Stable

Definition: Stable

Let $F \subseteq L \subseteq K$ be an inclusion of fields. To say that L is *stable* with respect to K/F means:

$$\forall \varphi \in \operatorname{Aut}(K/F), \varphi[L] \subset L$$

Theorem

Let $F\subseteq L\subseteq K$ be an inclusion of fields such that L is stable with respect to K/F:

$$\forall \varphi \in \operatorname{Aut}(K/F), \varphi[L] = L$$

Thus $\varphi|_L \in \operatorname{Aut}(L/F)$.

Proof

Assume $\varphi \in G$ Since L is stable, $\varphi[L] \subseteq L$ But φ is bijective, so $\varphi|_L$ is surjective

$$\therefore \varphi[L] = L$$

Theorem

Let $F\subseteq L\subseteq K$ be an inclusion of fields such that K/F is Galois and L is stable with respect to K/F:

$${\cal L}/{\cal F}$$
 is Galois

Theorem

 $\begin{array}{l} \text{Assume } \alpha \in L \setminus F \\ \exists \varphi \in \operatorname{Aut}(K/F), \varphi(\alpha) \neq \alpha \\ \text{But } L \text{ is stable, so } \varphi|_L \in \operatorname{Aut}(L/F) \text{ and } \varphi|_L \left(\alpha\right) \neq \alpha \end{array}$

Therefore L/F is Galois.

Theorem

Let $F \subseteq L \subseteq K$ be an inclusion of fields:

1).
$$L$$
 stable $\implies G(L) \unlhd G$

2).
$$H \unlhd G \implies F(H)$$
 stable.

Proof

1). Assume L is stable

Assume
$$\varphi \in G(L)$$

Assume $\alpha \in L$
 $\varphi(\alpha) = \alpha$
Assume $\psi \in G$
Since ψ is bijective and L is stable, $\exists \, \beta \in L, \psi(b) = \alpha$ and $\psi^{-1}(\alpha) = \beta$
Also, since $\beta \in L, \varphi(\beta) = \beta$
 $(\psi \varphi \psi^{-1})(\alpha) = \psi(\varphi(\psi^{-1}(\alpha))) = \psi(\varphi(\beta)) = \psi(\beta) = \alpha$
Thus, $\psi \varphi \psi^{-1} \in G(L)$
 $\therefore G(L) \unlhd G$.

2). Assume $H \leq G$

Assume
$$\varphi \in H$$

Assume $\psi \in G$
Since $H \leq G, \psi^{-1}\varphi\psi \in H$
Assume $\alpha \in F(H)$
 $(\psi^{-1}\varphi\psi)(\alpha) = \alpha$
 $(\varphi\psi)(\alpha) = \psi(\alpha)$
 $\varphi(\psi(\alpha)) = \psi(\alpha)$
Thus, $\psi(\alpha) \in F(H)$

Therefore, F(H) is stable.