9.3.2 התכנסות בתנאי של טורים כלליים

הגדרות

טור מתכנס בתנאי

נאמר שהטור $\sum\limits_n |a_n|$ מתכנס בתנאי אם"ם הטור הטור בתנאי אם"ם מתכנס בתנאי אם מתכנס בתנאי אם בתנאי אם מתכנס הטור

נסמן $x\in\mathbb{R}$ בהינתן x^+,x^- נסמן.

$$\begin{cases} x^- = & \frac{|x| - x}{2} = \max\left\{-x, 0\right\} \ge 0 \\ x^+ = & \frac{|x| + x}{2} = \max\left\{x, 0\right\} \end{cases}$$

 $|x|=x^++x^-$ אזי מתקיים $x=x^+-x^-$ וגם

משפטים

1. פירוק להפרש אי־שליליים של טור מתכנס בתנאי

$$\sum_n a_n^+ = \infty \bigwedge \sum_n a_n^- = \infty$$
 אם מתכנס בתנאי, $\sum_n a_n$

הוכחה משום שהטור $\sum_n a_n$ מתכנס בתנאי, הטור $\sum_n |a_n| = \sum_n a_n^+ + \sum_n a_n^-$ מתכנס בתנאי, הטור $\sum_n a_n = \sum_n a_n^+ + \sum_n a_n^-$ מתכנס בתנאי, הטור ש $\sum_n a_n^- = \sum_n a_n^+ - \sum_n a_n^-$ מתכנס מתקיים הנדרש. $\sum_n a_n = \sum_n a_n^+ - \sum_n a_n^-$ מתכנס מתקיים הנדרש.

- . משפט רימן יהי $\sum_n a_n$ טור המתכנס בתנאי. אזי:
- λ א) אמתכנס המח $\sum_n a_n$ לכל שינוי סדר שינוי א קיים א לכל א
- $-\infty$ בי והשני ל ∞ ו מתבדר מתבדר בך בה הטור של הטור שינויי סדר של סוג) קיימים (לפחות אחד מכל סוג) שינויי
- (כלומר אין לו גבול ממשי, גם במובן הרחב המתבדר במובן הרחב המשי, גם במובן הרחב היים שינוי סדר של הטור $\sum_n a_n$

הוכחה לא תועבר, אך היא מסתמכת על משפט 1.