Лекция 8. Задача Дирихле для уравнения Пуассона. Принцип максимума. Анализ сходимости схемы и общей погрешности

8.1. Принцип максимума

Рассмотрим задачу:

$$\Delta u(x, y) = -f(x, y) \text{ при } (x, y) \in G$$

$$u(x, y) = \mu(x, y) \text{ при } (x, y) \in \partial G \tag{8.1}$$

где $G \cup \partial G = \{[a, b] \times [c, d]\}$, и разностную схему

$$v_{x\bar{x},\,ij}+v_{y\bar{y},\,ij}=-f_{ij}$$
, при $i=1,\dots n-1,\,j=1,\dots m-1;$ $v_{ij}=\mu(x_i\,\,y_j)$ при $i=0,n,\,j=1,\dots m-1;$ при $j=0,\,m,\,i=1,\dots n-1$

Рис. 8.1. Сетка размерности (5,6)

Определение. Шаблоном узла (x_i, y_j) называем $HI(x_i, y_j)$ – множество узлов, участвующих в уравнении, ассоциированном с узлом (x_i, y_j) .

Например, для узла (3,2)

$$III(3,2) = \{ (3,2), (2,2), (4,2), (3,1), (3,3) \}$$

Определение. Окрестность узла (x_i, y_j) обозначим $III'(x_i, y_j)$ и определим ее как шаблон узла без самого узла: $III'(x_i, y_j) = III(x_i, y_j) \setminus (x_i, y_j)$.

Например, для узла (3,2)

$$III'(3,2)=\{(2,2),(4,2),(3,1),(3,3)\}.$$

Определение. Узел сетки будем называть граничным (топологически граничным), если его окрестность пустая: $III'(x_i, y_i) = \emptyset$.

Например, узел (0,1) является топологически граничным:

$$LLI(0,1) = \{ (0,1) \}, LLI'(0,1) = \emptyset.$$

Определение. Узел сетки будем называть внутренним (топологически внутренним), если его окрестность непустая: $III'(x_i, y_i) \neq \emptyset$.

Например, узел (3,2) является топологически внутренним:

$$III'(3,2) \neq \emptyset$$
.

Определение. Среди внутренних (топологически внутренних) узлов выделим узлы: 1-го типа — его окрестность содержит только внутренние узлы; 2-го типа — его окрестность содержит хотя бы один граничный узел.

Например, узел (3,2) является топологически внутренним узлом 1-го типа, узел (1,1) – топологически внутренним 2-го типа.

$$III'(1,1) = \{(2,1), (0,1), (1,0), (1,2)\}.$$

Множество топологически внутренних узлов сетки обозначим ω_{hk} .

Множество топологически граничных узлов обозначим γ_{hk} .

Множество всех узлов сетки обозначим $\Omega_{hk} = \omega_{hk} \cup \gamma_{hk}$.

Тогда схему (8.2) можно записывать в виде

$$(v_{x\bar{x}})_{ij} + (v_{y\bar{y}})_{ij} = -f_{ij}, \ (i,j) \in \omega_{hk}$$

$$v_{ii} = \mu(x_i, y_i), \qquad (i,j) \in \gamma_{hk}$$
(8.2)

Различные типы узлов на примере сетки (5,6) показаны на рис. 8.1.

Граничные узлы отмечены цветными прямоугольниками, внутренние узлы 1-го типа – крестом, внутренние узлы 2-го типа – темной точкой.

Угловые граничные узлы в записи схемы не участвуют.

Система $\mathcal{A} V = \mathbf{F}$ содержит уравнения только для внутренних узлов. Внутренним узлам 1-го типа в матрице \mathcal{A} соответствует строка, в которой 5 ненулевых элементов:

$$A = -2 \times \left(\frac{1}{h^2} + \frac{1}{k^2}\right), \frac{1}{h^2}, \frac{1}{h^2}, \frac{1}{k^2}, \frac{1}{k^2}$$

Внутренним узлам 2-го типа в матрице \mathcal{A} . соответствует строка, в которой менее 5 ненулевых элементов.

Чтобы сформулировать принцип максимума, ведем новые обозначения. Пусть V - вектор размерности (n-1)(m-1):

$$V = (v_{11}, v_{21}, ..., v_{n-11}, v_{12}, v_{22}, ..., v_{n-12}, ..., v_{1 m-1}, v_{2 m-1}, ..., v_{n-1 m-1}).$$

Запись $V \ge \mathbf{0}$ означает, что все компоненты вектора неотрицательны: $v_{ii} \ge 0$ при $i = 1, \dots n-1, j = 1, \dots m-1$.

Выражение $\mathcal{A} V$ есть вектор той же размерности (n-1)(m-1). Вектор $\mathcal{A} V$ есть результат применения матрицы \mathcal{A} к вектору V, см. рис. 8.2.

Запись $\mathcal{A} \ V \geq \mathbf{0}$ означает, что все компоненты вектора $\mathcal{A} \ V$ неотрицательны, то есть $\{\mathcal{A} \ V\}_{ij} \geq 0$ при i=1,...n-1, j=1,...m-1.

$$\begin{pmatrix} (Av)_{i_1} \\ (Av)_{i_2} \\ (Av)_{i_3} \\ (Av)_{i_4} \\ (Av)_{i_5} \\$$

Рис. 8.2. Вектор \mathcal{A} V, сетка (5,6), размерность вектора (n-1)(m-1) = 20

Принцип максимума справедлив для широкого класса разностных схем на *связных сетках*.

