

Europäisches **Patentamt**

European **Patent Office** Office européen des brevets

REC'D 1 5 MAN 18th

WHO O

PCT

PRIORITY DOCUMENT

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet n°

97104877.2

Der Präsident des Europäischen Patentamts:

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

M. B. RIJLING

DEN THE H

LA HAY EPA/EPO/O

31/03/98

Europäisches **Patentamt**

European Patent Office Office européen des brevets

Blatt 2 der Bescheinigung Sheet 2 of the certificate Page 2 de l'attestation

Anmeldung Nr.:

Application no.: 97104877.2

Demande n°

Anmeldetag: Date of filing Date de dépôt

21/03/97

Anmelder: Applicant(s): Demandeur(s):

BOEHRINGER MANNHEIM GMBH

68305 Mannheim

GERMANY

Bezeichnung der Erfindung: Title of the invention: Titre de l'invention

Verfahren zur Reinigung und Kristallisierung von Proteasomen

In Anspruch genommene Prioriät(en) / Priority(ies) claimed / Priorité(s) revendiquée(s)

Staat

Tag: Date Aktenzeichen: File no.

Pays

Numéro de dépôt:

Internationale Patentklassifikation: International Patent classification: Classification internationale des brevets:

C12N9/60

Am Anmeldetag benannte Vertragstaaten: Contracting states designated at date of filing: AT/BE/CH/DE/DK/ES/FI/FR/GB/GR/IE/IT/LI/LU/MC/NL/PT/SE Etats contractants désignés lors du depôt:

Bemerkungen:

Remarks:

Die ursprüngliche Bezeichnung dieser Anmeldung lautet:

Remarques:

Proteasomenstruktur und Verfahren zur Identifizierung von Proteasom-Inhibitoren

PATENTANWÄLTE

DIPL-PHYS. DR. M. HERZOG

POSTFACH ×60 820 81035 MÜNCHEN

KOPERNIKUSSTRASSE 9 81679 - MÜNCHEN

TELEFON (089) 4 55 63-0
TELEX 5 22 621
TELEFAX (089) 4 70 50 68
eMail weickmann@compuserve.com

21. März 1997

Unser Zeichen: 15404P EP/WWvo

Anmelder:

Boehringer Mannheim GmbH Sandhofer Strasse 112-132

68305 Mannheim-Waldhof

Proteasomenstruktur und Verfahren zur Identifizierung von Proteasom-Inhibitoren

Proteasomenstruktur und Verfahren zur Identifizierung von Proteasom-Inhibitoren

Beschreibung

Die Erfindung betrifft ein Verfahren zum Gewinnen einer aufgereinigten eukaryontischen kristallisierbaren Proteasomen-Präparation und die durch das Verfahren erhältliche Proteasomen-Präparation. Weiterhin betrifft die Erfindung eine aufgereinigte eukaryontischen Proteasomen-Präparation in kristallisierter Form. Mit Hilfe der Kristalldaten aus dieser Proteasomen-Präparation können neue Proteasomen-Inhibitoren, insbesondere mit Hilfe von computergestützten Modelling-Programmen identifiziert und gewonnen werden.

Das Proteasom ist das zentrale Enzym beim Proteinabbau sowohl im Cytosol als auch im Zellkern. Es ist an vielen biologischen Prozessen beteiligt, einschließlich der Entfernung abnormaler, fehlgefalteter oder falsch assemblierter Proteine, der Reaktion auf Stress (durch Prozessierung oder Abbau von Transkriptionsregulatoren), der Zellzykluskontrolle (durch Abbau von Zyklinen), der Zelldifferenzierung und metabolischen Adaption (durch Zerstörung von Transkriptionsfaktoren oder metabolischen Enzymen) und der zellulären Immunreaktion (durch Erzeugung antigener Peptide, die von MHC Klasse I Molekülen präsentiert werden). Für diese zellulären Funktionen, die auf einem Ubiquitin und ATP erfordernden Abbau von Proteinen beruhen, wird das 26S Proteasom benötigt, dessen Kern und proteo-

Das 20S Proteasom aus dem Archaebakterium Thermoplasma acidophilum wurde durch Röntgenstrukturkristallographie bei einer
Auflösung von 0,34 nm analysiert. Es hat eine zylindrische
Form mit einer Länge von 14,8 nm und einem maximalen bzw.
minimalen Durchmesser von 11,3 nm bzw. 7,5 nm. Es besteht aus
28 Untereinheiten, die in einem Partikel als 4 homoheptamere

Ringe $\alpha7\beta7\beta7\alpha7$ mit D7 Symmetrie angeordnet sind (Löwe et al., (1995), Science 268, 533-539). Im T.acidophilum Proteasom ist der N-terminale Threoninrest der β -Untereinheiten die Bindestelle von inhibitorischen Peptidaldehyden und essentiell für die hydrolytische Aktivität.

Eukaryontische Proteasomen sind erheblich komplexer als das archaebakterielle Proteasom. So ist das 20S Proteasom aus Saccharomyces cerevisiae aus insgesamt sieben verschiedenen α -Typ und sieben verschiedenen β -Typ-Untereinheiten aufgebaut, die bereits kloniert und sequenziert wurden, vgl. z. B. Heinemeyer et al. (1994), Biochemistry 33, 12229-12237).

Die eukaryontischen 20S Proteasomen, z. B. aus Hefe und aus Säugern, sind hinsichtlich der Aminosäuresequenzen von Untereinheiten und ihrer durch Elektronenmikroskopie erkennbaren Grobstruktur sehr nahe verwandt. Die α -Typ und β -Typ Untereinheiten des Säuger 20S Proteasoms bilden eine geordnete und wohldefinierte Struktur (Kopp et al. (1995), J. Mol. Biol. 248, 264-272). In Säugerzellen können drei zusätzliche nicht essentielle Untereinheiten des 20S Proteasoms, die als LMP2, LMP7 und MECL1 bezeichnet werden, konstitutuive Komponenten, nach Induktion mit dem Cytokin Interferon γ ersetzen. Ihre Expression oder gezielte Deletion ändert die Peptidasespezifität des Proteasoms und die Expressionsstärke von MHC Klasse I Molekülen an der Zelloberfläche.

In der Veröffentlichung Rivett et al. (1994), Methods Enzymol. 244, 331-350) und den darin enthaltenen Zitaten sind bisher zur Aufreinigung von Proteasomen verwendete Ausgangsmaterialien, z. B. Gewebe und Zellen von Säugern, wie Maus, Ratte, Mensch oder Rind, anderen Tieren, Pflanzen und Hefe aufgelistet.

Auch in der Patentliteratur finden sich zahlreiche Dokumente, die Proteasomen betreffen. So wird beispielsweise die Herstellung von eukaryontischen Proteasomen in EP-A-03 45 750, JP-A- 3

30

35

05 292 964 und JP-A-06 022 759 beschrieben. Die dort offenbarten Proteasomen-Präparationen besitzen jedoch keine ausreichende Reinheit, um eine Kristallisierung zu ermöglichen.

5 Nukleotid- und Aminosäuresequenzen von Proteasomenuntereinheiten werden beispielsweise in den japanischen Anmeldungen
JP-A-04 077 497, JP-A-04 077 498, JP-A-04 117 283, JP-A-05 317
059, JP-A-07 255 476, JP-A-08 116 972, JP-A-08 205 871 und JPA-08 217 796 sowie im japanischen Patent 40 51 896 beschrieben.

Inhibitoren für das Proteasom sind beispielsweise in JP-A-05 000 968, WO 92/20 804, WO 94/17 816, WO 95/24 914, WO 95/25 533, WO 96/13 266, WO 96/32 105 (Lactacystinanaloga) und US-A- 55 80 854 (Peptidaldehydinhibitoren) beschrieben.

Somit wird ersichtlich, daß ein großes Bedürfnis nach weiteren Erkenntnissen über Proteasomen, insbesondere hinsichtlich deren genauen Struktur besteht, um die Herstellung von neuen Proteasomeninhibitoren auf rationale Weise zu ermöglichen. Die der Erfindung zugrundeliegende Aufgabe bestand somit darin, ein Verfahren bereitzustellen, das die Kristallisierung eukaryontischer Proteasomenpräparationen ermöglicht, so daß mit Hilfe der Kristallstruktur die Entwicklung neuer Inhibitoren vereinfacht wird.

Die erfindungsgemäße Aufgabe wird gelöst durch ein Verfahren zum Gewinnen einer aufgereinigten eukaryontischen Proteasomenpräparation, umfassend die Schritte:

- (a) Herstellung eines Rohextrakts durch Aufschluß von eukaryontischen Zellen,
- (b) Abtrennung unlöslicher Bestandteile aus dem Rohextrakt,
- (c) chromatographische Auftrennung in Fraktionen über ein Ionenaustauschermedium, z. B. Q- Sepharose,
- (d) Testen der in Schritt (c) erhaltenen Fraktionen und Sammeln der aktiven Fraktionen,

41 -

- (e) chromatographische Auftrennung über Hydroxyapatit,
- (f) Testen der in Schritt (e) erhaltenen Fraktionen und Sammeln der aktiven Fraktionen,
- (g) Konzentrierung der vereinigten Fraktionen,

10

- (h) chromatographische Auftrennung über ein Gelfiltrationsmedium in einem Molekulargewichtsbereich von 5 kD bis 5 MD, z. B. Superose und
- (i) Testen der in Schritt (h) erhaltenen Fraktionen und Sammeln der aktiven Fraktionen.

