Один стохастический метод нахождения собственных чисел и векторов матрицы

Поликанин Евгений Маркович, гр.21.Б04-мм

Кафедра статистического моделирования Математико-механический факультет Санкт-Петербургский государственный университет

Научный руководитель: д. ф.-м. н., профессор Ермаков Михаил Сергеевич

Рецензент: старший научный сотрудник, Федеральное государственное бюджетное учреждение науки Санкт-Петербургское отделение Математического института им. В.А.Стеклова Российской академии наук В.Н. Солев

Существующие алгоритмы

Прямые методы (поиск полного спектра):

- ullet QR-алгоритм $(O(n^3))$
- ullet Метод Якоби $(O(n^3))$

Итерационные методы (поиск части спектра):

- Степенной метод (наибольшее по модулю собственное число, $O(n^2)$)
- Обратный степенной метод (нахождение ближайшего к μ , $O(n^2)$)
- Метод Ланцоша (разреженные симметричные матрицы, $O(n^2)$)
- Метод подпространств Крылова $(O(n^2))$

Подробнее про методы их асимптотику см. [1], [2].

Цели работы

Разработать модификацию стохастического алгоритма, предложенного в работе Саловой Я. И., Ермакова М. С. (2024) [3].

- ① Адаптировать алгоритм для поиска наименьшего и m-го по убыванию собственных чисел матрицы
- Доказать состоятельность
- Исследовать скорость сходимости

Постановка задачи

Введем следующие обозначения:

- ${f A}$ симметричная положительно определенная матрица размера n imes n
- $\lambda_{\min} = \lambda_1 < \lambda_2 \leq ... \leq \lambda_n = \lambda_{\max}$
- ullet v_j собственный вектор, соответствующий λ_j

 ${f 3}$ адача: Найти наименьшее собственное число λ_{min} матрицы ${f A}$ и соотвествующий ему собственный вектор v_{min} .

Алгоритм P3S (Probabilistic Subspace Spectral Search)

Algorithm P3S для наименьшего собственного числа (итерация 1)

Вход: Матрица \mathbf{A} , точность $\varepsilon > 0$.

Выход: Оценки $\lambda_{\min}^{(k)}, \ v_{\min}^{(k)}.$

- 1: Моделируются случайные взаимно ортогональные векторы $v^{(0)}, w^{(0)} \in \mathbb{R}^n$, имеющие равномерное распределение в кубе.
- 2: Строится матрица $\widetilde{\mathbf{A}}^{(1)}$ проекция оператора \mathbf{A} на $\mathcal{L}(v^{(0)},w^{(0)}).$
- 3: Находится $v^{(1)}$ собственный вектор единичной нормы матрицы $\widetilde{\mathbf{A}}^{(1)}$, соответствующий наименьшему собственному числу $\lambda^{(1)}$.

Алгоритм P3S (Probabilistic Subspace Spectral Search)

Algorithm P3S для наименьшего собственного числа (итерация $k \geq 1$)

- 1: Генерируется вектор $w^{(k)}$ равномерно распределенный в кубе в ортогональном к $\mathcal{L}(v^{(k)})$ пространстве.
- 2: Строится матрица $\widetilde{\mathbf{A}}^{(k+1)}$ проекция \mathbf{A} на подпростанство $\mathcal{L}(v^{(k)},w^{(k)})$.
- 3: Находится собственный вектор $v^{(k+1)}$ матрицы $\widetilde{\mathbf{A}}^{(k+1)}$, соответствующий наименьшему собственному числу $\lambda^{(k+1)}$.
- 4: Если $|\lambda^{(k+1)} \lambda^{(k)}| < \varepsilon$, где ε заранее заданная малая величина, то алгоритм завершает работу, иначе переходим к пункту 1.

Вычислительная сложность одной итерации: $O(n^2)$.

