

LINMA2380 Matrix Computation

Homework 4 Group 3

Okyay Kerem Rochet Robin Tahiri Ghali Quesnel Emeric

1 Exercise A: Power Method

1.1 A1

$$x^1 = Ax^0$$

Multiplying both sides by e^{\top} :

$$e^{\top}x^1 = e^{\top}Ax^0$$

Since $x^0 \in \Delta$ and A column stochastic $(e^\top A = e^\top)$:

$$e^{\top} x^1 = e^{\top} x^0 = 1.$$

Now, assume this holds up to k-1:

$$x^k = Ax^{k-1}.$$

Multiplying both sides by e^{\top} :

$$e^{\top} x^k = e^{\top} A x^{k-1}.$$

By the induction hypothesis (this holds for k-1):

$$e^{\top} x^k = e^{\top} x^{k-1} = 1.$$

Thus, the property also holds for k.

1.2 A2

Under Assumption 1, there exists one strictly positive row, thus a minimum for this row cannot be zero. Therefore, $r \neq 0$. Since r > 0, we have $e^r > 0$, which leads to $x_0 > 0$ from $x^0 = \frac{1}{e^{\top}r}r$. Now multiply the definition of x^0 by e^{\top} in both sides.

$$e^{\top}x^0 = e^{\top}r\frac{1}{e^{\top}r} = 1$$

Therefore, $x^0 \in \Delta$.

We have $r \neq 0$, so $\alpha = e^{\top}r \neq 0$. To maximize α , we need to maximize r. This happens when all the probabilities of transition from one website to another (also to itself) are the same $a_{ij} = \frac{1}{n}, \forall i, j \in [1, n]$. Therefore, we have max α as $\alpha = e^{\top}r_{max} = 1$, where $r_{max} = [\frac{1}{n}, \dots, \frac{1}{n}]$.

1.3 A3

Multiplying boths sides with e^{\top} , and using $\alpha x^0 = \alpha \frac{1}{\alpha} r = r$

$$e^{\top} A = e^{\top} (1 - \alpha) . \bar{A} + e^{\top} r e^{\top}.$$

Replacing $e^{\top}r = \alpha$, $e^{\top}\bar{A} = e^{\top}$, and $e^{\top}A = e^{\top}$

$$e^{\top} = e^{\top} - \alpha e^{\top} + \alpha e^{\top} = e^{\top}$$

Thus, we can write A as given.

1.4 A4

Rewriting A as in (A3):

$$||(1-\alpha)\bar{A}h + \alpha x^0 e^{\top}h||_1 \le (1-\alpha)||h||_1$$

Using $e^{\top}h = 0$, and taking out the scalar $(1 - \alpha)$:

$$||\bar{A}h||_1 \le ||h||_1$$

When h = 0 we have the equality.

When $h \neq 0$, h must have negative and positive values such that $e^{\top}h = 0$ and $\bar{A}h$ corresponds to a weighted sum of h's entries which cannot increase its 1-norm with $\bar{A} \geq 0$ and \bar{A} being column stochastic. Therefore, we get the inequality.

1.5 A5

Assume two solutions x^*, x^{**} exist such that

$$Ax^* = x^*, Ax^{**} = x^{**}$$

Setting $h = x^* - x^{**}$, we have:

$$Ah = A(x^* - x^{**}) = Ax^* - Ax^{**} = x^* - x^{**} = h$$

Which tells that h is an eigenvector corresponding to the eigenvalue 1.

However, we have:

$$e^{\top}h = e^{\top}(x^* - x^{**}) = 1 - 1 = 0$$

Since $x^*, x^{**} \in \Delta$ from (A1). By (A4) we have the inequality and replacing Ah = h, as shown above h being an eigenvector for eigenvalue 1, we have:

$$||h||_1 \le (1-\alpha)||h||_1$$

Since $\alpha \in (0,1]$ from (A2), the above inequality holds only with $\vec{h} = \vec{0}$. Therefore, $x^* = x^{**}$, the solution is unique.

1.6 A6

Starting with the power method:

$$x^k = Ax^{k-1}$$

Subtract x^* from both sides $(Ax^* = x^*)$:

$$x^k - x^* = A(x^{k-1} - x^*)$$

Set $h = x^{k-1} - x^*$, and observe $e^{\top}h = e^{\top}x^{k-1} - e^{\top}x^* = 0$, since $x^k, x^* \in \Delta$.

