4.5 Euler's Equations

2 Project Work

2.1 Project requirements

Program 1 implemented 4 Stage Runge-Kutta methods to solve Euler's equations (5) numerically. To test the program, we chose $A=1.5,\ B=1, C=0.5$ and $\omega_1(0)=\omega_2(0)=\omega_3(0)=1$.

Figure 1: Plot 0f $\omega_1(t)$ against with t

Figure 2: Plot 0f $\omega_2(t)$ against with t

Figure 3: Plot Of $\omega_3(t)$ against with t

Figure 4: 3-D phase plots 0f ω_1 , ω_2 , ω_3

Equations (6) and (7) are used to check the accuracy of the numerical results. Table 1 displays the value of E and H^2 at the beginning and end of runs.

Table 1: Display of E and H^2

	Е	H^2
Beginning of runs	1.5000	3.5000
End of the runs	1.5000	3.5000

Question 1 Let A, B and $C = a_1$, a_2 and a_3 respectively. Moreover, $a_i = \max(a_1, a_2, a_3)$, $a_k = \min(a_1, a_2, a_3)$ and a_j be the middle constant, i.e.

$$a_i < a_i < a_k$$

 $a_i < a_j < a_k$ Now, we define $\omega_1'(0) = \omega_i(0)$, $\omega_2'(0) = \omega_j(0)$, and $\omega_3'(0) = \omega_k(0)$. Hence, without loss of generality, we have

$$a_i \frac{d\omega_1'}{dt} + (a_k - a_j)\omega_2'\omega_3' = 0$$

$$a_j \frac{d\omega_2'}{dt} + (a_i - a_k)\omega_3'\omega_1' = 0$$

$$a_k \frac{d\omega_3'}{dt} + (a_j - a_i)\omega_1'\omega_2' = 0$$

Hence constants A, B and C can always be taken in a way that A > B > C, without loss of generality.

In case $A = B \neq C$, Euler equation becomes

$$A\frac{d\omega_1}{dt} + (A - C)\omega_2\omega_3 = 0$$
$$A\frac{d\omega_2}{dt} + (A - C)\omega_1\omega_3 = 0$$
$$C\frac{d\omega_3}{dt} = 0$$

This can be solved analytically. We have

$$\begin{aligned} \omega_1 &= \omega_1(0) \cos{(kt)} \\ \omega_2 &= \omega_2(0) \cos{(kt)} \\ \omega_3 &= \omega_3(0) \end{aligned}$$

Where $k = \omega_3(0)(1 - \frac{c}{A})$. Hence, in the case, the body processes about the OZ axis with frequency k. Furthermore, if A > C, the direction of procession is clockwise, and if A < C, the direction of procession is anticlockwise.

In case $A=B=\mathcal{C}$, ω_1,ω_2 and ω_3 are all constants. Hence the rigid body continue to spin with the same axis.

Explanation of B=1 Let $\frac{A}{B}=a$ and $\frac{C}{B}=b$, then Euler's equations become $\frac{d\omega_1}{dt}=(\frac{b}{a}-\frac{1}{a})\omega_2\omega_3$ $\frac{d\omega_2}{dt}=(b-a)\omega_1\omega_3$ $\frac{d\omega_3}{dt}=\left(\frac{a}{b}-\frac{1}{b}\right)\omega_1\omega_2$

Hence without loss of generality, we can chose take B=1 and A=a, C=b.

