IN THE CLAIMS

1. - 9. (Cancelled)

10. (Currently Amended) A method for the prophylactic and/or therapeutic treatment of dysuria that comprises:

administering to a human being or an animal a subject in need of treatment for dysuria an effective amount of a compound effective to treat dysuria, which

wherein said compound is a β_3 adrenergic receptor agonist, having a general formula selected from the group consisting of formula (IV), (V), (VI), (VII) and (VIII),

or a salt or prodrug thereof, or for the compound of formula (VII) an ester or amide thereof;

wherein

(a) a compound of formula (IV) is represented by the following general formula:

OH
$$R^6$$
 R^3

$$CH-CH-NH-C-A$$

$$R^4$$

$$R^5$$

$$NHSO_2R^1$$
(IV)

wherein

R¹ is lower alkyl, aryl or arylalkyl;

 R^2 is hydrogen, hydroxy, alkoxy, -CH₂OH, cyano, -C(O)OR⁷, -CO₂H, -CONH₂, tetrazole, -CH₂NH₂ or halogen; where R^7 is lower alkyl;

R³ is hydrogen, alkyl, heterocycle or

where R^8 , $R^{8'}$ and $R^{8''}$ are independently hydrogen, alkoxy, lower alkyl, halogen, -OH, -CN, -(CH₂)_nNR⁶COR⁷, -CON(R⁶)R^{6'}, -CON(R⁶)OR^{6'}, -CO₂R⁶, -SR⁷, -SOR⁷, -SO₂R⁷, -N(R⁶)SO₂R¹, -N(R⁶)R^{6'}, -NR⁶COR⁷, -OCH₂CON(R⁶)R^{6'}, -OCH₂CO₂R⁷ or aryl; and R⁸ and R^{8'} may together with the carbon atoms to which they are attached form an aryl or heterocycle; where R⁶ and R^{6'} are independently hydrogen or lower alkyl, and R⁷ is lower alkyl;

R⁴ is hydrogen, alkyl or B; wherein B is -CN, -CON(R⁹)R⁹'- or -CO₂R⁷, where R⁷ is lower alkyl and R⁹ and R⁹' are independently hydrogen, lower alkyl, alkyl, cycloalkyl, arylalkyl, aryl, heteroaryl or R⁹ and R⁹' may together with the nitrogen atom to which they are attached form a heterocycle;

 R^5 , and R^5 ', R^8 , R^{8^2} and R^{8^2} are independently hydrogen, alkoxy, lower alkyl, halogen, -OH, -CN, -(CH₂)_nNR⁶COR⁷, -CON(R⁶)R⁶', -CON(R⁶)OR⁶', -CO₂R⁶, -SR⁷, -SOR⁷, -SO₂R⁷, -N(R⁶)SO₂R¹, -N(R⁶)R⁶', -NR⁶COR⁷, -OCH₂CON(R⁶)R⁶', -OCH₂CO₂R⁷ or aryl; or R⁵ and R⁵' or R⁸ and R⁸' may together with the carbon atoms to which they are attached form an aryl or heterocycle;

 R^6 and R^{6^2} are is independently hydrogen or lower alkyl; and R^7 is lower alkyl;

R⁹-and R⁹-are independently hydrogen, lower alkyl, alkyl, cycloalkyl, arylalkyl, aryl, heteroaryl; or

R⁹ and R⁹ may together with the nitrogen atom to which they are attached form a heterocycle:

A is a bond, -(CH₂)_n- or -CH(B)-, wherein n is an integer of 1, 2 or 3 and

B is -CN, -CON(
$$R^9$$
) R^9 '- or -CO₂ R^7 ;

with the proviso that when A is a bond or $-(CH_2)_n$ - and R^3 is hydrogen or unsubstituted alkyl, then R^4 is B or substituted alkyl;

(b) a compound of formula (V) is represented by the following general formula:

$$(R^{1})_{n} \xrightarrow{OH} \xrightarrow{H} \xrightarrow{R^{2}} (X)_{\overline{m}} \xrightarrow{R^{4}} N - SO_{2}(CH_{2})_{\overline{r}} - R^{7}$$

$$(R^{2})_{n} \xrightarrow{R^{3}} (V)$$

wherein

n is 0 to 5;

m is 0 or 1;

r is 0 to 3;

A is pyridinyl;

R¹ is (1) hydroxy, (2) oxo, (3) halogen, (4) cyano, (5) NR⁸R⁸, (6) SR⁸, (7) trifluoromethyl, (8) C₁-C₁₀ alkyl, (9) OR⁸, (10) SO₂R⁹, (11) OCOR⁹, (12) NR⁸COR⁹, (13) COR⁹, (14) NR⁸SO₂R⁹, (15) NR⁸CO₂R⁸, or (16) C₁-C₁₀ alkyl substituted by hydroxy, halogen, cyano, NR⁸R⁸, SR⁸, trifluoromethyl, OR⁸, C₃-C₈ cycloalkyl, phenyl, NR⁸COR⁹, COR⁹, SO₂R⁹, OCOR⁹, NR⁸SO₂R⁹ or NR⁸CO₂R⁸; where

R⁸ is (1) hydrogen, (2) C₁-C₁₀alkyl, (3) C₃-C₈ cycloalkyl, (4) Z optionally having 1 to 4 substituents selected from halogen, nitro, oxo, NR¹⁰R¹⁰, C₁-C₁₀ alkyl, C₁-C₁₀ alkylthio, and C₁-C¹⁰ alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO₂H, CO₂-C₁-C₁₀ alkyl, SO₂-C₁-C₁₀ alkyl, C₃-C₈ cycloalkyl, C₁-C₁₀ alkoxy, or Z optionally substituted by from 1 to 3 halogen, C₁-C₁₀ alkyl or C₁-C₁₀ alkoxy, or (5) C₁-C₁₀ alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO₂H, CO₂-C₁-C₁₀ alkyl, SO₂-C₁-C₁₀ alkyl, C₃-C₈ cycloalkyl, C₁-C₁₀ alkoxy,

 C_{1} - C_{10} alkyl, or Z optionally substituted by from 1 to 4 halogen, C_{1} - C_{10} alkyl or C_{1} - C_{10} alkoxy;

R⁹ is (1) R⁸ or (2) NR⁸R⁸; and

 R^{10} is (1) C_1 - C_{10} alkyl, or (2) two R^{10} groups together with the N to which they are attached forming a 5 or 6-membered ring optionally substituted with C_1 - C_{10} alkyl;

and Z is (1) phenyl, (2) naphthyl, (3) or a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (4) a benzene ring fused to a C₃-C₈ cycloalkyl ring, (5) a benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (6) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, or (7) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a C₃-C₈ cycloalkyl ring;

n is 0 to 5;

 R^2 and R^3 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl or (3) C_1 - C_{10} alkyl with 1 to 4 substituents selected from hydroxy, C_1 - C_{10} alkoxy, or halogen;

X is (1) -CH₂-, (2) -CH₂-CH₂-, (3) -CH=CH- or (4) -CH₂O-; where m is 0 or 1;

R⁴ and R⁵ are independently (1) hydrogen, (2) C₁-C₁₀ alkyl, (3) halogen, (4) NHR⁸,

(5) OR⁸, (6) SO₂R⁹ or (7) NHSO₂R⁹;

 R^6 is (1) hydrogen or (2) C_1 - C_{10} alkyl;

r is 0 to 3; and

 R^{7} is Z- $(R^{1a})_{n}$;

where Z is defined above and R^{1a} is (1) R^1 , (2) C_3 - C_8 cycloalkyl, (3) phenyl optionally substituted with up to 4 groups independently selected from R^8 , NR^8R^8 .

