Date: 23/04/2022

CSPC63: Principles of Cryptography

Assignment - 3

Roll no. : **106119100**

Name : **Rajneesh Pandey**

Section: CSE-B

Write a program to implement Elgamal encryption.

Explanation:

ElGamal encryption is a public-key cryptosystem. It uses asymmetric key encryption for communicating between two parties and encrypting the message. This cryptosystem is based on the difficulty of finding **discrete logarithm** in a cyclic group that is even if we know g^a and g^k , it is extremely difficult to compute g^{ak} .

ElGamal encryption can be defined over any cyclic group G, like multiplicative group of integers modulo n. Its security depends upon the difficulty of a certain problem in G related to computing discrete logarithms.

Implementation

Both encrypting and decrypting a message is implemented.

The program will generate a pair of keys (K1, K2) used for encryption and decryption.

K1 is the public key and contains three integers (p, g, h).

p is an n bit prime. The probability that p is prime is equal to 1-(2-t)

g is the square of a primitive root mod p

 $h = g^x \mod p$; x is randomly chosen, $1 \le x \le p$,

h is computed using fast modular exponentiation, implemented as modexp(base, exp, modulus)

K2 is the private key and contains three integers (p, g, x) that are described above.

Next the program encodes the bytes of the message into integers z[i] < p.

The module for this is named **encode()** and is described further where it is implemented.

After the message has been encoded into integers, the integers are encrypted and written. The encryption procedure is implemented in encrypt().

Algorithm

It works as follows:

Each corresponds to a pair (c, d) that is written to Ciphertext.

For each integer z[i]:

$$c[i] = g^y \pmod{p}$$
. $d[i] = z[i] h^y \pmod{p}$

where y is chosen randomly, $0 \le y \le p$

The decryption module decrypt() reads each pair of integers from Ciphertext and converts them back to encoded integers.

It is implemented as follows:

$$s = c[i]^x \pmod{p}$$

$$z[i] = d[i]*s^{-1} \pmod{p}$$

The decode() module takes the integers produced from the decryption module and separates them into the bytes received in the initial message.

modular exponentiation

fast modular exponentiaton, modexp()

finding primitive roots

finding large prime numbers

finding prime numbers with confidence > 2

Code:

```
import random
import sys
class PrivateKey(object):
    def __init__(self, p=None, g=None, x=None, iNumBits=0):
        self.p = p
        self.g = g
        self.x = x
        self.iNumBits = iNumBits
class PublicKey(object):
    def __init__(self, p=None, g=None, h=None, iNumBits=0):
        self.p = p
        self.q = g
        self.h = h
        self.iNumBits = iNumBits
# computes the greatest common denominator of a and b. assumes a > b
def gcd(a, b):
    while b != 0:
       c = a \% b
       a = b
       b = c
    # a is returned if b == 0
    return a
# computes base^exp mod modulus
def modexp(base, exp, modulus):
    return pow(base, exp, modulus)
# solovay-strassen primality test. tests if num is prime
def SS(num, iConfidence):
    # ensure confidence of t
    for i in range(iConfidence):
       # choose random a between 1 and n-2
       a = random.randint(1, num-1)
```

```
# if a is not relatively prime to n, n is composite
        if qcd(a, num) > 1:
            return False
        # declares n prime if jacobi(a, n) is congruent to a^{(n-1)/2} mod n
        if not jacobi(a, num) % num == modexp(a, (num-1)//2, num):
            return False
    # if there have been t iterations without failure, num is believed to be
prime
    return True
# computes the jacobi symbol of a, n
def jacobi(a, n):
   if a == 0:
        if n == 1:
            return 1
        else:
            return 0
    # property 1 of the jacobi symbol
    elif a == -1:
        if n % 2 == 0:
            return 1
        else:
            return -1
    elif a == 1:
        return 1
    # property 4 of the jacobi symbol
    elif a == 2:
        if n % 8 == 1 or n % 8 == 7:
            return 1
        elif n % 8 == 3 or n % 8 == 5:
            return -1
    # property of the jacobi symbol:
    elif a >= n:
        return jacobi(a % n, n)
    elif a % 2 == 0:
        return jacobi(2, n)*jacobi(a//2, n)
    # law of quadratic reciprocity
    # if a is odd and a is coprime to n
    else:
```

```
if a % 4 == 3 and n % 4 == 3:
            return -1 * jacobi(n, a)
        else:
            return jacobi(n, a)
# finds a primitive root for prime p
def find_primitive_root(p):
   if p == 2:
        return 1
    # the prime divisors of p-1 are 2 and (p-1)/2 because
    \# p = 2x + 1 where x is a prime
   p1 = 2
   p2 = (p-1) // p1
    # test random g's until one is found that is a primitive root mod p
   while(1):
        q = random.randint(2, p-1)
        # g is a primitive root if for all prime factors of p-1, p[i]
        \# q^{(p-1)/p[i]} (mod p) is not congruent to 1
        if not (modexp(q, (p-1)//p1, p) == 1):
            if not modexp(g, (p-1)//p2, p) == 1:
                return q
# find n bit prime
def find_prime(iNumBits, iConfidence):
    # keep testing until one is found
   while(1):
       # generate potential prime randomly
        p = random.randint(2**(iNumBits-2), 2**(iNumBits-1))
        # make sure it is odd
        while(p % 2 == 0):
            p = random.randint(2**(iNumBits-2), 2**(iNumBits-1))
        # keep doing this if the solovay-strassen test fails
        while(not SS(p, iConfidence)):
            p = random.randint(2**(iNumBits-2), 2**(iNumBits-1))
            while(p % 2 == 0):
                p = random.randint(2**(iNumBits-2), 2**(iNumBits-1))
        # if p is prime compute p = 2*p + 1
        # if p is prime, we have succeeded; else, start over
        p = p * 2 + 1
        if SS(p, iConfidence):
```

```
return p
# encodes bytes to integers mod p. reads bytes from file
def encode(sPlaintext, iNumBits):
    byte_array = bytearray(sPlaintext, 'utf-16')
    # z is the array of integers mod p
    z = []
    # each encoded integer will be a linear combination of k message bytes
    # k must be the number of bits in the prime divided by 8 because each
    # message byte is 8 bits long
    k = iNumBits//8
    # j marks the jth encoded integer
    # j will start at 0 but make it -k because j will be incremented during first
iteration
    i = -1 * k
    # num is the summation of the message bytes
    num = 0
    # i iterates through byte array
    for i in range(len(byte_array)):
        # if i is divisible by k, start a new encoded integer
        if i % k == 0:
            j += k
            num = 0
            z.append(0)
        # add the byte multiplied by 2 raised to a multiple of 8
        z[j//k] += byte_array[i]*(2**(8*(i % k)))
    # example
        \# z[0] = (summation from i = 0 to i = k)m[i]*(2^(8*i))
        # where m[i] is the ith message byte
