RINGS OF FRACTIONS, THE CRT, EUCLIDEAN DOMAINS, PIDS, UFDS

COLTON GRAINGER (MATH 6130 ALGEBRA)

From Lang [1, Sec. II.1]:

Most of the rings without zero divisors which we consider will be commutative. In view of this, we define a ring A to be **entire** if $1 \neq 0$, if A is commutative, and if there are no zero divisors in the ring. (Entire rings are also called **integral domains**. However, linguistically, I feel the need for an adjective. "Integral" would do, except that in English "integral" has been used for "integral over a ring". In French, as in English, two words exist with similar roots: "integral" and "entire". The French have used both words. Why not do the same in English? There is a slight psychological impediment, in that it would have been better if the use of "integral" and "entire" were reversed to fit the long-standing French use. I don't know what to do about this.)

11. ASSIGNMENT DUE 2018-12-05

11.1. **[2, No. 7.5.4].** *Given.* A subfield **F** of **R**.

To prove. F contain Q.

Proof. The entire ring of integers \mathbf{Z} has field of fractions \mathbf{Q} . If a field \mathbf{F} contains a copy of \mathbf{Z} , then the subfield of \mathbf{F} generated by $\iota(\mathbf{Z})$ is isomorphic to \mathbf{Q} . For let's define the injection on generators

$$\iota \colon \mathbf{Z} \to \mathbf{F}$$
 such that $1 \mapsto 1_{\mathbf{F}}$.

Since **R** has characteristic 0, **F** does too. That is, ι has trivial kernel 0**Z**. We identify **Z** \hookrightarrow **F**. Because the field of fractions **Q** is the smallest field containing **Z**, we must have **F** \supset **Q**. \square

11.2. **[2, No. 7.5.5].** *Given.* Let F be a field, let F[[x]] be the ring of formal power series in the indeterminate x with coefficients in F.

To prove.

- i. The ring of fractions of F[[x]] is the ring F((x)) of formal Laurent series.
- ii. The field of fractions of the power series ring $\mathbf{Z}[[x]]$ is *properly* contained in the field of Laurent series $\mathbf{Q}((x))$

Proof.

i. (Notation: suppose for $\sum a_n x^n \in F[[x]]$, we define a_i for *all* $i \in \mathbb{Z}$ by letting $a_k = 0$ when k < 0.) Because F is an entire ring, if $\sum a_n x^n$, $\sum b_n x^n \in F[[x]] \setminus \{0\}$, then

$$\sum a_n x^n \sum b_n x^n = \sum_{n \ge 0} \left(\sum_{i+j=n} a_i b_j x^n \right) = \underbrace{a_k b_\ell}_{\text{first nonzero coefficients}} x^{k+\ell} + \sum_{n > k+\ell} \left(\sum_{i+j=n} a_i b_j x^n \right).$$

So F[[x]] is entire, and therefore has a *field* of fractions.

Date: 2018-11-28. Compiled: 2018-12-05.

1

Now to argue that this field of fractions is F((x)). We need to demonstrate for all $\sum a_n x^n \in F[[x]] \setminus \{0\}$, there exists some $(\sum a_n x^n)^{-1} \in F((x))$. So let $k = \min\{n : a_n \neq 0\}$ be the index of $\sum a_n x^n$, and define inductively

$$b_{-k} = a_k^{-1}$$
 and $b_{-k+n} = -a_k^{-1} \left(\sum_{\substack{i+j=n \ k < j}} a_j b_j \right)$ for all $n \in \mathbb{N}$.

Then $(\sum a_n x^n)(\sum b_n x^n) = \sum_{n\geq 0} (\sum_{i+j=n} a_i b_j) x^n = 1x^0 + 0x^1 + 0x^2 + \dots = 1 \in F[[x]]$. Thus $(\sum a_n x^n)^{-1} = \sum b_n x^n$. We've demonstrated that F((x)) contains the field of fractions of F[[x]]. For the opposite containment, note that if K is a field containing F[[x]], then $x, x^{-1} \in K$, and by linearity $F((x)) \subset K$. We conclude that the field of formal Laurent series F((x)) is the smallest field containing the ring of formal power series F[[x]], so F((x)) is the field of fractions of F[[x]].

ii. To show $\mathbf{Q}((x))$ properly contains F:= the field of fractions of $\mathbf{Z}[[x]]$, consider $e^x \in \mathbf{Q}((x))$. Suppose $e^x \in F$ for contradiction. There then must be integer power series $a'(x), b'(x) \in \mathbf{Z}[[x]]$ to clear the denominators of e^x , i.e., such that $a'(x)e^x = b'(x)$. Choose $a(x) \in \mathbf{Z}[[x]]$ of minimal index $I(a) = \min\{n: a_n \neq 0\}$ such that there exists $b(x) \in \mathbf{Z}[[x]]$ with

$$a(x)e^x = b(x)$$
.

Explicitly, that's

$$\left(\sum_{n\geq I(a)} a_n x^n\right) \left(\sum_{n\geq 0} \frac{x^n}{n!}\right) = \left(\sum_{n\geq 0} b_n x^n\right).$$

Hence

$$\sum_{n \ge I(a)} \left(\sum_{i+j=n} \frac{a_i}{j!} \right) = \sum_{n \ge 0} b_n x^n.$$

So for all $n \ge I(a)$,

$$\left(\sum_{i+j=n}\frac{a_i}{j!}\right)-b_n=0,$$

or, again for all $n \ge I(a)$, clearing denominators,

$$\frac{a_{I(a)}}{n-I(a)} + \dots + a_n(n-(I(a)+1))! - b_n(n-I(a))! = 0.$$
all integers

We observe that $a_{I(a)}$ is divisible by all natural numbers, which forces $a_{I(a)} = 0$, contradicting the choice of $a(x) = \sum_{n \ge I(a)} a_n x^n$ with minimal index. \square

11.3. **[2, No. 7.6.1].** *Given.* An element $e \in R$ is called *idempotent* if $e^2 = e$. Assume e is idempotent in R and er = re for all $r \in R$.

To prove.

- i. Re and R(1-e) are two-sided ideals of R.
- ii. $Re \times R(1-e) \cong R$ as rings.
- iii. e and 1 e are identities for the subrings Re and R(1 e) respectively.

Proof.

i. Let $re, se \in Re$ and $r(1-e), s(1-e) \in R(1-e)$ be arbitrary elements. Then

$$re - se = (r - s)e \in Re$$
, and $r(1 - e) - s(1 - e) = (r - s)(1 - e) \in R(1 - e)$.

For any $t \in R$, we have also

$$tre \in Re$$
, and $ret = rte \in Re$

and

$$tr(1-e) \in R(1-e)$$
, and $r(1-e)t = rt - ret = rt - rte = rt(1-e) \in R(1-e)$.

ii. Consider that $Re + R(1-e) \ni e+1-e=1$. Moreover, $Re \cap R(1-e) \ni a$ implies a=re and a=s-se, so re=s-se hence (r+s)e=s hence $(r+s)e^2=se$ hence re+se=se hence se=0. So a=0. We conclude the ideals Re and R(1-e) are comaximal with trivial intersection. By [2, Sec. 5.4], we recognize $R \cong Re \times R(1-e)$ as additive groups. Now we take the associated isomorphism of groups $\varphi \colon R \to Re \times R(1-e)$ and check that φ is also ring homomorphism (an isomorphism actually, as the kernel is still trivial). We verify multiplicativity:

$$\varphi(re + s(1 - e))\varphi(te + v(1 - e)) = \varphi(rte, sv(1 - 2e + e^2)) = \varphi(rte + sv(1 - e)).$$

- iii. Consider the coordinate subrings Re and R(1-e). If $re \in Re$, then $ere = re^2 = re = ree$, so e is the identity of Re. Likewise, if $r(1-e) \in R(1-e)$, then (1-e)r(1-e) = r-re-er+ere = r(1-e). Similarly, $r(1-e)^2 = r(1-2e+e^2) = r(1-e)$. So 1-e is the identity for R(1-e). \square
- 11.4. **[2, No. 7.6.6].** *Given.* Let $f_1(x), f_2(x), ..., f_k(x)$ be polynomials with integer coefficients of the same degree d. Let $n_1, n_2, ..., n_k$ be integers which are relatively prime in pairs $(\gcd(n_i, n_i) = 1 \text{ for all } i \neq j)$.

