TMUA Practice - Sequences and Binomial

- 1) The first three terms of an arithmetic series are (m + 1), $(m^2 + m)$ and $(3m^2 m 4)$, where m is a positive constant. Find the 21st term of the series.
 - where *m* is a positive constant. This case 2...

 (a) 0 (b) 172 (c) 164 (d) 84 (e) 64 $m^2 + m m 1 = 3m^2 m 4 m^2 m$ $0 = m^2 2m 3$ 0 = 4 + 20(8) m = 3 m = 3
- 2) The sum to infinity of a geometric series is 3 times as large as its first term, and the third term of the same series is 40. Find the first term of the series.
 - (a) 90 (b) $\frac{2}{3}$ (c) $\frac{40}{3}$ (d) 360 (e) $\frac{125}{2}$ $S_{\infty} = \frac{Q}{1-\Gamma} = 3Q$ $U_{3} = Q\Gamma^{2} = 4D$ $Q = 3Q 3Q\Gamma$ $3\Gamma = 2$ Q = 4D $\Gamma = \frac{2}{3}$
- A geometric series G, whose first term is a and common ratio is r, has a sum to infinity of 128. A geometric series G', with first term a and common ratio 3r has a sum to infinity of 384. It solves Find the first term of these series.
 - (a) 90 (b) 48 (c) 60 (d) 96 (e) 32 $\frac{q}{1-r} = 128$ q = 384 q = 128 128r q = 384 1152r 128 128r = 384 1152r 1024r = 256 $r = \frac{1}{4}$
- 4) The 2nd, 3rd and 9th terms of an arithmetic progression are three consecutive terms of a geometric progression. Find the common ratio of the geometric progression.

(a)
$$\frac{5}{4}$$
 (b) $-\frac{5}{4}$ (c) 4 (d) -2 (e) 6

 $a+d$, $a+2d$, $a+8d$
 $a+2d$
 $a+2d$

MC Practice

Three numbers A, B, C are the first three terms of a geometric progression. Given that A, 2B, C 5) are in arithmetic progression determine the common ratio of the geometric progression.

- A sequence (p_n) has first term $p_1 = k^2$ and subsequent terms defined by $p_{n+1} = kp_n$ for $n \ge 1$. What is the product of the first 12 terms of the sequence?
- (b) $12 + k^{13}$ (c) k^{90}
- (d) k^{91} (e) $12k^{13}$

(a)
$$k^{13}$$
 (b) $12 + k^{13}$ (c) k^{90}

$$P_{1} = k^{2}$$

$$P_{2} = k^{3}$$

$$P_{3} = k^{4}$$

$$P_{12} = k^{13}$$
(b) $12 + k^{13}$

$$k = (2 + 3 + \dots + 13)$$

$$k = (6 \times 15)$$

$$k = (6 \times 15)$$

$$\begin{pmatrix} (2+3+...+13) \\ (6\times15) = 4 \end{pmatrix}$$

- The sequence (a_n) where $n \ge 0$, is defined by $a_0 = \frac{1}{2}$ and $a_n = \sum_{r=0}^{n-1} a_r$ for $n \ge 1$ 7) Find the sum $\sum_{r=0}^{\infty} \frac{1}{a_r}$ $q_1 = Q_0 = \frac{1}{2}$ $q_2 = q_0 + q_1 = \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$ $q_3 = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$
 - (b) 5 (c) $\frac{8}{3}$ (d) 6 (e) $\frac{32}{5}$ $\sum_{0}^{\infty} 2 + 2 + 1 + \frac{1}{2} + \frac{1}{4} + \dots$
- The sequence (x_n) is defined by $x_{n+1} = \frac{x_n}{x_{n+1}}$ for $n \ge 2$ with $x_1 = 6$ and $x_2 = 3$ 8)

What is the value of x_{2023} ?

(a) 2 (b) 6 (c)
$$\frac{1}{3}$$
 (d) 3 (e) $\frac{3}{2}$

$$x_{3} = \frac{3}{6} \qquad x_{4} = \frac{7}{2} = \frac{1}{6} \qquad x_{5} = \frac{76}{72} = \frac{1}{3} \qquad x_{6} = \frac{77}{76} = 2 \qquad x_{7} = \frac{7}{73} = 6$$

$$x_{1} = x_{7} \quad \text{period } 6$$

$$x_{1} = x_{7} \quad \text{period } 6$$

$$x_{1} = x_{7} \quad \text{period } 6$$

$$x_{20,2,3} = x_{1} = 6$$

MC Practice
$$1 + \frac{1}{6} + \frac{1}{3b} + \dots + \frac{1}{56} = \frac{1}{56}$$
9) What is the sum of the first $2n$ terms of the following series:
$$S_n = \frac{1}{2} \left(\frac{1 - \left(\frac{1}{6} \right)^n}{56} \right)$$

$$S_n = \frac{1}{2} \left(\frac{1 - \left(\frac{1}{6} \right)^n}{56} \right)$$

$$1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{26} + \frac{1}{72} + \dots$$

