Assignment

			Level-1				
1.	$(n-r+1)^n P_{r-1} =$						
	(a) $^{n-1}P_r$	(b) $^{n+1}P_r$	(c) $^{n}P_{r}$	(d) $^{n}P_{r-1}$			
2.	If ${}^5P_r = 120$, then the	value of <i>r</i> is					
	(a) 2	(b) 3+	(c) 5	(d) 4			
3.	If ${}^{n}P_{5}: {}^{n}P_{3} = 2:1$, the						
	(a) 2	(b) 3	(c) 4	(d) 5			
4.	The value of $n^{n-1}P_{r-1}$	is					
		(b) $^{n-1}P_{r-1}$	(c) $^{n+1}P_{r+1}$	(d) $^{n-1}P_r$			
5.	If $^{m+n}P_2 = 56$ and $^{m-n}$	$P_2 = 12$, then m , n are equal to					
	(a) 5, 1	0.3.6.0	(c) 7,3	(d) 9,6			
6.		$K^{+3}P_K$ then the values of K are					
0.	$\Gamma_{K+1} = \frac{1}{2}$						
_	(a) 2 and 6	(b) 2 and 11	(c) 7 and 11	(d) 6 and 7			
7.	There are 5 roads lea back, is	ding to a town from a village. T	The number of different ways in which a	villager can go to the town and retu	ırı		
	(a) 25	(b) 20	(c) 10	(d) 5			
8.		be formed from the letters of th					
	(a) 124	(b) 240	(c) 360	(d) 720			
9.			2, 3, 4 when the repetition is not allowed				
	(a) 4P_4	(b) 4P_3	(c) ${}^4P_1 + {}^4P_2 + {}^4P_3$	(d) ${}^4P_1 + {}^4P_2 + {}^4P_3 + {}^4P_4$			
10.	How many numbers ly repeated	ying between 500 and 600 can	be formed with the help of the digits 1, 2,	3, 4, 5, 6 when the digits are not to	b		
	(a) 20	(b) 40	(c) 60	(d) 80			
11.	4 buses runs between Bhopal and Gwalior. If a man goes from Gwalior to Bhopal by a bus and comes back to Gwalior by another bus then the total possible ways are						
	(a) 12	(b) 16	(c) 4	(d) 8			
12.	In how many ways car	n 10 true-false questions be rep	lied				
	(a) 20	(b) 100	(c) 512	(d) 1024			
13.			n can enter in the hall and come out from				
11	(a) 7	(b) 8 × 8	(c) 8+7	(d) 8 × 7			
14.	P, Q, R and S have to g.	ive fectures to an audience. The	organiser can arrange the order of their p	resentation in			
	(a) 4 ways	(b) 12 ways	(c) 256 ways	(d) 24 ways			
15.	The product of any r of	consecutive natural numbers is a	llways divisible by				
	(a) r!	(b) r^2	(c) r^n	(d) None of these			
16.	•	•	orizes can be given to 5 competitors is				
45	(a) 10	(b) 60	(c) 15	(d) 125			
17.	In a railway compartn	nent there are 6 seats. The num	per of ways in which 6 passengers can occ	upy these 6 seats is			
	(a) 36	(b) 30	(c) 720	(d) 120			
18.	If any number of flags	are used, how many signals can	be given with the help of 6 flags of different	ent colours			
	(a) 1956	(b) 1958	(c) 720	(d) None of these			
19.	The number of ways o	of painting the faces of a cube wi	th six different colours is				

	(a) 1	(b) 6	((c)	6!	(d)	None of these
			Level-2	2			
2.2							
20.	The value of $2^n \{1.3.5(2n+1)\}$						
	(a) $\frac{(2n)!}{n!}$	(b) $\frac{(2n)!}{2^n}$	((c)	$\frac{n!}{(2n)!}$	(d)	None of these
21.	If ${}^{56}P_{r+6}$: ${}^{54}P_{r+3} = 30800$: 1,	then r =					
	(a) 31	(b) 41	((c)	51	(d)	None of these
22.	The value of ${}^{n}P_{r}$ is equal to						
	(a) $^{n-1}P_r + r^{n-1}P_{r-1}$	(b) $n^{n-1}P_r +^n$	$^{-1} P_{r-1}$	(c)	$n(^{n-1}P_r + ^{n-1}P_{r-1})$	(d)	$^{n-1}P_{r-1} + ^{n-1}P_r$
23.	The exponent of 3 in 100! is						
	(a) 33	(b) 44	((c)	48	(d)	52
24.	The number of positive integ	ral solutions of a	abc = 30 is				
	(a) 30	(b) 27		(c)	8	(d)	None of these
25.	The number of 4 digit even n	umbers that can	be formed using 0, 1, 2	, 3, 4	4, 5, 6 without repetition is		
	(a) 120	(b) 300			420	(d)	20
26.	The number of five digits nur		-				
	(a) 990000	(b) 100000			90000		None of these
27.	How many numbers less than						Nama of these
20	(a) 156	(b) 160			150		None of these
28.	How many even numbers of (a) 224	(b) 280			318 1, 2, 3, 4, 3, 6, 7, 6, 9 (1e) 324		None of these
29.		. ,		. ,			. The total number of ways in
	which this can be done is	-,		~, _,	, =, 0, 0		
	(a) 216	(b) 240			600		3125
30.	_		_		_		five out of 10 animals cannot
	enter into them. In how many (a) 66400	(b) 86400	=		96400		None of these
31.	` '					. ,	livisible by 5 while repetition
011	of any digit is not allowed in			DCC.	veen sooo ana 1000 winen	are c	invisible by 8 willie repetition
	(a) 60	. ,				(d)	
32.	numbers among them is				_		d digits. The number of even
22	(a) 9	(b) 18		(c)		(d)	None of these
33.	The total number of seven di	_	=			(4)	Nama of these
34.	(a) 9000000 The sum of all 4 digit number	(b) 4500000			8100000		None of these
34.	(a) 133320	(b) 533280			53328		None of these
35.	How many numbers greater						
	(a) 36	(b) 60		(c)			120
36.	How many numbers greater	than hundred an	d divisible by 5 can be	mad	e from the digits 3, 4, 5, 6, if	no d	igit is repeated
	(a) 6	(b) 12		(c)	24	(d)	30
37.	The sum of all numbers great	er than 1000 for	med by using the digits	s 1, 3	3, 5, 7 no digit is repeated in	any	number is
	(a) 106656	(b) 101276			117312		811273
38.	3 copies each of 4 different b	ooks are availab	le. The number of ways	in v	which these can be arranged	on t	he shelf is
		101			121		
	(a) 12!	(b) $\frac{12!}{3!4!}$	((c)	$\frac{12!}{(3!)4}$	(d)	369,000
		5!4!			(3 !)4		
20	Eleven hooles asserted a C. F.	Mathamatics 4	Dhysica and 2 Character		o placed on a shalf Miss.	.h	of nogoible was af
39.	them on the assumption that		-	-	=	ıber	of possible ways of arranging
	(a) 4!2!	(b) 11!			5! 4! 3! 2!	(d)	None of these
						. ,	

40	The	number of positive integr	0 20 21	high can be formed by using any		show of digita from 0.1.2.2	1 E L	out using each digit not man
40.		number of positive integers once in each number is	ers w	hich can be formed by using any	IIuII	iber of digits from 0, 1, 2, 3,	4, J L	out using each digit not more
		1200	(b)	1500	(c)	1600	(d)	1630
41.			ict el	ements. The number of triplets ((x, y,	z) of the elements of A in w		
	equa	al is						
	(a)	$^{n}P_{3}$	(b)	$n^3 - {}^nP_3$	(c)	$3n^2-2n$	(d)	$3n^2(n-1)$
				J		n		, ,
42.	The	number of distinct ration	al nu	mbers x such that $0 < x < 1$ and	$x = \frac{1}{2}$	$\frac{r}{q}$, where $p, q \in \{1, 2, 3, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,$	5} is	
	(a)	15	(b)	13	(c)	12	(d)	11
43.			ımbe	rs of different digits in which the	digit	in the middle is the largest i	S	
		9						
	(a)	$\sum_{n=4}^{9} {}^{n}P_{4}$	(b)	33 (3!)	(c)	30 (3!)	(d)	None of these
44.	Two	n=4 n teams are to play a serie	es of	5 matches between them. A mat	tch e	nds in a win or loss or draw	, for	a team A number of neonle
11.		= -		nd no two people make the same				
				tly for all matches will contain n				9
	(a)	81	(b)	243	(c)	486	(d)	None of these
				Level-	-1			
45 .	The	number of permutations	of the	e letters $x^2y^4z^3$ will be				
	(a)	9! 2!4!	(h)	9!	(c)	9!	(d)	91
	(u)	2!4!	(0)	2!4!3!	(0)	4!3!	(u)	,.
46.	How	v many numbers consistin	g of	5 digits can be formed in which th	ne dig	gits 3, 4 and 7 are used only o	once	and the digit 5 is used twice
	(a)	30	(b)	60	(c)	45	(d)	90
47.	The	number of different arran	igem	ents which can be made from the	lette	ers of the word SERIES taken	all to	ogether is
	(a)	<u>6!</u> 2!2!	(b)	$\frac{6!}{4!}$	(c)	6!	(d)	None of these
		2.2.		4:				
48.	How	v many words can be form	ied w	vith the letters of the word MATH	EMA	TICS by rearranging them		
	(a)	$\frac{11!}{2!2!}$	(b)	$\frac{11!}{2!}$	(c)	11! 212121	(d)	11!
				2.		2.2.2.		
49.	How	many words can be mad	e out	from the letters of the word IND	EPEN	NDENCE, in which vowels alv	vays	come together
	(a)	16800	(h)	16630	(c)	1663200	(4)	None of these
50.				d 1 green balls can be arranged i			(u)	None of these
		1260		2880	(c)		(d)	10!
51.	Usin	ng 5 conveyances, the num	iber (of ways of making 3 journeys is				
	(a)	3 × 5	(b)	3 ⁵	(c)	5 ³	(d)	$5^3 - 1$
52.		= = = = = = = = = = = = = = = = = = =		of the letters of the word "BANAI	NA" i	S		
	(a)			120		720	(d)	24
53.		number of 7 digit number 420		ich can be formed using the digit 840		2, 3, 2, 3, 3, 4 is 2520	(4)	5040
54.				s, that can be formed by using the				
011	1110	number of a digit out hu		s, that can be formed by using the	c ang	165 1, 2, 5, 1, 5, 5 When the re	рести	ion is unowed, is
	(a)			108	(c)		(d)	
55.				mbers can be formed from the d	igits	of the number 223355888 l	y re	arrangement of the digits so
	tnat (a)	the odd digits occupy eve	n pia (b)		(c)	60	(4)	180
56.			. ,	ny even numbers can be formed	(0)	00	(u)	100
	(a)	= =	(b)		(c)	72	(d)	120
57.			s fror	in the set A to the set A. If $n(A) = k$			-	
	(a)	<i>k</i> !	(b)	k^k	(c)	$2^{k} - 1$	(d)	2^k
58.			. ,	ngs can be worn on the four finge	. ,		. ,	
	(a)	46	(b)	$^{6}C_{4}$	(c)	6^4	(d)	None of these

		,					
59.			distributed among 3 students, if		student can get all the 4 pris $3^4 - 1$		23
60.	(a) 4! In how many ways 3 letters of	. ,	3 ⁴ posted in 4 letter-boxes, if all th			(d) ne let	
00.	(a) 63	(b)	=	(c)		(d)	
61.		st-off	ces. In how many different ways	the r	egistration of parcel can be	made	
	(a) 20	(b)	4 ⁵	(c)	5 ⁴	(d)	$5^4 - 4^5$
			Level-	-2			
62.			n 10 and 1000 can be formed from				
63.	(a) 1024 Ten different letters of an all		810 t are given. Words with five lette		2346 se formed from these given l		None of these Then the number of words
05.	which have at least one letter	-	_	, i s ui	e formed from these given i	cttci	s. Then the number of words
	(a) 69760	. ,	30240		99748		None of these
64.			a row. The number of ways in wh				
6 F	(a) 20	(b)			120	(d)	
65.	number of times is	auons	s of $n(>1)$ different things taken	not	more than <i>r</i> at a time, when	i eac	n thing may be repeated any
			n^r 1		$n(n^T - 1)$		
	(a) $\frac{n(n^n-1)}{n-1}$	(b)	$\frac{n-1}{n-1}$	(c)	$\frac{n(n^r-1)}{n-1}$	(d)	None of these
66.	How many number less than	1000	0 can be made with the eight dig	its 1,	2, 3, 4, 5, 6, 7, 0 (digits may	repea	nt)
	(a) 256		4095		4096		4680
67.		l num	bers of six digits that can be ma	de w	ith digits 1, 2, 3, 4, if the al	l digi	ts are to appear in the same
	number at least once, is	(h)	840	(a)	1080	(4)	400
68.	(a) 1560 A library has <i>q</i> copies of one	. ,	<i>b</i> copies of each of two books, <i>c</i>	. ,		. ,	480 le copies of d books. The total
	number of ways in which the		=	сорго		J	to copies of a social fine total
	(a) $\frac{(a+b+c+d)!}{(a+b+c+d)!}$	(h)	$\frac{(a+2b+3c+d)!}{a!(b!)^2(c!)^3}$	(c)	(a+2b+3c+d)!	(4)	None of these
	a!b!c!	(5)	$a!(b!)^2(c!)^3$	(0)	<i>a</i> ! <i>b</i> ! <i>c</i> !	(u)	Trone of these
69.	The number of ways of arra with respect to a central man		2m white counters and $2n$ red	count	ters in a straight line so tha	t the	arrangement is symmetrical
	(a) $(m+n)!$	(b)	$\frac{(m+n)!}{m!n!}$	(c)	$\frac{2(m+n)!}{m!n!}$	(d)	None of these
70.	Total number of four digit of	dd nur	nbers that can be formed using 0	, 1, 2,	3, 5, 7 are		
	(a) 216		375		400		720
71.			he letter AAAAA BBB CCC D EE F				
	(a) $\frac{15!}{5!3!3!2!} - 3!$	(b)	$\frac{15!}{5!3!3!2!} - \frac{13!}{5!3!2!}$	(c)	$\frac{12!}{5!3!2!} \times \frac{^{13}P_3}{3!}$	(d)	$\frac{12!}{13} \times {}^{13}P_{3}$
			3.3.3.2. 3.3.2.		3:3:2: 3:		3.3.2.
72.		ers tha	at can be made with the digits 1,			digit	s are identical, is
	(a) $4^5 - 5!$	(b)	505	(c)	600	(d)	None of these
			Level-	-1			
73.	The number of words which	can h	e formed from the letters of the v	word	MAYIMIM if two conconon	to car	anot occur togother is
73.	(a) 4!		$3! \times 4!$	(c)			None of these
74.			etters of the word TRIANGLE car				
	(a) 1200		2400		14400		None of these
75.			orm the letters of the word COUR				
	(a) 6!	(b)	8!	(c)	2 (6)!	(d)	2 (7) !
76.	Uou many words can be made	do fro	m the letters of the word DELHI,	if L c	omos in the middle in every	MOR	d
70.	(a) 12	ue 110 (b)		(c)		(d)	
77.			etters of the word ARRANGE can				
	, and the second						Č
	(a) 360		900		1260		1620
78.	How many words can be made	de fro	m the letters of the word BHARA	Τin v	which <i>B</i> and <i>H</i> never come to	ogeth	er

