LETTER

Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals

Li-Dong Zhao¹, Shih-Han Lo², Yongsheng Zhang², Hui Sun³, Gangjian Tan¹, Ctirad Uher³, C. Wolverton², Vinayak P. Dravid² & Mercouri G. Kanatzidis¹

The thermoelectric effect enables direct and reversible conversion between thermal and electrical energy, and provides a viable route for power generation from waste heat. The efficiency of thermoelectric materials is dictated by the dimensionless figure of merit, ZT (where Z is the figure of merit and T is absolute temperature), which governs the Carnot efficiency for heat conversion. Enhancements above the generally high threshold value of 2.5 have important implications for commercial deployment^{1,2}, especially for compounds free of Pb and Te. Here we report an unprecedented ZT of 2.6 ± 0.3 at 923 K, realized in SnSe single crystals measured along the b axis of the room-temperature orthorhombic unit cell. This material also shows a high ZT of 2.3 \pm 0.3 along the c axis but a significantly reduced ZT of 0.8 ± 0.2 along the a axis. We attribute the remarkably high ZT along the b axis to the intrinsically ultralow lattice thermal conductivity in SnSe. The layered structure of SnSe derives from a distorted rock-salt structure, and features anomalously high Grüneisen parameters, which reflect the anharmonic and anisotropic bonding. We attribute the exceptionally low lattice thermal conductivity $(0.23 \pm 0.03 \text{ W m}^{-1} \text{ K}^{-1} \text{ at } 973 \text{ K})$ in SnSe to the anharmonicity. These findings highlight alternative strategies to nanostructuring for achieving high thermoelectric performance.

power factor (along the b axis), but, even more surprisingly, we observe that the thermal conductivity of SnSe is intrinsically ultralow ($<0.25\,\mathrm{W}\,\mathrm{m}^{-1}\,\mathrm{K}^{-1}$ at $>\!800\,\mathrm{K}$), resulting in ZT=2.62 at 923 K along the b axis and 2.3 along the c axis; these represent the highest ZT values reported so far for any thermoelectric system. Along the a direction, however, ZT is significantly lower, $\sim\!0.8$. Here, it should be noted that SnSe along the b axis shows a room-temperature ZT=0.12, which is comparable to the room-temperature value of 0.15 reported earlier SnSe, however, reveals high ZT values near and above the transition temperature of 750 K at which the structure converts from Pnma to $Cmcm^{20-22}$. Such ultrahigh ZT along two principal directions and the observed crystallographic and ZT anisotropy prompted us to investigate the scientific underpinning of these intriguing results.

SnSe adopts a layered orthorhombic crystal structure at room temperature, which can be derived from a three-dimensional distortion of the NaCl structure. The perspective views of the room-temperature SnSe crystal structure along the a, b and c axial directions are shown in Fig. 1a–d. There are two-atom-thick SnSe slabs (along the b-c plane) with strong Sn–Se bonding within the plane of the slabs, which are then linked with weaker Sn–Se bonding along the a direction²⁰. The structure contains highly distorted SnSe₇ coordination polyhedra, which have