The 6 boxes toy model

Alberto Garfagnini

Università di Padova

AA 2019/2020 - Stat Lect. 2

The 6 Boxes Sampling Experiment

The Rules

- 6 indistinguishable boxes are prepared with 5 black & white stone
- the composition differs for each box
- boxes are labeled H_j , according to the numbers of white stones in the box, with $j=0,1,\ldots,5$

The Game

- we choose one box, randomly
- we try to infer the box content (i.e. the box id) by extracting at random on stone from the box
- the extracted stone is reinserted in the box (sampling with replacement)

The 6 Boxes Sampling Experiment

Our Background Information, I

• the following propositions are defined :

 H_j : box j is selected (j = 0, 1, ..., 5)

 E_w : a white stone is extracted

E_b: a black stone is extracted

Our Quest

- 1) what is the probability of selecting one box?
- 2) after having extracted one stone, what is the probability of observing white, $P(E_w|I)$, or black, $P(E_b|I)$ on the next draw?
- 3) how does the probability of the next extraction changes after the stone is extracted, and its color known?

A. Garfagnini (UniPD)

The space Ω of the events

• the following relations apply:

$$\bigcup_{j=0}^{5} H_j = \Omega$$
, and $\bigcup_{k=b}^{w} E_k = \Omega$

- in general, we are uncertain about all the combinations of E_k and H_j : the 12 constituents, $E_k \cap H_i$ do not share the same probability
- as an example:

$$P(E_w \cdot H_0 | I) = 0, \quad P(E_w \cdot H_5 | I) = 1$$

• E_k and H_j form a complete class of hypotheses, each event can be written as a logical sum of the constituents:

$$E_k = \bigcup_i (E_k \cap H_i)$$
, and $H_j = \bigcup_k (E_k \cap H_j)$

• since the events $E_k \cap H_j$ are mutually exclusive, by construction, we have:

$$P(E_k) = \sum_{i} P(E_k \cdot H_j | I) = \sum_{i} P(E_k | H_j I) P(H_j | I)$$

and

$$P(H_j) = \sum_{k} P(H_j \cdot E_k | I) = \sum_{k} P(H_j | E_k I) P(E_k | I)$$

A. Garfagnini (UniPD)

The Process of Knowledge

- E_k is an observable effect: we can experience it with our senses
- H_i is a physical hypothesis: it is not directly observable

Another rule of the game: we can never look inside the box

- \rightarrow H_i are the possible causes of the effect
- Inference : guessing the causes from the effects

Our experiment consists in

- 1 extracting stones, randomly and with replacement, from an unknown box
- 2 evaluating the probability that the box is one of the six boxes
- aim of each measurement: update our beliefs about each cause, given all available information

A. Garfagnini (UniPD)

.

and our calculations

• after the first extraction, $E^{(1)}$, we will compute:

$$P(H_j \mid E^{(1)}I)$$

• and, after the second extraction $E^{(2)}$:

$$P(H_i \mid E^{(1)}E^{(2)}I)$$

- and so forth
- what can be easily calculated is the probability of observing the different effects, giving each cause, $P(E \mid H_i I)$:

$$P(E_w | H_j I) = \frac{j}{5}$$
, and $P(E_b | H_j I) = \frac{5-j}{5}$

• the product rule

$$P(E_k H_j | I) = P(E_k | H_j I) P(H_j | I)$$
$$= P(H_j | E_k I) P(E_k | I)$$

can be rewritten as

$$\frac{P(E_k|H_jI)}{P(E_k|I)} = \frac{P(H_j|E_kI)}{P(H_j|I)}$$

• we know $P(E_k|H_jI)$ and $P(E_k|I)$ can be evaluated as:

$$P(E_{k}|I) = \sum_{j} P(E_{k}|H_{j}I) P(H_{j}|I) = \frac{0+1+2+3+4+5}{5} \cdot \frac{1}{6} = \frac{1}{2}$$

6

as we would expect

A. Garfagnini (UniPD)

and our calculations

we can rewrite the product rule as

$$\frac{P(H_j|E_kI)}{P(H_j|I)} = \frac{P(E_k|H_jI)}{P(E_k|I)} = 2 \cdot P(E_k|H_jI)$$

