1. Soit M un point d'affixe z = x + iy. Alors $(MF + MF')(MF - MF') = MF^2 - MF'^2$. Ainsi, comme c est réel, on a les égalités

$$(MF + MF')(MF - MF') = |z - c|^2 - |z + c|^2 = (x - c)^2 + y^2 - (x + c)^2 - y^2 = -4cx$$

Premier cas : Si MF - MF' = 0, alors M appartient à la médiatrice de [FF'], i.e la droite d'équation x = 0. Dans ce cas particulier, $MF + MF' = \sqrt{c^2 + y^2} + \sqrt{c^2 + y^2} = 2\sqrt{c^2 + y^2}$. Alors $MF + MF' = 2a \iff \sqrt{c^2 + y^2} = a \iff c^2 + y^2 = a^2$ puisque $c^2 + y^2$ et a sont des réels positifs. Ainsi $MF + MF' = 2a \iff y^2 = a^2 - c^2 = b^2 \iff \frac{0^2}{a^2} + \frac{y^2}{b^2} = 1 \iff M \in \mathcal{E}$.

Deuxième cas : Si $MF - MF' \neq 0$. Alors, d'après le calcul de départ

$$MF + MF' = 2a \iff 2a(MF - MF') = -4cx \iff MF - MF' = \frac{-4cx}{2a} = -2cx/a \iff M \in \mathcal{E}$$

d'après le résultat admis en préambule.

- 2. On sait d'après le cours qu'on peut toujours extraire des racines carrées de complexes. Ainsi, le complexe $c^2 z^2$ possède toujours des racines carrées, i.e il existe un complexe z' tel que $z'^2 = c^2 z^2$, soit $z'^2 + z^2 = c^2$. Le point M' du plan d'affixe z' satisfait alors la propriété attendue.
- 3. La définition du point M' implique $z'^2 = c^2 z^2 = (c z)(c + z)$. On a alors $|z'^2| = |(c z)(c + z)|$, soit encore $|z'|^2 = |c z|(c + z)|$. On en déduit que $OM'^2 = MF \times MF'$.
- 4. On a toujours, d'après ce qui précède $z'^2 = (c-z)(c+z)$. Comme ces complexes sont nuls (l'ensemble \mathcal{E} ne contient ni O, ni F, ni F'), on peut considérer leurs arguments dans cette égalité, ce qui implique

$$2\arg(z') \equiv \arg(c-z) + \arg(c+z)[2\pi]$$

Soit encore

$$2\arg(z') \equiv \arg(c-z) + \arg(-c-z) + \pi[2\pi]$$

ou bien

$$\arg(z') \equiv \frac{\arg(c-z) + \arg(-c-z)}{2} + \frac{\pi}{2} [\pi]$$

Or les points d'affixe s de la bissectrice intérieure de [MF] et [MF'] vérifient

$$\arg(s) \equiv \frac{\arg(c-z) + \arg(-c-z)}{2} [\pi]$$

soit

$$arg(z') \equiv arg(s) + \frac{\pi}{2}[\pi]$$

Cela implique bien que (OM') est perpendiculaire à la bissectrice intérieure de [MF) et [MF').

5. La définition du module implique $|z+c|^2 = (z+c)(\overline{z}+\overline{c}) = |z|^2 + c(z+\overline{z}) + c^2$ car c est réel. De même, $|z-c|^2 = (z-c)(\overline{z}-\overline{c}) = |z|^2 - c(z+\overline{z}) + c^2$. L'addition de ces deux égalités implique

$$|z + c|^2 + |z - c|^2 = 2|z|^2 + 2c^2$$

En outre,

$$(|z-c|+|z+c|)^2 = |z-c|^2 + |z+c|^2 + 2|z-c||z+c|$$

D'après ce qui précède, $|z-c|^2+|z+c|^2=2|z|^2+2c^2$. De plus, d'après la première question, $|z-c||z+c|=|z'|^2$. Donc,

$$(|z-c|+|z+c|)^2 = 2|z|^2 + 2|z'|^2 + 2c^2$$

Cette dernière quantité est symétrique en z et z'. De plus, la définition $z^2 + z'^2 = c^2$ est symétrique en z et z'. Donc, on a également

$$(|z'-c|+|z'+c|)^2 = 2|z|^2 + 2|z'|^2 + 2c^2$$

Ainsi,

$$(|z'-c|+|z'+c|)^2 = (|z-c|+|z+c|)^2$$

Comme ce sont des quantités réelles positives, on en déduit

$$|z'-c|+|z'+c|=|z-c|+|z+c|$$

Cela se traduit géométriquement par

$$M'F + M'F' = MF + MF'$$

Or, d'après la caractérisation de \mathcal{E} prouvée en première question, $\mathcal{E} = \{M \in \mathcal{P} | MF + MF' = 2a\}$. Comme $M \in \mathcal{E}$, on en déduit que M'F + M'F' = 2a, donc que M' appartient à l'ensemble \mathcal{E} .

