Common Machine Learning Algorithms

https://www.vpnsrus.com/

CONTENTS

- 1 Linear Models (LM)
- 2 Linear Support Vector Machines (SVM)
- 3 Nonlinear Support Vector Machines
- 4 k-Nearest Neighbors (k-NN)
- 5 Classification & Regression Trees (CART)

LINEAR MODELS (LM)

LINEAR MODELS – FUNCTIONALITY

SUPERVISED

REGRESSION | CLASSIFICATION

PARAMETRIC

WHITE-BOX

General idea Represent target as function of linear predictor $\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}$

Hypothesis space

$$\mathcal{H} = \{f : \mathcal{X} o \mathbb{R} \mid f(\mathbf{x}) = \phi(\boldsymbol{\theta}^{\top}\mathbf{x})\}, \text{ with suitable transformation } \phi(\cdot), \text{ e.g.,}$$

- Identity $\phi(\theta^{\top}\mathbf{x}) = \theta^{\top}\mathbf{x} \Rightarrow \text{linear regression}$
- Logistic sigmoid function $\phi(\theta^T \mathbf{x}) = \frac{1}{1 + \exp(-\theta^T \mathbf{x})} =: \pi(\mathbf{x} \mid \theta) \Rightarrow$ (binary) logistic regression
 - Probability $\pi(\mathbf{x} \mid \boldsymbol{\theta}) = \mathbb{P}(y = 1 \mid \mathbf{x})$ of belonging to one of two classes
 - Separating hyperplane via decision rule (e.g., $\hat{y} = 1 \Leftrightarrow \pi(\mathbf{x}) > 0.5$)

Linear regression hyperplane

Logistic function for bivariate input and loss-minimal $oldsymbol{ heta}$

Corresponding separating hyperplane

LINEAR MODELS – FUNCTIONALITY

Empirical risk

- Linear regression
 - Typically, based on quadratic loss: $\mathcal{R}_{emp}(\theta) = \sum_{i=1}^{n} \left(y^{(i)} f\left(\mathbf{x}^{(i)} \mid \theta \right) \right)^2$ \Rightarrow corresponding to ordinary-least-squares (OLS) estimation
 - Alternatives: e.g., absolute or Huber loss (both improving robustness)
- Logistic regression: based on Bernoulli/log/cross-entropy loss

$$\Rightarrow \mathcal{R}_{\text{emp}}(\boldsymbol{\theta}) = \sum_{i=1}^{n} -y^{(i)} \log \left(\pi \left(\mathbf{x}^{(i)} \right) \right) - (1-y^{(i)}) \log \left(1 - \pi \left(\mathbf{x}^{(i)} \right) \right)$$

Optimization

- For **OLS**: analytically with $\hat{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ (with $\mathbf{X} \in \mathbb{R}^{n \times p}$: matrix of feature vectors)
- For other loss functions: numerical optimization

Hyperparameters None

LINEAR MODELS - PRO'S & CON'S

Advantages

- + Simple and fast implementation
- + Analytical solution
- + **Cheap** computation
- + Applicable for any dataset size, as long as number of observations ≫ number of features
- Flexibility beyond linearity with polynomials, trigonometric transformations etc.
- Intuitive interpretability via feature effects
- $+\,\,$ Statistical hypothesis **tests** for effects available

Disadvantages

- Nonlinearity of many real-world problems
- Further restrictive assumptions: linearly independent features, homoskedastic residuals, normality of conditional response
- Sensitivity w.r.t. outliers and noisy data (especially with L2 loss)
- Risk of overfitting in higher dimensions
- Reature interactions must be handcrafted, so higher orders practically infeasible
- No handling of missing data

Simple, highly interpretable method suited for linear problems, but with strong assumptions, practical limitations, and tendency to overfit

LINEAR MODELS – REGULARIZATION

Idea

- Unregularized LM: risk of overfitting in high-dimensional space with only few observations
- Goal: find compromise between model fit and generalization by adding penalty term

Regularized empirical risk

- Empirical risk function **plus complexity penalty** $J(\theta)$, controlled by shrinkage parameter $\lambda > 0$: $\mathcal{R}_{\text{reg}}(\theta) := \mathcal{R}_{\text{emp}}(\theta) + \lambda \cdot J(\theta)$.
- Popular regularizers
 - ullet Ridge regression: L2 penalty $J(oldsymbol{ heta}) = \|oldsymbol{ heta}\|_2^2$
 - ullet LASSO regression: L1 penalty $J(oldsymbol{ heta}) = \|oldsymbol{ heta}\|_1$

Optimization under regularization

- ullet Ridge: analytically with $\hat{m{ heta}}_{
 m Ridge} = (\mathbf{X}^{ op}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{ op}\mathbf{Y}$
- LASSO: numerically with, e.g., (sub-)gradient descent

LINEAR MODELS – REGULARIZATION

Choice of regularization parameter

- Standard hyperparameter optimization problem
- E.g., choose λ with minimum mean cross-validated error (default in R package glmnet)

Ridge vs. LASSO

Ridge

- ullet Overall smaller, but still dense eta
- Suitable with many influential features present, handling correlated features by shrinking their coefficients equally

LASSO

- Actual variable selection
- Suitable for sparse problems, ineffective with correlated features (randomly selecting one)
- Neither overall better compromise: elastic net
 - → weighted combination of Ridge and LASSO regularizers

LINEAR MODELS – PRACTICAL HINTS

Implementation

- R:
 - Unregularized: mlr3 learner LearnerRegrLM, calling stats::lm() / mlr3 learner LearnerClassifLogReg, calling stats::glm()
 - Regularized: mlr3 learners LearnerClassifGlmnet / LearnerRegrGlmnet, calling glmnet::glmnet()
- Python: LinearRegression from package sklearn.linear_model, package for advanced statistical parameters statsmodels.api

LINEAR SUPPORT VECTOR MACHINES (SVM)

LINEAR SVM - FUNCTIONALITY

SUPERVISED

CLASSIFICATION

PARAMETRIC

BLACK-BOX

General idea

- Find linear decision boundary (separating hyperplane) that best separates classes
 - Hard-margin SVM: maximize distance (margin $\gamma > 0$) to closest members (support vectors, SV) on each side of decision boundary
 - Soft-margin SVM: relax separation to allowing margin violations → maximize margin while minimizing violations
- 3 types of training points
 - non-SVs with no impact on decision boundary
 - SVs located exactly on decision boundary
 - margin violators

Hypothesis space $\mathcal{H} = \{ f : \mathcal{X} \to \mathbb{R} \mid f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} + \theta_0 \}$ separater intercept notwendig?

LINEAR SVM - FUNCTIONALITY

Hard-margin SVM: margin is maximized by boundary on the right

Dual problem

$$\begin{split} \max_{\boldsymbol{\alpha} \in \mathbb{R}^n} \quad & \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} \left\langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \right\rangle \\ \text{s.t.} \quad & 0 \leq \alpha_i \leq \mathbf{C} \ \, \forall i \in \{1, \dots, n\} \ \, (\mathbf{C} = \infty \text{ for hard-margin SVM}), \\ & \sum_{i=1}^n \alpha_i y^{(i)} = \mathbf{0} \end{split}$$

LINEAR SVM – FUNCTIONALITY

Empirical risk

Soft-margin SVM also interpretable as **L2-regularized ERM**:

$$\frac{1}{2}\|\boldsymbol{\theta}\|^2 + C\sum_{i=1}^n L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

with

- $\bullet \|\boldsymbol{\theta}\| = 1/\gamma,$
- C > 0: penalization for missclassified data points
- L(y, f) = max(1 yf, 0): hinge loss
 → other loss functions applicable (e.g., Huber loss)

Optimization

- Typically, tackling dual problem (though feasible in corresponding primal) via quadratic programming
- Popular: sequential minimal optimization → iterative algorithm based on breaking down objective into bivariate quadratic problems with analytical solutions

Hyperparameters Cost parameter C

LINEAR SVM - PRO'S & CON'S

Advantages

- + Often **sparse** solution
- Robust against overfitting (regularized);
 especially in high-dimensional space
- + **Stable** solutions, as non-SV do not influence decision boundary

Disadvantages

- Costly implementation; long training times
- Limited scalability to larger data sets ??
- Confined to linear separation
- Poor interpretability
- No handling of missing data

Very accurate solution for high-dimensional data that is linearly separable

LINEAR SVM - PRACTICAL HINTS

Preprocessing

Features must be rescaled before applying SVMs.

Tuning

Cost parameter C must be tuned and has strong influence on resulting separating hyperplane.

Implementation

- R: mlr3 learners LearnerClassifSVM / LearnerRegrSVM, calling svm() from libsvm
- Python: sklearn.svm.SVC from package scikit-learn/package libSVM

NONLINEAR SUPPORT VECTOR MACHINES

NONLINEAR SVM - FUNCTIONALITY

SUPERVISED

CLASSIFICATION

NON-PARAMETRIC

BLACK-BOX

General idea

- Move beyond linearity by mapping data to transformed space where they are linearly separable
- Kernel trick (based on Mercer's theorem, existende of RKHS):
 - Replace two-step operation feature map $\phi \leadsto$ inner product by **kernel** $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, s.t. $\langle \phi(\mathbf{x}), \phi(\tilde{\mathbf{x}}), = \rangle k(\mathbf{x}, \tilde{\mathbf{x}})$
 - No need for explicit construction of feature maps; very fast and flexible

Hypothesis space
$$\mathcal{H} = \left\{ f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y^{(i)} k(\mathbf{x}^{(i)}, \mathbf{x}) + \theta_0 | \theta_0, \alpha_i \in \mathbb{R} \right\}$$

Data are not linearly separable in original space.

Mapping to 3D space allows for linear separation with hyperplane.

NONLINEAR SVM – FUNCTIONALITY

Dual problem

Kernelize dual (soft-margin) SVM problem, replacing all inner products $\langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \rangle$ by kernels:

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}), \text{ s.t. } 0 \leq \alpha_{i} \leq C, \sum_{i=1}^{n} \alpha_{i} y^{(i)} = 0.$$

Hyperparameters Cost *C* of margin violations, kernel hyperparameters (e.g., width of RBF kernel)

Interpretation as basis function approach

- Representer theorem: dual soft-margin SVM problem can be expressed through $\theta = \sum_{i=1}^{n} \beta_{i} \phi \left(\mathbf{x}^{(i)} \right)$
- Sparse, weighted sum of **basis functions** with $\beta_i = 0$ for non-SVs
- Local model with smoothness depending on kernel properties

RBF kernel as mixture of Gaussian basis functions, forming bumpy, nonlinear decision surface to discern red and green points.

NONLINEAR SVM - PRO'S & CON'S

Advantages

- + high accuaracy
- + can learn nonlinear decision boundaries
- often sparse solution
- robust against overfitting (regularized); especially in high-dimensional space
- + **stable** solutions, as the non-SV do not influence the separating hyperplane

Disadvantages

- costly implementation; long training times
- does not scale well to larger data sets ??
- only linear separation → possible with nonlinear SVMs which are explained in the following slides.
- poor interpretability
- not easy tunable as it is highly important to choose the right kernel
- No handling of missing data

nonlinear SVMs perform very well for nonlinear separable data, but are hard to interpret and need a lot of tuning.

