Project - 5 (DATASET: Online Retail) The transactions made by a UK-based, registered, non-store online retailer between December 1, 2010, and December 9, 2011, are all included in the transnational data set known as online retail. The company primarily offers one-of-a-kind gifts for every occasion. The company has a large number of wholesalers as clients. Company ObjectiveUsing the global online retail dataset, we will design a clustering model and select the ideal group of clients for the business to target.

In [1]:

import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline

In [6]:

df=pd.read_csv(r"C:\Users\rakesh\OneDrive\Desktop\Project\OnlineRetail1.csv")
df

Out[6]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	С
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Ki
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	Ki
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Ki
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Ki
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	Ki
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	

541909 rows × 8 columns

In [7]:

df.head()

Out[7]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom

In [8]:

df.tail()

Out[8]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	С
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	
4								\triangleright

```
In [20]:
```

```
df['InvoiceNo'].value_counts()
Out[20]:
InvoiceNo
573585
           1114
581219
            749
581492
            731
            721
580729
558475
            705
            . . .
554023
              1
554022
               1
554021
              1
               1
554020
C558901
               1
Name: count, Length: 25900, dtype: int64
In [21]:
df['CustomerID'].value_counts()
Out[21]:
CustomerID
17841.0
           7983
14911.0
           5903
14096.0
           5128
12748.0
           4642
14606.0
           2782
15070.0
              1
15753.0
              1
17065.0
              1
16881.0
16995.0
              1
Name: count, Length: 4372, dtype: int64
In [22]:
df['Quantity'].value_counts()
Out[22]:
Quantity
          148227
 1
 2
           81829
 12
           61063
           40868
 6
 4
           38484
-472
                1
-161
                1
                1
-1206
-272
                1
-80995
Name: count, Length: 722, dtype: int64
```

In [33]:

```
plt.scatter(df["CustomerID"],df["Quantity"])
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[33]:

Text(0, 0.5, 'Quantity')

In [27]:

```
df.info()
```

```
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):
#
     Column
                  Non-Null Count
                                   Dtype
     _ _ _ _ _ _
                  _____
 0
     InvoiceNo
                  541909 non-null
                                   object
 1
     StockCode
                  541909 non-null
                                   object
 2
     Description
                  540455 non-null
                                   object
 3
     Quantity
                  541909 non-null
                                    int64
 4
     InvoiceDate
                  541909 non-null
                                    object
 5
     UnitPrice
                  541909 non-null
                                    float64
 6
                  406829 non-null
                                   float64
     CustomerID
     Country
                  541909 non-null
                                   object
dtypes: float64(2), int64(1), object(5)
memory usage: 33.1+ MB
```

<class 'pandas.core.frame.DataFrame'>

```
In [28]:
```

```
df.isnull().sum()
```

Out[28]:

0 InvoiceNo StockCode 0 Description 1454 Quantity 0 InvoiceDate 0 UnitPrice 0 135080 CustomerID Country 0

dtype: int64

In [29]:

```
df.fillna(method='ffill',inplace=True)
```

In [30]:

```
df.isnull().sum()
```

Out[30]:

InvoiceNo 0 StockCode 0 Description 0 Quantity 0 InvoiceDate 0 UnitPrice 0 CustomerID 0 Country 0 dtype: int64

In [31]:

```
from sklearn.cluster import KMeans
km=KMeans()
km
```

Out[31]:

```
▼ KMeans
KMeans()
```

In [32]:

```
y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
y_predicted
```

C:\Users\krish\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init
` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(

Out[32]:

array([0, 0, 0, ..., 4, 4, 4])

In [34]:

df["cluster"]=y_predicted
df.head()

Out[34]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4 (•

In [35]:

```
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[35]:

Text(0, 0.5, 'Quantity')

In [36]:

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(df[["Quantity"]])
df["Quantity"]=scaler.transform(df[["Quantity"]])
df.head()
```

Out[36]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom
4 (•

```
In [37]:
```

```
scaler.fit(df[["CustomerID"]])
df["CustomerID"]=scaler.transform(df[["CustomerID"]])
df.head()
```

Out[37]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdom
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
4 4								

K-MeansClustering

```
In [38]:
```

```
km=KMeans()
```

```
In [39]:
```

```
y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
y_predicted
```

C:\Users\krish\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init
` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(

```
Out[39]:
```

```
array([6, 6, 6, ..., 3, 3, 3])
```

In [40]:

df["New Cluster"]=y_predicted
df.head()

Out[40]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdom
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
4.4								

In [41]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[41]:

Text(0, 0.5, 'Quantity')

In [42]:

```
km.cluster_centers_
```

Out[42]:

In [43]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[43]:

Text(0, 0.5, 'Quantity')

In [44]:

```
k_rng=range(1,10)
sse=[]
```

```
In [45]:
```

```
for k in k_rng:
   km=KMeans(n_clusters=k)
    km.fit(df[["CustomerID","Quantity"]])
    sse.append(km.inertia )
#km.inertia_ will give you the value of sum of square error
print(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
C:\Users\krish\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init
` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\krish\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\krish\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\krish\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\krish\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\krish\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\krish\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\krish\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\krish\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
[46374.84553398371, 11336.065305485055, 4915.894028081869, 2723.5191051895
64, 1695.163078963402, 1178.4246703192575, 902.5741514357653, 677.21678425
```

97247, 528.4339881385184]

Out[45]:

Text(0, 0.5, 'Sum of Squared Error')

CONCLUSION

For the given dataset we use K-means Clustering and done the grouping based on the given data.In the above dataset we will take customer id and quantity based on that we make the clusters. When the K-value is low error rate is more and the K-value is high error rate is very high. So, finally we can Conclude the above dataset is bestfit for K-Means.

