

## **Intelligent Systems**

Excersice 4- Representation

Simon Reichhuber November 18, 2019

University of Kiel, Winter Term 2019

#### **TABLE OF CONTENT**



- 1. Data representation
- 2. Principal component analysis
- 3. Python PCA

**Data representation** 

# NON DATA ADAPTIVE VS. DATA ADAPTIVE APPROXIMATION





#### **FOURIER TRANSFORMATION**



The FT represents the time series in the frequency domain. The signal is constructed as a sequence of sine and cosine terms.



Figure 1: Fourier Transform

#### **FOURIER TRANSFORMATION**



The FT represents the time series in the frequency domain. The signal is constructed as a sequence of sine and cosine terms.



Figure 2: Fourier Transform



- A. Explain the idea of the *Shape Definition Language* and its application?
- B. Approximate the time series with the following approximations:
  - Piecewise Aggregate Approximation (PAA) with 4 segemtns.
  - ullet Clipping to binary values (o search the procedure on the internet).
  - Picewise Linear Approximation with 4 segments.
  - Run-Length Encoding (RLE).
- C. Aggregate the timeseries to the following statistical measures:
  - Mean
  - Standard deviation
  - Mode
- D. What are the advantages and disatvantages of the *clipping* procedure?
- E. What is the main difference between the *Adaptive Picewise Aggregate Approximation (APAA)* and the *PAA?*

#### 1. A Shape Definition Language



Given the case that the most important information of a time series can be extracted from the rough shape, limited terms of the *Shape Definition Language (SDL)* are enough to model it, i.e. *Up, up, stable, zero, down, Down.* These represent the different slopes of the time series. Advantageously, the representation can easily be processed by algorithms for symbolic sequences, like *Longest Common Subsequence (LCSS)*.



Figure 3: Shape Definition Language<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Mitsa, Theophano. Temporal data mining. CRC Press, 2010



- A. Explain the idea of the *Shape Definition Language* and its application?
- B. Approximate the time series with the following approximations:
  - Piecewise Aggregate Approximation (PAA) with 4 segemtns.
  - Clipping to binary values (→ search the procedure on the internet).
  - Picewise Linear Approximation with 4 segments.
  - Run-Length Encoding (RLE).
- C. Aggregate the timeseries to the following statistical measures:
  - Mean
  - Standard deviation
  - Mode
- D. What are the advantages and disatvantages of the *clipping* procedure?
- E. What is the main difference between the *Adaptive Picewise Aggregate Approximation (APAA)* and the *PAA?*

#### 1. B PIECEWISE AGGREGATE APPROXIMATION



- PAA Segment Length =  $\frac{t_{\text{end}} t_{\text{start}}}{\#Seaments}$
- 4 segments  $\rightarrow$  PAA Segment Length  $=\frac{13-1}{4}=3$
- Segment 1:  $\frac{2+2+5+3}{4} = 3$  Segment 2:  $\frac{3+6+(-1)+0}{4} = 2$



#### 1. B CLIPPING



- Calculate time series' mean:  $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$
- The clipped values are given by:  $y_i^* = \begin{cases} 1 \text{ , for } x_i \geq \mu \\ 0 \text{ , otherwise} \end{cases}$
- $\mu = \frac{2+2+5+3+6+(-1)+0+0+2+5+5+9}{13} \approx 3.31$
- $\bullet \ \, \text{Clipping:} \ \, 0,0,1,0,1,0,0,0,0,1,1,1,1,1\\$



### 1. B PIECEWISE LINEAR APPROXIMATION





#### 1. B Run-Length Encoding



- Counter {n} represents the number of repititions of the following symbol
- $\bullet \ \ 2,2,5,3,6,-1,0,0,2,5,5,5,9 \rightarrow \\ \{2\}2,5,3,6,-1,\{2\}0,2,\{3\}5,9$



- A. Explain the idea of the *Shape Definition Language* and its application?
- B. Approximate the time series with the following approximations:
  - Piecewise Aggregate Approximation (PAA) with 4 segemtns.
  - Clipping to binary values (→ search the procedure on the internet).
  - Picewise Linear Approximation with 4 segments.
  - Run-Length Encoding (RLE).
- C. Aggregate the timeseries to the following statistical measures:
  - Mean
  - Standard deviation
  - Mode
- D. What are the advantages and disatvantages of the *clipping* procedure?
- E. What is the main difference between the *Adaptive Picewise Aggregate Approximation (APAA)* and the *PAA?*

#### 1. C STATISTICAL MEASURES:



Given *N D*-dimensional points  $x_i \in \mathbb{R}^d$ , i = 1, ..., N, the following statistical measures can be defined:

- Mean:  $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i \rightarrow 3.31$
- Standard deviation:  $\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i \mu)^2} \rightarrow 2.84$
- Mode:  $m = argmax_x |\{y|y \in \{x_1, \dots, x_N\}, x = y\}| \rightarrow 5$



- A. Explain the idea of the *Shape Definition Language* and its application?
- B. Approximate the time series with the following approximations:
  - Piecewise Aggregate Approximation (PAA) with 4 segemtns.
  - ullet Clipping to binary values (o search the procedure on the internet).
  - Picewise Linear Approximation with 4 segments.
  - Run-Length Encoding (RLE).
- C. Aggregate the timeseries to the following statistical measures:
  - Mean
  - Standard deviation
  - Mode
- D. What are the advantages and disatvantages of the *clipping* procedure?
- E. What is the main difference between the *Adaptive Picewise Aggregate Approximation (APAA)* and the *PAA?*

#### 1. D Pro & Cons of Clipping



What are the advantages and disatvantages of the *clipping* procedure?

