

Stadents t- Distribution or t-Test:

Note: - 1) To test the Significance of the mean of a random sample

@ t-test is applicable whom

(i) Scample size n<30

(ii) population S.D.(0) is unknown.

To test the Significance difference between the sample mean and the hypothetical population mean.

Working Rule

D Null Hypothesis Ho: U= No (given)

"There is no Significant difference b/w sample

mean and Hypothetical population Mean."

@ Alternative Hypothesis: H1: U/L.

3 T-test

 $t = \frac{x - u}{\sqrt{n}}$ whom wear is not given then use Here, $\overline{x} = \text{Sample mean}, \quad n = \text{Sample Size}$ S= S.D. of Sample It s.D of sumple meanginen "s"

then $t = \frac{3}{5} - \mu$ $\frac{3}{\sqrt{3}} = \frac{3}{\sqrt{3}} = \frac{3}{\sqrt{3}}$ U= population year. Also find 1t1.

Taking the mean of the universe (population) to be zero.

9. A machine which produce mica unsulating washers of the in electric devices is set to two out washers having a thickness of 10 miles (1 mil = 0.001 meh). A sample of 10 washow has an awarge thickness of 9.52 miles with a Standard deviation of 0.60 mil find out t.

Q A sample of 20 items her mean 42 units and S.D 5 Unit. Test the hypothesis it is a random sample from a normal population with mean 45 unit.

Q. A roundom sample of size trace 16 and 53 as mean the sum of the deviation from mean is 135. can this sample se regarded as taken from the population having 56 as mean obtain 95% and 99%, confinhence limits of mean of population

Q. The lifetime of electric bulbs for a noundorn sample of 10 from a large consignent gave the following

Hem	L	2	3	4	5	6	7	Ø	9	10
life in 000 hrs	42	46	3-9	4.1	52	3.8	3. <u>9</u>	4.3	4.4	5.6

Can use accepted the hypothesis that the average lefetime of bulb is 4000 hrs.

Solo:
Nul Hypothins, Ho: U= 4000 hrs
"There is no significant difference in sample mean and fopulation Mean" Attemative Hypothesis, H2, Uf 4000 hrs

MHOMEUM Hypothese, 41, 27 7000 Mrs Test statistics (t test): t= \frac{\pi-eu}{\sqrt{\sqrt{n}}} X 4.2 4.6 3.9 4.1 5.2 3.8 3.9 4.3 4.4 5.6 (2-T)² 0.04 0.04 0.26 0.09 0.64 0.36 0.25 0.01 0 1.44 51 = 44, n = 10, $\overline{n} = \frac{51}{n} = 4.4$, $(51-\overline{1})^2 = 8.12$ $S = \sqrt{\frac{5(1-\bar{x})^2}{n}} = 0.589$

thus, $t = \frac{4.4 - 4}{0.589} = 2.123$

t-test table: < = 0.05, and df = 10-1=9 thus, to.05, g = 2.26

Conclusion. 11/2 to

Therefore, Nul Hypothuis H. is accepted

- # there is no significance difference b/w sample mean and hypothetical population Mean.

 # Sample have been taken from the correct population

Table 2 : SIGNIFICANT VALUES t_v (α) OF t-DISTRIBUTION (TWO TAIL AREAS) [| t | > t_v(α)] = α

