Solution for CDA2015

- Solution to 4.6. (a). Note that $\log \mu_A = \alpha$ and $\log \mu_B = \alpha + \beta$. Then $\exp(\beta) = \mu_B/\mu_A$. If $\hat{\alpha}$ and $\hat{\beta}$ are the MLE of α and β , respectively, then $\hat{\mu}_A = \exp(\hat{\alpha})$ and $\hat{\mu}_B = \exp(\hat{\alpha} + \hat{\beta})$ are the MLE of μ_A and μ_B , respectively.
 - (b). $L(\alpha, \beta) = n\bar{x}\alpha ne^{\alpha} + m\bar{y}(\alpha + \beta) me^{\alpha+\beta}$, where \bar{x} and \bar{y} are the means of the data for A and B, respectively, and their sample sizes are n = 10 and m = 10.

So the MLE are $\hat{\alpha} = \log \bar{x} = \log 5 = 1.609438$, $\hat{\beta} = \log \bar{y} - \log \bar{x} = \log 9 - \log 5 = 0.5877867$. The information matrix is

$$\mathcal{J} = \begin{pmatrix} E\left(-\frac{\partial^2 L}{\partial \alpha^2}\right) & E\left(-\frac{\partial^2 L}{\partial \alpha \partial \beta}\right) \\ E\left(-\frac{\partial^2 L}{\partial \alpha \partial \beta}\right) & E\left(-\frac{\partial^2 L}{\partial \beta^2}\right) \end{pmatrix} = \begin{pmatrix} ne^{\alpha} + me^{\alpha+\beta} & me^{\alpha+\beta} \\ me^{\alpha+\beta} & me^{\alpha+\beta} \end{pmatrix} = \begin{pmatrix} 140 & 90 \\ 90 & 90 \end{pmatrix}.$$

So, the covariance matrix of $(\hat{\alpha}, \hat{\beta})^T$ is

$$(\mathcal{J})^{-1} = \begin{pmatrix} 140 & 90 \\ 90 & 90 \end{pmatrix}^{-1} = \begin{pmatrix} 1/50 & -1/50 \\ -1/50 & 7/225 \end{pmatrix}.$$

Hence, $\widehat{SE}(\hat{\beta}) = \sqrt{7/225} \approx 0.1764$.

Wald statistic $z_W = \hat{\beta}/\widehat{SE}(\hat{\beta}) \approx 3.3326$ (or $Z_W^2 = 11.106$) and $p - \text{value} \approx 8.6 \times 10^{-4}$.

LR: when $\beta = 0$, $\hat{\alpha}_0 = \log \frac{1}{m+n} (n\bar{x} + m\bar{y}) = \log 14 - \log 2 \approx 1.946$. So $-2 \log \Lambda = -2(L(\hat{\alpha}_0, 0) - L(\hat{\alpha}, \hat{\beta})) \approx 11.5894$. With df = 1, we get p – value $\approx 6.6 \times 10^{-4}$.

Remark on (b). Some students do as the following. Let $\hat{\mu} = \hat{\mu}_A - \hat{\mu}_B$, and test $H_0: \mu = 0$ by using $\sigma^2(\hat{\mu}) = \sqrt{s_A^2/n + s_B^2/m}$ and $Z = (\hat{\mu} - 0)/\sigma(\hat{\mu}) \approx N(0,1)$. The idea is smart but it is wrong for this case. Note that the populations of A and B are not normal distributed and the sample size n = m = 10 are small. So $Z = (\hat{\mu} - 0)/\sigma(\hat{\mu}) \approx N(0,1)$ does not follows for small sample size.

- (c). Wald CI for β with confidence level 95%: $\hat{\beta} \pm 1.96\widehat{SE}(\hat{\beta}) = (0.2420, 0.9335)$. By δ -method, Wald CI for μ_B/μ_A with confidence level 95%: $(\exp(0.2420), \exp(0.9335)) = (1.2738, 2.5434)$.
- (d). $n\bar{x} \sim \text{Poi}(n\mu_A)$, $m\bar{y} \sim \text{Poi}(m\mu_B)$, and $n\bar{x}$ and $m\bar{y}$ are independent. So, $n\bar{x}|(n\bar{x}+m\bar{y}) \sim \text{Bin}(n\bar{x}+m\bar{y},\pi=\frac{n\mu_A}{n\mu_A+m\mu_B})$.

Then $L(\pi) = n\bar{x}\log\pi + m\bar{y}\log(1-\pi) + \text{constant.}$ So the MLE for π is $\hat{\pi} = \frac{n\bar{x}}{n\bar{x}+m\bar{y}} = 50/140 \approx 0.3571$, with $\widehat{SE}(\hat{\pi}) = \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n\bar{x}+m\bar{y}}} \approx 0.0405$. So Wald statistic $z_W = \frac{\hat{\pi}-n/(n+m)}{\widehat{SE}(\hat{\pi})} \approx -3.5277$, and $p - \text{value} \approx 4.2 \times 10^{-4}$.

LR: $LR = -2(L(n/(n+m)) - L(\hat{\pi})) \approx 11.5894$ and $p - \text{value} = 6.6 \times 10^{-4}$.

Remark on (d). Some students give $\widehat{SE}(\hat{\pi}) = \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}$ which is wrong. Some students give $p = 2\Phi(-3.5277) = 0.000792$, which is wrong.

