论文输入输出实例

计算机科学与技术 专业

研究生 王哲 指导老师 蒋玉明

摘要

关键词:流体力学,计算机并行,平衡点

1 example

1.1 通用数据

表格 1.1 通用数据

WIH 212 X270 XXXIII		
变量	数值	
管柱的长度 L	12000in.	
空气中每单位长度管柱平均重量ws	0.542lbm/in.	
内径r _i	1.22in	
外径r _o	1.438in	
外力F	20000lbf	
外径内径比例 R	1.178	
1	1.61in. ⁴	
管柱内液体密度ρ _i	15lbm/gal	
环空内液体密度ρ。	7.31lbm/gal	
管柱内加压p _i	5000Psi	
环空内加压 <i>p。</i>	1000Psi	
封隔器通径 r_p	3.25in	
r	1.61in.	
δ	0	
Δt	-20°F	

表格 1.2 单位转换表

7718		
ft	m	1ft=0.3048m
in	mm	1in=25.4mm
ft	in	1ft=12in
lbm ¹	kg	1lbm=0.454kg
lbf	N	1lbf=4.45N
Мра	Psi	1Mpa=145Psi
gal	cu ft.	1gal=0.1336808cu ft.
Psi	lbs/sq in.	1Psi=1lbs²/sq in.

根据表 1.1 可得

$$\begin{split} A_o &= \pi r_e^2 = 6.49 sq \ in. \\ A_i &= \pi r_e^2 = 4.68 sq \ in. \\ A_s = A_e - A_i = 1.81 sq \ in. \\ A_p &= \pi r_p^2 = 8.30 sq \ in. \\ P_i &= p_i + \rho_i L \quad P_o = p_o + \rho_o L \\ W &= W_s + W_i - W_o = W_s + \rho_i A_i - \rho_o A_o \end{split} \tag{1.1}$$

初始密度为 $\rho_i = \rho_o = 7.31$ lbm/gal = 0.0317Psi/in.,最终密度为 $\rho_i = 15$ lbm/gal =

 $^{^1}$ 英制重量单位, 一般 lb 是表示力的单位--磅,也有时表示压力、质量 ,通用。为了区别起见,lbm 专门表示质量 ,lbf 专门表示力。 2 lb 的复数是 lbs

0.0649Psi/in., $\rho_o=7.31lbm/gal=0.0317Psi/in.$ 。所以密度变化为 $\Delta\rho_i=0.0332Psi/in.$, $\Delta\rho_o=0$ 。

初始压力为 $p_i = p_o = 0$,根据公式(1.1), $P_i = P_o = 3800$ Psi。最终压力为 $p_i = 5000$ Psi, $p_o = 1000$ Psi,根据公式(1.1), $P_i = 12790$ Psi, $P_o = 4800$ Psi。所以压力变化值为 $\Delta p_i = 5000$ Psi, $\Delta p_o = 1000$ Psi, $\Delta P_i = 8990$ Psi, $\Delta P_o = 1000$ Psi。

根据公式(1.2)及上述初始和最终密度数值,可得,每单位长度的质量初始值为W = 0.484lbm/in.,最终值为W = 0.640lbm/in.。

1.2 EXAMPLE 1-PACKER PERMITTING FREE MOTION

$$F_{f} = A_{P}(P_{i} - P_{0}) \tag{1.3}$$

$$F_{a} = (A_{p} - A_{i})P_{i} - (A_{p} - A_{o})P_{o}$$
 (1.4)

$$\Delta L_1 = -\frac{LF}{EA_s} \tag{1.5}$$

$$\Delta L_2 = -\frac{r^2 r^2}{8 \text{Elw}} \tag{1.6}$$

$$\Delta L_1 = -\frac{L}{EA_o} \left[\left(A_p - A_i \right) \Delta P_i - \left(A_p - A_o \right) \Delta P_o \right]$$
 (1.7)

