	Phys 137A
	Quantum Medianics
	Preliminan'es:
_	Website: boourses berkeley each
	Poll on office hrs:
	* Thursday 2-3
	* Tuesday 11-12
-	Gradus
	Hw: 30% Midtern: 30%
	Midterm: 30 % Final: 40%

_

_

_

Midterm
Thursday, Oct 18, un daso
Final
TIM-O.
Tuesday, Dec 12, TBA
·
•

Classical Mechanics Particle of mass m in potential Experiences a force: Newton's and Law ma=F with

Second order equation for
X= X(t)
=> Unique solution, given unital
conditais
x (t ₀)= X ₀
V(to)= V0
Classicaly:
motion una given potential
is completely determined, given
×0, V0
"Obniously" the particle has a
definite, preasily detand
positon: X = X(t)
velority $V = \frac{d}{dt} X(t)$
dt
for all time.

_

_

_

Several discoveries, at the end of 19th century lead to realization that this description is only approximate. There is a fundamental constant in nature, the Planck conslant, $t = \frac{h}{2\pi}$ with units of Energy x time: In terms of everyday unito of Joules and seconds the planch & constant is very

Th= 1.054572 × 10-34 7.5 Because et is so mall, do not notice it is not zero. But, the fact it isn't actually zero, Becomes really im portait for microscopic objects electors, alons, mistrules. This is analogous to modificateurs of classical physics which come from finite value of C= 3 x 10 m/S This is to a good approximation. ufinite, for relocities we ordinary

The discoveries were:
* Planck's explanation of black-Body
1 MACES ETBIANATION OF EVENT
radiata:
4 World in
A Plack Rody
emits EM radiator in
chunks of energy
, , , , , , , , , , , , , , , , , , , ,
$E = h\nu - \hbar\omega$
V= frequency I
angular fre guy
De la la la la Tandara Vari
* Photo-elulic effect; Emstry 1905
E=hV
not only for emmission of EM
waves, But for abserblan for
~ N A .
metal
meior

Enugy of knowled out élicleus indépendent of Intusity of EM radiation depuds only on frequency Exin = hV - Esindes Atomic Specta with quantized energy levels, and spacy

Quantum mechanics complex ware fundan positor X(t) 4cxit) (X,t) < complete
informatai about the state systems tigns of motion for Ean for ware funen: 4(xit) Schroedign tyn ith 2 4 = - th 22 4 + V(x

Inital conditer Imital (X,6) X= X(0) Vo= V (0) Grow 4(x,0), can find CY(X,t) for all other times Quantu meclauies is just as delennestic as classical joligms, just what can be determed is diffuil! all mo is in 2 (kot)

Statistical interpretation Y(x,t) dx parlicle Jehrer a and 14(xrt)12 (4(x,t)) - higher prob. While (+(x,+) is complex probability density is always

What does jordality man? Suppese you have a very large number of particles, and prepail each to be in same 4(xit) Measure ther positions at (hong 106 experidately) sun our Bus to smaller bins

Every time, one delus a sough whole particle, and distribles of outcomes is encoded by (+(V,+)). Intractor with aparatus distribs 14(x,t) to produce a definent state with definite positer for Elector. There is a nice pedagogical schip frat Mustates the defence Ochru quentu and clarrical probabilities, and inteplay of wave and pentil natures

Probability & QM of an outcome A N = total # of possible outcomes NA = # of times A occurs Throw a dice N=6 (A) (F $\sum_{A} P(A) = \frac{1}{6} + \frac{1}{6} = \frac{1}{6}$

Probability of a Buttet Between x=a, x=b p(x) dx = Pab + a Ex 3 In Quantus medeud $A(x_it) = |\Psi(x_it)|$ probability can depend time = 4 (x,t). 4 (x,t) (x,t) = ougutus state, solvy S.E. 14(xx+) Elector gun

Refers to repealed experiments on particles in identically jourpand state, not to state of parlich after measuremed. Important deferme Bohveen electors and Bullets, Described u feynman, Ch 1 Run experient with Bullets - Run experiment wheletous (un idutically prepared stale)

Pick a point on screen
P1(x) = probably for Bullet to pass through hole 1
to pass through hole 1
and hit screw at X
P2(X) = same with hole 2
\
P12(X) = probably for Bullet
to pass though enter
hole & or hole 2 and
land at x
P12(x) = p1(x) + p2(x)
classical probabilities add
$P_{12}(X) = \frac{\Delta N_{12}(X)}{N \Delta X} = \frac{\Delta N_{1}(X) + \Delta N_{2}(X)}{N \Delta X}$
χ_{Δ}
$= \mathcal{P}_1(X) + \mathcal{P}_2(X)$

Run with slevers:
P12(X) + P1(X) + P2(X)
probabilities de not add.
What does add are the wave
functory
$\psi_{12}(x) = \psi_1(x) + \psi_2(x)$
and $P_{12}(x) = Y_{12}(x) ^2$
$P_1(x) = \psi_1(x) ^2 P_2(x) = \psi_2(x) $
The reason probabilis do not
add are interference reflects.
vectors in complex plane
Jan
42(x)//
4, (x)
141 = length of vector

S= phase difference Between 41 and 42 14, 1+ 142 7 4 141 + 42 = 14121 P1+ P2 7 P12 - "=" only of S= \frac{7}{2} 8 + 2 there are intusticul effects For electous, unlike for bullets probalily or more pourly W(xit) is fundamental. For bullet, we can remove powb. appels by herong better tack of data. Not so with electors.

If we replace electors By. photons the wave aspect 4(xit) ~ EM wave E(/it) p(x,t)= | \(\gamma(x,t) \) ~ Intensity of EM wave (photon flux)

Normalizatou [4(xit)] to describe probability partile Behre a and t Porticle how to be somewhere jorobaldly 1." require fix normalisation of wave

A-prion (x) sems like a defent egneller for 26(xit) for every sepenatet. Can we salvy tus? Janu: 14(x,t)|2dx or independent of time, so if 5 (4(x10)) g(x = 1 at one time, it is the at all times. We need to show d 5 14 (x,t) | dx =0 Use 14 (x,t) 2 dx = (4 2 4 (xx) dx SEYOCKIE) Y (KIE) dx

$$th \frac{\partial}{\partial t} \mathcal{V} = -\frac{h^2}{2m} \frac{\partial}{\partial x^2} \mathcal{V} + V(x) \mathcal{V}$$

$$-i \ln \frac{\partial}{\partial t} \mathcal{V} = -\frac{h^2}{2m} \frac{\partial}{\partial x^2} \mathcal{V} + V(x) \mathcal{V}$$

$$T + \text{Strons}$$

$$th \int (\psi^{\dagger} \frac{\partial}{\partial x} \psi + \frac{\partial}{\partial x} \psi^{\dagger} \psi) dx =$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x^2} \psi - \frac{\partial}{\partial x^2} \psi^{\dagger} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x^2} \psi - \frac{\partial}{\partial x^2} \psi^{\dagger} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x^2} \psi - \frac{\partial}{\partial x^2} \psi^{\dagger} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x^2} \psi - \frac{\partial}{\partial x^2} \psi^{\dagger} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x^2} \psi - \frac{\partial}{\partial x^2} \psi^{\dagger} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x^2} \psi - \frac{\partial}{\partial x^2} \psi^{\dagger} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x^2} \psi - \frac{\partial}{\partial x^2} \psi^{\dagger} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x^2} \psi - \frac{\partial}{\partial x^2} \psi^{\dagger} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x^2} \psi - \frac{\partial}{\partial x^2} \psi^{\dagger} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x^2} \psi - \frac{\partial}{\partial x^2} \psi^{\dagger} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x^2} \psi - \frac{\partial}{\partial x^2} \psi^{\dagger} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x^2} \psi - \frac{\partial}{\partial x^2} \psi^{\dagger} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x^2} \psi - \frac{\partial}{\partial x^2} \psi^{\dagger} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x^2} \psi - \frac{\partial}{\partial x^2} \psi^{\dagger} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x^2} \psi - \frac{\partial}{\partial x} \psi^{\dagger} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x^2} \psi - \frac{\partial}{\partial x} \psi^{\dagger} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x^2} \psi - \frac{\partial}{\partial x} \psi^{\dagger} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x} \psi - \frac{\partial}{\partial x} \psi^{\dagger} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x} \psi - \frac{\partial}{\partial x} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x} \psi - \frac{\partial}{\partial x} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x} \psi - \frac{\partial}{\partial x} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x} \psi - \frac{\partial}{\partial x} \psi - \frac{\partial}{\partial x} \psi) dx$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x} \psi - \frac{\partial}{\partial x} \psi - \frac{\partial}{\partial x} \psi - \frac{\partial}{\partial x} \psi - \frac{\partial}{\partial x} \psi$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x} \psi - \frac{\partial}{\partial x} \psi$$

$$= -\frac{h^2}{2m} \int \frac{\partial}{\partial x} (-\frac{\partial}{\partial x} \psi - \frac{\partial}{\partial x$$

