Classification with generative models II

DSE 210

Classification with parametrized models

Classifiers with a fixed number of parameters can represent a limited set of functions. Learning a model is about picking a good approximation.

Typically the x's are points in p-dimensional Euclidean space, \mathbb{R}^p .

Two ways to classify:

- Generative: model the individual classes.
- Discriminative: model the decision boundary between the classes.

Labels
$$\mathcal{Y} = \{1, 2, \dots, k\}$$
, density $\Pr(x) = \pi_1 P_1(x) + \dots + \pi_k P_k(x)$.

Labels
$$\mathcal{Y} = \{1, 2, \dots, k\}$$
, density $\Pr(x) = \pi_1 P_1(x) + \dots + \pi_k P_k(x)$.

For any $x \in \mathcal{X}$ and any label j,

$$\Pr(y=j|x) = \frac{\Pr(y=j)\Pr(x|y=j)}{\Pr(x)} = \frac{\pi_j P_j(x)}{\sum_{i=1}^k \pi_i P_i(x)}$$

Labels
$$\mathcal{Y} = \{1, 2, \dots, k\}$$
, density $\Pr(x) = \pi_1 P_1(x) + \dots + \pi_k P_k(x)$.

For any $x \in \mathcal{X}$ and any label j,

$$\Pr(y=j|x) = \frac{\Pr(y=j)\Pr(x|y=j)}{\Pr(x)} = \frac{\pi_j P_j(x)}{\sum_{i=1}^k \pi_i P_i(x)}$$

Bayes-optimal prediction: $h^*(x) = \arg \max_j \pi_j P_j(x)$.

Labels
$$\mathcal{Y} = \{1, 2, \dots, k\}$$
, density $\Pr(x) = \pi_1 P_1(x) + \dots + \pi_k P_k(x)$.

For any $x \in \mathcal{X}$ and any label j,

$$\Pr(y = j | x) = \frac{\Pr(y = j) \Pr(x | y = j)}{\Pr(x)} = \frac{\pi_j P_j(x)}{\sum_{i=1}^k \pi_i P_i(x)}$$

Bayes-optimal prediction: $h^*(x) = \arg \max_i \pi_j P_j(x)$.

Estimating the π_i is easy. Estimating the P_i is hard.

Estimating class-conditional distributions

Estimating an arbitrary distribution in \mathbb{R}^p :

- Can be done, e.g. with kernel density estimation.
- But number of samples needed is exponential in p.

Estimating class-conditional distributions

Estimating an arbitrary distribution in \mathbb{R}^p :

- Can be done, e.g. with kernel density estimation.
- But number of samples needed is exponential in p.

Instead: approximate each P_i with a simple, parametric distribution.

Estimating class-conditional distributions

Estimating an arbitrary distribution in \mathbb{R}^p :

- Can be done, e.g. with kernel density estimation.
- But number of samples needed is exponential in p.

Instead: approximate each P_j with a simple, parametric distribution.

Some options:

- Product distributions.
 Assume coordinates are independent: naive Bayes.
- Multivariate Gaussians.
 Linear and quadratic discriminant analysis.
- More general graphical models.

The univariate Gaussian

The Gaussian $N(\mu, \sigma^2)$ has mean μ , variance σ^2 , and density function

$$p(x) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

The univariate Gaussian

The Gaussian $N(\mu,\sigma^2)$ has mean μ , variance σ^2 , and density function

$$p(x) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

But what if we have two variables?

Simplest option: treat each variable as independent.

Simplest option: treat each variable as independent.

Example: For a large collection of people, measure the two variables

$$H = height$$

$$W = \mathsf{weight}$$

Independence would mean

$$Pr(H = h, W = w) = Pr(H = h) Pr(W = w),$$

which would also imply $\mathbb{E}(HW) = \mathbb{E}(H)\mathbb{E}(W)$.

Simplest option: treat each variable as independent.

Example: For a large collection of people, measure the two variables

$$H = height$$

$$W = \mathsf{weight}$$

Independence would mean

$$Pr(H = h, W = w) = Pr(H = h) Pr(W = w),$$

which would also imply $\mathbb{E}(HW) = \mathbb{E}(H)\mathbb{E}(W)$.

