Piotr Zieleń

Zadanie na ocenę celującą

9 lipca 2022

1. Wstęp

Celem pracy jest symulacyjne porównanie testu Cochrana, dotyczącego jednorodności prawdopodobieństw sukcesu niezależnych zmiennych losowych z rozkładu dwumianowego, z innymi z zaproponowanych testów, w artykule "Park2019".

W drugim rozdziale zaprezentuję problem, jakiego dotyczy praca. W trzeciej części przedstawię procedurę testowania jednorodności k zmiennych losowych z rozkładu Bernoulliego, dla klasycznej wersji testu Cochrana oraz moją implementację testu w pakiecie R. W rozdziale czwartym — procedurę testowania dla modyfikacji testu Cochrana wraz z implementacją. W rozdziale piątym — procedurę testowania dla nowego testu. Następnie w przedostatniej części pracy — symulacje, dla której porównam test Cochrana w jego klasycznej wersji, z modyfikacją testu Cochrana i nowym testem, a w ostatniej części — wnioski.

2. Problem

Problem sprowadza się do testowania jednorodności prawdopodobieństwa sukcesu dla k niezależnych zmiennych losowych z rozkładu dwumianowego $(X \sim \mathcal{B}(n,\pi))$. Liczba prób oraz prawdopodobieństwa sukcesu mogą być różne dla rozważanych zmiennych losowych.

Niech $X_i \sim \mathcal{B}(n_i, \pi_i)$, gdzie $1 \leq i \leq k$, wtedy hipoteza zerowa dla k niezależnych zmiennych losowych jest wyrażona następująco:

$$H_0: \pi_1 = \pi_2 = \dots = \pi_k \equiv \pi \tag{1}$$

3. Test Cochrana

Statystyka testowa w teście Cochrana wyrażona jest wzorem:

$$T_s = \sum_{i=1}^k \frac{(X_i - n_i \hat{\pi})^2}{n_i \hat{\pi} (1 - \hat{\pi})},$$
 (2)

gdzie $\hat{\pi} = \frac{\sum_{i=1}^k X_i}{\sum_{i=1}^k n_i}$. Dla prawdziwej hipotezy zerowej, statystyka testowa T_s ma w przybliżeniu rozkład chi-kwadrat z (k-1) stopniami swobody. Hipotezę zerową H_0 odrzucamy wtedy, gdy $T_s > \chi^2_{1-\alpha,k-1}$, gdzie $\chi^2_{1-\alpha,k-1}$, to kwantyl rzędu $1-\alpha$ rozkładu chi-kwadrat z (k-1) stopniami swobody. Autorzy artykułu zwrócili jeszcze uwagę, że gdy k jest stosunkowo duże, to statystykę $\frac{T_s-k}{\sqrt{2k}}$ można przybliżać rozkładem $\mathcal{N}(0,1)$.

3.1. Implementacja w pakiecie R

Poniżej przedstawiłem swoją implementację testu klasycznej wersji testu Cochrana, w pakiecie R:

```
cochran_test <- function(Xi, ni, alfa=0.05){</pre>
        k <- length(Xi)
        pi_est <- sum(Xi)/sum(ni)</pre>
        Ts <- sum((Xi-ni*pi_est)^2/(ni*pi_est*(1 - pi_est)))
        Ts < qchisq(1-alfa, k-1)
```

Funkcja cochran_test przyjmuje jako argumenty:

- Xi wektor realizacji zmiennych losowych z rozkładu dwumianowego;
- ni wektor ilości prób w wyżej wymienionych realizacjach zmiennych losowych (parametry n_i w zmiennych losowych $X_i \sim \mathcal{B}(n_i, \pi_i)$;
- alfa poziom istotności (argument opcjonalny, domyślnie wartość 0.05)

4. Modyfikacja testu Cochrana

Statystyka testowa dana jest wzorem (2). Hipotezę zerową odrzucamy wtedy, gdy:

$$\frac{T_s - k}{\sqrt{\hat{\mathcal{B}}_{0k}}} > z_{1-\alpha},\tag{3}$$

gdzie:

- $z_{1-\alpha}$ to kwantyl rzędu $1-\alpha$, rozkładu standardowego normalnego;
- $\hat{\mathcal{B}}_{0k} = \sum_{i=1}^{k} \left(2 \frac{6}{n_i} + \frac{1}{n_i \hat{\pi} (1 \hat{\pi})} \right);$
- $\hat{\pi} = \frac{\sum_{i=1}^{k} n_i \hat{\pi}_i}{N}$ $\hat{\pi} = \frac{\sum_{i=1}^{k} X_i}{\sum_{i=1}^{k} n_i}$ $N = \sum_{i=1}^{k} n_i$

