Discussion 1

ER Diagrams & Project 1 Intro + Associated Tools

EECS 484

Why is this course useful?

- We're surrounded by databases.
 - Examples: mobile apps
- In the first half of this course, we will learn how to use databases.
 - How to model data, how to store and retrieve info, ...
- In the second half, we will focus on the internal design of databases, which helps us use and design them efficiently.

Course Overview

- Intro to database systems
- Entity Relationship (ER) diagrams and the relational model
- Structured Query Language (SQL)
 - Will be spending a lot of time working with (coding assignments)
- Relational Algebra
 - Query language for expressing plans in a mathematical form
- Normalization
 - o "Good" way to design relations
- Indexing
 - B+ trees and hash tables
- Query optimization
- Transactions
- Recovery

Logistics

- 5 Discussion sections (4 in-person and 1 virtual) a week on Friday
 - Will cover material from this week's lectures
 - Attendance strongly encouraged
 - Some topics not covered in lecture
 - The week a homework is due, some homework problems will be reviewed in more detail in discussion only
 - This will not be included in the recording
 - o If you have to miss your section one week, attend another.

Homework 1

- Released on Aug 29th
- Due Sep 13th, 11:45 PM ET
- Individual, No Group!
- Homeworks are good prep for the exam

Project 1

- Released on Aug 29th
- Due Sep 24th, 11:45 PM ET
- o Groups of 2. Make sure to add each other as a group before submitting to the Autograder
- o Part 1 is due on Gradescope
- Parts 2-4 are due on the <u>Autograder</u>

Database Basics

DBMS

- DBMS = Database Management System
 - Oracle SQL, PostgreSQL, MySQL, Transact SQL (Microsoft SQL), etc.
 - Provides declarative system to store data
 - We tell it what we want
 - As opposed to imperative (we don't care how the DBMS stores the data in files)
- Relational database systems
 - Collection of relations (think tables)
 - Defined by a schema
 - Relation name and columns (data type and names)
 - Any other attributes

Abstraction

- Different types of schemas
 - Physical schema how data is stored in memory with files
 - Example Files for each relation
 - Conceptual schema what is the logical structure in terms of the data model
 - Example Student relation with columns:
 - umid (number)
 - grade percentage (number)
 - name (string)
 - External schema how is the data represented to a viewer
 - There can be multiple external schemas!
 - Example Grader view:
 - Grader can see umid, grade (want to obscure name)
 - Example 2 Canvas coursepage view:
 - Students can see names only (see which friends are in the class!)

Data Independence

- Logical data independence protection from changes in logical structure of the model
 - Columns in a table within the registrar's database change but instructors don't know anything changed
- Physical data independence protection from changes in physical structure of the model
 - Oracle releases an update changing how the database is stored on your computer but we don't notice any changes in our pre-existing database
- Logical data independence is hard to achieve!
 - If I change some of the fields, APIs that depend on the data could behave incorrectly
 - Changing primary key from SSN to user_id

Pop Quiz:D

- 1. In a relational data model, a schema provides what information?
 - a. The total size of your table
 - b. The data in your table
 - c. The data types and the names of the fields

Pop Quiz:D

- 1. In a relational data model, a schema provides what information?
 - a. The total size of your table
 - b. The data in your table
 - c. The data types and the names of the fields

- 1. What type of schema abstraction would we use for each of the following:
 - a. The schema a CAEN admin sees when upgrading the student information database
 - b. The schema Canvas displays when showing you the other students in the course
 - c. The binary files living in CAEN somewhere that contains your student personal info
 - d. The schema you see in Wolverine Access when editing your personal information

- 1. What type of schema abstraction would use for each of the following:
 - a. The schema a CAEN admin sees when upgrading the student information database Conceptual Schema
 - b. The schema Canvas displays when showing you the other students in the course
 - c. The binary files living in CAEN somewhere that contains your student personal info
 - d. The schema you see in Wolverine Access when editing your personal information

- 1. What type of schema abstraction would use for each of the following:
 - a. The schema a CAEN admin sees when upgrading the student information database Conceptual Schema
 - b. The schema Canvas displays when showing you the other students in the course External Schema
 - c. The binary files living in CAEN somewhere that contains your student personal info
 - d. The schema you see in Wolverine Access when editing your personal information

- 1. What type of schema abstraction would use for each of the following:
 - a. The schema a CAEN admin sees when upgrading the student information database Conceptual Schema
 - b. The schema Canvas displays when showing you the other students in the course External Schema
 - c. The binary files living in CAEN somewhere that contains your student personal info Physical Schema
 - d. The schema you see in Wolverine Access when editing your personal information

- What type of schema abstraction would use for each of the following:
 - a. The schema a CAEN admin sees when upgrading the student information database Conceptual Schema
 - b. The schema Canvas displays when showing you the other students in the course External Schema
 - c. The binary files living in CAEN somewhere that contains your student personal info Physical Schema
 - d. The schema you see in Wolverine Access when editing your personal information External Schema

Pop Quiz the 3QL!??! :D

- 2. If I am updating the DMV database, replacing their eye color with whether a student prefers coffee or tea, which type of data independence will I be most concerned about?
 - a. Logical independence
 - b. Physical independence
 - c. Probably a bit more concerned about the laws at play
 - d. Pls make it stop, I'm tired of the quiz D:

Pop Quiz the 3QL!??! :D

- 2. If I am updating the DMV database, replacing their eye color with whether a student prefers coffee or tea, which type of data independence will I be most concerned about?
 - a. Logical independence
 - b. Physical independence
 - c. Probably a bit more concerned about the laws at play
 - d. Pls make it stop, I'm tired of the quiz D:

ER Diagrams

ER Diagram Basics

- Data model that describes database schema/design
 - Entities are things (Actors, Movies, Citizens, Presidents, Types of Tea)
 - Relationships are are actions/verbs/states (Acted in, Lives in, Is president of, Drinks)
 - Attributes are characteristics (Eye color, Rating, SSN, Political Party, Plant derived from)
 - Primary key is unique identifier (can consist of multiple attributes or just one)

Key Constraints ("at most one")

Participation Constraints ("at least one")

- Heavy line denotes each Entity A must participate in a relationship with at least one Entity B
 - Could participate with more than one
 - No restriction on Entity B
 - Example: 5 Entity B's do not participate with any Entity A
- Heavy line denotes each Entity B must participate in a relationship with at least one Entity A
 - But we know from earlier this arrow means that a single Entity B can relate to at most one Entity A
 - Net result: 1 and only 1 Entity A per Entity B

ISA ('is a') Hierarchies

- Equivalent of subclasses
 - All attributes from superclass are in subclasses
- Overlapping vs Disjoint
 - Overlapping if two subclasses can contain the same entity. Otherwise disjoint
 - Example A: Each president was a presidential candidate at some point (overlapping)
 - Example B: A student can either be a graduate or an undergraduate (disjoint)
- Covering vs Partial
 - o Is the union of all the subclasses the same as the super class?
 - Example A: Are all citizens either presidential candidates or presidents (no partial)
 - Example B: Are all students either graduate or undergraduates (yes- covering)

Weak Entities

- Weak Entity: Room
 - Partial key: roomNumber
 - Primary key: ApartmentBuilding.address and Room.roomNumber
 - Without a building, you can't have a room

(Fun fact: the only way to convince people that an arrow is bold is to make it comically large)

Key constraints in a ternary relationship

Each employee works in at most one combination of department and location.

Example:

- 1. (E1, D1, L1)
- 2. (E1, D1, L1)
- 3. (E1, D2, L1)
- 4. (E1, D1, L2)
- 5. (E2, D1, L1)

Participation constraints in a ternary relationship

Each employee works in at least one combination of department and location.

Example:

- 1. E has E1, E2
- 2. (E1, D1, L1)
- 3. Need (E2, Dx, Ly)

Creating ER Diagrams

- Three key steps to success
 - Start with the entities and relationships
 - Make your entity squares (no attributes yet)
 - Make your relationship diamonds between squares
 - Don't worry about constraints yet
 - Handle ISA hierarchies
 - Add in attributes
 - Determine if they should belong to entity or relationship
 - Determine primary keys
 - Resolve constraints
 - Handle key and participation constraints
 - Determine what weak entities exist
 - Check relationships for potential ternary relationships

ER Diagram Example - Hospital

- Each doctor works at exactly one hospital. Doctors have name, salary, and a unique ssn. Hospitals have address and a unique name.
- Each patient must be associated with exactly one doctor, and no two patients of a given doctor have the same name (though two patients of the different doctors can have the same name).
- In the database, patient tuples should be automatically deleted if the corresponding doctor tuple is deleted.
- Doctors can join zero or more chapters in the American Medical Association. Each chapter should have a **unique** cid, and a membership fee. It is important to maintain the date on which a doctor joined a chapter.
- Each chapter has exactly one coordinator, and only doctors can serve as chapter coordinators. No doctor can coordinate more than one chapter.

Solution

Project 1 Setup

Helpful Tools

- We're going to be using SQLPlus for the next two projects
 - Tool to connect to Oracle Databases
 - Need to connect to CAEN to be able to use the SQLPlus CLI.
- Requires CAEN account
 - CoE students have default
 - If you do not have one go here

SSH + SCP/rsync

- SSH (Secure Shell)
 - Linux and Mac users will have SSH built into their terminals
 - Windows users can install Windows Subsystem for Linux (WSL) to use SSH (recommended)
 - Can install CAEN VNC Client instead
- SCP (Secure Copy Protocol) and rsync (Remote Sync)
 - Ways to upload files from your local machine to a server
 - Not necessary if you do all of your development on CAEN
- Need to connect to login.engin.umich.edu for both SSH and SCP
 - Will need Duo

SSH + SCP/rsync (Command line commands)

ssh <u>uniqname@login.engin.umich.edu</u>

scp -r [source file/dir] uniqname@login.engin.umich.edu:[target dir]/[target name]

rsync -rtv [source file/dir] uniqname@login.engin.umich.edu:[target dir]/[target name]

Oracle SQL

- To access the Oracle DBMS
 - SSH into CAEN or use the CAEN VNC Client
 - module load eecs484
 - Loads some of the tools and programs needed for this class
 - Append this to your ~/.bash_profile
 - You don't need to type this command in every time then!
 - Launch SQLPlus with rlwrap sqlplus
 - Enter username/password (next slide)
 - Congrats! You can now run SQL commands!
- Documentation on the various commands <u>here</u>
 - Each DBMS differs slightly from each other

Oracle SQL

- An Oracle account within the CAEN servers has been created for you
 - Username: Your uniqname
 - Initial password: eecsclass
 - SQLPlus will prompt you to change password when you login the first time
 - DO NOT use quotes or @ in your password
- Make a post on Piazza or email us at eecs484f24staff@umich.edu if you don't have one for any reason
 - Adding class late, etc.

Associated Tools

https://eecs484db.github.io/f24/tools

Project 1 Overview

Project 1

- You have recently been contacted by Clark Huckelburg
 - CEO of FakeBook, "the world's fakest social media platform" TM
 - Need to design a database for them to migrate to

4 Parts

- Draw ER diagram
- Translate ER diagram and specifications into relational tables
- Populate database with existing data
- Create views to make it easier to look at aggregate data
- Best to go one part a time in order
 - some parts will need to be worked on at the same time

- Read the spec carefully!
 - Reading later parts will help you with your ER diagram
 - Draw neatly on paper and then scan or use computer tools LucidChart, draw.io, ...
 - Try the suggested steps to creating an ER diagram (next slide)
 - Determine what's an entity, relationship, and an attribute
 - Figure out which relationships are binary vs ternary

- Create the schema!
 - Turn ER diagrams into tables using SQL
 - createTables and dropTables SQL scripts
 - Will also need to create and manage triggers and sequences
 - Need to make sure all constraints are captured
 - Is it NOT NULL? UNIQUE? PRIMARY KEY? FOREIGN KEY?
- Example CREATE statement

```
CREATE TABLE Students (
student_id INTEGER PRIMARY KEY,
name VARCHAR(200) NOT NULL
);
```

Example DROP statement

DROP TABLE Students CASCADE CONSTRAINTS;

Populate the database

Take public data and insert it into your tables

INSERT INTO Users

SELECT user id

FROM project1.Public_User_Information;

- project1 is the schema in which all the data lives
- Will need to perform unions, joins, and other relational logic to insert data

Create views

- External schema Designed to mimic public data set
- CREATE VIEW Instructor_Name AS SELECT I.last_name
 FROM INSTRUCTOR I WHERE I.first_name = 'Bob';

ONE DOES NOT SIMPLY

CREATE SQL VIEWS CORRECTLY

- Shows only the last name from instructors where the first name is Bob
- You can check this before submitting
 - SELECT * FROM project1.Public_User_Information MINUS
 SELECT * FROM View User Information
 - SELECT * FROM View_User_Information
 MINUS
 SELECT * FROM project1.Public User Information
 - Checking to make sure it is identical to the public dataset you read from

makeameme.o

Bonus ER Diagram Practice

ER diagram practice

- 1. Professors have a unique SSN, a name, an age, a rank, and a research specialty.
- 2. Projects have a unique project number, a sponsor name, a starting date, an ending date, and a budget.
- 3. Graduate students have a unique SSN, a name, an age, and a degree program (e.g., M.S. or Ph.D.).
- 4. Each project is managed by one professor (known as the project's principal investigator) and is worked on by one or more professors (known as the project's co-investigators).
- 5. Professors can manage and/or work on multiple projects.
- 6. Each project is worked on by one or more graduate students (known as the project's research assistants).

ER diagram practice

- 7. When graduate students work on a project, their work on the project must be supervised by exactly one professor. Graduate students can work on multiple projects, in which case they will have a (potentially different) supervisor for each one.
- 8. Departments have a unique department number, a department name, and a main office.

 Departments must have one professor (known as the chairman) who runs the department.
- 9. Professors work in one or more departments, and for each department that they work in, a time percentage is associated with their job.
- 10. Graduate students have one major department in which they are working on their degree.
- 11. Each graduate student has exactly one more senior graduate student (known as a student advisor) who advises him or her what courses to take.

Get started with HW1!

We're here if you need any help!!

- Office Hours: Schedule is <u>here</u>, both virtual and in person offered
- Piazza
- Next week's discussion!!!