Resolução de exercícios do Curso:

Física Básica (Veduca)

poi

Igo da Costa Andrade

Ondas Mecânicas

Oscilador Harmônico com Massas Acopladas

Calcule as frequências naturais de um sistema físico aproximado por um modelo de dois graus de liberdade com as seguintes propriedades: $m_1 = 9$ kg; $m_2 = 1$ kg; $k_1 = 24$ N/m; $k_2 = 3$ N/m.

Solução:

As equações do movimento são:

$$\begin{cases} m_1 \ddot{x}_1 = -k_1 x_1 - k_2 (x_1 - x_2) \\ m_2 \ddot{x}_2 = -k_2 (x_2 - x_1) \end{cases} \Rightarrow \begin{cases} m_1 \ddot{x}_1 + (k_1 + k_2) x_1 - k_2 x_2 = 0 \\ m_2 \ddot{x}_2 - k_2 x_1 + k_2 x_2 = 0 \end{cases}$$

Em notação matricial, podemos reescrever o sistema de equações como:

$$\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{bmatrix} + \begin{bmatrix} k_1 + k_1 & -k_2 \\ -k_2 & k_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

Podemos propor soluções da forma:

$$\begin{cases} x_1 = A_1 \sin \omega t \\ x_2 = A_2 \sin \omega t \end{cases} \Rightarrow \begin{cases} \dot{x}_1 = \omega A_1 \cos \omega t \\ \dot{x}_2 = \omega A_2 \cos \omega t \end{cases} \Rightarrow \begin{cases} \ddot{x}_1 = -\omega^2 A_1 \sin \omega t \\ \ddot{x}_2 = -\omega^2 A_2 \sin \omega r \end{cases} \Rightarrow \begin{cases} \ddot{x}_1 = -\omega^2 x_1 \sin \omega t \\ \ddot{x}_2 = -\omega^2 x_2 \sin \omega r \end{cases}$$

Substituindo na equação matricial, temos:

$$\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{bmatrix} -\omega^2 x_1 \\ -\omega^2 x_2 \end{bmatrix} + \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$
$$\begin{bmatrix} -m_1 \omega^2 + k_1 + k_2 & -k_2 \\ -k_2 & -m_2 \omega^2 + k_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

Para que o sistema possua solução não trivial, devemos ter que o determinante da matriz dos coeficientes deve ser igual a zero, ou seja:

$$\begin{vmatrix} -m_1\omega^2 + k_1 + k_2 & -k_2 \\ -k_2 & -m_2\omega^2 + k_2 \end{vmatrix} = 0$$

Primeiro, escrevemos o determinante como:

$$Det = \begin{vmatrix} -m_1\omega^2 + k_1 + k_2 & -k_2 \\ -k_2 & -m_2\omega^2 + k_2 \end{vmatrix}$$

Usando a fórmula para o determinante de uma matriz 2×2 :

$$Det = (-m_1\omega^2 + k_1 + k_2)(-m_2\omega^2 + k_2) - (-k_2)(-k_2)$$

Expandimos e simplificamos:

$$Det = (-m_1\omega^2 + k_1 + k_2) (-m_2\omega^2 + k_2) - k_2^2$$

$$Det = (m_1m_2\omega^4 - (k_1 + k_2)m_2\omega^2 - (k_1 + k_2)k_2 + m_1k_2\omega^2 - k_2^2)$$

$$Det = m_1m_2\omega^4 - (m_2k_1 + m_2k_2 + m_1k_2)\omega^2 + k_1k_2 + k_2^2 - k_2^2$$

$$Det = m_1m_2\omega^4 - (m_2k_1 + m_2k_2 + m_1k_2)\omega^2 + k_1k_2$$

Para encontrar os valores de ω^2 , resolvemos a equação quadrática:

$$m_1 m_2 \omega^4 - (m_2 k_1 + m_2 k_2 + m_1 k_2) \omega^2 + k_1 k_2 = 0$$

Seja $\lambda = \omega^2$, temos:

$$m_1 m_2 \lambda^2 - (m_2 k_1 + m_2 k_2 + m_1 k_2) \lambda + k_1 k_2 = 0$$

Resolvendo a equação quadrática para λ :

$$\lambda = \frac{(m_2k_1 + m_2k_2 + m_1k_2) \pm \sqrt{(m_2k_1 + m_2k_2 + m_1k_2)^2 - 4m_1m_2k_1k_2}}{2m_1m_2}$$

Assim, temos os valores para ω^2 :

$$\omega^2 = \frac{(m_2k_1 + m_2k_2 + m_1k_2) \pm \sqrt{(m_2k_1 + m_2k_2 + m_1k_2)^2 - 4m_1m_2k_1k_2}}{2m_1m_2}$$

ou, mais explicitamente:

$$\omega^2 = \frac{k_1 m_2 + k_2 m_1 + k_2 m_2 \pm \sqrt{k_1^2 m_2^2 - 2k_1 k_2 m_1 m_2 + 2k_1 k_2 m_2^2 + k_2^2 m_1^2 + 2k_2^2 m_1 m_2 + k_2^2 m_2^2}}{2m_1 m_2}$$

Para calcular os valores de ω , substituímos $m_1=9$ kg, $m_2=1$ kg, $k_1=24$ N/m e $k_2=3$ N/m na equação:

$$\omega^2 = \frac{k_1 m_2 + k_2 m_1 + k_2 m_2 \pm \sqrt{k_1^2 m_2^2 - 2k_1 k_2 m_1 m_2 + 2k_1 k_2 m_2^2 + k_2^2 m_1^2 + 2k_2^2 m_1 m_2 + k_2^2 m_2^2}}{2m_1 m_2}$$

Substituindo os valores:

$$\omega^2 = \frac{(24 \cdot 1 + 3 \cdot 9 + 3 \cdot 1) \pm \sqrt{(24 \cdot 1)^2 - 2 \cdot 24 \cdot 3 \cdot 9 + 2 \cdot 24 \cdot 3 \cdot 1 + (3 \cdot 9)^2 + 2 \cdot (3 \cdot 9 \cdot 3 \cdot 1) + (3 \cdot 1)^2}{2 \cdot 9 \cdot 1}$$

$$\omega^2 = \frac{(24 + 27 + 3) \pm \sqrt{576 - 1296 + 144 + 729 + 162 + 9}}{18}$$

$$\omega^2 = \frac{54 \pm \sqrt{324}}{18}$$

$$\omega^2 = \frac{54 \pm 18}{18}$$

Portanto, temos dois valores para ω^2 :

$$\omega_1^2 = \frac{54+18}{18} = 4$$
 e $\omega_2^2 = \frac{54-18}{18} = 2$

Calculando ω a partir desses valores:

$$\omega_1 = \sqrt{4} = 2$$
 e $\omega_2 = \sqrt{2} \approx 1.414$

Portanto, os valores de ω são aproximadamente 2 rad/s e 1.414 rad/s.

Oscilações Bidimensionais

Determinar as frequências de oscilação ω do sistema mostrado na figura abaixo, em que $m_1=m_2=m$:

Solução:

Escrevamos as equações de movimento para cada massa:

$$\begin{cases} m\ddot{x}_1 = -4kx_1 - k(x_1 - x_2) \\ m\ddot{x}_2 = -4kx_2 - k(x_2 - x_1) \\ m\ddot{y}_1 = -3ky_1 - ky_1 \\ m\ddot{y}_2 = -4ky_2 - 2ky_2 \end{cases} \Rightarrow \begin{cases} m\ddot{x}_1 = -5kx_1 + kx_2 \\ m\ddot{x}_2 = -5kx_2 + kx_1 \\ m\ddot{y}_1 = -4ky_1 \\ m\ddot{y}_2 = -6ky_2 \end{cases}$$

Façamos a seguinte mudança de coordenadas: $q_1 = x_1$, $q_2 = x_2$, $q_3 = y_1$, $q_4 = y_2$. Com essa mudança de variável, podemos reescrever o sistema de equações como:

$$\begin{cases} m\ddot{q}_{1} + 5kq_{1} - kq_{2} = 0 \\ m\ddot{q}_{2} + 5kq_{2} - kq_{1} = 0 \\ m\ddot{q}_{3} + 4kq_{3} = 0 \\ m\ddot{q}_{4} + 6kq_{4} = 0 \end{cases} \Rightarrow \begin{bmatrix} m & 0 & 0 & 0 \\ 0 & m & 0 & 0 \\ 0 & 0 & m & 0 \\ 0 & 0 & 0 & m \end{bmatrix} \begin{bmatrix} \ddot{q}_{1} \\ \ddot{q}_{2} \\ \ddot{q}_{3} \\ \ddot{q}_{4} \end{bmatrix} + \begin{bmatrix} 5k & -k & 0 & 0 \\ -k & 5k & 0 & 0 \\ 0 & 0 & 4k & 0 \\ 0 & 0 & 0 & 6k \end{bmatrix} \begin{bmatrix} q_{1} \\ q_{2} \\ q_{3} \\ q_{4} \end{bmatrix} = 0$$
$$\Rightarrow m \begin{bmatrix} \ddot{q}_{1} \\ \ddot{q}_{2} \\ \ddot{q}_{3} \\ \ddot{q}_{4} \end{bmatrix} + \begin{bmatrix} 5k & -k & 0 & 0 \\ -k & 5k & 0 & 0 \\ 0 & 0 & 4k & 0 \\ 0 & 0 & 0 & 6k \end{bmatrix} \begin{bmatrix} q_{1} \\ q_{2} \\ q_{3} \\ q_{4} \end{bmatrix} = 0$$

Podemos propor soluções na forma $q_i = A_i \sin \omega t$, para i = 1, 2, 3, 4 e determinemos os valores de ω para os quais o sistema possui solução. Então, para cada valor de i, temos:

$$q_i = A_i \sin \omega t \Rightarrow \dot{q}_i = \omega A_i \cos \omega t \Rightarrow \ddot{q}_i = -\omega^2 A_i \sin \omega t$$

$$\Rightarrow \ddot{q}_i = -\omega^2 q_i$$

Substituindo no sistema de equações acima, obtemos:

$$m\begin{bmatrix} -\omega^2q_1\\ -\omega^2q_2\\ -\omega^2q_3\\ -\omega^2q_4 \end{bmatrix} + \begin{bmatrix} 5k & -k & 0 & 0\\ -k & 5k & 0 & 0\\ 0 & 0 & 4k & 0\\ 0 & 0 & 0 & 6k \end{bmatrix} \begin{bmatrix} q_1\\ q_2\\ q_3\\ q_4 \end{bmatrix} = 0 \Rightarrow \begin{bmatrix} 5k - m\omega^2 & -k & 0 & 0\\ -k & 5k - m\omega^2 & 0 & 0\\ 0 & 0 & 4k - m\omega^2 & 0\\ 0 & 0 & 0 & 6k - m\omega^2 \end{bmatrix} \begin{bmatrix} q_1\\ q_2\\ q_3\\ q_4 \end{bmatrix} = 0$$

Para que o sistema possua solução não trivial, devemos ter que o determinante da matriz dos coeficientes deve ser igual a zero, ou seja:

$$\begin{vmatrix} 5k - m\omega^2 & -k & 0 & 0 \\ -k & 5k - m\omega^2 & 0 & 0 \\ 0 & 0 & 4k - m\omega^2 & 0 \\ 0 & 0 & 0 & 6k - m\omega^2 \end{vmatrix} = 0$$

$$(-1)^{1+1} \cdot (5k - m\omega^2) \cdot \begin{vmatrix} 5k - m\omega^2 & 0 & 0 \\ 0 & 4k - m\omega^2 & 0 \\ 0 & 0 & 6k - m\omega^2 \end{vmatrix} + (-1)^{1+2} \cdot (-k) \cdot \begin{vmatrix} -k & 0 & 0 \\ 0 & 4k - m\omega^2 & 0 \\ 0 & 0 & 6k - m\omega^2 \end{vmatrix} + 0 + 0 = 0$$

$$(5k - m\omega^2) \left[(5k - m\omega^2)(4k - m\omega^2)(6k - m\omega^2) \right] + k \left[(-k)(4k - m\omega^2)(6k - m\omega^2) \right] = 0$$

$$(5k - m\omega^2)^2 (4k - m\omega^2)(6k - m\omega^2) - k^2 (4k - m\omega^2)(6k - m\omega^2) = 0$$

$$\left[(5k - m\omega^2) + k \right] \left[(5k - m\omega^2) - k \right] (4k - m\omega^2)(6k - m\omega^2) = 0$$

$$(6k - m\omega^2)(4k - m\omega^2)(4k - m\omega^2)(6k - m\omega^2) = 0$$

$$(6k - m\omega^2)(4k - m\omega^2)(6k - m\omega^2) = 0$$

$$(6k - m\omega^2)(6k - m\omega^2) = 0$$

Da última equação, tem-se que:

$$\begin{cases} 4k - m\omega^2 = 0 \text{ ou} \\ 6k - m\omega^2 = 0 \end{cases} \Rightarrow \begin{cases} \omega_1 = \sqrt{\frac{4k}{m}} \\ \omega_2 = \sqrt{\frac{6k}{m}} \end{cases}$$

Cada solução possui duplicidade 2.

Mecânica dos Fluidos