Chapter 2 Transformations and Expectations

October 30, 2017

• Theorem 2.1.3 - Page 51

Let X have cdf $F_X(x)$, let Y = g(X), and let \mathcal{X} and \mathcal{Y} be defined as the support sets as in (2.17), then

- If g is an increasing function on \mathcal{X} then $F_Y(y) = F_X(g^{-1}(y))$ for $y \in \mathcal{Y}$
- If g is a decreasing function on \mathcal{X} and X is a continuous random variable then $F_Y(y) = 1 F_X(g^{-1}(y))$ for $y \in \mathcal{Y}$.

• Theorem 2.1.5 - Page 51

Let X have pdf $f_X(x)$ and let Y = g(X), where g is a monotone function. Let \mathcal{X} and \mathcal{Y} be defined by (2.1.7). Suppose that $f_X(x)$ is continuous on \mathcal{X} and that $g^{-1}(y)$ has a continuous derivative on \mathcal{Y} . Then the pdf of Y is given by

$$f_Y(y) = \begin{cases} f_X(g^{-1}(y)) \middle| \frac{d}{dy} g^{-1}(y) \middle| & \text{if } y \in \mathcal{Y} \\ 0 & \text{otherwise} \end{cases}$$

• Inverted gamma pdf - Example 2.1.6 - page 51

• Theorem 2.1.8 - page 53

Let X have pdf $f_X(x)$, let Y = g(X), and define the sample space \mathcal{X} as in (2.1.7). Suppose there exists a partition, $A_0, A_1, ..., A_k$ of \mathcal{X} such that $P(X \in A_0) = 0$ and $f_X(x)$ is continuous on each A_i . Further, suppose there exists functions $g_1(x), ..., g_k(x)$, defined on $A_1, ..., A_k$, respectively, satisfying:

- $-g(x)=g_i(x), \text{ for } x \in A_i$
- $-g_i(x)$ is monotone on A_i
- the set $\mathcal{Y} = \{y : y = g_i(x) \text{ for some } x \in A_i\}$
- $-g^{-1}(y)$ has a continuous derivative on \mathcal{Y} , for each $i=1,\ldots,k$

Then

$$f_Y(y) = \begin{cases} \sum_{i=1}^k f_X(g_i^{-1}(y)) \left| \frac{d}{dy} g_i^{-1}(y) \right| & \text{if } y \in \mathcal{Y} \\ 0 & \text{otherwise} \end{cases}$$

• Theorem 2.1.10 (Probability integral transformation) - page 54

Let X have continuous cdf $F_X(x)$ and define the random variable Y as $Y = F_X(x)$. Then Y is uniformly distributed on (0,1), that is, $P(Y \le y) = y$, where 0 < y < 1.

- Definition of Expected Value of a Random Variable page 55
- Cauchy mean page 56

• Theorem 2.2.5 - page 57

Let X be a random variable and let a, b, and c be constants. Then for any functions $g_1(x)$ and $g_2(x)$ whose expectations exist:

- a $E[ag_1(X) + bg_2(X) + c] = aE[g_1(X)] + bE[g_2(X)] + c$
- b If $g_1(x) \geq 0$ for all x, then $E[g_1(X)] \geq 0$
- c If $g_1(x) \geq g_2(x)$ for all x, then $E[g_1(X)] \geq E[g_2(X)]$
- d If $a \leq g_1(x) \leq b$ for all x, then $a \leq E[g_1(X)] \leq b$
- E[X] = b minimizes the distance $(X b)^2$ (univariate) page 58 Example 2.2.6
- Definition 2.3.1 (Moments) page 59
- Theorem 2.3.4 page 60

If X is a random variable with finite variance, then for any constants a and b,

$$Var(aX + b) = a^{2}Var(X)$$

• Definition 2.3.6 (Moment Generating Function) page 62

Let X be a random variable with cdf F_X . The mgf of X, denoted by $M_X(t)$, is

$$M_X(t) = E[e^{tX}]$$

 \bullet Theorem 2.3.7 - page 62

If X has mgf $M_X(t)$, then

$$E[X^n] = M_X^{(n)}(0) = \frac{d^n}{dt^n} M_X(t) \bigg|_{t=0}$$

That is, the nth moment is equal to the nth derivative of $M_X(t)$ evaluated at t=0.

• Theorem 2.3.11 - page 65

Let $F_X(x)$ and $F_Y(y)$ be two cdfs all of whose moments exist.

- a If X and Y have bounded support, then $F_X(u) = F_Y(u)$ for all u if and only if $E[X^r] = E[Y^r]$ for all integers r = 0, 1, 2, ...
- b If the moment generating functions exist and $M_X(t) = M_Y(t)$ for all t in some neighborhood of 0, then $F_X(u) = F_Y(u)$ for all u.
- Theorem 2.3.12 (Convergence of mgfs) page 66

Suppose X_i , i = 1, 2, ... is a sequence of random variables, each with mgf $M_X(t)$. Furthermore, suppose

$$\lim_{i \to \infty} M_{X_i}(t) = M_X(t)$$

for all t in a neighborhood of 0 and $M_X(t)$ is an mgf. Then there is a unique cdf F_X whose moments are determined by $M_X(t)$ and, for all x where $F_X(x)$ is continuous, we have

$$\lim_{i \to \infty} F_{X_i}(x) = F_X(x)$$

That is, convergence for |t| < h, of mgfs to an mgf implies convergence of cdfs.

• Theorem 2.3.15 - page 67

For any constants a and b, the mgf of the random variable aX + b is given by

$$M_{aX+b}(t) = e^{bt} M_X(at)$$

- Section 2.4 Differentiating Under an Integral Sign page 68
 - 1. Theorem 2.4.1 (Leibnitz's Rule) page 69
 - 2. Theorem 2.4.2 page 69: Limits under an integral.
 - 3. Theorem 2.4.3 page 70: Order of operations when evaluating a differentiation of an integral.
 - 4. Theorem 2.4.8 page 74: Differentiating under an infinite sum.
 - 5. Theorem 2.4.10 page 75: Integrating an infinite sum.