Niższe warstwy

Sieci komputerowe Wykład 5

Marcin Bieńkowski

Z punktu widzenia warstwy sieciowej

Z punktu widzenia warstwy sieciowej

Z punktu widzenia warstwy sieciowej

Co się dzieje, kiedy A wysyła pakiet do:

- 156.17.4.254?
- 156.17.4.255? (adres rozgłoszeniowy)

Internetowy model warstwowy (1)

Internetowy model warstwowy (2)

Dwie warstwy

Warstwa łącza danych

- Umożliwia komunikację między dwoma "bezpośrednio połączonymi" urządzeniami.
- * Zapewnia zawodną usługę wysyłania ramek.
- Kanał komunikacyjny może być współdzielony między wieloma urządzeniami.
- Musi radzić sobie z błędami transmisji.

Warstwa fizyczna

- Określa szczegóły przesyłania pojedynczych bitów.
- * Kodowanie za pomocą sygnałów elektrycznych, fal radiowych itp.

Najczęstsze standardy

- * LAN (Local Area Network) sieć lokalna
 - * Sieci przewodowe: Ethernet
 - * Sieci bezprzewodowe: Wi-Fi

- * WAN (Wide Area Network) sieć rozległa
 - * Frame Relay, MPLS, PPP, ...

- Standardy opisują obie warstwy (łącza danych i fizyczną).
- * Implementowane na kartach sieciowych (w firmware).

Połączenia dwupunktowe

Komunikacja półdupleksowa lub pełnodupleksowa w zależności od możliwości kabla.

Komunikacja półdupleksowa.

Połączenia wielopunktowe

- Wiele urządzeń podpiętych do tego samego kanału komunikacyjnego.
- Połączenie półdupleksowe.
- Jak zapewnić, że tylko jedno urządzenie nadaje?

Współdzielony kanał

Właściwości

♦ Dokładnie 1 komputer nadaje → wszyscy go słyszą.

- ♦ 2 komputery nadają jednocześnie → zakłócony sygnał:
 - * kolizje (sieci przewodowe),
 - * interferencje (sieci bezprzewodowe).
- * Zazwyczaj nie można wtedy odczytać komunikatu.
- Czasem kolizje są nierozróżnialne od braku wiadomości.

Założenia

Co daje warstwa fizyczna w sieci przewodowej?

- * Wiemy, czy ktoś nadaje (carrier sense).
- * Wykrywanie kolizji (wiemy, że nastąpiła).
- * Brak dodatkowego kanału na komunikaty kontrolne.

Rozwiązania deterministyczne

Oparte na wybranym jednym komputerze

- * Jeden komputer odpytuje pozostałe komputery.
- Decyduje, ile czasu mają nadawać.
- * Wariant: TDMA (*time division multiple access*) = wybrane urządzenie dyktuje sloty czasowe (Bluetooth, sieci 2G i 4G, ...).

Oparte na przekazywaniu żetonu.

- * Skomplikowane i podatne na błędy implementacyjne.
- * Gubienie żetonu, duplikacja żetonu, ...

Podejście losowe (1)

Rundowy ALOHA

- * Czas podzielony na rundy; runda wystarcza do nadania jednej ramki.
- Sukces (ramka słyszana) = dokładnie 1 komputer nadaje.
- * Jeśli komputer ma ramkę danych do wysłania, wysyła ją z ppb. p.
- ♦ Dla p = 1/n, gdzie n = liczba komputerów, które chcą wysłać ramkę, sukces średnio co e ~ 2,71 tur (dla dużych $n \rightarrow$ ćwiczenie)

Problemy:

- dość niskie wykorzystanie łącza (~ 1/e),
- musimy znać n, żeby wybrać optymalne p,
- potrzebujemy globalnego zegara.

Podejście losowe (2)

(Bezrundowy) ALOHA

- Jak poprzednio, ale każdy ma własne rundy (bez globalnego zegara).
- * Przy p = 1/n, wykorzystanie łącza dwukrotnie niższe (ok. 1/(2e)).
- * Faktycznie wykorzystywany na przełomie lat 60 i 70 na Hawajach.

Podejście losowe (3)

CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

- Na początku sprawdź, czy kanał jest wolny.
- * Jeśli tylko zauważysz kolizję, przestań nadawać.

