W każdym z zadań od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba 2 log₃ 6 – log₃ 4 jest równa

A. 4

B. 2 C. 2 log₃ 2

 \mathbf{D} . $\log_3 8$

Zadanie 2. (0-1)

Liczba $\sqrt[3]{\frac{7}{3}} \cdot \sqrt[3]{\frac{81}{56}}$ jest równa

A. $\frac{\sqrt{3}}{2}$

B. $\frac{3}{2\sqrt[3]{21}}$ **C.** $\frac{3}{2}$

D. $\frac{9}{4}$

Zadanie 3. (0–1)

Dane są liczby $a = 3, 6 \cdot 10^{-12}$ oraz $b = 2, 4 \cdot 10^{-20}$. Wtedy iloraz $\frac{a}{b}$ jest równy

A. $8,64 \cdot 10^{-32}$ **B.** $1,5 \cdot 10^{-8}$ **C.** $1,5 \cdot 10^{8}$

D. $8.64 \cdot 10^{32}$

Zadanie 4. (0-1)

Cena roweru po obniżce o 15% była równa 850 zł. Przed obniżką ten rower kosztował

A. 865,00 zł

B. 850,15 zł

C. 1000,00 zł

D. 977,50 zł

Zadanie 5. (0-1)

Zbiorem wszystkich rozwiązań nierówności $\frac{1-2x}{2} > \frac{1}{3}$ jest przedział

A. $\left(-\infty, \frac{1}{6}\right)$ **B.** $\left(-\infty, \frac{2}{3}\right)$ **C.** $\left(\frac{1}{6}, +\infty\right)$ **D.** $\left(\frac{2}{3}, +\infty\right)$

Zadanie 6. (0–1)

Funkcja kwadratowa jest określona wzorem f(x) = -2(x+3)(x-5). Liczby x_1 , x_2 są różnymi miejscami zerowymi funkcji f. Zatem

A. $x_1 + x_2 = -8$ **B.** $x_1 + x_2 = -2$ **C.** $x_1 + x_2 = 2$ **D.** $x_1 + x_2 = 8$