Applied Deep Learning and Generative Models in

Healthcare

Session 4: RNNs and Transformers

Date: Feb 01 2025

Instructor: Mahmoud E. Khani, Ph.D.

Learning goals

- Basics first: feed-forward networks, recurrent networks, attention
- Then key methods used in NLP in 2025: transformers, encoder-decoder models, pretraining, post-training (RLHF, SFT), efficient adaptation, model interpretability, language model agents, etc.

We use language models every day!

 Language modeling is the task of predicting what word comes next!

Language modeling

 Given a sequence of words, compute the probability distribution of the next word:

$$P(\boldsymbol{x}^{(t+1)}|\ \boldsymbol{x}^{(t)},\dots,\boldsymbol{x}^{(1)})$$

where $oldsymbol{x}^{(t+1)}$ can be any word in the vocabulary $V = \{oldsymbol{w}_1, ..., oldsymbol{w}_{|V|}\}$

$$P(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(T)}) = P(\mathbf{x}^{(1)}) \times P(\mathbf{x}^{(2)} | \mathbf{x}^{(1)}) \times \dots \times P(\mathbf{x}^{(T)} | \mathbf{x}^{(T-1)}, \dots, \mathbf{x}^{(1)})$$

$$= \prod_{t=1}^{T} P(\mathbf{x}^{(t)} | \mathbf{x}^{(t-1)}, \dots, \mathbf{x}^{(1)})$$

This is what the LM provides

Language modeling applications

- Speech recognition
- Handwriting recognition
- Machine translation
- Summarization
- Dialogue
- Authorship identification
- Spelling/grammar correction
- ChatGPT is an LM!

Language modeling with neural networks

A neural probabilistic language model (Y. Bengio, et

al.)

Fixed window is small

No window is large enough

We need a neural architecture that can process any length input

Recurrent neural networks

- Apply the same weights W repeatedly
- Input can be of any length!

A simple RNN language model

output distribution

$$\hat{m{y}}^{(t)} = \operatorname{softmax}\left(m{U}m{h}^{(t)} + m{b}_2\right) \in \mathbb{R}^{|V|}$$

hidden states

$$oldsymbol{h}^{(t)} = \sigma \left(oldsymbol{W}_h oldsymbol{h}^{(t-1)} + oldsymbol{W}_e oldsymbol{e}^{(t)} + oldsymbol{b}_1
ight)$$

 $\boldsymbol{h}^{(0)}$ is the initial hidden state

word embeddings

$$oldsymbol{e}^{(t)} = oldsymbol{E} oldsymbol{x}^{(t)}$$

words / one-hot vectors $oldsymbol{x}^{(t)} \in \mathbb{R}^{|V|}$

RNN LMs

Advantages

- The process any length!
- Can use information from previous steps
- Model size does not increase for longer input context
- Same weights applied on every timestep

Disadvantages

- Slow
- Difficult to access information from many steps back

- Get a big corpus of text, i.e., sequence of $m{x}^{(1)}, \dots, m{x}^{(T)}$
- Feed into RNN, compute output distribution $\hat{m{y}}^{(t)}$
 - Predict probability dist of every word, given words so far
- Loss function is cross-entropy between predicted probability $\hat{y}^{(t)}$, and the true next word $y^{(t)}$

$$J^{(t)}(\theta) = CE(\boldsymbol{y}^{(t)}, \hat{\boldsymbol{y}}^{(t)}) = -\sum_{w \in V} \boldsymbol{y}_w^{(t)} \log \hat{\boldsymbol{y}}_w^{(t)} = -\log \hat{\boldsymbol{y}}_{\boldsymbol{x}_{t+1}}^{(t)}$$

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} J^{(t)}(\theta) = \frac{1}{T} \sum_{t=1}^{T} -\log \hat{\boldsymbol{y}}_{\boldsymbol{x}_{t+1}}^{(t)}$$

Training the parameters of RNNs

Backpropagation through time

Question: How do we calculate this?

Answer: Backpropagate over timesteps i = t, ..., 0, summing gradients as you go. This algorithm is called "backpropagation through time" [Werbos, P.G., 1988, Neural Networks 1, and others]

$$\frac{\partial J^{(t)}}{\partial \mathbf{W}_{h}} = \sum_{i=1}^{t} \frac{\partial J^{(t)}}{\partial \mathbf{W}_{h}} \Big|_{(i)} \frac{\partial \mathbf{W}_{h}|_{(i)}}{\partial \mathbf{W}_{h}}$$
$$= \sum_{i=1}^{t} \frac{\partial J^{(t)}}{\partial \mathbf{W}_{h}} \Big|_{(i)}$$

Generating with an RNN language model

Vanishing gradients in RNNs

Why is vanishing gradient a problem?

Gradient signal from far away is lost because it's much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.

Neural machine translation

Neural machine translation was an early big success of Neural NLP

https://kiswahili.tuko.co.ke/

Malawi yawapoteza mawaziri 2 kutokana na maafa ya COVID-19

TUKO.co.ke imefahamishwa kuwa waziri wa serikali ya mitaa Lingson Belekanyama na mwenzake wa uchukuzi Sidik Mia walifariki dunia ndani ya saa mbili tofauti.

Malawi loses 2 ministers due to COVID-19 disaster

TUKO.co.ke has been informed that local government minister Lingson Belekanyama and his transport counterpart Sidik Mia died within two separate hours.

Sequence to sequence modeling

- The general notion here is an encoder-decoder model
 - One neural network takes input and produces a neural representation
 - Another network produces output based on that neural representation
 - Many NLP tasks can be phrased as sequence-to-sequence:
 - Summarization
 - Dialogue
 - Code generation

Training a sequence to sequence model

Seq2seq is optimized as a single system. Backpropagation operates "end-to-end".

The bottleneck problem in RNNs

Problems with this architecture?

Linear interaction distance

- O(sequence length) steps for distant word pairs to interact means:
 - Hard to learn long-distance dependencies (because gradient problems!)
 - Linear order of words is "baked in"; we already know linear order isn't the right way to think about sentences...

Issue: Lack of parallelizability

- Forward and backward passes have O(sequence length) unparallelizable operations
 - GPUs can perform a bunch of independent operations at once!
 - BUT! future RNN hidden states can't be computed in full before past RNN hidden states have been computed

Numbers indicate min # of steps before a state can be computed

Attention

- Attention provides a solution to the bottleneck problem!
- Core idea: on each step of the decoder, use direct connection to the encoder to focus on a particular part of the source sequence!

Attention is weighted averaging

 In attention, the query matches all keys softly, to a weight between 0 and 1. The key's values are multiplied by the weights and summed!

 On each step of the decoder, use direct connection to the encoder to focus on a particular part of the source sequence.

Decoder RNN

Decoder RNN

Do we need recurrence at all?

- Abstractly: Attention is a way to pass information from a sequence (x) to a neural network input. (ht)
 - This is also exactly what RNNs are used for to pass information!
 - Can we just get rid of the RNN entirely? Maybe attention is just a better way to pass information!
 - The building block we need is Self Attention!
 - So far we saw cross-attention!

Self-attention: Keys, Queries, Values!

Let $w_{1:n}$ be a sequence of words in vocabulary V, like Zuko made his uncle tea.

For each w_i , let $x_i = Ew_i$, where $E \in \mathbb{R}^{d \times |V|}$ is an embedding matrix.

1. Transform each word embedding with weight matrices Q, K, V , each in $\mathbb{R}^{d\times d}$

$$q_i = Qx_i$$
 (queries) $k_i = Kx_i$ (keys) $v_i = Vx_i$ (values)

2. Compute pairwise similarities between keys and queries; normalize with softmax

$$\mathbf{e}_{ij} = \mathbf{q}_i^{\mathsf{T}} \mathbf{k}_j$$
 $\qquad \mathbf{\alpha}_{ij} = \frac{\exp(\mathbf{e}_{ij})}{\sum_{j'} \exp(\mathbf{e}_{ij'})}$

3. Compute output for each word as weighted sum of values

$$o_i = \sum_i \alpha_{ij} v_i$$

But there is no inherent order in SA!

- Since self-attention doesn't build in order information, we need to encode the order of the sentence in our keys, queries, and values
- Consider representing each sequence index as a vector

 $p_i \in \mathbb{R}^d$, for $i \in \{1, 2, ..., n\}$ are position vectors

$$\widetilde{\boldsymbol{x}}_i = \boldsymbol{x}_i + \boldsymbol{p}_i$$

In deep self-attention networks, we do this at the first layer! You could concatenate them as well, but people mostly just add...

Sinusoidal position representation to add order

- Sinusoidal position representations: concatenate sinusoidal functions of varying periods
 - Periodicity indicates that maybe "absolute position" isn't as important
 - can extrapolate to longer sequences as periods restart!

$$p_{i} = \begin{pmatrix} \sin(i/10000^{2*1/d}) \\ \cos(i/10000^{2*1/d}) \\ \vdots \\ \sin(i/10000^{2*\frac{d}{2}/d}) \\ \cos(i/10000^{2*\frac{d}{2}/d}) \end{pmatrix}$$

But there are not non-linearities in SA!

 Easy fix: add a feed-forward network to post-process each output vector.

```
m_i = MLP(\text{output}_i)
= W_2 * \text{ReLU}(W_1 \text{ output}_i + b_1) + b_2
```


Put everything together

Position representation:

 Specify the sequence order, since self-attentiis an unordered function of its inputs.

Nonlinearities

 Frequently implemented as a simple feedforward network.

More to come next session!

• Encoder-decoder transformer!