Определение. Сетка разностной схемы называется связной, если для любой пары узлов, один из которых имеет непустую окрестность, можно предложить последовательность узлов, соединяющих два исходных узла с помощью своих окрестностей. А именно, пусть (l, s) – начальный узел, $H'(l, s) \neq \emptyset$. Пусть (p, q) – конечный узел. Пусть $(i, j)_1$, $(i, j)_2$, ... $(i, j)_r$ – связующие узлы. Тогда

$$(i,j)_1 \in \coprod '(l,s), (i,j)_2 \in \coprod '(i,j)_1...(p,q) \in \coprod '(i,j)_r.$$

Сетка, представленная на рис. 8.1, является связной.

Пример несвязной сетки приведен на рис. 8.3 (недостаточно «густая» сетка для решения модельной задачи в области «подкова»).

пример не связной сетки

Рис. 8.3

Для задач (8.1), (8.2) сформулируем и докажем теорему о принципе максимума.

Теорема. Пусть сетка задачи (8.2) является связной. Пусть для некоторого $V \in R^{(n-1)(m-1)}$ \mathcal{A} $V \geq \mathbf{0}$. Тогда $V \leq \mathbf{0}$.

Доказательство. От противного. Рассмотрим схему доказательства для сетки (5,6).

Пусть среди компонент вектора V есть положительная компонента. Определим максимальную из них:

$$v_{ls} = \max_{\substack{i=1,\dots n-1\\j=1,\dots m-1}} \left(v_{ij}\right) = C$$

Здесь C>0 и (l,s) есть индекс той компоненты вектора V, на которой достигается максимум (без модуля, с учетом знака). Рассмотрим два возможных случая, когда индекс (l,s) соответствует внутреннему узлу 2-го или 1-го типа.

Случай l. Пусть (l, s) есть топологически внутренний узел 2-го типа. Например, узел (1,1). Рассмотрим компоненту вектора \mathcal{A} V с тем же индексом (l, s)=(1,1):

$$\{\mathcal{A} V\}_{11} = Av_{11} + \frac{1}{h^2}v_{21} + \frac{1}{k^2}v_{12}$$

Сгруппируем слагаемые и получим:

$$\{ \mathcal{A} V \}_{11} = \frac{1}{h^2} (v_{21} - v_{11}) + \frac{1}{k^2} (v_{12} - v_{11}) - \left(\frac{1}{h^2} + \frac{1}{k^2} \right) v_{11} < 0 ,$$
 так как

$$\frac{1}{h^2}(v_{21}-C) \le 0, \ \frac{1}{k^2}(v_{12}-C) \le 0, \ -\left(\frac{1}{h^2}+\frac{1}{k^2}\right)C < 0.$$

Так как внутренним узлам 2-го типа в матрице \mathcal{A} . соответствует строка, в которой менее 5 ненулевых элементов, при других значениях (l, s) результат будет таким же: $\{\mathcal{A} V\}_{ls} < 0$.

По условию теоремы $\mathcal{A} V \ge \mathbf{0}$ и узел (l,s) не может быть внутренним узлом 2-го типа.

Случай 2. Пусть (l, s) есть топологически внутренний узел 1-го типа. Рассмотрим компоненту $\mathcal{A} V$ с тем же индексом (l, s).

$$\{\mathcal{A} V\}_{ls} = Av_{ls} + \frac{1}{h^2}v_{l+1s} + \frac{1}{h^2}v_{l-1s} + \frac{1}{k^2}v_{ls+1} + \frac{1}{k^2}v_{ls-1}$$

Сгруппируем слагаемые и получим:

$$\{\mathcal{A} V\}_{ls} = \frac{1}{h^2} \left(v_{l+1s} - v_{ls} \right) + \frac{1}{h^2} \left(v_{l-1s} - v_{ls} \right) + \frac{1}{k^2} \left(v_{ls+1} - v_{ls} \right) + \frac{1}{k^2} \left(v_{ls-1} - v_{ls} \right) \le 0,$$

так как после группировки ни одно из четырех слагаемых не может быть положительным: $(v_{l+1s} - C) \le 0$, $(v_{ls+1} - C) \le 0$.

Так как по условию теоремы $\mathcal{A} V \ge \mathbf{0}$, получим $v_{ls} = v_{l\pm 1s} = v_{ls\pm 1} = C$ (если положительный максимум достигается во внутреннем узле 2-го типа, то во всех узлах из его окрестности компоненты вектора V принимают такое же значение).

Используя связность, нетрудно добраться из узла (l, s) до какогонибудь топологически внутреннего узла 1-го типа — обозначим его (p, q). Пусть $(i, j)_1, (i, j)_2, ...(i, j)_r$ — связующие узлы. Так как

$$(i, j)_1 \in III'(l, s), (i, j)_2 \in III'(i, j)_1...(p, q) \in III'(i, j)_r.,$$

очевидно

$$v_{ls} = v_{l\pm 1s} = v_{ls\pm 1} = \dots = v_{pq} = C$$
.

Получено противоречие: во внутрпеннем узле 2-го типа (p, q) не может достигаться положительный максимум.

Значит, $V \leq 0$ (среди компонент вектора V нет положительных).

Следствие 1. Матрица разностной схемы $\mathcal A$ такова, что из $\mathcal A$ $V \ge 0$ следует $V \le 0$, из $\mathcal A$ $V \le 0$ следует $V \ge 0$.

Следствие 2. Рассмотрим уравнение $\mathcal{A} V = \mathcal{F}$. Пусть $\mathcal{F} \geq \mathbf{0}$. Тогда для вектора V, являющегося решением данного уравнения, верно $V \leq \mathbf{0}$.

Следствие 3. Матрица разностной схемы не является вырожденной: $\det \mathcal{A} \neq 0$. Решение разностной схемы (8.2) при любой правой части задачи (8.1) существует и единственно.

