Metody planowania i analizy eksperymentów Zadanie domowe 2

Zastosowanie metod wnioskowania statystycznego na przykładzie zbioru danych Abalone

Prowadzący: dr inż. Adam Zagdański Student: Piotr Bielak, 218 137 WT TN 9:15

Wrocław, 31 maja 2018r.

1 Wprowadzenie

Do realizacji zadania domowego użyto zbiór danych **Abalone**, który został zaczerpnięty z repozytorium danych *UCI Machine Learning Repository*. Zbiór ten zawiera dane opisujące ślimaki morskie i został przygotowany w celu predykcji ich wieku. W celu przeprowadzenia estymacji (punktowej i przedziałowej) oraz testu statystycznego został wykorzystany język R w oparciu o wbudowane pakiety tego języka (brak dodatkowych zewnętrznych pakietów).

2 Wyniki

2.1 Estymacja punktowa

W przypadku estymacji punktowej celem jest wyznaczenie pojedynczej liczby opisującej dany parametr rozkładu wybranej zmiennej losowej. W poniższym przykładzie została wybrana cecha opisująca liczbę pierścieni (która jest równoważna z wiekiem osobnika). Używając kolejne wartości liczby pierścieni uzyskane w trakcie eksperymentu obliczono średnią oraz wariancję próbkową. Wzory zostały podane poniżej:

$$Mean(x) = \frac{1}{n} \sum_{i=1}^{n} x_i;$$

$$Var(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - Mean(x))^2$$

Z obliczeń uzyskano następujące wartości:

• średnia próbkowa: 9.93,

• wariancja próbkowa: 10.40.

Poniższy obrazek przedstawia rozkład wartości atrybutu *Rings* (l. pierścieni) wraz z dopasowanym rozkładem normalnym z parametrami wyznaczonymi powyżej.

Rysunek 1: Wyniki estymacji punktowej dla atrybutu "Rings".

2.2 Estymacja przedziałowa

W celu przeprowadzenia estymacji przedziałowej zostały zaimplementowane funkcje do obliczania granic przedziałów:

- estymacja średniej w oparciu o rozkład normalny (n » 30),
- estymacja wariancji w oparciu o **rozkład chi-kwadra**.

Poniższa tabela przedstawia wyniki estymacji dla atrybutu *Rings* dla różnych wartości poziomu ufności.

Poziom ufności	Parametr	${f L}$	${f R}$
0.01	średnia	9.932	9.936
	wariancja	10.397	10.402
0.05	średnia	9.924	9.944
	wariancja	10.385	10.414
0.10	średnia	9.913	9.954
	wariancja	10.371	10.428
0.50	średnia	9.825	10.042
	wariancja	10.247	10.554

Tabela 1: Wyniki estymacji przedziałowej.

Rysunek 2: Przedziały ufności dla różnych poziomów ufności.

Można zauważyć, że dla mniejszych poziomów ufności (większych wartości parametru *alpha*) przedział ufności jest węższy i zaczyna skupiać się wokół, odpowiednio, średniej oraz wariancji próbkowej.

2.3 Weryfikacja hipotezy statystycznej

W ramach badania testu statystycznego (weryfikacji hipotezy statystycznej) wykorzystano funkcję **t.test(...)** z pakietu R. Pozwala ona na wykonanie testu t-Studenta dla dwóch prób niezależnych. Test przeprowadzono dla atrybutu **Rings** dla osobników męskich oraz żeńskich (2 próby). Przyjęto różne poziomy istotności oraz różne hipotezy alternatywne. Wyniki zostały zgromadzone w poniższych tabelach.

Poziom ufności	P-value	Wniosek
0.01	0.000251	H0 odrzucone
0.05	0.000251	H0 odrzucone
0.5	0.000251	H0 odrzucone

Tabela 2: Wyniki testu statystycznego dla: $H_0: m_1 = m_2; \ H_1: m_1 \neq m_2.$

Poziom ufności	P-value	Wniosek
0.01	0.000126	H0 odrzucone
0.05	0.000126	H0 odrzucone
0.5	0.000126	H0 odrzucone

Tabela 3: Wyniki testu statystycznego dla: $H_0: m_1 = m_2; \ H_1: m_1 < m_2.$

Poziom ufności	P-value	Wniosek
0.01		H0 przyjęte
0.05	0.999874	H0 przyjęte
0.5	0.999874	H0 przyjęte

Tabela 4: Wyniki testu statystycznego dla: $H_0: m_1 = m_2; H_1: m_1 > m_2$.

W ostatnim przypadku (Tabela 4) hipoteza H_0 została przyjęta ze względu na brak podstaw do jej odrzucenia. Co ciekawe był to jedyny scenariusz, w którym hipoteza H_0 została przyjęta. W dwóch pozostałych przypadkach (Tabele 2, 3) odrzucono hipotezę niezależnie od wartości poziomu ufności.