最优控制复习整理

一、控制系统

1、控制系统的变量

<u>控制变量</u>:对系统起控制作用的变量,记作: $\mathbf{u} = (u_1, \cdots, u_p)^{\mathrm{T}}$

2、控制系统的描述

且标集:
$$M = \left\{ x(t_f) \middle| x(t_f) \in \mathbb{R}^n, N_1(t_f, x(t_f)) = 0, N_2(t_f, x(t_f)) \le 0 \right\}$$

<u>容许控制集</u>: $U = \{u(t) | u(t) \in \mathbb{R}^p, u(t)$ 是容许控制}

性能指标: Mayer 型:
$$J(\boldsymbol{u}(t)) = \Phi(t_f, \boldsymbol{x}(t_f))$$

Lagrange 型:
$$J(\boldsymbol{u}(t)) = \int_{t_0}^{t_f} F(t, \boldsymbol{x}(t), \boldsymbol{u}(t)) dt$$

Bolza 型:
$$J(\boldsymbol{u}(t)) = \Phi(t_f, \boldsymbol{x}(t_f)) + \int_{t_0}^{t_f} F(t, \boldsymbol{x}(t), \boldsymbol{u}(t)) dt$$

3、最优性

<u>最优控制</u>:最优控制问题有解时的 $\mathbf{u}^*(t), t \in [t_0, t_f]$

最优轨线: 最优控制问题有解时的 $\mathbf{x}^*(t), t \in [t_0, t_f]$

最优性能指标: 最优控制问题有解时的 $J^*(u) = J(u^*(\cdot))$

二、泛函极值问题

1、泛函和宗量

<u>泛函</u>: $J:\Omega \to \mathbb{R}, x(t) \mapsto J(x(t))$,其中 Ω 是容许函数集,称J是定义在 Ω 上的泛函 宗量: $x(t) \in \Omega$

2、函数间的距离

定义:
$$|\mathbf{x}^{(k)} - \mathbf{y}^{(k)}| = (\sum_{i=1}^{n} |x_i - y_i|^2)^{\frac{1}{2}}$$

k阶距离:
$$d_k(x,y) = \max \left\{ \sup_{t \in [t_0,t_f]} |x-y|, \sup_{t \in [t_0,t_f]} |x'-y'|, \cdots, \sup_{t \in [t_0,t_f]} |x^{(k)}-y^{(k)}| \right\}$$

3、极值

	条件	结果	极值	极值曲线
绝对(最)小/大	$\forall x \in \Omega$	$J(x^*) \le / \ge J(x)$	$J(x^*)^1$	$x^*(t)$
强相对极小/大	$\forall x \in \Omega, d(x, x^*) < \varepsilon$			
弱相对极小/大	$\forall x \in \Omega, d_1(x, x^*) < \varepsilon$			

¹ 对于同一个Ω和ε,强极大值≥弱极大值;强极小值≤弱极小值

三、泛函中的变分

1、变分与增量

宗量的变分: $\delta x = \delta x(t) = \overline{x}(t) - x(t)$

泛函的增量: $\Delta I(x) = I(x + \delta x) - I(x)$

泛函的变分: $\delta I(x) = L(x, \delta x)$, 其中 $L(x, \delta x)$ 是 $\Delta I(x)$ 关于 δx 的线性主部

2、泛函的连续性

若 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\exists d(x, x^*) < \delta$ 时, 有 $|J(x) - J(x^*)| < \varepsilon$, 则称泛函J在 x^* 处是连续的

3、变分的求法

$$\delta J(\mathbf{x}) = \frac{\partial}{\partial \alpha} J(\mathbf{x} + \alpha \delta \mathbf{x}) \Big|_{\alpha = 0}$$

4、泛函极值的必要条件

如果可微泛函J(x)在 $x_0(t) \in \Omega$ 上能取到极值,则 $\delta J(x_0) = 0$ 允许有角点 $t = \hat{t}$ 时,要求 $(F - F_x \hat{x})|_{t=\hat{t}-0} = (F - F_x \hat{x})|_{t=\hat{t}+0}$, $F_x|_{t=\hat{t}+0} = F_x|_{t=\hat{t}+0}$,

5、泛函极值的充分条件

如果二阶可微泛函J(x)在 $x_0(t) \in \Omega$ 上满足欧拉方程边值问题,且沿x,有 $F_{xx} > (<)0$,则 $x_0(t)$ 为J(x)的极小(大)值曲线

四、变分法求泛函极值

1、问题的基本分类

性能指标: Lagrange 型: $J(x) = \int_{t_0}^{t_f} F(t, x, \dot{x}) dt$ Bolza 型: $J(x) = \Phi(t, x)|_{t=t_f} + \int_{t_0}^{t_f} F(t, x, \dot{x}) dt$

