Spearman's test: introduction

The Spearman's correlation coefficient is simply the Pearson's correlation between the ranks of the x_i 's and the y_i 's. Let $\mathbf{x}=x_1,...,x_n$ and $\mathbf{y}=y_1,...,y_n$ If $(r_1,...r_n)=rank(x_1,...,x_n)$ and $(s_1,...s_n)=rank(y_1,...,y_n)$, then the Spearman's correlation coefficient ρ_{xy} between \mathbf{x} and \mathbf{y} is defined as

$$\rho_{xy} = \frac{\sum_{i=1}^{n} (r_i - \bar{r})(s_i - \bar{s})}{\sqrt{\sum_{i=1}^{n} (r_i - \bar{r})^2 \sum_{i=1}^{n} (s_i - \bar{s})^2}}$$

with $\bar{r} = \bar{s} = (n+1)/2$. When there are no ties, this expression can be reduced to

$$\rho_{xy} = 1 - \frac{6\sum_{i=1}^{n} (r_i - s_i)^2}{n(n^2 - 1)}$$

The coefficient ρ_{xy} takes values within the interval [-1,1], -1 being perfect negative correlation and 1 being perfect positive correlation.

Spearman vs Pearson correlation

Asymptotic distribution

For large n, then we have that $\sqrt{n-1}\rho_{xy}\sim N(0,1)$. Moreover, we also have, for large n, that

$$\sqrt{n-2} \frac{\rho_{xy}}{\sqrt{1-\rho_{xy}^2}} \sim t_{n-2}$$

This is useful to set up an hypothesis test and compute asymptotic p-values associated with the test having null hypothesis $H_0: \rho_{xy}=0$ versus $H_1: \rho_{xy}\neq 0$ for the bilateral test.

Example 1

Example 1: Compute manually and in R the Spearman's correlation coefficient of the data shown in the below table.

n	x_i	y_i	r_i	s_i	$r_i - s_i$	$(r_i - s_i)^2$
1	273	288	3	3	0	0
2	285	284	7	2	-5	25
3	270	298	1	6	5	25
4	272	271	2	1	-1	1
5	278	307	5	9	4	16
6	276	301	4	8	4	16
7	291	299	9	7	-2	4
8	290	295	8	5	-3	9
9	279	293	6	4	-2	4
10	292	352	10	10	0	0

Example 2

In this example, the Spearman's correlation coefficient is equal to

$$\rho_{xy} = 1 - \frac{6\sum_{i=1}^{n} (r_i - s_i)^2}{n(n^2 - 1)} = 1 - \frac{6 * 100}{10(10^2 - 1)} = 1 - \frac{600}{990} \approx 0.394$$

Example 2: Create a program in R and Python that implements the Spearman's correlation coefficient. Then, for n=100 values for the x_i 's and the y_i 's, generated from $U_{[0,1]}$, use the large sample approximations to compute asymptotic p-values at level of significance $\alpha=5\%$ and compare the results with the output of $\operatorname{cor.test}(\mathbf{x},\mathbf{y}, \operatorname{method}=\operatorname{'spearman'}, \operatorname{conf.int}=0.95, \operatorname{alternative}=\operatorname{'two.sided'})$ in R and the equivalent inbuilt function in Python.

R code for example 2 (1/2)

```
1 # data
2 x <- c(273, 285, 270, 272, 278, 276, 291, 290, 279, 292)
3 y <- c(288, 284, 298, 271, 307, 301, 299, 295, 293, 352)
5 # Spearman's correlation coefficient
6 cor.test(x, y, method = 'spearman', conf.level = 0.95,
          alternative = 'two.sided')
9 # Spearman's rank correlation rho
10 #
11 # data: x and v
12 \# S = 100, p-value = 0.2629
13 # alternative hypothesis: true rho is not equal to 0
14 # sample estimates:
15 #
         rho
16 # 0.3939394
17
18 plot(x,y)
19
20
21 # function that computes the Spearman's correlation coefficient
22 spearman <- function(x, y) {
23 n <- length(x)
24 numerator \leftarrow sum((rank(x) - (n+1)/2)*(rank(y) - (n+1)/2))
26 return (numerator/denominator)
27 }
28
29 spearman(x = x, y = y)
30 # [1] 0.3939394
```

R code for example 2 (2/2)

```
1 # examples of p-value calculation using large-sample approximations
 2 set. seed (2021)
 3 n=100 : x=runif(n) : v=runif(n)
 4 cor.test(x, v, method = 'spearman', conf.level = 0.95.
            alternative = 'two.sided')
 6 #
7 # Spearman's rank correlation rho
9 # data: x and y
10 \# S = 160598, p-value = 0.7194
11 # alternative hypothesis: true rho is not equal to 0
12 # sample estimates:
13 #
          rho
14 # 0.03631563
15
16 # p-value with standard Normal approximation
17 2 \times pnorm(g = (sgrt(n-1) \times spearman(x = x, y = y)), mean = 0, sd = 1,
18
              lower.tail = FALSE)
19 # [1] 0.7178483
20
21 # p-value with Student's approximation
22 \cdot \text{pt}(q = (\text{sqrt}(n-2) * (\text{spearman}(x = x, y = y) / \text{sqrt}(1 - (\text{spearman}(x = x, y = y))))
       ))^2))),
          df = n-2.
23
         lower.tail = FALSE)
25 # [1] 0.7198129
```

Python code for example 2 (1/2)

```
1 import numpy as np
 2
 3 \times = (5273, 285, 270, 272, 278, 276, 291, 290, 279, 2921)
 4 \text{ v} = (5288, 284, 298, 271, 307, 301, 299, 295, 293, 3521)
 6 from scipy import stats
 7 stats.spearmanr(x.v)
9 from scipy.stats import rankdata
11 def spearman(x,y):
12
    n = len(x)
13
     numerator = np.sum((rankdata(x, method='min') - (n+1)/2)*(rankdata(y, method
       ='min') - (n+1)/2)
14
      denominator = (( np.sum( np.square(rankdata(x, method='min') - (n+1) / 2)
       )) *np.sum( np.square(rankdata(y, method='min') - (n+1)/2)) )**0.5
      return (numerator/denominator)
15
16
17 spearman(x,y)
```

Python code for example 2 (2/2)

```
1 # examples of p-value calculation using large-sample approximations
 2 np.random.seed(2023)
 3 n = 100
 4 x=np.random.uniform(0.1.n)
 5 y=np.random.uniform(0,1,n)
 6 stats.spearmanr(x,y, alternative='two-sided')
 8 # SignificanceResult(statistic=0.02077407740774, pvalue=0.8374540868726486)
10 from scipv.stats import norm
12 # p-value with standard Normal approximation
13 2*norm.sf(x=((n-1)**0.5 * spearman(x = x, y = y)), loc=0, scale=1)
14
15 # 0.8362445788532031
16
17 from scipy.stats import t
18
19 # p-value with student approximation
20 2*t.sf(x=((n-1)**0.5 * spearman(x = x, y = y)), df=n, loc=0, scale=1)
22 # 0.8366648646693274
```

References

Bagdonavičius V., Kruopis J., Nikulin M. S., Non-parametric Tests for Complete Data (2011), Wiley, ISBN 978-1-84821-269-5 (hardback)

The R Project for Statistical Computing: https://www.r-project.org/

Python: https://www.python.org/

course notes