Lecture 9

Connectivity: Dijkstra's algorithm.

Flow networks: Maximum flow algorithms

December, 7 2015

Lecture outline

- The problem of lightest paths from a single source in a weighted digraph
 - Dijkstra's algorithm
- Plow networks and flows
 - Maximum flow
 - Residual networks, augmenting paths
 - Ford-Fulkerson algorithm
 - Applications

Lightest paths from a given source node

Given a simple weighted digraph G = (V, E) with $w : E \mapsto \mathbb{R}^+$ and a source node $s \in V$

Find for every node $x \in V$ accessible from s, a lightest path $\rho: s \rightsquigarrow x$, and its weight $w(\rho)$

Example

[s] with
$$w([s]) = 0$$
; $[s, x, u]$ with $w([s, x, u]) = 8$
[s, x] with $w([s, x]) = 5$; $[s, x, u, v]$ with $w([s, x, u, v]) = 9$
[s, x, y] with $w([s, x, y]) = 7$.

Lightest paths from a given source node

Given a simple weighted digraph G = (V, E) with $w : E \mapsto \mathbb{R}^+$ and a source node $s \in V$

Find for every node $x \in V$ accessible from s, a lightest path $\rho: s \rightsquigarrow x$, and its weight $w(\rho)$

Example

[s] with
$$w([s]) = 0$$
; $[s, x, u]$ with $w([s, x, u]) = 8$
 $[s, x]$ with $w([s, x]) = 5$; $[s, x, u, v]$ with $w([s, x, u, v]) = 9$
 $[s, x, y]$ with $w([s, x, y]) = 7$.

Remark

- The problem can be solved with Warshall's algorithm:
 - Computes the lightest paths that exist between every pair of nodes
 - Runtime complexity $O(|V|^3)$; it computes more than needed

Is there a better algorithm, if the source node is fixed?

Proposed by E. Dijkstra in 1956 to solve the previous problem

- Assign
 - A tentative weight d(x) for a lightest path from source to x.
 - a predecessor node $\pi(x)$ of every node x on a lightest path from s to x.

Initially, we have
$$d(x) = \begin{cases} 0 & \text{if } x = s, \\ \infty & \text{if } x \neq s \end{cases}$$
 $\pi(x) = \begin{cases} undef & \text{if } x = s, \\ s & \text{if } x \neq s, \end{cases}$ where $undef$ is a special value: it indicates the inexistence of a predecessor.

- Create a set Q of unvisited nodes. Initially, Q := V, and keep track of a current node crt.
- ③ choose crt :=a node form Q with $d(crt) = min\{d(x) \mid x \in Q\}$, and remove crt from Q.
- For every neighbor $x \in Q$ of crt update the tentative values of d(x) and $\pi(x)$ as follows:

If
$$d(crt) + w((crt, x)) < d(x)$$
 then $d(x) := d(crt) + w((crt, x))$ and $\pi(x) := crt$.

This updating step is called relaxation step of the arc $(crt, x) \in E$.

6 If $Q = \emptyset$ then **stop**, else **goto 3**.

Initialization

SINGLESOURCEINIT (G, s)for each $v \in V$ $d(v) := \infty$ $\pi(v) := s$ d(s) := 0 $\pi(s) := undef$

▶ Relaxation step for an arc (u, v)

RELAX(
$$u, v$$
)
if $d(v) > d(u) + w((u, v))$
 $d(v) := d(u) + w((u, v))$
 $\pi(v) := \pi(u)$

Dijkstra's algorithm Pseudocode

```
DIJKSTRA(G, w, s)
1 SINGLESOURCEINIT (G, s)
2 \ Q := V
3 while Q \neq \emptyset
      u := \text{EXTRACTMIN}(Q)
4
5
      for every neighbor v of u for which v \notin Q
6
          Relax(u, v)
```

Runtime complexity:

- \triangleright Original algorithm: $O(|V|^2)$
- ▷ Algorithm improved with a min-priority queue:

$$O(|E| + |V| \cdot \log |V|)$$

Convention: The nodes not marked yet (those from Q) are white; the others are gray

Configuration produced by INITIALIZESINGLESOURCE (G, s):

$$Q = \{s, x, y, u, v\}$$

Select $s = \text{EXTRACTMIN}(Q)$

Relax all arcs from s to nodes not visited yet:

Select and mark x, and relax all arcs from x to unmarked nodes:

Dijkstra's algorithm

Illustrated example: the third while loop

Select and mark y, and relax all arcs from y to unmarked nodes:

Select and mark u, and relax all arcs from u to unmarked nodes:

Dijkstra's algorithm Illustrated example: the fifth while loop

$$d(s) = 0$$
 $\pi(s) = undef$
 $d(x) = 5$ $\pi(x) = s$
 $d(u) = 8$ $\pi(u) = x$
 $d(y) = 7$ $\pi(y) = x$
 $d(v) = 9$ $\pi(v) = u$

- Select and mark v
- There are no arcs left to relax ⇒ the algorithm stops.

From the values of π and d we can retrieve lightest paths from s to all other nodes:

- ▶ to s: [s] with weight w([s]) = d(s) = 0
- ▶ to x: [s,x] with weight w([s,x]) = d(x) = 5
- ▶ to u: [s, x, u] with weight w([s, x, u]) = d(u) = 8
- ▶ to y: [s, x, y] with weight w([s, x, y]) = d(y) = 7
- ▶ to v: [s, x, u, v] with weight w([s, x, u, v]) = d(v) = 9

The tree of lightest paths form source to all other nodes

The function π computed by Dijkstra's algorithm determines a tree G_{π} with root s, in which every node $x \neq s$ has parent $\pi(x)$.

Example (The tree G_{π} for the illustrated weighted digraph G)

Remark

Every branch of G_{π} from the source node s to a node x is a lightest path from s to x.

References

- T. H. Cormen, C. E. Leiserson, R. L. Rivest. Section **25**.2 from *Introduction to Algorithms*. MIT Press, 2000.
- A C++ implementation of Dijkstra's algorithm can be downloaded from the website of this lecture (click here)

Flow networks and flows Intuitive (informal) definitions

Flow network: Oriented graph in which arch represent flows of material between nodes (volume of liquid, electricity, a.s.o.)

- Every edge has a maximum capacity.
- We wish to determine a flow from a source node (the producer) to a sink node (the consumer).

Flow \approx the rate of flow of resources along arcs .

The problem of maximum flow: What is the maximum possible flow of resources from source to destination, without violating any maximum capacity constraint of the arcs?

Definition (Flow network)

An oriented graph G = (V, E), where every arc $(u, v) \in E$ has a capacity $c(u, v) \ge 0$, and two special nodes:

- a source s and
- a sink *t*.

If $(u, v) \notin E$, we assume c(u, v) = 0.

We write $u \rightsquigarrow v$ to indicate the existence of a path from u to v, and assume that every node $v \in G$ is on a path from s to t, i.e., there is a path $s \rightsquigarrow v \rightsquigarrow t$.

Remark

A flow network is a connected graph, thus $|E| \ge |V| - 1$.

Flows

Definition

A flow in a flow network G is a function $f: V \times V \to \mathbb{R}$ that fulfils the following constraints:

Capacity constraint: For all $u, v \in V$, $f(u, v) \le c(u, v)$.

Skew symmetry: For all $u, v \in V$, f(u, v) = -f(v, u).

Flow conservation: For all $u \in V - \{s, t\}$, $\sum_{v \in V} f(u, v) = 0$.

f(u, v) is called the **net flow** from node u to v. The value of a flow f is defined as $|f| = \sum_{v \in V} f(s, v)$, that is, the total net flow out of the source.

The maximum-flow problem

Given a flow network G

Find a flow of maximum value from s to t.

The positive net flow entering a node v is

$$\sum_{\substack{u \in V \\ f(u,v) > 0}} f(u,v)$$

• The positive net flow leaving a node v is

$$\sum_{\substack{u \in V \\ f(v,u) > 0}} f(v,u)$$

 \Rightarrow by flow conservation property: for all nodes v, the positive net flow entering node v = the positive net flow leaving node v.

Network flow example

- (a) A flow network G = (V, E) with edges labeled with their capacities. The source is s, and destination is t.
- (b) A flow f in the flow network G with value |f|=19. Only positive flows are shown. If f(u,v)>0, edge (u,v) is labeled with f(u,v)/c(u,v). (The slash notation is used merely to separate the flow and capacity; it does *not* indicate division.) If $f(u,v)\leq 0$, edge (u,v) is labeled only by its capacity.

If $v_1 \geq v_2$ then

- Only positive net flows represent actual shipments.
- Applications of the cancelation rule
 - eliminate negative net flows.
 - do not violate the 3 requirements of a network flow:
 - capacity constraint
 - skew symmetry
 - flow conservation

Multiple sources and sinks

- A maximum-flow problem can have several sources s_1, \ldots, s_m and sinks t_1, \ldots, t_m .
- Such a problem can be reduced to an equivalent single-source single-sink maximum-flow problem:
 - add a supersource s and a supersink t
 - add directed edges (s, s_i) with $c(s, s_i) = \infty$ for i = 1..m
 - add directed edges (t_j,t) with $c(t_j,t)=\infty$ for j=1..n

Multiple sources and sinks

- A maximum-flow problem can have several sources s_1, \ldots, s_m and sinks t_1, \ldots, t_m .
- Such a problem can be reduced to an equivalent single-source single-sink maximum-flow problem:
 - add a supersource s and a supersink t
 - add directed edges (s, s_i) with $c(s, s_i) = \infty$ for i = 1..m
 - add directed edges (t_j,t) with $c(t_j,t)=\infty$ for j=1..n

Assume we know:

```
a flow network G = (V, E)
a function f from V \times V to \mathbb{R}
sets of nodes X, Y (that is, X \subseteq V, Y \subseteq V)
node u \in V.
```

- Then
 - f(X, Y) represents the sum $\sum_{x \in X} \sum_{y \in Y} f(x, y)$.
 - f(u, X) represents the sum $\sum_{x \in X} f(u, x)$.
 - f(Y, u) represents the sum $\sum_{y \in Y} f(y, u)$.
 - X u represents the set $X \{u\}$.

Remark. If f is a flow for G = (V, E) then f(u, V) = 0 for all $u \in V - \{s, t\}$. This follows from the flow conservation constraint $\Rightarrow f(V - \{s, t\}, V) = 0$.

Properties of flow networks

Lemma

Let G = (V, E) be a flow network and f a flow in G. Then

- f(X,X) = 0 for all $X \subseteq V$.
- f(X, Y) = -f(Y, X) for all $X, Y \subseteq V$.
- $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$ and $f(Z, X \cup Y) = f(Z, X) + f(Z, Y)$ for all $X, Y, Z \subseteq V$ with $X \cap Y = \emptyset$.

Note that:

$$|f| = f(s, V)$$

= $f(V, V) - f(V - s, V)$ by
= $f(V, V - s)$ by
= $f(V, t) + f(V, V - \{s, t\})$ by f

by definition by previous lemma by previous lemma by previous lemma by flow conservation

Operations with flows

Definition

If f_1, f_2 are flows in a flow network G and $\alpha \in \mathbb{R}$, then

• the flow sum f_1+f_2 of f_1 and f_2 is the function from $V\times V$ to $\mathbb R$ defined by

$$(f_1 + f_2)(u, v) := f_1(u, v) + f_2(u, v)$$
 for all $u, v \in V$.

• the scalar flow product αf_1 is the function from $V \times V$ to $\mathbb R$ defined by

$$(\alpha f_1)(u, v) := \alpha f_1(u, v)$$
 for all $u, v \in V$.

Operations with flows Examples

Operations with flows Examples

(a) G and f_1

(b) G and f_2

(c) G and $f_1 + f_2$

Operations with flows Examples

(a) G and f_1

(b) G and f_2

(c) G and $f_1 + f_2$

(d) G and αf_2 when $\alpha = \frac{1}{2}$

Operations with flows Quizzes

A flow must satisfy 3 requirements: capacity constraint, skew symmetry, and flow conservation.

- Which properties are not preserved by flow sums?
- Which properties are not preserved by scalar flow products?
- **3** Show that, if f_1, f_2 are flows and $0 \le \alpha \le 1$, then $\alpha f_1 + (1 \alpha) f_2$ is a flow.

Residual networks

Assumptions: a flow network G = (V, E); flow f in G.

- The residual capacity of an edge (u, v) is $c_f(u, v) := c(u, v) f(u, v)$.
- The residual network of G induced by f is the flow network $G_f = (V, E_f)$ where $E_f = \{(u, v) \in V \times V \mid c_f(u, v) > 0\}$, and the capacity of every edge is (u, v) is $c_f(u, v)$.

Remark. In general, $|E_f| \le 2|E|$.

Flows in residual networks Properties

Assume a flow network G, a flow f in G, and the residual network G_f . If f' is a flow in G_f then f + f' is a flow in G with value |f + f'| = |f| + |f'|. PROOF.

- Skew symmetry holds because (f + f')(u, v) = f(u, v) + f'(u, v) = -f(v, u) f'(v, u) = -(f(v, u) + f'(v, u)) = -(f + f')(v, u).
- For the **capacity constraints**, note that $f'(u, v) \le c_f(u, v)$ for all $u, v \in V$, therefore $(f + f')(u, v) = f(u, v) + f'(u, v) \le f(u, v) + (c(u, v) f(u, v)) = c(u, v)$.
- For flow conservation, we note that

$$\begin{split} \sum_{v \in V} (f + f')(u, v) &= \sum_{v \in V} (f(u, v) + f'(u, v)) \\ &= \sum_{v \in V} f(u, v) + \sum_{v \in V} f'(u, v) = 0 + 0 = 0. \end{split}$$

Finally, we have

$$|f+f'| = \sum_{v \in V} (f+f')(s,v) = \sum_{v \in V} (f(s,v)+f'(s,v)) = \sum_{v \in V} f(s,v) + \sum_{v \in V} f'(s,v) = |f|+|f'|.$$

Augmenting paths

An augmenting path for a flow network G and a flow f is a simple path from s to t in the residual network G_f .

Example (Augmented path)

Remarks.

- Each edge (u, v) of an augmenting path admits additional positive net flow without violating the capacity of the edge.
- In this example, we could ship up to 4 units more from s to t along the highlighted augmenting path, without violating any capacity constraint (Note: the smallest residual capacity on the highlighted augmenting path is 4).

Augmenting paths (continued)

• The residual capacity of an augmenting path p is given by

$$c_f(p) := \min\{c_f(u,v) \mid (u,v) \text{ is on } p\}.$$

Lemma

Let G=(V,E) be a flow network with flow f, p an augmenting path in G_f , and $f_p:V\times V\to\mathbb{R}$ defined by

$$f_p(u,v) := \left\{ egin{array}{ll} c_f(p) & ext{if } (u,v) ext{ is on } p, \ -c_f(p) & ext{if } (v,u) ext{ is on } p, \ 0 & ext{otherwise.} \end{array}
ight.$$

Then f_p is a flow in G_f with value $|f_p| = c_f(p) > 0$.

Corollary

Let G = (V, E) be a flow network with flow f, and p be an augmenting path in G_f . Let f_p be the flow defined as in the previous lemma. Then $f + f_p$ is a flow in G with value $|f'| = |f| + |f_p| > |f|$.

2000

The Ford-Fulkerson method

Yields a maximum flow for a given flow network G:

```
FORD-FULKERSON-METHOD(G, s, t)
1 initialize flow f to 0
2 while there exists an augmenting path p
3 augment flow f along p
4 return f
```

 The Ford-Fulkerson method works because the following result holds:

A flow is maximum if and only if its residual network contains no augmenting path.

The Ford-Fulkerson method

Yields a maximum flow for a given flow network G:

```
FORD-FULKERSON-METHOD(G, s, t)
1 initialize flow f to 0
2 while there exists an augmenting path p
3 augment flow f along p
4 return f
```

 The Ford-Fulkerson method works because the following result holds:

A flow is maximum if and only if its residual network contains no augmenting path.

▶ We shall prove this fact.
Auxiliary notions: cut, capacity of a cut.

Definition

A cut (S, T) of a flow network G = (V, E) is a partition of V into S and T = V - S such that $s \in S$ and $t \in T$. The net flow across the cut (S, T) is f(S, T). The capacity of the cut (S, T) is c(S, T).

Example

$$f(S, T) = f(v_1, v_3) + f(v_2, v_3) + f(v_2, v_4) = 12 + (-4) + 11 = 19$$

 $c(S, T) = c(v_1, v_3) + c(v_2, v_4) = 12 + 14 = 26$

Properties of cuts

Lemma

The net flow across a cut (S, T) if f(S, T) = |f|.

Corollary

For any flow f and any cut (S, T), we have $|f| \le c(S, T)$.

Max-flow min-cut theorem

If f is a flow in a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- \bullet f is a maximum flow in G.
- Q G_f contains no augmenting paths.
- |f| = c(S, T) for some cut (S, T) of G.

The max-flow min-cut theorem

- (1) \Rightarrow (2) By contradiction: Assume f is a maximum flow in G and that G_f has an augmenting path p. Then $f+f_p$ would be a flow in G with value strictly larger than |f|, contradicting the assumptions.
- (2) \Rightarrow (3) Suppose G_f has no augmenting path from s to t. Let

 $S = \{v \in V \mid \text{there exists a path from } s \text{ to } v \text{ in } G_f\}$

and T = V - S. Then (S, T) is a cut because $s \in S$ and $t \notin S$. For each pair of nodes $(u, v) \in S \times T$ we have v(u, v) = c(u, v) because otherwise $(u, v) \in E_f$ and $v \in S$. It follows that |f| = f(S, T) = c(S, T).

(3) \Rightarrow (1) We know that $|f| \le c(S,T)$ for all cuts (S,T) of G. Therefore, the condition |f| = c(S,T) implies that f is a maximum flow.

Assume

- \bullet G = (V, E) is a flow network,
- \circ f is a maximum flow in G,
- (S, T) is a cut of G with minimum capacity.

Then

- |f| = c(S', T') for some cut (S', T') of G. Since $c(S, T) \le c(S', T')$ (by assumption 3), we have $c(S, T) \le |f|$.
- By Previous corollary, $|f| \le$ capacity of any cut; in particular $|f| \le |c(S,T)|$.
- $\Rightarrow |f| = c(S, T)$. This means that
 - \triangleright Value of maximum flow in $G = \min$ minimum capacity of cut of G.

The basic Ford-Fulkerson algorithm

```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in E(G)

2 f(u, v) := 0

3 f(v, u) := 0

4 while \exists path p from s to t in G_f

5 c_f := \min\{c_f(u, v) \mid (u, v) \text{ is in } p\}

6 for each edge (u, v) in p

7 f(u, v) := f(u, v) + c_f(p)

8 f(v, u) := -f(u, v)
```

The basic Ford-Fulkerson algorithm

Running example

Exercise: draw the graphs for the remaining steps of Ford-Fulkerson algorithm.

• The running time depends on how the augmenting path *p* is computed in line 4 of the algorithm.

- The running time depends on how the augmenting path p is computed in line 4 of the algorithm.
- Assumption: all edge capacities are integral numbers (that is, 0,1,2,...).

- The running time depends on how the augmenting path p is computed in line 4 of the algorithm.
- ASSUMPTION: all edge capacities are integral numbers (that is, 0,1,2,...).
 - If the capacities are rational numbers, we can make them all integer, with an appropriate scaling transformation.

- The running time depends on how the augmenting path p is computed in line 4 of the algorithm.
- ASSUMPTION: all edge capacities are integral numbers (that is, 0,1,2,...).
 - If the capacities are rational numbers, we can make them all integer, with an appropriate scaling transformation.
- A straightforward implementation of FORD-FULKERSON algorithm runs in time $O(|E| \cdot |f^*|)$ where f^* is the maximum flow found by the algorithm.

Reason: the **while** loop of lines 4-8 is executed at most $|f^*|$ times, because the flow values increase by at least 1 in each iteration.

