MASARYKOVA UNIVERZITA

Přírodovědecká fakulta

Implicitní funkce

Bakalářská práce

Prohlášení Prohlašuji, že bakalářskou práci jsem zpracovala samostatně pod odborným vedením doc. RNDr. Zdeňka Pospíšila, Dr. s použitím uvedené literatury.						
V Brně dne 30. května 2008						
v Dine due 30. kvetna 2008	Jana Zubčáková					

Obsah

Ú	vod		2
1	1.1 Implicitně	zadaná funkce jedné proměnné	
2	Asymptoty por 2.1 Pojem asy 2.2 Příklady a 2.2.1 Hy	ro implicitně zadané funkce ro implicitně zadané funkce mptoty	11 11 12 12
3	2.2.3 Str	rofoida a Nikomédova konchoida	
Zá	ávěr		21
Li	iteratura		22

Úvod

V první kapitole své práce shrnu základní poznatky o implicitně zadaných funkcích jedné proměnné a ukážu několik příkladů, při kterých se dají dané poznatky využít.

V další kapitole se zaměřím na metody vyšetřování asymptot bez směrnice i se směrnicí grafů takto zadaných funkcí a taktéž řešení předvedu na několika příkladech.

Poslední kapitola bude obsahovat ilustraci výsledků na vybrané ekonomické aplikaci.

Kapitola 1

Funkce zadaná implicitně

Uvažujme tento problém: Nechť F je funkce dvou proměnných, $\mathscr{D}(F)$ její definiční obor a označme množinu (křivku)

$$M = \{ [x, y] \in \mathcal{D}(F) : F(x, y) = 0 \}.$$

Například pro $F(x,y)=x^2+y^2-1$ je křivka M jednotková kružnice se středem v počátku.

Zvolme libovolný bod na křivce M. Chceme vyšetřit chování křivky v okolí tohoto bodu, zejména určit rovnici tečny v tomto bodě a rozhodnout, zda křivka v okolí tohoto bodu leží nad nebo pod tečnou.

Jestliže křivka M je přímo grafem funkce jedné proměnné y=f(x), tj. F(x,y)=y-f(x)=0, problém snadno vyřešíme výpočtem derivací f',f''. Rovněž v jednoduchých případech, jako je rovnice kružnice, lze využít metod diferenciálního počtu funkcí jedné proměnné, neboť z rovnice kružnice můžeme snadno spočítat y jako funkci proměnné x. Je-li však rovnice křivky komplikovanější, např. $x^3+y^3-2xy=0$ a chceme určit rovnici tečny ke křivce určené touto rovnicí v bodě $[x_0,y_0]=[1,1]$, předchozí postup selhává, protože z rovnice křivky nelze y rozumně spočítat.

V této kapitole ukážu pro funkci jedné proměnné, jak tuto nesnáz obejít. Budu se zabývat problémem, zda je křivka M v okolí daného bodu totožná s grafem nějaké funkce jedné proměnné, a pokud ano, jak spočítat její derivace.

1.1 Implicitně zadaná funkce jedné proměnné

Definice 1.1. Nechť F je funkce dvou proměnných. Označme $\mathcal{M}=\{[x,y]\in\mathcal{D}(F): F(x,y)=0\}$ a nechť $F(x_0,y_0)=0$. Jestliže existují čísla $\delta>0$, $\epsilon>0$ taková, že množina

$$\{[x,y]\in \mathscr{M}\colon \ |x-x_0|<\delta,\, |y-y_0|<\varepsilon\}$$

je totožná s grafem funkce y = f(x), $|x - x_0| < \delta$, řekneme, že funkce f je v okolí bodu $[x_0, y_0]$ definována implicitně rovnicí F(x, y) = 0.

Poznámka. Jinými slovy, funkce $y=f\left(x\right)$ je v okolí bodu $\left[x_{0},y_{0}\right]$ zadána implicitně rovnicí $F\left(x,y\right)=0$, jestliže existuje $\delta>0$ takové, že $F\left(x,f\left(x\right)\right)=0$ pro $x\in\left(x_{0}-\delta,x_{0}+\delta\right)$.

V případě rovnice kružnice $x^2+y^2-4=0$ vidíme, že v okolí libovolného bodu $P_0 \neq [\pm 2, \, 0]$ této kružnice je rovnicí $x^2+y^2-4=0$ implicitně zadaná funkce $y=f(x)=\pm \sqrt{4-x^2}$ (znaménko + bereme, leží-li bod na horní půlkružnici a znaménko -, je-li na dolní půlkružnici).

Dále vidíme, že v okolí bodů $[\pm 2, 0]$ není rovnicí zadaná žádná funkce proměnné x.

Obrázek 1.1: Kružnice $x^2 + y^2 - 4 = 0$

Jako jiný příklad uvažujme křivky dané rovnicemi

$$F(x,y) := x - y^2 = 0$$
 (parabola)
 $F(x,y) := x^2 - y^2 = 0$ (dvojice přímek $y = \pm x$)

Je vidět, že v libovolném okolí počátku není rovnicí F(x,y) = 0 určena implicitně žádná funkce. Naopak, v dostatečně malém okolí každého jiného bodu těchto křivek je rovnicí F(x,y) = 0 definována funkce y = f(x).

