Simple Linear Regression

Area (SQM)	Selling Price (Lacs)
35	13
37	17
39	15
40	16
43	18
48	19
50	20
55	25
60	35
65	37
70	38
75	40
80	43
85	44
90	50
95	54
100	60

Area (SQM)	Selling Price (Lacs)
35	13
37	17
39	15
40	16
43	18
48	19
50	20
55	25
60	35
65	37
70	38
75	40
80	43
85	44
90	50
95	54
100	60

Area (SQM)	Selling Price (Lacs)
35	13
37	17
39	15
40	16
43	18
48	19
50	20
55	25
60	35
65	37
70	38
75	40
80	43
85	44
90	50
95	54
100	60

Area (SQM)	Selling Price (Lacs)
35	13
37	17
39	15
40	16
43	18
48	19
50	20
55	25
60	35
65	37
70	38
75	40
80	43
85	44
90	50
95	54
100	60

Area (SQM)	Selling Price (Lacs)
35	13
37	17
39	15
40	16
43	18
48	19
50	20
55	25
60	35
65	37
70	38
75	40
80	43
85	44
90	50
95	54
100	60

- Mathematically:
 - \rightarrow Minimize $\sum_{i=1}^{m} (y_i \hat{y}_i)^2$

$$\hat{\mathbf{y}} = h_{\theta}(x) = \theta_0 + \theta_1 x$$

OR

 \rightarrow Minimize $(\frac{1}{2m})\sum_{i=1}^{m}(y_i-\hat{y}_i)^2$

OR

$$> J(\theta_0, \theta_1) = (\frac{1}{2m}) \sum_{i=1}^m (y_i - \hat{y}_i)^2$$

OR

 $Minimize J(\theta_0, \theta_1)$ θ_0, θ_1

> Mathematically:

Mathematically:

Gradient Descent Algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1) }
```

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := temp1$$

$$J(\theta_0, \theta_1) = \left(\frac{1}{2m}\right) \sum_{i=1}^m (y_i - \hat{y}_i)^2$$

$$\hat{\mathbf{y}} = h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient Descent Algorithm

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ (for j = 1 and j = 0) }

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Gradient Descent Algorithm

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) =$$

$$j = 0 : \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) =$$

$$j=1:\frac{\partial}{\partial\theta_1}J(\theta_0,\theta_1)=$$

Gradient Descent Algorithm

$$\begin{array}{l} \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \\ \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)} \end{array} \right] \begin{array}{l} \text{update} \\ \theta_0 \text{ and } \theta_1 \\ \text{simultaneously} \end{array}$$

	Selling
Area	Selling Price
(SQM)	(Lacs)
35 37	13
37	17
39	15
40	16
43	18
48	19
50	20
55	25
60	35
65	37
70	38
75	40
80	43
85	44
90	50
95	54
100	60

$$\widehat{\mathbf{y}} = h_{\theta}(x) = \theta_0 + \theta_1 x$$

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

References

> Andrew Ng's slides on Linear Regression from his Machine Learning Course on Coursera.

Disclaimer

Content of this presentation is not original and it has been prepared from various sources for teaching purpose.