MATH 451/551 Midterm 1

Name:

This exam contains 12 pages (including this cover page) and 11 questions. Total of points is 42.

 ${\bf Grade\ Table\ (for\ instructor\ use\ only)}$

Question	Points	Score
1	3	
2	3	
3	4	
4	3	
5	5	
6	3	
7	3	
8	5	
9	5	
10	5	
11	3	
Total:	42	

1. (3 points) Show that $(A \cup B \cup C)^c = A^c B^c C^c$. You may use DeMorgan's Law.

2. (3 points) Show that

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC).$$

3. (a) (2 points) Let P(A) = .5 and $P(B^c) = .3$ and $P(A \cup B) = .8$. What is P(AB)?

(b) (1 point) What is $P(A^cB)$?

(c) (1 point) What is $P(AB^c)$?

4. (3 points) Let P be a probability measure. Show that if $A \subset B$ then $P(A) \leq P(B)$.

5. (5 points) You are dealt 3 cards from a deck of 52. What is the probability that they all have the same suit?

6. (3 points) A box contains eight balls. Four of the balls have an "A" written on them and four of them have a "B" written on them. You draw out the balls one by one (without replacement) and place them in a row. How many distinct strings of "A"s and "B"s are there?

7. (3 points) A group of n friends contains Larry and Rex. If the friends line up randomly, what is the probability Rex is standing next to Larry?

8. (5 points) Of students at W&M, 55% are women and 45% are men. 1 in 100 men have the flu and 2 in 100 women have the flu. If a randomly chosen student has the flu, what is the probability they are a man?

9. (5 points) A car factory has three machines labeled A, B, and C. A makes 20% of the cars, B makes 30% of the cars, and C makes 50% of the cars. 6% of the cars made by A are defective, 7% of the cars made by B are defective, and 8% of the cars made by C are defective. What is the probability that a car is defective if it is made by this factory?

10. (5 points) Let p be the probability that I find a pearl when I open an oyster. How many oysters should I open to make sure I have at least a 50% chance of finding at least one pearl? We can assume that finding a pearl in one oyster is independent of finding one in another.

11. (3 points) Let A and B be both disjoint and independent. Let P(A)=1/2. What is P(B)?