

Squares and Square Roots Ex 3.1 Q7

Answer:

Factorising each number.

(i) $8820 = 2 \times 2 \times 3 \times 3 \times 5 \times 7 \times 7$

2	8820
2	4410
3	2205
3	735
5	245
7	49
7	7
	1
	7727 HACO

Grouping them into pairs of equal factors:

 $8820 = (2 \times 2) \times (3 \times 3) \times (7 \times 7) \times 5$

The factor, 5 is not paired. For a number to be a perfect square, each prime factor has to be paired.

Hence, 8820 must be multiplied by 5 for it to be a perfect square.

The new number would be (2 x 2) x (3 x 3) x (7 x 7) x (5 x 5).

Furthermore, we have:

 $(2 \times 2) \times (3 \times 3) \times (7 \times 7) \times (5 \times 5) = (2 \times 3 \times 5 \times 7) \times (2 \times 3 \times 5 \times 7)$

Hence, the number whose square is the new number is:

 $2 \times 3 \times 5 \times 7 = 210$

(ii) $3675 = 3 \times 5 \times 5 \times 7 \times 7$

3	3675
5	1225
5	245
7	49
7	7
	1

Grouping them into pairs of equal factors:

$$3675 = (5 \times 5) \times (7 \times 7) \times 3$$

The factor, 3 is not paired. For a number to be a perfect square, each prime factor has to be paired.

Hence, 3675 must be multiplied by 3 for it to be a perfect square.

The new number would be (5 x 5) x (7 x 7) x (3 x 3).

Furthermore, we have:

 $(5 \times 5) \times (7 \times 7) \times (3 \times 3) = (3 \times 5 \times 7) \times (3 \times 5 \times 7)$

Hence, the number whose square is the new number is:

 $3 \times 5 \times 7 = 105$

(iii) 605 = 5 x 11 x 11

5	605	
11	121	
11	11	
	1	

Grouping them into pairs of equal factors:

 $605 = 5 \times (11 \times 11)$

The factor, 5 is not paired. For a number to be a perfect square, each prime factor has to be paired.

Hence, 605 must be multiplied by 5 for it to be a perfect square.

The new number would be (5 x 5) x (11 x 11).

Furthermore, we have:

 $(5 \times 5) \times (11 \times 11) = (5 \times 11) \times (5 \times 11)$

Hence, the number whose square is the new number is:

5 x 11 = 55

(iv) 2880 = 2 x 2 x 2 x 2 x 2 x 2 x 3 x 3 x 5

2	2880
2	1440
2	720
2	360
2	180
2	90
3	45
3	15
5	5
	1
2000000	Market Property

Grouping them into pairs of equal factors:

2880 = (2 x 2) x (2 x 2) x (2 x 2) x (3 x 3) x 5

There is a 5 as the leftover. For a number to be a perfect square, each prime factor has to be paired.

Hence, 2880 must be multiplied by 5 to be a perfect square.

The new number would be (2 x 2) x (2 x 2) x (2 x 2) x (3 x 3) x (5 x 5).

Furthermore, we have:

 $(2 \times 2) \times (2 \times 2) \times (2 \times 2) \times (3 \times 3) \times (5 \times 5) = (2 \times 2 \times 2 \times 3 \times 5) \times (2 \times 2 \times 2 \times 3 \times 5)$

Hence, the number whose square is the new number is:

 $2 \times 2 \times 2 \times 3 \times 5 = 120$

$(v) 4056 = 2 \times 2 \times 2 \times 3 \times 13 \times 13$

2	4056
2	2028
2	1014
3	507
13	169
13	13
	1

Grouping them into pairs of equal factors:

The factors at the end, 2 and 3 are not paired. For a number to be a perfect square, each prime factor has to be paired. Hence, 4056 must be multiplied by 6 (2 x 3) for it to be a perfect square.

The new number would be (2 x 2) x (2 x 2) x (3 x 3) x (13 x 13).

Furthermore, we have:

$$(2 \times 2) \times (2 \times 2) \times (3 \times 3) \times (13 \times 13) = (2 \times 2 \times 3 \times 13) \times (2 \times 2 \times 3 \times 13)$$

Hence, the number whose square is the new number is:

2 x 2 x 3 x 13 = 156

2	3468
2	1734
3	864
17	289
17	17
	1

Grouping them into pairs of equal factors:

 $3468 = (2 \times 2) \times (17 \times 17) \times 3$

The factor 3 is not paired. For a number to be a perfect square, each prime factor has to be paired.

Hence, 3468 must be multiplied by 3 for it to be a perfect square.

The new number would be (2 x 2) x (17 x 17) x (3 x 3).

Furthermore, we have:

 $(2 \times 2) \times (17 \times 17) \times (3 \times 3) = (2 \times 3 \times 17) \times (2 \times 3 \times 17)$

Hence, the number whose square is the new number is:

2 x 3 x 17 = 102

2	7776
2	3888
2	1944
2	972
2	486
3	243
3	81
3	27
3	9
3	3
15	1

Grouping them into pairs of equal factors:

7776 = (2 x 2) x (2 x 2) x (3 x 3) x (3 x 3) x 2 x 3

The factors, 2 and 3 at the end are not paired. For a number to be a perfect square, each prime factor has to be paired. Hence, 7776 must be multiplied by 6 (2 x 3) for it to be a perfect square.

The new number would be (2 x 2) x (2 x 2) x (2 x 2) x (3 x 3) x (3 x 3) x (3 x 3).

Furthermore, we have:

(2 x 2) x (2 x 2) x (2 x 2) x (3 x 3) x (3 x 3) x (3 x 3) = (2 x 2 x 2 x 3 x 3 x 3) x (2 x 2 x 2 x 3 x 3 x 3)

Hence, the number whose square is the new number is:

 $2 \times 2 \times 2 \times 3 \times 3 \times 3 = 216$

********* END ********