This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(1932)]

ase von Hrn. Geheimrat $d_4^{2a} = 1.029.$ — :88.

 $M_{\beta-\alpha}$ M_{7-2} 1.10 1.79 1.07 1.70 _o.o.3 0.09 -3% -5%

ersalz und Jodäthyl geefunden: $d_4^{\text{Los}} = 1.0360$.

 $M_{\beta-\alpha}$ $M_{\gamma-\alpha}$ 0.96 1.57 0.95 1.52 -0.oı -0.05 -1%—3%

therische Lösung des ist, läßt sich etwas ien, der eine weiße, Berordentlich leicht in

ersäure-dimethylystallinen Masse vom 2hmp. 75.5−76.5°.

ischen Antipoden zu orden und, wie die Konildin und 10.7 g Methylmengegeben. Nach Abden sich rund 20 g Cinwerden: Harte Warzen, 1. Schmp. 178.5—179.5°

bst.: 9.75 ccm N (19.20,

65, 5.89.

Fraktionieren, als auch edergewonnene Methyl-

sko--tanten K₁ ınd . . ar mit einem nur die cis-Verbinnit der Chinhydron-, ngsmittel haben wir $_{\rm H} = 6.36$ verwendet. n wir angenommen. e gegenüber der des

Orthey. ein & Co., Düsseldorf.

undissoziierten Anteils so klein ist, daß sie vernachlässigt werden kann und daher die Formel [H] = $V\overline{K_1 \times c}$ zugrunde gelegt.

In den Tabellen bedeuten C die in 100 ccm Lösungsmittel zur Messung gelöste Substanz in g, c die Konzentration, molar ausgedrückt, und t die Temperatur, bei der die Messung ausgeführt worden ist.

Die nach Viktor Meyer bestimmte Löslichkeit der cis-Apo-camphersäure beträgt 0.51 g in 100 g $\rm H_2O$ bei 15°, die der cis-3-Methyl-camphersäure 0.0716 g bei 18°.

Ia. Messungen in H2O mit Chinhydron-Elektrode.

Substanz	С	С	" t	рн	PHA	K ₁
Apo-camphersäure Camphersäure 3-Methyl-camphersäure	0.0926 0.1018 0.0698	0.004976 0.005087 0.003259	24 ⁰ 18 ⁰ 22 ⁰	3.340 3.424 3.709	4.554 4.931	4.2 × 10 ⁻⁵ 2.79 × 10 ⁻⁵ 1.17 × 10 ⁻⁵
Ib. Messung	en m H ₂	O mit Wasse:	rstoff-I	lektrod	e.	
Apo-camphersäure Camphersäure 3-Methyl-camphersäure	0.0926 0.1018 0.0698	0.040976 0.005087 0.003250	20 ⁰ 15 ⁰ 20 ⁰	3.34 3.41	4.377 4.526 4.882	4.2 × 10 ⁻⁵ 2.98 × 10 ⁻⁵ 1.31 × 10 ⁻⁵
IIa. Messungen in	50-proz.	Methanol mi	t Chinl	iydron-	1. 1.	
Apo-camphersäure Camphersäure 3-Methyl-camphersäure Phenyl-camphersäure	0.0931 0.1000 0.1099 0.1408	0.00502 0.004996 0.00513 0.005101	19° 19°		6.381 6.763 7.292 6.728	•
IIb. Messungen in	50-proz.	Methanol mit	Wasse	rstoff-F		
Apo-camphersäure	0.0931 0.1000 0.1099 0.1408	0.00502 0.004996 0.00513 0.005101	20 ⁰ 16 ⁰ 21 ⁰	4·354 4·539 4.808	6.407 6.777 7.326	3.92 × 10 ⁻⁷ 1.67 × 10 ⁻⁷ 4.72 × 10 ⁻⁸
		0.003101	200	4.526	6.760	1.74 × 10 ⁻⁷

Walter Stix und S. A. Bulgatsch: Eine neue Darstellungsart der Chinolinsäure.

(Eingegangen am 12. November 1931.).

Die Darstellung der Chinolinsäure (α,β-Pyridin-dicarbonsäure) geschieht gewöhnlich durch Oxydation des Chinolins oder solcher Chinolin-Derivate, bei denen die Substitution im Benzolkern erfolgt ist und dieser dadurch leichter der Wirkung oxydativer Agenzien erliegt. Die Oxydation wird mit Hilfe von Permanganat1) oder mittels Salpetersäure2) durchgeführt. Bei der fortlaufenden Herstellung von größeren Mengen Chinolinsäure befriedigen jedoch die bekannten Methoden nicht; es wurden daher die Verwendungsmöglichkeiten anderer Oxydationsmittel, besonders die des Wasserstoffsuperoxyds, zur Gewinnung der Chinolinsäure untersucht. Wasserstoffsuperoxyd-Lösung allein wirkt auf Chinolin nicht merklich ein, in Anwesenheit von Ferrosulfat führt sie dagegen zu einer derartigen Zerstörung des Chinolins, daß dessen Stickstoffatom in Form von Ammoniak

¹⁾ In alkalischer Lösung: C. 1925, II 616, in saurer Lösung: B. 58, 1727 [1925]. Angaben über ältere Literatur im Meyer-Jacobsonschen Lehrbuch II/3, S. 793. ²) C. 1927, II 871.

abgespalten wird. Wird jedoch bei der Behandlung des Chinolins mit Wasserstoffsuperoxyd an Stelle von Ferrosulfat Kupfersulfat verwendet, so entsteht in der Hauptsache Chinolinsäure, die in Form ihres unlöslichen Kupfersalzes ausfällt. Hier spielt das Kupfersulfat somit eine doppelte Rolle, einerseits zersetzt es katalytisch das Wasserstoffsuperoxyd, andererseits verbindet es sich mit der gebildeten Chinolinsäure. Diese Reaktion, bei der Chinolin in schwefelsaurer Lösung in Gegenwart von 1.4 Mol. Kupfersulfat mit 3-proz. Wasserstoffsuperoxyd-Lösung behandelt wird, liefert chinolinsaures Kupfer in einer Ausbeute von 65-70% d. Th.

Es zeigt sich somit, daß der Ablauf der Oxydation des Chinolins mit Wasserstoffsuperoxyd wesentlich davon abhängt, was für ein Metallsalz dabei als Katalysator verwendet wird. Der Grund hierfür ist wohl in folgendem zu suchen: Zuerst wird sowohl in Gegenwart von Ferrosulfat wie von Kupfersulfat der Benzolkern zerstört, während der Pyridinring zunächst erhalten bleibt. Verläuft die Oxydation wie im Falle der Kupfer-Katalyse langsam, so bildet die als Zwischenprodukt entstehende Chinolinsäure mit dem anwesenden Kupfersulfat das schwer lösliche Kupfersalz, das zum größten Teil ausfällt und so einer weiteren Einwirkung entzogen wird. In Gegenwart von Ferrosalz hingegen verläuft die Oxydation unvergleichlich rascher, die intermediär gebildete Chinolinsäure wird nicht in Form eines unlöslichen Salzes abgefangen, sondern unterliegt der weiteren Oxydation, wobei unter Ammoniak-Bildung der Pyridinring zerstört wird. Diese Unterschiede zwischen der Eisen- und der Kupfer-Katalyse kommen ebenfalls deutlich zum Ausdruck, wenn eisenhaltiges Kupfersulfat als Katalysator Verwendung findet; schon geringe Eisen-Beimengungen bewirken eine beträchtliche Ausbeute-Verminderung an chinolinsaurem Kupfer.

