Pricing Quanto Options

QFGB8960 Advanced C++ for Finance

Omar Faruque

Fordham University

April 30, 2025

Quanto Options - Overview

- **Definition**: Cross-currency derivatives that provide exposure to foreign asset performance with fixed domestic currency payoff
- Key feature: Eliminates currency risk while maintaining foreign market exposure
- Payoff: $(\phi(S(T) K))^+$ units of domestic currency • $\phi = 1$ for call and $\phi = -1$ for put
- Challenge: Requires adjustment to standard Black-Scholes to account for asset-FX correlation

Theoretical Framework and Implementation

- Quanto-adjusted drift: $r_f q + \rho \sigma_S \sigma_Q$
- Quanto forward: $F^Q(t, T) = e^{(r_f q + \rho \sigma_S \sigma_Q)(T t)} S(t)$
- Modified dividend yield: $q' = r_d r_f + q \rho \sigma_S \sigma_Q$
- **Intuition**: Correlation between asset and exchange rate affects effective growth rate
 - $\rho > 0$: increases drift
 - ρ < 0: reduces drift
- Analytical Solution:
 - Modified Black-Scholes with quanto drift
 - $\bullet \ \mathtt{quantoEuropeanOptionBS} \to \mathtt{qf.qEuroBS} \\$
- Monte Carlo:
 - BsMcQuantoPricer extends BsMcPricer
 - Python: qf.qEuroBSMC
- PDE Method:
 - Pde1DSolver with quanto drift
 - Python: qf.qEuroBSPDE

Verification of Methods

Test Parameters:

• Spot: 100, Strike: 100

Time to exp: 1 year

Asset vol: 0.2, FX vol: 0.15

Correlation: 0.5

• Domestic rate at exp: 0.02

• Foreign rate at exp: 0.025

Results:

Analytical: 9.50800966

Monte Carlo (30M paths):
 9.50758241 (Rel. Error:

4.49e-05)

PDE (25600 nodes):
 9.50780061 (Rel. Error:
 2.20e-05)

Quanto Call-Put Parity

Theoretical relationship:

$$\begin{aligned} &\mathsf{Call}_{\mathsf{quanto}}(K,T) - \mathsf{Put}_{\mathsf{quanto}}(K,T) \\ &= e^{-r_d T} \cdot (S_0 \cdot e^{(r_f - q + \rho \sigma_S \sigma_Q)T} - K) \end{aligned}$$

Verification results:

- Tested across multiple strikes (80–120) and maturities (0.5–2.0 years) using analytical approach (qf.qEuroBS)
- Maximum relative error: $\sim 10^{-15}$
- Confirms theoretical consistency of implementation
- Compared with standard call-put parity: Call – Put = $e^{-rT} \cdot (S_0 e^{(r-q)T} - K)$

Fig. Put-Call Parity Verification

Impact of Correlation

Key findings:

- Correlation significantly affects quanto option prices
- Quanto call prices increase with correlation
- Quanto put prices decrease with correlation

Economic interpretation:

- $\rho > 0$: Strengthening FX with an increase in asset price
 - Benefits call options, reduces put value
- ρ < 0: Weakening FX with increasing asset price
 - Reduces call value, benefits put options

Fig. Effect of correlation

Mathematical Impact of Correlation

- **Drift Adjustment**: Correlation affects option pricing through the drift adjustment term $\rho\sigma_S\sigma_Q$
- Effect on Forward Price:

$$F^{Q}(t,T) = S_0 \cdot e^{(r_f - q + \rho \sigma_S \sigma_Q)T}$$
(1)

$$= F^{std}(t,T) \cdot e^{\rho \sigma_S \sigma_Q \cdot T} \tag{2}$$

where F^{std} is the standard forward price

- Shift in Probability Measure:
 - Positive ρ shifts the forward price upward (favoring calls)
 - Negative ρ shifts the forward price downward (favoring puts)

Summary & References

Summary:

- Successfully implemented three pricing methods for quanto options
- Verified consistency across methods with high numerical accuracy
- Confirmed theoretical properties (call-put parity)
- Analyzed correlation effects on pricing

References:

- Hull, J. C. (2018). Options, Futures, and Other Derivatives. Pearson.
- Wilmott, P. (2006). Paul Wilmott on Quantitative Finance. Wiley.
- Shreve, S. E. (2004). Stochastic Calculus for Finance II: Continuous-Time Models. Springer.