OR⁸, SR⁸ or halogen, or (4) 5 or 6-membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, optionally substituted with up to four groups independently selected from oxo, R⁸, NR⁸R⁸, OR⁸, SR⁸, or halogen; Z is (1) phenyl, (2) naphthyl, (3) or a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (4) a benzene ring fused to a C₃-C₈eyeloalkyl ring, (5) a benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (6) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, or (7) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, or (7) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a C₃-C₈ eyeloalkyl ring;

R⁸ is (1) hydrogen, (2) C₁-C₁₀alkyl, (3) C₃-C₈ cycloalkyl, (4) Z optionally having 1 to 4 substituents selected from halogen, nitro, oxo, NR¹⁰R¹⁰, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₁-C₁₀ alkylthio, and C₁-C¹⁰ alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO₂H, CO₂-C₁-C₁₀ alkyl, SO₂-C₁-C₁₀ alkyl, C₃-C₈ cycloalkyl, C₁-C₁₀ alkoxy, or Z optionally substituted by from 1 to 3 halogen, C₁-C₁₀ alkyl or C₁-C₁₀ alkoxy, or (5) C₁-C₁₀ alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO₂H, CO₂-C₁-C₁₀ alkyl, SO₂-C₁-C₁₀ alkyl, C₃-C₈ cycloalkyl, C₁-C₁₀ alkoxy, C₁-C₁₀ alkyl, or Z optionally substituted by from 1 to 4 halogen, C₁-C₁₀ alkyl or C₁-C₁₀ alkoxy; and where n is 0 to 5;

R⁹ is (1) R⁸ or (2) NR⁸R⁸; and

R¹⁰-is (1) C₁-C₁₀ alkyl, or (2) two R¹⁰-groups together with the N to which they are attached forming a 5 or 6-membered ring optionally substituted with C₁-C₁₀ alkyl;

(c) a compound of formula (VI) is:

$$X$$
 CH
 CH
 CH
 CH
 OR
 OR
 (VI)

wherein

X is hydrogen, halogen, trifluoromethyl or lower alkyl, and

R is hydrogen; or lower alkyl which may have a suitable substituent selected from the group consisting of $\operatorname{cyclo}(C_3-C_7)$ alkyl, hydroxy, lower alkoxy, carboxy and lower alkoxycarbonyl; $\operatorname{cyclo}(C_3-C_7)$ alkyl or and lower alkanoyl;

(d) a compound of formula (VII) is represented by the following general formula:

$$R^2$$
 R^6
 $CHOH-CH_2-NH-C(R^6)R^7-Y-X$
 $O-Z-CO_2H$

$$R^2$$
—CHOH— CH_2 — NH — $C(R^4)R^5$ — Y — X
 O — Z — CO_2H

wherein

R¹ is a hydrogen, fluorine, chlorine, <u>or</u> bromine atom, or a hydroxyl, hydroxymethyl, methyl, methoxyl, amino, formamido, acetamido, methylsulphonylamido, nitro, benzyloxy, methylsulphonylmethyl, ureido, trifluoromethyl or p-methoxybenzylamino group;

R² is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl group;

R³ is a hydrogen, chlorine or bromine atom or a hydroxyl group,

R⁴ is a hydrogen atom or a methyl group;

R⁵ is a hydrogen atom or a methyl group;

R⁶ is a hydrogen, fluorine or chlorine atom or a methyl, methoxyl or hydroxy group;

X is an oxygen atom or a bond;

Y is an alkylene group of up to 6 carbon atoms or a bond; and

Z is an alkylene, alkenylene or alkynylene group of up to 10 carbon atoms; and

(e) a compound of formula (VIII) is represented by the following general formula:

$$R^{1}$$
 R^{6}
 R^{7}
 R^{8}
 R^{8}
 R^{8}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{8}

wherein

R is hydrogen or methyl,

R¹ is hydrogen, halogen, hydroxy, benzyloxy, amino or hydroxymethyl,

R² is hydrogen, hydroxymethyl, -NHR³, -SO₂NR⁴R⁴' or nitro, where R³ is hydrogen, methyl, -SO₂R⁵, formyl or -CONHR⁶' and R⁴ and R⁴' are independently hydrogen, lower alkyl or benzyl; and R⁵ is lower alkyl, benzyl or -NR⁴R⁴'; and R⁶' is hydrogen or lower alkyl;

R³ is hydrogen, methyl, SO₂R⁵, formyl or CONHR⁶;

R⁴-and R⁴²-are independently hydrogen, lower alkyl or benzyl,

R⁵ is lower alkyl, benzyl or NR⁴R⁴;

R⁶ is hydrogen or lower alkyl,

R⁶² is hydrogen or lower alkyl and

R⁷ is hydrogen, amino, acetylamino, or hydroxyl;

R⁸ is hydrogen, amino, acetylamino, or hydroxyl;

X is N, O, S or methylene;

R⁶² is hydrogen or lower alkyl,

R⁹ is hydrogen, amino, acetylamino or hydroxy; and

X is N, O, S or methylene;

provided that when X is N, O or S,

then R⁹ is hydrogen, either R⁷ or R⁸ is hydrogen, and the other is hydrogen, amino, acetylamino or hydroxy; and

provided that when X is methylene,

then both R⁷ and R⁸ are hydrogen.