NONLINEAR SVM – PRACTICAL HINTS

Popular kernels

- Linear kernel: dot product of given observations $\to k(\mathbf{x}, \tilde{\mathbf{x}}) = \mathbf{x}^{\top} \tilde{\mathbf{x}}$
- **Polynomial** kernel of degree $d \in \mathbb{N}$: monomials (i.e., feature interactions!) up to d-th order $\to k(\mathbf{x}, \tilde{\mathbf{x}}) = (\mathbf{x}^{\top} \tilde{\mathbf{x}} + b)^d$, $b \ge 0$
- **RBF** kernel: infinite-dimensional feature space, in theory allowing for perfect separation of all finite datasets $\rightarrow k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp\left(-\gamma \|\mathbf{x} \tilde{\mathbf{x}}\|_2^2\right)$ with bandwidth parameter $\gamma > 0$

Tuning

- ullet High sensitivity w.r.t. hyperparameters, especially those of kernel o **tuning** very important
- For RBF kernels, use **RBF sigma heuristic** to determine bandwidth

Implementation

- R: mlr3 learners LearnerClassifSVM / LearnerRegrSVM, calling e1071::svm() (interface to libSVM)
- Python: sklearn.svm.SVC from package scikit-learn/package libSVM

K-NEAREST NEIGHBORS (K-NN)

K-NN - FUNCTIONALITY

SUPERVISED

REGRESSION | CLASSIFICATION

NON-PARAMETRIC

WHITE-BOX

General idea

- Rationale: similarity in feature space → similarity in target space w.r.t. some similarity/distance metric
- Prediction for x: construct k-neighborhood $N_k(\mathbf{x})$ from k points closest to x in \mathcal{X} , then predict
 - (weighted) mean target for **regression**: $\hat{y} = 1/(\sum_{i:\mathbf{x}^{(i)} \in N_k(\mathbf{x})} w_i) \sum_{i:\mathbf{x}^{(i)} \in N_k(\mathbf{x})} w_i y^{(i)}$
 - most frequent class for classification: $\hat{y} = \arg\max_{\ell \in \{1, \dots, g\}} \sum_{i: \mathbf{x}^{(\ell)} \in N_k(\mathbf{x})} \mathbb{I}(\mathbf{y}^{(\ell)} = \ell)$
- No distributional or functional assumptions
- Nonparametric behavior: parameters = training data; no compression of information

Hyperparameters Neighborhood size *k* (locality), distance measure

Left: Neighborhood for exemplary observation in iris, k=50 Right: Prediction surfaces for k=1 and k=50

K-NN – PRO'S & CON'S

Advantages

- + **Easy** to explain and implement
- Applicable to both regression and classification tasks
- No functional assumptions therefore (in theory) able to model data situations of arbitrary complexity
- + No **training** period; no **optimization** required
- + Constant evolvement with new data
- + Ability to learn **non-linear** decision boundaries

Disadvantages

- Sensitivity w.r.t. noisy or irrelevant features and outliers due to utter reliance on distances
- Bad performance when feature scales not consistent with importance
- Heavily afflicted by curse of dimensionality
- No handling of missing data
- Poor handling of data **imbalances** (worse for large k)
- High **memory** consumption of distance computation

Easy and intuitive for small, well-behaved datasets with meaningful feature space distances

K-NN – PRACTICAL HINTS

Popular distance measures

- Numerical features: typically, **Minkowski** distances $d(\mathbf{x}, \tilde{\mathbf{x}}) = \|\mathbf{x} \tilde{\mathbf{x}}\|_q = \left(\sum_j |x_j \tilde{x}_j|^q\right)^{\frac{1}{q}}$
 - $ullet \ q=$ 1: Manhattan distance $o d(\mathbf{x}, ilde{\mathbf{x}}) = \sum_{j} |x_j ilde{x}_j|$
 - q=2: Euclidean distance $o d(\mathbf{x}, \widetilde{\mathbf{x}}) = \sqrt{\sum_j (x_j \widetilde{x_j})^2}$
- In presence of categorical features: Gower distance
- Custom distance measures applicable
- Optional weighting to account for beliefs about varying feature importance

