Lecture 5.3

高级代码优化技术

徐辉 xuh@fudan.edu.cn

大纲

- 一、程序分析难题
- 二、指针分析
- 三、多版本和自适应优化
- 四、并行优化

程序分析难题

- 一般来讲,程序属性(program properties)是不可 计算的(undecidability)
 - 如常量分析等数据流分析问题
- 一个算法可以无法同时做到
 - 可靠(sound):不会漏报
 - 完备(complete): 不会误报
 - 结束(terminate):不因某些输入导致算法无法终止
- 如何设计程序分析算法是一门艺术

莱斯定理: Rice's Theorem

CLASSES OF RECURSIVELY ENUMERABLE SETS AND THEIR DECISION PROBLEMS(1)

BY H. G. RICE

"Any nontrivial property about the language recognized by a Turing Machine is undecidable."

- Henry Gordon Rice, 1953

回顾Chomsky Hierarchy

Class	Languages	Automaton	Rules	Word Problem	Example
type-0	recursively enumerable	Turing machine	no restriction	undecidable	Post's corresp. problem
type-1	context sensitive	linear-bounded TM	$\begin{array}{c} \alpha \to \gamma \\ \alpha \le \gamma \end{array}$	PSPACE- complete	$a^nb^nc^n$
type-2	context free	pushdown automaton	$A \rightarrow \gamma$	cubic	a^nb^n
type-3	regular	NFA / DFA	$A \to a \text{ or}$ $A \to aB$	linear time	a^*b^*

证明方法1: 规约到图灵机停机问题

- 假设算法A可以分析任意程序p中的变量x的值是否为常量c
- 设计一个程序p证明算法A不存在?

证明方法2: By Contradiction

 假设算法A可以分析确定型图灵机T是否正确,输出 accept或reject,如果无法分析则fail。

• 正确: 1

• 错误: 0

• 失败: -1

T A 图灵机是否正确? no reject

yes

accept

- 证明思路: 将A输入A
 - 构造矛盾: A',如果A输出1,则A'输出0(手动构造)
 - 将A'输入A进行分析

程序分析难题

- 指针分析
- 并发分析
- . . .

大纲

- 一、程序分析难题
- 二、指针分析
- 三、多版本优化
- 四、并行优化

指针分析问题

- 指针别名(Pointer alias)分析:判断两个指针是 否在某一时刻指向同一内存地址。
- 指针指向(Points-to)分析:分析指针指向的内存地址,分析结果可用于指针别名分析。

```
//C语言代码
int a = 0;
int* p = &a;
*p = 1;
int c = a + 1;
```

```
//C语言代码
int a = 0;
int b = 1;
int* p = &b;
p = p + 1;
*p = 1;
int c = a + 1;
```

可能造成Alias的操作

- 指针
- 函数调用传参(指针、引用)
- 数组索引

```
//C语言代码
int *p, i;
p = &i;
```

```
//C语言代码
void foo(struct Node* a, struct Node* a);
foo(x,x); // a和b在函数foo中是alias
```

```
//C语言代码
int i,j,a[100];
i = j; // a[i] and a[j] alias
```

别名确定性

- May alias: 可能存在别名关系
- Must alias: 一定存在别名关系。
- Not may alias => must not alias
- May alias和Must alias有哪些应用场景?

指针分析的用途

- 编译器优化(保守策略)
 - 常量传播(constant propagation)
 - 下列代码中a是常量吗?
 - 如果*p和a一定不是alias,则是
 - 如果*p和a一定是alias,则否
 - 如果*p和a可能是alias,则否
 - 适合May alias 分析
 - 死代码删除中的条件语句判定

```
• . . .
```

```
//C语言代码
int a = 0;
int b = 1;
int* p = &b;
p = p + 1;
*p = 1;
int c = a + 1;
```

为什么指针分析很难

```
//一段无意义C语言代码
struct Node {
 int data;
 Node* next, prev;
                                       多级指针、数据结构建模
foo(Node* in1, Node* in2){ ←
                                       跨函数分析
   Node* new = new Node();
   if ((11||12||13)&&(11||12||13)) { → → 3SAT条件
       new.next = ...;
       new.prev = ...;
   } else {
       new.next = ...;
       new.prev = ...;
   new = new + 1;
                                       裸指针运算
   if (...) {
       foo(in2, new);
                                       递归调用
   ...}
```

指针分析方法

- Flow-sensitivity: 是否考虑代码执行顺序
 - Flow sensitive: 计算每一个程序点的指针指向
 - Flow insensitive: 计算任意程序点可能的指向
- Path-sensitivity: 是否考虑控制流
 - Path sensitive: 分析过程只考虑单条特定控制流
 - Path insensitive: 分析过程不区分控制流
- Context-sensitivity: 是否考虑函数调用
 - Context sensitive: 支持跨函数调用分析
 - Context insensitive: 以函数为分析边界

指针分析算法

- Andersen-style Analyses
- Steensgaard-style Analyses

指针分析表示方法

- 别名对: alias pairs
 - 如*p和*q、x和*p、x和*q
- 等价集合: equivalence sets
 - •如{*p, x, *q}
- 指针指向: point-to
 - $p \rightarrow x$, $q \rightarrow x$

```
int x;
p = &x;
q = p;
```

Andersen-style指针分析思路

- 将指针赋值视作子集约束
- 通过约束表示和传递指针指向信息
- Flow-insensitive
 - 不考虑语句顺序
- Context-insensitive
 - 与函数如何被调用无关
- 主要步骤
 - 1) 将指针指向关系映射为子集约束;
 - 2) 初始化约束图;
 - 3) 计算传递闭包更新约束关系。

提取约束关系

约束类型	赋值语句	约束	含义
Base	a = &b	$a \supseteq \{b\}$	$loc(b) \in pts(a)$
Simple	a = b	$a \supseteq b$	$pts(a) \supseteq pts(b)$
Complex	a = *b	$a \supseteq * b$	$\forall v \in pts(b), pts(a) \supseteq pts(v)$
Complex	*a = b	* <i>a</i> ⊇ <i>b</i>	$\forall v \in pts(a), pts(v) \supseteq pts(b)$

初始化约束图

- 约束图
 - 点表示变量的指针指向;
 - 边表示特定约束关系;
- 初始化
 - 包含关系: 箭头
 - 指针指向: {}

赋值语句	约束	含义	边
a = &b	$a \supseteq \{b\}$	$loc(b) \in pts(a)$	no edge
a = b	$a \supseteq b$	$pts(a) \supseteq pts(b)$	b->a
a = *b	$a \supseteq * b$	$\forall v \in pts(b), pts(a) \supseteq pts(v)$	no edge
*a = b	$*a \supseteq b$	$\forall v \in pts(a), pts(v) \supseteq pts(b)$	no edge

p ⊇ {a} q ⊇ {b}	р {a}	→ s {a}	
*p ⊇ q			
r ⊇ {c}	r	а	t
s ⊇ p	{c}		
t ⊇ *p			
*s ⊇ r	q	b	С
	{b}		

更新约束关系: Worklist算法

```
假设约束图已经初始化
Let W = \{ v \mid pts(v) \neq \emptyset \} (所有指向集合非空的节点)
While W not empty
  v ← select from W
  for each a \in pts(v) do
     for each constraint p ⊇*v
       add edge a→p, and add a to W if edge is new
     for each constraint v \supseteq q
       add edge q→a, and add q to W if edge is new
  for each edge v→q do
     pts(q) = pts(q) \cup pts(v), and add q to W if pts(q) changed
```

更新约束关系

r

q

```
for each a \in pts(v) do
    p \supseteq \{a\}
                    for each constraint p ⊇*v
   q \supseteq \{b\}
                      add edge a→p, and add a to W if edge is new
    *p ⊇ q
                    for each constraint *v ⊇ q
    r \supseteq \{c\}
                      add edge q→a, and add q to W if edge is new
   s \supseteq p
                  for each edge v→q do
   t ⊇ *p
                     pts(q) = pts(q) \cup pts(v), and add q to W if pts(q) changed
    *s ⊇ r
Step 1: Worklist: {p, s, r, q}
                                               Step 2: Worklist: {s, r, q, a, t}
{a}
            {a}
                                                {a}
                                                           {a}
{c}
            {b}
                     {b}
                                                {c}
                                                           {b, c} {b, c}
           b
                    C
                                                          b
{b}
                                                {b}
Result Worklist: {p, s, r, q, a, t}
                                                Result Worklist: {s, r, q, a, t}
```

精确性和算法复杂度

- 分析粒度较粗, 相比flow sensitive存在误报。
 - *t和c不应为alias
- 复杂度O(n³), n是约束图的节点数。

Andersen算法结果

如何进一步优化性能?

