CONFIDENTIAL: DO NOT RETURN TO STUDENT. SHRED TO DISPOSE.

Dear Professor Pierre-Olivier Parise,

Thank you for working with KOKUA to provide me with appropriate disability-related exam accommodations.

I am acknowledging that I understand the conditions stated below and will take the MATH 311 exam in accordance with these conditions.

NO book allowed, NO notes allowed, Calculator allowed - Scientific calculator

Lelle 2 =	4/2/24
Jones, Lillie (Lillie)	Date

KOKUA Proctor Notes:

The MATH 311 exam was administered on 4/8/2024 from 10:35 pm to 10:50 pm.

Return Method: Via email to parisepo@hawaii.edu.

General Definition

Let V be a set of objects called **vectors**. Assume

- 1. **Vector Addition:** Two vectors \mathbf{v} and \mathbf{w} can be added and denote this operation by $\mathbf{v} + \mathbf{w}$.
- 2. Scalar Multiplication: Any vector \mathbf{v} can be multiplied by any number (scalar) a and denote this operation by $a\mathbf{v}$.

The set V is called a **vector space** if

1. Axioms for the vector addition:

A1. Closed: $\mathbf{v}, \mathbf{w} \in V \Rightarrow \mathbf{v} + \mathbf{w} \in V$.

A2. Commutativity: $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$.

 $\boxed{\text{A3.}}$ Associativity: $\mathbf{v} + (\mathbf{w} + \mathbf{z}) = (\mathbf{v} + \mathbf{w}) + \mathbf{z}$.

A4. Existence of a zero vector: $\mathbf{v} + \mathbf{0} = \mathbf{v} = \mathbf{0} + \mathbf{v}$.

A5. Existence of a negative: For each \mathbf{v} , there is a \mathbf{w} such that $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v} = \mathbf{0}$.

2. Axioms for the scalar multiplication:

 $\boxed{\text{S1.}} \ \mathbf{v} \in V \Rightarrow a\mathbf{v} \in V.$

 $\boxed{S2.} \ a(\mathbf{v} + \mathbf{w}) = a\mathbf{v} + a\mathbf{w}.$

 $\boxed{\text{S3.}} (a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}.$

 $\boxed{\text{S4.}} \ a(b\mathbf{v}) = (ab)\mathbf{v}.$

 $\boxed{S5.}$ $1\mathbf{v} = \mathbf{v}.$

University of Hawai'i

Last name: _	Jores	· · · · · · · · · · · · · · · · · · ·	,	- 4,	
First name:	Lillie				

Question:	1	2	3	4	5	Total
Points:	20	10	10	5	5	50
Score:						*

Instructions:

- Write your complete name on your copy.
- Answer all 5 questions below.
- Write your answers directly on the questionnaire.
- Show ALL your work to have full credit.
- Draw a square around your final answer.
- Return your copy when you're done or at the end of the 50min period.
- No electronic devices allowed during the exam.
- Scientific calculator allowed only (no graphical calculators).
- Turn off your cellphone(s) during the exam.
- · Lecture notes and the textbook are not allowed during the exam.

Your Signature:

MAY THE FORCE BE WITH YOU! PIERRE

Let $A = \begin{bmatrix} 2 & -4 \\ -1 & -1 \end{bmatrix}$.

- (a) (5 Pts) Find the eigenvalues of the matrix A.
- (b) (10 Pts) Find the eigenvectors associated to each eigenvalue.
- (c) (5 Pts) Is A diagonalizable? If so, find the matrix P such that $P^{-1}AP$ is a diagonal matrix.

Aleci, X

Let $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}$ be vectors in a vector space V. Simplify the following expression:

$$2(x-y)+4(z-y)+4(w-z)+(x-4w).$$

 $2x-2y+4z-4y+4w-4z+x-4w.$

3(x-2y)

\sim		_
11	UESTION	٠,
w	CESTION	·

(10 pts)

Which of the following are subspaces of $\mathbf{M_{22}}$, the vector space of all 2×2 matrices with usual addition and scalar multiplication of matrices.

- (a) (5 Pts) $U = \{A \,:\, A \in \mathbf{M}_{\mathbf{22}} \text{ and } A = -A^{\mathsf{T}}\}.$
- (b) (5 Pts) $U = \{A : A \in \mathbf{M}_{22} \text{ and } A^2 = I\}.$

Answer the following questions:

(a) (3 Pts) Assume that A is an 3×3 matrix and that $c_A(x)$ is the characteristic polynomial of A. Show that

$$c_{A^2}(x^2) = (-1)c_A(x)c_A(-x).$$

[Hint: Use the following property of determinants: det(XY) = det(X) det(Y).]

(b) (2 Pts) What does the word "eigen" in "eigen-vectors" and "eigen-values" mean in English?

b) eigen means aun in german

 QUESTION 5 (5 pts)			
Answer the following questions with True or False . Write down you answers on the line at the end of each question. Justify briefly your answer in the space after the statement of the problem.			
(a) The set $U = \{p : p \in \mathbf{P_3} \text{ and } p(0) = 1\}$ is a subspace of $\mathbf{P_3}$.	(/	¹ 1
(b) If the solution to $A\mathbf{x}=\lambda\mathbf{x}$ is only $\mathbf{x}=0$, then λ is an eigenvalue.	. (/	[/] 1
(c) If a matrix A has $\lambda=0$ as an eigenvalue, then A is not invertible.	(/	[/] 1
(c) Tyve (d) If A is a 2×2 matrix with two distinct eigenvectors, then A is diagonalizable.	(/	′ 1

(e) If
$$A$$
 is a 2×2 matrix with eigenvalues $\lambda_1 = 1$ and $\lambda_2 = -1$, then $P^{-1}AP = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. (/ 1)