Assignment_1

August 21, 2024

```
[1]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
  from sklearn.model_selection import train_test_split
  from sklearn.linear_model import LinearRegression
  from sklearn.ensemble import RandomForestRegressor
  from sklearn.metrics import r2_score, mean_squared_error

# Load the dataset
  data = pd.read_csv("uber.csv")
  data
```

[1]:		Unnamed: 0		key	fare_amount \	
	0	24238194	2015-05-07	19:52:06.0000003	7.5	
	1	27835199		20:04:56.0000002	7.7	
	2	44984355		21:45:00.00000061	12.9	
	3	25894730		08:22:21.0000001	5.3	
	4	17610152	2014-08-28 1	7:47:00.000000188	16.0	
	•••	•••		•••	•••	
	199995	42598914	2012-10-28	10:49:00.00000053	3.0	
	199996	16382965	2014-03-14	01:09:00.0000008	7.5	
	199997	27804658	2009-06-29	00:42:00.00000078	30.9	
	199998	20259894	2015-05-20	14:56:25.0000004	14.5	
	199999	11951496	2010-05-15	04:08:00.00000076	14.1	
		pio	ckup_datetime	pickup_longitude	pickup_latitude	\
	0	2015-05-07	19:52:06 UTC	-73.999817	40.738354	
	1	2009-07-17	20:04:56 UTC	-73.994355	40.728225	
	2	2009-08-24	21:45:00 UTC	-74.005043	40.740770	
	3	2009-06-26	08:22:21 UTC	-73.976124	40.790844	
	4	2014-08-28	17:47:00 UTC	-73.925023	40.744085	
	•••		***	•••	•••	
	199995	2012-10-28	10:49:00 UTC	-73.987042	40.739367	
	199996	2014-03-14	01:09:00 UTC	-73.984722	40.736837	
	199997	2009-06-29	00:42:00 UTC	-73.986017	40.756487	
					, , , , , , , , , , , , , , , , , , , ,	

```
199998 2015-05-20 14:56:25 UTC
                                       -73.997124
                                                          40.725452
199999 2010-05-15 04:08:00 UTC
                                                          40.720077
                                       -73.984395
        dropoff_longitude dropoff_latitude passenger_count
0
               -73.999512
                                  40.723217
1
               -73.994710
                                  40.750325
                                                            1
2
               -73.962565
                                  40.772647
                                                            1
3
               -73.965316
                                  40.803349
                                                            3
4
                                                            5
               -73.973082
                                  40.761247
                                  40.740297
199995
               -73.986525
                                                            1
199996
               -74.006672
                                  40.739620
                                                            1
199997
               -73.858957
                                  40.692588
                                                            2
199998
               -73.983215
                                  40.695415
                                                            1
               -73.985508
                                  40.768793
199999
                                                            1
[200000 rows x 9 columns]
```

```
[2]: # 1. Pre-process the dataset
     # Remove unnecessary column
     data["pickup_datetime"] = pd.to_datetime(data["pickup_datetime"])
     missing_values = data.isnull().sum()
     print("Missing values in the dataset:")
     print(missing values)
     # Handle missing values
     # We can choose to drop rows with missing values or fill them with appropriate_
      ⇔values.
     data.dropna(inplace=True)
     # To fill missing values with the mean value of the column:
     # data.fillna(data.mean(), inplace=True)
     # Ensure there are no more missing values
     missing_values = data.isnull().sum()
     print("Missing values after handling:")
     print(missing_values)
     # 2. Identify outliers
     # visualization to detect outliers.
     sns.boxplot(x=data["fare_amount"])
     plt.show()
```

Missing values in the dataset:

```
Unnamed: 0 0 key 0 fare_amount 0 pickup_datetime 0 pickup_longitude 0 pickup_latitude dropoff_longitude 1 dropoff_latitude 1 passenger_count 0 dtype: int64
```

Missing values after handling:

Unnamed: 0 0 0 key fare_amount 0 pickup_datetime 0 pickup_longitude pickup_latitude 0 dropoff_longitude 0 dropoff_latitude 0 passenger_count 0


```
[3]: # Calculate the IQR for the 'fare_amount' column
Q1 = data["fare_amount"].quantile(0.25)
Q3 = data["fare_amount"].quantile(0.75)
```



```
[4]: data.plot(kind="box",subplots=True, layout=(7, 2), figsize=(15, 20))
```

dtype: object


```
[6]: # 4. Implement linear regression and random forest regression models
    # Split the data into features and target variable

¬'dropoff_latitude', 'passenger_count']]
    y = data['fare_amount'] #Target
    у
[6]: 0
             7.5
             7.7
    1
    2
            12.9
             5.3
    3
    4
            16.0
    199995
             3.0
    199996
             7.5
    199997
            30.9
    199998
            14.5
    199999
            14.1
    Name: fare_amount, Length: 199999, dtype: float64
```

```
[7]: # Split the data into training and testing sets
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,__
       →random_state=42)
 [8]: # Create and train the linear regression model
      lr_model = LinearRegression()
      lr_model.fit(X_train, y_train)
 [8]: LinearRegression()
 [9]: # Create and train the random forest regression model
      rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
      rf model.fit(X train, y train)
 [9]: RandomForestRegressor(random_state=42)
[10]: # 5. Evaluate the models
      # Predict the values
      y_pred_lr = lr_model.predict(X_test)
      y pred lr
      print("Linear Model:", y pred lr)
      y_pred_rf = rf_model.predict(X_test)
      print("Random Forest Model:", y_pred_rf)
     Linear Model: [11.29237916 11.29171388 11.5718662 ... 11.29183291 11.43252639
      11.29190248]
     Random Forest Model: [ 9.26
                                    5.043 12.577 ... 6.8057 11.264
[11]: # Calculate R-squared (R2) and Root Mean Squared Error (RMSE) for both models
      r2_lr = r2_score(y_test, y_pred_lr)
      rmse_lr = np.sqrt(mean_squared_error(y_test, y_pred_lr))
[12]: # Compare the scores
      print("Linear Regression - R2:", r2_lr)
      print("Linear Regression - RMSE:", rmse_lr)
     Linear Regression - R2: 0.00034152697863043535
     Linear Regression - RMSE: 10.197470623964248
[13]: r2_rf = r2_score(y_test, y_pred_rf)
      rmse_rf = np.sqrt(mean_squared_error(y_test, y_pred_rf))
      print("Random Forest Regression R2:", r2_rf)
      print("Random Forest Regression RMSE:",rmse_rf)
     Random Forest Regression R2: 0.701102567545169
```

Random Forest Regression RMSE: 5.576063738722296

[14]: # Overall Analysis

- # An R-squared (R2) value of approximately 0.701 and a Root Mean Squared Error \hookrightarrow (RMSE)
- # of the variance in the target variable and providing more accurate predictions compared to the linear regression model.

[]: