PREVISÃO DA VELOCIDADE DO VENTO A CURTO PRAZO USANDO REDES NEURAIS ARTIFICIAIS EM MUCURI, BAHIA

Configuração

Realizando imports necessários.

In [1]:

```
import os
import math
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import tabulate
import tensorflow as tf
\begin{tabular}{ll} \textbf{from datetime import} & \textbf{datetime} \end{tabular}
from IPython.display import SVG, HTML, display
from keras import backend as K
from keras.callbacks import LambdaCallback, ModelCheckpoint
from keras.layers import Dense
from keras.models import Sequential
from keras.optimizers import SGD, Adam, RMSprop
from keras.utils import model to dot
from keras_lr_finder import LRFinder
from scipy.stats import pearsonr
from sklearn.metrics import r2_score
from sklearn.preprocessing import MinMaxScaler
```

Using TensorFlow backend.

Definição do modelo.

```
class MucuriModel:
    \label{eq:def_norm} \textbf{def} \ \_\_\texttt{init}\_\_(\texttt{self, lr}=0.01):
        self.model = None
        self.best_loss = 1e9
        self._build_model(lr)
    def build model(self, lr):
        if self.model is None:
            self.model = Sequential()
            self.model.add(Dense(9, input_shape=(9,)))
            self.model.add(Dense(9, activation="tanh"))
            self.model.add(Dense(6, activation="tanh"))
            self.model.add(Dense(1, activation="linear"))
            self.model.compile(
                 loss="mean_squared_error",
                 optimizer=RMSprop(lr=lr), #Adam(lr=0.1),
                 metrics=["mse", "mae"],
    def train(self, X, Y, X_test=None, Y_test=None, epochs=65, verbose=0):
        assert self.model is not None
        checkpoint callback = ModelCheckpoint(
            filepath="./weights.hdf5", save best only=True, monitor="mse"
        return self.model.fit(
            Χ,
            Υ,
            validation data=(X test, Y test)
            if X_test is not None and Y_test is not None
            else None,
            verbose=verbose,
            epochs=epochs,
            callbacks=[checkpoint callback],
    def predict(self, data):
        assert self.model is not None
        return self.model.predict(data)
```

Foi utilizada a configuração 5 para a construção desse modelo, conforme especificado no paper. A quantidade de épocas foi definida por padrão como 65, no entanto essa quantidade pode ser ajustada. A função de loss foi definida como a de mean squared error e as métricas MSE, MAE e r2 são usadas para a avaliação da performance. O otimizador Adam foi utilizado, configurado com o learning rate de 0.01.

In [3]:

```
models = {
    "one_hour": MucuriModel(lr=0.01),
    "three_hours": MucuriModel(lr=0.01),
    "six_hours": MucuriModel(lr=0.01),
    "twelve_hours": MucuriModel(lr=0.02),
}

SVG(model_to_dot(models["one_hour"].model, show_shapes=True, show_layer_names=False).create(prog='dot', format='s vg'))
```

Out[3]:

Leitura e normalização dos dados

Lendo o arquivo que contém os dados a serem analisados.

```
In [4]:
```

```
_file = pd.ExcelFile("./Mucuri_novo_semNaN_torre150m.xlsx")
df = _file.parse("Dados anemo")
```

Carregando os dados de treino e teste, ordenando as colunas da seguinte maneira:

```
pressão, umid, temp, dir_1, v_anemo2, hora, ano, mês, dia
```

As informações referentes às datas (i.e. ano, mês e dia) foram colocadas por último, já que a sua repetição na massa de dados dificulta a convergência do modelo.

In [5]:

```
train_data_1 = df[pd.to_datetime(df["Data"]) <= datetime(year=2015, month=12, day=22)]
train_data_2 = df[
    (pd.to_datetime(df["Data"]) == datetime(year=2015, month=12, day=23))
    & (df["hora"] <= 11)
]

X_train_data = pd.concat([train_data_1, train_data_2]).drop("Data", axis=1)

cols = X_train_data.columns.tolist()
cols = cols[::-1]

X_train_data = X_train_data[cols]</pre>
```

In [6]:

```
X_train_data["mês_cos"] = np.cos(2 * np.pi * X_train_data["mês"] / 12)
X_train_data["dia_cos"] = np.cos(2 * np.pi * X_train_data["dia"] / 31)
X_train_data["hora_cos"] = np.cos(2 * np.pi * X_train_data["hora"] / 24)

X_train_data.drop("dia", axis=1, inplace=True)
X_train_data.drop("hora", axis=1, inplace=True)
X_train_data.drop("mês", axis=1, inplace=True)

X_train_data["dia_cos"].plot()
plt.show()
X_train_data["hora_cos"].plot()
plt.show()
X_train_data["mês_cos"].plot()
plt.show()
X_train_data["mês_cos"].plot()
plt.show()
X_train_data["mâs_cos"].plot()
plt.show()
X_train_data
```


