IOT ENABLED HYDROPONIC FARM MONITORING USING ARDUINO & CLOUD

THESIS

Proposed as a requirement for obtaining
Sarjana degree at
Business Information Systems
Master Track (Macquarie) – Information Systems Management
Education Level Strata-1 (Sarjana/Bachelor)

by

Jason Alexander Tan 2440042310

BINUS INTERNATIONAL BINUS UNIVERSITY JAKARTA 2024

IOT ENABLED HYDROPONIC FARM MONITORING USING ARDUINO & CLOUD

THESIS	
Prepared by:	
Jason Alexander Tan 2440042310	
Approved by:	

Samuel Mahatmaputra T, S.Kom., M.Info.Tech Lecture Code : D2131

Supervisor

BINUS UNIVERSITY Jakarta 2024

STATEMENT FROM BOARD OF EXAMINERS GOES HERE

STATEMENT FROM BOARD OF EXAMINERS GOES HERE

STATEMENT FROM BOARD
OF EXAMINERS
GOES HERE

STATEMENT FROM BOARD
OF EXAMINERS
GOES HERE

PERNYATAAN STATEMENT

Dengan ini, saya/kami,

With this, I/We,

Nama (Name): JASON ALEXANDER TAN

NIM (Student ID): 2440042310

Judul Tesis (Thesis Title): IOT ENABLED HYDROPONIC FARM

MONITORING USING ARDUINO & CLOUD

Memberikan kepada Universitas Bina Nusantara hak non-eksklusif untuk menyimpan, memperbanyak, dan menyebarluaskan tesis saya/kami, secara keseluruhan atau hanya sebagian atau hanya ringkasannya saja, dalam bentuk format tercetak atau elektronik.

Hereby grant to my/our school, Bina Nusantara University, the non-exclusive right to archive, reproduce, and distribute my/our thesis, in whole or in part, whether in the form of a printed or electronic format.

Menyatakan bahwa saya/kami, akan mempertahankan hak exclusive saya/kami, untuk menggunakan seluruh atau sebagian isi tesis saya/kami, guna pengembangkan karya di masa depan, misalnya dalam bentuk artikel, buku, perangkat lunak, ataupun sistem informasi.

I/We acknowledge that I/we retain exclusive rights of my/our thesis by using all or part of it in a future work or output, such as an article, a book, software, or information system.

Catatan: Pernyataan ini dibuat dalam 2 (dua) bahasa, Indonesia dan Inggris, dan apabila terdapat perbedaan penafsiran, maka yang berlaku adalah versi Bahasa Indonesia.

Note: This Statement is made in 2 (two) languages, Indonesian and English, and in the case of a different interpretation, the Indonesian version shall prevail.

Jakarta, 11/04/2023

BINUS INTERNATIONAL BINUS UNIVERSITY

Business Information Systems

Master Track (Macquarie) – Information Systems Management

Sarjana Komputer Thesis

Odd Semester 2023

IOT ENABLED HYDROPONIC FARM MONITORING USING ARDUINO & CLOUD

Jason Alexander Tan 2440042310

Abstract

This case study focuses on the development of an Arduino and PHP based integrated hydroponic farm monitoring system by leveraging IoT and cloud technologies. The system's objective is to deliver relevant environmental parameter data, such as parts per million (PPM), pH levels, CO₂ levels, humidity, and temperature, to greatly optimize the routine hydroponic monitoring activity performed by JUST HYDROPONICS.

Preliminary information collection is done qualitatively, which is used in the system's conception process. The Arduino is used as the sensor. The detailed specifications of the Arduino's software and hardware are discussed in detail, including the specific models of the components and subcomponents used in the creation of the Arduino prototype, which are specifically compatible with Arduino. The web application provides the users with an interface to visualize the collected data. The web API, which is built into the web application serves as a receiver for data from the Arduino. The design of the web application and API are also discussed in detail. The cloud platform provides application hosting, data storage, and remote access to the system.

Primary evaluation of the system's performance is done by studying the system's accuracy and reliability. A secondary evaluation is done qualitatively by directly interviewing JUST HYDROPONICS's owners & management about the system's impact and effectiveness.

The findings of this case study contribute to the progress of research on IoT and precision agriculture, which are highly important fields in addressing the sustainability and security of food in the world. The findings of this case study should be easily adaptable to a variety of hydroponic farm types.

Key Words

IOT, Hydroponic, Farm, Arduino, Cloud

Acknowledgements

This case study is dedicated to a few people, without whom I would have to endure unspeakable difficulties to get to where I am today. Words alone cannot express how grateful I am to have their unyielding support and company.

- 1. To my core family, especially my mother, to whom I owe everything.
- 2. To my extended family, which have been so kind and supportive as to allow me to use their business as the object of this case study and put up with my annoyingly large number of questions.
- 3. To my girlfriend, for her unwavering support, for her words of encouragement, and for her extraordinary ability to calm me down when times are difficult.
- 4. To my closest friends, for their invaluable friendship, their company, and the laughs we shared, which has opened many doors to me, be it physical, mental, or emotional.
- 5. To my thesis supervisor, Samuel Mahatmaputra T, S.Kom., M.Info.Tech., for providing me with invaluable guidance and inspiration during my thesis period and throughout the years since I started studying in Binus International, for being the lecturer who taught me the very lessons that are quintessential to my ability to perform this case study, for being the anchor of stability in my efforts of navigating Binus's bureaucratic nightmare for Master Track, all of which were crucial in enabling me to finish this case study.

Table of Contents

Statement From Board of Examiners	iii
Personal Statement	iv
Abstract	v
Acknowledgements	vi
Table of Contents	vii
List of Tables	xi
List of Figures	xii
Chapter 1 – Introduction	1
1.1 Introduction	1
1.2 Background	1
1.3 Object of Study	3
1.4 Case Study Objectives	4
1.5 Research Questions.	5
1.6 Hypothesis	5
1.7 Scope & Limitations	8
1.8 Case Study Outline.	9
1.8.1 Chapter 1 - Introduction	9
1.8.2 Chapter 2 – Theoretical Foundation	10
1.8.3 Chapter 3 – Problem	10
1.8.4 Chapter 4 – Solution Design	10
1.8.5 Chapter 5 – Solution Implementation	11
1.8.6 Chapter 6 – Evaluation & Discussion	11
1.8.7 Chapter 7 – Conclusion & Recommendation	11
Chapter 2 – Theoretical Foundation.	12
2.1 Theoretical Foundation of the Hydroponic Sensor	12
2.1.1 Arduino Uno	12
2.1.2 Wi-Fi Module	15
2.1.3 Water Temperature Sensor	23
2.1.4 Humidity Sensor.	27
2.1.5 CO2 Sensor.	30
2.1.6 pH Sensor	36
2.1.7 PPM Sensor	39

2.1.8 Possible Alternatives	44
2.2 Theoretical Foundation of the Web Application	46
2.2.1 PHP	46
2.2.2 HTML & CSS	48
2.2.3 JavaScript.	49
2.2.4 XAMPP	50
2.2.5 Amazon Web Services (AWS)	52
2.3 Literature Review.	54
2.3.1 "DIY Hydroponic Garden w/ Arduino and IoT"	55
2.3.2 "ESP8266 + Arduino + Database"	56
2.3.3 "Sending Data to Thingspeak Website Using ESP8266"	57
Chapter 3 – Problem Analysis.	59
3.1 Current Processes.	59
3.1.1 Data Measurement & Collection	59
3.1.2 Data Storage.	60
3.2 Problem Analysis.	60
3.2.1 Data Vulnerability	60
3.2.2 Arduous Data Management	61
3.2.3 Labor Intensive.	61
3.2.4 Reduces Accuracy & Inconsistency	62
3.2.5 Delayed Response.	62
3.2.6 Inefficient Allocation of Financial Resources	63
3.3 Empathy Map.	64
3.4 Value Proposition Canvas	64
Chapter 4 – Solution Design.	66
4.1 Arduino.	66
4.1.1 Architecture Overview	66
4.1.2 Loop Cycle	67
4.1.3 Data Collection Frequency	67
4.1.4 Unit Cost	67
4.2 Web Application.	68
4.2.1 Architecture Overview	68
4.2.2 Class Diagram.	69

