ADVANCED STATISTICS PROJECT

CHANDRU

PGPDSBA.O.MAR22.A

Date: 12th June 2022

Table of Contents

Contents

Problem 1: Salary Variance Analysis
Exploratory Data Analysis
the null hypothesis is accepted or rejected based on the ANOVA results
1.5 What is the interaction between the two treatments? Analyze the effects of one variable on the other (Education and Occupation) with the help of an interaction plot
Problem 2: Education PCA
performed]. What insight do you draw from the EDA?
2.4 Check the dataset for outliers before and after scaling. What insight do you derive here? 28 2.5 Extract the eigenvalues and eigenvectors. [Using Sklearn PCA Print Both]
2.7 Write down the explicit form of the first PC (in terms of the eigenvectors. Use values with two places of decimals only). [hint: write the linear equation of PC in terms of eigenvectors and corresponding features]
2.8 Consider the cumulative values of the eigenvalues. How does it help you to decide on the optimum number of principal components? What do the eigenvectors indicate?
Components Obtained]

List of Figures

Figure 1. Salary_Dataset_Sample	4
Figure 2. Salary_Dataset_Info	4
Figure 3. Employee Count_Education	5
Figure 4. Employee count across Occupation	5
Figure 5. Education_ANOVA	6
Figure 6. Occupation_ANOVA	7
Figure 7. Interaction Plot_1	8
Figure 8. Education_Occupation_two-way ANOVA_1	9
Figure 9. Interaction Plot_2	9
Figure 10. Education_Occupation_two-way ANOVA_2	10
Figure 11. Education_Dataset_Sample	
Figure 12. Education_Dataset_Info	11
Figure 13. Education_Dataset_Statistical Summary	12
Figure 14. Education_Dataset_Column Names	12
Figure 15. Apps_EDA	13
Figure 16. Accept_EDA	14
Figure 17. Enroll_EDA	14
Figure 18. Top10perc_EDA	15
Figure 19. Top25perc_EDA	
Figure 20. FUndergrad_EDA	16
Figure 21. PUndergrad_EDA	17
Figure 22. Outstate_EDA	18
Figure 23. RoomBoard_EDA	
Figure 24. Books_EDA	19
Figure 25. Personal_EDA	20
Figure 26. PhD_EDA	20
Figure 27. Terminal_EDA	21
Figure 28. SFRatio_EDA	
Figure 29. Percalumni_EDA	22
Figure 30. Expend_EDA	23
Figure 31. GradRate_EDA	24
Figure 32. Education_Dataset_Pairplot	
Figure 33. Education_Dataset_Correlation_1	25
Figure 34. Education_Dataset_Scaled	27
Figure 35. Education_Dataset_ Correlation_2	
Figure 36. Education_Dataset_ Covariance Matrix	
Figure 37. Education_Dataset_Outliers before Scaling	
Figure 38. Education_Dataset_Outliers after Scaling	
Figure 39. Education_Dataset_Eigen Values	
Figure 40. Education_Dataset_Scree Plot	
Figure 41. Education_Dataset_Eigen Vectors	
Figure 42. Education_Dataset_PCA	
Figure 43. Education_Dataset_PCA_Linear Equation	
Figure 44 Education Dataset Cumulative Explained Variance	35

Salary Variance Analysis

Summary:

Salary is hypothesized to depend on educational qualification and occupation. To understand the dependency, the salaries of 40 individuals are collected and each person's educational qualification and occupation are noted. Educational qualification is at three levels, High school graduate, Bachelor, and Doctorate. Occupation is at four levels, Administrative and clerical, Sales, Professional or specialty, and Executive or managerial. A different number of observations are in each level of education – occupation combination

Note: Assume that the data follows a normal distribution. In reality, the normality assumption may not always hold if the sample size is small.

Sample of the Dataset:

	Education	Occupation	Salary
0	Doctorate	Adm-clerical	153197
1	Doctorate	Adm-clerical	115945
2	Doctorate	Adm-clerical	175935
3	Doctorate	Adm-clerical	220754
4	Doctorate	Sales	170769

Figure 1. Salary_Dataset_Sample

Exploratory Data Analysis:

Let us check the basic info of the data frame

- There are 40 rows and 3 columns
- 2 columns are of the 'object' (text) type and 1 of 'integer' type (non decimal values)

• There are no missing values in the dataset as denoted by 40 non-null in every column

Data breakdown

Figure 3. Employee Count_Education

Figure 4. Employee count across Occupation

- The above 2 charts give a breakdown of employees in the dataset
- The first chart shows a split of employees by their education levels

 The second chart breaks down the first chart even further by providing details on the various occupations for each educational level

Assumptions of Anova:--

- Independent Sample Sample should be selected randomly (Equally likely events); there should not be any pattern in the selection of sample
- Normal Distribution Distribution of each group should be normal
- Homogenous Group Variance between the group should be the same
- The groups must have the same sample size

Questions:

- 1.1 State the null and the alternate hypothesis for conducting one-way ANOVA for both Education and Occupation individually.
- 1.1.1 Education

 $H_{\rm O}$: The mean Salary of an individual is same across all levels of Education $H_{\rm A}$: The mean Salary of an individual is different for at least one level of Education

1.1.2 Occupation

 H_0 : The mean Salary of an individual is the same across all levels of Occupation H_A : The mean Salary of an individual is different for at least one level of Occupation

1.2 Perform one-way ANOVA for Education with respect to the variable 'Salary'. State whether the null hypothesis is accepted or rejected based on the ANOVA results.

```
df sum_sq mean_sq F PR(>F)
C(Education) 2.0 1.026955e+11 5.134773e+10 30.95628 1.257709e-08
Residual 37.0 6.137256e+10 1.658718e+09 NaN NaN
```

Figure 5. Education ANOVA

- The above figure shows the results of the one-way Anova performed for Education with respect to Salary
- We assume a significance level of 0.05
- As the p-value (1.257709e-08) is lesser than the significance level, we reject the Null

- We conclude that there is significant difference in the mean salaries for at least one level of education
- 1.3 Perform one-way ANOVA for variable Occupation with respect to the variable 'Salary'. State whether the null hypothesis is accepted or rejected based on the ANOVA results

```
df sum_sq mean_sq F PR(>F)
C(Occupation) 3.0 1.125878e+10 3.752928e+09 0.884144 0.458508
Residual 36.0 1.528092e+11 4.244701e+09 NaN NaN
```

Figure 6. Occupation_ANOVA

- The above figure shows the results of the one-way Anova performed for Occupation with respect to Salary
- We assume a significance level of 0.05
- As the p-value (0.46) is greater than the significance level, we FAIL to reject the Null
- We conclude that the mean Salary is the same for all levels of Occupation
- 1.4 If the null hypothesis is rejected in either (1.2) or in (1.3), find out which class means are significantly different. Interpret the result.
 - The Null hypothesis was rejected for Education (1.2) and could not be rejected for Occupation (1.3)
 - The class means are significantly different for Education
 - We conclude the mean salary is different for different levels of Education and the same for different levels of Occupation
- 1.5 What is the interaction between the two treatments? Analyze the effects of one variable on the other (Education and Occupation) with the help of an interaction plot.

Figure 7. Interaction Plot_1

- We can see the salaries for the 3 educational levels (Doctorate, Bachelors and HS-grad) distributed across the 4 different occupations (Adm-clerical, Sales, Prof-specialty and Exec-managerial)
- Doctorate has the highest paying jobs across 3 occupations (Adm-clerical being the exception), followed by Bachelors and HS-grad being the least
- For Doctorate, the highest salary of 250,000 is for the Prof- specialty category and the least salary of 160,000 is for the Adm-clerical category
- Exec-managerial at 210,000 exceed Sales at 190,000 for Doctorates
- For Bachelors, the highest salary is 190,000 for Sales and Exec-managerial roles, this is followed by Adm-clerical at 170,000 and Prof- specialty at 100,000
- For HS-grad, the highest salary of 90,000 is for the Prof- specialty category, followed by Adm-clerical at 80,000 and Sales being the least at 50,000
- There are no roles in Exec-managerial for HS-grads
- 1.6 Perform a two-way ANOVA based on the Education and Occupation (along with their interaction Education*Occupation) with the variable 'Salary'. State the null and alternative hypotheses and state your results. How will you interpret this result?

 H_0 : The mean Salary of an individual is the same across all levels of Education

 $H_{\rm O}$: The mean Salary of an individual is the same across all levels of Occupation

 H_0 : There is no interaction between the 2 factors – Education and Occupation

 $H_{\rm A}$: The mean Salary of an individual is different for at least one level of Education or Occupation

	df	sum_sq	mean_sq	F	PR(>F)
C(Education)	2.0	1.026955e+11	5.134773e+10	31.257677	1.981539e-08
C(Occupation)	3.0	5.519946e+09	1.839982e+09	1.120080	3.545825e-01
Residual	34.0	5.585261e+10	1.642724e+09	NaN	NaN

Figure 8. Education_Occupation_two-way ANOVA_1

- The above figure shows the results of the two-way Anova performed for Education & Occupation with respect to Salary
- We assume a significance level of 0.05
- The p-value for Education is very minimal and lesser than the significance level; hence we reject the Null
- As the p-value for Occupation is high and greater than the significance level, we FAIL to reject the Null
- We conclude that the mean Salary is the same for all levels of Occupation and different for at least one level of Education
- Also, Occupation alone doesn't contribute to explain the variance of Salaries in the dataset

Figure 9. Interaction Plot_2

- We plot the above graph to check whether there is any interaction between the factors
- As there is significant overlap between the two, we'll introduce a new interaction term to perform the two-way Anova

	df	sum_sq	mean_sq	F	PR(>F)
C(Education)	2.0	1.026955e+11	5.134773e+10	72.211958	5.466264e-12
C(Occupation)	3.0	5.519946e+09	1.839982e+09	2.587626	7.211580e-02
C(Education):C(Occupation)	6.0	3.634909e+10	6.058182e+09	8.519815	2.232500e-05
Residual	29.0	2.062102e+10	7.110697e+08	NaN	NaN

Figure 10. Education_Occupation_two-way ANOVA_2

- Due to the inclusion of the interaction effect term, we can see the p-value for Education is very minimal and lesser than the significance level, and Occupation p-value is higher than the significance level as in the Two-Way ANOVA without the interaction effect terms.
- The p-value of the interaction effect term of 'Education' and 'Occupation' suggests that the Null hypothesis is rejected in this case.
- Education and Occupation together explain the variance in the salaries