d.f.			Probabilit	y (Level of Sign	nificance)	
(v)	0.50	0.10	0.05	0.02	0.01	0.001
1	1.00	6.31	12.71	31.82	63.66	636.62
2	0.82	0.92	4.30	6.97	6.93	31.60
3	0.77	2.32	3.18	4.54	5.84	12.94
4	0.74	2.13	2.78	3.75	4.60	8.61
5	0.73	2.02	2.57	3.37	4.03	6.86
6	0.72	1.94	2.45	3.14	3.71	5.96
7	0.71	1.90	2.37	3.00	3.50	5.41
8	0.71	1.80	2.31	2.90	3.36	5.04
9	0.70	1.83	2.26	2.82	3.25	4.78
10	0.70	1.81	2.23	2.76	3.17	4.59
11	0.70	1.80	2.20	2.72	3.11	4.44
12	0.70	1.78	2.18	2.68	3.06	4.32
13	0.69	1.77	2.16	2.05	3.01	4.22
14	0.69	1.76	2.15	2.62	2.98	4.14
15	0.69	1.75	2.13	2.60	2.95	4.07
16	0.69	1.75	2.12	2.58	2.92	4.02
17	0.69	1.74	2.11	2.57	2.90	3.97
18	0.69	1.73	2.10	2.55	2.88	3.92
19	0.69	1.73	2.09	2.54	2.86	3.88
20	0.69	1.73	2.09	2.53	2.85	3.85
21	0.69	1.72	2.08	2.52	2.83	3.83
22	0.69	1.72	2.07	2.51	2.42	3.79
23	0.69	1.71	2.07	2.50	2.81	3.77
24	0.69	1.71	2.06	2.49	2.80	3.75
25	0.68	1.71	2.06	2.49	2.79	3.73
26	0.68	1.71	2.06	2.48	2.78	3.71
27	0.68	1.70	2.05	2.47	2.77	3.69
28	0.68	1.70	2.05	2.47	2.76	3.67
29	0.68	1.70	2.05	2.46	2.76	3.66
30	0.68	1.70	2.04	2.46	2.75	3.65
99	0.67	1.65	1.96	2.33	2.58	3.29

Two sample t-tut :-

- (1) To test the difference blow year of two undependent sample
- (ii) Two sample t-test applicable when
 - @ Sample sizes n1 <30 & N2 <30
 - 6) The population volume are equal i.e.; $\sigma_1^2 = \sigma_2^2$

Working Rule :-

- (1) Null Hypothesis, Ho: 41=42

 The mean of both population are same"

 Alternative Hypothesis, H1 41+42
- (i) t-test $t = \frac{\overline{x} \overline{y}}{s \sqrt{\frac{1}{n} + \frac{1}{n}}}$

$$t = \frac{\overline{x} - \overline{y}}{s \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$| A = \frac{\overline{x} - \overline{y}}{s \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$| A = \frac{\overline{x} - \overline{y}}{s \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$| A = \frac{\overline{x} - \overline{y}}{s \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

(IV) Conduction of the to the Ho is accepted to the Ho is accepted.

Note: - By this test use testing

voither (i) two sample mean I & J do not differ significantly

or (ii) The two independent sample have been

drown from the population with the same means.

Q. sample of sizes 10 and 14 were taken from two normal

population with from two normal populations with 5.D 3.5 & 5.2

The sample means were found to be 20.3 and 18.6 test

whither the means of the two population are the same

at 5% level.

Q.2. The higher of 6 Randomly chosen sailors in muches are 63,65,68 89,71 and 72. Those of 9 Randomly chosen soldiers are 61,62 65.66,69,70,71,72 and 73. Test whether the sailors are on the

89, 71 ma to Those of I Kondonly chosen soldies are 61, 62 65, 66, 69, 70, 71, 72 and 73. Test whether the soulors are on the average taller than soldiers. Null Hypothusis, Ho: M1=112
"The mean of both the population are the same" Alternation Hypothesis, 4: 41>112 (one tailed test) Calculation of two sample means: $\bar{N} = 68$ & $\bar{q} = 67666$ { calculation} S = 4-038 , $n_1 = 6$, $n_2 = 9$ Test statistic: $t = \frac{R - 3}{5\sqrt{\frac{1}{h_1} + \frac{1}{h_2}}} = \frac{48 - 6766}{4.038\sqrt{\frac{1}{6} + \frac{1}{9}}}$ = 0.1569 Thus, |t| = 0.1569 Calculate to , at <=005, dt= n,tm -2 = 15-2=13 to.05, 13 = 1.77 (one toiled feet) Condusion: - Since HI < ta, of Thus, the new hypothesis to is accepted. Therefore, there is no significant difference b/w their mean. Henre, the sailors are not on the average tabler than the soldiers."

(F. test) or Snedecoxs f- Distribution

or Varience Latio test. or fishers f-test.

A-fest working Rule :-

1) New Hypothesis, Ho: 0,2 = 522 ie there is no significant difference b/w population Neviance 2

Alternative Hypothesis, H1: T2 = 52

(ii) f-test (Test statistic)

$$f = \frac{s_1^2}{s_2^2} \quad \text{if } s_1^2 > s_2^2$$
or $f = \frac{s_2^2}{s_1^2} \quad \text{if } s_2^2 > s_1^2$

where $S_i^2 = Sample variance of the sample (2) (first), (ni)$ 52 = sample variance of the sample (4) (second); (n)

Such that

if sample SD not given $S_1^2 = \underbrace{\geq (x-\overline{x})^2}_{n_1-1}, \quad S_2^2 = \underbrace{\geq (y-\overline{y})^2}_{n_2-1}$ if sample one given in data form

if sample S.D (8, 682) are given then $S_1^2 = \frac{s_1^2 n_1}{n_{-1}}$, $S_2^2 = \frac{s_2^2 n_2}{n_{-1}}$

Thus, find F

(i) from the f-test table calculate Fo.05 for (n,-1) & (nz) degree of freedom (atoos level of Significance)

(iv) Conduction: C x x Hann is to minds

(iv) Condusion:
(ia) It f < fo.or then to is accepted (B) If f > fo. or then H is accepted. Note: - If Ho accepted then the population variance do not differ significantly - Sample have been taken from the normal population with some variance Questions) type I type I To test the samples are drawn from the same To fest the sample have been drawn from normal population with some normal population variance, f-test only. (1) f-test (for equal variance) (11) t-test (for equal mean) Two grandem samples drawn from 2 Normal populations are as follows; A 17 27 18 25 27 29 13 17 B 16 16 20 27 26 25 21 Fest whether the samples are drawn from the name Normal population. Solb: fant I. A-text: Null Hypothesis, Ho: $\sigma_1^2 = \sigma_2^2$ The population variance do not differe Significantly Alternative Hypothesis, Hz: 0,2 \$ 022

Test statute: $F = \frac{S_1^2}{2}$ if $S_1^2 > S_2^2$

Test statistic: $F = \frac{S_1^2}{S_2^2} \quad \text{if} \quad S_1^2 > S_2^2$ Competitation value of 5,2 and 52 7=21.625, 7=21.57 $S_1^2 = \frac{253.87}{7} = 36.267, S_2^2 = \frac{5(3-3)^2}{4}$ from ①. $f = \frac{36.267}{30.47} = 1.190$ Now. $f_{0.05}(7.6) = 4.21$

Conducion: __ since F < F_,

Thus, Ho is accepted

Henre, the variance of both populations significantly aqual.

= 20.946

fort 4 +-text:

Well Hypothisis, No: U; Uz

(The population means on equal)

Alternative Hypothesis H,: U, f Us

 $t = \frac{\overline{X} - \overline{y}}{s \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $\begin{cases} s^2 = \frac{\sum (x - \overline{x})^2 + \sum (y - \overline{y})^2}{\eta_1 + \eta_2 - 2} \\ s^2 = \frac{\sum (x - \overline{x})^2 + \sum (y - \overline{y})^2}{s^2 - 2} \end{cases}$ Test of statistic

$$= 21625 - 21.57$$

$$5.7962$$

$$\frac{1}{7}6$$

= 0.0/67

$$find ta, df$$
, $x = 0.05$, $df = 13$
 $thu, t_{x}, df = 2.16$

Genclusion, Since (t) < to Henry, Mull Hypothesis is accepted

therefore is no Significant difference before the population mean and sample mean
we conclude that the two sample have drawn from the scame normal population.

Q.2. Two undependent sample of Sizes 7 and 6 had the following values

Sample A 28 30 32 33 31 29 34

Sample B 29 30 30 24 27 28

Examine whether the samples have been drawn from normal population having the same variance.

Q.3. The two random sample reveal the following data

Sample no Size Mean Variance

I 16 440 40

II 25 460 42

Test whether the sample come from the same normal

Table 3: F-Distribution Values of F for F-Distributions with 0.05 of the Area in the Right Tail

