Tabelle Hash - Esercizi

Pietro Di Lena

DIPARTIMENTO DI INFORMATICA – SCIENZA E INGEGNERIA UNIVERSITÀ DI BOLOGNA

Algoritmi e Strutture di Dati Anno Accademico 2021/2022

■ Data una tabella hash T di dimensione m=11, inizialmente vuota, con gestione delle collisioni per indirizzamento aperto e ispezione lineare

 $h(k,i)=(h'(k)+i) \mod m \mod m'(k)=k \mod m$ mostrare lo stato della tabella dopo le seguenti operazioni in ordine:

- 1 INSERT(T, 50)
- 2 INSERT (T, 20)
- 3 INSERT(T, 10)
- 4 INSERT(T, 60)
- 5 INSERT(T, 40)
- 6 INSERT(T, 45)

Esercizio 1 - Soluzione

	0	1	2	3	4	5	6	7	8	9	10	
insert 50	/	/	/	/	/	/	50	/	/	/	/	h(50,0) = 6
	0	1	2	3	4	5	6	7	8	9	10	
insert 20	/	/	/	/	/	/	50	/	/	20	/	h(20,0) = 9
	0	1	2	3	4	5	6	7	8	9	10	
insert 10	/	/	/	/	/	/	50	/	/	20	10	h(10,0) = 10
	0	1	2	3	4	5	6	7	8	9	10	
insert 60	/	/	/	/	/	60	50	/	/	20	10	h(60,0) = 5
	0	1	2	3	4	5	6	7	8	9	10	
insert 40	/	/	/	/	/	60	50	40	/	20	10	h(40,0) = 7
	0	_1	2	3	4	5	6	7	8	9	10	
insert 45	/	45	/	/	/	60	50	40	/	20	10	h(45,0) = 1

■ Continuare con le seguenti operazioni (sulla Tabella Hash precedente, mostrata sotto):

- 1 INSERT(T, 85)
- 2 INSERT(T, 55)
- **3** DELETE(*T*, 40)
- 4 DELETE(*T*, 45)
- 5 INSERT(T, 15)

0	1	2	3	4	5	6	7	8	9	10
/	45	/	/	/	60	50	40	/	20	10

Esercizio 2 - Soluzione

	0	1	2	3	4	5	6	7	8	9	10	
insert 85	/	45	/	/	/	60	50	40	85	20	10	h(85,0) = 8
	0	1	2	3	4	5	6	7	8	9	10	
insert 55	55	45	/	/	/	60	50	40	85	20	10	h(55,0) = 0
	0	1	2	3	4	5	6	7	8	9	10	
delete 40	55	45	/	/	/	60	50	D	85	20	10	h(40,0) = 7
	0	1	2	3	4	5	6	7	8	9	10	
delete 45	55	D	/	/	/	60	50	D	85	20	10	h(45,0) = 1
	0	1	2	3	4	5	6	7	8	9	10	
insert 15	55	D	/	/	15	60	50	D	85	20	10	h(15,0) = 4

- Continuare con le seguenti operazioni (sulla Tabella Hash precedente, mostrata sotto):
 - 1 INSERT(T, 83)
 - 2 DELETE(*T*, 55)
 - 3 INSERT(T, 90)
 - 4 DELETE(T, 60)

0	1	2	3	4	5	6	7	8	9	10
55	D	/	/	15	60	50	D	85	20	10

Esercizio 3 - Soluzione

	0	1	2	3	4	5	6	7	8	9	10		
insert 83	55	D	/	/	15	60	50	83	85	20	10	h(83,1) = 7	h'(83) = 6
	0	1	2	3	4	5	6	7	8	9	10		
delete 55	D	D	/	/	15	60	50	83	85	20	10	h(55,0) = 0	
	0	1	2	3	4	5	6	7	8	9	10	_	
insert 90	D	D	90	/	15	60	50	83	85	20	10	h(90,0) = 2	
	0	1	2	3	4	5	6	7	8	9	10		
delete 60	D	D	90	/	15	D	50	83	85	20	10	h(60,0) = 5	

■ Continuare con le seguenti operazioni (sulla Tabella Hash precedente, mostrata sotto):

- 1 INSERT(T,5)
- 2 INSERT (T, 13)
- 3 INSERT(T, 17)
- 4 DELETE(*T*, 90)
- **5** DELETE(*T*, 13)
- **6** DELETE(*T*, 50)
- 7 DELETE(T, 17)

				4						
D	D	90	/	15	D	50	83	85	20	10

Esercizio 4 - Soluzione

	0	1	2	3	4	5	6	7	8	9	10	_	
insert 5	D	D	90	/	15	5	50	83	85	20	10	h(5,0) = 5	
	0	1	2	3	4	5	6	7	8	9	10		
insert 13	D	D	90	13	15	5	50	83	85	20	10	h(13,1) = 3	h'(13) = 2
	0	1	2	3	4	5	6	7	8	9	10		
insert 17	17	D	90	13	15	5	50	83	85	20	10	h(17,5) = 0	h'(17) = 6
	0	1	2	3	4	5	6	7	8	9	10		
delete 90	17	ם	D	13	15	5	50	83	85	20	10	h(90,0) = 2	
	0	1	2	3	4	5	6	7	8	9	10		
delete 13	17	D	D	D	15	5	50	83	85	20	10	h(13,1) = 3	h'(13) = 2
	0	1	2	3	4	5	6	7	8	9	10		
delete 50	17	D	D	D	15	5	D	83	85	20	10	h(50,0) = 6	
	0	1	2	3	4	5	6	7	8	9	10		
delete 17	D	D	D	D	15	5	D	83	85	20	10	h(17,5) = 0	h'(17) = 6

■ Data una tabella hash T di dimensione m=10, inizialmente vuota, con gestione delle collisioni per concatenamento e funzione hash basata sul metodo della moltiplicazione

$$h(k) = \lfloor m(kC - \lfloor kC \rfloor) \rfloor \text{ con } C = 0.25$$

mostrare lo stato della tabella dopo le seguenti operazioni in ordine:

- 1 INSERT(T, 50)
- 2 INSERT (T, 20)
- 3 INSERT (T, 10)
- 4 INSERT(T, 60)
- 5 INSERT(T, 40)
- **6** INSERT(*T*, 45)

Esercizio 5 - Soluzione

- Continuare con le seguenti operazioni (sulla Tabella Hash precedente, mostrata sotto):
 - 1 INSERT(T, 85)
 - 2 INSERT(T, 55)
 - 3 DELETE(T, 40)
 - **4** DELETE(*T*, **45**)
 - 5 INSERT(T, 15)

Esercizio 6 - Soluzione

- Continuare con le seguenti operazioni (sulla Tabella Hash precedente, mostrata sotto):
 - 1 INSERT(T, 83)
 - 2 DELETE(T, 55)
 - 3 INSERT(T, 90)
 - **4** DELETE(*T*, 60)

Esercizio 7 - Soluzione

- Continuare con le seguenti operazioni (sulla Tabella Hash precedente, mostrata sotto):
 - 1 INSERT(T,5)
 - 2 INSERT(T, 13)
 - 3 INSERT(T, 17)
 - Φ DELETE(T, 90)
 - $\mathbf{5}$ DELETE(T, 13)
 - 6 DELETE(T, 50)
 - 7 DELETE(T, 17)

Esercizio 8 - Soluzione

