Reinforcement Learning: Policy Gradient

AI/ML Teaching

Goals & Keyword

Policy-Based RL vs Value-Based RL

Monte-Carlo Policy Gradient

Actor-Critic Policy Gradient

Policy-Based RL vs Value-Based RL

- Value-based RL: A policy is generated directly from the value function, $V^{\pi}(s)$ or $Q^{\pi}(s,a)$
 - e.g. ϵ -greedy
- Policy-based RL: Directly parameterize the policy

$$\pi(s,a) = \mathbb{P}[a|s]$$

Policy-Based RL vs Value-Based RL

- Value Based
 - Learnt value function
 - Implicit policy
- Policy Based
 - No value function
 - Learnt policy
- Actor-Critic
 - Learnt value function
 - Learnt policy

Policy-Based RL vs Value-Based RL

- Policy-Based RL
 - (+) Better convergence properties
 - (+) Effective in high-dimensional or **continuous** action spaces
 - (+) Can learn **stochastic** policies
 - (–) typically converge to a local rather than global optimum*
 - (-) Evaluating a policy is typically inefficient and high variance

Stochastic policy

- Stochastic environment
- Non-fully observable state

Deterministic policy						Stochastic policy					
*Agent cannot differentiate the grey states											
	•	1 1 1 1 1 1 1 1 1 1	\				**	+ 5	*		

Policy Search

Policy Objective Functions

- In episodic environments we can use the <u>start value</u> $J_1(\theta) = V^{\pi_{\theta}}(s_1) = \mathbb{E}_{\pi_{\theta}}[v_1]$
- In continuing environments, we can use the average value

$$J_{avV}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) V^{\pi_{\theta}}(s)$$

• Or the <u>average reward per time-step</u>

$$J_{avR}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) \sum_{a} \pi_{\theta}(s, a) \mathcal{R}_{s}^{a}$$

where $d^{\pi_{\theta}}(s)$: stationary distribution of Markov chain for π_{θ}

Policy gradient

- Find θ maximizing $J(\theta)$: policy ascent
- Numerical policy gradient $\frac{\partial J(\theta)}{\partial \theta_k} \approx \frac{J(\theta + \epsilon u_k) J(\theta)}{\epsilon}$
- Compute Policy gradient analytically: Policy gradient theorem
 - We can compute $\nabla_{\theta}\pi_{\theta}(s, a)$ $\nabla_{\theta}\pi_{\theta}(s, a) = \pi_{\theta}(s, a) \frac{\nabla_{\theta}\pi_{\theta}(s, a)}{\pi_{\theta}(s, a)} = \pi_{\theta}(s, a) \frac{\nabla_{\theta}\log\pi_{\theta}(s, a)}{\pi_{\theta}(s, a)}$ (def) Score function

Policy gradient theorem

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) Q_{\pi}(s, a)]$$

(shortened derivation)

$$\nabla_{\theta} J(\pi_{\theta}) = \nabla_{\theta} \sum_{s \in S} d(s) V^{\pi}(s)$$

$$= \sum_{s \in \mathcal{S}} d(s) \nabla_{\theta} V^{\pi}(s)$$

$$= \sum_{s \in S} d(s) \nabla_{\theta} \left(\sum_{a \in \mathcal{A}} Q^{\pi}(s, a) \pi_{\theta}(s, a) \right)$$

$$= \sum_{s \in S} d(s) \sum_{a \in \mathcal{A}} Q^{\pi}(s, a) \nabla_{\theta} \pi_{\theta}(s, a)$$

$$= \sum_{s \in S} d(s) \sum_{a \in \mathcal{A}} Q^{\pi}(s, a) \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a)$$

$$= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) Q_{\pi}(s,a)]$$

(Example) Softmax policy

- Cartpole
 - Action: left/right
 - Softmax policy

Left:
$$\pi_{\theta}(a_0|s) = \frac{\exp(h_{\theta}(a_0|s))}{\sum_{a \in \mathcal{A}} \exp(h_{\theta}(a|s))} = p$$

Right:
$$\pi_{\theta}(a_1|s) = \frac{\exp(h_{\theta}(a_1|s))}{\sum_{a \in \mathcal{A}} \exp(h_{\theta}(a|s))} = 1 - p$$

Action: sampling $(p/1 - p) \rightarrow left$ or right

(Example) Gaussian policy

- Bipedal walker
 - Action: motor speed values for each of the 4 joints at both hips and knees

$$\pi_{\theta}(a|s) = \frac{1}{\sqrt{2\pi}\sigma(s,\theta)} \exp\left(-\frac{\left(a - \mu(s,\theta)\right)^2}{2\sigma(s,\theta)^2}\right)$$

Joint1: μ_{θ_1} , σ_{θ_1} from h_{θ_1} Joint2: μ_{θ_2} , σ_{θ_2} from h_{θ_2}

Joint3: μ_{θ_3} , σ_{θ_3} from h_{θ_3} Joint4: μ_{θ_4} , σ_{θ_4} from h_{θ_4} Joint1: sample from $\mathcal{N}(\mu_{\theta_1}, \sigma_{\theta_1})$ Joint2: sample from $\mathcal{N}(\mu_{\theta_2}, \sigma_{\theta_2})$

Joint3: sample from $\mathcal{N}(\mu_{\theta_3}, \sigma_{\theta_3})$

Joint4: sample from $\mathcal{N}(\mu_{\theta_4}, \sigma_{\theta_4})$

Monte-Carlo Policy Gradient (REINFORCE)

- Update parameters by stochastic gradient ascent
- Using return v_t as an unbiased sample of $Q^{\pi_{\theta}}(s_t, a_t)$ $\nabla_{\theta_t} = \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) v_t$

```
function REINFORCE Initialize \theta for each episode \{s_1, a_1, r_2, ..., s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta} do for t=1 to T-1 do \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) \ v_t end for end for return \theta
```

Actor-Critic

- Monte-Carlo policy gradient has high variance
- We use a critic to estimate the action-value function

- Actor-critic algorithms maintain two sets of parameters
 - Critic: updates action-value function parameters w
 - Actor: updates policy parameters θ
- Actor-critic algorithms follow an approximate policy gradient

$$\nabla_{\theta} J(\theta) \approx \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) \, Q_{w}(s, a)]$$
$$\Delta \theta = \alpha \nabla_{\theta} \log \pi_{\theta}(s, a) \, Q_{w}(s, a)$$

Actor-Critic

```
function QAC
Initialize s, \theta
Sample a \sim \pi_{\theta}
for each step do
            Sample reward r = \mathcal{R}_s^a; sample transition s' \sim \mathcal{P}_s^a
            Sample action a' \sim \pi_{\theta}(s', a')
           \delta = r + \gamma Q_w(s', a') - Q_w(s, a) // Critic
           \theta = \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s, a) Q_{w}(s, a) // Actor
           w \leftarrow w + \beta \delta \nabla_w Q_w(s, a)
           a \leftarrow a', s \leftarrow s'
 end for
```

Reference

- David Silver, COMPM050/COMPGI13 Lecture Notes
- Richard S. Sutton and Andrew G. Barto, "Reinforcement Learning: An Introduction," 2nd Ed.
- 김재훈, "Introduction to Policy Gradient," DMQA Seminar