Análisis de Caso: Fundamentos del Aprendizaje de Máquina

Empresa: DataSolutions S.A.

1. Clasificación del problema

Problema	Descripción	Tipo de Tarea	
A	Predecir el monto de ventas	Regresión supervisada	
	semanales de una cadena de		
	supermercados		
В	Detectar si un cliente	Clasificación supervisada	
	abandonará un servicio de		
	streaming		
С	Agrupar a los clientes	Aprendizaje no supervisado	
	bancarios por	(Clustering)	
	comportamiento de gasto		
	sin etiquetas		

2. Selección de modelo y justificación

Problema	Modelo	Justificación	Ventajas	Limitaciones
	sugerido			
A	Regresión	El objetivo es	Simplicidad,	Puede
	lineal o	predecir un	interpretabilidad	subestimar
	polinómica	valor numérico		relaciones no
		continuo		lineales
В	Árbol de	Clasificar	Robusto a	Puede
	decisión o	abandono, útil	outliers, no	sobreajustarse
	Random Forest	con variables	necesita	
		categóricas y	escalado	
		numéricas		
С	K-means	No hay	Simplicidad,	Sensible a
	clustering	etiquetas, se	segmentación	escala y a
		necesita	útil	elección de K
		agrupar por		
		similitud		

3. Riesgos y desafíos

Riesgo	Descripción
Overfitting	El modelo aprende demasiado el
	entrenamiento y generaliza mal.
Datos desbalanceados	Puede sesgar los modelos hacia la clase
	mayoritaria.
Escalamiento necesario	Modelos basados en distancia fallan si no se
	escalan los datos.
Datos faltantes	Reducen calidad del entrenamiento y la
	predicción.
Maldición de la dimensionalidad	Muchos atributos irrelevantes dificultan
	agrupaciones y predicciones.

4. Flujo de trabajo para el Problema B

- 1. Recolección de datos históricos de usuarios
- 2. Limpieza y tratamiento de datos nulos
- 3. Codificación de variables categóricas
- 4. División en conjuntos de entrenamiento/test
- 5. Escalamiento si aplica
- 6. Selección de modelo (árbol, random forest, etc.)
- 7. Entrenamiento del modelo
- 8. Evaluación con métricas (precisión, recall, F1)
- 9. Ajuste de hiperparámetros si es necesario
- 10. Implementación y monitoreo continuo

5. Reflexión personal

Aplicar estos conceptos permite identificar el tipo correcto de problema y evitar errores comunes, como usar clasificación en tareas de regresión o no escalar datos en modelos que lo requieren. Además, permite anticipar riesgos y elegir métricas adecuadas según el caso. Este enfoque sistemático profesionaliza el análisis de datos y mejora la calidad de las decisiones basadas en modelos predictivos.