	4.2.3 Design Pattern	70
	4.2.4 Use Case	72
	4.2.5 User Interface.	74
	4.2.6 Database	76
	4.2.7 Arduino API.	76
4.3 Cl	loud Deployment	77
4.4 Te	esting Plan	78
Chap	ter 5 – System Implementation	80
5.1 A	rduino	80
	5.1.1 Architecture	80
	5.1.2 Code Structure	82
	5.1.3 The Code	84
5.2 W	eb Application	95
	5.2.1 Application Code Structure	95
	5.2.2 Database & API.	99
	5.2.3 Cloud Deployment	101
Chap	ter 6 – Evaluation & Discussion	115
6.1 Ev	valuation	115
	6.1.1 Methodology	115
	6.1.2 Arduino	115
	6.1.3 Web Application	121
	6.1.4 End-to-End.	124
	6.1.5 Research Questions & Hypothesis Evaluation	130
6.2 D	iscussion	132
	6.2.1 Not Ready for Commercialization	133
	6.2.2 Range Extension.	133
	6.2.3 Wi-Fi Reliability	134
	6.2.4 Data Collection Frequency	134
	6.2.5 Documentation Scarcity	135
	6.2.6 UI Design Simplicity	135
Chap	ter 7 – Conclusion & Recommendation	136
7 1 C	onclusion	136

7.2 Recommendation	137
References	139
Curriculum Vitae	143
Appendices	144

List of Tables

Table 2.1 – MH-Z19B Technical Specifications	30
Table 2.2 – MH-Z19B Recommended Software Settings	31
Table 2.3 – Specifications of the TDS Signal Transmitter Board (DFRobot, n.d.)	40
Table 2.4 – Specifications of the TDS Probe (DFRobot, n.d.)	40
Table 4.1 – Unit Cost	67

List of Figures

Figure 1.1 – Just Hydroponics 1	3
Figure 1.2 – Just Hydroponics 2	3
Figure 2.1 – Arduino Uno R3 16U2	12
Figure 2.2 – Arduino Schematic (freeCodeCamp.org, 2021)	13
Figure 2.3 – The ESP-01 Module	15
Figure 2.4 – A Schematic of the ESP-01 Module (Electronoobs, 2019)	16
Figure 2.5 – ESP-01 in Bypass Mode	18
Figure 2.6 – Empty Arduino Code	19
Figure 2.7 – The Arduino IDE Serial Monitor	20
Figure 2.8 – ESP-01 in SoftwareSerial Mode	21
Figure 2.9 – Garbled Response From ESP-01	23
Figure 2.10 – Two Models of the DS18B20 Sensor	23
Figure 2.11 – The DS18B20 Operating in External Power Mode (Maxim, 2019).	24
Figure 2.12 – The DS18B20 Operating in Normal Mode (Santos, 2016)	24
Figure 2.13 – The DS18B20 Operating in Parasite Power Mode (Maxim, 2019).	25
Figure 2.14 – The DS18B20 Operating in Parasitic Power Mode (Santos, 2016).	25
Figure 2.15 – The OneWire Library	26
Figure 2.16 – The DallasTemperature Library	26
Figure 2.17 – The DHT11 Sensor (Mouser, n.d.)	27
Figure 2.18 – Typical Application of the DHT11 Sensor (Mouse, n.d.)	28
Figure 2.19 – Basic Schematic of a DHT11 Sensor in Use (Campbell, 2015)	29
Figure 2.20 – MH-Z19B Sensor (Winsen, 2016)	30
Figure 2.21 – MH-Z19B Diagram (Winsen, 2016)	30
Figure 2.22 – The MH-Z19B Library	32
Figure 2.23 – MH-Z19B Schematic, Digital Mode (Fahad, 2022)	32
Figure 2.24 – MH-Z19B, Digital Mode	34
Figure 2.25 – MH-Z19B Schematic, PWM Mode (IoTSpace, 2011)	35
Figure 2.26 – PH-4502C Module (CimpleO, 2020)	36
Figure 2.27 – The pH Probe	37
Figure 2.28 – A Schematic of the PH-4502C with Arduino	37
Figure 2.29 – PH-4502C Probe Offset Calibration.	38