终止时刻: 固定 $t_f = t_f^*$; 自由 $t_f \in \mathbb{R}$ 终端约束: 约束 $N(t,x)|_{t=t_f} = \mathbf{0}$ 或 $x|_{t=t_f} = \boldsymbol{\varphi}|_{t=t_f}$; 终端自由

条件约束: 约束G(t,x(t)) = 0; 无约束

2、泛函极值问题求解

- 1)得到(增广)泛函极值问题的 Euler 方程(组)、横截条件、边界条件
- 2) 求解 Euler 方程(组)
- 3)将解带入横截条件和边界条件,确定任意常数
- 4) 验证充分性

3、Euler 方程的变形

- 1) F = F(t,x), $F_x = 0$ 是函数方程, 不是微分方程;
- 2) $F = P(t,x) + Q(t,x)\dot{x}$, $P_x Q_t = 0$ 是函数方程, 不是微分方程;
- 3) $F = F(x, \dot{x}), F_x F_{x\dot{x}}\dot{x} F_{\dot{x}\dot{x}}\ddot{x} = 0$, 乘以 \dot{x} 得到 $F F_{\dot{x}}\dot{x} = C$;
- 4) $F = F(t, \dot{x}), F_{\dot{x}} = C_{\circ}$

4、各种条件

[1]约束的转化

	Lagrange 型问题	Bolza 型问题	
无约束问题	- 10	$J(\mathbf{x}) = \Phi(t, \mathbf{x}) _{t=t_f} + \int_{t_0}^{t_f} F(t, \mathbf{x}, \dot{\mathbf{x}}) dt$	
约束问题	$\tilde{J}(x) = \int_{t_0}^{t_f} [F(t, x, \dot{x}) + \lambda^{\mathrm{T}} G(t, x, \dot{x})] dt$	$\tilde{J}(x) = \Phi(t, x) _{t=t_f} + \mu^{\mathrm{T}} N(t, x) _{t=t_f}$ $+ \int_{t_0}^{t_f} [F(t, x, \dot{x}) + \lambda^{\mathrm{T}} G(t, x, \dot{x})] dt$	

[2]Lagrange 型问题

终止时间 固定 自由	
------------	--

终端值	终端已知	终端自由	终端自由	终端约束
Euler 方程组	$F_{x} - \frac{\mathrm{d}}{\mathrm{d}t} F_{\dot{x}} = 0$ $G = 0$			
初始条件	$x(t_0) = x_0$			
边界条件		$F_{\dot{x}} _{t=t_f}=0$		$\mathbf{x}_f = \boldsymbol{\varphi}(t_f)$
			$\left \left(F - F_{\dot{x}}^{\mathrm{T}} \dot{x} \right) \right _{t=t_f} = 0$	$\left[F + F_{\dot{x}}^{\mathrm{T}} (\dot{\boldsymbol{\varphi}} - \dot{x}) \right] \Big _{t=t_f} = 0$
			$(或F _{t=t_f}=0)$,
	(自由边	界条件)	(植	黄截条件)

[3]Bolza 型问题

终止时间	固定		自由	
终端值	终端已知	终端自由	终端自由	
Euler 方程组	$F_{x} - \frac{\mathrm{d}}{\mathrm{d}t} F_{\dot{x}} = 0$ $\mathbf{G} = 0$			
初始条件	$x(t_0) = x_0$			
边界条件		$F_{\dot{x}} _{t=t_f} = -(\Phi + \mu^{\mathrm{T}}N)_x _{t=t_f}$ $N _{t=t_f} = 0$		
			$\left[(\boldsymbol{\Phi} + \boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{N})_{t} + (\boldsymbol{\Phi} + \boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{N})_{x}^{\mathrm{T}} \dot{\boldsymbol{x}} + F \right]_{t=t_{f}} = 0$ $\left(\vec{\mathbf{g}} [(\boldsymbol{\Phi} + \boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{N})_{t} - F_{\dot{x}} \dot{\boldsymbol{x}} + F] \right _{t=t_{f}} = 0$	
	(自由边	界条件)	(横截条件)	

五、最优控制问题

1、最优控制问题的描述

性能指标: $J[u(t)] = \Phi\left(t_f, x(t_f)\right) + \int_{t_0}^{t_f} F(t, x, u) dt$

状态方程: $\dot{x} = f(t, x, u)$ 初始条件: $x(t_0) = x_0$

边界约束: $x(t_f) = x_f N|_{t=t_f} = 0 t_f$ 自由

2、变分法

构造 Hamilton 函数: $H(t, \mathbf{x}, u, \lambda) = F(t, \mathbf{x}, u) + \lambda^{\mathrm{T}} f(t, \mathbf{x}, u)$

得方程组: 状态方程: $\dot{x} = f(t, x, u) = \frac{\partial H}{\partial \lambda}$

辅助方程: $\dot{\lambda} = -\frac{\partial H}{\partial x}$

控制方程: $\frac{\partial H}{\partial u} = 0$

初始条件: $x(t_0) = x_0$

边界条件: $x(t_f) = x_f \lambda(t_f) = (\Phi + \mu^T N)_x |_{t=t_f}, N|_{t=t_f} = 0 [(\Phi + \mu^T N)_t + H]|_{t=t_f} = 0$

(特别地, 有 $H(t, \mathbf{x}, u, \boldsymbol{\lambda}) = H\left(t_f, \mathbf{x}(t_f), u(t_f), \lambda(t_f)\right) + \int_{t_f}^t \frac{\partial}{\partial s} H\left(s, \mathbf{x}(s), u(s), \boldsymbol{\lambda}(s)\right) ds$)

3、极大值原理

构造 Hamilton 函数: $H(t, \mathbf{x}, u, \lambda) = F(t, \mathbf{x}, u) + \lambda^{\mathrm{T}} f(t, \mathbf{x}, u)$

得方程组: 状态方程:
$$\dot{\mathbf{x}} = f(t, \mathbf{x}, u) = \frac{\partial H}{\partial x}$$

辅助方程:
$$\dot{\lambda} = -\frac{\partial H}{\partial x}$$

控制方程:
$$H(t, \mathbf{x}^*(t), u^*(t), \boldsymbol{\lambda}^*(t)) = \max_{u \in U} H(t, \mathbf{x}^*(t), u(t), \boldsymbol{\lambda}^*(t))$$

初始条件:
$$x(t_0) = x_0$$

边界条件:
$$x(t_f) = x_f \lambda(t_f) = (\Phi + \mu^T N)_x |_{t=t_f}, N|_{t=t_f} = 0 [(\Phi + \mu^T N)_t + H]|_{t=t_f} = 0$$

4、线性时间最优控制

线性系统:
$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}_n \boldsymbol{x}(t) + \boldsymbol{B}_{n \times m} \boldsymbol{u}(t), U = [-1,1]^m$$

性能指标:
$$J(\mathbf{u}) = -\int_0^t 1 ds = -t$$

最优控制:
$$J(\mathbf{u}^*) = \max_{\mathbf{u} \in U} J(\mathbf{u})$$

保证线性时间最优控制的几个定理:

Alaogu 定理:
$$\mathbf{u}_n, u \in U, n = 1, 2, \cdots$$
, 则存在子列 $\mathbf{u}_{n_k} \stackrel{\circ}{\to} u$

Bang-Bang: 若控制
$$\mathbf{u}=(u_1,\cdots,u_m)^{\mathrm{T}}$$
满足 $|u_k|=1,k=1,2,\cdots,m$

定理:对于已知初值的线性时间最优控制,一定存在一个 Bang-Bang 达到最优,且最优极点是 Bang-Bang 的

六、可控性和可观性

1、可控性

定义:
$$\dot{x}(t) = Ax(t) + Bu(t)$$
, 如果 $\forall x_0$, \exists 分段连续 u , 使 $x(0) = x_0, x(t_0) = 0$, 称系统在 t_0 可控充要条件: $\exists T > 0$, s. t. $W_c(0,T) = \int_0^T \mathrm{e}^{-As} B B^{\mathrm{T}} \mathrm{e}^{-A^{\mathrm{T}} s} \mathrm{d} s$ 非奇异

矩阵
$$P_c = (B, AB, \cdots, A^{n-1}B)$$
秩为 n

2、可观性

定义:
$$\dot{x}(t) = Ax(t) + Bu(t), y(t) = Cx(t)$$
, 如果 $\forall u$, $\exists y(t)$, 使 $x(0)$ 由 $y(t)$ 唯一确定,称系统可观充要条件: $\exists T > 0$, s. t. $W_o(0,T) = \int_0^T e^{A^Ts} C^T C e^{As} ds$ 非奇异

矩阵
$$T^{\mathrm{T}} = (C^{\mathrm{T}}, A^{\mathrm{T}}C^{\mathrm{T}}, \cdots, (A^{\mathrm{T}})^{n-1}C^{\mathrm{T}})$$
或 $T = \begin{pmatrix} C \\ CA \\ ... \\ CA^{n-1} \end{pmatrix}$ 秩为 n

