BIOLOGY FOR ENGNEERS

Need for BFE

- It is well known that this is the century of biology in which significant advances in the understanding and application of biological systems are expected.
- The significant impact on the world is expected in terms of better healthcare, better processes, better products and an overall better quality of life.
- Thus, any person can be interested in knowing the fundamentals of biology to be able to understand, or participate in the biological revolution.
- For example, any engineer, irrespective of the parent discipline (mechanical, electrical, civil, chemical, metallurgical, etc.,) has a high probability of using the disciplinary skills toward designing/improving biological systems in the future.
- This course is designed to convey the essentials of cell and molecular biology to provide a frame-work for more specific understanding, and contribution by any interested person.

Elements

'н																	2 He
3 Li	4 Be											5 B	c	N	o	9 F	10 Ne
11 Na	12 Mg											13 A I	14 Si	15 P	S	17 CI	18 Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	>	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37 Rb	Ca 38 Sr	39 Y	Ti 40 Zr	> 41 D	Cr 42 M o	43 Tc	44 Ru	Co 45 Rh	⁴⁶ Pd	Cu 47 Ag	Zn ⁴⁸ Cd	Ga 49 In	Ge 50 Sn	As 51 Sb	Se 52 Te	Br 53 	Kr 54 Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52		54

			61 Pm										
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	D	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Periodic Table

1 H 1.0079	9	eleme ties. [ents acc	iodic Ta cording to s 1–92 o ve 92 w	their p	hysical a nature; e	and cher elements	mical pro	oper-	yell	e six elem ow make ss of mo	up 98%	of the		-		2 He 4.003
3 Li 6.941	4 Be 9.012	colu	mns hav	he same e similar ı	propertie	All the second second second		THE SECTION OF STREET	nts highlig		noll local	5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.179
11 Na 22.990	12 Mg 24.305	because they have the same number of electrons in their outermost shell.						orange are present in small amounts in many organisms.				13 Al 26.982	14 Si 28.086	15 P 30.974	16 S 32.06	17 Cl 35.453	18 Ar 39.948
19 K 39.098	20 Ca 40.08	21 Sc 44.956	22 Ti 47.88	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.847	27 Co 58.933	28 Ni 58.69	29 Cu 63.546	30 Zn 65.38	31 Ga 69.72	32 Ge 72.59	33 As 74.922	34 Se 78.96	35 Br 79.909	36 Kr 83.80
37 Rb 85.4778	38 Sr 87.62	39 Y 88.906	40 Zr 91.22	41 Nb 92.906	42 Mo 95.94	43 Tc (99)	44 Ru 101.07	45 Rh 102.906	46 Pd 106.4	47 Ag 107.870	48 Cd 112.41	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 1 126.904	54 Xe 131.30
55 Cs 132.905	56 Ba 137.34	71 Lu 174.97	72 Hf 178.49	73 Ta 180.948	74 W 183.85	75 Re 186.207	76 Os 190.2	77 Ir 192.2	78 Pt 195.08	79 Au 196.967	80 Hg 200.59	81 TI 204.37	82 Pb 207.19	83 Bi 208.980	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.025	103 Lr (260)	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (269)	109 Mt (268)	110 (269)	111 (272)	112 (277)	113	114 (285)	115 (289)	116	117	118 (293)

Masses in parentheses indicate unstable elements that decay rapidly to form other elements.

Elements without a chemical symbol are as yet unnamed.

Composition of life

• Water: 80%

• Dry weight: 20%

• Proteins: 50%

• Carbohydrates: 15%

• Lipids and fats: 10%

• Nucleic acids: 15%

Two important properties of elements

• To understand the elements used in life:

• 1). Valency (unpaired electron in the outer orbital of the shell)

2). Electronegativity (This gives an opportunity for the element to combine with other element)

Circles indicate shells/ electron cloud; Yellow dots indicate electrons

Electronegativity

Electronegativity is a <u>chemical property</u> that describes the tendency of an <u>atom</u> to attract <u>electrons</u> (or <u>electron density</u>) towards itself.

An atom's electronegativity is affected by both its <u>atomic number</u> and the distance at which its <u>valence electrons</u> reside from the charged nucleus.

The higher the associated electronegativity number, the more an element or compound attracts electrons towards it.

H 2,20																	Не
Li 0,97	Be 1,47											B 2,01	C 2,50	N 3,07	03 3.50	4.17	Ne
Na 1.01	Mg 1,23											AJ 1,47	Si 1,74	P 2,06	\$ 2.44	CI 2.83	Ar
K 0,91	Ca 1,04	Sc 1,20	TI 1,32	V 1,45	Cr 1,56	Mn 1,60	Fe 1.64	C0 1,70	NI 1,75	Cu 1,75	Zn 1.66	Ga 1,82	Ge 2.02	As 2.20	Se 2,48	Br 2.74	Kr
Rb 0,89	Sr 0,99	Y 1,11	Zr 1,22	Nb 1,23	Mo 1,30	Tc 1,36	Ru 1,42	Rh 1,45	Pd 1,30	Ag 1.42	Cd 1,46	In 1,49	Sn 1,72	Sb 1,82	Te 2.01	2.21	Xe
Cs 0,86	Ba 0,97	La 1,10	Hf 1,23	Ta 1,33	W 1,40	Re 1,46	Os 1,52	lr 1,55	Pt 1,44	Au 1.42	Hg 1,44	TI 1,44	Pb 1,55	Bi 1,67	Po 1,76	At 1.96	Rn
Fr 0,86	Ra 0,97	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo

NUMBER	SYMBOL	ELEMENT	ELECTRONEGATIVITY
1	Н	Hydrogen	2.20
2	He	Helium	no data
3	Li	Lithium	0.98
4	Be	Beryllium	1.57
5	В	Boron	2.04
6	С	Carbon	2.55
7	Ν	Nitregen	3.04
8	0	Oxygen	3.44
9	F	Fluorine	3.98
10	Ne	Neon	110 data
11	Na	Sodium	0.93
12	Mg	Magnesium	1.31
13	Al	Aluminum	1.61
14	Si	Silicon	1.90
15	Р	Phosphorus	2.19

CARBON

Why is carbon important to life?

Most living things on Earth are made of carbon. Living things need carbon in order to live, grow, and reproduce. Carbon is a finite resource that cycles through the Earth in many forms. This makes carbon available to living organisms and remains in balance with other chemical reactions in the atmosphere and in bodies of water like ponds and oceans.

Facts about Carbon

- Carbon is the most abundant element in the universe and is the building block of life on earth.
- Carbon circulates through the land, ocean, and atmosphere, creating what is known as the Carbon Cycle.
- All living things contain carbon in some form.
- Carbon is the primary component of <u>macromolecules</u>, including <u>proteins</u>, <u>lipids</u>, nucleic acids, and <u>carbohydrates</u>.
- Carbon's molecular structure allows it to bond in many different ways and with many different elements.

araphite

fullerene

nanotube

Types of Chemical Bonds

Atoms tend to arrange themselves in the most stable patterns possible

The force that holds atoms together is known as molecules is referred to as a bond.

Two main types and some secondary types of chemical bonds:

1. Ionic bond:

Involves a transfer of an electron, so one atom gains an electron while one atom loses an electron. One of the resulting ions carries a negative charge (anion), and the other ion carries a positive charge (cation). Because opposite charges attract, the atoms bond together to form a molecule.

2. Covalent bond:

The most common bond in organic molecules, a covalent bond involves the sharing of electrons between two atoms. The pair of shared electrons forms a new orbit that extends around the nuclei of both atoms, producing a molecule. There are two secondary types of covalent bonds that are relevant to biology — polar bonds and hydrogen bonds.

Polar bond

Two atoms connected by a covalent bond may exert different attractions for the electrons in the bond, producing an unevenly distributed charge. The result is known as a *polar bond*, an intermediate case between ionic and covalent bonding, with one end of the molecule slightly negatively charged and the other end slightly positively charged.

 H_2O

Polar bond

Hydrogen bonds

Hydrogen bond

Two adjacent H_2O (water) molecules can form a linkage known as a *hydrogen* bond, where the (electronegative) hydrogen atom of one H_2O molecule is electrostatically attracted to the oxygen atom of an adjacent water molecule. Consequently, molecules of water join together transiently in a hydrogen-bonded lattice.

nucleic acids

