Lecture Notes to Fuchsian Groups Winter 2020, Technion

Lectures by Chen Meiri Typed by Elad Tzorani

October 27, 2020

Contents

1	Preliminaries			5
	1.1	The H	Iyperbolic Plane	5
		1.1.1	The Riemann Sphere	5
		1.1.2	Models of the Hyperbolic Plane	6

4 CONTENTS

Chapter 1

Preliminaries

1.1 The Hyperbolic Plane

1.1.1 The Riemann Sphere

Definition 1.1.1 (The Riemann Sphere). The *Riemann sphere* is a one-dimensional complex manifold, denoted $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, the charts of which are the following.

$$U_{1} = (\mathbb{C}, f_{1})$$

$$U_{2} = (\hat{\mathbb{C}} \setminus \{0\}, f_{2})$$

where

$$f_1 \colon \mathbb{C} \to \mathbb{C}$$

 $z \mapsto z$

and

$$f_2 \colon \mathbb{C} \to \hat{\mathbb{C}} \setminus \{0\}$$

 $z \mapsto \frac{1}{z}.$

Definition 1.1.2 (Möbius Transformation). A map $T \colon \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ of the form

$$z \mapsto \frac{az+b}{cz+d}$$

where $ad - bc \neq 0$ is called a Möbius transformation.

Notation 1.1.3. 1. We denote the image of $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{C})$ in $PGL_2(\mathbb{C})$ by $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

2. For every $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{PGL}_2(\mathbb{C})$, we denote by T_g the Möbius transformation $z \mapsto \frac{az+b}{cz+d}$.

Lemma 1.1.4. The set of Möbius transformations is a group under composition, and the map $g \mapsto T_g$ is an isomorphism between $\operatorname{PGL}_2(\mathbb{C})$ and the group of Möbius transformation.

Proof. It holds that

$$\begin{split} T_{g_{1}} \circ T_{g_{2}}\left(z\right) &= \frac{a_{1}\left(\frac{a_{2}z+b_{2}}{c_{2}z+d_{2}}\right)+1}{c_{1}\left(\frac{a_{2}z+b_{2}}{c_{2}z+d_{2}}\right)+d_{1}} \\ &= \frac{\left(a_{1}a_{2}+b_{1}c_{2}\right)z+\left(a_{1}b_{2}+b_{1}d_{2}\right)}{\left(c_{1}a_{2}+d_{1}c_{2}\right)z+\left(c_{1}b_{2}+d_{1}d_{2}\right)} \\ &= T_{g_{1}g_{2}}\left(z\right). \end{split}$$

In particular, $T_{g^{-1}}$ is the inverse of T_g . The rest of the proof is clear.

Definition 1.1.5 (Generalised Circle). A generalised circle in \mathbb{C} is either an Euclidean circle or an Euclidean straight line.

Lemma 1.1.6. Let $T: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a Möbius transformation. Then

- 1. T is an endomorphism of $\hat{\mathbb{C}}$.
- 2. T is conformal.
- 3. T sends generalised circles to generalised circles.

1.1.2 Models of the Hyperbolic Plane

Definition 1.1.7 (The Upper Half Plane Model for the Hyperbolic Plane). 1. As a set, define $\mathbb{H} := \{z \in \mathbb{C} \mid \Im(z) > 0\}.$

2. Let $\gamma \colon [0,1] \to \mathbb{H}$ be a piecewise continuously differentiable path given by $\gamma(t) = x(t) + iy(t)$ for real functions x(t), y(t). The hyperbolic length of γ is given by

$$h\left(\gamma\right) := \int_{0}^{1} \frac{\sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^{2} + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^{2}}}{y\left(t\right)} \, \mathrm{d}t = \int_{0}^{1} \frac{\left|\frac{\mathrm{d}\gamma}{\mathrm{d}t}\right|}{y\left(t\right)} \, \mathrm{d}t.$$

3. The hyperbolic distance $\rho(z, w)$ between two points $z, w \in \mathbb{H}$ is defined as $\inf_{\gamma} h(\gamma)$ where the infimum is taken over all piecewise continuously differentiable paths γ from z to w.

7

Remark 1.1.8. \mathbb{H} is a Riemann surface where for every $z \in \mathbb{H}$, the inner product of T_zH is given by

$$((x_1, y_1), (x_2, y_2)) = \frac{x_1x_2 + y_1y_2}{(\Im z)^2}.$$

In particular, Euclidean angles are equal to hyperbolic angles.

Definition 1.1.9 (The Disc Model for the Hyperbolic Plane). 1. As a set, define $\mathbb{U} := \{z \in \mathbb{C} \mid |z| < 1\}$.

2. Let $\gamma \colon [0,1] \to \mathbb{U}$ be a piecewise continuously differentiable path. The hyperbolic length of γ is given by

$$h_{u}\left(\gamma\right) \coloneqq \int_{0}^{1} \frac{2\left|\frac{\mathrm{d}\gamma}{\mathrm{d}t}\right|}{1-\left|\gamma\left(t\right)\right|^{2}} \, \mathrm{d}t.$$

3. The hyperbolic distance $\rho_u(z, w)$ between $z, w \in \mathbb{U}$ is defined to be $\inf_{\gamma} h(\gamma)$ where the infimum is taken over all piecewise differentiable paths from z to w.

Remark 1.1.10. It is clear that hyperbolic circles around 0 are exactly Euclidean circles around it (with a generally different radius).

Remark 1.1.11. Rotations around 0 are isometries in the disc model.

Lemma 1.1.12. Let π be the Möbius transformation defined by

$$\pi\left(z\right) = \frac{iz+1}{z+i}.$$

Then

- 1. π is a bijection from \mathbb{H} to \mathbb{U} .
- 2. For every piecewise differentiable path $\gamma \colon [0,1] \to \mathbb{H}$, it holds that $h_u(\pi(\gamma)) = h(\gamma)$. In particular, π is an isometry.

Proof. 1. It holds that

$$\pi(-1) = -1$$
$$\pi(0) = -i$$
$$\pi(1) = 1.$$

Since Möbius transformations send generalised circles to generalised circles we get that π sends \mathbb{R} to the unit circle. Since $\pi(i) = 0$ and π is a homeomorphism of the Riemann sphere, we get the result.

2. Let $\gamma\colon [0,1]\to \mathbb{H}$ be a piecewise continuously differentiable path. Denote $\psi=\pi^{-1}$ and $\delta=\pi\left(\gamma\right)$. Then

$$\psi(z) = \frac{iz - 1}{-z + i} = \frac{(iz - 1) - \bar{z} - i}{(-z + i) - \bar{z} - i} = \frac{(z + \bar{z}) + i(1 - |z|^2)}{|-z + i|^2}.$$

So,

$$\Im(\psi(z)) = \frac{1 - |z|^2}{|-z + i|^2}.$$

Since

$$\frac{\mathrm{d}\psi}{\mathrm{d}z} = \frac{-2}{\left(-z+i\right)^2},$$

we get that

$$h(\gamma) = \int_{0}^{1} \frac{\left|\frac{\mathrm{d}\gamma}{\mathrm{d}t}\right|}{\Im\left(\gamma\left(t\right)\right)} \,\mathrm{d}t$$

$$= \int_{0}^{1} \frac{\left|\frac{\mathrm{d}\psi\left(\delta\right)}{\mathrm{d}t}\right|}{\Im\left(\psi\left(\delta\left(t\right)\right)\right)} \,\mathrm{d}t$$

$$= \int_{0}^{1} \frac{\left|\frac{\mathrm{d}\psi}{\mathrm{d}z}\left(\delta\left(t\right)\right)\frac{\mathrm{d}\delta}{\partial t}\right|}{\Im\left(\psi\left(\delta\left(t\right)\right)\right)}$$

$$= \int_{0}^{1} \frac{2\left|\frac{\mathrm{d}\delta}{\mathrm{d}t}\right|}{1 - \left|\delta\left(t\right)\right|^{2}} \,\mathrm{d}t$$

$$= h_{u}\left(\delta\right).$$