TABLE 14.4 Sinkings of German submarines by U.S. during 16 consecutive months of WWII

N/1 41-	Guesses by U.S. (reported sinkings)	Actual number
Month	X	y
1	3	3
2	2	2
3	4	6
4	2	3
5	5	4
6	5	3
7	9	11
8	12	9
9	8	10
10	13	16
11	14	13
12	many is a second of	5
13	4	6
14	13	19
15	10	15
16	16	15
	123	140

COMPUTER EXPLORATIONS

Exploring Local Extrema at Critical Points

In Exercises 65–70, you will explore functions to identify their local extrema. Use a CAS to perform the following steps:

- a. Plot the function over the given rectangle.
- b. Plot some level curves in the rectangle.
- c. Calculate the function's first partial derivatives and use the CAS equation solver to find the critical points. How do the critical points relate to the level curves plotted in part (b)? Which critical points, if any, appear to give a saddle point? Give reasons for your answer.
- **d.** Calculate the function's second partial derivatives and find the discriminant $f_{xx}f_{yy} f_{xy}^2$.
- e. Using the max-min tests, classify the critical points found in part (c). Are your findings consistent with your discussion in part (c)?

65.
$$f(x, y) = x^2 + y^3 - 3xy$$
, $-5 \le x \le 5$, $-5 \le y \le 5$

66.
$$f(x, y) = x^3 - 3xy^2 + y^2$$
, $-2 \le x \le 2$, $-2 \le y \le 2$

67.
$$f(x,y) = x^4 + y^2 - 8x^2 - 6y + 16$$
, $-3 \le x \le 3$, $-6 \le y \le 6$

68.
$$f(x,y) = 2x^4 + y^4 - 2x^2 - 2y^2 + 3$$
, $-3/2 \le x \le 3/2$, $-3/2 \le y \le 3/2$

$$69. \ f(x,y) = 5x^6 + 18x^5 - 30x^4 + 30xy^2 - 120x^3, \\ -4 \le x \le 3, \quad -2 \le y \le 2$$

70.
$$f(x,y) = \begin{cases} x^5 \ln(x^2 + y^2), & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

 $-2 \le x \le 2, \quad -2 \le y \le 2$

14.8

Lagrange Multipliers

HISTORICAL BIOGRAPHY

Joseph Louis Lagrange (1736–1813) Sometimes we need to find the extreme values of a function whose domain is constrained to lie within some particular subset of the plane—a disk, for example, a closed triangular region, or along a curve. In this section, we explore a powerful method for finding extreme values of constrained functions: the method of *Lagrange multipliers*.

Constrained Maxima and Minima

EXAMPLE 1 Finding a Minimum with Constraint

Find the point P(x, y, z) closest to the origin on the plane 2x + y - z - 5 = 0.

Solution The problem asks us to find the minimum value of the function

$$|\overrightarrow{OP}| = \sqrt{(x-0)^2 + (y-0)^2 + (z-0)^2}$$
$$= \sqrt{x^2 + y^2 + z^2}$$

subject to the constraint that

$$2x + y - z - 5 = 0.$$

Since $|\overrightarrow{OP}|$ has a minimum value wherever the function

$$f(x, y, z) = x^2 + y^2 + z^2$$

has a minimum value, we may solve the problem by finding the minimum value of f(x, y, z) subject to the constraint 2x + y - z - 5 = 0 (thus avoiding square roots). If we regard x and y as the independent variables in this equation and write z as

$$z = 2x + y - 5,$$

our problem reduces to one of finding the points (x, y) at which the function

$$h(x, y) = f(x, y, 2x + y - 5) = x^2 + y^2 + (2x + y - 5)^2$$

has its minimum value or values. Since the domain of h is the entire xy-plane, the First Derivative Test of Section 14.7 tells us that any minima that h might have must occur at points where

$$h_x = 2x + 2(2x + y - 5)(2) = 0,$$
 $h_y = 2y + 2(2x + y - 5) = 0.$

This leads to

$$10x + 4y = 20,$$
 $4x + 4y = 10,$

and the solution

$$x = \frac{5}{3}, \qquad y = \frac{5}{6}.$$

We may apply a geometric argument together with the Second Derivative Test to show that these values minimize h. The z-coordinate of the corresponding point on the plane z = 2x + y - 5 is

$$z = 2\left(\frac{5}{3}\right) + \frac{5}{6} - 5 = -\frac{5}{6}.$$

Therefore, the point we seek is

Closest point:
$$P\left(\frac{5}{3}, \frac{5}{6}, -\frac{5}{6}\right)$$
.

The distance from P to the origin is $5/\sqrt{6} \approx 2.04$.

Attempts to solve a constrained maximum or minimum problem by substitution, as we might call the method of Example 1, do not always go smoothly. This is one of the reasons for learning the new method of this section.

Find the points closest to the origin on the hyperbolic cylinder $x^2 - z^2 - 1 = 0$.

Solution 1 The cylinder is shown in Figure 14.50. We seek the points on the cylinder closest to the origin. These are the points whose coordinates minimize the value of the function

$$f(x, y, z) = x^2 + y^2 + z^2$$
 Square of the distant

FIGURE 14.50 The hyperbolic cylinder $x^2 - z^2 - 1 = 0$ in Example 2.

subject to the constraint that $x^2-z^2-1=0$. If we regard x and y as independent variables in the constraint equation, then

$$z^2 = x^2 - 1$$

and the values of $f(x, y, z) = x^2 + y^2 + z^2$ on the cylinder are given by the function

$$h(x, y) = x^2 + y^2 + (x^2 - 1) = 2x^2 + y^2 - 1.$$

To find the points on the cylinder whose coordinates minimize f, we look for the points in the xy-plane whose coordinates minimize h. The only extreme value of h occurs where

$$h_x = 4x = 0$$
 and $h_y = 2y = 0$,

that is, at the point (0, 0). But there are no points on the cylinder where both x and y are zero. What went wrong?

What happened was that the First Derivative Test found (as it should have) the point in the domain of h where h has a minimum value. We, on the other hand, want the points on the cylinder where h has a minimum value. Although the domain of h is the entire xy-plane, the domain from which we can select the first two coordinates of the points (x, y, z) on the cylinder is restricted to the "shadow" of the cylinder on the xy-plane; it does not include the band between the lines x = -1 and x = 1 (Figure 14.51).

We can avoid this problem if we treat y and z as independent variables (instead of x and y) and express x in terms of y and z as

$$x^2 = z^2 + 1.$$

With this substitution, $f(x, y, z) = x^2 + y^2 + z^2$ becomes

$$k(y, z) = (z^2 + 1) + y^2 + z^2 = 1 + y^2 + 2z^2$$

and we look for the points where k takes on its smallest value. The domain of k in the yzplane now matches the domain from which we select the y- and z-coordinates of the points (x, y, z) on the cylinder. Hence, the points that minimize k in the plane will have corresponding points on the cylinder. The smallest values of k occur where

$$k_y = 2y = 0$$
 and $k_z = 4z = 0$,

or where y = z = 0. This leads to

$$x^2 = z^2 + 1 = 1, \qquad x = \pm 1.$$

The corresponding points on the cylinder are $(\pm 1, 0, 0)$. We can see from the inequality

$$k(y, z) = 1 + y^2 + 2z^2 \ge 1$$

that the points $(\pm 1, 0, 0)$ give a minimum value for k. We can also see that the minimum distance from the origin to a point on the cylinder is 1 unit.

Solution 2 Another way to find the points on the cylinder closest to the origin is to imagine a small sphere centered at the origin expanding like a soap bubble until it just touches the cylinder (Figure 14.52). At each point of contact, the cylinder and sphere have the same tangent plane and normal line. Therefore, if the sphere and cylinder are represented as the level surfaces obtained by setting

$$f(x, y, z) = x^2 + y^2 + z^2 - a^2$$
 and $g(x, y, z) = x^2 - z^2 - 1$

FIGURE 14.51 The region in the *xy*-plane from which the first two coordinates of the points (x, y, z) on the hyperbolic cylinder $x^2 - z^2 = 1$ are selected excludes the band -1 < x < 1 in the *xy*-plane (Example 2).

FIGURE 14.52 A sphere expanding like a soap bubble centered at the origin until it just touches the hyperbolic cylinder $x^2 - z^2 - 1 = 0$ (Example 2).

equal to 0, then the gradients ∇f and ∇g will be parallel where the surfaces touch. At any point of contact, we should therefore be able to find a scalar λ ("lambda") such that

$$\nabla f = \lambda \nabla g,$$

or

$$2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k} = \lambda(2x\mathbf{i} - 2z\mathbf{k}).$$

Thus, the coordinates x, y, and z of any point of tangency will have to satisfy the three scalar equations

$$2x = 2\lambda x, \qquad 2y = 0, \qquad 2z = -2\lambda z.$$

For what values of λ will a point (x, y, z) whose coordinates satisfy these scalar equations also lie on the surface $x^2 - z^2 - 1 = 0$? To answer this question, we use our knowledge that no point on the surface has a zero x-coordinate to conclude that $x \neq 0$. Hence, $2x = 2\lambda x$ only if

$$2 = 2\lambda$$
, or $\lambda = 1$.

For $\lambda=1$, the equation $2z=-2\lambda z$ becomes 2z=-2z. If this equation is to be satisfied as well, z must be zero. Since y=0 also (from the equation 2y=0), we conclude that the points we seek all have coordinates of the form

What points on the surface $x^2 - z^2 = 1$ have coordinates of this form? The answer is the points (x, 0, 0) for which

$$x^2 - (0)^2 = 1$$
, $x^2 = 1$, or $x = \pm 1$.

The points on the cylinder closest to the origin are the points $(\pm 1, 0, 0)$.

The Method of Lagrange Multipliers

In Solution 2 of Example 2, we used the **method of Lagrange multipliers**. The method says that the extreme values of a function f(x, y, z) whose variables are subject to a constraint g(x, y, z) = 0 are to be found on the surface g = 0 at the points where

$$\nabla f = \lambda \nabla g$$

for some scalar λ (called a Lagrange multiplier).

To explore the method further and see why it works, we first make the following observation, which we state as a theorem.

THEOREM 12 The Orthogonal Gradient Theorem

Suppose that f(x, y, z) is differentiable in a region whose interior contains a smooth curve

C:
$$\mathbf{r}(t) = g(t)\mathbf{i} + h(t)\mathbf{j} + k(t)\mathbf{k}$$
.

If P_0 is a point on C where f has a local maximum or minimum relative to its values on C, then ∇f is orthogonal to C at P_0 .

Proof We show that ∇f is orthogonal to the curve's velocity vector at P_0 . The values of f on C are given by the composite f(g(t), h(t), k(t)), whose derivative with respect to t is

$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dg}{dt} + \frac{\partial f}{\partial y}\frac{dh}{dt} + \frac{\partial f}{\partial z}\frac{dk}{dt} = \nabla f \cdot \mathbf{v}.$$

At any point P_0 where f has a local maximum or minimum relative to its values on the curve, df/dt = 0, so

$$\nabla f \cdot \mathbf{v} = 0.$$

By dropping the z-terms in Theorem 12, we obtain a similar result for functions of two variables.

COROLLARY OF THEOREM 12

At the points on a smooth curve $\mathbf{r}(t) = g(t)\mathbf{i} + h(t)\mathbf{j}$ where a differentiable function f(x, y) takes on its local maxima and minima relative to its values on the curve, $\nabla f \cdot \mathbf{v} = 0$, where $\mathbf{v} = d\mathbf{r}/dt$.

Theorem 12 is the key to the method of Lagrange multipliers. Suppose that f(x, y, z) and g(x, y, z) are differentiable and that P_0 is a point on the surface g(x, y, z) = 0 where f has a local maximum or minimum value relative to its other values on the surface. Then f takes on a local maximum or minimum at P_0 relative to its values on every differentiable curve through P_0 on the surface g(x, y, z) = 0. Therefore, ∇f is orthogonal to the velocity vector of every such differentiable curve through P_0 . So is ∇g , moreover (because ∇g is orthogonal to the level surface g = 0, as we saw in Section 14.5). Therefore, at P_0 , ∇f is some scalar multiple λ of ∇g .

The Method of Lagrange Multipliers

Suppose that f(x, y, z) and g(x, y, z) are differentiable and $\nabla g \neq \mathbf{0}$ when g(x, y, z) = 0. To find the local maximum and minimum values of f subject to the constraint g(x, y, z) = 0 (if these exist), find the values of x, y, z, and λ that simultaneously satisfy the equations

$$\nabla f = \lambda \nabla g$$
 and $g(x, y, z) = 0.$ (1)

For functions of two independent variables, the condition is similar, but without the variable *z*.

EXAMPLE 3 Using the Method of Lagrange Multipliers

Find the greatest and smallest values that the function

$$f(x,y) = xy$$

takes on the ellipse (Figure 14.53)

$$\frac{x^2}{8} + \frac{y^2}{2} = 1.$$

Solution We want the extreme values of f(x, y) = xy subject to the constraint

$$g(x, y) = \frac{x^2}{8} + \frac{y^2}{2} - 1 = 0.$$

To do so, we first find the values of x, y, and λ for which

$$\nabla f = \lambda \nabla g$$
 and $g(x, y) = 0$.

The gradient equation in Equations (1) gives

$$y\mathbf{i} + x\mathbf{j} = \frac{\lambda}{4}x\mathbf{i} + \lambda y\mathbf{j},$$

from which we find

$$y = \frac{\lambda}{4}x$$
, $x = \lambda y$, and $y = \frac{\lambda}{4}(\lambda y) = \frac{\lambda^2}{4}y$,

so that y = 0 or $\lambda = \pm 2$. We now consider these two cases.

Case 1: If y = 0, then x = y = 0. But (0, 0) is not on the ellipse. Hence, $y \ne 0$. Case 2: If $y \ne 0$, then $\lambda = \pm 2$ and $x = \pm 2y$. Substituting this in the equation g(x, y) = 0 gives

$$\frac{(\pm 2y)^2}{8} + \frac{y^2}{2} = 1$$
, $4y^2 + 4y^2 = 8$ and $y = \pm 1$.

The function f(x, y) = xy therefore takes on its extreme values on the ellipse at the four points $(\pm 2, 1)$, $(\pm 2, -1)$. The extreme values are xy = 2 and xy = -2.

The Geometry of the Solution

The level curves of the function f(x, y) = xy are the hyperbolas xy = c (Figure 14.54). The farther the hyperbolas lie from the origin, the larger the absolute value of f. We want

FIGURE 14.53 Example 3 shows how to find the largest and smallest values of the product *xy* on this ellipse.

FIGURE 14.54 When subjected to the constraint $g(x, y) = x^2/8 + y^2/2 - 1 = 0$, the function f(x, y) = xy takes on extreme values at the four points $(\pm 2, \pm 1)$. These are the points on the ellipse when ∇f (red) is a scalar multiple of ∇g (blue) (Example 3).

to find the extreme values of f(x, y), given that the point (x, y) also lies on the ellipse $x^2 + 4y^2 = 8$. Which hyperbolas intersecting the ellipse lie farthest from the origin? The hyperbolas that just graze the ellipse, the ones that are tangent to it, are farthest. At these points, any vector normal to the hyperbola is normal to the ellipse, so $\nabla f = y\mathbf{i} + x\mathbf{j}$ is a multiple $(\lambda = \pm 2)$ of $\nabla g = (x/4)\mathbf{i} + y\mathbf{j}$. At the point (2, 1), for example,

$$\nabla f = \mathbf{i} + 2\mathbf{j}, \quad \nabla g = \frac{1}{2}\mathbf{i} + \mathbf{j}, \quad \text{and} \quad \nabla f = 2\nabla g.$$

At the point (-2, 1),

$$\nabla f = \mathbf{i} - 2\mathbf{j}, \quad \nabla g = -\frac{1}{2}\mathbf{i} + \mathbf{j}, \quad \text{and} \quad \nabla f = -2\nabla g.$$

EXAMPLE 4 Finding Extreme Function Values on a Circle

Find the maximum and minimum values of the function f(x, y) = 3x + 4y on the circle $x^2 + y^2 = 1$.

Solution We model this as a Lagrange multiplier problem with

$$f(x, y) = 3x + 4y,$$
 $g(x, y) = x^2 + y^2 - 1$

and look for the values of x, y, and λ that satisfy the equations

$$\nabla f = \lambda \nabla g : \quad 3\mathbf{i} + 4\mathbf{j} = 2x\lambda \mathbf{i} + 2y\lambda \mathbf{j}$$

$$g(x, y) = 0$$
: $x^2 + y^2 - 1 = 0$.

The gradient equation in Equations (1) implies that $\lambda \neq 0$ and gives

$$x = \frac{3}{2\lambda}, \qquad y = \frac{2}{\lambda}.$$

These equations tell us, among other things, that x and y have the same sign. With these values for x and y, the equation g(x, y) = 0 gives

$$\left(\frac{3}{2\lambda}\right)^2 + \left(\frac{2}{\lambda}\right)^2 - 1 = 0,$$

SC

$$\frac{9}{4\lambda^2} + \frac{4}{\lambda^2} = 1$$
, $9 + 16 = 4\lambda^2$, $4\lambda^2 = 25$, and $\lambda = \pm \frac{5}{2}$.

Thus.

$$x = \frac{3}{2\lambda} = \pm \frac{3}{5}, \quad y = \frac{2}{\lambda} = \pm \frac{4}{5},$$

and f(x, y) = 3x + 4y has extreme values at $(x, y) = \pm (3/5, 4/5)$.

By calculating the value of 3x + 4y at the points $\pm (3/5, 4/5)$, we see that its maximum and minimum values on the circle $x^2 + y^2 = 1$ are

$$3\left(\frac{3}{5}\right) + 4\left(\frac{4}{5}\right) = \frac{25}{5} = 5$$
 and $3\left(-\frac{3}{5}\right) + 4\left(-\frac{4}{5}\right) = -\frac{25}{5} = -5$.

