



Evaluación de métodos de aprendizaje supervisado:

- Al desarrollar un clasificador/regresor como parte de algún sistema de toma de decisiones, es crítico evaluar el desempeño
- La evaluación dará evidencia para anticipar el funcionamiento del sistema en producción
- La evaluación es también necesaria para determinar el mejor método de aprendizaje y/o optimización de parámetros















# Evaluación Métricas

**Accuracy (Exactitud)**: mide la cantidad de veces que el modelo ha acertado en los ejemplos de prueba

- En conjuntos desbalanceados (como intrusión en redes o detección de fraude) donde hay una clase minoritaria
  - → Alto valor de accuracy no implica detectar la clase minoritaria (si hay 1% de intrusión, se puede alcanzar 99% de accuracy)





# Métricas

**Precision (Precisión)**: mide del total de predicciones positivas, cuántas fueron correctas

 $\rightarrow$  número de ejemplos positivos correctamente clasificados del total de ejemplos clasificados como positivos

**Recall (Cobertura o Sensitivity)**: mide del total de ejemplos positivos, cuántos fueron correctamente clasificados

 $\rightarrow$  número de ejemplos positivos correctamente clasificados del total de ejemplos positivos en el conjunto de prueba

| 1 | 99   |
|---|------|
| 0 | 1000 |

Precision = 100% Recall = 1%

Porque solo se clasificó 1 ejemplo como positivo correctamente y ninguno negativo incorrectamente

### Evaluación

# **Métricas**

Precision y recall evalúan la clasificación sobre la clase positiva, pero es dificil comparar dos clasificadores usando dos medidas separadas

 ${f F_1\text{-}Score}$  (o  ${f F\text{-}Measure}$ ): combina precision y recall en una única métrica, mejora cuando ambas son altas

$$F_1 - Score = \frac{2 * Precision * Recall}{Precision + Recall}$$













### Evaluación

### **Métricas**

**Macro-averaging**: calcula el valor de la métrica de evaluación para cada clase y los promedia (igual peso a todas las clases)

$$P_{macro} = \frac{1}{|C|} \sum_{i=1}^{|C|} \frac{TP_i}{TP_i + FP_i} = \frac{\sum_{i=1}^{|C|} P_i}{|C|}$$

| Clase 1 |     |  |
|---------|-----|--|
| 10      | 10  |  |
| 10      | 970 |  |

| Clase 2 |     |
|---------|-----|
| 90      | 10  |
| 10      | 890 |

$$P_{\text{clase 1}} = 0.50$$

$$P_{\text{clase 2}} = 0.90$$

# **Métricas**

**Micro-averaging**: suma las decisiones de todas las clases, calcula la tabla de contingencia total y calcula la métrica sobre ella

→ está dominada por los resultados de las clases más populares

$$P_{micro} = rac{\sum_{i=1}^{|C|} TP_i}{\sum_{i=1}^{|C|} TP_i + FP_i}$$

| Clase 1 |     |
|---------|-----|
| 10      | 10  |
| 10      | 970 |

Clase 2

| Cluse 2 |     |
|---------|-----|
| 90      | 10  |
| 10      | 890 |

Micro-average

| 100 | 20   | P <sub>micro</sub> =100/(100+20)<br>=0.83 |
|-----|------|-------------------------------------------|
| 20  | 1860 | -0.03                                     |

Evaluación

# Métricas

Medidas comúnmente usadas para evaluación de predicciones cuando la

• MAE (Mean Absolute Error): desviación de las predicciones de los valores verdaderos

$$MAE = rac{1}{n} \sum_{i=1}^n \lvert p_i - r_i 
vert$$

• RMSE (Root Mean Square Error): similar a MAE pero pone más énfasis en las desviaciones

$$RMSE = \sqrt{rac{1}{n}\sum_{i=1}^{n}(p_i - r_i)^2}$$

### **Métricas**

**Curvas ROC** (Receive Operating Characteristics): enfoque gráfico que muestra el trade-off entre la taza de detección y la de falsa alarma

• True Positive Rates (TPR) y False Positive Rates (FPR)















### Holdout (Método de retención):

- Particiona **aleatoriamente** el conjunto de datos en dos conjuntos (Train/Test), uno para entrenamiento y uno para prueba
- Importante: los conjuntos son disjuntos, no se usa para testing los ejemplos que se usaron para entrenamiento
  - → sobre-estimación del modelo
- Con el conjunto de entrenamiento se aprende el modelo (incluye el conjunto de calibración)
- La utiliza el conjunto de prueba para predicción y cálculo de métricas de performance

# 

- Asume un conjunto de datos lo suficientemente grande para dividir los ejemplos en ambos conjuntos
- En un único experimento las métricas pueden no ser representativas

# Métodos de Particionado

**Holdout repetitivo**: repetir el experimento varias veces pero cambiando la partición entrenamiento/prueba

- En cada experimento se selecciona aleatoriamente una parte de los ejemplos para entrenar el modelo
- Los valores obtenidos para las métricas de los diferentes experimentos se promedian para calcular un valor final





# Evaluación Métodos de Particionado Experimento 1 Experimento 2 Experimento 3 ... Experimento k • Tiene la ventaja de que todos los ejemplos se usan en algún momento para entrenamiento y para prueba

# Métodos de Particionado

**Leave-one-out**: es un caso especial de k-fold cross validation donde k es igual al número de ejemplos disponibles

- Se utiliza cuando hay pocos ejemplos disponibles
- $\bullet$  Para N ejemplos, se realizan N experimentos
- En cada experimento se usan N-1 ejemplos para entrenamiento y el restante para prueba



# Métodos de Particionado

En la práctica, el valor de k depende del tamaño del conjunto de datos

- En conjuntos grandes, 3-fold cross validation puede ser suficiente
- ullet En conjuntos pequeños o dispersos, es preferible usar *leave-one-out* para entrenar sobre la mayor cantidad de ejemplos posibles
- Una elección común es k-fold cross validation con k=10, es decir 10fold cross validation

# **Próxima clase**

### Algoritmos de Aprendizaje No Supervisado

- k-Means
- Jerárquico ...

### Evaluación del Aprendizaje

- Metodologías
- Métricas