Microcontroller Application and Development การประยุกต์และพัฒนาไมโครคอนโทรลเลอร์

(CE-MAD 2566)

Sorayut Glomglome

 π

ผู้สอน

ผศ.สรยุทธ กลมกล่อม

ภาควิชาวิศวกรรมคอมพิวเตอร์

สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

e-mail: sorayut.gl@kmitl.ac.th

π

Lecture & Laboratory

01076050

Microcontroller

Application and

Development

(3-0-6)

01076051

Microcontroller

Project

(0-3-2)

Course Description

Microcontroller Application and Development

- Microcontroller Architecture
- Digital Input and Output
- Serial Communications
- Analog-to-Digital Conversion
- Digital-to-Analog Conversion
- Timers

- Interrupt Handling
- Sensors and Actuators
- Displays
- Memory Technology
- Microcontroller Programming and Development

คำอธิบายรายวิชา

การประยุกต์และพัฒนาไมโครคอนโทรลเลอร์

- สถาปัตยกรรมไมโครคอนโทรลเลอร์
- ดิจิทัลอินพุทและเอาท์พุต
- การสื่อสารแบบอนุกรม
- การแปลงจากแอนะล็อกเป็นดิจิทัล
- การแปลงจากดิจิทัลเป็นแอนะล็อก
- ฐานเวลา
- การจัดการอินเทอรัปต์

- เซ็นเซอร์และแอ็คทูเอเตอร์
- การแสดงผล
- เทคโนโลยีหน่วยความจำ
- การพัฒนาและการเขียนโปรแกรม
 ไมโครคอนโทรลเลอร์

ผลการเรียนรู้ของหลักสูตรที่เกี่ยวข้องกับรายวิชา

PLO 2. การวิเคราะห์ปัญหาทางวิศวกรรม

- 2.1 วิเคราะห์ปัญหาทางวิศวกรรมคอมพิวเตอร์ เข้าใจปัญหาและอธิบายความต้องการ และ สามารถระบุข้อกำหนดของปัญหา โดยใช้วิธีการทางวิศวกรรม
- 2.2 ค[้]นคว้าเพื่อค[้]นหาแนวทางหรือวิธีการในการแก้ไขปัญหา แสดงข้อเปรียบเทียบระหว่าง แนวทางหรือวิธีการในการแก้ไขปัญหา แสดงเหตุผลในการเลือกแนวทางในการแก้ไขปัญหา

PLO 3. การออกแบบและพัฒนาเพื่อหาคำตอบของปัญหา

3.2 ออกแบบและพัฒนาฮาร์ดแวร์คอมพิวเตอร์ โดยใช้วงจรดิจิตอล ไมโครคอนโทรลเลอร์ เพื่อ ใช้งานในรูปแบบสมองกลฝังตัว (Embedded Systems) หรือ Internet of Things ได้

ผลการเรียนรู้ของหลักสูตรที่เกี่ยวข้องกับรายวิชา

PLO 5. การใช[้]อุปกรณ์เครื่องมือทันสมัย

5.1 มีทักษะในการใช้และเลือกใช้เครื่องมือทางวิศวกรรมคอมพิวเตอร์ที่ เหมาะสมและทันสมัย โดยคำนึงถึงข้อกำหนดและข้อจำกัดของเครื่องมือและ อุปกรณ์นั้น

PLO 6. การทำงานร่วมกันเป็นทีม

6.1 มีทักษะในการทำงานร่วมกับผู้อื่นทั้งในฐานะสมาชิกของกลุ่มและผู้นำกลุ่ม

ผลการเรียนรู้ของหลักสูตรที่เกี่ยวข้องกับรายวิชา

PLO 7. การติดต่อสื่อสาร

- 7.1 มีทักษะนำเสนอข้อมูล (Presentation) ได้อย่างเหมาะสมกับผู้ฟัง (technical และ non-technical) ทั้งเนื้อหาและรูปแบบ ข้อมูลตรง ประเด็น มีความน่าสนใจ
- 7.2 มีทักษะจัดทำเอกสารได้อย่างเหมาะสมทั้งเนื้อหาและรูปแบบ มี ทักษะในการทำเอกสารโดยใช[้]ซอฟต์แวร์สำเร็จรูป

ผลการเรียนรู้รายวิชา (Course Learning Outcomes)

- CLO-1. เพื่อให้เข้าใจหลักการของระบบฝังตัว
- CLO-2. เพื่อศึกษาหลักการทำงานของไมโครคอนโทรลเลอร์
- CLO-3. เพื่อประยุกต์ใช้งานไมโครคอนโทรลเลอร์
- CLO-4. เพื่อให้สามารถนำอุปกรณ์ต่างๆ มาเชื่อมต่อกับ ไมโครคอนโทรลเลอร์
- CLO-5. เพื่อให้สามารถใช้งานแพลตฟอร์ม STM32

สัดส่วนคะแนน Lecture : อิงกลุ่ม

สัดส่วนคะแนน Laboratory : อิงกลุ่ม

สัดส่วนคะแนน 01076022 : อิงกลุ่ม

อ้างอิง

[1] Jonathan W. Valvano, Embedded Systems: Introduction to Arm® CortexTM-M Microcontrollers, Vol 1, 2nd Edition, 2012

[2] Yifeng Zhu, Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language and C, 3rd Edition, 2017

[3] www.arm.com

[4] www.st.com

Other Resources

https://www.youtube.com/user/STonlineMedia

https://www.hackster.io/

https://hackaday.io/

https://www.youtube.com/channel/UCjPRuknkFjqM6UxxTbCQJ5Q

https://www.youtube.com/c/ControllersTech

Other Resources

Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language and C

10,047 subscribers

https://www.youtube.com/channel/UCY0sQ9hpSR6yZobt1qOv6DA

MYaqoobEmbedded

6,685 subscribers

https://www.youtube.com/channel/UC-CuJ6qKst9-8Z-EXjoYK3Q

Quantum Leaps, LLC

30,489 subscribers

https://www.youtube.com/channel/UCMGXFEew8l6gzjg3tWen4Gw

เนื้อหา

- Introduction to microprocessor, microcontroller and embedded systems
- Architecture and organization of Cortex M
- > Peripherals
 - GPIO, Interrupt, Timer, ADC, DAC
 - UART, I2C, SPI
 - LCD, Touch Sensor
- Debugging

TENTATIVE SYLLABUS

Week	Lecture	Lab
	Introduction to	
1	Embedded Systems	Getting Started
2	Cortex Architecture	LED
	General Purpose Input	General Purpose Inpu
3	Output	Output
		Receiver Transmitter
4	Embedded C	(UART)
	Receiver Transmitter	Nested-Vector Interru
5	(UART)	Controller
		Analog to Digital
6	Interrupt	Converter
	Analog to Digital	
7	Converter	Timer
8	Timer	Pulse-width Modulati
		Liquid Crystal Display
9	Pulse-width Modulation	Touch Sensor
	Serial Peripheral	
10	Interface	Assignment
	Liquid Crystal Display &	
11	Touch Sensor	Assignment
12	Assignment	Assignment
13	Assignment	Assignment
14	Assignment	Assignment
15	Assignment	Assignment

 π

Past Assignments

https://bit.ly/2JR0zNs