Is this an accurate approximation?

Simplest option: treat each variable as independent.

Example: For a large collection of people, measure the two variables

$$H = height$$

$$W = \mathsf{weight}$$

Independence would mean

$$Pr(H = h, W = w) = Pr(H = h)Pr(W = w),$$

which would also imply $\mathbb{E}(HW) = \mathbb{E}(H)\mathbb{E}(W)$.

Is this an accurate approximation?

No: we'd expect height and weight to be **positively correlated**.

Types of correlation

Types of correlation

H,W positively correlated. This also implies

$$\mathbb{E}(HW) > \mathbb{E}(H)\mathbb{E}(W).$$

Pearson (1903): fathers and sons

Pearson (1903): fathers and sons

How to quantify the degree of correlation?

Correlation pictures

Covariance and correlation

Suppose X has mean μ_X and Y has mean μ_Y .

Covariance

$$cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \mathbb{E}[XY] - \mu_X \mu_Y$$

Maximized when X = Y, in which case it is var(X). In general, it is at most std(X)std(Y).

Covariance and correlation

Suppose X has mean μ_X and Y has mean μ_Y .

Covariance

$$cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \mathbb{E}[XY] - \mu_X \mu_Y$$

Maximized when X = Y, in which case it is var(X). In general, it is at most std(X)std(Y).

Correlation

$$corr(X, Y) = \frac{cov(X, Y)}{std(X)std(Y)}$$

This is always in the range [-1,1].

$$cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \mathbb{E}[XY] - \mu_X \mu_Y$$
$$corr(X, Y) = \frac{cov(X, Y)}{std(X)std(Y)}$$

X	У	Pr(x, y)	$\mu_{X} =$
$\overline{-1}$	-1	1/3	$\mu_Y =$
-1 1	1 _1	$\frac{1}{6}$ $\frac{1}{3}$	var(X) =
1	$\frac{-1}{1}$	$\frac{1}{3}$	var(Y) =
		,	cov(X, Y) =
			$\operatorname{corr}(X,Y) =$

$$cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \mathbb{E}[XY] - \mu_X \mu_Y$$
$$corr(X, Y) = \frac{cov(X, Y)}{std(X)std(Y)}$$

X	У	Pr(x, y)	$\mu_X=0$
-1	-1	1/3	$\mu_Y = -1/3$
-1 1	1 _1	$\frac{1}{6}$ $\frac{1}{3}$	var(X) = 1
1	$\frac{-1}{1}$	$\frac{1}{3}$	var(Y) = 8/9
		/ -	cov(X,Y)=0
			$\operatorname{corr}(X,Y)=0$

$$cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \mathbb{E}[XY] - \mu_X \mu_Y$$
$$corr(X, Y) = \frac{cov(X, Y)}{std(X)std(Y)}$$

$$x$$
 y $\Pr(x,y)$ $\mu_X = 0$
 -1 -1 $1/3$ $\mu_Y = -1/3$
 1 1 $1/6$ $var(X) = 1$
 $var(Y) = 8/9$
 $var(X, Y) = 0$
 $var(X, Y) = 0$

In this case, X, Y are independent. Independent variables always have zero covariance and correlation.

$$cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \mathbb{E}[XY] - \mu_X \mu_Y$$
$$corr(X, Y) = \frac{cov(X, Y)}{std(X)std(Y)}$$

X	у	Pr(x, y)	$\mu_X =$
$\overline{-1}$	-10	1/6	$\mu_Y =$
-1	10	1/3	var(X) =
1	-10	1/3 1/6	$\operatorname{var}(Y) =$
1	10	1/0	cov(X,Y) =
			$\operatorname{corr}(X,Y) =$

$$cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \mathbb{E}[XY] - \mu_X \mu_Y$$
$$corr(X, Y) = \frac{cov(X, Y)}{std(X)std(Y)}$$

X	у	Pr(x, y)	$\mu_X = 0$
$\overline{-1}$	-10	1/6	$\mu_Y = 0$
-1	10 10	1/3 1/3	var(X) = 1
1	-10 10	1/5	var(Y) = 100
		, -	$\operatorname{cov}(X,Y) = -10/3$
			corr(X, Y) = -1/3

$$cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \mathbb{E}[XY] - \mu_X \mu_Y$$
$$corr(X, Y) = \frac{cov(X, Y)}{std(X)std(Y)}$$

In this case, X and Y are negatively correlated.

