

North South University

Department of Electrical & Computer Engineering

LAB REPORT

Course Name: CSE332L- Computer Organization and Architecture Lab

Experiment Number: 03

Experiment Name: Design a 4-bit Binary Multiplier

Experiment Date: 29 June, 2022

Report Submission Date: 5 July, 2022

Section: 02

Group Number: 01

Student Name: Md. Baker	Score
Student ID: 1911672642	
Remarks:	
Terrarks.	

Exp: Design a 4-bit Multiplier

Objectives:

- We have become familiarized with 4-bit Multiplier.
- We have understood the theory and implement the multiplication unit
- We have checked Multiplying bits and showed the sum outputs

Apparatus:

- ✓ 7408 AND IC
- ✓ 7483 or 74283 4-bit Adder IC
- ✓ Trainer Board
- ✓ Wires

Theory:

A binary multiplier is a combinational logic circuit or digital device used for multiplying two binary numbers. The two numbers are more specifically known as multiplicand and multiplier and the result is known as a product. The multiplicand & multiplier can be of various bit size. The product's bit size depends on the bit size of the multiplicand & multiplier. The bit size of the product is equal to the sum of the bit size of multiplier & multiplicand. Binary multiplication method is same as decimal multiplication. Binary multiplication of more than 1-bit numbers contains 2 steps. The 1st step is single bit-wise multiplication known as partial product and the 2nd step is adding all partial products into a single product. Partial products or single bit products can be obtained by using AND gates. However, to add these partial products we need full adders & half adders. The schematic design of a digital multiplier differs with bit size. The design becomes complex with the increase in bit size of the multiplier.

The design of a combinational multiplier to multiply two 4-bit binary number is illustrated below:

			A ₃ B ₃	$egin{array}{c} {f A_2} \\ {f B_2} \end{array}$	$egin{array}{c} {f A_1} \\ {f B_1} \end{array}$	$egin{array}{c} {f A_0} \\ {f B_0} \end{array}$
		A3. B1	A ₃ . B ₀ A ₂ . B ₁	A ₂ . B ₀ A ₁ . B ₁	A ₁ . B ₀ A ₀ . B ₁	A0. B0
	A ₃ . B ₂	A_2 . B_2	A_1 . B_2	A ₀ . B ₂		
A ₃ . B ₃	A ₂ . B ₃	A ₁ . B ₃	A ₀ . B ₃			
S6		S5 S	4 S3	S2	S1	S0

Binary Multiplication Procedure:

	 m x n bits = m + n bit product m + n bits required to represent all possible products 	Multiplier	x 1001
	There are only two possibilities in every step		1000
✓	If multiplier bit = 1		0000>
	copy multiplicand (1 x multiplicand)		0000X

Multiplicand

Product

1000

1000 XXX

01001000

✓ If multiplier bit = 0 ✓ place 0 (0 x multiplicand)

✓ Need an adder unit to add

LOGIC CIRCUIT DIAGRAM

Fig: Design a 4-bit Multiplier

Data Table:1 Theoretical

Multiplicand A4 A3 A2 A1	Multiplier B4 B3 B2 B1	Product S8 S7 S6 S5 S4 S3 S2 S1	Result in Decimal
1 0 0 0	1 0 0 1	0 1 0 0 1 0 0 0	$8\times 9=72$
0 1 0 1	0 0 1 0	0 0 0 0 1 0 1 0	$5\times 2=10$
0 1 1 1	0 0 1 1	0 0 0 1 0 1 0 1	$7\times 3=21$
0 1 0 0	1 0 0 0	0 0 1 0 0 0 0 0	$4\times8=32$
0 1 0 1	0 1 1 0	0 0 0 1 1 1 0	$5\times 6=30$
1 0 0 1	0 1 0 0	0 0 1 0 0 1 0 0	$9\times 4=36$
1 1 1 1	1 0 1 1	1 0 1 0 0 1 0 1	$15 \times 11 = 165$

Data Table:2 Experimental

Multiplicand A4 A3 A2 A1	Multiplier B4 B3 B2 B1	Product S8 S7 S6 S5 S4 S3 S2 S1	Result in Decimal
1 0 0 0	1 0 0 1	0 1 0 0 1 0 0 0	$8\times 9=72$
0 1 0 1	0 0 1 0	0 0 0 0 1 0 1 0	$5 \times 2 = 10$
0 1 1 1	0 0 1 1	0 0 0 1 0 1 0 1	7 × 3 = 21
0 1 0 0	1 0 0 0	0 0 1 0 0 0 0 0	4 × 8 = 32
0 1 0 1	0 1 1 0	0 0 0 1 1 1 0	$5\times 6=30$
1 0 0 1	0 1 0 0	0 0 1 0 0 1 0 0	9 × 4 = 36
1 1 1 1	1 0 1 1	1 0 1 0 0 1 0 1	$15 \times 11 = 165$

Discussion:

In our third lab class our goal was to design a 4-bit binary multiplication unit. A 4-bit binary multiplication unit was designed in Logisim.

We know for binary multiplication we need basic AND operation and binary addition. As we are constructing 4-bit multiplier we have used four 2 input AND gate and three 4-bit full adder. In this multiplication operation if the multiplier bit is high or 1 then output will be shifted copy of the multiplicand. On the other hand, if multiplier bit is 0 then the result will be also 0.

For this experiment, we used 4 And IC and 3 4-bit Adder IC to build the circuit. In the circuit we have 4-bit two inputs A (A1, A2, A3, A4), B (B1, B2, B3, B4). First, we did AND operation to all the B inputs with A1 and rest 3 result into 4-bit ADDER three inputs starting from LSB. In this ADDER. Then in next 4-bit inputs of ADDER- we did and operation to all the Bin put with A2. Then first output of ADDER to output pin S2. In next adder, first 4-bit input - rest 3 sum of last ADDER and Cout starting from LSB to MSB. And in next 4-bit input of 4-bit ADDER- we have to do AND operation to all the B inputs with A3. In this ADDER first sum connected as output like S3.

In the last ADDER first 4-bit input - rest 3 sum of last ADDER and Cout starting from LSB to MSB and in next 4-bit input of 4-bit ADDER- we have to do AND operation to all the B inputs with A4. And connect all the output as S4, S5, S6, S7, S8 sequentially of ADDER all sum outputs.

Data testing: In data testing - First 4-bit input of multiplier and next 4-bit input of multiplicand. Then we will see the result in S[marked] output.

For example:

 $8 \times 9 = 72$

Here

Multiplier: 8 = 1000Multiplicand: 9 = 1001

In A input :1000 In B input :1001

And the output like= 01001000 (result)