the United States Geological Survey June 16, 1904. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports:

Water-Supply Papers: 130, pp. 130–132; 172, pp. 108–110; 208, pp. 96–97; 246, pp. 183–185.

Partial analyses, gage heights, and ratés of discharge of water and solids for Bighorn River at railroad bridge near Fort Custer, Mont.

[Drainage area, 20,700 square miles.]

	Ana	lysis (m	illigraı	ns per li	ter).	eet).	-puooes)	Solids (tons per
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (s	Suspended matter.	Dissolved solids.
1905–6.									
June 10, 11, 12, 13, 14, 15, 16. June 17, 18, 19, 20, 21, 28, 29. June 30, July 2, 3, 4, 5, 6, 7, 8. July 9, 10, 11, 12, 13. August 14, 15, 16, 17, 19. August 20, 22, 23, 25, 26. August 27, 28, 29, 31, September 1, 2. September 24, 25, 26, 27, October 1, 3, 4 October 5, 6, 8, 9, 10, 11, 14. October 15, 17, 20, 22, 23, 28. October 29, 30, 31, November 1, 2, 3, 4. November 5, 6, 7, 8, 9, 10, 11. November 5, 6, 7, 8, 9, 10, 11. November 12, 13, 14, 15, 16, 17, 18. December 12, 13, 14, 15, 16, 17, 18. December 24, 25, 27, 28, 29, 30. December 31, January 1, 2, 3. January 7, 8, 9, 11, 12. January 7, 8, 9, 11, 12. January 7, 8, 9, 12, 13, 14, 15. February 7, 8, 9, 12, 13, 14, 15. February 16, March 2, 3. March 4, 5, 7, 8, 9, 10. April 4, 5, 6, 7 April 8, 9, 10, 11, 12, 13, 14. April 15, 16. May 18, 19. May 20, 21, 22, 23, 24, 25, 26. May 27, 28, 29, 30. May 30, 31, June 1, 2, 3 June 3, 4, 5, 6, 7, 8.	0 0 0 0 0 0 0 0 7 9 2 9 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	98 93 92 90 111 120 136 145 144 181 164 174 198 261 245 277 228 214 219 231 182 166 140 166 239 96 7179 43 19 108	21 13 6 12 7 21 18 15 18 20 16 18 28 25 29 29 29 22 21 25 23 24 20 14 5 5 10 10 10 10 10 10 10 10 10 10	1,430 2,790 596 218 780 366 264 2,060 1,710 324 1,220 76 18 24 134 14 24 24 23 66 160 84 814 2,450 930 994 1,060 1,470 2,860 1,560 1,180	196 250 200 202 312 324 294 460 492 512 446 540 678 654 710 670 632 544 588 520 480 522 498 206 196 202 190 240	5.07 4.11 3.55 1.62 1.11 0.79 0.88 0.87 1.31 3.55 3.79 3.80 3.73 3.64 3.33 5.35 6.00 5.55	19,700 17,200 13,300 10,100 3,620 2,700 2,480 1,700 1,980 1,980 2,130 1,850 1,700 2,400 2,400 4,400 4,200 4,400 4,200 4,100 3,640 3,210 3,020 8,300 9,860 15,900 12,800 10,200	76, 100 130,000 21,400 5,950 7,630 2,670 1,770 9,460 9,150 1,870 6,100 407 83 188 870 79 214 886 428 1,810 9,020 24,100 8,050 8,100 23,800 39,000 123,000 32,300	10, 400 11, 600 7, 190 5, 510 3, 050 2, 360 1, 970 2, 110 2, 630 2, 950 2, 230 2, 890 2, 460 5, 310 4, 240 4, 020 5, 970 6, 830 7, 160 6, 170 7, 780 4, 720 4, 520 4, 620 5, 220 8, 670 6, 560 6, 600

Relative amount of substances in solution in water from Bighorn River at railroad bridge near Fort Custer, Mont.

	samples.		s (Ds) liter).		Radic	les in p	er cen	t of dis	solved	solids.	•
Limiting dates of composite.	Number of daily san	Errors.	Dissolved solids (milligrams per lit	Calcium (Ca).	Magnesium(Mg).	Sodium and potassium (Na+4K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO ₄).	Chlorine (Cl).	Nitrate (NO ₃).
1905-6.											
June 10–July 13. August 14–October 1. October 5–November 11 November 12–January 3. January 7–February 15 February 16–April 14. A pril 15–May 30. May 30–June 8.		+4.7 $+3.0$ -4.1 -5.8 $+8.6$ $+1.7$	178 354 501 632 586 474 229 210	17 17 14 15 15 17 18 14	4.7 5.1 5.0 4.9 5.3 5.3 6.1 4.8	a13 14 10 8.5 8.4 11 11	0.00 .00 .00 .00 .00 .00 .00	58 39 38 39 35 46 49	25 42 44 41 45 34 30	4.8 5.4 5.8 4.1 9.9 2.0 4.3 4.2	0. 05 . 04 . 03 . 01 . 04 . 02 . 01
Mean		4.6	396	16	5.2	11	.00	43	37	5. 1	. 03

a Sodium is 90 per cent and potassium is 13 per cent of this amount.

Monthly discharge, in second-feet, of Bighorn River near Fort Custer, Mont.

Month.	1904.	1905.	1906.	1907.	1908.	Mean.
January. February. March. April. May. June. July. August. September October November December.		a 1,960			c 1,720	a 1, 480 a 1, 600 a 2, 000 2, 590 6, 580 18, 200 13, 900 5, 670 2, 650 2, 110 1, 720 a 1, 500
Mean						5,000

a Approximate.

b March 26-31.

c March 21-31.

d June 16-30.

BOISE RIVER NEAR BOISE, IDAHO.

Samples of water were collected from Boise River at Highland, near Boise, Idaho, between May 26, 1905, and April 30, 1907. A gaging station was established by the United States Geological Survey 9 miles above Boise December 15, 1894, and was removed to Highland, 8 miles upstream, in 1905. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for those points have been published by the Survey in the following reports:^a

Annual Reports: 18, IV, pp. 340–344; 19, IV, pp. 452–454; 20, IV, p. 62, 483; 21, IV, pp. 411–412; 22, IV, 431–432.

Bulletins: 131, p. 66; 140, p. 236.

Water-Supply Papers: 11, p. 81; 16, p. 168; 28, pp. 155, 161, 168–169; 38, pp. 356–357; 39, p. 453; 51, pp. 427–428; 52, p. 522; 66, pp. 128, 176; 85, pp. 207–209; 100, pp. 436–439; 135, pp. 199–202; 178, pp. 121–123; 214, pp. 93–94; 252, pp. 245–248.

a See also Second Ann. Rept. U.S. Reclamation Service, p. 316.

Partial analyses, gage heights, and rates of discharge of water and solids for Boise River at Highland, near Boise, Idaho.

[Drainage area, 2,610 square miles.]

	Anal	ysis (m	illigraı	ns per	liter).	et).	(second-	Solids per da	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (s	Suspended matter.	Dissolved solids.
May 26	0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 22 42 13 32 59 36 72 65 60 71 58 68 77 71 63 71 31 45 51 50 74 45 59 56 58 59 57 44 60 56 41 43 48 48 48 48 48 48 48 48 48 48 48 48 48	10 5 5 5 10 5 5 12 5 8 11 13 14 24 47 29 55 55 55 55 55 55 56 57 66 66 67 67 67 67 67 67 67 6	204 0 0 130 66 52 26 60 0 46 16 8 30 12 8 2 4 4 24 4 48 30 30 18 68 38 16 68 38 16 68 38 16 68 68 68 68 68 68 68 68 68 6	136 122 106 66 72 90 66 106 94 88 80 54 104 50 74 106 66 68 48 38 70 52 66 66 30 122 124 66 72 94 66 68 48 88 88 88 88 88 88 88 88 88 88 88 88			1,890 0 1,800 763 463 149 233 0 109 34 17 62 23 15 4 7 43 84 56 57 36 35 433 117 38 2,870 47 312 552 641 505 5,180 1,580 2,520 5,600 4,220 2,010	

Relative amount of substances in solution in water from Boise River at Highland, near Boise, Idaho.

	samples.		(Ds) er).	I	Radicle	s (in p	er cent	t of dis	solved	solids)	•
Limiting dates of composite. Limiting dates of composite Limiting dates Limiting dates	Errors.	Dissolved solids (Ds) (milligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+ $\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NO3)	
1906–7.											
June 27-July 21 July 22-August 18 August 19-September 15 September 16-October 13 October 15-November 9 November 12-December 8 December 10-29 January 7-February 2 February 5-March 2 March 4-30 April 1-30	24 23 . 17 24	+15.3 +16.3 +17.2 +17.2	78 104 92 110 98 84 108 104 90 114 88	15 18 20 24 18 18 18 19 19	4. 2 3. 1 5. 6 4. 1 4. 6 6. 4 2. 8 3. 6 4. 0 3. 2 4. 0	14 14 20 19 19 14 19 	0.00 .00 .00 .00 .00 .00 .00 .00	67 69 75 65 53 64 53	8.7 11 13 16 20 16 15 11 14 12	13 4.8 7.9 4.5 10 6.1 4.7 7.4 5.8 4.6 7.8	0.00 .00 .24 .01 .00 .00 .00 .21 .49 T.
Mean		16.5	97	19	4.1	17	.00	64	14	7.0	.10

Monthly discharge, in second-feet, of Boise River near Boise, Idaho.

						_			
Month.	1895.	1896.	1897.	1898.	1899.	1900	0.	1901.	1902.
January	1,270	1,180	818	550	2, 590	2,0	80	1,280	989
	1,230	1,130	954	1,210	1,410	1,8		1,760	
February March	1.660	2,480	1,420	1,920	1,840	4,9		2,890	
April	3.940	4,750	a 8, 100	4, 200	7,100	6,3		5,060	
May	6,030		b21,100	5,220	9,810	8,2	240-	10,100	
June	3,770	22,200	7,600	4,990	12,200	4,9	90	4,790	4,790
July	2,460	5,530	2,310	1,880	5,740	1,4	150	1,880	1,720
August	1,030	1,320	1,090	737	1,770	7	793	846	
September	967	951	1.040	652	1,150	7	769	833	682
October.	916	875	1,020	859	1,350	1.0	060	910	
November	916	c 900	1,080	935	1,500	1,0	080	933	907
December	797	c 850	c 1.000	2,450	1,570	1,1	00	1,230	1,020
The year	2,080	4, 190	3,960	2, 130	4,000	2,8	380	2,710	2,000
Month.	1903.	1904.	1905.	1906.	190	7.	1	908.	Mean.
January	1,320			82	20			1,080	1,270
February	1,140			1,02		150		1,080	1, 46
March		4,260	d1,770	1,63		580		2,280	2,60
April		11,200	2,940	5, 63		200		6,380	6,28
May	1 1, 111	13, 400	3,710	6,90	00 11	000		5,970	8,830
June	1	8,690	4, 120	8,78		910		5, 410	7,94
July		3,260	1,270	2,63	30 5	410		3,200	2,94
August		1,160	643	83		,640		1,050	1,04
September		730	578	68	35 1	,030		925	84
October		951	693	68	33	932		1,100	93
November			684	1,22	20	933		988	1,020
December	c 928	1	652		1	,030		943	1, 130

a April 1-19.

2,530

3,020

Note.—Gaging station removed 8 miles upstream to Highland early in 1905.

3,010

CARSON RIVER NEAR HAZEN, NEV.

Samples of water were collected from Carson River at the diversion dam of the United States Reclamation Service near Hazen, Nev., between April 10, 1906, and April 15, 1907. This dam is below the outlet of the canal carrying water from Truckee River to Carson River, and the samples taken during August, September, and Octo-

b May 12-31.

c Approximate.

d March 18-31.

ber, 1906, represent a mixture of the waters of Truckee and Carson Rivers. The nearest gaging station of the United States Geological Survey is at Empire, Nev., about 60 miles above the diversion dam. The drainage area at Empire is 988 square miles and at the diversion dam is 1,700 square miles, but the flow is approximately the same at both places. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station at Empire have been published by the Survey in the following reports:

Annual Report: 12, II, pp. 324-325.

Bulletin: 140, pp. 212-213.

Water-Supply Papers: 51, p. 401; 66, pp. 110-111, 175; 75, p. 189; 85, pp. 109-111; 100, pp. 175-177; 133, pp. 337-339; 176, pp. 111-113; 212, pp. 79-81; 250, p. 128.

Partial analyses of water from Carson River at diversion dam near Hazen, Nev. [Drainage area, 1,700 square miles.]

•		Analysis	(milligram:	s per liter).	
Dates.	Carbon- ate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Sus- pended matter (Sm).	Dis- solved solids (Ds).
1906–7.					
April 10	0	102	10	150	196
April 21.	ŏ	73	5	546	150
April 28.	ŏ	70	10	142	122
May 9	ŏ	70	5	352	120
May 15.	ŏ	67	5	184	154
May 21	Ō	61	15	206	108
May 28	Ŏ	64	5	120	104
fune 4	0	68	5	154	142
une 11	Ŏ	64	5	170	144
une 18.	Ö	48	5	154	114
une 25	0	64	5	122	130
uly 2	0	52	5	130	114
[uly 9	0	64	10	118	118
uly 16	0	51	10	174	94
uly 23	6	51	5	56	130
uly 28	0	65	5	954	150
August 7	6	62	10	108	156
August 20	0	102	10	234	216
August 28	0	111	18	94	184
September 3	0	116	17	84	188
September 10	0	103	15	70	170
September 19	0	112	11	24	224
September 24	0	107	10	20	198
October 1	0	113	° 11	4	226
October 8	0	78	10	40	202
October 14.	0	124	13	64	284
October 22	0	126	14	36	250
October 29.	0	114	16	40	290
November 5	0	125	16	98	24
November 12	0	116	14	186	224
November 19	0	112	14	118	250
November 26	0	110	16	10	258
December 3	0	115	14	226	246
December 10	0	122	16	992	270
December 17	0	119	13	116	254
anuary 7	0	125	14	84	204
anuary 14.	0	114	16	76	230
anuary 21	0	120	14	82	208
anuary 28	0	113	15	14	240
Sebruary 4	. 0	108	15	368	206
Sebruary 11	0	88	8	54	186
February 18	0	88	10	74	158
February 24	0	86	13	12	170
February 25.	0	98	10	28	200
March 11	0	105	16	144	180
April 15	0	74	10	382	160

Note.—Nearest gaging station is at Empire, Nev.; drainage area, 988 square miles. During August, September, and October half or a less part of the discharge of Carson River at the sampling station was water from Truckee River.

 $[^]a$ See also Second Ann. Rept. U. S. Reclamation Service, p. 359; Third Ann. Rept. U. S. Reclamation Service, p. 348.

Relative amount of substances in solution in water from Carson River at diversion dam near Hazen, Nev.

	samples.		Radicles in per cent of dissolved solid								
Dates of composite.	Number of daily sam	Errors.	Dissolved solids (Ds) ligrams per liter)	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+ $\frac{3}{4}$ K).	Carbonate (CO3).	Bicarbonate (HCO ₃).	Sulphate (SO ₄).	Chlorine (Cl).	Nitrate (NO ₃).
1906–7.											
April 10, 21, 28, May 9. May 15, 28, June 4, 11. May 21, June 18; 25, July 2. July 9, 16, 23, August 7. July 28, August 20, 28, September 3. September 10, 19, 24, October 1. October 8, 14, 22, 29. November 5, 12, 19, 26. December 3, 10, 17. January 7, 28. February 4, 11, 18, 25. February 24, March 11, April 15.	4 4 4 4 4 4 4 3 4 4 3	+10.7 + 5.9 +14.7 + 3.8 + 6.4 + 3.8	159 130 132 116 176 208 276 264 268 258 194 208	20 16 19 18 18 16 14 15 14 15 17	3. 6 6. 2 4. 5 4. 1 5. 3 3. 7 3. 2 3. 6 4. 9 4. 2	14 14 14 19 17 14 15 16	0.00 .00 .00 .00 .00 .00 .00 .00 .00 .0	57 68 50 56 56 53 45 44 44 47	21 22 16 23 25 30 27 28 29 24 27 27	6. 9 5. 3 4. 5 8. 5 5. 6 7. 2 6. 7 6. 7	0.06 .00 .01 .06 .00 .01 .08 .07 .23
Mean		7.6	199	16	4.3	15	.00	51	25	6.2	.05

Monthly discharge, in second-feet, of Carson River near Empire, Nev.

												,
Month.	1890.	1895.	1900.	1901.	1902.	1903.	1904.	1905.	1906.	1907.	1908.	Mean.
January February March April May June July August September October November December	1,560 3,480 3,140 2,160 756 144	802 149 192 154 304 211	70 109 93	115 645 634 700 2,000 1,420 468 126 39 113 197 311	225 280 410 618 1,040 1,000 170 19 15 54 160 214	264 378 308 681 1,320 1,410 279 20 15 49 221 203	187 792 1,040 1,090 2,010 1,850 638 139 82 420 267 229	267 300 366 561 929 728 95 7 6 46 78 135	477 298 452 914 1,940 2,240 1,860 418 101 172 262 436	443 717 a 791 b 2,270 2,910 569 223 205 244 318	290 257 323 475 579 433 112 47 62 104 133 132	284 458 540 825 1,660 1,610 949 225 88 139 198 228
The year				563	351	429	728	293	798		246	600

a Approximate.
b From June, 1907, to March, 1908, the estimated flow of the river has been increased by 30 second-feet as a correction for the power-canal diversion. After the latter date the correction has been the measured flow of the canal.

COLORADO RIVER NEAR YUMA, ARIZ.

Samples of water were collected from Colorado River at the rail-road bridge near Yuma, Ariz., between January 1 and December 30, 1905. A gaging station was established at the bridge by the Southern Pacific Company during the summer of 1876, and records of river height have been maintained since April 1, 1878. Streamflow data, including gage heights, rating tables, and estimates of dis-

charge, for this station have been published by the Survey in the following reports:

Annual Reports: 12, II, p. 290; 18, IV, pp. 298-299.

Bulletins: 131, pp. 51-52; 140, pp. 207-210.

Water-Supply Papers: 11, p. 73; 16, p. 151; 28, pp. 133, 141; 38, pp. 324-325; 50, p. 387; 66, p. 104; 81, pp. 69-71; 85, pp. 17-20; 100, pp. 19-25; 133, pp. 25-32; 177, pp. 13-16, 213, pp. 26-29; 249, pp. 41-46.

The results of other investigations of the quality of the Colorado River water at Yuma are reported as follows:

University of Arizona Agricultural Experiment Station: Bull. 44, The river irrigating waters of Arizona, by R. H. Forbes, 1902; Bull. 53, Irrigating sediments and their effects upon crops, by R. H. Forbes, 1906.

Third Annual Report United States Reclamation Service.

Partial analyses, gage heights, and rates of discharge of water and solids for Colorado River at railroad bridge near Yuma, Ariz.

[Drainage area, 225,000 square miles.]

,	Ana	alysis (milligi	ams per	liter).	et).	Solids (tons) day).			
Dates.	Carbonate radicle (CO ₃).	Bicarbonateradicle (HCO ₃).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (s	7,500 10,800 11,200 211,000 352,000 352,000 352,000 30,800 18,300 63,600 63,600 63,600 63,600 2,010,000 2,360,000 1,580,000 1,580,000 2,360,000 1,580,000 2,950,000 2,960,000 3,340,000 2,950,000 2,948,000 4,130,000 6,130,000 6,250,000 2,480,000 1,500 77,500 1,960,000 1,960,000 1,960,000 1,960,000 1,960,000 1,960,000 1,960,000 1,960,000 1,960,000 1,960,000 1,960,000 1,960,000 1,960,000 1,960,000 1,960,000 1,960,000 1,960,000	Dissolved solids.	
1905.					*	,				
January 1, 2, 3. January 4, 5, 6. January 7, 8, 9. January 10, 11, 12. January 18, 19, 20. January 21, 23, 25. January 26, 27, 28. January 29, 30, 31. February 2, 3, 4. February 8, 9, 10. February 14, 15, 16. February 14, 15, 16. February 20, 21, 22. February 23, 24, 25. February 26, 27, 28. March 1, 2, 3. March 1, 2, 3. March 10, 11, 12. March 13, 14, 15. March 16, 17, 18. March 19, 20, 21. March 22, 23, 24. March 25, 26, 27. March 28, 29, 30. March 31, April 1, 2. April 3, 4, 5. April 9, 10, 11. April 12, 13, 14. April 15, 16, 17. April 18, 19, 20. April 29, 30, May 1. May 2, 3, 4. May 5, 6, 7.	000000000000000000000000000000000000000	235 196 213 -222 211 229 267 247 318 254 222 251 280 243 318 256 278 262 317 326 278 262 317 326 278 262 317 326 278 248 249 269 269 278 248 249 249 249 249 249 249 249 249 249 249	191 203 224 153 217 261 274 293 254 293 254 118 174 255 174 255 174 255 180 175 180 175 180 173 125 141 161 161 132 126 132 126 132 132 132 132 132 132 132 132 132 132	741 900 889 8, 160 4, 380 2, 400 1, 820 1, 320 14, 900 11, 400 9, 770 6, 420 16, 800 23, 800 17, 300 18, 100 22, 400 23, 800 30, 800 30, 400 24, 300 23, 700 30, 600 21, 100 25, 400 11, 400 12, 400 17, 200 26, 500 24, 900 17, 400 17, 900 17, 400 18, 400 17, 200 24, 400 27, 200	1,020 1,040 1,090 758 8100 1,140 1,220 1,180 602 784 836 6724 768 844 858 812 660 676 754 684 688 696 704 689 612 572 612 648 586 578 578	18.5 18.8 19.8 22.3 20.2 21.9 31.9 21.2 27.8 22.3 23.6 24.5 22.4 23.5 24.1 26.8 27.4 21.4 22.6 21.4 22.6 21.4 22.6 23.5 24.5 24.6 25.8 26.8 27.8 27.8 28.6 29.6	37, 300 21, 000 52, 000 24, 600 27, 700 40, 200 55, 200 41, 200 38, 300 35, 900 63, 000 95, 900 75, 600 21, 400 20, 000 22, 600 21, 400 22, 200 55, 200 70, 900 44, 000 32, 900 38, 300 38, 400 38, 400	10,800 11,200 211,000 350,000 52,000 380,000 63,600 670,000 2,010,000 985,000 985,000 1,580,000 1,580,000 2,260,000 3,340,000 2,950,000 2,940,000 4,130,000 6,250,000 2,480,000 1,580,000 1,580,000 1,580,000 1,580,000 1,580,000 1,580,000 1,580,000 1,580,000 1,580,000 1,580,000 1,580,000 1,580,000 1,580,000 1,580,000 1,580,000 1,580,000 1,580,000	10, 300 12, 400 13, 700 19, 600 70, 400 24, 200 19, 200 16, 900 20, 400 45, 500 107, 000 57, 800 57, 300 90, 300 115, 000 175, 00	

a See also Second Ann. Rept. U. S. Reclamation Service, pp. 140-141, 145-146.

Partial analyses, gage heights, and rates of discharge of water and solids for Colorado River at railroad bridge near Yuma, Ariz.—Continued.

	Ana	alysis (milligr	ams per	liter.)	et).	-puooes)	Solids (to	
Dates.	Carbonate radicle (CO ₃).	Bicarbonateradicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (s	Suspended matter.	Dissolved solids.
1905.			•						
May 8, 9, 10. May 11, 12, 13. May 14, 15, 16. May 17, 18, 19. May 20, 21, 22. May 23, 24, 25. May 29, 30, 31. June 1, 2, 3. June 4, 5, 6. June 7, 8, 9. June 10, 11, 12. June 13, 14, 15. June 19, 20, 21. June 22, 23, 24. June 25, 26, 27. June 28, 29, 30. July 1, 2, 3. July 14, 5, 6. July 11, 13. July 14, 15, 16. July 17, 18, 19. July 20, 21, 22. July 23, 24, 26. July 27, 28, 29. July 30, 31, August 1. August 4, 5, 6. August 7, 8, 9. August 10, 11, 12. August 16, 17, 18. August 19, 20, 21. August 25, 26, 27. August 29, 30. August 29, 30. August 19, 20, 21. September 3, 4, 5. September 3, 4, 5. September 11, 12, 13. September 15, 16, 17. September 20, 21, 22. September 27, 28, 29. September 27, 28, 29. September 27, 28, 29. September 29, 21, 22. September 20, 21, 22. September 3, 4, 5. September 15, 16, 17. September 20, 21, 22. September 20, 21, 22. September 22, 23, 24. October 3, 5. October 16, 17, 18. October 19, 20, 21. October 29, 30, 31, November 2. November 4, 6, 7. November 9, 13, 14. November 15, 16, 17. November 18, 19, 20. November 29, 30, 31, November 2. November 29, 21, 22. December 4, 5, 8. December 9, 11, 12. December 13, 14, 15. December 14, 18, 19. December 20, 21, 22. December 26, 27, 28. December 27, 29, 30. December 16, 18, 19. December 20, 21, 22. December 26, 27, 28, 30.	00000000000000000000000000000000000000	200 210 209 205 223 178 181 181 173 158 160 180 167 161 156 175 162 145 177 142 136 162 216 154 157 192 197 188 181 214 198 181 218 180 223 240 220 223 242 210 216 232 202 257 224 231 238 201 211 231 228 221 228 224 224 224 224 224 2247	76 69 59 60 60 60 62 50 48 37 42 34 41 24 31 39 38 38 40 65 79 66 67 76 83 80 99 92 88 89 143 140 133 157 177 186 155 147 137 120 127 137 120 127 137 151 158 194 180 141 148 155 181 198 200	16,600 14,700 12,600 12,400 9,860 9,340 8,010 6,650 4,430 5,100 5,270 4,500 2,780 2,910 2,190 1,610 3,880 3,530 3,690 4,750 3,320 2,740 2,440 3,390 2,140 2,700 4,080 6,980 2,170 2,150 2,160 2,170 2,150 2,170 1,230 2,980 2,170 1,230 2,980 2,170 2,350 3,440 4,120 1,230 2,980 2,170 2,150 1,510 12,300 2,980 2,170 2,150 2,170 1,510 12,300 2,980 2,170 2,150 2,170 1,510 12,300 2,980 2,170 2,150 2,170 1,510 12,300 2,980 2,170 2,150 2,170 1,510 12,300 2,980 2,170 2,150 2,170 1,510 1,5	496 490 478 468 474 422 658 456 424 3300 360 360 354 374 482 394 488 348 308 314 482 504 4506 5508 830 878 824 4932 404 506 5984 1,030 1,090 866 1,030 1,090 866 1,030 896 968 1,030 896 968 1,030 896 968 1,030 896 968 1,030 896 968 1,030 896 968 1,030 896 968 1,030 896 968 1,030 896 968 1,030 896 968 1,030 896 968 1,030 896 968 1,030 896 968 1,030 896 968 1,030 896 968 1,030 896 9870 9889 9889 9889 1,070	25. 6 26. 0 24. 7 24. 5 25. 2 27. 1 27. 8 28. 4 28. 6 29. 1 20. 2 21. 8 22. 0 21. 8 22. 1 20. 0 19. 0 19. 0 18. 8 18. 0 18. 0 19. 0 19. 0 18. 0 18. 0 18. 0 18. 0 18. 0 18. 0 18. 0 19. 0 19	46, 300 37, 500 35, 000 35, 800 41, 200 48, 000	2,030,000 1,830,000 1,830,000 1,280,000 1,170,000 953,000 1,040,000 1,040,000 1,020,000 862,000 600,000 862,000 548,000 548,000 282,000 214,000 228,000 214,000 228,000 214,000 228,000 214,000 233,000 136,000 137,000 136,000 377,200 36,700 36,800 37,200 37,200 35,700 36,800 37,200 37,200 38,700 36,800 37,200 37,200 38,700 36,800 37,200 37,200 38,700 36,800 37,200 36,700 37,200 37,200 38,000	60,500 61,200 48,300 44,200 45,800 69,800 71,300 69,800 71,300 69,100 89,800 83,800 82,600 71,500 50,100 41,500 24,200 34,100 21,300 15,500 22,700 23,000 11,100 12,400 13,000 15,500 12,700 13,600 12,700 13,600 15,500 17,600 18,700 17,600 18,700 17,800 18,700 17,800 18,700 17,800 18,700 17,800 18,700 17,800 18,700 17,800 18,700 18,700 18,700 18,700 18,700 18,700 18,700 18,700 18,700 18,700 19,800 19,800 19,800 19,800 19,800 19,200

Relative amount of substances in solution in water from Colorado River at railroad bridge near Yuma, Ariz.

	samples.		$\widehat{\mathcal{Q}}_{\widehat{\mathcal{Q}}}$ Radicles in per cent of dissolved								
Limiting dates of composite.	Number of daily sam	Errors.	Dissolved solids (D (milligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+ $\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (CI).	Nitrate (NO3).
1905.											
January 1–31 February 2–28 March 1–April 2 April 3–May 1 May 2–31 June 1–30 July 1–August 1 August 4–30 August 4–30 August 31–September 29 September 30–November 2 November 4–30 December 1–30	ა∪ 18	-0.1 +2.2 +1.2 9 +1.9 + .7 	994 816 686 609 488 345 395 532 930 972 870 848	11 11 10 11 14 16 	3.5 3.29 3.0 3.3 3.8 3.5 3.7 3.1 2.8	18 21 20 19 16 13 11 15 13 16 17 18	0.00 .00 1.9 1.4 .00 .00 .00 .00	23 32 36 38 43 50 23 25 28	27 21 20 22 25 26 23 30 33 31 27	24 24 22 19 14 11 15 16 15 14 19 22	0. 13 . 04 . 05 . 04 . 06 . 26 . 28 . 10 . 03
Mean		1.8	707	13	3.3	16	. 28	33	26	18	.10

Monthly discharge, in second-feet, of Colorado River near Yuma, Ariz.

Month.	1902.	1903.	1904.	1905.	1906.	1907.	1908.	Mean.
January	6,180 36,000 42,500 12,500 4,180 3,820 4,300	3,090 3,370 6,120 14,300 33,700 53,100 37,500 10,900 6,790 8,480 5,400	3,640 3,800 5,980 8,060 27,700 43,800 23,000 11,600 11,600 6,150	8,130 28,100 50,500 37,800 42,200 76,500 30,300 12,100 6,500 8,040 12,000	6,870 9,560 25,400 32,500 54,100 84,200 39,000 19,200 11,700 11,700 9,710	21,500 18,800 24,100 35,300 37,900 94,800 96,500 37,600 23,200 13,600 10,800	6,320 14,200 16,100 17,800 27,200 42,900 32,600 24,300 11,400 9,510 8,090	7,610 11,700 19,000 21,700 37,000 62,500 38,800 17,900 10,700 9,600 8,050
December	5,410	4,340	4,480	15,400	18,300	7,450	15,900	10,20
The year	11,000	15,600	13,900	27,300	26,900	35,100	18,900	21,20

ELM FORK OF RED RIVER NEAR MANGUM, OKLA.

Samples of water were collected from Elm Fork of Red River at a highway bridge near Mangum, Okla., between April 13, 1905, and March 22, 1907. A gaging station was established at the bridge by the United States Geological Survey April 12, 1905, and discontinued March 31, 1908. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for this station have been published by the Survey in the following reports:

Water-Supply Papers: 173, pp. 79-81; 209, pp. 57-59; 247, pp. 97-100.

Partial analyses, gage heights, and rates of discharge of water and solids for Elm Fork of Red River at highway bridge near Mangum, Okla.

[Drainage area, 750 square miles.]

	(a, 150 Sq1						
	An	alysis	(milligra	ms per li	ter).	it).	nd-feet)	Solids per d	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (second-feet)	Suspended matter.	Dissolved solids.
1905–1907.	*								
April 13, 15, 16, 17, 18 April 26. May 23. May 17, 18, 20, 21, 22, June 2, 3 June 5, 78, 9, 10. June 11, 12, 13, 14, 15. June 18, 19, 20, 21, 22, 23, 24 June 25, 26, 27, 28, 29, 30, July 1. July 2, 3, 4, 5, 6, 7. July 9, 10, 11, 12, 13, 14, 15. July 16, 17, 23, 25, 26, 27, 28 July 25. November 1, 2, 3, 4. November 1, 2, 3, 4. November 19, 20, 21, 22, 23, 24, 25. November 19, 20, 21, 22, 23, 24, 25. November 29, 30, December 5,6,7,8,9 December 10. December 12. December 13. December 14. December 15. December 16. December 16. December 17. December 20. December 21. December 22. December 22. December 23. December 24. December 25. December 26. December 27. December 28. December 29. December 29. December 30. December 31. January 1. January 1. January 2. January 3. January 4. January 5. January 9. January 19. January 19. January 19. January 19. January 19. January 20. January 21. January 21. January 21. January 22. January 19. January 20. January 21. January 21. January 22. January 21. January 22. January 29. January 19. January 20. January 21. January 22.	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	146	9,010 2,080 1,510 2,970 3,090 2,550 4,650 5,410 3,070 9,320 4,050 3,380 4,480 3,400 5,950 6,210 5,010 3,130 3,500 5,670 5,480 5,110 5,670 5,820 6,620 6,620 6,610 6,540 6,110 6,540 6,260 6,590 6,610 6,540 6,260 6,610 6,540 6,701 6,260 6,580 6,701 6,260 6,580 6,750 7,000 7,510 7,000 7,510 7,000 7,510 7,000 7,510 7,000 7,510 7,000 7,510 7,000 7,510 7,000 7,510 7,000 7,510 7,000 7,580 7,000 7,360 8,960	994 5,550 3,780 4,910 1,410 218 1,880 1,78 272 298 1,330 432 2,100 362 472 1,660 1,670 396 1,010 4 4,150 852 32 800 0,180 1,360 480 1,360 0,552 468 480 1,360 0,552 468 492 216 618 628 296 220 24 324 344 436 922 24 324 334 436 922 24 324 334 436 922 24 324 340 436 922 24 324 340 436 922 24 324 344 436 922 24 324 344 436 922 24 324 344 436 922 24 324 344 436 922 24 324 344 436 922 24 344 436 922 24 344 436 922 24 344 436 922 24 344 436 922 24 344 436 922 24 344 436 922 244 344 436 922 244 344 436 922 246 340 436 942 244 344 436 942 244 344 436 942 244 344 436	18,500 2,540 3,010 5,770 4,650 7,830 8,080 7,250 10,700 11,800 19,000 8,820 7,920 9,980 8,200 11,500 12,800 6,970 8,080 8,010 11,800 11,800 11,800 11,700 10,500 11,800 11,300 11,300 11,300 11,300 11,400 12,400 13,100 13,100 13,000 13,100 13,000 13,100 13,000 13,100 13,000 13,100 13,000 13,100 13,000 13,100 13,000 13,000 13,000 14,600 14,600 14,600 15,500 15,500 18,000	0.6690093376667233248 4333333444355544444444444444444444333333	17 500 195 52 888 1614 105 466 477 966 350 18 341 120 23 200 200 200 200 200 200 200 200 20	46 7,480 1,990 8,640 3,380 95 2,460 66 24 127 46 257 14 1,220 36 1,270 52 53 184 128 246 0 224 43 64 13 30 84 0 30 25 18 9 35 28 42 20 18 1 2 22 17 25 12 5 20 6 12 20 20 8 17 6 6 23	851 3, 430 1, 580 10, 100 11, 200 3, 410 10, 600 2, 050 1, 330 1, 500 8, 130 8, 130 662 6, 010 1, 180 1, 430 1, 470 4, 140 1, 490 1, 470 4, 140 1, 690 786 665 708 708 747 749 699 710 731 915 885 915 885 915 887 940 960 960 960 960 980 812 840 876 876 876 876 876 876 876 876
January 23 January 25 January 26 January 27 January 28 January 29 January 30	32 0 0 0 0	92 86 210 154 196 196 257	8,400 7,780 7,500 7,900 8,070 8,200 8,460	340 584 0 0 0 0 0 512	17,200 15,900 15,800 16,700 16,800 16,400 16,700	2.3 2.3 2.2 2.3 2.3 2.3 2.3	21 21 18 21 21 21 21 21	19 33 0 0 0 0 0 29	975 902 764 944 950 926 946

Partial analyses, gage heights, and rates of discharge of water and solids for Elm Fork of Red River at highway bridge near Mangum, Okla.—Continued.

	Ar	nalysis	(milligra	ms per l	iter).	t).	nd-feet).	Solids per c	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (second-feet).	Suspended matter.	Dissolved solids.
1905–1907.			,						
January 31 February 1 February 2 February 3 February 4 February 5 February 6 February 7 February 8 February 9 February 10 February 11 February 12 February 12 February 13 February 17 February 18 February 29 February 20 February 20 February 25 February 25 February 26 February 25 February 27 February 28 March 1 March 2 March 3 March 4 March 5 March 6 March 7 March 11 March 12 March 10 March 11 March 12 March 14 March 15 March 16 March 17 March 18 March 20 March 21 March 22 March 23 March 24 March 20 March 10 March 11 March 12 March 11 March 12 March 16 March 17 March 18 March 20 March 20 March 20 March 21 March 22 March 23 March 24 March 25 March 26 March 27 March 28 March 29 March 20 March 21 March 20 March 31 April 1 April 2 April 3 April 4 April 5 April 6 April 7 April 8 April 9 April 10 April 11 April 10 April 10 April 11 April 10 April 10 April 10 April 11 April 10 April 11 April 10 April 11 April 10 April 11 April 12	000000000000000000000000000000000000000	208 165 138 165 153 165 172 82 188 218 224 208 224 208 224 208 224 214 190 214 195 185 185 185 185 185 185 185 18	9,040 8,720 8,380 8,140 9,400 9,030 9,150 9,220 9,310 9,9250 8,120 8,920 8,350 7,950 9,330 8,020 8,350 7,950 9,430 9,520 10,300 10,000 10,000 10,000 11,100 11,400 11,100 11,400 11,100 1	596 268 244 308 320 2,310 108 1,140 812 412 100 384 68 172 396 320 216 188 2,140 0 0 0 0 0 0 0 0 0 0 0 0 0	17,700 18,000 17,700 17,900 17,900 17,900 18,900 18,400 18,100 17,900 16,600 17,900 16,600 17,800 16,500 16,500 16,500 16,900 17,000 18,400 18,000 18,400 19,500 20,200 21,700 20,900 21,400 22,400 22,400 22,500 23,400 22,500 23,400 22,500 23,400 22,500 23,400 22,500 23,400 22,500 22,500 23,400 22,500 22,500 23,400 22,500 22,500 23,400 22,500 22,500 23,400 22,500 22,500 23,400 22,500 22,500 23,400 22,500 21,900 22,500 22,500 23,400 22,500 22,500 23,400 22,500 22,500 23,400 22,500 22,500 23,400 22,500 22,500 23,400 22,500 22,500 23,400 22,500 22,500 23,400 22,500 23,400 22,500 23,400 22,900 21,900	33222222222244334433222222222222222222	21 27 22 22 22 22 22 22 22 22 22 22 22 22	34 20 14 18 19 137 6 67 48 25 6 623 4 15 21 16 8 7 81 29 14 7 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	1,000 1,340 1,050 1,010 1,060 1,030 1,140 1,120 1,130 1,090 1,540 991 1,540 991 1,540 991 1,540 991 1,540 991 1,540 991 1,540 991 1,540 991 1,540 991 1,540 991 1,540 991 1,540 991 1,540 991 1,540 991 1,540 991 1,540 991 1,540 991 1,040 1,04

Partial analyses, gage heights, and rates of discharge of water and solids for Elm Fork of Red River at highway bridge near Mangum, Okla.—Continued.

	1						· ·		
	, Ar	alysis	(milligra	ms per l	iter).	t).	nd-feet)	Solids per d	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (second-feet)	Suspended matter.	Dissolved solids.
. 1905–1907.									
April 13 April 14 April 15 April 16 April 17 April 18 April 19 April 20 April 21 April 22 April 23 April 24 April 25 April 26 April 27 April 28 April 30 May 1 May 2 May 3 May 4 May 5 May 6 May 7 May 8 May 9 May 10 May 11 May 12 May 13 May 14 May 15 May 18 May 17 May 18 May 17 May 18 May 19 May 20 May 22 May 23 May 24 May 25 May 20 May 22 May 23 May 24 May 25 May 29 May 29 May 29 May 29 May 29 May 29 May 30 June 1 June 2 June 6 June 7 June 18 June 19 June 20 June 20 June 21 June 20 June 20 June 21 June 20	000000000000000000000000000000000000000	89 89 89 89 102 121 128 128 128 128 134 128 134 131 144 128 134 140 147 153 140 147 96 102 115 89 77 70 77 89 134 134 134 147 102 115 115 128 134 147 102 115 115 115 115 115 115 115 11	1,140 2,270 2,20 2,660 3,500 4,200 4,910 5,380 5,750 5,190 5,190 5,190 6,160 6,400 1,520 5,190 3,500 6,160 6,400 1,520 5,800 6,520 6,880 7,380 5,240 5,800 6,880 7,380 1,980 2,560 4,110 319 196 4,540 1,110 319 196 197 198 2,100 2	15,000 708 188 112 172 188 112 176 176 176 176 180 0 0 0 0 212 16,800 100 0 0 100 0 68 0 0 0 1,100 68 0 0 0 1,100 68 2,280 28 24 4,380 7,860 6,020 1,450 2,280 28 216 5,750 6,360 1,720 3,730 968 216 5,750 6,360 1,720 3,730 968 2140 52 28 292 292 200 0 10,500 0 10,500 0 0 10,500 0 0 10,500 0 0 10,500 0 0 10,500 0 0 10,500 0 0 0 10,500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2,690 6,730 6,360 6,690 7,350 8,750 10,200 11,500 12,200 12,300 12,300 12,300 12,300 13,300 14,200 13,300 14,200 13,800 4,960 3,240 1,800 13,200 14,100 14,700 15,700 16,500 17,000 13,300 3,360 2,990 1,990	4.2.6.6.5.4.4.4.5.5.5.4.4.3.3.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	840 48 48 48 48 26 26 32 32 32 32 32 20 20 20 18 1,730 96 48 48 33 33 33 33 21 21 21 21 1,730 90 1,500 1,000 1	33, 900 92 24 10 10 12 13 12 13 12 0 0 0 0 10 78, 200	6, 100 874 824 578 814 714 993 1,050 1,070 907 730 663 665 769 695 769 23,100 839 627 635 1,690 797 858 858 1,050 1,180 801 1,360 860 604 605 892 21,370 3,310 8,500 01,360 860 604 605 892 1,370 3,310 8,500 11,500 11,200

Partial analyses, gage heights, and rates of discharge of water and solids for Elm Fork of Red River at highway bridge near Mangum, Okla.—Continued.

	An	alysis	(milligra	ms per li	ter).		l-feet).	Sollds per d	
Dates.	Carbonate radicle (CO3).	Bicarbonate radicle (HCO ³).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (second-feet)	Suspended matter.	Dissolved solids.
1905–1907.			•						
June 23 June 24 June 25 June 26 June 27 June 28 June 30 July 1 July 2 July 3 July 3 July 4 July 5 July 6 July 7 July 8 July 9 July 10 July 11 July 12 July 13 July 14 July 15 July 16 July 17 July 18 July 19 July 19 July 20 July 17 July 20 July 20 July 27 July 28 July 29 July 30 July 31 August 1 August 2 August 4 August 5 August 6 August 10 August 11 August 12 August 13 August 14 August 15 August 20 August 17 August 18 August 19 August 10 August 17 August 18 August 20 August 21 August 22 August 23 August 24 August 22 August 23 August 24 August 25 August 26 August 27 August 28 August 29 August 20 August 21 August 22 August 23 August 24 August 25 August 26 August 27 August 28 August 28 August 29 August 29 August 20 August 21 August 22 August 23 August 24 August 25 August 26 August 27 August 28 August 29 August 29 August 20 August 21 August 22 August 23 August 24 August 25 August 26 August 27 August 28 August 29 August 29 August 29 August 29 August 20 August 27 August 28 August 29 August 30 August 30 August 30 August 30 August 30 August 30 August 31 September 4 September 5 September 6		88 110 118 124 108 92 46 80	3,780 2,230 4,010 465 515 1,310 2,180 2,990 3,860 4,120 4,540 4,980 5,620 5,840 5,760 4,430 3,960 1,320 832 1,560 931 743 1,480 743 2,820 3,230 1,990 2,080 317 436 891 1,940 2,720 2,080 337 515 188 376 485 1,110 1,580 2,260 2,260 2,260 2,380 2,490 2,690 2,845 1,1580 2,390 2,690 2,380 2,490 2,690 2,380 2,490 2,690 2,380 2,490 2,690 2,380 2,490 2,690 2,380 2,490 2,690 2,380 2,490 2,1470 1,560 412 430 888	0 0 0 520 15,700 3,070 456 140 0 0 444 2566 104 304 508 508 212 348 184 276 2,270 1,480 6620 1,460 632 6,3020 6,3020 6,320 6,270 72 220 220 220 220 220 220 220 220 2	9,780 10,500 10,400 2,340 2,560 4,930 6,540 8,160 9,690 10,400 12,500 13,100 12,500 13,100 12,500 13,570 3,650 4,920 3,730 3,570 6,950 6,950 6,950 6,930 6,230 7,770 8,650 5,220 2,210 2,970 3,760 6,930 6,230 7,470 5,580 2,210 2,970 3,760 6,830 7,470 5,580 2,3190 4,440 5,950 6,830 7,5580 2,910 3,190 4,440 5,950 6,830 7,750 8,200 2,910 3,190 4,440 5,950 6,830 7,250 7,550 8,200 2,910 3,190 4,440 5,950 6,570 6,830 7,250 7,550 8,290	5 4 4 9 0 6 5 5 5 4 4 4 4 4 4 4 4 4 4 4 6 5 6 0 0 6 9 9 6 5 4 7 5 5 5 1 5 3 9 7 6 6 6 6 9 3 0 6 3 1 9 7 7 7 7 7 7 6 6 6 6 6 6 0 5 0 8 6 6 8 6 7 7 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 25 25 2,580 60 45 45 25 25 25 25 25 25 25 25 25 2	0 0 4 109,000 1,240 174 177 0 3 177 7 211 344 344 142 24 122 566 2,330 67 11,900 6525 11,400 6525 11,400 176 6 6 0 148 13,300 11,900 24,100 610 537 755 18 142 9 177 0 7 177 24 18 48 0 45,800 15,700 15,700 15,800 15,700 15,258 169 333 325,200 17,200 258	1,060 709 705 16,300 1,040 800 795 991 654 704 773 812 881 886 872 713 1,880 10,800 755 6,750 2,000 6,120 6,880 1,650 1,020 483 23,000 4,060 840 702 483 23,000 1,060 1,570 1,120 1,500 1,120 1,500 1,120 1,050 1,120 1,080 1,120 1,080 1,120 1,080 1,120 1,080 1,120 1,080 1,100 1,

Partial analyses, gage heights, and rates of discharge of water and solids for Elm Fork of Red River at highway bridge near Mangum, Okla.—Continued.

	An	alysis	(milligra	ms per li	ter).	t).	nd-feet).	Solids per d	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (second-feet)	Suspended matter.	Dissolved solids.
September 7. September 8. September 9. September 10. September 11. September 12. September 13. September 14. September 15.	0 0 0 0 0 0 0	110 133 129 111 139 111 115 75 111	1,320 1,620 1,920 2,120 2,460 2,290 2,310 2,270 631	676 72 28 204 264 464 228 216 7,270	4,750 5,740 6,340 6,840 7,590 7,170 7,030 7,080 3,060	2.7 2.7 2.7 2.6 2.6 2.6 2.6 4.0	68 68 68 50 88 50 700	124 13 5 37 36 110 31 29 13,700	870 1, 050 1, 180 1, 250 1, 030 1, 700 950 955 5, 800
September 8 September 9 September 10. September 11 September 12 September 13. September 14	0 0 0 0 0 0	133 129 111 139 111 115 75	1,620 1,920 2,120 2,460 2,290 2,310 2,270	72 28 204 264 464 228 216	5, 740 6, 340 6, 840 7, 590 7, 170 7, 030 7, 080	2.7 2.7 2.6 2.6 2.6 2.6	68 68 68 50 88 50 50	13 5 37 36 110 31 29	1, 050 1, 180 1, 250 1, 030 1, 700 950 955
September 24. September 25. September 27. September 28. September 29. September 30. October 1. October 5. October 7. October 9. October 10. October 11.	0 26 12 18 22 20 17 5 20 7 13 0 14 6	119 69 98 92 84 86 89 123 92 111 103 141 95 126	2,000 1,890 2,400 2,510 2,690 2,810 3,000 2,970 3,100 3,240 3,000 3,190 3,350	124 200 180 72 16 184 40 96 56 256 120 256 308	5,500 6,300 7,350 7,370 7,670 7,950 8,360 9,090 8,710 9,150 9,330 8,920 9,140 9,680	2.9 2.8 2.7 2.7 2.8 2.6 2.7 2.6 2.7 2.6 6 2.5	110 90 110 70 90 85 32 32 59 59 38 38	37 49 53 14 3 45 9 8 5 9 41 12 26 16	1,64(1,53(2,19(1,39(1,45(1,93(1,92(75; 1,46(1,49(91; 93;
October 13. October 14. October 15. October 16. October 17. October 18. October 19. October 20. October 21. October 22. October 23. October 24.	14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	85 113 73 113 139 153 208 154 78 138 166 164	3, 340 1, 720 80 333 808 1, 100 1, 280 1, 530 1, 820 1, 810 1, 870 1, 780	508 6,740 5,330 1,290 596 272 456 124 188 152 412	9,850 4,040 1,070 2,440 3,520 4,320 4,800 5,760 5,610 5,820 5,440	2.5 5.5 6.3 2.4 3.2 3.1 3.0 3.1 3.1	19 2,050 3,180 6 350 300 215 215 160 160 215 215	37,300 45,800 21 563 240 158 265 54 81 88 239	22, 40 9, 20 3, 33 3, 50 2, 79 3, 02 2, 49 2, 43 3, 38 3, 15
October 25. October 26. October 27. October 28. October 31. November 27. November 28. November 29. November 30. December 1. December 2.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	163 157 164 160 152 134 147 103 109 148 163	1,900 1,970 2,110 2,340 2,490 932 1,040 229 243 462 509	256 316 572 164 16 264 252 2,600 996 708 374	5,810 5,970 6,240 6,490 7,030 3,690 3,920 1,460 2,000 2,830 3,360	3.0 2.9 2.9 2.9 3.1 3.0 4.5 4.1 4.1 4.7	160 115 115 115 115 175 145 1,220 870 870 1,300	111 98 177 51 125 99 8,560 2,340 1,660 1,310	2, 51 1, 85 1, 93 2, 01 2, 18 1, 74 1, 53 4, 82 4, 70 6, 65 11, 80 8, 78
December 3. December 4. December 5. December 6. December 7. December 8. December 9. December 10. December 12. December 14. December 15. December 16.	0 0 0 0 0 0 0 0 0 0	173 123 167 170 159 164 172 167 147 166 147 156	617 196 540 708 794 857 918 998 1,010 1,060 1,130 1,200 1,240	68 1,390 140 168 136 284 256 184 304 300 192 32 292	3,740 2,090 3,680 4,170 4,160 4,220 4,140 4,320 4,390 4,310 4,520 4,670 4,610	4.1 3.9 3.8 3.7 3.6 3.5 3.5 3.5 3.5 3.4 3.4 3.3	870 700 600 520 445 445 380 380 380 380 315 315 215	160 2,630 227 236 163 341 263 189 312 308 163 27 170	5, 76 3, 95 5, 95 5, 86 5, 07 4, 25 4, 43 4, 50 4, 42 3, 85 3, 99 2, 68

Partial analyses, gage heights, and rates of discharge of water and solids for Elm Fork of Red River at highway bridge near Mangum, Okla.—Continued.

	Ar	nalysis	(milligra	ms per li	iter).		1-feet).	Solids per d	
Dates	Carbonate radicle (CO3).	Bicarbonate radicle (HCO ³).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage helght (feet).	Mean discharge (second-feet).	Suspended matter	Dissolved solids.
1905–1907.									
December 20. December 21. December 22. December 23. December 24. December 25. December 26. December 27. December 28. December 29. December 30. December 31. January 1 January 2 January 3 January 4 January 5 January 6 January 7 January 8 January 9 January 10 January 11 January 12 January 13 January 14 January 15 January 16 January 17 January 19 January 20 January 21 January 21 January 22 January 24 January 25 January 26 January 27 January 28 January 27 January 28 January 29 January 27 January 28 January 29 January 30 January 31 February 4 February 5 February 4 February 5 February 7 February 7 February 8 February 10 February 11 February 17 February 17 February 17 February 17 February 18 February 19 February 10 February 11 February 11 February 11 February 12 February 12 February 13 February 15 February 16 February 17 February 17 February 18 February 19 February 19 February 19 February 20 February 21 February 25 February 26 February 27 February 27 February 27 February 28	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	169 157 172 174 156 163 170 166 150 152 137 147 157 137 147 128 157 147 122 127 100 109 147 118 116 134 147 121 121 121 121 121 121 121 121 121 12	1, 350 1, 450 1, 450 1, 420 1, 510 1, 540 1, 570 1, 580 1, 590 1, 660 1, 680 1, 770 1, 780 1, 770 1, 900 2, 010 2, 010 2, 010 2, 010 2, 010 1, 170 1, 120 1, 340 1, 380 1, 390 418 364 648 728 854 9, 100 1, 172 1, 120 1, 150 1, 210 1, 150 1, 210 1, 150 1, 210 1, 150 1, 210 1, 150 1, 210 1, 150 1, 210 1, 150 1, 210 1, 150 1, 210 1, 150 1, 210 1, 178 1, 210 1, 179 1, 160 1, 179 1, 170 1, 210 1, 170 1, 210 1, 170 1, 210 1, 170 1, 210 1, 170 1, 210 1, 170 1, 210 1, 170 1, 210 1, 170 1, 210 1, 170 1, 210 1, 170 1, 210 1, 170 1, 210 1, 170 1, 210 1, 170 1, 210 1, 210 1, 210 1, 170 1, 210 1,	148 200 -92 56 128 64 104 116 140 144 180 96 328 200 304 212 280 200 172 1,090 3,160 684 260 136 100 148 88 15,900 322 240 200 816 376 372 240 200 816 376 372 112 244 388 136 289 376 204 260 272 112 244 388 136 289 376 204 260 272 112 244 388 136 289 376 204 260 272 112 244 388 32 172 112 244 388 388 368 376 204 260 372 112 244 388 388 376 204 260 272 112 244 388 388 376 204 260 372 112 244 388 388 376 204 260 372 112 244 388 388 376 204 260 372 112 244 388 388 376 204 260 372 112 244 388 388 376 204 260 372 112 244 388 388 376 204 260 372 112 244 388 388 376 204 260 372 112 244 388 388 376 204 260 372 112 244 388 388 376 289 376 289 376 381 381 381 388 388 388 388 388 388 388	4,900 5,040 5,190 5,190 5,190 5,110 5,320 5,320 5,320 5,540 5,540 5,540 5,540 5,540 6,040 6,220 6,040 6,	333332222222511111111111111111111111111	210 210 210 210 210 210 210 210	84 113 52 32 54 27 44 49 60 73 185 69 105 73 10 69 376 5, 120 236 200 75 55 55 82 49 38 327,000 1,060 323 9,100 105 73 105 73 105 73 106 107 107 108 109 109 109 109 109 109 109 109	2,770 2,840 2,840 2,940 2,170 2,280 2,230 2,210 2,230 2,200 1,930 1,880 1,990 2,970 2,470 2,470 2,740 2,740 49,200 3,370 3,190 6,950 3,360 3,300 3,360 3,300 3,140 2,440 3,110 2,600 2,740 2,740 2,770 2,740 2,740 2,740 2,740 2,740 3,370 3,900 2,910 2,740 2,740 2,740 2,740 3,190 2,910 2,740 2,740 2,740 3,370 3,900 3,370 2,900 2,910 2,910 2,100

Partial analyses, gage heights, and rates of discharge of water and solids for Elm Fork of Red River at highway bridge near Mangum, Okla.—Continued.

·	Ar	ıalysis	(milligra	ms per l	iter).	5).	id-feet).	Solids per o	(tons
- Dates.	Carbonate radicle (CO3).	Bicarbonate radicle (HCO3).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (second-feet).	Suspended matter.	Dissolved solids.
1905–1907. March 1 March 2 March 3 March 4 March 5 March 6 March 7 March 8 March 9 March 10 March 11 March 12 March 13 March 14 March 15 March 16 March 17 March 18 March 19 March 19 March 19 March 19 March 19 March 20 March 20 March 21 March 21	050500000900555500005550	138 148 153 129 138 134 148 143 153 153 154 134 134 119 115 129 124 115 134	1,980 1,850 2,060 2,110 2,150 2,270 2,320 2,320 2,320 2,340 2,340 2,360 2,360 2,340 2,410 2,410 2,500 2,500 2,700 2,800	32 32 32 120 300 248 108 36 184 24 128 60 16 12 12 12 12 12 12 12 4	5,830 5,880 6,040 6,140 6,280 6,520 6,580 6,550 6,440 6,530 6,750 6,670 6,840 7,000 7,010 6,960 7,120 7,310 7,510 7,620	3.0 3.0 2.9 2.9 2.9 2.9 2.9 3.0 3.0 3.0 3.0 3.9 2.9 2.9 2.9	125 125 95 95 95 95 95 95 160 128 128 128 128 128 128 128 140 100 100 100 540 540 77	11 11 31 77 64 28 9 50 8 44 21 6 4 23 2 3 3 17 17	1, 970 1, 990 1, 550 1, 570 1, 610 1, 670 1, 690 1, 770 2, 260 2, 230 2, 270 2, 330 2, 310 2, 360 10, 200 1, 910 1, 880 1, 920 10, 700 11, 000 1, 580

 $Relative\ amount\ of\ substances\ in\ solution\ in\ water\ from\ Elm\ Fork\ of\ Red\ River\ at\ highway\ bridge\ near\ Mangum,\ Okla.$

	les.		(Ds) er).		Radic	es in p	er cen	t of dis	solved	solids.	
Limiting dates of composite.	Number of daily samples.	Errors.	Dissolved solids (Ds (milligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na $+\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO ₄).	Chlorine (Cl).	Nitrate (NO ₃).
1905–1907.	·										
April 13-June 15. June 18-July 15. July 16-November 18. November 19-December 14. December 17-January 13. January 14-25. January 26-February 28. March 1-31. April 1-30. May 1-30. June 1-30. July 1-31. August 1-31. September 1-30. October 1-31, and November 27-30. December 1-31. January 1-31. February 1-28. March 1-22.	27 25 25 27 10 31 30 30 28 30 28 26 28 29	-1.0 -3.1 7 6 -2.3 6 +2.5 +1.4 1 +.1 +.4 +.5 +.3	8, 280 9, 100 9, 310 10, 100 13, 100 15, 500 16, 400 21, 600 5, 750 5, 360 5, 400 6, 110 4, 620 4, 140 5, 440 6, 670	7.4 11 6.9 6.4 4.6 3.9 5.9 9.9 9.0 12 11 9.8 13 8.8 11 9.4	1.2 1.2 1.1 1.0 1.3 1.1 1.0 1.2 2.6 1.2 1.3 1.4 1.7 2.3 4.9 2.2 2.1	25 a 24 26 26 28 29 27 21 20 23 21 16 15 18	0.00 .00 .00 .00 .00 .00 .00 .00 .00 .0	1.7 1.5 1.2 1.4 1.2 .95 .69 1.2 .2.2 1.4 1.7 2.2 2.0 3.4 3.0 2.3 1.8	18 20 16 	42 48 43 45 47 47 48 48 42 38 29 30 35 26 25 30 34	T. 0.001 T000 .000 .000 .000 .000 .00
Mean		1.0	9,130	8.4	1.7	23	.01	1.7	21	38	т.

a Sodium is 99 per cent and potassium is 0.73 per cent of this amount.

monthly abstracted for the second-feet, of months of the field field many and, okt	Monthly discharge,	in second-feet,	of Elm Fork of Red River near Mangum,	Okla.
--	--------------------	-----------------	---------------------------------------	-------

Month.	1905.	1906.	1907.	1908.	Mean.
anuary		22 21	546	88	219
February		$\begin{array}{c} 21 \\ 14 \\ 209 \end{array}$	173 143 112	107 53	70 70
April	760	324	464 853		188 516
une uly	. 91	$\frac{255}{281}$	127		492 166
Augusteptember	. 36	438 414	135 39		227 163
October November	. 151	274 248	898 89		395 163
December		239	150 311		183

a April 12-30.

FEATHER RIVER NEAR OROVILLE, CAL.

Samples of water were collected from Feather River near Oroville, Cal., between June 25, 1905, and February 14, 1907. A gaging station was established near Oroville by the United States Geological Survey January 1, 1902. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for this station have been published by the Survey in the following reports:

Water-Supply Papers: 66, p. 167; 81, pp. 85–87; 85, pp. 133–135; 100, pp. 272–274; 134, pp. 137–140; 177, pp. 155–158; 213, pp. 120–121; 251, pp. 199–202.

Additional information in regard to the quality of the water of Feather River is contained in Water-Supply Paper 237, "Quality of California surface waters," pages 36–38.

Partial analyses, gage heights, and rates of discharge of water and solids for Feather River near Oroville, Cal.

[Drainage area, 3,640 square miles.]

	[•		_		-p	Solids (1	one nor
	Anal	ysis (n	illigra	ms per	liter).	eet).	(second	day	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (feet).	Suspended matter.	Dissolved solids.
1905–1907.				100	70	9.0	9.700	759	507
July 8, 9, 10, 12, 13, 14, 15. July 16, 17, August 5, 6, 7, 8, 9, 10, 11, 12. August 13, 20, 24, 25, 26. August 29, 31, September 2, 3, 4, 5, 7. September 11, 13, 14, 15, 16, 19, 20, 21. September 23, 24, 25, 26, 27, 29, 30. October 1, 2, 3, 4, 5, 6, 7. October 7. October 8, 9, 10, 11, 12, 13, 14. October 16, 17, 18, 19, 20, 21, 22. October 29, 30, November 1, 2, 3. November 23, 24, 26, 27, 28. October 29, 30, November 1, 2, 3. November 12, 13, 15, 16, 17, 18. November 12, 13, 15, 16, 17, 18. November 19, 20, 21, 22, 24, 25. November 26, 27, 29, 30, December 1, 2. December 4, 5, 6, 7, 8, 9. December 25, 26, 27, 28, 29, 30. December 31, January 5, 7, 8, 9, 13 January 14, 15, 16, 17, 19, 20 January 22, 23, 24, 25, 26, 27, January 28, 29, 30, 31, February 1, 2, 3. February 4, 6, 7, 8, 9, 10. February 20, 21, 22, 23, 24. March 16, 17, 18. March 19, 20, 21, 22, 23, 24. March 25, 26, 27, 30, 31. April 1, 2, 3, 4, 5, 6, 7. April 8, 9, 10, 11, 12, 13, 14. April 22, 23, 24, 25, 26, 27, 28. May 6, 7, 8, 10, 11, 12. May 14, 19, 20. May 27, 28, 29, 30, 31, June 1, 2. June 3, 4, 5, 6, 7, 8, 9. June 10, 11, 12, 14, 15. June 17, 19, 20, 21, 22. June 24, 25, 26, 28, 29, 30. July 1, 3, 4, 5, 6, 7. July 8, 9, 10, 11, 12, 13. June 17, 19, 20, 21, 22. June 24, 25, 26, 28, 29, 30. July 1, 3, 4, 5, 6, 7. September 7, 9, 11. September 16, 17, 22, 29. October 14, 15, 16, 17, 18, 19. October 21, 22, 23, 25, 27. October 24, 15, 16, 17, 18, 19. October 24, 5, 6, 7, 8, 9. December 9, 10, 11, 12, 13, 14, 15. December 16, 18, 20, 21, 22, 24 November 25, 26, 27, 28, 29, 30. December 29, 45, 6. December 29, 45, 6. December 29, 45, 6. December 29, 47, 69, 79, 89, February 10, 11, 12, 13, 14.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	84 96 82 93 92 88 88 88 97 90 92 92 93 96 63 53 46 69 97 62 63 53 46 63 53 46 63 53 46 63 53 40 41 51 66 65 76 76 76 76 76 76 76 76 76 76	11 8 5 6 11 8 5 11 8 5 11 1 1 1 1 1 1 1 1 1 1 1	100 516 44 110 34 30 46 62 30 92 46 62 30 92 46 62 30 90 24 46 62 30 114 128 138 136 118 118 118 118 119 119 119 119	70 96 176 96 132 1122 114 128 132 150 118 138 142 202 158 134 128 92 154 134 116 110 118 84 68 132 102 1102 1108 81 60 104 100 80 80 80 81 104 114 115 82 72 64 84 69 61 100 94 114 114 76 84 68 80 86 80 92 52 84 100 90 54	2.88 1.10 1.00 1.00 1.00 1.00 1.00 1.00 1	2,790 1,860 1,370 1,250 1,240 1,280 1,300 1,280 1,300 1,280 1,300 1,280 1,300 1,420 1,420 1,420 1,420 1,430 1,370 1,450 2,630 36,400 9,690 5,900 17,200 13,900 18,300 17,100 21,200 18,300 18,300 17,100 18,000 21,200 18,300 11,920 18,300 11,920 11,9	753 251 62 163 34 114 105 14 105 14 105 14 105 14 105 105 64 106 7 235 1,120 26,700 2,700 2,400 19,600 7,870 2,440 19,600 7,870 2,440 19,600 7,870 2,180 3,650 2,180 3,74 2,180 3,74 2,190 1,290 1,000 1,910 1,910	527 482 684 355 445 408 397 442 463 530 408 477 498 676 520 506 547 473 474 3600 3,030 1,750 1,710 2,180 3,160 4,950 8,480 12,800 12,800 12,800 12,800 12,800 12,800 12,800 12,800 12,800 12,800 12,800 12,800 12,800 12,800 12,800 13,160 14,950 14,950 15,340 15,340 16,540 17,550 17,540 17,550 18,480 11,550 11,540 11,550 11,540 11,550 11,540 11,550 11,540 11,550 11,660 11,050 11,050 11,050 11,070

Relative amount of substances in solution in water from Feather River near Oroville, Cal.

	ples.		(Ds)		Radicl	es in p	er cent	of dis	solved	solids.	
Limiting dates of composite.	Number of daily samples.	Errors.	Dissolved solids (Ds) (milligrams per liter).	Calcium (Ca).	Magneslum (Mg).	Sodium and potassium (Na+\frac{3}{4}K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NO ₃).
1905–1907.		•									
July 8-September 7 September 11-October 14 October 16-November 11 November 12-December 9 December 10-January 20 January 22-February 17 February 20-March 31 April 1-May 12 May 14-June 15 June 17-July 14 July 15-25 October 1-27 October 28-November 24 November 25-December 22 December 23-January 17 January 20-February 14	74	+10.1 +7.4 +8.6 .0 -9.4 +2.3 +7.3 -5 +9.9 +9.2 +8.0 +2.2 +11.6	121 127 152 106 96 89 101 132 92 104 152 112 92 84 96	17 20 16 16 18 17 15 17 16 13 14 15 19 18	7. 5 5. 8 5. 0 6. 5 6. 7 6. 0 4. 0 7. 8 5. 5 8. 6 7. 9 11. 0 7. 0	16 11 15 8.5 13 13 17 13 12 12 12 18 14 13	0.00 .00 .00 .00 .00 .00 .00 .00 .00 .0	74 73 60 75 77 75 63 68 91 55 76 78 88 70	12 12 12 19 17 13 21 14 13 5.1 15 8.6 14 17 17	9.1 8.7 18 9.3 11 3.3 7.7 11 9.9 8.6 1.9 13 15 6.1	0. 03 .14 .12 .04 .13 .07 .00 .00 .00 .48 .11
Mean		6. 7	109	17	6.8	14	. 44	73	13	9.8	. 10

Monthly discharge, in second-feet, of Feather River, near Oroville, Cal.

