VDPAU

Generated by Doxygen 1.8.11

Contents

1	Vide	o Decode and Presentation API for Unix	1
	1.1	Introduction	1
	1.2	API Partitioning	1
	1.3	Object Types	1
		1.3.1 Device Type	2
		1.3.2 Surface Types	2
		1.3.3 Transfer Types	2
	1.4	Data Flow	2
	1.5	Entry Point Retrieval	3
		1.5.1 Philosophy	3
	1.6	Multi-threading	3
	1.7	Surface Endianness	4
	1.8	Video Decoder Usage	5
		1.8.1 MPEG-1 and MPEG-2	5
		1.8.2 H.264	5
		1.8.3 VC-1 Simple and Main Profile	6
		1.8.4 VC-1 Advanced Profile	6
		1.8.5 MPEG-4 Part 2 and DivX	6
		1.8.6 H.265/HEVC - High Efficiency Video Codec	6
	1.9	Video Mixer Usage	7
		1.9.1 VdpVideoSurface Content	7
		1.9.2 VdpVideoMixer Surface List	7
		1.9.3 Weave De-interlacing	8
		1.9.4 Bob De-interlacing	9
		1.9.5 Advanced De-interlacing	9
		1.9.6 De-interlacing Rate	9
		1.9.7 Inverse Telecine	10
		1.9.8 Telecine (Pull-Down) Flags	10
	1.10	Extending the API	10
		1.10.1 Enumerations and Other Constants	10
		1.10.2 Structures	11
		1.10.3 Functions	11
	1.11		11
		1 11 1 Trademarks	11

iv CONTENTS

2	Mod	ule Inde	ex		13
	2.1	Module	es		13
3	Data	Structu	ıre Index		15
	3.1	Data S	tructures		15
4	File	Index			17
	4.1	File Lis	t		17
5	Mod	ule Doc	umentatio	on	19
	5.1	Core A	PI		20
		5.1.1	Detailed I	Description	21
	5.2	Basic 1	Types		22
		5.2.1	Detailed I	Description	22
		5.2.2	Macro De	efinition Documentation	22
			5.2.2.1	VDP_FALSE	22
			5.2.2.2	VDP_TRUE	22
		5.2.3	Typedef [Documentation	22
			5.2.3.1	VdpBool	22
	5.3	Miscell	aneous Ty	pes	23
		5.3.1	Detailed I	Description	24
		5.3.2	Macro De	efinition Documentation	24
			5.3.2.1	VDP_CHROMA_TYPE_420	24
			5.3.2.2	VDP_CHROMA_TYPE_422	24
			5.3.2.3	VDP_CHROMA_TYPE_444	24
			5.3.2.4	VDP_INDEXED_FORMAT_A4I4	24
			5.3.2.5	VDP_INDEXED_FORMAT_A8I8	25
			5.3.2.6	VDP_INDEXED_FORMAT_I4A4	25
			5.3.2.7	VDP_INDEXED_FORMAT_I8A8	25
			5.3.2.8	VDP_INVALID_HANDLE	25
			5.3.2.9	VDP_RGBA_FORMAT_A8	25
			5.3.2.10	VDP_RGBA_FORMAT_B10G10R10A2	26

CONTENTS

		5.3.2.11 VDP_F	RGBA_FORMAT_B8G8R8A8	 26
		5.3.2.12 VDP_F	RGBA_FORMAT_R10G10B10A2	 26
		5.3.2.13 VDP_F	RGBA_FORMAT_R8G8B8A8	 26
		5.3.2.14 VDP_Y	YCBCR_FORMAT_NV12	 26
		5.3.2.15 VDP_Y	YCBCR_FORMAT_UYVY	 27
		5.3.2.16 VDP_Y	YCBCR_FORMAT_V8U8Y8A8	 27
		5.3.2.17 VDP_Y	YCBCR_FORMAT_Y8U8V8A8	 27
		5.3.2.18 VDP_Y	YCBCR_FORMAT_YUYV	 27
		5.3.2.19 VDP_Y	YCBCR_FORMAT_YV12	 27
	5.3.3	Typedef Documer	entation	 28
		5.3.3.1 VdpCh	nromaType	 28
		5.3.3.2 VdpInd	dexedFormat	 28
		5.3.3.3 VdpRG	GBAFormat	 28
		5.3.3.4 VdpYC	CbCrFormat	 28
5.4	Error F	landling		 29
	5.4.1	Detailed Descript	tion	 29
	5.4.2	Typedef Documer	entation	 29
		5.4.2.1 VdpGe	etErrorString	 29
	5.4.3	Enumeration Type	pe Documentation	 30
		5.4.3.1 VdpSta	atus	 30
5.5	Version	ning		 32
	5.5.1	Detailed Descript	tion	 32
	5.5.2	Macro Definition	Documentation	 32
		5.5.2.1 VDPAL	U_INTERFACE_VERSION	 32
		5.5.2.2 VDPAL	U_VERSION	 33
	5.5.3	Typedef Documer	entation	 33
		5.5.3.1 VdpGe	etApiVersion	 33
		5.5.3.2 VdpGe	etInformationString	 33
5.6	VdpDe	vice; Primary API	object	 34
	5.6.1	Detailed Descript	tion	 34

vi

	5.6.2	Typedef Documentation		 	 	34
		5.6.2.1 VdpDevice		 	 	34
		5.6.2.2 VdpDeviceDestroy		 	 	34
5.7	VdpCS	SCMatrix; CSC Matrix Manipulation		 	 	35
	5.7.1	Detailed Description		 	 	35
	5.7.2	Macro Definition Documentation		 	 	36
		5.7.2.1 VDP_COLOR_STANDARD_ITUR_BT_601		 	 	36
		5.7.2.2 VDP_COLOR_STANDARD_ITUR_BT_709		 	 	36
		5.7.2.3 VDP_COLOR_STANDARD_SMPTE_240M		 	 	36
		5.7.2.4 VDP_PROCAMP_VERSION		 	 	36
	5.7.3	Typedef Documentation		 	 	36
		5.7.3.1 VdpColorStandard		 	 	36
		5.7.3.2 VdpCSCMatrix		 	 	36
		5.7.3.3 VdpGenerateCSCMatrix		 	 	36
5.8	VdpVid	deoSurface; Video Surface object		 	 	38
	5.8.1	Detailed Description		 	 	38
	5.8.2	Typedef Documentation		 	 	39
		5.8.2.1 VdpVideoSurface		 	 	39
		5.8.2.2 VdpVideoSurfaceCreate		 	 	39
		5.8.2.3 VdpVideoSurfaceDestroy		 	 	40
		5.8.2.4 VdpVideoSurfaceGetBitsYCbCr		 	 	40
		5.8.2.5 VdpVideoSurfaceGetParameters		 	 	40
		5.8.2.6 VdpVideoSurfacePutBitsYCbCr		 	 	41
		5.8.2.7 VdpVideoSurfaceQueryCapabilities		 	 	41
		5.8.2.8 VdpVideoSurfaceQueryGetPutBitsYCbCrCapabilitie	es	 	 	42
5.9	VdpOu	utputSurface; Output Surfaceobject		 	 	43
	5.9.1	Detailed Description		 	 	44
	5.9.2	Macro Definition Documentation		 	 	44
		5.9.2.1 VDP_COLOR_TABLE_FORMAT_B8G8R8X8		 	 	44
	5.9.3	Typedef Documentation		 	 	44

CONTENTS vii

		5.9.3.1	VdpColorTableFormat	44
		5.9.3.2	VdpOutputSurface	45
		5.9.3.3	VdpOutputSurfaceCreate	45
		5.9.3.4	VdpOutputSurfaceDestroy	45
		5.9.3.5	VdpOutputSurfaceGetBitsNative	45
		5.9.3.6	VdpOutputSurfaceGetParameters	46
		5.9.3.7	VdpOutputSurfacePutBitsIndexed	46
		5.9.3.8	VdpOutputSurfacePutBitsNative	47
		5.9.3.9	VdpOutputSurfacePutBitsYCbCr	47
		5.9.3.10	VdpOutputSurfaceQueryCapabilities	48
		5.9.3.11	VdpOutputSurfaceQueryGetPutBitsNativeCapabilities	48
		5.9.3.12	VdpOutputSurfaceQueryPutBitsIndexedCapabilities	48
		5.9.3.13	VdpOutputSurfaceQueryPutBitsYCbCrCapabilities	49
5.10	VdpBiti	mapSurfac	ee; Bitmap Surfaceobject	50
	5.10.1	Detailed	Description	50
	5.10.2	Typedef [Documentation	51
		5.10.2.1	VdpBitmapSurface	51
		5.10.2.2	VdpBitmapSurfaceCreate	51
		5.10.2.3	VdpBitmapSurfaceDestroy	51
		5.10.2.4	VdpBitmapSurfaceGetParameters	51
		5.10.2.5	VdpBitmapSurfacePutBitsNative	52
		5.10.2.6	VdpBitmapSurfaceQueryCapabilities	52
5.11	VdpOu	tputSurfac	e Rendering Functionality	54
	5.11.1	Detailed	Description	55
	5.11.2	Macro De	efinition Documentation	55
		5.11.2.1	VDP_OUTPUT_SURFACE_RENDER_BLEND_STATE_VERSION	55
		5.11.2.2	VDP_OUTPUT_SURFACE_RENDER_COLOR_PER_VERTEX	55
		5.11.2.3	VDP_OUTPUT_SURFACE_RENDER_ROTATE_0	55
		5.11.2.4	VDP_OUTPUT_SURFACE_RENDER_ROTATE_180	55
		5.11.2.5	VDP_OUTPUT_SURFACE_RENDER_ROTATE_270	55

viii CONTENTS

5.11.2.6 VDP_OUTPUT_SURFACE_RENDER_ROTATE_90	 5	6
5.11.3 Typedef Documentation	 5	6
5.11.3.1 VdpOutputSurfaceRenderBitmapSurface	 5	6
5.11.3.2 VdpOutputSurfaceRenderOutputSurface	 5	7
5.11.4 Enumeration Type Documentation	 5	8
5.11.4.1 VdpOutputSurfaceRenderBlendEquation	 5	8
5.11.4.2 VdpOutputSurfaceRenderBlendFactor	 5	9
5.12 VdpDecoder; Video Decoding object	 6	0
5.12.1 Detailed Description	 6	3
5.12.2 Macro Definition Documentation	 6	3
5.12.2.1 VDP_BITSTREAM_BUFFER_VERSION	 6	3
5.12.2.2 VDP_DECODER_LEVEL_DIVX_NA	 6	3
5.12.2.3 VDP_DECODER_LEVEL_H264_1	 6	3
5.12.2.4 VDP_DECODER_LEVEL_H264_1_1	 6	3
5.12.2.5 VDP_DECODER_LEVEL_H264_1_2	 6	3
5.12.2.6 VDP_DECODER_LEVEL_H264_1_3	 6	3
5.12.2.7 VDP_DECODER_LEVEL_H264_1b	 6	3
5.12.2.8 VDP_DECODER_LEVEL_H264_2	 6	3
5.12.2.9 VDP_DECODER_LEVEL_H264_2_1	 6	3
5.12.2.10 VDP_DECODER_LEVEL_H264_2_2	 6	3
5.12.2.11 VDP_DECODER_LEVEL_H264_3	 6	3
5.12.2.12 VDP_DECODER_LEVEL_H264_3_1	 6	3
5.12.2.13 VDP_DECODER_LEVEL_H264_3_2	 6	3
5.12.2.14 VDP_DECODER_LEVEL_H264_4	 6	3
5.12.2.15 VDP_DECODER_LEVEL_H264_4_1	 6	3
5.12.2.16 VDP_DECODER_LEVEL_H264_4_2	 6	3
5.12.2.17 VDP_DECODER_LEVEL_H264_5	 6	3
5.12.2.18 VDP_DECODER_LEVEL_H264_5_1	 6	3
5.12.2.19 VDP_DECODER_LEVEL_HEVC_1	 6	3
5.12.2.20 VDP_DECODER_LEVEL_HEVC_2	 6	4

CONTENTS

5.12.	2.21 VDP_DECODER_LEVEL_HEVC_2_1	64
5.12.	2.22 VDP_DECODER_LEVEL_HEVC_3	64
5.12.	2.23 VDP_DECODER_LEVEL_HEVC_3_1	64
5.12.	2.24 VDP_DECODER_LEVEL_HEVC_4	64
5.12.	2.25 VDP_DECODER_LEVEL_HEVC_4_1	64
5.12.	2.26 VDP_DECODER_LEVEL_HEVC_5	64
5.12.	2.27 VDP_DECODER_LEVEL_HEVC_5_1	64
5.12.	2.28 VDP_DECODER_LEVEL_HEVC_5_2	64
5.12.	2.29 VDP_DECODER_LEVEL_HEVC_6	64
5.12.	2.30 VDP_DECODER_LEVEL_HEVC_6_1	64
5.12.	2.31 VDP_DECODER_LEVEL_HEVC_6_2	64
5.12.	2.32 VDP_DECODER_LEVEL_MPEG1_NA	64
5.12.	2.33 VDP_DECODER_LEVEL_MPEG2_HL	64
5.12.	2.34 VDP_DECODER_LEVEL_MPEG2_HL14	64
5.12.	2.35 VDP_DECODER_LEVEL_MPEG2_LL	64
5.12.	2.36 VDP_DECODER_LEVEL_MPEG2_ML	64
5.12.	2.37 VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L0	64
5.12.	2.38 VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L1	64
5.12.	2.39 VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L2	64
5.12.	2.40 VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L3	64
5.12.	2.41 VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L4	64
5.12.	2.42 VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L5	64
5.12.	2.43 VDP_DECODER_LEVEL_MPEG4_PART2_SP_L0	65
5.12.	2.44 VDP_DECODER_LEVEL_MPEG4_PART2_SP_L1	65
5.12.	2.45 VDP_DECODER_LEVEL_MPEG4_PART2_SP_L2	65
5.12.	2.46 VDP_DECODER_LEVEL_MPEG4_PART2_SP_L3	65
5.12.	2.47 VDP_DECODER_LEVEL_VC1_ADVANCED_L0	65
5.12.	2.48 VDP_DECODER_LEVEL_VC1_ADVANCED_L1	65
5.12.	2.49 VDP_DECODER_LEVEL_VC1_ADVANCED_L2	65
5.12.	2.50 VDP_DECODER_LEVEL_VC1_ADVANCED_L3	65

X CONTENTS

5.12.2.51 VDP_DECODER_LEVEL_VC1_ADVANCED_L4	65
5.12.2.52 VDP_DECODER_LEVEL_VC1_MAIN_HIGH	65
5.12.2.53 VDP_DECODER_LEVEL_VC1_MAIN_LOW	65
5.12.2.54 VDP_DECODER_LEVEL_VC1_MAIN_MEDIUM	65
5.12.2.55 VDP_DECODER_LEVEL_VC1_SIMPLE_LOW	65
5.12.2.56 VDP_DECODER_LEVEL_VC1_SIMPLE_MEDIUM	65
5.12.2.57 VDP_DECODER_PROFILE_DIVX4_HD_1080P	65
5.12.2.58 VDP_DECODER_PROFILE_DIVX4_HOME_THEATER	65
5.12.2.59 VDP_DECODER_PROFILE_DIVX4_MOBILE	65
5.12.2.60 VDP_DECODER_PROFILE_DIVX4_QMOBILE	65
5.12.2.61 VDP_DECODER_PROFILE_DIVX5_HD_1080P	65
5.12.2.62 VDP_DECODER_PROFILE_DIVX5_HOME_THEATER	65
5.12.2.63 VDP_DECODER_PROFILE_DIVX5_MOBILE	65
5.12.2.64 VDP_DECODER_PROFILE_DIVX5_QMOBILE	65
5.12.2.65 VDP_DECODER_PROFILE_H264_BASELINE	65
5.12.2.66 VDP_DECODER_PROFILE_H264_CONSTRAINED_BASELINE	66
5.12.2.67 VDP_DECODER_PROFILE_H264_CONSTRAINED_HIGH	66
5.12.2.68 VDP_DECODER_PROFILE_H264_EXTENDED	66
5.12.2.69 VDP_DECODER_PROFILE_H264_HIGH	66
5.12.2.70 VDP_DECODER_PROFILE_H264_HIGH_444_PREDICTIVE	66
5.12.2.71 VDP_DECODER_PROFILE_H264_MAIN	66
5.12.2.72 VDP_DECODER_PROFILE_H264_PROGRESSIVE_HIGH	66
5.12.2.73 VDP_DECODER_PROFILE_HEVC_MAIN	66
5.12.2.74 VDP_DECODER_PROFILE_HEVC_MAIN_10	66
5.12.2.75 VDP_DECODER_PROFILE_HEVC_MAIN_12	66
5.12.2.76 VDP_DECODER_PROFILE_HEVC_MAIN_444	66
5.12.2.77 VDP_DECODER_PROFILE_HEVC_MAIN_STILL	66
5.12.2.78 VDP_DECODER_PROFILE_MPEG1	66
5.12.2.79 VDP_DECODER_PROFILE_MPEG2_MAIN	66
5.12.2.80 VDP_DECODER_PROFILE_MPEG2_SIMPLE	66

CONTENTS xi

		5.12.2.81	VDP_DECODER_PROFILE_MPEG4_PART2_ASP	66
		5.12.2.82	VDP_DECODER_PROFILE_MPEG4_PART2_SP	66
		5.12.2.83	VDP_DECODER_PROFILE_VC1_ADVANCED	66
		5.12.2.84	VDP_DECODER_PROFILE_VC1_MAIN	66
		5.12.2.85	VDP_DECODER_PROFILE_VC1_SIMPLE	66
	5.12.3	Typedef E	Occumentation	66
		5.12.3.1	VdpDecoder	66
		5.12.3.2	VdpDecoderCreate	66
		5.12.3.3	VdpDecoderDestroy	67
		5.12.3.4	VdpDecoderGetParameters	67
		5.12.3.5	VdpDecoderProfile	67
		5.12.3.6	VdpDecoderQueryCapabilities	68
		5.12.3.7	VdpDecoderRender	68
		5.12.3.8	VdpPictureInfo	68
		5.12.3.9	VdpPictureInfoDivX4	69
		5.12.3.10	VdpPictureInfoDivX5	69
5.13	VdpVid	leoMixer; \	/ideo Post-processing and Compositing object	70
	5.13.1	Detailed I	Description	72
	5.13.2	Macro De	finition Documentation	73
		5.13.2.1	VDP_LAYER_VERSION	73
		5.13.2.2	VDP_VIDEO_MIXER_ATTRIBUTE_BACKGROUND_COLOR	73
		5.13.2.3	VDP_VIDEO_MIXER_ATTRIBUTE_CSC_MATRIX	73
		5.13.2.4	VDP_VIDEO_MIXER_ATTRIBUTE_LUMA_KEY_MAX_LUMA	74
		5.13.2.5	VDP_VIDEO_MIXER_ATTRIBUTE_LUMA_KEY_MIN_LUMA	74
		5.13.2.6	VDP_VIDEO_MIXER_ATTRIBUTE_NOISE_REDUCTION_LEVEL	74
		5.13.2.7	VDP_VIDEO_MIXER_ATTRIBUTE_SHARPNESS_LEVEL	74
		5.13.2.8	VDP_VIDEO_MIXER_ATTRIBUTE_SKIP_CHROMA_DEINTERLACE	74
		5.13.2.9	VDP_VIDEO_MIXER_FEATURE_DEINTERLACE_TEMPORAL	75
		5.13.2.10	VDP_VIDEO_MIXER_FEATURE_DEINTERLACE_TEMPORAL_SPATIAL	75
		5.13.2.11	VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L1	75

xii CONTENTS

	5.13.2.12	VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L2	/5
	5.13.2.13	VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L3	75
	5.13.2.14	VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L4	76
	5.13.2.15	VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L5	76
	5.13.2.16	VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L6	76
	5.13.2.17	VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L7	76
	5.13.2.18	VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L8	76
	5.13.2.19	VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L9	76
	5.13.2.20	VDP_VIDEO_MIXER_FEATURE_INVERSE_TELECINE	76
	5.13.2.21	VDP_VIDEO_MIXER_FEATURE_LUMA_KEY	77
	5.13.2.22	VDP_VIDEO_MIXER_FEATURE_NOISE_REDUCTION	77
	5.13.2.23	VDP_VIDEO_MIXER_FEATURE_SHARPNESS	77
	5.13.2.24	VDP_VIDEO_MIXER_PARAMETER_CHROMA_TYPE	77
	5.13.2.25	VDP_VIDEO_MIXER_PARAMETER_LAYERS	77
	5.13.2.26	VDP_VIDEO_MIXER_PARAMETER_VIDEO_SURFACE_HEIGHT	78
	5.13.2.27	VDP_VIDEO_MIXER_PARAMETER_VIDEO_SURFACE_WIDTH	78
5.13.3	Typedef D	Occumentation	78
	5.13.3.1	VdpVideoMixer	78
	5.13.3.2	VdpVideoMixerAttribute	78
	5.13.3.3	VdpVideoMixerCreate	78
	5.13.3.4	VdpVideoMixerDestroy	79
	5.13.3.5	VdpVideoMixerFeature	79
	5.13.3.6	VdpVideoMixerGetAttributeValues	79
	5.13.3.7	VdpVideoMixerGetFeatureEnables	80
	5.13.3.8	VdpVideoMixerGetFeatureSupport	80
	5.13.3.9	VdpVideoMixerGetParameterValues	80
	5.13.3.10	VdpVideoMixerParameter	81
	5.13.3.11	VdpVideoMixerQueryAttributeSupport	81
	5.13.3.12	VdpVideoMixerQueryAttributeValueRange	81
	5.13.3.13	VdpVideoMixerQueryFeatureSupport	82

CONTENTS xiii

		5.13.3.14 VdpVideoMixerQueryParameterSupport	82
		5.13.3.15 VdpVideoMixerQueryParameterValueRange	82
		5.13.3.16 VdpVideoMixerRender	83
		5.13.3.17 VdpVideoMixerSetAttributeValues	84
		5.13.3.18 VdpVideoMixerSetFeatureEnables	84
	5.13.4	Enumeration Type Documentation	84
		5.13.4.1 VdpVideoMixerPictureStructure	84
5.14	VdpPre	esentationQueue; Video presentation (display) object	85
	5.14.1	Detailed Description	86
	5.14.2	Typedef Documentation	86
		5.14.2.1 VdpPresentationQueue	86
		5.14.2.2 VdpPresentationQueueBlockUntilSurfaceIdle	86
		5.14.2.3 VdpPresentationQueueCreate	87
		5.14.2.4 VdpPresentationQueueDestroy	87
		5.14.2.5 VdpPresentationQueueDisplay	87
		5.14.2.6 VdpPresentationQueueGetBackgroundColor	88
		5.14.2.7 VdpPresentationQueueGetTime	88
		5.14.2.8 VdpPresentationQueueQuerySurfaceStatus	88
		5.14.2.9 VdpPresentationQueueSetBackgroundColor	89
		5.14.2.10 VdpPresentationQueueTarget	89
		5.14.2.11 VdpPresentationQueueTargetDestroy	89
		5.14.2.12 VdpTime	90
	5.14.3	Enumeration Type Documentation	90
		5.14.3.1 VdpPresentationQueueStatus	90
5.15	Display	Preemption	91
	5.15.1	Detailed Description	91
	5.15.2	Typedef Documentation	91
		5.15.2.1 VdpPreemptionCallback	91
		5.15.2.2 VdpPreemptionCallbackRegister	92
5.16	Entry P	Point Retrieval	93

xiv CONTENTS

5.16.1	Detailed [Description	94
5.16.2	Macro De	finition Documentation	94
	5.16.2.1	VDP_FUNC_ID_BASE_WINSYS	94
	5.16.2.2	VDP_FUNC_ID_BITMAP_SURFACE_CREATE	94
	5.16.2.3	VDP_FUNC_ID_BITMAP_SURFACE_DESTROY	94
	5.16.2.4	VDP_FUNC_ID_BITMAP_SURFACE_GET_PARAMETERS	94
	5.16.2.5	VDP_FUNC_ID_BITMAP_SURFACE_PUT_BITS_NATIVE	95
	5.16.2.6	VDP_FUNC_ID_BITMAP_SURFACE_QUERY_CAPABILITIES	95
	5.16.2.7	VDP_FUNC_ID_DECODER_CREATE	95
	5.16.2.8	VDP_FUNC_ID_DECODER_DESTROY	95
	5.16.2.9	VDP_FUNC_ID_DECODER_GET_PARAMETERS	95
	5.16.2.10	VDP_FUNC_ID_DECODER_QUERY_CAPABILITIES	95
	5.16.2.11	VDP_FUNC_ID_DECODER_RENDER	95
	5.16.2.12	VDP_FUNC_ID_DEVICE_DESTROY	95
	5.16.2.13	VDP_FUNC_ID_GENERATE_CSC_MATRIX	95
	5.16.2.14	VDP_FUNC_ID_GET_API_VERSION	95
	5.16.2.15	VDP_FUNC_ID_GET_ERROR_STRING	95
	5.16.2.16	VDP_FUNC_ID_GET_INFORMATION_STRING	95
	5.16.2.17	VDP_FUNC_ID_GET_PROC_ADDRESS	95
	5.16.2.18	VDP_FUNC_ID_OUTPUT_SURFACE_CREATE	95
	5.16.2.19	VDP_FUNC_ID_OUTPUT_SURFACE_DESTROY	95
	5.16.2.20	VDP_FUNC_ID_OUTPUT_SURFACE_GET_BITS_NATIVE	95
	5.16.2.21	VDP_FUNC_ID_OUTPUT_SURFACE_GET_PARAMETERS	95
	5.16.2.22	VDP_FUNC_ID_OUTPUT_SURFACE_PUT_BITS_INDEXED	95
	5.16.2.23	VDP_FUNC_ID_OUTPUT_SURFACE_PUT_BITS_NATIVE	95
	5.16.2.24	VDP_FUNC_ID_OUTPUT_SURFACE_PUT_BITS_Y_CB_CR	95
	5.16.2.25	VDP_FUNC_ID_OUTPUT_SURFACE_QUERY_CAPABILITIES	95
	5.16.2.26	VDP_FUNC_ID_OUTPUT_SURFACE_QUERY_GET_PUT_BITS_NATIVE_C↔ APABILITIES	95
	5.16.2.27	VDP_FUNC_ID_OUTPUT_SURFACE_QUERY_PUT_BITS_INDEXED_CAPA⇔ BILITIES	95

CONTENTS xv

5.16.2.28 VDP_FUNC_ID_OUTPUT_SURFACE_QUERY_PUT_BITS_Y_CB_CR_CAP← ABILITIES	96
5.16.2.29 VDP_FUNC_ID_OUTPUT_SURFACE_RENDER_BITMAP_SURFACE	96
5.16.2.30 VDP_FUNC_ID_OUTPUT_SURFACE_RENDER_OUTPUT_SURFACE	96
5.16.2.31 VDP_FUNC_ID_OUTPUT_SURFACE_RENDER_VIDEO_SURFACE_LUMA	96
5.16.2.32 VDP_FUNC_ID_PREEMPTION_CALLBACK_REGISTER	96
5.16.2.33 VDP_FUNC_ID_PRESENTATION_QUEUE_BLOCK_UNTIL_SURFACE_IDLE .	96
5.16.2.34 VDP_FUNC_ID_PRESENTATION_QUEUE_CREATE	96
5.16.2.35 VDP_FUNC_ID_PRESENTATION_QUEUE_DESTROY	96
5.16.2.36 VDP_FUNC_ID_PRESENTATION_QUEUE_DISPLAY	96
5.16.2.37 VDP_FUNC_ID_PRESENTATION_QUEUE_GET_BACKGROUND_COLOR	96
5.16.2.38 VDP_FUNC_ID_PRESENTATION_QUEUE_GET_TIME	96
5.16.2.39 VDP_FUNC_ID_PRESENTATION_QUEUE_QUERY_SURFACE_STATUS	96
5.16.2.40 VDP_FUNC_ID_PRESENTATION_QUEUE_SET_BACKGROUND_COLOR	96
5.16.2.41 VDP_FUNC_ID_PRESENTATION_QUEUE_TARGET_DESTROY	96
5.16.2.42 VDP_FUNC_ID_VIDEO_MIXER_CREATE	96
5.16.2.43 VDP_FUNC_ID_VIDEO_MIXER_DESTROY	96
5.16.2.44 VDP_FUNC_ID_VIDEO_MIXER_GET_ATTRIBUTE_VALUES	96
5.16.2.45 VDP_FUNC_ID_VIDEO_MIXER_GET_FEATURE_ENABLES	96
5.16.2.46 VDP_FUNC_ID_VIDEO_MIXER_GET_FEATURE_SUPPORT	96
5.16.2.47 VDP_FUNC_ID_VIDEO_MIXER_GET_PARAMETER_VALUES	96
5.16.2.48 VDP_FUNC_ID_VIDEO_MIXER_QUERY_ATTRIBUTE_SUPPORT	96
5.16.2.49 VDP_FUNC_ID_VIDEO_MIXER_QUERY_ATTRIBUTE_VALUE_RANGE	96
5.16.2.50 VDP_FUNC_ID_VIDEO_MIXER_QUERY_FEATURE_SUPPORT	96
5.16.2.51 VDP_FUNC_ID_VIDEO_MIXER_QUERY_PARAMETER_SUPPORT	97
5.16.2.52 VDP_FUNC_ID_VIDEO_MIXER_QUERY_PARAMETER_VALUE_RANGE	97
5.16.2.53 VDP_FUNC_ID_VIDEO_MIXER_RENDER	97
5.16.2.54 VDP_FUNC_ID_VIDEO_MIXER_SET_ATTRIBUTE_VALUES	97
5.16.2.55 VDP_FUNC_ID_VIDEO_MIXER_SET_FEATURE_ENABLES	97
5.16.2.56 VDP_FUNC_ID_VIDEO_SURFACE_CREATE	97
5.16.2.57 VDP_FUNC_ID_VIDEO_SURFACE_DESTROY	97

xvi CONTENTS

		5.16.2.58 VDP_FUNC_ID_VIDEO_SURFACE_GET_BITS_Y_CB_CR	97
		5.16.2.59 VDP_FUNC_ID_VIDEO_SURFACE_GET_PARAMETERS	97
		5.16.2.60 VDP_FUNC_ID_VIDEO_SURFACE_PUT_BITS_Y_CB_CR	97
		5.16.2.61 VDP_FUNC_ID_VIDEO_SURFACE_QUERY_CAPABILITIES	97
		5.16.2.62 VDP_FUNC_ID_VIDEO_SURFACE_QUERY_GET_PUT_BITS_Y_CB_CR_C APABILITIES	97
	5.16.3	Typedef Documentation	97
		5.16.3.1 VdpFuncld	97
		5.16.3.2 VdpGetProcAddress	97
5.17	Windov	v System Integration Layer	98
	5.17.1	Detailed Description	98
5.18	X11 Wi	ndow System Integration Layer	99
	5.18.1	Detailed Description	99
	5.18.2	Library Layout	99
	5.18.3	Macro Definition Documentation	100
		5.18.3.1 VDP_FUNC_ID_PRESENTATION_QUEUE_TARGET_CREATE_X11	100
	5.18.4	Typedef Documentation	100
		5.18.4.1 VdpDeviceCreateX11	100
		5.18.4.2 VdpPresentationQueueTargetCreateX11	100
	5.18.5	Variable Documentation	101
		5.18.5.1 vdp_device_create_x11	101

CONTENTS xvii

6	Data	Struct	ure Docur	mentation	103
	6.1	VdpBit	streamBuf	fer Struct Reference	103
		6.1.1	Detailed	Description	103
		6.1.2	Field Do	cumentation	103
			6.1.2.1	bitstream	103
			6.1.2.2	bitstream_bytes	103
			6.1.2.3	struct_version	103
	6.2	VdpCo	olor Struct	Reference	104
		6.2.1	Detailed	Description	104
		6.2.2	Field Do	cumentation	104
			6.2.2.1	alpha	104
			6.2.2.2	blue	104
			6.2.2.3	green	104
			6.2.2.4	red	104
	6.3	VdpLa	yer Struct	Reference	104
		6.3.1	Detailed	Description	105
		6.3.2	Field Do	cumentation	105
			6.3.2.1	destination_rect	105
			6.3.2.2	source_rect	105
			6.3.2.3	source_surface	105
			6.3.2.4	struct_version	105
	6.4	VdpOu	ıtputSurfac	ceRenderBlendState Struct Reference	105
		6.4.1	Detailed	Description	106
		6.4.2	Field Do	cumentation	106
			6.4.2.1	blend_constant	106
			6.4.2.2	blend_equation_alpha	106
			6.4.2.3	blend_equation_color	106
			6.4.2.4	blend_factor_destination_alpha	106
			6.4.2.5	blend_factor_destination_color	
			6.4.2.6	blend_factor_source_alpha	106

xviii CONTENTS

		6.4.2.7	blend_factor_source_color	106
		6.4.2.8	struct_version	106
6.5	VdpPic	ctureInfoH2	264 Struct Reference	106
	6.5.1	Detailed	Description	107
	6.5.2	Field Doo	cumentation	108
		6.5.2.1	bottom_field_flag	108
		6.5.2.2	chroma_qp_index_offset	108
		6.5.2.3	constrained_intra_pred_flag	108
		6.5.2.4	deblocking_filter_control_present_flag	108
		6.5.2.5	delta_pic_order_always_zero_flag	108
		6.5.2.6	direct_8x8_inference_flag	108
		6.5.2.7	entropy_coding_mode_flag	108
		6.5.2.8	field_order_cnt	108
		6.5.2.9	field_pic_flag	108
		6.5.2.10	frame_mbs_only_flag	108
		6.5.2.11	frame_num	108
		6.5.2.12	is_reference	108
		6.5.2.13	log2_max_frame_num_minus4	108
		6.5.2.14	log2_max_pic_order_cnt_lsb_minus4	108
		6.5.2.15	mb_adaptive_frame_field_flag	108
		6.5.2.16	num_ref_frames	108
		6.5.2.17	num_ref_idx_l0_active_minus1	108
		6.5.2.18	num_ref_idx_l1_active_minus1	108
		6.5.2.19	pic_init_qp_minus26	108
		6.5.2.20	pic_order_cnt_type	108
		6.5.2.21	pic_order_present_flag	108
		6.5.2.22	redundant_pic_cnt_present_flag	108
		6.5.2.23	referenceFrames	108
		6.5.2.24	scaling_lists_4x4	109
		6.5.2.25	scaling_lists_8x8	109

CONTENTS xix

		6.5.2.26	second_chroma_qp_index_offset)9
		6.5.2.27	slice_count)9
		6.5.2.28	transform_8x8_mode_flag)9
		6.5.2.29	weighted_bipred_idc)9
		6.5.2.30	weighted_pred_flag)9
6.6	VdpPid	ctureInfoH2	264Predictive Struct Reference	ງ9
	6.6.1	Detailed	Description	10
	6.6.2	Field Doo	cumentation	10
		6.6.2.1	pictureInfo	10
		6.6.2.2	qpprime_y_zero_transform_bypass_flag	10
		6.6.2.3	separate_colour_plane_flag	10
6.7	VdpPid	ctureInfoHE	EVC Struct Reference	10
	6.7.1	Detailed	Description	12
	6.7.2	Field Doo	cumentation	13
		6.7.2.1	amp_enabled_flag	13
		6.7.2.2	bit_depth_chroma_minus8	13
		6.7.2.3	bit_depth_luma_minus8	13
		6.7.2.4	cabac_init_present_flag	13
		6.7.2.5	chroma_format_idc	13
		6.7.2.6	column_width_minus1	13
		6.7.2.7	constrained_intra_pred_flag	13
		6.7.2.8	cu_qp_delta_enabled_flag	13
		6.7.2.9	CurrPicOrderCntVal	13
		6.7.2.10	CurrRpsldx	13
		6.7.2.11	deblocking_filter_control_present_flag	13
		6.7.2.12	deblocking_filter_override_enabled_flag	13
		6.7.2.13	dependent_slice_segments_enabled_flag	13
		6.7.2.14	diff_cu_qp_delta_depth	13
		6.7.2.15	entropy_coding_sync_enabled_flag	14
		6.7.2.16	IDRPicFlag	14

CONTENTS

6.7.2.17	init_qp_minus26	114
6.7.2.18	IsLongTerm	114
6.7.2.19	lists_modification_present_flag	114
6.7.2.20	log2_diff_max_min_luma_coding_block_size	114
6.7.2.21	log2_diff_max_min_pcm_luma_coding_block_size	114
6.7.2.22	log2_diff_max_min_transform_block_size	114
6.7.2.23	log2_max_pic_order_cnt_lsb_minus4	114
6.7.2.24	log2_min_luma_coding_block_size_minus3	114
6.7.2.25	log2_min_pcm_luma_coding_block_size_minus3	114
6.7.2.26	log2_min_transform_block_size_minus2	114
6.7.2.27	log2_parallel_merge_level_minus2	114
6.7.2.28	long_term_ref_pics_present_flag	114
6.7.2.29	loop_filter_across_tiles_enabled_flag	114
6.7.2.30	max_transform_hierarchy_depth_inter	115
6.7.2.31	max_transform_hierarchy_depth_intra	115
6.7.2.32	num_extra_slice_header_bits	115
6.7.2.33	num_long_term_ref_pics_sps	115
6.7.2.34	num_ref_idx_l0_default_active_minus1	115
6.7.2.35	num_ref_idx_l1_default_active_minus1	115
6.7.2.36	num_short_term_ref_pic_sets	115
6.7.2.37	num_tile_columns_minus1	115
6.7.2.38	num_tile_rows_minus1	115
6.7.2.39	NumDeltaPocsOfRefRpsIdx	115
6.7.2.40	NumLongTermPictureSliceHeaderBits	115
6.7.2.41	NumPocLtCurr	115
6.7.2.42	NumPocStCurrAfter	116
6.7.2.43	NumPocStCurrBefore	116
6.7.2.44	NumPocTotalCurr	116
6.7.2.45	NumShortTermPictureSliceHeaderBits	116
6.7.2.46	output_flag_present_flag	116

CONTENTS xxi

6.7.2.47	pcm_enabled_flag	116
6.7.2.48	pcm_loop_filter_disabled_flag	116
6.7.2.49	pcm_sample_bit_depth_chroma_minus1	116
6.7.2.50	pcm_sample_bit_depth_luma_minus1	116
6.7.2.51	pic_height_in_luma_samples	116
6.7.2.52	pic_width_in_luma_samples	116
6.7.2.53	PicOrderCntVal	116
6.7.2.54	pps_beta_offset_div2	117
6.7.2.55	pps_cb_qp_offset	117
6.7.2.56	pps_cr_qp_offset	117
6.7.2.57	pps_deblocking_filter_disabled_flag	117
6.7.2.58	pps_loop_filter_across_slices_enabled_flag	117
6.7.2.59	pps_slice_chroma_qp_offsets_present_flag	117
6.7.2.60	pps_tc_offset_div2	117
6.7.2.61	RAPPicFlag	117
6.7.2.62	RefPics	117
6.7.2.63	RefPicSetLtCurr	117
6.7.2.64	RefPicSetStCurrAfter	117
6.7.2.65	RefPicSetStCurrBefore	117
6.7.2.66	row_height_minus1	118
6.7.2.67	sample_adaptive_offset_enabled_flag	118
6.7.2.68	scaling_list_enabled_flag	118
6.7.2.69	ScalingList16x16	118
6.7.2.70	ScalingList32x32	118
6.7.2.71	ScalingList4x4	118
6.7.2.72	ScalingList8x8	118
6.7.2.73	ScalingListDCCoeff16x16	118
6.7.2.74	ScalingListDCCoeff32x32	118
6.7.2.75	separate_colour_plane_flag	118
6.7.2.76	sign_data_hiding_enabled_flag	118

xxii CONTENTS

		6.7.2.77	slice_segment_header_extension_present_flag
		6.7.2.78	sps_max_dec_pic_buffering_minus1
		6.7.2.79	sps_temporal_mvp_enabled_flag
		6.7.2.80	strong_intra_smoothing_enabled_flag
		6.7.2.81	tiles_enabled_flag
		6.7.2.82	transform_skip_enabled_flag
		6.7.2.83	transquant_bypass_enabled_flag
		6.7.2.84	uniform_spacing_flag
		6.7.2.85	weighted_bipred_flag
		6.7.2.86	weighted_pred_flag
6.8	VdpPid	ctureInfoMI	PEG1Or2 Struct Reference
	6.8.1	Detailed	Description
	6.8.2	Field Doo	cumentation
		6.8.2.1	alternate_scan
		6.8.2.2	backward_reference
		6.8.2.3	concealment_motion_vectors
		6.8.2.4	f_code
		6.8.2.5	forward_reference
		6.8.2.6	frame_pred_frame_dct
		6.8.2.7	full_pel_backward_vector
		6.8.2.8	full_pel_forward_vector
		6.8.2.9	intra_dc_precision
		6.8.2.10	intra_quantizer_matrix
		6.8.2.11	intra_vlc_format
		6.8.2.12	non_intra_quantizer_matrix
		6.8.2.13	picture_coding_type
		6.8.2.14	picture_structure
		6.8.2.15	q_scale_type
		6.8.2.16	slice_count
		6.8.2.17	top_field_first

CONTENTS xxiii

6.9	VdpPic	tureInfoMF	PEG4Part2 Struct Reference	121									
	6.9.1	Detailed Description											
	6.9.2	Field Doo	cumentation	122									
		6.9.2.1	alternate_vertical_scan_flag	122									
		6.9.2.2	backward_reference	122									
		6.9.2.3	forward_reference	122									
		6.9.2.4	interlaced	122									
		6.9.2.5	intra_quantizer_matrix	122									
		6.9.2.6	non_intra_quantizer_matrix	122									
		6.9.2.7	quant_type	122									
		6.9.2.8	quarter_sample	122									
		6.9.2.9	resync_marker_disable	122									
		6.9.2.10	rounding_control	122									
		6.9.2.11	short_video_header	122									
		6.9.2.12	top_field_first	122									
		6.9.2.13	trb	122									
		6.9.2.14	trd	122									
		6.9.2.15	vop_coding_type	122									
		6.9.2.16	vop_fcode_backward	122									
		6.9.2.17	vop_fcode_forward	122									
		6.9.2.18	vop_time_increment_resolution	122									
6.10	VdpPic	tureInfoVC	C1 Struct Reference	123									
	6.10.1	Detailed	Description	123									
	6.10.2	Field Doo	cumentation	123									
		6.10.2.1	backward_reference	123									
		6.10.2.2	deblockEnable	124									
		6.10.2.3	dquant	124									
		6.10.2.4	extended_dmv	124									
		6.10.2.5	extended_mv	124									
		6.10.2.6	fastuvmc	124									

xxiv CONTENTS

		6.10.2.7	finter	oflag .			 		124						
		6.10.2.8	forwa	rd_refe	rence		 		124						
		6.10.2.9	frame	_codin	g_mod	de .	 		124						
		6.10.2.10	interla	ace			 		124						
		6.10.2.11	loopfi	lter			 		124						
		6.10.2.12	! maxb	frames			 		125						
		6.10.2.13	multir	es			 		125						
		6.10.2.14	overla	ар			 		125						
		6.10.2.15	panso	can_flaç	g		 		125						
		6.10.2.16	pictur	e_type			 		125						
		6.10.2.17	postp	rocflag			 		125						
		6.10.2.18	pquai	nt			 		125						
		6.10.2.19	psf .				 		125						
		6.10.2.20	pulldo	wn			 		125						
		6.10.2.21	quant	iizer			 		125						
		6.10.2.22	! range	_mapu	v		 		126						
		6.10.2.23	range	_mapu	v_flag	٠.	 		126						
		6.10.2.24	range	_mapy			 		126						
		6.10.2.25	range	:_mapy	_flag		 		126						
		6.10.2.26	range	ered			 		126						
		6.10.2.27	refdis	t_flag .			 		126						
		6.10.2.28	slice_	_count .			 		126						
		6.10.2.29	syncr	narker .			 		126						
		6.10.2.30	tfcntrf	ilag			 		126						
		6.10.2.31	vstrar	nsform			 		126						
6.11	VdpPoi	nt Struct F	Referer	ıce			 		127						
	6.11.1	Detailed I	Descri	ption .			 		127						
	6.11.2	Field Doo	ument	ation .			 		127						
		6.11.2.1	x				 		127						
		6.11.2.2	у				 		127						

CONTENTS xxv

	6.12	VdpPro	camp Struct Reference		 	 	 	127
		6.12.1	Detailed Description		 	 	 	128
		6.12.2	Field Documentation		 	 	 	128
			6.12.2.1 brightness		 	 	 	128
			6.12.2.2 contrast		 	 	 	128
			6.12.2.3 hue		 	 	 	128
			6.12.2.4 saturation		 	 	 	128
			6.12.2.5 struct_version		 	 	 	128
	6.13	VdpRe	t Struct Reference		 	 	 	128
		6.13.1	Detailed Description		 	 	 	129
		6.13.2	Field Documentation		 	 	 	129
			6.13.2.1 x0		 	 	 	129
			6.13.2.2 x1		 	 	 	129
			6.13.2.3 y0		 	 	 	129
			6.13.2.4 y1		 	 	 	129
	6.14	VdpRe	erenceFrameH264 Struct Reference	е	 	 	 	129
		6.14.1	Detailed Description		 	 	 	130
		6.14.2	Field Documentation		 	 	 	130
			6.14.2.1 bottom_is_reference .		 	 	 	130
			6.14.2.2 field_order_cnt		 	 	 	130
			6.14.2.3 frame_idx		 	 	 	130
			6.14.2.4 is_long_term		 	 	 	130
			6.14.2.5 surface		 	 	 	130
			6.14.2.6 top_is_reference		 	 	 	130
7	File I	Docume	ntation					131
	7.1		dpau.h File Reference		 	 	 	131
		7.1.1	Detailed Description					
	7.2		dpau_x11.h File Reference					
		7.2.1	Detailed Description					
				· ·	 	 	 	
Inc	dex							145

Chapter 1

Video Decode and Presentation API for Unix

1.1 Introduction

The Video Decode and Presentation API for Unix (VDPAU) provides a complete solution for decoding, post-processing, compositing, and displaying compressed or uncompressed video streams. These video streams may be combined (composited) with bitmap content, to implement OSDs and other application user interfaces.

1.2 API Partitioning

VDPAU is split into two distinct modules:

- Core API
- · Window System Integration Layer

The intent is that most VDPAU functionality exists and operates identically across all possible Windowing Systems. This functionality is the Core API.

However, a small amount of functionality must be included that is tightly coupled to the underlying Windowing System. This functionality is the Window System Integration Layer. Possibly examples include:

- Creation of the initial VDPAU VdpDevice handle, since this act requires intimate knowledge of the underlying Window System, such as specific display handle or driver identification.
- Conversion of VDPAU surfaces to/from underlying Window System surface types, e.g. to allow manipulation of VDPAU-generated surfaces via native Window System APIs.

1.3 Object Types

VDPAU is roughly object oriented; most functionality is exposed by creating an object (handle) of a certain class (type), then executing various functions against that handle. The set of object classes supported, and their purpose, is discussed below.

1.3.1 Device Type

A VdpDevice is the root object in VDPAU's object system. The Window System Integration Layer allows creation of a VdpDevice object handle, from which all other API entry points can be retrieved and invoked.

1.3.2 Surface Types

A surface stores pixel information. Various types of surfaces existing for different purposes:

- · VdpVideoSurfaces store decompressed YCbCr video frames in an implementation-defined internal format.
- VdpOutputSurfaces store RGB 4:4:4 data. They are legal render targets for video post-processing and compositing operations.
- VdpBitmapSurfaces store RGB 4:4:4 data. These surfaces are designed to contain read-only bitmap data, to be used for OSD or application UI compositing.

1.3.3 Transfer Types

A data transfer object reads data from a surface (or surfaces), processes it, and writes the result to another surface. Various types of processing are possible:

- VdpDecoder objects process compressed video data, and generate decompressed images.
- · VdpOutputSurfaces have their own rendering functionality.
- VdpVideoMixer objects perform video post-processing, de-interlacing, and compositing.
- VdpPresentationQueue is responsible for timestamp-based display of surfaces.

1.4 Data Flow

Compressed video data originates in the application's memory space. This memory is typically obtained using malloc, and filled via regular file or network read system calls. Alternatively, the application may mmap a file.

The compressed data is then processed using a VdpDecoder, which will decompress the field or frame, and write the result into a VdpVideoSurface. This action may require reading pixel data from some number of other Vdp← VideoSurface objects, depending on the type of compressed data and field/frame in question.

If the application wishes to display any form of OSD or user-interface, this must be created in a VdpOutputSurface.

This process begins with the creation of VdpBitmapSurface objects to contain the OSD/UI's static data, such as individual glyphs.

VdpOutputSurface rendering functionality may be used to composite together various VdpBitmapSurfaces and VdpOutputSurfaces, into another VdpOutputSurface "VdpOutputSurface".

Once video has been decoded, it must be post-processed. This involves various steps such as color space conversion, de-interlacing, and other video adjustments. This step is performed using an VdpVideoMixer object. This object can not only perform the aforementioned video post-processing, but also composite the video with a number of VdpOutputSurfaces, thus allowing complex user interfaces to be built. The final result is written into another VdpOutputSurface.

Note that at this point, the resultant VdpOutputSurface may be fed back through the above path, either using Vdp—OutputSurface rendering functionality, or as input to the VdpVideoMixer object.

Finally, the resultant VdpOutputSurface must be displayed on screen. This is the job of the VdpPresentationQueue object.

1.5 Entry Point Retrieval

VDPAU is designed so that multiple implementations can be used without application changes. For example, VD← PAU could be hosted on X11, or via direct GPU access.

The key technology behind this is the use of function pointers and a "get proc address" style API for all entry points. Put another way, functions are not called directly via global symbols set up by the linker, but rather through pointers.

In practical terms, the Window System Integration Layer provides factory functions which not only create and return VdpDevice objects, but also a function pointer to a VdpGetProcAddress function, through which all entry point function pointers will be retrieved.

1.5.1 Philosophy

It is entirely possible to envisage a simpler scheme whereby such function pointers are hidden. That is, the application would link against a wrapper library that exposed "real" functions. The application would then call such functions directly, by symbol, like any other function. The wrapper library would handle loading the appropriate back-end, and implementing a similar "get proc address" scheme internally.

However, the above scheme does not work well in the context of separated Core API and Window System Integration Layer. In this scenario, one would require a separate wrapper library per Window System, since each Window System would have a different function name and prototype for the main factory function. If an application then wanted to be Window System agnostic (making final determination at run-time via some form of plugin), it may then need to link against two wrapper libraries, which would cause conflicts for all symbols other than the main factory function.

Another disadvantage of the wrapper library approach is the extra level of function call required; the wrapper library would internally implement the existing "get proc address" and "function pointer" style dispatch anyway. Exposing this directly to the application is slightly more efficient.

