PSALTer results panel

 $S = \iiint (\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} - 2r_{3} (\partial_{\beta}\mathcal{A}^{\ \theta}_{,\ \theta} \partial^{i}\mathcal{A}^{\alpha\beta}_{\alpha} + \partial_{i}\mathcal{A}^{\ \theta}_{\beta} \partial^{i}\mathcal{A}^{\alpha\beta}_{\alpha} + \partial_{\alpha}\mathcal{A}^{\alpha\beta}_{\beta} \partial_{\theta}\mathcal{A}^{\ \theta}_{\beta} - 2 \partial^{i}\mathcal{A}^{\alpha\beta}_{\alpha} \partial_{\theta}\mathcal{A}^{\ \theta}_{\beta} - 2 \partial^{i}\mathcal{A}^{\ \theta}_{\alpha} \partial_{\theta}\mathcal{A}^{\ \theta}_{\alpha} \partial_{\theta}\mathcal{A}^{\ \theta}_{\beta} - 2 \partial^{i}\mathcal{A}^{\ \theta}_{\alpha} \partial_{\theta}\mathcal{A}^{\ \theta}_{\alpha} - 2 \partial^{i}\mathcal{A}^{\ \theta}_$ $\frac{2}{3}r_{1}\left(3\,\partial_{\beta}\mathcal{A}_{i\ \theta}^{\ \theta}\,\partial^{i}\mathcal{A}_{\alpha}^{\alpha\beta}+3\,\partial_{i}\mathcal{A}_{\beta\ \theta}^{\ \theta}\,\partial^{i}\mathcal{A}_{\alpha}^{\alpha\beta}+3\,\partial_{\alpha}\mathcal{A}_{\alpha}^{\alpha\beta}\,\partial_{\theta}\mathcal{A}_{\beta\ i}^{\ \theta}-6\,\partial^{i}\mathcal{A}_{\alpha}^{\alpha\beta}\,\partial_{\theta}\mathcal{A}_{i\ \beta}^{\ \theta}-6\,\partial^{i}\mathcal{A}_{\alpha}^{\alpha\beta}\,\partial_{\theta}\mathcal{A}_{i\ \beta}^{\ \theta}-2\,\partial_{\beta}\mathcal{A}_{\alpha\beta}\,\partial^{\theta}\mathcal{A}_{\alpha\beta}^{\alpha\beta}+2\,\partial_{\beta}\mathcal{A}_{\alpha\beta}^{\alpha\beta}-\partial_{i}\mathcal{A}_{\alpha\beta}^{\alpha\beta}\,\partial^{\theta}\mathcal{A}_{\alpha\beta}^{\alpha\beta}+\partial_{\theta}\mathcal{A}_{$ $\frac{1}{6} t_{1} (2 \mathcal{R}^{\alpha_{i}}_{\alpha} \mathcal{R}^{\theta}_{i} - 4 \mathcal{R}^{\theta}_{\alpha} \partial_{i} f^{\alpha_{i}} + 4 \mathcal{R}^{\theta}_{i} \partial_{i} f^{\alpha_{i}}_{\alpha} - 2 \partial_{i} f^{\theta}_{i} \partial_{i} f^{\alpha_{i}}_{\alpha} - 2 \partial_{i} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}}_{\alpha} - 3 \partial_{\alpha} f_{\theta}_{i} \partial_{\theta} f^{\alpha_{i}}_{\alpha} + 3 \partial_{\theta} f_{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}}_{\alpha} + 3 \partial_{\theta} f_{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}}_{\alpha} + 3 \partial_{\theta} f^{\alpha_{i}}_{\alpha} - 2 \partial_{i} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}}_{\alpha} - 3 \partial_{\alpha} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}}_{\alpha} + 3 \partial_{\theta} f^{\alpha_{i}}_{\alpha} + 3 \partial_{\theta} f^{\alpha_{i}}_{\alpha} + 3 \partial_{\theta} f^{\alpha_{i}}_{\alpha} + 3 \partial_{\theta} f^{\alpha_{i}}_{\alpha} - 2 \partial_{i} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}}_{\alpha} - 2 \partial_{i} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}}_{\alpha} - 2 \partial_{i} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}}_{\alpha} - 3 \partial_{\alpha} f^{\alpha_{i}}_{\alpha} \partial_{\theta} f^{\alpha_{i}}_{\alpha} + 3 \partial_{\theta} f^{\alpha_{i}}_{\alpha} - 3 \partial_{\alpha} f^{\alpha_{i}}_{\alpha} \partial_{\theta} f$

