

Robotics

LED control

School of Computing, Gachon University

Kang, Sangwoo

Basics

Voltage

- Difference of electric energy between two points
- Unit: volt (V)

Intensity (Electric Current)

- A flow of electric charge
- Unit: ampere (A)

Resistance

- Opposition to the passage of an electric current
- \circ Unit: ohm (Ω)

$$V = I R$$

$$I = \frac{V}{R}$$
ohm's law
$$R = \frac{V}{I}$$

How to read resistor

Breadboard

- Construction base for prototyping of electronics
- Makes it easy to use for creating temporary prototypes and experimenting with circuit designs

● Try make an LED pin blink in a pattern on a pin of your choice

- FND(Flexible Numeric Display) 7segment
 - Display device for displaying Arabic numerals using a LED / a LCD

G DEPARTMENT OF SOFTWARE

Functions

pinMode()

- Configures the specified pin to behave either as an input or an output
- Syntax
 - pinMode(pin, mode)
 - pin: the pin number
 - mode: INPUT, OUTPUT
- Example

```
void setup() {
 pinMode(13, OUTPUT);  // sets the digital pin as output
 pinMode(12, INPUT);  // sets the digital pin as input
}
```


digitalWrite()

- O Write a value to a digital pin
- Syntax
 - digitalWrite(pin, value)
 - pin: the pin number
 - value: HIGH or LOW
- Example

```
void loop() {
  digitalWrite(13, HIGH)  // sets the LED on
  delay(1000)  // waits for a second
}
```


delay()

- Pauses the program for the amount of time (in miliseconds) specified as parameter
 - (There are 1000 milliseconds in a second.)
- Syntax
 - delay(ms)
 - ms: the number of milliseconds to pause (unsigned long)
- Example

```
void loop() {
  digitalWrite(13, HIGH);  // sets the LED on
  delay(1000);  // waits for a second
}
```


digitalRead()

- Reads the value from a specified digital pin, either HIGH or LOW
- Syntax
 - digitalRead(pin)
 - pin: the number of the digital pin you want to read (int)
- example

- analogWrite(pin, value)
 - Writes an analog value (PWM wave) to a pin
 - This function works on pins 3, 5, 6, 9, 10, and 11
 - Syntax
 - analogWrite(pin, value)
 - pin: the pin to write to, value: the duty cycle: between 0 and 255
 - o example

```
void loop() {
  for(int i=0;i<256;i++) {
  analogWrite(3,i);
  delay(10);
}}</pre>
```


Lab. 1 - Blinking

Circuit diagram:

- \circ Prepare two LEDs and two 220 Ω resistors
- Connect the anode of your blue and red LEDs to digital output Dpin 12, 13 on your board,
 respectively
- \circ Connect a 220 $\!\Omega$ resistor between the cathode and ground

Lab. 2 - Fading

Fade two LEDs to cross repeatedly

- While one LED is increasingly brighter, and another LED is to be getting darker
- O Writes an analog value (PWM wave) to a pin

− Value : 0~255

Lab. 2 – Fading [cont'd]

Circuit diagram:

- \circ Prepare two LEDs and a 220 Ω resistor
- Connect the anode of your blue and red LEDs to digital output Dpin ~10, ~11 on your board, respectively
- \circ Connect a 220 Ω resistor between the cathode and ground

Lab. 3 - RGB LED

Describe repeatedly different colors Using the RGB LED

o Make functions for Red, Green, Blue, Make combinations of colors (rainbow color order).

Lab. 3 - RGB LED [cont'd]

Circuit diagram:

- o RGB LED is consist of three anode pins and a cathode
- \circ Connect each Anode pin 220 $\!\Omega$ to a resistor
- Connect each Anode with a resistor to Dpin 9, 10, 11, respectively

- Make a countdown timer using FND
 - common-cathode type : value HIGH → a LED turns on
 - \circ common-anode type : value LOW \rightarrow a LED turns on

Lab. 4 - FND [cont'd]

• Circuit diagram:

