CHEM E 310 Material and Energy Balances Equations

Organized by Teng-Jui Lin

Warning

- WARNING: These equations are hand-typed and for personal reference use, so it is guaranteed to have some mistakes, both innocent and unforgivable. Therefore, use with caution!
- By using this equation sheet, you accept the risk associated with potential mistakes.
- If you find any mistakes, I welcome you to raise an issue.
- Updated: 9 June 2021

Table of Contents

- ▼ Table of Contents
 - CHEM E 310 Material and Energy Balances Equations
 - Warning
 - Table of Contents
 - Units and Process Variables
 - Force
 - Mass, volume and flow rate
 - Chemical composition
 - Pressure
 - Temperature
 - Fundamentals of Material Balances
 - Concepts
 - Degree of freedom analysis
 - Single-Phase System
 - Condensed phases
 - Ideal gas of single component
 - Ideal gas of multiple components
 - van der Waals equation of state
 - Virial equation of state
 - Using vitial equation of state
 - Redlick-Kwong (RK) equation of state
 - Soave-Redlick-Kwong (SRK) equation of state
 - Using SRK equation of state
 - Compressibility-factor equation of state
 - Using compressibility-factor equation of state
 - Multi-Phase System
 - Vapor pressure estimations
 - Vapor liquid equilibrium (VLE) calculations
 - Saturation and humidity
 - Bubble and dew point
 - Fundamentals of Energy Balances
 - Closed system balance
 - Open system balance
 - Energy Balances in Nonreactive Processes
 - Isothermal process
 - Non-isothermal process
 - Phase change process
 - o Energy Balances in Reactive Processes
 - Heat of Reactions
 - Enthalpy change of reactions

Units and Process Variables

Force

Description	Equations
	$1~ ext{N} = 1~ ext{kg}\cdot ext{m/s}^2$
Units of force	$1~\mathrm{lb_f} = 32.174~\mathrm{lb_m}\cdot\mathrm{ft/s^2}$
Weight	W=mg
Gravitational acceleration	$g = 9.8066 ext{ m/s}^2 \ = 32.174 ext{ ft/s}^2$

Mass, volume and flow rate

Description	Equations
Mass flow rate	$\dot{m}=rac{dm}{dt}$
Volumetric flow rate	$\dot{V}=rac{dV}{dt}$
Molar flow rate	$\dot{n}=rac{dn}{dt}$
Density	$ ho = rac{m}{V} = rac{\dot{m}}{\dot{V}}$
Specific volume	$v = rac{V}{m} = rac{1}{ ho}$
Molar volume	$V_{ m m}=rac{V}{n}=rac{M}{ ho}$
Specific gravity	$ ext{SG} = rac{ ho}{ ho_{ ext{ref}}}$

Chemical composition

Description	Equations
Mole and molecular wieght	$n=rac{m}{M}$
Mass fraction	$x_A = rac{m_A}{m}$
Mole fraction	$y_A = rac{n_A}{n}$
Scaling factor of percent (%), parts per million (ppm), parts per billion (ppb)	$egin{array}{l} imes 100\% \ imes 10^6 \ \mathrm{ppm} \ imes 10^9 \ \mathrm{ppb} \end{array}$
Average molecular weight	$\overline{M} = rac{\sum m_i}{\sum n_i} = \sum y_i M_i = \left(\sum rac{x_1}{M_i} ight)^{-1}$
Mass concentration	$ ho_A=rac{m_A}{V}$
Molar concentration	$c_A = rac{n_A}{V}$
Molarity and molar	$1~\mathrm{M} = 1~\mathrm{mol/L}$

Pressure

Description	Equations
Pressure	$P = \frac{F}{A}$
Hydrostatic pressure	$P=P_0+ ho g h$

Description	Equations
Hydrostatic head	$P= ho g P_h$
Relationship between pressures	$P_{ m abs} = P_{ m atm} + P_{ m gauge}$
General manometer	$P_1+\rho_1gd_1=P_2+\rho_2gd_a+\rho_mgh$
Differential manometer	$P_1-P_2=(\rho_m-\rho)gh$
Manometer for gas	$P_1-P_2=\rho_mgh=P_h$
SCFM (standard cubic feet per minute) and ACFM (actual cubic feet per minute)	$\dot{V_{ m a}}=\dot{V_{ m s}}rac{P_{ m s}}{P_{ m a}}rac{T_{ m a}}{T_{ m s}} \ { m (ideal \ gas)}$
Standard condition of gases	natural gas - $59^{\circ}F, 1 ext{ atm}$ other gas - $0^{\circ}C, 1 ext{ atm}$

Temperature

Description	Equations
Conversion of temperature	$T({ m K}) = T({ m ^{\circ}C}) + 273.15 \ T({ m ^{\circ}R}) = T({ m ^{\circ}F}) + 459.67 \ T({ m ^{\circ}R}) = 1.8T({ m K}) \ T({ m ^{\circ}F}) = 1.8T({ m ^{\circ}C}) + 32$
Conversion of temperature intervals	$1^{\circ}C = 1.8^{\circ}F$ $1^{\circ}R = 1.8 \text{ K}$ $1^{\circ}F = 1^{\circ}R$ $1^{\circ}C = 1.8 \text{ K}$

Fundamentals of Material Balances

Concepts

Description	Equations
Balance equation	Accumulation = Input - Output + Generation - Consumption
Fractional excess	$ ext{Fractional excess} = rac{n_{ ext{fed}} - n_{ ext{stoich}}}{n_{ ext{stoich}}}$
Fractional conversion	$ ext{Fractional conversion} = rac{n_{ ext{reacted}}}{n_{ ext{fed}}}$
Fractional completion of limiting reactant	$ ext{Fractional completion} = rac{n_{ ext{reacted}}}{n_{ ext{fed}}} = rac{- u \xi}{n_{ ext{fed}}}$
Extent of reaction	$\xi = rac{n_i - n_{i0}}{ u_i}$
Extent of reaction in multiple reactions	$n_i = n_{i0} \sum_j u_{ij} \xi_{ij}$
Yield theoretical = complete rxn, no side rxn	$ ext{Yield} = rac{n_{ ext{actual}}}{n_{ ext{theoretical}}} imes 100\%$
Selectivity	$ ext{Selectivity} = rac{n_{ ext{desired}}}{n_{ ext{undesired}}}$
Fractional excess of air (oxygen)	$ ext{Fractional excess air} = rac{n_{ ext{fed}} - n_{ ext{stoich}}}{n_{ ext{stoich}}}$
Quality of steam	$ ext{Quality of steam} = rac{m_{ ext{vapor}}}{m_{ ext{total}}}$

Degree of freedom analysis

Description	Equations
Nonreactive process	No. unknown variables +No. independent material balance species -No. other relations (process specifications) No. degrees of freedom
Reactive process Molecular species balance method 1 reaction system	$ \begin{aligned} &\text{No. unknown variables} \\ &+ \text{No. independent reaction} \\ &- \text{No. independent molecular species} \\ &- \text{No. other relations} \\ &\hline &\text{No. degrees of freedom} \end{aligned} $
Reactive process Atomic species balance method >1 reaction system	No. unknown variables -No. independent reactive atomic species -No. independent nonreactive molecular species -No. other relations No. degrees of freedom
Reactive process Extent of reaction method equilibrium problem	No. unknown variables +No. independent reaction -No. independent reactive species -No. independent nonreactive species -No. other relations No. degrees of freedom

Single-Phase System

Condensed phases

Description	Equations
Estimations of density of liquid mixtures 1. Experimental data 2. Estimation formula * Volume addativity	$egin{aligned} rac{1}{ar{ ho}} &= \sum_{i=1}^n rac{x_i}{ ho_i} \ ar{ ho} &= \sum_{i=1}^n x_i ho_1 \end{aligned}$
	$egin{aligned} \partial \hat{V} &= 0 \ \left(rac{\partial \hat{V}}{\partial P} ight)_T &= 0 \ \left(rac{\partial \hat{V}}{\partial T} ight)_P &= 0 \end{aligned}$
Volume expansivity	$eta = rac{1}{\hat{V}} \left(rac{\partial \hat{V}}{\partial T} ight)_P$
Isothermal compressibility	$K = -rac{1}{\hat{V}} \left(rac{\partial \hat{V}}{\partial P} ight)_T$
	$\ln\left(rac{\hat{V}_2}{\hat{V}_1} ight) = eta(T_2-T_1)-K(P_2-P_1)$

Ideal gas of single component

Description	Equations
Specific molar volume	$\hat{V} = \frac{V}{n}$
Ideal gas equation of state $\bigstar \ T > 0^{\circ} \mathrm{C}, P < 1 \mathrm{\ atm}$	$egin{aligned} PV &= nRT \ P\hat{V} &= RT \end{aligned}$
Standard conditions and actual conditions	$rac{PV}{P_{ m s}\hat{V_{ m s}}}=nrac{T}{T_{ m s}}$

Description	Equations	
SCFM vs. ACFM ★ Ideal gas	$\dot{V_{ m a}}=\dot{V_{ m s}}rac{P_{ m s}}{P_{ m a}}rac{T_{ m a}}{T_{ m s}}$	
ldeal gas condition	$T>0^{\circ}\mathrm{C} \ P<1 \mathrm{~atm} \ \hat{V}_{\mathrm{ideal}}=rac{RT}{P} \ \left\{ > 5 \mathrm{~L/mol, 80~ft^3/lbmol} \ > 20 \mathrm{~L/mol, 320~ft^3/lbmol} ight.$	diatomic other

Ideal gas of multiple components

Description	Equations
Partial pressure	$P_i=y_iP$
Dalton's law	$\sum P_i = P$
Pure-component volume	$V_i=y_i V$
Amagat's law	$\sum V_i = V$
Volume fraction of ideal gas	$y_i = rac{V_i}{V}$

van der Waals equation of state

Description	Equations
van der Waals equation of state	$P = \frac{RT}{\hat{V} - b} - \frac{a}{\hat{V}^2}$
Constant	$a=rac{27R^2T_c^2}{64P_c}$
	$b=rac{RT_c}{8P_c}$
Significance of 3 real roots	$egin{aligned} \hat{V}_{ m highest} &= \hat{V}_{ m sat, vapor} \ \hat{V}_{ m lowest} &= \hat{V}_{ m sat, liquid} \ \hat{V}_{ m middle} &= { m no significance} \end{aligned}$
Significance of real and imaginary roots	$\hat{V}_{ m real} = \hat{V}_{ m gas} \ \hat{V}_{ m imaginary} = { m no \ significance}$

▼ Virial equation of state

Virial equation of state

Description	Equations
Virial equation of state	$rac{P\hat{V}}{RT}=1+rac{B}{\hat{V}}+rac{C}{\hat{V}^2}+rac{D}{\hat{V}^3}+\cdots$
First order appox. of virial equation of state	$\frac{P\hat{V}}{RT} = 1 + \frac{BP}{RT}$
Reduced temperature	$T_r = rac{T}{T_c}$
Reduced pressure	

Using vitial equation of state

1. Lookup T_c, P_c, ω

- 2. Calculate T_r
- 3. Estimate B by

timate B by
$$1.\,B_0=0.083-\frac{0.422}{T_r^{1.6}}$$

$$2.\,B_1=0.139-\frac{0.172}{T_r^{4.2}}$$

$$3.\,B=\frac{RT_c}{P_c}(B_0+\omega B_1)$$

- 4. Substitute known values into first order approximation
- ▼ Redlick-Kwong (RK) equation of state

Redlick-Kwong (RK) equation of state

Description	
SRK equation of state	$P=rac{RT}{\hat{V}-b}-rac{a}{T^{0.5}\hat{V}(\hat{V}+b)}$
Constants	$a = 0.4274 R^2 T_c^{2.5}/P_c \ b = 0.08664 R T_c/P_c$