3、对偶原理

系统
$$\{\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t)$$
和 $\{\dot{\boldsymbol{z}}(t) = -\boldsymbol{A}^{\mathrm{T}}\boldsymbol{z}(t) + \boldsymbol{C}^{\mathrm{T}}\boldsymbol{v}(t)$ 的可控可观子空间对偶。 $\{\boldsymbol{w}(t) = \boldsymbol{B}^{\mathrm{T}}\boldsymbol{z}(t) + \boldsymbol{C}^{\mathrm{T}}\boldsymbol{v}(t)\}$ 的可控可观子空间对偶。

七、离散系统

1、离散泛函的变分法

系统:
$$J[x] = \Phi(x(n)) + \sum_{k=0}^{n-1} F(x(k), x(k+1), k)$$
 $x(0) = x_0$
变分法: $\frac{\partial F(x(k), x(k+1), k)}{\partial x(k)} + \frac{\partial F(x(k-1), x(k), k-1)}{\partial x(k)} = 0, k = 1, 2, \dots, n-1$

$$\frac{\partial F(x(k-1), x(k), k-1)}{\partial x(k)} \Big|_{k=n} = -\frac{\partial \Phi(x(n))}{\partial x(n)}$$

2、离散控制系统的变分法

系统:
$$J[\mathbf{x}] = \Phi(\mathbf{x}(n)) + \sum_{k=0}^{n-1} F(\mathbf{x}(k), \mathbf{x}(k+1), k)$$
 $\mathbf{x}(k+1) = f(\mathbf{x}(k), \mathbf{u}(k), k), k = 0, 1, \cdots, n-1$ $\mathbf{x}(0) = \mathbf{x}_0$ 极大值: 令 Hamilton 函数 $H_k = F(\mathbf{x}(k), \mathbf{x}(k+1), k) + \boldsymbol{\lambda}^T(k+1) f(\mathbf{x}(k), \mathbf{u}(k), k)$ 状态方程: $\mathbf{x}(k+1) = f(\mathbf{x}(k), \mathbf{u}(k), k), k = 0, 1, \cdots, n-1$ 辅助方程: $\boldsymbol{\lambda}(k) = \frac{\partial H_k}{\partial \mathbf{x}(k)}, k = 1, 2, \cdots, n-1$ 控制方程: $\frac{\partial H_k}{\partial \mathbf{u}(k)} = 0, k = 1, 2, \cdots, n-1$ 初始条件: $\mathbf{x}(0) = \mathbf{x}_0$ 边界条件: $\boldsymbol{\lambda}(n) = \frac{\partial \Phi(\mathbf{x}(n))}{\partial \mathbf{x}(n)}$

3、离散控制系统的极大值原理

系统:
$$J[x] = \Phi(x(n)) + \sum_{k=0}^{n-1} F(x(k), x(k+1), k)$$

 $x(k+1) = f(x(k), u(k), k), k = 0, 1, \cdots, n-1$
 $x(0) = x_0$
极大值: 令 Hamilton 函数 $H_k = F(x(k), x(k+1), k) + \lambda^T(k+1) f(x(k), u(k), k)$
 状态方程: $x(k+1) = f(x(k), u(k), k), k = 0, 1, \cdots, n-1$
 辅助方程: $\lambda(k) = \frac{\partial H_k}{\partial x(k)}, k = 1, 2, \cdots, n-1$
 控制方程: $H(k, x^*(k), u^*(k), \lambda^*(k)) = \max_{u \in U} H(k, x^*(k), u(k), \lambda^*(k)), k = 1, 2, \cdots, n-1$
 初始条件: $x(0) = x_0$
边界条件: $\lambda(n) = \frac{\partial \Phi(x(n))}{\partial x(n)}$

八、线性二次型

1、常见的 LQ 问题

状态调节器: 状态方程:
$$\dot{x} = Ax + Bu$$
, $x(t_0) = x_0$
性能指标: $J[u] = \frac{1}{2}x^T(T)Fx(T) + \frac{1}{2}\int_{t_0}^T [x^TQx + u^TRu]dt$
输出调节器: 状态方程: $\dot{x} = Ax + Bu$, $x(t_0) = x_0$ 输出: $y(t) = C(t)x(t)$
性能指标: $J[u] = \frac{1}{2}y^T(T)Fy(T) + \frac{1}{2}\int_{t_0}^T [y^TQy + u^TRu]dt$
跟踪系统: 状态方程: $\dot{x} = Ax + Bu$, $x(t_0) = x_0$, $y(t) = Cx(t)$

目标:
$$\dot{\mathbf{z}} = \mathbf{F}\mathbf{z}$$
, $\mathbf{z}(t_0) = \mathbf{z}_0$, $\widetilde{\mathbf{y}}(t) = \mathbf{H}\mathbf{x}(t)$
性能指标: $J[\mathbf{u}] = \frac{1}{2} \int_{t_0}^{T} [(\mathbf{y} - \widetilde{\mathbf{y}})^{\mathrm{T}} \mathbf{Q} (\mathbf{y} - \widetilde{\mathbf{y}}) + \mathbf{u}^{\mathrm{T}} \mathbf{R} \mathbf{u}] \mathrm{d}t$

Q半正定,R正定

2、时间状态调节器

时间状态调节器的最优控制为: $\mathbf{u}^*(t) = \mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}}\mathbf{P}(t)\mathbf{x}(t)$

其中,
$$P(t)$$
是 Riccati 问题 $\left\{ \begin{matrix} \dot{P} = -PA - A^{T}P - PBR^{-1}B^{T}P + Q \\ P(T) = -F \end{matrix} \right\}$

最优轨迹
$$\mathbf{x}^*(t)$$
是问题 $\begin{cases} \dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}}\mathbf{x} \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases}$

反之,如果控制以 $\mathbf{u}(t) = \mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}}\mathbf{P}(t)\mathbf{x}(t)$ 给出,则为最优调节器

最优性能指标为 $J^*[x(t_0), t_0] = -\frac{1}{2}x^{\mathrm{T}}(t_0)P(t_0)x(t_0)$

 $T = \infty$ 时,**P**全部取代数矩阵,**F** = **O**

3、输出状态调节器

输出状态调节器的最优控制为: $\mathbf{u}^*(t) = \mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}}\mathbf{P}(t)\mathbf{x}(t)$

其中,
$$P(t)$$
是 Riccati 问题
$$P(T) = -PA - A^{T}P - PBR^{-1}B^{T}P + C^{T}QC$$
的解

反之,如果控制以 $u(t) = R^{-1}B^{T}P(t)x(t)$ 给出,则为最优调节器

4、离散调节器

状态方程:
$$x(k+1) = A(k)x(k) + B(k)u(k)$$
, $x(0) = x_0$

性能指标:
$$J[\boldsymbol{u}] = \frac{1}{2}\boldsymbol{x}^{\mathrm{T}}(n)\boldsymbol{F}\boldsymbol{x}(n) + \frac{1}{2}\sum_{k=0}^{n-1}[\boldsymbol{x}^{\mathrm{T}}(k)\boldsymbol{Q}(k)\boldsymbol{x}(k) + \boldsymbol{u}^{\mathrm{T}}(k)\boldsymbol{R}(k)\boldsymbol{u}(k)]$$

Hamilton 函数:
$$H(k) = -\frac{1}{2}\mathbf{x}^{\mathrm{T}}(k)\mathbf{Q}(k)\mathbf{x}(k) + \mathbf{u}^{\mathrm{T}}(k)\mathbf{R}(k)\mathbf{u}(k) + \boldsymbol{\lambda}^{\mathrm{T}}(k+1)(\mathbf{A}(k)\mathbf{x}(k) + \mathbf{B}(k)\mathbf{u}(k))$$

辅助方程:
$$\boldsymbol{\lambda}(k) = \frac{\partial H(k)}{\partial \boldsymbol{x}(k)} = -\boldsymbol{Q}(k)\boldsymbol{x}(k) + \boldsymbol{A}^{\mathrm{T}}(k)\boldsymbol{\lambda}^{\mathrm{T}}(k+1), k = 1,2,\cdots,n-1$$

控制方程:
$$\mathbf{u}^*(k) = \mathbf{R}^{-1}(k)\mathbf{B}^{\mathrm{T}}(k)\lambda(k+1), k=1,2,\cdots,n-1$$

初始条件: $x(0) = x_0$

边界条件: $\lambda(n) = -Fx(n)$

假设
$$\lambda(k) = P(k)x(k)$$
, 则 $u^*(k) = R^{-1}(k)B^{T}(k)P(k+1)x(k+1)$

有
$$\mathbf{P}(k)$$
是 Riccati 差分方程 $\{\mathbf{P}(k) = -\mathbf{Q}(k) + \mathbf{A}^{\mathrm{T}}(k)[\mathbf{P}^{-1}(k+1) - \mathbf{B}(k)\mathbf{R}^{-1}(k)\mathbf{B}^{\mathrm{T}}(k)]\mathbf{A}(k)\}$ 的解