

SUDOKU 4X4 ÓGICA PARA CIENCIAS DE LA COMPUTACIÓN

Víctor Samuel Pérez Díaz Camilo Andrés Martínez Mejía Octubre 2018

CONTENIDO

- 1. PROBLEMA
- 2. EJEMPLO/POSIBLE SOLUCIÓN
- 3. CLAVES DE REPRESENTACIÓN
- 4. REGLAS DEL JUEGO

PROBLEMA

Explicación:

Considere un Sudoku 4x4. El problema consiste en ubicar números del 1 al 4 en el tablero hasta llenarlo, cumpliendo con las reglas del juego.

1	2		4
		1	
4			3

EJEMPLO/POSIBLE SOLUCIÓN

Como ejemplo:

Observe que el siguiente tablero de Sudoku está completado y cumple las reglas del juego.

1	4	3	2
3	2	1	4
4	1	2	3
2	3	4	1

CLAVES DE REPRESENTACIÓN

Primero enumeramos las casillas del sudoku 4x4 de la siguiente manera:

(sea i nuestro indicador índice)

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

CLAVES DE REPRESENTACIÓN

El sudoku se representa como una tabla de 4x4 compuesta a su vez por 4 regiones de 2x2.

Se emplean 4 letras proposicionales p_i , q_i , r_i , s_i para cada casilla i.

p; es verdadera sii hay un 1 en la casilla i.

q_i es verdadera sii hay un 2 en la casilla i.

r_i es verdadera sii hay un 3 en la casilla i.

s_i es verdadera sii hay un 4 en la casilla i.

p ₁ q ₁	p_2 q_2	p ₃ q ₃	p_4 q_4
r ₁ s ₁	$r_2 = s_2$	r ₃ s ₃	r_4 s_4
p ₅ q ₅	p ₆ q ₆	p ₇ q ₇	
r ₅ s ₅	r ₆ s ₆	r ₇ s ₇	Ø
p ₉ q ₉	10	1 1	10
p ₉ q ₉	10	11	12
()	10	11	p ₁₆ q ₁₆

EJEMPLO

```
p<sub>1</sub>: Hay un 1 en la casilla 1
\neg q_1: No hay un 2 en la casilla 1
\neg r_1: No hay un 3 en la casilla 1
\neg s_1: No hay un 4 en la casilla 1
\neg p_2: No hay un 1 en la casilla 2 ...
\neg p_3: No hay un 1 en la casilla 3 ...
\neg p_4: No hay un 1 en la casilla 4 ...
\neg p_5: No hay un 1 en la casilla 5 ...
\neg p_6: No hay un 1 en la casilla 6 ...
\neg p_9: No hay un 1 en la casilla 9 ...
\neg p_{13}: No hay un 1 en la casilla 13 ...
```

1		

REGLAS DEL JUEGO

Regla 1: En cada casilla debe haber solo un número.

Regla 2: Cada región debe contener los números del 1 al 4 una sola vez.

Regla 3: Cada fila de la tabla debe contener los números del 1 al 4 una sola vez.

Regla 4: Cada columna de la tabla debe contener los números del 1 al 4 una sola vez.

Si hay un 1 en la **casilla** 1, entonces no debe haber otro número en la misma casilla.

1		

$$\begin{array}{l} (\ (p_1 \wedge \neg q_1 \wedge \neg r_1 \wedge \neg s_1) \vee (\neg p_1 \wedge q_1 \wedge \neg r_1 \wedge \neg s_1) \vee (\neg p_1 \wedge \neg q_1 \wedge r_1 \wedge \neg s_1) \vee \\ (\neg p_1 \wedge \neg q_1 \wedge \neg r_1 \wedge s_1)) \wedge (\ (p_2 \wedge \neg q_2 \wedge \neg r_2 \wedge \neg s_2) \vee (\neg p_2 \wedge q_2 \wedge \neg r_2 \wedge \neg s_2) \vee \\ (\neg p_2 \wedge \neg q_2 \wedge r_2 \wedge \neg s_2) \vee (\neg p_2 \wedge \neg q_2 \wedge \neg r_2 \wedge s_2)) \wedge \dots \end{array}$$

...y así tomando en consideración para las casillas restantes.

Si hay un 1 en la casilla 1, entonces no debe haber otro 1 en las casillas que conforman la **región**, es decir, en i = 2, 5, 6.

El siguiente ejemplo muestra la **región** $R_1 = \{1, 2, 5, 6\}$, siendo 1 la casilla tomada en consideración con sus componentes verdaderos.

$$((p_1 \land \neg p_2 \land \neg p_5 \land \neg p_6) \lor (q_1 \land \neg q_2 \land \neg q_5 \land \neg q_6) \lor (r_1 \land \neg r_2 \land \neg r_5 \land \neg r_6) \lor (s_1 \land \neg s_2 \land \neg s_5 \land \neg s_6)) \land ((p_2 \land \neg p_1 \land \neg p_5 \land \neg p_6) \lor (q_2 \land \neg q_1 \land \neg q_5 \land \neg q_6) \lor (r_2 \land \neg r_1 \land \neg r_5 \land \neg r_6) \lor (s_2 \land \neg s_1 \land \neg s_5 \land \neg s_6)) \land \dots$$

Y así tomando en consideración las casillas restantes.

De esta forma para cada configuración en las **regiones** conformadas por $R_2 = \{3, 4, 7, 8\}$, $R_3 = \{9, 10, 13, 14\}$ y $R_4 = \{11, 12, 15, 16\}$.

Si hay un 1 en la casilla 1, entonces no debe haber otro 1 en las casillas que conforman su **fila**, es decir, en i = 2, 3, 4.

El siguiente ejemplo muestra la **fila** $F_1 = \{1, 2, 3, 4\}$, siendo 1 la casilla tomada en consideración con sus componentes verdaderos.

$$\begin{array}{l} (\ (p_1 \ \land \ \neg \ p_2 \ \land \ \neg \ p_3 \ \land \ \neg \ p_4) \ \lor \ (q_1 \ \land \ \neg \ q_2 \ \land \ \neg \ q_3 \ \land \ \neg \ q_4) \ \lor \ (r_1 \ \land \ \neg \ r_2 \ \land \ \neg \ r_3 \ \land \ \neg \ r_4) \ \lor \\ (s_1 \ \land \ \neg \ s_2 \ \land \ \neg \ s_3 \ \land \ \neg \ s_4) \) \ \land \ (\ (p_2 \ \land \ \neg \ p_1 \ \land \ \neg \ p_3 \ \land \ \neg \ p_4) \ \lor \ (q_2 \ \land \ \neg \ q_1 \ \land \ \neg \ q_3 \ \land \ \neg \ q_4) \\ \lor \ (r_2 \ \land \ \neg \ r_1 \ \land \ \neg \ r_3 \ \land \ \neg \ r_4) \ \lor \ (s_2 \ \land \ \neg \ s_1 \ \land \ \neg \ s_3 \ \land \ \neg \ s_4) \) \ \land \ \ldots$$

Y así tomando en consideración las casillas restantes.

De esta forma para cada configuración en las **filas** conformadas por $F_2 = \{5, 6, 7, 8\}$, $F_3 = \{9, 10, 11, 12\}$ y $F_4 = \{13, 14, 15, 16\}$.

Si hay un 1 en la casilla 1, entonces no debe haber otro 1 en las casillas que conforman su **columna**, es decir, en i = 5, 9, 13.

El siguiente ejemplo muestra la **columna** conformada por $C_1 = \{1, 5, 9, 13\}$, siendo 1 la casilla tomada en consideración con sus componentes verdaderos.

$$\begin{array}{l} (\ (p_1 \ \wedge \ \neg \ p_5 \ \wedge \ \neg \ p_9 \ \wedge \ \neg \ p_{13} \) \ \lor \ (q_1 \ \wedge \ \neg \ q_5 \ \wedge \ \neg \ q_9 \ \wedge \ \neg \ q_{13} \) \ \lor \ (r_1 \ \wedge \ \neg \ r_5 \ \wedge \ \neg \ r_9 \ \wedge \ \neg \ r_{13} \) \ \lor \\ (s_1 \ \wedge \ \neg \ s_5 \ \wedge \ \neg \ s_9 \ \wedge \ \neg \ s_{13} \) \ \lor \ (q_5 \ \wedge \ \neg \ q_1 \ \wedge \ \neg \ q_9 \ \wedge \ \neg \ q_{13} \) \ \lor \\ (r_5 \ \wedge \ \neg \ r_1 \ \wedge \ \neg \ r_9 \ \wedge \ \neg \ r_{13} \) \ \lor \ (s_5 \ \wedge \ \neg \ s_1 \ \wedge \ \neg \ s_9 \ \wedge \ \neg \ s_{13} \) \) \ \wedge \ \dots \end{array}$$

Y así tomando en consideración las casillas restantes.

De esta forma para cada configuración en las **columnas** conformadas por $C_2 = \{2, 6, 10, 14\}$, $C_3 = \{3, 7, 11, 15\}$ y $C_4 = \{4, 8, 12, 16\}$.