Дифференциал

$$Th. \ z: D \to \mathbb{R}, \ D \subset \mathbb{R}^2, \ \exists$$
 непрерывные $\frac{\partial z}{\partial x}, \ \frac{\partial z}{\partial y}$

Тогда функция представима $\Delta z = Adx + Bdy + \alpha \Delta x + \beta \Delta y$, где $A, B \in \mathbb{R}, \alpha, \beta = 6$. м. $\Box \quad \Delta z = z(x + \Delta x, y + \Delta y) - z(x, y) = z(x + \Delta x, y + \Delta y) - z(x + \Delta x, y) + z(x + \Delta x, y) - z(x, y)$

По теореме Лагранжа:

$$\begin{split} z(x+\Delta x,y+\Delta y) - z(x+\Delta x,y) &= z_y'(\eta) \Delta y \\ z(x+\Delta x,y) - z(x,y) &= z_x'(\xi) \Delta x \end{split}$$

По теореме о представлении функции ее пределом:

$$\begin{aligned} z_x'(\xi) &= \lim_{\xi \to x(\Delta x \to 0)} z_x'(\xi) + \alpha \\ z_y'(\eta) &= \lim_{\eta \to u} z_y'(\eta) + \beta \end{aligned}$$

Так как
$$z_x'(\xi), z_y'(\eta)$$
 непрерывны, то $\lim_{\xi \to x} z_x'(\xi) = \frac{\partial z}{\partial x}, \lim_{\eta \to y} z_y'(\eta) = \frac{\partial z}{\partial y}$

Тогда
$$\Delta z = \left(\frac{\partial z}{\partial x} + \alpha\right) \Delta x + \left(\frac{\partial z}{\partial y} + \beta\right) \Delta y = \Delta z = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y + \alpha \Delta x + \beta \Delta y$$

Заметим, что $\alpha \Delta x$ и $\beta \Delta y$ - б. м. порядка выше, чем $\Delta \rho = \sqrt{(\Delta x)^2 + (\Delta y)^2} \Longleftrightarrow$

$$1 = \sqrt{\left(\frac{\Delta x}{\Delta \rho}\right)^2 + \left(\frac{\Delta y}{\Delta \rho}\right)^2} \quad |\frac{\Delta x}{\Delta \rho}| \le 1, |\frac{\Delta y}{\Delta \rho}| \le 1$$
Сравним $\frac{\alpha \Delta x}{\Delta \rho} = 6$, м. огр. $\stackrel{\Delta \rho \to 0}{\to} 0$, $\stackrel{\beta \Delta y}{\to} \stackrel{\Delta \rho \to 0}{\to} 0$

Сравним $\frac{\alpha \Delta x}{\Delta \rho} = 6$. м. огр. $\stackrel{\Delta \rho \to 0}{\to} 0$, $\frac{\beta \Delta y}{\Delta \rho} \stackrel{\Delta \rho \to 0}{\to} 0$

Функция, приращение которой представимо $\Delta z = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y + o(\Delta \rho)$, называется дифференцируемой в точке (x,y), линейная часть приращения называется полным дифференциалом Обозначение: $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$

$$Ex: z = 3xy^{2} + 4cosxy$$

$$\frac{\partial z}{\partial x} \stackrel{y=const}{=} 3y^{2} - 4sinxy \cdot y$$

$$\frac{\partial z}{\partial y} \stackrel{x=const}{=} 6xy - 4sinxy \cdot x$$

$$dz = (3y^{2} - 4ysinxy)dx + (6xy - 4xsinxy)dy$$

4.3 Правила дифференцирования

Nota: При нахождении $\frac{\partial z}{\partial x_i}$ (x_i - какая-либо переменная) дифференцирование проводится

по правилам для функции одной переменной ($x_i \neq x_i$ считаются константами) Выпишем более сложные правила

1* Сложная функция

$$Mem: (f(g(x)))' = f'(g(x)) \cdot g'(x)$$
 $Def:$ Сложная функция двух переменных: $z = z(u, v), u = u(x, y), v = v(x, y)$

Формула: Найдем $frac\partial z(u,v)\partial x$ и $frac\partial z(u,v)\partial y$

 $Th: z = z(u, v), \ u(x, y), v(x, y)$ непрерывно дифференцируемы по x, y

Тогда
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$\Box$$
 z дифференцируема $\Longleftrightarrow \Delta z = \frac{\partial z}{\partial u} \Delta u + \frac{\partial z}{\partial v} \Delta v + \alpha \Delta u + \beta \Delta v$

Зададим приращение Δx (представление $\stackrel{\smile}{\Delta z}$ не должно измениться)

$$\Delta_{x}z = \frac{\partial z}{\partial u}\Delta_{x}u + \frac{\partial z}{\partial v}\Delta_{x}v + \alpha\Delta_{x}u + \beta\Delta_{x} + v \quad \left| \cdot \Delta x \right|$$

$$\frac{\Delta_{x}z}{\Delta x} = \frac{\partial z}{\partial u}\frac{\Delta_{x}u}{\Delta x} + \frac{\partial z}{\partial v}\frac{\Delta_{x}v}{\Delta x} + \alpha\frac{\Delta_{x}u}{\Delta x} + \beta\frac{\Delta_{x}v}{\Delta x} \quad \left| \cdot \Delta x \right|$$

