Lab 1 Content

- ➤ Install and run Proteus simulation software
 - O Instructions:
 - https://www.jianshu.com/p/21ad26e0d579
 - Download from jbox:
 https://jbox.sjtu.edu.cn/l/TnaRjS
- ➤ Master the basic I/O operations in 8086
- Address decoding: how to derive the I/O port number given the address decoding circuitry

Example Code

- The example code reads from the Device1 port
- > Invert the value
- ➤ Write the new value to Device2

Try running the code and change the switch status (Device1)

```
.MODEL SMALL
 .DATA
 .STACK 64
 .CODE
Device1 EQU 80h
Device2 EQU 88h
main proc far
Again: IN AL, Device 1
      NOT AL
      OUT Device2,AL
      JMP Again
main endp
END
      main
```


Address Data Bus Decoupling

Address Data Bus Decoupling

Even/Odd Bank Selection

- ➤ When is CE1 and CE0 effective?
 - CE1 == 0 needs
 BHE == 0 and M/IO
 == 1
 - CE0 == 0 needs
 Addr0 == 0 and
 M/IO == 1

I/O Address Decoding

➤ What addresses would generate the effective Device1 and Device2 signals?

I/O Address Decoding

- ➤ When Device1 is activated
 - \circ M/IO = 0, Addr7 = 1, Addr6 = 0, Addr5-3 = 000
 - Port number 80H meets this requirement, but
 Device1 has more aliases
 - o Linear selective decoding, 部分译码
- ➤ When Device2 is activated
 - \circ M/IO = 0, Addr7 = 1, Addr6 = 0, Addr5-3 = 001
 - O Port number 88H meets this requirement, but Device2 has more aliases

Input Port Design

➤ How does the CPU reads from the switch?

思考题

- ➤ How does the CPU reads from the switch?
 - o Through executing "IN AL, 80H" instruction
 - Device1 is active
 - The status of the switch is connected to the data bus D7-D0
 - CPU reads D7-D0 to AL
 - If the switch is ON (OFF), the corresponding bit is 0 (1)

Output Port Design

➤ How does the CPU control the LED light?

Output Port Design

- ➤ How does the CPU control the LED light?
 - o Through executing "OUT 88H, AL" instruction
 - Device2 is active
 - The value of AL is put on the data bus D7-D0
 - The latch (74LS273) records the values on D7-D0 and uses it to drive the eight LEDs
 - Value 0 turns the LED on, and value 1 turns the LED off
 - If the switch is ON (OFF), the corresponding bit is 0 (1)
 - Since we use the latch to store the 8-bit value, the status of LEDs do not change until a new value is written

Requirement for This Programming Lab

➤ Write an assembly program to control the LEDs with three lights (red, green, and yellow), which mimics the traffic light

nt for This Programming Lab

embly program to control the hree lights (red, green, and yellow),

The state of port 273

State	Meaning	The state of 273 D7D0
State 0	Both directions are red	××110110 36H
State 1	South-north green, east-west red	××110011 33H
State 2	South-north green blinks	South-north green blinks (on and off),
	then yellow, east-west red	east-west red:

Requirement II

- ➤ How should we change the I/O address decoding circuitry to
 - o Device1 corresponds to 90H
 - Device2 corresponds to A0H

