MCR3U Jensen

1) Sketch the graph of the inverse of each function. Is the inverse of f(x) a function? Explain.

a)

b)

2) Determine the equation of the inverse of each function.

$$f(x) = 2x$$

b)
$$f(x) = 6x - 5$$

$$F^{-1}(x) = \frac{x+5}{6}$$

$$x = \frac{2y+4}{5}$$
 $5x = 2y+4$
 $5x-4 = 2y$

c) $f(x) = \frac{2x+4}{5}$

$$y = \frac{2x+4}{5}$$
 $y = \frac{2x+4}{5}$
 $y = \frac{5x-4}{2} = y$
 $f^{-1}(x) = \frac{5x-4}{2}$

$$\mathbf{a)}\,f(x)=x^2+6$$

$$y = x^2 + 6$$

b)
$$f(x) = (x+8)^2$$

4) For each quadratic function, complete the square and then determine the equation of the inverse.

a)
$$f(x) = x^2 + 6x + 15$$

$$f(x) = (x^{2}+6x+9-9)+15$$

$$f(x) = (x+3)^{2}+6$$

$$x = (y+3)^{2}+6$$

$$x-6 = (y+3)^{2}$$

$$\pm \sqrt{2-6} - 3 = y$$

$$f^{-1}(x) = \pm \sqrt{2-6} - 3$$

b)
$$f(x) = 2x^2 + 24x - 3$$

$$f(x) = 2(x^{2} + 12x + 36) - 72 - 3$$

$$f(x) = 2(x + 6)^{2} - 75$$

$$x = 2(y + 6)^{2} - 75$$

$$f''(x) = + \sqrt{\frac{x+75}{2}} - 6$$

5) Determine if the two relations shown are inverses of each other. Justify your conclusion.

a)

yes

NO

- **6)** For the function f(x) = -5x + 6
- a) determine $f^{-1}(x)$
- **b)** Graph f(x) and its inverse

$$F'(x) = \frac{-x+6}{5}$$

7) Use transformations to graph the function $f(x) = 2(x-2)^2 + 1$. Find the inverse function $f^{-1}(x)$ and graph it by reflecting f(x) over the line y = x (switch x and y co-ordinates)

- 1) votral stretch LoFo 2 (ay)
- 2) shift right 2 units (x+2)
- 3) shift up 1 unit (4+1)

. 2	3) 31411 34 1 (1)
(-3,9)	x+2 dy+1
(-3,9)	2+2 dy+1 -1 19 0 9 1 3 2 1 graph 3 3 Here
(-2,4) (-1,1)	0 9
	2 1
(0,0)	2 3 3 3 graph 3 4 9 7 Hrse 5 19
(1,1)	4 9
(2,4)	5 19
(3,9)	
	8/2
	100
	8
	7 8
	\$ -/-
	3 2
-10 -9 -8 -7 -6 -	5 4 3 2 10 1 2 3 4 5 6 7 8 9 10
-10-9-8-7-6	
	-3
	-5 -6
	-7 -8
	1-1 -2 -3 -4 -5 -6 -7 -8 -9 -10
	1

8) Determine the equation of the inverse for the given functions and state the domain and range.

a)
$$f(x) = \sqrt{x+3}$$
 $\chi = \sqrt{y+3}$
 $\chi^2 = y+3$
 $\chi^2 - 3 = y$
 $f'(x) = \chi^2 - 3$
 $f'(x) = \chi^2 - 3$

b)
$$f(x) = \frac{3}{x-2} + 2$$
 $x = \frac{3}{y-2} + 2$
 $x = \frac{3}{y-2} + 2$
 $x = \frac{3}{y-2} + 2$
 $y = \frac{3}{x-2} + 2$

Answers

1) a)

y f(x)
4
4
x
1-1(x)

the inverse is NOT a function **b)**

inverse is NOT a function

2) a)
$$f^{-1}(x) = \frac{x}{2}$$
 b) $f^{-1}(x) = \frac{x+5}{6}$ c) $f^{-1}(x) = \frac{5x-4}{2}$

3) a)
$$f^{-1}(x) = \pm \sqrt{x-6}$$
 b) $f^{-1}(x) = \pm \sqrt{x} - 8$

4) a)
$$f^{-1}(x) = \pm \sqrt{x-6} - 3$$
 b) $f^{-1}(x) = \pm \sqrt{\frac{x+75}{2}} - 6$

5) a) yes b) no

6) a)
$$f^{-1}(x) = \frac{-x+6}{5}$$
 b)

7)
$$f^{-1}(x) = 2 \pm \sqrt{\frac{x-1}{3}}$$

8) a)
$$f^{-1}(x) = x^2 - 3$$
; Domain for $f(x)$: $\{X \in \mathbb{R} | x \ge -3\}$, Range for $f(x)$: $\{Y \in \mathbb{R} | y \ge 0\}$ Domain for $f^{-1}(x)$: $\{X \in \mathbb{R} | x \ge 0\}$, Range for $f(x)$: $\{Y \in \mathbb{R} | y \ge -3\}$

b)
$$f^{-1}(x) = \frac{3}{x-2} + 2$$
; Domain for $f(x)$: $\{X \in \mathbb{R} | x \neq 2\}$, Range for $f(x)$: $\{Y \in \mathbb{R} | y \neq 2\}$
Domain for $f^{-1}(x)$: $\{X \in \mathbb{R} | x \neq 2\}$, Range for $f(x)$: $\{Y \in \mathbb{R} | y \neq 2\}$