- 11. (Previously Presented) The method of Claim 10 comprising administering the compound of formula (IV) or a salt thereof.
- 12. (Previously Presented) The method of Claim 10 comprising administering the compound of formula (V) or a salt thereof.
- 13. (Previously Presented) The method of Claim 10, comprising administering the compound of formula (VI) or a salt thereof.
- 14. (Previously Presented) The method of Claim 10, comprising administering the compound of formula (VII) or a salt, ester or amide thereof.
- 15. (Previously Presented) The method of Claim 10, comprising administering the compound of formula (VIII) or a salt thereof.
- 16. (Previously Presented) The method of claim 10 wherein said compound is in the form of a prodrug.
- 17. (Currently Amended): A method for the prophylactic and/or the therapeutic treatment of pollakiuria or urinary incontinence comprising:

and thereof an effective amount of a compound effective to treat pollakiuria or urinary incontinence incontinence, wherein said compound which is a β3 adrenergic receptor agonist, having a general formula selected from the group consisting of formula (IV), (V), (VI), (VII) and (VIII), or a salt or prodrug thereof, or for the compound of formula (VII) an ester or amide thereof;

wherein

(a) a compound of formula (IV) is represented by the following general formula:

OH
$$R^6$$
 R^3 $CH-CH-NH-C-A$ R^5 R^5 R^5 R^5 R^5

wherein

R¹ is lower alkyl, aryl or arylalkyl;

R² is hydrogen, hydroxy, alkoxy, CH₂OH, cyano, C(O)OR₇, CO₂H, CONH₂, tetrazole, CH₂NH₂ or halogen;

R³-is hydrogen, alkyl, heterocycle or

R⁴ is hydrogen, alkyl or B;

R⁵, R⁸, R⁸, and R⁸" are independently hydrogen, alkoxy, lower alkyl, halogen,

OH, CN, (CH₂)_nNR⁶COR⁷, CON(R⁶)R⁶", CON(R⁶)OR⁶", CO₂R⁶, SR⁷, SOR⁷, SO₂R⁷,

-N(R⁶)SO₂R¹, N(R⁶)R⁶", NR⁶COR⁷, OCH₂CON(R⁶)R⁶", OCH₂CO₂R⁷ or aryl; or

R⁵ and R⁵ or R⁸ and R⁸ may together with the carbon atoms to which they are attached form an aryl or heterocycle;

R⁶-and R⁶-are independently hydrogen or lower alkyl; and

R⁷ is lower alkyl;

R⁹-and R⁹- are independently hydrogen, lower alkyl, alkyl, cycloalkyl, arylalkyl, aryl, heteroaryl; or

R⁹ and R⁹ may together with the nitrogen atom to which they are attached form a heterocycle;

A is a bond, $(CH_2)_n$ or -CH(B), wherein n is an integer of 1, 2 or 3 and B is -CN, $-CON(R^9)R^9$ or $-CO_2R^7$;

with the proviso that when A is a bond or (CH₂)_n and R³ is hydrogen or unsubstituted alkyl, then R⁴ is B or substituted alkyl;

wherein .

R¹ is lower alkyl, aryl or arylalkyl;

 R^2 is hydrogen, hydroxy, alkoxy, -CH₂OH, cyano, -C(O)OR⁷, -CO₂H, -CONH₂, tetrazole, -CH₂NH₂ or halogen; where R^7 is lower alkyl;

R³ is hydrogen, alkyl, heterocycle or

where R^8 , $R^{8'}$ and $R^{8''}$ are independently hydrogen, alkoxy, lower alkyl, halogen, -OH, -CN, -(CH₂)_nNR⁶COR⁷, -CON(R⁶)R^{6'}, -CON(R⁶)OR^{6'}, -CO₂R⁶, -SR⁷, -SOR⁷, -SO₂R⁷, -N(R⁶)SO₂R¹, -N(R⁶)R^{6'}, -NR⁶COR⁷, -OCH₂CON(R⁶)R^{6'}, -OCH₂CO₂R⁷ or aryl; and R⁸ and R^{8'} may together with the carbon atoms to which they are attached form an aryl or heterocycle; where R⁶ and R^{6'} are independently hydrogen or lower alkyl, R⁷ is lower alkyl;

R⁴ is hydrogen, alkyl or B; wherein B is -CN, -CON(R⁹)R^{9'}- or -CO₂R⁷, where R⁷ is lower alkyl and R⁹ and R^{9'} are independently hydrogen, lower alkyl, alkyl, cycloalkyl, arylalkyl, aryl, heteroaryl or R⁹ and R^{9'} may together with the nitrogen atom to which they are attached form a heterocycle;

 R^5 and $R^{5'}$, are independently hydrogen, alkoxy, lower alkyl, halogen, -OH, -CN, - $(CH_2)_nNR^6COR^7$, - $CON(R^6)R^{6'}$, - $CON(R^6)OR^{6'}$, - CO_2R^6 , - SR^7 , - SOR^7 , - SO_2R^7 , - $N(R^6)SO_2R^1$, - $N(R^6)R^{6'}$, - NR^6COR^7 , - $OCH_2CON(R^6)R^{6'}$, - $OCH_2CO_2R^7$ or aryl; or R^5 and $R^{5'}$ may together with the carbon atoms to which they are attached form an aryl or heterocycle;

R⁶ is independently hydrogen or lower alkyl; and

A is a bond, $-(CH_2)_n$ - or -CH(B)-, wherein n is an integer of 1, 2 or 3 and B is -CN, $-CON(R^9)R^{9'}$ - or $-CO_2R^7$;

with the proviso that when A is a bond or $-(CH_2)_n$ - and R^3 is hydrogen or unsubstituted alkyl, then R^4 is B or substituted alkyl;

(b) a compound of formula (V) is represented by the following general formula:

$$(R^{1})_{n} \xrightarrow{OH} \xrightarrow{H} \xrightarrow{R^{2}} (X)_{\overline{m}} \xrightarrow{R^{4}} N - SO_{2}(CH_{2})_{\overline{r}} - R^{7}$$

$$(R^{1})_{n} \xrightarrow{R^{5}} (V)$$

wherein

n is 0 to 5;

m-is 0 or 1;

r is 0 to 3;

A is pyridinyl;

 R^4 is (1) hydroxy, (2) oxo, (3) halogen, (4) cyano, (5) NR^8R^8 , (6) SR^8 , (7) trifluoromethyl, (8) C_1 - C_{10} alkyl, (9) OR^8 , (10) SO_2R^9 , (11) $OCOR^9$, (12) NR^8COR^9 , (13) COR^9 , (14) $NR^8SO_2R^9$, (15) $NR^8CO_2R^8$, or (16) C_1 - C_{10} alkyl substituted by hydroxy, halogen, cyano, NR^8R^8 , SR^8 , trifluoromethyl, OR^8 , C_3 - C_8 cycloalkyl, phenyl, NR^8COR^9 , COR^9 , SO_2R^9 , $OCOR^9$, $NR^8SO_2R^9$ or $NR^8CO_2R^8$;

R²-and R³-are independently (1) hydrogen, (2) C₁-C₁₀ alkyl or (3) C₁-C₁₀ alkyl with 1 to 4 substituents selected from hydroxy, C₁-C₁₀ alkoxy, or halogen;

R⁴ and R⁵ are independently (1) hydrogen, (2) C₁-C₁₀ alkyl, (3) halogen, (4) NHR⁸, (5) OR⁸, (6) SO₂R⁹ or (7) NHSO₂R⁹;

R⁶ is (1) hydrogen or (2) C₁-C₁₀ alkyl;

 $R7 \text{ is } Z - (R^{1a})_n$

R^{1a}-is (1) R¹, (2) C₃-C₈ cycloalkyl, (3) phenyl optionally substituted with up to 4 groups independently selected from R⁸, NR⁸R⁸, OR⁸, SR⁸-or halogen, or (4) 5 or 6 membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, optionally substituted with up to four groups independently selected from oxo, R⁸, NR⁸R⁸, OR⁸, SR⁸, or halogen;

