Random Variables

Mahbub Latif, PhD

January 2025

Plan

- Introduction
- Discrete random variables
- Continuous random variables
- Expectation of a random variable
- Variance of a random variable
- Jointly distributed random variables

Random variables

- Random variables are one of the fundamental building blocks of probability theory and statistical inference
- A random variable is formed by assigning a numerical value to each outcome in the sample space of a particular experiment
- A random variable can be thought of as being generated from a function that maps each outcome in a particular sample space onto the real number line ${\cal R}$

FIGURE 2.1

A random variable is formed by assigning a numerical value to each outcome in a sample space

• A random variable is obtained by assigning a *numerical value* to each outcome of a particular experiment.

Example 1 (Machine breakdowns)

outcome	probability	repair cost (in USD)
electrical	0.2	200
mechanical	0.5	350
misuse	0.3	50

• *Repair cost* is a random variable as it is a numeric value and it corresponds to each element of the sample space

Example 4 (power plant operation)

ullet X= no. of power plants working and its possible values are 0, 1, 2, and 3

FIGURE 2.4

X= positive difference between the scores of two dice

Types of random variables

- A random variable is either discrete or continuous
 - \circ *Number of power plants generating electricity* \longrightarrow a discrete random variable
 - \circ *Lifetime of a laptop battery* \longrightarrow a continuous random variable

Types of random variables

- Random variables are generally denoted by uppercase letters, such as $X,\,Y,\,Z,\,$ etc.
- Lowercase letters (e.g. x, y, etc.) are used to denote values taken by the random variable
- E.g. X denote the number of power plants generating electricity and its values are denoted by lowercase letters $x=0,\,x=1,\,$ etc.

Homework 2B

2.2.1 Consider a random variable measuring the following quantities. In each case state with reasons whether you think it more appropriate to define the random variable as discrete or as continuous.

- A person's height
- A student's course grade (CGPA, point-grade, grade out of 100)
- The thickness of a metal plate
- A person's age

Discrete random variables

Probability mass function

- Probability mass function (pmf) is defined for a discrete random variable and it assigns probability values to all possible values of the random variable
- ullet The probability mass function of a discrete random variable X is a set of probability values p_i assigned to values of random variable x

$$P(X=x)=p_x$$

Probability values must satisfy

$$(i) \ \ 0 \leq p_x \leq 1 \ \ ext{and} \ \ (ii) \ \ \sum_x p_x = 1$$

Probability distribution of repair costs of machine breakdown

outcome	repair cost, x_i	probability, p_i
electrical	200	0.2
mechanical	350	0.5
misuse	50	0.3

Probability distribution of the number of plants generating electricity

x_i	0	1	2	3
p_i	0.07	0.23	0.57	0.13

Cumulative distribution function

ullet The cumulative distribution function of a random variable X is defined as

$$F(a) = P(X \le a) \ = \sum_{y:\, y \le a} P(X = y)$$

- Like the probability mass function, the cumulative distribution function summarizes the probabilistic properties of a random variable.
- Knowledge of either the probability mass function or the cumulative distribution function allows the other functions to be calculated.

Probability distribution of repair costs of machine breakdown

outcome	repair cost, x_i	probability, p_i
electrical	200	0.2
mechanical	350	0.5
misuse	50	0.3

$$-\infty < x < 50 \Rightarrow F(x) = P(cost \leqslant x) = 0$$
 $50 \le x < 200 \Rightarrow F(x) = P(cost \leqslant x) = .30$
 $200 \le x < 350 \Rightarrow F(x) = P(cost \leqslant x) = .50$
 $350 \le x < \infty \Rightarrow F(x) = P(cost \leqslant x) = 1.0$

Cumulative distribution function

ullet For a discrete random variable, F(x) is an increasing step function with steps at the values taken by the random variable