Out[6]:

	pressão	umid	temp	dir_1	v_anemo2	ano	mês_cos	dia_cos	hora_cos
0	1020.422601	72.930636	27.516129	75.105481	13.012139	2015	0.866025	0.979530	-8.660254e-01
1	1020.394348	75.212121	27.238095	68.334332	12.726087	2015	0.866025	0.979530	-7.071068e-01
2	1020.508333	75.741379	27.105263	64.457865	12.081111	2015	0.866025	0.979530	-5.000000e-01
3	1020.611000	75.302632	26.305556	53.842100	11.647222	2015	0.866025	0.979530	-2.588190e-01
4	1020.866500	76.592593	25.464286	53.945279	11.064444	2015	0.866025	0.979530	-1.836970e-16
					•••				
545	1015.316167	86.600000	22.637795	67.426924	2.912222	2015	1.000000	-0.050649	-2.588190e-01
546	1015.975667	82.110390	22.455696	84.999251	3.958333	2015	1.000000	-0.050649	-5.000000e-01
547	1016.323667	79.801205	22.602410	107.133454	5.216667	2015	1.000000	-0.050649	-7.071068e-01
548	1016.071500	80.907407	22.203252	110.979895	6.506667	2015	1.000000	-0.050649	-8.660254e-01
549	1014.882833	84.761111	22.024096	107.805201	7.690000	2015	1.000000	-0.050649	-9.659258e-01

550 rows × 9 columns

In [7]:

```
X_train = {
    "one_hour": None,
    "three_hours": None,
    "six_hours": None,
    "twelve_hours": None,
}
Y_train = {
    "one_hour": None,
    "three_hours": None,
    "six_hours": None,
    "six_hours": None,
    "twelve_hours": None,
}
```

In [8]:

```
test_data_1 = df[
    (pd.to_datetime(df["Data"]) == datetime(year=2015, month=12, day=23))
    & (df["hora"] >= 12)
]
test_data_2 = df[
    (pd.to_datetime(df["Data"]) >= datetime(year=2015, month=12, day=24))
    & (pd.to_datetime(df["Data"]) <= datetime(year=2015, month=12, day=30))
]
test_data_3 = df[
    (pd.to_datetime(df["Data"]) == datetime(year=2015, month=12, day=31))
    & (df["hora"] <= 13)
]

X_test_data = pd.concat([test_data_1, test_data_2, test_data_3])

X_test_data = X_test_data.drop("Data", axis=1)

cols = X_test_data.columns.tolist()
cols = cols[::-1]

X_test_data = X_test_data[cols]</pre>
```

In [9]:

```
X_test_data["mês_cos"] = np.cos(2 * np.pi * X_test_data["mês"] / 12)
X_test_data["dia_cos"] = np.cos(2 * np.pi * X_test_data["dia"] / 31)
X_test_data["hora_cos"] = np.cos(2 * np.pi * X_test_data["hora"] / 24)

X_test_data.drop("dia", axis=1, inplace=True)
X_test_data.drop("hora", axis=1, inplace=True)
X_test_data.drop("mês", axis=1, inplace=True)

X_test_data["dia_cos"].plot()
plt.show()
X_test_data["hora_cos"].plot()
plt.show()
X_test_data["mês_cos"].plot()
plt.show()
X_test_data["mês_cos"].plot()
plt.show()
X_test_data
```


Out[9]:

	pressão	umid	temp	dir_1	v_anemo2	ano	mês_cos	dia_cos	hora_cos
550	1014.845833	87.861111	21.516779	77.442821	12.242778	2015	1.0	-0.050649	-1.000000
551	1014.793333	73.338889	23.075269	73.171002	9.268333	2015	1.0	-0.050649	-0.965926
552	1014.085333	78.533333	22.545455	96.238878	8.734444	2015	1.0	-0.050649	-0.866025
553	1013.541500	83.722222	21.459770	110.156291	9.662222	2015	1.0	-0.050649	-0.707107
554	1013.563333	84.691275	22.133803	97.686662	8.620556	2015	1.0	-0.050649	-0.500000
739	1018.871167	90.612500	25.545455	88.967009	7.370556	2015	1.0	1.000000	-0.707107
740	1018.303667	91.142857	23.558442	89.474475	10.400556	2015	1.0	1.000000	-0.866025
741	1017.004667	90.567376	23.369863	89.119129	12.400556	2015	1.0	1.000000	-0.965926
742	1016.574167	88.645833	23.240741	85.945816	13.944444	2015	1.0	1.000000	-1.000000
743	1016.205167	87.005556	23.875000	82.373032	14.821111	2015	1.0	1.000000	-0.965926

194 rows × 9 columns

In [10]:

```
X_test = {
    "one_hour": None,
    "three_hours": None,
    "six_hours": None,
    "twelve_hours": None,
}
Y_test = {
    "one_hour": None,
    "three_hours": None,
    "six_hours": None,
    "six_hours": None,
    "twelve_hours": None,
}
```

Preparando dados para previsão em intervalos de uma hora.

In [11]:

```
X_train_one_hr = X_train_data.copy()

Y_train_one_hr = X_train_one_hr.v_anemo2.shift(-1)
Y_train_one_hr.drop(Y_train_one_hr.tail(1).index, inplace=True)
X_train_one_hr.drop(X_train_one_hr.tail(1).index, inplace=True)

X_train["one_hour"] = X_train_one_hr
Y_train["one_hour"] = Y_train_one_hr
```

In [12]:

```
X_test_one_hr = X_test_one_hr.v_anemo2.shift(-1)
Y_test_one_hr.drop(Y_test_one_hr.tail(1).index, inplace=True)
X_test_one_hr.drop(X_test_one_hr.tail(1).index, inplace=True)

X_test["one_hour"] = X_test_one_hr
Y_test["one_hour"] = Y_test_one_hr
```

Preparando dados para previsão em intervalos de três horas.

In [13]:

```
X_train_three_hr = X_train_data.copy()

Y_train_three_hr = X_train_three_hr.v_anemo2.shift(-3)

Y_train_three_hr.drop(Y_train_three_hr.tail(3).index, inplace=True)

X_train_three_hr.drop(X_train_three_hr.tail(3).index, inplace=True)

X_train["three_hours"] = X_train_three_hr

Y_train["three_hours"] = Y_train_three_hr
```

In [14]:

```
X_test_three_hr = X_test_data.copy()

Y_test_three_hr = X_test_three_hr.v_anemo2.shift(-3)
Y_test_three_hr.drop(Y_test_three_hr.tail(3).index, inplace=True)
X_test_three_hr.drop(X_test_three_hr.tail(3).index, inplace=True)

X_test["three_hours"] = X_test_three_hr
Y_test["three_hours"] = Y_test_three_hr
```

Preparando dados para previsão em intervalos de seis horas.

In [15]:

```
X_train_six_hr = X_train_data.copy()

Y_train_six_hr = X_train_six_hr.v_anemo2.shift(-6)

Y_train_six_hr.drop(Y_train_six_hr.tail(6).index, inplace=True)

X_train_six_hr.drop(X_train_six_hr.tail(6).index, inplace=True)

X_train["six_hours"] = X_train_six_hr

Y_train["six_hours"] = Y_train_six_hr
```

In [16]:

```
X_test_six_hr = X_test_data.copy()
Y_test_six_hr = X_test_six_hr.v_anemo2.shift(-6)
Y_test_six_hr.drop(Y_test_six_hr.tail(6).index, inplace=True)
X_test_six_hr.drop(X_test_six_hr.tail(6).index, inplace=True)

X_test["six_hours"] = X_test_six_hr
Y_test["six_hours"] = Y_test_six_hr
```

Preparando dados para previsão em intervalos de doze horas.

In [17]:

```
X_train_twelve_hr = X_train_data.copy()

Y_train_twelve_hr = X_train_twelve_hr.v_anemo2.shift(-12)

Y_train_twelve_hr.drop(Y_train_twelve_hr.tail(12).index, inplace=True)

X_train_twelve_hr.drop(X_train_twelve_hr.tail(12).index, inplace=True)

X_train["twelve_hours"] = X_train_twelve_hr

Y_train["twelve_hours"] = Y_train_twelve_hr
```

In [18]:

```
X_test_twelve_hr = X_test_data.copy()

Y_test_twelve_hr = X_test_twelve_hr.v_anemo2.shift(-12)
Y_test_twelve_hr.drop(Y_test_twelve_hr.tail(12).index, inplace=True)
X_test_twelve_hr.drop(X_test_twelve_hr.tail(12).index, inplace=True)

X_test["twelve_hours"] = X_test_twelve_hr
Y_test["twelve_hours"] = Y_test_twelve_hr
```

Realizando a normalização com minmax.

In [19]:

```
for key in X_train.keys():
    scaler = MinMaxScaler()
    X_train[key] = scaler.fit_transform(X_train[key].values)
    X_test[key] = scaler.fit_transform(X_test[key].values)
```

Treino

Realizando o processo de treino do modelo, incluindo dados de validação.