Month.	1902.	1903.	1904.	.1905.	1906.	1907.	1908.	Mean.
January February March April May June July August September October November December	19,500 11,100 19,500 12,100 5,610 2,100 1,540 1,320 1,500 3,480	7,520 5,430 12,000 19,200 10,000 4,330 2,100 1,510 1,230 1,460 19,900 4,210	3, 300 27, 800 39, 500 24, 500 17, 800 7, 460 2, 910 1, 960 2, 250 4, 140 2, 560 5, 870	9,860 9,610 13,600 9,400 7,250 4,100 1,790 1,350 1,270 1,270 1,320 1,380	14,500 11,100 21,600 19,200 17,500 13,800 5,240 2,490 1,970 1,920 2,410 7,070	7, 130 21, 500 36, 100 28, 600 23, 400 15, 200 6, 000 2, 650 1, 900 1, 850 1, 780 6, 060	6,610 6,380 7,240 9,210 8,170 5,310 2,320 1,510 1,650 1,750 1,910	7, 27(14, 50(20, 20(18, 50(13, 70(7, 97(3, 21(1, 86(1, 60(1, 97(4, 74(4, 68(
The year	7,180	7, 410	11,700	5, 180	9,900	12,700	4, 440	8, 35

GALLINAS RIVER NEAR LAS VEGAS, N. MEX.

Samples of water were collected from Gallinas River at Las Vegas Hot Springs, near Las Vegas, N. Mex., between March 19, 1905, and March 31, 1906. A gaging station was established near Las Vegas by the United States Geological Survey August 13, 1903. Streamflow data, including gage heights, rating tables, and estimates of discharge, for this station have been published by the Survey in the following reports:

Water-Supply Papers: 99, pp. 253-254; 132, pp. 116-118; 174, pp. 115-117; 210, pp. 97-98; 248, pp. 134-137.

Partial analyses, gage heights, and rates of discharge of water and solids for Gallinas River at Las Vegas Hot Springs, near Las Vegas, N. Mex.

[Drainage area, 90 square miles.]

		. ,					-p	Solids	(tons
	Analy	7818 (m	illigrai	ns per	liter).	(feet).	second-	per d	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (Mean discharge feet).	Suspended matter.	Dissolved solids.
1905–6.									
March 19, 20, 21, 22, 23, 24. April 26, 27, 28, 29, 30. May 10, 11, 12, 13. May 14, 15, June 1, 2, 3. June 5, 6, 7, 8, 9, 10. June 11, 12, 14, 15, 16, 17 June 18, 19, 28, 29. June 30, July 1, 2, 3, 4, 5, 6, 7, 8. July 9, 21, 22. July 25, 26, 27, 28, 29. July 30, 31, August 1, 2, 3, 4, 5. August 6, 7, 8, 9, 10, 11, 12. August 20, 21, 22, 23, 24, 25, 26. August 27, 28, 29, 30, 31. September 8, 9, 10, 11, 13, 14. September 15, 16, 18, 19, 20, 22, 23. September 24, October 11, 12, 13, 14, 15, 16. October 17, 18, 20, 21, 22, 23, 24, 25. October 25, 26, 27, 28. October 29, 30, November 1, 2, 3, 4. November 5, 6, 8, 9, 11. November 19, 20, 21, 22, 23, 24, 25. November 19, 20, 21, 22, 23, 24, 25. November 26, 27, 28, 29, 30, December 1, 2 December 31, 14, 15, 16, 18. November 19, 20, 21, 22, 23, 24, 25. November 26, 27, 28, 29, 30, December 1, 2 December 31, 13, 14, 15, 16, 18. November 19, 20, 21, 22, 23, 24, 25. November 25, 26, 27, 28, 29, 30, December 1, 2 December 31, January 1, 2, 3, 4, 5, 6 January 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 December 31, January 1, 2, 3, 4, 5, 6 January 14, 15, 16, 17, 18, 19, 20. January 21, 22, 23, 24, 25, 26, 27. January 28, 29, 30, 31, February 1, 2 February 3, 4, 5, 6, 7, 8, 9. February 10, 11, 12, 13, 14, 15, 16, 17 February 18, 19, 20, 21, 22, 23, 24 February 10, 11, 12, 13, 14, 15, 16, 17 February 18, 19, 20, 21, 22, 23, 24 February 25, 26, 27, March 1, 2 March 14, 5, 6, 7, 8, 10. March 11, 12, 13, 14, 15, 16, 17 March 18, 19, 20, 21, 22, 23 March 24, 25, 26, 27, 28, 29, 30, 31	0 0 0 0 5 5 7 6 0 0 0 7 4 0 0 0 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0	131 123 87 84 93 102 137 179 169 168 159 136 165 152 160 176 112 96 96 1134 132 165 119 116 116 116 116 116 116 116 116 116	14 8 6 4 4 13 14 19 21 12 16 6 2 16 6 6 6 6 6 11 10 2 11 10 10 10 10 10 10 10 10 10	14 34 24 12 6 6 206 0 40 40 58 42 70 37 4 58 10 26 28 0 0 0 8 128 76 0 136 188 198 198 198 198 198 198 198	168 156 120 126 148 158 202 220 244 220 164 192 214 212 158 378 386 374 318 2216 216 216 216 217 258 152 152 158 152 158 159 178 178 178 178 178 178 178 178 178 178	2.21 3.86 2.64 2.22 2.19 1.88 1.88 1.66 1.66 1.66 1.66 1.99 1.88 1.88 1.88 1.88 1.88 1.88 1.88	63 327 209 137 107 64 31 16 18 15 37 49 24 13 12 14 10 3 2 2 2 2 2 4 31 105 17 22 15 20 14 8 8 8 8 8 8 17 14 14 14 15 16 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	2 30 14 4 2 36 0 2 2 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	29 138 68 47 43 27 10 22 22 22 22 23 36 10 13 36 10 13 4 4 4 5 5 4 10 7 16

Relative amount of substances in solution in water from Gallinas River at Las Vegas Hot Springs, near Las Vegas, N. Mex.

	ples.		(Ds) er).	J	Radicle	es in p	er cent	of diss	solved	solids.	
Limiting dates of composite.	Number of daily samples.	Errors.	Dissolved solids (Ds) (milligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+ $\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO ₄).	Chlorine (Cl).	Nitrate (NO ₃).
1905–6.											
March 19-June 3. June 5-July 8. July 9-August 12. August 13-September 14. September 15-October 28. October 29-November 25. November 26-December 23. December 25-January 20. January 21-February 17. February 18-March 17. March 18-31.	20 25 22 25 24 25 28 27 28 25 14	+8.8 +1.6 +1.7 +3.8 +4.9 -3.0 +4.5	156 154 238 218 331 300 158 168 190 172 164	24 24 15 16 21 20 23	3.3 3.5 2.4 2.8 1.8 2.1 3.5 2.9 3.3 3.3	12 a 11 11 17 18 15 17 13 12 11	0.00 .00 5.5 .00 .00 .00 .00	74 86 66 80 55 61 71 77 71 73 79	16 14 12 9.6 11 11 13 13 11 12 13	4.5 7.8 6.3 6.9 17 15 8.2 11 21 10 7.9	0.14 .12 .08 .08 .01 .03 .11 .05 .05
Mean		4.0	204	20	2.9	14	. 50	72	12	11	.06

a Sodium is 87.5 per cent and potassium is 16.5 per cent of this amount.

Monthly discharge, in second-feet, of Gallinas River near Las Vegas, N. Mex.

Month.	1904.	1905.	1906.	1907.	1908.	Mean
January February March April May June July August September October November December	a 33	12 40 93 177 206 63 17 27 14 4 32	9 11 26 99 101 32 38 22 15 17 16 46	14 15 28 44 91 64 25 27 23 2	3 6 7 29 28 11 16 65 12 1	10 18 38 87 107 42 24 35 16 - 12 13
Mean		58	36	28	15	35

a October 8-31.

GILA RIVER NEAR SAN CARLOS, ARIZ.

Samples of water were collected from Gila River near San Carlos, Ariz., between April 9, 1905, and January 20, 1906. A gaging station was established near San Carlos by the United States Geological Survey July 11, 1899, and was discontinued December 31, 1905. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for that point have been published by the Survey in the following reports:

Annual Reports: 21, IV, p. 332; 22, IV, pp. 397-398.

Water-Supply Papers: 33, p. 30; 38, pp. 313-314; 39, p. 452; 50, pp. 385-386; 52, p. 520; 66, pp. 98-99; 75, pp. 179-180; 85, pp. 32-35; 100, pp. 48-51; 133, pp. 199-204; 175, pp. 162-163.

Partial analyses and gage heights for Gila River near San Carlos, Ariz.

[Drainage area, 13,500 square miles.]

		Analysi	s (milligra	ms p er lite	r).	2.5
Dates.	Carbon- ate radi- cle (CO ₃).	Bicar- bonate radicle (HCO ₃).	Chlorine radicle (Cl).	Sus- pended matter (Sm).	Dis- solved solids (Ds).	Mean gage height (feet).
1905-6.						
April 9, 10, 11, 12. April 17, 18, 19, 20. April 24, 25, 26, 28, 29. April 30, May 3, 4, 5, 6. May 10, 11, 12. May 14, 16, 17, 18, 19. May 22, 23, 24, 25, 26, 27. May 28, 29, 30, 31, June 2 June 9, 10, 11, 12, 13, 14, 15. June 18, 19, 20, 21, 22, 23, 24. June 25, 26, 27, 28, 29, 30, July 1 July 2, 3, 5, 6, 7. July 9, 10, 11, 12, 13, 14, 15. July 16, 17, 22. July 23, 24, 25, 26, 27, 28 July 29, 30, 31, August 12. August 13, 14, 15, 16, 17, 18, 19. August 20, 22, 23, September 5, 7. September 10, 16, 21, October 1, 2, 6, 7. October 8, 9, 10, 11, 12, 13, 14. October 15, 16, 17, 21, 22, 23, 24 October 25, 26, 30, 31, November 2, 3, 4. November 12, 13, 14, 15, 16, 17, 18. November 19, 20, 21, 22, 23, 24, 25. December 5, 6, 7, 8. December 10, 11, 13, 14, 15, 16, 17, 18. November 17, 18, 19, 20, 21, 22, 23. December 24, 25, 26, 27, 28, 29, 30. December 31, January 1, 2.	10 10 6 6 0 0 0 6 0 0	142 146 140 147 145 156 170 195 210 256 251 256 254 279 273 221 260 195 238 298 298 298 210 210 221 240 240 251 240 250 251	37 64 48 70 100 119 146 190 210 314 434 435 324 466 408 172 302 176 314 360 446 453 236 24 123 123 172 123 123 124 129 129 129 129 129 129 129 129 129 129	9,820 5,410 9,580 4,155 2,270 1,770 1,020 710 2,320 474 120 138 3,170 408 3,900 20,400 5,230 24,700 3,140 126 9,950 3,160 3,940 1,920 940 954 684 540	302 338 312 332 402 470 520 614 1,800 970 1,190 560 938 1,280 1,080 560 926 630 1,260 1,260 1,260 1,260 1,260 672 642 552 680 690 694	13.0 14.2 14.3 13.2 11.8 11.5 11.1 11.2 11.0 10.7 10.5 10.6 10.5 11.2 11.6 11.8 11.3 11.2 11.1 11.9 11.9 11.8 12.3

Relative amount of substances in solution in water from Gila River near San Carlos,

Ariz.

	samples.		es in p	es in per cent of dissolved solids.							
Limiting dates of composite.	Number of daily sam Errors.	Dissolved solids (Ds) (milligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+3K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NO ₃).	
1905-6											
April 9-May 6. May 10-June 2. June 9-July 7. July 9-August 12 August 13-October 14. October 15-November 18. November 19-December 23. December 24-January 2.	26 1	+1.7 + .8 + .5 8 +4.8 1 +1.9 + .0	312 556 915 942 902 986 620 656	12 11 9.6 10 12 12 12 11	3.1 3.1 2.8 3.0 2.6 2.9 3.2 3.1	19 18 22 a 20 21 22 18 21	0.00 .00 .33 .00 .00 .00	48 36 27 27 29 36 37 37	12 12 12 12 12 12 12 12 12	20 27 34 35 31 33 28 30	0. 10 . 04 T. . 02 . 02 . 01 . 03 . 04
Mean		1.3	736	11	3.0	20	.04	35	12	30	.03

a Sodium is 96 per cent and potassium is 5.9 per cent of this amount.

Monthly discharge, in	second- $feet$.	of Gila	River near	San	Carlos.	Ariz.
-----------------------	------------------	---------	------------	-----	---------	-------

Month.	1899.	1900.	1901.	1902.	1903.	1904.	Mean.
January February March April May June July August September October November December	b 1, 780 405 453 c 161	a 536 307 63 0 12,300 50,300 2,580 10,500	199 1,080 446 53 3 368 536 250 91 232 109	100 555 10 0 0 0 19 792 98 0 0 558	141 58 37 55 4 116 52 877 281 118 57 34	32 33 11 5 9 0 143 952 232 232 825 112 306	118 306 126 130 65 36 394 2,640 8,600 629 2,180 1,350
The year			281	136	· 152	222	1,380

a Approximate.

b July 11-31.

c October 1-14.

GRAND RIVER NEAR KREMMLING, COLO.

Samples of water were collected from Grand River at Gore Canyon near Kremmling, Colo., from April 23, 1905, to May 15, 1906. A gaging station was established at Gore Canyon by the United States Geological Survey July 24, 1904. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports:

Water-Supply Papers: 133, pp. 137–139; 175, pp. 78–81; 211, pp. 69–71; 249 pp. 95–98.

Partial analyses, gage heights, and rates of discharge of water and solids for Grand River at Gore Canyon, near Kremmling, Colo.

[Drainage area, 2,380 square miles.]

	Anal	vsis (m	illigrar	ns per	liter).	et).	id-feet).	Solids (tons per day).	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (second-feet),	Suspended matter.	Dissolved solids.
1905-6. April 23, 24, 26. May 11, 12, 13. May 14, 15, 16, 17, 18, 19, 20. May 21, 22, 24, 25, 26, 27. May 28, 29, 31, June 1, 2. June 5, 6, 7, 9. June 10, 11, 12, 13, 15, 16. July 5, 6, 7. July 9, 10, 11, 12, 13, 14, 15. July 16, 17, 18, 19, 20, 21, 22. July 23, 24, 25, 26, 27, 28. August 1, 2, 3, 4, 5. August 6, 7, 8, 9, 10, 11. August 13, 14, 15, 16, 18, 19. August 20, 21, 23, 24, 25, 26. August 27, 28, 29, 30, 31, September 1, 2. September 3, 4, 5, 6, 7, 8, 9. September 15, 16, 18, 19, 20, 21, 22, 23. September 24, 26, 28, 29, 30, October 1, 2. October 10, 11, 12, 13, 14, 15, 16.	0	110 90 75 72 56 55 66 56 69 76 65 68 56 70 57 73 78 78 79 99	22 3 6 8 5 8 13 8 14 8 18 2 9	2,240 106 180 162 258 202 134 116 64 66 30 62 96 32 90 112 56 84 168	204 134 122 176 110 84 108 120 164 152 192 148 104 152 124 110 80 76 112	3.52 7.28 11.11 13.86 6.55 4.58 3.11 2.46 2.47 11.75	1,000 2,190 2,800 5,520 6,010 11,400 9,630 2,480 1,970 1,370 1,370 1,210 976 863 650 702 472 455	6,050 627 1,360 2,020 4,180 6,220 3,480 776 341 319 111 202 253 75 158 212 96 107	551 792 922 2,620 1,780 2,590 2,810 803 872 734 710 483 274 354 218 208 137 97 137

Partial analyses, gage heights, and rates of discharge of water and solids for Grand River at Gore Canyon, near Kremmling, Colo.—Continued.

	Anal	ysis (m	illigra	ms per	liter).	et).	nd-feet).		(tons lay).
Dates. 1905-6.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (second-feet).	Suspended matter.	Dissolved solids.
1905-6. October 17, 18, 19, 20, 21 October 22, 23, 24, 25, 26, 28 October 29, 30, 31, November 1 November 7, 8, 9, 10, 11 November 12, 13, 14, 16, 17 December 7, 8, 9, 10, 11, 13, 17 December 7, 8, 9, 10, 11, 13, 17 December 21, 22, 23, 24, 25, 26, 28, 30 January 10, 11, 12, 13 January 14, 15, 16, 17, 18, 19, 20 January 21, 22, 23, 24, 26, 28 January 30, February 2, 5, 6, 7, 8, 9, 10 February 11, 13, 14, 15, 16, 17 February 18, 19, 20, 21, 22, 23, 24 March 3, 4, 5, 6, 7, 8, 9 March 10, 11, 12, 13, 14, 15, 16, 17 March 18, 19, 20, 22 March 25, 26, 27, 28, 29, 30, 31 April 2, 3, 4, 5, 6, 7 April 8, 9, 10, 11, 12, 13, 14 April 15, 16, 17, 18, 19, 21, 22, 23 April 25, 26, 27, 28, 29, 30 May 1, 2, 3, 4, 5 May 6, 7, 8, 9, 10, 11, 12 May 13, 14, 15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	84 755 87 88 92 96 94 99 96 102 87 59 87 88 86 72 82 20 51 83 51 108	7 8 5 13 7 7 7 7 7 7 7 7 7 18 13 14 10 19 14 10 2 5 5 5 5	104 46 76 78 148 0 56 10 48 26 14 0 112 32 24 8 144 240 264 254 158 132 302 188	114 104 106 130 168 180 124 122 144 118 128 120 96 142 170 208 144 166 116 118 116 162 76		1,020 1,090 1,730 3,810 4,220		

Relative amount of substances in solution in water from Grand River at Gore Canyon, near Kremmling, Colo.

-	samples.		(mil-		Radicl	les in p	er cen	t of dis	solved	solids.	
Limiting dates of composite.	Number of daily sam	Errors.	Dissolved solids (Ds) (ligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+3/K).	Carbonate (CO ₃).	Bicarbonate (HCO3).	Sulphate (SO ₄).	Chlorine (CI).	Nitrate (NO ₃).
1905–6.			-								
April 23-May 27 August 6-September 2 September 3-October 16 October 17-November 11 November 12-January 13 January 14-February 17 February 18-March 22 March 25-April 23 April 25-May 15	19 25 29 20 24 27 26 29 21	$ \begin{array}{r} -2.2 \\ +7.7 \\ +8.3 \\ -2.7 \\ +10.8 \\ +3.5 \\ -5.3 \end{array} $	119 100 114 128 144 120 91 160 140	24 23 19 21 25 21 16	4. 5 4. 8 6. 1 7. 6 5. 2 4. 2 6. 5 4. 6 5. 3	12 13 12 15 17 12 15 10 14	0.00 .00 .00 .00 .00 .00 .00	68 66 68 70 98 60 79	23 21 25 21 21 26 11 23 21	5. 3 4. 2 9. 7 5. 5 8. 3 9. 2 5. 4 8. 8	0.15 .04 .19 .03 .09 .11 .00
Mean		5. 8	124	21	5. 4	13	. 00	72	21	7. 5	. 08

44 SOME STREAM WATERS OF THE WESTERN UNITED STATES.

Monthly discharge, in second-feet, of Grand River near Kremmling, Colo.

Month.	1904.	1905.	1906.	1907.	1908.	Mean.
January. February March April May June July August. September October November December	b 1,760 1,310 893 646 c470	314 316 390 924 3,520 8,000 2,050 866 532 475 419 325	1,440 5,060 7,080 3,290 1,400 1,160 817 546 c 477		304 306 419 1,290 2,390 4,720 2,010 1,310 597 488 390 303	309 335 561 1,340 3,660 7,240 3,070 1,320 793 629 446 341
The year		1,510			1,210	1,670

a February 18-28.

b July 24-31.

c Approximate.

GRAND RIVER NEAR PALISADE, COLO.

Samples of water were collected from Grand River at a highway bridge near Palisade, Colo., from March 15, 1905, to May 5, 1906. A gaging station was established near Palisade by the United States Geological Survey April 9, 1902. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports:

Annual Reports: 19, IV, p. 401; 20, IV, pp. 378-389.

Water-Supply Papers: 85, pp. 46–48; 100, pp. 87–89; 133, pp. 142–144; 175, pp. 84–86; 211, pp. 74–75; 249, pp. 105–107.

Monthly discharge estimates for Grand River at Grand Junction, Colo., 12 miles below Palisade and below the headings of canals in the Grand Valley have been published as follows:^a

Annual Reports: 19, IV, p. 401; 20, IV, pp. 378, 389; 21, IV, p. 281.

Water-Supply Papers: 74, pp. 130-131.

a See also Second Ann. Rept. U. S. Reclamation Service, pp. 215-216.

Partial analyses, gage heights, and rates of discharge of water and solids for Grand River at highway bridge near Palisade, Colo.

[Drainage area, 8,550 square miles.]

	Anal	ysis (n	nilligra	ms per l	iter).	et).	-puoses)	Solids (tons per
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (s	Suspended matter.	Dissolved solids.
1905–6.									
March 15, 16, 17, 18. March 19, 20, 21, 22, 23, 24. March 26, 27. April 2, 3, 4, 5, 6. April 9, 10, 11, 12, 13, 14. April 16, 20, 21, 22. May 4, 5, 6, 7, 8, 9, 13, 20, 27. June 3, 10, 12, 13, 14, 15, 16. June 18, 19, 20, 21, 22, 23, 24. June 25, 26, 27, 28, 29, 30, July 1. July 2, 3, 4, 5, 6, 7, 8. July 9, 10, 12, 13, 14, 15. July 16, 17, 18, 19, 20, 21, 22 July 23, 24, 25, 26, 27, 28, 29 July 30, August 1, 2, 3, 4, 5 August 6, 7, 8, 9, 10, 11, 12 August 13, 14, 15, 16, 17, 18. August 20, 21, 22, 23, 26. August 27, 28, 29, 30, September 1, 2. September 3, 4, 5, 6, 18, 19. September 7, 8, 9, 13, 14, 15, 16, 17, 18. October 21, 22, 23, 24, 25, 26, 27. October 30, 31. April 22, 23, 3, 4, 5, 6, 7. April 8, 9, 10, 11, 12, 13, 14. April 15, 16, 17, 18, 19, 20, 21. April 22, 23, 24, 25, 26, 27, 28. April 29, 30, May 1, 2, 4, 5.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	104 93 94 95 97 94 114 94 100 101 103 107 141 146 140 162 149 160 163 163 160 182	7 7 7 7 7 7 7 6 4 4 222 444 444 337 500 622 83 108 110 146 157 174 191 177 185 198 195 97 106 87 53 53	12 1 22 64 240 186 564 240 198 58 278 94 158 482 158 482 200 386 740 72 340 90 4,340 90 4,340 91,320	192 183 164 162 164 156 192 238 314 248 262 354 344 462 534 534 720 788 802 748 764 530 440 440	12. 5 13. 2 16. 1 20. 8 18. 6 15. 8 14. 9 13. 9 13. 4 12. 7 12. 7 12. 7 12. 7 12. 7 12. 7 13. 0 14. 1 15. 0	1,600 2,550 2,770 9,890 29,000 14,700 6,100 5,310 2,810 2,810 2,810 1,840 1,830 1,930 1,810 1,860 2,270 3,600 4,240 8,290 6,580	276 1,650 1,390 15,000 18,800 10,000 2,200 1,740 955 3,990 1,000 1,620 3,660 1,100 993 1,910 3,860 452 26,600 32,700 10,600 31,200 23,400	699 1,130 1,170 5,120 18,600 15,900 9,850 6,150 5,830 4,940 4,750 4,130 3,760 3,580 3,890 4,180 3,650 3,680 3,840 3,310 5,150 5,500 9,280 7,810

Relative amount of substances in solution in water from Grand River at highway bridge near Palisade, Colo.

<i>i</i> :	samples.		s (Ds) liter).		Radicl	es in p	er cent	t of dis	solved	solids.	
Limiting dates of composite.	Number of daily sam	Errors.	Dissolved solids (milligrams per lit	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+ $\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NO ₃).
1905–6.											
March 15-April 22 May 4-July 1 July 2-29 July 30-August 26 August 27-September 18 April 1-28 April 29-May 5	25 30 27 24 28 28 6	+1.8 +4.9 +0.3 +0.9 +2.9 +5.7	167 174 341 524 755 466 443	17 20 10 16 15 13 17	4.1 4.6 6.7 1.3 2.8 5.4 3.8	13 20 a 16 b 18 17 17 14	1.5 .00 .00 .00 .00 .00	56 64 35 27 23 37 36	22 26 21 23 26 23 21	8. 4 14 26 25 25 25 20	0.00 .07 .03 .01 .01
Mean		2.8	410	15	4.1	16	. 21	40	23	20	.03

a Sodium is 89 per cent and potassium is 15 per cent of this amount. b Sodium is 96 per cent and potassium is 5.3 per cent of this amount.

Monthly discharge	in second-feet	of Grand River near	Palisade Colo
moniting abouting	, or second-jeco,	of arana truer near	1 ansuac, Com.

Month.	1897.a	1898.a	1899.a	1902.	1903.	1904.	1905.	1906.	1907.	1908.	Mean.
January February March April May June July August September October November December	$ \begin{array}{c} b \ 1,100 \\ 3,720 \\ 29,400 \\ 25,400 \\ 8,830 \\ 3,000 \end{array} $	b 2,940 c 2,980 b 2,110 b 4,300 7,130 13,700 4,440 1,130 907 915 1,070 1,010	1,800 3,940 19,400 31,300 14,100 4,580 2,160	2,230 11,800 8,870 3,020 1,480 1,490 1,950	2,400 9,030 18,400 8,850 2,280 2,330 2,100	3,910 12,800 16,500 7,400 3,240 2,650 2,140	2,640 13,100 24,400 6,080 2,530 1,830 1,750	4,730 18,600 23,500 9,820 3,800 3,340 2,850	1,460 2,240 5,250 10,500 24,800 17,000 4,890 2,600 2,640 1,820 1,370	1,300 1,320 1,630 3,900 6,720 14,600 5,670 3,550 1,760 1,890 1,600 1,320	1,750 1,700 1,780 3,700 13,800 20,100 8,520 3,050 2,090 2,000 1,540 1,310
The year	6,690	3,550								3,770	5,110

a At Grand Junction, Colo.

b Approximate.

c February 15-28.

GREEN RIVER NEAR GREEN RIVER, WYO.

Samples of water were collected from Green River at a railroad bridge near Green River, Wyo., from May 1 to November 1, 1905. A gaging station was established at this bridge by the United States Geological Survey May 2, 1895, and was discontinued October 31, 1906. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports:

Annual Reports: 18, IV, pp. 272–275; 19, IV, pp. 395–396; 20, IV, pp. 380–381; 21, IV, pp. 302–303.

Bulletin: 140, p. 201.

Water-Supply Papers: 16, p. 135; 28, pp. 131, 142, 144; 37, pp. 286–287; 39, p. 451; 50, pp. 366–367; 66, pp. 82, 173; 75, p. 164; 85, pp. 75–77; 100, p. 124; 133, pp. 53–56; 175, pp. 14–17; 211, pp. 25–26.

Partial analyses, gage heights, and rates of discharge of water and solids for Green River at railroad bridge near Green River, Wyo.

[Drainage area, 7,450 square miles.]

	Analy	rsis (m	illigraı	ns per	liter).	lght	-oes)	Solids (tons per
ay 7, 8, 9, 10, 11, 12, 13. ay 14, 15, 16, 17, 18, 19, 20. ay 21, 22, 23, 24, 25, 26, 27. ay 28, 29, 30, 31, June 1, 2, 3. ine 4, 5, 6, 7, 8, 9, 10. ine 11, 13, 14, 15, 16. ine 18, 19, 20, 21, 22, 23, 24. ine 25, 26, 27, 28, 29, 30, July 1. ily 2, 3, 4, 5, 6, 7, 8.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO3).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage hei (feet).	Mean discharge ond-feet).	Suspended matter.	Dissolved solids.
1905. May 1, 2, 3, 4, 5, 6 May 7, 8, 9, 10, 11, 12, 13. May 14, 15, 16, 17, 18, 19, 20. May 21, 22, 23, 24, 25, 26, 27. May 28, 29, 30, 31, June 1, 2, 3. June 4, 5, 6, 7, 8, 9, 10. June 11, 13, 14, 15, 16. June 18, 19, 20, 21, 22, 23, 24. June 25, 26, 27, 28, 29, 30, July 1. July 2, 3, 4, 5, 6, 7, 8. July 9, 10, 11, 12, 13, 14, 15. July 16, 17, 18, 19, 20, 21, 22. July 23, 24, 25, 26, 27, 28, 29. July 30, 31, August 1, 2, 3, 4, 5. August 6, 7, 8, 9, 10. August 14, 15, 16, 17, 18, 19 August 20, 21, 23, 24, 25, 26. August 27, 28, 29, 30, 31, September 4, 5. September 16, 17, 18, October 17, 18, 19, 20. October 21, 22, 23, 24, 25, 26. October 27, 28, 29, 30, 31, November 1.	12 8 6 0 4 - 0 0 0 0 0 0 6 7 7 0 0 13 10 0 11 7	176 165 162 137 116 87 102 112 97 94 97 104 115 110 115 127 73 104 136 139 162 185	22 8 10 9 8 5 10 12 46 15 9 10 12 12 12 12 12 13 14 7 10 11 13 3 15	82 26 218 494 310 18 38 44 84 56 52 42 42 18 0 0 50 50 50 22	302 336 330 272 230 132 280 252 242 198 168 142 202 232 224 246 312 326 310 326 380 368	1.6 1.5 1.3 2.0 2.8 3.7 3.8 3.6 2.7 2.7 2.7 2.7 2.7 2.1.9 1.6 1.2 1.1 0.6 5	1,300 1,210 943 1,890 6,200 6,810 6,220 6,810 6,220 4,680 3,510 3,440 1,670 1,310 1,020 900 703 487 445 445	288 7 66 1,110 4,500 5,190 331 638 638 651 1,060 531 483 268 · 81 0 0 121 87 150 53 60 60 60 60 60	1,060 1,100 840 1,390 2,090 2,210 5,150 4,230 3,580 2,500 1,590 1,320 1,290 1,050 794 677 757 578 364 428 457

Relative amount of substances in solution in water from Green River at railroad bridge near Green River, Wyo.

	samples.		(Ds)		Radicl	es in p	er cent	of dis	solved	solids.	
Limiting dates of composite.	Number of daily sam	Errors.	Dissolved solids (Ds) (milligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na $+\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NO3).
1905.											
May 1–27. May 28–June 24. June 25–July 22. July 23–August 19. August 20–October 20. October 21–November 1.	27 26 28 25 26 12	+1.2 $+3.9$ -5.3 $+7.7$ $+8.6$ -0.6	294 170 188 208 271 336	18 18 15 17 20 15	5.8 6.5 4.3 4.7 4.8 5.6	9.5 12 15 $a16$ 13 13	0.00 .00 .00 .00 .00	64 66 54 60 53 53	29 28 36 28 33 38	4.1 5.4 12 4.4 5.2 5.1	0.13 .02 .01 .04 .07 .04
Mean		4.6	244	17	5.3	13	.00	58	33	6.0	. 05

a Sodium is 96 per cent and potassium is 5.5 per cent of this amount.

Monthly discharge, in second-feet, of Green River near Green River, Wyo.

Month.	1895.	1896.	1897.	1898.	1899.	1901.	1902.	1904.	1905.	1906.	Mean.
July 4 August 1 September October	3, 970 4, 550 4, 120 1, 700 638 472 a 309		a 1,800 a 1,900 a 1,960 9,770 7,550 2,790 1,600 462 1,010 760 a 600	2, 660 4, 060 9, 060 4, 620 1, 420 646 347 405 a849	1,880 2,200 1,860 1,600 3,270 12,500 14,500 5,170 2,060 1,820 1,700 1,680	1, 320 6, 750 5, 420 2, 750 1, 410 632	844 2, 260 7, 100 2, 670 1, 390 656 329	1,960 6,130 10,200 5,260 2,040 890 698	883 1,580 5,950 3,460 1,120 639 486	2,040 5,030 6,830 4,860 2,240 1,260 660	a 1,840 a 2,050 a 1,880 1,590 4,500 8,100 4,920 1,960 795 730 795 1,050

a Approximate.

GREEN RIVER NEAR JENSEN, UTAH.

Samples of water were collected from Green River at Billings ferry, near Jensen, Utah, from March 24, 1905, to May 11, 1906. A gaging station was established at the ferry by the United States Geological Survey November 7, 1903, and was discontinued October 31, 1906. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports:

Water-Supply Papers: 100, pp. 123–124; 133, pp. 56–58; 175, p. 17; 211, pp. 26–28.

Partial analyses, gage heights, and rates of discharge of water and solids for Green River at Billings ferry, near Jensen, Utah.

[Drainage area, 26,600 square miles.]

	1					1		1	
	Anal	ysis (n	nilligra	ms per l	liter).	feet).	-puooes)	Solids per o	tons (tons).
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (feet).	Suspended matter.	Dissolved solids.
1905–6.									•
March 24, 27, April 7. April 9, 10, 11, 12, 13, 14. April 17, 18, 19, 20. April 30, May 1, 2, 3, 4, 5. May 6, 8, 9, 10, 11, 12, 13. May 14, 15, 16, 17, 18, 19, 20. May 21, 22, 23, 24, 25, 26, 27. May 28, 29, 30, 31, June 1, 2, 3. June 4, 5, 6, 7, 8, 9, 10. June 11, 12, 13, 14, 15, 16, 17. June 18, 19, 20, 21, 22, 23, 24. June 25, 26, 27, 28, 29, 30, July 1. July 2, 3, 4, 5, 6, 8. July 9, 10, 11, 12, 13, 14, 15. July 16, 17, 18, 19, 20, 21, 22 July 23, 24, 25, 26, 27, 28, 29. July 30, 31, August 1, 2, 3, 4, 5. August 6, 7, 8, 9, 10, 11, 12. August 13, 14, 15, 16, 17, 18, 19. August 20, 21, 22, 23, 24, 25, 26. August 27, 28, 30, 31, September 1, 2. September 3, 4, 5, 6, 7, 8. September 9, 10, 11, 12, 13, 14, 15. September 16, 17, 18, 19, 21, 24. September 26, 27, 28, 29, 30, October 1, 2. October 3, 4, 5, 6, 7, 8, 9, 10. October 11, 12, 13, 14, 15, 16, 17, 18. October 20, 23, 24, 25, 26, 27, 28. October 22, 30, 31, November 1, 3. November 22, 23, 25, 26, 27, 28, 29. January 14, 15, 16, 17, 18, 19 January 14, 15	0 10 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	142 159 168 153 1142 113 116 125 97 98 99 94 132 124 124 124 124 124 124 124 124 124 12	36 26 28 18 112 37 8 8 21 115 20 25 26 28 29 29 35 42 47 52 49 41 36 37 49 40 37 40 37 40 40 40 40 40 40 40 40 40 40	546 1,830 3,440 1,210 2,630 858 654 1,430 724 824 250 68 76 170 856 142 1,220 108 124 1,230 1,980 430 1,980 142 114 122 142 84 168 24 122 1,220 114 168 221 1,810 9,970 510 2,060 1,060 1,050 1,030	330 312 364 820 478 432 414 414 436 466	9.0 10.6 10.2 8.7 7.3 6.5 5.4 4.2 3.7	16,000 23,000 21,000 15,000 10,000 8,000 6,000 3,500 3,500 3,000	31,300 51,100 20,500 9,070 6,750 1,080 1,100 4,500	6, 480 8, 940 13, 400 6, 970 4, 710 3, 140 2, 670 2, 400

Relative amount of substances in solution in water from Green River at Billings ferry, near Jensen, Utah.

	samples.	1	(Ds)		Radiel	es in p	er cent	of dis	solved	solids.	
Limiting dates of composite.	Number of daily sar	Errors.	Dissolved solids (D (milligrams per liter)	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+ $\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO ₄).	Chlorine (Cl).	Nitrate (NO ₃).
1905–6.					}		-				
March 24-May 5 May 6-June 3. June 4-July 1 July 2-29 July 30-August 26 August 27-September 24 September 26-October 28 October 29-November 29 December 4-January 13 January 14-March 3 March 4-April 6 April 7-May 5 May 7-11	22 28 28 27 28 25 30 24 25 21 25 21 5	$ \begin{array}{c} -2.0 \\ +10.0 \\ +5.8 \\ -4.6 \\ \\ +3.5 \\ -6.1 \\ -7 \\ +2.3 \\ \\ +7.9 \\ \end{array} $	318 194 156 206 276 323 554 450 514 437 452 306 289	14 20 19 17 	3. 1 6. 2 5. 6 4. 0 5. 1 5. 3 4. 3 4. 9 5. 4 5. 7 4. 2 5. 2	14 13 13 a 9.7 12 14 13 8.0 14 15 16 15 14	0.00 .00 .00 .00 .00 .00 1.3 .00 .00 .00 .00	52 64 69 56 47 43 39 45 43	28 21 24 28 24 30 40 32 33 33 33 27 21	8.8 6.7 6.3 9.7 9.1 12 10 12 12 11 7.5 6.5	0. 07 .07 .06 .04 .01 .07 .02 .01 .02 .03 .01
Mean		4.8	344	16	4.9	13	.10	51	29	9.3	.04

a Sodium is 91 per cent and potassium is 12 per cent of this amount.

Monthly discharge, in second-feet, of Green River near Jensen or Vernal, Utah.

Month.	1903.	1904.	1906.	Mean.
fanuary				a 2,000
February March		$^{b3,880}_{3,550}$	c7,340	a 3,880 5,440
April		7,580	8,070	7,820
May June		20,400 $23,000$	$\begin{vmatrix} 19,400 \\ 20,400 \end{vmatrix}$	$\frac{19,900}{21,700}$
JulyAugust		$9,480 \\ 3,100$	9,230 3,850	9,360 3,480
September		1,210	3,080	2,140
October November	a 1,290	$^{1,040}_{745}$		1,040 1,020
December	1,730	a 639		a 1,180
The year				6,580

a Approximate.

GUNNISON RIVER NEAR WHITEWATER, COLO.

Samples of water were collected from Gunnison River at a State bridge near Whitewater, Colo., from April 2 to October 31, 1905. A gaging station was established at the bridge by the United States Geological Survey April 10, 1902, and was discontinued October 31, 1906. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports:

Bulletin: 140, p. 189.

Water-Supply Papers: 16, p. 140; 66, pp. 94–95; 85, pp. 42–44; 100, pp. 64–67; 133, pp. 162–164; 175, pp. 112–115; 211, pp. 89–90.

81210°-wsp 274-11---4

b February 24-29.

c March 13-31.

Monthly discharge data for Gunnison River at Grand Junction, Colo., ^a 8 miles below Whitewater, have been published by the Survey as follows:

Reports: 19, IV, p. 405; 20, IV, p. 390; 21, IV, p. 278. Water-Supply Paper, 74, p. 134.

Partial analyses, gage heights, and rates of discharge of water and solids for Gunnison River at State bridge, near Whitewater, Colo.

[Drainage area, 7,870 square miles.]

	Ana	alysis (milligr	ams per	liter).	t).	nd-feet).	Solids (tons per
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (second-feet)	Suspended matter.	Dissolved solids.
1905.									
April 2, 3, 4, 5, 6, 7	0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0	156 128 125 112 107 91 94 90 112 96 92 71 88 112 118 136 140 131	27 18 14 9 8 8 10 13 9 8 39 21 14 15 13 20 18 24 27 37 26	262 1,300 536 1,320 1,720 44 708 1,150 362 232 232 232 50 58 206 66 60	680 446 340 280 262 240 212 288 182 250 240 202 202 286 282 476 420 376 528 586	4.3 5.3 5.6 6.6 9.2 9.5 12.4 11.7 12.1 9.7 8.3 5.6 6.5 8.3 4.8 4.3 3.8	910 2,030 2,430 3,900 9,080 7,170 10,900 21,100 18,100 26,000 11,000 7,350 4,230 2,770 2,130 1,640 1,640 1,240 821	644 7,110 3,510 13,900 42,100 853 20,800 65,500 17,700 61,700 20,800 6,900 2,940 366 374 334 913 1,770 868 221 133	1,670 2,440 2,230 2,950 6,420 4,650 6,240 16,400 17,500 12,700 6,000 4,010 3,270 2,110 2,080 2,110 3,030 1,670 1,770 1,300
1, 2 September 3, 4, 5, 6, 7, 8, 9. September 10, 11, 12, 13, 14, 15, 16. September 17, 18, 19, 20, 21, 22, 23. September 24, 25, 26, 27, 28, 29, 30. October 1, 2, 3, 4, 5, 6, 7. October 8, 10, 11, 12, 13, 14. October 15, 16, 17, 18, 19, 20. October 22, 23, 24, 26, 27, 28. October 29, 30, 31.	$\begin{bmatrix} 0 \\ 0 \\ 11 \\ 7 \\ 6 \end{bmatrix}$	151 146 149 136 144 139 147 159 169 178	27 26 32 25 35 31 35 38 44 36	570 4,090 166 54 508 1,420 132 48 342 92	602 752 670 718 1,100 860 790 904 926 870	4.0 4.3 4.0 3.7 4.0 4.4 4.0 4.1 4.2	901 1,180 929 752 982 1,290 933 998 1,150 1,160	1,380 13,000 416 110 1,330 4,930 332 129 1,060 288	1,460 2,390 1,680 1,460 2,920 3,000 1,990 2,440 2,880 2,730

a See also First Ann. Rept. U. S. Reclamation Service, p. 144,

Relative amount of substances in solution in water from Gunnison River at State bridge, near Whitewater, Colo.

	samples.		(Ds) er).	-	Radicl	es in p	er cen	t of dis	solved	solids.	
Limiting dates of composite.	Number of daily san	Errors.	Dissolved solids (Ds (milligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+3K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NOs).
1905.											
April 2–29. April 30–May 26. May 28–June 24. June 26–July 22 July 23–August 19. August 20–September 16. September 17–October 14. October 15–31.	l 26	+3.0 -2.8 -1.4 +3.1 +3.6	438 218 199 278 435 650 916 930	13 17 18 18 14 14 14 14	5. 0 5. 0 4. 7 5. 0 4. 4 4. 8 4. 6 4. 7	$\begin{bmatrix} 12 \\ 7.3 \\ 8.0 \\ \vdots \\ a12 \\ 12 \\ 11 \\ 11 \end{bmatrix}$	0.00 .00 .00 .00 .71 .00 .00	32 54 51 38 29 24	40 32 33 38 41 48 48 47	4.6 5.0 6.5 5.7 4.8 4.3 4.0 3.8	0. 10 . 16 . 14 . 16 . 10 . 08 . 12 . 24
Mean		2.8	508	15	4.8	10	. 09	38	41	4.8	.14

a Sodium is 98 per cent and potassium is 3.1 per cent of this amount.

Monthly discharge, in second-feet, of Gunnison River near Whitewater, Colo.

Month.	1897. a	1898. a	1899. a	1902.	1903.	1904.	1905.	1906.	Mean.
January February March					- 	774 648			724 774 648
April. May. June. July. August.	12,300 4,410 991	5,320 8,850 2,540 689	3,550 10,300 12,400 4,350 1,920	1, 220 7, 770 3, 280 570 610	2, 260 8, 160 12, 500 5, 130 1, 310	2, 250 5, 620 4, 600 1, 320 1, 640	2,490 12,700 16,800 2,780 1,430	4,590 14,800 14,400 4,710 2,080	2,730 10,100 10,600 3,230 1,330
September October November December	$1,600 \\ 742$	479 533 497	875		1, 280 890 844 810		962 1, 100	1,680 1,690	941 1,090 694 634
The year								•••••	2,790

a At Grand Junction, Colo.

HONDO RIVER NEAR ROSWELL, N. MEX.

Samples of water were collected fron Hondo River at the United States Reclamation Service reservoir near Roswell, N. Mex., from March 26 to August 4, 1905. A gaging station was established at the reservoir by the United States Geological Survey March 9, 1903, and was discontinued March 31, 1908. Stream-flow data, including gage heights and estimates of discharge, for the station have been published by the Survey in the following reports:

Water-Supply Papers: 99, pp. 362–363; 132, pp. 119–121; 174, pp. 118–120; 210. pp. 100–101; 248, pp. 137–138.

b Approximate.

Partial analyses, gage heights, and rates of discharge of water and solids for Hondo River at reservoir near Roswell, N. Mex.

[Drainage area, 1,040 square miles.]

	An	alysis (1	nilligra	ms per l	iter).	height	charge l-feet).		(tons per
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved s o l i d s (Ds).	Mean gage l' (feet).	Mean discl	Suspended matter.	Dissolved solids.
1905.		100			224	0.4			110
March 26, 27, 28, 29, 30, 31. April 2, 3, 4, 5, 6. April 9, 10, 11, 12, 13, 15. April 16, 17, 18, 19, 21, 22. April 23, 24, 25, 26, 27, 28, 29.	6 12 10 7	163 155 145 155	44 52 41 39	1,830 1,340 2,080 2,550	864 914 864 750	3.1 2.5 2.3 2.6	61 46 40 45	300 167 225 310	142 114 93 91
April 23, 24, 25, 26, 27, 28, 29 April 30, May 1, 2, 3, 4, 5, 6 May 7, 8, 9, 10, 11, 12, 13 May 14, 15, 16, 17, 18, 19, 20	0 6	144 135 125 137	36 33 36 29	11,000 5,740 1,890 1,780	614 546 712 720	6.9 7.5 4.8 3.2	831 942 380 94	24,700 $14,600$ $1,940$ 450	1,380 1,390 731 183
May 21, 22, 23, 24, 25, 26, 27	5 6 14	120 125 113	32 30 38	10, 700 5, 530 14, 900	842 638 698	$ \begin{array}{c} 3.0 \\ 1.9 \\ 3.4 \end{array} $	77 19 266.	2,210 283 $10,700$	175 33 501
June 11, 12, 13, 14, 15, 16, 17. June 18, 19, 20, 21, 22, 23. July 7.	0	146 154	97 48	13, 200 1; 640	978 986 a 2, 140	6.4	547 176	19,500 781	1, 440 469
July 8, 24, 25, 26, 27, 28, 29	0	142 164	39 26	10,700 $22,200$	632 698	8.7 5.2	825 423	23,900 25,400	1,410 798

a From pool; no water flowing.

Relative amount of substances in solution in water from Hondo River at reservoir near Roswell, N. Mex.

	daily		solids grams		Radicl	es in p	er cen	t of dis	solved	solids.	
Limiting dates of composite.	Number of samples.	Errors.	Dissolved solids (Ds) (milligrams per liter).	Calcium (Ca).	$egin{pmatrix} ext{Magnesium} \ ext{(Mg).} \end{cases}$	Sodium and potassium (Na $+\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NO3).
1905.											
March 26–April 22 April 23–May 20 May 21–June 17 June 18–August 4	23 28 25 .18	+0.6 9	988 660 739 740	18 18 20	3.6 3.8 4.7 3.4	4.4 5.0 4.7 6.1	1.1 .00 .00	16 19 23	40 41 49 50	4.4 6.1 5.0 4.3	0.35 .13 .03 .09
Mean		.8	782	19	3.9	5.0	.37	19	45	5.0	. 15

Monthly discharge, in second-feet, of Hondo River at reservoir near Roswell, N. Mex.

Month.	1906.	1907.	Mean.
January	67	166	116
February. March	22 3	23	22
April May	$\begin{array}{c} 24 \\ 0 \\ \end{array}$	0	0
June July	0	4	2
August September	a 10 5	20 8	15
October November	7 14	28 55	, 34
December	7	14	10
Mean	13	27	2

LINK RIVER NEAR KLAMATH FALLS, OREG.

Samples of water were collected from Link River at a county bridge near Klamath Falls, Oreg., from June 15, 1905, to November 12, 1906. A gaging station was established at the bridge by the United States Geological Survey May 15, 1904. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports: ^a

Water-Supply Papers: 134, pp. 191–192; 177, pp. 226–229; 213, pp. 176–177; 251, pp. 305–309.

Relative amounts of substances in solution in water from Link River at county bridge near Klamath Falls, Oreg.

	les.		(milli-		Radicl	es in p	er cent	of dis	solved	solids.	
Limiting dates of composite.	Number of daily samples	Errors.	Dissolved solids (Ds) (grams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+ $\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO3).	Sulphate (SO ₄).	Chlorine (Cl).	Nitrate (NO ₃).
1905–6.) 0			
June 15-December 28. July 2. July 16. August 1 August 15. September 15. October 16. November 12.	1	+12.0 +13.2 +15.6 +14.0 + 3.4 - 5.8	138 101 110 128 107 103 96 96	8.7 12 11 11 12 11 14	3.7 5.8 5.0 5.8 5.9 6.8 4.8	17 19 17 17 18 18 26 17	0.00 .00 .00 .00 .00 .00	51 64 59 61 64 75 75	9. 4 12 8. 8 10 8. 9 8. 7 8. 5 9. 3	3.0 4.9 6.6 5.7 4.6 7.1 25 21	3. 2 . 04 . 04 . 03 . 04 . 04 . 04
Mean		10.7	111	11	5.4	19	.00	64	9.4	9.7	. 43

Partial sanitary analyses of water from Link River at county bridge near Klamath Falls; Oreg.

[Milligrams per liter.]

		Nitroge	en as—		
Dates.	Free am- monia.	Albumi- noid ammonia.	Nitrites.	Nitrates.	Oxygen con- sumed.
1906.					
January 11	0.020	0.105	Trace.	0.02	7.40
February 7	. 070	. :240	0.000	.05	2.99
February 21.		. 180	. 050	.05	2.39
March 5.	. 008	. 220	.000	.05	3.06
March 16.	.142	.176	.004	.05	2.47
April 2	. 120	. 320	.002	.03	3. 18
April 18	. 164	. 400	.006	.02	5. 61
May 5	.004	.340	.000		5.37
May 15	. 034	. 360	.040		6. 29
June 1	. 176	. 440	.002		6.85
June 15		•••••	.010		7.64

a See also Third Ann. Rept. U. S. Reclamation Service, p. 205; Fourth, p. 87.

Pertial analyses, gage heights, and rates of discharge of water and solids for Link River at county bridge near Klamath Falls, Oreg.

[Drainage area, 3,700 square miles.]

				Y	nalysis (m	Analysis (milligrams per liter).	er liter).					Mean	Solids (tons day).	ons per
Dates.	Calcium radicle (Ca).	Magne- sium radicle (Mg).	Sodium and potassium radicles (Na+3K).	Carbon- ate radicle (CO ₃).	Bicar- bonate radicle (HCO ₃).	Sulphate radicle (SO ₄).	Calorine radicle (C1).	Nitrate radicle (NO ₃).	Sus- pended matter (Sm).	Dis- solved solids (Ds).	Mean gage height (feet).	dis- charge (second- feet).	Sus- pended matter.	Dis- solved solids.
June 15, 16, 17 June 19 to 24 June 20 a June 20 a June 20 b June 20 c April 2 April 2 April 2 April 2 April 3 July 16 August 1 August 15 September 15	.21 .42.51	9999	222 199 199 259 259	06 000000000000000000000000000000000000	889 857444444456 885 85744444456 8857	2022000	29 8 8 01 11 10 10 10 10 27 77	68888816244444	2842 800 4 800 4 800 8 800 800	212 222 231 231 244 251 262 263 263 263 263 263 263 263 263 263	ಬೆಬ್ಬಬ್ಬಬ್ಬಬ್ಬಬ್ಬಬ್ಬಬ್ಬ ಈ ಈ ಈ ಭೆಬ್ಬಬ್ಬ ರಾಶದಾದಲಾಗ ದಿಗ್ಗಾರಿ 20 20 24 ರಾಶ 20 20 20 20	1, 970 1, 850 1, 850 1, 850 1, 820 1,	170 240 143 231 232 288 222 265 265 265 265 266 266 266 266 266	1,140 440 440 598 598 598 598 528 725 725 725 725 725 725 725 725 725 725
November 12	ial point for		16	0 b 160 fee	72 t from init	$\begin{bmatrix} 0 & 72 & 9 & 20 \\ & 160 & 160 & 160 \end{bmatrix}$ b 160 feet from initial point for gaging.	20 r gaging.	. 04	c 230 1	96 3.1 1,390 c 230 feet from initial point for gaging.	3.1 nitial poi	1,390 int for gag	ing.	360

b 160 feet from initial point for gaging.

c 230 feet from initial point for gaging.

Monthly discharge, in second-feet, of Link River near Klamath Falls, Oreg.

Month.	1904.	1905.	1906.	1907.	1908.	Mean.
January February March April May June July August September October November December The year	a 8,640 6,740 4,120 2,340 1,660 1,690 1,840 2,180	2, 620 3, 100 3, 090 3, 110 2, 600 2, 000 1, 360 1, 050 1, 160 1, 330 1, 590 2, 000	1, 950 1, 990 2, 320 3, 520 4, 080 3, 620 2, 490 1, 470 1, 190 1, 200 1, 460 1, 740	2, 190 3, 530 4, 650 5, 630 5, 090 4, 020 2, 470 1, 570 1, 410 1, 630 1, 970	2, 660 2, 890 2, 730 2, 990 2, 020 2, 060 1, 470 1, 040 900 1, 350 1, 770 1, 940	2, 360 2, 880 3, 200 3, 810 4, 610 3, 690 2, 380 1, 240 1, 370 1, 610 1, 880

a May 15 to 31.

LITTLE COLORADO RIVER NEAR HOLBROOK, ARIZ.

Samples of water were collected from Little Colorado River at a county bridge near Holbrook, Ariz., from December 31, 1905, to January 11, 1906. A gaging station was established at the bridge March 17, 1905, and was discontinued December 31, 1908. Streamflow data, including gage heights and estimates of discharge, for the station have been published by the Survey in the following reports:

Water-Supply Papers: 175, pp. 149-151; 211, pp. 107-109; 249, pp. 167-169.

Partial analyses, gage heights and rates of discharge of water and solids for Little Colorado River at county bridge near Holbrook, Ariz.

[Drainage area, 17,630 square miles.]

	Aı	nalysis (r	nilligram	ıs per lite	r).	Mean	Mean dis-		tons per ly).
Dates.	Carbon- ate radicle (CO ₃).	Bicar- bonate radicle (HCO ₃).	Chlorine radicle (Cl).	Sus- pended matter (Sm).	Dissolved solids (Ds).	gage height (feet).	charge (second- feet).	Sus- pended matter.	Dis- solved solids.
1905–6.		,							
December 31 January 1 January 5 January 10 January 11	20	230 238 236 259 270	163 163 201 197 210	244 140 156 188 120	792 888 928 792 824	3. 4 3. 4 3. 5 3. 6 3. 6	205 305 330 370 370	135 115 139 187 120	439 731 826 791 823

Monthly discharge, in second-feet, of Little Colorado River near Holbrook, Ariz.

Month.	1905.	1906.	1907.	Mean.
January		452	276	364
February		170	176	173
March	a 863	621	444	643
April	. 915	245	401	520
May	. 0 353	54		204
June		4		44
July	. 68	25		46
August	. 163	72		118
September	. 302	69		350
October	51	27		39
November	1,160	11		586
December	113	181		147
The year.		161		269

LITTLE COLORADO RIVER NEAR WOODRUFF, ARIZ.

Samples of water were collected from Little Colorado River at a road crossing near Woodruff, Ariz., from April 15, 1905, to April 3, 1906. A gaging station was established at the crossing March 16, 1905. Stream-flow data, including gage heights and estimates of discharge, for the station have been published by the Survey in the following reports:

Water-Supply Papers: 175, pp. 145-148; 211, pp. 104-107; 249, pp. 165-167.

Partial analyses, gage heights, and rates of discharge of water and solids for Little Colorado
River at road crossing near Woodruff, Ariz.

[Drainage area, 6,000 square miles.]

	A	nalysis (milligran	ns per lit	er).	eet).	-puooes)	Solids (tons per
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (s	Suspended matter.	Dissolved solids.
1905–6.									
April 15, 18, 21. April 26, 30, May 3, 8, 12, 21 May 30, June 3, 6, 11, 16, 20 June 23, 27, 30, July 3, 8, 12 July 15, 21, 26, 30, August 3 August 6, 9, 11, 13, 18 August 21, 25, 27, 29, September 1, 8. September 11, 14, 17, 20, 22, 25. September 28, October 1, 4, 6, 10, 12, 16	0 10 7 0 0 0	150 149 178 181 174 142 174 170	62 119 172 133 40 34 143 80	16,300 20,700 2,580 624 10,300 3,560 19,700 3,230 2,130	506 750 906 750 388 294 886 476	6.9 10.9 3.3 2.1 2.9 0.5		19, 100 	594 48 179 206 73
October 20, 26, 30, November 5, 9	0	178 169	124 123	2,810 11,800	610 626	1. 2 1. 2	67 52	508 1,650	110 88
November 29, December 1, 4, 8, 13, 14. December 16, 17, 18, 19, 20, 27. January 1, 2, 5, 6. January 9, 10, 11, 12, 13. January 14, 15, 16, 17, 18, 19. January 20, 21, 22, 23, 24, 25, 26. January 28, 29, 30, 31, Febru	0 0 0 0	182 234 285 274 195 148	77 116 109 108 72 69	3,540 324 96 32 11,700 3,170	578 798 670 658 474 408	1.8 0.5 0.3 0.3 3.2 1.6	329 30 25 25 211 124	3, 150 26 6 2 6, 670 1, 060	513 65 45 44 270 137
ary 1, 2, 3 February 4, 5, 6, 7, 8, 9	0	214 165	134 82	10,500 18,800	754 582	$1.0 \\ 1.5$	$\frac{115}{228}$	3,270 11,600	234 358
February 10, 11, 12, 13, 14, 15, 16, 17. February 19, 20, 23, 24.	0	138 119	57 99	6,740 1,520	364 290	1.3 0.9	193 146	3,510 600	190 114
February 26, 27, 28, March 1, 2, 3. March 5, 6, 7, 8, 9. March 10, 12, 13, 14, 15, 16, 17. March 19, 20, 21, 22, 23, 24. March 25, 26, 29, 30, 31. April, 1, 2, 3.	6 0 0 11 0 0	135 234 157 108 166 195	82 100 55 74 102 77	1, 950 3, 580 5, 540 7, 080 15, 200 10, 400	472 608 374 410 544 630	0.6 0.5 5.0 2.3 3.4 2.3	138 101 820 239 488 236	727 923 12,300 4,570 20,100 6,600	176 166 829 264 716 402

Relative amount of substances in solution in water from Little Colorado River at road crossing near Woodruff, Ariz.

	samples.		(Ds) er).	:	Radicl	es in p	er cen	t of dis	solved	solids.	,
Limiting dates of composite.	Number of daily san	Errors.	Dissolved solids (Ds) (milligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na $+\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO ₄).	Chlorine (Cl).	Nitrate (NO ₃).
1905–6.											}
April 15–July 12 July 15–September 25. September 28–December 14 December 16–January 19 January 20–February 17. February 19–March 17. March 19–April 3.	21 22 24 21 28 22 14	$ \begin{array}{c} +4.2 \\7 \\ -6.1 \\ +.7 \end{array} $	754 558 640 573 504 463 504	14 13 9.5 11 8.5 13	3. 2 2. 9 3. 2 3. 5 2. 2 2. 8 2. 8	19 a 18 18 22 18 19	0.00 .00 .00 .00 .00 .00	32 28 32 40 41	34 31 29 28 35 25 26	18 14 17 17 18 17 15	0.03 .02 .02 .02 .02 .02 .01
Mean		2.9	571	12	2.9	19	.00	35	30	17	.02

a Sodium is 92 per cent and potassium is 11 per cent of this amount.

Monthly discharge, in second-feet, of Little Colorado River near Woodruff, Ariz.

Month.	1905.	1906.	1907.	Mean.
January. February March April May June July August September October November December	a 584 789	96 172 445 323 57 4 15 67 15 12 7 202	168 117 210 140 23 325 218 133 78	132 144 413 417 57 4 19 150 131 55 209 85
The year.				151

a March 16 to 31.

MALHEUR RIVER NEAR VALE, OREG.

Samples of water were collected from Malheur River at a highway bridge near Vale, Oreg., from March 26 to December 4, 1905. A gaging station was established at the bridge by the United States Geological Survey May 20, 1903, and gagings had been made at intervals since 1890. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports:

Annual Reports: 11, II, pp. 88, 106; 12, II, pp. 344, 358, 361; 13, III, pp. 98–99; 18, IV, pp. 348–350; 20, IV, p. 62.

Bulletins: 92, p. 140; 131, p. 68; 140, pp. 242-243.

Water-Supply Papers: 11, p. 83; 16, p. 169; 100, pp. 424–427; 135, pp. 206–208; 178, pp. 126–129; 214, pp. 101–102; 252, pp. 257–259.

Partial analyses, gage heights, and rates of discharge of water and solids for Malheur River at highway bridge near Vale, Oreg.

[Drainage area, 4,860 square miles.]

	An	alysis (n	nilligram	s per lite	er).	eet).	-puoc	Solids (1	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (second-feet).	Suspended matter.	Dissolved solids.
1905.									
March 26, 27, 28, 29, 30, 31. April 2, 3, 4, 5, 6, 7. April 9, 10, 11, 12, 13, 14. April 17, 18, 20, 21. April 23, 24, 25, 29. April 26. April 30, May 1, 2, 3, 5. May 11, 12, 13. May 14, 15, 16, 18, 19, 20. May 17. May 21, 22, 23. May 31, June 1, 2, 3. June 4, 5, 6, 7, 8, 9, 10. June 11, 12, 13, 15, 16, 17. June 18, 19, 20, 21, 22, 23. June 25, 26, 27, 28, 29, 30, July 1 July 23, 24, 25, 26, 27, 28, 29. July 10, 11, 12, 13, 14, 15. July 16, 17, 18, 19, 20, 21, 22. July 23, 24, 25, 26, 27, 28, 29. July 30, 31, August 2, 3, 4, 5. August 6, 7, 8, 9, 10, 11, 12. August 13, 14, 15, 16, 17, 18, 19. August 20, 21, 22, 33, 30, 31,	4 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0	99 90 94 106 131 112 165 181 180 169 149 165 189 207 170 244 240 242 229 279 292	13 8 6 10 9 32 11 10 16 18 29 14 29 29 21 32 37 36 37 40 44	105 220 96 36 50 70 34 78 26 30 6 840 1,670 412 306 52 30 72 90 24 54 62 24	195 162 166 162 200 240 184 220 278 288 344 252 256 264 312 366 390 400 498 436 442 462	6.1 6.0 5.5 5.3 5.11 4.5 4.3 4.2 4.5 4.8 4.4 4.2 3.6 3.6 3.6 3.6	1,230 1,250 1,090 708 600 575 436 206 153 126 250 370 170 122 75 24 31 21 19	349 742 282 69 81 109 40 43 11 12 27 1,670 345 141 17 6 5 8 1 3 3 1	647 546 488 310 324 373 217 115 118 117 170 255 221 143 120 78 25 33 28 29 19 15
September 1	$\begin{array}{c} 0 \\ 43 \\ 0 \end{array}$	$\frac{290}{186}$	40 42 35	18 68 36	486 486 406	3.6 3.6 3.7	16 19 35	1. 3 3	21 25 38
September 22, 23, 24, 25, 26, 27, October 7. October 8, 9, 10, 11, 12, 13, 14. October 15, 16, 17, 18, 19, 20, 21.	15 0 0	195 196 186	29 27 23	48 18 20	398 368 340	3.8 3.9 4.0	49 57 85	6 3 5	53 57 78
October 22, 23, 24, November 6, 7, 8, 9.	0	178	20	44	318	4.1	105	12	90
November 10, 11, 12, 13, 14, 15, 16	0	166 165	17 21	70 106	254 336	4. 2 4. 2	115 127	22 36	79 115
November 26, 27, 30, December 1, 3, 4	0	155	22	10	340	4.3	150	. 4	138

Relative amount of substances in solution in water from Malheur River at highway bridge near Vale, Oreg.

•			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 0.0	9.						
	sam-		(Ds) liter).		Radio	eles in	per cei	at of di	ssolve	d solids	3.
Limiting dates of composite.	Number of daily sa	Errors.	Dissolved solids () (milligrams per lit	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na $+\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (CI).	Nitrate (NO3).
1905–6.											
March 26-April 21 April 23-May 20 May 21-June 17. June 18-July 15. July 16-August 12. August 13-September 21. September 22-November 9. November 10-December 4.	20 26 27	$ \begin{array}{r} + 1.4 \\ - 3.9 \\ - 3.4 \\ + .7 \\ - 1.7 \\ + 2.8 \end{array} $	182 210 254 342 424 514 322 283	8.8 11 10 11 13 11	4. 2 4. 3 4. 3 5. 0 4. 7 4. 1 4. 7	$egin{array}{c} 14 \\ 14 \\ 16 \\ 18 \\ a \ 17 \\ 18 \\ 16 \\ 16 \\ \end{array}$	0.00 .00 .00 2.3 .00 .00	59 70 68 61 63 	12 16 17 19 19 16 21 19	4.6 6.2 8.3 7.6 8.0 12 8:7 8.1	0.05 .04 .05 .01 .03 .01 .01
Mean		2.3	316	11	4.4	16	. 29	63	17	7.9	. 03

Monthly discharge, in second-feet, of Malheur River near Vale, Oreg.

Month.	1890.	1891.	1895.	1896.	1903.	1904.	1905.	1906.	1907.	1908.	Mean.
January February March April May June July August September October November December The year	2,910 2,770 1,630 254 43 17 15 44 118 83	, 88 319 703 511 217 78 30 26 23	277 347 650 851 361 139 19 12 89 129 161 175	a 300 331 b 642 1, 600 1, 600 185 33 83	c 274 203 58 19 42 84 192 175	a 236 a 3, 100 a 3, 460 5, 520 2, 030 533 146 52 50 144 182 188	503 642 1,620 898 235 244 40 16 33 77 119 155	174 311 1,920 4,550 862 589 50 9 26 50 89 138	287 2,190 1,960	177 77 47 65 100 126 135	266 1,030 1,890 2,250 901 424 726 47 90 141 150

a Approximate.

b April 26-30.

c May 20-31.

MILK RIVER NEAR HAVRE, MONT.

Samples of water were collected from Milk River at a highway bridge near Havre, Mont., from April 7, 1905, to April 14, 1906. A gaging station was established at the bridge by the United States Geological Survey May 15, 1898. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports: ^a

Annual Reports: 20, IV, pp. 53, 189, 245–246; 21, IV, p. 189; 22, IV, p. 288. Water-Supply Papers: 27, pp. 68–69, 72, 75–76; 37, pp. 209–210; 39, p. 447; 49, p. 267; 52, p. 516; 66, pp. 15–16, 170; 75, p. 122; 84, pp. 28–31; 99, pp. 108–111; 130, pp. 95–98; 172, pp. 57–59; 208, pp. 43–45; 246, pp. 109–112.

Partial analyses, gage heights, and rates of discharge of water and solids for Milk River at highway bridge near Havre, Mont.

[Drainage area, 7,300 square miles.]

	Ana	lysis (milligr	ams per	liter).	set).	-puoses)	Solids (1	tons per
Dates.	Carbonate radicle (CO ₃).	Bicarbonateradicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (see feet).	Suspended matter.	Dissolved solids.
1905-6. April 7. April 9, 10, 11, 12, 13, 14. April 16, 17, 18, 19, 21, 22. April 24, 25, May 9, 10, 11, 12, 13. May 14, 23, 24, 25, 26, 27. May 28, 29, 30, 31, June 13. June 4, 5, 6, 7, 8, 9. June 12, 14, 15, 16. June 18, 27, 29, 30, July 1. July 3, 5, 6, 8. July 7, 9, 10, 11, 12, 14, 15. July 16, 17, 18, 22. July 23, 25, 26, 29. July 30, August 3. August 6, 7, 8, 9, 10, 11, 12. August 13, 14, 15, 16, 22, 23. August 27, September 6, 15, 17, 21, 23. October 28, 30, 31, November 1, 2, 3, 4. November 17, 18, 19, 20, 21, 22. April 3, 4, 5, 6, 7. April 9, 10, 11, 12, 13, 14.	0 15 23 42 0 0 0 0 10	304 321 279 293 276 243 292 242 299 325 307 211 341 535 599 481 207 211	9 27 25 20 48 35 14 20 47 29 40 92 23 30 40 63 36 24 15	186 130 154 1154 116 56 62 148 6,630 974 100 106 7,420 17,400 5,450 136 70 0 66 1,600 1,000	528 512 562 474 436 454 562 580 626 778 690 584 564 976 1,260 814 374 360	3.4 3.3 3.4 3.5 3.5 3.5 3.5 3.5 3.3 3.3 3.8 3.3 2.7	555 499 588 611 711 533 40 233 622 555 366 88 922 103 37 2	28 17 24 25 22 8 7 9 1,110 145 10 2 1,840 4,850 545 1	78 68 88 78 82 65 47 28 91 84 56 14 193 192 58 3

a See also Second Ann. Rept. U. S. Reclamation Service, pp. 339-340; Fourth, p. 181.

Relative amount of substances in solution in water from Milk River at highway bridge near Havre, Mont.

	samples.		(Ds) er).	Radicles in per cent of dissolved solids.								
Limiting dates of composite.	Number of daily san	Errors.	Dissolved solids (Ds) (milligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+\frac{3}{4}K).	Carbonate (CO3).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (CI).	Nitrate (NO ₃).	
19056.												
April 9-May 27. May 28-July 1. July 3-29. July 30-September 23. October 28-November 22. April 3-14. Mean.	25 21 19 24 13 11	$ \begin{array}{r} -2.0 \\ +1.1 \\ +4.8 \\ -2.1 \\ -1.8 \\ \hline 2.4 \end{array} $	506 500 546 730 972 369	10 8.2 7.9 7.4 5.9 7.1	5.9 5.4 4.8 3.1 4.5 4.9	15 21 a 17 26 22 21	2. 2 1. 6 .00 .00 .00 .00	63 59 61 50 51 68	25 32 30 35 32 26	2.6 2.4 3.0 5.5 3.0 3.3	0. 69 . 06 . 06 . 02 . 13 . 00	

a Sodium is 93 per cent and potassium is 8.8 per cent of this amount.

Monthly discharge, in second-feet, of Milk River near Havre, Mont.

Month.	1898.	1899.	1900.	1901.	1902.	1903.	1904.	1905.	1906.	1907.	1908.	Mean.
JanuaryFebruaryMarchApril		a 430 a 600 a 500 1,360	a 100 a 100 a 150 a 394	a 50 a 100 a 600 205	180 a 208 249 196	a 200 a 200 a 240 996	a 90 a 75 a 75 1,740	a 5 a 5 a 40 59	0 a 5 a 40 95	0 a 800 845 1, 210	212 295	117 233 295 655
May June June August September October November December	113	1,010 a 940 a 241 a 196 131 94 a 190 a 150	435 154 43 40 76 186 a 114 a 50	648 553 184 28 56 82 80 a 100	1,080 1,480 2,040 377 297 309 a 300 a 300	1,080 975 445 378 164 138 a 115 a 147	373 278 44 5 3 19 35 a 25	62 35 54 25 0 0 0	119 935 101 5 3 2 1	458 822 397 62 127 82 72 a 60	330 2,190 527 177 124 178 186	636 883 386 128 94 107 108 94
The year		487	154	224	586	423	230	24	109	411		311

a Approximate.

MISSOURI RIVER NEAR WILLISTON, N. DAK.

Samples of water were collected from Missouri River at Bakers ferry, near Williston, N. Dak., on August 14, 1905. A gaging station was established at the ferry by the United States Geological Survey April 24, 1905. Stream-flow data, including gage heights and estimates of discharge, have been published by the Survey in the following reports:

Water-Supply Papers: 176, pp. 28-29; 208, p. 20; 246, p. 41-42.

Note.—Data for 1898–1903 from Second Ann. Rept. U. S. Reclamation Service, pp. 340–341, estimates for ice periods being included.

Suspended matter and dissolved solids in water of Missouri River at Bakers ferry, near Williston, N. Dak., on August 14, 1905.

[Drainage area	155,000	square	miles.]
----------------	---------	--------	---------

Distance from left	Depth of	Velocity (feet per	Solids (milligrams per liter).				
bank (feet).	river (feet).	second.)	Suspended matter.	Dissolved solids.			
820	9.5	2.38	994	300			
770	9.7.	3.16	1,010	304			
620	15.0	3.61	964	310			
620	15.0	a 3.25	938	324			
620	15.0	b 2.75	938	328			
550	15.0	2.58	964	318			
530	14.0	2.63	924	344			
530	14.0	a 1.28	940	350			
530	14.0	b 3.07	864	338			
440	9.6	3.02	998	310			
405	8.0	2.43	1,010	282			
340	5.0	2.17	968	310			
320	4.4	2.22	968	306			
258	5.0	1.7	1,030	262			
230	5.2	1.24	956	310			
135	1.4	1.13	962	292			
85	5.8	1.4	996	322			
30	3.8	. 99	942	306			

a Sample taken and velocity measured at bottom.b Sample taken and velocity measured at surface.

Note.—The river at about mean stage; gage height, 6.8 feet; area of cross section, 5,925 square feet; mean nelocity, 2.51 feet per second; discharge, 14,880 second-feet; mean suspended matter, 978 milligrams per liter, or 39,300 tons per day; mean dissolved solids, 305 milligrams per liter, or 12,300 tons per day. Samples taken and velocity measured at .6 depth, except as otherwise noted.

Monthly discharge, in second-fect, of Missouri River near Williston, N. Dak.

Month.	1905.	1906.	1907.	Mean.
March Apri May June July August September October November	a 30, 200 68, 100 54, 900 19, 400 7, 100 7, 700	b 82,800 .93,600 52,700 25,200 15,400 8,840		

a May 23-31.

b May 26-31.

c November 1-24.

d May 1-22.

NORTH FORK OF RED RIVER NEAR GRANITE, OKLA.

Samples of water were collected from North Fork of Red River at a railroad bridge near Granite, Okla., from April 12, 1905, to March 16, 1907. A gaging station was established at the bridge by the United States Geological Survey June 23, 1903, and was discontinued March 20, 1908. Stream-flow data, including gage heights and estimates of discharge, have been published by the Survey in the following reports: ^a

Water-Supply Papers: 99, pp. 319-320; 131, pp. 182-183; 173, pp. 73-75; 209, pp. 51-54; 247, pp. 89-92.

Partial analyses, gage heights, and rates of discharge of water and solids for North Fork of Red River at railroad bridge near Granite, Okla.

[Drainage area, 2,210 square miles.]

	Ans	alysis (milligr	ams per	liter).	et).	-puooes)	Solids (1	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (feet).	Suspended matter.	Dissolved solids.
1905–1907.									
April 12. April 13, 14, 15, 16, 17, 18. April 26. May 15, 16, 17, 18, 19, 20. June 4, 5, 6, 8, 9, 10. June 9.	8 17 16	191 141 156	388 202 190	544 116 13,600 1,250 1,670 2,830	1,250 1,920 808 1,110 1,100 1,050	5. 8 5. 4 8. 1 5. 5 6. 1 6. 4	135 33 5,720 26 337 650	198 10 210,000 88 1,510 4,980	455 171 12,500 78 996 1,840
June 11, 12, 13, 14, 15, 16, 17	0 0 0 8 0	188 182 149 133 193	245 426 365 289 540	696 122 304 462 0	1,300 1,990 1,790 1,440 2,240	6. 0 5. 7 5. 7 5. 6 5. 8	233 77 52 63 111	438 25 43 78 0	818 413 251 245 670
ber 2	6 0 10	150 129 255	259 157 211	158 $3,670$ $1,210$	1,440 890 1,170	5. 5 6. 7 5. 0	49 675 1	6,690 3	191 $1,620$ 3
October 5, 17, 18, 20, 21, 30, November 1 October 31, November 2, 3, 4 November 5, 8, 10, 11 November 12, 14, 15, 18 November 23, 24, 25, 26, 29, 30 December 3, 4, 5 December 10 December 13 December 14 December 15 December 16 December 17 December 19 December 20 December 21 December 23 December 23 December 24 January 4 January 5 January 6 January 11 January 12 January 13 January 14 January 15 January 16 January 16 January 17 January 19 January 20 January 21 January 22 January 23 January 24 January 25 January 28 February 1 February 3 February 5 February 7 February 7 February 9 February 10 February 10 February 10 February 16 February 10 February 10 February 10 February 10 February 10 February 16 February 10 February 16 February 10 February 10 February 10 February 10 February 10	0 16 0 0 0	283 254 186 177 182 224 185 191 185 215 215 214 164 223 198 237 176 226 190 193 234 212 210 210 211 211 211 212 210 210	192 183 268 276 236 324 373 359 352 296 289 333 318 305 354 326 337 405 402 376 367 405 402 376 364 367 370 364 367 370 364 367 370 364 367 370 364 370 364 370 370 370 370 370 370 370 370	30 180 840 1, 820 5, 570 594 568 440 1, 420 996 1, 170 944 572 560 568 452 584 452 584 452 2584 284 180 76 240 204 204 204 204 204 204 80 120 0 0 0 0 0 0 0 0 0 0 0 0 0	1,100 1,050 1,490 1,460 1,200 1,570 1,660 1,560 1,440 1,340 1,320 1,670 1,610 1,640 1,570 1,710 1,710 1,710 1,710 1,710 1,710 1,740 1,930 1,930 1,980 1,780 1,920 2,050 1,840 2,240 2,210 2,000 1,760 2,360 2,440 2,240 2,210 2,000 2,070 2,520 2,560 2,530 2,520 2,100 1,940	$\begin{array}{c} 4.9970788004210000122112200321111100088899000089888445 \\ 6.6666666666666666666666666666666666$	0 0 206 120 628 94 49 60 80 92 80 80 80 73 113 73 73 113 73 58 65 64 52 22 22 22 22 22 22 21 10 142	0 467 591 9,440 151 75 71 261 430 290 203 105 103 92 132 118 230 93 115 248 153 129 53 60 64 35 62 108 44 28 109 108 109 109 109 109 109 109 109 109	0 0 828 472 2,040 399 219 253 264 706 332 285 306 294 266 338 430 541 355 358 356 354 306 323 270 455 330 278 270 270 270 270 270 270 270 270

Partial analyses, gage heights, and rates of discharge of water and solids for North Fork of Red River at railroad bridge near Granite, Okla.—Continued.

•	Ans	alysis ((milligi	ams per	liter).	t).	(second-	Solids (tons per
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (se feet).	Suspended matter.	Dissolved solids.
1905-1907. February 17. February 18. February 20. February 21. February 22. February 23. February 24. February 25. February 26. February 27. March 1. March 2. March 2. March 2. March 3. March 4. March 5. March 6. March 7. March 10. March 14. March 15. March 15. March 16. March 17. March 20. March 21. March 22. March 29. March 21. March 29. March 21. March 29. March 21. March 25. March 26. March 27. March 28. March 29. March 29. March 29. March 30. March 31. April 4. April 5. April 6. April 7. April 8. April 9. April 10. April 11. April 12. April 13. April 14. April 15. April 14. April 15. April 16. April 17. April 18. April 19. April 10. April 11. April 12. April 13. April 14. April 15.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	224 217 224 212 233 201 242 200 202 213 214 219 265 281 232 239 210 217 295 236 308 281 295 217 295 236 308 217 295 217 295 217 295 217 295 217 295 217 295 217 295 217 295 217 295 217 295 217 295 217 295 217 295 217 295 217 295 297 297 297 297 297 297 297 297 297 297	283 302 329 370 309 290 307 352 377 402 489 528 503 5271 5271 528 600 567 542 640 6387 542 640 600 608 600 600 600 600 600 600 600 60	328 300 220 300 944 804 8584 452 360 368 328 316 168 592 588 72 128 44 16 92 48 184 80 48 184 80 48 184 80 48 192 400 476 4,130 4,130 2,180 2	1,560 1,550 1,680 1,530 1,660 1,430 1,490 1,860 1,810 2,220 2,400 1,640 1,340 2,670 2,680 2,850 2,850 2,850 2,850 2,850 2,850 2,850 2,850 2,850 2,530 1,760 2,740 1,480 2,580 2,580 2,580 2,580 2,580 2,580 2,580 2,190	2103109998877774666655555555555555555555555555555	65 58 51 91 58 44 47 37 37 37 36 26 18 18 18 10 7 10 4 1 1 1 1 4 4 7 2 12 12 12 12 12 12 12 12 12 12 12 12 1	58 47 30 74 148 96 58 45 36 16 15 8 29 3 3 3 2 0 0 0 1 1 4 3 0 0 1 2 2 5 3 0 0 1 1 1 2 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3	274 242 231 375 259 170 149 165 181 131 156 112 117 80 7 94 72 54 78 19 7 4 28 48 10 27 35 306 352 385 306 352 385 306 352 385 1,710
April 16. April 17. April 18. April 19. April 20. April 21. April 22. April 23. April 24. April 25. April 26. April 28. April 29. April 28. April 29. April 30. May 2 May 3 May 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	204 204 204 185 191 191 191 191 191 179 185 185 185 186 166 160	319 281 329 367 396 290 242 242 281 290 290 329 348 290 174 174	772 504 384 228 176 6610 1,140 952 368 416 264 132 104 244 2,670 1,980 1,090	1,790 1,580 1,680 1,880 1,880 1,890 2,000 1,640 1,350 1,360 1,540 1,570 1,570 1,570 1,570 1,540 1,140 1,140 1,100 1,050	6. 2 6. 1 6. 1 6. 0 6. 2 6. 4 6. 7 6. 4 6. 3 6. 2 6. 1 6. 0 6. 2 6. 2 6. 4 6. 3 6. 2 6. 4 6. 2 6. 4 6. 2 6. 4 6. 2 6. 2 6. 2 6. 4 6. 2 6. 2 6. 2 6. 2 6. 2 6. 2 6. 3 6. 3 6. 3 6. 3 6. 3 6. 3 6. 3 6. 3	125 103 103 85 115 175 260 120 96 60 38 27 20 32 365 200 90	261 140 107 52 55 303 1,130 368 247 60 43 19 7 6 21 2,640 1,070 266	603 490 468 432 586 1,150 437 353 250 1,510 115 93 97 134 1,120 595 256

Partial analyses, gage heights, and rates of discharge of water and solids for North Fork of Red River at railroad bridge near Granite, Okla.—Continued.

	Analysis (milligrams per liter).					eet).	-puoses)	Solids (tons per day).	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge ((Suspended matter.	Dissolved solids.
1905-1907. May 5	0	179	174	760	1, 160	6.3	70	144	219
May 6. May 7. May 8. May 9. May 10. May 11. May 12. May 13. May 15. May 16. May 17. May 18. May 19. May 20. May 21. May 22. May 23. May 24. May 25. May 26. May 27. May 28. May 29. May 30. May 31. June 1. June 2. June 3. June 4. June 5. June 6. June 7. June 8. June 10. June 11. June 12. June 13. June 14. June 15. June 16. June 17. June 18. June 19. June 20. June 20. June 21. June 22. June 23. June 24. June 25. June 26. June 27. June 28. June 29. June 20. June 20. June 21. June 22. June 23. June 24. June 25. June 26. June 27. June 28. June 29. June 30. July 1. July 2. July 4. July 5. July 6. July 7. July 8. July 9. July 10. July 11. July 2. July 19. July 20. July		192 198 185 192 179 185 166 134 134 160 172 179 160 140 166 185 199 179 96 108 115 121 147 185 166 172 172 185 159 168 172 173 174 175 175 175 175 175 175 175 175 175 175	223 271 339 416 426 455 416 290 281 242 232 261 242 232 261 154 1184 1193 223 300 309 258 138 109 1248 248 248 248 248 258 248 258 376 386 396 307 277 317 317 317 317 317 317 317 317 317 3	600 412 296 276 116 120 48 32 112 2,530 1,570 1,140 664 428 428 4204 12,400 6,900 3,240 1,370 960 612 292 268 312 2,170 4,140 1,970 1,230 2,970 1,490 1,020 564 400 244 204 160 84 1,100 648 700 616 344 308 592 368 500 324 472 6,180 2,490 1,100 340 1,100 340 1,100 340 1,100 340 1,100 340 1,600	1, 350 1, 480 1, 660 1, 849 2, 020 2, 050 1, 520 1, 550 1, 570 1, 370 1, 470 1, 370 1, 430 1, 230 1, 230 1, 230 1, 230 1, 650 1, 680 648 636 648 650 1, 720 1, 720 1, 410 1, 370 1, 430 1, 230 1,	$\begin{array}{c} 6.22\\ 2.11\\ 1.00\\ 0.00\\$	52 43 43 43 44 34 21 18 23 102 140 120 95 52 2,600 2,350 140 100 23 61 50 275 560 140 40 40 40 40 40 40 40 40 40	84 48 34 25 11 7 3 2 7 696 696 592 429 215 110 37 74 29 87,300 43,800 8,050 519 259 121 48 36 1,680 1,680 911 4,490 237 61 43,266 222 17 10 216 1128 302 223 70 48 139 43 43 43 43 43 43 43 44 45 46 47 48 49 40 41 41 41 41 42 43 43 43 43 43 44 45 46 47 48 48 48 48 48 48 48 48 48 48	189 172 196 169 114 117 110 127 420 586 557 443 352 200 277 222 4,350 5,300 2,480 329 273 272 227 102 481 589 855 2,610 481 589 855 2,610 2,534 310 159 162 176 243 200 223 250 350 800 753 377 75,080 362 248 205 226 40 177 5,080 362 248 205 2293 315 232 240 185 136 5,660 761 1,720 2,280

Partial analyses, gage heights, and rates of discharge of water and solids for North Fork of Red River at railroad bridge near Granite, Okla.—Continued.

Section 2.									
	Ana	alysis (milligr	ams per	liter).	et).	-puooes)	Solids (1	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (feet).	Suspended matter.	Dissolved solids.
1905–1907.									
July 14. July 15. July 16. July 17. July 18. July 19. July 20. July 21. July 22. July 24. July 25. July 27. August 1 August 2 August 3 August 4 August 5 August 6 Arugust 7 August 10 August 10 August 11 August 12 August 13 August 14 August 15 August 18 August 18 August 19 August 10 August 11 August 12 August 13 August 14 August 15 August 17 August 18 August 20 August 21 August 21 August 22 August 24 August 27 August 29 August 29 August 30 August 31 September 4 September 5 September 6 September 6 September 7 September 10 September 10 September 10 September 10 September 10 September 11 September 12 September 15 September 16 September 17 September 17 September 18 September 16 September 17 September 17 September 18 September 19 September 19 September 10 September 11 September 12 September 12 September 15 September 16 September 17 September 18 September 19 September 19 September 20 September 21 September 22 September 22 September 23 September 24 September 25 September 26 September 27 September 27 September 28 September 28 September 27 September 28 September 28 September 29 September 20 September 30 October 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	150 164 170 183 170 157 170 164 170 164 170 164 170 164 170 164 170 164 164 164 164 164 164 164 165 162 170 162 170 163 164 164 165 167 168 169 169 169 169 169 169 169 169	158 168 158 138 148 158 148 168 218 178 188 188 188 198 218 178 164 170 173 124 170 173 124 170 173 124 170 173 124 170 173 124 170 173 124 173 173 173 173 173 173 173 173	2,610 2,050 6,000 4,720 2,680 1,610 476 332 284 980 580 492 348 976 2,660 1,800 1,880 1,800 1,820 3,730 1,110 772 4,170 11,000 8,670 7,290 1,820 3,730 1,72 1,520 1,520 1,880 1,040 9,540 2,48 1,040 1,480 1,040 9,568 1,040 1,480 1,040 1,480 1,040 1,520 1	1,010 920 1,030 912 928 1,010 1,140 1,150 1,210 1,280 1,430 1,180 1,270 1,180 1,140 1,110 972 1,120 860 788 700 948 684 876 1,060 1,100 924 488 684 1,050 1,100 1,300 1,340 8876 1,340 1,480 1,190 1,340 1,3	$\begin{array}{c} 0.7928666082226654283895456422000008845543609866666444446659090877666666666666666666666666666666666$	2, 480 286 2, 250 7000 3100 218 240 450 450 450 450 400 355 7500 3,000 1,180 950 1,20 500 285 132 120 500 285 150 1120 1,180 1	17,500 1,580 36,500 8,920 2,250 946 575 2,920 1,230 58 40 35 318 141 86 38 937 5,390 1,600 2,110 60,200 89,300 27,600 18,700 3,440 858 397 183 227 23 205 24 33 95 874 522 411 112 17,600 3,500 1,570 632 676 93 227 168 111 1,200 1,570 632 676 93 103 103 200 1,570 632 676 93 111 1,200 1,570 632 676 93 24 111 1,200 1,570 632 676 93 24 111 1,200 1,570 632 676 93 24 111 1,200 1,570 632 676 93 24 111 1,200 1,570 632 676 93 24 111 1,200 1,570 632 676 93 340 1,570	6,770 711 6,250 1,720 1,720 776 595 7,400 1,010 155 152 173 346 287 222 144 1,040 2,320 985 1,090 6,380 2,230 1,880 922 157 312 272 355 125 115 210 229 1,390 1,190 1,150 874 380 1,200 2,320 4,410 4,160 1,190 1,180 1,190 1,180 1,190 1,180 1,190 1,180 4,410 4,160 1,190 1,180 1,200 1,180 4,410 4,160 1,190 1,180 1,200 1,180 4,410 4,160 1,190 1,180 1,200 1,180 1,200 1,180 1,200 1,180 1,210 1,180 1,210 1,180 1,210 1,180 1,210 1,180 1,210 1,180 1,210 1,180 1,210 1,180 1,180 1,210 1,180 1,180 1,190 1,180 1,190 1,180 1,180 1,190 1,180 1,180 1,190 1,180 1,

Partial analyses, gage heights, and rates of discharge of water and solids for North Fork of Red River at railroad bridge near Granite, Okla.—Continued.

-									
	Ana	lysis (milligr	ams per	liter).	feet).	-puooes)	Solids (1 day	tons per
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (feet).	Suspended matter.	Dissolved solids.
1905–1907.									
October 4 October 4 October 4 October 7 October 8 October 9 October 10 October 11 October 12 October 13 October 14 October 15 October 16 October 16 October 17 October 16 October 17 October 18 October 19 October 20 October 21 October 21 October 22 October 23 October 24 October 25 October 26 October 27 October 30 October 31 November 1 November 1 November 3 November 3 November 4 November 5 November 7 November 1 November 2 November 3 November 3 November 1 November 1 November 1 November 1 November 2 November 3 November 1 November 1 November 1 November 1 November 1 November 1 Docember 10 November 20 November 3 December 10 December 10 December 10 December 10 December 10 December 11 December 12 December 12 December 15 December 19 December 19 December 20 December 30 December 30 December 30 December 30 December 30 December 20 December 30		196 216 228 273 185 280 201 270 335 298 125 218 232 212 218 232 212 211 224 236 208 172 217 226 218 222 211 224 236 209 196 206 216 210 210 206 216 226 231 234 231 228 230 221 234 231 228 230 266 220 261 261 268 307 338 255 284 281 286 267 238 248 229 238	371 139 343 348 513 246 436 150 109 152 168 210 217 221 264 224 226 228 232 266 285 285 286 285 286 285 288 306 307 307 314 306 297 217 277 282 289 303 288 160 210 202 234 208 188 156 257 149 190 196 195 188 257 268 279 279 279 279 279 279 279 279 289 289	44 36 156 0 0 0 56 128 576 64 0 960 16,000 7,420 3,650 2,370 1,550 1,130 2,680 1,470 968 732 496 424 536 644 374 432 300 428 824 2,210 2,840 2,370 1,250 624 1,430 624 374 432 300 428 824 2,210 2,840 2,9	1,800 888 1,530 1,360 2,120 1,240 2,120 1,180 716 1,010 680 884 876 996 712 1,150 1,190 1,150 1,280 1,360 1,550 1,550 2,030 1,550 1,550 2,030 1,550 1,550 1,550 1,550 1,550 1,550 1,510 1,520 1,530 1,550 1,540 1,580 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,150 1,180 1,150 1,140 1,150 1,160 1,	$\begin{array}{c} 328333442222982865448866443322224445476455559462458808298229822000000010\\ 6666666666666666666$	33 15 300 33 360 45 23 23 920 7,000 7,950 1,180 875 775 650 220 220 415 327 251 420 1,250 1,180 1,180 207 247 247 247 247 247 247 247 247 247 24	4 1 126 0 0 5 211 70 4 0 0 302,000 39,100 11,600 2,720 673 730 2,570 1,200 1,010 784 426 426 427 426 427 428 428 429 288 200 288 200 286 980 7,470 10,900 6,500 6,490 11,100 23,300 8,500 11,350 11	161 36 1,240 121 188 111 339 143 44 63 1,650 16,700 4,860 2,790 709 706 1,230 843 860 1,470 1,690 1,030 1,470 1,690 480 2,797 1,140 1,610 409 480 2,797 1,140 1,030 1,470 1,690 1,030 1,470 1,030 1,470 1,030 1,470 1,030 1,470 1,030 1,470 1,030 1,470 1,030 1,040 1,040 1,060 1

Partial analyses, gage heights, and rates of discharge of water and solids for North Fork of Red River at railroad bridge near Granite, Okla.—Continued.

	Ana	lysis (1	milligra	ams per l	liter).	et).	(second-	Solids (t	
Dates.	Carbonate radicle (CO_3) .	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge ((Suspended matter.	Dissolved solids.
1905–1907.									
January 1 January 2 January 3 January 5 January 6 January 7 January 8 January 10 January 10 January 12 January 13 January 14 January 15 January 16 January 17 January 18 January 19 January 20 January 21 January 22 January 22 January 23 January 24 January 25 January 26 January 27 January 29 January 29 January 30 February 1 February 1 February 5 February 5 February 5 February 7 February 8 February 11 February 12 February 11 February 12 February 15 February 17 February 18 February 18 February 18 February 14 February 15 February 16 February 17 February 17 February 18 February 19 February 19 February 20 February 21 February 21 February 25 February 27 February 27 February 28 February 29 February 29 February 20 February 21 February 21 February 22 February 25 February 26 February 27 February 28 March 1 March 3 March 5 March 6 March 10 March 11 March 12 March 15 March 16	909009901999999999999999999999999999999	238 224 248 248 238 229 286 191 238 267 267 267 267 267 267 267 267	258 242 268 310 279 289 289 320 217 217 227 227 227 227 227 227	776 549 560 728 1,330 132 3,480 3,940 2,690 264 1,220 999 1,320 876 988 4,500 5,920 1,630 964 1,230 1,080 1,080 1,080 1,080 1,400 204 288 600 788 1,330 1,060 1,400 204 288 252 604 728 1,204 680 592 604 728 1,206 680 680 592 604 728 1,206 680 680 592 604 728 1,206 680 680 592 604 728 1,206 680 680 680 680 680 680 680 680 680 6	1,540 1,540 1,540 1,540 1,540 1,540 1,540 1,540 1,540 1,540 1,640 1,140 1,640 1,370 1,480 1,370 1,460 1,370 1,480 1,550 1,540 1,540 1,550 1,540 1,550 1,560 1,628 1,530 1,450 1,550 1,628 1,530 1,450 1,550 1,628 1,530 1,450 1,550 1,628 1,530 1,450 1,550 1,620 1,628 1,530 1,450 1,550 1,620 1,620 1,740 1,750 1,740 1,740 1,750 1,740	$\begin{array}{c} 7.1\\ 7.1\\ 7.0\\ 8.0\\ 9.9\\ 1.1\\ 4.2\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	140 180 180 180 180 190 100 100 660 800 340 220 160 160 180 120 160 180 270 250 10 90 340 300 450 180 120 160 180 120 160 180 180 120 160 180 180 120 160 180 180 180 180 180 180 180 180 180 18	294 267 272 275 252 141 36 6,210 8,520 2,470 157 528 430 1,430 22,400 3,720 879 416 600 467 413 437 139 259 383 971 715 753 6 70 523 803 2,820 234 236 294 236 806 205 201 164 143 177 159 91 112 125 83 83 97 1715 70 523 803 2,820 1,430	582 750 739 602 411 455 2,920 1,000 1,560 637 645 1,480 632 661 5,560 6,300 1,010 683 567 680 752 748 512 1,860 688 814 42 32 1,860 688 688 691 691 693 693 693 694 695 765 765 766 768 768 768 768 768 768 768

Relative amount of substances in solution in water from North Fork of Red River at railroad bridge near Granite, Okla.

-	samples.		(Ds) er).		Radic	les in p	er cen	t of dis	solved	solids.	
Limiting dates of composite.	Number of daily san	Errors.	Dissolved solids (D (milligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+ $\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO ₄).	Chlorine (Cl).	Nitrate (NO3).
1905–1907.											
April 13-June 17. June 18-July 30. July 21-November 1 October 31-December 1. December 3-January 6. January 8-25 February 1-March 31 April 4-30 May 2-31 June 1-30 July 1-27 August 1-31 September 3-30. October 1-31 November 1-30. December 1-30 December 1-31 January 1-30 February 1-28 March 1-16	25 21 28 19 16 48 26 29 30 24 26 29 38 18 24 28 26 13	+4.3 +4.4 -1.0 -3.0 -1.2 +4.3 +4.5 +3.1 +1.5 +2.1 +2.2	1,310 1,970 1,120 1,280 1,600 1,870 2,100 1,480 1,470 1,340 1,340 1,350 1,450 1,450 1,450 1,690 1,680	15 13 14 12 11 14 12 12 13 14 11 12 12 12 11 12 11 11 9.5	3.47 3.88 3.23 3.84 4.1 3.70 4.22 3.89 3.95 4.57 5.1	14 a 15 12 	0.76 .00 .00 .00 .00 .76 .00 .42 .00 .00 .00 .00 .00 .00	12 9.4 19 15 12 10 9.5 13 11 12 13 17 12 17 14 18 17 7.8	36 36 37 34 36 36 38 36 33 37 36 33 37 36 33 37 36 37 40	19 21 18 19 22 23 21 19 20 19 17 18 18 19 17 18 19	0.007 .005 .000 .003 .003 .002 .002 .000 .000 .000
Mean		2. 5	1,490	12	3. 9	14	. 10	13	36	19	. 010

a Sodium is 99.6 per cent and potassium is 0.53 per cent of this amount.

Monthly discharge, in second-feet, of North Fork of Red River near Granite, Okla.

$\mathbf{Month.}$	1903.	1904.	1905.	1906.	1907.	1908.	Mean.
January February March April May June July August September October November December	a 23 20 a 53 3 1	0 0 0 0 312 651 221 81 0 0		56 46 22 173 262 191 492 297 497 562 414 468	313 187 72 116 204 848 102 417 62 733 295 177	128 131 a 121	124 91 54 96 259 428 209 212 141 324 177
Mean		105		290	294		190

a Approximate.

NORTH FORK OF RED RIVER NEAR HEADRICK, OKLA.

Samples of water were collected from North Fork of Red River at Navajo dam site near Headrick, Okla., from May 20, 1905, to March 19, 1907. A gaging station was established at the Frisco Railway bridge, 8 miles west of Snyder, by the United States Geological Survey, April 14, 1905, and was discontinued July 31, 1905; and a gaging station was established at Navajo dam site July 17, 1905, and discontinued March 30, 1908. Stream-flow data, including gage heights

and estimates of discharge, have been published by the Survey in the following reports:

Water-Supply Papers: 173, pp. 75–78; 209, pp. 54–56; 247, pp. 93–96.

Partial analyses, gage heights, and rates of discharge of water and solids for North Fork of Red River at Navajo dam site, near Headrick, Okla.

[Drainage area, 5,470 square miles.]

*	An	nalysis	(milligra	ms per li	iter).	eet).	-puooes)	Solids per d	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (s	Suspended matter.	Dissolved solids.
1905-1907.									
May 20, 21, 22, 25, 26, 27 May 28, 29, June 3, 4, 5, 6, 8, 10	2 12 0 0 0 0 0 0 0 0 5 0 9 9 0 6 0	151 140 175 161 149 152 161 174 114 130 338 141 160	426 558 	3,630 3,590 8,880 5,070 510 854 584 388 430 1,000 578 290 2,680 250 924 368	1,310 2,100 720 858 3,150 5,310 4,970 5,340 6,410 3,230 4,490 5,270 3,330 1,740 3,730	3. 2 3. 8 5. 0 4. 2 2. 4 2. 2 1. 9 1. 6 1. 6 1. 9 2. 5 3. 0 3. 1 2. 6	2,300 2,900 8,000 3,000 500 450 250 140 120 2250 244 266 1,210 41 370 149	22,600 28,100 192,000 41,100 689 1,040 394 147 139 114 677 381 208 8,770 28 923 148	8,100 16,400 15,600 6,950 4,260 6,450 2,680 1,730 2,080 2,180 2,180 2,960 3,780 10,900 621 1,740 1,500
ber 1 October 2, 3, 6, 7, 8, 10, 11 October 14, 15, 16, 17, 18, 19, 20 October 24, 25, 26, 28	6 4 11 8	155 167 146 185	2,160 2,610 2,850 3,100	114 302 212 256	5,580 6,490 6,940 7,380	2. 2 2. 2 2. 1 2. 1	54 36 24 24	17 29 14 17	814 630 450 479
October 29, November 13, 14, 15, 16, 17, 18. November 19, 20, 21, 22, 23, 24, 25. November 26, 28, 30, December 1, 2. December 3, 4, 5. December 6. December 7. December 9. December 10. December 11. December 12. December 13. December 14. December 15. December 16. December 17. December 18. December 31. January 2. January 3. January 4. January 5. January 5. January 6. January 7. January 16. January 17. January 18. January 19. January 20. January 20. January 21. January 21. January 23.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	185 188 172 218 205 238 238 231 231 185 193 156 195 224 238 231 221 224 231 221 221 231 221 231 221 231 23	1,660 1,430 641 1,100 1,250 1,260 1,360 1,380 1,470 1,520 2,820 810 984 1,470 1,550 1,550 1,730 1,730 1,730 1,420 1,420 1,430 1,420 1,480 1,4610 1,630 1,670 1,790 1,860	408 1,730 2,170 578 660 692 292 488 436 564 436 436 1,030 492 288 396 6,390 404 636 452 286 372 364 384 224 216 280	4,350 3,830 2,170 3,050 3,640 3,940 4,150 4,320 4,100 4,320 4,100 4,060 4,120 4,020 4,020 4,020 4,110 4,400 4,140 3,880 3,890 4,140 3,890 4,200 4,200 4,200 4,200 4,200 4,300 4,300 4,710 4,870	2.75666662.2.5577700776666687655555555555555555555555	238 290 169 160 140 130 120 120 100 170 170 170 230 230 230 160 160 160 160 130 130 130 130 130 125 120	262 1,360 989 250 243 95 158 146 69 153 200 640 305 132 171 2,760 261 128 131 157 135 79 74 93 73 91	2,800 3,000 989 1,320 1,360 1,280 1,270 1,110 2,040 1,860 3,040 2,270 1,830 1,730 1,730 1,730 1,730 1,730 1,340 1,340 1,340 1,360 1,340 1,510 1,510 1,510 1,510 1,510 1,580

a See also Fifth Ann. Rept. U. S. Reclamation Service, p. 245.

Partial analyses, gage heights, and rates of discharge of water and solids for North Fork of Red River at Navajo dam site, near Headrick, Okla.—Continued.

	Ar	alysis	(milligra	ıms per li	iter).	eet).	-puoses)	Solids per d	
.)ales.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (s	Suspended matter.	Dissolved solids.
1905–1907.									
February 5 February 6 February 7 February 8 February 9 February 11 February 12 February 13 February 14 February 15 February 15 February 25 February 27 February 27 February 28 March 2 March 3 March 4 March 5 March 6 March 7 March 8 March 9 March 10 March 21 March 22 March 23 March 24 March 25 March 25 March 26 March 27 April 1 April 2 April 3 April 17 April 18 April 19 April 20 April 22 April 24 April 25 April 24 April 25 April 26 April 27 April 18 April 27 April 19 April 20 April 22 April 24 April 25 April 25 April 26 April 27 April 28 April 29 April 30 May 1 May 2 May 3 May 4 May 5 May 7 May 10 May 11 May 12 May 10 May 11 May 12 May 15 May 16 May 17 May 18 May 21 May 22 May 24 May 25 May 26 May 27 May 28 May 27 May 28		277 249 277 280 252 233 221 230 235 195 209 237 210 217 231 243 249 243 230 236 223 236 243 230 227 220 220 220 227 220 220 227 220 220	2,670 2,240 1,840 2,230 2,680 2,110 2,130 2,110 1,490 1,890 2,200 2,210 2,210 2,210 2,250 3,160 3,130 3,270 2,550 3,160 3,130 3,270 2,550 3,160 3,130	56 108 108 108 616 64 172 136 256 72 1,590 940 388 368 268 484 1,120 1,670 0 116 848 148 124 68 0 236 28 20 364 512 492 288 400 512 404 656 9,750 2,140 820 700 520 324 464 2,470 820 820 820 820 820 820 820 820 820 82	5,570 4,940 5,570 6,400 5,570 6,400 5,570 6,400 5,5350 5,430 3,230 4,220 4,770 5,580 6,280 6,180 6,270 7,550 7,470 7,290 6,340 4,770 4,070 4,070 4,070 4,070 1,310 2,560 3,730 4,320 1,310 2,560 3,730 4,320 1,310 2,560 1,540	44433332222222222111111111111111354387777066555636666659777762761122311294 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	94 95 70 70 47 47 47 47 47 47 47 47 40 40 40 40 40 40 40 40 40 40	14 28 20 116 12 22 17 32 9 201 119 207 70 34 61 142 181 0 13 92 15 12 12 3 0 7 0 12 13 142 181 169 152 120 152 120 169 152 120 163 163 9,860 163 163 9,860 1,320 1,320 1,320 1,320 1,420 1,320 1,320 1,320 1,320 1,420 1,320 1,320 1,420 1,320 1,320 1,320 1,420 1,320 1,320 1,420 1,320 1,420 1,320 1,420 1,320 1,420 1,320 1,420 1,320 1,420 1,320 1,420	1,650 1,430 935 1,050 812 683 453 677 688 453 605 619 709 635 635 634 641 636 5900 1,216 900 1,217 91 831 1,980 1,750 1,810 2,550 1,810 2,830 2,500 1,850 1,950 2,900 1,

Partial analyses, gage heights, and rates of discharge of water and solids for North Fork of Red River at Navajo dam site, near Headrick, Okla.—Continued.

	An	alysis	(milligra	ms per l	iter).	et).	-puooes)	Solids per d	
Dates	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (se feet).	Suspended matter.	Dissolved solids.
1905–1907.									
May 29. May 30. May 31. June 1. June 2. June 3. June 4. June 5. June 6. June 7. June 8. June 9. June 10. June 11 June 12. June 13 June 14. June 15. June 16. June 18. June 19. June 20. June 21. June 22. June 23. June 24. June 25. June 27. June 28. June 29. June 29. June 29. June 30. July 1 July 2 July 3 July 4 July 5 July 6 July 7 July 9 July 10 July 10 July 10 July 11 July 11 July 11 July 11		153 147 128 147 166 134 110 121 121 146 153 147 166 153 147 148 148 148 148 148 148 121 128 121 140 1586 183 183 183 183 183 183 183 183 183 183	561 7359 1,070 1,090 603 405 475 1,090 1,090 1,420 1,420 1,140 1,140 1,130 1,130 1,030 1,060 703 921 1,060 703 921 1,340 1,350 1,350 1,590 1,840 327 317 317 317 317 317	616 332 312 220 416 6,340 6,100 6,170 3,340 1,620 808 332 248 308 116 80 476 488 8,850 9,050 3,070 7,730 700 688 172 200 156 64 2,240 2,250	2,490 2,820 3,270 3,600 3,330 2,320 2,030 1,970 1,760 1,900 2,230 3,480 3,520 4,340 3,480 4,110 2,700 2,660 4,000 3,330 3,590 3,830 2,200 2,930 1,710 1,680 4,020 4,540 4,540 4,540 4,540 1,130 1,090 1,090 1,090	3.00026 3.00	260 220 220 260 27,040 1,000 1,680 1,000 170 170 170 170 170 170 170 180 480 520 335 235 235 160 160 140 520 3,685 330 280 220 120 95 80 70 70 70 70 70 70 3,682 80 70 70 70 70 70 70 70 70 70 70 70 70 70	433 198 186 101 292 35,000 16,500 28,000 9,000 2,030 568 153 114 142 53 624 11,500 1,140 756 620 315 208 107 3,420 4,310 75,600 1,300 119 13 14 12 53 62 20 62 107 107 108 109 119 119 120 130 140 150 150 150 150 150 150 150 15	1,750 1,680 1,940 1,650 2,340 12,800 5,480 5,480 4,750 2,390 1,570 1,600 1,620 1,510 1,880 1,500 4,520 2,110 1,430 1,450 3,080 22,110 1,430 1,500 1,620 1,450 3,170 1,500 1,450 3,170 1,500 1,450 3,170 1,500 1,450 3,170 1,500 1,593 1,900 1,04
July 13. July 15. July 16. July 16. July 17. July 18. July 19. July 20. July 21. July 22. July 23. July 24. July 25. July 26. July 27. July 28. July 29. July 29. July 30. July 30. July 31. August 1 August 2 August 4 August 5 August 6 August 8 August 9.	000000000000000000000000000000000000000	138 137 164 170 150 150 183 131 138 131 157 170 203 118 124 111 170 177 203 118 127 170 170 170 170 170 170 170 17	593 337 338 416 485 366 3366 3366 3366 248 594 693 1,220 277 267 476 476 614 624 872 772 297 190	1,510 908 2,820 2,700 3,000 728 6,140 1,010 608 492 400 436 15,400 15,900 2,450 2,110 952 632 952 952 584 6,330 7,300	1,730 1,780 1,620 1,640 1,930 2,010 1,580 1,960 2,110 2,360 2,420 2,500 3,880 3,910 1,670 1,770 1,800 2,110 2,170 2,170 2,180 2,110 2,170 2,170 2,180 1,980	\$5.506438552109900644666000085 3.309006443666000085	200 410 410 410 715 470 480 315 2,000 390 240 200 160 1,600 1,240 510 190 190 190 190 190 1,850 440	1,670 1,000 5,450 3,430 3,890 619 33,200 1,060 654 329 213 140 188 6,650 68,800 8,200 2,570 1,310 324 499 488 160 31,600 8,670	1,920 1,970 3,130 2,090 2,500 1,700 8,510 2,030 1,270 1,140 1,020 8,49 1,670 16,900 2,160 2,480 1,110 1,140 1,140 1,530 1,490 9,320 1,570

Partial analyses, gage heights, and rates of discharge of water and solids for North Fork of Red River at Navajo dam site, near Headrick, Okla.—Continued.

	1		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				1		
	Ar	nalysis	(milligra	ms per l	iter).	feet).	-puooes)	Solids per d	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (if	Suspended matter.	Dissolved solids.
1905–1907.							-		•
August 10. August 12. August 13. August 14. August 16. August 17. August 18. August 19. August 20. August 20. August 21. August 22. August 24. August 25. August 26. August 27. August 27. August 28. August 29. August 30. August 31. September 1 September 1 September 6 September 8 September 9 September 10 September 11 September 11 September 12 September 13 September 15 September 24 September 25 September 24 September 25 September 26 September 27 September 28 September 29 September 30 October 10 October 11 October 15 October 15 October 15 October 20 October 22 October 22 October 24 October 26 October 27 October 28 October 29 October 29 October 20 October 29 October 29 October 29 October 30 November 5 November 6 November 7 November 7 November 7 November 18 November 19 November 10 November 10 November 11	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	144 152 131 122 144 131 151 172 161 176 188 104 115 98 171 124 110 132 124 130 155 150 152 171 162 152 171 162 152 171 162 171 171 162 171 162 171 162 171 162 171 171 171 171 171 171 171 17	406 198 222 192 391 814 816 960 1,140 302 1,110 1,220 893 1,410 228 294 375 550 228 294 375 515 672 732 196 643 2795 649 882 888 511 399 378 373 907 912 1,250 1,610 740 184 4256 341 473 646 676 619 693 760 834 941 473 646 676 619 693 760 834 941 1,000 1,250 1,100 1,250 1,100 1,250 1,100 1,250 1,100 1,250 1,100 1,256 341 473 646 676 619 693 760 834 941 1,010 1,150 1,100 1,180 1,100 1,180 1,150 1,140 944	10, 200 5, 220 2, 020 2, 090 704 1, 780 292 408 884 1, 380 72 166 8, 470 6, 060 4, 280 636 32 376 424 1, 380 1, 620 388 1152 388	2,800 1,350 1,440 1,990 3,180 3,220 3,700 1,730 2,940 3,700 1,930 1,930 1,930 1,930 1,930 1,930 1,930 1,930 1,930 1,840 2,752 1,320 2,640 2,752 1,320 2,640 2,752 1,320 2,640 2,752 1,320 2,640 2,752 1,320 2,640 2,752 1,320 2,640 2,752 1,320 2,640 2,752 1,320 2,640 2,752 1,320 2,640 2,752 1,320 2,640 2,752 1,320 2,640 2,752 1,320 2,640 2,752 1,320 2,760 3,180 3,380 4,990 4,380 2,210 1,620 2,040 2,340	333940987777644000099988420099298835777766404334298876669664466482222244644222221 553332222222222244333332343222222222222	2, 680 2, 680 740 380 245 224 180 180 180 180 20 20 20 2, 000 20 2, 000 295 2, 700 380 220 120 120 120 120 120 120 120 120 12	73,700 37,800 4,030 4,030 2,140 177 2218 430 378 128 439 458 32,800 23,100 1,660 378 338 316 193 338 1,010 12,300 11,320 1,660 2,140 1,650 1,280 3,080 1,070 2,150 1,280 3,080 1,070 2,150 1,280 3,080 1,070 2,150 1,290 1,280 3,080 1,070 2,150 1,290 1,280 3,080 1,070 2,150 1,290 1,280 3,080 1,070 768 553 328 415 505 505 263 263 160 2,140 1,650 2,140 1,31 1	20,300 9,750 3,990 1,480 1,510 2,100 1,800 839 1,030 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,570 1,300 1,350 2,190 962 4,270 4,270 4,270 4,270 4,270 4,270 4,270 1,640 1,960 1,640 1,960

Partial analyses, gage heights, and rates of discharge of water and solids for North Fork of Red River at Navajo dam site, near Headrick, Okla.—Continued.

	An	alysis	(milligra	ms per li	ter).	et).	-puooes)	Solids per d	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicie (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (s	Suspended matter.	Dissolved solids.
1905–1907.									
November 25. November 26. November 26. November 29. November 30. December 4. December 4. December 10. December 17. December 18. December 19. December 20. December 25. December 31. January 1. January 4. January 7. January 9. January 19. January 19. January 27. January 31. February 1. February 2. February 4. February 5. February 6. February 7. February 8. February 11. February 11. February 12. February 14. February 15. February 16. February 17. February 18. February 18. February 19. February 11. February 19. February 19. February 19. February 19. February 20. February 20. February 21. February 22. February 23. February 24. February 25. February 26. February 27. February 28. March 1 March 1 March 1 March 10. March 11. March 13. March 16. March 17. March 18. March 19.	000000000000000000000000000000000000000	220 222 218 196 168 188 249 157 242 231 150 229 220 326 262 222 267 248 220 243 248 238 243 248 238 243 243 210 220 244 221 215 210 210 210 210 210 210 210 210 210 210	1,370 846 394 370 226 476 506 654 674 6794 787 830 403 825 894 780 558 689 506 552 620 516 558 630 672 548 919 682 676 609 785 790 836 847 873 883 950 987 966 955 898 987 960 935 898 971 1,000 1,040 1,030 1,070 1,030 1,060	276 1,630 1,780 1,320 2,060 2,060 2,060 1,310 608 624 234 380 732 516 292 988 840 504 488 116 372 548 444 284 288 188 380 272 292 104 284 284 288 188 380 272 292 104 216 120 156 184 232 196 120 156 184 232 196 120 156 184 232 196 120 156 184 232 196 120 156 184 232 196 120 156 184 232 196 120 156 184 232 196 120 156 184 232 196 120 156 184 232 196 136 216 228 236 272 252 252 252	3,900 2,860 1,870 1,520 1,520 1,520 2,400 2,750 2,750 2,920 2,750 2,920 2,920 2,920 2,920 2,920 2,920 2,920 2,920 2,920 2,920 3,060 2,740 2,920 2,920 3,760 2,920 3,760 2,920 3,760 3,760 3,760 3,760 3,920	5946677998877667666405882118966689086655555454456887766556555554444444 3.4.4.5.4.4.3.3.3.3.3.3.3.3.3.3.4.4.3.3.3.3	560 2,700 1,430 3,160 2,840 760 680. 500 440 440 240 400 360 3300 1,020 7700 3,300 620 7700 380 380 480 380 380 380 380 380 380 380 480 320 320 320 320 320 320 320 320 320 32	418 11,900 6,870 5,260 17,600 16,000 1,940 1,360 722 740 145 411 790 502 2,720 1,020 4,280 1,740 1,740 1,740 1,740 11,980 460 119 487 487 441 896 307 272 163 329 235 253 90 181 118 185 104 143 169 219 185 140 269 416 308 319 330 190 182 255 140 269 35 140 269 35 151 94 355 140 2235	5,890 20,900 7,210 6,060 13,500 11,700 4,620 3,630 3,360 3,480 1,800 3,170 2,840 2,7300 7,820 23,900 3,600 2,760 2,760 2,760 2,760 2,760 2,750 2,750 2,750 2,750 2,750 2,750 2,750 2,750 2,750 2,750 2,750 2,750 2,750 2,750 3,610 3,620 3,630 3,880 3,380

Note.—The first 11 samples listed above, May 20-July 29, 1905, were taken at the railroad bridge a few miles below the dam site.

Relative amount of substances in solution in water from North Fork of Red River at Navajo dam site, near Headrick, Okla.

	rples.		(Ds) er).	-	Radicl	es in p	er cent	of dis	solved	Radicles in per cent of dissolved solids.								
Limiting dates of composite.	Number of daily samples.	Errors.	Dissolved solids (D (milligrams per liter)	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+3/4K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (CI).	Nitrate (NO3).							
1905–1907.																		
May 20-June 24. June 25-July 22. July 23-September 30. August 14-October 11. October 14-November 25. November 26-December 16. December 17-January 23. February 7-28. April 1-30. March 2-27. May 1-31. June 1-30. July 1-31. August 1-31. September 1-30. October 10-31. November 2-30. December 4-January 31. February 1-28. March 1-19.	24 28 28 30 19 16	+1.3 -1.1 +3.0 -0.3 +1.0 -2.5 -0.1 -1.4 +0.0 +3.1 -0.4 -0.1 +0.4 -0.1 +0.8	2, 940 5, 160 3, 870 4, 900 5, 480 4, 980 3, 400 2, 640 2, 790 2, 480 2, 550 2, 550 2, 570 2, 870 3, 230	10 9.7 9.9 7.4 7.2 7.4 5.3 11 13 11 11 10 9.2	2.0 1.9 1.8 1.8 1.9 2.0 2.1 2.7 2.1 2.2 2.1 2.2 3.2 3.3	21 23 23 25 22 24 25 21 26 12 12 18 17 19 19 20	0.00 .00 .00 .00 .00 .00 .42 .00 .38 .00 .00 .00 .00 .00	5.70 3.63 3.34 5.11 5.97 6.93 6.87 7.56 6.81 4.3	26 22 25 22 19 22 20 19 22 17 29 30 28 32 30 32 31	33 42 34 38 39 36 39 38 41 27 28 25 30 30 31 25 27	0.001 .000 .001 .000 .001 .000 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .001							
Mean		1.1	3,590	10	2. 2	20	. 04	5. 3	26	33	. 004							

Monthly discharge, in second-feet, of North Fork of Red River near Headrick, Okla.

Month.	1905.	1906.	1907.	1908.	Mean.
JanuaryFebruary	-	140 95	817 425	349 285	435 268
March		42 497	304 270	215	187 384
May June July		797 610 697	1,260 2,130 410		$1,030 \\ 1,370 \\ 442$
August September	. 432	625 833	547 182		535 436
November	$\begin{array}{c c} 29 \\ 251 \end{array}$	599 592	$1,740 \\ 343$		789 395
December Mean		979 542	348 731		501

a Approximate.

NORTH PLATTE RIVER NEAR FORT LARAMIE, WYO.

Samples of water were collected from North Platte River near Fort Laramie, Wyo., from May 21, 1906, to April 20, 1907. A gaging station was established by the United States Geological Survey at Guernsey, Wyo., about 15 miles above Fort Laramie, June 14, 1900. Stream-flow data, including gage heights, rating tables, and esti-

mates of discharge, for the gaging station have been published by the Survey in the following reports:

Annual Report 22, IV, 312.

Water-Supply Papers: 49, p. 275; 52, p. 516; 66, pp. 27, 171; 75, pp. 125-126; 84, pp. 68–70; 99, pp. 165–167; 131, pp. 35–38; 172, pp. 196–199; 208, pp. 142–144; 246, pp. 231–234.

Partial analyses, gage heights, and rates of discharge of water and solids for North Platte River near Fort Laramie, Wyo.

[Drainage area, 16,200 square miles.]

	Anal	ysis (n	nilligra	ms per l	iter).	eet).	-puoses)	Solids (tons per
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (; feet).	Suspended matter.	Dissolved solids.
May 21. May 26. May 28. June 4. June 18. June 25. June 28. July 9, 10, 11, 12, 13, 14. July 16, 17, 18, 19, 20, 21. July 29, 30, 31, August 2, 3 August 5, 7, 8, 9, 10, 11. August 13, 14, 15, 17, 18. August 19, 20, 21, 22, 32, 25. August 24, 26, 27, 29, 31, September 1. September 9, 10. September 21, 22. September 25, 27, 28, 29. October 12, 2, 3, 4, 5, 6. October 12, 2, 23. October 21, 22, 33. October 21, 22, 33. November 4, 5, 6, 7, 8, 9. November 4, 5, 6, 7, 8, 9. November 19, 20, 21, 22, 23, 24. November 25, 26, 27, 28, 29, 30, 31, November 1, 3. November 11, 12, 13, 14, 15, 17. November 19, 20, 21, 22, 23, 24. November 25, 26, 27, 28, 29, 30, December 1. December 20, 31, 13, 14, 15. December 30, 31, January 14, 2, 3, 4, 5, January 6, 7, 8, 9, 10, 11, 12 January 20, 21, 22, 23, 24, 26. January 25, 27, 28, 30, 31 February 3, 5, 6, 7, 8, 9. February 10, 11, 12, 13, 14, 15, 16. February 3, 5, 6, 7, 8, 9. February 10, 11, 12, 13, 14, 15, 16. February 17, 18, 19, 20, 21, 23. February 24, 25, 26, 28, March 1, 2. March 34, 5, 6, 7, 8, 9. March 10, 11, 12, 13, 14. March 15, 16, 17, 18, 20, 21, 22, 23 March 24, 25, 26, 27, 29, 30. March 31, April 1, 2, 3, 5, 6. April 7, 8, 12, 13 April 14, 15, 16, 17, 18, 19, 20.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	105 128 121 108 108 89 83 70 98 86 96 82 85 154 153 137 144 143 137 160 162 136 140 163 174 163 174 169 119 119 119	16 10 10 6 6 8 14 12 10 10 15 15 25 20 20 17 23 18 29 17 21 19 21 19 21 19 21 19 21 19 21 19 21 19 21 19 21 19 21 19 21 19 21 19 21 21 21 21 21 21 21 21 21 21 21 21 21	578 2,980 2,580 640 260 392 264 752 800 2,180 334 1,430 300 210 288 578 108 124 602 354 228 204 62 384 144 1138 130 190 80 110 120 70 406 916 922 440 482 482 326 326 326	232 212 220 212 220 212 148 124 156 214 338 316 320 402 408 412 514 402 398 412 406 412 388 414 352 388 414 352 388 414 352 416 406 406 416 416 416 416 416 416 416 416 416 41			10,700 68,000 76,600 11,600 5,270 12,700 8,260 23,300 2,380 284 4,770 1,540 6,700 6,510 397 301 178 1,020 1,1980 1,430 813 645 183 1,110 2,510 2,510 525 529	

Relative amount of substances in solution in water from North Platte River near Fort Laramie, Wyo.

•	samples.		(Ds) liter).	Radicles in per cent of dissolved solids.								
Limiting dates of composite.	Number of daily san	Errors.	Dissolved solids (milligrams per lit	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+ $\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO ₄).	Chlorine (Cl).	Nitrate (NO8).	
1906–7.												
July 9-August 3. August 5-September 1. September 4-29. October 1-November 3. November 4-December 1. December 2-23. December 30-January 26. January 25-February 23. February 24-March 23. March 24-April 20.	24 23 12 18 25 24 26 24 26 23	-4.3 +3.0 +4.1 +6.6 +5.0 +4.6 +5.5 +6.6	272 364 418 434 394 440 498 420 424 366	17 18 17 16 19 16 16 16 15	4. 4 4. 9 4. 8 4. 1 4. 6 4. 3 4. 4 4. 0 4. 2 3. 8	5.9 10 12 12 11 12 11 12 11 12 8.3	0.00 .00 .00 .00 .00 .00 .00 1.1 .00	46 43 37 36 39 37 37 35 33 32	34 37 38 38 39 36 38 34 36	3.6 5.5 5.3 4.6 5.8 4.5 5.2 5.0 4.2 4.4	0.00 .01 .08 .00 .00 .04 .04 .05 T.	
Mean		5.0	403	17	4.4	10	.11	38	37	4.8	.02	

Monthly discharge, in second-feet, of North Platte River near Guernsey, Wyo.

Month.	1900.	1901.	1902.	1903.	1904.	1905.	1906.	1907.	1908.	Mean.
January February				987	1,080					1,030
March				897 $1,450$				d 2,720	1,090	897 $1,610$
April		2,070	1,880	2,710	1,710	2,540	4,140	3,650	1,960	2,580
May June	a 6.360	8,590 9,150	$\frac{5,560}{6,130}$	4,670 8,480	6,080 9,320	6,740 10,600	6,580 8,990	6,430 $13,300$	4,690 10,500	6,170 $9,200$
July	1,770	1,900	1,300	2,630	2,800	3,290	3,510	7,510	2,240	2,990
August September	b 289	706 316	400 196	635 665	715 488	1,040 382	$1,350 \\ 672$	1,850 994	1,150 583	925 509
October			436	980	652	435	629	981	614	675
November			$\begin{array}{c} 516 \\ 663 \end{array}$	869 882	503 c 589	559	1,270	1,100	670	784 711
Mean				2,160						2,340

a June 14–30. b September 1–13.

OWENS RIVER NEAR ROUND VALLEY, CAL.

Samples of water were collected from Owens River at a footbridge near Round Valley, Cal., from May 13, 1906, to April 27, 1907. A gaging station was established by the United States Geological Survey near Round Valley August 3, 1903. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the gaging station have been published by the Survey in the following reports:^a

Water-Supply Papers: 100, pp. 206–207; 134, pp. 200–203; 177, pp. 50–52; 213, pp. 35–37; 251, pp. 53–55.

Additional information in regard to the quality of the water of Owens River near Round Valley is contained in Water-Supply Paper 237, "Quality of California surface waters," pages 118–119.

c December 1-15. d Approximate.

Partial analyses, gage heights, and rates of discharge of water and solids for Owens River at footbridge near Round Valley, Cal.

[Drainage area, 400 square miles.]

	Analy	vsis (m	illigraı	ms per	liter).	(feet).	-puoses		s (tons day).
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO3).	Chlorine radicle (Cl).	Suspended mat- ter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (second-feet).	Suspended mat- ter.	Dissolved solids.
1906–7.	-								
May 13, 14, 15, 17, 18, 19. May 20, 21, 22, 23, 24, 25, 26. May 27, 28, 29, 30, 31, June 1, 2. June 3, 4, 5, 7, 8, 9. June 10, 11, 12, 13, 14, 15, 16. June 24, 25, 26, 27, 28, 29, 30. July 1, 2, 3, 4, 5, 6, 7. July 30, 31, August 1, 2, 3, 4. August 5, 6, 8, 9, 10, 11. August 12, 13, 14, 15, 17, 18. August 19, 20, 21, 22, 23, 24, 25. August 26, 27, 28, 29, 30, 31, September 1. September 2, 3, 4, 5, 6, 7, 8. September 9, 10, 11, 12, 13, 14. September 16, 17, 18, 19, 20, 21, 22. September 23, 24, 25, 26, 27, 28, 29. September 30, October 1, 2, 3, 4, 5, 6. October 7, 8, 9, 10, 11, 12, 13. October 14, 15, 16, 17, 18, 19, 20. October 21, 22, 32, 34, 25, 26, 27. October 22, 29, 30, 31, November 1, 2, 3. November 4, 5, 6, 7, 8, 9, 10. November 18, 19, 20, 21, 22, 23, 24. November 25, 26, 27, 28, 29, 30. December 20, 11, 12, 13, 14, 15, 16, 17. November 18, 19, 20, 21, 22, 23, 24. November 25, 26, 27, 28, 29, 30. December 20, 11, 12, 13, 14, 15, 16, 17. November 18, 19, 20, 21, 22, 23, 24. November 25, 26, 27, 28, 29, 30. December 20, 3, 4, 5, 6, 7, 8. December 30, 31, January 1, 2, 3, 4, 5 January 6, 7, 8, 9, 10, 11, 12. January 13, 14, 15, 16, 17, 18, 19 January 27, 28, 29, 30, 31, February 1, 2 February 3, 4, 5, 6, 7, 8, 9. February 10, 11, 12, 13, 14, 15, 16. February 17, 18, 19, 20, 21, 22, 23 February 24, 25, 26, 27, 28, March 1, 2 March 17, 18, 19, 21, 22, 23 March 34, 4, 56, 6, 7, 8, 9. March 17, 18, 19, 21, 22, 23 March 18, 16, 17, 18, 19, 20 April 21, 22, 23, 24, 25, 26, 27	0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	112 102 137 83 76 88 80 82 46 85 101 106 91 98 120 88 112 124 129 128 120 135 150 160 170 223 157 162 164 176 241 241 241 241 251 205 200 176 200 176 200 176 200 200 200 200 200 200 200 200 200 20	19 15 25 20 10 10 10 10 10 15 17 18 17 22 16 17 22 23 21 26 7 16 27 31 30 34 35 47 38 36 38 40 62 57 36 44 46 59 31 26 25 21	28 10 18 34 70 40 52 64 12 28 66 68 74 12 28 26 0 6 22 30 84 46 8 10 70 40 28 14 56 86 30 34 46 66 238 90 662 34 20 22	210 214 246 170 130 154 154 164 164 114 162 2188 222 232 202 232 202 232 202 232 202 232 202 232 202 232 202 232 202 232 240 202 238 240 258 274 286 258 274 280 280 280 280 280 280 280 280 280 280		340 368 368 456 645 747 763 686 606 514 390 374 291 287 268 248 242 238 251 237 218 242 238 263 274 285 274 285 274 285 274 285 274 285 274 285 274 285 274 285 274 285 274 285 274 285 274 285 274 285 274 285 274 285 274 285 274 285 274 285 275 276 276 277 278 488 488 488 488 488 488 488 4		193 213 223 209 226 310 317 320 337 285 233 186 120 163 172 188 182 162 180 146 133 186 46 134 119 149 154 164 221 286 171 162 203 315 204 433 315 204 433

Relative amount of substances in solution in water from Owens River at footbridge near Round Valley, Cal.

	samples.		(Ds) er).		Radicl	es in p	er cent	of dis	solved	solids.	
Limiting dates of composite.	Number of daily san	Errors.	Dissolved solids (Ds) (milligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+ $\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO4).	'Chlorine (Cl).	Nitrate (NO3).
1906–7.											
May 13-June 9. June 10-July 7. July 30-August 25. August 26-September 22. September 23-October 20. October 21-November 17. November 25-December 15. December 16-January 12. January 13-February 9. February 10-March 9. March 10-April 6. April 7, 27.	24 26 25 27 28 28 27 28 28 28 27 21	$ \begin{array}{r} -1.8 \\ +8.3 \end{array} $ $ \begin{array}{r} -2.1 \\ -7 \\ +6.2 \\ +4.4 \\ +3.7 \end{array} $ $ \begin{array}{r} +2.5 \end{array} $	198 154 152 186 228 208 256 348 314 380 392 222	11 17 14 10 7.9 7.7 7.8 6.9 6.7 6.3 6.9	2.2 2.9 2.6 3.4 2.0 4.0 2.3 1.7 2.1 1.8 2.2	18 17 22 21 · 26 20 26 24 27 27 19	0.00 .00 .00 .00 .00 .00 .00 .00 .00 .0	63 62 58 54 55 53 55 58 51 55	9.1 11 12 10 16 12 11 8.6 7.6 7.7 10	11 12 9.9 9.1 11 12 13 13 14	0.00 .01 .01 .02 .01 .00 .11 .00 .01 T.
Mean		3.7	253	9.5	2.5	22	.20	56	10	12	. 02

Monthly discharge, in second-feet, of Owens River near Round Valley, Cal.

Month.	1903.	1904.	1905.	1906.	1907.	1908.	Mean.
January		157	193	199	247	227	205
February Marah		221 260	196 213	$\frac{205}{270}$	$\frac{281}{341}$	223 279	225 273
MarchA pril		202	177	345	270	242	247
May		300	246	328	438	274	317
June		532	392	624	616	313	495
July August	a 169	428 336	275 169	696 535	856 432	289 264	509 317
September	167	281	180	330	305	222	247
October	172	266	180	273	285	192	228
November	163	246	197	239	252	184	214
December	161	218	179	256	245	182	207
The year		287	216	358	381	241	290

a August 4-31.

OWENS RIVER NEAR TINEMAHA, CAL.

Samples of water were collected from Owens River at the intake of the proposed Los Angeles aqueduct near Tinemaha, Cal., from November 6, 1906, to April 14, 1907. A gaging station was established near Tinemaha by the United States Geological Survey September 20, 1906, and measurements of the stream at this point were made previous to that date by the city of Los Angeles. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the gaging station have been published by the Survey in the following reports:

Water-Supply Papers: 213, pp. 38–39; 251, pp. 56–58.

Additional information in regard to the quality of the water of Owens River near Tinemaha is contained in Water-Supply Paper 237, "Quality of California surface waters," pages 120-121.

Partial analyses, gage heights, and rates of discharge of water and solids for Owens River at the intake of the Los Angeles aqueduct, near Tinemaha, Cal.

			Aı	nalysis	(milli	grams	per lite	er).				et).	Solids per d	(tons lay).
Dates.	Calcium radicle (Ca).	Magnesium radi- cle (Mg).	Sodium and potassium radicles (Na+3K).	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Sulphate radicle (SO ₄).	Chlorine radicle (Cl).	Nitrate radicle (NO ₃).	Suspended matter (Sm).	Dissolved solids (Ds).	Gage height (feet).	Discharge (second-feet).	Suspended matter.	Dissolved solids.
1906-7.														
November 6 November 15 November 27 December 8 December 8 December 30 January 6 January 13 January 27 February 10 February 17 February 17 February 24 March 3 March 10 March 12 March 31 April 7 April 14	28 30 31 31 36 36 37 32 32 31 38 44 41 26 30 35 32 33	10 10 11 12 12 11 10 10 10 10 10 10 10	59 64 68 87 99 84 95 82 108 83 96 94 136 99 104 95 78 74		163 152 151 186 235 205 235 194 201 210 221 224 269 217 224	44 38 43 52 43 41 57 57 47 50 43 37 57 51 34 39 35 39	27 31 35 40 51 44 51 46 51 51 52 47 72 49 46	0.00 .00 .00 .00 .00 .00 .00 .00 .00 .0	44 88 72 48 150 110 44 142 206 74 124 152 26 70 84 36 130 100 216 70 92	280 272 296 364 410 344 438 374 464 374 410 370 370 376 394 360 326 294	2.00 2.05 2.10 2.60 2.70 2.35 2.70 2.50 2.70 2.70 2.90 2.40 2.65 2.45 4.80 2.40 1,60	418 426 434 524 542 479 542 451 561 494 494 561 538 430 472 410 483 440 1,020 538 430 286	50 102 84 68 220 142 64 173 312 99 165 230 38 81 107 40 119 595 102 107 88	316 313 347 515 6000 445 641 453 702 499 523 536 595 430 486 652 447 1,080 523 379 227
Mean	33	10	90	0	206	44	46	.02	100	371	2.61	499	143	506

Relative amount of substances in solution in water from Owens River at the intake of the Los Angeles aqueduct, near Tinemaha, Cal.

		(Ds) Iter).		Ra	idicles in	per cent	of disso	lved soli	ds.	
Dates.	Errors.	Dissolved solids (Ds) (milligrams per liter)	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+ $\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO ₄).	Chlorine (Cl).	Nitrate (NO3).
1906–7.										
November 6. November 15 November 27 December 8. December 8. December 16 December 30 January 6 January 13 January 20 January 27 February 17 February 17 February 17 February 17 February 17 March 18 March 19 March 17 March 24 March 31 April 7 April 14	+4.9 +6.5 +2.3 +7.3 +9.8	280 272 296 364 410 344 438 372 464 374 392 354 410 370 376 394 500 376 396 326 294	10 11 10 8.5 9.0 8.2 9.7 8.0 7.8 8.4 10 8.6 8.2 6.9 9.7 9.8 11	2.9 3.5 3.0 2.6 2.8 2.5 3.2 2.6 3.1 2.4 2.7 2.6 2.5 2.2 1.7 2.6 2.9 3.4	21 24 23 24 24 22 22 22 23 22 24 27 26 26 26 26 26 26 26 26 26 26	0.00 .00 .00 .00 .00 .00 .00 .00 .00 .0	58 56 51 57 60 54 52 51 54 54 62 55 55 56 54 58 57 62	16 14 15 14 10 12 13 13 12 13 12 11 10 9, 4 11 14 8, 6 11 11 13	9.6 11 12 11 12 13 12 11 13 12 13 14 13 14 13	0. 00 .00 .00 .00 .01 .00 .02 .01 .00 .00 .00 .00 .00 .Tr. Tr. .00 .Tr.
Mean	6.1	371	9.0	2.7	24	.00	56	12	12	Tr.

Partial sanitary analyses of water from Owens River at the intake of the Los Angeles aqueduct, near Tinemaha, Cal.

[Milligrams per liter.]

		Nitroge	n as—			
Dates.	Free ammo- nia.	Albumi- noid ammo- nia.	Nitrites.	Nitrates.	Oxygen con- sumed.	Dis- solved solids.
1906–7.						
November 27. January 21. February 20. March 20.	0.062 .024 .140 .131	0.114 .134 .270 .200	0.000 .002 Trace. Trace.	0.000 .005 Trace. Trace.	1.80 3.64 2.20 4.88	310 408 396 416
Mean	. 089	. 180	Trace.	Trace.	3.13	. 382

Monthly discharge, in second-feet, of Owens River at the intake of the Los Angeles aqueduct, near Tinemaha, Cal.

Month.	1906.	1907.	1908.	Mean.
January		500 493	539 584	492 478
MarchApril	438	646 315	485 145	523 283
May	729	$ \begin{array}{r} 264 \\ 660 \\ 1,280 \end{array} $	58 57 188	174 482 $1,230$
July August September	1,210	698 310	274 173	727
October November	339 423	460 538	298 397	366 453
December The year		527	300	500

PALOUSE RIVER NEAR HOOPER, WASH.

Samples of water were collected from Palouse River near Hooper, Wash., from May 22 to October 8, 1905. A gaging station was established by the United States Geological Survey near Hooper April 1, 1897. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the gaging station have been published by the Survey in the following reports:

Annual Reports: 19, IV, p. 460; 20, IV, pp. 62, 489-490; 21, IV, pp. 414-415; 22, IV, p. 452.

Water-Supply Papers: 16, p. 172; 28, pp. 155, 162, 168, 170; 38, pp. 360–361; 39, p. 454; 51, pp. 443–444; 52, p. 522; 66, pp. 136–137, 177; 75, p. 206; 85, pp. 203–205; 100, pp. 413–415; 135, pp. 243–247; 178, pp. 171–173; 214, pp. 119–121; 252, pp. 281–283.

Partial analyses, gage heights, and rates of discharge of water and solids for Palouse River near Hooper, Wash.

[Drainage area, 2,210 square miles.]

	Ar	alysis (n	nilligram	s per lite	er).	height	ge (sec-	Solids (tons per
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorinerad- icle (CI).	Suspended matter (Sm).	Dissolved s o lids (Ds).	Mean gage (feet).	Mean discharge ond-feet).	Suspended matter.	Dissolved solids.
1905.									
May 22, 23, 24, 25, 26 May 28, 29, 30, June 1, 2 June 5, 6, 7, 8, 9 June 11, 12, 13, 14, 15, 16, 17 June 18, 19, 20, 21, 22, 23, 24. June 25, 26, 28, 29, 30, July 1 July 2, 3, 4, 5, 6 July 7, 8, 9, 10, 12, 13, 14, 15 July 16, 17, 18, 20, 21, 22 July 23, 24, 25, 26, 27, 28, 29 July 30, 31, August 1, 2, 3, 4, 5. August 6, 7, 8, 9 August 14, 15, 16, 17, 18, 19 August 21, 22, 23, 24, 25, 26. August 27, 28, 29, 30, 31, September 1, 2. September 3, 4, 5, 6, 7, 8, 9	0 0 0 0 0 0 0 0 0 7 18 0 0	81 66 86 72 83 97 95 112 ·133 126 106 142 148 145	8 5 14 15 6 18 8 9 23 13 9	90 82 34 34 46 68 100 52 4 14 20 0 64 40	146 108 164 134 126 148 134 218 166 182 164 188 162 158	2.5 2.9 2.9 2.4 1.8 1.7 1.3 1.2 1.0 0.8 0.8 0.7	300 386 419 279 154 156 135 76 57 42 32 30 27 24	73 85 38 26 19 29 36 11 1 2 2 0	118 113 185 101 52 62 49 45 26 21 14 15
tember 1, 2	0	169 154	5 11	12 30	202 148	0.7 0.6	23 20	$\frac{1}{2}$	13 8
September 10, 11, 12, 13, 14, 15, 16. September 17, 18, 19, 20, 22, 23. September 24, 25, 26, 28, 29, 30. October 4, 5, 6, 7, 8.	0 0 0 0	136 159 160 329	13 10 11 18	40 38 20 32	162 · 166 202 632	$0.6 \\ 0.7 \\ 0.7 \\ 1.3$	21 24 26 73	$\begin{bmatrix} 2\\2\\1\\6 \end{bmatrix}$	9 11 14 125

Relative amount of substances in solution in water from Palouse River near Hooper, Wash.

	daily .		solids illigrams).		Radi	icles in p	er cent	t of dis	solved	solids.	
Limiting dates of composite.	Number of samples.	Errors.	Dissolved s (Ds) (millig per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+3K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO ₄).	Chlorine (Cl).	Nitrate (NO3)
1905.											
May 22–June 17. June 18–July 15. August 14–September 9. September 10–October 8.	22 26 26 24	+4.9	116 136 183 243	12 19 14	5. 3 5. 6 6. 0 5. 8	17 8.8 15 19	0.00 .00 .00	64 71 84 78	15 11 23	5. 4 5. 7 4. 6 6. 2	0.11 .13 .10 .18
Mean		3. 2	170	15	5. 7	15	.00	74	16	5. 5	.13

81210°-wsp 274-11-6

Monthly discharge, in second-fee	et, of Palouse I	River near Hooper,	Wash.
----------------------------------	--------------------	--------------------	-------

Month.	1897.	1898.	1899.	1900.	1901.	1902.	1904.	1905.	1906.	1907.	1908.	Mean.
January		1,040	1,130		1,080	216	409	181	319	1,240		702
February		$3,190 \\ 2,140$	$1,360 \\ 1,370$		1,530 $2,100$	$\frac{1,090}{716}$	873 4,300	225 348	878 964	$\frac{4,820}{3,550}$		1 0 40
April		2, 410	1,890	568	861	370	3,350	380	943	a 2, 570		1,480
May		733	827	392	248	515	678	294	253		. 170	492
June		$\frac{305}{100}$	176 51	142 34	$\frac{176}{73}$	$\frac{150}{178}$	$258 \\ 79$	258 74	279		a 172 56	212
August		33	24	21	9	75	24	27	27		26	30
September	a 64 57	30 46	27 49	20 93	7 8	62 67	17 28	22 82	30 34		25 53	30
October	357	83	110	89	23	118	40	77	235		67	120
	1,420	99	718	811	74	452	63	126	1,470		82	532
The year		850	. 644		515	334	844	175	459			618

a Approximate.

PAYETTE RIVER NEAR HORSESHOE BEND, IDAHO.

Samples of water were collected from Payette River at Jerusalem, near Horseshoe Bend, Idaho, from May 15 to September 15, 1906. A gaging station was established by the United States Geological Survey at Jerusalem February 13, 1906. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the gaging station have been published by the Survey in the following reports:

Water-Supply Papers: 214, pp. 97-98; 252, pp. 253-256.

Partial analyses, gage heights, and rates of discharge of water and solids for Payette River at Jerusalem, near Horseshoe Bend, Idaho.

[Drainage area, 2,240 square miles.]

	Àn	alysis (n	nilligram	s per lite	t (feet).	(second-	Solids (tons per day).		
Dates.	Carbonate radi- cle (CO ₃).	Bicarbonate radicle (HCO3).	Chlorine radicle (Cl).	Suspended mat- ter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (a	Suspended mat- ter.	Dissolved solids.
1906.		`	·						
May 15. May 17. May 18. June 16. June 17. June 27. June 28. June 30. July 2, 4, 5, 6, 7. July 8, 10, 11, 12, 13, 14. July 15, 16, 17, 18, 19, 20. July 22, 23, 24, 25, 26, 27, 28. July 29, 30, August 1, 2, 3, 4. August 5, 6, 7, 8, 9, 10, 11. August 15, 16, 17, 18. August 19, 20, 21, 22, 23, 24, 25. August 26, 27, 28, 29, 30, September 1 September 2, 3, 4, 5, 6, 7, 8.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13 26 19 26 26 26 26 26 28 35 42 43 29 56 62 51	4 6 6 8 8 10 6 6 10 5 5 10 5 8 9	40 20 4 40 32 24 12 140 8 52 0 0 0 62 20	76 72 84 60. 72 64 76 76 52 64 86 112 116 74 100 46	8.1 7.6 7.2 7.5 7.6 6.5 7.0 6.8 6.2 5.7 5.1 4.6 4.3 4.2 4.1 4.0	9,550 8,150 7,070 7,88 150 5,260 6,540 6,280 6,020 4,550 3,530 2,420 1,670 1,330 1,130 1,030	1,030 440 76 852 704 341 212 2,370 130 640 0 0 0 0 0 56	1,960 1,590 1,600 1,280 1,580 908 1,340 640 610 562 505 417 246 305 128

Relative amount of substances in solution in water from Payette River at Jerusalem, near Horseshoe Bend, Idaho.

	sam-		(Ds) liter).		Radicl	es in p	er cen	t of dis	solved	solids.	
Limiting dates of composite.	Number of daily ples.	Errors.	Dissolved solids (milligrams per li	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+3/4 K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlqrine (Cl).	Nitrate (NO ₃).
1906.											
July 2–28	24 24 18	+ 9.1 + 9.4	76 88 96	16 18 15	3.3 6.6 4.9	16 17	0.00 .00 .00	55 52 54	7. 6 12 21	13 11 10	0.00 .01 .00
Mean		9. 2	. 87	16	4. 9	16	.00	54	14	11	T.

Monthly discharge, in second-feet, of Payette River near Horseshoe Bend, Idaho.

Month.	1906.	1907.	1908.	Mean.
JanuaryFebruary		b 3,010	1,150 1,050	1,150 1,720
March April	1,930 4,960	5,550 9,790	2,230 6,200	3, 240 6, 980
MayJuneJuly.	6,560	13,400 13,100 7,980	7,040 7,560 4,480	9,23 9,07 5,12
August	1,120	2,720 1,420	1,430 1,250	1,76 $1,19$
SeptemberOctoberNovember		1,180 1,130	1,530 1,420	$1,19 \\ 1,56$
December		1,190	3,040	1,14 3,61

a February 13-28.

PECOS RIVER AT CARLSBAD, N. MEX.

Samples of water were collected from Pecos River at Green Street, Carlsbad, N. Mex., from May 22, 1905, to April 30, 1907. A gaging station was established at Carlsbad by the United States Geological Survey May 20, 1903, and discontinued March 31, 1908. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the gaging station have been published by the Survey in the following reports: ^a

Water-Supply Papers: 99, pp. 358-360; 132, pp. 103-104; 174, pp. 102-105; 210, pp. 90-91; 248, pp. 125-126.

Further information relative to the quality of water of Pecos River at Carlsbad is contained in a paper entitled "Principles of water analysis," by Arthur Goss, in Bulletin 34, New Mexico Agricultural Experiment Station.

b February 17-28.

a See also Fourth Ann. Rept. U. S. Reclamation Service, pp. 271-272.

Partial analyses, gage heights, and rates of discharge of water and solids for Pecos River at Green Street, Carlsbad, N. Mex.

[Drainage area, 22,000 square miles.]

	Ana	alysis (milligr	ams per	liter).	feet).	-puoses)		tons per
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (s	Suspended matter.	Dissolved solids.
1905–1907.								-	
May 22, 23, 24, 25, 26, 27. May 28, 29, 30, 31, June 1 June 10, 11, 12, 13, 14, 15, 16, 17. June 18, 19, 21, 22, 23. June 29, 30, July 1 July 2, 3, 5, 14, 15. July 16, 18, 19, 20, 21, 22. July 23, 24, 25, 26, 27, 28, 29. July 31, August 1, 2, 3, 4, 5. August 7, 8, 9, 10, 11. August 14, 15, 16, 17, 18, 19. August 20, 21, 22, 23, 24, 25.	11 .10 0 0 0 0 0 0 0 0 0 13	133 115 123 143 163 167 154 112 130 159 151	127 189 302 329 506 503 675 179 291 382 348 435	532 150 100 210 372 100 1,140 276 102 136 176	1,240 1;610 2,110 3,160 2,920 3,570 1,320 1,740 2,420 2,110 2,570	3.6 3.3 3.3 2.1 1.2 1.2 1.2 8.7 4.0 2.5 1.5	2,390 2,070 2,040 978 305 297 324 21,000 2,960 1,280 477	3,430 840 2,640 173 298 87 64,800 2,210 353 329 227	8, 020 9, 020 5, 590 2, 600 2, 350 3, 120 75, 000 13, 900 8, 380 5, 100 3, 310
August 27, 28, 29, 30, 31, September 1, 2 September 3, 5, 6, 7, 8, 9 September 10, 11, 12, 14, 15, 19, 20 September 21, 22, 23, 24, 25, 26, 27 September 28, 29, 30, October 1, 2, 3, 4. October 6, 9, 10, 11, 12, 13, 14 October 15, 16, 17, 18, 19, 20, 21 October 23, 24, 25, 27, 28 October 26, 29, 30, 31, November 10,	0 0 1 8 0 7 12 0	159 105 139 161 151 153 156 180	623 512 339 418 523 475 424 424	98 508 1,040 162 226 304 204 120	3, 350 2, 800 2, 400 2, 790 3, 060 2, 830 2, 770 2, 790	1.2 2.1 1.6 1.1 1.4 1.1 1.2	320 938 635 244 408 255 270 281	85 1, 290 1, 790 107 249 209 149 91	2,900 7,090 4,100 1,840 3,380 1,950 2,020 2,120
11	$\begin{array}{c} 8\\12\\0\end{array}$	169 155 179	425 697 557	12 168 98	2,820 3,340 3,040	$1.2 \\ 1.8 \\ 1.7$	287 697 644	9 316 170	2,190 6,280 5,300
November 26, 27, 28, 29, 30, December 1, 2. December 3, 4, 5, 6, 7, 8, 9. December 20, 22, 23, 25, 26, 29, 30. December 31, January 1, 2, 3, 4, 6. January 7, 8, 9, 10, 11, 12, 13. January 14, 15, 16, 17, 18, 19, 20. January 22, 23, 24, 25, 26, 27, 28. January 29, 30, 31, February 2, 3. February 4, 5, 6, 7, 8, 9, 10. February 11, 12, 13, 14, 15, 16, 17. February 18, 19, 20, 21, 22, 23, 24. February 18, 19, 20, 21, 22, 23, 24. February 12, 26, 27, 28, March 1, 2, 3. March 16, 12, 13, 14, 15, 17. March 18, 19, 21, 22, 23, 24. March 25, 26, 27, 28, 29, 30, 31. April 1, 2, 3, 4, 5, 6. April 11, 12, 13, 14. April 15, 16, 17, 19, 20, 21. April 29, 30, May 1, 2, 3, 4, 5. May 6, 7, 8, 9, 10, 11, 12. May 13, 14, 15, 16, 17, 18, 19. May 20, 21, 22, 23, 24, 25, 26. April 29, 30, May 1, 2, 3, 4, 5. May 6, 7, 8, 9, 10, 11, 12. May 13, 14, 15, 16, 17, 18, 19. May 20, 21, 22, 23, 24, 25, 26. May 27, 28, 29, 30, 31, June 1. June 10, 11, 12, 13, 14, 15, 16 June 17, 18, 19, 20, 21, 22, 23 June 25, 26, 27, 28, 29, 30. July 1, 2, 3, 4, 5, 6, 7 July 8, 10, 12, 14. July 15, 16, 17, 18, 19, 20, 21. "July 22, 24, 25, 26, 27, 28. July 29, 30, 31, August 1, 2, 3, 4. August 15, 6, 8, 9, 10, 11. August 12, 13, 14, 15, 16.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	158 171 188 205 191 198 185 205 197 199 179 179 179 169 153 125 99 153 10 134 77 118 85 121 137	412 313 366 510 582 557 459 470 614 570 614 577 484 367 367 367 459 658 382 381 426 406 351 233 391 461 409	1,480 834 782 678 540 914 552 358 294 312 448 384 3170 32 42 42 80 0 0 496 370 0 496 370 0 158 184 164 204 60 94 134 176 198 176	2,580 2,100 2,130 2,880 2,760 2,650 2,650 2,620 2,950 3,010 2,710 2,740 2,740 2,980 2,960 3,810 2,960 3,810 2,960 2,100 2,960 2,100	2.6 1.6 1.6 1.6 1.6 1.6 1.6 1.2 1.1 1.2 1.2 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	1,360 941 751 579 565 537 541 493 492 473 514 493 393 266 183 221 239 268 252 476 1,300 809 270 295 1,020 433 644 297 310 301 861 2,100 477 268 287 841	5,430 2,120 1,590 1,060 806 477 390 398 623 512 16 25 52 0 455 0 1,080 270 435 215 285 164 50 76 312 396 255 128 67 745	9, 450 5, 350 4, 340 4, 380 4, 400 4, 110 3, 580 3, 520 3, 340 4, 090 4, 010 3, 060 1, 900 1, 340 1, 620 1, 770 2, 020 2, 030 3, 800 13, 400 5, 020 1, 880 2, 410 6, 600 2, 810 4, 710 2, 370 2, 340 2, 370 2, 340 2, 390 5, 280 5, 680

Partial analyses, gage heights, and rates of discharge of water and solids for Pecos River at Green Street, Carlsbad, N. Mex.—Continued.

	An	alysis (milligr	ams per	liter).	eet).	-puopes	Solids (tons per y).
	cje	di-		ter	solids	ht"(J		ter.	f.,
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine (Cl).	Suspended matter (Sm).		gage height (feet).	discharge (second-feet).	Suspended matter.	Dissolved solids:
	Carbo	Bicart	Chlori	Suspe	Dissolved (Ds).	Mean a	Mean	gasber	Dissol
1905–1907.									
August 19, 20, 21, 22, 23	0	169	415	100	2,670	1.1	254	69	1,830
tember 1. September 2, 3, 4, 5, 7, 8 September 10, 11, 13, 14. September 16, 17, 18, 19, 20, 22. September 23, 24, 25, 26, 27, 28, 29. September 30, October 1, 2, 3, 4. October 7, 8, 9, 11, 12, 13. October 14, 15, 17, 18, 19, 20. October 22, 23, 24, 25, 26; 27. October 28, 29, 30, 31, November 1,	0 12 9 0 0 0 0 8 0	115 146 149 160 163 160 157 139 157	437 365 368 375 369 373 355 373 353	136 140 78 88 104 212 34 44 150	2,520 2,790 2,800 2,770 2,770 2,880 2,830 2,940 2,710	1.7 1.0 1.0 1.0 1.1 1.1 1.1	673 205 203 202 212 222 215 225 229	247 78 43 47 60 127 20 27 93	4,590 1,540 1,540 1,560 1,590 1,730 1,640 1,790 1,670
2, 3	0 0 0	154 147 152 161	359 340 352 396	406 220 4 16	2,700 2,730 2,850 2,880	1.1 1.1 1.1 1.2	230 233 242 284	252 139 3 12	1,680 1,720 1,860 2,200
December 2, 3, 4, 5, 6, 7, 8 December 9, 10, 11, 12, 13, 14 December 15, 16, 17, 18, 19, 20, 21, 22 December 23, 24, 25, 26, 27, 28, 29 December 30, 31, January 1, 2, 3, 4, 5 January 6, 7, 8, 9, 10, 11, 12 January 13, 14, 15, 16, 17, 18 January 19, 20, 21, 22, 23, 24, 25, 26 January 27, 28, 29, 30, 31, February	10 0 0 0 0 0 0 0 0	39 161 169 168 163 162 182 167 161	594 902 502 450 459 475 570 553 514	192 138 176 164 28 26 50 90 88	3,020 3,660 2,680 2,670 2,880 2,920 2,950 2,890 2,860	2.8 2.8 2.2 1.3 1.1 1.1 2.1 1.6 1.5	711 1,580 1,020 341 222 242 954 594 510	369 588 485 151 17 17 129 144 121	5,810 15,600 7,360 2,460 1,730 1,910 7,600 4,630 3,950
1, 2	0 5 5 0 0 0 0 14 0 0 5 0	169 141 148 155 153 148 143 153 136 148 177 148	541 480 503 501 558 531 516 520 490 452 338 368	530 200 54 232 60 22 80 20 2 28 280 280 58 68	2,410 2,780 2,650 3,030 3,000 3,070 3,050 3,060 2,870 2,860 2,640 2,110 2,180	1.7 1.2 1.6 1.2 1.6 1.3 1.2 1.0 0.9 0.7 0.7	631 275 590 275 535 350 275 255 180 180 150 104 100	903 149 86 172 87 21 60 14 1 14 113 16 18	4,110 2,070 4,230 2,250 4,330 2,900 2,260 2,110 1,400 1,390 1,070 594

Relative amount of substances in solution in water from Pecos River at Green Street, Carlsbad, N. Mex.

	ples.		(Ds)		Radic	les in p	er cen	t of dis	solved	solids	
Limiting dates of composite.	Number of daily samples.	Errors.	Dissolved solids (D (milligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+3/K).	Carbonate (CO3).	Bicarbonațe (HCO ₃).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NO ₃).
1905–1907.	ļ		•								
May 22–June 23. June 29–July 29. July 31–August 25. August 27–September 27. September 28–October 28. October 26–December 2. December 3–January 6. January 7–February 3. February 4–March 3. March 3–29. March 5–31. April 1–26. April 29–May 26. May 27–June 30. July 1–28. July 29–August 23. August 25–September 22. September 23–October 20. October 22–November 17. November 18–December 14. December 15–January 12. January 13–February 9. February 10–March 2. March 30–April 30.	24 21 23 27 26 26 26 28 27 24 21 28 24 23 24 23 24 23 25 29	-2.7 -0.3 +1.4 +1.5 -1.0 +1.2 -3.5 + .6 +2.1 -1.8 -2.9 + .5 + .7 +1.9	1,740 2,850 2,160 2,810 2,970 2,850 2,460 2,920 2,920 2,770 2,880 2,580 2,580 2,740 2,740 2,740 2,970 2,070 2,070 2,070 2,070 2,070 2,070 2,070 2,070 2,070 2,070 2,070 2,070 2,070 2,070	14 18 13 13 12 15 15 16 15 13 13 14 15 15	3. 0 4. 3 3. 1 3. 4 3. 5 4. 1 3. 5 3. 4 3. 5 3. 2 3. 3 3. 6 3. 3 3. 5 3. 3 3. 5 3. 5	10 a13 10 11 11 9.2 11 13 13 10 9.6 9.5 9.8 10 8.3 11 10 8.8 10	0.00 .00 .00 .00 .00 .00 .00 .00 .00 .0	7.84 6.66 5.67 6.11 6.83 4.49 3.22 5.07 5.37 5.26 5.22 7.5	45 42 43 43 44 40 38 43 43 46 47 48 45 41 44 43 43 43	15 20 16 17 16 18 19 19 19 16 14 16 15 17 15 20 17 18 18	0.007 .000 .006 .001 .001 .000 .000 .000 .000
Mean		1.7	2,720	14	3.5	11	.01	5.7	44	. 17	.001

a Sodium is 85 per cent and potassium is 20 per cent of this amount.

Monthly discharge, in second-feet, of Pecos River at Carlsbad, N. Mex.

Month.	1899.a	1900.a	1901.a	1902.a	1903.a	1903.	1904.	1905.	1906.	Mean.
January February March April May June July August September October November December	301 140 172 240 207 356 355 236	256 164 130 171 577 447 242 398 1,130 418 248 90	156 197 121 238 258 293 629 55 182 76 88 162	211 140 194 165 387 350 312 707 528 237 1,410 248	282 280 137 79 162 1, 330 184 203 71 99 52 24	b 1,960 164 *93 83 82 82 82 80	99 94 85 88 84 91 96 132 152 b 4, 270 695 b 521	392 838 1,270 1,080 1,570 1,260 5,240 1,160 486 308 739 742	528 482 240 580 552 511 884 499 207 217 327 744	268 312 290 322 479 717 901 400 342 643 409 317
Mean	216	356	205	407	242		534	1,260	481	450

 $[^]a$ Taken from Fourth Ann. Rept. U. S. Reclamation Service, p. 271. The figures represent the flow through the headgates and over the spillway at Avalon dam, but are approximately correct for Carlsbad. b Approximate.

PECOS RIVER NEAR DAYTON, N. MEX.

Samples of water were collected from Pecos River below Penasco River near Dayton, N. Mex., from July 20, 1905, to April 20, 1907. A gaging station was established by the United States Geological Survey near Dayton March 24, 1905. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the gaging station have been published by the Survey in the following reports:

Water-Supply Papers: 174, pp. 99-101; 210, pp. 83-85; 248, pp. 119-122.

Partial analyses, gage heights, and rates of discharge of water and solids for Pecos River below Penasco River, near Dayton, N. Mex.

[Drainage area, 20,000 square miles.]

[D	rainage	e area,	20,000	square n	nnes. j				
•	Ąns	alysis (milligr	ams per	liter).	feet).	-puos)	Solids per d	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (see feet).	Suspended matter.	Dissolved solids.
1905–1907. July 20, 24, 25, 27, 28, 29 July 30, 31, August 1, 2, 3, 4, 5 September 6, 8, 9, 13, 15, 16 September 7, 17, 18, 20, 21, 23, 24 September 26, 29, 30, October 1, 2, 3, 5, 6. October 12, 13, 14, 15, 19, 20 October 22, 23, 25, 29, 30, 31, Novem-	0 4	112 140 131 141 161 163	114 352 397 642 758 717	11, 400 1, 740 4, 120 2, 210 442 522	748 2,040 2,440 3,380 3,700 3,560	7.0 3.8 2.3 2.2 1.6 1.7	14, 900 980 543 553 226 214	457,000 4,600 6,050 3,300 269 302	30, 100 5, 400 3, 580 5, 050 2, 260 2, 050
November 6, 7, 9, 10, 14, 20, 23	0	177 188	784 648	$\frac{214}{1,200}$	4,030 3,150	1.6 2.5	187 443	107 1,430	$2,040 \\ 3,770$
November 25, 26, 27, 28, 29, 30, December 3 December 4, 6, 10, 13, 15 December 17, 19, 24, 26, 27, 28, 30 January 1, 2, 3, 5, 6 January 13, 14, 15, 16 January 23, 24, 25, 26, 27 February 11, 12, 13, 14, 15, 16 February 17, 18, 19, 20, 21, 22 February 25, March 14, 15, 16, 17, 18, 19. March 24, 25, 26, 27, 28, 29, 30, 31 April 26, 27 April 29, 30, May 1, 2 May 6, 7, 8, 9, 10, 11, 12 May 17, 18, 20 May 21, 22, 23, 24, 25, 26, 27 May 28, 29, 30 June 3, 4, 6, 7, 8, 9 June 10, 11, 12 July 8, 9, 10, 11, 12, 13, 14 July 22, 23, 24, 25, 26, 27 July 29, 30, 31, August 1, 2, 3, 4 August 5, 6, 7, 8, 10, 11 August 19, 20, 21, 22, 23, 24, 25 August 27, 28, 29, 30, 31, September 1 September 3, 4, 5, 6, 7, 8 September 9, 10, 11, 12, 13, 14, 15 September 16, 17, 18, 19, 20, 21, 22 September 23, 24, 25, 26, 27, 28, 29 September 30, October 1, 2, 3, 4, 5, 6 October 14, 15, 16, 17, 18, 19, 20 October 12, 22, 32, 42, 25, 26, 27 November 4, 5, 6, 7, 8, 9, 10 November 11, 14, 15, 16, 17 November 18, 20, 21, 22, 23, 24 November 26, 27, 28, 29, 30 December 29, 30, 31, November 1, 3 November 4, 5, 6, 7, 8, 9, 10 November 19, 20, 21, 22, 23, 24 December 29, 30, 31, November 1, 3 November 26, 27, 28, 29, 30 December 29, 20, 21, 22, 23, 24 November 26, 27, 28, 29, 30 December 29, 20, 31, 31, November 1, 3 Pebruary 3, 4, 5, 6, 7, 8 December 20, 21, 22, 23, 24, 25, 26 December 21, 22, 23, 24, 25, 26 December 23, 24, 25, 26, 27, 28, 29 December 30, 31, January 1, 2, 3, 4, 5 January 6, 7, 8, 10, 11, 12 January 13, 14, 15, 16, 17, 18 January 13, 14, 15, 16, 17, 18 January 27, 28, 29, 30, 31, February 1, 2 February 3, 4, 5, 6, 7, 8 February 3, 4, 5, 6, 7, 8 Perbuary 10, 11, 12, 13, 14, 15, 16 March 17, 18, 19, 20, 21, 22, 23 March 24, 25, 26, 27, 28, 29, 30 March 24, 25, 26, 27, 28, 29, 30 March 31, April 14, 15, 16, 17,	13 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	152 135 171 224 175 164 1438 105 134 138 105 128 126 112 62 37 168 140 114 150 124 150 124 157 142 189 162 173 175 162 177 169 175 175 175 175 175 175 175 175 175 175	324 225 607 668 640 546 677 639 339 266 401 329 339 266 241 302 428 421 302 428 421 302 623 641 562 57 617 562 542 704 1,050 617 562 57 617 617 617 617 617 617 617 617 617 61	6,890 1,460 1,460 1,460 984 624 804 156 1,710 2,510 1,690 2,110 2,770 2,260 1,580 3,760 1,150 4,960 9,460 9,460 9,460 9,460 1,180 5,600 8,150 606 280 606 280 606 280 838 642 908 2,110 2,940 2,380 1,310 1,790 4,240 2,380 1,310 1,790 1,240 1,240 1,200 1,	. 2, 240 2, 940 3, 350 3, 260 3, 180 5, 120 3, 430 2, 240 1, 720 1, 810 2, 250 1, 810 2, 350 2, 360 2, 360 2, 360 2, 360 2, 360 3, 260 4, 270 4, 450 3, 430 3, 610 3, 380 3, 480 3, 480	$897627760085441785499411226887123465609488005123453137442228843\\3.222.232.2333.333.333.322.332.2322.2322.3334.433.333.3$	1, 250 678 646 377 625 401 360 348 177 148 680 560 589 463 723 864 517 492 2705 943 321 181 350 421 147 209 92 87 134 137 155 175 219 192 206 220 295 454 656 807 742 511 367 385 419 381 367 385 419 381 367 385 419 381 367 385 419 381 367 385 419 381 367 385 419 381 367 385 419 381 367 385 419 381 367 385 419 381 367 385 419 381 367 385 419 381 367 385 419 381 367 385 419 381 367 385 419 381 367 385 419 381 367 385 419 381 367 385 419 381 367 385 419 381 367 385 419 381 367 385 419	23, 300 2, 670 1, 150 709 1, 660 675 781 482 3, 130 3, 800 2, 640 5, 260 2, 200 5, 260 24, 100 3, 170 3, 170 3, 170 3, 170 3, 170 24, 100 3, 170 24, 100 3, 170 3, 260 271 293 426 312 156 498 511 1, 110 3, 740 6, 400 4, 760 1, 800 1, 770 1, 140 1, 1, 380 878 741 1, 600 1, 177 135 14 42 138 800 72 194	7,610 2,730 5,140 3,410 5,180 2,990 3,170 3,000 1,860 2,050 6,300 2,750 3,350 4,010 2,530 2,990 1,480 4,480 5,130 1,570 1,290 2,240 2,300 1,840 1,060 1,060 1,160

Relative amount of substances in solution in water from Pecos River below Penasco River,

near Dayton, N. Mex.

	rples.		(Ds)		Radicl	es in p	er cen	t of dis	solved	solids.	
Limiting dates of composite.	Number of daily samples.	Errors.	Dissolved solids (D (milligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na $+\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (CI).	Nitrate (NO ₃).
1905–1907.									-		
July 20–September 24. September 26–November 23. November 25–January 6. January 13–February 22. February 25–April 20. April 26–May 20. May 21–June 12. July 6–August 4. August 5–September 8. August 5–September 29. September 30–October 27. October 2–November 24. November 26–December 29. December 23–January 18. January 20–February 16. February 24–March 23. March 24–April 20.	16 19 22 27 28 27 24 26 26 28 26 28 28	+0.6 +1.8 +.2 +3.4 +2.6 -3.5 +3.8 +2.9 +2.6 +2.4 +2.1 +2.1	2,540 3,450 2,360 3,120 3,910 1,820 1,920 2,980 3,650 3,260 3,260 3,470 3,080 2,960 4,070 4,430	13 14 13 14 15 17 16 14 14 14 12 13 14 13 14	2.7 3:55 3.3 3.3 3.2 2.8 3.1 3.2 3.5 3.4 3.5 3.6 3.3	13 18 11 12 14 14 14 16 15 13 14 12	0.00 .00 .00 .00 .00 .00 .00 .00 .00 .0	5.81 7.0 6.0 4.0 5.8 6.0 4.5 6.7 6.0 3.9 6.0 3.9 6.9	41 40 43 39 	16 222 18 19 23 16 18 17 20 20 18 21 23 21 20 21 20	0.005 .000 .002 .001 .000 .002 .000 .000 .000
Mean		2.4	3,110	14	3. 2	13	. 02	5.4	40	20	.002

a Sodium is 98 per cent and potassium is 3.5 per cent of this amount.

Monthly discharge, in second-feet, of Pecos River near Dayton, N. Mex.

Month.	1906.	1907.	1908.	Mean.
January	439	469	373	427
February	342	395	277	338
March	194	139	79	137
April	530	210	109	283
May	626	352	138	372
June	308	562	92	321
July	643	464	478	528
August	270	335	1,560	722
september	116	271	271	220
October	190	446	45	227
November	391	419	155	322
December	599	425	362	462
Mean	387	374	328	363

PECOS RIVER NEAR SANTA ROSA, N. MEX.

Samples of water were collected from Pecos River at a railroad bridge near Santa Rosa, N. Mex., between July 7, 1905, to December 29, 1906. A gaging station was established at the bridge by the United States Geological Survey May 5, 1903, and discontinued December 31, 1906. Stream-flow data, including gage heights and estimates of discharge, for the gaging station have been published by the Survey in the following reports:

Water-Supply Papers: 99, pp. 363–365; 132, pp. 97–98; 174, pp. 93–94; 210, pp. 78–79.

Partial analyses, gage heights, and rates of discharge of water and solids for Pecos River at railroad bridge near Santa Rosa, N. Mex.

[Drainage area 2,900 square miles.]

. IT	rainag	ge area	2,900 S	quare m	ues.j				
-	Ana	alysis (milligr	ams per	liter).	et).	-puoses)	Solids (tons per
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (see feet).	Suspended matter.	Dissolved solids.
1905-6.				000	1 000	0.0	1.4	11	69
July 7. October 6, 7, 8, 9, 10, 17, 18. October 19, 20, 21, 22, 23 October 25, 26, 27, 28. October 29, 31, November 1, 3, 4. November 5, 6, 7, 8, 9, 10, 11. November 12, 13, 14, 15, 18. November 20, 21, 22, 23, 24. November 26, 27, 28, 29, 30, Decem-	10 0 6 0 2 0 0	148 215 143 148 131 161 148	60 49 51 50 42 44 39	282 0 212 38 20 576 94 5,910	1,660 1,900 2,010 2,110 1,960 1,610 1,880 1,380	0.8 0.8 0.8 0.8 0.9 0.9	14 14 14 14 14 26 12 667	11 0 8 1 1 40 3 10,600	63 72 76 80 74 113 61 2,490
ber 1, 2. December 4, 5, 6, 7, 8, 9. December 10, 11, 12, 13, 14, 15. December 17, 19, 20, 22, 23. December 24, 25, 26, 28, 30. December 31, January 1, 2, 3, 4, 5, 6. January 7, 8, 9, 10, 11, 12, 13. January 14, 15, 16, 17, 18, 19, 20. January 21, 22, 24, 25, 26, 27.	0 0 0 0 0 0 0	132 154 165 175 176 144 168 158 135	18 32 32 58 49 46 51 51 58	3,090 452 298 270 164 124 10 208 164	526 702 1,170 1,800 1,970 1,880 1,850 1,920 2,170	1.7 0.8 0.8 0.5 0.6 0.6 0.6 0.6	300 16 12 12 14 14 14 14	2,500 20 10 . 9 6 5 0 8	426 30 38 58 75 71 70 73 82
January 28, 29, 30, 31, February 1, 2, 3. February 3, 4, 6, 7, 9. February 12, 13, 14, 15, 16, 17. February 18, 19, 20, 21, 23, 24. February 25, 26, 27, 28, March 1, 2, 3. March 5, 6, 7, 8, 9. March 10, 11, 15, 16, 17. March 26, 27, 30, 31 April 1, 3, 5, 6, 7. April 9, 10, 11, 12, 13, 14. April 15, 16, 17, 20 April 22, 23, 24, 25, 27. April 30, May 1, 2, 3. May 8, 9, 10, 11, 12. May 14, 15, 17, 18. May 27, 28, 29, 30, 31, June 1, 2. June 13, 15. June 17, 19, 21, 22, 23. June 25, 26, 27, 29, 30. July 2, 3, 4, 5, 6, 7. July 11, 12. July 15, 16, 17, 18, 19, 20, 21. July 22, 23, 24, 25, 26, 27, 28, July 30, 31, August 1, 2, 3, 4. August 5, 6, 7, 8, 9, 10, 11 August 12, 13, 14, 15, 16, 17, 18 August 26, 27, 28, 29, 30, 31, Septem-	0	152 165 133 103 146 138 114 102 148 140 82 73 96 147 179 96 74 83 105 134 112 89 57 255 49 144 167	65 63 54 74 70 61 68 72 47 19 37 5 10 10 15 20 20 10 15 25 44	30 372 98 308 250 102 222 190 1,920 1,360 1,730 720 1,260 1,080 718 384 3,130 3,600 8,060 226 6,840 9,900 7,610 8,840 9,270 2,090 348	2,050 2,150 1,990 2,090 2,320 2,250 2,270 1,1370 546 368 252 220 174 216 240 314 444 978 582 242 242 300 450 532 290 894 1,560	$\begin{array}{c} 0.6 \\ 0.6 \\ 0.6 \\ 0.5 \\$	14 13 14 14 12 10 10 10 48 273 308 336 508 442 664 479 423 440 300 35 268 970 534 273 334 273 346 546 547 547 547 547 547 547 547 547 547 547	1 13 4 12 8 3 6 5 67 1,540 1,600 2,380 2,380 2,380 439 3,740 54,400 6,530 21 4,950 32,200 14,300 5,620 7,970 12,500 366 13	78 76 75 79 75 61 56 57 177 403 306 229 343 243 395 247 286 1, 260 92 422 634 433 332 634 433 332 55 57
ber 1. September 2, 3, 4, 5, 6, 7, 8. September 9, 10, 11; 12, 13, 14, 15. September 16, 17, 18, 19, 20, 21, 22. September 23, 24, 25, 26, 27, 28, 29. September 30, October 1, 2, 3, 4, 5, 6. October 7, 8, 9, 10, 11, 12, 13. October 14, 15, 16, 17, 18, 19, 20. October 21, 22, 23, 24, 25, 26, 27. October 28, 29, 30, 31, November 1, 2, 3. November 4, 5, 6, 7, 8, 9, 10. November 11, 12, 13, 14, 15, 16, 17. November 18, 19, 20, 21, 22, 23, 24.	0 0 0 0 8 0 14 9 0 0 0 0	141 71 144 141 119 71 107 150 156 154 163 158	33 20 40 51 45 23 26 33 31 24 21 36 44	154 890 190 12 976 1,990 1,480 116 218 274 138 68 282	1,590 1,320 1,680 1,890 1,610 924 860 1,310 1,470 1,290 1,060 1,440 1,670	0.9 1.0 0.9 0.9 1.0 1.1 1.3 1.1 0.9 1.1 1.2 1.1	17 30 13 14 29 53 83 32 22 37 67 45 42	7 72 7 0 0 76 285 332 10 13 27 25 8 32	73 107 59 72 126 132 193 113 88 129 192 175
November 25, 26, 27, 28, 29, 30, December 1. December 1, 2, 3, 4, 5, 7, 8 December 9, 10, 11, 12, 13, 14, 15. December 16, 17, 18, 19, 20, 21, 22. December 23, 24, 25, 26, 27, 28, 29.		150 165 125 157 163	37 37 15 37 30	232 3, 140 926 110 218	1,310 546 384 1,170 1,070	1.3 1.6 1.5 1.0 0.9	78 226 184 39 15	1,920 460 12 9	276 333 191 123 43

Relative amount of substances in solution in water from Pecos River at railroad bridge near Santa Rosa, N. Mex.

	samples.		(Ds) liter).]	Radicle	es in pe	er cent	of diss	solved	solids.	
Limiting dates of composite.	Number of daily sam	Errors.	Dissolved solids (milligrams per lit	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+ $\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO2).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NO ₃).
1905–6.					·				-		
October 6-November 4 November 5-December 2. December 4-30. December 31-January 4. January 28-February 24 February 25-March 24 March 26-April 20 April 22-May 18. May 22-June 15. June 17-July 12. July 15-August 4 August 5-September 1 September 2-29 September 30-October 27. October 28-November 24. November 25-December 22. December 23-29.	21 24 22 27 24 23 19 18 17 18 26 28 28 28 28 28	+0.5 .0 +2.2 +3.6 +8.6 +.5 -2.3 +2.9 +1.4 +1.9	1,930 1,300 1,380 1,980 2,040 2,440 246 250 671 714 1,050 1,200 1,370 860 1,060	22 22 22 19 23 23 27 23 21 22 22 22 23	2.9 3.0 2.7 2.7 4.4 2.6 3.3 3.2 2.7 2.8 2.9 2.7 2.8 3.0	2.3 a 2.6 3.8 3.9 4.3 3.9 5.2 3.6 3.8 2.9 2.6 3.7	0.00 .00 .00 .00 .00 .00 .00 .00 .00 .0	8.0 9.1 12 7.3 5.2 5.2 19 46 24 22 15 9.7 14 11 17 14	59 59 59 52 33 32 49 45 54 57 53 55 53	2.8 1.9 2.9 4.3 3.3 3.0 3.6 4.4 4.5 8.3 2.9 2.6 2.8 2.4 3.6 2.9	0.002 .010 .013 .002 .000 .006 .006 .000 .000 .000 .003 Trace. .000 .10
Mean		2.4	1,220	22	3.0	3.7	.00	15	51	3. 5	. 023

a Sodium is 98 per cent and potassium is 3.0 per cent of this amount.

Monthly discharge, in second-feet, of Pecos River near Santa Rosa, N. Mex.

	Month.	-	1906.	Month.	1906.
February March April May June			14 13 15 374 544 399 377	August September October November December Mean	22 44

PIT RIVER NEAR BIEBER, CAL.

Samples of water were collected from Pit River at Muck Valley, near Bieber, Cal., from July 7, 1905, to March 2, 1907. A gaging station was established by the United States Geological Survey at Muck Valley January 22, 1904, and was discontinued October 1, 1908. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the gaging station have been published by the Survey in the following reports:

Water-Supply Papers: 134, pp. 134–137; 177, pp. 136–139; 213, pp. 104–105; 251, pp. 160–162.

Partial analyses, gage heights, and rates of discharge of water and solids for Pit River at Muck Valley, near Bieber, Cal.

[Drainage area, 2,950 square miles.]

	Ana	alysis (milligr	ams per	liter).	eet).	-puooes)	Solids (t	ons per
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge ((feet).	Suspended mat- ter.	Dissolved solids.
1905–1907.			-						
July 7. July 7, 8, 9, 10, 11, 12, 13, 14, 15. July 19 July 16, 17, 18, 19, 20, 21, 22. July 23, August 4, 5, 6, 7, 8, 9. August 9. August 10, 11, 18, 20, 21, 22, 23. August 18. August 24, 25, 26, 27, 28, 29, 30. August 31, September 1, 2, 3, 6, 7, 8. September 10, 11, 12, 13, 20, 28, 29. September 20. October 7, 17, 18, 19, 20, 21. October 22, 23, 26, 27, November 8. December 31, January 15, February 7. February 11, 12, 13, 14, 15, 16, 17. February 18, 19, 20, 21, 22, 23. March 1, 12, 13, 21, 22, 23. April 29, 30, May 1, 2, 4, 5. May 7, 8, 9, 10, 11, 12. May 14, 15, 16, 17, 18, 19. May 20-26. May 27, 28, 29, 30, 31, June 1, 2. June 3, 4, 5, 6, 7, 8, 9. June 10, 11, 12, 13, 14, 15, 16. June 17, 18, 19, 20, 21, 22, 23. June 24, 25, 26, 27, 28, 29, 30. July 1, 2, 3, 5, 6, 7. July 8, 9, 10, 11, 12, 13, 14 July 15, 16, 17, 18, 19, 20. August 1, 2, 3, 4. August 1, 2, 3, 4. August 1, 2, 3, 4. August 27, 28, 29, 30, 31, September 1. September 26, 27, 28, 29, 30, 31, September 1. September 26, 27, 28, 29 September 30, October 1, 2, 4, 6 October 8, 9, 10, 11, 12, 13 January 1, 2, 3, 4, 5, 6, 7, 8, 9. January 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 January 20, 21, 22, 23, 24, 25, 26 January 27, 28, 29, 30, 31, February	18 15 22 13 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0	161 160 174 174 130 142 136 199 185 147 111 69 67 89 92 89 96 61 191 105 108 105 108 105 124 122 115 1124 136 139 158 150 145 113 122 122	20 14 16 7 21 14 28 7 19 5 10 43 14 5 10 10 5 7 5 10 10 10 10 10 10 10 10 15	90 122 66 62 46 30 34 43 22 36 36 26 74 104 74 260 30 44 42 60 30 30 44 42 64 42 44 40 30 30 41 41 42 62 56 56 62 62 76 76 76 76 76 76 76 76 76 76	164 226 192 266 204 278 226 290 224 240 174 218 198 292 232 24 170 116 136 138 176 156 164 180 156 164 180 156 164 180 158 201 170 174 186 186 199 164 186 166 170 174 186 186 186 198 200 200 180	2.3 4 4 4 4 1.8 8 7 1.6 6 7 1.1 1.4 4 9 2.5 5 4 4 4.6 4 4.2 7 1 1.9 2.5 5 4 4 4.6 4 4.2 7 1 1.9 2.5 5 5 6 6 7 5 6 7 5 6 7 5 6 7 5 6 7 6 7	44 56 53 59 17 16 9 14 5 10 2 2 1 1 1 1 1 1 1 3 80 386 4,390 1,160 2,980 4,390 1,020 924 805 710 569 328 508 412 322 212 76 63 66 61 61 61 62 63 64 63 64 65 66 66 61 61 61 61 61 61 61 61	11 18 9 10 2 1 1 1 0 0 0 0 0 0 1 8 22 77 1, 120 1, 080 2, 230 94 107 154 50 65 46 98 21 55 33 14 6 6 9 4 6 6 9 6 6 6 6 6 6 6 6 6 6 6 6 6	19 34 27 42 9 12 5 11 1 3 6 1 1 13 25 48 177 501 1,090 1,640 551 379 402 475 356 255 151 239 174 143 103 32 21 26 23 11 9 15 11 12 14 407 174 136
Tahuary 27, 28, 29, 30, 31, February 1, 2 February 3, 4, 5, 6, 7, 8, 9 February 10, 11, 12, 13, 14, 15, 16 February 17, 18, 20, 21, 22, 23 February 24, 25, 26, 27, March 1, 2	0	67 50 67 76 72	8 5 16 16 5	20 170 80 50 78	262 142 140 140 114	6.5 9.5 6.1 5.9 6.4	3, 240 8, 680 2, 280 2, 010 2, 660	175 3,990 · 492 272 560	2, 290 3, 330 862 706 819

Relative amount of substances in solution in water from Pit River at Muck Valley, near Bieber, Cal.

	samples.		mil-		Radicles in per cent of dissolved solids.							
Limiting dates of composite.	Number of daily sam	Errors.	Dissolved solids (Ds) ligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+\frac{3}{4}K).	Carbonate (CO ^ε).	Bicarbonate (HCO3).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NO ₃).	
1905–1907.								A				
July 7-August 23 August 24-October 21 October 22-February 11 February 18-March 23 April 29-May 26 May 27-June 23 June 24-July 20 August 1-18 August 1-18 August 27-September 29 September 30-October 13 January 1-February 2 February 3-March 2		+3.3 4 1 +8.9 +1.8 +3.2 	240 230 191 143 180 170 160 195 206 230 180 172	13 13 11 13 15 14 9.7 12 13 13	5.0 4.8 4.0 4.4 5.6 4.9 4.8 6.1 5.8 4.5 3.8	22 19 18 13 12 15 20 18 16 19	0.00 .00 .00 .00 .00 .00 .00 .00	77 83 66 55 65 79 72 62	8.7 8.7 13 15 17 8.8 6.1 9.2 10 10 8.9 8.7	11 16 14 6.7 4.9 13 7.5 5.0 6.5 7.2 4.5	0.13 .12 .23 .19 .05 .01 .23 .17 .10 .49	
Mean	•••••	3.9	191	13	4.9	17	.00	70	10	8.5	. 19	

a Sodium is 95 per cent and potassium is 6.7 per cent of this amount.

Monthly discharge, in second-feet, of Pit River near Bieber, Cal.

Month.	1904.	1905.	1906.	1907.	1908.	Mean.
January	a 238	1,040	b 2, 150	710	861	1,00
February	3,950	1,080	1,930	4,190	339	2,30
March	7,590	1,100	4,640	6,940	322	4, 12
\pril\	4,210	950	2,590	2,970	78	2,16
May	3,440	166	948	1,130	83	1,18
une	542	103	544	2,160	86	68
uly	83	52	a 311	323	68	16
August	33	10	a 51	72	9	35
September	16	1	a 24	52	5	2
October	103	15	c 25	113		6
November	165	76		307		18
December		a 64		799		38
The year	1,720	382		1,650		1,0

a Approximate.

PUTA CREEK NEAR WINTERS, CAL.

Samples of water were collected from Puta Creek at a railroad bridge near Winters, Cal., from September 14, 1905, to March 1, 1907. A gaging station was established by the United States Geological Survey near Winters, Cal., September 26, 1905. Stream-flow data, including gage heights and estimates of discharge, for the station have been published by the Survey in the following reports:

Water-Supply Papers: 177, pp. 182-183; 213, pp. 116-117; 251, pp. 184-187.

b January 15-31.

c October 1-13.

Partial analyses, gage heights, and rates of discharge of water and solids for Puta Creek at railroad bridge near Winters, Cal.

[Drainage area, 805 square miles.]

,	Ana	alysis (milligr	ams per	liter).		-puoses)	Solids (1	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (s	Suspended matter.	Dissolved solids.
1905–1907.									
September 14	27 0 0 13 0 0 0 0 25 0 7 0 0 54 0 6 8 63 225 25 26 19 9 48 70 38 61 0 16 17 0	344 254 86 178 214 257 185 127 195 127 160 230 188 304 310 281 2278 326 190 201 223 239 268 300 210 169 246 317 304 318 304 319 310 310 310 310 310 310 310 310	18 14 11 14 22 18 14 19 19 24 16 14 19 19 24 16 14 20 20 20 25 30 25 30 25 22 26 31 30 29 28	98 90 108 272 1,160 94 330 294 142 138 430 210 570 68 98 42 0 22 24 6 48 48 54 66 16 38 68 72 32 12 78 38 68 68 68 68 68 68 68 68 68 6	366 400 380 266 122 240 272 268 206 178 244 230 252 244 226 294 300 410 378 380 402 402 258 330 334 340 354 368 356 366 386 388 416 398 416 364 418 394 418	$\begin{array}{c} \textbf{4.55.583.92.2566.83.9} \\ 5.5.58.39.5.18.66.42.08.88.83.866.55.31.866.4.77.77.79.4.77.77.44.77.77.44.77.77.44.79.98.89.89.89.89.89.89.89.89.89.89.89.89$	23 716 11, 600 1, 150 369 190 1, 870 2, 020 2, 490 3, 540 1, 970 613 384 305 276 328 706 371 271 224 171 118 89 63 388 29 26 20 17 18 118 14 12 12 12 13 14 14 12 12 13 14 14 12 13 14 14 14 14 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	7 525 36, 300 292 38 38 1,670 2,100 7,46 753 2,890 2,010 7,350 424 288 0 0 16 15 3 15 13 11 2 2 1 1 2 1 1 2 1 1 2 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1	24 514 3,820 745 271 138 1,040 1,250 1,250 1,830 2,910 1,830 883 394 492 333 348 356 492 244 206 163 117 84 62 40 40 117 127 119 118 119 119 119 119 119 119
November 25, 26, 27, 28, 29, 30, December 1 December 2, 3, 5, 6, 8 December 9, 10, 11, 12, 13, 14, 15 December 16, 17, 18, 19, 20, 22 December 23, 25, 26, 27, 28, 29 December 30, 31, January 1, 2, 3, 4, 5 January 7, 8, 9, 10, 11, 12 January 14, 15, 16, 17, 18, 19 January 27, 28, 29, 30, 31, February 1, 2 February 3, 4, 5, 6, 7, 8, 9 February 10, 11, 12, 13, 14, 15, 16 February 17, 18, 19, 20, 21, 23 February 24, 25, 26, 27, 28, March 1.	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	298 340 196 226 158 178- 108 151 188 108 162 196 241 222	30 31 25 17 15 14 24 13 13 13 16 21	30 10 44 216 144 872 156 34 430 110 32 30 20	330 376 234 236 236 168 192 206 152 198 292 294 264	4.9 4.9 6.5 5.5 7.9 7.5 10.4 7.6 6.8 10.3 8.7 6.7 6.4 6.4	37 45 1,070 200 2,520 1,600 4,400 1,470 872 5,330 2,490 821 598 623	3 1 24 1,470 622 7,340 619 80 6,180 740 71 48 34	33 46 1,610 1,020 1,990 762 485 2,190 1,330 646 475 444

Relative amount of substances in solution in water from Puta Creek at railroad bridge near Winters, Cal.

-	samples.	•	(Ds) er).	-	Radicl	ès in p	er cen	t of dis	solved	solids.	
Limiting dates of composite.	Number of daily san	Errors.	Dissolved solids (D (milligrams per liter)	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+ $\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO ₄).	Chlorine (CI).	Nitrate (NO3).
1906–7.											
January 2–27 January 29–February 24 February 26–March 24 March 25–April 21 April 22–May 20 May 21–June 16 June 17–July 14 July 15–August 11 August 12–September 8 September 9–October 5 October 7–November 13 November 4–December 1 December 2–29 December 30–February 2 February 3–March 1	26 25 25 26 23 25 25 23 21 26 24 29	- 2.3 - 4.4 + 7.8 + 5.2 + 4.0 - 2.6 + 6.5 + 5.1 + 3.3 + 5.2 + 7.9 + 6.2	236 240 210 263 358 318 371 362 394 421 390 392 306 216 280	10 12 10 11 8.1 11 8.9 8.6 9.6 11 10 11 9.8 12 11	15 13 15 14 15 13 14 13 13 13 13 12 11	9. 6 7. 8 11 11 7. 9 8. 6 11 10 10 10 10 9. 3 9. 7	0.00 .00 .00 .00 8.7 16 1.8 3.3 2.8 1.6 .00 .00	91 81 86 89 70 58 66 81 80 81 86 74 70	8.9 22 12 14 12 13 8.9 11 10 10 12 12 11 13 14	9.3 13 15 7.2 5.6 8.8 8.1 5.5 7.6 6.9 8.7 7.9 8.5 9.3 6.4	0. 15 . 22 . 02 . 03 . 00 . 07 . 01 . 00 . 00 T. T. . 00 . 07 . 10
Mean		5.0	•317	10	13	10	3.3	78	12	8.5	.04

Monthly discharge, in second-feet, of Puta Creek near Winters, Cal.

Month.	1905.	1906.	1907.	1908.	Mean.
January February March April		3,100 1,330 3,060 1,130	2,320 1,860 5,150 919	810 1,390 662 130	2,080 1,530 2,960 726
May June. July		$ \begin{array}{r} 411 \\ 266 \\ 72 \end{array} $	230 110 40	65 • 28 7	235 135 40
August September October	a 10	21 15 14	16 15 18	5 4 4	14 13 15
November. December	13	34 836	25 198	7 138	20
The year		857	908	271	672

a September 26-30.

REDWATER RIVER NEAR BELLE FOURCHE, S. DAK.

Samples of water were collected from Redwater River at a county bridge near Belle Fourche, S. Dak., from April 9, 1905, to June 23, 1906. A gaging station was established near Belle Fourche by the United States Geological Survey July 20, 1903, and was discontinued June 23, 1906. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports:

Water-Supply Papers: 99, pp. 59-60; 130, pp. 172-175; 172, pp. 160-161; 208, pp. 131-132.

Partial analyses, gage heights, and rates of discharge of water and solids for Redwater River at county bridge near Belle Fourche, S. Dak.

[Drainage area, 1,020 square miles.]

		1	<u>.</u>						
	An	alysis (milligi	ams per	liter).	t).	d-feet).	Solids per o	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (second-feet).	Suspended matter.	Dissolved solids.
1905-6. April 9, 10, 11 April 16, 17, 18, 19, 20, 22 April 23, 24, 25, 27, 28, 29 April 30, May 1, 2, 3, 4, 5, 6 May 7, 8, 9, 11, 12, 13 May 14, 15, 16, 18, 19, 20 May 21, 22, 23, 24, 25, 26, 27 May 28, 29, 30, 31, June 1, 2, 3 June 4, 6, 7, 8, 9, 10 June 11, 13, 14, 15, 16, 17 June 19, 20, 21, 22, 23, 24 June 25, 26, 27, 28, 29, 30 July 2, 3, 4, 5, 6, 7, 8 July 9, 10, 11, 12, 13, 14, 15 July 16, 17, 18, 20, 21 July 23, 24, 25, 26, 27, 28, 29 July 23, 24, 25, 26, 27, 28, 29 July 30, 31, August 1, 2, 3, 4 August 6, 7, 8, 9, 10, 11, 12 August 13, 14, 16, 17, 18, 19 August 28, 29, 30, September 1, 2 September 3, 4, 5, 6, 7, 8, 9 September 10, 11, 12, 15, 20, 21, 22, 23 September 24, 25, 26, 27, 28, 29, October 3 October 4, 5, 6, 7, 8, 10, 11 October 12, 13, 14, 15, 16, 17, 18, 19 October 21, 22, 23, 24, 25 October 31-November 1, 2, 3, 4 November 6, 7, 8, 9, 10, 11 November 24, 25 April 1, 24, 5, 6, 7 April 15, 18, 19 May 21, 22, 23, 24, 25, 26 May 27, 28, 29, 30, 31, June 1, 2 June 3, 4, 5, 6, 7, 8, 9 June 11, 12, 13, 14, 16 June 17, 18, 19, 20, 21, 22, 23	0 0 15 18 12 18 12 18 12 10 0 0 0 0 12 12 12 2 0 0 0 0 0 12 12 12 12 12 12 12 12 12 12 12 12 12	181 247 293 205 167 176 195 207 197 194 244 235 191 224 209 212 223 223 220 200 212 230 223 240 223 240 251 244 244 251 27 27 27 27 27 27 27 27 27 27 27 27 27	10 4 6 6 7 30 15 12 15 12 15 16 13 16 11 11 12 11 11 11 11 11 11 11	54 70 16 374 662 248 990 168 58 78 296 90 848 258 310 312 76 296 0 64 36 36 66 10 0 50 22 108 110 150 132 370 458 630 312 114 1,280	912 880 852 758 560 560 626 754 884 856 784 778 608 678 748 726 750 830 854 934 914 940 844 874 874 874 874 874 874 874 874 874	3.0 2.9 3.4 4.1 3.9 3.3 3.1 4.1 3.7 3.6 3.2 2.9 2.9 2.9 2.9 3.1 3.5 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 4.1 3.7 2.9 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	210 190 182 378 723 591 522 325 182 205 378 251 748 512 386 401 267 284 401 268 410 410 456 457 220 220 220 220 220 220 220 220 220 22	31 36 8 8 382 1,290 396 1,400 148 29 43 302 1,710 357 163 338 55 227 18 31 55 22 17 18 31 55 22 18 31 33 38 38 38 38 38 38 38 38 38	517 452 419 781 1,090 894 882 662 434 474 800 528 1,230 936 780 897 813 598 655 500 316 442 410 406 446 655 912 1,100 1,120 816 536 615 536 615 536 615 615 615 615 615 616 617 617 617 617 617 617 617 617 617

Relative amount of substances in solution in water from Redwater River at railroad bridge near Belle Fourche, S. Dak.

	sam-		(Ds)		Radicl	es in p	er cen	t of dis	solved	solids.	
Limiting dates of composite.	Number of daily ples.	Errors.	Dissolved solids (D (milligrams per liter)	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+ $\frac{3}{4}$ K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NO ₃).
1905-6.											
April 9-May 13. May 14-June 10. June 11-July 8. July 9-August 5. August 6-September 2. September 3-October 11. October 12-November 11. November 12-25. April 1-May 19. May 21-June 16. June 17-23.	22 26 25 26 23 28 24 8 19 25 7	+1.3 + .8 5 + .7 + .1 -2.9	780 694 746 729 844 898 774 662 672 704 849	20 20 20 21 19 20 19 18	4.7 5.2 5.0 5.4 5.2 5.8 6.8 6.3 6.1 5.2	3. 2 3. 0 2. 8 a 3. 2 2. 4 1. 9 2. 0 3. 0 3. 1 4. 2	1. 2 . 88 1. 3 . 00 . 00 . 00 . 00 . 00	26 31 27 31 25 22 30 19 31 22	45 46 43 51 50 52 58 59 50	0.82 2.2 1.0 2.9 1.2 4.7 1.3 2.9 5.4 .93	0.03 .00 .05 .03 .03 .03 .00 .02
Mean		1.0	759	20	5.6	2.8	. 34	26	50	2.3	. 02

a Sodium is 86 per cent and potassium is 18 per cent of this amount.

Monthly discharge, in second-feet, of Redwater River near Belle Fourche, S. Dak.

Month.	1903.	1904.	1905.	1906.	Mean
fanuary					a 20
February			171	b 611	a 20 a 23
April		222	192	219	21
May.		144	554	333	3
[une		1,100	256	a 281	5-
ſuly		177	520		20
August		92	247		10
September		180	170		2:
October	123	212	296		2:
NovemberDecember		195 218	445		2
Mean					a 20

a Approximate.

RIO GRANDE NEAR EL PASO, TEX.

Samples of water were collected from Rio Grande at Courchesne, near El Paso, Tex., from June 8, 1905, to April 30, 1907. A gaging station was established May 1, 1897, by the United States Geological Survey at Courchesne, 1 mile above the old station. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports: ^a

Annual Reports: 11, II, pp. 54, 57, 99; 12, II, pp. 280, 350, 360; 13, III, pp. 94, 99; 14, IV, 114–115; 18, IV, pp. 257–259; 19, IV, pp. 389–390; 20, IV, pp. 58, 358, 372; 21, IV, pp. 262–263; 22, IV, p. 353.

b March 26-31.

c July 21-31.

Bulletins: 131, pp. 46-47; 140, pp. 178-179.

Water-Supply Papers: 11, p. 67; 16, pp. 132–133; 28, pp. 120, 128; 37, pp. 283–284; 50, pp. 352–353; 66, p. 70; 75, pp. 155–156; 84, pp. 181–183; 99, pp. 378–382; 132, pp. 67–71; 174, pp. 49–53; 210, pp. 55–57; 248, pp. 45–50.

Further information relative to the quality of water in the Rio Grande near El Paso is contained in Bulletin 34, New Mexico Agricultural Experiment Station, "Principles of water analysis," by Arthur Goss, 1900.

Partial analyses, gage heights, and rates of discharge of water and solids for Rio Grande at Courchesne, near El Paso, Tex.

[Drainage area, 38,600 square miles.]

	Analysis (milligrams per liter).						-puoses)	Solids (tons per day).	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (feet).	Suspended matter.	Dissolved solids.
1905–1907.									
January 8. January 11. January 14. January 24. January 28. February 4 February 19. February 21. February 28. March 3. March 9. March 9. March 21. April 17. April 19. April 19. April 29. May 4. May 9. May 13. May 19. May 25. June 6. June 13. June 19. June 26. July 1. July 13. July 22. July 25. July 28. August 3. August 10. August 11. August 12. August 15. August 18. August 21. August 24. August 27. August 28. August 21. August 24. August 27. August 30. September 2. September 5. September 11. September 17.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	156 272 258 184 222 170 198 186 199 166 169 178 180 195 173 141 154 151 152 136 135 161 138 184 179 161 157 167 234 209 173 172 219 239 178 179	128 98 62 100 113 113 106 71 78 56 49 42 52 67 74 40 42 42 41 41 42 39 23 27 26 28 113 88 233 136 178 175 106 117 71 106 117 71 106 117 71 106 117 117 117 117 117 117 117 11	534 1,090 2,030 846 758 786 1,940 2,090 2,310 1,950 1,950 7,010 6,990 7,110 6,730 4,360 4,4610 4,630 2,380 2,900 216 228 20,900 21,900	678 618 528 638 662 654 690 544 850 716 570 534 554 448 440 324 440 322 84 440 329 660 746 758 868 848 860 902 1,350 1,790 2,490 1,350 1,790 2,490 3,470 3,720 3,730 3,730 948 1,090	$ \begin{bmatrix} 6.3\\ 7.7\\ 7.7\\ 6.5\\ 2.0\\ 9.0\\ 10.3\\ 6.5\\ 2.0\\ 10.3\\ 6.5\\ 2.0\\ 10.3\\ 6.5\\ 2.0\\ 10.3\\ 6.5\\ 10.4\\ 6.2\\ 11.5\\ 6.2\\ 14.2\\ 14.4\\ 13.4\\ 10.7\\ 4.7\\ 6.8\\ 6.7\\ 4.7\\ 6.8\\ 6.4\\ 4.7\\ 6.8\\ 6.4\\ 4.4\\ 5.3\\ 6.5\\ 5.4\\ 4.4\\ 5.3\\ 5.5\\ 7.7\\ 6.8\\ 4.4\\ 4.5\\ 5.3\\ 5.5\\ 7.7\\ 6.8\\ 4.4\\ 4.5\\ 5.3\\ 5.5\\ 7.7\\ 6.8\\ 4.4\\ 4.5\\ 5.3\\ 5.5\\ 7.7\\ 6.8\\ 4.4\\ 4.5\\ 5.3\\ 5.5\\ 7.7\\ 6.8\\ 4.4\\ 4.5\\ 5.3\\ 5.5\\ 7.7\\ 6.8\\ 4.4\\ 4.5\\ 5.3\\ 5.5\\ 7.7\\ 6.8\\ 4.4\\ 4.5\\ 5.3\\ 5.5\\ 7.7\\ 6.8\\ 4.4\\ 4.5\\ 5.3\\ 5.5\\ 7.7\\ 6.8\\ 4.4\\ 4.5\\ 5.3\\ 5.5\\ 7.7\\ 6.8\\ 4.4\\ 4.5\\ 5.3\\ 5.5\\ 7.7\\ 6.8\\ 4.4\\ 4.5\\ 5.3\\ 5.5\\ 7.7\\ 6.8\\ 4.4\\ 4.5\\ 5.3\\ 5.5\\ 7.7\\ 6.8\\ 4.4\\ 4.5\\ 5.3\\ 5.5\\ 7.7\\ 6.8\\ 4.4\\ 4.5\\ 5.3\\ 5.5\\ 7.7\\ 6.8\\ 4.2\\ 5.3\\ 5.5\\ 7.7\\ 6.8\\ 4.2\\ 5.3\\ 5.3\\ 5.5\\ 7.7\\ 6.8\\ 4.2\\ 5.3\\ 5.3\\ 5.3\\ 5.3\\ 5.3\\ 5.3\\ 5.3\\ 5.3$	385 765 1,080 605 540 460 7,220 1,220 1,300 2,500 3,170 1,980 2,930 3,170 1,980 2,930 3,300 5,530 9,760 6,020 10,200 13,600 4,950 3,150 3,150 385 435 380 210 600 570 950 470 300 200 145 100 35 30 35 25 110 75	556 2,260 5,910 1,380 1,100 976 3,780 6,880 8,100 13,100 153,000 62,400 25,400 82,500 343,000 104,000 1187,000 120,000 120,000 120,000 170,000 286,000 170,000 286,000 1,840 135 341 224 129 33,900 27,300 74,100 27,900 10,000 10,000 11,000 12,000 10,000 11,000 12,000 10	705 1, 280 1, 540 1, 040 965 812 1, 340 1, 790 1, 910 5, 740 7, 550 4, 880 2, 860 4, 960 15, 100 6, 780 11, 800 7, 470 7, 150 8, 920 16, 900 17, 600 10, 900 5, 480 3, 370 802 906 775 765 429 1, 410 1, 300 2, 210 1, 140 855 530 458 335 328 302 315 252 281 221

Partial analyses, gage heights, and rates of discharge of water and solids for Rio Grande at Courchesne, near El Paso, Tex.—Continued.

. Dates.	Analysis (milligrams per liter).						-puooes)	Solids (tons per day).	
	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (s	Suspended matter.	Dissolved solids.
1905–1907.									
September 23 September 26 September 26 September 29 October 2 October 5 October 8 October 11 October 14 October 23 October 26 October 23 October 26 October 27 October 29 November 1 November 1 November 10 November 15 November 15 November 21 November 21 November 27 November 30 December 30 December 9 December 12 December 15 December 15 December 21 December 27 December 30 January 10 January 1 January 4 January 7 January 1 January 1 January 10 January 13 January 16 January 18 January 27 January 27 January 30 February 2 February 5 February 5 February 17 February 17 February 17 February 20 February 23 February 26 March 5 March 11 March 14 March 17 March 20 March 23 March 26 March 29 March 21 March 20 March 23 March 26 March 29 March 31 April 5 April 5 April 5 April 5 April 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	213 262 240 167 167 189 224 246 251 258 229 244 182 162 174 164 180 153 168 168 173 175 168 168 172 178 194 205 193 204 175 168 178 178 198 199 199 199 199 199 199 19	582 1,020 1,240 131 130 205 318 458 640 797 736 562 561 467 401 1247 154 102 127 128 86 89 88 81 95 99 107 246 254 260 199 180 227 246 254 260 199 166 76 72 87 83 87 103 89 86 80 99 113 113 81 100 79 97 165 1121 138 100 79 97 165 1121 138 68 68 68	118 216 134 2,280 18,300 39,100 34,300 6,620 6,660 1,950 818 674 860 706 6,580 15,900 15,400 13,800 10,100 5,780 5,270 4,020 3,840 1,550 1,950 8,910 7,880 1,150 1,950 8,910 1,950 1,	2, 250 3, 880 686 716 1, 530 1, 940 1, 800 1, 870 2, 470 2, 350 1, 850 1, 870 702 704 822 712 546 612 556 618 600 576 653 618 600 576 958 980 980 980 980 980 980 554 552 650 576 958 958 958 958 958 958 958 958 958 958	$\begin{array}{c} 5.22240865533445668822990000938326655555555555555555556667.8822990000033266867.77.77.77.77.77.77.77.77.77.77.77.77.7$	455 200 15 165 195 165 195 1300 90 60 45 25 300 400 35 75 115 2000 380 3400 310 335 1,240 1,350 690 540 550 280 280 220 165 570 175 240 240 240 240 240 240 250 945 1,040 560 571 580 580 580 580 580 580 580 580 580 580	14 12 5 1,020 9,600 13,700 8,330 1,070 88,230 66 73 3,550 16,200 14,100 7,130 78,000 7,130 78,000 14,700 25,600 14,700 8,890 7,890 8,930 14,700 9,700 8,890 7,130 760 760 7728 7,540 16,500 17,540 16,500 17,540 16,500 17,540 16,500 17,540 16,500 17,540 17,540 17,540 17,540 18,800 19,730 10,900 11,800 8,710 6,980 5,930 11,800 8,710 6,980 5,940 4,030 3,060 1,740 9,770 3,050 7,490 9,770 6,210 3,050 7,700 3,050	274 176 157 306 376 376 376 376 471 292 269 269 209 195 139 266 308 379 720 755 596 495 2, 050 2, 140 2, 090 964 885 864 861 638 896 571 405 405 405 405 405 405 405 405 405 405

Partial analyses, gage heights, and rates of discharge of water and solids for Rio Grande at Courchesne; near El Paso, Tex.—Continued.

							q-	Solids (tons	
·	Analysis (milligrams per liter).					eet).	(second	per day).	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (6	Suspended matter.	Dissolved solids.
1905–1907.		100		0. 700					
April 11. April 14. April 15. April 15. April 17. April 20. April 23. April 26. April 28. April 30. May 3. May 6. May 9. May 15. May 18. May 20. May 15. May 23. May 26. May 29. June 1. June 1. June 6. June 19. June 25. June 25. June 28. June 30. July 3. July 4. July 9. July 15. July 18. July 24. July 27. July 29. July 24. July 27. July 29. July 31. August 3. August 6. August 9. August 12. August 15. August 18. August 27. August 28. August 29. August 21. August 21. August 22. August 23. August 24. August 27. August 27. August 28. August 29. Augu	0 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	129 77 140 156 144 134 128 140 80 73 98 137 128 830 134 140 118 134 134 131 140 102 129 128 108 255 77 140 144 160 141 154 138 172 65 36 144 172 65 36 144 172 173 175 146 141 151 171 171 171 171 171 171 171 171 17	78 588 399 63 577 488 444 245 299 344 322 299 339 344 345 300 300 300 300 300 300 300 300 300 30	8,700 9,890 7,320 10,700 7,870 11,400 10,200 10,200 9,280 6,600 7,240 7,240 7,480 6,850 7,190 10,900 11,500 12,100 13,600 11,500 12,100 13,600 10,400 11,500 11,500 13,600 10,400 11,500 11,600 11,600 11,700 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,600 11,400	554 470 356 572 470 492 502 464 420 346 420 346 336 354 338 348 338 348 338 286 298 226 272 294 274 272 266 246 240 340 340 348 370 364 340 340 348 370 364 360 370 408 370 408 370 408 416 466 370 408 416 466 370 408 417 408 417 408 417 408 417 408 417 408 417 408 417 408 417 408 418 418 418 418 418 418 418 418 418 41	$\begin{array}{c} 7.628.8660788.88.899.556.488.899.556.699.888.899.566.699.888.899.699.888.899.699.888.899.699.888.899.699.888.899.699.888.899.699.888.899.699.6$	780 1,150 1,160 1,070 1,170 1,170 1,1710 1,1710 1,1710 1,1710 2,850 3,470 2,810 4,740 5,7330 6,390 6,990 6,990 6,990 1,4360 3,610 3,730 4,730 4,730 4,730 4,730 1,230 1,280 1,	18, 300 30, 700 21, 000 21, 000 22, 900 52, 800 51, 300 73, 300 87, 000 72, 600 46, 000 92, 700 141, 000 124, 000 124, 000 124, 000 124, 000 124, 000 124, 000 124, 000 124, 000 124, 000 124, 000 124, 000 124, 000 124, 000 124, 000 124, 000 124, 000 124, 000 125, 000 126, 000 127, 400 38, 400 128, 000 129, 400 38, 400 129, 400 38, 800 16, 200 38, 800 16, 200 38, 800 16, 200 38, 800 16, 200 38, 800 16, 200 38, 300 38, 600 68, 600 46, 800 38, 300 38, 600 16, 200 38, 300 38, 100 38, 600 16, 500 17, 700 38, 400 21, 550 19, 400 1, 550 19, 400 1, 550 19, 400 1, 550 19, 400 1, 550 19, 400 1, 550 19, 500 70 77 77 77 78 16 1, 530 281, 000 70, 500 37, 100 35, 400 26, 700 17, 300 17, 300 17, 300 17, 300 17, 300 17, 300 17, 300 17, 300 17, 300 17, 300 112, 300	1, 170 1, 460 1, 020 2, 270 1, 490 2, 270 2, 530 3, 570 3, 940 3, 460 2, 640 2, 690 6, 560 8, 450 7, 210 5, 750 4, 080 3, 370 2, 980 4, 870 1, 050 1, 470 1, 050 1, 470 1, 050 1, 470 1, 050 1, 470 1, 050 1, 470 1, 550 1, 560 1, 560 1, 560 1, 700 1, 690 1, 470 1, 690 1, 470 1, 690 1, 470 1, 690 1, 420 1, 780 1, 550 803 803 803 803 803 803 803 803 803 80

100 SOME STREAM WATERS OF THE WESTERN UNITED STATES.

Partial analyses, gage heights, and rates of discharge of water and solids for Rio Grande at Courchesne, near El Paso, Tex.—Continued.

Dates.	Ar	alysis	(milligra	ms per li	eet).	-puooes)	Solids (tons per day).		
	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (seet).	Suspended matter.	Dissolved solids.
1905–1907.					1				
October 24. October 24. October 27. October 30. November 2. November 5. November 5. November 11. November 14. November 18. November 27. November 27. November 29. December 27. December 29. December 5. December 11. December 14. December 15. December 16. December 17. December 17. December 20. December 20. December 20. December 21. January 3. January 6. January 9. January 9. January 12. January 19. January 19. January 19. January 19. January 25. January 28. January 28. January 31. February 3. February 48. February 15. February 15. February 17. February 18. February 19. February 19. February 19. February 11. February 11. February 12. February 13. February 14. February 15. February 15. February 16. February 17. February 18. February 19. February 24. February 28. March 19. March 19. March 19. March 20. March 21. March 29. March 31. April 6. April 9. April 17. April 19. April 17. April 19. April 21. April 24. April 27. April 30.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	131 126 137 133 139 116 142 150 134 142 137 151 126 138 128 129 130 155 141 142 143 174 144 140 144 143 136 138 136 138 136 138 136 138 136 138 136 138 136 137 138 136 138 136 137 137 142 143 140 141 143 144 145 146 137 147 148 149 149 140 141 141 143 144 146 147 148 148 148 148 148 149 149 140 141 141 143 144 146 147 148 148 148 148 148 148 148 148	35 37 459 46 50 1 80 35 9 32 41 88 52 45 40 46 653 54 40 655 36 56 66 46 46 46 46 46 652 35 52 7 52 28 26 21 41 41 46 42 46 43 46 43 46 43 46 43 47 65 48 48 48 48 48 48 48 48 48 48 48 48 48	7,970 7,230 9,850 7,630 8,990 10,600 10,200 8,990 8,580 7,550 6,130 8,460 4,230 16,800 7,390 13,100 7,640 2,950 3,400 2,720 3,490 3,560 4,020 5,190 4,110 4,310 3,850 3,230 4,920 2,910 4,110 4,310 3,850 3,430 3,590 4,100 4,310 3,850 3,430 3,590 4,250 3,990 3,750 5,310 2,310 2,310 2,310 2,310 2,310 2,310 2,310 2,310 2,310 3,890 3,750 5,310 2,310 3,890 3,750 5,310 2,310 3,890 3,750 5,310 3,890 3,750 5,310 3,990 3,750 5,310 3,890 3,750 5,310 3,900 3,900 3,750 5,310 3,900	316 308 392 366 450 426 324 444 288 300 254 272 242 244 268 264 508 534 444 334 330 364 338 350 378 322 388 326 324 350 364 314 358 428 368 270 371 371 400 400 400 400 400 440 400 4400 4400	$\begin{array}{c} 7.0 \\ 7.6 \\ 2.2 \\ 4.8 \\ 1.1 \\ 0.1 \\ 0.5 \\ 0.1 \\$	505 490 820 565 -760 1,180 1,140 1,150 1,110 980 550 1,000 3,670 1,510 1,110 1,170 1,170 810 940 810 940 835 720 940 835 720 940 840 840 840 840 840 840 840 840 840 8	10, 900 9, 580 11, 600 18, 400 31, 200 30, 100 26, 700 21, 000 18, 400 22, 400 6, 290 14, 300 166, 000 30, 200 9, 300 10, 100 7, 450 4, 400 8, 870 7, 940 9, 050 9, 020 7, 800 12, 700 14, 800 12, 700 14, 800 12, 700 14, 800 12, 700 14, 800 12, 700 14, 800 12, 700 14, 800 10, 200 11, 800 8, 330 4, 460 6, 550 10, 200 11, 800 9, 300 8, 890 4, 810 4, 810 4, 850 10, 900 8, 890 4, 810 10, 900 10, 900 11, 900 12, 900 13, 900 14, 900 16, 900 16, 900 16, 900 16, 900 10,	433 4403 8665 922 1,366 1,499 1,499 2,62 2,07 2,253 1,054 1,04 794 888 821 1,191 1,117 1,111 594 463 665 880 1,04 976 666 600 2,45 2,57 3,58 3,690 1,04 1,0

Relative amount of substances in solution in water from Rio Grande at Courchesne, near El Paso, Tex.

				, 100							
	ples.		(Ds) er).		Radicl	les in p	er cen	t of dis	solved	solids.	
Limiting dates of composite.	Number of dally samples.	Errors.	Dissolved solids (D (milligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+¾K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO ₄).	Chlorine (Cl).	Nitrate (NO3).
1905–1907.											
January 8-28. February 24-28. March 3-21 April 7-29 May 4-25. June 6-26. July 1-25. August 10-30. September 2-29. October 2-29. November 1-24. November 1-24. November 27-December 18. December 24-January 30. February 2-26 March 2-31 April 2-30. May 3-29. June 30-July 27. July 29-August 30. September 2-30. October 3-27. October 30-November 29. December 2-31 January 3-31 February 3-March 3 March 6-April 9 April 6-30.	5 4 3 4 4 3 9 10 9 8 8 8 14 9 9 10 10 10 10 11 11 11 10 10 10 10 10 10	+2.3 -1.1 +1.9 -3.0 -1.9 +2.0 +4.7 +.2 +1.8 +3.5 +4.9 +5.7 +2.4 +6.5	594 595 670 658 474 363 417 1,360 1,880 912 600 723 519 627 522 357 324 350 461 1,480 404 372 374 442 422 422 428	14 16 19 18 19 24 17 9.8 11 11 13 13 13 16 14 18 16 11 14 16 16 16 16 16 16 16 19	2.5 2.2 2.5 2.4 2.5 2.7 2.4 2.0 2.4 2.3 2.3 2.3 3.1 2.5 3.1 2.4 3.2 3.2 3.2 3.3 2.5 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	16 16 14 15 15 12 16 19 21 17 19 19 17 16 13 14 15 15 15 16 16 14 14 14 14 14 14	0.00 1.6 .00 .00 .00 .00 .00 .00 .00 .00 .00 .	33 39 28 32 41 59 37 16 	24 25 41 37 30 22 24 33 28 30 29 30 32 29 32 29 22 29 32 29 32 29 32 29 30 31 32 29 30 31 31 32 32 32 33 34 35 36 37 37 38 38 38 38 38 38 38 38 38 38	9.6 9.7 8.8 17 21 31 227 23 13 221 17 17 11 11 7.4 7.1 11 11 26 9.8 11 14 11 11 12 11	0.01 .02 .06 .02 .05 .03 .01 .004 .01 .03 .03 .03 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00
Mean		3.4	699	15	2.6	16	.10	34	30	15	.07

Monthly discharge, in second-feet, of Rio Grande near El Paso, Tex.

			, ,						
Month.	1889.	1890.	1891.	1892.	1893.	1897.a	1898.	1899.	1900.
January. February March April May June July August September October November December	b 3, 120 2, 640 237 0	196 290 424 2, 190 5, 770 4, 400 854 734 176 65 284 535	451 809 1,870 4,260 11,900 6,710 2,270 662 768 1,490 341 344	326 476 752 3,150 7,090 2,940 668 13 0	134 144 35 808 3,760 225	50 182 161 2,160 8,300 6,100 1,330 132 705 1,760 1,170 654	490 606 326 1,650 2,280 1,880 3,190 508 38 3 2 93	210 204 115 148 168 0 318 7 0 2 2 46	132 102 8 5 729 1,560 1 0 277 0
The year		1,330	2,650	1,280		1,900	922	102	235
Month.	1901.	1902.	1903.	1904.	1905.	1906.	1907.	1908.	Mean.
January February March April May June July August September October November December	81 60 0 2,570 1,300 205 986 353	135 104 10 133 9 5 0 236 156 23 5 29	10 23 368 831 3,310 9,860 2,570 70 17 33 5 40	16 7 0 0 0 0 120 184 5,960 813 621	584 780 3,060 3,330 8,880 14,300 956 322 56 69 428 610	439 571 412 1,480 5,680 4,550 1,570 799 47 621 997 1,240	983 839 976 2,950 4,380 7,440 5,490 2,200 2,800 813 923 612	536 542 777 1,350 5,590 675 265 954 240 0 85 380	294 360 585 1,530 4,320 3,800 1,250 484 364 683 330 338
The year	503	70	1,430	643	2,780	1,530	2,540	950	1,190

 $[\]boldsymbol{a}$ Revision of previous estimates appearing in Third Ann. Rept. U. S. Reclamation Service, p. 404. \boldsymbol{b} Approximate.

RIO GRANDE NEAR SAN MARCIAL, N. MEX.

Samples of water were collected from Rio Grande at a railroad bridge near San Marcial, N. Mex., from May 28, 1905, to April 27, 1907. A gaging station was established by the United States Geological Survey near San Marcial January 29, 1895. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports: ^a

Annual reports: 11, II, p. 107; 18, IV, pp. 254–257; 19, IV, pp. 387–389; 20, IV, pp. 58, 358, 371; 21, IV, p. 261; 22, IV, p. 352.

Bulletins: 131, p. 46; 140, pp. 177-178.

Water-Supply Papers: 11, p. 66; 16, p. 131; 28, pp. 120, 128, 129; 37, pp. 282–283; 50, pp. 351–352; 66, pp. 68–69; 75, p. 155; 84, pp. 183–186; 99, pp. 382–386; 132, pp. 62–67, 127; 174, pp. 43–48; 210, pp. 52–56; 248, pp. 40–45.

Partial analyses, gage heights, and rates of discharge of water and solids for Rio Grande at railroad bridge near San Marcial, N. Mex.

[Drainage area, 30,000 square miles.]

	,							,	
	Ana	alysis (milligr	ams per	liter).	height	ge (sec-	Solids (tons per
Dates.	arbonate radicle (CO ₃).	icarbonate r a d i c l e (HCO ₃).	orine diele	ended atter n).	solved lids s).	gage (feet).	Mean discharge ond-feet).	Suspended matter.	issolved solids.
	Carl ra (C(Bica ra (H	Chlo rad (Cl).	Suspende matte (Sm).	Dissolvis of 1 (Ds).	Mean	Mear	Susp	Diss sol
1905–1907.			}						
May 28, 30, June 3, 6, 12, 15. June 18, 21, 24 June 26, 28, 30, July 3, 6, 9, 12. July 15, 18, 21, 24, 27. July 31, August 3, 6, 15, 18, 21. August 24 September 9 September 25. September 29. October 20. October 10. October 11. October 14. October 17. October 23. October 26. October 28. October 31. November 3 November 9 November 11 November 11 November 14. November 17 November 18 November 29. November 20. November 21 November 23. November 25. November 26. November 3 November 3 November 27 November 28 November 29. November 29. November 30. December 6. December 15.	0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	128 113 1126 129 178 194 186 158 193 154 168 191 170 180 156 159 161 151 158 179 174 182 192 169 158 148 158 148 158 160 168 164 165 165 165 165	21 21 23 62 53 35 94 85 50 51 44 49 42 40 50 54 41 47 60 95 59 63 53 53 41 42 42 40 41 41 42 40 41 41 41 42 40 41 41 41 41 41 41 41 41 41 41 41 41 41	4,540 4,290 1,390 20,400 23,200 4,400 99,200 50,900 12,900 8,870 7,470 7,200 6,060 6,560 7,180 15,400 6,850 7,180 15,400 6,600 5,540 7,430 13,600 24,500 13,400 4,830 4,830	286 244 218 908 656 824 1,930 1,160 1,790 1,440 578 594 450 454 444 430 432 490 488 426 522 826 498 536 532 384 600 600 758 472 436 382 418 452	12.2.7.4.5.6.7.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	18, 800 9, 630 2, 040 176 344 5 150 400 230 170 160 85 85 85 80 85 95 125 170 177 690 665 550 480 480 620 1, 530 815 505 565 605	231,000 111,000 7,640 9,670 21,500 11,500 31,600 12,600 2,970 2,040 1,920 1,550 2,500 2,770 3,650 3,390 28,600 1,1550 12,800 8,550 7,160 12,200 12,200 12,200 12,200 12,200 12,200 12,200 12,200 12,200 12,40	14,500 6,350 1,190 431 610 111 781 1,57 1,940 384 360 133 137 115 98 102 110 146 198 224 201 972 1,480 693 688 629 3,110 1,000 3,130 1,040
December 18. December 21. December 24. December 27.	0 0 0	165 155 178 208	53 46 53 88	3,920 3,890 2,090 710	432 362 416 554	7.3 7.4 6.9 6.5	620 645 230 175	6,560 6,770 1,300 336	723 631 258 262

a See also Third Ann. Rept., U. S. Reclamation Service, pp. 412, 415.

Partial analyses, gage heights, and rates of discharge of water and solids for Rio Grande at railroad bridge near San Marcial, N. Mex.—Continued.

	Ana	alysis (milligr	ams per	liter).	height	ge (sec-	Solid (tons per day).	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended m a t t e r (Sm).	Dissolved s o lids (Ds).	Mean gage (feet).	Mean discharge ond-feet).	Suspended matter.	Dissolved solids.
1905—1907.			-						
December 30. January 2. January 5. January 8. January 11. January 14. January 17. January 20. January 23. January 26. January 29. January 31. February 3. February 6. February 12. February 12. February 15. February 18. February 21. February 27. March 3. March 6. March 9. March 15. March 15. March 18. March 21. March 24. March 27. March 30. April 6. April 10. April 11. April 24. April 24. April 27. April 30. May 3. May 6. May 9. May 12. May 9. May 12. May 15. May 28. May 28. May 29. May 29. May 29. July 20. Julu	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	205 222 202 195 183 165 152 145 175 158 163 172 160 155 161 153 150 126 119 144 208 126 119 146 108 121 121 108 124 115 115 115 115 115 115 115 115 115 11	70 94 728 64 51 840 51 430 466 47 560 444 482 462 565 37 254 446 504 441 57 466 739 499 366 339 199 14 410 100 100 105 100 105 105 105 105 105 1	1,190 348 914 682 616 2,170 5,830 1,950 3,220 6,380 10,350 6,4990 4,560 4,750 2,980 3,720 3,350 2,680 2,410 11,400 9,440 6,6450 11,400 11,600 9,980 12,900 11,600 9,980 12,900 11,600 9,980 12,900 11,400 11,600 9,050 7,030 6,540 5,780 4,920 6,540 5,780 4,920 6,540 5,780 4,920 6,540 5,780 4,920 6,540 5,780 4,920 6,540 5,780 4,920 6,540 5,780 4,920 6,540 5,780 4,920 6,540 5,740 5,540 7,900 10,600 2,490 4,290 4,290 4,2490 4,2490 4,540 7,900 4,2490 4,540 7,900 4,2490 4,540 7,900 4,2490 4,540 7,900 4,2490 4,540 7,900 4,2490 4,540 7,900 4,540 7,900 4,900 10,800	504 600 504 402 428 404 306 386 386 386 386 386 381 382 382 440 402 408 384 368 332 402 402 402 403 404 404 405 406 407 408 408 409 409 409 409 409 409 409 409	$\begin{array}{c} 6.550822992241355478676646558987795770.55477.77.77.77.77.77.77.77.77.77.77.77.77.$	185 125 280 240 285 515 1,250 1,310 700 485 805 650 625 705 876 780 780 780 780 780 750 660 780 750 1,030 750 1,450 1,450 1,450 1,450 1,450 1,450 10,200 1,450 10,800 9,370 10,400 9,650 10,800 9,370 10,400 9,650 10,800 9,370 10,400 9,650 10,800 9,370 10,400 9,650 10,800 9,370 10,400 9,650 10,200 1,210 1,450 1,710 1,200 1,210 1,450 1,710 1,2310 2,580 2,190 2,190 2,190 2,190 1,710 1,450 1,710 1,450 1,710 1,450 1,710 1,450 1,710 1,450 1,710 1,450	595 118 691 443 474 3,020 19,600 27,400 11,000 2,550 5,660 10,800 10,500 11,500 16,800 45,400 38,500 60,000 117,000 117,000 118,000 117,000 118,000 119,000 119,000 1158,000 1158,000 1158,000 117,100	252 203 423 273 329 563 1,340 1,420 1,990 790 860 1,990 775 642 502 758 686 686 520 672 1,250 1,370 985 635 1,280 3,420 1,970 1,900 3,150 2,788 3,310 4,380 4,130 8,500 6,650 6,650 6,650 6,650 6,650 6,650 6,650 6,650 6,73 2,788 2,950 2,950 3,210 2,788 2,950 2,950 3,100 3,210 3,210 2,788 2,950 2,950 3,100 2,788 2,950 2,950 3,100 2,788 2,950 2,950 3,100 2,788 2,950 2,950 3,100 2,788 2,950 2,950 3,100 2,950 2,950 3,100 2,950 3,100 2,788 2,950 2,950 3,100 2,950 3,100 2,950 3,100 2,950 3,100 2,950 3,100 3,100 2,950 3,100 3

Partial analyses, gage heights, and rates of discharge of water and solids for Rio Grande at railroad bridge near San Marcial, N. Mex.—Continued.

	Ana	alysis (milligr	ams per	liter).	height	ge (sec-	Solids (tons per day).		
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended m a t t e r (Sm).	Dissolved s o li d s (Ds).	Mean gage (feet).	Mean discharge ond-feet).	Suspended matter.	Dissolved solids.	
1905–1907.				•						
August 12 August 15 August 18 August 21 August 24 August 27 August 30 September 2 September 5 September 5 September 28 September 30 October 3. October 6. October 9. October 12 October 15. October 12 October 21 October 22 October 25 October 25 October 28 October 31 November 6 November 9 November 10 November 9 November 12 November 15 November 20 November 20 November 20 November 20 December 20 December 21 December 11 December 14 December 14 December 15 December 23 December 23 December 23 December 24 December 25 December 25 December 26 December 27 December 29 December 29 December 20 December 20 December 21 December 21 December 24 December 25 December 26 December 27 December 29 December 31 January 6 January 9 January 19 January 19 January 19 January 28 January 19 January 19 January 28 February 18 February 19 February 19 February 20 February 20 February 28 February 28 February 28 February 28 February 28 March 6 March 9 March 12 March 15 March 15 March 18	000062200000000000000000000000000000000	59 59 69 141 166 148 131 152 171 153 151 124 184 133 134 118 100 110 128 131 142 122 127 131 132 131 142 123 134 135 136 137 131 142 127 123 134 135 136 137 139 139 139 139 139 139 139 139	20 25 20 25 35 30 42 25 31 42 29 24 42 23 31 23 32 28 32 42 26 31 31 31 31 31 31 31 31 31 31 31 31 31	$\begin{array}{c} 9,760\\ 10,400\\ 6,840\\ 1,650\\ 6,130\\ 11,650\\ 6,130\\ 12,600\\ 14,400\\ 21,600\\ 3,950\\ 98,200\\ 16,400\\ 4,230\\ 4,230\\ 4,270\\ 4,230\\ 4,230\\ 4,230\\ 4,230\\ 4,230\\ 4,230\\ 4,230\\ 6,690\\ 5,110\\ 4,420\\ 3,350\\ 3,170\\ 2,820\\ 3,350\\ 3,760\\ 3,880\\ 5,7300\\ 2,640\\ 2,550\\ 2,480\\ 1,520\\ 2,320\\ 2,740\\ 2,320\\ 2,740\\ 2,320\\ 2,740\\ 2,320\\ 2,740\\ 2,320\\ 2,740\\ 2,320\\ 2,740\\ 2,320\\ 2,740\\ 2,320\\ 2,740\\ 2,320\\ 2,740\\ 2,320\\ 2,740\\ 2,320\\ 2,740\\ 2,320\\ 2,740\\ 2,320\\ 2,740\\ 2,320\\ 2,740\\ 2,320\\ 2,740\\ 3,830\\ 3,240\\ 2,340\\ 2$	296 380 358 412 578 350 454 466 1,140 700 560 1,590 604 514 234 234 234 234 224 236 222 260 242 250 248 2362 242 250 248 2368 360 274 277 284 378 254 287 378 254 280 3300 3316 3324 340 350 3314 340 350 334	$\begin{array}{c} 3.97.7663.885.550.744.4467.877.7889.123.545.5540.0156885.4440.03.2244.0443.63.33.6667.67887.66667.77.77.77.77.77.77.77.77.77.77.77$	1,100 625 525 420 185 420 185 175 70 40 15 9,070 1,380 1,180 1,180 1,010 1,380 1,010 1,410 1,550 1,490 1,010 1,390 1,010 1,390 1,010 1,390 1,010 1,390 1,010 1,390 1,010 1,390 1,010 1,390 1,140 1,190 685 965 1,120 1,190 685 965 1,120 1,190 1	29,000 17,500 9,700 13,800 981 2,560 11,500 2,820 2,330 11,500 23,300 12,200 23,300 12,200 24,300 37,200 23,300 11,500 24,300 30,800 25,500 21,400 17,800 21,400 17,800 11,500 6,840 10,000 11,500 11,600 7,700 6,840 10,000 11,500 6,840 10,000 11,600 7,700 6,840 10,000 11,500 6,840 10,000 11,500 6,850 6,950 4,900 6,650 6,950 6,950 6,950 6,950 14,800 15,300 11,500 16,650 6,950 14,750 2,800 15,300 11,500 16,650 17,350 18,200 18,200 19,210 11,50	880 642 508 467 344 146 395 233 540 122 76 638 1,730 1,730 1,760 1,220 649 1,050 1,050 1,050 1,050 1,060 1,050 1,060 1,050 1,060 1,050 1,110 1,090 1,180 1,110 1,090 1,180 1,190 649 555 715 705 860 1,060 470 705 1,330 759 1,160 470 77 1,280 1,290 1,180 1,290 1,190	

Partial analyses, gage heights, and rates of discharge of water and solids for Rio Grande at railroad bridge near San Marcial, N. Mex.—Continued.

,	Ana	alysis (milligr	ams per	height	ge (sec-		tons per	
Dates.	-Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage (feet).	Mean discharge (ond-feet).	Suspended matter.	Dissolved solids.
1905–1907.			·			e			
March 21 March 23 March 26 March 31 April 3 April 6 April 9 April 12 April 14 April 16 April 19 April 22 April 24 April 27	5 0 0 0 0 0 0 0 0	143 124 131 122 112 118 118 110 117 119 110 110	39 36 23 26 21 26 21 21 28 18 18 27 27	3,030 6,240 6,910 4,420 2,540 3,200 3,250 5,800 7,780 5,750 5,270 4,810 3,680	364 374 310 306 244 230 270 244 246 268 254 256 164 260	8.6 9.3 9.4 9.0 8.9 9.0 9.6 10.6 10.4 10.6 9.7	1,130 2,350 2,880 2,260 1,740 1,920 2,000 1,810 3,280 5,710 7,500 4,950 3,840	9, 240 39, 600 53, 800 27, 000 11, 900 16, 600 17, 600 15, 900 51, 300 11, 700 8, 850 107, 000 64, 200 38, 200	1,110 2,370 2,410 1,870 1,150 1,460 1,190 2,180 4,040 3,920 5,180 2,190 2,690

Relative amount of substances in solution in water from Rio Grande at railroad bridge near San Marcial, N. Mex.

,	ples.		(Ds)	:	Radicl	es in p	er cen	t of dis	solved	solids.	
Limiting dates of composite.	Number of daily samples.	Errors.	Dissolved solids (Ds) (milligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+3/K).	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Sulphate radicle (SO ₄).	Chlorine (Cl).	Nitrate radicle (NO ₃).
1905–1907.											
May 28-July 27. July 31-October 5. October 10-31. November 3-25. November 28-December 18. December 21-January 31. February 3-27. March 3-30. April 3-27. April 30-May 28. May 31-July 2. July 5-31. August 3-30. September 2-October 12. October 15-November 9. November 20-December 11. December 14-January 12. January 15-February 11. February 14-March 15. March 12-April 9. April 12-27.	21 13 9 8 8 15 9 10 10 10 10 10 10 10 10 10 7 7	+0.1 -2.7 -4.9 +4.3 +.2 +2.2 6 +2.8 +5.1 +1.6 	418 1,140 464 554 496 470 402 466 459 282 2282 2281 411 678 396 350 352 344 390 344 270	13 17 14 14 14 13 15 16 20 18 17 14 17 14 17	3.1 2.6 2.8 2.5 2.4 3.0 3.2 3.0 3.5 2.9 3.4 2.8 3.1 3.2 6 3.3 1.3 2.6 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	a 14 15 14 15 16 15 17 15 16 12 13 14 16 15 14 14 14 14	0.00 .00 .00 .00 .00 .00 .00 .00 .00 .0	34 17 38 34 39 38 31 37 38 67 38 24 41 38 46 42 42	46 34 41 32 28 33 38 35 29 21 30 37 42 29 24 25 27 24 22	10 8.9 9.5 11 10 13 12 10 9.8 10 8.3 7.1 7.3 8.0 7.8 10 8.8 10 7.8 8.8	0. 05 . 01 . 04 . 02 . 05 . 04 . 03 . 01 . 46 . 01 . 00 . 00 . 01 . 26 . T.
Mean		3.8	438	16	3.1	14	.12	38	31	9.3	. 07

a Sodium is 96 per cent and potassium is 5.1 per cent of this amount.

Monthly discharge, in second-feet, of Rio Grande near San Marcial, N. Mex.

Month. 1895.	1896.	1897.	1898.	1899.	1900.	1901.	1902.
January 986 March 2,100 April 4,690 May 3,620 June 3,920 July 2,430 August 2,910 September 0ctober November December	a 600 680 679 3,140 2,020 164 466 118 130 742 209 619	318 438 663 3,570 12,300 6,160 1,070 100 1,920 4,580 2,950 2,480	938 1,070 1,010 4,560 2,700 2,120 2,720 225 78 a20 a 197 380	453 443 448 909 570 16 462 104 49 11 160 355	660 632 540 105 2,010 2,690 0 943 0 41 164	341 458 246 398 4,160 1,620 964 1,070 632 277 337 313	370 314 129 674 436 108 0 800 224 13 78
The year.	797	3,060	1,330	332	669	901	278
Month.	1903.	1904.	1905.	1906.	1907.	1908.	Mean.
January February March April May June July August September October November December	395 761 1,680 5,180 11,100 1,270 50 24 9	274 329 99 0 0 0 171 910 752 7,530 870 679	636 1,150 3,540 4,700 15,600 12,000 582 327 89 120 713 559	594 715 925 2,740 8,140 5,800 1,920 703 429 1,150 1,310 1,400	986 1,220 1,500 3,740 6,000 8,810 5,350 2,690 2,700 1,050 949 727	710 834 1,260 2,080 2,690 1,520 796 1,560 163 45 503 625	551 691 993 2,360 4,680 4,000 1,300 826 626 1,200 647 676
The year	1,760	968	3,340	2,150	2,980	1,070	1,550

a Approximate.

SACRAMENTO RIVER NEAR RED BLUFF, CAL.

Samples of water were collected from Sacramento River at Iron Canyon, near Red Bluff, Cal., from July 3, 1905, to March 23, 1907. A gaging station was established by the United States Geological Survey at Jellys Ferry, 12 miles above Red Bluff, April 30, 1895, and moved to a point in Iron Canyon, 4 miles above Red Bluff, in 1902. The drainage area at the upper point is 9,130 square miles and at the lower point 9,300 square miles. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports:^a

Annual Reports: 18, IV, pp. 365-369; 19, IV, pp. 509-510; 20, IV, pp. 63, 527; 21, IV, pp. 446-447; 22, IV, p. 462.

Bulletin: 140, pp. 250-252, 254.

Water-Supply Papers: 11, p. 89; 16, pp. 185–186; 28, pp. 177, 182, 185–186; 38, pp. 387–389; 39, p. 455; 51, pp. 450–451; 52, p. 523; 66, pp. 142–143, 167, 177; 75, p. 210; 81, pp. 191–198; 85, pp. 137–141; 100, pp. 278–280; 134, pp. 118–122; 177, pp. 128–130; 213, pp. 101–102; 251, pp. 154–157.

Partial analyses, gage heights, and rates of discharge of water and solids for Sacramento River at Iron Canyon, near Red Bluff, Cal.

[Drainage area, 9,300 square miles.]

		,c area,	, 0,000	square m					
,	Ana	alysis (millig	ams per	liter).	eet).	(second-	Solids (1	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (s	Suspended matter.	Dissolved solids.
July 3, 6, 7, 8. July 9, 10, 11, 13, 14, 15. July 16, 17, August 5, 6, 7, 8, 9, 10, 11, 12. August 13, 14, 15, 16, 17, 18, 19. August 20, 21, 23, 24, 25, 26. August 27, 28, 31, September 1, 2. September 10, 11, 12, 13, 14, 15, 16. September 10, 11, 12, 13, 14, 15, 16. September 24, 25, 26, 27, 28, 29, 30. October 1, 2, 3, 4, 5, 6, 7. October 8, 9, 10, 11, 12, 13, 14. October 29, 30, 31, November 1, 2, 3, 4. November 5, 6, 7, 8, 9, 11. November 19, 20, 21, 22, 23, 24, 25. October 29, 30, 31, November 1, 2, 3, 4. November 19, 20, 21, 22, 23, 24, 25. November 26, 27, 28, 29, December 1, 2. December 10, 11, 12, 13, 14, 15, 16. December 17, 18, 19, 20, 21, 22, 23. December 10, 11, 12, 13, 14, 15, 16. December 17, 18, 19, 20, 21, 22, 23. December 24, 25, 26, 27, 28, 29, 30. December 31, January 1, 2, 3, 4, 5, 6. January 78, 8, 9, 10, 11, 12, 13. January 14, 15, 15, 17, 18, 19, 20. January 21, 22, 23, 24, 25, 26, 27, 28, 29, 30. December 31, January 1, 2, 3, 4, 5, 6. January 14, 15, 15, 17, 18, 19, 20. January 14, 15, 15, 17, 18, 19, 20. January 18, 19, 20, 21, 22, 23. February 18, 19, 20, 21, 22, 23, 24. February 18, 19, 20, 21, 23, 24. February 19, 29, 27, 28, 29, 30, 31. April 1, 2, 3, 4, 5, 6, 7. April 8, 9, 10, 11, 12, 13, 14, April 15, 16, 17, 18, 19, 20, 21. April 29, 30, May 1, 2, 3, 4, 5. May 13, 14, 15, 17, 18, 19. May 20, 21, 22, 23, 24, 25, 26, 27, 28. April 29, 30, May 1, 2, 3, 4, 5. May 13, 14, 15, 17, 18, 19. May 20, 21, 22, 23, 24, 25, 26. May 27, 28, 29, 30, 31, June 2. June 10, 11, 12, 13, 14, 15, 16. June 17, 18, 19, 20, 21, 22, 23. June 24, 25, 26, 27, 28, 29, 30. July 1, 2, 3, 4, 5, 6, 7. July 8, 9, 10, 11, 12, 13, 14, July 23, 24, 25, 26, 27, 28, September 2, 3, 4, 5, 6, 7. July 8, 9, 10, 11, 12, 13, 14, August 16, 17, 18, 19, 20, 21, September 16, 17, 18, 19, 20, 21, September 23, 34, 5, 6, 7. September 24, 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	86 101 101 99 86 87 88 89 89 89 89 89 89 89 89 89	13 111 19 15 11 1 11 7 14 14 12 13 7 7 12 13 14 10 7 8 25 11 1 14 16 12 7 7 7 7 7 7 7 11 14 16 17 10 10 10 5 10 10 5 10 10 5 5 10 10 5 5 10 10 5 5 10 10 10 5 5 5 8 8 4 9 8	56 14 8 6 0 16 0 148 116 0 48 0 142 122 118 294 162 118 294 162 129 126 50 126 50 18 16 16 48 48 16 16 16 16 16 16 16 16 16 16	112 160 146 140 168 138 110 114 140 130 198 144 142 126 126 120 126 120 137 144 142 150 174 144 122 150 204 84 202 204 88 88 114 120 120 120 120 120 120 120 120	$\begin{array}{c} 8.77533222213333444566688753820681983338794488286556661774666666666666666666666666666666$	14,000 16,700 31,600 19,400 19,400 15,200 12,100 9,310 8,080 7,250 6,810 6,360 6,190 6,020 6,020 6,020 6,020 6,786 6,786 6,780 6,780 6,780 6,780 6,780 6,780	973 236 120 84 0 109 82 218 0 2,020 1,600 668 375 0 0 447 203 328 311 666 375 0 0 62 336 2,560 38,500 191 9,240 15,000 1,990 6,180 7,690 24,900 5,660 1,200 2,800 2,430 2,220 2,510 2,800 2,430 2,220 2,510 301 227 0 291 162 562 350 924	1,940 2,690 2,200 1,960 2,330 1,880 2,180 1,500 1,930 1,840 2,050 1,980 1,980 1,950 1,970 2,090 2,740 2,550 2,290 1,690 11,500 4,400 4,790 9,830 9,230 6,590 11,100 17,400 9,730 8,370 6,800 5,930 9,930 11,100 11,300 11,300 11,400 9,730 8,870 14,790 9,830 9,230 6,590 11,100 11,300 11,300 11,500 11,500 11,500 11,500 1,500 1,680 2,580 2,690 2,300 2,440 2,450 1,610 1,500 1,5

Partial analyses, gage heights, and rates of discharge of water and solids for Sacramento River and Iron Canyon, near Red Bluff, Cal.—Continued.

	Ana	alysis (milligr	ams per	liter).	eet).	-puooes)	Solids (
Dates.	Carbonate radicle (CO ₃),	Bicarbonate radi- cle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm):	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (s	Suspended matter.	Dissolved solids.
1905–1907.									
October 28, 29, 30, 31, November 1, 2, 3 November 4, 5, 6, 7, 8, 9, 10 November 11, 12, 13, 14, 15, 16, 17 November 18, 19, 20, 21, 22, 23, 24 November 25, 26, 27, 28, 29, 30, De-	0 0 0	82 78 79 81	10 9 11 10	52 0 48 30	116 138 96 78	1.6 2.2 1.8 1.7	6,020 7,640 6,380 6,190	845 0 825 502	1,870 2,850 ←1,650 1,310
December 2, 3, 4, 5, 6, 7, 8 December 9, 10, 11, 12, 13, 14, 15 December 16, 17, 18, 19, 20, 21, 22 December 23, 24, 25, 26, 27, 28, 29	0 0 0 0	83 77 50 58 57	11 10 10 11 11	16 50 104 14 32	64 60 84 100 148	1.7 1.9 4.9 2.6 7.3	6, 170 6, 720 17, 400 8, 870 28, 800	266 907 4,880 336 2,490	1,070 1,090 3,950 2,400 11,500
December 30, 31, January 1, 2, 3, 4, 5, January 6, 7, 8, 9, 10, 11, 12	0 0 0 0	56 53 69 71	8 11 · 13 11	56 50 50 58	136 100 110 106	7. 2 5. 6 4. 1 4. 1	27,300 19,300 13,300 13,400	4, 120 2, 610 1, 800 2, 100	10,000 5,210 3,950 3,830
January 27, 28, 29, 30, 31 February 1, 2 February 3, 4, 5, 6, 7, 8, 9. February 10, 11, 12, 13, 14, 15, 16. February 17, 18, 19, 20, 21, 22, 23. February 24, 25, 26, 27, 28, March 1, 2.	0 0 0 0	47 44 62 62 64	8 8 10 8	70 222 54 54 154	58 68 78 86 70	12. 2 16. 2 7. 1 6. 4 9. 2	54, 200 79, 900 25, 400 22, 300 35, 700	10,200 47,800 3,700 3,250 14,800	8,500 14,600 5,350 5,180 6,750
March 3, 4, 5, 6, 7, 8, 9	0 0	57 62 48	5 10 5	80 64 480	46 106 102	7. 3 8. 2 21. 3	26, 100 30, 600 122, 000	5, 640 5, 280 158, 000	3, 240 8, 760 33, 600

 $\label{eq:Relative amount of substances in solution in water from Sacramento River at Iron Canyon, \\ near \textit{Red Bluff}, \textit{Cal}.$

				w /							
	samples.		(Ds) er).		Radicl	les in p	er cen	t of dis	solved	solids.	
Limiting dates of composite.	Number of daily san	Errors.	Dissolved solids (L (milligrams per liter)	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+3K).	Carbonate (CO ₃).	Bicar bonate (HCO3).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NO ₃).
1905–1907.	·								8		
July 3-August 19 August 20-September 16 September 17-October 14 October 13-November 11 December 10-January 6 January 7-February 3 February 4-March 3 March 5-31 April 1-28 April 29-May 26 May 27-June 23 June 24-July 21 July 23-August 18 August 19-September 15 September 16-October 13 October 14-November 10 November 11-December 8 December 9-January 5 January 6-February 2 February 3-March 2 March 3-23	28 27 27 27 27 28 28 28 28 28	+ 7.8 - 0 + 4.3 + 5.5 + 3.3 + 2.5 - 2.1 - 6.2 - 3.3 - 4.4 + 6.4 + 3.0 - 6.8 + 12.0	148 144 141 135 127 114 138 93 102 123 122 120 132 136 128 134 116 126 118 110	14 17 13 14 13 13 14 16 12 11 15 	6. 2 8 5 5 2 6 6 1 5 3 9 4 8 4 4 4 6 6 6 6 5 5 5 6 6 6 5 5 5 6 6 6 6	### ### ### ### ### #### #### #### #####	0.00 .00 .00 .00 .00 .00 .00 .00 .00 .0	62 63 65 57 51 75 67 44 69 61 62 58 67 47 50	19.5 9.7 18 13 9.4 18.2 18 16 11 11 10 15 14 17 15 17 16	3.8 8.8 8.5 13 12 16 12 9.3 8.5 6.5 10 12 7.5 11 9.0 8.6 8.0 11 9.1 8.8	0. 12 . 22 . 13 . 07 . 10 . 11 . 00 . 03 . 02 . 00 . 03 . 00 . 03 . 00 . 11 . 00 . 03 . 02 . 00 . 03 . 07 . 00 . 00
Mean		5. 2	125	13	5. 9	13	. 39	61	13	9. 7	07

Monthly discharge, in second-feet, of Sacramento River near Red Bluff, Cal.

Month.	1895.a	1896.a	1896.6	1897.6	1898.6	1899.6	1900.b	1901.b
January February March April May June July August September October November December	12,800 7,240 6,060 6,320 5,990	51,700 15,200 25,500 30,700 35,000 13,600 6,910 5,740 5,700 11,300 33,300	46, 200 15, 500 24, 100 25, 800 30, 900 14, 200 7, 590 6, 390 6, 160 12, 000 22, 300	14,300 36,100 21,800 22,800 13,700 7,620 5,700 4,780 4,600 4,960 5,590 7,790	6, 120 12, 500 9, 740 6, 870 6, 630 6, 670 4, 700 4, 280 4, 630 4, 780 4, 990	13,500 6,650 20,900 10,800 6,910 6,200 4,530 3,990 3,980 5,060 14,500 14,500	30, 700 11, 700 23, 300 12, 100 9, 570 5, 480 4, 210 3, 800 3, 980 6, 380 8, 200 15, 600	21,000 34,100 20,600 10,900 9,800 5,600 4,360 3,850 3,920 4,190 7,740 12,100
The year	18,400	20,000	18, 100	12,500	6,350	9,300	11,200	11,500
Month.	1902. c	1903. c	1904.c	1905.c	1906. c	1907. c	1908.c	Mean.
January. February March April May June July August September October November December	27, 400 22, 000 17, 800 10, 000 6, 190 5, 670 5, 010 5, 930 19, 800	25, 600 17, 200 31, 600 18, 800 10, 900 6, 970 5, 590 4, 960 4, 810 5, 350 22, 000 13, 100	11,500 46,300 73,300 38,900 25,100 12,400 8,660 6,530 11,000 8,930 13,900	31,800 26,800 30,900 18,700 12,800 8,620 6,080 5,250 5,060 5,160 5,620 6,100	14,700 23,200 42,500 26,300 19,400 18,100 8,530 6,330 6,020 5,870 6,570 15,400	21,500 45,400 55,700 32,200 15,400 12,200 7,500 6,170 5,710 5,750 6,100 11,600	21,000 23,500 15,000 12,000 10,900 7,720 5,540 4,710 4,570 5,160 6,050 6,420	24, 100 26, 700 30, 300 21, 200 17, 000 9, 880 6, 220 5, 120 5, 820 9, 680 13, 600
The year	17,600	13,900	21,900	13,600	16, 100	18,800	10,200	14,600

a At Red Bluff.

SACRAMENTO RIVER AT SACRAMENTO, CAL,

Samples of water were collected from Sacramento River at Sacramento, Cal., from May 29 to December 29, 1905. A gaging station is maintained on the Sacramento River at Sacramento, and daily gage heights are published by the United States Weather Bureau. United States Geological Survey Water-Supply Paper 134, pages 146 and 147, contains daily gage heights and turbidity for 1904, and Water-Supply Paper 177, page 131, contains gage heights for the first half of 1905. The monthly discharge of Sacramento River at Collinsville, Cal. (about one-quarter greater than the discharge at Sacramento), from 1878 to 1884 is contained in Water-Supply Paper 81, pages 188–190.

Additional information in regard to the quality of the water of Sacramento River at Sacramento is contained in Water-Supply Paper 237, "Quality of California surface waters," pages 30-32.

b At Jellys Ferry, 12 miles above Red Bluff. c At Iron Canyon, 4 miles above Red Bluff.

Partial analyses and gage heights for Sacramento River at Sacramento, Cal.
[Drainage area, 25,000 square miles.]

		Analysis (milligrams	per liter).		
Dates.	Carbon- ate radicle (CO ₃).	Bicar- bonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspend- ed matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).
1905.						0.
May 29, June 1, 2, 3 June 5, 6, 7, 8, 9, 10 June 12, 13, 14, 15, 16, 17. June 19, 20, 21, 22, 23, 24. June 25, 26, 27, 28, 29, 30, July 1. July 3, 5, 6, 7, 8. July 10, 11, 12, 13, 14, 15. July 17, 18, 19, 20, 21, 22. July 24, 25, 26, 27, 28, 29. July 31, August 2, 3, September 5, 6, 7, 8, 9, 10, 11, 12. September 13, 14, 15, 16, 19, 20, 21. September 22, 28, October 5, 13, 26, 27. October 30, November 1, 3, 20, 21, 22, 23. December 1, 2, 5, 6, 7, 9. December 12, 13, 15, 19	0 6 0 0 0 32 0 0	56 41 67 56 69 80 85 98 78 102 90 97 98 82 82	8 9 13 12 13 12 13 19 20 14 21 11 7 18 11 11	198 72 124 318 146 142 186 212 116 130 128 56 134 38 10	130 64 102 118 96 110 110 100 148 156 106 134 84 120 200	17. 4 16. 3 15. 5 13. 7 11. 7 9. 9 9. 2 8. 5 7. 3 6. 5 6. 6 7. 2 9. 2

Relative amount of substances in solution in water from Sacramento River at Sacramento, Cal.

	ples.		(Ds) (milliter).	,,,,	Radicles in per cent of dissolved solids.									
Limiting dates of composite.	Number of daily samples.	Errors.	Dissolved solids (Ds) ligrams per liter)	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+ $\frac{3}{4}$ K).	Carbonate (CO3).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NO ₃).			
1905.	200													
May 29–June 24. June 26–July 22. July 24–October 27 October 30–December 29.	24 23 26 21	+9.1 +6.4 +8.4	97 134 149 110	16 16 15 17	6. 1 6. 1 6. 2 7. 3	18 15 19	3.8 .00 .00 .00	55 64 67 78	14 18 14 17	11 12 9. 4 10	0. 04 . 07 . 12 . 28			
Mean		8. 0	122	16	6. 4	17	. 95	66	16	11	. 13			

Monthly discharge, in second-feet, of Sacramento River near Collinsville, a Cal.

Month. ·	1878.	1879.	1880.	1881.	1882.	1883.	1884.	Mean.
January. February March April May June July August September October November		30,000 110,000 110,000 75,000 45,000 16,000 8,500 6,500	28,000 21,000 22,000 95,000 135,000 110,000 53,000 18,000 9,000 7,500 7,000	95,000 115,000 77,000 90,000 70,000 25,000 14,000 8,000 6,500 7,000 8,200	24,000 22,000 55,000 90,000 92,000 74,000 17,000 6,500 10,000 14,000	12,000 17,000 21,000 73,000 80,000 32,000 12,000 7,000 7,000 7,500	12,000 24,000 80,000 105,000 111,000 90,000 31,000 12,000 7,500 8,000	30, 500 38, 200 60, 800 93, 800 93, 800 62, 700 23, 800 7, 100 7, 900 8, 700
December		27,000	20,000	16,000	11,000	7,400		15, 100
The year		38,000	43,800	44, 300	35, 300	23, 500		37,700

SALMON CREEK NEAR MALOTT, WASH.

Samples of water were collected from Salmon Creek at the Jones house, near Malott, Wash., from May 23, 1905, to January 13, 1906. A gaging station was established by the United States Geological Survey near Malott, April 11, 1903. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports: ^a

Water Supply Papers: 100, pp. 389-392; 135, pp. 63-65; 178, pp. 32-34; 214, p. 33; 252, pp. 122-124.

Partial analyses, gage heights, and rates of discharge of water and solids for Salmon Creek at Jones house, near Malott, Wash.

[Drainage area, 150 square miles.]

· · · · · · · · · · · · · · · · · · ·									
	Ana	alysis (milligr	ams per	liter).	(feet).	-puoses)	Solids (tons per
Dates.	Carbonate radicle (CO3).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended mat- ter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (s	Suspended mat- ter.	Dissolved solids.
1905-6.									
May 23, 24, 26, 27	0	98 85 67 75 93 99 102 116 118 114 112 124 116 118 129 123 132 99 122 116	10 4 4 6 5 7 10 8 11 3 13 6 4 6 6 8 7 7 7 7 11 11 11	90 214 18 52 10 46 12 6 14 14 16 38 30 8 36 24 46 18 30 4 68 58	204 130 108 170 130 156 266 202 216 170 236 212 222 274 230 216 242 242 242	1.8 2.1 1.8 1.7 1.5 1.3 1.1 1.0 0.9 1.1 1.0 0.8 0.7 0.8 0.8 0.7 0.7 0.7	165 208 188 143 92 67 38 29 26 39 29 20 13 19 15 16 12 10 14 14	40 118 9 20 2 8 1 0 1 1 1 2 1 2 1 2 1 2 1 2 2	91 72 555 666 32 28 27 17 14 21 17 9 8 11 10 7 7 7 10

a See also Fifth Ann. Rept. U. S. Reclamation Service, p. 245.

Relativ. amount of substances in solution in water from Salmon Creek at Jones house, near Malott, Wash.

•	samples.		(mil-	Radicles in per cent of dissolved solids.								
Limiting dates of composite.	Number of daily sam	Errors.	Dissolved solids (Ds) ligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+3/K).	Carbonate (CO ₃).	Bicarbonate (HCO3).	Sulphate (SO ₄).	Chlorine (Cl).	Nitrate (NO ₃).	
1905-6.												
May 23-July 8 July 10-August 5 August 6-September 15 September 15-November 11 November 12-December 16 December 17-January 7	24 27 27 24 24 12	+10.1 + 4.9 + 9.3 + 6.8	124 156 211 207 224 240	19 16 22 23 21 25	4. 8 4. 4 5. 2 4. 1 4. 6	$ \begin{array}{c} 14 \\ a10 \\ 9.9 \\ 11 \\ 10 \\ 9.2 \end{array} $	0.00 .00 .00 .00 .00	60 57 56 59 54 52	19 18 27 32 26 29	5. 6 5. 0 5. 2 6. 8 5. 8	0. 07 . 08 . 10 . 02	
Mean		7.8	194	21	4.6	11	.00	56	25	5.7	. 05	

a Sodium is 88 per cent and potassium is 16 per cent of this amount.

Monthly discharge, in second-feet, of Salmon Creek near Malott, Wash.

Month.	1903.	1904.	1905.	1906.	1907.	1908.	Mean.
anuary		15 14	15 14	13 12	9	10	12 12
forchpril	a 41	$\frac{16}{224}$	36 88	16 70	11 35	16 36	19
layune	$\frac{124}{170}$	332 195	$\frac{146}{215}$	109 158	214 166	125 131	173 173
uly	$\frac{38}{24}$	51 20 15	85 30 16	$\frac{44}{12}$	43 26 17	20 22 8	47 22 14
eptember	24 22	20 19	18 14	10 20	$\frac{17}{12}$	9	10
DecemberThe year	21	78	13 58	40	47	34	50

a Approximate.

SALT RIVER NEAR ROOSEVELT, ARIZ.

Samples of water were collected from Salt River at a dam site near Roosevelt, Ariz., from April 9, 1905, to April 23, 1906. A gaging station was established by the United States Geological Survey on Salt River at the reservoir site February 7, 1901, and was discontinued December 9, 1907. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports:

Water-Supply Papers: 66, pp. 99–100; 73, pp. 26–29; 75, p. 178; 85, pp. 25–29; 100, pp. 42–45; 133, pp. 212–214; 175, pp. 173–177; 211, pp. 130–133; 249, pp. 183–186.

Information relative to the quality of Salt River near McDowell, Ariz., below the mouth of Verde River is contained in Bulletin 44, University of Arizona Agricultural Experiment Station, "The river irrigating waters of Arizona," by R. H. Forbes, 1902.

Partial analyses, gage heights, and rates of discharge of water and solids for Salt River at dam site near Roosevelt, Ariz.

[Drainage area, 5,760 square miles.]

Ana	alysis (milligr	ams per	liter).	et).	second-	Solids (t	ons per
Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (C1).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (fe	Mean discharge (; feet).	Suspended matter.	Dissolved solids.
0 0 0 10 15 0 0 0 15 15 0 0 0	126 117 102 112 128 232 218 229 238 213 201 212 214 194 133 188 172	29 48 32 43 105 542 524 355 528 439 423 417 424 345 49 211	6,270 532 1,290 588 334 536 2,750 2,850 930 6,940 972 1,940 270 926 2,830 180 226	262 242 176 228 352 1,230 1,150 830 1,160 1,080 1,060 1,010 874 262 596 496	16. 0 9. 9 11. 6 10. 3 9. 2 5. 4 5. 5 4. 7 4. 4 6. 1 11. 9 7. 9	22, 800 8, 790 12, 200 8, 650 5, 470 909 804 634 562 882 518 803 596 1, 790 22, 800 1, 710 2, 2, 400	386,000 12,600 42,600 13,700 4,430 1,320 5,970 4,870 1,410 16,500 1,360 4,200 435 4,480 174,000 832 1,250	16,100 5,750 5,800 5,320 5,200 3,000 2,500 1,420 2,580 1,450 2,300 1,620 4,220 16,100 2,750 2,750
0 9 0 0 0 0 19	193 132 189 106 138 133 101 96 54	218 122 124 126 58 77 34 53 65	58 162 134 40 1,540 140 1,140 190 78	674 388 412 386 310 310 196 270 252	6.8 7.5 7.1 7.2 15.0 9.3 12.4 10.0 9.3	1,170 2,120 1,470 1,520 21,900 4,030 14,500 5,780 4,130	183 928 532 164 91,000 1,520 44,500 2,970 870	2,730 2,130 2,220 1,630 1,590 18,300 3,380 7,680 4,220 2,810 3,110
	Carbonate radicle (CO3).	Carbonate CO 1128	Carponate radicle (CD) 6 126 29 0 117 48 0 102 32 0 112 43 0 128 105 10 232 542 15 218 524 0 229 355 0 238 528 0 213 439 10 201 423 15 214 424 0 128 105 16 212 417 15 214 424 0 194 345 0 133 49 0 188 211 0 172 181 0 193 218 0 188 211 0 193 218 0 188 211 0 193 218 0 188 211 0 193 218 0 188 211 0 193 218 0 133 77 0 101 34 0 138 58 0 133 77 0 101 34 0 96 53 19 54 65	6 126 29 6,270	CO POO POO	(tabel) 1	Compared Compared	Columb C

81210°—wsp 274—11——8

114 SOME STREAM WATERS OF THE WESTERN UNITED STATES.

Relative amount of substances in solution in water from Salt River at dam site near Roosevelt, Ariz.

	samples.		(mil-		Radicl	es in p	er cent	of dis	solved	solids.	
Limiting dates of composite.	Number of daily sam	Errors.	Dissolved solids (Ds) ligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+\frac{3}{4}K).	Carbonate (CO3).	Bicarbonate(HCO3).	Sulphate (SO ₄).	Chlorine (Cl).	Nitrate (NO ₃).
1905–6.											
April 9-May 5 June 8-August 5. August 6-November 9. November 10-December 23. January 17-March 16. February 19-March 3. March 19-April 23. April 16-21.	18 20 27 25 25 13 18 6	+3.6 -2.6 -3.0 +2.5 +1.8	236 854 1,070 676 496 401 266 271	8. 7 8. 9 11 11	4.0 2.0 2.4 2.8 4.0 4.1 4.1	a 20 28 22 20 22 20 22 20 18	0.00 .00 .00 .00 .00 .00	53 26 21 27 33 38 45 44	6. 7 8. 1 10 11 12 10	16 42 38 34 31 26 26	0. 11 . 01 . 00 . 03 . 01 . 00 . 02 . 01
Mean		2. 7	534	11	3.3	21	.00	36	9.8	30	. 02

a Sodium is 96 per cent and potassium is 5.2 per cent of this amount.

Monthly discharge, in second-feet, of Salt River near Roosevelt, Ariz.

										١.	
Month.	1888.a	1889.a	1890.a	1891.a	1892.a	1893.a	1894.a	1895.	1896.a	1897.	1898.c
January		2,090 1,300	2,590 5,050	1,780 19,400	352 b 221	286 747	303 288	c5,390 c1,370	393	a _{2,650} a ₉₇₀	338 587
March		4,900 2,860	$3,600 \\ 1,320$	$2,770 \ 1,920$	b 230 b 315	7,730 1,040	760 616	c1,740 c1,710	844 941	a2,160 $c4,280$	688 757
May June		790 296	695 322	1,830 842	b 365 b 110	602 143	271 166	¢ 673 ¢ 309	485 204	c1, 110 c 358	448 237
July		257	272	388	189	279	148	a 160	779	c 175	408
August September	161	192 240	1,790 1,080	261 378	186 157	753 508	412 280	a 440 a 242	797 534	c 410 c 673	385 338
October November	379	194 259	$1,220 \\ 2,120$	227 230	196 231	331 266	213 207	a 857 a 764	398 443	c 549 c 273	156 202
December	3,010	2,560	2,820	295	253	283	397	a 603	317	a 270	300
The year	,	1,420	1,910	2,530	234	1,080	338	1,190	548	1,160	404
	1	1	<u> </u>	, 	<u> </u>		<u> </u>	<u>' </u>	<u>'</u> İ	<u>'</u>	<u></u>
Month.	1899.4	1900.a	1901.	1902.	1903.	1904.	1905.	1906.	1907.	Mean.	Mean, 1901- 1907.
January	356	234	582	189	207	221	1,610	1,470	3,410	1,290	1,100
February	386	221	2,420	207	318	215	8,210	1,430	2,550	2,440	2,190
MarchApril		230 315	b1,630 $b1,050$	201 268	600 909		15,300 12,600	7,770 5,080	3,710	2,920 2,030	4,200 3,140
May	308	365	b 735	167	352	132	4,600	1,690	748	862	1,200
June July	204 444	110	b 284 b 152	106 78	$\frac{285}{142}$	80 356	$1,400 \\ 529$	667 514	514 428	349 303	477 313
August	671	142	369	478	411	1,510	600	868	1,300	607	- 791
September	298	116	192	1,060	316	460	722	466	1,130	468 384	621
October November	253 203	161 387	143 189	131 189	253 211	281 164	342 6,390	300 275	1,320	713	396 1,190
December	a 195	202	182	441	208	172	1,680	4,950	b 580	986	1,170
The year	361	212	661	293	351	330	4,500	2,120	1,540	1,110	1,400

a Proportional part of discharge of Salt River at Arizona Dam.

b Approximate.
c Proportional discharge of Salt River at McDowell.

SALT FORK OF RED RIVER NEAR MANGUM, OKLA.

Samples of water were collected from Salt Fork of Red River near Mangum, Okla., from April 11, 1905, to June 28, 1906. A gaging station was established by the United States Geological Survey near Mangum April 11, 1905, and was discontinued June 30, 1906. Streamflow data, including gage heights and estimates of discharge, for the station have been published by the Survey in the following reports:

Water-Supply Papers: 173, pp. 91-93; 209, pp. 67-68.

Partial analyses, gage heights, and rates of discharge of water and solids for Salt Fork of Red River at highway bridge near Mangum, Okla.

[Drainage area, 1,220 square miles.]

	Ana	ılysis (milligr	ams per	liter).	et).	-puoses)	Solids (t	ons per
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (s	Suspended matter.	Dissolved solids.
1905-6.									
April 11 April 14, 18, 19 April 26 June 6, 8, 9, 11, 12, 13 June 14, 15, 16, 17 June 18, 20, 21, 22, 23, 24 July 25 July 25, 26, 27, 28, 29 July 30, 31, August 1, 2, 3, 4, 5 August 6, 7, 8, 9, 10, 11, 12 August 20, 21, 22, 23, 24, 25, 27, 28. September 13, 14, 16, 16, 17, 18, 19 August 20, 21, 22, 23, 24, 25, 27, 28. September 13, 14, 16, 24 November 10, 11, 12, 13, 14, 15, 16 November 19, 20, 21, 23, 24, 25 November 26, 28, 29, 30, December 1, 2. December 3, 5, 6, 7, 8, 9 December 30 December 22 December 24 December 25 December 27 December 28 December 29 January 1 January 2 January 3 January 4 January 5 January 6 January 7 January 10 January 11 January 11 January 11 January 12 January 13 January 14 January 15 January 14 January 15 January 17 January 18 January 19 January 20 January 22 January 22 January 23	16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	153 104 118 116 116 115 114 100 124 138 165 178 165 170 180 152 165 170 172 160 172 160 172 160 172 165 172 165 172 165 172 165 172 165 172 165 172 165 172 172 172 172 172 172 172 172 172 172	244 218 160 174 319 208 139 125 232 212 212 200 213 208 2172 210 200 211 214 210 200 205 231 272 266 225 231 277 231 238 238 238 231 231 231 231 260	956 1,610 7,430 2,840 1,330 4,950 3,160 7,560 3,160 1,470 554 510 500 1,710 1,420 636 584 332 588 428 428 428 428 428 428 428 460 124 612 672 208 304 216 260 108 304 1712 404	1,970 2,120 1,050 1,980 2,120 1,480 2,710 1,460 1,520 2,585 2,750 2,010 2,390 2,180	2.3.1.2.0.0.3.3.1.1.3.	18 569 330 291 165 153 185 186 319 0 81 13 216 351 99 85 85 70 160 260 160 70 70 30 30 30 30 30 30 30 30 30 30 30 30 30	46 2, 470 6, 620 2, 240 419 550 2, 470 6, 620 2, 240 419 550 2, 470 0 321 3 915 6, 400 277 117 95 738 1,000 275 110 63 43 445 80 100 77 23 36 57 110 28 84 47 31 127 117 28 84 47 31 117 28 84 47 31 117 28 84 47 31 117 28 84 47 31 86 47 47 47 47 47 47 47 47 47 47 47 47 47	96 3,240 933 1,550 800 874 742 1,760 629 735 1,340 0 345 97 1,170 1,780 463 550 530 0 1,500 818 818 383 412 175 177 172 353 324 158 173 208 173 208 1193 193 193 193 193 193 193 193 193 19

Partial analyses, gage heights, and rates of discharge of water and solids for Salt Fork of Red River at highway bridge near Mangum, Okla.—Continued.

	Ana	alysis (milligr	ams per	liter).	et).	(second-	Solids (t day	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (s	Suspended matter.	Dissolved solids.
1905–6.									
January 24 January 25 January 26 January 27 January 30 January 30 January 31 February 2 February 3 February 5 February 6 February 7 February 8 February 9 February 10 February 12 February 13 February 14 February 15 February 20 February 27 February 27 February 27 February 28 February 29 February 20 February 20 February 21 February 25 February 27 February 28 March 2 March 3 March 4 March 5 March 6 March 7 March 8 March 11 March 12 March 13 March 14 March 15 March 16 March 17 March 18 March 20 March 20 March 11 March 12 March 13 March 14 March 15 March 16 March 17 March 18 March 20 March 20 March 21 March 22 March 23 March 24 March 25 March 26 March 17 March 18 March 19 March 20 March 21 March 22 March 23 March 24 March 25 March 26 March 27 March 28 March 29 March 29 March 21 March 29 March 21 March 29 March 29 March 29 March 31 April 2 April 3 April 6 April 7 April 18 April 10 April 11 April 12 April 11 April 12 April 13	000000000000000000000000000000000000000	191 185 172 184 164 158 166 173 211 230 198 185 144 146 172 185 198 203 153 153 166 151 172 230 198 198 198 198 198 198 198 198	271 244 240 254 235 249 262 304 189 307 310 313 254 227 211 209 228 240 367 346 275 262 257 282 232 248 251 281 272 27 217 244 239 250 246 252 254 252 232 242 233 223 224 252 236 231 281 272 279 217 244 239 219 217 244 239 250 246 252 238 251 281 272 279 219 217 244 239 250 246 252 238 253 268 275 281 277 291 208 219 217 244 239 250 246 252 238 268 275 281 281 277 291 208 219 217 244 239 250 246 252 238 268 275 281 281 277 298 219 217 244 239 250 268 273 286 287 295 296 303 303 3193 205 186 303 3193 205 1895 273	88 116 128 84 148 88 348 132 92 144 336 156 84 212 904 720 1,310 556 572 200 248 44 104 184 240 20 348 200 252 424 156 64 152 152 44 248 168 336 424 156 160 300 8 52 600 12 456 680 228 444 516 464 516 680 228 444 516 680 228 47 7,790 1,920	3,060 2,740 2,690 2,760 2,680 2,670 2,680 3,240 3,650 3,210 3,610 2,810 2,750 2,750 2,752 2,752 2,760 2,752 3,150	$\begin{smallmatrix} 5,4,4,4,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,$	30 20 21 22 30 30 30 30 30 31 21 21 21 21 21 21 21 21 21 21 21 21 21	7 6 7 5 5 12 7 28 11 3 5 11 5 3 7 317 253 579 635 579 635 14 17 3 5 4 3 0 2 1 1 1 2 2 1 1 1 2 2 1 1 1 0 0 0 0 1 1 2 2 3 8 73 85 30 18 5,670 1,400 728 216 40 67 728 216 40 67 62 48	248 148 153 164 225 218 217 215 218 217 215 218 217 215 218 217 215 218 217 218 217 218 218 217 218 219 219 219 219 219 219 219 219

Partial analyses, gage heights, and rates of discharge of water and solids for Salt Fork of Red River at highway bridge near Mangum, Okla.—Continued.

	Ana	alysis (milligi	ams per	liter).	(feet).	(second-		tons per y).
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle-(Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height	Mean discharge (s	Suspended matter.	Dissolved solids.
1905–6.									
April 14. April 15. April 16. April 17. April 18. April 19. April 20. April 21. April 23. April 24. April 25. April 26. April 28. April 28. April 29. May 1 May 2 May 3 May 4 May 5 May 6 May 17 May 18. May 17 May 18. May 19 May 20 May 21 May 22 May 23 May 24 May 25 May 24 May 25 May 25 May 26 May 27 May 28 May 27 May 28 May 30 May 31 June 1 June 2 June 4 June 5 June 6 June 7 June 18 June 19 June 10 June 11 June 12 June 13 June 14 June 20 June 17 June 18 June 20 June 21 June 22 June 24 June 25 June 26 June 27 June 26 June 27 June 27 June 28	000000000000000000000000000000000000000	138 128 128 140 134 147 153 140 134 97 108 115 128 115 121 121 121 121 121 121 121	251 243 213 213 213 2232 203 213 203 213 203 213 203 213 203 213 203 213 203 213 203 213 203 214 203 215 216 217 155 217 155 218 208 208 208 208 208 208 208 20	2,900 3,110 1,360 1,300 1,360 1,300 1,340 1,500 1,410 2,030 4,410 2,920 376 1,84 1,500 1,460 4,820 5,160 1,500 1,460 4,120 4,820 4,820 5,160 1,500 1,460 4,120 4,120 4,120 4,120 4,120 4,120 4,120 4,120 1,580 4,120 1,580 1,460 1,580 1,460 1,580 1,460 1,580 1,400 1,580 1,400 1,580 1,400 1,580 1,400 1,580 1,400 1,580 1,400 1,580 1,400 1,580 1,400 1,580 1,400 1,580 1,400 1,580 1,400 1,580 1,400 1,580 1,400 1,580 1,400 1,580 1,400 1,580 1,400 1,580 1,500 1,400 1,580 1,500 1,400 1,580 1,500 1,400 1,580 1,500 1,400 1,580 1,500 1,400 1,580 1,500 1,400 1,580 1,500 1,400 1,580 1,500 1,400 1,580 1,500 1,400 1,580 1,500 1,400 1,580 1,500 1,400 1,580 1,500 1,400 1,580 1,500 1,5	2,870 2,760 3,040 2,940 3,000 2,980 2,940 1,840 1,840 1,840 2,240 2,370 2,860 3,630 1,940 1,950 1,750 1,750 1,750 1,750 1,750 1,410 1,860 1,120 1,410 1,860 1,730 2,280 2,420 2,420 2,420 2,440 3,070 1,660 1,120 1,410 1,860 1,730 2,280 2,730 2,480 2,760 2,470 2,480 2,400 2,760 2,470 2,480 2,590 2,520 2,540 2,990 2,520 2,540 2,990 3,340 3,560 3,500	99887777120997766600009903887665403330865533755509885555556554333086553330222222222222222222222222222222222	60 60 48 40 40 97 103 58 20 20 20 10 10 80 80 60 55 185 420 420 190 118 60 36 12 45 45 45 45 45 45 45 45 45 45 45 45 45	110 0 313 813 813 379 202 11 12 13 34 288 324 304 143 127 3,550 2,190 114 82 47 61 18 7 1,410 5,470 5,860 773 466 138 45 6 5 171 5,960 5,000 1,300 113 28 7 19 113 28 114 127 138 138 138 149 149 159 160 170 170 170 170 170 170 170 17	465 446 394 318 322 769 5111 288 122 121 128 77 81 71 411 419 431 376 605 380 396 605 124 830 1, 270 0 1, 600 1, 940 431 312 399 161 186 6169 167 167 167 167 167 167 192 840 455 106 114 109 96 115 94 74

Relative amount of substances in solution in water from Salt Fork of Red River at highway bridge near Mangum, Okla.

	ıples.		(Ds) liter).		Radicl	es in p	er cen	t of dis	solved	solids.	
Limiting dates of composite.	Number of daily samples.	Errors.	Dissolved solids (milligrams per lit	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+\frac{3}{4}K).	Carbonate (CO3).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NO ₃).
1905-6.											
April 14–June 24 July 25–August 19. August 20–November 16 November 19–December 11 December 22–January 13. January 14–31. February 2–28 March 2–31 April 7–29 June 1–28	19 26 26 20 19 16 21 29 20 26	-0.9 -1.1 +3.3 2 7	1,940 1,760 2,000 1,980 2,280 2,540 2,740 3,170 2,410 2,150	20 17 12 18 20 20 16 17	3. 2 3. 1 3. 3 5. 6 3. 7 3. 6 3. 3 4. 6. 4	6. 6 a 6. 1 7. 4 7. 1 8. 3 8. 2 7. 5 6. 1 6. 8 4. 7	0.00 .00 .00 .00 .00 .00 .00	6. 5 4. 4 6. 6 8. 0 7. 3 6. 4 5. 5 6. 1 6. 5	53 51 51 51 47 51 48 62	8. 8 9. 4 9. 4 10 13 9. 7 9. 0 8. 8 7. 2	0. 005 . 002 . 005 . 002 . 002 . 000 . 000 . 000
Mean		1. 2	2,300	18	4. 0	6. 9	.00	6. 2	52	9. 5	. 002

a Sodium is 96 per cent and potassium is 4.8 per cent of this amount.

Monthly discharge, in second-feet, of Salt Fork of Red River near Mangum, Okla.

	Month.	1905.	1906.	Mean.
January			32	32
February		 	· 48	48
March			11	11
April		 a382	61	222
May		 439	100	270
June		 165	82	124
		98		98
August		 138		138
September		 20		20
October		 0		(
X 7 1		149		149
		86		86
Mean		 		100

a April 11–30.

SAN FRANCISCO RIVER NEAR ALMA, N. MEX.

Samples of water were collected from San Francisco River near Alma, N. Mex., from April 14, 1905, to April 22, 1906. A gaging station was established by the United States Geological Survey near Alma, October 18, 1904, and was discontinued December 31, 1907. Stream-flow data, including gage heights and estimates of discharge, for the station have been published by the Survey in the following reports:

Water-Supply Papers: 133, pp. 206-208; 175, pp. 166-170; 211, pp. 125-128; 249, pp. 177-180.

Partial analyses, gage heights, and rates of discharge of water and solids for San Francisco River near Alma, N. Mex.

[Drainage area, 1,800 square miles.]

	Ana	alysis (milligr	ams per	liter).	(feet).	second-	Solids (
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended mat- fer (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (second-feet).	Suspended mat- ter.	Dissolved solids.
1905–6.									
April 14,17,20 April 23,25,27, May 10,13,16 May 25,27, June 16,19,21,23 June 26, July, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,	0 8 0	150 113 123	8 11 50	1,510 3,750 220	282 192 296	4. 0 3. 6 2. 1	1,020 781 43	4,150 7,900 26	775 405 34
12, 13, 14, 15. July 14, 16, 18, 20, 22. August 2, 3, 4, 8, 10, 12. August 21, 29, 31, September 2, 4, 6, 8. September 10, 13, 15, 16, 17, 18. September 30, October 2, 4, 6, 9, 11, 13. October 16, 18, 20. October 23, November 8, 10, 12, 14, 16,	0 10 0 6 6 20 14	192 230 158 169 188 166 205	16 39 16 60 121 16 15	544 8,150 2,500 6,100 1,080 2,310 170	290 338 228 338 474 272 262	1. 8 2. 0 2. 3 2. 5 2. 1 2. 3 2. 2	6 19 98 75 32 59	9 418 665 1,240 93 368 17	5 17 60 68 41 43 25
October 25, November 8, 10, 12, 14, 16, 18	15 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0	170 185 208 221 234 206 221 204 181 199 182 171 139 141 147 128 106 83 99	12 14 21 21 14 14 18 16 14 13 32 64 14 20 16 29 10	1,920 350 344 372 286 286 234 1,740 570 928 1,390 1,250 1,800 946 976 2,620 666 1,250 1,170 246	312 320 270 258 260 210 262 246 258 304 274 230 246 206 182 194 182 152 154 148	2. 6 2. 2 1. 7 1. 6 1. 4 1. 5 1. 6 1. 8 2. 2 2. 4 2. 3 2. 1 3. 6 2. 7 3. 0 2. 5 2. 3	127 147 48 41 28 23 34 58 52 21 215 289 215 990 420 653 333 261	658 139 45 41 28 18 21 432 89 130 438 817 1,590 741 567 7,010 755 2,200 1,070	107 127 35 29 20 13 24 61 40 43 87 153 216 161 106 518 207 268 134

Relative amount of substances in solution in water from San Francisco River near Alma, N. Mex.

	samples.		(Ds) liter).		Radicl	es in p	er cen	t of dis	solved	solids	
Limiting dates of composite.	Number of daily san	Errors.	Dissolved solids (milligrams per li	calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+4K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NO ₃).
1905–6.											
April 14–July 15. July 14–September 18. September 30–December 9 December 11–January 6 January 7–February 3 February 4–March 3 March 4-31 April 1–22	30 24 21 19 20 20 21 10	+5.9 +.3 +3.1 +2.1 +4.6 +8.2	217 366 278 265 231 220 202 174	20 15 12 17 19 17 23	4. 0 3. 3 4. 7 4. 2 4. 3 5. 5 3. 7 4. 8	12 17 15 14 10 12 8.9 9.8	0. 00 . 00 . 00 . 00 . 00 . 00 . 00	65 52 75 85 83 72 63 71	15 10 9. 7 6. 8 6. 5 8. 2 12 9. 2	18 7. 9 6. 0 6. 5 8. 2 8. 9 8. 6	0.14 .07 .49 .56 2.0 .64 .10
Mean		4.0	244	18	4.3	12	.00	71	9. 7	9. 2	. 57

Monthly discharge, in second-feet, of San Francisco River near Alma, N. Mex.

Month.	1904. a	1905.	1906.	1907.	Mean.
Ionuory	*	282	48	a 936	422
January February		790	222	572	528
March		1,290	520	311	707
April		1,220	234	168	541
May		269	42	79	130
June		22	4	34	20
July	b 161	24 57	30 61	81 273	45
AugustSeptember		170	54	125	138
October		46	12	92	72
November		a 204	23	82	89
December		a 66	600	68	248
The year		370	154	235	25

a Approximate.

b August 18-31.

c November 1-18.

SAPELLO RIVER NEAR LOS ALAMOS, N. MEX.

Samples of water were collected from Sapello River at a ford near Los Alamos, N. Mex., from March 19, 1905, to April 5, 1906. A gaging station was established by the United States Geological Survey near Los Alamos, N. Mex., August 22, 1903. Stream-flow data, including gage heights and estimates of discharge, for the station have been published by the Survey in the following reports:

Water-Supply Papers: 99, pp. 249-250; 131, pp. 166-168; 173, pp. 63-64; 209, p. 44; 247, pp. 79-82.

Partial analyses of water of Sapello River at ford near Los Alamos, N. Mex., with gage heights.

[Drainage area, 200 square miles.]

		Analysis (milligrams	s per liter).		35
Dates.	Carbon- ate radicle (CO_3) .	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspend- ed mat- ter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).
1905-6.						
March 19, 20, 21, 22, 23, 24. March 26, 27, 28. April 2, 3, 4, 5, 6, 7. April 9, 10, 11, 12, 13, 14. April 16, 17, 18, 19, 20, 21, 22. April 23, 24, 25, 26, 27, 28, 29. April 30, May 1, 2, 3, 4, 5, 6. May 7, 8, 9, 10, 11, 12, 13. May 14, 15, 17, 19, 20. May 21, 22, 23, 25, 26, 27. May 28, 29, 30, 31, June 1, 2, 3. June 4, 5, 6, 7, 8, 9, 10. June 11, 12, 13, 14, 15, 16, 17. June 19, 20, 21, 22, 23, 24. June 25, 26, 27, 28, 29, 30, July 1. July 2, 3, 4, 5, 6, 7, 8. July 9, 11, 12, 13, 14, 15. July 16, 17, 18, 19, 20, 21, 22. July 23, 24, 25, 26, 27, 28, 29. July 30, August 1, 2, 3, 4, 5. August 6, 7, 8, 9, 10, 11, 12. August 13, 14, 15, 16, 17, 18, 19. August 20, 21, 22, 23, 24, 25, 26, 4, 29. September 10, 11, 12, 13, 14, 15, 16.	Trace. 0 5 6 0 7 7 7 0 0 0 1 6 0 0 1 6 1 2	150 137 131 123 129 125 120 1100 107 122 113 124 126 193 187 184 208 202 202 198 180 216 202 202 218 202	766667744664477777744211122166110114225	128 188 786 238 200 4,700 478 248 712 162 94 112 284 668 70 16 40 30 38 82 2,760 82 2,760 82 2,760	205 166 162 174 160 190 142 158 164 170 170 170 256 278 360 356 378 322 336 276 316 316 326 292	1.2 1.6 1.8 1.7 3.0 2.2 1.8 1.7 1.7 1.4 1.3 1.0 0.6 0.4 0.2 0.0 0.1 0.3 0.4 0.2 0.3

Partial analyses of water of Sapello River at ford near Los Alamos, N. Mex., with gage heights—Continued.

		Analysis (milligrams	s per liter).		
Dates.	Carbon- ate radicle (CO ₃).	Bicar- bonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).
1905–6.						
September 17, 18, 19, 20, 21, 22, 23 September 24, 25, 26, 27, 28, 29, 30 October 1, 2, 3, 4, 5, 6, 8 October 7, 9, 10, 11, 14, 15, 16 October 17, 18, 19, 21 October 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 November 1, 2, 3, 4 November 5, 6, 7, 8, 9, 10, 11 November 19, 13, 14, 15, 16, 17, 18 November 19, 20, 21, 22, 23, 24, 25 November 26, 27, 29, 30, December 1, 2 December 3, 4, 6, 7, 8, 9 December 10, 12, 13, 14, 15, 16. December 18, 19, 20, 21, 22, 23 December 24, 25, 26, 27 January 1, 2, 3, 4, 5, 6 January 7, 8, 9, 10, 11, 12, 13 January 14, 15, 16, 17, 18, 20 January 7, 8, 9, 10, 11, 12, 13 January 21, 22, 23, 24, 25, 26, 27 January 78, 9, 30, 31, February 1, 2, 3 February 5, 6, 7, 8, 9, 10 February 11, 12, 13, 14, 15, 16. February 19, 20, 22, 24 February 26, 27, March 1, 2, 3 March 4, 5, 6, 7, 8, 9, 10 March 11, 12, 13, 14, 15, 16, 17 March 18, 20, 21, 22, 23, 24 March 26, 27, 28, 29, 30, 31 April 1, 2, 3, 4, 5	0 24 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	248 231 231 221 224 285 273 265 243 220 185 185 195 195 195 195 195 195 195 195 195 19	12 20 12 16 16 16 16 13 11 13 17 11 21 18 11 7 7 7 15 4 10 7 18 14 21 12 12 10 17 18 11 15 17 17 18 11 11 18 11 11 18 11 11 18 19 19 19 19 19 19 19 19 19 19 19 19 19	4 98 14 406 56 144 2 34 52 1,370 1,500 198 232 126 104 72 146 192 98 24 48 67 86 78 48	364 352 426 464 512 362 488 386 420 316 200 306 268 240 270 310 260 284 262 342 264 258 290 364 292 236 378 200	0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 1.0 0.6 0.5 0.5 0.7 1.4 1.2 0.9 0.8 0.8 0.8 0.8 1.1

Relative amount of substances in solution in water from Sapello River at ford near Los Alamos, N. Mex.

ro.	samples.		(Ds) er).		Radic	les in p	er cen	t of dis	solved	solids.	
Limiting dates of composite.	Number of daily sam	Errors.	Dissolved solids (Ds) (milligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+\frac{3}{4}K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NO3).
1905-6. March 19-April 15. April 16-May 13. May 14-June 10. June 11-July 8. July 9-August 5. August 6-September 9. September 10-October 8. October 9-November 4. November 5-December 2. December 3-27. January 1-27. January 1-27. January 28-February 24. February 26-March 24. March 26-April 5.	28 25 27 26 27 28 27 27 22 26 23 25	+4.8 +7.5 +8.1 +.9 -1.0 +2.1 +2.1 -1.9 6 +9.1	186 155 158 251 346 304 350 442 319 244 264 289 209	18 25 23 25 25 26 22 20 24 24 24	4. 1 3. 8 4. 4 3. 5 3. 9 4. 4 3. 9 3. 8 4. 9 3. 8 4. 0	14 13 8. 4 a7.5 9.2 8.6 7.7 10 7.4 6.1 7.5 6.6	0.00 .77 .00 .00 1.9 .00 .00 .00 .00 .00	72 78 79 72 68 73 62 63 71 72 73 73	18 16 18 12 27 31 31 24 23 22 27 22 27	3. 8 2. 8 4. 4 1. 6 2. 8 5. 7 4. 3 5. 7 7. 6 7. 1 8. 3 2. 3	0.20 .14 .05 .08 .07 .05 .20 .08 .11 .05 .17
Mean		3.8	269	23	4.0	9.6	.19	71	22	4.9	.10

a Sodium is 89 per cent and potassium is 14 per cent of this amount.

Monthly discharge, in second-feet, of Sapello River near Los Alamos, N. Mex.

Month.	1905.	1906.	1907.	1908.	Mean.
anuary	a 40	32	27	2	25
February	61	16	32	3	28
March April	$\begin{array}{c c} & 120 \\ & 289 \end{array}$	16 54	20 15	3 16	40 94
May	187	64	64	2	79
une	42	25	49	2	30
ſulyAugust		19 8	15 19	1 28	11
September		7	7	5	10
October	6	9	2	2	
November	18	12	2	2	
December	16	120	2	2	3.
Mean	68	32	21	. 6	33

a Assumed.

SHOSHONE RIVER NEAR CODY, WYO.

Samples of water were collected from Shoshone River at a wagon bridge near Cody, Wyo., from April 2, 1905, to March 30, 1906. A gaging station was established near Cody by the United States Geological Survey April 26, 1902. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports:

Water-Supply Papers: 84, pp. 21–23; 99, pp. 83–85; 130, pp. 132–136; 172, pp. 113–115; 208, pp. 103–105; 246, pp. 194–197.

Partial analyses, gage heights, and rates of discharge of water and solids for Shoshone River at wagon bridge near Cody, Wyo.

[Drainage area, 1,480 square miles.]

	Ana	alysis (milligi	ams per	liter).	feet).	Solids (tons poday).		
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (, feet).	Suspended mat- ter.	Dissolved solids.
1905-6. April 2, 3, 4, 5, 6, 7. April 9, 10, 11, 12, 13, 14. April 16, 17, 18, 19, 20, 21, 22. April 23, 24, 25, 26, 27, 28, 29. April 30, May 1, 2, 3, 4, 5. May 7, 8, 9, 10, 11, 12, 13. May 15, 16, 17, 18, 19, 20. May 21, 22, 23, 24, 25, 26. May 28, 29, 30, 31, June 1, 2. June 4, 5, 6, 7, 8, 9, 10. June 11, 12, 13, 15, 16, 17. June 18, 19, 20, 21, 22, 23, 24. June 25, 27, 28, 29, 30, July 1. July 2, 3, 4, 5, 6, 7, 8. July 9, 10, 11, 12, 13, 14, 15. July 16, 17, 18, 19, 20, 21, 22, 21, 22. July 23, 24, 25, 26, 27, 28, 29. July 30, 31, August 1, 2, 3, 4. August 7, 8, 9, 10, 11 August 13, 14, 16, 17, 18. August 20, 21, 22, 23, 24, 25, 26.	, 0	100 84 74 77 85 70 66 48 56 52 37 39 44 52 53 60 64 61	77 33 35 64 10 3 68 4 6 8 15 9 4 12	46 40 94 86 162 50 218 246 258 144 82 202 76 182 156 64 76 50	188 154 142 116 128 136 130 110 104 100 104 108 60 90 116 96 94 150 104 118	2.89 3.09 2.55 2.81 3.44 5.53 4.55 5.77 5.50 4.52 3.66 2.99 2.7	933 967 1,130 921 680 944 1,230 6,330 5,770 4,200 6,340 4,820 4,820 3,080 -2,060 2,060 2,080 1,000	116 104 287 214 298 128 724 130 2,380 4,410 2,240 995 	473 402 433 289 235 347 432 510 1,010 1,710 1,620 1,230 1,030 1,180 1,140 799 523 843 281 269

Partial analyses, gage heights, and rates of discharge of water and solids for Shoshone River at wagon bridge near Cody, Wyo.—Continued.

	Ana	ılysis (milligr	ams per	liter).	feet).	(second-	Solids (1 da	
. Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (ifeet).	Suspended mat- ter.	Dissolved solids.
1905–6.									
August 27, 28, 31, September 1, 2 September 3, 4, 5, 6, 7, 8 September 10, 11, 12, 13, 14, 15, 16 September 17, 18, 19, 20, 21, 22, 23 September 24, 25, 26, 27, 28, 29, 30 October 1, 2, 3, 4, 5, 6, 7 October 15, 16, 17, 18, 19, 20, 21 October 22, 23, 24, 25, 26, 27, 28 October 29, 30, November 1, 2, 3 November 22, 33, 24, 25, 26, 27, 28 November 11, 12, 13, 14, 15, 16, 17 November 18, 19, 20, 21, 22 December 8, 9, 10, 11, 12, 13, 14, 16 December 17, 19, 20, 30 December 31, January 1, 2, 3, 4, 5 January 7, 8, 9, 10, 11, 12, 13 January 14, 15, 16, 21, 22, 24, 25 January 26, 27, 28, 29, 30, 31, Febru-	000000000000000000000000000000000000000	65 84 81 93 97 105 105 124 118 112 103 1112 109 111 112 92	2 8 8 8 11 7 6 12 14 10 10 11 7 18 13 8 11 17	42 184 2 .12 16 14 34 0 0 0 4 54 10 24 0 0 112 96 38 22	120 130 146 146 196 192 230 154 204 204 221 186 192 214 232 168 140 166 180	2.8 2.7 2.5 2.2 2.0 2.0 2.1 2.0 2.1 2.0 2.1 2.0 1.9 1.9 1.9	902 7772 651 438 317 271 290 296 329 295 382 291 301 271 269 258 278 303	102 383 4 14 14 10 27 0 0 43 35 8 20 0 81 67 28 18	292 271 257 173 116 143 184 137 162 192 151 174 170 122 98 125 147
ary 1. February 3, 4, 5, 9, 10. February 6, 7, 8, 11, 12, 13, 14. February 19, 20, 21, 22, 23, 24. February 25, 26, 27, 28, March 3. March 4, 5, 6, 7, 8. March 12, 13, 14, 15, 16, 17. March 18, 24. March 25, 26, 27, 28, 29, 30.	0 0 0 0 0	96 106 92 99 103 114 127	18 14 12 32 14 8 24	26 2 8 24 22 0 62	174 224 176 168 196 208 168	2.0 2.0 2.0 2.0 2.0 2.0 2.0	300 305 297 295 310 287 302	21 2 6 19 18 0 51	141 185 141 134 164 161
March 18, 24	0 0	108 108 89	5 10	84	188	2.0 2.0 2.1	298 348	68	151

Relative amount of substances in solution in water from Shoshone River at wagon bridge near Cody, Wyo.

<u> </u>							7				
	samples.		(Ds) er).		Radicl	es in p	er cent	t of dis	solved	solids.	
Limiting dates of composite.	Number of daily san	Errors.	Dissolved solids (I (milligrams per liter)	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+4K).	Carbonate (CO3).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (CI).	Nitrate (NO3).
1905–6.	-										
April 2-29 April 30-May 26. May 28-June 24. June 25-July 22. July 23-August 18. August 20-September 16. September 17-October 14. October 15-November 9. November 11-December 30. December 31-February 1 February 3-March 3. March 4-30.	27 23 25 28 24 24 24 27	+ 8.9 + 6.6 +16.7 +10.9 + 3.1 + 3.1 +10.2 + 6.4	150 128 100 86 148 134 176 182 186 180 185	11 14 14 15 18 18 14 15 14 14 14 17	4.5 3.8 6.1 5.0 3.2 3.9 4.2 4.0 4.3 5.9 4.4	21 19 24 21 a 16 17 18 18 16 	0.00 .00 .00 .00 .00 .00 .00 .00	60 62 55 58 58 58 59 59 54 47	23 22 23 15 17 22 25 25 24 28 27	4.7 4.9 7.0 11 10 5.3 7.4 6.0 3.9 8.9 3.8 13	0.06 .03 .04 .05 .03 .07 .10 .07 .17 .24 .05
Mean		8.2	153	15	4.4	19	.00	57	23	7.2	.08

 $[\]boldsymbol{a}$ Sodium is 88 per cent and potassium is 15.5 per cent of this amount.

Monthly discharge, in second-feet, of Shoshone River near Cody, Wyo.

Month.	1902.	1903.	1904.	1905.	1906.	1907.	1908.	Mean.
January. February March. April. May June July August. September October November December	2,700 5,650 2,780 1,340 655	303 283 333 847 1,560 6,820 3,560 1,570 235 577 499	192 301 345 1,150 3,770 7,090 6,590 2,020 752 225 194 a 200	270 351 833 1,400 5,750 3,890 1,290 559 295 295 303 270	285° 301 310 1,030 2,890 4,550 4,860 1,580 680 376 371 313	234 291 442 926 2,520 5,630 8,280 2,690 1,120 641 366 325	310 218 246 1,170 1,970 5,380 6,680 2,200 744 707 449 219	266 291 418 1,020 2,400 5,840 5,230 1,810 678 497
The year.			1,900	1,350	1,460	1,960	1,690	1,59

a Revised estimate.

STONY CREEK NEAR FRUTO, CAL.

Samples of water were collected from Stony Creek at the Julian ranch, near Fruto, Cal., from September 14, 1905, to January 13, 1906. A gaging station was established near Fruto by the United States Geological Survey January 30, 1901. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports:

Water-Supply Papers: 66, pp. 143-144, 178; 75, p. 211; 81, pp. 341-342; 85, pp. 135-137; 100, pp. 274-276; 134, pp. 116-118; 177, pp. 153-155; 213, pp. 108-109; 251, pp. 170-173.

Partial analyses, gage heights, and rates of discharge of water and solids for Stony Creek at Julian ranch, near Fruto, Cal.

[Drainage area, 760 square miles.]

	Ana	ılys i s (milligr	ams per	liter).	(feet).	Second-	Solid (1	tons per
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (fee	Mean discharge (s	Suspended matter.	Dissolved solids.
1905–6.				4					
September 14 October 4 October 1, 7, 14, 28, November 4, 11 November 18, 27, December 2, 9, 16,	12	223	42	26 122 20	332 212 318	3. 20 3. 24 3. 25	14 18 18	1.0 5.8 1.0	13 • 10 15
January 1, 2, 3, 4, 5, 6 January 7, 8, 9, 10, 11, 12, 13	1 0	224 191 172	70 58 46	138 2 12	336 356 356	3.50 4.00 4.70	51 93 560	19 0.5 18	46 89 539

Analysis of a composite sample, October 1, 1905, to January 13, 1906, gives dissolved solids 326 milligrams per liter; and radicles, in per cent of dissolved solids, as follows: Ca, 12; Mg, 6.1; Na $+\frac{3}{2}$ K, 10; CO₃, 0.00; HCO₃, 63; Cl, 17; SO₄, 7.1; and NO₃, 0.01.

Monthly discharge, in second-feet, of Stony Creek, near Fruto, Cal.

Month.	1901.	1902.	1903.	1904.	1905.	1906.	1907.	1908.	Mean.
January	2,710	114 4, 200	1,420 1,090	234 3,800	2,420 1,470	2,230 1,540	2,020 3,310	1,140 1,680	1,370 2,480
MarchApril	893 361	$2,590 \\ 1,520$	1,660 892	4,360 1,600	2, 050 870	2,500 1,280	4, 430 1, 640	993 525	2,430 1,090
May June July	. 66	578 132 3	$\begin{array}{c c} 276 \\ 16 \\ 7 \end{array}$	715 165 34	675 206 36	610 495 127	450 236 47	364 186 48	502 188 39
August	35	3 9	10	14 19	$\frac{12}{14}$	33 17	15 19	15 7	13 16
October November December		92 $1,580$ $1,130$	$16 \\ 613 \\ 462$	167 71 453	16 27 68	29 61 582	30 44 597	34 88 192	64 331 489
The year	a 430	997	539	970	. 656	792	1,070	439	750

aApproximate.

TRUCKEE RIVER NEAR DERBY, NEV.

Samples of water were collected from Truckee River at the Reclamation Service diversion dam near Derby, Nev., from April 10, 1906, to March 13, 1907. A gaging station was established by the United States Geological Survey at Vista, Nev., August 18, 1899, and was moved to Derby, Nev., about 15 miles downstream, in 1907. The drainage area is 1,520 square miles at Vista. The flow is practically the same at both points. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports:^a

Annual Reports: 11, II, p. 102; 12, II, pp. 324, 351; 13, III, pp. 95, 99; 20, IV, p. 59; 22, IV, p. 405.

Water-Supply Papers: 38, pp. 331-332; 51, pp. 404-405; 52, p. 521; 66, pp. 113-114, 175; 81, pp. 371-373; 85, pp. 117-119; 100, pp. 185-187; 133, pp. 301-303; 176, pp. 84-86; 212, pp. 67-68; 250, pp. 111-112

a See also Second Ann. Rept. U. S. Reclamation Service, p. 358; Third Ann. Rept., p. 346.

Partial analyses, gage heights, and rates of discharge of water and solids for Truckee River at diversion dam near Derby, Nev.

[Drainage area, 1,750 square miles.]

April 10.		An	alysis (milligr	ams per	liter).	t).	id-feet).	Solids (1	cons per
April 10 0 51 5 128 136 7.7 2,840 980 1, April 18 0 57 2 150 104 8.6 3,840 1,550 1, May 8 0 45 5 48 94 9.9 5,470 709 1, May 17 0 64 10 10 140 8.0 3, 160 853 1, May 24 0 54 10 48 106 7.5 2, 640 343 1, May 24 0 54 10 48 106 7.5 2, 640 343 1, May 24 0 64 5 0 132 6.8 1, 990 0 0 1, June 1 0 64 5 0 132 6.8 1, 990 0 1, June 18 0 54 10 10 132 8.4 3, 600 97 1, June 18 0 54 10 10 134 8.4 3, 600 97 1, June 1 0 4 10	Date.						Mean gage height (feet).	Mean discharge (second-feet)	Suspended matter.	Dissolved solids.
January 15. 0 95 19 28 138 4.9 775 59 January 29. 0 74 21 80 214 6.7 1,910 413 1, February 6. 0 55 12 54 82 7.6 2,740 400	April 10. April 18. May 8 May 17 May 24 June 1 June 9. June 18 June 24 July 1 July 21 July 21 July 28 August 5 August 10 August 27 September 3 September 16 September 16 September 24 October 2. October 10. October 22 October 29 November 5 November 5 November 5 November 10 December 10 January 10 January 10 January 10 January 15 January 29 February 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	57 45 64 54 54 54 54 10 77 48 82 102 102 100 99 92 86 61 26 84 98 82 103 98 95 75 54	2 5 10 10 5 10 10 5 10 10 15 12 12 12 12 13 14 29 11 13 14 25 17 19 22 19 21 21 21 21 21 21 21 21 21 21 21 21 21	150 48 10 26 50 50 10 94 60 28 86 30 0 16 0 16 54 18 50 64 88 85 22 24 56 88 88 88 98 14 30 88 50 51 88 88 88 88 88 88 88 88 88 88 88 88 88	104 94 140 106 132 135 112 134 80 90 116 150 160 124 152 118 128 120 116 176 156 144 118 124 162 134 146 138 124 134 146 138	8.9.0.5.8.7.6.4.8.0.0.0.7.6.7.8.8.7.0.5.8.7.0.5.8.7.6.5.5.5.3.3.9.7.6.7.8.8.7.8.6.6.4.4.4.4.4.4.5.4.5.5.5.5.5.4.5.5.5.4.6.7.6.7.6.7.6.7.6.7.6.7.6.7.6.7.6.7.6	3, 840 5, 470 3, 160 1, 990 2, 840 3, 160 1, 410 1, 410 1, 410 675 625 725 775 490 675 825 775 825 580 1, 280 930 825 775 930 985 985 775 1, 910 2, 740	1,550 709 853 343 0 200 519 97 747 512 107 328 .55 51 0 31 113 24 91 142 153 0 20 116 53 117 20 37 85 59 413 400	1,040 1,080 1,390 1,180 756 709 1,040 1,160 1,300 635 768 442 572 2990 3355 313 243 318 247 177 233 268 182 247 177 233 268 182 608 392 321 263 392 321 263 392 321 263 392 321 263 507

Note.—Gaging station at Vista, Nev., drainage area 1,520 square miles, about 15 miles above the sampling station.

Relative amount of substances in solution in water from Truckee River at diversion dam near Derby, Nev.

	samples.	•	(Ds) (milli- r liter).		Radicl	es in p	er cent	of dis	solved	solids.	
Limiting dates of composite.	Number of daily sam	Errors.	Dissolved solids (Ds) (grams per liter)	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+3/4K).	Carbonate (CO ₃).	Bicarbonate (HCO3).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NO ₃).
1906–7.											
April 10-May 24. May 17-June 18. June 24-July 21. July 28-August 20. August 27-September 24. October 2-29. November 5-26. December 5-January 1. January 10-February 6. February 14-March 13.	4 4 4 4 4 4 4 4 4	+14.0 +12.9 + 2.3 + 2.9 + 9.4 +12.6 +12.1	106 112 101 151 153 144 174 180 160 150	14 15 14 13 15 12 11 13 15	4.6 5.2 5.0 5.2 5.7 4.4 5.6 4.6 4.1	23 23 19 19 17 20 21 19 18	0.00 .00 .00 .00 .00 .00 .00	64 65 76 65 66 64 73 49 51	8.6 13 21 14 14 14 19	9.3 11 4.0 6.6 6.4 10 11 14 10 8.7	0.00 .06 .02 .00 .06 .01 .00 .02 Tr.
Mean		9.5	143	14	4.8	20	.00	62	15	9.1	.02

Monthly discharge, in second-feet, of Truckee River at Vista, Nev.

Month.	1890.	1891.	1892.	1899.	1900.	1901.	1902.	1903.	1904.	1905.	1906.	1907.	Mean.
January. February. March April May. June. July. August. September. October	24,500 5,990 4,160 2,200 952 682	a 700 a 650 a 650 1, 520 2, 760 1, 900 945 485 561 503	593 505 723 854 937	114 123 378 530	547 428 857 755 1,260 709 110 122 192 429 567	661 1, 490 1, 330 1, 380 2, 140 1, 260 425 315 329 477 557	389 598 589 1,920 1,610 1,060 a 292 311 443 485 778		572 1,780 3,430 4,170 4,920 3,170 1,310 771 785 1,050 924	894 943 1,240 1,000 1,280 930 260 224 279 430 460		1,060 1,620 a7,000 a6,500 4,180 3,950 2,710 1,640 2,060 2,130 1,930	694 944 1,810 2,460 2,800 2,160 1,070 532 590 721 796
December	a 750	508		456	561	510	a 650	569	844	421	952	1,860	735
The year		980			544	906	758	786	1,980	697	1,610	3,070	1,280

a Approximate.

b April 26-30.

TUOLUMNE RIVER NEAR LA GRANGE, CAL.

Samples of water were collected from Tuolumne River at a wagon bridge near La Grange, Cal., from October 7, 1905, to January 3, 1906. A gaging station was established by the United States Geological Survey near La Grange August 29, 1895. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports:

Annual Reports: 18, IV, pp. 378–383; 19, IV, pp. 512–514; 20, IV, pp. 63, 532; 21, IV, pp. 449–450, 454; 22, IV, p. 465.

Bulletin 140, pp. 301-303.

Water-Supply Papers: 11, p. 90; 16, p. 188; 28, pp. 178–179, 183–186; 38, pp. 393–395; 39, p. 455; 66, pp. 149, 167, 178; 75, p. 214; 81, pp. 386–392; 85, pp. 142–145; 100, pp. 285–287; 134, pp. 156–158; 177, pp. 209–212; 213, pp. 165–169; 251, pp. 270–280.

Additional information in regard to the quality of the water of Tuolumne River is contained in Water-Supply Paper 237, "Quality of California surface waters," pages 51-53.

Partial analyses, gage heights, and rates of discharge of water and solids for Tuolumne River at wagon bridge near La Grange, Cal.

[Drainage area, 1,500 square miles.]

	Ana	alysis (milligr	ams per	liter).	t.)	id-feet).	Solids (tons per day).	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet.)	Mean discharge (second-feet),	Suspended matter.	Dissolved solids.
1905–6.									
October 5, 6, 7, 8, 9, 10, 11 October 12, 13, 14, 15, 16, 17, 19 October 18, 19, 20, 21, 22, 23, 24, 25 October 26, 27, 28, 29, 30, 31 November 1, 2, 3, 4 November 5, 6, 7, 8, 9, 10, 11 November 12, 13, 14, 15, 16, 17, 18 November 19, 20, 21, 22, 23, 25 November 24, 26, 27, 30, December 1, 2. December 3, 4, 5, 6, 7, 8, 9 December 10, 11, 12, 13, 18, 19, 20, 21, 22, 23 December 24, 26, 27, 28, 29, 30 December 31, January 1, 2, 3	0 0 0 0 0 0 0 0 0 0	61 58 64 62 61 69 71 83 69 63 67 56	10 9 14 11 12 12 7 18 18 10	6 30 16 66 6 2 12 10 6 58 122 40 56	130 98 88 86 104 144 92 146 116 96 96	3.6 3.5 3.7 3.6 3.6 3.7 3.8 4.0 4.1 4.1	36 33 51 51 48 48 53 64 103 120 126 144 158	1 3 2 9 1 0 2 2 2 2 19 42 16 24	13 9 12 12 13 19 13 25 32 31 33 38 72

Relative amount of substances in solution in water from Tuolumne River at wagon bridge near La Grange, Cal.

	samples.		s(Ds)(milli- liter).	F	Radicle	es in pe	er cent	of diss	olved s	solids.	
Limiting dates of composite.	Number of daily sam	Errors.	Dissolved solids(Ds)(grams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+\frac{3}{4}K).	Carbonate (CO ₃).	Bicarbonate (HCOs).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NO ₈).
1905.											
October 7, 31 November 24, December 30	28 29	$+5.6 \\ +10.7$	96 110	20 18	5. 3 5. 4	14 17	0.00	61 62	19 19	10 10	4.6 .08
Mean		8. 2	103	19	5. 4	15	.00	62	19	10	2.3

Monthly discharge, in second-feet, of Tuolumne River and Modesto and Turlock canals near La Grange, Cal.

						•			
Month.	1895.	1896.	1897.	189	98.	1899.	1900.	1901.	1902.
January February March. April. May June July August. September October November December The year.	263 134 113 270	2,310 1,160 2,720 3,520 4,430 7,690 3,000 485 432 120 1,140 1,080	1, 230 5, 170 4, 030 7, 740 11, 900 5, 670 2, 180 237 86 222 768 1, 100	1, 4, 4, 2,	454 900 220 010 620 250 277 85 20 52 39 256	487 740 3, 620 5, 190 4, 510 6, 660 1, 020 52 512 2, 430 3, 050	2, 380 1, 030 2, 430 2, 480 6, 930 5, 360 814 100 37 1, 230 2, 540 1, 330	3, 350 7, 200 3, 720 3, 960 8, 040 9, 390 3, 700 784 175 211 574 1, 340	352 1, 440 2, 290 5, 000 6, 660 6, 920 1, 400 378 91 113 676 809
		_,				_,			
Month.	1903.	1904.	190	5.	1	906.	1907.	1908.	Mean.
January. February. March. April. May. June. July. August. September. October. November. December.	1,420	43 4,13 5,95 6,41 11,70 9,58 2,97 76 65 3,54	1, 60 3, 0 4, 90 5, 60 5, 70 1,	745 930 490 020 930 970 340 212 78 46 62 129	1	2,860 2,180 7,180 6,500 1,100 3,900 1,600 2,220 470 216 243 1,470	2, 460 4, 240 11, 200 9, 810 10, 500 11, 200 8, 210 2, 140 496 304 322 634	1,180 1,000 2,120 3,500 4,100 3,070 1,020 390 116 219 218 362	1,560 2,530 4,100 5,240 7,600 7,350 3,000 636 220 499 783 909
The year	2,720	3,95	0 2,	000		4,990	5, 130	1,440	2,870

Note.—No flow in Modesto canal until 1903. Not included in table is flow of La Grange Ditch and Hydraulic Mining Company's canal with following approximate discharge in second-feet: 1895, 35; 1896, 32; 1897–1899, 24; 1900, 20; 1901–1908, less than 10. The Tuolumne was gaged at Modesto, a short distance below La Grange, by the state engineer, from November, 1878, to October, 1884, and by the U.S. Geological Survey in 1895 and 1896. Monthly discharge for these periods is published in Water-Supply Paper 81, pp. 396–399; the monthly mean discharge is given below.

Monthly discharge, in second-feet, of Tuolumne River near Modesto, Cal.

Month.	1878.	1879.	1880.	1881.	1882.	1883.	1884.	1895.	1896	Mean.
January. February March. April. May June July August September October. November December		478 1,880 2,800 4,460 5,090 7,060 1,980 183 39 30 101 903	409 625 832 7,140 10,400 14,100 7,620 1,230 134 56 35 1,100	2,880 6,760 2,880 6,260 7,270 5,220 2,000 391 125 130 193 620	620 573 2, 160 3, 540 7, 460 8, 050 2, 740 574 255 873 570 327	654 490 1,310 3,270 8,180 6,540 1,640 490 327 262 327 327	410 490 6,540 7,360 7,360 8,180 6,540 1,640 327 245	4,830 3,920 3,160 5,820 11,800 9,160 3,830 848 615 152 255 283	3,080 1,180 2,720 3,580 5,180 11,600 4,120 575 574 224 1,210 1,030	1,670 1,990 2,800 5,180 7,840 8,740 3,810 741 300 246 344 582
The year		2,080	3,640	2,890	2,310	1,980		3,720	2,930	2,850

TURKEY CREEK NEAR OLUSTEE, OKLA.

Samples of water were collected from Turkey Creek at Fullerton dam, near Olustee, Okla., from March 4, 1906, to February 19, 1907. A gaging station was established by the United States Geological

81210°—wsp 274—11——9

Survey at Olustee April 20, 1905. Stream-flow data, including gage heights and estimates of discharge, for the station have been published by the Survey in the following reports:

Water-Supply Papers: 173, pp. 94-95; 209, p. 69; 247, pp. 86-88.

Partial analyses and gage heights for Turkey Creek at Fullerton dam, near Olustee, Okla.

[Drainage area, 320 square miles.]

•		Analysis (milligrams	per liter).		
Dates.	Carbon- ate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine radicle. (Cl).	Suspended matter (Sm).	Dis- solved solids (Ds).	Mean gage height (feet).
1906–7.						
March 13 March 18 March 22 March 26 March 30 April 2 April 5 April 9 April 16 April 19 April 19 April 24 April 26 April 30 May 7 May 9 May 17 May 9 May 17 May 20 May 24 May 28 June 1 June 6 June 11 June 6 June 11 June 25 June 28 July 2 July 5 July 9 July 13 July 16 July 20 July 20 July 23 July 26 July 30 August 11 August 12 August 14 August 22 August 25 September 10 September 10 September 18 September 19 September 22 September 19 September 25 October 2 October 20 October 20 October 20 October 22 October 29 November 7 November 7 November 7 November 7 November 9 November 7		150 140 274 198 211 198 192 236 6 242 242 242 242 242 242 243 102 179 211 198 147 121 185 108 178 170 85 178 170 85 178 176 121 176 121 178 178 179 204 223 105 108 179 121 179 205 206 207 207 207 208 208 208 208 208 208 208 208 208 208	600 590 600 600 610 590 610 29 310 484 542 494 87 387 242 406 87 106 325 382 148 366 89 446 485 79 69 356 1386 20 40 40 40 40 40 40 40 40 40 4	380 64 12 20 948 12 36 0 0 0 124 1,930 360 232 196 220 48 128 192 148 132 216 144 28 80 116 80 124 1100 84 28 68 28 108 108 108 108 108 108 108 108 108 10	4, 280 4, 300 4, 300 4, 300 4, 300 4, 280 4, 280 4, 110 22, 650 3, 670 4, 220 4, 110 224 2, 720 3, 580 3, 860 1, 180 3, 300 3, 470 1, 120 1, 260 3, 680 2, 510 1, 160 3, 170 1, 400 3, 460 3, 710 3, 860 2, 510 1, 160 3, 80 2, 350 2, 350 3, 470 1, 120 1, 260 3, 680 2, 510 1, 160 3, 170 1, 260 3, 170 1, 260 3, 400 3, 710 3, 860 2, 210 1, 260 3, 300 4, 221 688 3, 300 4, 221 688 3, 300 4, 221 688 3, 300 4, 210 1, 260 1, 210 1, 260 2, 210 1, 260 2, 210 1, 260 2, 210 1, 260 2, 210 2, 210 2, 210 3, 330 4, 240 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3	2.33 2.33 2.33 2.33 2.37 2.43 2.57 2.60 2.66 2.66 2.66 2.66 2.66 2.66 2.66

Partial analyses and gage heights for Turkey Creek at Fullerton dam, near Ölustee, Okla.—Continued.

		Analysis (milligrams	per liter).		36
Dates.	Carbon- ate radicle (CO ₃).	Cicar bonate radicle (HCO ₃)	Chlorine radicle (Cl).	Sus- pended matter (Sm).	Dis- solved solids (Ds).	Mean gage height (feet).
1906-7.						
November 19	0	250	485	200	4,040	2.7
November 23	0	261	507	. 0	3,860	2.7
November 26	0	255	540	108	3, 970	3.1
November 30	0	62	102	292	1,280	6.2
December 2	0	129	88	360	1,040	8.4
December 5	9	200	320	204	2,960	3. 3
December 12	0	229	454	212	3,880	2.9
December 14	0	224	470	224	3,870	2.9
December 19	0	215	. 501	336	3,970	2.8
December 22	0	215	485	360	3,740	2.8
December 27	0	200	496	88	4,010	2.8
December 31		215	501	64	3,980	2. 8
January 3	0	220	501	124	3,900	2.8
January 6	. 0	191	516	112	3,910	2.8
January 9	0	57	41	456	708	7.
January 12	0	210	434	112	3,650	3.
January 15	0	210	485	136	3,860	3. 2
January 20	0	229	434	436	3,760	7.0
January 22	0	182	506 423	280 128	4,040 3,760	3. 2 3. 3
January 24		258			$\frac{3,700}{3,770}$	
January 30	0	$\begin{array}{c} 248 \\ 229 \end{array}$	437 454	336 72	3,770	3. (2.
February 4	0	248	454	20	3,940	2.
February 8	0	248	516	20 96	$3,940 \\ 3,920$	2.
February 11	ő	200	516	- 20	4,040	2.
February 15	0	190	516	12	3,980	2.8
February 19	U	190	310	12	5, 300	۷.

Relative amount of substances in solution in water from Turkey Creek at Fullerton dam, near Olustee, Okla.

	ples.		-lim)		Radicl	es in p	er cen	t of dis	solved	solids	
Limiting dates of composite.	Number of	Errors.	Dissolved solids (Ds) (ligrams per liter),	Calcium (Ca).	Magnėsium (Mg).	Sodium and potassium (Na+4/4 K)	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO ₄).	Chlorine (Cl).	Nitrate (NO ₃).
1906–7.											
March 4-June 28. July 2-October 29. November 3-February 19.	29 27 29	+1.9 +1.4	3,080 2,580 3,840	17 16 14	3. 2 3. 3 3. 8	8. 2 8. 5 9. 1	.00	7.4 6.8 4.1	45 46	12 12 12	0.00 .00 .01
Mean		1.6	3,170	16	3.4	8.6	.00	6.1	46	12	T.

VERDE RIVER NEAR McDOWELL, ARIZ.

Samples of water were collected from Verde River at Mesa, near McDowell, Ariz., from April 5, 1905, to March 10, 1906. A gaging station was established by the United States Geological Survey near McDowell, Ariz., April 20, 1897. Stream-flow data, including gage

heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports:^a

Annual Reports: 11, II, p. 100; 19, IV, pp. 420–423; 20, IV, pp. 59, 407; 21, IV, pp. 387–388.

Bulletin 131, pp. 49, 51.

Water-Supply Papers: 16, p. 150; 28, pp. 133, 141, 143; 38, pp. 323–324; 50, p. 387; 66, pp. 102–103; 73, pp. 13–16; 75, p. 177; 85, pp. 21–23; 100, pp. 31–36; 133, pp. 222–227; 175, pp. 181–185; 211, pp. 137–139; 249, pp. 191–195.

Information relative to the quality of Salt River at McDowell, below the mouth of Verde River, is contained in Bulletin 44 of the University of Arizona Agricultural Experiment Station, "The river irrigating waters of Arizona," by R. H. Forbes, 1902.

Partial analyses, gage heights, and rates of discharge of water and solids for Verde River at Mesa, near McDowell, Ariz.

[Drainage area, 6,000 square miles.]

	Ans	alysis (milligr	ams per	liter).	(feet).	(second-	Solids per o	(tons
Dates.		Bicarbonate radicle (HCO ₃).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height	Mean discharge (sfeet).	Suspended matter.	Dissolved solids.
1905-6.									
April 5, 11, 14, 18, 20, 22. April 25, 26, 28, May 1, 3, 6. May 9, 12, 13, 15, 17, 19. May 23, 24, 26, 29, 31, June 2. June 5, 7, 9, 11, 13, 15, 17. June 20, 22, 24. June 28, 29, July 4, 6, 8. July 11, 15, 18, 20, 22. July 25, 27, 28, 29. August 1, 3, 5. August 8, 10, 12, 16, 22, 24. August 29, 31, September 2, 5, 7, 9. September 12, 15, 19, 21, 23, 26, 30. October 4, 7, 10, 12, 14, 18, 19. October 21, 26, 28, 31, November 2, 4. November 7, 9, 11, 14, 16, 18. November 22, 24, December 2, 5, 8, 12, 15. December 19, 22, 26, 29, January 5, 6.	10 7 19 13 24 7 0 0 36 8 0 18 0 20 9 0	172 210 203 242 182 255 285 242 185 250 236 179 284 242 267 250	15 27 25 39 41 53 41 51 40 26 28 37 33 30 28	1,460 396 200 26 38 56 2 92 4,340 1,850 5,000 6,860 2,940 170 1,320	272 314 316 420 422 416 490 452 496 432 378 328 410 414 326 340	7.9 6.4 4.3 4.0 3.8 6.3 4.3 4.3 4.3 5.1 4.9 4.0 4.7	5, 400 1, 820 1, 100 397 320 234 143 203 368 408 530 954 1, 110 386 313 837	21, 300 1, 950 594 28 33 35 1 50 4, 310 2, 040 7, 160 17, 700 8, 820 317 144 2, 980 768 17	3, 960 1, 550 938 451 365 263 189 253 492 475 541 845 1, 230 276 768
January 9, 11, 13, 16, 23, 26. January 30, February 1, 3, 6, 13, 15, 17. February 19, 20, 21, 22, 23, 24. February 26, 27, 28, March 1, 2, 3. March 5, 6, 7, 8, 9, 10.	16 0 0 8 6	234 236 202 199 223	25 21 23 34 29	140 198 126 2 50	348 288 268 334 326	3. 9 5. 1 5. 1 4. 5 4. 1	711 723 1,530 1,040 655	269 387 520 6 88	668 562 1,110 938 576

a See also First Ann. Rept. U.S. Reclamation Service, p. 87.

Relative amount of substances in solution in water from Verde River at Mesa, near McDowell, Ariz.

	samples.		ids (Ds) liter).	Radicles in per cent of dissolved solids.									
Limiting dates of composite.	Number of daily san	Errors.	Dissolved solids (milligrams per lit	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+\frac{3}{4}K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO ₄).	Chlorine (Cl).	Nitrate (NO ₃).		
1905-6.													
April 5-June 2. June 5-July 22. July 25-September 9. September 12-November 18. November 22-February 17. February 19-March 10.	24 20 19 26 26 18	+3.1 -4.7 +8.0	338 438 370 405 346 297	14 16 17 16 19	7.1 7.5 6.5 6.9 4.0 7.4	11 14 a 14 13 11 12	1.3 1.4 .00 .00 .00 2.4	65 70 72 71	16 21 17 22 16 15	7.1 9.6 9.7 11 8.4	0. 13 . 07 . 06 . 02 . 08 . 01		
Mean		5.3	366	16	· 6. 6	12	. 85	69	18	9.2	.06		

a Sodium is 98 per cent and potassium is 2.4 per cent of this amount.

Monthly discharge, in second-feet, of Verde River near McDowell, Ariz.

Month.	1888.a	1889.a	1890.	a 1891.a	1892.a	1893.a	1894.a	1895.a	1896.	1897.	1898.	1899.
July		2,500 1,170 3,410 795 197 141 208 204 250 220 288 2,840 1,020	2,090 4,540 2,500 368 174 153 220 1,900 1,120 1,380 2,360 3,130	0 17,500 1,930 3 534 458 401 314 278 0 258 0 258 0 258	284 b 192 b 160 b 88 b 91 b 52 152 198 164 223 257 282	231 672 5, 390 290 150 68 225 802 530 376 296 315	244 259 530 171 68 79 119 439 292 242 230 442	4,040 1,690 3,720 750 258 153 145 359 176 475 463 391	324 154 276 220 172 117 864 a 849 a 557 a 452 a 492 a 352	a2, 140 a 873 a1, 500 a1, 190 269 150 130 439 992 309 262 267 710	253 496 639 319 184 139 323 400 338 169 195 303	350 344 260 205 152 152 365 434 357 549 203 292
. Month.	1	1900.	1901.	1902.	1903.	1904.	1905.	1906.	1907.	1908.	Mean.	Mean, 1896- 1908.
January. February March April May June July August September October November December		189 199 160 88 91 52 52 151 121 183 430 224	351 1,860 895 185 140 105 210 627 93 134 245 268	224 239 b 246 b 220 b 184 b 117 b 86 b 478 b 1,060 b 144 b 208 b 644	b 249 b 362 b 1, 470 b 2, 750 141 136 232 329 513 318 207 227	237 226 184 119 126 63 729 1,620 482 188 210 241	1, 420 7, 710 8, 780 5, 230 832 283 245 567 771 544 3, 430 875	812 1, 200 5, 460 1, 030 247 150 234 743 211 181 312 2, 640	2, 430 2, 620 3, 780 838 251 209 217 432 403 614 375 323	306 1,970 1,390 301 443 146 463 870 356 264 281 3,130	1, 010 2, 210 2, 130 785 231 143 277 585 445 352 544 993	595 1, 450 1, 960 959 249 140 319 591 475 300 530 786
The year		161	426	321	578	369	2, 560	1,100	1,040	827	809	696

 $[^]a$ From Water-Supply Paper 73; obtained by taking proportional part of discharge of Salt River at Arizona dam. b Approximate.

YELLOWSTONE RIVER NEAR BILLINGS, MONT.

Samples of water were collected from Yellowstone River at a county bridge near Billings, Mont., from May 20 to November 24, 1905. A gaging station was established by the United States Geological Survey near Billings May 29, 1904, and was discontinued December 31, 1905. A station was established at Junction May 10, 1906, and was discontinued December 31, 1907; and a station was then established at Huntley, Mont., January 1, 1907. The flow at the three stations is approximately the same. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for these stations have been published by the Survey in the following reports:

Water-Supply Papers: 130, pp. 120–122; 172, pp. 95–97; 208, pp. 88–90; 246, pp. 144–148.

Partial analyses, gage heights, and rates of discharge of water and solids for Yellowstone River at county bridge near Billings, Mont.

[Drainage area, 11,180 square miles.]

•									
	Ana	alysis (milligr	ams per	(feet).	-puooes)		tons per	
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine (Cl).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (fe	Mean discharge (eet).	Suspended matter.	Dissolved solids.
1905.		-			·				
May 20, 24, June 7, 11, 12, 13, 14. June 15, 18, 19, 20, 21, 22. July 5, 6, 7, 8. July 9, 11, 12, 13, 15 July 26, August 1, 2, 3. August 6, 7, 9, 10, 15. August 21, 27, 28, 29, 30, 31, Septem-	7 0 0 0 0 0	92 · 87 74 69 102 120	35 11 7 6 12 8	914 216 1,110 64 258 114	238 148 138 164 192 236	7. 6 7. 9 7. 6 6. 6 4. 3 3. 7	21,800 21,700 20,100 16,000 8,600 7,100	53,800 12,700 60,000 2,770 6,000 2,190	14,000 8,660 7,490 7,090 4,460 4,530
September 1, 2, 3, 4, 5, 6 September 10, 11, 12, 13, 14, 18, 19 September 21, 22, 23, 26, 27, 29, 30 October 1, 2, 3, 5, 6, 11 October 12, 13, 14, November 13, 14,	0 0 0 0	110 105 118 133 135	17 16 20 15 18	10 66 10 38 102	230 184 260 300 320	2.7 2.6 2.2 2.1 2.2	4,770 4,570 3,820 3,660 3,810	129 815 103 376 1,050	2,960 2,270 2,680 2,970 3,290
15, 16	11 0	120 144	20 18	182 46	354 336	2. 0 1. 9	3,360 3,160	1,650 393	3,210 2,870

Relative amount of substances in solution in water from Yellowstone River at county bridge near Billings, Mont.

	ples.		(mil-	Radicles in per cent of dissolved solids.								
Limiting dates of composite.	Number of daily samples.	Errors.	Dissolved solids (Ds) ligrams per liter).	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+4K).	Cárbonate (CO3).	Bicarbonate (HCO3).	Sulphate (SO ₄).	Chlorine (Cl).	Nitrate (NO3).	
1905.												
July 26–September 19 September 21–November 24	24 27	-3.7	· 231 325	15 12	2. 0 5. 5	14 13	0.00	49 46	32	5. 6 5. 5	0.08 .06	
Mean		3.7	278	14	3.8	13	.00	48	32	5. 6	. 07	

Monthly discharge, in second-feet, of Yellowstone River near Billings, Mont.

Month.	1904.a	1905.a	1906.6	1907.b	1908.¢	Mean.
January				d 1,560	c 2,790	2,180
February March April		e2,610		d 4,500 f 3,140 4,000	1,870 1,880 4,470	3,180 $2,540$ $3,740$
MayJune.			g 16,400 20,100	9,800 27,800	12,700 31,500	11,200 26,000
JulyAugust	18,100 8,260	14,700 6,220	14,600 7,060	34,400 13,200	23,400 9,070	21,000 8,760
September October October	5,240 3,970	3,930 3,620	4,520 3,140	6,630 4,930	$5,450 \\ 5,420$	5,150 4,210
November	3,420 2,910	3,290	2,770 2,810	$\frac{3,650}{3,040}$	$\frac{4,140}{2,940}$	3,450 $2,920$
The year				9,720	8,800	7,860

a Billings; drainage area, 11,180 square miles.

YELLOWSTONE RIVER NEAR GLENDIVE, MONT.

Samples of water were collected from Yellowstone River at a highway bridge near Glendive, Mont., from March 28, 1905, to April 21, A gaging station was established near Glendive in 1893, and gage heights recorded by the United States Weather Bureau. records of the United States Geological Survey begin August 1, 1903. Stream-flow data, including gage heights, rating tables, and estimates of discharge for the station have been published by the Survey in the following reports:

Water-Supply Papers: 99, pp. 91-97; 130, pp. 123-126; 172, pp. 97-100; 208, pp. 90-92; 246, pp. 149-150.

b Junction; drainage area, 13,500 square miles. c Huntley; drainage area, 12,000 square miles.

d Estimated.

e March 12-31. f March 19-31.

g May 10-31.

Partial analyses, gage heights and rates of discharge of water and solids for Yellowstone River at highway bridge near Glendive, Mont.

[Drainage area, 66,100 square miles.]

	Ana	alysis (milligr	ams per	liter).	t.).	-puoses)	Solids ((tons per
Dates.	Carbonate radicle (CO ₃).	Bicarbonate radicle (HCO ₃).	Chlorine (C1).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (Suspended matter.	Dissolved solids.
1905-6. March 28 a March 28 b. April 2, 3, 4, 5, 6 April 9, 10, 11, 12, 13. April 28, 29, 30, May 1, 2, 3, 6 May 4, 5, 7, 8. July 4, 5, 7, 8. July 17, 18, 19, 20, 21, 22. July 23, 24, 25, 26, 27, 28, 29. July 30, 31, August 1, 2, 3, 4, 5. August 6, 7, 8, 9, 10, 11, 12. August 13, 14, 15, 16, 17, 18, 19. August 20, 21, 222, 32, 24, 25, 26. August 27, 28, 29, September 1, 2. September 10, 11, 12, 13, 14, 15, 16. September 18, 19, 20, 21, 22, 23, 26. September 10, 11, 12, 13, 14, 15, 16. September 25, 27, 28, 29, 30, October 1. October 2, 3, 4, 5, 6, 9. October 10, 11, 12, 13, 14, 15, 16. October 13 October 17, 18, 19, 20, 21, 22, 23, 26. September 25, 27, 28, 29, 30, November 1, 2. November 19, 30, 31, November 1, 2. November 19, 30, 31, November 1, 2. November 19, 13, 14, 15, 16, 17, 18. November 19, 20, 21, 22, 23, 25. April 4, 5, 6, 7, 8, 9, 10, 11. November 19, 20, 21, 22, 23, 25. April 4, 5, 6, 7, 8, 9. April 10, 11, 12, 13, 14. April 15, 16, 17, 18, 19, 20, 21.	11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	159 175 170 154 105 88 88 29 107 115 108 120 121 129 106 141 146 142 149 163 161 175 180 168 142 166 166	21 18 19 15 217 11 8 5 10 20 15 14 11 20 14 15 13 28 21 17 16 20 18 20 19 10 11 11 11 11 11 11 11 11 11	94 86 76 4 868 1,920 1,200 6116 960 2,210 4,840 1,360 684 522 430 730 126 148 1,910 3,920 1,630 868 190 268 56 92 74 58 59 69 69 69 69 69 69 69 69 69 69 69 69 69	548 564 484 504 440 384 190 238 188 	0.77 0.6 0.4 1.1.6 4.6 5.4 4.6 4.5 4.3 1.8 1.1 1.1 1.4 1.4 1.4 1.2 1.1 1.3 2.5 2.2	4,310 4,310 4,040 3,780 6,470 43,300 33,100 12,000 112,000 10,400 8,600 9,450 6,830 6,100 5,000 6,720 5,200 5,200 5,760 5,760 5,760 5,760 5,760 5,240 5,100 12,000 5,240 5,100 12,000 5,240 5,100 12,000 5,277 8,930 7,780	1,090 1,000 830 41 12,100 33,600 141,000 50,100 60,100 107,000 254,000 44,200 19,200 12,100 1,670 13,500 2,070 2,070 2,020 25,700 71,100 23,300 12,200 2,990 4,170 871 1,350 799 16,300 26,900 12,200	6, 380 6, 560 5, 290 5, 150 6, 150 6, 710 22, 200 19, 400 11, 800 5, 530 7, 700 5, 530 7, 700 4, 350 4, 200 4, 700 7, 360 5, 850 5, 850 5, 940 6, 660 6, 940 6, 210 6, 000 6, 550 13, 200 10, 000

a Station 200; depth, 2.3 feet.

Relative amount of substances in solution in water from Yellowstone River at highway bridge near Glendive, Mont.

,	samples.		(Ds) (mil- liter).		Radic	les in p	per cen	t of dis	ssolved	solids	
Limiting dates of composite.	Number of daily sam	Errors.	Dissolved solids (Ds) ligrams per liter	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+3/K).	Carbonate (CO ₃).	Bicarbonate (HCO ₃).	Sulphate (SO4).	Chlorine (Cl).	Nitrate (NO ₃).
1905–6.											
April 2-May 8. July 4-29. July 30-August 26. September 25-October 23. October 24-November 18. April 4-21.	21 22 28 27 24 18	+2.4 +4.5 +6.2 +2.3	466 198 263 396 445 448	14 16 17 16 15 15	5. 4 4. 9 3. 7 4. 5 5. 4	12 15 a 14 15 13 12	1.3 .00 .00 .00 .00	37 52 43 36 38 28	39 38 42 40 46	3. 6 7. 1 3. 8 4. 5 7. 2	0.01 .04 .08 .05 .02
Mean		3.8	369	15	4.8	14	. 22	39	41	5.2	.04

b Station 440; depth, 4.8 feet.

Monthly discharge, in second-feet, of Yellowstone River near Glendive, Mont.

Month.	1903.	1904.	1905.	1906.	1907.	. 1908.	Mean.
January February March April May June June September October November December The year	6 17,600 6,210 10,800 40,600 28,100 14,000 7,740 6,860 a 5,750 a 5,700	25,700 13,900 27,000 54,900 33,500 12,700 8,270	c 4, 670 4, 370 9, 670 48, 000 29, 200 11, 100 5, 750 5, 920 5, 920	10,700 25,100 41,500 26,300 15,400 8,820 5,610 5,570	d 9, 680 6, 940 20, 600 53, 200 64, 000 24, 100 11, 600 8, 223 6, 100 h 5, 380	e 8, 440 21, 300 60, 800 44, 800 16, 400 8, 620 9, 500 f 7, 710	a 5,700 a 5,700 e 7,766 8,430 19,100 49,800 37,600 15,600 8,477 7,220 6,080 e 6,000

a Estimated.
b March 16-31.

YUBA RIVER NEAR SMARTSVILLE, CAL.

Samples of water were collected from Yuba River at the narrows near Smartsville, Cal., from July 7 to September 7, 1905. A gaging station was established by the United States Geological Survey near Smartsville, June 2, 1903. Stream-flow data, including gage heights, rating tables, and estimates of discharge, for the station have been published by the Survey in the following reports:

Annual Report 22, IV, p. 463.

Water-Supply Papers: 51, pp. 452–453; 85, p. 157; 100, pp. 270–272; 134, pp. 140–143; 177, pp. 160–164; 213, pp. 141–143; 251, pp. 213–216.

Additional information in regard to the quality of the water of Yuba River is contained in Water-Supply Paper 237, "Quality of California surface waters," pages 38-41.

Partial analyses, gage heights, and rates of discharge of water and solids for Yuba River at the narrows near Smartsville, Cal.

[Drainage area, 1,220 square miles.]

	Analysis (milligrams per liter).						-puoses)	Solids (tons per day).	
Dates.		Bicarbonate radicle (HCO ₃).	Chlorine radicle (CI).	Suspended matter (Sm).	Dissolved solids (Ds).	Mean gage height (feet).	Mean discharge (if	Suspended matter.	Dissolved solids.
1905. July 7. July 7, 8, 9, 10, 11, 12, 13, 14, 15. July 20. July 21, 22, 24, 25, 26, 27, 28, 29. August 7, 8, 9, 10, 11, 12. August 14, 15, 16, 17, 18, 19. August 21, 22, 23, 24, 25, 26. August 28, 29, 30, 31, September 1, 2. September 4, 5, 6, 7.	6.1 0 0 0 0 0	72 74 74 78 74 81 88	7 12 12 2 8 8	60 76 0 26 18 112 106 124 88	134 96 218 118 96 118 112 126 152	2. 4 2. 2 2. 0 1. 8 1. 5 1. 4 1. 3 1. 3	980 845 710 585 480 459 435 435	159 174 0 41 23 139 131 146 103	355 219 • 417 186 124 146 139 148 178

c March 20-31. d March 24-31.

e Approximate.
f November 1-10.

g December 1–5. h December 1–12.

Relative amount of substances in solution in water from Yuba River at the narrows near Smartsville, Cal.

	samples.		s (Ds) liter).	Radicles in per cent of dissolved solids.								
Limiting dates of composite.	Number of daily san	Errors.	Dissolved solids (milligrams per li	Calcium (Ca).	Magnesium (Mg).	Sodium and potassium (Na+ $\frac{3}{4}$ K).	Carbonate (CO3).	Bicarbonate (HCO ₃).	Sulphate (SO ₄).	Chlorine (Cl).	Nitrate (NO3).	
1905.												
July 7, August 19	29 16	$-0.5 \\ +8.8$	123 152	15 18	3.7 4.3	a 15 14	6.2	58 57	19 22	5.7 6.0	0.11 .06	
Mean		4.6	138	16	4.0	14	3.1	58	20	5.8	.08	

a Sodium is 87 per cent and potassium is 18 per cent of this amount.

Monthly discharge, in second-feet, of Yuba River near Smartsville, Cal.

Month.	1906.	1903.	1904.	1905.	1906.	1907.	1908.	Mean.
January. February March. A pril. May. June. July. August. September. October. November.	724 480 458 a 1,540	2,910 899 516 479 550	15,400	4,900 5,010 7,110 6,750 6,070 3,100 782 471 429 453 474	7,560 4,970 12,000 8,770 10,800 10,000 3,350 744 520 403 757	4, 990 14, 100 17, 300 13, 100 8, 750 6, 750 3, 060 736 505 517 472	3,380 2,230 3,590 4,800 5,200 3,180 705 350 329 521 478	4,550 8,240 11,100 8,800 8,280 5,100 1,530 480 835 1,380
The year		2,010	2,280	3,010	5,330	1,590 5,990	$\frac{764}{2,130}$	1,890 4,390

a October 1-13.

SUMMARY.

The following table presents a summary of the analyses given in detail in the foregoing pages:

Summary of results of mineral analyses of surface waters of western United States.

	Apparent error (per cent).	++	++++ ++++++ +
v	Nitrate (NO3).	0.004	
of radicles.	Chlorine (Cl).	0.34 .65	3. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
es of ra	Sulphate (SO4).	0.33 2.29 8.75	99. 3.9. 3.9. 2.0. 3.9. 2.0. 3.9. 3.9. 3.9. 3.9. 3.9. 3.9. 3.9. 3
g valu	e de a no de a se i d d.(EOOH)	0.95 2.46 2.95	6911691194199999114666 46946999999999999
Reacting values	Sodium and potas- (X½+sV) muis	0.96 1.09 2.48	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	Magnesium (Mg).	0.39	3.87 1.73 1.73 1.89 1.80 1.81 1.80 1.80 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.9
	Calcium (Ca).	0.60 3.54 6.48	8.61.4.82.4.1.8.2.2.9.8.78.1.9.9.4.4.2.9.9.9.4.4.1.9.9.9.9.4.4.1.9.9.9.9.9.9.9
olids.	Vitrate (NO3).	0.18 .06 .03	70000000000000000000000000000000000000
Radicles in per cent of dissolved solids	Chlorine (Cl).	10 7.1 2.3	41.7.7.388 388 3.00 0.00 0.00 0.00 0.00 0.00 0
f disso	Sulphate (SO4).	33 50	07.44.28.28.28.28.28.28.28.28.28.28.28.28.28.
sent o	Bicarbonate (HCO ₃).b	46 46 22	22447881284242882428883 7.888888888888888888888888888888888
ı per (Sodium and potas- (Na+3K).	18 7.6 6.8	
cles ir	Magnesium (Mg).	8.8. 8.8.4.	でで44% での20% で44% で44% で44 021 122 122 122 123 124
Radic	Calcium (Ca).	10 22 15	19 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
a	Nitrate (NO3).	0.22 .19	
liter.	Chlorine (Cl).	12 23 19	20 20 20 20 20 20 20 20 20 20
milligrams per	Sulphate (SO4).	16 110 420	2000 1000 1000 1000 1000 1000 1000 1000
illigra	Bicarbonate (HCO ₃).b	58 150 180	170 170 170 160 160 160 160 160 160 160 160 160 16
	-satoq bas muibos (X½+sN) muis	22 25 57	2,11
Radicles in	Magnesium (Mg).	4.7 12 37	22. 28. 6 160 160 160 160 17. 4 17. 7 17. 7 18. 6 19. 7 19. 7
H	Calcium (Ca).	130212	180 081 183 183 184 195 195 195 195 195 195 195 195
(Ds)	s b i l o a bəvləssi d iil rəq smarşillim)	125 324 844	9,3968 3968 9,1307 1099 11386 1236 1236 1236 1236 1236 1236 1236 123
	Source (river unless otherwise stated) and location.		Belle Fourche, diversion dam, Belle- fourche, S. Dak. Boise, Boise, Idaho Carson, Hazen, Nev Colorado, Yuma, Ariz Elm Fork Red, Mangum, Okla Feather, Oroville, Cal Gallinas, Las Vegas, N. Mex Gallinas, Las Vegas, N. Mex Grand, Kremmling, Colo Grand, Kremmling, Colo Grand, Remmling, Colo Grand, Release, Vitah Gunnison, Whitewater, Colo Hondo, Roswell, N. Mex Link, Klamath Falls, Oreg Little Colorado, Holbrook, Ariz Little Colorado, Woodruff, Ariz Malheur, Vale, Oreg

a Calculated from dissolved solids in milligrams per liter and radicles in per cent of dissolved solids. b Including carbonates calculated as $\mathrm{HCO_{3}}$. c See pp. 11–12.

Summary of results of mineral analyses of surface waters of western United States—Continued.

	_ (per cent).	;+ ++++ ++++ ++++++++++++++++++++++++++
	Torio tanga A	0002 0002 0003 0003 0003 0003 0003 0003
တ္ခံ	Nitrate (NO ₃).	:0
adicle	Chlorine (Cl).	33.99 1.385 1.
es of r	Sulphate (SO4).	11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
g valu	Bicarbonate (HCO ₃).	66949699999999999999999999999999999999
Reacting values of radicles.	Sodium and potastions (Na+ $\frac{3}{4}$ K).	6.15. 1.2. 2.6. 1.1. 1.4.2. 1.1. 1.1. 1.1. 1.2. 2.6. 2.6. 2.6. 2
I	Magnesium (Mg).	
	Calcium (Ca).	881.1.16122.1.1.7.4.e1.9.9.9.e1.1.1.7.9.1.9.9.9.9.9.9.9.9.9.9.9.9.9.9
olids.	Vitraté (NO ₃₎ .	2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3
Radicles in per cent of dissolved solids	.(ID) enrine	8 4 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
i disso	Sulphate (SO4).	20 22 22 22 22 22 22 22 23 24 4 4 4 4 4 4
sent of	Bicarbonate (HCO ₃).	8. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
per	Sodium and potas- sium (Na+ $\frac{3}{4}$ K).	400024255555555555555555555555555555555
cles ir	Magnesium (Mg).	600 4
Radi	Calcium (Ca).	2010 2010 2010 2010 2010 2010 2010 2010
	Nitrate (NO3).	6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
milligrams per liter.	Chlorine (Cl).	280 1,200 1,200 19 19 460 620 620 620 11 11 11 11 11 11 12 12 12 13 13 14 14 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16
rams p	Sulphate (SO4).	256 1, 202 1, 202 1
millig	Bicarbonate (#CO3H).	190 190 190 190 190 190 190 190 190 190
les in 1	-settog and multipos ($X_{\frac{1}{k}} + sN$) multipos	22 28 28 28 28 28 28 28 28 28 28 28 28 2
Radicles in	Magnesium (Mg).	85 87 86 87 87 87 87 87 87 87 87 87 87
	Calcium (Ca).	88888888888888888888888888888888888888
(Ds).	sbilos bevlessiU til req smrrgillim)	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
٠	Source (river unless otherwise stated) and location.	Missouri, Williston, N. Dak. North Fork Red, Granite, Okla. North Platte, Fort Laramie, Wyo Owens, Round Valley, Cal. Owens, Tinemaha, Cal. Palouse, Hooper, Wash. Pecos, Carlsbad, N. Mex. Pecos, Dayton, N. Mex. Pecos, Santa Rosa, N. Mex. Pit, Bieber, Cal. Redwater, Belle Fourche, S. Dak. Rio Grande, El Paso, Tex. Rio Grande, San Marcial, N. Mex. Sacramento, Red Bluff, Cal. Sacramento, Red Bluff, Cal. Salth Roosevelt, Ariz. Salt Fork Red, Mangum, Okla. San Francisco, Alma, N. Mex. Shoshone, Cody, Wyo. Stony Creek, Fruto, Cal. Truckee, Derby, Nev. Truckee, Derby, Nev. Truckee, Derby, Nev. Truckee, McDowell, Ariz. Turkey Creek, Olustee, Okla. Verde, McDowell, Ariz. Turkey Creek, Glange, Cal. Turkey Creek, Glange, Cal. Turkey Creek, Glustee, Okla. Verlowstone, Billings, Mont. Yellowstone, Billings, Mont. Yellowstone, Billings, Mont. Yellowstone, Billings, Mont.

MISCELLANEOUS ANALYSES.

In addition to the series of analyses of stream waters, analyses of waters from streams, lakes, springs, wells, and borings were made from time to time at the Berkeley laboratory. These analyses are included under appropriate headings in the tables following.

Miscellaneous stream analyses.

et).	Discharge (second-fe	3 1,480 1,480 620 620 620 128 128 124 128 129 129 120 1384 1,660 1,060 1
	Gage height (feet).	4 4
ns per	Dissolved solids (to	250 250 250 250 250 250 250 250
suo1)	Suspended matter per day).	422 422 422 422 6
	Nitrate radicle (NO ₃).	
	Chlorine radicle (Cl).	82.42
Analysis (milligrams per liter).	Sulphate radicle (SO ₄)	247
grams	Bicarbonate radi- cle (HCO ₃).	285 1775 3
(millig	Carbonate radicle (CO ₃).	0 O O
Analysis	Sodium and po- tassium radicles (Na+3K).	
	Magnesium radicle (Mg).	
	Calcium radicle (Ca).	
	Date.	31, 1905 18, 1905 24, 1905 24, 1905 24, 1905 24, 1905 25, 1905 26, 1905 27, 1905 28, 19
-	Ω	Summer, July 31, July 31, July 31, July 25, July 25, July 26, July 26, July 27, July 12, July 12, July 12, July 12, July 13, July 13, July 13, July 14, July 14, July 16, Sept. 18, May 19, July 19, May 19, July 19, July 10, July 10, July 10, Sept. 18, Sept. 18, May 20, July 10, July 10, Sept. 27, May 10, July 10, Sept. 27, May 10, July 10, May 20, May 10, May 20, July 10, May 20, July 10, May 20, July 10, May 10
	Stream	Santa Ynez River. Dry Creek La Plata River. Little Snake River. Marvine Creek White River. Yampa River. do do do do do do Big Lost River. Big Wood River. Big Wood River. Big Wood River. Cod do Sanake River. North Fork Snake River. do do Snake River. do do Snake River. do do South Fork Snake River.
	Location.	Gibraltar gaging station Keenan's camp near Montrose. Itesperus gaging station Maybell gaging station Buford gaging station Craig gaging station Maybell gaging station Craig gaging station Maybell gaging station Chilly gaging station Mackay gaging station Ackay gaging station Go
	State.	California Colorado. Do. Do. Do. Do. Do. Do. Do. Do. Do. D

2, 840 1, 500 4, 700 1, 500 1, 500
1.3. 1.3. 1.3. 1.3. 1.3. 1.3. 1.3. 1.3.
44.6.7.7.1.8.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
3, 1, 200 3, 1, 120 3, 1, 120 3, 1, 120
25. 25. 25. 25. 25. 25. 25. 25. 25. 25.
2. 289 2. 630 2. 630 2. 630 3. 400 3. 400 3. 400 3. 400 3. 400 3. 500 3.
0 118 7 3 50 118 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
118 1172 1181 1192 1194 1194 1195 1195 1195 1195 1195 1195
2
82 44 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
2 THE 24
010 110 010 12 12 12 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15
14, 1905 18, 1905 18, 1905 18, 1905 28, 1905 28, 1905 17, 1905 17, 1905 18, 1905 19, 1905 19, 1905 19, 1905 28, 1905 19, 1905 28, 1905 28, 1905 19, 1905 28, 1905
Teton River
do
Montana. New Mexico Do. Do. Oklahoma. New Mexico Oklahoma. Do. Oblo Do. Do. Do. Do. Do. Do. Do. Do. Do. Do

 $\it a$ Published in Water-Supply Paper 220, p. 72.

	•		
.(199	Discharge (second-fo		
	Gage height (feet).		
us ber	ot) solids devlossid (.ysb	1,900	3,000 - 4,080 - 171 - 171 - 268 - 496 - 476 - 368 - 368
suoj)	Suspended matter per day).		36.28
	Nitrate radicle (NO ₃).		. 089
_	Chlorine radicle (Cl).	371	273 767 5 5 6 6 18 18 18 4
Analysis (miligrams per liter).	Sulphate radicle (SO ₄).	28	1, 630 1, 820 1, 820 42 42 40
rams p	Bicarbonate radi- cle (HCO ₃).	149	183 126 119 253 285 149 305 178
(milig	Carbonate radicle (CO ₃).	00	0000000
Analysis	Sodium and po- tassium radicles (Na+3K).	-	206 448 8 16 c 22
	Magnesium radiele (Mg).	19	79 122 9 14
	Calcium radicle (Ca).	102	525 604 42 76
	Date.	Mar., 1905	May, 1905 July, 1905 Aug. 21, 1905 Mar. 40, 7, 1906 Mar. 13, 1906 May 12, 1906 May 12, 1906
	Stream.	Snake River. Wilson ditch.	North Groesbeck Creek . do . Salmon Creek a Scotch Creek a Shoshone River do . do
	Location.	1 mile north of Ontario Center of sec. 8, T. 19 S., R. 47 E., W. M. (Snake River	Texas. Waterly. Do do Washington. Conconully Salmon Creek a. Do Scatten Creek a. Store Creek a. Sootch Creek a. Do Wyoming. Donnestie supply of Cody Shoshone River do Do do Do do Do do
	State.	Oregon	Texas. Washington. Wyoming. Do. Do.

b Sodium, 8.9; potassium, 9.6.

a Iron, 0.2.

c Sodium, 16; potassium, 8.5.

Miscellaneous analyses of springs and lakes.

[Milligrams per liter.]

Dissolved solids.	2,140 212,000 230	$\begin{array}{c} 316 \\ 228 \end{array}$	2,390	1,540 7,550 2,330	1,360	2,590	4,440	897 862 346	1,120	268 351
Nitrate radicle (NO ₃).	214						C	000		. 04
Chlo- rine (Cl).	618 52, 900 6	14 16	902	424 2,420 67	18	292	931 39	58 14 14	385	22 6
Sulphate radicle (SO ₄).	21, 200	Small.	Heavy.	Heavy. 2,080 1,320	726	1,380	1,830	446 425 425	128	Small.
Bicar- bonate radicle (HCO ₃).	1,260 7,800 185	252 63	328	290 374 236	265	168	218	33 196	130	254 325
Carbon- ate radicle (CO ₃).	43,100	00	0	156	0	0	000		0	12 0
Sodium and potassium (Na+3K).	81,500			2,370	d 18	e 200	555 500 500	208		29
Magne-sium (Mg).	15			113	62	93	9 %	24.8.11	6	14
Cal- cium (Ca).	34			.58	233	420	414	332	26	
Date.	Nov. 1,1905 Aug. 25,1905 Oct. 20,1904	Sept. 29,1905 Oct. 4,1905	Aug. 19,1905	Jan. 8,1906 Dec., 1905	do	do	Feb., 1906 Dec., 1906	June, 1905 June 2,1906 Mar., 1905	dodo	July 22, 1905 Aug. 21, 1906
Source.	Mineral spring a. Owens Lake b. Neiswanger Spring.	Spotted Tail Springs	Stillwater Slough	Carson LakedoJohnson Springs.	Fannin Spring	Spring in Pecos River	Spring f	Klamath Hot Springs. do. Harris Spring	Hot Springs g. Clear Lake h.	Tule Lake i. Lake 4,000 feet from Scotch Creek. j
Location.	Near Springville, Cal	Near Mitchell Sec. 28, T. 24 N., R. 57 W.,	Outlet of Carson Lake, near	Eastern edge, near Hill Carson Lake Center, near Hill do NW. 4 sec. 17, T 20 S., R. 26 Johnson Spring R. Max, M.	Sec. 18, T. 20 S., R. 26 E., N.	Johnson ranch, below Lake	Tonsill Dam Head of Ana River C W Comegos Alkali Lake	# mile east of Klamath Falls. Klamath Hot do do NE 4 sec. 27, T. 17 S., R. 44 Harris Spring.	Vale Near Klamath Falls	,
State.	California Do	Nebraska Do	Nevada	Do Do	Do	Do	Do	Do	Do	Po. Washington

The results have been corrected for specific a SiO₂, 76; Fe₂O₃+Al₂O₃, 19.
 b SiO₂, 298; Fe₂O₃+Al₂O₃, 19.
 gravity and are therefore in parts per million by weight and not milligrams per liter.
 c Na, 77; K, 14.
 d Na, 11; K, 96.
 e Na, 196; K, 54.
 f Published in Water-Supply Paper 220, p. 72.
 g Boiling temperature.
 h Suspended matter, 66.
 t Composite of 6 samples.
 j Na, 20; K, 11; Fe, 0.2.

^{81210°-}wsp 274-11--10

Miscellaneous analyses of water from wells and borings.

[Milligrams per liter.]

Dis- solved solids (Ds).	6, 914 6, 940 914 917 918 919 919 919 919 919 919 919
Nitrate radicle (NO ₃).	0 0 0 1 8.8 1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
Chlorine radicle (Cl).	3, 620 128 14 14 15 183 183 183 183 183 183 183 183
Sul- phate radicle (SO ₄).	Small. 55 164 163 250 889 822 1,320 36 36 421
Bicarbo- nate radicle (HCO ₃).	481 848 1744 1744 1746 17
Carbo- nate radicle (CO ₃).	000 0 1 00m00000 0 0m0000 0 0 m0000
Sodium and potassium radicles (Na+4K).	1,370 132 182 62 56 56 56 56 57 7238 9380
Magne- sium radicle (Mg).	23.00 8 0.12.00 8 0.12.00 8 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Calci- um radicle (Ca).	600 827 844 848 848 888 183 183 183
Date.	Jan. 22, 1906 July, 1905 do Dec. 12, 1905 June 9, 1905 June 9, 1905 June 9, 1905 June 9, 1905 June 1906 June, 1906
Depth (feet).	1, 990 1, 990 20 20 73 73 50 6190 6380
Source.	Well a do
. Location.	Yuma. Stockton asylum. SE. 4 sec. 17, T. 11 S., R. 18 E., M. D. M. SW. 4 sec. 23, T. 7 S., R. 12 E., M. D. M. Tulare. Porterville Goshen. Firebaugh. Buttonwillow Bakersfield G. T. Woodruff, new well, SW. 4 Sec. 13, near Montrose. Sec. 13, T. 9 S., R. 23 E., B. M. Sec. 23, T. 10 S., R. 23 E., B. M. Sec. 23, T. 10 S., R. 23 E., B. M. Goshen. U. S. R. Sheadquarters, Mitchell Goshen. Headquarters camp, U. S. R. S., near Glendive. Go. Go. Go. Headquarters camp, G. S. R. S., near Glendive. Go. Go. Go. Go. Go. Go. Go. Go. Go. Go
State.	Arizona. California. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do

482	111 1, 1, 1, 2, 2, 4, 4, 3, 3, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	
. 04		
16	8400 8400	
141	448 448 448 448 448 448 448 448 448 448	
7,22	28 253 256 259 259 259 259 259 259 259 259 259 259	
16	28333333333333333333333333333333333333	
154	ates, :0001.	٠
7	0; as nitr	
10	97 93 93 93 93 93 83 84 84 84 84 84 84 84 84 84 84 84 84 84	
Aug., 1905	25 Dec. 22, 1905 93 93 93 93 93 93 93 93 93 93 93 93 93	
an well	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	ken.
Artesi	Well Well Well Well Well Well Well Well	e was ta
S. camp 1. near Belle	Fourche Fourche Fourche Fourche Fourche Fourche Fourch Four	e Depth from which sample was ta f Na, 291; K, 9.5. g Na, 371; K, 12.
U.S.R.S. can	Hilton Hotel, Snyder. E. L. B., Snyder. Snyder. do d	e Depth fron f Na, 291; K g Na, 371; K
Do		

Dis- solved solids (Ds).	728 1, 650 1, 120 1, 120 1, 260 372 520 4,330 1, 420 1, 590 1, 120 2, 760 1, 360 1, 360 1, 360 1, 360 1, 360 1, 360
Nitrate radicle (NO ₃).	Trace. 4.5
Chlorrine radicle (Cl).	119 256 256 256 256 256 26 27 27 20 20 20 20 20 20 20 20 20 20 20 20 20
Sul- phate radicle (SO ₄)	217 1128 1128 211 204 205 324 324 324 324 325 326 327 327 327 327 327 327 327 327 327 327
Bicarbo- nate radicle (HCO ₃).	296 3315 3315 3315 3315 3315 3315 3315 331
Carbo- nate radicle (CO ₃).	00000000000000000000000000000000000000
Sodium and potassium radicles (Na+3K).	84 700 1,280 8 353
Magne- sium radicle (Mg).	23 66 68 68 68 68 68 68 68 68 68 68 68 68
Calci- um radicle (Ca).	222 250 250 250 36 36 37 170 122 123
Date.	Spring, 1907. Spring, 1907. do do do do do do do do do d
Depth (feet).	35 110 111 111 111 115 6 6 6 6 6 7 105 105 105 105 105 105 105 105 105 105
Source.	Boring 46. Boring 50 Well 51 Boring 53 Boring 53 Well 54 Boring 56 Boring 56 Boring 57 Boring 56 Boring 50 Go.
Location.	Snyder do do do do do do do do do d
State.	Oklahoma Do D

572	814	430	304	
:	:		:	-
				-
30	42	16	ī.	
29	26	18	143	
339	736	328	106	Fe, 0.2.
0	0	0	0	f. K, 11.]
:			¢ 33	d To water. e Na, 24; K, 11. Fe, 0.2.
20	20	18	13	
74	31	51	7.5	-
do	qo	do	Aug. 21, 1905	-
d 15 -	260	d 65		p. 72.
NE. 4 sec. 2, T. 17 S., R. 47 E., do	Sec. 33, T. 17 S., R. 47 E., W. M.,do	SW. 4 sec. 26, T. 16 S., R. 47 E.,do	Creek.	a Published, in Water-Supply Paper 220, p. 72. b Na, 344; K, 12. c Twelve feet to water.
Do	Do	Do	Washington	

ANALYSES OF SUSPENDED MATTER.

Colorado River and the Rio Grande carry more matter in suspension than do most other streams in the United States. The nature of this suspended matter and its fertilizing value are of special interest. Analyses of the mineral matter carried by these two streams were made at various times in 1905. The results of plant food analyses, by the method of the Association of Official Agricultural Chemists, and the ultimate composition of the suspended matter obtained by the fusion method are presented in the following tables:

Analyses of suspended matter in water from Colorado River and the Rio Grande in 1905.

Constituent.	×		Colora	do Ri	ver at	Yuma.				rande Paso.	Rio Grande at San Marcial.	
Constituent.	Jan. to Apr.	May.	June.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan. to Sept.	Oct. to Dec.	Jan. to Sept.	Oct. to Dec.
Insoluble residue. Soluble silica (SiO ₂) Potassium oxide (K ₂ O) Sodium oxide (Na ₂ O) Calcium oxide (CaO) Magnesium oxide (MgO) Tron and aluminum oxides	68.65 .10 .71 .33 5.32 2.40	75.80 .09 .61 .30 4.95 1.97	78. 97 . 09 . 39 . 17 5. 15 1. 17	75. 20 . 03 . 82 . 21 4. 69 1. 59	61.80 .05 1.31 .23 6.28 1.93	62.83 .03 1.25 .29 7.68 2.68	66.40 .04 .91 .17 6.52 2.54	68. 80 . 03 . 98 . 20 4. 73 2. 28	65.50 .12 .77 .36 4.28 2.12	65.00 .13 .95 .40 4.17 2.30	63.74 .13 .96 .23 4.17 1.98	67.00 .13 .77 .18 4.08 1.97
(Fe ₂ O ₃ +Al ₂ O ₃)	13. 45 . 37 . 24 8. 00 . 07	9.37 .24 .20 6.34 .08	7. 19 . 29 . 13 4. 59 . 07	10.62 .24 .09 5.62 .02	.18	16. 04 . 24 . 11 10. 19 . 08	14.76 .29 .11 8.97 .09	14. 25 . 31 . 07 8. 02 . 08	17. 78 .35 .32 9. 30 .09	17.69 .56 .24 8.98 .08	18.81 .40 .26 9.25 .09	16.64 .49 .17 8.32 .07

Ultimate composition of suspended matter in water from Colorado River at Yuma, Ariz., May, 1905, and from Rio Grande at San Marcial, N. Mex., October to December, 1905.

Constituent.	Colorado River.	Rio Grande.
$\begin{array}{c} \text{Silica } (\text{SiO}_2) \\ \text{Iron oxide } (\text{Fe}_2\text{O}_3) \\ \text{Aluminum oxide } (\text{Al}_2\text{O}_3) \\ \text{Manganese oxide } (\text{MnO}) \\ \text{Calcium oxide } (\text{CaO}) \\ \text{Magnesium oxide } (\text{MgO}) \\ \text{Sodium oxide } (\text{Na}_2\text{O}) \\ \text{Potassium oxide } (\text{K}_2\text{O}) \\ \text{Phosphoric acid } (\text{P}_2\text{O}_5) \\ \text{Sulphuric acid } (\text{SO}_3) \\ \text{Organic and volatile matter} \end{array}$	3.79 11.50 .31 6.34 1.97 1.66 2.62 .33	56.77 3.49 19.62 .30 4.74 1.97 1.53 2.87 .51 .48 8.32

SEDIMENT CARRIED BY THE RIO GRANDE.

By HERMAN STABLER.

BASIC DATA.

The following study of the sediment carried by the Rio Grande is based on (1) measurements made at San Marcial, N. Mex., by the International Boundary Commission and published by the United States Geological Survey; and (2) determinations of silt, by weight, made for the Reclamation Service in the laboratory at Berkeley, Cal., under the direction of T. H. Means and W. H. Heileman.

The stream measurements and computations of flow were made in accordance with the usual methods for shifting channels, and reliable results are available for the 12 years beginning with 1897. The analytical results were developed from determinations, by the indirect method, of the weight of suspended matter in samples collected for the most part twice a week from the Rio Grande at San Marcial, N. Mex., from May 28, 1905, to April 27, 1906.

TABULATED ESTIMATES.

In Table 1 are presented the daily discharge of water, in acre-feet (obtained by multiplying the published discharge in second-feet by 2); the actual individual determinations of per cent, by weight, of suspended matter; estimates of the per cent, by volume, of sediment for each day (made from the basic data on the assumption that 85 pounds of suspended matter will make a cubic foot of sediment); and estimates of the daily discharge, in acre-feet, of sediment.

Table 1.—Water and sediment in the Rio Grande at San Marcial, N. Mex., May, 1905, to April, 1907.

	,	May,	1905.			June,	1905.			July,	1905.	
Day.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.
1	15,000 15,300 15,500 21,700 24,400 24,200 21,900 20,000 21,100 19,300				38, 700 39, 300 39, 900 34, 200 32, 700 33, 000 31, 600 30, 900 30, 100 31, 900	0. 454	a. 333	1,740	$ \begin{cases} 5,540 \\ 3,980 \\ 3,200 \\ 2,750 \\ 2,520 \\ 2,290 \\ 2,090 \\ 1,930 \\ 1,570 \\ 1,330 \end{cases} $	0.139	a0. 102 a. 102 a. 102	30.9
11	17, 400 21, 200 20, 100 21, 400 20, 300 23, 500 25, 100 27, 400 30, 800				34,800 36,900 32,700 27,100 24,300 23,800 25,600 27,500 21,900	. 454	a, 333 a, 333 a, 315		1,090 930 930 740 550 550 460 380 370	2, 035 2, 035	a. 102 a1. 49 a1. 49	
19	33, 100 34, 700 46, 800 57, 200 58, 100 47, 100				20,300 17,600 15,000 13,400 12,700 10,600	. 429	a, 315	518	360 350 340 330 320 240	2. 035	- ,	82.6
26. 27. 28. 29. 30.	56,000 54,200 51,200 47,200 40,900 38,100	a0. 454 a. 454			8,160 7,000 7,000 6,140 5,280	.139	a. 102 a. 102 a. 102	34	$ \left\{ \begin{array}{c} 240 \\ 160 \\ 140 \\ 140 \\ 130 \\ 130 \end{array} \right. $	2. 035	a1. 49 a1. 70	6.8
Total b and mean	962, 221	. 454	. 333	3,200	714, 268	. 437	. 321	2,292	35,782	. 457	. 336	120.3

a Composite of samples taken on days indicated by like numbers.
 b The daily discharge in acre-feet was obtained by taking twice the recorded discharge in second-feet, and the values are therefore a little over 1 per cent too large. The monthly totals are the values reported by the Geological Survey.

Table 1.—Water and sediment in the Rio Grande at San Marcial, N. Mex., May, 1905, to April, 1907—Continued.

				 -								
,		August	t, 1905.		s	eptemb	er, 1905			Octobe	r, 1805.	
Day.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.
1	810 990 1,290 1,290 1,140	2. 315	a1.700		0 0 0 0				360 340 330 320 320	3. 19	2. 4 2. 34 2. 3 2. 2 2. 14	8. 6 8. 0 7. 6 7. 0 6. 9
6	1,290 1,140 1,160 1,400 1,340	2.315	a1.700		360 640 300 300 390	10. 20	7. 49	173. 0	310 300 250 210 170	1. 29	2. 0 1. 7 1. 4 1. 1 . 951	6. 2 5. 1 3. 5 2. 3 1. 6
11	1,290 1,420 1,240 1,180 940	2. 315	a1.700	344	190 100 20 10 0) -	170 190 190 190 190	. 887	. 651 . 65 . 60 . 548 . 54	1. 1 1. 2 1. 1 1. 0 1. 0
16	700 510 290 250 220	2. 315	a1.700		0 0 0 0 0			.4	170 160 160 170 170	. 720	.53 .529 .50 .46 .445	.9 .8 .8 .8
21	190 120 50 10	2.315	a1. 700 	} 0.0	$ \begin{cases} 0 \\ 0 \\ 0 \\ 0 \\ 100 \end{cases} $. 440	. 323		170 190 190 180 210	. 597	. 44 . 45 . 438 . 43 . 50	.7 .9 .8 .8
26	0 0 0 0 0				940 800 290 460 420	9. 92	7. 5 7. 29 3. 3. 74 3. 5	70. 5 58. 3 8. 7 17. 2 14. 7	250 270 300 360 360 340	.741	. 544 . 52 . 503 . 60 . 60 . 584	1.4 1.4 1.5 2.2 2.2 2.0
Total ^b and mean	20, 093	2. 33	1. 71	344. 0	5,276	8. 80	6. 46	342. 8	7,349	1. 46	1. 07	79. 2

<sup>a Composite of samples taken on days indicated by like numbers.
b The daily discharge in acre-feet was obtained by taking twice the recorded discharge in second-feet, and the values are therefore a little over 1 per cent too large. The monthly totals are the values reported by the Geological Survey.</sup>

Table 1.—Water and sediment in the Rio Grande at San Marcial, N. Mex., May, 1905, to April, 1907—Continued.

	N	lovemb	er, 1905.		1	Decemb	er, 1905.			January	7, 1906.	
Date.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.
1 2 3 4 5	320 320 350 440 520	0.718	0. 50 . 50 . 527 . 60 . 80	1. 6 1. 6 1. 8 2. 6 4. 2	3,060 1,980 1,630 1,360 1,220	1.34	1.8 1.4 .984 .80 .60	55. 1 27. 7 16. 0 10. 9 7. 3	310 250 310 370 560	0.035	0. 050 . 026 . 040 . 050 . 067	0.2 .1 .1 .2 .4
6	570 750 1,100 1,380 900	1.54	. 85 . 90 1. 10 1. 13 . 50	4: 8 6. 8 12. 1 15. 6 4. 5	1,010 1,170 1,210 1,130 1,310	. 651	. 478 . 45 . 45 . 418 . 40	4.8 5.3 5.4 4.7 5.2	560 520 480 480 520	. 068	. 060 . 055 . 050 . 050 050	.3 .2 .2 .2
11	1,330 1,160 1,020 1,100 1,060	. 859	. 0470 . 50 . 50 . 630 . 58	0.6 5.8 5.1 6.9 6.1	1,310 1,210 1,320 1,320 1,480	. 455	.36 .334 .33 .33 .352	4.7 4.4 4.5 4.5 5.2	570 600 810 1,030 1,440	.062	. 046 . 050 . 10 . 159 . 20	$\begin{array}{c} .3 \\ .3 \\ .8 \\ 1.6 \\ 2.9 \end{array}$
16	960 960 960 960 960	. 660	. 53 . 485 . 45 . 42 . 407	5. 1 4. 7 4. 3 4. 0 3. 9	1,540 1,390 1,240 1,290 1,290	.392	. 35 . 32 . 288 . 29 . 29	5. 4 4. 5 3. 6 3. 7 3. 7	1,960 2,500 2,640 2,780 2,620	. 583	. 30 . 428 . 45 . 50 . 568	5. 9 10. 7 11. 9 13. 9 14. 9
21	960 1,080 1,210 7,440 3,840	.743	. 40 . 50 . 546 3. 2. 34	3. 8 5. 4 6. 5 223. 2 90. 0	1,290 1,030 890 460 350	.389	. 286 . 25 . 20 . 154 . 10	3.7 2.6 1.8 .7	2,260 1,900 1,400 1,120 1,080	.582	.50 .45 .427 .30 .20	11. 3 8. 5 6. 0 3. 4 2. 2
26. 27. 28. 29. 30.	3,240 2,320 1,240 1,240 3,060	1. 36 2. 45	2. 0 1. 5 1. 00 1. 0 1. 80	64. 8 34. 8 12. 4 12. 4 55. 1	320 350 360 370 370 370	. 119	. 05 . 052 . 06 . 09 . 087 . 85	.2 .2 .2 .4 .3	970 1,050 1,290 1,610 1,510 1,300	. 195	.143 .20 .25 .264 .25 .236	1. 4 2. 1 3. 2 4. 3 3. 8 3. 1
Totala and mean	42, 397	1. 97	1. 44	610. 6	34, 344	. 783	. 575	197. 4	36,496	. 428	. 315	114.8

 $[\]it a$ The daily discharge in acre-feet was obtained by taking twice the recorded discharge in second-feet, and the values are therefore a little over 1 per cent too large. The monthly totals are the values reported by the Geological Survey.

Table 1.—Water and sediment in the Rio Grande at San Marcial, N. Mex., May, 1905, to April, 1907—Continued.

		Februar	y, 1906.			March	, 1906.		April, 1906.				
Day.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.	
1 2 3 4 5	1,430 1,440 1,250 1,250 1,250	0.638	0.30 .40 .468 .50	4.3 5.8 5.8 6.2 6.2	1,580 1,520 1,460 1,240 1,220	0.320	0. 25 . 24 . 235 . 24 . 24	4.0 3.6 3.4 3.0 2.9	2,520 2,220 2,420 2,660 2,900	1.390	1.00 1.00 1.02 .90 .80	25. 2 .22. 2 24. 7 23. 9 23. 2	
6	1,410 1,230 1,250 1,270 1,370	1.035	.760 .50 .50 .446 .40	10.7 6.2 6.2 5.7 5.5	1,380 1,500 1,260 1,160 1,160	.335	.246 .25 .22 .197 .20	3. 4 3. 8 2. 8 2. 3 2. 3	2,900 2,760 2,780 2,860 2,760	.900	.729 .73 .73 .733 .733	21. 2 20. 2 20. 3 21. 0 20. 2	
11	1,420 1,590 1,590 1,750 1,750	. 499	.38 .359 .35 .34 .335	5. 4 5. 7 5. 6 6. 0 5. 9	1,500 1,500 1,160 1,400 1,840	. 241	.18 .177 .20 .30 .473	2.7 2.7 2.3 4.2 8.7	3,060 3,460 3,380 3,540 4,040	1. 285	.80 .943 .90 .95 1.00	24. 5 32. 6 30. 4 33. 6 40. 4	
16	1,700 1,650 1,560 1,420 1,400	. 475	.34 .34 .349 .30 .25	5.8 5.6 5.4 4.3 3.5	1,960 1,840 2,060 2,220 1,900	1.141	.50 .50 .839 .85 .75	9.8 9.2 17.3 18.9 14.3	4,500 4,800 5,320 5,600 5,880	1.626	1. 10 1. 15 1. 20 1. 10 1. 00	49. 5 55. 1 63. 8 61. 6 58. 8	
21	1,440 1,260 1,320 1,320 1,340	.329	.241 .23 .22 .219 .22	3.5 2.9 2.9 2.9 2.9	1,580 1,360 1,380 1,040 1,260	. 944	. 694 . 60 . 55 . 487 . 60	11. 0 8. 2 7. 6 5. 1 7. 6	6,640 7,820 8,200 8,760 9,340	1. 136 1. 162	.835 .84 .85 .854 .80	55. 4 65. 7 69. 7 74. 8 74. 7	
26. 27. 28. 29. 30.		.372		3.0 4.3 3.6	1,480 1,480 4,660 4,900 4,400 2,940	1.073	.75 .788 .50 .30 .208	11. 1 11. 7 23. 3 14. 7 9. 2 14. 7	12,000 11,680 10,380 9,380 9,940	. 703	.70 .665 .60 .55 .515	84. 0 77. 6 62. 3 51. 6 51. 2	
Total a and mean	39,689	. 486	. 357	141.8	56,866	. 588	. 432	245. 8	163,140	1.119	. 821	1,139.4	

a The daily discharge in acre-feet was obtained by taking twice the recorded discharge in second-feet, and the values are therefore a little over 1 per cent too large. The monthly totals are the values reported by the Geological Survey.

Table 1.—Water and sediment in the Rio Grande at San Marcial, N. Mex., May, 1905, to April, 1907—Continued.

		May,	1906.			June,	1906.			July,	1906.	
Day.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.
1	9,940 10,760 9,120 8,860 8,420	0. 588	0.50 .45 .433 .42 .40	49. 7 48. 3 39. 5 37. 2 33. 7	11,960 11,180 10,640 11,120 10,120	0.364	0. 28 . 27 . 267 . 28 . 30	33. 5 31. 8 28. 4 31. 1 30. 4	3,900 3,420 3,620 4,220 4,620	0.817	0.60 .600 .55 .50 .490	23. 4 20. 5 19. 9 21. 1 22. 6
6	8,780 11,780 14,160 14,160 15,600	.658	. 395 . 45 . 50 . 483 . 60	34.7 53.0 70.8 68.4 93.6	10,100 10,600 10,600 10,600 10,860	. 438	.31 .322 .30 .25 .244	31. 3 34. 1 31. 8 26. 5 26. 5	4,220 4,620 5,160 4,900 4,780	.903	.47 .46 .663 .70	19.8 21.3 34.2 34.3 35.8
11	16,460 18,740 20,160 20,680 20,900	.990	.65 .727 .70 .60 .424	107. 0 136. 2 141. 1 124. 1 38. 9	11,140 11,720 12,480 13,540 16,040	.349	.25 .25 .256 .27 .29	27.8 29.3 31.9 36.8 46.5	4,380 4,060 4,020 3,860 3,980	1.060	.778 .60 .50 .458 .40	34.1 24.4 20.1 17.7 15.9
16	19,560 19,420 19,300 17,700 17,900	. 492	. 40 . 38 . 361 . 35 . 40	78. 2 73. 8 69. 7 62. 0 71. 6	17,000 16,880 17,060 16,660 15,680	. 425	.312 .31 .32 .325 .30	53. 1 52. 3 54. 6 54. 2 47. 0	4,420 4,220 4,360 4,540 5,280	.554	. 40 . 407 . 45 . 50 . 580	17.7 17.2 19.6 22.7 30.6
21	20,120 21,600 21,400 20,500 20,320	.654	. 45 . 480 . 46 . 44 . 421	90. 5 103. 7 98. 5 90. 3 85. 5	14,400 13,760 12,400 10,300 9,180		.27 .24 .20 .18 .15	38. 9 33. 0 24. 8 18. 5 13. 8	4,680 4,100 3,520 3,230 2,780	. 430	. 45 . 40 . 316 . 28 . 24	21.1 16.4 11.1 9.0 6.7
26. 27. 28. 29. 30. 31.	19,780 18,660 17,820 15,260 14,260 12,760	. 499	. 40 .38 .366 .32 .30 .288	79. 1 71. 0 65. 2 48. 8 42. 8 36. 7	8,660 7,360 5,860 5,420 4,620	.117	.086 .10 .15 .172 .40	7. 5 7. 4 8. 8 9. 3 18. 5	2,340. 2,340 2,140 2,140 2,560 2,900	. 403	. 183 . 22 . 26 . 296 . 50 . 627	4.3 5.2 5.6 6.3 12.8 18.2
Total a and mean	500,707	. 624	. 458	2,293.6	345,064	.364	. 267	919. 4	118,314	.678	. 498	589. 6

a The daily discharge in acre-feet was obtained by taking twice the recorded discharge in second-feet, and the values are therefore a little over 1 per cent too large. The monthly totals are the values reported by the Geological Survey.

Table 1.—Water and sediment in the Rio Grande at San Marcial, N. Mex., May, 1905, to April, 1907—Continued.

									I			
		August	t, 1906.		s	eptemb	er, 1906.	•		October	, 1906.	
Day.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.
1 2 3 4 5	3,880 3,350 2,940 2,960 2,980	1.720	0.90 1.0 1.26 1.0 .90	34. 9 33. 5 37. 1 29. 6 26. 8	340 350 250 160 140	4. 436	2 3.255 2.5 1.5 1.095	6.8 11.4 6.2 2.4 1.5	2,220 2,140 2,540 2,760 2,760	1. 532	1. 2 1. 15 1. 125 1. 0 .85	26. 6 24. 6 28. 6 27. 6 23. 5
6	2,720 2,190 2,190 2,190 2,190 1,950	.976	.795 .75 .73 .717 .75	21. 6 16. 4 16. 0 15. 7 14. 6	100 80 80 60 40	2.162	1.3 1.5 1.588 1.6 1.6	1.3 1.2 1.3 1.0	2,760 2,820 2,620 2,360 2,220	. 999	.733 .65 .60 .537	20. 2 18. 3 15. 7 12. 7 10. 0
11	1,950 1,250 1,200 1,150 1,050	1.039	.75 .763 .60 .50	14.6 9.5 7.2 5.8 5.3	20 10 0 0 0			.3 .2 .0 .0	2,020 1,820 1,880 1,940 2,000	. 495	. 40 . 364 . 35 . 33 . 314	8. 1 6. 6 6. 6 6. 4 6. 3
16	1,320 1,230 840 810 580	1.216	.80 .80 .892 .50 .25	10.6 9.8 7.5 4.0 1.4	0 0 0 0			.0 .0 .0	1,940 2,040 1,760 1,820 1,880	. 403	.30 .30 .296 .30 .30	5. 8 6. 1 5. 2 5. 5 5. 6
21	440 440 400 310 210	.165	. 121 . 20 . 30 . 450 . 50	.5 .9 1.2 1.4 1.0	0 0 0 0 0 30		. 290	.0 .0 .0 .0	2,020 2,160 2,420 2,500 2,780	. 423 . 833 	.311 .611 .60 .60 .602	6.3 13.2 14.5 15.0 16.7
26. 27. 28. 29. 30.	480 640 590 540 370 420	1. 332	.80 .977 1.00 1.00 1.08 1.00	3. 8 6. 3 5. 9 5. 4 4. 0 4. 2	100 140 18,140 3,580 2,120	9.821	1.00 1.00 7.21 2.0 1.203	1. 0 1. 4 1,308 71. 6 25. 5	2,500 2,420 2,140 2,500 2,830 2,620	. 813	. 60 . 60 . 597 . 55 . 50 . 491	15. 0 14. 5 12. 8 13. 8 14. 2 13. 8
Total a and mean	43,210	1.124	. 825	356. 5	25,527	7.68	5. 64	1,441.8	70,830	. 808	. 593	419.8

a The daily discharge in acre-feet was obtained by taking twice the recorded discharge in second-feet, and the values are therefore a little over 1 per cent too large. The monthly totals are the values reported by the Geological Survey.

Table 1.—Water and sediment in the Rio Grande at San Marcial, N. Mex., May, 1905, to April, 1907—Continued.

												
	N	lovemb	er, 1906.		D	ecember	r, 1906.		Ja	anuary,	1907.	
Day.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.
1	2,820 2,960 3,100 3,040 3,300	0.566	0. 47 . 45 . 416 . 42 . 43	13. 2 13. 3 12. 9 12. 8 14. 2	2,960 2,780 2,840 3,120 3,540	0. 492	0. 35 . 361 . 40 . 45 . 548	10. 4 10. 0 11. 4 14. 0 19. 4	2,020 1,960 2,070 2,070 1,890	0.169	0. 12 .12 .124 .12 .12	2.4 2.4 2.6 2.5 2.3
6	3, 240 3, 140 3, 120 3, 100 2, 900	. 590	. 433 . 40 . 38 . 375 . 35	14.0 12.6 11.9 11.6 10.2	7,000 9,000 4,240 3,500 3,200	.892	.70 .70 .655 .50 .40	49. 0 63. 0 27. 8 17. 5 12. 8	1,370 1,530 1,590 1,800 1,960	.152	.112 .14 .17 .197 .19	1.5 2.1 2.7 3.5 3.7
11	3,020 2,980 2,940 2,900 2,840	. 442	. 35 . 325 . 30 . 30 . 294	10.6 9.7 8.8 8.7 8.3	3,100 2,900 3,020 2,800 2,660	.376	. 276 . 28 . 28 . 286 . 30	8.6 8.1 8.5 8.0 8.0	2,120 2,280 2,060 2,000 1,940	. 239	.18 .175 .17 .17 .17	3.8 4.0 3.5 3.4 3.3
16	2,800 2,760 2,720 2,500 2,560	. 335	. 28 . 27 . 26 . 25 . 246	7. 9 7. 5 7. 1 6. 2 6. 3	2,680 2,380 1,920 1,830 1,560	. 573	. 35 . 421 . 35 . 30 . 242	9. 4 10. 0 6. 7 5. 5 3. 8	1,940 1,940 2,510 2,770 2,550	.271	.18 .19 .199 .19 .17	3. 5 3. 7 5. 0 5. 3 4. 3
21	2,480 2,220 1,800 1,440 1,800	.317	. 24 . 24 . 233 . 22 . 21	6.0 5.3 4.2 3.2 3.8	1,380 1,460 1,370 1,650 1,930	. 264	. 22 . 20 . 194 . 19 . 19	3.0 2.9 2.7 3.1 3.7	2,260 2,020 1,940 1,540 1,720	. 209	.153 .13 .11 .099 .11	3. 5 2. 6 2. 1 1. 5 1. 9
26. 27. 28. 29. 30.	1,800 1,980 1,920 2,020 2,200	. 282	. 207 . 24 . 26 . 270 . 30	3.7 4.8 4.5 5.5 6.6	1,930 1,910 1,960 1,930 2,080 2,230	. 255	. 187 . 18 . 18 . 182 . 15 . 125	3.7 3.4 3.5 3.5 3.1 2.8	1,990 1,720 1,720 1,900 1,940 2,020	.188	.12 .13 .138 .14 .131 .15	2. 4 2. 2 2. 4 2. 7 2. 5 3. 0
Total a and mean	77,752	. 447	. 328	255. 4	86,142	. 549	. 403	347.3	60, 635	.214	.152	92. 3

 $[^]a$ The daily discharge in acre-feet was obtained by taking twice the recorded discharge in second-feet, and the values are therefore a little over 1 per cent too large. The monthly totals are the values reported by the Geological Survey.

Table 1.—Water and sediment in the Rio Grande at San Marcial, N. Mex., May, 1905, to April, 1907.—Continued.

]	Februar	y, 1907.			March,	1907.			April,	1907.	
Day.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.	Discharge in acre-feet.	Per cent, by weight, of sediment.	Per cent, by volume, of sediment.	Sediment in acre-feet.
1 2 3 4 5	2,160 2,120 2,580 2,740 2,700	0. 227	0. 15 . 167 . 25 . 35 . 423	3. 2 3. 5 6. 4 9. 6 11. 4	2,780 2,500 2,480 2,080 1,900	0.342	0. 25 . 25 . 251 . 20 . 17	7.0 6.2 6.2 4.2 3.2	3, 900 3, 920 3, 480 3, 400 3, 440	0.254	0, 25 . 20 . 186 . 20 . 22	9.8 7.8 6.5 6.8 7.6
6	2, 360 2, 220 2, 380 2, 460 2, 460	. 466	.38 .36 .342 .33 .33	9. 0 8. 0 8. 1 8. 1 8. 1	1,900 1,680 1,640 1,800 1,920	. 234	.172 .17 .17 .170 .20	3. 2 2. 9 2. 8 3. 1 3. 8	3,840 4,640 4,640 4,000 3,580	.320	. 235 . 24 . 24 . 239 . 24	9.0 11.2 11.2 9.6 8.6
11	2,460 2,200 2,060 2,120 2,040	. 383	. 326 . 30 . 29 . 281 . 25	8.0 6.6 6.0 6.0 5.1	2,260 2,380 2,060 2,280 2,300	. 304	.22 .223 .22 .22 .22 .223	5. 0 5. 3 4. 5 5. 0 5. 1	4,080 3,620 4,700 6.360 8,420	.325	. 24 . 238 . 40 . 426 . 45	9.8 8.6 18.8 27.1 37.9
16. 17. 18. 19.	2,200 2,220 2,300 2,300 2,380	. 292	.23 .214 .20 .20 .189	5.1 4.8 4.6 4.6 4.5	2,080 1,740 1,420 1,480 1,520	.179	.20 .15 .131 .15 .20	4. 2 2. 6 1. 9 2. 2 3. 0	11, 160 11, 560 12, 400 11, 420 12, 900	.778	. 571 . 50 . 45 . 421 . 40	63.6 57.8 55.8 48.1 51.6
21	2,600 2,720 2,600 2,540 2,820	.218	. 17 . 17 . 160 . 18 . 20	4. 4 4. 6 4. 2 4. 6 5. 6	2, 260 2, 500 4, 700 5, 420 5, 580	. 303	. 223 . 30 . 458 . 48 . 50	5. 0 7. 5 21. 5 26. 0 27. 9	15,000 15,000 11,600 9,900 10,220	. 527	. 40 . 387 . 37 . 353 . 33	60. 0 58. 0 42. 9 35. 0 33. 8
26. 27. 28. 29. 30.		. 322		6. 9 6. 7 6. 9	5, 760 5, 620 5, 300 5, 440 5, 620 4, 520	. 691	. 45	29. 2 27. 0 23. 9 22. 2 20. 3 15. 2	9,300 7,680 6,360 6,460 7,540	.368	.30 .270 .25 .25 .25	27. 9 20. 7 15. 9 16. 2 18. 8
Total a and mean	67, 696	. 351	. 258	174. 6	92, 549	.452	. 332	307.1	222,863	. 488	.358	796. 4

^a The daily discharge in acre-feet was obtained by taking twice the recorded discharge in second-feet, and the values are therefore a little over 1 per cent too large. The monthly totals are the values reported by the Geological Survey.

This table indicates that, though the usual rule of variation of per cent of sediment directly with discharge may hold for a few consecutive days, when the results for a long period are considered the stage of the river and the proportion of sediment exhibit no constant relation. This is readily accounted for by the influence of different tributaries, the abnormal effects of storms in the arid catchment area, and particularly by the influence of the Rio Puerco, which at times carries into the Rio Grande at low stage a flood of heavily silt-laden waters. Certain seasonal variations of the sediment-to-water ratio are noticeable, but they are not sufficiently well defined to be expressed in any simple mathematical law.

Monthly summaries of water and sediment discharged and of the sediment-water ratio are given in Table 2.

Table 2.—Monthly discharge of water and sediment in acre-feet and sediment-water ratio in per cent for the Rio Grande at San Marcial, New Mexico.

	1905–6.			1906–7.		
Month.	Water.	Sedi- ment.	Ratio.	Water.	Sedi- ment.	Ratio.
May June July August. September October November December January February March April	962, 221 714, 268 35, 782 20, 093 5, 276 7, 349 42, 397 34, 344 36, 496 39, 689 56, 866 163, 140	3, 200 2, 292 120 344 343 79 610 197 115 142 246 1, 339	0. 333 .321 .336 1. 71 6. 46 1. 07 1. 44 .575 .315 .357 .432 .821	500, 707 345, 064 118, 314 .43, 210 .25, 527 70, 830 .77, 752 .86, 142 .60, 635 .67, 696 .92, 549 .222, 863	2, 294 919 590 356 1, 442 420 255 347 92 175 307 796	0. 458 . 267 . 498 . 825 . 564 . 593 . 328 . 403 . 152 . 258 . 332 . 358

 Two years ending April 30, 1907:
 acre-feet 3,829,21

 Water
 do 17,02

 Ratio
 per cent 0.44

 Mean of all sediment determinations (0.853 by weight)
 do .62

Although many of the eccentricities of the daily results are smoothed out in the monthly summaries, there still seems to be no relation between discharge of water and sediment that should be taken for general application. For the entire period of two years the mean sediment-to-water ratio, by volume, is 0.445 per cent. It is believed that this ratio may be applied to the annual discharge in finding the quantity of sediment for any year, with errors due to variation of sediment-water ratio as follows:

Discharge 1,000,000 acre-feet or greater, error not to exceed 50 per cent. Discharge less than 1,000,000 acre-feet, error not to exceed 100 per cent.

The difference between the ratios 0.445 and 0.626 shown at the bottom of Table 2 affords an excellent illustration of the great errors that are likely to occur in estimates based on the product of mean values for discharge and sediment rather than on the mean of products of discharge and sediment.

During the period for which records are available nearly 80 per cent of the discharge has occurred in years when the flow was more than 960,000 acre-feet. It is therefore stated with a considerable degree of assurance that the use of the ratio 0.445 per cent introduces an error for the period much less than 50 per cent and that an allowance of 50 per cent will cover all errors of observations, assumptions, and meager data. The mean annual flow of the Rio Grande at San Marcial for 12 years beginning with 1897 is 1,138,377 acre-feet (see Table 5, p. 162). Using the above-mentioned ratio, the mean annual sediment discharge for the same period would be 5,070 acre-feet. It is interesting to note that a calculation from the mean of the sediment observations would give results about 40 per cent greater.

THEORETICAL EXTENSION OF ESTIMATES.

The discharge of water and the sediment-to-water ratio for various yearly periods within the two years covered by sediment observations are presented in Table 3. A marked tendency toward decrease of ratio with increase of water discharge is evident. By plotting these values and drawing a straight line through the points it was found that all the ratios scaled from the graph were within 9 per cent of those in Table 3, whereas the mean ratio, 0.445 per cent, varies nearly 25 per cent from one of the ratios in Table 3. A considerable increase in accuracy would therefore seem to be secured by use of the graph.

Table 3.—Annual discharge of water and sediment in acre-feet and sediment-water ratio in per cent for the Rio Grande at San Marcial, New Mexico.

Year ending—	Water.	Sedi- ment.	Ratio.
April 30	1,656,407 1,287,203 1,369,735 1,392,852 1,413,103 1,476,584 1,511,939	9,030 8,120 6,750 7,220 7,230 8,330 8,670 8,310 8,460	0. 427 . 491 . 525 . 527 . 520 . 590 . 588 . 550 . 541
January 31. February 28. March 31. April 30.	1,615,883	8, 440 8, 470 8, 540 7, 990	.532 .525 .517 .467

Table 4.—Sediment-water ratios for various values of annual discharge.

Annual discharge.	Ratio (per cent).	Annual discharge.	Ratio (per cent.)	Annual discharge.	Ratio (per cent).
1,000,000 acre-feet	0. 621 . 604 . 587 . 569 . 552	1,500,000 acre-feet	0.536 .518 .500 .483 .466	2,000,000 acre-feet	0. 449 . 431 . 414 . 387 . 380

Table 4 presents the ratios scaled from the graph corresponding to various values for annual discharge. This table covers about 80 per cent of the recorded annual discharge and is apparently correct within 10 per cent for individual years. The data do not warrant extension of the graph to include low-flow years, but it is interesting to note that an extension as a straight line would give a ratio of 0.76 per cent for a discharge of 200,000 acre-feet, which is the minimum recorded annual flow.

Based on Table 4 is the following estimate of the annual discharge of sediment for 12 years, shown in Table 5.

Table 5.—Annual discharge of water in acre-feet, annual discharge of sediment in acre-feet based on the ratios of table 4, and annual discharge of sediment in acre-feet calculated from the ratio 0.445 per cent.

Year.	Water.	Sediment from ratios of Table 4.	Sediment from ratio 0.445 per cent.
1897 1898 1898 1990 1900 1901 1901 1902 1903 1904 1905 1906 1907 1908 Total Mean	2, 215, 257 964, 677 239, 835 484, 324 656, 274 200, 729 1, 278, 669 709, 796 2, 422, 008 1, 563, 737 2, 157, 709 774, 109 13, 660, 524 1, 138, 377	9,080 6,070 a 1,910 a 3,870 a 5,250 a 1,610 -7,380 a 5,670 9,160 8,130 9,050 a 6,190	9,850 4,290 1,070 2,160 2,920 890 5,660 3,160 10,800 6,950 9,590 3,450 60,790 5,070

a Ratio 0.8 per cent used.

For comparison, the sediment as calculated from the ratio 0.445 per cent is also shown. In obtaining the values in column 3 for discharges not included in Table 4, the single ratio 0.8 per cent has been used. This ratio seems to be a fair one for the low-flow years and is doubtless not more than 50 per cent in error. Inasmuch as it affects but 20 per cent of the entire flow for the 12 years, this ratio can not introduce an error of more than about 10 per cent in the mean annual sediment discharge for the period—6,110 acre-feet. It is believed that this mean, which corresponds to a mean annual sediment-to-water ratio of 0.536 per cent, is within 25 per cent of the actual for any long term of years after allowing for all errors.

ACCURACY OF DATA AND ESTIMATES.

The mean monthly values for discharge of water are probably not in error by more than 10 or 15 per cent. The sediment determinations are probably equally accurate. The chief opportunity for error is owing to the fact that the samples used for sediment determinations do not include material rolled along the bottom of the stream and that a single sample will not represent the true mean condition for the entire cross section. Data on the error so introduced are meager, but the preponderance of evidence indicates that it is not more than 10 per cent. Opinions have frequently been expressed placing the error as high as 50 per cent, but observations available do not support them. The errors of observation, both on stream gaging and sediment determinations, are likely to offset one another, except for the omission of material rolled along the bottom of the stream. There seems to be reason therefore to believe that the monthly averages of the silt carried and of the water-to-sediment ratio are likely to be correct within 10 or 15 per cent. The yearly results and those for the entire period of 2 years may reasonably be expected to be still more accurate.

The error in assuming that the conditions for 2 years may be applied to those of 12 years, and that those of 12 years may be applied to hundreds of years is problematical. The mean annual flow for the 12 years differs by a maximum of about 33 per cent from the mean of any 6 years for which flow records are available, but by less than 26 per cent from the mean of any 8 years and by less than 11 per cent from the mean of any 9 years. Successions of low-flow years and series of high-flow years are included and it is to be expected that the cycle of changes in flow is fairly complete. In a catchment area so large and subject to normal arid conditions there is always, however, the possibility of abnormal conditions for a few years overthrowing even long-term averages.

The assumption that 85 pounds of suspended matter will produce a cubic foot of sediment may introduce an error. When newly deposited as little as 50 pounds of sediment may occupy a cubic foot of space.^a At the other extreme it may require 120 pounds of compact dry earth to make a cubic foot. The value 85 pounds to the cubic foot may therefore be in error in individual cases by as much as 40 per cent. When sediment is compacted through a long term of years and is subject to alternate wet and dry conditions, however, the limits of weight and volume are greatly reduced. The value 85 pounds to the cubic foot supposes voids of 48 per cent and a weight of wet sediment of 115 pounds to the cubic foot. It corresponds to the commonly accepted value for weight of mud and dredged material and is probably not more than 15 per cent in error for long-term sediment deposits in any large reservoir in the United States.

a See sediment estimates for Rio Grande in Third Ann. Rept. U. S. Reclamation Service.

ROCK MATTER, SOIL, AND SEDIMENT.

In the foregoing discussion 6,110 acre-feet was estimated as the probable mean annual discharge of sediment for the Rio Grande for any long term of years. This estimate relates particularly to reservoir filling capacity, being based on the assumption that 85 pounds of suspended matter will occupy a cubic foot of space. However, if reduced to the state of rock matter, about 165 pounds would be required to fill a cubic foot; if reduced to the state of soil matter, about 100 pounds would be required; and if expanded to the state of freshly-deposited sediment, only about 60 pounds would be required. The probable mean annual discharge for a long term of years may therefore be variously expressed as representing 11,300,000 tons of suspended matter, 3,150 acre-feet of rock matter, 5,200 acre-feet of soil, 6,110 acre-feet of compacted sediment, or 8,650 acre-feet of freshly deposited sediment.

THE INDUSTRIAL APPLICATION OF WATER ANALYSES.^a

By HERMAN STABLER.

Recent practice among water analysts tends toward the statement of analyses in ionic form, in parts per million, and the abolition of the statement in grains per gallon of mineral salts supposed to be The interpretation of the analysis can be made from either form of statement without great difficulty. The newer form, although admittedly better in many respects than the old, is, nevertheless, comparatively unfamiliar to many, and its interpretation is consequently somewhat obscure. Herewith are presented a few simple calculations and formulas which will assist in clearing up this obscurity and enable one not well grounded in chemical nomenclature to interpret and compare analyses expressed in ionic form, in parts per million, and to classify waters for industrial purposes. The calculations and formulas presented relate to the soap consuming power of water, to water softening, and to the interpretation of analyses with respect to the use of water in boilers and for irrigation, and may be readily enlarged in scope to include all industrial water problems.

THE ANALYSIS.

A mineral analysis of waters such as are ordinarily used for industrial purposes includes four classes of water impurities—suspended matter, colloidal matter, dissolved solids, and dissolved gases.

Suspended matter includes all organic or inorganic matter that can be removed by filtering. It is of a complex nature and consists of many chemical compounds which are not usually determined in detail. Two determinations relating to suspended matter are often made. The first is turbidity (Tu), the figures for which indicate the number of parts per million of a known standard suspended matter that will be just as cloudy or obscure just as much light as the water under consideration. The second is suspended matter (Sm) and represents the actual weight of the suspended matter in the water. If the particles in suspension are very fine, a comparatively small

weight will produce a high turbidity. The ratio of turbidity to suspended matter, therefore, is a measure of the average weight or size of the particles in suspension. This ratio is called the coefficient of fineness (Fi).

(1)
$$Fi = \frac{Tu}{Sm}$$

The greater the value of this coefficient the greater will be the average weight of the suspended particles, and hence the greater will be the ease with which they can be removed.

Colloidal matter includes, for the most part, silica (SiO₂), alumina (Al₂O₃), and iron oxide (Fe₂O₃), though in polluted waters and in some normal waters a considerable amount of organic matter may be present in the colloidal state. This material is present in a state intermediate between suspension and true solution. In the mineral analysis it is not distinguished as such; but the three mineral components above mentioned are determined separately, as though present in solution. There is always some doubt as to whether the silicon, aluminum, and iron are actually present as oxides in the colloidal state or as radicles in true solution. Silicon is rarely, if ever, present in true solution; aluminum forms a part of the system of dissolved solids only in acid waters; and iron is in true solution chiefly in ground waters, and then only in small quantity except in acid waters. In this article the iron and aluminum are included both in the dissolved and colloidal matter in order that both possible occurrences may be covered; but the silicon, because of its very rare occurrence in appreciable quantity in any other form, is included only under the head of colloidal matter. As stated later, the individual analysis may indicate definitely the state of these substances; but it is a safe rule to consider them as being present in the colloidal The term "colloidal matter," as here used, means the oxides of silicon, iron, and aluminum and will be designated Cm.