1.6 Multi-threading

All VDPAU functionality is fully thread-safe; any number of threads may call into any VDPAU functions at any time. VDPAU may not be called from signal-handlers.

Note, however, that this simply guarantees that internal VDPAU state will not be corrupted by thread usage, and that crashes and deadlocks will not occur. Completely arbitrary thread usage may not generate the results that an application desires. In particular, care must be taken when multiple threads are performing operations on the same VDPAU objects.

VDPAU implementations guarantee correct flow of surface content through the rendering pipeline, but only when function calls that read from or write to a surface return to the caller prior to any thread calling any other function(s) that read from or write to the surface. Invoking multiple reads from a surface in parallel is OK.

Note that this restriction is placed upon VDPAU function invocations, and specifically not upon any back-end hard-ware's physical rendering operations. VDPAU implementations are expected to internally synchronize such hard-ware operations.

In a single-threaded application, the above restriction comes naturally; each function call completes before it is possible to begin a new function call.

In a multi-threaded application, threads may need to be synchronized. For example, consider the situation where:

- Thread 1 is parsing compressed video data, passing them through a VdpDecoder object, and filling a ringbuffer of VdpVideoSurfaces
- Thread 2 is consuming those VdpVideoSurfaces, and using a VdpVideoMixer to process them and composite
 them with UI.

In this case, the threads must synchronize to ensure that thread 1's call to VdpDecoderRender has returned prior to thread 2's call(s) to VdpVideoMixerRender that use that specific surface. This could be achieved using the following pseudo-code:

```
Queue<VdpVideoSurface> q_full_surfaces;
Queue<VdpVideoSurface> q_empty_surfaces;
thread 1() {
    for (;;) {
        VdpVideoSurface s = q_empty_surfaces.get();
        // Parse compressed stream here
       VdpDecoderRender(s, ...);
        q_full_surfaces.put(s);
    }
}
// This would need to be more complex if
// VdpVideoMixerRender were to be provided with more
// than one field/frame at a time.
thread_2() {
    for (;;) {
        // Possibly, other rendering operations to mixer
        // layer surfaces here.
        VdpOutputSurface t = ...;
        VdpPresentationQueueBlockUntilSurfaceIdle(t);
        VdpVideoSurface s = q_full_surfaces.get();
        VdpVideoMixerRender(s, t, ...);
       q_empty_surfaces.put(s);
        // Possibly, other rendering operations to "t" here
       VdpPresentationQueueDisplay(t, ...);
    }
}
```

Finally, note that VDPAU makes no guarantees regarding any level of parallelism in any given implementation. Put another way, use of multi-threading is not guaranteed to yield any performance gain, and in theory could even slightly reduce performance due to threading/synchronization overhead.

However, the intent of the threading requirements is to allow for e.g. video decoding and video mixer operations to proceed in parallel in hardware. Given a (presumably multi-threaded) application that kept each portion of the hardware busy, this would yield a performance increase.

1.7 Surface Endianness

When dealing with surface content, i.e. the input/output of Put/GetBits functions, applications must take care to access memory in the correct fashion, so as to avoid endianness issues.

By established convention in the 3D graphics world, RGBA data is defined to be an array of 32-bit pixels containing packed RGBA components, not as an array of bytes or interleaved RGBA components. VDPAU follows this convention. As such, applications are expected to access such surfaces as arrays of 32-bit components (i.e. using a 32-bit pointer), and not as interleaved arrays of 8-bit components (i.e. using an 8-bit pointer.) Deviation from this convention will lead to endianness issues, unless appropriate care is taken.

The same convention is followed for some packed YCbCr formats such as VDP_YCBCR_FORMAT_Y8U8V8A8; i.e. they are considered arrays of 32-bit pixels, and hence should be accessed as such.

For YCbCr formats with chroma decimation and/or planar formats, however, this convention is awkward. Therefore, formats such as VDP_YCBCR_FORMAT_NV12 are defined as arrays of (potentially interleaved) byte-sized components. Hence, applications should manipulate such data 8-bits at a time, using 8-bit pointers.

Note that one common usage for the input/output of Put/GetBits APIs is file I/O. Typical file I/O APIs treat all memory as a simple array of 8-bit values. This violates the rule requiring surface data to be accessed in its true native format. As such, applications may be required to solve endianness issues. Possible solutions include:

- · Authoring static UI data files according to the endianness of the target execution platform.
- · Conditionally byte-swapping Put/GetBits data buffers at run-time based on execution platform.

Note: Complete details regarding each surface format's precise pixel layout is included with the documentation of each surface type. For example, see VDP_RGBA_FORMAT_B8G8R8A8.

1.8 Video Decoder Usage

VDPAU is a slice-level API. Put another way, VDPAU implementations accept "slice" data from the bitstream, and perform all required processing of those slices (e.g VLD decoding, IDCT, motion compensation, in-loop deblocking, etc.).

The client application is responsible for:

- Extracting the slices from the bitstream (e.g. parsing/demultiplexing container formats, scanning the data to determine slice start positions and slice sizes).
- Parsing various bitstream headers/structures (e.g. sequence header, sequence parameter set, picture parameter set, entry point structures, etc.) Various fields from the parsed header structures needs to be provided to VDPAU alongside the slice bitstream in a "picture info" structure.
- Surface management (e.g. H.264 DPB processing, display re-ordering)

It is recommended that applications pass solely the slice data to VDPAU; specifically that any header data structures be excluded from the portion of the bitstream passed to VDPAU. VDPAU implementations must operate correctly if non-slice data is included, at least for formats employing start codes to delimit slice data. However, any extra data may need to be uploaded to hardware for parsing thus lowering performance, and/or, in the worst case, may even overflow internal buffers that are sized solely for slice data.

The exact data that should be passed to VDPAU is detailed below for each supported format:

1.8.1 MPEG-1 and MPEG-2

Include all slices beginning with start codes 0x00000101 through 0x000001AF. The slice start code must be included for all slices.

1.8.2 H.264

Include all NALs with nal_unit_type of 1 or 5 (coded slice of non-IDR/IDR picture respectively). The complete slice start code (including 0x000001 prefix) must be included for all slices, even when the prefix is not included in the bitstream.

Note that if desired:

- The slice start code prefix may be included in a separate bitstream buffer array entry to the actual slice data extracted from the bitstream.
- Multiple bitstream buffer array entries (e.g. one per slice) may point at the same physical data storage for the slice start code prefix.

1.8.3 VC-1 Simple and Main Profile

VC-1 simple/main profile bitstreams always consist of a single slice per picture, and do not use start codes to delimit pictures. Instead, the container format must indicate where each picture begins/ends.

As such, no slice start codes should be included in the data passed to VDPAU; simply pass in the exact data from the bitstream.

Header information contained in the bitstream should be parsed by the application and passed to VDPAU using the "picture info" data structure; this header information explicitly must not be included in the bitstream data passed to VDPAU for this encoding format.

1.8.4 VC-1 Advanced Profile

Include all slices beginning with start codes 0x0000010D (frame), 0x0000010C (field) or 0x0000010B (slice). The slice start code should be included in all cases.

Some VC-1 advanced profile streams do not contain slice start codes; again, the container format must indicate where picture data begins and ends. In this case, pictures are assumed to be progressive and to contain a single slice. It is highly recommended that applications detect this condition, and add the missing start codes to the bitstream passed to VDPAU. However, VDPAU implementations must allow bitstreams with missing start codes, and act as if a 0x0000010D (frame) start code had been present.

Note that pictures containing multiple slices, or interlace streams, must contain a complete set of slice start codes in the original bitstream; without them, it is not possible to correctly parse and decode the stream.

The bitstream passed to VDPAU should contain all original emulation prevention bytes present in the original bitstream; do not remove these from the bitstream.

1.8.5 MPEG-4 Part 2 and DivX

Include all slices beginning with start codes 0x000001B6. The slice start code must be included for all slices.

1.8.6 H.265/HEVC - High Efficiency Video Codec

Include all video coding layer (VCL) NAL units, with nal_unit_type values of 0 (TRAIL_N) through 31 (RSV_VC ← L31) inclusive. In addition to parsing and providing NAL units, an H.265/HEVC decoder application using VDPAU for decoding must parse certain values of the first slice segment header in a VCL NAL unit and provide it through VdpPictureInfoHEVC. Please see the documentation for VdpPictureInfoHEVC below for further details.

The complete slice start code (including the 0x000001 prefix) must be included for all slices, even when the prefix is not included in the bitstream.

Note that if desired:

- The slice start code prefix may be included in a separate bitstream buffer array entry to the actual slice data extracted from the bitstream.
- Multiple bitstream buffer array entries (e.g. one per slice) may point at the same physical data storage for the slice start code prefix.

1.9 Video Mixer Usage 7

1.9 Video Mixer Usage

1.9.1 VdpVideoSurface Content

Each VdpVideoSurface is expected to contain an entire frame's-worth of data, irrespective of whether an interlaced of progressive sequence is being decoded.

Depending on the exact encoding structure of the compressed video stream, the application may need to call Vdp← DecoderRender twice to fill a single VdpVideoSurface. When the stream contains an encoded progressive frame, or a "frame coded" interlaced field-pair, a single VdpDecoderRender call will fill the entire surface. When the stream contains separately encoded interlaced fields, two VdpDecoderRender calls will be required; one for the top field, and one for the bottom field.

Implementation note: When VdpDecoderRender renders an interlaced field, this operation must not disturb the content of the other field in the surface.

1.9.2 VdpVideoMixer Surface List

An video stream is logically composed of a sequence of fields. An example is shown below, in display order, assuming top field first:

```
t0 b0 t1 b1 t2 b2 t3 b3 t4 b4 t5 b5 t6 b6 t7 b7 t8 b8 t9 b9
```

The canonical usage is to call VdpVideoMixerRender once for decoded field, in display order, to yield one post-processed frame for display.

For each call to VdpVideoMixerRender, the field to be processed should be provided as the **video_surface_current** parameter.

To enable operation of advanced de-interlacing algorithms and/or post-processing algorithms, some past and/or future surfaces should be provided as context. These are provided in the **video_surface_past** and **video_** \leftarrow **surface_future** lists. In general, these lists may contain any number of surfaces. Specific implementations may have specific requirements determining the minimum required number of surfaces for optimal operation, and the maximum number of useful surfaces, beyond which surfaces are not used. It is recommended that in all cases other than plain bob/weave, at least 2 past and 1 future field be provided.

Note that it is entirely possible, in general, for any of the VdpVideoMixer post-processing steps other than deinterlacing to require access to multiple input fields/frames. For example, an motion-sensitive noise-reduction algorithm.

For example, when processing field t4, the VdpVideoMixerRender parameters may contain the following values, if the application chose to provide 3 fields of context for both the past and future:

```
current_picture_structure: VDP_VIDEO_MIXER_PICTURE_STRUCTURE_TOP_FIELD
past: [b3, t3, b2]
current: t4
future: [b4, t5, b5]
```

Note that for both the past/future lists, array index 0 represents the field temporally closest to current, in display order.

The VdpVideoMixerRender parameter current_picture_structure applies to video_surface_current. The picture structure for the other surfaces will be automatically derived from that for the current picture. The derivation algorithm is extremely simple; the concatenated list past/current/future is simply assumed to have an alternating top/bottom pattern throughout.

Continuing the example above, subsequent calls to VdpVideoMixerRender would provide the following sets of parameters:

```
current_picture_structure: VDP_VIDEO_MIXER_PICTURE_STRUCTURE_BOTTOM_FIELD
past: [t4, b3, t3]
current: b4
future: [t5, b5, t6]

then:

current_picture_structure: VDP_VIDEO_MIXER_PICTURE_STRUCTURE_TOP_FIELD
past: [b4, t4, b3]
current: t5
```

In other words, the concatenated list of past/current/future frames simply forms a window that slides through the sequence of decoded fields.

It is syntactically legal for an application to choose not to provide a particular entry in the past or future lists. In this case, the "slot" in the surface list must be filled with the special value VDP_INVALID_HANDLE, to explicitly indicate that the picture is missing; do not simply shuffle other surfaces together to fill in the gap. Note that entries should only be omitted under special circumstances, such as failed decode due to bitstream error during picture header parsing, since missing entries will typically cause advanced de-interlacing algorithms to experience significantly degraded operation.

Specific examples for different de-interlacing types are presented below.

1.9.3 Weave De-interlacing

future: [b5, t6, b7]

Weave de-interlacing is the act of interleaving the lines of two temporally adjacent fields to form a frame for display.

To disable de-interlacing for progressive streams, simply specify **current_picture_structure** as VDP_VIDEO_M IXER_PICTURE_STRUCTURE_FRAME; no de-interlacing will be applied.

Weave de-interlacing for interlaced streams is identical to disabling de-interlacing, as describe immediately above, because each VdpVideoSurface; Video Surface object already contains an entire frame's worth (i.e. two fields) of picture data.

Inverse telecine is disabled when using weave de-interlacing.

Weave de-interlacing produces one output frame for each input frame. The application should make one Vdp← VideoMixerRender call per pair of decoded fields, or per decoded frame.

Weave de-interlacing requires no entries in the past/future lists.

All implementations must support weave de-interlacing.

1.9 Video Mixer Usage 9

1.9.4 Bob De-interlacing

Bob de-interlacing is the act of vertically scaling a single field to the size of a single frame.

Inverse telecine is disabled when using bob de-interlacing.

Bob de-interlacing produces one output frame for each input field. The application should make one VdpVideo← MixerRender call per decoded field.

Bob de-interlacing requires no entries in the past/future lists.

Bob de-interlacing is the default when no advanced method is requested and enabled. Advanced de-interlacing algorithms may fall back to bob e.g. when required past/future fields are missing.

All implementations must support bob de-interlacing.

1.9.5 Advanced De-interlacing

Operation of both temporal and temporal-spatial de-interlacing is identical; the only difference is the internal processing the algorithm performs in generating the output frame.

These algorithms use various advanced processing on the pixels of both the current and various past/future fields in order to determine how best to de-interlacing individual portions of the image.

Inverse telecine may be enabled when using advanced de-interlacing.

Advanced de-interlacing produces one output frame for each input field. The application should make one Vdp← VideoMixerRender call per decoded field.

Advanced de-interlacing requires entries in the past/future lists.

Availability of advanced de-interlacing algorithms is implementation dependent.

1.9.6 De-interlacing Rate

For all de-interlacing algorithms except weave, a choice may be made to call VdpVideoMixerRender for either each decoded field, or every second decoded field.

If VdpVideoMixerRender is called for every decoded field, the generated post-processed frame rate is equal to the decoded field rate. Put another way, the generated post-processed nominal field rate is equal to 2x the decoded field rate. This is standard practice.

If VdpVideoMixerRender is called for every second decoded field (say every top field), the generated post-processed frame rate is half to the decoded field rate. This mode of operation is thus referred to as "half-rate".

Implementations may choose whether to support half-rate de-interlacing or not. Regular full-rate de-interlacing should be supported by any supported advanced de-interlacing algorithm.

The descriptions of de-interlacing algorithms above assume that regular (not half-rate) operation is being performed, when detailing the number of VdpVideoMixerRender calls.

Recall that the concatenation of past/current/future surface lists simply forms a window into the stream of decoded fields. To achieve standard de-interlacing, the window is slid through the list of decoded fields one field at a time, and a call is made to VdpVideoMixerRender for each movement of the window. To achieve half-rate de-interlacing, the window is slid through the* list of decoded fields two fields at a time, and a call is made to VdpVideoMixerRender for each movement of the window.

1.9.7 Inverse Telecine

Assuming the implementation supports it, inverse telecine may be enabled alongside any advanced de-interlacing algorithm. Inverse telecine is never active for bob or weave.

Operation of VdpVideoMixerRender with inverse telecine active is identical to the basic operation mechanisms describe above in every way; all inverse telecine processing is performed internally to the VdpVideoMixer.

In particular, there is no provision way for VdpVideoMixerRender to indicate when identical input fields have been observed, and consequently identical output frames may have been produced.

De-interlacing (and inverse telecine) may be applied to streams that are marked as being progressive. This will allow detection of, and correct de-interlacing of, mixed interlace/progressive streams, bad edits, etc. To implement de-interlacing/inverse-telecine on progressive material, simply treat the stream of decoded frames as a stream of decoded fields, apply any telecine flags (see the next section), and then apply de-interlacing to those fields as described above.

Implementations are free to determine whether inverse telecine operates in conjunction with half-rate de-interlacing or not. It should always operate with regular de-interlacing, when advertized.

1.9.8 Telecine (Pull-Down) Flags

Some media delivery formats, e.g. DVD-Video, include flags that are intended to modify the decoded field sequence before display. This allows e.g. 24p content to be encoded at 48i, which saves space relative to a 60i encoded stream, but still displayed at 60i, to match target consumer display equipment.

If the inverse telecine option is not activated in the VdpVideoMixer, these flags should be ignored, and the decoded fields passed directly to VdpVideoMixerRender as detailed above.

However, to make full use of the inverse telecine feature, these flags should be applied to the field stream, yielding another field stream with some repeated fields, before passing the field stream to VdpVideoMixerRender. In this scenario, the sliding window mentioned in the descriptions above applies to the field stream after application of flags.

1.10 Extending the API

1.10.1 Enumerations and Other Constants

VDPAU defines a number of enumeration types.

When modifying VDPAU, existing enumeration constants must continue to exist (although they may be deprecated), and do so in the existing order.

The above discussion naturally applies to "manually" defined enumerations, using pre-processor macros, too.

1.10.2 Structures

In most case, VDPAU includes no provision for modifying existing structure definitions, although they may be deprecated.

New structures may be created, together with new API entry points or feature/attribute/parameter values, to expose new functionality.

A few structures are considered plausible candidates for future extension. Such structures include a version number as the first field, indicating the exact layout of the client-provided data. When changing such structures, the old structure must be preserved and a new structure created. This allows applications built against the old version of the structure to continue to interoperate. For example, to extend the VdpProcamp structure, define a new VdpProcamp1 and update VdpGenerateCSCMatrix to take the new structure as an argument. Document in a comment that the caller must fill the struct_version field with the value 1. VDPAU implementations should use the struct_version field to determine which version of the structure the application was built against. Note that you cannot simply increment the value of VDP_PROCAMP_VERSION because applications recompiled against a newer version of vdpau.h but that have not been updated to use the new structure must still report that they're using version 0.

Note that the layouts of VdpPictureInfo structures are defined by their corresponding VdpDecoderProfile numbers, so no struct_version field is needed for them. This layout includes the size of the structure, so new profiles that extend existing functionality may incorporate the old VdpPictureInfo as a substructure, but may not modify existing VdpPictureInfo structures.

1.10.3 Functions

Existing functions may not be modified, although they may be deprecated.

New functions may be added at will. Note the enumeration requirements when modifying the enumeration that defines the list of entry points.

1.11 Display Preemption

Please note that the display may be preempted away from VDPAU at any time. See Display Preemption for more details.

1.11.1 Trademarks

VDPAU is a trademark of NVIDIA Corporation. You may freely use the VDPAU trademark, as long as trademark ownership is attributed to NVIDIA Corporation.

Video Decode	and Drago	ntation	A DI foi	Hoise
Video Decode	and Prese	ntation <i>i</i>	וחז ואב	r unix

Chapter 2

Module Index

2.1 Modules

Here is a list of all modules:

Core API	20
Basic Types	22
Miscellaneous Types	23
Error Handling	29
Versioning	32
VdpDevice; Primary API object	34
VdpCSCMatrix; CSC Matrix Manipulation	35
VdpVideoSurface; Video Surface object	38
VdpOutputSurface; Output Surfaceobject	43
VdpBitmapSurface; Bitmap Surfaceobject	50
VdpOutputSurface Rendering Functionality	54
VdpDecoder; Video Decoding object	
VdpVideoMixer; Video Post-processing and Compositing object	70
VdpPresentationQueue; Video presentation (display) object	85
Display Preemption	91
Entry Point Retrieval	93
Window System Integration Layer	98
X11 Window System Integration Layer	99

14 Module Index

Chapter 3

Data Structure Index

3.1 Data Structures

Here are the data structures with brief descriptions:

vapolistreamoulier
Application data buffer containing compressed video data
VdpColor
VdpLayer
Definition of an additional VdpOutputSurface layer in the composting model
VdpOutputSurfaceRenderBlendState
Complete blending operation definition
VdpPictureInfoH264
Picture parameter information for an H.264 picture
VdpPictureInfoH264Predictive
Picture parameter information for an H.264 Hi444PP picture
VdpPictureInfoHEVC
Picture parameter information for an H.265/HEVC picture
VdpPictureInfoMPEG1Or2
Picture parameter information for an MPEG 1 or MPEG 2 picture
VdpPictureInfoMPEG4Part2
Picture parameter information for an MPEG-4 Part 2 picture
VdpPictureInfoVC1
Picture parameter information for a VC1 picture
VdpPoint
A location within a surface
VdpProcamp
Procamp operation parameterization data
VdpRect
A rectangular region of a surface
VdpReferenceFrameH264
Information about an H.264 reference frame

16 Data Structure Index

Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

vdpau/vdpau.h	
The Core API	131
vdpau/vdpau_x11.h	
X11 Window System Integration Layer	143

18 File Index

Chapter 5

Module Documentation

5.1 Core API

Collaboration diagram for Core API:

Modules

- Basic Types
- · Miscellaneous Types

5.1 Core API 21

- Error Handling
- Versioning
- · VdpDevice; Primary API object
- VdpCSCMatrix; CSC Matrix Manipulation
- VdpVideoSurface; Video Surface object
- VdpOutputSurface; Output Surfaceobject
- VdpBitmapSurface; Bitmap Surfaceobject
- VdpOutputSurface Rendering Functionality
- VdpDecoder; Video Decoding object
- VdpVideoMixer; Video Post-processing and Compositing object
- VdpPresentationQueue; Video presentation (display) object
- Display Preemption
- Entry Point Retrieval

5.1.1 Detailed Description

The core API encompasses all VDPAU functionality that operates in the same fashion across all Window Systems.

5.2 Basic Types

Collaboration diagram for Basic Types:

Macros

• #define VDP_TRUE 1

A true VdpBool value.

• #define VDP_FALSE 0

A false VdpBool value.

Typedefs

typedef int VdpBool

A boolean value, holding VDP_TRUE or VDP_FALSE.

5.2.1 Detailed Description

VDPAU primarily uses ISO C99 types from stdint.h.

5.2.2 Macro Definition Documentation

5.2.2.1 #define VDP_FALSE 0

A false VdpBool value.

5.2.2.2 #define VDP_TRUE 1

A true VdpBool value.

5.2.3 Typedef Documentation

5.2.3.1 typedef int VdpBool

A boolean value, holding VDP_TRUE or VDP_FALSE.

5.3 Miscellaneous Types

Collaboration diagram for Miscellaneous Types:

Data Structures

struct VdpPoint

A location within a surface.

struct VdpRect

A rectangular region of a surface.

struct VdpColor

Macros

• #define VDP_INVALID_HANDLE 0xfffffffU

An invalid object handle value.

• #define VDP_CHROMA_TYPE_420

4:2:0 chroma format.

• #define VDP_CHROMA_TYPE_422

4:2:2 chroma format.

• #define VDP_CHROMA_TYPE_444

4:4:4 chroma format.

• #define VDP_YCBCR_FORMAT_NV12

The "NV12" YCbCr surface format.

#define VDP_YCBCR_FORMAT_YV12

The "YV12" YCbCr surface format.

#define VDP YCBCR FORMAT UYVY

The "UYVY" YCbCr surface format.

#define VDP_YCBCR_FORMAT_YUYV

The "YUYV" YCbCr surface format.

• #define VDP_YCBCR_FORMAT_Y8U8V8A8

A packed YCbCr format.

• #define VDP_YCBCR_FORMAT_V8U8Y8A8

A packed YCbCr format.

• #define VDP_RGBA_FORMAT_B8G8R8A8

A packed RGB format.

#define VDP_RGBA_FORMAT_R8G8B8A8

A packed RGB format.

• #define VDP_RGBA_FORMAT_R10G10B10A2

A packed RGB format.

• #define VDP_RGBA_FORMAT_B10G10R10A2

A packed RGB format.

• #define VDP_RGBA_FORMAT_A8

An alpha-only surface format.

#define VDP INDEXED FORMAT A4I4

A 4-bit indexed format, with alpha.

#define VDP_INDEXED_FORMAT_I4A4

A 4-bit indexed format, with alpha.

• #define VDP INDEXED FORMAT A8I8

A 8-bit indexed format, with alpha.

• #define VDP_INDEXED_FORMAT_I8A8

A 8-bit indexed format, with alpha.

Typedefs

typedef uint32_t VdpChromaType

The set of all chroma formats for VdpVideoSurfaces.

typedef uint32_t VdpYCbCrFormat

The set of all known YCbCr surface formats.

typedef uint32 t VdpRGBAFormat

The set of all known RGB surface formats.

typedef uint32_t VdpIndexedFormat

The set of all known indexed surface formats.

- 5.3.1 Detailed Description
- 5.3.2 Macro Definition Documentation
- 5.3.2.1 #define VDP_CHROMA_TYPE_420
- 4:2:0 chroma format.
- 5.3.2.2 #define VDP_CHROMA_TYPE_422
- 4:2:2 chroma format.
- 5.3.2.3 #define VDP_CHROMA_TYPE_444
- 4:4:4 chroma format.
- 5.3.2.4 #define VDP_INDEXED_FORMAT_A4I4

A 4-bit indexed format, with alpha.

This format has a single plane.

This plane is an array of byte-sized components. Within each byte, bits [7:4] contain I (index), and bits [3:0] contain A.

Applications should access this data via a uint8_t pointer.

5.3.2.5 #define VDP_INDEXED_FORMAT_A8I8

A 8-bit indexed format, with alpha.

This format has a single plane.

This plane is an array of interleaved byte-sized A and I (index) components, in the order A, I, A, I.

Applications should access this data via a uint8_t pointer.

5.3.2.6 #define VDP_INDEXED_FORMAT_I4A4

A 4-bit indexed format, with alpha.

This format has a single plane.

This plane is an array of byte-sized components. Within each byte, bits [7:4] contain A, and bits [3:0] contain I (index).

Applications should access this data via a uint8_t pointer.

5.3.2.7 #define VDP_INDEXED_FORMAT_I8A8

A 8-bit indexed format, with alpha.

This format has a single plane.

This plane is an array of interleaved byte-sized A and I (index) components, in the order I, A, I, A.

Applications should access this data via a uint8_t pointer.

5.3.2.8 #define VDP_INVALID_HANDLE 0xfffffffU

An invalid object handle value.

This value may be used to represent an invalid, or non-existent, object (VdpDevice, VdpVideoSurface, etc.)

Note that most APIs require valid object handles in all cases, and will fail when presented with this value.

5.3.2.9 #define VDP_RGBA_FORMAT_A8

An alpha-only surface format.

This format has a single plane.

This plane is an array of byte-sized components.

Applications should access this data via a uint8_t pointer.

5.3.2.10 #define VDP_RGBA_FORMAT_B10G10R10A2

A packed RGB format.

This format has a single plane.

This plane is an array packed 32-bit pixel data. Within each 32-bit pixel, bits [31:30] contain A, bits [29:20] contain R, bits [19:10] contain G, and bits [9:0] contain B.

Applications should access this data via a uint32_t pointer.

5.3.2.11 #define VDP_RGBA_FORMAT_B8G8R8A8

A packed RGB format.

This format has a single plane.

This plane is an array packed 32-bit pixel data. Within each 32-bit pixel, bits [31:24] contain A, bits [23:16] contain R, bits [15:8] contain G, and bits [7:0] contain B.

Applications should access this data via a uint32_t pointer.

5.3.2.12 #define VDP_RGBA_FORMAT_R10G10B10A2

A packed RGB format.

This format has a single plane.

This plane is an array packed 32-bit pixel data. Within each 32-bit pixel, bits [31:30] contain A, bits [29:20] contain B, bits [19:10] contain G, and bits [9:0] contain R.

Applications should access this data via a uint32 t pointer.

5.3.2.13 #define VDP_RGBA_FORMAT_R8G8B8A8

A packed RGB format.

This format has a single plane.

This plane is an array packed 32-bit pixel data. Within each 32-bit pixel, bits [31:24] contain A, bits [23:16] contain B, bits [15:8] contain G, and bits [7:0] contain R.

Applications should access this data via a uint32 t pointer.

5.3.2.14 #define VDP_YCBCR_FORMAT_NV12

The "NV12" YCbCr surface format.

This format has a two planes, a Y plane and a UV plane.

The Y plane is an array of byte-sized Y components. Applications should access this data via a uint8_t pointer.

The UV plane is an array of interleaved byte-sized U and V components, in the order U, V, U, V. Applications should access this data via a uint8_t pointer.

5.3.2.15 #define VDP_YCBCR_FORMAT_UYVY

The "UYVY" YCbCr surface format.

This format may also be known as Y422, UYNV, HDYC.

This format has a single plane.

This plane is an array of interleaved byte-sized Y, U, and V components, in the order U, Y, V, Y, U, Y, V, Y.

Applications should access this data via a uint8_t pointer.

5.3.2.16 #define VDP_YCBCR_FORMAT_V8U8Y8A8

A packed YCbCr format.

This format has a single plane.

This plane is an array packed 32-bit pixel data. Within each 32-bit pixel, bits [31:24] contain A, bits [23:16] contain Y, bits [15:8] contain U, and bits [7:0] contain V.

Applications should access this data via a uint32_t pointer.

5.3.2.17 #define VDP_YCBCR_FORMAT_Y8U8V8A8

A packed YCbCr format.

This format has a single plane.

This plane is an array packed 32-bit pixel data. Within each 32-bit pixel, bits [31:24] contain A, bits [23:16] contain V, bits [15:8] contain U, and bits [7:0] contain Y.

Applications should access this data via a uint32_t pointer.

5.3.2.18 #define VDP_YCBCR_FORMAT_YUYV

The "YUYV" YCbCr surface format.

This format may also be known as YUY2, YUNV, V422.

This format has a single plane.

This plane is an array of interleaved byte-sized Y, U, and V components, in the order Y, U, Y, V, Y, U, Y, V.

Applications should access this data via a uint8_t pointer.

5.3.2.19 #define VDP_YCBCR_FORMAT_YV12

The "YV12" YCbCr surface format.

This format has a three planes, a Y plane, a V plane, and a U plane.

Each of the planes is an array of byte-sized components.

Applications should access this data via a uint8_t pointer.

5.3.3 Typedef Documentation

5.3.3.1 typedef uint32_t VdpChromaType

The set of all chroma formats for VdpVideoSurfaces.

5.3.3.2 typedef uint32_t VdpIndexedFormat

The set of all known indexed surface formats.

5.3.3.3 typedef uint32_t VdpRGBAFormat

The set of all known RGB surface formats.

5.3.3.4 typedef uint32_t VdpYCbCrFormat

The set of all known YCbCr surface formats.

5.4 Error Handling 29

5.4 Error Handling

Collaboration diagram for Error Handling:

Typedefs

typedef char const * VdpGetErrorString(VdpStatus status)

Retrieve a string describing an error code.

Enumerations

enum VdpStatus {

VDP_STATUS_OK = 0, VDP_STATUS_NO_IMPLEMENTATION, VDP_STATUS_DISPLAY_PREEMPTED, VDP_STATUS_INVALID_HANDLE,

VDP_STATUS_INVALID_POINTER, VDP_STATUS_INVALID_CHROMA_TYPE, VDP_STATUS_INVALI

D Y CB CR FORMAT, VDP STATUS INVALID RGBA FORMAT,

 $\label{thm:color_standard} $$\operatorname{VDP_STATUS_INVALID_COLOR_STANDARD}, \operatorname{VDP_ST}_{\longleftrightarrow} \operatorname{ATUS_INVALID_COLOR_TABLE_FORMAT}, \operatorname{VDP_STATUS_INVALID_BLEND_FACTOR},$

VDP_STATUS_INVALID_BLEND_EQUATION, VDP_STATUS_INVALID_FLAG, VDP_STATUS_INVALID↔ DECODER_PROFILE, VDP_STATUS_INVALID_VIDEO_MIXER_FEATURE,

VDP_STATUS_INVALID_VIDEO_MIXER_PARAMETER, VDP_STATUS_INVALID_VIDEO_MIXER_ATT ↔ RIBUTE, VDP_STATUS_INVALID_VIDEO_MIXER_PICTURE_STRUCTURE, VDP_STATUS_INVALID_ ↔ FUNC_ID,

VDP_STATUS_INVALID_SIZE, VDP_STATUS_INVALID_VALUE, VDP_STATUS_INVALID_STRUCT_V← ERSION, VDP_STATUS_RESOURCES,

VDP_STATUS_HANDLE_DEVICE_MISMATCH, VDP_STATUS_ERROR }

The set of all possible error codes.

5.4.1 Detailed Description

5.4.2 Typedef Documentation

5.4.2.1 typedef char const* VdpGetErrorString(VdpStatus status)

Retrieve a string describing an error code.

Parameters

in	status	The error code.
----	--------	-----------------

Returns

A pointer to the string. Note that this is a statically allocated read-only string. As such, the application must not free the returned pointer. The pointer is valid as long as the VDPAU implementation is present within the application's address space.

5.4.3 Enumeration Type Documentation

5.4.3.1 enum VdpStatus

The set of all possible error codes.

Enumerator

- **VDP_STATUS_OK** The operation completed successfully; no error.
- VDP_STATUS_NO_IMPLEMENTATION No backend implementation could be loaded.
- **VDP_STATUS_DISPLAY_PREEMPTED** The display was preempted, or a fatal error occurred. The application must re-initialize VDPAU.
- VDP_STATUS_INVALID_HANDLE An invalid handle value was provided.

Either the handle does not exist at all, or refers to an object of an incorrect type.

- **VDP_STATUS_INVALID_POINTER** An invalid pointer was provided.
 - Typically, this means that a NULL pointer was provided for an "output" parameter.
- VDP_STATUS_INVALID_CHROMA_TYPE An invalid/unsupported VdpChromaType value was supplied.
- **VDP_STATUS_INVALID_Y_CB_CR_FORMAT** An invalid/unsupported VdpYCbCrFormat value was supplied.
- VDP_STATUS_INVALID_RGBA_FORMAT An invalid/unsupported VdpRGBAFormat value was supplied.
- **VDP_STATUS_INVALID_INDEXED_FORMAT** An invalid/unsupported VdpIndexedFormat value was supplied.
- **VDP_STATUS_INVALID_COLOR_STANDARD** An invalid/unsupported VdpColorStandard value was supplied.
- **VDP_STATUS_INVALID_COLOR_TABLE_FORMAT** An invalid/unsupported VdpColorTableFormat value was supplied.
- **VDP_STATUS_INVALID_BLEND_FACTOR** An invalid/unsupported VdpOutputSurfaceRenderBlendFactor value was supplied.
- **VDP_STATUS_INVALID_BLEND_EQUATION** An invalid/unsupported VdpOutputSurfaceRenderBlend← Equation value was supplied.
- **VDP_STATUS_INVALID_FLAG** An invalid/unsupported flag value/combination was supplied.
- **VDP_STATUS_INVALID_DECODER_PROFILE** An invalid/unsupported VdpDecoderProfile value was supplied.
- **VDP_STATUS_INVALID_VIDEO_MIXER_FEATURE** An invalid/unsupported VdpVideoMixerFeature value was supplied.
- **VDP_STATUS_INVALID_VIDEO_MIXER_PARAMETER** An invalid/unsupported VdpVideoMixerParameter value was supplied.
- **VDP_STATUS_INVALID_VIDEO_MIXER_ATTRIBUTE** An invalid/unsupported VdpVideoMixerAttribute value was supplied.
- **VDP_STATUS_INVALID_VIDEO_MIXER_PICTURE_STRUCTURE** An invalid/unsupported VdpVideo← MixerPictureStructure value was supplied.
- VDP_STATUS_INVALID_FUNC_ID An invalid/unsupported VdpFuncId value was supplied.

5.4 Error Handling 31

VDP_STATUS_INVALID_SIZE The size of a supplied object does not match the object it is being used with.
For example, a VdpVideoMixer is configured to process VdpVideoSurface objects of a specific size. If presented with a VdpVideoSurface of a different size, this error will be raised.

- VDP_STATUS_INVALID_VALUE An invalid/unsupported value was supplied.This is a catch-all error code for values of type other than those with a specific error code.
- **VDP_STATUS_INVALID_STRUCT_VERSION** An invalid/unsupported structure version was specified in a versioned structure. This implies that the implementation is older than the header file the application was built against.
- **VDP_STATUS_RESOURCES** The system does not have enough resources to complete the requested operation at this time.
- **VDP_STATUS_HANDLE_DEVICE_MISMATCH** The set of handles supplied are not all related to the same VdpDevice.

When performing operations that operate on multiple surfaces, such as VdpOutputSurfaceRender OutputSurface or VdpVideoMixerRender, all supplied surfaces must have been created within the context of the same VdpDevice object. This error is raised if they were not.

VDP_STATUS_ERROR A catch-all error, used when no other error code applies.

5.5 Versioning

Collaboration diagram for Versioning:

Macros

• #define VDPAU_INTERFACE_VERSION 1

The VDPAU interface version described by this header file.

• #define VDPAU VERSION 1

The VDPAU version described by this header file.

Typedefs

• typedef VdpStatus VdpGetApiVersion(uint32_t *api_version)

Retrieve the VDPAU version implemented by the backend.

typedef VdpStatus VdpGetInformationString(char const **information_string)

Retrieve an implementation-specific string description of the implementation. This typically includes detailed version information.

5.5.1 Detailed Description

5.5.2 Macro Definition Documentation

5.5.2.1 #define VDPAU_INTERFACE_VERSION 1

The VDPAU interface version described by this header file.

This version will only increase if a major incompatible change is made. For example, if the parameters passed to an existing function are modified, rather than simply adding new functions/enumerations), or if the mechanism used to load the backend driver is modified incompatibly. Such changes are unlikely.

This value also represents the DSO version of VDPAU-related shared-libraries.

VDPAU version numbers are simple integers that increase monotonically (typically by value 1).

5.5 Versioning 33

5.5.2.2 #define VDPAU_VERSION 1

The VDPAU version described by this header file.

This version will increase whenever any non-documentation change is made to vdpau.h, or related header files such as vdpau_x11.h. Such changes typically involve the addition of new functions, constants, or features. Such changes are expected to be completely backwards-compatible.

VDPAU version numbers are simple integers that increase monotonically (typically by value 1).

5.5.3 Typedef Documentation

5.5.3.1 typedef VdpStatus VdpGetApiVersion(uint32_t *api_version)

Retrieve the VDPAU version implemented by the backend.

Parameters

out	api_version	The API version.
-----	-------------	------------------

Returns

VdpStatus The completion status of the operation.

5.5.3.2 typedef VdpStatus VdpGetInformationString(char const **information_string)

Retrieve an implementation-specific string description of the implementation. This typically includes detailed version information.

Parameters

out	information_string	A pointer to the information string. Note that this is a statically allocated read-only
		string. As such, the application must not free the returned pointer. The pointer is
		valid as long as the implementation is present within the application's address
		space.

Returns

VdpStatus The completion status of the operation.

Note that the returned string is useful for information reporting. It is not intended that the application should parse this string in order to determine any information about the implementation.

5.6 VdpDevice; Primary API object

Collaboration diagram for VdpDevice; Primary API object:

Typedefs

• typedef uint32_t VdpDevice

An opaque handle representing a VdpDevice object.

typedef VdpStatus VdpDeviceDestroy(VdpDevice device)

Destroy a VdpDevice.

5.6.1 Detailed Description

The VdpDevice is the root of the VDPAU object system. Using a VdpDevice object, all other object types may be created. See the sections describing those other object types for details on object creation.

Note that VdpDevice objects are created using the Window System Integration Layer.

5.6.2 Typedef Documentation

5.6.2.1 typedef uint32_t VdpDevice

An opaque handle representing a VdpDevice object.

5.6.2.2 typedef VdpStatus VdpDeviceDestroy(VdpDevice device)

Destroy a VdpDevice.

Parameters

in	device	The device to destroy.

Returns

VdpStatus The completion status of the operation.

5.7 VdpCSCMatrix; CSC Matrix Manipulation

Collaboration diagram for VdpCSCMatrix; CSC Matrix Manipulation:

Data Structures

struct VdpProcamp

Procamp operation parameterization data.

Macros

- #define VDP_PROCAMP_VERSION 0
- #define VDP_COLOR_STANDARD_ITUR_BT_601
 ITU-R BT.601.
- #define VDP_COLOR_STANDARD_ITUR_BT_709
 ITU-R BT.709.
- #define VDP_COLOR_STANDARD_SMPTE_240M SMPTE-240M.

Typedefs

• typedef float VdpCSCMatrix[3][4]

Storage for a color space conversion matrix.

• typedef uint32_t VdpColorStandard

YCbCr color space specification.

 typedef VdpStatus VdpGenerateCSCMatrix(VdpProcamp *procamp, VdpColorStandard standard, VdpCS← CMatrix *csc_matrix)

Generate a color space conversion matrix.

5.7.1 Detailed Description

When converting from YCbCr to RGB data formats, a color space conversion operation must be performed. This operation is parameterized using a "color space conversion matrix". The VdpCSCMatrix is a data structure representing this information.

- 5.7.2 Macro Definition Documentation
- 5.7.2.1 #define VDP_COLOR_STANDARD_ITUR_BT_601

ITU-R BT.601.

5.7.2.2 #define VDP_COLOR_STANDARD_ITUR_BT_709

ITU-R BT.709.

5.7.2.3 #define VDP_COLOR_STANDARD_SMPTE_240M

SMPTE-240M.

- 5.7.2.4 #define VDP_PROCAMP_VERSION 0
- 5.7.3 Typedef Documentation
- 5.7.3.1 typedef uint32_t VdpColorStandard

YCbCr color space specification.

A number of YCbCr color spaces exist. This enumeration defines the specifications known to VDPAU.

5.7.3.2 typedef float VdpCSCMatrix[3][4]

Storage for a color space conversion matrix.

Note that the application may choose to construct the matrix content by either:

- · Directly filling in the fields of the CSC matrix
- Using the VdpGenerateCSCMatrix helper function.

The color space conversion equation is as follows:

$$\begin{pmatrix} R \\ G \\ B \end{pmatrix} = \begin{pmatrix} m_{0,0} & m_{0,1} & m_{0,2} & m_{0,3} \\ m_{1,0} & m_{1,1} & m_{1,2} & m_{1,3} \\ m_{2,0} & m_{2,1} & m_{2,2} & m_{2,3} \end{pmatrix} * \begin{pmatrix} Y \\ Cb \\ Cr \\ 1.0 \end{pmatrix}$$

5.7.3.3 typedef VdpStatus VdpGenerateCSCMatrix(VdpProcamp *procamp, VdpColorStandard standard,VdpCSCMatrix *csc_matrix)

Generate a color space conversion matrix.

Parameters

in	procamp	The procamp adjustments to make. If NULL, no adjustments will be made.
in	standard	The YCbCr color space to convert from.
out	csc_matrix	The CSC matrix to initialize.

Returns

VdpStatus The completion status of the operation.

5.8 VdpVideoSurface; Video Surface object

Collaboration diagram for VdpVideoSurface; Video Surface object:

Typedefs

typedef VdpStatus VdpVideoSurfaceQueryCapabilities(VdpDevice device, VdpChromaType surface_
 chroma_type, VdpBool *is_supported, uint32_t *max_width, uint32_t *max_height)

Query the implementation's VdpVideoSurface capabilities.

typedef VdpStatus VdpVideoSurfaceQueryGetPutBitsYCbCrCapabilities(VdpDevice device, VdpChroma
 — Type surface_chroma_type, VdpYCbCrFormat bits_ycbcr_format, VdpBool *is_supported)

Query the implementation's VdpVideoSurface GetBits/PutBits capabilities.

• typedef uint32_t VdpVideoSurface

An opaque handle representing a VdpVideoSurface object.

typedef VdpStatus VdpVideoSurfaceCreate(VdpDevice device, VdpChromaType chroma_type, uint32_
 t width, uint32_t height, VdpVideoSurface *surface)

Create a VdpVideoSurface.

typedef VdpStatus VdpVideoSurfaceDestroy(VdpVideoSurface surface)

Destroy a VdpVideoSurface.

typedef VdpStatus VdpVideoSurfaceGetParameters(VdpVideoSurface surface, VdpChromaType *chroma
 —type, uint32_t *width, uint32_t *height)

Retrieve the parameters used to create a VdpVideoSurface.

typedef VdpStatus VdpVideoSurfaceGetBitsYCbCr(VdpVideoSurface surface, VdpYCbCrFormat destination
 —ycbcr_format, void *const *destination_data, uint32_t const *destination_pitches)

Copy image data from a VdpVideoSurface to application memory in a specified YCbCr format.

typedef VdpStatus VdpVideoSurfacePutBitsYCbCr(VdpVideoSurface surface, VdpYCbCrFormat source_←
ycbcr format, void const *const *source data, uint32 t const *source pitches)

Copy image data from application memory in a specific YCbCr format to a VdpVideoSurface.

5.8.1 Detailed Description

A VdpVideoSurface stores YCbCr data in an internal format, with a variety of possible chroma sub-sampling options.

A VdpVideoSurface may be filled with:

- Data provided by the CPU via VdpVideoSurfacePutBitsYCbCr (i.e. software decode.)
- The result of applying a VdpDecoder to compressed video data.

VdpVideoSurface content may be accessed by:

- The application via VdpVideoSurfaceGetBitsYCbCr
- The Hardware that implements VdpOutputSurface rendering functionality.
- The Hardware the implements VdpVideoMixer functionality.

VdpVideoSurfaces are not directly displayable. They must be converted into a displayable format using VdpVideo← Mixer objects.

See Video Mixer Usage for additional information.

5.8.2 Typedef Documentation

5.8.2.1 typedef uint32_t VdpVideoSurface

An opaque handle representing a VdpVideoSurface object.

5.8.2.2 typedef VdpStatus VdpVideoSurfaceCreate(VdpDevice device, VdpChromaType chroma_type, uint32_t width, uint32_t height,VdpVideoSurface *surface)

Create a VdpVideoSurface.

Parameters

in	device	The device that will contain the surface.
in	chroma_type	The chroma type of the new surface.
in	width	The width of the new surface.
in	height	The height of the new surface.
out	surface	The new surface's handle.

Returns

VdpStatus The completion status of the operation.

The memory backing the surface may not be initialized during creation. Applications are expected to initialize any region that they use, via VdpDecoderRender or VdpVideoSurfacePutBitsYCbCr.

Note that certain widths/heights are impossible for specific values of chroma_type. For example, the definition of VDP_CHROMA_TYPE_420 implies that the width must be even, since each single chroma sample covers two luma samples horizontally. A similar argument applies to surface heights, although doubly so, since interlaced pictures must be supported; each field's height must itself be a multiple of 2. Hence the overall surface's height must be a multiple of 4.

Similar rules apply to other chroma type values.

Implementations may also impose additional restrictions on the surface sizes they support, potentially requiring additional rounding of actual surface sizes.

In most cases, this is not an issue, since:

Video streams are encoded as an array of macro-blocks, which typically have larger size alignment requirements than video surfaces do.

• APIs such as VdpVideoMixerRender allow specification of a sub-region of the surface to read, which allows the padding data to be clipped away.

However, other APIs such as VdpVideoSurfaceGetBitsYCbCr and VdpVideoSurfacePutBitsYCbCr do not allow a sub-region to be specified, and always operate on surface size that was actually allocated, rather than the surface size that was requested. In this case, applications need to be aware of the actual surface size, in order to allocate appropriately sized buffers for the get-/put-bits operations.

For this reason, applications may need to call VdpVideoSurfaceGetParameters after creation, in order to retrieve the actual surface size.

5.8.2.3 typedef VdpStatus VdpVideoSurfaceDestroy(VdpVideoSurface surface)

Destroy a VdpVideoSurface.

Parameters

in	surface	The surface's handle.
----	---------	-----------------------

Returns

VdpStatus The completion status of the operation.

5.8.2.4 typedef VdpStatus VdpVideoSurfaceGetBitsYCbCr(VdpVideoSurface surface, VdpYCbCrFormat destination_ycbcr_format, void *const *destination_data, uint32_t const *destination_pitches)

Copy image data from a VdpVideoSurface to application memory in a specified YCbCr format.

Parameters

in	surface	The surface's handle.
in	destination_ycbcr_format	The format of the application's data buffers.
in	destination_data	Pointers to the application data buffers into which the image data will be written. Note that this is an array of pointers, one per plane. The destination_format parameter will define how many planes are required.
in	destination_pitches	Pointers to the pitch values for the application data buffers. Note that this is an array of pointers, one per plane. The destination_format parameter will define how many planes are required.

Returns

VdpStatus The completion status of the operation.

5.8.2.5 typedef VdpStatus VdpVideoSurfaceGetParameters(VdpVideoSurface surface,VdpChromaType *chroma_type, uint32_t *width, uint32_t *height)

Retrieve the parameters used to create a VdpVideoSurface.

Parameters

in	surface	The surface's handle.
out	chroma_type	The chroma type of the surface.
out	width	The width of the surface.
out	height	The height of the surface.

Returns

VdpStatus The completion status of the operation.

5.8.2.6 typedef VdpStatus VdpVideoSurfacePutBitsYCbCr(VdpVideoSurface surface, VdpYCbCrFormat source_ycbcr_format, void const *const *source_data, uint32_t const *source_pitches)

Copy image data from application memory in a specific YCbCr format to a VdpVideoSurface.

Parameters

in	in surface The surface's handle.		
in	source_ycbcr_format	format The format of the application's data buffers.	
in	source_data	Pointers to the application data buffers from which the image data will be copied. Note that this is an array of pointers, one per plane. The source_format parameter will define how many planes are required.	
in	source_pitches	_pitches Pointers to the pitch values for the application data buffers. Note that this is an array of pointers, one per plane. The source_format parameter will define how many planes are required.	

Returns

VdpStatus The completion status of the operation.

5.8.2.7 typedef VdpStatus VdpVideoSurfaceQueryCapabilities(VdpDevice device, VdpChromaType surface_chroma_type,VdpBool *is_supported, uint32_t *max_width, uint32_t *max_height)

Query the implementation's VdpVideoSurface capabilities.

Parameters

in	device	The device to query.
in	surface_chroma_type	The type of chroma type for which information is requested.
out	is_supported	Is this chroma type supported?
out	max_width	The maximum supported surface width for this chroma type.
out	max_height	The maximum supported surface height for this chroma type.

Returns

VdpStatus The completion status of the operation.

5.8.2.8 typedef VdpStatus VdpVideoSurfaceQueryGetPutBitsYCbCrCapabilities(VdpDevice device, VdpChromaType surface_chroma_type, VdpYCbCrFormat bits_ycbcr_format,VdpBool *is_supported)

Query the implementation's $VdpVideoSurface\ GetBits/PutBits\ capabilities.$

Parameters

in	device	The device to query.
in	surface_chroma_type	The type of chroma type for which information is requested.
in	bits_ycbcr_format	The format of application "bits" buffer for which information is requested.
out	is_supported	Is this chroma type supported?

Returns

VdpStatus The completion status of the operation.

5.9 VdpOutputSurface; Output Surfaceobject

Collaboration diagram for VdpOutputSurface; Output Surfaceobject:

Macros

• #define VDP_COLOR_TABLE_FORMAT_B8G8R8X8

8-bit per component packed into 32-bits

Typedefs

typedef uint32_t VdpColorTableFormat

The set of all known color table formats, for use with VdpOutputSurfacePutBitsIndexed.

typedef VdpStatus VdpOutputSurfaceQueryCapabilities(VdpDevice device, VdpRGBAFormat surface_
 rgba_format, VdpBool *is_supported, uint32_t *max_width, uint32_t *max_height)

Query the implementation's VdpOutputSurface capabilities.

typedef VdpStatus VdpOutputSurfaceQueryGetPutBitsNativeCapabilities(VdpDevice device, VdpRGBA
 Format surface_rgba_format, VdpBool *is_supported)

Query the implementation's capability to perform a PutBits operation using application data matching the surface's format.

 typedef VdpStatus VdpOutputSurfaceQueryPutBitsIndexedCapabilities(VdpDevice device, VdpRGBAFormat surface_rgba_format, VdpIndexedFormat bits_indexed_format, VdpColorTableFormat color_table_format, VdpBool *is supported)

Query the implementation's capability to perform a PutBits operation using application data in a specific indexed format.

• typedef VdpStatus VdpOutputSurfaceQueryPutBitsYCbCrCapabilities(VdpDevice device, VdpRGBAFormat surface_rgba_format, VdpYCbCrFormat bits_ycbcr_format, VdpBool *is_supported)

Query the implementation's capability to perform a PutBits operation using application data in a specific YCbCr/YUB format.

typedef uint32 t VdpOutputSurface

An opaque handle representing a VdpOutputSurface object.

typedef VdpStatus VdpOutputSurfaceCreate(VdpDevice device, VdpRGBAFormat rgba_format, uint32_
 t width, uint32_t height, VdpOutputSurface *surface)

Create a VdpOutputSurface.

• typedef VdpStatus VdpOutputSurfaceDestroy(VdpOutputSurface surface)

Destroy a VdpOutputSurface.

typedef VdpStatus VdpOutputSurfaceGetParameters(VdpOutputSurface surface, VdpRGBAFormat *rgba←
 _format, uint32_t *width, uint32_t *height)

Retrieve the parameters used to create a VdpOutputSurface.

typedef VdpStatus VdpOutputSurfaceGetBitsNative(VdpOutputSurface surface, VdpRect const *source_
rect, void *const *destination_data, uint32_t const *destination_pitches)

Copy image data from a VdpOutputSurface to application memory in the surface's native format.

typedef VdpStatus VdpOutputSurfacePutBitsNative(VdpOutputSurface surface, void const *const *source
 __data, uint32_t const *source_pitches, VdpRect const *destination_rect)

Copy image data from application memory in the surface's native format to a VdpOutputSurface.

typedef VdpStatus VdpOutputSurfacePutBitsIndexed(VdpOutputSurface surface, VdpIndexedFormat source_indexed_format, void const *const *source_data, uint32_t const *source_pitch, VdpRect const *destination_rect, VdpColorTableFormat color_table_format, void const *color_table)

Copy image data from application memory in a specific indexed format to a VdpOutputSurface.

typedef VdpStatus VdpOutputSurfacePutBitsYCbCr(VdpOutputSurface surface, VdpYCbCrFormat source
 _ycbcr_format, void const *const *source_data, uint32_t const *source_pitches, VdpRect const
 *destination_rect, VdpCSCMatrix const *csc_matrix)

Copy image data from application memory in a specific YCbCr format to a VdpOutputSurface.

5.9.1 Detailed Description

A VdpOutputSurface stores RGBA data in a defined format.

A VdpOutputSurface may be filled with:

- · Data provided by the CPU via the various VdpOutputSurfacePutBits functions.
- · Using the VdpOutputSurface rendering functionality.
- Using a VdpVideoMixer object.

VdpOutputSurface content may be accessed by:

- The application via the various VdpOutputSurfaceGetBits functions.
- The Hardware that implements VdpOutputSurface rendering functionality.
- The Hardware the implements VdpVideoMixer functionality.
- The Hardware that implements VdpPresentationQueue functionality,

VdpVideoSurfaces are directly displayable using a VdpPresentationQueue object.

5.9.2 Macro Definition Documentation

5.9.2.1 #define VDP_COLOR_TABLE_FORMAT_B8G8R8X8

8-bit per component packed into 32-bits

This format is an array of packed 32-bit RGB color values. Bits [31:24] are unused, bits [23:16] contain R, bits [15:8] contain G, and bits [7:0] contain B. Note: The format is physically an array of uint32_t values, and should be accessed as such by the application in order to avoid endianness issues.

5.9.3 Typedef Documentation

5.9.3.1 typedef uint32_t VdpColorTableFormat

The set of all known color table formats, for use with VdpOutputSurfacePutBitsIndexed.

5.9.3.2 typedef uint32_t VdpOutputSurface

An opaque handle representing a VdpOutputSurface object.

5.9.3.3 typedef VdpStatus VdpOutputSurfaceCreate(VdpDevice device, VdpRGBAFormat rgba_format, uint32_t width, uint32_t height,VdpOutputSurface *surface)

Create a VdpOutputSurface.

Parameters

in	device	The device that will contain the surface.
in	rgba_format	The format of the new surface.
in	width	The width of the new surface.
in <i>height</i>		The height of the new surface.
out	surface	The new surface's handle.

Returns

VdpStatus The completion status of the operation.

The memory backing the surface will be initialized to 0 color and 0 alpha (i.e. black.)

5.9.3.4 typedef VdpStatus VdpOutputSurfaceDestroy(VdpOutputSurface surface)

Destroy a VdpOutputSurface.

Parameters

in	surface	The surface's handle.

Returns

VdpStatus The completion status of the operation.

5.9.3.5 typedef VdpStatus VdpOutputSurfaceGetBitsNative(VdpOutputSurface surface, VdpRect const *source_rect, void *const *destination_data, uint32_t const *destination_pitches)

Copy image data from a VdpOutputSurface to application memory in the surface's native format.

Parameters

in	surface	The surface's handle.
in	source_rect	The sub-rectangle of the source surface to copy. If NULL, the entire surface will be
		retrieved.
in	destination_data	Pointers to the application data buffers into which the image data will be written.
		Note that this is an array of pointers, one per plane. The destination_format
		parameter will define how many planes are required.

Parameters

in	destination_pitches	Pointers to the pitch values for the application data buffers. Note that this is an
		array of pointers, one per plane. The destination_format parameter will define how
		many planes are required.

Returns

VdpStatus The completion status of the operation.

5.9.3.6 typedef VdpStatus VdpOutputSurfaceGetParameters(VdpOutputSurface surface,VdpRGBAFormat *rgba_format, uint32_t *width, uint32_t *height)

Retrieve the parameters used to create a VdpOutputSurface.

Parameters

in	surface	The surface's handle.
out	rgba_format	The format of the surface.
out	width	The width of the surface.
out	height	The height of the surface.

Returns

VdpStatus The completion status of the operation.

5.9.3.7 typedef VdpStatus VdpOutputSurfacePutBitsIndexed(VdpOutputSurface surface, VdpIndexedFormat source_indexed_format, void const *const *source_data, uint32_t const *source_pitch, VdpRect const *destination_rect, VdpColorTableFormat color_table_format, void const *color_table)

Copy image data from application memory in a specific indexed format to a VdpOutputSurface.

Parameters

in	surface	The surface's handle.	
in source_indexed_format		The format of the application's data buffers.	
in source_data in source_pitches in destination_rect		Pointers to the application data buffers from which the image data will be copied. Note that this is an array of pointers, one per plane. The source_indexed_format parameter will define how many planes are required.	
		Pointers to the pitch values for the application data buffers. Note that this is an array of pointers, one per plane. The source_indexed_format parameter will define how many planes are required.	
		The sub-rectangle of the surface to fill with application data. If NULL, the entire surface will be updated.	
in	color_table_format	The format of the color_table.	
in	color_table	A table that maps between source index and target color data. See VdpColorTableFormat for details regarding the memory layout.	

Returns

VdpStatus The completion status of the operation.

5.9.3.8 typedef VdpStatus VdpOutputSurfacePutBitsNative(VdpOutputSurface surface, void const *const *source_data, uint32_t const *source_pitches, VdpRect const *destination_rect)

Copy image data from application memory in the surface's native format to a VdpOutputSurface.

Parameters

in	surface	The surface's handle.
in	source_data	Pointers to the application data buffers from which the image data will be copied. Note that this is an array of pointers, one per plane. The source_format parameter will define how many planes are required.
in	source_pitches	Pointers to the pitch values for the application data buffers. Note that this is an array of pointers, one per plane. The source_format parameter will define how many planes are required.
in	destination_rect	The sub-rectangle of the surface to fill with application data. If NULL, the entire surface will be updated.

Returns

VdpStatus The completion status of the operation.

5.9.3.9 typedef VdpStatus VdpOutputSurfacePutBitsYCbCr(VdpOutputSurface surface, VdpYCbCrFormat source_ycbcr_format, void const *const *source_data, uint32_t const *source_pitches, VdpRect const *destination_rect, VdpCSCMatrix const *csc_matrix)

Copy image data from application memory in a specific YCbCr format to a VdpOutputSurface.

in	surface	The surface's handle.
in	source_ycbcr_format	The format of the application's data buffers.
in	source_data	Pointers to the application data buffers from which the image data will be copied. Note that this is an array of pointers, one per plane. The source_ycbcr_format parameter will define how many planes are required.
in	source_pitches	Pointers to the pitch values for the application data buffers. Note that this is an array of pointers, one per plane. The source_ycbcr_format parameter will define how many planes are required.
in	destination_rect	The sub-rectangle of the surface to fill with application data. If NULL, the entire surface will be updated.
in	csc_matrix	The color space conversion matrix used by the copy operation. If NULL, a default matrix will be used internally. Th default matrix is equivalent to ITU-R BT.601 with no procamp changes.

Returns

VdpStatus The completion status of the operation.

5.9.3.10 typedef VdpStatus VdpOutputSurfaceQueryCapabilities(VdpDevice device, VdpRGBAFormat surface_rgba_format,VdpBool *is_supported, uint32_t *max_width, uint32_t *max_height)

Query the implementation's VdpOutputSurface capabilities.

Parameters

in	device	The device to query.
in	surface_rgba_format	The surface format for which information is requested.
out	is_supported	Is this surface format supported?
out	max_width	The maximum supported surface width for this chroma type.
out	max_height	The maximum supported surface height for this chroma type.

Returns

VdpStatus The completion status of the operation.

5.9.3.11 typedef VdpStatus VdpOutputSurfaceQueryGetPutBitsNativeCapabilities(VdpDevice device, VdpRGBAFormat surface_rgba_format,VdpBool *is_supported)

Query the implementation's capability to perform a PutBits operation using application data matching the surface's format.

Parameters

in	device	The device to query.
in	surface_rgba_format	The surface format for which information is requested.
out	is_supported	Is this surface format supported?

Returns

VdpStatus The completion status of the operation.

5.9.3.12 typedef VdpStatus VdpOutputSurfaceQueryPutBitsIndexedCapabilities(VdpDevice device, VdpRGBAFormat surface_rgba_format, VdpIndexedFormat bits_indexed_format, VdpColorTableFormat color_table_format,VdpBool *is_supported)

Query the implementation's capability to perform a PutBits operation using application data in a specific indexed format.

in	device	The device to query.
----	--------	----------------------

Parameters

in	surface_rgba_format	The surface format for which information is requested.
in	bits_indexed_format	The format of the application data buffer.
in	color_table_format	The format of the color lookup table.
out	is_supported	Is this surface format supported?

Returns

VdpStatus The completion status of the operation.

5.9.3.13 typedef VdpStatus VdpOutputSurfaceQueryPutBitsYCbCrCapabilities(VdpDevice device, VdpRGBAFormat surface_rgba_format, VdpYCbCrFormat bits_ycbcr_format,VdpBool *is_supported)

Query the implementation's capability to perform a PutBits operation using application data in a specific YCbCr/YUB format.

Parameters

in	device	The device to query.
in	surface_rgba_format	The surface format for which information is requested.
in	bits_ycbcr_format	The format of the application data buffer.
out	is_supported	Is this surface format supported?

Returns

VdpStatus The completion status of the operation.

5.10 VdpBitmapSurface; Bitmap Surfaceobject

Collaboration diagram for VdpBitmapSurface; Bitmap Surfaceobject:

Typedefs

typedef VdpStatus VdpBitmapSurfaceQueryCapabilities(VdpDevice device, VdpRGBAFormat surface_
 rgba_format, VdpBool *is_supported, uint32_t *max_width, uint32_t *max_height)

Query the implementation's VdpBitmapSurface capabilities.

typedef uint32 t VdpBitmapSurface

An opaque handle representing a VdpBitmapSurface object.

typedef VdpStatus VdpBitmapSurfaceCreate(VdpDevice device, VdpRGBAFormat rgba_format, uint32_←
t width, uint32 t height, VdpBool frequently accessed, VdpBitmapSurface *surface)

Create a VdpBitmapSurface.

typedef VdpStatus VdpBitmapSurfaceDestroy(VdpBitmapSurface surface)

Destroy a VdpBitmapSurface.

Retrieve the parameters used to create a VdpBitmapSurface.

typedef VdpStatus VdpBitmapSurfacePutBitsNative(VdpBitmapSurface surface, void const *const *source
 — data, uint32_t const *source_pitches, VdpRect const *destination_rect)

Copy image data from application memory in the surface's native format to a VdpBitmapSurface.

5.10.1 Detailed Description

A VdpBitmapSurface stores RGBA data in a defined format.

A VdpBitmapSurface may be filled with:

• Data provided by the CPU via the VdpBitmapSurfacePutBitsNative function.

VdpBitmapSurface content may be accessed by:

• The Hardware that implements VdpOutputSurface rendering functionality

VdpBitmapSurface objects are intended to store static read-only data, such as font glyphs, and the bitmaps used to compose an applications' user-interface.

The primary differences between VdpBitmapSurfaces and VdpOutputSurfaces are:

- · You cannot render to a VdpBitmapSurface, just upload native data via the PutBits API.
- The read-only nature of a VdpBitmapSurface gives the implementation more flexibility in its choice of data storage location for the bitmap data. For example, some implementations may choose to store some/all VdpBitmapSurface objects in system memory to relieve GPU memory pressure.
- VdpBitmapSurface and VdpOutputSurface may support different subsets of all known RGBA formats.

5.10.2 Typedef Documentation

5.10.2.1 typedef uint32_t VdpBitmapSurface

An opaque handle representing a VdpBitmapSurface object.

5.10.2.2 typedef VdpStatus VdpBitmapSurfaceCreate(VdpDevice device, VdpRGBAFormat rgba_format, uint32_t width, uint32_t height, VdpBool frequently_accessed, VdpBitmapSurface *surface)

Create a VdpBitmapSurface.

Parameters

in	device	The device that will contain the surface.
in	rgba_format	The format of the new surface.
in	width	The width of the new surface.
in	height	The height of the new surface.
in	frequently_accessed	Is this bitmap used frequently, or infrequently, by compositing options? Implementations may use this as a hint to determine how to allocate the underlying storage for the surface.
out	surface	The new surface's handle.

Returns

VdpStatus The completion status of the operation.

The memory backing the surface may not be initialized during creation. Applications are expected initialize any region that they use, via VdpBitmapSurfacePutBitsNative.

 $5.10.2.3 \quad type def\ Vdp Status\ Vdp Bitmap Surface Destroy (Vdp Bitmap Surface)$

Destroy a VdpBitmapSurface.

Parameters

in	surface	The surface's handle.

Returns

VdpStatus The completion status of the operation.

5.10.2.4 typedef VdpStatus VdpBitmapSurfaceGetParameters(VdpBitmapSurface surface,VdpRGBAFormat *rgba_format, uint32_t *width, uint32_t *height, VdpBool *frequently_accessed)

Retrieve the parameters used to create a VdpBitmapSurface.

Parameters

in	surface	The surface's handle.
out	rgba_format	The format of the surface.
out	width	The width of the surface.
out	height	The height of the surface.
out	frequently_accessed	The frequently_accessed state of the surface.

Returns

VdpStatus The completion status of the operation.

5.10.2.5 typedef VdpStatus VdpBitmapSurfacePutBitsNative(VdpBitmapSurface surface, void const *const *source_data, uint32_t const *source_pitches, VdpRect const *destination_rect)

Copy image data from application memory in the surface's native format to a VdpBitmapSurface.

Parameters

in	surface	The surface's handle.
in	source_data	Pointers to the application data buffers from which the image data will be copied. Note that this is an array of pointers, one per plane. The source_format parameter will define how many planes are required.
in	source_pitches	Pointers to the pitch values for the application data buffers. Note that this is an array of pointers, one per plane. The source_format parameter will define how many planes are required.
in	destination_rect	The sub-rectangle of the surface to fill with application data. If NULL, the entire surface will be updated.

Returns

VdpStatus The completion status of the operation.

5.10.2.6 typedef VdpStatus VdpBitmapSurfaceQueryCapabilities(VdpDevice device, VdpRGBAFormat surface_rgba_format,VdpBool *is_supported, uint32_t *max_width, uint32_t *max_height)

Query the implementation's VdpBitmapSurface capabilities.

in	device	The device to query.
in	surface_rgba_format	The surface format for which information is requested.
out	is_supported	Is this surface format supported?
out	max_width	The maximum supported surface width for this chroma type.
out	max_height	The maximum supported surface height for this chroma type.

VdpStatus The completion status of the operation.

5.11 VdpOutputSurface Rendering Functionality

Collaboration diagram for VdpOutputSurface Rendering Functionality:

Data Structures

• struct VdpOutputSurfaceRenderBlendState

Complete blending operation definition.

Macros

- #define VDP_OUTPUT_SURFACE_RENDER_BLEND_STATE_VERSION 0
- #define VDP_OUTPUT_SURFACE_RENDER_ROTATE_0

Do not rotate source_surface prior to compositing.

#define VDP_OUTPUT_SURFACE_RENDER_ROTATE_90

Rotate source_surface 90 degrees clockwise prior to compositing.

• #define VDP_OUTPUT_SURFACE_RENDER_ROTATE_180

Rotate source_surface 180 degrees prior to compositing.

#define VDP_OUTPUT_SURFACE_RENDER_ROTATE_270

Rotate source_surface 270 degrees clockwise prior to compositing.

• #define VDP_OUTPUT_SURFACE_RENDER_COLOR_PER_VERTEX

A separate color is used for each vertex of the smooth-shaded quad. Hence, colors array contains 4 elements rather than 1. See description of colors array.

Typedefs

Composite a sub-rectangle of a VdpOutputSurface into a sub-rectangle of another VdpOutputSurface; Output Surfaceobject VdpOutputSurface.

Composite a sub-rectangle of a VdpBitmapSurface into a sub-rectangle of a VdpOutputSurface; Output Surfaceobject VdpOutputSurface.

Enumerations

enum VdpOutputSurfaceRenderBlendFactor {
 VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_ZERO = 0, VDP_OUTPUT_SURFACE_REND ←
 ER_BLEND_FACTOR_ONE = 1, VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_SRC_COLOR =
 2, VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_ONE_MINUS_SRC_COLOR = 3,
 VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_SRC_ALPHA = 4, VDP_OUTPUT_SURFACE_ ←
 RENDER_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA = 5, VDP_OUTPUT_SURFACE_RENDER_BL ←
 END_FACTOR_DST_ALPHA = 6, VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_ONE_MINU ←
 S_DST_ALPHA = 7,
 VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_DST_COLOR = 8, VDP_OUTPUT_SURFACE_ ←

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_DST_COLOR = 8, VDP_OUTPUT_SURFACE_← RENDER_BLEND_FACTOR_ONE_MINUS_DST_COLOR = 9, VDP_OUTPUT_SURFACE_RENDER_BL← END_FACTOR_SRC_ALPHA_SATURATE = 10, VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTO← R CONSTANT COLOR = 11,

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR = 12, VDP →
_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_CONSTANT_ALPHA = 13, VDP_OUTPUT_SURFA →
CE_RENDER_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA = 14 }

The blending equation factors.

enum VdpOutputSurfaceRenderBlendEquation {
 VDP_OUTPUT_SURFACE_RENDER_BLEND_EQUATION_SUBTRACT = 0, VDP_OUTPUT_SURFACE ←
 _RENDER_BLEND_EQUATION_REVERSE_SUBTRACT = 1, VDP_OUTPUT_SURFACE_RENDER_BL ←
 END_EQUATION_ADD = 2, VDP_OUTPUT_SURFACE_RENDER_BLEND_EQUATION_MIN = 3,
 VDP_OUTPUT_SURFACE_RENDER_BLEND_EQUATION_MAX = 4 }

The blending equations.

5.11.1 Detailed Description

VdpOutputSurface objects directly provide some rendering/compositing operations. These are described below.

5.11.2 Macro Definition Documentation

5.11.2.1 #define VDP_OUTPUT_SURFACE_RENDER_BLEND_STATE_VERSION 0

5.11.2.2 #define VDP_OUTPUT_SURFACE_RENDER_COLOR_PER_VERTEX

A separate color is used for each vertex of the smooth-shaded quad. Hence, colors array contains 4 elements rather than 1. See description of colors array.

5.11.2.3 #define VDP_OUTPUT_SURFACE_RENDER_ROTATE_0

Do not rotate source_surface prior to compositing.

5.11.2.4 #define VDP_OUTPUT_SURFACE_RENDER_ROTATE_180

Rotate source_surface 180 degrees prior to compositing.

5.11.2.5 #define VDP_OUTPUT_SURFACE_RENDER_ROTATE_270

Rotate source_surface 270 degrees clockwise prior to compositing.

5.11.2.6 #define VDP_OUTPUT_SURFACE_RENDER_ROTATE_90

Rotate source_surface 90 degrees clockwise prior to compositing.

5.11.3 Typedef Documentation

5.11.3.1 typedef VdpStatus VdpOutputSurfaceRenderBitmapSurface(VdpOutputSurface destination_surface, VdpRect const *destination_rect, VdpBitmapSurface source_surface, VdpRect const *source_rect, VdpColor const *colors, VdpOutputSurfaceRenderBlendState const *blend_state, uint32_t flags)

Composite a sub-rectangle of a VdpBitmapSurface into a sub-rectangle of a VdpOutputSurface; Output Surfaceobject VdpOutputSurface.

in	destination_surface	The destination surface of the compositing operation.
in	destination_rect	The sub-rectangle of the destination surface to update. If NULL, the entire destination surface will be updated.
in	source_surface	The source surface for the compositing operation. The surface is treated as having four components: red, green, blue and alpha. Any missing components are treated as 1.0. For example, for an A8 VdpBitmapSurface, alpha will come from the surface but red, green and blue will be treated as 1.0. If source_surface is VDP_INVALID_HANDLE, all components will be treated as 1.0. Note that destination_surface and source_surface must have been allocated via the same VdpDevice.
in	source_rect	The sub-rectangle of the source surface to read from. If NULL, the entire source_surface will be read. Left/right ot top/bottom co-ordinates may be swapped to flip the source. Any flip occurs prior to any requested rotation. Values from outside the source surface are valid and samples at those locations will be taken from the nearest edge.
in	colors	A pointer to an array of VdpColor objects. If the flag VDP_OUTPUT_SURFACE_RENDER_COLOR_PER_VERTEX is set, VDPAU will four entries from the array, and treat them as the colors corresponding to the upper-left, upper-right, lower-right and lower-left corners of the post-rotation source (i.e. indices 0, 1, 2 and 3 run clockwise from the upper left corner). If the flag VDP_OUTPUT_SURFACE_RENDER_COLOR_PER_VERTEX is not set, VDPAU will use the single VdpColor for all four corners. If colors is NULL then red, green, blue and alpha values of 1.0 will be used.
in	blend_state	If a blend state is provided, the blend state will be used for the composite operation. If NULL, blending is effectively disabled, which is equivalent to a blend equation of ADD, source blend factors of ONE and destination blend factors of ZERO. See VdpOutputSurfaceRenderBlendState for details regarding the mathematics of the blending operation.
in	flags	A set of flags influencing how the compositing operation works.
		VDP_OUTPUT_SURFACE_RENDER_ROTATE_0
		VDP_OUTPUT_SURFACE_RENDER_ROTATE_90
		VDP_OUTPUT_SURFACE_RENDER_ROTATE_180
		VDP_OUTPUT_SURFACE_RENDER_ROTATE_270
		VDP_OUTPUT_SURFACE_RENDER_COLOR_PER_VERTEX

Returns

VdpStatus The completion status of the operation.

The general compositing pipeline is as follows.

- 1. Extract source_rect from source_surface.
- 2. The extracted source is rotated 0, 90, 180 or 270 degrees according to the flags.
- 3. The rotated source is component-wise multiplied by a smooth-shaded quad with a (potentially) different color at each vertex.
- 4. The resulting rotated, smooth-shaded quad is scaled to the size of destination_rect and composited with destination_surface using the provided blend state.
- 5.11.3.2 typedef VdpStatus VdpOutputSurfaceRenderOutputSurface(VdpOutputSurface destination_surface, VdpRect const *destination_rect, VdpOutputSurface source_surface, VdpRect const *source_rect, VdpColor const *colors, VdpOutputSurfaceRenderBlendState const *blend_state, uint32_t flags)

Composite a sub-rectangle of a VdpOutputSurface into a sub-rectangle of another VdpOutputSurface; Output Surfaceobject VdpOutputSurface.

in	destination_surface	The destination surface of the compositing operation.
in	destination_rect	The sub-rectangle of the destination surface to update. If NULL, the entire destination surface will be updated.
in	source_surface	The source surface for the compositing operation. The surface is treated as having four components: red, green, blue and alpha. Any missing components are treated as 1.0. For example, for an A8 VdpOutputSurface, alpha will come from the surface but red, green and blue will be treated as 1.0. If source_surface is VDP_INVALID_HANDLE, all components will be treated as 1.0. Note that destination_surface and source_surface must have been allocated via the same VdpDevice.
in	source_rect	The sub-rectangle of the source surface to read from. If NULL, the entire source_surface will be read. Left/right and/or top/bottom co-ordinates may be swapped to flip the source. Any flip occurs prior to any requested rotation. Values from outside the source surface are valid and samples at those locations will be taken from the nearest edge.
in	colors	A pointer to an array of VdpColor objects. If the flag VDP_OUTPUT_SURFACE_RENDER_COLOR_PER_VERTEX is set, VDPAU will four entries from the array, and treat them as the colors corresponding to the upper-left, upper-right, lower-right and lower-left corners of the post-rotation source (i.e. indices 0, 1, 2 and 3 run clockwise from the upper left corner). If the flag VDP_OUTPUT_SURFACE_RENDER_COLOR_PER_VERTEX is not set, VDPAU will use the single VdpColor for all four corners. If colors is NULL then red, green, blue and alpha values of 1.0 will be used.
in	blend_state	If a blend state is provided, the blend state will be used for the composite operation. If NULL, blending is effectively disabled, which is equivalent to a blend equation of ADD, source blend factors of ONE and destination blend factors of ZERO. See VdpOutputSurfaceRenderBlendState for details regarding the mathematics of the blending operation.

Parameters

in	flags	A set of flags influencing how the compositing operation works.	
		VDP_OUTPUT_SURFACE_RENDER_ROTATE_0	
		VDP_OUTPUT_SURFACE_RENDER_ROTATE_90	
		VDP_OUTPUT_SURFACE_RENDER_ROTATE_180	
		VDP_OUTPUT_SURFACE_RENDER_ROTATE_270	
		VDP_OUTPUT_SURFACE_RENDER_COLOR_PER_VERTEX	

Returns

VdpStatus The completion status of the operation.

The general compositing pipeline is as follows.

- 1. Extract source_rect from source_surface.
- 2. The extracted source is rotated 0, 90, 180 or 270 degrees according to the flags.
- 3. The rotated source is component-wise multiplied by a smooth-shaded quad with a (potentially) different color at each vertex.
- 4. The resulting rotated, smooth-shaded quad is scaled to the size of destination_rect and composited with destination_surface using the provided blend state.

5.11.4 Enumeration Type Documentation

5.11.4.1 enum VdpOutputSurfaceRenderBlendEquation

The blending equations.

Enumerator

VDP_OUTPUT_SURFACE_RENDER_BLEND_EQUATION_SUBTRACT

VDP_OUTPUT_SURFACE_RENDER_BLEND_EQUATION_REVERSE_SUBTRACT

VDP_OUTPUT_SURFACE_RENDER_BLEND_EQUATION_ADD

VDP_OUTPUT_SURFACE_RENDER_BLEND_EQUATION_MIN

VDP_OUTPUT_SURFACE_RENDER_BLEND_EQUATION_MAX

5.11.4.2 enum VdpOutputSurfaceRenderBlendFactor

The blending equation factors.

Enumerator

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_ZERO

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_ONE

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_SRC_COLOR

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_ONE_MINUS_SRC_COLOR

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_SRC_ALPHA

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_DST_ALPHA

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_ONE_MINUS_DST_ALPHA

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_ONE_MINUS_DST_COLOR

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_ONE_MINUS_DST_COLOR

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_SRC_ALPHA_SATURATE

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_CONSTANT_COLOR

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_CONSTANT_ALPHA

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_CONSTANT_ALPHA

5.12 VdpDecoder; Video Decoding object

Collaboration diagram for VdpDecoder; Video Decoding object:

Data Structures

struct VdpBitstreamBuffer

Application data buffer containing compressed video data.

struct VdpPictureInfoMPEG1Or2

Picture parameter information for an MPEG 1 or MPEG 2 picture.

struct VdpReferenceFrameH264

Information about an H.264 reference frame.

struct VdpPictureInfoH264

Picture parameter information for an H.264 picture.

• struct VdpPictureInfoH264Predictive

Picture parameter information for an H.264 Hi444PP picture.

struct VdpPictureInfoVC1

Picture parameter information for a VC1 picture.

struct VdpPictureInfoMPEG4Part2

Picture parameter information for an MPEG-4 Part 2 picture.

struct VdpPictureInfoHEVC

Picture parameter information for an H.265/HEVC picture.

Macros

- #define VDP DECODER PROFILE MPEG1
- #define VDP_DECODER_PROFILE_MPEG2_SIMPLE
- #define VDP_DECODER_PROFILE_MPEG2_MAIN
- #define VDP_DECODER_PROFILE_H264_BASELINE

MPEG 4 part 10 == H.264 == AVC.

- #define VDP DECODER PROFILE H264 MAIN
- #define VDP DECODER PROFILE H264 HIGH
- #define VDP_DECODER_PROFILE_VC1_SIMPLE
- #define VDP_DECODER_PROFILE_VC1_MAIN
- #define VDP_DECODER_PROFILE_VC1_ADVANCED
- #define VDP_DECODER_PROFILE_MPEG4_PART2_SP
- #define VDP DECODER PROFILE MPEG4 PART2 ASP
- #define VDP_DECODER_PROFILE_DIVX4_QMOBILE
- #define VDP DECODER PROFILE DIVX4 MOBILE
- #define VDP_DECODER_PROFILE_DIVX4_HOME_THEATER

 #define VDP DECODER PROFILE DIVX4 HD 1080P #define VDP_DECODER_PROFILE_DIVX5_QMOBILE • #define VDP DECODER PROFILE DIVX5 MOBILE • #define VDP DECODER PROFILE DIVX5 HOME THEATER #define VDP DECODER PROFILE DIVX5 HD 1080P #define VDP DECODER PROFILE H264 CONSTRAINED BASELINE #define VDP_DECODER_PROFILE_H264_EXTENDED • #define VDP DECODER PROFILE H264 PROGRESSIVE HIGH • #define VDP DECODER PROFILE H264 CONSTRAINED HIGH • #define VDP DECODER PROFILE H264 HIGH 444 PREDICTIVE Support for 8 bit depth only. #define VDP DECODER PROFILE HEVC MAIN MPEG-H Part 2 == H.265 == HEVC. • #define VDP DECODER_PROFILE_HEVC_MAIN_10 #define VDP DECODER PROFILE HEVC MAIN STILL #define VDP_DECODER_PROFILE_HEVC_MAIN_12 • #define VDP DECODER PROFILE HEVC MAIN 444 • #define VDP DECODER LEVEL MPEG1 NA #define VDP DECODER LEVEL MPEG2 LL #define VDP DECODER LEVEL MPEG2 ML • #define VDP_DECODER_LEVEL_MPEG2_HL14 #define VDP DECODER LEVEL MPEG2 HL #define VDP_DECODER_LEVEL_H264_1 • #define VDP DECODER LEVEL H264 1b #define VDP DECODER LEVEL H264 1 1 #define VDP_DECODER_LEVEL_H264_1_2 #define VDP DECODER LEVEL H264 1 3 • #define VDP DECODER LEVEL H264 2 • #define VDP DECODER LEVEL H264 2 1 • #define VDP DECODER LEVEL H264 2 2 • #define VDP DECODER LEVEL H264 3 #define VDP_DECODER_LEVEL_H264_3_1 #define VDP DECODER LEVEL H264 3 2 • #define VDP_DECODER_LEVEL_H264_4 • #define VDP DECODER LEVEL H264 4 1 #define VDP DECODER LEVEL H264 4 2 #define VDP DECODER LEVEL H264 5 #define VDP_DECODER_LEVEL_H264_5_1 #define VDP_DECODER_LEVEL_VC1_SIMPLE_LOW #define VDP DECODER LEVEL VC1 SIMPLE MEDIUM #define VDP DECODER LEVEL VC1 MAIN LOW #define VDP_DECODER_LEVEL_VC1_MAIN_MEDIUM #define VDP DECODER LEVEL VC1 MAIN HIGH • #define VDP_DECODER_LEVEL_VC1_ADVANCED_L0 #define VDP_DECODER_LEVEL_VC1_ADVANCED_L1 #define VDP DECODER LEVEL VC1 ADVANCED L2 • #define VDP_DECODER_LEVEL_VC1_ADVANCED_L3 #define VDP DECODER LEVEL VC1 ADVANCED L4 #define VDP_DECODER_LEVEL_MPEG4_PART2_SP_L0 • #define VDP DECODER LEVEL MPEG4 PART2 SP L1 #define VDP DECODER LEVEL MPEG4 PART2 SP L2

#define VDP_DECODER_LEVEL_MPEG4_PART2_SP_L3
#define VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L0
#define VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L1

- #define VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L2
- #define VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L3
- #define VDP DECODER LEVEL MPEG4 PART2 ASP L4
- #define VDP DECODER LEVEL MPEG4 PART2 ASP L5
- #define VDP DECODER LEVEL DIVX NA
- #define VDP DECODER LEVEL HEVC 1 30
- #define VDP_DECODER_LEVEL_HEVC_2
- #define VDP_DECODER_LEVEL_HEVC_2_1
- #define VDP DECODER LEVEL HEVC 3
- #define VDP DECODER LEVEL HEVC 3 1
- #define VDP DECODER LEVEL HEVC 4
- #define VDP_DECODER_LEVEL_HEVC_4_1
- #define VDP DECODER LEVEL HEVC 5
- #define VDP DECODER LEVEL HEVC 5 1
- #define VDP_DECODER_LEVEL_HEVC_5_2
- #define VDP DECODER LEVEL HEVC 6
- #define VDP_DECODER_LEVEL_HEVC_6_1
- #define VDP_DECODER_LEVEL_HEVC_6_2
- #define VDP_BITSTREAM_BUFFER_VERSION 0

Typedefs

• typedef uint32_t VdpDecoderProfile

The set of all known compressed video formats, and associated profiles, that may be decoded.

 typedef VdpStatus VdpDecoderQueryCapabilities(VdpDevice device, VdpDecoderProfile profile, VdpBool *is_supported, uint32_t *max_level, uint32_t *max_macroblocks, uint32_t *max_width, uint32_t *max_ height)

Query the implementation's VdpDecoder capabilities.

• typedef uint32 t VdpDecoder

An opaque handle representing a VdpDecoder object.

typedef VdpStatus VdpDecoderCreate(VdpDevice device, VdpDecoderProfile profile, uint32_t width, uint32←
 _t height, uint32_t max_references, VdpDecoder *decoder)

Create a VdpDecoder.

typedef VdpStatus VdpDecoderDestroy(VdpDecoder decoder)

Destroy a VdpDecoder.

typedef VdpStatus VdpDecoderGetParameters(VdpDecoder decoder, VdpDecoderProfile *profile, uint32_t *width, uint32_t *height)

Retrieve the parameters used to create a VdpDecoder.

typedef void VdpPictureInfo

A generic "picture information" type.

typedef VdpPictureInfoMPEG4Part2 VdpPictureInfoDivX4

Picture parameter information for a DivX 4 picture.

typedef VdpPictureInfoMPEG4Part2 VdpPictureInfoDivX5

Picture parameter information for a DivX 5 picture.

 typedef VdpStatus VdpDecoderRender(VdpDecoder decoder, VdpVideoSurface target, VdpPictureInfo const *picture_info, uint32_t bitstream_buffer_count, VdpBitstreamBuffer const *bitstream_buffers)

Decode a compressed field/frame and render the result into a VdpVideoSurface.

5.12.1 Detailed Description

The VdpDecoder object decodes compressed video data, writing the results to a VdpVideoSurface.

A specific VDPAU implementation may support decoding multiple types of compressed video data. However, Vdp Decoder objects are able to decode a specific type of compressed video data. This type must be specified during creation.

5.12.2	Macro Definition Documentation
5.12.2.1	#define VDP_BITSTREAM_BUFFER_VERSION 0
5.12.2.2	#define VDP_DECODER_LEVEL_DIVX_NA
5.12.2.3	#define VDP_DECODER_LEVEL_H264_1
5.12.2.4	#define VDP_DECODER_LEVEL_H264_1_1
5.12.2.5	#define VDP_DECODER_LEVEL_H264_1_2
5.12.2.6	#define VDP_DECODER_LEVEL_H264_1_3
5.12.2.7	#define VDP_DECODER_LEVEL_H264_1b
5.12.2.8	#define VDP_DECODER_LEVEL_H264_2
5.12.2.9	#define VDP_DECODER_LEVEL_H264_2_1
5.12.2.10	#define VDP_DECODER_LEVEL_H264_2_2
5.12.2.11	#define VDP_DECODER_LEVEL_H264_3
5.12.2.12	#define VDP_DECODER_LEVEL_H264_3_1
5.12.2.13	#define VDP_DECODER_LEVEL_H264_3_2
5.12.2.14	#define VDP_DECODER_LEVEL_H264_4
5.12.2.15	#define VDP_DECODER_LEVEL_H264_4_1
5.12.2.16	#define VDP_DECODER_LEVEL_H264_4_2
5.12.2.17	#define VDP_DECODER_LEVEL_H264_5
5.12.2.18	#define VDP_DECODER_LEVEL_H264_5_1
5.12.2.19	#define VDP_DECODER_LEVEL_HEVC_1 30

The VDPAU H.265/HEVC decoder levels correspond to the values of general_level_idc as described in the H.265 Specification, Annex A, Table A.1. The enumeration values are equal to thirty times the level number.

5.12.2.20	#define VDP_DECODER_LEVEL_HEVC_2
5.12.2.21	#define VDP_DECODER_LEVEL_HEVC_2_1
5.12.2.22	#define VDP_DECODER_LEVEL_HEVC_3
5.12.2.23	#define VDP_DECODER_LEVEL_HEVC_3_1
5.12.2.24	#define VDP_DECODER_LEVEL_HEVC_4
5.12.2.25	#define VDP_DECODER_LEVEL_HEVC_4_1
5.12.2.26	#define VDP_DECODER_LEVEL_HEVC_5
5.12.2.27	#define VDP_DECODER_LEVEL_HEVC_5_1
5.12.2.28	#define VDP_DECODER_LEVEL_HEVC_5_2
5.12.2.29	#define VDP_DECODER_LEVEL_HEVC_6
5.12.2.30	#define VDP_DECODER_LEVEL_HEVC_6_1
5.12.2.31	#define VDP_DECODER_LEVEL_HEVC_6_2
5.12.2.32	#define VDP_DECODER_LEVEL_MPEG1_NA
5.12.2.33	#define VDP_DECODER_LEVEL_MPEG2_HL
5.12.2.34	#define VDP_DECODER_LEVEL_MPEG2_HL14
5.12.2.35	#define VDP_DECODER_LEVEL_MPEG2_LL
5.12.2.36	#define VDP_DECODER_LEVEL_MPEG2_ML
5.12.2.37	#define VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L0
5.12.2.38	#define VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L1
5.12.2.39	#define VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L2
5.12.2.40	#define VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L3
5.12.2.41	#define VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L4
5.12.2.42	#define VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L5

5.12.2.43	#define VDP_DECODER_LEVEL_MPEG4_PART2_SP_L0
5.12.2.44	#define VDP_DECODER_LEVEL_MPEG4_PART2_SP_L1
5.12.2.45	#define VDP_DECODER_LEVEL_MPEG4_PART2_SP_L2
5.12.2.46	#define VDP_DECODER_LEVEL_MPEG4_PART2_SP_L3
5.12.2.47	#define VDP_DECODER_LEVEL_VC1_ADVANCED_L0
5.12.2.48	#define VDP_DECODER_LEVEL_VC1_ADVANCED_L1
5.12.2.49	#define VDP_DECODER_LEVEL_VC1_ADVANCED_L2
5.12.2.50	#define VDP_DECODER_LEVEL_VC1_ADVANCED_L3
5.12.2.51	#define VDP_DECODER_LEVEL_VC1_ADVANCED_L4
5.12.2.52	#define VDP_DECODER_LEVEL_VC1_MAIN_HIGH
5.12.2.53	#define VDP_DECODER_LEVEL_VC1_MAIN_LOW
5.12.2.54	#define VDP_DECODER_LEVEL_VC1_MAIN_MEDIUM
5.12.2.55	#define VDP_DECODER_LEVEL_VC1_SIMPLE_LOW
5.12.2.56	#define VDP_DECODER_LEVEL_VC1_SIMPLE_MEDIUM
5.12.2.57	#define VDP_DECODER_PROFILE_DIVX4_HD_1080P
5.12.2.58	#define VDP_DECODER_PROFILE_DIVX4_HOME_THEATER
5.12.2.59	#define VDP_DECODER_PROFILE_DIVX4_MOBILE
5.12.2.60	#define VDP_DECODER_PROFILE_DIVX4_QMOBILE
5.12.2.61	#define VDP_DECODER_PROFILE_DIVX5_HD_1080P
5.12.2.62	#define VDP_DECODER_PROFILE_DIVX5_HOME_THEATER
5.12.2.63	#define VDP_DECODER_PROFILE_DIVX5_MOBILE
5.12.2.64	#define VDP_DECODER_PROFILE_DIVX5_QMOBILE
5.12.2.65	#define VDP_DECODER_PROFILE_H264_BASELINE
MPEG 4	part 10 == H.264 == AVC.

5.12.2.66	#define VDP_DECODER_PROFILE_H264_CONSTRAINED_BASELINE
5.12.2.67	#define VDP_DECODER_PROFILE_H264_CONSTRAINED_HIGH
5.12.2.68	#define VDP_DECODER_PROFILE_H264_EXTENDED
5.12.2.69	#define VDP_DECODER_PROFILE_H264_HIGH
5.12.2.70	#define VDP_DECODER_PROFILE_H264_HIGH_444_PREDICTIVE
Support	for 8 bit depth only.
5.12.2.71	#define VDP_DECODER_PROFILE_H264_MAIN
5.12.2.72	#define VDP_DECODER_PROFILE_H264_PROGRESSIVE_HIGH
5.12.2.73	#define VDP_DECODER_PROFILE_HEVC_MAIN
MPEG-H	H Part 2 == H.265 == HEVC.
5.12.2.74	#define VDP_DECODER_PROFILE_HEVC_MAIN_10
5.12.2.75	#define VDP_DECODER_PROFILE_HEVC_MAIN_12
5.12.2.76	#define VDP_DECODER_PROFILE_HEVC_MAIN_444
5.12.2.77	#define VDP_DECODER_PROFILE_HEVC_MAIN_STILL
5.12.2.78	#define VDP_DECODER_PROFILE_MPEG1
5.12.2.79	#define VDP_DECODER_PROFILE_MPEG2_MAIN
5.12.2.80	#define VDP_DECODER_PROFILE_MPEG2_SIMPLE
5.12.2.81	#define VDP_DECODER_PROFILE_MPEG4_PART2_ASP
5.12.2.82	#define VDP_DECODER_PROFILE_MPEG4_PART2_SP
5.12.2.83	#define VDP_DECODER_PROFILE_VC1_ADVANCED
5.12.2.84	#define VDP_DECODER_PROFILE_VC1_MAIN
5.12.2.85	#define VDP_DECODER_PROFILE_VC1_SIMPLE
5.12.3	Typedef Documentation
5.12.3.1	typedef uint32_t VdpDecoder

An opaque handle representing a VdpDecoder object.

5.12.3.2 typedef VdpStatus VdpDecoderCreate(VdpDevice device, VdpDecoderProfile profile, uint32_t width, uint32_t height, uint32_t max_references,VdpDecoder *decoder)

Create a VdpDecoder.

Parameters

in	device	The device that will contain the surface.
in	profile	The video format the decoder will decode.
in	width	The width of the new surface.
in	height	The height of the new surface.
in	max_references	The maximum number of references that may be used by a single frame in the stream to be decoded. This parameter exists mainly for formats such as H.264, where different streams may use a different number of references. Requesting too many references may waste memory, but decoding should still operate correctly. Requesting too few references will cause decoding to fail.
out	decoder	The new decoder's handle.

Returns

VdpStatus The completion status of the operation.

5.12.3.3 typedef VdpStatus VdpDecoderDestroy(VdpDecoder decoder)

Destroy a VdpDecoder.

Parameters

in

Returns

VdpStatus The completion status of the operation.

5.12.3.4 typedef VdpStatus VdpDecoderGetParameters(VdpDecoder decoder,VdpDecoderProfile *profile, uint32_t *width, uint32_t *height)

Retrieve the parameters used to create a VdpDecoder.

Parameters

in	surface	The surface's handle.
out	profile	The video format used to create the decoder.
out	width	The width of surfaces decode by the decoder.
out	height	The height of surfaces decode by the decoder

Returns

VdpStatus The completion status of the operation.

5.12.3.5 typedef uint32_t VdpDecoderProfile

The set of all known compressed video formats, and associated profiles, that may be decoded.

5.12.3.6 typedef VdpStatus VdpDecoderQueryCapabilities(VdpDevice device, VdpDecoderProfile profile,VdpBool *is_supported, uint32_t *max_level, uint32_t *max_macroblocks, uint32_t *max_width, uint32_t *max_height)

Query the implementation's VdpDecoder capabilities.

Parameters

in	device	The device to query.
in	profile	The decoder profile for which information is requested.
out	is_supported	Is this profile supported?
out	max_level	The maximum specification level supported for this profile.
out	max_macroblocks	The maximum supported surface size in macroblocks. Note that this could be greater than that dictated by the maximum level.
out	max_width	The maximum supported surface width for this profile. Note that this could be greater than that dictated by the maximum level.
out	max_height	The maximum supported surface height for this profile. Note that this could be greater than that dictated by the maximum level.

Returns

VdpStatus The completion status of the operation.

5.12.3.7 typedef VdpStatus VdpDecoderRender(VdpDecoder decoder, VdpVideoSurface target, VdpPictureInfo const *picture_info, uint32_t bitstream_buffer_count, VdpBitstreamBuffer const *bitstream_buffers)

Decode a compressed field/frame and render the result into a VdpVideoSurface.

Parameters

in	decoder	The decoder object that will perform the decode operation.
in	target	The video surface to render to.
in	picture_info	A (pointer to a) structure containing information about the picture to be decoded. Note that the appropriate type of VdpPictureInfo* structure must be provided to match to profile that the decoder was created for.
in	bitstream_buffer_count	The number of bitstream buffers containing compressed data for this picture.
in	bitstream_buffers	An array of bitstream buffers.

Returns

VdpStatus The completion status of the operation.

See Video Mixer Usage for additional information.

5.12.3.8 typedef void VdpPictureInfo

A generic "picture information" type.

This type serves solely to document the expected usage of a generic (void *) function parameter. In actual usage, the application is expected to physically provide a pointer to an instance of one of the "real" VdpPictureInfo* structures, picking the type appropriate for the decoder object in question.

5.12.3.9 typedef VdpPictureInfoMPEG4Part2 VdpPictureInfoDivX4

Picture parameter information for a DivX 4 picture.

Due to similarites between MPEG-4 Part 2 and DivX 4, the picture parameter structure is re-used.

5.12.3.10 typedef VdpPictureInfoMPEG4Part2 VdpPictureInfoDivX5

Picture parameter information for a DivX 5 picture.

Due to similarites between MPEG-4 Part 2 and DivX 5, the picture parameter structure is re-used.

5.13 VdpVideoMixer; Video Post-processing and Compositing object

Collaboration diagram for VdpVideoMixer; Video Post-processing and Compositing object:

Data Structures

struct VdpLayer

Definition of an additional VdpOutputSurface layer in the composting model.

Macros

- #define VDP_VIDEO_MIXER_FEATURE_DEINTERLACE_TEMPORAL
 - A VdpVideoMixerFeature.
- #define VDP_VIDEO_MIXER_FEATURE_DEINTERLACE_TEMPORAL_SPATIAL
 - A VdpVideoMixerFeature.
- #define VDP_VIDEO_MIXER_FEATURE_INVERSE_TELECINE
 - A VdpVideoMixerFeature.
- #define VDP VIDEO MIXER FEATURE NOISE REDUCTION
 - A VdpVideoMixerFeature.
- #define VDP_VIDEO_MIXER_FEATURE_SHARPNESS
 - A VdpVideoMixerFeature.
- #define VDP_VIDEO_MIXER_FEATURE_LUMA_KEY
 - A VdpVideoMixerFeature.
- #define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L1
 - A VdpVideoMixerFeature.
- #define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L2
 - A VdpVideoMixerFeature.
- #define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L3 A VdpVideoMixerFeature.
- #define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L4
 - A VdpVideoMixerFeature.
- #define VDP VIDEO MIXER FEATURE HIGH QUALITY SCALING L5
 - A VdpVideoMixerFeature.
- #define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L6
 - A VdpVideoMixerFeature.
- #define VDP VIDEO MIXER FEATURE HIGH QUALITY SCALING L7
 - A VdpVideoMixerFeature.

#define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L8
 A VdpVideoMixerFeature.

• #define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L9

A VdpVideoMixerFeature.

#define VDP_VIDEO_MIXER_PARAMETER_VIDEO_SURFACE_WIDTH

The exact width of input video surfaces.

#define VDP VIDEO MIXER PARAMETER VIDEO SURFACE HEIGHT

The exact height of input video surfaces.

• #define VDP VIDEO MIXER PARAMETER CHROMA TYPE

The chroma type of the input video surfaces the will process.

#define VDP VIDEO MIXER PARAMETER LAYERS

The number of auxiliary layers in the mixer's compositing model.

#define VDP_VIDEO_MIXER_ATTRIBUTE_BACKGROUND_COLOR

The background color in the VdpVideoMixer's compositing model.

#define VDP VIDEO MIXER ATTRIBUTE CSC MATRIX

The color-space conversion matrix used by the VdpVideoMixer.

#define VDP_VIDEO_MIXER_ATTRIBUTE_NOISE_REDUCTION_LEVEL

The amount of noise reduction algorithm to apply.

#define VDP VIDEO MIXER ATTRIBUTE SHARPNESS LEVEL

The amount of sharpening, or blurring, to apply.

#define VDP_VIDEO_MIXER_ATTRIBUTE_LUMA_KEY_MIN_LUMA

The minimum luma value for the luma key algorithm.

• #define VDP VIDEO MIXER ATTRIBUTE LUMA KEY MAX LUMA

The maximum luma value for the luma key algorithm.

#define VDP_VIDEO_MIXER_ATTRIBUTE_SKIP_CHROMA_DEINTERLACE

Whether de-interlacers should operate solely on luma, and bob chroma.

#define VDP_LAYER_VERSION 0

Typedefs

• typedef uint32 t VdpVideoMixerFeature

A VdpVideoMixer feature that must be requested at creation time to be used.

typedef uint32_t VdpVideoMixerParameter

A VdpVideoMixer creation parameter.

typedef uint32_t VdpVideoMixerAttribute

An adjustable attribute of VdpVideoMixer operation.

 typedef VdpStatus VdpVideoMixerQueryFeatureSupport(VdpDevice device, VdpVideoMixerFeature feature, VdpBool *is_supported)

Query the implementation's support for a specific feature.

typedef VdpStatus VdpVideoMixerQueryParameterSupport(VdpDevice device, VdpVideoMixerParameter parameter, VdpBool *is supported)

Query the implementation's support for a specific parameter.

typedef VdpStatus VdpVideoMixerQueryAttributeSupport(VdpDevice device, VdpVideoMixerAttribute attribute, VdpBool *is supported)

Query the implementation's support for a specific attribute.

typedef VdpStatus VdpVideoMixerQueryParameterValueRange(VdpDevice device, VdpVideoMixer←
 Parameter parameter, void *min_value, void *max_value)

Query the implementation's supported for a specific parameter.

• typedef VdpStatus VdpVideoMixerQueryAttributeValueRange(VdpDevice device, VdpVideoMixerAttribute attribute, void *min_value, void *max_value)

Query the implementation's supported for a specific attribute.

typedef uint32_t VdpVideoMixer

An opaque handle representing a VdpVideoMixer object.

 typedef VdpStatus VdpVideoMixerCreate(VdpDevice device, uint32_t feature_count, VdpVideoMixerFeature const *features, uint32_t parameter_count, VdpVideoMixerParameter const *parameters, void const *const *parameter values, VdpVideoMixer *mixer)

Create a VdpVideoMixer.

Enable or disable features.

Set attribute values

Retrieve whether features were requested at creation time.

Retrieve whether features are enabled.

 typedef VdpStatus VdpVideoMixerGetParameterValues(VdpVideoMixer mixer, uint32_t parameter_count, VdpVideoMixerParameter const *parameters, void *const *parameter values)

Retrieve parameter values given at creation time.

Retrieve current attribute values.

typedef VdpStatus VdpVideoMixerDestroy(VdpVideoMixer mixer)

Destroy a VdpVideoMixer.

typedef VdpStatus VdpVideoMixerRender(VdpVideoMixer mixer, VdpOutputSurface background_surface, VdpRect const *background_source_rect, VdpVideoMixerPictureStructure current_picture_structure, uint32_t video_surface_past_count, VdpVideoSurface const *video_surface_past, VdpVideoSurface video uint32_t video_surface_future_count, VdpVideoSurface const *video_surface_future, VdpRect const *video_surface_future, VdpRect const *video_source_rect, VdpOutputSurface destination_surface, VdpRect const *destination_countprocedure.

Perform a video post-processing and compositing operation.

Enumerations

 enum VdpVideoMixerPictureStructure { VDP_VIDEO_MIXER_PICTURE_STRUCTURE_TOP_FIELD, VD→ P_VIDEO_MIXER_PICTURE_STRUCTURE_BOTTOM_FIELD, VDP_VIDEO_MIXER_PICTURE_STRU← CTURE FRAME }

The structure of the picture present in a VdpVideoSurface.

5.13.1 Detailed Description

VdpVideoMixer can perform some subset of the following post-processing steps on video:

- · De-interlacing
 - Various types, with or without inverse telecine
- · Noise-reduction
- Sharpness adjustment

- · Color space conversion to RGB
- · Chroma format upscaling to 4:4:4

A VdpVideoMixer takes a source VdpVideoSurface VdpVideoSurface and performs various video processing steps on it (potentially using information from past or future video surfaces). It scales the video and converts it to RGB, then optionally composites it with multiple auxiliary VdpOutputSurfaces before writing the result to the destination VdpOutputSurface.

The video mixer compositing model is as follows:

- A rectangle will be rendered on an output surface. No pixels will be rendered outside of this output rectangle. The contents of this rectangle will be a composite of many layers.
- · The first layer is the background color. The background color will fill the entire rectangle.
- The second layer is the processed video which has been converted to RGB. These pixels will overwrite the background color of the first layer except where the second layer's rectangle does not completely cover the output rectangle. In those regions the background color will continue to show. If any portion of the second layer's output rectangle is outside of the output rectangle, those portions will be clipped.
- The third layer contains some number of auxiliary layers (in the form of VdpOutputSurfaces) which will be
 composited using the alpha value from the those surfaces. The compositing operations are equivalent to
 rendering with VdpOutputSurfaceRenderOutputSurface using a source blend factor of SOURCE_ALPHA, a
 destination blend factor of ONE_MINUS_SOURCE_ALPHA and an equation of ADD.

5.13.2 Macro Definition Documentation

```
5.13.2.1 #define VDP_LAYER_VERSION 0
```

5.13.2.2 #define VDP_VIDEO_MIXER_ATTRIBUTE_BACKGROUND_COLOR

The background color in the VdpVideoMixer's compositing model.

This attribute's type is VdpColor.

This parameter defaults to black (all color components 0.0 and alpha 1.0).

The application may not query this parameter's supported range, since the type is not scalar.

```
5.13.2.3 #define VDP_VIDEO_MIXER_ATTRIBUTE_CSC_MATRIX
```

The color-space conversion matrix used by the VdpVideoMixer.

This attribute's type is VdpCSCMatrix; CSC Matrix Manipulation.

Note: When using VdpVideoMixerGetAttributeValues to retrieve the current CSC matrix, the attribute_values array must contain a pointer to a pointer a VdpCSCMatrix (VdpCSCMatrix** as a void *). The get function will either initialize the referenced CSC matrix to the current value, *or* clear the supplied pointer to NULL, if the previous set call supplied a value of NULL in parameter_values, to request the default matrix.

```
1 VdpCSCMatrix matrix;
2 VdpCSCMatrix * matrix_ptr;
3 void * attribute_values[] = {&matrix_ptr};
4 VdpStatus st = vdp_video_mixer_get_attribute_values(..., attribute_values, ...);
```

This parameter defaults to a matrix suitable for ITU-R BT.601 input surfaces, with no procamp adjustments.

The application may not query this parameter's supported range, since the type is not scalar.

5.13.2.4 #define VDP_VIDEO_MIXER_ATTRIBUTE_LUMA_KEY_MAX_LUMA

The maximum luma value for the luma key algorithm.

This attribute's type is float.

This parameter defaults to 1.0.

The application may query this parameter's supported range. However, the range is fixed as 0.0...1.0.

5.13.2.5 #define VDP_VIDEO_MIXER_ATTRIBUTE_LUMA_KEY_MIN_LUMA

The minimum luma value for the luma key algorithm.

This attribute's type is float.

This parameter defaults to 0.0.

The application may query this parameter's supported range. However, the range is fixed as 0.0...1.0.

5.13.2.6 #define VDP VIDEO MIXER ATTRIBUTE NOISE REDUCTION LEVEL

The amount of noise reduction algorithm to apply.

This attribute's type is float.

This parameter defaults to 0.0, which equates to no noise reduction.

The application may query this parameter's supported range. However, the range is fixed as 0.0...1.0.

5.13.2.7 #define VDP_VIDEO_MIXER_ATTRIBUTE_SHARPNESS_LEVEL

The amount of sharpening, or blurring, to apply.

This attribute's type is float.

This parameter defaults to 0.0, which equates to no sharpening.

Positive values request sharpening. Negative values request blurring.

The application may query this parameter's supported range. However, the range is fixed as -1.0...1.0.

5.13.2.8 #define VDP_VIDEO_MIXER_ATTRIBUTE_SKIP_CHROMA_DEINTERLACE

Whether de-interlacers should operate solely on luma, and bob chroma.

Note: This attribute only affects advanced de-interlacing algorithms, not bob or weave.

This attribute's type is uint8_t.

This parameter defaults to 0.

The application may query this parameter's supported range. However, the range is fixed as 0 (no/off) ... 1 (yes/on).

5.13.2.9 #define VDP_VIDEO_MIXER_FEATURE_DEINTERLACE_TEMPORAL

A VdpVideoMixerFeature.

When requested and enabled, motion adaptive temporal deinterlacing will be used on interlaced content.

When multiple de-interlacing options are requested and enabled, the back-end implementation chooses the best algorithm to apply.

5.13.2.10 #define VDP_VIDEO_MIXER_FEATURE_DEINTERLACE_TEMPORAL_SPATIAL

A VdpVideoMixerFeature.

When requested and enabled, this enables a more advanced version of temporal de-interlacing, that additionally uses edge-guided spatial interpolation.

When multiple de-interlacing options are requested and enabled, the back-end implementation chooses the best algorithm to apply.

5.13.2.11 #define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L1

A VdpVideoMixerFeature.

A VDPAU implementation may support multiple scaling algorithms of differing quality, and may potentially support a different subset of algorithms on different hardware.

In some cases, higher quality algorithms may require more resources (memory size, memory bandwidth, etc.) to operate. Hence, these high quality algorithms must be explicitly requested and enabled by the client application. This allows applications operating in a resource-constrained environment to have some level of control over resource usage.

Basic scaling is always built into any video mixer, and is known as level 0. Scaling quality increases beginning with optional level 1, through optional level 9.

If an application requests and enables multiple high quality scaling algorithms, the highest level enabled scaling algorithm will be used.

5.13.2.12 #define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L2

A VdpVideoMixerFeature.

See VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L1 for details.

5.13.2.13 #define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L3

A VdpVideoMixerFeature.

See VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L1 for details.

5.13.2.14 #define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L4

A VdpVideoMixerFeature.

See VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L1 for details.

5.13.2.15 #define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L5

A VdpVideoMixerFeature.

See VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L1 for details.

5.13.2.16 #define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L6

A VdpVideoMixerFeature.

See VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L1 for details.

5.13.2.17 #define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L7

A VdpVideoMixerFeature.

See VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L1 for details.

5.13.2.18 #define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L8

A VdpVideoMixerFeature.

See VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L1 for details.

5.13.2.19 #define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L9

A VdpVideoMixerFeature.

See VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L1 for details.

5.13.2.20 #define VDP_VIDEO_MIXER_FEATURE_INVERSE_TELECINE

A VdpVideoMixerFeature.

When requested and enabled, cadence detection will be enabled on interlaced content and the video mixer will try to extract progressive frames from pull-down material.

5.13.2.21 #define VDP_VIDEO_MIXER_FEATURE_LUMA_KEY

A VdpVideoMixerFeature.

When requested and enabled, the alpha of the rendered surface, which is normally set to the alpha of the background color, will be forced to 0.0 on pixels corresponding to source video surface luminance values in the range specified by attributes VDP_VIDEO_MIXER_ATTRIBUTE_LUMA_KEY_MIN_LUMA to VDP_VIDEO_MIXER_ACTRIBUTE LUMA KEY MAX LUMA. This keying is performed after scaling and de-interlacing.

5.13.2.22 #define VDP_VIDEO_MIXER_FEATURE_NOISE_REDUCTION

A VdpVideoMixerFeature.

When requested and enabled, a noise reduction algorithm will be applied to the video.

5.13.2.23 #define VDP_VIDEO_MIXER_FEATURE_SHARPNESS

A VdpVideoMixerFeature.

When requested and enabled, a sharpening algorithm will be applied to the video.

5.13.2.24 #define VDP_VIDEO_MIXER_PARAMETER_CHROMA_TYPE

The chroma type of the input video surfaces the will process.

This parameter's type is VdpChromaType.

If not specified, this parameter defaults to VDP_CHROMA_TYPE_420.

The application may not query this application's supported range, since it is a potentially disjoint enumeration.

5.13.2.25 #define VDP_VIDEO_MIXER_PARAMETER_LAYERS

The number of auxiliary layers in the mixer's compositing model.

Note that this indicates the maximum number of layers that may be processed by a given VdpVideoMixer object. Each individual VdpVideoMixerRender invocation may choose to use a different number of actual layers, from 0 up to this limit.

This attribute's type is uint32_t.

If not specified, this parameter defaults to 0.

The application may query this parameter's supported range.

5.13.2.26 #define VDP_VIDEO_MIXER_PARAMETER_VIDEO_SURFACE_HEIGHT

The exact height of input video surfaces.

This parameter's type is uint32 t.

This parameter defaults to 0 if not specified, which entails that it must be specified.

The application may query this parameter's supported range.

5.13.2.27 #define VDP_VIDEO_MIXER_PARAMETER_VIDEO_SURFACE_WIDTH

The exact width of input video surfaces.

This parameter's type is uint32 t.

This parameter defaults to 0 if not specified, which entails that it must be specified.

The application may query this parameter's supported range.

5.13.3 Typedef Documentation

5.13.3.1 typedef uint32_t VdpVideoMixer

An opaque handle representing a VdpVideoMixer object.

5.13.3.2 typedef uint32_t VdpVideoMixerAttribute

An adjustable attribute of VdpVideoMixer operation.

Various attributes of VdpVideoMixer operation may be adjusted at any time. Each attribute is named via a specific VdpVideoMixerAttribute value.

Each attribute has a specific type, and specific default value if not specified at VdpVideoMixer creation time. The application may query the legal supported range for some attributes.

5.13.3.3 typedef VdpStatus VdpVideoMixerCreate(VdpDevice device,uint32_t feature_count, VdpVideoMixerFeature const *features,uint32_t parameter_count, VdpVideoMixerParameter const *parameters, void const *const *parameter_values,VdpVideoMixer *mixer)

Create a VdpVideoMixer.

in	device	The device that will contain the mixer.
in	feature_count	The number of features to request.
in	features	The list of features to request.
in	parameter_count	The number of parameters to set.
in	parameters	The list of parameters to set.
in	parameter_values	The values for the parameters. Note that each entry in the value argay is a pointer to the actual value. In other words, the values themselves are not cast to "void *" and passed "inside" the array.
out	mixer	The new mixer's handle.

Returns

VdpStatus The completion status of the operation.

Initially, all requested features will be disabled. They can be enabled using VdpVideoMixerSetFeatureEnables.

Initially, all attributes will have default values. Values can be changed using VdpVideoMixerSetAttributeValues.

5.13.3.4 typedef VdpStatus VdpVideoMixerDestroy(VdpVideoMixer mixer)

Destroy a VdpVideoMixer.

Parameters

in	device	The device to destroy.
----	--------	------------------------

Returns

VdpStatus The completion status of the operation.

5.13.3.5 typedef uint32_t VdpVideoMixerFeature

A VdpVideoMixer feature that must be requested at creation time to be used.

Certain advanced VdpVideoMixer features are optional, and the ability to use those features at all must be requested when the VdpVideoMixer object is created. Each feature is named via a specific VdpVideoMixerFeature value.

Once requested, these features are permanently available within that specific VdpVideoMixer object. All features that are not explicitly requested at creation time default to being permanently unavailable.

Even when requested, all features default to being initially disabled. However, applications can subsequently enable and disable features at any time. See VdpVideoMixerSetFeatureEnables.

Some features allow configuration of their operation. Each configurable item is an VdpVideoMixerAttribute. These attributes may be manipulated at any time using VdpVideoMixerSetAttributeValues.

5.13.3.6 typedef VdpStatus VdpVideoMixerGetAttributeValues(VdpVideoMixer mixer, uint32_t attribute_count, VdpVideoMixerAttribute const *attributes,void *const *attribute_values)

Retrieve current attribute values.

in	mixer	The mixer to manipulate.
in	attribute_count	The number of attributes to query.
in	attributes	The list of attributes to query.
out	attribute_values	The list of current values for the attributes. Note that each entry in the value array is a pointer to storage that will receive the actual value. If the attribute's type is a pointer itself, please closely read the documentation for that attribute type for any other data passing requirements.

Returns

VdpStatus The completion status of the operation.

5.13.3.7 typedef VdpStatus VdpVideoMixerGetFeatureEnables(VdpVideoMixer mixer, uint32_t feature_count, VdpVideoMixerFeature const *features,VdpBool *feature_enables)

Retrieve whether features are enabled.

Parameters

in	mixer	The mixer to manipulate.
in	feature_count	The number of features to query.
in	features	The list of features to query.
out	feature_enabled	A list of values indicating whether the feature is enabled.

Returns

VdpStatus The completion status of the operation.

5.13.3.8 typedef VdpStatus VdpVideoMixerGetFeatureSupport(VdpVideoMixer mixer, uint32_t feature_count, VdpVideoMixerFeature const *features,VdpBool *feature_supports)

Retrieve whether features were requested at creation time.

Parameters

in	mixer	The mixer to query.
in	feature_count	The number of features to query.
in	features	The list of features to query.
out	feature_supported	A list of values indicating whether the feature was requested, and hence is available.

Returns

VdpStatus The completion status of the operation.

5.13.3.9 typedef VdpStatus VdpVideoMixerGetParameterValues(VdpVideoMixer mixer, uint32_t parameter_count, VdpVideoMixerParameter const *parameters,void *const *parameter_values)

Retrieve parameter values given at creation time.

in	mixer	The mixer to manipulate.
in	parameter_count	The number of parameters to query.
in	parameters	The list of parameters to query.
out	parameter_values	The list of current values for the parameters. Note that each entry in the value array is a pointer to storage that will receive the actual value. If the attribute's type
		is a pointer itself, please closely read the documentation for that attributaetype வேர் gen any other data passing requirements.

Returns

VdpStatus The completion status of the operation.

5.13.3.10 typedef uint32_t VdpVideoMixerParameter

A VdpVideoMixer creation parameter.

When a VdpVideoMixer is created, certain parameters may be supplied. Each parameter is named via a specific VdpVideoMixerParameter value.

Each parameter has a specific type, and specific default value if not specified at VdpVideoMixer creation time. The application may query the legal supported range for some parameters.

5.13.3.11 typedef VdpStatus VdpVideoMixerQueryAttributeSupport(VdpDevice device, VdpVideoMixerAttribute attribute,VdpBool *is_supported)

Query the implementation's support for a specific attribute.

Parameters

in	device	The device to query.
in	feature	The feature for which support is to be queried.
out	is_supported	Is the specified feature supported?

Returns

VdpStatus The completion status of the operation.

5.13.3.12 typedef VdpStatus VdpVideoMixerQueryAttributeValueRange(VdpDevice device, VdpVideoMixerAttribute attribute,void *min_value, void *max_value)

Query the implementation's supported for a specific attribute.

Parameters

in	device	The device to query.
in	attribute	The attribute for which support is to be queried.
out	min_value	The minimum supported value.
out	max_value	The maximum supported value.

Returns

VdpStatus The completion status of the operation.

5.13.3.13 typedef VdpStatus VdpVideoMixerQueryFeatureSupport(VdpDevice device, VdpVideoMixerFeature feature,VdpBool *is_supported)

Query the implementation's support for a specific feature.

Parameters

in	device	The device to query.
in	feature	The feature for which support is to be queried.
out	is_supported	Is the specified feature supported?

Returns

VdpStatus The completion status of the operation.

5.13.3.14 typedef VdpStatus VdpVideoMixerQueryParameterSupport(VdpDevice device, VdpVideoMixerParameter parameter,VdpBool *is_supported)

Query the implementation's support for a specific parameter.

Parameters

in	device	The device to query.
in	parameter	The parameter for which support is to be queried.
out	is_supported	Is the specified parameter supported?

Returns

VdpStatus The completion status of the operation.

5.13.3.15 typedef VdpStatus VdpVideoMixerQueryParameterValueRange(VdpDevice device, VdpVideoMixerParameter parameter,void *min_value, void *max_value)

Query the implementation's supported for a specific parameter.

Parameters

in	device	The device to query.
in	parameter	The parameter for which support is to be queried.
out	min_value	The minimum supported value.
out	max_value	The maximum supported value.

Returns

VdpStatus The completion status of the operation.

5.13.3.16 typedef VdpStatus VdpVideoMixerRender(VdpVideoMixer mixer, VdpOutputSurface background_surface, VdpRect const *background_source_rect, VdpVideoMixerPictureStructure current_picture_structure, uint32_t video_surface_past_count, VdpVideoSurface const *video_surface_past, VdpVideoSurface video_surface_current, uint32_t video_surface_future_count, VdpVideoSurface const *video_surface_future, VdpRect const *video_source_rect, VdpOutputSurface destination_surface, VdpRect const *destination_rect, VdpRect const *destination_video_rect, uint32_t layer_count, VdpLayer const *layers)

Perform a video post-processing and compositing operation.

Parameters

in	mixer	The mixer object that will perform the mixing/rendering operation.
in	background_surface	A background image. If set to any value other than VDP_INVALID_HANDLE, the specific surface will be used instead of the background color as the first layer in the mixer's compositing process.
in	background_source_rect	When background_surface is specified, this parameter indicates the portion of background_surface that will be used as the background layer. The specified region will be extracted and scaled to match the size of destination_rect. If NULL, the entire background_surface will be used.
in	current_picture_structure	The picture structure of the field/frame to be processed. This field/frame is presented in the video_surface_current parameter. If frame, then all video_surface_* parameters are assumed to be frames. If field, then all video_surface_* parameters are assumed to be fields, with alternating top/bottom-ness derived from video_surface_current.
in	video_surfaces_past_count	The number of provided fields/frames prior to the current picture.
in	video_surfaces_past	The fields/frames prior to the current field/frame. Note that array index 0 is the field/frame temporally nearest to the current field/frame, with increasing array indices used for older frames. Unavailable entries may be set to VDP_INVALID_HANDLE.
in	video_surface_current	The field/frame to be processed.
in	video_surfaces_future_count	The number of provided fields/frames following the current picture.
in	video_surfaces_future	The fields/frames that follow the current field/frame. Note that array index 0 is the field/frame temporally nearest to the current field/frame, with increasing array indices used for newer frames. Unavailable entries may be set to VDP_INVALID_HANDLE.
in	video_source_rect	The sub-rectangle of the source video surface to extract and process. If NULL, the entire surface will be used. Left/right and/or top/bottom co-ordinates may be swapped to flip the source. Values from outside the video surface are valid and samples at those locations will be taken from the nearest edge.
in	destination_surface	
in	destination_rect	The sub-rectangle of the destination surface to modify. Note that rectangle clips all other actions.
in	destination_video_rect	The sub-rectangle of the destination surface that will contain the processed video. This rectangle is relative to the entire destination surface. This rectangle is clipped by destination_rect . If NULL, the destination rectangle will be sized to match the source rectangle, and will be located at the origin.
in	layer_count	The number of additional layers to composite above the video.
in	layers	The array of additional layers to composite above the video.

Returns

VdpStatus The completion status of the operation.

For a complete discussion of how to use this API, please see Video Mixer Usage.

5.13.3.17 typedef VdpStatus VdpVideoMixerSetAttributeValues(VdpVideoMixer mixer, uint32_t attribute_count, VdpVideoMixerAttribute const *attributes, void const *const *attribute_values)

Set attribute values.

Parameters

in	mixer	The mixer to manipulate.
in	attribute_count	The number of attributes to set.
in	attributes	The list of attributes to set.
in	attribute_values	The values for the attributes. Note that each entry in the value array is a pointer to the actual value. In other words, the values themselves are not cast to "void *" and passed "inside" the array. A NULL pointer requests that the default value be set for that attribute.

Returns

VdpStatus The completion status of the operation.

5.13.3.18 typedef VdpStatus VdpVideoMixerSetFeatureEnables(VdpVideoMixer mixer, uint32_t feature_count, VdpVideoMixerFeature const *features, VdpBool const *feature_enables)

Enable or disable features.

Parameters

in	mixer	The mixer to manipulate.
in	feature_count	The number of features to enable/disable.
in	features	The list of features to enable/disable.
in	feature_enables	The list of new feature enable values.

Returns

VdpStatus The completion status of the operation.

5.13.4 Enumeration Type Documentation

5.13.4.1 enum VdpVideoMixerPictureStructure

The structure of the picture present in a VdpVideoSurface.

Enumerator

VDP_VIDEO_MIXER_PICTURE_STRUCTURE_TOP_FIELD The picture is a field, and is the top field of the surface.

VDP_VIDEO_MIXER_PICTURE_STRUCTURE_BOTTOM_FIELD The picture is a field, and is the bottom field of the surface.

VDP_VIDEO_MIXER_PICTURE_STRUCTURE_FRAME The picture is a frame, and hence is the entire surface.

5.14 VdpPresentationQueue; Video presentation (display) object

Collaboration diagram for VdpPresentationQueue; Video presentation (display) object:

Typedefs

• typedef uint64 t VdpTime

The representation of a point in time.

typedef uint32_t VdpPresentationQueueTarget

An opaque handle representing the location where video will be presented.

typedef VdpStatus VdpPresentationQueueTargetDestroy(VdpPresentationQueueTarget presentation_← queue_target)

Destroy a VdpPresentationQueueTarget.

• typedef uint32_t VdpPresentationQueue

An opaque handle representing a presentation queue object.

typedef VdpStatus VdpPresentationQueueCreate(VdpDevice device, VdpPresentationQueueTarget presentation queue target, VdpPresentationQueue*presentation queue)

Create a VdpPresentationQueue.

typedef VdpStatus VdpPresentationQueueDestroy(VdpPresentationQueue presentation_queue)

Destroy a VdpPresentationQueue.

typedef VdpStatus VdpPresentationQueueSetBackgroundColor(VdpPresentationQueue presentation_← queue, VdpColor *const background_color)

Configure the background color setting.

typedef VdpStatus VdpPresentationQueueGetBackgroundColor(VdpPresentationQueue presentation_← queue, VdpColor *background_color)

Retrieve the current background color setting.

 typedef VdpStatus VdpPresentationQueueGetTime(VdpPresentationQueue presentation_queue, VdpTime *current time)

Retrieve the presentation queue's "current" time.

typedef VdpStatus VdpPresentationQueueDisplay(VdpPresentationQueue presentation_queue, Vdp
 — OutputSurface surface, uint32_t clip_width, uint32_t clip_height, VdpTime earliest_presentation_time)

Enter a surface into the presentation queue.

• typedef VdpStatus VdpPresentationQueueBlockUntilSurfaceIdle(VdpPresentationQueue presentation_← queue, VdpOutputSurface surface, VdpTime *first_presentation_time)

Wait for a surface to finish being displayed.

 typedef VdpStatus VdpPresentationQueueQuerySurfaceStatus(VdpPresentationQueue presentation_queue, VdpOutputSurface surface, VdpPresentationQueueStatus *status, VdpTime *first presentation time)

Poll the current queue status of a surface.

Enumerations

The status of a surface within a presentation queue.

5.14.1 Detailed Description

The VdpPresentationQueue manages a queue of surfaces and associated timestamps. For each surface in the queue, once the associated timestamp is reached, the surface is displayed to the user. This timestamp-based approach yields high quality video delivery.

The exact location of the displayed content is Window System specific. For this reason, the Window System Integration Layer provides an API to create a VdpPresentationQueueTarget object (e.g. via VdpPresentation← QueueTargetCreateX11) which encapsulates this information.

Note that the presentation queue performs no scaling of surfaces to match the display target's size, aspect ratio, etc.

Surfaces that are too large to fit into the display target will be clipped. Surfaces that are too small to fill the display target will be aligned to the top-left corner of the display target, with the balance of the display target being filled with a constant configurable "background" color.

Note that the presentation queue operates in a manner that is semantically equivalent to an overlay surface, with any required color key painting hidden internally. However, implementations are free to use whatever semantically equivalent technique they wish. Note that implementations that actually use color-keyed overlays will typically use the "background" color as the overlay color key value, so this color should be chosen with care.

5.14.2 Typedef Documentation

5.14.2.1 typedef uint32_t VdpPresentationQueue

An opaque handle representing a presentation queue object.

5.14.2.2 typedef VdpStatus VdpPresentationQueueBlockUntilSurfaceIdle(VdpPresentationQueue presentation_queue, VdpOutputSurface surface,VdpTime *first_presentation_time)

Wait for a surface to finish being displayed.

Parameters

in	presentation_queue	The queue to query.
in	surface	The surface to wait for.
out	first_presentation_time	The timestamp of the VSYNC at which this surface was first displayed. Note that 0 means the surface was never displayed.

Returns

VdpStatus The completion status of the operation.

Note that this API would block forever if queried about the surface most recently added to a presentation queue. That is because there would be no other surface that could possibly replace that surface as the currently displayed surface, and hence that surface would never become idle. For that reason, this function will return an error in that case.

5.14.2.3 typedef VdpStatus VdpPresentationQueueCreate(VdpDevice device, VdpPresentationQueueTarget presentation_queue_target,VdpPresentationQueue *presentation_queue)

Create a VdpPresentationQueue.

Parameters

in	device	The device that will contain the queue.
in	presentation_queue_target	The location to display the content.
out	presentation_queue	The new queue's handle.

Returns

VdpStatus The completion status of the operation.

Note: The initial value for the background color will be set to an implementation-defined value.

5.14.2.4 typedef VdpStatus VdpPresentationQueueDestroy(VdpPresentationQueue presentation_queue)

Destroy a VdpPresentationQueue.

Parameters

in	presentation_queue	The queue to destroy.
----	--------------------	-----------------------

Returns

VdpStatus The completion status of the operation.

5.14.2.5 typedef VdpStatus VdpPresentationQueueDisplay(VdpPresentationQueue presentation_queue, VdpOutputSurface surface, uint32_t clip_width, uint32_t clip_height, VdpTime earliest_presentation_time)

Enter a surface into the presentation queue.

Parameters

in	presentation_queue	The queue to query.
in	surface	The surface to enter into the queue.
in	clip_width	If set to a non-zero value, the presentation queue will display only clip_width pixels of the surface (anchored to the top-left corner of the surface.
in	clip_height	If set to a non-zero value, the presentation queue will display only clip_height lines of the surface (anchored to the top-left corner of the surface.
in Generat	earliest_presentation_time ed by Doxygen	The timestamp associated with the surface. The presentation queue will not display the surface until the presentation queue's current time is at least this value.

Returns

VdpStatus The completion status of the operation.

Applications may choose to allow resizing of the presentation queue target (which may be e.g. a regular Window when using an X11-based implementation).

clip_width and **clip_height** may be used to limit the size of the displayed region of a surface, in order to match the specific region that was rendered to.

In turn, this allows the application to allocate over-sized (e.g. screen-sized) surfaces, but render to a region that matches the current size of the video window.

Using this technique, an application's response to window resizing may simply be to render to, and display, a different region of the surface, rather than de-/re-allocation of surfaces to match the updated window size.

Implementations may impose an upper bound on the number of entries contained by the presentation queue at a given time. This limit is likely different to the number of VdpOutputSurfaces that may be allocated at a given time. This limit applies to entries in the QUEUED or VISIBLE state only. In other words, entries that have transitioned from a QUEUED or VISIBLE state to an IDLE state do not count toward this limit.

5.14.2.6 typedef VdpStatus VdpPresentationQueueGetBackgroundColor(VdpPresentationQueue presentation_queue, VdpColor *background color)

Retrieve the current background color setting.

Parameters

in	presentation_queue	The queue to query.
out	background_color	The current background color.

5.14.2.7 typedef VdpStatus VdpPresentationQueueGetTime(VdpPresentationQueue presentation_queue,VdpTime *current_time)

Retrieve the presentation queue's "current" time.

Parameters

in	presentation_queue	The queue to query.
out	current_time	The current time, which may represent a point between display VSYNC events.

Returns

VdpStatus The completion status of the operation.

5.14.2.8 typedef VdpStatus VdpPresentationQueueQuerySurfaceStatus(VdpPresentationQueue presentation_queue, VdpOutputSurface surface,VdpPresentationQueueStatus *status, VdpTime *first_presentation_time)

Poll the current queue status of a surface.

Parameters

in	presentation_queue	The queue to query.
in	surface	The surface to query.
out	status	The current status of the surface within the queue.
out	first_presentation_time	The timestamp of the VSYNC at which this surface was first displayed. Note
		that 0 means the surface was never displayed.

Returns

VdpStatus The completion status of the operation.

5.14.2.9 typedef VdpStatus VdpPresentationQueueSetBackgroundColor(VdpPresentationQueue presentation_queue, VdpColor ∗const background_color)

Configure the background color setting.

Parameters

in	presentation_queue	The queue to manipulate.
in	background_color	The new background color.

Note: Implementations may choose whether to apply the new background color value immediately, or defer it until the next surface is presented.

5.14.2.10 typedef uint32_t VdpPresentationQueueTarget

An opaque handle representing the location where video will be presented.

VdpPresentationQueueTarget are created using a Window System Integration Layer specific API, such as Vdp⇔ PresentationQueueTargetCreateX11.

5.14.2.11 typedef VdpStatus VdpPresentationQueueTargetDestroy(VdpPresentationQueueTarget presentation_queue_target)

Destroy a VdpPresentationQueueTarget.

Parameters

in	presentation_queue_target	The target to destroy.
----	---------------------------	------------------------

Returns

VdpStatus The completion status of the operation.

5.14.2.12 typedef uint64_t VdpTime

The representation of a point in time.

VdpTime timestamps are intended to be a high-precision timing system, potentially independent from any other time domain in the system.

Time is represented in units of nanoseconds. The origin (i.e. the time represented by a value of 0) is implementation dependent.

5.14.3 Enumeration Type Documentation

5.14.3.1 enum VdpPresentationQueueStatus

The status of a surface within a presentation queue.

Enumerator

VDP_PRESENTATION_QUEUE_STATUS_IDLE The surface is not queued or currently visible.VDP_PRESENTATION_QUEUE_STATUS_QUEUED The surface is in the queue, and not currently visible.

VDP_PRESENTATION_QUEUE_STATUS_VISIBLE The surface is the currently visible surface.

5.15 Display Preemption

Collaboration diagram for Display Preemption:

Typedefs

- typedef void VdpPreemptionCallback(VdpDevice device, void *context)
 A callback to notify the client application that a device's display has been preempted.
- typedef VdpStatus VdpPreemptionCallbackRegister(VdpDevice device, VdpPreemptionCallback callback, void *context)

Configure the display preemption callback.

5.15.1 Detailed Description

The Window System may operate within a frame-work (such as Linux's VT switching) where the display is shared between the Window System (e.g. X) and some other output mechanism (e.g. the VT.) Given this scenario, the Window System's control of the display could be preempted, and restored, at any time.

VDPAU does not mandate that implementations hide such preemptions from VDPAU client applications; doing so may impose extreme burdens upon VDPAU implementations. Equally, however, implementations are free to hide such preemptions from client applications.

VDPAU allows implementations to inform the client application when such a preemption has occurred, and then refuse to continue further operation.

Similarly, some form of fatal hardware error could prevent further operation of the VDPAU implementation, without a complete re-initialization.

The following discusses the behavior of implementations that choose not to hide preemption from client applications.

When preemption occurs, VDPAU internally destroys all objects; the client application need not do this. However, if the client application wishes to continue operation, it must recreate all objects that it uses. It is probable that this recreation will not succeed until the display ownership is restored to the Window System.

Once preemption has occurred, all VDPAU entry points will return the specific error code VDP_STATUS_DISPL← AY_PREEMPTED.

VDPAU client applications may also be notified of such preemptions and fatal errors via a callback. See Vdp← PreemptionCallbackRegister for more details.

5.15.2 Typedef Documentation

5.15.2.1 typedef void VdpPreemptionCallback(VdpDevice device, void *context)

A callback to notify the client application that a device's display has been preempted.

Parameters

in	device	The device that had its display preempted.
in	context	The client-supplied callback context information.

Returns

void No return value

5.15.2.2 typedef VdpStatus VdpPreemptionCallbackRegister(VdpDevice device, VdpPreemptionCallback callback, void *context)

Configure the display preemption callback.

Parameters

in	device	The device to be monitored for preemption.
in	callback	The client application's callback function. If NULL, the callback is unregistered.
in	context	The client-supplied callback context information. This information will be passed to the callback function if/when invoked.

Returns

VdpStatus The completion status of the operation.

5.16 Entry Point Retrieval

Collaboration diagram for Entry Point Retrieval:

Macros

- #define VDP FUNC ID GET ERROR STRING
- #define VDP FUNC ID GET PROC ADDRESS
- #define VDP_FUNC_ID_GET_API_VERSION
- #define VDP FUNC ID GET INFORMATION STRING
- #define VDP_FUNC_ID_DEVICE_DESTROY
- #define VDP FUNC ID GENERATE CSC MATRIX
- #define VDP_FUNC_ID_VIDEO_SURFACE_QUERY_CAPABILITIES
- #define VDP_FUNC_ID_VIDEO_SURFACE_QUERY_GET_PUT_BITS_Y_CB_CR_CAPABILITIES
- #define VDP FUNC ID VIDEO SURFACE CREATE
- #define VDP_FUNC_ID_VIDEO_SURFACE_DESTROY
- #define VDP_FUNC_ID_VIDEO_SURFACE_GET_PARAMETERS
- #define VDP FUNC ID VIDEO SURFACE GET BITS Y CB CR
- #define VDP FUNC ID VIDEO SURFACE PUT BITS Y CB CR
- #define VDP FUNC ID OUTPUT SURFACE QUERY CAPABILITIES
- #define VDP_FUNC_ID_OUTPUT_SURFACE_QUERY_GET_PUT_BITS_NATIVE_CAPABILITIES
- #define VDP_FUNC_ID_OUTPUT_SURFACE_QUERY_PUT_BITS_INDEXED_CAPABILITIES
- #define VDP FUNC ID OUTPUT SURFACE QUERY PUT BITS Y CB CR CAPABILITIES
- #define VDP_FUNC_ID_OUTPUT_SURFACE_CREATE
- #define VDP FUNC ID OUTPUT SURFACE DESTROY
- #define VDP_FUNC_ID_OUTPUT_SURFACE_GET_PARAMETERS
- #define VDP_FUNC_ID_OUTPUT_SURFACE_GET_BITS_NATIVE
- #define VDP FUNC ID OUTPUT SURFACE PUT BITS NATIVE
- #define VDP FUNC ID OUTPUT SURFACE PUT BITS INDEXED
- #define VDP FUNC ID OUTPUT SURFACE PUT BITS Y CB CR
- #define VDP_FUNC_ID_BITMAP_SURFACE_QUERY_CAPABILITIES
- #define VDP FUNC ID BITMAP SURFACE CREATE
- #define VDP_FUNC_ID_BITMAP_SURFACE_DESTROY
- #define VDP_FUNC_ID_BITMAP_SURFACE_GET_PARAMETERS
- #define VDP FUNC ID BITMAP SURFACE PUT BITS NATIVE
- #define VDP_FUNC_ID_OUTPUT_SURFACE_RENDER_OUTPUT_SURFACE
- #define VDP_FUNC_ID_OUTPUT_SURFACE_RENDER_BITMAP_SURFACE
- #define VDP_FUNC_ID_OUTPUT_SURFACE_RENDER_VIDEO_SURFACE_LUMA
- #define VDP_FUNC_ID_DECODER_QUERY_CAPABILITIES
- #define VDP_FUNC_ID_DECODER_CREATE
- #define VDP_FUNC_ID_DECODER_DESTROY
- #define VDP FUNC ID DECODER GET PARAMETERS
- #define VDP_FUNC_ID_DECODER_RENDER

- #define VDP_FUNC_ID_VIDEO_MIXER_QUERY_FEATURE_SUPPORT
- #define VDP_FUNC_ID_VIDEO_MIXER_QUERY_PARAMETER_SUPPORT
- #define VDP FUNC ID VIDEO MIXER QUERY ATTRIBUTE SUPPORT
- #define VDP FUNC ID VIDEO MIXER QUERY PARAMETER VALUE RANGE
- #define VDP FUNC ID VIDEO MIXER QUERY ATTRIBUTE VALUE RANGE
- #define VDP FUNC ID VIDEO MIXER CREATE
- #define VDP_FUNC_ID_VIDEO_MIXER_SET_FEATURE_ENABLES
- #define VDP FUNC ID VIDEO MIXER SET ATTRIBUTE VALUES
- #define VDP FUNC ID VIDEO MIXER GET FEATURE SUPPORT
- #define VDP FUNC ID VIDEO MIXER GET FEATURE ENABLES
- #define VDP FUNC ID VIDEO MIXER GET PARAMETER VALUES
- #define VDP_FUNC_ID_VIDEO_MIXER_GET_ATTRIBUTE_VALUES
- #define VDP_FUNC_ID_VIDEO_MIXER_DESTROY
- #define VDP FUNC ID VIDEO MIXER RENDER
- #define VDP FUNC ID PRESENTATION QUEUE TARGET DESTROY
- #define VDP FUNC ID PRESENTATION QUEUE CREATE
- #define VDP FUNC ID PRESENTATION QUEUE DESTROY
- #define VDP FUNC ID PRESENTATION QUEUE SET BACKGROUND COLOR
- #define VDP FUNC ID PRESENTATION QUEUE GET BACKGROUND COLOR
- #define VDP_FUNC_ID_PRESENTATION_QUEUE_GET_TIME
- #define VDP FUNC ID PRESENTATION QUEUE DISPLAY
- #define VDP_FUNC_ID_PRESENTATION_QUEUE_BLOCK_UNTIL_SURFACE_IDLE
- #define VDP FUNC ID PRESENTATION QUEUE QUERY SURFACE STATUS
- #define VDP_FUNC_ID_PREEMPTION_CALLBACK_REGISTER
- #define VDP FUNC ID BASE WINSYS 0x1000

Typedefs

- typedef uint32 t VdpFuncId
 - A type suitable for VdpGetProcAddress's function_id parameter.
- typedef VdpStatus VdpGetProcAddress(VdpDevice device, VdpFuncId function_id, void **function_pointer)

 Retrieve a VDPAU function pointer.

5.16.1 Detailed Description

In order to facilitate multiple implementations of VDPAU co-existing within a single process, all functionality is available via function pointers. The mechanism to retrieve those function pointers is described below.

- 5.16.2 Macro Definition Documentation
- 5.16.2.1 #define VDP FUNC ID BASE WINSYS 0x1000
- 5.16.2.2 #define VDP_FUNC_ID_BITMAP_SURFACE_CREATE
- 5.16.2.3 #define VDP_FUNC_ID_BITMAP_SURFACE_DESTROY
- 5.16.2.4 #define VDP_FUNC_ID_BITMAP_SURFACE_GET_PARAMETERS

5.16.2.5	#define VDP_FUNC_ID_BITMAP_SURFACE_PUT_BITS_NATIVE
5.16.2.6	#define VDP_FUNC_ID_BITMAP_SURFACE_QUERY_CAPABILITIES
5.16.2.7	#define VDP_FUNC_ID_DECODER_CREATE
5.16.2.8	#define VDP_FUNC_ID_DECODER_DESTROY
5.16.2.9	#define VDP_FUNC_ID_DECODER_GET_PARAMETERS
5.16.2.10	#define VDP_FUNC_ID_DECODER_QUERY_CAPABILITIES
5.16.2.11	#define VDP_FUNC_ID_DECODER_RENDER
5.16.2.12	#define VDP_FUNC_ID_DEVICE_DESTROY
5.16.2.13	#define VDP_FUNC_ID_GENERATE_CSC_MATRIX
5.16.2.14	#define VDP_FUNC_ID_GET_API_VERSION
5.16.2.15	#define VDP_FUNC_ID_GET_ERROR_STRING
5.16.2.16	#define VDP_FUNC_ID_GET_INFORMATION_STRING
5.16.2.17	#define VDP_FUNC_ID_GET_PROC_ADDRESS
5.16.2.18	#define VDP_FUNC_ID_OUTPUT_SURFACE_CREATE
5.16.2.19	#define VDP_FUNC_ID_OUTPUT_SURFACE_DESTROY
5.16.2.20	#define VDP_FUNC_ID_OUTPUT_SURFACE_GET_BITS_NATIVE
5.16.2.21	#define VDP_FUNC_ID_OUTPUT_SURFACE_GET_PARAMETERS
5.16.2.22	#define VDP_FUNC_ID_OUTPUT_SURFACE_PUT_BITS_INDEXED
5.16.2.23	#define VDP_FUNC_ID_OUTPUT_SURFACE_PUT_BITS_NATIVE
5.16.2.24	#define VDP_FUNC_ID_OUTPUT_SURFACE_PUT_BITS_Y_CB_CR
5.16.2.25	#define VDP_FUNC_ID_OUTPUT_SURFACE_QUERY_CAPABILITIES
5.16.2.26	#define VDP_FUNC_ID_OUTPUT_SURFACE_QUERY_GET_PUT_BITS_NATIVE_CAPABILITIES
5.16.2.27	#define VDP_FUNC_ID_OUTPUT_SURFACE_QUERY_PUT_BITS_INDEXED_CAPABILITIES

5.16.2.28	#define VDP_FUNC_ID_OUTPUT_SURFACE_QUERY_PUT_BITS_Y_CB_CR_CAPABILITIES
5.16.2.29	#define VDP_FUNC_ID_OUTPUT_SURFACE_RENDER_BITMAP_SURFACE
5.16.2.30	#define VDP_FUNC_ID_OUTPUT_SURFACE_RENDER_OUTPUT_SURFACE
5.16.2.31	#define VDP_FUNC_ID_OUTPUT_SURFACE_RENDER_VIDEO_SURFACE_LUMA
5.16.2.32	#define VDP_FUNC_ID_PREEMPTION_CALLBACK_REGISTER
5.16.2.33	#define VDP_FUNC_ID_PRESENTATION_QUEUE_BLOCK_UNTIL_SURFACE_IDLE
5.16.2.34	#define VDP_FUNC_ID_PRESENTATION_QUEUE_CREATE
5.16.2.35	#define VDP_FUNC_ID_PRESENTATION_QUEUE_DESTROY
5.16.2.36	#define VDP_FUNC_ID_PRESENTATION_QUEUE_DISPLAY
5.16.2.37	#define VDP_FUNC_ID_PRESENTATION_QUEUE_GET_BACKGROUND_COLOR
5.16.2.38	#define VDP_FUNC_ID_PRESENTATION_QUEUE_GET_TIME
5.16.2.39	#define VDP_FUNC_ID_PRESENTATION_QUEUE_QUERY_SURFACE_STATUS
5.16.2.40	#define VDP_FUNC_ID_PRESENTATION_QUEUE_SET_BACKGROUND_COLOR
5.16.2.41	#define VDP_FUNC_ID_PRESENTATION_QUEUE_TARGET_DESTROY
5.16.2.42	#define VDP_FUNC_ID_VIDEO_MIXER_CREATE
5.16.2.43	#define VDP_FUNC_ID_VIDEO_MIXER_DESTROY
5.16.2.44	#define VDP_FUNC_ID_VIDEO_MIXER_GET_ATTRIBUTE_VALUES
5.16.2.45	#define VDP_FUNC_ID_VIDEO_MIXER_GET_FEATURE_ENABLES
5.16.2.46	#define VDP_FUNC_ID_VIDEO_MIXER_GET_FEATURE_SUPPORT
5.16.2.47	#define VDP_FUNC_ID_VIDEO_MIXER_GET_PARAMETER_VALUES
5.16.2.48	#define VDP_FUNC_ID_VIDEO_MIXER_QUERY_ATTRIBUTE_SUPPORT
5.16.2.49	#define VDP_FUNC_ID_VIDEO_MIXER_QUERY_ATTRIBUTE_VALUE_RANGE
5.16.2.50	#define VDP_FUNC_ID_VIDEO_MIXER_QUERY_FEATURE_SUPPORT

5.16.2.51	#define VDP_FUNC_ID_VIDEO_MIXER_QUERY_PARAMETER_SUPPORT
5.16.2.52	#define VDP_FUNC_ID_VIDEO_MIXER_QUERY_PARAMETER_VALUE_RANGE
5.16.2.53	#define VDP_FUNC_ID_VIDEO_MIXER_RENDER
5.16.2.54	#define VDP_FUNC_ID_VIDEO_MIXER_SET_ATTRIBUTE_VALUES
5.16.2.55	#define VDP_FUNC_ID_VIDEO_MIXER_SET_FEATURE_ENABLES
5.16.2.56	#define VDP_FUNC_ID_VIDEO_SURFACE_CREATE
5.16.2.57	#define VDP_FUNC_ID_VIDEO_SURFACE_DESTROY
5.16.2.58	#define VDP_FUNC_ID_VIDEO_SURFACE_GET_BITS_Y_CB_CR
5.16.2.59	#define VDP_FUNC_ID_VIDEO_SURFACE_GET_PARAMETERS
5.16.2.60	#define VDP_FUNC_ID_VIDEO_SURFACE_PUT_BITS_Y_CB_CR
5.16.2.61	#define VDP_FUNC_ID_VIDEO_SURFACE_QUERY_CAPABILITIES
5.16.2.62	#define VDP_FUNC_ID_VIDEO_SURFACE_QUERY_GET_PUT_BITS_Y_CB_CR_CAPABILITIES
5.16.3	Typedef Documentation
5.16.3.1	typedef uint32_t VdpFuncId

A type suitable for VdpGetProcAddress's **function_id** parameter.

5.16.3.2 typedef VdpStatus VdpGetProcAddress(VdpDevice device, VdpFuncId function_id,void **function_pointer)

Retrieve a VDPAU function pointer.

Parameters

in	device	The device that the function will operate against.
in	function_id	The specific function to retrieve.
out	function_pointer	The actual pointer for the application to call.

Returns

VdpStatus The completion status of the operation.

5.17 Window System Integration Layer

Collaboration diagram for Window System Integration Layer:

Modules

• X11 Window System Integration Layer

5.17.1 Detailed Description

The set of VDPAU functionality specific to an individual Windowing System.