- 6. D'après ce qui précède, on sait que M' appartient à \mathcal{E} et à la perpendiculaire à la bissectrice intérieure de [MF) et [MF'] passant par O. Cette dernière droite passe par O, donc possède deux points d'intersection avec l'ensemble \mathcal{E} . On peut choisir M' comme l'une de ces deux intersections.
- 7. On assemble le produit $nn' = (z + iz')(z iz') = z^2 + z'^2$. Or d'après la définition de z', $z^2 + z'^2 = c^2$. Donc $nn' = c^2$. Le carré du module de n vaut

$$|n|^2 = n\overline{n} = (z + iz')(\overline{z} - i\overline{z'}) = |z|^2 + |z'|^2 + i\overline{z}z' - iz\overline{z'}$$

De même,

$$|n'|^2 = n'\overline{n'} = (z - iz')(\overline{z} + i\overline{z'}) = |z|^2 + |z'|^2 - i\overline{z}z' + iz\overline{z'}$$

On en déduit que

$$(|n|+|n'|)^2 = |n|^2 + |n'|^2 + 2|nn'| = 2|z|^2 + 2|z'|^2 + 2|c|^2$$

Or d'après la deuxième égalité démontrée en II.5, $2|z|^2 + 2|z'|^2 + 2|c|^2 = (|z-c|+|z+c|)^2$. Donc $(|n|+|n'|)^2 = (|z-c|+|z+c|)^2$. Comme ce sont des quantités réelles positives, on en déduit

$$|n| + |n'| = |z - c| + |z + c|$$

Cela se traduit géométriquement par

$$ON + ON' = MF + MF'$$

8. On identifie parties réelles et imaginaires dans l'égalité $z^2+z'^2=c^2$, ce qui donne

$$x^2 - y^2 + x'^2 - y'^2 = c^2$$
 et $xy + x'y' = 0$

Or M et M' sont dans \mathcal{E} , ce qui implique

$$y^2 = b^2 - \frac{b^2}{a^2}x^2$$
 et $y'^2 = b^2 - \frac{b^2}{a^2}x'^2$

Cela implique dans l'égalité des parties réelles

$$x^{2}\left(1+\frac{b^{2}}{a^{2}}\right)-b^{2}+x'^{2}\left(1+\frac{b^{2}}{a^{2}}\right)-b^{2}=c^{2}$$

Soit encore

$$(x^2 + x'^2)(a^2 + b^2) = a^2(c^2 + 2b^2) = a^2(a^2 + b^2)$$

On en déduit donc $x^2 + x'^2 = a^2$. Il vient alors

$$a^2 - v^2 - v'^2 = c^2$$

Soit encore

$$y^2 + y'^2 = a^2 - c^2 = b^2$$

9. D'après la caractérisation de \mathcal{E} et les résultats en II.7, on a ON + ON' = 2a et $ON \times ON' = c^2$. On en déduit que

$$(ON - ON')^2 = (ON + ON')^2 - 4ON \times ON' = 4a^2 - 4c^2 = 4b^2$$

Ceci implique que $ON - ON' = \pm 2b$. Comme les définitions de N et N' sont symétriques à l'échange de signe près, on peut choisir ON - ON' = 2b. Avec ce choix, on obtient

$$ON = a + b$$
 et $ON' = a - b$

Ainsi, le lieu des points N et N' est inclus dans deux cercles : le cercle de centre O et de rayon a+b, et le cercle de centre O et de rayon a-b.

