Trees

What is a Tree?

- A tree is a collection of nodes with the following properties:
 - The collection can be empty and the tree is called a null tree.
 - Otherwise, a tree consists of a distinguished node r, called *root*, and the remaining nodes are partitioned into k subsets representing subtrees T_1, T_2, \ldots, T_k , each of whose roots are connected by a *directed edge* from r.
- The root of each sub-tree is said to be *child* of r, and r is the *parent* of each sub-tree root.
- If a tree is a collection of N nodes, then it has N-1 edges.

Preliminaries

- Node A has 6 children: B, C, D, E, F, G.
- B, C, H, I, P, Q, K, L, M, N are *leaves* in the tree above.
- K, L, M are *siblings* since F is parent of all of them.

Preliminaries (continued)

- A *path* from node n_1 to n_k is defined as a sequence of nodes $n_1, n_2, ..., n_k$ such that n_i is parent of n_{i+1} $(1 \le i < k)$
 - The *length* of a path is the number of edges on that path.
 - There is a path of length zero from every node to itself.
 - There is exactly one path from the root to each node.
- The *depth* of node n_i is the length of the path from *root* to node n_i
- The *height* of node n_i is the length of longest path from node n_i to a *leaf*.
- If there is a path from n_1 to n_2 , then n_1 is *ancestor* of n_2 , and n_2 is *descendent* of n_1 .
 - If $n_1 \neq n_2$ then n_1 is *proper ancestor* of n_2 , and n_2 is *proper descendent* of n_1 .

Figure 1 A tree, with height and depth information

