SAMB for "C3v1"

Generated on 2023-06-18 16:57 by MultiPie $1.1.10\,$

- Generation condition

 - time-reversal type: electric
 - irrep: [A1]
 - spinful
- Unit cell:

$$a=1.0,\ b=1.0,\ c=1.0,\ \alpha=90.0,\ \beta=90.0,\ \gamma=120.0$$

• Lattice vectors:

$$\boldsymbol{a}_1 = \begin{pmatrix} 1.0 & 0 & 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -0.5 & 0.86602540378444 & 0 \end{pmatrix}$$

$$\mathbf{a}_3 = \begin{pmatrix} 0 & 0 & 1.0 \end{pmatrix}$$

Table 1: High-symmetry line: Γ -X.

symbol	position	symbol	position
Γ	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	X	$\begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$

• Kets: dimension = 8

Table 2: Hilbert space for full matrix.

No.	ket	No.	ket	No.	ket	No.	ket	No.	ket
 1	(p_x,\uparrow) @A ₁	2	(p_x,\downarrow) @A ₁	3	(p_y,\uparrow) @A ₁	4	(p_y,\downarrow) @A ₁	5	(p_x,\uparrow) @B ₁
6	(p_x,\downarrow) @B ₁	7	(p_y,\uparrow) @B ₁	8	(p_y,\downarrow) @B ₁				

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	position	mapping
S ₁ [1b: 3m.]	A_1	$\begin{pmatrix} \frac{1}{3} & \frac{2}{3} & 0 \end{pmatrix}$	[1,2,3,4,5,6]
S ₂ [1c: 3m.]	B_1	$\begin{pmatrix} \frac{2}{3} & \frac{1}{3} & 0 \end{pmatrix}$	[1,2,3,4,5,6]

• Bonds in (primitive) unit cell:

Table 4: Bond-clusters.

	bond	tail	head	n	#	b@c	mapping
B ₁ [3d: .m.]	b_1	B_1	A_1	1	1	$\left(\begin{array}{ccc} \frac{1}{3} & \frac{2}{3} & 0 \end{array}\right) @ \left(\begin{array}{ccc} \frac{1}{2} & 0 & 0 \end{array}\right)$	[1,4]
	b_2	B_1	A_1	1	1	$\left(\begin{array}{ccc} -\frac{2}{3} & -\frac{1}{3} & 0 \end{array} \right) @ \left(0 & \frac{1}{2} & 0 \right)$	[2,6]
	b_3	B_1	A_1	1	1	$ \left(\begin{array}{cccc} \frac{1}{3} & -\frac{1}{3} & 0 \end{array} \right) @ \left(\begin{array}{cccc} \frac{1}{2} & \frac{1}{2} & 0 \end{array} \right) $	[3,5]

• SAMB:

$$\begin{split} & \begin{bmatrix} \text{No. 1} \end{bmatrix} \ \hat{\mathbb{Q}}_0^{(A_1)} \ [M_1, S_1] \\ \\ & \hat{\mathbb{Z}}_1 = \mathbb{X}_1[\mathbb{Q}_0^{(a, A_1)}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s, A_1)}] \end{split}$$

$$\hat{\mathbb{Z}}_1(\mathbf{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 2
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,1)$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_2 = \mathbb{X}_2[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_2(\mathbf{k}) = \mathbb{X}_2[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 3
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_3 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_3(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_2[\mathbb{Q}_0^{(s,A_1)}]$$

No. 4
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,1)$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_4 = \mathbb{X}_2[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_4(\mathbf{k}) = \mathbb{X}_2[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{U}_2[\mathbb{Q}_0^{(s,A_1)}]$$

No. 5
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_5 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_3[\mathbb{Q}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{5}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{4}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{0}^{(k,A_{1})}]}{2}$$

No. 6
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_6 = \mathbb{X}_2[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{Y}_3[\mathbb{Q}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{6}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{4}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{4}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{4}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{4}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{0}^{(u,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{4}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{0}^{(u,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{4}[\mathbb{T}_{0}^{(u,A_{1})}]}{2} \otimes \mathbb{F}_{4}[\mathbb{T}_{0}^{(u,A_{1})}]}$$

No. 7
$$\hat{\mathbb{Q}}_3^{(A_1,2)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_7 = -\frac{\sqrt{2}\mathbb{X}_3[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{Y}_4[\mathbb{Q}_{1,0}^{(b,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_4[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{Y}_5[\mathbb{Q}_{1,1}^{(b,E)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{7}(\boldsymbol{k}) &= -\frac{\mathbb{X}_{3}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{2} + \frac{\mathbb{X}_{3}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{4}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,0}^{(k,E)}]}{2} \\ &- \frac{\mathbb{X}_{4}[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{2} + \frac{\mathbb{X}_{4}[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{U}_{4}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,1}^{(k,E)}]}{2} \end{split}$$

No. 8
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_8 = \frac{\sqrt{2}\mathbb{X}_5[\mathbb{Q}_{2,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{Y}_4[\mathbb{Q}_{1,0}^{(b,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_6[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{Y}_5[\mathbb{Q}_{1,1}^{(b,E)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_8(\textbf{\textit{k}}) &= \frac{\mathbb{X}_5[\mathbb{Q}_{2,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_0^{(u,A_1)}] \otimes \mathbb{F}_2[\mathbb{Q}_{1,0}^{(k,E)}]}{2} - \frac{\mathbb{X}_5[\mathbb{Q}_{2,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_4[\mathbb{T}_0^{(u,A_1)}] \otimes \mathbb{F}_5[\mathbb{T}_{1,0}^{(k,E)}]}{2} \\ &+ \frac{\mathbb{X}_6[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_0^{(u,A_1)}] \otimes \mathbb{F}_3[\mathbb{Q}_{1,1}^{(k,E)}]}{2} - \frac{\mathbb{X}_6[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_4[\mathbb{T}_0^{(u,A_1)}] \otimes \mathbb{F}_6[\mathbb{T}_{1,1}^{(k,E)}]}{2} \end{split}$$

No. 9
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_9 = \frac{\sqrt{2}\mathbb{X}_7[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{Y}_7[\mathbb{T}_{1,0}^{(b,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_8[\mathbb{M}_{1,1}^{(a,E)}(1,1)] \otimes \mathbb{Y}_8[\mathbb{T}_{1,1}^{(b,E)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{9}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{7}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,0}^{(k,E)}]}{2} + \frac{\mathbb{X}_{7}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{4}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{2} \\ &+ \frac{\mathbb{X}_{8}[\mathbb{M}_{1,1}^{(a,E)}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,1}^{(k,E)}]}{2} + \frac{\mathbb{X}_{8}[\mathbb{M}_{1,1}^{(a,E)}(1,1)] \otimes \mathbb{U}_{4}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{2} \end{split}$$

No. 10
$$\hat{\mathbb{G}}_3^{(A_1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{10} = \mathbb{X}_{13}[\mathbb{M}_3^{(a,A_1)}(1,-1)] \otimes \mathbb{Y}_6[\mathbb{T}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{10}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)]\otimes\mathbb{U}_{3}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{4}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)]\otimes\mathbb{U}_{4}[\mathbb{T}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2}$$

No. 11
$$\hat{\mathbb{Q}}_3^{(A_1,2)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{11} = \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{Y}_{7}[\mathbb{T}_{1,0}^{(b,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{M}_{3,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{Y}_{8}[\mathbb{T}_{1,1}^{(b,E)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{11}(\boldsymbol{k}) &= \frac{\mathbb{X}_{11}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,0}^{(k,E)}]}{2} + \frac{\mathbb{X}_{11}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{2} \\ &+ \frac{\mathbb{X}_{12}[\mathbb{M}_{3,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,1}^{(k,E)}]}{2} + \frac{\mathbb{X}_{12}[\mathbb{M}_{3,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{2} \end{split}$$

No. 12
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{12} = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{Y}_{8}[\mathbb{T}_{1,1}^{(b,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{Y}_{7}[\mathbb{T}_{1,0}^{(b,E)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{12}(\boldsymbol{k}) &= \frac{\mathbb{X}_{10}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,1}^{(k,E)}]}{2} + \frac{\mathbb{X}_{10}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{2} \\ &+ \frac{\mathbb{X}_{9}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,0}^{(k,E)}]}{2} + \frac{\mathbb{X}_{9}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{2} \end{split}$$

