

CREATIS

Méthodes d'IA les plus appliquées & prometteuses en imagerie cardiaque

Olivier Bernard

Professeur d'université, INSA, Lyon

13 Juin, 2024

Imagerie cardiaque

Quantification automatique d'indices cliniques

Acquisitions

standardisées

Enjeux

- ✓ Mauvaise position de la sonde induit des erreurs de mesures
- ✓ Le plan d'acquisition doit être aligné avec les axes du cœur

Etude pilote

- √ 88 participants avec un rythme sinusal
- √ 3 examens par patients: 2 avec des échographistes, 1 avec des cardiologistes
- ✓ Qualité de la vue acquise mesurée vis-à-vis de l'erreur de rotation et d'inclinaison

Protocole

[Sabo et al., ESC 2023]

[Sabo et al., ESC 2023]

Extraction automatique

d'indices anatomiques

Segmentation d'images cardiaques

- ✓ Extraction automatique des contours endocardique / épicardique
- ✓ Extraction d'indices cliniques tels que le volume ou la fraction d'éjection du ventricule gauche

Enjeux

- ✓ Segmentation précise et robuste
- ✓ Cohérence temporelle
- √ Généralisation à tout type de base de données

nnU-Net: architecture phare

- ✓ Remporte la plupart des challenges en segmentation d'images médicales
- ✓ Fonctionne quelque soit la modalité d'imagerie

CAMUS: étude pilote

Base de données 2D publique										
Nom A		Nb. patients	Vérités terrain				Vues		Caractéristiques	
	Année		VG _{endo}	VG _{epi}	AG	Cycle cardiaque entier	A2C	A4C	Multi- Centre	Multi- Vendeur
CAMUS	2019	500	✓	✓	✓	×	✓	✓	*	*

✓ Précisions cliniques

	EF		Volume ED		Volume ES		
Methods	Corr.	MAE (%)	Corr.	MAE (ml)	Corr.	MAE (ml)	
Intra-obs.	.896	4.7	.978	6.5	.981	4.5	
2D nnU-Net	.857	4.7	.977	5.9	.987	4.0	

Mesures

d'incertitudes

Mesures d'incertitudes

Modélisation de l'incertitude des mesures

- ✓ Incertitudes dues aux données / modèles
- ✓ Incertitudes introduites par la variabilité inter/intra experts

Mesures d'incertitudes

Modélisation de l'incertitude des mesures

✓ Propagation de l'incertitude anatomique à l'incertitude de la mesure clinique

[Judge et al., MICCAI 2023]

Extraction automatique

de la déformation du myocarde

Estimation de la déformation globale / locale du myocarde

Déformation du muscle cardiaque

- ✓ Estimation automatique du champ de mouvement des tissus
- ✓ Extraction d'indices cliniques que la déformation globale longitudinale (GLS)

Enjeux

- ✓ Estimation de mouvement précise et robuste
- ✓ Estimation possible des déformations régionales
- √ Généralisation à tout type de base de données

Distance Erreur

Estimation de la déformation globale / locale du myocarde

Etape clé: création d'une base de données synthétiques réalistes

[EVAIN et al., IEEE TMI 2022]

Etape clé: création d'une base de données synthétiques réalistes

100 séquences A4C simulées

✓ Avec vérité terrain

Grande variabilité / richesse pour les méthodes d'IA

Déformation longitudinale (GLS)

Temps

Estimation de la déformation globale / locale du myocarde

Résultats préliminaires

✓ Précisions cliniques

Résultats préliminaires	GLS	
resultats premimaires	%.	
Base de données entière (#30)	2.89 ± 2.08	
Sténose aortique (#6)	${2.85 \pm 2.14}$	
Cardiomyopathie hypertrophique (#6)	3.33 ± 2.26	
Ischémie (#6)	2.50 ± 1.56	
Non ischémie (#6)	2.01 ± 1.67	
Normal (#6)	3.75 ± 2.84	

Séquence simulée

Séquence réelle

Extraction automatique

du flux vectoriel du sang

Estimation du flux vectoriel du sang

Imagerie par Doppler couleur

- ✓ Visualisation 1D du flux sanguin
- ✓ Présence de bruit de type aliasing

Enjeux

- ✓ Amélioration de la qualité visuel pour une meilleure interprétation par le clinicien
- ✓ Extraction de nouveaux biomarqueurs ?

