Ex. 11.1 $S^{n} \subseteq \mathbb{R}^{n+1}$, $S^{n} = \{x \in \mathbb{R}^{n+1} : x'^{2} \in x \in x'^{n}\}^{2} = 1\}$ $i: S^{n} \to \mathbb{R}^{n+1}$, $i_{x,p}: T_{p} S^{n} \to T_{p} \mathbb{R}^{n+1}$ Suppose $X_{p} = Z$ as $\frac{\partial}{\partial x_{i}}|_{p} \in T_{p} \mathbb{R}^{n+1}$ What is the condition for X_{p} to be in the image of $i_{x,p}$?

Claim: if $P = (P^{1}, P^{n+1})$, the condition is that $\sum_{i=1}^{n+1} a_{i} P^{i} = 0$ $O^{n} = \sum_{i=1}^{n+1} c_{i}(e_{i})^{2} = 1 \Rightarrow 0 = \frac{d}{dt}|_{t=0} \sum_{i=1}^{n+1} c_{i}(e_{i})^{2} = \sum_{i=1}^{n+1} 2 c_{i}(o_{i}) c_{i}(o_{i})$ We know $\sum_{i=1}^{n+1} c_{i}(e_{i})^{2} = 1 \Rightarrow 0 = \frac{d}{dt}|_{t=0} \sum_{i=1}^{n+1} c_{i}(e_{i})^{2} = \sum_{i=1}^{n+1} 2 c_{i}(o_{i}) c_{i}(o_{i})$

 $= \sum_{i=1}^{n+1} 2 P^{i} \alpha^{i} \implies \sum_{j=1}^{n+1} P^{j} \alpha^{i} = 0$

Thus is a contractiction since f(u) is compact.

By definition PEN is a coitical point if $f_{x,p}$! $T_pN \to T_{f(p)}R^n$ is not surjective. If P is not coitical, then $f_{x,p}$ is surjective and therefore dim N > m.

 $E_{x} \{1.4 \quad 7: S^{2} \rightarrow \mathbb{R}^{3}, x, y, Z \text{ coordinates of } \mathbb{R}^{3}.$ $V = \{ P \in S^{2}: Z(0) \neq 0 \}, \quad \emptyset: U \rightarrow \mathbb{R}^{2}, \quad \emptyset = (u, u), \text{ where}$ $U(a,b,c) = u, \quad V(a,b,c) = b.$ $U(a,b,c) = u, \quad V(a,b,c) = u, \quad V(a,b,c)$

 E_{\times} . 11.5: II N is compact, then an injective immersion $f: N \rightarrow M$ is an embedding.

- Follows since Nis comport and f(N) = M Handorff implies that f: N > f(N) is a homeomorphism.

Ex. 12.1 M smooth manifold. Show TM is Hausdon &.

Let T: TM > M, T(P,U) = P.

Given (P, V) and (4, W) in TM. (P, V) + (4, W).

(i) b + t : be n' te n' nun = b.

Then (P, V) ETU, (4, W) ETV, TU, TV = Ø

(ii) P = 4. $V \neq W$. Let $\emptyset: U \rightarrow IR^n$ be a chart at $P = 4 \in U$. Then $TU \stackrel{2}{=} \emptyset(U) \times IR^n$ $(P, U) \mapsto (\emptyset(P), \emptyset_{X,P}(V))$

Then use that M2" is Housdard and that of is a homeomephin