Состоятельность алгоритма

Лемма

Оценка $\lambda_{\min}^{(k)}$ состоятельна. То есть

$$\forall \varepsilon > 0 \ P(|\lambda_{\min}^{(k)} - \lambda_{\min}| > \varepsilon) \xrightarrow[k \to \infty]{} 0.$$

Кроме того, пусть $||v_{\min}^{(k)}|| = ||v_{\min}|| = 1$, тогда

$$\forall \varepsilon > 0 \ P(||v_{\min}^{(k)} - v_{\min}|| > \varepsilon) \xrightarrow[k \to \infty]{} 0.$$

Скорость сходимости

Удается оценить число шагов k для достижения $P(|\lambda_{\min}^{(k)}-\lambda_{\min}|>\varepsilon)\leq 1-\gamma$, где γ — заданный уровень доверия.

Лемма

Пусть

$$r = R \frac{1}{\sqrt{1 - R^2}}, \quad R^2 = \frac{(\lambda_{\min} + \varepsilon)^2 - \lambda_{\min}^2}{\lambda_{\max}^2 - \lambda_{\min}^2}$$

Тогда

$$k \le \frac{\log(1-\gamma)}{\log((1-V_{n-2}(r))/2n)} \sim O\left(\frac{1}{\varepsilon^{Cn}}\right)$$

где $V_n(r)$ - объем n-мерного шара радиуса r.

Алгоритм P3S для поиска m-го собственного числа

P3S для мимимального собственного числа естественным образом продолжается на случай поиска m-го собственного числа:

- f 0 На первом шаге генерируется m+1 случайный вектор и ортогонализируются.
- f 2 Берется проекция ${f A}$ на подпространство, порожденное этими векторами.
- Находится базис из m+1 собственного вектора. Отбрасывается вектор, соответствующий наибольшему собственному числу. Переходим к шагу 1, но генерируется уже только один случайный вектор.
- Алгоритм останавливается, когда $|\lambda_m^{(k+1)} \lambda_m^{(k)}| < \varepsilon$ Вычислительная сложность одной итерации: $O(n^2m)$.

Зависимость точности приближения от размера матрицы

Зависимость сходимости от отношения $\lambda_{ m max}$ к $\lambda_{ m min}$

Рис. 1: Моделирование для матрицы ${f A}$ размерности 10 со спектром (0.1, 1, 10).

Зависимость сходимости от спектра матрицы

Рис. 2: Ошибка приближения λ_{\min} . Типы спектра: $\mathbf{1}: 0.1 + (9, 10, 99), \mathbf{2}: (0.1, 1, 99) + 10, \mathbf{3}: (0.1, 10, 100).$

Зависимость сходимости от спектра матрицы

Рис. 3: Ошибка приближения v_{\min} . Типы спектра: $\mathbf{1}:0.1+(9,10,99)$, $\mathbf{2}:(0.1,1,99)+10$, $\mathbf{3}:(0.1,10,100)$.

Заключение

- Разработана модификация стохастического алгоритма для поиска собственных чисел и векторов
- Доказана состоятельность алгоритма
- Найдена теоретическая оценка числа итераций до достижения заданной точности
- ullet Вычислительная сложность: $O(n^2)$ (мин. соб. число), $O(n^2m)$ (m-е число)
- Численный анализ сходимости:
 - ullet Экспоненциальная (малые n)
 ightarrow степенная (большие n)
 - Зависит от спектра матрицы

Дальнейшие шаги

- Оптимизация для разреженных матриц
- Обобщение на несимметричные матрицы
- Оптимизация алгоритма поиска случайного подпространства.

Список литературы

- Arbenz Peter. Arnoldi and Lanczos Algorithms. Lecture notes, ETH Zürich. — 2014. pp. 178–179.
- Demmel James W. Applied Numerical Linear Algebra. SIAM, 1997. p. 213.
- Яна Салова. Исследование одного алгоритма метода главных компонент // Выпускная квалификационная работа. 2024.