To prove.

- i. There exists a polynomial f(x) with integer coefficients and of degree d with $f(x) \equiv f_1(x) \pmod{n_1}$, $f(x) \equiv f_2(x) \pmod{n_2}$, ..., $f(x) \equiv f_k(x) \pmod{n_k}$, i.e., the coefficients of f(x) agree with the coefficients of $f_i(x) \pmod{n_i}$.
- ii. If all the $f_i(x)$ are monic, then f(x) may also be chosen monic.

Proof.

i. Because in **Z** the ideals n_i **Z** are pairwise comaximal, in **Z**[x] the ideals n_i **Z**[x] are also pairwise comaximal. (Observe for a ring R and ideals $\mathfrak{a},\mathfrak{b} \subset R$, it's true that $(\mathfrak{a} + \mathfrak{b})[x] = \mathfrak{a}[x] + \mathfrak{b}[x]$, for $\sum (a_n + b_n)x^n = \sum a_n x^n + \sum b_n x^n$.) By the CRT,

$$\varphi \colon \mathbf{Z}[x] \to \prod_{1}^{k} \mathbf{Z}[x]/n_i \mathbf{Z}[x]$$

is surjective. In lecture, we proved $\mathbf{Z}[x]/n_i\mathbf{Z}[x] \cong (\mathbf{Z}/n_i\mathbf{Z})[x]$. That φ is surjective implies:

there exists
$$f \in \mathbf{Z}[x]$$
 with $f(x) \equiv f_i(x) \pmod{n_i}$ for all $i = 1, ..., k$.

ii. Suppose the f_i are each monic. Why can f be chosen monic? Well, if the f_i are monic, the leading coefficient $a_{\ell_i} \equiv 1 \pmod{n_i}$ of each f_i . By the CRT, the system of congruences $a_{\ell} \equiv a_{\ell_i} \pmod{n_i}$ has integral solutions uniquely determined modulo $n = \prod n_i$. One such solution is $a_{\ell} = 1 \equiv 1 \pmod{n_i}$ (for all i), which corresponds to f(x) with a leading coefficient $a_{\ell} = 1$. (Note in this case the degree of f does not change, only the leading coefficient.) \square

11.5. **[2, No. 8.1.3].** *Given.* Let *R* be a Euclidean Domain. Let *m* be the minimum integer in the set of norms of nonzero elements of *R*.

To prove. Every nonzero element of R of norm m is a unit. Therefore, a nonzero element of norm zero (if such and element exists) is a unit.

Proof. Consider nonzero $a \in R$ of minimum norm. Now R is a nonzero ideal in itself, so that R = (d) where d is any nonzero element of minimum norm in R [2, Sec. 8.1]. But (d) = R if and only if d is a unit. Since a is of minimum norm, (a) = R and thus a is a unit. We deduce that for any nonzero $b \in R$ with N(b) = 0, it's clear that b would be of minimum norm among nonzero elements of R, whence b would be a unit. □

11.6. [2, No. 8.1.7]. To find. Generators for the following ideals in $\mathbf{Z}[i]$

- (85, 1+13i),
- (47-13i,53+56i).

Demonstration. (We implement the extended Euclidean algorithm for the Gaussian integers.)

We have (85, 1 + 13i) = (7 + 6i), observing

85 =
$$-6i * (1 + 13i) + (7 + 6i)$$

1 + 13i = $(1 + i) * (7 + 6i)$

as well, we have (47 - 13i, 53 + 56i) = (4 - 5i),

$$53 + 56i = (1 + i) * (47 - 13i) + (-7 + 22i)$$

 $47 - 13i = (-1 - 2i) * (-7 + 22i) + (4 - 5i)$
 $-7 + 22i = (-2 - 3i) * (4 - 5i)$

and in the PID $\mathbf{Z}[i]$, a gcd of a finite set of elements generates the smallest ideal containing that set of elements. \Box

11.7. **[2, No. 8.2.6].** *Given.* Let *R* be an entire ring and suppose that every *prime* ideal in *R* is principal.

To prove. We'll prove that every ideal of *R* is principal in the following fashion:

- a. Let $\mathscr S$ be the set of ideals of R that are not principal is nonempty. Assuming $\mathscr S\neq\varnothing$, $\mathscr S$ has a maximal element under inclusion (which, by hypothesis, is not prime).
- b. Let \mathfrak{m} be an ideal which is maximal with respect to being nonprincipal, and let $a,b\in R$ with $ab\in \mathfrak{m}$ but $a\notin \mathfrak{m}$ and $b\notin \mathfrak{m}$. Let $\mathfrak{a}=(\mathfrak{m},a)$ be the ideal generated by \mathfrak{m} and a, let $\mathfrak{b}=(\mathfrak{m},b)$ be the ideal generated by \mathfrak{m} and b, and define $\mathfrak{q}=\{r\in R: r\mathfrak{a}\subset \mathfrak{m}\}$. Then $\mathfrak{a}=(\alpha)$ and $\mathfrak{b}=(\beta)$ are principal ideals in a with a in a in a ideals in a with a in a
- c. If $x \in \mathfrak{m}$, then $x = s\alpha$ for some $s \in \mathfrak{q}$, forcing a contradiction: $\mathfrak{m} \subsetneq \mathfrak{b} \subset \mathfrak{q} \subset \mathfrak{m}$. Therefore \mathscr{S} must have been empty, whence R is a PID.

Proof.

- a. Let $\mathscr S$ be a poset of ideals ordered by inclusion, as above. Assume $\mathscr S\neq\varnothing$. Consider a chain of ideals $(\mathfrak a_0,\mathfrak a_1,\mathfrak a_2,\ldots)$ in $\mathscr S$. Let $\bar{\mathfrak a}=\cup_{n\geq 0}\mathfrak a_i$. If $\bar{\mathfrak a}$ is not in $\mathscr S$, then $\bar{\mathfrak a}=(a)$ for some $a\in R$. But then $a\in\mathfrak a_n$ for some n, hence $\mathfrak a_n\subset\bar{\mathfrak a}\subset\mathfrak a_n$, forcing $\mathfrak a_n$ to be principal. So $\bar{\mathfrak a}\in\mathscr S$ is a bound for the chain of ideals $(\mathfrak a_0,\mathfrak a_1,\ldots)$. By Zorn's lemma, a partially ordered set where every chain is bounded above has a maximal element. So $\mathscr S$ has a maximal element, call it the ideal $\mathfrak m$.
- b. Suppose $ab \in \mathfrak{m}$ with $a \notin \mathfrak{m}$ and $b \notin \mathfrak{m}$. Let $\mathfrak{q} = \{r \in R : r\mathfrak{a} \subset \mathfrak{m}\}$, where $\mathfrak{a} = (\mathfrak{m}, a)$ and $\mathfrak{b} = (\mathfrak{m}, b)$. Since \mathfrak{a} and \mathfrak{b} are not in \mathscr{S} , we have $\mathfrak{a} = (\alpha)$ and $\mathfrak{b} = (\beta)$ for some $\alpha, \beta \in R$.

- Is an ideal? Yes, for with $r, s \in \mathfrak{q}$, both $(r+s)\mathfrak{a} = r\mathfrak{a} + s\mathfrak{a} \subset \mathfrak{m}$ and so too $(rs)\mathfrak{a} = r(s\mathfrak{a}) \subset r\mathfrak{m} \subset \mathfrak{m}$.
- Does \mathfrak{q} contain \mathfrak{b} ? Yes. Multiplying generators, $\mathfrak{ab} = (\mathfrak{m}, a)(\mathfrak{m}, b) = (\mathfrak{m}^2, \mathfrak{m}b, \mathfrak{m}a, ab) \subset \mathfrak{m}$ as $ab \in \mathfrak{m}$. So if $r\beta \in \mathfrak{b}$, then $r\beta \mathfrak{a} \subset \mathfrak{m}$.
- We conclude $\mathfrak{m} \subsetneq \mathfrak{b} \subset \mathfrak{q}$ as \mathfrak{m} is maximal among nonprincipal ideals, and is thus properly contained in \mathfrak{b} .

Commutativity and the definition of q implies $aq = qa \subset m$.

- c. Now to argue for contradiction. Say $x \in \mathfrak{m}$. Then $x = s\alpha$ for some $s \in R$. But $s\alpha = s(\alpha) = (x)$, so $(x) \subset \mathfrak{m}$ implies $s\alpha \subset \mathfrak{m}$, forcing $x \in \mathfrak{q}$. Thus $\mathfrak{m} \subsetneq \mathfrak{b} \subset \mathfrak{q} \subset \mathfrak{m}$, which is absurd. \square
- 11.8. **[2, No. 8.2.7].** *Given.* An entire ring R in which every ideal generated by two elements is principal (i.e., for every $a, b \in R$, (a, b) = (d) for some $d \in R$) is called a *Bézout Domain*.

To prove.

- a. An entire ring R is a Bézout Domain if and only if every pair of elements a, b of R has a g.c.d. d in R that can be written as an R-linear combination of a and b. (That is, d = ax + by for some $x, y \in R$.)
- b. Every finitely generated ideal of a Bézout Domain is principal.
- c. Let F be the fraction field of the Bézout Domain R. Every element of F can be written in the form a/b with $a,b \in R$ and a relatively prime to b.

Proof.

- a. In one direction, say R is a Bézout domain. Then (a, b) = (d) for any two elements $a, b \in R$. Then $d \in (a, b)$, and is of the form d = ra + sb for some $r, s \in R$. Now $(d) \supset (a)$ and $(d) \supset (b)$. With any other divisor $(d') \supset (a)$ and $(d') \supset (b)$, we'd have $(d') \cap (a, b) = (d)$. So d is a gcd of a and b.
 - Conversely suppose any two elements $a, b \in R$ have a gcd d that can be written as a R-linear combination ra + sb = d for some $r, s \in R$. Then consider (a, b), the least ideal containing $\{a, b\}$. Let \mathfrak{m} be another ideal containing $\{a, b\}$. Clearly $(a, b) \subset \mathfrak{m}$. Since d = ra + sb, we have also $(d) \subset \mathfrak{m}$. Moreover, $(d) \supset (a)$ and $(d) \supset (b)$, as d is a common divisor. So (d) is the smallest ideal containing (a, b), hence (d) = (a, b).
- b. We proceed by induction on the size n of the finite generating set X_n of elements of R. Say X_2 is done for a base case (we're in a Bézout domain). Now suppose every ideal generated by X_{n-1} is principal. Consider (X_n) . But this ideal is just (X_{n-1}, r_n) for $r_i \in X_n$. By the inductive hypothesis, $(X_{n-1}) = (d)$, so $(X_n) = (d, r_n)$. Being in a Bézout domain, $(d, r_n) = (\delta)$ for some $\delta \in R$, completing the induction.
- c. We know an element of F is of the form rs^{-1} for $r \in R$ and $s \in R \setminus \{0\}$. Consider $d \in GCD(r, s)$. We know both (r, s) = (d) and there exist $x, y \in R$ such that rx + sy = d (perhaps multiplying through by a unit). Since $r \in (d)$ and $s \in (d)$, we can write r = ad and s = bd. So the R-linear combination becomes

$$d = adx + bdy$$
, or $1 = ax + by$,

where (a, b) = (1). Here, a and b are coprime and $\frac{r}{s} = \frac{ad}{bd} = \frac{a}{b}$. \square

¹TODO: revise.

11.9. [2, No. 8.2.8]. Given. R is a PID and D is a multiplicatively closed subset of $R \setminus \{0\}$.

To prove. The ring of fractions $D^{-1}R$ is a PID.

Proof. If R is entire, then R has no zero divisors. Consider $\frac{r}{s}$, $\frac{t}{v} \in D^{-1}R$. If $\frac{rt}{sv} = 0$, then rt = 0. Either r or t is 0 in R, whence either $\frac{r}{s}$ or $\frac{s}{t}$ is 0 in $D^{-1}R$. To argue that $D^{-1}R$ is a PID, let \mathfrak{q} be an ideal in $D^{-1}R$. Fix $d \in D$. Let $\mathfrak{p} \subset R$ be the ideal defined

$$p := \{ r \in R : \frac{r}{d} \in \mathfrak{q} \}.$$

- Note p contains 0.
- If p contains r and t, then ^r/_d + ^t/_d = ^{r+t}/_d ∈ q.
 If p contains r, then ^r/_d ∈ q. For any t ∈ R, we'd have ^{rt}/_d ∈ q.