The scaling factor Let t' = Et, where $E = \frac{A}{2} \omega_1^2(0) + \frac{B}{2} \omega_2^2(0) + \frac{C}{2} \omega_3^2(0) = E$ Consider

$$\begin{split} \int A \frac{d\omega_{1}}{dt} \, \omega_{1} + B \frac{d\omega_{2}}{dt} \, \omega_{2} + C \frac{d\omega_{3}}{dt} \, \omega_{3} dt &= E \! \int A \frac{d\omega'_{1}}{dt'} \, \omega_{1} + B \frac{d\omega'_{2}}{dt'} \, \omega_{2} + C \frac{d\omega'_{2}}{dt'} \, \omega_{3} dt \\ E &= \frac{A}{2} \, \omega_{1}^{2} + \frac{B}{2} \omega_{2}^{2} + \frac{C}{2} \omega_{3}^{2} = E \frac{A}{2} \, \omega_{1}'^{2} + \frac{B}{2} \omega'_{2}^{2} + \frac{C}{2} \omega_{3}'^{2} \\ &\qquad \qquad \frac{A}{2} \, \omega_{1}'^{2} + \frac{B}{2} \omega'_{2}^{2} + \frac{C}{2} \omega_{3}'^{2} &= 1 \end{split}$$

Hence with the re-scaling, t' = Et is equivalent to choosing E = 1.

2.2 Results requirements

Question 2 Let us set the initial conditions as $\omega_1(0) = \sqrt{\frac{2}{A}} \ \omega_2(0) = 0.1 \ and \ \omega_3(0) =$

0.1, and run the program. Figure 5 is a 3-D phase space plot of of ω_1 , ω_2 and ω_3 , which choose the OX axis for ω_1 , without loss of generality. Thus, we obtain a stable solution that $\omega(t)$ is rotating around the OX axis with small amplitude deviation from (1,0,0) before scaling.

Figure 5: 3-D plots of ω_1, ω_2 and ω_3

Similarly, a small amplitude deviation from $(0,0,\sqrt{\frac{2}{c}})$ gives us stable solutions near the OZ axis. (see Figure 6)

Figure 6

Question 3

In case $\omega_1 \approx \sqrt{\frac{2}{A}}$, the other two Euler's equations become

$$\frac{d\omega_2}{dt} + \sqrt{\frac{2}{A}}(A - C)\omega_3 = 0 \qquad (1)$$

$$\frac{d\omega_3}{dt} - \sqrt{\frac{2}{A}}\frac{1 - A}{C}\omega_2 = 0 \quad (2)$$

By differentiating (1) and substitute it into (2), we can get a 2^{nd} order differential equation, $\ddot{\omega}_3 + \frac{2(1-A)(C-A)}{AC} \; \omega_3 = 0$

$$\ddot{\omega}_3 + \frac{2(1-A)(C-A)}{AC} \ \omega_3 = 0$$

Let $f = \sqrt{\frac{2(A-1)(A-C)}{AC}}$, and we have

$$\omega_2 = \omega_2(0)\cos(ft)$$

 $\omega_2 = \omega_2(0)cos(ft)$ The period T satisfies $T=\frac{2\pi}{f}$, hence the analytic expression for the period is

$$T = \pi \sqrt{\frac{2AC}{(A-1)(A-C)}}$$

Figure 7 is a plot of ω_2 and ω_3 against t, with conditions $\omega_1 \approx \sqrt{\left(\frac{2}{A}\right)}$ and $\omega_2(0) =$ $\omega_3(0)=0.01$. We can deduce that the period is around 8.

Figure 7: Plots of ω_2 and ω_3 against t

(ii)

Similarly, in case
$$\omega_3(t) \approx \sqrt{2/C}$$
, we have
$$f = \sqrt{\frac{2(1-C)(A-C)}{AC}}$$
 If the period satisfies

and the period satisfies

$$T = \pi \sqrt{\frac{2AC}{(1-C)(A-C)}}$$

From Figure 8, we can deduce that the period is also around 10.

Figure 8: Plots of ω_1 and ω_2 against t

In comparison of (i) and (ii), the case $\omega_3(t) \approx \sqrt{2/C}$ has slightly longer period.

