THEORY OF COMPUTATION ASSIGNMENT QUESTION MODULE 1 and 2

- 1. Define Deterministic Finite Automata (DFA). Design a DFA
 - To accept strings having Odd Number of a's and even number of b's.
 - To accept the strings having $L = \{W \in (a, b); W \text{ has all strings} \}$
- 2. Construct an equivalent DFA from the following given NFA using Subset Construction Method. Refer the below figure.

- 3. Give DFA's accepting the following strings over the alphabet {0,1}
 - i. The set of all strings beginning with 101
 - ii. The set of all strings containing 1101 as a substring
 - iii. The set of all strings with exactly three consecutive 0's
- 4. Consider the following €-NFA

8	€	A	<mark>b</mark>
→ p	{r}	{q}	{p, r}
q	Ф	{p}	ф
* r	{p,q}	r}	{p}

- i. Compute the €-closure of each state
- ii. Convert the Transition table to Transition diagram
- iii. Convert the automaton to a DFA
- 5. Design a DFA
 - i. To accept strings of 0's, 1's and 2's beginning with a '1' followed by odd number of 0's and ending with a '2'.
 - ii. To accept the Language $L = \{w(ab+ba) \mid w \in \{a, b\}^*\}$
- 6. Convert to a DFA the following NFA:

	0	1
$\Box \mathbf{p}$	{p, q}	{p}
q	{r}	{r}
r	{s}	φ
*s	{s}	{s}

7. For this given €-NFA compute extended transition function of the strings sequence

+9.3.

8.

- i. Draw a DFA to accept strings of a's and b's with odd number of a's and odd number of b's.
- ii. Explain the Extended transition function to strings for DFA and compute the extended transition function for string sequence 101010.

9. Convert the following €-NFA to DFA.

10. Convert the following NFA to a DFA and informally describe the language it accepts

	0	1
$\rightarrow p$	$\{p,q\}$	$\{p\}$
q	$\{r,s\}$	$\{t\}$
r	$\{p,r\}$	$\{t\}$
*8	W A	(V) (A
*t	l W	V)

11. Define distinguishable and indistinguishable states. Minimize the following DFA

8	0	1
$\rightarrow A$	В	A
В	A	C

С	D	В
*D	D	A
Е	D	F
F	G	E
G	F	G
Н	G	D

- 12. Write the RE for the following Languages.
 - i) Strings having substring aab over alphabet {a,b}.
 - ii) Strings of 1's and 2's whose fourth symbol from right end is '1'
- 13. List out closure properties of regular sets. State and prove the pumping Lemma theorem for regular language. Show that L= $\{a^nb^n\mid n>=0\}$ is not regular
- 14. Show that regular languages are closed under complement and intersection.
- 15. Construct an €-NFA for the regular expression 01+01*