Analysis

11. Juni 2020

Teil I Folgen und Reihen

1 Konvergenz von Folgen

Def. (1) Eine Folge a_n konvergiert gegen $a \in \mathbb{R}$, falls

$$\forall \epsilon > 0 \ \exists N = N(\epsilon) \in \mathbb{N}, \ \forall n \ge N \colon |a_n - a| < \epsilon.$$

Für \mathbb{R}^d muss gelten $||a_n - a|| < \epsilon$.

Def. (2) Eine Folge a_n konvergiert gegen $a \in \mathbb{R}$, falls es $l \in \mathbb{R}$ gibt, so dass $\forall \epsilon > 0$ die Menge $\{n \in \mathbf{N}^* : a_n \notin] l - \epsilon, l + \epsilon[\}$ endlich ist.

Thm. (Monotone) Sei $(a_n)_{n\geqslant 1}$ monoton fallend und nach unten beschränkt. Dann konvergiert $(a_n)_{n\geqslant 1}$ mit Grenzwert $\lim_{n\to\infty} a_n = \inf\{a_n : n\geqslant 1\}$.

Thm. (Cauchy) Die Folge $(a_n)_{n\geqslant 1}$ ist genau dann konvergent, falls $\forall \varepsilon > 0 \quad \exists N \geqslant 1$ so dass $|a_n - a_m| < \varepsilon \quad \forall n, m \geqslant N$

Thm. (Sandwich) Die Folge $(a_n)_{n\geqslant 1}$ konvergiert zu a, falls $(b_n)_{n\geqslant 1}$, $(c_n)_{n\geqslant 1}$ existieren mit Grenzwert a und $\forall n\ge 1:b_n\le a_n\le c_n$.

2 Konvergenz von Reihen

Def. Die Reihe $\sum_{k=1}^{\infty} a_k$ konvergiert absolut (\Rightarrow konvergent), falls $\sum_{k=1}^{\infty} |a_k|$ kovergiert.

Thm. (Cauchy) Die Reihe $\sum_{k=1}^{\infty} a_k$ ist genau dann konvergent, falls. $\forall \varepsilon > 0 \quad \exists N \geqslant 1$ mit $\left|\sum_{k=1}^{m} a_k\right| < \varepsilon \quad \forall m \geqslant n \geqslant N$

Thm. (Ratio) Sei $(a_n)_{n\geqslant 1}$ mit $a_n\neq 0 \quad \forall n\geqslant 1$. Falls

$$\limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} < 1$$

dann konvergiert die Reihe absolut. Falls $\liminf_{n\to\infty} \supset 1$ divergiert die Reihe.

Thm. (Root) Falls

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1$$

dann konvergiert $\sum_{n=1}^{\infty}a_n$ absolut. Falls $\square>1,$ dann divergiert die Reihe.

Thm. (Alternating) Sei $(a_n)_{n\geqslant 1}$ monoton fallend mit $a_n\geqslant 0$ $\forall n\geqslant 1$ und $\lim_{n\to\infty}a_n=0$. Dann konvergiert

$$S := \sum_{k=1}^{\infty} (-1)^{k+1} a_k$$

und es gilt $a_1 - a_2 \leq S \leq a_1$.

Bsp. Die Reihe $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$ konvergiert.

Thm. (McLaurin) Sei $f: [1, \infty[\longrightarrow [0, \infty[$ monoton fallend.

$$\sum_{n=1}^{\infty} f(n) \text{ konvergiert} \Longleftrightarrow \int_{1}^{\infty} f(x) dx \text{ konv.}$$

und in diesem Fall gilt $0 \le \sum_{n=1}^{\infty} f(n) - \int_{1}^{\infty} f(x) dx \le f(1)$

3 Eigenschaften

Lem. (Bernouilli) $(1+x)^n \ge 1 + n \cdot x \quad \forall n \in \mathbb{N}, x > -1.$

Thm. (Teilfolge) Jede beschränkte Folge besitzt eine konvergente Teilfolge.

Thm. (Vektorfolge) $\lim_{n\to\infty} a_n = b$ genau dann wenn $\lim_{n\to\infty} a_{n,j} = b_j$ $\forall 1 \leq j \leq d$.

Def. (LimSup, LimInf) Sei a_n beschränkt, definieren wir

$$\limsup_{n \to \infty} a_n := \lim_{n \to \infty} \sup \{ a_k : k \geqslant n \}$$

$$\liminf_{n \to \infty} a_n := \lim_{n \to \infty} \inf \{ a_k : k \geqslant n \}$$

Thm. (Umordnung) Falls eine Reihe absolut konvergiert, dann konvergiert jede Umordnung der Reihe und hat denselben Grenzwert.