	() 0(0	d > 000		2.0	6.10	100
79.	(a) 360 How many words can be made	(b) 300		240	. ,	120
7).	(a) 18270	(b) 17280		12780		None of these
80.	• •	. ,	• • • • • • • • • • • • • • • • • • • •			in a row such that no two of
	the three girls are together is	:				
	(a) $7! \times {}^{6}P_{3}$	(b) $7! \times {}^{8}P_{3}$	(c)	7!×3!	(d)	$\frac{10!}{3!7!}$
0.4		15 . 1 . 1.	.1			3!/!
81.	In how many ways can 5 boy					
	(a) $(5!)^2$	(b) $5! \times 4!$		5! × 6!	. ,	6×5!
82.	The number of arrangements					-
83.	(a) 40 The number of ways in which	(b) 60	(c)		. ,	100
05.	(a) 2880	(b) 1880		3800		2800
84.	The number of words that ca	. ,	• • • • • • • • • • • • • • • • • • • •			
	(a) 36	(b) 574		144		754
85.	The number of ways in which same grade, is	ch three students of a	class may be assigne	ed a grade of <i>A, B, C</i> or <i>D</i> so	that	no two students receive the
	(a) 3^4	(b) 4 ³	(a)	$^{4}P_{3}$	(4)	$^{4}C_{3}$
06				3		J.
86.	The number of ways lawn tenr (a) 210	ns mixed double can b (b) 420	-	narried couples if no nusban 840		None of these
	(a) 210	(0) 420		040	(u)	None of these
			Level-2			
87.	How many numbers greater	40000 can be formed	from the digits 2, 4, 5,	5, 7		
	(a) 12	(b) 24	(c)		(d)	48
88.	In how many ways <i>n</i> books ca	an be arranged in a ro	w so that two specifie	d books are not together		
	(a) $n!-(n-2)!$	(b) $(n-1)!(n-2)$	(c)	n!-2(n-1)	(d)	(n-2)n!
89.	How many numbers between once in each number	n 5000 and 10,000 car	n be formed using the	digits 1, 2, 3, 4, 5, 6, 7, 8, 9 e	each d	ligit appearing not more than
	(a) $5 \times {}^{8}P_{3}$	(b) $5 \times {}^{8}C_{3}$	(c)	$5! \times {}^8P_3$	(d)	$5! \times {}^{8}C_{3}$
90.	Find the total number of 9 di	git numbers which ha	ve all the digits differe	ent		-
		(b) 9!	=	10!	(d)	None of these
91.	Four dice (six faced) are rolle	ed. The number of pos				
	(a) 1296	(b) 625	(c)	671	(d)	None of these
92.	How many numbers, lying b	etween 99 and 1000	be made from the d	igits 2, 3, 7, 0, 8, 6 when t	he di	gits occur only once in each
	number					
00	(a) 100	(b) 90		120	. ,	80
93.	The sum of the digits in the u					
94.	(a) 18 All letters of the word ACAIN	(b) 432		108	. ,	144 ut meaning) are written as in
74.	dictionary, then the 50th work		Jossible ways and the	words so for fred (with or v	VILIIO	ut meaning) are written as m
	(a) NAAGI	(b) IAANG	(c)	NAAIG	(d)	INAGA
95.	_			= -		omen choose the chairs from ber of possible arrangements
	(a) ${}^{6}C_{3} \times {}^{4}C_{2}$	(b) ${}^4C_2 \times {}^4P_3$	(c)	$^{4}P_{2} \times ^{4}P_{3}$	(d)	None of these
96.	, <u>, , , , , , , , , , , , , , , , , , </u>	2 3		-		ions of x things taken 11 at a
701	time and <i>c</i> the number of per					
	(a) 15	(b) 12	(c)			18
97.	The number of ways in which	n ten candidates A_1, A_2	A_2, \dots, A_{10} can be ran	ked such that A_1 is always	abov	e A_{10} is

	(a) 5!	(b)	2 (5 !)	(c)	10!	(d)	$\frac{1}{2}$ (10!)
98.			g of 7 lettered words only that c as in an ordinary dictionary, the r				
	(a) 530	(b)	480	(c)	531	(d)	481
99.	The number of ways in which	ch a ro	eliver lectures in seven periods on the day can be made such	ch tha	at A delivers his lecture befo	re B,	and B before C, is
	(a) 420		120		210	. ,	None of these
100.		ımber	and $x < 30$. The number of diff	erent	rational numbers whose nu	ımer	ator and denominator belong
	to A is	d-y	100	(-)	01	(4)	Name of the same
101.	(a) 90 The number of numbers of		180 ferent non-zero digits such that	(c) all th		. ,	None of these
101.	middle and all the digits in t	the las	t four places are greater than that	in th	ne middle is		_
400	(a) 2 (4!)	. ,	$(4!)^2$	(c)			None of these
102.	(a) 480		nge the letters in the word GARD 240		ith the vowers in alphabetica		er 120
	(a) 400	(0)			300	(u)	120
			Level-	-1			
103.	If eleven members of a con arrangement is	nmitte	ee sit at a round table so that the	pre	sident and secretary always	s sit t	ogether, then the number of
	(a) 10!×2	(b)	10!	(c)	9!×2	(d)	None of these
104.	In how many ways can 5 ke	. ,		(-)		()	
				(-)	4.1	(4)	FI
	(a) $\frac{4!}{2}$	(0)	$\frac{5!}{2}$	(c)	4!	(d)	5!
105.	In how many ways can 12 g	entlen	nen sit around a round table so th	at thi	ree specified gentlemen are	alwa	ys together
	(a) 9!	(b)	10!	(c)	3!10!	(d)	3!9!
106.	n gentlemen can be made to	sit or	a round table in				
	(a) $\frac{1}{2}(n+1)!$ ways	(b)	(n-1)! ways	(c)	$\frac{1}{2}(n-1)!$ ways	(d)	(n+1)! ways
107.	In how many ways 7 men ar	nd 7 w	romen can be seated around a rou	ınd ta	able such that no two wome	n can	sit together
	(a) $(7!)^2$	(b)	7!×6!	(c)	(6!) ²	(d)	7!
108.	The number of circular peri	mutati	ons of <i>n</i> different objects is				
	(a) n!	(b)	·	(c)	(n-2)!	(d)	(n-1)!
			1	2			
			Level-				
109.	In how many ways can 15 n the Deputy secretary on the		ers of a council sit along a circular side	table	e, when the Secretary is to s	it on	one side of the Chairman and
	(a) 2×12!	(b)	24	(c)	2 × 15!	(d)	None of these
110.	20 persons are invited for a persons are to be seated on		. In how many different ways can side of the host	they	and the host be seated at a	circu	lar table, if the two particular
	(a) 20!	(b)	2.18!	(c)	18!	(d)	None of these
111.	12 persons are to be arrangarrangements is	ged to	a round table. If two particular p	ersoi	ns among them are not to be	e side	e by side, the total number of
	(a) 9(10!)	(b)	2 (10!)	(c)	45 (8!)	(d)	10!
112.	The number of ways that 8	beads	of different colours be string as a	neck	lace is		
	(a) 2520		2880		5040		4320
113.	The number of ways in which	ch 6 m	en and 5 women can dine at a rou	ınd ta	able if no two women are to	sit to	gether is given by
	(a) 6!×5!	(b)	30	(c)	5! × 4!	(d)	7!×5!
114.	In how many ways can 10 p	erson	s sit, when 6 persons sit on one ro	und	table and 4 sit on the other i	ounc	l table