$$\langle x \rangle = \int X |\Psi(x,t)|^2 dx$$

This is Belaush $\langle (x-\overline{x})^2 \rangle =$ $= \langle x^2 - 2x \cdot \overline{x} + \overline{x} \rangle$ since X=(X) is a number $= \langle x^2 \rangle - 2 \cdot \overline{x} \cdot \langle x \rangle + \overline{x}^2 \cdot \langle 1 \rangle$ $=\langle x^2 \rangle - 2 \cdot \overline{x} \cdot \overline{x} + \overline{x}^2$ $= \langle X^2 \rangle - \overline{X}^2 = \langle X^2 \rangle - \langle X \rangle^2$ We get to treat 14(x14) as any probability distribution.

	not just 1412=p(x,t)?
ral	need it to compute expected uses of quantities involving
	mentru
Inpu	entum
mon	nentur of a classical particle:
Mon	neutur of a classical particle! p= m.v= m.d x (>0) at

	no well defined trajectory,
	inch as
	X= X(f)
	so formula like does not
	make gense.
	It turns out that quantum
	particle follows classical
	trajectery on average.
	So, what is true is that
	$\langle p \rangle = m \frac{d}{dt} \langle x \rangle$
-	To make sense of this equation
	it turns out we need not
	$fust$ $p(x,t) = \Psi(x,t) ^2$
	η

But
$$\psi(x_1t)$$
 $dsulf$:

 $\langle x \rangle = \int dx \times |\psi(x_1t)|^2$
 $\langle p \rangle = \int dx + |\psi(x_1t)|^2$
 $d \rangle = \int dx + |\psi(x_1t)|^2$
 $d \rangle = \int dx + |\psi(x_1t)|^2$
 $d \rangle = \int dx \times |\psi(x_1t)|^2$
 $d \rangle = \int dx \cdot |\psi(x_1t)|^2$

(dx -it [+ 2 4 - 2 4 4]

We think of -it = momentum
operator" X = "position operator" Where an operator O and maps it to another one = 4(x,t) -> 04(x,t) original wave fr 4 (XH) -> x 4 (XIt) 4(xit) -> -ite 2 4(xit) More generally 十0(秋) momentu. #Ehrenfest's Theorem" $d = - \langle d \lor (x) \rangle$ In any quantu state 4, expertation values of × and p obey classical equations of motion, as functions time. Lecture 4 Uncertainty principle: Schroedinger equation

(we will poneue 1 mphies 6x. 6p > 1 Sp=<p2>-2 Positer and momentur o. a peulule cannot Both m positer

14(x)12 Ex large = Little uncularly 6x.6p 2 th/2 means that Quantum (t+0) effects prevent as from having 6x=0=6p Simultaneously. Consequently we cannot know Both position and momentin with arothern acuraly: prevuls existance of meaningful penticle partu X=XIE),

Ex Consider following quantus state $\frac{-m\omega_{x^2}-i\omega t}{2\pi}$ Solves $it \frac{\partial}{\partial t} \psi = -\frac{t^2}{2m} \frac{\partial^2}{\partial x^2} \psi + V(x) \psi(y)$ with $\sqrt{(x) = m \omega^2 x^2}$ Particle in lowest energy state E= hW12 harmonie oscillator potential $V=\frac{1}{2}m\omega^2x^2$

Fix normalizatar: or $\psi(x_1t) = \left(\frac{m\omega}{\pi k}\right)^{1/4} - \frac{m\omega x^2}{2k} = i\omega t$ Some basie opnalers achie on 4 it = 1 tw 4 $-i\hbar\frac{\partial}{\partial x}\psi = im\omega x \psi$

$$\langle x \rangle = \int x |\psi|^2 dx = 0$$

$$\langle x^2 \rangle = \int_{-\infty}^{\infty} x^2 |\psi|^2 dx = \frac{\pi}{a\omega m}$$

$$= > 6 \times = \sqrt{\langle \times^2 \rangle - \langle \times \rangle} = \sqrt{\frac{\pi}{2m\omega}}$$

decreases as w increases

$$= \int_{-\infty}^{\infty} \psi^{*}(im\omega x) \psi dx$$

$$(p^{2}) = \int \psi \left(m\omega t_{0}\right) \psi$$

$$= m\omega t_{0} - (m\omega)^{2} \times 2^{2}$$

$$= m\omega t_{0} - (m\omega)^{2} \cdot \frac{t_{0}}{2\omega m}$$

$$= \frac{1}{2}m\omega t_{0} -$$

	Ledure 5
	Ch2
	Time-Independent S.E
	To Sind allowed starty
	24(X1+)
	need to solve:
	V
	:tizt + = - til 2 + V U
	ingt 4 = - am 2x2 4 + V 4
_	
-	"SEPARATION F VARIBLES"
	Try Y(x1t)= Y(X) Y(t)
	restrictive, but hang on
	restrictive, But hang dr
•	=) 2 W(x,t) = W(x) d 2p(t)
	7x24(x,t)= d2 24 · ((+)
	2x2 ((c)
	S.E Becoms
	it du 2diu
	$ih \frac{dy}{dt} = -h \frac{2d^2y}{dx^2y} + V(x)$
	In oft But not . In of X But not of t

7	=0 two sider one equal and constant:
	$\frac{d}{\varphi} = E = -\frac{d}{am} \frac{d^{2}}{dx^{2}} + V$ $\frac{d}{\varphi} = \frac{d}{\varphi} = \frac{d}{\varphi} \frac{d^{2}}{dx^{2}} + V$
(Get two equations:
	4(t) sohres:
	it de $\varphi = E \varphi$ which has solution: -i = t/t $\varphi(x) = e$
	4(x) solves:
	$-\frac{2}{2m}\frac{d^{2}}{dx^{2}}+\sqrt{4}=E4$
	TIME INDEPENDENT SCHROEDINGER
	Ean

So, there are special solutions
of S.E $it_{JE}^{2} \psi(x_{1}t) = -\frac{t^{2}}{2m} \frac{3^{2}}{3^{2}} \psi + V(x) \psi$
of the form
-(Et/未 イ(X,t)= イ(x)を
where zx (x) solves
T.I. S.E
$= \frac{t^2}{2m} \frac{d^2}{dx^2} \frac{1}{4} (x) + V(x) \frac{1}{4} (x)$
Q: what makes these solutions special &
A1: They are
"stationary states"
No time dependence et ordinary.

physical quantitus

$$|\Psi(x_1t)|^2 = |\Psi(x_1t)|^2$$
and also of expertation value

$$\langle Q(x_1p) \rangle = \int dx \, \Psi(x_1t) \, Q$$

$$\Psi(x_1t)$$

$$= \int dx \, \Psi(x_1) \, Q \, \Psi(x_1)$$

$$= \int dx \, \Psi(x_1p) \rangle = 0$$

A2: They are states of definite

total energy:

Energy operator

d. k. a Hamiltonian

$$\hat{H}(p_1x) = \frac{\hat{p}^2}{am} + V(\hat{x})$$

$$\langle H \rangle = \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H \quad \psi$$

$$= E \int_{0}^{\infty} dx \quad \psi^{\dagger} H$$

	A 3
	An artitrary solution of
	An an action of the second
	S.E can be written as an
	Dimension Com Rination
	arbitrary Linear combination
	of solutour with definite
	energies.
	Assume energy speuhu is
	discrete (more later),
50	ns (
J	$Y_{1}(x), Y_{2}(x), \dots, Y_{n}(x), \dots$
7	ISE
	ISE E1, E2, En,
	with eories ponding energies.
	An linear combinator
	- At the section of t
	-iEntla
	$\frac{2}{2}(x_1t) = \sum_{n=1}^{\infty} c_n 2t_n(x) e^{-itnt/t}$
	is a solution
	•

	- Every soluter of SE
	can be written in this way.
	for some (complex) anslawly
	Cn.
=======================================	Strategy
	1. Solve TISE, finding
	24,(x), 22(x),, 4n(x),
	Er, Er,, En,
	2. Any unitial condition for
	S.E
	4(x,0)
	can be vouiteur as
	$\frac{2}{2}(X_{10}) = \sum_{n=1}^{\infty} c_{n} \forall_{n} c_{x}$
	(one has to find the appropriate
	constants on. More on this later.)

Right hand Side:
Sign (x) E cm (x) dx
$-\omega \qquad m=1$
$= \sum_{v \in \mathcal{V}} \left(\sum_{v \in \mathcal{V}} \frac{1}{ v } \left(v \right) \right) dv$
$=\sum_{m=1}^{\infty}C_{m}\int_{-\infty}^{\infty}\frac{1}{1+c(x)}\frac$
= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 1 if n=M = 0 otherse
—
5. Solutons w more transne
en non-vanishy give time.
Cyc rain , o o
dependent states
17 (xit)
= 7+ ×(x,t) - 7+ (x,t)
- 17 (X ₁ +) · P Ch(C)
•
Ps
E.S.
-izith 4(x)
ic.+1t.
+Cz é 4z(x)
(assume the and con are real)