Figure 2.30 – DFRobot Analog TDS Sensor Illustration (DFRobot, n.d.)	40
Figure 2.31 – Signal Transmitter Board (DFRobot, n.d.)	41
Figure 2.32 – Example Use of the Analog TDS Sensor Kit (DFRobot, n.d.)	42
Figure 2.33 – The Raspberry Pi	44
Figure 2.32 – NodeMCU Lolin.	45
Figure 2.33 – XAMPP Control Panel	51
Figure 2.34 – The DIY Hydroponic Concept Sketch	55
Figure 3.1 – The HI98301 TDS Meter.	59
Figure 3.2 – A Whiteboard Used for Storing Data	60
Figure 3.3 – Arduous Data Management	61
Figure 3.4 – Empathy Map	64
Figure 3.5 – Value Proposition Canvas	64
Figure 4.1 – Arduino System Architecture	66
Figure 4.2 – Process Cycle	67
Figure 4.3 – Web Application System Architecture	68
Figure 4.4 – Class Diagram	69
Figure 4.5 – Use Case Diagram.	72
Figure 4.6 – User Interface, Dashboard	74
Figure 4.7 – User Interface, Login Page	75
Figure 4.8 – The Database Structure	76
Figure 4.9 – Superglobal URL Pattern	76
Figure 4.10 – AWS Cloud Architecture	77
Figure 5.1 – Schematic of the Arduino Prototype	80
Figure 5.2 – The Arduino Prototype	81
Figure 5.3 – The File Structure.	82
Figure 5.4 – The Web Application's File Structure	95
Figure 5.5 – The Index File	96
Figure 5.6 – Router, Check Function.	97
Figure 5.7 – Router, Load Function.	97
Figure 5.8 – Controllers Abstraction Layer.	98
Figure 5.9 – The DashboardController's run() Function	98
Figure 5.10 – Database Master Table	99

Figure 5.11 – Database Sensors Table	99
Figure 5.12 – The API Code	100
Figure 5.13 – Deployment S1/A	101
Figure 5.14 – Deployment S1/B	102
Figure 5.15 – Deployment S2/A	102
Figure 5.16 – Deployment S2/B	103
Figure 5.17 – Deployment S2/C	104
Figure 5.18 – Deployment S2/D	105
Figure 5.19 – Deployment S2/E	106
Figure 5.20 – Deployment S2/F	106
Figure 5.21 – Deployment S3/A	107
Figure 5.22 – Deployment S3/B	108
Figure 5.23 – Deployment S3/C	108
Figure 5.24 – Deployment S3/D	108
Figure 5.25 – Deployment S3/E	109
Figure 5.26 – Deployment S4/A	109
Figure 5.27 – Deployment S4/B	110
Figure 5.28 – Deployment S4/C	110
Figure 5.29 – Deployment S4/D	110
Figure 5.30 – EC2 Deployment S2/A	111
Figure 5.31 – EC2 Deployment S2/B	112
Figure 5.32 – EC2 Deployment S2/C	112
Figure 5.33 – EC2 Deployment S2/D	113
Figure 6.1 – Wi-Fi Module Unit Test Setup (Serial Monitor)	116
Figure 6.2 – Wi-Fi Module Unit Test Results (Serial Monitor)	116
Figure 6.3 – Wi-Fi Module Unit Test Results (Database)	116
Figure 6.4 – Water Temperature Sensor Unit Test Results	117
Figure 6.5 – Humidity Sensor Unit Test Results	118
Figure 6.6 – CO ₂ Sensor Unit Test Results	118
Figure 6.7 – pH Sensor Unit Test Results	119
Figure 6.8 – TDS Sensor Unit Test Results	119
Figure 6.9 – Integration Test Results (Serial Monitor)	120

Figure 6.10 – Integration Test Results (Database)
Figure 6.11 – Dashboard Display
Figure 6.12 – Sensor Selection
Figure 6.13 – Column Sorting
Figure 6.14 – Login Box
Figure 6.15 – Time Filters
Figure 6.16 – Remember Functionality
Figure 6.17 – DB Inserted
Figure 6.18 – DB Insertion Instructions
Figure 6.19 – Null Insert Test. 123
Figure 6.20 – Partial Null Insert Test
Figure 6.21 – Partial Null Insert Instructions
Figure 6.22 – Dashboard Displaying Inserted Test Data
Figure 6.23 – Evaluation Point 1A
Figure 6.24 - Evaluation Point 1B
Figure 6.25 - Evaluation Point 2
Figure 6.26 - Evaluation Point 3
Figure 6.27 – Visualization of the Reliability Testing Results
Figure 6.28 – The Visualized Gap
Figure 6.29 – Visualization of the Reliability Testing Results (Cloud)127
Figure 6.30 – The Visualized Gap (Cloud)
Figure 6.31 – The Main Prototype & Emulator
Figure 6.32 – Database Results for MDT
Figure A1.1 – UI Suggestion 1
Figure A1.2 – UI Suggestion 2
Figure A1.3 – UI Suggestion 3
Figure A1.4 – UI Suggestion 4