

Sistema de Monitoramento de Qualidade de Imunobiológicos na Cadeia de Distribuição e Armazenamento

Henrique M. Miranda

Orientador: Paulo Ribeiro Lins Junior

Introdução

Vacinas contra COVID-19

- Possuem uma demanda elevada
- Produto sensível à temperatura
- Controle de qualidadde
- Armazenagem e transporte

Introdução

Recomendações da PNI

- Manual de Rede de Frio
- Umidade mínima de 5%
- Armazenamento entre 2°C e 8°C
- Exceções: Pfizer-BioNTech e Moderna
- Registrar pelo menos 2 vezes por dia

Introdução

Estudo em Minas Gerais

- Estudo sobre conservação de vacinas em UBSs
- Objetivo: inteirar-se acerca do sistema de manutenção dos produtos
- Relatadas diversas irregularidades
 - Vacinas vencidas ainda presentes nos refrigeradores
 - 4% das unidades não realizavam o registro de temperatura
 - 88% dos refrigeradores usavam termômetros analógicos
 - 14% dos refrigeradores estavam com temperatura abaixo da faixa recomendada

Objetivos

Construir uma solução baseada em conceitos de IoT visando o monitoramento de temperatura e umidade de imunobiológicos para auxiliar funcionários da saúde, garantindo melhores condições para a vacinação da população frente a incidência de doenças.

Métodologia

Visão geral

Resultados Protótipos

Resultados Protótipos

Resultados

Metodologia dos testes

- Verificar a viabilidade da aplicação
 - Transmissão entre os dispositivos
 - Consumo energético
 - Custo de produção

Análise de Transmissão dos Pacotes Ambiente

- Bloco dos Professores
- Entre o Lab. Assert e o Lab. GComPI
- Distância de 60 metros para testes

Análise de Transmissão dos Pacotes Teste

- Dispositivos ligados na tomada
- Transmitindo 1 pacote a cada 5 minutos
- Duração de 5 dias
- Servidor na Microsoft Azure

Análise de Transmissão dos Pacotes Dia 21 de abril de 2020

Passos para calcular a duração da bateria

- Realizar as medições nos diversos pontos do dispositivo
- Calcular a média do consumo de acordo com as medidas coletadas
- Dividir a capacidade da bateria pelo consumo médio do dispositivo

Teste para cada protótipo

Primeiro protótipo

- Teste realizado em dezembro de 2019
- Medições realizadas utilizando um osciloscópio
- Auxílio de um resistor de derivação e um amplificador

Segundo protótipo

- Teste realizado em março de 2021
- Teste teórico devido a dificuldade do acesso ao equipamento
- Dados retirados dos datasheets dos componentes

Teste para cada protótipo

Duração da bateria nos protótipos

• 1° protótipo: 39,3 horas

• 2° protótipo: 122,2 horas

2º protótipo em modo sleep: 35.849 horas

Análise do Custo de Produção

Componente	Preço no Brasil	Preço na China
1x ATmega328	R\$ 19,90	R\$ 09,12
1x LoRa RFM95W 915Mhz	R\$ 56,00	R\$ 20,99
1x Bateria 18650 3000mAh	R\$ 19,90	R\$ 17,65
1x Cristal Oscilador 16mhz	R\$ 01,47	R\$ 00,46
1x Capacitor de cerâmica 100pF	R\$ 00,05	R\$ 00,04
2x Capacitor de cerâmica 22pF	R\$ 00,22	R\$ 00,08
2x Resistores de 10k Ohms	R\$ 00,12	R\$ 00,06
Total	R\$ 97,66	R\$ 48,40

Tabela: Custos referente as peças do segundo protótipo.

Conclusão

•