

UNIVERSIDAD DE TALCA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL EN COMPUTACIÓN

Dispositivo de riego inteligente de bajo costo para el uso eficiente del agua

NICOLÁS GASTÓN MATURANA BARRIOS

Profesor Guía: BENJAMIN INGRAM

Memoria para optar al título de Ingeniero Civil en Computación

Curicó – Chile Diciembre, 2015

UNIVERSIDAD DE TALCA FACULTAD DE INGENIERÍA

FACULTAD DE INGENIERIA ESCUELA DE INGENIERÍA CIVIL EN COMPUTACIÓN

Dispositivo de riego inteligente de bajo costo para el uso eficiente del agua

NICOLÁS GASTÓN MATURANA BARRIOS

Profesor Guía: BENJAMIN INGRAM

Profesor Informante: PROFESOR INFORMANTE 1

Profesor Informante: PROFESOR INFORMANTE 2

Memoria para optar al título de Ingeniero Civil en Computación

El presente documento fue calificado con nota:

Curicó – Chile

Diciembre, 2015

 $Dedicado\ a\ \dots$

AGRADECIMIENTOS

Agradecimientos a ...

TABLA DE CONTENIDOS

			pág	gina						
De	edica	toria		1						
Aş	$\operatorname{grad}_{\epsilon}$	ecimientos		II						
Ta	ıbla o	de Contenidos		III						
índice de Figuras										
íne	dice	de Tablas		VI						
Re	esum	en		VII						
1.	Intr	roducción		8						
	1.1.	Descripción de la propuesta		8						
		1.1.1. Contexto del proyecto		8						
		1.1.2. Trabajo relacionado		9						
		1.1.3. Definición del problema		9						
		1.1.4. Propuesta de solución		10						
	1.2.	Hipótesis		10						
	1.3.	Objetivos		11						
	1.4.	Alcances		11						
	1.5.	Metodología		12						
2.	Mai	rco teórico		14						
	2.1.	Programación del riego		14						
		2.1.1. Textura del suelo		15						
	2.2.	Servicios web meteorológicos		16						
		2.2.1. ¿Qué es un servicio web?		16						
		2.2.2. Wunderground		16						
	2.3.	Trabajos relacionados		18						
		2.3.1. Cultivar		18						
		2.3.2 Rachio IRO		10						

	2.4.	Hardw	vare	20
		2.4.1.	Raspberry pi	20
		2.4.2.	Servidor de base de datos	20
		2.4.3.	Servidor web	21
		2.4.4.	Sensores de humedad	21
		2.4.5.	Sensor de flujo de agua	21
		2.4.6.	Válvula solenoide	22
		2.4.7.	GPS	22
		2.4.8.	Módem 3G	23
		2.4.9.	Cargador	23
	2.5.	Softwa	are	24
		2.5.1.	Raspbian	24
		2.5.2.	Python	24
3.	Aná	ilisis d	el problema	27
-			pción del problema	27
	3.2.		emas identificados	28
	3.3.		nación disponible	29
	3.4.		cipo básico del dispositivo	29
\mathbf{G}	losari	io		31
\mathbf{G}	losari	io		32
Bi	bliog	rafía		33
\mathbf{A} 1	nexos	5		
\mathbf{A}	El	Prime	er Anexo	36
	A.1.	La pri	mera sección del primer anexo	36
	A.2.	La seg	gunda sección del primer anexo	36
		A.2.1.	La primera subsección de la segunda sección del primer anexo	36
B	El	segun	do Anexo	37
	B.1.	La pri	mera sección del segundo anexo	37

ÍNDICE DE FIGURAS

	página
2.1. Permeabilidad según textura del suelo	15
2.2. Arquitectura servicio web	16
2.3. Respuesta del servicio wunderground al hacer una consulta	18
2.4. Raspberry Pi modelo B+	20
2.5. Sensor de humedad	21
2.6. Sensor de flujo de agua	22
2.7. Válvula solenoide	22
2.8. Módulo GPS USB	23
2.9. Módem 3G	23
2.10. Cargador	24
2.11. GPIO Raspberry Pi	25
2.12. Pines GPIO	25
	90
3.1. Prototipo funcionando con tierra seca	30
3.2. Prototipo funcionando con tierra húmeda	30
3.3. Datos climatológicos	31

ÍNDICE DE TABLAS

página

RESUMEN

Aquí va el resumen (en Castellano)...