							L	egre	es of f	reedo	n for	nume	rator						
	I	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	90
i	161	200	216	225	230	234	237	239	241	242	244	246	248	249	250	251	252	253	25
2	18.5	19.0	19.2	19,2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5	19.5	19.5	19
3	10.1	9.55	9.28	9.12	9.01	9.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.8
1	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.6
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.3
3	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.6
		4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.
		4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.
		4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.
0	٥.	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.
1	4.84		3.59	3.36	3.20	3.09	3.01	2.95	2.90	2,85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2,45	2.
2	4.75		3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2,43	2.38	2.34	2.
3	4.67		3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.
1	4.60		3.34		3.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.
5	4.54		3.29	3.06	3.90	2.79	2.71	2.64	2.59	2.54	2.48	2,40	2.33	2.29	2.25	2.20	2.16	2.11	2.
6	4.49		3.24	3.01		2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.
7	4.45		3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1
	4.41		3.16		2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1
9	4.38		3.13	*1170	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.
0	4.35		3.10	2.87	2.17	2.60	2.51	2.45	2.39	2.35	2.28	2,20	2.12	2.08	2.04	1.99	1.95	1.90	1.
1	4.32		3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2,18	2.10	2.05	2.01	1.96	1,92	1.87	1.
2	4.30		3.05	7.07.00	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.
3	4.28		3.03		2.64	2.53	2.44	2.37	2,32	2.27	2.20	2.18	2.05	2.01	1.96	1.91	1.86	1.81	1.
4		3.40	3.01		2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.98	1.84	1.79	1.
5	4.24		2.99	2.76	2.60	2.94	2.40	2.34	2.28	2.24	2.16	2.29	2.01	1.96	1.92	1.87	1.82	1.77	1.
0	4.24	3.39	2.99	2.69	2.53		2.33	2,27		2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.64	1.0
0	4.08		2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.
	4.00	3.15	2.76		2.37	2.25	2.17	2.10	2.04	1,99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.
	3.92		2.68	20.0	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.3
	1	3.00	2.60	90.53	2.21	2.10	2.01	1.94	1 88	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.0

CHI- SQUARE (X2) TEST

X2 - Test, Chi - square test, Chi - square test of Goodness of fit

Non-forumetric $[x^2-test] \rightarrow If$ no information about the population (Normal, Poisson, Binomial)

⇒ x2-test is a distribution free testing method.

Type I-1 x2-test for goodness of fit

Let observed frequencies: $O_1, O_2, O_3, \dots, O_n$ Expected frequencies: $E_1, E_2, E_3, \dots, E_n$

such that ≤ 0 : $\leq \epsilon$: $\leq N$ (Total frequence) with degree of freedom (df) = n-1

Working Lule :-

(i) Null Hypotheins, Ho: There is no significant difference by observed and expected.

(ii) χ^2 -test $\chi^2 = \sum_{i=1}^n \left[\frac{(0i - \overline{E}i)^2}{Ei} \right]$

((ii)) from the x2-test table, calculate $x_{0.05}^{2} \text{ for the degree of freedom (n-1)}.$

Candusion:

(i) If X' < x0.05, then Ho accepted

(ii) If $X^2 > X^2$ then, Ho rejuted

Note: If the is accepted than there is no Significant difference b/w observed frequency and expected frequency.

I fit of the date is considered to be good.

Degree of freedom. (1) Binomial Distribution (n-1)

(1) Poisson distribution (n-2)

(1) Normal distribution (n-3).

Condition for applying X2-test:

1) The total no of frequencies (N) should be large (N750)

2) The expected frequency Ei of any item should not be

& The expected frequency Ei of any item should not be 3 x square test totally depend on degree of freedom

= h-15 no. of observation - No. of constraints ⑤ Sum of observed frequency= Sum of expected frequency
⇒ ≥0: = ≥ E: Note. If x =0 → ≥0i = ≥ Ei ⇒ the observed and expected frequencies agree exactly. Ex. The following table gives the number of accident that took place in an inclustry during uniformly distributed over the week. Test et arkidents fare Day : man the Wed the For Sat No. of accidents: 14 18 12 11 15 14 R. Adde is thrown 276 times and the results of these vo. appered on die 1 2 3 4 5 6 frequency 40 32 29 59 57 59 test wheather the die is blaced or not. (AKTU-2019) Solo: Nell Hypothers, the Die is unbiased Under this on, the expected frequencies for each digit is 276 = 46 find x^2 as: (0i-ti)2 $\leq (\delta_i - \varepsilon_i)^2 = 980$ 36 $5^2 = \frac{980}{46} = 2130$ 196 46 289 169 46 59 [21 46

Tabulated value of χ^2 at 5% level of Significance for (6-1=5) $\chi^2_{0.05,5} = 11.09$

X 8.05,5 = 11.09

Conclusion: - $\chi^2 > \chi^2$, Thus, Ho is reflected. Hence die subcaised or die is biased

Table 4 : CHI-SQUARE Significant Values χ^2 (α) of Chi-Square Distribution Right Tail Areas for Given Probability α , $P = P_r \left(\chi^2 > \chi^2 \left(\alpha \right) \right) = \alpha$ And v is Degrees of Freedom (d.f.)

