医学分析仪器原理实验报告

医电 53 李竞捷 2151500084 jingjie.li@nyu.edu

实验一 分光光度计性能检测与滤光片的滤光特性曲线的测定

实验的目的和要求

- 1、掌握分光光度计的性能检测及校准方法:包括波长检测、杂光检测、以及比色皿配对。
- 2、掌握分光光度计的使用方法
- 3、测定吸收滤光片的滤光曲线并熟悉其滤光特性。

实验原理

根据朗博比尔定律 A=kbc (式中 A 为吸光度, b 为液层厚度、c 为溶液浓度, k 为溶液 为质量浓度时的吸光系数), 我们可知当用一束单色光照射吸收溶液时, 其吸光度与溶液的浓度以及液层的厚度成正比, 在溶液吸收曲线的峰值处这种关系最明显, 这就是分光光度法所使用的基本原理。

分光光度计的测量精度主要取决于以下的因素:单色光波长的准确性、所测定的透射率和吸光度测量值的准确性,以及在散光的影响。由于使用时有一些影响测量精度的其他因素,因此需要同通过一些测量和矫正手段来消除这些不利因素:例如测量比色皿与参比比色皿的配对性测量等。

实验仪器

- 1、紫外-可见光谱仪(725N)
- 2、镨钕滤光片和钛滤光片各一个。
- 3、白纸条、黑纸片、蒸馏水等。
- 4、标准玻璃比色皿(1*1cm)2只。

实验步骤

- 1、分光光度计中光源和单色器的校准。 主要步骤是在校准仪器后,检查 320nm, 700nm 处光能量, 透射率应高于 100%
- 2、单色器可见波长的测量。 校准仪器后,测量 529nm 波长附近 A 值,重新校准后,测量 790-820nm 附近 T 值, 画出曲线图,观察最大吸收峰的位置是否在 529nm 以及 807nm 附近,才算合格
- 3、杂散光的测量。 主要步骤是在校准仪器后,测量在 585mn 处透射率 T 值是否小雨 5%
- 4、比色皿的配套。 在一个比色皿上校准仪器,观察其他比色皿是否接近 100%,并计算误差是否小与 0.5%,则算配对成功。

实验结果处理

- 1、 分光光度计中光源和单色器的校准 校准过程非常正常,700nm 处波长为147.3%,符合要求
- 2、 单色器可见波长的测量。 吸光度测量结果如下图所示

可以看到,在 531nm 处吸收达到最大,基本符合单色器的性能参数要求 在透射比测量中

在 809nm 处取得了最低的透射比, 也基本上符合单色器的性质

- 3、 杂散光的测量。
 - T%=0.14%, 杂散光检测合格
- 4、 比色皿的配套。

T1=100%; T2=100%; T3=99.9%; T4=100.3% 所以可以看出 Tmax-Tmin=0.4%<0.5% 所以比色皿配套合格

思考与讨论

- 1、为什么采用黄色光作为单色器波长粗测得测量光? 因为可见光区域的黄光波段比较狭窄,适用于光度计波长的粗测。
- 2、分析影响波长测量精度的各项影响因素。 主要有以下因素:1.单色光波长是否准确,2.透射率和吸光度测量值的准确性,3.是 否有杂散光的影响。
- 3、为什么选用镨钕滤光片作为杂散光的测量依据?因为这种滤光片有固定的光谱吸收特性,性能稳定,在波长 400-900nm 处有 14 个强弱不同的吸收峰,其中在 529,741,807.7 处吸收峰十分尖锐而且准确,所以可以用来校正分光光度计的可见光段波长。
- 4、透射率的 100%校准有使用空气作为透射媒介,有时用空白蒸馏水作为透射媒介,这两者有什么区别?用空气没有考虑背景吸收的影响,而用水的话,考虑了各种溶液的背景吸收,所以误差比较小
- 5、吸收滤光片在光谱曲线上有什么特性?吸收旅馆谝有带通和截止两种,带通的宽度比交换,而且两种滤光片透光部分都接近100%。

实验二 分光光度计的使用和浓度测量

一、实验的目的和要求

- 1、学习吸收光谱分析的基本原理和测量方法。
- 2、熟悉分光光度计仪器的结构、工作原理。
- 3、测熟悉 UV-752 紫外-可见光分光光度计的定性/定量测量操作方法。
- 4、学习如何选择分光光度计分析的实验条件,以及图谱的数据处理方法。

