Anmerkungen und Lösungen zu

Einführung in die Algebra Blatt 1

Jendrik Stelzner

Letzte Änderung: 20. November 2017

Aufgabe 4

Wir betrachten im Folgenden nur die Fälle $n \geq 3$, da die auf dem Übungszettel angegebene "geometrische" Definition von D_n in den Fällen n = 1, 2 nicht (ohne weiteres) funktoniert.

(a)

Es gibt verschiedene Möglichkeiten, die (Anzahl der) Elemente von D_n zu bestimmen:

- Es gibt n Rotation, jeweils um ganzzahlige Vielfache von $360^{\circ}/n$, bzw. um Vielfache von $2\pi/n$. Zudem gibt es noch n Spiegelungen:
 - \circ Ist n ungerade, so gehen die Spiegelungsachsen jeweils durch einen der Eckpunkte, sowie den Mittelpunkt der gegebenüberliegenden Kante.

- $\circ~$ Ist n gerade, so gibt es zwei Arten von Spiegelungen:
 - \ast Es gibt n/2 Spiegelungen, deren Spiegelungsachse jeweils durch den Mittelpunkt einer Kante sowie den Mittelpunkt der gegenüberliegenden Kante gehen.

* Es gibt n/2 Spiegelungen, deren Spiegelungsachse jeweils durch einen Eckpunkt sowie den gegenüberliegenden Eckpunkt gehen.

Damit ergeben sich insgesamt 2n Isometrien.

• Es sei x einer der Eckpunkte und x' ein zu x benachbarter Eckpunkt. Dann ist jede Isometrie des n-Ecks durch die Wirkung auf den benachbarten Eckpunkten x und x' bereits eindeutig bestimmt.

Der Eckpunkt x kann auf jeden Eckpunkte abgebildet werden, wofür es n Möglichkeiten gibt. Wird der Eckpunkt x auf einen Eckpunkt y abgebildet, so kann x' auf jeden der beiden zu y benachbarten Eckpunkte abgebildet werden.

Somit ergeben sich 2n Isometrien

Um zu zeigen, dass D_n nicht abelsch ist, nummerieren wir die Eckpunkte des n-Ecks mit den Elementent von \mathbb{Z}/n , so dass der Eckpunkt \overline{k} mit den Eckpunkten $\overline{k-1}$ und $\overline{k+1}$ benachbart sind.

Die Rotation um $360^{\circ}/n$ ist dann durch

$$r: \mathbb{Z}/n \to \mathbb{Z}/n, \quad \overline{k} \mapsto \overline{k+1}$$

gegeben. Die Spiegelung, deren Achse durch den Eckpunkt $\overline{0}$ geht, ist dann durch

$$r: \mathbb{Z}/n \to \mathbb{Z}/n, \quad \overline{k} \mapsto \overline{-k}$$

gegeben. Es gilt

$$(r \circ s)(\overline{0}) = r(s(\overline{0})) = r(\overline{0}) = \overline{1}$$

aber

$$(s \circ r)(\overline{0}) = s(r(\overline{0})) = s(\overline{1}) = \overline{-1},$$

wobei $\overline{1} \neq \overline{-1}$ da $n \geq 3$.

(b)

Das regelmäßige n-Eck lässt sich in die Ebene \mathbb{R}^2 einbetten, so dass der Nullpunkt (0,0) der Schwerpunkt des n-Ecks ist, und einer der Eckpunkte der n-Ecks auf der x-Achse liegt.

Dann lassen sich die Elemente von D_n als Rotationen und Spiegelungen der Ebene auffassen, und somit als Rotations- und Spiegelungsmatrizen. Für $\alpha \in \mathbb{R}$ ist die Rotation um den Winkel α durch die Matrix

$$R_{\alpha} := \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

gegeben, und die Spiegelung an der Gerade mit Winkel α (zur x-Achse)ist durch die Matrix

$$S_{\alpha} := \begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{pmatrix}$$

gegeben. Die Gruppe D_n ist dann durch die Matrizen

$$\hat{D}_n := \{ R_{k2\pi/n} \mid k = 0, \dots, n-1 \} \cup \{ S_{k\pi/n} \mid k = 0, \dots, n-1 \}$$

gegeben. Es ist $\hat{D}_n \leq \mathrm{O}(2)$ eine Untergruppe, weshalb wir den surjektiven Gruppenhomomorphismus $\det|_{\mathrm{O}(2)}\colon \mathrm{O}(2) \to \{1,-1\}$ zu einem Gruppenhomomorphismus $\det|_{\hat{D}_n}\colon \hat{D}_n \to \{1,-1\}$ einschränken können. Es gilt $\det R_\alpha = 1$ und $\det S_\alpha = -1$ für alle $\alpha \in \mathbb{R}$, weshalb auch $\det|_{\hat{D}_n}$ noch surjektiv ist. Damit erhalten wir einen surjektiven Gruppenhomomorphismus

$$\hat{g} \colon D_n \to \{1, -1\}, \quad x \mapsto \begin{cases} 1 & \text{falls } x \text{ eine Rotation ist,} \\ -1 & \text{falls } x \text{ eine Spiegelung ist.} \end{cases}$$

Da $\{1, -1\} \cong \mathbb{Z}/2$ gilt, lässt sich \hat{g} auch als ein Gruppenhomomorphismus

$$g: D_n \to \mathbb{Z}/2$$
, $x \mapsto \begin{cases} \overline{0} & \text{falls } x \text{ eine Rotation ist,} \\ \overline{1} & \text{falls } x \text{ eine Spiegelung ist,} \end{cases}$

auffassen.

(c)

Der Kern von g besteht genau aus der Untergruppe der Rotationen. Jedes Element $x \in D_n$ liefert einen Gruppenhomomorphismus

$$\tilde{s} \colon \mathbb{Z} \to D_n$$
, $n \mapsto x^n$.

Ist x eine Spiegelung, so gilt $x \neq 1$ aber $x^2 = 1$, und somit ker $\tilde{s} = 2\mathbb{Z}$. Somit induziert \tilde{s} einen wohldefinierten Gruppenhomomorphismus

$$s: \mathbb{Z}/2 \to D_n$$
, $\overline{n} \mapsto x^n$.

Dann gilt

$$(g\circ s)(\overline{1})=g(s(\overline{1}))=g(x^1)=g(x)=\overline{1}\,,$$

sowie $(g \circ s)(\overline{0}) = \overline{0}$ da $g \circ s$ ein Gruppenhomomorphismus ist. Somit gilt $g \circ s = \mathrm{id}_{\mathbb{Z}/2}$.

Bemerkungen

Bemerkung 1. Manche Autoren schreiben D_{2n} statt D_n , d.h. D_{2n} ist die Diedergruppe von Ordnung 2n.

Bemerkung 2. Ist $r \in D_n$ eine Rotation um den Winkel $2\pi/n$ und $s \in D_n$ eine Spiegelung, so gilt

- $\operatorname{ord}(r) = n$,
- $\operatorname{ord}(s) = 2$,

• $sr = r^{-1}s$.

Durch diese Bedingungen sind die Elemente und die Gruppenstruktur von D_n bereits eindeutig bestimmt:

- Es gilt $\langle r \rangle = \{1, r, \dots, r^{n-1}\}$ mit $|\langle r \rangle| = n$. Für $\langle r \rangle s = \{s, rs, \dots, r^{n-1}s\}$ gilt dann ebenfalls $|\langle r \rangle s| = n$, da die Abbildung $D_n \to D_n$, $x \mapsto xs$ bijektiv ist.
- Es gilt $s \notin \langle r \rangle$, da s keine Rotation ist. Deshalb sind $\langle r \rangle$ und $\langle r \rangle s$ disjunkt.
- Da $|D_n| = 2n = n + n = |\langle r \rangle| + |\langle r \rangle s|$ gilt, ist D_n bereits die disjunkte Vereinigung von $\langle r \rangle$ und $\langle r \rangle s$. Es lässt sich also jedes Element $x \in D_n$ als $x = r^i s^j$ mit eindeutigen $0 \le i \le n 1$ und $0 \le j \le 1$ darstellen.