Table 5: Atomic SAMB group.

group	bra	ket
M_1	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow)$

Table 6: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_1)}$	M_1	$\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$
\mathbb{X}_2	$\mathbb{Q}_0^{(a,A_1)}(1,1)$	M_1	$\begin{pmatrix} 0 & 0 & -\frac{i}{2} & 0 \\ 0 & 0 & 0 & \frac{i}{2} \\ \frac{i}{2} & 0 & 0 & 0 \\ 0 & -\frac{i}{2} & 0 & 0 \end{pmatrix}$

 $continued \dots$

Table 6

symbol	type	group	form
\mathbb{X}_3	$\mathbb{Q}_{2,0}^{(a,E,2)}$	M_1	$\begin{pmatrix} 0 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 \end{pmatrix}$
\mathbb{X}_4	$\mathbb{Q}_{2,1}^{(a,E,2)}$	M_1	$ \begin{pmatrix} -\frac{1}{2} & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} \end{pmatrix} $
\mathbb{X}_{5}	$\mathbb{Q}_{2,0}^{(a,E,1)}(1,-1)$	M_1	$\begin{pmatrix} 0 & 0 & 0 & -\frac{i}{2} \\ 0 & 0 & -\frac{i}{2} & 0 \\ 0 & \frac{i}{2} & 0 & 0 \\ \frac{i}{2} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_6	$\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)$	M_1	$\begin{pmatrix} 0 & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ -\frac{1}{2} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_7	$\mathbb{M}_{1,0}^{(a,E)}(1,1)$	M_1	$\begin{bmatrix} 0 & -\frac{\sqrt{19}i}{19} & 0 & -\frac{3\sqrt{19}}{38} \\ \frac{\sqrt{19}i}{19} & 0 & -\frac{3\sqrt{19}}{38} & 0 \\ 0 & -\frac{3\sqrt{19}}{38} & 0 & \frac{2\sqrt{19}i}{19} \\ -\frac{3\sqrt{19}}{38} & 0 & -\frac{2\sqrt{19}i}{19} & 0 \end{bmatrix}$
\mathbb{X}_8	$\mathbb{M}_{1,1}^{(a,E)}(1,1)$	$ m M_1$	$ \begin{pmatrix} 0 & \frac{2\sqrt{19}}{19} & 0 & -\frac{3\sqrt{19}i}{38} \\ \frac{2\sqrt{19}}{19} & 0 & \frac{3\sqrt{19}i}{38} & 0 \\ 0 & -\frac{3\sqrt{19}i}{38} & 0 & -\frac{\sqrt{19}}{19} \\ \frac{3\sqrt{19}i}{38} & 0 & -\frac{\sqrt{19}}{19} & 0 \end{pmatrix} $
\mathbb{X}_9	$\mathbb{M}_{1,0}^{(a,E)}(1,-1)$	$ m M_1$	$ \begin{pmatrix} 0 & \frac{7\sqrt{38}i}{76} & 0 & \frac{\sqrt{38}}{76} \\ -\frac{7\sqrt{38}i}{76} & 0 & \frac{\sqrt{38}}{76} & 0 \\ 0 & \frac{\sqrt{38}}{76} & 0 & \frac{5\sqrt{38}i}{76} \\ \frac{\sqrt{38}}{76} & 0 & -\frac{5\sqrt{38}i}{76} & 0 \end{pmatrix} $
\mathbb{X}_{10}	$\mathbb{M}_{1,1}^{(a,E)}(1,-1)$	M_1	$\begin{pmatrix} 0 & \frac{5\sqrt{38}}{76} & 0 & \frac{\sqrt{38}i}{76} \\ \frac{5\sqrt{38}}{76} & 0 & -\frac{\sqrt{38}i}{76} & 0 \\ 0 & \frac{\sqrt{38}i}{76} & 0 & \frac{7\sqrt{38}}{76} \\ -\frac{\sqrt{38}i}{76} & 0 & \frac{7\sqrt{38}}{76} & 0 \end{pmatrix}$

 $continued\ \dots$

Table 6

symbol	type	group	form
\mathbb{X}_{11}	$\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)$	M_1	$\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0\\ 0 & -\frac{1}{2} & 0 & 0\\ 0 & 0 & -\frac{1}{2} & 0\\ 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$
\mathbb{X}_{12}	$\mathbb{M}_{3,1}^{(a,E,2)}(1,-1)$	M_1	$ \begin{pmatrix} 0 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} \\ -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \end{pmatrix} $
\mathbb{X}_{13}	$\mathbb{M}_{3}^{(a,A_{1})}(1,-1)$	M_1	$\begin{pmatrix} 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} \\ -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & \frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} \\ \frac{\sqrt{2}}{4} & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} \\ -\frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 \end{pmatrix}$

Table 7: Cluster SAMB.

symbol	type	cluster	form
\mathbb{Y}_1	$\mathbb{Q}_0^{(s,A_1)}$	S_1	(1)
\mathbb{Y}_2	$\mathbb{Q}_0^{(s,A_1)}$	S_2	(1)
\mathbb{Y}_3	$\mathbb{Q}_0^{(b,A_1)}$	B_1	$\begin{pmatrix} \sqrt{3} & \sqrt{3} & \sqrt{3} \\ 3 & 3 & 3 \end{pmatrix}$
\mathbb{Y}_4	$\mathbb{Q}_{1,0}^{(b,E)}$	B_1	$ \left(0 \frac{\sqrt{2}}{2} -\frac{\sqrt{2}}{2} \right) $
\mathbb{Y}_5	$\mathbb{Q}_{1,1}^{(b,E)}$	B_1	$\left(-\frac{\sqrt{6}}{3} \frac{\sqrt{6}}{6} \frac{\sqrt{6}}{6}\right)$
\mathbb{Y}_6	$\mathbb{T}_0^{(b,A_1)}$	B_1	$\left(\begin{array}{ccc} \sqrt{3}i & \sqrt{3}i & \sqrt{3}i \\ 3 & 3 & 3 \end{array}\right)$
\mathbb{Y}_7	$\mathbb{T}_{1,0}^{(b,E)}$	B_1	$\left(0 \frac{\sqrt{2}i}{2} -\frac{\sqrt{2}i}{2}\right)$
\mathbb{Y}_8	$\mathbb{T}_{1,1}^{(b,E)}$	B_1	$\left(-\frac{\sqrt{6}i}{3} \frac{\sqrt{6}i}{6} \frac{\sqrt{6}i}{6}\right)$

Table 8: Uniform SAMB.

symbol	type	cluster	form
\mathbb{U}_1	$\mathbb{Q}_0^{(s,A_1)}$	S_1	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
\mathbb{U}_2	$\mathbb{Q}_0^{(s,A_1)}$	S_2	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
\mathbb{U}_3	$\mathbb{Q}_0^{(u,A_1)}$	B_1	$ \begin{pmatrix} 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 0 \end{pmatrix} $
\mathbb{U}_4	$\mathbb{T}_0^{(u,A_1)}$	B_1	$ \begin{pmatrix} 0 & -\frac{\sqrt{2}i}{2} \\ \frac{\sqrt{2}i}{2} & 0 \end{pmatrix} $

Table 9: Structure SAMB.

symbol	type	cluster	form
\mathbb{F}_1	$\mathbb{Q}_0^{(k,A_1)}$	B_1	$\frac{\sqrt{6}c_{001}}{3} + \frac{\sqrt{6}c_{002}}{3} + \frac{\sqrt{6}c_{003}}{3}$
\mathbb{F}_2	$\mathbb{Q}_{1,0}^{(k,E)}$	B_1	$c_{002} - c_{003}$
\mathbb{F}_3	$\mathbb{Q}_{1,1}^{(k,E)}$	B_1	$-\frac{2\sqrt{3}c_{001}}{3} + \frac{\sqrt{3}c_{002}}{3} + \frac{\sqrt{3}c_{003}}{3}$
\mathbb{F}_4	$\mathbb{T}_0^{(k,A_1)}$	B_1	$\frac{\sqrt{6}s_{001}}{3} + \frac{\sqrt{6}s_{002}}{3} + \frac{\sqrt{6}s_{003}}{3}$
\mathbb{F}_5	$\mathbb{T}_{1,0}^{(k,E)}$	B_1	$s_{002} - s_{003}$
\mathbb{F}_6	$\mathbb{T}_{1,1}^{(k,E)}$	B_1	$-\frac{2\sqrt{3}s_{001}}{3} + \frac{\sqrt{3}s_{002}}{3} + \frac{\sqrt{3}s_{003}}{3}$

