Exercise for Chapter 5 —— Machine Learning Basics

Xiao Zhang & Fnu Suya

1. To better understand the machine learning concepts in Chapter 5, let's consider another simple machine learning algorithm (beyond linear regression): **logistic regression**, which is widely used for classification. In particular, we focus on binary classification problem in which the output $y \in \{0,1\}$. As introduced in Section 5.7.1, the relationship between the input feature vector $\boldsymbol{x} \in \mathbb{R}^p$ and the output class y is modeled as

$$\mathbb{P}(y = 1 \mid \boldsymbol{x}; \boldsymbol{\theta}) = \sigma(\boldsymbol{\theta}^{\top} \boldsymbol{x}), \tag{1}$$

where $\theta \in \mathbb{R}^p$ is the model parameter we are going to estimate, and $\sigma(z) = \frac{1}{1 + \exp(-z)}$ is the logistic sigmoid function.

- (a) Given a set of m training examples $\{x_i, y_i\}_{i=1}^m$, construct the maximum likelihood estimator $\boldsymbol{\theta}_{\text{ML}}$ for logistic regression. (you may want to review Section 5.5.1)
- (b) Another estimator for logistic regression can be obtained by minimizing the mean square error (as in the case of linear regression), namely

$$\boldsymbol{\theta}_{\mathrm{MSE}} = \operatorname*{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^p} \frac{1}{m} \sum_{i=1}^m \left(\sigma(\boldsymbol{\theta}^{\top} \boldsymbol{x}) - y_i \right)^2.$$

But in practice, no one use θ_{MSE} for logistic regression. Can you explain the reasons why θ_{ML} is preferred over θ_{MSE} ?

- (c) Different from linear regression, maximum likelihood estimator for logistic regression doesn't have explicit analytical form. Thus, people turn to iterative algorithm such as gradient descent to approximate $\theta_{\rm ML}$. Consider the negative loglikelihood as the cost function, write down the gradient descent algorithm. (you may want to review Section 4.5)
- (d) In practice, people add an additional ℓ_2 regularizer $\lambda \|\boldsymbol{\theta}\|_2^2 = \lambda \sum_{i=1}^p \theta_i^2$ to the cost function to achieve better performance, where $\lambda > 0$ is the regularization parameter. Can you briefly explain why this regularization term can help reduce overfitting? (you may refer to Section 5.2.2)

- (e) Besides ℓ_2 regularizer, another widely-used regularization technique for logistic regression is ℓ_1 regularization, where $\|\boldsymbol{\theta}\|_2^2$ is replaced by $\|\boldsymbol{\theta}\|_1 = \sum_{i=1}^p |\theta_i|$ in the objective function. Explain the difference between ℓ_1 and ℓ_2 regularization.
- (f) The machine learning course taught by Andrew Ng on Coursera is provided with programming exercises, which are available here: https://github.com/rieder91/MachineLearning. Exercise 2 would be a good practice for (regularized) logistic regression. The solution written in python can be found in this url: https://github.com/nex3z/machine-learning-exercise.