Relationship between the areas of two triangles with an equal angle

Theorem

If an angle of a triangle, is equal to the angle of another triangle, then the areas of these two triangles relate as the products of the sides that enclose the equal angles.

Figure 1

Proof

Let S and S_2 be the areas of triangles ABC and $A_1B_1C_1$, for which $\angle A = \angle A_1$

Let's prove that:

$$\frac{S}{S_2} = \frac{AB \cdot AC}{A_1 B_1 \cdot A_1 C_1}$$

Let's put triangle ABC (Figure 1) on top of triangle $A_1B_1C_1$ (Figure 2) such that A and A_1 match, sides A_1B_1 and A_1C_1 align with rays AB and AC (Figure 3).

Figure 2

Triangles ABC and AB_1C have a common height CH. Therefore:

$$\frac{S}{S_{AB_1C_1}} = \frac{AB}{AB_1}$$

Triangles ABC and AB_1C have a common height B_1H_1 . Therefore:

$$\frac{S_{AB_1C}}{S_{AB_1C_1}} = \frac{AC}{AC_1}$$

Now multiply the two to get:

$$\frac{S}{S_{AB_1C}} \cdot \frac{S_{AB_1C}}{S_{AB_1C_1}} = \frac{AB \cdot AC}{AB_1 \cdot AC_1}$$

$$\frac{S}{S_2} = \frac{AB \cdot AC}{AB_1 \cdot AC_1}$$

∴ QED

Figure 3