Because $\mathfrak{p} \subset R$ is a PID, there's $p \in R$ such that $(p) = \mathfrak{p}$. We'll now argue that $\mathfrak{q} \subset D^{-1}R$ is principal, namely that q = (p/d). For one containment, let $s^{-1}q \in q$. Then $(d^{-1}s)s^{-1}q \in q$. So $\frac{q}{d} \in q$. Thus $q \in p$. We take the multiple q = tp for some $t \in R$. Equating the two expressions of q,

$$s^{-1}q = s^{-1}tp = s^{-1}dd^{-1}tp = s^{-1}dt \cdot \frac{p}{d} \in \left(\frac{p}{d}\right).$$

For the other containment, take any $t \in R$, and observe by definition of q we have $\frac{p}{d}t \in q$. Whence $\left(\frac{p}{d}\right) = q$. We conclude $D^{-1}R$ is a PID. \square

11.10. **[2, No. 8.3.2].** *Given.* Let *a* and *b* be nonzero elements of the UFD *R*.

To prove. Then *a* and *b* have a least common multiple.

Demonstration. We describe a least common multiple of a and b in terms of the prime factorizations of *a* and *b*:

- Let $\{p_i\}_1^n$ be the set of distinct primes (irreducibles) in the unique factorization of the product ab.
- Choose exponents $\alpha_i, \beta_i \in \mathbb{Z}_{\geq 0}$ such that $a = \prod_{i=1}^{n} p_i^{\alpha_i}$ and $b = \prod_{i=1}^{n} p_i^{\beta_i}$.
- These factorizations are unique up to associates, and we allow for zero exponents. Let $e = \prod_{i=1}^{n} p_i^{\max\{\alpha_i, \beta_i\}} \in R$.
- Verify that $e \in (a)$ and $e \in (b)$:
 - $-e = \left(\prod_{1}^{n} p_{i}^{\max\{0,\alpha_{i}-\beta_{i}\}}\right) a, \text{ similarly}$ $-e = \left(\prod_{1}^{n} p_{i}^{\max\{0,\beta_{i}-\alpha_{i}\}}\right) b.$
- Suppose e' = ra and e' = sb. Consider ra = sb.
 - Now *r* has a unique prime factorization

$$r = \left(\prod_{1}^{n} p_{i}^{\gamma_{i}}\right) \left(\prod_{1}^{m} t_{j}^{\rho_{j}}\right)$$

with the p_i as before and the primes t_i distinct from the p_i .

- Because ra = sb, for each i = 1, ..., n we must have $\gamma_i \ge \max\{\alpha_i, \beta_i\}$. So then $e' = ra = \left(\prod_1^n p_i^{\alpha_i + \gamma_i}\right) \left(\prod_1^m t_j^{\rho_j}\right)$. Because $\gamma_i + \alpha_i \ge \max\{\alpha_i, \beta_i\}$, we have $e' \in (e)$.

Now we've given an explicit construction of a least common multiple of a and b, namely $e \in R$. \square

11.11. [2, No. 8.3.6]. *Given.* We work in the Gaussian integers $\mathbf{Z}[i]$.

To demonstrate.

- a. The quotient ring $\mathbf{Z}[i]/(1+i)$ is a field of order 2.
- b. Let $q \in \mathbb{Z}$ be a prime with $q \equiv 3 \mod 4$. The quotient ring $\mathbb{Z}[i]/(q)$ is a field with q^2 elements.

- c. Let $p \in \mathbb{Z}$ be a prime with $p \equiv 1 \mod 4$ and write $p = \pi \bar{\pi}$ as in Proposition 18.
 - The hypotheses for the Chinese Remainder Theorem (Theorem 17 in Section 7.6) are satisfied
 - Moreover $\mathbf{Z}[i]/(p) \cong \mathbf{Z}[i]/(\pi) \times \mathbf{Z}[i]/(\bar{\pi})$ as rings.
 - The quotient ring $\mathbf{Z}[i]/(p)$ has order p^2 .
 - Therefore, $\mathbf{Z}[i]/(\pi)$ and $\mathbf{Z}[i]/(\bar{\pi})$ are both fields of order p.

