3.2 试画出维持阻塞 D 型触发器在习题图 3.2所示波形图作用下的 Q 端波形, 触发器初始状态为 0。

3.3 分析习题图 3.3所示时序电路,写出激励方程,状态输出表及状态图。设对 应 $O_2O_1O_0=000\sim111$ 的状态名为 $S_0\sim S_7$ 。

3.6 分析习题图 3.6 所示同步时序电路。写出激励方程、激励转换表及状态输出表。

$$J_2 = Q_1 \oplus \chi \quad K_2 = Q_1 \oplus \chi$$

$$Z = \frac{\overline{\chi} Q_1 Q_2}{\overline{\chi} Q_1 Q_2} \quad \chi \overline{Q_1 Q_2}$$

 $\overline{\chi}Q_1Q_2 + \chi \overline{Q}_1 \overline{Q}_2$

(2):状态方程·
$$Q_{1}^{n+1} = J \overline{Q_{1}}^{n} + \overline{K} Q_{1}^{n} = \overline{Q_{1}}^{n}$$

$$Q_{2}^{n+1} = (Q_{1}^{p}X) \overline{Q_{2}}^{n} + \overline{Q_{1}^{p}} \theta \overline{X} \cdot Q_{2}^{n}$$

(3) 状态、输出表:不太积少

				1 1.11.020			
	Qï	Q_2^n	X	Q_{i}^{n+1}	N+1	7.	
_	0	D	0	-	0	ひ	
	0	D	1	-	(
	0	1	0	(l	0	
	0	1	1		D	Q	
	1	0	0	D	1	D	
	1	0	1	0	0	D	
	1	1	0	0	0	1	
	1	1	l	D	(D.	

3.7 分析习题图 3.7 所示同步时序电路。写出激励方程、激励转换表及状态输出表。设对应 $Q_2Q_1=00\sim11$ 的状态名为 $S_0\sim S_3$ 。(注意图中是T触发器)

上课不考了ohnson 和挂起

补充: 学习例题Johnson计数器只改变D1输入的思想, 重新设计只改变D4输入的自恢复模8步进码计数器。

D 激励方程

回状态病程.

$$Q_{1}^{n+1} = T_{1} \Theta Q_{1}^{n} = EN_{1} \Theta Q_{1}^{n} = YQ_{1}^{n} + YQ_{1}^{n}$$

$$Q_{2}^{n+1} = T_{2} \Theta Q_{2}^{n} = EN_{2} \Theta Q_{2}^{n} = \overline{X}YQ_{1}^{n} \cdot Q_{2}^{n} + \overline{Q_{2}^{n}} \overline{X}YQ_{1}^{n}$$

A

日 教励表 (真值表)

X	Y	Q,"	021	Q, n+1	Ozn+1	Z	EN2.
0	0	0	0	D	D	_1	$\mathcal D$
O	0	0	ı	0	l	0	D
0	0	1	0	l	D	l	000
0	0	ı	1	l	- 1	0	0
0	1	0	0	ı	0	ı	0
0	1	0	1	1	1	0	ľ
0	1	1	0	0	1	l	1
0	1	1	1	O	D	b	1
/	0	0	D	0	D	0	O
/	D	0	1	0	1	0	D
/	D	1	O	l	D	0	0
/	D	/	1	١	- 1	0	0
1	/	0	0	1	O	0	0
/	/	0	1	ĺ	1	D D	0

分析拉不来差距,设计会难

3.9 用一个 4 位二进制计数器 74LS163 设计一个模 10计数器,其计数序列为

3, 4, 5,...,11, 12, 3, 4,...

余らけ数 74 LS 163 T力能 CLK 时钟脉冲 CLR 同步清O. 俯映有效 VD·预置锅,你映有效.

A-D 预量数输入端

QA-Qo TH老纯制出

状态转移 当/100(12)时重置的001(3) 此时使能 LD 省 1100 置为 0011

要求所位 反转.

对于12(1100), C,D位到1 与运算后接入预置应\LD. RP可。A-D等的初始 DOII.

74LS163