In [20]:

```
%capture

lr_finders = {
    "one_hour": None,
    "three_hours": None,
    "six_hours": None,
    "twelve_hours": None,
}

for key in lr_finders.keys():
    lr_finders[key] = LRFinder(models[key].model)
    lr_finders[key].find(X_train[key], Y_train[key], start_lr=0.0001, end_lr=20.0, epochs=300)
```

In [21]:

```
for key in lr_finders.keys():
    lr_finders[key].plot_loss()
    plt.title(f"Optimal Learning Rate Estimation - {key}")
    plt.show()
```



```
In [22]:
```

```
training_history = {
    "one_hour": None,
    "three_hours": None,
    "six hours": None,
    "twelve_hours": None,
}
verbose = 0
training history["one hour"] = models["one hour"].train(
   X_train["one_hour"], Y_train["one_hour"].values, X_test["one_hour"], Y_test["one_hour"].values,
   epochs=50, verbose=verbose
training_history["three_hours"] = models["three_hours"].train(
   X_train["three_hours"], Y_train["three_hours"].values, X_test["three_hours"], Y_test["three_hours"].values,
    epochs=100, verbose=verbose
training_history["six_hours"] = models["six_hours"].train(
   X_train["six_hours"], Y_train["six_hours"].values, X_test["six_hours"], Y_test["six_hours"].values,
    epochs=100, verbose=verbose
)
training history["twelve hours"] = models["twelve hours"].train(
   X train["twelve hours"], Y train["twelve hours"].values, X test["twelve hours"], Y test["twelve hours"].value
S,
   epochs=140, verbose=verbose
)
```

Avaliação

In [23]:

```
for key in training_history.keys():
    plt.plot(training_history[key].history["mse"])
    plt.plot(training_history[key].history["val_mse"])
    plt.title(f"Mean Squared Error - {key}")
    plt.ylabel("MSE")
    plt.xlabel("Epoch")
    plt.legend(["Train", "Validation"], loc="upper left")
    plt.show()
```


In [24]:

```
for key in training_history.keys():
   plt.plot(training_history[key].history["mae"])
   plt.plot(training_history[key].history["val_mae"])
   plt.title(f"Mean Absolute Error - {key}")
   plt.ylabel("MAE")
   plt.xlabel("Epoch")
   plt.legend(["Train", "Validation"], loc="upper left")
   plt.show()
```


In [25]:

```
for key in models.keys():
    predictions = [models[key].predict([[value]])[0][0] for value in X_train[key]]

    training_history[key].history["r_train"] = pearsonr(Y_train[key].values, predictions)
    training_history[key].history["r2_train"] = r2_score(Y_train[key].values, predictions)

plt.plot(predictions)
    plt.plot(Y_train[key].values)
    plt.title(f"Results (with Training Data) - {key}")
    plt.legend(["Prediction", "Expected"], loc="upper left")
    plt.show()
```


In [26]:

```
for key in models.keys():
    predictions = [models[key].predict([[value]])[0][0] for value in X_test[key]]

    training_history[key].history["r_test"] = pearsonr(Y_test[key].values, predictions)
    training_history[key].history["r2_test"] = r2_score(Y_test[key].values, predictions)

plt.plot(predictions)
    plt.plot(Y_test[key].values)
    plt.title(f"Results (with Test Data) - {key}")
    plt.legend(["Prediction", "Expected"], loc="upper left")
    plt.show()
```


In [34]:

```
table = [
     ["",],
     ["MSE training",],
     ["MSE validation",],
["MAE training",],
     ["MAE validation",],
     ["R training",],
     ["R test",],
     ["R2 training",],
     ["R2 test",],
for key in training_history.keys():
     table[0].append(key.upper())
     table[1].append(min(training_history[key].history['mse']))
table[2].append(min(training_history[key].history['val_mse']))
     table[3].append(min(training_history[key].history['mae']))
     table[4].append(min(training_history[key].history['val_mae']))
    table[5].append(training_history[key].history['r_train'][0])
table[6].append(training_history[key].history['r_test'][0])
table[7].append(training_history[key].history['r2_train'])
     table[8].append(training_history[key].history['r2_test'])
display(HTML(tabulate.tabulate(table, tablefmt="html", headers="firstrow")))
```

	ONE_HOUR	THREE_HOURS	SIX_HOURS	${\bf TWELVE_HOURS}$
MSE training	1.30741	2.49377	2.6675	3.18985
MSE validation	1.24375	2.12991	3.40777	5.89503
MAE training	0.885233	1.23072	1.24026	1.36796
MAE validation	0.878765	1.17989	1.54448	1.92687
R training	0.916688	0.803834	0.800636	0.778498
R test	0.911785	0.832431	0.683147	0.49366
R2 training	0.755382	0.58934	0.601747	0.600191
R2 test	0.829036	0.692227	0.429346	0.0459581