| Circuits |             | Potential dividers and sensing circuits                  |
|----------|-------------|----------------------------------------------------------|
| es       | <b>\</b> /  | Recall and apply the rule for potential divider circuits |
|          |             | Understand the effects of loading a potential divider    |
|          | COULD (8/9) | Explain how sensing circuits can be constructed and used |

**STARTER:** You have a 24V power supply and three resistors,  $10\Omega$ ,  $60\Omega$  and  $110\Omega$ . You set up a circuit, using only two resistors. What is the minimum and maximum potential difference you can get across one of the resistors?

**EXTENSION:** Does the answer change if you can use all the



## **MUST (6)**

Recall and apply the rule for potential divider circuits



Potential divider equation: p.d. across R<sub>2</sub>:

$$V_{out} = \left(\frac{R_2}{R_1 + R_2}\right) \times V_{in}$$

12V supply:  $R_1 = 80\Omega$ ,  $R_2 = 6\Omega$ . What is the p.d. across R<sub>2</sub>?





SHOULD (7) Understand the effects of loading a potential divider

Loading a potential divider refers to connecting a component across Vout.

When the load is added on the right, what happens to V<sub>out</sub>?

Extension: what makes more difference: adding a high R<sub>load</sub> or a low R<sub>load</sub>?



- 2 A 2.2 k $\Omega$  resistor and a 4.7 k $\Omega$  resistor are connected as part of a potential divider circuit to a 12 V supply.  $V_{\rm out}$  is connected across the 4.7 k $\Omega$  resistor. Calculate  $V_{\rm out}$  when
  - a the potential divider is not loaded
  - the potential divider is loaded with a resistor of resistance 10 k $\Omega$
  - c the potential divider is loaded with a resistor of resistance 100  $\Omega$ .



COULD (8/9) Explain how sensing circuits can be constructed and used

If a potential divider circuit is set up with one component that varies according to the environment, the p.d. across the component and the other resistor will vary.





As temperature increases...?

What if you wanted to change the circuit so that the opposite happens?

As it gets darker, what happens to Vout?







Potentiometers are a form of potential divider: instead of changing resistors, a sliding control is used to adjust proportions of  $R_1$  and  $R_2$ .

This uses fewer components and easily allows the full range adjustment to be made.

| Circuits |             |       | Potential dividers and sensing circuits              |
|----------|-------------|-------|------------------------------------------------------|
| Learning | <b>`</b>    | Reca  | Il and apply the rule for potential divider circuits |
| objectiv |             | Unde  | rstand the effects of loading a potential divider    |
| es       | COULD (8/9) | Expla | in how sensing circuits can be constructed and used  |

**PLENARY:** In a sensing circuit like the one on the right, why might you replace the resistor R<sub>2</sub> with a variable resistor?



