WHAT IS CLAIMED IS:

1	1. An estimator for estimating a modulation index and frequency offset of a	
2 ·	received continuous-phase-modulated (CPM) signal, the estimator comprising:	
3	at least two filters for filtering the received CPM signal,	
4	a calculator for calculating an α value and a β value;	
5	a processor for receiving a signal output by each of the at least two filters, the	he
6	α	
7	value, and the β value, and	
8	wherein the processor is adapted to calculate estimates of the modulation	
9	index and frequency offset from the signals received by the processor and the received α	
0	value and β value.	
1	2. The estimator of claim 1, further comprising a postprocessor for removing by	oia
2	from the estimation of the modulation index.	
1	3. The estimator of claim 2, wherein the postprocessor receives information	
2	relating to the frequency offset and manipulates the modulation index to form a compensat	ted
3	modulation index.	
1	4. The estimator of claim 1, wherein the at least two filters are finite impulse	
2	response (FIR) filters.	
1	5. The estimator of claim 1, wherein the estimator is implemented in a	
2	BLUETOOTH device	

	0.	A motified of estimating a modulation mack and frequency offset of a			
2	received continuous-phase-modulated (CPM) signal, the method comprising:				
3	· · ·	filtering the received CPM signal via at least two filters;			
4		calculating an α value and a β value,			
5		receiving a signal output by each of the at least two filters, the a value, and the			
6	β value; and				
7	calculating estimates of the modulation index and frequency offset from the				
8	received sign	als and the received α value and β value.			
1	7.	The method of claim 6, further comprising removing bias from the estimation			
2	of the modul	ation index.			
1	8.	The method of claim 7, wherein the step of removing bias comprises receiving			
2	information i	relating to the frequency offset and manipulating the modulation index to form a			
3	compensated	modulation index.			
1	9.	The method of claim 6, wherein the steps are performed in the order listed.			
1	10.	The method of claim 6, wherein the at least two filters are finite impulse			
2	response (FII	R) filters			
1	11.	The method of claim 6, wherein the method is implemented in a			
2	BLUETOOT	'H device			

1	12.	An estimator for estimating a modulation index and frequency offset of a			
2	received conti	inuous-phase-modulated (CPM) signal, the estimator comprising			
3		a noise whitener for whitening noise of the received CPM signal,			
4		at least two filters for filtering the noise-whitened CPM signal;			
5		an initializer for processing a training sequence,			
6		a processor for receiving a signal output by each of the at least two filters and			
7	the processed	training sequence, and			
8		wherein the processor is adapted to calculate estimates of the modulation			
9	index and free	quency offset from the signals received by the processor and the processed			
0	training seque	nce.			
1	13.	The estimator of claim 12, wherein the at least two filters are finite impulse			
2	response (FIR) filters.			
•					
1	14.	The estimator of claim 12, wherein the estimator is implemented in a			
2	BLUETOOT	I device.			
1	15.	The estimator of claim 12, wherein the noise whitener whitens the noise prior			
2	to the at least	two filters.			
1	16.	The estimator of claim 12, wherein at least one of the at least two filters			
2	comprises the	noise whitener			

	17.	A method of estimating a me	dulation mucx	and nequen	cy offset of a f	ÇCÇIVCU
2	continuous-pl	nase-modulated (CPM) signal,	the method co	mprising:		
3		whitening noise of the receiv	ved CPM signal	l;		
4		filtering the noise-whitened	CPM signal via	at least two	filters;	
5		processing a training sequen	ce;			-
6		receiving a signal output by	each of the at le	east two filter	rs and the proc	essed
7	training seque	ence; and	ì			
8		calculating estimates of the	modulation inde	ex and freque	ency offset from	n the
9.	received sign	als and the processed training	sequence.		-	
						· · ·
1	18.	The method of claim 17, wh	erein the steps	are performe	d in the order l	isted
٠,					N	
1	19.	The method of claim 17, wh	erein the at leas	st two filters	are finite impu	lse
	10.	The method of claim 17, wh	crem the at leas	st two inters	are minie impa	150
2	response (FIR	R) filters.	**************************************			•
						*
1	20.	The method of claim 17, wh	erein the metho	od is impleme	ented in a	
2	BLUETOOT	H device.				*
1	21	The method of claim 17, wh	erein the sten c	of whitening i	s performed be	efore the
1	21.	The method of claim 17, wit	crem the step c	wintening i	is performed of	
2	step of filtering	ng.				
					•	
1	22.	The method of claim 17, wh	erein the step o	of whitening i	is performed by	y at
2	least one of the	he at least two filters.				