Thm. (2.7.23) Falls $\sum_{i=0}^{m} \sum_{j=0}^{m} |a_{ij}| \le B, \forall m \ge 0$

dann konvergiert
$$S_i := \sum_{j=0}^{\infty} a_{ij} \quad \forall i \geq 0$$

dann konvergiert
$$U_j := \sum_{i=0}^{\infty} a_{ij} \quad \forall j \geq 0$$

und es gilt
$$\sum_{i=0}^{m} S_i = \sum_{j=0}^{m} U_j$$

Thm. (2.7.24) Das Cauchy Produkt der Reihen $\sum_{i=0}^{\infty} a_i$, $\sum_{i=0}^{\infty} b_i$ ist die Reihe

$$\sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} a_{n-j} b_j \right) = a_0 b_0 + (a_0 b_1 + a_1 b_0) + \cdots$$

Thm. (2.7.26) Falls die Reihen $\sum_{i=0}^{\infty} a_i$, $\sum_{i=0}^{\infty} b_i$ absolut konvergieren, so knovergiert ihr Cauchy Produkt und es gilt:

$$\sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} a_{n-j} b_{j} \right) = \left(\sum_{i=0}^{\infty} a_{i} \right) \left(\sum_{j=0}^{\infty} b_{j} \right)$$

4 Wichtige Beispiele

Bsp. (Potenzreihe) Eine Potenzreihe kann man als eine Funktion

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

auffassen. Es gilt:

$$\begin{cases} |x - x_0| < \rho & \Longrightarrow & \sum_{n=0}^{\infty} a_n x^n \text{ konvergiert} \\ |x - x_0| > \rho & \Longrightarrow & \sum_{n=0}^{\infty} a_n x^n \text{ divergiert} \end{cases}$$

Wobei je nach Eignung:

$$\rho = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|, \qquad n!, \ \alpha^n \text{ oder Polynom}$$

$$\rho = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}. \qquad (b_n)^n$$

Bsp. (Zeta-Funktion) Die Funktion konvergiert für s > 1 und divergiert für s = 1

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

$$\lim_{n \to \infty} n^a q^n, \ 0 \le q \le 1, \ a \in \mathbb{Z} = 0$$

$$\lim_{n \to \pm \infty} \left(1 \pm \frac{x}{n}\right)^n = e^{\pm x}$$

$$\lim_{n \to \infty \land f(n) \to \infty} \left(1 + \frac{1}{f(n)}\right)^{f(n)} = e$$

$$\lim_{n \to \infty \land f(n) \to \infty} \left(1 + f(x)\right)^{\frac{1}{f(x)}} = e$$

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

Teil II Stetige Funktionen

Def. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist stetig falls sie in jedem Punkt von D stetig ist.

Def. Die Funktion $f:D\longrightarrow \mathbb{R}$ ist gleichmässig stetig, falls $\forall \epsilon>0 \quad \exists \delta>0 \quad \forall x,y\in D$

$$|x-y| < \delta \Longrightarrow |f(x) - f(y)| < \varepsilon$$

. Insbesondere ist eine auf einem kompaktem Intervall stetige Funktion auch gleichmässig stetig.

1 Stetigkeit an einem Punkt

Def. (Epsilon) Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist in x_0 stetig, falls es für jedes $\varepsilon > 0$ ein $\delta > 0$ gibt, so dass für alle $x \in D$ gilt:

$$|x-x_0| < \delta \Longrightarrow |f(x)-f(x_0)| < \varepsilon$$

Thm. (Sequence) Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist genau dann in x_0 stetig, falls für jede Folge $(a_n)_{n \ge 1}$ in D

$$\lim_{n \to \infty} a_n = x_0 \Longrightarrow \lim_{n \to \infty} f(a_n) = f(x_0)$$

ilt.

Thm. (Sidewise) Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist in x_0 stetig, falls

$$f(x_0) = \lim_{x \to x_0} f(x) = \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x)$$

gilt.

Thm. (Differentiable) Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist in x_0 stetig, falls sie x_0 differenzierbar ist.

2 Eigenschaften

Thm. (Zwischenwertsatz) Sei $I \subset \mathbb{R}$ ein Intervall, $f: I \longrightarrow \mathbb{R}$ eine stetige Funktion und $a, b, \in I$. Für jedes y zwischen f(a) und f(b) gibt es ein x zwischen a und b mit f(x) = y.