Z is (1) phenyl, (2) naphthyl, (3) or a 5 or 6 membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (4) a benzene ring fused to a C_3 C_8 eyeloalkyl ring, (5) a benzene ring fused to a 5 or 6 membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (6) a 5 or 6 membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6 membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, or (7) a 5 or 6 membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, sulfur or nitrogen fused to a C_3 cycloalkyl ring;

 R^8 -is (1) hydrogen, (2) C_1 - C_{10} -alkyl, (3) C_3 - C_8 cycloalkyl, (4) Z optionally having 1 to 4 substituents selected from halogen, nitro, oxo, $NR^{10}R^{10}$, C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy, C_1 - C_{10} alkylthio, and C_1 - C_{10} -alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO_2H , CO_2 - C_1 - C_{10} -alkyl, SO_2 - C_1 - C_{10} -alkyl, C_3 - C_8 -cycloalkyl, C_1 - C_{10} -alkoxy, or Z optionally substituted by from 1 to 3 halogen, C_1 - C_{10} -alkyl or C_1 - C_{10} -alkoxy, or (5) C_1 - C_{10} -alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO_2H , CO_2 - C_1 - C_{10} -alkyl, SO_2 - C_1 - C_{10} -alkyl, C_3 - C_8 -cycloalkyl, C_1 - C_{10} -alkoxy, C_1 - C_{10} -alkyl, or Z optionally substituted by from 1 to 4 halogen, C_1 - C_{10} -alkyl or C_1 - C_{10} -alkoxy;

R⁹ is (1) R⁸ or (2) NR⁸R⁸; and

R¹⁰-is (1) C₁-C₁₀ alkyl, or (2) two R₁₀ groups together with the N to which they are attached forming a 5 or 6-membered ring optionally substituted with C₁-C₁₀ alkyl;

wherein

A is pyridinyl;

R¹ is (1) hydroxy, (2) oxo, (3) halogen, (4) cyano, (5) NR⁸R⁸, (6) SR⁸, (7) trifluoromethyl, (8) C₁-C₁₀ alkyl, (9) OR⁸, (10) SO₂R⁹, (11) OCOR⁹, (12) NR⁸COR⁹, (13) COR⁹, (14) NR⁸SO₂R⁹, (15) NR⁸CO₂R⁸, or (16) C₁-C₁₀ alkyl substituted by hydroxy, halogen, cyano, NR⁸R⁸, SR⁸, trifluoromethyl, OR⁸, C₃-C₈ cycloalkyl, phenyl, NR⁸COR⁹, COR⁹, SO₂R⁹, OCOR⁹, NR⁸SO₂R⁹ or NR⁸CO₂R⁸; where

R⁸ is (1) hydrogen, (2) C₁-C₁₀alkyl, (3) C₃-C₈ cycloalkyl, (4) Z optionally having 1 to 4 substituents selected from halogen, nitro, oxo, NR¹⁰R¹⁰, C₁-C₁₀ alkyl, C₁-C₁₀ alkylthio, and C₁-C¹⁰ alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO₂H, CO₂-C₁-C₁₀ alkyl, SO₂-C₁-C₁₀ alkyl, C₃-C₈ cycloalkyl, C₁-C₁₀ alkoxy, or Z optionally substituted by from 1 to 3 halogen, C₁-C₁₀ alkyl or C₁-C₁₀ alkoxy, or (5) C₁-C₁₀ alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO₂H, CO₂-C₁-C₁₀ alkyl, SO₂-C₁-C₁₀ alkyl, C₃-C₈ cycloalkyl, C₁-C₁₀ alkoxy,

 C_1 - C_{10} alkyl, or Z optionally substituted by from 1 to 4 halogen, C_1 - C_{10} alkyl or C_1 - C_{10} alkoxy;

R⁹ is (1) R⁸ or (2) NR⁸R⁸; and

 R^{10} is (1) C_1 - C_{10} alkyl, or (2) two R^{10} groups together with the N to which they are attached forming a 5 or 6-membered ring optionally substituted with C_1 - C_{10} alkyl;

and Z is (1) phenyl, (2) naphthyl, (3) or a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (4) a benzene ring fused to a C₃-C₈cycloalkyl ring, (5) a benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (6) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, or (7) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, or (7) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a C₃-C₈ cycloalkyl ring;

n is 0 to 5;

 R^2 and R^3 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl or (3) C_1 - C_{10} alkyl with 1 to 4 substituents selected from hydroxy, C_1 - C_{10} alkoxy, or halogen;

X is (1) -CH₂-, (2) -CH₂-CH₂-, (3) -CH=CH- or (4) -CH₂O-; where m is 0 or 1;

R⁴ and R⁵ are independently (1) hydrogen, (2) C₁-C₁₀ alkyl, (3) halogen, (4) NHR⁸,

(5) OR⁸, (6) SO₂R⁹ or (7) NHSO₂R⁹;

 R^6 is (1) hydrogen or (2) C_1 - C_{10} alkyl;

r is 0 to 3; and

 R^7 is Z- $(R^{1a})_n$;

where Z is defined above and R^{1a} is (1) R^1 , (2) C_3 - C_8 cycloalkyl, (3) phenyl optionally substituted with up to 4 groups independently selected from R^8 , NR^8R^8 , OR^8 , SR^8 or halogen,

or (4) 5 or 6-membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, optionally substituted with up to four groups independently selected from oxo, R⁸, NR⁸R⁸, OR⁸, SR⁸, or halogen;

(c) a compound of formula (VI) is:

$$\begin{array}{c|c} OH \\ CH-CH_2-NH \\ \hline \\ OR \end{array} \hspace{0.5cm} (VI)$$

wherein

X is hydrogen, halogen, trifluoromethyl or lower alkyl, and

R is hydrogen; or lower alkyl which may have a suitable substituent selected from the group consisting of $\operatorname{cyclo}(C_3-C_7)$ alkyl, hydroxy, lower alkoxy, carboxy and lower alkoxycarbonyl; $\operatorname{cyclo}(C_3-C_7)$ alkyl or and lower alkanoyl;

(d) a compound of formula (VII) is represented by the following general formula:

$$R^2$$
 $CHOH-CH_2-NH-C(R^6)R^7-Y-X$
 $O-Z-CO_2H$

$$\begin{array}{c} R^{2} \\ \\ R^{2} \\ \\ \end{array}$$
 CHOH—CH₂—NH—C(R⁴)R⁵—Y—X—O-Z-CO₂H

wherein

R¹ is a hydrogen, fluorine, chlorine, of bromine atom or a hydroxyl, hydroxymethyl, methyl, methoxyl, amino, formamido, acetamido, methylsulphonylamido, nitro, benzyloxy, methylsulphonylmethyl, ureido, trifluoromethyl or p-methoxybenzylamino group;

R² is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl group;

R³ is a hydrogen, chlorine or bromine atom or a hydroxyl group,

R⁴ is a hydrogen atom or a methyl group;

R⁵ is a hydrogen atom or a methyl group;

R⁶ is a hydrogen, fluorine or chlorine atom or a methyl, methoxyl or hydroxy group;

X is an oxygen atom or a bond;

Y is an alkylene group of up to 6 carbon atoms or a bond; and

Z is an alkylene, alkenylene or alkynylene group of up to 10 carbon atoms; and

(e) a compound of formula (VIII) is represented by the following general formula:

$$R^{1}$$
 R^{6}
 R^{7}
 R^{8}
 R^{8}
 R^{8}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{8}

wherein

R is hydrogen or methyl,

R¹ is hydrogen, halogen, hydroxy, benzyloxy, amino or hydroxymethyl,

R² is hydrogen, hydroxymethyl, NHR³, SO₂NR⁴R⁴! or nitro,

R³ is hydrogen, methyl, -SO₂R⁵, formyl or -CONHR⁶!,

R⁴ and R⁴ are independently hydrogen, lower alkyl or benzyl,

R⁵ is lower alkyl, benzyl or NR⁴R⁴;

R⁶ is hydrogen or lower alkyl,

R⁶ is hydrogen or lower alkyl,

R⁹ is hydrogen, amino, acetylamino or hydroxy, and

X is N, O, S or methylene;

provided that when X is N, O or S,

then R⁹ is hydrogen, either R⁷ or R⁸ is hydrogen, and the other is hydrogen, amino, acetylamino or hydroxy; and

provided that when X is methylene,

then both R⁷ and R⁸ are hydrogen

R¹ is hydrogen, halogen, hydroxy, benzyloxy, amino or hydroxymethyl,

R² is hydrogen, hydroxymethyl, -NHR³, -SO₂NR⁴R⁴' or nitro, where R³ is hydrogen, methyl, -SO₂R⁵, formyl or -CONHR⁶, where R⁶' is hydrogen or lower alkyl; R⁴ and R⁴'are independently hydrogen, lower alkyl or benzyl; and R⁵ is lower alkyl, benzyl or -NR⁴R⁴';

R is hydrogen or methyl,

R⁶ is hydrogen or lower alkyl₇;

R⁷ is hydrogen, amino, acetylamino, or hydroxyl;

X is N, O, S or methylene;

R⁸ is hydrogen, amino, acetylamino, or hydroxyl;

R⁹ is hydrogen, amino, acetylamino or hydroxy;

provided that when X is N, O or S,

then R⁹ is hydrogen, either R⁷ or R⁸ is hydrogen, and the other is hydrogen, amino, acetylamino or hydroxy; and

provided that when X is methylene,

then both R⁷ and R⁸ are hydrogen.

18. (Currently Amended): A method for the prophylactic and/or the therapeutic treatment of a disease or disorder selected from the group consisting of nervous pollakiuria, neurogenic bladder dysfunction, nocturia, unstable bladder, cystospasm, chronic cystitis, chronic prostatitis, overflow incontinence, passive incontinence, reflex incontinence, urge incontinence, and urinary stress incontinence, comprising:

administering to a subject in need of treatment of said disease or disorder and amount of a compound effect to treat said disease or disorder, wherein said compound in need thereof an effective amount of a compound, which is a β3 adrenergic receptor agonist, having a general formula selected from the group consisting of formula (IV), (V), (VI), (VII) and (VIII), or a salt or prodrug thereof, or for the compound of formula (VII) an ester or amide thereof;

wherein

(a) a compound of formula (IV) is represented by the following general formula:

OH
$$R^6$$
 R^3 $CH-CH-NH-C-A$ R^5 R^5 R^5 R^5

wherein

R¹-is lower alkyl, aryl or arylalkyl;

R²-is hydrogen, hydroxy, alkoxy, -CH₂OH, cyano, -C(O)OR², -CO₂H, -CONH₂, tetrazole, -CH₂NH₂ or halogen;

R³-is hydrogen, alkyl, heterocycle or

R⁴ is hydrogen, alkyl or B;

R⁵, R⁵, R⁸, R⁸, and R⁸" are independently hydrogen, alkoxy, lower alkyl, halogen,

OH, CN, (CH₂)_nNR⁶COR⁷, CON(R⁶)R⁶; CON(R⁶)OR⁶; CO₂R⁶, SR⁷, SOR⁷, SO₂R⁷,

N(R⁶)SO₂R¹, N(R⁶)R⁶; NR⁶COR⁷, OCH₂CON(R⁶)R⁶; OCH₂CO₂R⁷ or aryl; or

R⁵-and R⁵ or R⁸ and R⁸ may together with the carbon atoms to which they are attached form an aryl or heterocycle;

R⁶ and R⁶ are independently hydrogen or lower alkyl; and R⁷ is lower alkyl;

R⁹ and R⁹! are independently hydrogen, lower alkyl, alkyl, cycloalkyl, arylalkyl, aryl, heteroaryl; or

R⁹ and R⁹ may together with the nitrogen atom to which they are attached form a heterocycle;

A is a bond, -(CH₂)_n-or-CH(B), wherein n is an integer of 1, 2 or 3 and

B is -CN, -CON(R⁹)R⁹-or-CO₂R⁷;

with the proviso that when A is a bond or (CH₂)_n and R³ is hydrogen or unsubstituted alkyl, then R⁴ is B or substituted alkyl;

R¹ is lower alkyl, aryl or arylalkyl;

 R^2 is hydrogen, hydroxy, alkoxy, -CH₂OH, cyano, -C(O)OR⁷, -CO₂H, -CONH₂, tetrazole, -CH₂NH₂ or halogen; where R^7 is lower alkyl;

R³ is hydrogen, alkyl, heterocycle or

where R^8 , $R^{8'}$ and $R^{8''}$ are independently hydrogen, alkoxy, lower alkyl, halogen, -OH, -CN, -(CH₂)_nNR⁶COR⁷, -CON(R⁶)R^{6'}, -CON(R⁶)OR^{6'}, -CO₂R⁶, -SR⁷, -SOR⁷, -SO₂R⁷, -N(R⁶)SO₂R¹, -N(R⁶)R^{6'}, -NR⁶COR⁷, -OCH₂CON(R⁶)R^{6'}, -OCH₂CO₂R⁷ or aryl; and R⁸ and R^{8'} may together with the carbon atoms to which they are attached form an aryl or heterocycle; where R⁶ and R^{6'} are independently hydrogen or lower alkyl, R⁷ is lower alkyl;

R⁴ is hydrogen, alkyl or B; wherein B is -CN, -CON(R⁹)R⁹'- or -CO₂R⁷, where R⁷ is lower alkyl and R⁹ and R⁹' are independently hydrogen, lower alkyl, alkyl, cycloalkyl, arylalkyl, aryl, heteroaryl or R⁹ and R⁹' may together with the nitrogen atom to which they are attached form a heterocycle;