	(a) 5!×3!	(b)	10 × 5! × 3!	(c)	${}^{10}C_6 \times 5! \times 3!$	(d)	$^{10}C_6 \times 5! \times 3! \times 2!$
115.			n two are brothers . The number	of w	ays in which we can arrange	ther	n round a circle so that there
	is exactly one person betwee (a) 18!		2 (18!)	(c)	2 (19!)	(4)	None of these
116.			mbers take food two times a day				
	can take food by sitting in dif						
	(a) 42 months	(b)	21 months	(c)	$\frac{21}{2}$ months	(d)	None of these
			, 1		Z		
			Level-	-1			
117.	If n is even and the value of n	$^{n}C_{r}$ is	maximum, then <i>r</i> =				
			. 1	(~)	n-1	(4)	None of these
	(a) $\frac{n}{2}$	(D)	$\frac{n+1}{2}$	(c)	$\frac{n-1}{2}$	(a)	None of these
118.	$^{47}C_4 + \sum_{r=1}^{5} {}^{52-r}C_3 =$						
	(a) ${}^{47}C_6$	(b)	$^{52}C_{5}$	(c)	$^{52}C_{4}$	(d)	None of these
119.	If ${}^{n}C_{3} = 220$, then $n =$	(-)	-3	(-)	- 4	(-)	
117.	(a) 10	(b)	12	(c)	15	(d)	8
120.	If $2 \times {}^{n}C_{5} = 9 \times {}^{n-2}C_{5}$, then the			(-)		()	
	(a) 7	(b)		(c)	9	(d)	5
121.	The number of combinations	s of n	different objects taken \emph{r} at a time	will	be		
	(a) $^{n}P_{r}$	(b)	$^{n}P_{r}r!$	(c)	$\frac{{}^{n}P_{r}}{r!}$	(d)	None of these
122.	$^{n^2-n}C_2 = ^{n^2-n}C_{10}$, then $n =$						
	(a) 12	(b)	4 only	(c)	- 3 only	(d)	4 or - 3
123.	${}^{n}C_{r} + {}^{n}C_{r-1}$ is equal to						
	(a) $^{n+1}C_r$	(b)	$^{n}C_{r+1}$	(c)	$^{n+1}C_{r+1}$	(d)	$^{n-1}C_{r-1}$
124.	If ${}^8C_r = {}^8C_{r+2}$, then the value	e of r	C_2 is				
	(a) 8		_	(c)	5	(d)	2
125.	If ${}^{20}C_{n+2} = {}^{n}C_{16}$, then the val	lue of	n is				
	(a) 7	(b)	10	(c)	13	(d)	No value
126.	The value of ${}^{15}C_3 + {}^{15}C_{13}$ is						
	(a) $^{16}C_3$	(b)	$^{30}C_{16}$	(c)	$^{15}C_{10}$	(d)	$^{15}C_{15}$
127.	If ${}^{10}C_r = {}^{10}C_{r+2}$, then 5C_r ed	quals					
	(a) 120	(b)		(c)	360	(d)	5
128.	If ${}^{n}C_{r} = 84$, ${}^{n}C_{r-1} = 36$ and n	C_{r+1} =	=126 , then <i>n</i> equals				
	(a) 8	(b)	9	(c)	10	(d)	5
129.	If ${}^{n}C_{3} + {}^{n}C_{4} > {}^{n+1}C_{3}$, then		_				
400	(a) $n > 6$			(c)	<i>n</i> < 6	(d)	None of these
130.	Value of r for which $^{15}C_{r+3} =$			(-)		(1)	0
	(a) 2 $\binom{n}{n}$	(b)		(c)	6	(a)	- 9
131.	For $2 \le r \le n$, $\binom{n}{r} + 2 \binom{n}{r-1} +$	`	•				
	(a) $\binom{n+1}{r-1}$	(b)	$2\binom{n+1}{r+1}$	(c)	$2\binom{n+2}{r}$	(d)	$\binom{n+2}{r}$
132.	$^{n-1}C_3 + ^{n-1}C_4 > ^nC_3$ then the	value	e of n is				
	-						

	() 5	a> =	()	_	6.15	N 6:1
	(a) 7 (n) (n)	(b) < 7	(c)	> 7	(d)	None of these
133.	$\binom{n}{n-r} + \binom{n}{r+1}$, whenever	$0 \le r \le n-1$ is equal to				
	(a) $\binom{n}{r-1}$	(b) $\binom{n}{r}$	(c)	$\binom{n}{r+1}$	(d)	$\binom{n+1}{r+1}$
134.	If ${}^{43}C_{r-6} = {}^{43}C_{3r+1}$, then the	value of r is				
40=	(a) 12	(b) 8	(c)		(d)	10
135.		mber <i>n</i> satisfying $C(n,5) + C(n,6) > C(n,6)$		•	(1)	12
126	(a) 11	(b) 10	. ,	12	(d)	
130.	C_r denotes the number of	of combinations of n things taken r at a	a ume	e, then the expression C_{r+1}	+ C _r .	C_r , equals
	(a) $^{n+2}C_r$	(b) $^{n+2}C_{r+1}$	(c)	$^{n+1}C_r$	(d)	$^{n+1}C_{r+1}$
137.	${}^{5}C_{1} + {}^{5}C_{2} + {}^{5}C_{3} + {}^{5}C_{4} + {}^{5}C_{5}$	is equal to				
	(a) 30	(b) 31	(c)	32	(d)	33
138.	If $C(n,12) = C(n,8)$, then the	value of $C(22,n)$ is				
	(a) 924	(b) 308	(c)	462	(d)	231
139.	If ${}^{20}C_r = {}^{20}C_{r-10}$, then ${}^{18}C_r$	is equal to				
	(a) 816	(b) 1632	(c)	4896	(d)	None of these
140.	If ${}^{n}C_{4}$, ${}^{n}C_{5}$, ${}^{n}C_{6}$ are in A.P. th	nen the value of <i>n</i> is				
	(a) 14 or 7	(b) 11	(c)	17	(d)	8
141.	There are 12 volleyball play same, then in how many way	ers in all in a college, out of which a t vs can the team be formed			If th	e captain always remains the
142	(a) 36	(b) 108		99	. ,	165
142.	(a) 3800	lerks in a certain office, 20 application (b) 3876		969		4845
143.		ee of 5 members can be formed out of 8				
	(a) 140	(b) 330	(c)	560	(d)	None of these
144.	How many words can be for	med by taking 3 consonants and 2 vow	vels o	out of 5 consonants and 4 vov	vels	
	(a) ${}^5C_3 \times {}^4C_2$	(b) $\frac{{}^5C_3 \times {}^4C_2}{5}$		$^5C_3 \times ^4C_3$		$({}^5C_3 \times {}^4C_2)(5)!$
145.	A male and a female typist and be made	re needed in an institution. If 10 ladies	s and	15 gentlemen apply, then in	how	many ways can the selection
	(a) 125	(b) 145	(c)	150	(d)	None of these
146.	Everybody in a room shakes room is	s hand with everybody else. The total	l num	ber of hand shakes is 66. T	he to	tal number of persons in the
	(a) 11	(b) 12	(c)	13	(d)	14
147.	There are 9 chairs in a room they can sit	on which 6 persons are to be seated,	out o	f which one is guest with one	e spe	cific chair. In how many ways
	(a) 6720	(b) 60480		30		346
148.	=	li festival each student of a class send eting cards exchanged by the students	sis	_	there	e are 20 students in the class,
	(a) $^{20}C_2$	(b) $2.^{20}C_2$	(c)	$2.^{20}P_2$	(d)	None of these
149.		kes them 3 at a time to the Zoologica e number of times he will go to the gan	rden	is	thou	t taking the same 3 children
	(a) 336	(b) 112		56		None of these
150.	In how many ways can 5 red	and 4 white balls be drawn from a ba	g con	taining 10 red and 8 white b	alls	
	(a) ${}^8C_5 \times {}^{10}C_4$	(b) ${}^{10}C_5 \times {}^8C_4$	(c)	$^{18}C_{9}$	(d)	None of these

	_									
151.		a party and each person sh								
152.	(a) $^{15}P_2$	(b) $^{15}C_2$		15!		2(15!) f fruits from among the fruits				
132.	in the basket is	oranges, 5 appres and 6 ma	angues. The number	of ways person ma	ike selection o	i ituits itoili among the ituits				
	(a) 210	(b) 209		208		None of these				
153.	In a cricket championship (a) 8	p there are 36 matches. Th	e number of teams if (c)			rare None of these				
	(a) 0	(6)	Level-2	10	(4)	None of these				
154.	If ${}^{2n}C_3: {}^nC_2 = 44:3$, the	en for which of the followir	ng values of r , the val	ues of ${}^{n}C_{r}$ will be	15					
	(a) $r = 3$		(c)	<i>r</i> = 6	(d)	<i>r</i> = 5				
155.	${}^{n}C_{r} + {}^{n-1}C_{r} + \dots + {}^{r}C_{r} =$									
	(a) $^{n+1}C_r$	(b) $^{n+1}C_{r+1}$	(c)	$^{n+2}C_r$	(d)	2^n				
156.	The solution set of 10 C_{x-}	$_{1} > 2 \cdot ^{10} C_x$ is								
	(a) {1, 2, 3}	(b) {4, 5, 6}	(c)	{8, 9, 10}	(d)	{9, 10, 11}				
157.	$\sum_{r=0}^{m} {}^{n+r}C_n =$									
	(a) $^{n+m+1}C_{n+1}$	(b) $^{n+m+2}C_n$	(c)	$^{n+m+3}C_{n-1}$	(d)	None of these				
158.	If $\alpha = {}^m C_2$, then ${}^{\alpha} C_2$ is ϵ									
	(a) $^{m+1}C_4$		(c)	$3^{m+2}C_4$	(d)	$3^{m+1}C_4$				
159.	$^{14}C_4 + \sum_{j=1}^4 {}^{18-j}C_3$ is equal	al to								
	(a) $^{18}C_3$	(b) $^{18}C_4$	(c)	$^{14} C_7$	(d)	None of these				
160.	If $a_n = \sum_{r=0}^{n} \frac{1}{{}^{n}C_r}$ then $\sum_{r=0}^{n}$	$\frac{r}{r^n C_r}$ equals								
	(a) $(n-1)a_n$	(b) na_n	(c)	$\frac{1}{2}na_n$	(d)	None of these				
161.	In a football championsh participating in the cham		3 matches. Every tea	am played one mat	tch with each	other. The number of teams				
	(a) 17	(b) 18	(c)		. ,	13				
162.	Ten persons, amongst w before B and B wants to s		ak at a function. The	number of ways i	n which it can	ı be done if A wants to speak				
	(a) $\frac{10!}{6}$	(b) 3!7!	(c)	$^{10}P_3.7!$	(d)	None of these				
163.		digit 5 will be written whe	n listing the integers	from 1 to 1000 is						
164	(a) 271	(b) 272	()	300 The mumber of		None of these				
164.	All possible two factors p multiples of 5 is (a) 5040	oroducts are formed from n		200. The number o 8150		f the total obtained which are None of these				
165.						of ways in which the car can				
	be filled is									
4	(a) 10	(b) 20	(c)	30	(d)	None of these				
166.		$2(^{2}C_{2} + ^{3}C_{2} + \dots + ^{n}C_{2})$ can		,		(2 1)				
	(a) $\frac{n(n+1)}{2}$	(b) $\frac{n(n-1)}{2}$	(c)	$\frac{n(n+1)(2n+1)}{6}$	(d)	$\frac{n(2n+1)}{3}$				
167.	The value of $({}^{7}C_{0} + {}^{7}C_{1}) +$	$+(^{7}C_{1}+^{7}C_{2})++(^{7}C_{6}+^{7}C_{6})$	C_7) is							
	(a) $2^7 - 1$	(b) $2^8 - 2$	(c)	$2^8 - 1$	(d)	2^8				

168.	The expression ${}^{n}C_{r} + 4$	$C_{r-1} + 6.^{n}C_{r-2} + 4.^{n}C_{r-3} + ^{n}C_{r-4}$	₄ equals	
	(a) $^{n+4}C_r$	(b) $2^{n+4}C_{r-1}$	(c) $4.^{n}C_{r}$	(d) $11.^{n}C_{r}$
			Level-1	
169.	Ramesh has 6 friends. I	n how many ways can he invite	one or more of them at a dinner	
	(a) 61	(b) 62	(c) 63	(d) 64
170.	Out of 10 white, 9 black	and 7 red balls, the number of	ways in which selection of one or more	re balls can be made, is
	(a) 881	(b) 891	(c) 879	(d) 892
171.	Out of 6 books, in how	many ways can a set of one or m	nore books be chosen	
	(a) 64	(b) 63	(c) 62	(d) 65
172.	fail to get all answers co	orrect, is		s. Number of ways in which a student can
	(a) 11	(b) 12	(c) 27	(d) 63
173.				the letters of the word 'MISSISSIPPI' is
174	(a) 150	(b) 148	(c) 149	(d) None of these
1/4.			0 one rupee coins, 10 fifty paise coins	
	(a) 28	(b) 56	(c) $^{37}C_6$	(d) None of these
			Level-2	
175.		8 candidates, out of which 5 are	_	any number of candidates but not greater
	(a) 216	(b) 114	(c) 218	(d) None of these
176.	In an election the numb	per of candidates is 1 greater tha	an the persons to be elected. If a voter	can vote in 254 ways, then the number of
	(a) 7	(b) 10	(c) 8	(d) 6
177.	The number of ways of card, is	dividing 52 cards amongst four	players so that three players have 17	ards each and the fourth player just one
	(a) $\frac{52!}{(17!)^3}$	(b) 52!	(c) $\frac{52!}{17!}$	(d) None of these
178.			=	Also no person has more than 32 teeth. If the maximum population of the city is
	(a) 2^{32}	(b) $(32)^2 - 1$	(c) $2^{32}-1$	(d) 2^{32-1}
179.	The number of ways in	which four letters of the word '	MATHEMATICS' can be arranged is gi	ven by
	(a) 136	(b) 192	(c) 1680	(d) 2454
180.		so select at least one and at most coins is 255 , then n equals	t <i>n</i> coins from a collection of $2n+1$ (o	distinct) coins. If the total number of ways
	(a) 4	(b) 8	(c) 16	(d) 32
181.	The total number of wa	ys of selecting five letters from	the letters of the word 'INDEPENDEN	T' is
	(a) 70	(b) 3320	(c) 120	(d) None of these
182.	There are n different be	boks and p copies of each in a like	orary. The number of ways in which o	ne or more books can be selected is
	(a) $p^n + 1$	(b) $(p+1)^n-1$	(c) $(p+1)^n - p$	(d) p^n
			Level-1	
183.	In how many ways can	21 English and 19 Hindi books	be placed in a row so that no two Hind	di books are together
	(a) 1540	(b) 1450	(c) 1504	(d) 1405
184.	The number of ways in one ball, is	which five identical balls can l	be distributed among ten identical bo	oxes such that no box contains more than
	(a) 10!	(b) $\frac{10!}{5!}$	(c) $\frac{10!}{(5!)^2}$	(d) None of these

