1 Basic Statistical Concepts

Consider a poll with two answers, A and B, regarding political parties. Let:

- N: total number of voters,
- M: number of voters supporting A,
- n: size of the poll,
- X_1, X_2, \ldots, X_n : responses,
- Each $X_i \in \{0,1\}$ if $X_i = 1$ supports A.

Additionally, assume:

- We select n individuals from N at random and record their truthful reply,
- Every person asked replies (no selection bias),
- People can be asked repeatedly.

The aim of the poll is to estimate the fraction of party A supporters, say θ .

Definition 1 (Estimator). An intuitive estimator is:

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

This estimator will be analyzed in the following sections to determine whether it is unbiased, consistent, and optimal.

2 Statistical Models

Let (X, \mathcal{F}) be a measurable space, i.e., a set X with a sigma-algebra \mathcal{F} , in which our statistical observations take values.

Definition 2 (Statistical Model). Let (X, \mathcal{F}) be some sample space. We call the parameter space Θ . A statistical model is a family of probability measures $\{P_{\theta}\}_{\theta \in \Theta}$.

Remark 1. Often (X, \mathcal{F}) is a product space. For example, if $X_i \in \{0, 1\}$, each P_{θ} is a product distribution, i.e., X_1, X_2, \ldots, X_n are independent and identically distributed (iid). Then we say $\{P_{\theta} : \theta \in \Theta\}$ is an iid statistical model.

Remark 2. If every person could only be asked once, we would have P_{θ} as a hypergeometric distribution, which converges to the Bernoulli model as $N, M \to \infty$.

3 Parameter Estimation

Assume $(\Omega, \mathcal{F}, P_{\theta})$ is the setting of parametric statistics. Assume Θ is measurable.

Definition 3 (Estimator). An estimator for θ is any measurable function $\hat{\theta}: X \to \Theta$, i.e., any function that, based on some data X, outputs a guess $\hat{\theta}(X)$ for θ .

4 Unbiased and Consistent Estimators

4.1 Unbiased Estimator

Definition 4 (Unbiased Estimator). Let $(\Omega, \mathcal{F}, P_{\theta})$ be a measurable space. An estimator $\hat{\theta}$ is called unbiased if:

$$\mathbb{E}[\hat{\theta}] = \theta \quad \forall \theta \in \Theta$$

where $\mathbb{E}_{P_{\theta}}$ denotes expectation under the law P_{θ} . In more explicit terms, unbiasedness means no systematic error.

Proof. For the Bernoulli model, we compute:

$$\mathbb{E}[\hat{\theta}_n] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}[X_i] = \frac{1}{n}\sum_{i=1}^n \theta = \theta$$

Thus, $\hat{\theta}_n$ is an unbiased estimator of θ .

4.2 Consistent Estimator

Definition 5 (Consistent Estimator). Let $\{P_{\theta,n} : n \geq 1\}$ be a sequence of statistical models on the same parameter space. Let $\hat{\theta}_n$ be a sequence of estimators. The sequence $\hat{\theta}_n$ is called consistent if for every $\theta \in \Theta$:

$$\hat{\theta}_n \to \theta$$
 in probability as $n \to \infty$

or equivalently:

$$P_{\theta} \left(\lim_{n \to \infty} \hat{\theta}_n = \theta \right) = 1$$

Proof. For the Bernoulli model:

$$\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

We know $\mathbb{E}[\hat{\theta}_n] = \theta$ and $\operatorname{Var}(\hat{\theta}_n) = \frac{\theta(1-\theta)}{n}$. Using Chebyshev's inequality, for any $\epsilon > 0$:

$$P\left(|\hat{\theta}_n - \theta| > \epsilon\right) \le \frac{\operatorname{Var}(\hat{\theta}_n)}{\epsilon^2} = \frac{\theta(1 - \theta)}{n\epsilon^2}$$

As $n \to \infty$, this probability tends to 0, proving that $\hat{\theta}_n$ is consistent.

5 Maximum Likelihood Estimation (MLE)

Definition 6 (Maximum Likelihood Estimator). The maximum likelihood estimator (MLE) is the parameter that maximizes the likelihood function:

$$L(\theta) = \prod_{i=1}^{n} P_{\theta}(X_i)$$

5.1 Proof: MLE for Bernoulli Model

Proof. For the Bernoulli model, $P_{\theta}(X_i) = \theta^{X_i}(1-\theta)^{1-X_i}$, so the likelihood function is:

$$L(\theta) = \prod_{i=1}^{n} \theta^{X_i} (1 - \theta)^{1 - X_i} = \theta^{\sum X_i} (1 - \theta)^{n - \sum X_i}$$

Taking the logarithm:

$$\log L(\theta) = \sum X_i \log \theta + (n - \sum X_i) \log(1 - \theta)$$

Setting the derivative with respect to θ equal to 0 gives:

$$\frac{d}{d\theta}\log L(\theta) = \frac{\sum X_i}{\theta} - \frac{n - \sum X_i}{1 - \theta} = 0$$

Solving for θ , we get:

$$\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

which is the MLE.

6 Bayesian Methods

Definition 7 (Posterior Distribution in Bayesian Inference). In Bayesian statistics, a key element is the prior distribution, denoted by $\pi(\theta)$, which reflects our beliefs about the parameter θ before observing data. The posterior distribution is given by:

$$\pi(\theta|X) \propto P_{\theta}(X)\pi(\theta)$$

6.1 Example: Posterior for Bernoulli Model

Example 1. Suppose we have a Beta prior for θ , $\pi(\theta) \sim Beta(\alpha, \beta)$, and observe X_1, \ldots, X_n as Bernoulli trials. The likelihood is:

$$P(X|\theta) = \theta^{\sum X_i} (1 - \theta)^{n - \sum X_i}$$

The posterior is proportional to the product of the prior and likelihood:

$$\pi(\theta|X) \propto \theta^{\sum X_i + \alpha - 1} (1 - \theta)^{n - \sum X_i + \beta - 1}$$

Thus,
$$\pi(\theta|X) \sim Beta(\sum X_i + \alpha, n - \sum X_i + \beta)$$
.

Notes on Bayes and Posterior

 $\mathbf{Posterior} = \mathrm{prior} \times \mathrm{likelihood}$

Normalizing Constant

$$\int Posterior \, dx = 1$$

So,

$$\int Posterior \, dx = 1$$

 $\mathbf{Prior} \to \mathbf{Posterior}$ via Bayes.

Let \mathcal{F}_0 be a σ -algebra on Ω and suppose $(\Omega, \mathcal{F}_0, P_\theta)$ is a dominated statistical model with densities $p(x|\theta)$. Assume

$$x, \theta \in \Omega \implies p(x|\theta)$$

is jointly measurable with respect to $\mathcal{F}_0 \times \mathcal{F}_1$.

Let π be a prior distribution on Ω with density $\pi(\theta)$ with respect to measure ν . Define posterior density

$$\pi(\theta|x) = \frac{p(x|\theta)\pi(\theta)}{\int p(x|\theta)\pi(\theta) d\theta}$$

The corresponding probability measure is called the **posterior distribution**.

Think of $p(x|\theta)$ as a Lebesgue measure. Let ν be a Lebesgue density.

Exception: If $\Omega = \{0, 1\}$, then we take ν to be the counting measure.

From the posterior, we can derive several estimators. For example, $E[\theta|X=x]$ is convex:

$$\int \theta p(x|\theta) d\theta = E[\theta|X = x]$$

Example: Binomial model $X|\theta \sim \text{Binomial}(n,\theta)$ with prior $\theta \sim \text{Unif}(0,1)$.

For a uniform prior, we know the MAP and MLE.

Posterior mean:

$$\theta_{\text{MAP}} = \frac{k+1}{n+2}$$

In the case of coin flips, $X \sim \text{Binomial}(n, \theta)$, where k is the number of heads, we conclude $\theta | X \sim \text{Beta}(k+1, n-k+1)$.

$$\theta | X \sim \text{Beta}(k+1, n-k+1)$$

Conjugate Bayes Models: Let $P_{\theta} \in \mathcal{P}$ be a statistical model. Then some family of priors is called conjugate if

$$P_{\theta} \in \mathcal{P} \Rightarrow \theta | X \in \mathcal{P}$$

for all $X \in \mathcal{X}$, where \mathcal{X} is the sample space.

$$\theta | X \sim \text{Beta}(a, b), \quad X \sim \text{Bernoulli}(p)$$

Loss Functions and Risk

Loss Function: A function $L: \Theta \times \mathcal{X} \to [0, \infty)$ is a basis function if for every $\theta \in \Theta$, $L(\theta, \cdot)$ is measurable.

Given an estimator δ , the expected loss is

$$R(\theta, \delta) = E_{\theta}[L(\theta, \delta)]$$

Mean Squared Error (MSE):

$$L(x,y) = (x-y)^2 \Rightarrow R(\theta,\delta) = E_{\theta}[(\delta-\theta)^2]$$

Bias-Variance Decomposition:

$$L(x,y) = (x-y)^2$$

Proof: Let $\delta(x) = E[\theta|X = x]$.

$$R(\theta, \delta) = E_{\theta}[(\delta(X) - \theta)^2]$$

Bias-variance decomposition:

$$E[(\delta(X) - \theta)^2] = Var(\delta(X)) + (Bias)^2$$

Minimax and Bayes Risk

Minimax Risk: Given an estimator δ in a model $P_{\theta} \in \mathcal{P}$, the maximal risk of it is

$$\sup_{\theta \in \Theta} R(\theta, \delta)$$

The minimax of a model P_{θ} is given as $\inf_{\delta} \sup_{\theta} R(\theta, \delta)$, where the inf is over all estimators. An estimator is called minimax if

$$\sup_{\theta} R(\theta, \delta) = \inf_{\delta} \sup_{\theta} R(\theta, \delta)$$

Bayes Risk: Given an estimator δ and prior π on Θ , the Bayes risk of δ is defined as

$$R_{\pi}(\delta) = \int R(\theta, \delta) d\pi(\theta)$$

The posterior risk of an estimator $\delta(X)$ is defined by

$$R(\delta|X=x) = E[L(\theta,\delta(X))|X=x]$$

Suppose δ^* is an estimator that minimizes the posterior risk, $\delta^*(x) = E[\theta|X=x]$. Then it also minimizes the Bayes risk.

If $L(x,y)=(x-y)^2$, the Bayes optimal estimator $\delta(x)$ is the posterior mean.

We want to construct C(x) s.t. $P_{\theta}(\theta \in C(x)) \ge 1 - \alpha, \forall \theta \in [0, 1]$

$$x^{(1)}$$
 () $C(x^{(1)})$

$$x^{(k)} \qquad (\quad) \quad C(x^{(k)})$$

 $\theta \rightarrow \rightarrow \rightarrow$ contains true param 3/4 times

Example cont.:

Best guess: $C(x) = \left[\frac{\bar{X}_n - a}{n}, \frac{\bar{X}_n + b}{n}\right]$

$$P_{\theta}^{n}(\theta \in C(x)) = P_{\theta}^{n} \left(\frac{\bar{X}_{n}}{n} - \theta \in [-b, a] \right)$$
$$= F_{\theta}^{n}(a) - F_{\theta}^{n}(-b) + \rho_{n}$$

where $F_{\theta}^{n}: \mathbb{R} \to [0,1], F_{\theta}^{n}(t) = P_{\theta}^{n}\left(\frac{\bar{X}_{n}-\theta}{n} \leq t\right)$ is the CDF of $\frac{\bar{X}_{n}-\theta}{n}$ under P_{θ} and $\rho_{n} = P_{\theta}^{n}\left(\frac{\bar{X}_{n}}{n} - \theta = -b\right)$.

How to choose a and b:

CDF CDF
$$\leftarrow$$
 $-b$ $a \rightarrow t$

We'd like to choose $a = (F_{\theta}^n)^{-1} \left(1 - \frac{\alpha}{2}\right)$ and $b = (F_{\theta}^n)^{-1} \left(\frac{\alpha}{2}\right)$, where

$$(F_{\theta}^n)^{-1}(p) := \inf\{t \in \mathbb{R} : F_{\theta}^n(t) \ge x\}$$
 (Quantile Function)

Let's use a normal approximation, for $\sigma^2 = \theta(1 - \theta)$:

$$\sqrt{n}\left(\frac{\bar{X}_n}{n} - \theta\right) = \frac{1}{\sqrt{n}} \sum_{k=1}^n \frac{X_k - \theta}{\sigma} \xrightarrow{d} \mathcal{N}(0, 1) \quad [CLT]$$

 $X_k \sim \mathrm{Ber}(\theta)$

Then it follows that

$$F_{\theta}^{n}(a_{n}) = P_{\theta}^{n} \left(\frac{\bar{X}_{n}}{n} - \theta \leq a_{n} \right)$$

$$= P_{\theta}^{n} \left(\frac{\sqrt{n}}{\sigma} \left(\frac{\bar{X}_{n} - \theta}{n} \right) \leq \sqrt{n} a_{n} \right)$$

$$= \Phi \left(\frac{\sqrt{n}}{\sigma} a_{n} \right),$$

where the convergence is valid if $a_n := \text{const.} \frac{1}{\sqrt{n}}$.

Now, let us choose

$$a := \frac{\sigma}{\sqrt{n}} z_{1 - \frac{\alpha}{2}}$$

where $z_{1-\frac{\alpha}{2}} = \Phi^{-1}\left(1-\frac{\alpha}{2}\right)$ is the $1-\frac{\alpha}{2}$ quantile of $\mathcal{N}(0,1)$ and b=a. Then

$$C(x) = \left[\frac{\bar{X}_n}{n} - \frac{\sigma}{\sqrt{n}} z_{1-\frac{\alpha}{2}}, \frac{\bar{X}_n}{n} + \frac{\sigma}{\sqrt{n}} z_{1-\frac{\alpha}{2}} \right]$$

It follows

$$P_{\theta}^{n}(\theta \in C(x)) = F_{\theta}^{n}(a_{n}) - F_{\theta}^{n}(b) + \rho_{n} = 1 - \frac{\alpha}{2} + o(1) + o(1)$$
$$= 1 - \alpha + o(1) \text{ as } n \to \infty$$

⇒ Asymptotically valid confidence set

One more problem: σ depends on θ

- Upper bound: $\sup_{\theta \in [0,1]} \theta(1-\theta) = \frac{1}{4}$ (maximized at $\theta = \frac{1}{2})$
- Empirical Variance: $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \frac{1}{n} \sum_{i=1}^n X_i)^2$

$$\frac{\hat{\sigma}^2}{\sigma^2} \stackrel{P_{\theta}}{\to} 1$$

Slutsky's Theorem:

$$X_n \xrightarrow{d} X$$
, $Y_n \xrightarrow{d} \text{const.} \Rightarrow X_n Y_n \xrightarrow{d} CX$

Exercise: Use this to deduce that $a_n = \frac{\hat{\sigma}}{\sqrt{n}} z_{1-\frac{\alpha}{2}}$ is also valid

Remark:

Hypothesis Testing

Definition: Let $(P_{\theta}: \theta \in \Theta)$ be a statistical model and let $\Theta = \Theta_0 \cup \Theta_1$ be a partition. Then:

- A statistical test is a measurable function of the data $\varphi: (\mathcal{X}, \mathcal{F}) \to [0, 1]$
- If $\forall x \in \mathcal{X}, \varphi(x) \in \{0,1\}$, then φ is a non-randomized test
- Else φ is randomized

Definitions:

- $H_0: \theta \in \Theta_0$ is called the null hypothesis
- $H_1: \theta \in \Theta_1$ is called the alternative hypothesis
- The map $\theta \to \beta_{\varphi}(\theta) = P_{\theta}[\varphi = 1]$ is called the power function of a test φ

$$1 \quad \beta_{\varphi}(\theta) \quad 0 \quad \Theta_0 \quad \Theta_1 \quad \Theta$$

- For $\theta \in \Theta_0$, $\beta_{\varphi}(\theta)$ is the type-I-error under θ [Wrongly rejecting the null]
- For $\theta \in \Theta_1$, $1 \beta_{\varphi}(\theta)$ is the type-II-error

Note:

$$1 - P_{\theta}(\varphi = 1) = P_{\theta}(\varphi = 0) = P_{\theta}$$
 (wrongly accepting the null)

Definition: [Level]

$$\varphi: \mathcal{X} \to [0,1]$$
 has level $\alpha \in [0,1]$ if

$$\sup_{\theta \in \Theta_0} \beta_{\varphi}(\theta) \le \alpha$$

Definition: [Uniformly most powerful test]

Given a level $\alpha \in (0,1)$, $\varphi : \mathcal{X} \to [0,1]$ is called UMP if for every other test φ' of level α and all $\theta \in \Theta_1$,

$$\beta_{\varphi}(\theta) \ge \beta_{\varphi'}(\theta)$$

$$1 \quad \alpha \quad 0 \qquad \beta_{\varphi}(\theta) \qquad \beta_{\varphi'}(\theta) \qquad \Theta_0 \qquad \Theta_1$$

Remark:

In general, it is very hard to find UMP tests. But: for simple hypotheses, i.e. $\Theta_0 = \{\theta_0\}, \Theta_1 = \{\theta_1\}$, it is possible. Here, likelihood ratio tests are UMP.

Theorem: [Neyman-Pearson Lemma]

Let $\Theta_0 = \{\theta_0\}, \Theta_1 = \{\theta_1\}$ be simple:

1. **Existence:** There exists a test φ and a constant $k \in [0, \infty)$, s.t. $P_{\theta_0}(\varphi = 1) = \alpha$, of the form

$$\varphi(x) = \begin{cases} 1, & \text{if } \frac{p_{\theta_1}(x)}{p_{\theta_0}(x)} > k \\ 0, & \text{if } \frac{p_{\theta_1}(x)}{p_{\theta_0}(x)} < k \end{cases} (*)$$

Here $p_{\theta_1}, p_{\theta_0}$ are densities w.r.t. some dominated measure μ , e.g. $\mu = p_{\theta_0} + p_{\theta_1}$. Finite Θ implies measure is always dominated (likelihood always exists).

- 2. Sufficiency: If φ satisfies $P_{\theta_0}(\varphi = 1) = \alpha$ and (*) then φ is a UMP level α test.
- 3. Necessity: If φ_k is UMP for level α , then it must be of the form (*), and it also satisfies $P_{\theta_0}(\varphi_k = 1) = \alpha$, or else it must satisfy $P_{\theta_1}(\varphi_k = 1) = 1$.

Proof:

1. Define $r(x) = \frac{p_{\theta_1}(x)}{p_{\theta_0}(x)} \in [0, \infty) \cup \{\pm \infty\}$. Let F_0 be the CDF of r(x) under P_{θ_0} .

$$F_0(t) = P_{\theta_0}(r(x) \le t)$$

Then define also $\alpha(t) = 1 - F_0(t) = P_{\theta_0}(r(x) > t)$

• α is right-continuous:

$$\lim_{\epsilon \to 0} \alpha(t+\epsilon) = \lim_{\epsilon \to 0} P_{\theta_0}(r(x) > t+\epsilon) = P_{\theta_0}(r(x) > t) = \alpha(t)$$

- α is non-increasing
- α has left limits

$$\lim_{\epsilon \to 0} \alpha(t - \epsilon) = P_{\theta_0}(r(x) > t - \epsilon) = \alpha(t^-)$$

 α is cadlag:

- Continuous from the right
- Limit from the left

There exists some $k \in [0, \infty)$ s.t. $\alpha \leq \alpha(k^-)$ and $\alpha \geq \alpha(k)$

We define our test

$$\varphi(x) = \begin{cases} 1 & \text{if } r(x) > k \\ \gamma & \text{if } r(x) = k \\ 0 & \text{if } r(x) < k \end{cases} \text{ [reject null w.p. } \gamma \text{]}$$

We set

$$\gamma = \frac{\alpha - \alpha(k)}{\alpha(k^-) - \alpha(k)}$$

The level of φ is

$$E_{\theta_0}[\varphi(x)] = P_{\theta_0}(\varphi(x) = 1)$$

$$= P_{\theta_0}(r(x) > k) + P_{\theta_0}(r(x) = k) \cdot \gamma$$

$$= \alpha(k) + \left[\alpha(k^-) - \alpha(k)\right] \cdot \frac{\alpha - \alpha(k)}{\alpha(k^-) - \alpha(k)} = \alpha$$
(randomizing the test)

Lecture 6

Neyman-Pearson

Power of a test:

$$E_{\theta_1}[\varphi] = P_{\theta_1}(\varphi = 1)$$

Likelihood ratio test:

$$\frac{p_{\theta_1}(x)}{p_{\theta_0}(x)} = r(x)$$

LR test

$$\varphi(x) = \begin{cases} 1 & \text{if } r(x) > k \\ \gamma & \text{if } r(x) = k \\ 0 & \text{if } r(x) < k \end{cases}$$

for some $k \in [0, \infty), \gamma \in [0, 1]$.

Note: LR tests are UMP for simple hypothesis testing:

- Given some α , if LR satisfies $E_{\theta_0}[\varphi] = \alpha$, it represents a Type I error.
- φ minimizes the Type II error

$$E_{\theta_1}[\varphi] \ge E_{\theta_1}[\varphi'] \quad \forall \varphi'$$

Cont. of proof (part of UMP)

Let φ' be another level α test, $E_{\theta_0}[\varphi'] \leq \alpha$.

Goal: $E_{\theta_1}[\varphi] \geq E_{\theta_1}[\varphi']$. Let μ be the dominating measure.

Consider

$$\int (\varphi(x) - \varphi'(x))(p_{\theta_1}(x) - kp_{\theta_0}(x)) d\mu(x) = 0$$

Claim: $p \geq 0$.

Observe:

- If $p_{\theta_1}(x) kp_{\theta_0}(x) > 0 \Rightarrow \frac{p_{\theta_1}(x)}{p_{\theta_0}(x)} > k \Rightarrow \varphi(x) = 1$.
- If $p_{\theta_1}(x) kp_{\theta_0}(x) < 0 \Rightarrow \varphi(x) = 0$.
- If $p_{\theta_1}(x) kp_{\theta_0}(x) = 0 \Rightarrow \text{integrand} = 0$.

$$\Rightarrow p = 0$$

$$\Rightarrow \int (\varphi - \varphi') p_{\theta_1} d\mu = \int (\varphi - \varphi') p_{\theta_0} d\mu = k \left[E_{\theta_0}[\varphi] - E_{\theta_0}[\varphi'] \right] \ge 0$$

$$\Rightarrow E_{\theta_1}[\varphi] \geq E_{\theta_1}[\varphi']$$

Part (3) UMP \Rightarrow (LR): Take φ^* a UMP test, $E_{\theta_0}[\varphi^*] = \alpha$, and let φ be the LR test with $E_{\theta_0}[\varphi] = \alpha$ with (*).

Goal: $\varphi = \varphi^*$ a.e. except on $\{r(x) = k\}$.

Define

$$x^+ = \{x : \varphi(x) > \varphi^*(x)\}$$

$$x^- = \{x : \varphi(x) < \varphi^*(x)\}$$

$$x^0 = \{x : \varphi(x) = \varphi^*(x)\}\$$

$$\tilde{x} = (x^+ \cup x^-) \cap \{x : p_{\theta_1}(x) \neq kp_{\theta_0}(x)\}$$

It suffices to show $\mu(\tilde{x}) = 0$.

Like before, we have

$$(\varphi - \varphi^*)(p_{\theta_1} - kp_{\theta_0}) > 0 \text{ on } \tilde{x}$$

Thus if $\mu(\tilde{x}) > 0$,

$$\int_{\mathcal{X}} (\varphi - \varphi^*) (p_{\theta_1} - k p_{\theta_0}) \, d\mu \ge 0$$
$$\int_{\tilde{z}} (\varphi - \varphi^*) (p_{\theta_1} - k p_{\theta_0}) \, d\mu \ge 0$$

But also

$$E_{\theta_1}[\varphi] - E_{\theta_1}[\varphi^*] > k \left[E_{\theta_0}[\varphi] - E_{\theta_0}[\varphi^*] \right] \ge 0$$

$$\Rightarrow \text{Cannot be } \varphi^* \text{ is UMP.}$$

Example (Gaussian Location Model)

$$X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$$

$$H_0: \mu = \mu_0, \quad H_1: \mu = \mu_1, \quad \mu_0 < \mu_1$$

Then:

$$\frac{p_1(X_1, \dots, X_n)}{p_0(X_1, \dots, X_n)} = \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu_1)^2 + \frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu_0)^2\right)$$

$$= \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (\mu_1^2 - \mu_0^2) - \frac{2(\mu_1 - \mu_0)}{\sigma^2} \sum_{i=1}^n X_i\right)$$

$$= \exp\left(-\frac{n}{2\sigma^2} (\mu_1^2 - \mu_0^2) - \frac{2(\mu_1 - \mu_0)}{\sigma^2} \sum_{i=1}^n X_i\right) \ge K_\alpha$$

$$\Rightarrow \frac{1}{n} \sum_{i=1}^n X_i \ge K_\alpha, \text{ some } K_\alpha \in \mathbb{R}$$

To determine K_{α} :

$$\bar{X}_n := \frac{1}{n} \sum_{i} X_i \overset{H_0}{\sim} \mathcal{N}(\mu_0, \sigma^2/n)$$

$$\Rightarrow \mathbb{L} = P_{H_0} \left(\bar{X}_n \ge K_\alpha \right) = 1 - P_{H_0} \left(\bar{X}_n < K_\alpha \right)$$

$$= 1 - \Phi \left(\frac{\sqrt{n}}{\sigma} (K_\alpha - \mu_0) \right) \quad \text{(CDF for } \mathcal{N}(0, 1))$$

$$\Rightarrow \text{solving for } K_\alpha \text{ gives } K_\alpha = \mu_0 + \frac{\sigma}{\sqrt{n}} \Phi^{-1} (1 - \alpha),$$

$$\varphi(X_1, \dots, X_n) = \begin{cases} 1 & \text{if } \bar{X}_n \ge \mu_0 + \frac{\sigma}{\sqrt{n}} \Phi^{-1} (1 - \alpha) \\ 0 & \text{else} \end{cases}$$

Corollary

Consider simple hypothesis testing. Let φ be UMP, for level α . Then,

$$\alpha = E_{H_0}[\varphi_0] = E_{\theta_0}[\varphi_0] \le E_{\theta_1}[\varphi]$$

Suppose $E_{\theta_1}[\varphi] = E_{\theta_1}[\varphi_0]$ then φ_0 is also UMP, $\Rightarrow \varphi_0$ is an LR test.

$$\varphi_0 = \begin{cases} 1 & \text{if } \frac{p_{\theta_1}}{p_{\theta_0}} \ge K & \text{a.s., some } K \\ 0 & \text{if } \frac{p_{\theta_1}}{p_{\theta_0}} \end{cases}$$

Also since $\varphi_0 \in \{\varphi, \beta\}$ we conclude that $p_{\theta_1} = Kp_{\theta_0}$ a.s.

But

$$L = \int p_{\theta_0} d\mu = K \int p_{\theta_0} d\mu = 1 \Rightarrow K = 1$$

Correspondence theorem

Tests \longleftrightarrow Confidence regions C(x)

$$\Pr_{\theta}(\theta \in C(x)) \ge 1 - \alpha$$

If
$$\Pr_{\theta}(\phi_{\theta}=1)=\alpha$$

Theorem: Let $(P_{\theta} : \theta \in \Theta)$ be a statistical model, $\alpha \in (0,1)$.

(i) Let C = C(X) be a level- α confidence set, then

$$\phi_{\theta_0}(x) = 1 \left\{ \theta_0 \notin C(x) \right\}$$

is a level- α test of $\theta = \theta_0$ vs. $\theta \neq \theta_0$.

(ii) Suppose $\{\phi_{\theta_0}: \theta_0 \in \Theta\}$ is a family of level- α tests, then

$$C(X) = \{ \theta \in \Theta : \phi_{\theta}(X) = 0 \}$$

is a $(1 - \alpha)$ confidence set.

Proof:

- (i) $\operatorname{Pr}_{\theta_0}(\phi_{\theta_0} = 1) = \operatorname{Pr}_{\theta_0}(\theta_0 \notin C(X)) = \alpha$
- (ii) $\operatorname{Pr}_{\theta}(\theta \notin C(X)) = \operatorname{Pr}_{\theta}(\theta \notin \{\tilde{\theta} \in \Theta : \phi_{\tilde{\theta}}(X) = 0\}) = \operatorname{Pr}_{\theta}(\phi_{\theta}(X) = 1) \le \alpha$

UMPT Tests in Models with Monotone Likelihoods

Proposition: Let $\Theta \subseteq \mathbb{R}$. Consider testing $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$, for some $\theta_0 \in \mathbb{R}$. Assume there exists some test statistic $T: X \to \mathbb{R}$ and a function $h: \mathbb{R} \times \Theta \times \Theta$ such that

$$\frac{P_{\theta}(X)}{P_{\tilde{\theta}}(X)} = h(T(X), \theta, \tilde{\theta})$$

and for all $\theta \geq \tilde{\theta}, t \mapsto h(t, \theta, \tilde{\theta})$ is monotone increasing.

The simplest model for the relationship between Y_i and X_i assumes a linear relationship:

$$Y_i = aX_i + b + \varepsilon_i$$

for i = 1, ..., n, where ε_i is centered, i.e., $E(\varepsilon) = 0$ and $Var(\varepsilon) = \sigma^2$. Suppose $\varepsilon \sim N(0, \sigma^2)$ with σ known.

The statistical model is given by

$$(\mathbb{R}, B(\mathbb{R}), (\bigotimes_{i=1}^{n} N(ax_i + b, \sigma^2))_{(a,b) \in \mathbb{R}^2})$$

The likelihood within the statistical model is

$$L((a,b)|y) = \prod_{i=1}^{n} (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - ax_i - b)^2\right)$$

The MLE satisfies the optimization problem

$$(\hat{a}, \hat{b}) = \arg\min_{(a,b) \in \mathbb{R}^2} \sum_{i=1}^n (y_i - (ax_i + b))^2$$

Provided that $x_i \neq x_j$ for $i \neq j$, the least squares problem has a solution with minimum given by (Gauss, 1801):

$$(\hat{a}, \hat{b}) = \left(\frac{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}, \ \bar{y} - \hat{a}\bar{x}\right)$$

Definition 8 (Linear Model). A random vector $Y = (Y_1, ..., Y_n)^T \in \mathbb{R}^n$ stems from a linear model if there exists a parameter vector $\beta \in \mathbb{R}^p$, a matrix $X \in \mathbb{R}^{n \times p}$, and a random vector $\varepsilon \in \mathbb{R}^n$ such that

$$Y = X\beta + \varepsilon$$

- 1. A linear model is called regular if
 - (a) $p \le n$ (parameter size is smaller than sample size),
 - (b) X has full rank. $rank(X) = p \le n$ (design with full rank)
 - (c) $E(\varepsilon) = 0$ (noise is controlled)
 - (d) The covariance matrix is positive definate, $\Sigma = (Cov(\varepsilon_i, \varepsilon_i))_{i,i \in [n]}$
- 2. A linear model is called ordinary if $\Sigma = \sigma^2 E_n$ (and is usually the noise is Gaussian)

Remark 3. 1. There are several synonyms

- (a) Y a dependent variable, response, regressand
- (b) X, a independent variable, predictor, design matrix, regressor
- (c) ε Error, perturbation, reression function
- 2. The matrix Σ is symmetric and diagonalizable, i.e. $\Sigma = UDU^T$ for some diagonal matrix, $D = diag(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^{n \times n}$
- 3. Positive semi-definate, i.e. $\lambda_i \geq 0$

$$\langle \Sigma u, u \rangle = \langle E[(\varepsilon - E[\varepsilon])(\varepsilon - E[\varepsilon])^T]u, u \rangle$$
$$= E[(\varepsilon - E[\varepsilon])^2] \ge 0, u \in \mathbb{R}^n$$

item If Σ is positive definate $(\lambda_i > 0)$ for i = 1, ..., n, then there exists the inverse $\Sigma^{-1} = UD^{-1}U^T$ and $\Sigma^{-1/2} = UD^{-1/2}U^T$.

4. If X is not deterministic, we speak of random design.

In the regular linear model, $\hat{\beta}$ is called weighted least squares estimate, (LSE). if

$$||\sigma^{-1/2}(Y - X\hat{\beta})||^2 = \inf_{\beta \in \mathbb{R}^n} ||\sigma^{-1/2}(Y - X\beta)||^2 = \inf_{\beta \in \mathbb{R}^n} ||\sigma^{-1/2}Y - X_{\Sigma}\beta||^2$$

where $X_{\Sigma} = \Sigma^{-1/2} X$. $X_{\Sigma} \hat{\beta}$ is the point within the subspace,

$$U = \{X_{\Sigma}\beta \mid \beta \in \mathbb{R}^n\} \subseteq \mathbb{R}^n$$

with the smallest distance to the vector $\Sigma^{-1/2}Y$. Thus, $X_{\Sigma}\hat{\beta} = \Pi_U(\Sigma^{-1/2}Y)$ where Π_U is the orthogonal projection onto U. $\Pi_U u = u$ for all $u \in U$ $\langle \Pi_U v - v, u \rangle = 0$ for all $u \in U$ and $r \in \mathbb{R}^n$. Provided that $(X_{\Sigma}^T X_{\Sigma})^{-1}$ exists, we can confirm by direct computation that the projection satisfies

$$\Pi_U = X_{\Sigma} (X_{\Sigma}^T X_{\Sigma})^{-1} X_{\Sigma}^T$$

For $u = X_{\Sigma}\beta$ we have,

$$X_{\Sigma}(X_{\Sigma}^T X_{\Sigma})^{-1} X_{\Sigma}^T X_{\Sigma} \beta = X_{\Sigma} \beta = u$$

By symmetry,

$$\langle \Pi_U v - v, u \rangle = \langle v, \Pi_U u \rangle - \langle v, u \rangle = \langle v, u \rangle - \langle v, u \rangle = 0$$

for all $u \in U$.

Lemma 1. Representation for the LSE Consider a regular linear model, then the LSE exists uniquely, and is given by

$$\hat{\beta} = (X_{\Sigma}^T X_{\Sigma})^{-1} X_{\Sigma}^T \Sigma^{-1/2} Y = X_{\Sigma}^+ \Sigma^{-1/2} Y$$

Proof. $\ker(X_{\Sigma}^T X_{\Sigma})$ is invertible. Suppose that $X_{\Sigma}^T X_{\Sigma} v = 0$ $(v \in \ker(X_{\Sigma}^T X_{\Sigma}))$

$$0 = v^T X_{\Sigma}^T X_{\Sigma} v = (X_{\Sigma}^T v)^T X_{\Sigma} v = \langle X_{\Sigma} v, X_{\Sigma} v \rangle = ||X_{\Sigma} v||^2 = ||\Sigma^{-1/2} X v||^2 \implies ||X v||^2 = 0 \implies v = 0$$

So then

$$X_{\Sigma}\hat{\beta} = \Pi_{u}\Sigma^{-1/2}Y = X_{\Sigma}(X_{\Sigma}^{T}X_{\Sigma})^{-1}X_{\Sigma}^{T}\Sigma^{-1/2}Y$$
$$X_{\Sigma}^{T}X_{\Sigma}\hat{\beta} = X_{\Sigma}^{T}X_{\Sigma}(X_{\Sigma}^{T}X_{\Sigma})^{-1}X_{\Sigma}^{T}\Sigma^{-1/2}Y$$
$$\implies \hat{\beta} = (X_{\Sigma}^{T}X_{\Sigma})^{-1}X_{\Sigma}^{T}\Sigma^{-1/2}Y$$

Remark 4. 1. If p > n, then $(X_{\Sigma}^T X_{\Sigma})^{-1}$ does not exist and the LSE is not unique.

$$\left\{\beta \cdot ||\Sigma^{-1/2}Y - X_{\Sigma}\beta||^2 = 0\right\}$$

is a p-n dim subspace and each solution interpolates the data

Theorem 1. Optimality of the LSE, Gauss-Markov Theorem Consider an ordinary linear model for $\sigma > 0$, then

- 1. The least squares estimator $\hat{\beta} = (X^T X)^{-1} X^T Y$ is linear and the unbiased parameter for the parameter β .
- 2. For the desired parameter $\alpha = \langle \beta, v \rangle$ for $v \in \mathbb{R}$, the estimator $\hat{\alpha} = \langle \hat{\beta}, v \rangle$ is the best linear unbiased estimator (BLUE), meaning that $\hat{\alpha}$ has the optimal value within the class of linear unbiased estimators for α
- 3. $\hat{\sigma}^2 = \frac{||Y X\hat{\beta}||^2}{n-p}$ is an unbiased estimator of σ^2

Proof.

$$\hat{\beta}(y+\tilde{y}) = \hat{\beta}(y) + \hat{\beta}(\tilde{y})$$
 for $y, \tilde{y} \in \mathbb{R}^n$

$$E[\hat{\beta}] = (X^T X)^{-1} X^T E[Y] \tag{1}$$

$$= (X^T X)^{-1} X^T E[X\beta + \varepsilon] \tag{2}$$

$$= (X^T X)^{-1} (X^T X)\beta \tag{3}$$

$$=\beta$$
 (4)

Suppose that $\tilde{\alpha}$ is some other linear unbiased estimator of α . Since the estimator is linear, there exists some element w such that $\tilde{\alpha} = \langle y, w \rangle$

$$\langle \beta, v \rangle = \alpha = E[\tilde{\alpha}] = E[\langle y, w \rangle] = \langle X\beta, w \rangle = \langle \beta, X^T w \rangle$$

This implies that $v = X^T w$, therefore we have,

$$Var = Var(\langle x\beta, w \rangle + \langle \varepsilon, w \rangle) \tag{5}$$

$$= \operatorname{Var}(\langle \varepsilon, w \rangle) + E\left[\left(\sum_{i=1}^{n} \varepsilon w\right)^{2}\right]$$
 (6)

$$= \sigma^2 \sum_{i=1}^p w_i^2 = \sigma^2 ||w||^2 \tag{7}$$

$$Var(\hat{\alpha}) = E[\langle \hat{\beta} - \beta, v \rangle^2]$$
(8)

$$= E[\langle (X^T X)^{-1} X^T \beta + (X^T X)^{-1} X^T \varepsilon - \beta, v \rangle^2]$$
(9)

$$= E[\langle (X^T X)^{-1} X^T \varepsilon, v \rangle^2] \tag{10}$$

$$= \sigma^{2} ||X(X^{T}X)^{-1}v||^{2} = \sigma^{2} ||X(X^{T}X)^{-1}X^{T}w||^{2}$$
(11)

$$= \sigma^2 ||\Pi_u w||^2 \tag{12}$$

Thus, $Var(\hat{\alpha}) \leq Var\tilde{\alpha}$

7 Lecture 8

Recall linear model

$$Y = X\beta + \varepsilon$$

where $cov(\varepsilon) = \Sigma$.

OLD:
$$\beta = (X_{\Sigma}^T X_{\Sigma})^{-1} X_{\varepsilon}^T \Sigma^{-1/2} Y$$
.

OLD: $\hat{\beta} = (X_{\Sigma}^T X_{\Sigma})^{-1} X_{\varepsilon}^T \Sigma^{-1/2} Y$. $X\hat{\beta} = \text{Projection of } \Sigma^{-1/2} Y \text{ onto span } \{X_{\varepsilon,1}, \dots, X_{\varepsilon,p}\}$

1. $\hat{\beta}_{OLS}$ is the best linear unbiased est (BLUE) Theorem 2 (Gauss-Markov).

- 2. $\alpha_i = \langle \beta, v \rangle$ is BLUE.
- 3. $\hat{\sigma}^2 = \frac{||Y X\hat{\beta}||^2}{n-p}$ is unbiased est for $\sigma^2 > 0$

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}^T + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix} \text{ Where our data is } (Y_i, X_i)_{i=1}^n \in (\mathbb{R} \times \mathbb{R}^p)^{\otimes p}$$

Remark 5. Is this an iid model? Depends!

- 1. Typically ε_i are iid.
- 2. If X_i are random then "random design".
- 3. If X_i are iid, then linear model is iid model.
- 4. If X_i are deterministic, then not iid model.

$$\beta \mapsto ||Y - X\hat{\beta}||.$$

Proof. This is a continuation of point 3 in our theorem above.

We already introduced $\Pi_U = X(X^TX)^{-1}X^T$ projection onto col space U of X. Thus $I_n - \Pi_U$ is another projection operator, onto U^{\perp} (othrogonal complement),

$$U^{\perp} = \{ z \in \mathbb{R}^n \mid \langle z, X_k \rangle \forall k = 1, \dots, p \}.$$

Choose a basis $e_1, \ldots e_{n-p}$, orthonormal, of U^{\perp} , then

$$(I_n - \Pi_U)z = \Pi_{U^{\perp}}z = \sum_{n=1}^{n-p} \langle z, e_k \rangle e_k.$$

$$||Y - X\hat{\beta}|| = ||Y - \underbrace{X(X^T X)^{-1} X^T}_{\Pi_U} Y||^2$$
(13)

$$= ||(I_n - \Pi_n)Y||^2 \tag{14}$$

$$= ||(I_n - \Pi_n)(X\beta + \varepsilon)||^2 \tag{15}$$

$$=||(I_n - \Pi_n)\varepsilon||^2\tag{16}$$

$$=\sum_{i=1}^{n-p}\langle \varepsilon, e_i \rangle^2 \tag{17}$$

(18)

Hence,

$$E[||Y - X\hat{\beta}||^2] = \sum_{i=1}^{n-p} E[\langle \varepsilon, e_i \rangle^2] = n - p \implies E[\hat{\sigma}] = n - p$$

Remark 6. Recall the $N(\mu, \sigma^2)$ model, where the MLE is

 $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu})^2.$

The unbiased estimator for σ^2 was $\frac{1}{n-1}\sum_{i=1}^n (X-i-\hat{\mu})^2$. This is related to the n-p factor in point 3.

Remark 7. 1. If linearity is dropped, there exists better estimators than $\hat{\beta}_{OLS}$. For example a connstant estimator, $\hat{\beta} = \beta^*$

2. The MSE of $\hat{\beta}_{OLS}$ is

$$E[||\hat{\beta}_{OLS} - \beta||^2] = E\left[\sum_{i=1}^p \langle \hat{\beta}_{OLS} - \beta, \underbrace{e_i}_{ONBof\mathbb{R}^n} \rangle^2\right] = \sum_{i=1}^n Var_{\beta}(\langle \hat{\beta}_{OLS}, e_i \rangle) = \sum_{i=1}^n \sigma^2 ||X(X^TX)^{-1}e_k||^2$$

We say X satisfies orthogonal design if

$$X^T X = nI_n$$

"The different covariants are uncorrelated.=" $(X^TX)_{ij} = \langle X_i, X_j \rangle = n\delta_{ij}$ For orthogonal design,

$$E_{\beta}[||\hat{\beta}_{OLS} - \beta||^2] = \frac{1}{n^2} \sigma^2 \sum_{i=1}^n \underbrace{||xe_i||^2}_n = \frac{\sigma^2 P}{n}.$$

and this is equal to noise level times the number of parameters, divided by the number of data points.

Theorem 3 (Bayes in Linear Models). Consider a linear model $Y = X\beta + \varepsilon$, and $\varepsilon \sim N(0, \sigma^2 I_n)$ with $\sigma > 0$ known and $\beta \sim N(m, M)$ where $m \in \mathbb{R}^p, M \in \mathbb{R}^{p \times p}$ positive semi definate. Then, the posterior $\Pi(\beta|Y_iX)$ is given by

$$\begin{split} \Pi(\beta|Y,X) &= N(\mu_{past}, \Sigma_{past}) \ for \\ \mu_{past} &= \sigma_{past}(\sigma^{-2}X^Ty + M^{-1}m) \quad \Sigma_{past} = (\sigma^{-2}X^TX + M^{-2})^{-1} \end{split}$$

Remark 8. Σ_{past} independent of Y. For " $M^{-2} \to 0$ ", then " $\mu_{past} \to \hat{beta}_{OLS}$ "

Proof.

$$L(X,Y,\beta)\pi(\beta) \propto \exp\left(-\frac{1}{2\sigma^2}||Y-X\beta|| - \frac{1}{2}(\beta-m)^T M^{-1}(\beta-m)\right)$$

We want this to be proportional to $\exp\left(-\frac{1}{2}(\beta-\mu_{\text{past}})^T\sigma_{\text{past}}^{-1}(\beta-\mu_{\text{past}})\right)$. Now.

$$\exp\left(-\frac{1}{2}(\beta-\mu_{\text{past}})^T\sigma_{\text{past}}^{-1}(\beta-\mu_{\text{past}})\right) \propto \exp\left(-\frac{1}{\sigma^2}\beta^TX^TX\beta-\frac{1}{2}\beta^TM^{-1}\beta+\frac{1}{\sigma^2}\beta^TX^TY+\beta^TM^{-1}m\right)$$

and this is equal to

$$\exp\left(-\frac{1}{2}\beta^T\left(\frac{1}{\sigma^2}X^TX + M^{-1}\right)\beta + \beta^T\left(\frac{1}{\sigma^2}X^TY + M^{-1}m\right)\right)$$

and this is

$$\propto \exp\left(-\frac{1}{2}(\beta - \mu_{\mathrm{past}})^T \sigma_{\mathrm{past}}^{-1}(\beta - \mu_{\mathrm{past}})\right)$$

Corollary 1. For $\ell = ||\cdot||^2$, the Bayes estimator is $\hat{\beta}_{\Pi} = \mu_{past}$

Proposition 1. Consider the previous setting (from the theorem), with m=0, and $M=\tau^2 I_p$ (centered, isotropic, normal prior). The, $\mu_{past}=\hat{\beta}_{\Pi}$ minimizes

$$\beta \mapsto ||Y - X\beta||_{\mathbb{R}^n}^2 + \underbrace{\frac{\sigma^2}{\tau^2} ||\beta||_{\mathbb{R}^p}^2}_{"penalty" \ or \ "regularization"}$$

Proof.