CS332: Mod02 HW 4

1. (15 pts) In class we discussed how real world objects such as soda vending machines, airplanes, automobiles, and traffic lights can be modeled as a finite state machine. Provide an example of a real world object or system not discussed in class that can be modeled as a finite state machine. Informally describe the states and transitions. You do not need to explicitly list all of the states (there may be thousands!) but provide a notional idea of the system. You do not need to provide a formal 5-tuple $M = \{Q, \Sigma, q_0, F, \delta\}$.

Trying to sleep the night before a major exam can be represented with a fairly simple FSM. It has the states:

q₀: trying to sleep

q₁: taking anti-depressants

q₂: unconscious

And the actions one can take in each state can be represented with $\Sigma = \{ a, b \}$:

a: failing to sleep

b: falling asleep

The following is a basic sketch of what the FSM may look like...

You start at q_0 trying to sleep. From q_0 you can fail to sleep (a) which then causes you to transition to the state where you resort to taking anti-depressants to help you sleep (q_1) .

Ideally, if you were unfortunate enough to reach state q_1 , you could be affected strongly enough by the pills the first time and succeed in falling to sleep (b), transitioning to q_2 where you are unconscious. Otherwise, if you are in q_1 and are unlucky enough to fail to sleep (a) even after taking the pills, you will keep taking the pills until you inevitably lose consciousness, ending up in q_2 .

Or you can be lucky and have the most natural transition where from q_0 you can also just fall asleep (b) which then transitions you to the desired state which is unconscious (q_2) . The goal would be to remain in this state by succeeding to sleep (b). Unfortunately, even from q_2 you

can fail to sleep (a) by waking up for one reason or another, thus transitioning you back into q_0 where you are back at the start, trying to sleep.

2. (5 pts) Draw the machine represented by the 5-tuple M = {Q, Σ , q_0 , F, δ }

$$\begin{split} Q &= \{\; q_{\scriptscriptstyle 0}, \, q_{\scriptscriptstyle 1}, \, q_{\scriptscriptstyle 2}, \, q_{\scriptscriptstyle 3} \;\}, \\ \Sigma &= \{1, \, 0\}, \\ q_{\scriptscriptstyle 0} &= q_{\scriptscriptstyle 0} \;, \\ F &= \{\; q_{\scriptscriptstyle 1}, \, q_{\scriptscriptstyle 2} \}, \\ \delta &= \end{split}$$

	0	1
0	1	2
1	3	2
2	1	3
3	0	0

3. (10 pts) Let $\Sigma = \{a, b\}$. Draw the machine M for the language L = $(ab*a)^+ + (ba*b)^+$

$$M = \{\;Q\;, \Sigma\;, \,q_0\;, \,F\;, \,\delta\;\}$$

$$Q = \{\ q_0 \ , \, q_1 \ , \, q_2 \ , \, q_3 \ , \, q_4 \ , \, q_5 \ \}$$

$$\Sigma = \{ a, b \}$$

$$q_0 = q_0$$

$$F = \{ q_3, q_5 \}$$

$$\delta =$$

	a	b
0	2	4
1	1	1
2	3	2
3	2	1
2 3 4 5	4	5
5	1	4