

A Two Channel Silicon Quantum Dot and an **Experimental Setup for Spin Qubits**

Xin Zhang, Fang-Ming Jing, Yuan Zhou, Rui-Zi Hu, Hai-Ou Li, Xiao Ming, and Guo-Ping Guo

in collaboration with Gui-Lei Wang (IMECAS), Jiang-Jun Zhang (IPCAS)

Motivation/Objective

- Spin qubits based on silicon quantum dots (QDs) provide a promising platform for large-scale quantum computation due to the long spin coherence times. In isotopically engineered silicon, hyperfine interaction is totally suppressed, leading to the realization of high-fidelity single and two-qubit gates.[1-2]
- Design and fabrication of two types of two channel silicon quantum dots and observation of charge stability diagrams.
- Buildup of an experimental setup for spin qubits and real-time detection of electron tunneling at different gate voltage. The electron temperature and a quantitative description of the SNR are extracted from the experimental data [3].

Design and characterization of a two channel silicon quantum dot

Experimental setup for spin qubits

- PCB for quantum chips with 31 pins for DC and 2 SMAs for AC control.
- RC filter with optional Cu powder filter.
- Illustration of the experimental setup for DC control and single shot readout of spin qubits.

Experimental Results of the cryogenic setup

 Real time detection of electron tunneling at different gate voltage, the traces are offset by 50 mV for clarity. The dwell time in the N+1 charge state increases as the gate voltage is made more positive.

- Time-averaged electron occupation, and the date are fit series exhibits two Gaussian to get the electron temperature of 119 mK.
- A histogram of a two second time peaks, yielding SNR= $\Delta V/\sigma$ =0.018/0.00572=3.15.

Future Directions

- Single shot readout of spin qubits.
- T1 and T2 measurement of spin qubits.
- Implementation of single- and two- qubit logic gates.

References

- [1] M. Veldhorst, A.S. Dzurak et al., Nature Nanotechnology 9, 981 (2014).
- [2] M. Veldhorst, C.H. Yang, and A.S. Dzurak et al., Nature **526**, 410 (2015).
- [3] D. M. Zajac, T. M. Hazard, X. Mi and et al., Phys. Rev. Applied 6(5), 054013 (2016).