1. Introducción

1.1. Descripción de la propuesta

1.1.1. Contexto del proyecto

El proyecto consiste en desarrollar un sistema de riego autónomo e inteligente ideal para las personas que viajan mucho y les gusta mantener sus jardines en buen estado. Lo que se busca es reducir la intervención humana, aumentar la eficiencia en el uso del agua, ahorrar dinero y entregar datos estadísticos a los usuarios. El sistema básicamente cociste en sensores de humedad del suelo, un micro computador y válvulas. Cuando un sensor detecte que la humedad del suelo no es la adecuada para mantener el cesped en buen estado, le envía una señal a la raspberry la que a su vez analiza datos meteorológicos y decide si es necesario o no hacer un riego. Con todo esto, se asegura que el jardín se encuentre en buen estado utilizando la menor cantidad de agua posible.

Para el proyecto se utiliza un micro computador el cual se programa en Python, y es el encargado de recibir los datos de entradas, que en este caso son los datos meteorológicos y los del sensor de humedad. Una vez que los datos son recibidos el micro computador los analiza y si se requiere un riego envía una señal la válvula solenoide que permitirá el paso del agua. También se utilizará un sensor de flujo para medir la cantidad de agua que se esta utilizando y así entregar reportes al usuario.

Cabe destacar que este sistema no solo es útil para los jardines, sino que también se puede utilizar para los huertos y/o predios agrícolas que utilizan sistemas de riego automáticos.

1.1.2. Trabajo relacionado

Los trabajos que hoy en día son utilizados para resolver este problema cumplen su propósito general, que es el de automatizar el riego, pero en esta solución aun se requiere la intervención de las personas para su funcionamiento, como lo son los sistemas que utilizan temporizadores [13]. Estos dispositivos, se activan cada ciertointervalo de tiempo sin tomar en cuenta variables importantes como lo son la humedad del suelo. También existen trabajos en los que se mide la humedad del suelo [11] pero aun no se logra darle al agua de riego el uso óptimo, ya que no toma en cuenta los datos meteorológicos y en caso que se aproxime una lluvia el sistema igual hará el riego.

En el mercado tenemos la opción de adquirir estos dispositivos para automatizar nuestro riego pero son soluciones que tienen un costo muy elevado. Estos dispositivos se pueden encontrar en las tiendas de retail.

Por otro lado tampoco indican el consumo de agua que se ha utilizado en el riego y tampoco tienen sistema de prevención en caso de condiciones climáticas extremas, como puede ser el frío extremo que nos ayuden a mantener en buen estado nuestro jardín.

1.1.3. Definición del problema

A muchas personas les gusta mantener un jardín verde, pero generalmente no tienen el tiempo para regar y mantener su jardín como les gustaría. Por otro lado tenemos todos los problemas que genera el cambio climático, como lo son las temperaturas extremas y siendo uno de los principales afectados los recursos hídricos [9], por otro lado, el método más utilizado es el riego por surcos [15]. Con la implementación de este proyecto, se busca que la mantención del jardín de un hogar sea de una forma autónoma e inteligente, es decir, que no necesite la intervención de personas para su funcionamiento y que en lo posible no utilice mas agua de la debida.

Otro problema es el causado por las temperaturas extremas, que pueden producir mucho daño en el jardín, llegando a extremos en el que se pierde todo. Pero ¿Cuánto agua he utilizado? ¿Cuánto dinero he gastado en el agua para riego? ¿Qué cantidad de riegos ha tenido mi jardín? son preguntas que las personas se hacen y no tienen respuesta.

1.1.4. Propuesta de solución

Como solución al problema, se creara un prototipo de riego automático e inteligente. Esto se hará utilizando un micro computador y sensores de humedad. Lo distinto que tendrá este sistema de otros, es que para determinar si se debe hacer un riego o no, tomará en cuenta datos meteorológicos obtenidos desde Internet, y en caso de que se pronostique una lluvia, no se hará el riego. El sistema contara con un GPS para determinar la posición en la que se encuentra el jardín a regar y obtener los datos de lluvia. También contará con un sistema preventivo que ayude al cuidado del jardín, por ejemplo cuando se detecte que habrá una helada y ésta puede producir algún tipo daño, el sistema podrá enviar un mensaje al usuario o podrá activar el sistema de riego para así prevenir daños.

El sistema almacenará toda la información recopilada por los sensores guardándola en un único servidor, con lo que los usuarios utilizando un usuario y una contraseña podrán consultar los datos estadísticos a través de una aplicación web o una móvil. Este servidor que tendrá la base de datos, también será utilizado en caso que de el micro computador deje de funcionar, ya que éste estará constante mente enviando una señal al servidor para saber si el sistema esta funcionando o no, para así informar a los usuarios de que el sistema esta fallando, asegurando un funcionamiento a lo largo del tiempo.

Con toda la información que el sistema recibe como entrada, será utilizada para generar un modelo de riego con el que se espera darle una mayor eficiencia al agua que es utilizada en el riego.