 R^5 and $R^{5'}$, are independently hydrogen, alkoxy, lower alkyl, halogen, -OH, -CN, - $(CH_2)_nNR^6COR^7$, - $CON(R^6)R^{6'}$, - $CON(R^6)OR^{6'}$, - CO_2R^6 , - SR^7 , - SOR^7 , - SO_2R^7 , - $N(R^6)SO_2R^1$, - $N(R^6)R^{6'}$, - NR^6COR^7 , - $OCH_2CON(R^6)R^{6'}$, - $OCH_2CO_2R^7$ or aryl; or R^5 and $R^{5'}$ may together with the carbon atoms to which they are attached form an aryl or heterocycle;

R⁶ is independently hydrogen or lower alkyl; and

A is a bond, $-(CH_2)_n$ - or -CH(B)-, wherein n is an integer of 1, 2 or 3 and B is -CN, $-CON(R^9)R^{9'}$ - or $-CO_2R^7$;

with the proviso that when A is a bond or $-(CH_2)_n$ - and R^3 is hydrogen or unsubstituted alkyl, then R^4 is B or substituted alkyl;

(b) a compound of formula (V) is represented by the following general formula:

$$(R^{1})_{n} \xrightarrow{OH} \xrightarrow{H} \xrightarrow{R^{2}} (X)_{\overline{m}} \xrightarrow{R^{4}} N - SO_{2}(CH_{2})_{\overline{r}} - R^{7}$$

wherein

n is 0 to 5;

m is 0 or 1;

r is 0 to 3;

A is pyridinyl;

R¹-is (1) hydroxy, (2) oxo, (3) halogen, (4) cyano, (5) NR⁸R⁸, (6) SR⁸, (7) trifluoromethyl, (8) C₁-C₁₀ alkyl, (9) OR⁸, (10) SO₂R⁹, (11) OCOR⁹, (12) NR⁸COR⁹, (13) COR⁹, (14) NR⁸SO₂R⁹, (15) NR⁸CO₂R⁸, or (16) C₁-C10 alkyl substituted by hydroxy, halogen, cyano, NR⁸R⁸, SR⁸, trifluoromethyl, OR⁸, C₂-C₈ cycloalkyl, phenyl, NR⁸COR⁹, COR⁹, SO₂R⁹, OCOR⁹, NR⁸SO₂R⁹ or NR⁸CO₂R⁸;

R²-and R³-are independently (1) hydrogen, (2) C₁-C₁₀ alkyl or (3) C₁-C₁₀-alkyl with 1 to 4 substituents selected from hydroxy, C₁-C₁₀ alkoxy, or halogen;

 R^4 and R^5 are independently (1) hydrogen, (2) C_1 C_{10} alkyl, (3) halogen, (4) NHR⁸, (5) OR^8 , (6) SO_2R^9 or (7) NHSO₂R⁹;

R⁶ is (1) hydrogen or (2) C₁-C₁₀-alkyl;

 R^7 is $Z - (R^{1a})_n$;

R^{1a} is (1) R¹, (2) C₃-C₈ cycloalkyl, (3) phenyl optionally substituted with up to 4 groups independently selected from R⁸, NR⁸R⁸, OR⁸, SR⁸ or halogen, or (4) 5 or 6 membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, optionally

substituted with up to four groups independently selected from oxo, R⁸, NR⁸R⁸, OR⁸, SR⁸, or halogen;

Z is (1) phenyl, (2) naphthyl, (3) or a 5 or 6 membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (4) a benzene ring fused to a C₃-C₈ cycloalkyl ring, (5) a benzene ring fused to a 5 or 6 membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (6) a 5 or 6 membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6 membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, or (7) a 5 or 6 membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, sulfur or nitrogen fused to a C₃-C₈ cycloalkyl ring;

R⁸-is (1) hydrogen, (2) C₁-C₁₀alkyl, (3) C₃-C₈ eyeloalkyl, (4) Z optionally having 1 to 4 substituents selected from halogen, nitro, oxo, NR¹⁰R¹⁰, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₁-C₁₀ alkylthio, and C₁-C₁₀ alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO₂H, CO₂-C₁-C₁₀ alkyl, SO₂-C₁-C₁₀ alkyl, C₃-C₈ eyeloalkyl, C₁-C₁₀ alkoxy, or Z optionally substituted by from 1 to 3 halogen, C₁-C₁₀ alkyl or C₁-C₁₀ alkoxy, or (5) C₁-C₁₀ alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO₂H, CO₂-C₁-C₁₀ alkyl, SO₂-C₁-C₁₀ alkyl, C₂-C₈ eyeloalkyl, C₁-C₁₀ alkoxy, C₁-C₁₀ alkyl, or Z optionally substituted by from 1 to 4 halogen, C₁-C₁₀ alkyl or C₁-C₁₀ alkoxy;

R⁹ is (1) R⁸ or (2) NR⁸R⁸; and

 R^{10} -is (1) C_1 - C_{10} alkyl, or (2) two R^{10} -groups together with the N to which they are attached forming a 5 or 6-membered ring optionally substituted with C_1 - C_{10} alkyl;

A is pyridinyl;

R¹ is (1) hydroxy, (2) oxo, (3) halogen, (4) cyano, (5) NR⁸R⁸, (6) SR⁸,

(7) trifluoromethyl, (8) C₁-C₁₀ alkyl, (9) OR⁸, (10) SO₂R⁹, (11) OCOR⁹, (12) NR⁸COR⁹,

(13) COR⁹, (14) NR⁸SO₂R⁹, (15) NR⁸CO₂R⁸, or (16) C₁-C₁₀ alkyl substituted by hydroxy,

halogen, cyano, NR⁸R⁸, SR⁸, trifluoromethyl, OR⁸, C₃-C₈ cycloalkyl, phenyl, NR⁸COR⁹, COR⁹, SO₂R⁹, OCOR⁹, NR⁸SO₂R⁹ or NR⁸CO₂R⁸; where

 R^8 is (1) hydrogen, (2) C_1 - C_{10} alkyl, (3) C_3 - C_8 cycloalkyl, (4) Z optionally having 1 to 4 substituents selected from halogen, nitro, oxo, $NR^{10}R^{10}$, C_1 - C_{10} alkyl, C_1 - C_{10} alkylthio, and C_1 - C^{10} alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO_2H , CO_2 - C_1 - C_{10} alkyl, SO_2 - C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, C_1 - C_{10} alkoxy, or Z optionally substituted by from 1 to 3 halogen, C_1 - C_{10} alkyl or C_1 - C_{10} alkoxy, or (5) C_1 - C_{10} alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO_2H , CO_2 - C_1 - C_{10} alkyl, SO_2 - C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, or C_1 - C_{10} alkyl, or C_1 - C_1 0 alkoxy;

