Lineární prostory nad **F**

Odpřednesenou látku naleznete v kapitolách 1.1–1.4 skript *Abstraktní a konkrétní lineární algebra*.

Minulá přednáška

Lineární prostor nad $\mathbb R$ jako zobecnění (například) prostoru orientovaných úseček v rovině.

Dnešní přednáška

- Těleso F jako zobecnění reálných čísel.
- ② Lineární prostor nad F jako zobecnění pojmu lineární prostor nad R.
- Důležité: povšmneme si, že důkazy typicky nesouvisí s konkrétními operacemi; souvisí s pouze s algebraickými vlastnostmi těchto operací.^a

Od příště budeme pracovat s lineárními prostory nad obecným tělesem.

^aDo jisté míry je tak dnešní přednáška "kopií" přednášky předchozí. Algebra dovolí od příště takovou marnotratnost nedopustit.

Sčítání a násobení reálných čísel

Množina reálných čísel ℝ je vybavena dvěma funkcemi

$$+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \quad \cdot: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

pro které platí následující:

- Vlastnosti sčítání:
 - Existuje $0 \in \mathbb{R}$ tak, že pro vš. $a \in \mathbb{R}$ platí: a + 0 = 0 + a = a (existence nuly).
 - **2** Pro vš. $a, b, c \in \mathbb{R}$ platí: (a+b)+c=a+(b+c) (asociativita sčítání).
 - **3** Pro vš. $a, b \in \mathbb{R}$ platí: a + b = b + a (komutativita sčítání).
 - Pro vš. $a \in \mathbb{R}$ existuje právě jedno $b \in \mathbb{R}$ tak, že a+b=0 (existence opačného čísla, značíme b=-a).

Sčítání a násobení reálných čísel (pokrač.)

- Vlastnosti násobení:
 - Existuje $1 \in \mathbb{R}$ tak, že pro vš. $a \in \mathbb{R}$ platí: $1 \cdot a = a$ (existence jednotky).
 - **2** Pro vš. $a, b, c \in \mathbb{R}$ platí: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (asociativita násobení).
 - **3** Pro vš. $a, b \in \mathbb{R}$ platí: $a \cdot b = b \cdot a$ (komutativita násobení).
- Provázanost sčítání a násobení:
 - Pro vš. $a, b, c \in \mathbb{R}$ platí: $a \cdot (b + c) = a \cdot b + a \cdot c$ (levý distributivní zákon).
 - **2** Pro vš. $a, b, c \in \mathbb{R}$ platí: $(b+c) \cdot a = b \cdot a + c \cdot a$ (pravý distributivní zákon).
- **1** Test invertibility: pro vš. $a \in \mathbb{R}$ platí: $a \neq 0$ iff existuje a^{-1} .

Poznámka

Výše uvedené vlastnosti byly podstatné pro zavedení pojmu lineární prostor nad \mathbb{R} (viz minulou přednášku).

Příklady: další "standardní" sčítání a násobení

- Standardní sčítání a násobení racionálních čísel: obě operace na množině ℚ splňují stejné vlastnosti jako standardní sčítání a násobení na množině ℝ.
- Standardní sčítání a násobení komplexních čísel: obě operace na množině C splňují stejné vlastnosti jako standardní sčítání a násobení na množině R.
- Standardní sčítání a násobení celých čísel: obě operace na množině Z nesplňují stejné vlastnosti jako standardní sčítání a násobení na množině R. Neplatí test invertibility: například 2 ≠ 0, ale 2⁻¹ v Z neexistuje!^a

 $^{^{3}}$ Test invertibility v \mathbb{R} byl v minulé přednášce podstatný! Množinu \mathbb{Z} tedy jako množinu skalárů nebudeme moci použít.

