Quiz

- 1. 데드락의 발생 조건 및 각 조건 별 간단한 설명?
- 2. 시스템 상태가 아래와 같을 때, 이 시스템은 안전한 상태인가? 맞다면 Safe Sequence를 도출하시오. (Need 행렬 표시)

	Allocation			Max			Available		
	Α	В	С	Α	В	С	Α	В	С
P0	1	1	1	7	5	4	1	2	3
P1	2	1	0	4	1	2			
P2	3	0	2	7	1	6			
Р3	2	1	0	2	1	3			
P4	0	0	1	5	3	2			

Quiz - answer

- 1. 데드락의 발생 조건 및 각 조건별 간단한 설명?
 - 상호배제 (Mutual exclusion)
 자원은 <u>하나의 프로세스만</u> 사용할 수 있다.
 - 점유대기 (Hold and wait) 프로세스가 <u>할당된 자원을 가진 상태에서 다른 자원을 기다린다.</u>
 - 비선점 (No preemption)

자원들을 선점할 수 없다. 자원이 강제적으로 방출될 수 없고, 점유하는 프로세스가 태스크를 종료한 후 <u>그 프로세스에 의해서만</u> 방출될 수 있다.

즉, 프로세스가 어떤 자원의 사용을 끝낼 때 까지 그 자원을 뺏을 수 없다.

• 순환대기 (Circular wait)

각 프로세스는 순환적으로 다음 프로세스가 요구하는 자원을 가지고 있다.

Quiz - answer

• 시스템 상태가 아래와 같을 때, 이 시스템은 안전한 상태인가? 맞다면 Safe Sequence를 도출하시오. (Need 행렬 표시)

	Allocation			Max			Available		
	Α	В	C	Α	В	C	Α	В	С
Р0	1	1	1	7	5	4	1	2	3
P1	2	1	0	4	1	2			
P2	3	0	2	7	1	6			
Р3	2	1	0	2	1	3			
P4	0	0	1	5	3	2			

안전한 상태가 맞다.

Safe Sequence: P3, P1, P2, P4, P0

(P3, P1, P4, P2, P0도 가능)

Need					
Α	В	С			
6	4	3			
2	0	2			
4	0	3			
0	0	3			
5	3	1			

```
1. P0: N (6, 4, 3) > A (1, 2, 3) (X), Safe Seq: 2. P1: N (2, 0, 2) > A (1, 2, 3) (X), Safe Seq:
```

3. P2 : N (4, 0, 3) > A (1, 2, 3) (X), Safe Seq :

4. P3: N (0, 0, 3) < A (1, 2 3) (O), 자원해제 후 Available: (3, 3, 3), **Safe Seq: P3**

5. P4: N (5, 3, 1) > A (3, 3, 3) (X), Safe Seq: P3

6. P0 : N (6, 4, 3) > A (3, 3, 3) (X), Safe Seq : P3

7. P1: N (2, 0, 2) < A (3, 3, 3) (0), 자원해제 후 Available: (5, 4, 3), Safe Seq: P3 -> P1

8. P2: N (4, 0, 3) < A (5, 4, 3) (O) , 자원해제 후 Available: (8, 4, 5), Safe Seq: P3 -> P1 -> P2

9. P4: N (5, 3, 1) < A (8, 4, 5) (O), 자원해제 후 Available:

(8, 4, 6), Safe Seq : P3 -> P1 -> P2 -> P4

10. P0 : N (6, 4, 3) < A (8, 4, 5) (O), 자원해제 후 Available : (9, 5, 6), **Safe Seq : P3 -> P1 -> P2 -> P4 -> P0**