4.1. Implemetacja w pakiecie R

Poniżej przedstawiłem swoją implemetację testu Cochrana w wersji zmodyfikowanej, w pakiecie R:

```
modified_cochran <- function(Xi, ni, alfa=0.05){</pre>
         k <- length(Xi)
         pi_est <- sum(Xi)/sum(ni)</pre>
         Ts \leftarrow (Xi-ni*pi_est)^2/(ni*pi_est*(1 - pi_est))
         overline_pi <- 1/sum(ni)*sum(ni * pi_est)</pre>
         B0k <- sum(2 - 6/ni + 1/(ni*overline_pi*(1-overline_pi)))
         ETs <- mean(Ts)
         VarTs <- var(Ts)</pre>
         T0 \leftarrow (sum(Ts) - k)/sqrt(B0k)
         TO < qnorm(1-alfa)
```

Funkcja modified_cochran przyjmuje dokładnie takie same argumenty jak funkcja cochran_test (opisane w pozrozdziale (3.1)).

5. Nowy test

W artykule został zaproponowany jeszcze nowy test w dwóch wersjach — oparty na dwóch różnych estymatorach. Hipotezę zerową dla tego testu odrzucamy, gdy:

$$T_{\text{new1}}(\text{lub } T_{\text{new2}}) > z_{1-\alpha} \tag{4}$$

gdzie $z_{1-\alpha}$ to kwantyl rzędu $1-\alpha$ rozkładu $\mathcal{N}(0,1)$. Poniżej przedstawiłem w punktach obliczenia jakie należy wykonać, aby wyznaczyć statystyki $T_{\text{new}1}$ i $T_{\text{new}2}$:

•
$$T_{\text{new1}} = \frac{T}{\sqrt{\hat{v}_1}}, T_{\text{new2}} = \frac{T}{\sqrt{\hat{v}_{1,*}}}$$
• $\hat{V}_1 = \sum_{i=1}^k \sum_{l=1}^4 = a_{li}\hat{\eta}_{li}, \text{ gdzie } \hat{\eta}_{li} = \frac{n_i^l}{\prod_{j=0}^{l-1}(n_i-j)} \prod_{j=0}^{l-1} \left(\hat{\pi}_i - \frac{j}{n_i}\right) \text{ dla } l = 1, 2, 3, 4 \text{ oraz } a_{1i} = \mathcal{A}_{2i}, \ a_{2i} = \mathcal{A}_{1i} - \mathcal{A}_{2i}, \ a_{3i} = -2\mathcal{A}_{1i}, \ a_{4i} = \mathcal{A}_{1i}$

$$\hat{V}_{1*} = \sum_{i=1}^k \sum_{l=1}^4 = a_{li}\hat{\eta}_l, \text{ gdzie } \hat{\eta}_l = \frac{N^l}{\prod_{j=0}^l(N-j)} \prod_{j=0}^{l-1} \left(\hat{\pi} - \frac{j}{N}\right) \text{ dla } l = 1, 2, 3, 4 \text{ oraz } a_{li} \text{ jak wyżej}$$
• $T = \sum_{i=1}^k n_i (\hat{\pi}_i - \hat{\pi})^2 - \sum_{i=1}^k d_i \hat{\pi}_i (1 - \hat{\pi}_i)$
• $d_i = \frac{n_i c_i}{n_i - 1}$
• $c_i = \left(1 - \frac{n_i}{N}\right)$

