Отчет по работе «Изгиб балки»

Теоретический расчёт

Раскроем статическую неопределимость балки, т.е. определим реакции в опорах.

$$\sum_{i} F_i = R_A + R_B - P = 0$$

$$\sum_{i} M_i = R_B(a+b) - Pb + M_A = 0$$

По теореме Кастилиано, перемещение y_{R_i} в точке приложения силы N_i по направлению действия этой силы равняется производной от энергии по этой силе:

$$y_{N_i} = \frac{\partial W}{\partial N_i}.$$

Энергия при изгибе определяется по формуле:

$$W = \int_{I} \frac{M^{2}(x)}{2EI} dx,$$

I — удельный момент инерции сечения балки относительно оси поворота сечения.

$$I = \frac{h^2}{12} \cdot hl = \frac{h^3 l}{12} \approx 0.714$$

Отсюда:

$$y_i = \frac{1}{EI} \int_I M(x) \frac{\partial M(x)}{\partial N_i}$$

$$M_I(x_1) = R_B x_1 \Rightarrow \frac{\partial M_I(x_1)}{\partial R_B} = x_1$$
 (1)

$$M_{II}(x_2) = R_B(a + x_2) - Px_2 \Rightarrow \frac{\partial M_{II}}{\partial R_B} = a + x_2 \tag{2}$$

$$\int_{I} M(x) \frac{\partial M(x)}{\partial R_{B}} dx = 0 \Rightarrow$$

$$\Rightarrow \int_0^a M_I(x_1) \frac{\partial M_I(x_1)}{\partial R_B} dx_1 + \int_0^b M_{II}(x_2) \frac{\partial M_{II}(x_2)}{\partial R_B} dx_2 = 0$$
 (3)

Из (1), (2), (3):

$$\int_0^a R_B x_1^2 dx_1 + \int_0^b (R_B(a+x_2) - Px_2)(a+x_2) dx_2 = 0$$

Проинтегрируем, чтобы выразить R_B :

$$R_{B} \frac{a^{3}}{3} + R_{B} \frac{(a+b)^{3}}{3} - R_{B} \frac{a^{3}}{3} - Pa \frac{b^{2}}{2} - P \frac{b^{3}}{3} = 0 \Rightarrow$$

$$\Rightarrow R_{B} = \frac{Pb^{2}(\frac{a}{2} + \frac{b}{3})}{\frac{1}{2}(a+b)^{3}} = \frac{3a+2b}{(a+b)^{3}}b^{2}P = \frac{5}{8}P \Rightarrow$$

$$\Rightarrow R_B \approx 0.625P$$
.

Рассчитаем y_C по теореме Кастилиано.

$$y_C = \frac{1}{EI} \int_{l} M(x) \frac{\partial M(x)}{\partial P} dx = \frac{1}{EI} \left[\int_{0}^{a} R_B x_1^2 dx_1 + \int_{0}^{b} (R_B(a + x_2) - Px_2)(a + x_2) dx_2 \right] = \frac{1}{EI} \left[R_B \frac{(a + b)^3}{3} - P(\frac{ab^2}{2} + \frac{b^3}{3}) \right]$$

Экспериментальные данные

Начальное смещение $y_0 = 0.1$ мм.

у, мм	P, H	R_B , H	$y - y_0$, MM
0,175	2,2	0,0	0,075
0,467	10,5	2,9	0,367
0,715	0,9	8,3	0,615
1,159	27,3	10,9	1,059
1,337	33,3	13,1	1,237
1,587	39,5	16,1	1,487
1,809	47,5	18,6	1,709
2,166	61,7	22,7	2,066
2,398	70,6	25,6	2,298
3,000	80,8	32,7	2,900
3,152	83,6	34,3	3,052
3,298	86,6	36,0	3,198
3,366	90,3	37,2	3,266
3,540	95,2	39,7	3,440
3,647	100,8	40,1	3,547
3,861	110,3	42,5	3,761
4,154	118,7	45,8	4,054
4,951	121,1	48,3	4,851
4,763	129,7	53,1	4,663

Обработка результатов

Среднеквадратичная погрешность: 41.78%

Среднее отклонение: 36.16%

Подпись

Вычисляем теоретическую зависимость $R_B(P)$. По этой зависимости вычисляем теоретическую зависимость l(P), как было описано в пункте «Теоретический расчёт» (2-й график). Также вычисляем эту же зависимость исходя из теоретически найденной зависимости $R_B(P)$ (1-й график).

exp: I = 0.036P theor: I = 0.022P

exp: I = 0.036P theor: I = 0.006P

l(P): 1-й график

Среднеквадратичная погрешность: 73.76%

Среднее отклонение: 63.83%

l(P): 2-й график

Среднеквадратичная погрешность: 568.26%

Среднее отклонение: 491.77%