V prvním případě to jsou funkce $y = \sqrt{x}$ nebo $y = -\sqrt{x}$, podle toho, leží-li bod v horní nebo dolní polorovině určené osou x, ve druhém případě x = y nebo x = -y podle toho, na které z dvojice přímek bod leží.

V následující Větě 1.1 je uvedena postačující podmínka pro existenci funkce zadané implicitně v okolí daného bodu křivky a ve Větě 1.2 způsob pro výpočet její derivace.

Věta 1.1. Nechť je funkce F spojitá na čtverci $R = \{[x,y] \in \mathcal{D}(F) : |x-x_0| < a, |y-y_0| < a\}$ a nechť $F(x_0,y_0) = 0$. Dále předpokládejme, že funkce F má spojitou parciální derivaci $\frac{\partial}{\partial y}F(x,y)$ v bodě $[x_0,y_0]$ a platí $\frac{\partial F}{\partial y}(x_0,y_0) \neq 0$.

Pak existuje okolí bodu $[x_0, y_0]$, v němž je rovností F(x, y) = 0 implicitně definována právě jedna funkce y = f(x), která je spojitá.

 $D\mathring{u}kaz$. Existenci implicitně zadané funkce dokážeme pomocí Banachovy věty o pevném bodu kontraktivního zobrazení v úplném metrickém prostoru. Nechť $\varepsilon, \delta > 0$ jsou reálná čísla, jejichž přesnou hodnotu určíme později a označme $I = [x_0 - \delta, x_0 + \delta]$. Uvažujme prostor funkcí

$$P = \{ g \in C(I) : g(x_0) = y_0, |g(x) - y_0| \le \varepsilon \text{ pro } x \in I \}.$$

To znamená, že P je prostor spojitých funkcí na I, jejichž grafy procházejí bodem $[x_0,\,y_0]$ a leží v $\delta-\varepsilon$ obdélníku kolem bodu $[x_0,\,y_0]$. Na P uvažujme metriku stejnoměrné konvergence $\rho(f,\,g)=\max_{x\in I}|f(x)-g(x)|$. Označme $d=F_y(x_0,\,y_0)\neq 0$ a definujme na P zobrazení $T\colon P\to C(I)$ předpisem

$$g(x) \stackrel{T}{\longmapsto} g(x) - \frac{F(x, g(x))}{d}.$$

Najdeme-li pevný bod $f \in P$ zobrazení T, je tento bod hledanou implicitně zadanou funkcí f. Vskutku, je-li $f(x) = T(f)(x) = f(x) - d^{-1}F(x, f(x))$, je $d^{-1}F(x, f(x)) = 0$ pro $x \in I$, což podle Definice 1.1. znamená, že funkce f je implicitně zadána rovností F(x, y) = 0.

Určíme nyní konstanty δ a ε tak, aby zobrazení T bylo kontrakcí a zobrazovalo prostor P do sebe (což jsou spolu s úplností prostoru P předpoklady Banachovy věty).

Nechť $f, g \in P.$ Využitím Lagrangeovy věty o střední hodnotě pro funkci F dostáváme

$$|T(f)(x) - T(g)(x)| = |f(x) - d^{-1}F(x, f(x)) - g(x) + d^{-1}F(x, g(x))| =$$

$$= \left| f(x) - g(x) - \frac{F_y(x, \xi)(f(x) - g(x))}{d} \right| = |f(x) - g(x)| \left| 1 - \frac{F_y(x, \xi)}{d} \right|,$$

kde $\xi = \xi(x)$ leží mezi f(x) a g(x). Protože funkce F_y je spojitá v bodě $[x_0, y_0]$ a $F_y(x_0, y_0) = d$, existují ε , $\delta_1 > 0$ taková, že $\left|1 - d^{-1}F_y(x, y)\right| < \frac{1}{2}$ pro $x \in (x_0 - \delta_1, x_0 + \delta_1), y \in (y_0 - \varepsilon, y_0 + \varepsilon)$. Je-li $\delta \leq \delta_1$, pro takto zvolená ε , δ_1 platí

$$\begin{split} \rho(T(f),\,T(g)) &= \max_{x\in I} |f(x)-g(x)| \left|1-\frac{F_y(x,\,\xi)}{d}\right| \leq \\ &\leq \frac{1}{2} \max_{x\in I} |f(x)-g(x)| = \frac{1}{2} \, \rho(f,\,g), \end{split}$$

tj. T je kontrakce s koeficientem kontrakce $q = \frac{1}{2}$. Nechť $f \in P$. Pak T(f) je spojitá funkce a $T(f)(x_0) = f(x_0) - d^{-1}F(x_0, f(x_0)) = y_0$. Odtud plyne existence $\delta_2 > 0$ tak, že pro $x \in (x_0 - \delta_2, x_0 + \delta_2)$ platí

$$|T(f)(x) - y_0| \le \varepsilon.$$

Položme $\delta = \min\{\delta_1, \delta_2\}$, pak pro takto určená ε, δ je T kontraktivní zobrazení P do sebe, což jsme potřebovali dokázat.