• Solution to 4.13. (a). The total number of made is 135, and the total number of attempts is 296. By maximizing the likelihood, the MLE of α is $\hat{\alpha} = 135/296 = 0.456$

1

and $\hat{SE}(\hat{\alpha}) = \sqrt{\hat{\alpha}(1-\hat{\alpha})/n} = 0.029$. O'Neal's estimated probability of making a free throw is 0.456, and a 95% confidence interval is (0.40, 0.51). Pearson test statistic

$$X^{2} = \sum_{i=1}^{23} \left(\frac{(y_{i} - n_{i}\hat{\alpha})^{2}}{n_{i}\hat{\alpha}} + \frac{(n_{i} - y_{i} - n_{i}(1 - \hat{\alpha}))^{2}}{n_{i}(1 - \hat{\alpha})} \right) = 35.5, \text{ with } df = 22$$

provides evidence of lack of fit (since p = 0.034).

(b). Using quasi likelihood, $\sqrt{X^2/df} = 1.27$, so adjusted \hat{SE} is 0.037 and the adjusted confidence interval for α is $(0.456 - 1.96 \times 0.037, 0.456 + 1.96 \times 0.037) = (0.38, 0.53)$, reflecting slight overdispersion.

Remark on (a). Alternative way to calculate X^2 for testing independence, i.e.

$$\tilde{X}^2 = \sum_{i=1}^{23} \sum_{j=1}^{2} \frac{(\tilde{n}_{ij} - \tilde{\mu}_{ij})^2}{\tilde{\mu}_{ij}}, \text{ with } \tilde{\mu}_{ij} = \tilde{n}_{i+} \tilde{n}_{+j} / n.$$

Note that in two notation settings, $\tilde{n}_{i+} = n_i$, $\tilde{n}_{i1} = y_i$, $\tilde{n}_{i2} = n_i - y_i$, $\tilde{n}_{+1}/n = \hat{\alpha}$ and $n_{+2}/n = (1 - \hat{\alpha})$. So, it is easy to see that $X^2 = \tilde{X}^2$.

Remark on (b). Alternative way to calculate X^2 for overdispersion, i.e.

$$X^{2} = \sum_{i} \frac{(y_{i} - \hat{\mu})^{2}}{\nu^{*}(\hat{\mu})} = \sum_{i=1}^{23} \frac{(y_{i} - n_{i}\hat{\alpha})^{2}}{n_{i}\hat{\alpha}(1 - \hat{\alpha})}.$$

This is the same X^2 in (a) since

$$\frac{(y_i - n_i \hat{\alpha})^2}{n_i \hat{\alpha}} + \frac{(n_i - y_i - n_i (1 - \hat{\alpha}))^2}{n_i (1 - \hat{\alpha})} = \frac{(y_i - n_i \hat{\alpha})^2}{n_i \hat{\alpha} (1 - \hat{\alpha})}.$$

• Solution to 4.26. By conditional density function, we have

$$E[P(T \ge t_o|S)] = E\left[\int_{t_o}^{+\infty} f(t|s)dt\right] = \int_{t_o}^{+\infty} E[f(t|s)]dt = \int_{t_o}^{+\infty} f(t)dt = P(\beta).$$

So, $P(T \ge t_o|S)$ is an unbiased estimator of $P(\beta)$.

Let $h(S) = P(T \ge t_o|S)$. It is an unbiased estimator of $P(\beta)$. Suppose $\phi(X)$ is another unbiased estimator of $P(\beta)$. Then

$$Var_{\beta}[\phi(X)] = E_{\beta}[\phi(X) - P(\beta)]^{2}$$

$$= E_{\beta}[(\phi(X) - h(S)) + (h(S) - P(\beta))]^{2}$$

$$= E_{\beta}[\phi(X) - h(S)]^{2} + 2E_{\beta}[(\phi(X) - h(S))(h(S) - P(\beta))] + E_{\beta}[h(S) - P(\beta)]^{2}.$$

Since S is a sufficient statistic, it follows that by conditional expectation,

$$E_{\beta}[(\phi(X) - h(S))(h(S) - P(\beta))] = E_{\beta}[E[(\phi(X) - h(S))(h(S) - P(\beta))|S]]$$

= $E_{\beta}[(\phi(X) - h(S))E[(h(S) - P(\beta))|S]]$
= 0.

So for all $\forall \beta$, it follows that

$$Var_{\beta}[\phi(X)] = E_{\beta}[\phi(X) - h(S)]^2 + Var_{\beta}[h(S)] \ge Var_{\beta}[h(S)].$$

Hence $h(S) = P(T \ge t_o|S)$ is $P(\beta)$'s UMVUE.

- Solution to 4.29. (a). Since ϕ is symmetric, $\Phi(0) = 0.5$. Setting $\alpha + \beta x = 0$ gives $x = -\alpha/\beta$.
 - (b). The derivative of Φ at $x = -\alpha/\beta$ is $\beta\phi(\alpha + \beta(-\alpha/\beta)) = \beta\phi(0)$. The logistic pdf has $\phi(x) = e^x/(1+e^x)^2$ which equals 0.25 at x = 0; the standard normal pdf equals $1/\sqrt{2\pi}$ at x = 0.
 - (c). Note that

$$\pi(x) = \Phi(\alpha + \beta x) = \Phi\left(\frac{x - (-\alpha/\beta)}{1/\beta}\right).$$

So, the probit regression curve has the shape of a normal cdf with mean $-\alpha/\beta$ and standard deviation $1/|\beta|$.