Empirical Analysis of Energy Markets

Eugene Tan (TA)

9/11/2020

While you're waiting

Do the survey on courseworks!

Recitations and the course

Goals:

- understand empirical economic research and to evaluate its policy relevance (Ignacia)
- analyze real datasets and replicate empirical papers' data analysis using R (Eugene)
 - DataCamp teaches syntax, data structures
 - ▶ I'll teach everything else R related
 - ► These will be hands-on!
 - Come ready to code.
 - ► Be reasonably rude on zoom

What I'll do

- 1. Some programming and some basic computer science
- 2. Empirical Exercise prep
- 3. Going over Empirical Exercises
- 4. Applying what you do in class, estimating causal effects
- 5. Regression techniques for causal inference
- 6. Maybe some other data science stuff

R onramp (1/2)

Week	Date	TA Session	What you'll do at home
Week 1	9/11	Programming and CS Basics	Intro and "Intermediate" R Visualization with ggplot
Week 2	9/18	Programming and Analysis Strategy, Paradigms	data.table, Tidyverse, importing csvs Excel, readr, data.table imports

R onramp (2/2)

Week	Date	TA Session	What you'll do at home
Week 4	10/2	Energy Applications Data Science Skills Econometrics techniques	Empirical Exercise 1 work on DS skills Empirical Exercise 2

. . .

Logistics: Github

All the content I produce will be on Github.

- ► answer keys to empirical exercises
- examples
- these slides
- answers to any questions you have

https://github.com/taneugene/empirics_energy

For when you get stuck

- Google
 - Stackoverflow
- Raise an issue on GitHub
 - Allow me to reproduce your error
 - Show me the error, code, dataset etc. . .

About Me

- From Petaling Jaya, Malaysia
- SIPA PhD Student
 - Energy systems & energy resource economics
- Academic Background
 - CC: Environmental Chemistry (BA)
 - FES: Environmental Economics (MSc)
- Work Experience
 - Energy and Climate Geopolitics @CarnegieEndow
 - ▶ Teaching Python, Data Science, Machine Learning at DS Education Startup
 - Data Scientist at the World Bank GFDRR

This weekend on DataCamp

- Introduction to R
 - Arithmetic
 - Variables
 - characters, numerics, logicals
 - Vectors
 - Matrices
 - Factors
 - Frames
 - Lists
- "Intermediate R"
 - Conditionals
 - Loops
 - Functions
 - Apply
 - regexp, datetimes

What I'll do today

- Tie each of these things to a concept in CS
 - Computers as machines
 - Data Structures
 - Repitition
 - Abstraction
 - ► (maybe) Recursion
- ► Go over these concepts
- ▶ Type and put stuff in the console along with me!

Computers as machines

Most machines are designed to do one thing. For example, a fan is designed to blow air.

A computer is a machine that does two things:

- perform calculation
- remember the results

Performing Calculation - Arithmetic Operations

- ► Arithmetic
- Comparisons
- ► Relational Operators

Remembering Results - Variables

- **>** <-
- **>** =

Processes

With those two things, you can iterate and run a process.

A process is as a very precise sequence of steps.

Why do processes need to be precise?

(mis)interpretation

Computers are dumb!

- ► Humans can understand somewhat a 'grey area', computers needs a 1 or a 0.
- ► Error messages will tell you how you're not being precise

More Definitions

- ▶ A process is a very precise sequence of steps (from the last slide)
- An algorithm is a set of steps used to solve a specific problem
 A process is an implementation of an algorithm.
- A program is a collection of interlinked processes.
- Programming is just creating programs, which your computer is designed to run.

Remembering Results: Data Structures

- Do this in variables
- Data structures encapsulate data at once
- Different configurations of how computers store things in memory
 - Memory as an array of slots
 - Everything takes memory
 - Vectors, Matrices, Factors, Frames, Lists

Computers vs humans

- Computers are dumb, but humans are lazy
- Let computers do the work for you
- ▶ The strength of computers is repetition
 - for, while
- We can give computers some sense of logic
 - ► if else

Abstraction

- Low level programming is at the level of the machine (hardware)
 - Moving bits around different parts of your hard drive
 - This is your OS
- High level programming abstracts from it
 - Use processes that run other processes (that other people have worked on)
 - We do this when programming too
 - functions, libraries

Recursion (if there's time)

```
fibonacci <- function(n){
  # Base case
  if ((n==1)|(n==2)){
    return(1)
  }
  # Recursive case
  else{
    return(fibonacci(n-1) + fibonacci(n-2))
a < -1:20
sapply(a, fibonacci)
```

```
## [1] 1 1 2 3 5 8 13 21 34 55
## [16] 987 1597 2584 4181 6765
```

What we've covered

- ► A computer is a machine that performs computation and remembers the results
- Computers are dumb, so be precise
- ► A process is a list of precise step-by-step instructions (RScript)
- ► Data structures encapsulate data
- Humans are lazy, so we use computers to do repetitive things
- Abstraction allows you to do higher-order things
- Recursion allows repetition to have infinite power

Programming efficiently

- ► Test as you go! (cmd-enter on DC)
- ► Error messages tell you how you're not being precise enough
- ▶ Use documentation (?)
- ► Google and use stackoverflow a lot!

Questions

- ► Any for me?
- Survey results