Silvaco TCAD器件仿真 器件特性获取方式及结果分析

主要内容

第一部分

电极接触特性

第二部分

器件特性的获取方式

第三部分

结果分析

第四部分

1电极接触特性

第一部分

电极接触特性

第二部分

器件特性的获取方式

第三部分

结果分析

第四部分

1.1 电极接触的定义

- 电极的接触状态由contact定义,参数有功函数参数,边界情形,寄生参数,电极连接参数,浮栅电容参数等
- 接触的类型有:
 - ▶功函数和肖特基接触
 - ▶设置电流边界
 - ▶外接电阻、电容和电导
 - ▶浮动接触
 - ▶电极短接
 - ▶电极开路

1.2 电极接触定义的例子

肖特基接触

contact name=gate workfunction=4.8

由接触材料定义肖特基接触 contact name=gate n.polysilicon

定义肖特基接触势垒的高度

contact name=anode workfunction=4.9 barrier alpha=1e-7

定义接触为电流边界

contact name=drain current

1.2 电解接触定义的例子(续)

接触时外电阻和电容定义

contact name=source resistance=50.0 capacitance=20e-12 \ inductance=1e-6

接触的分布电阻

contact name=source con.resistance=0.01

电极间短接

contact name=base common=collector

gate1的电压始终等于gate2电极的电压加上0.1V contact name=gate1 common=gate2 factor=0.1

开路接触的三种方法:

1、删掉电极; 2、定义很大的外电阻; 3、设置成电流边界, 电流=0

2器件特性的获取方式

第一部分

电极接触特性

第二部分

器件特性的获取方式 🛑

第三部分

结果分析

第四部分

2.1 器件特性获取的思路

- 实际情况下器件的特性都要通过仪器进行测试得到
- 测试结果通常是端电流/电压特性,可改变电信号 (直流、交流、瞬态以及特征波形)、环境温度、 光照、压力或磁场等得到端电流/电压随这些量的 变化
- 仿真也以这种思路
- 本课程不关注\$参数、霍尔效应、光电特性、单粒子翻转、噪声特性的仿真

2.2 直流特性

• 直流特性包括: IV特性、转移特性、Gummel Plot、 输出特性、击穿特性

所有电极零偏

solve init

求解基极电压0.1V

solve vbase=0.1

扫描阳极电压(0.05V~1V)_-

solve vanode=0.05 vstep=0.05 vfinal=1 \
name=anode

2.2 直流特性 (续)

```
solve init
solve vbase=0.05 vstep=0.05 vfinal=0.8 \
   name=base
contact name=base current
#
solve ibase=1.e-6
save outf=bjt_ib_1.str master
load inf=bjt_ib_1.str master
log outf=bjt_ib_1.log
solve vcollector=0.0 vstep=0.25\
   vfinal=5.0 name=collector
```


2.3 交流小信号特性

· 交流仿真可以得到器件的CV特性,交流增益和S参数

MOS的CV (频率不变,变直流偏置)

solve vgate=-5 vstep=0.1 vfinal=5.0 \
name=gate ac freq=1e6

频率从1GHz增加到11GHz,以1GHz为步长 solve vbase=0.7 ac freq=1e9 fstep=1e9 nfstep=10

从1MHz开始,频率翻倍,10次后为2¹⁰×1MHz=1.024GHz solve vbase=0.7 ac freq=1e6 fstep=2 mult.f nfstep=10

2.4 瞬态特性

• 瞬态仿真用于时间相关的测试或响应

在ramptime时间内栅压加到1.0V,然后保持直到tstop

solve vgate=1.0 ramptime=1e-9 tstep=0.1e-9 tstop=1e-8

瞬态参数示意图

光电探测器的瞬态响应

2.5 Curvetrace

- Curvetrace可以设置复杂的扫描方式,自动得到I-V 特性
- Curvetrace和solve联合使用可用于击穿电压仿真、 CMOS闩锁仿真和二次击穿仿真

go atlas

IGBT闩锁效应仿真

init infile=IGBT.str

...

curvetrace contr.name=collector step.init=0.05 \
 nextst.ratio=1.1 mincur=1e-13 end.val=1e-3 \
 curr.cont

solve init solve vgate=0.1 vstep=0.1 vfinal=10 name=gate

log outfile=breakdown.log solve curvetrace tonyplot breakdown.log

2.6 热学特性

热特性仿真时模型必须指定lat.temp,且至少要定义一个热接触,热接触状态由thermcontact描述

thermcontact num=<n> <position> [ext.temper=<n>] [alpha=<n>]

晶格自加热仿真时SOI的热分布,Vgate=10.V,Vdrain=3.0V

go atlas init infile=SOI_pre.str

models arora consrh auger bgn fldmob lat.temp impact selb

thermcontact number=1 y.min=0.6 \
ext.temper=300

solve vgate=0.5 solve vdrain=0.1 vstep=0.1 vfinal=5 name=drain save outfile=SOI.str

2.7 计算方法

method gummel newton trap itlimit=20 maxtrap=6

需要注意的几个地方:

itlimit是迭代的次数上限; maxtrap设置步长折回的次数; 电流边界情形不能用gummel

报错信息:

"trap times more than 4 times"

2.8 三维器件仿真

- 三维器件仿真流程和语法可参照二维仿真
- 位置坐标是三维数据
- 物理模型少数会有差别

3 结果分析

第一部分

电极接触特性

第二部分

器件特性的获取方式

第三部分

结果分析 🛑

第四部分

3 结果分析

- 结果的类型
 - ➤实时输出(output.txt)
 - ➤ 结构文件(*.str)
 - ➤ 日志文件 (*.log)
- 结果分析
 - ➤ Tonyplot显示
 - ▶导出数据

3.1 结构文件导出数据

- 1 Cutline
- 2、File>Export
- 3、Format选择Tonyplot User Data
- 4、路径, 文件名, OK!

X Ii	icrosoft Excel -	export1					
	文件(图) 编辑(图) 社	观图(Y) 插み	(正) 格式(0	(五) 工具(五)	数据 (0) 1	銀口(火) 一番財)(H) _ = X
	字 宋体	▼ 12	- B I	<u>u</u> ≣ ≣	= •	F 🖽 + 🖄	- <u>A</u> -
	A1 ▼	£ EXPC	RTED				
	A	В	С	D	E	F	G 🔽
15	Electron	QFL					
16	e-	Current	Density				
17	Je-	X					
18	Je-	Y					
19	Hole	Conc					
20	Hole	QFL					
21	h+	Current	Density				
22	Jh+	X					
23	Jh+	Y					
24	Cond.	Current	Density				
25	Total	Current	Density				
26	Jtot	X					
27	Jtot	Y					
28	Recombination	Rate					
29	0.0068	18	18	18	0	0.3	0
30	0.01559	18	18	18	0	0.3	0_
21	∩ ∩1674 ▶ № export1	19	10	10	^	ስ ସ	>
就绪				.1	数	空	[7]

3.2 日志文件导出数据

- 1、File>Export
- 2、Format选择Comma Separated Values
- 3、路径,文件名,OK!

- 本课程的内容:
 - > 电极接触特性
 - > 器件特性的获取方式
 - ➤ 器件特性的获取思路、直流特性、交流小信号特性、 瞬态特性、curvetrace、热学特性、计算方法、三维器 件仿真
 - > 结果分析
- 下一课主要内容
 - > 电路仿真模块
 - ▶ 电路仿真流程

欢迎提问

谢谢!

