DEEP LEARNING

- GAN

林伯慎 Prof. Bor-Shen Lin bslin@cs.ntust.edu.tw

VECTOR SPACE DECOMPOSITION AND SYNTHESIS

- Assume $\Phi = \{\phi_i\}_{i=1}^n$ is an orthonormal set, \boldsymbol{x} is a vector.
- Decomposition : $c_i = \langle x, \phi_i \rangle$ for i = 1, 2, ..., n.
 - c_i the amount of projection of x in the direction of ϕ_i .
 - $c = \Phi^t x$ is the decomposition of vector x.
- Synthesis: $\widetilde{\mathbf{x}} = \sum_{i=1}^{n} c_i \boldsymbol{\phi}_i = \Phi \Phi^t \mathbf{x}$.
 - \widetilde{x} is the reconstruction of x with reconstruction loss $L_2(x,\widetilde{x})$.
 - If Φ is a basis, $L_2(\mathbf{x}, \widetilde{\mathbf{x}}) = 0$.

ANALYSIS

- If $\Phi = \{\phi_i\}_{i=1}^n$ is a orthonormal vectors in a vector space, and \boldsymbol{x} is a vector in the vector space.
- $c_i = \langle x, \phi_i \rangle$ for i = 1, 2, ..., n.
 - c_i is the projection of vector x on the direction of ϕ_i .
 - Decomposition of the vector x in the subspace

$$c = \Phi^{t} x = [\phi_{1} \phi_{2} ... \phi_{n}]^{t} x$$

$$\begin{bmatrix} c_{1} \\ \vdots \\ c_{n} \end{bmatrix} = \begin{bmatrix} \phi_{1}^{t} \\ \vdots \\ \phi_{n}^{t} \end{bmatrix} x = \begin{bmatrix} \phi_{1}^{t} x \\ \vdots \\ \phi_{n}^{t} x \end{bmatrix}$$

$$c_{i} = \phi_{i}^{t} x = \langle x, \phi_{i} \rangle$$

- Φ as an analysis network
- ϕ_i connection weights of neuron i

SYNTHESIS

$$\mathbf{\tilde{x}} = \sum_{i=1}^{n} c_i \boldsymbol{\phi}_i = [\boldsymbol{\phi}_1 \boldsymbol{\phi}_2 \dots \boldsymbol{\phi}_n] \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \\
= \Phi \boldsymbol{c} = \Phi \Phi^t \boldsymbol{x}.$$

- Reconstruction of the vector \mathbf{x} in linear subspace spanned by Φ .
- Reconstruction error: $L_2(x, \tilde{x})$.
- When Φ is a basis of the vector space, $L_2(\mathbf{x}, \widetilde{\mathbf{x}}) = 0$.
- c is a representation of x.

EXAMPLE: DFT / IDFT

• Discrete Fourier transform

- Decomposition of discrete-time signal x[n] of length N on a subspace with basis $\Phi = \{e^{j\omega n}\}.$
- FT: $X(\omega) = \langle x[n], e^{j\omega n} \rangle$ continuous spectrum
- DFT: $X[k] = \langle x[n], e^{j\frac{2\pi kn}{N}} \rangle$ discrete spectrum
- Ingredients of x[n] at different frequency (ω)

• Inverse Discrete Fourier transform

- Reconstruction of signal using features and basis Φ.
- IFT: $\tilde{x}[n] = \frac{1}{2\pi} \int X(\omega) e^{j\omega n} d\omega$
- IDFT: $\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi kn}{N}}$

DECOMPOSITION

- Car
 - A car \rightarrow 1 handler,4 wheels,...
- Hamberger
 - A hamberger → water, starch, mineral, ...
- o 3D vector projected onto 2D plane
 - Error vector perpendicular to the plane
 - Projection is the reconstruction
- Fourier analysis
 - Decomposing the signal with a set of cosine functions
 - Fourier transform | decomposition of signal
 - Inverse Fourier transform | reconstruction of signal

AUTO-ENCODER

- Self estimate of a vector to minimize $L_2(x \tilde{x})$
- o D/G could be FNN, CNN/DCNN, RNN or others
- Representation learning (unsupervised)
 - z is the feature of x

GAN (GENERATIVE ADVERSARIAL NETWORK)

DISCRIMINATOR

- Binary Classifier
 - Tell if an object is of a specific type or not
 - Positive/negative samples
 - e.g. CNN
- Example: Face detection
 - Positives: any face photos
 - Negatives: any non-face photos

FNN GENERATOR

Fully connected

DCNN GENERATOR

Layer Operation	Input	Output
Fully Connected 16,384 x 100	100	16,384
Up pooling+ Conv 128@3x3x256	8x8x256	16x16x128
Up pooling+ Conv 64@3x3x128	16x16x128	32x32x64
Up pooling+ Conv 3@3x3x64	32x32x64	64x64x3

TRAINING OF GAN

GAN Learning

- 1. X_{real} : its goal is to be accepted by D when learning D (gold as 1) $\max_{D} (\log(D(X_{real}))).$
- 2. X_{fake} :: its goal is to be rejected by D when learning **D** (gold as 0) $\max_{D} \left(\log(1 D(X_{fake})) \right).$
- 3. X_{fake} : its goal is to be pretend to be real and accepted by D, so Dset gold as 1 to generate gradient for G to learn **G** (D is NOT updated) $\max_{G} D(G(z))$.

