Plan d'étude et représentation graphique de $y = f(x) = \frac{-3x+4}{x^2-4}$

www.cafeplanck.com info@cafeplanck.com

Le domaine de définition de f

$$y = f(x) = \frac{-3x + 4}{x^2 - 4} \Rightarrow D_f = \left(-2, 2 \right) = \left(-2, 2 \right) = \left(-2, 2 \right) \cup \left($$

Etudier la fonction au bornes de D_{i}

Etudier la fonction au bornes de I_1

A la borne gauche

$$\lim_{x \to -\infty} y = \lim_{x \to -\infty} \frac{-3x + 4}{x^2 - 4} = 0$$

Alors la droite d'équation $\it Y=0$ est une asymptote horizontale pour la courbe de $\it f$.

A la borne droite

$$\lim_{x \to -2^{-}} y = \lim_{x \to -2^{-}} \frac{-3x + 4}{x^{2} - 4} = \frac{-3(-2 - \varepsilon) + 5}{(-2 - \varepsilon)^{2} - 4} = \frac{11 + 3\varepsilon}{4 + 4\varepsilon + \varepsilon^{2} - 4} = \frac{11}{+4\varepsilon + \varepsilon^{2}} = \frac{11}{+4\varepsilon} = +\infty$$

Alors la droite d'équation X = -2 est une asymptote verticale pour la courbe de f.

Etudier la fonction au bornes de I_2

A la borne gauche

$$\lim_{x \to -2^+} y = \lim_{x \to -2^+} \frac{-3x + 4}{x^2 - 4} = \frac{-3(-2 + \varepsilon) + 5}{(-2 + \varepsilon)^2 - 4} = \frac{11 - 3\varepsilon}{4 - 4\varepsilon + \varepsilon^2 - 4} = \frac{11}{-4\varepsilon + \varepsilon^2} = \frac{11}{-4\varepsilon} = -\infty$$

Alors la droite d'équation X = -2 est une asymptote verticale pour la courbe de f.

A la borne droite

$$\lim_{x \to 2^{-}} y = \lim_{x \to 2^{-}} \frac{-3x + 4}{x^{2} - 4} = \frac{-3(2 - \varepsilon) + 5}{(2 - \varepsilon)^{2} - 4} = \frac{-1 + 3\varepsilon}{4 - 4\varepsilon + \varepsilon^{2} - 4} = \frac{-1}{-4\varepsilon + \varepsilon^{2}} = \frac{-1}{-4\varepsilon} = \frac{1}{+4\varepsilon} = +\infty$$

Alors la droite d'équation X = 2 est une asymptote verticale pour la courbe de f .

Etudier la fonction au bornes de I_3

A la borne gauche

$$\lim_{x \to 2^+} y = \lim_{x \to 2^+} \frac{-3x + 4}{x^2 - 4} = \frac{-3(2 + \varepsilon) + 5}{(2 + \varepsilon)^2 - 4} = \frac{-1 - 3\varepsilon}{4 + 4\varepsilon + \varepsilon^2 - 4} = \frac{-1}{+4\varepsilon + \varepsilon^2} = \frac{-1}{+4\varepsilon} = -\infty$$

Alors la droite d'équation $\,X=2\,$ est une asymptote verticale pour la courbe de f .

A la borne droite

$$\lim_{x \to +\infty} y = \lim_{x \to +\infty} \frac{-3x + 4}{x^2 - 4} = 0$$

Alors la droite d'équation $\it Y=0$ est une asymptote horizontale pour la courbe de $\it f$.

Le sens de variation de f

$$y' = f'(x) = \frac{3x^2 - 8x + 12}{(x^2 - 4)^2}$$

$$(x^2 - 4)^2 = 0 \Rightarrow \begin{cases} x = -2 \notin D_f \\ x = 2 \notin D_f \end{cases}$$

Convexité de f

$$y'' = f''(x) = \frac{-2(3x^3 - 12x^2 + 36x - 16)}{(x^2 - 4)^3}$$

$$2(3x^3 - 12x^2 + 36x - 16) \Rightarrow x = 0.52 \Rightarrow y = -0.65 \Rightarrow \begin{vmatrix} 0.52 \\ -0.65 \end{vmatrix}$$

$$(x^2 - 4)^3 = 0 \Longrightarrow \begin{cases} x = -2 \notin D_f \\ x = 2 \notin D_f \end{cases}$$

$$m_{r=0.52} = f'(0.52) = 0.62$$

Le tableau de variation

x			-2		0.52		2		+∞
<i>y'</i>		+		+	0.62	+ ,		+	
<i>y</i> "		+		_	0	+		_	
У	0	7	+	·∞ /	– 0.65 Inf		+∞ -∞		0
		\bigcirc	<i>V</i> 1		Int	\bigcirc	<i>V</i> 1		

La courbe

