

Anabolisme

A. PENDAHULUAN

- Metabolisme adalah reaksi biokimia dalam tubuh makhluk hidup yang melibatkan substrat dan enzim untuk menghasilkan produk.
- Metabolisme terbagi menjadi dua, yaitu katabolisme dan anabolisme.
- Nengertian katabolisme dan anabolisme:

Katabolisme	Anabolisme
mengubah senyawa	mengubah senyawa
organik menjadi	anorganik menjadi
senyawa anorganik	senyawa organik
mengurai molekul	menyusun (sintesis)
kompleks menjadi	molekul sederhana
sederhana	menjadi kompleks
menghasilkan ATP	menggunakan ATP

B. ANABOLISME

- Anabolisme terdiri dari:
 - Fotosintesis (anabolisme karbohidrat), adalah proses anabolisme yang menggunakan cahaya sebagai sumber energi.
 - Kemosintesis, adalah proses anabolisme yang menggunakan senyawa kimia sebagai sumber energi.
- ▲ ATP (adenosin trifosfat) adalah bentuk energi yang digunakan oleh makhluk hidup untuk melakukan aktivitas tingkat sel.
- **Energi ATP** berasal dari proton (H⁺) dan elektron yang berada di dalamnya.
- Energi ATP pada anabolisme dibawa oleh NADP* (nikotinamid adenin dinukleotida fosfat).
- ▲ ATP pada fotosintesis dibentuk dari fotofosforilasi.

C. KOMPONEN FOTOSINTESIS

- Nomponen yang melakukan reaksi fotosintesis adalah kloroplas yang mengandung pigmen fotosintetik yang menyerap cahaya tampak dengan λ = 400-700 nm (kecuali warna hijau dan kuning).
- Nigmen fotosintetik pada kloroplas:
 - 1) **Klorofil a** (hijau), mampu menyerap cahaya biru, ungu, dan merah.
 - 2) **Klorofil b** (hijau kebiruan), mampu menyerap cahaya biru dan jingga.
 - 3) **Karotenoid** (kuning), mampu menyerap cahaya biru.

Naya absorpsi energi cahaya oleh pigmen fotosintetik pada kloroplas:

- Kloroplas terdapat banyak pada jaringan palisade dan sedikit pada jaringan spons pada mesofil daun.
- Struktur kloroplas:

- ▼ Tilakoid adalah suatu cakram yang di dalamnya terdapat pigmen fotosintetik, dan tumpukannya disebut grana.
- ▼ Fotosistem adalah suatu protein yang terdapat pada membran tilakoid yang mengandung kumpulan pigmen fotosintetik dan senyawa organik di dalamnya.
- ▼ Fotosistem terdiri dari fotosistem I (PI atau P700) dan fotosistem II (PII atau P680).

Perbedaan	PI/P700	PII/P680
Waktu	ditemukan	setelah
penemuan	lebih dulu	fotosistem I
Pigmen	klorofil a dan	klorofil a dan
fotosintetik	karotenoid	klorofil b
Panjang	menyerap	menyerap
gelombang	cahaya 700nm	cahaya 680nm
Aliran elektron	non-siklik	siklik
Hasil	ATP, NADPH	ATP

- ◆ Stroma adalah ruang kosong yang terdapat dalam kloroplas.
- Reaksi fotosintesis terjadi di kloroplas, yang terdiri atas reaksi terang yang terjadi pada tilakoid, dan reaksi gelap yang terjadi pada stroma.

D. FOTOSINTESIS

- Fotosintesis adalah anabolisme karbohidrat yang membutuhkan cahaya sebagai sumber energi.
- Tahapan fotosintesis adalah reaksi terang dan reaksi gelap.
- Reaksi terang (light-depending reaction) adalah reaksi yang bergantung pada cahaya, dan terjadi dalam tilakoid (grana).
- Reaksi terang secara singkat:

NADPH

$$H_2O \rightarrow O_2 + NADP^+ + H^+ + e + ATP$$
(reaksi tidak setara)

Tahapan reaksi terang:

- Cahaya diterima oleh fotosistem I menyebabkan fotoeksitasi 4e darinya.
- 2) **Fotolisis air** adalah proses pemecahan molekul air oleh cahaya menurut reaksi:

$$2H_2O \rightarrow O_2 + 4e + 4H^+$$

O₂ yang dihasilkan dibuang ke lingkungan atau digunakan untuk respirasi aerob, dan 4e digunakan untuk menetralkan fotosistem II.

- 3) 4e yang difotoeksitasi dari fotosistem II dibawa berjalan-jalan melalui plastokuinon, kompleks sitokrom dan plastosianin (aliran non-siklik), sehingga ruang tilakoid bermuatan negatif dan memacu pembentukan ATP (fotofosforilasi).
 - Hal tersebut juga menyebabkan proton (H⁺) dari fotolisis air dipompa keluar membran tilakoid.
- 4) Cahaya diterima fotosistem I menyebabkan **fotoeksitasi** 2e darinya.
- 5) 4e dari fotosistem II yang telah dibawa berjalan-jalan,
 - a. 2e nya digunakan untuk menetralkan fotosistem I.

- b. 2e lainnya bersama dengan 2e dari fotosistem I bergerak menuju kompleks ferredoksin.
- 6) 2e yang digunakan untuk menetralkan fotosistem I akan berputar-putar di sekitar fotosistem I dan kompleks sitokrom (aliran siklik).
- 7) Hasil dari aliran elektron:
 - a. Aliran elektron non-siklik

Melibatkan fotosistem II dan I, memacu pembentukan **ATP** pada plastosianin dan **NADPH** oleh NADP⁺ reduktase pada kompleks ferredoksin.

b. Aliran elektron siklik

Melibatkan fotosistem I, memacu pemompaan proton (H⁺) kembali ke ruang tilakoid dari kompleks sitokrom. Proton lalu bergerak melalui ATP-sintase memacu pembentukan **ATP**.

- 🔪 **Jika perlakuan** diberikan kepada fotosistem:
 - 1) **Isolasi fotosistem I** masih memungkinkan pembentukan O₂, dan menyebabkan peningkatan NADPH dan penurunan ATP.
 - 2) **Isolasi fotosistem II** tidak memungkinkan pembentukan O_2 dan NADPH, dan menyebabkan penurunan ATP.

- ► Hasil reaksi terang berupa ATP dan NADPH, serta H⁺ dari ATP sintase selanjutnya digunakan dalam reaksi gelap.
- **Tumbuhan** dapat menentukan penggunaan sistem transpor elektron.
 - Jika jumlah ATP untuk reaksi gelap cukup, maka sistem yang dominan adalah aliran elektron non-siklik.
 - Jika jumlah ATP untuk reaksi gelap kurang, NADPH akan terakumulasi, menyebabkan aliran elektron beralih menjadi siklik.
- Reaksi gelap (light-independent reaction) adalah reaksi yang tidak bergantung pada cahaya, dan terjadi dalam stroma pada mesofil.
- Reaksi gelap dilakukan apabila telah terjadi reaksi terang.

$$\rightarrow$$
 C₆H₁₂O₆ + NADP⁺

(reaksi tidak setara)

- Reaksi gelap dapat berlangsung menurut empat macam jalur:
 - 1) Jalur C₃ (siklus Calvin)

Jalur C₃ dilakukan oleh tumbuhan pada umumnya.

Pada jalur C_3 , fiksasi CO_2 menghasilkan **PGA** (atom karbon 3). Siklus Calvin terjadi pada mesofil.

2) Jalur C₄ (jalur Hatch-Slack)

Jalur C₄ dilakukan oleh tumbuhan yang hidup di lahan terbuka tidak teduh.

Tumbuhan C_4 tidak dapat membuka stomatanya secara penuh pada siang hari, sehingga CO_2 ditimbun terlebih dahulu menjadi **oksaloasetat** (atom karbon 4) baru kemudian mengalami siklus Calvin.

Pada tumbuhan C₄, penimbunan terjadi pada mesofil, sedangkan siklus Calvin terjadi di jaringan penyokong vaskuler.

3) Jalur CAM (*Crassulacean Acid Metabolism*)

Jalur CAM dilakukan oleh tumbuhan yang hidup di iklim gurun/kering atau epifit, contohnya famili Crassulaceae, Agavaceae dan Cactaceae.

Tumbuhan CAM tidak dapat membuka stomatanya sama sekali pada siang hari, sehingga CO₂ ditimbun **seperti jalur C**₄ pada malam hari, namun siklus Calvin baru terjadi pada siang hari keesokannya.

4) Jalur C₂/fotorespirasi (jalur Glikolat)

Jalur C₂ terjadi apabila tumbuhan mendapat intensitas cahaya yang terlalu tinggi.

Akibat intensitas cahaya terlalu tinggi:

- a. Konsentrasi O₂ dalam daun menjadi tinggi, sehingga CO₂ tidak dapat masuk.
- b. O₂ akan diikat oleh RuBP (fotorespirasi).
- c. Tidak terjadi fotosintesis (menurunkan produksi glukosa).
- Glukosa yang dihasilkan tumbuhan dapat dimodifikasi menjadi karbohidrat, protein atau lemak, dan disimpan dalam bentuk cadangan makanan yang berbeda-beda.

Percobaan sederhana para ilmuwan yang menjelaskan proses fotosintesis antara lain:

1) Percobaan Ingenhousz

Percobaan Ingenhousz dilakukan menggunakan *Hydrilla sp.*

Fotosintesis membutuhkan cahaya dan H_2O , dan menghasilkan O_2 .

2) Percobaan Sachs

Percobaan Sachs dilakukan dengan menutup sebagian daun selama sehari.

Tahapan percobaan Sachs:

- 1. Daun yang telah diberi perlakuan direbus dalam air.
- 2. Rebus secara tidak langsung alkohol dan daun untuk melarutkan klorofil.
- 3. Ambil daun dan letakkan pada cawan petri untuk ditetesi lugol/iodin.
- 4. Bagian daun yang ditutup akan berubah warna menjadi pucat, sedangkan yang tidak ditutup berwarna biru tua atau hitam.

Fotosintesis menghasilkan glukosa (amilum).

3) Percobaan Engelmann

Percobaan Engelmann dilakukan menggunakan alga *Spirogyra* dan bakteri aerob.

Fotosintesis membutuhkan cahaya dan klorofil, dan menghasilkan O₂.

4) Percobaan dengan lilin

Jika dalam sebuah tabung kaca tertutup terdapat sebuah tumbuhan, maka suatu lilin tetap dapat menyala.

Fotosintesis menghasilkan O₂.

5) Percobaan lain-lain

Fotosintesis akan menghasilkan O₂ lebih banyak jika:

- a. Kadar CO₂ meningkat.
- b. Intensitas cahaya meningkat.
- Gelombang cahaya optimal (selain kuning dan hijau).

E. KEMOSINTESIS

- Kemosintesis adalah anabolisme karbohidrat yang membutuhkan senyawa kimia sebagai sumber energi.
- Kemosintesis dilakukan oleh oleh bakteri kemoautotrof, dan merupakan reaksi oksidasi.

Contoh-contoh kemosintesis:

1) Bakteri nitritasi

Contoh: Nitrosomonas dan Nitrosococcus.

$$2NH_4$$
⁺ + $3O_2$ → $2NO_2$ ⁻ + $2H_2O$ + energi

2) Bakteri nitratasi

Contoh: Nitrobacter dan Nitrococcus.

$$2NO_2^- + 3O_2 \rightarrow 2NO_3^- + energi$$

3) Bakteri hidrogen

Contoh: *Hydrogenobacter* dan *Bacillus* panctotrophus.

$$2H_2 + O_2 \rightarrow 2H_2O + energi$$

4) Bakteri metana

Contoh: Methanonas.

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + energi$$

5) Bakteri belerang

Contoh: Beggiatoa dan Thiospirillum.

2H₂S + O₂
$$\rightarrow$$
 2S + 2H₂O + **energi**
2S + 2H₂ + 3O₂ \rightarrow 2H₂SO₄ + **energi**

6) Bakteri besi

Contoh: *Galionella, Thiobacillus ferooxidans, Leptothrix.*

Fe²⁺
$$\rightarrow$$
 Fe³⁺ + energi
4FeCO₃ + O₂ + 6H₂O \rightarrow 4Fe(OH)₃ + 4CO₂ + energi

► Energi yang dihasilkan dari kemosintesis selanjutnya digunakan untuk membentuk glukosa dari CO₂, CO₃²⁻ atau CH₄.