Derivaci implicitně zadané funkce vypočteme podle následující věty.

Věta 1.2. Nechť jsou splněny předpoklady Věty 1.1 a funkce F má na R spojité parciální derivace 1. řádu. Pak má funkce f, která je implicitně určená v okolí bodu $[x_0, y_0]$ rovnicí F(x, y) = 0, derivaci v bodě x_0 a platí

$$f'(x_0) = -\frac{F_x(x_0, y_0)}{F_y(x_0, y_0)}.$$

 $D\mathring{u}kaz$. Nechť f je funkce implicitně určená v okolí bodu $[x_0, y_0]$ rovnicí F(x, y) = 0, tj. existuje $\delta > 0$ takové, že pro $x \in (x_0 - \delta, x_0 + \delta)$ platí F(x, f(x)) = 0. Důkaz existence derivace implicitně zadané funkce f zde nebudeme provádět, zde se zaměříme na odvození vzorce pro f'. Derivováním rovnosti F(x, f(x)) podle x dostáváme

$$F_x(x, f(x)) + F_y(x, f(x))f'(x) = 0,$$

odkud

$$f'(x) = -\frac{F_x(x, f(x))}{F_y(x, f(x))}.$$

Dosadíme-li za $x=x_0$, pak ze skutečnosti, že $f(x_0)=y_0$, plyne dokazované tvrzení.

KAPITOLA 1. FUNKCE ZADANÁ IMPLICITNĚ

Poznámka.

 \bullet Při výpočtu derivace funkce zadané rovnicí $F(x,\,y)=0$ využíváme často místo vzorce

$$f'(x_0) = -\frac{F_x(x_0, y_0)}{F_y(x_0, y_0)}$$

postupu uvedeného při jeho odvození. Rovnici F(x, y) = 0 derivujeme podle x a na y se díváme jako na funkci proměnné x. Pak dostáváme

$$F_x(x, y) + y' F_y(x, y) = 0,$$

a z této rovnice vypočteme y'.

• Postup z předchozí poznámky je vhodný i při výpočtu vyšších derivací funkce implicitně zadané rovnicí F(x, y) = 0. Derivujeme-li rovnici

$$F_x(x, y) + y' F_y(x, y) = 0,$$

ještě jednou podle x, pak dostáváme

$$F_{xx}(x, y) + F_{xy}(x, y)y' + y''F_y(x, y) + y'(F_{yx}(x, y) + F_{yy}(x, y)y') = 0$$

a z této rovnice vypočteme y''. Dalším derivováním poslední rovnice odvodíme vztah pro y''' atd.

1.2 Příklady pro implicitně zadané funkce jedné proměnné

Příklad 1.1. Najděte body křivky $x^2 + 4xy - y^2 - 20 = 0$, v nichž nejsou splněny předpoklady Věty 1.1. o existenci implicitní funkce y = f(x).

Řešení. Označme $F(x,y) = x^2 + 4xy - y^2 - 20$. Tato funkce je spojitá ve všech bodech, zejména tedy v bodech $[x_0, y_0]$, které splňují rovnost $F(x_0, y_0) = 0$. Obdobné tvrzení můžeme vyslovit pro parciální derivaci podle v, neboť

$$F_y(x_0, y_0) = 4x_0 - 2y_0.$$

Předpoklady Věty 1.1. tedy nejsou splněny v bodech, pro jejichž souřadnice platí

$$F_y(x_0, y_0) = 4x_0 - 2y_0 = 0$$

tedy

$$2x_0 - y_0 = 0.$$

Jestliže si uvědomíme, že musí splňovat i rovnost F(x,y)=0, nalezneme jejich hodnoty vyřešením soustavy rovnic

$$x_0^2 + 4x_0y_0 - y_0^2 = 20$$
$$2x_0 - y_0 = 0.$$

Po vyřešení soustavy získáme dvojici bodů $[2,\,4]$ a $[-2,\,-4].$

Příklad 1.2. Vypočtěte derivaci y' funkce y=f(x) zadané implicitně rovnicí $x-y^2=\ln y$

Řešení. Položme $F(x,y)=x-y^2-\ln y$. Podle Věty 1.1. je rovností F(x,y)=0 v okolí bodu $[x_0,y_0]$ určena právě jedna spojitá funkce y=f(x), jestliže $F_y(x_0,y_0)\neq 0$, v našem konkrétním případě

$$F_y(x_0, y_0) = -\frac{2y_0^2 + 1}{y_0} \neq 0.$$

Tato podmínka je však splněna ve všech bodech, které vyhovují zadávající rovnosti. Derivaci y^\prime můžeme spočítat dvojím způsobem:

• využitím vztahu ve Větě 1.2.

$$y' = -\frac{F_x(x, y)}{F_y(x, y)} = -\frac{1}{-2y - \frac{1}{y}} = \frac{y}{2y^2 + 1}$$

nebo

• derivací zadávající rovnosti podle x:

$$1 - 2yy' = \frac{1}{y}y'$$
$$1 = \left(2y + \frac{1}{y}\right)y'$$
$$y' = \frac{y}{2y^2 + 1}.$$

V obou případech musíme dospět ke stejnému výsledku.

