Универзитет у Крагујевцу Факултет инжењерских наука

Семинарски рад из предмета Основи рачунарске технике 2

Тема: Реализација алармног система коришћењем магнетног сензора

Студенти: Јован Петровић Александра Нешић

Предметни професор: Александар Пеулић

Крагујевац 2017.

САДРЖАЈ:

1.УВОД	2
2. АРХИТЕКТУРА	3
2.1.1 Архитектура FPGA	3
2.1.2 Clocks	4
2.1.3 Улазно/излазни уређаји	4
2.1.4 Xilinx Spartan-3E (XC3S500E)	7
2.2 Магнетни сензор MFS-3A	8
3.ПРОЈЕКТНИ ЗАДАТАК	9
4. ЗАКЉУЧАК	10
5. ПРИЛОГ КОДОВИ	10
5.1 Споро блинкање	10
5.2 Брзо блинкање	11
5.3 Главна функција	11
5.4 Имплементациони код	12
6 ПИТЕРАТУРА	12

1.УВОД

У овом раду је описана реализација алармног система коришћењем магнетног сензора MFS-3A и развојног система FPGA-Spartan-3E-S500, као и њихове архитектуре. Магнетни сензор се користи да региструје положај врата или прозора у просторији. Сензор се поставља на оквир врата,а магнет на врата тако да належе на сензор када су врата затворена. Док год је магнет у том положају, сензор детектује његово магнетско поље и шаље уређају сигнал да су врата затворена. Приликом отварања врата и одвајања магнета од сензора, сензор престаје да детектује магнетско поље и престаје да даје сигнал контролном уређају који након тога реагује сходно стању у ком се налази.

2. АРХИТЕКТУРА

2.1.1 Архитектура FPGA

У овом пројекту коришћен је FPGA-Spartan-3E-S500. FPGA на Nexys2 плочи мора бити конфигурисан (или програмиран) од стране корисника пре обављања било које функције. Током конфигурације, "бит" фајл се пребацује у меморијске ћелије унутар FPGA да би се дефинисале логичке функције и међусобне везе у колу. Слободан ISE/WebPack CAD софтвер од Xilinx-а, може да се користи за прављење "бит" фајла помођу VHDL-а, Verilog-а, или шематски на бази изворних фајлова. Што се тиче архитектуре плоче, њу одликују:

- FPGA конфигурација заснована на USB2 и брзом протоку података (уз употребу бесплатног софтвера Adept Suite)
- напајање преко USB-а (такође се могу користити батерије или струја из исправљача)
- 16MB Micron PSDRAM-а и 16MB-а Intel StrataFlash ROM-а
- Xilinx Platform Flash за разне FPGA конфигурације
- Ефикасно напајање преко прекидача (корисно за апликације које користе батерије као извор напајања)
- 50МНz осцилатор уз додатни улаз за други осцилатор
- 60 FPGA улазно/излазних јединица повезаних на проширујуће-конекторе (један брзи
- Hirose FX2 конектор и четири 6-пинска квадратна конектора)
- 8 LED-а, четири 7-сегментна дисплеја, 4 дугмета, 8 прекидача
- Продаје се у пластичној кутији заједно са USB каблом

2.1.2 Clocks

Nexys2 плоча садржи осцилатор од 50MHz и прикључак за други осцилатор. Сигнали клока са осцилатора се директно повезују на пинове на FPGA који су повезани са синтесајзером клока. Синтесајзери (или DLL-ови) пружају могућност повећавања улазне фреквенције за 2 или 4 пута, односно дељења улазне фреквенције неком целобројном вредношћу, као и могућност прецизног дефинисања фазе и кашњења различитих клок сигнала.

2.1.3 Улазно/излазни уређаји

Улази: Прекидачи и тастери

Четири тастера и осам прекидача представљају улазе овог кола. Стања тастера су у неактивираном стању ниска (логичка 0), и побуђују се само када је тастер притиснут (логичка 1). Прекидачи генеришу сигнал у зависности од положаја у ком се налазе и задржавају то стање. И прекидачи и тастери користе отпорнике везане на ред као заштиту од кратког споја (који би се десио ако би се FPGA улаз за дугме или прекидач дефинисао као излаз).

* pin numbers for -1200 die

Излази: *LED*

Диоде се пале када им FPGA на LED аноду пошаље сигнал у виду логичке '1', што ће произвести струју од 3mA, а да не би дошло до оптерећења самог FPGA испред сваке аноде налази се отпорник од 390Ω. Има укупно 10 диода, од тога девета показује да FPGA добија напон, десета показује статус програмирања, а остале су на располагању кориснику за употребу по потреби.

Периферни конектори

Nexys2 плоча поседује четири дворедна 6-пинска Pmod конектора која могу да приме до 8 Pmod-ова. Сваки од четири 12-пинска конектора поседује 8 пинова за сигнале података и по 2 пина за уземљење и напон. Сви пинови за податке поседују заштиту од кратког споја у виду отпорника и ESD заштитне диоде. Може се бирати извор напајања: 3.3V са плоче или други извор.

Pmod конектори су означени: JA(најближи пиновима за напон),JB,JC и JD (најдаљи од напонских пинова).

Додатни Pmod конектори се могу додати плочи куповином екстерне плочице.

Figure 23: Nexys2 Pmod connector circuits

Table 3: Nexys2 Pmod Connector Pin Assignments							
Pmod JA		Pmod JB		Pmod JC		Pmod JD	
JA1: L15	JA7: K13	JB1: M13	JB7: P17	JC1: G15	JC7: H15	JD1: J13	JD7: K14 ¹
JA2: K12	JA8: L16	JB2: R18	JB8: R16	JC2: J16	JC8: F14	JD2: M18	JD8: K15 ²
JA3: L17	JA9: M14	JB3: R15	JB9: T18	JC3: G13	JC9: G16	JD3: N18	JD9: J15 ³
JA4: M15	JA10: M16	JB4: T17	JB10: U18	JC4: H16	JC10: J12	JD4:; P18	JD10: J14⁴

Notes:

1 shared with LD3

² shared with LD3

3 shared with LD3

4 shared with LD3

2.1.4 Xilinx Spartan-3E (XC3S500E)

Spartan-3 је први FPGA са технологијом од 90nm. Када је пуштен у продају био је функционалнији од свих претходника и поставио нове стандарде у индустрији програмабилне логике. Због своје изузетно ниске цене, ова генерација је погодна за широки спектар примене у електронским уређајима од кућних мрежа преко пројектовања слике до опреме за дигиталну телевизију.

Одлике:

- 500К системских логичких кола
- 10.476 еквивалентних логичких ћелија
- 73К дистрибуираних RAM битова
- 360К блок RAM битова
- 20 множача
- 4 DCM-ова (dual-chip модула)
- 158 корисничких улазно/излазних портова
- 65 максималних диференцијалних улазно/излазних парова

2.2 Магнетни сензор MFS-3A

Спакован у кућишту малих димензија и врло мале масе налази се сензор за детектовање магнетског поља. Кућиште је плаве боје, облика квадра, из којег излази 5 пинова за повезивање са уређајима, редом: уземљење, напајање, излази за Z,X и Y осе.

Садржи три CSA-1V чипа који генеришу у себи напон пропорционалан густини флукса који детектују. Сва три су постављена под међусобно нормалним угловима што омогућава детекцију магнетног поља у свим правцима. Генерисани напон се спроводи на пинове сензора који се даље повезују по потреби.

Одлике:

- Детекција у све три димензије
- Резолуција: ±10µT(+/-0.1G)
- Три линеарна аналогна излаза V_X, V_Y, V_Z у распону од 0.5V до 4.5V
- Сензитивност: S = 280 mV/mT
- Прецизност: ±3%
- Угаоно поравнање: ±3°
- Димензије: 10 x 13 x 12mm
- Тежина: 2.5g
- Максимално може да повуче 36mA при напону од 5V

3.ПРОЈЕКТНИ ЗАДАТАК

На врло једноставан начин је одрађена реализација алармног система, која је притом и јефтина,тако да је на кориснику само да одабере локацију за заштиту. Магнетни сензор се инсталира на оквир врата или прозора, а магнет се уграђује у врата или прозор.

Како функционише овај алармни систем?

Дозвола приступа: Врата су затворена, тиме је упаљена диода (ledm) која даје знак да магнетни сензор детектује магнет (mag). Упаљена је и диода (led), која трепће споро и тако сигнализира да је систем и даље активан, али не долази до стања узбуне.

Провалник: Приликом провале, долази до отварања врата док је систем за узбуну активиран, магнет је одвојен од сензора, диода која показује да ли су магнет и сензор у контакту је угашена, систем препознаје комбинацију улазних сигнала и активира систем за узбуну, док контролна диода светли већом фреквенцијом.

Активно стање: Корисник покретањем прекидача (act) за активно стање деактивира систем за узбуњивање при чему је цео систем за детекцију и даље активан,али да се приликом отварања врата аларм неће активирати. Тада се приликом затварања и отварања врата систем не обазире на стање магнетног сензора и контролна диода светли споријом фреквенцијом.

магнет на сензору	аларм активан	фреквенција контролног LED-а	аларм активан	контакт сензора и магнета
не	не	спора	не	не
не	да	брза	да	не
да	не	спора	не	да
да	да	спора	да	да

4. ЗАКЉУЧАК

Потражња за оваквим системом све више расте зато што цена компоненти потребних за реализацију система пада. Овакав уређај треба да постоји како у јавним тако и у приватним објектима. Корисници би желели да објекат буде заштићен, а с обзиром да је уградња овог уређаја једноставна, а све више потребна у данашње време, компанија би његовом израдом могла да има велики профит.

5. ПРИЛОГ КОДОВИ

5.1 Споро блинкање

```
module blink23( input CLOCK_50,
    output LEDG

);

reg data1 = 1'b1;
reg [32:0] counter;
reg state;

assign LEDG = state;

always @ (posedge CLOCK_50) begin
    counter <= counter + 1;
    state <= counter[23];
end</pre>
```

endmodule

5.2 Брзо блинкање

```
module blink25( input CLOCK_50,
    output LEDG

);

reg data1 = 1'b1;
 reg [32:0] counter;
 reg state;

assign LEDG = state;

always @ (posedge CLOCK_50) begin
    counter <= counter + 1;
    state <= counter[25];
end</pre>
```

endmodule

5.3 Главна функција

```
module main( input clk,mag,act, output led,leda,ledm
);
    wire nmag,b23,b25,nact,b231,b232,b233,b251;

    blink23 b1 (.CLOCK_50(clk), .LEDG(b23));
    blink25 b2 (.CLOCK_50(clk), .LEDG(b25));

    not(nact,act);
    not(nmag,mag);
    and(b231,nmag,nact,b25);
    and(b232,mag,nact,b25);
    and(b251,nmag,act,b25);
    and(b233,mag,act,b23);
    or(led,b231,b232,b233,b251);
    assign leda = act;
    assign ledm = nmag;
```

endmodule

5.4 Имплементациони код

```
NET clk LOC = "B8";
NET mag LOC = "L15";
NET act LOC = "K17";

NET leda LOC = "F4";
NET led LOC = "J14";
NET ledm LOC = "K15";
```

6. ЛИТЕРАТУРА

- 1. https://www.sparkfun.com/products/retired/11657
- 2. http://www.gmw.com/magnetic_sensors/ametes/documents/Ametes%20MFS-3A_Spec_020707.pdf
- 3. Digilent Nexys2 Board Reference Manual