Complexity analysis An example which takes $\Theta(E \cdot |f^*|)$ time

- A maximum flow f^* in flow network (a) has $|f^*| = 2000000$. A poorly chosen augmented path, with capacity 1, is highlighted.
- (b) and (c) illustrate resulting residual networks, after augmenting with the previously highlighted augmenting path.

Complexity analysis An example which takes $\Theta(E \cdot |f^*|)$ time

- A maximum flow f^* in flow network (a) has $|f^*| = 2000000$. A poorly chosen augmented path, with capacity 1, is highlighted.
- (b) and (c) illustrate resulting residual networks, after augmenting with the previously highlighted augmenting path.
- Time complexity is improved if p in line 4 is computed with a breadth-first search, that is, if p is a shortest path from s to t in the residual network, where each edge has unit distance (weight) \Rightarrow Edmonds-Karp algorithm with runtime complexity $O(|V| \cdot |E|^2)$.

Application 1: Maximum bipartite matching

Let $B = (V_1 \cup V_1, E)$ be a bipartite graph between subsets V_1 and V_2 of V (Note: $V_1 \cap V_2 = \emptyset$.)

Definition

A matching in B is a set of edges $M \subseteq E$ such that for all nodes v of G, at most one edge of M is incident on v. A maximum matching is a matching of maximum cardinality, that is, a matching M such that for any matching M', we have $|M| \ge |M'|$.

Application 1: Maximum bipartite matching

Let $B = (V_1 \cup V_1, E)$ be a bipartite graph between subsets V_1 and V_2 of V (Note: $V_1 \cap V_2 = \emptyset$.)

Definition

A matching in B is a set of edges $M \subseteq E$ such that for all nodes v of G, at most one edge of M is incident on v. A maximum matching is a matching of maximum cardinality, that is, a matching M such that for any matching M', we have $|M| \ge |M'|$.

A maximum bipartite matching of $B = (V_1 \cup V_2, E)$ can be found as follows:

- **1** Extend B with 2 new nodes: s (supersource) and t (supersink). Orient all edges of G from V_1 to V_2 . Add edges from s to all sources of G, and from all sinks of G to t. All edges in the extended network have capacity 1.
- 2 Compute a maximum flow in the newly constructed flow network with source s and sink t.

Applications and extensions Application 1: Maximum bipartite matching

Applications and extensions Application 1: Maximum bipartite matching

Application 1: Maximum bipartite matching

Example

Maximum matching $C = \{(x_2, y_1), (x_3, y_2), (x_4, y_4), (x_5, y_3)\}$

Application 1: Maximum bipartite matching

Example

Maximum matching $C = \{(x_2, y_1), (x_3, y_2), (x_4, y_4), (x_5, y_3)\}$

Theorem

Let G be the flow network constructed for a bipartite graph $B=(V_1\cup V_2,E)$, and f a maximum flow in G computed with Ford-Fulkerson logarithm. Then the set of edges (u,v) of f with $u\in V_1$, $v\in V_2$ and f(u,v)=1 is a maximum matching of B.

*) Q (·

Problem

G = (V, E): flow network in which every edge (u, v) has a capacity c(u, v) and a unit cost $k(u, v) \ge 0$.

A maximum flow with minimum cost in G is a maximum flow f in G such that the sum

$$\sum_{(u,v)\in E} f(u,v)\cdot k(u,v)$$

is minimum.

Solution: Adjustment of Edmonds-Karp algorithm

- Attach costs to all edges of the residual networks of a flow *f*:
 - edge (u, v) has cost k(u, v) if c(u, v) > f(u, v) in the original flow network
 - edge (u, v) has cost -k(u, v) if f(u, v) < 0 in the original flow network
- Instead of shortest simple path from source s to sink t, this
 algorithm finds a path p from s to t with minimum cost in the
 residual network.
 - p can be found with Bellman-Ford algorithm.
- Next, the flow is incremented along path p with the maximum possible value (=minimum of the differences between capacity and flow, for every arc of p).

References

Chapter 27 from

• T. H. Cormen, C. E. Leiserson, R. L. Rivest. *Introduction to Algorithms*. MIT Press, 2000.