Reinforcement Learning

RL is learning from

internation

RL is learning from interaction

Markov Decision Process (MDP)

- •Set of states S actually features vector to describe environment & agent
- Set of actions A that can be taken at each state
- •State transition probabilities p(s' | s, a). Memory-less property assumed.
- •Policy is mapping from States to possible actions P: S?A. This is the solution of MDP
- •Finite MDP if both S and A are finite

Markov Decision Process (MDP)

- •Rewards are a set of real numbers or discrete in S X A. Reward Functions:
 - State reward R(S)
 - •Immediate reward R(S,a, S'),
 - •R(S,a).
- •Discount factor γ in [0, 1] priority given to future experience. ~0.9
- •Learning rate: α (~0.1)

Lodhi Garden visit – R: State Transition Immediate rewards r_{t+1}

(S _t @S _{t+1})	S ₁ Tomb, hungry, tired	S ₂ Garden, hungry, fresh	S ₃ Lake, filled, tired	S ₄ Eatery, filled, fresh	S ₅ Gazebo, hungry, fresh	S ₆ Out, filled, tired
S ₁ Tomb, hungry, tired	-10	50	70	100	50	0
S ₂ Garden, hungry, fresh	20	40	100	100	20	0
S ₃ Lake, filled, tired	0	70	20	0	0	50
S ₄ Eatery, filled, fresh	100	0	0	0	0	0
S ₅ Gazebo, hungry, fresh	0	0	100	100	0	0
S ₆ Out, filled, tired	0	0	60	0	0	100

What is the feature vector that defines different states?

Q learning basics

- •Q is a quality or utility or Value Function -> helps assess decisions
- Maximizes sum of
 - Immediate reward
 - Projected future reward
- Recursive in nature
- •Q must be updated with experience
- •Initial Q : all zeros

Initial Utilities – all zeros. Initial State S_3 , Discount factor $\gamma = 0.8$

	S ₁ Tomb, hungry, tired	S ₂ Garden, hungry, fresh	S ₃ Lake, filled, tired	S ₄ Eatery, filled, fresh	S ₅ Gazebo, hungry, fresh	S ₆ Out, filled, tired
S ₁ Tomb, hungry, tired	0	0	0	0	0	0
S ₂ Garden, hungry, fresh	0	0	0	0	0	0
S ₃ Lake, filled, tired	0	0	0	0	0	0
S ₄ Eatery, filled, fresh	0	0	0	0	0	0
S ₅ Gazebo, hungry, fresh	0	0	0	0	0	0
S ₆ Out, filled, tired	0	0	0	0	0	0

Learning by interacting – Episode 1

- Let first action randomly be $P(S \mid S)$ -> Go to Garden.
- Immediate reward = 70
- Q -> See next state S= Discount factor γ^* Max $\{0,0,0,0,0,0\} = 0$

• Thus new Q(S,S) = 70 + 0, due to only instant reward

(S _t 2S _{t+1})	S ₁ Tomb, hungry, tired	S ₂ Garden, hungry, fresh	S ₃ Lake, filled, tired	S ₄ Eatery, filled, fresh	S ₅ Gazebo, hungry, fresh	S ₆ Out, filled, tired
S ₁ Tomb, hungry, tired	-10	50	70	100	50	0
S ₂ Garden, hungry, fresh	20	40	100	100	20	0
S3 Lake, filled, tired	0	70	20	0	0	50
S ₄ Eatery, filled, fresh	100	0	0	0	0	0
S ₅ Gazebo, hungry, fresh	0	0	100	100	0	0
S ₆ Out, filled, tired	0	0	60	0	0	100

Updated Utility: Q'

	S ₁ Tomb, hungry, tired	S ₂ Garden, hungry, fresh	S ₃ Lake, filled, tired	S ₄ Eatery, filled, fresh	S ₅ Gazebo, hungry, fresh	S ₆ Out, filled, tired
S ₁ Tomb, hungry, tired	0	0	0	0	0	0
S ₂ Garden, hungry, fresh	0	0	0	0	0	0
S ₃ Lake, filled, tired	0	70	0	0	0	0
S ₄ Eatery, filled, fresh	0	0	0	0	0	0
S ₅ Gazebo, hungry, fresh	0	0	0	0	0	0
S ₆ Out, filled, tired	0	0	0	0	0	0

Episode 2: Initial state = S₆ Outside

•Exploration: Randomly move to S₃

Reward of 6th row

S ₆ Out, filled,	0	0	60	0	0	100
tired						

•Reward = 60.