The Geometry of the Solution

The level curves of f(x,y)=3x+4y are the lines 3x+4y=c (Figure 14.55). The farther the lines lie from the origin, the larger the absolute value of f. We want to find the extreme values of f(x,y) given that the point (x,y) also lies on the circle $x^2+y^2=1$. Which lines intersecting the circle lie farthest from the origin? The lines tangent to the circle are farthest. At the points of tangency, any vector normal to the line is normal to the circle, so the gradient $\nabla f=3\mathbf{i}+4\mathbf{j}$ is a multiple $(\lambda=\pm 5/2)$ of the gradient $\nabla g=2x\mathbf{i}+2y\mathbf{j}$. At the point (3/5,4/5), for example,

$$\nabla f = 3\mathbf{i} + 4\mathbf{j}, \qquad \nabla g = \frac{6}{5}\mathbf{i} + \frac{8}{5}\mathbf{j}, \quad \text{and} \quad \nabla f = \frac{5}{2}\nabla g.$$

Lagrange Multipliers with Two Constraints

Many problems require us to find the extreme values of a differentiable function f(x, y, z) whose variables are subject to two constraints. If the constraints are

$$g_1(x, y, z) = 0$$
 and $g_2(x, y, z) =$

and g_1 and g_2 are differentiable, with ∇g_1 not parallel to ∇g_2 , we find the constrained local maxima and minima of f by introducing two Lagrange multipliers λ and μ (mu, pronounced "mew"). That is, we locate the points P(x, y, z) where f takes on its constrained extreme values by finding the values of x, y, z, λ , and μ that simultaneously satisfy the equations

$$\nabla f = \lambda \nabla g_1 + \mu \nabla g_2, \qquad g_1(x, y, z) = 0, \qquad g_2(x, y, z) = 0$$
 (2)

Equations (2) have a nice geometric interpretation. The surfaces $g_1 = 0$ and $g_2 = 0$ (usually) intersect in a smooth curve, say C (Figure 14.56). Along this curve we seek the points where f has local maximum and minimum values relative to its other values on the curve.

FIGURE 14.55 The function f(x, y) = 3x + 4y takes on its largest value on the unit circle $g(x, y) = x^2 + y^2 - 1 = 0$ at the point (3/5, 4/5) and its smallest value at the point (-3/5, -4/5) (Example 4). At each of these points, ∇f is a scalar multiple of ∇g . The figure shows the gradients at the first point but not the second.

FIGURE 14.56 The vectors ∇g_1 and ∇g_2 lie in a plane perpendicular to the curve C because ∇g_1 is normal to the surface $g_1 = 0$ and ∇g_2 is normal to the surface $g_2 = 0$.

FIGURE 14.57 On the ellipse where the plane and cylinder meet, what are the points closest to and farthest from the origin? (Example 5)

These are the points where ∇f is normal to C, as we saw in Theorem 12. But ∇g_1 and ∇g_2 are also normal to C at these points because C lies in the surfaces $g_1=0$ and $g_2=0$. Therefore, ∇f lies in the plane determined by ∇g_1 and ∇g_2 , which means that $\nabla f = \lambda \nabla g_1 + \mu \nabla g_2$ for some λ and μ . Since the points we seek also lie in both surfaces, their coordinates must satisfy the equations $g_1(x, y, z) = 0$ and $g_2(x, y, z) = 0$, which are the remaining requirements in Equations (2).

EXAMPLE 5 Finding Extremes of Distance on an Ellipse

The plane x + y + z = 1 cuts the cylinder $x^2 + y^2 = 1$ in an ellipse (Figure 14.57). Find the points on the ellipse that lie closest to and farthest from the origin.

Solution We find the extreme values of

$$f(x, y, z) = x^2 + y^2 + z^2$$

(the square of the distance from (x, y, z) to the origin) subject to the constraints

$$g_1(x, y, z) = x^2 + y^2 - 1 = 0$$
 (3)

$$g_2(x, y, z) = x + y + z - 1 = 0.$$
 (4)

The gradient equation in Equations (2) then gives

$$\nabla f = \lambda \nabla g_1 + \mu \nabla g_2$$

$$2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k} = \lambda(2x\mathbf{i} + 2y\mathbf{j}) + \mu(\mathbf{i} + \mathbf{j} + \mathbf{k})$$

$$2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k} = (2\lambda x + \mu)\mathbf{i} + (2\lambda y + \mu)\mathbf{j} + \mu\mathbf{k}$$

or

$$2x = 2\lambda x + \mu, \qquad 2y = 2\lambda y + \mu, \qquad 2z = \mu. \tag{5}$$

The scalar equations in Equations (5) yield

$$2x = 2\lambda x + 2z \Longrightarrow (1 - \lambda)x = z,$$

$$2y = 2\lambda y + 2z \Longrightarrow (1 - \lambda)y = z.$$
(6)

Equations (6) are satisfied simultaneously if either $\lambda = 1$ and z = 0 or $\lambda \neq 1$ and $x = y = z/(1 - \lambda)$.