Degree of			Probability	(Level of Sign	nificance)		
freedom (v)	0.99	0.95	0.50	0.10	0.05	0.02	0.01
1	.000157	.00393	.455	2.706	3.841	5.214	6.635
2	,0201	.103	1.386	4.605	5.991	7.824	9.210
3	.115	.352	2.366	6.251	7.815	9.837	11.341
4	.297	.711	3.357	7.779	9.488	11.668	13.277
5	.554	1.145	4.351	9.236	11.070	13.388	15.086
6	.872	2.635	5.348	10.645	12.592	15.033	16.812
7	1.239	2.167	6.346	12.017	14.067	16.622	18.475
8	1.646	2.733	7.344	13.362	15.507	18.168	20.090
9	2.088	3.325	8.343	14.684	16.919	19.679	21.669
10	2.558	3.940	9.340	15.987	18.307	21.161	23.209
11	3.053	4.575	10.341	17.275	19.675	22.618	24.725
12	3.571	5.226	11.340	18.549	21.026	24.054	26.217
13	4.107	5.892	12.340	19.812	22.362	25.472	27.688
14	4.660	6.571	13.339	21.064	23.685	26.873	29.141
15	4.229	7.261	14.339	22.307	24.996	28.259	30,578
16	5.812	7.962	15.338	23.542	26.296	29.633	32.000
17	6.408	8.672	15.338	24.769	27.587	30.995	33.409
18	7.015	9.390	17.338	25.989	28.869	32.346	34.805
19	7.633	10.117	18.338	27.204	30.144	33.687	36.191
20	8.260	10.851	19.337	28.412	31.410	35.020	37.566
21	8.897	11.591	20.337	29.615	32.671	36.343	38.932
22	9.542	12.338	21.337	30.813	33.924	37.659	40.289
23	10.196	13.091	22.337	32.007	35.172	38.968	41.638
24	10.856	13.848	23.337	32.196	36.415	40.270	42.980
25	11.524	14.611	24.337	34.382	37.65	41.566	44.314
26	12.198	15.379	25.336	35.363	38.885	41.856	45.642
27	12.879	16.151	26,336	36.741	40.113	41.140	46.963
28	13.565	16.928	27.336	37.916	41.337	45.419	48.278
29	14.256	17.708	28.336	39.087	42.557	46.693	49.588
30 //	14.933	18.493	29.336	40.256	43.773	47.962	50.892

Q. The theory predicts the proportion of beans in the forms

91, 62, 63, 64 Should be in the votio 9:3:3:1. In an aperiment with 1600 beans the numbers in the four groups were 882, 513, 287, and 118. Does the experimental result support

were 882, 313, 287, and 118. Does the experimental result support

Solo:Null Hypothuis, Ho: The experimental result support
the theory.

Under Ho, expected frequencies

$$F(G_1) = \frac{1600X9}{16} = 900$$
, $f(G_2) =$

coolulate the value of x2.

Observed freq Oi	887	3 3	287	1/8	[(0: 5:)2]
Expected freq Ei	qσρ	300	300	100	$\chi^2 = 2 \left \frac{(v_1 - v_1)}{\varepsilon} \right $
Coi-Ei)2/Ei	0-36	05633	0.5633	3.24	
					= 4.7266

Tabulated value of x2 at 0.05 & df = 4-1=3

 $\frac{\chi^2}{0.05.3} = 7.015$ Condusion: Since $\chi^2 < \chi^2_{0.05}$, Thus null Hypothesis Ho is accepted