#### Advantages:

- Extreme compression rate (float → bool)
- Simple representation (only binary values)
- Rough patterns can be found easily

#### Disatvantage:

Very unprecise representation of the signal



- A. Explain the idea of the *Shape Definition Language* and its application?
- B. Approximate the time series with the following approximations:
  - Piecewise Aggregate Approximation (PAA) with 4 segemtns.
  - ullet Clipping to binary values (o search the procedure on the internet).
  - Picewise Linear Approximation with 4 segments.
  - Run-Length Encoding (RLE).
- C. Aggregate the timeseries to the following statistical measures:
  - Mean
  - Standard deviation
  - Mode
- D. What are the advantages and disatvantages of the *clipping* procedure?
- E. What is the main difference between the *Adaptive Picewise Aggregate Approximation (APAA)* and the *PAA?*

#### 1. E AAPA vs. PAA I



What is the main difference between the *Adaptive Picewise Aggregate Approximation* (*APAA*) and the *PAA*?

Main difference:

- Variable length of the (temporal) sections
- Adaptive according to local details of a time series
  - Sections of frequent movement will be parted in smaller intervals
  - A Section without significant information will be represented as a large interval

#### 1. E AAPA vs. PAA II



What is the main difference between the *Adaptive Picewise Aggregate Approximation (APAA)* and the *PAA?* 

#### Advantage:

 The error (e.g. Least-Squares) between the raw data and the representation is reduced.<sup>2</sup>



<sup>&</sup>lt;sup>2</sup>Koegh et. al. 2001

Principal component analysis

#### 2. A & B



- A. What is the goal of the *Principal Component Analysis* (*PCA*) and what is its basic assumption.
- B. What is the benefit of the PCA?
- C. Describe the following items:
  - Zero-mean feature
  - Variance
  - Standard deviation
  - Covariance matrix
  - Arithmetic mean
  - Eigenvector
  - Eigenvalue
  - Projection onto new feature space
- D. How can we get a dimensionality reduction with the means of Eigenvalues?

#### 2.A& B PCA GOALS AND BENEFITS



What is the goal of the *Principal Component Analysis* (*PCA*) and what is its basic assumption. **Basic assumption**:

• The larger the variance, the higher is the level of information.

#### Goal:

- Dimensionality reduction:
  - Remove dimensions with poor information gain
  - Generate new dimensions that better fit to the structure of the data, i.e. at which the data has the largest variance.

#### Benefits:

- Reduce computing time: Through the usage of data mining algorithms applied on dimensionality-reduced data sets.
- Feature selection: Very easy; just select the PCA meta features.
- Comprehensability: Easy detection of structures, e.g. by projecting the data onto the two or three most important meta features.

#### 2. C & D



- A. What is the goal of the *Principal Component Analysis* (*PCA*) and what is its basic assumption.
- B. What is the benefit of the PCA?
- C. Describe the following items:
  - Zero-mean feature
  - Variance
  - Standard deviation
  - Covariance matrix
  - Arithmetic mean
  - Eigenvector
  - Eigenvalue
  - Projection onto new feature space
- D. How can we get a dimensionality reduction with the means of Eigenvalues?

#### 2. C & D PCA STEPS I



**Given:** Data set with *N* samples and *D* dimensions (features).

#### 1. Standardisation:

Calculate the arithmetic mean for each feature j:

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{j,i}$$

• Zero-mean sample:

$$\mathbf{X}_{\mathbf{j},\mathbf{i}}' = \mathbf{X}_{\mathbf{j},\mathbf{i}} - \mu_{\mathbf{j}}$$

• Calculate the standard deviation for each feature *j*:

$$\sigma_j = \sigma_j = \sqrt{\frac{1}{N-1} \sum_{i=1}^N X_{j,i}^2}$$

• Standardisation for every feature *j*:

$$X_{j,i} = \frac{X'_{j,i}}{\sigma_j}$$

#### 2. Calculate covariance matrix:

$$\bullet \ \ S_{j,j'} = \frac{1}{N-1} \sum_{i=1}^{N} x'_{j,i} \cdot x'_{j',i}$$

$$\bullet \ \ S = \begin{pmatrix} s_{1,1} & \cdots & s_{1,D} \\ \vdots & \ddots & \vdots \\ s_{D,1} & \cdots & s_{D,D} \end{pmatrix}$$

#### 2. C & D PCA STEPS III



#### 3. Calculate eigenvectors and eigenvalues:

- Eigenvalues represent the ratio of the variance along their corresponding eigenvectors
- The eigenvector with the largest eigenvalue represents the direction, in which the data has the largest variance
- The eigenvector with the second largest eigenvalue represents a orthogonal direction w.r.t. the first eigenvector, in which the data has the second largest variance, etc.
- Eigenvectors are the principal components (PC), which are more suitable to model the structure of the data than the original features (assuming that high information gain corresonds to high variance).

#### 2. C & D PCA STEPS IV



- **4. Dimensionality reduction:** Choose the most important eigenvalues according to their eigenvalues:
  - Method 1: The sum of the remaining eigenvalues shall be larger than a predefined ratio (e.g. 0.75) of the sum of all eigenvalues.
  - Method 2: Dimensions shall be removed if the eigenvalue of the corresponding eigenvector is lower than the mean of all eigenvalues.
- 4. Projection onto the new feature space:
  - Spanned by the new selected eigenvectors (PCs).

## Python PCA



- A. Download the file 04 Representation.ipyn from OpenOlat.
- B. In order to solve the tasks, you can use the library *numpy*.
- C. Compare your results afterwards with the help of sklearn.