Regressione lineare semplice

La regressione lineare è un metodo statistico che permette di studiare la relazione tra due variabili quantitative. In particolare, la regressione lineare semplice permette di studiare la relazione tra una variabile indipendente X e una variabile dipendente Y.

La X viene detta indipendente in quanto non dipende da altre variabili, mentre la Y viene detta dipendente in quanto dipende dalla X nel modello.

Il modello di regressione lineare semplice è definito come:

$$Yy = \beta_0 + \beta_1 x + \epsilon$$

Dove:

- y è la variabile dipendente, detta di RISPOSTA
- x è la variabile indipendente, detta di INPUT
- Due coefficienti costanti di regressione:
 - $\circ \;\; eta_0$ è l'intercetta, ovvero il valore di Y quando X=0
 - \circ eta_1 è il coefficiente angolare, ovvero la variazione di Y per unità di variazione di X
- ϵ è l'errore casuale, con media 0

nota: da qui in poi assumiamo che l'errore causale abbia distribuzione normale con media zero e varianza σ^2 .

Stima dei coefficienti di regressione

I valori dei coefficienti di regressione β_0 e β_1 vengono stimati a partire dai dati.

Supponiamo di osservare le risposte y_i relativa a certi valori di ingresso x_i per i=1,2,...,n.

Quello che voglamo fare è trovare i valori di β_0 e β_1 che minimizzano la somma dei quadrati degli scarti tra i valori osservati e i valori predetti dal modello.

Quindi minimizzare la funzione:

$$\sum_{i=1}^n (y_i-eta_0-eta_1x_i)^2$$

Dove:

- y_i è il valore osservato della variabile dipendente, quindi il valore della y dei dati che abbiamo a disposizione
- $\beta_0 + \beta_1 x_i$ è il valore della funzione della retta dalla quale vogliamo minimizzare la distanza.

Nel calcolo usiamo i quadrati poichè vogliamo penalizzare maggiormente gli errori più grandi.

Per trovare i valori di β_0 e β_1 che minimizzano la funzione, si calcolano le derivate parziali rispetto a β_0 e β_1 e si imposta il risultato uguale a \$0, così facendo otteniamo le seguenti formule per la stima dei coefficienti:

$$\hat{eta}_1 = rac{\sum_{i=1}^n x_i y_i - n ar{x} ar{y}}{\sum_{i=1}^n (x_i)^2 - n ar{x}^2}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Con R possiamo stimare i coefficienti di regressione con la funzione lm():

$$model \leftarrow lm(y \sim x, data = dataset)$$

Questa funzione ha come output un oggetto di classe 1m che contiene tutte le informazioni relative al modello di regressione lineare stimato.

Inferenza statsitica sul coefficiente angolare

Consideriamo sempre un modello di regressione lineare semplice:

$$Y = \beta_0 + \beta_1 x + \epsilon$$

Un ipotesi che è molto importante verificare è se il coefficiente angolare β_1 è diverso da zero. Questo ci permette di capire se c'è una relazione lineare tra X e Y; vediamo che se $eta_1=0$ allora la retta di regressione è orizzontale si semplifica a $y=eta_0$ togliendo la relazione di X nell'equazione e di fatto diventando indipendente da essa.

Per verificare se β_1 è diverso da zero, possiamo fare un test di ipotesi. L'ipotesi nulla è che $\beta_1=0$, mentre l'ipotesi alternativa è che $\beta_1\neq 0$.

Il test in questione è:

H_0	H_1	Statistica di test	Rifiuto H_0 se
$eta_1=0$	$eta_1 eq 0$	$egin{aligned} st &= \sqrt{rac{(n-2)S_{XX}}{SS_R}} \cdot eta_1 \ & ext{con} \ S_{XX} &= \sum_{i=1}^n (x_i)^2 - nar{x}^2 \ ext{e} \ SS_R &= \sum_{i=1}^n (y_i - eta_0 - eta_1 x_i)^2 \end{aligned}$	$ st >t_{rac{lpha}{2},n-2}$

La funzione S_{XX} definisce come sono distribuiti i valori di X rispetto alla loro media media.

La funzione SS_R (Sum of Squares for Regression) definisce la somma dei quadrati dei residui, ovvero la somma dei quadrati delle differenze tra i valori osservati e i valori predetti dal modello.

Coefficiente di determinazione

Supponiamo di voler esprimere la **variabilità** o dispersione dell'inisieme delle risposte Y_1, \ldots, Y_n ottenute dagli ingressi x_1, \ldots, x_n . Una misura di variabilità è data da:

$$S_{YY}=\sum_{i=1}^n(y_i-ar{y})^2$$

Una quantità che rappresenta la variabilità delle risposte rispetto alla loro media. Come si può notare se $Y_1=Y_2=\cdots=Y_n$ allora $S_{YY}=0$. La variabilità viene provocata da due fattori:

- 1. Dalle x_i che non sono tutte uguali e quindi fanno variare i valori di Y
- 2. la dispersione data dall'errore casuale che ha come varianza σ^2 .

Quindi ci interessa quantificare quale parte della variabilità totale è spiegata dalla variabilità delle x_i e quale parte è spiegata dall'errore casuale, una volta tenuto conto degli ingressi.

Quindi possiamo scrivere:

$$S_{YY} = \underbrace{SS_R}_{egin{subarray}{c} ext{Varianza} \ ext{Residua} \ \end{array}} + \underbrace{\left(S_{YY} - SS_R
ight)}_{egin{subarray}{c} ext{Varianza} \ ext{Spiegata} \ \end{array}}$$

La STATISTICA ${\cal R}^2$ è definita come:

$$R^2=rac{S_{YY}-SS_R}{S_{YY}}\in[0,1]$$

che prende il nome di **coefficiente di determinazione** e rappresenta la percentuale di variabilità delle risposte spiegata dal modello di regressione lineare.

Il valore di \mathbb{R}^2 è sempre compreso tra 0 e 1; valori vicini a 1 indicano che il modello di regressione lineare spiega una grande parte della variabilità delle risposte, mentre valori vicini a 0 indicano che il modello di regressione lineare spiega una piccola parte della variabilità delle risposte.

Possiamo usare questo valore per decidere quanto il nostro modello sia buono, se \mathbb{R}^2 è vicino a 1 allora il modello è buono, altrimenti se è vicino a 0 allora il modello non è buono.

In altri termini il modello di regressione lineare interpreta bene i dati se riesce a spiegare una grande parte della variabilità delle risposte.

Tabella formulario

$$Yy = \beta_0 + \beta_1 x + \epsilon$$

Dove:

- y è la variabile dipendente, detta di RISPOSTA
- x è la variabile indipendente, detta di INPUT
- Due coefficienti costanti di regressione:

- o $\,eta_0\,$ è l'intercetta, ovvero il valore di Y quando X=0
- $\circ \;\; eta_1$ è il coefficiente angolare, ovvero la variazione di Y per unità di variazione di X
- ϵ è l'errore casuale, con media 0

nota: da qui in poi assumiamo che l'errore causale abbia distribuzione normale con media zero e varianza σ^2 .

$$\hat{eta}_1 = rac{\sum_{i=1}^n x_i y_i - nar{x}ar{y}}{\sum_{i=1}^n (x_i)^2 - nar{x}^2} \ \hat{eta}_0 = ar{y} - \hat{eta}_1ar{x}$$

H_0	H_1	Statistica di test	Rifiuto H_0 se
$eta_1=0$	$eta_1 eq 0$	$egin{aligned} st &= \sqrt{rac{(n-2)S_{XX}}{SS_R}} \cdot eta_1 \ & ext{con} \ S_{XX} &= \sum_{i=1}^n (x_i)^2 - nar{x}^2 \ ext{e} \ SS_R &= \sum_{i=1}^n (y_i - eta_0 - eta_1 x_i)^2 \end{aligned}$	$ st >t_{rac{lpha}{2},n-2}$

$$S_{YY}=\sum_{i=1}^n (y_i-ar{y})^2$$

Variabilità

$$S_{YY} = \underbrace{SS_R}_{\substack{ ext{Varianza} \\ ext{Residua}}} + \underbrace{\left(S_{YY} - SS_R
ight)}_{\substack{ ext{Varianza} \\ ext{Spiegata}}}$$

Coefficiente di determinazione

$$R^2 = \frac{S_{YY} - SS_R}{S_{YY}} \in [0,1]$$

Se \mathbb{R}^2 è vicino a 1 allora il modello è buono, altrimenti se è vicino a 0 allora il modello non è buono.