Package 'stxplore'

February 3, 2023

Type Package

```
Title Exploration of Spatio-Temporal Data
Version 0.1.0
Maintainer Sevvandi Kandanaarachchi <sevvandik@gmail.com>
Description A set of statistical tools for spatio-temporal data exploration.
      Includes simple plotting functions, covariance calculations and computations
      similar to principal component analysis for spatio-temporal data. Can use
      both dataframes and stars objects for all plots and computations. For more
      details refer 'Spatio-Temporal Statistics with R' (Christopher K. Wikle,
      Andrew Zammit-Mangion, Noel Cressie, 2019, ISBN:9781138711136).
License GPL (>= 3)
Encoding UTF-8
LazyData true
LazyDataCompression gzip
Imports fields, ggmap, ggplot2, ggridges, gridExtra, gstat, lubridate,
      magrittr, RColorBrewer, rlang, sp, spacetime, stars, stats,
      tidyr
RoxygenNote 7.2.1
Depends R (>= 2.10)
Suggests dplyr, knitr, rmarkdown, ncmeta, units, maps, cubelyr
VignetteBuilder knitr
URL https://sevvandi.github.io/stxplore/
NeedsCompilation no
Author Sevvandi Kandanaarachchi [aut, cre]
       (<https://orcid.org/0000-0002-0337-0395>),
      Petra Kunhert [aut] (<a href="https://orcid.org/0000-0001-9070-0091">https://orcid.org/0000-0001-9070-0091</a>),
      Andrew Zammit-Mangion [ctb] (<a href="https://orcid.org/0000-0002-4164-6866">https://orcid.org/0000-0002-4164-6866</a>)
Repository CRAN
Date/Publication 2023-02-03 10:10:02 UTC
```

2 aerosol_australia

R topics documented:

	aerosol_australia	2
	aerosol_world	3
	cancor_eof	3
	canonical_correlation	5
	emp_orth_fun	ϵ
	emp_spatial_cov	7
	hovmoller	
	locs	12
	NOAA_df_1990	12
	ridgeline	
	semivariogram	
	spatial_means	
	spatial_snapshots	
	SSTdatashort	
	SSTlandmaskshort	
	SSTlonlatshort	
	temporal_means	
	temporal_snapshots	
	Times	
	Tmax	
Index		27

aerosol_australia

 $Data\ from\ of\ NASA\ Earth\ Observations\ at\ https://neo.gsfc.nasa.gov$

Description

Aerosol optical thickness data from December 2019 to December 2020, taken monthly.

Usage

aerosol_australia

Format

A stars object with x, y and time containing aerosol thickness. Dimensions 70x70x13.

aerosol_world 3

aerosol_world

Data from of NASA Earth Observations at https://neo.gsfc.nasa.gov

Description

Aerosol optical thickness data from December 2019 to December 2020, taken monthly.

Usage

```
aerosol_world
```

Format

A stars object with x, y and time containing aerosol thickness. Dimensions 360x180x13

cancor_eof

Performs CCA using Empirical Orthogonal Functions (EOFs) from a lagged dataset

Description

Performs Canonical Correlation Analysis (CCA) using Empirical Orthogonal Function analysis using in a dataframe or a stars object. The autoplot function can plot the outputs.

The variations are * 'cancor_eof.data.frame()' if the input is a dataframe * 'cancor_eof.stars()' if the input is a stars object * 'autoplot.cancoreof()' to plot the outputs.

```
cancor_eof(x, lag, n_eof, ...)

## S3 method for class 'data.frame'
cancor_eof(x, lag = 7, n_eof = 10, values_df, ...)

## S3 method for class 'stars'
cancor_eof(x, lag = 7, n_eof = 10, ...)

## S3 method for class 'cancoreof'
autoplot(
   object,
   line_plot = TRUE,
   space_plot = TRUE,
   palette = "Spectral",
   xlab = "Time",
   ...
)
```

4 cancor_eof

Arguments

x	The dataframe or stars object. If it is a dataframe, then it should have the locations.
lag	Specifies the lag to be used.
n_eof	The number of EOFs to be used.
	Other arguments currently ignored.
values_df	For dataframes: the dataframe of dimension length(times) \times length(locations) containing the quantity of interest.
object	autoplot parameter: the output of the function 'cancor_eof'.
line_plot	autoplot parameter: if set to TRUE, then the line plot is included.
space_plot	autoplot parameter: if set to TRUE, the space splot is included.
palette	autoplot parameter: the color palette to use for plotting.
xlab	autoplot parameter:: he label on the x-axis for the line plot.

Value

A cancoreof object with CCA output, EOF output, original data and cancor object from 'stats'.

```
# Dataframe example
data(SSTlonlatshort)
data(SSTdatashort)
cancor_df <- cancor_eof(x = SSTlonlatshort,</pre>
           lag = 7,
           n_eof = 8,
           values_df = SSTdatashort)
autoplot(cancor_df)
# Stars example
library(dplyr)
library(stars)
# Create a stars object from a data frame
precip_df \leftarrow NOAA_df_1990[NOAA_df_1990$proc == 'Precip', ] %>%
  filter(date >= "1992-02-01" & date <= "1992-02-28")
precip <- precip_df[ ,c('lat', 'lon', 'date', 'z')]</pre>
st_precip <- st_as_stars(precip, dims = c("lon", "lat", "date"))</pre>
cancor_st <- cancor_eof(st_precip)</pre>
autoplot(cancor_st, line_plot = TRUE, space_plot = FALSE)
```

canonical_correlation 5

Description

Computes Canonical Correlation Analysis (CCA) using 2 datasets. The autoplot function plots the output.

Usage

```
canonical_correlation(x1, x2, ...)
## S3 method for class 'data.frame'
canonical_correlation(x1, x2, ...)
## S3 method for class 'stars'
canonical_correlation(x1, x2, ...)
## S3 method for class 'cancor'
autoplot(object, xlab = "Time", ...)
```

Arguments

x1	The first dataframe or stars object.
x2	The second dataframe or stars objext. The dimensions of both datasets need to be the same.
	Other arguments currently ignored.
object	For autoplot: the output of the function 'cannonical_correlation'.
xlab	For autoplot: the xlabel to appear on CCA plot.

Value

A canonical correlation object.

```
# Dataframe example
df1 <- SSTdatashort[1:100, ]
df2 <- SSTdatashort[401:500, ]
ccor <- canonical_correlation(df1, df2)
autoplot(ccor)

# stars example
library(stars)
tif = system.file("tif/olinda_dem_utm25s.tif", package = "stars")
x <- read_stars(tif)</pre>
```

6 emp_orth_fun

```
x1 <- x[[1]][1:50, 1:50]
x2 <- x[[1]][51:100, 1:50]
stx1 <- st_as_stars(x1)
stx2 <- st_as_stars(x2)
canonical_correlation(stx1, stx2)</pre>
```

emp_orth_fun

Computes empirical orthogonal functions using a dataframe or a stars object.

Description

Computes empirical orthogonal functions of the data. Function autoplot can plot the output.

Usage

```
emp_orth_fun(x, ...)
## S3 method for class 'data.frame'
emp_orth_fun(x, values_df, ...)
## S3 method for class 'stars'
emp_orth_fun(x, ...)
## S3 method for class 'emporthfun'
autoplot(
   object,
   EOF_num = 1,
   palette = "Spectral",
   only_EOF = FALSE,
   only_TS = FALSE,
   ...
)
```

Arguments

X	The dataframe or stars object. If it is a dataframe, then it should have the loca-
	tions.
	Other arguments currently ignored.
values_df	For dataframes: the dataframe of dimension length(times) x length(locations) containing the quantity of interest.
object	For autoplot: the output of the function 'emp_orth_fun'.
EOF_num	For autoplot: the number of Empirical Orthogonal Functions (EOFs) to plot.
palette	The color palette. Default is Spectral.
only_EOF	For autoplot: if TRUE, only the spatial EOF function would be plotted.
only_TS	For autoplot: if TRUE, only the PC time series would be plotted. If both are set to FALSE, both plots would be displayed. Both cannot be set to TRUE.

emp_spatial_cov 7

Value

An emporthfun object with temporal PCs and spatial EOFs.