Todo esto hará que el sistema sea inteligente al momento de generar un riego, sacando totalmente a las personas de esta tarea, además entregando información que le puede ser útil a los usuarios.

1.2. Hipótesis

- El prototipo es realizable con la tecnología existente.
- Las personas dejarán de preocuparse por el riego de su jardín.
- El uso de este sistema cuidará el jardín en todas las estaciones del año.
- La utilización del modelo de riego disminuirá el consumo de agua.

1.3. Objetivos

Objetivo general

 El objetivo es automatizar el riego de un jardín utilizando un sistema inteligente de bajo costo para el uso eficiente del agua.

Objetivos específicos

- Diseñar un prototipo funcional de la idea a desarrollar.
- Generar un modelo de riego con los datos obtenidos, para utilizar eficientemente el agua.
- Diseñar un protoripo de aplicación web y/o móvil que les permita a los usuarios monitorear y controlar el riego.
- Alertar a los usuarios en caso de que existan condiciones climaticas que generen escarcha y puedan dañar el cesped.

1.4. Alcances

- Este trabajo se limita a el control y monitoreo del riego, el sistema de riego (cañerías, aspersores, etc.) deben estar instalados.
- El modelo de riego será básico y se podrá mejorar con más tiempo y personas especialistas en agricultura.
- En el monitoreo los usuario podrán ver la humedad y la cantidad de agua utilizada en el riego.
- En el control, los usuarios podrán activar y desactivar el sistema de riego.
- Se diseñará una aplicación web y/o móvil que permita a los usuarios visualizar la humedad del suelo y la cantidad de agua utilizada, y además tendra la funciona de activar y desactivar el riego.

1.5. Metodología

Objetivo 1: "Generar un modelo de riego con los datos obtenidos"

- Generar un modelo de riego con los datos de entradas disponibles.
- Obtener datos de los sensores utilizando el microcomputador.
- Obtener la posición geográfica utilizando el GPS.
- Obtener datos climatológicos desde internet utilizando el microcomputador.
- Hacer pruebas al modelo de riego generado.

Objetivo 2: "Quitar la intervención humana en el riego del jardín"

- Aprender a utilizar el micro computador (Raspberry Pi).
- Estudiar Python.
- Aprende a utilizar la interfaz GPIO de Raspberry Pi.
- Aprender a activar y desactivar una válvula solenoide desde el micro computador.

Objetivo 3: "Mantener a los usuarios informados con datos estadísticos"

- Leer datos desde un sensor de flujo de agua.
- Configurar base de datos para el sistema.
- Establecer conexión entre el micro computador y la base de datos.
- Enviar datos a la base de datos.
- Generar el gráfico.
- Hacer una aplicación web o móvil que se conecte a la base de datos para que los usuarios consulten las estadísticos.

13

Objetivo 4: "Tener un sistema preventivo en caso de condiciones climáticas extremas"

- Analizar los datos meteorológicos.
- Enviar notificaciones a los usuarios.

2. Marco teórico

2.1. Programación del riego

La programación del riego, es la planificación de cuándo y qué cantidad de agua aplicar con el fin de mantener el crecimiento saludable de las plantas durante la estación de crecimiento. Es una práctica de gestión diaria esencial.

El momento adecuado del riego es una decisión crucial para la aplicación:

- Satisfacer las necesidades de agua del cultivo para evitar la pérdida de rendimiento debido a la escasez de agua.
- Maximizar la eficiencia del uso del agua de riego y conservar los recursos hídricos locales.

Un riego eficaz sólo es posible con un seguimiento periódico de las condiciones del agua del suelo y el desarrollo de lo que se esta cuidando (campos de cultivos o jardines) y con la previsión de las futuras necesidades de agua. Retrasar el riego hasta provoca estrés, o aplicar muy poca agua puede resultar en una pérdida sustancial. La aplicación de mucha agua se traducirá en costes adicionales y agua desperdiciada.

Existen varias herramientas que están disponibles para ayudar a un administrador el riego: sondas de suelo, sensores de humedad del suelo, estaciones meteorológicas, etc.

Para la programación del riego se utilizarán sensores de humedad del suelo y datos obtenidos de alguna estación meteorológica que entregará la probabilidad de lluvia en el lugar, cuando sea posible y a causa de que existe probabilidad de lluvia, la cantidad de agua de riego aplicada debe ser algo menor que el déficit de agua en el suelo con el fin de proporcionar el resto con la lluvia que caerá en el lugar.

Ora variable que se tendrá en cuenta, es el tipo de suelo en el que se encuentra ubicado el sistema de riego, ya que permitirá saber la capacidad de absorción que éste tiene, con el conocimiento de esta información se podrá saber cuándo comenzar un riego con el fin de utilizar el agua de forma eficiente.