Доказательство. Если $\det \mathcal{A} = 0$, уравнение $\mathcal{A} V = 0$ обязано иметь нетривиальные решения (матрица имеет нулевое собственное число).

Из \mathcal{A} $V \geq \mathbf{0}$ следует $V \leq \mathbf{0}$, из \mathcal{A} $V \leq \mathbf{0}$ следует $V \geq \mathbf{0}$. Следовательно, $V = \mathbf{0}$, $\det \mathcal{A} \neq 0$.

8.2. Доказательство теоремы о сходимости

$$\Delta u(x, y) = -f(x, y)$$
 при $x \in (a, b), y \in (c, d)$

$$u(a, y) = \mu_1(y), \ u(b, y) = \mu_2(y),$$

$$u(x, c) = \mu_3(x), \ u(x, d) = \mu_4(x),$$
(8.1)

Сетка (n, m), шаги h = (b - a)/n, k = (d - c)/m, узлы (x_i, y_j) , $(i, j) \in \Omega_{hk}$, где $\Omega_{hk} = \omega_{hk} \cup \gamma_{hk}$, где ω_{hk} — множество топологически внутренних узлов сетки, γ_{hk} — множество топологически граничных узлов, $\Omega_{hk} = \{(x_i, y_j), \text{где } i = 0, ..., j = 0, ..., m$, кроме угловых узлов $(0,0), (0, m), (n, 0), (n, m)\}$.

Задачу (8.1) решаем на сетке (n, m) с помощью разностной схемы (8.2):

$$(v_{x\bar{x}})_{ij} + (v_{y\bar{y}})_{ij} = -f_{ij}, \ (i,j) \in \omega_{hk}$$

$$v_{ij} = \mu(x_i, y_i), \qquad (i,j) \in \gamma_{hk}$$
(8.2)

Определение. Погрешностью решения задачи (8.1) с помощью разностной схемы (8.2) называют сеточную функцию z = u - v ($z_{ij} = u_{ij} - v_{ij}$, $(i,j) \in \Omega_{hk}$).

Определение. Погрешностью аппроксимации ψ называют невязку разностной схемы (8.2), при условии, что в нее подставлено точное решение задачи (8.1): $\psi = \{ \psi_{ij} \}, (i,j) \in \Omega_{hk}$.

Утверждение 1 (доказано ранее). Если решение (8.1) существует, единственно и является достаточно гладким, то

$$|\psi_{ij}| \le \hat{M}_1 h^2 + \hat{M}_2 k^2, (i, j) \in \omega_{hk}, \psi_{ij} = 0, (i, j) \in \gamma_{hk}$$
 (8.3)

где

$$\hat{M}_{1} = \frac{1}{12} \cdot \max_{(x,y) \in \overline{G}} \left| u_{xxxx}^{IV}(x,y) \right|, \quad \hat{M}_{2} = \frac{1}{12} \cdot \max_{(x,y) \in \overline{G}} \left| u_{yyyy}^{IV}(x,y) \right|$$
(8.3*)

и не зависят от h, k.

Утверждение 2. Для пары задач (8.1) и (8.2) погрешности z и ψ связаны уравнениями

$$(z_{x\bar{x}})_{ij} + (z_{y\bar{y}})_{ij} = \psi_{ij}, \ (i,j) \in \omega_{hk}$$

$$z_{ij} = 0, \ (i,j) \in \gamma_{hk}$$
(8.4)

Теорема о сходимости. Пусть решение (8.1) существует, единственно и является достаточно гладким. Тогда при $h \to 0$, $k \to 0$ решение

разностной схемы (8.2) сходится к решению задачи (8.1) со вторым порядком по h, k с оценками

$$\max_{(i,j)\in\omega_{hk}} \left| z_{ij} \right| \leq \frac{\hat{M}_{1}h^{2} + \hat{M}_{2}k^{2}}{16} \cdot ((b-a)^{2} + (d-c)^{2}),$$

$$\max_{(i,j)\in\gamma_{hk}} \left| z_{ij} \right| = 0,$$
(8.5)

где \hat{M}_1 , \hat{M}_2 см. (8.3*), они не зависят от h, k.

Для доказательства сходимости решения разностной схемы (8.2) к решению задачи (8.1) используем функцию

$$\hat{z}(x,y) = K \cdot ((x-a)(b-x) + (y-c)(d-y)) \tag{8.6}$$

где K = const > 0.

Утверждение 3. При $(x, y) \in \overline{G}$ $\hat{z}(x, y) \ge 0$.

Утверждение 4. Функция $\hat{z}(x,y)$ является решением дифференциального уравнения (8.6*)

$$\Delta \hat{z}(x, y) = -4K \le 0, x \in (a, b), y \in (c, d),
\hat{z}(a, y) = K(y - c)(d - y) \ge 0, y \in [c, d],
\hat{z}(b, y) = K(y - c)(d - y) \ge 0, y \in [c, d],
\hat{z}(x, c) = K(x - a)(b - x) \ge 0, x \in [a, b],
\hat{z}(x, d) = K(x - a)(b - x) \ge 0, x \in [a, b].$$
(8.6*)

На сетке (n, m) задача (8.6*) решается численно с помощью разностной схемы (8.7):

$$(\hat{z}_{x\bar{x}})_{ij} + (\hat{z}_{y\bar{y}})_{ij} = -4K, (i, j) \in \omega_{hk},$$

$$\hat{z}_{ij} = \hat{\mu}(x_i, y_j), (i, j) \in \gamma_{hk}$$
(8.7)

где функцию $\hat{\mu}(x,y)$ определяем в топологически граничных узлах:

$$\hat{\mu}(x_i, y_j) = K((x_i - a)(b - x_i) + (y_j - c)(d - y_j)) \ge 0, (i, j) \in \gamma_{hk}.$$

Утверждение 5. Точным решением (8.7) является (8.6). **Комментарий.** Поскольку $\hat{z}(x,y)$ квадратично зависит от x и y, значения разностных операторов численного дифференцирования, используемых в схеме (8.7), совпадают со значениями соответствующих частных производных в уравнении (8.6*):

$$\left(\hat{z}_{x\bar{x}}\right)_{ij} = \frac{\partial^2 \hat{z}}{\partial x^2}\bigg|_{(x_i,y_j)}, \left(\hat{z}_{y\bar{y}}\right)_{ij} = \frac{\partial^2 \hat{z}}{\partial y^2}\bigg|_{(x_i,y_j)}, (i,j) \in \omega_{hk}.$$

Запишем задачи (8.4) и (8.7) в матричном виде

$$\mathcal{A} \mathbf{Z} = \mathbf{\Psi} \tag{8.4*}$$

$$\mathbf{A} \hat{\mathbf{Z}} = \hat{\mathbf{\Psi}} \tag{8.7*}$$

(см. семестр 1). Напомним, что в задачах (4*) и (7*) матрица \mathcal{A} состоит из $(n-1)\times(n-1)$ блоков, размерность блока $(m-1)\times(m-1)$. Развернутый вид уравнений (4*) и (7*) для случая (n, m) = (4,5) показан на рис. 8.4, 8.5: размерность СЛАУ составляет 12×12.

В общем случае в задачах (8.4*) и (8.7*) искомыми являются векторы

$$\mathbf{Z} = (z_{11}, z_{21}, \dots z_{n-11}, z_{12}, z_{22}, \dots z_{n-12}, \dots, z_{1m-1}, z_{2m-1}, \dots z_{n-1m-1}),$$

$$\hat{\mathbf{Z}} = (\hat{z}_{11}, \hat{z}_{21}, \dots \hat{z}_{n-11}, \hat{z}_{12}, \hat{z}_{22}, \dots \hat{z}_{n-12}, \dots, \hat{z}_{1m-1}, \hat{z}_{2m-1}, \dots \hat{z}_{n-1m-1}).$$

Они состоят из компонент погрешности z и значений сеточной функции \hat{z} при $(i,j) \in \omega_{hk}$ соответственно. Правая часть (8.4*) записывается в виде

$$\Psi = (\psi_{11}, \psi_{21}, ..., \psi_{n-11}, \psi_{12}, \psi_{22}, ..., \psi_{n-12},, \psi_{1m-1}, \psi_{2m-1}, ..., \psi_{n-1m-1})$$

и состоит из компонент вектора погрешности аппроксимации ψ при $(i,j) \in \omega_{hk}$. Правая часть (8.7*) записана в виде вектора

$$\hat{\mathbf{\Psi}} = (\hat{\psi}_{11}, \hat{\psi}_{21}, ... \hat{\psi}_{n-11}, \hat{\psi}_{12}, \hat{\psi}_{22}, ... \hat{\psi}_{n-12},, \hat{\psi}_{1m-1}, \hat{\psi}_{2m-1}, ... \hat{\psi}_{n-1m-1}),$$

компоненты которого определены формулами вида

$$\begin{split} \psi_{ij} &= -4K - \frac{1}{h^2}(\alpha_1\hat{\mu}_{i\,j-1} + \alpha_2\hat{\mu}_{i\,j+1}) - \frac{1}{k^2}(\alpha_3\hat{\mu}_{i-1\,j}) + \alpha_4\hat{\mu}_{i+1\,j}), (i,j) \in \omega_{hk}\,, \\ \hat{\mu}_{pq} &= \hat{\mu}(x_p,y_q), \ (p,q) \in \gamma_{hk}\,, \alpha_l \in \big\{\,0;1\,\big\}, \, l = 1, \dots 4. \end{split}$$

Если $(i,j) \in \omega_{hk}$ является топологически внутренним узлом 1-го типа, то все коэффициенты α_l , l=1,...4, равны нулю и $\psi_{ij}=-4K$.

Если $(i,j)\in\omega_{hk}$ — топологически внутренний узел 2-го типа, среди коэффициентов α_l , l=1,...4, найдется равный единице, причем таких коэффициентов может быть не более двух. Поскольку $\hat{\mu}_{pq}=\hat{\mu}(x_p,y_q)\geq 0,\; (p,q)\in\gamma_{hk},\;$ получим $\hat{\psi}_{ij}\leq -4K.$

В любом случае

$$\hat{\psi}_{ii} \leq -4K, (i, j) \in \omega_{hk}.$$

Теперь подберем такое положительное число K, чтобы модули правых частей задачи (8.7*) ограничивали модули правых частей задачи (8.4*):

$$4K = \hat{M}_1 h^2 + \hat{M}_2 k^2, \tag{8.8}$$

где числа \hat{M}_1 , \hat{M}_2 определены формулой (8.3*), они не зависят от h,k.

Далее рассмотрим уравнения

$$\mathcal{A}\left(\hat{\mathbf{Z}} + \mathbf{Z}\right) = \left(\hat{\mathbf{\Psi}} + \mathbf{\Psi}\right), \tag{8.9}$$

$$\mathcal{A}\left(\hat{\mathbf{Z}} - \mathbf{Z}\right) = \left(\hat{\mathbf{\Psi}} - \mathbf{\Psi}\right). \tag{8.10}$$

Так как для \mathcal{A} справедлив принцип максимума

$$\begin{split} & \left(\hat{\Psi} + \Psi \right) \leq 0 \implies \left(\hat{Z} + Z \right) \geq 0 \implies Z \geq -\hat{Z}, \ \ \, \left(\hat{\Psi} - \Psi \right) \leq 0 \\ & \implies \left(\hat{Z} - Z \right) \geq 0 \implies Z \leq \hat{Z}, \end{split}$$

откуда следует

$$-\hat{\mathbf{Z}} \le \mathbf{Z} \le \hat{\mathbf{Z}} \tag{8.11}$$

ИЛИ

$$-\hat{z}_{ii} \le z_{ii} \le \hat{z}_{ii} , (i, j) \in \omega_{hk}.$$
 (8.12)

Так как при $(i,j) \in \omega_{hk}$ $\hat{z}_{ij} \geq 0$, для компонент погрешности z верно

$$\left| z_{ij} \right| \le \hat{z}_{ij}, \ (i,j) \in \omega_{hk}. \tag{8.13}$$

Таким образом, используя (8.6) и (8.4), получим (8.5):

$$\max_{(i,j)\in\omega_{hk}} \left| z_{ij} \right| \leq \max_{(i,j)\in\omega_{hk}} K((x_i - a)(b - x_i) + (y_j - c)(d - y_j)) \leq \\
\leq \frac{\hat{M}_1 h^2 + \hat{M}_2 k^2}{4} \max_{(i,j)\in\omega_{hk}} ((x_i - a)(b - x_i) + (y_j - c)(d - y_j)) \leq \\
\leq \frac{\hat{M}_1 h^2 + \hat{M}_2 k^2}{16} \cdot ((b - a)^2 + (d - c)^2).$$

Выполнение условия

$$\max_{(i,j)\in\gamma_{hk}} \left| z_{ij} \right| = 0$$

очевидно. Теорема о сходимости доказана.

Рис. 8.4

Рис. 8.5

8.3. Оценка общей погрешности

Вернемся к задаче (8.1) и разностной схеме (8.2).

Общей погрешностью решения задачи (8.1) с помощью схемы (8.2) на сетке размерности (n, m) назовем сеточную функцию $z_{oбщ}(x, y)$, определяемую как

$$z_{obu}(x, y) = u(x, y) - v^{**}(x, y)$$
(8.14)

где u(x, y) – сеточная функция, соответствующая точному решению задачи (8.1) и $v^{**}(x, y)$ – сеточная функция, соответствующая какому-либо численному (приближенному) решению разностной схемы (8.2).

Если (8.2) решена с помощью итерационного метода линейной алгебры, общую погрешность можно записать в виде

$$z_{oou}(x, y) = u(x, y) - v_s **(x, y),$$

причем

$$z_{obu}(x, y) = [u(x, y) - v(x, y)] + [v(x, y) - v_s(x, y)] + [v_s(x, y) - v_s **(x, y)].$$

Здесь v(x, y) — сеточная функция, являющаяся точным решением (8.2), $v_s(x, y)$ — сеточная функция, которая должна получиться на итерации с номером s в случае, если погрешность счета отсутствует, и v_s **(x, y) — результат, полученный на итерации с номером s под влиянием погрешности счета.

Первое слагаемое, заключенное в квадратные скобки, есть *погрешность решения задачи* (8.1) *с помощью схемы* (8.2), второе слагаемое в квадратных скобках – *погрешность решения схемы* (8.2) *с помощью итерационного метода*, и третье слагаемое, заключенное в квадратные скобки, показывает *погрешность счета*, накопленную за *s* итераций.

Пренебрегая третьим слагаемым, норму общей погрешности можно оценить суммой нормы погрешности схемы и нормы погрешности метода:

$$||z_{o\delta u_i}(x, y)|| \le ||u(x, y) - v(x, y)|| + ||v(x, y) - vs(x, y)||$$
 (8.15)

С одной стороны, для снижения нормы погрешности схемы нужны достаточно большие n и m (см. теорему о сходимости решения (8.2) к решению (8.1)). С другой стороны, чем больше n и m, тем выше обусловленность матрицы \mathcal{A} в задаче

$$-\mathcal{A}V = -\mathcal{F} \tag{8.16}$$

Тогда для решения задач вида (8.16), имеющих разную размерность, нужно разное число итераций. А именно, при одном и том же ограничении на норму погрешности метода (такое ограничение виртуально устанавливает пользователь) и «сходных» (одинаково похожих на сеточную функцию u(x, y)) начальных приближениях для решения (8.16) на более густой сетке (больше n и m) потребуется больше итераций (см. далее теоремы об оценках сходимости методов).

В проведенном выше рассмотрении сеточной функции v(x, y), заданной на сетке (n, m), соответствует вектор V размерности (n-1)(m-1) с компонентами

$$V = (v_{11}, v_{21}, ..., v_{n-11}, v_{12}, v_{22}, ..., v_{n-12}, ..., v_{1 m-1}, v_{2 m-1}, ..., v_{n-1 m-1}).$$

Тогда норму сеточной функции (т.е. нормированное пространство сеточных функций) можно определить на основе норм соответствующих векторов (т.е. нормированного пространства векторов). Например, включив в описание вектора \boldsymbol{V} компоненты, соответствующие граничным узам сетки, полагаем

$$\|v(x, y)\| = \max_{\substack{i=1,\dots n \ j=1,\dots m}} |v_{ij}|.$$
 (8.17)

и оценка (8.15) может быть записана с помощью (8.17).

Изучить поведение общей погрешности в зависимости от выбора параметров сетки (n, m) и параметров счета $(Nmax, \varepsilon,$ начальное приближение, иные параметры метода) можно в ходе выполнения лабораторных работ на примере тестовых задач.

