Spick Prüfung vom 5. Januar 2016

Patrick Günthard & Janes Thomas

4. Januar 2016

Inhaltsverzeichnis

1	Frei	er Fall	1
	1.1	Konstanten	1
	1.2	Formel	1
		1.2.1 Ohne Anfangsgeschwindigkeit	1
		1.2.2 Mit Anfangsgeschwindigkeit	1
	1.3	Beispiele	2
		1.3.1 Fallhöhe	2

1 Freier Fall

1.1 Konstanten

Durchschnittliche Anziehungskraft auf der Erde: $a=-g=-9.81\frac{m}{s^2}$

1.2 Formel

1.2.1 Ohne Anfangsgeschwindigkeit

$$\begin{array}{ll} \text{Geschwindigkeit}_{\,(\text{Zeit})} & v(t) = gt \\ & \text{H\"{o}he}_{\,(\text{Zeit})} & h(t) = \frac{g*t^2}{2} \\ & \text{Zeit}_{\,(\text{H\"{o}he})} & t(h) = \sqrt{\frac{2h}{g}} \end{array}$$

$$\text{Geschwindigkeit}_{\,(\text{H\"{o}he})} & v(h) = \sqrt{2gh} \end{array}$$

1.2.2 Mit Anfangsgeschwindigkeit

$$\label{eq:czeit} \mbox{H\"ohe}_{\mbox{(Zeit)}} \quad s(t) = \frac{1}{2}gt^2 + v_0t$$
 Geschwindigkeit $_{\mbox{(Zeit)}} \quad v(t) = v_0 - gt$

1.3 Beispiele

1.3.1 Fallhöhe

Geg: $t = 5s; v_0 = 0 \frac{m}{s}$

Ges: h(s)

Berechnung:

$$h(t) = |-\frac{1}{2}*9.81*t^2| \rightarrow h(5s) = |-\frac{1}{2}*9.81*25s| = 122.625m$$