Cumulative distribution function

 Probability mass function (pmf) can be obtained from cumulative distribution function (cdf)

$$P(X=x) = F(x) - F(x^-)$$

- ullet $F(x^-)$ is the limiting value from below of the cumulative distribution function
- ullet If there is no step in the cumulative distribution function at a point x

$$F(x) = F(x^{-}) \ and \ P(X = x) = 0$$

Cumulative distribution function of repair cost

$$P(X = 40) = F(40) - F(40^{-}) = 0$$

 $P(X = 50) = F(50) - F(50^{-}) = .30 - 0 = .30$
 $P(X = 65) = F(65) - F(65^{-}) = .30 - .30 = 0$

Homework 2A

- **2.1.1** An office has four copying machines, and the random variable X measures how many of them are in use at a particular moment in time.
- ullet Find P(X=4) for the given probabilities

$$P(X = 0) = 0.08, \ P(X = 1) = 0.11,$$
 $P(X = 2) = 0.27, P(X = 3) = 0.33$

- Draw a line graph of the probability mass function
- Construct and plot the cumulative distribution function

Homework 2A

- **2.1.3** Suppose that two fair dice are rolled and that the two numbers recorded are multiplied to obtain a final score.
- Construct and plot the probability mass function and the cumulative distribution function of the final score

Continuous Random Variables

Example 14 (Metal Cylinder Production)

- A company manufactures metal cylinders, which are designed to have a diameter of 50 mm, but the company discovers that the cylinders can have a diameter anywhere between 49.5 and 50.5 mm
- ullet Suppose that the random variable X is the diameter of a randomly chosen cylinder manufactured by the company
- Since this random variable can take any value between 49.5 and 50.5, it is a continuous random variable

- ullet Suppose that a random variable X is the time to failure of a newly charged battery
- Failure can be defined to be the moment at which the battery can no longer supply enough energy to operate a certain appliance
- This random variable is continuous since it can hypothetically take any positive value.
- ullet Its state space can be thought of as the interval 0 to ∞

Example 17 (Milk contents)

- A machine-filled milk container is labeled as containing 2 liters.
- However, the actual amount of milk deposited into the container by the filling machine varies between 1.95 and 2.20 liters.
- ullet If the random variable X measures the amount of milk in a randomly chosen container, it is a continuous random variable taking any value in the interval [1.95, 2.20]

- The main distinction between discrete and continuous random variables lies in how their probabilistic properties are defined.
- The probabilistic properties of discrete random variables are defined through a probability mass function
- The probabilistic properties of a continuous random variable are defined through a probability density function

- ullet The probabilistic properties of a continuous random variable are defined through a function f(x)
- A function f(x) is said to be a density function if it satisfies the following two properties:
 - $\circ \ f(x) > 0$ for all values of x
 - $\int_{-\infty}^{\infty} f(x) dx = 1, \ -\infty < x < \infty$

ullet The probability that a continuous random variable lies between two values a and b is obtained by integrating the probability density function between these two values

$$P(a \le X \le b) = P(a < X < b)$$
 $= \int_a^b f(x) dx$

• The probability that a continuous random variable takes a specific value is zero, i.e P(X=a)=0

$$P(X=a)=\int_a^a f(x)\,dx=0$$

ullet Suppose battery failure times X (measured in hours) has a probability density function

$$f(x) = egin{cases} rac{2}{(1+x)^3} & x \geq 0 \ 0 & x < 0 \end{cases}$$

ullet It can be shown that f(x)>0 for all $x\geq 0$ and

$$\int_0^\infty f(x)\,dx = \int_0^\infty rac{2}{(1+x)^3}\,dx = rac{-1}{(1+x)^2}igg|_0^\infty = 1$$

- $\circ \ f(x)$ is a valid probability density function
- What is the probability that the battery fails within first five hours?

What is the probability that the battery fails within first five hours?

$$P(X \le 5) = \int_0^5 rac{2}{(1+x)^3} \, dx = rac{-1}{(1+x)^2} igg|_0^5 = rac{-1}{6^2} + 1 = rac{35}{36}$$

What is the probability that a battery lasts longer than five hours?

Example 17 (Milk container contents)

 Suppose that the probability density function of the amount of milk deposited in a milk container is

$$f(x) = 40.976 - 16x - 30e^{-x}, \quad 1.95 \le x \le 2.20$$

Example 17 (Milk container contents)

It can be shown that

$$\circ \ f(1.95) = 40.976 - (16)(1.95) - (30)(e^{-1.95}) = 5.508 > 0$$

$$\circ \ f(2.20) = 40.976 - (16)(2.20) - (30)(e^{-2.20}) = 2.452 > 0$$
 and

$$\int_{1.95}^{2.20} \left(40.976 - 16x - 30e^{-x}
ight) dx = \left(40.976x - 16(x^2/2) + 30e^{-x}
ight)igg|_{1.95}^{2.20} = 1$$

The probability that the actual amount of milk is less than 2.0 liter

$$\begin{split} \int_{1.95}^{2.0} f(x) \, dx &= \int_{1.95}^{2.0} (40.976 - 16x - 30e^{-x}) \, dx \\ &= \left(40.976x - 16(x^2/2) + 30e^{-x} \right) \Big|_{1.95}^{2.0} \\ &= \left[(40.976)(2.0) - 16(2.0^2/2) + 30e^{-2.0} \right] \\ &- \left[(40.976)(1.95) - 16(1.95^2/2) + 30e^{-1.95} \right] \\ &= 54.012 - 53.751 = 0.261 \end{split}$$

About 26% of the milk containers are underweight.

Cumulative Distribution Function

ullet The cumulative distribution function of a continuous random variable X is defined in exactly the same way as for a discrete random variable

$$F(a) = P(X \leq a) = \int_{-\infty}^a f(x) \, dx$$

 $\circ \ f(x) o \mathsf{probability}$ density function of X

Cumulative Distribution Function

 For a continuous random variable, the probability density function can also be obtained from cumulative distribution function

$$f(x) = rac{dF(x)}{dx}$$

ullet Probability that a continuous random variable X lies between a and b can be obtained using cumulative distribution function

$$P(a \le X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$

Example 15 (Battery failure times)

Probability density function

$$f(x)=rac{2}{(1+x)^3}$$
 $x\geq 0$

Cumulative distribution function

$$egin{aligned} F(x) &= \int_0^x f(y) \, dy \ &= \int_0^x rac{2}{(1+y)^3} dy \ &= 1 - rac{1}{(1+x)^2} \end{aligned}$$

Example 15 (Battery failure timesY)

Probability density function

$$f(x)=rac{2}{(1+x)^3}$$
 $x\geq 0$

Cumulative distribution function

$$F(x) = 1 - rac{1}{(1+x)^2}$$

Example 15 (Battery failure timesY)

Find the probability that a battery lasts between one and two hours

$$egin{split} P(1 \leq X \leq 2) &= \int_{1}^{2} f(x) \, dx \ &= \int_{1}^{2} rac{2}{(1+x)^3} \, dx = rac{-1}{(1+x)^2} \Big|_{1}^{2} = rac{1}{4} - rac{1}{25} = 0.21 \end{split}$$

$$egin{align} P(1 \leq X \leq 2) &= F(2) - F(1) \ &= \left[1 - rac{1}{(1+2)^2}
ight] - \left[1 - rac{1}{(1+1)^2}
ight] = rac{1}{4} - rac{1}{25} = 0.21 \ \end{array}$$

Homework 2B

2.2.2 A random variable X takes values between 4 and 6 with a probability density function

$$f(x) = rac{1}{x \ln(1.5)}, \;\; 4 \le x \le 6.$$

- Check that the total area under the probability density function is equal to 1.
- What is $P(4.5 \le X \le 5.5)$?
- Construct the cumulative distribution function.

Homework 2B

2.2.4 A random variable X takes values between 0 and 4 with a cumulative distribution function

$$F(x) = rac{x^2}{16}$$
 for $0 \le x \le 4$

- What is $P(X \leq 2)$?
- What is $P(1 \le X \le 3)$?
- What is the probability density function.

Homework 2B

2.2.6 A car panel is spray-painted by a machine, and the technicians are particularly interested in the thickness of the resulting paint layer.

Suppose that the random variable X measures the thickness of the paint in millimeters at a randomly chosen point on a randomly chosen car panel, and that X takes values between 0.125 and 0.5 mm with a probability density function of

$$f(x) = A[0.5 - (x - 0.5)^2], \ \ 0.125 \le x \le 0.5$$

- ullet Find the value of A and construct the cumulative distribution function.
- What is the probability that the paint thickness at a particular point is less than 0.2 mm?

The Expectation of a Random Variable

The Expectation of a Random Variable

- The probability mass function or the probability density function provides complete information about the probabilistic properties of a random variable
- Summary measures of a random variable would be useful, two commonly used summary measures are expectation and variance of a random variable
- Expectation represents the "average" value of the random variable, where as variance measures average distance of a variable from its mean value
- ullet Expectation of a random variable X is denoted by E(X)

Expectation of a discrete random variable

ullet The expected value or expectation of a discrete random variable X with a probability mass function $P(X=x_i)=p_i$ is defined as

$$\mu = E(X) = \sum_i P(X=x_i)\,x_i = \sum_i p_i x_i$$

ullet E(X) provides a summary measure of the average value taken by the random variable and is also known as the mean of the random variable

Example 1 (Machine breakdowns)

probability	repair cost (in USD)
0.2	200
0.5	350
0.3	50
	0.2

Expected repair cost

$$E(X) = \sum_i p_i x_i = (.2)(200) + (.5)(350) + (.3)(50) = 230$$

Example 4 (power plant operation)

x_i	0	1	2	3
p_i	0.07	0.23	0.57	0.13

Expected number of plants generating electricity

$$E(X) = \sum_{i} p_i x_i = (.07)(0) + (.23)(1) + (.57)(2) + (.13)(3) = 1.76$$

Expectation of Continuous Random Variables

ullet The expected value or expectation of a continuous random variable X with a probability density function f(x) is defined as

$$E(X) = \int_x x f(x) \, dx$$

Example 15 (Battery Failure Times)

$$E(X) = \int_0^\infty x \frac{2}{(1+x)^3} dx \qquad E(X) = \int_0^\infty x \frac{2}{(1+x)^3} dx$$

$$= \int_0^\infty \left[\frac{2}{(1+x)^2} - \frac{2}{(1+x)^3} \right] dx \qquad = \int_1^\infty \left[\frac{2(y-1)}{y^3} \right] dy$$

$$= \left[\frac{-2}{(1+x)} + \frac{1}{(1+x)^2} \right]_0^\infty \qquad = \left[\frac{2}{y^2} - \frac{2}{y^3} \right]_1^\infty$$

$$= 1$$

Properties of expectation

ullet For two constants a and b

$$\circ E(a) = a$$

$$\circ E(aX) = aE(X)$$

$$\circ E(a+bX)=a+bE(X)$$

Homework 2C

2.3.1 An office has four copying machines, and the random variable X measures how many of them are in use at a particular moment in time. Suppose that

$$egin{aligned} P(X=0) &= 0.08 \ P(X=1) &= 0.11 \ P(X=2) &= 0.27 \ P(X=3) &= 0.33. \end{aligned}$$

 What is the expected number of copying machines in use at a particular moment in time?

Homework 2C

2.3.11 Consider again the random variable with a cumulative distribution function of

$$F(x) = x^2/16; \ \ 0 \le x \le 4$$

• What is the expected value of this random variable?

Homework 2C

2.3.12 Consider again the car panel painting machine discussed in Problem 2.2.6, where

$$f(x) = A[0.5 - (x - 0.5)^2], \ \ 0.125 \le x \le 0.5$$

What is the expected paint thickness?

The Variance of a Random Variable

The Variance of a Random Variable

- Variance of a random variable measures variability or spread in the values taken by the random variable
- ullet The variance of a random variable X is denoted by σ^2 , and is defined as

$$egin{aligned} \sigma^2 &= Var(X) = Eig[X - E(X)ig]^2 \ &= Eig[X^2 - 2XE(X) + E(X)^2ig] \ &= E(X^2) - 2E(X)^2 + E(X^2) \ &= E(X^2) - E(X)^2 \ &= E(X^2) - \mu^2 \end{aligned}$$

Standard deviation

• The positive square root of the variance is known as the *standard deviation*, which is denoted by σ

$$\sigma = +\sqrt{\sigma^2} = +\sqrt{Var(X)}$$

Example 1 (Machine breakdowns)

x, repair cost	p=P(X=x)	x2	рх	px2
50	0.3	2,500	15	750
200	0.2	40,000	40	8,000
350	0.5	122,500	175	61,250
Total	1.0	165,000	230	70,000

Expected value

$$E(X) = \sum x_i p_i = 230$$

Variance

$$egin{align} Var(X) &= E(X^2) - E(X)^2 \ &= \sum x_i^2 p_i - E(X)^2 \ &= 70,000 - 230^2 = 17,100 \ \end{cases}$$

Standard deviation

$$\sigma = \sqrt{Var(X)} = \sqrt{17,100} = 130.767$$

Example 14 (Metal cylinder diameter)

• The probability density function of metal cylinder diameter

$$f(x) = 1.5 - 6(x - 50.0)^2, 49.5 \le x \le 50.5$$

Expected value

$$egin{align} E(X) &= \int_{49.5}^{50.5} xigl[1.5 - 6(x - 50.0)^2igr] dx = \int_{-.5}^{.5} (y + 50)(1.5 - 6y^2) dy \ &= \int_{-.5}^{.5} (1.5y - 6y^3 + 75 - 300y^2) dy \ &= igl[(1.5y^2/2) - (6y^4/4) + 75y - (300y^3/3)igr]_{-.5}^{.5} = 50 \ \end{aligned}$$

Example 14 (Metal cylinder diameter)

• The probability density function of metal cylinder diameter

$$f(x) = 1.5 - 6(x - 50.0)^2, 49.5 \le x \le 50.5$$

Variance

$$Var(X) = E(X^2) - E(X)^2 = 2500.05 - 50^2 = 0.05$$

$$egin{aligned} E(X^2) &= \int_{-.5}^{.5} (y^2 + 100y + 2500)(1.5 - 6y^2) dy \ &= \int_{-.5}^{.5} \left[1.5y^2 + 150y + 3750 - 6y^4 - 600y^3 - 15000y^2
ight] dy \ &= \left[.5y^3 + 75y^2 + 3750y - (6y^5/5) - (600y^4/4) - 5000y^3
ight]_{-.05}^{0.5} \ &= 1259.4 - (-1240.65) = 2500.05 \end{aligned}$$

Properties of variance

ullet For two constants a and b

$$\circ V(a) = 0$$

$$\circ V(aX) = a^2V(X)$$

$$\circ \ V(a+bX)=b^2V(X)$$

Quantiles

Medians of Random Variables

- The median is another summary measure of the distribution of a random variable that provides information about the "middle" value of the random variable
- ullet The median of a continuous random variable X is x_m (say), which satisfies

$$F(x_m) = 0.5$$

Medians of Random Variables

• The cumulative distribution function of battery lifetime is

$$F(x) = 1 - rac{1}{(1+x)^2}$$

The median battery lifetime

$$F(x) = 0.5 \Rightarrow 1 - \frac{1}{(1+x)^2} = 0.5$$

 $\Rightarrow (1+x)^2 = 2$
 $\Rightarrow x = \sqrt{2} - 1 = 0.41$

Symmetric distribution

ullet A continuous random variable X is said to be symmetric about a point μ if both the median and the expectation of the random variable are equal to μ

Quantiles

- Quantiles of random variables are additional summary measures that can provide information about the spread or variability of the distribution of the random variable
- ullet The pth quantile (0 of a random variable X with a cumulative distribution function <math>F(x) is defined to be the value x_p for which

$$F(x_p) = P(X \leq x_p) = p$$

- \circ It is also referred to as the p imes 100th percentile of the random variable
- \circ There is a probability of p that the random variable takes a value less than the pth quantile x_p

Quartiles

- ullet The .25 quantile $(x_{.25})$ is the first quartile Q_1
- ullet The .75 quantile $(x_{.75})$ is the third quartile Q_3
- ullet The median $(x_{.5})$ is the second quartile Q_2

Inter-quartile range

• The **inter-quartile range** (IQR) is defined as the difference between the third and first quartile

$$IQR = x_{.75} - x_{.25} = Q_3 - Q_1$$

• IQR is a measure of spread

Quartiles

Example 15 (Battery Failure Times)

• The cumulative distribution function of battery lifetime

$$F(x) = 1 - rac{1}{(1+x)^2}, \;\; x \geq 0$$

Example 15 (Battery Failure Times)

Third and first quartiles

$$egin{align} F(x_{.75}) = .75 \ \Rightarrow \ 1 - rac{1}{(1+x_{.75})^2} = .75 \ & \Rightarrow rac{1}{(1+x_{.75})^2} = 0.25 \ \Rightarrow \ x_{.75} = 1 \, \mathrm{hr} \ & \ F(x_{.25}) = .25 \ \Rightarrow \ 1 - rac{1}{(1+x_{.25})^2} = .25 \ & \Rightarrow rac{1}{(1+x_{.25})^2} = 0.75 \ \Rightarrow \ x_{.25} = .154 \, \mathrm{hr} \ & \ \end{array}$$

Example 15 (Battery Failure Times)

• Interquartile range (IQR)

$$IQR = x_{.75} - x_{.25} = 1 - 0.154 = 0.845$$

 Half of the batteries will fail between 0.154 hour and 1 hour (i.e. between about 9 minutes to 60 minutes)

Homework 2D

- **2.4.1** Suppose that the random variable X takes the values -2, 1, 4, and 6 with probability values 1/3, 1/6, 1/3, and 1/6, respectively.
- ullet Find the expectation and variance of X.

Homework 2D

2.4.5 Consider again the random variable described in Problems 2.2.2 and 2.3.10 with a probability density function of

$$f(x) = rac{1}{x \ln(1.5)}, \;\; 4 \le x \le 6.$$

- What is the variance of this random variable?
- What is the standard deviation of this random variable?
- Find the upper and lower quartiles of this random variable.
- What is the interquartile range?

Homework 2D

2.4.6 Find variance, standard deviation, and interquartile range of the variable X, where

$$F(x)=rac{x^2}{6} \ \ for \ \ 0\leq x\leq 4$$

ullet For two discrete random variables X and Y, the joint probability mass function is defined by

$$P(X=x_i,Y=y_j)=p_{ij}$$

- $\circ \ 0 < p_{ij} < 1$ for all i and j
- $\circ \; \sum_i \sum_j p_{ij} = 1$

ullet For two continuous random variables X and Y, the joint probability density function is defined by f(x,y) that satisfies

$$x \circ f(x,y) > 0$$
 for all x and y

$$\circ \int_x \int_y f(x,y) \, dy \, dx = 1$$

ullet The probability that X lies between a and b, and Y lies between c and d is defined as

$$P(a \leq X \leq b, c \leq Y \leq d) = \int_a^b \int_c^d f(x,y) \, dy \, dx$$

The joint cumulative distribution function is defined as

$$F(x,y) = P(X \leq x, Y \leq y) = \int_{-\infty}^x \int_{-\infty}^y f(u,v) \, dx \, dy$$

Example 19 (Air Conditioner Maintenance)

- A company that services air conditioner units is interested in how long a technician takes on a visit to a particular location, which depends on the number of air conditioner units at the location that need to be serviced
 - $\circ \ X \in \{1,2,3,4\} o$ the service time in hours taken at a particular location
 - $\circ \ Y \in \{1,2,3\} o$ the number of air conditioner units at the location
- ullet The random variables X and Y are jointly distributed

Example 19 (Air Conditioner Maintenance)

		X = service time (hrs)				
		1	2	3	4	
Y = number of air conditioner units	1	0.12	0.08	0.07	0.05	
	2	0.08	0.15	0.21	0.13	
	3	0.01	0.01	0.02	0.07	

•
$$P(X=1,Y=1)=p_{11}=0.12$$

• It is a valid joint mass function because all probabilities are non-negative and sum of all probabilities is 1, i.e. $\sum_i p_{ij} = 1$

Example 19 (Air Conditioner Maintenance)

		X = service time (hrs)				
		1	2	3	4	
Y = number of air conditioner units	1	0.12	0.08	0.07	0.05	
	2	0.08	0.15	0.21	0.13	
	3	0.01	0.01	0.02	0.07	

$$egin{aligned} P(X \leq 1, Y \leq 2) &= p_{11} + p_{12} \ &= .12 + .08 = .20 \end{aligned}$$

Marginal probability distributions

- The marginal distribution is the individual probability distribution of the random variable, which can be obtained from a joint distribution
- For a discrete random variable

$$P(X=x_i) = \sum_j P(X=x_i, Y=y_j)$$

E.g.
$$P(X=1) = \sum_{j=1}^{3} P(X=1,Y=y_j)$$

= $p_{11} + p_{12} + p_{13} + p_{14} = 0.21$

Marginal probability distributions

Marginal distribution of a continuous variable

$$f_1(x) = \int_{-\infty}^{\infty} f(x,y) \, dy \ f_2(y) = \int_{-\infty}^{\infty} f(x,y) \, dx$$

Marginal probability distributions

Marginal distribution of a discrete variable

$$P(X=x) = \sum_{y} P(X=x,Y=y)$$

$$P(Y=y) = \sum_x P(X=x,Y=y)$$

Conditional probability distribution

ullet The conditional distribution of a random variable X conditional on a random variable Y taking a particular value is defined as

$$P_{x\,|\,y} = P(X=x\,|\,Y=y) = rac{P(X=x,Y=y)}{P(Y=y)} ~~ ext{(discrete)}$$

$$f_{2\,|\,2}(x|y)=rac{f(x,y)}{f(y)}$$
 (continuous)

Conditional probability distribution

For example

$$P(Y = 1 \mid X = 2) = \frac{P(X = 2, Y = 1)}{P(X = 2)} = \frac{.08}{.24} = .33$$

Independent random variables

ullet Two random variables X and Y are defined to be independent if their joint probability mass function or joint probability density function is the product of their two marginal distributions

$$P(X=x_i,Y=Y_j) = P(X=x_i)\,P(Y=y_j)\,[discrete] \ f(x,y) = f(x)\,f(y)\,[continuous]$$

Independent random variables

ullet Are X and Y independent for $f(x,y)=6xy^2, \ (0\leq x\leq 1, \ \ 0\leq y\leq 1)?$

$$f(x) = \int_0^1 f(x,y) dy = \int_0^1 6xy^2 \, dy = \left[6xy^3/3
ight]_0^1 = 2x$$
 $f(y) = \int_0^1 f(x,y) dx = \int_0^1 6xy^2 \, dx = \left[6x^2y^2/2
ight]_0^1 = 3y^2$

- \circ Since $f(x)\,f(y)=(2x)(3y^2)=f(x,y)$
- \circ So X and Y are independent

Homework 2E

2.5.3 Suppose that two continuous random variables X and Y have a joint probability density function

$$f(x,y) = A(x-3)y, -2 \le x \le 3, \ 4 \le y \le 6$$

- What is the value of *A*?
- What is $P(0 \le X \le 1, 4 \le Y \le 5)$?
- ullet Construct the marginal probability density functions of X and Y.
- ullet Are the random variables X and Y independent?

$$\int_{-2}^{3} \int_{4}^{6} A(x-3)y \, dy \, dx = 1$$
 $A \int_{-2}^{3} (x-3) \Big[(y^2/2) \Big|_{4}^{6} \Big] dx = 1$
 $10A \int_{-2}^{3} (x-3) \, dx = 1$
 $10A(x^2/2 - 3x) \Big|_{-2}^{3} = 1$
 $10A \Big[(9/2) - 9 - 2 - 6 \Big] = 1$
 $10A(-25/2) = 1$
 $A = -(1/125)$