Random Variables and Stochastic Process (AI5030)

Soumyajit Chatterjee

AI22MTECH02005

Q. There are two sets of observations on a random vector (X,Y). Consider a simple linear regression model with an intercept for regressing Y on X. Let β_i be the least square estimate of the regression coefficient obtained from the ith (i=1,2) set consisting of ni observations (n₁, n₂ > 2). Let β_0 the least square estimate obtained from the pooled sample size n₁ + n₂. If it is known that $\beta_1 > \beta_2 > 0$, which of the following statements is true?

- **1.** $\beta_2 < \beta_0 < \beta_1$
- **2.** β_0 may lie outside (β_2 , β_1) but cannot exceed $\beta_1 + \beta_2$
- **3.** β_0 may lie outside (β_2, β_1) but it cannot be negative
- **4.** β_0 can be negative

Sol.

Derivation for least square estimator:

Let our original data be y_i which is approximated by β_0 and β_1 such that $\hat{Y}_i = \beta_0 + \beta_1 x_i$

Therefore, the error in measurement as measured by the least squares metric would be

$$\mathsf{E} = \sum_{i=1}^{N} (yi - \hat{\mathsf{Y}}i)^2$$

To get the minimum error E we have to differentiate the above equation and set the 1st derivative to 0.

Therefore,

$$\frac{dE}{d\beta 0} = \sum_{i=1}^{N} -2(y_i - \beta_0 - \beta_1 x_i) = 0$$

Which is:

$$\sum_{i=1}^{N} y_i - \sum_{i=1}^{N} \beta_0 - \sum_{i=1}^{N} \beta_1 x_i = 0$$

Now, we know that,

$$\frac{\sum_{i=i}^{N} yi}{N} = \bar{y}$$

Therefore,

$$\sum_{i=1}^{N} y_i = N\bar{y}$$

Substituting above equation in:

$$\sum_{i=1}^{N} y_i - \sum_{i=1}^{N} \beta_0 - \sum_{i=1}^{N} \beta_1 x_i = 0$$

The above equation becomes $N\bar{y}$ - $N\beta_0$ - $N\beta_1$ \bar{x} = 0 which on further simplification becomes

$$\boldsymbol{\bar{y}}$$
 - β_0 - β_1 $\boldsymbol{\bar{x}}=0$

Therefore, finally

$$\beta_0 = \bar{\mathbf{y}} - \beta_1 \bar{\mathbf{x}}$$

Similarly, we can differentiate for β_1 as:

$$\frac{dE}{d\beta 1} = \sum_{i=1}^{N} -2x_i (y_i - \beta_0 - \beta_1 x_i) = 0$$

Rearranging the equation:

$$\sum_{i=i}^{N} (x_i y_i - \beta_0 x_i - \beta_1 x_i^2) = 0$$

Substituting the value of β_0 .

$$\sum_{i=i}^{N} (x_i y_i - (\bar{y} - \beta_1 \bar{x}) x_i - \beta_1 x_i^2) = 0$$

Simplifying,

$$\sum_{i=i}^{N} x_{i} y_{i} - \bar{y} \sum_{i=i}^{N} x_{i} - \beta_{1} \bar{x} \sum_{i=i}^{N} x_{i} - \beta_{1} \sum_{i=i}^{N} x_{i}^{2} = 0$$

Again using the property that $\sum_{i=1}^{N} y_i = N\overline{y}$, we get

$$\sum_{i=i}^{N} x_{i} y_{i} - N \bar{y} \bar{x} - \beta_{1} N \bar{x}^{2} - \beta_{1} \sum_{i=i}^{N} x_{i}^{2} = 0$$

Which is,

$$\sum_{i=i}^{N} x_{i} y_{i} - N\bar{y}\bar{x} - \beta_{1} (N\bar{x}^{2} - \sum_{i=i}^{N} x_{i}^{2}) = 0$$

Therefore β_1 becomes,

$$\beta_1 = \frac{\sum\limits_{i=i}^{N} xi \ yi - N\bar{y}\bar{x}}{\sum\limits_{i=i}^{N} xi^2 - N\bar{x}^2}$$

Writing \bar{y} and $\frac{\sum_{i=1}^{N} y_i}{N}$ and $\frac{\sum_{i=1}^{N} x_i}{N}$ again we get

$$\beta_1 = \frac{(\sum xy) - N(\frac{\sum x}{N})(\frac{\sum y}{N})}{(\sum x^2) - N(\frac{\sum x}{N})^2}$$

Multiplying by N we get the final expression.

Therefore, Least square estimator
$$\beta$$
 can be given as $\beta = \frac{n(\sum XY) - (\sum X)(\sum Y)}{n(\sum X^2) - (\sum X)^2}$

We know that $X \in \mathbb{R}$, which means X can take any values including negative values. Now, $\sum X^2$ means the summation of all the squared values of X. Therefore if X contains any negative values then those will become positive due to squaring and then summation of all the positive values are

taken. However in $(\sum X)^2$ first the summation is done, then it is squared. If X contains some negative values then the sum would be less.

Therefore in all the cases $\sum X^2$ will be greater than $(\sum X)^2$. Therefore, $\sum X^2 - (\sum X)^2$ will always be positive.

1. The term $\sum XY$ signifies the sum of products of individual values of X and Y. Therefore, if the product contains many negative values then the sum of the products may very well be negative. Then, $n(\sum XY) - (\sum X)(\sum Y)$ can also very well be negative. But in the 3rd option it says that β cannot be negative therefore the 3rd option is false.

We know that n is the sample size. We just established that $\sum XY$ may be negative depending on the product terms. We also established that $\sum X^2 - (\sum X)^2$ will always be positive no matter what. Then $n(\sum X^2) - (\sum X)^2$ will always be positive as n is only the sample size and multiplying $\sum X^2$ with n will make it even larger.

Now, β_0 is the estimator of the combined samples of n_1 and n_2 . But even then, the denominator of β_0 will be positive.

2. The numerator of β_0 can be positive if $n(\sum XY)$ term is greater than $(\sum X)(\sum Y)$ and since here n is the combined sample size of n_1 and n_2 , then the term $n(\sum XY) - (\sum X)(\sum Y)$ for β_0 can be very well greater than even β_1 or β_2 . Therefore, β_0 can become greater than β_1 and β_2 .

Therefore, both option 1 and 2 would be incorrect.

3. If the term $n \sum XY$ is negative for the combined samples from n_1 and n_2 than the term $(\sum X)(\sum Y)$ then,

 $n(\sum XY) - (\sum X)(\sum Y)$ would be negative which will make β_0 negative.

Therefore, the only correct option would be option 4 from logical explanation.