AFL 2023 END SEM SOLUTION

SECTION-A

(a) Design a Context Free Grammar for the language $L=\{a^nb^{2n}:n\geq 1\}$

1 marck

Check whether the following grammar is ambiguous or (b) not:

S → a|abSb|aAb

 $A \rightarrow bS | aAAb$

 $B \rightarrow b | \lambda$

1 marck

Yes, the given gramman is ambiguous.

Booz, for the string abab, we can generate more than 1 derivation trus.

Dercivation tree-1

Derivation tree - 2

(c) Design a Context Free Grammar for the following language:

1 marck

 $L = \{w : w \in \{0, 1\}^* \text{ and } w \text{ is a palindrome string}\}$

(d) Distinguish between CNF and GNF.

CMF

-> A CFG is in CNF if all productions |-> A CFG is in GNF if all are of the form;

$$A \rightarrow BC$$

or $A \rightarrow a$

where $A,B,C \in V$ and

 $a \in T$

GNF

productions are of the form;

where a ET and ZEV*

> The no. of steps required to derive a string of length in is (n).

GNF

All linear grammars are not regular grammar but all (e) regular grammars are linear. True or False, Justify.

(1 marik)

(TRUE)

- -> A regular grammar is either right linear or left linear i.e. atmost one variable appears on the RHS of production with restriction on position of the variable.
- -> A linear grammar is a gramman in which almost one variable appears on the RHS of production without restriction on position of the variable.

A -> aB/> B -> Ab

= This gramman is a linear gramman but not regular gramman.

(f) State the Pumping Lemma for Regular Languages.

Statement:

1 mark

Let L be an infinite regular language. Then there exists some the integer p' such that any string well with [w] >P can be decomposed as;

$$\omega = xyz$$

$$\omega \text{ with } |xy| \leq P$$
and
$$|y| \geq 1$$

$$\text{such that } |w_i = xy^2z \in L \text{ for all } i = 0,1,2...$$

1 marik

(h) Find a regular expression for the following language: $L = \{a^pb^q : p + q \text{ is even}\}$

1 marck

 Star closure of every regular language is infinite. State True or False with justification.

1 mark

(j) What is Chomsky's Language Hierarchy?

1 maruk

SECTION-B

 (a) Design a NFA for the following language and also find a regular expression for the same language: L = {w : w ∈ {a, b}* and either w starts with "ab" or ends with "ab"}

[4]

NFA:

Any other possible NFA can be accepted

- (b) Design Context Free Grammars for the following [2+2] languages:
 - i) $L=\{0^p1^q2^r: \text{ where p, q, r}>=0 \text{ and q}=p+r\}$
 - ii) $L = \{0^i 1^j : i \le j + 4\}$
 - $S \rightarrow AB$ $A \rightarrow 0A1 \mid \lambda$ $B \rightarrow 1B2 \mid \lambda$
 - S-> A | B | OS |
 A-> > 1 | 13
- 3. (a) Design a DFA or NFA for the following languages: [4]
 - i) L=L ((aa+bb+ab+ba)*bb*aa*(bb+aa)*)
 - ii) L=L(ab*a*a+ba*b*b) U L((a+b)*baba)

 $S \rightarrow AB|aB$

 $A \rightarrow aab | \lambda$

 $B \rightarrow bbA|a$

Eliminate &-production:

Nullable variable = { A}

S-) AB B | B | aB | a

Eliminate Unit-production;

S -> AB| bbA(a) bb aB| a

B-> 66A a 166

GINF

S-> aabB | bbaab | a | bb | a bbA | a
A -> aab
B-> bbA|a|bb

 $S \rightarrow a \vee_1 \vee_2 B | b \vee_2 \vee_1 \vee_1 \vee_2 | a | b \vee_2 | a \vee_2 \vee_2 A | a$ $A \rightarrow a \vee_1 \vee_2$ $B \rightarrow b \vee_2 A | a | b \vee_2$ $\forall_1 \rightarrow a$

(a) Consider a language, L= {ww : w∈ {a, b}*}. Show that
 L is not a Context Free Language, using Pumping Lemma.

Solution'.

Consider the language

$$L = \{ww : w \in \{a, b\}^*\}.$$

Although this language appears to be very similar to the context-free language of Example 5.1, it is not context free.

Take the string

$$a^mb^ma^mb^m$$
.

There are many ways in which the adversary can now pick vxy, but for all of them we have a winning countermove. For example, for the choice in Figure 8.2, we can use i = 0 to get a string of the form $a^kb^ja^mb^m$, k < m or j < m, which is not in L. For other choices by the adversary, similar arguments can be made. We conclude that L is not context free.

FIGURE 8.2

(b) Find a left-linear and a right-linear grammar for the language
 L = {a^pb^q | p>=2 and q>=3}.

of FAR

=>

 $E \rightarrow Eb \mid Db$ $D \rightarrow Cb$ $C \rightarrow Bb$ $B \rightarrow Ba \mid Aa$ $A \rightarrow Sa$ $S \rightarrow x$

[5]

 (a) Convert the following Context Free Grammar to Chomsky Normal Form.

 $S \rightarrow AABC$

 $A \rightarrow aAb | \lambda$

 $B \rightarrow aB|a$

 $C \rightarrow aBa|bCb|\lambda$

Remove >-produtions

Mullable variable = {A,C}

S-> AABC | ABC | AAB | B A > aAb | ab B > aBla C-> aBa | bCb | bb

Remore Unit-productions

S-> AABC| ABC| AAB| aBla A> aAb|ab B>aBla C-> aBa(bCb|bb CMF'

S=> $V_1 V_2 | A V_2 | V_1 B | V_3 B | \alpha$ A => $V_3 A V_4 | V_3 V_4$ B=> $V_3 B | \alpha$ C=> $V_3 B V_3 | V_4 C V_4 | V_4 V_4$ $V_1 \rightarrow A A$ $V_2 \rightarrow B C$ $V_3 \rightarrow \alpha$ $V_4 \rightarrow b$

#

S=> V1 V2 | AV2 | V1B | V3B | a

A -> V5 V4 | V3 V4

B-> V3B | a

C-> V6 V3 | V2 V4 | V4 V4

V1 -> AA

V2 -> BC

V3 -> A

V4-> b

V5-> V3 A

V6-> V3 B

V7-> V4 C

(b) Prove that Context Free Languages are closed under Concatenation operation. [3]

Let us assume two CFLs L_1 and L_2 with their corresponding grammars $G_1 = \{V_1, T_1, P_1, S_1\}$ and $G_2 = \{V_2, T_2, P_2, S_2\}$ respectively such that $V_1 \cap V_2 = \phi$

Let L be the new language generated by concatenation of L_1 and L_2 with its corresponding grammar $G = \{V, T, P, S\}$. Thus L generates the L_1L_2 language as $S \to S_1 S_2$ (: Concatenation)

Grammar for the L can be derived from L₁ and L₂ as follows:: $G = \{V_1 \cup V_2 \cup \{S\}, T_1 \cup T_2, P_1 \cup P_2 \cup \{S \rightarrow S_1 S_2\}, S\}.$ L is a CFL as the new production $S \rightarrow S_1 S_2$ does not violate the rule of being context free.

SECTION-D

7. (a) Construct a PDA or NPDA for the following language: [4] $L=\{a^ib^jc^k: \text{ where } i=j \text{ or } i=k \}$

(b) Construct a NPDA for the given CFG, G = ({S, M, N}, {0,1}, S, P) where the production rules P are given below:

 $S \rightarrow MN1|0$

 $M \rightarrow 00M|N$

 $N\rightarrow 1M1$

Remove Unit productions

GINF:

$$S \rightarrow ODMHI \mid 0$$

$$M \rightarrow ODM \mid IMI$$

$$N \rightarrow IMI$$

MPDA

8. (a) Design a Turing machine for the following language: [5]
$$L = \{ c^{m+n}a^mb^n : n, m \ge 1 \}$$

(b) Write the Instantaneous Descriptions (IDs) for the input string "cccaab" to the above designed TM.

- x x y 92 Y 7 Z - x x 92 x y y Z - x x x 90 y y Z - x x x y 93 y Z - x x x y y 93 Z - x x x y y Z 93 B - x x x y y Z B 94 B