TUNKU ABDUL RAHMAN UNIVERSITY OF MANAGEMENT AND TECHNOLOGY FACULTY OF COMPUTING AND INFORMATION TECHNOLOGY

ACADEMIC YEAR 2023/2024

JANUARY EXAMINATION

AAMS1164 PRE-CALCULUS

WEDNESDAY, 17 JANUARY 2024

TIME: 9.00 AM – 11.00 AM (2 HOURS)

DIPLOMA IN COMPUTER SCIENCE

Instructions to Candidates:

Answer ALL questions. All questions carry equal marks.

Question 1

- a) (i) Rationalise the denominator of $\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}$. (2 marks)
 - (ii) Solve the following equations.

$$(1) 5^{2x} + 5^3 = 30(5^x)$$
 (3 marks)

(2)
$$\log_3(2x-1) = 1 - \log_3(x-1)$$
 (4 marks)

- b) Given $f(x) = \frac{3-x}{x+2}$ and $g(x) = \sqrt{2x-3}$, find
 - (i) the domains of f(x) and g(x), (2 marks)
 - (ii) the composite function $(f \circ g)(x)$, (2 marks)
 - (iii) the inverse function $f^{-1}(x)$ if it exists. (3 marks)
- Expand $(1 + 3x)^{\frac{1}{2}}$ in ascending power of x up to the term in x^3 by using the binomial expansion. (5 marks)
- d) Lily saves RM 500 at the end of every quarter into a saving account paying 5% per annum compounded quarterly.
 - (i) Find the accumulated amount in 15 years. (3 marks)
 - (ii) Find the total interest earned over 15 years. (1 mark)

[Total: 25 marks]

Question 2

- a) Let $f(x) = \frac{x+2}{(x-2)(x+4)}$.
 - (i) Express f(x) in terms of partial fractions. (5 marks)
 - (ii) Find the intercepts and asymptotes of f(x), if any. (4 marks)
 - (iii) Sketch the graph of f(x). (5 marks)
- b) Given that (x + 1) is the factor of the polynomial $P(x) = 6x^3 + 7x^2 + ax 2$.
 - (i) Find the value of a. (2 marks)
 - (ii) Use synthetic division or otherwise, factorise P(x) completely. (4 marks)
- Use long division to divide $3x^4 5x^3 + 10x 4$ by $x^2 + x + 2$. Find the quotient and the remainder. (5 marks)

[Total: 25 marks]

Question 3

a) Let
$$A = \begin{pmatrix} 2 & 4 & 1 \\ -1 & 1 & -1 \\ 1 & 4 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} -4 & -4 & 5 \\ 1 & 1 & -1 \\ 5 & 4 & -6 \end{pmatrix}$.

- (i) Find AB. (3 marks)
- (ii) Find A^{-1} if exist. (2 marks)
- (iii) Hence solve the following system of equations:

$$2x + 4y + z = 1$$

$$-x + y - z = 8$$

$$x + 4y = 7$$
(6 marks)

- b) Given that the forces $F_1 = 9i 12j$, $F_2 = -5i + 11j$ and $F_3 = 7i j$ are acting on a point P, find
 - (i) the resultant force and its magnitude, (3 marks)
 - (ii) the additional force required in order for the forces to be equilibrium. (1 mark)

Question 3 (Continued)

- c) Given the complex numbers $z_1 = 5 + 3i$ and $z_2 = -5 + 8i$.
 - (i) Express z_1 and z_2 in trigonometric form.

(4 marks)

(ii) Hence use De Moivre's Theorem to find the values of z_2^4 and z_1z_2 . Show your answers in the form of a + bi, where a and b are real numbers. (6 marks)

[Total: 25 marks]

Question 4

a) Convert the polar equation $r = 3 \sin \theta$ into rectangular form.

(3 marks)

- b) By completing the square, show that the equation $16y^2 9x^2 32y 72x = 272$ represents an equation of a hyperbola. Hence find its centre and equation of asymptotes. (9 marks)
- Express $15 \sin x + 8 \cos x$ in the form of $R \sin(x + \alpha)$, where α is an acute angle. Hence solve the equation $15 \sin x + 8 \cos x = 12$, giving all solutions between 0° and 360°. (8 marks)
- d) Solve the equation $2 \csc x + 3 \sin x = 7$ for $0^{\circ} \le x \le 360^{\circ}$.

(5 marks)

[Total: 25 marks]

<u>Formulae</u>

Logarithms:
$$\log_a xy = \log_a x + \log_a y$$

$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

Quadratic Equation:

$$ax^{2} + bx + c = 0$$
, $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

If
$$\alpha$$
 and β are the roots, $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$

$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$

$$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$$

Progression

AP:
$$T_n = a + (n-1)d$$
, $S_n = \frac{n}{2}[2a + (n-1)d] = \frac{n}{2}[a+l]$ where $l = a + (n-1)d$.

GP:
$$T_n = ar^{n-1}$$
, $|r| < 1$, $S_n = \frac{a(1-r^n)}{(1-r)}$, $|r| > 1$, $S_n = \frac{a(r^n-1)}{(r-1)}$, $S_\infty = \frac{a}{1-r}$

$$|r| > 1$$
, $S_n = \frac{a(r^n - 1)}{(r - 1)}$,

$$S_{\infty} = \frac{a}{1 - \kappa}$$

Binomial Expansion

$$(a+b)^{n} = {}^{n}C_{0}a^{n}b^{0} + {}^{n}C_{1}a^{n-1}b^{1} + \dots + {}^{n}C_{n-1}a^{1}b^{n-1} + {}^{n}C_{n}a^{0}b^{n} \text{ where } {}_{n}C_{r} = \frac{n!}{(n-r)!r!}$$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \cdot 2}x^{2} + \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3}x^{3} + \dots \text{ provided } |x| < 1.$$

Trigonometry

$$\frac{1}{\sin^2\theta + \cos^2\theta} = 1$$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin P + \sin Q = 2\sin \frac{P+Q}{2}\cos \frac{P-Q}{2}$$

$$\sin P - \sin Q = 2\cos\frac{P+Q}{2}\sin\frac{P-Q}{2}$$

$$\cos P + \cos Q = 2\cos\frac{P+Q}{2}\cos\frac{P-Q}{2}$$

$$\cos P - \cos Q = -2\sin\frac{P+Q}{2}\sin\frac{P-Q}{2}$$

$$\sin 2A = 2\sin A\cos A$$

$$\cos 2A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

$$\sin 3A = 3\sin A - 4\sin^3 A$$

$$\cos 3A = 4\cos^3 A - 3\cos A$$

If
$$t = \tan \frac{1}{2} A$$
, $\sin A = \frac{2t}{1+t^2}$

$$\cos A = \frac{1 - t^2}{1 + t^2}$$