Consistency with Question 2

Question 4 In both case $\boldsymbol{\omega}(t) = \left(\sqrt{\frac{2}{A}}, 0, 0\right)$ and $\boldsymbol{\omega}(t) = \left(0, 0, \sqrt{\frac{2}{c}}\right)$, the numerical results are consistent with equation (6) and (7), as shown in Table 2 and 3

Table 2

$\boldsymbol{\omega}(t) = \left(\sqrt{2/A}, 0, 0\right)$	Е	H^2
Beginning of runs	1.0001	2.8001
End of the runs	1.0001	2.8001

Table 3

$\boldsymbol{\omega}(t) = \left(0, 0, \sqrt{2/C}\right)$	Ε	H^2
Beginning of runs	1.0001	1.4003
End of the runs	1.0001	1.4003

Question 5 When $\omega(0)$ is very close to OY axis, we can set $\omega_1(0) = \omega_3(0) = 0.01$, and $\omega_2 = 1$ to investigate the solutions. Figure 9 shows 3D plots of ω_1, ω_2 and ω_3 against t in the same graph.

Figure 9: the 3D plot

Physical description ω_2 . The motion is stable and the largest amplitude oscillation is around ω_2 .

Question 6

Inspired from Question 5, let us set $\omega_2(0)=0$ and $\omega_1(0)=1$ (w.o.l.g) and vary $\omega_3(0)$ to seek for such solution. From the computed results, we can discover that as $\omega_3(0) \to 1.632993162 \dots (\sqrt{\frac{8}{3}})$; ω_1 , $\omega_3 \to 0$ and $|\omega_2| \to 1.8$. See Figure 10 and 11 for few iterations.

Figure 10: case $\omega_3(0) = 1.63$

Figure 11: case $\omega_3(0) = 1.633$

Hence such solution exists.

Simulate the solution numerically The numerical solution only works for finite time. When t is very large, ω jumps periodically. (see Figure 12) This is plausible as this solution is not stable. Also from the numerical results, we discover that $H^2 \to 2E$, hence H must satisfies $H = \sqrt{2E}$.

Figure 12: : case $\omega_3(0) = \sqrt{\frac{8}{3}}$

Question 7

We separation all possible qualitative types of motion in 3 cases: Noted: for rang of behaviour of each type try different values of A, B and C, we can see the range of behaviour for each type.

i) $H^2>2E$ The body oscillates at a near constant rate around a particular axis. Example: A = 1.4, B = 1, C = 0.7, $\omega_1=\omega_2=\omega_3=1$ at t=0

Figure 13

Range of behaviour For $H^2\gg 2E$, the body oscillates at a very rapidly. For $H^2\approx 2E$, the body oscillates at a slower rate.

- ii) $H^2=2E$ (See Question 6) which is the equation of boundaries of these regions. Hence as thee boundaries are approached, the solutions believe like: $\omega(t)$ begins away from OY axis, but tends towards the steady unstable solution, parallel to OY as $t\to\infty$. (as described in Question 6)
- iii) $H^2 < 2E$ Example: A = 0.5, B = 1, C = 0.5, $\omega_1 = \omega_2 = \omega_3 = 1$ at t=0

Figure 14

the body oscillates at an slower rate compared with case $H^2 > 2E$, and no components of $\omega(t)$ oscillates at constant rate.

The choice of $\frac{A}{B}$ and $\frac{C}{B}$ determines the which axis that the body oscillates (approximately) a constant rate. E.g. if $\frac{A}{B} > \frac{C}{B}$, then the oscillation around ω_1 at (approximately) a constant rate, vice versa (see Figure 13 and 14)

Question 8

Case A = 1.4, B = 1 and C = 0.7

• Effect on Question 5 (obtained from Program 11)

Figure 15

Affect on Question 6

Due to damping takes place, the condition $H^2 = 2E$ will not hold.

Affect on Question 7: follows from Question 6, the classifications would not be valid. In general, the affect acts like a damping to the motion of the body, hence the amplitudes of oscillations decrease against with time. (see figure 16)

Question 9

The classification in Question 7 would still be useful. There is still a division of the solution space into regions. However, we need to change the boundaries from $H^2=2E$ to a nonlinear boundaries with the damping factor taken into account.

