

Kuliah 14

Outline

- Pengenalan Pola
- Sistem Pengenalan Pola

- Pola (Objek)
 - Entitas yang terdefinisi dan dapat diidentifikasi melalui ciri-cirinya (*features*)
- Ciri-ciri tsb membedakan suatu pola dengan pola yang lain

- Ciri yang baik adalah ciri yang memiliki daya pembeda yang tinggi
- Ciri pada suatu pola diperoleh dari hasil pengukuran terhadap objek

Pola	Ciri	
huruf	tinggi, tebal, titik sudut, lengkungan garis, dll	
suara	amplitudo, frekuensi, nada, intonasi, warna, dll	
tanda tangan	panjang, kerumitan, tekanan, dll	
sidik jari	lengkungan, jumlah garis, dll	

- Pola yg terdapat di dalam citra digital, ciri-cirinya berasal dari informasi:
 - Spasial : intensitas *pixel*, histogram, ketetanggaan, ...
 - Tepi : arah, kekuatan, ...
 - Kontur : garis, elips, lingkaran
 - Wilayah/bentuk : keliling, luas, ...
 - Hasil transformasi Fourier: frekuensi, ...

Kelas Pola

- Kelas Pola (Kategori) :
 - Himpunan pola yang memiliki atribut tertentu
- Contoh :
 - Pada pola huruf, terdapat beberapa jenis huruf, yakni huruf a, b, c, d, dst.
 - Huruf a, b, c, d merupakan kelas pola dari pola huruf.

Pengenalan Pola vs Persepsi Manusia

- Manusia telah dianugerahi kemampuan untuk menerima rangsangan (indera) dari lingkungan dan memberikan aksi terhadap apa yang diamati
 - Mengenali wajah
 - Memahami kata yang diucapkan
 - Membaca tulisan tangan
 - Membedakan makanan segar dari baunya

Pengenalan Pola vs Persepsi Manusia

- Pengenalan pola bertujuan :
 - menentukan kelompok atau kategori pola berdasarkan ciri-ciri yang dimiliki oleh pola tersebut
- Tantangan:
 - Menjadikan mesin (komputer) memiliki kemampuan yang mirip dengan masnusia

Contoh Aplikasi Pengenalan Pola

Problem Domain	Application	Input Pattern	Pattern Classes
Document image analysis	Optical character recognition	Document image	Characters, words
Document classification	Internet search	Text document	Semantic categories
Document classification	Junk mail filtering	Email	Junk/non-junk
Multimedia database retrieval	Internet search	Video clip	Video genres
Speech recognition	Telephone directory assis- tance	Speech waveform	Spoken words
Natural language processing	Information extraction	Sentences	Parts of speech
Biometric recognition	Personal identification	Face, iris, fingerprint	Authorized users for access
			control
Medical	Computer aided diagnosis	Microscopic image	Cancerous/healthy cell
Military	Automatic target recognition	Optical or infrared image	Target type
Industrial automation	Printed circuit board inspec-	Intensity or range image	Defective/non-defective prod-
	tion		uct
Industrial automation	Fruit sorting	Images taken on a conveyor belt	Grade of quality
Remote sensing	Forecasting crop yield	Multispectral image	Land use categories
Bioinformatics	Sequence analysis	DNA sequence	Known types of genes
Data mining	Searching for meaningful pat-	Points in multidimensional	
	terns	space	clusters

Pendekatan Pengenalan Pola

• Statistical:

 Berdasarkan model statistik dari pola dan kelas pola yang diberikan

• Structural :

 Kelas pola direpresentasikan oleh struktur formal seperti grammer, string, automata, dll.

Membandingkan Grid per Grid

Membandingkan Grid per Grid

- Ciri-ciri yang dimiliki oleh suatu pola ditentukan distribusi statistiknya.
- Pola yang berbeda memiliki distribusi yang berbeda pula.
- Dengan menggunakan teori keputusan di dalam statistik, kita menggunakan distribusi ciri untuk mengklasifikasikan pola.

- Misalkan ada N pola yang dikenali, yaitu $w_1, w_2, w_3, ..., w_N$ dan fungsi peluang atau kerapatan dari ciri-ciri pada pola diketahui.
- Jika x merupakan hasil pengukuran ciriciri, maka $p(x|w_i)$, i=1,2,...,N dapat dihitung.

 Sebagai contoh, misalkan diketahui fungsi kerapatan dari diameter buah jeruk dan apel

Gambar 15.1. Grafik fungsi kerapatan dari ciri diameter jeruk dan apel.

• Jika sebuah objek diukur dan diperoleh diameternya adalah a cm, maka kita mengklasifikasikan objek tersebut sebagai "jeruk", karena p(a|jeruk) > p(a|apel)

Gambar 15.1. Grafik fungsi kerapatan dari ciri diameter jeruk dan apel.

- Dua Tahap
 - Learning (training process)
 - beberapa contoh citra dipelajari untuk menentukan ciri yang akan digunakan dalam proses pengenalan serta prosedur klasifikasinya.
 - Detection (testing process)
 - citra diambil cirinya kemudian ditentukan kelas kelompoknya
- Waktu Learning lebih besar
- Sulit untuk belajar, tetapi sekali terpelajar sistem akan menjadi "natural"
- Dapat menggunakan metode AI:
 - Neural Network
 - Machine Learning

Konsep Dasar

Feature vector x ∈ X

- Vector dari hasil pengamatan (pengukuran).
- x adalah sebuah titik dalam ruang vektor X
- Tidak dapat diukur secara langsung.
- Pola dengan hidden state yang sama terdapat dalam kelas yang sama

<u>Task</u>

 Mendesain classifer (decision rule) q : X → Y yang menentukan hidden state berdasarkan pengamatan

Contoh

Linier classifier:

$$q(x) = \begin{cases} H & \text{if } (w.x) + b \ge 0 \\ J & \text{if } (w.x) + b < 0 \end{cases}$$

Learning

Bagaimana mesin dapat belajar aturan dari data.

– Supervised learning :

 User menyediakan label kategori untuk masing-masing pola dalam data training.

– Unsupervised learning :

• Sistem membentuk cluster atau pengelompokan secara alami dari pola yang dimasukan.

Learning

Classification

Kategori/label kelasnya diketahui

Clustering

Kategori/label
kelompoknya tidak
diketahui dan
biasanya dinamai
dengan kelas
pertama, kedua dst.

Classification (Supervised Classification)

Clustering (Unsupervised Classification)

Akuisisi Citra

- Proses untuk mendapatkan citra digital
- Alat :
 - kamera digital, scanner, mikroskop digital, webcam, dll.
- Yang perlu diperhatikan :
 - Resolusi, jarak dan sudut pengambilan, pencahayaan, perbesaran, format citra hasil akuisisi

Pre-processing

- Perbaikan kualitas citra (*image* enhancement, *image* restoration)
- Metode perbaikan kualitas citra di antaranya adalah:
 - contrast stretching,
 - filtering (median filter, low pass filter, high pass filter, dsb).

Segmentasi

- Proses pemisahan objek yang akan diamati (foreground) dengan objek yang tidak akan diamati (background) dalam suatu gambar
- Berupa citra biner :
 - foreground (bernilai 1), background (bernilai 0)
- Metode segmentasi citra di antaranya :
 - Thresholding
 - Multi-thresholding
 - Deteksi tepi
 - Active countour
 - K-means clustering
 - Fuzzy k-means clustering
 - dll

Ekstraksi Ciri

- tahapan mengekstrak ciri dari pola/objek di dalam citra yang ingin dikenali/dibedakan dengan pola/objek lainnya.
- Ciri-ciri umum yang diekstrak :
 - Ekstraksi ciri bentuk :
 - eccentricity, convex hull, hough transform, dll.
 - Ekstraksi ciri ukuran dan geometri:
 - · luas, keliling, panjang, lebar, diameter, dll.
 - Ekstraksi ciri tekstur :
 - Local Binary Pattern, Gray Level Co-occurrence Matrix, Gabor Filter, dll.
 - Ekstraksi ciri warna :
 - Color Histogram, Fuzzy color histogram, color moment, dll

Klasifikasi

- Menggunakan fitur untuk mendapatkan model pembelajaran untuk menetapkan pola pada suatu kelas/kategori tertentu
- Metode klasifikasi yang biasa digunakan:
 - Neural Networks (Jaringan saraf tiruan)
 - Decision tree (pohon keputusan)
 - Support Vector Machine (SVM)
 - K-Nearest Neighbour (KNN)
 - Naive Bayes

Evaluasi

- Ukuran tingkat keberhasilan klasifikasi/model klasifikasi yang dibentuk terhadap citra uji
- Salah satu ukuran evaluasi pada proses klasifikasi, yakni akurasi.
- Kita dapat menggunakan Confusion Matrix untuk menghitung akurasi.

Confusion matrix

		predicted condition	
	total population	prediction positive	prediction negative
true	condition positive	True Positive (TP)	False Negative (FN) (type II error)
condition	condition negative	False Positive (FP) (Type I error)	True Negative (TN)

 $= \frac{\frac{\Sigma \text{ TP} + \Sigma \text{ TN}}{\Sigma \text{ total population}}$

- Untuk dapat memvalidasi keakuratan sebuah model perlu dilakukan tahapan cross validation.
- Salah satu metode cross-validation yang populer: K-Fold Cross Validation
- Dalam teknik ini dataset dibagi menjadi sejumlah K-buah partisi secara acak.

 Kemudian dilakukan sejumlah K-kali eksperimen, dimana masing-masing eksperimen menggunakan data partisi ke-K sebagai data testing dan memanfaatkan sisa partisi lainnya sebagai data training.

Contoh: 5 fold cross validation

Dataset

K1 K2 K3 K4 K5	K1	К2	К3	K4	K5
----------------	----	----	----	----	----

Data Eksperimen

Eksperimen ke	Data Training	Data Testing
1	K2,K3,K4,K5	K1
2	K1,K3,K4,K5	K2
3	K1,K2,K4,K5	К3
4	K1,K2,K3,K5	K4
5	K1,K2,K3,K4	K5

