CpE 645 Image Processing and Computer Vision

Prof. Hong Man

Department of Electrical and Computer Engineering Stevens Institute of Technology

Image Analysis

- Common image analysis operators
 - Feature detection
 - Feature extraction, segmentation
 - Feature representation
 - Feature classification
- Image analysis applications
 - medical imaging
 - security/surveillance
 - manufacturing
 - military
 - **—** ...

Feature Detection

- Feature of detection: isolated points, lines, edges
- Filtering based feature detection
 - Filter the image with a feature detection mask

$$R[n_1, n_2] = image ** mask$$

Extract feature based on thresholding

$$\left| R[n_1, n_2] \right| \ge T$$

• Feature detection masks generally <u>resemble</u> the feature it can detect. The filtering is essentially searching for features having strong <u>correlation</u> with the mask.

Point Detection

- Point detection: to locate isolated abnormal points
- Example: a 1-D point detection mask with length of 3

• A 2-D point detection mask

-1	-1	-1
-1	8	-1
-1	-1	-1

Point Detection

- Line detection: to detect thin lines
- Some line detection masks

-1	-1	-1	-1	-1	2	-1	2	-1	2	-1	-1
2	2	2	-1	2	-1	-1	2	-1	-1	2	-1
-1	-1	-1	2	-1	-1	-1	2	-1	-1	-1	2
H	orizon	tal	L	+45°		1	Vertica	1		-45°	

Original

horizontal

diagonal +45°

diagonal -45°

Gray-level profile of a horizontal line through the image

Model of a ramp digital edge

Gray-level profile of a horizontal line through the image

- The gradient magnitude indicates the amount of amplitude change in neighboring pixels.
- The gradient is the 2-D equivalent of the first derivative and is defined as the vector:

$$\nabla [f(x, y)] = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

The magnitude and direction of the gradient is

$$\nabla f = mag(\nabla [f(x, y)]) = \sqrt{G_x^2 + G_y^2}$$

$$\alpha(x, y) = tan^{-1} \left(\frac{G_y}{G_x}\right)$$

- Practical gradient calculation:
 - For a 3x3 image block
 an example of gradient

$$G_x = (\mathbf{z}_3 + \mathbf{z}_6 + \mathbf{z}_9) - (\mathbf{z}_1 + \mathbf{z}_4 + \mathbf{z}_7)$$
 $G_y = (\mathbf{z}_7 + \mathbf{z}_8 + \mathbf{z}_9) - (\mathbf{z}_1 + \mathbf{z}_2 + \mathbf{z}_3)$
and the gradient magnitude is
$$mag(\nabla f) \approx G_x + G_y$$

z_1	z_2	Z ₃
Z ₄	Z ₅	z ₆
Z ₇	z_8	Z ₉

• Edges are located by thresholding the magnitude of the gradient, i.e. $|mag(\nabla f)| \ge T$

- Common edge detection mask pairs
- Procedure:
 - Filter image with the first mask to obtains G_x
 - Filter image with the second mask to obtain G_v
 - Calculate $mag(\nabla f)$
 - Threshold the gradient magnitude image with T.

-1	0	0	-1
0	1	1	0

Roberts

-1	-1	-1	-1	0	1
0	0	0	-1	0	1
1	1	1	-1	0	1

Prewitt

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Sobel

0	1	1	-1	-1	0
-1	0	1	-1	0	1
-1	-1	0	0	1	1

Prewitt

0	1	2	-2	-1	0
-1	0	1	-1	0	1
-2	-1	0	0	1	2

Sobel

Prewitt and Sobel masks for detecting diagonal edges.

 G_{x}

 $mag(\nabla f)$

• The Laplacian operator (2-D equivalent of the second derivative) is given by:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

• A practical example of 1-D Laplacian operator

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial G_x}{\partial x}$$

$$= \frac{\partial (f[i,j] - f[i,j-1])}{\partial x}$$

$$= (f[i,j+1] - f[i,j]) - (f[i,j] - f[i,j-1])$$

$$= f[i,j+1] - 2f[i,j] + f[i,j-1]$$

- Two typical Laplacian operators
- Laplacian operators may produce double edges, and are sensitive to noise.

0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

- To apply Laplacian operator, the image is usually first smoothed by a Gausian filter.
- The combined effect of Gausian smooth filter and Laplacian edge detector is referred as the Laplacian of a Gaussian (LoG).

- An example of LoG operator.
- Procedure:
 - Filter the image with the LoG operator.
 - Threshold the resulting image
 - Locate the <u>zero-crossing</u> points in the thresholded image, which represent the edge information.

