

POLITEKNIK NEGERI SAMARINDA

FORMULIR

SISTEM PENJAMINAN MUTU INTERNAL (SPMI)

Kode/No :
Tanggal:
Revisi : 0

Halaman: 1 dari ...

FORMULIRRENCANA PEMBELAJARAN SEMESTER

Digunakan untuk melengkapi:	Kode:			
	STANDAR PROSES PEMBELAJARAN			

Proses	Penanggung Jawab					
	Nama	Jabatan	Tanda Tangan	Tanggal		
1. Perumusan	Sunu Pradana, S.T., M.Eng.	Pengajar		14-01- 2025		
2. Pemeriksaan						
3. Persetujuan						
4. Penetapan						
5. Pengendalian						

RENCANA PEMBELAJARAN SEMESTER (RPS)

PROGRAM STUDI : Teknik Listrik - Sarjana Terapan

MATA KULIAH	Elektronika Daya I								
KODE	PLT42527								
SEMESTER	5 (Lima)								
SKS	2 Sunu Pradana, S.T., M.Eng.								
DOSEN PENGAMPU	Mahasiswa belajar mengenai aspek rekayasa berkenaan AC/DC								
DESKRIPSI MATA	converter, AC/AC converter dan komponen yang berkaitan.								
KULIAH									
	Mahasiswa diajak untuk mengenal dan menerapkan esensi ilmu								
	engineering secara umum yang berbasis asas sains dalam proses								
	belajar, termasuk tentang korelasi dan kausalitas. Mahasiswa								
	berlatih untuk dapat secara efektif dan efisien mencari dan mengolah								
	informasi yang diperlukan untuk belajar.								
CP PROGARM STUDI	PP2 - Menguasai pengetahuan dasar matematika dan sains yang								
YANG DIBEBANKAN PADA MATA KULIAH	dapat digunakan sebagai pendekatan untuk memecahkan masalah								
PADA MATA KULIAH	pada bidang ketenagalistrikan.								
	PP3 - Mempunyai wawasan mengenai perkembangan teknologi								
	terkini dalam bidang ketenagalistrikan.								
	terkini dalam bidang ketenagalistrikan.								
	KU1 - Mampu menyelesaikan pekerjaan pada bidang teknik listrik								
	dan menganalisis data dengan beragam metode yang sesuai dengan								
	bidang kelistrikan.								
	IZIZO M								
	KU3 - Mampu memecahkan masalah pekerjaan pada bidang teknik								
	listrik yang didasarkan pada pemikiran logis, inovatif, dan bertanggungjawab atas hasilnya secara mandiri.								
	bertanggungjawab atas nashnya secara manun i.								
	KK6 - Mampu merancang, merealisasikan, dan mengevaluasi								
	rangkaian kontrol penerangan, motor listrik, dan <i>system</i>								
	ketenagalistrikan lainnya yang menggunakan teknologi elektronika,								
	elektronika daya, dan perangkat terprogram seperti PLC dan system								
	mikroprosesor.								
	KK8 - Mampu mengikuti perkembangan teknologi dan isu terkini								
CARAMAN	yang terkait dengan bidang ketenagalistrikan.								
CAPAIAN	CPMK -1. Mampu mempergunakan teknologi secara efektif dan								
PEMBELAJARAN MK	efisien untuk mencari dan mengelola informasi yang diperlukan								
	untuk mempelajari dan menyelesaikan masalah di bidang								
	elektronika daya.								

	CPMK-2. Mampu menjelaskan karakteristik komponen diode, SCR,						
	dan TRIAC.						
	CPMK-3. Mampu membuat simulasi rangkaian penyearah, rangkaian						
	SCR dan rangkaian TRIAC.						
	CPMK-4. Mampu menghitung unjuk kerja rangkaian konverter dan						
	sakelar yang mempergunakan diode, SCR atau TRIAC.						
	CPMK-5. Mampu menganalisis rangkaian konverter dc/dc dan ac/ac.						
	CPMK-6. Mampu mengevaluasi kerja rangkaian penyearah.						
KEMAMPUAN AKHIR							
YANG DIHARAPKAN	1. Mahasiswa mampu mempergunakan ICT secara efektif untuk						
	mempelajari elektronika daya;						
	2. mahasiswa mampu merinci dan menjelaskan tentang bagian-						
	bagian dari ilmu elektronika daya beserta cara mempelajarinya						
	secara efektif dan efisien;						
	3. mahasiswa mampu melakukan instalasi dan mempergunakan						
	simulator LTspice untuk simulasi rangkaian dasar elektronika						
	daya;						
	4. mahasiswa mampu menyebutkan jenis-jenis diode, menjelaskan						
	karakteristiknya dan membuat simulasi rangkaian dasar diode;						
	5. mahasiswa mampu melakukan perhitungan daya dengan bantuan						
	perangkat lunak;						
	6. mahasiswa mampu menjelaskan, menghitung, membuat simulasi						
	rangkaian baku penyearah satu fase setengah gelombang tanpa						
	pengendali;						
	7. mahasiswa mampu membandingkan, membedakan, menjelaskan,						
	menghitung, membuat simulasi, menganalisis, dan mengevaluasi						
	rangkaian baku penyearah satu fase dan tiga fase gelombang						
	penuh tanpa pengendali.;						
	8. mahasiswa mampu menjelaskan, menghitung, melakukan						
	simulasi, dan menganalisis rangkaian sakelar elektronik						
	menggunakan SCR dan rangkaian baku penyearah satu fase dan						
	tiga fase dengan pengendali;						
	9. mahasiswa mampu menjelaskan, melakukan simulasi rangkaian						
	TRIAC sebagai sakelar elektronik.						
METODE PENILAIAN	a. Ujian tengah semester 30%						
DAN PEMBOBOTAN	b. Ujian akhir semester 45%						
	c. Ujian harian dan Tugas-tugas 20%						
	d. Aktifitas/kehadiran 5%						
DARMAD DEPENDENCE	4 W V: D						
DAFTAR REFERENSI	1. W. Xiao, Power Electronics Step-by-Step: Design, Modeling,						
	Simulation, and Control. New York [NY]: McGraw Hill, 2021.						
	2. V. Jagannathan, <i>Power Electronics : Devices and Circuits</i> , 2nd Ed.						
	PHI Learning Pvt. Ltd., 2011.						