5.18 X11 Window System Integration Layer

Collaboration diagram for X11 Window System Integration Layer:

typedef VdpStatus VdpDeviceCreateX11(Display *display, int screen, VdpDevice *device, VdpGetProc
 — Address **get_proc_address)

Create a VdpDevice object for use with X11.

typedef VdpStatus VdpPresentationQueueTargetCreateX11(VdpDevice device, Drawable drawable, Vdp
 —
 PresentationQueueTarget *target)

Create a VdpPresentationQueueTarget for use with X11.

VdpDeviceCreateX11 vdp device create x11

Create a VdpDevice object for use with X11. This is an actual symbol of type VdpDeviceCreateX11.

#define VDP_FUNC_ID_PRESENTATION_QUEUE_TARGET_CREATE_X11

5.18.1 Detailed Description

The set of VDPAU functionality specific to usage with the X Window System.

5.18.2 Library Layout

An X11-oriented VDPAU installation consists of the following components:

- Header files. These files are located in the standard system header file path.
 - vdpau/vdpau.h
 - vdpau/vdpau_x11.h
- The VDPAU wrapper library. These files are located in the standard system (possibly X11-specific) library path.
 - libvdpau.so.1 (runtime)
 - libvdpau.so (development)
- Back-end driver files. These files are located in a system-defined library path, which is configurable at compile time but is typically /usr/lib/vdpau. Use pkg-config --variable=moduledir vdpau to locate the driver install path.
 - \$moduledir/libvdpau_%s.so.1 For example:
 - /usr/lib/vdpau/libvdpau_nvidia.so.1
 - /usr/lib/vdpau/libvdpau_intel.so.1
 - /usr/lib/vdpau/libvdpau_ati.so.1 The library path can be overridden by the VDPAU_DR
 IVER_PATH environment variable.

The VDPAU wrapper library implements just one function; vdp_device_create_x11. The wrapper implements this function by dynamically loading the appropriate back-end driver file mentioned above. When available, the wrapper uses the DRI2 extension's DRI2Connect request with the driver type 'DRI2DriverVDPAU' to determine which backend driver to load. If that fails, the wrapper library hard-codes the driver name as "nvidia", although this can be overridden using the environment variable VDPAU_DRIVER.

The back-end driver is expected to implement a function named **vdp_imp_device_create_x11**. The wrapper will call this function to actually implement the vdp_device_create_x11 application call.

Note that it is theoretically possible for an application to create multiple VdpDevice objects. In this case, the wrapper library may load multiple back-end drivers into the same application, and/or invoke a specific back-end driver's VdpImpDeviceCreateX11 multiple times. The wrapper library imposes no policy regarding whether the application may instantiate multiple VdpDevice objects for the same display and/or screen. However, back-end drivers are free to limit the number of VdpDevice objects as required by their implementation.

- 5.18.3 Macro Definition Documentation
- 5.18.3.1 #define VDP_FUNC_ID_PRESENTATION_QUEUE_TARGET_CREATE_X11
- 5.18.4 Typedef Documentation
- 5.18.4.1 typedef VdpStatus VdpDeviceCreateX11(Display *display, int screen,VdpDevice *device, VdpGetProcAddress **get_proc_address)

Create a VdpDevice object for use with X11.

Parameters

in	display	The X Display that the VdpDevice VdpDevice will operate against.
in	screen	The X screen that the VdpDevice will operate against.
out	device	The new device's handle.
out	get_proc_address	The get_proc_address entry point to use with this device.

Returns

VdpStatus The completion status of the operation.

5.18.4.2 typedef VdpStatus VdpPresentationQueueTargetCreateX11(VdpDevice device, Drawable drawable,VdpPresentationQueueTarget *target)

Create a VdpPresentationQueueTarget for use with X11.

Parameters

in	device	The device that will contain the queue target.
in	drawable	The X11 Drawable that the presentation queue will present into.
out	target	The new queue target's handle.

Returns

VdpStatus The completion status of the operation.

Note: VDPAU expects to own the entire drawable for the duration of time that the presentation queue target exists. In particular, implementations may choose to manipulate client-visible X11 window state as required. As such, it is recommended that applications create a dedicated window for the presentation queue target, as a child (grand-child, ...) of their top-level application window.

Applications may also create child-windows of the presentation queue target, which will cover any presented video in the normal fashion. VDPAU implementations will not manipulate such child windows in any fashion.

5.18.5 Variable Documentation

5.18.5.1 VdpDeviceCreateX11 vdp_device_create_x11

Create a VdpDevice object for use with X11. This is an actual symbol of type VdpDeviceCreateX11.

Chapter 6

Data Structure Documentation

6.1 VdpBitstreamBuffer Struct Reference

Application data buffer containing compressed video data.

```
#include <vdpau.h>
```

Data Fields

- uint32_t struct_version
- void const * bitstream
- uint32_t bitstream_bytes

6.1.1 Detailed Description

Application data buffer containing compressed video data.

6.1.2 Field Documentation

6.1.2.1 void const* VdpBitstreamBuffer::bitstream

A pointer to the bitstream data bytes

6.1.2.2 uint32_t VdpBitstreamBuffer::bitstream_bytes

The number of data bytes

6.1.2.3 uint32_t VdpBitstreamBuffer::struct_version

This field must be filled with VDP_BITSTREAM_BUFFER_VERSION

The documentation for this struct was generated from the following file:

vdpau/vdpau.h

6.2 VdpColor Struct Reference

#include <vdpau.h>

Data Fields

- · float red
- · float green
- float blue
- · float alpha

6.2.1 Detailed Description

A constant RGBA color.

Note that the components are stored as float values in the range 0.0...1.0 rather than format-specific integer values. This allows VdpColor values to be independent from the exact surface format(s) in use.

6.2.2 Field Documentation

- 6.2.2.1 float VdpColor::alpha
- 6.2.2.2 float VdpColor::blue
- 6.2.2.3 float VdpColor::green
- 6.2.2.4 float VdpColor::red

The documentation for this struct was generated from the following file:

• vdpau/vdpau.h

6.3 VdpLayer Struct Reference

Definition of an additional VdpOutputSurface layer in the composting model.

```
#include <vdpau.h>
```

Data Fields

- uint32_t struct_version
- VdpOutputSurface source_surface
- VdpRect const * source_rect
- VdpRect const * destination_rect

6.3.1 Detailed Description

Definition of an additional VdpOutputSurface layer in the composting model.

6.3.2 Field Documentation

6.3.2.1 VdpRect const* VdpLayer::destination_rect

The sub-rectangle of the destination surface to map this layer into. This rectangle is relative to the entire destination surface. This rectangle will be clipped by VdpVideoMixerRender's **destination_rect**. If NULL, the destination rectangle will be sized to match the source rectangle, and will be located at the origin.

6.3.2.2 VdpRect const* VdpLayer::source_rect

The sub-rectangle of the source surface to use. If NULL, the entire source surface will be used.

6.3.2.3 VdpOutputSurface VdpLayer::source_surface

The surface to composite from.

6.3.2.4 uint32_t VdpLayer::struct_version

This field must be filled with VDP_LAYER_VERSION

The documentation for this struct was generated from the following file:

· vdpau/vdpau.h

6.4 VdpOutputSurfaceRenderBlendState Struct Reference

Complete blending operation definition.

```
#include <vdpau.h>
```

Data Fields

- uint32_t struct_version
- VdpOutputSurfaceRenderBlendFactor blend_factor_source_color
- VdpOutputSurfaceRenderBlendFactor blend_factor_destination_color
- VdpOutputSurfaceRenderBlendFactor blend_factor_source_alpha
- VdpOutputSurfaceRenderBlendFactor blend_factor_destination_alpha
- VdpOutputSurfaceRenderBlendEquation blend_equation_color
- VdpOutputSurfaceRenderBlendEquation blend_equation_alpha
- VdpColor blend_constant

6.4.1 Detailed Description

Complete blending operation definition.

A "blend state" operation controls the math behind certain rendering operations.

The blend math is the familiar OpenGL blend math:

```
dst.a = equation(blendFactorDstAlpha*dst.a, blendFactorSrcAlpha*src.a); \\ dst.rgb = equation(blendFactorDstColor*dst.rgb, blendFactorSrcColor*src.rgb); \\
```

Note that when equation is MIN or MAX, the blend factors and constants are ignored, and are treated as if they were 1.0.

6.4.2 Field Documentation

- 6.4.2.1 VdpColor VdpOutputSurfaceRenderBlendState::blend_constant
- 6.4.2.2 VdpOutputSurfaceRenderBlendEquation VdpOutputSurfaceRenderBlendState::blend_equation_alpha
- 6.4.2.3 VdpOutputSurfaceRenderBlendEquation VdpOutputSurfaceRenderBlendState::blend_equation_color
- 6.4.2.4 VdpOutputSurfaceRenderBlendFactor VdpOutputSurfaceRenderBlendState::blend_factor_destination_alpha
- 6.4.2.5 VdpOutputSurfaceRenderBlendFactor VdpOutputSurfaceRenderBlendState::blend_factor_destination_color
- 6.4.2.6 VdpOutputSurfaceRenderBlendFactor VdpOutputSurfaceRenderBlendState::blend_factor_source_alpha
- 6.4.2.7 VdpOutputSurfaceRenderBlendFactor VdpOutputSurfaceRenderBlendState::blend_factor_source_color
- 6.4.2.8 uint32_t VdpOutputSurfaceRenderBlendState::struct_version

This field must be filled with VDP_OUTPUT_SURFACE_RENDER_BLEND_STATE_VERSIION

The documentation for this struct was generated from the following file:

• vdpau/vdpau.h

6.5 VdpPictureInfoH264 Struct Reference

Picture parameter information for an H.264 picture.

```
#include <vdpau.h>
```

Data Fields

- · uint32 t slice count
- int32_t field_order_cnt [2]
- · VdpBool is_reference
- VdpReferenceFrameH264 referenceFrames [16]

H.264 bitstream

Copies of the H.264 bitstream fields.

- uint16_t frame_num
- · uint8_t field_pic_flag
- uint8_t bottom_field_flag
- uint8_t num_ref_frames
- · uint8_t mb_adaptive_frame_field_flag
- uint8_t constrained_intra_pred_flag
- uint8_t weighted_pred_flag
- uint8_t weighted_bipred_idc
- · uint8 t frame mbs only flag
- · uint8 t transform 8x8 mode flag
- int8 t chroma qp index offset
- · int8 t second chroma qp index offset
- int8_t pic_init_qp_minus26
- uint8_t num_ref_idx_l0_active_minus1
- uint8 t num ref idx l1 active minus1
- uint8_t log2_max_frame_num_minus4
- uint8 t pic order cnt type
- uint8_t log2_max_pic_order_cnt_lsb_minus4
- · uint8_t delta_pic_order_always_zero_flag
- uint8_t direct_8x8_inference_flag
- · uint8_t entropy_coding_mode_flag
- uint8_t pic_order_present_flag
- uint8_t deblocking_filter_control_present_flag
- uint8_t redundant_pic_cnt_present_flag
- uint8_t scaling_lists_4x4 [6][16]
- uint8_t scaling_lists_8x8 [2][64]

6.5.1 Detailed Description

Picture parameter information for an H.264 picture.

Note: The referenceFrames array must contain the "DPB" as defined by the H.264 specification. In particular, once a reference frame has been decoded to a surface, that surface must continue to appear in the DPB until no longer required to predict any future frame. Once a surface is removed from the DPB, it can no longer be used as a reference, unless decoded again.

Also note that only surfaces previously generated using VdpDecoderRender may be used as reference frames. In particular, surfaces filled using any "put bits" API will not work.

Note: References to bitstream fields below may refer to data literally parsed from the bitstream, or derived from the bitstream using a mechanism described in the specification.

Note: VDPAU clients must use VdpPictureInfoH264Predictive to describe the attributes of a frame being decoded with VDP_DECODER_PROFILE_H264_HIGH_444_PREDICTIVE.

6.5.2	Field Documentation
6.5.2.1	uint8_t VdpPictureInfoH264::bottom_field_flag
6.5.2.2	int8_t VdpPictureInfoH264::chroma_qp_index_offset
6.5.2.3	uint8_t VdpPictureInfoH264::constrained_intra_pred_flag
6.5.2.4	uint8_t VdpPictureInfoH264::deblocking_filter_control_present_flag
6.5.2.5	uint8_t VdpPictureInfoH264::delta_pic_order_always_zero_flag
6.5.2.6	uint8_t VdpPictureInfoH264::direct_8x8_inference_flag
6.5.2.7	uint8_t VdpPictureInfoH264::entropy_coding_mode_flag
6.5.2.8	int32_t VdpPictureInfoH264::field_order_cnt[2]
[0]: top	, [1]: bottom
6.5.2.9	uint8_t VdpPictureInfoH264::field_pic_flag
6.5.2.10	uint8_t VdpPictureInfoH264::frame_mbs_only_flag
6.5.2.11	uint16_t VdpPictureInfoH264::frame_num
6.5.2.12	VdpBool VdpPictureInfoH264::is_reference
Will the	decoded frame be used as a reference later.
6.5.2.13	uint8_t VdpPictureInfoH264::log2_max_frame_num_minus4
6.5.2.14	uint8_t VdpPictureInfoH264::log2_max_pic_order_cnt_lsb_minus4
6.5.2.15	uint8_t VdpPictureInfoH264::mb_adaptive_frame_field_flag
6.5.2.16	uint8_t VdpPictureInfoH264::num_ref_frames
6.5.2.17	uint8_t VdpPictureInfoH264::num_ref_idx_I0_active_minus1
6.5.2.18	uint8_t VdpPictureInfoH264::num_ref_idx_I1_active_minus1
6.5.2.19	int8_t VdpPictureInfoH264::pic_init_qp_minus26
6.5.2.20	uint8_t VdpPictureInfoH264::pic_order_cnt_type
6.5.2.21	uint8_t VdpPictureInfoH264::pic_order_present_flag
6.5.2.22	uint8_t VdpPictureInfoH264::redundant_pic_cnt_present_flag
6.5.2.23	VdpReferenceFrameH264 VdpPictureInfoH264::referenceFrames[16]

See VdpPictureInfoH264 for instructions regarding this field.

6.5.2.24 uint8_t VdpPictureInfoH264::scaling_lists_4x4[6][16]

Convert to raster order.

6.5.2.25 uint8_t VdpPictureInfoH264::scaling_lists_8x8[2][64]

Convert to raster order.

6.5.2.26 int8_t VdpPictureInfoH264::second_chroma_qp_index_offset

6.5.2.27 uint32_t VdpPictureInfoH264::slice_count

Number of slices in the bitstream provided.

6.5.2.28 uint8_t VdpPictureInfoH264::transform_8x8_mode_flag

6.5.2.29 uint8_t VdpPictureInfoH264::weighted_bipred_idc

6.5.2.30 uint8_t VdpPictureInfoH264::weighted_pred_flag

The documentation for this struct was generated from the following file:

· vdpau/vdpau.h

6.6 VdpPictureInfoH264Predictive Struct Reference

Picture parameter information for an H.264 Hi444PP picture.

```
#include <vdpau.h>
```

Data Fields

• VdpPictureInfoH264 pictureInfo

H.264 bitstream

Copies of the H.264 bitstream fields.

- uint8_t qpprime_y_zero_transform_bypass_flag
- uint8_t separate_colour_plane_flag

6.6.1 Detailed Description

Picture parameter information for an H.264 Hi444PP picture.

Note: VDPAU clients must use VdpPictureInfoH264Predictive to describe the attributes of a frame being decoded with VDP_DECODER_PROFILE_H264_HIGH_444_PREDICTIVE.

Note: software drivers may choose to honor values of qpprime_y_zero_transform_bypass_flag greater than 1 for internal use.

6.6.2 Field Documentation

6.6.2.1 VdpPictureInfoH264 VdpPictureInfoH264Predictive::pictureInfo

VdpPictureInfoH264 struct.

- 6.6.2.2 uint8_t VdpPictureInfoH264Predictive::qpprime_y_zero_transform_bypass_flag
- 0 lossless disabled 1 lossless enabled
- 6.6.2.3 uint8_t VdpPictureInfoH264Predictive::separate_colour_plane_flag
- 0 disabled 1 enabled

The documentation for this struct was generated from the following file:

· vdpau/vdpau.h

6.7 VdpPictureInfoHEVC Struct Reference

Picture parameter information for an H.265/HEVC picture.

#include <vdpau.h>

Data Fields

- int32_t CurrPicOrderCntVal
- VdpVideoSurface RefPics [16]
- int32 t PicOrderCntVal [16]
- uint8_t lsLongTerm [16]
- uint8 t NumPocStCurrBefore
- uint8 t NumPocStCurrAfter
- uint8_t NumPocLtCurr
- uint8_t RefPicSetStCurrBefore [8]
- uint8_t RefPicSetStCurrAfter [8]
- uint8_t RefPicSetLtCurr [8]

HEVC Sequence Parameter Set

Copies of the HEVC Sequence Parameter Set bitstream fields.

- · uint8 t chroma format idc
- · uint8 t separate colour plane flag
- · uint32_t pic_width_in_luma_samples
- uint32_t pic_height_in_luma_samples
- uint8_t bit_depth_luma_minus8
- uint8_t bit_depth_chroma_minus8
- uint8_t log2_max_pic_order_cnt_lsb_minus4
- uint8 t sps max dec pic buffering minus1
- · uint8 t log2 min luma coding block size minus3
- · uint8 t log2 diff max min luma coding block size
- uint8_t log2_min_transform_block_size_minus2
- uint8_t log2_diff_max_min_transform_block_size
- · uint8_t max_transform_hierarchy_depth_inter
- · uint8_t max_transform_hierarchy_depth_intra
- uint8_t scaling_list_enabled_flag
- uint8_t ScalingList4x4 [6][16]
- uint8_t ScalingList8x8 [6][64]
- uint8 t ScalingList16x16 [6][64]
- uint8_t ScalingList32x32 [2][64]
- uint8_t ScalingListDCCoeff16x16 [6]
- uint8_t ScalingListDCCoeff32x32 [2]
- uint8_t amp_enabled_flag
- uint8_t sample_adaptive_offset_enabled_flag
- uint8_t pcm_enabled_flag
- · uint8 t pcm sample bit depth luma minus1
- uint8_t pcm_sample_bit_depth_chroma_minus1
- uint8_t log2_min_pcm_luma_coding_block_size_minus3
- uint8_t log2_diff_max_min_pcm_luma_coding_block_size
- uint8_t pcm_loop_filter_disabled_flag
- uint8_t num_short_term_ref_pic_sets
- · uint8 t long term ref pics present flag
- · uint8 t num long term ref pics sps
- uint8_t sps_temporal_mvp_enabled_flag
- uint8_t strong_intra_smoothing_enabled_flag

HEVC Picture Parameter Set

Copies of the HEVC Picture Parameter Set bitstream fields.

- · uint8_t dependent_slice_segments_enabled_flag
- uint8_t output_flag_present_flag
- · uint8 t num extra slice header bits
- uint8_t sign_data_hiding_enabled_flag
- · uint8_t cabac_init_present_flag
- uint8_t num_ref_idx_l0_default_active_minus1

- uint8_t num_ref_idx_l1_default_active_minus1
- int8_t init_qp_minus26
- · uint8_t constrained_intra_pred_flag
- uint8_t transform_skip_enabled_flag
- uint8_t cu_qp_delta_enabled_flag
- · uint8 t diff cu qp delta depth
- int8 t pps cb qp offset
- int8 t pps cr qp offset
- uint8_t pps_slice_chroma_qp_offsets_present_flag
- uint8_t weighted_pred_flag
- uint8_t weighted_bipred_flag
- uint8_t transquant_bypass_enabled_flag
- · uint8 t tiles enabled flag
- · uint8 t entropy coding sync enabled flag
- uint8 t num tile columns minus1
- uint8 t num tile rows minus1
- uint8_t uniform_spacing_flag
- uint16_t column_width_minus1 [20]
- uint16_t row_height_minus1 [22]
- uint8_t loop_filter_across_tiles_enabled_flag
- · uint8 t pps loop filter across slices enabled flag
- uint8 t deblocking filter control present flag
- uint8_t deblocking_filter_override_enabled_flag
- uint8_t pps_deblocking_filter_disabled_flag
- int8_t pps_beta_offset_div2
- int8_t pps_tc_offset_div2
- · uint8 t lists modification present flag
- uint8 t log2 parallel merge level minus2
- · uint8 t slice segment header extension present flag

HEVC Slice Segment Header

Copies of the HEVC Slice Segment Header bitstream fields and calculated values detailed in the specification.

- uint8_t IDRPicFlag
- uint8_t RAPPicFlag
- uint8_t CurrRpsldx
- uint32 t NumPocTotalCurr
- uint32 t NumDeltaPocsOfRefRpsldx
- uint32 t NumShortTermPictureSliceHeaderBits
- uint32 t NumLongTermPictureSliceHeaderBits

6.7.1 Detailed Description

Picture parameter information for an H.265/HEVC picture.

References to bitsream fields below may refer to data literally parsed from the bitstream, or derived from the bitstream using a mechanism described in Rec. ITU-T H.265 (04/2013), hereafter referred to as "the H.265/HEVC Specification".

VDPAU H.265/HEVC implementations implement the portion of the decoding process described by clauses 8.4, 8.5, 8.6 and 8.7 of the H.265/HEVC Specification. VdpPictureInfoHEVC provides enough data to complete this portion of the decoding process, plus additional information not defined in the H.265/HEVC Specification that may be useful to particular implementations.

Client applications must supply every field in this struct.

- 6.7.2 Field Documentation
- 6.7.2.1 uint8_t VdpPictureInfoHEVC::amp_enabled_flag
- 6.7.2.2 uint8_t VdpPictureInfoHEVC::bit_depth_chroma_minus8
- 6.7.2.3 uint8_t VdpPictureInfoHEVC::bit_depth_luma_minus8
- 6.7.2.4 uint8_t VdpPictureInfoHEVC::cabac_init_present_flag
- 6.7.2.5 uint8_t VdpPictureInfoHEVC::chroma_format_idc
- 6.7.2.6 uint16_t VdpPictureInfoHEVC::column_width_minus1[20]

Only need to set 0..num_tile_columns_minus1. The struct definition reserves up to the maximum of 20. Invalid values are ignored.

- 6.7.2.7 uint8_t VdpPictureInfoHEVC::constrained_intra_pred_flag
- 6.7.2.8 uint8_t VdpPictureInfoHEVC::cu_qp_delta_enabled_flag
- 6.7.2.9 int32_t VdpPictureInfoHEVC::CurrPicOrderCntVal

Slice Decoding Process - Picture Order Count The value of PicOrderCntVal of the picture in the access unit containing the SEI message. The picture being decoded.

6.7.2.10 uint8_t VdpPictureInfoHEVC::CurrRpsIdx

See section 7.4.7.1 of the specification.

- 6.7.2.11 uint8_t VdpPictureInfoHEVC::deblocking_filter_control_present_flag
- 6.7.2.12 uint8_t VdpPictureInfoHEVC::deblocking_filter_override_enabled_flag

Only valid if deblocking_filter_control_present_flag is set. Ignored otherwise.

- 6.7.2.13 uint8_t VdpPictureInfoHEVC::dependent_slice_segments_enabled_flag
- 6.7.2.14 uint8_t VdpPictureInfoHEVC::diff_cu_qp_delta_depth

Only needed if cu_qp_delta_enabled_flag is set. Ignored otherwise.

- 6.7.2.15 uint8_t VdpPictureInfoHEVC::entropy_coding_sync_enabled_flag
- 6.7.2.16 uint8_t VdpPictureInfoHEVC::IDRPicFlag
- Set to 1 if nal_unit_type is equal to IDR_W_RADL or IDR_N_LP. Set to zero otherwise.
- 6.7.2.17 int8_t VdpPictureInfoHEVC::init_qp_minus26
- 6.7.2.18 uint8_t VdpPictureInfoHEVC::IsLongTerm[16]

Array used to specify whether a particular RefPic is a long term reference. A value of "1" indicates a long-term reference.

- 6.7.2.19 uint8_t VdpPictureInfoHEVC::lists_modification_present_flag
- 6.7.2.20 uint8_t VdpPictureInfoHEVC::log2_diff_max_min_luma_coding_block_size
- 6.7.2.21 uint8_t VdpPictureInfoHEVC::log2_diff_max_min_pcm_luma_coding_block_size

Only needs to be set if pcm enabled flag is set. Ignored otherwise.

- 6.7.2.22 uint8_t VdpPictureInfoHEVC::log2_diff_max_min_transform_block_size
- 6.7.2.23 uint8 t VdpPictureInfoHEVC::log2 max pic order cnt lsb minus4
- 6.7.2.24 uint8_t VdpPictureInfoHEVC::log2_min_luma_coding_block_size_minus3
- 6.7.2.25 uint8_t VdpPictureInfoHEVC::log2_min_pcm_luma_coding_block_size_minus3

Only needs to be set if pcm_enabled_flag is set. Ignored otherwise.

- 6.7.2.26 uint8_t VdpPictureInfoHEVC::log2_min_transform_block_size_minus2
- 6.7.2.27 uint8_t VdpPictureInfoHEVC::log2_parallel_merge_level_minus2
- 6.7.2.28 uint8_t VdpPictureInfoHEVC::long_term_ref_pics_present_flag
- 6.7.2.29 uint8_t VdpPictureInfoHEVC::loop_filter_across_tiles_enabled_flag

Only needed if tiles_enabled_flag is set. Invalid values are ignored.

6.7.2.30 uint8_t VdpPictureInfoHEVC::max_transform_hierarchy_depth_inter

6.7.2.31 uint8_t VdpPictureInfoHEVC::max_transform_hierarchy_depth_intra

6.7.2.32 uint8_t VdpPictureInfoHEVC::num_extra_slice_header_bits

6.7.2.33 uint8_t VdpPictureInfoHEVC::num_long_term_ref_pics_sps

Only needed if long_term_ref_pics_present_flag is set. Ignored otherwise.

6.7.2.34 uint8_t VdpPictureInfoHEVC::num_ref_idx_I0_default_active_minus1

6.7.2.35 uint8_t VdpPictureInfoHEVC::num_ref_idx_I1_default_active_minus1

6.7.2.36 uint8_t VdpPictureInfoHEVC::num_short_term_ref_pic_sets

Per spec, when zero, assume short_term_ref_pic_set_sps_flag is also zero.

6.7.2.37 uint8_t VdpPictureInfoHEVC::num_tile_columns_minus1

Only valid if tiles_enabled_flag is set. Ignored otherwise.

6.7.2.38 uint8_t VdpPictureInfoHEVC::num_tile_rows_minus1

Only valid if tiles_enabled_flag is set. Ignored otherwise.

6.7.2.39 uint32_t VdpPictureInfoHEVC::NumDeltaPocsOfRefRpsIdx

Corresponds to specification field, NumDeltaPocs[RefRpsldx]. Only applicable when short_term_ref_pic_set_sps
_flag == 0. Implementations will ignore this value in other cases. See 7.4.8.

6.7.2.40 uint32_t VdpPictureInfoHEVC::NumLongTermPictureSliceHeaderBits

Second, VDPAU requires the number of bits used for long term reference pictures in the slice_segment_header. This is equal to the number of bits used for the contents of the block beginning with "if(long_term_ref_pics_present __flag)".

6.7.2.41 uint8_t VdpPictureInfoHEVC::NumPocLtCurr

Copy of specification field, see Section 8.3.2 of the H.265/HEVC Specification.

6.7.2.42 uint8_t VdpPictureInfoHEVC::NumPocStCurrAfter

Copy of specification field, see Section 8.3.2 of the H.265/HEVC Specification.

6.7.2.43 uint8_t VdpPictureInfoHEVC::NumPocStCurrBefore

Copy of specification field, see Section 8.3.2 of the H.265/HEVC Specification.

6.7.2.44 uint32_t VdpPictureInfoHEVC::NumPocTotalCurr

See section 7.4.7.2 of the specification.

6.7.2.45 uint32_t VdpPictureInfoHEVC::NumShortTermPictureSliceHeaderBits

Section 7.6.3.1 of the H.265/HEVC Specification defines the syntax of the slice_segment_header. This header contains information that some VDPAU implementations may choose to skip. The VDPAU API requires client applications to track the number of bits used in the slice header for structures associated with short term and long term reference pictures. First, VDPAU requires the number of bits used by the short_term_ref_pic_set array in the slice_segment_header.

6.7.2.46 uint8_t VdpPictureInfoHEVC::output_flag_present_flag

6.7.2.47 uint8_t VdpPictureInfoHEVC::pcm_enabled_flag

6.7.2.48 uint8_t VdpPictureInfoHEVC::pcm_loop_filter_disabled_flag

Only needs to be set if pcm_enabled_flag is set. Ignored otherwise.

6.7.2.49 uint8_t VdpPictureInfoHEVC::pcm_sample_bit_depth_chroma_minus1

Only needs to be set if pcm enabled flag is set. Ignored otherwise.

6.7.2.50 uint8_t VdpPictureInfoHEVC::pcm_sample_bit_depth_luma_minus1

Only needs to be set if pcm_enabled_flag is set. Ignored otherwise.

 $6.7.2.51 \quad uint 32_t \ Vdp Picture InfoHEVC:: pic_height_in_luma_samples$

6.7.2.52 uint32_t VdpPictureInfoHEVC::pic_width_in_luma_samples

6.7.2.53 int32_t VdpPictureInfoHEVC::PicOrderCntVal[16]

Array of picture order counts. These correspond to positions in the RefPics array.

6.7.2.54 int8_t VdpPictureInfoHEVC::pps_beta_offset_div2

Only valid if deblocking_filter_control_present_flag is set and pps_deblocking_filter_disabled_flag is not set. Ignored otherwise.

6.7.2.55 int8_t VdpPictureInfoHEVC::pps_cb_qp_offset

6.7.2.56 int8_t VdpPictureInfoHEVC::pps_cr_qp_offset

6.7.2.57 uint8_t VdpPictureInfoHEVC::pps_deblocking_filter_disabled_flag

Only valid if deblocking_filter_control_present_flag is set. Ignored otherwise.

6.7.2.58 uint8_t VdpPictureInfoHEVC::pps_loop_filter_across_slices_enabled_flag

6.7.2.59 uint8 t VdpPictureInfoHEVC::pps_slice_chroma_qp_offsets_present_flag

6.7.2.60 int8_t VdpPictureInfoHEVC::pps_tc_offset_div2

Only valid if deblocking_filter_control_present_flag is set and pps_deblocking_filter_disabled_flag is not set. Ignored otherwise.

6.7.2.61 uint8_t VdpPictureInfoHEVC::RAPPicFlag

Set to 1 if nal_unit_type in the range of BLA_W_LP to RSV_IRAP_VCL23, inclusive. Set to zero otherwise.

6.7.2.62 VdpVideoSurface VdpPictureInfoHEVC::RefPics[16]

Slice Decoding Process - Reference Picture Sets Array of video reference surfaces. Set any unused positions to VDP_INVALID_HANDLE.

6.7.2.63 uint8_t VdpPictureInfoHEVC::RefPicSetLtCurr[8]

Reference Picture Set list, one of the long-term RPS. These correspond to positions in the RefPics array.

6.7.2.64 uint8_t VdpPictureInfoHEVC::RefPicSetStCurrAfter[8]

Reference Picture Set list, one of the short-term RPS. These correspond to positions in the RefPics array.

6.7.2.65 uint8_t VdpPictureInfoHEVC::RefPicSetStCurrBefore[8]

Reference Picture Set list, one of the short-term RPS. These correspond to positions in the RefPics array.

6.7.2.66 uint16_t VdpPictureInfoHEVC::row_height_minus1[22]

Only need to set 0..num_tile_rows_minus1. The struct definition reserves up to the maximum of 22. Invalid values are ignored.

6.7.2.67 uint8_t VdpPictureInfoHEVC::sample_adaptive_offset_enabled_flag

6.7.2.68 uint8_t VdpPictureInfoHEVC::scaling_list_enabled_flag

6.7.2.69 uint8_t VdpPictureInfoHEVC::ScalingList16x16[6][64]

Scaling List for 16x16 quantization matrix, indexed as ScalingList16x16[matrixId][i].

6.7.2.70 uint8_t VdpPictureInfoHEVC::ScalingList32x32[2][64]

Scaling List for 32x32 quantization matrix, indexed as ScalingList32x32[matrixId][i].

6.7.2.71 uint8_t VdpPictureInfoHEVC::ScalingList4x4[6][16]

Scaling lists, in diagonal order, to be used for this frame. Scaling List for 4x4 quantization matrix, indexed as ScalingList4x4[matrixId][i].

6.7.2.72 uint8_t VdpPictureInfoHEVC::ScalingList8x8[6][64]

Scaling List for 8x8 quantization matrix, indexed as ScalingList8x8[matrixId][i].

6.7.2.73 uint8_t VdpPictureInfoHEVC::ScalingListDCCoeff16x16[6]

Scaling List DC Coefficients for 16x16, indexed as ScalingListDCCoeff16x16[matrixId].

6.7.2.74 uint8_t VdpPictureInfoHEVC::ScalingListDCCoeff32x32[2]

Scaling List DC Coefficients for 32x32, indexed as ScalingListDCCoeff32x32[matrixId].

6.7.2.75 uint8_t VdpPictureInfoHEVC::separate_colour_plane_flag

Only valid if chroma format idc == 3. Ignored otherwise.

6.7.2.76 uint8_t VdpPictureInfoHEVC::sign_data_hiding_enabled_flag

6.7.2.77 uint8_t VdpPictureInfoHEVC::slice_segment_header_extension_present_flag

6.7.2.78 uint8_t VdpPictureInfoHEVC::sps_max_dec_pic_buffering_minus1

Provides the value corresponding to the nuh_temporal_id of the frame to be decoded.

```
6.7.2.79 uint8_t VdpPictureInfoHEVC::sps_temporal_mvp_enabled_flag
6.7.2.80 uint8_t VdpPictureInfoHEVC::strong_intra_smoothing_enabled_flag
6.7.2.81 uint8_t VdpPictureInfoHEVC::tiles_enabled_flag
6.7.2.82 uint8_t VdpPictureInfoHEVC::transform_skip_enabled_flag
6.7.2.83 uint8_t VdpPictureInfoHEVC::transquant_bypass_enabled_flag
6.7.2.84 uint8_t VdpPictureInfoHEVC::uniform_spacing_flag
Only valid if tiles_enabled_flag is set. Ignored otherwise.
6.7.2.85 uint8_t VdpPictureInfoHEVC::weighted_bipred_flag
6.7.2.86 uint8_t VdpPictureInfoHEVC::weighted_pred_flag
6.7.2.87 uint8_t VdpPictureInfoHEVC::weighted_pred_flag
```

The documentation for this struct was generated from the following file:

· vdpau/vdpau.h

6.8 VdpPictureInfoMPEG1Or2 Struct Reference

Picture parameter information for an MPEG 1 or MPEG 2 picture.

```
#include <vdpau.h>
```

Data Fields

- VdpVideoSurface forward reference
- VdpVideoSurface backward_reference
- uint32_t slice_count

MPEG bitstream

Copies of the MPEG bitstream fields.

- uint8_t picture_structure
- uint8_t picture_coding_type
- uint8_t intra_dc_precision
- uint8_t frame_pred_frame_dct
- uint8_t concealment_motion_vectors
- uint8_t intra_vlc_format
- uint8_t alternate_scan
- uint8_t q_scale_type
- · uint8_t top_field_first
- uint8_t full_pel_forward_vector
- uint8_t full_pel_backward_vector
- uint8_t f_code [2][2]
- uint8_t intra_quantizer_matrix [64]
- uint8_t non_intra_quantizer_matrix [64]

6.8.1 Detailed Description

Picture parameter information for an MPEG 1 or MPEG 2 picture.

Note: References to bitstream fields below may refer to data literally parsed from the bitstream, or derived from the bitstream using a mechanism described in the specification.

6.8.2 Field Documentation

6.8.2.1 uint8_t VdpPictureInfoMPEG1Or2::alternate_scan

6.8.2.2 VdpVideoSurface VdpPictureInfoMPEG1Or2::backward_reference

Reference used by B frames. Set to VDP_INVALID_HANDLE when not used.

6.8.2.3 uint8_t VdpPictureInfoMPEG1Or2::concealment_motion_vectors

6.8.2.4 uint8_t VdpPictureInfoMPEG1Or2::f_code[2][2]

For MPEG-1, fill both horizontal and vertical entries.

6.8.2.5 VdpVideoSurface VdpPictureInfoMPEG1Or2::forward_reference

Reference used by B and P frames. Set to VDP_INVALID_HANDLE when not used.

 $6.8.2.6 \quad uint 8_t \ Vdp Picture InfoMPEG1Or2:: frame_pred_frame_dct$

6.8.2.7 uint8_t VdpPictureInfoMPEG1Or2::full_pel_backward_vector

MPEG-1 only. For MPEG-2, set to 0.

6.8.2.8 uint8_t VdpPictureInfoMPEG1Or2::full_pel_forward_vector

MPEG-1 only. For MPEG-2, set to 0.

 $6.8.2.9 \quad uint 8_t \ Vdp Picture InfoMPEG1Or 2:: intra_dc_precision$

6.8.2.10 uint8_t VdpPictureInfoMPEG1Or2::intra_quantizer_matrix[64]

Convert to raster order.

```
6.8.2.11 uint8_t VdpPictureInfoMPEG1Or2::intra_vlc_format
```

6.8.2.12 uint8_t VdpPictureInfoMPEG1Or2::non_intra_quantizer_matrix[64]

Convert to raster order.

```
6.8.2.13 uint8_t VdpPictureInfoMPEG1Or2::picture_coding_type
```

6.8.2.14 uint8_t VdpPictureInfoMPEG1Or2::picture_structure

6.8.2.15 uint8_t VdpPictureInfoMPEG1Or2::q_scale_type

6.8.2.16 uint32_t VdpPictureInfoMPEG1Or2::slice_count

Number of slices in the bitstream provided.

6.8.2.17 uint8_t VdpPictureInfoMPEG1Or2::top_field_first

The documentation for this struct was generated from the following file:

· vdpau/vdpau.h

6.9 VdpPictureInfoMPEG4Part2 Struct Reference

Picture parameter information for an MPEG-4 Part 2 picture.

```
#include <vdpau.h>
```

Data Fields

- VdpVideoSurface forward reference
- VdpVideoSurface backward_reference

MPEG 4 part 2 bitstream

Copies of the MPEG 4 part 2 bitstream fields.

- int32 t trd [2]
- int32_t trb [2]
- uint16 t vop time increment resolution
- uint8_t vop_coding_type
- uint8_t vop_fcode_forward
- uint8 t vop fcode backward
- uint8_t resync_marker_disable
- uint8_t interlaced
- uint8_t quant_type
- uint8_t quarter_sample
- uint8_t short_video_header
- uint8_t rounding_control
- uint8_t alternate_vertical_scan_flag
- uint8_t top_field_first
- uint8_t intra_quantizer_matrix [64]
- uint8_t non_intra_quantizer_matrix [64]

6.9.1 Detailed Description

Picture parameter information for an MPEG-4 Part 2 picture.

Note: References to bitstream fields below may refer to data literally parsed from the bitstream, or derived from the bitstream using a mechanism described in the specification.

6.9.2 Field Documentation

- 6.9.2.1 uint8_t VdpPictureInfoMPEG4Part2::alternate_vertical_scan_flag
- 6.9.2.2 VdpVideoSurface VdpPictureInfoMPEG4Part2::backward_reference

Reference used by B frames. Set to VDP_INVALID_HANDLE when not used.

6.9.2.3 VdpVideoSurface VdpPictureInfoMPEG4Part2::forward_reference

Reference used by B and P frames. Set to VDP_INVALID_HANDLE when not used.

- 6.9.2.4 uint8_t VdpPictureInfoMPEG4Part2::interlaced
- 6.9.2.5 uint8_t VdpPictureInfoMPEG4Part2::intra_quantizer_matrix[64]
- 6.9.2.6 uint8_t VdpPictureInfoMPEG4Part2::non_intra_quantizer_matrix[64]
- 6.9.2.7 uint8_t VdpPictureInfoMPEG4Part2::quant_type
- 6.9.2.8 uint8_t VdpPictureInfoMPEG4Part2::quarter_sample
- 6.9.2.9 uint8_t VdpPictureInfoMPEG4Part2::resync_marker_disable
- 6.9.2.10 uint8_t VdpPictureInfoMPEG4Part2::rounding_control

Derived from vop rounding type bitstream field.

- 6.9.2.11 uint8_t VdpPictureInfoMPEG4Part2::short_video_header
- 6.9.2.12 uint8_t VdpPictureInfoMPEG4Part2::top_field_first
- 6.9.2.13 int32_t VdpPictureInfoMPEG4Part2::trb[2]
- 6.9.2.14 int32_t VdpPictureInfoMPEG4Part2::trd[2]
- 6.9.2.15 uint8_t VdpPictureInfoMPEG4Part2::vop_coding_type
- 6.9.2.16 uint8_t VdpPictureInfoMPEG4Part2::vop_fcode_backward
- 6.9.2.17 uint8_t VdpPictureInfoMPEG4Part2::vop_fcode_forward
- 6.9.2.18 uint16_t VdpPictureInfoMPEG4Part2::vop_time_increment_resolution

The documentation for this struct was generated from the following file:

vdpau/vdpau.h

6.10 VdpPictureInfoVC1 Struct Reference

Picture parameter information for a VC1 picture.

#include <vdpau.h>

Data Fields

- · VdpVideoSurface forward reference
- · VdpVideoSurface backward reference
- · uint32 t slice count
- uint8_t picture_type
- · uint8_t frame_coding_mode
- uint8_t deblockEnable
- uint8_t pquant

VC-1 bitstream

Copies of the VC-1 bitstream fields.

- · uint8_t postprocflag
- uint8_t pulldown
- uint8 t interlace
- · uint8 t tfcntrflag
- uint8_t finterpflag
- uint8_t psf
- uint8_t dquant
- · uint8_t panscan_flag
- uint8_t refdist_flag
- · uint8_t quantizer
- uint8_t extended_mv
- uint8_t extended_dmv
- uint8_t overlap
- uint8_t vstransform
- · uint8_t loopfilter
- uint8_t fastuvmc
- uint8_t range_mapy_flag
- uint8_t range_mapy
- · uint8_t range_mapuv_flag
- uint8_t range_mapuv
- uint8_t multires
- uint8_t syncmarker
- uint8_t rangered
- uint8_t maxbframes

6.10.1 Detailed Description

Picture parameter information for a VC1 picture.

Note: References to bitstream fields below may refer to data literally parsed from the bitstream, or derived from the bitstream using a mechanism described in the specification.

6.10.2 Field Documentation

6.10.2.1 VdpVideoSurface VdpPictureInfoVC1::backward_reference

Reference used by B frames. Set to VDP_INVALID_HANDLE when not used.

```
6.10.2.2 uint8_t VdpPictureInfoVC1::deblockEnable
```

Out-of-loop deblocking enable. Bit 0 of POSTPROC from VC-1 7.1.1.27 Note that bit 1 of POSTPROC (dering enable) should not be included.

6.10.2.3 uint8_t VdpPictureInfoVC1::dquant

See VC-1 6.2.8.

6.10.2.4 uint8_t VdpPictureInfoVC1::extended_dmv

See VC-1 6.2.14.

6.10.2.5 uint8_t VdpPictureInfoVC1::extended_mv

See VC-1 6.2.7.

6.10.2.6 uint8_t VdpPictureInfoVC1::fastuvmc

See VC-1 6.2.6.

6.10.2.7 uint8_t VdpPictureInfoVC1::finterpflag

See VC-1 6.1.11.

6.10.2.8 VdpVideoSurface VdpPictureInfoVC1::forward_reference

Reference used by B and P frames. Set to VDP_INVALID_HANDLE when not used.

6.10.2.9 uint8_t VdpPictureInfoVC1::frame_coding_mode

Progressive=0, Frame-interlace=2, Field-interlace=3; see VC-1 7.1.1.15.

6.10.2.10 uint8_t VdpPictureInfoVC1::interlace

See VC-1 6.1.9.

6.10.2.11 uint8_t VdpPictureInfoVC1::loopfilter

See VC-1 6.2.5.

6.10.2.12 uint8_t VdpPictureInfoVC1::maxbframes See VC-1 J.1.17. Only used by simple and main profiles. 6.10.2.13 uint8_t VdpPictureInfoVC1::multires See VC-1 J.1.10. Only used by simple and main profiles. 6.10.2.14 uint8_t VdpPictureInfoVC1::overlap See VC-1 6.2.10. 6.10.2.15 uint8_t VdpPictureInfoVC1::panscan_flag See VC-1 6.2.3. 6.10.2.16 uint8_t VdpPictureInfoVC1::picture_type I=0, P=1, B=3, BI=4 from 7.1.1.4. 6.10.2.17 uint8_t VdpPictureInfoVC1::postprocflag See VC-1 6.1.5. 6.10.2.18 uint8_t VdpPictureInfoVC1::pquant Parameter used by VC-1 Annex H deblocking algorithm. Note that VDPAU implementations may choose which deblocking algorithm to use. See VC-1 7.1.1.6 6.10.2.19 uint8_t VdpPictureInfoVC1::psf See VC-1 6.1.3. 6.10.2.20 uint8_t VdpPictureInfoVC1::pulldown

See VC-1 6.2.11.

6.10.2.21 uint8_t VdpPictureInfoVC1::quantizer

See VC-1 6.1.8.

```
6.10.2.22 uint8_t VdpPictureInfoVC1::range_mapuv
6.10.2.23 uint8_t VdpPictureInfoVC1::range_mapuv_flag
See VC-1 6.2.16.
6.10.2.24 uint8_t VdpPictureInfoVC1::range_mapy
6.10.2.25 uint8_t VdpPictureInfoVC1::range_mapy_flag
See VC-1 6.12.15.
6.10.2.26 uint8_t VdpPictureInfoVC1::rangered
VC-1 SP/MP range reduction control. Only used by simple and main profiles. Bit 0: Copy of rangered VC-1 bitstream
field; See VC-1 J.1.17. Bit 1: Copy of rangeredfrm VC-1 bitstream fiels; See VC-1 7.1.13.
6.10.2.27 uint8_t VdpPictureInfoVC1::refdist_flag
See VC-1 6.2.4.
6.10.2.28 uint32_t VdpPictureInfoVC1::slice_count
Number of slices in the bitstream provided.
6.10.2.29 uint8_t VdpPictureInfoVC1::syncmarker
See VC-1 J.1.16. Only used by simple and main profiles.
6.10.2.30 uint8_t VdpPictureInfoVC1::tfcntrflag
See VC-1 6.1.10.
6.10.2.31 uint8_t VdpPictureInfoVC1::vstransform
See VC-1 6.2.9.
```

vdpau/vdpau.h

The documentation for this struct was generated from the following file:

6.11 VdpPoint Struct Reference

A location within a surface.

```
#include <vdpau.h>
```

Data Fields

- uint32_t x
- uint32_t y

6.11.1 Detailed Description

A location within a surface.

The VDPAU co-ordinate system has its origin at the top-left of a surface, with x and y components increasing right and down.

6.11.2 Field Documentation

```
6.11.2.1 uint32_t VdpPoint::x
```

X co-ordinate.

6.11.2.2 uint32_t VdpPoint::y

Y co-ordinate.

The documentation for this struct was generated from the following file:

• vdpau/vdpau.h

6.12 VdpProcamp Struct Reference

Procamp operation parameterization data.

```
#include <vdpau.h>
```

Data Fields

- uint32_t struct_version
- float brightness
- float contrast
- · float saturation
- float hue

6.12.1 Detailed Description

Procamp operation parameterization data.

When performing a color space conversion operation, various adjustments can be performed at the same time, such as brightness and contrast. This structure defines the level of adjustments to make.

6.12.2 Field Documentation

6.12.2.1 float VdpProcamp::brightness

Brightness adjustment amount. A value clamped between -1.0 and 1.0. 0.0 represents no modification.

6.12.2.2 float VdpProcamp::contrast

Contrast adjustment amount. A value clamped between 0.0 and 10.0. 1.0 represents no modification.

6.12.2.3 float VdpProcamp::hue

Hue adjustment amount. A value clamped between -PI and PI. 0.0 represents no modification.

6.12.2.4 float VdpProcamp::saturation

Saturation adjustment amount. A value clamped between 0.0 and 10.0. 1.0 represents no modification.

6.12.2.5 uint32_t VdpProcamp::struct_version

This field must be filled with VDP PROCAMP VERSION

The documentation for this struct was generated from the following file:

· vdpau/vdpau.h

6.13 VdpRect Struct Reference

A rectangular region of a surface.

```
#include <vdpau.h>
```

Data Fields

- uint32_t x0
- uint32 t y0
- uint32_t x1
- uint32_t y1

6.13.1 Detailed Description

A rectangular region of a surface.

The co-ordinates are top-left inclusive, bottom-right exclusive.

The VDPAU co-ordinate system has its origin at the top-left of a surface, with x and y components increasing right and down.

6.13.2 Field Documentation

6.13.2.1 uint32_t VdpRect::x0

Left X co-ordinate. Inclusive.

6.13.2.2 uint32_t VdpRect::x1

Right X co-ordinate. Exclusive.

6.13.2.3 uint32_t VdpRect::y0

Top Y co-ordinate. Inclusive.

6.13.2.4 uint32_t VdpRect::y1

Bottom Y co-ordinate. Exclusive.

The documentation for this struct was generated from the following file:

• vdpau/vdpau.h

6.14 VdpReferenceFrameH264 Struct Reference

Information about an H.264 reference frame.

#include <vdpau.h>

Data Fields

- VdpVideoSurface surface
- VdpBool is_long_term
- VdpBool top_is_reference
- VdpBool bottom_is_reference
- int32_t field_order_cnt [2]
- uint16_t frame_idx

6.14.1 Detailed Description

Information about an H.264 reference frame.

Note: References to bitstream fields below may refer to data literally parsed from the bitstream, or derived from the bitstream using a mechanism described in the specification.

6.14.2 Field Documentation

6.14.2.1 VdpBool VdpReferenceFrameH264::bottom_is_reference

Is the bottom field used as a reference. Set to VDP_FALSE for unused entries.

6.14.2.2 int32_t VdpReferenceFrameH264::field_order_cnt[2]

[0]: top, [1]: bottom

6.14.2.3 uint16_t VdpReferenceFrameH264::frame_idx

Copy of the H.264 bitstream field: frame_num from slice_header for short-term references, LongTermPicNum from decoding algorithm for long-term references.

6.14.2.4 VdpBool VdpReferenceFrameH264::is_long_term

Is this a long term reference (else short term).

6.14.2.5 VdpVideoSurface VdpReferenceFrameH264::surface

The surface that contains the reference image. Set to VDP_INVALID_HANDLE for unused entries.

6.14.2.6 VdpBool VdpReferenceFrameH264::top_is_reference

Is the top field used as a reference. Set to VDP_FALSE for unused entries.