If z=0, then solving Equations (3) and (4) simultaneously to find the corresponding points on the ellipse gives the two points (1,0,0) and (0,1,0). This makes sense when you look at Figure 14.57.

If x = y, then Equations (3) and (4) give

$$x^{2} + x^{2} - 1 = 0$$
 $x + x + z - 1 = 0$
 $2x^{2} = 1$ $z = 1 - 2x$
 $x = \pm \frac{\sqrt{2}}{2}$ $z = 1 \mp \sqrt{2}$.

The corresponding points on the ellipse are

$$P_1 = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1 - \sqrt{2}\right)$$
 and $P_2 = \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 1 + \sqrt{2}\right)$.

Here we need to be careful, however. Although P_1 and P_2 both give local maxima of f on the ellipse, P_2 is farther from the origin than P_1 .

The points on the ellipse closest to the origin are (1, 0, 0) and (0, 1, 0). The point on the ellipse farthest from the origin is P_2 .

EXERCISES 14.8

Two Independent Variables with One Constraint

- **1. Extrema on an ellipse** Find the points on the ellipse $x^2 + 2y^2 = 1$ where f(x, y) = xy has its extreme values.
- **2. Extrema on a circle** Find the extreme values of f(x, y) = xy subject to the constraint $g(x, y) = x^2 + y^2 10 = 0$.
- 3. Maximum on a line Find the maximum value of $f(x, y) = 49 x^2 y^2$ on the line x + 3y = 10.
- **4. Extrema on a line** Find the local extreme values of $f(x, y) = x^2y$ on the line x + y = 3.
- **5. Constrained minimum** Find the points on the curve $xy^2 = 54$ nearest the origin.
- **6. Constrained minimum** Find the points on the curve $x^2y = 2$ nearest the origin.
- 7. Use the method of Lagrange multipliers to find
 - **a.** Minimum on a hyperbola The minimum value of x + y, subject to the constraints xy = 16, x > 0, y > 0
 - **b.** Maximum on a line The maximum value of xy, subject to the constraint x + y = 16.

Comment on the geometry of each solution.

- **8. Extrema on a curve** Find the points on the curve $x^2 + xy + y^2 = 1$ in the *xy*-plane that are nearest to and farthest from the origin.
- 9. Minimum surface area with fixed volume Find the dimensions of the closed right circular cylindrical can of smallest surface area whose volume is 16π cm³.
- **10. Cylinder in a sphere** Find the radius and height of the open right circular cylinder of largest surface area that can be inscribed in a sphere of radius *a*. What *is* the largest surface area?
- 11. Rectangle of greatest area in an ellipse Use the method of Lagrange multipliers to find the dimensions of the rectangle of greatest area that can be inscribed in the ellipse $x^2/16 + y^2/9 = 1$ with sides parallel to the coordinate axes.
- 12. Rectangle of longest perimeter in an ellipse Find the dimensions of the rectangle of largest perimeter that can be inscribed in the ellipse $x^2/a^2 + y^2/b^2 = 1$ with sides parallel to the coordinate axes. What is the largest perimeter?
- 13. Extrema on a circle Find the maximum and minimum values of $x^2 + y^2$ subject to the constraint $x^2 2x + y^2 4y = 0$.
- 14. Extrema on a circle Find the maximum and minimum values of 3x y + 6 subject to the constraint $x^2 + y^2 = 4$.

- **15.** Ant on a metal plate The temperature at a point (x, y) on a metal plate is $T(x, y) = 4x^2 4xy + y^2$. An ant on the plate walks around the circle of radius 5 centered at the origin. What are the highest and lowest temperatures encountered by the ant?
- 16. Cheapest storage tank Your firm has been asked to design a storage tank for liquid petroleum gas. The customer's specifications call for a cylindrical tank with hemispherical ends, and the tank is to hold 8000 m³ of gas. The customer also wants to use the smallest amount of material possible in building the tank. What radius and height do you recommend for the cylindrical portion of the tank?

Three Independent Variables with One Constraint

- 17. Minimum distance to a point Find the point on the plane x + 2y + 3z = 13 closest to the point (1, 1, 1).
- **18. Maximum distance to a point** Find the point on the sphere $x^2 + y^2 + z^2 = 4$ farthest from the point (1, -1, 1).
- 19. Minimum distance to the origin Find the minimum distance from the surface $x^2 y^2 z^2 = 1$ to the origin.
- **20. Minimum distance to the origin** Find the point on the surface z = xy + 1 nearest the origin.
- 21. Minimum distance to the origin $z^2 = xy + 4$ closest to the origin. Find the points on the surface
- **22. Minimum distance to the origin** Find the point(s) on the surface xyz = 1 closest to the origin.
- 23. Extrema on a sphere Find the maximum and minimum values of

$$f(x, y, z) = x - 2y + 5z$$

on the sphere $x^{2} + y^{2} + z^{2} = 30$.

