CLAIMS

1. Use of a compound of the general formula (I)

$$\begin{array}{c|c}
X^1 \\
R^3 \\
X^2 \\
X^2 \\
X^1 \\
X^2 \\
X^1 \\
X^1 \\
X^N \\
X^$$

wherein

10

15

20

25

 V^1 , V^2 , V^3 , and V^4 independently are selected from a carbon atom, a non-quaternary nitrogen atom, an oxygen atom, and a sulfur atom, and where V^4 further may be selected from a bond, so that $-V^1-V^2-V^3-V^4$ together with the atoms to which V^1 and V^4 are attached form an aromatic or heteroaromatic ring;

 R^1 , R^2 , R^3 , and R^4 , when attached to a carbon atom, independently are selected from hydrogen, optionally substituted C_{1-6} -alkyl, optionally substituted C_{2-6} -alkenyl, hydroxy, optionally substituted C_{1-6} -alkoxy, optionally substituted C_{2-6} -alkenyloxy, carboxy, optionally substituted C_{1-6} -alkoxycarbonyl, optionally substituted C_{1-6} -alkylcarbonyl, optionally substituted C_{1-6} -alkylcarbonyloxy, formyl, amino, mono- and $di(C_{1-6}$ -alkyl)amino, carbamoyl, mono- and $di(C_{1-6}$ -alkyl)aminocarbonyl, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylsulphonylamino, cyano, carbamido, mono- and $di(C_{1-6}$ -alkyl)aminocarbonylamino, C_{1-6} -alkylsulphonyl, C_{1-6} -alkylsulphinyl, aminosulfonyl, mono- and $di(C_{1-6}$ -alkyl)aminosulfonyl, nitro, optionally substituted C_{1-6} -alkylthio, aryl, aryloxy, arylcarbonyl, arylamino, heterocyclyl, heterocyclyloxy, heterocyclylamino, heterocyclylcarbonyl, heteroaryl, heteroaryloxy, heteroarylcarbonyl, and halogen, where any C_{1-6} -alkyl as an amino substituent is optionally substituted with hydroxy, C_{1-6} -alkoxy, amino, mono- and $di(C_{1-6}$ -alkyl)amino, carboxy, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylaminocarbonyl, or halogen(s), and wherein any aryl, heterocyclyl and heteroaryl may be optionally substituted;

 R^1 , R^2 , R^3 , and R^4 , when attached to a nitrogen atom, independently are selected from hydrogen, optionally substituted C_{1-6} -alkyl, hydroxy, optionally substituted C_{1-6} -alkoxy, optionally substituted C_{1-6} -alkoxycarbonyl, optionally substituted C_{1-6} -alkylcarbonyl, formyl, mono- and di(C_{1-6} -alkyl)aminocarbonyl, amino, C_{1-6} -alkylcarbonylamino, mono- and di(C_{1-6} -alkylsulphonyl, C_{1-6} -alkylsulphonyl, aryl, aryloxy, arylcarbonyl, arylamino,

5

20

25

heterocyclyl, heterocyclyloxy, heterocyclylcarbonyl, heterocyclylamino, heteroaryl, heteroaryloxy, heteroarylcarbonyl, and heteroarylamino; where any C_{1-6} -alkyl as an amino substituent is optionally substituted with hydroxy, C_{1-6} -alkoxy, amino, mono- and di(C_{1-6} -alkyl)amino, carboxy, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylaminocarbonyl, or halogen(s), and wherein any aryl, heterocyclyl and heteroaryl may be optionally substituted;

or R¹ and R² together with the carbon atoms to which they are attached form a ring, e.g. an aromatic ring, a carbocyclic ring, a heterocyclic ring or a heteroaromatic ring, in particular an aromatic ring, a heterocyclic ring or a heteroaromatic ring;

 X^1 and X^2 are independently selected from halogen, hydroxy, optionally substituted C_{1-6} -alkylcarbonyloxy, amino, mono- and di(C_{1-6} -alkyl)amino, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylcarbonylamino, mono- and di(C_{1-6} -alkyl)amino-carbonylamino, C_{1-6} -alkanoyloxy, mercapto, optionally substituted C_{1-6} -alkylthio, C_{1-6} -alkylsulfonyl, mono- and di(C_{1-6} -alkyl)aminosulfonyl, aryloxy, arylamino, heterocyclyloxy, heterocyclylamino, heteroaryloxy and heteroarylamino, where any C_{1-6} -alkyl as an amino or sulphur substituent is optionally substituted with hydroxy, C_{1-6} -alkoxy, amino, mono- and di(C_{1-6} -alkyl)amino, carboxy, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylaminocarbonyl, or halogen(s), and wherein any aryl, heterocyclyl and heteroaryl may be optionally substituted;

 $>Y(=Q)_n$ is selected from >C=O, >C=S, >S=O and $>S(=O)_2$; and

 R^N is selected from the group consisting of hydrogen, optionally substituted C_{1-6} -alkyl, hydroxy, optionally substituted C_{1-6} -alkoxy, optionally substituted C_{1-6} -alkoxycarbonyl, optionally substituted C_{1-6} -alkylcarbonyl, formyl, mono- and di(C_{1-6} -alkyl)aminocarbonyl, amino, C_{1-6} -alkylcarbonylamino, mono- and di(C_{1-6} -alkyl)amino, C_{1-6} -alkylsulphonyl, and C_{1-6} -alkylsulphinyl; where any C_{1-6} -alkyl as an amino substituent is optionally substituted with hydroxy, C_{1-6} -alkoxy, amino, mono- and di(C_{1-6} -alkyl)amino, carboxy, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylaminocarbonyl, or halogen(s); and

pharmaceutically acceptable salts and prodrugs thereof;

for the preparation of a medicament for the treatment of cancer in a mammal.

- 2. The use according to claim 1, wherein R¹, R², R³ and R⁴ are not all hydrogen.
- 3. The use according to any one of the preceding claims, wherein the ring is selected from a benzene ring and a pyridine ring where the nitrogen atom represents V³.

5

10

- 4. The use according to any one of the preceding claims, wherein R^1 is selected from hydrogen, halogen, C_{1-6} -alkyl, trifluoromethyl and C_{1-6} -alkoxy, when V^1 is a carbon atom.
- 5. The use according to any one of the preceding claims, wherein R^2 is selected from hydrogen, halogen, optionally substituted aryl, optionally substituted aryloxy, and optionally substituted heteroaryl, when V^2 is a carbon atom.
- 6. The use according to any one of the preceding claims, wherein R^3 is selected from hydrogen, optionally substituted C_{1-6} -alkoxy, halogen, cyano, optionally substituted aryl, optionally substituted aryloxy, optionally substituted heteroaryl, amino, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylsulphonylamino, and mono- and di(C_{1-6} -alkyl)aminosulfonyl, when V^3 is a carbon atom.
- 7. The use according to any one of the preceding claims, wherein R^4 is hydrogen, when V^4 is a carbon atom.
- 8. The use according to any one of the preceding claims, wherein X^1 and X^2 independently are selected from hydroxy, OAc, NH₂, NMe₂, NHSO₂Me and NHCONMe₂.
- 9. The use according to any one of the preceding claims, wherein X^1 and X^2 are the same.
 - 10. The use according to any one of the preceding claims, wherein Y is a carbon atom and Q is an oxygen atom, i.e. $>Y(=Q)_n$ is >C=O, and R^N is selected from hydrogen, C_{1-6} -alkyl, amino, and C_{1-6} -alkylcarbonylamino.
- 11. The use according to any one of the preceding claims, wherein V^1 , V^2 , V^3 , V^4 all are a carbon atom, $>Y(=Q)_n$ is >C=O, and R^N is hydrogen.
 - 12. The use according to any one of the preceding claims, wherein R⁴ is hydrogen.
 - 13. The use according to claim 12, wherein R³ and R⁴ both are hydrogen.
 - 14. The use according to any one of the claims 11-13, wherein R^1 is C_{1-4} -alkyl and R^2 is halogen.
- 25 15. The use according to any one of the claims 11-13, wherein R¹ and R² together with the carbon atoms to which they are attached form an aromatic ring or a carbocyclic ring.

- 16. The use according to any one of the claims 11-15, wherein each of X^1 and X^2 independently are selected from halogen, hydroxy, C_{1-4} -alkoxy, amino, and dimethylamino.
- 17. The use according to claim 12, wherein R¹, R² and R⁴ all are hydrogen.
- 18. The use according to any one of the claims 11 and 17, wherein R³ is selected from hydrogen, halogen, nitro, C₁₋₄-alkyl, C₁₋₄-alkoxy, trifluoromethoxy, amino, carboxy, and dimethylaminocarbonyl.
 - 19. The use according to any one of the claims 17-18, wherein each of X^1 and X^2 independently are selected from halogen, hydroxy, C_{1-4} -alkoxy, amino, and dimethylamino.
 - 20. The use according to claim 12, wherein R², R³ and R⁴ all are hydrogen.
- 10 21. The use according to any one of the claims 11 and 20, wherein R^1 is selected from fluoro, chloro, bromo, C_{1-4} -alkyl, trifluoromethyl, C_{1-4} -alkoxy, and dimethylaminocarbonyl.
 - 22. The use according to any one of the claims 20-21, wherein each of X^1 and X^2 independently are selected from halogen, hydroxy, C_{1-4} -alkoxy, amino, and dimethylamino.
 - 23. The use according to any one of the claims 11 and 12, wherein R^1 is selected from halogen, C_{1-4} -alkyl, trifluoromethyl, C_{1-4} -alkoxy, and dimethylaminocarbonyl, R^2 is selected from hydrogen and halogen, and R^3 is selected from hydrogen, halogen, C_{1-4} -alkyl, and amino; where R^2 and R^3 are not both hydrogen.
 - 24. Use of a 3,3-diphenyl-1,3-dihydro-indol-2-one type compound of the formula (IIa)

$$R^3$$
 Z X^1 X^2 X^2 X^2 X^2 X^3 X^4 X^2 X^2 X^3 X^4 X^4

20 wherein

15

 R^1 is selected from hydrogen, halogen, C_{1-6} -alkyl, trifluoromethyl and C_{1-6} -alkoxy;

R² is selected from hydrogen, halogen, optionally substituted aryl, optionally substituted aryloxy, and optionally substituted heteroaryl;

 R^3 is selected from hydrogen, optionally substituted C_{1-6} -alkoxy, halogen, cyano, and optionally substituted aryl, optionally substituted aryloxy, optionally substituted heteroaryl, amino, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylsulphonylamino, and mono- and di(C_{1-6} -alkyl)aminosulfonyl;

Z is CH or N; and

5

10

15

20

 X^1 and X^2 are independently selected from halogen, OR^6 , $OCOR^5$, $N(R^6)_2$, $NHCOR^5$, $NHSO_2R^5$, and $NHCON(R^6)_2$, wherein R^5 is selected from C_{1-6} -alkyl, optionally substituted aryl and optionally substituted heteroaryl, and each R^6 independently is selected from hydrogen, C_{1-6} -alkyl, optionally substituted aryl and optionally substituted heteroaryl; and

pharmaceutically acceptable salts and prodrugs thereof;

for the preparation of a medicament for the treatment of cancer in a mammal.

25. Use of a 3,3-diphenyl-1,3-dihydro-indol-2-one type compound of the formula (IIb)

wherein

 R^1 , R^2 , and R^3 , when attached to a carbon atom, independently are selected from hydrogen, optionally substituted C_{1-6} -alkyl, optionally substituted C_{2-6} -alkenyl, hydroxy, optionally substituted C_{1-6} -alkoxy, optionally substituted C_{1-6} -alkenyloxy, carboxy, optionally substituted C_{1-6} -alkoxycarbonyl, optionally substituted C_{1-6} -alkylcarbonyl, optionally substituted C_{1-6} -alkylcarbonyloxy, formyl, amino, mono- and di(C_{1-6} -alkyl)amino, carbamoyl, mono- and di(C_{1-6} -alkyl)aminocarbonyl, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylsulphonylamino, cyano, carbamido, mono- and di(C_{1-6} -alkyl)aminocarbonylamino, C_{1-6} -alkanoyloxy, C_{1-6} -alkylsulphonyl, C_{1-6} -alkylsulphinyl, aminosulfonyl, mono- and di(C_{1-6} -alkyl)aminosulfonyl,

