Section 1.8 – Curvature and Normal Vectors

Curvature of a Plane Curve

As a particle moves along a smooth curve in the plane, $\vec{T} = \frac{d\vec{r}}{ds}$ turns as the curve bends. Since \vec{T} is a unit vector, its length remains constant and only its direction changes as particle moves along the curve. The rate at which \vec{T} turns per unit of length along the curve is called the *curvature*.

Definition

If \vec{T} is the unit vector of a smooth curve, the *curvature* function of the curve is

$$\kappa = \left| \frac{d\vec{T}}{ds} \right|$$

Formula for Calculating Curvature

If $\vec{r}(t)$ is a smooth curve, then the curvature is

$$\kappa = \frac{1}{|\vec{v}|} \left| \frac{d\vec{T}}{dt} \right|$$

Where $\vec{T} = \frac{\vec{v}}{|\vec{v}|}$ is the unit tangent vector.

A straight line is parametrized by $\vec{r}(t) = \vec{C} + t\vec{v}$ for constant vectors \vec{C} and \vec{v} . Thus $\vec{r}'(t) = \vec{v}$, and the unit tangent vector $\vec{T} = \frac{\vec{v}}{|\vec{v}|}$ is a constant vector that always points in the same direction and has derivative $\vec{0}$. It follows that, for any value of the parameter t, the curvature of the straight line is

$$\kappa = \frac{1}{|\vec{v}|} \left| \frac{d\vec{T}}{dt} \right| = \frac{1}{|\vec{v}|} |\mathbf{0}| = 0$$

Example

Find the curvature of a circle $r(t) = (a\cos t)i + (a\sin t)j$ of radius a.

Solution

$$\vec{v}(t) = \frac{d\vec{r}}{dt} = -(a\sin t)\hat{i} + (a\cos t)\hat{j}$$

$$|\vec{v}| = \sqrt{(-a\sin t)^2 + (a\cos t)^2}$$

$$= \sqrt{a^2\sin^2 t + a^2\cos^2 t}$$

$$= |a|\sqrt{\sin^2 + \cos^2 t}$$

$$= \underline{a}$$

$$\vec{T} = \frac{\vec{v}}{|\vec{v}|} = -(\sin t)\hat{i} + (\cos t)\hat{j}$$
Since $a > 0$

$$\left| \frac{d\vec{T}}{dt} \right| = \sqrt{\cos^2 t + \sin^2 t}$$

$$= 1$$

 $\frac{d\vec{T}}{dt} = -(\cos t)\hat{i} - (\sin t)\hat{j}$

$$\kappa = \frac{1}{|\vec{v}|} \left| \frac{d\vec{T}}{dt} \right|$$
$$= \frac{1}{a} (1)$$
$$= \frac{1}{a} = \frac{1}{radius}$$

Definition

At a point where $\kappa \neq 0$, the **principal unit normal** vector for a smooth curve in the plane is

Formula for Calculating N

If $\vec{r}(t)$ is a smooth curve, then the principal unit normal is

$$\overrightarrow{N} = \frac{d\overrightarrow{T} / dt}{\left| d\overrightarrow{T} / dt \right|}$$

Where $\vec{T} = \frac{\vec{v}}{|\vec{v}|}$ is the unit tangent vector.

Example

Find T and N for the circular motion $\vec{r}(t) = (\cos 2t)\hat{i} + (\sin 2t)\hat{j}$

Solution

$$\vec{v}(t) = \vec{r}'(t)$$

$$= -(2\sin 2t)\hat{i} + (2\cos 2t)\hat{j}$$

$$|\vec{v}| = \sqrt{4\sin^2 2t + 4\cos^2 2t}$$

$$= 2 \rfloor$$

$$\vec{T} = \frac{\vec{v}}{|\vec{v}|}$$

$$= -(\sin 2t)\hat{i} + (\cos 2t)\hat{j}$$

$$\frac{d\vec{T}}{dt} = -(2\cos 2t)\hat{i} - (2\sin 2t)\hat{j}$$

$$\left| \frac{d\vec{T}}{dt} \right| = \sqrt{4\cos^2 2t + 4\sin^2 2t}$$

$$= 2$$

$$\vec{N} = \frac{d\vec{T} / dt}{\left| d\vec{T} / dt \right|}$$

$$= \frac{-(2\cos 2t)\hat{i} - (2\sin 2t)\hat{j}}{2}$$

$$= -(\cos 2t)\hat{i} - (\sin 2t)\hat{j}$$

Circle of Curvature for plane Curves

The *circle of curvature* or *osculating circle* at a point *P* on a plane where $\kappa \neq 0$ is the circle in the plane of the curve that

- **1.** is tangent to the curve at *P* (has the same tangent line the curve has)
- 2. has the same curvature the curve has at P
- 3. lies toward the concave or inner side of the curve

The *radius of curvature* of the curve at *P* is the radius of the circle of curvature, which is

Radius of curvature =
$$\rho = \frac{1}{\kappa}$$

To find ρ , we find κ and take the reciprocal. The *center of curvature* of the curve at P is the center of the circle of curvature.

Find and graph the osculating circle of the parabola $y = x^2$ at the origin.

Solution

Assume:
$$t = x$$

$$\vec{r}(t) = x\hat{i} + y\hat{i}$$

$$= t \hat{i} + t^2 \hat{j}$$

$$\vec{v} = \frac{d\vec{r}}{dt}$$

$$= \hat{i} + 2t\hat{j}$$

$$|\vec{v}| = \sqrt{1 + 4t^2}$$

$$\vec{T} = \frac{\vec{v}}{|\vec{v}|}$$

$$= \frac{1}{\sqrt{1 + 4t^2}} \hat{i} + \frac{2t}{\sqrt{1 + 4t^2}} \hat{j}$$

$$\frac{d\vec{T}}{dt} = -\frac{4t}{\left(1 + 4t^2\right)^{3/2}} \hat{i} + \frac{2\left(1 + 4t^2\right)^{1/2} - 8t^2\left(1 + 4t^2\right)^{-1/2}}{\left(1 + 4t^2\right)} \hat{j}$$

$$= -\frac{4t}{\left(1 + 4t^2\right)^{3/2}} \hat{i} + \frac{2\left(1 + 4t^2\right) - 8t^2}{\left(1 + 4t^2\right)^{3/2}} \hat{j}$$

$$= -\frac{4t}{\left(1 + 4t^2\right)^{3/2}} \hat{i} + \frac{2}{\left(1 + 4t^2\right)^{3/2}} \hat{j}$$

$$= -\frac{4t}{\left(1 + 4t^2\right)^{3/2}} \hat{i} + \frac{2}{\left(1 + 4t^2\right)^{3/2}} \hat{j}$$

At the origin, t = 0, so the curvature is

$$\frac{d\vec{T}}{dt}\Big|_{t=0} = 0\hat{i} + 2\hat{j}$$

$$= 2\hat{j} \Big|$$

$$\kappa(0) = \frac{1}{|\vec{v}(0)|} \left| \frac{d\vec{T}}{dt}(0) \right|$$

$$= \frac{1}{\sqrt{1}} |2\hat{j}|$$

$$= 2 |$$

The radius of curvature is: $\rho = \frac{1}{\kappa} = \frac{1}{2}$

At the origin, t = 0:

$$\overrightarrow{T} = i \quad \overrightarrow{N} = \hat{j}$$

The center of the circle is $\left(0, \frac{1}{2}\right)$

The equation of the osculating circle is: $x^2 + \left(y - \frac{1}{2}\right)^2 = \frac{1}{4}$

Curvature and Normal Vectors for Space Curves

If a smooth curve in space is specified by the position $\vec{r}(t)$ as a function of somw parameter t, and if s is the arc length parameter of the curve, then the unit tangernt vector \vec{T} is $\frac{d\vec{r}}{ds} = \frac{\vec{v}}{|\vec{v}|}$. The curvature in space is then defined to be

$$\kappa = \left| \frac{d\vec{T}}{ds} \right| = \frac{1}{|\vec{v}|} \left| \frac{d\vec{T}}{dt} \right|$$

Just as for plane curves. The vector $\frac{d\vec{T}}{ds}$ is orthogonal to \vec{T} , and we define the *principal unit normal* to be

$$\vec{N} = \frac{1}{\kappa} \frac{d\vec{T}}{ds} = \frac{d\vec{T} / dt}{\left| d\vec{T} / dt \right|}$$

Example

Find the curvature for the helix $\vec{r}(t) = (a\cos t)\hat{i} + (a\sin t)\hat{j} + bt \hat{k}$, $a,b \ge 0$, $a^2 + b^2 \ne 0$

Solution

$$|\vec{v}| = \sqrt{a^2 \sin^2 t + a^2 \cos^2 t + b^2}$$

$$= \sqrt{a^2 + b^2}$$

$$\vec{T} = \frac{\vec{v}}{|\vec{v}|}$$

$$= \frac{1}{\sqrt{a^2 + b^2}} \left(-(a \sin t)\hat{i} + (a \cos t)\hat{j} + b \hat{k} \right)$$

$$\frac{d\vec{T}}{dt} = \frac{1}{\sqrt{a^2 + b^2}} \left(-(a \cos t)\hat{i} - (a \sin t)\hat{j} \right)$$

$$= \frac{-a}{\sqrt{a^2 + b^2}} \left((\cos t)\hat{i} + (\sin t)\hat{j} \right)$$

$$\kappa = \frac{1}{|\vec{v}|} \left| \frac{d\vec{T}}{dt} \right|$$

$$= \frac{1}{\sqrt{a^2 + b^2}} \left| \frac{-a}{\sqrt{a^2 + b^2}} \left((\cos t)\hat{i} + (\sin t)\hat{j} \right) \right|$$

 $\vec{v} = -(a\sin t)\hat{i} + (a\cos t)\hat{j} + b\hat{k}$

$$= \frac{1}{\sqrt{a^2 + b^2}} \frac{a}{\sqrt{a^2 + b^2}} \sqrt{\sin^2 t + \cos^2 t}$$

$$= \frac{a}{a^2 + b^2}$$

Find \overrightarrow{N} for the helix $\overrightarrow{r}(t) = (a\cos t)\hat{i} + (a\sin t)\hat{j} + bt\hat{k}$

Solution

$$\frac{d\vec{T}}{dt} = \frac{-a}{\sqrt{a^2 + b^2}} \left((\cos t)\hat{i} + (\sin t)\hat{j} \right)$$

$$\left| \frac{dT}{dt} \right| = \frac{a}{\sqrt{a^2 + b^2}}$$

$$\vec{N} = \frac{d\vec{T} / dt}{\left| d\vec{T} / dt \right|}$$

$$= \frac{-a}{\sqrt{a^2 + b^2}} \left((\cos t)\hat{i} + (\sin t)\hat{j} \right) \cdot \frac{\sqrt{a^2 + b^2}}{a}$$

$$= -\left((\cos t)\hat{i} + (\sin t)\hat{j} \right)$$

$$= -(\cos t)\hat{i} - (\sin t)\hat{j}$$

TNB Frame

The *binormal vector* of a curve in space $\overrightarrow{B} = \overrightarrow{T} \times \overrightarrow{N}$, a unit vector orthogonal to both \overrightarrow{T} and \overrightarrow{N} . Together \overrightarrow{T} , \overrightarrow{N} , and \overrightarrow{B} define a moving right-handed vector frame that play a significant role in calculating the paths of particles moving through space. It is called the *Frenet frame* or *TNB frame*.

