10 | Linear Regression, Part 3

Ivan Corneillet

Data Scientist

Learning Objectives

After this lesson, you should be able to:

- Explain what is one-hot encoding for categorical variables and how to use it for linear regression modeling
- Understand what are interaction effects and how to use the hierarchy principle for linear regression modeling

Linear Regression

One-Hot Encoding for Categorical Variables and SF Housing

Back to the SF housing dataset and the issue of beds and baths

- So far, we've considered *Beds* and
 Baths as ratio variables
 - Namely that the price premium
 between a property with 1 bathroom
 and another with 2 bathrooms was the
 same between a property with 3
 bathrooms and another with 4
 bathrooms
- Does this make sense?

Dep. Variable:	SalePrice	R-squared:	0.137
Model:	OLS	Adj. R-squared:	0.136
Method:	Least Squares	F-statistic:	146.6
Date:		Prob (F-statistic):	1.94e-31
Time:		Log-Likelihood:	-1690.7
No. Observations:	929	AIC:	3385.
Df Residuals:	927	BIC:	3395.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	0.3401	0.099	3.434	0.001	0.146 0.535
Baths	0.5242	0.043	12.109	0.000	0.439 0.609

Omnibus:	1692.623	Durbin-Watson:	1.582
Prob(Omnibus):	0.000	Jarque-Bera (JB):	2167434.305
Skew:	12.317	Prob(JB):	0.00
Kurtosis:	238.345	Cond. No.	5.32

Back to the SF housing dataset and the issue of bed and bath counts (cont.)

 Let's test this hypothesis and convert *Baths* to a nominal variable and then encode it into binary variables

$Bath = \begin{pmatrix} Bath_1, \\ Bath_2, \\ Bath_3, \\ Bath_4 \end{pmatrix}$ (one-hot encoding)
(1, 0, 0, 0)
(0, 1, 0, 0)
(0, 0, 1, 0)
(0, 0, 0, 1)

One-hot encoding for categorical variables

- This terminology from digital circuits where *one-hot* refers to a group of bits (here, our binary features) among which the legal combinations of values are only those with a single high (1) bit and all the others low (0)
- (Binary variables are also called dummy variables)

Linear Regression

Interaction Effects and Advertising

Is there a relationship between advertising budget and sales?

Simple Linear Regressions on TV, Radio, and Newspaper

$Sales \sim TV$

Dep. Variable:	Sales	R-squared:	0.607
Model:	OLS	Adj. R-squared:	0.605
Method:	Least Squares	F-statistic:	302.8
Date:		Prob (F-statistic):	1.29e-41
Time:		Log-Likelihood:	-514.27
No. Observations:	198	AIC:	1033.
Df Residuals:	196	BIC:	1039.
Df Model:	1		
Covariance Type:	nonrobust		

j	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	7.0306	0.462	15.219	0.000	6.120 7.942
TV	0.0474	0.003	17.400	0.000	0.042 0.053

Omnibus:	0.404	Durbin-Watson:	1.872
Prob(Omnibus):	0.817	Jarque-Bera (JB):	0.551
Skew:	-0.062	Prob(JB):	0.759
Kurtosis:	2.774	Cond. No.	338.

Sales ~ Radio

Dep. Variable:	Sales	R-squared:	0.333
Model:	OLS	Adj. R-squared:	0.329
Method:	Least Squares	F-statistic:	97.69
Date:		Prob (F-statistic):	5.99e-19
Time:		Log-Likelihood:	-566.70
No. Observations:	198	AIC:	1137.
Df Residuals:	196	BIC:	1144.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	9.3166	0.560	16.622	0.000	8.211 10.422
Radio	0.2016	0.020	9.884	0.000	0.161 0.242

Omnibus:	20.193	Durbin-Watson:	1.923
Prob(Omnibus):	0.000	Jarque-Bera (JB):	23,115
Skew:	-0.785	Prob(JB):	9.56e-06
Kurtosis:	3.582	Cond. No.	51.0

Sales ~ Newspaper

Dep. Variable:	Sales	R-squared:	0.048
Model:	OLS	Adj. R-squared:	0.043
Method:	Least Squares	F-statistic:	9.927
Date:		Prob (F-statistic):	0.00188
Time:		Log-Likelihood:	-601.84
No. Observations:	198	AIC:	1208.
Df Residuals:	196	BIC:	1214.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	12.3193	0.639	19.274	0.000	11.059 13.580
Newspaper	0.0558	0.018	3,151	0.002	0.021 0.091

Omnibus:	5.835	Durbin-Watson:	1.916
Prob(Omnibus):	0.054	Jarque-Bera (JB):	5.303
Skew:	0.333	Prob(JB):	0.0706
Kurtosis:	2.555	Cond. No.	63.9

q-q plots of residuals. Are they normally distributed?

