Homework 6 Solutions - MATH 4322

Cathy Poliak

Spring 2024

Problem 1

You are given:

- n data samples $\mathbf{x}_i = (x_{1,i}, \dots, x_{p,i}), i = 1, \dots, n$
- n corresponding to true responses (or labels) $y_i, i = 1, \ldots, n$.

and asked to train a single linear neuron "network" to approximate function f(.) such that $f(\mathbf{x}_i) = y_i, i = 1, ..., n$. Provided the train steps for your "network" by answering the following questions.

- a) What is the formula to calculate an output \hat{y}_i from an input \mathbf{x}_i ? What are the model parameters in that formula?
- b) What criteria do we need to optimize in order to estimate the model parameters?
- c) What is the name of the method used to optimize this criteria in case you do not have access to an analytical solution?

Answers

- a) $\hat{y}_i = \sum_{i=1}^p w_i x_i + b$, the model parameters are:
- Weights of inputs: w_1, w_2, \ldots, w_p .
- bias: b.
- b) We need to optimize the sum of the squared residuals of predicted values \hat{y}_i , when compared to the true values y_i :

$$\frac{1}{2} \sum_{i=1}^{p} (\hat{y}_i - y_i)^2$$

Or if your data samples are fed one at a time, then when the i^{th} sample is fed, we need to optimize:

$$\frac{1}{2}(\hat{y}_i - y_i)^2$$

c) Gradient decent.

Problem 2

Presume that for a single linear neuron model with input variables x_1, \ldots, x_5 , you are given the following parameter values:

- weights: $w_1 = 0.2, w_2 = -0.54, w_3 = -0.21, w_4 = -0.1, w_5 = 0.33,$
- bias: b = 0.14.
- a) Draw a mathematical model of this linear neuron that takes an arbitrary input vector $\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)$.
- b) Calculate the linear neuron output for the case of $x_1 = 4, x_2 = -3, x_3 = 7, x_4 = 5, x_5 = -1$. Show your work.

Answer

a) Diagram

b)
$$\hat{y} = 0.14 + 0.2(4) - 0.54(-3) - 0.21(7) - 0.1(5) + 0.33(-1) = 0.26$$

Problem 3

You are given an artificial neural network (ANN) of linear neurons with

- Input layer of two neurons: x_1, x_2
- Fully-connected hidden layer of three neurons: h_1, h_2, h_3
- One output neuron, y.

The following weight matrices are provided:

1) Between input & hidden layer:

		Hidden		
		h_1	h_2	h_3
	1 (bias)	-0.3	0.5	0.5
Input	x_1	0.6	-0.4	0.5
	x_2	-0.7	-0.3	0.2

2) Between hidden & output layer:

		Output
		y
	1 (bias)	0.2
Hidden	h_1	-0.3
	h_2	0.5
	h_3	-0.7

- a) Draw this ANN as was done in lecture slides.
- b) Calculate the output of this ANN for the case of $x_1 = 10, x_2 -5$. Show work.

Answers

a) Diagram

b) Calculations:

$$\hat{h}_1 = -0.3 + 0.6 * 10 - 0.7 * (-5) = 9.2$$

$$\hat{h}_2 = 0.5 - 0.4 * 10 - 0.3 * (-5) = -2$$

$$\hat{h}_3 = 0.5 + 0.5 * 10 + 0.2 * -5 = 4.5$$

$$\hat{y} = 0.2 - 0.3 * 9.2 + 0.5 * -2 - 0.7 * 4.5 = -6.71$$

Problem 4

- We want to predict the 'medy' value based on the input of the other thirteen variables.
- $\bullet~$ We will run a regression neural network for the ${\tt Boston}$ data set.
- We will split the data into training/testing by a 70/30 split.
- a) Type and run the following in R.

```
library(neuralnet)
library(MASS)

data = Boston #renaming the Boston data set to "data"
summary(data)
```

```
##
         crim
                                               indus
                                                                  chas
                               zn
##
                                                  : 0.46
    Min.
           : 0.00632
                                :
                                   0.00
                                                            Min.
                                                                    :0.00000
                        Min.
                                           Min.
    1st Qu.: 0.08205
                                   0.00
                                           1st Qu.: 5.19
                                                            1st Qu.:0.00000
##
                        1st Qu.:
                                                            Median :0.00000
##
    Median: 0.25651
                        Median: 0.00
                                           Median: 9.69
            : 3.61352
                                                                    :0.06917
    Mean
                        Mean
                                : 11.36
                                           Mean
                                                  :11.14
                                                            Mean
##
    3rd Qu.: 3.67708
                        3rd Qu.: 12.50
                                           3rd Qu.:18.10
                                                            3rd Qu.:0.00000
##
    Max.
            :88.97620
                        Max.
                                :100.00
                                           Max.
                                                   :27.74
                                                            Max.
                                                                    :1.00000
##
         nox
                             rm
                                             age
                                                               dis
    Min.
##
            :0.3850
                              :3.561
                                               : 2.90
                                                                  : 1.130
                      Min.
                                        Min.
                                                          Min.
                      1st Qu.:5.886
                                        1st Qu.: 45.02
                                                          1st Qu.: 2.100
##
    1st Qu.:0.4490
##
    Median :0.5380
                      Median :6.208
                                        Median: 77.50
                                                          Median : 3.207
##
    Mean
            :0.5547
                      Mean
                              :6.285
                                        Mean
                                               : 68.57
                                                          Mean
                                                                  : 3.795
##
    3rd Qu.:0.6240
                      3rd Qu.:6.623
                                        3rd Qu.: 94.08
                                                          3rd Qu.: 5.188
##
    Max.
            :0.8710
                      Max.
                              :8.780
                                        Max.
                                               :100.00
                                                          Max.
                                                                  :12.127
##
         rad
                                           ptratio
                            tax
                                                             black
    Min.
##
            : 1.000
                      Min.
                              :187.0
                                        Min.
                                               :12.60
                                                         Min.
                                                                 : 0.32
    1st Qu.: 4.000
##
                      1st Qu.:279.0
                                        1st Qu.:17.40
                                                         1st Qu.:375.38
##
    Median : 5.000
                      Median :330.0
                                        Median :19.05
                                                         Median :391.44
           : 9.549
##
    Mean
                              :408.2
                                               :18.46
                                                         Mean
                                                                 :356.67
                      Mean
                                        Mean
##
    3rd Qu.:24.000
                      3rd Qu.:666.0
                                        3rd Qu.:20.20
                                                         3rd Qu.:396.23
##
    Max.
            :24.000
                              :711.0
                                               :22.00
                                                                 :396.90
                      Max.
                                        Max.
                                                         Max.
##
        lstat
                           medv
##
            : 1.73
                             : 5.00
    Min.
                     Min.
    1st Qu.: 6.95
                     1st Qu.:17.02
##
    Median :11.36
                     Median :21.20
##
    Mean
            :12.65
                     Mean
                             :22.53
##
    3rd Qu.:16.95
                     3rd Qu.:25.00
            :37.97
                             :50.00
    Max.
                     Max.
```

What is the mean of age? What is the mean of ptratio?

Answer

mean(age) = 68.57, mean(ptratio) = 19.05

- b) Normalizing data
- It is recommended to **normalize** (or scale, or standardize, either works) features in order for all the variables to be on the same scale.
- With normalization, data units are eliminated, allowing you to easily compare data from different locations
- This avoids unnecessary results or difficult training processes resulting in algorithm convergence problems.
- There are different methods for scaling the data.
- The z-normalization

$$x_{scale} = \frac{x - \bar{x}}{s}$$

• The min-max scale

$$x_{scale} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

- And so forth
- The function in R is scale(x,center = ,scale =)
- For this example we will use the min-max method to get all the scaled data in the range [0, 1].
- In order to scale we need to find the minimum and maximum value for each of the columns in the data set. To do this we use the apply function.
- The apply function returns a vector or an array or a list of values obtained by applying a function to margins of an array or matrix.
- Type and run the following:

```
max_data = apply(data,2,max)
#2=columns, we are getting the maximum value from each column
min_data = apply(data,2,min)
data_scaled = scale(data, center = min_data, scale = max_data - min_data)
head(data_scaled)
```

```
##
             crim
                            indus chas
                                                                  age
## 1 0.000000000 0.18 0.06781525
                                     0 0.3148148 0.5775053 0.6416066 0.2692031
## 2 0.0002359225 0.00 0.24230205
                                     0 0.1728395 0.5479977 0.7826982 0.3489620
## 3 0.0002356977 0.00 0.24230205
                                     0 0.1728395 0.6943859 0.5993821 0.3489620
## 4 0.0002927957 0.00 0.06304985
                                     0 0.1502058 0.6585553 0.4418126 0.4485446
## 5 0.0007050701 0.00 0.06304985
                                     0 0.1502058 0.6871048 0.5283213 0.4485446
## 6 0.0002644715 0.00 0.06304985
                                     0 0.1502058 0.5497222 0.5746653 0.4485446
                                         black
##
            rad
                       tax
                             ptratio
                                                     lstat
                                                                medv
## 1 0.00000000 0.20801527 0.2872340 1.0000000 0.08967991 0.4222222
## 2 0.04347826 0.10496183 0.5531915 1.0000000 0.20447020 0.3688889
## 3 0.04347826 0.10496183 0.5531915 0.9897373 0.06346578 0.6600000
## 4 0.08695652 0.06679389 0.6489362 0.9942761 0.03338852 0.6311111
## 5 0.08695652 0.06679389 0.6489362 1.0000000 0.09933775 0.6933333
## 6 0.08695652 0.06679389 0.6489362 0.9929901 0.09602649 0.5266667
```

What is the scaled value of the first observation for medy?

Answer 0.42222

c) Now we can split the data into training and testing data sets. We will use the 70/30 split

```
set.seed(10)
index = sample(1:nrow(data), round(0.7*nrow(data)))
train_data = as.data.frame(data_scaled[index,])
test_data = as.data.frame(data_scaled[-index,])
dim(train_data)
```

```
## [1] 354 14
```

How many observations do we have in the training data set?

Answer 354

d) Type and run the following

Apply the test data set to determine the MSE

```
predict_net = predict(net_data,test_data)
predict_net_start = predict_net*(max(data$medv) - min(data$medv)) + min(data$medv)
test_data_start = test_data$medv*(max(data$medv) - min(data$medv)) + min(data$medv)
sum((predict_net_start - test_data_start)^2)/nrow(test_data)
```

[1] 15.37819

##

What is the test MSE for this model?

Answer I got 15.37819, this is \$3921.5.

e) Let us compare this test MSE to the linear regression model. Type and run the following:

```
lm.boston = lm(medv ~ ., data = data, subset = index )
summary(lm.boston)
```

```
## Call:
## lm(formula = medv ~ ., data = data, subset = index)
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -13.981 -3.029 -0.529
                            1.882
                                   25.349
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.073e+01 6.167e+00
                                      6.606 1.53e-10 ***
## crim
               -9.253e-02 5.445e-02
                                     -1.700 0.090140 .
## zn
               4.810e-02
                          1.737e-02
                                      2.769 0.005936 **
## indus
               -6.504e-04 8.068e-02
                                     -0.008 0.993573
               2.910e+00
                          1.124e+00
                                      2.589 0.010045 *
## chas
## nox
               -1.948e+01
                          4.636e+00
                                     -4.202 3.39e-05 ***
## rm
               3.203e+00 5.057e-01
                                      6.333 7.60e-10 ***
               1.022e-02 1.627e-02
                                      0.628 0.530150
## age
                          2.454e-01 -6.033 4.20e-09 ***
## dis
               -1.481e+00
## rad
               2.948e-01 8.303e-02
                                      3.551 0.000439 ***
              -1.227e-02 4.786e-03 -2.564 0.010775 *
## tax
## ptratio
              -9.461e-01 1.678e-01 -5.638 3.61e-08 ***
## black
               9.767e-03 3.464e-03
                                      2.819 0.005094 **
## lstat
              -5.385e-01 6.229e-02 -8.646 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 4.989 on 340 degrees of freedom
## Multiple R-squared: 0.7062, Adjusted R-squared: 0.6949
## F-statistic: 62.85 on 13 and 340 DF, p-value: < 2.2e-16

test = data[-index,]
predict_lm = predict(lm.boston,test)
sum((predict_lm - test$medv)^2)/nrow(test)</pre>
```

[1] 17.77379

What is the training MSE for the linear model?

Answer I got 17.77379 which is higher than the neural network.