- 1. Mulţimea soluţiilor reale ale ecuaţiei $x^2 7x + 10 = 0$ este: **(9 pct.)** a) $\{1; 4\}$; b) $\{1; 2\}$; c) $\{3; 5\}$; d) $\{4; 5\}$; e) $\{2; 5\}$; f) $\{5; 6\}$.
 - Soluție. Ecuația de gradul doi $ax^2 + bx + c = 0$ $(a \neq 0)$ are rădăcinile reale $x_{1,2} = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ doar dacă $\Delta \equiv b^2 4ac \geq 0$. În cazul ecuației din enunț obținem $\Delta = (-7)^2 4 \cdot 1 \cdot 10 = 9 \geq 0$, iar cele două rădăcini reale (distincte, deoarece $\Delta \neq 0$) sunt $x_{1,2} = \frac{-(-7) \pm \sqrt{9}}{2 \cdot 1} = \frac{7 \pm 3}{2}$, deci $x_1 = 5$, $x_2 = 2$. Prin urmare, mulțimea soluțiilor ecuației este $\{2,5\}$. (e)
- 2. Să se determine mulțimea soluțiilor reale ale ecuației $\sqrt{1-5x}+x=1$. (9 pct.)
 - a) $\{-1, 1\}$; b) $\{1, 3\}$; c) $\{-3, 0\}$; a) $\{3, 4\}$; e) $\{-2, 1\}$; f) $\{-1, 0\}$.
 - Soluție. Condiția de existență a radicalului se scrie $1-5x \ge 0 \Leftrightarrow x \le \frac{1}{5}$. ecuația din enunț și pozitivitatea radicalului implică $\sqrt{1-5x} = 1-x \ge 0$, deci $x \le 1$. Din cele două inegalități obținute rezultă $x \le \frac{1}{5}$. Ridicând ecuația la pătrat, se obține $1-5x = (1-x)^2 \Leftrightarrow x^2+3x=0 \Leftrightarrow x(x+3)=0 \Leftrightarrow x \in \{-3,0\}$. Ambele variante convin, deoarece $-3 \le \frac{1}{3}$ și $0 \le \frac{1}{3}$. Deci mulțimea soluțiilor ecuației este $\{-3,0\}$. ©
- 3. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^2 + ax + b}{\sqrt{x^2 + 1}}$, unde a, b sunt numere reale. Presupunem că funcția f admite trei puncte de extrem local și are asimptota y = x + 2. Atunci (9 pct.)

a)
$$a + b > 7$$
; b) $ab = 6$; c) $a + b \in (6, 7)$; d) $ab \in (6, 7)$; e) $ab = \frac{1}{4}$ f) $a + b \in (5, 6)$.

Soluție. Examinăm condițiile care permit existența unei asimptote oblice pentru funcția $f(x) = \frac{x^2 + ax + b}{\sqrt{x^2 + 1}}$. Calculăm limita

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x^2 + ax + b}{x\sqrt{x^2 + 1}} = \lim_{x \to \pm \infty} \frac{x^2 \left(1 + \frac{a}{x} + \frac{b}{x^2}\right)}{x \cdot |x| \cdot \sqrt{1 + \frac{1}{x^2}}} = \pm 1.$$

Se constată că pentru $x \to -\infty$ limita este egală cu -1, diferită de panta 1 a dreptei din enunț y = x + 2, deci cazul $x \to -\infty$ nu permite asimptota propusă. Rămâne de examinat doar cazul $x \to \infty$, caz în care limita este 1, egală cu panta dreptei propuse în calitate de asimptotă oblică, y = x + 2. Calculăm a doua limită, unde folosim amplificarea cu conjugata pentru raționalizarea numărătorului,

$$\lim_{x \to \infty} f(x) - 1 \cdot x = \lim_{x \to \infty} \frac{x^2 + ax + b}{\sqrt{x^2 + 1}} - x = \lim_{x \to \infty} \frac{x^2 + ax + b - x\sqrt{x^2 + 1}}{\sqrt{x^2 + 1}}$$