Příklad: "nestandardní" sčítání a násobení

1 Množina $\mathbb{Z}_2 = \{0,1\}$ s operacemi:

+	0	1		0	1
0	0	1	0	0	0
1	1	0	1	0	1

② Množina $\mathbb{Z}_3 = \{0, 1, 2\}$ s operacemi:

	+	0	1	2			0	1	2
	0	0	1	2	-	0	0	0	0
	1	1	2	0	-	1	0	1	2
•	2	2	0	1	-	2	0	2	1

Operace na množinách \mathbb{Z}_2 a \mathbb{Z}_3 splňují stejné vlastnosti jako standardní sčítání a násobení na množině \mathbb{R} .

Slogan pro těleso

Těleso $\mathbb F$ je kolekce jakýchkoli objektů (těm budeme říkat prvky tělesa $\mathbb F$), které mezi sebou můžeme sčítat a násobit. Sčítání a násobení v $\mathbb F$ splňují stejné vlastnosti jako standardní sčítání a násobení v $\mathbb R$.

Definice (těleso)

Těleso je množina F, vybavena dvěma funkcemi

$$+: \mathbb{F} \times \mathbb{F} \to \mathbb{F}, \quad \cdot: \mathbb{F} \times \mathbb{F} \to \mathbb{F}$$

pro které platí následující:

- Vlastnosti sčítání:
 - Existuje $0 \in \mathbb{F}$ tak, že pro vš. $a \in \mathbb{F}$ platí: a + 0 = 0 + a = a (existence nuly).
 - **2** Pro vš. $a, b, c \in \mathbb{F}$ platí: (a+b)+c=a+(b+c) (asociativita sčítání).
 - **9** Pro vš. $a, b \in \mathbb{F}$ platí: a + b = b + a (komutativita sčítání).
 - Pro vš. $a \in \mathbb{F}$ existuje právě jedno $b \in \mathbb{F}$ tak, že a + b = 0 (existence opačného čísla, značíme b = -a).

Definice tělesa (pokrač.)

- Vlastnosti násobení:
 - Existuje $1 \in \mathbb{F}$ tak, že pro vš. $a \in \mathbb{F}$ platí: $1 \cdot a = a$ (existence jednotky).
 - **2** Pro vš. $a, b, c \in \mathbb{F}$ platí: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (asociativita násobení).
 - **3** Pro vš. $a, b \in \mathbb{F}$ platí: $a \cdot b = b \cdot a$ (komutativita násobení).
- Provázanost sčítání a násobení:
 - Pro vš. $a, b, c \in \mathbb{F}$ platí: $a \cdot (b + c) = a \cdot b + a \cdot c$ (levý distributivní zákon).
 - **2** Pro vš. $a, b, c \in \mathbb{F}$ platí: $(b+c) \cdot a = b \cdot a + c \cdot a$ (pravý distributivní zákon).
- **1** Test invertibility: pro vš. $a \in \mathbb{F}$ platí: $a \neq 0$ iff existuje a^{-1} .

Příklady

- Množiny Q, R, C se standardním sčítáním a násobením jsou tělesa.
- ☑ Množina Z se standardním sčítáním a násobením není těleso.
- Množiny \mathbb{Z}_2 a \mathbb{Z}_3 jsou tělesa (sčítáme a násobíme jako zbytky po dělení 2, resp. 3).

Obecněji: množina $\mathbb{Z}_p=\{0,1,\ldots,p-1\}$, kde p je prvočíslo, je těleso, pokud čísla sčítáme a násobíme jako zbytky po dělení p.

