

CMPT 413: Computational Linguistics

ED2: Computing the Edit Distance

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Consider two strings:

$$target = g_1 a_2 m_3 b_4 l_5 e_6$$

• We want to find D(6,5)

source=
$$g_1u_2m_3b_4o_5$$

- We find this recursively using values of D(i,j) where $i \le 6$ $j \le 5$
- For example, consider how to compute D(4,3)

target =
$$g_1a_2m_3b_4$$

source= $g_1u_2m_3$

- Case 1: SUBSTITUTE b₄ for m₃
- Use previously stored value for D(3,2)
- $Cost(g_1a_2m_3b \text{ and } g_1u_2m) = D(3,2) + cost(b \approx m)$
- For substitution: D(i,j) = D(i-1,j-1) + cost(subst)

- Case 2: INSERT b₄
- Use previously stored value for D(3,3)
- $Cost(g_1a_2m_3b \text{ and } g_1u_2m_3) = D(3,3) + cost(ins b)$
- For substitution: D(i,j) = D(i-1,j) + cost(ins)

Take the minimum

- Case 3: DELETE m₃
- Use previously stored value for D(4,2)
- $Cost(g_1a_2m_3b_4 \text{ and } g_1u_2m) = D(4,2) + cost(del m)$
- For substitution: D(i,j) = D(i,j-1) + cost(del)

Minimum Cost Edit Distance

• An alignment between target and source

$$t_1, t_2, \dots, t_n$$
 Find $D(n, m)$ recursively s_1, s_2, \dots, s_m

$$D(i,j) = min \begin{cases} D(i-1,j) & + \text{cost}(t_i,\emptyset) \text{ insertion into target} \\ D(i-1,j-1) + \text{cost}(t_i,s_j) \text{ substitution/identity} \\ D(i,j-1) & + \text{cost}(\emptyset,s_j) \text{ deletion from source} \end{cases}$$

$$D(0,0) = 0$$

$$D(i,0) = D(i-1,0) + \cot(t_i,\emptyset)$$

$$D(0,j) = D(0,j-1) + \cot(\emptyset,s_j)$$

```
Function MinEditDistance (target, source)
n = length(target)
m = length(source)
Create matrix D of size (n+1,m+1)
D[0,0] = 0
 for i = 1 to n
   D[i,0] = D[i-1,0] + insert-cost
 for j = 1 to m
   D[0,j] = D[0,j-1] + delete-cost
 for i = 1 to n
   for j = 1 to m
     D[i,j] = MIN(D[i-1,j] + insert-cost,
                  D[i-1,j-1] + subst/eq-cost,
                  D[i,j-1] + delete-cost)
 return D[n,m]
 2013-02-28
```

4

D(i,j)

		g
	0	1
g	1	0

		g	u	m
	0	1	2	3
g	1	0	1	2
a	2	1	2	3
m	3	2	3	2
b	4	3	4	3

D(i,j)

		g	u	m	b	О
	0	1	2	3	4	5
g	1	0	1	2	3	4
a	2	1	2	3	4	5
m	3	2	3	2	3	4
b	4	3	4	3	2	3
1	5	4	5	4	3	4
e	6	5	6	5	4	5

Backtracing to find the alignments

		g	u	m	b	О
		1	2	3	4	5
g	1	0 e	1	2	3	4
a	2	1	2 s	3	4	5
m	3	2	3	2 e	3	4
b	4	3	4	3	2 e	3
1	5	4	5	4	i 3	4
e	6	5	6	5	4	5 s

