#### All The Calculus You Need

POLS 7012: Introduction to Political Methodology

Joe Ornstein

University of Georgia

September 30, 2020

### Warm Up

- What is a **function**?
  - A **function** takes one or more inputs and produces an output.

• If 
$$f(x) = 2x^2 + 2x + 3$$
, what is  $f(2)$ ? 
$$f(2) = 2(2)^2 + 2(2) + 3 = 8 + 4 + 3 = 15$$

• 
$$y = 2x + 1$$
 and  $y = 10 - x$ . Solve for  $x$  and  $y$ .

$$10 - x = 2x + 1$$
$$3x = 9$$

$$x = 3$$
  
 $y = 7$ 

## Warm Up

What is the **slope** of f(x) = 3x + 2?



The slope of a linear function (a straight line) is measured by how much y increases when you increase x by 1. In this case, 3.

# Warm Up

What is the **area** of this rectangle?



Good news! You're super close to knowing all the calculus you need.

## Learning Objectives

By the end of this week, you will be able to:

- Find the slope of a function at any point
- Identify the *minimum* or *maximum* value of a function
- Compute the area under a curve
- Explain the Fundamental Theorem of Calculus

# Slopes

### **Linear Functions**



#### **Linear Functions**

Find the slope of each function:

- y = 2x + 4
- $f(x) = \frac{1}{2}x 2$
- life expectancy (years) =  $18.09359 + 5.737335 \times \log(GDP \text{ per capita})$

#### Remember:

Slope of a line 
$$=rac{rise}{run}=rac{\Delta Y}{\Delta X}=rac{f(x+h)-f(x)}{h}$$

### **Nonlinear Functions**



### Isaac Newton



11 / 66

## **Gottfried Wilhelm Leibniz**



# Newton and Leibniz's Insight

Any curve becomes a straight line if you "zoom in" far enough.



### Zoom and Enhance...



### Zoom and Enhance...



### Zoom and Enhance...



# Zoom and Enhance...Again...



# Zoom and Enhance...Again...



## Zoom and Enhance...Again...And Again...



## Zoom and Enhance...Again...And Again...



It's basically a straight line! And finding the slope of a straight line is easy...

## Putting All That Into Math...

$$f'(x) = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

## Putting All That Into Math...

$$f'(x) = arprojlim_{h o 0} rac{f(x+h) - f(x)}{\displaystyle rac{h}{ ext{the change in y}}}$$
shrink h really small  $arphi$  the change in x

This is called the **derivative** of a function.

## Example

Let 
$$f(x) = 2x + 3$$
. What is  $f'(x)$ ?

$$f'(x) = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$
 $= \lim_{h o 0} rac{2(x+h) + 3 - (2x+3)}{h}$ 
 $= \lim_{h o 0} rac{2x + 2h + 3 - (2x+3)}{h}$ 
 $= \lim_{h o 0} rac{2h}{h}$ 
 $= 2$ 

#### Now A Nonlinear One

Let 
$$f(x)=3x^2+2x+3$$
. What is  $f'(x)$ ? 
$$=\lim_{h\to 0}\frac{3(x+h)^2+2(x+h)+3-(3x^2+2x+3)}{h}$$
 
$$=\lim_{h\to 0}\frac{3x^2+3h^2+6xh+2x+2h+3-(3x^2+2x+3)}{h}$$
 
$$=\lim_{h\to 0}\frac{3h^2+6xh+2h}{h}$$
 
$$=\lim_{h\to 0}3h+6x+2$$
 
$$=6x+2$$

## Solution



More **good news!** You don't have to go through that process every time. Mathematicians have done it for you, and have discovered a whole bunch of useful shortcuts.

#### Shortcut 1: The Power Rule

If 
$$f(x) = ax^k$$
, then  $f'(x) = kax^{k-1}$ 

#### **Practice Problem:**

Let 
$$f(x) = 2x^3$$
. What is  $f'(x)$ ?

$$f'(x) = 6x^2$$

#### Shortcut 2: The Sum Rule

The derivative of a sum is equal to the sum of derivatives.

If 
$$f(x)=g(x)+h(x)$$
, then  $f^{\prime}(x)=g^{\prime}(x)+h^{\prime}(x)$ 

#### **Practice Problem:**

If 
$$f(x)=2x^3+x^2$$
 , what is  $f'(x)$ ? 
$$f'(x)=6x^2+2x$$

#### Shortcut 3: The Constant Rule

The derivative of a constant is zero

If 
$$f(x) = c$$
, then  $f'(x) = 0$ 

#### **Practice Problem:**

If 
$$f(x) = 4x^2 + 3x + 5$$
, what is  $f'(x)$ ?

$$f'(x) = 8x + 3$$

#### Shortcut 4: The Product Rule

The derivative of a product is a bit trickier...

If 
$$f(x) = g(x) \cdot h(x)$$
, then  $f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x)$ 

#### **Practice Problem**

$$f(x)=(3x^2+6x)(x+2)$$
, what is  $f'(x)$ ?  $f'(x)=(3x^2+6x)(1)+(6x+6)(x+2)$   $f'(x)=3x^2+6x+6x^2+6x+12x+12$   $f'(x)=9x^2+24x+12$ 

#### Shortcut 5: The Exponential Rule

Remember Euler's number? e = 2.7182818...

If 
$$f(x) = e^x$$
, then  $f'(x) = e^x$ 



#### Other Derivative Rules

Table 6.1: List of Rules of Differentiation

| Sum rule                  | (f(x) + g(x))' = f'(x) + g'(x)                                             |
|---------------------------|----------------------------------------------------------------------------|
| Difference rule           | (f(x) - g(x))' = f'(x) - g'(x)                                             |
| Multiply by constant rule | f'(ax) = af'(x)                                                            |
| Product rule              | (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)                                        |
| Quotient rule             | $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$ |
| Chain rule                | (g(f(x))' = g'(f(x))f'(x)                                                  |
| Inverse function rule     | (g(f(x))' = g'(f(x))f'(x)<br>$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$      |
| Constant rule             | (a)' = 0                                                                   |
| Power rule                | $(x^n)' = nx^{n-1}$                                                        |
| Exponential rule 1        | $(e^x)' = e^x$                                                             |
| Exponential rule 2        | $(a^x)' = a^x(\ln(a))$                                                     |
| Logarithm rule 1          | $(\ln(x))' = \frac{1}{x}$                                                  |
| Logarithm rule 2          | $(\log_a(x))' \stackrel{x}{=} \frac{1}{x(\ln(a))}$                         |



If you haven't seen these before, it's a lot to absorb. But practice helps.

#### More Practice

#### Problem 1: Sum of Powers (Polynomial)

Let 
$$f(x) = 2x^3 + 4x + 79$$
. What is  $f'(x)$ ?

#### Problem 2: Multiply By A Constant

Let 
$$f(x) = 3(x^2 + x + 42)$$
. What is  $f'(x)$ ?

#### Problem 3: Product Rule

Let 
$$f(x)=(x^2+1)(x+3)$$
. What is  $f'(x)$ ?

# I taught you that...

...so you could do *this*.

# **Optimization**

Let  $f(x) = 2x^2 + 8x - 32$ . At what value of x is the function minimized?



**Key Insight**: Function is minimized when the slope "switches" from decreasing to increasing. Exactly at the point where the slope equals zero.

# Optimization in Three Steps

- 1. Take the derivative of the function.
- 2. Set it equal to zero.
- 3. Solve for x.

# Optimization in Three Steps

1. Take the derivative of the function.

$$f(x)=2x^2+8x-32$$
  $f'(x)=4x+8$ 

2. Set it equal to zero

$$4x + 8 = 0$$

3. Solve for x.

$$x = -2$$

# Optimization in Three Steps



# Now You Try It

Suppose that happiness as a function of jellybeans consumed is  $h(j)=-\frac{1}{3}j^3+81j+2$ . How many jellybeans should you eat? (Assume you can only eat a positive number of jellybeans).



Wait, how do you know if it's a maximum or a minimum?

### Jellybeans Again

$$h(j)=rac{1}{3}j^3+81j+2$$
 and  $h'(j)=81-j^2$ 



It's a maximum when the slope is **decreasing**, and a minimum when then slope is **increasing**. How do you figure out if the slope is increasing or decreasing?

That's right. You find the **slope of the slope** (aka the **second derivative**).

#### The Second Derivative Test

$$h(j)=rac{1}{3}j^3+81j+2$$
 and  $h'(j)=81-j^2$ 

What is h''(j)? Is it positive or negative when you eat 9 jellybeans?

$$h''(j) = -2j$$



# **Partial Derivatives**

#### Partial Derivatives

What if you have a multivariable function?

$$f(x,y) = 2x^2y + xy - 4x + y - 6$$

Same procedure! To get the derivative of a function with respect to x or y, treat the other variable as a constant.

$$rac{\partial f}{\partial x} = 4yx + y - 4$$

$$rac{\partial f}{\partial y} = 2x^2 + x + 1$$

# Now You Try...

Suppose happiness as a function of jellybeans and Dr. Peppers consumed is

$$h(j,d) = 8j - rac{1}{2}j^2 + 2d - 3d^2 + jd + 100$$

How many jellybeans should you eat? How many Dr. Peppers should you drink?

Intuitively, the jd term is an **interaction effect**. The effect of jellybeans on happiness increases if you also drink more Dr. Peppers.

# Now You Try...

$$h(j,d) = 8j - rac{1}{2}j^2 + 2d - 3d^2 + jd + 100$$
  $rac{\partial h}{\partial j} = 8 - j + d = 0$   $rac{\partial h}{\partial d} = 2 - 6d + j = 0$   $j = 8 + d$   $j = 6d - 2$   $d^* = 2$   $j^* = 10$ 

### **Visualizing That Function**

$$h(j,d) = 8j - rac{1}{2}j^2 + 2d - 3d^2 + jd + 100$$



# Integrals

Rectangles are easy. A=bh



Curves are harder. We didn't learn this in geometry!



- With derivatives, we approximated a hard problem (the slope of a curve) using an easy problem (the slope of a line) by zooming in close enough.
- With integrals, we'll use a similar trick.
- We approximate a hard problem (the area under a curve) using an easy problem (the area of a bunch of rectangles) by making the rectangles really thin.











#### **Integral Notation**

$$\lim_{h o 0}\sum f(x)\cdot h=\int f(x)dx$$

dx is an "infinitesimal" (infinitely small value).

So  $\int f(x)dx$  is the area of an infinite number of infinitely skinny rectangles.

If we want the area under a curve between a and b, we denote it like so:

$$\int_{a}^{b} f(x)dx$$

#### There has to be an easier way!

What we want is a function F(x); let's call it the **area function**.

- F(a) gives the area under f(x) between  $-\infty$  and a.
- F(b) F(a) gives the area under f(x) between a and b.
- ullet As h approaches zero, our skinny rectangles become a better and better approximation of the area function...

$$f(x)\cdot h=\lim_{h o 0}F(x+h)-F(x)$$

Divide by h on both sides:

$$f(x) = \lim_{h o 0} rac{F(x+h) - F(x)}{h}$$

Hey. We've seen that before!

f(x) = F'(x). In other words, F(x) is the antiderivative of f(x).

### The Fundamental Theorem of Calculus

$$\int_a^b f(x) dx = F(b) - F(a)$$

Computing the area under the curve and taking the antiderivative are equivalent operations!

# Try It!

If f(x) = x, find the area under the curve between x = 0 and x = 4.



**Hint**: It's a triangle, so the answer should be 8.

If f(x) = x, find the area under the curve between x = 0 and x = 4.

Use the Fundamental Theorem of Calculus:

$$\int_0^4 f(x)dx = F(4) - F(0)$$

$$F(x) = \frac{1}{2}x^2 + C$$

$$F(4) - F(0) = \frac{1}{2} \cdot 4^2 = 8$$

#### Now a Nonlinear Example...

If  $f(x) = x^3 - 2x^2 + 2$ , find the area under the curve between x = 0 and x = 3.

$$\int_0^3 f(x)dx = F(3) - F(0)$$

$$F(x) = \frac{1}{4}x^4 - \frac{2}{3}x^3 + 2x + C$$

$$F(3) - F(0) = \frac{1}{4}3^4 - \frac{2}{3}3^3 + 2(3) - \left[\frac{1}{4}0^4 - \frac{2}{3}0^3 + 2(0)\right] = 8.25$$

### Now a Nonlinear Example...

That's the same answer that we got from the skinny rectangles!



...and that's All The Calculus You Need