

LOSER Changed to LASER

- First discovered by Maiman 1960
- Once teased as discovery in search of applications
- Today, there are hundreds of applications:
 - CO₂ laser used in cosmetics
 - Nd:YAG laser used in machining
 - Ar laser used in surgery
 - Diode laser used in communications
 - Dye lasers used in spectroscopy
 - Nd:Glass laser used in nuclear fusion

Properties of LASER

meaning

- Monochromatic
- Coherent
- Directional
- Focused
- > Bright
- Polarized (optional)

- Identical wavelength
- In phase
- Same path
- Low divergence
- High intensity
- E-M vibrations in same plane

Interaction of Radiation with Matter

- 1. Absorption
- 2. Spontaneous emission
- 3. Stimulated emission

- Energy supplied
- Energy emitted
- Energy emitted

Absorption i.e. Stimulated Absorption

Rate of transition

$$\frac{\mathrm{dN}}{\mathrm{dt}}\bigg|_{\mathrm{ab}} = \mathrm{B}_{12}\mathrm{N}_1\mathrm{Q}$$

Where,

B₁₂: probability of absorption process

N₁: number of atoms in lower energy level E₁

Q: energy density of incident radiation per unit frequency (J-s/m³)

Spontaneous i.e. Natural Emission

Rate of transition

$$\frac{\mathrm{dN}}{\mathrm{dt}}\Big|_{\mathrm{sp}} = \mathrm{A}_{21}\mathrm{N}_2$$

Where,

 A_{21} : probability of spontaneous emission process

N₂: number of atoms in higher energy level

Stimulated i.e. triggered emission

Emitted radiation has same

- i. Wavelength
- ii. Direction
- iii. Phase

Rate of transition

$$\left. \frac{\mathrm{dN}}{\mathrm{dt}} \right|_{\mathrm{st}} = B_{21} N_2 Q$$

Where,

B₂₁: probability of stimulated emission process

N₂: number of atoms in higher energy level E₂

Q: energy density of incident radiation per unit frequency

Important Laser Physics Terms

Population

The number of active atoms occupying a particular energy state

Population Inversion

Creating a non-equilibrium state with more atoms in excited states

Pumping

Process of supplying trigger/input energy to achieve population inversion

Metastable State

Special energy levels having unusually high lifetime

Active medium

Region of the laser source where population inversion is achieved

Lasing Condition

- At equilibrium, $N_1 = \frac{g_1}{g_2} N_2 e^{(E_2 E_1)/kT}$
- Since E₂ > E₁, at equilibrium, N₁ >> N₂
- Lower states E₁ are usually more populated than upper states E₂
- For laser emission, we need $N_2 > N_1$
- This is a non-equilibrium state
- Achieved by using pumping and metastable state/s

Types of Pumping

Optical pumping

A broad and bright source of light (photons) is used to supply energy Example: Xenon flash lamp in Ruby laser, Nd:YAG laser, Dye lasers

Electrical Pumping

High electric field is set up by a pair of electrodes

Example: He-Ne laser, CO₂ laser, Ar laser

Direct conversion

By passing an electric current

Example: Semiconductor diode lasers

Optical Pumping - Schematic

Electrical Pumping - Schematic

Pumping Schemes and Metastable States

Three level

Four level

Two level

Optical Resonator

Thanks!

Blackbody Radiation at Different Temperatures