8.4. Другие постановки задач. Примеры применения принципа максимума

8.4.1. Задача в трехмерной области (куб)

$$(16)\begin{cases} u(x,y\omega) = -f(x,y,\omega) \\ (x,y,\omega) \in (0,1) \times (0,1) \times (0,1) = G \\ u(x,y,z)|_{\partial G} = \mu(x,y,\omega) \end{cases}$$

 $\mu(x,y,\omega) = \{\mu_1,\mu_2,...,\mu_6\}$

<u>Сетка:</u> (n,m,p)

 $x_i=ih$, h=1/n

 $y_i=jk$, k=1/m

 $\omega_1 = 1s$, l = 1/p

 $u(x,y,\omega)=\{u_{ijl}\},\ i=0.n;\ j=0,m;\ s=0,p$ — сеточная функция — значение точного решения задачи (16) в узлах сетки.

 $v(x,y,\omega)=\{v_{ijl}\},\ i=0.n;\ j=0,m;\ s=0,p$ — точное решение разностной схемы в узлах сетки $z_{iil}=u_{iil}-v_{iil}$ - погрешность решения дифференциальной задачи с помощью разностной схемы.

Построим разностную схему 2-го порядка аппроксимации, заменяя 2-е частные производные 3-х точечными разностным оператором 2-й разностной производной.

$$(17) \begin{cases} \left(v_{x\bar{x}}\right)_{ijl} + \left(v_{y\bar{y}}\right)_{ijl} + \left(v_{\omega\omega}\right)_{ijl} = -f_{ijl} & i = 1, n-1; j = 1, m-1; l = 1, p-1 \quad (17*) \\ v_{ij0} = \mu_{5ij}; \quad v_{ijp} = \mu_{6ij}; \quad v_{i0l} = \mu_{3il}; & i = 0, n; j = 0, m; l = 0, p \\ v_{iml} = \mu_{4il}; \quad v_{0jl} = \mu_{1jl}; \quad v_{njl} = \mu_{2jl}; & i = 0, n; j = 0, m; l = 0, p \end{cases}$$

Шаги: $\{h \text{ по } x; k \text{ по } y; s \text{ по } \omega\}$. Размеры сетки (n,m,p). Индексы i,j,l.

Из физического смысла задачи предполагается, что μ согласуются между собой и на ребрах куба дадут одинаковый результат.

16

$$(17*) \text{ это: } \frac{v_{i-1jl}-2v_{ijl}+v_{i+1jl}}{h^2}+\frac{v_{ij-1l}-2v_{ijl}+v_{ij+1l}}{k^2}+\frac{v_{ijl-1}-2v_{ijl}+v_{ijl+1}}{s^2}=-f_{ijl}$$

$$A=-2\left(\frac{1}{h^2}+\frac{1}{k^2}+\frac{1}{s^2}\right)$$

Запишем шаблон для граничных узла: (0,j,l) (n,j,l) (i,0,l) (i,m,l) (i,j,0) (i,j,p).

Нетрудно видеть, что узлы, расположенные на ребрах куба в разностной схеме практически не используются – т.е. они не используются в уравнениях, аппроксимирующих основное уравнение задачи Дирихле. Таким образом, узлы, попадающие на ребра при изучении разностной схемы использовать не будем.

Сетка: $H=\{h,k,s\}$

 $\omega_{\rm H}$ = топологически внутренние узлы (т.е. Ш'(i,j,l) \neq 0)

$$\omega_{H} = \left\{ III'(i,j,l) \neq 0; i = 1, n-1; j = 1, m-1; l = 1, p-1 \right\}$$

у_н – топологически граничные узлы:

$$\begin{split} \gamma_h &= \left\{ \mathcal{U} \mathcal{U}'(i,j,l) = 0; (i,0,l); (i,m,l); (0,j,l); (n,j,l), (i,j,0); (i,j,p); i = 1, n-1; j = 1, m-1; l = 1, p-1 \right\} \\ \Omega_H &= \Omega_H \cup \gamma_h \end{split}$$

Сетка является связной.

Теорема 3:

Погрешность аппроксимации дифференциальной задачи (16) разностной схемы (17) удовлетворяет

оценке:
$$\max_{\substack{i=0,n\\j=0,m\\l=0,p}} \left| \psi_{ijl} \right| \leq \frac{1}{12} \max_{\substack{(x,y,\omega) \in \overline{G} \\ l=0,p}} \left\{ \left| \frac{\partial^4 u}{\partial x^4} \right|, \left| \frac{\partial^4 u}{\partial y^4} \right|, \left| \frac{\partial^4 u}{\partial \omega^4} \right| \right\} \cdot \left(h^2 + k^2 + s^2\right) \right.$$
 (20)

Теорема 5:

Если функция z и μ достаточно гладкие и точное решение задачи (16) достаточно гладкое, то решение разностной схемы (17) сходиться к решению дифференциальной задачи (16) равномерно

по h, k и s с оценкой:
$$\max_{\substack{l=0,n\\l=0,p\\l=0,p}} \left| z_{yl} \right| \leq \frac{l_1^2 + l_2^2 + l_3^2}{6 \cdot 4} \cdot M \left(h^2 + k^2 + s^2 \right), \ l_1 = l_2 = l_3 = 1 \quad (24)$$

где
$$M = \frac{1}{12} \max_{(x,y,\omega) \in \overline{G}} \left\{ \left| \frac{\partial^4 u}{\partial x^4} \right|, \left| \frac{\partial^4 u}{\partial y^4} \right|, \left| \frac{\partial^4 u}{\partial \omega^4} \right| \right\}$$

Рис. 8.6. Разностная схема трехмерной задачи на сетке (n=3,m=3,p=5), (индексы правой части выписать самим)

8.4.2. Задача на прямоугольнике с выбитым квадрантом

$$\begin{cases} \Delta u(x, y) = -f(x, y) & (x, y) \in G \\ u|_{\partial G} = \mu(x, y) \end{cases}$$

Функции µ согласованы в граничных точках.

