Signals part 1.4 – Discrete signals and sampling

Recap - Complex exponential

$$f(t) = Ce^{at}$$

'a' is real – exponential

$$f(t) = Ce^{j\omega t}$$

• 'a' is imaginary – phasor on complex plane, sinusoid in the time domain

$$f(t) = C\cos(\omega t) + jC\sin(\omega t)$$

$$f(t) = Ce^{(r+j\omega)t}$$

 'a' has real and complex parts – phasor decaying or growing exponentially

$$f(t) = Ce^{jk\omega t}$$

Integer 'k' multiplying ω gives harmonic series

Visualising signals

Sinusoid (blue) and decaying sinusoid (red) in time

Sinusoid (blue) and decaying sinusoid (red) on phase plane

Discrete Signals

Lets first start with some familiar sine waves:

$$f(t) = \sin(\omega t) \qquad \qquad f[n] = \sin(\Omega n)$$
What is this?

We know that: x[n] = x(nT), where n is an integer and T is the sampling interval

$$\sin(\Omega n) = \sin(\omega nT) \qquad \omega nT = \Omega n \qquad \therefore \omega T = \Omega$$

- Hence Ω is 'radians per sample period' the 'discrete time frequency' or normalised frequency (compare with ω radians per second)
- So the twist is that 'time' is variable in the discrete world: we can adjust sample period

Increasing the sample interval results in a higher normalised frequency in the discrete time domain

Waveforms with the same normalised frequency can look different in the time domain

 $\pi/4$ gives the same discrete time sequence as $7\pi/4$

Discrete time complex exponential

$$f[n] = Ce^{\beta n}$$
 Where 'C' and ' β ' are complex numbers

When 'β' has an imaginary part the result is a periodic signal;

$$f[n] = Ce^{(\varepsilon + j\Omega)n} \qquad \omega T = \Omega$$

- The discrete time complex exponential is analogous to the continuous time version save the substitution of Ω for discrete frequency, (remembering Ω is the radians per sample period).
- Sampled versions of exponential functions, sinusoids, decaying/growing sinusoids, phase shifted sinusoids and harmonic sets can all be reproduced.

Sampled waveforms

Although these signals show the underlying, continuous waveform, only the individual points exist in the discrete domain

Sampling on the complex plane

- As the normalised frequency is reduced, the number of times the waveform is sampled per cycle is increased.
- What happens if we increase the normalised frequency?

Sampling on the complex plane

Sampling - Aliasing

- When a signal is complex valued, as long as it is sampled more than once per cycle, the sample can represent that signal uniquely.
- When a signal is sampled less than once per cycle, the sampled signal appears identical to another in the range $0<\Omega<2\pi$
- When sampling, if signals outside the range $0<\Omega<2\pi$ are present, then they will reflect artefacts back into the range $0<\Omega<2\pi$ causing 'aliasing'
- Remember Ω changes with the frequency of the signal being sampled and the sampling rate

 $\pi/4$ gives the same discrete time sequence as $7\pi/4$

Sampling real valued signals

 $\Omega = 5\pi/4$

 But we also have another effect due to waveform symmetry

 $\Omega = 3\pi/4$

- The case for real valued signals is more complex as the symmetry of cosine and sine causes reflection/inversions at $\Omega = \pi/2$ intervals.
- When a signal has real values only, as long as it is sampled more than twice per cycle, the sample can represent that signal uniquely, however when a signal is sampled less than twice per cycle, the sampled signal appears identical to another in the range $0<\Omega<\pi$
- Signals outside the range $0<\Omega<\pi$ will reflect artefacts back into the range $0<\Omega<\pi$ causing 'aliasing'

Waveform symmetry

- sin(x) = -sin(-x)
- Sine has quarter wave symmetry
 - It has even symmetry around $\pi/2$

- Cosine is an even function:
 - cos(x) = cos(-x)
- Cosine has quarter wave symmetry
 - It has odd symmetry around $\pi/2$

 $cos(\pi/4)$ is the same as $cos(7\pi/4)$

 $Sin(\pi/4)$ is the same as $-sin(7\pi/4)$

Aliasing illustrated – complex signals

- If a signal has components with frequencies above the sampling frequency, these are reflected back and appears as artefacts at a lower frequency.
- This applies to complex valued signals.
- Here, the upper graph is indistinguishable from the lower once the signal have been sampled.

Aliasing illustrated – real-valued signals

With real valued signals

 like most we
 encounter in real life- it
 is necessary to sample
 at twice the maximum
 frequency

 Again, the upper graph is indistinguishable from the lower once the signal has been sampled.

Aliasing illustrated – normalised frequency

 When we convert to Ω, we normalise frequency to the sample frequency and hence both the upper and middle graphs produce the same graph in the Ω (bottom graph).

