Assignment 1

Full Marks: 150

Deadline: 18 October 2022

BRAC University

Semester: Fall 2022 Course No: CSE251

Course Title: Electronic Devices and Circuits

1. Draw the alternate representations of the following circuits [Note that the

number of floating sources should be minimized in your design].

[10+10]

2. Find the loop representation of the following circuit:

[10]

3.

Here, v_x = (10+last digit of your ID) V

- (i) **Draw** the alternate circuit representation of the circuit shown in the Figure above [Note that the number of floating sources should be minimized in your design].
- (ii) Apply KCL and KVL on the circuit drawn in 3(i) and calculate I_1 , I_2 , and I_3 .

[10+20]

4. Use nodal analysis to find $V_{\mbox{\scriptsize o}}$ in the following circuit:

[20]

Here, $v_x = (40 + last digit of your ID) V$

5.

- (i) **Draw** the i-V graph of the circuit drawn above. Clearly mention the coordinates of x and y-intersecting points on the graph [Free-hand drawing is sufficient].
- (ii) What happens when the resistance becomes (a) $100k\Omega$, (b) $200k\Omega$ instead of 50 $k\Omega$? Plot these cases on the graph and explain the result.

[10+10]

6.

The I-V graph shown in Figure 1(b) is that of a piecewise linear device N_D shown in Figure 1(a). The I-V graph has 3 segments, denoted as AB (Region 1), BC (Region 2), and CD (Region 3). [15+5+5+25]

- (a) **Identify** the equivalent linear circuit models for the 3 linear regions shown in the I-V characteristics of the non-linear device N_D and calculate the model parameters.
- (b) **Detect** the operating region for the device N_D and **calculate** the value of I_2 when V=2V.
- (c) **Show** the alternative representation of the circuit shown in Figure 1 (a).
- (d) Consider the device N_D has been replaced by a linear component that shows an I-V characteristic like the BC portion of Figure 1(a). **Apply** KVL and KCL to **calculate** the values of I_1 , I_2 , and I_3 .