Das zeigt, dass die Elemente von D_n eindeutig bestimmt sind.

- Aus $sr = r^{-1}s$ folgt, dass $srs^{-1} = r$. Da die Abbildung $c: G \to G$, $x \mapsto sxs^{-1}$ ein Gruppenhomomorphismus ist, folgt ferner, dass bereits $sr^is^{-1} = r^{-i}$ für alle $i \in \mathbb{Z}$ gilt. Für alle $i \in \mathbb{Z}$ und $j \in \mathbb{Z}$ gilt deshalb $s^jr^i = r^{(-1)^ji}s^j$ (da $s^2 = 1$ gilt, genügt es, dass dies für j = 0, 1 gilt).
- Für alle $i, j, k, l \in \mathbb{Z}$ gilt somit

$$r^i s^j r^k s^l = r^i r^{(-1)^j k} s^j s^l = r^{i+(-1)^j} s^{j+l} = r^{(i+(-1)^j) \bmod 2} s^{(j+l) \bmod 2}$$

Also ist auch die Gruppenstruktur auf D_n bereits bestimmt.

Inbesondere ließe sich die Diedergruppe D_n auch auf rein algebraische Weise als die Menge $(\mathbb{Z}/n) \times (\mathbb{Z}/2)$ zusammen mit der Verknüpfung

$$(\bar{i}, \bar{j}) \cdot (\bar{k}, \bar{l}) := (\bar{i} + (-1)^j \bar{k}, \bar{j} + \bar{l})$$
 (1)

definieren.

Bemerkung 3. Auf diese Weise lassen sich auch die Gruppen D_1 und D_2 definieren:

- Die Gruppe D_1 lässt sich als die Menge $(\mathbb{Z}/1) \times (\mathbb{Z}/2)$ zusammen mit der Verknüpfung (1) definieren. Dann ist die Bijektion $(\mathbb{Z}/1) \times (\mathbb{Z}/2) \to \mathbb{Z}/2$, $(x,y) \mapsto y$ ein Gruppenhomomorphismus, und somit $D_1 \cong \mathbb{Z}/2$.
- Die Gruppe D_1 lässt sich als die Menge $(\mathbb{Z}/2) \times (\mathbb{Z}/2)$ zusammen mit der Verknüpfung (1) definieren. Für die Gruppe $P := (\mathbb{Z}/2) \times (\mathbb{Z}/2)$ mit der "üblichen" Produkt-Gruppenstruktur ist dann die Abbildung

$$P \to D_2$$
, $(x,y) \mapsto (x+y,y)$

ein Gruppenhomomorphismus, und somit $D_2 \cong \mathbb{Z}/2 \times \mathbb{Z}/2$ als Gruppen.

Ähnlich wie die Diedergruppen D_n mit $n \geq 3$ lassen sich auch die Diedergruppen D_1 und D_2 geometrisch definieren: Das regelmäßige 1-Eck und 2-Eck lassen sich wie folgt in \mathbb{R}^2 einbetten:

Die Diedergruppe D_n für n=1,2 besteht dann aus all jeden Isometrien der umgebenen Ebene \mathbb{R}^2 , welche diese eingebettete Version des n-Ecks unverändert lassen:

- Die Diedergruppe D_1 besteht also aus all jenen Isometrien der Ebene, welche den Punkt (1,0) unverändert lassen. Hierfür kommen nur die Identität und die Spiegelung an der x-Achse in Frage. Somit gilt $D_1 \cong \mathbb{Z}/2$.
- Die Diedergruppe D_2 besteht aus all jenen Isometrien der Ebene, welche das eingezeichnete Interval $[-1,1] \times \{0\}$ unverändert lassen. Dies sind die Identität, die Spiegelungen an den beiden Achsen, sowie die Komposition dieser beiden Spiegelungen (welche die Spiegelung am Koordinatenursprung ist). Da die Spiegelungen an den Achsen miteinander kommutieren, ergibt sich, dass $D_2 \cong \mathbb{Z}/2 \times \mathbb{Z}/2$.