Алгоритмы и модели вычислений.

Задание 4: Сложность вычислений, классы P, NP и со-NP

Сергей Володин, 272 гр.

задано 2014.03.06

Задача 1

- 1. Докажем, что SAT \leq_m^p 3-SAT.
- 2. Теорема \Rightarrow SAT \in NP-c, $1 \Rightarrow$ SAT \leqslant^p_m 3-SAT \in NP. Поэтому из 2 следует, что 3-SAT \in NP-c

Задача 2

(каноническое) Задача 16

- (a) $r_i * = \frac{c_1}{c_2}$ умножение строки i на дробь $\frac{c_1}{c_2}$
- (b) $sij\frac{c_1}{c_2}$ вычитание i-й строки, умноженной на дробь $\frac{c_1}{c_2}$ из j-й.

(каноническое) Задача 17

(каноническое) Задача 18

(каноническое) Задача 19

(каноническое) Задача 20

Вспомогательные утверждения

 $1. \leqslant_m^p$ — транзитивно. Действительно, пусть $\Sigma_1^* \supseteq A \leqslant_m^p B \subseteq \Sigma_2^*, \ B \leqslant_m^p C \subseteq \Sigma_3^*$. Тогда существуют полиномиальновычислимые функции $f_1\colon \Sigma_1^* \to \Sigma_2^*, \ f_2\colon \Sigma_2^* \to \Sigma_3^*$, причем $\forall x \in \Sigma_1^* \ (x \in A \Leftrightarrow f_1(x) \in B), \ \forall y \in \Sigma_2^* \ (y \in B \Leftrightarrow f_2(y) \in C)$ Фиксируем $x \in \Sigma_1^*$, определим $y = f_1(x)$. Тогда $x \in A \Leftrightarrow f_1(x) \in B \Leftrightarrow f_2(f_1(x)) \in C$

Функция $g(x) \colon \Sigma_1^* \to \Sigma_3^*$ $g = f_2 \circ f_1$ полиномиально-вычислима (как композиция полиномиально-вычислимых). Получаем, что существует полиномиально-вычислимая g(x), такая что $\forall x \in \Sigma_1^*$ $(x \in A \Leftrightarrow g(x) \in C)$, откуда $A \leqslant_m^p C \blacksquare$

2. Пусть $A \in \mathsf{NP-c}, \ \mathsf{u}\ A \leqslant_m^p B \in \mathsf{NP}.$ Тогда $B \in \mathsf{NP-c}.$ Действительно, $A \in \mathsf{NP-c} \Rightarrow \forall C \in \mathsf{NP} \hookrightarrow C \leqslant_m^p A.$ Фиксируем $C \in \mathsf{NP}.$ $A \leqslant_m^p B$, поэтому из 1 следует, что $C \leqslant_m^p B$. Поэтому $\forall C \in \mathsf{NP} \hookrightarrow C \leqslant_m^p B$. Значит, $B \in \mathsf{NP-c} \blacksquare$