Memory Optimization Techniques for Computing Discrete Logarithms in Compressed SIKE

A. Hutchinson ¹, K. Karabina ^{1,2}, G. Pereira ^{1,3}

¹University of Waterloo Canada ²National Research Council Canada ³evolutionQ Inc. Canada

PQCrypto 2021, July 20-22, 2021

Acknowledgements: SIKE team members; NSERC; CryptoWorks21; Canada First Research Excellence Fund; Public Works and Government Services Canada; National Research Council Canada and the University of Waterloo Collaboration Center

Outline

- 1 Isogenies, SIKE, and compressed SIKE
- 2 Mathematical background and the problem definition
- 3 Contributions
- 4 Implementation results

Notation

- $p = \ell_A{}^{e_A}\ell_B{}^{e_B} 1$ is prime, \mathbb{F}_q is a finite field of size $q = p^2$
 - $\ell_A = 2$, $\ell_B = 3$
 - $ightharpoonup (e_A, e_B) \in \{(216, 137), (250, 159), (305, 192), (372, 239)\}$
 - $\mathbb{F}_q = \mathbb{F}_p[i]/\langle i^2 + 1 \rangle$
- E is a supersingular elliptic curve defined over \mathbb{F}_q
 - E/\mathbb{F}_q : $\{(x,y): y^2 = x^3 + 6x^2 + x\} \cup \mathcal{O}$
- $E(\mathbb{F}_q)$ denotes the set of \mathbb{F}_q -points on E
 - $\blacktriangleright |E(\mathbb{F}_q)| = (p+1)^2$
- $E[\ell^e]$ denotes the ℓ^e -torsion group of $E(\ell^e P = \mathcal{O} \text{ for } P \in E[\ell^e])$
 - $ightharpoonup E[\ell^e] \cong \mathbb{Z}_{\ell^e} \oplus \mathbb{Z}_{\ell^e}$
 - $E[\ell_A{}^{e_A}] = \langle P_A, Q_A \rangle$ and $E[\ell_B{}^{e_B}] = \langle P_B, Q_B \rangle$

Isogenies

- Let E_1 , E_2 be two elliptic curves over \mathbb{F}_q
- ullet An isogeny $\phi: E_1
 ightarrow E_2$ is a non-constant rational map such that
 - ϕ is defined over \mathbb{F}_a
 - $\phi(\mathcal{O}) = \mathcal{O}$
- $\phi: E_1(\mathbb{F}_q) \to E_2(\mathbb{F}_q)$ is a group homomorphism
- $\ker(\phi) = \{P \in E_1 : \phi(P) = \mathcal{O}\}, E_2 \cong E_1/\ker(\phi)$
- Conversely, given a subgroup K of $E_1(\mathbb{F}_q)$, there exists (unique up to isomorphism)

$$\phi: E_1 \to E_2$$
, where $\ker(\phi) = K$

ullet Given K, ϕ and E_2 can be expressed explicitly (may not be efficient)

SIKE: Supersingular Isogeny Key Encapsulation

- SIKE is based on the supersingular isogeny Diffie-Hellman (SIDH) protocol (Jao and De Feo, 2011)
- SIKE was submitted to the NIST post-quantum cryptography standardization process (2017)
- SIKE was announced as one of the five alternate candidates in the public key encryption and key establishment category (2020)
- In SIKE, two parties A and B compute a shared secret key, which is essentially the j-invariant of the two isomorphic curves E_{AB} and E_{BA} : $j = j(E_{AB}) = j(E_{BA})$

SIKE: Supersingular Isogeny Key Encapsulation

- SIKE is based on the supersingular isogeny Diffie-Hellman (SIDH) protocol (Jao and De Feo, 2011)
- SIKE was submitted to the NIST post-quantum cryptography standardization process (2017)
- SIKE was announced as one of the five alternate candidates in the public key encryption and key establishment category (2020)
- In SIKE, two parties A and B compute a shared secret key, which is essentially the j-invariant of the two isomorphic curves E_{AB} and E_{BA} : $j = j(E_{AB}) = j(E_{BA})$

A basic setting for SIKE:

- Public parameters: $p = 2^{e_2}3^{e_3} 1$, $E : y^2 = x^3 + 6x^2 + x$, $E[2^{e_2}] = \langle P_A, Q_A \rangle$, $E[3^{e_3}] = \langle P_B, Q_B \rangle$
- Secret key of $A: s_A \in \mathbb{Z}_{2^{e_2}}$
- Public key of A: E_A , $\phi_A(P_B)$ $\phi_A(Q_B)$, where $\phi_A: E \to E_A$ is a secret isogeny with $\ker(\phi_A) = \langle P_A + s_A Q_A \rangle$
- The secret/public keys of *B* are defined similarly

Computations in SIKE

Compressing SIKE public keys

- Naive method:
 - ▶ Public key of *A*: $E_A : y^2 = x^3 + ax + b$, $a, b \in \mathbb{F}_q$; $P = \phi_A(P_B) = (x_P, y_P)$, $Q = \phi_A(Q_B) = (x_Q, y_Q) \in E[\ell^e]$
 - ▶ $a, b, x_P, y_P \in \mathbb{F}_q$ can be represented by $8 \log p$ bits

Compressing SIKE public keys

- Naive method:
 - ▶ Public key of *A*: $E_A : y^2 = x^3 + ax + b$, $a, b \in \mathbb{F}_q$; $P = \phi_A(P_B) = (x_P, y_P)$, $Q = \phi_A(Q_B) = (x_Q, y_Q) \in E[\ell^e]$
 - ▶ $a, b, x_P, y_P \in \mathbb{F}_q$ can be represented by $8 \log p$ bits
- Optimizations (Azarderakhsh et al., 2016; Costello et al., 2017; Gustavo et al., 2018; Naehrig and Renes et al., 2019; Pereira et al., 2020):
 - ▶ Replace a, b by the j-invariant of E_A : $4 \log p \rightarrow 2 \log p$
 - Fix a basis for $E_A[\ell^e] = \langle R, S \rangle$ and rewrite

$$P = a_P R + b_P S; \ Q = a_Q R + b_Q S$$

- ▶ Replace x_P, x_Q by $a_P, b_P, a_Q, b_Q \in \mathbb{Z}_{\ell^e}$: $4 \log p \to 2 \log p \ (\ell^e \approx \sqrt{p})$
- ▶ Rescale $[a_P, b_P, a_Q, b_Q]$ by a_P^{-1} : $2 \log p \rightarrow 1.5 \log p$
- ▶ Public key compression: $8 \log p \rightarrow 3.5 \log p$

Computational overheads in compressing public keys

- How to compute a_P, b_P, a_Q, b_Q ?
- \bullet Compute g and h, where

$$g = e(R, S)$$

 $h = e(P, S) = e(a_P R + b_P S, S) = g^{a_P},$

where $e: E_A[\ell^e] \times E_A[\ell^e] \to \mu_{\ell^e}$ is a bilinear pairing function, and μ_{ℓ^e} is the multiplicative group of order ℓ^e

- Compute a_P by solving the discrete logarithm of h base g
- Similarly, compute b_P , a_Q , b_Q
- \bullet Since ℓ is small, we use the Pohlig-Hellman algorithm to solve logarithms

The Discrete logarithm problem (DLP)

- p is prime, $p \equiv 3 \pmod{4}$, $\mathbb{F}_q = \mathbb{F}_p[i]/\langle i^2 + 1 \rangle$
- ullet ${\mathbb G}$ is the order-(p+1) cyclotomic subgroup of ${\mathbb F}_q^*$
- For positive ℓ and ω with $\ell^{\omega} \mid (p+1)$, $\mathbb{G}_{\ell,\omega}$ is the order- ℓ^{ω} subgroup of \mathbb{G}
- $\mathbb{G}_{\ell,e} = \langle g \rangle$ is the largest of $\mathbb{G}_{\ell,\omega} = \langle \rho \rangle$, and $\rho = g^{\ell^{e-\omega}}$
- In particular, we are interested in:
 - $p = 2^{e_A} 3^{e_B} 1$
 - $\ell = 2$ and $e \in \{216, 250, 305, 372\}$
 - $\ell = 3$ and $e \in \{137, 159, 192, 239\}$

Problem

Given $\mathbb{G}_{\ell,e}=\langle g
angle$ and $h\in\mathbb{G}_{\ell,e}$, find $d\in\mathbb{Z}_{\ell^e}$ such that $g^d=h$

Remark

Inverses can be computed for free in \mathbb{G} :

$$h = (a + bi) \in \mathbb{G} \Rightarrow 1 = h^{p+1} = (a + bi)^p (a + pi) = (a - bi)(a + bi)$$

The Pohlig-Hellman (PH) algorithm

Problem

Given $\mathbb{G}_{\ell,e} = \langle g \rangle$ and $h \in \mathbb{G}_{\ell,e}$, find $d \in \mathbb{Z}_{\ell^e}$ such that $g^d = h$.

• For $0 \le k < e$ and $0 \le d < \ell$, precompute and store the table

$$T[k][d] = g^{-d\ell^k}$$

- ② Write $d = \sum_{i=0}^{e-1} d_i \ell^i$, $d_i \in [0, \ell)$ and use $g^{\ell^e} = 1$
- Compute

$$\Delta_{0,0} = h = g^{\sum_{i=0}^{e-1} d_i \ell^i}, \ \Delta_{e-1,0} = \Delta_{0,0}^{\ell^{e-1}} = (g^{\ell^{e-1}})^{d_0} \in \mathbb{G}_{\ell,1}$$

The Pohlig-Hellman (PH) algorithm

Problem

Given $\mathbb{G}_{\ell,e} = \langle g \rangle$ and $h \in \mathbb{G}_{\ell,e}$, find $d \in \mathbb{Z}_{\ell^e}$ such that $g^d = h$.

• For $0 \le k < e$ and $0 \le d < \ell$, precompute and store the table

$$T[k][d] = g^{-d\ell^k}$$

- ② Write $d = \sum_{i=0}^{e-1} d_i \ell^i$, $d_i \in [0, \ell)$ and use $g^{\ell^e} = 1$
- Compute

$$\Delta_{0,0} = h = g^{\sum_{i=0}^{e-1} d_i \ell^i}, \ \Delta_{e-1,0} = \Delta_{0,0}^{\ell^{e-1}} = (g^{\ell^{e-1}})^{d_0} \in \mathbb{G}_{\ell,1}$$

- Determine d_0 : if $\Delta_{e-1,0} == T[e-1][d]^{-1}$ then $d_0 \leftarrow d$
- Compute

$$\Delta_{0,1} = \Delta_{0,0} T[0][d_0] = g^{\sum_{i=1}^{e-1} d_i \ell^i}, \Delta_{e-2,1} = \Delta_{0,1}^{\ell^{e-2}} = (g^{\ell^{e-1}})^{d_1}$$

 $\textbf{ 0} \ \, \mathsf{Determine} \, \, d_1 \colon \mathsf{if} \, \, \Delta_{e-2,1} == \, T[e-1][d]^{-1} \, \, \mathsf{then} \, \, d_1 \leftarrow d \,$

• For k = 1, ..., e - 1, compute

$$\Delta_{0,k} = \Delta_{0,k-1} T[k-1][d_{k-1}] = g^{\sum_{i=k}^{e-1} d_i \ell^i}, \Delta_{e-1-k,k} = \Delta_{0,k}^{\ell^{e-1-k}} = (g^{\ell^{e-1}})^{d_k}$$

$$\Delta_{0,0} = h$$

• For k = 1, ..., e - 1, compute

$$\Delta_{0,k} = \Delta_{0,k-1} T[k-1][d_{k-1}] = g^{\sum_{i=k}^{e-1} d_i \ell^i}, \Delta_{e-1-k,k} = \Delta_{0,k}^{\ell^{e-1-k}} = (g^{\ell^{e-1}})^{d_k}$$

• For k = 1, ..., e - 1, compute

$$\Delta_{0,k} = \Delta_{0,k-1} \mathcal{T}[k-1][d_{k-1}] = g^{\sum_{i=k}^{e-1} d_i \ell^i}, \Delta_{e-1-k,k} = \Delta_{0,k}^{\ell^{e-1-k}} = (g^{\ell^{e-1}})^{d_k}$$

• For k = 1, ..., e - 1, compute

$$\Delta_{0,k} = \Delta_{0,k-1} T[k-1][d_{k-1}] = g^{\sum_{i=k}^{e-1} d_i \ell^i}, \Delta_{e-1-k,k} = \Delta_{0,k}^{\ell^{e-1-k}} = (g^{\ell^{e-1}})^{d_k}$$

• For k = 1, ..., e - 1, compute

$$\Delta_{0,k} = \Delta_{0,k-1} T[k-1][d_{k-1}] = g^{\sum_{i=k}^{e-1} d_i \ell^i}, \Delta_{e-1-k,k} = \Delta_{0,k}^{\ell^{e-1-k}} = (g^{\ell^{e-1}})^{d_k}$$

• For k = 1, ..., e - 1, compute

$$\Delta_{0,k} = \Delta_{0,k-1} T[k-1][d_{k-1}] = g^{\sum_{i=k}^{e-1} d_i \ell^i}, \Delta_{e-1-k,k} = \Delta_{0,k}^{\ell^{e-1-k}} = (g^{\ell^{e-1}})^{d_k}$$

• For k = 1, ..., e - 1, compute

$$\Delta_{0,k} = \Delta_{0,k-1} T[k-1][d_{k-1}] = g^{\sum_{i=k}^{e-1} d_i \ell^i}, \Delta_{e-1-k,k} = \Delta_{0,k}^{\ell^{e-1-k}} = (g^{\ell^{e-1}})^{d_k}$$

• For k = 1, ..., e - 1, compute

$$\Delta_{0,k} = \Delta_{0,k-1} T[k-1][d_{k-1}] = g^{\sum_{i=k}^{e-1} d_i \ell^i}, \Delta_{e-1-k,k} = \Delta_{0,k}^{\ell^{e-1-k}} = (g^{\ell^{e-1}})^{d_k}$$

• For k = 1, ..., e - 1, compute

$$\Delta_{0,k} = \Delta_{0,k-1} T[k-1][d_{k-1}] = g^{\sum_{i=k}^{e-1} d_i \ell^i}, \Delta_{e-1-k,k} = \Delta_{0,k}^{\ell^{e-1-k}} = (g^{\ell^{e-1}})^{d_k}$$

• For k = 1, ..., e - 1, compute

$$\Delta_{0,k} = \Delta_{0,k-1} \mathcal{T}[k-1][d_{k-1}] = g^{\sum_{i=k}^{e-1} d_i \ell^i}, \Delta_{e-1-k,k} = \Delta_{0,k}^{\ell^{e-1-k}} = (g^{\ell^{e-1}})^{d_k}$$

- Determine d_k : if $\Delta_{e-1-k,k} == T[e-1][d]^{-1}$ then $d_k \leftarrow d$
- Cost: e(e-1)/2 = 6 ℓ -exponentiations, (e-1) = 3 group multiplications, e=4 table look ups
- **Storage:** $e\ell$ group elements in \mathbb{F}_q^* : $2e\ell \log p$ bits

- Optimal trade-off between the multiplication and ℓ-exponentiation (Gustavo *et al.*, 2018):
- Among all possible traversing strategies, find one with minimum cost

- Optimal trade-off between the multiplication and ℓ-exponentiation (Gustavo *et al.*, 2018):
- Among all possible traversing strategies, find one with minimum cost

- Optimal trade-off between the multiplication and ℓ-exponentiation (Gustavo et al., 2018):
- Among all possible traversing strategies, find one with minimum cost

- Optimal trade-off between the multiplication and ℓ-exponentiation (Gustavo et al., 2018):
- Among all possible traversing strategies, find one with minimum cost

- Optimal trade-off between the multiplication and ℓ-exponentiation (Gustavo et al., 2018):
- Among all possible traversing strategies, find one with minimum cost

- Optimal trade-off between the multiplication and ℓ-exponentiation (Gustavo et al., 2018):
- Among all possible traversing strategies, find one with minimum cost

- Optimal trade-off between the multiplication and ℓ-exponentiation (Gustavo et al., 2018):
- Among all possible traversing strategies, find one with minimum cost

- Optimal trade-off between the multiplication and ℓ-exponentiation (Gustavo *et al.*, 2018):
- Among all possible traversing strategies, find one with minimum cost

- Optimal trade-off between the multiplication and ℓ-exponentiation (Gustavo *et al.*, 2018):
- Among all possible traversing strategies, find one with minimum cost
- Cost: 4 ℓ-exponentiations, 4 group multiplications, 4 table look ups
- **Storage:** $e\ell$ group elements in \mathbb{F}_q^* : $2e\ell \log p$ bits

Optimization 1: Signed-digits in the exponent

- $T[k][d] = g^{-d\ell^k}$, $0 \le k < e$, $0 \le d < \ell$, stores $e\ell$ group elements
- Discard the entries with d = 0
- Write $d=\sum_{i=0}^{e-1}d_i'\ell^i$ for $d_i\in[-(\ell-1)/2,(\ell-1)/2]$ and modify T to T^{sgn} as

$$T^{\mathrm{sgn}}[k][d] = g^{-d\ell^k}, \ 0 \le k < e,$$
 $0 \le d \le (\ell-1)/2$

- Revise the step to determine d_k as
- Updating $\Delta_{j,k+1} \leftarrow \Delta_{j,k} T[j+k][d_k]$ is revised similarly:

 - ② If $d_k' < 0$, then $\Delta_{j,k+1} \leftarrow \Delta_{j,k} T^{\text{sgn}}[j+k][-d_k']^{-1}$

Remark

The table size is reduced by a factor of 2.

Optimization 2: Torus representations and arithmetic in \mathbb{G}

- $\mathbb{G} = \{a + bi : a, b \in \mathbb{F}_p, a^2 + b^2 = 1\}$ is the order-(p+1) cyclotomic subgroup of $\mathbb{F}_{n^2}^*$
- Torus representation of G yields (Rubin and Silverberg, 2008):

$$\mathbb{G} = \{1\} \cup \left\{ \frac{\alpha + i}{\alpha - i} : \ \alpha \in \mathbb{F}_p \right\},\,$$

where $a + bi = (\alpha + i)/(\alpha - i)$ with $\alpha = (a + 1)/b$

- This compressed representation preserves group multiplication
- For $C: \mathbb{G}\setminus\{1,-1\}\to\mathbb{F}_p$ with C(a+bi)=(a+1)/b, we have

$$C(a+bi) = \alpha, C(c+di) = \beta, \alpha+\beta \neq 0$$
: $C((a+bi)(c+di)) = \frac{\alpha\beta-1}{\alpha+\beta}$

$$C((a+bi)(c+di)) = \frac{\alpha\beta-1}{\alpha+\beta}$$

Torus representations and arithmetic

• Using projective coordinates [x:y] := (x+yi)/(x-yi), we can write

$$\mathbb{G} = \{a + bi : a, b \in \mathbb{F}_{p^2}\} = \{[x : y] : x, y \in \mathbb{F}_p, xy \neq 0\},$$
where $a + bi \mapsto [a + 1, b], [x : y] \mapsto \frac{x^2 - y^2}{x^2 + y^2} + \frac{2xy}{x^2 + y^2}i$

Proj. Squaring (2m): $[x : y]^2 = [(x + y)(x - y) : 2xy]$

Proj. Cubing (2m+2s): $[x : y]^3 = [x(x^2 - 3y^2) : y(3x^2 - y^2)]$

Proj. Mul. (3m): $[x : y][z : t] = [xz - yt : (x + y)(z + t) - xz - yt]$

Mixed Mul. (2m): $[x : y][\alpha, 1] = [x\alpha - y : x + y\alpha]$

Inversion (0m): $[x : y]^{-1} = [-x : y]$

 $[x:y] = [z:t] \iff xt - yz = 0$ Proj. Equality check (2m):

 $[x:y] = [\alpha:1] \iff x - y\alpha = 0$ Mixed Equality check (1m):

Remark

Traditional costs: squaring (2s), and cubing (2m+1s), group multiplication (3m), and free equality check

Table compression via torus representation

• Use C(a + bi) = (a + 1)/b to further compress T^{sgn} by a factor of 2:

$$CT[k][d] = C(T^{\operatorname{sgn}}[k][d]) = C(g^{-d\ell^k})$$

- This yields an overall compression of tables by a factor of 4
- Computational overheads:
 - ▶ Right traversals $\Delta_{j,k+1} \leftarrow \Delta_{j,k} \cdot CT[j+k][d_k]$ become mixed multiplications

$$\ell = 2,3$$
: The cost **3m** changes to **2m**

▶ Left traversals $\Delta_{j+1,k} \leftarrow \Delta_{j,k}^{\ell}$ become projective exponentiations

$$\ell=2$$
: The cost $2s$ changes to $2m$

$$\ell = 3$$
: The cost $2m+1s$ changes to $2m+2s$

▶ Table look ups to determine d_k via

$$\Delta_{e-1-k,k} == T[e-1][d]^{-1} \Rightarrow d_k \leftarrow d$$

used to be free but now requires $(\ell-1)/2$ multiplication at each leaf, and there are (e-1) leaves

Computational overheads and our proposal

• Computational overheads for determining d_k using torus-based representations become non-trivial if PH with width- ω windows is used:

$$d = \sum_{i=0}^{e-1} d_i \ell^i, \ d_i \in [0, \ell)$$

$$= \sum_{i=0}^{m-1} D_i L^i, \ m = \lceil e/\omega \rceil, \ L = \ell^\omega, \ D_i \in [0, L)$$

$$\Delta_{m-1-k,k} == T[m-1][D]^{-1} \Rightarrow D_k \leftarrow D$$

• Now, it requires (L-1)/2 multiplications per leaf

Our proposal

Instead of going through (L-1)/2 equality checks, solve for the logarithm D_k of $\Delta_{m-1-k,k}$ base $\rho=g^{L^{m-1}}$, which generates $\mathbb{G}_{\ell,\omega}$

$$\Delta_{m-1-k,k} = T[m-1][D_k]^{-1} = (g^{L^{m-1})^{D_k}}$$

Discrete logarithms in $\mathbb{G}_{\ell,\omega}$

- Let $\mathbb{G}_{\ell,\omega}=\langle \rho \rangle$ be a cyclic group of order $L=\ell^\omega$, with torus-based representations
- Solving DLP with table look ups requires approximately $\ell^\omega/2$ \mathbb{F}_p -elements to store and $\ell^\omega/2$ equality checks, equivalently $\ell^\omega/2$ \mathbb{F}_p -multiplications (m)
- We propose new algorithms to solve DLP, with (mostly) linear complexity in ω

	Restriction	Average Complexity	Storage
Alg. 1	$\ell = 2$	$\left(\frac{7}{2}\omega - 4 + \frac{4}{2^{\omega}}\right)$ m	$2^{\omega} + \omega - 2$
Alg. 2	$\ell=2$	$\left(3\omega-4+rac{1}{2^{\omega-2}} ight)$ m	$2^{\omega-2}+\omega+2$
Alg. 4	$\ell=2$	$\left(2^{\omega-3}-rac{1}{2} ight)$ m	$2^{\omega-1}+1$
Alg. 1	$\ell = 3$	$\left(\frac{28}{5}\omega - \frac{33}{10} + \frac{33}{10\cdot 3^{\omega}}\right)$ m	$3^{\omega} + \omega - 2$
Alg. 3	$\ell = 3$	$\left(\frac{79}{15}\omega - \frac{33}{10} + \frac{33}{10\cdot3^{\omega}}\right)m$	$3^{\omega-1}+\omega-1$

New algorithms to solve DLP in $\mathbb{G}_{\ell,\omega}$

• Main ideas:

- ① Construct an ℓ -ary like graph $\mathcal{G}_{\ell,\omega}$ of depth- ω such that an ℓ -exponentiation in $\mathbb{G}_{\ell,\omega}$ corresponds to traversing an edge in $\mathbb{G}_{\ell,\omega}$
- ② Given $h \in \mathbb{G}_{\ell,\omega}$, ℓ -exponentiate h until the result is identity. Extract the unique path in $\mathcal{G}_{\ell,\omega}$, so that the starting vertex yields the logarithm of h base ρ
- Example for $\ell=2,\ \omega=4$: $\mathbb{G}_{\ell,\omega}=\langle\rho\rangle,\ h=\rho^{13}$

Theoretical results

Theorem

Let $h \in \mathbb{G}_{\ell,\omega}$ be an element of order ℓ^k for some arbitrary $k \in \{1,\ldots,\omega\}$. Define a sequence $H = [h_0,\ldots,h_k]$ such that $h_k = h$ and $h_{j-1} = h_j^\ell$ for $j = 1,\ldots,k$. Then, there exists a unique path $P_{0,k} = v_{0,0}, v_{1,i_1},\ldots,v_{k,i_k}$ in $\mathcal{G}_{\ell,\omega}$ such that $v_{j,i_j} \in V_j$ and $h_j = g_{j,i_j}$ for $j = 0,\ldots,k$.

Theorem

Let $1 \neq h \in \mathbb{G}_{\ell,\omega} = \langle \rho \rangle$. Given h and ρ , one can determine

- k, i_1, i_2, \ldots, i_k , that corresponds to the path $P_{0,k} = v_{0,0}, v_{1,i_1}, \ldots, v_{j,i_k}$ as in the above theorem;
- ② s_1, s_2, \ldots, s_k such that, $s_1 = i_1 + 1$, $s_j \in \{0, \ldots, (\ell 1)\}$, and $i_j = \ell \cdot i_{j-1} + s_k$ for $j = 2, \ldots, k$.

Moreover, $h = \rho^d$, where $d = \ell^{\omega - k} \sum_{j=1}^k s_j \ell^{j-1}$.

Refinements and other algorithms

- \bullet Half of the paths in $\mathcal{G}_{\ell,\omega}$ can be eliminated at a cost of inverting elements in $\mathbb{G}_{\ell,\omega}$
- ② We propose another algorithm for $\ell=2$: exploit algebraic relations induced by the order of points in $\mathbb{G}_{\ell,\omega}$ and recursively enumerate them
- Run time is exponential in ω but performs better than the previous one for small ω
- Best of both worlds: a hybrid of the two algorithms

Parameters	Average Complexity			
if $\omega_2 \leq 2$ and $\omega_2 \leq \omega_1$	$3\omega_2 + 2^{\omega_1 - 3} - \frac{1}{2} - \frac{\omega_2 + 2}{2^{\omega_1}} + \frac{2}{2^{\omega}}$			
if $2<\omega_2$ and $\omega_2\leq\omega_1$	$3\omega_2 + 2^{\omega_1 - 3} - \frac{1}{2} + \frac{2^{\omega_2 - 3} - \omega_2 - \frac{5}{2}}{2^{\omega_1}} + \frac{2}{2^{\omega}}$			
if $\omega_1=2$ and $2<\omega_2$	$3\omega_2 - \frac{5}{4} + \frac{6}{2^{\omega}}$			
if $2<\omega_1$ and $\omega_1<\omega_2$	$3\omega_2 + 2^{\omega_1 - 3} - 2^{\omega_1 - \omega_2 - 4} - \frac{5}{16} - \frac{\omega_1 + \frac{7}{2}}{2^{\omega_1}} + \frac{1}{2^{\omega_2}} + \frac{2}{2^{\omega}}$			

Implementation results and comparisons

- \bullet $\ell=2$ case enjoys the full factor-4 compression and slight speed-ups
- $\ell=3$ case enjoys factor-2 compression but factor-4 compression suffers from a computational overhead: up to 9% in key generation
- A reasonable choice:
 - For $\ell = 2$, use signed-digits and torus representations (factor-4 compression)
 - ▶ For $\ell = 3$, use only signed-digits (factor-2 compression)
- New table sizes:
 - $\ell=2$: 18KiB to 240KiB for all SIKE parameter sets
 - $\ell=3$: 34KiB to 477KiB for all SIKE parameter sets

Implementation results and comparisons

- Comparative results of the average cost (in \mathbb{F}_p -multiplications) and table sizes (in KiB) to compute logarithms in $\mathbb{G}_{2,e}$ and $\mathbb{G}_{3,e}$
- Our results have been implemented in C and available at https://github.com/microsoft/PQCrypto-SIDH

DLP in $\mathbb{G}_{2,e}$	source	$\omega = 3$		$\omega =$ 4		$\omega = 5$	
DLF III G2,e		time	size	time	size	time	size
e = 216 (SIKEp434)	previous	1944	70	1600	105	1415	342
e — 210 (SINEP434)	ours	1818	18	1542	27	1408	86
e = 372 (SIKEp751)	previous	3765	197	3126	296	2748	954
e = 3/2 (3/KEp/31)	ours	3476	49	2964	74	2688	240
	COLLEGO	$\omega = 2$		$\omega = 3$		$\omega = 4$	
DI D in C	cource	$\omega =$	= 2	$\omega =$	= 3	ω =	= 4
DLP in $\mathbb{G}_{3,e}$	source	$\omega =$	= 2 size	$\omega =$ time	= 3 size	ω =	= 4 size
,	source previous				٠.		
DLP in $\mathbb{G}_{3,e}$ $e=137$ (SIKEp434)		time	size	time	size	time	size
,	previous	time 1845	size	time 1407	size 301	time 1185	size 688

Thank You