Khôlles 29/04 M7, T3, T4

Question 1 Enoncer le théorème du moment cinétique par rapport à un axe fixe pour un solide en rotation.

Solution:

Dans un référentiel galiléen, la dérivée temporelle du moment cinétique par rapport à son axe (O_z)

est égale à la somme des moments des forces extérieures par rapport à cet axe : $\frac{dL_z}{dt} = \sum_i \vec{M_i} \text{ soit } J_z \dot{\omega} = \sum_i M_i$

Énoncer le théorème de l'énergie cinétique pour un solide en rotation autour d'un axe fixe et montrer

Solution:

Question 2

TEC: $\frac{d\mathcal{E}_c}{dt} = \sum_i \mathcal{P}_i$ et $\mathcal{E}_c = \frac{1}{2}J_z\omega^2$ et $\mathcal{P}_i = \vec{M}_i\dot{\theta}$. TMCS: $\frac{dL_z}{dt} = \sum_i \vec{M}_i$ et $L_z = J_z\omega$ et $J\dot{\omega} = \sum_i \vec{M}_i$.

Question 3 Établir l'équation du mouvement du pendule pesant avec le TEC.

qu'il est équivalent à la loi du moment cinétique scalaire.

Solution:

Bilan des forces : $\vec{p} = m\vec{g}$, $M_z(\vec{p}) = -d\sin\theta mg$ donc $\mathcal{P}(\vec{p}) = M_z(\vec{p}) \cdot \theta = -lmg\theta \sin\theta$. \vec{R} la réaction du pivot, qui est idéal : $M_z(\vec{R}) = 0$ donc $\mathcal{P}(\vec{R}) = 0$.

Étude cinématique : $\mathcal{E}_c = \frac{1}{2}J\dot{\theta}^2$. TEC: $\frac{d\mathcal{E}_c}{dt} = \mathcal{P}(\vec{p}) + \mathcal{P}(\vec{R}) \Longrightarrow J\ddot{\theta}\dot{\theta} = -lmg\dot{\theta}\sin\theta \Longrightarrow J\ddot{\theta} + lmg\sin\theta = 0$.

Question 4 Établir l'équation du mouvement du pendule pesant avec le TMC.

Référentiel terrestre supposé galiléen. Bilan des forces : $\vec{p} = m\vec{q}$, $M_z(\vec{p}) = -d\sin\theta mg$ Et $M_z(\vec{R}) = 0$ car c'est une liaison pivot idéale.

Ainsi, $L_z = \vec{OM} \wedge m\vec{v} = l\vec{e_r} \wedge ml\dot{\theta}\vec{e_{\theta}} = ml^2\dot{\theta}\vec{e_z}$ et $\frac{dL_z}{dt} = ml^2\ddot{\theta}\vec{e_z}$. TMC: $\frac{dL_z}{dt} = \sum_i \vec{M_i} \Longrightarrow ml^2\ddot{\theta} = -lmg\sin\theta \Longrightarrow \ddot{\theta} + \frac{g}{l}\sin\theta = 0$.

Etude cinématique : $O\dot{M} = l\vec{e_r}, \ \vec{v} = l\dot{\theta}\vec{e_{\theta}}$

Énoncer complètement le second principe : propriétés de l'entropie, bilan d'entropie et expliciter les différents termes.

Solution: L'entropie S est une fonction d'état extensive et additive. Deuxième principe: $\Delta S = S_{\text{créée}} + S_{\text{éch}}$

Où est $S_{\text{créée}}$ est l'entropie créée par le système et $S_{\text{éch}}$ est l'entropie échangée avec l'extérieur.

On a $S_{\text{\'ech}} = \sum_{i} \frac{Q_i}{T_i}$ au contact des thermostats de températures T_i . Si $S_{\text{créée}} = 0$, la transformation est réversible, sinon elle est irréversible.

 $S(P, V) = \frac{nR}{\gamma - 1} \ln \frac{P}{P_0} + \frac{nR\gamma}{\gamma - 1} \ln \frac{V}{V_0} + S_0.$

On rappelle l'entropie d'un gaz parfait :

Loi de Laplace: $PV^{\gamma} = cste$.

Solution: Conditions: on considère un gaz parfait, subissant une transformation adiabatique réversible.

Application 8 – Détente de Joule – Gay-Lussac

robinet

On suppose la demi-enceinte de droite initialement vide et le gaz dans la demi-enceinte

Les conditions adiabatique et réversible assurent que $\Delta S = 0$.

de gauche à la température T_0 . Lorsque l'on ouvre le robinet, le gaz se répand très rapidement dans le vide.

gaz

2. Exprimer le volume et la température finale du gaz V_f et T_f en fonction des valeurs initiales V_0 et T_0 . Déterminer l'entropie créée au cours de la transformation. Interpréter.

« L'appareil à deux globes » est constitué de deux ballons en verre de même volume $V_0 \approx 14 \, \mathrm{L},$ reliés entre eux par une tubulure de laiton munie d'un robinet. L'un des ballons peut être relié à une machine pneumatique permettant d'y faire le vide, ou à une réserve de gaz.

Application 9 - Chauffage par effet Joule On considère une masse m d'eau de capacité thermique massique c, initialement à la température $T_i = 20\,^{\circ}\text{C}$, dans un calorimètre dont on néglige la valeur en eau. On plonge une résistance $R=5\,\Omega$ (de capacité thermique négligeable), parcourue par un courant d'intensité

Solution: Système : $\{gaz + vide\}$

 $I = 1 \,\mathrm{A}$ pendant $\tau = 1 \,\mathrm{min}$ dans l'eau.

 $s(t) = c \ln \left(\frac{T}{T_0}\right) + s_0,$

2. Exprimer l'entropie créée. Conclure.

Question 8: Application 9

où s_0 est l'entropie massique à la température T_0 et c la capacité thermique massique.

Solution:

3. $S_{\text{créée}} = mc \ln(1 + \frac{RI^2 \tau}{mcT_i}) \sim \frac{RI^2 \tau}{T_i} > 0.$

Système : $\{Eau + Résistance + Calorimètre\}$

On a $\Delta H = W + \mathcal{Q} = mc(T_f - T_i)$ donc $T_f = T_i + \frac{RI^2\tau}{mc}$.

1. Travail électrique : $W = RI^2\tau$.

C'est:

10000

1 000

Pression P (bar) 00

10

Solution:

Température T (K) Question 10 Tracer l'allure générale d'un diagramme de Clapeyron (P, v) pour un équilibre liquide-vapeur et y placer les phases. Nommer les lignes et les points particuliers. Tracer l'allure de quelques isothermes. **Solution:** Courbe d'ébullition à gauche du point critique C, de rosée à droite.

200

Fluide surcritique

Système : {Pendule de masse m}. Référentiel terrestre supposé galiléen.

Système : {Pendule de masse m}.

Solution:

Question 5

Question 6 Citer et établir la loi de Laplace pour un gaz parfait et ses conditions d'application.

vide

De plus, $\Delta S = S(P_2, V_2) - S(P_1, V_1) = \dots = \frac{nR}{\gamma - 1} \ln \frac{P_2 V_2^{\gamma}}{P_1 V_1^{\gamma}} \text{ donc } P_1 V_1^{\gamma} = P_2 V_2^{\gamma}.$

1. Justifier que l'on peut approximer la transformation du gaz comme étant adiabatique et sans travail échangé.

Système :
$$\{\text{gaz} + \text{vide}\}\$$
1. La transformation est adiabatique car rapide devant les transferts. Elle est isochore donc $W = 0$.

2. Premier principe: $\Delta U = \mathcal{W} + Q = mc(T_f - T_0) = 0$ donc $T_f = T_0$ et $V_f = 2V_0$.

3. Que devient cette expression en supposant
$$T_f \approx T_i$$
, c'est-à-dire si $RI^2\tau \ll mcT_i$? Faire l'application numérique.
Donnée : on rappelle que l'entropie massique d'une phase condensée est donnée par

1. Établir l'expression de la température finale T_f . Faire l'application numérique.

solide

point triple

250

liquide

fluide

supercritique

350

400

point critique

gaz

300

Pression

Liquide

Solution: On a:

Question 11

C'est la position de v par rapport à v_l et v_v . Comment s'en rappeler? On regarde les cas limites: si $v = v_v$ alors $w_l = 0$, et si $v = v_l$ alors $w_v = 0$.