$$= \lim_{x \to \infty} \frac{(x^2 + ax + b)^2 - (x\sqrt{x^2 + 1})^2}{\sqrt{x^2 + 1} \cdot (x^2 + ax + b + x\sqrt{x^2 + 1})} = \lim_{x \to \infty} \frac{2ax^3 + x^2(a^2 + 2b - 1) + x \cdot 2ab + b^2}{\sqrt{x^2 + 1} \cdot (x^2 + ax + b + x\sqrt{x^2 + 1})}$$

$$= \lim_{x \to \infty} \frac{x^3 \cdot \left[2a + \frac{1}{x}(a^2 + 2b - 1) + \frac{1}{x^2} \cdot 2ab + \frac{1}{x^3} \cdot b^2\right]}{x^3 \cdot \sqrt{1 + \frac{1}{x^2}} \cdot (1 + \sqrt{1 + \frac{1}{x^2}} + \frac{1}{x} \cdot a + \frac{1}{x^2} \cdot b)} = \frac{2a}{2} = a.$$

Această valoare coincide cu termenul liber 2 al asimptotei din enunț y=x+2 doar dacă a=2. În concluzie, funcția f admite asimptota oblică y=x+2 doar dacă a=2. Pentru a studia punctele de extrem ale funcției f, studiem derivata acesteia:

$$f'(x) = \frac{(2x+2)\sqrt{x^2+1} - \frac{x}{\sqrt{x^2+1}}(x^2+2x+b)}{(\sqrt{x^2+1})^2} = \frac{(2x+2)(x^2+1) - x(x^2+2x+b)}{(\sqrt{x^2+1})^3} = \frac{x^3 + (2-b)x + 2}{(\sqrt{x^2+1})^3}.$$

Punctele posibile de extrem ale lui f se află printre rădăcinile ecuației $f'(x)=0 \Leftrightarrow P(x)=0$, care sunt exact rădăcinile numărătorului $P(x)=x^3+(2-b)x+2$. Se observă că pentru b=2, ecuația P(x)=0 are doar o rădăcină reală $(x=-\sqrt[3]{2})$, deci valoarea b=2 nu convine. Cerința din enunț (3 puncte de extrem local pentru f) necesită anularea numărătorului P(x) în trei puncte distincte, deci necesită două rădăcini distincte pentru ecuația $P'(x)=0 \Leftrightarrow 3x^2+2-b=0 \Leftrightarrow x^2=\frac{1}{3}(b-2)$, ceea ce este posibil doar dacă $b-2>0 \Leftrightarrow b>2$, caz în care rădăcinile derivatei P' sunt $x_1=-\sqrt{\frac{b-2}{3}}< x_2=\sqrt{\frac{b-2}{3}}$. Observăm

 $^{^{1}\}mathrm{Subiecte}$ date la Admiterea UPB/Sesiunea iulie 2023 la facultățile: ETTI, AC.

că numitorul fracției $f'(x) = \frac{P(x)}{(\sqrt{x^2+1})^3}$ este strict pozitiv. Pentru a asigura existența celor trei puncte de anulare pentru P, trebuie asigurată alternanța semnelor valorilor

$$\{\lim_{x \to -\infty} P(x) = -\infty, \quad P(x_1) = P(-\sqrt{\frac{b-2}{3}}), \quad P(x_2) = P(\sqrt{\frac{b-2}{3}}), \quad \lim_{x \to \infty} P(x) = +\infty\}.$$

