STATS310A - Lecture 13

Persi Diaconis Scribed by Michael Howes

11/04/21

Contents

		of small numbers
	2.1	"Approximately"
	2.2	"Not too dependent"
	2.3	"Not too dependent"
3	Exa	mples
	3.1	Poisson's orginal example
	3.2	Magic factor
	3.3	Birthday problem
		Homework

1 References and notation

Today we will study Poisson approximation and Stein's method. This is not in the textbook but two references are

- "Poisson Approximation and the Chen-Stein Method" by Arratia, Goldstein and Gord.
- "Exchangeable pairs and Poisson approximation" by Chatterjee, Diaconis and Meckes.

Through out this lecture we will us \mathcal{P}_{λ} to denote the Poisson distribution with parameter $\lambda \geq 0$. That is \mathcal{P}_{λ} is a probability measure on $\mathbb{N} = \{0, 1, 2, \ldots\}$ and

$$\mathcal{P}_{\lambda}(\{j\}) = \frac{e^{-\lambda}\lambda^{j}}{j!}.$$

If Z is a random variable with distribution \mathcal{P}_{λ} , we will say that Z is Poisson(λ). If Z is Poisson(λ), then

$$\mathbb{E}[Z] = \lambda,$$

$$\operatorname{Var}(Z) = \lambda \text{ and},$$

$$\mathbb{E}[Z(Z-1)\dots(Z-k+1)] = \lambda^k.$$

Also if $Z_1 \sim \mathcal{P}(\lambda_1)$ and $Z_2 \sim \mathcal{P}(\lambda_2)$ are independent, then $Z_1 + Z_2 \sim \mathcal{P}(\lambda_1 + \lambda_2)$.

2 Law of small numbers

Let I be a finite set and let $\{X_i\}_{i\in I}$ be a collection of 0-1 random variables with expected value $\mathbb{E}[X_i] = \mathbb{P}(X_i = 1) = p_i$. Define

$$\lambda = \sum_{i \in I} p_i,$$

and

$$W = \sum_{i \in I} X_i.$$

If p_i are "small" and $\{X_i\}_{i\in I}$ are "not too dependent", then W is "approximately" Poission(λ). We will start this lecture by defining the three terms in quotes.

2.1 "Approximately"

To define "approximately" we need to put a topology on the space of probability measures.

Definition 1. If (Ω, \mathcal{F}) is a measurable space and P, Q are probabilities on Ω , then we define the *total* variation distance between P and Q to be

$$||P - Q||_{TV} = \sup_{A \in \mathcal{F}} |P(A) - G(A)|.$$

We occassionally drop the subscript and simply write ||P - Q|| for $||P - Q||_{TV}$.

Exercise 1. This is will be on the upcoming homework.

(1) For a function $f: \Omega \to \mathbb{R}$, let $||f||_{\infty} = \sup_{\omega \in \Omega} |f(x)|$. Then show

$$||P - Q|| = \sup \left\{ \frac{1}{2} \left| \int f dP - \int f dQ \right| : ||f||_{\infty} \le 1 \right\}.$$

(2) If μ is a σ -finite measure on (Ω, \mathcal{F}) such that

$$P(A) = \int_A f d\mu$$
 and $Q(A) = \int_A g d\mu$,

then

$$||P - Q||_{TV} = \frac{1}{2} \int |f(\omega) - g(\omega)| d\mu.$$

Note that P and Q always have densities with respect to $\mu = \frac{1}{2}P + \frac{1}{2}Q$.

2.2 "Not too dependent"

A simple undirected graph is a collection of vertices and a collection of edges between the vertices such that there are no loops (edges that start and end at the same vertex) and no multiple edges between vertices.

Definition 2. Given a collection of random variables $\{X_i\}_{i\in I}$, a dependency graph for $\{X_i\}_{i\in I}$ is a simple undirected graph Γ with vertices I and edges E such that for all $I_1, I_2 \subseteq I$, if $I_1 \cap I_2 = \emptyset$ and there are no edges in Γ between I_1 and I_2 , then

$$\{X_i\}_{i\in I_1}$$
 and $\{X_j\}_{j\in I_2}$,

are independent of each other.

Example 1. If $\{X_i\}_{i\in I}$ are independent, then the empty graph on I is a dependency graph for $\{X_i\}_{i\in I}$.

Definition 3. If Γ is a dependency graph for $\{X_i\}_{i\in I}$, then for $i\in I$, we define the neighbourhood of i to be the set

$$N_i = \{i\} \cup \{j \in I : (i, j) \in E\}.$$

2.3 "Small"

The meaning behind p_i "small" can be seen in the statement of the Poisson approximation.

Theorem 1. Let I be a finite set and let $\{X_i\}_{i\in I}$ be 0-1 random variables and let Γ be a dependency graph for $\{X_i\}_{i\in I}$. As before let $p_i = \mathbb{E}[X_i]$, $\lambda = \sum_{i\in I} p_i$ and $W = \sum_{i\in I} X_i$. Also define p_{ij} to be $\mathbb{P}(X_i = X_j = 1)$. If we define $\mathbb{P}_W(A) = \mathbb{P}(W \in A)$ for $A \subset \mathbb{N}$, Then

$$\|\mathbb{P}_W - \mathcal{P}_{\lambda}\| \le \min\left\{3, 1/\lambda\right\} \left(\sum_{i \in I} \sum_{j \in N_i \setminus \{i\}} p_{ij} + \sum_{i \in I} \sum_{j \in N_i} p_i p_j\right).$$

3 Examples

3.1 Poisson's orginal example

Suppose $I = \{1, ..., n\}$ and X_i are i.i.d. with $\mathbb{P}(X_i = 1) = p$. Then $W = \sum_{i=1}^n X_i$, $\lambda = np$ and we can take Γ to be the empty graph. Then the bound becomes

$$\|\mathbb{P}_W - \mathcal{P}_{\lambda}\| \le \min\{3, 1/np\} \times np^2.$$

If we take $p=\frac{1}{n}$, then $\frac{1}{\lambda}=1<3$ and so

$$\|\mathbb{P}_W - \mathcal{P}_{\lambda}\| \le n \frac{1}{n^2} = \frac{1}{n}.$$

3.2 Magic factor

We call the $1/\lambda$ term "the magic factor." Suppose again that X_i are independent and Γ is the empty graph but now $\mathbb{P}(X_i=1)=\frac{1}{i}$. This is equivalent to the ESP problem of guessing cards from a deck of n cards with complete feedback. We can take $X_i=1$ if and only if the $(n-i+1)^{th}$ guess is correct. In this example

$$\lambda = \sum_{i=1}^{n} \frac{1}{i} = \log(n) - \gamma + O(1/n).$$

Since the dependency graph is again empty, the first double sum is zero and the second is

$$\sum_{i \in I} \sum_{i \in N_i} p_i p_j = \sum_{i=1}^n \frac{1}{i^2} = \log(n) - \gamma + O(1/n).$$

For large $n, \frac{1}{\log(n)} \leq 3$ and we have the bound

$$\|\mathbb{P}_W - \mathcal{P}_{\lambda}\| \le \frac{1}{\log n} \frac{\pi^2}{6}.$$

3.3 Birthday problem

Suppose we have $n \in \mathbb{N}$ people, $C \in \mathbb{N}$ colors and we are interested in matches of size $k \in \mathbb{N}$. Define

$$I = \{\alpha : \alpha \subseteq \{1, \dots, n\}, |\alpha| = k\}.$$

Thus I consists of all group of k people and $|I| = \binom{n}{k}$. Color i = 1, ..., n with a colour in $\{1, 2, ..., C\}$ uniformly and independently. For $\alpha \in I$, define

$$X_{\alpha} = \begin{cases} 1 & \text{if all elements of } \alpha \text{ have the same color,} \\ 0 & \text{else.} \end{cases}$$

Define $W = \sum_{\alpha \in I} X_{\alpha}$. Then W > 0 if and only if there exists a k-set that has the same colour. Also

$$p_{\alpha} = \mathbb{E}[X_{\alpha}] = C^{1-k}.$$

Thus $\lambda = \binom{n}{k} C^{1-k}$. The Poisson approximation suggests that for fixed C and k we have

$$\mathbb{P}(W > 0) \approx 1 - \mathbb{P}_{\lambda}(\{0\}) = 1 - e^{-\lambda} = 1 - e^{-\binom{n}{k}c^{1-k}}.$$

Thus we can set the above equal to 1/2 and answer the question of how many people do we need for there to be even odds that at least one group of size k has all the same color.

- If k=2 and C=365, then we have the usual birthday problem and $\binom{23}{2}\frac{1}{365}=\log(2)$ to 4 d.p. so $e^{-\binom{23}{2}\frac{1}{365}}\approx 1/2$ and we recover our previous answer of 23.
- If k=3 and C=365, then n=84 given $\lambda=\approx 0.7152$ and $e^{-\lambda}=0.489$. Thus in a group of 84 there are roughly equal odd that a group of 3 have the same birthday.
- Taking C = 60 you can ask questions about the odds that a group of k people have the secondshands on their watch in the same position.
- \bullet We can also ask other questions. The Poisson approximation tells us how many matches of size k we should expect.

Let's calculate the error bound in this example. If I and X_{α} are as above, then X_{α} and X_{β} are independent if and only if $\alpha \cap \beta = \emptyset$. Thus we can define a dependency graph Γ where we join α to β if and only if $\alpha \cap \beta \neq \emptyset$.

Proposition 1. With notation and definitions as above we have

$$\|\mathbb{P}_W - \mathcal{P}_{\lambda}\| \le \min\{3, 1/\lambda\} \left(\binom{n}{k} \sum_{a=1}^{k-1} \binom{k}{a} \binom{n-k}{n-a} C^{1-(2k-a)} + \binom{n}{k} \sum_{a=1}^{k} \binom{k}{a} \binom{n-k}{n-a} C^{2-2k} \right).$$

Proof. In the first double sum of the Poisson approximation we have $\beta \in N_{\alpha} \setminus \{\alpha\}$ if and only if $|\alpha \cap \beta| = a$ for some a = 1, 2, ..., k - 1. The number of such β is precisely $\binom{k}{a}\binom{n-k}{n-a}$ since we must choose a elements of α to be in β and n - a elements of $\{1, ..., n\} \setminus \alpha$ to be in β . Furthermore

$$p_{\alpha,\beta} = \mathbb{P}$$
 (everyone in $\alpha \cup \beta$ has the same color)

$$= C^{1-|\alpha \cup \beta|}$$

$$= C^{1-|\alpha|-|\beta|+|\alpha \cap \beta|}$$

$$= C^{1-k-k+a}$$

$$= C^{1-(2k-a)}.$$

The calculation for the second double sum.

3.4 Homework

Consider the boys and girls birthday problem. Say we have n boys and n girls. We can then ask what is the chance that there is at least one boy-girl pair with the same birthday? We can then ask how large does n need to be for this probability to equal $\frac{1}{2}$. There are many generalizations:

- We can consider any graph that describes how the n people are connected. We can then ask questions about the probability that there is a collection of k people that are all connected in the graph and all have the same colour.
- The colours i can be chosen with probability p_i .

4 Stein's method

When we prove the Poisson approximation, we will use Stein's method and Stein's equation. We will use the following fact:

Proposition 2. A random variable Z has \mathbb{P}_{λ} distribution if and only if for every bounded function $f: \mathbb{N} \to \mathbb{R}$,

$$\mathbb{E}[Zf(Z)] = \lambda \mathbb{E}[f(Z+1)]. \tag{1}$$

The equation (1) is called *Stein's equation*. As an exercise one can check that if Z is Poisson(λ), then Stein's equation does indeed hold. The essence of Stein's method is to show that W approximately satisfies

$$\mathbb{E}[Wf(W)] = \lambda \mathbb{E}[f(W+1)],$$

and show that this implies W is approximately $Poisson(\lambda)$. To prove the above Proposition we will prove the following analytic lemma:

Lemma 1. Given $\lambda > 0$ and $A \subseteq \mathbb{N}$, there exists a unique function $f : \mathbb{N} \to \mathbb{R}$ such that f(0) = 0 and for all $j \in \mathbb{N}$, $|f(j)| \le 1.25$, $|f(j+1) - f(j)| \le \min\{3, 1/\lambda\}$ and

$$\lambda f(j+1) - jf(j) = \delta_A(j) - \mathcal{P}_{\lambda}(A).$$