The documentation for this struct was generated from the following file:

· vdpau/vdpau.h

Chapter 7

File Documentation

7.1 vdpau/vdpau.h File Reference

The Core API.

#include <stdint.h>
Include dependency graph for vdpau.h:

This graph shows which files directly or indirectly include this file:

132 File Documentation

Data Structures

struct VdpPoint

A location within a surface.

struct VdpRect

A rectangular region of a surface.

- struct VdpColor
- struct VdpProcamp

Procamp operation parameterization data.

struct VdpOutputSurfaceRenderBlendState

Complete blending operation definition.

struct VdpBitstreamBuffer

Application data buffer containing compressed video data.

struct VdpPictureInfoMPEG1Or2

Picture parameter information for an MPEG 1 or MPEG 2 picture.

struct VdpReferenceFrameH264

Information about an H.264 reference frame.

struct VdpPictureInfoH264

Picture parameter information for an H.264 picture.

• struct VdpPictureInfoH264Predictive

Picture parameter information for an H.264 Hi444PP picture.

struct VdpPictureInfoVC1

Picture parameter information for a VC1 picture.

struct VdpPictureInfoMPEG4Part2

Picture parameter information for an MPEG-4 Part 2 picture.

• struct VdpPictureInfoHEVC

Picture parameter information for an H.265/HEVC picture.

struct VdpLayer

Definition of an additional VdpOutputSurface layer in the composting model.

Macros

• #define VDP TRUE 1

A true VdpBool value.

#define VDP_FALSE 0

A false VdpBool value.

• #define VDP INVALID HANDLE 0xfffffffU

An invalid object handle value.

#define VDP_CHROMA_TYPE_420

4:2:0 chroma format.

• #define VDP_CHROMA_TYPE_422

4:2:2 chroma format.

#define VDP_CHROMA_TYPE_444

4:4:4 chroma format.

• #define VDP_YCBCR_FORMAT_NV12

The "NV12" YCbCr surface format.

• #define VDP_YCBCR_FORMAT_YV12

The "YV12" YCbCr surface format.

#define VDP_YCBCR_FORMAT_UYVY

The "UYVY" YCbCr surface format.

#define VDP_YCBCR_FORMAT_YUYV

The "YUYV" YCbCr surface format.

• #define VDP YCBCR FORMAT Y8U8V8A8

A packed YCbCr format.

#define VDP_YCBCR_FORMAT_V8U8Y8A8

A packed YCbCr format.

• #define VDP_RGBA_FORMAT_B8G8R8A8

A packed RGB format.

• #define VDP_RGBA_FORMAT_R8G8B8A8

A packed RGB format.

• #define VDP RGBA FORMAT R10G10B10A2

A packed RGB format.

#define VDP_RGBA_FORMAT_B10G10R10A2

A packed RGB format.

• #define VDP_RGBA_FORMAT_A8

An alpha-only surface format.

• #define VDP_INDEXED_FORMAT_A4I4

A 4-bit indexed format, with alpha.

• #define VDP INDEXED FORMAT I4A4

A 4-bit indexed format, with alpha.

• #define VDP INDEXED FORMAT A8I8

A 8-bit indexed format, with alpha.

• #define VDP INDEXED FORMAT I8A8

A 8-bit indexed format, with alpha.

#define VDPAU INTERFACE VERSION 1

The VDPAU interface version described by this header file.

#define VDPAU_VERSION 1

The VDPAU version described by this header file.

- #define VDP PROCAMP VERSION 0
- #define VDP_COLOR_STANDARD_ITUR_BT_601

ITU-R BT.601.

• #define VDP_COLOR_STANDARD_ITUR_BT_709

ITU-R BT.709.

#define VDP_COLOR_STANDARD_SMPTE_240M

SMPTE-240M.

#define VDP_COLOR_TABLE_FORMAT_B8G8R8X8

8-bit per component packed into 32-bits

- #define VDP_OUTPUT_SURFACE_RENDER_BLEND_STATE_VERSION 0
- #define VDP_OUTPUT_SURFACE_RENDER_ROTATE_0

Do not rotate source_surface prior to compositing.

• #define VDP OUTPUT SURFACE RENDER ROTATE 90

Rotate source_surface 90 degrees clockwise prior to compositing.

#define VDP_OUTPUT_SURFACE_RENDER_ROTATE_180

Rotate source_surface 180 degrees prior to compositing.

• #define VDP OUTPUT SURFACE RENDER ROTATE 270

Rotate source_surface 270 degrees clockwise prior to compositing.

#define VDP_OUTPUT_SURFACE_RENDER_COLOR_PER_VERTEX

A separate color is used for each vertex of the smooth-shaded quad. Hence, colors array contains 4 elements rather than 1. See description of colors array.

- #define VDP DECODER PROFILE MPEG1
- #define VDP DECODER PROFILE MPEG2 SIMPLE

134 File Documentation

- #define VDP DECODER PROFILE MPEG2 MAIN
- #define VDP_DECODER_PROFILE_H264_BASELINE

MPEG 4 part 10 == H.264 == AVC.

- #define VDP DECODER PROFILE H264 MAIN
- #define VDP DECODER PROFILE H264 HIGH
- #define VDP_DECODER_PROFILE_VC1_SIMPLE
- #define VDP DECODER PROFILE VC1 MAIN
- #define VDP_DECODER_PROFILE_VC1_ADVANCED
- #define VDP DECODER PROFILE MPEG4 PART2 SP
- #define VDP DECODER PROFILE MPEG4 PART2 ASP
- #define VDP DECODER PROFILE DIVX4 QMOBILE
- #define VDP DECODER PROFILE DIVX4 MOBILE
- #define VDP_DECODER_PROFILE_DIVX4_HOME_THEATER
- #define VDP DECODER PROFILE DIVX4 HD 1080P
- #define VDP DECODER PROFILE DIVX5 QMOBILE
- #define VDP_DECODER_PROFILE_DIVX5_MOBILE
- #define VDP DECODER PROFILE DIVX5 HOME THEATER
- #define VDP_DECODER_PROFILE_DIVX5_HD_1080P
- #define VDP DECODER PROFILE H264 CONSTRAINED BASELINE
- #define VDP DECODER PROFILE H264 EXTENDED
- #define VDP DECODER PROFILE H264 PROGRESSIVE HIGH
- #define VDP DECODER PROFILE H264 CONSTRAINED HIGH
- #define VDP DECODER PROFILE H264 HIGH 444 PREDICTIVE

Support for 8 bit depth only.

• #define VDP DECODER PROFILE HEVC MAIN

MPEG-H Part 2 == H.265 == HEVC.

- #define VDP_DECODER_PROFILE_HEVC_MAIN_10
- #define VDP DECODER PROFILE HEVC MAIN STILL
- #define VDP DECODER PROFILE HEVC MAIN 12
- #define VDP DECODER PROFILE HEVC MAIN 444
- #define VDP DECODER LEVEL MPEG1 NA
- #define VDP_DECODER_LEVEL_MPEG2 LL
- #define VDP DECODER LEVEL MPEG2 ML
- #define VDP DECODER LEVEL MPEG2 HL14
- #define VDP_DECODER_LEVEL_MPEG2_HL
- #define VDP_DECODER_LEVEL_H264_1
- #define VDP_DECODER_LEVEL_H264_1b
- #define VDP_DECODER_LEVEL_H264_1_1
- #define VDP_DECODER_LEVEL_H264_1_2
- #define VDP DECODER LEVEL H264 1 3
- #define VDP DECODER LEVEL H264 2
- #define VDP_DECODER_LEVEL H264 2 1
- #define VDP DECODER LEVEL H264 2 2
- #define VDP DECODER LEVEL H264 3
- #define VDP DECODER LEVEL H264 3 1
- #define VDP DECODER LEVEL H264 3 2
- #define VDP_DECODER_LEVEL_H264_4
- #define VDP_DECODER_LEVEL_H264_4_1
- #define VDP_DECODER_LEVEL_H264_4_2
- #define VDP_DECODER_LEVEL_H264_5
- #define VDP DECODER LEVEL H264 5 1
- #define VDP_DECODER_LEVEL_VC1_SIMPLE_LOW
- #define VDP DECODER LEVEL VC1 SIMPLE MEDIUM
- #define VDP DECODER LEVEL VC1 MAIN LOW

```
    #define VDP_DECODER_LEVEL_VC1_MAIN_MEDIUM

    #define VDP_DECODER_LEVEL_VC1_MAIN_HIGH

    #define VDP_DECODER_LEVEL_VC1_ADVANCED_L0

• #define VDP DECODER LEVEL VC1 ADVANCED L1
• #define VDP_DECODER_LEVEL_VC1 ADVANCED L2

    #define VDP DECODER LEVEL VC1 ADVANCED L3

    #define VDP_DECODER_LEVEL_VC1_ADVANCED_L4

    #define VDP_DECODER_LEVEL_MPEG4_PART2_SP_L0

• #define VDP DECODER LEVEL MPEG4 PART2 SP L1
• #define VDP DECODER LEVEL MPEG4 PART2 SP L2

    #define VDP DECODER LEVEL MPEG4 PART2 SP L3

    #define VDP DECODER LEVEL MPEG4 PART2 ASP L0

    #define VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L1

    #define VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L2

• #define VDP DECODER LEVEL MPEG4 PART2 ASP L3

    #define VDP DECODER LEVEL MPEG4 PART2 ASP L4

    #define VDP DECODER LEVEL MPEG4 PART2 ASP L5

    #define VDP_DECODER_LEVEL_DIVX_NA

    #define VDP_DECODER_LEVEL_HEVC_1 30

• #define VDP DECODER LEVEL HEVC 2
• #define VDP DECODER LEVEL HEVC 2 1

    #define VDP DECODER LEVEL HEVC 3

    #define VDP DECODER LEVEL HEVC 3 1

    #define VDP_DECODER_LEVEL_HEVC_4

• #define VDP DECODER LEVEL HEVC 4 1
• #define VDP DECODER LEVEL HEVC 5

    #define VDP DECODER LEVEL HEVC 5 1

• #define VDP_DECODER_LEVEL_HEVC_5_2

    #define VDP_DECODER_LEVEL_HEVC_6

    #define VDP DECODER LEVEL HEVC 6 1

    #define VDP_DECODER_LEVEL_HEVC_6_2

    #define VDP BITSTREAM BUFFER VERSION 0

    #define VDP_VIDEO_MIXER_FEATURE_DEINTERLACE_TEMPORAL

    A VdpVideoMixerFeature.

    #define VDP_VIDEO_MIXER_FEATURE_DEINTERLACE_TEMPORAL_SPATIAL

    A VdpVideoMixerFeature.
• #define VDP_VIDEO_MIXER_FEATURE_INVERSE_TELECINE
    A VdpVideoMixerFeature.
• #define VDP_VIDEO_MIXER_FEATURE_NOISE_REDUCTION
    A VdpVideoMixerFeature.
• #define VDP_VIDEO_MIXER_FEATURE_SHARPNESS
    A VdpVideoMixerFeature.

    #define VDP_VIDEO_MIXER_FEATURE_LUMA_KEY

    A VdpVideoMixerFeature.

    #define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L1

    A VdpVideoMixerFeature.

    #define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L2

    A VdpVideoMixerFeature.

    #define VDP VIDEO MIXER FEATURE HIGH QUALITY SCALING L3

    A VdpVideoMixerFeature.

    #define VDP VIDEO MIXER FEATURE HIGH QUALITY SCALING L4

    A VdpVideoMixerFeature.
```

• #define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L5

136 File Documentation

A VdpVideoMixerFeature.

#define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L6

A VdpVideoMixerFeature.

#define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L7
 A VdpVideoMixerFeature.

• #define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L8

A VdpVideoMixerFeature.

#define VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L9

A VdpVideoMixerFeature.

• #define VDP_VIDEO_MIXER_PARAMETER_VIDEO_SURFACE_WIDTH

The exact width of input video surfaces.

• #define VDP VIDEO MIXER PARAMETER VIDEO SURFACE HEIGHT

The exact height of input video surfaces.

• #define VDP VIDEO MIXER PARAMETER CHROMA TYPE

The chroma type of the input video surfaces the will process.

#define VDP_VIDEO_MIXER_PARAMETER_LAYERS

The number of auxiliary layers in the mixer's compositing model.

• #define VDP VIDEO MIXER ATTRIBUTE BACKGROUND COLOR

The background color in the VdpVideoMixer's compositing model.

#define VDP_VIDEO_MIXER_ATTRIBUTE_CSC_MATRIX

The color-space conversion matrix used by the VdpVideoMixer.

• #define VDP VIDEO MIXER ATTRIBUTE NOISE REDUCTION LEVEL

The amount of noise reduction algorithm to apply.

• #define VDP_VIDEO_MIXER_ATTRIBUTE_SHARPNESS_LEVEL

The amount of sharpening, or blurring, to apply.

• #define VDP VIDEO MIXER ATTRIBUTE LUMA KEY MIN LUMA

The minimum luma value for the luma key algorithm.

#define VDP_VIDEO_MIXER_ATTRIBUTE_LUMA_KEY_MAX_LUMA

The maximum luma value for the luma key algorithm.

• #define VDP_VIDEO_MIXER_ATTRIBUTE_SKIP_CHROMA_DEINTERLACE

Whether de-interlacers should operate solely on luma, and bob chroma.

- #define VDP_LAYER_VERSION 0
- #define VDP_FUNC_ID_GET_ERROR_STRING
- #define VDP FUNC ID GET PROC ADDRESS
- #define VDP FUNC ID GET API VERSION
- #define VDP_FUNC_ID_GET_INFORMATION_STRING
- #define VDP_FUNC_ID_DEVICE_DESTROY
- #define VDP FUNC ID GENERATE CSC MATRIX
- #define VDP FUNC ID VIDEO SURFACE QUERY CAPABILITIES
- #define VDP_FUNC_ID_VIDEO_SURFACE_QUERY_GET_PUT_BITS_Y_CB_CR_CAPABILITIES
- #define VDP FUNC ID VIDEO SURFACE CREATE
- #define VDP_FUNC_ID_VIDEO_SURFACE_DESTROY
- #define VDP_FUNC_ID_VIDEO_SURFACE_GET_PARAMETERS
- #define VDP_FUNC_ID_VIDEO_SURFACE_GET_BITS_Y_CB_CR
- #define VDP_FUNC_ID_VIDEO_SURFACE_PUT_BITS_Y_CB_CR
- #define VDP_FUNC_ID_OUTPUT_SURFACE_QUERY_CAPABILITIES
- #define VDP_FUNC_ID_OUTPUT_SURFACE_QUERY_GET_PUT_BITS_NATIVE_CAPABILITIES
- #define VDP FUNC ID_OUTPUT_SURFACE_QUERY_PUT_BITS_INDEXED_CAPABILITIES
- #define VDP FUNC ID OUTPUT SURFACE QUERY PUT BITS Y CB CR CAPABILITIES
- #define VDP FUNC ID OUTPUT SURFACE CREATE
- #define VDP FUNC ID OUTPUT SURFACE DESTROY
- #define VDP_FUNC_ID_OUTPUT_SURFACE_GET_PARAMETERS

- #define VDP FUNC ID OUTPUT SURFACE GET BITS NATIVE
- #define VDP_FUNC_ID_OUTPUT_SURFACE_PUT_BITS_NATIVE
- #define VDP_FUNC_ID_OUTPUT_SURFACE_PUT_BITS_INDEXED
- #define VDP FUNC ID OUTPUT SURFACE PUT BITS Y CB CR
- #define VDP FUNC ID BITMAP SURFACE QUERY CAPABILITIES
- #define VDP FUNC ID BITMAP SURFACE CREATE
- #define VDP FUNC ID BITMAP SURFACE DESTROY
- #define VDP_FUNC_ID_BITMAP_SURFACE_GET_PARAMETERS
- #define VDP_FUNC_ID_BITMAP_SURFACE_PUT_BITS_NATIVE
- #define VDP FUNC ID OUTPUT SURFACE RENDER OUTPUT SURFACE
- #define VDP FUNC ID OUTPUT SURFACE RENDER BITMAP SURFACE
- #define VDP FUNC ID OUTPUT SURFACE RENDER VIDEO SURFACE LUMA
- #define VDP FUNC ID DECODER QUERY CAPABILITIES
- #define VDP_FUNC_ID_DECODER_CREATE
- #define VDP_FUNC_ID_DECODER_DESTROY
- #define VDP_FUNC_ID_DECODER_GET_PARAMETERS
- #define VDP FUNC ID DECODER RENDER
- #define VDP FUNC ID VIDEO MIXER QUERY FEATURE SUPPORT
- #define VDP_FUNC_ID_VIDEO_MIXER_QUERY_PARAMETER_SUPPORT
- #define VDP_FUNC_ID_VIDEO_MIXER_QUERY_ATTRIBUTE_SUPPORT
- #define VDP FUNC ID VIDEO MIXER QUERY PARAMETER VALUE RANGE
- #define VDP FUNC ID VIDEO MIXER QUERY ATTRIBUTE VALUE RANGE
- #define VDP_FUNC_ID_VIDEO_MIXER_CREATE
- #define VDP FUNC ID VIDEO MIXER SET FEATURE ENABLES
- #define VDP FUNC ID VIDEO MIXER SET ATTRIBUTE VALUES
- #define VDP_FUNC_ID_VIDEO_MIXER_GET_FEATURE_SUPPORT
- #define VDP FUNC ID VIDEO MIXER GET FEATURE ENABLES
- #define VDP_FUNC_ID_VIDEO_MIXER_GET_PARAMETER_VALUES
- #define VDP FUNC ID VIDEO MIXER GET ATTRIBUTE VALUES
- #define VDP_FUNC_ID_VIDEO_MIXER_DESTROY
- #define VDP_FUNC_ID_VIDEO_MIXER_RENDER
- #define VDP_FUNC_ID_PRESENTATION_QUEUE_TARGET_DESTROY
- #define VDP FUNC ID PRESENTATION QUEUE CREATE
- #define VDP FUNC ID PRESENTATION QUEUE DESTROY
- #define VDP_FUNC_ID_PRESENTATION_QUEUE_SET_BACKGROUND_COLOR
- #define VDP FUNC ID PRESENTATION QUEUE GET BACKGROUND COLOR
- #define VDP_FUNC_ID_PRESENTATION_QUEUE_GET_TIME
- #define VDP FUNC ID PRESENTATION QUEUE DISPLAY
- #define VDP FUNC ID PRESENTATION QUEUE BLOCK UNTIL SURFACE IDLE
- #define VDP FUNC ID PRESENTATION QUEUE QUERY SURFACE STATUS
- #define VDP_FUNC_ID_PREEMPTION_CALLBACK_REGISTER
- #define VDP_FUNC_ID_BASE_WINSYS 0x1000

Typedefs

- typedef int VdpBool
 - A boolean value, holding VDP TRUE or VDP FALSE.
- typedef uint32 t VdpChromaType
 - The set of all chroma formats for VdpVideoSurfaces.
- typedef uint32_t VdpYCbCrFormat
 - The set of all known YCbCr surface formats.
- typedef uint32_t VdpRGBAFormat
 - The set of all known RGB surface formats.

138 File Documentation

typedef uint32_t VdpIndexedFormat

The set of all known indexed surface formats.

typedef char const * VdpGetErrorString(VdpStatus status)

Retrieve a string describing an error code.

typedef VdpStatus VdpGetApiVersion(uint32_t *api_version)

Retrieve the VDPAU version implemented by the backend.

typedef VdpStatus VdpGetInformationString(char const **information string)

Retrieve an implementation-specific string description of the implementation. This typically includes detailed version information.

typedef uint32 t VdpDevice

An opaque handle representing a VdpDevice object.

typedef VdpStatus VdpDeviceDestroy(VdpDevice device)

Destroy a VdpDevice.

typedef float VdpCSCMatrix[3][4]

Storage for a color space conversion matrix.

typedef uint32_t VdpColorStandard

YCbCr color space specification.

 typedef VdpStatus VdpGenerateCSCMatrix(VdpProcamp *procamp, VdpColorStandard standard, VdpCS← CMatrix *csc matrix)

Generate a color space conversion matrix.

typedef VdpStatus VdpVideoSurfaceQueryCapabilities(VdpDevice device, VdpChromaType surface_
 chroma_type, VdpBool *is_supported, uint32_t *max_width, uint32_t *max_height)

Query the implementation's VdpVideoSurface capabilities.

typedef VdpStatus VdpVideoSurfaceQueryGetPutBitsYCbCrCapabilities(VdpDevice device, VdpChroma
 — Type surface_chroma_type, VdpYCbCrFormat bits_ycbcr_format, VdpBool *is_supported)

Query the implementation's VdpVideoSurface GetBits/PutBits capabilities.

typedef uint32_t VdpVideoSurface

An opaque handle representing a VdpVideoSurface object.

typedef VdpStatus VdpVideoSurfaceCreate(VdpDevice device, VdpChromaType chroma_type, uint32_
 t width, uint32_t height, VdpVideoSurface *surface)

Create a VdpVideoSurface.

typedef VdpStatus VdpVideoSurfaceDestroy(VdpVideoSurface surface)

Destroy a VdpVideoSurface.

typedef VdpStatus VdpVideoSurfaceGetParameters(VdpVideoSurface surface, VdpChromaType *chroma
 —type, uint32_t *width, uint32_t *height)

Retrieve the parameters used to create a VdpVideoSurface.

typedef VdpStatus VdpVideoSurfaceGetBitsYCbCr(VdpVideoSurface surface, VdpYCbCrFormat destination
 —ycbcr_format, void *const *destination_data, uint32_t const *destination_pitches)

Copy image data from a VdpVideoSurface to application memory in a specified YCbCr format.

typedef VdpStatus VdpVideoSurfacePutBitsYCbCr(VdpVideoSurface surface, VdpYCbCrFormat source_←
ycbcr format, void const *const *source data, uint32 t const *source pitches)

Copy image data from application memory in a specific YCbCr format to a VdpVideoSurface.

typedef uint32_t VdpColorTableFormat

The set of all known color table formats, for use with VdpOutputSurfacePutBitsIndexed.

typedef VdpStatus VdpOutputSurfaceQueryCapabilities(VdpDevice device, VdpRGBAFormat surface_
 rgba_format, VdpBool *is_supported, uint32_t *max_width, uint32_t *max_height)

Query the implementation's VdpOutputSurface capabilities.

typedef VdpStatus VdpOutputSurfaceQueryGetPutBitsNativeCapabilities(VdpDevice device, VdpRGBA
 Format surface_rgba_format, VdpBool *is_supported)

Query the implementation's capability to perform a PutBits operation using application data matching the surface's format.

 typedef VdpStatus VdpOutputSurfaceQueryPutBitsIndexedCapabilities(VdpDevice device, VdpRGBAFormat surface_rgba_format, VdpIndexedFormat bits_indexed_format, VdpColorTableFormat color_table_format, VdpBool *is_supported)

Query the implementation's capability to perform a PutBits operation using application data in a specific indexed format.

 typedef VdpStatus VdpOutputSurfaceQueryPutBitsYCbCrCapabilities(VdpDevice device, VdpRGBAFormat surface_rgba_format, VdpYCbCrFormat bits_ycbcr_format, VdpBool *is_supported)

Query the implementation's capability to perform a PutBits operation using application data in a specific YCbCr/YUB format

typedef uint32_t VdpOutputSurface

An opaque handle representing a VdpOutputSurface object.

typedef VdpStatus VdpOutputSurfaceCreate(VdpDevice device, VdpRGBAFormat rgba_format, uint32_
 t width, uint32 t height, VdpOutputSurface *surface)

Create a VdpOutputSurface.

• typedef VdpStatus VdpOutputSurfaceDestroy(VdpOutputSurface surface)

Destroy a VdpOutputSurface.

typedef VdpStatus VdpOutputSurfaceGetParameters(VdpOutputSurface surface, VdpRGBAFormat *rgba←
 _format, uint32_t *width, uint32_t *height)

Retrieve the parameters used to create a VdpOutputSurface.

typedef VdpStatus VdpOutputSurfaceGetBitsNative(VdpOutputSurface surface, VdpRect const *source_←
rect, void *const *destination data, uint32 t const *destination pitches)

Copy image data from a VdpOutputSurface to application memory in the surface's native format.

typedef VdpStatus VdpOutputSurfacePutBitsNative(VdpOutputSurface surface, void const *const *source
 — data, uint32_t const *source_pitches, VdpRect const *destination_rect)

Copy image data from application memory in the surface's native format to a VdpOutputSurface.

typedef VdpStatus VdpOutputSurfacePutBitsIndexed(VdpOutputSurface surface, VdpIndexedFormat source_indexed_format, void const *const *source_data, uint32_t const *source_pitch, VdpRect const *destination rect, VdpColorTableFormat color table format, void const *color table)

Copy image data from application memory in a specific indexed format to a VdpOutputSurface.

typedef VdpStatus VdpOutputSurfacePutBitsYCbCr(VdpOutputSurface surface, VdpYCbCrFormat source
 _ycbcr_format, void const *const *source_data, uint32_t const *source_pitches, VdpRect const
 *destination_rect, VdpCSCMatrix const *csc_matrix)

Copy image data from application memory in a specific YCbCr format to a VdpOutputSurface.

• typedef VdpStatus VdpBitmapSurfaceQueryCapabilities(VdpDevice device, VdpRGBAFormat surface_← rgba_format, VdpBool *is_supported, uint32_t *max_width, uint32_t *max_height)

Query the implementation's VdpBitmapSurface capabilities.

typedef uint32_t VdpBitmapSurface

An opaque handle representing a VdpBitmapSurface object.

typedef VdpStatus VdpBitmapSurfaceCreate(VdpDevice device, VdpRGBAFormat rgba_format, uint32_
 t width, uint32_t height, VdpBool frequently_accessed, VdpBitmapSurface *surface)

Create a VdpBitmapSurface.

typedef VdpStatus VdpBitmapSurfaceDestroy(VdpBitmapSurface surface)

Destroy a VdpBitmapSurface.

typedef VdpStatus VdpBitmapSurfaceGetParameters(VdpBitmapSurface surface, VdpRGBAFormat *rgba←
 _format, uint32_t *width, uint32_t *height, VdpBool *frequently_accessed)

Retrieve the parameters used to create a VdpBitmapSurface.

typedef VdpStatus VdpBitmapSurfacePutBitsNative(VdpBitmapSurface surface, void const *const *source
 — data, uint32_t const *source_pitches, VdpRect const *destination_rect)

Copy image data from application memory in the surface's native format to a VdpBitmapSurface.

typedef VdpStatus VdpOutputSurfaceRenderOutputSurface(VdpOutputSurface destination_surface, Vdp
 Rect const *destination_rect, VdpOutputSurface source_surface, VdpRect const *source_rect, VdpColor
 const *colors, VdpOutputSurfaceRenderBlendState const *blend_state, uint32_t flags)

Composite a sub-rectangle of a VdpOutputSurface into a sub-rectangle of another VdpOutputSurface; Output Surfaceobject VdpOutputSurface.

140 File Documentation

Composite a sub-rectangle of a VdpBitmapSurface into a sub-rectangle of a VdpOutputSurface; Output Surfaceobject VdpOutputSurface.

typedef uint32_t VdpDecoderProfile

The set of all known compressed video formats, and associated profiles, that may be decoded.

 typedef VdpStatus VdpDecoderQueryCapabilities(VdpDevice device, VdpDecoderProfile profile, VdpBool *is_supported, uint32_t *max_level, uint32_t *max_macroblocks, uint32_t *max_width, uint32_t *max_width, uint32_t *max_width)

Query the implementation's VdpDecoder capabilities.

• typedef uint32_t VdpDecoder

An opaque handle representing a VdpDecoder object.

typedef VdpStatus VdpDecoderCreate(VdpDevice device, VdpDecoderProfile profile, uint32_t width, uint32
t height, uint32 t max references, VdpDecoder *decoder)

Create a VdpDecoder.

typedef VdpStatus VdpDecoderDestroy(VdpDecoder decoder)

Destroy a VdpDecoder.

typedef VdpStatus VdpDecoderGetParameters(VdpDecoder decoder, VdpDecoderProfile *profile, uint32_t *width, uint32_t *height)

Retrieve the parameters used to create a VdpDecoder.

• typedef void VdpPictureInfo

A generic "picture information" type.

typedef VdpPictureInfoMPEG4Part2 VdpPictureInfoDivX4

Picture parameter information for a DivX 4 picture.

typedef VdpPictureInfoMPEG4Part2 VdpPictureInfoDivX5

Picture parameter information for a DivX 5 picture.

 typedef VdpStatus VdpDecoderRender(VdpDecoder decoder, VdpVideoSurface target, VdpPictureInfo const *picture_info, uint32_t bitstream_buffer_count, VdpBitstreamBuffer const *bitstream_buffers)

Decode a compressed field/frame and render the result into a VdpVideoSurface.

typedef uint32_t VdpVideoMixerFeature

A VdpVideoMixer feature that must be requested at creation time to be used.

typedef uint32 t VdpVideoMixerParameter

A VdpVideoMixer creation parameter.

typedef uint32_t VdpVideoMixerAttribute

An adjustable attribute of VdpVideoMixer operation.

 typedef VdpStatus VdpVideoMixerQueryFeatureSupport(VdpDevice device, VdpVideoMixerFeature feature, VdpBool *is_supported)

Query the implementation's support for a specific feature.

typedef VdpStatus VdpVideoMixerQueryParameterSupport(VdpDevice device, VdpVideoMixerParameter parameter, VdpBool *is_supported)

Query the implementation's support for a specific parameter.

typedef VdpStatus VdpVideoMixerQueryAttributeSupport(VdpDevice device, VdpVideoMixerAttribute attribute, VdpBool *is_supported)

Query the implementation's support for a specific attribute.

• typedef VdpStatus VdpVideoMixerQueryParameterValueRange(VdpDevice device, VdpVideoMixer↔ Parameter parameter, void *min_value, void *max_value)

Query the implementation's supported for a specific parameter.

• typedef VdpStatus VdpVideoMixerQueryAttributeValueRange(VdpDevice device, VdpVideoMixerAttribute attribute, void *min_value, void *max_value)

Query the implementation's supported for a specific attribute.

typedef uint32_t VdpVideoMixer

An opaque handle representing a VdpVideoMixer object.

 typedef VdpStatus VdpVideoMixerCreate(VdpDevice device, uint32_t feature_count, VdpVideoMixerFeature const *features, uint32_t parameter_count, VdpVideoMixerParameter const *parameters, void const *const *parameter_values, VdpVideoMixer *mixer)

Create a VdpVideoMixer.

Enable or disable features.

Set attribute values.

Retrieve whether features were requested at creation time.

Retrieve whether features are enabled.

 typedef VdpStatus VdpVideoMixerGetParameterValues(VdpVideoMixer mixer, uint32_t parameter_count, VdpVideoMixerParameter const *parameters, void *const *parameter_values)

Retrieve parameter values given at creation time.

Retrieve current attribute values.

• typedef VdpStatus VdpVideoMixerDestroy(VdpVideoMixer mixer)

Destroy a VdpVideoMixer.

typedef VdpStatus VdpVideoMixerRender(VdpVideoMixer mixer, VdpOutputSurface background_surface, VdpRect const *background_source_rect, VdpVideoMixerPictureStructure current_picture_structure, uint32_t video_surface_past_count, VdpVideoSurface const *video_surface_past, VdpVideoSurface video
 _surface_current, uint32_t video_surface_future_count, VdpVideoSurface const *video_surface_future, VdpRect const *video_surface_future, VdpRect const *video_surface_future, VdpRect const *destination_const *video_rect, uint32_t layer_count, VdpLayer const *layers)

Perform a video post-processing and compositing operation.

typedef uint64_t VdpTime

The representation of a point in time.

typedef uint32_t VdpPresentationQueueTarget

An opaque handle representing the location where video will be presented.

typedef VdpStatus VdpPresentationQueueTargetDestroy(VdpPresentationQueueTarget presentation_
 —
 queue target)

Destroy a VdpPresentationQueueTarget.

• typedef uint32 t VdpPresentationQueue

An opaque handle representing a presentation queue object.

• typedef VdpStatus VdpPresentationQueueCreate(VdpDevice device, VdpPresentationQueueTarget presentation queue target, VdpPresentationQueue*presentation queue)

Create a VdpPresentationQueue.

typedef VdpStatus VdpPresentationQueueDestroy(VdpPresentationQueue presentation_queue)

Destroy a VdpPresentationQueue.

typedef VdpStatus VdpPresentationQueueSetBackgroundColor(VdpPresentationQueue presentation_← queue, VdpColor *const background color)

Configure the background color setting.

typedef VdpStatus VdpPresentationQueueGetBackgroundColor(VdpPresentationQueue presentation_← queue, VdpColor *background_color)

Retrieve the current background color setting.

142 File Documentation

 typedef VdpStatus VdpPresentationQueueGetTime(VdpPresentationQueue presentation_queue, VdpTime *current time)

Retrieve the presentation queue's "current" time.

typedef VdpStatus VdpPresentationQueueDisplay(VdpPresentationQueue presentation_queue, Vdp
 — OutputSurface surface, uint32_t clip_width, uint32_t clip_height, VdpTime earliest_presentation_time)

Enter a surface into the presentation queue.

typedef VdpStatus VdpPresentationQueueBlockUntilSurfaceIdle(VdpPresentationQueue presentation_← queue, VdpOutputSurface surface, VdpTime *first presentation time)

Wait for a surface to finish being displayed.

• typedef VdpStatus VdpPresentationQueueQuerySurfaceStatus(VdpPresentationQueue presentation_queue, VdpOutputSurface surface, VdpPresentationQueueStatus *status, VdpTime *first_presentation_time)

Poll the current queue status of a surface.

• typedef void VdpPreemptionCallback(VdpDevice device, void *context)

A callback to notify the client application that a device's display has been preempted.

typedef VdpStatus VdpPreemptionCallbackRegister(VdpDevice device, VdpPreemptionCallback callback, void *context)

Configure the display preemption callback.

• typedef uint32 t VdpFuncId

A type suitable for VdpGetProcAddress's function_id parameter.

• typedef VdpStatus VdpGetProcAddress(VdpDevice device, VdpFuncId function_id, void **function_pointer)

Retrieve a VDPAU function pointer.

Enumerations

enum VdpStatus {

VDP_STATUS_OK = 0, VDP_STATUS_NO_IMPLEMENTATION, VDP_STATUS_DISPLAY_PREEMPTED, VDP STATUS INVALID HANDLE,

VDP_STATUS_INVALID_POINTER, VDP_STATUS_INVALID_CHROMA_TYPE, VDP_STATUS_INVALI

D_Y_CB_CR_FORMAT, VDP_STATUS_INVALID_RGBA_FORMAT,

VDP_STATUS_INVALID_INDEXED_FORMAT, VDP_STATUS_INVALID_COLOR_STANDARD, VDP_ST
ATUS INVALID COLOR TABLE FORMAT, VDP STATUS INVALID BLEND FACTOR,

VDP_STATUS_INVALID_BLEND_EQUATION, VDP_STATUS_INVALID_FLAG, VDP_STATUS_INVALID ← DECODER PROFILE, VDP STATUS INVALID VIDEO MIXER FEATURE,

VDP_STATUS_INVALID_VIDEO_MIXER_PARAMETER, VDP_STATUS_INVALID_VIDEO_MIXER_ATT ← RIBUTE, VDP_STATUS_INVALID_VIDEO_MIXER_PICTURE_STRUCTURE, VDP_STATUS_INVALID_← FUNC_ID,

 $\label{eq:continuous} $$\operatorname{VDP_STATUS_INVALID_VALUE}, \operatorname{VDP_STATUS_INVALID_STRUCT_V} $$\operatorname{ERSION}, \operatorname{VDP_STATUS_RESOURCES}, $$$

VDP_STATUS_HANDLE_DEVICE_MISMATCH, VDP_STATUS_ERROR }

The set of all possible error codes.

enum VdpOutputSurfaceRenderBlendFactor {

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_ZERO = 0, VDP_OUTPUT_SURFACE_REND ← ER_BLEND_FACTOR_ONE = 1, VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_SRC_COLOR = 2, VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_ONE_MINUS_SRC_COLOR = 3,

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_SRC_ALPHA = 4, VDP_OUTPUT_SURFACE_ ← RENDER_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA = 5, VDP_OUTPUT_SURFACE_RENDER_BL ← END_FACTOR_DST_ALPHA = 6, VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_ONE_MINU ← S_DST_ALPHA = 7,

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_DST_COLOR = 8, VDP_OUTPUT_SURFACE_
RENDER_BLEND_FACTOR_ONE_MINUS_DST_COLOR = 9, VDP_OUTPUT_SURFACE_RENDER_BL
END_FACTOR_SRC_ALPHA_SATURATE = 10, VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTO
R CONSTANT COLOR = 11,

VDP_OUTPUT_SURFACE_RENDER_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR = 12, VDP ← OUTPUT_SURFACE_RENDER_BLEND_FACTOR_CONSTANT_ALPHA = 13, VDP_OUTPUT_SURFA ← CE_RENDER_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA = 14 }

The blending equation factors.

enum VdpOutputSurfaceRenderBlendEquation {
 VDP_OUTPUT_SURFACE_RENDER_BLEND_EQUATION_SUBTRACT = 0, VDP_OUTPUT_SURFACE ←
 _RENDER_BLEND_EQUATION_REVERSE_SUBTRACT = 1, VDP_OUTPUT_SURFACE_RENDER_BL ←
 END_EQUATION_ADD = 2, VDP_OUTPUT_SURFACE_RENDER_BLEND_EQUATION_MIN = 3,
 VDP_OUTPUT_SURFACE_RENDER_BLEND_EQUATION_MAX = 4 }

The blending equations.

 enum VdpVideoMixerPictureStructure { VDP_VIDEO_MIXER_PICTURE_STRUCTURE_TOP_FIELD, VD→ P_VIDEO_MIXER_PICTURE_STRUCTURE_BOTTOM_FIELD, VDP_VIDEO_MIXER_PICTURE_STRU← CTURE_FRAME }

The structure of the picture present in a VdpVideoSurface.

The status of a surface within a presentation queue.

7.1.1 Detailed Description

The Core API.

This file contains the Core API.

7.2 vdpau/vdpau_x11.h File Reference

X11 Window System Integration Layer.

#include <X11/Xlib.h>
#include "vdpau.h"

Include dependency graph for vdpau_x11.h:

- #define VDP FUNC ID PRESENTATION QUEUE TARGET CREATE X11
- typedef VdpStatus VdpDeviceCreateX11(Display *display, int screen, VdpDevice *device, VdpGetProc
 — Address **get_proc_address)

144 File Documentation

Create a VdpDevice object for use with X11.

 typedef VdpStatus VdpPresentationQueueTargetCreateX11(VdpDevice device, Drawable drawable, Vdp← PresentationQueueTarget *target)

Create a VdpPresentationQueueTarget for use with X11.

VdpDeviceCreateX11 vdp_device_create_x11

Create a VdpDevice object for use with X11. This is an actual symbol of type VdpDeviceCreateX11.

7.2.1 Detailed Description

X11 Window System Integration Layer.

This file contains the X11 Window System Integration Layer X11 Window System Integration Layer.

Index

alpha	chroma_format_idc
VdpColor, 104	VdpPictureInfoHEVC, 113
alternate_scan	chroma_qp_index_offset
VdpPictureInfoMPEG1Or2, 120	VdpPictureInfoH264, 108
alternate_vertical_scan_flag	column_width_minus1
VdpPictureInfoMPEG4Part2, 122	VdpPictureInfoHEVC, 113
amp enabled flag	concealment_motion_vectors
VdpPictureInfoHEVC, 113	VdpPictureInfoMPEG1Or2, 120
,	constrained_intra_pred_flag
backward_reference	VdpPictureInfoH264, 108
VdpPictureInfoMPEG1Or2, 120	VdpPictureInfoHEVC, 113
VdpPictureInfoMPEG4Part2, 122	contrast
VdpPictureInfoVC1, 123	VdpProcamp, 128
Basic Types, 22	Core API, 20
VDP_FALSE, 22	cu_qp_delta_enabled_flag
VDP_TRUE, 22	VdpPictureInfoHEVC, 113
VdpBool, 22	CurrPicOrderCntVal
bit_depth_chroma_minus8	VdpPictureInfoHEVC, 113
VdpPictureInfoHEVC, 113	CurrRpsldx
bit depth luma minus8	VdpPictureInfoHEVC, 113
VdpPictureInfoHEVC, 113	vapi lotaromioriz vo, vvo
bitstream	deblockEnable
VdpBitstreamBuffer, 103	VdpPictureInfoVC1, 123
bitstream_bytes	deblocking_filter_control_present_flag
VdpBitstreamBuffer, 103	VdpPictureInfoH264, 108
blend_constant	VdpPictureInfoHEVC, 113
VdpOutputSurfaceRenderBlendState, 106	deblocking_filter_override_enabled_flag
blend_equation_alpha	VdpPictureInfoHEVC, 113
VdpOutputSurfaceRenderBlendState, 106	delta_pic_order_always_zero_flag
blend_equation_color	VdpPictureInfoH264, 108
VdpOutputSurfaceRenderBlendState, 106	dependent_slice_segments_enabled_flag
blend_factor_destination_alpha	VdpPictureInfoHEVC, 113
VdpOutputSurfaceRenderBlendState, 106	destination rect
blend_factor_destination_color	VdpLayer, 105
VdpOutputSurfaceRenderBlendState, 106	diff_cu_qp_delta_depth
blend_factor_source_alpha	VdpPictureInfoHEVC, 113
VdpOutputSurfaceRenderBlendState, 106	direct_8x8_inference_flag
blend_factor_source_color	VdpPictureInfoH264, 108
VdpOutputSurfaceRenderBlendState, 106	Display Preemption, 91
blue	VdpPreemptionCallback, 91
VdpColor, 104	VdpPreemptionCallbackRegister, 92
bottom_field_flag	dquant
VdpPictureInfoH264, 108	VdpPictureInfoVC1, 124
bottom_is_reference	vapi lotaronno vo 1, 121
VdpReferenceFrameH264, 130	entropy_coding_mode_flag
brightness	VdpPictureInfoH264, 108
VdpProcamp, 128	entropy_coding_sync_enabled_flag
100 100 amp, 120	VdpPictureInfoHEVC, 113
cabac_init_present_flag	Entry Point Retrieval, 93
VdpPictureInfoHEVC, 113	VDP_FUNC_ID_BASE_WINSYS, 94

VDP_FUNC_ID_BITMAP_SURFACE_CREATE, **EATE**, 96 VDP FUNC ID PRESENTATION QUEUE DE← VDP_FUNC_ID_BITMAP_SURFACE_DESTROY, STROY, 96 $VDP_FUNC_ID_PRESENTATION_QUEUE_DI {\leftarrow}$ VDP FUNC ID BITMAP SURFACE GET PA← SPLAY, 96 RAMETERS, 94 VDP FUNC ID PRESENTATION QUEUE GE← VDP FUNC ID BITMAP SURFACE PUT BIT← T BACKGROUND COLOR, 96 S NATIVE, 94 VDP FUNC ID PRESENTATION QUEUE GE← VDP_FUNC_ID_BITMAP_SURFACE_QUERY_← **T_TIME**, 96 VDP_FUNC_ID_PRESENTATION_QUEUE_QU← CAPABILITIES, 95 ERY_SURFACE_STATUS, 96 VDP_FUNC_ID_DECODER_CREATE, 95 VDP FUNC ID DECODER DESTROY, 95 VDP FUNC ID PRESENTATION QUEUE SE← VDP_FUNC_ID_DECODER_GET_PARAMETE ← T_BACKGROUND_COLOR, 96 VDP_FUNC_ID_PRESENTATION_QUEUE_TA↔ RS, 95 VDP FUNC ID DECODER QUERY CAPABIL← RGET DESTROY, 96 VDP FUNC ID VIDEO MIXER CREATE, 96 ITIES, 95 VDP FUNC ID DECODER RENDER, 95 VDP FUNC ID VIDEO MIXER DESTROY, 96 VDP FUNC ID DEVICE DESTROY, 95 VDP FUNC ID VIDEO MIXER GET ATTRIB← VDP_FUNC_ID_GENERATE_CSC_MATRIX, 95 UTE_VALUES, 96 $VDP\ FUNC_ID_VIDEO_MIXER_GET_FEATUR {\leftarrow}$ VDP_FUNC_ID_GET_API_VERSION, 95 VDP_FUNC_ID_GET_ERROR_STRING, 95 E ENABLES, 96 VDP_FUNC_ID_GET_INFORMATION_STRING, VDP_FUNC_ID_VIDEO_MIXER_GET_FEATUR ← E_SUPPORT, 96 VDP FUNC ID GET PROC ADDRESS, 95 VDP FUNC ID VIDEO MIXER GET PARAM← ETER VALUES, 96 VDP FUNC ID OUTPUT SURFACE CREATE, VDP FUNC ID VIDEO MIXER QUERY ATT← RIBUTE SUPPORT, 96 VDP FUNC ID OUTPUT SURFACE DESTR← VDP_FUNC_ID_VIDEO_MIXER_QUERY_ATT← OY, 95 RIBUTE_VALUE_RANGE, 96 VDP_FUNC_ID_OUTPUT_SURFACE_GET_BI← VDP_FUNC_ID_VIDEO_MIXER_QUERY_FEA↔ TS NATIVE, 95 TURE SUPPORT, 96 $VDP_FUNC_ID_OUTPUT_SURFACE_GET_PA {\leftarrow}$ VDP_FUNC_ID_VIDEO_MIXER_QUERY_PAR ← RAMETERS, 95 AMETER SUPPORT, 96 VDP FUNC ID OUTPUT SURFACE PUT BI← VDP FUNC ID VIDEO MIXER QUERY PAR ← TS INDEXED, 95 AMETER VALUE RANGE, 97 VDP FUNC ID OUTPUT SURFACE PUT BI← TS NATIVE, 95 VDP FUNC ID VIDEO MIXER RENDER, 97 VDP_FUNC_ID_OUTPUT_SURFACE_PUT_BI← VDP FUNC ID VIDEO MIXER SET ATTRIB← UTE_VALUES, 97 TS_Y_CB_CR, 95 VDP_FUNC_ID_OUTPUT_SURFACE_QUERY← VDP_FUNC_ID_VIDEO_MIXER_SET_FEATUR ← CAPABILITIES, 95 E ENABLES, 97 VDP FUNC_ID_VIDEO_SURFACE_CREATE, 97 VDP FUNC_ID_OUTPUT_SURFACE_QUERY↔ VDP_FUNC_ID_VIDEO_SURFACE_DESTROY, GET PUT BITS NATIVE CAPABILITIES, 97 VDP FUNC ID OUTPUT SURFACE QUERY← VDP FUNC ID VIDEO SURFACE GET BITS← PUT BITS INDEXED CAPABILITIES, 95 Y_CB_CR, 97 VDP FUNC ID OUTPUT SURFACE QUERY← VDP FUNC ID VIDEO SURFACE GET PAR← PUT BITS Y CB CR CAPABILITIES, 95 AMETERS, 97 VDP_FUNC_ID_OUTPUT_SURFACE_RENDE ← VDP_FUNC_ID_VIDEO_SURFACE_PUT_BITS← R_BITMAP_SURFACE, 96 Y CB CR, 97 VDP FUNC ID OUTPUT SURFACE RENDE ← VDP_FUNC_ID_VIDEO_SURFACE_QUERY_C ← R_OUTPUT_SURFACE, 96 APABILITIES, 97 VDP FUNC ID OUTPUT SURFACE RENDE ← VDP FUNC ID VIDEO SURFACE QUERY ~ R VIDEO SURFACE LUMA, 96 GET PUT BITS Y CB CR CAPABILITIES, VDP FUNC ID PREEMPTION CALLBACK R← VdpFuncId, 97 EGISTER, 96 VDP FUNC ID PRESENTATION QUEUE BL← VdpGetProcAddress, 97 OCK_UNTIL_SURFACE_IDLE, 96 Error Handling, 29 VDP FUNC ID PRESENTATION QUEUE CR← VDP_STATUS_DISPLAY_PREEMPTED, 30

VDP_STATUS_ERROR, 31	frame_mbs_only_flag
VDP_STATUS_HANDLE_DEVICE_MISMATCH,	VdpPictureInfoH264, 108
31 VDP_STATUS_INVALID_BLEND_EQUATION, 30	frame_num
VDP_STATUS_INVALID_BLEND_EQUATION, 30 VDP STATUS INVALID BLEND FACTOR, 30	VdpPictureInfoH264, 108
VDP_STATUS_INVALID_CHROMA_TYPE, 30	frame_pred_frame_dct
	VdpPictureInfoMPEG10r2, 120
VDP_STATUS_INVALID_COLOR_STANDARD,	full_pel_backward_vector
30	VdpPictureInfoMPEG1Or2, 120
VDP_STATUS_INVALID_COLOR_TABLE_FOR↔	full_pel_forward_vector
MAT, 30 VDP_STATUS_INVALID_DECODER_PROFILE,	VdpPictureInfoMPEG1Or2, 120
30	green
VDP_STATUS_INVALID_FLAG, 30	VdpColor, 104
VDP_STATUS_INVALID_FLAG, 30 VDP_STATUS_INVALID_FUNC_ID, 30	Vapooloi, 104
VDP_STATUS_INVALID_HANDLE, 30	hue
VDP_STATUS_INVALID_INDEXED_FORMAT, 30	VdpProcamp, 128
VDP_STATUS_INVALID_POINTER, 30	
VDP_STATUS_INVALID_RGBA_FORMAT, 30	IDRPicFlag
VDP_STATUS_INVALID_SIZE, 30	VdpPictureInfoHEVC, 114
VDP_STATUS_INVALID_STRUCT_VERSION, 31	init_qp_minus26
VDP_STATUS_INVALID_VALUE, 31	VdpPictureInfoHEVC, 114
VDP_STATUS_INVALID_VIDEO_MIXER_ATT↔	interlace
RIBUTE, 30	VdpPictureInfoVC1, 124
VDP_STATUS_INVALID_VIDEO_MIXER_FEAT↔	interlaced
URE, 30	VdpPictureInfoMPEG4Part2, 122
VDP_STATUS_INVALID_VIDEO_MIXER_PAR↔	intra_dc_precision
AMETER, 30	VdpPictureInfoMPEG1Or2, 120
VDP_STATUS_INVALID_VIDEO_MIXER_PICT↔	intra_quantizer_matrix
URE_STRUCTURE, 30	VdpPictureInfoMPEG1Or2, 120
VDP_STATUS_INVALID_Y_CB_CR_FORMAT, 30	VdpPictureInfoMPEG4Part2, 122
VDP_STATUS_NO_IMPLEMENTATION, 30	intra_vlc_format
VDP_STATUS_OK, 30	VdpPictureInfoMPEG1Or2, 120
VDP_STATUS_RESOURCES, 31	is_long_term
VdpGetErrorString, 29	VdpReferenceFrameH264, 130
VdpStatus, 30	is_reference
extended_dmv	VdpPictureInfoH264, 108
VdpPictureInfoVC1, 124	IsLongTerm
extended_mv	VdpPictureInfoHEVC, 114
VdpPictureInfoVC1, 124	
	lists_modification_present_flag
f_code	VdpPictureInfoHEVC, 114
VdpPictureInfoMPEG1Or2, 120	log2_diff_max_min_luma_coding_block_size
fastuvmc	VdpPictureInfoHEVC, 114
VdpPictureInfoVC1, 124	log2_diff_max_min_pcm_luma_coding_block_size
field_order_cnt	VdpPictureInfoHEVC, 114
VdpPictureInfoH264, 108	log2_diff_max_min_transform_block_size
VdpReferenceFrameH264, 130	VdpPictureInfoHEVC, 114
field_pic_flag	log2_max_frame_num_minus4
VdpPictureInfoH264, 108	VdpPictureInfoH264, 108
finterpflag	log2_max_pic_order_cnt_lsb_minus4
VdpPictureInfoVC1, 124	VdpPictureInfoH264, 108
forward_reference	VdpPictureInfoHEVC, 114
VdpPictureInfoMPEG1Or2, 120	log2_min_luma_coding_block_size_minus3
VdpPictureInfoMPEG4Part2, 122	VdpPictureInfoHEVC, 114
VdpPictureInfoVC1, 124	log2_min_pcm_luma_coding_block_size_minus3
frame_coding_mode	VdpPictureInfoHEVC, 114
VdpPictureInfoVC1, 124	log2_min_transform_block_size_minus2
frame_idx	VdpPictureInfoHEVC, 114
VdpReferenceFrameH264, 130	log2_parallel_merge_level_minus2

VdpPictureInfoHEVC, 114	VdpPictureInfoHEVC, 115
long_term_ref_pics_present_flag	num_short_term_ref_pic_sets
VdpPictureInfoHEVC, 114	VdpPictureInfoHEVC, 115
loop_filter_across_tiles_enabled_flag	num_tile_columns_minus1
VdpPictureInfoHEVC, 114	VdpPictureInfoHEVC, 115
loopfilter	num_tile_rows_minus1
VdpPictureInfoVC1, 124	VdpPictureInfoHEVC, 115
,	NumDeltaPocsOfRefRpsIdx
max_transform_hierarchy_depth_inter	VdpPictureInfoHEVC, 115
VdpPictureInfoHEVC, 114	NumLongTermPictureSliceHeaderBits
max_transform_hierarchy_depth_intra	VdpPictureInfoHEVC, 115
VdpPictureInfoHEVC, 115	NumPocLtCurr
maxbframes	VdpPictureInfoHEVC, 115
VdpPictureInfoVC1, 124	NumPocStCurrAfter
mb_adaptive_frame_field_flag	VdpPictureInfoHEVC, 115
VdpPictureInfoH264, 108	NumPocStCurrBefore
Miscellaneous Types, 23	VdpPictureInfoHEVC, 116
VDP_CHROMA_TYPE_420, 24	NumPocTotalCurr
VDP_CHROMA_TYPE_422, 24	VdpPictureInfoHEVC, 116
VDP_CHROMA_TYPE_444, 24	NumShortTermPictureSliceHeaderBits
VDP_INDEXED_FORMAT_A4I4, 24	VdpPictureInfoHEVC, 116
VDP_INDEXED_FORMAT_A8I8, 24	•
VDP_INDEXED_FORMAT_I4A4, 25	output_flag_present_flag
VDP_INDEXED_FORMAT_I8A8, 25	VdpPictureInfoHEVC, 116
VDP_INVALID_HANDLE, 25	overlap
VDP_RGBA_FORMAT_A8, 25	VdpPictureInfoVC1, 125
VDP_RGBA_FORMAT_B10G10R10A2, 25	
VDP_RGBA_FORMAT_B8G8R8A8, 26	panscan_flag
VDP_RGBA_FORMAT_R10G10B10A2, 26	VdpPictureInfoVC1, 125
VDP_RGBA_FORMAT_R8G8B8A8, 26	pcm_enabled_flag
VDP_YCBCR_FORMAT_NV12, 26	VdpPictureInfoHEVC, 116
VDP_YCBCR_FORMAT_UYVY, 26	pcm_loop_filter_disabled_flag
VDP_YCBCR_FORMAT_V8U8Y8A8, 27	VdpPictureInfoHEVC, 116
VDP_YCBCR_FORMAT_Y8U8V8A8, 27	pcm_sample_bit_depth_chroma_minus1
VDP_YCBCR_FORMAT_YUYV, 27	VdpPictureInfoHEVC, 116
VDP_YCBCR_FORMAT_YV12, 27	pcm_sample_bit_depth_luma_minus1
VdpChromaType, 28	VdpPictureInfoHEVC, 116
VdpIndexedFormat, 28	pic_height_in_luma_samples
VdpRGBAFormat, 28	VdpPictureInfoHEVC, 116
VdpYCbCrFormat, 28	pic_init_qp_minus26
multires	VdpPictureInfoH264, 108
VdpPictureInfoVC1, 125	pic_order_cnt_type
	VdpPictureInfoH264, 108
non_intra_quantizer_matrix	pic_order_present_flag
VdpPictureInfoMPEG1Or2, 121	VdpPictureInfoH264, 108
VdpPictureInfoMPEG4Part2, 122	pic_width_in_luma_samples
num_extra_slice_header_bits	VdpPictureInfoHEVC, 116
VdpPictureInfoHEVC, 115	PicOrderCntVal
num_long_term_ref_pics_sps	VdpPictureInfoHEVC, 116
VdpPictureInfoHEVC, 115	picture_coding_type
num_ref_frames	VdpPictureInfoMPEG1Or2, 121
VdpPictureInfoH264, 108	picture_structure
num_ref_idx_l0_active_minus1	VdpPictureInfoMPEG1Or2, 121
VdpPictureInfoH264, 108	picture_type
num_ref_idx_l0_default_active_minus1	VdpPictureInfoVC1, 125
VdpPictureInfoHEVC, 115	pictureInfo
num_ref_idx_l1_active_minus1	VdpPictureInfoH264Predictive, 110
VdpPictureInfoH264, 108	postprocflag
num_ref_idx_l1_default_active_minus1	VdpPictureInfoVC1, 125

pps_beta_offset_div2	VdpPictureInfoH264, 108
VdpPictureInfoHEVC, 116	resync_marker_disable
pps_cb_qp_offset	VdpPictureInfoMPEG4Part2, 122
VdpPictureInfoHEVC, 117	rounding_control
pps_cr_qp_offset	VdpPictureInfoMPEG4Part2, 122
VdpPictureInfoHEVC, 117	row_height_minus1
pps_deblocking_filter_disabled_flag	VdpPictureInfoHEVC, 117
VdpPictureInfoHEVC, 117	
pps_loop_filter_across_slices_enabled_flag	sample_adaptive_offset_enabled_flag
VdpPictureInfoHEVC, 117	VdpPictureInfoHEVC, 118
pps_slice_chroma_qp_offsets_present_flag	saturation
VdpPictureInfoHEVC, 117	VdpProcamp, 128
pps_tc_offset_div2	scaling_list_enabled_flag
VdpPictureInfoHEVC, 117	VdpPictureInfoHEVC, 118
pquant	scaling_lists_4x4
VdpPictureInfoVC1, 125	VdpPictureInfoH264, 108
psf	scaling_lists_8x8
VdpPictureInfoVC1, 125	VdpPictureInfoH264, 109
pulldown	ScalingList16x16
VdpPictureInfoVC1, 125	VdpPictureInfoHEVC, 118
	ScalingList32x32
q_scale_type	VdpPictureInfoHEVC, 118
VdpPictureInfoMPEG1Or2, 121	ScalingList4x4
qpprime_y_zero_transform_bypass_flag	VdpPictureInfoHEVC, 118
VdpPictureInfoH264Predictive, 110	ScalingList8x8
quant_type	VdpPictureInfoHEVC, 118
VdpPictureInfoMPEG4Part2, 122	ScalingListDCCoeff16x16
quantizer	VdpPictureInfoHEVC, 118
VdpPictureInfoVC1, 125	ScalingListDCCoeff32x32
quarter_sample	VdpPictureInfoHEVC, 118
VdpPictureInfoMPEG4Part2, 122	second_chroma_qp_index_offset
DADD: FI	VdpPictureInfoH264, 109
RAPPicFlag	separate_colour_plane_flag
VdpPictureInfoHEVC, 117	VdpPictureInfoH264Predictive, 110
range_mapuv	VdpPictureInfoHEVC, 118
VdpPictureInfoVC1, 125	short_video_header
range_mapuv_flag	VdpPictureInfoMPEG4Part2, 122
VdpPictureInfoVC1, 126	sign_data_hiding_enabled_flag
range_mapy	VdpPictureInfoHEVC, 118
VdpPictureInfoVC1, 126	slice_count
range_mapy_flag	VdpPictureInfoH264, 109
VdpPictureInfoVC1, 126	VdpPictureInfoMPEG10r2, 121
rangered	VdpPictureInfoVC1, 126
VdpPictureInfoVC1, 126	slice_segment_header_extension_present_flag
red	VdpPictureInfoHEVC, 118
VdpColor, 104	source_rect
redundant_pic_cnt_present_flag	VdpLayer, 105
VdpPictureInfoH264, 108	source_surface
RefPicSetLtCurr	VdpLayer, 105
VdpPictureInfoHEVC, 117	sps_max_dec_pic_buffering_minus1
RefPicSetStCurrAfter	VdpPictureInfoHEVC, 118
VdpPictureInfoHEVC, 117 RefPicSetStCurrBefore	sps_temporal_mvp_enabled_flag
	VdpPictureInfoHEVC, 118
VdpPictureInfoHEVC, 117 RefPics	strong_intra_smoothing_enabled_flag
	VdpPictureInfoHEVC, 119
VdpPictureInfoHEVC, 117	struct_version VdpRitetroamBuffor_103
refdist_flag VdpPictureInfoVC1, 126	VdpBitstreamBuffer, 103
referenceFrames	VdpLayer, 105 VdpOutputSurfaceRenderBlendState, 106
TOTOTOTI TATTIES	vapoulpulouriacer leriuer dieriuolale, 100

VdpProcamp, 128	VDP_DECODER_LEVEL_H264_2_1
surface	VdpDecoder; Video Decoding object, 63
VdpReferenceFrameH264, 130	VDP_DECODER_LEVEL_H264_2_2
syncmarker	VdpDecoder; Video Decoding object, 63
VdpPictureInfoVC1, 126	VDP_DECODER_LEVEL_H264_3
	VdpDecoder; Video Decoding object, 63
tfcntrflag	VDP_DECODER_LEVEL_H264_3_1
VdpPictureInfoVC1, 126	VdpDecoder; Video Decoding object, 63
tiles_enabled_flag	VDP_DECODER_LEVEL_H264_3_2
VdpPictureInfoHEVC, 119	VdpDecoder; Video Decoding object, 63
top_field_first	VDP_DECODER_LEVEL_H264_4
VdpPictureInfoMPEG1Or2, 121	VdpDecoder; Video Decoding object, 63
VdpPictureInfoMPEG4Part2, 122	VDP_DECODER_LEVEL_H264_4_1
top_is_reference	VdpDecoder; Video Decoding object, 63
VdpReferenceFrameH264, 130	VDP_DECODER_LEVEL_H264_4_2
transform_8x8_mode_flag	VdpDecoder; Video Decoding object, 63
VdpPictureInfoH264, 109	VDP_DECODER_LEVEL_H264_5
transform_skip_enabled_flag	VdpDecoder; Video Decoding object, 63
VdpPictureInfoHEVC, 119	VDP_DECODER_LEVEL_H264_5_1
transquant_bypass_enabled_flag	VdpDecoder; Video Decoding object, 63
VdpPictureInfoHEVC, 119	VDP_DECODER_LEVEL_HEVC_1
trb	VdpDecoder; Video Decoding object, 63
VdpPictureInfoMPEG4Part2, 122	VDP_DECODER_LEVEL_HEVC_2
trd	VdpDecoder; Video Decoding object, 63
VdpPictureInfoMPEG4Part2, 122	VDP_DECODER_LEVEL_HEVC_2_1
uniform_spacing_flag	VdpDecoder; Video Decoding object, 64
VdpPictureInfoHEVC, 119	VDP_DECODER_LEVEL_HEVC_3
vapi lotalemente vo, 110	VdpDecoder; Video Decoding object, 64
VDP BITSTREAM BUFFER VERSION	VDP_DECODER_LEVEL_HEVC_3_1
VdpDecoder; Video Decoding object, 63	VdpDecoder; Video Decoding object, 64
VDP_CHROMA_TYPE_420	VDP_DECODER_LEVEL_HEVC_4
Miscellaneous Types, 24	VdpDecoder; Video Decoding object, 64
VDP_CHROMA_TYPE_422	VDP_DECODER_LEVEL_HEVC_4_1
Miscellaneous Types, 24	VdpDecoder; Video Decoding object, 64
VDP_CHROMA_TYPE_444	VDP_DECODER_LEVEL_HEVC_5
Miscellaneous Types, 24	VdpDecoder; Video Decoding object, 64
VDP_COLOR_STANDARD_ITUR_BT_601	VDP_DECODER_LEVEL_HEVC_5_1
VdpCSCMatrix; CSC Matrix Manipulation, 36	VdpDecoder; Video Decoding object, 64
VDP_COLOR_STANDARD_ITUR_BT_709	VDP_DECODER_LEVEL_HEVC_5_2
VdpCSCMatrix; CSC Matrix Manipulation, 36	VdpDecoder; Video Decoding object, 64
VDP_COLOR_STANDARD_SMPTE_240M	VDP_DECODER_LEVEL_HEVC_6
VdpCSCMatrix; CSC Matrix Manipulation, 36	VdpDecoder; Video Decoding object, 64
VDP_COLOR_TABLE_FORMAT_B8G8R8X8	VDP_DECODER_LEVEL_HEVC_6_1
VdpOutputSurface; Output Surfaceobject, 44	VdpDecoder; Video Decoding object, 64
VDP_DECODER_LEVEL_DIVX_NA	VDP_DECODER_LEVEL_HEVC_6_2
VdpDecoder; Video Decoding object, 63	VdpDecoder; Video Decoding object, 64
VDP_DECODER_LEVEL_H264_1	VDP_DECODER_LEVEL_MPEG1_NA
VdpDecoder; Video Decoding object, 63	VdpDecoder; Video Decoding object, 64
VDP_DECODER_LEVEL_H264_1_1	VDP_DECODER_LEVEL_MPEG2_HL14
VdpDecoder; Video Decoding object, 63	VdpDecoder; Video Decoding object, 64
VDP_DECODER_LEVEL_H264_1_2	VDP_DECODER_LEVEL_MPEG2_HL
VdpDecoder; Video Decoding object, 63	VdpDecoder; Video Decoding object, 64
VDP_DECODER_LEVEL_H264_1_3	VDP_DECODER_LEVEL_MPEG2_LL
VdpDecoder; Video Decoding object, 63	VdpDecoder; Video Decoding object, 64 VDP_DECODER_LEVEL_MPEG2_ML
VDP_DECODER_LEVEL_H264_1b VdpDecoder; Video Decoding object, 63	VdpDecoder; Video Decoding object, 64
VDP_DECODER_LEVEL_H264_2	VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L0
VdpDecoder; Video Decoding object, 63	VdpDecoder; Video Decoding object, 64
vapoecoder, video oecoding object, oo	vapoecoder, video oecoding object, 04

VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L1	VdpDecoder; Video Decoding object, 65
VdpDecoder; Video Decoding object, 64	VDP_DECODER_PROFILE_H264_CONSTRAINED ←
VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L2	_HIGH
VdpDecoder; Video Decoding object, 64	VdpDecoder; Video Decoding object, 66
VDP DECODER LEVEL MPEG4 PART2 ASP L3	VDP DECODER PROFILE H264 EXTENDED
VdpDecoder; Video Decoding object, 64	VdpDecoder; Video Decoding object, 66
VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L4	VDP_DECODER_PROFILE_H264_HIGH_444_PRE←
VdpDecoder; Video Decoding object, 64	DICTIVE
VDP_DECODER_LEVEL_MPEG4_PART2_ASP_L5	VdpDecoder; Video Decoding object, 66
VdpDecoder; Video Decoding object, 64	VDP DECODER PROFILE H264 HIGH
VDP_DECODER_LEVEL_MPEG4_PART2_SP_L0	VdpDecoder; Video Decoding object, 66
VdpDecoder; Video Decoding object, 64	VDP_DECODER_PROFILE_H264_MAIN
VDP_DECODER_LEVEL_MPEG4_PART2_SP_L1	VdpDecoder; Video Decoding object, 66
VdpDecoder; Video Decoding object, 65	VDP_DECODER_PROFILE_H264_PROGRESSIVE
VDP_DECODER_LEVEL_MPEG4_PART2_SP_L2	_HIGH
VdpDecoder; Video Decoding object, 65	VdpDecoder; Video Decoding object, 66
VDP_DECODER_LEVEL_MPEG4_PART2_SP_L3	VDP_DECODER_PROFILE_HEVC_MAIN_10
VdpDecoder; Video Decoding object, 65	VdpDecoder; Video Decoding object, 66
VDP_DECODER_LEVEL_VC1_ADVANCED_L0	VDP_DECODER_PROFILE_HEVC_MAIN_12
VdpDecoder; Video Decoding object, 65	VdpDecoder; Video Decoding object, 66
VDP_DECODER_LEVEL_VC1_ADVANCED_L1	VDP_DECODER_PROFILE_HEVC_MAIN_444
VdpDecoder; Video Decoding object, 65	VdpDecoder; Video Decoding object, 66
VDP_DECODER_LEVEL_VC1_ADVANCED_L2	VDP_DECODER_PROFILE_HEVC_MAIN_STILL
VdpDecoder; Video Decoding object, 65	VdpDecoder; Video Decoding object, 66
VDP_DECODER_LEVEL_VC1_ADVANCED_L3	VDP_DECODER_PROFILE_HEVC_MAIN
VdpDecoder; Video Decoding object, 65	VdpDecoder; Video Decoding object, 66
VDP_DECODER_LEVEL_VC1_ADVANCED_L4	VDP_DECODER_PROFILE_MPEG1
VdpDecoder; Video Decoding object, 65	VdpDecoder; Video Decoding object, 66
VDP_DECODER_LEVEL_VC1_MAIN_HIGH	VDP_DECODER_PROFILE_MPEG2_MAIN
VdpDecoder; Video Decoding object, 65	VdpDecoder; Video Decoding object, 66
VDP_DECODER_LEVEL_VC1_MAIN_LOW	VDP_DECODER_PROFILE_MPEG2_SIMPLE
VdpDecoder; Video Decoding object, 65	VdpDecoder; Video Decoding object, 66
VDP DECODER LEVEL VC1 MAIN MEDIUM	VDP_DECODER_PROFILE_MPEG4_PART2_ASP
VdpDecoder; Video Decoding object, 65	VdpDecoder; Video Decoding object, 66
VDP_DECODER_LEVEL_VC1_SIMPLE_LOW	VDP_DECODER_PROFILE_MPEG4_PART2_SP
VdpDecoder; Video Decoding object, 65	VdpDecoder; Video Decoding object, 66
VDP_DECODER_LEVEL_VC1_SIMPLE_MEDIUM	VDP_DECODER_PROFILE_VC1_ADVANCED
VdpDecoder; Video Decoding object, 65	VdpDecoder; Video Decoding object, 66
VDP DECODER PROFILE DIVX4 HD 1080P	VDP_DECODER_PROFILE_VC1_MAIN
VdpDecoder; Video Decoding object, 65	VdpDecoder; Video Decoding object, 66
VDP DECODER PROFILE DIVX4 HOME THEATER	VDP DECODER PROFILE VC1 SIMPLE
VdpDecoder; Video Decoding object, 65	VdpDecoder; Video Decoding object, 66
VDP_DECODER_PROFILE_DIVX4_MOBILE	VDP FALSE
VdpDecoder; Video Decoding object, 65	Basic Types, 22
VDP DECODER PROFILE DIVX4 QMOBILE	VDP_FUNC_ID_BASE_WINSYS
VdpDecoder; Video Decoding object, 65	Entry Point Retrieval, 94
VDP DECODER PROFILE DIVX5 HD 1080P	VDP_FUNC_ID_BITMAP_SURFACE_CREATE
VdpDecoder; Video Decoding object, 65	Entry Point Retrieval, 94
VDP DECODER PROFILE DIVX5 HOME THEATER	VDP_FUNC_ID_BITMAP_SURFACE_DESTROY
VdpDecoder; Video Decoding object, 65	Entry Point Retrieval, 94
VDP_DECODER_PROFILE_DIVX5_MOBILE	VDP_FUNC_ID_BITMAP_SURFACE_GET_PARAM
VdpDecoder; Video Decoding object, 65	ETERS
VDP_DECODER_PROFILE_DIVX5_QMOBILE	Entry Point Retrieval, 94
VdpDecoder; Video Decoding object, 65	VDP_FUNC_ID_BITMAP_SURFACE_PUT_BITS_N←
VDP_DECODER_PROFILE_H264_BASELINE	ATIVE
VdpDecoder; Video Decoding object, 65	Entry Point Retrieval, 94
VDP_DECODER_PROFILE_H264_CONSTRAINED↔	VDP_FUNC_ID_BITMAP_SURFACE_QUERY_CAP
BASELINE	ABILITIES

Entry Point Retrieval, 95	VDP_FUNC_ID_OUTPUT_SURFACE_RENDER_O↔
VDP_FUNC_ID_DECODER_CREATE	UTPUT_SURFACE
Entry Point Retrieval, 95	Entry Point Retrieval, 96
VDP_FUNC_ID_DECODER_DESTROY	VDP_FUNC_ID_OUTPUT_SURFACE_RENDER_VI
Entry Point Retrieval, 95	DEO_SURFACE_LUMA
VDP_FUNC_ID_DECODER_GET_PARAMETERS	Entry Point Retrieval, 96
Entry Point Retrieval, 95	VDP_FUNC_ID_PREEMPTION_CALLBACK_REGIS←
VDP_FUNC_ID_DECODER_QUERY_CAPABILITIES	TER
Entry Point Retrieval, 95	Entry Point Retrieval, 96
VDP_FUNC_ID_DECODER_RENDER	VDP_FUNC_ID_PRESENTATION_QUEUE_BLOCK←
Entry Point Retrieval, 95	_UNTIL_SURFACE_IDLE
VDP_FUNC_ID_DEVICE_DESTROY	Entry Point Retrieval, 96
Entry Point Retrieval, 95	VDP_FUNC_ID_PRESENTATION_QUEUE_CREATE
VDP_FUNC_ID_GENERATE_CSC_MATRIX	Entry Point Retrieval, 96
Entry Point Retrieval, 95	VDP_FUNC_ID_PRESENTATION_QUEUE_DESTROY
VDP_FUNC_ID_GET_API_VERSION	Entry Point Retrieval, 96
Entry Point Retrieval, 95	VDP_FUNC_ID_PRESENTATION_QUEUE_DISPLAY
VDP_FUNC_ID_GET_ERROR_STRING	Entry Point Retrieval, 96
Entry Point Retrieval, 95	VDP_FUNC_ID_PRESENTATION_QUEUE_GET_B↔
VDP FUNC ID GET INFORMATION STRING	ACKGROUND_COLOR
Entry Point Retrieval, 95	Entry Point Retrieval, 96
VDP_FUNC_ID_GET_PROC_ADDRESS	VDP_FUNC_ID_PRESENTATION_QUEUE_GET_TI↔
Entry Point Retrieval, 95	ME
	Entry Point Retrieval, 96
VDP_FUNC_ID_OUTPUT_SURFACE_CREATE	VDP_FUNC_ID_PRESENTATION_QUEUE_QUERY↔
Entry Point Retrieval, 95	_SURFACE_STATUS
VDP_FUNC_ID_OUTPUT_SURFACE_DESTROY	Entry Point Retrieval, 96
Entry Point Retrieval, 95	VDP_FUNC_ID_PRESENTATION_QUEUE_SET_B↔
VDP_FUNC_ID_OUTPUT_SURFACE_GET_BITS_N←	ACKGROUND_COLOR
ATIVE	Entry Point Retrieval, 96
Entry Point Retrieval, 95	VDP_FUNC_ID_PRESENTATION_QUEUE_TARGE ←
VDP_FUNC_ID_OUTPUT_SURFACE_GET_PARAM ←	T_CREATE_X11
ETERS	X11 Window System Integration Layer, 100
Entry Point Retrieval, 95	VDP_FUNC_ID_PRESENTATION_QUEUE_TARGE ←
VDP_FUNC_ID_OUTPUT_SURFACE_PUT_BITS_I ↔	T_DESTROY
NDEXED	Entry Point Retrieval, 96
Entry Point Retrieval, 95	VDP_FUNC_ID_VIDEO_MIXER_CREATE
VDP_FUNC_ID_OUTPUT_SURFACE_PUT_BITS_N↔	Entry Point Retrieval, 96
ATIVE	VDP_FUNC_ID_VIDEO_MIXER_DESTROY
Entry Point Retrieval, 95	Entry Point Retrieval, 96
VDP_FUNC_ID_OUTPUT_SURFACE_PUT_BITS_Y↔	VDP_FUNC_ID_VIDEO_MIXER_GET_ATTRIBUTE_←
_CB_CR	VALUES
Entry Point Retrieval, 95	Entry Point Retrieval, 96
VDP_FUNC_ID_OUTPUT_SURFACE_QUERY_CAP←	VDP_FUNC_ID_VIDEO_MIXER_GET_FEATURE_E↔
ABILITIES	NABLES
Entry Point Retrieval, 95	Entry Point Retrieval, 96
VDP_FUNC_ID_OUTPUT_SURFACE_QUERY_GET←	VDP_FUNC_ID_VIDEO_MIXER_GET_FEATURE_S↔
_PUT_BITS_NATIVE_CAPABILITIES	UPPORT
Entry Point Retrieval, 95	Entry Point Retrieval, 96
VDP_FUNC_ID_OUTPUT_SURFACE_QUERY_PUT↔	VDP_FUNC_ID_VIDEO_MIXER_GET_PARAMETER ←
_BITS_INDEXED_CAPABILITIES	VALUES
Entry Point Retrieval, 95	Entry Point Retrieval, 96
VDP_FUNC_ID_OUTPUT_SURFACE_QUERY_PUT←	VDP_FUNC_ID_VIDEO_MIXER_QUERY_ATTRIBU↔
 _BITS_Y_CB_CR_CAPABILITIES	TE_SUPPORT
Entry Point Retrieval, 95	Entry Point Retrieval, 96
VDP_FUNC_ID_OUTPUT_SURFACE_RENDER_BI↔	VDP_FUNC_ID_VIDEO_MIXER_QUERY_ATTRIBU↔
TMAP_SURFACE	TE_VALUE_RANGE
Entry Point Retrieval, 96	Entry Point Retrieval, 96

VDP_FUNC_ID_VIDEO_MIXER_QUERY_FEATURE → VDP_OUTPUT_SURFACE_RENDER_BLEND_EQU → SUPPORT Entry Point Retrieval, 96 VDP_FUNC_ID_VIDEO_MIXER_QUERY_PARAME ← TER_SUPPORT Entry Point Retrieval, 96 VDP FUNC ID VIDEO MIXER QUERY PARAME← TER_VALUE_RANGE Entry Point Retrieval, 97 VDP_FUNC_ID_VIDEO_MIXER_RENDER Entry Point Retrieval, 97 VDP_FUNC_ID_VIDEO_MIXER_SET_ATTRIBUTE_← **VALUES** Entry Point Retrieval, 97 VDP FUNC ID VIDEO MIXER SET FEATURE $\mathsf{E}_{\hookleftarrow}$ **NABLES** Entry Point Retrieval, 97 VDP FUNC ID VIDEO SURFACE CREATE Entry Point Retrieval, 97 VDP_FUNC_ID_VIDEO_SURFACE_DESTROY Entry Point Retrieval, 97 VDP_FUNC_ID_VIDEO_SURFACE_GET_BITS_Y_← CB_CR Entry Point Retrieval, 97 VDP FUNC ID VIDEO SURFACE GET PARAME← **TERS** Entry Point Retrieval, 97 VDP FUNC ID VIDEO SURFACE PUT BITS Y \leftarrow CB CR Entry Point Retrieval, 97 VDP FUNC ID VIDEO SURFACE QUERY CAPA← **BILITIES** Entry Point Retrieval, 97 VDP FUNC ID VIDEO SURFACE QUERY GET \leftarrow PUT BITS Y CB CR CAPABILITIES Entry Point Retrieval, 97 VDP INDEXED FORMAT A4I4 Miscellaneous Types, 24 VDP INDEXED FORMAT A8I8 Miscellaneous Types, 24 VDP_INDEXED_FORMAT_I4A4 Miscellaneous Types, 25 VDP INDEXED FORMAT I8A8 Miscellaneous Types, 25 VDP INVALID HANDLE Miscellaneous Types, 25 VDP_LAYER_VERSION VdpVideoMixer; Video Post-processing and Compositing object, 73 VDP_OUTPUT_SURFACE_RENDER_BLEND_EQU← ATION_ADD

VdpOutputSurface Rendering Functionality, 58

VdpOutputSurface Rendering Functionality, 58 VDP OUTPUT SURFACE RENDER BLEND EQU←

VdpOutputSurface Rendering Functionality, 58

VDP OUTPUT SURFACE RENDER BLEND EQU←

ATION MAX

ATION MIN

ATION REVERSE SUBTRACT VdpOutputSurface Rendering Functionality, 58 VDP OUTPUT SURFACE RENDER BLEND EQU⇔ ATION_SUBTRACT VdpOutputSurface Rendering Functionality, 58 VDP OUTPUT SURFACE RENDER BLEND FAC← TOR CONSTANT ALPHA VdpOutputSurface Rendering Functionality, 59 VDP_OUTPUT_SURFACE_RENDER_BLEND_FAC← TOR_CONSTANT_COLOR VdpOutputSurface Rendering Functionality, 59 $VDP_OUTPUT_SURFACE_RENDER_BLEND_FAC {\leftarrow}$ TOR_DST_ALPHA VdpOutputSurface Rendering Functionality, 59 VDP OUTPUT SURFACE RENDER BLEND FAC← TOR DST COLOR VdpOutputSurface Rendering Functionality, 59 VDP OUTPUT SURFACE RENDER BLEND FAC← TOR ONE MINUS CONSTANT ALPHA VdpOutputSurface Rendering Functionality, 59 $VDP_OUTPUT_SURFACE_RENDER_BLEND_FAC \hookleftarrow$ TOR_ONE_MINUS_CONSTANT_COLOR VdpOutputSurface Rendering Functionality, 59 VDP OUTPUT SURFACE RENDER BLEND FAC← TOR ONE MINUS DST ALPHA VdpOutputSurface Rendering Functionality, 59 VDP OUTPUT SURFACE RENDER BLEND FAC← TOR_ONE_MINUS_DST_COLOR VdpOutputSurface Rendering Functionality, 59 VDP OUTPUT SURFACE RENDER BLEND FAC← TOR_ONE_MINUS_SRC_ALPHA VdpOutputSurface Rendering Functionality, 59 VDP OUTPUT SURFACE RENDER BLEND FAC← TOR ONE MINUS SRC COLOR VdpOutputSurface Rendering Functionality, 59 VDP OUTPUT SURFACE RENDER BLEND FAC← TOR ONE VdpOutputSurface Rendering Functionality, 59 VDP OUTPUT SURFACE RENDER BLEND FAC← TOR_SRC_ALPHA_SATURATE VdpOutputSurface Rendering Functionality, 59 VDP OUTPUT SURFACE RENDER BLEND FAC← TOR SRC ALPHA VdpOutputSurface Rendering Functionality, 59 VDP OUTPUT SURFACE RENDER BLEND FAC← TOR SRC COLOR VdpOutputSurface Rendering Functionality, 59 VDP_OUTPUT_SURFACE_RENDER_BLEND_FAC← TOR ZERO VdpOutputSurface Rendering Functionality, 59 VDP OUTPUT SURFACE RENDER BLEND STA← TE VERSION VdpOutputSurface Rendering Functionality, 55 VDP OUTPUT SURFACE RENDER COLOR PER←

VERTEX

VdpOutputSurface Rendering Functionality, 55

VDP_OUTPUT_SURFACE_RENDER_ROTATE_0

VdpOutputSurface Rendering Functionality, 55 VDP_STATUS_INVALID_SIZE VDP OUTPUT SURFACE RENDER ROTATE 180 Error Handling, 30 VdpOutputSurface Rendering Functionality, 55 VDP_STATUS_INVALID_STRUCT_VERSION VDP OUTPUT SURFACE RENDER ROTATE 270 Error Handling, 31 VDP STATUS INVALID_VALUE VdpOutputSurface Rendering Functionality, 55 VDP OUTPUT SURFACE RENDER ROTATE 90 Error Handling, 31 VdpOutputSurface Rendering Functionality, 55 VDP STATUS INVALID VIDEO MIXER ATTRIBUTE VDP PRESENTATION QUEUE STATUS IDLE Error Handling, 30 VdpPresentationQueue; Video presentation (dis-VDP_STATUS_INVALID_VIDEO_MIXER_FEATURE play) object, 90 Error Handling, 30 VDP_PRESENTATION_QUEUE_STATUS_QUEUED VDP_STATUS_INVALID_VIDEO_MIXER_PARAME ← VdpPresentationQueue; Video presentation (dis-TER play) object, 90 Error Handling, 30 VDP PRESENTATION QUEUE STATUS VISIBLE VDP STATUS INVALID VIDEO MIXER PICTURE← VdpPresentationQueue; Video presentation (dis-**STRUCTURE** play) object, 90 Error Handling, 30 VDP PROCAMP VERSION VDP STATUS_INVALID_Y_CB_CR_FORMAT VdpCSCMatrix; CSC Matrix Manipulation, 36 Error Handling, 30 VDP_RGBA_FORMAT_A8 VDP_STATUS_NO_IMPLEMENTATION Miscellaneous Types, 25 Error Handling, 30 VDP RGBA FORMAT B10G10R10A2 VDP_STATUS_OK Miscellaneous Types, 25 Error Handling, 30 VDP_RGBA_FORMAT_B8G8R8A8 VDP STATUS RESOURCES Miscellaneous Types, 26 Error Handling, 31 VDP RGBA FORMAT R10G10B10A2 VDP TRUE Miscellaneous Types, 26 Basic Types, 22 VDP RGBA FORMAT R8G8B8A8 VDP VIDEO MIXER ATTRIBUTE BACKGROUND← Miscellaneous Types, 26 **COLOR** VDP STATUS DISPLAY PREEMPTED VdpVideoMixer; Video Post-processing and Com-Error Handling, 30 positing object, 73 VDP STATUS ERROR VDP_VIDEO_MIXER_ATTRIBUTE_CSC_MATRIX Error Handling, 31 VdpVideoMixer; Video Post-processing and Com-VDP_STATUS_HANDLE_DEVICE_MISMATCH positing object, 73 Error Handling, 31 VDP VIDEO MIXER ATTRIBUTE LUMA KEY MA↔ VDP STATUS INVALID BLEND EQUATION X LUMA Error Handling, 30 VdpVideoMixer; Video Post-processing and Com-VDP STATUS INVALID BLEND FACTOR positing object, 73 Error Handling, 30 VDP VIDEO MIXER ATTRIBUTE LUMA KEY MI← VDP_STATUS_INVALID_CHROMA_TYPE N LUMA Error Handling, 30 VdpVideoMixer; Video Post-processing and Com-VDP_STATUS_INVALID_COLOR_STANDARD positing object, 74 Error Handling, 30 VDP VIDEO MIXER ATTRIBUTE NOISE REDUC← VDP STATUS INVALID COLOR TABLE FORMAT TION LEVEL Error Handling, 30 VdpVideoMixer; Video Post-processing and Com-VDP STATUS INVALID DECODER PROFILE positing object, 74 Error Handling, 30 VDP VIDEO MIXER ATTRIBUTE SHARPNESS L← VDP STATUS INVALID FLAG **EVEL** Error Handling, 30 VdpVideoMixer; Video Post-processing and Com-VDP_STATUS_INVALID_FUNC_ID positing object, 74 Error Handling, 30 VDP_VIDEO_MIXER_ATTRIBUTE_SKIP_CHROMA← VDP_STATUS_INVALID_HANDLE _DEINTERLACE VdpVideoMixer; Video Post-processing and Com-Error Handling, 30 VDP STATUS INVALID INDEXED FORMAT positing object, 74 Error Handling, 30 VDP_VIDEO_MIXER_FEATURE_DEINTERLACE_T← VDP_STATUS_INVALID_POINTER **EMPORAL SPATIAL** VdpVideoMixer; Video Post-processing and Com-Error Handling, 30 VDP_STATUS_INVALID_RGBA_FORMAT positing object, 75 Error Handling, 30 VDP_VIDEO_MIXER_FEATURE_DEINTERLACE_T←

EMPORAL positing object, 77 VdpVideoMixer; Video Post-processing and Com- VDP VIDEO MIXER PARAMETER VIDEO SURF

✓ positing object, 74 ACE HEIGHT VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_← VdpVideoMixer; Video Post-processing and Com-SCALING L1 positing object, 77 VdpVideoMixer; Video Post-processing and Com-VDP VIDEO MIXER PARAMETER VIDEO SURF← ACE_WIDTH positing object, 75 VDP VIDEO MIXER FEATURE HIGH QUALITY ~ VdpVideoMixer; Video Post-processing and Com-SCALING L2 positing object, 78 VDP VIDEO MIXER PICTURE STRUCTURE BOT← VdpVideoMixer; Video Post-processing and Compositing object, 75 TOM FIELD VdpVideoMixer; Video Post-processing and Com-VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_← positing object, 84 SCALING_L3 VdpVideoMixer; Video Post-processing and Com-VDP_VIDEO_MIXER_PICTURE_STRUCTURE_FRA← positing object, 75 VDP VIDEO MIXER FEATURE HIGH QUALITY \leftarrow VdpVideoMixer; Video Post-processing and Compositing object, 84 SCALING L4 VDP VIDEO MIXER PICTURE STRUCTURE TOP← VdpVideoMixer; Video Post-processing and Com-FIELD positing object, 75 VDP VIDEO MIXER FEATURE HIGH QUALITY ~ VdpVideoMixer; Video Post-processing and Compositing object, 84 SCALING L5 VDP YCBCR FORMAT NV12 VdpVideoMixer; Video Post-processing and Com-Miscellaneous Types, 26 positing object, 76 VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_← VDP_YCBCR_FORMAT_UYVY Miscellaneous Types, 26 SCALING L6 VDP YCBCR FORMAT V8U8Y8A8 VdpVideoMixer; Video Post-processing and Com-Miscellaneous Types, 27 positing object, 76 VDP VIDEO MIXER FEATURE HIGH QUALITY 4 VDP YCBCR FORMAT Y8U8V8A8 Miscellaneous Types, 27 SCALING L7 VDP_YCBCR_FORMAT_YUYV VdpVideoMixer; Video Post-processing and Com-Miscellaneous Types, 27 positing object, 76 VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_← VDP YCBCR FORMAT YV12 SCALING_L8 Miscellaneous Types, 27 VdpVideoMixer: Video Post-processing and Com-VDPAU INTERFACE VERSION Versioning, 32 positing object, 76 VDPAU_VERSION VDP VIDEO MIXER FEATURE HIGH QUALITY \leftarrow SCALING L9 Versioning, 32 VdpVideoMixer; Video Post-processing and Comvdp device create x11 X11 Window System Integration Layer, 101 positing object, 76 VDP VIDEO MIXER FEATURE INVERSE TELECI← VdpBitmapSurface VdpBitmapSurface; Bitmap Surfaceobject, 51 VdpVideoMixer; Video Post-processing and Com-VdpBitmapSurface; Bitmap Surfaceobject, 50 positing object, 76 VdpBitmapSurface, 51 VDP VIDEO MIXER FEATURE LUMA KEY VdpBitmapSurfaceCreate, 51 VdpVideoMixer; Video Post-processing and Com-VdpBitmapSurfaceDestroy, 51 positing object, 76 VdpBitmapSurfaceGetParameters, 51 VDP_VIDEO_MIXER_FEATURE_NOISE_REDUCTI← VdpBitmapSurfacePutBitsNative, 52 ON VdpBitmapSurfaceQueryCapabilities, 52 VdpVideoMixer; Video Post-processing and Com-VdpBitmapSurfaceCreate positing object, 77 VdpBitmapSurface; Bitmap Surfaceobject, 51 VDP_VIDEO_MIXER_FEATURE_SHARPNESS VdpBitmapSurfaceDestroy VdpVideoMixer; Video Post-processing and Com-VdpBitmapSurface; Bitmap Surfaceobject, 51 positing object, 77 **VdpBitmapSurfaceGetParameters** VDP VIDEO MIXER PARAMETER CHROMA TYPE VdpBitmapSurface; Bitmap Surfaceobject, 51 VdpVideoMixer; Video Post-processing and Com-**VdpBitmapSurfacePutBitsNative** positing object, 77 VdpBitmapSurface; Bitmap Surfaceobject, 52 VDP_VIDEO_MIXER_PARAMETER_LAYERS VdpBitmapSurfaceQueryCapabilities VdpVideoMixer; Video Post-processing and Com-VdpBitmapSurface; Bitmap Surfaceobject, 52

Vala Ditatus and Duffers 400	VDD DECODED LEVEL HEVO C CA
VdpBitstreamBuffer, 103	VDP_DECODER_LEVEL_HEVC_6, 64 VDP_DECODER_LEVEL_HEVC_6 1, 64
bitstream, 103	
bitstream_bytes, 103	VDP_DECODER_LEVEL_HEVC_6_2, 64
struct_version, 103 VdpBool	VDP_DECODER_LEVEL_MPEG1_NA, 64
Basic Types, 22	VDP_DECODER_LEVEL_MPEG2_HL14, 64
	VDP_DECODER_LEVEL_MPEG2_HL, 64
VdpCSCMatrix	VDP_DECODER_LEVEL_MPEG2_LL, 64
VdpCSCMatrix; CSC Matrix Manipulation, 36	VDP_DECODER_LEVEL_MPEG2_ML, 64
VdpCSCMatrix; CSC Matrix Manipulation, 35 VDP COLOR STANDARD ITUR BT 601, 36	VDP_DECODER_LEVEL_MPEG4_PART2_AS↔
	P_L0, 64
VDP_COLOR_STANDARD_ITUR_BT_709, 36	VDP_DECODER_LEVEL_MPEG4_PART2_AS↔
VDP_COLOR_STANDARD_SMPTE_240M, 36	P_L1, 64
VDP_PROCAMP_VERSION, 36	VDP_DECODER_LEVEL_MPEG4_PART2_AS↔
VdpCSCMatrix, 36	P_L2, 64
VdpColorStandard, 36	VDP_DECODER_LEVEL_MPEG4_PART2_AS↔
VdpGenerateCSCMatrix, 36	P_L3, 64
VdpChromaType	VDP_DECODER_LEVEL_MPEG4_PART2_AS↔
Miscellaneous Types, 28	P_L4, 64
VdpColor, 104	VDP_DECODER_LEVEL_MPEG4_PART2_AS↔
alpha, 104	P_L5, 64
blue, 104	VDP_DECODER_LEVEL_MPEG4_PART2_SP↔
green, 104	_L0, 64
red, 104	VDP_DECODER_LEVEL_MPEG4_PART2_SP↔
VdpColorStandard	_L1, 65
VdpCSCMatrix; CSC Matrix Manipulation, 36	VDP_DECODER_LEVEL_MPEG4_PART2_SP↔
VdpColorTableFormat	_L2, 65
VdpOutputSurface; Output Surfaceobject, 44	VDP_DECODER_LEVEL_MPEG4_PART2_SP↔
VdpDecoder	_L3, 65
VdpDecoder; Video Decoding object, 66	VDP_DECODER_LEVEL_VC1_ADVANCED_L0,
VdpDecoder; Video Decoding object, 60	65
VDP_BITSTREAM_BUFFER_VERSION, 63	VDP_DECODER_LEVEL_VC1_ADVANCED_L1,
VDP_DECODER_LEVEL_DIVX_NA, 63	65
VDP_DECODER_LEVEL_H264_1, 63	VDP_DECODER_LEVEL_VC1_ADVANCED_L2,
VDP_DECODER_LEVEL_H264_1_1, 63	65
VDP_DECODER_LEVEL_H264_1_2, 63	VDP_DECODER_LEVEL_VC1_ADVANCED_L3,
VDP_DECODER_LEVEL_H264_1_3, 63	65
VDP_DECODER_LEVEL_H264_1b, 63	VDP_DECODER_LEVEL_VC1_ADVANCED_L4,
VDP_DECODER_LEVEL_H264_2, 63	65
VDP_DECODER_LEVEL_H264_2_1, 63	VDP_DECODER_LEVEL_VC1_MAIN_HIGH, 65
VDP_DECODER_LEVEL_H264_2_2, 63	VDP_DECODER_LEVEL_VC1_MAIN_LOW, 65
VDP_DECODER_LEVEL_H264_3, 63	VDP_DECODER_LEVEL_VC1_MAIN_MEDIUM,
VDP_DECODER_LEVEL_H264_3_1, 63	65
VDP_DECODER_LEVEL_H264_3_2, 63	VDP_DECODER_LEVEL_VC1_SIMPLE_LOW, 65
VDP_DECODER_LEVEL_H264_4, 63	VDP_DECODER_LEVEL_VC1_SIMPLE_MEDI↔
VDP_DECODER_LEVEL_H264_4_1, 63	UM, 65
VDP_DECODER_LEVEL_H264_4_2, 63	VDP_DECODER_PROFILE_DIVX4_HD_1080P,
VDP_DECODER_LEVEL_H264_5, 63	65
VDP_DECODER_LEVEL_H264_5_1, 63	VDP_DECODER_PROFILE_DIVX4_HOME_TH↔
VDP_DECODER_LEVEL_HEVC_1, 63	EATER, 65
VDP_DECODER_LEVEL_HEVC_2, 63	VDP_DECODER_PROFILE_DIVX4_MOBILE, 65
VDP_DECODER_LEVEL_HEVC_2_1, 64	VDP_DECODER_PROFILE_DIVX4_QMOBILE,
VDP_DECODER_LEVEL_HEVC_3, 64	65
VDP_DECODER_LEVEL_HEVC_3_1, 64	VDP_DECODER_PROFILE_DIVX5_HD_1080P,
VDP_DECODER_LEVEL_HEVC_4, 64	65
VDP_DECODER_LEVEL_HEVC_4_1, 64	VDP_DECODER_PROFILE_DIVX5_HOME_TH↔
VDP_DECODER_LEVEL_HEVC_5, 64	EATER, 65
VDP_DECODER_LEVEL_HEVC_5_1, 64	VDP_DECODER_PROFILE_DIVX5_MOBILE, 65
VDP_DECODER_LEVEL_HEVC_5_2, 64	VDP_DECODER_PROFILE_DIVX5_QMOBILE,

65	VdpDeviceDestroy, 34
VDP_DECODER_PROFILE_H264_BASELINE, 65	VdpDeviceCreateX11
VDP_DECODER_PROFILE_H264_CONSTRAI ←	X11 Window System Integration Layer, 100
NED_BASELINE, 65	VdpDeviceDestroy
VDP_DECODER_PROFILE_H264_CONSTRAI ←	VdpDevice; Primary API object, 34
NED_HIGH, 66	VdpFuncId
VDP_DECODER_PROFILE_H264_EXTENDED,	Entry Point Retrieval, 97
66	VdpGenerateCSCMatrix
VDP_DECODER_PROFILE_H264_HIGH_444_←	VdpCSCMatrix; CSC Matrix Manipulation, 36
PREDICTIVE, 66	VdpGetApiVersion
VDP_DECODER_PROFILE_H264_HIGH, 66	Versioning, 33
VDP_DECODER_PROFILE_H264_MAIN, 66	VdpGetErrorString
VDP_DECODER_PROFILE_H264_PROGRES↔	Error Handling, 29
SIVE_HIGH, 66	VdpGetInformationString
VDP_DECODER_PROFILE_HEVC_MAIN_10, 66	Versioning, 33
VDP_DECODER_PROFILE_HEVC_MAIN_12, 66	VdpGetProcAddress
VDP_DECODER_PROFILE_HEVC_MAIN_444,	Entry Point Retrieval, 97
66	VdpIndexedFormat
VDP_DECODER_PROFILE_HEVC_MAIN_STILL,	Miscellaneous Types, 28
66	VdpLayer, 104
VDP_DECODER_PROFILE_HEVC_MAIN, 66	destination_rect, 105
VDP_DECODER_PROFILE_MPEG1, 66	source_rect, 105
VDP_DECODER_PROFILE_MPEG2_MAIN, 66	source_surface, 105
VDP_DECODER_PROFILE_MPEG2_SIMPLE, 66	struct version, 105
VDP_DECODER_PROFILE_MPEG4_PART2_A↔	VdpOutputSurface
SP, 66	VdpOutputSurface; Output Surfaceobject, 44
VDP_DECODER_PROFILE_MPEG4_PART2_SP,	VdpOutputSurface Rendering Functionality, 54
66	VDP_OUTPUT_SURFACE_RENDER_BLEND_←
VDP_DECODER_PROFILE_VC1_ADVANCED,	EQUATION_ADD, 58
66	VDP_OUTPUT_SURFACE_RENDER_BLEND_←
VDP_DECODER_PROFILE_VC1_MAIN, 66	EQUATION_MAX, 58
VDP_DECODER_PROFILE_VC1_SIMPLE, 66	VDP_OUTPUT_SURFACE_RENDER_BLEND_←
VdpDecoder, 66	EQUATION_MIN, 58
VdpDecoderCreate, 66	VDP_OUTPUT_SURFACE_RENDER_BLEND_←
VdpDecoderDestroy, 67	EQUATION_REVERSE_SUBTRACT, 58
VdpDecoderGetParameters, 67	VDP_OUTPUT_SURFACE_RENDER_BLEND_←
VdpDecoderProfile, 67	EQUATION_SUBTRACT, 58
VdpDecoderQueryCapabilities, 67	VDP_OUTPUT_SURFACE_RENDER_BLEND_←
VdpDecoderRender, 68	FACTOR_CONSTANT_ALPHA, 59
VdpPictureInfo, 68	VDP_OUTPUT_SURFACE_RENDER_BLEND_←
VdpPictureInfoDivX4, 68	FACTOR_CONSTANT_COLOR, 59
VdpPictureInfoDivX5, 69	VDP_OUTPUT_SURFACE_RENDER_BLEND_←
VdpDecoderCreate	FACTOR_DST_ALPHA, 59
VdpDecoder; Video Decoding object, 66	VDP_OUTPUT_SURFACE_RENDER_BLEND_←
VdpDecoderDestroy	FACTOR_DST_COLOR, 59
VdpDecoder; Video Decoding object, 67	VDP OUTPUT SURFACE RENDER BLEND ↔
VdpDecoderGetParameters	FACTOR_ONE_MINUS_CONSTANT_ALP↔
VdpDecoder; Video Decoding object, 67	HA, 59
VdpDecoderProfile	VDP_OUTPUT_SURFACE_RENDER_BLEND_←
VdpDecoder; Video Decoding object, 67	FACTOR_ONE_MINUS_CONSTANT_COL
VdpDecoderQueryCapabilities	OR, 59
VdpDecoder; Video Decoding object, 67	VDP_OUTPUT_SURFACE_RENDER_BLEND_←
VdpDecoderRender	FACTOR_ONE_MINUS_DST_ALPHA, 59
VdpDecoder; Video Decoding object, 68	VDP_OUTPUT_SURFACE_RENDER_BLEND_←
VdpDevice	FACTOR_ONE_MINUS_DST_COLOR, 59
VdpDevice; Primary API object, 34	VDP OUTPUT SURFACE RENDER BLEND ←
VdpDevice; Primary API object, 34	FACTOR_ONE_MINUS_SRC_ALPHA, 59
VdpDevice, 34	VDP OUTPUT SURFACE RENDER BLEND ←
p = 0.100, 0.	· - · · · · · · · · · · · · · · · ·

FACTOR_ONE_MINUS_SRC_COLOR, 59	VdpOutputSurface; Output Surfaceobject, 47
VDP_OUTPUT_SURFACE_RENDER_BLEND_←	VdpOutputSurfaceQueryCapabilities
FACTOR_ONE, 59	VdpOutputSurface; Output Surfaceobject, 48
VDP_OUTPUT_SURFACE_RENDER_BLEND_←	VdpOutputSurfaceQueryGetPutBitsNativeCapabilities
FACTOR_SRC_ALPHA_SATURATE, 59	VdpOutputSurface; Output Surfaceobject, 48
VDP_OUTPUT_SURFACE_RENDER_BLEND_←	VdpOutputSurfaceQueryPutBitsIndexedCapabilities
FACTOR_SRC_ALPHA, 59	VdpOutputSurface; Output Surfaceobject, 48
VDP_OUTPUT_SURFACE_RENDER_BLEND_←	VdpOutputSurfaceQueryPutBitsYCbCrCapabilities
FACTOR SRC COLOR, 59	• •
	VdpOutputSurface; Output Surfaceobject, 49
VDP_OUTPUT_SURFACE_RENDER_BLEND_←	VdpOutputSurfaceRenderBitmapSurface
FACTOR_ZERO, 59	VdpOutputSurface Rendering Functionality, 56
VDP_OUTPUT_SURFACE_RENDER_BLEND_←	VdpOutputSurfaceRenderBlendEquation
STATE_VERSION, 55	VdpOutputSurface Rendering Functionality, 58
VDP_OUTPUT_SURFACE_RENDER_COLOR_←	VdpOutputSurfaceRenderBlendFactor
PER_VERTEX, 55	VdpOutputSurface Rendering Functionality, 58
VDP_OUTPUT_SURFACE_RENDER_ROTATE↔	VdpOutputSurfaceRenderBlendState, 105
_0, 55	blend_constant, 106
VDP_OUTPUT_SURFACE_RENDER_ROTATE↔	blend_equation_alpha, 106
_180, 5 5	blend_equation_color, 106
VDP_OUTPUT_SURFACE_RENDER_ROTATE↔	blend_factor_destination_alpha, 106
_270, 5 5	blend factor destination color, 106
VDP_OUTPUT_SURFACE_RENDER_ROTATE↔	blend_factor_source_alpha, 106
	blend_factor_source_color, 106
VdpOutputSurfaceRenderBitmapSurface, 56	struct version, 106
VdpOutputSurfaceRenderBlendEquation, 58	VdpOutputSurfaceRenderOutputSurface
VdpOutputSurfaceRenderBlendFactor, 58	VdpOutputSurface Rendering Functionality, 57
VdpOutputSurfaceRenderOutputSurface, 57	VdpPictureInfo
VdpOutputSurface; Output Surfaceobject, 43	•
VDP_COLOR_TABLE_FORMAT_B8G8R8X8, 44	VdpDecoder; Video Decoding object, 68
VdpColorTableFormat, 44	VdpPictureInfoDivX4
	VdpDecoder; Video Decoding object, 68
VdpOutputSurface, 44	VdpPictureInfoDivX5
VdpOutputSurfaceCreate, 45	VdpDecoder; Video Decoding object, 69
VdpOutputSurfaceDestroy, 45	VdpPictureInfoH264, 106
VdpOutputSurfaceGetBitsNative, 45	bottom_field_flag, 108
VdpOutputSurfaceGetParameters, 46	chroma_qp_index_offset, 108
VdpOutputSurfacePutBitsIndexed, 46	constrained_intra_pred_flag, 108
VdpOutputSurfacePutBitsNative, 47	deblocking_filter_control_present_flag, 108
VdpOutputSurfacePutBitsYCbCr, 47	delta_pic_order_always_zero_flag, 108
VdpOutputSurfaceQueryCapabilities, 48	direct_8x8_inference_flag, 108
VdpOutputSurfaceQueryGetPutBitsNative←	entropy_coding_mode_flag, 108
Capabilities, 48	field_order_cnt, 108
VdpOutputSurfaceQueryPutBitsIndexedCapabilities,	field_pic_flag, 108
48	frame_mbs_only_flag, 108
VdpOutputSurfaceQueryPutBitsYCbCrCapabilities,	frame_num, 108
49	is_reference, 108
/dpOutputSurfaceCreate	log2_max_frame_num_minus4, 108
VdpOutputSurface; Output Surfaceobject, 45	log2 max pic order cnt lsb minus4, 108
/dpOutputSurfaceDestroy	mb_adaptive_frame_field_flag, 108
VdpOutputSurface; Output Surfaceobject, 45	num_ref_frames, 108
/dpOutputSurfaceGetBitsNative	num_ref_idx_I0_active_minus1, 108
VdpOutputSurface; Output Surfaceobject, 45	num_ref_idx_I1_active_minus1, 108
/dpOutputSurfaceGetParameters	pic_init_qp_minus26, 108
•	
VdpOutputSurface; Output Surfaceobject, 46	pic_order_cnt_type, 108
/dpOutputSurfacePutBitsIndexed	pic_order_present_flag, 108
VdpOutputSurface; Output Surfaceobject, 46	redundant_pic_cnt_present_flag, 108
/dpOutputSurfacePutBitsNative	referenceFrames, 108
VdpOutputSurface; Output Surfaceobject, 47	scaling_lists_4x4, 108
/dpOutputSurfacePutBitsYCbCr	scaling_lists_8x8, 109

second_chroma_qp_index_offset, 109	pcm_enabled_flag, 116
slice_count, 109	pcm_loop_filter_disabled_flag, 116
transform_8x8_mode_flag, 109	pcm_sample_bit_depth_chroma_minus1, 116
weighted_bipred_idc, 109	pcm_sample_bit_depth_luma_minus1, 116
weighted_pred_flag, 109	pic height in luma samples, 116
VdpPictureInfoH264Predictive, 109	pic_width_in_luma_samples, 116
pictureInfo, 110	PicOrderCntVal, 116
qpprime_y_zero_transform_bypass_flag, 110	pps_beta_offset_div2, 116
separate_colour_plane_flag, 110	pps_cb_qp_offset, 117
VdpPictureInfoHEVC, 110	pps_cr_qp_offset, 117
amp_enabled_flag, 113	pps_deblocking_filter_disabled_flag, 117
bit_depth_chroma_minus8, 113	pps_loop_filter_across_slices_enabled_flag, 117
bit_depth_luma_minus8, 113	pps_lice_chroma_qp_offsets_present_flag, 117
cabac_init_present_flag, 113 chroma_format_idc, 113	pps_tc_offset_div2, 117 RAPPicFlag, 117
	_
column_width_minus1, 113	RefPicSetLtCurr, 117
constrained_intra_pred_flag, 113	RefPicSetStCurrAfter, 117
cu_qp_delta_enabled_flag, 113	RefPicSetStCurrBefore, 117
CurrPicOrderCntVal, 113	RefPics, 117
CurrRpsldx, 113	row_height_minus1, 117
deblocking_filter_control_present_flag, 113	sample_adaptive_offset_enabled_flag, 118
deblocking_filter_override_enabled_flag, 113	scaling_list_enabled_flag, 118
dependent_slice_segments_enabled_flag, 113	ScalingList16x16, 118
diff_cu_qp_delta_depth, 113	ScalingList32x32, 118
entropy_coding_sync_enabled_flag, 113	ScalingList4x4, 118
IDRPicFlag, 114	ScalingList8x8, 118
init_qp_minus26, 114	ScalingListDCCoeff16x16, 118
IsLongTerm, 114	ScalingListDCCoeff32x32, 118
lists_modification_present_flag, 114	separate_colour_plane_flag, 118
log2_diff_max_min_luma_coding_block_size, 114	sign_data_hiding_enabled_flag, 118
log2_diff_max_min_pcm_luma_coding_block_size,	slice_segment_header_extension_present_flag,
114	118
log2_diff_max_min_transform_block_size, 114	sps_max_dec_pic_buffering_minus1, 118
log2_max_pic_order_cnt_lsb_minus4, 114	sps_temporal_mvp_enabled_flag, 118
log2_min_luma_coding_block_size_minus3, 114	strong_intra_smoothing_enabled_flag, 119
log2_min_pcm_luma_coding_block_size_minus3,	tiles_enabled_flag, 119
114	transform_skip_enabled_flag, 119
log2_min_transform_block_size_minus2, 114	transquant_bypass_enabled_flag, 119
log2_parallel_merge_level_minus2, 114	uniform_spacing_flag, 119
long_term_ref_pics_present_flag, 114	weighted_bipred_flag, 119
loop_filter_across_tiles_enabled_flag, 114	weighted_pred_flag, 119
max_transform_hierarchy_depth_inter, 114	VdpPictureInfoMPEG1Or2, 119
max_transform_hierarchy_depth_intra, 115	alternate_scan, 120
num_extra_slice_header_bits, 115	backward_reference, 120
num_long_term_ref_pics_sps, 115	concealment_motion_vectors, 120
num_ref_idx_l0_default_active_minus1, 115	f_code, 120
num_ref_idx_l1_default_active_minus1, 115	forward_reference, 120
num_short_term_ref_pic_sets, 115	frame_pred_frame_dct, 120
num_tile_columns_minus1, 115	full_pel_backward_vector, 120
num_tile_rows_minus1, 115	full_pel_forward_vector, 120
NumDeltaPocsOfRefRpsIdx, 115	intra_dc_precision, 120
NumLongTermPictureSliceHeaderBits, 115	intra_quantizer_matrix, 120
NumPocLtCurr, 115	intra_vlc_format, 120
NumPocStCurrAfter, 115	non_intra_quantizer_matrix, 121
NumPocStCurrBefore, 116	picture_coding_type, 121
NumPocTotalCurr, 116	picture_structure, 121
NumShortTermPictureSliceHeaderBits, 116	q_scale_type, 121
output_flag_present_flag, 116	slice_count, 121

VdpPresentationOueue; Video presentation (display) biled; 85 choward_reference, 122 interfaced, 122 quart_type, 122 quart_type, 122 quart_type, 122 resync_marker_disable, 122 resync_marker_disable, 122 roup_ficed_forward, 122 vop_foode_backward, 122 vop_foode_droward, 122 vop_foode_backward, 122 vop_foode_brackward, 122 vop_foode_brackward, 124 vop_foode_brackward, 124 vop_foode_brackward, 124 vop_foode_brackward, 124 vop_foode_brackward, 124 vop_foode_brackward, 124 extended_drw, 124 extended_drw, 124 fals_turn, 124 forward_reference, 124 frame_coding_mode, 124 interface, 124 loopflier, 125 passace_lag, 125 poptor_top_ye, 126 range_mapuv_126 range_m	top_field_first, 121	Display Preemption, 92
backward, reference, 122 interlaced, 122 resync marker disable, 122 resync marker disable, 122 rounding control, 122 short_video_header, 122 itch, 1	·	•
forward_reference, 122 intra_quantizer_matrix, 122 non_intra_quantizer_matrix, 122 quant_tps, 122 rounding_control, 122 short_wideo_header, 122 tp, field_frist, 122 vop_coding_type, 122 vop_code_forward, 122 vo		
intra quantizer matrix, 122 inon_intra_quantizer matrix, 122 quant_type, 122 quant_type, 122 resync_marker_disable, 122 rounding_control, 122 short_video_header, 122 type_field_first, 122 type_field		
intra_quantizer_matrix, 122 on_intra_quantizer_matrix, 122 quant_type, 122 quant_type, 122 quant_type, 122 resync_marker_disable, 122 rounding_control, 122 short_video_header, 122 top_field_lirst, 122 trol, 122 vop_coding_type, 122 vop_coding_type, 122 vop_foode_backward, 122 vop_foode_backward, 122 vop_foode_forward, 122 vop_foode_backward, 122 vop_foode_backward, 122 vop_foode_forward, 122 vop_foode_forward, 122 vop_foode_morant_resolution, 122 VdpPresentationQueue Display, 87 VdpPresentationQueue Display, 89 VdpPresentationQueue Video presentation (display) object, 87 VdpPresentationQueue; Video presentation (display) object, 87 VdpPresentationQueue; Video presentation (display) object, 88 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video		
non_intra_quantizer_matrix, 122 quart_type, 122 quart_type, 122 quart_type, 122 resync_marker_disable, 122 rounding_control, 122 short_wideo_header, 122 top_field_first, 122 trd, 122 vop_coding_lype, 122 vop_coding_lype, 122 vop_code_lonward, 122 vop_icode_backward, 122 vop_icode_lonward, 122 vop_icode_lonwardellonuce_lonwardellonuce_lonwardellonuce_lonwardellonuce_lonwardellonuce_lonwardellonuce_lonwardellonuce_lonwardellonuce_lonwardellonuce_lonwardellonuce_lonwardellonuce_lonwardellonuce_lonwardellonuce_lonwardellonuce_lonwardellonuce_lonwardellonuce_lonwardellonuc		• •
quant_type, 122 resync_marker_disable, 122 resync_marker_disable, 122 rounding_control, 122 short_video_header, 122 top_field_first, 122 trd, 122 vop_coding_type, 122 vop_coding_type, 122 vop_fcode_backward, 122 vop_fcode_forward, 122 vop_fcode_backward, 122 vop_fcode_b		
quarter_sample, 122 resync_marker_disable, 122 rounding_control, 122 short_video_header, 122 top_field_first, 122 trb, 122 trb, 122 trb, 122 trb, 122 trb, 122 vop_coding_lype, 122 vop_coding_lype, 122 vop_fcode_broward, 122 vop_licode_broward, 122 vop_line_increment_resolution, 122 VdpPresentationQueueBlockUntilSurfaceIdle, 86 VdpPresentationQueueBlockUntilSurfaceIdle, 86 VdpPresentationQueueBlockUntilSurfaceIdle, 86 VdpPresentationQueueCreate, 87 VdpPresentationQueueBlockUntilSurfaceIdle, 86 VdpPresentationQueueBlockUntilSurfaceIdle, 86 VdpPresentationQueueGetTime, 88 VdpPresentationQueueGetTime, 88 VdpPresentationQueueGetBackgroundColor, 88 VdpPresentationQueueBlackgroundColor, 89 VdpPresentationQueueBlackgroundColor, 89 VdpPresentationQueueBlackgroundColor, 89 VdpPresentationQueueBlackgroundColor, 89 VdpPresentationQueueBlackgroundColor, 89 VdpPresentationQueueVallockUntilSurfaceIdle VdpPresentationQueueBlackgroundColor, 89 VdpPresentationQueueVallockUntilSurfaceIdle VdpPresentationQueueVallockUntilSurfaceIdle VdpPresentationQueueVallockUntilSurfaceIdle, 86 VdpPresentationQueueGetBackgroundColor, 88 VdpPresentationQueueCuerpstroy, 89 VdpPresentationQueueVallockUntilSurfaceIdle VdpPresentationQueueVallockUntilSurfaceIdle VdpPresentationQueueVallockUntilSurfaceIdle VdpPresentationQueueVallockUntilSurfaceIdle VdpPresentationQueueVallockUntilSurfaceIdle VdpPresentationQueueVallockUntilSurfaceIdle, 86 VdpPresentationQueueGetBackgroundColor, 88 VdpPresentationQueueVallockUntilSurfaceIdle, 86 VdpP		
resync_marker_disable, 122 rounding_control, 122 short_video_header, 122 top_field_first, 122 trb, 122 trd, 122 vop_coding_type, 122 vop_fcode backward, 122 vop_fcode backward, 122 vop_fcode_forward, 122 vop_ffcode_forward, 122 vdpPresentationQueue, video presentation (display) object, 87 vdpPresentationQueue; video presentation (display) object, 87 vdpPresentationQueue; video presentation (display) object, 87 vdpPresentationQueue; video presentation (display) object, 88 vdpPresentationQueue; video presentation (display) object,		
rounding_control_122 short_video_header, 122 top_field_first, 122 trb, 122 trb, 122 vp_coding_type, 122 vp_coding_type, 122 vp_code_forward_t22 vp_ficode_forward_t122 vp_time_increment_resolution, 122 VdpPictureInfoVC1, 123 deblockEnable, 123 dquant, 124 extended_dmv, 124 extended_dmv, 124 extended_mw, 124 finterpflag, 124 forward_reference, 124 finterpflag, 124 forward_reference, 124 interlace, 124 interlace, 124 interlace, 124 interlace, 125 panscan_flag, 125 postprocflag, 126 range_mapuv_flag, 126 range_		•
short video header, 122 top_field_first, 122 top_field_first, 122 trd, 122 trd, 122 trd, 122 trd, 122 vop_coding_type, 122 vop_code_backward, 122 vop_fcode_backward, 122 vop_fresentationQueueGetTime, 88 vdpPresentationQueueVactaceStatus, 90 vdpPresentationQueueVactaceWathus, 90 vdpPresentationQueueVactace		
top_field_first, 122 trb, 122 trb, 122 vp, coding_type, 122 vpp_code_backward, 122 vpp_fcode_backward, 122 vp_ficede_forward, 122 vp_ficede_forward_reference, 123 deblockEnable, 123 deblockEnable, 123 deplock_fable, 124 extended_mv, 124 extended_mv, 124 finterpilag, 124 forward_reference, 124 finterpilag, 124 forward_reference, 124 finterpilag, 124 doopfilter, 124 multires, 125 panscan_flag, 125 panscan_flag, 125 postprooflag, 125 postprooflag, 125 postprooflag, 125 postprooflag, 125 postprooflag, 125 pulldown, 125 quanti, 125 quanti, 125 quanti, 125 quanti, 125 quanti, 126 range_mapv_flag, 12	-	•
trb, 122 trd, 122 vop_coding_type, 122 vop_coding_type, 122 vop_code_backward, 122 vop_fcode_backward, 122 vop_tode_backward, 122 vop_tode_backward, 122 vop_tode_backward, 122 vop_time_increment_resolution, 122 VdpPresentationQueueGetTime, 88 VdpPresentationQueueGetTime, 88 VdpPresentationQueueGetTime, 88 VdpPresentationQueueGetTime, 89 VdpPresentationQueueStatus, 90 VdpPresentationQueueStatus, 90 VdpPresentationQueueTargetDestroy, 89 VdpPresentationQueueCreate	short_video_header, 122	•
trd, 122 vop_coding_type, 122 vop_code_backward, 122 vop_fcode_forward, 122 vdpPresentationQueue(Formine, 88 vdpPresentationQueueStatus, 90 vdpPresentationQueue Status, 90 vdpPresentationQueue Video presentation (display) object, 89 vdpPresentationQueue Video presentation (display) object, 84 vdpPresentationQueue Video presentation (display) object, 87 vdpPresentationQueue Video presentation (display) object, 88 vdpPresentationQueue Video presentation (display) object, 89 vdpPresentationQ	top_field_first, 122	
vop_code_backward, 122 vop_fcode_backward, 122 vop_fcode_forward, 122 vop_fcode_forward, 122 vop_time_increment_resolution, 122 VdpPrictureInIvDVC1, 123 backward_reference, 123 deblockEnable, 123 dduant, 124 extended_dmv, 124 extended_dmv, 124 fastuvmc, 124 finterpflag, 124 forward_reference, 124 frame_coding_mode, 124 interlace, 124 multires, 125 overlap, 125 panscan_flag, 126 range_mapuv_flag, 126 range_mapv_flag, 126 range_m	trb, 122	VdpPresentationQueueCreate, 87
vop_fcode_backward, 122 vop_fcode_forward, 122 vop_time_increment_resolution, 122 VdpPresentationQueueGetBackgroundColor, 88 VdpPresentationQueueGetFime, 88 VdpPresentationQueueGetBackgroundColor, 89 VdpPresentationQueueGetBackgroundColor, 89 VdpPresentationQueueSatBackgroundColor, 89 VdpPresentationQueueSatBackgroundColor, 89 VdpPresentationQueueSatBackgroundColor, 89 VdpPresentationQueueTargetDestroy, 89 VdpPresentationQueueTargetDestroy, 89 VdpTresentationQueueTargetDestroy, 89 VdpTresentationQueueTargetDestroy, 89 VdpTresentationQueueBlockUntilSurfaceIdle VdpPresentationQueueBlockUntilSurfaceIdle VdpPresentationQueueBlockUntilSurfaceIdle VdpPresentationQueueBlockUntilSurfaceIdle VdpPresentationQueueBlockUntilSurfaceIdle VdpPresentationQueueCreate VdpPresentationQueueCreate VdpPresentationQueueFixply VdpPresentationQ	trd, 122	· · · · · · · · · · · · · · · · · · ·
vop_fcode_forward, 122 vop_time_increment_resolution, 122 VdpPictureInfoVC1, 123 backward_reference, 123 deblockEnable, 123 deuant, 124 extended_dmv, 124 extended_dmv, 124 extended_mv, 124 fastuvmc, 124 finterpflag, 124 loopfilter, 124 maxbframes, 124 multires, 125 overlap, 125 postprocflag, 125 poiltdown, 126 range_mapuv_flag, 126 range_mapv_flag, 126 range_mapv_flag, 126 range_mapv_flag, 126 range_mapy, 126 rangered, 126 rangered	vop_coding_type, 122	VdpPresentationQueueDisplay, 87
VdpPresentationQueueQuerySurfaceStatus, 88 VdpPresentationQueueSetBackgroundColor, 89 backward_reference, 123 deblockEnable, 123 deblockEnable, 123 deverteded_dmv, 124 extended_mv, 124 extended_mv, 124 extended_mv, 124 extended_mv, 124 fastuvmc, 124 forward_reference, 124 frame_coding_mode, 124 interpllag, 124 loopfilter, 124 maxbframes, 124 multires, 125 overlap, 125 panscan_flag, 125 panscan_flag, 125 postprocflag, 125 postprocflag, 125 pulldown, 125 quantizer, 125 quantizer, 125 quantizer, 125 range_mapv_flag, 126 range_mapv_	vop_fcode_backward, 122	VdpPresentationQueueGetBackgroundColor, 88
VdpPresentationQueueSetBackgroundColor, 89 backward_reference, 123 deblockEnable, 123 deblockEnable, 123 deveranded_mv, 124 extended_mv, 124 extended_mv, 124 finterpflag, 124 forward_reference, 124 frame_coding_mode, 124 interlace, 124 loopfilter, 124 mxbframes, 125 overlap, 125 panscan_flag, 125 picture_type, 125 postprocflag, 125 pulldown, 125 quantizer, 125 quantizer, 125 quantizer, 125 quantizer, 125 quantizer, 126 range_mapy, 126 syncmarker, 126 tfictiflag, 126 syncmarker, 127 x, 127 y, 127 VdpPresentationQueue, Video presentation (display) object, 89 VdpPresentationQueue, Video presentation (display) object, 89 VdpPresentationQueue, Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentati	vop_fcode_forward, 122	VdpPresentationQueueGetTime, 88
backward_reference, 123 deblockEnable, 123 deblockEnable, 123 deunt, 124 extended_dmv, 124 extended_mv, 124 extended_mv, 124 extended_mv, 124 fastuvmc, 124 finterpflag, 124 forward_reference, 124 frame_coding_mode, 124 interlace, 124 loopfilter, 124 maxbframes, 124 maxbframes, 125 poverlap, 125 postproeflag, 125 postproeflag, 125 postproeflag, 125 pulldown, 125 pulldown, 125 pulldown, 125 quantizer, 125 pulldown, 125 quantizer, 126 range_mapvv_flag, 126 range_mapvy_flag, 126 range_mapvy_flag, 126 range_mapv, 126 range-mapv, 126 range-ma	vop_time_increment_resolution, 122	VdpPresentationQueueQuerySurfaceStatus, 88
deblockEnable, 123 dquant, 124 extended_dmv, 124 extended_mv, 124 extended_mv, 124 extended_mv, 124 extended_mv, 124 extended_mv, 124 fastuvmc, 124 fastuvmc, 124 forward_reference, 124 frame_coding_mode, 124 interlace, 124 loopfilter, 124 maxbframes, 124 maxbframes, 124 maxbframes, 125 overlap, 125 panscan_flag, 125 postproeflag, 125 postproeflag, 125 polyldown, 125 pquant, 126 pquant, 125 pquant, 125 pquant, 125 pquant, 125 pquant, 125 pquant, 126 range_mapuv_flag, 126 range_mapuv_flag, 126 range_mapy, 126 rangered, 126 vytpresentationQueue; Video presentation (display) object, 88 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 90 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; V	VdpPictureInfoVC1, 123	VdpPresentationQueueSetBackgroundColor, 89
deblockEnable, 123 dquant, 124 extended_dmv, 124 extended_mv, 124 extended_mv, 124 extended_mv, 124 extended_mv, 124 extended_mv, 124 fastuvmc, 124 fastuvmc, 124 forward_reference, 124 frame_coding_mode, 124 interlace, 124 loopfilter, 124 maxbframes, 124 maxbframes, 124 maxbframes, 125 overlap, 125 panscan_flag, 125 postproeflag, 125 postproeflag, 125 polyldown, 125 pquant, 126 pquant, 125 pquant, 125 pquant, 125 pquant, 125 pquant, 125 pquant, 126 range_mapuv_flag, 126 range_mapuv_flag, 126 range_mapy, 126 rangered, 126 vytpresentationQueue; Video presentation (display) object, 88 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 90 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; V	backward_reference, 123	VdpPresentationQueueStatus, 90
dquant, 124 extended_dmv, 124 extended_mv, 124 extended_mv, 124 fastuvmc, 124 finterpflag, 124 forward_reference, 124 frame_coding_mode, 124 interlace, 124 loopfilter, 125 overlap, 125 postprocflag, 125 pulldown, 125 pulldown, 125 pulldown, 125 pulldown, 125 pulldown, 125 range_mapuv_flag, 126 refdist_flag, 126 syncmarker, 126 typPresentationQueue; Video presentation (display) object, 88 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 99 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video present	deblockEnable, 123	
extended_mv, 124 extended_mv, 124 fastuvmc, 124 fastuvmc, 124 forward_reference, 126 forward_reference, 124 forward_reference, 126 forward_referentationQueue; Video presentation (display) object, 89 forward	dquant, 124	•
extended_mv, 124 fastuvmc, 124 fastuvmc, 124 forward_reference, 124 frame_coding_mode, 124 interlace, 124 maxbframes, 125 overlap, 125 panscan_flag, 125 postprocflag, 125 pulldown, 125 pulldown, 125 quantizer, 125 range_mapuv_126 range_mapuv_126 range_mapuv_126 range_mapuv, 126 range_mapuv, 126 range_mapuv, 126 range_mapuv_16g, 126 range-mapuv_16g, 126 range-mapuv	•	
fastuvmc, 124 finterpflag, 124 forward_reference, 124 forward_reference, 124 frame_coding_mode, 124 loopfilter, 124 maxbframes, 125 overlap, 125 overlap, 125 panscan_flag, 125 postprocflag, 125 postprocflag, 125 pulldown, 125 pulldown, 125 quantizer, 125 quantizer, 125 range_mapuv_flag, 126 range_mapv_flag, 126 range_mapy_flag, 126 rangered, 126 vstransform, 126 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 90 VdpPresentationQueue; Video presentatio		·
finterpflag, 124 forward_reference, 124 forward_reference, 124 frame_coding_mode, 124 interlace, 124 loopfilter, 124 maxbframes, 124 maxbframes, 125 overlap, 125 overlap, 125 postprocflag, 125 pulldown, 125 pulldown, 125 quantizer, 125 range_mapuv_flag, 126 range_mapy_flag, 126 range_mapy_flag, 126 range_mapy, 126 rangered, 126 vypresentationQueue vyideo presentation (display) object, 88 VdpPresentationQueue vyideo presentation (display) object, 89 VdpPresentation		
forward_reference, 124 frame_coding_mode, 124 interlace, 124 loopfilter, 124 maxbframes, 124 maxbframes, 124 maxbframes, 125 overlap, 125 panscan_flag, 125 postprocflag, 125 pulldown, 125 pulldown, 125 quantizer, 125 range_mapuv_flag, 126 range_mapv_flag, 126 rangered, 126 refdist_flag, 126 syncmarker, 126 typPresentationQueue; Video presentation (display) object, 88 VdpPresentationQueueQuerySurfaceStatus VdpPresentationQueueQuerySurfaceStatus VdpPresentationQueueSetBackgroundColor VdpPresentationQueueSetBackgroundColor VdpPresentationQueueSetBackgroundColor VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 90 VdpPresentationQueue; Video presentation (display) object, 90 VdpPresentationQueue; Video presentation (display) object, 90 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue argetCreateX11 X11 Window System Integration Layer, 100		·
frame_coding_mode, 124 interlace, 124 loopfilter, 124 maxbframes, 124 mxbframes, 125 overlap, 125 panscan_flag, 125 picture_type, 125 postproeflag, 125 pulldown, 125 quantizer, 125 quantizer, 125 range_mapuv_flag, 126 range_mapv_flag, 126 range_mapv_flag, 126 range_mapv_flag, 126 range_mapv_flag, 126 range_mapv, 126 range-mapv, 126	• •	
interlace, 124 loopfilter, 124 loopfilter, 124 maxbframes, 124 maxbframes, 125 overlap, 125 panscan_flag, 125 postprocflag, 125 pulldown, 125 quantizer, 125 range_mapuv, 126 range_mapuv, 126 range_mapv, 126 rangered, 126 rangered, 126 refdist_flag, 126 ryncmarker, 126 tfontflag, 126 vytpresentationQueue; Video presentation (display) object, 88 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 90 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue Video presentation (display) object, 89		•
loopfilter, 124 maxbframes, 124 maxbframes, 125 overlap, 125 overlap, 125 overlap, 125 panscan_flag, 125 postprocflag, 125 potunt, 125 pulldown, 126 range_mapuv_flag, 126 range_mapuv_flag, 126 range_mapu, 126 range-mapu, 125 range-mapu, 126 r	_ -	
maxbframes, 124 multires, 125 overlap, 125 overlap, 125 panscan_flag, 125 postprocflag, 125 postprocflag, 125 pulldown, 125 pulldown, 125 quantizer, 125 range_mapuv_flag, 126 range_mapy_flag, 126 rangered, 126 refdist_flag, 126 reflag, 126 refdist_flag, 126 reflag, 126 ref		
multires, 125 overlap, 125 overlap, 125 panscan_flag, 125 panscan_flag, 125 postprocflag, 126 play) object, 88 range_mapuv, 125 range_mapuv_flag, 126 range_mapv_flag, 126 rangered, 126 rangered, 126 refdist_flag, 126 refdist_flag, 126 syncmarker, 126 tfcntrflag, 126 syncmarker, 126 tfcntrflag, 126 vdpPresentationQueue(status) vdpPresentationQueue(•
overlap, 125 panscan_flag, 125 panscan_flag, 125 postprocflag, 126 postproceflag, 126 postprocflag, 12		
panscan_flag, 125 postprocflag, 126 play) object, 88 play) object, 89 play) object, 89 play) object, 89 play) object, 89 play) object, 90 presentationQueueStatus play) object, 90 presentationQueue Target play) object, 90 presentationQueue; video presentation (display) object, 90 play) object, 89 play) object, 88 play, ob		
picture_type, 125 postprocflag, 125 postprocflag, 125 postprocflag, 125 postprocflag, 125 postprocflag, 125 postprocflag, 125 pullation_Queue, Video presentation (dispers, 125 pulldown, 125 pulldown, 125 pulldown, 125 pulldown, 125 pullation_Queue, Video presentation (display) object, 88 VdpPresentationQueue, Video presentation (display) object, 88 range_mapuv_flag, 126 range_mapuv_flag, 126 range_mapy_flag, 126 range_mapy_flag, 126 range_mapy_flag, 126 refdist_flag, 126 syncmarker, 126 tfcntrflag, 126 syncmarker, 126 tfcntrflag, 126 vstransform, 126 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 90 VdpPresentationQueue; Video presentation (display) object, 90 VdpPresentationQueue; Video presentation (display) object, 89		· · ·
postprocflag, 125 pquant, 125 pquant, 125 pquant, 125 psf, 125 pulldown, 125 pulldown, 125 quantizer, 125 quantizer, 125 range_mapuv, 126 range_mapuv_flag, 126 range_mapy, 126 range-mapy, 126 refdist_flag, 126 refdist_flag		·
pquant, 125 psf, 125 pulldown, 125 pulldown, 125 quantizer, 125 quantizer, 125 range_mapuv, 125 range_mapuv_flag, 126 range_mapy, 126 rangered, 126 rangered, 126 rangered, 126 refdist_flag, 126 slice_count, 126 slice_count, 126 syncmarker, 126 tfcntrflag, 126 vstransform, 126 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueueStatus VdpPresentationQueueStatus VdpPresentationQueue; Video presentation (display) object, 90 VdpPresentationQueueTarget x, 127 y, 127 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueueTarget VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueueTarget VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueueTargetCreateX11 X11 Window System Integration Layer, 100		
psf, 125 plldown, 125 pulldown, 125 quantizer, 125 range_mapuv, 125 range_mapuv_flag, 126 range_mapy, 126 range_mapy_flag, 126 rangered, 126 refdist_flag, 126 syncmarker, 126 syncmarker, 126 tfcntrflag, 126 vdpPresentationQueue, Video presentation (display) object, 89 syncmarker, 126 tfcntrflag, 126 vdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueueStatus VdpPresentationQueueStatus VdpPresentationQueueStatus VdpPresentationQueue; Video presentation (display) object, 90 VdpPoint, 127 VdpPresentationQueueTarget VdpPresentationQueueTarget VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueueTarget VdpPresentationQueueTarget VdpPresentationQueueTarget VdpPresentationQueueTarget VdpPresentationQueueTarget VdpPresentationQueueTarget VdpPresentationQueueTargetCreateX11 Display Preemption, 91 X11 Window System Integration Layer, 100		
pulldown, 125 quantizer, 125 quantizer, 125 range_mapuv, 125 range_mapuv_flag, 126 range_mapy, 126 range_mapy_flag, 126 range_mapy_flag, 126 rangered, 126 refdist_flag, 126 slice_count, 126 syncmarker, 126 tfcntrflag, 126 vdpPresentationQueue; Video presentation (display) object, 89 vdpPresentationQueueStatus vdpPresentationQueueStatus vdpPresentationQueue; Video presentation (display) object, 90 vdpPoint, 127 vdpPresentationQueueTarget vdpPresentationQueue; Video presentation (display) object, 89 vdpPresentationQueueTarget vdpPresentationQueueTarget vdpPresentationQueueTarget vdpPresentationQueueTargetCreateX11 Display Preemption, 91 vdpPresentationQueueTargetCreateX11 X11 Window System Integration Layer, 100		·
quantizer, 125 range_mapuv, 125 range_mapuv_flag, 126 range_mapy, 126 range_mapy, 126 range_mapy_flag, 126 range_mapy_flag, 126 rangered, 126 refdist_flag, 126 slice_count, 126 syncmarker, 126 tfcntrflag, 126 vdpPresentationQueue yVdpPresentationQueue yVdpPresenta	•	
range_mapuv, 125 range_mapuv_flag, 126 range_mapy, 126 range_mapy, 126 range_mapy_flag, 126 range_mapy_flag, 126 range_mapy_flag, 126 range_mapy_flag, 126 rangered, 126 refdist_flag, 126 slice_count, 126 syncmarker, 126 tfcntrflag, 126 vstransform, 126 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueueStatus VdpPresentationQueue; Video presentation (display) object, 90 VdpPoint, 127 VdpPresentationQueueTarget x, 127 y, 127 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueueTarget VdpPresentationQueueTarget VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueueTargetCreateX11 X11 Window System Integration Layer, 100		
range_mapuv_flag, 126 range_mapy, 126 range_mapy_flag, 126 range_mapy_flag, 126 rangered, 126 refdist_flag, 126 syncmarker, 126 tfcntrflag, 126 vstransform, 126 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueueStatus VdpPresentationQueueStatus VdpPresentationQueueStatus VdpPresentationQueue; Video presentation (display) object, 90 VdpPoint, 127 VdpPresentationQueueTarget VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueueTarget VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueueTarget VdpPresentationQueueTargetCreateX11 X11 Window System Integration Layer, 100		·
range_mapy, 126		
range_mapy_flag, 126 rangered, 126 refdist_flag, 126 slice_count, 126 syncmarker, 126 tfcntrflag, 126 vstransform, 126 VdpPresentationQueue; Video presentation (disvstransform, 126 VdpPresentationQueue; Video presentation (disvstransform, 127 VdpPresentationQueue; Video presentation (disvstransform, 127 VdpPresentationQueue; Video presentation (disvstransform, 127 VdpPresentationQueue Target x, 127 y, 127 VdpPresentationQueue; Video presentation (disvstransform, 127 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) resemptionCallback Display Preemption, 91 x11 Window System Integration Layer, 100		
rangered, 126 refdist_flag, 126 slice_count, 126 syncmarker, 126 vstransform, 126 VdpPresentationQueue; Video presentation (disvstransform, 126 VdpPresentationQueue; Video presentation (disvstransform, 127 x, 127 y, 127 VdpPresentationQueue; Video presentation (disvstransform, 126 VdpPresentationQueue Target VdpPresentationQueue; Video presentation (disvstransform, 127 VdpPresentationQueue Target VdpPresentationQueue; Video presentation (disvstransform, 127 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue TargetCreateX11 X11 Window System Integration Layer, 100		
refdist_flag, 126		
slice_count, 126 play) object, 89 syncmarker, 126 VdpPresentationQueueStatus tfcntrflag, 126 VdpPresentationQueue; Video presentation (disvstransform, 126 VdpPoint, 127 VdpPresentationQueueTarget x, 127 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueueTargetCreateX11 Display Preemption, 91 X11 Window System Integration Layer, 100	-	
syncmarker, 126 tfcntrflag, 126 vstransform, 126 VdpPresentationQueue; Video presentation (disvstransform, 126 VdpPoint, 127 VdpPresentationQueue Target x, 127 y, 127 VdpPresentationQueue; Video presentation (display) object, 90 VdpPresentationQueue Target VdpPresentationQueue; Video presentation (display) object, 89 VdpPresentationQueue TargetCreateX11 NdpPresentationQueue TargetCreateX11 X11 Window System Integration Layer, 100		
tfcntrflag, 126 vstransform, 126 VdpPresentationQueue; Video presentation (disvatransform, 126 VdpPoint, 127 VdpPresentationQueueTarget x, 127 y, 127 VdpPresentationQueue; Video presentation (display) object, 89 VdpPreemptionCallback Display Preemption, 91 VdpPresentationQueueTargetCreateX11 X11 Window System Integration Layer, 100		
vstransform, 126 VdpPoint, 127 VdpPresentationQueueTarget x, 127 y, 127 VdpPresentationQueue; Video presentation (display) object, 89 VdpPreemptionCallback Display Preemption, 91 VdpPresentationQueueTargetCreateX11 X11 Window System Integration Layer, 100	-	
VdpPoint, 127VdpPresentationQueueTargetx, 127VdpPresentationQueue; Video presentation (dis- y, 127VdpPresentationQueue; Video presentation (dis- play) object, 89VdpPresentationQueueTargetCreateX11Display Preemption, 91X11 Window System Integration Layer, 100		VdpPresentationQueue; Video presentation (dis-
x, 127 VdpPresentationQueue; Video presentation (dis- y, 127 play) object, 89 VdpPreemptionCallback VdpPresentationQueueTargetCreateX11 Display Preemption, 91 X11 Window System Integration Layer, 100		
y, 127 play) object, 89 VdpPreemptionCallback VdpPresentationQueueTargetCreateX11 Display Preemption, 91 X11 Window System Integration Layer, 100	VdpPoint, 127	VdpPresentationQueueTarget
VdpPreemptionCallbackVdpPresentationQueueTargetCreateX11Display Preemption, 91X11 Window System Integration Layer, 100	x, 127	VdpPresentationQueue; Video presentation (dis-
Display Preemption, 91 X11 Window System Integration Layer, 100	y, 127	· · · ·
	VdpPreemptionCallback	
VdpPreemptionCallbackRegister VdpPresentationQueueTargetDestroy	Display Preemption, 91	X11 Window System Integration Layer, 100
	VdpPreemptionCallbackRegister	VdpPresentationQueueTargetDestroy

VdpPresentationQueue; Video presentation (dis-	TY_SCALING_L4, 75
play) object, 89	VDP_VIDEO_MIXER_FEATURE_HIGH_QUALI←
VdpProcamp, 127	TY_SCALING_L5, 76
brightness, 128	VDP_VIDEO_MIXER_FEATURE_HIGH_QUALI↔
contrast, 128	TY_SCALING_L6, 76
hue, 128	VDP_VIDEO_MIXER_FEATURE_HIGH_QUALI←
saturation, 128	TY_SCALING_L7, 76
struct_version, 128	VDP_VIDEO_MIXER_FEATURE_HIGH_QUALI↔
VdpRGBAFormat	TY_SCALING_L8, 76
Miscellaneous Types, 28	VDP_VIDEO_MIXER_FEATURE_HIGH_QUALI↔
VdpRect, 128	TY_SCALING_L9, 76
x0, 129	VDP_VIDEO_MIXER_FEATURE_INVERSE_TE↔
x1, 129	LECINE, 76
y0, 129	VDP_VIDEO_MIXER_FEATURE_LUMA_KEY, 76
y1, 129	VDP_VIDEO_MIXER_FEATURE_NOISE_RED↔
VdpReferenceFrameH264, 129	UCTION, 77
bottom_is_reference, 130	VDP_VIDEO_MIXER_FEATURE_SHARPNESS,
field_order_cnt, 130	77
frame_idx, 130	VDP_VIDEO_MIXER_PARAMETER_CHROMA↔
is_long_term, 130	
surface, 130	VDP_VIDEO_MIXER_PARAMETER_LAYERS, 77
top_is_reference, 130	VDP VIDEO MIXER PARAMETER VIDEO S↔
VdpStatus	URFACE_HEIGHT, 77
•	VDP_VIDEO_MIXER_PARAMETER_VIDEO_S↔
Error Handling, 30	URFACE_WIDTH, 78
VdpTime	VDP_VIDEO_MIXER_PICTURE_STRUCTURE↔
VdpPresentationQueue; Video presentation (dis-	_BOTTOM_FIELD, 84
play) object, 89	VDP_VIDEO_MIXER_PICTURE_STRUCTURE↔
VdpVideoMixer	FRAME, 84
VdpVideoMixer; Video Post-processing and Com-	VDP_VIDEO_MIXER_PICTURE_STRUCTURE↔
positing object, 78	_TOP_FIELD, 84
VdpVideoMixer; Video Post-processing and Composit-	VdpVideoMixer, 78
ing object, 70	•
VDP_LAYER_VERSION, 73	VdpVideoMixerAttribute, 78 VdpVideoMixerCreate, 78
VDP_VIDEO_MIXER_ATTRIBUTE_BACKGRO↔	VdpVideoMixerCreate, 76 VdpVideoMixerDestroy, 79
UND_COLOR, 73	VdpVideoMixerDestroy, 79 VdpVideoMixerFeature, 79
VDP_VIDEO_MIXER_ATTRIBUTE_CSC_MAT←	•
RIX, 73	VdpVideoMixerGetAttributeValues, 79
VDP_VIDEO_MIXER_ATTRIBUTE_LUMA_KEY↔	VdpVideoMixerGetFeatureEnables, 80
_MAX_LUMA, 73	VdpVideoMixerGetFeatureSupport, 80
VDP_VIDEO_MIXER_ATTRIBUTE_LUMA_KEY←	VdpVideoMixerGetParameterValues, 80
_MIN_LUMA, 74	VdpVideoMixerParameter, 81
VDP_VIDEO_MIXER_ATTRIBUTE_NOISE_RE↔	VdpVideoMixerPictureStructure, 84
DUCTION_LEVEL, 74	VdpVideoMixerQueryAttributeSupport, 81
VDP_VIDEO_MIXER_ATTRIBUTE_SHARPNE←	VdpVideoMixerQueryAttributeValueRange, 81
SS_LEVEL, 74	VdpVideoMixerQueryFeatureSupport, 81
VDP_VIDEO_MIXER_ATTRIBUTE_SKIP_CHR↔	VdpVideoMixerQueryParameterSupport, 82
OMA_DEINTERLACE, 74	VdpVideoMixerQueryParameterValueRange, 82
VDP_VIDEO_MIXER_FEATURE_DEINTERLA↔	VdpVideoMixerRender, 82
CE_TEMPORAL_SPATIAL, 75	VdpVideoMixerSetAttributeValues, 84
VDP_VIDEO_MIXER_FEATURE_DEINTERLA↔	VdpVideoMixerSetFeatureEnables, 84
CE_TEMPORAL, 74	VdpVideoMixerAttribute
VDP_VIDEO_MIXER_FEATURE_HIGH_QUALI↔	VdpVideoMixer; Video Post-processing and Com-
TY_SCALING_L1, 75	positing object, 78
VDP_VIDEO_MIXER_FEATURE_HIGH_QUALI↔	VdpVideoMixerCreate
TY_SCALING_L2, 75	VdpVideoMixer; Video Post-processing and Com-
VDP_VIDEO_MIXER_FEATURE_HIGH_QUALI↔	positing object, 78
TY_SCALING_L3, 75	VdpVideoMixerDestroy
VDP_VIDEO_MIXER_FEATURE_HIGH_QUALI↔	VdpVideoMixer; Video Post-processing and Com-

positing object, 79	VdpVideoSurfaceCreate
VdpVideoMixerFeature	VdpVideoSurface; Video Surface object, 39
VdpVideoMixer; Video Post-processing and Com-	VdpVideoSurfaceDestroy
positing object, 79	VdpVideoSurface; Video Surface object, 40 VdpVideoSurfaceGetBitsYCbCr
VdpVideoMixerGetAttributeValues	VdpVideoSurface; Video Surface object, 40
VdpVideoMixer; Video Post-processing and Com- positing object, 79	VdpVideoSurfaceGetParameters
VdpVideoMixerGetFeatureEnables	VdpVideoSurface; Video Surface object, 40
VdpVideoMixer; Video Post-processing and Com-	VdpVideoSurfacePutBitsYCbCr
positing object, 80	VdpVideoSurface; Video Surface object, 41
VdpVideoMixerGetFeatureSupport	VdpVideoSurfaceQueryCapabilities
VdpVideoMixer; Video Post-processing and Com-	VdpVideoSurface; Video Surface object, 41
positing object, 80	VdpVideoSurfaceQueryGetPutBitsYCbCrCapabilities
VdpVideoMixerGetParameterValues	VdpVideoSurface; Video Surface object, 41
VdpVideoMixer; Video Post-processing and Com-	VdpYCbCrFormat
positing object, 80	Miscellaneous Types, 28
VdpVideoMixerParameter	vdpau/vdpau.h, 131
VdpVideoMixer; Video Post-processing and Com-	vdpau/vdpau_x11.h, 143
positing object, 81	Versioning, 32
VdpVideoMixerPictureStructure	VDPAU_INTERFACE_VERSION, 32
VdpVideoMixer; Video Post-processing and Com-	VDPAU_VERSION, 32
positing object, 84	VdpGetInformationString 33
VdpVideoMixerQueryAttributeSupport	VdpGetInformationString, 33 vop_coding_type
VdpVideoMixer; Video Post-processing and Com-	VdpPictureInfoMPEG4Part2, 122
positing object, 81	vop_fcode_backward
VdpVideoMixerQueryAttributeValueRange	VdpPictureInfoMPEG4Part2, 122
VdpVideoMixer; Video Post-processing and Compositing object, 81	vop_fcode_forward
VdpVideoMixerQueryFeatureSupport	VdpPictureInfoMPEG4Part2, 122
VdpVideoMixer; Video Post-processing and Com-	vop_time_increment_resolution
positing object, 81	VdpPictureInfoMPEG4Part2, 122
VdpVideoMixerQueryParameterSupport	vstransform
VdpVideoMixer; Video Post-processing and Com-	VdpPictureInfoVC1, 126
positing object, 82	
VdpVideoMixerQueryParameterValueRange	weighted_bipred_flag
VdpVideoMixer; Video Post-processing and Com-	VdpPictureInfoHEVC, 119
positing object, 82	weighted_bipred_idc
VdpVideoMixerRender	VdpPictureInfoH264, 109 weighted_pred_flag
VdpVideoMixer; Video Post-processing and Com-	VdpPictureInfoH264, 109
positing object, 82	VdpPictureInfoHEVC, 119
VdpVideoMixerSetAttributeValues	Window System Integration Layer, 98
VdpVideoMixer; Video Post-processing and Com-	, , , ,
positing object, 84	X
VdpVideoMixerSetFeatureEnables	VdpPoint, 127
VdpVideoMixer; Video Post-processing and Com-	x0
positing object, 84 VdpVideoSurface	VdpRect, 129
VdpVideoSurface; Video Surface object, 39	x1
VdpVideoSurface; Video Surface object, 38	VdpRect, 129
VdpVideoSurface, 39	X11 Window System Integration Layer, 99
VdpVideoSurfaceCreate, 39	VDP_FUNC_ID_PRESENTATION_QUEUE_TA↔ RGET_CREATE_X11, 100
VdpVideoSurfaceDestroy, 40	vdp_device_create_x11, 101
VdpVideoSurfaceGetBitsYCbCr, 40	Vdp_device_dreate_x11, 100
VdpVideoSurfaceGetParameters, 40	VdpPresentationQueueTargetCreateX11, 100
VdpVideoSurfacePutBitsYCbCr, 41	
VdpVideoSurfaceQueryCapabilities, 41	у
$VdpVideoSurfaceQueryGetPutBitsYCbCr {\leftarrow}$	VdpPoint, 127
Capabilities, 41	v0

VdpRect, 129 y1 VdpRect, 129