$$\Delta L_2 = -\frac{r^2 A_p^2 (\Delta P_i - \Delta P_0)^2}{8EI(W_s + W_i - W_0)}$$
 (1.8)

$$\Delta L_{3} = -\frac{v}{E} \frac{\Delta \rho_{i} - R^{2} \Delta \rho_{o} - \frac{1 + 2v}{2v} \delta}{R^{2} - 1} L^{2} - \frac{2v}{E} \frac{\Delta p_{i} - R^{2} \Delta p_{o}}{R^{2} - 1} L$$
(1.9)

$$\Delta L_4 = L\beta \Delta t \tag{1.10}$$

$$\Delta L = \Delta L_1 + \Delta L_2 + \Delta L_3 + \Delta L_4 \tag{1.11}$$

$$n = \frac{F}{W} \tag{1.12}$$

$$P = -\sqrt{\frac{8EI}{F}} \tag{1.13}$$

根据公式(1.7)(1.8)(1.9)(1.10)可得, $\Delta L_1=-67.92$ in., $\Delta L_2=-46.10$ in., $\Delta L_3=-34.69$ in., $\Delta L_4=-16.56$ in.,所以 $\Delta L=-165.27$ in.

根据公式(1.3)(1.4)可得 $F_f = 66317$ lbf, $F_a = 37611.8$ lbf。

根据公式(1.12),及 $F_f = 66317$ lbf,W = 0.640lbm/in.可得n = 103620in. = 8535ft。

1.3 EXAMPLE 1-PACKER PERMITTING LIMITED MOTION

1.4 EXAMPLE 2- PACKER PERMITTING LIMITED MOTION

1.5 EXAMPLE 2-PACKER PERMITTING NO MOTION

术语:

F= externally applied force (positive if a compression), Ibf (N) 施加的外力

 W_s = average weight in air of the tube per unit length, Ibm/in. (g/mm) 空气中的每单位长度的管平均重量

As = cross-sectional area of the tubing wall, sq in.(mm2) 管壁的横截面积

p_i=surface tubing pressure, Psi

p_o=surface annulus pressure, Psi

 P_0 = pressure outside the tube at the packer level, psi (Pa)

 P_i = pressure inside the tube at the packer level, psi (Pa)

 A_P = area corresponding to packer bore ID, sq in. (mm2)

 A_i = area corresponding to tubing ID, sq in. (mm2)

 A_0 = area corresponding to tubing OD, sq in. (mm2)

F_f = fictitious force in presence of no restraint in the packer,lbf

F_a= actually existing pressure force at the lower end of the tubing subjected to no restraint in the packer .lbf

v=Poissin's ratio of the material (for steel ,v=0.3)

 β =coefficient of thermal expansion of the tubing material(for steel, $\beta = 6.9 \times 10^{-6}/1^{\circ}F$)

 $\delta\!\!=\!\!drop$ of pressure in the tubing due to flow per unit length

Δt=change in average tubing temperature

 ΔL_1 =length change of the tubing due to Hooke's law,胡克定律产生的形变由公式(1.5)定义 ΔL_2 =length change of the tubing due to helical buckling,变形弯曲产生的形变由公式(1.6)定义

 ΔL_3 =length change of the tubing due to radial pressure forces and flow through the tubing,径向压力和液体流动产生的形变由公式(1.9)定义

 ΔL_1 =length change of the tubing due to temperature change,温度变化产生的长度变化由公式 (1.10) 定义

ΔL=Over-all tubing change due to flow and to changes of pressure, temperature and density,压力,温度,密度和液体流动产生的管柱总长度变化,由公式 (1.11)定义

参考文献

[1] Lubinski A, Althouse W S, Logan J L. Helical Buckling of Tubing Sealed in Packers [J]. Journal of Petroleum Technology, 1962, 14(6):655-670

附录

中立点(neutral point),就是在这个点上方管柱不发生形变,在这个点下方管柱弯曲。