185.	In how many wave can two	halls of the same colour he color	cted out of 4 black and 3 white balls	
103.	(a) 5	(b) 6	(c) 9	(d) 8
186.	` '		• •	vo persons sitting next to each other are
	selected is			
	(a) 34	(b) 36	(c) 35	(d) None of these
187.	_	here are 16 players in all includ to include three bowlers and one	_	rs. How many teams of 11 players from
	(a) 650	(b) 720	(c) 750	(d) 800
188.	A total number of words w vowel, is	hich can be formed out of the let	ters <i>a, b, c, d, e, f</i> taken 3 together si	uch that each word contains at least one
	(a) 72	(b) 48	(c) 96	(d) None of these
189.	Out of 6 boys and 4 girls, a	group of 7 is to be formed. In how	w many ways can this be done if the	e group is to have a majority of boys
	(-) 120	(L) 00	(-) 100	(4) 00
100	(a) 120	(b) 90	(c) 100	(d) 80
190.			l number of distinct functions from	
101	(a) 10!	(b) 10^{10}	(c) 2 ¹⁰	(d) $2^{10}-1$
191.	friends will not attend the p	party together is		d from among ten friends, if two of the
400	(a) 112	(b) 140	(c) 164	(d) None of these
192.	The number of ways in whi	ich <i>mn</i> students can be distribute		
	(a) $(mn)^n$	(b) $\frac{(mn)!}{(m!)^n}$	(c) $\frac{mn}{m!}$	(d) $\frac{mn}{m!n!}$
193.	There are 3 candidates for	a post and one is to be selected b	y the votes of 7 men. The number of	of ways in which votes can be given is
	(a) 7^3	(b) 3^7	(c) ${}^{7}C_{3}$	(d) None of these
194.			ys, one receiving two and the other	
171.	(a) 45	(b) 75	(c) 90	(d) None of these
195.	` '		ibuted among 3 boys so that each c	
	(a) 1332	(b) 666	(c) 333	(d) None of these
196.	The number of ways in whi	ich six different prizes can be dis	tributed among three children each	n receiving at least one prize is
	() 070	(1) T 10	() 4000	(D. 2462
	(a) 270	(b) 540	(c) 1080	(d) 2160
		Le	evel-2	
197.	In how many ways can Rs.	16 be divided into 4 person when	n none of them get less than Rs. 3	
	(a) 70	(b) 35	(c) 64	(d) 192
198.	Two packs of 52 cards are cards of the same suit and s	_	of ways in which a man can be dea	alt 26 cards so that he does not get two
	(a) ${}^{52}C_{26}.2^{26}$	(b) $^{104}C_{26}$	(c) $2.^{52}C_{26}$	(d) None of these
199.	20	20	ooks can be divided into five heaps	
		or mayo in minon 10 amorone oc	one can be anythou mee my meaps	or equal number of score
	(a) $\frac{15!}{5!(3!)^5}$	(b) $\frac{15!}{(3!)^5}$	(c) $^{15}C_5$	(d) $^{15}P_5$
	5!(3!) ⁵	$(3!)^5$	(6) 05	(4) 15
200.	number of games that the r	nen played between themselves		games with the other participants. The r of games that the men played with the
	women. The number of par (a) 6	ticipants is (b) 11	(c) 13	(d) None of these
201.				old all five balls. In how many ways can
	we place the balls so that n	=		
	(a) 50	(b) 100	(c) 150	(d) 200

202.	A box contains two white b least one black ball is to be it		nree black balls and four red bal	ls. In	how many ways can three	balls	be drawn from the box if at
	(a) 64	(b)		(c)	46	(d)	None of these
203.	In how many ways can a con	nmitte	ee be formed of 5 members from	6 me	n and 4 women if the comm	ittee l	has at least one women
	(a) 186		246		252		None of these
204.	Six '+' and four '-' signs are t	o plac	ed in a straight line so that no tw	′o '–'	signs come together, then th	e tota	al number of ways are
	(a) 1F	(l-)	10	(~)	25	(4)	42
205	(a) 15	(b)	made from 5 different green bal	(c)		(d)	
203.	and 1 blue ball is to be included		made from 5 different green bas	пэ, т	umerent blue bans and 5 un	ilerei	it red bans, if at reast 1 green
	(a) 3700		3720	(c)	4340	(d)	None of these
206.			tes and three vacancies. A voter of				
	he vote						
	(a) 125	(b)	60	(c)	10	(d)	25
207.			l from 9 women and 8 men in wh				ded in a committee. Then the
			ne women are in majority and me				
	(a) 4784, 1008		2702, 3360		6062, 2702		2702, 1008
208.	_		persons can go in two boats so	that	there may be 5 on each bo	oat, si	upposing that two particular
	persons will not go in the sa				1		
	(a) $\frac{1}{2}(^{10}C_5)$	(b)	$2(^{8}C_{4})$	(c)	$\frac{1}{2}(^{8}C_{5})$	(d)	None of these
209.	There are 10 persons named	I A R	J. We have the capacity to accor		2	ve ca	n we arrange them in a line if
20).	A is must and G and H must i			1111100	ace only 5. In now many wa	ys ca	ii we arrange them in a line ii
	(a) ${}^{8}P_{5}$		$^{7}P_{5}$	(c)	$^{7}C_{3}(4!)$	(4)	$^{7}C_{2}(51)$
210.			can select three numbers from 1		-		3
210.	(a) 4060		3605		455		None of these
211.			2 animals and there are horses,				
	can be loaded in		,				,
	(a) $3^{12}-1$	(b)	3 ¹²	(c)	$(12)^3 - 1$	(d)	None of these
212.	There are $(n+1)$ white and	(n+1)) black balls each set numbered		, ,		
	in a row so that the adjacent						of the second se
	(a) $(2n+2)!$			(c)	$(n+1)! \times 2$	(4)	$2\{(n+1)!\}^2$
213.		. ,	another in running, swimming				
213.			ues one for running, 2 for swimn			313 (1	buid be made it there were
			$16^3 \times 15^2 \times 14$			(d)	None of these
	(a) 10 ×13×11	(5)	TO AIS AIT	(0)	10 / 13 / 11	(u)	Trone of these
214.	The number of ways in which	h a co	mmittee of 6 members can be for	rmed	from 8 gentlemen and 4 lad	ies so	that the committee contains
	at least 3 ladies is						
	(a) 252	. ,	672		444		420
215.			3 questions in an examination su	ıch tł	nat he must choose at least 4	1 fron	n the first five questions. The
	number of choices available			(-)	200	(4)	246
216.	(a) 140 The number of ways of distr	` '	196 g 8 identical balls in 3 distinct bo		280		346
210.					3^8		
	(a) ${}^{8}C_{3}$		21	. ,		(d)	
217.	=		here will be 12 teams, divided eq	-		_	
			p teams will qualify for the next fy for the semifinal round, where				
	=	-	where they will play the best of t				=
	Cup will be	,	p p				
	(a) 54	(b)	53	(c)	38	(d)	None of these
218.	Let $\hat{a} = \hat{i} + \hat{i} + \hat{k}$ and \hat{r} be a	variak	ble vector such that $\vec{r} \cdot \hat{i}, \vec{r} \cdot \hat{j}$ and \vec{r}	\hat{k} ar	e positive integers. If $r.a < 1$	2 th	en the number of values of r
	is	101			r reserve moogeron in the 21		
	(a) $^{12}C_9 - 1$	(b)	$^{12}C_{3}$	(a)	$^{12}C_{9}$	(ፈነ	None of these
210	· · · · · · · · · · · · · · · · · · ·		•		,		
219.			and 3 men. His wife also has 7 re m are the man's relatives and 3 h			110W	many ways can they invite 3
	(a) 485	or the	in are the man 3 relatives and 3 h		484		
				(-)			

	(c) 468		(d)	None of these			
220.		as many different parties as he can ou	ıt of h	is 20 friends such that each p	arty	consists of the same number	
		riends he should invite at a time is	(-)	0	(4)	Name of the con-	
	(a) 5	(b) 10	(c)	8	(a)	None of these	
		Level	-1				
221.	The number of triangles that	t can be formed by 5 points in a line an	nd 3 m	oints on a narallel line is			
	(a) 8C_3	(b) ${}^{8}C_{3} - {}^{5}C_{3}$		${}^{8}C_{3} - {}^{5}C_{3} - 1$	(4)	None of these	
222.	9	points of intersection of 20 straight lines		-	(u)	Trone of these	
	(a) 190	(b) 220		200	(d)	None of these	
223.	If a polygon has 44 diagonals	s, then the number of its sides are					
	(a) 7	(b) 11	(c)	8	(d)	None of these	
224.		drawn by means of 9 non-collinear poi		144	(4)	126	
225.	(a) 84 The number of diagonals in a	(b) 72 a polygon of <i>m</i> sides is	(0)	144	(u)	126	
				1	<i>(</i> 1)	1 , 2	
	(a) $\frac{1}{2!}m(m-5)$	(b) $\frac{1}{2!}m(m-1)$	(c)	$\frac{1}{2!}m(m-3)$	(d)	$\frac{1}{2!}m(m-2)$	
226.	In a plane there are 10 point	ts out of which 4 are collinear, then the	num	ber of triangles that can be fo	rme	ed by joining these points are	
227	(a) 60 There are 16 points in a plan	(b) 116		120		None of these	
227.	There are 10 points in a plan	ne out of which 6 are collinear, then ho	W IIIa	ny mies can be drawn by jon	iiiig	triese poritis	
	(a) 106	(b) 105	(c)	60	(d)	55	
228.	The number of parallelogram	ns that can be formed from a set of fou	ır par	allel lines intersecting anothe	er se	t of three parallel lines is	
	(a) 6	(b) 18	(c)	12	(d)	q	
229.	•	er of points of intersection of 8 straigh	. ,		(u)	,	
	(a) 32	(b) 64		76	(d)	104	
230.		ne, no three of which are in a straight l	ine ex	scept 8 which are all in a stra	ight	line. The number of triangles	
	that can be formed by joining		(a)	560	(4)	1120	
231	(a) 504	(b) 552 of triangles which can be formed using			. ,	1120 sides If $T = T - 21$ then n	
231.	equals	or triangles which can be formed using	, the v	ertices of a regular polygon (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sides. If $I_{n+1} = I_n = 21$ then n	
	(a) 5	(b) 7	(c)	6	(d)	4	
232.		are in a straight line. The number of t			oint	s are	
	(a) 100	(b) 150	(c)	120	(d)	None of these	
233.		s that can be formed by joining 20 poi	nts no	three of which are in the sa	me s	straight line except 4 of them	
	which are in the same line (a) 183	(b) 186	(c)	197	(4)	185	
234.		on the circumference of a circle. The nu			. ,		
		ssible triangles. Then the value of n is		1		r	
	(a) 7	(b) 8	(c)	15	(d)	30	
235.	Given six line segments of le	ngths 2, 3, 4, 5, 6, 7 units, the number	of tria	ngle that can be formed by th	ıese	lines is	
	(a) ${}^{6}C_{3}-7$	(b) ${}^{6}C_{3}-6$	(c)	$^{6}C_{3}-5$	(d)	$^{6}C_{3}-4$	
236.	A polygon has 35 diagonals,	then the number of its sides is					
	(a) 8	(b) 9	(c)		(d)		
237.	37. If 5 parallel straight lines are intersected by 4 parallel straight lines, then the number of parallelograms thus formed is						
	(a) 20	(b) 60	(c)	101	(d)	126	
238.	` '	pints of intersection of 8 circles, is	C		(-)		
	(a) 16	(b) 24	(c)	28	(d)	56	
239.	· · · · · · · · · · · · · · · · · · · ·						
	can be drawn through at leas		(2)	117	(4)	None of these	
	(a) 116	(b) 120		117	ιαJ	None of these	
		Level.	-2				

240.	The sides AB, BC, CA of a constructed using these points	_		respectively 3, 4	and 5	points lying on then	n. The num	ber of triangles that can be
	(a) 205	(b)	220		(c)	210	(d)	None of these
241.	Six 'x's have to be placed in done	the squ	uare of the figu	ure such that eac	h row o	contains at least one ×	. In how ma	ny different ways can this be
	(a) 28	(b)	27		(c)	26	(4)	None of these
242.	The straight lines I_1, I_2, I_3 a	()		the same nlane	. ,			
212.	on I_3 . The maximum number	er of tr	riangles forme	d with vertices a	t these	points are	ire taken on	I ₁ , n points on I ₂ , n points
	(a) $^{m+n+k}C_3$	(b)	$^{m+n+k}C_3-^mC_3$	$C_3 - {}^nC_3 - {}^kC_3$	(c)	$^{m}C_{3} + ^{n}C_{3} + ^{k}C_{3}$	(d)	None of these
243.	Six points in a plane be join three pass through the same to		_		_			oincident or parallel, and no oints of intersection is equal
	(a) 105	(b)	45		(c)	51	(d)	None of these
244.	There are <i>m</i> points on a strathese points as vertices whe	_	_					_
	(a) $\frac{m+n-2}{m+n}$	(b)	$\frac{m+n-2}{2}$		(c)	$\frac{m+n-2}{m+n+2}$	(d)	None of these
245.	There are n straight lines intersection are joined. Then	-		=		and no three pass th	rough the	same point. Their points of
	(a) $\frac{n(n-1)(n-2)}{8}$	(b)	$\frac{n(n-1)(n-2)}{6}$	2)(n-3)	(c)	$\frac{n(n-1)(n-2)(n-3)}{8}$	(d)	None of these
246.	A parallelogram is cut by tw	o sets	of <i>m</i> lines para	allel to its sides. 7	The nui	nber of parallelogram	s thus form	ed is
	(a) $\binom{m}{C_2}^2$	(b)	$\binom{m+1}{2}C_2^2$		(c)	$\binom{m+2}{2} \binom{n}{2}^2$	(d)	None of these
247.	In a plane there are 37 stra pass through one point, no the lines have is equal to	_		-	_	_	-	int <i>B</i> . Besides no three lines umber of intersection points
	(a) 535	(b)	601		(c)	728	(d)	None of these
248.	There are <i>n</i> points in a plane	of wh	iich <i>p</i> points ai	re collinear. How	many	lines can be formed fr	om these po	pints
	(a) $^{(n-p)}C_2$	(b)	$^{n}C_{2}-^{p}C_{2}$		(c)	$^{n}C_{2}-^{p}C_{2}+1$	(d)	$^{n}C_{2}-^{p}C_{2}-1$
249.	ABCD is a convex quadrilate with vertices on different sides.		4, 5 and 6 poi	nts are marked o	on the s	sides AB, BC, CD and I	OA respectiv	ely. The number of triangles
	(a) 270		220		(c)	282	(d)	342
250.	The number of triangles tha	t can b	e formed joini	ing the angular p	oints o	f decagon, is		
	(a) 30	(b)	45		(c)	90	(d)	120
251.	The number of triangles whethe octagon is	ose ve	ertices are at t	he vertices of an	octago	on but none of whose	sides happe	en to come from the sides of
	(a) 24	(b)			(c)		(d)	
252.	In a polygon no three diagon then the number of diagonal	ls of th	e polygon is	If the total numb	_			
	(a) 20	(b)			(c)			None of these
253.	There are $n(>2)$ points in segment drawn within the li		=			· · · · · · · · · · · · · · · · · · ·		
	(a) $^{2n}C_2 - 2.^nC_1 + 2$	(b)	$^{2n}C_2 - 2.^nC_2$		(c)	$^{n}C_{2} \times ^{n}C_{2}$	(d)	None of these
254.	m parallel lines in a plane ar	e inter	rsected by a fa	mily of <i>n</i> parallel	lines.	Γhe total number of pa	arallelogram	ns so formed is
	(a) $\frac{(m-1)(n-1)}{4}$		$\frac{mn}{4}$			$\frac{m(m-1)n(n-1)}{2}$		$\frac{mn(m-1)(n-1)}{4}$
255.	There are three coplanar pa	rallel !	lines. If any p	points are taken	on eac	h of the lines, the max	kimum numl	per of triangles with vertices

(a) $3p^2(p-1)+1$ (b) $3p^2(p-1)$ (c) $p^2(4p-3)$ (d) None of these

		Lev	el-1			
256.	If ${}^{n}P_{r} = 720. {}^{n}C_{r}$, then r is eq	qual to				
	(a) 6	(b) 5	(c)	4	(d)	7
257.	If ${}^{n}P_{4} = 24$. ${}^{n}C_{5}$, then the va		()			
	(a) 10	(b) 15	(c)	9	(d)	5
258.	If ${}^{n}P_{3} + {}^{n}C_{n-2} = 14 n$, then $n = 14 n$		()		()	
	(a) 5	(b) 6	(c)	8	(d)	10
259.	If ${}^{n}P_{4} = 30 {}^{n}C_{5}$, then $n =$					
	(a) 6	(b) 7	(c)	8	(d)	9
260.	If ${}^{n}P_{r} = 840, {}^{n}C_{r} = 35$, then r	is equal to				
	(a) 1	(b) 3	(c)	5	(d)	7
261.	If ${}^{n}C_{r} = {}^{n}C_{r-1}$ and ${}^{n}P_{r} = {}^{n}P_{r+1}$	$_{+1}$, then the value of n is				
	(a) 3	(b) 4	(c)	2	(d)	5
262.	$^{n}P_{r} \div ^{n}C_{r} =$					
	(a) n!	(b) $(n-r)!$	(c)	<u>1</u>	(d)	rl
	(u) II.	(0) (11 7).	(0)	r!	(u)	7.
263.	If a, b, c, d, e are prime integers	s, then the number of divisors of a				
264	(a) 94	(b) 72	(c)	36	(d)	71
264.	(a) 18	rs of 1800 which are also divisible (b) 34	(c)	27	(4)	None of these
265.	The number of odd proper di		(0)	21	(u)	Notice of these
203.		(b) $(p+m+n+1)(n+1)-1$	(c)	(p+1)(m+1)(n+1)-1	(4)	None of these
266			(0)	(p + 1)(n + 1)(n + 1) 1	(u)	Trone of these
266.	The number of proper diviso		(h)	(p+q+1)(q+r+1)(r+1)	2	
	(a) $(p+q+1)(q+r+1)(r+1)$	1)		4 1 / 1 / / /	- 2	
265	(c) $(p+q)(q+r)r-2$	d::	(a)	None of these		
267.	The number of even proper of (a) 23	(b) 24	(c)	22	(4)	None of these
	(u) 23	(0) 21	(6)	22	(u)	Trone of these
		l ev	el-2			
		LCV	CI-Z			
268.	The number of numbers of 4	digits which are not divisible by 5	are			
	(a) 7200	(b) 3600		14400	(d)	1800
269.	A set contains $(2n+1)$ eleme	ents. The number of subsets of the	set which	contain at most <i>n</i> element	s is	
	(a) 2^n	(b) 2^{n+1}	(c)	2^{n-1}	(d)	2^{2n}
270.	The number of ways in which	h an examiner can assign 30 marks	to 8 que	stions, awarding not less th	ian 2 i	marks to any question is
	(a) $^{21}C_7$	(b) ${}^{30}C_{16}$	(c)	$^{21}C_{16}$	(d)	None of these
271.	In a certain test a_i students	gave wrong answers to at least i	question	s where $i = 1, 2, 3, k$. N	o stud	dent gave more than k wrong
	answers. The total numbers of	of wrong answers given is				
	(a) $a_1 + 2a_2 + 3a_3 + \dots + ka_n$	k	(b)	$a_1 + a_2 + a_3 + \dots + a_k$		
	(c) Zero			None of these		
272.	Number of ways of selectio	on of 8 letters from 24 letters of	which 8	are a , 8 are b and the re	est un	llike is given by
	(a) 2^7	(b) 8.2^8	(c)	10.2^{7}	(d)	None of these
273.	The number of ordered triple	ets of positive integers which are s	olutions (of the equation $x + y + z =$	100 i	S
	(a) 6005	(b) 4851		5081		None of these
274.	A person goes in for an exar ways in which one can get 2 <i>n</i>	mination in which there are four p	papers w	ith a maximum of <i>m</i> mark	s fron	n each paper. The number of
Ì	ways in which one can get 211	n mai no 15				

(a) $\frac{2m+3}{3}C_3$ (b) $\frac{1}{3}(m+1)(2m^2+4m+1)$ (c) $\frac{1}{3}(m+1)(2m^2+4m+3)$ (d) None of these

275. The sum $\sum_{i=0}^{m} {10 \choose i} {20 \choose m-i}$, where ${p \choose q} = 0$ if p < q, is maximum when m is

(d) 20

276. The number of divisors of the form $4n + 2 (n \ge 0)$ of the integer 240 is

(a) 4

(b) 8

(c) 10

(d) 3