По теореме Лагранжа: $\frac{\partial u}{\partial x}(\xi) \stackrel{\Delta x \to 0}{\to} \frac{\partial u}{\partial x}$

В пределе:
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x}$$

Аналогично для $\frac{\sigma z}{\partial y}$

Nota: Интересен случай z=z(x,u,v), где u=u(x),v=v(x)

Здесь z является функцией одной переменной x

Обобщая правило на случай трех переменных, можем записать формулу полной производной, которая имеет смысл

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial x} + \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial u} \cdot \frac{du}{dx} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dx}$$

Ex: Пусть w=w(x,y,z) - функция координат x=x(t),y=y(t),z=z(t) - функции времени w явно не зависит от времени, тогда $\dfrac{dw}{dt}=w_x'v_x+w_y'v_y+w_z'v_z$, где v_x - проекция скорости

Если
$$w = w(x, y, z, t)$$
, то $\frac{dw}{dt} = \frac{\partial w}{\partial t} w_x' v_x + w_y' v_y + w_z' v_z$

 2^* Неявная функция одной переменной: пусть F(x,y(x))=0 - неявное задание y=y(x)

Найдем
$$dF = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy = 0$$

Отсюда
$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$$

4.4 Производная высших порядков

Nota: Пусть z=z(x,y) дифференцируема и $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ также дифференцируемы, при этом в

общем случае
$$\frac{\partial z}{\partial x} = f(x,y), \frac{\partial z}{\partial y} = g(x,y)$$

Тогда определены вторые частные производные

$$Def: \frac{\partial^2 z}{\partial x^2} \stackrel{def}{=} \frac{\partial}{\partial x} \frac{\partial z}{\partial x}$$

$$\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \frac{\partial z}{\partial y}$$
 - чистые производные

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \frac{\partial z}{\partial x}$$
$$\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial x} \frac{\partial z}{\partial y} - \text{смешанные производные}$$

 $Th.\ z=z(x,y),$ функции $z(x,y),z_x',z_y',z_{xy}'',z_{yx}''$ определены и непрерывны в $\stackrel{\circ}{U}(M(x,y))$

Тогда $z_{xy}^{\prime\prime} = z_{yx}^{\prime\prime}$

Введем вспомогательную величину

$$\Phi = (z(x + \Delta x, y + \Delta y) - z(x + \Delta x, y)) - (z(x, y + \Delta y) - z(x, y))$$

Обозначим $\phi(x) = z(x, y + \Delta y) - z(x, y)$

Тогда $\Phi = \phi(x + \Delta x) - \phi(x)$ - дифференцируема, непрерывна, как комбинация

По теореме Лагранжа $\phi(x+\Delta x)-\phi(x)=\phi'(\xi)\Delta x=(z'_x(\xi,y+\Delta y)-z'_x(\xi,y))\Delta x$, где $\xi\in(x;x+\Delta x)$

Здесь z_x' дифференцируема также на $[y, y + \Delta y]$

Тогда по теореме Лагранжа $\exists \eta \in (y,y+\Delta y) \mid z_x'(\xi,y+\Delta y) - z_x'(\xi,y) = z_{xy}''(\xi,\eta)\Delta y$

Таким образом $\Phi=z_{xy}''(\xi,\eta)\Delta x\Delta y$ Перегруппируем Φ , далее аналогично для z_{yx}''

Тогда $z_{xy}''(\xi,\eta)\Delta x\Delta y = \Phi = z_{yx}''(\xi',\eta')\Delta x\Delta y$

4.5 Дифференциалы

Mem. Полный дифференциал (1-ого порядка) функции z = z(x, y)

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$
 - сумма частных дифференциалов

Мет 2: Инвариантность формы первого дифференциала функции одной переменной $dy(x) = y'(x)dx \stackrel{x=\phi(t)}{=} y'(t)dt$

Th. Инвариантность полного дифференциала первого порядка.

$$z = z(u, v), \quad u = u(x, y), \quad v = v(x, y) - \text{дифференциалы}$$
Тогда $dz = \frac{\partial z}{\partial u} du + \frac{\partial z}{\partial v} dv = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$

$$\Box dz = \frac{\partial z}{\partial u} \left(\frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy \right) + \frac{\partial z}{\partial v} \left(\frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy \right) = \left(\frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x} \right) dx + \left(\frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y} \right) dy = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial u} dy$$

Mem:
$$d^2y(x) \stackrel{def}{=} d(dy(x)) = y''(x)dx^2 \neq y''(t)dt^2$$

$$Def\colon z=z(x,y)$$
 - дифференцируема и $dz=rac{\partial z}{\partial x}dx+rac{\partial z}{\partial y}dy$ - дифференцируемая функция

