گزارش کار قسمت شبکه همینی نیکاهای tox21

فایل final NNTox21

1: تمامی کتابخانه های مورد نیاز را فراخوانی میکنیم.

2: فراخوانی داده ها از فایل دیتاها و جایگزینی مقادیر گمشده در فیچرها با مقادیر میانگین سایر مشاهدات هر فیچر سپس حذف مشاهداتی که لیبل نامعلوم دارند(تعداد566 مشاهده از 7831 مشاهده). انتخاب تصادفی 80 درصد دیتاها به عنوان داده آموزشی،
10 درصد به عنوان داده آزمایشی و 10 درصد داده اعتبار سنج.

3: استفده از روش Grid Search CV جهت پیدا کردن بهترین هایپرپارامتر ها درشبکه با یک لایه پنهان .

مرحله اول: ساختن مدل در تابعي تحت عنوان cteate_model_for_GS با مقادير اوليه دلخواه هايپرپارامترها.

مرحله دوم: استفاده از کتابخانه Keras و مشخص کردن Optimizer مدل وتعداد neurons لایه پنهان با استفاده از مدل تعریف شده در قسمت قبل و Sk-cross-validation. بدست آوردن دقت این مدل بر روی دیتاها ی آزمایشی

استفاده از Optimizer و تعداد neurons لایه پنهان بدست آمده در قسمت قبل به جای مقادیر اولیه دلخواه در مدل سپس مشخص کردن init_mode لایه نهان و لایه خروجی و dropout_rate پس از لایه پنهان لایه با استفاده از مدل جدید و -5k cross-validation. بدست آوردن دقت این مدل بر روی دیتاها ی آزمایشی.

مرحله سوم :ساخت مدل نهایی با توجه به پار امترهای بدست آمده مرحه قبل،بررسی دقت وخطای مدل روی دیتاهای آموزشی و اعتبارسنج ،نمودارهای مدل و دقت و خطای مدل بر روی داده های آزمایشی – یافتن بهترین epoch با استفاده از نمودارها و اجرای مدل با این مقدار مناسب و بدست آوردن دقت و خطای مدل روی دیتاهای آموزشی و اعتبارسنج، نمودارهای مدل و دقت و خطای مدل بر روی داده های آزمایشی

4: استفاده از روش Keras Tuning جهت پیدا کردن بهترین پارامتر ها در شبکه با یک و دو لایه پنهان.

برای هر دو مدل شبکه عصبی با یک و دو لایه پنهان بترتیب مراحل زیر طی میشود:

مرحله اول: ساختن مدل بر روی داده های آموزشی در تابعی تحت عنوان cteate model for KT .

مرحله دوم: استفاده از کتابخانه Keras_tuner و بدست آوردن بهترین هایپرپارامترها با استفاده از داده های اعتبارسنج -بررسی دقت مدل بر روی داده های آزمایشی

مرحله سوم :ساخت مدل نهایی با توجه به پارامترهای بدست آمده مرحه قبل،بررسی دقت وخطای مدل روی دیناهای آموزشی و اعتبارسنج ،نمودارهای مدل و دقت و خطای مدل بر روی داده های آزمایشی – یافتن بهترین epoch با استفاده از نمودارها و اجرای مدل با این مقدار مناسب و بدست آوردن دقت و خطای مدل روی دیناهای آموزشی و اعتبارسنج، نمودارهای مدل و دقت و خطای مدل بر روی داده های آزمایشی.

5:اجرای bagging بر روی بهترین مدل بدست آمده از قسمت 3 و 4

(به دلیل طولانی بودن اجرا وپیچیدگی بیش از حد استفاده از epoch=350 و تفاوت ناچیزدر دقت وخطا. از epoch=50 استفاده شده.)

محاسبه دقت و خطای مدل با همه داده ها جز داده های آزمایشی -محاسبه دقت وخطای مدل بر روی داده های آزمایشی

اجرای bagging با جداکردن داده های out of bag پس از مدل سازی و محاسبه دقت بر روی این داده ها-محاسبه دقت مدل بر روی داده های آزمایشی

 6: انتخاب 10 داده ابتدایی از داده های آزمایشی و مشاهده لیبل اصلی و لیبل های پیش بینی شده آنها توسط مدلهای زده شده ومقایسه مدلها.

فایل final_sele_NNTox21

دراین فایل از سه روش انتخاب متغیر استفاده شده و و سپس روش Keras Tuning طبق قبل و مراحل گفته شده انجام میشود. انتخاب 10 داده ابتدایی از داده های آزمایشی متناسب با هر نوع انتخاب متغیر و مشاهده لیبل اصلی و لیبل های پیش بینی شده آنها توسط مدلهای زده شده ومقایسه مدلها.

جدول مدلها:

Model	epo ch	Numbe r hidden layer	loss	accuracy	val_loss	val_accuracy	test set loss	test set accuracy
GS_modelbest	350	1	0.0889	0.9748	0.0895	0.9786	0.12978	0.9683
KT_model_1best	32	1	0.0923	0.9748	0.0887	0. 9786	0.1261	0.9683
KT_model_2best	25	2	0.0878	0.9742	0.0958	0.9817	0.1345	0.9669
KT_model_f1	500	1	0.1049	0.9733	0.0857	0.9801	0.1210	0.9669
KT_model_ch1best	30	1	0.0909	0.9743	0.0923	0.9832	0.1287	0.9669
KT_model_milbest	420	1	0.1231	0.9708	0.0899	9801	0.1247	0.9683
KT_model_f2best	70	2	0.0949	0.9737	0.0889	0.9786	0.1220	0.9683
KT_model_ch2best	25	2	0.0944	0.9730	0.0911	0.9801	0.1287	0.9669
KT_model_mi2best	25	2	0.0890	0.9754	0.0903	0.9832	0.1311	0.9669

جدول ensemble ها:

model	epoch	Number hidden layer	test set accurac y	accurac y for out-of- bag
bag_clf_GS	50	1	0.9573	-
outbag_clf_GS	50	1	0.9573	0.9574
bag_clf_KT1	32	1	0.9642	-
outbag_clf_KT1	32	1	0.9656	0.9732
bag_clf_KT2	25	2	0.9656	-
outbag_clf_KT2	25	2	0.9656	0.9733