Seite Nr. 5)

Gegeben ist die Kurvenschar $f_a(x)=rac{1}{2}x^4-ax^2$ (a>0).

Diskutieren Sie die Kurvenschar allgemein.

Nullstellen der Funktion:

$$0 = \int_a(x)$$
 $0 = \frac{1}{2}x^4 - ax^2$
 $0 = x^2\left(\frac{1}{2}x^2 - a\right)$
 $0 = \frac{1}{2}x^2 - a$ | $+a$
 $a = \frac{1}{2}x^2$ | $\cdot 2$
 $2a = x^2$ | $\sqrt{}$
 $x_{1;2} = \mp \sqrt{2}a$

Daraus ergibt sich für alle a>0 folgendes:

- $N_1(-\sqrt{2a} \mid 0)$
- $N_2(0 \mid 0)$
- $N_3(0 \mid 0)$
- $N_4(\sqrt{2a} \mid 0)$

Notwendiges Kriterium für lokale Extrema: $f'_a(x) = 0$

$$egin{aligned} 0 &= f_a'(x) \ 0 &= 2x^3 - 2ax \ 0 &= x(2x^2 - 2a) \ 0 &= 2x^2 - 2a & | +2a \ 2a &= 2x^2 & | \div 2 \ a &= x^2 & | \sqrt{x_{1;3}} &= \mp \sqrt{a} \end{aligned}$$

• $x_1 = -\sqrt{a}$

• $x_2 = 0$

• $x_3 = \sqrt{a}$

Erstes hinrichteichendes Kriterium für lokale Extrema: $f_a''(x) \neq 0$

$$f_a''(x) = 6x^2 - 2a$$
 $f_a''(-\sqrt{a}) = 6(-\sqrt{a})^2 - 2a$
 $= 6a - 2a$
 $= 4a > 0$
 $f_a''(x) = 6x^2 - 2a$
 $f_a''(0) = 6(0)^2 - 2a$
 $= -2a < 0$
 $f_a''(\sqrt{a}) = 6(\sqrt{a})^2 - 2a$
 $= 6a - 2a$
 $= 4a > 0$

Daraus ergibt sich für alle a>0 folgendes:

• Hochpunkt: $E_2(0\mid 0)$

• Tiefpunkt: $E_1(-\sqrt{a}\mid -rac{1}{2}a^2)$ • Tiefpunkt: $E_3(\sqrt{a}\mid -\frac{1}{2}a^2)$

Notwendiges Kriterium Wendestellen: $f_a''(x) = 0$

$$egin{aligned} 0 &= f_a''(x) \ 0 &= 6x^2 - 2a \mid +2a \ 2a &= 6x^2 & \mid \div 6 \ rac{a}{3} &= x^2 & \mid \sqrt{} \ x_{1;2} &= \mp \sqrt{rac{a}{3}} \end{aligned}$$

Erstes hinrichte
ichendes Kriterium für Wendestellen: $f_a'''(x) \neq 0$

$$f_a'''(x)=12x \ f_a''\left(-\sqrt{rac{a}{3}}
ight)=12\left(-\sqrt{rac{a}{3}}
ight) \ =-12\sqrt{rac{a}{3}}<0$$

$$f_a''\left(\sqrt{rac{a}{3}}
ight)=12\left(\sqrt{rac{a}{3}}
ight)
onumber \ =12\sqrt{rac{a}{3}}>0$$

Daraus ergibt sich für alle a>0 folgendes:

- Links-Rechts WP: $W_1\left(-\sqrt{rac{a}{3}}\mid-rac{5a^2}{18}
 ight)$ Rechts-Links WP: $W_2\left(\sqrt{rac{a}{3}}\mid-rac{5a^2}{18}
 ight)$

• Streng monoton steigend in: $x \in \left\{ \quad \left] - \sqrt{a}; 0 \left[\right. ; \quad \right] \sqrt{a}; \infty \left[\right. \right\} \right\}$

• Streng monoton fallend in: $x \in \left\{ \left[-\infty; -\sqrt{a} \left[\ ; \ \right] 0; \sqrt{a} \left[\ \right] \right\} \right\}$

Verhalten im unendlichen.

Durch den $\frac{1}{2}x^4$ als Polynom größten Grades ergibt sich für das Grenzverhalten:

$$ullet \ \lim_{x o\infty}f_a(x)=\infty$$

$$ullet \ \lim_{x o -\infty} f_a(x) = \infty$$

b)

Ortskurve Extrempunkte:

Von oben sind die Extrema bei

•
$$x_1 = -\sqrt{a}$$

•
$$x_2 = 0$$

•
$$x_3 = \sqrt{a}$$

Umgestellt ergibt sich daraus:

•
$$a = x_1^2$$

•
$$0 = x_2$$

•
$$a = x_3^2$$

Die Ortskurve lautet daher:

$$o(x) = rac{1}{2}x^4 - x^2 \cdot x^2 \ = -rac{1}{2}x^4$$

Ortskurve der Wendepunkte:

Von oben sind die Wendepunkte bei:

$$egin{array}{ll} oldsymbol{\cdot} & x_1 = -\sqrt{rac{a}{3}} \ oldsymbol{\cdot} & x_2 = \sqrt{rac{a}{3}} \end{array}$$

•
$$x_2 = \sqrt{\frac{a}{3}}$$

Umgestellt ergibt sich daraus:

•
$$a = 3x_1^2$$

•
$$a=3x_2^2$$

Die Ortskurve lautet daher:

$$o(x) = rac{1}{2}x^4 - 3x^2 \cdot x^2 \ = -rac{5}{2}x^4$$