

MELBOURNE CITY OPEN DATA PLAYGROUND

CLUE Residential Dwellings

Exploratory Data Analysis

Date	Author/Contributor	Change	
16-Nov-2021	Steven Tuften	Initial Draft	

ATTRIBUTIONS

Jupyter Notebook derivative of data exploration notebook and d2i_tools.py created by Albert Hon in T2 2021.

Package/Library Imports

```
In [1]: import os import to simport time from urllib.request import urlopen import json from datetime import datetime import numpy as np import pandas as pd from sodapy import Socrata import geopandas import plotly.express as px from shapely.geometry import Polygon, Point from d2i_tools import * import warnings.simplefilter("ignore")
```

Constants

```
In [2]: dataset_id = 'rm92-h5tq' # Melbourne CLUE Residential Dwellings
geoJSON_Id = 'aia8-ryiq' # Melbourne CLUE Block polygons in GeoJSON format

apptoken = os.environ.get("SODAPY_APPTOKEN") # Anonymous app token
domain = "data.melbourne.vic.gov.au"
client = Socrata(domain, apptoken) # Open Dataset connection

WARNING:root:Requests made without an app_token will be subject to strict throttling limits.
```

[01] Retrieve dataset Metadata

```
metadata_df[metadata_df.id.isin([dataset_id])].T
          Selected metadata for the dataset of interest
Out[3]:
                                                                              Residential dwellings 2020
                                                       id
                                                                                            rm92-h5tq
                                                                                          [44kh-ty54]
                                               parent fxf
                                                             Data collected as part of the City of Melbourn...
                                               description
                                              data_upd_at
                                                                             2021-11-02T22:25:14.000Z
                                              pv_last_wk
                                                                                                  37
                                              pv_last_mth
                                                                                               2189
                                                 pv_total
                                                                                                 563
                                          download count
                                                             [environment, finance, housing & development]
                                               categories
                                         domain_category
                                             domain_tags [census of land use and employment, clue, clue...
                                                             [{'key': 'Quality_Known-Issues', 'value': 'Non...
                                         domain_metadata
                                   Quality What's-included
                                                                          Full dataset has been included
                                 Quality_Update-frequency
                                                                                      Every two years
                                   Quality_Reliability-level
                                                                                    Reliable and timely
                                     How-to-use_Linked-to
                                                                                                NaN
           Data-management_Source-data-update-frequency
                                                                                       Every two years
                                    Quality_Known-Issues
                                                                                               None
                           How-to-use Further-information
                                                                                                NaN
```

Quality_Data-quality-statement Data is summarised from the City of Melbourne'...

[02] Display first few rows

In [3]: metadata_df = loadClientDatasetsMetadata(client)

print('Selected metadata for the dataset of interest')

```
In [4]: dataresource = client.get_all(dataset_id)
    dataset = pd.DataFrame.from_dict(dataresource)
    print(f'The shape of dataset.shape).')
    print('Below are the first 3 rows of this dataset:')
    dataset.head(3).I

The shape of dataset is (10402, 10).
    Below are the first 3 rows of this dataset:
```

Out[4]:

	2	1	0	
2020		2020	2020	census_year
11		1	1	block_id
103957		611395	611394	pbs_property_id
103957		611395	611394	bps_base_id
IELBOURNE VIC 3000	517-537 Flinders Lane M	561-581 Flinders Street MELBOURNE VIC 3000	545-557 Flinders Street MELBOURNE VIC 3000	street_name
Melbourne (CBD)		Melbourne (CBD)	Melbourne (CBD)	clue_small_area
Residential Apartments		Residential Apartments	Residential Apartments	dwelling_type
26		189	196	dwelling_number
144.9566569		144.9559094	144.9565145	x_coordinate
-37.81987147		-37.82108687	-37.82097941	y_coordinate

[03] Data Pre-processing

Cast Data types before analysis

```
In [5]: dataset[['census_year', 'dwelling_number']] = dataset[['census_year', 'dwelling_number']].astype(int)
dataset[['x_coordinate', 'y_coordinate']] = dataset[['x_coordinate', 'y_coordinate']].astype(float)
         dataset = dataset.convert_dtypes() # convert remaining to string
Out[5]: census_year
                                 Int32
         block_id
                                string
         pbs_property_id
                                string
         bps_base_id
                                string
         street_name
                                string
         clue_small_area
                                string
         dwelling_type
                                string
         dwelling_number
                                 Int32
         x_coordinate
                               float64
         y_coordinate
                               float64
         dtype: object
         Are there any missing values?
In [6]: print(dataset.isnull().sum())
         census_year
         block_id
         pbs_property_id
         bps_base_id
         street name
```

In [7]: dataset[dataset['x_coordinate'].isnull()]

clue_small_area
dwelling_type
dwelling_number
x_coordinate
y_coordinate
dtype: int64

Out[7]:

	census_year	block_id	pbs_property_id	bps_base_id	street_name	clue_small_area	dwelling_type	dwelling_number	x_coordinate	y_coordinate
4499	2020	432	506137	506137	20 Chetwynd Street WEST MELBOURNE VIC 3003	West Melbourne (Residential)	House/Townhouse	1	NaN	NaN
4500	2020	432	506138	506138	18 Chetwynd Street WEST MELBOURNE VIC 3003	West Melbourne (Residential)	House/Townhouse	1	NaN	NaN

Drop rows with no latitude or longitude?

We will not be using the latitude and longitude at property level so we can leave these two rows in the dataset.

```
In [8]: ## If we wanted to drop these rows we would use the following two commands.

#dataset = dataset.dropna(axis=0)
#print(dataset.isnull().sum())
```

[04] Analyse data in Aggregate

Count of Dwellings by CLUE small area

```
In [9]: groupbyfields = ['clue_small_area']
    aggregatebyfields = {'dwelling_number': ["sum"]}
    maxByBlock = pd.DataFrame(dataset.groupby(groupbyfields, as_index=False).agg(aggregatebyfields))
    maxByBlock.head(10)
    # barchart
    # map
Out[9]:
```

	clue_small_area	all_area dwelling_number	
		sum	
0	Carlton	12802	
1	Docklands	9730	
2	East Melbourne	3426	
3	Kensington	5476	
4	Melbourne (CBD)	28519	
5	Melbourne (Remainder)	1577	
6	North Melbourne	8946	
7	Parkville	2851	
8	Port Melbourne	2	
9	South Yarra	2752	

Count of Dwellings by Dwelling Type

```
In [10]: groupbyfields = ['dwelling_type']
aggregatebyfields = {'dwelling_number': ["sum"]}

maxByBlock = pd.DataFrame(dataset.groupby(groupbyfields, as_index=False).agg(aggregatebyfields))
maxByBlock.head(10)

# barchart
```

Out[10]:

	dwelling_type	dwelling_number		
		sum		
0	House/Townhouse	10026		
1	Residential Apartments	78921		
2	Student Apartments	5636		

Count of Dwellings by CLUE small area and Dwelling Type

```
In [11]: groupbyfields = ['clue_small_area', 'dwelling_type']
    aggregatebyfields = {'dwelling_number': ["sum"]}
    maxByBlock = pd.DataFrame(dataset.groupby(groupbyfields, as_index=False).agg(aggregatebyfields))
    maxByBlock.head(40)
# map
# map
```

Out[11]:

	clue_small_area	dwelling_type	dwelling_number	
			sum	
0	Carlton	House/Townhouse	1520	
1	Carlton	Residential Apartments	7800	
2	Carlton	Student Apartments	3482	
3	Docklands	House/Townhouse	164	
4	Docklands	Residential Apartments	9566	
5	East Melbourne	House/Townhouse	635	
6	East Melbourne	Residential Apartments	2758	
7	East Melbourne	Student Apartments	33	
8	Kensington	House/Townhouse	3388	
9	Kensington	Residential Apartments	2088	
10	Melbourne (CBD)	House/Townhouse	45	
11	Melbourne (CBD)	Residential Apartments	27111	
12	Melbourne (CBD)	Student Apartments	1363	
13	Melbourne (Remainder)	House/Townhouse	1	
14	Melbourne (Remainder)	Residential Apartments	1576	
15	North Melbourne	House/Townhouse	2268	
16	North Melbourne	Residential Apartments	5947	
17	North Melbourne	Student Apartments	731	
18	Parkville	House/Townhouse	791	
19	Parkville	Residential Apartments	2033	
20	Parkville	Student Apartments	27	
21	Port Melbourne	Residential Apartments	2	
22	South Yarra	House/Townhouse	561	
23	South Yarra	Residential Apartments	2191	
24	Southbank	Residential Apartments	13784	
25	West Melbourne (Residential)	House/Townhouse	653	
26	West Melbourne (Residential)	Residential Apartments	4065	

