Correction du devoir surveillé 6.

Exercice 1

1°) Soit $x_0 \in [a, b]$. Pour tout $x \in [a, b]$, on a $0 \le |f(x) - f(x_0)| \le |x - x_0|$ puisque, pour l'inégalité de droite, il y a égalité si $x = x_0$ et inégalité stricte si $x \ne x_0$ par l'hypothèse.

Or $|x-x_0| \underset{x\to x_0}{\longrightarrow} 0$, donc par théorème des gendarmes , $|f(x)-f(x_0)| \underset{x\to x_0}{\longrightarrow} 0$, i.e. $f(x) \underset{x\to x_0}{\longrightarrow} f(x_0)$.

Ainsi f est continue en x_0 , ceci pour tout $x_0 \in [a, b]$ donc f est continue sur [a, b].

2°) Supposons que α et β soient deux réels de [a,b] tels que $f(\alpha)=\alpha$ et $f(\beta)=\beta$. Si on avait $\alpha \neq \beta$, alors par l'hypothèse, on aurait $|f(\alpha)-f(\beta)|<|\alpha-\beta|$ i.e. $|\alpha-\beta|<|\alpha-\beta|$: absurde. Donc $\alpha=\beta$.

Ainsi, si f possède un point fixe, alors il est unique.

- **3°)** Comme $f, x \mapsto -x$ et $t \mapsto |t|$ sont continues, par somme et composition, g est continue sur le segment [a,b]. Par le théorème des bornes atteintes, g est bornée sur [a,b] et atteint ses bornes; en particulier, g possède un minimum sur [a,b].
- **4**°) Supposons que $f(\alpha) \neq \alpha$.

 α et $f(\alpha)$ sont bien dans [a,b], donc d'après l'hypothèse, $|f(f(\alpha)) - f(\alpha)| < |f(\alpha) - \alpha|$, i.e. $g(f(\alpha)) < g(\alpha)$.

Or, par ailleurs, $g(\alpha) = \min_{[a,b]} g$ donc $g(f(\alpha)) \ge g(\alpha)$: contradiction.

Donc $f(\alpha) = \alpha$.

Exercice 2

Partie 1 : Étude de f

1°) $f(x) = x \times \frac{1}{\ln x} \xrightarrow[x \to 0]{} 0$ par produit.

Ainsi, f est prolongeable par continuité en 0 en posant f(0) = 0

 $\mathbf{2}^{\circ}) \ \ln x \underset{x \to 1^{-}}{\longrightarrow} 0 \ \text{et} \ \ln(x) < 0 \ \text{pour} \ x < 1, \ \text{et} \ x \underset{x \to 1^{-}}{\longrightarrow} 1 \ \text{donc} \ \boxed{f(x) \underset{x \to 1^{-}}{\longrightarrow} -\infty}.$

 $\ln x \xrightarrow[x \to 1^+]{} 0 \text{ et } \ln(x) > 0 \text{ pour } x > 1, \text{ donc } \boxed{f(x) \xrightarrow[x \to 1^+]{} + \infty}.$

Ainsi, f n'a pas de limite en 1

Graphiquement, $\mathcal C$ admet la droite d'équation x=1 pour asymptote au voisinage de 1

- **3°)** f est continue sur $D \cup \{0\}$, car elle a été prolongée par continuité en 0 et car elle est continue sur D par quotient.
 - f est dérivable sur D par quotient.
 - Pour tout $x \in D$,

$$f'(x) = \frac{1 \times \ln x - x \times \frac{1}{x}}{(\ln x)^2} = \frac{\ln x - 1}{(\ln x)^2} = \frac{1}{\ln x} - \frac{1}{(\ln x)^2}$$

Comme $\frac{1}{\ln x} \xrightarrow[x \to 0]{} 0$ et $\frac{1}{(\ln x)^2} \xrightarrow[x \to 0]{} 0$, par somme, $f'(x) \xrightarrow[x \to 0]{} 0$.

Donc, par le théorème de la limite de la dérivée, $\frac{f(x) - f(0)}{x - 0} \xrightarrow[x \to 0]{} 0$.

Cela signifie que f est dérivable en 0 et que f'(0) = 0.

L'information $f'(x) \xrightarrow[x \to 0]{} 0$ se réécrit donc : $f'(x) \xrightarrow[x \to 0]{} f'(0)$, donc f' est continue en 0.

Comme de plus f est de classe C^1 sur D comme quotient de fonctions de classe C^1 , on en déduit que f est de classe C^1 sur $D \cup \{0\}$.

4°) Pour tout $x \in D$, $f'(x) = \frac{\ln x - 1}{(\ln x)^2}$ est du signe de $\ln x - 1$. Or,

$$\ln x - 1 \ge 0 \iff \ln x \ge 1$$

$$\iff x \ge e$$
 car exp est strictement croissante

$$\ln x - 1 = 0 \iff x = e$$

x	0	$1 \qquad \qquad e \qquad \qquad +\infty$
f'(x)	0 -	- 0 +
f	0	$+\infty$ $+\infty$

5°) Soit $x \ge e$. Alors, $f'(x) \ge 0$ d'après le tableau de variations de f.

$$f'(x) - \frac{1}{4} = \frac{\ln x - 1}{(\ln x)^2} - \frac{1}{4}$$

$$= \frac{4(\ln x - 1) - (\ln x)^2}{4(\ln x)^2}$$

$$= \frac{4\ln x - 4 - (\ln x)^2}{4(\ln x)^2}$$

$$= -\frac{(\ln x - 2)^2}{4(\ln x)^2} \le 0$$

Ainsi, on a bien : $\forall x \ge e, 0 \le f'(x) \le \frac{1}{4}$

 6°) Courbe \mathcal{C} de f:

Partie 2 : Étude d'une suite récurrente

- **7°)** Soit $n \in \mathbb{N}$. On pose $H_n : u_n$ existe et $u_n \geq e$.
 - $\star u_0$ existe et $u_0 = 3$ donc $u_0 \ge e$. Donc, H_0 est vraie.
 - \star On suppose H_n vraie pour un rang n fixé dans \mathbb{N} . u_n existe et $u_n \ge e$. Donc $u_{n+1} = f(u_n)$ existe. De plus f est croissante sur $[e, +\infty[$ donc $u_{n+1} = f(u_n) \ge f(e) = e$. Ainsi, H_{n+1} est vraie.
 - **\star** On a montré par récurrence que, pour tout $n \in \mathbb{N}$, u_n existe et $u_n \geq e$.
- 8°) f est dérivable sur l'intervalle $[e, +\infty[$ et, pour tout $x \ge e, \ 0 \le f'(x) \le \frac{1}{4}$. D'où $|f'(x)| \le \frac{1}{4}$. Par l'inégalité des accroissements finis, on en déduit que :

$$\forall (x,y) \in [e, +\infty[^2, |f(x) - f(y)| \le \frac{1}{4}|x - y|.$$

Soit $n \in \mathbb{N}$. On pose $x = u_n$ et y = e. On a bien : $x \ge e$ et $y \ge e$.

D'où $|f(u_n) - f(e)| \le \frac{1}{4}|u_n - e|$. Comme $u_{n+1} = f(u_n)$ et f(e) = e, il vient :

$$|u_{n+1} - e| \le \frac{1}{4}|u_n - e|.$$

- **9°)** On pose, pour $n \in \mathbb{N}, H_n : |u_n e| \le \frac{1}{4^n} |u_0 e|$.
 - $\star \frac{1}{40}|u_0 e| = |u_0 e| \text{ donc } H_0 \text{ est vraie.}$
 - \star On suppose H_n vraie pour un rang n fixé dans \mathbb{N} . Par la question précédente, $|u_{n+1}-e| \leq \frac{1}{4}|u_n-e|$. Or, par H_n , $|u_n-e| \leq \frac{1}{4n}|u_0-e|$. Donc $|u_{n+1} - e| \le \frac{1}{4n+1} |u_0 - e|$. Ainsi, H_{n+1} est vraie.
 - ★ On a montré par récurrence que, pour tout $n \in \mathbb{N}, |u_n e| \leq \frac{1}{4^n} |u_0 e|$

Pour tout $n \in \mathbb{N}$, $0 \le |u_n - e| \le \left(\frac{1}{4}\right)^n |u_0 - e|$.

De plus,
$$\frac{1}{4} \in]-1,1[$$
 donc $\left(\frac{1}{4}\right)^n |u_0-e| \underset{n\to+\infty}{\longrightarrow} 0.$

Ainsi, par le théorème d'encadrement, $u_n - e \xrightarrow[n \to +\infty]{} 0$ ie $u_n \xrightarrow[n \to +\infty]{} e$.

10°) $|u_0 - e| = 3 - e \le 1$ donc, pour tout $n \in \mathbb{N}, |u_n - e| \le \frac{1}{4^n}$.

Soit $n \in \mathbb{N}$. Pour que $|u_n - e| \le 10^{-3}$, il <u>suffit</u> que $\frac{1}{4^n} \le 10^{-3}$ ie $4^n \ge 10^3$. Or $4^5 = 2^{10} = 1024$ donc u_5 est une valeur approchée de e à 10^{-3} près

Partie 3 : Solution d'une équation différentielle non linéaire

11°) Par quotient, $y=\frac{1}{z}$ est dérivable sur]0,1[, et pour tout $x\in]0,1[, y(x)\neq 0, z(x)=\frac{1}{y(x)}$ et $z'(x) = -\frac{y'(x)}{(y(x))^2}.$

Ainsi:

$$z \text{ solution de } (E) \text{ sur }]0,1[\iff \forall \, x \in]0,1[, \,\, -x^2 \left(-\frac{y'(x)}{(y(x))^2}\right) + x\frac{1}{y(x)} = \frac{1}{(y(x))^2} \\ \iff \forall \, x \in]0,1[, \,\, x^2y'(x) + xy(x) = 1 \\ \iff y \text{ solution sur }]0,1[\text{ de } (F): \boxed{y'(x) + \frac{1}{x}y(x) = \frac{1}{x^2}}$$

- (F) est une équation différentielle linéaire d'ordre 1, son équation homogène associée est $(H): y'(x) + \frac{1}{x}y(x) = 0$. Une primitive de $x \mapsto \frac{1}{x}$ sur]0,1[est ln, donc les solutions de (H)sur]0,1[sont les $x \mapsto \lambda e^{-\ln(x)}$ i.e. les $x \mapsto \frac{\lambda}{x}$, $\lambda \in \mathbb{R}$.
 - Posons $y_p: x \mapsto \frac{\lambda(x)}{x}$, où $\lambda:]0,1[\to \mathbb{R}$ est dérivable. Par produit, y_p est dérivable sur]0,1[, et pour tout $x \in]0,1[, y'_p(x) = \lambda'(x)\frac{1}{x} - \lambda(x)\frac{1}{x^2}.$

$$y ext{ solution de } (F) \iff \forall x \in]0,1[, \ \lambda'(x)\frac{1}{x}-\lambda(x)\frac{1}{x^2}+\frac{1}{x}\frac{\lambda(x)}{x}=\frac{1}{x^2} \\ \iff \forall x \in]0,1[, \ \lambda'(x)\frac{1}{x}=\frac{1}{x^2} \\ \iff \forall x \in]0,1[, \ \lambda'(x)=\frac{1}{x}$$

Prenons $\lambda = \ln$; on en tire que $y_p : x \mapsto \frac{\ln(x)}{x}$ est une solution particulière de (F).

- Finalement, les solutions de (F) sur]0,1[sont les fonctions de la forme : $x \mapsto \frac{\lambda + \ln x}{x}$ où $\lambda \in \mathbb{R}$.
- Comme ln est une bijection de \mathbb{R}_+^* sur \mathbb{R} , pour tout réel λ , $-\lambda$ peut s'écrire ln a avec $a \in \mathbb{R}_+^*$, et alors, si x > 0, $\lambda + \ln x = -\ln a + \ln x = \ln \left(\frac{x}{a}\right)$.

Ainsi, les solutions de (F) sur]0,1[sont les fonctions de la forme $: x \mapsto \frac{\ln\left(\frac{x}{a}\right)}{x}$ où $a \in \mathbb{R}_+^*$

Soit $a \in \mathbb{R}_+^*$.

$$\exists x \in]0,1[, \frac{\ln\left(\frac{x}{a}\right)}{x} = 0 \iff \exists x \in]0,1[, \ln\left(\frac{x}{a}\right) = 0$$
$$\iff \exists x \in]0,1[, \frac{x}{a} = 1$$
$$\iff \exists x \in]0,1[, a = x$$
$$\iff a \in]0,1[$$

Ainsi, la solution $x \mapsto \frac{\ln\left(\frac{x}{a}\right)}{x}$ ne s'annule pas sur]0,1[si et seulement si $a \ge 1$.

13°) • Soit $z:]0,1[\to \mathbb{R}$ une fonction dérivable, qui ne s'annule pas, et $y=\frac{1}{z}$. y ne s'annule pas

non plus. D'après les questions précédentes, on peut donc affirmer :

$$z \text{ solution de } (E) \text{ sur }]0,1[\iff \exists a \ge 1, \forall x \in \mathbb{R}_+^*, \ y(x) = \frac{\ln\left(\frac{x}{a}\right)}{x} \\ \iff \exists a \ge 1, \forall x \in \mathbb{R}_+^*, \ z(x) = \frac{x}{\ln\left(\frac{x}{a}\right)} \\ \iff \exists a \ge 1, \forall x \in \mathbb{R}_+^*, \ z(x) = a \frac{\frac{x}{a}}{\ln\left(\frac{x}{a}\right)} \\ \iff \exists a \ge 1, \forall x \in \mathbb{R}_+^*, \ z(x) = af\left(\frac{x}{a}\right)$$

Les solutions de (E) sur]0,1[qui ne s'annulent pas sont donc les fonctions de la forme

 $x \mapsto af\left(\frac{x}{a}\right), \text{ avec } a \in [1, +\infty[.]]$ • Soit $a \in [1, +\infty[$ et $f_a : x \mapsto af\left(\frac{x}{a}\right)$; d'après la partie 1, par composition, f_a est de classe \mathcal{C}^1 sur $\mathbb{R}_+\setminus\{a\}$, donc en particulier sur [0,1[(puisque $a\geq 1)$). En particulier, $f_a(0)=af(0)=0$, et $f'_a(0)$ existe. On constate que $-0^2 f'_a(0) + 0 f_a(0) = 0$, c'est bien $(f_a(0))^2$. Ainsi, les solutions obtenues ci-dessus sur]0,1[se prolongent en 0 en des solutions sur [0,1[.

Exercice 3

Partie 1 : Une première inclusion

 $\mathbf{1}^{\circ}$) Soit $n \in \mathbb{N}$.

$$X_{n+1} = A^{n+1}X_0 = A(A^nX_0) = AX_n.$$

Ainsi,
$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix}$$
. Il vient :
$$\begin{bmatrix} x_{n+1} = 2x_n + 3y_n \\ y_{n+1} = x_n + 2y_n \end{bmatrix}$$
.

- $\mathbf{2}^{\circ}$) Pour $n \in \mathbb{N}$, on note $H_n : X_n \in \mathcal{H}_+$.
 - ★ Pour n = 0. $X_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ vérifie : $1 \in \mathbb{N}, 0 \in \mathbb{N}$. De plus $1^2 3 \times 0^2 = 1$. Donc $X_0 \in \mathcal{H}_+$.
 - \star On suppose H_n vraie pour un rang n fixé dans \mathbb{N} . Montrons que H_{n+1} est vraie.

Par la question précédente,
$$\begin{cases} x_{n+1} = 2x_n + 3y_n \\ y_{n+1} = x_n + 2y_n \end{cases}.$$

Or x_n et y_n sont dans \mathbb{N} donc x_{n+1} et y_{n+1} aussi, comme sommes et produits d'entiers naturels.

De plus,

$$x_{n+1}^{2} - 3y_{n+1}^{2} = 4x_{n}^{2} + 12x_{n}y_{n} + 9y_{n}^{2} - 3(x_{n}^{2} + 4x_{n}y_{n} + 4y_{n}^{2})$$

$$= x_{n}^{2}(4-3) + y_{n}^{2}(9-12) + x_{n}y_{n}(12-12)$$

$$= x_{n}^{2} - 3y_{n}^{2}$$

$$= 1 \quad \text{car } X_{n} \in \mathcal{H}$$

Ainsi, H_{n+1} est vraie.

★ On a montré par récurrence que : $\forall n \in \mathbb{N}, X_n \in \mathcal{H}_+$

On en déduit que $\mathcal{E} \subset \mathcal{H}^+$.

3°) Par ce qui précède, pour tout
$$n \in \mathbb{N}, X_n \in \mathcal{H}^+$$
. Précisons X_0, X_1, X_2 .
$$X_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}. \ X_1 = AX_0 = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \ X_2 = AX_1 = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \end{pmatrix}.$$
Ainsi, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 7 \\ 4 \end{pmatrix}$ dont des éléments de \mathcal{H}^+ .

 $4^{\circ})$

$$\begin{pmatrix}
2 & 3 \\
1 & 2
\end{pmatrix} \qquad \qquad \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \\
\begin{pmatrix}
1 & 2 \\
2 & 3
\end{pmatrix} \qquad L_1 \leftrightarrow L_2 \qquad \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix} \\
\begin{pmatrix}
1 & 2 \\
0 & 1
\end{pmatrix} \qquad L_2 \leftarrow L_2 - 2L_1 \qquad \begin{pmatrix}
0 & 1 \\
-1 & 2
\end{pmatrix} \\
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \qquad L_2 \leftarrow -L_2 \qquad \begin{pmatrix}
2 & -3 \\
-1 & 2
\end{pmatrix}$$

Par opérations élémentaires sur les lignes, on a transformé A en I_2 .

Ainsi,
$$A$$
 est inversible. De plus, $A^{-1} = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}$

Partie 2 : Détermination de \mathcal{H}_+

5°) a) $y \in \mathbb{N}$ donc $y \ge 0$. Supposons que y = 0. Comme $X \in \mathcal{H}, x^2 - 3y^2 = 1$. D'où $x^2 = 1$. Comme $x \in \mathbb{N}, x = 1$. Finalement, $X = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ donc $X = X_0$: ceci est exclu. On en déduit que $y \ge 1$.

b)
$$\star X' = BX \text{ donc } \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}. \text{ Donc, } \begin{cases} x' = 2x - 3y \\ y' = -x + 2y \end{cases}$$

- ★ Vérifions que $X' \in \mathcal{H}$. $x'^2 3y'^2 = (2x 3y)^2 3(-x + 2y)^2 = x^2(4 3) + y^2(9 12) = x^2 3y^2 = 1 \text{ car } X \in \mathcal{H}.$ Donc $X' \in \mathcal{H}$.
- ★ Vérifions maintenant que $x' \in \mathbb{N}, y' \in \mathbb{N}$. x' et y' sont des entiers relatifs comme sommes, produits, différences d'entiers. Montrons que $x' \geq 0$ et $y' \geq 0$.

$$x' \ge 0 \iff 2x \ge 3y$$
 $\iff 4x^2 \ge 9y^2 \quad \text{car } 2x \ge 0 \text{ et } 3y \ge 0$
 $\iff 4(1+3y^2) \ge 9y^2 \quad \text{car } X \in \mathcal{H}$
 $\iff \underbrace{3y^2 + 4 \ge 0}_{\text{vrai}}$

Donc $2x - 3y \ge 0$.

$$y' \ge 0 \iff -x + 2y \ge 0$$

 $\iff 2y \ge x$
 $\iff 4y^2 \ge x^2 \quad \text{car } 2x \ge 0 \text{ et } 3y \ge 0$
 $\iff 4y^2 \ge 1 + 3y^2 \quad \text{car } X \in \mathcal{H}$
 $\iff y^2 > 1$

Par 5a, $y \ge 1$ donc $y^2 \ge 1$. Donc $y' \ge 0$. On a bien montré que $X' \in \mathcal{H}^+$.

- c) Montrons que $\varphi(X') < \varphi(X)$. $X' = BX \text{ donc } \varphi(X') = x' + y' = (2x 3y) + (-x + 2y) = x y$. D'autre part, $\varphi(X) = x + y$ Or $y \ge 1$ donc y > 0 donc $\varphi(X') < \varphi(X)$.
- 6°) Soit $X \in \mathcal{H}_+$.

Supposons que : $\forall n \in \mathbb{N}, B^n X \neq X_0$.

On note, pour $n \in \mathbb{N}$, $H_n : B^n X \in \mathcal{H}^+ \setminus \{X_0\}$.

Pour n=0: $B^0X=X$. Par hypothèses, $B^0X\neq X_0$ et $X\in\mathcal{H}^+$. Ainsi, H_0 est vraie.

On suppose H_n vraie pour un rang n fixé dans $\mathbb{N}: B^nX \in \mathcal{H}^+ \setminus \{X_0\}$.

Par 5b, $B(B^nX)X \in \mathcal{H}^+$ i.e. $B^{n+1}X \in \mathcal{H}^+$. De plus, par hypothèse, $B^{n+1}X \neq X_0$.

Ainsi, H_{n+1} est vraie.

On a montré, par récurrence que : $\forall n \in \mathbb{N}, B^n X \in \mathcal{H}^+ \setminus \{X_0\}.$

Pour tout $n \in \mathbb{N}$, $u_n = \varphi(B^n X)$. On note $B^n X = \begin{pmatrix} \alpha_n \\ \beta_n \end{pmatrix}$.

 $B^nX \in \mathcal{H}^+$ donc α_n et β_n sont dans \mathbb{N} . Donc $u_n = \varphi(B^nX) = \alpha_n + \beta_n \in \mathbb{N}$.

De plus, $B^n X \in \mathcal{H}^+$ et $B^n X \neq X_0$.

Donc, par 5c, pour tout $n \in \mathbb{N}$, $\varphi(B(B^nX)) < \varphi(B^nX)$ i.e. $\varphi(B^{n+1}X_0) < \varphi(B^nX_0)$.

Ainsi, $u_{n+1} < u_n$.

 (u_n) est donc une suite strictement décroissante d'entiers naturels.

Ceci est exclu par la partie 1.

On en déduit que : $\forall X \in \mathcal{H}^+, \exists n \in \mathbb{N}, B^n X = X_0$.

- 7°) \star On a déjà vu que, par 2, que : $\mathcal{E} \subset \mathcal{H}^+$.
 - ★ Réciproquement, soit $X \in \mathcal{H}^+$.

Par 6, il existe $n \in \mathbb{N}$ tel que $B^n X = X_0$.

Ainsi, $(A^{-1})^n X = X_0$. Donc $(A^n)^{-1} X = X_0$ i.e. $X = A^n X_0$. Ainsi, $X \in \mathcal{E}$.

Finalement, on a montré que :

$$\mathcal{H}^+ = \mathcal{E} \text{ i.e. } \mathcal{H}^+ = \{A^n X_0 / n \in \mathbb{N}\}$$

Partie $3:\mathcal{H}^+$ est infini

8°) Effectuons deux calculs:

$$A \times P = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \times \begin{pmatrix} \sqrt{3} & -\sqrt{3} \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2\sqrt{3} + 3 & -2\sqrt{3} + 3 \\ \sqrt{3} + 2 & -\sqrt{3} + 2 \end{pmatrix}.$$

$$P \times D = \begin{pmatrix} \sqrt{3} & -\sqrt{3} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 + \sqrt{3} & 0 \\ 0 & 2 - \sqrt{3} \end{pmatrix} = \begin{pmatrix} 2\sqrt{3} + 3 & -2\sqrt{3} + 3 \\ 2 + \sqrt{3} & 2 - \sqrt{3} \end{pmatrix}.$$

Ainsi, on a bien : AP = PD.

 9°) Effectuons des opérations élémentaires sur les lignes de P.

$$P = \begin{pmatrix} \sqrt{3} & -\sqrt{3} \\ 1 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 \\ \sqrt{3} & -\sqrt{3} \end{pmatrix} \quad L_1 \leftrightarrow L_2$$
$$T = \begin{pmatrix} 1 & 1 \\ 0 & -2\sqrt{3} \end{pmatrix} \quad L_2 \leftarrow L_2 - \sqrt{3}L_1$$

On a transformé P, par opérations élémentaires, en la matrice T.

Or T est triangulaire supérieure, à coefficients diagonaux tous non nuls, donc T est inversible. Donc, P est inversible.

10°) AP = PD.

Comme P est inversible, on peut multiplier les 2 membres de l'égalité à droite par P^{-1} .

On obtient $A = PDP^{-1}$

Posons, pour tout $n \in \mathbb{N}$, $Q_n : A^n = PD^nP^{-1}$.

- $A^0 = I_2$ et $PD^0P^{-1} = PI_2P^{-1} = PP^{-1} = I_2$ donc Q_0 est vraie.
- Supposons Q_n vraie pour un $n \in \mathbb{N}$ fixé.

$$A^{n+1} = AA^n = PDP^{-1}PD^nP^{-1} \quad \text{par HR}$$

$$= PDI_2D^nP^{-1}$$

$$= PDD^nP^{-1}$$

$$= PD^{n+1}P^{-1}$$

- Ainsi Q_{n+1} est vraie. Conclusion : $\forall n \in \mathbb{N}, A^n = PD^nP^{-1}$
- 11°) On suppose qu'il existe k dans \mathbb{N}^* tel que $A^k X_0 = X_0$.

On a donc, par la question précédente : $PD^kP^{-1}X_0 = X_0$.

En multipliant à gauche par $P^{-1}: D^k(P^{-1}X_0) = P^{-1}X_0$.

On note $Y_0 = P^{-1}X_0$. Alors, on a $D^kY_0 = Y_0$.

Par l'absurde, supposons $Y_0 = 0$. Alors, $P^{-1}X_0 = 0$.

En multipliant à gauche par P, cela donne : $X_0 = 0$: ceci est exclu.

Ainsi, $|Y_0 \neq 0|$.

12°) On dispose d'une matrice colonne Y_0 non nulle telle que $D^k Y_0 = Y_0$.

On note $Y_0 = \begin{pmatrix} a \\ b \end{pmatrix}$. $Y_0 \neq 0$ donc $a \neq 0$ ou $b \neq 0$.

$$D = \begin{pmatrix} 2 + \sqrt{3} & 0 \\ 0 & 2 - \sqrt{3} \end{pmatrix}. \text{ Donc, } D^k = \begin{pmatrix} (2 + \sqrt{3})^k & 0 \\ 0 & (2 - \sqrt{3})^k \end{pmatrix}.$$

On a alors: $\binom{(2+\sqrt{3})^k}{0} \binom{0}{(2-\sqrt{3})^k} \binom{a}{b} = \binom{a}{b}$. Ainsi, $\begin{cases} (2+\sqrt{3})^k a = a \\ (2-\sqrt{3})^k b = b \end{cases}$

On sait que $a \neq 0$ ou $b \neq 0$

- Supposons $a \neq 0$. Alors, $(2 + \sqrt{3})^k = 1$. Or $2 + \sqrt{3} > 1$ donc $(2 + \sqrt{3})^k > 1$. C'est exclu.
- Supposons que $b \neq 0$. Alors, $(2-\sqrt{3})^k = 1$. Or 1 < 3 < 4 donc $1 < \sqrt{3} < 2$ donc $0 < 2 - \sqrt{3} < 1$. Donc $(2 - \sqrt{3})^k < 1$. C'est exclu aussi.

Dans les 2 cas, on obtient une contradiction

On en déduit que : $\forall k \in \mathbb{N}^*, A^k X_0 \neq X_0$.

13°) Soit $(n,p) \in \mathbb{N}^2$. On suppose que $n \neq p$. Montrons que $A^n X_0 \neq A^p X_0$.

Par l'absurde, supposons que $A^n X_0 = A^p X_0$.

 $n \neq p$. Supposons par exemple que n > p.

Comme A est inversible, A^p aussi. On multiplie $A^n X_0 = A^p X_0$ à gauche par $(A^p)^{-1}$.

On obtient : $(A^p)^{-1}A^nX_0 = X_0$. Donc $(A^{-1})^pA^nX_0 = X_0$.

Ce qui s'écrit : $A^{n-p}X_0 = X_0$: on a trouvé k dans \mathbb{N}^* tel que $A^kX_0 = X_0$.

Ceci est exclu.

Donc, on a bien $A^n X_0 \neq A^p X_0$.

Le raisonnement est analogue si p > n.

Ainsi, l'énoncé (*) est vrai