The bivariate (2-d) Gaussian

A distribution over $(x, y) \in \mathbb{R}^2$, parametrized by:

- Mean $(\mu_{\mathsf{x}}, \mu_{\mathsf{v}}) \in \mathbb{R}^2$
- Covariance matrix

$$\Sigma = \left[\begin{array}{cc} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{array} \right]$$

where $\Sigma_{xx} = \text{var}(X), \ \Sigma_{yy} = \text{var}(Y), \ \Sigma_{xy} = \Sigma_{yx} = \text{cov}(X,Y)$

The bivariate (2-d) Gaussian

A distribution over $(x, y) \in \mathbb{R}^2$, parametrized by:

- Mean $(\mu_{\mathsf{x}}, \mu_{\mathsf{v}}) \in \mathbb{R}^2$
- Covariance matrix

$$\boldsymbol{\Sigma} = \left[\begin{array}{ccc} \boldsymbol{\Sigma}_{xx} & \boldsymbol{\Sigma}_{xy} \\ \boldsymbol{\Sigma}_{yx} & \boldsymbol{\Sigma}_{yy} \end{array} \right]$$

where $\Sigma_{xx} = \text{var}(X), \ \Sigma_{yy} = \text{var}(Y), \ \Sigma_{xy} = \Sigma_{yx} = \text{cov}(X,Y)$

Density
$$p(x,y) = \frac{1}{2\pi |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} \begin{bmatrix} x - \mu_x \\ y - \mu_y \end{bmatrix}^T \Sigma^{-1} \begin{bmatrix} x - \mu_x \\ y - \mu_y \end{bmatrix}\right)$$

The bivariate (2-d) Gaussian

A distribution over $(x, y) \in \mathbb{R}^2$, parametrized by:

- Mean $(\mu_{\mathsf{x}}, \mu_{\mathsf{v}}) \in \mathbb{R}^2$
- Covariance matrix

$$\Sigma = \left[\begin{array}{cc} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{array} \right]$$

where $\Sigma_{xx} = \text{var}(X), \ \Sigma_{yy} = \text{var}(Y), \ \Sigma_{xy} = \Sigma_{yx} = \text{cov}(X,Y)$

Density
$$p(x,y) = \frac{1}{2\pi |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} \begin{bmatrix} x - \mu_x \\ y - \mu_y \end{bmatrix}^T \Sigma^{-1} \begin{bmatrix} x - \mu_x \\ y - \mu_y \end{bmatrix}\right)$$

The density is highest at the mean, and falls off in ellipsoidal contours.

Bivariate Gaussian: examples

In either case, the mean is (1,1).

$$\Sigma = \left[\begin{array}{cc} 4 & 0 \\ 0 & 1 \end{array} \right]$$

$$\Sigma = \left[\begin{array}{cc} 4 & 1.5 \\ 1.5 & 1 \end{array} \right]$$

The multivariate Gaussian

$$N(\mu, \Sigma)$$
: Gaussian in \mathbb{R}^p

- mean: $\mu \in \mathbb{R}^p$
- covariance: $p \times p$ matrix Σ

Density
$$p(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Let $X = (X_1, X_2, \dots, X_p)$ be a random draw from $N(\mu, \Sigma)$.

• μ is the vector of coordinate-wise means:

$$\mu_1 = \mathbb{E}X_1, \ \mu_2 = \mathbb{E}X_2, \dots, \ \mu_p = \mathbb{E}X_p.$$

• Σ is a matrix containing all pairwise covariances:

$$\Sigma_{ij} = \Sigma_{ji} = \text{cov}(X_i, X_j)$$
 if $i \neq j$
 $\Sigma_{ii} = \text{var}(X_i)$

• In matrix/vector form: $\mu = \mathbb{E}X$ and $\Sigma = \mathbb{E}(X - \mu)(X - \mu)^T$.