Demonstration.

a. When is $a + bi \in (1 + i)$? Precisely when long division of a + bi by 1 + i in $\mathbf{Z}[i]$ has no remainder, that's exactly when

$$\frac{a+bi}{1+i} = \frac{(a-b)+(a+b)i}{2} \in \mathbf{Z}[i].$$

That is,

$$a-b\equiv 0\pmod 2$$
 and $a+b\equiv 0\pmod 2$ if and only if $a+bi\in (1+i)$.

It's true for all $a \in \mathbb{Z}$ that $2a \equiv 0 \pmod 2$, so always $(a+b)+(a-b)\equiv 0 \pmod 2$. This means either both the sum and the difference of a and b is *even*, or both the sum and the difference is *odd*. So $\mathbb{Z}[i]/(1+i)$ has only two equivalence classes, and is thus a ring isomorphic to the field $\mathbb{Z}/2\mathbb{Z}$.

- b. Let $q \in \mathbf{Z}$ be prime and $\equiv 3 \pmod 4$. Then $a+bi \in (q)$ if and only if $\frac{a+bi}{q} \in \mathbf{Z}[i]$, if and only if (in \mathbf{Z}) $a \in (q)$ and $b \in (q)$. The q^2-1 nontrivial equivalence classes are index by distinct (modulo q) solutions $a,b \in \mathbf{Z}$ to $a \notin (q)$ or $b \notin (q)$. Because $\mathbf{Z}[i]$ is a PID and $(q) \subset \mathbf{Z}[i]$, a nonzero prime ideal, we know (q) is maximal. So the quotient $\mathbf{Z}[i]/(q)$ is a field, and counting by equivalence classes, $\mathbf{Z}[i]/(q)$ has q^2 elements.
- c. Let $p \in \mathbb{Z}$ be prime, $\equiv 1 \pmod{4}$ and consider $a, b \in \mathbb{Z}$ such that p = [a + bi] * [a bi].

That $\mathbf{Z}[i](p)$ is a field of order p^2 follows from part b. Now consider the ideals (a+bi) and (a-bi). Observe $p, 2a \in (a+bi) + (a-bi)$, where p = (a+bi)(0+a-bi). Since $p > a^2$ and $p \equiv 1 \pmod 4$, $p \notin (2a)$. We see p and 2a are coprime (in the Gaussian integers). Thus $\mathbf{Z}[i] = (p, 2a) \subset (a+bi) + (a-bi)$ are comaximal ideals. Moreover $(p) = (a+bi) \cap (a-bi)$ (verify). The CRT implies $\mathbf{Z}[i]/(p) \cong \mathbf{Z}[i]/(a+bi) \times \mathbf{Z}[i]/(a-bi)$. Because neither coordinate subring is trivial, their orders must both be p. \square

11.12. **Characterization of PIDs [2, No. 8.3.11].** *Given.* Let *R* be an entire ring.

To prove. R is a PID if and only if *R* is a UFD that is also a Bézout Domain.

Proof. (\Rightarrow) If R is a PID, then each element of R has a unique factorization into irreducibles [2, Sec. 8.3] and each ideal of R is principal. So R would be a Bézout UFD

(⇐) Say R is a Bézout UFD. Let $\mathfrak a$ be an ideal in R. We aim to show $\mathfrak a$ is principal. Choose $a \in \mathfrak a$ such that $a = r_1 \cdots r - n$ has the minimum number of irreducible factors among elements of $\mathfrak a$. Suppose $b \in \mathfrak a \setminus (a)$ for contradiction. Say R is Bézout, so $GCD(a,b) \ni d$, and (d) = (a,b). Note b has $s_1 \cdots s_m$ irreducible factors with m > n. So $a \notin (b)$. As well, we assume $b \notin (a)$, so together this implies $d \neq b$. One should verify $d \neq b$ implies $(d) \supsetneq (a)$. We conclude d has fewer irreducible factors than a. But $d \in (a,b) \subset \mathfrak a$, which is absurd! We've discovered that $\mathfrak a \setminus (a)$ is empty, which forces $\mathfrak a \subset (a) \subset \mathfrak a$. Therefore $\mathfrak a$ is principal and R is a PID. \square

REFERENCES

- [1] S. Lang, *Algebra*. 2002.
- [2] D. Dummit and R. Foote, Abstract algebra. Prentice Hall, 2004.