▼ Soave-Redlick-Kwong (SRK) equation of state

Soave-Redlick-Kwong (SRK) equation of state

Description	Equations
SRK equation of state	$P = rac{RT}{\hat{V} - b} - rac{lpha a}{\hat{V}(\hat{V} + b)}$
Constants	$a = 0.4274 (RT_c)^2/P_c$ $b = 0.08664 RT_c/P_c$ $m = 0.48508 + 1.55171\omega - 0.1561\omega^2$ $T_r = T/T_c$ $\alpha = [1 + m(1 - \sqrt{T_r})]^2$

Using SRK equation of state

- 1. Lookup T_c, P_c, ω
- 2. Calculate a,b,m
- 3. Determine the known
 - 1. If known T, \hat{V}
 - 1. Calculate $T_r, lpha$
 - 2. Solve from equation directly for ${\cal P}$
 - 2. If known T,P
 - 1. Use equation and all knowns
 - 2. Use python to solve for \hat{V}
 - 3. If known P, \hat{V}
 - 1. Use equation, $T_r, lpha$, and all knowns
 - 2. Use python to solve for ${\cal T}$
- lacktriangledown Compressibility-factor equation of state

Compressibility-factor equation of state

Description	Equations
Compressibility (Law of corresponding state)	$z=rac{P\hat{V}}{RT}$
Compressibility-factor equation of state	$P\hat{V}=zRT$

Description	Equations
Reduced temperature	$T_r = rac{T}{T_c}$
Reduced pressure	$P_r = rac{P}{P_c}$
ldeal reduced volume	$\hat{V}_r^{ ext{ideal}} = rac{P_c \hat{V}}{R T_c}$
Kay's rule of nonideal gas mixtures Pseudocritical temperature	$T_c' = \sum y_i T_{ci}$
Pseudocritical pressure	$P_c' = \sum y_i P_{ci}$
Pseudoreduced temperature	$T_r' = rac{T}{T_c'}$
Pseudoreduced pressure	$P_r' = rac{P}{P_c'}$
Ideal pseudoreduced volume	$\hat{V}_r^{ ext{ideal}} = rac{P_c'\hat{V}}{RT_c'}$

Using compressibility-factor equation of state

- 1. Lookup T_c, P_c
- 2. If gas is H_{2}/He , adjust critical constant by Newton's correlation

1.
$$T_c^a=T_c+8~\mathrm{K}$$

2.
$$P_c^a=P_c+8~
m atm$$

- 3. Calculate reduced value of two known variables from $T_r, P_r, V_r^{
 m ideal}$
- 4. Use compressibility chart to determine \boldsymbol{z}
- 5. Solve for unknowns from equation

Multi-Phase System

Vapor pressure estimations

Description	Equations
Clapeyron equation	$rac{dP^*}{dt} = rac{\Delta \hat{H}_{ m v}}{T} rac{1}{\hat{V_g} - \hat{V_l}}$
Clapeyron equation	$rac{d(\ln P^*)}{d(1/T)} = -rac{\Delta \hat{H}_{ ext{v}}}{R}$
Clausius-Clapeyron equation	$\ln P^* = -rac{\Delta \hat{H}_{ ext{v}}}{RT} + B$
Clausius-Clapeyron equation	$\ln\left(rac{P_2}{P_1} ight) = -rac{\Delta\hat{H}_{ m v}}{nR}\left(rac{1}{T_2} - rac{1}{T_1} ight)$
Antoine equation (Vapor pressure of species)	$\log_{10}P^*=A-rac{B}{T+C}$

Vapor liquid equilibrium (VLE) calculations

Description	Equations
Gibbs phase rule	$\mathcal{F}=2+c-\Pi-r$
Total vapor pressure of immiscible liquids	$P = \sum P_i^*$
Raoult's law \star Ideal gas and solution, non-dilute x_A	$P_A=y_AP=x_AP_A^st(T)$

Description	Equations
	$P_A=y_AP=x_AH_A(T)$
VLE of real gases $arphi$ - fugacity coefficient γ - activity coefficient	$y_i arphi_i P = x_i \gamma_i P^*$
Partition coefficient of ideal gas (Raoult's law) $ \bigstar \ \text{Ideal gas:} \varphi = 1, \gamma = 1$	$K_i = rac{y_i}{x_i} = rac{\gamma_i P_i^*}{arphi_i P} = rac{P_i^*}{P}$
Partition coefficient of ideal gas (Henry's law) ★ Ideal gas, Henry's law assumptions	$K_i = rac{H_i}{P}$

Saturation and humidity

Description	Equations
Relative saturation/humidity	$s_r = rac{P_A}{P_A^*(T)} imes 100\%$
Molal saturation/humidity	$s_m = rac{P_A}{P-P_A}$
Absolute saturation/humidity	$s_a = rac{P_A M_A}{(P-P_A) M_A}$
Percent saturation/humidity	$egin{aligned} s_p &= rac{s_m}{s_m^*} imes 100\% \ &= rac{P_A/(P-P_A)}{P_A^*/(P-P_A^*)} imes 100\% \end{aligned}$

Bubble and dew point

Description	Equations
Superheated vapor	$P_A = y_A P < P_A^st(T)$
Saturated vapor and dew point	$P_A=y_AP=P_A^*(T_{ m dp})$
Degree of superheat	$T-T_{ m dp}$
Bubble point temperature of mixture at constant ${\cal P}$	$P = \sum x_i P_i^*(T_{ m bp})$
Bubble point pressure of mixture at constant ${\cal T}$	$P_{ m bp} = \sum x_i P_i^*(T)$
Dew point temperature of mixture at constant ${\cal P}$	$\sum rac{y_i}{P_i^*(T_{ ext{dp}})} = 1$
Dew point pressure of mixture at constant \ensuremath{T}	$P_{ ext{dp}} = \left[\sum rac{y_i}{P_i^*(T)} ight]^{-1}$

Fundamentals of Energy Balances

Closed system balance

Description	Equations
Kinetic energy	$E_k=rac{1}{2}mv^2$
Potential energy	$E_p=mgz$
Internal energy	U(T,V)
Total energy	$E=U+E_k+E_p$

Description	Equations
Work	$W=P\Delta V$
Closed system balance	$\Delta U + \Delta E_k + \Delta E_p = Q + W$
$\Delta E_k = 0$	Not accelerating
$\Delta E_p = 0$	Not changing height
$\Delta U=0$	No phase change, chemical reaction, temperature change
Q=0	Insulated system; adiabatic; temperature of system and surrounding the same
W = 0	No moving parts, radiation, electric current, flow

Open system balance

Description	Equations
Work	$\dot{W}=\dot{W}_s+\dot{W}_{fl}$
Enthalpy	H=U+PV
Specific properties	$\hat{V}=rac{V}{m},\hat{V}=rac{V}{n}$
Open system balance	$\Delta \dot{H} + \Delta \dot{E}_k + \Delta \dot{E}_p = \dot{Q} + \dot{W}_s$
$\Delta E_k = 0$	No acceleration; linear velocity of all streams the same
$\Delta E_p = 0$	Stream entering and leaving at same height
$\dot{Q}=0$	Insulated; adiabatic; system and surrounding temperature the same
$\dot{W}_s=0$	No moving parts
Friction loss	$\hat{F}=\Delta\hat{U}-rac{\dot{Q}}{\dot{m}}$
Mechanical energy balance	$rac{\Delta P}{ ho} + rac{\Delta v^2}{2} + g \Delta z + \hat{F} = rac{\dot{W}_s}{\dot{m}}$
Bernoulli equation $igstar{\hat{F}} = 0, \dot{W}_s = 0$	$rac{\Delta P}{ ho} + rac{\Delta v^2}{2} + g\Delta z = 0$

Energy Balances in Nonreactive Processes

Isothermal process

$\Delta U = \begin{cases} = 0 & \text{(ideal gas)} \\ \approx 0 & \text{(real gas)} \ P < 10 \ \text{bar} \\ \neq 0 & \text{(real gas)} \ P > 10 \ \text{bar} \\ \approx 0 & \text{(condensed phases)} \end{cases}$ Enthalpy $\Delta H = \begin{cases} = 0 & \text{(ideal gas)} \\ = 0 & \text{(real gas)} \ P > 10 \ \text{bar} \\ \neq 0 & \text{(real gas)} \ P < 10 \ \text{bar} \\ \neq 0 & \text{(real gas)} \ P > 10 \ \text{bar} \\ \approx \hat{V} \Delta P & \text{(condensed phases)} \end{cases}$

Use (hypothetical) process paths to guide the use of equations.

