

SEMICONDUCTOR TECHNICAL DATA

High Voltage Transistor

FEATURE

• We declare that the material of product compliance with RoHS requirements.

DEVICE MARKING AND ORDERING INFORMATION

Device	Marking	Shipping
2N5401S	2L	3000/Tape&Reel

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CEO}	- 150	Vdc
Collector-Base Voltage	V _{CBO}	- 160	Vdc
Emitter–Base Voltage	V _{EBO}	- 5.0	Vdc
Collector Current — Continuous	Ic	- 500	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR- 5 Board (1)	P _D	225	mW
T _A =25 °C			
Derate above 25°C		1.8	mW/°C
Thermal Resistance, Junction to Ambient	R _{eJA}	556	°C/W
Total Device Dissipation	P _D	300	mW
Alumina Substrate, (2) $T_A = 25$ °C			
Derate above 25°C		2.4	mW/°C
Thermal Resistance, Junction to Ambient	R _{eJA}	417	°C/W
Junction and Storage Temperature	T_J,T_stg	-55to+150	°C

DEVICE MARKING

2N5401SLT1G=2L

ELECTRICAL CHARACTERISTICS (T $_{\text{A}}$ = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector–Emitter Breakdown Voltage	V _{(BR)CEO}			Vdc
$(I_C = -1.0 \text{ mAdc}, I_B = 0)$		– 150		
Collector–Base Breakdown Voltage	V _{(BR)CBO}			Vdc
$(I_c = -100 \mu Adc, I_E = 0)$		– 160	_	
Emitter-BAse Breakdown Voltage	$V_{(BR)EBO}$			Vdc
$(I_E = -10 \mu Adc, I_C = 0)$		-5.0		
Collector Cutoff Current	I _{CBO}			
$(V_{CB} = -120 \text{ Vdc}, I_E = 0)$		_	- 50	nAdc
$(V_{CB} = -120 \text{ Vdc}, I_{E} = 0, T_{A} = 100 \text{ °C})$			- 50	μ Adc

^{1.} $FR-5 = 1.0 \times 0.75 \times 0.062$ in.

^{2.} Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.

ELECTRICAL CHARACTERISTICS (T _A = 25°C unless otherwise noted) (Continued)

Characteristic	Symbol	Min	Max	Unit
N CHARACTERISTICS (2)				
DC Current Gain	h _{FE}			_
$(I_C = -1.0 \text{mAdc}, V_{CE} = -5.0 \text{ Vdc})$		50		
$(I_C = -10 \text{ mAdc}, V_{CE} = -5.0 \text{ Vdc})$		60	240	
$(I_C = -50 \text{ mAdc}, V_{CE} = -5.0 \text{ Vdc})$		50		
Collector–Emitter Saturation Voltage	$V_{CE(sat)}$			Vdc
$(I_C = -10 \text{ mAdc}, I_B = -1.0 \text{ mAdc})$			- 0.2	
$(I_C = -50 \text{ mAdc}, I_B = -5.0 \text{ mAdc})$			- 0.5	
Base–Emitter Saturation Voltage	V _{BE(sat)}			Vdc
$(I_C = -10 \text{ mAdc}, I_B = -1.0 \text{ mAdc})$		_	- 1.0	
$(I_C = -50 \text{ mAdc}, I_B = -5.0 \text{ mAdc})$		_	- 1.0	
MALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product	f _T			MHz
$(I_C = -10 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}, f = 100 \text{ MHz})$		100	300	
Output Capacitance	C obo			pF
$(V_{CB} = -10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$			6.0	
Small–Signal Current Gain	h _{fe}			_
$(I_C = -1.0 \text{mAdc}, V_{CE} = -10 \text{Vdc}, f = 1.0 \text{ kHz})$		40	200	
Noise Figure	NF			dB
$(I_C = -200 \mu Adc, V_{CE} = -5.0 \text{ Vdc}, R_s = 10\Omega, f = 1.0 \text{ kHz}$	<u>.</u>)		8.0	

Revision No: 0

Figure 1. DC Current Gain

Figure 2. Collector Saturation Region

Figure 3. Collector Cut-Off Region

Ic, COLLECTOR CURRENT (mA)

Figure 4. "On" Voltages

I_C, COLLECTOR CURRENT (mA)

Figure 5. Temperature Coefficients

Figure 6. Switching Time Test Circuit

Figure 7. Capacitances

Figure 8. Turn-On Time

Figure 9. Turn-Off Time

SOT-23

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M,1982
- 2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS	
Divi	MIN	MAX	MIN	MAX
A	0.1102	0.1197	2.80	3.04
В	0.0472	0.0551	1.20	1.40
C	0.0350	0.0440	0.89	1.11
D	0.0150	0.0200	0.37	0.50
G	0.0701	0.0807	1.78	2.04
Н	0.0005	0.0040	0.013	0.100
J	0.0034	0.0070	0.085	0.177
K	0.0140	0.0285	0.35	0.69
L	0.0350	0.0401	0.89	1.02
S	0.0830	0.1039	2.10	2.64
V	0.0177	0.0236	0.45	0.60

PIN 1 BASE

- 2 EMITTER
- 3 COLLECTOR

