Let k be a positive integer. For each nonnegative integer n, let f(n) be the number of solutions

 $(x_1,\ldots,x_k)\in\mathbb{Z}^k$ of the inequality $|x_1|+\ldots+|x_k|\leq n$. Prove that for every $n \geq 1$, we have $f(n-1)f(n+1) \leq$ $f(n)^2$.