ESc201: Introduction to Electronics

Number System and Logic Gates

Amit Verma
Dept. of Electrical Engineering
IIT Kanpur

Binary Addition (recap)


```
1 0
__0 __1__
_1 __1__
```



```
101
<u>110</u>
1011
```

Complement of a binary number (recap)

1's complement of n-bit number x is 2ⁿ -1 -x

2's complement of n-bit number x is 2ⁿ -x

1's complement of 1011 ?
$$2^4 - 1 - 1011$$
 $1111 - 1011 = 0100$

1's complement is simply obtained by flipping a bit (changing 1 to 0 and 0 to 1)

0110010

2's complement of
$$1010 = 1$$
's complement of $1010+1$
= $0101+1=0110$

2's complement of 110010 =

Leave all least significant 0's as they are, leave first 1 unchanged and then flip all subsequent bits

001110

 $1011 \rightarrow 0101$

 $101101100 \rightarrow 010010100$

Arithmetic Including Negative Numbers

- A digital system has finite number of bits
- For n bits available, 2ⁿ unique numbers can be represented
- There is need to be able to represent negative number
- We would like a link between negative and positive number
 - Likely to make the math easy
- We would like to have a unique representation of zero
- We would like to do arithmetic (addition and subtraction)
- Positive and negative numbers are generated during arithmetic operations
- Finite size available to represent numbers will bring in constraints
- But we want to optimise as much as possible within the constraints

Representing Positive and Negative Numbers

Extra bit needed to carry sign information "MSB" is often the sign bit

Sign bit = 0 represents non-negative nos.
Sign bit = 1 represents negative numbers

decimal	Signed Magnitude	
0	0000	
1	0001	
2	0010	
3	0011	nagnitude
4	0100	ıgni
5	0101	
6	0110	
7	0111	
-0	1000	
-1	1001	
-2	1010	
-3	1011	ituc
-4	1100	magnitude
-5	1101	Ē
-6	1110	
-7	1111	,

Arithmetic with 2's Complement

2's complement representation of numbers with n bits: b_{n-1} b_{n-2} b_{n-3} ... b_2 b_1 b_0

- There are n bits; 2ⁿ unique numbers can be represented
 - Zero, 2^{n-1} -1 positive and 2^{n-1} negative numbers are represented
- Place value based binary representation / for LSB / for MS
 - Weights for bits $(b_0, b_1, b_2, ..., b_{n-2}, b_{n-1})$: $(+2^0, +2^1, +2^2 ... +2^{n-2}, -2^{n-1})$
 - All positions have positive weights, except MSB (bn-1) which is negative
- The negative of a number A is represented by its 2's complement
 - Negative of the negative of the number is the number itself
- To evaluate A B, one can following the following algorithm
 - Find -B by taking 2' complement of B
 - Then $\mathbf{A} \mathbf{B} = \mathbf{A} + (-\mathbf{B}) = \mathbf{A} + (2's \text{ complement of } \mathbf{B})$

Example

Adding or subtracting numbers with addition operation alone
To get a negative number, 2's complement of positive number is taken

2's complement is 0011 = 3

2's complement is 0111 = 7

8

Boolean Algebra

Algebra on Binary numbers

A variable x can take two values {0,1} 0

Basic operations:

AND:
$$y = x_1 . x_2$$

y is 1 if and only if both x_1 and x_2 are 1, otherwise zero

Basic operations:

OR:
$$y = x_1 + x_2$$

y is 1 if either x_1 or x_2 is 1. y=0 if and only if both variables are zero

NOT:
$$y = \overline{x}$$

$$0 \quad 1$$

$$1 \quad 0$$

Boolean Algebra

Basic Postulates

P1.a:
$$x + 0 = x$$
 P1.b: $x \cdot 1$ P2.a: $x + y = y + x$ P2.b: $x \cdot 1$

$$0 = x$$
 P1.b:

P1.b:
$$x \cdot 1 = x$$

P2.b:
$$x \cdot y = y \cdot x$$
 Commutative

P3.b:
$$x+y.z = (x+y).(x+z)$$
Distributive

P3.b:
$$x+y.z = 0$$

P4.b: $x \cdot x = 0$

Complement

P4.a:
$$x + x = 1$$

T1.a:
$$x + x = x$$

T2.a: $x + 1 = 1$

P3.a: x.(y+z) = x.y+x.z

T1.b:
$$x \cdot x = x$$

T3.a:
$$(\bar{x}) = x$$

T4.a: $x + (y+z) = (x+y)+z$

T4.b:
$$x \cdot (y.z) = (x.y).z$$

T5.b: $(x.y) = x + y$

T5.b:
$$\overline{(x.y)} = \overline{x} + \overline{y}$$
 (D
T6.b: $x.(x+y) = x$

T5.a:
$$\frac{x + (y+z) = (x+y)+z}{(x+y)} = \frac{1}{x} \cdot \frac{1}{y}$$
 (DeMorgan T6.a: $\frac{x + x \cdot y}{x + x \cdot y} = \frac{1}{x}$ (DeMorgan T6.b: $\frac{1}{x} \cdot \frac{1}{x} \cdot \frac{1}{y} \cdot \frac{1}{y}$

T2.b:
$$x \cdot 0 = 0$$
T4.b: $x \cdot (y.z) = 0$
T5.b: $(x.y) = 0$

$$x \cdot (y.z) = (x.y) = x$$

Proving Theorems P1.a: x + 0 = x

$$x + 0 = x$$

P1.b:
$$x \cdot 1 = x$$

$$x + y = y + x$$

$$A \cdot I = A$$

$$x + y = y + x$$

P2.a:
$$x + y = y + x$$
 P2.b: $x \cdot y = y \cdot x$

$$x.(y+z) = x.y+x.z$$

P3.a:
$$x.(y+z) = x.y+x.z$$
 P3.b: $x+y.z = (x+y).(x+z)$

P4.a:
$$x + \bar{x} = 1$$

P4.b:
$$x \cdot \bar{x} = 0$$

Prove T1.a: x + x = x

$$x + x = (x+x). 1 (P1.b)$$

Prove T1.b:
$$x \cdot x = x$$

$$x \cdot x = x \cdot x + 0$$
 (P1.a)

$$= (x+x). (x+x) (P4.a)$$

$$= x.x + x.x \quad (P4.b)$$

$$= x + x.x \quad (P3.b)$$

$$= x \cdot (x + x)$$
 (P3.a)

$$= x + 0$$
 (P4.b)

$$= x . 1 (P4.a)$$

$$= x$$
 (P1.a)

$$= x (P1.b)$$

How do we get the chocolate?

Design Flow

$$f = x.y.z + x.y.z + x.y.z + x.y.z$$

$$\Rightarrow$$
 f = $\overline{x} \cdot \overline{z} + x \cdot z$

