Design and analysis of experiments

MED4

Daniel Kartin - 20163822 Design and analysis of experiments 8 - Correlation

May 31, 2018

I'll be making these assignments with R instead of matlab, so the syntax and plots will look different. I really feel like the course is too tool dependent, and R really should be taught in tandem with matlab.

1

I load in the csv file, and put it into a data frame called data. And then correlating the pairs using Pearson's method, as seen in Table 1.

data <- read.csv('anscombe.csv')</pre>

Table 1

	X1 & Y1	X2 & Y2	X3 & Y3	X4 & Y4
Pearson's r P-value	$0.81642 \\ 0.00217$	0.81623 0.00217	$0.81628 \\ 0.00217$	0.81652 0.00216

And the correlational plot is as follows:

Figure 1

2

The level of measurement of the the happy data is interval.

Table 2

	Cash & Happy
Pearson's r P-value	-0.2945288 2.038e-7

The correlation plot is seen in Figure 2.

Figure 2

3

 $H_0 = Average$ weekly gaming hours are the same for male and female Medialogy students.

 $H_1 = Average \ weekly \ gaming \ hours \ are \ not \ the \ same \ for \ male \ and \ female \ Medialogy \ students.$

The two sample independent t test returns a p-value of 0.004901, which is below the the confidence level of 0.05, hence the H_0 can be rejected.

To calculate the effect size I made the Cohen's d function in R, it looks as follows:

```
cohens_d <- function(x, y) {
lenX <- length(x) - 1
lenY <- length(y) - 1
meanDiff <- abs(mean(x) - mean(y))
pssd <- lenX * var(x) + lenY * var(y)
pssd <- pssd/(lenX + lenY)
pssd <- sqrt(pssd)</pre>
```

```
print("Cohen's D")
print(cd <- meanDiff/pssd)
print(cd <- meanDiff/pssd)</pre>
```

It outputs a d value of 0.7572345, which according to the rule of thumb, is close to being a big effect.