Count of Dwellings by Block Id

```
In [12]: groupbyfields = ['block_id']
         aggregatebyfields = {'dwelling_number': ["sum"]}
         maxByBlock = pd.DataFrame(dataset.groupby(groupbyfields, as_index=False).agg(aggregatebyfields))
         maxByBlock.head(10)
         # vertical barchart
         # map
Out[12]:
            block_id dwelling_number
                101
                              863
                              638
                103
                104
                              1093
                105
                             1729
                              690
               1101
                              120
               1103
                              860
               1104
                              421
         Count, Min, Max, Sum of Dwellings by CLUE small area, Block Id and Dwelling Type
In [13]: groupbyfields = ['clue_small_area','block_id','dwelling_type']
         aggregatebyfields = {'dwelling_number': ["count", "min", "max", "sum"]}
         maxByBlock = pd.DataFrame(dataset.groupby(groupbyfields, as_index=False).agg(aggregatebyfields))
         maxByBlock.head(10)
         # map
Out[13]:
                                               dwellina number
            clue small area block id dwelling type
```

	ciue_smail_area	block_id dwelling_type		aweiiii	ig_nui	nper		
				count	min	max	sum	
0	Carlton	201	House/Townhouse	5	1	5	15	
1	Carlton	201	Residential Apartments	9	1	50	235	
2	Carlton	202	House/Townhouse	38	1	4	47	
3	Carlton	203	House/Townhouse	50	1	2	53	
4	Carlton	203	Residential Apartments	4	1	6	12	
5	Carlton	203	Student Apartments	1	16	16	16	
6	Carlton	204	House/Townhouse	11	1	1	11	
7	Carlton	204	Student Apartments	2	3	553	556	
8	Carlton	205	Student Apartments	1	84	84	84	
9	Carlton	206	House/Townhouse	25	1	2	26	

Plot Dwellings by Location on map

			,		3
					sum
0	Carlton	201	-37.794301	144.965943	20
1	Carlton	201	-37.793904	144.965614	82
2	Carlton	201	-37.793832	144.966149	98
3	Carlton	201	-37.793622	144.966234	50
4	Carlton	202	-37.795680	144.966008	3
5	Carlton	202	-37.795633	144.965812	1
6	Carlton	202	-37.795624	144.965729	1
7	Carlton	202	-37.795616	144.965653	1
8	Carlton	202	-37.795609	144.965587	1
9	Carlton	202	-37.795603	144.966021	1

Plot Dwelling Density by Block

```
In [16]: groupbyfields = ['block_id','clue_small_area']
aggregatebyfields = {'dwelling_number': ["sum"]}

dwellingsByBlock = pd.DataFrame(dataset.groupby(groupbyfields, as_index=False).agg(aggregatebyfields))
dwellingsByBlock.columns = dwellingsByBlock.columns.map(''.join) # flatten column header
dwellingsByBlock.rename(columns={'clue_small_area': 'clue_area'}, inplace=True) #rename to match GeoJSON extract
dwellingsByBlock.rename(columns={'dwelling_numbersum': 'dwelling_count'}, inplace=True) #rename to match GeoJSON extract
dwellingsByBlock.head(10)
```

Out[16]:

	block_id	clue_area	dwelling_count
0	1	Melbourne (CBD)	385
1	101	West Melbourne (Residential)	863
2	103	Melbourne (CBD)	638
3	104	Melbourne (CBD)	1093
4	105	Melbourne (CBD)	1729
5	107	Melbourne (CBD)	24
6	11	Melbourne (CBD)	690
7	1101	Docklands	120
8	1103	Docklands	860
9	1104	Docklands	421

Get Block Polygon data in GeoJSON format

Load the CLUE Blocks in GeoJSON format and verify the location keys.

Illustrate Residential Dwelling Density using a Chloropleth Map using Block regions defined by the GeoJSON data

Residential Dwellings by CLUE Block Id for 2020

In []: