

**BCS of Video** 

S. Mun

Motivation

Background

... ...

MC-BCS-SPL

Conclusio

# Residual Reconstruction for Block-Based Compressed Sensing of Video

#### **Sungkwang Mun and James E. Fowler**

Department of Electrical & Computer Engineering
Geosystems Research Institute
Mississippi State University

Mar 30 2011





**BCS** of Video

S. Mun

Motivation

Dackgroun

MC-BCS-SF

Conclusion

- Motivation
- 2 Background
  - CS Overview
    - BCS-SPL
- Block Based CS Reconstruction of Video
  - Extension of Still-Image
  - MC-BCS-SPL
  - Results
- 4 Conclusion



# **Traditional Video Compression**

BCS of Video

S. Mun

Motivation

Motivation

Background MC-BCS-SPL

Conclusion

#### Traditional Video Compression

Smart encoder and fast, simple decoder



- Well suited for once encode, decode many times
- Not the best solution for resource-limited encoding
- Recent theory gives possibility that we can hand over the burden to the other side



# **Compressed Sensing Video Compression**

BCS of Video

S. Mun

Motivation

Background
MC-BCS-SP

Conclusion

#### Compressed Sensing (CS)

- Sampling at sub-Nyquist rates via linear projection onto a measurement basis of lower dimension
- Exact (or approximate) reconstruction when signal is sparse under certain condition
- Simultaneous sampling and dimension reduction

#### **CS Video Conception**

- Using still-image-based CS sampling, i.e, single pixel camera
- Joint reconstruction exploiting temporal redundancy
- Fast, simple encoder and smart decoder



**BCS** of Video

S. Mun

Motivation

Background CS Overview BCS-SPL

MC-BCS-SPI

**1** Motivation

- 2 Background
  - CS Overview
    - BCS-SPL
- Block Based CS Reconstruction of Video
  - Extension of Still-Image
  - MC-BCS-SPL
  - Results
- 4 Conclusion



### **CS** Overview

**BCS** of Video

S. Mun

Motivation

Background CS Overview BCS-SPL

MC-BCS-SPL

#### Goal

Recover  $\mathbf{x} \in \Re^N$  from

$$\mathbf{y} = \mathbf{\Phi}\mathbf{x} \in \Re^M$$

- $\Phi$ :  $M \times N$  random measurement matrix,  $M \ll N$
- $\circ$   $S = \frac{M}{N}$ : Sub-sampling ratio or subrate

#### **Fundamental Tenet of CS**

If x is sufficiently sparse, recovery is exact from

$$M > O(K \cdot log N)$$

measurements by solving tractable program.

• K: number of nonzero coefficients in some transform  $\Psi$ ,  $\check{\mathbf{x}} = \Psi \mathbf{x}$ 



BCS of Video

S. Mun

BCS-SPL

Motivation

- **Background** 

  - BCS-SPL



# **Block Compressed Sensing**

**BCS** of Video

S. Mun

Motivation

Background
CS Overview
BCS-SPL

MC-BCS-SPL

### **Block Compressed Sensing (BCS)**

Image partitioned into small blocks ( $B \times B$ )

$$\mathbf{y}_j = \mathbf{\Phi}_B \mathbf{x}_j$$

 $\Phi_B$ :  $\lfloor \frac{M}{N}B^2 \rfloor \times B^2$ ,  $\mathbf{x}_j$ : block j of image

#### **Smooth Projected Landweber (SPL)**

$$\min_{\mathbf{y}_{\mathbf{y}}} \lVert \mathbf{\Psi} \mathbf{x} \rVert_{\ell_1}$$
 subject to  $\lVert \mathbf{y} - \mathbf{\Phi} \mathbf{x} \rVert_{\ell_2} \leq \epsilon$ 

- Wiener filter to smooth blocky artifacts (L. Gan, 07)
- Directional Transform and statistically determined threshold (Mun & Fowler, 09)
- Practical recovery (simple, fast)



**BCS** of Video

S. Mun

Motivation

Motivation

MC-BCS-SPL

Extension of

Still-Image MC-BCS-SPI Results

Conclusion

- 1 Motivation
- 2 Background
  - CS Overview
    - BCS-SPL
- 3 Block Based CS Reconstruction of Video
  - Extension of Still-Image
  - MC-BCS-SPL
  - Results
- 4 Conclusion



### **Extension of Still-image CS to Video**

**BCS** of Video

S. Mun

Motivation

Background

MC-BCS-SPL Extension of Still-Image MC-BCS-SPL

Conclusio

#### **Block Based CS Video Reconstruction**

- 2D image recovery enables frame-by-frame reconstruction
- Unlike images, video has temporal redundancy as well as spatial redundancy
- Goal: Finding a good CS reconstruction method for video in terms of quality and speed

#### **Experimental Assumption**

- Block based sampling frame-by-frame by using same 2D sampler
- Measurements of multiple frames are available (decoder)
- Key frames and non key frames



### **Frame-by-frame Reconstruction**

**BCS of Video** 

S. Mun

Motivation

Background

MC-BCS-SPL

Extension of Still-Image MC-BCS-SPL

Conclusion



Straightforward, but ignores the correlation in consecutive frames



### **Joint Reconstruction**

**BCS of Video** 

S. Mun

Motivation

Motivation

Background

. . .

MC-BCS-SPL Extension of

Still-Image MC-BCS-SPL Results

Conclusio

#### 3D BCS-SPL reconstruction



- Wakin et al. 2006
- Group multiple frames together and reconstructing using 3D block-based transform
- Only pursuing the joint sparsity that occurs in the 3D transform



**BCS** of Video

S. Mun

Motivation

Motivatio

Backgroun

MC-BCS-SPL Extension of Still-Image

MC-BCS-SP Results

Conclusion

- 1 Motivation
- 2 Background
  - CS Overview
  - BCS-SPL
- 3 Block Based CS Reconstruction of Video
  - Extension of Still-Image
  - MC-BCS-SPL
  - Results
  - 4 Conclusion



# **Motion Compensated Reconstruction**

**BCS** of Video

S. Mun

Motivation

Wotivation

Background

MC-BCS-SPL Extension of Still-Image

Still-Image MC-BCS-SPL Results

Conclusio

#### Residual Reconstruction





- Using motion estimation/compensation to capture objects motion in frames
- Similar to motion compensated interframe coding in standard video compression
- Residual is random projected motion compensated interframe



# **Motion Compensated Reconstruction**

**BCS of Video** 

S. Mun

Motivation

Background

MC-BCS-SPL Extension of

Still-Image
MC-BCS-SPL
Results

Conclusio

#### Residual Reconstruction

$$\mathbf{y}_r = \mathbf{y} - \mathbf{\Phi} \hat{\mathbf{x}}_{mc}$$

$$= \mathbf{\Phi} (\mathbf{x} - \hat{\mathbf{x}}_{mc}) (\because \mathbf{y} = \mathbf{\Phi} \mathbf{x})$$

$$= \mathbf{\Phi} \mathbf{x}_r$$

#### After solving

$$\min_{\mathbf{\Psi}\mathbf{x}_r} \|\mathbf{\Psi}\mathbf{x}_r\|_{\ell_1} \text{ subject to } \|\mathbf{y}_r - \mathbf{\Phi}\mathbf{x}_r\|_{\ell_2} \leq \epsilon$$

$$\therefore \hat{\mathbf{x}} = \hat{\mathbf{x}}_{mc} + \hat{\mathbf{x}}_r$$

- $\circ$  Predicted interframe  $x_r$  is more compressible than the target x
- $\circ$  Therefore, the solution for residual  $\mathbf{x}_r$  can be obtained more accurately



# **Single-Frame Results(Perfect MVs)**

**BCS of Video** 

S. Mun

Motivation

Background

MC-BCS-SPL

# Football frame (352 $\times$ 240), quarter-pixel ME, S = 0.3





2D-BCS-SPL 24.02 dB 8s

MC-BCS-SPL 27.64 dB 20s



# **Motion Compensated BCS-SPL**

**BCS of Video** 

S. Mun

Motivation

Motivation

Background

MC-BCS-SPL Extension of Still-Image

MC-BCS-SPL Results

Conclusion

### MC-BCS-SPL Diagram



- For MVs, 2D SPL reconstruction is used as initial step
- Iteration on ME/MC helps to obtain more accurate MVs, resulting in better final reconstruction



# **Multiple-Frame Processing**

BCS of Video

S. Mun

Motivation

Background

MC-BCS-S Extension of Still-Image

MC-BCS-SPL Results

Conclusion

### Forward/Backward Processing



- Keyframes could have better quality than non-keyframes by sampling more
- Forward processing for first half of the GOP;
   backward processing for last half of the GOP



**BCS of Video** 

S. Mun

Motivation

....

MC-BCS-SPL

Extension of Still-Image

MC-BCS-SPI Results

Conclusion

- 1 Motivation
- 2 Background
  - CS Overview
    - BCS-SPL
- 3 Block Based CS Reconstruction of Video
  - Extension of Still-Image
  - MC-BCS-SPL
  - Results
  - 4 Conclusion



# **Multiple-Frame MC-BCS-SPL**

**BCS of Video** 

S. Mun

Motivation

Background

Ŭ

MC-BCS-SPL Extension of Still-Image

Still-Image MC-BCS-SPL Results

Conclusion

#### **Experiment Setup**

- Using DCT as sparsity basis for simplicity
- Subrate-distortion performance is observed
- Case 1: All frames are equally subsampled
- Case 2: Keyframes are sampled with higher subrate
  - Performance is measured over non-key frames only

#### **Compared algorithms**

- Frame-by-frame reconstruction: 2D-BCS-SPL
- 3D joint reconstruction: 3D-BCS-SPL



**BCS of Video** 

S. Mun

Motivation

Background

MC-BCS-SPL

Results





**BCS of Video** 

S. Mun

Motivation

Background

MC-BCS-SPL

Results





BCS of Video

S. Mun

Motivation

Background

MC-BCS-SPL Extension of Still-Image

Conclusion





**BCS of Video** 

S. Mun

Motivation

Background

MC-BCS-SPL

Results





# **Comparison with Other Video Technique**

**BCS of Video** 

S. Mun

Motivation

Background

MC-BCS-SPL Extension of Still-Image

Still-Image MC-BCS-SPL Results

Conclusio

#### Do et al, 2009, "Distributed Compressed Video Sensing"

- Proposed hybrid CS reconstruction of video using H.264 type intra coding together
- Find best linear combination of multiple best matching blocks from the two key frames nearby
- Similar residual reconstruction, but not iterative
- Full frame measurement

#### Setup

- GOP length: 4 frames
- Perfect Key frame, i.e.  $S_K = 1.0$



# **Comparison with Other Video Technique**

BCS of Video

S. Mun

Motivation

Background

MC-BCS-SPL

Results





# **Comparison with Other Video Technique**

**BCS** of Video

S. Mun

Motivation

Background

MC-BCS-SPL

Still-Image
MC-BCS-SPI

Conclusio





### **Conclusion**

BCS of Video

S. Mun

Motivation

Background

MC-BCS-SPL

Conclusion

#### **Motion Compensated BCS-SPL**

- Block based sensing ME/MC based reconstruction
- ME/MC in residual reconstruction helps pursue the sparsity along the sequences
- Enhancing MVs through iteration

#### **Matlab Source Code**

MC-BCS-SPL Version 1.0

http://www.ece.msstate.edu/~fowler/BCSSPL