Von Neumann Architecture

- A common bus is used for data as well as instructions.
- The system can become 'bus bound'.

Harvard Architecture

- Separate data and instruction paths
- Good performance
- Needs 2 buses → expensive!
- Traffic on the buses is not balanced.
- Instruction bus may remain idle.

Modified Harvard Architecture

- Constants can be stored with Instructions in ROM.
- Better Bus balancing is possible.
- Typically, 1 instruction read, 1 constant read, 1 data read and 1 result write per instruction.
- 2 mem ops per bus.

Modified Harvard with Cache

- Cache allows optimum utilization of bus bandwidths.
- Each operation need not be balanced individually.

Instruction and Data State Machines

- Operation of the system may be modeled as two interacting state machines.
- Instruction processor fetches instr, decodes and gives operation type and operand locations to data processor.
- Data processor fetches operands, performs operation and writes back the result.

Consider a Harvard architecture processor, which performs the following tasks repetitively:

Fetch Op Code (ROM)

Consider a Harvard architecture processor, which performs the following tasks repetitively:

Fetch Op Code (ROM)

Fetch variable (RAM)

Fetch constant (ROM)

Consider a Harvard architecture processor, which performs the following tasks repetitively:

Fetch Op Code (ROM)

Fetch variable (RAM)

Fetch constant (ROM)

Calculate result

Consider a Harvard architecture processor, which performs the following tasks repetitively:

Fetch Op Code (ROM)

Fetch variable (RAM)

Fetch constant (ROM)

Calculate result

Store result (RAM)

Resource Reservation

We can keep track of which resource is doing what at any given time by a table as shown below:

Resource Reservation Table

	0	1	2	3	4
ROM	Instr Fetch	Const. fetch			
RAM		Var. Fetch		Write Back	
ALU			Compute		

This is called a reservation table.

Given this reservation table, It appears that we can launch a new instruction every 4 cycles.

Overlapping Operations

However, we need not wait for the previous operation to be over before launching a new one.

	0	1	2	3	4	5	6	7	8	9	10
ROM	0	0									
RAM		0		0							
ALU			0								

When can we launch the next calculation?

Pipelining

We can fetch the next instruction from ROM while we write back the result of the current one to the RAM.

	0	1	2	3	4	5	6	7	8	9	10
ROM	0	0		1	1		2	2			
RAM		0		0	1		1	2		2	
ALU			0			1			2		

This will enable us to launch a new calculation every third cycle.

Overlapping Operations

Is this the best we can do?

	0	1	2	3	4	5	6	7	8	9	10
ROM	0	0		1	1		2	2			
RAM		0		0	1		1	2		2	
ALU			0			1			2		

None of the resources are utilized 100% in this scheme. The ROM and the RAM are busy for 2 out of 3 cycles, whereas the ALU is used for 1 cycle out of 3.

A new sample is handled every 3rd cycle now. Can we get even better throughput?

Improved Scheduling

If we store the result in a local register for 1 cycle, and write it to the RAM only in the 4th cycle, we get

Modified Resource Reservation Table

	0	1	2	3	4	5	6
ROM	0	0					
RAM		0			0		
ALU			0				
BUF				0			

By delaying the write back, we can launch the next instruction earlier!

Improved Scheduling

If we store the result in a local register for 1 cycle, and write it to the RAM only in the 4th cycle, we get

Modified Resource Reservation Table

	0	1	2	3	4	5	6	7	8	9	10
ROM	0	0	1	1	2	2	3	3	4	4	5
RAM		0		1	0	2	1	3	2	4	3
ALU			0		1		2		3		4
BUF				0		1		2		3	

We can now launch a new operation every 2nd cycle.

Can this be further improved?

Improved Scheduling

If we store the result in a local register for 1 cycle, and write it to the RAM only in the 4th cycle, we get

Modified Resource Reservation Table

	0	1	2	3	4	5	6	7	8	9	10
ROM	0	0	1	1	2	2	3	3	4	4	5
RAM		0		1	0	2	1	3	2	4	3
ALU			0		1		2		3		4
BUF				0		1		2		3	

The RAM and the ROM are now occupied 100% of the time, So the design is optimal and the throughput cannot be improved any further.