Henu, experimental result support the theory

9. Fit a Poisson distribution to the following data and best the goodness of fet x: 0 1 2 3 4

F: 109 65 22 3 1

Hull Pypothesis, Ho: Poisson distribution is a good first to the data

Null Hypothesis, Ho: Poisson distribution is a good fit to the data

Mean,
$$(x) = \frac{\leq f \chi}{\leq f} = \frac{(22)}{200} = 0.61$$

By Poisson distribution
$$N(\chi) = 200\chi = \frac{e^{-0.61} \times (0.61)^{\chi}}{\chi!}$$

Under Ho, expected frequencies are

$$N(0) = 108.67 = 109$$
 $N(1) =$

$$N(z) = N(\delta) =$$

x2 -table is as:

Oi	Ei	(Oi-Ec)2	(0i-Fi)2/E
65 22	(D9 66 20	0	0.01515
3/4	4 35	Ī	6.2

and x2 at 5% (evel of Significante, degree of freedom = 5-2-1

Caclusion. - Sine, X2 cal X X2 tab, The null Hypotheris

Henre, the Roisson distribution is a good fit to the given data.

L'-Test as a test of independence

Degree of freedom = (r-1)(s-1)

Q. from the following table regnading the colour of eyes of father and son, test if the colour of son's eye is associated with that the the father

Eye colour of father light Not light 171 51 Not light 148 230 =

Solo: Nell Hypothesis, Ho: The colour of son's eye

is not associated with that of the

father; they are undependent = 278 Under Ho, Expected frequencies in each cell = Product of colour total whole total

Eye colour Eye colour father	light	Nothight	Tate
light	9 90 - 359.02	162.98	
Not light	259.98	110.02	
Tatal	619	201	300

X2 table as:

Øi	ŧi	(0i-Ei12/Ei
471	359.02	34.92
5		
148		
230		
		X ² = 261

find
$$\chi^2_{tab}$$
, $d.f = (2-1)(2-1) = 1 & $\alpha = 0.05$$

Conclusion: - x'cal > x2 tab, Henry, New Hypothesis Ho rejected.

Therefore the colour of son's eye is associated with that of the father.

Q. from the following data, find wether hair colour and sex are associated

Sex	Fair	Red	Medium	Dark	Black	Tatal
Roys	592	849	504	119	36	2100
Girls	544	677	451	97	(Y	1703
Total	(136	1526	955	216	50	3883

Q To fest the effectivelieness of unoculation against cholera the following table was obtained

	Attacked	Not Attacked	Total
Inoculated	30	160	190
Not enoulated	140	460	6 on
Tatal	170	620	7 90

A NOVA (Analysis of Variance)

ANOVA is statistical tool that can be used for companision among more than two groups. It is used for testing the hypothesis of equality of more than two normal population means.

* Correction factor
$$((\cdot f) = \frac{(G_1 + 1)^2}{n}$$
 where $n \neq total$ no of eterms

* Sum of square b/w Sample (SSC)

$$SSC = \frac{(\sum Xi)^2}{n_1} + \frac{(\sum Yi)^2}{n_2} + \frac{(\sum Zi)^2}{n_3} - C \cdot f$$

* Tatal zum of Square (SST)

$$= \sum Xi^2 + \sum Y_i^2 + \sum Z_i^2$$

$$MSC = \frac{SSC}{C-1} = \frac{SSC}{clf}$$
 where $C = no.$ af columns $closed closed columns$

* Mean sum of square within samples (Variance)

$$MSE = \frac{SCE}{n-c} = \frac{SCE}{c(r-1)}$$
 where $C = no. of column.$

$$C = no. of column.$$

Source of variation	Soun of square	Dagree of freedom (df)	Mean Juare	F
Blio Samples (column Neans)	Ssc	C-I	MSC= 55C	r-msc
Within Samples	SSE	C(1-1) or n-c	MSE = SSE n-C	MSE
Total	SST	C1-1		

Conclusion:- $f_{cal} < f_{tab}$ then H_0 accepted $f_{cal} > f_{tab}$ then H_1 accepted

Example - I it is desired to compare three hospitals with regards to the 40° of deaths per mouth. A sample of deaths records were selected from the records of each thought and the 40° of deaths was as given below. From these data suggest a difference in the no. of the deaths per mouth among three hospitals.