二、实验原理

根据朗博比尔定律可知,在测定物质已确定、吸收池的长度为一固定值以及其他测定条件不变时,则该物质的吸光度和其浓度呈线性关系,这就是吸收光谱法进行定量分析的依据

三、实验仪器

- 1、 仪器:紫外-可见光谱仪(725N)
- 2、 实验器具:玻璃比色皿 (10*10mm) 4 只;50mL 具塞容量瓶 3 只;5mL 移液管;250mL 烧杯;镜头纸;洗液瓶等。
- 3、 试剂:

试剂 1: 浓度为 0.015g/L (9.5*10e-5mol/L) 的高锰酸钾标准液试剂 2: 浓度为 0.02g/L(1.26*10e-5mol/L)的高锰酸钾标准液

试剂 3:待测浓度的高锰酸钾液;蒸馏水等

四、实验步骤

1、 高锰酸钾溶液吸收曲线的制作。

校准仪器后,在三种浓度的高锰酸钾溶液上测量其在 440-580nm 波长的吸光度,绘制波长-吸光度曲线

2、 应用参比法测定高锰酸钾溶液的浓度。

校准仪器后,取一个标准已知浓度的溶液,测量吸光度,再测一未知浓度的溶液,根据正比例浓度、吸光度的原理,根据比例计算未知溶液的浓度。

3、 应用直接测量法测定高锰酸钾溶液的浓度。

直接测量某一个浓度溶液的吸光度,然后根据朗伯比尔定律公式直接计算浓度

五、实验结果处理

测量三个浓度下高锰酸钾溶液吸收曲线,得到如下数据:

波长		低浓度	中浓度	高浓度
	440	0.023	0.041	0.06
	450	0.024	0.045	0.067
	460	0.027	0.054	0.08
	470	0.032	0.07	0.11
	480	0.035	0.091	0.141
	490	0.042	0.12	0.187
	500	0.054	0.155	0.246
	510	0.059	0.173	0.281
	520	0.072	0.209	0.347
	530	0.069	0.207	0.335
	540	0.071	0.204	0.341
	542	0.073	0.211	0.347
	544	0.072	0.213	0.355
	546	0.071	0.21	0.351
	548	0.066	0.201	0.335
	550	0.061	0.186	0.318
	560	0.044	0.128	0.208
	570	0.041	0.115	0.196
	580	0.022	0.06	0.097

作图可以观察到:

Concentration Absorption Curve of KMnO4 O.3 Concentration / g/L O.005 O.015 O.025 Wave Length / nm

因此可以明显看出,高锰酸钾溶液越浓,在给定波长下吸光度越大,此外,高锰酸钾溶液有着非常显著的吸收峰,大概在544nm左右,而且吸收峰处吸光度和浓度正相关,浓度越大,吸收峰处吸光度同比例的增加。

应用参比法测量时,我们测量了 542nm 处两种不同浓度高锰酸钾溶液的吸光度。在已知浓度为 0.05g/L 的溶液中,我们测量三次吸光度分别为 0.07, 0.069, 0.069.

而另一位置溶液的吸光度多次测量结果为,0.349, 0.349, 0.349.大约为 0.07 的 5 倍,于此溶液 0.25g/L 浓度与 0.05g/I 的比例一直。

应用直接测量法时,我们测得吸光度为 0.372,因此直接套用公式可以计算出,溶液浓度为 3.51g/L,与溶液浓度基本一致

六、思考与讨论

1、 高锰酸钾的浓度对吸收曲线有什么影响?

高锰酸钾溶液浓度越高,溶液吸光度越大,在任何波长下基本都有这个情况,所以可以观察到吸收曲线的抬高,但是并不是在所有的波长下,吸光度都和溶液浓度成正比,一般是只有在最大波长处,才有成正比可以计算的规律。

2、 采用直接测量法和参比法 (也称比例法) 分别对高锰酸钾溶液进行测量的两个浓度结果 哪个更接近于测量的真值?