- **24. Extrema on a sphere** Find the points on the sphere $x^2 + y^2 + z^2 = 25$ where f(x, y, z) = x + 2y + 3z has its maximum and minimum values.
- **25. Minimizing a sum of squares** Find three real numbers whose sum is 9 and the sum of whose squares is as small as possible.
- **26.** Maximizing a product Find the largest product the positive numbers x, y, and z can have if $x + y + z^2 = 16$.
- 27. Rectangular box of longest volume in a sphere Find the dimensions of the closed rectangular box with maximum volume that can be inscribed in the unit sphere.

- **28.** Box with vertex on a plane Find the volume of the largest closed rectangular box in the first octant having three faces in the coordinate planes and a vertex on the plane x/a + y/b + z/c = 1, where a > 0, b > 0, and c > 0.
- **29. Hottest point on a space probe** A space probe in the shape of the ellipsoid

$$4x^2 + y^2 + 4z^2 = 16$$

enters Earth's atmosphere and its surface begins to heat. After 1 hour, the temperature at the point (x, y, z) on the probe's surface is

$$T(x, y, z) = 8x^2 + 4yz - 16z + 600$$
.

Find the hottest point on the probe's surface.

- **30.** Extreme temperatures on a sphere Suppose that the Celsius temperature at the point (x, y, z) on the sphere $x^2 + y^2 + z^2 = 1$ is $T = 400xyz^2$. Locate the highest and lowest temperatures on the sphere.
- 31. Maximizing a utility function: an example from economics In economics, the usefulness or utility of amounts x and y of two capital goods G_1 and G_2 is sometimes measured by a function U(x, y). For example, G_1 and G_2 might be two chemicals a pharmaceutical company needs to have on hand and U(x, y) the gain from manufacturing a product whose synthesis requires different amounts of the chemicals depending on the process used. If G_1 costs a dollars per kilogram, G_2 costs b dollars per kilogram, and the total amount allocated for the purchase of G_1 and G_2 together is b dollars, then the company's managers want to maximize b dollars, b given that b and b solve a typical Lagrange multiplier problem.

Suppose that

$$U(x, y) = xy + 2x$$

and that the equation ax + by = c simplifies to

$$2x + y = 30.$$

Find the maximum value of U and the corresponding values of x and y subject to this latter constraint.

32. Locating a radio telescope You are in charge of erecting a radio telescope on a newly discovered planet. To minimize interference, you want to place it where the magnetic field of the planet is weakest. The planet is spherical, with a radius of 6 units. Based on a coordinate system whose origin is at the center of the planet, the strength of the magnetic field is given by $M(x, y, z) = 6x - y^2 + xz + 60$. Where should you locate the radio telescope?

Extreme Values Subject to Two Constraints

- 33. Maximize the function $f(x, y, z) = x^2 + 2y z^2$ subject to the constraints 2x y = 0 and y + z = 0.
- 34. Minimize the function $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraints x + 2y + 3z = 6 and x + 3y + 9z = 9.

- **35.** Minimum distance to the origin Find the point closest to the origin on the line of intersection of the planes y + 2z = 12 and x + y = 6.
- **36.** Maximum value on line of intersection Find the maximum value that $f(x, y, z) = x^2 + 2y z^2$ can have on the line of intersection of the planes 2x y = 0 and y + z = 0.
- 37. Extrema on a curve of intersection Find the extreme values of $f(x, y, z) = x^2yz + 1$ on the intersection of the plane z = 1 with the sphere $x^2 + y^2 + z^2 = 10$.
- **38. a. Maximum on line of intersection** Find the maximum value of w = xyz on the line of intersection of the two planes x + y + z = 40 and x + y z = 0.
 - b. Give a geometric argument to support your claim that you have found a maximum, and not a minimum, value of w.
- **39. Extrema on a circle of intersection** Find the extreme values of the function $f(x, y, z) = xy + z^2$ on the circle in which the plane y x = 0 intersects the sphere $x^2 + y^2 + z^2 = 4$.
- **40.** Minimum distance to the origin Find the point closest to the origin on the curve of intersection of the plane 2y + 4z = 5 and the cone $z^2 = 4x^2 + 4y^2$.

Theory and Examples

- 41. The condition $\nabla f = \lambda \nabla g$ is not sufficient Although $\nabla f = \lambda \nabla g$ is a necessary condition for the occurrence of an extreme value of f(x, y) subject to the condition g(x, y) = 0, it does not in itself guarantee that one exists. As a case in point, try using the method of Lagrange multipliers to find a maximum value of f(x, y) = x + y subject to the constraint that xy = 16. The method will identify the two points (4, 4) and (-4, -4) as candidates for the location of extreme values. Yet the sum (x + y) has no maximum value on the hyperbola xy = 16. The farther you go from the origin on this hyperbola in the first quadrant, the larger the sum f(x, y) = x + y becomes.
- **42.** A least squares plane The plane z = Ax + By + C is to be "fitted" to the following points (x_k, y_k, z_k) :

$$(0,0,0),$$
 $(0,1,1),$ $(1,1,1),$ $(1,0,-1).$

Find the values of A, B, and C that minimize

$$\sum_{k=1}^{4} (Ax_k + By_k + C - z_k)^2,$$

the sum of the squares of the deviations.

- **43. a. Maximum on a sphere** Show that the maximum value of $a^2b^2c^2$ on a sphere of radius r centered at the origin of a Cartesian abc-coordinate system is $(r^2/3)^3$.
 - **b.** Geometric and arithmetic means Using part (a), show that for nonnegative numbers a, b, and c,

$$(abc)^{1/3} \le \frac{a+b+c}{3};$$

that is, the *geometric mean* of three nonnegative numbers is less than or equal to their *arithmetic mean*.

COMPUTER EXPLORATIONS

Implementing the Method of Lagrange Multipliers

In Exercises 45–50, use a CAS to perform the following steps implementing the method of Lagrange multipliers for finding constrained extrema:

- **a.** Form the function $h = f \lambda_1 g_1 \lambda_2 g_2$, where f is the function to optimize subject to the constraints $g_1 = 0$ and $g_2 = 0$.
- **b.** Determine all the first partial derivatives of h, including the partials with respect to λ_1 and λ_2 , and set them equal to 0.
- c. Solve the system of equations found in part (b) for all the unknowns, including λ_1 and λ_2 .

- d. Evaluate f at each of the solution points found in part (c) and select the extreme value subject to the constraints asked for in the exercise.
- **45.** Minimize f(x, y, z) = xy + yz subject to the constraints $x^2 + y^2 2 = 0$ and $x^2 + z^2 2 = 0$.
- **46.** Minimize f(x, y, z) = xyz subject to the constraints $x^2 + y^2 1 = 0$ and x z = 0.
- **47.** Maximize $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraints 2y + 4z 5 = 0 and $4x^2 + 4y^2 z^2 = 0$.
- **48.** Minimize $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraints $x^2 xy + y^2 z^2 1 = 0$ and $x^2 + y^2 1 = 0$.
- **49.** Minimize $f(x, y, z, w) = x^2 + y^2 + z^2 + w^2$ subject to the constraints 2x y + z w 1 = 0 and x + y z + w 1 = 0.
- **50.** Determine the distance from the line y = x + 1 to the parabola $y^2 = x$. (*Hint:* Let (x, y) be a point on the line and (w, z) a point on the parabola. You want to minimize $(x w)^2 + (y z)^2$.)

14.9

Partial Derivatives with Constrained Variables

In finding partial derivatives of functions like w = f(x, y), we have assumed x and y to be independent. In many applications, however, this is not the case. For example, the internal energy U of a gas may be expressed as a function U = f(P, V, T) of pressure P, volume V, and temperature T. If the individual molecules of the gas do not interact, however, P, V, and T obey (and are constrained by) the ideal gas law

$$PV = nRT$$
 (n and R constant),

and fail to be independent. In this section we learn how to find partial derivatives in situations like this, which you may encounter in studying economics, engineering, or physics.†

Decide Which Variables Are Dependent and Which Are Independent

If the variables in a function w = f(x, y, z) are constrained by a relation like the one imposed on x, y, and z by the equation $z = x^2 + y^2$, the geometric meanings and the numerical values of the partial derivatives of f will depend on which variables are chosen to be dependent and which are chosen to be independent. To see how this choice can affect the outcome, we consider the calculation of $\frac{\partial w}{\partial x}$ when $w = x^2 + y^2 + z^2$ and $z = x^2 + y^2$.

EXAMPLE 1 Finding a Partial Derivative with Constrained Independent Variables

Find
$$\partial w/\partial x$$
 if $w = x^2 + y^2 + z^2$ and $z = x^2 + y^2$.

†This section is based on notes written for MIT by Arthur P. Mattuck.