

Cálculo Diferencial

Teoremas sobre derivadas

Escuela de Ingeniería Centro de Ciencia Básica

Sean u = f(x) y v = g(x) dos funciones diferenciables y sea c una constante:

Fórmulas Generales

$\bullet \quad \frac{d}{dx}(c) = 0$

•
$$\frac{d}{dx}[f(x)\pm g(x)] = f'(x)\pm g'(x)$$

•
$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$
(Regla del producto)

•
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{g^2(x)}$$
(Declared elements)

(Regla del cociente)

•
$$\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)$$

(Regla de la cadena)

•
$$\frac{d}{dx} f^{n}(x) = nf^{n-1}(x)f'(x)$$

(Regla de la potencia)

Funciones logarítmicas y exponenciales

•
$$\frac{d}{dx}(e^u) = e^u u^x$$

•
$$\frac{d}{dx}(a^u) = a^u Lnau' \text{ con a > 0}$$

•
$$\frac{d}{dx}(Log_a|u|) = \frac{1}{uLna}u^2$$

$$\bullet \qquad \frac{d}{dx} \big(L n \big| u \big| \big) = \frac{1}{u} u'$$

Funciones trigonométricas

•
$$\frac{d}{dx}(senu) = \cos uu'$$

•
$$\frac{d}{dx}(\cos u) = -senuu'$$

•
$$\frac{d}{dx}(\tan u) = \sec^2 uu'$$

•
$$\frac{d}{dx}(\csc u) = -\csc u \cot uu'$$

•
$$\frac{d}{dx}(\sec u) = \sec u \tan uu'$$

$$\bullet \quad \frac{d}{dx}(\cot u) = -\csc^2 uu'$$

Funciones trigonométricas inversas

$$\bullet \quad \frac{d}{dx} \left(sen^{-1} u \right) = \frac{1}{\sqrt{1 - u^2}} u^{r}$$

$$\bullet \quad \frac{d}{dx} \left(\cos^{-1} u\right) = \frac{-1}{\sqrt{1 - u^2}} u'$$

$$\bullet \qquad \frac{d}{dx} \left(\tan^{-1} u \right) = \frac{1}{1 + u^2} u'$$

$$\bullet \quad \frac{d}{dx} \left(\csc^{-1} u \right) = \frac{-1}{u \sqrt{u^2 - 1}} u'$$

$$\bullet \quad \frac{d}{dx} \left(\sec^{-1} u \right) = \frac{1}{u \sqrt{u^2 - 1}} u'$$

$$\bullet \quad \frac{d}{dx} \left(\cot^{-1} u \right) = \frac{-1}{1 + u^2} u'$$

Funciones hiperbólicas

•
$$\frac{d}{dx}(senhu) = \cosh uu'$$

•
$$\frac{d}{dx}(\cosh u) = senhuu'$$

•
$$\frac{d}{dx}(\tanh u) = \sec h^2 u u'$$

•
$$\frac{d}{dx}(\csc hu) = -\csc hu \coth uu'$$

•
$$\frac{d}{dx}(\sec hu) = -\sec hu \tanh uu^2$$

•
$$\frac{d}{dx}(\coth u) = -\csc h^2 u u'$$

Funciones hiperbólicas inversas

$$\bullet \quad \frac{d}{dx} \left(senh^{-1} u \right) = \frac{1}{\sqrt{1 + u^2}} u^{x}$$

$$\bullet \quad \frac{d}{dx} \left(\cosh^{-1} u \right) = \frac{1}{\sqrt{u^2 - 1}} u'$$

$$\bullet \quad \frac{d}{dx} \left(\tanh^{-1} u \right) = \frac{1}{1 - u^2} u'$$

$$\bullet \quad \frac{d}{dx} \left(\csc h^{-1} u \right) = \frac{-1}{|u| \sqrt{u^2 + 1}} u'$$

$$\bullet \quad \frac{d}{dx} \left(\sec h^{-1} u \right) = \frac{-1}{u\sqrt{1 - u^2}} u'$$

$$\bullet \quad \frac{d}{dx} \left(\coth^{-1} u \right) = \frac{1}{1 - u^2} u'$$

Recordar que:

•
$$senh^{-1}x = Ln(x + \sqrt{x^2 + 1}) con x \in \Re$$

•
$$\cosh^{-1} x = Ln\left(x + \sqrt{x^2 - 1}\right) \cosh x \ge 1$$

•
$$\tanh^{-1} x = \frac{1}{2} Ln \left(\frac{1+x}{1-x} \right) \text{ con } |x| < 1$$

•
$$\coth^{-1} x = \frac{1}{2} Ln \left(\frac{x+1}{x-1} \right) \operatorname{con} |x| > 1$$

•
$$\operatorname{sec} h^{-1} x = Ln \left(\frac{1 + \sqrt{1 - x^2}}{x} \right) \operatorname{con} 0 < x \le 1$$

•
$$\csc h^{-1}x = Ln\left(\frac{1}{x} + \frac{\sqrt{1+x^2}}{|x|}\right) \cot x \neq 0$$

$$\bullet \quad \cosh^2 x - senh^2 x = 1$$