Příklad 1.3. Určete rovnici tečny a normály ke křivce dané rovnicí $2x^3 + 2y^3 - 4xy = 0$ v bodě [1, 1] a rozhodněte, zda tato křivka leží v okolí bodu [1, 1] pod tečnou nebo nad tečnou.

Řešení. Označme $F(x,y)=2x^3+2y^3-4xy$. Platí $F_y(x,y)=6y^2-4x$, $F_y(1,1)=2\neq 0$, jsou tedy splněny všechny předpoklady věty, tj. rovností $2x^3+2y^3-4xy=0$ je v jistém okolí bodu [1, 1] určena implicitně funkce jedné proměnné y=f(x), po jejíž derivaci v bodě x=1 dostáváme

$$f'(1) = -\frac{F_x(1,1)}{F_y(1,1)} = -\frac{6x^2 - 4y}{6y^2 - 4x} = -1$$
, pro $[x,y] = [1,1]$

Rovnice tečny t je $y-y_0=-\frac{F_x(x_0,y_0)}{F_y(x_0,y_0)}(x-x_0)$, konkrétně v našem příkladě $y-1=-(x-1) \Rightarrow x+y-2=0$. Normála je kolmá přímka k tečně a vzhledem k tomu, že pro směrnice k_1,k_2 dvou navzájem kolmých přímek platí $k_1.k_2=-1$, rovnice normály n je y-1=x-1.

Nyní pro řešení druhé části zadání postupujeme jako při odvození vzorce pro tečnu. Derivujeme-li rovnici $2x^3 + 2y^3 - 4xy = 0$ podle x a uvážíme-li, že y je funkce proměnné x, dostáváme $6x^2 + 6y^2y' - 4y - 4xy' = 0$. Dalším derivováním podle x obdržíme $12x + 12y(y')^2 + 6y^2y'' - 4y' - 4y' - 4xy'' = 0$ a odtud

$$y'' = \frac{8y' - 12x - 12y(y')^2}{6y^2 - 4x}$$

Dosadíme-li do tohoto vztahu za x, y a y'(tato hodnota je vypočítána při výpočtu tečny), dostaneme y''(1) = -16, což znamená, že křivka leží v okolí bodu [1,1] pod tečnou (neboť implicitně určená funkce je v bodě x=1 konkávní).

Příklad 1.4. Na elipse o rovnicí $x^2 + 3y^2 - 2x + 6y - 8 = 0$ najděte body, v nichž je normála rovnoběžná s osou y.

Řešení. Normálou rozumíme přímku, která je kolmá k tečně a prochází bodem $T = [x_0, y_0]$, ve kterém se tečna dotýká elipsy. Podle zadání hledáme takové body, ve kterých je tečna rovnoběžná s osou x. Pro směrnici k takové

KAPITOLA 1. FUNKCE ZADANÁ IMPLICITNĚ

přímky platí k=0. Tuto směrnici vyjádříme jako derivaci rovnice elipsy v bodě T podle x:

$$2x + 6yy' - 2 + 6y' = 0$$
$$y' = \frac{-x+1}{3y+3}$$
$$f'(x_0) = \frac{-x_0+1}{3y_0+3}.$$

Jeho souřadnice nalezneme řešením soustavy rovnic

$$x_0^2 + 3y_0^2 - 2x_0 + 6y_0 - 8 = 0$$
 $(T \in \text{elipsa})$
 $-x_0 + 1 = 0.$ $(f'(x_0) = k)$

Vyřešením soustavy rovnic dostaneme dvojici bodů [1, -3] a [1, 1], ve kterých je normála rovnoběžná s osou y.

Kapitola 2

Asymptoty pro implicitně zadané funkce

2.1 Pojem asymptoty

Definice 2.1. Přímka se nazývá asymptota křivky, když vzdálenost z bodu M(x, y) ležícího na křivce se k dané přímce blíží k nule.

Pro explicitně zadanou funkci definujeme asymptotu následovně:

Definice 2.2. Asymptota bez směrnice je přímka $x = x_0, x \in \mathbb{R}$ funkce f, jestliže má funkce f v x_0 alespoň jednu jednostrannou limitu nevlastní, tj. $\lim_{x \to x^{\pm}} f(x) = \pm \infty$ nebo $\lim_{x \to x^{-}} f(x) = \pm \infty$.

Asymptota se směrnicí je přímka $y=kx+q,\,k,\,q\in\mathbb{R}$ funkce f, jestliže platí $\lim_{x\to-\infty}(f(x)-(kx+q))=0$ nebo $\lim_{x\to+\infty}(f(x)-(kx+q))=0$.

Věta 2.1. Přímka y = kx + q je asymptotou funkce f pro $x \to +\infty$ právě tehdy, když existují konečné limity

$$\lim_{x \to +\infty} \frac{f(x)}{x} = k \qquad a \qquad \lim_{x \to +\infty} (f(x) - kx) = q.$$

Analogické tvrzení platí pro $x \to -\infty$.

Věta 2.2. Přímka y=q je asymptotou funkce f pro $x\to +\infty$ právě tehdy, $když\lim_{x\to +\infty} f(x)=q$. Analogické tvrzení platí pro $x\to -\infty$.

K nalezení asymptoty pro parametricky zadanou křivku $x=x(t),\,y=y(t)$ postupujeme následovně:

Definice 2.3. Pro asymptotu parametricky zadané křivky musíme najít hodnotu $t = t_i$, pro kterou platí $x(t) \to +\infty$ nebo $y(t) \to +\infty$. Pak můžou nastat dané případy:

- Pokud $x(t_i) = \infty$, ale $y(t_i) = c \neq \infty$, pak přímka y = c je horizontální asymptota.
- Pokud $y(t_i) = \infty$, ale $x(t_i) = b \neq \infty$, pak přímka x = b je vertikální asymptota.
- Pokud $x(t_i) = \infty$ a $y(t_i) = \infty$, pak bychom měli vypočítat dvě limity

$$k = \lim_{t \to t_i} \frac{y(t)}{x(t)} \qquad \text{a} \qquad q = \lim_{t \to t_i} [y(t) - k.x(t)].$$

Pokuj obě limity existují a jsou konečné, pak existuje i asymptota a má tvar y=kx+q.

2.2 Příklady asymptot implicitně zadaných funkcí

V této podkapitole si ukážeme některé implicitní funkce a možnosti výpočtu jejích asymptot.

2.2.1 Hyperbola

Rovnice hyperboly v standardním tvaru je $\frac{x^2}{a^2} - \frac{y^2}{h^2} = 1$.

Obrázek 2.1: Hyperbola

Hledáme asymptotu ve tvaru y=mx+c, kde m je směrnice dané přímky a c posunutí.

Nejprve vyšetříme průsečík křivky $b^2x^2 - a^2y^2 = a^2b^2$ (rovnice hyperboly vynásobená výrazem a^2b^2) s přímkou y = mx. Pro souřadnici x průsečíku takové přímky s křivkou obdržíme rovnici:

$$b^{2}x^{2} - a^{2}(mx)^{2} = a^{2}b^{2}$$
$$x^{2}(b^{2} - a^{2}m^{2}) = a^{2}b^{2}.$$

KAPITOLA 2. ASYMPTOTY PRO IMPLICITNĚ ZADANÉ FUNKCE

aby rovnice měla kořen x nekonečně velký, musí platit $b^2-a^2m^2=0$, neboť $b^2-a^2m^2=\frac{a^2b^2}{x^2}$ a jestliže $x\to\infty$, pak $\frac{a^2b^2}{x^2}\to 0$.

Tato relace dává pro m dva kořeny a to $m = \pm \frac{b}{a}$, což představuje směrnici dvou asymptot.

Abychom obdrželi cna osey,dosadíme do zadávající rovnice nejprve $y=\frac{b}{a}x+c,$ pak

$$b^{2}x^{2} - \left(\frac{b}{a}x + c\right)^{2}a^{2} = a^{2}b^{2}$$

$$\vdots$$

$$-2abcx - a^{2}c^{2} = a^{2}b^{2},$$

kde kořen této rovnice je

$$x = \frac{-c^2a - b^2a}{2bc}$$

a tento kořen může být nekonečný pouze pro c=0 a tedy hledaná rovnice asymptoty je rovna $y=\frac{b}{a}x.$

Stejný výsledek pro hodnotu c dostaneme, když budeme pracovat s kořenem $m=-\frac{b}{a}$, tj. pro danou hyperbolu ve standardním tvaru existují dvě asymptoty $y=\frac{b}{a}x$ a $y=-\frac{b}{a}x$.

2.2.2 Descartův list

Descartův list je funkce:

- zadaná implicitně rovnicí $x^3 + y^3 3axy = 0$
- zadaná parametricky $x = \frac{3at}{t^3+1}$ a $y = \frac{3at^2}{t^3+1}$, pro $t \in \mathbb{R}$, a > 0

Obrázek 2.2: Descartův list

ASYMPTOTY PRO IMPLICITNĚ ZADANÉ FUNKCE KAPITOLA 2.

Nyní budeme hledat asymptotu se směrnicí, kterou předpokládáme ve tvaru y = kx + q. Můžeme postupovat dvěma způsoby:

1. Využitím implicitního zadání funkce: $x^3 + y^3 - 3axy = 0$ Nejprve vyšetříme průsečík této křivky s přímkou y = kx. Pro souřadnici x průsečíku takové přímky s křivkou obdržíme rovnici

$$x^{3} + (kx)^{3} - 3ax(kx) = 0$$

$$x^{3}(1+k^{3}) - 3ax^{2}k = 0$$
 /: $x^{3}(1+k^{3}) - 3ak = 0$,

aby rovnice měla kořen x nekonečně velký, tj. aby rovnoběžka asymptoticky křivku "protínala v nekonečnu" musí platit $1+k^3=0$, neboť $1+k^3=\frac{3ak}{x}$ a jestliže $x\to\infty,$ pak $\frac{3ak}{x}\to0.$ Tato relace dává pro k jediný reálný kořen a to k=-1, což před-

stavuje směrnici asymptoty.