- Andersen-style:每个变量可以是任意变量的alias
 - 0(n²)空间
- 降低每个变量使用的空间(边数)?可以牺牲一些精度。
- 只有一条出边:将每个变量关联到一个abstract location
 - 如果*x和*y如果是alias, x和y指向同一个abstract location
 - 接近线性复杂度O(n * α(n))

Flow Sensitive 分析结果

Andersen-style 分析结果

Steensgaard-style 分析结果

精度损失: a = &b, a = &c, b和c不应是alias

Steensgaard-Style分析思路

- 使用等价约束(equality constraints)而非子集约束;
- 基于并查集的方法,如果x=y,则x和y联通
- 接近线性复杂度 $O(n * \alpha(n))$, 粒度比Andersen-style更粗

约束类型	赋值语句	约束	含义	注释
Base	a = &b	$a \subseteq \{b\}$	$loc(b) \subseteq pts(a)$	Steensgaard
		$a = \{b\}$	loc(b) = pts(a)	简化版(便于理解)
Simple	a = b	a = b	pts(a) = pts(b)	
Complex	a = *b	a = *b	$\forall v \in pts(b), pts(a) = pts(v)$	
Complex	*a = b	*a = b	$\forall v \in pts(a), pts(v) = pts(b)$	

简化版的问题: a = &c, b = &c, a和b不应是alias

并查集算法(简化版)

- 维护不存在相交关系的集合,支持查找和联合两种操
 - Find(x): 返回包含变量x的集合
 - Union(x, y): 联合包含x和y的两个集合

```
while(getPair()!=NULL){
   [p,q] = readPair(p,q);
   pset = find(p);
   qset = find(q);
   if(pset == qset)
       continue;
   else union(p,q);
}
```

示例

Andersen

Steensgaard

纯并查集(简化版)

Andersen vs Steensgaard

- 都是flow-insensitive、context-insensitive
- 不同点在于points-to集合的构造思路
 - Andersen-style:
 - 基于子集关系的
 - 每个节点对应一个变量
 - 每个节点有多条出边
 - 比较精准但效率不高
 - Steensgaard-style:
 - 基于等价关系的
 - 每个节点对应多个变量
 - 每个节点只有一条出边
 - 比较快但精准度有限

Flow-insensitive分析的缺陷

- 相对流敏感算法分析结果不够精准,可用性较差
 - 代码优化
 - 漏洞检测
- 如何进行流敏感、路径敏感的指针分析?
 - 维护每个program point的alias关系?

```
int a = 1;
int b = 2;
int c = 3;

int x = &a;
doSth();
x = &b;
if(x == &c)//恒为假
    doSth();
if(x == &a)//恒为假
    doSth(x)
```

```
int* a = malloc(10);
int* b = malloc(10);

int* x = a;
doSth();
x = b;
free(a)//a和x不是alias
free(x)
```

回到常量分析问题

• 下列哪个程序会使基于lattice的常量检测算法失准?

```
x = 1;
if (x==2)
x = 3;
x是否为常量?
```

```
if (p)
    x = 1;
else
    x = -1;
y = x*x;
y是否为常量?
```

```
if (p)
    x = 1;
else
    x = 2;
if (p)
    y = x+2;
else
    y = x+1;
y是否为常量?
```

Meet/Join Over All Passes

- 一个program point的属性信息是由每一条到达该点的路径分别计算得到的。
- 主要挑战: 循环导致路径数是无限的

```
while (i>1) {
  if (i%2==1){
   x = 1;
   y = 2;
  } else {
   x = 2;
   y = 1;
  i = i/2;
z = x+y;
z是否为常量?
```


是否可以缩环?

- 是否可以基于强联通分量缩环?
 - 检测强联通分量: Tarjan算法

```
DFSVisit(v) {
   N[v] = c; // 记录每个节点的到达时间
   L[v] = c; //记录下一跳的最早到达时间
   C++;
   push v onto the stack;
   for each w in OUT(v) {
       if N[w] == UNDEFINED {
          DFSVisit(w);
           L[v] = min(L[v], L[w]);
       } else if w is on the stack {
           L[v] = min(L[v], N[w]);
   if L[v] == N[v] { //找到强联通分量
       pop vertices off stack down to v;
```

Tarjan算法找SCC: DFS

通过Tarjan算法找SCC

Stack:	scc:
V5[6,6] V6[5,5] V4[4,2] V3[3,1] V2[2,2] V1[1,1]	{V5}
V6[5,5] V4[4,2] V3[3,1] V2[2,2]	{V5} {V6}

V1[1,1]

大纲

- 一、程序分析难题
- 二、指针分析
- 三、多版本优化
- 四、并行优化

循环多版本

- 静态分析的局限性: 如指针分析
- 乐观式优化: 假设某些有利条件成立
- 进入循环前检查

举例

```
fn foo(a:int*, b:int*){
   for(int i = 1; i < n; i++) {
      for(int j = 1; j < n; j++) {
        a[i] = a[i] + b[j];
      }
   }
}</pre>
```

