Quiz 13C: Mapping Reduction

CS 212 Nature of Computation

Habib University — Fall 2023

Data, Narrambar 15, 2022

Total Marks. 10	Date. November 15, 2025
Duration: 15 minutes	Time: 830–845h
Student ID:	
Student Name:	. ()

1. (10 points) Let us extend mapping reduction to arbitrary sets.

A set A is mapping reducible to a set B, written $A \leq_m B$, if there is a computable function, f, where for every u,

$$u \in A \iff f(u) \in B$$
.

The function f is called the *reduction* from A to B.

Prove or disprove the following claim.

Total Marley 10

Claim 1. The following function, $f: \mathbb{Z} \to \mathbb{Z}$, is a reduction from \mathbb{N} to \mathbb{Z} .

$$f(x) = x + 1$$

Solution: We disprove the claim by showing that f does not meet the required condition for a reduction.

Proof. For f to be a reduction from \mathbb{N} to \mathbb{Z} , the following must hold.

$$\forall x \ (x \in \mathbb{N} \iff f(x) \in \mathbb{Z}).$$

This further reduces to 2 cases, one of which we show through a counterexample to not hold.

Case: $\forall x \ (x \notin \mathbb{N} \implies f(x) \notin \mathbb{Z})$ That is, $\forall x \ (x \notin \mathbb{N} \implies (x+1) \notin \mathbb{Z})$

A counterexample is x = -5.