```
In [53]: # Predicting players rating
         # In this project you are going to predict the overall rating of soccer player
         based on their attributes such as
         # 'crossing', 'finishing etc.
         # The dataset you are going to use is from European Soccer Database(https://ww
         w.kaggle.com/hugomathien/soccer) has more
         # than 25,000 matches and more than 10,000 players for European professional s
         occer seasons from 2008 to 2016.
         # About the Dataset
         # The ultimate Soccer database for data analysis and machine learning The data
         set comes in the form of an SQL database
         # and contains statistics of about 25,000 football matches, from the top footb
         all league of 11 European Countries.
         # It covers seasons from 2008 to 2016 and contains match statistics (i.e: scor
         es, corners, fouls etc...) as well as the
         # team formations, with player names and a pair of coordinates to indicate the
         ir position on the pitch. +25,000
         # matches +10,000 players 11 European Countries with their lead championship S
         easons 2008 to 2016 Players and
         # Teams' attributes* sourced from EA Sports' FIFA video game series, including
         the weekly updates Team line up with
         # squad formation (X, Y coordinates) Betting odds from up to 10 providers Deta
         iled match events (goal types, possession,
         # corner, cross, fouls, cards etc...) for +10,000 matches The dataset also has
         a set of about 35 statistics for each
         # player, derived from EA Sports' FIFA video games. It is not just the stats t
         hat come with a new version of the game
         # but also the weekly updates. So for instance if a player has performed poorl
         y over a period of time and his stats get
         # impacted in FIFA, you would normally see the same in the dataset.
```

```
In [1]: import sqlite3
    import pandas as pd
    import numpy as np
    from sklearn.tree import DecisionTreeRegressor
    from sklearn.linear_model import LinearRegression
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import mean_squared_error
    from math import sqrt
    import warnings
    warnings.filterwarnings('ignore')
```

```
In [2]: # Create your connection.
    cnx = sqlite3.connect('database.sqlite')
    df = pd.read_sql_query("SELECT * FROM Player_Attributes", cnx)
```

In [3]: df.head()

Out[3]:

	id	player_fifa_api_id	player_api_id	date	overall_rating	potential	preferred_foot	attackin
0	1	218353	505942	2016- 02-18 00:00:00	67.0	71.0	right	
1	2	218353	505942	2015- 11-19 00:00:00	67.0	71.0	right	
2	3	218353	505942	2015- 09-21 00:00:00	62.0	66.0	right	
3	4	218353	505942	2015- 03-20 00:00:00	61.0	65.0	right	
4	5	218353	505942	2007- 02-22 00:00:00	61.0	65.0	right	

5 rows × 42 columns

In [5]: df.shape

Out[5]: (183978, 42)

Data columns (total 42 columns): 183978 non-null int64 player fifa api id 183978 non-null int64 player_api_id 183978 non-null int64 date 183978 non-null object overall rating 183142 non-null float64 potential 183142 non-null float64 preferred foot 183142 non-null object attacking_work_rate 180748 non-null object defensive work rate 183142 non-null object 183142 non-null float64 crossing finishing 183142 non-null float64 heading_accuracy 183142 non-null float64 short_passing 183142 non-null float64 vollevs 181265 non-null float64 dribbling 183142 non-null float64 181265 non-null float64 curve free kick accuracy 183142 non-null float64 long_passing 183142 non-null float64 ball control 183142 non-null float64 acceleration 183142 non-null float64 sprint speed 183142 non-null float64 181265 non-null float64 agility reactions 183142 non-null float64 181265 non-null float64 balance shot_power 183142 non-null float64 181265 non-null float64 jumping 183142 non-null float64 stamina strength 183142 non-null float64 long shots 183142 non-null float64 aggression 183142 non-null float64 interceptions 183142 non-null float64 183142 non-null float64 positioning vision 181265 non-null float64 penalties 183142 non-null float64 marking 183142 non-null float64 standing tackle 183142 non-null float64 sliding_tackle 181265 non-null float64 gk diving 183142 non-null float64 gk handling 183142 non-null float64 gk kicking 183142 non-null float64 183142 non-null float64 gk_positioning gk_reflexes 183142 non-null float64 dtypes: float64(35), int64(3), object(4)

memory usage: 56.1+ MB

In [7]: | df = df.dropna()

