SpeechMix - Augmenting Deep Sound Recognition using Hidden Space Interpolations

Amit Jindal, Narayanan Elavathur Ranganatha, Aniket Didolkar, Arijit Ghosh Chowdhury, Di Jin, Ramit Sawhney, Rajiv Ratn Shah

INTERSPEECH 2020

1. INTRODUCTION

- Problem
 - Deep neural networks tend to contain millions to billions of parameters.
 - Thus prone to overfitting, due to a lack of sufficient train data
- Solutions
 - Data augmentation
 - Regularization and so on ... (generalization)

2. Related Work

- Deep speech recognition (models)
 - [Piczak, 2015]: apply CNNs to the log-mel features extracted from raw waveforms
 - [Aytar, 2016]: 1D convolutional and pooling layers named *SoundNet*
 - [Harada, 2017]: 1D and 2D convolutional and pooling layer named *EnvNet*
 - [Tokozume, 2017]: $EnvNet-v2 \rightarrow$ a higher number of layers and a higher sampling rate
- Data augmentation for speech
 - Cropping
 - Time stretching, pitch shifting, dynamic range compression, and adding background noise chosen from an external dataset
 - [Park, 2019] : SpecAugment \rightarrow warping features, masking blocks of time steps and frequency channels
 - [Peddinti, 2015] Audio signal speed alteration
 - [Peddiniti, 2015] Artificial reverberation into the records
 - → Quality, the noise than phonetic or acoustic imformation ..

2. Related Work

- Interpolation based regularizers
 - [Zhang, 2017] **Mixup**
 - Data-agnostic augmentation technique that constructs <u>virtual training examples</u> by interpolating pairs of training <u>samples</u> from its vicinal distribution
 - [Tokozume, 2017] **Between-Class Learning (BC learning)**
 - Mix the input signals by taking auditory perception of sound into account to generate virtual samples
 - Using the *EnvNet-v2*

• SpeechMix

- In BC learning, mixup occurs in training examples before they are sent as input to the model
- SpeechMix augments BC learning by employing mixup of hidden states

- Preliminary
 - Mixup algorithm \rightarrow creates virtual training samples by linear interpolation
 - Two data points, one hot representation of the label, mix ratio

$$\tilde{x} = mix(x_i, x_j) = rx_i + (1 - r)x_j$$
 (1)

$$\tilde{y} = mix(y_i, y_j) = ry_i + (1 - r)y_j$$
 (2)

• Replacement → since it takes into account the relationship between energy and amplitude

$$\tilde{x} = mix(x_i, x_j) = \frac{rx_i + (1 - r)x_j}{\sqrt{r^2 + (1 - r)^2}}$$
 (3)

- Preliminary
 - BC learning algorithm → the Mixup formula used in BC learning is derived by taking auditory perceptions of sound into account
 - Transformation of mixing ratio
 - G scales are the sound pressure level of input [dB] \rightarrow A-weighting (based on equal loudness contours)

$$mix(x_i, x_j) = \frac{px_i + (1 - p)x_j}{\sqrt{p^2 + (1 - p)^2}}$$

$$where \ p = \frac{1}{1 + 10^{\frac{G_i - G_j}{20} \cdot \frac{1 - r}{r}}}$$

- SpeechMix
 - Where the neural network is trained on interpolations of the hidden states
 - Hidden representations

$$h_l^i = g_l(h_{l-1}^i, \theta), l \in [1, m]$$
 (5)

$$h_l^j = g_l(h_{l-1}^j, \theta), l \in [1, m]$$
 (6)

• Mixed representation

$$\tilde{h}_m = \frac{ph_m^i + (1-p)h_m^j}{\sqrt{p^2 + (1-p)^2}}$$
(7)

• The continued forward pass after mixed hidden representation

$$\tilde{h}_l = g_l(\tilde{h}_{l-1}, \theta), l \in [m+1, M]$$
 (8)

- Optimization
 - *n* : the number of samples in a mini-batch
 - r: mixing ratio
 - m: the layer at which miup occurs and S as the set of layers
 - \rightarrow For each mini-batch, m is sampled randomly from S
 - Minimize the KL-divergence between the mixed label and softmax of the generated outputs

$$L = \frac{1}{n} \sum_{i=0}^{n} D_{KL}(\tilde{y}^i || softmax(\tilde{h}_M^i))$$
(9)

$$D_{KL}(\tilde{y}^i||softmax(\tilde{h}_M^i)) = \sum_{k=0}^c \tilde{y}_k^i log \frac{\tilde{y}_k^i}{\{softmax(\tilde{h}_M^i)\}_k}$$

4. Experiments

• Dataset and Preprocessing

• Sound event dataset

Dataset	Classes	Samples	Duration
UrbanSound8k	10	8732	9.7 hours
ESC-50	50	2000	2.8 hours
ESC-10	10	400	33 min

Table 2: Statistics of sound classification datasets.

• Preprocessing

- Padding \rightarrow T/2 seconds of zero on each side,
- Cropping \rightarrow T second section is randomly cropped from padded sound * 10 \rightarrow 10 crops
- Regularization \rightarrow a range of -1 to 1, dividing by 32,768

4. Experiments

- Experimental settings
 - Nestrov's accelerated gradient using momentum of 0.9
 - Weight decay of 0.0005
 - Mini-batch size of 64
 - 5-fold cross validation on ESC-10 and ESC-50
 - Scale augmentation $[0.8, 1.25] \rightarrow$ before zero padding
 - Gain augmentation [-6dB, +6dB] \rightarrow before inputting to the network
- Result \rightarrow In the paper!