

Course Title: Electromagnetic Fields
Date: Jan, 2013 (First term)

Course Code: COM 9213
Allowed time: (3) hrs

Year: 2rd
No. of Pages: (1)

Remarks: (Answer the following questions, assuming any missing data)

Problem number (1) (20 Marks)

- a- A uniform line charge of $\rho_l = 2\pi \text{ nC/m}$ lies along the y axis, while uniform surface charge densities of + 0.1 and - 0.1 nC/m² exist on the planes z = 3 m and z = - 4 m, respectively. Find E at the point P(1,-7,2). At which point is E the negative of the field at P?
 b- Let $E = 5x^3 a_x - 15x^2 y a_y$, find the equation of the streamline that passes through P(4,2,1).

Problem number (2) (20 Marks)

Within the spherical shell, $3 < r < 4 \text{ m}$, the electric flux density is given as $D = 5(r-3)^3 a_r \text{ C/m}^2$.

- (a) What is the volume charge density at $r = 4 \text{ m}$?
- (b) What is the electric flux density at $r=4 \text{ m}$?
- (c) How much electric flux leaves the sphere $r=4 \text{ m}$?
- (d) How much charge is contained within the sphere $r=4 \text{ m}$?

Problem number (3) (15 Marks)

A spherical region of space of radius R contains a charge Q that is distributed uniformly with constant volume charge density $\rho \text{ C/m}^3$.

- (a) Determine the stored electrostatic energy.
- (b) Compare it to the energy of two point charges Q that are separated by a distance R.

Problem number (4) (15 Marks)

A dipole with moment $P = 0.1 a_z \mu\text{C.m}$ is located at A (1,0,0) in free space and the plane $x = 0$ is perfectly conducting. Find the potential at the point p (2,0,1).

Problem number (5) (15 Marks)

Find the capacitance and electric field intensity for the region between two concentric right circular cylinders, where $V = 0$ at $\rho = 1 \text{ mm}$ and $V = 150 \text{ V}$ at $\rho = 20 \text{ mm}$.

Problem number (6) (15 Marks)

- a- Write Maxwell equations fields in its integral form.
- b- The point charge $Q = 18 \text{ nC}$ has a velocity of $5 \times 10^6 \text{ m/s}$ in the direction $0.04 a_x - 0.05 a_y + 0.2 a_z$. Calculate the magnitude of the force exerted on the charge by the field:
 - (a) $B = -3 a_x + 4 a_y + 6 a_z \text{ mT}$.
 - (b) $E = -3 a_x + 4 a_y + 6 a_z \text{ KV/m}$.
 - (c) B and E acting together.

والله الموفق والمستعان

Course Examination Committee

Assoc. Prof. Maher Abdelrazzak

Course Coordinator: Assoc. Prof. Maher Abdelrazzak