1.	An estimator for estimating a modulation index and frequency offset of a
2	received continuous-phase-modulated (CPM) signal, the estimator comprising
. 3	at least two filters for filtering the received CPM signal,
4	a noise whitener for whitening noise of a signal output by the at least two
5 -	filters,
6	an initializer for processing a training sequence;
7	a processor for receiving signals output by the noise whitener and the
8	processed training sequence; and
9	wherein the processor is adapted to calculate an estimate of the modulation
10	index and the frequency offset from the received signals and the processed training sequence

- 1 24. An estimator for estimating a modulation index and frequency offset of a 2 a received continuous-phase-modulated (CPM) signal, the estimator comprising:
- a receiver for receiving the CPM signal; and
- 4 a processor for estimating the modulation index and frequency offset
- 5 according to the following equation:

6
$$v = (B^T C^{-1} B)^{-1} B^T C^{-1} \phi$$

- 7 wherein ν represents a vector;
- 8 wherein the vector includes elements representing scaled versions of estimates
- 9 of the modulation index and the frequency offset;
- wherein C represents a noise covariance matrix;
- wherein B represents a data model matrix, and
- wherein ϕ is an observation vector that represents a phase of the CPM signal.
- 1 25. The estimator of claim 24, wherein the data model matrix is modeled by the
- 2 following equation:

3

$$B = \begin{bmatrix} b_1 & 1 \\ b_2 & 1 \\ b_3 & 1 \\ \vdots & \vdots \\ b_N & 1 \end{bmatrix}$$

4 wherein $b_1, b_2, b_3, \dots b_N$, represent bits of a training sequence.

- 1 26. The estimator of claim 24, wherein the data model matrix is modeled by the
- 2 following equation:

3

$$B = \begin{bmatrix} b_2 & c_2 & 1 \\ b_3 & c_3 & 1 \\ b_4 & c_4 & 1 \\ \vdots & \vdots & \vdots \\ b_{N-1} & c_{N-1} & 1 \end{bmatrix}$$

- wherein b_2 , b_3 , b_4 ,... b_{N-1} , represent bits of a training sequence, and
- 5 wherein c_2 , c_3 , c_4 ,... c_{N-1} , represent filter coefficients.
- The estimator of claim 26, wherein a relationship between the bits of the
- 2 training sequence and the filter coefficients is defined by the following equation:

$$c_{k} = (b_{k-1} - 2b_{k} + b_{k+1}).$$

- 1 28. The estimator of claim 24, wherein the data model matrix is modeled by the
- 2 following equation:

$$B = \begin{bmatrix} d_2 & 1 \\ d_3 & 1 \\ d_4 & 1 \\ \vdots & \vdots \\ d_{N-1} & 1 \end{bmatrix}$$

wherein d_2 , d_3 , d_4 ,... d_{N-1} , represent filter coefficients.

- 1 29. The estimator of claim 28, wherein a relationship between the bits of the
- 2 training sequence and the filter coefficients is defined by the following equation:
- 3 $d_k = (\varepsilon b_{k-1} + (1-2\varepsilon)b_k + \varepsilon b_{k+1}),$
- 4 wherein ε is a parameter indicating an amount of Inter-Symbol Interference present.
- 1 30. The estimator of claim 24, wherein the estimator is implemented in a
- 2 BLUETOOTH device.