nitro, optionally substituted C_{1-6} -alkylthio, and halogen, where any C_{1-6} -alkyl as an amino substituent is optionally substituted with hydroxy, C_{1-6} -alkoxy, amino, mono- and di(C_{1-6} -alkyl) amino, carboxy, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylaminocarbonyl, or halogen(s); and

 R^1 , R^2 , and R^3 , when attached to a nitrogen atom, independently are selected from hydrogen, optionally substituted C_{1-6} -alkyl, hydroxy, optionally substituted C_{1-6} -alkoxy, optionally substituted C_{1-6} -alkoxycarbonyl, optionally substituted C_{1-6} -alkylcarbonyl, formyl, mono- and $di(C_{1-6}$ -alkyl)aminocarbonyl, amino, C_{1-6} -alkylcarbonylamino, mono- and $di(C_{1-6}$ -alkyl)amino, C_{1-6} -alkylsulphonyl, and C_{1-6} -alkylsulphinyl; where any C_{1-6} -alkyl as an amino substituent is optionally substituted with hydroxy, C_{1-6} -alkoxy, amino, mono- and $di(C_{1-6}$ -alkyl)amino, carboxy, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylaminocarbonyl, or halogen(s), and wherein any aryl, heterocyclyl and heteroaryl may be optionally substituted;

or wherein R¹ and R² together with the carbon and/or nitrogen atoms to which they are attached form a heterocyclic ring, a heteroaromatic ring, an aromatic ring or a carbocyclic ring;

15 Z is CH or N; and

5

10

20

 X^1 and X^2 are independently selected from halogen, OR^6 , $OCOR^5$, $N(R^6)_2$, $NHCOR^5$, $NHSO_2R^5$, and $NHCON(R^6)_2$, wherein R^5 is selected from C_{1-6} -alkyl, optionally substituted aryl and optionally substituted heteroaryl, and each R^6 independently is selected from hydrogen, C_{1-6} -alkyl, optionally substituted aryl and optionally substituted heteroaryl; and

pharmaceutically acceptable salts and prodrugs thereof;

for the preparation of a medicament for the treatment of cancer in a mammal.

26. Use of a 3,3-diphenyl-1,3-dihydro-indol-2-one type compound of the formula (IIc)

$$R^3$$
 Z
 R^2
 R^1
 H
 O
(IIc)

wherein

 R^1 is selected from hydrogen, halogen, C_{1-6} -alkyl, trifluoromethyl and C_{1-6} -alkoxy;

R² is selected from hydrogen, halogen, optionally substituted aryl, optionally substituted aryloxy, and optionally substituted heteroaryl;

 R^3 is selected from hydrogen, optionally substituted C_{1-6} -alkoxy, halogen, cyano, and optionally substituted aryl, optionally substituted aryloxy, optionally substituted heteroaryl, amino, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylsulphonylamino, and mono- and di(C_{1-6} -alkyl)aminosulfonyl;

