Appl. No. 10/559,878 Amdt. Dated December 3, 2010

Reply to Office Action of September 3, 2010

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

 (Currently amended) A method for the production of an aromatic or hetroaromatic fluorine-labelled compound comprising fluoridation of an iodonium salt of Formula (I) or (ID:

wherein:

Q = phenyl, or phenyl substituted with one or more of acetyl, C1-3 alkyl or -0-C1-3 alkyl each of R^4 , R^3 , R^4 and R^5 is independently hydrogen, $O(C_{L+0}$ alkyl) or C_{L+0} alkyl or protected versions thereof R^1 - R^5 is independently selected from hydrogen, C_{L-3} alkyl and -0- $(C_1$ - C_3 alkyl); and

 Y^{-} is a counter ion such as trifluoromethane sulfonate (triflate), perfluoro C_2 - C_{10} alkyl sulphonate, trifluoroacetate, methane sulfonate (mesylate), toluene sulfonate. (tosylate), tetraphenylborate;

to give a product of general formula (III):

Appl. No. 10/559,878

Amdt. Dated December 3, 2010

Reply to Office Action of September 3, 2010

where Q is substituted with one or more substituents selected from C_{++0} alkyl, $O(C_{++0}$ alkyl), C(=0) C_{++0} alkyl), C(=0) C(

 $O(C_{5,14} \text{ aryl})$, $C(=O)C_{5,14} \text{ aryl}$, $C(=O)NR^6(C_{5,14} \text{ aryl}$, $C_{5,14} \text{ heteroaryl}$, $O(C_{5,14} \text{ heteroaryl})$.

C(=0)C₅₋₁₄ heteroaryl, C(=0)NR⁶(C₅₋₁₄ heteroaryl), C₃₋₁₆ cycloalkyl, O(C₃₋₁₆ cycloalkyl),

 $C(=O)(C_{3-10}-cycloalkyl)$, $C(=O)NR^{6}(C_{3-10}-cycloalkyl)$, $C_{3-10}-heterocyclyl$, $O(C_{3-10}-cycloalkyl)$

heterocyclyl), $C(=0)(C_{3.40}$ heterocyclyl), $C(=0)NR^6(C_{5.44}$ heterocyclyl) or protected

versions thereof, when Q is substituted with an electron donating substituent, Q also contains

one or more electron withdrawing groups to ensure Q is electron deficient;

and wherein said fluoridation is carried out with a fluoride ion source characterised in that

the reaction solvent is either 100% water or a mixture of water and a water miscible solvent.

(Cancelled)

(Cancelled)

4. (Previously presented) A method as claimed in claim 1, wherein the water miscible

 $solvent\ is\ acetonitrile,\ ethanol,\ methanol,\ tetrahydrofuran\ or\ dimethyl formamide.$

5. (Previously Presented) A method as claimed in claim 1 wherein the volume:volume

ratio of water:water-miscible solvent is between 1:99 and 1:1.

6. (Original) A method as claimed in claim 5 wherein the volume:volume ratio of

water:water-miscible solvent is from 10:90 to 30:70.

7. (Previously Presented) A method as claimed in claim 1, wherein the fluoride ion

source is potassium, caesium or sodium fluoride.

8. (Cancelled)

3 of 8

Appl. No. 10/559,878

Amdt. Dated December 3, 2010

Reply to Office Action of September 3, 2010

(Cancelled)

 $10. \hspace{0.5cm} \hbox{(Previously Presented)} \hspace{0.5cm} \hbox{A method as claimed in claim 1 wherein, in the compound} \\$

of Formula II, the "solid support" is polystyrene, polyacrylamide, polypropylene or glass

or silicon coated with such a polymer.

11. (Previously Presented) A method as claimed in claim 1 wherein the solid support is in

the form of small discrete particles or is a coating on the inner surface of a reaction vessel.

12. (Previously Presented) A method as claimed in claim 1, wherein, in the compound of

Formula II the "linker" is $C_{1\text{--}20}$ alkyl or $C_{1\text{--}20}$ alkoxy, attached to the resin by an amide ether

or a sulphonamide bond or a polyethylene glycol (PEG) linker.

13. (Previously Presented) A method as claimed in claim 1

wherein R^6 is H, $C_1\text{-}C_6$ alkyl, $C_3\text{-}C_{10}$ cycloalkyl, $C_3\text{-}C_{10}$ heterocyclyl, $C_4\text{-}C_{10}$ aryl or

C₄-C₁₀ heteroaryl;

any of which may optionally be substituted with OH, NHR⁶, COOH or protected versions

any of these groups; or alternatively

any two adjacent substituents may form a four- to six-membered carbocyclic or heterocyclic

ring, optionally fused to a further aromatic, heteroaromatic, carbocyclic or heterocyclic ring.

14-15. (Cancelled)

16. (Previously Presented) A method as claimed in claim 1, wherein the fluorine-labelled

compound is an [18F]-labelled compound and the fluoride ion source is a source of 18F.

17. (Cancelled)

4 of 8

Appl. No. 10/559,878

Amdt. Dated December 3, 2010

Reply to Office Action of September 3, 2010

18. (Previously Presented) A method as claimed in claim 1, further including, in any order, one or more of the following steps: removal of excess ¹⁸F̄, for example by ion-exchange chromatography; and/or

- (i) removal of the protecting groups; and/or
- (ii) removal of organic solvent; and/or
- (iii) formulation of the resultant compound as an aqueous solution.

19. (Previously Presented) A kit for the production of an aromatic fluorine-labelled compound, the kit comprising:

- (i) a vial containing an aqueous solvent for dissolving the fluoride ion source; and
- (ii) a reaction vessel containing an iodonium salt of claim 1.
- 20. (Original) A kit as claimed in claim 19, wherein the solvent is 100% water.

 (Original) A kit as claimed in claim 19 wherein the solvent is a mixture of water and a water miscible solvent.

- 22. (Original) A kit as claimed in claim 21, wherein the water miscible solvent is acetonitrile, ethanol, methanol, tetrahydrofuran or dimethylformamide.
- 23. (Previously Presented) A kit as claimed in claim 21 wherein the volume:volume ratio of water:water-miscible solvent is between 1:99 and 1:1.
- 24. (Original) A kit as claimed in claim 23 wherein the volume:volume ratio of water-water-miscible solvent is from 10:90 to 30:70.
- 25-26. (Cancelled)

Appl. No. 10/559,878 Amdt. Dated December 3, 2010 Reply to Office Action of September 3, 2010

- 27. (Previously Presented) A kit as claimed in claim 19, wherein the reaction vessel is a cartridge or a microfabricated vessel.
- 28. (Previously Presented) A kit as claimed in claim 19, further comprising a source of fluoride ions.