- * Dopasowuj dynamicznie wartość p (algorytm odczekiwania wykładniczego):
 - * Początkowo: $p \leftarrow 1$,
 - * po kolizji: $p \leftarrow p/2$.

CSMA/CD w Ethernecie

Dla każdej ramki do wysłania:

- 1. $m \leftarrow 1$
- 2. Poczekaj aż kanał będzie pusty i zacznij nadawać.
- 3. Podczas nadawania, nasłuchuj. Jeśli usłyszysz kolizję:
 - * skończ nadawać,
 - * wylosuj k ze zbioru $\{0, ..., 2^m 1\}$ i odczekaj k rund,
 - $+ m \leftarrow m + 1$,
 - wróć do kroku 2.

Jak (i po co) definiować długość ramki? (1)

Założenie projektowe nr 1:

Jeśli wysyłamy ramkę to chcemy żeby o ewentualnym problemie nadawania dowiedzieć się podczas jej nadawania.

- * Łatwość implementacji.
- * Możliwość retransmisji na poziomie warstwy łącza danych.

Jak (i po co) definiować długość ramki? (2)

- * $\tau = czas propagacji.$
- ♦ Jeśli czas wysłania ramki ≥ 2 τ
 - → albo ramka dotrze do odbiorcy albo dowiemy się o kolizji podczas jej nadawania

Jak (i po co) definiować długość ramki? (2)

podczas jej nadawania

Jak (i po co) definiować długość ramki? (3)

♦ Jak zapewnić, że czas wysłania ramki ≥ 2 · czas propagacji?

- Ethernet definiuje:
 - * max. odległość w sieci oraz
 - * min. długość ramki
 - * np. w wariancie 100 Mbit: 100 m i 64 bajty.

Jak zdefiniować długość rundy w CSMA/CD? (1)

Założenie projektowe nr 2:

Chcemy dobrego działania w typowym przypadku:

- * wystąpiła kolizja pakietów od A i B
- * A postanawia odczekać 1 rundę, zaś B 0 rund.

Jak zdefiniować długość rundy w CSMA/CD? (2)

Jak zdefiniować długość rundy w CSMA/CD? (2)

Jak zdefiniować długość rundy w CSMA/CD? (2)

- * W Ethernecie długość rundy R = czas wysłania 64 bajtów.
 - * Wtedy $R \ge 2 \tau \rightarrow t + R \ge t''$.

Co z sieciami bezprzewodowymi?

W sieciach bezprzewodowych nie możemy jednocześnie nadawać i słuchać!

- * Nadający nie wie, czy wystąpiła interferencja
- ♦ Wariant CSMA/CD → protokół CSMA/CA (collision avoidance)
 - * Ramki zawsze nadawane do końca.
 - Ramki są potwierdzane i retransmitowane w razie braku potwierdzenia.
 - * Odczekujemy pewien czas, nawet jeśli kanał właśnie się zwolnił.

Ramki i adresowanie

Budowa ramki ethernetowej

- Dane = pakiet otrzymany z warstwy sieciowej.
- * MTU = maksymalny rozmiar tych danych.
- * Typ = identyfikuje protokół w danych, np. 0x0800 = IP.

Długość ramki

- ♦ MTU ≤ 1500 bajtów:
 - * mniejsze ramki mniej podatne na uszkodzenia.

- * rozmiar ramki ≥ 64 bajty → MTU ≥ 46 bajtów:
 - wypełnienie jeśli za mało danych;
 - * wysyłanie trwa co najmniej 2 · czas propagacji.

Adresy ethernetowe (MAC)

- * 6-bajtowy unikatowy ciąg, przykładowo 00:14:2A:1F:F3:BA.
- * Przypisany (teoretycznie) na stałe do karty sieciowej.
 - * W praktyce można go łatwo zmienić.

 Pierwsze trzy bajty przyznaje IEEE producentowi kart sieciowych, trzy kolejne nadaje nadaje producent.

Fizyczna komunikacja w warstwie drugiej

a) wszystko wpięte do wspólnego łącza

b) hub replikuje sygnał na wszystkich portach wyjściowych

c) każdy komputer wysyła ramkę do punktu dostępowego, punkt dostępowy wysyła ją do wszystkich

Wysyłanie ramek

- * Ramka dociera (zazwyczaj) do wszystkich komputerów w sieci.
 - Nieprawda jeśli mamy przełączniki).

- Przetwarzanie (często w firmware karty sieciowej):
 - Czy nasz adres MAC = adres docelowy ramki?
 - tak → ramka interpretowana, dane ramki → warstwa sieciowa,
 - · nie → ramka wyrzucana.
 - * Karta sieciowa w trybie nasłuchu (*promiscuous mode*) przekazuje do systemu wszystkie widziane ramki (Wireshark).
 - * Rozgłaszanie: jeśli adres odbiorcy = FF:FF:FF:FF:FF, to ramkę interpretują wszyscy.

MAC vs IP

Jak warstwa sieciowa wysyła pakiety?

- * Z tablicy routingu odczytujemy kolejny adres IP na trasie do celu:
 - albo IP następnego routera na trasie
 - * albo IP docelowego komputera (jeśli leży w naszej sieci).

Adresowanie

- Adres źródłowy ramki = adres MAC naszej karty sieciowej.
- * Adres docelowy ramki = adres MAC związany z kolejnym adresem IP na trasie do celu. **Skąd go wziąć?**

Protokół ARP

ARP = Address Resolution Protocol

- * Rozgłasza zapytania "kto ma dany adres IP".
- * Enkapsulowany w ramkach wysyłanych na adres rozgłoszeniowy FF:FF:FF:FF:FF, pole typ w ramce = 0x0806.
- Jeden komputer odpowiada.
- Wszyscy słyszą i zapisują odpowiedź w lokalnej tablicy ARP (na pewien czas).

demonstracja

Rozgłaszanie w warstwie sieciowej

- * Pakiet skierowany do adresu rozgłoszeniowego IP:
 - * Umieszczany w ramce adresowanej do FF:FF:FF:FF:FF.
 - * Co się stanie, jeśli mamy dwie różne sieci IP działające w tej samej sieci lokalnej?
- * Uwaga na marginesie: podobnie działa translacja multicastowy adres IP → multicastowy adres ethernetowy
 - * np. 224.0.0.9 \rightarrow 01:00:5e:00:00:09

Adresy MAC vs IP

* Adresy MAC i IP globalnie identyfikują daną kartę sieciową.

- Dlaczego w warstwie sieciowej nie używamy adresów MAC?
 - * Nie mają hierarchii: tablice routingu byłyby nieużywalnie duże.
 - * Analogia: MAC = PESEL, IP = adres zamieszkania.

Odwrotność ARP

Przekształcenie MAC → IP?

- * Po co? Warstwa 2 powinna być niezależna od warstwy 3!
- Automatyczne przypisywanie adresów IP.
- * Komputery bezdyskowe (znają tylko adres MAC swojej karty sieciowej).

- * RARP (Reverse ARP).
- * DHCP (pobieranie całej konfiguracji sieci).

Konfiguracja automatyczna

- * IPv4: APIPA = Automatic Private IP Addressing:
 - * komputer losuje adres z sieci 169.254.0.0/16.
- * IPv6: adresy link-local
 - * komputer przydziela sobie adres z sieci fe80::/64,
 - * ostatnie 64 bity adresu są deterministyczną funkcją adresu MAC

Przełączanie ramek

Po co?

- * Co się stanie jeśli podłączymy do koncentratora 100 komputerów?
 - Brak prywatności.
 - * Kolizje przechodzą przez koncentrator.

Przełącznik sieciowy

Przełącznik "rozumie" protokoły warstwy drugiej.

- Uczy się w trakcie działania, jakie adresy MAC są podłączone do danych portów.
- * Zazwyczaj do portów podpięte pojedyncze komputery, ale mogą być też sieci.
- * Kolejne transmisje są rozgłaszane do wszystkich portów tylko w razie konieczności.

Przełącznik sieciowy

Przełącznik "rozumie" protokoły warstwy drugiej.

- Uczy się w trakcie działania, jakie adresy MAC są podłączone do danych portów.
- * Zazwyczaj do portów podpięte pojedyncze komputery, ale mogą być też sieci.
- * Kolejne transmisje są rozgłaszane do wszystkich portów tylko w razie konieczności.

Most = przełącznik z dwoma portami

Łączy dwie sieci, często różnych technologii (np. Ethernet i WiFi).

- Chcemy mieć topologię bez cykli
 - + brak TTL → burze rozgłoszeniowe

- Chcemy mieć topologię bez cykli
 - ◆ brak TTL → burze rozgłoszeniowe
- * Przełączniki używają STP (Spanning Tree Protocol)
 - * Rozproszony algorytm budowy drzewa spinającego.
 - * Spośród połączeń wybierają drzewo, inne porty wykorzystywane tylko w wypadku awarii.

Domena rozgłoszeniowa

Domena rozgłoszeniowa

Domena kolizyjna

Domena kolizyjna

Łączenie sieci różnych technologii

Opcja 1: łączenie za pomocą routera (już poznaliśmy)

Łączenie sieci różnych technologii

Opcja 2: łączenie za pomocą mostu

- Szybsze: nie ma tablicy routingu, tylko podmiana nagłówka + przeliczenie sumy kontrolnej
- * Ale: nie rozumie IP, fragmentacja IP niemożliwa, nie poradzi sobie jeśli pakiet jest za duży w stosunku do docelowego MTU

VLAN: wirtualne sieci lokalne

VLAN: wirtualne sieci lokalne

- Fizyczne połączenie nie musi być tożsame z logiczną konfiguracją.
- Dla każdego portu przełącznika ustalamy do jakich VLAN-ów należy.
- ♦ W wysyłanych ramkach pojawia się dodatkowe pole będące numerem VLAN-u → przesyłana tylko w obrębie danego VLAN-u.

Sieci bezprzewodowe

Sieci WLAN z punktem dostępowym

Punkt dostępowy (access point, AP)

- Każdy komunikuje się tylko z AP
- Każdy musi być w zasięgu AP
- * AP jest połączony zazwyczaj kablem z routerem
 - może pełnić funkcję mostu między sieciami WiFi i Ethernetem,
 - może też być zintegrowany z routerem.

- * AP rozsyła ramki identyfikacyjne (beacon frames) zawierające m.in. nazwę sieci SSID.
- Przed transmisją trzeba się związać z wybranym AP, opcjonalne uwierzytelnianie.

Sieci ad-hoc

- Sieci WLAN bez punktu dostępowego
- Brak routingu = zakładamy, że każde urządzenie jest w zakresie nadawania każdego innego.

Problem ukrytej stacji

Strategia "nadawaj jeśli nikt nie nadaje" nie zawsze działa

- * A nadaje do do AP
- * B chce nadać do AP.
 - * *B* sprawdza stan kanału.
 - * *B* nie słyszy żadnej transmisji, więc nadaje.
- * Sygnał od *A* i *B* interferuje przy AP.

Problem ukrytej stacji: RTS+CTS

Rozwiązanie wbudowane w CSMA/CA.

- Zanim A nada ramkę do AP, wysyła komunikat RTS (Request To Send).
- * AP odsyła CTS (Clear To Send),
 - * B również słyszy CTS.
 - * *B* będzie milczeć przez czas potrzebny *A* na wysłanie ramki.
- * A wysyła ramkę do AP, AP ją potwierdza.

Warstwa fizyczna

Karta/interfejs sieciowy

* Karta pracuje z określoną częstotliwością
nadawania → szybkość transmisji (w bit/s).

- Wysyła elektromagnetyczną falę nośną.
 - Bity kodowane jako zmiany fali (amplitudy lub fazy).
 - Odbieranie: zmiany fali zamieniane na bity.
- * Karty oparte na światłowodach: po jednej stronie dioda laserowa do nadawania, po drugiej fotodioda do odbierania.

Warianty Ethernetu

- Zazwyczaj wykorzystuje skrętkę niekranowaną
 - = kabel UTP (unshielded twisted pair) = 8 żył.
 - możliwa transmisja pełnodupleksowa,
 - różne kategorie (różne parametry tłumienia).

