最大流算法的应用

- 带需求的流通
- 运输问题
- 二部图的最大匹配
- 赋权二部图的匹配
- 图像分割

带需求的流通

给定带需求的流通图 $N = \langle V, E, c, S, T \rangle$, $\forall v \in V$ 存在

需求 d_v ,所有发点集合S,所有收点集合T.

•收点: $d_v > 0$, 表示 v 对流有 d_v 的需求

•发点: $d_v < 0$,表示 v 有 $-d_v$ 的供给

•结点: $d_v=0$, v 不是发点和收点

所有容量和需求都是整数

带需求的流通

问是否存在可行流通?即存在函数 $f: E \rightarrow \mathbb{R}^*$,满足

(1) 容量条件: $\forall e \in E$, $0 \le f(e) \le c_e$

(2) 需求条件: $\forall v \in V$, $f^{\text{in}}(v) - f^{\text{out}}(v) = d_v$

必要条件

命题1 如果存在一个带需求 $\{d_v\}$ 的可行流通,那么 $\sum_v d_v = 0$

证 假设存在可行流通 f. 那么

$$\sum_{v} d_{v} = \sum_{v} (f^{\text{in}}(v) - f^{\text{out}}(v))$$

对于每条边 $e=\langle u,v\rangle$,值 f(e)恰好在 f in 和 f out 中各出现1次. 两项抵消;总和是0.

根据命题1,有

$$\sum_{v:d_{v}>0} d_{v} = \sum_{v:d_{v}<0} -d_{v}$$

将该和记作D.

用最大流建模

加超结点 s^* 和 t^* ,构造单发点单收点的容量网络 G' 从 s^* 到每个 $v \in S$ 加边 $e = \langle s^*, v \rangle$,令 $c_e = -d_v$ 从每个 $v \in T$ 加边 $e = \langle v, t^* \rangle$,令 $c_e = d_v$

算法与拓展

命题2 G'没有大于D的 s^*-t^* 流,因为 $c(\{s^*\},V\cup\{t^*\})=D$, 其中

$$D = \sum_{v:d_v>0} d_v = \sum_{v:d_v<0} -d_v$$

定理 G 中存在一个带需求 $\{d_v\}$ 的可行流通,当且仅当G'的最大 s^* - t^* 流有值 D.

算法

- 1. 将流通图 G 转换为对应的容量网络 G'
- 2. 对 G'运行最大流算法找到 s^* - t^* 最大流 f
- 3. 如果 v(f)=D,则 G 存在带需求 $\{d_v\}$ 的可行流通 否则在该需求下不存在可行流通

拓展 带需求和下界的可行流通. 每条边增加下界 l_e , $0 \le l_e \le c_e$. 修改容量条件,对每个 $e \in E$, $l_e \le f(e) \le c_e$. 需求条件不变.

运输问题

运输问题 (Hitchcock问题)

有m个产地 $A_1, A_2, ..., A_m$ 和 n个销地 $B_1, B_2, ..., B_n, A_i$ 的产量为 a_i, B_j 的销量为 b_j . 从 A_i 到 B_j 的单位运费为 $w_{ij}, 1 \le i \le m, 1 \le j \le n$. 假设产销平衡,即

 $\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$

制订调运方案使总运费最少.

调运方案
$$x = \{x_{ij}\}: x_{ij} \ge 0, 1 \le i \le m, 1 \le j \le n$$

$$\sum_{i=1}^{n} x_{ij} = a_i \quad (1 \le i \le m), \qquad \sum_{i=1}^{m} x_{ij} = b_j \quad (1 \le j \le n)$$

$$x$$
的总费用 $w(x) = \sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} x_{ij}$

运输问题是求使 w(x) 最小的调运方案 x.

建模:最小费用流

添加发点 s 和收点 t, 作容量-费用网络N=<V,E,c,w,s,t>, 其中

$$V = \{ s, t, A_1, A_2, \dots, A_m, B_1, B_2, \dots, B_n \}$$

$$E = \{ \langle s, A_i \rangle \mid 1 \le i \le m \} \cup \{ \langle B_j, t \rangle \mid 1 \le j \le n \}$$

$$\cup \{ \langle A_i, B_j \rangle \mid 1 \le i \le m, 1 \le j \le n \}$$

$$c(s, A_i) = a_i, \quad w(s, A_i) = 0, \quad 1 \le i \le m$$

$$c(B_j, t) = b_j, \quad w(B_j, t) = 0, \quad 1 \le j \le n$$

$$c(A_i, B_i) = +\infty, \quad w(A_i, B_i) = w_{ii}, \quad 1 \le i \le m, \quad 1 \le i \le m$$

总运费最小的调运方案就是流量水的最小费用流

二部图匹配

定义 设简单二部图 $G=\langle A,B,E\rangle$, $M\subseteq E$, 如果M中任意两条边都不相邻, 则称M是G的匹配. 边数最多的匹配称作最大匹配. 当|A|=|B|=n时, 边数为n的匹配称作完美匹配.

