

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа прикладной математики и информатики

Отчёт о выполнении лабораторной работы 3.2.6 Изучение гальванометра

Автор: Чикин Андрей Павлович Б05-304 **Цель работы**: Изучение работы высокочувствительного зеркального гальванометра магнитоэлектрической системы в режимах измерения постоянного тока и электрического заряда.

В работе используются::

- 1. зеркальный гальванометр с осветителем и шкалой
- 2. источник постоянного напряжения
- 3. делитель напряжения
- 4. магазин сопротивлений
- 5. эталонный конденсатор
- 6. вольтметр
- 7. переключатель
- 8. ключи
- 9. линейка

1 Краткая Теория

Баллистический гальванометр — электроизмерительный прибор магнитоэлектрической системы, отличающийся высокой чувствительностью к току и сравнительно большим периодом свободных колебаний.

На помещённую в магнитное поле обтекаемую током рамку гальванометра действуют момент закрученной нити, момент магнитных сил и тормозящий момент (зависит от сил сопротивления воздуха и от вихревых токов). Учитывая все эти моменты, уравнение движения рамки принимает вид

$$\ddot{\varphi} + 2\gamma \dot{\varphi} + \omega_0^2 \varphi = KI,$$

где γ — коэффициент затухания подвижной системы гальванометра, ω_0 — собственная частота колебаний рамки

Динамическая постоянная гальванометра определяется при пропускании через рамку постоянного тока:

$$C_I = \frac{I}{\varphi} = \frac{D}{BSN},$$

где B - индукция магнитного поля в рамке, S - площадь одного витка рамки, D - модуль кручения нити.

При пропускании коротких импульсов тока через баллистический гальванометр начальная скорость движения рамки пропорциональна электрическому заряду, прошедшему через рамку за всё время импульса. Отношение баллистических постоянных в критическом и свободном режимах равно e.

2 Экспериментальная установка

2.1 Определение динамической постоянной

Рис. 1: Схема установки для работы гальванометра в стационарном режиме

Постоянное напряжение U=1, 5В снимается с блока питания и измеряется вольтметром V. Ключ K_3 позволяет менять величину тока через гальванометр Γ , делитель напряжения - менять величину тока в широких пределах. Ключ K_2 служит для включения гальванометра, кнопка K_1 – для его успокоения. Магазин сопротивлений R позволяет менять режим работы гальванометра от колебательного до апериодического.

При малых R_1 сила тока, протекающего через гальванометр, может быть вычислена по формуле

$$I = U_0 \frac{R_1}{R_2} \frac{1}{R + R_0}. (1)$$

Динамическую постоянную вычисли по формуле

$$C_I = \frac{2aI}{x},\tag{2}$$

где а - расстояние от шкалы до зеркальца.

2.2 Определение критического сопротивления гальванометра

Выполняется с помощью той же цепи, что и на рис. 1. При больших R движение рамки имеет колебательный характер, с уменьшением R затухание увеличивается, и колебательный режим переходит в апериодический.

Найдём логарифмический декремент затухания колебаний рамки Θ .

$$\Theta = \ln \frac{x_n}{x_{n+1}} = \gamma T = \frac{2\pi \gamma}{\sqrt{\omega_0^2 - \gamma^2}} = \frac{2\pi R_3}{\sqrt{(R_0 + R)^2 - R_3^2}}$$
 (3)

Рассчитаем критическое сопротивление по графику в координатах $X=(R_0^2+R),$ $Y=1/\Theta^2$

$$R_{c_r} = \frac{1}{2\pi} \sqrt{\frac{\Delta X}{\Delta Y}} - R_0 \tag{4}$$

2.3 Определение баллистической постоянной и критического сопротивления гальванометра, работающего в баллистическом режиме

Для изучения работы гальванометра в режиме измерения заряда используется схема, представленная на рис. 2.

Рис. 2: Схема установки для определения баллистической постоянной

При нормальном положении кнопки K_0 конденсатор C заряжается до напряжения

$$U_c = \frac{R_1}{R_2} U_0$$

Заряд конденсатора равен

$$q = \frac{R_1}{R_2} U_0 C$$

При нажатии на ключ K_0 конденсатор отключается от источника постоянного напряжения и подключается к гальванометру. К моменту замыкания ключа K_4 весь заряд успевает пройти через гальванометр, рамка получает начальную скорость. Баллистическая постоянная гальванометра определяется при критическом сопротивлении

$$C_{Q_{c_r}} = \frac{q}{\varphi_{maxcr}} = 2a \frac{R_1}{R_2} \frac{U_0 C}{l_{maxcr}}$$
 (5)

3 Ход работы

$$a$$
, M 1 ± 0.02

3.1 Динамическая постоянная

$$I = \frac{C_I}{2a} x$$

 C_I - динамическая постоянная гальванометра. $I = \frac{R_1}{R_2} \frac{U_0}{R+R_0}$

R, кОм	\mathcal{X} , CM	I, н A
99	2	7
89	2.2	8
79	2.4	9
69	2.6	10
59	3	12
49	3.5	14
39	4.4	18
29	5.6	24
19	8.2	36
9	16.4	73

$$C_I = (9.2 \pm 0.1) \cdot 10^{-10} \frac{A}{\text{MM/M}}$$

$$S_I = \frac{1}{C_I} = (11.0 \pm 0.2) \cdot 10^8 \frac{\text{MM/M}}{A}$$

3.2 Критическое сопротивление

$$\theta_0 = \frac{1}{3} \sum \ln \frac{x_n}{x_{n+1}}$$

$$\theta_0 \approx 0.3$$

N	R, кОм	x_n , cm	x_{n+k} , cm	θ	$R_{\mathrm{\kappa p}}$, Om
1	24	5.9	0.8	2.0	7.89
2	28	11.1	1.7	1.9	8.62
3	32	10.6	1.6	1.7	8.81
4	36	10.3	2.4	1.5	8.31
5	40	10.2	2.7	1.3	8.84
6	44	9.8	3.0	1.2	8.69
7	48	9.8	3.2	1.1	7.96
8	56	14.4	5.3	1.0	8.33
9	64	13.0	5.2	0.9	8.76
10	72	12.0	5.2	0.8	9.02
11	80	11.8	5.5	0.7	9.16

$$\langle R_{\rm kp} \rangle = (8.6 \pm 0.1) \text{kOm}$$

3.3 Баллистическая постоянная

R, кОм	$x_{ m max}$, cm
50	16.0
45	15.8
40	15.5
35	15.0
30	14.9
25	14.5
20	13.5
15	13.0
10	11.0
5	7.5
4	6.3
2	3.1

$$x_0 = 17.5 \text{cm}$$

$$x_1 = x_0 \cdot e^{\frac{\theta_0}{4}} \approx 19 \text{cm}$$

$$x_e = \frac{x_0}{e} \approx 7 \text{cm}$$

$$\frac{1}{R + R_0}(x_e) \approx 20 \cdot 10^{-5} \text{CM} \implies$$

$$R \approx 4.5 \text{kOm}$$
5

4 Вывод

Итак, в этой работе мы изучили работу гальванометра в трех режимах: стационарном, свободных колебаний и баллистическом. Мы измерили критическое сопротивление контура R тремя способами, а также нашли динамическую и баллистическую постоянную установки.