Microlensing parameters in MulensModel class ModelParameters:

Parameter	Name in MulensModel	Unit	Description
t_0	t_0		The time of the closest approach between the source and
			the lens.
u_0	$u_{-}0$		The impact parameter between the source and the lens center of mass.
$t_{ m E}$	t_E	d	The Einstein crossing time.
$t_{ m eff}$	t_eff	d	The effective timescale, $t_{\rm eff} \equiv u_0 t_{\rm E}$.
ρ	rho		The radius of the source as a fraction of the Einstein
t_{\star}	t_star	d	ring. The source self-crossing time, $t_{\star} \equiv \rho t_{\rm E}$.
	pi_E_N	u	The North component of the microlensing parallax vec-
$\pi_{\mathrm{E},N}$	PI_E_N		tor.
$\pi_{\mathrm{E},E}$	pi_E_E		The East component of the microlensing parallax vector.
$t_{0,\mathrm{par}}$	t_0_par		The reference time for parameters in parallax models. ^a
S	S		The projected separation between the lens primary and
			its companion as a fraction of the Einstein ring radius.
q	q		The mass ratio between the lens companion and the lens
			primary $q \equiv m_2/m_1$.
α	alpha	\deg .	The angle between the source trajectory and the binary
			axis.
ds/dt	ds_dt	yr^{-1}	The rate of change of the separation.
$d\alpha/dt$	$\mathtt{dalpha_dt}$	$\deg. \ yr^{-1}$	The rate of change of α .
$t_{0,\mathrm{kep}}$	t_0_kep		The reference time for lens orbital motion calculations. ^a
$x_{\rm caustic,in}$	x_caustic_in		Curvelinear coordinate of caustic entrance for a binary lens model. ^b
$x_{\text{caustic,out}}$	x_caustic_out		Curvelinear coordinate of caustic exit for a binary lens model. ^{b}
$t_{\rm caustic,in}$	t_caustic_in		Epoch of caustic exit for a binary lens model. ^b
$t_{ m caustic,out}$	$t_caustic_out$		Epoch of caustic exit for a binary lens model. ^b

Table 1: Notes:

Some of the parameters can be defined separately for each of the sources. In that case, add $_{-}1$ or $_{-}2$ to parameter name. These are:

- t_0_1, t_0_2,
- u_0_1, u_0_2,
- rho_1, rho_2,
- t_star_1, t_star_2.

 $^{^{}a}$ – $t_{0,\mathrm{par}}$ and $t_{0,\mathrm{kep}}$ are reference parameters, hence, do not change these during fitting.

^b – The four parameters of binary lens in Cassan (2008) parameterization ($x_{\text{caustic,in}}$, $x_{\text{caustic,out}}$, $t_{\text{caustic,in}}$, and $t_{\text{caustic,out}}$) are used instead of (t_0 , u_0 , t_{E} , and α).