Reference:

- 1. Tong, D. Lecture notes on Classical Dynamics (2015)
- 2. Cowley S.J. Lecture notes on Numerical Analysis (2014)

Appendix

```
Program 1 (to produce figure 1-3)
%Solve Euler's Equation numerically
n=1;
A=1.5;
B=1;
C=0.5;
t0=0;
tn=10;
%step size h
step=0.1;
U0=1;
V0=1;
W0=1;
m=(tn-t0)/step;
f=@(t,V,W)((B-C)*V*W/A);
g=@(t,U,W)((C-A)*W*U/B);
h=@(t,U,V)((A-B)*U*V/C);
w1=zeros(1,m);
t=zeros(1,m);
E=0.5*A*U0^2+0.5*B*V0^2+0.5*C*W0^2;
H=sqrt(A^2*U0^2+B^2*V0^2+C^2*W0^2);
display([E,H^2])
%4-stage explicit RK methods
while n<m+1
  t1=t0+step;
  a1=f(t0,V0,W0);
  b1=g(t0,U0,W0);
  c1=h(t0,U0,V0);
  a2=f(t0+0.5*step,V0+0.5*step*b1,W0+0.5*step*c1);
  b2=g(t0+0.5*step,U0+0.5*step*a1,W0+0.5*step*c1);
  c2=h(t0+0.5*step,U0+0.5*step*a1,V0+0.5*step*b1);
  a3=f(t0+0.5*step,V0+0.5*step*b2,W0+0.5*step*c2);
  b3=g(t0+0.5*step,U0+0.5*step*a2,W0+0.5*step*c2);
  c3=h(t0+0.5*step,U0+0.5*step*a2,V0+0.5*step*b2);
  a4=f(t0+step,V0+step*b3,W0+step*c3);
  b4=g(t0+step,U0+step*a3,W0+step*c3);
  c4=h(t0+step,U0+step*a3,V0+step*b3);
  U1=U0+step*(a1/6+a2/3+a3/3+a4/6);
  V1=V0+step*(b1/6+b2/3+b3/3+b4/6);
  W1=W0+step*(c1/6+c2/3+c3/3+c4/6);
  t(n)=t1;
  w1(n)=U1;
  plot(t,w1)
xlabel('time')
vlabel('w1')
%disp([t1,U1])
t0=t1;
```

```
U0=U1;
V0=V1;
W0=W1;
n=n+1;
end
E=0.5*A*U1^2+0.5*B*V1^2+0.5*C*W1^2:
H=sqrt(A^2*U1^2+B^2*V1^2+C^2*W1^2);
display([E,H^2])
Program 4 (to produce figure 4)
%Solve Euler's Equation numercailly
n=1;
A=1.5;
B=1;
C=0.5;
t0=0;
tn=10;
%step size h
step=0.1;
U0=1;
V0=1;
W0=1;
m=(tn-t0)/step;
f=@(t,V,W)((B-C)*V*W/A);
g=@(t,U,W)((C-A)*W*U/B);
h=0(t,U,V)((A-B)*U*V/C);
w1=zeros(1,m);
w2=zeros(2,m);
w3=zeros(1,m);
t=zeros(1,m);
E=0.5*A*U0^2+0.5*B*V0^2+0.5*C*W0^2;
H=sqrt(A^2*U0^2+B^2*V0^2+C^2*W0^2);
display([E,H^2])
%4-stage explicit RK methods
while n<m+1
    t1=t0+step;
    a1=f(t0,V0,W0);
    b1=g(t0,U0,W0);
    c1=h(t0,U0,V0);
    a2=f(t0+0.5*step, V0+0.5*step*b1, W0+0.5*step*c1);
    b2=g(t0+0.5*step,U0+0.5*step*a1,W0+0.5*step*c1);
    c2=h(t0+0.5*step,U0+0.5*step*a1,V0+0.5*step*b1);
    a3=f(t0+0.5*step,V0+0.5*step*b2,W0+0.5*step*c2);
