luty 2016 r.

Nazwisko

Imie

Na podstawie obserwacji za okres 1994 – 2014 oszacowano liniowy model trendu produkcji samochodów osobowych (cars) w Chinach (mln pojazdów):

```
Model 1: Estymacja KMNK, wykorzystane obserwacje 1994-2014 (N = 21)
Zmienna zależna (Y): cars
współczynnik błąd standardowy t-Studenta wartość p
```

const time	-2,92808 0,657090	0,689 0,054		-4,249 11,97	0,0004 2,69e-1	***		
Średn.aryt	.zm.zależnej	4,299905	Odch.:	stand.zm.zależ	nej 4,33	88956		
Suma kwadratów reszt		44,07047	44,07047 Błąd standardowy reszt					
Wsp. determ	m. R-kwadrat	0 , 882957	82957 Skorygowany R-kwadrat					
F(1, 19)		143,3329	Warto	ść p dla testu	F 2,69	e-10		
Logarytm w	iarygodności	-37 , 58102	Kryt.	inform. Akaik	e'a 79,1	.6203		
Kryt. bayes	s. Schwarza	81,25108	Kryt.	Hannana-Quinn	a 79,6	51541		
Autokorel.:	reszt - rho1	0,824708	Stat.	Durbina-Watso	na 0,24	5488		

Wykorzystując zamieszczone wydruki programu Gretl, proszę odpowiedzieć na poniżej zamieszczone pytania lub zakreślić właściwą odpowiedź/odpowiedzi.

- 1. Parametr strukturalny występujący przy zmiennej time został oszacowany na poziomie
 - A. 65,7%
 - B. 657 tys pojazdów
 - C. 6,57 mln pojazdów
- 2. Przeciętny roczny wzrost liczby produkowanych samochodów w badanym okresie wyniósł:
 - A. 5,48%,
- B. 6,57%
- C. 0,657 mln pojazdów.
- 3. Zakładając poziom istotności $\alpha = 0.01$, uznajemy, że:
 - A. ujemna wartość statystyki *t*-studenta (-4,249) świadczy o tym że zmienna const jest statystycznie nieistotna,
 - B. zmienna time jest statystycznie istotna,
 - C. oba parametry modelu są statystycznie nieistotne.
- **4.** Liczba wyprodukowanych samochodów w badanym okresie i wartości teoretyczne otrzymane na podstawie modelu różnią się średnio o:
 - A. (1-0.882957) * 100% = 11.7%
 - B. około 1523,0 tysiące pojazdów
 - C. około 152,3 tysiące pojazdów
- **5** Do oceny wyboru liniowej funkcji trendu zastosowano test White'a dla nieliniowości oparty na mnożnikach Lagrange'a (kwadraty):

Pomocnicze równanie regresji dla testu nieliniowści (kwadraty zmiennych) Estymacja KMNK, wykorzystane obserwacje 1994-2014 (N = 21) Zmienna zależna (Y): uhat

```
time -0,905239 0,0879712 -10,29 5,74e-09 *** sq_time 0,0411472 0,00388352 10,60 3,64e-09 ***

Wsp. determ. R-kwadrat = 0,861816

Statystyka testu: TR^2 = 18,0981, z wartością p = P(Chi-kwadrat(1) > 18,0981) = 0,000021

Liniowa funkcja trendu jest:
```

- A. poprawnie dobrana, gdyż wartość p jest większa od 0,000021,
- B. niepoprawnie dobrana, gdyż wartość p jest równa 0,000021,
- C. niepoprawnie dobrana, gdyż wartość p jest mniejsza od 0,000021.
- 6. Alternatywna hipoteza w teście postaci funkcyjnej (pytanie 7), zakłada
 - A. postać liniowa,
 - B. postać nieliniową,
 - C. wielomian stopnia drugiego.
- 7. Wiedząc, że statystyka testu Durbina-Watsona dla 5% poziomu istotności (n = 21, k = 1) wynosi: dL = 1,2212 oraz dU = 1,4200, zweryfikuj występowanie autokorelacji składnika DW:
 - A. występuje dodatnia autokorelacji składnika losowego
 - B. nie występuje autokorelacja składnika losowego
 - C. nie można podjąć decyzji o występowaniu autokorelacji składnika losowego.
- 8. Test normalności rozkładu reszt (Doornika-Hansena)

Rozkład częstości dla uhat4, obserwacje 1-21 liczba przedziałów = 7, średnia = 8,45884e-16, odch.std. = 1,52299

Przedziały	średnia	liczba	częstość	skumlowana
< -1,6085	-1 , 9839	5	23,81%	23,81% ******
-1,60850,85768	-1, 2331	3	14,29%	38,10% ****
-0,857680,10686	-0,48227	3	14,29%	52,38% ****
-0,10686 - 0,64395	0,26854	1	4,76%	57 , 14% *
0,64395 - 1,3948	1,0194	5	23,81%	80,95% ******
1,3948 - 2,1456	1,7702	3	14,29%	95,24% ****
>= 2,1456	2,5210	1	4,76%	100,00% *

Hipoteza zerowa: dystrybuanta empiryczna posiada rozkład normalny. Test Doornika-Hansena (1994) – transformowana skośność i kurtoza.: Chi-kwadrat(2) = 3,975 z wartością p 0,13706

- A. wskazuje na brak normalności rozkładu składnika losowego (Chi-kwadrat<p),
- B. wskazuje na normalność rozkładu składnika losowego (p=0,13706),
- C. hipotezę o normalności rozkładu składnika losowego należy odrzucić (p>0,05).
- 9. Model charakteryzuje się heteroskedastycznościa składnika losowego

Test White'a na heteroskedastyczność reszt (zmienność wariancji resztowej) Estymacja KMNK, wykorzystane obserwacje 1994-2014 (N = 21) Zmienna zależna (Y): uhat^2

	współczynnik	błąd standardowy	t-Studenta	wartość p						
const	3 , 87993	1,16013	3 , 344	0,0036	***					
time	-0 , 388955	0,242899	-1 , 601	0,1267						
sq_time	0,0158382	0,0107229	1,477	0,1569						
Wsp. determ. R -kwadrat = 0,129243										

```
Statystyka testu: TR^2 = 2,714106, z wartością p = P(Chi-kwadrat(2) > 2,714106) = 0,257418
```

- A. tak, gdyż odrzucamy hipotezę zerową dla $\alpha = 0.05$,
- B. nie, ponieważ wariancja składnika losowego jest stała,
- C. tak, ponieważ wariancja składnika losowego jest stała,
- **10**. Udział odchylenia standardowego reszt w średniej wartości produkcji samochodów w badanym okresie wynosi:

A. 35,4%

B. 3,54%

C. 135,4%

- 11. Współczynnik zmienności losowej informuje, jaką część (w %) przeciętnego poziomu zmiennej objaśnianej stanowi:
 - A. wariancja resztowa,
 - B. WSK wyjaśniona suma kwadratów,
 - C. bład standardowy reszt.
- **12**. Parametry strukturalne są elastycznościami w modelu:

A. liniowym,

B. Potęgowym,

C. Wykładniczym.

Dla danych dotyczących produkcji samochodów osobowych w Chinach zastosowano model trendu wykładniczego otrzymując następujące wyniki (1_cars=log(cars))

```
Model 2: Estymacja KMNK, wykorzystane obserwacje 1994-2014 (N = 21) Zmienna zależna (Y): l cars
```

	współczynni	k błąd sta	andardowy	t-Studenta	wartość p		
const time	-1,66479 0,218217	0,110 0,008	0645 381175	-15,05 24,76	5,21e-12 6,34e-16	***	
Średn.aryt	.zm.zależnej	0,735602	Odch.sta	nej 1,3748	317		
Suma kwadra	atów reszt	1,135975	5 Błąd standardowy reszt			516	
Wsp. deter	m. R-kwadrat	0,969950	Skorygowany R-kwadrat 0,968368				
Autokorel.	reszt - rho1	0 , 777797	Stat. Du	rbina-Watson	na 0,5163	380	

- 13. Przeciętny roczny wzrost liczby produkowanych samochodów w Chinach wyniósł:
 - A. 0,218 mln pojazdów
 - **B.** $e^{0.218217} 1 = 24\%$
 - C. 0.218217 * 100% = 21.8%
- 14. Zweryfikuj występowanie autokorelacji składnika losowego za pomocą testu DW:
 - A. występuje dodatnia autokorelacji składnika losowego
 - B. nie występuje autokorelacja składnika losowego
 - C. nie można podjąć decyzji o występowaniu autokorelacji składnika losowego.
- **15**. W oparciu o model trendu liniowego wyznaczono prognozę dla roku 2015 otrzymując: Dla 95% przedziału ufności, t(19, 0,025) = 2,093

```
cars prognoza błąd ex ante 95% przedział ufności 2014 12,500 10,871 2015 11,528 1,6717 8,029 - 15,027
```

Względny błąd prognozy ex-ante wynosi:

A. <u>14,5%</u> B. nie może być obliczony C. 1,6717%

Proszę określić, czy zamieszczone poniżej zdania są prawdziwe, czy też falszywe

- **16**. Około 11,7% zmienności produkcji samochodów jest objaśniane przez model trendu liniowego.**F**
- 17. Model trendu wykładniczego produkcji samochodów w Chinach ma 20 stopni swobody F
- 18. Wraz ze spadkiem odchylenia standardowego reszt rośnie "dobroć" dopasowania modelu. P
- 19. Wraz ze wzrostem współczynnika determinacji rośnie "dobroć" modelu. P
- 20. Resztą nazywamy różnicę między wartością teoretyczną a empiryczną zmiennej objaśnianej.P
- 21. W liniowym modelu ze stałą, oszacowanym MNK, suma reszt jest różna od zera. F
- 22. Współczynnik zbieżności i wariancja resztowa mają taki sam licznik. P
- 23. Zmienna objaśniana jest zmienną nielosową. F
- 24. Średni błąd szacunku parametru jest zawsze dodatni. P
- 25. Do badania istotności parametru strukturalnego stosujemy test Godfreya. F
- 26. Statystyka testu autokorelacji Durbina-Watsona przyjmuje wartości z przedziału 2–4.F
- 27. Estymator MNK jest zmienną losową. P
- 28. Zmienne objaśniające w klasycznym modelu regresji są nielosowe. P
- **29**. W modelu liniowym ze stałą, oszacowanym MNK współczynnik determinacji jest dopełnieniem współczynnika zbieżności do 1. P
- **30**. Do porównania dokładności prognoz uzyskanych w modelu liniowym oraz w modelu wykładniczym nie należy stosować miar względnych (np MAPE). F

Proszę zaznaczyć odpowiedzi w poniżej umieszczonej tabeli, Dla pytań 1 – 15 zakreślając "X" wybrany wariant. Test jednokrotnego wyboru W przypadku pytań 16 – 30 proszę zaznaczyć P- prawda, lub F - falsz

Nr	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A															
В															
C															
Nr	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
P															
F															