Als Ausgangsmaterial für das erfindungsgemäße Verfahren können beliebige eukaryontische Zellen eingesetzt werden, z.B. Tierzellen, Pflanzenzellen oder Pilzzellen wie etwa Hefezellen. Besonders bevorzugt ist die Verwendung von Hefezellen, z.B. Saccharomyces cerevisiae.

Das Testen der Fraktionen während des Anreicherungsprozesses erfolgt üblicherweise durch Bestimmung der für Proteasomen typischen proteolytischen Aktivität. Als Substrate können hierbei beispielsweise bekannte chromogene Peptide eingesetzt werden. Vorzugsweise erfolgt das Testen der Fraktionen derart, daß man jeweils zwei parallele Bestimmungen der proteolytischen Aktivität durchführt, wobei die eine in Abwesenheit und die andere in Gegenwart eines Proteasomeninhibitors, z. B. Lactacystin, durchgeführt wird. Diese Art des Testens erlaubt eine eindeutige Unterscheidung der Proteasomen enthaltenden Fraktionen von anderen Fraktionen mit proteolytischer Aktivität.

- Die Durchführung der Anreicherung umfaßt drei chromatographische Trennschritte (c), (e) und (h), von denen mindestens einer in einem FPLC-System durchgeführt werden kann, z. B. Schritt (h)
- Durch das erfindungsgemäße Verfahren wird eine aufgereinigte Proteasomen-Präparation erhalten, die in einer ausreichenden

in the second of Second representation of

.25

Menge und Reinheit vorliegt, so daß eine nachfolgende 'Kristallisierung ermöglicht wird.

Ein weiterer Gegenstand der vorliegenden Erfindung ist somit eine aufgereinigte eukaryontische Proteasomenpräparation, die durch das erfindungsgemäße Verfahren erhältlich ist. Noch ein weiterer Gegenstand der vorliegenden Erfindung ist eine aufgereinigte eukaryontische Proteasomen-Präparation in kristallisierbarer Form. Noch ein weiterer Gegenstand der vorliegenden Erfindung ist eine aufgereinigte kristallisierte eukaryontische Proteasomen-Präparation.

Die kristallisierte Proteasomen-Präparation kann auch einen Proteasomen-Inhibitor enthalten. Beispiele für geeignete be15 kannt Proteasomen-Inhibitoren sind Lactacystin oder Analoga davon bzw. Tripeptid-Aldehyde wie Calpaininhibitor.

Die erfindungsgemäße eukaryontische Proteasomen-Präparation umfaßt ein 20S Proteasom, d. h. einen Komplex aus 28 Unterein20 heiten, der jeweils 2 Moleküle von sieben verschiedenen α -TypUntereinheiten und sieben verschiedenen β -Typ-Untereinheiten enthält. Darüber hinaus kann der Komplex noch Metallionen, z.
B. Magnesium, Lösungsmittelmoleküle, z. B. Wasser, und andere Polypeptidkomponenten enthalten.

Die erfindungsgemäße aufgereinigte eukaryontische Proteasomenpräparation kann zur Identifizierung und Gewinnung neuer Proteasomen-Inhibitoren eingesetzt werden. Dabei werden insbesondere Daten aus der Kristallstruktur von kristallisierten eukaryontischen Proteasomen-Präparationen eingesetzt. Die Identifizierung und Gewinnung neuer Proteasomen-Inhibitoren erfolgt vorzugsweise in einem computergestützten Modellingprogramm.

Beispielsweise kann das Inhibitordesign durch visuelle Inspektion graphischer Darstellungen der Struktur erfolgen und zwar insbesondere

- (a) durch Bestimmung der für Liganden zugänglichen Volumina an aktiven Stellen, z. b. mit Hilfe der Programme INSIGHT, SYBYL, QUANTA, FRODO, O etc.,
- (b) durch Bestimmung von idealen Ligandeneigenschaften hinsichtlich Hydrophobizität oder Wasserstoffbrückenbindungen, z. B. mit Hilfe der Programme LUDI, GRID etc. oder/und
- durch Bestimmung der elektronischen Eigenschaften von für Liganden zugänglichen Oberflächen an den aktiven Stellen, z. B. mit Hilfe des Programms GRASP etc.

Alternativ oder zusätzlich können Liganden durch automatisierte Ligandenfragment-Andock- oder Anpassprozeduren, z. B. mit Hilfe der Programme DOCK, LUDI, LEAPFROG etc. ermittelt werden.

Besonders bevorzugt werden für diesen Zweck die Kristalldaten der Proteasomuntereinheiten vom β -Typ, insbesondere der Proteasom-Untereinheiten β 5/PRE2, β 1/PRE3 oder/und β 2/PUP1 bzw. homologer Untereinheiten aus anderen eukaryontischen Proteasomen sowie benachbarte Untereinheiten davon, z. B. β 4/C11 oder/und β 7/PRE4 verwendet.

25

Für das Design von Inhibitoren des humanen Proteasoms können die erfindungsgemäßen Kristallstrukturdaten des Hefeproteasoms mit bekannten Aminosäuresequenzen des humanen Proteasoms durch Homologiemodelling modifiziert werden. Ein solches Homologiemodelling kann durch molekulare Grafikprogramme wie etwa O, INSIGHT, FRODO, etc. durchgeführt werden. Insbesondere erfaßt die vorliegende Erfindung ein Homologiemodelling der homologen aktiven Stellen der aktiven Monomere im allgemeinen und insbesondere zum Zwecke des Inhibitordesigns. In Figur 1 ist die Homologie der Aminosäuresequenzen des Hefeproteasoms und des humanen Proteasoms in den relevanten Bereichen gezeigt.

Weiterhin soll die Erfindung durch nachfolgenden Beispiele und Figuren erläutert werden. Es zeigen:

die Homologie zwischen den für die aktiven Un-Figur 1 tereinheiten des Proteasoms kodierenden Aminosäuresequenzen aus Hefe und Mensch; die ß1/PRE3, ß2/PUP1, ß5/PRE2 Subfamilien sind gelb, grün bzw. blau dargestellt; die Reste der S1-Tasche, welche die Spezifitätsänderungen der PRE3 Subfamilie nach Substitution der humanen Untereinheit Y durch LMP2 nach Cytokininduktion beeinflussen, sind braun gezeichnet;

Figur 2 die Topologie der 28 Untereinheiten des 20S
Proteasoms, gezeichnet als Kugeln,

10

20

35

Figur 3 die C°-Kettenpositionen der Untereinheiten β 7/PRE4, β 6/C5, β 1'/PRE3, β 2'/PUP1 und β 3'/PUP3, in denen die β -cis und β -trans- β -Wechselwirkungen durch Kontakte von Insertions-segmenten hervorgehoben sind,

Figur 4a bis b Elektronendichtekarten (Konturiert ab 1 σ) in ähnlichen Orientierungen um THR1 mit zwei $F_o-F_c-Coeffizienten$ nach zweifacher Mittlung; die roten Modellteile wurden über die Phasengebung weggelassen. ß5/PRE2 mit dem kovalent gebundenem Lactacystin (LACT) und dem Wassermolekül NUK (a) und ß7/Pre4 mit einem Teil eines Propeptids (b),

ein Schema der vorgeschlagenen chemischen Schritte von Autolyse und Substrathydrolyse. Erzeugung eines Prozessierungsintermediats durch Hydrolyse an der "sauren" ß-Ringfläche (A). Erzeugung der vollständig prozessierten aktiven Untereinheit über ein Acyl-Enzym (B)

und dessen Hydrolyse (C). Michaelis-Komplex eines Substratpolypeptids (D). Spaltung an der ß-Ringfläche und Bildung mit Peptidspaltung assoziierten Acyl-Enzyms (E). Acyl-Enzym-Hydrolyse und Freisetzung des Octapeptidprodukts (F).

Figur 6a bis c die Bindung des Calpaininhibitors und die S1
Taschen, ß1/PRE3 ist in Grau mit den P1 kontaktierenden Resten in Rot dargestellt; ß2/PUP1
ist in Grün und der Inhibitor in Blau (a) dargestellt; ß2/PUP1 (b), ß5/PRE2 (c) mit analogen
Farbgebungen;

15 Figur 7

10

20

25

30

35

die untere Hälfte der ß-ß-Kammer. Die Hauptkette mit roten Kreisen für die Carbonylsauerstoffe ist für die C-terminalen Abschnitte der Helices H2 der sieben ß-Typ Untereinheiten, die die ß-Ringfläche definieren, angegeben. Die intermediär prozessierten und die unprozessierten Propeptide der Untereinheiten 86/C5, ß7/PRE4, ß3/PUP1 und ß4/Cl1 (grün) und der Calpaininhibitor (gelb) gebunden an ß2/PUP1 und ß5/PRE2 sind gezeigt. Zwei Magnesiumionen, die nahe der ß-Ringfläche lokalisiert sind, sind als silberne Kreise gezeichnet; und

Figur 8

eine Oberflächenansicht des Proteasomenmole-küls, geschnitten längs der Zylinderachse. Drei der sechs Calpaininhibitormoleküle, gebunden an $\mathfrak{S}1/\mathsf{PRE3}$, $\mathfrak{K}2/\mathsf{PUP1}$ und $\mathfrak{K}5/\mathsf{PRE2}$ sind als raumfüllende Modelle in rot dargestellt. Die abgedichteten α -Öffnungen an beiden Enden des Partikels, einige wenige schmale Seitenfenster und die scharf abgeschnittenen inneren \mathfrak{K} -Ringflächen sind zu erkennen.

Beispiele

Beispiel 1 Proteinpräparation und Charakterisierung

5 Hefezellen von Saccharomyces cerevisiae (Hefe-Mayr, München, Deutschland) wurden zweimal mit eiskaltem Wasser gewaschen und in Puffer A (20 mM Tris-HCl, pH 7,5, 1 mM EDTA, 1 mM NaN3) in einem Gewichtsverhältnis Zellen zu Puffer von 2:3 suspendiert. Die Zellen wurden für 10 Min in einer Mühle (Biomatik, Deutschland) mit Glaskugeln (Durchmesser: 0,5 mm; Volumenverhältnis Glaskugeln zu Zellsuspension: 3:2) desintegriert. Das Aufbrechen der Zellen wurde mikroskopisch überwacht.

Nach Filtration wurde der Rohextrakt für 10 min bei 10.000 x g in einer Sorvall RC 2B Zentrifuge abzentrifugiert. Der Überstand wurde erneut 45 min bei 134.000 x g in einem Ti-55,2 Rotor (Beckmann) zentrifugiert. Die Lipide aus der obersten Schicht wurden sorgfältig entfernt und die verbleibenden gelben Lösungen vereinigt. Die Proteinkonzentrationen waren etwa 50 mg/ml.

Unmittelbar nach der Zentrifugation wurde der Extrakt auf eine Q-Sepharosesäule (5 x 20 cm) aufgebracht, die mit 280 mM NaCl in Puffer A äquilibriert war. Die Säule wurde mit 280 mM NaCl in Puffer A gewaschen, die Proteine wurden mit einem Gradienten von 280 bis 800 mM NaCl eluiert. Die Durchflußrate war 120 ml/h und es wurden 12 ml Fraktionen gesammelt. Das Proteasom wurde bei 400 - 450 mM NaCl eluiert. In allen Fraktionen wurden Chymotrypsin-artige (CL), Peptidylglutamyl-Peptid-hydrolase (PGPH) und Trypsin-artige (TL) enzymatische Aktivitäten gemessen.

Um das 20S Proteasom zu erhalten, wurde von allen aktiven Fraktionen in Gegenwart von Lactacystin erneut die CL-Aktivität gemessen und die Fraktionen mit verringerten Aktivität wurden gesammelt. Die vereinigten Fraktionen wurden dreifach mit Wasser verdünnt und auf eine Hydroxyapatitsäule (3 x

10 cm) aufgetragen, die mit 60 mM Kaliumphosphat, pH 7,5 äquilibriert war. Die Säule wurde mit 60 mM Kaliumphosphat pH 7,5 gewaschen und mit einem Gradienten von 60-300 mM Kaliumphosphat eluiert wird. Die Durchflußrate war 60 ml/h. Es wurden 12 ml Fraktionen gesammelt. Die CL-, PGPH- und TL- Aktivität wurde in allen Fraktionen gemessen und die aktiven Fraktionen wurden vereinigt.

Die vereinigten Fraktionen wurden zwanzigfach durch Ultrafiltration unter Verwendung einer AMICON YM30 Membran konzentriert und das Konzentrat wurde auf eine Superose 6 Säule (1 x 30 cm) äquilibriert mit Puffer A aufgetragen. Die Elution wurde mit einer Durchflußrate von 18 ml/h in Puffer A durchgeführt. Das Proteasom eluierte nach 37 min. Aus 500 g
15 Hefezellen konnten auf diese Weise 50 mg kristallisierbares Protein erhalten werden.

Alle präparativen Schritte mit Ausnahme der FPLC wurden bei 4°C ausgeführt. Die chromogenen Peptidsubstrate wurden in Dimethylsulfoxid bei einer Konzentration von 1 mM gelöst. Die proteolytische Aktivität gegen diese Substrate wurde gemäß Achtstetter et al. (1994), J. Biol. Chem. 259, 13344-13348, bestimmt. Die chromogenen Peptidsubstrate wurden von Bachem (Bubendorf, Schweitz) bezogen. Q-Sepharose und Hydroxyapatit stammten von Sigma und BioRad. Die FPLC Vorrichtung, die MonoQ- und Superose 6 Säule stammten von Pharmacia (Freiburg, Deutschland), alle anderen Chemikalien wurden in der höchst möglichen Reinheit von Merck (Darmstadt, Deutschland) bezogen.

30 Beispiel 2 Kristallisierung

Die Kristalle wurden in Hängetropfen bei 24 °C gezüchtet. Die Proteinkonzentration, die zur Kristallisation verwendet wurde, war 40 mg/ml in 10 mM Tris/HCl (pH 7,5) und 1 mM EDTA. Die Tropfen bestanden aus 4 μ l der Proteinlösung und 2 μ l einer Reservoirlösung, die 40 mM Magnesiumacetat, 0,1 M Morpholinoethansulfonsäure (pH 6,5) und 12 % 2,4-Methylpentandiol ent-

hielt. Die den Inhibitor Lactacystin enthaltenden 'Kristalle wurden durch Eintauchen in eine 1 mM Lactacystinlösung für 6 h hergestellt. Die den Inhibitor Acetyl-Leu-Leu-Norleucin (Calpain Inhibitor I, Boehringer Mannheim) enthaltenden Kristalle wurden durch Eintauchen in eine 5 mM Calpainlösung für 6 h hergestellt. Die kristallographischen Daten sind in Tabelle 1 angegeben.

Beispiel 3 Kristallographie

1995 | 1996 | 19

10

Die Kristalle waren sehr gut geordnet und zeigten nur eine leichte Anisotropie. Die Acetyl-Leu-Leu-Norleucinal-inhibierten Kristalle hatten eine etwas verringerte Ordnung.

- 15 Die Anisotropie der Diffraktion wurde unter Verwendung der gefundenen Strukturfaktoramplituden mit solchen korrigiert, wie sie aus einem Modell mit isotropen Temperaturfaktoren unter Verwendung von XPLOR (Bruenger, 1992) berechnet wurden. Die Datensätze wurden bei der BW6-Beamline am DESY Hamburg mit 20 einer Synchrotronstrahlung von λ = 0,11 nm erhalten. Die Kristalle wurden in einen Gefrierschutzpuffer (30 % MPD, 28 mM Magnesiumacetat, 0,1 M Morpholinoethansulfonsäure, pH 6,9) eingetaucht und in einem Strom von 90 °K kaltem Stickstoffgas gefroren. Die Diffraktionsdaten wurden mit einer 300 mm Mar 25 Forschungs-Imagingplatte in einer Entfernung von 275 mm (LACT) oder 280 mm (CAL) gesammelt. Die Bestimmung von Röntgenintensitäten erfolgte mit dem MOSFLM Computerprogramm Version 5.3 und die Datenreduktion wurde mit CCP4 durchgeführt (Leslie (1992), Acta Cryst. D50, 760-763; Joint CCP4 and ESF-EACMB, 30 Newslett. Protein Crystallogr. (Daresburg Laboratory Warington UK 26; Collaborative Computational Project Number 4 (1994).
- Eine bei 0,5 nm Auflösung berechnete Rotationsfunktion zeigte zwei mit der Kristallsymmetrie in Beziehung stehende Peaks, die auf das Vorhandensein von lokalen diadischen Molekülachsen bei ψ 86° ϕ 90° und ψ 94° ϕ 90° hinwiesen. Ihre Korrelationswerte waren die Hälfte des Wertes einer kristallographi-

schen Diade, wie sie für eine fast ideale molekulare žweifache Symmetrie zu erwarten war. Das T.acidophilum Modell wurde für die Patterson Suchkalkulationen unter Verwendung von AMoRe (Navaza (1994), Acta Cryst. A50, 157-163) bei einer Auflösung von 0,35 nm eingesetzt. Diese zeigten, wenn man die D7 Symmetrie des Untersuchungsmodells in Betracht zog, eine einzige Lösung mit einem Korrelationswert von 0,32 und einem R-Faktor von 56 % verglichen mit dem nächsthöchsten Peak von 0,28 und 57 %.

10

Das T.acidophilum Modell wurde auf Polyalanin reduziert mit nur einigen wenigen konservierten Resten, die in der α -Typ Untereinheit verblieben. Dieses Modell ergab einen R-Faktor von 57,7 % und wurde zur Berechnung einer 2Fo-Fc Karte bei 0,24 15 nm mit X-PLOR (Bruenger (1992), X-PLOR Version 3.1. A System for X-Ray Crystallography and NMR) verwendet. Die elektronische Dichte wurde im Realraum mit MAIN (Turk (1992), Dissertation, Technische Universität München) unter Verwendung der lokalen Zweifachachse im gegenwärtigen Modell (ψ =85,1, ϕ =90,8, $\kappa=180,1)$ gemittelt, rücktransformiert, und eine neue Dichte wurde mit $2F_0$ - F_c Koeffizienten berechnet. Nach 10 Abgleichungszyklen war die Qualität der Karte gut (R_{back} =27,3 %). Die einzelnen Untereinheiten wurden entsprechend ihrer charakteristischen Insertionen, Deletionen und Aminosäuresequenzen identi-. 25 fiziert und wurden in die Karte auf einer ESV-30 Graphiksystem Arbeitsstation (Evans & Sutherland, Salt Lake City, Utah) unter Verwendung von FRODO (Jones (1978), J. Appl. Cryst. 11, 268-272) eingebaut. Eine kristallographische Verfeinerung erfolgte mit X-PLOR (Bruenger, 1992) mit energetisch und zwei-10 fach nicht-kristallographischen Symmetriebeschränkungen unter Verwendung der von Engh und Huber (1991), Acta Cryst. A 47, 392 - 400, beschriebenen Parameter. Zusätzlich wurde zur Korrektur für eine anisotrope Kristallordnung ein Streuungsbeitrag für das Lösungsmittel berechnet und während der Verfeine-35 rung in die Berechnung des Modells einbezogen.

Das fertige Modell berücksichtigte die Inhibitormoleküle Lactacystin und Acetyl-Leu-Leu-Norleucinal, 18 Magnesiumionen, bzw. 1.800 Wassermoleküle. Die R-Werte sind zufriedenstellend und die Standardgeometrie der Bindungen und Winkel hervorragend. Die lokale molekulare diadische Symmetrie ist gut konserviert, was auch durch den sehr geringen Wert R_{back} 13 % in der Endstufe der Analyse gezeigt wird. Der Anstieg im R-Wert um 3 % für Daten mit einer Auflösung von 0,28 nm gegenüber 0,24 nm ist eine Folge der anisotrope Kristallordnung, welche die Datenqualität beeinträchtigt, und der beschränkten Einbeziehung geordneter Lösungsmittelmoleküle.

Beispiel 4 Charakterisierung der Struktur

15 <u>4.1 Struktur von Untereinheiten</u>

20

Die 14 aus Hefe klonierten Gene, die für Komponenten des 20S Proteasoms kodieren, können in sieben α -Typ und sieben β -Typ-Untereinheiten eingeteilt werden.

Die β -Typ Untereinheiten werden als Prekursoren synthetisiert, die zu den im assemblierten Proteasom vorliegenden reifen Formen prozessiert werden. Die reifen β -Typ Polypeptide β 2/PUP1, β 5/PRE2 und β 1/PRE3 werden aus ihren Proformen durch Spaltung zwischen Gly-1 und Thr1 unter Freisetzung der aktiven Stelle Thr1 erhalten, während β 7/PRE4 zwischen Asn-9 und Thr-8 und β 6/C5 zwischen His-10 und Gln-9 gespalten werden und als stabile Prozessierungsintermediate vorliegen. β 4/C11 und β 3/PUP3 werden nicht prozessiert und beginnen mit Met(-1) bzw. Met(-9). Die Untereinheiten PUP1, PRE2 und PRE3 werden als vollständig prozessiert, die Untereinheiten PRE4 und C5 als teilweise prozessiert und die Untereinheiten C11 und PUP3 als unprozessiert bezeichnet.

35 Alle 14 Untereinheiten liegen in der kristallinen molekularen Struktur an eindeutigen Positionen vor. Sie sind fast vollständig definiert durch die Elektronendichte abgesehen von einigen Kettentermini und langen Insertionssegmenten.

Die Elektronendichte für die Hauptketten ist in den α -Typ-Unstereinheiten wie folgt definiert: $\alpha 2/Y7$: Thr5-Leu236, $\alpha 3/Y13$: Gly4-Gly237, $\alpha 4/PRE6$: Tyr8- Gln244, $\alpha 5/PUP2$: Arg10- Glu243 (7 Reste der Insertion sind nicht definiert - Gly12 bis Arg 126), $\alpha 6/PRE5$: Phe4 - Ile233, $\alpha 7/C1$: Gly5 - Asn241, $\alpha 1/C7$: Gly6 - Asp240.

10

In den β -Typ-Untereinheiten ist die Elektronendichte wie folgt definiert: β 3/PUP3: Ser-8-Asp 193, β 6/C5: Gln-9-Asp 193, β 4/C11: Met-1-Gln192, β 7/PRE4: Thr-8-Ile211, β 2/PUP1: Thr1-Cys221, β 1/PRE3: Thr1-Leu196, β 5/PRE2: Thr1-Gly211.

15

Alle sieben α - und β -Typ-Polypeptide haben eine charakteristische β -Sandwich-Struktur. Sie ist gebildet aus zwei fünfsträngigen antiparallelen β -Faltblattstrukturen mit den darüberliegenden helicalen Schichten aus den Helices H3, H4, H5 und den darunterliegenden Helices H1 und H2 gebildet ist. Sie unterscheiden sich aber in den Knicken, die um eine oder zwei Aminosäurereste in der Länge variieren, in langen Insertionen, die Sekundärstrukturelemente verbinden, sowie in den N-terminalen und insbesondere in den C-terminalen Regionen.

25

Bei den α -Typ-Untereinheiten hat $\alpha 2/Y7$ eine lange Insertionsschleife zwischen den Strängen S9 und S10, die aus einer kurzen α -Helix und einem β -Strang aufgebaut ist. $\alpha 1/C7$ weist eine Verlängerung der Helix H3 um zwei Knicke durch die Insertion bei G180 auf. Die Untereinheiten $\alpha 1/C7$, $\alpha 3/Y13$, $\alpha 4/PRE6$, $\alpha 5/PUP2$ und $\alpha 7/C1$ haben längere C-terminale Helices H5, die aus der Teilchenoberfläche in die Lösung hervorstehen. Die hoch geladenen, meist sauren C-terminalen Segmente sind unstrukturiert.

3 5

Bei den β -Typ-Untereinheiten mit langen Insertionen hat β 7/PRE4 einen deutlichen Knick zwischen den Helices H1 und H2

more than the second of the se

10

und eine zusätzliche α -Helix mit 2 Knicken bei Rest 145. β 6/C5 hat eine Insertion von 17 Resten zwischen H3 und H4 mit einer komplexen Faltung und einer kurzen Helix. β 2/PUP1 hat eine sehr lange C-terminale Extension, die in ihren letzten 11 Resten stark ungeordnet ist. Die Untereinheiten β 3/PUP3 und β 6/C5 haben kurze C-Termini, so daß die Helices H5 nicht existieren, und die Stränge S10 verlängert sind, um das β -Faltblatt zu vergrößern. In β 4/C11 existiert die Helix H5, ist aber um 2 Knicke kürzer als bei T.acidophilum.

Viele dieser Untereinheit-spezifischen Knicke, Insertionen und N- und C-Termini sind an Kontakten zwischen Untereinheiten beteiligt, wie im folgenden diskutiert wird.

15 <u>4.2</u> Der (C7, Y7, Y13, PRE6, PUP2, PRE5, C1; PRE3, PUP1, PUP3, C11, PRE2, C5, PRE4) ₂ Komplex

Jede der sieben α -Typ-Untereinheiten hat zwei Nachbarn innerhalb des heptameren Rings, die α -cis-Wechselwirkungen aufweisen, und eine oder zwei in Nachbarschaft liegende β -Typ-Untereinheiten im anderen Ring mit α -trans- β -Wechselwirkungen. Die zentral lokalisierten β -Typ-Untereinheiten haben zusätzlich zu den β -cis und β -trans- α -Wechselwirkungen eine oder zwei in Nachbarschaft liegende β -Typ Untereinheiten im anderen β -Ring mit β -trans- β -Wechselwirkungen.

Die generelle Architektur der Quartärstruktur ist im Proteasom von T.acidophilum und Hefe gleich (Fig. 2): Das N-terminale Schleifensegment, Helix H0 (Reste 20 bis 30), Schleife L, die H2 und S5 verbindende Schleife und der Strang S7 vermitteln α -cis-Wechselwirkungen. Die β -cis-Kontakte, die weniger eng zu sein scheinen, umfassen die Schleife L, das N-Ende der Helix H1, den Strang S7 und den den Strang S8 und die Helix H3 verbindenden Knick. Diese Kontakte stammen aus dem D7-symmetrischen Vorläufer und finden sich auch im T.acidophilum Proteasom. Trotz der konservierten Architektur sind diese Kontakte

aufgrund ihrer spezifischen Aminosäuresequenzen für die jeweiligen Untereinheiten spezifisch.

Es gibt viele zusätzliche Kontakte, die in T.acidophilum feh-5 len, und durch Sequenzen und Sequenzinsertionen bewirkt werden, die für Hefe und Eukaryonten im allgemeinen charakteristisch sind. Innerhalb der α -Ringe werden enge α -cis-Kontakte durch die verschlungenen N-Termini der Untereinheiten $\alpha 1/C7$, $\alpha 2/Y7$, $\alpha 3/Y13$ und $\alpha 7/C1$ im Zentrum des heptameren Rings her-10 gestellt. Das in allen Untereinheiten konservierte Tyr8 spielt eine zentrale Rolle. Innerhalb der eta-Ringe existiert ein sehr spezifischer Kontakt zwischen β 2/PUP1 und β 3/PUP3, der durch den langen C-terminalen Arm von PUP1 vermittelt wird, der PUP3 umfaßt und fast den übernächsten Nachbarn $\beta4/\text{Cll}$ berührt. β -15 trans-α-Kontakte erfolgen durch die Helix H1-Schleife-Helix H2 Motive, welche mit den gleichen Motiven von zwei benachbarten lpha-Untereinheiten wechselwirken. Dieses grundlegende Kontaktmotiv war auch in der T.acidophilum Struktur zu sehen (siehe Figur 4a bei Löwe et al. (1995), Science 268, 3479-3486), aber 20 die Insertion bei Rest 66 von β 7/PRE4 begünstigt dessen Assoziierung mit α 6/PRE5 und α 7/Cl. In ähnlicher Weise bindet die lange Insertion in $\alpha 2/Y7$ bei Rest 210 zwischen den Strängen S9 und S10 an β 2/PUP1 und koppelt dieses Paar. Spezifische β trans- β -Wechselwirkungen werden durch den C-terminalen Arm von 25 β 7/PRE4 gebildet, der zwischen β 2'/PUP1 und β 1'/PRE3 eingelagert ist. Das C-terminale Segment von β 5/PRE2 wechselwirkt mit β 3'/PUP3 und β 4'/C11 auf ähnliche Weise (Figur 3). Die lange Insertion von $\beta6/C5$ am Rest 145 kontaktiert Untereinheit β 3'/PUP3 und den C-terminalen Arm von β 2'/PUP1.

Sehr spezifische β -trans- β -Wechselwirkungen werden durch Magnesiumionen vermittelt: Magnesium Y8 verbrückt das Hauptkettencarboxylat von Aspl93 aus β 6/C5 mit der Schleife 162 bis 167 von β 2'/PUP1. Auf gleiche Weise verbrückt das Magnesium Y9 die Untereinheit β 3/PUP3 über Aspl93 mit β 5'/PRE3. Darüber hinaus sind diese Carboxylatgruppen Liganden für andere Magnesiumionen, die in den Schleifen 165 von β 4/PUP3 (Magnesium W6)

30

bzw. $\beta6/C5$ (Magnesium W4) lokalisiert sind und die eine Rolle in der Stabilisierung der Untereinheitenstruktur spielen können. Die Aspartatreste sind vollständig verdeckt und ihre Seitenketten an Ladung-Ladung-Wechselwirkungen mit Arg 19 von $\beta2'/PUP1$ bzw. Arg 19 von $\beta5'/PRE2$ beteiligt, wodurch die β -trans- β -Kontakte weiter verstärkt werden. Die β -Typ Untereinheiten $\beta1/PRE3$ und $\beta4/C11$ liegen an der einzigen Moleküldiade des Hefeproteasoms und sind sehr ähnlich dem dominanten β -trans- β -Kontakt an den Resten 133-137 der Helix H3 von T.aci-dophilum.

18 Magnesiumpositionen wurden im Proteasommolekül identifiziert, von denen 12 auf den Innenwänden der β - β -Kammer lokalisiert sind und die im Folgenden diskutierte saure Natur dieses Kompartments belegen. Es ist erkennbar, daß die Vielzahl spezifischer Wechselwirkungen zwischen den Untereinheiten deren spezifische und eindeutige Positionen innerhalb des Proteasoms bestimmt.

20 4.3 Die N-terminale Threoninposition

Im T.acidophilum Proteasom wurde durch Struktur- und Mutationsuntersuchungen ein katalytisches System mit Thr1, Glu17 und Lys33 definiert (Löwe et al. (1995), supra und Seemüller et al. (1995), Science 268, 579-582).

Nahe an Thr 1 befinden sich die Reste Serl29, Serl69 und Aspl66, die für die strukturelle Integrität dieser Stelle erforderlich sind, aber auch an der Katalyse beteiligt sein könnten. Durch Mutagenese wurde gezeigt, daß Aspl66 im Proteasom von T. acidophilum essentiell ist (Seemüller et al. (1996), Nature 382, 468-470). Diese Reste sind in den aktiven Untereinheiten PUP1, PRE2 und PRE3 invariant.

Zusätzlich wurde ein vollständig gebundenes Lösungsmittelmole-kül NUK in allen drei Untereinheiten nahe bei Thrlo $^{\gamma}$ und N, Serl290 $^{\gamma}$ und N und Gly47N gefunden, wie exemplarisch für die

Untereinheit ß5/PRE2 im Lactacystin-Komplex (Figur 4) gezeigt ist. Dies wurde bei einer geringeren Auflösung im Modell von T.acidophilum nicht erkannt. ThrlN hat Wasserstoffbrücken zu Serl680 und O' und Serl290'. ThrlO' hat eine Wasserstoffbrücke zu Lys33'. Aspl7 hat Wasserstoffbrücken über O' zu Arg19N und Gly170N und über O' zu Thr/Ser2N und Lys33N'. Auf ähnliche Weise hat Lys33N' drei Wasserstoffbrücken zu Aspl70', Arg190 und ThrlO'.

10 Das Muster von Wasserstoffbrücken läßt vermuten, daß sowohl Asp17 als auch Lys33 geladen sind. Thr1N kann eine Wasserstoffbrücke zu $ThrO^{\gamma}$ ausbilden und ist vermutlich neutral, ein Zustand der durch einen nahegelegenen positiv geladenen Lysinrest begünstigt wird. Eine solche Ladungsverteilung wäre auch 15 aufgrund der jeweiligen Standard-pKa-Werte zu erwarten. ThrlN ist daher höchswahrscheinlich der Protonenakzeptor, wenn Thrlo an einem elektrophilem Zentrum beteiligt ist. Dies wird durch die Struktur des Lactacystinkomplexes bestätigt, der einen Ester zwischen Lactacystin und Thr1 als Ergebnis einer β -Lac-20 ton-Ringöffnung nach einem nukleophilen Angriff durch Thrlo $^{\gamma}$ aufweist. Thr1N ist genau an der Position, um als Protonenshuttle von $Thr10^{\gamma}$ zum Lactacystin-06' zu dienen. Eine analoge Reaktionssequenz wird für die Hydrolyse des C-terminalen Fluorophoren von fluorogenen Substraten vorgeschlagen, wobei der Protonentransfer im Amidstickstoff der Abgangsgruppe erfolgt. Das erzeugte Acyl-Enzym wird, wie in den Abschnitten D-E von Figur 5 gezeigt, durch das Wasser NUK deacyliert. Alternativ oder parallel könnte ein direkter Angriff von NUK auf die Peptidbindung erfolgen, wobei das Intermediat I umgangen wird.

4.4 Inhibitorbindung

30

ß3/PUP1, ß1/PRE3 und ß5/PRE2 haben den Inhibitor Acetyl-Leu-Leu-Norleucinal kovalent an Thr10 $^{\gamma}$ vermutlich als Hemiacetal gebunden. Er nimmt eine β -Konformation an und füllt die Lücke zwischen Strängen, welche die Reste 20 und 21 bzw. 47 enthalten (der Schleife L in Figur 3 bei Löwe et al., 1995, supra,

zugeordnet), an die er über Wasserstoffbrücken gebunden ist, wodurch eine antiparallele β -Faltblattstruktur erzeugt wird. Die Norleucinseitenkette reicht in eine Tasche (die S1 Tasche) hinein, die seitlich zu einem Tunnel hin offen ist, der zur 5 Partikeloberfläche führt. Die Leucinseitenkette bei P2 ist nicht in Kontakt mit Protein und die Leucinseitenkette bei P3 ist in Kontakt mit der benachbarten eta-Untereinheit. Die Sl-Spezifitätstasche wird hauptsächlich durch die Reste 20, 31, 35 49, 53 gebildet, d. h. Ala20, Val31, Ile35, Met45, Ala49, 10 Gln53(K) in £5/PRE2 (Fig. 6c), Thr20, Thr31, Thr35, Arg45, Ala49, Gln53 in ß1/PRE3 (Fig. 6a), Ser20, Cys31, His35, Gly45, Ala49, Glu53 in ß2 PUP1(Fig. 6b). Der Rest 45 formt den Boden der Tasche und scheint weitgehend ihren Charakter zu bestimmen. Benachbarte Untereinheiten in den ß-Ringen tragen weiter 15 Zu den S1-Taschen bei und modulieren deren Charakter: £2/PUP1 im Falle von ß1/PRE3 mit Hisl14, Hisl16, Serl18, Asp120; ß3/PUP3 im Falle von ß2/PUP1 mit den Resten Aspl14, Aspl20 und Cis118 und £6/C5 im Falle von £5/PRE2 mit Ser118, Asp114, Glu120 und Glu122.

20

Lactacystin ist kovalent an £5/PRE2 gebunden. Dies steht im Einklang mit der beobachteten chemischen Modifizierung von Untereinheit X des Säugerproteasoms (Fenteany et al., (1995), Science 268, 726-730) dem Homolog von PRE2. Seine Dimethylsei-25 tenkette bei C10 reicht wie eine Valin- oder Leucinseitenkette in S1 hinein, aber weniger tief als die Norleucinseitenkette von Calpain. Lactacystin bildet mehrere Wasserstoffbrücken mit Atomen der Proteinhauptkette LactN-Gly470, LactO4'-Gly47N, Lact09'-Thr21N, Lact06'-Thr1N. Da diese zuletzt genannten 30 Wechselwirkungen auch in ß2/PUP1 und ß1/PRE3 auftreten könnten, die keine kovalenten Komplexe mit Lactacystin bilden, scheint die S1 Seitengruppe, die in der hydrophoben S1 Tasche von ß5/PRE2 bindet, die Ausbildung einer kovalenten Bindung und deren Stabilisierung zu dirigieren. somit ist diese Sei-35 tengruppe ein wichtiger Ansatzpunkt zur Entwicklung von Inhibitoren.

4.5. Spezifität

ß5/PRE2 hat einen Methioninrest an Postion 45 in Kontakt mit der verzweigten Seitenkette von Lactacystin im Komplex. s Calpain-Inhibitorkomplex drückt die Norleucinseitenkette von Calpain die Methioninseitenkette um bis 0,27 nm in Richtung auf Ile5, das aus dem Weg rotiert. Diese konzertierten Bewegungen machen die S1 Tasche geräumiger. Ihre sauren Seitenwände, die von der Untereinheit ß6/C5 stammen, ermöglichen 10 auch die Bindung von basischen Resten, insbesondere Arginin. Dies steht im Einklang mit der Beobachtung, daß Lactacystin sowohl die chymotryptische als auch die tryptische Aktivität gegenüber chromogenen Substraten hemmt. Auf ähnliche Weise wird die chymotryptische Aktivität in Proteasomen mit einer 15 ß5/PRE2 Mutante, die nicht aus ihrer Proform prozessiert werden kann (Chen & Hochstrasser (1996), Cell 86 961-972) und durch eine Mutation in ß5/PRE2 verringert, wo eine Substitution von Ala49 durch Val in der S1 Tasche die Größe beschränkt (Heinemeyer et al. (1993), J. Biol. Chem. 268, 5115-5120). 20 ß1/PRE3 hat einen Argininrest in Position 45 am Boden der S1 Tasche, die gut für Glutamat P1 Reste geeignet ist. Sie ist am wahrscheinlichsten die mit der Peptidylglutamyl-Peptid-Hydrolyseaktivität (PGPH) des Proteasoms assoziierte Untereinheit. Jedoch auch die Norleucinseitenkette besetzt diese basische 25 Tasche im Calpaininihitorkomplex. Es wurde eine hoher zusätzlicher Dichtepeak beobachtet, der mit der Guanidiniumseitenkette assoziiert ist und als Chloridion interpretiert werden kann, welches eine nicht ausgeglichene positive Ladung kompensiert. ß2/PUP1 hat als Rest 45 ein Glycin und folglich eine 30 geräumige, am Boden durch His35 begrenzte S1 Tasche.

Wir folgern, daß ß5/PRE2 sowohl die chymotryptische als auch die tryptische Aktivität enthält, während ß1/PRE3 die PGPH-Aktivität enthält, aber beide Taschen sind hinsichtlich der Größe (PRE2) und der Polarität (PRE3) anpassungsfähig. ß2/PUP1 ist für sehr große P1 Reste mit neutralem, saurem oder basischem Charakter geeignet, abhängig davon ob His35 oder die

saure ß3/PUP3 Seitenwand für den Ladungsausgleich sorgt. Mutationsanalysen haben gezeigt, daß Substitutionen in ß4/Cll und ß7/PRE4 die chymotrypsinartige bzw. die PGPH Aktivität beeinflussen (Heinemeyer et al. (1993), supra; Hilt & Wolf (1996), 5 TIBS 21, 96-102; Hilt et al. (1993), J. Biol. Chem. 268, 3479-3486). Diese Untereinheiten sind inaktiv, aber in Nachbarschaft zu den Untereinheiten ß5/PRE2 und ß1/PRE3 aus beiden Ringen gelegten (Figur 4). Der Austausch von Serl36 durch das voluminöse Phe in ß4/Cll stört den ß-trans-ß-Kontakt an Helix H3 zwischen ß4/Cll und ß5/PRE2 und kann die benachbarte Thr1 Stelle stören, wie auch vermutlich die Deletion der 15 C-terminalen Reste von ß7/PRE4, die extensive Kontakte mit ß1/PRE3 bilden (Fig. 3).

15 4.6 Propeptide und Prozessierung

Fünf β-Typ-Untereinheiten werden mit Propeptiden unterschiedlicher Längen bis zu 75 Aminosäuren synthetisiert, die während der Reifung abgespalten werden. ß2/PUP1, ß5/PRE2 und ß1/PRE3
zeigen eine Autolyse zwischen Gly-1 - Thr1. Dies ist ein Prozeß, für den das Vorhandensein von Thr1, Gly-1 und Lys33 erforderlich ist. Wir hatten bereits eine Autolyse innerhalb der Untereinheit vorgeschlagen, wobei Thr10⁷ als Nukleophil die vorangehende Peptidbindung angreift (Schmidtke et al. (1996),
EMBOJ. 15, 6887-6898).

Gemäß der Kristallstruktur wird dem Wasser NUK eine zentrale Rolle zugeordnet. Es ist idealerweise so positioniert, um als Base bei der Entfernung eine Protons von Thr10' zu wirken und die nukleophile Addition an den Carbonylkohlenstoff von Gly-1 anzutreiben. Es gibt keine Informationen über die Position und Orientierung der Gly-1-Thr1-Peptidgruppe in den vollständig prozessierten Untereinheiten, aber wir können sie von teilweise prozessierten oder unprozessierten Untereinheiten 35 ß3/PUP3, ß6/C5 und ß7/PRE4 ableiten, welche ähnliche Orientierungen zeigen. Gly-10 ist in diesen Untereinheiten in Richtung des positiv geladenen Lysn' und von Gly47N gerichtet, die ein

Sauerstoffanionenloch in Analogie zu Serinproteasen bilden, um die entstehende negative Ladung zu verteilen, wenn das tetraedrische Addukt gebildet wird. Eine Umlagerung zum Ester kann nach dem Protonentransfer vom Wasser NUK zu ThrlN und Spaltung der Peptidbindung erfolgen. Die nahegelegenen Reste Serl290 und Serl690 unerstützen diese Reaktion. Beide Hydroxylgruppen sind über Wasserstoffbrücken an Aspl66 gebunden, welches in den aktiven Untereinheiten invariant ist. NUK ist wahrscheinlich ebenfalls bei der Esterhydrolyse als angreifendes Nukleophil beteiligt, welches schließlich in das Produkt eingebaut wird (Fig. 5, Abschnitte a bis c). Der Gly-1 Rest scheint essentiell zu sein, da eine Seitenkette an Position -1 mit dem Proteinrückgrat bei Position 168 interferieren und eine Konfiguration erzwingen würde, die für eine Autolyse ungeeignet

Mit Freisetzung von Thrl werden die Untereinheiten aktiv. Wenn die katalytische Stelle nicht intakt ist, wie in den Untereinheiten ß3/PUP3, ß6/C5 und ß4/C11, denen Thr1 fehlt, 20 ß7/PRE4, bei dem Lys33 durch Arg ersetzt ist, und in konstruierten Varianten von LMP2, dem Säugerhomolog von ß1/PRE3 (Schmidtke et al. (1996), supra) und von PRE2 (Chen & Hochstrasser (1996), supra) tritt eine Autolyse bei Rest 1 nicht auf. £37/PRE4 besitzt beide essentiellen Reste Gly-1 und Thr1, 25 aber in einer Konfiguration, die sich stark von derjenigen unterscheidet, die in den aktiven Untereinheiten gefunden wird, da die Thr1 Seitenkette durch das größere Arg33 weggedrückt wird, welches den Lysinrest ersetzt (Figur 4b). Das Auffinden von Defekten in der katalytischen Aktivität und in 30 der Prozessierung belegt die strukturelle Labilität der Thr1-Stelle, die durch Mutationen von benachbarten Resten der gleichen oder benachbarten Untereinheiten gestört werden kann. Andererseits ist es auch möglich, daß eine inaktive Mutante in der Umgebung aktiver Untereinheiten selbst aktiv werden kann, 35 was im Einklang mit Beobachtungen steht, daß T.acidophilum Spezies, die einen Defekt in der Prozessierung aufweisen, bei

Koexpression mit Wild-Typ-Protein prozessiert werden (Seemüller et al. (1996), supra).

ß7/PRE4 und ß6/C5 sind Produktkomplexe der partiellen Prozes-5 sierungsreaktion und die Lokalsierung dieser Spaltstellen führt direkt zur den aktiven Stellen, die verantwortlich für diese Endopeptidase-Aktivität sind, unter der Annahme, daß nach der Spaltung keine Umlagerung stattfindet. Eine große Umlagerung scheint unwahrscheinlich, da die Propeptide fest an 10 den Proteinwänden gehalten werden, das PRE4 Propeptid eng an den Untereinheiten ß7/PRE4 und ß1/PRE3 und das C5 Propeptid eng an den Untereinheiten ß6/C5 und ß7/PRE4. Die Reste Thr-8 und Gln-9 liegen sehr nahe beieinander an der scharfkantigen inneren Ringfläche des eta-Rings, der durch die C-Termini der 15 Helices H2 der sieben Untereinheiten gebildet wird. Speziell Thr-8 und Gln-9 liegen nahe an den Helices H2 der Untereinheiten ß1/PRE3 und ß7/PRE4 (Figur 7). Die vermutlichen Prozessierungsintermediate der Untereinheiten £1/PRE3, £2/PUP1 und ß5/PRE2 kommen ebenfalls auf der inneren Ringfläche des ß-20 Rings in einer Konformation zu liegen, die ähnlich wie die bei ß7/PRE4 und ß6/C5 ist. Eine intermediäre Protzessierung wird auch für die Mutante LMP2 mit einem defekten katalytischen Apparat (Schmidtke et al. (1996), supra) und vermutlich auch für ß5/PRE2 gefunden, wie aus dem Molekulargewicht von Inter-25 mediaten nach Puls-Chase-Experimenten zu vermuten ist (Chen und Hochstrasser (1995), supra). Dies ist besonders bemerkenswert, da ß5/PRE2 keinen aktiven Nachbarn hat, der einen partielle Prozessierung über ein N-terminales Threonin durchführen könnte.

Proteasomen haben eine sehr breite Sequenzspezifität, die aber sehr längenrestringiert ist (Ehring et al. (1996), Eur. J. Biochem. 235, 404-415), um Peptide mit einer Länge von etwa 8 Aminosäureresten zu erzeugen. Auf Basis der T.acidophilum 205 Proteasomenstruktur hatten wir vorgeschlagen, daß der Abstand von 2,8 nm zwischen den aktiven Thr1 Stellen von benachbarten Untereinheiten die Länge des durch eine sequentiell fort-

30

schreitende Proteolyse erzeugten Peptidprodukts bestimmt (Löwe et al. (1995) supra; Stock et al. (1996), Cold Spring Harbor Symposia on Quantitative Biology LX, 525-532; Dick et al. (1991), Biochemistry 30, 2725-2734).

Die Beobachtung von Prozessierungsintermediaten lassen vermuten, daß zusätzlich zu den N-terminalen Threoninresten eine zweite hydrolytische Stelle aktiv ist, die wir an der Innenfläche des β -Rings lokalisieren. Wir nehmen daher an, daß die 10 innere Ringfläche die Hauptstelle der Endopeptidaseaktivität ist. Ein Polypeptidsubstrat wird sich mit seinem C-Terminus an Thr1 anlagern, wobei ein Muster von Wasserstoffbrückenbindungen, ahnlich wie es bei den Tripeptid-Aldehyden auftritt, gebildet wird. Die Acyl-Enzym-Bildung würde eine vorangehende 15 Spaltung der Peptidbindung ähnlich wie die Autolysereaktion erfordern, und die Proteolyse würde daher von einer internen Stelle starten. Sterische Beschränkungen würden in diesem Fall eine scharf gebogene Konformation an der zu spaltenden Peptidbindung erfordern und die Reaktion würde wie in Figur 5, Ab-20 schnitte d bis f gezeigt, verlaufen. Die Reste -9 oder -8 würden dann auf der inneren Ringfläche zu liegen kommen, wenn sie wie ß6/C5 und ß7/PRE4 Propeptide gebunden sind. Wir nehmen an, daß Wassermoleküle, die durch die 3 bis 4 Carbonylsauerstoffe der Hauptkette an den Helixenden von jeder der sieben 25 Untereinheiten (Fig. 5) aktiviert werden, als Base und Säure wirken, so daß eine Hydrolyse stattfinden kann. 18 Magnesiumstellen wurden im Proteasommolekül identifiziert, von denen 12 an den Innenwänden der ß-ß-Kammer lokalisiert sind. Diese belegen die saure Natur dieses Kompartements. Es gibt keine ersichtliche Peptid-Tasche an diesen Stellen, so daß die Spaltung im Einklang mit dem scheinbaren Mangel jeglicher Spezifität gegenüber längeren Peptidsubstraten unspezifisch sein kann.

Die Propeptide spielen eine essentielle Rolle bei der Assemblierung eukaryontischer Proteasomen, was auf direkte oder indirekte Effekte durch Teilnahme an Wechselwirkungen zwischen

Untereinheiten und/oder durch Stabilisierung der Struktur von Untereinheiten zurückzuführen sein kann. Die beobachteten Strukturen der Prozessierungsintermediate von ß7/PRE4 (M) und ß6/C5 und des unprozessierten Propeptids ß3/PUP3 geben Hinweise darauf, daß beide Effekte auftreten, da die Propeptide fest an den Rest des Proteins gebunden sind und mit anderen Untereinheiten wechselwirken, z. B. Propeptid ß7/PRE4 mit ß1/PRE3 bei den Resten 92 und 115 und Propeptid ß6/C5 mit ß7/PRE4 bei 91 und 116.

10

4.7 Eintritt in das und Austritt aus dem Proteasompartikel

Die hydrolytische Aktivität des Proteasoms ist mit Thr1 und der β -Ringflächen im Inneren des die hydrolytische Kammer definierenden β -Hohlraums assoziiert. Das Substrat muß in das Partikel eindringen und das Produkt muß freigesetzt werden. Beim Proteasom von T.acedophilum sind zwei Eintrittsöffnungen mit einem Durchmesser von etwa 1,3 nm an den Enden der zylindrischen Teilchen offen, die durch eine Ringfläche von Knickbildenden Segmenten Tyr126-Gly-Gly-Val der sieben identischen α -Untereinheiten begrenzt sind. Die N-terminalen Reste 1 bis 12 sind in diesem Protein ungeordnet.

Im Gegensatz dazu ist die hydrolytische Kammer des 20S Proteasoms der Hefe fast unzugänglich. Die N-Termini der Untereinheiten $\alpha 1/C7$, $\alpha 2/Y7$, $\alpha 3/Y13$, $\alpha 6/PRE5$ und $\alpha 7/C1$ reichen in die Öffnung hinein und füllen sie vollständig mit mehreren Schichten von eng miteinander verwobenen Seitenketten aus (Figur 8). Es gibt somit keinen Zugang in das Innere des Partikels von den Zylinderenden ohne erhebliche Umlagerung. Es gibt einige enge Seitenfenster, insbesondere an der Grenzfläche zwischen den α - und β -Ringen, die durchlässiger sind als im T.acidophilum Proteasom, da kleinere Seitenketten dort vorliegen. Diese Öffnungen befinden sich hauptsächlich zwischen den zahnartigen Helix H1-Knick-Helix H2-Motiven der α - β -Grenzfläche (siehe Figur 4a bei Löwe et al. (1995), supra) und führen zu den Nterminalen Threoninresten des aktiven Zentrums. Sie sind mit

polaren und geladenen Aminosäureseitenketten bedeckt, die sich bewegen können, um Öffnungen mit etwa 1 nm Durchmesser zu erzeugen und möglicherweise die Passage von ungefalteten gestreckten Polypeptidketten erlauben. Das 19S Partikel, welches die ATP- und Ubitiquin-Abhängigkeit der Proteolyse durch das Proteasom bewirkt, ist an die Partikel angeheftet um das 26S Proteasom zu bilden. Die Assoziierung führt zu einer starken Aktivierung der Peptidhydrolyse (Hoffman und Rechsteiner (1994), J. Biol. Chem. 269, 1690-16895). Auf ähnliche Weise ist der Proteasomregulator PA28 an α-Typ Untereinheiten gebunden (Kania et al. (1996), Euro. J. Biochem. 236, 510-516). Er beschleunigt die Peptidspaltung und verbessert die Antigenprozessierung. Beide regulatorischen Faktoren könnten die Eingangsöffnungen auf kontrollierte Weise in vivo öffnen.

4.8 Erzeugung von MHC Klasse I Peptiden

15

Das 20S Proteasom erzeugt Peptidprodukte mit einer engen Längenverteilung, überwiegend Octa- oder Nonapeptide, ein Größen-20 bereich, der optimal für die Bindung von MHC Klasse I Molekülen ist (York & Rock (1996), Annu. Rev. Immunol. 14, 369-396). In vitro Untersuchungen haben gezeigt, daß durch 20S Proteasomen aus intakten Proteinen erzeugte Peptide durch MHC Klasse I Moleküle präsentiert werden (Dick et al. (1994) Immunol. 152, 25 3884-3894; Niedermann et al. (1996), Proc. Natl. Acad. Sci. USA 93, 8572-8577). In einem in vivo Experiment wurde gezeigt, daß Proteasomeninhibitoren die MHC Klasse I Präsentation von Proteinantigenen hemmen (Rock et al. (1994), Cell 78, 761-771) und daß die Anzahl der an der Zelloberfläche vorliegenden MHC 30 Klasse I Moleküle durch die induzierbaren Proteasomenuntereinheiten ß5i/LMP7 und ßli/LMP2 reguliert wird, wie in Mäusen mit zielgerichteten Deletionen der für diese Proteine codierenden Gene gezeigt wurde (Fehling et al. (1994) Science 265, 1234-1237). LMP2 und LMP7 ersetzen nach IFN- γ Stimulierung die kon-35 Stitutiv exprimierten Untereinheiten.

MHC Klasse I Peptide haben üblicherweise basische öder hydrophobe C-terminale Reste (siehe den Übersichtsartikel von Engelhard (1994), Curr. Opin. Immunol. 6, 13-23). Die LMP2/7 Substition ändert vermutlich die Verteilung von Peptiden, so 5 daß ein größerer Anteil der von MHC Klasse I Molekülen bevorzugten Peptiden erzeugt wird. LMP2 ersetzt Y, das humane Homologe von £1/PRE3, LMP7 ersetzt X, das Homologe von £5/PRE2. Alle Mitglieder dieser Unterfamilie zeigt einen hohen Grad an Sequenzidentität, aber ßli/LMP2 hat zwei auffällige Unterschiede gegenüber &l/PRE3 in der Sl Tasche: Thr31 \rightarrow Phe und $Arg45 \rightarrow Leu$. Durch den Austausch von Arg gegen Leu wird die Tasche unpolar und durch den Austausch von Thr gegen Phe endaß die PGPH-Aktivität verringert und chymotryptische Aktivität erhöht werden sollte, wenn LMP1 das 15 Säugerhomolog für PRE3 ersetzt. Dies wird in der Tat beobachtet (Gaczynska et al. (1993), Nature 365, 264-267; Driscoll et al. (1993), Nature 365, 262-264) wenn LMPs durch eine Behandlung mit IFN- γ induziert werden. Die gegenteilige Wirkung findet man in Zelllinien, denen die LMP2 und LMP7 Gene fehlen 20 und in Mutantenmäusen mit einer Disruption des LMP2 Gens (Van Kaer et al. (1994), Immunity 1, 533-541). Ein Ersetzen der Säugerhomologen von £5/PRE2 und £1/PUP1 durch LMP7 bzw. MECL1 beeinflußt nicht direkt die S1 Taschen und ihre Effekte können nicht von einer Änderung der Spezifität bei Pl stammen, wie ²⁵ man sie für LPM2 findet.

Im Hefe 20S Protesom werden die Untereinheiten ß7/PRE4 bzw. ß6/C5 an den Resten -8 und -9 teilweise prozessiert. Dabei entstehen Octa- oder Nonapeptidprodukte, die nicht aus dem Enzym freigesetzt werden. Beide Peptide haben ähnliche Konformationen mit einer Verdickung, die zwei Abschnitte mit langgestreckter Konformation unterteilt, was der Konformation von MHC Klasse I-gebundenen Peptiden ähnelt. Durch Vergleich des Propeptids von ß6/C5 mit einem viralen Peptidnonamer im Komplex mit seinem MHC Klasse I Rezeptor (Madden et al. (1992), Nature 321-325) wird die Ähnlichkeit mit rms Abweichungen für alle Atome von 0,23 nm und für die C°-Atome von 0,13 nm

quantifiziert und läßt vermuten, daß bevorzugte lokale Konformationen eine Rolle bei der Erzeugung (durch das Proteasom) und Präsentation (durch MHC Klasse I Moleküle) von immundominanten Peptidepitopen spielen.

Ansprüche

- Verfahren zum Gewinnen einer aufgereinigten eukaryontischen Proteasomenpräparation, umfassend die Schritte:
 - (a) Herstellung eines Rohextrakts durch Aufschluß von eukaryontischen Zellen,
 - (b) Abtrennung unlöslicher Bestandteile aus dem Rohextrakt,
- (c) chromatographische Auftrennung in Fraktionen über ein Ionenaustauschermedium,
 - (d) Testen der in Schritt (c) erhaltenen Fraktionen und Sammeln der aktiven Fraktionen,
 - (e) chromatographische Auftrennung über Hydroxyapatit,
- (f) Testen der in Schritt (e) erhaltenen Fraktionen und Sammeln der aktiven Fraktionen,
 - (g) Konzentrierung der vereinigten Fraktionen,
 - (h) chromatographische Auftrennung über ein Gelfiltrationsmedium und
- 20 (i) Testen der in Schritt (h) erhaltenen Fraktionen und Sammeln der aktiven Fraktionen.
 - Verfahren nach Anspruch 1 dadurch gekennzeichnet,
- daß man Hefezellen verwendet.
- 3. Verfahren nach Anspruch 1,
 dadurch gekennzeichnet,
 daß das Testen der Fraktionen in Schritt (d), (f)
 oder/und (i) jeweils zwei Bestimmungen der proteolytischen Aktivität umfaßt, wobei eine in Abwesenheit und die andere in Gegenwart eines Proteasomeninhibitors durchgeführt wird.
- Verfahren nach Anspruch 3,

 dadurch gekennzeichnet,

 daß man Lactacystin als Proteasomeninhibitor verwendet.

- Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß mindestens einer der chromatographischen Trennschritte in einem FPLC-System durchgeführt wird.
- 6. Verfahren nach einem der Ansprüche 1 bis 5, weiterhin umfassend das Kristallisieren der aufgereinigten Protesomenpräparation.
- Aufgereinigte eukaryontische Proteasomenpräparation, erhältlich durch das Verfahren nach einem der Ansprüche 1 bis 5.
- 8. Aufgereinigte eukaryontische Proteasomenpräparation in kristallisierbarer Form.
 - 9. Aufgereinigte kristallisierte eukaryontische Proteasomenpräparation.
- 20 10. Präparation nach Anspruch 9,
 dadurch gekennzeichnet,
 daß der Kristall einen Proteasomeninhibitor enthält.
- 11. Präparation nach Anspruch 10,
 25 dadurch gekennzeichnet,
 daß der Inhibitor ein Tripeptid-Aldehyd oder Lactacystin
 ist.
- 12. Prāparation nach einem der Ansprüche 7 bis 11,
 30 dadurch gekennzeichnet,
 daß sie ein Proteasom aus einer Hefe umfaßt.
 - 13. Präparation nach Anspruch 12, dadurch gekennzeichnet,
- daß sie ein Proteasom aus Saccharomyces cerevisiae umfaßt.

14. Präparation nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet,

10

15

20

25

30

35

daß sie einen Komplex aus 28 Untereinheiten umfaßt, der jeweils 2 Moleküle von 7 verschiedenen α -Typ-Untereinheiten und 7 verschiedenen β -Typ-Untereinheiten enthält.

- 15. Verwendung der aufgereinigten eukaryontischen Proteasomenpräparation nach einem der Ansprüche 7 bis 14 zur Identifizierung und Gewinnung neuer Proteasomeninhibitoren.
- 16. Verwendung von Daten aus der Kristallstruktur von kristallisierten eukaryontischen Proteasomenpräparationen nach einem der Ansprüche 9 bis 14 zur Identifizierung und Gewinnung neuer Proteasomeninhibitoren.
- 17. Verwendung von Kristallstrukturdaten aus dem Bereich der Proteasomentaschen S1 der Untereinheiten ß1/PRE2, ß2/PUP2 oder/und ß5/PRE2 zur Identifizierung und Gewinnung neuer Proteasomeninhibitoren.
- 18. Verwendung nach einem der Ansprüche 15 bis 17 in einem computergestützten Modellingprogramm.
- 19. Verwendung nach Anspruch 18, umfassend einen Schritt des Homologiemodelling, indem die Kristallstrukturdaten eines Hefeproteasoms mit Aminosäuresequenzen aus dem humanen Proteasom modifiziert werden.
- 20. Neuer Proteasomeninhibitor,
 dadurch gekennzeichnet,
 daß er eine zur Proteasomentasche S1 der Untereinheiten
 ß1/PRE3, ß2/PUP2 oder/und ß5/PRE2 komplementäre dreidimensionale Struktur aufweist.

Zusammenfassung

Die Erfindung betrifft ein Verfahren zum Gewinnen einer aufgereinigten eukaryontischen kristallisierbaren Proteasomen-Präparation und die durch das Verfahren erhältliche ProteasomenPräparation. Weiterhin betrifft die Erfindung eine aufgereinigte eukaryontischen Proteasomen-Präparation in kristallisierter Form. Mit Hilfe der Kristalldaten aus dieser Proteasomen-Präparation können neue Proteasomen-Inhibitoren, insbesondere mit Hilfe von computergestützten Modelling-Programmen
identifiziert und gewonnen werden.

15

vo 18.03.97 12:53

}

LC SASAKANO CONTROL SASAKANO CONTROL C	### ### ##############################	
## ## ## ## ## ## ## ## ## ## ## ## ##	### ### ### ### #### #################	220 CE C C C C C C C C C C C C C C C C C C
SANDANANANANANANANANANANANANANANANANANAN	**************************************	SFFP
SS CHICK-C-LC-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-	SY S	P. DAGHYK
### ### ##############################	SS CONTROL OF CONTROL	
22	SS COCKOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO	S9 SOURCE CONTROL CON
SOUTH TO THE TO	HODOGON-Y-INCO VETWONCON-Y-INCO NETWONCON-Y-INCO DULLLLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCL	
M	KANTOODAKOOKAO KACKACANAO KAKOAWATAO KAKOAWATAO KATALLIKALIKA KATALLIKALIKA KATALLIKALIKA KATALIKAN KA	TANALAS TO THE TANALA
BETA Le PUP3, sc f) C3.1 sc f6 C3.1 sc f7 C3.1 sc f8 PRE3, sc f9 PRE3, sc f9 LARP3 le LARP3 le LARP3 le	BETA LO PUPLE B CUL SE B CS SE B PREL SE BT PRES SE BT NICH TO I MIPT TO I M	BETA 14 PUP3 or D C1 .cc B4 C3 .cc B4 C3 .cc B6 REG. or B7 REJ. or B7 REJ. or B7 REJ. or B7 REJ. or B7 LAIP7, bu LAIP7, bu LAIP7, bu LAIP7, bu

Figur

klac map2

Figur 4a

pre4 map2

Figur 6a

Figur 6b

Figur 60

Figur

THIS PAGE BLANK (USPTO)