2.1.1. Textura del suelo

La textura indica el contenido relativo de partículas de diferente tamaño, como la arena, el limo y la arcilla, en el suelo. La textura tiene que ver con la facilidad con que se puede trabajar el suelo, la cantidad de agua y aire que retiene y la velocidad con que el agua penetra en el suelo y lo atraviesa.

Para conocer la textura de una muestra de suelo [3]:

- Arcilloso: Se adhiere bastante, es fácilmente moldeable, las partículas no son visibles y la superficie brilla levemente.
- Limoso: Se adhiere a los dedos, se moldea con dificultad, los dedos dan apariencia grasosa y las partículas son brillantes.
- Arenoso: No se pega en los dedos, no se moldea como una masa y sus partículas individuales son visibles.

Cada uno de estos tipos de suelos presentan una propiedad llamada permeabilidad; que es la característica que tiene el suelo de transmitir el agua y el aire y es una de las cualidades más importantes que han de considerarse a la hora de realizar un riego. Mientras más permeable sea el suelo, mayor sera la filtración.

Por regla general, como se muestra en la Figura 2.1, mientras más fina sea la textura del suelo, más lenta sera la permeabilidad:

Suelo	Textura	Permeabilidad
Suelos arcillosos	Fina	
Suelos limosos	Moderadamente a	De muy lenta a muy rápida
Suelos arenosos	Gruesa	

Figura 2.1: Permeabilidad según textura del suelo

2.2. Servicios web meteorológicos

2.2.1. ¿Qué es un servicio web?

Los servicios web son sistemas de software que permiten el intercambio de datos y funcionalidad entre aplicaciones sobre una red. Esta soportado en diferentes estándares que garantizan la interoperabilidad de los servicios [8].

En la Figura 2.2, se puede apreciar la arquitectura de un servicio web, se ve que el cliente realiza un petición al servidor y éste le envía una respuesta con lo solicitado.

Figura 2.2: Arquitectura servicio web

Un servicio web REST, es un servicio implementado usando HTTP y que entrega como resultado un XML o un JSON de los cuales se puede obtener la información solicitada.

2.2.2. Wunderground

Weather Underground es un servicio que entrega información meteorológica que ha desafiado las convenciones en torno a cómo la información del tiempo se comparte con el público desde 1993. Se ha creado con el fin de mejorar el acceso de las personas a los datos meteorológicos significativos de todo el mundo. Como servicio meteorológico primero de Internet, son considerados pioneros en su campo y están en constante búsqueda de nuevos conjuntos de datos y tecnologías que ayuden a compartir más datos con más gente.

Wunderground no da la posibilidad de consultar el clima dado las coordenadas de la posición en la que un punto se encuentra, estas coordenadas pueden ser obtenidas de forma automática utilizando un GPS o ingresándolas manualmente. Para utilizar el servicio, es necesario registrarse para obtener un llave que se utiliza para realizar las consultas meteorológicas.

Para obtener más información y/o registrarse para utilizar el servicio se puede hacer en la siguiente url:

http://www.wunderground.com/weather/api/d/docs?d=index

La estructura de la url para realizar la consulta de la siguiente:

http://api.wunderground.com/api/e7d949410a7481dc/forecast10day/lang: SP/q/-34.40819094134256,-71.00087251514196.json

- http://api.wunderground.com/api/ es la dirección donde se hace la consulta.
- e7d949410a7481dc es la llave que se obtiene al registrarse.
- forecast10day retorna datos meteorológicos de los siguientes 10 días.
- lang:SP se utiliza para obtener los datos en español.
- .json es el formato en el que se devuelve la información, también puede ser .xml.

Los datas obtenidos se pueden apreciar en la Figura 2.3:

```
"period":0,
"icon":"partlycloudy",
"icon_url":"http://icons.wxug.com/i/c/k/partlycloudy.gif",
"title":"Sábado",
"fcttext":"Cielo parcialmente cubierto. Máxima de 61 F. Viento
"fcttext_metric":"Cielo parcialmente cubierto. Máxima de 16 C.
"pop":"0"
}
{
    "period":1,
    "icon":"nt_clear",
    "icon_url":"http://icons.wxug.com/i/c/k/nt_clear.gif",
"title":"Noche del sábado",
"fcttext":"Cielo mayormente despejado. Mínima de 40 F. Vientos
"fcttext_metric":"Cielo mayormente despejado. Mínima de 4 C. V
"pop":"0"
}
```

Figura 2.3: Respuesta del servicio wunderground al hacer una consulta

De toda la información que entrega el servicio web wunderground, lo único que nos interesa hasta el momento, es el campo pop, que significa probabilidad de precipitación, que esta representada en porcentaje.

