TD14-Systèmes différentiels

1 Rappels de première année

Exercice 1

Résoudre l'équation différentielle suivante :

$$y' - 3y = 0$$
 et $y(1) = 2$.

Exercice 2

On cherche à résoudre l'équation différentielle :

$$y' + 2y = te^t.$$

1. Résoudre l'équation différentielle :

$$y' + 2y = 0.$$

- 2. On cherche maintenant une solution particulière de l'équation $y' + 2y = te^t$. Soit $(a,b) \in \mathbb{R}^2$ et posons $y_0 : t \mapsto (at+b)e^t$.
 - (a) Montrer que si y_0 est solution de $y' + 2y = te^t$ alors (a, b) est solution de :

$$\begin{cases} 3a = 1 \\ 3b + a = 0 \end{cases}.$$

- (b) Résoudre ce système.
- (c) En déduire une solution particulière y_0 de $y' + 2y = te^t$.
- 3. Résoudre l'équation $y' + 2y = te^t$.

Exercice 3

On cherche à résoudre l'équation différentielle :

$$y' + t^2 y = 0.$$

- 1. Déterminer une primitive A de la fonction $t \mapsto t^2$.
- 2. Montrer que la fonction $y_0 : t \mapsto e^{-A(t)}$ est solution de l'équation.

- 3. Soit y une solution quelconque de l'équation. On pose $z = e^{A(t)}y$.
 - (a) Justifier que z est dérivable et déterminer sa dérivée z'.
 - (b) En déduire qu'il existe un réel $c \in \mathbb{R}$ tel que :

$$\forall t \in \mathbb{R}, \quad y(t) = ce^{-A(t)}.$$

4. Donner l'ensemble des solutions de l'équation $y' + t^2y = 0$.

Exercice 4

Résoudre les équations différentielles suivantes :

- 1. y'' y' 12y = 0,
- 2. y'' + 4y' + 4y = 0.

Exercice 5 (**)

On considère l'équation différentielle suivante dont on cherche les solutions sur \mathbb{R}_+^* :

$$y'' - 3y' + 2y = t \ln(t).$$

- 1. Résoudre sur \mathbb{R}_+^* l'équation y'' 3y' + 2y = 0.
- 2. Soient f_1 et f_2 les fonctions définies sur \mathbb{R}_+^* par :

$$\forall t \in \mathbb{R}^*_+, \quad f_1(t) = -e^{-t}t \ln(t) \quad ; \quad f_2(t) = e^{-2t}t \ln(t).$$

- (a) Justifier que f_1 et f_2 admettent des primitives sur \mathbb{R}_+^* . On note F_1 et F_2 une primitive de f_1 et f_2 sur \mathbb{R}_+^* respectivement.
- (b) On note y_0 la fonction définie sur \mathbb{R}_+^* par :

$$\forall t \in \mathbb{R}_+^*, \quad y_0(t) = F_1(t)e^t + F_2(t)e^{2t}.$$

Justifier que y_0 est deux fois dérivables et déterminer y'_0 et y''_0 .

- (c) En déduire que y_0 est une solution particulière de l'équation $y'' 3y' + 2y = t \ln(t)$.
- 3. En déduire l'ensemble des solutions de l'équation $y'' 3y' + 2y = t \ln(t)$.

2 Systèmes linéaires

Exercice 6

On considère le système différentiel suivant :

$$\begin{cases} y_1' &= -4y_1 + 2y_2 \\ y_2' &= -3y_1 + y_2 \end{cases}.$$

- 1. Mettre ce système sous la forme Y' = AY où A est une matrice à déterminer.
- 2. Déterminer les valeurs propres et les sous-espaces propres de A. La matrice A estelle diagonalisable?
- 3. En déduire l'ensemble des solutions du système.
- 4. Trouver la solution vérifiant les conditions initiales :

$$y_1(0) = 1$$
 et $y_2(0) = -1$.

Exercice 7

On considère le système différentiel suivant :

$$\begin{cases} y'_1 &= \frac{2y_1 - y_2 - y_3}{3} \\ y'_2 &= \frac{-y_1 + 2y_2 - y_3}{3} \\ y'_3 &= \frac{-y_1 - y_2 + 2y_3}{3} \end{cases}$$

- 1. Mettre ce système sous la forme Y' = AY où A est une matrice à déterminer.
- 2. Déterminer les valeurs propres et les sous-espaces propres de *A*. La matrice *A* est-elle diagonalisable?
- 3. En déduire l'ensemble des solutions du système.
- 4. Trouver la solution vérifiant les conditions initiales :

$$y_1(0) = 1$$
 ; $y_2(0) = -1$; $y_3(0) = 2$.

