PROBABILITÉS CONDITIONNELLES E03C

EXERCICE N°1 Appréhender la définition et la propriété

Soient Ω un univers et A et B deux événements de probabilité non nulle. Dans chaque cas vérifier l'indépendance de A et B.

1)
$$P(A) = 0.3$$
, $P(B) = 0.2$ et $P(A \cap B) = 0.06$.
 $P(A) \times P(B) = 0.3 \times 0.2 = 0.06 = P(A \cap B)$
Ainsi A et B sont indépendants

2)
$$P_A(B) = 0.3$$
, $P(B) = 0.5$, $P(A \cap B) = 0.15$.
 $P_A(B) \neq P(B)$
Donc A et B ne sont pas indépendants

3)
$$P(A) = 0.2$$
 $P(B) = 0.6$ $P(A \cup B) = 0.68$.
• Commençons par déterminer $P(A \cap B)$.
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
donc
 $P(A \cap B) = P(A) + P(B) - P(A \cup B) = 0.2 + 0.6 - 0.68 = 0.12$.
• $P(A) \times P(B) = 0.2 \times 0.6 = 0.12 = P(A \cap B)$
Ainsi A et B sont indépendants

4)
$$P(\overline{A}) = 0.7$$
 $P(\overline{B}) = 0.8$ $P(A \cap B) = 0.06$.

• Commençons par déterminer $P(A)$ et $P(B)$.

• $P(\overline{A}) = 1 - P(A) \Leftrightarrow P(A) = 1 - P(\overline{A})$
donc $P(A) = 1 - 0.7 = 0.3$

• $P(\overline{B}) = 1 - P(B) \Leftrightarrow P(B) = 1 - P(\overline{B})$
donc $P(B) = 1 - 0.8 = 0.2$

• $P(A) \times P(B) = 0.3 \times 0.2 = 0.06 = P(A \cap B)$
Ainsi A et B sont indépendants