UERJ – Universidade do Estado do Rio de Janeiro

Instituto de Matemática e Estatística

Departamento de Matemática Aplicada

Disciplina: Otimização Combinatória

Professor: Marcos Roboredo

2015 – 1 Lista de exercícios nº 2 (GABARITO)

1) 1º forma: multiplicando ambos os lados da desigualdade por -1 e então convertendo a desigualdade resultante em igualdade

$$10x_1 - 3x_2 \ge -5 \Longrightarrow -10x_1 + 3x_2 \le 5 \Longrightarrow -10x_1 + 3x_2 + s_1 = 5$$

2º forma: convertendo a desigualdade em igualdade e então multiplicando ambos os lados da desigualdade por -1

$$10x_1 - 3x_2 \ge -5 \Longrightarrow 10x_1 - 3x_2 - s_1 = -5 \Longrightarrow -10x_1 + 3x_2 + s_1 = 5$$

Claramente percebemos que as duas formas são equivalentes.

2) Para "tratarmos" o máx da f.o podemos criar uma variável y e fazer da seguinte forma:

Minimizar
$$z = y$$

s. a. $y \ge |x_1 - x_2 + 3x_3|$
 $y \ge |-x_1 + 3x_2 - x_3|$
 $y, x_1, x_2, x_3 \ge 0$

Agora para "tratarmos" os módulos, devemos lembrar que dados a, b tais que $b \ge 0$, tem-se

$$|a| \le b \iff a \le b \ e \ a \ge -b$$

Logo, aplicando isto ao problema, temos

Minimizar
$$z = y$$

s. a. $y \le x_1 - x_2 + 3x_3$
 $y \ge -x_1 + x_2 - 3x_3$
 $y \le -x_1 + 3x_2 - x_3$
 $y \ge x_1 - 3x_2 + x_3$
 $y, x_1, x_2, x_3 \ge 0$

3) a) $Maximizar z = 2x_1 + 3x_2$

s.a.
$$x_1 + 3x_2 + s_1 = 6$$

 $3x_1 + 2x_2 + s_2 = 6$
 $x_1, x_2, s_1, s_2 \ge 0$

b) 1º solução básica: (x_1, x_2)

$$\begin{cases} x_1 + 3x_2 = 6 \\ 3x_1 + 2x_2 = 6 \end{cases} \Rightarrow (x_1, x_2) = \left(\frac{6}{7}, \frac{12}{7}\right) \Rightarrow z = \frac{48}{7}$$

Classificação: Viável

2ª solução básica: (x_1, s_1)

$$\begin{cases} x_1 + s_1 = 6 \\ 3x_1 = 6 \end{cases} \Rightarrow (x_1, s_1) = (2, 4) \Rightarrow z = 4$$

Classificação: Viável

 $3^{\underline{a}}$ solução básica: (x_1, s_2)

$$\begin{cases} x_1 = 6 \\ 3x_1 + s_2 = 6 \end{cases} \Rightarrow (x_1, s_2) = (6, -12)$$

Classificação: Inviável pois $s_2 \leq 0$

 $4^{\underline{a}}$ solução básica: (x_2, s_1)

$$\begin{cases} 3x_2 + s_1 = 6 \\ 2x_2 = 6 \end{cases} \Rightarrow (x_2, s_1) = (3, -3)$$

Classificação: Inviável pois $s_1 \leq 0$

 $5^{\underline{a}}$ solução básica: (x_2, s_2)

$$\begin{cases} 3x_2 = 6 \\ 2x_2 + s_2 = 6 \end{cases} \Rightarrow (x_2, s_2) = (2, 2) \Rightarrow z = 6$$

Classificação: viável

6ª solução básica: (s_1, s_2)

$$\begin{cases} s_1 = 6 \\ s_2 = 6 \end{cases} \Rightarrow (s_1, s_2) = (6,6) \Rightarrow z = 0$$

Classificação: viável

c) Solução ótima: $(x_1, x_2) = \left(\frac{6}{7}, \frac{12}{7}\right) \Rightarrow z = \frac{48}{7}$

e) As soluções inviáveis são os pontos A e C do gráfico.

4) Solução:

OBS: Infeasible = Inviável

5) Forma canônica:

$$\begin{array}{l} \textit{Maximizar} \ z = 2x_1 + 3x_2 + 5x_3 \\ -6x_1 + 7x_2^- - 7x_2^+ - 9x_3 - s_1 = 4 \\ x_1 + x_2^- - x_2^+ + 4x_3 - s_2 = 16 \\ x_1, x_2^-, x_2^+, x_3, s_1, s_2 \geq 0 \end{array}$$

Vamos tentar considerar a solução básica (x_2^-, x_2^+) , ou seja, as demais variáveis são nulas:

$$\begin{cases} 7x_2^- - 7x_2^+ = 4 \\ x_2^- - x_2^+ = 16 \end{cases} \Leftrightarrow \begin{cases} x_2^- - x_2^+ = \frac{4}{7} \\ x_2^- - x_2^+ = 16 \end{cases}$$

O sistema é indeterminado. Logo, uma solução básica não pode incluir ambas, $x_2^- e \, x_2^+$ simultaneamente.

6) Solução:

maximize
$$Z = X_1 + 3X_2$$
Subject to
$$X_1 + X_2 + X_3 = 2$$

$$-X_1 + X_2 + X_4 = 4$$

$$X_1 \text{ unrestricted}$$

$$X_2, X_3 \ge 0$$

Combination	Solution	Status	Z
×1, ×2	-1, 3	Feasible	[8]
×1, ×3	-4,6	Feasible	-4
×, , ×y	2, 6	Fearible	2
X2, X3	2- و 4	Infeasible	
X ₂ , X4	2, 2	Feasible	6
X3, X4	2, 4	Feasible	٥
•		_	

Optimum:
$$X_1 = -1$$
, $X_2 = 3$, $Z = 8$

7) Só serão colocadas as soluções ótimas de cada item

a)
$$(x_1, x_2, x_3, x_4, s_1, s_2, s_3) = (0,6,0,7,0,0,29) \Rightarrow z = 41$$

b)
$$(x_1, x_2, x_3, x_4, s_1, s_2, s_3) = (10,15,0,0,0,3,0) \Rightarrow z = 170$$

c)
$$(x_1, x_2, x_3, x_4, s_1, s_2, s_3) = (0.6,14,0.0,0.8) \Rightarrow z = 36$$

d)
$$(x_1, x_2, x_3, x_4, s_1, s_2, s_3) = (0.6, 0.7, 0.0, 0.29) \Rightarrow z = -80$$

- 8) a) Variáveis básicas: $x_8 = 12$, $x_3 = 6$, $x_1 = 0$. As demais variáveis são não básicas e possuem valor nulo.
 - b) Variáveis não básicas que melhoram a f.o: x_2, x_5, x_6

Se entra x_2 então sai x_8 pois está associado ao $min\left\{\frac{12}{3},\frac{6}{1},-\right\}=4$

Se entra x_5 então sai x_1 pois está associado ao $min\left\{-,\frac{6}{1},\frac{0}{6}\right\}=0$

Se entra x_6 então nenhuma variável sai pois todas as razões são negativas ou infinito

c) Variáveis não básicas que melhoram a f.o. x_4

Se entra x_4 então sai x_3 pois está associado ao $min\left\{-,\frac{6}{3},-\right\}=2$

d) Como mostrado no item b, x_5 não pode melhorar a f.o. pois o mínimo do critério de saída da base foi nulo. Outra variável não básica que também não produz alteração é x_7 pois possui coeficiente nulo na linha z.

- 9) a) e b) Não serão feitas as tabelas do algoritmo simplex mas a sol ótima é $x_1 = \frac{93}{71}$ e $x_2 = \frac{164}{71}$
 - c) Item a precisou de 4 iterações enquanto b precisou de 3.
 - d) Não necessariamente o critério do coeficiente mais negativo na escolha da variável que entra na base é o que acarreta em menos iterações.