(a)
$$\frac{1}{6^n}$$
 (b) $\frac{9}{5}(1-\frac{1}{6^n})$ (c) $\frac{7}{2^n}$ (d) $\frac{1}{5}(1+\frac{1}{6^n})$ (e) $\frac{1}{2^n}+\frac{1}{3^n}$

$$S_{2n} = \frac{6}{5} \left[1 - \frac{1}{6^n} + \frac{1}{2} - \frac{1}{2} \left(\frac{1}{6^n} \right) \right] = \frac{6}{5} \left[\frac{3}{2} - \frac{3}{2} \left(\frac{1}{6^n} \right) \right] = \frac{9}{5} \left[1 - \frac{1}{6^n} \right]$$

10) A sequence
$$(u_n)$$
 is defined by $u_n = (-1)^{n+1}n$ for $n \ge 1$. Let $w_n = \sum_{r=1}^n u_r$

For which value of *n* is $w_n = 500$ \wedge

$$u_1 = 1
 u_2 = -2
 u_3 = 3
 u_{n-2} = n-2
 u_{n-1} = -(n-1)
 u_n = 1 - 2 + 3 - 4 + 5 - 6 + ... + $u_{n-2} + u_{n-1} + u_n = 500$

$$= (-1) \left(\frac{n-1}{2}\right) + n = 500$$

$$-n + 1 + 2n = 1000$$

$$n = 999$$$$

The sequence
$$(a_n)$$
 is defined by $a_{n+2} = \frac{a_{n+1}}{a_n}$ for $n \ge 1$ with $a_1 = x$ and $a_2 = y$

What is the period of this sequence?

(a) 4 (b) 5 (c) 6 (d) 8 (e) the sequence is not periodic
$$\frac{y}{x} = \frac{y/x}{y} = \frac{1}{x} \qquad \frac{y/x}{y/x} = \frac{1}{y} \qquad \frac{y/y}{y/x} = \frac{x}{y} \qquad \frac{x/y}{y/y} = \frac{x}{y}$$

12) For what value(s) of k does the sequence
$$a_{n+1} = \frac{k(a_n + 2)}{a_n}$$
 with $a_1 = 2$, have period 3?

(a) -2 (b) 1 (c) -2, or 1 (d) 2 (e) all even values of k

$$q_2 = \frac{4k}{2} = 2k \qquad q_3 = \frac{k(2k+2)}{2k} \qquad q_4 = \frac{k(k+3)}{|k+1|} = 2$$

$$= k+1 \qquad k^2 + 3k = 2k + 2$$

$$k^2 + k - 2 = 0$$

$$(k+2)(k-1) = 0 \qquad Tyler Tuto$$

Tyler Tutoring

- What is the coefficient of x^2 in the expansion of $(2-x^2)[(1+2x+3x^2)^6-(1+2x^3)^4]$
 - (a) 18 (b) 36 (c) 120 (d) 156 (e) 3^6 $(2-x^2) \left[1+6(2x+3x^2)+15(2x+3x^2)^2+...-(1+8x^3+...+x^2) \right] = 2 \left(18+60 \right) -1 \left(1-1 \right) = 156$
- 14) Find the coefficient of x^2 in the expansion of $(3x^2 x + 1)^7$
 - (a) 21 (b) 42 (c) -21 (d) 10 (e) -3 $(1 + 3x^{2} x)^{7}$ $(1 + 7(3x^{2} x) + 21(3x^{2} x)^{2} + \dots$ 21 + 21 = 42
- 15) Find the coefficient of x in the series expansion of $(1 + \frac{2}{x})^2(1 + \frac{x}{2})^7$
 - (a) 42 (b) 21 (c) $\frac{35}{2}$ (d) $\frac{7}{2}$ (e) 1 $\left(1 + \frac{4}{3} + \frac{4}{3^{2}}\right) \left(1 + \frac{7x}{2} + \frac{21}{4}x^{2} + \binom{7}{3}\left(\frac{x}{2}\right)^{3} \frac{7x}{2} + 21 + \frac{35}{2} = \frac{42}{2}$
- 16) Find the coefficient of x^5 in the series expansion of $(1-x)^5(1+x)^6$
 - (a) 1 (b) 5 (c) 10 (d) 15 (e) 30 $(1+x)(1-x^2)^{\frac{5}{2}}$ For yever powers of x read x^4 $(\frac{5}{2})(-x^2)^2$ 10 x^4 ∞