Z is CH or N; and

5

10

15

20

one of X^1 and X^2 is selected from halogen, OR^6 , $OCOR^5$, $N(R^6)_2$, $NHCOR^5$, $NHSO_2R^5$, and $NHCON(R^6)_2$, wherein R^5 is selected from C_{1-6} -alkyl, optionally substituted aryl and optionally substituted heteroaryl, and each R^6 independently is selected from hydrogen, C_{1-6} -alkyl, optionally substituted aryl and optionally substituted heteroaryl; and the other of X^1 and X^2 is selected from optionally substituted C_{1-6} -alkyl, optionally substituted C_{2-6} -alkenyl, carboxy, optionally substituted C_{1-6} -alkoxycarbonyl, optionally substituted C_{1-6} -alkylcarbonyl, formyl, carbamoyl, mono- and $di(C_{1-6}$ -alkyl)aminocarbonyl, cyano, aryl, arylcarbonyl, heterocyclyl, heterocyclylcarbonyl, heteroaryl, heteroarylcarbonyl, where any C_{1-6} -alkyl as an amino substituent is optionally substituted with hydroxy, C_{1-6} -alkoxy, amino, mono- and $di(C_{1-6}$ -alkyl)amino, carboxy, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylaminocarbonyl, or halogen(s), and wherein any aryl, heterocyclyl and heteroaryl may be optionally substituted; and

pharmaceutically acceptable salts and prodrugs thereof (as defined further above);

for the preparation of a medicament for the treatment of cancer in a mammal.

27. Use of a 3,3-diphenyl-1,3-dihydro-indol-2-one type compound of the formula (IId)

$$R^3$$
 Z
 R^2
 R^1
 H
 O
(IIId)

wherein

 R^1 , R^2 , and R^3 , when attached to a carbon atom, independently are selected from hydrogen, optionally substituted C_{1-6} -alkyl, optionally substituted C_{2-6} -alkenyl, hydroxy, optionally substituted C_{1-6} -alkoxy, optionally substituted C_{1-6} -alkenyloxy, carboxy, optionally substituted C_{1-6} -alkoxycarbonyl, optionally substituted C_{1-6} -alkylcarbonyl, optionally substituted C_{1-6} -alkylcarbonyloxy, formyl, amino, mono- and di(C_{1-6} -alkyl)amino, carbamoyl, mono- and di(C_{1-6} -alkyl)aminocarbonyl, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylsulphonylamino, cyano, carbamido, mono- and di(C_{1-6} -alkyl)aminocarbonylamino, C_{1-6} -alkanoyloxy, C_{1-6} -alkylsulphonyl, C_{1-6} -alkylsulphinyl, aminosulfonyl, mono- and di(C_{1-6} -alkyl)aminosulfonyl, nitro, optionally substituted C_{1-6} -alkylthio, and halogen, where any C_{1-6} -alkyl as an amino substituent is optionally substituted with hydroxy, C_{1-6} -alkoxy, amino, mono- and di(C_{1-6} -alkyl)amino, carboxy, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylaminocarbonyl, or halogen(s); and

 R^1 , R^2 , and R^3 , when attached to a nitrogen atom, independently are selected from hydrogen, optionally substituted C_{1-6} -alkyl, hydroxy, optionally substituted C_{1-6} -alkoxy, optionally substituted C_{1-6} -alkoxycarbonyl, optionally substituted C_{1-6} -alkylcarbonyl, formyl, mono- and di(C_{1-6} -alkyl)aminocarbonyl, amino, C_{1-6} -alkylcarbonylamino, mono- and di(C_{1-6} -alkyl)amino, C_{1-6} -alkylsulphonyl, and C_{1-6} -alkylsulphinyl; where any C_{1-6} -alkyl as an amino substituent is optionally substituted with hydroxy, C_{1-6} -alkoxy, amino, mono- and di(C_{1-6} -alkyl)amino, carboxy, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylaminocarbonyl, or halogen(s), and wherein any aryl, heterocyclyl and heteroaryl may be optionally substituted;

or wherein R¹ and R² together with the carbon and/or nitrogen atoms to which they are attached form a heterocyclic ring, a heteroaromatic ring, an aromatic ring or a carbocyclic ring;

