David Morales

Evaluation exercise report for GSoC - ATLAS autoencoders

Data preprocessing

Standard normalization

$$\mathbf{z} = \frac{\mathbf{x} - \mu}{\sigma}$$

MinMax normalization

$$\mathbf{z} = \frac{\mathbf{x} - min(\mathbf{x})}{max(\mathbf{x}) - min(\mathbf{x})}$$

Autoencoder Model

Loss function:

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (\hat{x}_i - x_i)^2$$

Aditional metric:

$$PSNR = 20log_{10} \left(\frac{MAX_RANGE}{\sqrt{MSE}} \right)$$

Using Leaky Relu as an activation function in every layer

Results

Calculated MSE and PSNR over the test set with MinMax noramalization

Calculated MSE and PSNR over the test set with standard noramalization

Summary

- <
 - **>**)
- An autoencoder to compress the four-momentum of a sample of simulated particles from 4 to 3 variables was successfully implemented and evaluated using PSNR and MSE.
- Two different methods to normalized data were evaluated to achieve better results.

Scan this QR code to access the repo