例5 有4名新入学的硕士生和4位硕导, A_1 申请 B_1 , B_2 或 B_4 作导师, A_2 , A_3 和 A_4 都申请 B_1 或 B_3 作导师. 每名硕士生有一位导师,每位硕导只收一名新生. 如何分配才能尽可能满足学生要求.

作二部图 $G=\langle A,B,E\rangle$, 其中 $A=\{A_i \mid 1\leq i\leq 4\}$ $B=\{B_j \mid 1\leq j\leq 4\}$ $E=\{(A_i,B_j) \mid A_i \text{ 申请 } B_j \text{ 作导师},$ $1\leq i\leq 4, 1\leq j\leq 4\}$

增广交错路径

定义 设M是二部图G的匹配.

- 称 M中的边为匹配边
- 不属于M的边为非匹配边
- 与匹配边关联的顶点为饱和点
- 不与匹配边关联的顶点为非饱和点
- G 中由匹配边和非匹配边交替构成的路径称为交错路径
- 起点和终点都是非饱和点的交错路径称为增广交错路径

M与P

$$M=\{(B_1,A_1),(B_3,A_4)\}$$

饱和点:
$$B_1, B_3, A_1, A_4$$

非饱和点:
$$A_2, A_3, B_2, B_4$$

增广交错路径 $P: A_3B_1A_1B_2$

最大匹配的条件

北京大学。

引理14 设 M 是二部图 G 的一个匹配, P是一条关于M 的增广 交错路径, 则

$$M' = M \oplus E(P)$$

是一个匹配 且 |M'| = |M| + 1.

定理8 二部图的匹配是最大匹配当且仅当不存在关于它的增广交错路径.

匈牙利算法

匈牙利算法 从一个初始匹配 M 开始,每次找一条增广交错路径 P,令 $M \leftarrow M \oplus E(P)$,直到不存在增广交错路径为止.

增广交错路径: A_1B_1 $M=\{(A_1,B_1)\}$

增广交错路径: A_2B_3 $M=\{(A_1,B_1),(A_2,B_3)\}$

匈牙利算法(续)

增广交错路径: $B_2A_1B_1A_3$

匹配 $M \oplus E(P)$ ={ $(A_1,B_2),(A_2,B_3),(A_3,B_1)$ }

算法时间: $O(\min\{|A|,|B|\}\cdot|E|)$

阶段数: $min\{|A|,|B|\}+1$, 每个阶段检查时间: O(|E|)

二部图最大匹配与最大流

最大匹配转化成最大流

设 G=<A,B,E>,作容量网络 $N_G=<V,E',c,s,t>$,其中 $c\equiv 1$, $V=\{s,t\}\cup A\cup B$ $E'=\{<s,A_i>|A_i\in A\}\cup \{<B_j,t>|B_j\in B\}\cup \{<A_i,B_j>|(A_i,B_j)\in E\}$

G 的匹配 $\Leftrightarrow N_G$ 上的 0-1可行流 前向边是非饱和边,后向边是饱和边,增广链 \Leftrightarrow 增广交错路径. 匈牙利算法是FF算法的应用.

算法设计思想:

- 1. 构造对应容量网络 N_G
- 2. 对 N_G 应用 Dinic 算法求最大流 f
- 3. 再把f转化为G的匹配M

时间: $O(n^{1/2}m)$

赋权二部图完美匹配

指派问题 给定赋权完全二部图 $G=\langle A,B,E,w\rangle$, 其中|A|=|B|=n, $w: E\to R$, 求 G 的权最小的完美匹配 M.

例6 有4项任务由4个人完成,每人完成一项.预计每个人完成每一项任务的时间如下表所示.如何分配才能是完成任务的总时间最少?

	任务			
	B_1	$\boldsymbol{B_2}$	B_3	B_4
$\overline{A_1}$	9	4	3	11
人 $\overline{A_2}$	8	5	8	4
员 $\overline{A_3}$	3	8	3	1
A_4	10	6	9	6

使用匈牙利算法,时间 $O(n^3)$

指派问题与线性规划

指派问题可表成 线性规划(P)

$$x_{ij} = \begin{cases} 1, & (A_i, B_j) \in M, \\ 0, & 否则, \end{cases}$$
min $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_{ij}$
 $s.t.$ $\sum_{j=1}^{n} x_{ij} = 1,$ $1 \le i \le n$
 $\sum_{i=1}^{n} x_{ij} = 1,$ $1 \le j \le n$
 $x_{ij} \ge 0,$ $1 \le i \le n, 1 \le j \le n$

最大流应用:图像分割

• 图像分割:将一幅图片的前景与背景分离对每个像素进行"前景/背景"的标记

图片

分割后

对图像分割的建模

- 设V是基本图像中的像素集合.用E表示所有相邻像素对的集合,构成无向图 G=<V,E>.
- 像素i属于前景的可能性: a_i ,属于背景的可能性: b_i
- 如果 $a_i > b_i$,像素 i 标为前景,否则标为背景. 标记为前景的像素构成集合A,标记为背景的像素构成集合B.
- 如果像素i的邻居都标为"背景",那么倾向于将i标为背景,使标记更"光滑"。 对于每对邻居像素(i,j),定义分离罚分 $p_{ij}>0$ 来惩罚i和j标记不同.
- 图像分割问题:将像素点集划分为A和B,使得划分的权值 q(A,B)最大化(即得到最优标记).其中

$$q(A,B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij}$$

最优标记与最小割

• 两个问题的相似性 都涉及图的点割集(A,B)

• 区别:

图像最优标记的图是无向图,流网络最小割是有发点 s、 收点 t 的有向图 最优标记是最大化问题,最小割是最小化问题 最优划分问题的结点有参数 a_i 和 b_i ,最小割问题边有参数

• 思路:

将最优标记的邻居图转化为一个容量网络

转化为容量网络G'

- 设G=<V,E>是图像最优标记问题的无向图,将每条边 $(u,v)\in E$ 转化成一对有向边<u,v>和<v,u>,构成有向图
- 超源点 s (前景), 超汇点 t (背景)

加边 $\langle s, v \rangle$ 和 $\langle v, t \rangle$, $\forall v \in V$.

图像像点阵列

对 容 络 *G* ′(3)

G的最大化与G'的最小化

 $|A \cap \{i,j\}| = 1$

•
$$\Leftrightarrow$$

$$Q = \sum_{i} (a_i + b_i)$$

$$\Rightarrow \sum_{i \in A} a_i + \sum_{j \in B} b_j = Q - \sum_{i \in A} b_i - \sum_{j \in B} a_j$$

• q(A,B)的最大化转变为 q'(A,B) 的最小化 q(A,B) = Q - q'(A,B) $q(A,B) = Q - \sum_{i \in A} b_i - \sum_{j \in B} a_j - \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}|=1}} p_{ij}$ $q'(A,B) = \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{\substack{(i,j) \in E \\ (i,j) \in E}} p_{ij}$

容量分配

• 边容量

对边
$$e = \langle s,i \rangle$$
, 令 $c_e = a_i$; 对边 $e = \langle i,t \rangle$, 令 $c_e = b_i$. 对邻居边 $e = \langle j,i \rangle$ 和 $e' = \langle i,j \rangle$, 令 $c_e = c_{e'} = p_{ij}$.

• 穿过割 (A',B') 的边分成三类:

边 $\langle s,j \rangle$, $j \in B'$: 为割的容量贡献 a_j .

边 $\langle i, t \rangle$, $i \in A'$: 为割的容量贡献 b_i .

边 < i', j'>, $i' \in A'$, $j' \in B'$: 为割的容量贡献 $p_{i'j'}$

割的容量

所有边< s, j >, $j \in B'$,对 割容量贡献 $\sum_{j \in B} a_i$

所有边< i, t >, $i \in A'$, 对割容量贡献 $\sum_{i \in A} b_i$

所有边< i, j>, $i \in A'$, $j \in B'$; 对割容量贡献 $\sum_{i \in A, j \in B} p_{ij}$

$$\begin{split} &c(A',B')\\ &= \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{\substack{(i,j) \in E\\|A \cap \{i,j\}| = 1}} p_{ij}\\ &= q'(A,B) \end{split}$$

图像

图像分割算法

主要步骤

- 建立像素邻居图 G
- 将 G 转化成容量网络 G'
- 求解 G'的最小割 (A',B')
- 删除 s 和 t 可以得到划分 (A, B)
- 将 A 中像素标记为前景, B 中像素标记为背景

时间复杂度 $O(n^3)$

