The state of the s	29.2.24	
Date	27 / 14	
PL-011-0		

Expt. No. 4

Page No.

PRACTICAL - 4

AIM: To find the Binomial Distribution of given n and p is not given.

SOFTWARE USED: Scilab

SOURCE CODE :

disp("enter no of observation") n=input('\') disp("enter the viaue of x") for i=1:n X(1,i)=input(")disp("enter no of frequency") for j=1:n F(1,j)=input('')disp("Mean of the distribution is") MEA=sum(F.*X)/sum(F)disp(MEA) p=MEA/n EF=sum(F)*binomial(p,n-1) disp("Given frequencies") disp(F) disp("Expected frequencies") disp(EF) plot2d3(0:n-1, F) plot2d(0:n-1,EF)

Teacher's Signature

THEORY :

Here's an example to show how to fit a Binomial Distribution when p is not given,

			o loc given,		
×	8	f.x	Here, n=3		
0	36	0	7		
1	40	40			
2	22	44			
3	2	6			
Σβ=100 Σβ. x = 90					
Mear	1, 21	$\frac{g(x)}{\epsilon g} = \frac{90}{100}$	= 0.9		
P& 2 -> np = mean					

$$1 & 2 \rightarrow np = mean$$

 $3.(p) = 0.9 \Rightarrow p = 0.3$
 $2 = 1-p = 0.7$

Now, $P(X=x) = {}^{n}C_{n}P^{n}Q^{n-n}$ $P(X=0) = {}^{3}C_{o}(0.3)^{o}(0.7)^{3} = 0.342$ $P(X=1) = {}^{3}C_{o}(0.3)^{o}(0.7)^{2} = 0.441$ $P(X=2) = {}^{3}C_{o}(0.3)^{o}(0.7)^{o} = 0.189$ $P(X=3) = {}^{3}C_{o}(0.3)^{o}(0.7)^{o} = 0.027$

71	P(91)	N.P(m)	E; (Expected Freq.)	Oi (Obs. Fneg.)
0	0.342	34.2	34	36
1	0.441	44.1	44	40
2	0.189	18.9	19	22
3	0.027	2.7	3	2


```
Date 29-2-24
                                                                       Expt. No. 5.
 THEORY :
                                                                                                PRACTICAL - 5
     → To fit a Binomial Distribution when p is given,
                                                                           AIM: To fit a Binomial distribution on a set of observation when P is given.
       P = 0.4140
       2 = 1 - p = 0.586
                                                                           SOFTWARE USED: Scilab
                                                                           SOURCE CODE :
             15
             22
             6
Now_{\eta} P(X=91) = {}^{0}C_{91}P^{9}q^{n-71}
                                                                         disp("no of observations", n)
                                                                         x=input("enter values of x")
   \rightarrow P(0) = 4C_0(0.414)^{\circ}(0.586)^4 = 0.1179
                                                                        disp(x)
  \rightarrow P(1) = \frac{4}{5} C<sub>1</sub> (0.414)<sup>3</sup> (0.586)<sup>3</sup> = 0.332
  \rightarrow P(2) = {}^{4}C_{2}(0.414)^{2}(0.586)^{2} = 9.3531
                                                                        y=input("enter observed frequencies")
  \rightarrow P(3) = {}^{4}C_{3}(0.414)^{3}(0.586)' = 0.0689
                                                                        disp(y)
                                                                        p=0.4140625
  P(4) = 404 (0.414)4 (0.586)° = 3.4641
                                                                        EF=sum(y) binomial(p,n)
                                                                        disp ("expected frequencies", EF)
                                                                        disp("sum of expected frequencies", sum(EF))
```

97	P(91)	N. P(91)	E; (Expected Freq.)	O; (Observed Freq.)
0	0.1179	7.5439	7	15
1	0.3332	21.3235	21	22
2	0.3531	22.6039	22	6
3	0.0689	10.6435	10	12
	3.4641	1.8812	1	9

	Date
Expt. No.	Page No
OUTPUT :	
1	
"no of observations"	
4.	
enter values of x[0,1,2,3,4]	
0. 1. 2. 3. 4.	
enter observed frequencies[15,22,6,	12,9]
15 22 5 12 6	
15. 22. 6. 12. 9.	
"expected frequencies"	
7.5437129 21.323562 22.60297	5 10.648513 1.8812373
"sum of expected frequencies"	
Sum of expected frequencies	
64.	
X	_X
11/05/27	
Latt.	Teacher's Signature

Expt. No. 6.

Page No.

PRACTICAL -6

AIM: Fitting af possion distribution after given value of A

SOFTWARE USED: Scilab

SOURCE CODE :

```
1 clc
2 n=input ("Enter-Value of n:");
3 | l=input ("Enter Value of 1:");
4 X=[0,1,2,3,4];
5 for idx = 1:5
6     frequency(idx) = input("enter frequency:");
7 end
8 N = 200;
9 disp("Expected Frequencies are:");
10 for idx = 1:5
ans(idx)=(exp(-1)*(1**X(idx)))/factorial(X(idx));
ans(idx) = N*ans(idx);
13 end
14 disp(ans);
15 sef = Sum(ans);
16 disp("sum of expected frequencies are:");
 17 disp(sef);
18 sof = sum(frequency);
 19 disp("sum of observed frequencies are:");
 20 disp(sof);
```

Data		
Date	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10000

Expt. No.

Page No.

OUTPUT :

Enter Value of n:4

Enter Value of 1: 0.5

enter frequency: 122

enter frequency:60

enter frequency:15

enter frequency:2

enter frequency:1

"Expected Frequencies are:"

73.575888

73.575888

36.787944

12.262648

3.0656620

"sum of expected frequencies are:"

199.26803

"sum of observed frequencies are:"

200.

Page No. __

PRACTICAL - 7

AM: Fitting of Possion Distribution after computing mean.

SOFTWARE USED: Scilab

SOURCE CODE :

```
1 clc
 2 n=input ("Enter Value of n:");
 3 disp("values of x:");
 4 for i=1:5
 5 x(i) = input("");
6 end
 7 disp("values of f");
 8 for i=1:5
 9 f(i)=input("");
 10 end
 11 for i=1:5
 12 fx(i)=f(i)*x(i);
 13 end
 14 sf = 0;
 15 sfx = 0;
 16 for i=1:5
 19 end
 20 mean - sfx/sf;
 21 I = mean/n
 22 N = 200;
 23 disp ("Expected Frequencies are:");
 24 for idx = 1:5
 25 ans(idx)=(exp(-1)*(1**X(idx)))/factorial(X(idx));
    ans(idx) = N*ans(idx);
 26
 27 end
 28 disp (ans);
 29 sef = sum(ans);
 30 disp ("sum of expected frequencies are:");
 31 disp(sef);
 32 sof = sum(frequency);
 32 dier ("sum of observed frequencies are:");
 34 (disp(sof);
```

Expt. No.		Page No
21172 7		
OUTPUT :		
	Enter Value of n:4	
	"values of x."	
	->1	
	→2	
	->3	
	->4	
	"Values of f"	
	→ 122 -> 60	
	-> 15	
	->2	
	->1	
	"Expected Frequencies are:"	
	73.575888 73.575888 36.787944	
	12.262648 3.0656620	
	"sum of expected frequencies are:"	
	199.26803	
	"sum of observed frequencies are:"	
	200.	
	×	X
		Teacher's Signature