Exercice 8

On considère le système différentiel suivant :

$$\begin{cases} x' = x + y \\ y' = -2x - 2y \end{cases}.$$

- 1. Montrer que toutes les trajectoires sont convergentes.
- 2. Déterminer les états d'équilibres.
- 3. Résoudre le système.
- 4. Trouver une trajectoire qui converge vers l'état d'équilibre (2, -2).

Exercice 9

On considère le système différentiel suivant :

$$\begin{cases} x' = x + 4y - 4z \\ y' = 3x + 2y - 4z \\ z' = 3x - 3y + z. \end{cases}$$

On pose, pour tout réel
$$t$$
, $X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$ et $X_0 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

- 1. Résoudre le système.
- 2. Déterminer l'unique solution vérifiant $X(0) = X_0$.
- 3. (a) Déterminer la trajectoire associée à la solution de la question précédente.
 - (b) Cette trajectoire converge-t-elle?

Exercice 10 (Un cas où la matrice n'est pas diagonalisable)

On pose $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et on considère le système différentiel Y' = AY.

- 1. Expliquer pourquoi la matrice A n'est pas diagonalisable.
- 2. On pose $Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ une solution de Y' = AY.
 - (a) Ecrire le système différentielle satisfait par (y_1, y_2) .
 - (b) En déduire la forme de y_2 puis celle de y_1 .
 - (c) Conclure.

2

Exercice 11 (Un cas où la matrice n'est pas diagonalisable)

On pose $B = \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}$ et on considère le système différentiel Y' = BY.

- 1. Déterminer le spectre de B. La matrice B est-elle diagonalisable?
- 2. Déterminer une base de chaque sous-espace propre de B.
- 3. On note e_1 le premier vecteur de la base trouvée à la question précédente et $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
 - (a) Montrer que (e_1, e_2) est une base de $\mathcal{M}_{2,1}(\mathbb{R})$.
 - (b) Calculer Be_2 et donner ses coordonnées dans la base (e_1, e_2) .
 - (c) En déduire qu'il existe une matrice inversible P à déterminer telle que $B = P^{-1}AP$ où A est la matrice de l'exercice précédent.
- 4. Soit $Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ où y_1 , y_2 sont deux fonctions définie sur \mathbb{R} . On pose Z = PY.

- (a) Montrer que Z est solution du système différentiel Z' = AZ si et seulement si Y est solution du système Y' = BY.
- (b) En utilisant le résultat de l'exercice précédent, résoudre le système Y' = BY.

Exercice 12

Résoudre l'équation

$$x''(t) + 5x'(t) + 4x(t) = 0$$

à l'aide d'un système.

Exercice 13 (Pour aller plus loin)

Soient $n \in \mathbb{N}^*$, $(a_0, \dots, a_{n-1}) \in \mathbb{R}^n$. Une fonction y définie sur \mathbb{R} est dite solution de l'équation différentielle linéaire d'ordre n à coefficients constants

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y = 0$$

si y est n fois dérivable \mathbb{R} et que pour tout $t \in \mathbb{R}$.

$$y^{(n)}(t) + a_{n-1}y^{(n-1)}(t) + \dots + a_0y(t) = 0.$$

Soit y une fonction n fois dérivable sur \mathbb{R} .

- 1. On pose $y_1 = y$, $y_2 = y'$,..., $y_n = y^{(n-1)}$.
 - (a) Montrer que y est solution de $y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_0y = 0$ si et seulement si (y_1, \dots, y_{n-1}) est solution du système différentiel suivante :

$$\begin{cases} y_2 & = y'_1 \\ \vdots & \vdots \\ y_n & = y'_{n-1} \\ -a_0y_1 - a_1y_2 - \dots - a_{n-1}y_n & = y'_n \end{cases}$$

- (b) Mettre le système sous forme matricielle.
- 2. **Application**. On considère l'équation différentielle suivante :

$$y^{(3)} - 2y'' - y' + 2 = 0.$$

- (a) Montrer que cette équation différentielle est équivalente à un système différentiel Y' = AY où A est une matrice à déterminer.
- (b) Déterminer les valeurs propres et les sous-espaces propres de A. En déduire que A est diagonalisable.
- (c) Résoudre le système Y' = AY et en déduire l'ensemble des solutions de l'équation différentielle :

$$y^{(3)} - 2y'' - y' + 2y = 0.$$