5.1. Implementacja testu T_{new2} w pakiecie R

```
c_i <- function(ni, index){</pre>
        1 - ni[index]/sum(ni)
d_i <- function(ni, index){</pre>
         (ni[index]*c_i(ni, index))/(ni[index] - 1)
hat_pi_i <- function(data, ni, index){</pre>
        data[index]/ni[index]
hat_overline_pi2 <- function(data, ni){</pre>
        hat_pi <- data/ni
        sum(ni * hat_pi)/sum(ni)
T <- function(data, ni){</pre>
        len <- 1:length(data)</pre>
        sum(ni * (hat_pi_i(data, ni, len) -
        hat_overline_pi2(data, ni))^2) -
        sum(d_i(ni, len) * hat_pi_i(data, ni, len) *
         (rep(1, length(data)) - hat_pi_i(data, ni, len)))
A_1i <- function(ni, index){
        2 - 6/ni[index] - di(ni, index)^2/ni[index] +
```

```
(8*di(ni, index)^2)/ni[index]^2 - (6*di(ni, index)^2)/ni[index]^3 +
        12*di(ni, index)*(ni[index] - 1)/ni[index]^2
di <- function(ni, index){</pre>
        ni[index]/(ni[index] - 1) * (1 - ni[index]/sum(ni))
A_2i <- function(ni, index){
        ni[index]/sum(ni)^2
a_li <- function(l, ni, index){</pre>
        if (l==1){
                 A_2i(ni, index)
        } else if (1==2){
                 A_1i(ni, index) - A_2i(ni, index)
        } else if (l==3){
                 -2*A_1i(ni, index)
        \} else if (1==4)
                 A_1i(ni, index)
eta2 <- function(data, ni, 1){
        N <- sum(ni)
        hat_pi <- 1/N * sum(ni * hat_pi_i(data, ni, 1:length(data)))</pre>
        N^1/(prod(rep(N, 1) - 0:(1-1))) * prod(rep(hat_pi, 1) - 0:(1-1)/N)
V1_gwiazdka <- function(data, ni){
        k <- length(data)</pre>
        suma1 <- 0
        sum(sapply(1:k, function(i){
                 sum(sapply(1:4, function(j){
                         a_li(j, ni, i) * eta2(data, ni, j)
                 }))
        }))
T_new2 <- function(data, ni){</pre>
        T(data, ni)/sqrt(V1_gwiazdka(data, ni)) < qnorm(0.95)</pre>
```

6. Symulacje

W tym rozdziale przedstawię przeprowadzone symulacje. Przeprowadziłem wszystkie dziesięć symulacji z artykułu dla testu Cochrana, jego zmodyfikowanej wersji i testu $T_{\rm new2}$ dla 10^4 po-

wtórzeń. Kod do symulacji przedstawiłem tylko w przypadku pierwszej symulacji. W kolejnych przypadkach kody wyglądały analogicznie.

6.1. Setup 1

```
\pi_i = 0.001 \text{ dla } 1 \le i \le k, \, \pi_k = 0.001 + \delta, \, k=8

\mathbf{n}_8 = 20(2, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8):
```

```
n8 \leftarrow 20*c(2, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8)
result_cochran <- c()
result_mod_cochran <- c()</pre>
result_tnew2 <- c()
for (j in 1:10){
        Y <- NA
        while (is.na(mean(Y))){
        Y <- sapply(1:10000, function(...){
                 pi \leftarrow c(0.001, 0.001, 0.001, 0.001,
                 0.001, 0.001, 0.001, 0.001 * j)
        random_variables <- c()</pre>
        for (i in 1:8){
                 random_variables <- c(random_variables,</pre>
                 rbinom(1, n8[i], pi[i]))
        c(cochran_test(random_variables, n8),
        modified_cochran(random_variables, n8),
        T_new2(random_variables, n8))
        })
        result_cochran <- c(result_cochran, 1 - mean(Y[1,]))
        result_mod_cochran <- c(result_mod_cochran, 1 - mean(Y[2,]))</pre>
        result_tnew2 <- c(result_tnew2, 1 - mean(Y[3,]))
df \leftarrow data.frame(seq(0.000, 0.009, by=0.001),
result_cochran, result_mod_cochran, result_tnew2)
colnames(df) <- c("delta", "Test Cochrana", "Zmodyfikowany test Cochrana",</pre>
"Test Tnew2")
df
##
      delta Test Cochrana Zmodyfikowany test Cochrana Test Tnew2
## 1 0.000
                    0.1159
                                                  0.0568
                                                              0.0363
## 2 0.001
                    0.0684
                                                  0.0310
                                                              0.0759
## 3 0.002
                    0.1184
                                                  0.0362
                                                              0.3168
## 4 0.003
                    0.3298
                                                  0.1429
                                                              0.6441
## 5 0.004
                    0.6236
                                                  0.3962
                                                              0.8617
## 6 0.005
                    0.8409
                                                  0.6823
                                                              0.9627
## 7 0.006
                    0.9492
                                                  0.8793
                                                              0.9925
## 8 0.007
                    0.9873
                                                  0.9621
                                                              0.9982
## 9 0.008
                    0.9988
                                                  0.9924
                                                              0.9999
## 10 0.009
                    0.9991
                                                  0.9980
                                                              0.9998
```

6.2. Setup 2

(w tym przypadku, w porównaniu do artykułu, zrobiłem mały wyjątek — δ zwiększam o 0.001, zamiast o 0.01)

 $\pi_i = 0.001 + \delta$, dla k = 1, $\pi_i = 0.001$, dla $2 \le i \le k$, dla k = 8 i \mathbf{n}_8 — tak jak w (6.1):