2.3. Trabajos relacionados

2.3.1. Cultivar

Cultivar está desarrollando y fabricando por Raincloud [1]. Raincloud administra de forma conveniente e inteligente la gestión del agua, con un sistema de riego conectado a la web que permite monitorear en todo momento es estado del sistema. Raincloud vincula los dispositivos móviles permitiendo activar válvulas de agua y consultar sensores de humedad utilizando Wi-Fi.

Ventajas:

- Utiliza sensores de humedad de suelo.
- Se controla a través de un teléfono móvil.
- Consume la menor cantidad de agua posible.
- Almacena los datos en la nube.

• Entrega estadísticas del consumo de agua.

Desventajas:

- Necesita configuración previa.
- Se necesita Wi-Fi en el hogar para su óptimo funcionamiento.
- Tiene un costo muy elevado. \$500 dolares.
- No toma en cuenta datos meteorológicos.

2.3.2. Rachio IRO

Iro [14] es un controlador de riego inteligente que permite a las personas de manera fácil, mantener sus jardines en buen estado. Se integra de manera fácil al Wi-Fi de su hogar, entregando un completo control a través de su computador o teléfono móvil.

Rachio se ajusta automáticamente a los datos meteorológicos del lugar en el que se encuentra, estación del año, tipo de zona y características de la región.

Ventajas:

- Se controla a través de un teléfono móvil o una computador.
- Puede funcionar de forma automática.
- Se ajustara automáticamente a el clima.
- Consume la menor cantidad de agua posible.
- No necesita programarse.
- Entrega estadísticas del consumo de agua.

Desventajas:

- No utiliza sensores de humedad de suelo.
- Se necesita Wi-Fi en el hogar para su óptimo funcionamiento.
- Tiene un costo muy elevado. \$249 / \$299 dolares.

2.4. Hardware

Todas las partes físicas de un sistema que tiene componentes: eléctricos, electrónicos, electromecánicos y mecánicos. Para la construcción del sistema de riego se necesitarán una serie de componentes, sensores, actuadores y computadores para su correcto funcionamiento.

2.4.1. Raspberry pi

El Raspberry Pi [6] es un microcomputador del tamaño de una tarjeta de crédito a bajo costo que se conecta a un monitor o un televisor, utiliza un teclado y un ratón estándar. Es un dispositivo que permite a las personas de todas las edades explorar la computación y aprender a programar en lenguajes como Python. Es capaz de hacer todo lo que espera de una computadora de escritorio, desde navegar por Internet y reproducir vídeos en alta definición, trabajar en hojas de cálculo, procesadores de texto, y jugar juegos.

Raspberry Pi tiene la capacidad de interactuar con el mundo exterior, y se ha utilizado en una amplia gama de proyectos digitales, máquinas de música y detectores en las estaciones meteorológicas.

Figura 2.4: Raspberry Pi modelo B+

2.4.2. Servidor de base de datos

Un servidor de bases de datos se utiliza para almacenar, recuperar y administrar los datos de una base de datos. El servidor gestiona las actualizaciones de datos, permite el acceso simultáneo de muchos servidores o usuarios web y garantiza la seguridad y la integridad de los datos. Y cuando hablamos de datos, podemos estar hablando sobre millones de elementos a los que acceden al mismo tiempo miles de usuarios.

Así como sus funciones básicas, el software de servidores de bases de datos ofrece herramientas para facilitar y acelerar la administración de bases de datos. Algunas funciones son la exportación de datos, la configuración del acceso de los usuarios y el respaldo de datos.

2.4.3. Servidor web

Básicamente, un servidor web sirve contenido estático a un navegador, carga un archivo y lo sirve a través de la red al navegador de un usuario. Este intercambio es mediado por el navegador y el servidor que hablan el uno con el otro mediante HTTP.

2.4.4. Sensores de humedad

Un sensor de resistencia eléctrica [16], estima indirectamente la tensión del suelo mediante la medición de la resistencia eléctrica utilizando alambre que va en un bloque de un material especial que mantiene su contenido de humedad en equilibrio con el suelo. La resistencia eléctrica dentro del bloque varía con el contenido de agua del suelo. Estos requieren poca preparación antes de la instalación y no requieren mantenimiento durante la temporada.

Figura 2.5: Sensor de humedad

2.4.5. Sensor de flujo de agua

El sensor de flujo de agua consiste en una válvula de cuerpo plástico, un rotor de agua y un sensor de efecto hall. Cuando el agua fluye a través del rotor, el rotor

gira. Su velocidad cambia con diferentes ritmos de flujo. El sensor de efecto hall tiene como salida la señal de pulso correspondiente.

Figura 2.6: Sensor de flujo de agua

2.4.6. Válvula solenoide

Una válvula solenoide esta diseñada para controlar el paso de un fluido por un conducto o tubería. La válvula se mueve mediante una bobina solenoide. Generalmente no tiene más que dos posiciones: abierto y cerrado, o todo y nada. Las electroválvulas se usan en multitud de aplicaciones para controlar el flujo de todo tipo de fluidos.

Figura 2.7: Válvula solenoide

2.4.7. GPS

GPS [12] es un sistema que tiene como objetivo la determinación de las coordenadas espaciales de puntos respecto de un sistema de referencia mundial. Los puntos pueden estar ubicados en cualquier lugar del planeta, pueden permanecer estáticos o en movimiento y las observaciones pueden realizarse en cualquier momento del día. Para la obtención de coordenadas el sistema se basa en la determinación simultánea

de las distancias a cuatro satélites (como mínimo) de coordenadas conocidas. Estas distancias se obtienen a partir de las señales emitidas por los satélites, las que son recibidas por receptores especialmente diseñados. Las coordenadas de los satélites son provistas al receptor por el sistema.

Figura 2.8: Módulo GPS USB

2.4.8. Módem 3G

Módem 3G es un terminal de red inalámbrica basada en la tecnología CDMA2000. Es la mejor opción para los usuarios que necesiten acceder a Internet desde cualquier lugar en cualquier momento. El módem está conectado al micro computador mediante una interfaz USB.

Figura 2.9: Módem 3G

2.4.9. Cargador

Un cargador es un dispositivo utilizado para suministrar corriente eléctrica a un dispositivo, que en este caso se tratará de la Raspberry Pi. El cargador debe funcionar a 5V y entregar una corriente de 700mA.

Figura 2.10: Cargador

2.5. Software

2.5.1. Raspbian

Raspbian [5] es un sistema operativo libre basado en Debían optimizado para el hardware Raspberry Pi. Un sistema operativo es el conjunto de programas básicos y utilidades que hacen que Raspberry Pi funcione. Sin embargo, Raspbian ofrece más que un sistema operativo; viene con más de 35.000 paquetes, software pre-compilado en un formato que hace más fácil la instalación en su Raspberry Pi.

Raspbian no tiene relación con la Fundación Raspberry Pi. Raspbian fue creado por un pequeño y dedicado equipo de desarrolladores que son fans del hardware Raspberry Pi.

Instalador: "https://www.raspbian.org/RaspbianInstaller"

2.5.2. Python

Python es un claro y poderoso lenguaje de programación orientado a objetos, comparable con Perl, Ruby o Java.

Algunas de las características de Python son:

- Python ideal para el desarrollo de prototipos y otras tareas de programación, sin comprometer la capacidad de mantenimiento.
- Utiliza una sintaxis clara, por lo que los programas son fáciles de leer.
- Viene con una biblioteca estándar que soporta muchas tareas comunes de programación, tales como la conexión a los servidores web, la búsqueda de texto con expresiones regulares, leer y modificar archivos.

- Es software libre. No cuesta nada descargar o utilizar Python.
- Tiene librerías que facilitan el uso de la interfaz GPIO de la Raspberry Pi.

https://wiki.python.org/moin/BeginnersGuide/Overview

Librería GPIO

Una de las características de gran alcance de la Raspberry Pi es la fila de GPIO [4] (Entrada/Salida de Propósito General) alfileres a lo largo del borde de la placa, junto a la salida de vídeo socket amarilla como se puede apreciar en la Figura 12:

Figura 2.11: GPIO Raspberry Pi

Estos pines son una interfaz física entre el la Raspberry y el mundo exterior. Al nivel más simple, se puede pensar en ellos como interruptores que puede activar o desactivar ya sean las entradas como las salidas. Diecisiete de los veinte y seis pines son GPIO; los otros son pines de alimentación o de tierra como se ve en la Figura 13:

Figura 2.12: Pines GPIO

¿Qué puedo hacer con esto?

Puede programar los pines de maneras asombrosas para interactuar con el mundo real. Las entradas no tienen que venir de un interruptor físico; podría ser la entrada

26

de un sensor o una señal de otro ordenador o dispositivo, por ejemplo. La salida también puede hacer cualquier cosa, desde encender un LED con el envío de una señal o de datos a otro dispositivo. Si la Raspberry está en una red, puede controlar los dispositivos que están conectados a él desde cualquier lugar. Conectividad y control de los dispositivos físicos a través de Internet es algo muy poderoso y emocionante, y la Raspberry es ideal para esto.

3. Análisis del problema

El presente capítulo tiene por objetivo dar a conocer la problemática existente relacionada a la mantención de césped, mencionando también los métodos utilizados, los problemas que estos tienen y mostrar un prototipo de como sulucionar uno los problemas que se mencionarán.

