

This HTML is created from PDF at $\underline{\text{https://www.pdfonline.com/convert-pdf-to-html/}}$

The Solution

This HTML is created from PDF at https://www.pdfonline.com/convert-pdf-to-html/ **Ambient**

Use automated design to optimize a heat sink connected to a heat-generating plate

• Heat sinks dissipate energy through convection and radiation

The Physics

- The most efficient heat sink is the one that has the greatest heat flow
- rate [Watts]

Methodology

"units":"mm"

thickness,

cellSize);

- Finite Element Model Creation

• Infill with lattice

with voxels

• Create implicit model

• Create surface mesh from implicit body

• Create volume mesh from surface mesh

nTopology Steps

Thermal Analysis • Define Material (Al 6061-T6)

• Define Boundary Conditions

• Generate heat flux point map

- Pre-processing

• Define nTopology input variables

(thickness, mix factor, cell size)

• Set up results to be exported to .csv file

• Copy .ntop files and manually change

Automation

(nTopCL)

Steps

block types

Each Design Iteration

- Write input.json file • Execute nTopCL through system command line
- Parse results from output files

Defining an Optimization Problem • nTopology can calculate total surface area (A) and

nodal heat flux (q_n)

of area and flux

• $\sigma q_e A_e \neq A \sigma q_n$

• Heat flow rate is the product

• Two-objective optimization

NSGA-II

space → NSGA-II

(Non-dominated Sorting Genetic Algorithm II) Objective Functions:

• Mix Factor $\in [0,1]$

• Thickness \in [.2mm, .5mm]

of a large, unknown search • [totalFlux, SurfaceArea] = evaluateDesign(lattice1, lattice2, mix, thickness, cellSize); Decision Variables:

• Cell Size \in [3mm, 5mm]

Result

Optimization

• Lattice 1 type (Gyroid, Schwarz, Diamond, Lidinoid, SplitP, Neovious) $\in [1...6]$

• Lattice 2 type (Gyroid, Schwarz, Diamond, Lidinoid , SplitP, Neovious) $\in [1...6]$

Heat Flux: 7.09 MW/m^2 Surface Area: 584 mm^2

a Standard Sink

Design

This HTML is created from PDF at $\underline{\text{https://www.pdfonline.com/convert-pdf-to-html.}}$

eatsinkoptimization

Heat Flux: 17.8 MW/m^2

Surface Area: 2842 mm^2