可以标量优化的前提: a和b不是alias

```
fn foo(a:int*, b:int*){
    for(int i = 1; i < n; i++) {
        t = a[i];
        for(int j = 1; j < n; j++) {
            t = t + b[j];
        }
        a[i] = t;
    }
}</pre>
```

自适应优化: Adaptive Optimization

JIT Bailout

- JIT可以做一些激进优化并翻译为Assembly code
 - Javascript: 类型假设
 - JVM
- Bailout: 优化错误则自动回退到解释执行

```
//javascript代码
function sum(a) {
  var sum = 0;
  for (var i = 0; i < a.length; i++) {
    sum = sum + a[i];
  }
}</pre>
```

大纲

- 一、程序分析难题
- 二、指针分析
- 三、多版本优化
- 四、并行优化

并行计算

- 并行计算架构
 - 多核处理器 (multicore)
 - 多线程并行计算
 - 多CPU (multiprocessor)
 - UMA: cache coherence
 - NUMA
 - 分布式系统
- 关键问题:
 - 任务分解: 数据分块
 - 数据更新同步

并行性能提升上线: Amdahl's Law

- 如果单线程运行一个任务需要n小时
- 其中可以并行的部分耗时m
- 如果增加线程数至s,则所需时间为: (n-m)+m/s
- 效率提升: $\frac{n}{(n-m)+m/s}$
- 另p=m/n,则 $\frac{1}{(1-p)+p/s}$

$$\lim_{s \to \infty} \frac{1}{(1-p) + p/s} = \frac{1}{1-p}$$

主要工具

- OpenMP: 用于共享内存
 - 自动创建多线程
 - 线程同步、内存屏障
- MPI: Message Passing Interface
 - 用于分布式计算环境
 - 自动创建多个进程
 - 基于socket同步数据

传统多线程

```
int test(){
    int a[n];
    for (int i = 0; i < n; i++) {
        a[i] = 2 * i;
    }
    return 0;
}</pre>
```

```
a[n]

线程1: foo() 线程2: foo2()
```

```
int paratest(){
    pthread_t t1;
    pthread_t t2;
    pthread_create(&t1, NULL, foo1, NULL);
    pthread_create(&t2, NULL, foo2, NULL);
    pthread_join(t1,NULL);
    pthread_join(t2,NULL);
    return 0;
}
```

```
int a[n];
foo1(){
    for (int i=0; i<n/2; i++)
        a[i] = 2 * i;
}
foo2(){
    for (int i=n/2; i<n; i++)
        a[i] = 2 * i;
}</pre>
```

OpenMP应用举例

```
int test(){
   unsigned long long start = rdtsc();
   int a[100000];
   #pragma omp parallel for num_threads(2)
   for (int i = 0; i < 100000; i++) {
      a[i] = 2 * i;
   }
   unsigned long long cycles = rdtsc()- start;
   printf("cycles = %d\n", cycles);
   return 0;
}</pre>
```

Assembly Code

```
push
       rbp
mov
       rbp, rsp
sub
    rsp, 61A80h
    rax, offset _omp_outlined_
mov
    rdi, offset unk 404058
mov
    esi, 1
mov
    rdx, rax
mov
    rcx, [rbp+var_61A80]
lea
       al, 0
mov
      ___kmpc_fork_call
call
xor
    eax, eax
add
    rsp, 61A80h
       rbp
pop
retn
```

```
void __kmpc_fork_call (
	ident_t * loc, //源代码信息
	kmp_int32 argc,
	kmpc_micro microtask,
	···
```

循环中的数据依赖问题:示例1

```
int test(){
   int a[20];
   a[0] = 1;
   a[1] = 1;
   #pragma omp parallel for num_threads(4)
   for (int i = 0; i < 20; i++) {
       a[i] = a[i-1] + a[i-2];
   }
   return 0;
}</pre>
数据依赖, 无法并行
```

循环中的数据依赖问题:示例2

```
for(int i = 1; i < n; i++) {
    for(int j = 1; j < n; j++) {
        a[i][j] = a[i-1][j] + a[i][j-1];
    }
}</pre>
```


依赖分析

依赖优化: Polyhedral model

总结

- 程序分析难题
- 指针分析
 - may alias must alias
 - 流不敏感分析: Anderson style、Steensgaard
 - 路径敏感分析: SCC检测=>生成树
- 多版本和自适应优化
 - 循环多版本、JIT bailout
- 并行优化
 - OpenMP和数据依赖问题