

Automated and Connected Driving Challenges

Section 2 – Sensor Data Processing Algorithms

Semantic Image Segmentation Introduction

Bastian Lampe

Institute for Automotive Engineering

Computer Vision Approaches

Single Object

Multi Objects

Motivation

Overview

- Goal: Given a camera image, assign a class from a fixed set of classes to each pixel of that image
- Fixed set of classes:
 - Road
 - Sidewalk
 - Pedestrian
 - Rider
 - Car
 - Bus
 - Motorcycle
 - •
- Classification task for every single pixel of the camera image
- Scene Understanding

Image: Cityscapes

Main Challenges

- Class ambiguity
 - Only fixed set of classes possible, but "unlimited" type of objects/surfaces
- Class imbalance
 - Overrepresented classes: road, sidewalk, building
 - Underrepresented classes: person, truck, bicycle
- Expensive datasets
 - High manual effort for labeling
- Camera images
 - Glare, reflection, distortion, illumination...

RWTHAACHEN UNIVERSITY

Approaches

- Traditional Computer Vision:
 - Clustering
 - k-Means Clustering on the RGB Domain
 - E.g. cluster all greenish areas Grass Class
 - Conditional Random Fields
 - Probabilistic modelling method
 - Interpret the image as a graph and model the segments

- Deep Learning based Computer Vision:
 - Large scale dataset with manual annotations
 - Train Convolutional Neural Networks
 - E.g. U-Net Architectures, Deeplab

Image: Springer

Image: arxiv

MCMC inference, 36 hrs our approach, 0.2 seconds

Summary

- Popular Computer Vision approach for scene understanding
- Assign a semantic class to each pixel of the camera image
- Challenges include class ambiguity, class imbalance and visual phenomena (glare, reflections, ...)
- Modern approaches rely on Deep Neural Networks and large datasets

Source: Cityscapes