

DSCI 417 - Homework 07

Sean Graham

```
import pandas as pd
import matplotlib.pyplot as plt

from pyspark.sql.functions import col, expr

from pyspark.sql import SparkSession
from pyspark.ml.feature import VectorAssembler, StringIndexer
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.ml import Pipeline
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder

spark = SparkSession.builder.getOrCreate()
```

Problem 1: Decision Tree Classification

++	+	
x0 x1 x2 x3 x4	prediction	Leaf Node
++	+	
3.7 5.6 3.6 2.0 1.0	0.0	3
8.2 4.2 2.1 2.0 0.0	0.0	7
5.4 3.9 4.9 1.0 1.0	1.0	6
2.8 6.1 8.1 0.0 0.0	2.0	2
++	+	

Problem 2: Random Forest Classification

Tree Model 1 Prediction: 0.0

Tree Model 2 Prediction: 0.0

Tree Model 3 Prediction: 1.0

Random Forest Prediction: 0.0

Problem 3: Load and Process Stroke Data

```
|-- age: double (nullable = true)
 |-- hypertension: integer (nullable = true)
 |-- heart_disease: integer (nullable = true)
 |-- ever_married: string (nullable = true)
 |-- work_type: string (nullable = true)
 |-- residence_type: string (nullable = true)
 |-- avg_glucose_level: double (nullable = true)
 |-- bmi: double (nullable = true)
 |-- smoking_status: string (nullable = true)
 |-- stroke: integer (nullable = true)
num_features = ['age', 'avg_glucose_level', 'bmi']
cat_features = [c for c in stroke_df.columns[:-1] if c not in num_features]
ix_features = [c + '_ix' for c in cat_features]
indexer = StringIndexer(inputCols=cat_features, outputCols=ix_features)
assembler = VectorAssembler(inputCols=num features + ix features, outputCol='features')
pipeline = Pipeline(stages=[indexer, assembler]).fit(stroke_df)
train = pipeline.transform(stroke_df)
train.persist()
train.select(['features', 'stroke']).show(10, truncate=False)
lfeatures
+----+
[(10,[0,1,2,6],[13.0,77.63,31.7,1.0])
|[10.0,84.02,18.7,1.0,0.0,0.0,1.0,3.0,1.0,0.0]|0
[82.0,88.6,32.5,0.0,0.0,1.0,0.0,1.0,1.0,1.0] | 0
[3.0,57.33,16.8,0.0,0.0,0.0,1.0,3.0,0.0,1.0]
```

Problem 4: Hyperparameter Tuning for Decision Trees

```
model = cv_model.bestModel
maxDepth = model.getMaxDepth()
minInstancesPerNode = model.getMinInstancesPerNode()
print('Max CV Score: ', round(max(cv_model.avgMetrics),4))
print('Optimal Depth: ', maxDepth)
print('Optimal MinInst:', minInstancesPerNode)
Max CV Score:
                 0.7895
Optimal Depth: 6
Optimal MinInst: 16
model_params = cv_model.getEstimatorParamMaps()
dt_cv_summary_list = []
for param_set, acc in zip(model_params, cv_model.avgMetrics):
   new_set = list(param_set.values()) + [acc]
   dt_cv_summary_list.append(new_set)
cv_summary = pd.DataFrame(dt_cv_summary_list, columns=['maxDepth', 'minInst', 'acc'])
for mi in cv_summary.minInst.unique():
    sel = cv_summary.minInst == mi
   plt.plot(cv_summary.maxDepth[sel], cv_summary.acc[sel], label=mi)
   plt.scatter(cv_summary.maxDepth[sel], cv_summary.acc[sel])
plt.legend()
plt.grid()
plt.xticks(range(2,18,2))
plt.xlabel('Max Depth')
plt.ylabel('Cross-Validation Score')
plt.show()
```


Problem 5: Structure of Final Model

print(model.toDebugString)

```
DecisionTreeClassificationModel: uid=DecisionTreeClassifier_a1082be60bd0, depth=6, numNodes=53, numClasses=2, numFeatures=10
    If (feature 0 <= 56.5)
    If (feature 5 in {1.0})
        If (feature 9 in {3.0})
        Predict: 0.0
    Else (feature 9 not in {3.0})
        If (feature 4 in {1.0})
            Predict: 1.0
        Else (feature 4 not in {1.0})
        If (feature 2 <= 27.15)
            Predict: 1.0
        Else (feature 3 in {1.0})</pre>
```

```
Predict: 0.0
       Else (feature 3 not in {1.0})
        Predict: 1.0
   Else (feature 5 not in {1.0})
   If (feature 0 <= 43.5)
    If (feature 4 in {1.0})
      If (feature 2 <= 28.15)
       Predict. 1 A
features = num_features + cat_features
print(features)
['age', 'avg_glucose_level', 'bmi', 'gender', 'hypertension', 'heart_disease', 'ever_married', 'work_type', 'residence_type', 'smoking_status']
First Feature Used in Tree: age
Features Unused in Tree: ever_married, work_type, residence_type
pd.DataFrame({'feature':features, 'importance':model.featureImportances})
Out[10]:
```

	feature	importance
0	age	0.780537
1	avg_glucose_level	0.064422
2	bmi	0.022221
3	gender	0.004708
4	hypertension	0.030844
5	heart_disease	0.088194
6	ever_married	0.000000
7	work_type	0.000000
8	residence_type	0.000000
9	smoking status	0.009074

Problem 6: Applying the Model to New Data

```
new_data_values = [
    ['Female', 42.0, 1, 0, 'No', 'Private', 'Urban', 182.1, 26.8, 'smokes'],
    ['Female', 64.0, 1, 1, 'Yes', 'Self-employed', 'Rural', 171.5, 32.5, 'formerly smoked'],
    ['Male', 37.0, 0, 0, 'Yes', 'Private', 'Rural', 79.2, 18.4, 'Unknown'],
    ['Male', 72.0, 0, 1, 'No', 'Govt_job', 'Urban', 125.7, 19.4, 'never smoked']
]

new_data_schema = 'gender STRING, age DOUBLE, hypertension INTEGER, heart_disease INTEGER, ever_married STRING, work_type STRING, residence_type STRING, avg_glucose_level DOUBLE, bmi DOUBLE, smoking_status STRING'

new_data = spark.createDataFrame(new_data_values, schema=new_data_schema)

new_data.show()
```

gender age hyper	rtension hear	•	•	·	•	 avg_glucose_level 	•	smoking_status
Female 42.0	1	0	No	Private	Urban	182.1	26.8	smokes
Female 64.0	1	1	Yes S	Self-employed	Rural	171.5	32.5	formerly smoked
Male 37.0	0	0	Yes	Private	Rural	79.2	18.4	Unknown
Male 72.0	Θ	1	No	Govt_job	Urban	125.7	19.4	never smoked

	prediction	
[0.3125,0.6875]	1.0	