第三章

過程裝備控制技術及應用過程檢測技術

目 錄 CONTENTS

3.1

測量基本知識

3.4

溫度測量

3.7

液位測量

壓力測量

3.5

流量測量

3.6

轉速和轉矩測量

- 一. 概論
- 二. 膨脹式溫度計
- 三. 熱電阻溫度傳感器
- 四. 熱電偶溫度傳感器

3.4 温度測量

一. 概論

- 1. 溫標及單位:
- (1)經驗溫標 攝氏溫標(℃): 測溫物質:水銀分度方法:在標準大氣壓下,冰 的熔點----0℃; 水的沸點----100℃在雨點之間將水銀的體膨 脹分成100份,每份表示

華氏溫標(°F): 測溫物質:水銀分度方法:在標準大氣壓下,

氯化銨與冰的混合物----0°F; 冰的熔點---

水的沸點----212°F

在雨點之間將水銀的體膨脹分成180份,每份表示 1°F。

(2) 熱力學溫標

19世紀中葉,英國物理學家開爾文(1824~1907)根據 熱力學"卡諾循環"理論,提出熱力學溫標及絕對零度的概念。 從絕對零度起算,

水的冰點--- 273.15度, 水的沸點--- 373.15度。 熱力學溫標的度用符號K表示。

3.4 温度測量

(3) 國際實用溫標:

工程上,0°C以下用熱力學溫標丁,0°C以上用經驗溫標t。

二. 膨脹式溫度傳感器

依靠液體、固體或氣體受熱膨脹原理,構成的溫度傳感器。

1. 液體膨脹式溫度傳感器 在有刻度的細玻璃管裏充入酒精或水銀而構成溫度計。

⊨ւն - 3)

3.4 溫度測量

2. 電接點水銀溫度計 在水銀溫度計的感

温泡附近引出一

根導綫,在對應某個溫度刻度綫處再 引出一根導綫,當溫度升至該刻度時, 水銀柱就會把電路接通。反之,溫度 下降到該刻度以下,又會把電路斷開。

- 3.固體膨脹式溫度計利用綫膨脹系數差別較大的兩種金屬材 料制成雙層片狀
- 元件, 敏感元件是雙金屬片。 在溫度變化時將因彎曲變形 而使其一端出現位移。

雙金屬溫度信號器

4.壓力式溫度傳感器

依靠密閉容器中液態或氣態物質受熱後,壓力的升高反映被測溫度。

图 2-2-9 电冰箱的温度控制

溫度測量 3.4

三.熱電阻溫度傳感器

1. 銅電阻 (WZG)

測溫範圍: -50℃

150°C

R

R 分度號Cu50: R ←== —銅電阻的溫度系數

銅電阻溫度傳感器特點: 1.電阻率小

- 體積大
- 2. 易氧化 測溫範圍小 0—100℃
- 3.價格便宜

普通工业用热电阻式温度传感器结构图

(a) **開射**制

2. 鉑電阻 (WZB) 分度號: Pt

測溫範圍: -259.34℃ — 630.74℃

鉑電阻與溫度的關系: 在0─630.74

℃之間:

 $R_t \boxtimes R_0 \boxtimes 1 \boxtimes At \boxtimes B_t$

2 190 — 0℃之間:

 $R_t \boxtimes R_0 \boxtimes 1 \boxtimes At \boxtimes Bt^2 \boxtimes C \boxtimes t \boxtimes 100 \boxtimes t^3$

Rt — 鉑電阻的電阻值 Ω

A、B、C一常數

A \(\text{ 3.96847 \(\text{ \text{ \text{ 10}} \text{ \ \text{ \ \text{ \ \text{ \text{ \text{ \text{ \text{ \text{ \} \text{ \text{ \tex{ \text{ \text{ \} \text{ \text{ \text{ \text{ \text{ \text{ \tex

B $\boxtimes 5.847 \boxtimes 10^{\boxtimes 7}$ 1/°C²

 $C \boxtimes 4.22 \boxtimes 10^{\boxtimes 12}$ 1/°C³

Ro—鉑電阻在0℃時的電阻值 Ω

3. 熱電阻溫度傳感器的電路接法

(1) 二綫制

(2) 三綫制

四. 熱電偶溫度傳感器

廣泛應用于工業上的測溫領域。 特點:

結構簡單; 精度高; 熱慣性小; 測溫範圍寬; 輸出信 號易于轉換。

1. 熱電偶測溫原理: 當兩種不同材料的導體兩端接成閉合 回路時, 若兩端 接觸點的溫度不同, 則在回路中產生熱電勢。

(1) 接觸電勢

雨種不同導體其自由電子密度不等,在焊點處有 電子擴散現象,因而產生接觸電勢。

當A、B材料一定時,接觸電勢 $e_{AB}(t)$ 祇與接觸點的溫度有關。

(2) 溫差電勢

同一材質的導體當兩端存在溫度差時,自由電子從高溫端向低溫端遷移,會出現溫差電勢。

溫差電勢e

(3) 熱電偶回路

elt, t

——溫度爲 0時B,C金屬的接觸電勢 e

爲 0時C,A金屬的接觸電勢 e 電勢

根據能量守恆原理,多種金屬組成的閉合回路, 祇要各接觸點的溫度相等,則閉合回路總熱電勢等于 零。

若A、B、C三種金屬組成的閉合回路中,各接觸點的溫度為tO,則總熱電勢等于零。

3.4 温度測量

由于温差電勢微弱:

得:

e\(\text{t}\)

結論:

回路中總電勢祇與熱端溫度t和冷端溫度to有關。

若保持冷端溫度to不變, ealt III ,則熱電勢 eIt, t 爲熱端溫度t的單值函數。 C

2. 常用熱電偶:

名称	分度标志) 材质 	成分	$t=100^{\circ}$ C	最高使用温度	
	国际		正极	负极	t₀=0℃ 热电动势/mV	长期	短期
一 铂铑10-铂	S	LB-3	Pt90% Rh 10%	Pt 100%	0.643	1300°C	1600°C
铂铑30-铂铑6	В	LL-2	Pt 70% Rh 30%	Pt 94% Rh 6%	0.034	1600°C	1800°C
镍铬-镍硅	т	EU-2	Ni 90% Cr 10%	Ni 97% Si 2.5% Mn 0.5%	4,095	1000°C	1200°C
铜-康铜	T	СК	Cu 100%	Cu 55% Ni 45%	4. 277	200 C	300 C

图 2.3.2 常用热电偶的热电特性

3.4 温度測量

附录四 镍铬-镍硅热电偶分度表

分度号	K									μV
CC)	0	1	2	3	· ·	5	6	7	8	9
0	0	39	79	119	158	198	238	277	31.7	357
10.	397	437	477	517	557	597	637	677	718	758
20.	798	838	879	919	960	1000	1041	1081	1122	1163
30	1203	1344	1285	1325	1366	1407	1448	1489	1529	1570
40	1611	1652	1693	1734	1776	1817	1858	1899	1946	1981
50	2022	2064	2105	2146	2188	2229	2270	2312	2353	2394
60	2436	2477	2519	2560	2601	2643	2684	2726	2767	2809
7.0	2850	2892	2933	2975	3016	3038	3100	3141	3183	3224
80	3266	3307	3349	3390	3432	3473	3515	3556	3598	3639
90.	3681	3722	3764	3805	3847	3888	3930	3971	4012	4054
100	4095	4137	4178	4219	4251	4302	4343	4394	4426	4467
1,10	4508	4549	4890	4632	4673	4714	4755	4796	4837	4878
120	4919	4960	5001	5042	5083	5124	5164	5,205	5246	5287
1.50	5327	5368	5409	5450	5490	5531	5571	5612	5652	5693
140	5733	5774	5814	5855	5895	5936	5976	6016	6057	6097
150	6137	6177	6218	6258	6298	6338	5378	6419	6459	5499
160	6539	6579	6619	6659	6699	6739	6779	6819	6859	5899
170	6939	6979.	7019	7059	7099	7139	7179	7219	7259	7299
180	7338	7378	7418	7458	7498	7538	7578	7618	7658	7697
190	7737	7777	7817	7857	7897	7937	7977	8017	8057	8097

例:用K偶測溫, t0=0℃'____

3. 熱電偶補償綫:用于連接熱電偶和測溫儀表。

補償導綫在非高溫區與所接熱電偶具有相同的熱電性質,其材質和熱電偶不同,價格便宜。

熱電偶與補償導綫連接後等于在熱電勢的基礎上又增加了補償電勢。效果等于把熱電偶延長,冷端被移遠,節約了貴金屬。

$$e(t, t_0) \boxtimes e(t, t)' \boxtimes e(t, t)$$

3.4 温度測量

- 4. 熱電偶冷端補償:
 - (1)冷端保持在0℃

图 3-25 冰点槽

1一冰水混合物;2一保温槽;3一变压器油;

4-蒸馏水;5-试管;6-盖;7-铜导线;

8-显示仪表

3.4 温度測量

(2) 計算補償法:

e ———冷端爲0℃, 熱端爲t℃時的熱電勢

----冷端 t0℃, 熱端爲t℃時的熱電勢 (實測值)

冷端 t0 ℃ 時應加的修正值,相當于 冷場 60℃, 熱端爲 t0 ℃ 時的熱電勢。

例: 用K偶測溫, t0=30℃, 測得:

查表e(30,0)=1.203mV

85.49+1.203=6.693mV

查表e(t,0)=6.698mV, t=164℃

附录四 镍铬-镍硅热电偶分度表

度号 1	Κ									μV
CC)	0	1	2	3	4.	5	5	7	8	9
0	0	39	79.	119	158	198	238	277	317	357
10.	397	437	477	517	557	597	637	677	718	758
20.	798	838	879	919	960	1000	1041	1081	1122	1162
30	1203	1244	1285	1325	1366	1407	1448.	1489	1529	1570
40	1611	1652	1693	1734	1776	1817	1858	1899	1940	1981
50	2022	2064	2105	2146	2188	2229	2270	2312	2353	2394
60	2436	2477	2519	2560	2601	2643	2684	2726	2767	2809
7.0.	2850	2892	2933	2975	3016	3058	3100	3141	3183	3224
80	3266	3307	3.349	3390	3432	3473	3515	3556	3598	3639
90	3681.	3722	3764	3805	3847	3888	3930	3971	4012	4054
100	4095	4137	4178	4219	4261	4302	4343	4384	4426	4467
110	4508	4549	4590	4632	4673	4714	4755	4796	4837	4878
120	4919	4960	5001	5042	5083	5124	5164	5.205	5246	5287
130	5327	5368	5409	5450	5490	5531	5571	5612	5652	5693
140	5733	5774	5814	5855	5895	5936	5976	6016	6057	6097
150	6137	6177	6218	6258	6298	6338	5378	6419	6459	5499
160	6539	6579	6619	6659	6699	6739	6779	6819	6859	5898
170	5939	6979	7019	7059	7099	7139	7179	7219	7259	7298
180	7338	7378	7418	7458	7498	7538	7578	7618	7658	7697
190	7737	7777	7817	7857	7897	7937	7977	8017	8057	8097

(3) 電橋補償法: 結構: 電橋的輸出電壓Uab與 熱

图 3-26 冷端温度补偿电桥

功能:

當t0>0時,使電橋因Rcu改變而增加△Uab,等 于因t0>0而減小的熱電勢。

$$\Delta \cup_{ab} = e(t_0,0)$$

例: 求K型熱電偶冷端溫度爲50℃時,補償電橋的供電電壓Ucd? 已知Rcu0=1 Ω , R1=R2=R3=1 Ω

 $\underset{50}{\mathbb{N}} \underset{0}{\mathbb{N}} \mathbb{R} (1 \boxtimes \mathbb{N} t) \boxtimes 1 \boxtimes (1 \boxtimes 4.25 \boxtimes 10^{\boxtimes 3} \boxtimes 50) \boxtimes 1.2125 \boxtimes 10^{\boxtimes 3} \mathbb{N} t$

本章結束