Implementation

- R: mlr3 learners LearnerClassifKKNN / LearnerRegrKKNN, calling kknn::kknn()
- Python: KNeighborsClassifier / KNeighborsRegressor from package scikit-learn

CLASSIFICATION & REGRESSION TREES (CART)

CART – FUNCTIONALITY

SUPERVISED

REGRESSION | CLASSIFICATION

NONPARAMETRIC

WHITE-BOX

FEATURE SELECTION

General idea

- Starting from root node containing all data, perform repeated binary splits, thereby subsequently dividing
 input space into T rectangular partitions Q_t
 - In each step, find **optimal split** (feature-threshold combination) \rightarrow greedy search
 - Assign same response c_t to all observations in terminal region Q_t
- Splits based on node impurity, equivalently interpretable as ERM

Hypothesis space
$$\mathcal{H} = \{ f(\mathbf{x}) : f(\mathbf{x}) = \sum_{t=1}^{T} c_t \mathbb{I}(\mathbf{x} \in Q_t) \}$$

Classification tree for iris data after 3 splits

Corresponging prediction surface with axis-aligned boundaries

CART – FUNCTIONALITY

Empirical risk

- Calculated for each potential terminal node \mathcal{N}_t of a split
- In general, compatible with arbitrary losses typical choices:
 - *g*-way classification:

• Brier score
$$\mathcal{R}(\mathcal{N}_t) = \sum\limits_{(\mathbf{x},y) \in \mathcal{N}_t} \sum\limits_{k=1}^g \left(\mathbb{I}(y=k) - \pi_k(\mathbf{x}) \right)^2 \ o$$
 Gini impurity

• Bernoulli loss
$$\mathcal{R}(\mathcal{N}_t) = \sum\limits_{(\mathbf{x},y) \in \mathcal{N}_t} \sum\limits_{k=1}^g \mathbb{I}(y=k) \cdot \log(\pi_k(\mathbf{x})) \to \mathbf{entropy}$$
 impurity

• Regression: quadratic loss
$$\mathcal{R}(\mathcal{N}_t) = \sum_{(\mathbf{x}, y) \in \mathcal{N}_t} (y - c_t)^2$$

Optimization

- Exhaustive search over all split candidates, choice of risk-minimal split
- In practice: limit number of candidates, use tricks to avoid combinatorial explosion

Hyperparameters Complexity, i.e., number of leaves T (controlled indirectly)

CART – PRO'S & CON'S

Advantages

- + **Easy** to understand & visualize
- + Highly interpretable
- + Built-in **feature selection**
- + Applicable to **non-numerical** features
- Automatic handling of missings
- Interaction effects between features naturally included, even of higher orders
- + Fast computation and good scalability
- High flexibility (custom split criteria or leaf-node prediction rules)

Disadvantages

- Rather poor generalization when used stand-alone
- High variance/instability: strong dependence on training data
- Substantial risk of overfitting
- Not well-suited for modeling linear relationships
- Bias toward features with many categories

Simple, good with feature selection and highly interpretable, but not the best predictor

CART – PRACTICAL HINTS

Complexity control

- Unless interrupted, splitting continues until we have 1 observation per leaf node (costly + overfitting)
- Limit tree growth
 - Early stopping: stop growth prematurely
 - → hard to determine good stopping point before actually trying all combinations
 - **Pruning:** grow to large size and cut back in risk-optimal manner

Bagging / boosting As CART are highly **instable** predictors on their own, they are typically used as base learners in bagging (random forest) or boosting ensembles.

Implementation

- R: mlr3 learners LearnerClassifRpart / LearnerRegrRpart, calling rpart::rpart()
- Python: DecisionTreeClassifier / DecisionTreeRegressor from package scikit-learn
- Complexity controlled via tree depth, minimum number of observations per node, maximum number of leaves, minimum risk reduction per split, ...