QUESTION 1

PART A

SCENARIO 1

Decision Vanables

X1 = \$ ASLAVS

X2 = # Bushmastes

7/3 = # M113s

Objective Function

Maximise 20x + 22x2 + 18x3

Constraints

Crew: 2x + x2 + 2x3 < 33

Soldies: 7x, + 9x2 + 11x2 < 165

Fled: 1, + 12 + 73 5 25

Nannegativity: X1, X2, X3 >0

SCENARIO 2

Same as above, with additional constraint:

×2 =5

PART B

See spreadsheet.

PART C

optimal solution for scenario 1:

$$x1 = 12$$
, $x2 = 9$, $x3 = 0$

area coverage = 438 sqkm

optimal solution for scenario 2:

$$x1 = 14$$
, $x2 = 5$, $x3 = 0$

area coverage = 390 sqkm

QUESTION 2

PART A

$$2ij = travel$$
 from i to j
Obj fundion = Minimise travel time
= $81_{12} + 131_{13} + 151_{14} + 101_{15} + 51_{13} + 151_{14} + 101_{15} + 51_{13} + 151_{14} + 101_{15} + 1$

I eliminated some route segments that will never be on an optimal path, in order to save computation time.

Constaints

Short vale: 2 + 2 + 2 + 2 + 2 + 2 + 2 = 1tal vale: 2 + 2 + 2 + 2 + 2 + 2 = 0Not flow: Note 2: 2 + 2 + 2 + 2 + 2 = 04: 2 + 2 + 2 + 2 + 2 = 05: 2 + 2 + 2 + 2 + 2 = 06: 2 + 2 + 2 + 2 + 2 = 07: 2 + 2 + 2 + 2 + 2 = 08: 2 + 2 + 2 + 2 = 08: 2 + 2 + 2 + 2 = 09: 2 + 2 + 2 + 2 = 0Nangativity: 2 = 0

PART B

See spreadsheet.

Optimal path is: 1, 5, 4, 6, 7, 10

PART C

Shortest travel time = 25

QUESTION 3

PART A

Xij = # cors sent from i to j

Objective function = Minimise transportation cost = $250 \chi_{15+1300} \chi_{18}$ + $700 \chi_{23}$ + $800 \chi_{25}$ + $800 \chi_{27}$ + $800 \chi_{32}$ + $1000 \chi_{37}$ + $1200 \chi_{38}$ + $400 \chi_{42}$ + $1900 \chi_{43}$ + $450 \chi_{45}$ + $800 \chi_{47}$ + $600 \chi_{52}$ + $900 \chi_{57}$ + $1800 \chi_{58}$ + $900 \chi_{65}$ + $1500 \chi_{68}$ + $1000 \chi_{72}$ + $900 \chi_{73}$ + $800 \chi_{75}$ + $1100 \chi_{78}$ + $1400 \chi_{82}$ + $1500 \chi_{65}$ + $1300 \chi_{87}$

2 X22 + X42 + X42 + X22 - X23 - X25 - X23 5 80 142+243+ 145+ 247=100 5 x15+ x25+ x45+ x65+ x75+ x85- x52- x52-265 + 268 = 60

PART B

See spreadsheet.

Minimum transportation cost = \$176,000

PART C

Number of cars transported out of ports:

Syd to Can = 80

Mel to Adel = 90

Mel to Alice = 10

Bris to Can = 20

Bris to Dar = 40

Number of cars transported out of demand cities:

Adel to Per = 10

Can to Alice = 30