

Ministry of Education

BIG IDEAS

Design for the life cycle includes consideration of social and

environmental impacts.

Personal design interests require the evaluation and refinement of skills.

Tools and **technologies** can be adapted for specific purposes.

Learning Standards

Curricular Competencies	Content
Students are expected to be able to do the following:	Students are expected to know the following:
Applied Design	 advanced robotics design and production
Understanding context	• sensors
 Engage in a period of user-centred research and empathetic observation to understand design opportunities 	 robotic technologies in industry, research, and education
Defining	 syntax language related to robotics
 Establish a point of view for a chosen design opportunity 	 flow charts, hierarchy charts, and data sheets
• Identify potential users, intended impacts, and possible unintended negative consequences	with standard symbols
Make decisions about premises and constraints that define the design space, and develop	feedback loops
criteria for success	 communication protocols
 Determine whether activity is collaborative or self-directed 	 battery technology
Ideating	 wireless communication options
 Identify and examine gaps for potential design improvements and innovations 	 wiring and cabling
 Critically analyze how competing social, ethical, and sustainability considerations impact creation and development of solutions 	 robotic systems working together to complete a challenge or task
Generate ideas to create a range of possibilities and add to others' ideas in ways that create	 design for the life cycle
additional possibilities	 future career options and opportunities
 Evaluate suitability of possibilities according to success criteria, constraints, and potential gaps, and prioritize for prototyping 	in robotics design, production, and emerging applications
Work with users throughout the design process	 interpersonal and consultation skills for interacting with colleagues and clients

Area of Learning: APPLIED DESIGN, SKILLS, AND TECHNOLOGIES — Robotics

Learning Standards (continued)

Curricular Competencies	Content
Prototyping	
Choose an appropriate form, scale, and level of detail for prototyping, and plan procedures	
 Analyze the design for the life cycle and evaluate its impacts 	
 Visualize and construct prototypes, making changes to tools, materials, and procedures as needed 	
Record iterations of prototyping	
Testing	
Identify and communicate with sources of feedback	
 Develop an appropriate test of the prototype, conduct the test, and collect and compile data 	
Evaluate design according to critiques, testing results, and success criteria to make changes	
Making	
 Identify appropriate tools, technologies, materials, processes, cost implications, and time needed 	
 Create design, incorporating feedback from self, others, and results from testing of the prototype 	
Use materials in ways that minimize waste	
Sharing	
Decide how and with whom to share creativity, or share and promote design and processes	
Share the product with users and critically evaluate its success	
 Critically reflect on plans, products and processes, and identify new design goals 	
 Evaluate new possibilities for plans, products and processes, including how they or others might build on them 	
Applied Skills	
 Apply safety procedures for themselves, co-workers, and users in both physical and digital environments 	
Individually or collaboratively identify and assess skills needed for design interests	

Area of Learning: APPLIED DESIGN, SKILLS, AND TECHNOLOGIES — Robotics

Learning Standards (continued)

Curricular Competencies	Content
 Demonstrate competency and proficiency in skills at various levels involving manual dexterity and complex robotics 	
Develop specific plans to learn or refine identified skills over time	
Applied Technologies	
 Explore existing, new, and emerging tools, technologies, and systems to evaluate suitability for design interests 	
 Evaluate impacts, including unintended negative consequences, of choices made about technology use 	
Analyze the role that changing technologies play in robotics-related contexts	

APPLIED DESIGN, SKILLS, AND TECHNOLOGIES – Robotics Grade 12

Big Ideas – Elaborations

- **Design for the life cycle:** taking into account economic costs, and social and environmental impacts of the product, from the extraction of raw materials to eventual reuse or recycling of component materials
- environmental impacts: including manufacturing, packaging, disposal, and recycling considerations
- technologies: tools that extend human capabilities

APPLIED DESIGN, SKILLS, AND TECHNOLOGIES – Robotics Grade 12

Curricular Competencies – Elaborations

- user-centred research: research done directly with potential users to understand how they do things and why, their physical and emotional needs, how they think about the world, and what is meaningful to them
- **empathetic observation:** aimed at understanding the values and beliefs of other cultures and the diverse motivations and needs of different people; may be informed by experiences of people involved; traditional cultural knowledge and approaches; First Peoples worldviews, perspectives, knowledge, and practices; places, including the land and its natural resources and analogous settings; experts and thought leaders
- constraints: limiting factors, such as task or user requirements, materials, expense, environmental impact
- **impacts:** including social and environmental impacts of extraction and transportation of raw materials; manufacturing, packaging, and transportation to markets; servicing or providing replacement parts; expected usable lifetime; and reuse or recycling of component materials
- iterations: repetitions of a process with the aim of approaching a desired result
- sources of feedback: may include peers; users; First Nations, Métis, or Inuit community experts; other experts and professionals both online and offline
- appropriate test: includes evaluating the degree of authenticity required for the setting of the test, deciding on an appropriate type and number of trials, and collecting and compiling data
- share: may include showing to others or use by others, giving away, or marketing and selling

APPLIED DESIGN, SKILLS, AND TECHNOLOGIES – Robotics Grade 12

Content – Elaborations

- sensors: for example, encoders, gyroscopic, accelerometers
- feedback loops: for example, position control, speed control, distance measurement; bang-bang versus proportional integral derivative (PID)
- **protocols:** serial and pulse-width modulation (PWN)
- battery technology: for example, nickel-cadmium (NiCd), nickel-metal hydride (NiMH), lead-acid, lithium-ion (Li-ion), lithium-ion polymer
- wireless communication options: for example, Wi-Fi, Bluetooth, and infrared
- wiring and cabling: for example, routing, connections, strain relief, flexibility
- interpersonal and consultation skills: for example, professional communications, collaboration, follow-up, courtesies, record keeping, ways of presenting visuals