参比法更接近,因为参比法可以通过比例的原理,消除一些误差。在比例的情况下,不用计算透射比的对数,所以误差会变小,因而更接近真值。

3、 分析影响直接测量法测量精度的各项影响因素?

我认为主要有如下因素:1.感关元件的精度,2.仪器有没有漏光等现象,3.仪器单色性能好不好,波长调节是否准确。

实验三 生化分析仪的参数设置以及性能评价

一、实验的目的和要求

- 1、了解生化分析仪的基本结构。
- 2、掌握生化分析仪测试的基本原理和方法。
- 3、掌握自动生化分析仪参数正确设置的步骤。
- 4、掌握自动生化分析仪样本标准曲线的制作方法以及·样本的测量方法。

二、实验原理

自动生化分析仪是将生物化学分析过程中的取样、加试剂、去干扰、混合、保温反应、自动 检测、结果计算、数据处理和打印报告,以及实验后的清洗等步骤都能自动自动化完成的仪 器。它具有提高工作效率,提高实验的精密度与准确度,不受操作人员的技术高低、工作时 间内技能状态等各种因素影响等优点。

三、实验仪器

BA-90 版自动生化分析仪一台;高锰酸钾标准溶液三种(0.095, 0.126, 0.158mmol/L), 试杯三个, 蒸馏水, 清洗液。

四、实验步骤

1、 仪器功能检查。

主要是滤光片定位检查与重复性检查,直接运行电脑上的程序,让仪器吸收蒸馏水,在定位检查中是观察除了F8吸光度在各个波长下的值是否比较小,在0.25以下才算正常。在重复性检查中,要求10min内测量的吸光度波动很小才可以满足要求。

2、 仪器测试参数设置。

根据说明, 在程序菜单中设置相应的参数

3、 样本浓度-吸光度标准曲线的建立。

主要分为以下步骤:选择测量功能,选择测量项目,空白调零,试剂空白校准,标准曲线建立。根据提示操作仪器并加样,即可得到数据。

4、 仪器精密度实验。

完成仪器的校准调零后,多次测量样本吸光度数值,比较其均值,均方跟差,变异系数。

五、实验结果处理

1. 仪器功能检查

在滤光片定位检查中,我们按照操作得到了如下结果

滤光片	340nm	405nm	492nm	510nm	546nm	578nm	630nm	F8
吸光度	0.174	0.184	0.187	0.160	0.181	0.126	0.139	4.095

测量的结果完全符合对仪器的要求. 只在 F8 处取得比较大的吸光度。

在重复性检查中,得到了如下结果

重复性检查结果		
最小值	0.173	

吸光度	0.175
最大值	0.175

差异为 0.003, 小于对仪器的要求 0.006, 所以仪器重复性性能也符合要求。

在参数测量中,得到如下结果:

K	0.52	0.52	0.52
吸光度	0.061	0.187	0.304
浓度	0.032	0.095	0.158

仪器计算的结果为 K=0.520 b=1.006753 * 10^-4

我们利用 MATLAB 计算的拟合结果与仪器自动计算的结果相同。 绘图结果如下,阴影区域表示你喝的 95%CI,显示你喝结果很好。

精密度检查结果如下:

5次测量, 吸光度均为 0.186, 均值为 0.186, 均方根差以及 CV 均为 0

六、思考与讨论

- 1、为什么说自动生化分析仪能大大提高检验工作的效率? 自动生化分析仪由机器取代人工进行加样等操作,取样等操作每次都一直,准确度和速度都会提高,因此可以大大提高检验工作效率
- 2、 简述自动生化分析的结构并简要说明各部分的功能。 自动生化分析仪主要分为样品处理系统, 检测系统和计算机系统。样品处理系统负责自动进

自动生化分析仪主要分为样品处理系统,检测系统和计算机系统。样品处理系统负责自动进样,存储样品以及搅拌等功能。检测系统主要负责监测光学吸光性质等,计算机系统出要负责数据的处理与结果显示。

3、 半自动生化分析仪与全自动生化分析仪有哪些区别?

半自动分析仪中加样,选择测量方式等仍然需要人工完成,除此之外,核对病人信息与检查,仪器校准等仍然大量需要人力。而全自动则是完全自动,不需要人工干预就可以完成全部测量的机器,因此自动化程度更高,人的参与更少,效率也更高。