1. Simplify the following function, and implement it with a two-level NAND gate circuit.

$$F = (A' + C' + D')(A' + C')(C' + D')$$

$$F = (A' + C' + D')(A' + C')(C' + D')$$

$$F' = (A' + C' + D')' + (A' + C')' + (C' + D')'$$

$$F' = ACD + AC + CD$$

$$F = C' + A'D'$$

$$F = (C(A + D))'$$

$$F = (C(A'D')')'$$

2. Design a combinational circuit with three inputs and one output. The output is 1 when the binary value of the inputs is not divisible by 3.

	x	y	z	\boldsymbol{F}	
	0	0	0	0	
	O	0	1	1	
	0	1	0	1	
	0	1	1	0	
	1	O	0	1	
	1	0	1	1	
	1	1	0	0	
	1	1	1	1	
			У		
yz					x'
X	00	01 /	11	10 1	
0	$0 m_0$	$\begin{bmatrix} m_1 \\ 1 \end{bmatrix}$	$0 m_3$	$\frac{m_2}{1}$	x y =
$x \begin{cases} 1 \end{cases}$	$\binom{m_4}{1}$	m_5		$0 \frac{m_6}{0}$	y' z
		\sum_{Z}			<i>x</i>
F = x' + xy' + xz + y'z					