Zero-Sum Games

By Marzie Nilipour Spring 2023

2 person zero-sum games

- A kind of symmetric games
- Player 1 maximizes matrix entry, while player 2 minimizes
- Game matrix has single entry (payoff of player 1)

	Heads	Tails
Heads	1, -1	-1, 1
Tails	-1, 1	1, -1

	Rock	Paper	Scissors	
Rock	0,0	-1, 1	1, -1	
Paper	1, -1	0,0	-1, 1	
Scissors	-1, 1	1, -1	0,0	

• Game matrix has single entry (payoff of player 1)

	Heads	Tails		Heads	Tails
Heads	1, -1	-1, 1	Head	s 1	-1
Tails	-1, 1	1, -1	Tails	S -1	1

- Is there any strictly dominated strategies?
 - For player 1:
 - For player 2:

- Is there any strictly dominated strategies?
 - For player 1: B is strictly dominated by C
 - For player 2: C is strictly dominated by B

Analyzing zero-sum games

- How player1 play?
- a conservative agent maximizing worst-case payoff

- How player2 play?
- to punish the other agent as much as possible

- choose maximum entry in each column
- choose the minimum among these
- > this is the minimax value

- choose minimum entry in each row
- choose the maximum among these
- this is maximin value

(Maxmin strategy, Minmax strategy) = (C,B)

Saddle point

• if minimax == maximin, then this is the saddle point of game

Maxmin

• Player *i*'s maxmin strategy is a strategy that maximizes *i*'s worst-case payoff, in the situation where all the other players (S_{-i}) happen to play the strategies which cause the greatest harm to *i*.

• The maxmin value (or safety level) of the game for player *i* is that minimum payoff guaranteed by a maxmin strategy.

Maxmin

Formal definition

Definition (Maxmin)

The maxmin strategy for player i is $\arg\max_{s_i}\min_{s_{-i}}u_i(s_1,s_2)$, and the maxmin value for player i is $\max_{s_i}\min_{s_{-i}}u_i(s_1,s_2)$.

Minmax

• Player i's minmax strategy against the other player in a 2-player game is a strategy that minimizes S_{-i} 's best-case payoff

• The minmax value for *i* against others is his payoff in minmax strategy.

Minmax

Formal definition

Definition (Minmax, 2-player)

In a two-player game, the minmax strategy for player i against player -i is $\arg\min_{s_i} \max_{s_{-i}} u_{-i}(s_i, s_{-i})$, and player -i's minmax value is $\min_{s_i} \max_{s_{-i}} u_{-i}(s_i, s_{-i})$.

About von Neumann

• John von Neumann (1903, 1957)

• von Neumann theorem at 1928

Minimax Theorem

Theorem (Minimax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

Minimax Theorem

- Each player's maxmin value is equal to his minmax value.
- The maxmin value for player 1 is called the value of the game.

• For both players, the set of maxmin strategies coincides with the set of minmax strategies.

• Any maxmin strategy profile (or, equivalently, minmax strategy profile) is a Nash equilibrium. Furthermore, these are all the Nash equilibria.

2*2 zero sum games

 Minmax or maxmin produces the same result as method for finding NE in general 2 * 2 games;