1.7 Explain the business implications of performing ANOVA for this particular case study

- ANOVA checks the impact of one or more factors by comparing the means of different samples (Education and Occupation being the factors in this scenario)
- The business will be able to understand the impact of education and designation on the salary levels amongst employees
- It can also focus on developing the career path of employees based on their education and long-term goals
- The business can also look at helping employees who'd like to switch roles based on their current occupation and long-term goals
- The Null hypothesis was rejected for Education and hence we concluded that there is significant difference in the mean salaries for at least one level of education
- The Null could not be rejected for Occupation; hence we concluded that there is no significant difference in the mean salaries across the 4 categories of occupation
- A larger data size can help us in getting more accurate results and help the business to make better plans and strategies

Education Principal Component Analysis

The dataset contains information on various colleges. You are expected to do a Principal Component Analysis for this case study according to the instructions given

Basic Data Exploration

Sample of the dataset:

	Names	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	Books	Personal	PhD	Terminal	S.F.Ratio	perc.a
(Abilene Christian University	1660	1232	721	23	52	2885	537	7440	3300	450	2200	70	78	18.1	
	Adelphi University	2186	1924	512	16	29	2683	1227	12280	6450	750	1500	29	30	12.2	
:	Adrian College	1428	1097	336	22	50	1036	99	11250	3750	400	1165	53	66	12.9	
;	Agnes Scott College	417	349	137	60	89	510	63	12960	5450	450	875	92	97	7.7	
	Alaska Pacific University	193	146	55	16	44	249	869	7560	4120	800	1500	76	72	11.9	

Figure 11. Education_Dataset_Sample

Let us check the basic info of the data frame.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 777 entries, 0 to 776
Data columns (total 18 columns):
# Column Non-Null Count Dtype
0 Names
                777 non-null object
   Apps 777 non-null int64
Accept 777 non-null int64
Enroll 777 non-null int64
 1
 2
 3
 4 Top10perc 777 non-null int64
   Top25perc 777 non-null int64
   F.Undergrad 777 non-null int64
 6
    P.Undergrad 777 non-null int64
 7
 8
    Outstate
                  777 non-null int64
     Room.Board 777 non-null int64
10 Books 777 non-null int64
11 Personal 777 non-null int64
12 PhD 777 non-null int64
13 Terminal 777 non-null int64
14 S.F.Ratio 777 non-null float64
 15 perc.alumni 777 non-null int64
 16 Expend 777 non-null int64
 17 Grad.Rate 777 non-null
                                     int64
dtypes: float64(1), int64(16), object(1)
memory usage: 109.4+ KB
```

Figure 12. Education_Dataset_Info

Below is the statistical summary of the dataset

	count	mean	std	min	25%	50%	75%	max
Apps	777.0	3001.638353	3870.201484	81.0	776.0	1558.0	3624.0	48094.0
Accept	777.0	2018.804376	2451.113971	72.0	604.0	1110.0	2424.0	26330.0
Enroll	777.0	779.972973	929.176190	35.0	242.0	434.0	902.0	6392.0
Top10perc	777.0	27.558559	17.640364	1.0	15.0	23.0	35.0	96.0
Top25perc	777.0	55.796654	19.804778	9.0	41.0	54.0	69.0	100.0
F.Undergrad	777.0	3699.907336	4850.420531	139.0	992.0	1707.0	4005.0	31643.0
P.Undergrad	777.0	855.298584	1522.431887	1.0	95.0	353.0	967.0	21836.0
Outstate	777.0	10440.669241	4023.016484	2340.0	7320.0	9990.0	12925.0	21700.0
Room.Board	777.0	4357.526384	1096.696416	1780.0	3597.0	4200.0	5050.0	8124.0
Books	777.0	549.380952	165.105360	96.0	470.0	500.0	600.0	2340.0
Personal	777.0	1340.642214	677.071454	250.0	850.0	1200.0	1700.0	6800.0
PhD	777.0	72.660232	16.328155	8.0	62.0	75.0	85.0	103.0
Terminal	777.0	79.702703	14.722359	24.0	71.0	82.0	92.0	100.0
S.F.Ratio	777.0	14.089704	3.958349	2.5	11.5	13.6	16.5	39.8
perc.alumni	777.0	22.743887	12.391801	0.0	13.0	21.0	31.0	64.0
Expend	777.0	9660.171171	5221.768440	3186.0	6751.0	8377.0	10830.0	56233.0
Grad.Rate	777.0	65.463320	17.177710	10.0	53.0	65.0	78.0	118.0

Figure 13. Education_Dataset_Statistical Summary

Data Cleanup

The column names will be checked for special characters ('.', '^', ', ', '-') and make it uniform (either all in lowercase or uppercase)

Figure 14. Education_Dataset_Column Names

2.1 Perform Exploratory Data Analysis [both univariate and multivariate analysis to be performed]. What insight do you draw from the EDA?

Univariate Analysis

This analysis will display the statistical description of the numeric variable to view 5 point summary, histogram or distplot to view the distribution and the box plot to view outliers if any

Apps

Description of Apps					
count	777.000000				
mean	3001.638353				
std	3870.201484				
min	81.000000				
25%	776.000000				
50%	1558.000000				
75%	3624.000000				
max	48094.000000				
Names	Anno dtung. floated Distribution of Anno				

Name: Apps, dtype: float64 Distribution of Apps

Figure 15. Apps_EDA

Accept

Description of Accept					
count	777.000000				
mean	2018.804376				
std	2451.113971				
min	72.000000				
25%	604.000000				
50%	1110.000000				
75%	2424.000000				
max	26330.000000				
Name: A	Accept, dtype: float64	4 Distribution of Accept			

Figure 16. Accept_EDA

Enroll

Description of Enroll 777.000000 count mean 779.972973 std 929.176190 35.000000

25% 242.000000 50% 434.000000 75% 902.000000 6392.000000

max

Name: Enroll, dtype: float64 Distribution of Enroll

Figure 17. Enroll_EDA

• Top10perc

Description of Top10perc