Special case: spherical Gaussian

The X_i are independent and all have the same variance σ^2 . Thus

$$\Sigma = \sigma^2 I_p = \text{diag}(\sigma^2, \sigma^2, \dots, \sigma^2)$$

(off-diagonal elements zero, diagonal elements σ^2).

Special case: spherical Gaussian

The X_i are independent and all have the same variance σ^2 . Thus

$$\Sigma = \sigma^2 I_p = \operatorname{diag}(\sigma^2, \sigma^2, \dots, \sigma^2)$$

(off-diagonal elements zero, diagonal elements σ^2).

Each X_i is an independent univariate Gaussian $N(\mu_i, \sigma^2)$:

$$\Pr(x) = \prod_{i=1}^{p} \left(\frac{1}{\sigma \sqrt{2\pi}} e^{-(x_i - \mu_i)^2 / 2\sigma^2} \right) = \frac{1}{(2\pi)^{p/2} \sigma^p} \exp\left(-\frac{\|x - \mu\|^2}{2\sigma^2} \right)$$

Special case: spherical Gaussian

The X_i are independent and all have the same variance σ^2 . Thus

$$\Sigma = \sigma^2 I_p = \operatorname{diag}(\sigma^2, \sigma^2, \dots, \sigma^2)$$

(off-diagonal elements zero, diagonal elements σ^2).

Each X_i is an independent univariate Gaussian $N(\mu_i, \sigma^2)$:

$$\Pr(x) = \prod_{i=1}^{p} \left(\frac{1}{\sigma \sqrt{2\pi}} e^{-(x_i - \mu_i)^2 / 2\sigma^2} \right) = \frac{1}{(2\pi)^{p/2} \sigma^p} \exp\left(-\frac{\|x - \mu\|^2}{2\sigma^2} \right)$$

Density at a point depends only on its distance from μ :

Special case: diagonal Gaussian

The X_i are independent, with variances σ_i^2 . Thus

$$\Sigma = \mathsf{diag}(\sigma_1^2, \dots, \sigma_p^2)$$

(all off-diagonal elements zero).

Special case: diagonal Gaussian

The X_i are independent, with variances σ_i^2 . Thus

$$\Sigma = \mathsf{diag}(\sigma_1^2, \dots, \sigma_p^2)$$

(all off-diagonal elements zero).

Each X_i is an independent univariate Gaussian $N(\mu_i, \sigma_i^2)$:

$$p(x) = \frac{1}{(2\pi)^{p/2}\sigma_1\cdots\sigma_p} \exp\left(-\sum_{i=1}^p \frac{(x_i - \mu_i)^2}{2\sigma_i^2}\right)$$

Special case: diagonal Gaussian

The X_i are independent, with variances σ_i^2 . Thus

$$\Sigma = \mathsf{diag}(\sigma_1^2, \ldots, \sigma_p^2)$$

(all off-diagonal elements zero).

Each X_i is an independent univariate Gaussian $N(\mu_i, \sigma_i^2)$:

$$p(x) = \frac{1}{(2\pi)^{p/2}\sigma_1\cdots\sigma_p} \exp\left(-\sum_{i=1}^p \frac{(x_i - \mu_i)^2}{2\sigma_i^2}\right)$$

Contours of equal density are axisaligned ellipsoids centered at μ :

The general Gaussian $\mathcal{N}(\mu, \Sigma)$ in \mathbb{R}^p

The general Gaussian $N(\mu, \Sigma)$ in \mathbb{R}^p

Eigendecomposition of Σ yields:

Eigenvalues

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$$

Corresponding eigenvectors
 u₁,..., u_p

The general Gaussian $N(\mu, \Sigma)$ in \mathbb{R}^p

Eigendecomposition of Σ yields:

Eigenvalues

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$$

• Corresponding **eigenvectors** u_1, \ldots, u_p

Recall density:
$$p(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} \underbrace{(x-\mu)^T \Sigma^{-1} (x-\mu)}_{\text{What is this?}}\right)$$

The general Gaussian $N(\mu, \Sigma)$ in \mathbb{R}^p

Eigendecomposition of Σ yields:

Eigenvalues

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$$

Corresponding eigenvectors
 u₁,..., u_p

Recall density:
$$p(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} \underbrace{(x-\mu)^T \Sigma^{-1} (x-\mu)}_{\text{What is this?}}\right)$$

If we write $S = \Sigma^{-1}$ then S is a $p \times p$ matrix and

$$(x - \mu)^T \Sigma^{-1} (x - \mu) = \sum_{i,j} S_{ij} (x_i - \mu_i) (x_j - \mu_j),$$

a quadratic function of x.

Estimate class probabilities π_1, π_2 and fit a Gaussian to each class:

$$P_1 = N(\mu_1, \Sigma_1), P_2 = N(\mu_2, \Sigma_2)$$

E.g. If data points $x^{(1)}, \dots, x^{(m)} \in \mathbb{R}^p$ are class 1:

$$\mu_1 = \frac{1}{m} \left(x^{(1)} + \dots + x^{(m)} \right) \text{ and } \Sigma_1 = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu_1) (x^{(i)} - \mu_1)^T$$

Estimate class probabilities π_1, π_2 and fit a Gaussian to each class:

$$P_1 = N(\mu_1, \Sigma_1), P_2 = N(\mu_2, \Sigma_2)$$

E.g. If data points $x^{(1)}, \ldots, x^{(m)} \in \mathbb{R}^p$ are class 1:

$$\mu_1 = \frac{1}{m} \left(x^{(1)} + \dots + x^{(m)} \right) \text{ and } \Sigma_1 = \frac{1}{m} \sum_{i=1}^m (x^{(i)} - \mu_1) (x^{(i)} - \mu_1)^T$$

Given a new point x, predict class 1 iff:

$$\pi_1 P_1(x) > \pi_2 P_2(x)$$

Estimate class probabilities π_1, π_2 and fit a Gaussian to each class:

$$P_1 = N(\mu_1, \Sigma_1), P_2 = N(\mu_2, \Sigma_2)$$

E.g. If data points $x^{(1)}, \ldots, x^{(m)} \in \mathbb{R}^p$ are class 1:

$$\mu_1 = \frac{1}{m} \left(x^{(1)} + \dots + x^{(m)} \right) \text{ and } \Sigma_1 = \frac{1}{m} \sum_{i=1}^m (x^{(i)} - \mu_1) (x^{(i)} - \mu_1)^T$$

Given a new point x, predict class 1 iff:

$$\pi_1 P_1(x) > \pi_2 P_2(x) \Leftrightarrow x^T M x + 2 w^T x \ge \theta,$$

where:

$$M = \frac{1}{2} (\Sigma_2^{-1} - \Sigma_1^{-1})$$

$$W = \Sigma_1^{-1} \mu_1 - \Sigma_2^{-1} \mu_2$$

and θ is a constant depending on the various parameters.

Estimate class probabilities π_1, π_2 and fit a Gaussian to each class:

$$P_1 = N(\mu_1, \Sigma_1), P_2 = N(\mu_2, \Sigma_2)$$

E.g. If data points $x^{(1)}, \ldots, x^{(m)} \in \mathbb{R}^p$ are class 1:

$$\mu_1 = \frac{1}{m} \left(x^{(1)} + \dots + x^{(m)} \right) \text{ and } \Sigma_1 = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu_1) (x^{(i)} - \mu_1)^T$$

Given a new point x, predict class 1 iff:

$$\pi_1 P_1(x) > \pi_2 P_2(x) \Leftrightarrow x^T M x + 2 w^T x \geq \theta,$$

where:

$$M = \frac{1}{2} (\Sigma_2^{-1} - \Sigma_1^{-1})$$

$$W = \Sigma_1^{-1} \mu_1 - \Sigma_2^{-1} \mu_2$$

and θ is a constant depending on the various parameters.

$$\Sigma_1 = \Sigma_2$$
: **linear** decision boundary. Otherwise, **quadratic** boundary.

When $\Sigma_1 = \Sigma_2 = \Sigma$: choose class 1 iff

$$x \cdot \underbrace{\Sigma^{-1}(\mu_1 - \mu_2)}_{w} \geq \theta.$$

When $\Sigma_1 = \Sigma_2 = \Sigma$: choose class 1 iff

$$x \cdot \underbrace{\Sigma^{-1}(\mu_1 - \mu_2)}_{w} \geq \theta.$$

What does $x \cdot w$ (or equivalently $x^T w$, or $w^T x$) mean?

When $\Sigma_1 = \Sigma_2 = \Sigma$: choose class 1 iff

$$x \cdot \underbrace{\Sigma^{-1}(\mu_1 - \mu_2)}_{yy} \geq \theta.$$

What does $x \cdot w$ (or equivalently $x^T w$, or $w^T x$) mean?

Algebraically:
$$x \cdot w = w \cdot x = x^T w = w^T x = \sum_{i=1}^{p} x_i w_i$$

When $\Sigma_1 = \Sigma_2 = \Sigma$: choose class 1 iff

$$x \cdot \underbrace{\Sigma^{-1}(\mu_1 - \mu_2)}_{w} \geq \theta.$$

What does $x \cdot w$ (or equivalently $x^T w$, or $w^T x$) mean?

Algebraically:
$$x \cdot w = w \cdot x = x^T w = w^T x = \sum_{i=1}^{p} x_i w_i$$

Geometrically: Suppose w is a unit vector (that is, ||w|| = 1). Then $x \cdot w$ is the projection of vector x onto direction w.

Let w be any vector in \mathbb{R}^p . What is meant by decision rule $w \cdot x \geq \theta$?

Common covariance: $\Sigma_1 = \Sigma_2 = \Sigma$

Linear decision boundary: choose class 1 iff

$$x \cdot \underbrace{\Sigma^{-1}(\mu_1 - \mu_2)}_{w} \geq \theta.$$

Common covariance: $\Sigma_1 = \Sigma_2 = \Sigma$

Linear decision boundary: choose class 1 iff

$$\times \underbrace{\Sigma^{-1}(\mu_1 - \mu_2)}_{w} \geq \theta.$$

Example 1: Spherical Gaussians with $\Sigma = I_p$ and $\pi_1 = \pi_2$.

Example 2: Again spherical, but now $\pi_1 > \pi_2$.

Example 2: Again spherical, but now $\pi_1 > \pi_2$.

Example 2: Again spherical, but now $\pi_1 > \pi_2$.

One-d projection onto w:

Example 3: Non-spherical.

Example 3: Non-spherical.

Rule: $w \cdot x \ge \theta$

- w, θ dictated by probability model, assuming it is a perfect fit
- Common practice: choose w as above, but fit θ to minimize training/validation error

Different covariances: $\Sigma_1 \neq \Sigma_2$

Quadratic boundary: choose class 1 iff $x^T M x + 2w^T x \ge \theta$, where:

$$M = \frac{1}{2} (\Sigma_2^{-1} - \Sigma_1^{-1})$$
$$w = \Sigma_1^{-1} \mu_1 - \Sigma_2^{-1} \mu_2$$

Example 1: $\Sigma_1 = \sigma_1^2 I_p$ and $\Sigma_2 = \sigma_2^2 I_p$ with $\sigma_1 > \sigma_2$

Different covariances: $\Sigma_1 \neq \Sigma_2$

Quadratic boundary: choose class 1 iff $x^T M x + 2w^T x \ge \theta$, where:

$$M = \frac{1}{2} (\Sigma_2^{-1} - \Sigma_1^{-1})$$
$$w = \Sigma_1^{-1} \mu_1 - \Sigma_2^{-1} \mu_2$$

Example 1: $\Sigma_1 = \sigma_1^2 I_p$ and $\Sigma_2 = \sigma_2^2 I_p$ with $\sigma_1 > \sigma_2$

Example 2: Same thing in 1-d. $\mathcal{X} = \mathbb{R}$.