Tangential and Normal Components of Acceleration

When an object is accelerated by gravity, brakes, or a combination of rocket motors, how much of the acceleration acts in the direction of motion, in the tangential direction \vec{T} .

$$\vec{v} = \frac{d\vec{r}}{dt}$$

$$= \frac{d\vec{r}}{ds} \frac{ds}{dt}$$

$$= \vec{T} \frac{ds}{dt}$$

$$\vec{a} = \frac{d\vec{v}}{dt}$$

$$= \frac{d}{dt} \left(\vec{T} \frac{ds}{dt} \right)$$

$$= \frac{d^2s}{dt^2} \vec{T} + \frac{ds}{dt} \frac{d\vec{T}}{dt}$$

$$= \frac{d^2s}{dt^2} \vec{T} + \frac{ds}{dt} \left(\frac{d\vec{T}}{ds} \frac{ds}{dt} \right)$$

$$= \frac{d^2s}{dt^2} \vec{T} + \frac{ds}{dt} \left(\kappa \vec{N} \frac{ds}{dt} \right)$$

$$=\frac{d^2s}{dt^2}\vec{T} + \kappa \left(\frac{ds}{dt}\right)^2 \vec{N}$$

Definition

If the acceleration vector is written as

$$\vec{a} = a_T \vec{T} + a_N \vec{N}$$

then

$$a_T = \frac{d^2s}{dt^2} = \frac{d}{dt}|\vec{v}|$$
 and $a_N = \kappa \left(\frac{ds}{dt}\right)^2 = \kappa |\vec{v}|^2$

are the *tangential* and *normal* scalar components of acceleration.

Formula for Calculating the Normal Component of Acceleration

$$a_{N} = \sqrt{|\vec{a}|^{2} - a_{T}^{2}}$$

$$\frac{d^{2}s}{dt^{2}} \mathbf{T}$$

$$\kappa |\mathbf{v}|^{2} \mathbf{N} = \frac{|\mathbf{v}|^{2}}{\rho} \mathbf{N}$$

Without finding \overrightarrow{T} and \overrightarrow{N} , write the acceleration of the motion

$$\vec{r}(t) = (\cos t + t \sin t)\hat{i} + (\sin t - t \cos t)\hat{j}, \quad t > 0$$

In the form $\vec{a} = a_T \vec{T} + a_N \vec{N}$

Solution

$$\vec{v} = \frac{d\vec{r}}{dt}$$

$$= (-\sin t + \sin t + t \cos t)\hat{i} + (\cos t - \cos t + t \sin t)\hat{j}$$

$$= (t \cos t)\hat{i} + (t \sin t)\hat{j}$$

$$|\vec{v}| = \sqrt{t^2 \cos^2 t + t^2 \sin^2 t}$$

$$= \sqrt{t^2 \left(\cos^2 t + \sin^2 t\right)}$$

$$= |t| \qquad t > 0$$

$$= t$$

$$a_T = \frac{d}{dt} |\vec{v}|$$

$$= \frac{d}{dt} (t)$$

$$= 1|$$

$$\vec{a} = \frac{d\vec{v}}{dt}$$

$$= (\cos t - t \sin t)\hat{i} + (\sin t + t \cos t)\hat{j}$$

$$\begin{aligned} \left| \vec{a} \right|^2 &= (\cos t - t \sin t)^2 + (\sin t + t \cos t)^2 \\ &= \cos^2 t - 2t \cos t \sin t + t^2 \sin^2 t + \sin^2 t + 2t \cos t \sin t + t^2 \cos^2 t \\ &= 1 + t^2 \left(\sin^2 t + \cos^2 t \right) \\ &= 1 + t^2 \end{aligned}$$

$$a_N = \sqrt{|\boldsymbol{a}|^2 - a_T^2}$$
$$= \sqrt{1 + t^2 - 1}$$
$$= t$$

$$\vec{a} = a_T \vec{T} + a_N \vec{N}$$

$$= \vec{T} + t \vec{N}$$

Torsion

Definition

Let $\vec{B} = \vec{T} \times \vec{N}$. The torsion function of a smooth curve is

$$\tau = -\frac{d\overrightarrow{B}}{ds} \cdot \overrightarrow{N}$$

Computation Formulas for Curves in Space

Unit tangent vector:
$$\vec{T} = \frac{\vec{v}}{|\vec{v}|}$$

Principal unit normal vector:
$$\overrightarrow{N} = \frac{d\overrightarrow{T}/dt}{\left|d\overrightarrow{T}/dt\right|} = \frac{1}{\kappa} \frac{d\overrightarrow{T}}{ds}$$

Binormal vector:
$$\vec{B} = \vec{T} \times \vec{N} = \frac{1}{\vec{v}} \left| \frac{d\vec{T}}{dt} \right|$$

Curvature:
$$\kappa = \left| \frac{d\vec{T}}{ds} \right| = \frac{\left| \vec{v} \times \vec{a} \right|}{\left| \vec{v} \right|^3} = \frac{1}{\left| \vec{v} \right|} \left| \frac{d\vec{T}}{dt} \right|$$

Torsion:
$$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{\begin{vmatrix} \dot{x} & \dot{y} & \dot{z} \\ \ddot{x} & \ddot{y} & \ddot{z} \\ \ddot{x} & \ddot{y} & \ddot{z} \end{vmatrix}}{|\vec{v} \times \vec{a}|^2}$$

Tangential and normal scalar components of acceleration: $\vec{a} = a_T \vec{T} + a_N \vec{N}$

$$a_T = \frac{d}{dt} |\vec{v}|$$

$$a_N = \kappa |\vec{v}|^2 = \sqrt{|\vec{a}|^2 - a_T^2}$$
$$= |\vec{v}| \frac{dT}{dt}$$

Exercises Section 1.8 – Curvature and Normal Vectors

(1-9) Find \vec{T} , \vec{N} , and κ for the plane curves:

1.
$$\vec{r}(t) = t\hat{i} + (\ln \cos t)\hat{j}, \quad -\frac{\pi}{2} < t < \frac{\pi}{2}$$

6.
$$\vec{r}(t) = (e^t \cos t)\hat{i} + (e^t \sin t)\hat{j} + 2\hat{k}$$

2.
$$\vec{r}(t) = (\ln \sec t)\hat{i} + t\hat{j}, \quad -\frac{\pi}{2} < t < \frac{\pi}{2}$$

7.
$$\vec{r}(t) = \frac{t^3}{3}\hat{i} + \frac{t^2}{2}\hat{j}, \quad t > 0$$

3.
$$\vec{r}(t) = (2t+3)\hat{i} + (5-t^2)\hat{j}$$

8.
$$\vec{r}(t) = (\cos^3 t)i + (\sin^3 t)\hat{j}, \quad 0 < t < \frac{\pi}{2}$$

4.
$$\vec{r}(t) = (\cos t + t \sin t)\hat{i} + (\sin t - t \cos t)\hat{j}, \quad t > 0$$

9.
$$\vec{r}(t) = (\cosh t)\hat{i} - (\sinh t)\hat{j} + t\hat{k}$$

5.
$$r(t) = (3\sin t)i + (3\cos t)j + 4tk$$

10. Find an equation for the circle of curvature of the curve $\vec{r}(t) = t \hat{i} + (\sin t) \hat{j}$, at the point $(\frac{\pi}{2}, 1)$. (The curve parameterizes the graph $y = \sin x$ in the *xy*-plane.)

(11 – 17) Write \vec{a} of the motion $\vec{a} = a_T \vec{T} + a_N \vec{N}$ without finding \vec{T} and \vec{N} .

11.
$$\vec{r}(t) = (a\cos t)\hat{i} + (a\sin t)\hat{j} + bt\hat{k}$$

12.
$$\vec{r}(t) = (1+3t)\hat{i} + (t-2)\hat{j} - 3t\hat{k}$$

13.
$$\vec{r}(t) = (t+1)\hat{i} + 2t\hat{j} + t^2\hat{k}, \quad t = 1$$

14.
$$\vec{r}(t) = (t\cos t)\hat{i} + (t\sin t)\hat{j} + t^2\hat{k}, \quad t = 0$$

15.
$$\vec{r}(t) = (e^t \cos t)\hat{i} + (e^t \sin t)\hat{j} + \sqrt{2}e^t\hat{k}, \quad t = 0$$

16.
$$\vec{r}(t) = (2 + 3t + 3t^2)\hat{i} + (4t + 4t^2)\hat{j} - (6\cos t)\hat{k}$$
 $t = 0$

17.
$$\vec{r}(t) = (2+t)\hat{i} + (t+2t^2)\hat{j} + (1+t^2)\hat{k}$$
 $t = 0$

(18 – 19) Graph the curves and sketch their velocity and acceleration vectors at the given values of t. Then write \vec{a} of the motion $\vec{a} = a_T \vec{T} + a_N \vec{N}$ without finding \vec{T} and \vec{N} , and find the value of κ at the given values of t.

18.
$$\vec{r}(t) = (4\cos t)\hat{i} + (\sqrt{2}\sin t)\hat{j}$$
, $t = 0$ and $\frac{\pi}{4}$

19.
$$\vec{r}(t) = (\sqrt{3} \sec t)\hat{i} + (\sqrt{3} \tan t)\hat{j}, \quad t = 0$$

(20 – 22) Find \vec{T} , \vec{N} , \vec{B} , τ , and κ at the given value of t for the plane curves

20.
$$\vec{r}(t) = \frac{4}{9}(1+t)^{3/2}\hat{i} + \frac{4}{9}(1-t)^{3/2}\hat{j} + \frac{1}{3}t\hat{k}; \quad t = 0$$

21.
$$\vec{r}(t) = (e^t \sin 2t)\hat{i} + (e^t \cos 2t)\hat{j} + 2e^t \hat{k}; \quad t = 0$$

22.
$$\vec{r}(t) = t \hat{i} + \left(\frac{1}{2}e^{2t}\right)\hat{j}; \quad t = \ln 2$$

(23 – 24) Find \vec{T} , \vec{N} , \vec{B} , τ , and κ at the given value of t. Then find equations for the osculating, normal, and rectifying planes at that value of t.

23.
$$\vec{r}(t) = (\cos t)\hat{i} + (\sin t)\hat{j} - \hat{k}, \quad t = \frac{\pi}{4}$$

24.
$$\vec{r}(t) = (\cos t)\hat{i} + (\sin t)\hat{j} + t\hat{k}, \quad t = 0$$

(25-27) Find \vec{B} and τ for:

25.
$$\vec{r}(t) = (3\sin t)\hat{i} + (3\cos t)\hat{j} + 4t\hat{k}$$

26.
$$\vec{r}(t) = (\cos t + t \sin t) \vec{w} + (\sin t - t \cos t) \hat{j} + 3\hat{k}$$