    b3=g(t0+0.5*step,U0+0.5*step*a2,W0+0.5*step*c2);
    c3=h(t0+0.5*step,U0+0.5*step*a2,V0+0.5*step*b2);
    a4=f(t0+step,V0+step*b3,W0+step*c3);
    b4=g(t0+step,U0+step*a3,W0+step*c3);
    c4=h(t0+step,U0+step*a3,V0+step*b3);
    U1=U0+step*(a1/6+a2/3+a3/3+a4/6);
    V1=V0+step*(b1/6+b2/3+b3/3+b4/6);
    W1=W0+step*(c1/6+c2/3+c3/3+c4/6);
    t(n)=t1;
    w1(n)=U1;
    w2(n)=V1;
```

```
w3(n)=W1;
    plot3(w1,w2,w3)
xlabel('w1')
ylabel('w2')
zlabel('w3')
t0=t1;
U0=U1;
V0=V1;
W0=W1;
n=n+1;
end
E=0.5*A*U1^2+0.5*B*V1^2+0.5*C*W1^2;
H=sqrt(A^2*U1^2+B^2*V1^2+C^2*W1^2);
display([E,H^2])
Program 6 (for figure 5,6)
%Answer Q2 with 3D plots
n=1;
A=input('please input your A=');
C=input('please input your C=');
t0=0;
tn=500;
%step size h
step=0.01;
U0=0.01;
V0=1;
W0=0.01;
m=(tn-t0)/step;
w1=zeros(1,m);
w2=zeros(2,m);
w3=zeros(1,m);
t=zeros(1,m);
E=0.5*A*U0^2+0.5*B*V0^2+0.5*C*W0^2;
H=sqrt(A^2*U0^2+B^2*V0^2+C^2*W0^2);
display([E,H^2])
f=0(t,V,W)(E*(B-C)*V*W/A);
g=0(t,U,W)(E*(C-A)*W*U/B);
h=@(t,U,V)(E*(A-B)*U*V/C);
%4-stage explicit RK methods
while n<m+1
    t1=t0+step;
    a1=f(t0,V0,W0);
    b1=g(t0,U0,W0);
    c1=h(t0,U0,V0);
    a2=f(t0+0.5*step, V0+0.5*step*b1, W0+0.5*step*c1);
    b2=g(t0+0.5*step,U0+0.5*step*a1,W0+0.5*step*c1);
    c2=h(t0+0.5*step,U0+0.5*step*a1,V0+0.5*step*b1);
    a3=f(t0+0.5*step, V0+0.5*step*b2, W0+0.5*step*c2);
    b3=g(t0+0.5*step,U0+0.5*step*a2,W0+0.5*step*c2);
    c3=h(t0+0.5*step, U0+0.5*step*a2, V0+0.5*step*b2);
    a4=f(t0+step,V0+step*b3,W0+step*c3);
    b4=g(t0+step,U0+step*a3,W0+step*c3);
    c4=h(t0+step,U0+step*a3,V0+step*b3);
    U1=U0+step*(a1/6+a2/3+a3/3+a4/6);
```

```
V1=V0+step*(b1/6+b2/3+b3/3+b4/6);
    W1=W0+step*(c1/6+c2/3+c3/3+c4/6);
    t(n)=t1;
    w1(n)=U1;
    w2(n)=V1;
    w3(n)=W1;
    %plot(t,w3)
plot3(w1,w2,w3,'r');
xlabel('w1');
ylabel('w2');
zlabel('w3');
t0=t1;
U0=U1;
V0=V1;
W0=W1;
n=n+1;
end
E=0.5*A*U1^2+0.5*B*V1^2+0.5*C*W1^2;
H=sqrt(A^2*U1^2+B^2*V1^2+C^2*W1^2);
display([E,H^2])
Program 9 (for figure 9)
%ans to Q5
%Solve Euler's Equation numercailly