Thm. (Min-Max) Sei $f: I = [a, b] \longrightarrow \mathbb{R}$ stetig auf einem kompakten Intervall I. Dann gibt es $u \in I$ und $v \in I$ mit

$$f(u) \leqslant f(x) \leqslant f(v) \quad \forall x \in I$$

und f ist beschränkt.

Thm. (Umkehrabbildung) Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \longrightarrow \mathbb{R}$ stetig, streng monoton. Dann ist $J := f(I) \subset \mathbb{R}$ ein Intervall und $f^{-1}: J \longrightarrow I$ ist stetig, streng monoton.

3 Konvergenz von Funktionenfolgen

Def. (Punktweise) Eine Folge stetiger Funktionen $f_n:\Omega\subset\mathbb{R}\to\mathbb{R}$ konvergiert punktweise gegen f(x), falls

$$\forall x \in \Omega \lim_{n \to \infty} f_n(x) = f(x).$$

Def. (Gleichmässig) Eine Folge stetiger Funktionen $f_n: \Omega \subset \mathbb{R} \to \mathbb{R}$ konvergiert gleichmässig gegen f, falls

$$\lim_{n \to \infty} \sup_{x \in \Omega} |f_n(x) - f(x)| = 0.$$

bzw. falls gilt: $\forall \varepsilon > 0 \quad \exists N \ge 1$, so dass:

$$\forall n \geqslant N, \quad \forall x \in D: \quad |f_n(x) - f(x)| < \varepsilon$$

Thm. (Stetige Funktionenfolge) Sei $D \subset R$ und $f_n: D \to \mathbb{R}$ eine Funktionenfolge bestehend aus (in D) stetigen Funktionen die (in D) gleichmässig gegen eine Funktion $f:D\to\mathbb{R}$ konvergieren. Dann ist f (in D) stetig.

Thm. (Beschränkte Funktionenfolge) Sei $D \subset R$ und $f_n: D \to \mathbb{R}$ eine Folge stetiger Funktionen. Falls $|f_n(x)| \leq c_n \quad \forall x \in D \text{ und } \sum_{n=0}^{\infty} c_n$ konvergiert dann konvergiert

$$\sum_{n=0}^{\infty} f_n(x) =: f(x)$$

ebenfalls und deren Grenzwert f ist eine in D stetige Funktion.

4 Grenzwert an einem Punkt

Def. (Häufungspunkt) $x_0 \in \mathbb{R}$ ist ein Häufungs -punkt der Menge D falls $\forall \delta > 0$ gilt:

$$(|x_0 - \delta, x_0 + \delta| \setminus \{x_0\}) \cap D \neq \emptyset$$

Def. (Grenzwert) $\lim_{x \to x_0} f(x) = A \text{ mit } A \in \mathbb{R},$ $f:D\longrightarrow\mathbb{R}$, falls $x_0\in\mathbb{R}$ ein Häufungspunkt ist und $\forall \varepsilon > 0 \quad \exists \delta > 0$

$$\forall x \in D \cap (]x_0 - \delta, x_0 + \delta [\setminus \{x_0\}) : |f(x) - A| < \varepsilon$$

Teil III Differenzierbare

Funktionen

Def. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist differenzierbar falls sie in jedem Punkt von D differenzierbar ist.

1 Differenzierbarkeit

Def. f ist in x_0 differenzierbar falls

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert. Falls $x = x_0 + h$, ist dies äquivalent zu

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Thm. $f:D \longrightarrow \mathbb{R}$ ist in genau dann in x_0 differenzierbar falls es eine in x_0 stetige Funktion $\phi: D \longrightarrow \mathbb{R}$ gibt, so dass

$$f(x) = f(x_0) + \phi(x)(x - x_0) \quad \forall x \in D$$

2 Ableitungen

Thm. (Ableitungsregeln)

· Summenregel

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

· Produktregel

$$(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

· Quotientenregel

$$\left(\frac{f}{g}\right)' = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$$

Kettenregel

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0).$$

Kor. (Inverse) Sei $f: D \longrightarrow E$ eine bijektive Funktion, f in x_0 differenzierbar, $f'(x_0) \neq 0$ und f^{-1} ist in $y_0 = f(x_0)$ stetig, dann gilt

$$(f^{-1})(y_0) = \frac{1}{f'(x_0)}$$

3 Zentrale Sätze

Thm. (Extrema) $f: \mathbb{R} \longrightarrow \mathbb{R}$ besitzt ein lokales Max./Min. in x_0 falls es $\delta > 0$ gibt mit:

$$f(x) \le f(x_0) \quad \forall x \in]x_0 - \delta, x_0 + \delta[$$

In beiden Fällen gilt $f'(x_0) = 0$.

