Swiss Consulate | Osaka

ZK-ACTUSVerifiable Financial Contracts

Mark Conway-Greenslade Casper Association | IEEE | CEBRA

Dr. Willi Brammertz Ariadne Analytics | ACTUS Foundation

Part 1: ACTUS An Emerging Financial Standard

Foundation

actusfrf.org

Taxonomy

ZK-ACTUS: Verifiable Financial Contracts

Algorithms

```
"contractType": "ANN",
"contractID": "ann01",
"contractRole": "RPA",
"contractDealDate": "2012-12-28T00:00:00",
"initialExchangeDate": "2013-01-01T00:00:00",
"statusDate": "2012-12-30T00:00:00",
"notionalPrincipal": " 5000",
"cycleAnchorDateOfPrincipalRedemption": "2013-02-01T00:00:00",
"nextPrincipalRedemptionPayment": "434.866594118346",
"dayCountConvention": "A365",
"nominalInterestRate": "0.08",
"currency": "USD",
"cycleOfPrincipalRedemption": "P1MLO",
"maturityDate": "2014-01-01T00:00:00",
"rateMultiplier": "1.0",
"rateSpread": "0.0",
"fixingDays": "P0D",
"cycleAnchorDateOfInterestPayment": "2013-02-01T00:00:00",
"cycleOfInterestPayment": "P1ML0"
```



```
"eventDate": "2013-01-01T00:00",
    "eventType": "IED",
    "payoff": "-5000.0",
    "currency": "USD",
    "notionalPrincipal": "5000.0",
    "nominalInterestRate": "0.08",
    "accruedInterest": "0.0"
    "eventDate": "2013-02-01T00:00",
    "eventType": "PR",
    "payoff": "400.8939913786",
    "currency": "USD",
    "notionalPrincipal": "4599.1060086213",
    "nominalInterestRate": "0.08",
    "accruedInterest": "33.9726027397"
},
...etc
```

Term Set (ANN)

Algorithm

Event Sequence

Algorithms

Algorithms

Types

- Utility Functions
- State Transition Functions
- Payoff Functions

Inputs

- Machine readable termsets
- Terms are composable
- Hetereogenous

Output

- Event Sequence (1..N)
- Equivalent to cash flows
- Homogeneous

Part 2: ACTUS + ZK + DLT Verifiable Financial Contracts

VFC Integrity VFC
Tokenisation

VFC Payments

VFC Integrity

ACTUS

(Counter Parties, Term Set, Algorithm, Cash Flows)

Cryptographic Proofs

(Signatures, Attestations, Fingerprints, ZK-Proofs)

DLT

(Smart Contract)

VFC Tokenisation

Minting

(Identifiers, Direction, Counter Parties, Units, Metadata)

DLT

(Smart Contract)

Servicing

(Auditors, Rating, Regulators, Markets)

VFC Payments

ACTUS Cash Flow

(Timestamp, Direction, Amount, Denomination, Obligor)

Payments Engine

(Verify, Calculate, Open, Close, Default, Notify)

DLT

(Smart Contract)

VFC Principles

VFC Principles

Occams Razor

As Little As Possible, As Much As Necessary

Chain Agnostic

Standard Smart Contracts

Privacy Preserving

Who, What, When, Why

Trust But Verify

Cryptographic Proofs Everywhere

VFC Challenges

Regulatory Certitude

Robust. Nuanced. Adaptive.

Counter-Party Risk

Identity -> KYC/AML. Defaults -> ???

VFC Challenges

Post Quantum Security

Cryptography equivalent to Y2K

Jurisdictional Anchoring

Smart Legal Contracts

Technological Flux

Multi-Decadal Platforms

Part 3: ACTUS ZK Proofs Computational Integrity

VFC Integrity

ACTUS

(Counter Parties, Term Set, Algorithm, Cash Flows)

Cryptographic Proofs

(Signatures, Attestations, Fingerprints, ZK-Proofs)

DLT

(Smart Contract)

ZK-Proofs

f(x,w) → {True,False}

Properties

Succint
Sound
Expensive to compute
Cheap to verify

Elements

Arithmetic Circuit
Constraint System
Polynomial
Polynomial Commitment

Developers

Virtual Machines
E-DSLs
Rollups
Applications

Thank You!

Swiss Consulate | Osaka

ZK-ACTUSVerifiable Financial Contracts