Image Doppler couleur

Estimation du flux vectoriel du sang

Etape clé: contraindre les modèles d'IA par des lois physiques

✓ Reconstruction d'un flux vectoriel à partir d'une simple écho Doppler

Estimation du flux vectoriel du sang

Résultats préliminaires

- ✓ Qualité visuelle pour les praticiens
- ✓ Validation en cours sur l'extraction de nouveaux indices cliniques vortex ?

Merci!

Arnaud Judge

Thierry Judge

Hang Jung Ling

Nathan Painchaud

Nicolas Duchateau

Pierre-Marc Jodoin

Annexes

Extraction d'indices cliniques

Comment généraliser à d'autres bases ?

Imagerie cardiaque

Représentation de populations

Peut-on obtenir les mêmes résultats sur n'importe quelle base de données ?

✓ Mise à jour du modèle nnU-Net pour s'adapter à une nouvelle base de données

[Judge et al., MICCAI 2024]

 $oldsymbol{3}$ Mise à jour du modèle nnU-Net $\pi_{ heta}$

[Judge et al., MICCAI 2024]

Résultats préliminaires

- ✓ Scores obtenus sur une nouvelle base de données de 220 patients
- ✓ Aucune annotation sur la nouvelle base de données

Représentation de populations

Hypertension artérielle

Objectif

✓ Représentation continue d'une population atteinte d'HTA

Base de données

- √ 239 patients issus d'un même centre hospitalier
- √ 64 descripteurs issus du dossier patient
- ✓ Vue apicale 2 & 4 chambres par patient

Méthode

✓ Fusion de données hétérogènes

Méthode

- ✓ Approche par transformer
- ✓ Fusion d'informations multimodales

Représentation de la population dans un espace dédié

Clustering versus representation continue

0.8 0.2

Représentation de la population: coloration selon la sévérité de l'HT

Représentation de la population: coloration selon le score de stratification prédit

Résultats

- ✓ Classification automatique de la sévérité (problème à 3 classes)
- ✓ Entrainement sur 191 patients, test sur 48 patients
- ✓ Résultats calculés sur 10 entrainements

Transformer	tabular+time-series		
Accuracy (%)	86.3 ± 3.0		

Précision de la classification à partir des 64 descripteurs tabulaires + 14 descripteurs de séries temporelles

Représentation de la population: coloration selon la sévérité de l'HT

Résultats

✓ Intégration efficace de différentes sources d'information

Descripteurs cliniques	Descripteurs	#	Précision	
	temporels	descripteurs	eurs	
Les plus	X	13	71.3 ± 3.8	
discriminants	_/	27	74.4 ± 3.8	
Tous	Х	64	83.5 ± 4.8	
	✓	78	83.3 ± 2.8	
Sans les	X	30	80.6 ± 4.2	
mesures écho.	✓	44	86.3 \pm 3.0	

Entraînement sur 191 patients, test sur 48 patients, valeurs moyennées à partir de 10 expériences différentes

Résultats

✓ La représentation continue permet une étude plus détaillée des phénogroupes

Discrétisation de la représentation continue en fonction de six intervalles

Résultats

- ✓ Etude des motifs pour les séries temporelles
- ✓ Epaisseur de la paroi basale / septale
 - → Myocarde plus épais chez les patients HT
 - → Déplacement du pic d'épaisseur

Groupes de patients en fonction du score de gravité fourni par un cardiologue

Groupes de patients selon les catégories de stratification

Résultats

- ✓ Etude des motifs pour les séries temporelles
- ✓ Déformation longitudinale globale (GLS)
 - → Diminution du pic GLS
 - → Relaxation post-systolique altérée

Groupes de patients selon les catégories de stratification

En résumé

Méthodes d'IA dans l'analyse d'images cardiaques

Acquisition

Quantification des images

Représentation de la population

Imagerie cardiaque ultrarapide

Réseaux de neurones (RN) Simulations réalistes Segmentation
Mouvement sang / tissus
Modélisation d'incertitude
Adaptation de domaine

RN convolutionnels
Auto-encoder variationel
PINNs
Réseaux de diffusion

Fusion multimodale Intégration de données hétérogènes

Transformers

Classification de l'étiologie Caractérisation de l'hypertension

Estimation robuste de biomarqueurs existants / nouveaux