Thm. Falls $f'(x_0) \leq 0$ gibt es $\delta > 0$ mit

$$f(x) \leq f(x_0) \qquad \forall x \in]x_0, x_0 + \delta[$$

$$f(x) \leq f(x_0) \qquad \forall x \in]x_0 - \delta, x_0[$$

1. (Lagrange) Sei
$$f:[a,b] \longrightarrow \mathbb{R}$$
 stetig u

Thm. (Lagrange) Sei $f:[a,b] \longrightarrow \mathbb{R}$ stetig und in a, b diff., dann gibt es $\xi \in a, b$ mit

$$f(b) - f(a) = f'(\xi)(b - a)$$

Thm. (L'Hospital) Seien $f, g:]a, b[\longrightarrow \mathbb{R}$ diff.

mit $g'(x) \neq 0 \forall x \in [a, b]$. Falls

$$\lim_{x \to b^{-}} f(x) = 0, \quad \lim_{x \to b^{-}} g(x) = 0, \quad \lim_{x \to b^{-}} \frac{f'(x)}{g'(x)} =: \lambda$$

$$\forall \varphi > 0 \quad \exists \tau \in [0, \varphi] \quad \sin(\varphi) = \varphi - \frac{\varphi^{3}}{6} \cos(\tau)$$

$$\text{dann folgt}$$

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = \lambda$$

Def. (Konvex) f ist konvex (auf I) falls $\forall x < y$ und $\lambda \in [0,1]$ gilt

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Def. (Glatt) Die Funktion f ist glatt falls sie $\forall n \geq 1$, n-mal differenzierbar ist.

Thm. (Funktionenfolgen) Sei $f_n:]a,b[\longrightarrow \mathbb{R}$ eine Funktionenfolge wobei $f_n \forall n$ einmal stetig differenzierbar ist. Falls $(f_n)_{n\geq 1}$ und $(f'_n)_{n\geq 1}$ gleichässig in a, b konvergieren gilt:

$$(\lim_{n\to\infty} f_n)' = \lim_{n\to\infty} f'_n$$

Thm. (Taylor Approximation) Sei $[a,b] \longrightarrow \mathbb{R}$ stetig und in [a,b] (n+1)-mal diff.. Für jedes $a < x \le b$ gibt es $\xi \in]a, x[$ mit:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$$

4 Wichtige Beispiele

Bsp. (Exponentialfunktion)

$$\exp(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!} \quad \exp(z)' = \exp(z)$$

 $\exp : \mathbb{R} \longrightarrow]0, +\infty[$ ist streng monoton wachsend, differenzierbar, und surjektiv. Beobachte dass $\exp(x) \ge 1 + x \quad \forall x \in \mathbb{R}$. Die Umkehrabbildung ist

$$\ln :]0, +\infty[\longrightarrow \mathbb{R} \quad \ln(x)' = 1/x$$

wobei ln eine streng monoton wachsende, differenzierbare, bijektive Funktion ist.

Bsp. (Trigonometrische Funkt.)

$$\sin(\varphi) = \sum_{k=0}^{\infty} (-1)^k \frac{\varphi^{2k+1}}{(2k+1)!} \qquad \sin(\varphi)' = \cos(\varphi)$$

$$\cos(\varphi) = \sum_{k=0}^{\infty} (-1)^k \frac{\varphi^{2k}}{(2k)!} \qquad \cos(\varphi)' = -\sin(\varphi)$$

$$\tan(\varphi) = \frac{\sin(\varphi)}{\cos(\varphi)}$$
 $\tan(\varphi)' = \frac{1}{\cos(\varphi)^2}$

Merke dass $\int \tan(x) = -\ln(|\cos(x)|)$.

$$\forall \varphi > 0 \quad \exists \tau \in [0, \varphi] \quad \sin(\varphi) = \varphi - \frac{\varphi^3}{6} \cos(\tau)$$