##	delta	Test Cochrana	Zmodyfikowany	test Cochrana	Test Tnew2
## 1	0.000	0.1134		0.0532	0.0355
## 2	0.001	0.1460		0.0839	0.0389
## 3	0.002	0.1762		0.1154	0.0426
## 4	0.003	0.2143		0.1409	0.0456
## 5	0.004	0.2480		0.1802	0.0521
## 6	0.005	0.2671		0.2035	0.0596
## 7	0.006	0.3066		0.2192	0.0675
## 8	0.007	0.3317		0.2616	0.0715
## 9	0.008	0.3548		0.2792	0.0771
## 1	0 0.009	0.3909		0.3030	0.0955

6.3. Setup 3

 $\pi_1=0.001+\delta$ i $\pi_i=0.001$ dla 2 $\leqslant i \leqslant 8, \, k=8, \, n_i=2560$ dla 1 $\leqslant i \leqslant 8$:

##		delta	Test (Cochrana	Zmodyfikowany	test	Cochrana	Test Tnew2
##	1	0.0000		0.0444			0.0288	0.0551
##	2	0.0005		0.0638			0.0456	0.0820
##	3	0.0010		0.1372			0.1099	0.1558
##	4	0.0015		0.2449			0.2087	0.2817
##	5	0.0020		0.4004			0.3537	0.4316
##	6	0.0025		0.5599			0.5145	0.5856
##	7	0.0030		0.6896			0.6474	0.7123
##	8	0.0035		0.7900			0.7634	0.8180
##	9	0.0040		0.8741			0.8482	0.8867
##	10	0.0045		0.9259			0.9143	0.9342

6.4. Setup 4

 $\begin{aligned} &\pi_i = 0.001 \text{ dla } 1 \leqslant i \leqslant k-1 \text{ and } \pi_k = 0.001 + \delta, \text{ dla } k = 40 \\ &\mathbf{n}_{40} = 20(\mathbf{n}_1^*, \mathbf{n}_2^*, \mathbf{n}_3^*, \mathbf{n}_4^*, \mathbf{n}_5^*, \mathbf{n}_6^*, \mathbf{n}_7^*, \mathbf{n}_8^*), \text{ gdzie } \mathbf{n}_m^* = (2^m, 2^m, 2^m, 2^m, 2^m) \text{ to 5-wymiarowy wektor} \end{aligned}$

##		delta I	Cest Cochrana	Zmodyfikowany	test Cochrana	Test Tnew2
##	1	0.000	0.1473		0.0546	0.0510
##	2	0.001	0.1601		0.0531	0.1212
##	3	0.002	0.3282		0.1301	0.4551
##	4	0.003	0.6297		0.3830	0.8043
##	5	0.004	0.8712		0.7119	0.9631
##	6	0.005	0.9755		0.9155	0.9947
##	7	0.006	0.9959		0.9827	0.9992
##	8	0.007	0.9994		0.9973	0.9999
##	9	0.008	1.0000		0.9999	1.0000
##	10	0.009	1.0000		1.0000	1.0000

6.5. Setup 5

 $\pi_i = 0.001 + \delta$, dla i = 1 i $\pi_i = 0.001$ dla $2 \le i \le k$ dla k = 40 i \mathbf{n}_{40} — tak jak w (6.4):

##		delta	Test	Cochrana	Zmodyfikowany	test C	Cochrana	Test Tnew2	
##	1	0.000		0.1571			0.0526	0.0513	
##	2	0.001		0.1715			0.0630	0.0557	
##	3	0.002		0.1839			0.0666	0.0559	
##	4	0.003		0.2060			0.0778	0.0595	
##	5	0.004		0.2185			0.0887	0.0677	
##	6	0.005		0.2392			0.1020	0.0729	
##	7	0.006		0.2559			0.1111	0.0775	
##	8	0.007		0.2799			0.1245	0.0872	
##	9	0.008		0.2889			0.1388	0.0959	
##	10	0.009		0.3046			0.1547	0.1068	

6.6. Setup 6

 $\pi_i = 0.001 + \delta,$ dla k=1i $\pi_i = 0.001$ dla $2 \leqslant i \leqslant k$ dla k=40i $n_i = 2560$ dla $1 \leqslant i \leqslant k$:

4	ш.		عـــــــــــــــــــــــــــــــــــــ	Т	Cashaana	7	++	Cashaana	T T
Ħ	#		derta	lest	Cocnrana	Zmodyfikowany	test	Cocnrana	lest lnew2
#	#	1	0.000		0.0486			0.0365	0.0616
#	#	2	0.001		0.0923			0.0766	0.1111
#	#	3	0.002		0.2767			0.2525	0.2928
#	#	4	0.003		0.5510			0.5068	0.5717
#	#	5	0.004		0.7634			0.7518	0.7860
#	#	6	0.005		0.9089			0.8984	0.9208
#	#	7	0.006		0.9667			0.9601	0.9727

