

Lecture 1.1 Simple Harmonic Motion

University of Calgary Dr. Christopher Cully

Hooke's Law

- As you push a spring farther from equilibrium, it exerts a greater force.
- Letting x = 0 at equilibrium (spring unstretched),

$$F = -kx$$

• Typical for many other systems, such as rigid beams, chemical bonds, voltage in an LC resonant circuit,...

Simple Harmonic Motion

Hooke's Law: $\vec{F} = -k\vec{x}$

Plus Newton's 2nd law: $\vec{F} = m\vec{a} = m\frac{d^2\vec{x}}{dt^2}$

Gives a 2nd order Ordinary Differential Equation (ODE):

$$m\frac{d^2x}{dt^2} = -kx$$
$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$

NOTE: You CANNOT use formulas like v = at or $x = \frac{1}{2}at^2$ for SHM

These are valid ONLY for constant acceleration!

- Solution depends on the sign of k/m
 - For a mass on a spring, k and m are positive
 - Restrict to case k/m>0 by writing $\omega^2 = k/m$
- $\frac{d^2x}{dt^2} + \omega^2 x = 0$ has a general solution: $x(t) = A\cos(\omega t + \phi_0)$

$$x(t) = A\cos(\omega t + \phi_0)$$

- This can be verified by substitution
- 2nd order ODE, so two arbitrary constants A, ϕ_0

- A is a constant → amplitude
- ω ("omega") is a constant \rightarrow angular frequency
 - Units: radians per second
 - Related to the frequency f (in Hz) as: $\omega = 2\pi f$
 - $\omega = 2\pi f$ f = 1/T

- Related to the period T (in s) as:
 - So that $\omega = 2\pi/T$
- ϕ_0 ("phi naught") is a constant \rightarrow phase angle
 - Initial condition shifts curve left/right

 $x(t) = A\cos(\omega t + \phi_0)$

- ϕ_0 >0 shifts curve to the left
 - ϕ_0 <0 shifts curve to the right
- $\cos\left(\omega t + \frac{\pi}{2}\right) = -\sin(\omega t)$

EXAMPLE: ϕ_0

Find A, ω , ϕ_0 .

Amplitude: A= 2 m

Angular frequency: Period
$$T=6$$
 s. Using $\omega=\frac{2\pi}{T}$: $\omega=\pi/3$ radians/s

Phase angle: First maximum is at $t_0 = 1$ s.

Maximum in $\cos \theta$ is at $\theta = 2\pi n$ where n is an integer. So:

$$\omega t_0 + \phi_0 = 2\pi n$$

$$\phi_0 = 2\pi n - \omega t_0 = 2\pi n - \left(\frac{\pi}{3}\right) \frac{\text{rad}}{\text{s}} (1.0 \text{ s})$$

$$\phi_0 = 2\pi n - \pi/3$$

$$x(t) = (2 \text{ m}) \cos\left(\frac{\pi}{3}t - \frac{\pi}{3} + 2\pi n\right)$$

There is an infinite set of solutions for ϕ_0