Uninformed Search Strategies:

Problem 1:

	Optimal	Path Length	Time	Expansions
Breadth first search	Yes	6	0.033	43
Breadth first tree search	Yes	6	0.7297	1458
Depth first graph search	No	12	0.0070	12
Depth limited search	No	50	0.1041	101
Uniform cost search	Yes	6	0.0701	55
Recursive best first search	Yes	6	2.214	4229
Greedy best first graph search	Yes	6	0.01123	7

If shortest path is the primary criteria, then ones marked in bold are the best options, but if time is main criteria then Depth first graph search, greedy best first search and uniform cost search are the best ones.

Problem 2:

	Optimal	Path Length	Time	Expansions
Breadth first search	Yes	9	11.82	3401
Depth first graph search	No	346	1.2009	350
Uniform cost search	Yes	9	9.06	4209
Greedy best first graph search	Yes	9	0.09183	472

If shortest path is the primary criteria, then the ones marked in bold are the best options, but if time is the main criteria then greedy best first graph, depth first graph search are the best options.

Problem 3:

	Optimal	Path Length	Time	Expansions
Breadth first search	Yes	12	82.67	14491
Depth first graph search	No	3335	43.14	3491
Uniform cost search	Yes	12	41.51	17745
Greedy best first graph search	No	22	8.6737	3734

If shortest path is the primary criteria, then the ones marked in bold are the best options, but if time is the main criteria them uniform cost and depth first graph search are the options.

Informed (Heuristic) Search Strategies:

Problem 1:

	Optimal	Path Length	Time	Expansions
A* Search with h1	Yes	6	0.067	55
A* Search with h-	Yes	6	0.06640	41
ignore predictions				
A* Search with	Yes	6	0.97153	11
level sum heuristics				

Problem 2:

	Optimal	Path Length	Time	Expansions
A* Search with h1	Yes	9	9.284	4729
A* Search with h-	Yes	9	3.396	1445
ignore predictions				
A* Search with	Yes	9	148.89	86
level sum heuristics				

Problem 3:

	Optimal	Path Length	Time	Expansions
A* Search with h1	Yes	12	42.26	17745
A* Search with h-	Yes	12	12.8941	4934
ignore predictions				
A* Search with				
level sum heuristics				

All the A* algorithms have the same path length for all the problems, if shortest time is the criteria then A* with h-ignore predictions is the best algorithm. The A* Search with level sum heuristics uses the least memory but its execution time is much slower.

Informed Vs Uninformed Search Strategies:

Problem 1:

	Optimal	Path Length	Time	Expansions
Breadth first search	Yes	6	0.033	43
A* Search with h-	Yes	6	0.06640	41
ignore predictions				

Problem 2:

	Optimal	Path Length	Time	Expansions
Breadth first	Yes	9	11.82	3401
search				
A* Search with h-	Yes	9	3.396	1445
ignore predictions				

Problem 3:

	Optimal	Path Length	Time	Expansions
Breadth first	Yes	12	82.67	14491
search				
A* Search with h-	Yes	12	12.8941	4934
ignore predictions				

From the comparison results we can observe that A* with h-ignore predictions is best choice for the Air Cargo problem.

The results indicate that informed search strategies with custom heuristics over uninformed search strategies.

Optimality Sequence:

Problem 1:

Load(C1, P1, SFO)

Fly(P1, SFO, JFK)

Unload(C1, P1, JFK)

Load(C2, P2, JFK)

Fly(P2, JFK, SFO)

Unload(C2, P2, SFO)

Problem 2:

Load(C3, P3, ATL)

Fly(P3, ATL, SFO)

Unload(C3, P3, SFO)

Load(C1, P1, SFO)

Fly(P1, SFO, JFK)

Unload(C1, P1, JFK)

Load(C2, P2, JFK)

Fly(P2, JFK, SFO)

Unload(C2, P2, SFO)

Problem 3:

Load(C2, P2, JFK)

Fly(P2, JFK, ORD)

Load(C4, P2, SFO)

Fly(P2, ORD, SFO)

Unload(C4, P2, SFO)

Load(C1, P1, SFO)

Fly(P1, SFO, ATL)

Load(C3, P1, ATL)

Fly(P1, ATL, JFK)

Unload(C3, P1, JFK)

Unload(C1, P1, JFK)

Unload(C2, P2, SFO)