Examples

```
# dataframe example
data(SSTlonlatshort)
data(SSTdatashort)
data(SSTlandmaskshort)
delete_rows <- which(SSTlandmaskshort == 1)</pre>
SSTdatashort <- SSTdatashort[-delete_rows, 1:396]</pre>
emp1 <- emp_orth_fun(SSTlonlatshort[-delete_rows, ],</pre>
                      SSTdatashort)
autoplot(emp1,
         EOF_num = 1)
# stars example
library(dplyr)
library(stars)
# Create a stars object from a data frame
precip_df <- NOAA_df_1990[NOAA_df_1990$proc == 'Precip', ] %>%
  filter(date >= "1992-02-01" & date <= "1992-02-05")
precip <- precip_df[ ,c('lat', 'lon', 'date', 'z')]</pre>
st_precip <- st_as_stars(precip, dims = c("lon", "lat", "date"))</pre>
emp <- emp_orth_fun(st_precip)</pre>
autoplot(emp, only_TS = TRUE)
```

emp_spatial_cov

Computes empirical spatial covariance using a dataframe or a stars object

Description

Computes empirical spatial covariance by removing trends and examining residuals. It can compute lag-0 or log-1 empirical covariance either by latitude or longitude. You can split up the spatial domain by latitude or longitude and plot the covariance for each longitudinal/latitudinal strips.

```
emp_spatial_cov(
   x,
   lat_or_lon_strips = "lon",
   quadratic_time = FALSE,
   quadratic_space = FALSE,
   num_strips = 1,
   lag = 0,
```

8 emp_spatial_cov

```
)
## S3 method for class 'data.frame'
emp_spatial_cov(
 х,
  lat_or_lon_strips = "lon",
  quadratic_time = FALSE,
  quadratic_space = FALSE,
  num_strips = 1,
  lag = 0,
 lat_col,
  lon_col,
  t_col,
  z_col,
)
## S3 method for class 'stars'
emp_spatial_cov(
 Х,
 lat_or_lon_strips = "lon",
  quadratic_time = FALSE,
  quadratic_space = FALSE,
  num_strips = 1,
  lag = 0,
)
## S3 method for class 'spatialcov'
autoplot(object, xlab = "Latitude", ...)
```

Arguments

x A stars object or a dataframe. Arguments differ according to the input type.

lat_or_lon_strips

Takes the values lat or lon. The value lat produces latitudinal strips, i.e., covariance plots over longitude for different latitudinal strips. The value lon produces longitudinal strips, i.e., covariance plots over latitude for different longitudinal strips.

quadratic_time If TRUE a linear model with quadratic time is fitted and residuals computed. If FALSE the model is fitted with linear space and time coefficients.

quadratic_space

If TRUE a linear model with quadratic space is fitted and residuals computed. If FALSE the model is fitted with linear space and time coefficients.

num_strips The number of latitudinal/longitudinal strips to produce. This is used when plotting using autoplot.

Lag can be either 0 or 1.

emp_spatial_cov 9

	Other arguments currently ignored.
lat_col	For dataframes: the column or the column name giving the latitude. The y coordinate can be used instead of latitude.
lon_col	For dataframes: the column or the column name giving the longitude. The \boldsymbol{x} coordinate can be used instead of longitude.
t_col	For dataframes: the time column. Time must be a set of discrete integer values.
z_col	For dataframes: the The quantity of interest that will be plotted. Eg. temperature.
object	For autoplot: the output of the function 'emp_spatial_cov'.
xlab	For autoplot: the label for x-axis.

Value

A spatialcov object with empirical covariance data organised spatially according to the number of strips and the lagged covariance.

```
# Dataframe example
library(dplyr)
data(NOAA_df_1990)
Tmax <- filter(NOAA_df_1990,</pre>
 proc == "Tmax" &
 month %in% 5:6 &
 year == 1993)
Tmax$t <- Tmax$julian - min(Tmax$julian) + 1</pre>
emp_df <- emp_spatial_cov(Tmax,</pre>
                 lat_col = "lat",
                 lon_col = "lon",
                 t_col ="t",
                 z_{col} = "z",
                 lat_or_lon_strips = "lon",
                 num_strips = 4,
                 lag = 1)
autoplot(emp_df)
# Stars example
library(stars)
# Create a stars object from a data frame
precip_df \leftarrow NOAA_df_1990[NOAA_df_1990$proc == 'Precip', ] %>%
  filter(date >= "1992-02-01" & date <= "1992-02-05")
precip <- precip_df[ ,c('lat', 'lon', 'date', 'z')]</pre>
st_precip <- st_as_stars(precip, dims = c("lon", "lat", "date"))</pre>
emp_spatial_cov(st_precip)
```

10 hovmoller

hovmoller

Computes the data structure for the Hovmoller plots

Description

This function creates the data structure for Hovmoller plots for either latitude or longitude. This function can take either a stars object or a dataframe. Input arguments differ for each case. The function autoplot can plot this object.

Usage

```
hovmoller(x, lat_or_lon = "lat", xlen = NULL, ...)
## S3 method for class 'data.frame'
hovmoller(
  Х,
 lat_or_lon = "lat",
 xlen = NULL,
 lat_or_lon_col,
  t_col,
 z_col,
)
## S3 method for class 'stars'
hovmoller(x, lat_or_lon = "lat", xlen = NULL, ...)
## S3 method for class 'hovmoller'
autoplot(
  object,
 ylab = "Day",
 xlab = NULL,
  title = "",
  palette = "Spectral",
  legend_title = "z",
)
```

Arguments

X	A stars object or a dataframe. Arguments differ according to the input type.
lat_or_lon	Needs to be either lat or lon. lat plots the latitudinal Hovmoller plat, while lon plots the longitudinal Hovmoller plot.
xlen	The length of the xaxis for latitude/longitude.
	Other arguments currently ignored.

hovmoller 11

lat_or_lon_col	For dataframes: the column or the column name corresponding to the latitude/longitude.
t_col	For dataframes: the time column. Time must be a set of discrete integer values.
z_col	For dataframes: the The quantity of interest that will be plotted. Eg. temperature.
object	For autoplot: the output of the function 'hovmoller'.
ylab	The y label.
xlab	The x label.
title	The graph title.
palette	The color palette. Default is Spectral.
legend_title	The title for the legend.

Value

An object of hovmoller class containing the original data and the Hovmoller data.

```
# dataframe examples
library(dplyr)
data(NOAA_df_1990)
Tmax <- filter(NOAA_df_1990,</pre>
  proc == "Tmax" &
  month %in% 5:9 &
  year == 1993 &
  id < 4000)
Tmax$t <- Tmax$julian - min(Tmax$julian) + 1</pre>
hov <- hovmoller(lat_or_lon = "lat",</pre>
          x = Tmax,
          lat_or_lon_col = 'lat',
          t_{col} = 't',
          z_{col} = 'z')
autoplot(hov)
# stars examples
library(stars)
prec_file = system.file("nc/test_stageiv_xyt.nc", package = "stars")
prec <- read_ncdf(prec_file)</pre>
prec2 <- prec %>% slice(time, 1:5)
hov <- hovmoller(prec2)</pre>
hov
```

12 NOAA_df_1990

locs

The locations used in the NOAA dataset.

Description

This dataset is included in the STRbook R package.

Usage

locs

Format

A data frame with 328 rows and 3 variables:

id Location is

lat Latitude

lon Longitude ...

NOAA_df_1990

National oceanic and atmospheric administration (NOAA) data from 1990 to 1993

Description

A dataset containing the precipitation, maximum and minimum temperatures taken from the STR-book R package.

Usage

NOAA_df_1990

Format

A data frame with 53940 rows and 10 variables:

julian Day in Julian time

year The year

month The month

day The day

id The location id

z The value

proc The type of observation

lat Latitude

lon Longitude

date The date ...

ridgeline 13

ridgeline

Ridgeline plots grouped by an attribute using a dataframe as an input.

Description

Plots ridgeline plots grouped by latitude/longitude or time. This function can take either a stars object or a dataframe. Input arguments differ for each case.

Usage

```
ridgeline(
  х,
  num\_grps = 10,
  xlab = "Value";
 ylab = "Group Intervals",
  title = "",
  legend_title = "z",
)
## S3 method for class 'data.frame'
ridgeline(
  Х,
  num\_grps = 10,
  xlab = "Value",
 ylab = "Group Intervals",
  title = "",
  legend_title = "z",
  group_col,
 z_col,
)
## S3 method for class 'stars'
ridgeline(
  num\_grps = 10,
  xlab = "Value",
 ylab = "Group Intervals",
  title = "",
  legend_title = "z",
  group_dim,
)
```

Arguments ×

A stars object or a dataframe. Arguments differ according to the input type.

14 ridgeline

The number of levels for the ridgeline plot. num_grps The x label. xlab The y label. ylab title The graph title. legend_title The title for the legend. Other arguments currently ignored. . . . group_col For dataframes: the column name of the group column. z_col For dataframes: the The quantity of interest that will be plotted. Eg. temperature. For stars objects: the dimension for the grouping variable. group_dim

Value

A ggplot object.

```
# Dataframe example
library(dplyr)
data(NOAA_df_1990)
TmaxJan <- filter(NOAA_df_1990,</pre>
                 proc == "Tmax" &
                  year == 1993 &
                  month == 1)
ridgeline(TmaxJan,
      group_col = 'lat',
      z_{col} = 'z',
      xlab = 'Maximum Temperature',
      ylab = 'Latitude Intervals')
# stars examples
library(stars)
library(units)
# stars Example 1
tif = system.file("tif/olinda_dem_utm25s.tif", package = "stars")
x <- read_stars(tif)</pre>
dim(x)
ridgeline(x, group_dim = 1)
ridgeline(x, group_dim = 2)
# stars Example 2
tif = system.file("tif/lc.tif", package = "stars")
x <- read_stars(tif)</pre>
ridgeline(x, group_dim = 1)
ridgeline(x, group_dim = 2)
```

semivariogram 15

semivariogram

Computes the semi-variogram using a dataframe or a stars object.

Description

Computes the semi-variogram from a stars or a dataframe. Input arguments differ for each case. Function autoplot can plot the output.

When the input is a dataframe, the locations, time and the quantity of interest needs to be given. When the input is a stars object, a 3 dimensional stars object needs to be given as input with the first 2 dimensions being spatial and the third being time.

```
semivariogram(
 Х,
  latitude_linear = TRUE,
 longitude_linear = TRUE,
 missing_value = -9999,
 width = 80,
  cutoff = 1000,
  tlagmax = 6,
)
## S3 method for class 'data.frame'
semivariogram(
 х,
 latitude_linear = TRUE,
 longitude_linear = TRUE,
 missing_value = -9999,
 width = 80,
  cutoff = 1000,
  tlagmax = 6,
  times_df,
  values_df,
)
## S3 method for class 'stars'
semivariogram(
  Χ,
  latitude_linear = TRUE,
  longitude_linear = TRUE,
 missing_value = -9999,
 width = 80,
  cutoff = 1000,
```

16 semivariogram

```
tlagmax = 6,
...
)

## S3 method for class 'semivariogramobj'
autoplot(object, ...)
```

Arguments

x The dataframe or stars object. If it is a dataframe, then it should have the locations

latitude_linear

If TRUE a linear model is fitted with latitude as a covariate is fitted.

longitude_linear

If TRUE a linear model is fitted with longitude as a covariate is fitted.

missing_value If a certain value such as -9999 denotes the missing values for given locations

and times.

width A parameter to the gstat::variogram function. The width of the distance

intervals to be considered.

cutoff A parameter to the gstat::variogram function. The spatial separation dis-

tance.

tlagmax A parameter to the gstat::variogram function. The maximum time lag.
... Other arguments that need to be used for datafames or currently ignored.

times_df For dataframes: the dataframe containing the dates in Date format.

values_df For dataframes: the dataframe of dimension length(times) x length(locations)

containing the quantity of interest.

object For autoplot: the output from the semivariogram function.

Value

A semivariogram object with a gstat variogram and the original data.

spatial_means 17

```
width = 50,
    cutoff = 1000,
    tlagmax = 7
)
autoplot(semidf)

# Stars example
library(stars)
# Create a stars object from a data frame
precip_df <- NOAA_df_1990[NOAA_df_1990$proc == 'Precip', ] %>%
    filter(date >= "1992-02-01" & date <= "1992-02-05")
precip <- precip_df[ ,c('lat', 'lon', 'date', 'z')]
st_precip <- st_as_stars(precip, dims = c("lon", "lat", "date"))
semist <- semivariogram(st_precip)
autoplot(semist)</pre>
```

spatial_means

Computes spatial empirical means using a dataframe or a stars object

Description

This function computes spatial empirical means by latitude and longitude averaged over time. This function can take either a stars object or a dataframe. Input arguments differ for each case. The autoplot function can plot this object.

The variations are * 'spatial_means.data.frame()' if the input is a dataframe * 'spatial_means.stars()' if the input is a stars object * 'autoplot.spatialmeans()' to plot the outputs.

```
spatial_means(x, ...)
## S3 method for class 'data.frame'
spatial_means(x, lat_col, lon_col, t_col, z_col, ...)
## S3 method for class 'stars'
spatial_means(x, ...)
## S3 method for class 'spatialmeans'
autoplot(
  object,
  ylab = "Mean Value",
  xlab1 = "Latitude",
  xlab2 = "Longitude",
  title = "Spatial Empirical Means",
  ...
)
```

spatial_means

Arguments

x	A stars object or a dataframe. Arguments differ according to the input type.
	Other arguments currently ignored.
lat_col	For dataframes: the column or the column name giving the latitude. The y coordinate can be used instead of latitude.
lon_col	For dataframes: the column or the column name giving the longitude. The x coordinate can be used instead of longitude.
t_col	For dataframes: the time column. Time must be a set of discrete integer values.
z_col	For dataframes: the The quantity of interest that will be plotted. Eg. temperature.
object	For autoplot: the output from the 'spatial_means' function.
ylab	For autoplot: the ylabel.
xlab1	For autoplot: The xlabel for the first plot.
xlab2	For autuoplot: The xlabel for the second plot.
title	The graph title.

Value

A spatialmeans object containing spatial averages and the original data.

```
# dataframe example
data(NOAA_df_1990)
library(dplyr)
Tmax <- filter(NOAA_df_1990,</pre>
                                                   # subset the data
              proc == "Tmax" &
                                                   # extract max temperature
                                                  # May to July
                month %in% 5:9 &
                year == 1993)
                                                  # year 1993
Tmax$t <- Tmax$julian - min(Tmax$julian) + 1  # create a new time variable starting at 1</pre>
sp_df <- spatial_means(Tmax,</pre>
       lat_col = "lat",
       lon_col = "lon",
       t_col = "t",
       z_{col} = "z")
autoplot(sp_df)
# stars examples
library(stars)
tif = system.file("tif/olinda_dem_utm25s.tif", package = "stars")
x <- read_stars(tif)</pre>
sp_means <- spatial_means(x)</pre>
autoplot(sp_means)
```

spatial_snapshots 19

spatial_snapshots

Plots spatial snapshots of data through time using a dataframe or a stars object.

Description

This function can take either a stars object or a dataframe. Input arguments differ for each case.

For dataframes, usage involves latitude and longitude. However, x and y coordinates can be given instead of longitude and latitude. If x and y are given instead of longitude and latitude, the country borders will not be shown.

```
spatial_snapshots(
 xlab = "x",
 ylab = "y",
  title = ""
  palette = "Spectral",
  legend_title = "z",
)
## S3 method for class 'data.frame'
spatial_snapshots(
  х,
 xlab = "Longitude",
 ylab = "Latitude",
  title = "",
  palette = "Spectral",
  legend_title = "z",
 lat_col,
 lon_col,
  t_col,
 z_col,
 ifxy = FALSE,
)
## S3 method for class 'stars'
spatial_snapshots(
 х,
  xlab = "x",
 ylab = "y",
title = "",
  palette = "Spectral",
```

20 spatial_snapshots

```
legend_title = "z",
...
)
```

Arguments

x	A stars object or a dataframe. Arguments differ according to the input type.
xlab	The x label.
ylab	The y label.
title	The graph title.
palette	The color palette. Default is Spectral.
legend_title	The title for the legend.
	Other arguments currently ignored.
lat_col	For dataframes: the column or the column name giving the latitude. The y coordinate can be used instead of latitude.
lon_col	For dataframes: the column or the column name giving the longitude. The x coordinate can be used instead of longitude.
t_col	For dataframes: the time column. Time must be a set of discrete integer values.
z_col	For dataframes: the The quantity of interest that will be plotted. Eg. temperature.
ifxy	For dataframes: if TRUE then the country borders are not drawn as longitude and latitude are unknown.

