Stats review

ADEC781001: Empirical Behavioral Economics

Lawrence De Geest (lrdegeest.github.io)

EXPECTED VALUE

- $\,\blacktriangleright\,$ All random variables have expected values $\mathbb E$
- ► Suppose we have random variable *X*
- ► Two kinds:
 - **1.** Population mean: $\mathbb{E}[x_i] = \mu$
 - We cannot observe this
 - It's a parameter
 - 2. Sample mean: $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$
 - We observe this
 - It's a statistic
 - It's also an estimator for $\mathbb{E}[x_i]$
- We care about bias
 - \diamond A statistic is *unbiased* if $\mathbb{E}[\bar{x}] = \mathbb{E}[x_i]$

RANDOM VARIABLES

- ▶ Random variable: any variable whose outcome is uncertain
 - Wind speed of hurricane when it hits land
 - Stock price of Apple in ten minutes
 - Number of Prussian soldiers kicked in the head by horses each year
- "Uncertain" does not imply "unpredictable"
- Most random variables have stable distributions
- ► Exploit these distributions to learn about random variable

ADEC781001: Empirical Behavioral Economics

Stats review

VARIANCE

- All random variables have variance
- ► Two kinds:
 - **1.** Population variance: $Var(x_i) = \mathbb{E}[(x_i \mathbb{E}[x_i])^2] = \sigma_x^2$
 - We cannot observe this
 - It's a parameter
 - **2.** Sampling variance: $Var(\bar{x}) = Var(\frac{1}{N} \sum_{i=1}^{N} x_i) = \frac{\sigma_x^2}{N}$
 - We observe this
 - It's a statistic
 - It tells us how much the sample varies if we keep drawing samples
 - When $N \to \infty$ then $\frac{\sigma_x^2}{N} \to 0$ with implies $\mathbb{E}[\bar{x}] \to \mathbb{E}[x_i]$ This is the Law of Large Numbers

ADEC781001: Empirical Behavioral Economics Stats review ADEC781001: Empirical Behavioral Economics Stats review ▶ Suppose we want to show $\mathbb{E}[x_i]$ is *significantly* different from zero

▶ Null hypothesis: $H_0: \mu = 0$

▶ Alternative hypothesis: $H_0: \mu \neq 0$

First construct a t-statistic: $\frac{\sqrt{\bar{x}-0}}{\sqrt{Var(\bar{x})}}$

Significance: if H_0 were true, what is probability I would observe \bar{x} in repeated sampling?

⋄ this probability is the p-value: area under the t-distribution

 \diamond significance: check if $\rho < \alpha$ where α is a threshold set by the user (e.g. 0.05)

► Example: see r-intro-stats-review.R

ADEC781001: Empirical Behavioral Economics

Stats review

5 / 1

THE CENTRAL LIMIT THEOREM

- Suppose we drew samples from a population that followed a Poisson process
 - $\diamond X \in \{0,1,2,\ldots,\infty\}$
 - \diamond The population parameter is a constant μ but it is unknown
- lacktriangleright For each sample we can calculate the expected value $ar{X}$
- ▶ What will the distribution of \bar{X} look like? Poisson, too?
- No! It turns out that if we keep sampling the sampling distribution for \bar{X} will be a Normal distribution!
- ► This is the Central Limit Theorem

THE CENTRAL LIMIT THEOREM

- ► The t-test is valid for normally distributed variables
- Statistical inference is built around the assumption of normality
- ▶ But not all random variables out there are normally distributed
- ► Would be a lot cooler if they were
- Turns out there is way!

ADEC781001: Empirical Behavioral Economics

Stats revie

.

Example: sampling from a Poisson distribution with $\mu=3$

EXAMPLE: THE SAMPLING DISTRIBUTION

ADEC781001: Empirical Behavioral Economics

REGRESSION

- ► Example: see r-intro-stats-review.R
- ▶ Let's estimate the price of cars as a function of their weight
- Assume this function is linear: $Price_i = \beta_0 + \beta_1 weight_i + \varepsilon_i$
- ▶ The effect of car weight on car price is given by $\frac{\partial Price}{\partial weight} = \beta_1$
- **E**stimate β_1 using Ordinary Least Squares (OLS)
- ▶ The estimate is called "beta hat" $(\hat{\beta}_1)$

EXAMPLE: THE CLT AND DIMINISHING RETURNS FROM SAMPLING

ADEC781001: Empirical Behavioral Economics

Stats review

REGRESSION: HYPOTHESIS TESTING

- Hypothesis test: weight has an effect on price
 - $\bullet \ H_0: \beta_1 = 0$
 - $\diamond \ H_A: \beta_1 \neq 0$
- ► This is just a t-test
 - \diamond t-stat: $\frac{\hat{\beta_1}}{se(\hat{\beta_1})}$

 - $se(\hat{\beta}_1) = \frac{\sigma_e}{\sqrt{n}} \frac{1}{\sigma_x}$ Increasing in the variance of the residuals (σ_e) .
 - Decreasing in sample size (n)
 - Decreasing in the variance of the regressor (σ_x) .

ADEC781001: Empirical Behavioral Economics ADEC781001: Empirical Behavioral Economics Stats review Stats review