3.1. Descripción del problema

La mantención de jardines y áreas verdes es una actividad muy común hoy en día en Chile, más aún cuando existen propuestas del propio estado de Chile por promover esta iniciativa, aumentando la inversión y ampliando cada vez más los parques en diferentes comunas de Chile.

Estas áreas verdes no requieren de mucho cuidado, principalmente se necesita cortar y regar el césped que es en la actividad que estamos enfocados, entonces ¿Cómo se riega el césped hoy en día en nuestro país? principalmente se utilizan dos métodos:

- Riego manual: la persona encargada del riego, riega hasta que concidere que el césped se encuentra lo suficientemente húmedo.
- Riego por aspersores: generalmente funcionan automáticamente todos los días durante un periodo de tiempo determinado.

Ambos métodos utilizan en exceso el agua, además a esto le sumamos que por lo general se utiliza agua potable, se traduce en un gran desperdicio y más aún cuando existe escasez de agua en el país.

El año 2013 fue uno de los años más secos desde 1866. Existen déficit de precipitaciones que van desde un 20 % llegando incluso hasta un 60 % entre las zonas de Copiapó y Talca al sur, estas son zonas de gran producción agrícola y además entre los lugares mencionados son los que han tenido mayor inversión para poder satisfacer la demanda de agua dulce a las personas [2].

Los dispositivos utilizados hoy en día no concideran el tipo de suelo en el cual se realizará el riego, esto es importante porque cada suelo tiene una capacidad de absorción distinta. Esta información es importante porque al no aplicar la cantidad justa de agua, se daña el suelo como por ejemplo la erosión [10], además que desperdicia agua.

Es por ello, que es muy importante y de suma urgencia idear nuevas técnicas de riego sustentables en las que se obtenga el mayor provecho del agua que permita mantener el nivel de producción agricula en Chile o incluso aumentarlo.

3.2. Problemas identificados

Según Chuck Ingels [7], asesor agrícola de Extensión Cooperativa de la Universidad de California en el condado de Sacramento y Loren Oki, especialista de Extensión Cooperativa en el Departamento de Botánica de UC Davis y especialista en horticultura de paisajes, existen problemas en los sistemas de riego actuales que hoy en día son utilizados, ellos nombran principalmente cuatro problemas:

- "Apagar el sistema de riego por aspersores después de que llueve es el primer paso que se debe tomar para ahorrar agua"
- "El riego de césped y jardines representa más de la mitad del agua usada en un hogar promedio"
- "Ha llevado a cabo estudios sobre un problema común relacionado al riego de céspedes residenciales en California: el escurrimiento de agua"
- "Mucha del agua que se aplica a los céspedes termina directamente en las alcantarillas. No solo se trata de agua desperdiciada; hemos descubierto también que el agua de escurrimientos arrastra contaminantes (incluyendo pesticidas y fertilizantes) hasta las alcantarillas y, eventualmente, a los canales y vías fluviales. El problema radica en que los sistemas de aspersores típicos aplican

agua de forma más rápida que la que la tierra puede absorber, lo cual lleva al escurrimiento"

3.3. Información disponible

Para los problemas anteriormente mencionados existe información que puede ser utilizada para darles solución, los podemos ver a continuación:

- Datos climatológicos: serán utilizados para saber cuando comenzará una lluvia y así evitar el riego antes o después de una lluvia.
- Tipo de suelo: existe información con los tipos de suelo de todo Chile. Con esta información se podrá aplicar un mejor riego evitando el escurrimiento de agua.
- Humedad del suelo:se puede determinar la humedad actual que tiene el suelo, para aplicar justo el agua necesaria para el césped.

3.4. Prototipo básico del dispositivo

A continuación se muestran algunas imágenes de un prototipo básico del dispositivo que tiene algunas funcionalidades.

La Figura 3.2 se peude ver el micro computador funcionando, el cual esta conectado a Internet por cable de red y el sensor de humedad conectado a la interfaz GPIO. De fondo en la pantalla se esta ejecutando el programa que lee los datos del sensor de humedad, como en esta caso la tierra se encuentra seca, el programa muestra un 1, que significa que se debe regar.

Figura 3.1: Prototipo funcionando con tierra seca

En la Figura 3.2 la diferencia es que la tierra esta húmeda, por lo que el programa muestra un 0 que significa que no se debe regar.

Figura 3.2: Prototipo funcionando con tierra húmeda

La Figura 3.3 muestra los datos entregados por el servicio web meteorológico, entregándole como parámetro las coordenadas de la posición con un GPS.

Figura 3.3: Datos climatológicos

Glosario

El primer término: Este es el significado del primer término, realmente no se bien lo que significa pero podría haberlo averiguado si hubiese tenido un poco mas de tiempo.

El segundo término: Este si se lo que significa pero me da lata escribirlo...