Najczęstsze warianty

- Ethernet (10 Mbit/sek, skrętka kat. ≥ 3.)
- ***** Fast Ethernet (100 Mbit/sek, skrętka kat. ≥ 5)
- Gigabit Ethernet (1 Gbit/sek, skrętka kat. ≥ 5e lub światłowód.)
- * 10 Gigabit Ethernet (10 Gbit/sek, skrętka kat ≥ 6a lub światłowód.)

Sieci bezprzewodowe

Wykorzystują fale radiowe o określonej częstotliwości

- Nadawca i odbiorca muszą korzystać z tej samej częstotliwości.
- * Trzy pasma (zakresy częstotliwości): 2,4 Ghz, 5 Ghz, 6 Ghz
- Dostępne do nadawania bez licencji.

- Przykładowo w paśmie 2,4 Ghz wyróżniono 14 częstotliwości (tzw. kanałów)
- * Urządzenia nadające w kanale X zakłócają transmisje w sąsiednich.

Warianty WLAN

Generation	IEEE standard	Adopted	Maximum link rate (Mbit/s)	Radio frequency (GHz)
Wi-Fi 8	802.11bn	2028	100,000 [44]	2.4, 5, 6, 42, 71 ^[45]
Wi-Fi 7	802.11be	2024	1376–46,120	2.4, 5, 6
Wi-Fi 6E	802.11ax	2020	574–9608 [46]	6 ^[b]
Wi-Fi 6		2019		2.4, 5
Wi-Fi 5	802.11ac	2014	433–6933	5 ^[c]
Wi-Fi 4	802.11n	2008	72–600	2.4, 5
(Wi-Fi 3)*	802.11g	2003	6–54	2.4
(Wi-Fi 2)*	802.11a	1999		5
(Wi-Fi 1)*	802.11b	1999	1–11	2.4
(Wi-Fi 0)*	802.11	1997	1–2	2.4

- * WiFi 4 i późniejsze: większe prędkości wymagają wielu anten.
- Nagłówek ramki przesyłany jest z minimalną prędkością dopuszczoną dla danego standardu

Problemy z warstwą fizyczną

Malejąca siła sygnału

- * Zwłaszcza przy falach radiowych: sygnał rozchodzi się wielokierunkowo, słabnie lub zanika przy przechodzeniu przez ściany.
- * Zasięg sieci bezprzewodowych to ok. 50 m (2,4 Ghz) i ok. 20 m (5 Ghz).

Interferencje

- Współcześnie głównie w sieciach bezprzewodowych.
- Interferencje z innymi kartami sieciowymi, telefonami bezprzewodowymi, kuchenkami mikrofalowymi, Bluetoothem, ...
- Propagacja wielościeżkowa: ten sam sygnał wędruje do celu ścieżkami różnej długości i interferuje ze sobą.

Lektura dodatkowa

- * Kurose & Ross: rozdział 6 i 7.
- * Tanenbaum: rozdział 4.

Zagadnienia

- Jakie są zadania warstwy łącza danych a jakie warstwy fizycznej?
- Rozwiń pojęcia LAN i WAN.
- Czym różni się koncentrator od przełącznika sieciowego?
- Jak działa algorytm rundowy i bezrundowy ALOHA?
- * Jak działa algorytm odczekiwania wykładniczego?
- Wyjaśnij skróty CSMA/CD i CSMA/CA; opisz te algorytmy
- Opisz budowę ramki Ethernetowej.
- Co to jest adres MAC?
- Do czego służy tryb nasłuchu (promiscuous mode)?
- Po co w Ethernecie definiuje się minimalną długość ramki?
- Jak dobierać długość rundy odczekiwania w protokole CSMA/CD?
- Do czego służą protokoły ARP, RARP, DHCP i APIPA?
- Czym różni się łączenie dwóch sieci za pomocą mostu od łączenia ich za pomocą routera?
- Jak warstwa łącza danych realizuje rozgłaszanie?
- Na czym polega tryb uczenia się w przełączniku sieciowym?
- * Po co w przełączanym Ethernecie stosuje się algorytm drzewa spinającego?
- Co to jest sieć VLAN? Po co się ją stosuje?
- Wyjaśnij zjawisko ukrytej stacji.
- Na czym polega rezerwowanie łącza za pomocą RTS i CTS?