Chapter 1 - Real Numbers System

0 Notation

We denote
$$R_+=\{x\in\mathbb{R};x\geq 0\}$$
, $\mathbb{R}_-=\{x\in\mathbb{R};x\leq 0\}$, $\mathbb{R}^*=\mathbb{R}-\{0\}$, $\mathbb{R}_+^*=\mathbb{R}_+-\{0\}$, $\mathbb{R}_-^*=\mathbb{R}_--\{0\}$.

1 Introduction

The set \mathbb{N} of natural numbers is the basis for counting.

$$\mathbb{N} = \{0, 1, 2 \ldots\}$$

Since there is no elements in \mathbb{N} such that the sum with 1, or with $2, \ldots$ gives 0, This leads to the introduction of a new set of integers.

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2 \ldots\}$$

Then, since there is no elements in \mathbb{Z} such that the *product* with 2, or with $3\ldots$ gives us 1, this leads to the construction of the set of rational numbers.

$$\mathbb{Q} = \left\{rac{p}{q};\; (p,q) \in \mathbb{Z} imes \mathbb{Z}^*
ight\}$$

We can observe that there are no rationals with a square that leads to 2. Indeed, if there exists, $(m,n) \in \mathbb{N}^* \times \mathbb{N}^*$ such that $2=(\frac{m}{n})^2$ and m and n are mutually prime, then $2n^2=m^2$. This implies that 2 divides m^2 and then 2 divides m. Assume that m=2p, thus $2n^2=m^2=4p^2$, therefore $n^2=2p^2$ and 2 divides n^2 and then n=2p0. This contradicts the fact that n=2p1 are mutually prime.

Numbers such as e and π are not rational.

Consequently, we need a new field, \mathbb{R} , larger than \mathbb{Q} .

2 Real Numbers

2.1 Existence and Uniqueness of $\mathbb R$

We admit the existence and uniqueness of the set of real numbers $\mathbb R$ and equipped of the two internal laws +, \cdot and a relation \leq . such that:

$$\begin{cases} 1) & (\mathbb{R},+,.) \text{ is a commutative field.} \\ 2) & \leq \text{ is a total order relation in } \mathbb{R} \\ \\ 3) & \forall (a,b,c) \in \mathbb{R}^3, \begin{cases} a \leq b \implies a+c \leq b+c \\ a \leq b \text{ and } 0 \leq c \implies ac \leq bc \end{cases} \\ 4) & \text{Any non-compty upper bounded subset of } \mathbb{R}^n \text{ had} \end{cases}$$

on empty upper bounded subset of $\mathbb R$ has a supremum in $\mathbb R$.

Reminder that:

 $(\mathbb{R},+,.)$ is a commutative field, meaning that:

$$+$$
 is associative: $orall (a,b,c) \in \mathbb{R}^3, (a+b)+c=a+(b+c)$

+ is commutative: $\forall (a,b) \in \mathbb{R}^2, a+b=b+a$

 \mathbb{R} has a neutral element for + denoted $0: \forall a \in \mathbb{R}, a+0=0+a=a$

Any element a in \mathbb{R} has an opposite, denoted by -a:

$$orall a \in \mathbb{R}, \ a+(-a)=(-a)+a=0$$

. is associative: $\forall (a,b,c) \in \mathbb{R}^3, (ab)c = a(bc)$

. is commutative: $\forall (a,b) \in \mathbb{R}^2, ab = ba$

 $\mathbb R$ has an identity element for the multiplication ., denoted by $1: \forall a \in \mathbb R, a1=1a=a$.

Any element a in $\mathbb{R} - \{0\}$ has an inverse denoted by a^{-1} :

$$orall a\in\mathbb{R}-\{0\}, \quad aa^{-1}=a^{-1}a=1$$

is distributive relative to the addition:

$$orall (a,b,c) \in \mathbb{R}^3, egin{cases} a(b+c) = ab + ac \ (b+c)a = ba + ca \end{cases}$$

 \leq is a total order relation in \mathbb{R} , meaning that:

< is reflexive: $\forall a \in \mathbb{R}, a < a$

 $\stackrel{-}{\leq}$ is antisymmetric: $\forall (a,b) \in \mathbb{R}^2, a \leq b \ and \ b \leq a \implies a = b$ \leq is transitive: $\forall (a,b,c) \in \mathbb{R}^3, a \leq b \ and \ b \leq c \implies a \leq c$

 $\leq ext{ is total: } \forall (a,b) \in \mathbb{R}^2, (a \leq b \text{ or } b \leq a)$

For any pair $(a,b) \in \mathbb{R}^2, a < b$ means that $a \leq b$ and $a \neq b$. We can use the notation $b \geq a$ $(resp. \ b > a)$ instead of $a \leq b$ (resp. a < b).

The elements in \mathbb{R} are called **Real Numbers**.

Definitions 1.1

Let A be a non-empty set of \mathbb{R} .

• A is said to be Upper Bounded in $\mathbb R$ if there exists $k\in\mathbb R$ such that

$$\forall a \in A, \ a \leq k$$

k is called an **upper bound** of A in \mathbb{R} .

• A is said to be Lower Bounded in $\mathbb R$ if there exists $k' \in \mathbb R$ such that

$$\forall a \in A, \quad k' \leq a$$

k' is called a **lower bound** of A in $\mathbb R$

- A is said to be bounded if it is upper, and lower bounded.
- We name Supremum of A in $\mathbb R$ the least of all upper bounds of A in $\mathbb R$, if it exists; this element is then denoted $Sup_{\mathbb R}(A)$ or Sup(A).
- We name Infimum of A in $\mathbb R$ the greatest lower bound of A in $\mathbb R$, if it exists; this element is the denoted $Inf_{\mathbb R}(A)$ or Inf(a).

Remarks

- 1. If k is an upper bound of A in \mathbb{R} , then for any $l \geq k$, l is also an upper bound of A in \mathbb{R} . Therefore, an upper bounded set has infinitely many upper bounds.
- 2. If k' is a lower bound of A in \mathbb{R} , then for any $l' \leq k'$, l' is also a lower bound of A in \mathbb{R} . Therefore, a lower bounded set has infinitely many lower bounds.

Examples

- 1. [0, 1[and]0, 1] are bounded.
- 2. \mathbb{N} is lower bounded, but not upper bounded.
- 3. \mathbb{Z} is not lower bounded, nor is it upper bounded.
- 4. $Sup_{\mathbb{R}}([0,1])=Sup_{\mathbb{R}}([0,1])=1$ and $Inf_{\mathbb{R}}([0,1])=Inf_{\mathbb{R}}([0,1])=0.$
- 5. $Sup(]-1,+\infty[)$ doesn't exist and $Inf(]-1,+\infty)=-1.$

Remark

In order to establish that a real number α is the *supremum* of a non-empty set A in \mathbb{R} , first we show that α is an upper bound of A in \mathbb{R} , then show that any other upper bound of A is greater than or equal to α . That is:

$$egin{cases} orall x \in A, & x \leq lpha & ext{that is } lpha ext{ is an upper bound of } A \ orall c \in \mathbb{R}, & (c ext{ upper bound of } A \implies lpha \leq c) \end{cases}$$

or:

$$egin{cases} orall x \in A, & x \leq lpha \ orall \epsilon \in \mathbb{R}_+^*, & \exists x \in A, lpha - e < x \leq lpha \end{cases}$$

Indeed, let $\epsilon \in \mathbb{R}_+^*$, we have $\alpha - \epsilon < \alpha$, then $\alpha - \epsilon$ is not an upper bound. Then there exists $x \in A$ such that $\alpha - \epsilon < x \leq \alpha$.

Conversely, if there exists an upper bound c of A such that $c < \alpha$, then let $\epsilon = a - c$, and using the hypothesis, there exists $x \in A$ such that $\alpha - \epsilon < x$, then c < x which is impossible since c is an upper bound of A.

Similarly, to establish that a real number β is the *infimum* of a non-empty subset A of \mathbb{R} , first we show that β is a lower bound of A in \mathbb{R} and then, we show that any lower bound is less than or equal to β . That is:

$$\left\{ egin{aligned} orall x \in A, & \beta \leq x \quad ext{that is β is a lower bound of A} \ orall c \in \mathbb{R}, & (c ext{ lower bound of A} \implies c \leq eta) \end{aligned}
ight.$$

or:

$$\left\{ egin{array}{ll} orall x \in A, & eta \leq x \ orall \epsilon \in \mathbb{R}_+^*, & \exists x \in A, \quad eta \leq x < eta + \epsilon \end{array}
ight.$$

Definitions 1.2

One defines in $\mathbb R$ nine types of intervals, for $(a,b)\in\mathbb R^2$ such that $a\leq b$.

 $egin{aligned} [a,b] &= \{x \in \mathbb{R}; a \leq x \leq b\}, ext{ is said to be closed and bounded or simply a segment} \ [a,b] &= \{x \in \mathbb{R}; a \leq x < b\} \]a,b] &= \{x \in \mathbb{R}; a < x \leq b\} \]a,b] &= \{x \in \mathbb{R}; a < x \leq b\} \]-\infty,a] &= \{x \in \mathbb{R}; x \leq a\} \]-\infty,a] &= \{x \in \mathbb{R}; x \leq a\} \]a,+\infty[&= \{x \in \mathbb{R}; a < x\} \]a,+\infty[&= \mathbb{R} \end{aligned}$

The intervals $[a,b], \]-\infty,a], \ [a,+\infty[,\ and\]-\infty,+\infty[$ are closed. The intervals $]a,b[,\]-\infty,a[,\]a,+\infty[,\ and\]-\infty,+\infty[$ are open. The intervals [a,b[,]a,b] are semi closed or semi open.

With these notations, the real numbers a and b are named the *endpoints* of the interval

2.2 Elementary Properties of Real numbers

- 1) $\forall x, y, z \in \mathbb{R}, (x \leq y \implies x + z \leq y + z)$
- $2) \ \forall x,y,u,v \in \mathbb{R}, (x \leq y \ \text{and} \ u \leq v \implies x+u \leq y+v).$

Indeed,

$$\begin{cases} x \leq y \implies x + u \leq y + u \\ u \leq v \implies u + y \leq v + y \end{cases} \implies x + u \leq y + v$$

Then, by induction, for any $n \in \mathbb{N}^*, x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}$:

$$(orall i \in \{1,\ldots,n\}, x_i \leq y_i) \implies \sum_{i=1}^n x_i \leq \sum_{i=1}^n y_i$$

- 3) $\forall x \in \mathbb{R}^*, (0 < x \iff 0 < \frac{1}{x})$. (Generally, we use the notation $\frac{1}{x}$ instead of x^{-1}).
- 4) $\forall x, y \in \mathbb{R}, \forall z \in \mathbb{R}^*, (x \leq y \implies xz \leq yz).$
- 5) $\forall x, y, u, v \in \mathbb{R}, (0 \le x \le y \text{ and } 0 \le u \le v \implies xu \le yv).$

Indeed,

$$\begin{cases} x \leq y \text{ and } 0 \leq u \implies xu \leq yu \\ u \leq v \text{ and } 0 \leq y \implies yu \leq yv \end{cases} \implies xu \leq yv$$

Also, by induction, we show that for all $n\in\mathbb{N}^*,x_1,\ldots,x_n,y_1,\ldots,y_n\in\mathbb{R}$:

$$(orall i \in \{1,\dots,n\}, 0 \leq x_i \leq y_i) \implies \prod_{i=1}^n x_i \leq \prod_{i=1}^n y_i)$$

In particular, $orall n \in \mathbb{N}, orall (x,y) \in \mathbb{R}^2, (0 \leq x \leq y \implies x^n \leq y^n)$

6)
$$\forall (x,y) \in (\mathbb{R}^*)^2, \left(x < y \iff \frac{1}{y} < \frac{1}{x}\right).$$

$$(7) \ orall x, y, u, v \in \mathbb{R}, (x \leq y \ ext{and} \ u < v \implies x + u < y + v)$$

If $x \leq y$ and $u \leq v$, then $x \leq y$ and $u \leq v$. Thus by 2), $x + u \leq y + v$. If x + u = y + v, then x - y = v - u. But $x - y \leq 0$, and $v - u \geq 0$. This gives $x - y = v - u = 0 \implies u = v$ which is impossible since u < v. We conclude that x + u < y + v.

We deduce that for any $n \in \mathbb{N}^*, x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}$:

$$(orall i \in \{1,\ldots,n\}, x_i \leq y_i) ext{ and } (\exists i_0 \in \{1,\ldots,n\}, x_{i_0} \leq y_{i_0}) \implies \sum_{i=1}^n x_i < \sum_{i=1}^n y_i)$$

This property is generally used in the following form:

$$(orall i \in \{1,\ldots,n\}, x_i \leq y_i) ext{ and } \sum_{i=1}^n x_i = \sum_{i=1}^n y_i \implies (orall i \in \{1,\ldots,n\}, x_i = y_i).$$

2.3 Absolute Value

Definition 1.3

The absolute value of a real number x is the positive (or null) real number |x|, defined by:

$$|x| = \left\{egin{array}{ll} x & if & x \geq 0 \ -x & if & x \leq 0 \end{array}
ight.$$

Properties of the absolute value:

- 1. $\forall x \in \mathbb{R}, \; |x| \geq 0$
- 2. $|x|=0 \iff x=0$
- 3. $\forall x \in \mathbb{R}, \; x \leq |x|$
- 4. $orall x,y\in \mathbb{R},\; |xy|=|x||y|$
- 5. triangular inequality: $\forall x,y \in \mathbb{R}, \; |x+y| \leq |x| + |y|$
- 6. $orall x,y\in\mathbb{R},\; ||x|-|y||\leq |x-y|$

2.4 Distance on $\mathbb R$

Definition 1.4

The distance between two real numbers x and y is the positive real number

$$d(x,y) = |x - y|$$

Properties of the distance:

- 1. Positivity: $\forall x,y \in \mathbb{R}, \ d(x,y) \geq 0$
- 2. Symmetry: $\forall x,y \in \mathbb{R}, \ d(x,y) = d(y,x)$
- 3. Separation: $\forall x,y \in \mathbb{R}, \ d(x,y) = 0 \iff x = y$
- 4. Triangular Inequality: $\forall x,y,z\in\mathbb{R}, d(x,z)\leq d(x,y)+d(y,z)$

2.5 Integer Part of a Real Number

Definition 1.5

For any real number x, there exists a unique integer $p \in \mathbb{Z}$ that satisfies

$$p < x < p + 1$$

This integer p is called the integer part of x and it will be denoted E(x) or |x|.

Examples:

- 1. E(3,4)=3
- 2. E(-2,1) = -3

Definition 1.6

The integer part of a real number x is the greatest integer less or equal to x and we have

$$orall x \in \mathbb{R}, \ E(x) \leq x < E(x) + 1$$

2.5 Neighborhood of a Real Number

Definition 1.7

Let N be a non-empty subset of \mathbb{R} . V is called the neighborhood of $x \in \mathbb{R}$ if N contains an open interval centered at x. More precisely:

$$\exists \alpha > 0, \ |x - \alpha, x + \alpha| \subset V$$

Properties of the neighborhoods of a point

- 1. If N is a neighborhood of x, then $x \in N$.
- 2. If N is a neighborhood of x, and $N \subset M$, then M is a neighborhood of x.
- 3. If N_1 and N_2 are neighborhoods of x, then $N_1 \cap N_2$ is a neighborhood of x.
- 4. Any open interval is a neighborhood of any of its points.
- 5. If $x,y\in\mathbb{R}$, such that $x\neq y$, then there exists N_1 neighborhood of x and N_2 neighborhood of y such that $N_1\cap N_2=\emptyset$. The set \mathbb{R} is said to be separated.

Neighborhood of $+\infty$

A neighborhood of $+\infty$ is of the form $]A,+\infty[$, $A\in\mathbb{R}$. A neighborhood of $-\infty$ is of the form $]-\infty,A[$, $A\in\mathbb{R}$.

2.6 Adherent (closure) Point

Definition 1.8

A subset A of \mathbb{R} . We say that a real number a is an adherent point to A if any neighborhood of a intersects A. In other words, if

$$orall \epsilon > 0,]a - \epsilon, a + \epsilon [\cap A
eq \emptyset]$$

Example

let A=]0,1[. The point 0 is an adherent point to A since

$$orall \epsilon > 0,] - \epsilon, \epsilon [\cap] 0, 1 [
eq \emptyset$$

but the real number 2 is not an adherent point to A because there exists an open interval (for example)]1.5, 2.5[centered at 2 that does not intersect A.

Theorem

Any real number x is an adherent point to \mathbb{Q} . Equivalently

$$\forall a,b \in \mathbb{R}, \; ext{ such that } a < b, \; |a,b| \cap \mathbb{Q} \neq 0$$

Definition 1.9

The set of rational numbers $\mathbb Q$ is then said to be dense in $\mathbb R.$ We have $\bar{\mathbb Q}=\mathbb R.$