EE236: Experiment No. 9 N Channel MOSFET Characteristics

Jatin Kumar, 22B3922

October 10, 2024

1 Overview of the experiment

1.1 Aim of the experiment

The aim of the experiment is to measure output and transfer characteristics of a NMOS transistor. To also investigate the effect of body bias on the characteristics of the NMOS.

1.2 Lab Experiment

1.3 Part 1 - Transfer Characteristics (Linear)

1.3.1 Circuit Used for Part 1

1.3.2 Readings Obtained

$V_{-}GS \text{ (in } V)$	LD (in mA)
1.21	0.001
1.275	0.003
1.316	0.006
1.369	0.011
1.62	0.052
1.67	0.067
1.68	0.070
1.74	0.084
1.77	0.094
1.83	0.115
1.93	0.145
2.10	0.178
2.15	0.187
2.18	0.197
2.24	0.205
2.36	0.221
2.42	0.231
2.48	0.245
2.51	0.252
2.57	0.267
2.84	0.320
2.94	0.330
3.01	0.334

Table 1: $V_DS = 0.2V$, Linear Region Readings

1.3.3 Plot Obtained

Figure 1: Transfer Characteristics Linear Plot

1.4 Part 1 - Transfer Characteristics (Saturation)

1.4.1 Circuit Used for Part 1

1.4.2 Readings Obtained

TI OO (: TI)	I.D. (: A.)
$V_{-}GS \text{ (in V)}$	LD (in mA)
1.135	0
1.365	0.015
1.38	0.024
1.442	0.028
1.495	0.034
1.545	0.041
1.584	0.054
1.615	0.064
1.67	0.081
1.715	0.105
1.762	0.124
1.78	0.132
1.795	0.135
1.81	0.145
1.834	0.160
1.854	0.162
1.882	0.174
1.915	0.198
1.94	0.215
1.979	0.235
2.01	0.265
2.21	0.412
2.31	0.481
2.39	0.564
2.49	0.645
2.61	0.762
2.71	0.862
2.82	0.971
2.9	1.054
3.00	1.145

Table 2: $V_DS = 3V$, Saturation Region Readings

1.4.3 Plot Obtained

Figure 2: Transfer Characteristics Saturation Plot

1.5 Part 2 - Drain Characteristics

1.5.1 Circuit Used for Part 2

1.5.2 Readings Obtained

W.DC (:- W)	I.D. (A.)	_			
	I_D (mA)	_			
0.02	0.008				
0.03	0.014	V_DS (in V)	$I_D (mA)$	V_DS (in V)	$I_D (mA)$
0.10	0.052	0.25	0.295	0.25	0.540
0.20	0.096	0.45	0.473	0.45	0.930
0.26	0.112	0.65	0.589	0.65	1.260
0.30	0.118	0.85	0.646	0.85	1.540
0.34	0.122	1.05	0.664	1.05	1.740
0.39	0.125	1.25	0.670	1.25	1.880
0.44	0.127	1.45	0.673	1.45	1.990
0.50	0.128	1.65	0.675	1.65	2.030
0.56	0.128	1.85	0.677	1.85	2.050
0.68	0.129	2.05	0.678	2.05	2.070
0.78	0.130	2.25	0.680	2.25	2.080
0.90	0.130	2.45	0.681	2.45	2.080
1.10	0.131	2.65	0.682	2.65	2.080
1.30	0.131	2.85	0.683	2.85	2.080
1.50	0.132	3.05	0.684	3.05	2.090
1.70	0.132	3.25	0.685	3.25	2.090
1.90	0.132	3.45	0.686	3.45	2.100
2.10	0.132	3.65	0.686	3.65	2.100
2.40	0.133	3.85	0.687	3.85	2.100
2.70	0.134	4.05	0.688	4.05	2.110
3.00	0.134	4.25	0.688	4.25	2.110
3.30	0.135	4.45	0.689	4.45	2.110
3.60	0.135	4.65	0.690	4.65	2.110
3.90	0.135	4.85	0.691	4.85	2.120
4.20	0.136	5.00	0.691	5.00	2.120
4.50	0.136				
4.80	0.137	Table 4: V_G	S = 2.5V	Table 5: V_G	S = 3.5V
5.00	0.137				

Table 3: $V_{-}GS = 1.5V$

1.5.3 Plot Obtained

Figure 3: Combined Drain Characteristics plot

1.6 Part 3 - Body Effect

1.6.1 Circuit Used for Part 3

1.6.2 Readings Obtained

V_GS (in V)	I_D (mA)	_	-	TI GG (1 TI)	T.D. (A)
				$_{\rm V_GS}$ (in V)	$I_D (mA)$
2.24	0	$V_{-}GS \text{ (in } V)$	$I_D (mA)$	3.71	0
2.28	0.002	3.04	0	3.75	0.001
2.60	0.040	3.12	0.002	4.08	0.047
2.83	0.110	3.41			
3.02	0.170	_	0.052	4.16	0.065
3.23	0.210	3.54	0.105	4.25	0.088
3.44	0.264	3.81	0.145	4.35	0.112
3.68	0.307	4.04	0.203	4.51	0.152
		4.32	0.271	4.59	0.170
4.01	0.384	4.43	0.310	4.66	0.192
4.15	0.402	4.77	0.351	4.78	0.215
4.54	0.485	4.95	0.394	4.85	0.235
4.75	0.510 .	4.00	0.034	$- \frac{4.95}{4.95}$	0.254
4.95	0.534	Table 7: V S	D 9W .	4.90	0.234

Table 6: $V_-SB = 1V$

Table 8: $V_SB = 3V$

1.6.3 Plot Obtained

Figure 4: Combined Body Effect Plot

$1.6.4 \quad V_SB \ vs \ V_T \ Readings$

V_SB (in V)	$V_{-}T$ (in V)
0	1.22
1	2.26
2	3.05
3	3.70

Table 9: V_SB vs V_T Readings

Figure 5: Plot of V_SB vs V_T

2 Calculations

2.1 Part 1

For Linear Region, Id = K(Vsg - Vt - 0.1) as Vsd = 0.2V. The value of K was approximated from the graph for the linear area region as 29.56e-6 A/V. The Vt is calculated as Vsg - Id/K - 0.1, for Vsg = 1.8V was obtained as 0.123 V.

The value of gm is nothing but the slope, which is K which we got as $29.56\mu A/V.$