n=1;
A=1.4;
B=1;
C=2.5;
t0=0;
tn=20;
%step size h
step=0.01;
U0=1;
V0 = 0;
W0=0.820;
m=(tn-t0)/step;
f=@(t,V,W)((B-C)*V*W/A);
g=@(t,U,W)((C-A)*W*U/B);
h=@(t,U,V)((A-B)*U*V/C);
w1=zeros(1,m);
w2=zeros(1,m);
w3=zeros(1,m);
t=zeros(1,m);
E=0.5*A*U0^2+0.5*B*V0^2+0.5*C*W0^2;
H=sqrt(A^2*U0^2+B^2*V0^2+C^2*W0^2);
display([E,H^2])
%4-stage explicit RK methods
while n<m+1
    t1=t0+step;
    a1=f(t0,V0,W0);
    b1=g(t0,U0,W0);
    c1=h(t0,U0,V0);
    a2=f(t0+0.5*step,V0+0.5*step*b1,W0+0.5*step*c1);
    b2=g(t0+0.5*step,U0+0.5*step*a1,W0+0.5*step*c1);
    c2=h(t0+0.5*step,U0+0.5*step*a1,V0+0.5*step*b1);
    a3=f(t0+0.5*step, V0+0.5*step*b2, W0+0.5*step*c2);
    b3=g(t0+0.5*step,U0+0.5*step*a2,W0+0.5*step*c2);
    c3=h(t0+0.5*step,U0+0.5*step*a2,V0+0.5*step*b2);
```

```
a4=f(t0+step,V0+step*b3,W0+step*c3);
    b4=g(t0+step,U0+step*a3,W0+step*c3);
    c4=h(t0+step,U0+step*a3,V0+step*b3);
    U1=U0+step*(a1/6+a2/3+a3/3+a4/6);
    V1=V0+step*(b1/6+b2/3+b3/3+b4/6);
    W1=W0+step*(c1/6+c2/3+c3/3+c4/6);
    t(n)=t1;
    w1(n)=U1;
    w2(n)=V1;
    w3(n)=W1;
    plot3(w1,w2,w3)
xlabel('w1')
ylabel('w2')
zlabel('w3')
t0=t1;
U0=U1;
V0=V1;
W0=W1;
n=n+1;
end
E=0.5*A*U1^2+0.5*B*V1^2+0.5*C*W1^2;
H=sqrt(A^2*U1^2+B^2*V1^2+C^2*W1^2);
display([E,H^2])
Program 10 (for Question 7)
% Sovling Q6
n=1;
A=0.25;
B=0.27;
C=0.30;
t0=0;
tn=50;
%step size h
step=0.2;
U0=1;
V0=1;
W0=1;
m=(tn-t0)/step;
f=@(t,V,W)((B-C)*V*W/A);
g=@(t,U,W)((C-A)*W*U/B);
h=@(t,U,V)((A-B)*U*V/C);
w1=zeros(1,m);
w2=zeros(1,m);
w3=zeros(1,m);
t=zeros(1,m);
E=0.5*A*U0^2+0.5*B*V0^2+0.5*C*W0^2;
H=sqrt(A^2*U0^2+B^2*V0^2+C^2*W0^2);
display([E,H^2])
%4-stage explicit RK methods
while n<m+1
    t1=t0+step;
    a1=f(t0,V0,W0);
    b1=g(t0,U0,W0);
    c1=h(t0,U0,V0);
    a2=f(t0+0.5*step,V0+0.5*step*b1,W0+0.5*step*c1);
```

```
b2=g(t0+0.5*step,U0+0.5*step*a1,W0+0.5*step*c1);
    c2=h(t0+0.5*step,U0+0.5*step*a1,V0+0.5*step*b1);
    a3=f(t0+0.5*step,V0+0.5*step*b2,W0+0.5*step*c2);
    b3=g(t0+0.5*step,U0+0.5*step*a2,W0+0.5*step*c2);
    c3=h(t0+0.5*step,U0+0.5*step*a2,V0+0.5*step*b2);
    a4=f(t0+step,V0+step*b3,W0+step*c3);
    b4=q(t0+step,U0+step*a3,W0+step*c3);
    c4=h(t0+step,U0+step*a3,V0+step*b3);
    U1=U0+step*(a1/6+a2/3+a3/3+a4/6);
    V1=V0+step*(b1/6+b2/3+b3/3+b4/6);
    W1=W0+step*(c1/6+c2/3+c3/3+c4/6);
    t(n)=t1;
    w1(n)=U1;
    w2(n)=V1;
    w3(n)=W1;
    plot (t,w1,'r',t,w2,'b',t,w3,'g-.')
xlabel('time')
ylabel('w1/w2/w3')
legend('w1','w2','w3')
t0=t1;
U0=U1;
V0=V1;
W0=W1;
n=n+1;
end
E=0.5*A*U1^2+0.5*B*V1^2+0.5*C*W1^2;
H=sqrt(A^2*U1^2+B^2*V1^2+C^2*W1^2);
display([E,H^2])
Program 11 (for Question 8)
%Question 8
n=1;
A=1.4;
B=1;
C=0.7;
t0=0;
tn=40;
k=0.01;
%step size h
step=0.1;
U0=1;
V0=1;
W0=1;
m=(tn-t0)/step;
f=@(t,U,V,W)(((B-C)/A)*V*W -k*U);
g=@(t,U,V,W)(((C-A)/B)*W*U-k*V);
h=@(t,U,V,W)(((A-B)/C)*U*V-k*W);
w1=zeros(1,m);
w2=zeros(1,m);
w3=zeros(1,m);
t=zeros(1,m);
E=0.5*A*U0^2+0.5*B*V0^2+0.5*C*W0^2;
H=sqrt(A^2*U0^2+B^2*V0^2+C^2*W0^2);
```

```
display([E,H^2])
%4-stage explicit RK methods
while n < m+1
    t1=t0+step;
    a1=f(t0,U0,V0,W0);
    b1=g(t0,U0,V0,W0);
    c1=h(t0,U0,V0,W0);
    a2=f(t0+0.5*step,U0+0.5*step*a1,V0+0.5*step*b1,W0+0.5*step*c1);
    b2=g(t0+0.5*step,U0+0.5*step*a1,V0+0.5*step*b1,W0+0.5*step*c1);
    c2=h(t0+0.5*step, U0+0.5*step*a1, V0+0.5*step*b1, W0+0.5*step*c1);
    a3=f(t0+0.5*step, U0+0.5*step*a2, V0+0.5*step*b2, W0+0.5*step*c2);
    b3=q(t0+0.5*step,U0+0.5*step*a2,V0+0.5*step*b2,W0+0.5*step*c2);
    c3=h(t0+0.5*step, U0+0.5*step*a2, V0+0.5*step*b2, W0+0.5*step*c2);
    a4=f(t0+step,U0+step*a3,V0+step*b3,W0+step*c3);
    b4=g(t0+step,U0+step*a3,V0+step*b3,W0+step*c3);
    c4=h(t0+step,U0+step*a3,V0+step*b3,W0+step*c3);
    U1=U0+step*(a1/6+a2/3+a3/3+a4/6);
    V1=V0+step*(b1/6+b2/3+b3/3+b4/6);
    W1=W0+step*(c1/6+c2/3+c3/3+c4/6);
    t(n)=t1;
    w1(n)=U1;
    w2(n)=V1;
    w3(n)=W1;
    plot (t,w1,'r',t,w2,'b',t,w3,'g-.')
xlabel('time')
ylabel('w1/w2/w3')
legend('w1','w2','w3')
%plot3(w1,w2,w3)
t0=t1;
U0=U1;
V0=V1;
W0=W1;
n=n+1;
end
E=0.5*A*U1^2+0.5*B*V1^2+0.5*C*W1^2;
H=sqrt(A^2*U1^2+B^2*V1^2+C^2*W1^2);
display([E,H^2])
```