ALGEBRA LINEAL - Práctica N°5 - Segundo cuatrimestre de 2022 Determinantes

Ejercicio 1. Calcular el determinante de las siguientes matrices:

i)
$$\begin{pmatrix} -3 & 2 \\ 4 & 5 \end{pmatrix}$$
 ii) $\begin{pmatrix} 2 & -2 \\ -1 & 1 \end{pmatrix}$ iii) $\begin{pmatrix} 1 & 2 & 5 \\ -3 & 0 & -1 \\ 1 & -4 & -2 \end{pmatrix}$ iv) $\begin{pmatrix} 2 & -1 & 3 \\ -1 & 1 & -2 \\ 4 & -1 & 5 \end{pmatrix}$ v) $\begin{pmatrix} 2 & 3 & -2 & 5 \\ 4 & -5 & 0 & 6 \\ 2 & 0 & -1 & 7 \\ 6 & 3 & -4 & 8 \end{pmatrix}$ vi) $\begin{pmatrix} 5 & 4 & -2 & 5 \\ 2 & -3 & 0 & 6 \\ 0 & 0 & 2 & 0 \\ -4 & 3 & 3 & 8 \end{pmatrix}$

Ejercicio 2.

- i) Sea $A = (a_{ij})_{1 \le i,j \le n} \in K^{n \times n}$ una matriz triangular superior. Probar que $\det(A) = \prod_{i=1}^{n} a_{ii}$.
- ii) Calcular el determinante de la siguiente matriz $A \in K^{n \times n}$:

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & a_1 \\ 0 & 0 & \dots & a_2 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & a_{n-1} & \dots & 0 & 0 \\ a_n & 0 & \dots & 0 & 0 \end{pmatrix}.$$

Ejercicio 3.

- i) Si $A \in K^{n \times n}$, $B \in K^{m \times m}$ y $C \in K^{n \times m}$, sea $M \in K^{(n+m) \times (n+m)}$ la matriz por bloques $M = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$. Probar que $\det(M) = \det(A) \cdot \det(B)$.
- ii) Sean $r_1, r_2, \dots, r_n \in \mathbb{N}$ y sea $A_i \in K^{r_i \times r_i}$ para $1 \leq i \leq n$. Dada una matriz por bloques

$$M = \begin{pmatrix} A_1 & 0 & 0 & \dots & 0 \\ 0 & A_2 & 0 & \dots & 0 \\ 0 & 0 & A_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & A_n \end{pmatrix},$$

calcular $\det(M)$.

Ejercicio 4. Calcular los determinantes de las siguientes matrices:

$$\text{i)} \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ -1 & 0 & 3 & \dots & n \\ -1 & -2 & 0 & \dots & n \\ \vdots & \vdots & \vdots & & \vdots \\ -1 & -2 & -3 & \dots & 0 \end{pmatrix} \qquad \text{ii)} \begin{pmatrix} x & a & a & \dots & a \\ a & x & a & \dots & a \\ a & a & x & \dots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \dots & x \end{pmatrix} \qquad \text{iii)} \begin{pmatrix} 0 & 1 & 1 & \dots & 1 & 1 \\ 1 & 0 & x & \dots & x & x \\ 1 & x & 0 & \dots & x & x \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x & x & \dots & x & 0 \end{pmatrix}$$

Ejercicio 5. Calcular inductivamente el determinante de la siguiente matriz $A \in \mathbb{R}^{n \times n}$:

$$A = \begin{pmatrix} 2 & 1 & 0 & 0 & \dots & \dots & 0 \\ 1 & 2 & 1 & 0 & \dots & \dots & 0 \\ 0 & 1 & 2 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 2 & 1 & 0 \\ 0 & \dots & \dots & 0 & 1 & 2 & 1 \\ 0 & \dots & \dots & \dots & 0 & 1 & 2 \end{pmatrix}.$$

Ejercicio 6. Dada la matriz de Vandermonde

$$V(k_1, k_2, \dots, k_n) = \begin{pmatrix} 1 & 1 & \dots & 1 \\ k_1 & k_2 & \dots & k_n \\ k_1^2 & k_2^2 & \dots & k_n^2 \\ \vdots & \vdots & & \vdots \\ k_1^{n-1} & k_2^{n-1} & \dots & k_n^{n-1} \end{pmatrix},$$

probar que $\det(V(k_1, k_2, ..., k_n)) = \prod_{1 \le i < j \le n} (k_j - k_i).$

Sugerencia: Sin pérdida de generalidad se puede suponer que $k_i \neq k_j$ si $i \neq j$. Considerando el determinante de $V(k_1, k_2, \ldots, k_{n-1}, X)$ como un polinomio en X, probar que k_1, \ldots, k_{n-1} son sus raíces y factorizarlo.

Ejercicio 7. Calcular los siguientes determinantes:

i)
$$\begin{pmatrix} 1+a & 1+b & 1+c & 1+d \\ 1+a^2 & 1+b^2 & 1+c^2 & 1+d^2 \\ 1+a^3 & 1+b^3 & 1+c^3 & 1+d^3 \\ 1+a^4 & 1+b^4 & 1+c^4 & 1+d^4 \end{pmatrix}$$
 ii)
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ a^2 & b^2 & c^2 & d^2 \\ a^3 & b^3 & c^3 & d^3 \\ a^4 & b^4 & c^4 & d^4 \end{pmatrix}$$

Ejercicio 8. Sean $\alpha_1, \ldots, \alpha_n \in \mathbb{R} \setminus \{0\}$ distintos dos a dos. Probar que las funciones $e^{\alpha_1 x}, \ldots, e^{\alpha_n x}$ son linealmente independientes sobre \mathbb{R} . Deducir que $\mathbb{R}^{\mathbb{R}}$ no tiene dimensión finita.

Sugerencia: Derivar n-1 veces la función $\sum_{i=1}^{n} c_i e^{\alpha_i x}$.

Ejercicio 9. Sea $v_i = (v_{i1}, v_{i2}, \dots, v_{in}) \in \mathbb{R}^n$ para $1 \le i \le n-1$.

i) Probar que la función $\varphi: \mathbb{R}^n \to \mathbb{R}$ definida por

$$\varphi(x_1, x_2, \dots, x_n) = \det \begin{pmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ \vdots & \vdots & & \vdots \\ v_{n-11} & v_{n-12} & \dots & v_{n-1n} \\ x_1 & x_2 & \dots & x_n \end{pmatrix}$$

es una transformación lineal.

ii) Probar que si $\{v_1, \ldots, v_{n-1}\}$ es linealmente independiente, entonces $\langle v_1, \ldots, v_{n-1} \rangle^{\circ} = \langle \varphi \rangle$ (es decir, $\varphi(x_1, \ldots, x_n) = 0$ es una ecuación implícita para el subespacio $\langle v_1, \ldots, v_{n-1} \rangle$).

Ejercicio 10. Sea $A = (a_{ij})_{1 \le i,j \le 3} \in \mathbb{R}^{3 \times 3}$ una matriz tal que $A \cdot \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}$. Si $\det(A) = 3$, calcular el determinante de la matriz

$$\begin{pmatrix} a_{12} & a_{22} & a_{32} \\ 1 & 2 & 7 \\ a_{11} + 2a_{13} & a_{21} + 2a_{23} & a_{31} + 2a_{33} \end{pmatrix}.$$

Ejercicio 11. Dadas las matrices $A, B \in \mathbb{R}^{2\times 2}$ definidas por

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \quad \text{y} \quad B = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix},$$

probar que no existe una matriz $C \in GL(2,\mathbb{R})$ tal que $A \cdot C = C \cdot B$. ¿Y si no se pide que C sea inversible?

Ejercicio 12. Sea $A \in \mathbb{R}^{3\times 3}$ la matriz $A = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 2 & 3 \end{pmatrix}$ y sea $B = (b_{ij})_{1 \leq i,j \leq 3} \in \mathbb{R}^{3\times 3}$ una matriz tal que $\det(A+B) = \det(A-B)$. Probar que B es inversible si y sólo si $b_{11} \neq b_{21}$.

Ejercicio 13. Calcular el determinante, la adjunta y la inversa de cada una de las siguientes matrices:

i)
$$\begin{pmatrix} 2 & 3 \\ 5 & 1 \end{pmatrix}$$
 ii) $\begin{pmatrix} 2 & -3 & 3 \\ -5 & 4 & 0 \\ 0 & -2 & 2 \end{pmatrix}$ iii) $\begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix}$

Ejercicio 14.

i) Resolver los siguientes sistemas lineales sobre Q empleando la regla de Cramer:

a)
$$\begin{cases} 3x_1 - x_2 = -3, \\ x_1 + 7x_2 = 4. \end{cases}$$
 b)
$$\begin{cases} 3x_1 - 2x_2 + x_3 = 0, \\ -x_1 + x_2 + 2x_3 = 1, \\ 2x_1 + x_2 + 4x_3 = 2. \end{cases}$$

ii) Resolver el siguiente sistema lineal sobre Z₇ empleando la regla de Cramer:

$$\begin{cases} 3x + y + 2z &= 1, \\ x + z &= 6, \\ 2x + 2y + z &= 3. \end{cases}$$

Ejercicio 15. Sea $A \in \mathbb{Z}^{n \times n}$ tal que $\det(A) = \pm 1$. Probar que para todo $b = (b_1, \dots, b_n) \in \mathbb{Z}^n$, existe un único $x = (x_1, \dots, x_n) \in \mathbb{Z}^n$ tal que $A \cdot x = b$.

Ejercicio 16. Sea $A \in \mathbb{R}^{3\times 3}$ la matriz $A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$. Se sabe que

$$\det\begin{pmatrix} 1 & b & c \\ 2 & e & f \\ 5 & h & i \end{pmatrix} = 0, \quad \det\begin{pmatrix} a & 2 & c \\ d & 4 & f \\ g & 10 & i \end{pmatrix} = 0 \quad \text{y} \quad \det\begin{pmatrix} a & b & -1 \\ d & e & -2 \\ g & h & -5 \end{pmatrix} = 0.$$

Calcular det(A).

Ejercicio 17.

- i) Sea $A=(a_{ij})_{1\leq i,j\leq 3}\in K^{3\times 3}$ no inversible tal que $a_{11}a_{33}-a_{13}a_{31}\neq 0$. Determinar la dimensión de $S=\{x\in K^3:A\cdot x=0\}$.
- ii) Sea $A \in K^{n \times n}$ no inversible tal que $\operatorname{adj}(A) \neq 0$. Calcular $\operatorname{rg}(A)$ y $\operatorname{rg}(\operatorname{adj}(A))$.

Ejercicio 18. Sean $A, B, C, D \in K^{n \times n}$. Sea $M \in K^{2n \times 2n}$ la matriz de bloques

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$

Probar que si $A \in GL(n,K)$, $\det(M) = \det(A \cdot D - A \cdot C \cdot A^{-1} \cdot B)$. Si además $A \cdot C = C \cdot A$ entonces $\det(M) = \det(A \cdot D - C \cdot B)$.