Основа сетки:

$$\begin{aligned} x_i &= a+ih, \ i=0, n \quad h=\frac{b-a}{n}, \ n=2\cdot n_1 \\ \left(x_i,y_j\right) &: \\ y_j &= c+jk, \ j=0, m \ k=\frac{d-c}{m}, \ m=2m_1 \end{aligned}$$

Описание шаблона оператора:

 $H=\{h,k\}$

топологически внутренние узлы – это те физически внутренние узлы, для которых можно применить шаблон крест \times - ω_{H} .

 $\gamma_{\rm H}$ – это те и только те граничные узлы, которые участвуют в шаблоне для внутренних узлов. Физические граничные узлы I-V в множество $\gamma_{\rm H}$ не входят. Таким образом сеткой в нашей задаче считается $\omega_{\rm H} \cup \gamma_{\rm H} = \Omega_{\rm H}$.

 v_{ij} , $(i,j) \in \Omega_H$ — точное решение разностной схемы в узлах сетки.

 $u_{ij},\;(i,j) \in \Omega_H$ – точное решение дифференциальной задачи в узлах сетки.

 $z_{ij} = u_{ij} - v_{ij}, \ (i,j) \in \Omega_H - погрешность.$

$$(26)\begin{cases} (v_{x\bar{x}})_{ij} + (v_{y\bar{y}})_{ij} = -f_{ij} & (26*) \\ v_{ij} = \mu(x_i, y_j), (i, j) \in \omega_H \end{cases}$$

Теорема 8:

Если f и μ из (25), а так же точное решение (25) u(x,y) достаточно гладкие, то решение разностной схемы (26) v_{ij} , $(i,j) \in \Omega_H$ сходиться к решению дифференциальной задачи равномерно со 2-м порядком по h и k:

$$\left(28\right)\max_{(i,j)\in\Omega_H}\left|z_{ij}\right|\leq \frac{l_1^2+l_2^2}{4\cdot 4}M\left(h^2+k^2\right),\ \text{где M из оценки для $\psi:M$}=\frac{1}{12}\max_{(x,y)\in\overline{\mathcal{G}}}\left\{\left|\frac{\partial^4 u}{\partial x^4}\right|,\left|\frac{\partial^4 u}{\partial y^4}\right|\right\}$$

Доказательство: - самостоятельно.

Задачу (25) можно рассматривать в других областях:

Рис. 8.7. Разностная схема на прямоугольнике с выбитым квадрантом, основа сетки (n=6, m=6), (индексы правой части выписать самим)

8.4.3. Задача на прямоугольнике с закругленным краем

$$\int \Delta u(x, y) = -f(x, y) \quad (x, y) \in G$$

$$|u|_{\partial G} = \mu(x, y)$$

Функции µ согласованы в граничных точках.

Вспомогательная задача.

Рассмотрим f(x), сетка x_i , $x_{i-\alpha} = x_i - \alpha h$, $x_{i+\beta} = x_i + \beta h$. $\alpha, \beta \in (0,1]$

 $\alpha, \beta \in (0,1]$ $f''(x_i)$ -?

Строим интерполяционный полином $P_2(x)$ по 2-м точкам: $P_2(x_i)=f(x_i)$; $P_2(x_i+\beta h)=f(x_i+\beta h)$; $P_2(x_i-\alpha h)=f(x_i-\alpha h)$. Полагаем, что $P''_2(x_i)\sim f'(x_i)$.

Утверждение:
$$P"_2(x_i) = \frac{2}{h^2} \left(\frac{1}{(\alpha + \beta)\alpha} f_{i-\alpha} - \frac{1}{\alpha\beta} f_i + \frac{1}{(\alpha + \beta)\beta} f_{i+\beta} \right) (33)$$

причем:
$$f''(x_i) = P_2(x_i) + \left(\frac{h(\alpha - \beta)}{3}f'''(x_i) - \frac{h}{12}\frac{\alpha^3 + \beta^3}{\alpha + \beta}f'''(x_i) + 0(h^2)\right)$$
 (34)

Доказательство: самостоятельно:

(33) – из дифференцирования полинома. (34) – через разложение в ряд Тейлора (33) в (.) х_і. Определение:

Формулу (33) назовем 3-х точечным разностным оператором 2-й разносной производной на несимметричном шаблоне и обозначим $\left(f_{x\overline{x}}\right)_i = \left(33\right)$.

<u>Свойства:</u> 1) Если α = β , то $\left(f_{x\bar{x}}\right)_i = \frac{1}{\left(\alpha h\right)^2} \left(f_{i-\alpha} - 2f_i + f_{i+\alpha}\right)$, который аппроксимирует f'(x_i) со 2-м

порядком по h.

2) если $\alpha \neq \beta$, то $\left(f_{xx}^{-}\right)_i$ аппроксимирует f'(x_i) с 1-м порядком по h.

<u>Утверждение</u>

На несимметричном шаблоне, непрямоугольном сетке u в узле i,j аппроксимируется разностным оператором $\left(u_{x\overline{x}}\right)_{ij}+\left(u_{y\overline{y}}\right)_{ij}$ с

первым порядком по h и k.

$$A = -\frac{2}{h^2 \beta} - \frac{2}{k^2 \gamma} = -2 \left(\frac{1}{h^2 \beta} + \frac{1}{k^2 \gamma} \right)$$

при $\beta = \gamma = 1$ получим шаблон крест.

Задача Дирихле на прямоугольнике с закругленным краем.

