# ROAI - CLIP and Multimodal Models

Mihai Andrei Gherghinescu

FMI, UVT, Timisoara

# My background

- Software Engineer la Microsoft, specializat în dezvoltarea infrastructura pentru echipele de data science.
- 4 ani de experiență în domeniul IT.
- Student masterand în ultimul an la **Universitatea de Vest din Timișoara**, programul *Artificial Intelligence and Distributed Computing*.
- Interese de cercetare::
  - Aplicații medicale ale inteligenței artificiale
  - Sisteme multi-agent



## Agenda

Retele neuronale

Retele neuroanle convolutionale

**U-NET** 

Modele bazate pe difuzie

Transformeri si mecanisme de atentie

**CLIP** 

Stable diffusion si DALL-E

Sesiune de coding

## Rețele neuronale

- Inspirate din medicină.
- Alcătuite din mai multe noduri și conexiuni multistratificate.
- Fiecare conexiune reprezintă o funcție liniară ce se adaptează în timpul antrenamentului pentru a se plia pe datele de antrenare.
- În fiecare strat, există o funcție de activare ce decide cât de mult contribuie fiecare neuron și, implicit, la rezultatul final al rețelei.
- Folosite pentru:
  - Clasificare
  - Prezicere de valori

# Exemplu vizual



## Rețele neuronale convoluționale

- Sunt un tip de rețele neuronale care primesc imagini ca input.
- Folosesc layere de convoluție si pooling pentru a extrage și comprima informația din imagini.
- Aplicaţii:
  - Clasificare
  - Detectarea obiectelor
  - Segmentare

#### Exemplu rețea neuronala convoluționala: arhitectura VGG16



## Exemplu aplicații

Classification + Localization

Object Detection Instance Segmentation



CAT



DOG, DOG, CAT



DOG, DOG, CAT

### **U-NET**

- Rețea convolutionala care are au ca scop sprijinirea procesului de segmentare a imaginilor medicale.
- Primește ca input o imagine și o procesează pentru a evidenția regiunile de interes.
- Se bazează pe o arhitectură de tip encoder-decoder.
- Structură:
- **Encoder**: Format din straturi convoluționale care reduc treptat dimensiunea imaginii, extrăgând caracteristici esențiale.
- **Decoder**: Conține straturi de upsampling care reconstruiesc imaginea segmentată, plecând de la reprezentarea comprimată. În acest proces, sunt folosite și conexiuni directe cu straturile encoder-ului (skip connections), pentru a păstra detalii importante din imaginea originală.

#### Arhitectura U-NET



## Modele bazate pe difuzie

- Se bazează pe conceptul de difuzie din termodinamică.
- Primesc ca și input o imagine la care se adaugă treptat "noise".
- Învață să reconstruiască imaginea prin prezicerea "noise"-ului adăugat.
- Folosesc la bază arhitectura UNET.
- Aplicaţii:
  - Generare de imagini
  - Augmentare de imagini

### Mecanism de difuzie



## Transformeri

- Se bazează pe o arhitectură de tip encoder-decoder.
- Primeşte ca şi input tokeni pe post de "cuvinte" şi încearcă să prezică următorul token/"cuvânt".
- Introduc un mecanism de atenție care se bazează pe calcularea similarității dintre tokeni pentru a determina contextul curent.
- Aplicații:
  - o Generare de text
  - Traducere de text
  - O Sumarizare de text

## Self-attention

#### Atenție de tip single-head:

- Primește ca și input o fereastră de token-uri.
- Are la bază trei matrici antrenabile: Query (Q), Valoare (V) și Cheie (K).
- Pe lângă embedding-urile token-urilor, ia în considerare și poziția acestora.
- Încearcă să adauge context la token-ul curent, luând în considerare similaritatea față de token-urile precedente.

#### Atenție de tip multi-head:

- Echivalent cu mai multe layere de tip single-head ce rulează în paralel.
- Adaugă context al mai multor ferestre la cuvântul curent.

#### Calculul contextului relativ la token-ul curent



# Arhitectura de tip transfomer



### **Cross-attention**

- Bazat pe aceleași concepte ca și mecanismul de self-attention.
- Adaugă atenție față de un alt tip de date.
- Similaritatea se calculează între tipuri de date eterogene.
- Deschide conceptul de modele multimodale:
  - Text to image
  - Text to audio

# Contrastive Language-Image Pre-training (CLIP)

- Permite asocierea dintre text și imagini
- Model antrenat pe un dataset de 400M de perechi de tipul imagine-text
- Model bazat pe 2 tipuri de encoderi:
  - VIT/CNN ca și encoder pentru imagini
  - Transformer ca și encoder pentru text
- Încearcă să minimizeze similaritatea (cosine similarity) dintre embedding-urile textului și embedding-urile imaginii corespunzătoare.
- Aplicaţii:
  - Clasificare Zero-Shot
  - Căutare de imagini pe baza unui prompt
  - Generare de imagini ghidată de text



#### (1) Contrastive pre-training



## Stable diffusion si DALL-E

- Bazat pe modele bazate pe difuzie care se folosesc de arhitectura CLIP.
- Adaugă un strat suplimentar de atentie (cross-attention) în interiorul UNETului.
- Straturile de atenție permit modelului să alinieze trăsăturile vizuale cu semnificația semantică din text.
- Fiecarui pas ce adauga "noise" ii este concatenat embedding-urile textului folosit pentru ghidare.
- Stable Diffusion este open source, disponibil pe Hugging Face.
- DALL·E este deținut de OpenAI și include un modul suplimentar de Speechto-Image. Acest lucru este posibil prin integrarea unui model pretrained de Speech-to-Text în fluxul său.

## Vizualizare a arhitecturi Stable Diffusion



## Coding starts now



Link google collab:

https://colab.research.google.com/drive/1GzqusXWC585qXjOGOP0hhZ6I WgXMY9EM?usp=sharing

## Contact

- Email: mihai.gherghinescu00@euvt.ro
- GitHub: <a href="https://github.com/GMihai00">https://github.com/GMihai00</a>
- LinkedIn:
   https://www.linkedin.com/in/mihai-gherghinescu