From (A4) we have:

$$||x^k - x^*||_1 \le (1 - \alpha)||x^{k-1} - x^*||_1$$

For k = 1:

$$||x^1 - x^*||_1 \le (1 - \alpha)||x^0 - x^*||_1$$

For k = 2, and using the result from k = 1:

$$||x^2 - x^*||_1 \le (1 - \alpha)||x^1 - x^*||_1 \le (1 - \alpha)^2||x^0 - x^*||_1$$

Assuming this holds for k up to k-1, and setting k=k:

$$||x^k - x^*||_1 \le (1 - \alpha)||x^{k-1} - x^*||_1$$

 $\le (1 - \alpha)(1 - \alpha)^{k-1}||x^0 - x^*||_1$ (using the inductive hypothesis)
 $\le (1 - \alpha)^k||x^0 - x^*||_1$

Therefore, it holds for k = k. This result shows that the power method converges to the unique solution (A5) at a geometric rate with factor $(1 - \alpha)$. Since $\alpha \in (0, 1]$ (A2), the convergence rate is strictly less than 1.

2 Exercise B: PageRank

2.1 B1

$$(A_{\beta})_{ij} = (1 - \beta)a_{ij} + \beta m_{ij}$$

$$= (1 - \beta)a_{ij} + \frac{\beta}{n}$$

$$> 0 \text{ (A column stochastic } a_{ij} \ge 0 \text{ and } \beta \in (0, 1))$$

Therefore, A_{β} has strictly positive rows.

2.2 B2

From (B1) we have $A_{\beta} > 0$.

Then, the sum of the j -th column of A_{β} is:

$$\sum_{i=1}^{n} (A_{\beta})_{ij} = \sum_{i=1}^{n} ((1-\beta)a_{ij} + \beta m_{ij})$$

Using linearity of summation:

$$\sum_{i=1}^{n} (A_{\beta})_{ij} = (1-\beta) \sum_{i=1}^{n} a_{ij} + \beta \sum_{i=1}^{n} m_{ij}.$$

Since A is column stochastic, $\sum_{i=1}^{n} a_{ij} = 1$, and since M is column stochastic, $\sum_{i=1}^{n} m_{ij} = 1$, we have:

$$\sum_{i=1}^{n} (A_{\beta})_{ij} = (1 - \beta)(1) + \beta(1) = 1.$$

Thus, each column of A_{β} sums to 1. Telling us that A_{β} is a column-stochastic matrix.

Next, set $\alpha_{\beta} = e^{\top} r_{\beta}$ and $r_{\beta} = [\min_{j} (A_{\beta})_{1j}, \dots, \min_{j} (A_{\beta})_{nj}]^{\top}$. $A_{\beta} > 0$ from (B1) so $r_{\beta} > 0$. From Definition 7.2, A_{β} is a primitive matrix since $\forall m \in \mathbb{Z}_{>0}$ $A_{\beta}^{m} > 0$.

Then, from Theorem 7.5, where A_{β} is primitive (thus irreducible) and column stochastic, we have $\rho(A) = 1$ and there is a unique vector $x_{\beta}^* > 0$ such that $A_{\beta}x_{\beta}^* = x_{\beta}^*$ and $e^{\top}x_{\beta}^* = 1$. So, we have a unique solution for the Google Problem for A_{β} .

From (A6) the Power Method applied to A_{β} satisfies :

$$||x_{\beta}^{k} - x_{\beta}^{*}||_{1} \le (1 - \alpha_{\beta})^{k}||x_{\beta}^{0} - x_{\beta}^{*}||_{1}$$

Which converges to a solution at a geometric rate $(1 - \alpha_{\beta})$. The upper bound for the convergence rate occurs when α_{β} is minimized. Since $A \geq 0$, adding βM ensures that $r_{\beta} \geq [\frac{\beta}{n}, \dots, \frac{\beta}{n}]^{\top}$.

When A = 0 (the zero matrix), $r_{\beta} = \left[\frac{\beta}{n}, \dots, \frac{\beta}{n}\right]^{\top}$, leading to:

$$\alpha_{\beta} = e^{\mathsf{T}} r_{\beta} = \beta.$$

The convergence rate is then bounded above by:

$$1 - \alpha_{\beta} \leq 1 - \beta$$
.

3 Exercise C: Collaboration network

Rank	Name	Score
1	NEWMAN, M	0.00486
2	BARABASI, A	0.00478
3	SOLE, R	0.00298
4	JEONG, H	0.00274
5	YOUNG, M	0.00255