In [8]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 180354 entries, 0 to 183977
Data columns (total 42 columns):
                       180354 non-null int64
player fifa api id
                       180354 non-null int64
player_api_id
                       180354 non-null int64
date
                       180354 non-null object
overall rating
                       180354 non-null float64
potential
                       180354 non-null float64
preferred foot
                       180354 non-null object
attacking work rate
                       180354 non-null object
defensive work rate
                       180354 non-null object
                       180354 non-null float64
crossing
finishing
                       180354 non-null float64
heading_accuracy
                       180354 non-null float64
short_passing
                       180354 non-null float64
vollevs
                       180354 non-null float64
dribbling
                       180354 non-null float64
                       180354 non-null float64
curve
free kick accuracy
                       180354 non-null float64
long_passing
                       180354 non-null float64
ball control
                       180354 non-null float64
acceleration
                       180354 non-null float64
                       180354 non-null float64
sprint speed
                       180354 non-null float64
agility
reactions
                       180354 non-null float64
                       180354 non-null float64
balance
shot_power
                       180354 non-null float64
                       180354 non-null float64
jumping
stamina
                       180354 non-null float64
strength
                       180354 non-null float64
long shots
                       180354 non-null float64
aggression
                       180354 non-null float64
interceptions
                       180354 non-null float64
                       180354 non-null float64
positioning
vision
                       180354 non-null float64
penalties
                       180354 non-null float64
marking
                       180354 non-null float64
standing tackle
                       180354 non-null float64
sliding_tackle
                       180354 non-null float64
gk diving
                       180354 non-null float64
gk handling
                       180354 non-null float64
gk kicking
                       180354 non-null float64
gk_positioning
                       180354 non-null float64
gk_reflexes
                       180354 non-null float64
dtypes: float64(35), int64(3), object(4)
memory usage: 56.4+ MB
```

In [9]: # Feature selection - Since we have about 40 different features, we can run so
 me feature selection algorithms to reduce
 # the size of our featureset.

from sklearn.preprocessing import scale
from sklearn.feature_selection import RFE

```
In [13]: df new.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 180354 entries, 0 to 183977
         Data columns (total 38 columns):
                                180354 non-null int64
                                180354 non-null int64
         player fifa api id
         player_api_id
                                180354 non-null int64
         overall rating
                                180354 non-null float64
         potential
                                180354 non-null float64
         crossing
                                180354 non-null float64
         finishing
                                180354 non-null float64
         heading accuracy
                                180354 non-null float64
         short passing
                                180354 non-null float64
                                180354 non-null float64
         volleys
         dribbling
                                180354 non-null float64
         curve
                                180354 non-null float64
         free_kick_accuracy
                                180354 non-null float64
         long passing
                                180354 non-null float64
         ball control
                                180354 non-null float64
         acceleration
                                180354 non-null float64
         sprint speed
                                180354 non-null float64
                                180354 non-null float64
         agility
         reactions
                                180354 non-null float64
                                180354 non-null float64
         balance
                                180354 non-null float64
         shot power
                                180354 non-null float64
         jumping
         stamina
                                180354 non-null float64
         strength
                                180354 non-null float64
                                180354 non-null float64
         long_shots
         aggression
                                180354 non-null float64
                                180354 non-null float64
         interceptions
         positioning
                                180354 non-null float64
                                180354 non-null float64
         vision
         penalties
                                180354 non-null float64
         marking
                                180354 non-null float64
         standing tackle
                                180354 non-null float64
         sliding tackle
                                180354 non-null float64
         gk diving
                                180354 non-null float64
                                180354 non-null float64
         gk_handling
         gk kicking
                                180354 non-null float64
                                180354 non-null float64
         gk_positioning
         gk reflexes
                                180354 non-null float64
         dtypes: float64(35), int64(3)
         memory usage: 53.7 MB
         X = df_new.drop('overall_rating',axis=1).values
In [14]:
         y = df new['overall rating'].values.ravel()
         from sklearn.preprocessing import scale
         X = scale(X)
In [15]: | df_1 = df_new.drop('overall_rating',axis=1)
```

```
In [16]: X.shape
Out[16]: (180354, 37)
In [17]:
         y.shape
Out[17]: (180354,)
In [18]: # Feature Selection using RFE Scikit Library
         lm = LinearRegression()
          rfe = RFE(lm, n_features_to_select = 10)
          rfe_fit = rfe.fit(X, y)
          features = []
          for feat in df_1.columns[rfe_fit.support_]:
              print(feat)
              features.append(feat)
         player_api_id
         potential
         heading_accuracy
         short_passing
         ball control
         reactions
         strength
         gk_diving
         gk_kicking
         gk_positioning
In [19]:
         features
Out[19]: ['player_api_id',
           'potential',
           'heading_accuracy',
           'short_passing',
           'ball_control',
           'reactions',
           'strength',
           'gk_diving',
           'gk kicking',
           'gk_positioning']
```

```
In [20]: # Using Statsmodel to illustrate the summary results
         lm = LinearRegression()
          rfe = RFE(lm, n features to select = 15)
          rfe_fit = rfe.fit(X, y)
         features = []
          for feat in df_1.columns[rfe_fit.support_]:
              print(feat)
             features.append(feat)
         player_fifa_api_id
         player_api_id
         potential
         heading_accuracy
         short passing
         ball_control
         acceleration
         reactions
         strength
         marking
         gk_diving
         gk_handling
         gk_kicking
         gk_positioning
         gk_reflexes
In [21]: | df_optm = df_new[features]
In [22]: df_optm.shape
Out[22]: (180354, 15)
```

```
In [23]: # Using Statsmodels for analysing the impact of attribute potential on the pla
yer rating
import statsmodels.formula.api as sm
model1 = sm.OLS(df_new['overall_rating'],df_new['potential'])
result1 = model1.fit()
print(result1.summary())
OLS Regression Results
```

```
Dep. Variable:
             overall_rating
                           R-squared:
                                                   0.99
Model:
                       OLS
                           Adj. R-squared:
                                                   0.99
                Least Squares
                           F-statistic:
                                                4.062e+0
Method:
Date:
            Wed, 06 Mar 2019
                           Prob (F-statistic):
                                                   0.0
Time:
                    12:26:23
                            Log-Likelihood:
                                               -5.3063e+0
No. Observations:
                            AIC:
                                                1.061e+0
                     180354
Df Residuals:
                     180353
                            BIC:
                                                1.061e+0
Df Model:
                         1
Covariance Type:
                   nonrobust
_______
                 std err
                                 P>|t|
                                          [0.025
                                                  0.97
            coef
                             t
5]
potential
          0.9331
                  0.000
                        6373.716
                                  0.000
                                          0.933
                                                   0.93
______
Omnibus:
                   30950.684
                           Durbin-Watson:
                                                   0.37
Prob(Omnibus):
                      0.000
                            Jarque-Bera (JB):
                                               54474.35
Skew:
                     -1.111
                            Prob(JB):
                                                   0.0
Kurtosis:
                      4.520
                            Cond. No.
                                                   1.0
______
```

Warnings:

4

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [24]: # Using Statsmodels for analysing the impact of all attribute on the player ra
    ting
X_new = df_new[features].values
    model = sm.OLS(df_new['overall_rating'],df_new[features])
    result = model.fit()
    print(result.summary())
```

OLS Regression Results

=======================================		_	on Results =======	=======	=========
= Dep. Variable:	overall_	rating	R-squared:		0.99
9	0001411_	_1 4 5 1116	N Squar ca.		0.55
Model: 9		OLS	Adj. R-square	d:	0.99
Method: 6	Least S	Squares	F-statistic:		8.035e+0
Date:	Wed, 06 Ma	ar 2019	Prob (F-stati	stic):	0.0
Time: 5	12	2:27:20	Log-Likelihoo	d:	-4.3282e+0
No. Observations:		180354	AIC:		8.657e+0
Df Residuals: 5		180339	BIC:		8.658e+0
Df Model:		15			
Covariance Type:		nrobust			
=======================================					
0.975]	coef	std err	t	P> t	[0.025
-					
player_fifa_api_id	-8.998e-06	1.44e-07	-62.432	0.000	-9.28e-06
-8.72e-06 player_api_id	-6.663e-06	6.01e-08	-110.802	0.000	-6.78e-06
-6.55e-06	0.4525	0.001		0.000	0.450
potential 0.455					
heading_accuracy 0.066	0.0643	0.001	93.120	0.000	0.063
short_passing 0.067	0.0646	0.001	59.132	0.000	0.062
ball_control 0.134	0.1317	0.001	104.742	0.000	0.129
acceleration 0.031	0.0299	0.001	43.957	0.000	0.029
reactions 0.183	0.1811	0.001	175.817	0.000	0.179
strength	0.0600	0.001	91.087	0.000	0.059
0.061 marking	0.0187	0.000	49.000	0.000	0.018
0.019 gk_diving 0.165	0.1627	0.001	117.671	0.000	0.160
gk_handling	0.0254	0.002	13.865	0.000	0.022
0.029 gk_kicking -0.047	-0.0479	0.001	-83.797	0.000	-0.049
gk_positioning 0.047	0.0437	0.002	23.984	0.000	0.040
gk_reflexes 0.021	0.0179	0.002	9.987	0.000	0.014

Omnibus: 13814.579 Durbin-Watson: 0.42 Prob(Omnibus): 0.000 Jarque-Bera (JB): 34846.32 Skew: -0.457 Prob(JB): 0.0 Kurtosis: 4.950 Cond. No. 8.42e+0 _______

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.42e+04. This might indicate that there a re

strong multicollinearity or other numerical problems.

```
In [25]: # Explanation of the OLS Regression Results :
         # Adjusted R-squared indicates that 99.9% of player ratings can be explained b
         y our predictor variable.
         # The regression coefficient (coef) represents the change in the dependent var
         iable resulting from a one unit change in
         # the predictor variable, all other variables being held constant.
         # In our model, a one unit increase in potential increases the rating by 0.452
         5.
         # The standard error measures the accuracy of potential's coefficient by estim
         ating the variation of the coefficient
         # if the same test were run on a different sample of our population.
         # Our standard error,0.001, is low and therefore appears accurate.
         # The p-value means the probability of an 0.4525 increasing in player rating d
         ue to a one unit increase in potential
         # is 0%, assuming there is no relationship between the two variables.
         # A low p-value indicates that the results are statistically significant, that
         is in general the p-value is less than 0.05.
         # The confidence interval is a range within which our coefficient is likely to
         fall. We can be 95% confident that
         # potentials's coefficient will be within our confidence interval, [0.450,0.45
         51.
         # Warnings in the Summary provided by statsmodels OLS model
         # Multicollinearity: A careful observer would've noticed the warnings produced
         by our model regarding multicollinearity.
         # We have two or more variables telling roughly the same story, overstating th
         e value of each of the predictors.
         # REGRESSION PLOTS
         import matplotlib.pyplot as plt
         import statsmodels.api as sm
         %matplotlib inline
```

%matplotlib inline
fig = plt.figure(figsize=(20,12))
fig = sm.graphics.plot_partregress_grid(result, fig=fig)

In [26]: import statsmodels.formula.api as smf
only include TV and Radio in the model
lm = smf.ols(formula='overall_rating ~ player_fifa_api_id + player_api_id +po
tential +heading_accuracy +short_passing +ball_control +acceleration +reaction
s +strength +marking +gk_diving +gk_handling +gk_kicking +gk_positioning +gk_r
eflexes ', data=df_new).fit()
print('Confidence of the statsmodel for the input data : ',lm.rsquared)

Confidence of the statsmodel for the input data: 0.8561047414083593

In [27]: df_new.head()

Out[27]:

	id	player_fifa_api_id	player_api_id	overall_rating	potential	crossing	finishing	heading_accı
0	1	218353	505942	67.0	71.0	49.0	44.0	_
1	2	218353	505942	67.0	71.0	49.0	44.0	
2	3	218353	505942	62.0	66.0	49.0	44.0	
3	4	218353	505942	61.0	65.0	48.0	43.0	
4	5	218353	505942	61.0	65.0	48.0	43.0	

5 rows × 38 columns

In [28]: df_optm.head()

Out[28]:

	player_fifa_api_id	player_api_id	potential	heading_accuracy	short_passing	ball_control	acc
0	218353	505942	71.0	71.0	61.0	49.0	
1	218353	505942	71.0	71.0	61.0	49.0	
2	218353	505942	66.0	71.0	61.0	49.0	
3	218353	505942	65.0	70.0	60.0	48.0	
4	218353	505942	65.0	70.0	60.0	48.0	
4							•

In [29]: # Data Exploration using visualization
df_corr = df_new.corr()

In [30]: print('The features contain high corelation .We need to remove them first befo
re applying Regression Techniques.')
import seaborn as sns
sns.set_style('whitegrid')
plt.figure(figsize=(20,8))
sns.heatmap(df_corr,annot=True)

The features contain high corelation .We need to remove them first before applying Regression Techniques.

Out[30]: <matplotlib.axes. subplots.AxesSubplot at 0x107cef30>


```
In [31]: #create correlation matrix with absolute values
    df_corr = df_new.corr().abs()
    #select upper triangle of matrix
    up_tri = df_corr.where(np.triu(np.ones(df_corr.shape[1]),k=1).astype(np.bool))

#find all the features which have a correlation > 0.75 with other features.
    corr_features = [ column for column in up_tri.columns if any(up_tri[column]> 0.75)]

#Print Correlated features
print(corr_features)
```

['potential', 'short_passing', 'volleys', 'dribbling', 'curve', 'free_kick_ac curacy', 'long_passing', 'ball_control', 'sprint_speed', 'agility', 'reaction s', 'shot_power', 'long_shots', 'positioning', 'vision', 'penalties', 'markin g', 'standing_tackle', 'sliding_tackle', 'gk_handling', 'gk_positioning', 'gk_reflexes']

```
In [32]: #Drop Correlated Features
df_no_corr = df_new.drop(corr_features,axis=1)
df_no_corr.head()
```

Out[32]:

	id	player_fifa_api_id	player_api_id	overall_rating	crossing	finishing	heading_accuracy	acc
0	1	218353	505942	67.0	49.0	44.0	71.0	
1	2	218353	505942	67.0	49.0	44.0	71.0	
2	3	218353	505942	62.0	49.0	44.0	71.0	
3	4	218353	505942	61.0	48.0	43.0	70.0	
4	5	218353	505942	61.0	48.0	43.0	70.0	

In [33]: # This shows that the feature selection API - sklearn.feature_selection.RFE ha
s resulted in the same feature
selection for top 15 features selected.
Quant Features against Rating
len(df_no_corr.columns)

Out[33]: 16

```
In [34]: import matplotlib.pyplot as plt
fig = plt.figure(figsize = (15,60))
val = df_optm.shape[1]
for idx in range(val):
    feature = df_optm.columns[idx]
    ax = fig.add_subplot(13,3,idx+1)
    Xtmp = df_optm[feature]
    ax.scatter(Xtmp, y)
    ax.set_xlabel(feature)

plt.tight_layout()
plt.show()
```



```
In [35]: # Split the input data into training and test data
         from sklearn.model selection import train test split
         #spliting 66.66% for train data and 33.33% for test data.
         X train,X test,Y train,Y test = train test split(X,y,test size=0.33,random sta
         te=0)
         print("X_train Shape : ",X_train.shape)
         print("X_test Shape : ",X_test.shape)
         print("Y train Shape : ",Y train.shape)
         print("Y_test.shape : ",Y_test.shape)
         X_train Shape : (120837, 37)
         X test Shape: (59517, 37)
         Y_train Shape : (120837,)
         Y test.shape : (59517,)
In [36]: # Applying Linear Regression Model
         lm = LinearRegression()
         lm.fit(X train, Y train)# train the model
Out[36]: LinearRegression(copy X=True, fit intercept=True, n jobs=None,
                  normalize=False)
In [37]: | # Perform Prediction using Linear Regression Model
         Y pred = lm.predict(X test) # predict the prices based on the test data
         Y pred
Out[37]: array([73.74672865, 68.65401302, 67.22132467, ..., 71.6247244 ,
                64.76934151, 62.18654694])
In [38]: print("The variance score of the LinearRegression model is : ",lm.score(X tes
         t,Y test))
         print('Since variance score is near about 1 it seems to be a perfect predictio
         n')
```

The variance score of the LinearRegression model is : 0.8593275836597539 Since variance score is near about 1 it seems to be a perfect prediction

```
In [39]: import matplotlib.pyplot as plt
   plt.figure(figsize=(6, 4))
   plt.hist(Y_pred)
   plt.xlabel('Predicted Rating of the Player')
   plt.ylabel('count')
   plt.tight_layout()
```


Out[40]: Text(0.5, 1.0, 'Actual vs Predicted Rating for LinearRegression Model')

In [41]: # Evaluate Linear Regression Accuracy using Root Mean Square Error
 from sklearn.metrics import mean_squared_error
 print("Error Rate of the Regression Model : ",sqrt(mean_squared_error(Y_pred,Y _test)))

Error Rate of the Regression Model : 2.623473911844569

```
In [42]: # Applying Decision Tree Regressor Model to the input data
          regressor = DecisionTreeRegressor(max depth=20)
          regressor.fit(X_train, Y_train)
Out[42]: DecisionTreeRegressor(criterion='mse', max_depth=20, max_features=None,
                    max_leaf_nodes=None, min_impurity_decrease=0.0,
                    min impurity split=None, min samples leaf=1,
                    min samples split=2, min weight fraction leaf=0.0,
                     presort=False, random state=None, splitter='best')
In [43]: # Perform Prediction using Decision Tree Regressor
          Y pred = regressor.predict(X test)
          Y pred
Out[43]: array([76.
                            , 72.
                                         , 67.
                                                       , ..., 71.
                            , 61.78571429])
In [44]: print("The variance score of the DecisionTreeRegressor model is : ",regressor
          .score(X test,Y test))
          print('Since variance score is near about 1 it seems to be a perfect predictio
          n')
         The variance score of the DecisionTreeRegressor model is : 0.95475093587897
         91
         Since variance score is near about 1 it seems to be a perfect prediction
In [45]:
         import matplotlib.pyplot as plt
          plt.figure(figsize=(6, 4))
          plt.hist(Y pred)
          plt.xlabel('Predicted Rating of the Player')
          plt.ylabel('count')
          plt.tight layout()
            20000
            17500
            15000
            12500
            10000
             7500
             5000
             2500
               0
```

40

60

Predicted Rating of the Player

70

90

```
In [46]: plt.figure(figsize=(10, 8))
    plt.scatter(Y_test, Y_pred)
    plt.plot([0, 100], [0, 100], '--k')
    plt.axis('tight')
    plt.xlabel('Actual Rating')
    plt.ylabel('Predicted Rating')
    plt.tight_layout()
    plt.title("Actual vs Predicted Rating for DecisionTreeRegressor Model")
```

Out[46]: Text(0.5, 1.0, 'Actual vs Predicted Rating for DecisionTreeRegressor Model')


```
In [47]: #The mean of the expected target value in test set
    Y_test.mean()
Out[47]: 68.66518809751835
```

In [48]: #The mean of the predicted target value in test set ?
Y_pred.mean()

Out[48]: 68.65974748152661

Error Rate of the DecisionTreeRegressor Model: 1.487911418908021
The DecisionTreeRegressor Model performs better than the LinearRegression Model as eveident from the error rate

```
In [50]: # Obtaining predictions by cross-validation for the Regression Models

df_optm = df_new.copy()
    df_optm['rating'] = y
    df_optm.head()
```

Out[50]:

	id	player_fifa_api_id	player_api_id	overall_rating	potential	crossing	finishing	heading_accı
0	1	218353	505942	67.0	71.0	49.0	44.0	_
1	2	218353	505942	67.0	71.0	49.0	44.0	
2	3	218353	505942	62.0	66.0	49.0	44.0	
3	4	218353	505942	61.0	65.0	48.0	43.0	
4	5	218353	505942	61.0	65.0	48.0	43.0	

5 rows × 39 columns

In [51]: from sklearn.model_selection import cross_val_predict
X = df_optm.drop('rating',axis=1)
Y = df_optm['rating']
predicted = cross_val_predict(regressor, X, Y, cv=10)

In [52]: from sklearn.metrics import accuracy_score
 print("Accuracy Score of the DecisionTreeRegressor Model is : " ,accuracy_sc
 ore(Y.astype(int), predicted))

Accuracy Score of the DecisionTreeRegressor Model is : 0.9997615800037704

```
In [65]: from sklearn.metrics import mean absolute error
         lm = LinearRegression()
         mean abs error = []
         accuracy score = []
         for train,test in kfold:
             x = X.iloc[train]
             y = Y.iloc[train]
             lm.fit(x,y)
             Y test = Y.iloc[test]
             Y_pred = lm.predict(X.iloc[test])
             mean abs error.append(mean absolute error(Y test,Y pred))
In [70]: print('10 Fold Cross Validation Error : {} accuracy score : {} for LinearRegr
         ession Model '.format(np.mean(mean abs error),1 - np.mean(mean abs error)))
         10 Fold Cross Validation Error : 3.659946305405014e-12 accuracy score : 0.999
         9999999634 for LinearRegression Model
In [71]:
        from sklearn.metrics import mean absolute error
         #DR = LinearRegression()
         mean abs error = []
         accuracy_score = []
         for train,test in kfold:
             x = X.iloc[train]
             y = Y.iloc[train]
             regressor.fit(x,y)
             Y test = Y.iloc[test]
             Y_pred = regressor.predict(X.iloc[test])
             mean_abs_error.append(mean_absolute_error(Y_test,Y_pred))
         print('10 Fold Cross Validation Error : {} accuracy score : {} for DecisionTr
         eeRegressor Model '.format(np.mean(mean abs error),1 - np.mean(mean abs error
         )))
         10 Fold Cross Validation Error : 4.435819240365955e-05 accuracy score : 0.999
         9556418075963 for DecisionTreeRegressor Model
In [ ]: # We have use the below models to predict the player ratings:
         # 1) Statsmodels.api.OLS
         # 2) LinearRegression
         # 3) DecisionTreeRegressor
         # Sampling Mechanisms used:
         # 1) Test Train Split
         # 2) 10 Fold Cross Validation
         # Model Estimation mechanisms used:
         # 1) Root Mean Squared Error
         # 2) 10 Fold Cross Validation error.
```