Als Beispiel dafür seien die folgenden Zahlen angeführt:

Eisengehalt des verwendeten Kupfersulfates in % 0.042 0.12 0.23 Ausbeute an chinolinsaurem Kupfer in % d. Th. 65 60 30

Die Chinolinsäure, die sich bei Verwendung eines stärker eisen-haltigen Kupfersulfates bildet, wird nicht im gewöhnlichen Ausmaß abgefangen, obwohl die Menge des zur Verfügung stehenden Kupfersulfats praktisch die gleiche ist, ob nun das benützte Kupfersulfat 0.042% oder 0.23% Eisen enthält. Da Chinolinsäure von Wasserstoffsuperoxyd in Gegenwart von Ferrosalzen leicht oxydiert wird, so kann man annehmen, daß diese Oxydation hier früher eintritt als die Bildung und Abscheidung des Kupfersalzes, und so die Ausbeute-Verminderung zustande kommt. Außerdem kommt noch hinzu, daß chinolinsaures Kupfer von Wasserstoffsuperoxyd und Ferrosulfat etwas angegriffen wird, wohl deshalb, weil das Kupfersalz in der sauren Reaktionsflüssigkeit etwas löslich ist. Bemerkenswert ist endlich der Befund, daß erst ein gewisser Eisengehalt des Kupfersulfats eine Ausbeute-Verringerung bewirkt; sinkt der Eisengehalt unter einen bestimmten Wert, so wird er bedeutungslos: bei Verwendung eines Kupfersulfats, das 0.00004% Eisen enthielt, wurde auch nur eine Ausbeute von 65% erhalten.

Zusammenfassend läßt sich feststellen, daß die Unterschiede im Verlaufe der Oxydation des Chinolins mit Wasserstoffsuperoxyd der Hauptsache nach darauf beruhen, daß die Reaktions-Intensität im Falle der Eisen-Katalyse eine unvergleichlich größere ist als bei der Kupfer-Katalyse. Dies entspricht vollständig der bekannten Tatsache, daß die Zersetzungsgeschwindig-

keit des Wassersto viel größer ist als

Darstellung Gemisch von 2100 25-proz. Schwefe Lösung werden 6. hinzugesetzt. Un Lösung zu erhitzer daß die Temperatu wird und die Tem Temperatur von 7 200 ccm Wassersto auf 70°. Im Verlau Kupfer in Form aus der stark schwe den hat, so wird n getragen. Die Lös erkalten gelassen. Kupfer von der Foi salzes kann man: jedoch das Wasser erwärmen und ferr legung des Kupfe löslichkeit recht la Erhitzen mit ei. Die nach dem Abf erhaltene Lösung v Schwefelsäure ange diese Weise erhält

3. Deodata

[Aus d. Kaiser-Wilheli

Die Fähigkeit ähnlich der Jod-Staus verschiedenen nehmen (Lotterm zur Bildung intens der Jodfärbung du Stoffes bedingt sin mann, Krüger un schen Einflüssen a sorptionsverbindun keine hinreichende

³⁾ Rec. Trav. ch

⁴⁾ Vanino, Har

t verwendet, so ents unlöslichen Kupferloppelte Rolle, einerndererseits verbindet 1, bei der Chinolin in fersulfat mit 3-prozt chinolinsaures

n des Chinolins mit ein Metallsalz dabei vohl in folgendem zu fat wie von Kupferg zunächst erhalten Katalyse langsam, so mit dem anwesenden iten Teil ausfällt und wart von Ferrosalz die intermediär gen Salzes abgefangen, niak-Bildung hen der Eisen- und druck, wenn eisenlung findet; schon e Ausbeute-Vermin-

)42 0.12 0.23 '5 60 30

irker eisen-haltigen aß abgefangen, oblifats praktisch die r 0.23% Eisen entgenwart von Ferroß diese Oxydation upfersalzes, und so commt noch hinzu, Ferrosulfat etwas sau. Reaktions Befund, daß erst Verringerung bert, so wird er be-

hiede im Verlaufe Hauptsache nach ir Eisen-Katalyse talyse. Dies entungsgeschwindigkeit des Wasserstoffsuperoxyds in Gegenwart von Eisensalzen außerordentlich viel größer ist als in Gegenwart von Kupfersalzen.

Darstellung der Chinolinsäure: 24 g Chinolin werden mit einem Gemisch von 2100 ccm 3-proz. Wasserstoffsuperoxyd-Lösung und 46 g 25-proz. Schwefelsäure auf dem Wasserbade auf 60° erwärmt; zu dieser Lösung werden 64 g kryst. Kupfersulfat, aufgelöst in 160 ccm Wasser, hinzugesetzt. Unter starker Kohlendioxyd-Entwicklung beginnt sich die Lösung zu erhitzen, so daß man durch mäßiges Abkühlen dafür sorgen muß, daß die Temperatur nicht über 70° steigt. Sobald die Gasentwicklung mäßiger wird und die Temperatur zu fallen beginnt, erwärmt man so weit, daß eine Temperatur von 700 erhalten bleibt. Nach 8-stdg. Erhitzen setzt man noch 200 ccm Wasserstoffsuperoxyd-Lösung hinzu und erwärmt weitere 3 Stdn. auf 70°. Im Verlaufe der Reaktion scheidet sich allmählich das chinolinsaure Kupfer in Form eines schweren, grün gefärbten Niederschlags ab. Da sich aus der stark schwefelsauren Lösung nicht das gesamte Kupfersalz ausgeschieden hat, so wird noch Soda bis zur schwach sauren Reaktion auf Kongo eingetragen. Die Lösung wird schließlich auf 90° erhitzt und dann über Nacht erkalten gelassen. Nach dem Absaugen erhält man 32-34 g chinolinsaures Kupfer von der Formel C,H3O4NCu + 2H2O3). Die Zerlegung des Kupfersalzes kann man mit Hilfe von Schwefelwasserstoff durchführen, wobei man jedoch das Wasser, in dem das Kupfersalz suspendiert ist, dauernd auf 60º erwärmen und ferner für gutes Rühren Sorge tragen muß. Da aber die Zerlegung des Kupfersalzes durch Schwefelwasserstoff infolge seiner Schwerlöslichkeit recht langsam vor sich geht, ist es bequemer, die Zerlegung durch Erhitzen mit einer 10-proz. Schwefelnatrium-Lösung durchzuführen. Die nach dem Abfiltrieren und Auswaschen des Kupfersulfid-Niederschlages erhaltene Lösung von chinolinsaurem Natrium und Schwefelnatrium wird mit Schwefelsäure angesäuert und dann auf bekannte Weise aufgearbeitet4). Auf diese Weise erhält man die Chinolinsäure in einer Menge von 19-20 g.

3. Deodata Krüger: Über die gefärbten Jodverbindungen eines Acridin-Derivates.

[Aus d. Kaiser-Wilhelm-Institut für physikal. Chemie und Elektrochemie, Berlin-Dahlem.]
(Eingegangen am 6. November 1931.)

Die Fähigkeit, in Lösungen mit Jod intensiv gefärbte Verbindungen ähnlich der Jod-Stärke zu geben, kommt bekanntlich einer Reihe von Stoffen aus verschiedenen Körperklassen zu. Während nun einige Forscher annehmen (Lottermoser, Harrison, Berczeller u. a.), daß die Fähigkeit zur Bildung intensiv gefärbter Jodverbindungen überhaupt und die Nuance der Jodfärbung durch den besonderen kolloiden Zustand des betreffenden Stoffes bedingt sind, hängt nach Samec, Pringsheim, Pictet, Bergmann, Krüger und Tschirch u. a. die Jodreaktion von spezifischen chemischen Einflüssen ab. Ein kolloider Zustand des Adsorbens oder seiner Adsorptionsverbindung mit Jod scheint jedoch eine notwendige, wenn auch keine hinreichende Bedingung für die Reaktion zu sein, da kein Stoff bekannt

³⁾ Rec. Trav. chim. Pays-Bas 48, 550 [1927].

⁴⁾ Vanino, Handbuch der präparativen Chemie II, S. 793 [1923].