Date & la la

Expt. No. 05 Page No. 11
5. write a priogram to implement the naire Bayes Bayesian Classifier for a sample training data set stored as a · CSV file · Compute the accuracy of the Classifier, Considering few data sets.
imposit CSV, nandom, math imposit Statistics as st def load (CSV (filename): lines = CSV. neader (open (filename; "n")); dataset = list (lines) for i in nange (len (dataset)): dataset [i] = [float (x) for x in dataset [i]
def split Dataset (dataset, split Ratio): testsize = int (len (dataset)) *s plit Ratio); train Set = list (dataset); testset = [] while len(testset) < testsize: index = nandom . nand nange (len (train Set)); testset . append (train Set . pop (index)) neturn [train Set , test Set]
def sepanate By Class (dataset): sepanated = { } for in nonge (len (dotaset)): x = dataset [i] i) (x[-1] not in se sepanated): Sepanated [x[-1]] = []

GDOTHAMIT. O.G.	Date
Expt. No	Page No. 12
sepanated [x[-1]].ap	pend(x)
def compute_meon_stol (d mean_stol = [(st.meon (d for attribute del mean_stol [-1] neturn meon_stol	otaset): attribute), st.stdev (attribute) in zip (*dataset)]:
def summarize By Class (Separated = Separate By C summary (=) = 1 } for class Volue, instance summary (class Value) return summary	dataset): lass (dataset); ces in separated. items (): J = compute_man_std (instance)
def estimateParobability (x, m exponent = math. exp(-m (2)	ean, stalder): both.pow(x-mean,a)/ moth.pow(stder,a)))) *moth.pow(stder,a))+ exponent
def calculate Class Pnobalities (s	summaries, test vector): mmaries in summaries. items

Teacher's Signature : _____

GAUTHAMI.U.G. 4MT17CS041 Date Expt. No. Page No. 13 p [class value] + - estimate Parobability (x, mean, stder); metuan p def priedict (summaries, test vector): all -10 = calculate Class Pnobablitics (summanies, test vector) bestlabel, best Prob = None, -1 for lb1, p in all_p.items(): is bestlabel is Done on p > best Prob: best Pnob = P bestlabel = 161 netuan bestlabel def penfonn_classification (summaries, test Set): predictions = [] for i in nange Clen (testSet)):
nesult: predict (summaries, testSet [i]) predictions append (nexult) neturn predictions get Accuracy Ctest Set, predictions): def connect =0 fon i in nange (len (test Set)):

2 test Set [i] f-1] == pnedictions [i];

connect t = 1

neturn (connect ploat an (testset)) *100.0

dotaset = Load Csv ('C'! Osens usen | Desktop | ML lab|

diabetes (sv');

Teacher's Signature: __

GAOTHAMI. U.G. 4MT17CSO41 Date
ept. No. Page No. 14
print ('Prima Indian Diabetes Dataset loaded') print ('Total instances available:', len (dotaset)) print ('Total attributes present:', len (dataset [0])-1) print ("First Fire instances of dataset:") for i in range (5): print ("tl.':', dotaset [i]) Split Ratio = 0.2 training Set test Set = split Dataset (dataset, split Ratio) print ('Dataset is split into training and testing set:') print ('Dataset is split into training and testing set:') print ('Training examples = lo' In Testing examples - li]' summaries = Summarize by class (training Set): priedictions = perform = classification (summaries, test Set) accuracy = get Accuracy (test Set, priedictions) print ('In Accuracy of the Daire Baysian Classifier is:', accuracy)

Teacher's Signature :

output :-

Pima Indian Diabetes loaded...
Total instances available: 768
Total attributes present: 8

First live instances of dataset:

1: [60, 1480, 720, 350, 00, 336, 0627, 500,

2: [1.0,85.0,66.0, &9.0,00, &6.6,0.351,310,00]
3: [8.0,183.0,64.0,00,0.0,83.3,0.67&,&20.10]
4: [1.0,89.0,66.0,&3.0,94.0,&8.1,0.167,&1.0,0.0]
5: [0.0,137.0,40.0,35.0,168.0,43.1,&.888,33.0,10]

Dataset is split into training and testing set.

Training examples = 615
Testing examples = 153

Accuracy of the Daire Bayeian Classifien is: