PROIECT – CRIPTOGRAFIE ȘI SECURITATEA DATELOR

Sistem local de management al cheilor de criptare pentru mai mulți algoritmi

> Asofronie Rareș-Flavian Hordilă Răzvan-Adrian Hurghiș Gheorghe-Georgian

I) Introducere

În era digitală actuală, securitatea informației a devenit o componentă esențială a oricărui sistem informatic. Fie că este vorba de protejarea fișierelor personale, a datelor organizaționale sau a comunicațiilor confidențiale, criptarea joacă un rol central în asigurarea confidențialității și integrității datelor. Acest proiect propune realizarea unui sistem local de gestionare a criptării fișierelor, folosind mai mulți algoritmi de criptare (atât simetrici cât și asimetrici), într-o aplicație desktop cu interfață grafică (GUI). Scopul principal este criptarea, decriptarea și managementul cheilor într-un mod organizat și sigur, cu salvarea metadatelor în baza de date locală SQLite.

II) Obiective

Ne propunem să realizăm un manager de fișiere criptate care:

- Permite adăugarea de fișiere
- Înregistrează toate operațiile și măsoară timpul de execuție
- Suportă criptarea și decriptarea cu OpenSSL și GnuPG
- Salvează datele relevante într-o bază de date locală SQLite
- Se propune gestionarea cheilor pentru algoritmi simetrici și asimetrici

III) Explicații privind implementarea proiectului

Aplicația este dezvoltată în Python folosind:

- Tkinter folosită pentru interfața grafică (GUI)
- SQLite utilizat pentru gestionarea datelor
- OpenSSL și GnuPG rolul lor este de a realiza operațiile de criptare și chei

Algoritmii aleși pentru acest proiect sunt:

- ★ Algoritmi simetrici:
 - AES OpenSSL
 - DES OpenSSl și GnuPG
 - ChaCha20 OpenSSL
 - AES256 GPG
- ★ Algoritmi asimetrici
 - RSA OpenSSL
 - RSA GnuPG

Cod semnificativ

→ Generarea cheilor RSA cu OpenSSL

```
subprocess.run(args: ["openssl", "genrsa", "-out", priv_path, "2048"], check=True)
subprocess.run(args: ["openssl", "rsa", "-in", priv_path, "-pubout", "-out", pub_path], check=True)
```

→ Utilizarea algoritmilor de criptare din funcția cripteaza_fisier

```
| def cripteaza_fisier(): lusage | suppression | suppressi
```

→ Înregistrarea operațiilor

```
cursor.execute( sql: """

INSERT INTO Operatii (fisier_id, algoritm_id, cheie_id, tip_operatie, durata, rezultat)

VALUES (?, ?, ?, 'criptare', ?, 1)

""", parameters: (fisier_id, algoritm_id, cheie_id, durata))

420
```

→ Afișarea logului în GUI

```
for op in operatii:

status = "SUCCES" if op[5] == 1 else "ESEC"

text_loguri.insert(tk.END,

chars: f"[#{op[0]}] {op[3].upper()} | {op[1]} | Alg: {op[2]} | {op[4]} ms | {status} | Msg: {op[6]}\n"

see
```

IV) Baza de date

Aplicația utilizează o bază de date SQLite numită csd.db, care conține tabelele afișate in pozele de mai jos:

Algoritmi

• id: identificator

nume: ex: AES, RSAtip: simetric / asimetric

• descriere: scurtă explicație

Chei

- id: INTEGER cheie primară
- algoritm_id: INTEGER legătură către Algoritmi
- fisier id: INTEGER legătură către Fisiere
- tip_cheie: TEXT simetric / asimetric
- valoare_cheie1: TEXT cheie publică sau parolă
- valoare_cheie2: TEXT cheie privată (dacă există)
- data_crearii: TEXT timestamp implicit
- data expirarii: TEXT rezervat pentru viitor
- observatii: TEXT detalii (ex: "generată cu OpenSSL")