Q of 3rd row

S ₃ Lake,	0	70	0	0	0	0
filled, tired						

- •Q= $0.8 * max{70,0} = 56$
- •Updated Q(S,S) = 60+56=116
- Repeat episodes to reach

convergence

Updated Utility

	S ₁ Tomb, hungry, tired	S ₂ Garden, hungry, fresh	S ₃ Lake, filled, tired	S ₄ Eatery, filled, fresh	S ₅ Gazebo, hungry, fresh	S ₆ Out, filled, tired
S ₁ Tomb, hungry, tired	0	0	0	0	0	0
S ₂ Garden, hungry, fresh	0	0	0	0	0	0
S ₃ Lake, filled, tired	0	70	0	0	0	0
S ₄ Eatery, filled, fresh	0	0	0	0	0	0
S ₅ Gazebo, hungry, fresh	0	0	0	0	0	0
S ₆ Out, filled, tired	0	0	116	0	0	0

Q learning algorithm

For each (s,a), initialize $\hat{Q}(s,a)=0$

Observe Current State

Do Forever:

- 1. Select action *a* and execute it
- Receive Immediate Reward r
- 3. Observe new state s'
- 4. Update Utility Table for $\hat{Q}(s, a)$ as:

$$\widehat{Q}(s,a) = r + \gamma \times Max_{a'}Q(s',a')$$

5. Enter New State

Learning Rate

```
Q[state, action] =
Q[state, action] +
learning Rate *
(reward + Discount Factor * max<sub>i</sub>{Q[new_state, S<sub>i</sub>]})
— Q[state, action])
```

Discount Factor 2 weights future rewards possible, farther the future event, lesser the reward.

Reinforcement Learning: Each State is a combination of features Can features change to produce a new state?

- •Can an ML agent change features?
 - => Yes, provided it interacts with the environment that produces data
- •Can features change every now and then by itself?
 - => When many entities participate and interact with environment (AI agents/Humans/Nature)
- •What applications need this scenario?
 - => Where action is needed.
 - => Where environment / features are dynamically changing
 - => Where there is no training data or human expertise

Applications of RL

- Autonomous car......What features does it change?
- Trading does time series or regression analysis do this? What features change?
- Making decisions at real time using multimedia data A swarm of robots operating
 - In manufacturing
 - In dangerous and unknown areas
- NLP Text summarization, machine translation, Question Answering, chat-box, dialogue generation
 - supervised DL models to predict words
 - RL through rewards when to look for more words / where to look for important words
 - Need to define reward I terms of linguistic quality parameters such as cohesiveness, understandability etc.
- Dynamic Healthcare diagnosis / treatment / drugs manufacture/ medical policies
- Auction bidding

What is Reinforcement

- Learning?
 •Agent interacts with Environment
- •RL 2 Learning from interaction with an environment
- Environment state? feature-vector
- •Long term goal? maximize predicted cumulative future rewards
- Agent must be able to partially/fully sense the environment state
- •Take actions 2 change environment state
- Tradeoff between exploration and exploitation
- Needs lots of training

Deep Reinforcement

- Learning?
 •A deep neural network is used to develop either a policy or a value function (state to action/ Q-value) or learn features in complex scenarios
- Deep neural networks require lots of real/simulated interaction with the environment to learn
- Lots of trials/interactions is possible in simulated environments
- We can easily parallelise the trials/interaction in simulated environments

Model-free versus

- A model of the environment allows inferences to be made about how the environment will behave
- Example: Given a state and an action to be taken while in that state, the model could *predict the next state and the next reward*
- Models are used for planning, which means deciding on a course of action by considering possible future situations before they are experienced
- Model-based methods use models and planning. Think of this as modelling the dynamics $p(s' \mid s, a)$
- Model-free methods learn exclusively from trial-and-error (i.e. no modelling of the environment)