HOSPITALS

A	В	C
3	6	7
4	3	3
3	3	Ā
5	. 4	6
0	4	5

Se": Null try pathesis, Ho: there is no difference in the among three hospitals of deaths difference in the

Alternate (hypothesis, H.: There is significant diffrence month among three hospitals.

Level of Significance: he use 57° level of significance ignificance.

Test Statistic-

A	A2-	B	B2	C	C^2
3	9,	6	36	7	49
4	16	33	9	2	15
5	25	A	16	6	36
0	O.	4	16	5	as
= 15	= 59	-20	= 86	-25	=135

Grand total $(G \cdot T) = EA + EB + EC = 15 + 20 + 25$ Correction factor $(C \cdot F) = \frac{(G \cdot T)^2}{n}$ $= (60)^2 \quad \text{where } n = 15$

=
$$(60)^2$$
 where n=15
= 240

Total sum of square (SST)
=
$$\xi A^2 + \xi B^2 + \xi C^2 - C \cdot F$$

= $59 + 86 + 135 - 240$
= 10

Sum of square between sample (SSC)
$$= (\frac{\sum A}{n_1})^2 + (\frac{\sum B}{n_2})^2 + (\frac{\sum C}{n_3})^2 - (CF)$$

$$= (\frac{\sum A}{n_1})^2 + (\frac{\sum C}{n_3})^2 + (\frac{\sum C}{n_3})^2 - 240$$

$$= (\frac{\sum C}{n_1})^2 + (\frac{\sum C}{n_2})^2 + (\frac{\sum C}{n_3})^2 - 240$$

Source of variation	Jam of Syum	Degree of freedom (df)	Mean - quare	F
Blu Samples	0	Z,	5	r_ 5
Within Sample	30	12	2.5	25 = 2
Total	40	14-		

Conclusion - Since face < fras
Therefore, the null hypothesis H. is accepted
Hence there is no difference in the no. of deaths pur mouth
among three hospitals

among three hospitals

A manufacturing company purchased three new Machines of different makes and vishes to determine wheather one of them is faster than the others in producing a certain output five hously production figures are observed at soudon from each machine and results are given below:

Observation	A	42	Az
1	25	31	24
۵	30	39	30
3	36	38	28
A	38	42	25
5	3	35	28

Use ANOVA and - ne sheather the machines are significantly different in their mean speed

Sol": Null try pothesis, Ho: Machine our not significantly different in their mean speed 1.1; 11,=112=113

Alternate (Typothesis, M. Machines are Significantly difformit in their mean speed

Level of Significance; justiquée 57° level of

Test Statistic-

obernation	A	AIL	42	A22	A ₃	A22
1	25	62-5	3)	961	24	576
2	30	900	39		30	900
3	36	1296	38		28	784
4	38	1444	42		25	625
5	31	961	35		28	784

Here $\leq A_1 = 160$ $\leq A_2 = 185, \leq A_3 = 185$ $\leq A_1^2 = 5226, \leq A_2^2 = 6915$ $\leq A_3^2 = 3669$

a of more, I'm more

Grand total
$$(G,T) = \sum A_1 + \sum A_2 + \sum A_3 = |60 + 185 + 185 + 185 |$$
Correction factor $(C,F) = \frac{(G,T)^2}{n}$

$$= \frac{(480)^2}{15} \quad \text{where } n = 15$$

$$= (5360)$$

Total sum of square (SST)
=
$$\xi A_1^2 + \xi A_2^2 + \xi A_3^2 - C \cdot F$$

= $5216 + 6915 + 3669 - 15360$
= 450

Sum of square between sample (SSC)
$$= (\frac{\sum A_1^2}{n_1} + (\frac{\sum A_2^2}{n_2} + (\frac{\sum A_3^2}{n_3})^2 - (CF)$$

$$= (60)^2 + (185)^2 + (155)^2 - 15360$$

$$= 250$$

Source of variation	Jam of Square	Dagree of freedom (df	Mean Quare	F
Blu Samples	250	%	125	c= 125
Within Samples	Zoo	Z	16:67	16:67 = 不49
Total	450	ly		

Thus,
$$F_{cal} = 7.49$$
 Now find f_{tab} , at 5% df = 2.12 ftas = 3.89

Conclusion - Since face - fras

Conclusion - Since face for flow Therefore, the null hypothesis H. is rejected Hence the machines are significantly different in this mean speed.