Analyse Complexe

cyrilschkrill

July 31, 2025

Part I Introduction à l'Analyse Complexe

1 Rappels sur les nombres complexes

Définition 1

Nombres complexes. Lois de Compositions.

Proposition 1

 $(\mathbb{C}, +, \times)$ est un corps

Corollaire 1

 $\mathbb{R} < \mathbb{C}$ est un sous-corps

Corollaire 2

 $\pm i$ sont les deux seules racines de -1

Remarque 1

 $\dim_{\mathbb{R}}\mathbb{C} = 2 \text{ tandis que } \dim_{\mathbb{C}}\mathbb{C} = 1$

Définition 2 Partie rélle et imaginaire. Relations avec le conjugué.

2 Géométrie et linéarité complexe

Proposition 2

• Homothétie de rapport $\rho \in \mathbb{R}$ et de centre 0

 $z\in\mathbb{C}\longmapsto\rho\cdot z$

• Rotation d'angle θ de centre 0

$$z \in \mathbb{C} \longmapsto z \cdot e^{i\theta}$$

• Réflexion par rapport à l'axes des abscisses

$$z\in\mathbb{C}\longmapsto\bar{z}$$

Définition 3 Similitudes

C'est la composée d'une homothétie de rapport scrictement positif et d'une rotation - toutes deux centrées en zéro.

Proposition 3

 $(\forall u \in \mathcal{L}_{\mathbb{R}}(\mathbb{C}))$

$$u: \mathbb{C}\text{-lin\'eaire}$$
 \longleftrightarrow $u(i)=i\cdot u(1)$ \longleftrightarrow $Mat_{(1,i)}u=\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ \longleftrightarrow $u=0\ XOR\ u\ est\ une\ similitude$

Lorsque $u \neq 0$,

u est \mathbb{C} -linéaire, si et seulement si, c'est une similitude.

Définition 4

Un endomorphisme (ie un morphisme de \mathbb{C} dans lui-même), est dit **conforme** s'il est bijectif, \mathbb{R} -linéaire, et préserve les angles.

Proposition 4

Soit $u \in \mathcal{L}_{\mathbb{R}}(\mathbb{C})$ $u \neq 0$

 $u: \mathbb{C}$ -linéaire $\iff u$ est conforme

3 Différentiabilité au sens complexe

Définition 5

 $\mathbb{C}\text{-}di\!f\!f\!\'erentiable\ ou\ d\'erivable$

Définition 6

 $f:\Omega\longrightarrow\mathbb{C}$ est \mathbb{R} -différentiable

Théorème 1

$$f: \mathbb{C}\text{-}d\acute{e}rivable\ en\ a$$

$$\iff$$

$$f: \mathbb{R}\text{-}diff\acute{e}rentiable\ en\ a\quad et\quad } \mathrm{D}f_a: \mathbb{C}\text{-}lin\acute{e}aire$$

4 Fonctions holomorphes

Définition 7

 $Ensembles\ des\ fonctions\ holomorphes$

Exemple 1

- La propriété d'holomorphie est conservée: par l'addition, la multiplication d'un scalaire complexe, ainsi que le produit de fonctions.
- \bullet L'ensemble des fonctions holomorphes est une sous-algèbre des fonctions continues.
- Les polynômes à coefficients complexes sont holomorphes
- Une fraction rationnelle complexe est holomorphe sur le complémentaire dans $\mathbb C$ de l'ensemble de ses pôles.
- La composée de fonctions est holomorphe, et suit la dérivation des fonctions composées.