Definice (lineární prostor nad tělesem F)

Lineární prostor nad tělesem \mathbb{F} je množina L spolu se dvěma funkcemi

$$+: L \times L \to L, \quad \cdot: \mathbb{F} \times L \to L$$

pro které platí následující:

- Vlastnosti sčítání:
 - Existuje $\vec{o} \in L$ tak, že pro vš. $\vec{x} \in L$ platí: $\vec{x} + \vec{o} = \vec{o} + \vec{x} = \vec{x}$ (existence nulového vektoru).
 - **2** Pro vš. $\vec{x}, \vec{y}, \vec{z} \in L$ platí: $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$ (asociativita sčítání vektorů).
 - **9** Pro vš. $\vec{x}, \vec{y} \in L$ platí: $\vec{x} + \vec{y} = \vec{y} + \vec{x}$ (komutativita sčítání vektorů).
 - Pro vš. $\vec{x} \in L$ existuje právě jeden $\vec{y} \in L$ tak, že $\vec{x} + \vec{y} = \vec{o}$ (existence opačného vektoru, značíme $\vec{y} = -\vec{x}$).

Definice (lineární prostor nad tělesem F), pokrač.

- Vlastnosti násobení skalárem:
 - Pro vš. $\vec{x} \in L$ platí: $1 \cdot \vec{x} = \vec{x}$ (násobení jednotkovým skalárem).
 - **2** Pro vš. $a, b \in \mathbb{F}$ a vš. $\vec{x} \in L$ platí: $a \cdot (b \cdot \vec{x}) = (a \cdot b) \cdot \vec{x}$ (asociativita násobení skalárem).
- Oistributivní zákony:
 - Pro vš. $a, b \in \mathbb{F}$ a vš. $\vec{x} \in L$ platí: $(a + b) \cdot \vec{x} = a \cdot \vec{x} + b \cdot \vec{x}$ (distributivita součtu skalárů).
 - **2** Pro vš. $a \in \mathbb{F}$ a vš. $\vec{x}, \vec{y} \in L$ platí: $a \cdot (\vec{x} + \vec{y}) = a \cdot \vec{x} + a \cdot \vec{y}$ (distributivita součtu vektorů).

Poznámka

Axiomy tří typů: chování operace +, chování operace \cdot a vzájemný vztah obou operací.

Definice je formálně stejná jako pro lineární prostor nad \mathbb{R} . Jediná změna: těleso \mathbb{R} je nahrazeno obecným tělesem \mathbb{F} .

Příklady lineárních prostorů nad obecným tělesem F

• Prostory \mathbb{F}^n nad \mathbb{F} , $n \ge 1$. Vektory jsou uspořádané n-tice prvků \mathbb{F} , psané do sloupce. Skaláry jsou prvky tělesa \mathbb{F} .

Například: v
$$(\mathbb{Z}_7)^2$$
 je vektor $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$, v \mathbb{Q}^3 je vektor $\begin{pmatrix} 2.14 \\ -21.7 \\ 12 \end{pmatrix}$, v \mathbb{C}^2 je vektor $\begin{pmatrix} 2-4i \\ \sqrt{3}i \end{pmatrix}$, atd.

② Prostory $\mathbb{F}[x]$ polynomů v neurčité x s koeficienty z tělesa \mathbb{F} . Skaláry jsou prvky tělesa \mathbb{F} , vektory jsou jednotlivé polynomy. Sčítání a násobení je definováno analogicky jako v $\mathbb{R}[x]$. Například: v $\mathbb{Z}_3[x]$ platí:

$$(2x+2) + (x+2) = 1$$

 $(2x+2) \cdot (x+2) = 2x^2 + 1$

Jednoduché důsledky definice

At L je lineární prostor. Potom:

- Nulový vektor je jednoznačně určen.
- ② Pro vš. $\vec{x} \in L$ platí: $0 \cdot \vec{x} = \vec{o}$.
- **3** Opačný vektor k $\vec{x} \in L$ je vektor $(-1) \cdot \vec{x}$.
- **1** Pro vš. $a \in \mathbb{R}$ platí: $a \cdot \vec{o} = \vec{o}$.

Důkaz.