27.
$$\vec{r}(t) = (6\sin 2t)\hat{i} + (6\cos 2t)\hat{j} + 5t\hat{k}$$

- 28. The speedometer on your car reads a steady 35 mph, could you be accelerating? Explain.
- **29.** Can anything be said about the acceleration of a particle that is moving at a constant speed? Give reasons for your answer.
- **30.** Find \vec{T} , \vec{N} , \vec{B} , τ , and κ as functions of t for the plane curves: $\vec{r}(t) = (\sin t)\hat{i} + (\sqrt{2}\cos t)\hat{j} + (\sin t)\hat{k}$, then write \vec{a} of the motion $\vec{a} = a_T \vec{T} + a_N \vec{N}$
- **31.** Consider the ellipse $\vec{r}(t) = \langle 3\cos t, 4\sin t \rangle$ for $0 \le t \le 2\pi$
 - a) Find the tangent vector $\frac{d\vec{r}}{dt}$, the unit vector \vec{T} , and the principal unit normal vector \vec{N} at all points on the curve.
 - b) At what points does $\left| \frac{d\vec{r}}{dt} \right|$ have maximum and minimum values?
 - c) At what points does the curvature have maximum and minimum values? Interpret this result in light of part (b).
 - d) Find the points (if any) at which \vec{r} and \vec{N} are parallel.
- 32. Find the following for all values of t for which the given curve is defined by

$$\vec{r}(t) = \langle 6\cos t, 3\sin t \rangle, \quad 0 \le t \le 2\pi$$

a) Find the tangent vector and the unit tangent vector

- b) Find the curvature.
- c) Find the principal unit normal vector.
- d) Verify that $|\vec{N}| = 1$ and $\vec{T} \cdot \vec{N} = 0$
- e) Graph the curve and sketch \vec{T} and \vec{N} at two points.
- **33.** Find the following for all values of t for which the given curve is defined by

$$\vec{r}(t) = (\cos t)\hat{i} + (2\sin t)\hat{j} + \hat{k}, \quad 0 \le t \le 2\pi$$

- a) Find the tangent vector and the unit tangent vector
- b) Find the curvature.
- c) Find the principal unit normal vector.
- d) Verify that $|\vec{N}| = 1$ and $\vec{T} \cdot \vec{N} = 0$
- e) Graph the curve and sketch \vec{T} and \vec{N} at two points.
- 34. Find the following for all values of t for which the given curve is defined by

$$\vec{r}(t) = t\hat{i} + (2\cos t)\hat{j} + (2\sin t)\hat{k}, \quad 0 \le t \le 2\pi$$

- a) Find the tangent vector and the unit tangent vector
- b) Find the curvature.
- c) Find the principal unit normal vector.
- d) Verify that $|\vec{N}| = 1$ and $\vec{T} \cdot \vec{N} = 0$
- e) Graph the curve and sketch \vec{T} and \vec{N} at two points.
- 35. Find the following for all values of t for which the given curve is defined by

$$\vec{r}(t) = (\cos t)\hat{i} + (2\cos t)\hat{j} + (\sqrt{5}\sin t)\hat{k}, \quad 0 \le t \le 2\pi$$

- a) Find the tangent vector and the unit tangent vector
- b) Find the curvature.
- c) Find the principal unit normal vector.
- d) Verify that $|\vec{N}| = 1$ and $\vec{T} \cdot \vec{N} = 0$
- e) Graph the curve and sketch \vec{T} and \vec{N} at two points.
- **36.** Find equations for the osculating, normal and rectifying planes of the curve $\vec{r}(t) = t\hat{i} + t^2\hat{j} + t^3\hat{k}$ at the point (1, 1, 1).
- 37. Consider the position vector $\vec{r}(t) = (t^2 + 1)\hat{i} + (2t)\hat{j}$, $t \ge 0$ of the moving objects
 - a) Find the normal and tangential components of the acceleration.
 - b) Graph the trajectory and sketch the normal and tangential components of the acceleration at two points on the trajectory. Show that their sum gives the total acceleration.

95

- **38.** Consider the position vector $\vec{r}(t) = (2\cos t)\hat{i} + (2\sin t)\hat{j}$, $0 \le t \le 2\pi$ of the moving objects
 - c) Find the normal and tangential components of the acceleration.
 - d) Graph the trajectory and sketch the normal and tangential components of the acceleration at two points on the trajectory. Show that their sum gives the total acceleration.
- **39.** Consider the position vector $\vec{r}(t) = 3t \ \hat{i} + (4-t) \ \hat{j} + t \ \hat{k}$, $t \ge 0$ of the moving objects Find the normal and tangential components of the acceleration.
- **40.** Consider the position vector $\vec{r}(t) = (2\cos t)\hat{i} + (2\sin t)\hat{j} + (10t)\hat{k}$, $0 \le t \le 2\pi$ of the moving objects
 - a) Find the normal and tangential components of the acceleration.
 - b) Graph the trajectory and sketch the normal and tangential components of the acceleration at two points on the trajectory. Show that their sum gives the total acceleration.
- **41.** Compute the unit binormal vector \vec{B} and the torsion of the curve $\vec{T}(t) = \langle t, t^2, t^3 \rangle$, at t = 1
- **42.** At point *P*, the velocity and acceleration of a particle moving in the plane are $\vec{v} = 3\hat{i} + 4\hat{j}$ and $\vec{a} = 5\hat{i} + 15\hat{j}$. Find the curvature of the particle's path at *P*.
- **43.** Consider the curve $C: \vec{r}(t) = \langle 3\sin t, 4\sin t, 5\cos t \rangle$, for $0 \le t \le 2\pi$
 - a) Find $\vec{T}(t)$ at all points of C.
 - b) Find $\vec{N}(t)$ and the curvature at all points of C.
 - c) Sketch the curve and show $\vec{T}(t)$ and $\vec{N}(t)$ at the points of C corresponding to t = 0 and $t = \frac{\pi}{2}$.
 - d) Are the results of parts (a) and (b) consistent with the graph?
 - e) Find $\vec{B}(t)$ at all points of C.
 - f) Describe three calculations that serve to check the accuracy of your results in part (a) (f).
 - g) Compute the torsion at all points of C. Interpret this result.
- **44.** Consider the curve $C: \vec{r}(t) = \langle 3\sin t, 3\cos t, 4t \rangle$, for $0 \le t \le 2\pi$
 - a) Find $\vec{T}(t)$ at all points of C.
 - b) Find $\overline{N}(t)$ and the curvature at all points of C.
 - c) Sketch the curve and show $\vec{T}(t)$ and $\vec{N}(t)$ at the points of C corresponding to t = 0 and $t = \frac{\pi}{2}$.
 - d) Are the results of parts (a) and (b) consistent with the graph?
 - e) Find $\vec{B}(t)$ at all points of C.

- f) Describe three calculations that serve to check the accuracy of your results in part (a) (f).
- g) Compute the torsion at all points of C. Interpret this result.
- **45.** Suppose $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$, where f, g, and h are the quadratic functions $f(t) = a_1 t^2 + b_1 t + c_1$, $g(t) = a_2 t^2 + b_2 t + c_2$, and $h(t) = a_3 t^2 + b_3 t + c_3$, and where at least one of the leading coefficients a_1 , a_2 , or a_3 is nonzero. Apart from a set of degenerate cases (for example $\vec{r}(t) = \langle t^2, t^2, t^2 \rangle$, whose graph is a line), it can be shown that the graph of $\vec{r}(t)$ is a parabola that lies in a plane
 - a) Show by direct computation that $\vec{v} \times \vec{a}$ is constant. Then explain why the unit binormal vector is constant at all points on the curve. What does this result say about the torsion of the curve?
 - b) Compute a'(t) and explain why the torsion is zero at all points on the curve for which the torsion is defined.
- **46.** Let f and g be continuous on an interval I. consider the curve

$$C: \vec{r}(t) = \left\langle a_1 f(t) + a_2 g(t) + a_3, b_1 f(t) + b_2 g(t) + b_3, c_1 f(t) + c_2 g(t) + c_3 \right\rangle$$

For t in I, and where a_i , b_i , and c_i , for i = 1, 2, and 3, are real numbers

- a) Show that, in general, C lies in a plane.
- b) Explain why the torsion is zero at all points of C for which the torsion is defined.