- refrigeration (reduction of temperature)
- preserving large blocks of food (reducing surface area)
- choosing foodstuffs that naturally decay more slowly (chemical nature of reactants)

Explore an Issue: Debate: Food Preservation

(Page 397)

- (a) (Answers will vary, but should include research from several stated sources, organized into relevant categories (e.g., from the manufacturing industry, from health-watch groups, from the medical community), and used to back up the students' arguments.)
- (b) (Answers will vary, but should outline how and possibly why the vote changed.)

PRACTICE

(Page 398)

Making Connections

8. (Answers will vary, depending on career chosen and geographical location.)

PRACTICE

(Page 400)

Understanding Concepts

9. (a)
$$k = Ae^{-E_a/RT}$$

At $T = 20^{\circ}$ C,
 $E_a/RT = \frac{2.00 \times 10^5}{8.31 \times 293}$
 $E_a/RT = 82.1$
 $k_{20 \ 200} = A \times e^{-82.1}$
 $k_{20 \ 200} = A \times 2.2 \times 10^{-36}$
At $T = 25^{\circ}$ C,
 $E_a/RT = \frac{2.00 \times 10^5}{8.31 \times 298}$
 $E_a/RT = 80.8$
 $k_{25 \ 200} = A \times e^{-80.8}$
 $k_{25 \ 200} = A \times 8.1 \times 10^{-36}$
 $\frac{k_{25 \ 200}}{k_{20 \ 200}} = \frac{A \times 8.1 \times 10^{-36}}{A \times 2.2 \times 10^{-36}}$
 $\frac{k_{25 \ 200}}{k_{20 \ 200}} = 3.7$

An increase in temperature of 5°C increases the rate almost four times.

(b) At
$$E_{\rm a}=180~{\rm kJ/mol}$$

$$E_{\rm a}/RT=\frac{1.80\times 10^5~{\rm J/mol}}{8.31\times 293}$$

$$E_{\rm a}/RT=73.9$$

$$k_{20~180}=A\times {\rm e}^{-73.9}$$

$$k_{20~180}=A\times 8.0\times 10^{-33}$$

$$\frac{k_{20~180}}{k_{20~200}}=\frac{A\times 8.0\times 10^{-33}}{A\times 2.2\times 10^{-36}}$$