Description	Equations
Heat capacity at constant volume	$C_V(T) = \left(rac{\partial \hat{U}}{\partial T} ight)_V$
Heat capacity at constant pressure	$C_P(T) = \left(rac{\partial \hat{H}}{\partial T} ight)_P$
Heat capacity correlation	$C_P(T)=a+bT+cT^2+dT^3$
Heat capacity relation of condensed phases	$C_Ppprox C_V$
Heat capacity relation of ideal gas	$C_P = C_V + R$
Heat capacity of monoatmoic ideal gases	$C_V=rac{3}{2}R, C_P=rac{5}{2}R$
Heat capacity of polyatomic ideal gases	$C_V=rac{5}{2}R, C_P=rac{7}{2}R$
Kopp's rule Heat capacity of compound (table B.10)	$C_{P, ext{compound}} = \sum u_i C_{P,i}$
Kopp's rule Heat capacity of mixture	$C_{P, ext{mix}} = \sum y_i C_{P,i}(T)$
Change in internal energy at changing temperature	$\Delta \hat{U} = \int_{T_1}^{T_2} C_V(T) \ dT$
Change in enthalpy at changing temperature	$\Delta \hat{H} = \int_{T_1}^{T_2} C_P(T) \ dT$

Phase change process

Description	Equations
Latent heat approximation of condensed phases	$\Delta U pprox \Delta H$
Latent heat approximation of ideal gas	$\Delta U_{ m v}pprox \Delta H_{ m v}-RT$

Energy Balances in Reactive Processes

Heat of Reactions

Description	Equations
Heat of reaction of batch process	$\Delta H = \xi \Delta H_{ m rxn}(T_1,P_1)$
Heat of reaction of continuous process	$\Delta \dot{H} = \xi \Delta \dot{H}_{ m rxn}(T_1,P_1)$
Endothermic reaction	$\Delta H_{ m rxn} > 0$
Exothermic reaction	$\Delta H_{ m rxn} < 0$
Hess's law and heat of formation "product minus reactant"	$\Delta H^{\circ}_{ m rxn} = \sum_i u_i \Delta \hat{H}^{\circ}_{{ m f},i}$
Heat of formation conventions	$\Delta \hat{H}_{\mathrm{f}}^{\circ}(ext{elemental}) = 0$
Hess's law and heat of combustion "reactant minus product"	$\Delta H^{\circ}_{ m rxn} = -\sum_{i} u_{i} \Delta \hat{H}^{\circ}_{{ m c},i}$
Heat of combustion conventions	$\Delta \hat{H}_{ m c}^{\circ}({ m O}_2)=0 \ \Delta \hat{H}_{ m c}^{\circ}({ m combustion \ product})=0 \ { m combustion \ product: CO}_2, m H}_2{ m O}, m SO}_2, m N}_2$
Internal energy of reaction (product $ u>0$; reactant $ u<0$)	$\Delta U_{ m rxn} = \Delta H_{ m rxn} - RT \sum_{ m gas} u_i$

Enthalpy change of reactions

(a) Process path for heat of reaction method

(b) Process path for heat of formation method

Description	Equations
Enthalpy change of heat of reaction method	$\Delta \dot{H} = \sum_{ m rxn} \xi \Delta H_{ m rxn}^{\circ} + \sum \dot{n}_{ m out} \hat{H}_{ m out} - \ \sum \dot{n}_{ m in} \hat{H}_{ m in}$
Enthalpy change of heat of formation method	$\Delta \dot{H} = \sum \dot{n}_{ m out} \hat{H}_{ m out} - \sum \dot{n}_{ m in} \hat{H}_{ m in}$