How can we always find the optimum solution?

- Given a Resource Reservation Table, we would like to set up a systematic method which optimizes the throughput of the process using this table.
- For maximum throughput, we would like to launch new operations as frequently as possible.
- Thus, we want to minimize the time gap between launching two operations.
- This is called the **Sample Period** (SP).

What is the minimum possible value of SP?

The minimum Sampling Period

- Consider an operation in which the busiest resource is used for n cycles.
- If we launch a new operation every n cycles, this resource will be used 100% of the time.
- If we launch operations any more frequently than this, the resource will not have enough time to do its work.
- Therefore, the minimum possible Sample Period is equal to the maximum number of cycles for which the busiest of the resource(s) is in operation.

Sampling Period

- We want to minimize the sampling period.
- But the sampling period need not be a constant!
- SP can cycle through a finite set of values.
- We should therefore define an Average Sampling period ASP.
- The minimum value of this average Sampling Period (MASP) is given by the number of cycles for which the busiest resource is used in an operation.

Cyclic Sampling Period

Consider the following reservation table:

	0	1	2	3	4	5	6	7	8
RSC1	0		0						
RSC2		0		0					
RSC3			0						

Now the next operation can be launched in cycle 1 itself. However, the following one can only be launched after a gap of 3 cycles in cycle 4.

	0	1	2	3	4	5	6	7	8	ഗ	10
ROM	0	1	0	1	2	3	2	3	4	5	4
RAM		0	1	0	1	2	3	2	3	4	5
ALU			0	1			2	3			4

Again, the next operation can be launched in the next cycle (in cycle 5) and after that, with a gap of 3 cycles in cycle 8.

Average Sampling Period

	0	1	2	3	4	5	6	7	8	9	10
ROM	0	1	0	1	2	3	2	3	4	5	4
RAM		0	1	0	1	2	3	2	3	4	5
ALU			0	1			2	3			4

- New operations can be launched in clock periods 0,1,4,5,8,9
- Thus, the sample period cycles through the values {1,3}.
- The average of the cycle is called the Average Sampling Period (ASP).
- The Average Sampling period (ASP) is 2 here.
- The whole pattern repeats every 4 cycles. This is called the period (p).

Minimum Average Sampling Period

- The minimum value of the Average Sampling Period (MASP) is given by the maximum number of cycles for which a resource is busy during an operation.
- Therefore, given a reservation table, MASP is known.
- If the actual average Sampling Period is equal to MASP, the system is already optimum and nothing needs to be done.
- If the actual average Sampling Period is greater than MASP, we can attempt to modify the reservation table, such that MASP is achieved.

Pipeline Optimization

- 1 For a given reservation table, find the current average sample period (ASP).
- Find the largest no. of cycles for which a resource is busy.
- This is equal to the Minimum possible Average Sampling Time (MASP).
- If ASP = MASP, there is nothing to be done.
- Else, we should try to re-schedule events such that MASP is achieved.

Method to achieve MASP

- We first consider various cycles whose average is the desired MASP.
- For example, if MASP is 2, we can have cycles of {2}, {1,3} or {1,1,4} etc.
- The periods are 2, 4 and 6 in these three cases.

The Generator Set

- For each cycle, we construct a generator set G, which contains elements of the cycle, their sums taken two at a time, three at a time etc., modulo periodicity p.
- In our example, cycles are {2}, {1,3} and {1,1,4}
 For a cycle of {2}, p = 2, so G = {0}
 For a cycle of {1,3}, p = 4, so G = {0,1,3}
 For a cycle of {1,1,4}, p = 6, so G = {0,1,2,4,5}

The Source Set

- For each selected cycle, We now construct the Source set S. This contains integers 0 through p-1, from which all members of G except 0 have been removed.
- In our example, cycles are {2}, {1,3} and {1,1,4}

```
Cycle p G S {2}, 2 {0} {0,1} {1,3}, 4 {0,1,3} {0,2} {1,1,4}, 6 {0,1,2,4,5} {0,3}
```

Design Sets

■ For each selected cycle, We construct Design sets D_i which have the property that: if $a \in D$ and $b \in D$ then |a - b| also $\in D$.

In our example,

```
Cycle p S D sets {2}, 2 {0,1} {0}, {1} and {0,1} {1,3}, 4 {0,2} {0}, {2}, {0,2} {1,1,4}, 6 {0,3} {0}, {3}, {0,3}
```

- Notice that Design sets do not depend on the reservation table.
- The sets G, S and D_i are constructed from the repetition cycles whose average value is the MASP.
- Therefore we can make a library of these in advance for different combinations of MASP values and cycles - and use them when needed.

Row Vectors

- We construct a row vector for each resource in the reservation table.
- The row vector is a set which contains the clock period in which a specific resource is busy.

Resource Reservation Table

	0	1	2	3
ROM	0	0		
RAM		0		0
ALU			0	

In this example, the row vector for ROM is {0,1}, for RAM is {1,3} and for ALU is {2}.

Matching Rows with Design Sets

- Choose a particular cycle with the desired MASP. (Say MASP = 2, cycle = {2}).
- Pick the corresponding design sets. (In this example, D = {0}, {1}, {0,1}).
- For each resource, take its row vector and take a design set with the same cardinality.
- Align these according to defined rules.

Rules for Alignment of the First elements

- Compare R(1) and D(1).
 If these are equal, nothing needs to be done.
- Else,
 - If R(1) < D(1), add D(1)-R(1) to all members of R</p>
 - If R(1) > D(1), add R(1)-D(1) to all members of D
- This is equivalent to a rigid shift of R or D till their first members are aligned.

For Example, if $R = \{1,3,4,6\}$ and $D=\{0,2,5,6\}$

Alignment of other elements

If R(i) = D(i)] Nothing needs to be done.

If R(i) < D(i)
Add D(i) - R(i) delays to all members of R at position i and beyond.

The i'th elements are now aligned.

Alignment of other elements

If
$$D(i) < R(i)$$

(for Example, $p = 2$
 $R = \{1,3,4,6\}, D = \{1,2,5,6\}.$
Now $D2 < R2$)

- Add sufficient multiples of p to D(i) such that it is ≥ R(i).
- Add the same number to members of D beyond i.
- Now if R(i) < D(i), add D(i) -R(i) delays to all members of R at position i and beyond.

Alignment Example

Let
$$R = 1,3,4,6$$
 and $D = 0,1,4,5$; with periodicity $p = 2$

	0	1	2	3	4	5	6	7	8
R		X		Χ	Χ		Χ		
D	X	Χ			Χ	Χ			
		Χ	Х			Х	Х		

	0	1	2	3	4	5	6	7	8
R		X		Χ	Х		Χ		
D		X	X			Χ	Χ		
		X			Χ			Χ	Χ
R		X			Χ	Χ		Χ	

To align the first element, move all elements of D forward by 1 step.

Now D = 1,2,5,6.

For the second element, D is behind. Move D2 onwards fwd by p = 2, so D = 1,4,7,8. Move R2 onwards fwd by 1 So R = 1,4,5,7

Alignment Example

$$R = 1,4,5,7$$
 and $D = 1,4,7,8$. $R3 < D3$

	0	1	2	3	4	5	6	7	8	9	10	Mo
D		X			X			X	Х			for
R		X			X	X		Х				Sc
		X			X			X		Χ		an
	0	1	2	3	4	5	6	7	8	9	10	D ₂
R		X			X			X		Χ		Mo
D		X			Χ			Χ	Χ			to
D		X			Χ			Χ			Χ	No Mo
R		X			X			X			Χ	to

Vectors are now aligned at 1,4,7,10.

Move R3 and beyond forward by 2
So R = 1,4,7,9
and D = 1,4,7,8.

D4 < R4

Move D4 forward by 2 to 10.

Now R4 < D4.

Move R4 forward by 1 to 10

Example System

we shall illustrate the method using our original example, whose reservation table is:

Resource Reservation Table

	0	1	2	3	4	5	6
ROM	0	0					
RAM		0		0			
ALU			0				

Since the ROM and the RAM are used for 2 cycles each in every operation, MASP = 2.