- **1** At existují $\vec{o_1}$, $\vec{o_2}$ tak, že pro vš. $\vec{x} \in L$ platí: $\vec{x} + \vec{o_1} = \vec{o_1} + \vec{x} = \vec{x}$ a $\vec{x} + \vec{o_2} = \vec{o_2} + \vec{x} = \vec{x}$. Pak $\vec{o_1} = \vec{o_1} + \vec{o_2} = \vec{o_2}$.
- ② Pro vš. $\vec{x} \in L$ platí: $\vec{x} = 1 \cdot \vec{x} = (1+0) \cdot \vec{x} = 1 \cdot \vec{x} + 0 \cdot \vec{x} = \vec{x} + 0 \cdot \vec{x}$. Tudíž $0 \cdot \vec{x}$ musí být nulový vektor.

Důkaz (pokrač.)

- **3** Platí: $\vec{x} + (-1) \cdot \vec{x} = 1 \cdot \vec{x} + (-1) \cdot \vec{x} = (1-1) \cdot \vec{x} = 0 \cdot \vec{x} = \vec{o}$.

Velmi důležitý důsledek definice

Ať L je lineární prostor, $a \in \mathbb{F}$, $\vec{x} \in L$. Pak $a \cdot \vec{x} = \vec{o}$ právě tehdy, když a = 0 nebo $\vec{x} = \vec{o}$.

Důkaz.

Díky předchozímu stačí dokázat pouze implikaci zleva doprava.

At
$$\vec{a} \cdot \vec{x} = \vec{o}$$
 a $\vec{a} \neq 0$. Potom existuje \vec{a}^{-1} . Tudíž $\vec{o} = \vec{a}^{-1} \cdot \vec{o} = \vec{a}^{-1} \cdot (\vec{a} \cdot \vec{x}) = (\vec{a}^{-1} \cdot \vec{a}) \cdot \vec{x} = 1 \cdot \vec{x} = \vec{x}$.

Povšimněme si:

Důkazy jsou stejné, jako v minulé přednášce!

Jaký nejobecnější výpočet lze v lineárním prostoru vykonat?

- **1** Například můžeme sečíst čtyři vektory: $\vec{x} + \vec{y} + \vec{z} + \vec{w}$. Díky asociativitě sčítání nemusíme psát závorky.
- ② Například můžeme násobek vektoru opět vynásobit: $b \cdot (a \cdot \vec{x})$. Díky axiomům jde opět o násobek $(b \cdot a) \cdot \vec{x}$.
- ① Obecněji, můžeme sčítat konečně mnoho násobků vektorů. To znamená: je-li dán konečný seznam vektorů $(\vec{x}_1, \ldots, \vec{x}_n)$ a konečný seznam skalárů (a_1, \ldots, a_n) , lze utvořit lineární kombinaci

$$a_1 \cdot \vec{x}_1 + a_2 \cdot \vec{x}_2 + a_3 \cdot \vec{x}_3 + \ldots + a_n \cdot \vec{x}_n$$

značenou i
$$\sum_{i=1}^n a_i \cdot \vec{x_i}$$
 nebo $\sum_{i \in \{1,\dots,n\}} a_i \cdot \vec{x_i}$

^aTěmto skalárům říkáme koeficienty lineární kombinace.

Definice

Seznam (také: skupina) vektorů je buď prázdná posloupnost () nebo konečná posloupnost $(\vec{x_1}, \dots, \vec{x_n})$.

Pozor: je rozdíl mezi seznamem a množinou

$$(\vec{x}_1, \vec{x}_2, \vec{x}_3) \neq (\vec{x}_3, \vec{x}_2, \vec{x}_1) \text{ vs. } \{\vec{x}_1, \vec{x}_2, \vec{x}_3\} = \{\vec{x}_3, \vec{x}_2, \vec{x}_1\}$$

 $(\vec{x}_1, \vec{x}_1, \vec{x}_2) \neq (\vec{x}_1, \vec{x}_2) \text{ vs. } \{\vec{x}_1, \vec{x}_1, \vec{x}_2\} = \{\vec{x}_1, \vec{x}_2\}$

Definice (lineární kombinace konečného seznamu vektorů)

Pro seznam vektorů tvaru

- () definujeme \vec{o} jako jeho (jedinou možnou) lineární kombinaci (s prázdným seznamem koeficientů).
- ② $(\vec{x}_1, \dots, \vec{x}_n)$ je vektor $\sum_{i=1}^n a_i \cdot \vec{x}_i$ jeho lineární kombinace (se seznamem koeficientů (a_1, \dots, a_n)).

Příklad (geometrický význam lineární kombinace)

Pro seznam (\mathbf{a}_1) v \mathbb{R}^2

a seznam (2.5) reálných čísel je

→ a₁

lineární kombinace.

Všechny možné lineární kombinace vektoru \mathbf{a}_1 vytvářejí v \mathbb{R}^2 přímku procházející počátkem (se směrem \mathbf{a}_1).

Příklad (geometrický význam lineární kombinace)

Pro seznam $(\mathbf{a}_1, \mathbf{a}_2)$ v \mathbb{R}^3

a seznam (2.1, 1.3) reálných čísel je

Všechny možné lineární kombinace seznamu $(\mathbf{a}_1, \mathbf{a}_2)$ vytvářejí v \mathbb{R}^3 rovinu procházející počátkem (se směrem $(\mathbf{a}_1, \mathbf{a}_2)$).

Význam lineárních kombinací (zatím jen slogan)

Ať L je lineární prostor nad \mathbb{F} .

Lineární kombinace seznamu $(\vec{x}_1, \dots, \vec{x}_n)$ v L vytvářejí "rovný kus" prostoru L.

Tento "rovný kus" prostoru L prochází počátkem \vec{o} a má "směr" $(\vec{x}_1,\ldots,\vec{x}_n).$

Příští přednáška: těmto "rovným kusům" v L budeme říkat lineární podprostory L.

Příklad (lineární kombinace a soustavy rovnic)

Existují koeficienty x, y v \mathbb{Z}_7 tak, že v $(\mathbb{Z}_7)^2$ platí rovnost

$$x \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix} + y \cdot \begin{pmatrix} 6 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$$
?

Dva pohledy na tento problém:

• Hledáme prvky x, y v \mathbb{Z}_7 tak, že platí

$$2x + 6y = 2$$

$$3x + 1y = 6$$

To znamená: koeficienty lineární kombinace jsou řešením jisté soustavy lineárních rovnic nad \mathbb{Z}_7 .

Příklad (lineární kombinace a soustavy rovnic, pokrač.)

Pro zadané vektory

hledáme "natažení" červených vektorů tak, aby modrý vektor byl úhlopříčkou čtyřúhelníka: ܐܢ̣̣̣̣̣,

Pozor: výše uvedený obrázek je "slogan"! Pracujeme totiž v $(\mathbb{Z}_7)^2$.

Zobecnění předchozího (zatím jen slogan)

Hledáme-li pro pevný seznam $(\mathbf{a}_1, \dots, \mathbf{a}_s)$ a pevný vektor \mathbf{b} v \mathbb{F}^r reálné koeficienty x_1, \dots, x_s tak, aby platila rovnost

$$x_1 \cdot \mathbf{a}_1 + \ldots + x_s \cdot \mathbf{a}_s = \mathbf{b}$$

pak lze na tuto úlohu pohlížet dvěma způsoby:

- 1 Řešíme soustavu r lineárních rovnic o s neznámých.
- ② Hledáme "natažení" vektorů $\mathbf{a}_1, \ldots, \mathbf{a}_s$ pomocí skalárů x_1, \ldots, x_s tak, aby vektor **b** tvořil úhlopříčku rovnoběžnostěnu.

Příští přednášky: druhý pohled na tuto úlohu nám dovolí vybudovat elegantní metodu řešení (Gaussovu eliminaci).