Table 10: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_1)}$	0	A_1	_	_	1

 $continued\ \dots$

Table 10

No.	symbol	rank	irrep.	mul.	comp.	form
2	$\mathbb{Q}_{1,0}^{(E)}$	1	E	_	0	x
3	$\mathbb{Q}_{1,1}^{(E)}$	1	E	_	1	y
4	$\mathbb{Q}_{2,0}^{(E,1)}$	2	E	1	0	$\sqrt{3}xz$
5	$\mathbb{Q}_{2,1}^{(E,1)}$	2	E	1	1	$\sqrt{3}yz$
6	$\mathbb{Q}_{2,0}^{(E,2)}$	2	E	2	0	$ \begin{array}{c} -\sqrt{3}xy\\ -\sqrt{3}(x-y)(x+y) \end{array} $
7	$\mathbb{Q}_{2,1}^{(E,2)}$	2	E	2	1	$-\frac{\sqrt{3}(x-y)(x+y)}{2}$

Table 11: Axial harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{G}_{1,0}^{(E)}$	1	E	_	0	-Y
2	$\mathbb{G}_{1,1}^{(E)}$	1	E	_	1	X
3	$\mathbb{G}_3^{(A_1)}$	3	A_1	_	_	$\frac{\sqrt{10}X\left(X^2-3Y^2\right)}{4}$
4	$\mathbb{G}_{3,0}^{(E,2)}$	3	E	2	0	$\frac{\sqrt{15}Z(X-Y)(X+Y)}{2}$
5	$\mathbb{G}_{3,1}^{(E,2)}$	3	E	2	1	$-\sqrt{15}XYZ$

 \bullet Group info.: Generator = $\{3^{+}_{\ 001}|0\},\ \{m_{110}|0\}$

Table 12: Conjugacy class (point-group part).

rep. SO	symmetry operations
{1 0}	{1 0}
$\{3^{+}_{001} 0\}$	$\{3^{+}_{001} 0\}, \{3^{-}_{001} 0\}$
$\{m_{100} 0\}$	$\{m_{100} 0\}, \{m_{010} 0\}, \{m_{110} 0\}$

Table 13: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
1	{1 0}	2	$\{3^{+}_{001} 0\}$	3	$\{3^{-}_{001} 0\}$	4	$\{m_{100} 0\}$	5	$\{m_{010} 0\}$
6	$\{m_{110} 0\}$								

Table 14: Character table (point-group part).

	1	3 ⁺ ₀₀₁	m_{100}
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

Table 15: Parity conversion.

\leftrightarrow	\leftrightarrow	\leftrightarrow
$A_1 (A_2)$	$A_2 (A_1)$	E(E)

Table 16: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_1	A_2	E
$\overline{A_1}$	A_1	A_2	E
A_2		A_1	E
E			$A_1 + E$

Table 17: Anti-symmetric product, $[\Gamma \otimes \Gamma]_-$.

A_1	A_2	\overline{E}
_	_	A_2

Table 18: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} -1 & -1 & 0 \end{pmatrix}$	2	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$	3	$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$	4	$\begin{pmatrix} 0 & -1 & 0 \end{pmatrix}$
5	$\begin{pmatrix} -1 & 0 & 0 \end{pmatrix}$	6	$\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$				

Table 19: Virtual-cluster basis.

symbol	1	2	3	4	5	6
$\mathbb{Q}_0^{(A_1)}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$
$\mathbb{Q}_{1,0}^{(E)}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{3}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{3}$	$\frac{\sqrt{3}}{6}$
$\mathbb{Q}_{1,1}^{(E)}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$
$\mathbb{Q}_{2,0}^{(E,2)}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$
$\mathbb{Q}_{2,1}^{(E,2)}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{3}$	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{3}$	$\frac{\sqrt{3}}{6}$
$\mathbb{Q}_3^{(A_2)}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$