Misurazione della refrattività del'acqu

Alessandro Di Meglio Francesco Angelo Fabiano Antonacci

March 9, 2024

1 Scopo dell'esperienza

Lo scopo dell'esperienza è quello di misurare la refrattività dell'acqua mediante una lente cilindrica c.

2 Cenni teorici

Data una lente la relazione tra f, ossia la distanza focale della lente, p ,la distanza tra il centro della lente e la sorgente luminosa, e ${\bf q}$, la distanza tra il centro della lente e l'immagine messa a fuoco, è la legge dei punti coniugati:

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{q} \tag{1}$$

Ponendo $\frac{1}{p}=x$, $\frac{1}{q}=y$ e $\frac{1}{f}=c$ otteniamo la seguente relazione:

$$y = c - x \tag{2}$$

Data una lente di raggio r costituita da un mezzo con un indice di rifrazione n, l'equazione del costruttore di lenti ci dà una relazione con la distanza focale:

$$\frac{1}{f} = (n-1)\frac{2}{r}(1 - \frac{n-1}{n})\tag{3}$$

Da cui otteniamo l'equazione per stimare la refrattività η :

$$\eta = \frac{r}{2f - r} \tag{4}$$

3 Apparato strumentale

3.1 Materiale Utilizzato

Per l'esperienza sono stati utilizzati i seguenti strumenti:

• Schermo

- Smartphone
- Bottiglia cilindrica di vetro
- Nastro adesivo
- Filo

3.2 Misure di lunghezza

Per le misure di lunghezza è stato utilizzato un metro a nastro con risoluzione di 1 mm.

4 Descrizione delle misure

E' stata costruita la lente riempendo la bottiglia di acqua. Sono stati compiuti 4 giri di spago attorno alla bottiglia, si è presa la lunghezza dello spago che ha avvolto la bottiglia. E' stato fissato un metro a nastro su un banco per poter prendere le coordinate degli oggetti del banco ottico. E' stata posizionata la lente a una coordinata che è rimasta fissa per tutto l'esperimento. E' stata attivata la torcia dello smartphone. E' stato posizionato lo smartphone in successive posizioni; in ciascuna è stata presa la distanza tra il centro della lente e lo schermo nella configurazione in cui la luce proiettata su esso era a fuoco. E' stata dedicata particolare cura a tenere l'asse passante per la torcia e il centro della lente parallelo al metro a nastro.

4.1 Incertezze sulle misure di posizione

Si veda la sezione Cenni teorici per la notazione usata.

4.2 Incertezza su p

L'incertezza sulla distanza tra telefono e centro della bottiglia è stata assunta 1mm a causa della risoluzione del metro a nastro. E' stato verificato che l'effetto del possibile disallineamento (si veda: **Descrizione delle misure**) sulla misura di p influisce per meno di un decimo dell'incertezza dovuta alla risoluzione del metro a nastro.

4.3 Incertezza su q

Per stimare l'incertezza su q è necessario tenere in considerazione il fatto che la cofigurazione in cui la lente è a fuoco avviene in un intorno di un punto. Prendendo ripetute volte le misure si è osservato che questo intervallo arriva a essere ampio fino a 4 millimetri. Come incertezza sarà presa la somma in quadratura tra la deviazione standard della distribuzione uniforme su questo intervallo e la risolizione strumentale del metro a nastro. Come nel caso precedente è stato

m	c[m]	f[m]
-1.01 ± 0.05	11.4 ± 0.2	0.088 ± 0.001

Table 1:

η	Contributo a $\sigma \eta$ di σr	Contributo a $\sigma \eta$ di σf
0.327 ± 0.004	0.0004	0.0035

Table 2:

verificato che l'effetto del possibile disallineamento sulla misura di q influisce per meno di un decimo dell'incertezza dovuta all'incertezza stimata.

4.4 Incertezza su r

L'incertezza sul raggio è l'incertezza sulla misura di 4 volte la circonferenza diviso 8π . E' ragionevole assumere che l'incertezza sulla misura della circonferenza sia la somma in quadratura dello spessore dei quattro giri e della risoluzione del metro a nastro. Pertanto $\sigma r = 0.1 [\text{mm}]$.

4.5 Indipendenza delle variabili

5 Analisi dei dati

5.1 Algoritmo di best fit

Per trovare la distanza focale verrà fatto un fit per la relazione (2); sarà aggiunto un parametro m che si desidera essere compatibile con -1. La legge per la quale si fa il fit sarà:

$$y = mx + c \tag{5}$$

5.2 Test del X^2 e p-value

Il valore dei gradi di libertà è $\nu=6$: abbiamo campionato 8 punti e abbiamo utilizzato 2 parametri nel nostro modello. Il chi-quadro stimato dall'algoritmo di best-fit è $X^2=6$. Il p-value corrispondente è p=0.88.

5.3 Misura di η

Utilizzando l'equazione (4) si ottiene η . In tabella (2) sono riportati i risultati.

6 Conclusione