Tipos de aprendizaje

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn function to map

 $x \rightarrow y$

Apple example:

This thing is an apple.

Unsupervised Learning

Data: x

x is data, no labels!

Goal: Learn underlying structure

Apple example:

This thing is like the other thing.

Reinforcement Learning

Data: state-action pairs

Goal: Maximize future rewards over many time steps

Apple example:

Eat this thing because it will keep you alive.

Cómo aprendemos a jugar?

Action: a move the agent can make in the environment.

Action space A: the set of possible actions an agent can make in the environment

Observations: of the environment after taking actions.

State: a situation which the agent perceives.

Reward: feedback that measures the success or failure of the agent's action.

Q function

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

Total reward, R_t , is the discounted sum of all rewards obtained from time t

$$Q(s_t, a_t) = \mathbb{E}[R_t | s_t, a_t]$$

The Q-function captures the **expected total future reward** an agent in state, s, can receive by executing a certain action, a

Política

$$Q(s_t, a_t) = \mathbb{E}[R_t | s_t, a_t]$$
(state, action)

Ultimately, the agent needs a **policy** $\pi(s)$, to infer the **best action to take** at its state, s

Strategy: the policy should choose an action that maximizes future reward

$$\pi^*(s) = \operatorname*{argmax}_a Q(s, a)$$

Deep Reinforcement Learning Algorithms

Value Learning

Find Q(s,a)

 $a = \underset{a}{\operatorname{argmax}} Q(s, a)$

Policy Learning

Find $\pi(s)$

Sample $a \sim \pi(s)$

Podemos usar Deep Learning para aprender las dos!

Deep Reinforcer.ient Learning Algorithms

Value Learning

Find Q(s,a)

 $a = \underset{a}{\operatorname{argmax}} Q(s, a)$

Policy Learning

Find $\pi(s)$

Sample $a \sim \pi(s)$

DQN Atari Results

DQN Atari Results

Reinforcement Learning and the Game of Go

AlphaGo Beats Top Human Player at Go