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

original

Sobel gradient

Gaussian

-1	-1	-1
-1	8	-1
-1	-1	-1

Laplacian

LoG result

Zero-Crossing result

- Edges detection may yield disconnected edges.
- Local Processing: analyze the characteristics of pixels in a small neighborhood about every point in an image that has undergone edge detection. All points that are <u>similar</u> are linked, forming a boundary of pixels that share some common properties:
 - Strength of the response of the gradient operator

$$\left| \nabla f(x, y) - \nabla f(x_0, y_0) \right| \le T$$

Direction (angle) of the gradient

$$\left|\alpha(x,y) - \alpha(x_0,y_0)\right| \le A$$

where both *T* and *A* are non-negative similarity thresholds

- Example: criteria for linking:
 - gradient magnitude greater than 25 AND
 - gradient directions did not differ by more than 15°

FIGURE 10.16

(a) Input image. (b) G_y component of the gradient. (c) G_x component of the gradient. (d) Result of edge linking. (Courtesy of Perceptics Corporation.)

- Global processing uses global relationship between pixels to link them by determining whether they lie on a curve of specified shape.
- Simple case: straight lines
 - Suppose for *n* points in an image, we want to find subsets of these points that lie on straight lines.
 - One solution: find all lines determined by every pair of points and then find all subsets of points that are close to particular lines.
 - This solution involves finding n^2 lines and performing n^3 comparisons of every point to all lines computationally intensive

- Hough (1962) proposed an alternative approach commonly referred to as Hough transform.
- Consider a point (x_i, y_i) , and all lines pass (x_i, y_i) satisfy the equation: $y_i = ax_i + b$

we can rewriting this equation as:

$$b = -x_i a + y_i$$

- Considering the *ab*-plane (parameter space) yields the equation of a single line for a fixed pair of (x_i, y_i)
- The computational attractiveness of the Hough transform arises from subdivision of the parameter space into so-called accumulator cells

FIGURE 10.18 Subdivision of the parameter plane for use in the Hough transform.

a b

FIGURE 10.17

(a) xy-plane.(b) Parameter space.

- The Hough transform procedure:
 - Initialize all accumulator cells with value of zero
 - For every point (x_k, y_k) in the image plane, we let the parameter a equal each of the allowed subdivision values and solve for the corresponding b. The resulting b is rounded off to the nearest allowed value in the b axis. (Note: a is slope and b is intercept value)
 - If a choice a_p results in solution b_q , we let accumulator value A(p, q) = A(p, q) + 1
 - At the end of the procedure, a value M in A(i,j) corresponds to M points in the (x,y) plane lying on the line $y=a_ix+b_j$

- A problem with using the equation y=ax+b to represent a line is that both the slope and intercept approach infinity as the line approaches the vertical.
- One way around this difficulty is to use the normal representation of a line: $x \cos \theta + y \sin \theta = \rho$

a b c d

FIGURE 10.20 Illustration of the Hough transform. (Courtesy of Mr. D. R. Cate, Texas Instruments, Inc.)

- The range of θ is $\pm 90^{\circ}$ measured w.r.t. the x-axis. The range of ρ is $\pm \infty$
- In previous figure (figure 10.20),
 - (a) 5 isolated points in xy-plane.
 - (b) each point is mapped to one sinusoidal curve in the $\theta \rho$ -plane.
 - (c) colinearity detection property of Hough transform: point A denotes the intersection of the curves for point 1, 3 and 5, the location of A indicates these three points lie on a straight line passing through the origin ($\rho = 0$) and oriented at -45° ; point B indicates that points 2, 3 and 4 lie on a straight line oriented at 45° and away from the origin by half of the diagonal distance.

- (d) Hough transform exhibits a reflective adjacency relationship at the right and left edges of the parameter space. Points A, B and C indicate such manner, in which θ and ρ change sign at the $\pm 90^{\circ}$ boundaries.
- Although the focus so far has been on straight lines, the Hough transform is applicable to any function of the form g(V, C)=0 where V is a vector of coordinates and C is a vector of coefficients.
- Example: points lying on a circle $(x-c_1)^2+(y-c_2)^2=c_3^2$ can be detected using the same approach on the (c_1, c_2, c_3) plane

- An edge linking approach based on Hough transform:
 - Compute the gradient of the image and threshold it to obtain a binary image
 - Specify subdivisions in the $\rho\theta$ –plane
 - Examine the counts of the accumulator cells for high pixel concentrations
 - Examine the relation (mostly for continuity) between the pixels in a chosen cell. The continuity is measured by the distance between disconnected pixels identified during traversal of the set of pixels corresponding to a given accumulator cell.

a b c d

FIGURE 10.21

- (a) Infrared image.
- (b) Thresholded gradient image.
- (c) Hough transform.
- (d) Linked pixels. (Courtesy of Mr.
- D. R. Cate, Texas Instruments, Inc.)

Visual Information Environment Laboratory

- The set of pixels will be linked according to the criteria:
 - (1) they belong to one of the N accumulator cells with the highest count, AND
 - (2) no gaps are larger than a threshold T, where a gap at any point is measured by the distance between that point and its closest neighbor.
- In previous figure (figure 10.21) (d), N = 3, and T = 5 pixel.

Segmentation

- Image segmentation is a method to partition an image into several regions.
- Segmentation is done based on certain homogeneity criteria, such as gray-level intensity, motion, depth, semantic meaning, etc...
- Segmentation is an important image analysis stage to extract object shape information for further characterization and classification.
- Segmentation based on intensity value is usually called thresholding.

