Quiz 1

Due Oct 11 at 11:59pm	Points 5	Questions 5	Time Limit None

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	12 minutes	5 out of 5

① Correct answers will be available on Oct 12 at 12am.

Score for this quiz: **5** out of 5 Submitted Oct 7 at 8:43am This attempt took 12 minutes.

Question 1	1 / 1 pts
Which of the following is NOT true of K-NN algorithm? (A) K-NN is more likely to overfit the training data when using a (B) Training can be done by simply storing all the training data (C) The hyper-parameter K can be tuned using cross-validatio (D) It is easy to update a K-NN model with new training sample	n
(C)	
(A)	
(D)	
(B)	

Question 2 1 / 1 pts

Which of the following is NOT true of Decision Tree? (A) Label is revealed at the leaf nodes. (B) Can handle both categorical and real-value features (C) Can be used for both classification and regression problems. (D) ID3 algorithm can guarantee to find the decision tree with minimal depth
(A)
(B)
(D)
(C)

Question 3	1 / 1 pts
Which of the following methods is considered good practice to overfitting? (A) Tune the hyper-parameters on the test set. (B) Tune the hyper-parameters with cross-validation. (C) Tune the hyper-parameters on the training set. (D) Train the model on the test data.	avoid
(A)	
(C)	
(B)	
(D)	

Question 4 1 / 1 pts

 $\mathbf{Q4.}$ Consider the following data in the Table where x and y are two input features. Suppose you

x	y	label
-1	1	_
0	1	+
0	2	_
1	-1	-
1	0	+
1	2	+
2	2	-
2	3	+

want to predict the class of new data point x=1, y=1 using Manhattan distance in 3-NN. In which class this data point belong to? How about 7-NN? (Note that Manhattan distance is the distance between two points measured along axes at right angles. In a plane with point p_1 at (x_1, y_1) and p_2 at (x_2, y_2) , it is $|x_1 - x_2| + |y_1 - y_2|$.)

- (A) Using 3-NN, the label will be +, using 7-NN, the label will be +.
- (B) Using 3-NN, the label will be -, using 7-NN, the label will be -.
- (C) Using 3-NN, the label will be +, using 7-NN, the label will be -.
- (D) Using 3-NN, the label will be -, using 7-NN, the label will be +.
 - (A)
 - (D)
 - (B)
 - (C)

Question 5 1 / 1 pts

Q5. Given the true table, which of the following functions is a consistent hypothesis?

Example	$ x_1 $	x_2	x_3	x_4	x_5	y
1	0	0	1	1	0	0
2	1	0	0	1	1	0
3	0	1	1	0	0	1
4	1	0	0	0	1	1
5	0	1	0	1	1	1
6	0	0	0	0	0	0

- (A) $y = x_1 \wedge x_5$
- (B) $y = 2\text{-of}\{x_1, x_2, x_5\}$
- (C) $y = x_1 \vee x_2$
- (D) $y = (1 \text{of}\{x_1, x_2\}) \land (1 \text{of}\{x_2, x_3\})$
- (E) $y = (1 \text{of}\{x_3, x_5\}) \land (\text{NOT } 2 \text{of}\{x_1, x_3, x_4\})$
 - (B)
 - (D)
 - (C)
 - (E)
 - (A)

Quiz Score: 5 out of 5