Thm. $\forall z \in \mathbb{C}$

- $\cdot \exp(iz) = \cos(z) + i\sin(z)$
- $\cdot \cos(z)^2 + \sin(z)^2 = 1$
- $\cdot \sin(z+w) = \sin(z)\cos(w) + \sin(w)\cos(z)$ cos(z + w) = cos(z)cos(w) - sin(w)sin(z)
- $\cdot \sin(z) = \frac{e^{iz} e^{-iz}}{2i}, \cos(z) = \frac{e^{iz} + e^{-iz}}{2i}$

$$\arcsin(y)' = \frac{1}{\sqrt{1-y^2}} \qquad [-1,1] \longrightarrow [-\pi/2,\pi/2]$$

$$\arccos(y)' = \frac{-1}{\sqrt{1-y^2}}$$
 $[-1,1] \longrightarrow [0,\pi]$

$$\arctan(y)' = \frac{1}{1+y^2} \qquad [-\infty, \infty] \longrightarrow [-\pi/2, \pi/2]$$

Bsp. (Hyperbolische Funkt.)

$$\sinh(x) = \frac{e^x + e^{-x}}{2} \quad \operatorname{arcsinh}(y)' = \frac{1}{\sqrt{1 + y^2}}$$

$$\cosh(x) = \frac{e^x - e^{-x}}{2} \quad \operatorname{arccosh}(y)' = \frac{1}{\sqrt{y^2 - 1}}$$

 $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \qquad \operatorname{arctanh}(y)' = \frac{1}{1 - u^2}$

wobei arsinh : $\mathbb{R} \to \mathbb{R}$, arcosh : $[1, \infty[\to [0, \infty[$ und $\operatorname{artanh}:]-1,1[\to \mathbb{R}.$

$$\cdot \cosh(z)^2 - \sinh(z)^2 = 1$$

$$\int \ln(x)dx = x \ln(x) - x + C
\int xe^x dx = xe^x - x + C
\int x \cos(x)dx = x \sin(x) + \cos(x) + C$$

Teil IV Riemann Integral

1 Integrationskriterien

Def. Sei $f:[a,b] \longrightarrow \mathbb{R}$, P eine Partition $(P \subset$ [a,b] und $\{a,b\}\subset P$), $\delta_i=x_i-x_{i-1}$, und $\mathcal{P}(I)$ die Menge der Partitionen, wir definieren die Untersummen:

$$s(f, P) := \sum_{i=1}^{n} f_i \delta_i \quad , f_i = \inf_{x_{i-1} \le x \le x_i} f(x)$$
$$s(f) := \sup_{P \in \mathcal{P}(I)} s(f, P)$$

und die Obersummen:

$$S(f, P) := \sum_{i=1}^{n} F_i \delta_i \quad , F_i = \sup_{x_{i-1} \le x \le x_i} f(x)$$
$$S(f) := \inf_{P \in \mathcal{P}(I)} S(f, P)$$

Def. Eine beschränkte Funktion $f:[a,b] \longrightarrow \mathbb{R}$ ist integrierbar falls

$$s(f) = S(f) := \int_a^b f(x)dx$$

Thm. Eine beschränkte Funktion $f:[a,b] \longrightarrow \mathbb{R}$ ist integrierbar falls

$$\forall \varepsilon > 0 \quad \exists P \in \mathcal{P}(I) \quad \text{ mit } \quad S(f,P) - s(f,P) < \varepsilon$$

Thm. $f:[a,b] \longrightarrow \mathbb{R}$ stetig \Rightarrow integrierbar.

Thm. $f:[a,b] \longrightarrow \mathbb{R}$ monoton \Rightarrow integrierbar.

Thm. Seien $f, g : [a, b] \longrightarrow \mathbb{R}$ beschränkt integrierbar und $\lambda \in \mathbb{R}$, dann sind f + g, $\lambda \cdot f$, $f \cdot g$, $\max(f, g)$, $\min(f, g)$, |f|, f/g (falls $g(x) \ge \beta > 0 \quad \forall x$) integrierbar.

2 Eigenschaften

Thm. (Cauchy-Schwarz) Seien $f, g : [a, b] \longrightarrow \mathbb{R}$ beschränkt integrierbar, dann gilt

$$\left|\int_a^b f(x)g(x)dx\right|\leqslant \sqrt{\int_a^b f^2(x)dx}\sqrt{\int_a^b g^2(x)dx}$$

Thm. (Mittelwertsatz) Seien $f, g : [a, b] \longrightarrow \mathbb{R}$ stetig, dann $\exists \xi \in [a, b]$ mit:

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a)$$

Thm. (Stammfunktion) Seien a < b und $f: [a,b] \to \mathbb{R}$. Eine Funktion $F: [a,b] \to \mathbb{R}$ heisst Stammfunktion von f, falls F (stetig) differenzierbar in [a,b] ist und F'=f in [a,b] gilt.

$$F(x) = \int_{-\pi}^{x} f(t)dt$$

ist eine Stammfunktion von f

Thm. (Fundamentalsatz) Sei $f:[a,b] \longrightarrow \mathbb{R}$ stetig, dann gilt

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Thm. (Partielle Int.) Seien a < b reelle Zahlen und $f: [a, b] \longrightarrow \mathbb{R}$ stetig differenzierbar

$$\int_a^b f(x)g'(x)dx = \left[f(x)g(x)\right]_a^b - \int_a^b f'(x)g(x)dx$$

Thm. (Substitution) Sei $a < b, \phi : [a, b] \longrightarrow \mathbb{R}$ stetig differenzierbar, $I \subset \mathbb{R}$ ein Intervall mit $\phi([a, b]) \subset I$ und $f : I \longrightarrow \mathbb{R}$ eine stetige Funktion. Dann gilt:

$$\int_{\phi(a)}^{\phi(b)} f(x)dx = \int_{a}^{b} f(\phi(t))\phi'(t)dt$$

Thm. Sei $f_n : [a, b] \longrightarrow \mathbb{R}$ eine Folge von beschränkten, integrierbaren Funktionen die gleichmässig konvergieren, dann gilt

$$\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \lim_{n \to \infty} f_n(x) dx$$

Thm. (Stirling)

$$n! = \frac{\sqrt{2\pi n}n^n}{e^n} \cdot \exp\left(\frac{1}{12n} + R_3(n)\right)$$
$$|R_3(n)| \leqslant \frac{\sqrt{3}}{216} \cdot \frac{1}{n^2} \quad \forall n \geqslant 1$$

3 Uneigentliche Integrale

Def. Sei $f:[a,\infty] \longrightarrow \mathbb{R}$ beschränkt und integrierbar auf $[a,b] \quad \forall b \geq a$, wir definieren

$$\int_a^\infty f(x)dx := \lim_{b \to \infty} \int_a^b f(x)dx$$

und falls f auf $[a+\epsilon,b],\epsilon>0$ beschränkt und integrierbar ist, aber nicht beschränkt auf [a,b], dann

$$\int_{a}^{b} f(x)dx := \lim_{\epsilon \to 0} \int_{a+\epsilon}^{b} f(x)dx$$

Lem. Sei $f:[a,\infty] \longrightarrow \mathbb{R}$ beschränkt und integrierbar auf [a,b] $\forall b>a$.

- 1. Falls $|f(x)| \leq g(x) \quad \forall x \geqslant a \text{ und } g(x) \text{ ist auf } [a, \infty[\text{ integrier-bar}, \text{ so ist f auf } [a, \infty[\text{ integrier-bar}.$
- 2. Falls $0 \le g(x) \le f(x)$ und $\int_a^\infty g(x) dx$ divergiert, so divergiert auch $\int_a^\infty f(x) dx$

4 Partialbruchzerlegung

Trick: Sei $R(x) = \frac{P(x)}{Q(x)}$ eine rationale Funktion und $\operatorname{grad}(P) < \operatorname{grad}(Q)$, dann ist

$$Q(x) = x^{n} + a_{n-1}x'n - 1 + \dots$$
$$= \prod_{i=1}^{k} (x - \gamma_{i})^{n_{i}} \prod_{j=1}^{l} ((x - \alpha_{j})^{2} + \beta_{j}^{2})^{m_{j}}$$

und

$$\frac{P(x)}{Q(x)} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} \frac{C_{ij}}{(x - \gamma_i)^j} + \sum_{i=1}^{l} \sum_{j=1}^{m_i} \frac{(A_{ij} + B_{ij}x)}{\left((x - \alpha_i)^2 + \beta_i^2\right)^j}$$

5 Wichtige Beispiele

Bsp. (Gamma Funktion)

$$\Gamma(s) := \int_0^\infty e^{-x} x^{s-1} dx$$

Weitere Eigenschaften sind:

- $\Gamma(1) = 1$
- $\Gamma(s+1) = s\Gamma(s)\forall s > 0$
- $\Gamma(n+1) = n!$
- · logarithmisch konvex
- $\Gamma(x) = \lim_{n \to +\infty} \frac{n! n^x}{x(x+1)\cdots(x+n)} \quad \forall x > 0$