Segmentation Examples

Thresholding

Edge detection

Thresholding

- The simplest thresholding is global thresholding, which applies a threshold T to all pixels in the image.
- It is necessary that the objects and background have sufficient contrast.

• The threshold value should be determined based on the histogram.

Histogram

Thresholded at 127

- Iterative global threshold estimate algorithm
 - 1. Select an arbitrary initial threshold T
 - 2. Segment the image to obtain two pixel groups: group 1 pixel values > T, group 2 pixel values $\le T$.
 - 3. Compute the average values μ_1 and μ_2 of group 1 and group 2 pixels
 - 4. Update the threshold value $T = \frac{1}{2} (\mu_1 + \mu_2)$.
 - 5. Repeat step 2 to 4 until the changes in T become very small (smaller than a preset number).

Thresholding through iterative threshold estimation

• Simple global thresholding is very sensitive to local illumination condition

- This situation can be addressed by using adaptive thresholding rather than global thresholding.
- A basic adaptive thresholding
 - partition an image into subimages
 - calculate the best threshold for each of these subimages.
- The hope is, the contrast of the object could be higher within each subimage, i.e. the local histograms are bimodal.

• Example of adaptive thresholding.

- In the presence of noise, global and even adaptive thresholding methods may result in spurious pixels.
- The problem is that a noise spike in the image may have a high amplitude value that cannot be distinguished directly from an object value.
- Two-level thresholding:
 - Select a high level threshold. Capture the main pixels in all the objects
 - Lower the threshold. Pixels are added to the list of object pixels if their amplitudes are above the threshold AND these pixels are <u>connected</u> to an object pixel.

Two level thresholding

Figure 10.2: Illustration of the two-level threshold segmentation method.

 Histogram distributions generally depend on the size of objects and background

- We can select only those pixels that are on or near the edge between object and background in calculating the histogram
- The resulting histogram should have similar heights for object and background, and have valley around the middle value.
- Indication of whether a pixel is on an edge may be obtained by computing its gradient and Laplacian.

• The test
$$s(x,y) = \begin{cases} 0 & \text{if } \nabla f < T \\ + & \text{if } \nabla f \ge T \text{ and } \nabla^2 f \ge 0 \end{cases}$$

$$- & \text{if } \nabla f \ge T \text{ and } \nabla^2 f < 0$$

- $\nabla f < T \Rightarrow$ not an edge $\nabla f \ge T$ and $\nabla^2 f \ge 0 \Rightarrow$ dark side of an edge $\nabla f \ge T$ and $\nabla^2 f < 0 \Rightarrow$ light side of an edge
- These edge pixels can be used to obtain local thresholds (note, gradient and Laplacian are local operators).

Image of a handwritten stroke coded by

FIGURE 10.36

stroke coded by using Eq. (10.3-16). (Courtesy of IBM Corporation.)

- Let R represent the entire image region. Region based segmentation is a process that partitions R into n subregions, $R_1, R_2, ..., R_n$ such that
 - $-\mathbf{R}_{i}$ is a connected region
 - intersection between regions is null
 - all pixels in R_i share the same property P
 - pixles in R_i and R_j do not share this property P

- Region grow is a procedure that groups pixels or subregions into larger regions.
 - Specify a set of "seed" points
 - Append a neighboring pixel to these seed points if
 - the neighboring pixel is connected to this seed point
 - the neighboring pixel satisfies the predetermined properties (intensity, color, texture etc.) for this seed point.
 - the newly grown pixels become new seed points and repeat the process until no new pixel can be found.

- Fundamental difficulties in region growing
 - Selection of initial seeds that properly represent regions of interest
 - Selection of suitable properties for including points in the various regions during the growing process
- Selection of starting points often can be based on the nature of the problem, i.e., in infrared images, choose the brightest pixel as the seed point

- Example criteria can be used in region growing
 - (1) the absolute difference between the seed and a candidate point not exceed 10% of the dynamic range of the image, and
 - (2) that any pixel added to the region be 8-connected to at least one pixel previously included in the region.
- Additional criteria that increase the power of regiongrowing algorithm utilize the concept of size, shape of region being grown, etc...
- Region growing may be a useful method for selecting a few regions in an image, but it is rarely the method of choice for complex images containing many regions

- Region splitting and merging: an approach to subdivide the image into a set of arbitrary regions and then merge and/or split based on the logical predicate P(R) the predefined properties.
- Procedure
 - split any region R_i into disjointed subregions if this region contains pixel that does not satisfy the $P(R_i)$
 - merge adjacent regions R_j and R_k if all their pixels satisfy a common $P(R_i \cup R_k)$
 - stop when no further merging or splitting is possible

• Example criteria can be used in region growing $P(R_i)=TRUE$ if at least 80% of the pixels in R_i have the property

$$\left|z_{j}-m_{i}\right|\leq2\sigma_{i}$$

where

 z_j : gray level of the j^{th} pixel in R_i

 m_i : mean gray level of the region R_i

 σ_i : standard of deviation of the gray levels in R_i

