**Autor**: José Arcos Aneas

**Asignatura**: Estructura de Computadores

Fecha: 24 de Enero de 2015

## Características de mi equipo.

Con la ejecución de el comando "lscpu" podemos mostrar las características de nuestro equipo, entre estas, el tamaño de las lineas de cache.

blunt@blunt:~\$ lscpu Arquitectura: x86\_64

CPU op-mode(s): 32-bit, 64-bit Orden de bytes: Little Endian

*CPU*(s): 4

On-line CPU(s) list: 0-3
Hilo(s) por núcleo: 1
Núcleo(s) por zócalo:4
Socket(s): 1
Nodo(s) NUMA: 1

ID del vendedor: GenuineIntel

6

Familia de CPU:
Modelo: 58
Stepping: 9

 Stepping:
 9

 CPU MHz:
 1600.000

 BogoMIPS:
 6399.85

 Virtualización:
 VT-x

 caché L1d:
 32K

 caché L1i:
 32K

 caché L2:
 256K

 caché L3:
 6144K

 NUMA node0 CPU(s):
 0-3

Tamaño de las lineas o bloques de cache

Intentamos medir el tamaño de la linea o bloque de caché, ya que un bloque de memoria princial cabe exactamente en una linea de caché.

Como sabemos el tamaño de la memoria caché esta dividido en líneas y el espacio de la memoria principal en bloques.

La siguiente gráfica muestra los resultado de la ejecución del archivo "line.cc".

Fichero "line dat"

| richero | une.aai |          |
|---------|---------|----------|
| #       | line    | time(ns) |
|         | 1       | 0.6      |
|         | 2       | 0.6      |
|         | 4       | 0.6      |
|         | 8       | 0.6      |
|         | 16      | 0.8      |
|         | 32      | 1.3      |
|         | 64      | 2.5      |
|         | 128     | 2.5      |
|         | 256     | 2.5      |
|         | 512     | 2.5      |
|         | 1024    | 3.4      |

# La gráfica es la siguiente:



Vemos como se ven los saltos que se producen a los 32B y que a partir de los 512 B hay otro.

## Tamaño de la caché

La gráfica correspondiente al archivo "size.cc" es la siguiente:



## Los resultados del archivo "size.dat":

| ze (B)  | time (ns)                                                           |
|---------|---------------------------------------------------------------------|
| 1024    | 980383                                                              |
| 2048    | 513358                                                              |
| 4096    | 283791                                                              |
| 8192    | 154795                                                              |
| 16384   | 124875                                                              |
| 32768   | 51272                                                               |
| 65536   | 31506                                                               |
| 131072  | 21532                                                               |
| 262144  | 7281                                                                |
| 524288  | 2582                                                                |
| .048576 | 2505                                                                |
| 097152  | 1217                                                                |
| 194304  | 262                                                                 |
| 388608  | 356                                                                 |
| 777216  | 46                                                                  |
| 554432  | 41                                                                  |
| 108864  | 40                                                                  |
|         | 2048<br>4096<br>8192<br>16384<br>32768<br>65536<br>131072<br>262144 |

Se ve que entre 8K y 16K empieza a paralizarse la caída del tiempo. Luego a partir de 32K el tiempo empieza a paralizarse.

A continuación muestro la información obtenida de la referencia "<u>www.cpu-world.com</u>" referente a mi CPU:

#### Core i5

- » Haswell / Ivy Bridge / Nehalem / Sandy Bridge microarchitecture
- » 0.022, 0.032, 0.045 micron
- » Mid-class desktop CPU
- » Dual and Quad core
- » Up to 3.6 GHz
- » Up to 5 GT/s DMI
- » Up to 1 MB L2 cache
- » Up to 8 MB L3 cache
- » 64-bit
- » AVX, AVX2, FMA3 instructions
- » Hyper-Threading
- » Turbo Boost
- » Virtualization
- · » Integrated GPU
- » Unlocked multiplier (some SKUs)

BGA1364

Socket 1150

Socket 1155

Socket 1156