Packet Number Space(s)

Christian Huitema

October 18, 2021

Why two options for numbering packets?

Numbering packets

- Two options
 - Single number space (draft-huitema)
 - One number space for each path (draft-liu, draft-deconinck)
- There are pros and cons in each approach

Single Number Space

- Packets are numbered in sequence, as they are sent
- Same as QUIC V1
- Same ACK format as QUIC V1
- Sender keeps track of which packet went on what path
- Out of sequence delivery common if paths have different latencies

Multiple Number Space

- On packet sequence per path
- Sender maintains separate list of packets waiting for acknowledgements per path
- New "per path" acknowledgement frame
- Requires changes in packet encryption/decryption

Encryption-decryption issue (Multiple spaces)

1 rtt CID PN ENCRYPTED PAYLOAD

- Default behavior:
 - AEAD Nonce = IV + 64 bit packet number
- But same PN on multiple path means same nonce
 - Not compatible with AEAD, same nonce means same encryption
- Solution: 96 bit AEAD nonce
 - AEAD Nonce = IV + (32 bit CID sequence number | 64 bit packet number)
 - Supported by several TLS stacks
- Not possible if using NULL CID

ACK Ranges issue (single space)

- Paths with different latencies
 - Out of order deliveries
 - Large number of ACK ranges
 - Case of CWIN = 10,000 packets?
- Mitigate requires smarts
 - Send in batches (GSO)
 - Limit number of ranges in ACK
 - Limit number of ACK per range
 - ACK horizon
 - ACK of ACK

Loss recovery issue (single space)

- RFC 9002 specifies RACK
 - Assumes approximate in order delivery
 - Multipath breaks that
- Mitigation
 - Remember send path of packet
 - Perform RACK logic "within a single path"

Pros and cons

Single space

- Support for NULL CID
 - Minimal transmission overhead
- Fewer code changes
 - Lots of code assumes single packet number space
- Does not require 96 bit nonce
 - Fewer crypto stack requirements
- Allows implementation trade-offs
 - Complexity vs efficiency

Multiple spaces

- No worries about ACK ranges
 - Works well, even if large CWIN
- Simple logic
 - Per path version of RFC 9002 algorithms
- Does not require implementation trade-offs

Decision so far: just specify both options

- Allow for negotiation during handshake
 - Chose one, or other, or none.