Scatterplots of residuals against advertising budget. Are they randomly distributed?

$Sales \sim TV + Radio + Newspaper$

Dep. Variable:	Sales	R-squared:	0.895
Model:	OLS	Adj. R-squared:	0.894
Method:	Least Squares	F-statistic:	553.5
Date:		Prob (F-statistic):	8.35e-95
Time:		Log-Likelihood:	-383.24
No. Observations:	198	AIC:	774.5
Df Residuals:	194	BIC:	787.6
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	2.9523	0.318	9.280	0.000	2.325 3.580
TV	0.0457	0.001	32.293	0.000	0.043 0.048
Radio	0.1886	0.009	21.772	0.000	0.171 0.206
Newspaper	-0.0012	0.006	-0.187	0.852	-0.014 0.011

Omnibus:	59.593	Durbin-Watson:	2.041
Prob(Omnibus):	0.000	Jarque-Bera (JB):	147.654
Skew:	-1.324	Prob(JB):	8.66e-33
Kurtosis:	6.299	Cond. No.	457.

$Sales \sim TV + Radio$. Are we done yet?

Dep. Variable:	Sales	R-squared:	0.895
Model:	OLS	Adj. R-squared:	0.894
Method:	Least Squares	F-statistic:	834.4
Date:		Prob (F-statistic):	2.60e-96
Time:		Log-Likelihood:	-383.26
No. Observations:	198	AIC:	772.5
Df Residuals:	195	BIC:	782.4
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	2.9315	0.297	9.861	0.000	2.345 3.518
TV	0.0457	0.001	32.385	0.000	0.043 0.048
Radio	0.1880	0.008	23.182	0.000	0.172 0.204

Omnibus:	59.228	Durbin-Watson:	2.038
Prob(Omnibus):	0.000	Jarque-Bera (JB):	145.127
Skew:	-1.321	Prob(JB):	3.06e-32
Kurtosis:	6.257	Cond. No.	423.

Sales $\sim TV + Radio$. What do you observe? Are we done yet?

$Sales \sim TV + Radio$

$$Sales = \underbrace{2.93}_{\widehat{\beta}_0} + \underbrace{.0457}_{\widehat{\beta}_1} \times TV + \underbrace{.188}_{\widehat{\beta}_2} \times Radio$$

- This model assumes that the effect on sales of increasing one media (e.g., *TV*) is independent of the amount spent on the other media (e.g., *Radio*)
- More specifically, the model states that the average effect on sales of a one-unit increase (\$1k) in TV is always (.0457 [1k units] = 46 units), regardless of the amount spend on Radio

Interaction Effects

- But suppose that spending money on radio advertising actually increases the effectiveness of *TV* advertising
 - ► the slope term for *TV* should increase as *Radio* increases
- E.g., given a fixed budget of \$100k, spending half on TV and half on radio may increase sales more than allocating the entire amount to either TV or radio
- This is known as a synergy effect in marketing; in statistics it is referred to as an interaction effect

Sales ~ TV + Radio + TV * Radio

Dep. Variable:	Sales	R-squared:	0.968
Model:	OLS	Adj. R-squared:	0.967
Method:	Least Squares	F-statistic:	1934.
Date:		Prob (F-statistic):	3.19e-144
Time:		Log-Likelihood:	-267.07
No. Observations:	198	AIC:	542.1
Df Residuals:	194	BIC:	555.3
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	6.7577	0.247	27.304	0.000	6.270 7.246
TV	0.0190	0.002	12.682	0.000	0.016 0.022
Radio	0.0276	0.009	3.089	0.002	0.010 0.045
TV:Radio	0.0011	5.27e-05	20.817	0.000	0.001 0.001

Omnibus:	126.182	Durbin-Watson:	2.241
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1151.060
Skew:	-2.306	Prob(JB):	1.12e-250
Kurtosis:	13.875	Cond. No.	1.78e+04

Interaction Effects (cont.)

$$Sales = \underbrace{6.76}_{\widehat{\beta}'_0} + \underbrace{.0190}_{\widehat{\beta}'_1} \times TV + \underbrace{.0276}_{\widehat{\beta}'_2} \times Radio + \underbrace{.0011}_{\widehat{\beta}'_3} \times TV \times Radio$$

- The interaction is important
 - β_3' is statistically significant
 - R^2 with this model went up to 96.8% up from 89.5% for the model without interaction. This that $1 \frac{1 .968}{1 .895} = .70 = 70\%$ of the unexplained variability in the previous model has been explained by the interaction term

Hierarchy Principle

Sometimes an interaction term x_i ·
 x_j is significant, but one or both of its main effects (in this case x_i
 and/or x_i) are not

- The hierarchy principle
 - If we include an interaction in a model, we should also include the main effects, even if they aren't significant

Slides © 2017 Ivan Corneillet Where Applicable Do Not Reproduce Without Permission