Perceptrones metabólicos para computación neuronal en sistemas biológicos

Sandra Gómez Gálvez Enrique Valero Leal

Biología Programable Departamento de Inteligencia Artificial

14 de diciembre de 2020

Introducción

Circuitos

Introducción

Introducción

ARTICLE

https://doi.org/10.1038/s41467-019-11889-0

OPEN

Metabolic perceptrons for neural computing in biological systems

Amir Pandi^{1,5}, Mathilde Koch^{1,5}, Peter L. Voyvodic², Paul Soudier^{1,3}, Jerome Bonnet ³, Manish Kushwaha ¹ & Jean-Loup Faulon ^{1,3,4}

Pandi et al. (2019)

Conceptos clave

- 1. Perceptrón de Rosenblatt (1957) o neurona artificial.
- 2. Sistema libre de células: tubo de ensayo con la maquinaria molecular extraída de las células.
- 3. Entrada y procesamiento analógicos.

Pandi et al. (2019)

Figura: Perceptrón

Introducción

Circuitos

Esquema general de los circuitos metabólicos

Dos capas:

- Transductor metabólico:
 Metabolitos de entrada + enzimas = Metabolito de salida (benzoato)
- Actuador: Si hay benzoato → Fluorescencia Actuación similar a una función sigmoidal.

Figura: Transductor y actuador metabólicos (en célula entera).

Circuito sumador analógico en un sistema de célula entera

- Varios metabolitos de entrada procesados por diferentes enzimas.
- Dependiendo de su concentración, habrá más o menos benzoato.
- Dependiendo de si el benzoato alcanza cierta concentración, se expresará el gen GFP o no (fluorescencia).

Figura: Sumador en célula entera

Circuito metabólico en un sistema libre de células

Ventajas:

- Menos restricciones que en los sistemas basados en células enteras.
- No hay crecimiento celular \rightarrow menos ruido.
- Muy ajustables \rightarrow Regular cantidad de input y enzima.

Figura: Ruta metabólica libre de células

Circuito metabólico en un sistema libre de células

Ventajas:

- Menos restricciones que en los sistemas basados en células enteras.
- No hay crecimiento celular \rightarrow menos ruido.
- Muy ajustables → Regular cantidad de input y enzima.

En función de la cantidad de enzima, se metaboliza más o menos benzoato.

Figura: Transductor ponderado (por la enzima).

Perceptron metabólico

Perceptrón	Perceptrón metabólico
Entradas x _i	Metabolitos de entrada
Pesos w _i	Enzimas para cada entrada
Sumador ponderado	Varios transductores ponderados
Función de activación	Actuador sobre el benzoato

Figura: Formulación de un perceptrón y un perceptrón metábolico

Resultados

Si $f(\sum w_i, x_i) > d$ ON Fluorescencia sino OFF Fluorescencia

Figura: Perceptrón metábolico: (C AND H) OR B OR F

- 1. Implementación satisfactoria de un circuito de procesamiento de señales analógicas.
- 2. Aprovechamiento del potencial de entornos libres de células.
- 3. Base para construcción de redes de neuronas usando circuitos sintéticos.

Bibliografía I

Pandi, A., Koch, M., Voyvodic, P. L., Soudier, P., Bonnet, J., Kushwaha, M., and Faulon, J. L. (2019). Metabolic perceptrons for neural computing in biological systems. *Nature Communications*, 10(1):1–13.

Rosenblatt, F. (1957). The perceptron-a perciving and recognizing automation. Report 85-460-1 Cornell Aeronautical Laboratory, Ithaca, Tech. Rep.