Основа сетки:

$$x_i = a + ih \ h = \frac{b - a}{n}, \ i = 0, n$$

$$y_j = c + jk \ k = \frac{d - c}{m}, \ j = 0, m$$

 ω_{H} – те внутренние узлы, на которых можно использовать либо симметричный шаблон, либо несимметричный.

 γ_{H} – физические граничные узлы, которые участвуют в уравнении для узлов из ω_{H} .

Сетка: $\Omega_H = \gamma_H \cup \omega_H$, $H = \{h,k\}$

Узлы I-III в ун не входят.

Разностная схема:

$$(37) \begin{cases} \left(v_{x\overline{x}}\right)_{ij} + \left(v_{y\overline{y}}\right)_{ij} = -f_{ij}, \ (i,j) \in \omega_H \\ v_{ij} = \mu\left(x_i, y_j\right), \ (i,j) \in \gamma_H \end{cases}$$

Разностная схема (37) удовлетворяет принципу максимума ⇒

- существует единственное решение разностной схемы
- есть сходимость к решению дифференциальной задачи с 1-м порядком по h и k.

$$\begin{pmatrix} A & \frac{1}{h^2} & 0 & \frac{1}{k^2} & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{h^2} & A & \frac{1}{h^2} & 0 & \frac{1}{k^2} & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{h^2} & A & 0 & 0 & \frac{1}{k^2} & 0 & 0 & 0 \\ \frac{1}{k^2} & 0 & 0 & A & \frac{1}{h^2} & 0 & \frac{1}{k^2} & 0 & 0 \\ 0 & \frac{1}{k^2} & 0 & \frac{1}{h^2} & A & \frac{1}{h^2} & 0 & \frac{1}{k^2} & 0 \\ 0 & 0 & \frac{1}{k^2} & 0 & \frac{1}{h^2} & A & 0 & 0 & \frac{1}{k^2} \\ 0 & 0 & 0 & \frac{1}{k^2} & 0 & 0 & A & \frac{1}{h^2} & 0 \\ 0 & 0 & 0 & \frac{1}{k^2} & 0 & 0 & A & \frac{1}{h^2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{k^2} & 0 & \frac{1}{h^2} & A & \frac{1}{h^2} \\ 0 & 0 & 0 & 0 & \frac{1}{k^2} & 0 & \frac{1}{h^2} & A & \frac{1}{h^2} \\ 0 & 0 & 0 & 0 & \frac{2}{D} & 0 & \frac{2}{C} & A_{new} \end{pmatrix}$$

Рис. 8.8. Разностная схема на прямоугольнике с закругленным краем, основа сетки (n=4, m=4), (индексы правой части выписать самим)

8.5. Проверка свойств, гарантирующих сходимость итерационных методов

Уравнение разностной схемы, соответствующей топологически внутренним узлам записывают в виде матрицы: $\overline{Av} = F$.

Для нумерации компонент вектора строк и столбцов матрицы удобно оставит двойную индексацию: v_{ij} – компонента вектора \overline{v} , соответствующая узлу (x_i,y_j) ; (i,j) – строка матрицы A, которая соответствуют уравнению, ассоциированному с узлом (x_i,y_j) ; (l,s) – столбец матрицы A. Элемент матрицы A в строке (i,j), столбце (l,s) равен коэффициенту с которым v_{ls} входит в уравнение, ассоциированное с узлом (x_i,y_j) . Вектор F содержит слагаемые правой части уравнения, а так же значения функции в топологически – граничных узлах.

8.5.1. Проверка симметрии матрицы

Проверка симметричности:

- в строке (i, j) столбце (l,s) участие (l,s) в уравнении для (i, j).
- в строке (), столбце (i,j) участие (i,j) в уравнении для (l,s).

Утверждение:

Матрица разностной схемы задачи Дирихле симметрична. Доказательство:

$$A = -2\left(\frac{1}{h^2} + \frac{1}{k^2}\right)$$

Очевидно, что участие коэффициентов $i\pm 1,j$ в уравнение для i,j будет таким же, как и участие (i,j) для уравнений $(i\pm 1,j)$.

Утверждение:

Разностная схема, для решения задачи Дирихле в 3-х мерном кубе симметрична: $A_{3D} = A^{T}_{3D}$. Утверждение:

Матрица разностной схемы, для решения задачи Дирихле в области с закругленным краем не симметрична. $A_0 \neq A^T_0$.

Доказательство: Узел (3,3) участвует в уравнении для (2,3) с 4 коэффициентом $1/h^2$, а узел (2,3) участвует в уравнении для (3,3) с $_3$ коэффициентом $\frac{2}{h^2\left(1+\beta\right)}$.

8.5.2. Проверка невырожденности

Проверка невырожденности: detA≠0 – это следует из принципа максимума.

8.5.3. Проверка расположения спектра

Проверка расположения собственных чисел – по теореме Гершгорина.

Например, для области с закругленным краем используются два шаблона.

В строках матрицы использующих шаблон

$$|A| \ge \left|\frac{1}{h^2}\right| + \left|\frac{1}{h^2}\right| + \left|\frac{1}{k^2}\right| + \left|\frac{1}{k^2}\right|.$$

В строках матрицы использующих шаблон:

$$A_{\text{\tiny HOG}} \geq \frac{2}{h^2\left(1+\beta\right)}\!\!\left(1\!+\!\frac{1}{\beta}\right)\!+\!\frac{2}{k^2\left(1\!+\!\gamma\right)}\!\!\left(1\!+\!\frac{1}{\gamma}\right)$$

Теорема:

Матрица разностной схемы для закругленной области не симметрична, но свойство диагонального преобладания имеется.

Собственные числа имеют отрицательную действительную часть, на мнимую ось не попадают.

Имеется нестрогое диагональное преобладание.