How Does GAN Work?

DISCUSSIONS

- Discriminator is a binary classifier with positive samples ONLY.
 Negative samples are produced by Generator.
- If Generator is not good enough,
 - Generated X_{fake} are too far away from X_{real} , which makes the decision boundary lousy.
 - You cannot train a troop with weak imaginary enemies..
- When Generator becomes tough,
 - Generated samples come closer to the positive samples, and the decision boundary shrink backward towards the positive samples.
 - Train Olympic athletics in real games.

GOALS OF GAN

- May be train discriminator(D) or generator(G).
- When the goal is to train the discriminator
 - It means it is possible to train discriminator with GAN when only positive samples are available.
 - Make use of generator to produce more negative samples so as to better train discriminator
- When the goal is to train the generator
 - It is possible to generate something similar to the positive samples (reals) but with variation(through using noise z)
 - It is not expected to generate exact the same things
 - mode collapse
 - → when changing z, no difference (loss allows M-to-1)
 - → cannot control the characteristics of the generated output

CONDITIONAL GAN (C-GAN)

- Training inputs: image+condition
- Use c to control condition and z to produce variation
- Conditions: label, image, or text

Implement (FC)

Cited from C-GAN by M Mirza

C-GAN EXAMPLE- MNIST

Label as condition

Cited from C-GAN by M Mirza

National Taiwan University of Science and Technology C-GAN EXAMPLE – AUTO TAGGING

Cited from C-GAN by M Mirza

C-GAN FOR IMAGE-TO-IMAGE TRANSLATION

- Cited from Image-to-Image Translation with Conditional Adversarial Networks
- D使用PatchGAN: 判斷任意NxN的patch為real/fake
 - 減小Xreal空間,且有更多正樣本

DOMAIN TRANSFORMATION

- Auto-Encoder
- Variational Auto-Encoder (VAE)
- GAN/cGAN Transformer
- Cycle Consistent GAN
- Star GAN

AUTO-ENCODER, AE (TRANSFORMATION)

Encoder-decoder y y y y

- Encoder-decoder
 - Unet/ResNet
- Learn transformation
 - Need paired data $\{(X_i, Y_i)\}$
 - min $L_1(Y \tilde{Y})$
- Example
 - Gray-to-color

VARIATIONAL AUTO-ENCODER

- \circ Encoder output: mean μ and stddev σ
 - $z_i = \mu_i + n_i \sigma_i$, $n_i \sim N(0,1)$
 - record n_i , update μ_i and σ_i
- Add uncertainty to G: due to n_i

National Taiwan University of Science and Technology

GAN / cGAN

GAN

- Do not need paired data,
- $X = \{X_i\}, Y = \{Y_j\}$
- Not easy to converge well
- 可加入 L_1 loss if paired data available

• cGAN (conditional)

- Need paired data
- $T = \{(X_i, Y_i)\}$
- Could add L₁ loss

CYCLE GAN

- X-domain和Y-domain: are not required to be paired
- \bullet F for X \rightarrow Y, G for Y \rightarrow X
 - 2 cycle losses: $L_{CYC}(X, \tilde{X})$ and $L_{CYC}(Y, \tilde{Y})$
- \circ Transformed as fake data, Original as real data
 - 2 GAN losses: $L_{GAN}(D_X, G)$ and $L_{GAN}(D_Y, F)$
- \circ Opt. for multiple networks (F, G, D_X, D_Y) with multiple objectives.

CYCLE GAN - EXAMPLE

• Cited from Learning to Discover Cross-Domain Relations with Generative Adversarial Networks

CYCLE GAN - EXAMPLE

• Cited from Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

EXAMPLES:

o Cited from Daiva's master thesis

DISCUSSIONS ON CYCLE-GAN

- To train the transformer instead of the generator
 - Domain transformation
 - black hair to blond hair, horse to zebra
- Without requiring pair data
 - Compare with transformer (requiring pair data)
- Complicated and time consuming
 - Joint optimization of multiple networks with multiple objectives.
 - Reconstruction loss may help to improve the quality (peek the ground truth)
 - U-net or residual net used to accelerate the convergence
 - Inconvenient for transforming among multiple attributes

STARGAN

- If using CycleGAN
 - Multiple transformer
 - A lot of computations
 - Not flexible

STARGAN

STARGAN EXAMPLE

• Cited from StarGAN: Unified Generative Adversarial Networks for Multidomain Image-to-Image Translation