Glosario

El primer término: Este es el significado del primer término, realmente no se bien lo que significa pero podría haberlo averiguado si hubiese tenido un poco mas de tiempo.

El segundo término: Este si se lo que significa pero me da lata escribirlo...

Bibliografía

- [1] Cultivar. Raincloud project. http://ecultivar.com/rain-cloud-product-project/. Ultimo acceso: 23-05-2015.
- [2] Asociación Nacional de Empresas de Servicios Sanitarios. Informe gestion de la sequia 2014 industria sanitaria chile. en http://www.andess.cl/descargas/noticias/201401-INFORME-GREMIAL-SEQUIA-ANDESS-ENERO-2014.pdf, 2013. Ultimo acceso: 23-06-2015.
- [3] L. Rucks-F. GarcÃa-A. Kaplán-J. Ponce de Leǿn-M. Hill. Propiedades fÃsicas del sueloweb. http://www.fagro.edu.uy/edafologia/curso/Material/fisicas.pdf, Facultad de AgronomÃa Universidad de la Repðblica, 2004. Ultimo acceso: 23-05-2015.
- [4] Raspberry Pi Foundation. Gpio. https://www.raspberrypi.org/documentation/usage/gpio/, University of Minnesota. Ultimo acceso: 23-05-2015.
- [5] Raspberry Pi Foundation. Raspbian. https://www.raspbian.org/. Ultimo acceso: 23-05-2015.
- [6] Raspberry Pi Fundation. What is a raspberry pi? https://www.raspberrypi.org/help/what-is-a-raspberry-pi/. Ultimo acceso: 23-05-2015.
- [7] Myriam Grajales-Hall. Ahorremos agua usando estrategias probadas de riego para jardines. http://ucanr.edu/sites/Spanish/Noticias/?uid=5813&ds=199, Extensión Cooperativa de la Universidad de California, 2014. Ultimo acceso: 30-06-2015.
- [8] Carlos Andres Morales Machuca. Estado del arte: Servicios web. http://www.bivica.org/upload/doc1.pdf, Universidad Nacional de Colombia, 2011. Ultimo acceso: 23-05-2015.

BIBLIOGRAFÍA 34

[9] Luis Abdon Cifuentes-Francisco Javier Meza. Cambio climatico: consecuencias y desafios para chile. http://repositorio.uc.cl/xmlui/bitstream/handle/123456789/1517/504353.pdf, Pontificia Universidad Catélica de Chile, 2008. Ultimo acceso: 23-05-2015.

- [10] Roberto Michelena. Erosión hídrica. http://inta.gob.ar/documentos/erosion-hidrica, Universidad Nacional de La Rioja, 2011. Ultimo acceso: 23-08-2015.
- [11] Rafael Muñoz-Carpena and Michael D. Dukes. Automatic irrigation based on soil moisture for vegetable crops. http://edis.ifas.ufl.edu/pdffiles/ae/ae35400.pdf, Department of Agricultural and Biological Engineering, UF/IFAS Extension, 2005. Ultimo acceso: 23-05-2015.
- [12] Eduardo Huerta Aldo Mangiaterra Gustavo Noguera. Gps posicionamiento satelital. http://www.cartografia.cl/download/libro_gps.pdf, Universidad Nacional de Rosa-rio, 2005. Ultimo acceso: 23-05-2015.
- [13] Marco Antonio Bello Maria Teresa Pinto. Programadores de riego. http://www2.inia.cl/medios/biblioteca/boletines/NR25634.pdf, Gobierno de Chile, Ministerio de Agricultura, 2000. Ultimo acceso: 23-05-2015.
- [14] Rachio. Rachio iro. https://rachio.com/. Ultimo acceso: 23-05-2015.
- [15] Eduardo Holzapfel Jorge Sandoval Edmundo Varas. Riego por surcos. http://www2.inia.cl/medios/biblioteca/seriesinia/NR08947.pdf, 2005. Ultimo acceso: 23-08-2015.
- [16] Jerry Wright. Irrigation water management considerations for sandy soils in minnesota. http://www.extension.umn.edu/agriculture/water/irrigation-watermanagement-considerations/, University of Minnesota, 2008. Ultimo acceso: 23-05-2015.

A. El Primer Anexo

Aquí va el texto del primer anexo...

A.1. La primera sección del primer anexo

Aquí va el texto de la primera sección del primer anexo...

A.2. La segunda sección del primer anexo

Aquí va el texto de la segunda sección del primer anexo...

A.2.1. La primera subsección de la segunda sección del primer anexo

B. El segundo Anexo

Aquí va el texto del segundo anexo...

B.1. La primera sección del segundo anexo

Aquí va el texto de la primera sección del segundo anexo...