However, as we had seen before, ASP = 3 in this case.

Therefore, the schedule needs improvement.

Example Application

Aligning the ROM

	0	1	2	3
ROM	0	0		
RAM		0		0
ALU			0	

MASP = 2, Choose the cycle: $\{2\}$ Then D = $\{0\}$, $\{1\}$, $\{0,1\}$ For ROM: R = $\{0,1\}$, D= $\{0,1\}$

So no alignment is required.

Adjusting the RAM Schedule

For RAM: $R = \{1,3\}, D=\{0,1\}$

Aligning the First Element:								
R(1) > D(1)								
Add (1-0)=1 to D elements	\Rightarrow D = {1,2}							
Aligning other elem	ents:							
R(2) > D(2)								
Add p (=2) to D(2)	\Rightarrow D = {1, 4}							
Now R(2) < D(2)								
Add (3-2)=1 to R(2)	\Rightarrow R = {1, 4}							
R and D are now aligned.								

ALU Schedule

For ALU:
$$R = \{2\}, D = \{0\}$$

Aligning first element: Add (2-0) = 2 to D \Rightarrow D = {2} R and D are now aligned.

As we have seen earlier, this is indeed the optimal schedule with ASP = 2.

Optimized Reservation Table

Modified Resource Reservation Table

	0	1	2	3	4	5	6	7	8	9	10
ROM	0	0	1	1	2	2	3	3	4	4	5
RAM		0		1	0	2	1	3	2	4	3
ALU			0		1		2		3		4

- The ALU is idle 50% of the time.
- Rather than buffering its result to delay the write back, we can use a slower ALU which takes 2 cycles to compute.

Using a Slower ALU

The reservation table with a slower ALU is:

	0	1	2	3	4	5	6	7	8	9	10
ROM	0	0	1	1	2	2	3	3	4	4	5
RAM		0		1	0	2	1	3	2	4	3
ALU			0	0	1	1	2	2	3	3	4

- One can trade off power for speed when designing the ALU.
- By using optimization techniques, we are able to reach a higher throughput, even with a slower ALU!

Alternative Choice of Cycle

	0	1	2	3
ROM	0	0		
RAM		0		0
ALU			0	

MASP = 2, Choose the cycle:
$$\{1,3\}$$

Then D = $\{0\}$, $\{2\}$, $\{0,2\}$

For ROM:
$$R = \{0,1\}, D=\{0,2\}$$

$$R(1) = D(1) = 0, R(2) < D(2)$$

Add D(2) - R(2) to all members of R at position 2 (and beyond) $\Rightarrow P(2) = 2$

$$\Rightarrow$$
 R(2) = 2.

R and D are now aligned at {0,2}

Alternative Cycle: RAM Schedule

For RAM:
$$R = \{1,3\}, D=\{0,2\}$$

Add (1-0)=1 to D elements:
$$\Rightarrow$$
 D = {1,3}

R and D are now aligned at {1,3}.

For ALU:
$$R = \{2\}, D = \{0\}$$

Aligning first element: Add (2-0) = 2 to D \Rightarrow D = {2} R and D are now aligned at {2}.

	0	1	2	3
ROM	0		0	
RAM		0		0
ALU			0	

Time Ordering

	0	1	2	3	4	5	6	7	8	9	10
ROM	0	1	0	1	2	3	2	3	4	5	4
RAM		0	1	0	1	2	3	2	3	4	5
ALU			0	1			2	3			4

- As expected, the schedule is optimum.
- The sampling rate alternates between 1 and 3.
- **However** this schedule does not preserve time order.
- It asks for computation and constant fetch in the same cycle.
- If we pre-fetch the constant for the next to next calculation in this cycle and store it for 4 cycles, it may still work.

Conclusions

- Pipeline can improve throughput of systems.
- A systematic procedure for optimizing pipeline throughput exists. It can create modified reservation tables which are optimal by delaying some operations.
- However, it does not guarantee that the time order of different operations will be preserved.
- Different cycles with the same Average Sampling Period may have to be tried before an acceptable time order is found.
- The procedure also allows us to identify non-critical components which can then be redesigned to be slower but at lower power consumption.

