

planetmath.org

Math for the people, by the people.

proof of pigeonhole principle

 ${\bf Canonical\ name} \quad {\bf ProofOfPigeonholePrinciple}$

Date of creation 2013-03-22 13:31:09 Last modified on 2013-03-22 13:31:09

Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 8

Author Wkbj79 (1863)

Entry type Proof Classification msc 03E05 *Proof.* It will first be proven that, if a bijection exists between two finite sets, then the two sets have the same number of elements. Let S and T be finite sets and $f: S \to T$ be a bijection. The claim will be proven by induction on |S|.

If |S| = 0, then $S = \emptyset$, and $f : \emptyset \to T$ can only be surjective if $T = \emptyset$.

Assume the statement holds for any set S with |S| = n. Let |S| = n + 1. Let $x_1, \ldots, x_{n+1} \in S$ with $S = \{x_1, \ldots, x_{n+1}\}$. Let $R = S \setminus \{x_{n+1}\}$. Then |R| = n.

Define $g: R \to T \setminus \{f(x_{n+1})\}$ by g(x) = f(x). Since $R \subset S$, $f(x) \in T$ for all $x \in R$. Thus, to show that g is well-defined, it only needs to be verified that $f(x) \neq f(x_{n+1})$ for all $x \in R$. This follows immediately from the facts that $x_{n+1} \notin R$ and f is injective. Therefore, g is well-defined.

Now it need to be proven that g is a bijection. The fact that g is injective follows immediately from the fact that f is injective. To verify that g is surjective, let $y \in T \setminus \{f(x_{n+1})\}$. Since f is surjective, there exists $x \in S$ with f(x) = y. Since $f(x) = y \neq f(x_{n+1})$ and f is injective, $x \neq x_{n+1}$. Thus, $x \in R$. Hence, g(x) = f(x) = y. It follows that g is a bijection.

By the induction hypothesis, $|R| = |T \setminus \{f(x_{n+1})\}|$. Thus, $n = |R| = |T \setminus \{f(x_{n+1})\}| = |T| - 1$. Therefore, |T| = n + 1 = |S|.