 R^9 is (1) R^8 or (2) NR^8R^8 ; and

R¹⁰ is (1) C₁-C₁₀ alkyl, or (2) two R¹⁰ groups together with the N to which they are attached forming a 5 or 6-membered ring optionally substituted with C₁-C₁₀ alkyl; and Z is (1) phenyl, (2) naphthyl, (3) or a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (4) a benzene ring fused to a C₃-C₈ cycloalkyl ring, (5) a benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (6) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, or (7) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a C₃-C₈ cycloalkyl ring;

n is 0 to 5;

 R^2 and R^3 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl or (3) C_1 - C_{10} alkyl with 1 to 4 substituents selected from hydroxy, C_1 - C_{10} alkoxy, or halogen;

X is (1) -CH₂-, (2) -CH₂-CH₂-, (3) -CH=CH- or (4) -CH₂O-; where m is 0 or 1; R⁴ and R⁵ are independently (1) hydrogen, (2) C₁-C₁₀ alkyl, (3) halogen, (4) NHR⁸, (5) OR⁸, (6) SO₂R⁹ or (7) NHSO₂R⁹;

 R^6 is (1) hydrogen or (2) C_1 - C_{10} alkyl;

r is 0 to 3; and

 R^7 is Z- $(R^{1a})_n$;

where Z is defined above and R^{1a} is (1) R^1 , (2) C_3 - C_8 cycloalkyl, (3) phenyl optionally substituted with up to 4 groups independently selected from R^8 , NR^8R^8 , OR^8 , SR^8 or halogen, or (4) 5 or 6-membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, optionally substituted with up to four groups independently selected from oxo, R^8 , NR^8R^8 , OR^8 , SR^8 , or halogen;

(c) a compound of formula (VI) is:

OH
$$R^6$$
 R^3

CH-CH-NH-C-A

 R^4

NHSO₂ R^1

wherein (IV)

X is hydrogen, halogen, trifluoromethyl or lower alkyl, and

R is hydrogen; or lower alkyl which may have a suitable substituent selected from the group consisting of $\operatorname{cyclo}(C_3-C_7)$ alkyl, hydroxy, lower alkoxy, carboxy and lower alkoxycarbonyl; $\operatorname{cyclo}(C_3-C_7)$ alkyl or and lower alkanoyl;

(d) a compound of formula (VII) is represented by the following general formula:

$$R^2$$
 R^6
 $CHOH-CH_2-NH-C(R^6)R^7-Y-X$
 $O-Z-CO_2H$

wherein

R¹ is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl, hydroxymethyl, methyl, methoxyl, amino, formamido, acetamido, methylsulphonylamido, nitro, benzyloxy, methylsulphonylmethyl, ureido, trifluoromethyl or p-methoxybenzylamino group;

R² is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl group;

R³ is a hydrogen, chlorine or bromine atom or a hydroxyl group,

R⁴ is a hydrogen atom or a methyl group;

R⁵ is a hydrogen atom or a methyl group;

R⁶ is a hydrogen, fluorine or chlorine atom or a methyl, methoxyl or hydroxy group;

X is an oxygen atom or a bond;

Y is an alkylene group of up to 6 carbon atoms or a bond; and

Z is an alkylene, alkenylene or alkynylene group of up to 10 carbon atoms; and

(e) a compound of formula (VIII) is represented by the following general formula:

$$R^{1}$$
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{8}
 R^{8}
 R^{8}

R is hydrogen or methyl,

R¹ is hydrogen, halogen, hydroxy, benzyloxy, amino or hydroxymethyl,

R² is hydrogen, hydroxymethyl, NHR³, SO₂NR⁴R⁴ or nitro,

R³ is hydrogen, methyl, SO₂R⁵, formyl or CONHR⁶,

R⁴-and R⁴-are independently hydrogen, lower alkyl or benzyl,

R⁵ is lower alkyl, benzyl or NR⁴R⁴;

R⁶ is hydrogen or lower alkyl,

R6 is hydrogen or lower alkyl,

R⁹ is hydrogen, amino, acetylamino or hydroxy, and

X is N, O, S or methylene;

provided that when X is N, O or S,

then R⁹ is hydrogen, either R⁷ or R⁸ is hydrogen, and the other is hydrogen, amino, acetylamino or hydroxy; and

provided that when X is methylene,

then both R^7 and R^8 are hydrogen

R¹ is hydrogen, halogen, hydroxy, benzyloxy, amino or hydroxymethyl,

R² is hydrogen, hydroxymethyl, -NHR³, -SO₂NR⁴R⁴' or nitro, where R³ is hydrogen, methyl, -SO₂R⁵, formyl or -CONHR⁶' and R⁴ and R⁴'are independently hydrogen, lower alkyl or benzyl; and R⁵ is lower alkyl, benzyl or -NR⁴R⁴'; and R⁶' is hydrogen or lower alkyl;

R⁶ is hydrogen or lower alkyl,

R⁷ is hydrogen, amino, acetylamino, or hydroxyl;

R⁸ is hydrogen, amino, acetylamino, or hydroxyl;

X is N, O, S or methylene;

R⁹ is hydrogen, amino, acetylamino or hydroxy;

provided that when X is N, O or S,

then R⁹ is hydrogen, either R⁷ or R⁸ is hydrogen, and the other is hydrogen, amino, acetylamino or hydroxy; and

provided that when X is methylene,

then both R⁷ and R⁸ are hydrogen.

19-20. (Canceled).

- 21. (Previously Presented): The method of Claim 10, comprising treating a subject having dysuria.
- 22. (Previously Presented): The method of Claim 10, comprising treating a subject having pollakiuria.
- 23. (Previously Presented): The method of Claim 10, comprising treating a subject having urinary incontinence.
- 24. (Previously Presented): The method of Claim 10, comprising treating a subject having neurogenic bladder dysfunction.

- 25. (Previously Presented): The method of Claim 10, comprising treating a subject having nervous pollakiuria.
- 26. (Previously Presented): The method of Claim 10, comprising treating a subject having nocturia.
- 27. (Previously Presented): The method of Claim 10, comprising treating a subject having an unstable bladder.
- 28. (Previously Presented): The method of Claim 10, comprising treating a subject having cystospasm.
- 29. (Previously Presented): The method of Claim 10, comprising treating a subject having chronic cystitis.
- 30. (Previously Presented): The method of Claim 10, comprising treating a subject having chronic prostatitis.
- 31. (Previously Presented): The method of Claim 10, comprising treating a subject having overflow incontinence.
- 32. (Previously Presented): The method of Claim 10, comprising treating a subject having passive incontinence.