Z is CH or N; and

5

10

15

25

30

one of X^1 and X^2 is selected from halogen, OR^6 , $OCOR^5$, $N(R^6)_2$, $NHCOR^5$, $NHSO_2R^5$, and $NHCON(R^6)_2$, wherein R^5 is selected from C_{1-6} -alkyl, optionally substituted aryl and optionally substituted heteroaryl, and each R^6 independently is selected from hydrogen, C_{1-6} -alkyl, optionally substituted aryl and optionally substituted heteroaryl; and the other of X^1 and X^2 is selected from optionally substituted C_{1-6} -alkyl, optionally substituted C_{2-6} -alkenyl, carboxy, optionally substituted C_{1-6} -alkoxycarbonyl, optionally substituted C_{1-6} -alkylcarbonyl, formyl, carbamoyl, mono- and di(C_{1-6} -alkyl)aminocarbonyl, cyano, aryl, arylcarbonyl, heterocyclyl, heterocyclylcarbonyl, heteroaryl, heteroarylcarbonyl, where any C_{1-6} -alkyl as an amino substituent is optionally substituted with hydroxy, C_{1-6} -alkoxy, amino, mono- and di(C_{1-6} -alkyl)amino, carboxy, C_{1-6} -alkylcarbonylamino, C_{1-6} -alkylaminocarbonyl, or halogen(s), and wherein any aryl, heterocyclyl and heteroaryl may be optionally substituted; and

pharmaceutically acceptable salts and prodrugs thereof;

for the preparation of a medicament for the treatment of cancer in a mammal.

28. The use according to any one of the preceding claims, wherein the compound is selected from Items 1 to 225 listed herein.

5 29. The use according to any one of the preceding claims, wherein the medicament further comprises one or more other chemotherapeutic agents.

30. A compound as defined in any one of the claims 1-28 for use as a medicament, with the proviso that the compound is not one selected from 3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one and acetic acid 4-[3-(4-acetoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester.

31. A compound of the general formula (I)

$$\begin{array}{c|c}
X^1 \\
R^3 \\
V^2 \\
V^1 \\
R^1 \\
R^N
\end{array}$$

$$\begin{array}{c}
X^1 \\
X^2 \\
Q \\
N
\end{array}$$
(I)

10

25

as defined in any one of the claims 1-23, with the proviso that the compound is not one selected from

15 3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one,

3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one;

3,3-bis-(4-hydroxy-phenyl)-4,5-dimethyl-1,3-dihydro-indol-2-one;

3,3-bis-(4-hydroxy-phenyl)-5,7-dimethyl-1,3-dihydro-indol-2-one;

5-bromo-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one;

5-chloro-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one;

3,3-bis-(4-hydroxy-phenyl)-5-methoxy-1,3-dihydro-indol-2-one;

3,3-bis-(4-hydroxy-phenyl)-5-methyl-1,3-dihydro-indol-2-one;

6-chloro-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one;

acetic acid 4-[3-(4-acetoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester; and

acetic acid 4-[3-(4-acetoxy-phenyl)-5-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester.

32. A 3,3-Diphenyl-1,3-dihydro-indol-2-one type compound of the formula (II)

$$R^3$$
 Z X^1 X^2 X^2 X^2 X^2 X^2 X^3 X^4 X^2 X^2 X^3 X^4 X^4 X^2 X^3

as defined in any one of the claims 24-28, with the proviso that the compound is not one selected from:

- 5 3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one,
 - 3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one;
 - 3,3-bis-(4-hydroxy-phenyl)-4,5-dimethyl-1,3-dihydro-indol-2-one;
 - 3,3-bis-(4-hydroxy-phenyl)-5,7-dimethyl-1,3-dihydro-indol-2-one;
 - 5-bromo-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one;
- 5-chloro-3,3-bis-(4-hydroxy-phenyl)-1,3-dihydro-indol-2-one;
 - 3,3-bis-(4-hydroxy-phenyl)-5-methoxy-1,3-dihydro-indol-2-one;
 - 3,3-bis-(4-hydroxy-phenyl)-5-methyl-1,3-dihydro-indol-2-one;
 - 6-chloro-3,3-bis-(4-hydroxy-phenyl)-7-methyl-1,3-dihydro-indol-2-one;
 - acetic acid 4-[3-(4-acetoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester; and
- acetic acid 4-[3-(4-acetoxy-phenyl)-5-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-phenyl ester.
 - 33. A pharmaceutical composition comprising a compound as defined in any one of the claims 1-28 and a pharmaceutically acceptable carrier.