```
777.000000
count
         27.558559
mean
std
         17.640364
min
          1.000000
25%
          15.000000
50%
          23.000000
          35.000000
75%
          96.000000
max
```

Name: Top10perc, dtype: float64 Distribution of Top10perc

Figure 18. Top10perc_EDA

• Top25perc

Description of Top25perc

count	777.000	000				
mean	55.796	654				
std	19.804	778				
min	9.000	000				
25%	41.000	000				
50%	54.000	000				
75%	69.000	000				
max	100.000	000				
Namo •	Ton25perc	dtyna.	float64	Distribution	of Ton25r	arc

Name: Top25perc, dtype: float64 Distribution of Top25perc

Figure 19. Top25perc_EDA

FUndergrad

Description of FUndergrad

count	777.000000
mean	3699.907336
std	4850.420531
min	139.000000
25%	992.000000
50%	1707.000000
75%	4005.000000
max	31643.000000
Mama	Flindangered dtyme, floated Distribution of Flindangered

Name: FUndergrad, dtype: float64 Distribution of FUndergrad

Figure 20. FUndergrad_EDA

PUndergrad

Description of PUndergrad

count	777.000000	
mean	855.298584	
std	1522.431887	
min	1.000000	
25%	95.000000	
50%	353.000000	
75%	967.000000	
max	21836.000000	
	But and a second of the second	Clastic Distribution of Dundansand

Name: PUndergrad, dtype: float64 Distribution of PUndergrad

Figure 21. PUndergrad_EDA

Outstate

Description of Outstate

count	777.000000			
mean	10440.669241			
std	4023.016484			
min	2340.000000			
25%	7320.000000			
50%	9990.000000			
75%	12925.000000			
max	21700.000000			
Namo	Outstate dtune.	f100+64	Distribution	of Outstate

Name: Outstate, dtype: float64 Distribution of Outstate

Figure 22. Outstate_EDA

RoomBoard

Description of RoomBoard

count	777.000000		
mean	4357.526384		
std	1096.696416		
min	1780.000000		
25%	3597.000000		
50%	4200.000000		
75%	5050.000000		
max	8124.000000		

Name: RoomBoard, dtype: float64 Distribution of RoomBoard

RoomBoard

Figure 23. RoomBoard_EDA

RoomBoard

Books

Description of Books

count	777.000000
mean	549.380952
std	165.105360
min	96.000000
25%	470.000000
50%	500.000000
75%	600.000000
max	2340.000000

Name: Books, dtype: float64 Distribution of Books

Figure 24. Books_EDA

Personal

Description of Personal

count	777.000000			
mean	1340.642214			
std	677.071454			
min	250.000000			
25%	850.000000			
50%	1200.000000			
75%	1700.000000			
max	6800.000000			
Name:	Personal, dtype:	float64	Distribution	of Personal

Name: Personal, dtype: float64 Distribution of Personal

Figure 25. Personal_EDA

PhD

Description of PhD

count	777.000000		
mean	72.660232		
std	16.328155		
min	8.000000		
25%	62.000000		
50%	75.000000		
75%	85.000000		
max	103.000000		

Name: PhD, dtype: float64 Distribution of PhD

Figure 26. PhD_EDA

Terminal

Description of Terminal

count	777.000000			
mean	79.702703			
std	14.722359			
min	24.000000			
25%	71.000000			
50%	82.000000			
75%	92.000000			
max	100.000000			
	4 4 10	C1	 	-

Name: Terminal, dtype: float64 Distribution of Terminal

Figure 27. Terminal_EDA

SFRatio

Description of SFRatio

count	777.000000	
mean	14.089704	
std	3.958349	
min	2.500000	
25%	11.500000	
50%	13.600000	
75%	16.500000	
max	39.800000	

Name: SFRatio, dtype: float64 Distribution of SFRatio

BoxPlot of SFRatio

Figure 28. SFRatio_EDA

• Percalumni

Description of Percalumni

count	777.000000				
mean	22.743887				
std	12.391801				
min	0.000000				
25%	13.000000				
50%	21.000000				
75%	31.000000				
max	64.000000				
		63	 	-	

Name: Percalumni, dtype: float64 Distribution of Percalumni

BoxPlot of Percalumni 100 80 60 40 20 10 20 30 40 20 60 30 Percalumni Percalumni Figure 29. Percalumni_EDA

22

Expend

Description of Expend

count	77	7.000000	9				
mean	966	0.171171	l				
std	522	1.768440)				
min	318	6.000000)				
25%	675	1.000000	9				
50%	837	7.000000)				
75%	1083	0.000000)				
max	5623	3.000000)				
Name:	Expend	dtvne.	float64	Distribution	of	Exner	nd

Name: Expend, dtype: float64 Distribution of Expend

Figure 30. Expend_EDA

GradRate

Description of GradRate

count	777.00000			
mean	65.46332			
std	17.17771			
min	10.00000			
25%	53.00000			
50%	65.00000			
75%	78.00000			
max	118.00000			
Name:	GradRate, dtype:	float64	Distribution	of GradRate

Name: GradRate, dtype: float64 Distribution of GradRate

BoxPlot of GradRate

Figure 31. GradRate_EDA

Multivariate Analysis

Figure 32. Education_Dataset_Pairplot

Correlation Heatmap

Figure 33. Education_Dataset_Correlation_1

Insights: --

- The dataset has 18 columns and 777 rows
- There are no Null values as indicated by non-null values
- 16 columns are of the integer data type, 1 each of object and float data type
- There are no duplicate rows in the dataset
- A lot of the features are right skewed (Apps, Accept, Enroll, FUndergrad, PUndergrad, Expend)
- A few features are left skewed (PhD, Terminal)
- A few features seem normally distributed (Top25perc, Outstate, RoomBoard, GradRate)
- All features apart from Top25perc have Outliers as demonstrated by the box plots
- There are a few columns with inconsistent name and need to be amended; F.Undergrad;
 P.Undergrad; Room.Board; S.F.Ratio have '.', perc.alumni starts with lowercase unlike others
- We have plotted scatter diagrams for all the numerical columns in the dataset. A scatter plot is a visual representation of the degree of correlation between any two columns
- We've also plotted a heatmap to display the numerical values of the degree of correlation between any two columns

2.2 Is scaling necessary for PCA in this case? Give justification and perform scaling

- Often the variables of the data set are of different scales i.e., one variable is in millions and other in only 100. For e.g., in our data set Applications is having values in thousands and PhD, Terminal, GradRate in just two digits. Since the data in these variables are of different scales, it is tough to compare these variables
- Feature scaling (also known as data normalization) is the method used to standardize the range of features of data. Since, the range of values of data may vary widely, it becomes a necessary step in data preprocessing
- In this method, we convert variables with different scales of measurements into a single scale and will be doing this only for the numerical variables
- StandardScaler normalizes the data using the formula (x-mean)/standard deviation
- We can either use StandardScaler for each and every feature or apply the z-score (both methods will give us the same result)
- Below is the dataset after applying the z-scores

	Apps	Accept	Enroll	Top10perc	Top25perc	FUndergrad	PUndergrad	Outstate	RoomBoard	Books	Personal	PhD	Terminal
0	-0.346882	-0.321205	-0.063509	-0.258583	-0.191827	-0.168116	-0.209207	-0.746356	-0.964905	-0.602312	1.270045	-0.163028	-0.115729
1	-0.210884	-0.038703	-0.288584	-0.655656	-1.353911	-0.209788	0.244307	0.457496	1.909208	1.215880	0.235515	-2.675646	-3.378176
2	-0.406866	-0.376318	-0.478121	-0.315307	-0.292878	-0.549565	-0.497090	0.201305	-0.554317	-0.905344	-0.259582	-1.204845	-0.931341
3	-0.668261	-0.681682	-0.692427	1.840231	1.677612	-0.658079	-0.520752	0.626633	0.996791	-0.602312	-0.688173	1.185206	1.175657
4	-0.726176	-0.764555	-0.780735	-0.655656	-0.596031	-0.711924	0.009005	-0.716508	-0.216723	1.518912	0.235515	0.204672	-0.523535
4													

Figure 34. Education_Dataset_Scaled

- 2.3 Comment on the comparison between the covariance and the correlation matrices from this data. [on scaled data]
 - Covariance is an indicator of the extent to which 2 random variables are dependent on each other. A higher number denotes higher dependency.
 - Correlation is a statistical measure that indicates how strongly two variables are related.
 The value of covariance lies in the range of -∞ and +∞
 - As we can see from the below 2 charts, both are same

Figure 35. Education_Dataset_ Correlation_2

Covariance matrix for the scaled data

Figure 36. Education_Dataset_ Covariance Matrix

2.4 Check the dataset for outliers before and after scaling. What insight do you derive here?

Figure 37. Education_Dataset_Outliers before Scaling

Figure 38. Education Dataset Outliers after Scaling

- We can see that the Outliers have reduced in magnitude after scaling
- This is due to applying the z-score
- Once the data is scaled the values are in the range of -3 to +3
- As we haven't treated the dataset for Outliers, we don't see this

2.5 Extract the eigenvalues and eigenvectors. [Using Sklearn PCA Print Both]

Eigen Values

%s [5.45052162 4.48360686 1.17466761 1.00820573 0.93423123 0.84849117 0.6057878 0.58787222 0.53061262 0.4043029 0.02302787 0.03672545 0.31344588 0.08802464 0.1439785 0.16779415 0.22061096]

Figure 39. Education_Dataset_Eigen Values

Figure 40. Education_Dataset_Scree Plot

 A scree plot always displays the eigenvalues in a downward curve, ordering the eigenvalues from largest to smallest

```
Eigen Vectors
%s [[-2.48765602e-01 3.31598227e-01 6.30921033e-02 -2.81310530e-01
   5.74140964e-03 1.62374420e-02 4.24863486e-02 1.03090398e-01
  9.02270802e-02 -5.25098025e-02 3.58970400e-01 -4.59139498e-01
  4.30462074e-02 -1.33405806e-01 8.06328039e-02 -5.95830975e-01
  2.40709086e-02]
 [-2.07601502e-01 3.72116750e-01 1.01249056e-01 -2.67817346e-01
   5.57860920e-02 -7.53468452e-03 1.29497196e-02 5.62709623e-02
  1.77864814e-01 -4.11400844e-02 -5.43427250e-01 5.18568789e-01
  -5.84055850e-02 1.45497511e-01 3.34674281e-02 -2.92642398e-01
  -1.45102446e-01
 [-1.76303592e-01 4.03724252e-01 8.29855709e-02 -1.61826771e-01
  -5.56936353e-02 4.25579803e-02 2.76928937e-02 -5.86623552e-02
  1.28560713e-01 -3.44879147e-02 6.09651110e-01 4.04318439e-01
  -6.93988831e-02 -2.95896092e-02 -8.56967180e-02 4.44638207e-01
  1.11431545e-02
 [-3.54273947e-01 -8.24118211e-02 -3.50555339e-02 5.15472524e-02
  -3.95434345e-01 5.26927980e-02 1.61332069e-01 1.22678028e-01
  -3.41099863e-01 -6.40257785e-02 -1.44986329e-01 1.48738723e-01
  -8.10481404e-03 -6.97722522e-01 -1.07828189e-01 -1.02303616e-03
  3.85543001e-02]
 [-3.44001279e-01 -4.47786551e-02 2.41479376e-02 1.09766541e-01
  -4.26533594e-01 -3.30915896e-02 1.18485556e-01 1.02491967e-01
  -4.03711989e-01 -1.45492289e-02 8.03478445e-02 -5.18683400e-02
  -2.73128469e-01 6.17274818e-01 1.51742110e-01 -2.18838802e-02
  -8.93515563e-021
 [-1.54640962e-01 4.17673774e-01 6.13929764e-02 -1.00412335e-01
  -4.34543659e-02 4.34542349e-02 2.50763629e-02 -7.88896442e-02
  5.94419181e-02 -2.08471834e-02 -4.14705279e-01 -5.60363054e-01
 -8.11578181e-02 -9.91640992e-03 -5.63728817e-02 5.23622267e-01
  5.61767721e-02
 [-2.64425045e-02 3.15087830e-01 -1.39681716e-01 1.58558487e-01
  3.02385408e-01 1.91198583e-01 -6.10423460e-02 -5.70783816e-01
  -5.60672902e-01 2.23105808e-01 9.01788964e-03 5.27313042e-02
  1.00693324e-01 -2.09515982e-02 1.92857500e-02 -1.25997650e-01
 -6.35360730e-02]
```

```
[-2.94736419e-01 -2.49643522e-01 -4.65988731e-02 -1.31291364e-01
 2.22532003e-01 3.00003910e-02 -1.08528966e-01 -9.84599754e-03
 4.57332880e-03 -1.86675363e-01 5.08995918e-02 -1.01594830e-01
 1.43220673e-01 -3.83544794e-02 -3.40115407e-02 1.41856014e-01
 -8.23443779e-01]
[-2.49030449e-01 -1.37808883e-01 -1.48967389e-01 -1.84995991e-01
 5.60919470e-01 -1.62755446e-01 -2.09744235e-01 2.21453442e-01
 -2.75022548e-01 -2.98324237e-01 1.14639620e-03 2.59293381e-02
 -3.59321731e-01 -3.40197083e-03 -5.84289756e-02 6.97485854e-02
 3.54559731e-01]
[-6.47575181e-02 5.63418434e-02 -6.77411649e-01 -8.70892205e-02
 -1.27288825e-01 -6.41054950e-01 1.49692034e-01 -2.13293009e-01
 1.33663353e-01 8.20292186e-02 7.72631963e-04 -2.88282896e-03
 3.19400370e-02 9.43887925e-03 -6.68494643e-02 -1.14379958e-02
 -2.81593679e-02]
4.25285386e-02 2.19929218e-01 -4.99721120e-01 2.30710568e-01
 -2.22311021e-01 3.31398003e-01 -6.33790064e-01 2.32660840e-01
 9.44688900e-02 -1.36027616e-01 -1.11433396e-03 1.28904022e-02
 -1.85784733e-02 3.09001353e-03 2.75286207e-02 -3.94547417e-02
 -3.92640266e-02]
[-3.18312875e-01 5.83113174e-02 1.27028371e-01 5.34724832e-01
 1.40166326e-01 -9.12555212e-02 1.09641298e-03 7.70400002e-02
 1.85181525e-01 1.23452200e-01 1.38133366e-02 -2.98075465e-02
 4.03723253e-02 1.12055599e-01 -6.91126145e-01 -1.27696382e-01
 2.32224316e-02]
[-3.17056016e-01 4.64294477e-02 6.60375454e-02 5.19443019e-01
  2.04719730e-01 -1.54927646e-01 2.84770105e-02 1.21613297e-02
 2.54938198e-01 8.85784627e-02 6.20932749e-03 2.70759809e-02
 -5.89734026e-02 -1.58909651e-01 6.71008607e-01 5.83134662e-02
 1.64850420e-02]
[ 1.76957895e-01 2.46665277e-01 2.89848401e-01 1.61189487e-01
 -7.93882496e-02 -4.87045875e-01 -2.19259358e-01 8.36048735e-02
 -2.74544380e-01 -4.72045249e-01 -2.22215182e-03 2.12476294e-02
 4.45000727e-01 2.08991284e-02 4.13740967e-02 1.77152700e-02
 -1.10262122e-02]
```

```
[-2.05082369e-01 -2.46595274e-01 1.46989274e-01 -1.73142230e-02 -2.16297411e-01 4.73400144e-02 -2.43321156e-01 -6.78523654e-01 2.55334907e-01 -4.22999706e-01 -1.91869743e-02 -3.33406243e-03 -1.30727978e-01 8.41789410e-03 -2.71542091e-02 -1.04088088e-01 1.82660654e-01]
[-3.18908750e-01 -1.31689865e-01 -2.26743985e-01 -7.92734946e-02 7.59581203e-02 2.98118619e-01 2.26584481e-01 5.41593771e-02 4.91388809e-02 -1.32286331e-01 -3.53098218e-02 4.38803230e-02 6.92088870e-01 2.27742017e-01 7.31225166e-02 9.37464497e-02 3.25982295e-01]
[-2.52315654e-01 -1.69240532e-01 2.08064649e-01 -2.69129066e-01 -1.09267913e-01 -2.16163313e-01 -5.59943937e-01 5.33553891e-03 -4.19043052e-02 5.90271067e-01 -1.30710024e-02 5.00844705e-03 2.19839000e-01 3.39433604e-03 3.64767385e-02 6.91969778e-02 1.22106697e-01]]
```

Figure 41. Education_Dataset_Eigen Vectors

2.6 Perform PCA and export the data of the Principal Component (eigenvectors) into a data frame with the original features

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12	PC13
Apps	0.248766	0.331598	-0.063092	0.281311	0.005741	-0.016237	-0.042486	-0.103090	-0.090227	0.052510	0.043046	0.024071	0.595831
Accept	0.207602	0.372117	-0.101249	0.267817	0.055786	0.007535	-0.012950	-0.056271	-0.177865	0.041140	-0.058406	-0.145102	0.292642
Enroll	0.176304	0.403724	-0.082986	0.161827	-0.055694	-0.042558	-0.027693	0.058662	-0.128561	0.034488	-0.069399	0.011143	-0.444638
Top10perc	0.354274	-0.082412	0.035056	-0.051547	-0.395434	-0.052693	-0.161332	-0.122678	0.341100	0.064026	-0.008105	0.038554	0.001023
Top25perc	0.344001	-0.044779	-0.024148	-0.109767	-0.426534	0.033092	-0.118486	-0.102492	0.403712	0.014549	-0.273128	-0.089352	0.021884
FUndergrad	0.154641	0.417674	-0.061393	0.100412	-0.043454	-0.043454	-0.025076	0.078890	-0.059442	0.020847	-0.081158	0.056177	-0.523622
PUndergrad	0.026443	0.315088	0.139682	-0.158558	0.302385	-0.191199	0.061042	0.570784	0.560673	-0.223106	0.100693	-0.063536	0.125998
Outstate	0.294736	-0.249644	0.046599	0.131291	0.222532	-0.030000	0.108529	0.009846	-0.004573	0.186675	0.143221	-0.823444	-0.141856
RoomBoard	0.249030	-0.137809	0.148967	0.184996	0.560919	0.162755	0.209744	-0.221453	0.275023	0.298324	-0.359322	0.354560	-0.069749
Books	0.064758	0.056342	0.677412	0.087089	-0.127289	0.641055	-0.149692	0.213293	-0.133663	-0.082029	0.031940	-0.028159	0.011438
Personal	-0.042529	0.219929	0.499721	-0.230711	-0.222311	-0.331398	0.633790	-0.232661	-0.094469	0.136028	-0.018578	-0.039264	0.039455
PhD	0.318313	0.058311	-0.127028	-0.534725	0.140166	0.091256	-0.001096	-0.077040	-0.185182	-0.123452	0.040372	0.023222	0.127696
Terminal	0.317056	0.046429	-0.066038	-0.519443	0.204720	0.154928	-0.028477	-0.012161	-0.254938	-0.088578	-0.058973	0.016485	-0.058313
SFRatio	-0.176958	0.246665	-0.289848	-0.161189	-0.079388	0.487046	0.219259	-0.083605	0.274544	0.472045	0.445001	-0.011026	-0.017715
Percalumni	0.205082	-0.246595	-0.146989	0.017314	-0.216297	-0.047340	0.243321	0.678524	-0.255335	0.423000	-0.130728	0.182661	0.104088
Expend	0.318909	-0.131690	0.226744	0.079273	0.075958	-0.298119	-0.226584	-0.054159	-0.049139	0.132286	0.692089	0.325982	-0.093746
GradRate	0.252316	-0.169241	-0.208065	0.269129	-0.109268	0.216163	0.559944	-0.005336	0.041904	-0.590271	0.219839	0.122107	-0.069197

PC14	PC15	PC16	PC17
0.080633	0.133406	0.459139	0.358970
0.033467	-0.145498	-0.518569	-0.543427
-0.085697	0.029590	-0.404318	0.609651
-0.107828	0.697723	-0.148739	-0.144986
0.151742	-0.617275	0.051868	0.080348
-0.056373	0.009916	0.560363	-0.414705
0.019286	0.020952	-0.052731	0.009018
-0.034012	0.038354	0.101595	0.050900
-0.058429	0.003402	-0.025929	0.001146
-0.066849	-0.009439	0.002883	0.000773
0.027529	-0.003090	-0.012890	-0.001114
-0.691126	-0.112056	0.029808	0.013813
0.671009	0.158910	-0.027076	0.006209
0.041374	-0.020899	-0.021248	-0.002222
-0.027154	-0.008418	0.003334	-0.019187
0.073123	-0.227742	-0.043880	-0.035310
0.036477	-0.003394	-0.005008	-0.013071

Figure 42. Education_Dataset_PCA

2.7 Write down the explicit form of the first PC (in terms of the eigenvectors. Use values with two places of decimals only). [hint: write the linear equation of PC in terms of eigenvectors and corresponding features]

```
0.249 * Apps 0.208 * Accept 0.176 * Enroll 0.354 * Top10perc 0.344 * Top25perc 0.155 * FUndergrad 0.026 * PUndergrad 0.2 95 * Outstate 0.249 * RoomBoard 0.065 * Books -0.043 * Personal 0.318 * PhD 0.317 * Terminal -0.177 * SFRatio 0.205 * Percalumni 0.319 * Expend 0.252 * GradRate
```

Figure 43. Education Dataset PCA Linear Equation

2.8 Consider the cumulative values of the eigenvalues. How does it help you to decide on the optimum number of principal components? What do the eigenvectors indicate?

```
Cumulative Variance Explained [ 32.0206282 58.36084263 65.26175919 71.18474841 76.67315352 81.65785448 85.21672597 88.67034731 91.78758099 94.16277251 96.00419883 97.30024023 98.28599436 99.13183669 99.64896227 99.86471628 100. ]
```


Figure 44. Education_Dataset_Cumulative Explained Variance

- PCA is a method that:
 - Measures how each variable is associated with one another using a Covariance matrix
 - Understands the directions of the spread of our data using Eigenvectors
 - Brings out the relative importance of these directions using Eigenvalues

- Eigenvalues are coefficients applied to eigenvectors that give the vectors their length or magnitude
- The Cumulative values of the eigen values explain how much of the variance is explained by each component
- As we can see from the above table and chart, the first 7 components explain 85.22% of the variance
- Hence, although we have 17 features, we only need 7 of them to explain the variance in the dataset without losing too much information

2.9 Explain the business implication of using the Principal Component Analysis for this case study. How may PCs help in the further analysis? [Hint: Write Interpretations of the Principal Components Obtained]

PCA Summary:--

- PCA forms the basis of multivariate data analysis
- Principal Component Analysis (PCA) is a dimensionality reduction technique, which is used for identification of a smaller number of uncorrelated variables known as Principal Components from a larger set of data
- PCA is important as it not only helps in cleaning up the data, but also in reducing the number of features used to observe trends, clusters, outliers and draw conslusions from a dataset
- It uncovers the relationships between observations and variables, and among the variables
- The column names are all different; some have '.' in them and some are in lowercase; getting them in a uniform format is a good start to analysing the data
- Once the data clean-up is done, we create another dataframe with only the numeric columns (float and integer data type) as columns with text don't really help
- However Categorical data which are repetitive in nature can be used; e.g. Gender, Blood type, Country, Education
- With this new dataframe we check for any duplicate records, null values in any of the columns and treat it for Outliers
- We now scale the data so all columns are in a uniform format and easily comparable
- Now, we can get the eigen values and eigen vectors, chart the Scree plot; Cumulative explained variance and individual explained variance vs Principal Components
- As depicted by the eigenvalues, 7 out of the 17 components explain 85.22% of the variance and we'll only need these 7 features to observe trends and patterns

Business Implications:--

- The first 3 columns 'No. of applications', 'No. of students accepted', 'No. of students enrolled' is a good place to start
 - o 67% of the applicants are accepted into the colleges
 - o 26% of the applicants and 39% of the accepted students are new, which is a good sign
 - Thereby Accept(0.94) and Enroll(0.85) are highly correlated with Apps

- The business should look at ways to increase the number of new applicants by offerring more scholarships, providing testimonials and case studies, placement history and opportunities are good measures
- Enroll, Top10perc and Top25perc are inter-related as the latter two are part of the new students enrolled; one can drop the latter 2 or all 3 columns before proceeding with scaling the data
- There seem to be 1 part-time student for every 4 full-time graduate student, which is reasonable
- The 'Outstate' is another column that can be removed from our analysis for 2 reasons
 - The number is way higher than the applications received suggesting that this value is for the overall students in a college rather than the new applicants
 - o This data is unrelated to our analysis which focusses more on new applicants
- The next 3 columns, RoomBoard, Books and Personal are vital to our research as these are important considerations for a student before taking up a course
 - The colleges should help students by providing various jobs within the campus, give recommendation letters, ensure food is available at reasonable prices
- The next 2 columns 'PhD' and 'Terminal' are again inter-related as PhD is the highest achievable degree in most academic fields; either of the 2 columns may be dropped in this case before proceeding with scaling the data
 - 73% of the faculty have a PhD and 80% have a terminal degree, which bodes really well for the colleges as these are high numbers
- The Student/faculty ratio is again a good criteria to evaluate a college from the students perspective
 - 14 students for every professor seems to be the average, and 75% of the values are below 17 students
 - Both are reasonable ratios, however there is scope for improvement here to get this closer to 10
- The percalumni, the percentage of alumni who donate is good at 23%; however the colleges could do more to increase this average above the 30% mark
- The Instructional expenditure per student, Expend is a measure of the public investment that a country devotes annually, on average, to each student's education
 - The average of 9,660 is really good and indicates it's in the best interests of the country to spend on educating it's people
- The Graduation rate at 65%, although good, can be improved upon by the colleges
 - A more in-depth research needs to be conducted on the reasons for students to not graduate
 - The colleges can set-up counselling sessions for students to help manage their time better, have doubt clearing sessions from seniors and professors and assign mentors who can guide the students to do well in their assignments