Proyecto 3: Requerimientos Funcionales

1:

Nombre	ClosestVertex
Resumen	Dado un punto identificable por su latitud y longitud, se busca el vértice más cercano, según sui distancia harvesiana.
Entradas	Latitud 1, longitud1
Resultados	Un objeto de la clase vertice que es el vertice con la menor distancia harvesiana al punto pasado por parametro
Complejidad	O (Log N) en el caso esperado y O(N) en el peor caso
Estructuras a utilizar	Se utilizará un kd-tree en este caso con k = 2

2:

Nombre	AddInfraction
Resumen	Dado una infracción con su latitud y longitud, se busca el vértice de la malla vial más cercano y a este se agrega la información del comparendo
Entradas	Comparendo
Resultados	Se agrega la información del comparendo al vértice de la malla vial más cercano.
Complejidad	O (Log N) en el caso esperado y O(N) en el peor caso
Estructuras a utilizar	Se utilizará un kd-tree y un arreglo dinámico donde se tendrán todos los vértices de la malla vial

3A:

Nombre	addCostInfo
Resumen	Dada la información de costo de un arco se agrega al grafo
Entradas	La distancia haversiana, el total de comparendos

Resultados	Se agrega la información al grafo
Complejidad	O(1)
Estructuras a utilizar	El grafo de la malla vial.

4:

Nombre	AddPoliceStationInfo
Resumen	Dado una estación de policia con su latitud y longitud, se busca el vértice de la malla vial más cercano y a este se agrega la información de la estación.
Entradas	Estación de policía.
Resultados	Se adiciona la información de la estación de policía al grafo
Complejidad	O (Log N) en el caso esperado y O(N) en el peor caso
Estructuras a utilizar	Se utilizará un kd-tree y un arreglo dinámico donde se tendrán todos los vértices de la malla vial

1A:

Nombre	MinimumDistanceJourney
Resumen	Dado dos puntos, uno de origen y otro de destino, se busca hallar la distancia más corta entre ambos teniendo en cuenta la distancia harvesiana.
Entradas	Latitud origen, Latitud destino, Longitud origen, longitud destino
Resultados	Total de nodos y de cada nodo su id, latitud y longitud, y la distancia total estimada.
Complejidad	O(E+V+logV) con Dijkstra
Estructuras a utilizar	Se utilizara el un minQueue, un arreglo dinámico y el grafo con los vértices y arcos.

2A:

Nombre	MSTCamerasImportance
Resumen	Dado un número M cámaras que se quieren instalar, devolver la red de comunicaciones que soporte su instalación, que tenga los M vértices con mayor importancia en términos de infracciones y que tenga el mínimo costo de construcción
Entradas	La cantidad de cámaras requeridas M.
Resultados	El MST requerido sin caminos innecesarios.
Complejidad	O(ElogV)
Estructuras a utilizar	Se utilizara el un minQueue, un arreglo dinámico y el grafo con los vértices y arcos.

<u>1B.</u>

Nombre	MinimumInfractionsJourney
Resumen	Dado dos puntos, uno de origen y otro de destino, se busca hallar la distancia más corta entre ambos teniendo en cuenta el numero de infracciones en el camino.
Entradas	Latitud origen, Latitud destino, Longitud origen, longitud destino
Resultados	Total de nodos y de cada nodo su id, latitud y longitud, y la distancia total estimada.
Complejidad	O(E+V+logV) con Dijkstra
Estructuras a utilizar	Se utilizara el un minQueue, un arreglo dinámico y el grafo con los vértices y arcos.

2B:

Nombre	MSTCamerasQuantity
Resumen	Dado un número M cámaras que se quieren instalar, devolver la red de comunicaciones que soporte su instalación, que pase por los M vértices con más comparendos y que tenga el mínimo costo de construcción
Entradas	La cantidad de cámaras requeridas M.

Resultados	El MST requerido sin caminos innecesarios.
Complejidad	O(ElogV)
Estructuras a utilizar	Se utilizara el un minQueue, un arreglo dinámico y el grafo con los vértices y arcos.

1C

Nombre	MSTPolice
Resumen	Dado un número M, devolver la red de comunicaciones conecte los
	M vértices con más comparendos y que la suma de sus caminos sea mínima.
Entradas	La cantidad M de puntos que se quieren visitar obligatoriamente.
Resultados	El MST requerido sin caminos innecesarios.
Complejidad	O(ElogV)
Estructuras a utilizar	Se utilizara el un minQueue, un arreglo dinámico y el grafo con los vértices y arcos.

2C	
Nombre	CCInfractions
Resumen	Crear una visualización de todos los componentes conectados según las estaciones de policía y los comparendos que atienden.
Entradas	Ninguna.
Resultados	Una visualizacion de todos los components conectados.
Complejidad	O(V+E)
Estructuras a utilizar	un arreglo dinámico y el grafo con los vértices y arcos.