 $\begin{array}{l} \operatorname{Dar} P\left(\pm\sqrt{\frac{b-2}{3}}\right) = 2\mp\frac{2}{3\sqrt{3}}(b-2)^{3/2} \; \text{$;$} \; P(x_1) = 2+\frac{2}{3\sqrt{3}}(b-2)^{3/2} > 0 \; (\text{adevărat}), \, \text{deci avem succesiunea de semne } (-,+, \, \text{sign} \left(P(x_2)\right),+). \; \text{Asigurarea existenței celor 3 rădăcini pentru } f' \; (\text{puncte de extrem pentru } f) \; \text{revine la alternarea celor patru semne, deci impunem } P(x_2) = 2-\frac{2}{3\sqrt{3}}(b-2)^{3/2} < 0, \; \text{care se rescrie} \\ 2-\frac{2}{3\sqrt{3}}(b-2)^{3/2} < 0 \Leftrightarrow 2 < \frac{2}{3\sqrt{3}}(b-2)^{3/2} \Leftrightarrow (b-2)^{3/2} > 3\sqrt{3} \Leftrightarrow \sqrt{b-2} > \sqrt{3} \Leftrightarrow b-2 > 3, \; \text{deci } b > 5. \; \text{Dar } a=2, \; \text{deci obținem } a+b>7 \; \text{ (a)} \end{array}$

4. Pe mulțimea numerelor reale se definește legea de compoziție: x*y = 2xy - 10x - 10y + 55. Să se determine suma soluțiilor reale ale ecuației $x*x*\cdots*x = \frac{11}{2}$. (9 pct.)

a) 9; b) 12; c) 13; d) 14; e) 10; f) 11.

Soluție. Se observă că regula de compoziție se poate scrie x*y=2xy-10x-10y+55=2x(y-5)-10(y-5)+5=2(x-5)(y-5)+5. Se verifică ușor că legea este asociativă și comutativă, iar $x*x=2(x-5)^2+5$ și $x*x*x=(x*x)*x=2[2(x-5)^2+5-5](x-5)+5=2^2(x-5)^3+5$. Mai general, se poate ușor verifica prin inducție că $\underbrace{x*\cdots*x}_{\cdot}=2^{n-1}(x-5)^n+5$, $\forall x\geq 1$. Atunci $\underbrace{x*x*\cdots*x}_{\cdot}=2^{2023}(x-5)^{2024}+5$,

iar egalitatea din enunț se rescrie $2^{2023}(x-5)^{2024}+5=\frac{11}{2}\Leftrightarrow [2(x-5)]^{2024}=1\Leftrightarrow 2(x-5)\in\{\pm 1\}.$ Distingem cazurile: (i) dacă 2(x-5)=-1, atunci obținem soluția $x_1=\frac{9}{2}$; (ii) dacă 2(x-5)=1, atunci obținem soluția $x_2=\frac{11}{2}$. Prin urmare, $x_1+x_2=\frac{9}{2}+\frac{11}{2}=10$. (e)

- 5. Fie polinomul $P \in \mathbb{R}[X]$, $P = aX^{2024} + bX^{2023} + 2X^3 + cX^2 + 7X 3$. Dacă P este divizibil prin $X^2 + 1$ și restul împărțirii lui P la X + 1 este 3, să se calculeze P(1). (9 pct.)
 - a) -14; b) 15; c) 27; d) 36; e) 21; f) 31.

Soluție. Ținând cont de faptul că $P \in \mathbb{R}[x]$ și folosind teorema de împărțire cu rest, cele două condiții din enunț se rescriu:

$$\begin{cases} P \vdots (X^2 + 1) \\ P(-1) = 3 \end{cases} \Leftrightarrow \begin{cases} P(i) = 0 \\ P(-1) = 3 \end{cases} \Leftrightarrow \begin{cases} (a - c - 3) + i(-b + 5) = 0 \\ a - b + c - 12 = 3 \end{cases}$$
$$\Leftrightarrow \begin{cases} a - c = 3 \\ b = 5 \\ a - b + c = 15 \end{cases} \Leftrightarrow \begin{cases} a = 23/2 \\ b = 5 \\ c = 17/2, \end{cases}$$

 $deci \ a + b + c + 6 = 31.$ (f)

- 6. Pentru ce valori ale lui $x \in \mathbb{R}$, numerele 4, 2x + 3 și 10 (în această ordine) formează o progresie aritmetică. (9 pct.)
 - a) x = -4; b) x = 1; c) x = -2; d) x = 3; e) x = 2; f) x = 4.