• in case of a white stone, $P(E_w|I) = 1$,

$$\frac{P(H_j|E_wI)}{P(H_j|I)} = 2 \cdot \frac{j}{5}$$

• while, for a black stone, $P(E_b|I) = 1$,

$$\frac{P(H_j|E_bI)}{P(H_j|I)} = 2 \cdot \frac{5-j}{5}$$

and our calculations

putting all the ingredients together, we get Bayes' theorem

$$P(H_{j} \mid E_{k}I) = \frac{P(E_{k} \mid H_{j}I)P(H_{j} \mid I)}{\sum_{j} P(E_{k} \mid H_{j}I)P(H_{j}|I)}$$

• the denominator is just a normalization factor, and we can simply write:

$$P(H_j|E_kI) \propto P(E_k|H_jI)P(H_j|I)$$

or, in clear text

posterior ∝ likelihood × prior

- Bayes' theorem is simply a compact representation of what has been done in the previous steps.
- it is a formal tool for updating beliefs using logic instead of only intuition

A. Garfagnini (UniPD)

8

Running the experiment

- we randomly select a box, and start to sample stones from the box
- after each extraction, we update the probabilities of each hypothesis, using Bayes' theorem:

$$P(H_{j}|I_{n}) = \frac{P(E^{(n)}|H_{j}|I_{n-1})P(H_{j}|I_{n-1})}{\sum_{l} P(E^{(n)}|H_{l}|I_{n-1})P(H_{l}|I_{n-1})}$$

- where $E^{(n)}$ refers to the *n*-th extraction,
- $P(E^{(n)}|H_j)$ have been computed before:

$$P(E_w^{(n)}|H_j) = \frac{j}{5}, \quad P(E_b^{(n)}|H_j) = \frac{5-j}{5}$$

• and $P(H_j|I_{n-1})$ have been given by the calculations at extraction (n-1)-th

Running the experiment

Trial	E	H_0	H_1	H_2	H_3	H_4	H_5	$P(E_w I_n)$
0	-	0.167	0.167	0.167	0.167	0.167	0.167	0.5
1	В	0.33	0.27	0.2	0.13	0.06	0	0.27
2	В	0.45	0.29	0.163	0.073	0.0182	0	0.18
3	В	0.55	0.28	0.12	0.036	0.004	0	0.13
4	В	0.64	0.26	0.08	0.016	0.001	0	0.096
5	В	0.71	0.23	0.05	0.007	2.2E-4	0	0.072
6	В	0.76	0.20	0.04	0.003	4.9e-5	0	0.056
7	В	0.81	0.17	0.02	0.001	1.0e-5	0	0.044
8	В	0.84	0.14	0.01	5.5e-4	2.2e-6	0	0.034
9	В	0.87	0.12	0.009	2.3e-4	4.5e-7	0	0.027
10	В	0.90	0.10	0.005	9.4e-5	9.2e-8	0	0.022
11	В	0.92	0.08	0.003	3.8e-5	1.9e-8	0	0.017
12	В	0.93	0.06	0.002	1.6e-5	3.8e-9	0	0.014
13	В	0.95	0.05	0.001	6.3e-6	7.8e-10	0	0.011
14	W	0	0.95	0.045	3.5e-4	5.7e-8	0	0.21
20	В	0	0.93	7.4e-2	3.8e-4	1.4e-8	0	0.21
40	W	0	0.998	1.4e-3	7.1e-9	8.7e-19	0	0.20

A. Garfagnini (UniPD) 10

Run results: 20 samplings

- Run performed with set.seed(89540)
- important extraction at round 14

Run results: 60 samplings

• Box H_1 is the most probable : $\bigcirc \bullet \bullet \bullet \bullet \bigcirc$ $P(E_w|I_n) = 0.2$, as expected

New run results: 20 samplings

- Run performed with set.seed(89540)
- most flavored oscillates between H₃ and H₄

New run results: 60 samplings

• Box H_3 is the most probable : $\bigcirc\bigcirc\bigcirc\bigcirc\bullet$ • $P(E_w|I_n)=0.6$, as expected

Run with an extreme box

• Run performed with set.seed(89540) and box 0000

15

References for the 6 Boxes Toy Model

Articles

- G. D'Agostini, Teaching statistics in the physics curriculum: Unifying and clarifying role of subjective probability, Am. Jour. Phys. 67, 1260 (1999), arXiv:physics/9908014
- G. D'Agostini, More lessons from the six box toy experiment, arXiv:1701.01143
- G. D'Agostini, Probability, propensity and probabilities of propensities (and of probabilities), arXiv:1612.05292

Additional Material

 G. D'Agostini Web Page at University of Rome, La Sapienza, http://www.roma1.infn.it/~dagos/teaching.html

A. Garfagnini (UniPD)

16

The Monty Hall Problem

The Game Show

- there are 3 door, closed
- behind one door there is a prize, an expensive car
- but behind the other doors there is a goat

The Rules of the Game

- you select one door, but you cannot open it, yet
- the game show host, that knows where the car is, open one of the other two doors, revealing a goat behind it
- you are given the opportunity to change your choice of door, before opening it

What is your choice?

The Monty Hall Problem Solution

The Game Propositions

- we select door number 1
- the host opens door number 2
- we are asked to choose between door 1 and 3

W: the CAR is behind door 1

C: we select the car by changing door

$$P(C|I) = P(CW|I) + P(C\overline{W}|I)$$

= $P(C|WI) \cdot P(W|I) + P(C|\overline{W}I) \cdot P(\overline{W}|I)$

Our Knowledge

$$P(W|I) = 1/3 \rightarrow P(\overline{W}|I) = 1 - P(W|I) = 2/3$$

 $P(C|WI) = 0 \rightarrow P(C|\overline{W}I) = 1$

therefore

$$P(C|I) = 2/3$$

A. Garfagnini (UniPD)

The Monty Hall Problem - Variation I

The Game Show

- there are 3 door, closed
- behind one door there is a prize, an expensive car
- but behind the other doors there is a goat

The Rules of the Game

- you select one door, but you cannot open it, yet
- the game show host, that does NOT know which door hides the prize, opens one
 of the other two doors. The door happens to have a goat behind it
- you are given the opportunity to change your original choice, switching to the other unopened door, before opening it

What is your choice?

A. Garfagnini (UniPD)

The Monty Hall Problem Variation - Solution

The Game Propositions

- we have selected door number 1
- the host opens door number 2, revealing a goat
- we are asked to choose between door 1 and 3

 G_k : a goat is behind door k

 C_k : a car is behind door k

- we need to evaluate the probability that door 3 hides a car, if door 2 hides a goat

$$P(C_3 \mid G_2 I) = \frac{P(G_2 \mid C_3 I) P(C_3 \mid I)}{\sum_{i=1}^{3} P(G_2 \mid C_i I) P(C_i \mid I)}$$

Our Knowledge

$$P(G_2 \mid C_1) = 1$$
 $P(G_2 \mid C_2) = 0$ $P(G_2 \mid C_3) = 1$
 $P(C_1 \mid I) = 1/3$ $P(C_2 \mid I) = 1/3$ $P(C_3 \mid I) = 1/3$

→ therefore: $P(C_3 \mid G_2 I) = \frac{1 \cdot \frac{1}{3}}{1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}} = \frac{1}{2}$

A. Garfagnini (UniPD)

20

The Monty Hall Problem generalization

- it is easy to generalize the problem to the case of *n* doors
- the game show host opens k doors, revealing as many goats $(0 \le k \le n-2)$
- there is still ONE car
- what is the probability of winning if we switch to another closed door, randomly chosen?

C: we select the CAR by changing door

we have:

$$P(W \mid I) = 1/n$$
 $P(\overline{W} \mid I) = 1 - 1/n = (n-1)/n$

and

$$P(C \mid W \mid I) = 0$$
 $P(C \mid \overline{W} \mid I) = 1/(n-k-1)$

• therefore

$$P(C \mid I) = \frac{1}{n-k-1} \frac{n-1}{n}$$

 the probability of winning is increased from 1/n whenever one or more doors are opened. → we should always switch doors