Тогда второй полный дифференциал:

$$d^2z \stackrel{def}{=} d(dz)$$

Формула:
$$d^2z = d\left(\frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy\right) = (z_x'dx + z_y'dy)_x'dx + (z_x'dx + z_y'dy)_y'dy = (z_x'dx)_x'dx + (z_y'dy)_x'dx + (z_y'dy)_x'dx + (z_y'dy)_y'dy$$

$$(z'_x dx)'_y dy + (z'_y dy)'_y dy = (z'_x)'_x (dx)^2 + (z'_y)'_x dx dy + (z'_x)'_y dy dx + (z'_y)'_y (dy)^2 = \frac{\partial^2 z}{\partial x^2} (dx)^2 + 2 \frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} (dy)^2$$

Nota: Заметим формальное сходство с биномом Ньютона: $a^2 + 2ab + b^2 = (a+b)^2$

Введем условное обозначение
$$\frac{\partial^2}{\partial x^2} + 2\frac{\partial^2}{\partial x \partial y} + \frac{\partial^2}{\partial y^2} = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^2$$

Тогда
$$d^2z = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^2 z$$
, здесь $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^2$ - оператор второго полного дифференцирования $d^nz = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^n z$ - дифференциал n -ого порядка

$$Nota$$
: Можно ли утверждать, что $d^2z(x,y) = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^2 z \stackrel{x=x(u,v),y=y(u,v)}{=} \left(\frac{\partial}{\partial u} + \frac{\partial}{\partial v}\right)^2 z$???

Нет, нельзя $(d^2z$ не инвариантен при замене)

Покажем, что не выполняется в простом случае: z = z(x,y) = z(x(t),y(t)) - параметризация. Геометрически, это выбор пути в области D от точки $M_0(x_0,y_0)$ до точки M(x,y)

Итак

$$d(dz) \stackrel{z-\Phi_1\Pi}{=} (dz)_t'dt = \left(\frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy\right)_t'dt \stackrel{dx(t) = \frac{dx}{dt}dt,dy(t) = \frac{dy}{dt}dt}{=} \left(\frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}\right)_t'dt^2 = \left(\frac{\partial z}{\partial x}\frac{dx}{dt}\right)_t'dt^2 + \left(\frac{\partial z}{\partial y}\frac{dy}{dt}\right)_t'dt^2 = \left(\left(\frac{\partial z}{\partial x}\right)_t'\frac{dx}{dt} + \frac{\partial z}{\partial x}\left(\frac{dx}{dt}\right)_t'\right)dt^2 + \left(\left(\frac{\partial z}{\partial y}\right)_t'\frac{dy}{dt} + \frac{\partial z}{\partial y}\left(\frac{dy}{dt}\right)_t'\right)dt^2 = \left(\frac{\partial^2 z}{\partial x^2}\left(\frac{dx}{dt}\right)^2 + \frac{\partial z}{\partial x}\frac{d^2x}{dt^2}\right)dt^2 + \left(\frac{\partial^2 z}{\partial x\partial y}\frac{dy}{dt}\frac{dx}{dt} + \frac{\partial^2 z}{\partial y\partial x}\frac{dx}{dt}\frac{dy}{dt}\right)dt^2 = \frac{\partial^2 z}{\partial x^2}dx^2 + \frac{\partial z}{\partial x}d^2x + \frac{\partial^2 z}{\partial y^2}dy^2 + \frac{\partial z}{\partial y}d^2y + \frac{\partial z}{\partial x}\frac{dy}{dt}dt + \frac{\partial z}{\partial y}d^2x + \frac{\partial z}{$$

Lab: Дать инвариантность при линейной параметризации

Причем, это свойство верно для
$$d^n z$$
, то есть если $\begin{cases} x = mt + x_0 \\ y = nt + y_0 \end{cases}$ (например), то $d^n z \stackrel{z=z(t)}{=} z^{(n)}(t) dt$

4.6 Формула Тейлора

$$Mem: f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \left[\frac{o((x - x_0)^n) - \Pieaho}{\frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1} - \Piarpahka}\right]$$

В дифференциалах:

$$f(x) = f(x_0) + \frac{df(x_0)}{1!} + \frac{d^2f(x_0)}{2!} + \dots + \frac{d^nf(x_0)}{n!} +$$
остаток Формула Тейлора для $z = z(x,y)$ в окрестности $M_0(x_0,y_0)$ (как раньше $\Delta \rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$)

$$z(M=\stackrel{o}{U}(M_0))=z(M_0)+rac{dz(M_0)}{1!}+\cdots+rac{d^nz(M_0)}{n!}+o((\Delta
ho)^n)$$
 Nota. Th. Формула выше верна, если $z=z(x,y)$ - непрерывна со своими частными

производными до n+1 порядка включительно в некоторой окрестности $U_{\delta}(M_0(x_0,y_0)),$ где $M(x, y) \in U_{\delta}(M_0)$