- 33. (Previously Presented): The method of Claim 10, comprising treating a subject having reflux incontinence.
- 34. (Previously Presented): The method of Claim 10, comprising treating a subject having urge incontinence.
- 35. (Previously Presented): The method of Claim 10, comprising treating a subject having urinary stress incontinence.
 - 36. (Previously Presented) A compound of the general formula (I):

$$R^{1}$$
 (X)_m A CH CH N R^{2} R^{5} R^{3} (I)

wherein

R¹ is aryl which may have one or more suitable substituent(s), heterocyclic group or cyclo(lower)alkyl,

R² is hydrogen or amino protective group,

R³ and R⁴ are independently hydrogen, halogen, hydroxy, amino, nitro, carboxy, protected carboxy, aryl, lower alkyl, hydroxy(lower)alkyl, amino(lower)alkyl, acylamino(lower)alkyl, lower alkylamino(lower)alkyl which may have one or more suitable substituent(s), mono or di-(lower)alkylamino, acylamino, acyl group, lower alkoxy, halo(lower)alkoxy, lower alkoxy, lower alkoxy(lower)alkoxy, aryloxy,

cyclo(lower)alkyloxy, heterocyclicoxy, ar(lower)alkyloxy, acyloxy, lower alkylcarbamoyl(lower)alkoxy, heterocycliccarbamoyl(lower)alkoxy, heterocycliccarbamoyl(lower)alkoxy, heterocycliccarbonyl(lower)alkoxy, N-lower alkyl-lower alkylcarbamoyl(lower)alkoxy, arylcarbamoyl(lower)alkoxy which may have lower alkoxy or di(lower)alkylamino, di-lower alkylsulfamoyloxy, N-lower alkyl-heterocyclic(lower)alkylcarbamoyl(lower) alkoxy, N-lower alkyl-lower alkyl-lower alkylcarbamoyl(lower)alkoxy or N-lower alkyl-cyclo(lower)alkylcarbamoyl(lower)alkoxy,

R⁵ is hydrogen, lower alkyl, or aryl,

A is lower alkylene which may have one or more suitable substituent(s) or lower alkenylene,

X is O, S, SO, SO₂ or NH, and m is an integer of 0 or 1, or a salt thereof, wherein when R^1 is naphthyl and R^5 is H, then X is not O.

37. (New) The compound of claim 36, wherein

R¹ is phenyl which may have 1 or 2 suitable substituent(s) selected from the group consisting of hydroxy and lower alkylsulfonylamino,

R² is hydrogen,

R³ is lower alkylcarbamoyl(lower)alkoxy, heterocycliccarbamoyl(lower)alkoxy, heterocycliccarbonyl(lower)alkoxy, N-lower alkyl-lower alkylcarbamoyl(lower)alkoxy, hydroxy, lower alkoxy, protected carboxy, arylcarbamoyl(lower)alkoxy which may have lower alkoxy or di(lower)alkylamino, di-lower alkylsulfamoyloxy, N-lower alkylheterocyclic(lower)alkylcarbamoyl(lower) alkoxy, N-lower alkyl-lower alkylcarbamoyl(lower)alkoxy or N-lower alkyl-cyclo(lower)alkylcarbamoyl(lower)alkoxy,

R⁴ is hydrogen,

R⁵ is hydrogen,

A is lower alkylene,

X is O, and

m is an integer of 1.

- 38. (Previously Presented) The compound of claim 37, wherein
- R¹ is phenyl which may have hydroxy and methylsulfonylamino,
- R³ is ethylcarbamoylmethoxy, indolylcarbamoylmethoxy, piperidinocarbonylmethoxy, N-methylbutylcarbamoylmethoxy, hydroxy, butylcarbamoylmethoxy, methoxy, methoxycarbonyl, ethoxy, dimethylsulfamoyloxy, tetrazolylcarbamoylmethoxy, N-methylpyridylethylcarbamoylmethoxy, methoxyphenylcarbamoylmethoxy, thiazolylcarbamoylmethoxy, dihydroindolylcarbonylmethoxy, N-ethylpropylcarbamoylmethoxy, N-methylbutylcarbamoylmethoxy, N-ethylbutylcarbamoylmethoxy,

dimethylaminophenylcarbamoylmethoxy or N-methylcyclohexylcarbamoylmethoxy.

- 39. (Previously Presented) A process for preparing a compound of claim 36, or a salt thereof, which comprises,
 - (i) reacting a compound (II) of the formula:

$$R^1 - (X)_m - A - CH - CH - R^5$$
 (II)

wherein R¹, R⁵, A, X and m are each as defined in claim 36, with a compound (III) of the formula:

$$R^2$$
 HN
 R^3
 R^4
(III)

wherein R^2 , R^3 and R^4 are each as defined in claim 36, or a salt thereof, to give a compound (I) of the formula:

$$R^{1}$$
 — $(X)_{m}$ — A — CH — CH — N — R^{3} R^{4} (I)

wherein R¹, R², R³, R⁴, R⁵, A, X and m are each as defined in claim 36, or a salt thereof, or

(ii) subjecting a compound (Ia) of the formula:

$$R^{1}$$
— $(X)_{m}$ — A — CH — CH — N
 R^{2}
 R^{3}
 R^{5}
 R^{4}
(Ia)

wherein R¹, R³, R⁴, R⁵, A, X and m are each as defined in claim 36, and

 R_a^2 is amino protective group, or a salt thereof, to elimination reaction of the amino protective group, to give a compound (Ib) of the formula:

$$R^{1}$$
— $(X)_{m}$ — A — CH — CH — N — R^{3}
(Ib)

wherein R¹, R³, R⁴, R⁵, A, X and m are each as defined in claim 36, or a salt thereof.

- 40. (Previously Presented) A pharmaceutical composition which comprises the compound of claim 36 or a pharmaceutically acceptable salt thereof in admixture with a pharmaceutically acceptable carrier or excipient.
- 41. (Currently Amended) A method for making a pharmaceutical composition or a medicament comprising admixing the compound of claim 36 or a pharmaceutically acceptable salt thereof with a pharmaceutically acceptable carrier or excipient.
- 42. (Previously Presented) A compound of claim 36 or a pharmaceutically acceptable salt thereof in the form of a tablet, pellet, troche, capsule, suppository, cream, ointment, aerosol, powder for insufflation, solution, emulsion, or suspension.
- 43. (Currently Amended) A method for the prophylactic and/or the therapeutic treatment of pollakiuria or urinary incontinence which comprises administering an effective amount of a compound of claim 36 or a pharmaceutically acceptable salt thereof to a subject in need thereof.
- 44. (Previously Presented) A method for agonizing a β_3 adrenergic receptor comprising contacting said receptor with the compound of claim 36.

35

- 45. (Previously Presented) A method for inducing gut-selective sympathomimetic activity comprising administering an effective amount of the compound of claim 36 to a subject in need thereof.
- 46. (Currently Amended) A method for the prophylactic and/or the therapeutic treatment of a gastrointestinal disorder comprising administering an effective amount of the compound of claim 36 or a pharmaceutically acceptable salt thereof to a subject in need thereof.
- 47. (Currently Amended) A method for the prophylactic and/or the therapeutic treatment of an ulcer or pancreatitis comprising administering an effective amount of the compound of claim 36 or a pharmaceutically acceptable salt thereof to a subject in need thereof.
- 48. (Previously Presented) A method for inducing lypolysis comprising administering an effective amount of the compound of claim 36 or a pharmaceutically acceptable salt thereof to a subject in need thereof.

36