گزارش تکلیف ۵ درس یادگیری ماشین

کسرا سینایی شماره دانشجویی ۸۱۰۶۹۶۲۵۴ ۲۱ دی ۱۴۰۰

سؤال یک

الف

روشهای جست و جو:

- Exhustive: در این روشها تمام حالات ممکن برای به دست آوردن زیرمموعه ای از فیچرها امکان پذیر است در نظر گرفته می شوند. اگر n فیچر داشته باشیم، پیچیدگی محاسباتی این روش $O(n^2)$ است. به دلیل پیچیدگی محاسباتی بالا، این روش معمولا کاربردهای کمی دارند (مثال: Breadth First Search)
- Heuristic: روشهایی مانند SBS، SFS، SFS و ... هستند. در این روشها یا با مجموعه ی کامل فیچرها شروع کرده و به ترتیب فیچرهایی که حذف آنها بهینه ترین زیرمجموعه جدید را نتیجه دهد حذف می شوند، یا با زیرمجوعه تهی از فیچرها شروع کرده و به مرور فیچرهایی را که بهینه ترین زیرمجموعه جدید را حاصل می کنند اضافه می شوند به زیرمجموعه فیچرها.
- Randomize: در این روش ابتدا به صورت اتفاقی زیرمجموعه ای از فیچرها انتخاب می شوند، سپس با استفاده از الگوریتمهایی مانند ژنتیک، RGSS و ... به بهینه سازی تابع هزینه می پردازند تا زیرمجموعه بهینه از فیچرها به دست آید.

روشهای ارزیابی:

- Filter Methods: این روشها بدون توجه به اللگوریتم طبقهبندی زیرمجموعه انتخابی از فیچرها را ارزیابی می کنند. معیار اصلی ارزیابی اطلاعات موجود در هر زیرمجموعه از فیچر است. این روشها سریع هستند و تمایل به انتخاب زیر مجموعههای بزرگی از فیچرها را داغرند.
- Wrpper Methods: برای ارزیابی زیرمجموعه انتخاب شده از فیچرها، معیارهایی در نظر گرفته می شود که به الگوریتم طبقه بندی مربوط است. برای مثال پروسه ارزیابی کیفیت زیرمجموعه فیچر انتخاب شده از دقت آن در پیش بینی تعدادی داده تست استفاده می شود. این روشها آهسته هستند اما دقیق تر از Filter Methods کار می کنند.

ب

در محاسبات LDA لازم است معکوس ماتریس S_w را حساب کرد و سپس مقادیر ویژه و بردارهای ویژه S_w را به دست آورد. با افزایش ابعاد مسئله حجم محاسبات جبری افزایش مییابد. همچنین اگر تعداد نمونهها کم باشد ممکن است ماتریس S_w سینگولار شود.

در PCA نيز بايد مقادير ويژه ماتريس كواريانس نمونهها و بردارهاى متناظر با آنها محاسبه شوند تا PCها به دست آيند. اگر ابعاد مسئله زياد شود علاوه بر حجم محاسباتى مقادير ويژه امكان كاهش دقت تخمين ماتريس كواريانس هم به وجود مى آيد. يكى از نقاط ضعف PCA حساسيت ان به اسكيل فيچرها مى باشد به همين دليل نرمال كردن ديتا قبل از اجراى الگوريتم اهميت ويژهاى دارد.

سوال دو

_
$S_{T} = \sum_{\mathbf{x}} (\mathbf{x} - \mathbf{\mu}) (\mathbf{x} - \mathbf{\mu})^{T} = \sum_{k=1}^{E} \sum_{\mathbf{x} \in D_{k}} (\mathbf{x} - \mathbf{\mu}_{k} + \mathbf{\mu}_{k} - \mathbf{\mu}) (\mathbf{x} - \mathbf{\mu}_{k} + \mathbf{\mu}_{k} - \mathbf{\mu})^{T}$
$= \sum_{k=1}^{c} \sum_{\alpha \in D_{k}} (\alpha - M_{k})(\alpha - M_{k})^{T} + \sum_{k=1}^{c} \sum_{\alpha \in D_{k}} (M - M_{k})(M - M_{k})^{T}$ $\leq \sum_{k=1}^{c} \sum_{\alpha \in D_{k}} (\alpha - M_{k})(\alpha - M_{k})^{T} + \sum_{\alpha \in D_{k}} \sum_{\alpha \in D_{k}} (M - M_{k})(M - M_{k})^{T}$
K=1 XEDk K=1 XFDx
SR
-> S _T : S _{W+} S _B
عر ترم از عاصل صع های عارت Sp م صورت quadratic است و از عرب (ب
7
مل عمارت در transpose خود تسکیلی پر یسور. نیار این هداک بنک این مایر سیها
یک عبارت در transpose خود تشکیل می شود. نیا برایی حراکه رنگ این ما ترسی ها
عربی برا بر یک می بسود . در مسائل) کلانسه ، یک حاصل عمع) آ از این ما تربسی ها
است. سی زنگ آن عدالتر می توانز ۲ با سُر که نلته با تی می طاند و آن، این است که
The state of the s
M مد بالله عام ها است و باعث مي لسرد بالرجد آزاري از ي سادي السرد
M خود بیانگی به M ها است و اعث می نشود بک برجه آزاری از B سل نشود:
- 1 viik(e \/ c 1
. Zwel Vank (SE) & (-1 , vii)

