Examenul de bacalaureat național 2017 Proba E. c)

Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 10

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2z_1 - 3z_2 = 2(2+3i) - 3(1+2i) =$	2p
	=4+6i-3-6i=1	3 p
2.	$x_1 + x_2 = 3m$, $x_1x_2 = 2 \Rightarrow x_1 + x_2 + x_1x_2 + 1 = 3m + 3$	3 p
	$3m+3=0 \Leftrightarrow m=-1$	2p
3.	$\log_4((x+3)(x-3)) = 2 \Rightarrow x^2 - 9 = 4^2 \Rightarrow x^2 - 25 = 0$	3 p
	x = -5, care nu convine, $x = 5$, care convine	2p
4.	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	2p
	Numerele naturale de două cifre care au produsul cifrelor egal cu 6 sunt 16, 23, 32 și 61, deci sunt 4 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{4}{90} = \frac{2}{45}$	1p
5.	$\frac{a}{3} = \frac{2}{-3}$	3 p
	a = -2	2 p
6.	$(\sin x - \cos x)^2 + \sin 2x = \sin^2 x - 2\sin x \cos x + \cos^2 x + 2\sin x \cos x =$	3 p
	$=\sin^2 x + \cos^2 x = 1$, pentru orice număr real x	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = $	2p
	=0+0+1-1-0-1=-1	3 p
b)	$\det(A(x)) = \begin{vmatrix} x & 1 & 1 \\ x+1 & 1 & 1 \\ 1 & x & 1 \end{vmatrix} = x-1, \ \det(A(x+1)) = x \Rightarrow (x-1)x = 12$	3p
	x = -3 sau $x = 4$	2p
c)	$A(2) = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix}, \det(A(2)) = 1 \neq 0, (A(2))^{-1} = \begin{pmatrix} -1 & 1 & 0 \\ -2 & 1 & 1 \\ 5 & -3 & -1 \end{pmatrix}$	3p
	$X = (A(2))^{-1} \cdot A(0) \Rightarrow X = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ -4 & 2 & 1 \end{pmatrix}$	2p
2.a)	$f(0) = 0^3 - (m+2) \cdot 0^2 + (m^2 + 2) \cdot 0 - 1 =$	2 p
	=0-0+0-1=-1, pentru orice număr real m	3 p

b)	$x_1 + x_2 + x_3 = m + 2$, $x_1x_2 + x_1x_3 + x_2x_3 = m^2 + 2 \Rightarrow x_1^2 + x_2^2 + x_3^2 = -m^2 + 4m$	3 p
	$\begin{vmatrix} x_1 + x_2 + x_3 = m + 2, & x_1 x_2 + x_1 x_3 + x_2 x_3 = m^2 + 2 \Rightarrow x_1^2 + x_2^2 + x_3^2 = -m^2 + 4m \\ (x_1 - x_2)^2 + (x_2 - x_3)^2 + (x_3 - x_1)^2 = 2(x_1^2 + x_2^2 + x_3^2) - 2(x_1 x_2 + x_1 x_3 + x_2 x_3) = 0 \end{vmatrix}$	2
	$= 2(-m^2 + 4m - m^2 - 2) = -4(m-1)^2$, pentru orice număr real m	2 p
c)	$x_1, x_2, x_3 \in \mathbb{R} \Rightarrow x_1 - x_2, x_2 - x_3, x_3 - x_1 \in \mathbb{R} \Rightarrow (x_1 - x_2)^2 + (x_2 - x_3)^2 + (x_3 - x_1)^2 \ge 0$, deci	2
	$\left(m-1\right)^2 \le 0$	∠ p
	m=1, caz în care toate rădăcinile polinomului f sunt numere reale	3 p

SUBIECTUL al III-lea

(30 de puncte)

SUBJECT OF all III-lea (50 de punc		
1.a)	$f'(x) = (2e^x)' - (x^2)' - (2x)' - (2)' =$	2p
	$=2e^{x}-2x-2=2(e^{x}-x-1), x \in \mathbb{R}$	3 p
b)	f(0) = 0, f'(0) = 0	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = 0$	3 p
c)	$f''(x) = 2(e^x - 1), x \in \mathbb{R}$	1p
	$x \in (-\infty, 0] \Rightarrow f'(x) \le 0$, deci f' este descrescătoare pe $(-\infty, 0]$	1p
	$x \in [0, +\infty) \Rightarrow f''(x) \ge 0$, deci f' este crescătoare pe $[0, +\infty)$	1p
	$f'(x) \ge f'(0)$ și $f'(0) = 0$ implică $f'(x) \ge 0$ pentru orice număr real x , deci funcția f	2p
	este crescătoare pe \mathbb{R}	
2.a)	$\int_{-2}^{1} (x+2)^2 dx = \frac{(x+2)^3}{3} \Big _{-2}^{1} =$	3 p
	$=\frac{3^3}{3}-0=9$	2 p
b)	$\int_{0}^{1} (x+2)e^{x} dx = (x+2)e^{x} \begin{vmatrix} 1 & 1 \\ 0 & -\int_{0}^{1} e^{x} dx = 3e - 2 - e^{x} \end{vmatrix}_{0}^{1} =$	3 p
	=3e-2-e+1=2e-1	2 p
c)	$= 3e - 2 - e + 1 = 2e - 1$ $\mathcal{A} = \int_{-1}^{1} f(x) dx = \int_{-1}^{1} (x+2)^n dx = \frac{(x+2)^{n+1}}{n+1} \Big _{-1}^{1} = \frac{3^{n+1} - 1}{n+1}$	3p
	$\frac{3^{n+1}-1}{n+1} = \frac{242}{n+1} \Leftrightarrow 3^{n+1} = 243 \Leftrightarrow 3^{n+1} = 3^5 \Leftrightarrow n = 4$	2 p