Réciproquement, soit n un complexe de module a-b. Alors la relation la relation précédente n=z+iz' amène à considérer $(n-z)^2=-z'^2=z^2-c^2$, soit encore $n^2-2nz=-c^2$. On définit donc $z=(n^2+c^2)/(2n)$. Alors si l'on note $n=\alpha+i\beta$, et z=x+iy, on identifie parties réelle et imaginaire, ce qui donne

$$x = \frac{\alpha(\alpha^2 + \beta^2 + c^2)}{2(\alpha^2 + \beta^2)}$$
 et $y = \frac{\beta(\alpha^2 + \beta^2 - c^2)}{2(\alpha^2 + \beta^2)}$

Mais alors, comme $\alpha^2 + \beta^2 = (a - b)^2$ et $a^2 = b^2 + c^2$,

$$\frac{x^2}{a^2} + \frac{y^2}{\beta^2} = \frac{1}{4(a-b)^4} \left(\frac{\alpha^2}{a^2} ((a-b)^2 + c^2)^2 + \frac{\beta^2}{b^2} ((a-b)^2 - c^2)^2 \right)$$
$$= \frac{1}{4(a-b)^4} \left(\frac{\alpha^2}{a^2} (2a^2 - 2ab)^2 + \frac{\beta^2}{b^2} (2b^2 - 2ab)^2 \right]$$
$$= \frac{4(a-b)^2}{4(a-b)^4} [\alpha^2 + \beta^2]$$

Donc le point M d'affixe z est dans l'ensemble \mathcal{E} . Le même raisonnement avec un complexe de module a+b et la même définition $z=(n^2+c^2)/(2n)$ fournit également un point dans \mathcal{E} . On a ainsi l'inclusion réciproque entre les cercles de rayon a+b et a-b dans le lieu des points N et N' de l'énoncé.

Problème 2: Transformations de Moebius.

- 1. Composition d'homographies
 - (a) Soit $z' \in \widehat{\mathbb{C}}$. Si $z' = \omega$, son unique antécédent est ω puisque $s(\mathbb{C}) \subset \mathbb{C}$ ne contient pas ω . Si $z' \in \mathbb{C}$, alors un élément z de \widehat{C} vérifie s(z) = z' si et seulement si $z \in \mathbb{C}$ et $z' = (z \beta)/\alpha$ puisque $\alpha \neq 0$. Donc tout élément de $\widehat{\mathbb{C}}$ a un unique antécédent par s et s est bijective. Sa réciproque est donnée par

$$s^{-1}(\omega) = \omega$$
 et $\forall z \in \mathbb{C}, s^{-1}(z) = \frac{z - \beta}{\alpha}$

- (b) Posons $E = \mathbb{C} \setminus \left\{ -\frac{d}{c} \right\}$ et $F = \mathbb{C} \setminus \left\{ \frac{a}{c} \right\}$. Soit $z \in \mathbb{C}$. $h(z) = \frac{a}{c}$ ne se réalise que pour $z = \omega$. En effet, $h(z) \frac{a}{c} = \frac{ad bc}{c(cz + d)} \neq 0$. De plus, h induit une bijection h_0 de E sur F. En effet, tout complexe distinct de $\frac{a}{c}$ a un unique antécédent par h_0 , à savoir $\zeta = \frac{dz b}{-cz + a}$.
 - $z = \frac{a}{c}$ a, par définition, pour unique antécédent ω et $z = \omega$ a pour unique antécédent $\frac{-d}{c}$.
 - Par recollement, l'application g de $\widehat{\mathbb{C}}$ vers $\widehat{\mathbb{C}}$, définie par

$$z \mapsto g(z) = \begin{cases} \frac{-d}{c} & \text{si } z = \omega \\ \omega & \text{si } z = \frac{a}{c} \\ \frac{dz - b}{-cz + a} & \text{sinon} \end{cases}$$

définit la bijection réciproque de h.

(c) — Sauf pour les cas particuliers, que nous verrons ci-dessous, soit,
$$h = h_2 \circ h_1$$
 avec $h_1(z) = \frac{az+b}{cz+d}$ et $h_2(z) = \frac{\alpha z+\beta}{\gamma z+\delta}$.

$$h(z) = \frac{\alpha \frac{az+b}{cz+d} + \beta}{\gamma \frac{az+b}{cz+d} + \delta}$$
$$= \frac{(\alpha a + \beta c)z + \alpha b + \beta d}{(\gamma a + \delta c)z + \gamma b + \delta d}$$
$$= \frac{Az+B}{Cz+D}$$

$$AD - BC = (\alpha a + \beta c)(\gamma b + \delta d) - (\alpha b + \beta d)(\gamma ab + \delta c) = (ad - bc)(\alpha \delta - \beta \gamma) \neq 0.$$

Si C = 0, on obtient une similitude.

Si h_1 ou h_2 est du type similitude le résultat reste acquis. On obtient une fonction du type h_1 ou s

— Si
$$z = -\frac{d}{c}$$
 alors $h_1(z) = \omega$ et $h_2 \circ h_1(z) = \frac{\alpha}{\gamma} = h\left(-\frac{d}{c}\right) = \frac{\alpha(ad - bc)}{\gamma(ad - bc)}$.