سؤال چهار

$P(\alpha \omega_i) \sim M_i, \sum_i cost: J(\omega) = \frac{(\mu_i - \mu_2)^2}{\epsilon^2 + \epsilon^2}$
Projection: $y : W^T \times \rightarrow P(y w_i) \sim P_i, \delta_i^2$
Si = \(\tau \cdot \mathbb{M} \cdot \mathbb{M} \cdot \tau \cdot \mathbb{M} \cdot \tau \c
$M_{i} = \omega^{T} m_{i}$; $\delta_{i}^{2} = \sum_{j \in \mathcal{D}_{i}} (y - M_{i})^{2} = \sum_{j \in \mathcal{D}_{i}} (\omega^{T} (x - m_{i})) (\omega^{T} (x - m_{i}))^{T}$
$= \sum_{J \in \mathcal{D}_{i}} \omega^{T} (\chi - m_{i}) (\chi - m_{i})^{T} \geq \omega^{T} \mathcal{E}_{i} \omega$
$\Rightarrow S_{1+}^{2} S_{2} = \omega^{T} S_{1} \omega + \omega^{T} S_{2} \omega = \omega^{T} (S_{1+} S_{2}) \omega = \omega^{T} S_{2} \omega \mathcal{D}$
SBz (M, -M2) (M, -M2) (M, -M2) (M, -M2) z (WT M, -WM2) = W (M, -M2) (M, -M2)
$= \omega^{T} S_{B} \omega \mathcal{D}$
$ \frac{I, II}{\Longrightarrow} J(\omega) = \frac{\left(\frac{\mu_1 - \mu_2}{2}\right)^2}{S_1^2 S_2^2} = \frac{\omega^T S_R \omega}{\omega^T S_W \omega} $
$\frac{SJ}{SW} = \frac{\left(\frac{\lambda}{\lambda w} w^{T} S_{E} w\right) w^{T} S_{W} w \cdot \left(\frac{\lambda}{\lambda w} w^{T} S_{w} w\right) w^{T} S_{E} w}{\left(w^{T} S_{w} w\right) \left(w_{T} S_{w} w\right)^{T}} = 0$
$ \rightarrow 2 (S_B \omega) \omega^T S_\omega \omega - 2 (S_\omega \omega) \omega^T S_B \omega = 0 $
(SRW) WTSWW (SWW) WTSRW 20 -> SRW-7 SWW =0
if Sw is involable. > Sw Se w. Iw eigen value problem
SBW 2 (MI-M2) (MI-M2) Tw. a (MI-M2) -> SBW is aligned with MI-M
$\Longrightarrow \omega : S_{\omega}^{-1}(m_1 - m_2) = (\sum_{i} \sum_{j})^{-1}(m_1 - m_2)$
2000

سؤال پنج

با توجه به شیب خطهای به دست آمده از قسمت قبل جهتهای به دست آمده را همراه با دادهها رسم می کنیم. نقاط قرمز مربوط به $y_i=1$ و نقاط بنفش مربوط به کلاس $y_i=1$ هستند.

سؤال شش

الف

برای رسم نمدار مشابه نمودار مثال از کتابخانه pandas و pandas استفاده شده است. متغییر (threshold) برای رسم نمدار مشابه نمودار مثال از کتابخانه pandas و pandas و بیشتر از 0.0 شود در نمودار با رنگ قرمز رسم مقداری است که در آن دقت طبقه بندی با زیر مجموعه به دست آمنده بیشتر از 0.0 شود در نمودار با رنگ قرمز رسم شده است. تیکهای محور 0.0 نیز لیست بازگردانده شده از متد forward میباشند. این نمودار در شکل 0.0 آورده شده است.

شكل ١: نتايج اجراى الگوريتم SFS

ں

این قسمت شباهت زیادی به بخش الف دارد. فقط برای به دست آوردن زیرمجموعه فیچرها از تابع delete از کتبخانه numpy استفاده می کنیم تا بردارهای x test را بسازیم.

نمودار رسم شده نیز مانند بخش قبل میباشد و تنها تفاوت در به دست آوردن مقدار th میباشد که باید از انتها به ابتدا لوپ زد و مقدار بهینه ترشهولد را به دست آورد. نمودار خواسته شده در شکل ؟؟ نشان داده شده است.

شكل ٢: نتايج اجراى الگوريتم SBS