a) à

AMENDMENTS TO THE CLAIMS:

Please amend the claims as follows:

Claim 1. (Original) Process for obtaining hydrofluoroethers of formula (I):

$$A-(R_f)_{n0}-CF(R_{f1})-O-R_h$$
 (I)

wherein:

n0 is zero or 1;

R_f is a bivalent radical:

C₁-C₂₀, preferably C₂-C₁₂, linear or branched (per)fluoroalkylene, optionally containing one or more oxygen atoms;

-CFW'O-(R_{f2})-CFW-, wherein W and W', equal or different, are F, CF₃; R_{f2} is a (per)fluoropolyoxyalkylene containing one or more of the following units, statistically distributed along the chain, (C_3F_6O); (CFWO) wherein W is as above; (C_2F_4O), (CF₂(CF₂)_zCF₂) wherein z is an integer equal to 1 or 2; (CH₂CF₂CF₂);

 R_{f1} is F or a C_1 - C_{10} linear or branched (per)fluoroalkyl or (per)fluorooxyalkyl radical; R_h is a C_1 - C_{20} , preferably C_1 - C_{10} linear, branched when possible, saturated or unsaturated when possible alkyl, or C_7 - C_{20} alkylaryl, optionally containing heteroatoms selected from F, O, N, S, P, Cl; and/or functional groups preferably selected from $-SO_2F$, $-CH = CH_2$, $-CH_2CH = CH_2$ and NO_2 ;

A = F, $(R_{h2}O)$ -CF (R_{f4}) -, -C(O)F, wherein

- R_{h2}, equal to or different from R_h, has the R_h meanings;
- R_{f4}, equal to or different from R_{f1}, has the R_{f1} meanings;

wherein a mono- or bifunctional carbonyl compound of formula:

$$B-R_f-C(O)R_{f1}$$
 (IV)

wherein B is F or $-C(O)R_{f4}$, R_f , R_{f1} and R_{f4} being as above,

is reacted with at least one equivalent of a fluoroformate of formula:

$$R-OC(O)F$$
 (III)

wherein $R - R_h$ or R_{h2} as above;

in the presence of an ion fluoride compound (catalyst) and of a dipolar aprotic organic compound, liquid and inert under the reaction conditions.

Claim 2. (Original) A process according to claim 1, wherein the (C_3F_6O) unit of R_{f2} can be $(CF_2CF(CF_3)O)$ or $(CF(CF_3)CF_2O)$.

Claim 3. (Currently Amended) A process according to claims 1-2 claim 1, wherein in formula (I) R_{f1} and R_{f4} of A, independently the one from the other, are F, CF_3 .

Claim 4. (Currently Amended) A process according to claims 1-3 claim 1, wherein when R_f of formula (I) is a (per)fluoroalkylene, R_f is selected from the following groups: $-CF_2$ -, $-CF_2CF_2$ -, $-CF_2CF_2$ -, $-CF_2(CF_3)CF$ -; when R_f contains one oxygen atom it preferably is $-CF_2(OCF_3)CF$ -.

Claim 5. (Currently Amended) A process according to claims 1-3 claim 1, wherein R_{f2} is a perfluoropolyoxyalkylene chain having number average molecular weight from 66 to 12,000, preferably from 100 to 5,000, more preferably from 300 to 2,000.

Claim 6. (Original) A process according to claim 5, wherein when R_{f2} is a perfluorooxyalkylene chain it is preferably selected from the following structures:

- a) $-(CF_2CF_2O)_m(CF_2O)_n(CF_2CF(CF_3)O)_p(CF(CF_3)O)_q-;$
- b) $-(CF_2O)_n(CF_2CF(CF_3)O)_p(CF(CF_3)O)_q$;
- c) $-(CF_2CF_2O)_m(CF_2O)_n$;

wherein:

m is comprised between 0 and 100 extremes included;

n is comprised between 0 and 50 extremes included;

p is comprised between 0 and 100 extremes included;

q is comprised between 0 and 60 extremes included;

m+n+p+q>0 and the number average molecular weight of R_{f2} being in the above limited.

Claim 7. (Original) A process according to claim 6, wherein R_{f2} is a perfluorooxyalkylene c), and the m/n ratio ranges from 0.1 to 10, n being different from zero and the number average molecular weight comprised within the above limits.

Claim 8. (Currently Amended) A process according to claims 1-7 claim 1, wherein in formula (I) R_h and R_{h2} having the following meansings meanings: -CH₃, -CH₂CH₃, -CH₂CH₃, -CH₂CH₂CH₃.

Claim 9. (Currently Amended) A process according to claims 1-8 claim 1, wherein the ion fluoride compound is any compound capable to generate ion fluorides when, in the presence of dipolar aprotic solvents, at temperatures from 20 °C up to 200 °C, said

TECH/232574.1

dipolar aprotic solvents being acetonitrile, dimethyl-formamide, glyme, ethylene polyoxides dimethylethers (PEO-dimethylethers).

Claim 10. (Original) A process according to claim 9, wherein the ion fluoride compound is selected from the group comprising metal fluorides, preferably alkaline or alkaline-earth metal fluorides; AgF; alkylammoniumfluorides, alkylphosphonium-fluorides, wherein the nitrogen and respectively the phosphor atom can be substituted with one or more C₁-C₈ alkyl groups, equal to or different from each other.

Claim 11. (Currently Amended) A process according to claims 9-10 claim 9, wherein the ion fluoride compound is CsF and KF.

Claim 12. (Currently Amended) A process according to claims 9-11 claim 9, wherein the catalyst is optionally supported.

Claim 13. A process according to claims 1-12 claim 1, wherein the catalyst amounts, expressed in % moles, are in the range 0.1% - 50% with respect to the mono- or bifunctional carbonyl compound of formula (IV).

TECH/232574.1 - 5 -