— si
$$z = \omega$$
 alors $h_1(z) = \frac{a}{c}$ et $h_2 \circ h_1(z) = \frac{\alpha a + \beta c}{\gamma a + \delta c} = \frac{A}{C} = h(\omega)$

— Si
$$h_1(z) = -\frac{\delta}{\gamma}$$
 alors $h_2 \circ h_1(z) = \omega$. Or $h_1(z) = -\frac{\delta}{\gamma}$ si et seulement si $z = -\frac{\gamma b + \delta d}{\gamma a + \delta c}$ donc par définition des homographies, on a aussi $h(z) = \omega$.

- Cas des similitudes. Soit $s_1: z \mapsto az + b$ et $s_2: z \mapsto \alpha z + \beta$ lorsque $z \neq \omega$. Notons $s = s_2 \circ s_1$ On a $s_2 \circ s_1(z) = \alpha az + \alpha b + \beta$ et $\alpha a \neq 0$. Si $z = \omega$, $s_1(z) = \omega$ et $s_2(\omega) = \omega = s(\omega)$ car $\alpha a \neq 0$.
- (d) Cas des similitudes.

On a $s \circ s(z) = z$ pour tout $z \in \mathbb{C}$, (ω vérifiant l'égalité), si, et seulement si $\forall z \in \mathbb{C}$, ($a^2 - 1$)z = -b(a+1) ce qui nous donne deux cas possibles, a=1, b=0 ou a=-1. Le premier cas donne l'application identité de \mathbb{C} , $z \mapsto z$; le second cas donne l'application $z \mapsto -z + b$ où $b \in \mathbb{C}$, c'est une symétrie centrale.

— Cas des homographies non dégénérées.

Si $h \circ h$ est involutive alors $-\frac{d}{c} \mapsto \omega \mapsto \frac{a}{c}$, donc a+d=0 car $c \neq 0$ pour une homographie non dégénérée. On obtient ainsi, $z \mapsto \frac{az+b}{cz-a}$, $z \neq \frac{a}{c}$.

Réciproquement, on a $\frac{a}{c} \mapsto \omega \mapsto \frac{a}{c}$, puis $\omega \mapsto \frac{c}{a} \mapsto \omega$ et enfin, pour les autres complexes, sachant que $ad - bc = -a^2 - bc \neq 0$ et $c \neq 0$

$$h \circ h(z) = \frac{a\frac{az+b}{cz-a} + b}{c\frac{az+b}{cz-a} - a}$$
$$= \frac{a^2z + ab + bcz - ab}{acz + bc - acz + a^2}$$
$$= \frac{(a^2 + bc)z}{a^2 + bc} = z.$$

- Les seules seules homographies non dégénérées involutives sont celles où a+d=0.
- (e) Cas des similitudes.

Le point ω est point fixe. Soit $z\in\mathbb{C}$, l'équation az+b=z revient à (a-1)z=-b, si $a\neq 1$, on a le point fixe $z_0=\frac{-b}{a-1}$. Ce qui correspond aux homothéties ou aux rotations de centre le point z_0 . a=1 amène b=0 or on a exclu l'identité.

- Cas des homographies non dégénérées. Les points particuliers n'entrent pas en compte car ils ne sont pas fixes. Soit z un complexe distinct des cas particuliers, l'équation h(z) = z est équivalente à $cz^2 + (d-a)z - b = 0$ qui est une équation de degré 2 car $c \neq 0$. Elle a une ou deux solutions dans $\mathbb C$ d'après le cours.
- (f) L'application φ est une homographie non dégénérée car $1 \neq 0$ et $w_1 \neq w_2$. D'après la question 2, elle est bijective. On a, pour tout $z \in \mathbb{C} \setminus \{w_1\}$, $\varphi^{-1}(z) = \frac{w_1 z w_2}{z 1}$ avec $1 \to \omega$ et $\omega \to w_1$.

Pour tout $z \in \mathbb{C}$ distinct de $\frac{-d}{c}$, de 1 et de w_1 , on a :

$$\begin{split} \varphi(h(z)) &= \frac{h(z) - h(w_2)}{h(z) - h(w_1)} \\ &= \frac{\frac{az+b}{cz+d} - \frac{aw_2+b}{cw_2+d}}{\frac{az+b}{cz+d} - \frac{aw_1+b}{cw_1+d}} \\ &= \frac{(z-w_2)(ad-bc)(cz-d)(cw_1+d)}{(z-w_1)(ad-bc)(cz-d)(cw_2+d)} \\ &= \frac{cw_1+d}{cw_2+d} \varphi(z) \end{split}$$

Donc, sachant que φ est bijective,

$$\varphi \circ h \circ \varphi^{-1}(z) = \frac{cw_1 + d}{cw_2 + d}z$$

$$\frac{cw_1+d}{cw_2+d} \neq 0 \text{ car on sait que } w_1 \neq w_2 \neq \frac{-d}{c}.$$

On vérifie que ω a pour image ω par $\varphi \circ h \circ \varphi^{-1} : \omega \to w_1 \to w_1 \to \omega$.

En outre $z=1 \to \omega \to \frac{a}{c} \to \varphi\left(\frac{a}{c}\right)$ qui existe car $\frac{a}{c} \neq w_1$ parce que $ad-bc \neq 0$.

Finalement ψ est une similitude car $\frac{cw_1+d}{cw_2+d}\neq 1$, et en particulier, ψ est une rotation ou une homothétie de centre le point d'affixe 0, dont les points fixes sont 0 et ω

(g) On a, pour tout $z \in \mathbb{C} \setminus \{w_0\}$, $\varphi^{-1}(z) = \frac{w_0z + 1}{z}$ et $0 \to \omega$ et $\omega \to w_0$. Puis : Pour tout $z \in \mathbb{C}$ distincts de 0 et w_0 , on a :

$$\varphi \circ h(z) = \frac{1}{h(z) - h(w_0)}$$
$$= \frac{(cz + d)(cw_0 + d)}{(z - w_0)((ad - bc))}$$

Sachant que $w_0 = \frac{a-d}{2c}$ et $(a-d)^2 + 4bc = 0$, donc $ad-bc = \frac{1}{4}(a+d)^2 \neq 0$, et $a+d\neq 0$, on obtient:

$$= \frac{(cz+d)2(a+d)}{(z-w_0)((a+d)^2)}$$
$$= \frac{2(cz+d)}{(z-w_0)(a+d)}$$

On a aussi:

$$\varphi \circ h(z) - \varphi(z) = \frac{1}{z - w_0} \left(\frac{2cz + 2d - a - d}{a + d} \right)$$
$$= \frac{1}{z - w_0} \frac{2c}{a + d} \left(z - \frac{a - d}{2c} \right)$$
$$= \frac{2c}{a + d}$$

Il reste à voir le cas où $z=w_0$, on a la suite d'images $w_0\to\omega\to\frac{a}{c}\to\varphi\left(\frac{a}{c}\right)$ qui existe car $\frac{a}{c} \neq w_0 = \frac{a-d}{c}$ sinon a+d=0, ce qui est impossible comme on l'a vu plus haut.

Par suite, sachant que φ est bijective, on obtient :

$$\varphi \circ h \circ \varphi^{-1}(z) = z + \frac{2c}{a+d}$$

et ψ est une translation. Le seul point fixe est ω .

- 2. Image d'un cycle par une homographie.
 - (a) $\Phi = 0$ correspond à $z_4 = z_1$. $\Phi = \omega$ correspond à $z_4 = z_2$ et enfin $\Phi = 1$ qui donne ($z_2 z_1$) z_1) $(z_3 - z_4) = 0$, correspond à $z_4 = z_3$. Dans ces cas on a bien le résultat. On exclut ces cas dans la suite.
 - Si z_1, z_2, z_3 sont alignés, la relation est vérifiée pour $z_4 = \omega$ sinon, si $z_4 \in \mathbb{C}$, sachant que $\frac{z_3 z_2}{z_3 z_1} \in \mathbb{R}$ et $z_2 \neq z_1$, on a $\frac{z_4 z_2}{z_4 z_1} \in \mathbb{R} \setminus \{1\}$ ce qui caractérise la droite complétée $(z_1 z_2)$.
 - Si z_1, z_2, z_3 ne sont pas alignés, ils déterminent un cercle. Son équation $x^2 + y^2 2ax 2ax 2ax$ 2by + c = 0 s'écrit en complexes $z\overline{z} - \overline{\alpha}z - \alpha\overline{z} + c = 0$ où z = x + iy, $\alpha = a + ib$, où x, y, a, bsont des réels. Le rayon ρ est déterminé par $\rho^2 = \alpha \overline{\alpha} - c > 0$.

Les points z_i , $1 \le i \le 4$ sur le cercle vérifient $z_i = \frac{\alpha z_i - c}{\overline{z_i} - \overline{\alpha}}$. Par suite $z_i - z_j = \frac{(z_i - z_j)(c - \alpha \alpha)}{(\overline{z_i} - \overline{\alpha})(\overline{z_i} - \overline{\alpha})}$.

Un calcul facile montre que $\Phi = \frac{\overline{z_3} - \overline{z_2}}{\overline{z_3} - \overline{z_4}} \div \frac{\overline{z_4} - \overline{z_2}}{\overline{z_4} - \overline{z_4}}$

Ainsi $\Phi = \overline{\Phi}$ donc Φ est réel.

— Réciproquement, supposons Φ réel. Si z_4 n'est pas sur le cercle déterminé par z_1, z_2, z_3 , il existe d tel que $z_4 = \frac{\alpha \overline{z_4} - d}{\overline{z_4} - \overline{\alpha}}$. On a $\Phi - \overline{\Phi} = 0$ soit :

$$\frac{z_3-z_2}{z_3-z-1}\times\frac{z_4-z_1}{z_4-z_2}=\frac{\overline{z_3}-\overline{z_2}}{\overline{z_3}-\overline{z_1}}\times\frac{\overline{z_4}-\overline{z_1}}{\overline{z_4}-\overline{z_2}}.$$

On se souvient que $z_i - z_j = \frac{(\overline{z_i} - \overline{z_j})(c - \overline{\alpha}\alpha)}{(\overline{z_i} - \overline{\alpha})(\overline{z_j} - \overline{\alpha})}$ pour i, j distincts entre 1 et 3 dans ce cas là. D'autre part : $z_4 - z_i = \frac{(c - \overline{\alpha}\alpha)\overline{z_4} - (d - \overline{\alpha}\alpha)\overline{z_i}}{(\overline{z_4} - \overline{\alpha})(\overline{z_i} - \overline{\alpha})}$ pour i = 1, 2.

Par suite:

$$\begin{split} \Phi &= \frac{\frac{(\overline{z_3} - \overline{z_2})(c - \overline{\alpha}\alpha)}{(\overline{z_3} - \overline{\alpha})(\overline{z_2} - \overline{\alpha})}}{\frac{(\overline{z_3} - \overline{z_1})(c - \overline{\alpha}\alpha)}{(\overline{z_1} - \overline{\alpha})}} \times \frac{\frac{(c - \overline{\alpha}\alpha)\overline{z_4} - (d - \overline{\alpha}\alpha)\overline{z_1}}{(\overline{z_4} - \overline{\alpha})(\overline{z_1} - \overline{\alpha})}}{\frac{(c - \overline{\alpha}\alpha)\overline{z_4} - (d - \overline{\alpha}\alpha)\overline{z_2}}{(\overline{z_4} - \overline{\alpha})(\overline{z_2} - \overline{\alpha})}} \\ &= \frac{\overline{z_3} - \overline{z_2}}{\overline{z_3} - \overline{z_1}} \times \frac{(c - \overline{\alpha}\alpha)\overline{z_4} - (d - \overline{\alpha}\alpha)\overline{z_1}}{(c - \overline{\alpha}\alpha)\overline{z_4} - (d - \overline{\alpha}\alpha)\overline{z_2}} \end{split}$$

En simplifiant l'égalité $\Phi = \overline{\Phi}$ on obtient :

$$\frac{(c - \overline{\alpha}\alpha)\overline{z_4} - (d - \overline{\alpha}\alpha)\overline{z_1}}{(c - \overline{\alpha}\alpha)\overline{z_4} - (d - \overline{\alpha}\alpha)\overline{z_2}} = \frac{\overline{z_4} - \overline{z_1}}{\overline{z_4} - \overline{z_2}}.$$

On développe et on réduit pour obtenir :

$$(\overline{z_2} - \overline{z_1})\overline{z_4}(d-c) = 0$$

donc d = c et les points sont cocycliques soit $z_4 = 0$ est le cercle passe par l'origine car c = 0 puisque $z_4 = \frac{\alpha \overline{z_4} - c}{\overline{z_4} - \overline{\alpha}}$.

(b) On prend $z \neq -\frac{d}{c}$.

On a
$$Z_i - Z_j = (z_i - z_j) \frac{ad - bc}{(cz_i + d)(cz_j + d)}$$
 par suite la relation en découle.

Par suite si $\frac{z_3-z_2}{z_3-z_1} \div \frac{z_4-z_2}{z_4-z_1} \in \mathbb{R}$, il en est de même pour $\frac{Z_3-Z_2}{Z_3-Z_1} \div \frac{Z_4-Z_2}{Z_4-Z_1}$. Comme h est bijective tout le cycle est obtenu. Si $\frac{z_3-z_2}{z_3-z_1} \div \frac{z_4-z_2}{z_4-z_1} = \omega$ alors $z_4=z_2$ et il en est de même pour Z_4 et Z_2 car h est une bijection.

Si
$$\frac{z_3-z_2}{z_3-z_1} \div \frac{z_4-z_2}{z_4-z_1} = \omega$$
 alors $z_4=z_2$ et il en est de même pour Z_4 et Z_2 car h est une bijection.

(c) Un cycle étant défini par trois points distincts, on retrouve le le cercle de centre O et de rayon 1 après six compositions:

$$\begin{cases} 1 \to 0 \to -1 \to -3 \to \omega \to 3 \to 1 \\ i \to -\frac{3}{5} + i\frac{6}{5} \to -1 + 2i \to 3i \to 1 + 2i \to \frac{3}{5} + i\frac{6}{5} \to i \\ -1 \to -3 \to \omega \to 3 \to 1 \to 0 \to -1 \end{cases}$$

Les différentes images sont représentées sur la figure suivante :

- 3. Homographies laissant stable une partie une plan
 - (a) i. Soit t un réel. Alors le complexe e^{it} est de module 1, donc $|f(e^{it})| = 1$. En particulier -d/c n'est pas de module 1 car $\omega \notin \mathbb{U}$. Ainsi, $|ae^{it}+b| = |ce^{it}+d|$. On calcule alors classiquement

$$|ae^{it}+b|^2=|ae^{it}|^2+|b|^2+2\mathfrak{Re}(\overline{ae^{it}}b)=|a|^2+|b|^2+2\mathfrak{Re}(\overline{a}be^{-it})$$

De même, on exprime

$$|ce^{it}+d|^2 = |c|^2 + |d|^2 + 2\Re(\overline{c}de^{-it})$$

Ainsi

$$|a|^2 + |b|^2 + 2\Re(\overline{a}be^{-it}) = |c|^2 + |d|^2 + 2\Re(\overline{c}de^{-it})$$

ii. Posons $\alpha = |a|^2 + |b|^2 - |c|^2 - |d|^2$ et $\beta = \overline{a}b - \overline{c}d$. La question précédente montre par linéarité de la partie réelle que

$$\forall t \in \mathbb{R}, \alpha + \mathfrak{Re}(\beta e^{-it}) = 0$$

Si β est non nul, alors en notant u un argument de β , et en appliquant ce qui précède au réel $u-\pi/2$, on obtient

$$\alpha + \mathfrak{Re}(|\beta| \mathrm{e}^{iu} \mathrm{e}^{-iu + i\pi/2}) = \alpha + |\beta| \mathfrak{Re}(i) = \alpha = 0$$

Mais alors, on applique l'égalité précédente pour t = u, ce qui entraîne

$$0 + \Re \varepsilon (|\beta| e^{iu} e^{-iu}) = |\beta| = 0$$

Par conséquent, $\beta = 0$, ce qui est absurde. Ainsi, $\beta = 0$ et α est également nul. En conclusion,

$$|a|^2 + |b|^2 = |c|^2 + |d|^2$$
 et $\overline{a}b = \overline{c}d$

iii. Si a=0, alors $\overline{c}d=0$ et $\overline{c}=0$ ou d=0, soit c=0 ou d=0. Comme $ad-bc=-bc\neq 0$, c ne peut être nul. On en conclut que d=0, puis que |b|=|c|, donc que b est non nul. On note alors s un argument de b/c et on en déduit que f est de la forme

$$\forall z \in \mathbb{C} \setminus \{0\}, f(z) = e^{is} \frac{1}{z}, \text{ et } f(\omega) = 0 \text{ et } f(0) = \omega$$

iv. Si a est non nul, alors \overline{a} est non nul et on a $b = \frac{\overline{c}}{\overline{a}}d$. On en déduit que

$$|a|^2 + \left|\frac{\overline{c}}{\overline{a}}d\right|^2 = |a|^2 + \frac{|c|^2}{|a|^2}|d|^2 = |c|^2 + |d|^2$$

Ainsi,

$$|a|^4 + |c|^2 |d|^2 - |a|^2 |c|^2 + |a|^2 |d|^2 = 0$$

On reconnaît alors la factorisation

$$(|a|^2 - |c|^2)(|a|^2 - |d|^2) = 0$$

v. La question précédente implique que |a| = |c| ou |a| = |d| puisqu'il s'agit de réels positifs. Dans le cas où |a| = |c|, on a alors $|\overline{a}b| = |\overline{c}d|$, donc puisque a est non nul, |b| = |d|. On a de plus, b et d non nuls, sinon ad - bc est nul. On note alors $\alpha, \beta, \gamma, \delta$ des arguments respectifs de a, b, c, d. L'égalité $\overline{a}b = \overline{c}d$ entraîne alors, tous modules non nuls,

$$\beta - \alpha \equiv \delta - \gamma [2\pi]$$

soit encore

$$\alpha + \gamma \equiv \beta + \gamma [2\pi]$$

Mais alors ad = bc, ce qui est contradictoire. Ainsi, $|a| \neq |c|$ et on en déduit que |a| = |d|. L'égalité sur les modules donne alors |b| = |c| et celle comportant les conjugaisons implique

$$\beta - \alpha \equiv \delta - \gamma [2\pi]$$

comme précédemment dans le cas b non nul. On en déduit que

$$\forall z \in \mathbb{C} \setminus \{-d/c\}, f(z) = \frac{|a|e^{i\alpha}z + |b|e^{i\beta}}{|c|e^{i\gamma} + |d|e^{i\delta}} = \frac{|a|e^{i\alpha}}{|d|e^{i\delta}} \frac{z + \frac{|b|}{|a|}e^{i(\beta - \alpha)}}{\frac{|b|}{|a|}e^{i(\gamma - \delta)} + 1}$$

On pose alors $Z = -\frac{|b|}{|a|}e^{i(\beta-\alpha)}$ et $\varphi = \alpha - \delta + \pi$. En particulier, $|Z| \neq 1$, $Z \neq 0$ et

$$\forall z \in \mathbb{C} \setminus \{1/\overline{Z}\}, f(z) = e^{i\varphi} \frac{z - Z}{\overline{Z}z - 1}$$

Enfin, dans le cas b nul, il suffit de choisir Z = 0.

(b) La question précédente démontre qu'il y a deux formes possibles pour de telles homographies. Vérifions qu'elles satisfont effectivement $f(\mathbb{U})=\mathbb{U}$. Soit s un réel. On définit l'homographie g tel que $\forall z \neq 0, f(z)=e^{is}/z$. Alors pour tout complexe z de module $1, |f(z)|=|e^{is}|/|z|=1/1=1$, donc $f(\mathbb{U})\subset \mathbb{U}$. On en déduit que $f(f(\mathbb{U}))\subset f(\mathbb{U})$, mais ici $f\circ$ est une rotation de centre O, donc $f(f(\mathbb{U}))=\mathbb{U}$ et $\mathbb{U}\subset f(\mathbb{U})$ et on a bien l'égalité d'ensembles $f(\mathbb{U})=\mathbb{U}$ par double inclusion. Considérons à présent un complexe Z tel que $|Z|\neq 1$ et un réel φ , puis l'homographie f définie par

$$\forall z \in \mathbb{C} \setminus \{1/\overline{Z}\}, f(z) = e^{i\varphi} \frac{z - Z}{\overline{Z}z - 1}$$

Alors pour tout complexe z de module 1, on a

$$|f(z)|^{2} = \frac{|z - Z|^{2}}{|\overline{Z}z - 1|^{2}}$$

$$= \frac{|z|^{2} + |Z|^{2} - 2\Re\varepsilon(z\overline{Z})}{|\overline{Z}z|^{2} + 1 - 2\Re\varepsilon(\overline{Z}z)}$$

$$= \frac{1 + |Z|^{2} - 2\Re\varepsilon(z\overline{Z})}{|Z|^{2} + 1 - 2\Re\varepsilon(z\overline{Z})}$$

$$= 1$$

donc |f(z)| = 1. Ceci démontre que $f(\mathbb{U}) \subset \mathbb{U}$. Pour démontrer, l'autre inclusion, on considère un élément z de \mathbb{U} . Mais alors, on remarque, d'après la réciproque de f que

$$f^{-1}(z) = e^{-i\varphi} \frac{z - Z}{\overline{Z}z - 1}$$

Le même calcul que précédement montre que $|f^{-1}(z)|=1$, donc que z est l'image par f d'un complexe de module 1, à savoir $f^{-1}(z)$. Ainsi, $\mathbb{U} \subset f(\mathbb{U})$ et l'égalité d'ensembles est démontrée par double inclusion.

En conclusion, les seules homographies qui conservent le cercle unité sont uniquement de deux formes, celles précisées précédemment.