✓ ■ Fisiere		CREATE TABLE Fisiere (id INTEGER PRIMARY KEY AUTOINCREMENT, cale_fisier TEXT NOT NULL, nume_original TEXT NOT NULL, dimensiun
id	INTEGER	"id" INTEGER
cale_fisier	TEXT	"cale_fisier" TEXT NOT NULL
nume_original	TEXT	"nume_original" TEXT NOT NULL
dimensiune	INTEGER	"dimensiune" INTEGER
stare	TEXT	"stare" TEXT NOT NULL CHECK("stare" IN ('criptat', 'decriptat'))
data_crearii	TEXT	"data_crearii" TEXT DEFAULT CURRENT_TIMESTAMP
data_actualizarii	TEXT	"data_actualizarii" TEXT
nume_fisier_criptat	TEXT	"nume_fisier_criptat" TEXT

Fisiere

• id: INTEGER – cheie primară

• cale fisier: TEXT – locația pe disc

• nume_original: TEXT – nume fișier original

• dimensiune: INTEGER – mărimea în octeți

• stare: TEXT – criptat / decriptat

• data_crearii: TEXT – timestamp

• data_actualizarii: TEXT – ultimă modificare

• nume fisier criptat: TEXT – cale fișier criptat (dacă există)

✓ ■ Operatii		CREATE TABLE Operatii (id INTEGER PRIMARY KEY AUTOINCREMENT, fisier_id INTEGER NOT NULL, algoritm_id INTEGER NOT NULL, cheie_
id	INTEGER	"id" INTEGER
fisier_id	INTEGER	"fisier_id" INTEGER NOT NULL
algoritm_id	INTEGER	"algoritm_id" INTEGER NOT NULL
cheie_id	INTEGER	"cheie_id" INTEGER NOT NULL
tip_operatie	TEXT	"tip_operatie" TEXT NOT NULL CHECK("tip_operatie" IN ('criptare', 'decriptare'))
timp_incepere	TEXT	"timp_incepere" TEXT DEFAULT CURRENT_TIMESTAMP
durata	INTEGER	"durata" INTEGER
rezultat	BOOLEAN	"rezultat" BOOLEAN NOT NULL CHECK("rezultat" IN (0, 1))
mesaj_eroare	TEXT	"mesaj_eroare" TEXT

Operatii

• id: INTEGER – cheie primară

• fisier_id, algoritm_id, cheie_id: INTEGER – referințe

• tip_operatie: TEXT – criptare / decriptare

• timp incepere: TEXT – data/timpul începerii

• durata: INTEGER – milisecunde

• rezultat: BOOLEAN -1 = succes, 0 = eşec

• mesaj_eroare: TEXT – mesaj dacă a eșuat

V) Dificultăți întâmpinate

- Erori criptografice: un exemplu concret îl reprezintă criptarea RSA ce eșuează dacă cheia publică nu este corect salvată temporar.
- Gestionarea fișierelor temporare : Pentru RSA și GPG, cheile se scriu temporar în fișiere .pem sau .asc, iar apoi sunt importate de openssl sau gpg.
- Incompabilitatea dintre framework-uri: Cheile generate cu GPG nu pot fi folosite în OpenSSL și invers, fiecare framework are formate proprii.
- Sincronizarea în GUI: Funcțiile update_dropdown, update_algoritmi_dropdown și update_chei_dropdown au sincronizat dropdown-urile pentru algoritmi, chei și fișiere.

VI) Concluzie

Acest proiect este complet funcțional, fiind capabil să demonstreze o serie de servicii extrem de complexe, cum ar fi:

- Implementarea unui manager de criptare
- Asigurarea unui suport pentru algoritmi simetrici și asimetrici
- Realizarea unei interfețe intuitive cu SQLite
- Integrarea cu succes a 2 framework-uri criptografice: OpenSSL și GnuPG(GNU Privacy Guard)