CSHORE Results

- \bar{u} is the time-averaged depth-averaged horizontal velocity.
- With revetment:
 - \overline{u} is corrected by the time-averaged horizontal discharge velocity in the permeable layer, $\overline{u_p}$. $g\frac{d\overline{\eta}}{dx} + \overline{U_p} \bigg[\alpha_p + \sqrt{\frac{2}{\pi}} \big(\beta_2 + \beta_1 \sigma_p \big) \big(1 + \cos^2 \theta \big) \bigg] = 0$

$$\circ$$
 \bar{u} is used to calculate D_p , which is energy dissipation rate inside the permeable layer.

O D_p affects H_{rms} , which further affects S_{xx} and $\frac{dS_{xx}}{dx}$, and eventually, affects $\bar{\eta}$.

$$\frac{d}{dx}\left[S_{xx} + \rho \frac{Q_x^2}{\overline{h}}\right] = -\rho g \overline{h} \frac{d\overline{\eta}}{dx} - \tau_{bx} + \tau_{sx}$$

10

y (m)

12

2

- D_p affects H_{rms} , which further affects S_{xx} and $\frac{dS_{xx}}{dx}$, and eventually, affects $\bar{\eta}$.

$$\frac{d}{dx}\left(S_{xx} + \rho \frac{Q_x^2}{\overline{h}}\right) = -\rho g \overline{h} \frac{d\overline{\eta}}{dx} - \tau_{bx} + \tau_{sx}$$

10

10

y (m)

12

toe

10