Example 2: Same thing in 1-d. $\mathcal{X} = \mathbb{R}$.

Example 3: A parabolic boundary.

Example 3: A parabolic boundary.

Many other possibilities!

Multiclass discriminant analysis

k classes: weights π_j , class-conditional distributions $P_j = N(\mu_j, \Sigma_j)$.

Multiclass discriminant analysis

k classes: weights π_j , class-conditional distributions $P_j = N(\mu_j, \Sigma_j)$.

Each class has an associated quadratic function

$$f_j(x) = \log (\pi_j P_j(x))$$

To class a point x, pick arg $\max_j f_j(x)$.

Multiclass discriminant analysis

k classes: weights π_j , class-conditional distributions $P_j = N(\mu_j, \Sigma_j)$.

Each class has an associated quadratic function

$$f_j(x) = \log (\pi_j P_j(x))$$

To class a point x, pick arg $\max_i f_i(x)$.

If $\Sigma_1 = \cdots = \Sigma_k$, the boundaries are **linear**.

Example: "wine" data set

Data from three wineries from the same region of Italy

- 13 attributes: hue, color intensity, flavanoids, ash content, ...
- 178 instances in all: split into 118 train, 60 test

Example: "wine" data set

Data from three wineries from the same region of Italy

- 13 attributes: hue, color intensity, flavanoids, ash content, ...
- 178 instances in all: split into 118 train, 60 test

Example: "wine" data set

Data from three wineries from the same region of Italy

- 13 attributes: hue, color intensity, flavanoids, ash content, ...
- 178 instances in all: split into 118 train, 60 test

Test error using multiclass discriminant analysis: 1/60

Example: MNIST

To each digit, fit:

- ullet class probability π_j
- mean $\mu_j \in \mathbb{R}^{784}$
- ullet covariance matrix $\Sigma_j \in \mathbb{R}^{784 imes 784}$

To each digit, fit:

- class probability π_j
- mean $\mu_j \in \mathbb{R}^{784}$
- covariance matrix $\Sigma_j \in \mathbb{R}^{784 \times 784}$

Problem: formula for normal density uses Σ_j^{-1} , which is singular.

To each digit, fit:

- class probability π_j
- mean $\mu_j \in \mathbb{R}^{784}$
- covariance matrix $\Sigma_j \in \mathbb{R}^{784 \times 784}$

Problem: formula for normal density uses Σ_i^{-1} , which is singular.

• Need to **regularize/smooth**: $\Sigma_j \to \Sigma_j + \sigma^2 I$

To each digit, fit:

- class probability π_j
- mean $\mu_j \in \mathbb{R}^{784}$
- ullet covariance matrix $\Sigma_j \in \mathbb{R}^{784 imes 784}$

Problem: formula for normal density uses Σ_i^{-1} , which is singular.

- Need to **regularize/smooth**: $\Sigma_j \to \Sigma_j + \sigma^2 I$
- This is a good idea even without the singularity issue

To each digit, fit:

- class probability π_j
- mean $\mu_j \in \mathbb{R}^{784}$
- covariance matrix $\Sigma_j \in \mathbb{R}^{784 \times 784}$

Problem: formula for normal density uses Σ_j^{-1} , which is singular.

- Need to **regularize/smooth**: $\Sigma_j \to \Sigma_j + \sigma^2 I$
- This is a good idea even without the singularity issue

How to choose *c*? With a **validation set**.

- Divide original training set into a training set and a validation set.
- Fit parameters π_j, μ_j, Σ_j to training set
- Choose the constant c that yields lowest error rate on validation set

A framework for linear classification without Gaussian assumptions.

A framework for linear classification without Gaussian assumptions.

Use only first- and second-order statistics of the classes.