6.7. Setup 7

 $\pi_i=0.001(1+\epsilon_i),\,k=40,\,n_i=2560$ dla $1\leqslant i\leqslant 40,$ gdzie ϵ_i jest równomiernie rozłożony na odcinku $[-\delta,\delta]$:

##		delta	Test	Cochrana	Zmodyfikowany	test	Cochrana	Test Tnew2
##	1	0.00		0.0471			0.0391	0.0594
##	2	0.25		0.0841			0.0660	0.0999
##	3	0.50		0.2425			0.2066	0.2692
##	4	0.75		0.6094			0.5624	0.6336
##	5	1.00		0.9330			0.9150	0.9421

6.8. Setup 8

 $\pi_i=0.01(1+\epsilon_i),\,k=40$ i \mathbf{n}_{40} — jak w (6.4) oraz ϵ_i jest równomiernie rozłożony na odcinku $[-\delta,\delta]$:

##		delta	Test	Cochrana	Zmodyfikowany	test	Cochrana	Test Tnew2
##	1	0.00		0.0704			0.0492	0.0599
##	2	0.25		0.0263			0.0174	0.0889
##	3	0.50		0.0611			0.0417	0.3415
##	4	0.75		0.2787			0.2329	0.7924
##	5	1.00		0.7240			0.6662	0.9842

6.9. Setup 9

 $\pi_i = 0.01(1 + \epsilon_i), k = 2000, n_i = 100 dla 1 \le i \le 2000, gdzie \epsilon_i$ jest równomiernie rozłożony na odcinku $[-\delta, \delta]$:

##		delta	Test	Cochrana	Zmodyfikowany	test	Cochrana	Test Tnew2
##	1	0.0		0.0474			0.0220	0.0538
##	2	0.2		0.1084			0.0569	0.1160
##	3	0.4		0.5039			0.3755	0.5031
##	4	0.6		0.9716			0.9453	0.9709
##	5	0.8		1.0000			1.0000	1.0000

6.10. Setup 10

 $\pi_i = 0.01(1 + \epsilon_i), k = 2000, \mathbf{n} = (\mathbf{n}_{1,250}, \mathbf{n}_{2,250}, \dots, \mathbf{n}_{8,250}), \text{ gdzie } \mathbf{n}_{m,250} = (2^m, 2^m, \dots, 2^m) \text{ jest } 250\text{-cio wymiarowym wektorem, } \epsilon_i \text{ jest równomiernie rozłożony na odcinku } [-\delta, \delta]$

##	delta	Test Cochrana	Zmodyfikowany	test Cochrana	Test Tnew2
## 1	0.0	0.2458		0.0503	0.0433
## 2	0.2	0.0100		0.0006	0.0281
## 3	0.4	0.0000		0.0000	0.0276
## 4	0.6	0.0000		0.0000	0.0407
## 5	0.8	0.0000		0.0000	0.0871
## 6	1.0	0.0000		0.0000	0.2036

7. Wnioski

Celem pracy było symulacyjne porównanie testu Cochrana, sprawdzającego jednorodność prawdopodobieństw sukcesu n niezależnych zmiennych losowych z rozkładu dwumianowego. Liczba prób dla zmiennych losowych ($n \le \mathcal{B}(n,\pi)$) może być różna. W pracy skupiłem się na symulacyjnym porównaniu testu Cochrana z jego zmodyfikowaną wersją i jednym z nowych testów. W tym celu zaimplementowałem testy opracowane w artykule i przeprowadziłem 10 symulacji z artykułu (uzyskane wartości są wyznaczone na podstawie symulacji Monte-Carlo, na podstawie 10^4 powtórzeń).

Symulacje pokazały, jak różnie reagują rozważane testy, na zmieniające się parametry. Pierwszy wiersz, w każdej przeprowadzonej symulacji opisuje prawdopodobieństwo popełnienia błędu pierwszego rodzaju — czyli prawdopodobieństwo odrzucenia hipotezy zerowej, gdy jest ona prawdziwa. Wartość ta powinna wskazywać liczbę w przybliżeniu 0.05, ponieważ wykonywane testy były robione na poziomie istotności $\alpha=0.05$. Na podstawie przeprowadzonych symulacji, nie można jednoznacznie stwierdzić, który z testów jest najlepszy, każdy ma w zależności od rozważanych sytuacji swoje "mocniejsze" i "słabsze" strony.