Information Processing Technology of Internet of Things

Chapter 2
Data Mining

Wu Lju

Beijing Key Lab of Intelligent Telecomm. Software and Multimedia Beijing University of Posts and Telecommunications

2.2 Classification

Outline

Classification: Basic Concepts

- Decision Tree Induction
- Bayes Classification Methods
- Rule-Based Classification
- Model Evaluation and Selection
- Techniques to Improve Classification Accuracy:
 Ensemble Methods

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by **labels** indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Prediction Problems: Classification vs. Numeric Prediction

Classification

- predicts categorical class labels (discrete or nominal)
- classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data

Numeric Prediction

- models continuous-valued functions, i.e., predicts unknown or missing values
- Typical applications
 - Credit/loan approval:
 - Medical diagnosis: if a tumor is cancerous or benign
 - Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set (otherwise overfitting)
 - If the accuracy is acceptable, use the model to classify new data
- Note: If *the test set* is used to select models, it is called validation (test) set

Process (1): Model Construction

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

Classification Algorithms

Classifier (Model)

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

Process (2): Using the Model in Prediction

NAME	RANK	YEARS	TENURED
Tom	Assistant Prof	2	no
Merlisa	Associate Prof	7	no
George	Professor	5	yes
Joseph	Assistant Prof	7	yes

Outline

- Classification: Basic Concepts
- Decision Tree Induction

- Bayes Classification Methods
- Rule-Based Classification
- Model Evaluation and Selection
- Techniques to Improve Classification Accuracy:
 Ensemble Methods

Decision tree induction

- Decision tree induction is the learning of decision trees from class-labeled training tuples.
- A decision tree is a flowchart-like tree structure, where each internal node (nonleaf node) denotes a test on an attribute, each branch represents an outcome of the test, and each leaf node (or *terminal node*) holds a class label. The topmost node in a tree is the root node.

Decision Tree Induction: An Example

- ☐ Training data set: Buys_computer

student credit_rating buys_computer

no

fair

no

income

high

age

<=30

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-andconquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

Brief Review of Entropy

- Entropy (Information Theory)
 - A measure of uncertainty associated with a random variable
 - Calculation: For a discrete random variable Y taking m distinct values $\{y_1, \dots, y_m\}$,
 - $H(Y) = -\sum_{i=1}^{m} p_i \log(p_i)$, where $p_i = P(Y = y_i)$
 - Interpretation:
 - Higher entropy => higher uncertainty
 - Lower entropy => lower uncertainty
- Conditional Entropy
 - $H(Y|X) = \sum_{x} p(x)H(Y|X = x)$

Attribute Selection Measure: Information Gain

- Select the attribute with the highest information gain.
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

- Information needed (after using A to split D into v partitions) to classify D: $Info_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$
- Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Such an approach minimizes the expected number of tests needed to classify a given tuple and guarantees that a simple (but not necessarily the simplest) tree is found.

Attribute Selection: Information Gain

Class P: buys computer = "yes"

Class N: buys computer = "no"

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

$$Info(D) = I(9,5) = -\frac{9}{14}\log_{2}(\frac{9}{14}) - \frac{5}{14}\log_{2}(\frac{5}{14}) = 0.940$$

	$+\frac{5}{14}I(3,2)$	= 0.694
--	-----------------------	---------

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's. Hence

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 $Gain(age) = Info(D) - Info_{age}(D) = 0.246$ Similarly,

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit_rating) = 0.048$$

Computing Information-Gain for Continuous-Valued Attributes

- Let attribute A be a continuous-valued attribute
- Must determine the best split point for A
 - Sort the value A in increasing order
 - Typically, the midpoint between each pair of adjacent values is considered as a possible *split point*
 - $(a_i+a_{i+1})/2$ is the midpoint between the values of a_i and a_{i+1}
 - The point with the *minimum expected information* requirement for A is selected as the split-point for A
- Split:
 - D1 is the set of tuples in D satisfying $A \le$ split-point, and D2 is the set of tuples in D satisfying A > split-point

Gain Ratio for Attribute Selection

- Information gain measure is biased towards attributes with a large number of values
- Gain ratio is used to overcome the problem (normalization to information gain)

$$SplitInfo_A(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

- GainRatio(A) = Gain(A)/SplitInfo(A)
- Ex.

$$SplitInfo_{income}(D) = -\frac{4}{14} \times \log_2 \left(\frac{4}{14}\right) - \frac{6}{14} \times \log_2 \left(\frac{6}{14}\right) - \frac{4}{14} \times \log_2 \left(\frac{4}{14}\right) = 1.557$$

- $gain_ratio(income) = 0.029/1.557 = 0.019$
- The attribute with the maximum gain ratio is selected as the splitting attribute

Gini Index

- The Gini index considers a binary split for each attribute.
- If a data set *D* contains examples from *n* classes, gini index, gini(D) is defined as $gini(D) = 1 \sum_{j=1}^{n} p_{j}^{2}$

where p_j is the relative frequency of class j in D

- If a data set D is split on A into two subsets D_1 and D_2 , the gini index gini(D) is defined as $gini_A(D) = \frac{|D_1|}{|D|}gini(D_1) + \frac{|D_2|}{|D|}gini(D_2)$
- Reduction in Impurity: $\Delta gini(A) = gini(D) gini_A(D)$
- The attribute provides the smallest *gini_{split}(D)* (or the largest reduction in impurity) is chosen to split the node (*need to enumerate all the possible splitting points for each attribute*)

Computation of Gini Index

Ex. D has 9 tuples in buys_computer = "yes" and 5 in "no"

$$gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

Suppose the attribute income partitions D into 10 in D₁: {low, medium} and 4 in D₂ $gini_{income \in \{low, medium\}}(D) = \left(\frac{10}{14}\right)Gini(D_1) + \left(\frac{4}{14}\right)Gini(D_2)$ $= \frac{10}{14}\left(1 - \left(\frac{7}{10}\right)^2 - \left(\frac{3}{10}\right)^2\right) + \frac{4}{14}\left(1 - \left(\frac{2}{4}\right)^2 - \left(\frac{2}{4}\right)^2\right)$ = 0.443

Gini_{low,high} is 0.458; Gini_{medium,high} is 0.450. Thus, split on the {low,medium} (and {high}) since it has the lowest Gini index

 $= Gini_{income \in \{high\}}(D).$

■ Therefore, the best binary split for attribute income is on {low, medium} because it minimizes the Gini index.

Comparing Attribute Selection Measures

The three measures, in general, return good results but

• Information gain:

biased towards multivalued attributes

• Gain ratio:

• tends to prefer unbalanced splits in which one partition is much smaller than the others

• Gini index:

- biased to multivalued attributes
- has difficulty when # of classes is large

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - <u>Prepruning</u>: *Halt tree construction early*-do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - <u>Postpruning</u>: *Remove branches* from a "fully grown" treeget a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Enhancements to Basic Decision Tree Induction

- Allow for continuous-valued attributes
 - Dynamically define new discrete-valued attributes that partition the continuous attribute value into a discrete set of intervals
- Handle missing attribute values
 - Assign the most common value of the attribute
 - Assign probability to each of the possible values
- Attribute construction
 - Create new attributes based on existing ones that are sparsely represented
 - This reduces fragmentation, repetition, and replication

Outline

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods

- **Rule-Based Classification**
- Model Evaluation and Selection
- Techniques to Improve Classification Accuracy: **Ensemble Methods**

Bayesian Classification: Why?

- A statistical classifier: performs probabilistic prediction, i.e., predicts class membership probabilities
- Foundation: Based on Bayes' Theorem.
- <u>Performance</u>: A simple Bayesian classifier, *naive Bayesian* classifier, has comparable performance with decision tree and selected neural network classifiers
- <u>Incremental</u>: Each training example can incrementally increase/decrease the probability that a hypothesis is correct prior knowledge can be combined with observed data
- Standard: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Bayes' Theorem: Basics

- Total probability Theorem: $P(B) = \sum_{i=1}^{M} P(B|A_i)P(A_i)$
- Bayes' Theorem: $P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H) / P(\mathbf{X})$
 - Let **X** be a data sample ("evidence"): class label is unknown
 - Let H be a *hypothesis* that X belongs to class C
 - Classification is to determine P(H|X), (i.e., posteriori probability): the probability that the hypothesis holds given the observed data sample X
 - P(H) (*prior probability*): the initial probability
 - E.g., X will buy computer, regardless of age, income, ...
 - P(X): probability that sample data is observed
 - P(X|H) (likelihood): the probability of observing the sample X, given that the hypothesis holds
 - E.g., Given that **X** will buy computer, the prob. that X is 31..40, medium income

Prediction Based on Bayes' Theorem

• Given training data X, posteriori probability of a hypothesis H, P(H|X), follows the Bayes' theorem

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$$

- Informally, this can be viewed as
 posteriori = likelihood x prior/evidence
- Predicts X belongs to C_i iff the probability $P(C_i|X)$ is the highest among all the $P(C_k|X)$ for all the k classes
- Practical difficulty: It requires initial knowledge of many probabilities, involving significant computational cost

Classification Is to Derive the Maximum Posteriori

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$
- Suppose there are m classes $C_1, C_2, ..., C_m$.
- Classification is to derive the maximum posteriori, i.e., the maximal $P(C_i|\mathbf{X})$
- This can be derived from Bayes' theorem

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

Since P(X) is constant for all classes, only

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

needs to be maximized

Naive Bayes Classifier

A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes):

$$P(\mathbf{X}|C_i) = \prod_{k=1}^{n} P(x_k|C_i) = P(x_1|C_i) \times P(x_2|C_i) \times ... \times P(x_n|C_i)$$
This greatly reduces the computation cost: Only counts the class

- distribution
- If A_k is categorical, $P(x_k|C_i)$ is the # of tuples in C_i having value x_k for A_k divided by $|C_{i,D}|$ (# of tuples of C_i in D)
- If A_k is continous-valued, $P(x_k|C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ

and
$$P(x_k|C_i)$$
 is

$$g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$P(\mathbf{X} \mid C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$$

Naive Bayes Classifier: Training Dataset

Class:

C1:buys_computer = 'yes'

C2:buys computer = 'no'

Data to be classified:

X = (age <= 30,

Income = medium,

Student = yes

Credit_rating = Fair)

age	income	<mark>studen</mark> t	credit_rating	_com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayes Classifier: An Example

- P(C_i): P(buys_computer = "yes") = 9/14 = 0.643P(buys_computer = "no") = 5/14 = 0.357
- Compute $P(X|C_i)$ for each class

$$P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222$$

$$P(age = "\le 30" | buys_computer = "no") = 3/5 = 0.6$$

P(income = "medium" | buys_computer = "yes") =
$$4/9 = 0.444$$

P(income = "medium" | buys_computer = "no") =
$$2/5 = 0.4$$

P(student = "yes" | buys_computer = "yes) =
$$6/9 = 0.667$$

P(student = "yes" | buys_computer = "no") =
$$1/5 = 0.2$$

P(credit_rating = "fair" | buys_computer = "yes") =
$$6/9 = 0.667$$

P(credit_rating = "fair" | buys_computer = "no") =
$$2/5 = 0.4$$

- X = (age <= 30, income = medium, student = yes, credit_rating = fair)
- $P(X|C_i)$: $P(X|buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044$ $<math>P(X|buys_computer = "no") = 0.6 x 0.4 x 0.2 x 0.4 = 0.019$
- $P(X|C_i)*P(C_i): P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028$ $P(X|buys_computer = "no") * P(buys_computer = "no") = 0.007$

Therefore, X belongs to class ("buys_computer = yes")

high

high

high

medium

excellent

excellent excellent

excellent

excellent

yes

yes

yes

yes

yes

yes

Avoiding the Zero-Probability Problem

 Naive Bayesian prediction requires each conditional prob. be non-zero. Otherwise, the predicted prob. will be zero

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

- Ex. Suppose a dataset with 1000 tuples, income=low (0), income= medium (990), and income = high (10)
- Use Laplacian correction (or Laplacian estimator)
 - Adding 1 to each case
 Prob(income = low) = 1/1003
 Prob(income = medium) = 991/1003
 Prob(income = high) = 11/1003
 - The "corrected" prob. estimates are close to their "uncorrected" counterparts

Naive Bayes Classifier: Comments

- Advantages
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - E.g., hospitals: patients: Profile: age, family history, etc. Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naive Bayes Classifier
- How to deal with these dependencies? Bayesian Belief Networks (not included in this course)

Outline

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Rule-Based Classification

- Model Evaluation and Selection
- Techniques to Improve Classification Accuracy:
 Ensemble Methods

Using IF-THEN Rules for Classification

- Represent the knowledge in the form of IF-THEN rules
 - R: IF $age = youth AND student = yes THEN buys_computer = yes$
 - Rule antecedent/precondition vs. rule consequent
- Assessment of a rule: coverage and accuracy
 - $n_{covers} = \#$ of tuples covered by R
 - $n_{correct}$ = # of tuples correctly classified by R coverage(R) = $n_{covers}/|D|$ /* D: training data set */ accuracy(R) = $n_{correct}/n_{covers}$
- If more than one rule are triggered, need conflict resolution
 - Size ordering: assign the highest priority to the triggering rules that has the "toughest" requirement (i.e., with the *most attribute tests*)
 - Class-based ordering: decreasing order of *prevalence or misclassification cost per class*
 - Rule-based ordering (**decision list**): rules are organized into one long priority list, according to some measure of rule quality or by experts

Rule Extraction from a Decision Tree

- Rules are easier to understand than large trees
- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction: the leaf holds the class prediction
- Rules are mutually exclusive and exhaustive
- Example: Rule extraction from our buys_computer decision-tree

IF
$$age = young AND student = no$$

THEN
$$buys_computer = no$$

yes

<=30

student?

age?

31..40

yes

>40

excellent

no

credit rating?

fair

IF
$$age = young AND student = yes$$

IF
$$age = mid-age$$

THEN
$$buys_computer = yes$$

IF
$$age = old AND \ credit_rating = excellent \ THEN \ buys_computer = no$$

IF
$$age = old AND \ credit_rating = fair$$

Rule Induction: Sequential Covering Method

- Sequential covering algorithm: Extracts rules directly from training data
- Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER
- Rules are learned *sequentially*, each for a given class C_i will cover many tuples of C_i but none (or few) of the tuples of other classes
- Steps:
 - Rules are learned one at a time
 - Each time a rule is learned, the tuples covered by the rules are removed
 - Repeat the process on the remaining tuples until *termination condition*, e.g., when no more training examples or when the quality of a rule returned is below a user-specified threshold
- Decision-tree induction: learning a set of rules simultaneously

Example: Sequential Covering Method

- To learn a rule for the class "accept," we start off with the most general rule possible, that is, the condition of the rule antecedent is empty. The rule is "IF THEN *loan decision* = accept".
- Learn One Rule adopts a greedy depth-first strategy. Each time it is faced with adding a new attribute test (conjunct) to the current rule, it picks the one that most improves the rule quality, based on the training samples.
- suppose *Learn One Rule* finds that the attribute test *income* = high best improves the accuracy of our current (empty) rule. We append it to the condition, so that the current rule becomes "IF *income* = high THEN loan decision = accept."
- During the next iteration, we again consider the possible attribute tests and end up selecting *credit rating* = *excellent*. "IF *income* = *high AND credit rating* = *excellent THEN loan decision* = *accept*."
- The process repeats, where at each step we continue to greedily grow rules until the resulting rule meets an acceptable quality level.

Sequential Covering Algorithm

while (enough target tuples left)
generate a rule
remove positive target tuples satisfying this rule

Rule Generation

To generate a rule
 while(true)
 find the best predicate p (e.g., income = high)
 if foil-gain(p) > threshold then add p to current rule
 else break

How to Learn-One-Rule?

- Start with the most general rule possible: condition = empty
- Adding new attributes by adopting a greedy depth-first strategy
 - Picks the one that most improves the rule quality
- Rule-Quality measures: consider both coverage and accuracy
 - Foil-gain: assesses info_gain by extending condition

$$FOIL_Gain = pos' \times (\log_2 \frac{pos'}{pos' + neg'} - \log_2 \frac{pos}{pos + neg})$$

- favors rules that have high accuracy and cover many positive tuples
- Rule pruning based on an independent set of test tuples

$$FOIL_Prune(R) = \frac{pos - neg}{pos + neg}$$

Pos/neg are # of positive/negative tuples covered by R.

If FOIL_Prune is higher for the pruned version of R, prune R

Outline

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Rule-Based Classification
- Model Evaluation and Selection

Techniques to Improve Classification Accuracy:
 Ensemble Methods

Model Evaluation and Selection

- Evaluation metrics: How can we measure accuracy? Other metrics to consider?
- Use validation test set of class-labeled tuples instead of training set when assessing accuracy
- Methods for estimating a classifier's accuracy:
 - Holdout method, random subsampling
 - Cross-validation
 - Bootstrap
- Comparing classifiers:
 - Confidence intervals
 - Cost-benefit analysis and ROC Curves

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Actual class\Predicted class	C_1	¬ C ₁
C_1	True Positives (TP)	False Negatives (FN)
¬ C ₁	False Positives (FP)	True Negatives (TN)

Example of Confusion Matrix:

Actual class\Predicted	buy_computer	buy_computer	Total
class	= yes	= no	
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

- Given m classes, an entry, $CM_{i,j}$ in a **confusion matrix** indicates # of tuples in class i that were labeled by the classifier as class j
- May have extra rows/columns to provide totals

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

A\P	C	¬C	
С	TP	FN	P
¬C	FP	TN	N
	Ρ'	N'	All

 Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified

Accuracy = (TP + TN)/All

• Error rate: 1 - accuracy, or Error rate = (FP + FN)/All

Class Imbalance Problem:

- One class may be *rare*, e.g. fraud, or HIV-positive
- Significant majority of the negative class and minority of the positive class
- Sensitivity: True Positive recognition rate
 - Sensitivity = TP/P
- Specificity: True Negative recognition rate
 - Specificity = TN/N

Classifier Evaluation Metrics: Precision and Recall, and F-measures

■ **Precision**: exactness — what % of tuples that the classifier labeled as positive are actually positive

TP

 $precision = \frac{}{TP + FP}$

- **Recall:** completeness what % of positive tuples did the classifier label as positive?

 TP
- Perfect score is 1.0
- Inverse relationship between precision & recall
- F measure (F_1 or F-score): harmonic mean of precision and recall,

$$F = \frac{2 \times precision \times recall}{precision + recall}$$

- F_{β} : weighted measure of precision and recall
 - assigns ß times as much weight to recall as to precision

$$F_{\beta} = \frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$$

 β is a non-negative real number

Classifier Evaluation Metrics: Example

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.40 (accuracy)

•
$$Precision = 90/230 = 39.13\%$$

$$Recall = 90/300 = 30.00\%$$

Evaluating Classifier Accuracy: Holdout & Cross-Validation Methods

Holdout method

- Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
- Random sampling: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained
- Cross-validation (k-fold, where k = 10 is most popular)
 - Randomly partition the data into *k mutually exclusive* subsets, each approximately equal size
 - At *i*-th iteration, use D_i as test set and others as training set

Evaluating Classifier Accuracy: Bootstrap

Bootstrap

- Works well with small data sets
- Samples the given training tuples uniformly with replacement
 - i.e., each time a tuple is selected, it is equally likely to be selected again and re-added to the training set
- Several bootstrap methods, and a common one is .632 boostrap
 - A data set with d tuples is sampled d times, with replacement, resulting in a training set of d samples. The data tuples that did not make it into the training set end up forming the test set. About 63.2% of the original data end up in the bootstrap, and the remaining 36.8% form the test set (since $(1 1/d)^d \approx e^{-1} = 0.368$)
 - Repeat the sampling procedure *k* times, overall accuracy of the model:

$$Acc(M) = \frac{1}{k} \sum_{i=1}^{k} (0.632 \times Acc(M_i)_{test_set} + 0.368 \times Acc(M_i)_{train_set})$$

Outline

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Rule-Based Classification
- Model Evaluation and Selection
- Techniques to Improve Classification Accuracy:
 Ensemble Methods

Ensemble Methods: Increasing the Accuracy

- Ensemble methods
 - Use a combination of models to increase accuracy
 - Combine a series of k learned models, $M_1, M_2, ..., M_k$, with the aim of creating an improved model M^*
- Popular ensemble methods
 - Bagging: averaging the prediction over a collection of classifiers
 - Boosting: weighted vote with a collection of classifiers
 - Ensemble: combining a set of heterogeneous classifiers

Bagging: Boostrap Aggregation

- Analogy: Diagnosis based on multiple doctors' majority vote
- Training
 - Given a set D of d tuples, at each iteration i, a training set D_i of d tuples is sampled with replacement from D (i.e., bootstrap)
 - A classifier model M_i is learned for each training set D_i
- Classification: classify an unknown sample X
 - Each classifier M_i returns its class prediction
 - The bagged classifier M* counts the votes and assigns the class with the most votes to X
- Prediction: can be applied to the prediction of continuous values by taking the average value of each prediction for a given test tuple
- Accuracy
 - Often significantly better than a single classifier derived from D
 - For noise data: not considerably worse, more robust
 - Proved improved accuracy in prediction

Boosting

- Analogy: Consult several doctors, based on a combination of weighted diagnoses—weight assigned based on the previous diagnosis accuracy
- How boosting works?
 - Weights are assigned to each training tuple
 - A series of k classifiers is iteratively learned
 - After a classifier M_i is learned, the weights are updated to allow the subsequent classifier, M_{i+1} , to pay more attention to the training tuples that were misclassified by M_i
 - The final **M* combines the votes** of each individual classifier, where the weight of each classifier's vote is a function of its accuracy
- Boosting algorithm can be extended for numeric prediction
- Comparing with bagging: Boosting tends to have greater accuracy, but it also risks overfitting the model to misclassified data

Classification of Class-Imbalanced Data Sets

- Class-imbalance problem: Rare positive example but numerous negative ones, e.g., medical diagnosis, fraud, oilspill, fault, etc.
- Traditional methods assume a balanced distribution of classes and equal error costs: not suitable for class-imbalanced data
- Typical methods for imbalance data in 2-class classification:
 - Oversampling: re-sampling of data from positive class
 - Under-sampling: randomly eliminate tuples from negative class
- Still difficult for class imbalance problem on multiclass tasks