Value

A ggplot object.

```
library(dplyr)
# Dataframe example
data(NOAA_df_1990)
Tmax <- filter(NOAA_df_1990,</pre>
  proc == "Tmax" &
 month == 5 &
 year == 1993 &
  id < 4000)
Tmax$t <- Tmax$julian - min(Tmax$julian) + 1
Tmax_days <- subset(Tmax, t %in% c(1, 15))</pre>
spatial_snapshots(Tmax_days,
  lat_col = 'lat',
lon_col = 'lon',
  t_col = 't',
  z_{col} = 'z',
  title = "Maximum Temperature for 2 days ")
# stars example
```

SSTdatashort 21

```
library(stars)
tif = system.file("tif/L7_ETMs.tif", package = "stars")
x <- read_stars(tif)
x2 <- x %>% slice(band, 1:2)
spatial_snapshots(x2)
```

SSTdatashort

The data from of the Sea Surface Temperature (SST) dataset. A subset of the original dataset is used.

Description

The original dataset is included in the STRbook R package.

Usage

SSTdatashort

Format

A dataframe with 500 rows and 396 columns.

SSTlandmaskshort

The land mask for the Sea Surface Temperature (SST) dataset. A subset of the original dataset is used.

Description

The original dataset is included in the STRbook R package.

Usage

SSTlandmaskshort

Format

A dataframe with 500 rows and 1 column.

mask A value of 1 is given if the location covers land. ...

22 temporal_means

SSTlonlatshort	The locations of the Sea Surface Temperatures (SST) dataset. A subset
	of the original dataset is used.

Description

The original dataset is included in the STRbook R package.

Usage

SSTlonlatshort

Format

A data frame with 500 rows and 2 variables:

```
lon Longitudelat Latitude ...
```

temporal_means

Computes temporal empirical means using a dataframe or a stars object.

Description

This function computes temporal empirical means averaged per time unit. This function can take either a stars object or a dataframe. Input arguments differ for each case. The function autoplot plots the output.

```
temporal_means(x, ...)

## S3 method for class 'data.frame'
temporal_means(x, t_col, z_col, id_col, ...)

## S3 method for class 'stars'
temporal_means(x, ...)

## S3 method for class 'temporalmeans'
autoplot(
  object,
  ylab = "Value",
  xlab = "Time",
  legend_title = "",
  title = "Temporal Empirical Means",
  ...
)
```

temporal_means 23

Arguments

Х	A stars object or a dataframe. Arguments differ according to the input type.
	Other arguments currently ignored.
t_col	For dataframes: the time column. Time must be a set of discrete integer values.
z_col	For dataframes: the The quantity of interest that will be plotted. Eg. temperature.
id_col	The column of the location id.
object	For autoplot: the output of the function 'temporal_means'.
ylab	The y label.
xlab	The x label.
legend_title	For autoplot: the title for the legend.
title	The graph title.

Value

An object of class temporalmeans containing the averages and the original data in two dataframes.

```
# dataframe example
data(NOAA_df_1990)
library(dplyr)
Tmax <- filter(NOAA_df_1990,</pre>
                                                   # subset the data
              proc == "Tmax" &
                                                # subset the data
# extract max temperature
                month %in% 5:9 &
                                                  # May to July
                                                   # year 1993
                year == 1993)
Tmax$t <- Tmax$julian - min(Tmax$julian) + 1  # create a new time variable starting at 1</pre>
tem <- temporal_means(Tmax,</pre>
       t_col = 'date',
       z_{col} = 'z',
       id_col = 'id')
autoplot(tem)
# stars example
library(stars)
library(dplyr)
library(units)
# Example
prec_file = system.file("nc/test_stageiv_xyt.nc", package = "stars")
prec <- read_ncdf(prec_file)</pre>
temporal_means(prec)
```

24 temporal_snapshots

 $temporal_snapshots$

Plots temporal snapshots of data for specific spatial locations using a dataframe or a stars object.

Description

This function plots temporal snapshos for specific spatial locations. The location id sample need to be given as a function argument.

Usage

```
temporal_snapshots(x, xlab = "x", ylab = "y", title = "", ...)
## S3 method for class 'data.frame'
temporal_snapshots(
 xlab = "Time",
 ylab = "Value",
  title = "",
  t_col,
  z_col,
  id_col,
  id_sample,
)
## S3 method for class 'stars'
temporal_snapshots(
 Х,
 xlab = "Time",
 ylab = "Value",
  title = "",
 xvals,
 yvals,
 precision = 0,
)
```

Arguments

```
    x A stars object or a dataframe. Arguments differ according to the input type.
    xlab The x label.
    ylab The y label.
    title The graph title.
    Other arguments currently ignored.
```

temporal_snapshots 25

t_col	For dataframes: the time column. Time must be a set of discrete integer values.
z_col	For dataframes: the The quantity of interest that will be plotted. Eg. temperature.
id_col	The column of the location id.
id_sample	The sample of location ids to be plotted
xvals	For stars objects: the set of xvalues to plot.
yvals	For stars objects: the set of yvalues to plot. These two lengths need to be the same.
precision	For stars objects: set to 0, if the given values are compared with the integer values in the stars object.

Value

A ggplot.

```
# Dataframe example
library(dplyr)
data(NOAA_df_1990)
Tmax <- filter(NOAA_df_1990,</pre>
             proc == "Tmax" &
             month %in% 5:9 &
             year == 1993)
Tmax_ID <- unique(Tmax$id)</pre>
Tmax$t <- Tmax$julian - min(Tmax$julian) + 1
ids <- sample(Tmax_ID, 10)</pre>
temporal_snapshots(Tmax,
                  t_col = 't',
                   z_{col} = 'z',
                   id_col = 'id',
                   id_sample = ids)
# stars example
library(stars)
tif = system.file("tif/L7_ETMs.tif", package = "stars")
x <- read_stars(tif)</pre>
xvals <- c(288876.0,289047.0)</pre>
yvals <- c(9120405, 9120006)
temporal_snapshots(x,
                  xvals = xvals,
                   yvals = yvals)
```

26 Tmax

Times	The time period in which the NOAA dataset was recorded. This spans
	from January 1990 to December 1993.
	from January 1990 to December 1993.

Description

This dataset is included in the STRbook R package.

Usage

Times

Format

A data frame with 1461 rows and 4 variables:

```
julian Day in Julian timeyear The yearmonth The monthday The day ...
```

Tmax

The maximum temperature values used in the NOAA dataset in a wide dataframe format.

Description

This dataset is included in the STRbook R package.

Usage

Tmax

Format

A data frame with 1461 rows and columns having maximum temperature for times and locations in data locs and Times.

Index

```
* datasets
                                                spatial_means, 17
    aerosol_australia, 2
                                                spatial_snapshots, 19
    aerosol_world, 3
                                                SSTdatashort, 21
                                                SSTlandmaskshort, 21
    locs, 12
    NOAA_df_1990, 12
                                                SSTlonlatshort, 22
    SSTdatashort, 21
                                                temporal_means, 22
    SSTlandmaskshort, 21
                                                temporal_snapshots, 24
    SSTlonlatshort, 22
                                                Times, 26
    Times, 26
                                                Tmax, 26
    Tmax, 26
aerosol_australia, 2
aerosol_world, 3
autoplot.cancor
        (canonical_correlation), 5
autoplot.cancoreof(cancor_eof), 3
autoplot.emporthfun (emp_orth_fun), 6
autoplot.hovmoller(hovmoller), 10
autoplot.semivariogramobj
        (semivariogram), 15
autoplot.spatialcov (emp_spatial_cov), 7
autoplot.spatialmeans(spatial_means),
        17
autoplot.temporalmeans
        (temporal_means), 22
cancor_eof, 3
canonical_correlation, 5
emp_orth_fun, 6
emp_spatial_cov, 7
hovmoller, 10
locs, 12
NOAA_df_1990, 12
ridgeline, 13
semivariogram, 15
```