

- ❖ 元理论 通过语法和语义关系研究命题逻辑的宏观性质。
- ❖主要结果 命题演算的可靠性定理和完全性定理。

可靠性:
$$\Gamma \vdash p \Longrightarrow \Gamma \models p$$

完全性:
$$\Gamma \models p \Longrightarrow \Gamma \vdash p$$

结论:
$$\Gamma \vdash p \iff \Gamma \models p$$

$$\vdash p \iff \models p$$

- 1.6.1 可靠性
- ❖引理 若公式p是L公理,则 Γ |=p。

证明概要 对每一种公理模式, 用真值表法验证。例如(L1):

p	q	$q \rightarrow p$	$p \to (q \to p)$
t	t	t	t
t	f	t	t
f	t	f	t
f	f	t	t

- *定理(可靠性, 语义一致性) 对所有p和 Γ , 若 Γ | Γ | ρ , 则 Γ | Γ | ρ 。 证 设 Γ | Γ | ρ , 则存在 ρ 的一个从 Γ 的推理 ρ_I , …, ρ_n = ρ 。 施归纳于n证明 Γ | Γ | ρ
- (1)归纳基础, n=1。上述推理序列仅由p构成, 因此p是公理或前提。若是公理, 由引理, 结论成立; 若是前提, 由语义后承定义, 结论成立。

❖定理(可靠性, 语义一致性) 对所有p和 Γ , 若 Γ \vdash p, 则 Γ \models p。 证 (2)归纳步骤, n>1,假设结论对 p_1 , …, $p_{n-1}=p$ 成立,证明结论对 p_1 , …, $p_n=p$ 成立。

有三种可能情况: $p_n=p$ 是公理、前提和MP推出的。前两种情况的证明同(1)。

考虑第三种情况:存在 p_i , p_j (i, j<n)使得 $p_j = p_i \rightarrow p_n$ 。依归纳假设有:① $\Gamma \models p_i$;② $\Gamma \models p_j$,也就是 $\Gamma \models p_i \rightarrow p_n$ 。再依据语义MP,得 $\Gamma \models p_n$ 。依归纳法原理,结论对一切n成立。

- ❖推论(无矛盾性, 语法一致性)不存在公式p使得 $\vdash p$ 并且 $\vdash \neg p$ 。证(反证) 假设存在L公式p使得 $\vdash p$ 并且 $\vdash \neg p$ 。则依可靠性定理,有 $\vdash p$ 并且 $\vdash \neg p$ 。这是不可能的。
- ◆观察 命题演算L不可能由于自身而产生矛盾。
- ❖是否存在p和Γ,使得Γ \vdash p并且Γ \vdash ¬p?

思考题

1.8 是否存在L公式p和公式集 Γ , 使得 Γ \vdash P 并且 Γ \vdash ¬p?

- 1.6.2 完全性
- ❖定义(相容集)对任何L公式集 Γ ,若存在公式p使得 $\Gamma \vdash p$ 并且 $\Gamma \vdash \neg p$,则称 Γ 为不相容的;否则称为相容的。
- ❖定义(极大相容集) 若L公式集 Γ 相容,且对任何L公式q有 Γ $\vdash q$ 或者 Γ $\vdash \neg q$,则称 Γ 为极大相容集。
- ◆观察 会不会有一个极大相容集 Γ , 使得存在 Γ '满足: $\Gamma \subseteq \Gamma$ '、 $\Gamma \neq \Gamma$ '并且 Γ '是相容的?

❖定理(语义完全性) 对任何p和Γ,若Γ $\models p$,则Γ $\models p$ 。 证 若Γ不相容,则依平凡性定理,结论Γ $\models p$ 成立。以下假设Γ是相容的。用反证法,假设Γ $\models p$ 不成立,证明Γ $\models p$ 不成立。

证明思路:

- 1.假设 Γ ► p不成立,将 Γ 扩张为一个极大相容集 Γ *,使得 Γ * ► p不成立;
- 2.由 Γ^* 构造一个语义解释I,使得 $I(\Gamma)=t$ 并且I(p)=f,所以 $\Gamma \models p$ 不成立。

1(从 Γ 构造 Γ *) L中所有公式可排成序列 $p=p_0, p_1, \cdots$, 使得任一公式都在其中出现。在此基础上,构造一个公式集序列如下:

$$\Gamma_{0} =_{\mathrm{df}} \Gamma;$$

$$\Gamma_{n+1} =_{\mathrm{df}} \left\{ \begin{array}{l} \Gamma_{n}, & \text{如果} \Gamma_{n} \vdash p_{n} 成 \dot{\Sigma}; \\ \Gamma_{n} \cup \{\neg p_{n}\}, & \text{如果} \Gamma_{n} \vdash p_{n} \boldsymbol{\pi} \dot{\Delta} \dot{\Sigma}. \end{array} \right.$$

 $\Diamond \Gamma^* = \Gamma_0 \cup \Gamma_1 \cup \Gamma_2 \cup \ldots$ 。则 $\Gamma^* \vdash \neg p$ (由假设 $\Gamma_0 \vdash p$ 不成立得 $\Gamma_1 \vdash \neg p$)。下面证明 Γ^* 极大相容。为此先证 Γ_n 相容。

施归纳于n。

- (1) n=0时。由 $\Gamma_0 = \Gamma$,依假设 Γ_0 相容。
- (2) n>0时,设 Γ_n 相容。若 Γ_{n+1} 不相容,则 $\Gamma_{n+1} \neq \Gamma_n$ 。由 Γ_{n+1} 构造法得 $\Gamma_n p_n$ 不成立,并且

$$\Gamma_{n+1} = \Gamma_n \cup \{\neg p_n\} \qquad (1)$$

再由假设 Γ_{n+1} 不相容得存在公式q使得

$$\Gamma_{n+1} \vdash q \perp \Gamma_{n+1} \vdash \neg q \qquad (2)$$

由(1)、(2)依反证律得 $\Gamma_n \vdash p_n$,矛盾。所以 Γ_{n+1} 相容。 依归纳法原理,所有 Γ_n 相容。

由于 $\Gamma_n \subseteq \Gamma_{n+1}$ 对所有n成立,易知 $\Gamma^* = \Gamma_0 \cup \Gamma_1 \cup \Gamma_2 \cup \ldots$ 是一个相容集。

根据 $\Gamma_{\mathbf{n}}$ 的构造知,对一切公式 $p_{\mathbf{n}}$,有 $\Gamma^* \vdash p_{\mathbf{n}}$ 或者 $\Gamma^* \vdash \neg p_{\mathbf{n}}$,即 Γ^* 是一个极大相容集。

2(从 Γ *构造语义解释I) 定义映射 μ : L(X) →{t, f}使得对任何公式q 有:

$$\mu(q) = \begin{cases} t, & \text{supp} \Gamma^* \mid -q; \\ f, & \text{supp} \Gamma^* \mid -\neg q; \end{cases}$$

易证 $\mu(q)$ 是良定义的。下面证明它是一个语义解释。

- (1) $\mu|_X$ 是X上的一个指派,即对任何x有 $\mu(x)$ ∈{t,f};
- (2) $\mu(q)$ 是L(X)上的一个标准赋值。

依 μ 定义及 Γ *性质知 $\mu(\Gamma)=t$ 并且 $\mu(p)=f$,即 $\Gamma\models p$ 不成立。

习题

1.8证明 $\mu(q)$ 是L(X)上的一个语义解释。