Dissolved gases (Dg) are not determined in many analyses. Oxygen (O), nitrogen (N), and carbon dioxide (CO₂) are generally present in water, and hydrogen sulphide (H₂S) and a few other gases are not unusual. Of these carbon dioxide is most important industrially and will alone be considered, expressed in parts per million.

Dissolved solids (Ds), as here used, refers to the mineral solids actually dissolved in the water. The usual determinations included under this term are iron (Fe), aluminum (Al), calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), acidity (H), carbonate radicle (CO₃), bicarbonate radicle (HCO₃), sulphate radicle (SO₄), chlorine (Cl), and nitrate radicle (NO₃). Acidity is variously reported as hydrochloric acid (HCl), sulphuric acid (H₂SO₄), calcium carbonate (CaCO₃), and hydrogen (H). It is here expressed as hydrogen

and may be converted to this form from the others by the following factors:

 $H = .0276 \text{ HCl} = .0206 \text{ H}_2SO_4 = .0202 \text{ CaCO}_3.$

The first seven of these are called positive radicles and the remaining five negative radicles. Taken together the twelve constitute a chemical system of positive and negative radicles (which may or may not be in actual combination), each of which has the power to react with or hold in the system a definite weight of radicles of the opposite sign. This power will be designated the "reaction coefficient" (r) of that radicle. The reaction coefficient may be defined as the ratio of the capacity for reaction to the weight of a chemical substance, and therefore represents the capacity for reaction of a unit weight of the substance. It is measured in more commonly used terms by the ratio of the valence to the atomic weight of the radicle.

(2) Reaction coefficient, $r = \frac{\text{valence}}{\text{atomic weight}}$

The division into positive and negative radicles and the reaction coefficients of the radicles as used in calculating the international atomic weights of 1909 are as follows:

Positive radicles.	. Reaction coefficients.	Negative radicles.	Reaction coefficients.
Ferrous iron (Fe). Aluminum (Al). Calcium (Ca). Magnesium (Mg). Sodium (Na). Potassium (K). Hydrogen (H).	. 1107 . 0499 . 0822 . 0435 . 0256	Carbonate (CO_3). Bicarbonate (HCO_3). Sulphate (SO_4). Chlorine (CI). Nitrate (NO_3).	.0164 .0208 .0282

If the number of parts per million of each radicle found by analysis be multiplied by its reaction coefficient, a number will be obtained which may be called the "reacting value" of the radicle for that analysis. This will be designated by the letter r prefixed to the symbol of the radicle. Thus, rCa will represent the reacting value of the calcium in any analysis. The symbols of the radicles are used in this paper merely as abbreviations.

The use of the reaction coefficients and reacting values a is of great assistance in an attempt to evaluate the effect of mineral impurities on the industrial uses of water. For example, the accuracy of the determinations of an analysis may readily be estimated from the reacting values of the radicles, for in the chemical system which they form the sum of the reacting values of positive radicles must be

a The expression of water analyses in terms of reacting values as well as in parts per million has not come into general use, though it has been used and recommended by prominent German chemists for many years.

equal to the sum of the reacting values of the negative radicles. The percentage error due to inaccurate analysis, undetermined radicles, etc., may be found from the formula:

(3)
$$e = 100 \frac{rp - rn}{rp + rn}$$

in which e=percentage error, rp=sum of reacting values of positive radicles, and rn=sum of reacting values of negative radicles. this calculation iron and aluminum should be omitted, the assumption being that these substances are present as colloidal oxides. Usually, with fairly careful work, e will not exceed 5 in numerical value for waters containing 100 or more parts per million of dissolved solids, and may generally be expected to be 2 or less. A value of e in excess of 5 will indicate: (1) A blunder in analysis or calculation; (2) if negative, the presence of iron, aluminum, or some undetermined positive radicle; or (3) if positive, the presence of silicate or some undetermined negative radicle. Individual judgment must decide which of these causes of error is the most probable and reject the analysis or correct the form of statement in accordance with the magnitude and character of the error and the relative abundance of the radicles The correction of an analysis in this manner likely to be involved. is generally an unreliable makeshift if the error is large, but can occasionally be made with a high degree of probability.

The determinations usually made in examining water for its mineral

impurities are summarized below:

	Symbol.	
1. (a) Suspended matter	Sm	4. Dissolved rad
(b) Turbidity	Tu	(c) Calciur
2. Collodial matter	Cm	(d) Magnes
(a) Silica	SiO_2	(e) Sodium
(b) Iron oxide	$$ Fe $_2$ O $_3$	(f) Potassi
(c) Alumina	Al_2O_3	(g) Hydrog
3. Dissolved gases	Dg	(h) Carbon
(a) Carbon dioxide	CO_2	(i) Bicarbo
(b) Hydrogen sulphide	H_2S	(j) Sulpha
4. Dissolved radicles	Ds	(k) Chlorin
(a) Iron	Fe	(l) Nitrate
(b) Aluminum		1

	Symbol.
Dissolved radicles—Continued	.•
(c) Calcium	Ca
(d) Magnesium	
(e) Sodium	Na
(f) Potassium	K
(g) Hydrogen	Н
(h) Carbonate	
(i) Bicarbonate	.HCO3
(j) Sulphate	
(k) Chlorine	Cl
(<i>l</i>) Nitrate	NO_3

SOAP-CONSUMING POWER.

Whipple a has deduced from a series of experiments the cost of consumption of the common household soaps by waters of various degrees of hardness. Iron, aluminum, calcium, magnesium, and

a Whipple, G. C., The value of pure water, John Wiley & Sons, New York, 1907; pp. 24-28.

hydrogen radicles in solution are the soap-consuming constituents of water. Therefore, accepting Whipple's values, the cost in cents per 1,000 gallons for soap necessary to produce a lather in water is as follows:

(4) Soap cost

= 11 + 50.05 (rFe+rAl+rCa+rMg+rH) = 11 + 1.79 Fe+5.54 Al+2.5 Ca+4.11 Mg+49.6 H.

WATER SOFTENING.

Hard water has such a deleterious effect in most industries that the practice of "softening" the water before use has become prevalent in regions where soft waters are not obtainable. The principal socalled hardening constituents are calcium and magnesium, and by reason of their cheapness lime and soda ash are the chemicals customarily used in the softening process. The lime is introduced as the hydroxide, Ca(OH), and the soda ash as Na₂CO₃. By the sodalime method of softening, the hydrogen is changed to water; calcium, magnesium, iron, and aluminum are removed as precipitates; the bicarbonate radicle and carbon dioxide are changed to carbonate radicle and water; and part or all of the carbonate radicle removed as a precipitate. The calcium added as Ca(OH)2, as well as that already in the water, is precipitated as calcium carbonate (CaCO₃). The sodium added as Na₂CO₃ remains in solution, taking the place of bases precipitated or otherwise removed from the chemical system. The reactions that apparently take place are:

> Fe+2OH = Fe(OH)₂, which falls as a precipitate. Al+3OH = Al(OH)₃, which falls as a precipitate. Mg+2OH = Mg(OH)₂, which falls as a precipitate. Ca+CO₃ = CaCO₃, which falls as a precipitate. H+OH = H₂O. HCO₃+OH = CO₃+H₂O. CO₂+2OH = CO₃+H₂O.

From the foregoing reactions, it appears that lime must be added in quantity sufficient to provide hydroxyl (OH) to combine with the iron, aluminum, magnesium, bicarbonate, and hydrogen radicles and carbon dioxide. In addition, if the carbonate radicle in the water plus that formed by change of bicarbonate radicle and carbon dioxide is not sufficient to precipitate the calcium present in the water, and added as lime, an additional quantity must be provided by the addition of soda ash in order that all the calcium may be precipitated. This latter consideration determines the amount of soda ash to be added. In terms of pounds of 90 per cent lime (CaO) and 95 per

cent soda ash (Na₂CO₃) per 1,000 gallons of water, these statements may be expressed in the following formulas:

- (5) Lime required
- $= 0.26 \text{ (rFe} + \text{rAl} + \text{rMg} + \text{rH} + \text{rHCO}_3 + .0454 \text{ CO}_2)$
- $= .00931~\rm{Fe} + .0288~\rm{Al} + .0214~\rm{Mg} + .258~\rm{H} + .00426~\rm{HCO_3} + .0118~\rm{CO_2}.$
 - (6) Soda ash required a
- $= 0.465 \text{ (rFe} + \text{rAl} + \text{rCa} + \text{rMg} + \text{rH} \text{rCO}_3 \text{rHCO}_3)$
- = .0167 Fe + .0515 Al + .0232 Ca + .0382 Mg + .462 H .0155 CO₃ .00763 HCO₃.

Assuming the average cost of lime to be 0.3 cents and of soda ash to be 1.2 cents per pound, the cost in cents per 1,000 gallons of chemicals for softening a water can readily be determined from formulas (5) and (6), as follows:

- (7) Cost of chemicals for softening
- = .636 (rFe+rAl+rMg+rH)+.558 (rCa-rCO₃)+.00354 CO₂-.48 rHCO₃
- = .0228 Fe + .0704 Al + .0522 Mg + .631 H + .0279 Ca + .00354 CO_2 .0186 CO_3 .00787 HCO_3 .

A negative value for formula (6) shows that no soda ash is required. In such case, instead of using formula (7), take .3 the value of formula (5) for cost of chemicals. Formulas (4), (5), (6), and (7) may usually be simplified for practical use by the omission of iron, aluminum, and hydrogen, for they are not often present in sufficient quantity to affect the results. Total incrustants in parts per million (as determined by the standard method of the American Public Health Association) multiplied by .0093 will be practically equal to the value of formula (6).

Similar formulas can readily be deduced for use in connection with water softening by other chemicals, but their practical application would be small. In connection with the water-softening problems, it should be remembered that the reactions quoted above and the resulting precipitation will vary in completeness with conditions of temperature, mixing, sedimentation, etc. Furthermore, the precipitates formed are not wholly insoluble. In a water softened under ideal conditions there may remain in solution 5.2 parts per million of calcium and 3.4 parts per million of magnesium, together with equivalent amounts of negative radicles. These figures may be

a The use of soda ash in water softening results in an increase of the highly soluble constituents, for the sodium thus added remains in solution. In some industrial uses of water a great increase in content of sodium is accompanied by very undesirable results; and if the water contains a large amount of the sulphate radicle, barium carbonate (BaCO₃) may be substituted for all or a part of the soda ash to advantage. In such waters the minimum amount of soda ash to be used is, in pounds per 1,000 gallons, .0131 Cl+.0075 NO₃-.0202 Na-.0119 K. A negative value for this expression shows that the barium compound may be used for all of the soda ash required by formula (6), and if the expression be positive its value should be subtracted from the value of formula (6) to find the amount of soda ash for which barium carbonate may be used. In the substitution, 1.77 pounds of barium carbonate must be used in place of each pound of soda ash and the cost will be increased by 2.7 cents for each pound of soda ash replaced.

increased by the presence of other substances. On the other hand, a very large percentage of colloidal and suspended matter will be carried down with the precipitates, thus increasing the value of the softening process.

BOILER WATERS.

The chief industrial use of water is steam making. The cost of softening water is a fairly reliable index to its value for this and many other industrial purposes. The cost for softening is the sum of two figures—cost for lime and cost for soda ash, the former being about one-fourth the latter. In a general way, the amount of lime required varies with the amount of least objectionable impurities, while the amount of soda ash required varies with the quantity of impurities most deleterious in character. If, therefore, the ill effects of the latter class may be assumed as four times those of the former, the relative cost of chemicals for softening waters will represent their relative objectionableness with a fair degree of accuracy.

The customary method of interpreting the value of a water for boiler use is based on its tendency to cause foaming, corrosion, and incrustation. Such interpretation is usually made from the hypothetical combination of the radicles as salts, judgment of the tendencies of these salts being made in accordance with our knowledge or theories of boiler physics. Unfortunately our knowledge is rather restricted though our theories are numerous. It follows that the interpretation can not always be expressed in very definite terms and if so expressed is liable to error.

FOAMING AND PRIMING.

Foaming and priming are probably the least understood of boiler phenomena. Priming may be defined as an ebullition so violent that water in the form of spray is carried from the boiler before its separation from the steam can take place. It is controlled by the relations of heating surface, evaporation surface, circulation, and working load, all of which are factors of the violence and rapidity of ebullition, and by such features as dash plates, water space, and steam space, all of which affect the possibility of violently boiling water reaching the steam exit. Priming, as thus defined, is a matter of boiler design and operation.

Foaming is the formation of bubbles upon and above the surface of the water. The less easily these bubbles break the higher will the foam rise. It may become so excessive that the bubbles, or films of water inclosing steam, pass out with the steam.

Naturally priming, or a tendency to prime, is an important factor in excessive foaming. Aside from this, the difficulty with which the

steam pushes through the surface film of water and separates from it is a controlling agency. With little mineralized water foaming is very slight and never sufficient to cause the loss of water with steam in a well designed boiler. Nearly all impurities dissolved or suspended in water increase the foaming tendency, though no two substances may do so to the same degree. As steam is used from the boiler the impurities are concentrated and finally a stage is reached which will cause excessive foaming. If, therefore, the quantity of impurities and the effect of each were known, the calculation of the foaming tendency of a water would be a simple matter. Unfortunately, our knowledge of this department of boiler physics is very slight. It is practically impossible to determine the quantity of suspended matter in a boiler at any time. Suspended matter originally present in the water is largely precipitated, while additional suspended matter is derived from loosened scale and from the precipitation of impurities in solution in the feed water. Organic matter holds a similar indefinite place in connection with foaming calculations because a large but unknown proportion is precipitated. It is, however, usually present in relatively small amount in boiler waters. Although both these classes of substances are undoubtedly important, the effect of precipitated magnesium being especially noteworthy, their rôle in inducing foaming can not, therefore, be calculated from an analysis of boiler feed water. For this reason and because all other dissolved substances are relatively insignificant in amount in a highly concentrated boiler water it is generally customary to attribute foaming to sodium and potassium salts. These substances are highly soluble and their relative importance in different waters is easily determined from analyses. The expression 2.7Na +2K will represent these salts generally within 5 per cent and always within 15 per cent. It will correspond very closely to the "nonincrusting solids" usually estimated from hypothetical combinations and is sufficiently accurate for practical use. Since these compounds are at best a rough approximation of the foaming tendency of a water, nothing would be gained by the use of a more cumbersome expression from which they could be more accurately estimated. The following formula may, therefore, be adopted:

(8) Foaming coefficient f = 62rNa + 78rK = 2.7Na + 2K.

It is to be hoped that investigation may lead to a better understanding of this phenomenon and hence to a more reliable index to the foaming tendency of waters.

The steam engineer is interested more in the number of hours his boiler may be run under ordinary load without danger of foaming than in the coefficient given above. This is really a combined index of priming and foaming and may be calculated from the formula:

(8a) Run in hours: Rh =
$$\frac{a}{b} (\frac{c}{f} - 1)$$
,

in which a = water capacity of boiler, b = hourly quantity of feed water used, f = foaming coefficient, and c is a constant which represents in parts per million the concentration of salts that will cause excessive foaming in the type of boiler under consideration.

The usual remedy for foaming is blowing off a portion of the highly impure water and replacing it with fresh feed water. If a in the foregoing formula be made to represent the amount of water blown off at any time, the expression will indicate the length of time that may with safety elapse before blowing off again.

The following approximate values have been determined for the constant c for various types of boilers and are here adapted from Christie's "Boiler waters."

Locomotive boiler	2,500 to	3,500
Stirling boiler	4,000 to	5,000
Modern water-tube boiler (such as the Babcock & Wilcox or Heine)	5,000 to	7,000
Horizontal return tubular boiler	8,000 to	10,000
Old-style two-flue boiler	17,000	

From these figures it appears that the locomotive boiler is the type most likely to give trouble on account of foaming and offers, therefore, a satisfactory basis for an arbitrary classification of waters according to their foaming tendency. A nonfoaming water may be defined as one that can be used in a locomotive boiler throughout one week's work without foaming; a semifoaming water as one that can not be used so long as a week, but one that will require one complete water change to avoid foaming in a locomotive boiler not oftener than every two days; and a foaming water as one that can not be used so long as two days in a locomotive boiler without blowing off or changing water to prevent foaming. Accepting these conditions, the following approximate classification of waters will result:

- (1) Nonfoaming; f not greater than 60.
- (2) Semifoaming; f greater than 60, but not greater than 200.
- (3) Foaming; f greater than 200.

CORROSION.

Corrosion of a metal will occur in the presence of water if the metal is capable of replacing any positive radicle in the chemical system which the dissolved matter in the water constitutes. The radicle thus replaced may pass from solution as a precipitate or a gas. In boiler corrosion the metal to be considered is the iron of the boiler. The radicle which it may replace in the chemical system of dissolved solids is hydrogen, which, when so replaced leaves the chemical system

as hydrogen gas. It follows that the amount of hydrogen radicle in the chemical system under boiler conditions is the controlling factor of corrosion. The calculation of this factor can be made with a fair degree of accuracy. Under boiler conditions the dissolved gases are driven out with the steam. Therefore, although some of these substances are prominent corrosive agents when confined they are omitted from consideration here.

Hydrogen radicle as determined by analysis is the first item. It may be the cause of corrosion in the cold or under boiler conditions. To this may be added, as a result of the high temperature in a boiler, three molecules of hydrogen for each molecule of aluminum, two of hydrogen for one of iron, and two of hydrogen for one of magnesium. The reactions involved may be represented by the following equations:

$$2Al + 3H_2O = Al_2O_3 + 6H$$

 $Fe + H_2O = FeO + 2H$
 $Mg + H_2O = MgO + 2H$

These reactions probably do not occur in just this way, but they express well-known results. There are other reactions that may cause an increase in the amount of hydrogen radicle. While they will not be considered in the calculations which follow, the three given below are of interest as expressing possibilities:

$$2\text{Fe} + 3\text{H}_2\text{O} = \text{Fe}_2\text{O}_3 + 6\text{H}$$

 $3\text{Fe} + 4\text{H}_2\text{O} = \text{Fe}_3\text{O}_4 + 8\text{H}$
 $3\text{Fe} + 4\text{H}_2\text{O} = \text{SiO}_3 + 2\text{H}$

In all of these equations, except the last, the hydrogen is represented as being brought into the chemical system to replace a radicle precipitated as an oxide. In the last equation, hydrogen and silicate radicles are both brought into the system. In all cases, of course, the equilibrium between positive and negative radicles in the system must be maintained.

Opposed to these reactions increasing the amount of hydrogen are others tending to decrease it. Thus under boiler conditions each molecule of carbonate radicle may combine with two molecules of hydrogen and each molecule of bicarbonate radicle with one molecule of hydrogen to form water and the gas carbon dioxide. This is illustrated by the following equations:

$$H + HCO_3 = H_2O + CO_2$$

 $2H + CO_3 = H_2O + CO_2$

Thus positive and negative radicles leave the chemical system together.

The carbon dioxide so formed will pass off with the steam.

The two sets of phenomena may be combined to represent the residual hydrogen likely to be replaced in the chemical system by iron from the boiler, as follows:

(9) Coefficient of corrosion:

$$c = 1.008 (rH + rAl + rFe + rMg - rCO_3 - rHCO_3)$$

= H + .1116 Al + .0361 Fe + .0828 Mg - .0336 CO_3 - .0165 HCO_3

One of the first occurrences in a boiler is the precipitation of at least a part of the carbonate and bicarbonate radicles as calcium carbonate. Such precipitate can be acted upon, the calcium being returned to the chemical system to replace the hydrogen which forms water and carbon dioxide with the carbonate radicle. The extent of such action is not well defined. With a maximum precipitation of calcium carbonate and a minimum action upon the same, the effect of the carbonate and bicarbonate radicles in the above formula may be reduced by 1.008 rCa or .0503 Ca. The foregoing considerations afford an excellent basis for the classification of waters according to their corrosive tendencies. Three classes may be distinguished as follows:

- (1) Corrosive. If c be positive, the water will certainly corrode the boiler.
- (2) Noncorrosive. If c + .0503 Ca be negative, no corrosion will occur on account of the mineral constituents in the water.
- (3) Semicorrosive. If c be negative, but c + .0503 Ca be positive, corrosion may or may not occur, the probability of corrosive action varying directly with the value of the expression c + .0503 Ca.

SCALE FORMATION.

The formation of scale and sludge in boilers is the most common effect of the use of impure feed water. This phenomenon is the result of heating the water to a high temperature and concentrating it. The heat reduces the solubility of many of the dissolved substances to such an extent that they leave the chemical system. Concentration may gradually increase the amount of dissolved matter to saturation, after which additional concentration will cause it to pass out of solution. Suspended matter and colloidal matter are also largely deposited within the boiler.

The purest of natural waters, if used in a boiler for a great length of time without cleaning, would produce scale or sludge. As boilers are usually operated, temperatures and concentrations are permitted which result in the precipitation of practically all suspended and colloidal matter—all iron, aluminum, magnesium, and all calcium to the full extent of its ability to combine with carbonate, bicarbonate, and sulphate radicles. The iron, aluminum, and magnesium appear in the scale as oxides (magnesium carbonate may be present, but is not likely to be found in quantity in scale from high-pressure boilers),

while the calcium may be present as calcium carbonate or calcium sulphate (a hydrated calcium sulphate frequently occurs, but in the modern high-pressure boiler its quantity is sufficiently small to be neglected). Whether these results are caused by a series of reactions or by a single chemical change is of little moment in connection with boiler calculations. The following reactions, therefore, are presented not as formulas for the changes which actually take place, but as equations which express the known results of changes that occur within the boiler:

$$\begin{split} 2Al + 3H_2O &= Al_2O_3 + 6H \\ Fe + H_2O &= FeO + 2H \\ Mg + H_2O &= MgO + 2H \\ Ca + CO_3 &= CaCO_3 \\ Ca + 2HCO_3 &= CaCO_3 + H_2O + CO_2 \\ Ca + SO_4 &= CaSO_4 \\ H + HCO_3 &= H_2O + CO_2 \\ 2H + CO_3 &= H_2O + CO_2 \end{split}$$

The hydrogen in the last two equations may include not only the hydrogen radicle found by analysis, but also that developed by the first three equations. In other words, it is c, the coefficient of cor-An estimate of the amount of scale formed is necessarily The first three reactions may, without great error, rather uncertain. be assumed to be practically complete. The division of carbonate and bicarbonate radicles between calcium and hydrogen, and the division of the calcium between carbonate and sulphate radicles, are not definitely known and probably vary with different conditions of boiler operation. On this account it would seem desirable to estimate maximum and minimum values for scale formed by calcium compounds. Formulas were prepared with this in view, but the difference between maximum and minimum values was found to be small in nearly every instance. The use of the necessarily cumbersome formulas was therefore discarded in favor of one which represents a probable average scale-forming value. Calculations based upon this formula are relatively simple, and it is believed that they are of as great practical value as the maximum and minimum formu-In order to conform to common usage the formula is in terms of pounds of scale per 1,000 gallons of water.

(10) Scale (Sc)

= .00833 Sm + .00833 Cm + .3 rFe + .142 rAl + .168 rMg + .492 rCa

 $= .00833~\rm Sm + .00833~\rm Cm + .0107~\rm Fe + .0157~\rm Al + .0138~\rm Mg + .0246~\rm Ca$ In this formula the value of rCa used should not be in excess of rCO₃ + rHCO₃ + rSO₄. (Ca should not exceed .668 CO₃ + .328 HCO₃ + .417 SO₄).

Formula (10) shows the amount of scale and sludge likely to be deposited in a boiler operated under the usual conditions of modern practice

and its value will never differ widely from the "total incrusting matter" frequently reported from an estimation of hypothetical combinations of radicles. It is of equal importance to know whether the matter deposited will form a hard scale. The following formula shows in pounds per 1,000 gallons the probable amount of hard-scale forming material in the scale:

(11) Hard scale (Hs)

 $=.00833 \text{ SiO}_2 + .168 \text{ rMg} + .567 \text{ (rCl} + \text{rSO}_4 - \text{rNa} - \text{rK)}$

= .00833 SiO_2 + .0138 Mg + (.016 Cl + .0118 SO_4 - .0246 Na - .0145 K) The value used for the parenthesis of this formula must not exceed rSO₄ or rCa (.0118 SO₄ or .0283 Ca in the second form) nor should it be less than zero.

Dividing the value of formula (11) by the value of formula (10), a factor will be obtained which may be called the coefficient of scale hardness. This factor shows the proportion of the total scale that is likely to form a cement-like substance upon the boiler tubes and is therefore an index to the probable hardness of the scale that will be deposited. Thus:

(12) Coefficient of scale hardness, $h = \frac{Hs}{Sc}$

From formulas 10, 11, and 12, waters may be classed as follows:

- (1) Soft scale: h not more than .25.
- (2) Medium scale: h more than .25 but not more than .5.
- (3) Hard scale: h more than .5.

In addition, the following classification may be used as a prefix to the preceding:

- (1) Very little: Sc not more than 1.
- (2) Little: Sc more than 1, but not more than 2.
- (3) Much: Sc more than 2, but not more than 4.
- (4) Very much: Sc more than 4.

IRRIGATING WATERS.

An excess of alkali in the soil is detrimental to the growth of crops, and waters used in irrigation may seriously impair the fertility of land by augmenting its alkali content. Land would probably be injured by the best of natural waters if irrigated with them for a long period of time without natural or artificial drainage, for all irrigating waters contain alkali, and evaporation in and from the soil would result in a gradual accumulation of toxic salts. In order that waters may readily be compared with respect to their suitability for irrigation, a simple index of their irrigating value should be available. The calculation of such an index, designated the "alkali coefficient," is developed in the following paragraphs. The alkali coefficient is a purely arbitrary quantity intended solely to

facilitate the comparison of waters to be used for irrigation. It may be defined as the depth in inches of water which, on evaporation, would yield sufficient alkali to render a 4-foot depth of soil injurious to the most sensitive crops. Thus, if the alkali coefficient of a water is found to be 17, 17 inches in depth of that water contains sufficient alkali to render injurious to sensitive crops the soil on which it is applied. Whether injury would actually result from the application of such a water to any particular piece of land, however, depends on methods of irrigating, the crops grown, the character of the soil, and drainage conditions, and it should be clearly understood that the alkali coefficient in no way takes account of such conditions.

Hilgard a quotes results of investigations by R. H. Loughridge showing the greatest amount of various alkali compounds found in soils in which crops were not injured. About forty common cultures were included in the tables, and great diversity is indicated for the relative toxicity of the compounds toward the different cultures. The mean results for several cultures of about the same degree of sensitiveness, however, indicate with marked uniformity the relative toxicity of the alkalies toward common cultures to be about as follows: Sodium as Na₂CO₃, 10;^b sodium as NaCl, 5; sodium as Na₂SO₄, 1. The investigations indicate further that about 1,500 pounds per acre of sodium with a relative toxicity of 1 (as above) in 4 feet depth of soil is barely sufficient to affect injuriously the more sensitive common crops. The foregoing conclusions, being in accord with the results of other investigations, will be used as a basis for the calculation of the alkali coefficient, which may be made from a water analysis by means of the following formulas:

(13a) When rNa-rCl or Na-.65 Cl is zero or negative, Alkali coefficient,
$$k = \frac{288}{5rCl} = \frac{2040}{Cl}$$

(13b) When rNa-rCl or Na-.65 Cl is positive but not greater than rSO₄ or .48 SO₄,

Alkali coefficient,
$$k = \frac{288}{\text{rNa} + 4\text{rCl}} = \frac{6620}{\text{Na} + 2.6\text{Cl}}$$

(13c) When $rNa - rCl - rSO_4$ or $Na - .65 Cl - .48 SO_4$ is positive,

Alkali coefficient,
$$k = \frac{288}{10r\text{Na} - 5r\text{Cl} - 9r\text{SO}_4} = \frac{662}{\text{Na} - .32 \text{ Cl} - .43 \text{ SO}_4}$$
.

In the foregoing formulas, the sodium and potassium value reported in many analyses may be used for Na; in the absence of a

a Hilgard, E. W., Soils, p. 467, 1906.

b The tables indicate a relative toxicity of about 6, but on account of the puddling effect of sodium carbonate on soils and the fact that the investigations did not distinguish between bicarbonate and carbonate of sodium, the value 10 is believed to be more satisfactory.

sodium or a sodium and potassium determination, Na may be estimated from the equations

$$\begin{aligned} &\text{Na} = .41 \text{ HCO}_3 - .83 \text{ CO}_3 - .71 \text{ Cl} - .52 \text{ SO}_4 - (1.25 \text{ Ca} + 2.06 \text{ Mg}) \\ &\text{rNa} = 1.10 \text{ [rHCO}_3 + \text{rCO}_3 + \text{rCl} + \text{rSO}_4 - (\text{rCa} + \text{rMg})] \end{aligned}$$

which for safety give a value about 10 per cent greater than the theoretical; and in the absence of calcium and magnesium determinations, the foregoing equations may be used if the parenthetical expression be replaced by one-half the total hardness (as CaCO₃) or its equivalent reacting value.

Formula (13a) is applicable to waters that contain more chlorine radicle than is sufficient to combine with the sodium present, and involves the assumption that the other basic radicles required to hold the chlorine radicle in solution are as injurious as if replaced by their equivalent reacting value of sodium. The other formulas neglect possible injurious effects of basic radicles other than sodium. These assumptions, as applied to normal waters, are sufficiently accurate for practical purposes, though their application to soils might lead to serious errors.

Waters to which formulas (13a) and (13b) are applicable can not be improved by chemical treatment, but are likely to produce only "white alkali" in the soil. Waters to which formula (13c) is applicable are likely to produce "black alkali" in the soil and can be improved to the alkali coefficient calculated from formula (13b) by the use of gypsum or "land plaster."

In general, injurious results from the use of a water for irrigation depend largely on drainage conditions and soil texture. Waters with low alkali coefficients may be used successfully on a loose soil with free drainage. The following approximate classification, which is based on ordinary irrigation practice in the United States, indicates in a very general way the customary limitations in the use of waters having various alkali coefficients:

Classification of irrigation waters.

Alkali coefficient.	Class.	Remarks.
More than 18	Good	Have been used successfully for many years without special care to prevent alkali accumulation.
18 to 6	Fair	Special care to prevent gradual alkali accumulation has generally been
5.9 to 1.2	Poor	Special care to prevent gradual alkali accumulation has generally been found necessary except on loose soils with free drainage. Care in selection of soils has been found to be imperative and artificial drainage has frequently been found necessary.
Less than 1.2	Bad	drainage has frequently been found necessary. Practically valueless for irrigation.

APPLICATIONS.

The foregoing formulas will now be applied to a few analyses, which, for convenience, have been arranged in the form of statement herein suggested.

Below are given the results of calculation of the various formulas presented and classification of the waters in accordance therewith.

Analyses of waters and results of formulas.

[Parts per million.]

	Weights.			Reacting values.						
	A.	В.	C.	D.	E.	A.	В.	c.	D.	E.
1. Suspended matter 2. Colloidal matter Silica (SiO ₂) Iron oxide (Fe ₂ O ₃) Alumina (Al ₂ O ₃). 3. Dissolved gas:	30.00 -3.07 3.00 .07	118.00 9.36 6.80 .06 2.50	0.00 11.23 11.00 .23	14.00 13.60 11.00 2.60	0.00 10.80 6.50 4.30					
Carbon dioxide (CO ₂) 4. Dissolved radicles:	10.00	0.00	7.50		122.00					
Calcium (Ca)	11. 00 2. 80 4. 60 1. 10 0. 00	16.00 4.20 7.90	64.00 12.00 48.00	8.30 1.80 9.00 3.00 0.00	28. 00 12. 00 386. 00 7. 00 0. 00	0.55 .23 .20 .03 .00	0.80 .34 .34	3. 19 . 98 2. 08	0.41 .15 .39 .08 .00	1.40 .98 16.76 .18
Sum positive radicles.						1.01	1.56	6. 25	1.03	19.32
Carbonate (CO_3) Bicarbonate (HCO_3) Sulphate (SO_4) Chlorine (Cl) Nitrate (NO_3)	0.00 41.00 6.80 7.00 0.00	0.00 0.00 76.00 2.70 1.20	Tr. 156.00 51.00 97.00 0.40	0.00 39.00 5.60 5.80 Tr.	238.00 162.00 145.00 213.00	.00 .67 .14 .20 .00	.00 .00 1.58 .08 .02	.00 2.55 1.06 2.74 .01	.00 .64 .12 .16 .00	7. 93 2. 66 3. 02 6. 00
Sum negative radicles						1, 01	1. 68	6.36	. 92	19.61
A					Α.	В.	C.		D.	Е.
3. Error of analysis, e (per cent). 4. Soap cost (cents per 1,000 gallons). 5. Pounds, 90 per cent lime to soften 1,000 gallons. 6. Pounds, 95 per cent soda ash to soften 1,000 gallons. 7. Cost (cents per 1,000 gallons) of lime and soda ash. 8. Foaming coefficient, f 9. Coefficient of corrosion, c C+.0503 Ca 10. Scale, Sc (pounds per 1,000 gallons). 11. Hard scale, Hs (pounds per 1,000 gallons). 12. Coefficient of scale hardness, h. 13. Alkali coefficient, k.				0. 0 50 . 35 . 05 . 16 15 44 . 11 . 59 . 12 . 20 290	-3.7 72 .11 .57 .71 21 .42 1.23 1.51 .56 .37	+0.9 211 -1.0 .7 1.0 130 -1.5 1.8 .8 .22	39 75 18 18 18 18 18 18 18 18 18 18 18 18 18	.21 .00 .06) .49 .08 .46 .12 .25	-0.7 130 2.39 .00 .72 ,057 -9.69 -8.28 .94 .22 .23 2.6	

Analyses B and D seem to be somewhat in error. The errors indicated could be accounted for by the presence of iron and aluminum radicle in the one case and by silicate radicle in the other. The differences are not great enough, however, to warrant a change in the form of statement. Hence iron, aluminum, and silicon are presumed to be present as oxides in the colloidal state.

The following boiler classification of the waters (including a verbal and a numerical classification) will result from the foregoing figures:

- (A) (15) Nonfoaming, (-0.44+0.11) semicorrosive, (0.59) very little, (0.20) soft scale.
- (B) (21) Nonfoaming, (+0.42+1.23) corrosive, (1.51) little, (0.37) medium scale.
- (C) (130) Semifoaming, (-1.58+1.63) semicorrosive, (1.84) little, (0.46) medium scale.
- (D) (30) Nonfoaming, (-0.49-0.08) noncorrosive, (0.46) very little, (0.25) soft scale.

(E) (1057) Foaming, (-9.69-8.28) noncorrosive, (0.94) very little, (0.23) soft scale.

The effect of suspended matter upon the scale classification of B is of interest. Neglecting the suspended matter, the class would be "very little hard scale."

For use in irrigation, E would be classed as poor and the others as

good.

For detailed comparison or classification of waters, the formulas presented will be found of great value. It is believed that a better general understanding of waters and much practical advantage would result if the analyst were to devote to the foregoing calculations and the resulting classification a portion of the time usually spent in figuring hypothetical combinations.

For those who desire to use the formulas the following notes are of

special interest:

- (a) The reacting values are necessary only in estimating the error of analyses. Other formulas are presented in dual form so that reacting values may be used or not, as desired. Generally their use will shorten the work of calculation.
- (b) The formulas are well adapted to the use of a slide rule or similar calculating machine. They are for use primarily in connection with analyses expressed in parts per million or milligrams per liter, but can be used for analyses expressed otherwise if such analyses are reduced to parts per million by multiplying by the proper factors, as follows:

Parts per hundred thousand-10.

Grains per U. S. gallon-17.1.

Grains per imperial gallon—14.3.

Pounds per thousand U.S. gallons-120.

Pounds per thousand imperial gallons—100.

Per cent of dissolved solids—total dissolved solids in parts per million or milligrams per liter.

(c) The numerical coefficients used in the formulas are the result of the simple mathematical calculations of chemistry. Thus the coefficient 0.26 of formula (5) is derived as follows: It is desired to find the quantity of lime (CaO) that will react with certain substances. The reacting value of this lime must, of course, equal the sum of the reacting values of the substances with which it is to react. The parenthesis of the formula represents this reacting value. The react-

ing coefficient of CaO being $\frac{1}{28.05}$, our reacting value for lime must

be multiplied by 28.05 to give parts per million of CaO. This must in turn be divided by 120 to give pounds per 1,000 gallons. A final division by .90 reduced the expression to terms of lime of 90 per cent

purity. Thus $28.05 \times \frac{1}{120} \times \frac{1}{.90} = 0.26$. Other numerical coefficients of the formulas are derived in a similar manner.

INDEX.

A. Page.	Page
Alma N. May Can Francisco Distantant	Blackfoot River, Idaho, analysis of water of 142
Alma, N. Mex., San Francisco River near:	Poilers, corrosion of 173-175
analyses of water of	foaming and priming in 171–173
discharge of	scale formation in 175–177
	Boise River near Boise, Idaho:
American River near Fairoaks, Cal.:	analyses of water of
analyses of water of	discharge of
gage heights and discharge of	gage heights
	Buford gaging station, Colo., analysis of water
methods of	of Marvine Creek at. 142
table showing results of miscellaneous. 142–144	Bully Creek, Oreg., analysis of water of 143
Ana River near Summer Lake, Oreg., analysis	Burns, H. A., work of.
of water of	Buttonwillow, Cal., analysis of water of well
Animas River near Durango, Colo.:	at 146
analyses of water of 14-15,139	
discharge of	C.
gage heights	California, analyses of water of spring and
Avalon reservoir, N. Mex., analyses of water	wells in 145,146
of Pecos River at	California, University of, cooperation of 5
	Carey gaging station, Idaho, analysis of water
В.	of Little Wood River at 142
Bakersfield, Cal., analysis of water of well at. 146	Carlsbad, N. Mex., Pecos River at:
Barium carbonate, use of for softening water 170	analyses of water of
Belle Fourche, S. Dak., Redwater River near:	discharge of
analyses of water of 95-96,140	gage heights of 84–85
discharge of	Carson Lake near Hill, Nev., analyses of
gage heights of95	water of 145
Belle Fourche River near Belle Fourche,	Carson River near Hazen, Nev.:
S. Dak.:	analyses of water of 24–25, 139
analyses of water of 16-19,139	discharge of 25
discharge of 16–19	Chilly gaging station, Idaho, analysis of water
gage heights of	of Big Lost River at
Berry, F. T., work of.	Clear Lake near Klamath Falls, Oreg., analysis
Bieber, Cal., Pit River near:	of water of
analyses of water of 91–92,140	Cody, Wyo.:
discharge of 91–92	analysis of water supply of
gage heights of 91	Shoshone River near:
Bighorn River near Fort Custer, Mont.:	analyses of water of
analyses of water of	discharge of 122–124
discharge of 20-21	gage heights of 122–123
gage heights of 20	Colorado, analyses of water of spring and well in 145,146
Big Lost River, Idaho, analysis of water of— at Chilly gaging station	Colorado River at or near Yuma, Ariz.:
at Mackay gaging station. 142	analyses of suspended matter in water of. 150
Big Wood River, Idaho, analysis of water of. 142	analyses of water of
Billings, Mont., Yellowstone River near:	gage heights and discharge of
analyses of water of	Conconully, Wash.:
discharge of	analysis of water of well at
gage heights of	lake near, analysis of water of 145
Bitter Creek near Olustee, Okla., analysis	Salmon Creek near, analysis of water of 144
of water of	Scotch Creek near, analysis of water of 144

Page.	Page
Courchesne, Tex., Rio Grande at:	Gates, Nev., analysis of water of bored well in. 146
analyses of water and discharge of 97–101	Gibraltar gaging station, California, analysis
gage heights of 97–100	of water of Santa Ynez River, at. 142
Craig gaging station, Colo., analysis of water	Gila River near San Carlos, Ariz.:
of Yampa River	analyses of water of
70	discharge of 42
D	gage heights of 41
Dayton, N. Mex., Pecos River near:	Gimlet gaging station, Idaho, analyses of
analyses of water of 87-88, 140	water of Big Wood River at 142
gage heights and discharge of 87–88	Glendive, Mont.:
Derby, Nev., Truckee River near:	analysis of water of well near
analyses of water of	Yellowstone River near:
gage heights and discharge of 126–127	
Dry Creek, Colo., analysis of water of 142	analyses of water of 136–137, 148
Dudley, Cal., analysis of water of well at 146	discharge of 136-137
Durango, Colo., Animas River near:	gage heights of
analyses of water of	Gore Canyon, near Kremmling, Colo., Grand
gage heights and discharge of	River at:
gage neights and discharge of 14-15	analyses of water and gage heights of 42-43
E.	discharge of
Eaton, F. M., work of	Goshen, Cal., analysis of water of well at 146
Elm Fork of Red River—	Grand River—
near Mangum, Okla.:	near Kremmling, Colo.:
analyses of water of 29–36,139,143	analyses of water of
discharge of	discharge of
9	gage heights of 42–43
gage heights of 29–35	near Palisade, Colo.:
near Salt Springs, Okla.:	analyses of water of 45, 139
analyses of water of	discharge of
El Paso, Tex., Rio Grande at or near:	gage heights of
analyses of suspended matter in water of. 150	Granite, Okla., North Fork of Red River
analyses of water	near:
discharge of	analyses of water of
gage heights	discharge of 62-68
Error, cause and limit of, in water analyses 168	gage heights of 62–67
F.	Green River—
	near Green River, Wyo.:
Fairoaks, Cal., American River near:	analyses of water of
analyses of water of	discharge of
gage heights, and discharge of	gage heights of
Fall River, Idaho, analyses of water of 142	near Jensen, Utah:
Feather River near Oroville, Cal.:	analyses of water of
analyses of water of	discharge of 48-49
discharge of	gage heights of 48
gage heights of	Gunnison River near Whitewater Colo.:
Firebaugh, Cal., analysis of water of well at. 146	analyses of water of
Fort Custer, Mont., Bighorn River near:	discharge of 50-51
analyses of water of	
discharge of	gage heights of50
gage heights of	· н.
Fort Laramie, Wyo., North Platte River near:	Transport T A versula of
analyses of water of 75–76, 140	Hampson, J. A., work of
discharge of	Havre, Mont., Milk River near:
gage heights of	analyses of water of 59-60, 139
Fossil Lake, Oreg., wells near, analyses of	discharge of 59-60
water of	gage heights of
Fremont gaging station, Idaho, analyses of	Hawley, O. J., work of
water of Fall River, at 142	Hazen, Nev., Carson River near:
Fruto, Cal., Stony Creek near:	analyses of water of 24-25, 139
analyses of water of	discharge of 25
discharge of	Headrick, Okla., North Fork of Red River
gage heights of 124	near:
	analyses of water of
G.	discharge of 69–74
Gallinas River near Las Vegas, N. Mex.:	gage heights
analyses of water of 39-40, 139	Heileman, W. H., work of 151
discharge of	Hesperus gaging station, Colo., analyses of
gage heights of	water of La Plata River, at 142

Page.	Page.
Highland, Idaho, near Boise, Boise River at:	Little Colorado River—Continued.
analyses of water of	near Woodruff, Ariz.:
discharge of	analyses of water of 56-57, 139
gage heights of	discharge of
Hill, Nev., Carson Lake near, analyses of	gage heights of
water of	Little Snake River, Colo., analysis of water of. 142
Holbrook, Ariz., Little Colorado River near:	Little Wood River, Idaho, analysis of water
analyses of water of	of
	Log Alamag N. May, Capalla Divor page
8-88	Los Alamos, N. Mex., Sapello River near:
Hondo River near Roswell, N. Mex.:	analyses of water of
analyses of water of	discharge of
gage heights and discharge of 52	gage heights 120–121
Hooper, Wash., Palouse River near:	Loughridge, R. H., on amount of alkali not
analyses of water of 81,140	injurious to crops
discharge of	Lyon gaging station, Idaho, analyses of water
gage heights of	of South Fork Snake River at. 142-143
Horseshoe Bend, Idaho, Payette River near:	М.
analyses of water of	M.
discharge of	Mackay gaging station, Idaho, analyses of
gage heights of	water of Big Lost River at 142
	Malheur, River—
· I.	near Ontario, Oreg.:
Idaho, analyses of water of wells in 146	analyses of water of
Industrial analyses of water, determinations	near Vale, Oreg.:
made in	
Industrial application of water analyses 165–181	analyses of water of
Irrigation, waters used for	discharge of
irrigation, waters used for	gage heights of
" J.	Malott, Wash., Salmon Creek near:
Jensen, Utah, Green River near:	analyses of water of 111–112,140
analyses of water of	discharge of 111–112
discharge of	gage heights of
discharge of 48–49 gage heights of 48	Mangum, Okla.:
	Elm Fork of Red River near:
John Day River, Oreg., analyses of water of . 143	Elm Fork of Red River near: analyses of water of 29–36, 139, 143
	analyses of water of 29–36, 139, 143
John Day River, Oreg., analyses of water of . 143 K.	analyses of water of. 29–36,139,143 discharge of. 29–36
John Day River, Oreg., analyses of water of 143 K. Klamath Falls, Oreg.:	analyses of water of. 29-36,139,143 discharge of. 29-36 gage heights of. 29-35
John Day River, Oreg., analyses of water of 143 K. Klamath Falls, Oreg.: Clear Lake near, analysis of water of 145	analyses of water of 29–36, 139, 143 discharge of 29–36 gage heights of 29–35 Salt Fork of Red River near:
John Day River, Oreg., analyses of water of 143 K. Klamath Falls, Oreg.: Clear Lake near, analysis of water of 145 Link River near:	analyses of water of
John Day River, Oreg., analyses of water of 143 K. Klamath Falls, Oreg.: Clear Lake near, analysis of water of 145 Link River near: analyses of water of 53-55, 139	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118
John Day River, Oreg., analyses of water of 143 K. Klamath Falls, Oreg.: Clear Lake near, analysis of water of 145 Link River near: analyses of water of 53-55, 139 discharge of 53-55	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117
K. Klamath Falls, Oreg.; K. Klamath Falls, Oreg.: Clear Lake near, analysis of water of 145 Link River near: analyses of water of 53-55, 139 discharge of 53-55 gage heights of 54	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near:
John Day River, Oreg., analyses of water of 143 K. K. Klamath Falls, Oreg.: 145 Clear Lake near, analysis of water of 145 Link River near: 53-55, 139 discharge of 53-55 gage heights of 54 Tule Lake near, analysis of water of 145	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143
K. Klamath Falls, Oreg.: Clear Lake near, analysis of water of 145 Link River near: analyses of water of 53-55, 139 discharge of 53-55 gage heights of 54 Tule Lake near, analysis of water of 145 Kremmling, Colo., Grand River near:	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of 142
K. Klamath Falls, Oreg.: Clear Lake near, analysis of water of 145 Link River near: analyses of water of 53-55, 139 discharge of 53-55 gage heights of 54 Tule Lake near, analysis of water of 145 Kremmling, Colo., Grand River near: analyses of water of 42-43, 139	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.:
K. Klamath Falls, Oreg.; K. Klamath Falls, Oreg.: Clear Lake near, analysis of water of 145 Link River near: analyses of water of 53-55, 139 discharge of 53-55 gage heights of 54 Tule Lake near, analysis of water of 145 Kremmling, Colo., Grand River near: analyses of water of 42-43, 139 discharge of 42-44	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.: Little Snake River at, analysis of water
K. Klamath Falls, Oreg.: Clear Lake near, analysis of water of 145 Link River near: analyses of water of 53-55, 139 discharge of 53-55 gage heights of 54 Tule Lake near, analysis of water of 145 Kremmling, Colo., Grand River near: analyses of water of 42-43, 139	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142
K. Klamath Falls, Oreg.: Clear Lake near, analysis of water of 145 Link River near: analyses of water of 53–55, 139 discharge of 53–55 gage heights of 54 Tule Lake near, analysis of water of 145 Kremmling, Colo., Grand River near: analyses of water of 42–43, 139 discharge of 42–44 gage heights of 43	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142
K. Klamath Falls, Oreg.; K. Klamath Falls, Oreg.: Clear Lake near, analysis of water of 145 Link River near; analyses of water of 53-55, 139 discharge of 53-55 gage heights of 54 Tule Lake near, analysis of water of 145 Kremmling, Colo., Grand River near: analyses of water of 42-43, 139 discharge of 42-44 gage heights of 43 L.	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142 McCreary, P. L., work of. 5
K. Klamath Falls, Oreg.: Clear Lake near, analysis of water of 145 Link River near: analyses of water of 53–55, 139 discharge of 53–55 gage heights of 54 Tule Lake near, analysis of water of 145 Kremmling, Colo., Grand River near: analyses of water of 42–43, 139 discharge of 42–44 gage heights of 43	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142
K. Klamath Falls, Oreg.; K. Klamath Falls, Oreg.: Clear Lake near, analysis of water of 145 Link River near; analyses of water of 53-55, 139 discharge of 53-55 gage heights of 54 Tule Lake near, analysis of water of 145 Kremmling, Colo., Grand River near: analyses of water of 42-43, 139 discharge of 42-44 gage heights of 43 L.	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142 McCreary, P. L., work of. 5
K. Klamath Falls, Oreg.; K. Klamath Falls, Oreg.: Clear Lake near, analysis of water of 145 Link River near: analyses of water of 53-55, 139 discharge of 53-55 gage heights of 54 Tule Lake near, analysis of water of 145 Kremmling, Colo., Grand River near: analyses of water of 42-43, 139 discharge of 42-44 gage heights of 43 L. La Grange, Cal., Tuolumne River near:	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142 McCreary, P. L., work of. 5 McDonald gaging station, analyses of water of
K. Klamath Falls, Oreg.; K. Klamath Falls, Oreg.: Clear Lake near, analysis of water of 145 Link River near: analyses of water of 53-55, 139 discharge of 53-55 gage heights of 54 Tule Lake near, analysis of water of 145 Kremmling, Colo., Grand River near: analyses of water of 42-43, 139 discharge of 42-44 gage heights of 43 L. La Grange, Cal., Tuolumne River near: analyses of water of 128, 140	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142 McCreary, P. L., work of. 5 McDonald gaging station, analyses of water of John Day River, Oreg., at. 143
K. Klamath Falls, Oreg.; K. Klamath Falls, Oreg.: Clear Lake near, analysis of water of 145 Link River near: analyses of water of 53-55, 139 discharge of 53-55 gage heights of 54 Tule Lake near, analysis of water of 145 Kremmling, Colo., Grand River near: analyses of water of 42-43, 139 discharge of 42-44 gage heights of 43 L. La Grange, Cal., Tuolumne River near: analyses of water of 128, 140 discharge of 128-129 gage heights of 128 128	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142 McCreary, P. L., work of. 5 McDonald gaging station, analyses of water of John Day River, Oreg., at. 143 Means, T. H., work of. 151
K. Klamath Falls, Oreg.; K. Klamath Falls, Oreg.: Clear Lake near, analysis of water of 145 Link River near: analyses of water of 53-55, 139 discharge of 53-55 gage heights of 54 Tule Lake near, analysis of water of 145 Kremmling, Colo., Grand River near: analyses of water of 42-43, 139 discharge of 42-44 gage heights of 42 44 gage heights of 42 41 Lake near, analysis of water of 42 42 43 43 L. La Grange, Cal., Tuolumne River near: analyses of water of 128, 140 discharge of 128-129 gage heights of 128 La Plata River, Colo., analysis of water of 142	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142 McCreary, P. L., work of. 5 McDonald gaging station, analyses of water of John Day River, Oreg., at 143 Means, T. H., work of. 151 Meeker gaging station, Colo., analysis of water of White River at 142
K. Klamath Falls, Oreg.; K. Klamath Falls, Oreg.: Clear Lake near, analysis of water of 145 Link River near: analyses of water of 53-55, 139 discharge of 53-55 gage heights of 54 Tule Lake near, analysis of water of 145 Kremmling, Colo., Grand River near: analyses of water of 42-43, 139 discharge of 42-44 gage heights of 42 44 gage heights of 42 41 42 42 43 43 L. La Grange, Cal., Tuolumne River near: analyses of water of 128, 140 discharge of 128-129 gage heights of 128 La Plata River, Colo., analysis of water of 142 Las Vegas, N. Mex., Gallinas River near:	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142 McCreary, P. L., work of. 5 McDonald gaging station, analyses of water of John Day River, Oreg., at. 143 Means, T. H., work of. 151 Meeker gaging station, Colo., analysis of water of White River at. 142 Milk River near Havre, Mont.:
K. Klamath Falls, Oreg.; Clear Lake near, analysis of water of . 145	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142 McCreary, P. L., work of. 5 McDonald gaging station, analyses of water of John Day River, Oreg., at. 143 Means, T. H., work of. 151 Meeker gaging station, Colo., analysis of water of White River at. 142 Milk River near Havre, Mont.: analyses of water of. 59–60,139
K. Klamath Falls, Oreg.; Clear Lake near, analysis of water of . 145	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142 McCreary, P. L., work of. 5 McDonald gaging station, analyses of water of John Day River, Oreg., at. 143 Means, T. H., work of. 151 Meeker gaging station, Colo., analysis of water of White River at. 142 Milk River near Havre, Mont.: analyses of water of. 59–60, 139 discharge of. 59–60, 139
K. Klamath Falls, Oreg.; Clear Lake near, analysis of water of . 145	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142 McCreary, P. L., work of. 5 McDonald gaging station, analyses of water of John Day River, Oreg., at 143 Means, T. H., work of. 151 Meeker gaging station, Colo., analysis of water of White River at 142 Milk River near Havre, Mont.: analyses of water of. 59–60, 139 discharge of. 59–60 gage heights of. 59
K. Klamath Falls, Oreg.; Clear Lake near, analysis of water of. 145	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 144 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142 McCreary, P. L., work of. 5 McDonald gaging station, analyses of water of John Day River, Oreg., at 143 Means, T. H., work of. 151 Meeker gaging station, Colo., analysis of water of White River at 142 Milk River near Havre, Mont.: analyses of water of. 59–60, 139 discharge of. 59–60 gage heights of. 59 Missouri River near Williston, N. Dak.:
K. Klamath Falls, Oreg.; Clear Lake near, analysis of water of. 145	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 144 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142 McCreary, P. L., work of. 5 McDonald gaging station, analyses of water of John Day River, Oreg., at. 143 Means, T. H., work of. 151 Meeker gaging station, Colo., analysis of water of White River at. 142 Milk River near Havre, Mont.: analyses of water of. 59–60, 139 discharge of. 59–60 gage heights of. 59 Missouri River near Williston, N. Dak.: suspended matter and dissolved solids in
K. Klamath Falls, Oreg.; Clear Lake near, analysis of water of. 145	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 144 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142 McCreary, P. L., work of. 5 McDonald gaging station, analyses of water of John Day River, Oreg., at. 143 Means, T. H., work of. 151 Meeker gaging station, Colo., analysis of water of White River at. 142 Milk River near Havre, Mont.: analyses of water of. 59–60, 139 discharge of. 59–60 gage heights of. 59 Missouri River near Williston, N. Dak.: suspended matter and dissolved solids in water of. 61, 140
K. Klamath Falls, Oreg.; Clear Lake near, analysis of water of 145	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142 McCreary, P. L., work of. 5 McDonald gaging station, analyses of water of John Day River, Oreg., at. 143 Means, T. H., work of. 151 Meeker gaging station, Colo., analysis of water of White River at. 142 Milk River near Havre, Mont.: analyses of water of. 59–60, 139 discharge of. 59–60 gage heights of. 59 Missouri River near Williston, N. Dak.: suspended matter and dissolved solids in water of. 61, 140 discharge of. 61, 140 discharge of. 61, 140
K. Klamath Falls, Oreg.; Clear Lake near, analysis of water of. 145	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142 McCreary, P. L., work of. 5 McDonald gaging station, analyses of water of John Day River, Oreg., at. 143 Means, T. H., work of. 151 Meeker gaging station, Colo., analysis of water of White River at. 142 Milk River near Havre, Mont.: analyses of water of. 59–60, 139 discharge of. 59–60 gage heights of. 59 Missouri River near Williston, N. Dak.: suspended matter and dissolved solids in water of. 61, 140 discharge of. 61, 140 Mitchell, Nebr., analyses of water of spring and
K. Klamath Falls, Oreg.; Clear Lake near, analysis of water of. 145	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142 McCreary, P. L., work of. 5 McDonald gaging station, analyses of water of John Day River, Oreg., at. 143 Means, T. H., work of. 151 Meeker gaging station, Colo., analysis of water of White River at. 142 Milk River near Havre, Mont.: analyses of water of. 59–60, 139 discharge of. 59–60 gage heights of. 59 Missouri River near Williston, N. Dak.: suspended matter and dissolved solids in water of. 61, 140 discharge of. 61 Mitchell, Nebr., analyses of water of spring and wells near 145, 146
K. Klamath Falls, Oreg.: Clear Lake near, analysis of water of .	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142 McCreary, P. L., work of. 5 McDonald gaging station, analyses of water of John Day River, Oreg., at. 143 Means, T. H., work of. 151 Meeker gaging station, Colo., analysis of water of White River at. 142 Milk River near Havre, Mont.: analyses of water of. 59–60, 139 discharge of. 59–60 gage heights of. 59 Missouri River near Williston, N. Dak.: suspended matter and dissolved solids in water of. 61, 140 discharge of. 61 Mitchell, Nebr., analyses of water ofspring and wells near 145, 146 Modesto, Cal., Tuolumne River near, dis-
K. Klamath Falls, Oreg.; Clear Lake near, analysis of water of. 145	analyses of water of. 29–36, 139, 143 discharge of. 29–36 gage heights of. 29–35 Salt Fork of Red River near: analyses of water of. 115–118, 140, 143 discharge of. 115–118 gage heights of. 115–117 Stinking Creek near: analyses of water of. 143 Marvine Creek, Colo., analysis of water of. 142 Maybell gaging station, Colo.: Little Snake River at, analysis of water of. 142 Yampa River at, analysis of water of. 142 McCreary, P. L., work of. 5 McDonald gaging station, analyses of water of John Day River, Oreg., at. 143 Means, T. H., work of. 151 Meeker gaging station, Colo., analysis of water of White River at. 142 Milk River near Havre, Mont.: analyses of water of. 59–60, 139 discharge of. 59–60 gage heights of. 59 Missouri River near Williston, N. Dak.: suspended matter and dissolved solids in water of. 61, 140 discharge of. 61 Mitchell, Nebr., analyses of water of spring and wells near 145, 146

rage.	Fage.
Montgomerys Ferry gaging station, Idaho,	Owens River—
analyses of water of Snake River	near Round Valley, Cal.:
at	analyses of water of
Montrose, Colo.:	discharge of
Dry Creek near, analysis of water of 142	gage heights of
spring and well near, analysis of water	near Tinemaha, Cal.:
of	analyses of water of
	discharge of 79–80
N.	
Namic dam site man Headwisk Okla North	gage heights of
Navajo dam site, near Headrick, Okla., North Fork of Red River near:	P.
	Palisade, Colo., Grand River near:
analyses of water and discharge of 69–74	analyses of water of
gage heights of	discharge of 45-46
Navajo pumping station, analyses of water of	gage heights of 45
North Fork of Red River, Okla.,	
at	Palouse River near Hooper, Wash.:
Nebraska, analyses of water of springs and	analyses of water of 81,140
wells in 145,146	discharge of 81–82
Nevada, analyses of water of wells in 146	gage heights of
Nevada ditch near Ontario, Oreg., analysis	Payette River near Horseshoe Bend, Idaho:
of water of	analyses of water of
New Mexico, analyses of water of springs and	discharge of 82–83
wells in 145,146	gage heights of 82
North Dakota, analyses of water of wells in. 146,147	Pearce, J. A., work of
North Fork of Red River—	Pecos River—
at Navajo pumping station, Okla.:	at Avalon reservoir, N. Mex., analyses of
analyses of water of 143	water of 14:
near mouth of Elm Fork, Okla.:	at Carlsbad, N. Mex.:
analyses of water of 143	analyses of water of
near Granite, Okla.:	discharge of 84-86
analyses of water of $62-68,140$	gage heights of 84-85
discharge of	near Dayton, N. Mex.:
gage heights of	analyses of water of
near Headrick, Okla.:	discharge of 87–88
analyses of water of 69–74,140	gage heights of 87
discharge of 69–73	near Santa Rosa, N. Mex.:
gage heights of 69–74	analyses of water of
North Fork of Snake River, Idaho, analyses	discharge of 89-90
of water of 142	gage heights of 89
North Groesbeck Creek near Quanah, Tex.,	Pit River near Bieber, Cal.:
analyses of water of 144	analyses of water of
North Platte River near Fort Laramie, Wyo.:	discharge of 91-92
analyses of water of	gage heights of 9
discharge of	Porterville, Cal., analysis of water of well at. 146
gage heights of	Presto gaging station, analysis of water of
	Blackfoot River, Idaho, at 142
0.	Puta Creek near Winters, Cal.: analyses of water of
Oklahoma, analyses of water of wells and bor-	discharge of 93-94, 140
ings in	gage heights of 93-94
Olustee, Okla.:	gage neights of
Bitter Creek near, analysis of water of 143	Q.
Turkey Creek near:	Quanah, Tex., North Groesbeck Creek near,
analyses of water of 130–131, 140, 143	analyses of water of
gage heights of	analyses of water of
Ontario, Oreg.:	R.
Malheur River near, analyses of water of. 143	Red Bluff, Cal., Sacramento River near:
Snake River near, analyses of water of 144	analyses of water of
Ora gaging station, Idaho, analyses of water	discharge of
of North Fork of Snake River at. 142	gage heights of 107–108
Oregon, analyses of waters of springs and wells	Red River, Elm Fork of—
in	near Mangum, Okla:
Oroville, Cal., Feather River near:	analyses of water of
analyses of water of	discharge of
discharge of 37–38	gage heights of
gage heights of	near Salt Springs, Okla.:
Owens Lake, Cal., analysis of water of 145	analyses of water of

INI	EX.
Page.	1
Red River, North Fork of—	St.
at Navajo pumping station, Okla.:	Solr
analyses of water of	Salı
analyses of water of	
near Granite, Okla.:	
analyses of water of	
discharge of 62–68	
gage heights of 62–67 near Headrick, Okla.:	Salt
analyses of water of	Dail
discharge of	
gage heights of 69–73	Salt
Red River, Salt Fork of—	
near Mangum, Okla.:	
analyses of water of	Salt
gage heights of	Dail
Redwater River near Belle Fourche, S. Dak.:	
analyses of water of	
discharge of	Salt
gage heights95	
Riddell, W. C., work of	San
Rio Grande: accuracy of data and estimates of dis-	San
charge and sediment in water	
of	
mean annual discharge of sediment by 164	San
near El Paso, Tex.:	
analyses of suspended matter in water	
of	San
discharge of 97–101	Dan
gage heights of	
near San Marcial, N. Mex.:	0
analyses of suspended matter in water	
of	Can
analyses of water of	San
gage heights of	
sediment carried by 151–164	}
sediment-to-water ratio of, estimates of. 161-162	San
Rio Puerco, influence of, on water of Rio	Sap
Grande	
analyses of water of	
discharge of	Scot
gage heights of	
Roswell, N. Mex.:	Sho
Hondo River near:	
analyses of water of wells near	
gage heights and discharge of	Sma
Round Valley, Cal., Owens River near:	L.III
analyses of water of	
discharge of 77–78	
gage heights of	Sna
S.	
Sacramento River—	Sna
at Sacramento, Cal.:	Sny
analyses of water of	6
near Red Bluff, Cal.:	Soar Soda
analyses of water of 107–108, 140	Soft
discharge of 107–109	Sout
gage heights of	

I	Page.
St. Anthony gaging station, Idaho, analysis	_
of water of Teton River at	143
Salmon Creek—	
at Conconully, Wash., analysis of water	
of	144
near Malott, Wash.:	
analyses of water of 111–11	2, 140
discharge of	1-112
gage heights of	111
Salt Draw, Upper, Middle, and Lower, near	
Salt Springs, Okla., analyses of	
water of	143
Salt Fork of Red River near Mangum, Okla.:	110
analyses of water of 115–118, 14	in 143
discharge of	
gage heights of	
Salt River near Roosevelt, Ariz.:	.5-117
· · · · · · · · · · · · · · · · · · ·	4 140
analyses of water of	
discharge of	
gage heights of	113
Salt Springs, Okla., analyses of water of Elm	
Fork of Red River, near	143
Sampling stations, location of	6-9
San Carlos, Ariz., Gila River near:	
analyses of water of 4	1,139
discharge of	42
gage heights	41
San Francisco River near Alma, N. Mex.:	
analyses of water	9.140
discharge of	
gage heights	120
San Marcial, N. Mex., Rio Grande at or near:	
analyses of suspended matter in water of.	150
analyses of water of	
discharge of 10	
gage heights of	
	2-162
Santa Rosa, N. Mex., Pecos River near:	0 7 40
analyses of water of	
discharge of	
gage heights	89
Santa Ynez River, analysis of water of	142
Sapello River near Los Alamos, N. Mex.:	
analyses of water of	1,140
discharge of	122
gage heights of	0-121
Scotch Creek near Conconully, Wash., analy-	
sis of water of	144
Shoshone River at or near Cody, Wyo.:	
analyses of water of	0,144
discharge of	2-124
gage heights of	2-123
Smartsville, Cal., Yuba River near:	
analyses of water of	8.140
discharge of	
gage heights.	137
Snake River, Idaho, analyses of water of at	201
Montgomerys Ferry gaging sta-	
tion and Starrs Ferry	142
Snake River, Oreg., analyses of water of	144
Snyder, Okla., analyses of water of wells and	111
borings in	7-148
Soap-consuming power of water	8-169
Soda ash, use of, for softening water 16	9-170
Softening water	
South Fork of Snake River, Idaho, analyses	
of water of	142

Page.	W. Page
Springville, Cal., analysis of water of mineral	Wagontire Mountain, Oreg., analysis of water
spring near 145	at
Starrs Ferry gaging station, Idaho, analysis of	Water analyses, industrial application of 165–183
water of Snake River at 142	
Steamboat Springs gaging station, Colorado,	Water, boiler, effect of impurities in 171–177
analysis of water of Yampa River	soap-consuming power of 168-169
at142	softening.of
Stinking Creek near Mangum, Okla., analy-	Waters, classification of, use of formulas for. 180-181
ses of water of 143	irrigation 177–179
Stone, C. H., work of	Whitewater, Colo., Gunnison River near:
Stony Creek near Fruto, Cal.:	analyses of water of
analyses of water of	discharge of 50–51
discharge of	gage heights of 50
gage heights of	White River, Colo., analysis of water of 142
Summary of analyses of surface waters 139-140	Williston, N. Dak., Missouri River near:
Summer Lake, Oreg., Ana River near, analy-	suspended matter and dissolved solids in .61, 140
sis of water of 143	discharge of 61
m	Wilson ditch, Oreg., analysis of water of 14
т.	Winters, Cal., Puta Creek near:
Teton River, Idaho, analyses of water of 143	analyses of water of
Tinemaha, Cal., Owens River near:	discharge of 93–94
analyses of water of	gage heights of.,99
discharge of	Woodruff, Ariz., Little Colorado River near:
gage heights79	analyses of water of 56–57, 139
Truckee River near Derby, Nev.:	discharge of 56–57
analyses of water of	gage heights of
discharge of	37
gage heights	Y.
Tulare, Cal., analysis of water of artesian	Yampa River, Colo., analyses of water of, at
well at 146	Craig, Maybell, and Steamboat
Tule Lake near Klamath Falls, Oreg., analy-	Springs gaging stations 142
sis of water of 145	Yellowstone River—
Tuolumne River—	near Billings, Mont.:
near Modesto, Cal.:	analyses of water of
discharge of 129	discharge of
near La Grange, Cal.:	gage heights of
analyses of water of 128-129, 140	near Glendive, Mont.:
discharge of	analyses of water of 136–137, 140, 145
gage heights of	discharge of
Turkey Creek near Olustee, Okla.:	gage heights of
analyses of water of	Yuba River near Smartsville, Cal.:
gage heights of	analyses of water of
V. •	discharge of
•	gage heights of
Vale, Oreg., Malheur River near: analyses of water of	1 x7
discharge of	analysis of water of well at
gage heights of	Colorado River at or near:
Vaygouny, M., work of	analyses of suspended matter in water
Verde River near McDowell, Ariz.:	of
analyses of water of	analyses of water of
discharge of	discharge of 26-28
gage heights	

O

mark

