Dự đoán cần nặng và chiều cao Height and Weight Estimation

Nhóm 4

Báo cáo tiến độ

Tiến độ

Trình bày tiến độ công việc tới ngày 08/11

05

Kế hoạch

Kế hoạch trong những tuần sắp tới

[] Tiến độ

Height Estimation

1. Training data

- Tập dữ liệu thu thập được gồm 5110 ảnh cho training và 568 ảnh cho validation
- Các ảnh trong tập dữ liệu sẽ được đánh mask theo kích thước cơ thể của người trong ảnh

1. Training data

- Sau đó tiến hành training data bằng mô hình mạng UNET
- Sau khi training mô hình thành công ta sẽ thu được file chứa trọng số (weights) đã được huấn luyện của mô hình UNET là unet.h5

```
Epoch 1/5
Epoch 1: saving model to /content/drive/MyDrive/ComputerVision/Project/unet.h5
379/379 [===========] - 1429s 4s/step - loss: 0.3812 - mean_io_u: 0.3722 - recall: 0.6162 - precision: 0.6899 - val_loss: 0.4629 -
Epoch 2/5
379/379 [============ ] - ETA: 0s - loss: 0.2956 - mean io u: 0.3722 - recall: 0.7130 - precision: 0.7730
Epoch 2: saving model to /content/drive/MyDrive/ComputerVision/Project/unet.h5
379/379 [==========] - 291s 768ms/step - loss: 0.2956 - mean io u: 0.3722 - recall: 0.7130 - precision: 0.7730 - val loss: 0.3431
Epoch 3/5
Epoch 3: saving model to /content/drive/MyDrive/ComputerVision/Project/unet.h5
379/379 [=========== ] - 302s 796ms/step - loss: 0.2600 - mean io u: 0.3722 - recall: 0.7622 - precision: 0.7987 - val loss: 0.2943
Epoch 4/5
379/379 [============= - ETA: 0s - loss: 0.2384 - mean io u: 0.3722 - recall: 0.7859 - precision: 0.8178
Epoch 4: saving model to /content/drive/MyDrive/ComputerVision/Project/unet.h5
379/379 [=========== ] - 306s 806ms/step - loss: 0.2384 - mean io u: 0.3722 - recall: 0.7859 - precision: 0.8178 - val loss: 0.2526
Epoch 5/5
379/379 [=========] - ETA: 0s - loss: 0.2195 - mean io u: 0.3722 - recall: 0.8104 - precision: 0.8306
Epoch 5: saving model to /content/drive/MyDrive/ComputerVision/Project/unet.h5
379/379 [========== ] - 285s 753ms/step - loss: 0.2195 - mean io u: 0.3722 - recall: 0.8104 - precision: 0.8306 - val loss: 0.2246
<keras.callbacks.History at 0x7f969570f730>
```

1. Training data

 Ta sẽ sử dụng file trọng số unet.h5 tiến hành chạy mô hình unet để predict mask như hình dưới

Segmentation với UNet

2. Calibration

Dùng ứng dụng DroidCam trên điện thoại và kết nối với máy tính thông qua IP để thực hiện chụp và lưu ảnh

Calibration Camera

ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)

```
ret, corners = cv2.findChessboardCorners(gray, (width, height), None)
  if ret:
     objpoints.append(objp)
     corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
     img = cv2.drawChessboardCorners(img, (width, height), corners2, ret)
     cv2.drawChessboardCorners(img, (7, 6), corners2, ret)
     cv2.imshow('img', img)
cv2.destroyAllWindows()
```

Calibration Camera bằng chess board làm corners để tiến hành hiệu chỉnh

Calibration Images

```
print("Saving parameters!")
param_file = cv2.FileStorage('stereoMap.xml', cv2.FILE_STORAGE_WRITE)
param_file.write('stereoMapL_x', stereoMapL[0])
param_file.write('stereoMapL_y', stereoMapL[1])
param_file.write('stereoMapR_x', stereoMapR[0])
param_file.write('stereoMapR_y', stereoMapR[1])
param_file.write('projMtxL', projMtxL)
param file.write('projMtxR', projMtxR)
param_file.write('calibrateMtxL', newCameraMtxL)
param_file.write('calibrateMtxR', newCameraMtxR)
param file.write('distL', distL)
param_file.write('distR', distR)
param_file.write('rot', rot)
param_file.write('trans', trans)
print(retStereo)
```

- Thực hiện Calibration với ảnh bàn cờ
- Tính toán ra các parameters và lưu lại

3. Rectification Images

Để biến đổi hình ảnh thành hình ảnh mới thông qua các parameters của stereoMap đã lưu ở trên

4. Background Subtraction

Thực hiện Background Subtraction với mô hình UNET đã huấn luyện

5. Triangulation

Sử dụng Sift Feature phát hiện các điểm đặc biệt trên hình ảnh, bất kể tỉ lệ và góc nhìn của chúng

02 Kế hoạch

Kế hoạch sắp tới nhóm em sẽ:

- Hoàn thiện, cải tiến Height Estimation
- Thực hiện Weight Estimation

Weight Estimation

Mô hình dự kiến sử dụng kiến trúc mạng nơ-ron sâu, chẳng hạn như mạng nơ-ron tích chập (CNN), để trích xuất các đặc trưng quan trọng từ hình ảnh.

Thanks for watching!

