Uegentige Integraler:

Sammenligningskriteriet:

La $f, g : [a : \infty) \to \mathbb{R}$, kontinuerlig og positiv. Anta $f(x) \ge (x)$ for alle x:

- 1. Hvis $\int_a^\infty f(x)dx$ Konvergerer $\Rightarrow \int_a^\infty g(x)dx$ Konvergerer
- 2. Hvis $\int_a^\infty g(x)dx$ Divergerer $\Rightarrow \int_a^\infty f(x)dx$ Divergerer

Grensesammenligningskriteriet:

La $f,g:[a:\infty)\to\mathbb{R}$, kontinuerlig og positiv.

- 1. $\int_a^\infty f(x)dx$ Konvergerer og $\lim_{x\to\infty} \frac{g(x)}{f(x)} < \infty \Rightarrow \int_a^\infty g(x)$
- 2. $\int_a^\infty f(x) dx$ Divergerer og $\lim_{x\to\infty} \frac{g(x)}{f(x)}>0 \Rightarrow \int_a^\infty g(x)$ Di-

Viktige Integraler:

$$\int_0^1 \frac{dx}{x^p}$$
 Konvergerer for $p < 1$, divergerer for $p \ge 1$ $\int_1^\infty \frac{dx}{x^p}$ Konvergerer for $p > 1$, divergerer for $p \le 1$

Taylorpolynom:

Taylors formel med restledd:

Anta f og den n+1 første deriverte er kont på [a,b]:

$$f(b) = T_n f(b) + \frac{1}{n!} \int_a^b f^{n+1}(t) (b-t)^n dt$$

Lagranges restleddformel

Anta f of dens n+1 første deriverte er kont på [a,b] $R_nf(x)=\frac{f^{n+1}(c)}{(n+1)!}(x-a)^{n+1}$

$$R_n f(x) = \frac{f^{n+1}(c)}{(n+1)!} (x-a)^{n+1}$$

Funksjonsfølger:

Punktvis og uniform konvergens:

Definisjon av punktvis konvergens:

La $\{f_n\}$ være en følge som er definert på en mengde A, og la fvære en funksjon definert på samme mengde A. f_n Konvergerer punktvis mot f på A, Hvis: $\lim_{n\to\infty} f_n(x) = f(x)$ for alle x i A Definisjon av avstand mellom to funksjoner over A:

f og g er definert på samme mengde A. avstanden blir da: $d_A(f, q) = \sup\{|f(x) - q(x) : x \in A|\}$

Definisjon av uniform kovergens:

En funksjonsfølge $\{f_n\}$, definert på A, konvergerer uniformt mot $f(\operatorname{Også} \operatorname{definert} \operatorname{på} A)$ hvis: $\lim_{n\to\infty} d_A(f, f_n) = 0$

Dinis teorem:

Anta at $\{f_n\}$ er en voksende følge av kont. funksjoner som konvergerer punktvis mot en kont. funksjon f på et lukket, begrenset intervall [a,b]. Da konvergerer $\{f_n\}$ uniformt mot f på [a,b]

Integrasjon og derivasjon av funksjonsfølger

Integrasjon av funksjonsfølger

 $\{f_n\}$ er en føge av funksjoner som konvergerer uniformt mot f på [a,b], da er $\lim_{n\to\infty} \int_c^x f_n(t)dt = \int_c^x \lim_{n\to\infty} f_n(t)dt = \int_c^x f(t)dt$ for $c \in [a,b]$ dette gjelder også for $\lim_{n\to\infty} \int_a^\infty f_n(t)dt = \int_a^\infty \lim_{n\to\infty} f_n(t)dt = \int_c^x f(t)dt$ Derivasjon av funksjonsfølger

$$\lim_{n \to \infty} \int_a^{\infty} f_n(t)dt = \int_a^{\infty} \lim_{n \to \infty} f_n(t)dt = \int_c^x f(t)dt$$

 $\{f_n\}$ er en funksjonsfølge på [a,b], og de deriverte f'_n konvergerer uniformt mot en funksjon h. Anta at $\{f_n(d)\}\$ konvergerer for et tall $d \in [a, b]$. Da konvergerer $\{f_n\}$ mot en deriverbar funksjon f og f' = h

$$\lim_{n\to\infty} f'_n(x) = [\lim_{n\to\infty} f_n(x)]'$$

Rekker

Divergenstesten

 $\sum_{n=0}^{\infty} a_n \text{Konvergerer} \Leftrightarrow \lim_{n \to \infty} a_n = 0$

Egenskaper ved rekker

La $\sum_{n=0}^{\infty} a_n$ og $\sum_{n=0}^{\infty} b_n$ være konvergente rekker: 1. $\sum_{n=0}^{\infty} (a_n \pm b_n) = \sum_{n=0}^{\infty} a_n \pm \sum_{n=0}^{\infty} b_n$

1.
$$\sum_{n=0}^{\infty} (a_n \pm b_n) = \sum_{n=0}^{\infty} a_n \pm \sum_{n=0}^{\infty} b_n$$

$$2. \sum_{n=0}^{\infty} ca_n = c \sum_{n=0}^{\infty} a_n$$