Abychom obdrželi q na ose y, dosadíme do zadávající rovnice y = -kx + q, pak

$$x^{3} + (-x+q)^{3} - 3ax(-x+q) = 0$$

$$\vdots$$

$$x^{2}3(q+a) - x3q(q+a) + q^{3} = 0.$$

Kořeny této rovnice jsou

$$x_{1,2} = \frac{3q(q+a) \pm \sqrt{(3q(q+a))^2 - 4.3(q+a)(q^3)}}{2.3(q+a)} = \frac{1}{2} \pm \frac{1}{6} \sqrt{9q^2 - \frac{12q^3}{q+a}}$$

a tyto kořeny mohou být nekonečné pouze pro q=-a, tedy dostaneme hledaný úsek a pak hledaná rovnice asymptoty je rovná y = -x - a.

2. Využitím parametrického zadání funkce: $x=\frac{3at}{t^3+1}$ a $y=\frac{3at^2}{t^3+1}$ Protože pro $x(-1) = \infty$ a $y(-1) = \infty$ použijeme výpočet dvou limit

$$k = \lim_{t \to -1} \frac{y(t)}{x(t)} = \lim_{t \to -1} \frac{\frac{3at^2}{t^3 + 1}}{\frac{3at}{t^3 + 1}} = \lim_{t \to -1} t = -1$$

$$q = \lim_{t \to -1} \left[y(t) - k.x(t) \right] = \lim_{t \to -1} \frac{3at^2}{t^3 + 1} + \frac{3at}{t^3 + 1} =$$

$$= \lim_{t \to -1} \frac{3at(t+1)}{t^3 + 1} = \lim_{t \to -1} \frac{3at(t+1)}{(t+1)(t^2 - t + 1)} =$$

$$= \lim_{t \to -1} \frac{3at}{t^2 - t + 1} = -a$$

z čeho nám vyplývá, že asymptota má tvar y = -x - a.

Samozřejmě musíme v obou případech dostat stejný výsledek, nezáleží na způsobu vyjádření dané funkce.

2.2.3 Strofoida a Nikomédova konchoida

Jako příklad implicitně zadaných funkcí, které mají asymptotu bez směrnice, uvedu strofoidu a Nikomédovu konchoidu.

Strofoida: $y^2=x^2\cdot\frac{a+x}{a-x}$, kde daná funkce není definovaná právě v bodě $x_0=a$, tedy funkce se pro $x\to a$ blíži do $\pm\infty$, tj. asymptota bez směrnice je rovná x=a.

Obrázek 2.3: Strofoida

Nikomédova konchoida: $(x-a)^2(x^2+y^2)=b^2x^2$, kde po úpravě dostaneme, že daná funkce není definovaná opět v hodnotě $x_0=a$, tj. asymptota dané křivky je bez směrnice a má tvar vždy x=a.

Obrázek 2.4: Nikomédova konchoida

Kapitola 3

Goodwinův růstový cyklus

V této kapitole budu aplikovat praktické využití předešlých poznatků na Goodwinův růstový cyklus. Nejprve si zavedeme potřebné značení.

Značení:

```
y=y(t) ... produkt v čase t k=k(t) ... kapitál v čase t n=n(t) ... nabídka práce v čase t (počet práceschopných) l=l(t) ... zaměstnanost v čase t (počet zaměstnaných) a=a(t) ... produktivita práce v čase t (množství produktu, které vyprodukuje jeden pracovník za jednotku času) w=w(t) ... mzdová sazba (mzda, kterou dostane jeden pracující za jednotku odpracovaného času)
```

Dále:

```
u=\frac{w}{a}\,\dotspodíl zaměstnaných na produktu v=\frac{l}{n}\,\dotsrelativní zaměstnanost
```

Goodwin začíná přijetím stálého technologického pokroku, stálého růstu pracovních sil a dvou činitelů výroby: práce a kapitálu (budovy a zařízení), množství je reálné a beze srážky, mzdy jsou plně spotřebovávané, zisky jsou ušetřené a investované, procento výstupu kapitálu je konstantní a reálné mzdové sazby rostou s plnou zaměstnaností. Toto všechno si tedy můžeme uvést jako následující předpoklady.

Předpoklady:

P1) Stály technický pokrok se přenáší do růstu produktivity práce

$$a(t) = a_0 e^{\alpha t}, \ \alpha \in \mathbb{R},$$

kde a je produktivita práce rostoucí stálou rychlostí hodnoty α . P2) Rovnost popisování růstu pracovních sil má podobnou formu

$$n(t) = n_0 e^{\beta t},$$

KAPITOLA 3. GOODWINŮV RŮSTOVÝ CYKLUS

kde n nabídka práce s předpokladem růstu o hodnotě β . P3) Práce je pokládaná za jediný výrobní faktor, tedy platí

$$y = l.a$$

P4) Veškeré zisky se investují

$$\frac{y'}{y} = \frac{k'}{k},$$

kde $\frac{y'}{y}$ je relativní přírůstek produktu a $\frac{k'}{k}$ je relativní přírůstek kapitálu. P5) Existuje konstantní poměr kapitálu a produktu rovný

$$\sigma = \frac{k}{y}$$

P6) Relativní růst mezd se zvětšuje s relativní zaměstnaností

$$\frac{w'}{w} = \rho v - \gamma, \ \rho > 1, \gamma > 1,$$

kde γ je absolutní člen a ρ je směrnice Phillipsové křivky.

Pak platí:

•
$$k(t + \Delta t) = k(t) + y\Delta t - (wl)\Delta t$$
, tedy

$$k' = y - wl$$
, kde z předpokladu P3 plyne

$$k' = y\left(1 - \frac{w}{a}\right)$$

$$k' = y(1 - u)$$

• podle předpokladu P4 platí:

$$\frac{y'}{y} = \frac{k'}{k},$$

g

kde po uplatnění vztahu (3.1) dostaneme

$$\frac{y'}{y} = \frac{k'}{k} = \frac{y}{k}(1-u)$$

a následně pomocí předpokladu P5 dostáváme vztah

$$\frac{y'}{y} = \frac{k'}{k} = \frac{y}{k}(1-u) = \frac{1-u}{\sigma}$$
 (3.2)

podle předpokladu P3 a následně P1 můžeme odvodit daný vztah

$$\frac{y}{l} \stackrel{\text{P3}}{=} a \stackrel{\text{P1}}{=} a_0 e^{\alpha t} \tag{3.3}$$

(3.1)

GOODWINŮV RŮSTOVÝ CYKLUS KAPITOLA 3.

• uplatněním dvakrát předchozího vzorce (3.3) si odvodíme, že

$$\alpha a_0 e^{\alpha t} \stackrel{(3.3)}{=} \left(\frac{y}{l}\right)' = \frac{y'l - yl'}{l^2} \stackrel{(3.3)}{=} \left(\frac{y'}{y} - \frac{l'}{l}\right) a_0 e^{\alpha t},$$

(3.4)

(3.5)

(3.6)

(3.7)

tedy

$$\alpha a_0 e^{\alpha t} = \left(\frac{y'}{y} - \frac{l'}{l}\right) a_0 e^{\alpha t} \to \frac{l'}{l} = \frac{y'}{y} - \alpha$$

a podle (3.2) platí

$$\frac{l'}{l} = \frac{1-u}{\sigma} - \alpha$$
 • teď si ukážeme odvození vztahu pro v'

$$v' = \left(\frac{l}{n}\right)' = \frac{l'n - ln'}{n^2} \stackrel{\text{P2}}{=} \frac{l'n - l\alpha n}{n^2} = (l' - \beta l)\frac{l}{ln} = \left(\frac{l'}{l} - \beta\right)v \stackrel{(3.4)}{=} \left(\frac{1 - u}{\sigma} - (\alpha + \beta)\right)v$$

• a nakonec odvození vztahu pro u'

$$u' = \left(\frac{w}{a}\right)' = \frac{w'a - wa'}{a^2} \stackrel{\text{P1}}{=} \frac{w'a - w\alpha a}{a^2} = (w' - \alpha w)\frac{w}{aw} = \left(\frac{w'}{w} - \alpha\right)\frac{w}{a} = \left(\frac{w'}{w} - \alpha\right)u \stackrel{\text{P6}}{=} (-\gamma + \rho v - \alpha)u$$

Rovnice (3.5), (3.6) tedy představují model studovaného procesu.

$$v' = \left(\frac{1}{\sigma} - (\alpha + \beta) - \frac{u}{\sigma}\right)v$$
$$u' = \left(-(\alpha + \gamma) + \rho v\right)u$$

Dále se předpokládá $\frac{1}{\sigma} > \alpha + \beta$ (aby všechno neskončilo v (0,0)).

Trajektorie systému

$$v' = \left(\frac{1}{\sigma} - (\alpha + \beta) - \frac{u}{\sigma}\right)v$$
$$u' = \left(-(\alpha + \gamma) + \rho v\right)u$$

je pak daná implicitně zadanou rovnicí

$$\left(\frac{1}{\sigma} - (\alpha + \beta)\right) \ln|u| - \frac{u}{\sigma} = -(\alpha + \gamma) \ln|v| + \rho v + \text{const.}$$

Danou rovnici (3.7) dostaneme následující úpravou:

$$\frac{\mathrm{d}v}{\mathrm{d}t} = \left(\frac{1}{\sigma} - (\alpha + \beta) - \frac{u}{\sigma}\right)v$$
$$\frac{\mathrm{d}u}{\mathrm{d}t} = \left(-(\alpha + \gamma) + \rho v\right)u,$$

pro které platí vztah

$$\frac{\mathrm{d}u}{\mathrm{d}v} = \frac{u(-(\alpha+\gamma)+\rho v)}{v(\frac{1}{\sigma}-(\alpha+\beta)-\frac{u}{\sigma})},$$

což je rovnice se separovanými proměnnými, kterou lze vyřešit jako:

$$\frac{\left(\frac{1}{\sigma} - (\alpha + \beta) - \frac{u}{\sigma}\right)}{u} du = \frac{\left(-(\alpha + \gamma) + \rho v\right)}{v} dv$$
$$\left(-\frac{1}{\sigma} + \frac{1}{u}\left(\frac{1}{\sigma} - (\alpha + \beta)\right)\right) du = \left(\rho - \frac{\alpha + \gamma}{v}\right) dv$$
$$\int \left(-\frac{1}{\sigma} + \left(\frac{1}{\sigma} - (\alpha + \beta)\right) \frac{1}{u}\right) du = \int \left(\rho - (\alpha + \gamma) \frac{1}{v}\right) dv,$$

kde integrováním dostaneme

$$-\frac{1}{\sigma}u + \left(\frac{1}{\sigma} - (\alpha + \beta)\right) \ln|u| = \rho v - (\alpha + \gamma) \ln|v| + \text{const.},$$

což je právě rovnice (3.7).

Rovnost (3.7) lze chápat jako implicitně zadanou funkci u=u(v). Na základě předešlých poznatků pak umíme vyjádřit pomocí první a druhé derivace dané funkce její extrémy, konkávnost, resp. konvexnost a následně i jej asymptoty, přičemž všechny výsledky budou záviset na konkrétních parametrech $\alpha, \beta, \gamma, \sigma, \rho$ dané implicitně zadané rovnice. Podle následujících úvah a grafů zjistíme, že asymptoty pro naši implicitně zadánu funkci neexistují.

Pro určení stacionárních bodů spočteme derivace funkce podle f_v a f_u a ty se pak musí rovnat 0, čili dostaneme:

$$\bar{v} = \frac{\alpha + \gamma}{\rho}$$
$$\bar{u} = \left(\frac{1}{\sigma} - (\alpha + \beta)\right)\sigma$$

KAPITOLA 3. GOODWINŮV RŮSTOVÝ CYKLUS

Zvýšení produktivity α je realizované do obou diferenciálních rovnic. Pro dosáhnutí uzavřené trajektorie kolem definované souřadnice (\bar{v}, \bar{u}) v Goodwinově modelu je nezbytné, že proměnné hodnoty musí být navzájem k sobě v specifickém procentu.

Vývoj vztahu podílu zaměstnaných na produktu (u) a relativní zaměstnanosti (v) vidíme na následujícím grafu.

Vztah proměnných pak vidíme v následující tabulce:

		stacionární bod podílu zaměstnaných	stacionární bod relativní zaměstnanosti
		ū	V
růst produktivity	α	=	Ŧ
růst pracovní nabídky	β	<u>=</u>	nic
poměr kapitálu a produktu	σ	-	nic
průsečík Phollipsové křivky	γ	nic	+
sklon Phillipsové křivky	ρ	nic	(=)

A nakonec si ukážeme graf, kde levá část zobrazuje očekávaný cyklus pro konkrétně zadané hodnoty proměnných a pravý obrazec cyklická chování v čase.

Výsledkem je tedy, že trajektorie diferenciálního systému jsou uzavřené křivky, což znamená, že řešení jsou periodická. Proto je tento model jedním z možných vysvětlení vzniku hospodářských cyklů.

Závěr

První dvě kapitoly měly čtenáře uvést do tématiky a byly teoretickou přípravou pro aplikaci. Ukázalo se, že teorie je bohatší, než bylo možno ve vybrané aplikaci použít; zejména studium asymptot implicitně zadané funkce se v modelu vzniku hospodářských cyklů neuplatnilo. Hledání asymptot by však určitě bylo užitečné při studiu modelů omezeného nebo neomezeného růstu.

Literatura

- [1] Došlá, Z.-Došlý, O., Diferenciální počet funkcí více proměnných. Brno, Masarykova univerzita, 2003
- [2] Došlá, Z.-Kuben, J., Diferenciální počet funkcí jedné proměnné. Brno, Masarykova univerzita, 2003
- [3] Zdráhal, L. *Implicitně zadaná funkce jedné a dvou proměnných*. Diplomová práce, Brno, PřF Masarykova univerzita, 1996
- [4] Polyanin, A. D.-Manzhirov A. V., Handbook of mathematics for engineers and scientists. CRC Press, 2007
- [5] Goodwin, R. M., $\,A\,$ Growth $\,$ cycle. Cambridge University Press, Cambridge, 1967
- [6] Weber, L. A Contribution To Goodwin's Growth Cycle Model From A System Dynamics Perspective. (http://www.systemdynamics.org/conferences/2005/proceed/papers/WEBER196.pdf), 2005