Wave operator

Saturated propagator

0. ⁺ σ †	$\frac{1}{6 k^2 (-r_1 + r_1)}$	0	0	0											
0.+ τ∥ +	0	0	0	0											
$0.^{+}\tau^{\perp}$ †	0	0	0	0											
⁰ σ †	0	0	0	$-\frac{1}{t}$	$1.^+\sigma^{\parallel}_{\alpha\beta}$	$\overset{1,^{+}}{\cdot}\sigma^{\!\scriptscriptstyle\perp}{}_{\alpha\beta}$	$1.^+\tau^{\parallel}{}_{\alpha\beta}$	$\frac{1}{2}\sigma^{\parallel}_{\alpha}$	$^{1}\sigma^{\scriptscriptstyle \perp}{}_{lpha}$	$\frac{1}{2} \tau^{\parallel}_{\alpha}$	1. τ. α	_			
				$\overset{1^+}{\cdot}\sigma^{\parallel} + \overset{\alpha\beta}{\cdot}$		$-\frac{\sqrt{2}}{t_1^2+k^2}t_1$	$-\frac{i\sqrt{2}k}{t\cdot +k^2t\cdot 1}$	0	0	0	0				
						_	$\frac{-2ik^3(2r.+r.)+ikt.}{(1+k^2)^2t.^2\atop 1}$	0	0	0	0				
				$1.^+\tau^{\parallel}$ †	$\frac{i \sqrt{2} k}{t + k^2 t}$	$\frac{i(2k^{3}(2r.+r.)-kt.)}{(1+k^{2})^{2}t.^{2}}$	$\frac{-2 k^4 (2 r. + r.) + k^2 t.}{3 5 1}$ $\frac{(1+k^2)^2 t.^2}{1}$	0	0	0	0				
				$\frac{1}{2}\sigma^{\parallel} + \alpha$	0	0	0	$\frac{1}{k^2 (-r_1 + 2r_2 + r_5)}$	$\frac{1}{\sqrt{2} (k^2 + 2 k^4) (r2 rr.)}_{1 \ 3 \ 5}$	0	$\frac{i}{k(1+2k^2)(r2rr.)}_{1}$				
				$\frac{1}{2}\sigma^{\perp}\uparrow^{\alpha}$	0	0	0	$\frac{1}{\sqrt{2} (k^2 + 2 k^4) \binom{r_1 - 2 r_2 - r_2}{3 5}}$	$\frac{\frac{1}{r_1+2r_3+r_5}+\frac{6k^2}{t_1}}{2(k+2k^3)^2}$	0 -	$\frac{i (6 k^2 (r2 rr.)-t.)}{\sqrt{2} k (1+2 k^2)^2 (r2 rr.) t.}$				
				$1^{-}\tau^{\parallel}$ †	0	0	0	0	0	0	0				
				$1^{-}\tau^{\perp}\uparrow^{\alpha}$	0	0	0	$\frac{i}{k(1+2k^2)(-r.+2r.+r.)}$	$-\frac{i\left(6k^{2}\left(r2rr.\right)-t.\right)}{\sqrt{2}k\left(1+2k^{2}\right)^{2}\left(r2rr.\right)t.}$	0	$\frac{\frac{1}{r_1^{+2}r_3^{+}r_5^{+}}, \frac{6k^2}{r_1^{+}}}{(1+2k^2)^2}$	2. ⁺ σ αβ	$2^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$	
											$^{2.^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t.}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t}.$	0	
											$2.^{+}\tau^{\parallel}\uparrow^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t}$	$\frac{4 k^2}{(1+2 k^2)^2 t}$	0	
											$\dot{z} \sigma^{\parallel} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$	

Source constraints

Spin-parity form	Covariant form	Multiplicities
$0^{+}_{\cdot}\tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1
0^+ $\tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\ \alpha}$	1
$2ik \frac{1}{2}\sigma^{\perp}^{\alpha} + \frac{1}{2}\tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
$\frac{1}{2} \tau^{\parallel^{\alpha}} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$i k 1^+_{\cdot \sigma^{\perp}} \sigma^{\perp \alpha\beta} + 1^+_{\cdot \tau} \eta^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial_{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\chi} +$	3
$-2ik 2_{\cdot}^{+}\sigma^{\parallel^{\alpha\beta}} + 2_{\cdot}^{+}\tau^{\parallel^{\alpha\beta}} = 0$	$-i\left(4\partial_{\sigma}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\delta}+2\partial_{\sigma}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi}_{\chi}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\sigma}\partial^$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha} + 4ik^{\chi}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta}_{\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon} + 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\alpha\beta\delta} + 6ik^{\chi}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\alpha\beta\delta} + 6ik^{\chi}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\beta\alpha\delta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\tau(\Delta+\mathcal{K})^{\chi\delta} - 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau(\Delta+\mathcal{K})^{\chi}_{} - 4i\eta^{\alpha\beta}k^{\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\chi}\sigma^{\delta}_{\delta}) == 0$	
Total expected gauge of	nenerators [.]	16

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{r_{i}} > 0$		
Square mass:	$-\frac{\frac{t_{\cdot}}{1}}{2r_{\dot{1}}} > 0$		
Spin:	2		
Parity:	Odd		

Massless spectrum

Massless particle

Pole residue:	$\frac{7}{r2rr.}_{1\ 3\ 5}$ +	$\frac{\frac{-2t.p^2+4(r2rr.)p^4}{1$		
Polarisations:	2			

Unitarity conditions

 $r. \in \mathbb{R} \&\&r. < -2r. \&\&2r. + r. < r. < 0 \&\&t. > 0$