

Частина 1

• Подати граф через матрицю суміжності:

	А	В	С	D	E
Α	0	1	0	1	0
В	1	0	0	1	0
С	0	0	0	1	0
D	1	1	1	0	1
E	0	0	0	1	0

(ДЛЯ ОРГРАФА)

	Α	В	С	D	Е
Α	0	0	0	0	0
В	1	0	1	0	0
С	0	1	0	0	0
D	0	0	0	1	0
E	0	0	1	0	0

 Нехай для заданого графа здійснено зображений пошук в глибину (біля вершин - мітки часу).
Класифікувати вкзаані ребра: ребро дерева, пряме, зворотнє, перехресне

3. Пряме ребро (Forward Edge)

- Ребро з вершини и до **нащадка** v , який уже повністю оброблений.
- Не входить до дерева DFS, але веде "вниз".
- Формально: вершина v чорна, i ε нащадком u .
- За мітками часу:

$$tin[u] < tin[v] < tout[v] < tout[u]$$

4. Перехресне ребро (Cross Edge)

- Ребро між **різними гілками** DFS, або з правої гілки в ліву.
- Не з'єднує предка й нащадка.
- Формально: вершина v чорна, і не є нащадком u.
- За мітками часу:

$$tout[v] < tin[u] \quad \text{ago} \quad tout[u] < tin[v]$$

Колір вершин у DFS:

- Біла (white) ще не відвідана
- Cipa (gray) відкрита, але ще не завершено обробку
- Чорна (black) оброблена повністю

1. Ребра: **СС**, **FВ**

CG: ребро дерева (T)

FB: зворотнє (B)

2. Ребра **AE**, **GD**

AE: пряме(F)

GD: перехресне (C)

 Для заданого орграфа перлеічити його компоненти сильної зв'зяності:

Лек 11 с 48

Компоненти сильної зв'язності: {ABFCG} {D} {E}

 Для поданого дерева порядкової статистики визанчити ранг вказаного елемента:

(По факту якщо впорядкуємо ключі дерева у масив за зростанням то позиція шуканого елменту й буде його рангом: [1,6,8,11,13,15,17,22,25,27])

Ранг вузла 17/5: 7

 Для поданого дерева порядкової статистики вкажіть значення ключа елемента з рангом 5

[1,6,8,11,13,15,17,22,25,27] Елемент з рангом 5: 13

- Якою є чорна висота вузлів з наступними ключами зображеного червоно-чорного дерева
 - *Чорна висота* вузла х (*bh*(x), black-height) кількість чорних вузлів на шляху від вузла х (не рахуючи його самого) до листів; вона визначається однозначно.
 - Чорна висота дерева чорна висота його кореня.

1

Ключ 14: 2 Ключ 36: 1

2.

Ключ 10: 2 Ключ 38: 2

 Вкажіть послідовність вершни при прямому порядку обходу дерева (PREORDER)

[A,B,D,E,G,C,F,H,I]

 Вкажіть послідовність вершни при сметричному порядку обходу дерева(INORDER)

 $[\mathsf{D},\mathsf{B},\mathsf{E},\mathsf{G},\mathsf{A},\mathsf{C},\mathsf{H},\mathsf{F},\mathsf{I}]$

• !!! Чому дорівнює найкоротший шлях

(Я не впевнений за якими алгоритмами тут правильно шукати)

1. Is a->f

inf

2. Is a->b

-inf

 В яку комірку хеш таблиці потрапить значення за умови лінійного дослідження та допоміжної хеш функції h`(K)=K

1 JA UH	Тонжімо	леш-шуғ	GRADIE 77 I P) = A (
	10000000000	Control Carlot		V. CONT.						
_		2	3	4	F .	B	7	R	Q	10
0	1	- 6	9					0	- 0	_

h`(k)= k mod 11 35 mod 11=2 комірка 2 зайнята тому 35 буде у комірці 4 (i=2)

gon	(Тонокімо	хеш-фу	HIGHE TA (V) = K/						
0	1	2	3	4	5	6	7	8	9	10
	12		36	48		28	18	41		

h`(k)= k mod 11 25 mod 11=3 комірка 3 зайнята тому 35 буде у комірці 5 (i=2)

Чатсина 3

10. Які з дерев пошуку не містять додаткових полів з інформацією для балансування? **GPT**

а) червоно-чорне дерево
b) АВЛ-дерево
c) splay-дерево
d) В-дерево
11. Якою може бути максимальна кількість обертань при модифікації АВЛ-дерева? GPT
a) 1
b) 2
c) 3
d) 4
е) залежить від висоти дерева
12. Що з вказаного вірно для В-дерева? <mark>GPT</mark>
а) всі вузли містять однакову кількість ключів
b) значення ключів у вузлі впорядковані у неспадному порядку
с) всі неплисткові вузли мають однакову кількість потомків
d) всі значення ключів вузла не менші за ключі вузла-потомків