

High load leads to high wait

High job size variability leads to high wait

To drop load, we can increase server speed

M/M/1

M/G/1

$$E[T_Q] = \frac{\rho}{1-\rho} \cdot E[S]$$

Men vs women loo.

 $E[T_Q] = \frac{\rho}{1-\rho} \cdot \frac{E[S^2]}{2E[S]}$

Doubling ρ can increase $E[T_0]$ to ∞

Single-Server Queue

D/D/1

Does Bur p -> Bur E[Ta]?

Pow load don UTP with be not

M/G/1

C2: variability

XVI_Variability in svc time

QUESTION: Which best represents UNIX process lifetimes?

Equalizing the wait for men & women

Also true under M/G/1 model.

QUESTION: For which do top 1% of jobs comprise 50% of load?

QUESTION: Which distribution fits the saying, "the longer a job has run so far, the longer it is expected to continue to run."

Caution: Open versus Closed

QUESTION

Insufficient!

Waiting

time for

women is

still factor

of 2 higher.

Which scheduling policy is best for minimizing E[T]?

C2=100

FCFS (First-Come-First-Served, non-preemptive)

PS (Processor-Sharing, preemptive)

SJF (Shortest-Job-First, non-preemptive)

SRPT (Shortest-Remaining-Processing-Time, preemptive)

Variability in service time

T = response time

 T_0 = queueing time (waiting time)

Q: Given that $\lambda < \mu$, what causes wait?

A: Variability in the arrival process & service requirements

M/G/1

$$E[T_Q] = \frac{\rho}{1 - \rho} \cdot \frac{E[S^2]}{2E[S]}$$

Variability in Job Sizes

Job Size Distributions