Soluție. Termenul din mijloc trebuie să fie media aritmetică a celorlalți doi termeni, deci obținem $\frac{4+10}{2} = 2x + 3 \Leftrightarrow 4x + 6 = 14 \Leftrightarrow 4x = 8 \Leftrightarrow x = 2$. (e)

7. Să se rezolve sistemul $\begin{cases} x+y=5 \\ x-y=1 \end{cases}$ (9 **pct.**)

a)
$$x = 0$$
; $y = 3$; b) $x = 3$; $y = 4$; c) $x = 0$; $y = 1$; d) $x = 1$; $y = 1$; e) $x = 3$; $y = 2$; f) $x = 1$; $y = -1$.

Soluție. Adunând ecuațiile sistemului, rezultă $2x=6 \Rightarrow x=3$. Scăzând ecuațiile, obținem $2y=4 \Rightarrow y=2$. Deci soluția sistemului este x=3,y=2. (e)

- 8. Soluția ecuației $9^{x+1} = 81$ este: (9 pct.)
 - a) x = -3; b) x = 1; c) x = 2; d) x = -1; e) x = 0; f) x = -2.

Solutie. Ecuația se rescrie $9^{x+1} = 9^2$. Logaritmând ecuația în baza 9, obținem $x+1=2 \Leftrightarrow x=1$.

9. Să se calculeze
$$\ell = \lim_{\alpha \to \infty} \int_0^{\alpha} \frac{2x+1}{x^4 + 2x^3 + 3x^2 + 2x + 2} dx$$
. (9 pct.)

a)
$$\ell = \frac{\pi}{3}$$
; b) $\ell = \arctan 2$; c) $\ell = \frac{\pi}{2}$; d) $\ell = \arctan \frac{1}{3}$; e) $\ell = \arctan 3$; f) $\ell = \frac{\pi}{4}$.

$$\frac{2x+1}{x^4+2x^3+3x^2+2x+2} = \frac{1}{x^2+1} + \frac{-1}{x^2+2x+2}$$

și prin urmare

$$\begin{split} & \int_0^\alpha \frac{2x+1}{x^4+2x^3+3x^2+2x+2} dx = \int_0^\alpha \left(\frac{1}{x^2+1} + \frac{-1}{x^2+2x+2}\right) dx \\ & = \int_0^\alpha \left(\frac{1}{x^2+1} + \frac{-1}{(x+1)^2+1}\right) dx = (\arctan x)|_0^\alpha - (\arctan (x+1))|_0^\alpha \\ & = (\arctan \alpha - \arctan 0) - (\arctan (\alpha+1) - \arctan 1) = \arctan \alpha - \left(\arctan (\alpha+1) - \frac{\pi}{4}\right) \end{split}$$

şi deci
$$\ell = \lim_{\alpha \to \infty} \left[\arctan \alpha - \left(\arctan (\alpha + 1) - \frac{\pi}{4} \right) \right] = \frac{\pi}{2} - \left(\frac{\pi}{2} - \frac{\pi}{4} \right) = \frac{\pi}{4}.$$
 §

- 10. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4 + 3x^2$. Să se calculeze f'(1). (9 pct.)
 - a) 6; b) 7; c) 8; d) 10; e) 9; f) 11.

Soluţie. Derivând funcţia f, obţinem $f'(x) = (x^4 + 3x^2)' = 4x^3 + 6x$, deci $f'(1) = 4 \cdot 1^3 + 6 \cdot 1 = 10$.