Class 1	Class 2
mean μ_1	mean μ_2
$cov\ \Sigma_1$	cov Σ_2
$\#$ pts n_1	# pts <i>n</i> ₂

A framework for linear classification without Gaussian assumptions.

Use only first- and second-order statistics of the classes.

Class 1	Class 2
mean μ_1	mean μ_2
$cov\ \Sigma_1$	cov Σ_2
$\#$ pts n_1	# pts <i>n</i> ₂

A linear classifier projects all data onto a direction w. Choose w so that:

A framework for linear classification without Gaussian assumptions.

Use only first- and second-order statistics of the classes.

$$\begin{array}{c|ccc} \text{Class 1} & \text{Class 2} \\ \hline \text{mean } \mu_1 & \text{mean } \mu_2 \\ \text{cov } \Sigma_1 & \text{cov } \Sigma_2 \\ \# \text{ pts } n_1 & \# \text{ pts } n_2 \\ \end{array}$$

A linear classifier projects all data onto a direction w. Choose w so that:

• Projected means are well-separated, i.e. $(w \cdot \mu_1 - w \cdot \mu_2)^2$ is large.

A framework for linear classification without Gaussian assumptions.

Use only first- and second-order statistics of the classes.

Class 1	Class 2
mean μ_1	mean μ_2
$cov\ \Sigma_1$	cov Σ_2
$\#$ pts n_1	# pts <i>n</i> ₂

A linear classifier projects all data onto a direction w. Choose w so that:

- Projected means are well-separated, i.e. $(w \cdot \mu_1 w \cdot \mu_2)^2$ is large.
- · Projected within-class variance is small.

better than

Two classes: means μ_1, μ_2 ; covariances Σ_1, Σ_2 ; sample sizes n_1, n_2 .

Two classes: means μ_1, μ_2 ; covariances Σ_1, Σ_2 ; sample sizes n_1, n_2 .

Project data onto direction (unit vector) w.

- Projected means: $w \cdot \mu_1$ and $w \cdot \mu_2$
- Projected variances: $w^T \Sigma_1 w$ and $w^T \Sigma_2 w$
- Average projected variance:

$$\frac{n_1(w^T\Sigma_1w)+n_2(w^T\Sigma_2w)}{n_1+n_2}=w^T\Sigma w,$$

where
$$\Sigma = (n_1\Sigma_1 + n_2\Sigma_2)/(n_1 + n_2)$$
.

Two classes: means μ_1, μ_2 ; covariances Σ_1, Σ_2 ; sample sizes n_1, n_2 .

Project data onto direction (unit vector) w.

- Projected means: $w \cdot \mu_1$ and $w \cdot \mu_2$
- Projected variances: $w^T \Sigma_1 w$ and $w^T \Sigma_2 w$
- Average projected variance:

$$\frac{n_1(w^T\Sigma_1w)+n_2(w^T\Sigma_2w)}{n_1+n_2}=w^T\Sigma w,$$

where
$$\Sigma = (n_1\Sigma_1 + n_2\Sigma_2)/(n_1 + n_2)$$
.

Find w to maximize
$$J(w) = \frac{(w \cdot \mu_1 - w \cdot \mu_2)^2}{w^T \Sigma w}$$

Two classes: means μ_1, μ_2 ; covariances Σ_1, Σ_2 ; sample sizes n_1, n_2 .

Project data onto direction (unit vector) w.

- Projected means: $w \cdot \mu_1$ and $w \cdot \mu_2$
- Projected variances: $w^T \Sigma_1 w$ and $w^T \Sigma_2 w$
- Average projected variance:

$$\frac{n_1(w^T \Sigma_1 w) + n_2(w^T \Sigma_2 w)}{n_1 + n_2} = w^T \Sigma w,$$

where
$$\Sigma = (n_1\Sigma_1 + n_2\Sigma_2)/(n_1 + n_2)$$
.

Find w to maximize
$$J(w) = \frac{(w \cdot \mu_1 - w \cdot \mu_2)^2}{w^T \Sigma w}$$

Solution: $w \propto \Sigma^{-1}(\mu_1 - \mu_2)$. Look familiar?