    # return array of encoded integers
    return z
# decodes integers to the original message bytes
def decode(aiPlaintext, iNumBits):
    # bytes array will hold the decoded original message bytes
    bytes_array = []
```

```
# same as in the encode function.
   # each encoded integer is a linear combination of k message bytes
   # k must be the number of bits in the prime divided by 8 because each
   # message byte is 8 bits long
   k = iNumBits//8
   # num is an integer in list aiPlaintext
   for num in aiPlaintext:
        # get the k message bytes from the integer, i counts from 0 to k-1
        for i in range(k):
            # temporary integer
            temp = num
            # j goes from i+1 to k-1
            for j in range(i+1, k):
                # get remainder from dividing integer by 2^(8*j)
                temp = temp % (2**(8*j))
            # message byte representing a letter is equal to temp divided by
2^(8*i)
            letter = temp // (2**(8*i))
            # add the message byte letter to the byte array
            bytes_array.append(letter)
            # subtract the letter multiplied by the power of two from num so
            # so the next message byte can be found
            num = num - (letter*(2**(8*i)))
   # example
   # if "You" were encoded.
   # Letter
                    #ASCII
                     89
                     111
                     117
   # if the encoded integer is 7696217 and k = 3
   \# m[0] = 7696217 \% 256 \% 65536 / (2^(8*0)) = 89 = 'Y'
   #7696217 - (89 * (2^{(8*0)})) = 7696128
   \# m[1] = 7696128 \% 65536 / (2^{(8*1)}) = 111 = 'o'
   #7696128 - (111 * (2^{(8*1)})) = 7667712
   \# m[2] = 7667712 / (2^{(8*2)}) = 117 = 'u'
   decodedText = bytearray(b for b in bytes_array).decode('utf-16')
   return decodedText
# generates public key K1 (p, g, h) and private key K2 (p, g, x)
```

```
def generate_keys(iNumBits=256, iConfidence=32):
    # p is the prime
   # q is the primitve root
   # x is random in (0, p-1) inclusive
   \# h = q \wedge x \mod p
   print("number of bits n : " + str(iNumBits))
    print("t is for probability that the key is prime is 1-(2^-t) : " +
str(iConfidence))
    p = find_prime(iNumBits, iConfidence)
    q = find_primitive_root(p)
   q = modexp(q, 2, p)
   x = random.randint(1, (p - 1) // 2)
   h = modexp(g, x, p)
   publicKey = PublicKey(p, q, h, iNumBits)
   privateKey = PrivateKey(p, g, x, iNumBits)
   return {'privateKey': privateKey, 'publicKey': publicKey}
# encrypts a string sPlaintext using the public key k
def encrypt(key, sPlaintext):
   z = encode(sPlaintext, key.iNumBits)
   # cipher_pairs list will hold pairs (c, d) corresponding to each integer in z
    cipher_pairs = []
   # i is an integer in z
   for i in z:
       # pick random y from (0, p-1) inclusive
       y = random.randint(0, key.p)
       c = modexp(key.q, y, key.p)
       \# d = ih^y \mod p
       d = (i*modexp(key.h, y, key.p)) % key.p
        # add the pair to the cipher pairs list
        cipher_pairs.append([c, d])
    encryptedStr = ""
    for pair in cipher_pairs:
        encryptedStr += str(pair[0]) + ' ' + str(pair[1]) + ' '
    return encryptedStr
# performs decryption on the cipher pairs found in Cipher using
```

```
# prive key K2 and writes the decrypted values to file Plaintext
def decrypt(key, cipher):
    # decrpyts each pair and adds the decrypted integer to list of plaintext
integers
    plaintext = []
    cipherArray = cipher.split()
    if (not len(cipherArray) % 2 == 0):
        return "Malformed Cipher Text"
    for i in range(0, len(cipherArray), 2):
        # c = first number in pair
        c = int(cipherArray[i])
        # d = second number in pair
        d = int(cipherArray[i+1])
        \# s = c^x mod p
        s = modexp(c, key.x, key.p)
        # plaintext integer = ds^-1 mod p
        plain = (d*modexp(s, key.p-2, key.p)) % key.p
        # add plain to list of plaintext integers
        plaintext.append(plain)
    decryptedText = decode(plaintext, key.iNumBits)
# remove trailing null bytes
    decryptedText = "".join([ch for ch in decryptedText if ch != '\x00'])
    return decryptedText
def test(message):
    assert (sys.version_info >= (3, 4))
    keys = generate_keys()
    priv = keys['privateKey']
    pub = keys['publicKey']
    cipher = encrypt(pub, str(message))
    plain = decrypt(priv, cipher)
    return {'privateKey': priv, 'publicKey': pub, 'cipher': cipher, 'plain':
plain}
# taking input of the message that have to be encrypted and decrypting it
with open('plainText.txt', 'r') as file:
    plainText = file.read().rstrip()
```

Output: