Sección 18 Anillos y Campos 1-28,34-51,54-56.

Sección 19 Dominios Enteros 1-14, 23-30

Sección 21 El campo de cocientes de un dominio integral $1,2,6,7,8,\cdots,17$.

Sección 22 Anillo de polinomios 1-17 (impares) 24,25,26,27,28,19,30,31

Sección 23 Factorización de un polinomio sobre un campo 1-22, 34-37

Ejercicios 23

División de Polinomios en Z_p[x]

- 1. Dados $f(x) = x^6 + 3x^5 + Ax^2 3x + 2$ y $g(x) = x^2 + 2x 3$ en $\mathbb{Z}_7[x]$, encuentra q(x) y r(x) según el algoritmo de división, de manera que f(x) = g(x)q(x) + r(x), con r(x) = 0 o de grado menor que el de g(x).
- 2. Dados $f(x) = -x^3 + 3x^5 + 4x^2 3x + 2$ y $g(x) = 3x^2 + 2x 3$ en $\mathbb{Z}_7[x]$, encuentra q(x) y r(x) según el algoritmo de división, de manera que f(x) = g(x)q(x) + r(x), con r(x) = 0 o de grado menor que el de g(x).
- 3. Dados $f(x) = x^5 2x^4 + 3x 5$ y g(x) = 2x + 1 en $\mathbb{Z}[x]$, encuentra q(x) y r(x) según el algoritmo de división, de manera que f(x) = g(x)q(x) + r(x), con r(x) = 0 o de grado menor que el de g(x).
- 4. Dados $f(x) = x^4 + 5x^3 3x^2$ y $g(x) = 5x^2 x + 2$ en $\mathbb{Z}[x]$, encuentra q(x) y r(x) según el algoritmo de división, de manera que f(x) = g(x)q(x) + r(x), con r(x) = 0 o de grado menor que el de g(x).

Grupos Multiplicativos Cíclicos de Campos Finitos

- 5. Encuentra todos los generadores del grupo multiplicativo cíclico de unidades del campo finito \mathbb{Z}_5 .
- 6. Encuentra todos los generadores del grupo multiplicativo cíclico de unidades del campo finito \mathbb{Z}_7 .
- 7. Encuentra todos los generadores del grupo multiplicativo cíclico de unidades del campo finito \mathbb{Z}_{17} .
- 8. Encuentra todos los generadores del grupo multiplicativo cíclico de unidades del campo finito \mathbb{Z}_{23} .

Factorización de Polinomios en $\mathbb{Z}[x]$

- 9. El polinomio $x^4 + 4$ se puede factorizar en factores lineales en $\mathbb{Z}[x]$. Encuentra esta factorización.
- 10. El polinomio $x^3 + 2x^2 + 2x + 1$ se puede factorizar en factores lineales en $\mathbb{Z}_7[x]$. Encuentra esta factorización.

- 11. El polinomio $2x^3 + 3x^2 x 5$ se puede factorizar en factores lineales en $\mathbb{Z}_n[x]$. Encuentra esta factorización.
- 12. ¿Es $x^3 + 2x + 3$ un polinomio irreducible en $\mathbb{Z}_5[x]$? ¿Por qué? Exprésalo como un producto de polinomios irreducibles en $\mathbb{Z}_5[x]$.
- 13. ¿Es $2x^3+x^2+2x+2$ un polinomio irreducible en $\mathbb{Z}_5[x]$? ¿Por qué? Exprésalo como un producto de polinomios irreducibles en $\mathbb{Z}_5[x]$.
- 14. Demuestra que $f(x) = x^2 + 8x 2$ es irreducible sobre \mathbb{Q} . ¿Es irreducible sobre \mathbb{E} ? ¿Sobre \mathbb{C} ?
- 15. Repite el Ejercicio 14 con $g(x) = x^2 + 6x + 12$ en lugar de f(x).
- 16. Demuestra que $x^3 + 3x^2 8$ es irreducible sobre \mathbb{Q} .
- 17. Demuestra que $x^4 22x^2 + 1$ es irreducible sobre \mathbb{Q} .

Criterio de Eisenstein

- 18. Determina si el polinomio x^2-12 satisface el criterio de Eisenstein para irreducibilidad sobre \mathbb{Q} .
- 19. Determina si el polinomio $8x^3 + 6x^2 9x + 2A$ satisface el criterio de Eisenstein para irreducibilidad sobre \mathbb{Q} .
- 20. Determina si el polinomio $4x^{10} 9x^3 + 2Ax 18$ satisface el criterio de Eisenstein para irreducibilidad sobre \mathbb{Q} .
- 21. Determina si el polinomio $2x^{10} 25x^3 + 10x^2 30$ satisface el criterio de Eisenstein para irreducibilidad sobre \mathbb{Q} .

Encontrar las Raíces de un Polinomio

22. Encuentra todas las raíces de $6x^4 + 17x^3 + 11x^2 + x - 10$ en \mathbb{Q} .

Teoría

- 1. Demuestra que para p un número primo, el polinomio $x^p + a$ en $\mathbb{Z}_p[x]$ no es irreducible para ningún $a \in \mathbb{Z}_p$.
- 2. Si F es un campo y a^0 es una raíz de $f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$ en F[x], demuestra que 1/a es una raíz de $a_n + a_{n-1}x + \ldots + a_0x^n$.
- 3. (Teorema del Resto) Sea $f(x) \in F[x]$, donde F es un campo, y sea $a \in F$. Demuestra que el resto r(x) cuando f(x) se divide por x a, de acuerdo con el algoritmo de división, es f(a).
- 4. Sea $\phi_m : \mathbb{Z}[x] \to \mathbb{Z}_m[x]$ dada por

$$\phi_m(a_0 + a_1x + a_2x^2 + \ldots + a_nx^n) = \phi_m(a_0) + \phi_m(a_1)x + \phi_m(a_2)x^2 + \ldots + \phi_m(a_n)x^n,$$

donde ϕ_m es la aplicación natural mód m definida por $\phi_m(a) = (\text{el resto de } a \text{ al dividirlo por } m)$ para $a \in \mathbb{Z}$.

- a. Demuestra que ϕ_m es un homomorfismo de $\mathbb{Z}[x]$ a $\mathbb{Z}_m[x]$.
- b. Demuestra que si $f(x) \in \mathbb{Z}[x]$ y $\phi_m(f(x))$ tienen ambas grado n y $a \cdot \phi_m(f(x))$ no se factoriza en $\mathbb{Z}_m[x]$ en dos polinomios de grado menor que n, entonces f(x) es irreducible en $\mathbb{Q}[x]$.
- c. Usa la parte (b) para demostrar que $x^3 + 11x + 36$ es irreducible en $\mathbb{Q}[x]$. [Pista: Prueba con un valor primo de m que simplifique los coeficientes.]

Soluciones

Generadores de Grupos Multiplicativos Cíclicos en Campos Finitos

- 1. Para $2 \in \mathbb{Z}_5$, tenemos que $2^2 = 4$, $2^3 = 3$, $2^4 = 1$, por lo que 2 genera el subgrupo multiplicativo $\{1, 2, 3, 4\}$ de todas las unidades en \mathbb{Z}_5 . Según el Corolario 6.16, los únicos generadores son $2^1 = 2$ y $2^3 = 3$.
- 2. Para $2 \in \mathbb{Z}_7$, encontramos que $2^3 = 1$, por lo que 2 no genera. Probando con 3, encontramos que $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$, y $3^6 = 1$, por lo que 3 genera las seis unidades 1, 2, 3, 4, 5, 6 en \mathbb{Z}_7 . Por el Corolario 6.16, los únicos generadores son $3^1 = 3$ y $3^5 = 5$.
- 3. Para $2 \in \mathbb{Z}_{17}$, encontramos que $2^4 = -1$, por lo que $2^8 = 1$ y 2 no genera. Probando con 3, encontramos que $3^2 = 9$, $3^3 = 10$, $3^4 = 13$, $3^5 = 5$, $3^6 = 15$, $3^7 = 11$, $3^8 = 16 = -1$. Dado que el orden de 3 debe dividir 16, vemos que 3 debe tener orden 16, por lo que 3 genera las unidades en \mathbb{Z}_{17} . Por el Corolario 6.16, los únicos generadores son $3^1 = 3$, $3^3 = 10$, $3^5 = 5$, $3^7 = 11$, $3^9 = 14$, $3^{11} = 7$, $3^{13} = 12$, y $3^{15} = 6$.
- 4. Para $2 \in \mathbb{Z}_{23}$, encontramos que $2^2 = 4$, $2^3 = 8$, $2^4 = 16$, $2^5 = 9$, $2^6 = 18$, $2^7 = 13$, $2^8 = 3$, $2^9 = 6$, $2^{10} = 12$, y $2^{11} = 1$, por lo que 2 no genera. Sin embargo, esta computación muestra que $(-2)^{11} = -1$. Dado que el orden de -2 debe dividir 22, vemos que $(-2)^1 = 2$ debe tener orden 22, por lo que $(-2)^1$ genera las unidades en \mathbb{Z}_{23} . Por el Corolario 6.16, los únicos generadores son $(-2)^1 = 2$, $(-2)^3 = 15$, $(-2)^5 = 14$, $(-2)^7 = 10$, $(-2)^9 = 17$, $(-2)^{13} = 19$, $(-2)^{15} = 7$, $(-2)^{17} = 5$, $(-2)^{19} = 20$, y $(-2)^{21} = 11$.

Factorización de Polinomios en $\mathbb{Z}[x]$

- 1. En \mathbb{Z}_5 , tenemos $x^4+4=x^4-1=(x^2+1)(x^2-1)$. Reemplazando 1 por -4 nuevamente, continuamos y descubrimos que $(x^2-4)(x^2-1)=(x-2)(x+2)(x-1)(x+1)$.
- 2. Por inspección, -1 es una raíz de $x^3 + 2x^2 + 2x + 1$ en $\mathbb{Z}_7[x]$. Ejecutando el algoritmo de división como se ilustra en nuestras respuestas a los Ejercicios 1 a 3, calculamos $x^3 + 2x^2 + 2x + 1$ dividido por x (-1) = x + 1, y encontramos que $x^3 + 2x^2 + 2x + 1 = (x + 1)(x^2 + x + 1)$. Por inspección, 2 y 4 son raíces de $x^2 + x + 1$. Así que la factorización es $x^3 + 2x^2 + 2x + 1 = (x + 1)(x 4)(x 2)$.
- 3. Por inspección, 3 es una raíz de $2x^3 + 3x^2 7x 5$ en $\mathbb{Z}_{11}[x]$. Dividiendo por x 3 usando la técnica ilustrada en nuestras respuestas a los Ejercicios 1 a 3, encontramos que $2x^3 + 3x^2 7x 5 = (x 3)(2)(x^2 x 1)$. Por inspección, -3 y 4 son raíces de $x^2 x 1$, por lo que la factorización es $2x^3 + 3x^2 7x 5 = (x 3)(x + 3)(2x 8)$.

4. Por inspección, -1 es una raíz de $x^3 + 2x + 3$ en $\mathbb{Z}_5[x]$, por lo que el polinomio no es irreducible. Dividiendo por x + 1 usando la técnica de los Ejercicios 1 a 3, obtenemos $x^3 + 2x + 3 = (x+1)(x^2-x+3)$. Por inspección, -1 y 2 son raíces de x^2-x+3 , por lo que la factorización es $x^3 + 2x + 3 = (x+1)(x+1)(x-2)$.

Irreducibilidad y Factorización de Polinomios

- 1. Sea $f(x) = 2x^3 + x^2 + 2x + 2$ en $\mathbb{Z}_5[x]$. Entonces f(0) = 2, f(1) = 2, f(-1) = -1, f(2) = 1, y f(-2) = 1, por lo que f(x) no tiene ceros en \mathbb{Z}_5 . Dado que f(x) es de grado 3, el Teorema 23.10 muestra que f(x) es irreducible sobre \mathbb{Z}_5 .
- 2. $f(x) = x^2 + 8x 2$ satisface la condición de Eisenstein para irreducibilidad sobre \mathbb{Q} con p = 2. No es irreducible sobre \mathbb{R} porque la fórmula cuadrática muestra que tiene raíces reales $(-8 \pm \sqrt{72})/2$. Por supuesto, tampoco es irreducible sobre \mathbb{C} .
- 3. El polinomio $g(x) = x^2 + 6x + 12$ es irreducible sobre $\mathbb Q$ porque satisface la condición de Eisenstein con p=3. También es irreducible sobre $\mathbb R$ porque la fórmula cuadrática muestra que sus raíces son $(-6 \pm \sqrt{-12})/2$, que no están en $\mathbb R$. No es irreducible sobre $\mathbb C$ porque sus raíces están en $\mathbb C$.
- 4. Si $x^3 + 3x^2 8$ es reducible sobre \mathbb{Q} , entonces, por el Teorema 23.11, se factoriza en Z[x] y debe tener un factor lineal de la forma x a en Z[x]. Entonces, a debe ser una raíz del polinomio y debe dividir a -8, por lo que las posibilidades son $a = \pm 1, \pm 2, \pm 4, \pm 8$. Calculando el polinomio en estos valores, encontramos que ninguno de ellos es raíz del polinomio, que es entonces irreducible sobre \mathbb{Q} .
- 5. Si x^4-22x^2+1 es reducible sobre \mathbb{Q} , entonces, por el Teorema 23.11, se factoriza en Z[x] y debe ser un factor lineal en Z[x] o factorizar en dos cuadráticos en Z[x]. Las únicas posibilidades para un factor lineal son $x\pm 1$, y claramente ni 1 ni -1 son raíces del polinomio, por lo que un factor lineal es imposible. Supongamos

$$x^4 - 22x^2 + 1 = (x^2 + ax + b)(x^2 + cx + d).$$

Igualando coeficientes, vemos que el coeficiente x^3 es 0, por lo que a+c=0, el coeficiente x^2 es -22, por lo que ac+b+d=-22, el coeficiente x es 0, por lo que bc+ad=0, y el término constante es 1, por lo que bd=1. Entonces, b=d=1 o b=d=-1.

Supongamos b=d=1. Entonces, -22=ac+1+1, así que ac=-24. Debido a que a+c=0, tenemos a=-c, por lo que $-c^2=-24$, lo cual es imposible para un entero c. Similarmente, si b=d=-1, deducimos que $-c^2=-20$, lo cual también es imposible. Por lo tanto, el polinomio es irreducible.

Criterio de Eisenstein

- 1. Sí, con p = 3.
- 2. Sí, con p = 3.
- 3. No, ya que 2 divide al coeficiente 4 de $4x^{10} 9x^3 + 2Ax 18$ y 32 divide al término constante -18.

4. Sí, con p = 5.

Encontrar las Raíces de un Polinomio

- 1. Encuentra todas las raíces de $6x^4 + 17x^3 + 11x^2 + x 10$ en \mathbb{Q} .
- 1. Observa que $x^2 = x \cdot x$ y $x^2 + 1 = (x+1)^2$ son reducibles en \mathbb{Z}_p . Para un número primo impar p y $a \in \mathbb{Z}_p$, sabemos que $(-a)^p + a = -a^p + a = -a + a = 0$ por el Corolario 20.2. Por lo tanto, $x^p + a$ tiene a -a como raíz, por lo que es reducible sobre \mathbb{Z}_p para todo primo p. [De hecho, el teorema binómico y el Corolario 20.2 muestran que $x^p + a = (x+a)^p$.
- 2. Dado que $f(a) = a_0 + a_1 a + \ldots + a_n a^n = 0$ y $a^n \neq 0$, al dividir por a^n , obtenemos $a_0 \left(\frac{1}{a}\right)^n + a_1 \left(\frac{1}{a}\right)^{n-1} + \ldots + a_n = 0$, que es lo que queríamos mostrar.
- 3. Por el Teorema 23.1, sabemos que f(x) = q(x)(x-a) + c para alguna constante $c \in F$. Aplicando el homomorfismo de evaluación ϕ_a a ambos lados de esta ecuación, obtenemos $f(a) = q(a)(a-a) + c = q(a) \cdot 0 + c = c$, por lo que el resto r(x) = c es realmente f(a).
- 4. a. Sea $f(x) = \sum_{i=0}^{\infty} a_i x^i$ y $g(x) = \sum_{i=0}^{\infty} b_i x^i$. Entonces,

$$\sigma_m(f(x) + g(x)) = \sum_{i=0}^{\infty} (\sigma_m(a_i) + \sigma_m(b_i))x^i = \sigma_m(f(x)) + \sigma_m(g(x)),$$

У

$$\sigma_m(f(x) \cdot g(x)) = \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} \sigma_m(a_i b_{n-i}) \right) x^n = \sigma_m(f(x)) \cdot \sigma_m(g(x)),$$

por lo que σ_m es un homomorfismo. Si $h(x) \in \mathbb{Z}_m[x]$, entonces si k(x) es el polinomio en $\mathbb{Z}[x]$ obtenido de h(x) al considerar solo los coeficientes como elementos de \mathbb{Z} en lugar de \mathbb{Z}_m , vemos que $\sigma_m(k(x)) = h(x)$, por lo que el homomorfismo σ_m es sobre $\mathbb{Z}_m[x]$.

- b. Supongamos que f(x) = g(x)h(x) para g(x), $h(x) \in \mathbb{Z}[x]$ con los grados tanto de g(x) como de h(x) menores que el grado n de f(x). Aplicando el homomorfismo σ_m , vemos que $\sigma_m(f(x)) = \sigma_m(g(x)) \cdot \sigma_m(h(x))$ es una factorización de $\sigma_m(f(x))$ en dos polinomios de grado menor que el grado n de $\sigma_m(f(x))$, lo cual es contrario a la hipótesis. Por lo tanto, f(x) es irreducible en $\mathbb{Q}[x]$.
- c. Tomando m = 5, vemos que $\sigma_5(x^3 + 17x + 36) = x^3 + 2x + 1$, el cual no tiene ninguno de los cinco elementos 0, 1, -1, 2, -2 de \mathbb{Z}_5 como cero, y por lo tanto, es irreducible sobre \mathbb{Z}_5 por el Teorema 23.10. Por la Parte (b), concluimos que $x^3 + 17x + 36$ es irreducible sobre \mathbb{Q} .

Bibliografía

- 1. John B. Fraleigh, Neal E. Brand. A First Course in Abstract Algebra, 7th Edition, Pearson.
- 2. Thomas W. Judson. Abstract Algebra, Theory and Applications, Stephen F. Austin State University.