- 3. S. K. Mandal, *Power Electronics*, 1st Ed. McGraw Hill Education (India), 2014.
- 4. A. Ahmed, *Power Electronics for Technology*. United States: Pearson Education (US), 1998.
- 5. M. J. Jacob, *Power Electronics: Principles and Applications*, 1st ed. Albany: Cengage Delmar Learning, 2001.
- 6. D. W. Hart, *Power Electronics*. New York: McGraw-Hill, 2011.
- 7. Dennis Fewson, *Introduction to Power Electronics*, Butterworth-Heinemann, 1998.
- 8. M. H. Rashid, Ed., *Power Electronics Handbook, Fourth Edition*. Butterworth-Heinemann, 2017.
- 9. P. Scherz and S. Monk, *Practical Electronics for Inventors*, Fourth Edition. New York: McGraw-Hill Education, 2016.
- 10. R. E. Thomas, A. J. Rosa, and G. J. Toussaint, *The Analysis and Design of Linear Circuits*, Tenth edition. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2023.
- 11. M. H. Rashid, Ed., *Alternative Energy in Power Electronics*. Elsevier/Butterworth-Heinemann, 2015.
- 12. A. Fekik, M. Ghanes, and H. Denoun, Eds., *Power Electronics Converters and their Control for Renewable Energy Applications*, 1st edition. London San Diego, CA: Academic Press, 2023.

JADWAL PEMBELAJARAN

MINGGU KE	KEMAMPUAN AKHIR YANG DIHARAPKAN	BAHAN KAJIAN (pokok bahasan)	METODE PEMBELAJARAN	WAKTU	PENGALAMAN BELAJAR	INDIKATOR/KRITERIA PENILAIAN	BOBOT PENILAI AN (%)	REF ERE NSI
1	Mahasiswa mampu mempergunakan ICT (Information and Communication Technology) secara efektif untuk menunjang kegiatan belajar.	Pengenalan sumber ilmu elektronika daya & literasi digital.	Modalitas: Pembelajaran bauran (<i>Blended Learning</i>) Bentuk: Kuliah dan praktik Strategi: Pembelajaran inkuiri Metode: Ceramah, Diskusi, dan Simulasi Media: Komputer, dan LCD Projector. Sumber belajar:	KT + PT :2x75" PM:2x95"	- Mendengar - Membaca - Mencari - Mencoba - Menjawab - Bertanya - Berdiskusi	- Ketepatan dan kecepatan mahasiswa dalam memanfaatkan ICT untuk mencari, mengolah, membandingkan informasi mengenai elektronika daya.	5	1~ 12
2	Mahasiswa mampu merinci dan menjelaskan tentang bagian-bagian dari ilmu elektronika daya beserta cara mempelajarinya secara efektif dan efisien.	Peta ilmu dan metode belajar efektif untuk elektronika daya.	Modalitas: Pembelajaran bauran (<i>Blended Learning</i>) Bentuk: Kuliah dan praktik Strategi: Pembelajaran inkuiri Metode: Ceramah, Diskusi, dan Simulasi Media: Komputer, dan LCD Projector. Sumber belajar:	KT + PT :2x75" PM:2x95"	- Mendengar - Membaca - Mencari - Mencoba - Menjawab - Bertanya - Berdiskusi	- Ketepatan mahasiswa dalam merinci dan menjelaskan tentang bagian-bagian dari ilmu elektronika daya beserta cara mempelajarinya secara efektif dan efisien.	5	1~ 12

3	Mahasiswa mampu melakukan instalasi dan mempergunakan simulator LTspice untuk simulasi rangkaian dasar elektronika daya.	Simulasi komponen dan rangkaian elektronika daya menggunakan LTspice.	Modalitas: Pembelajaran bauran (Blended Learning) Bentuk: Kuliah dan praktik Strategi: Pembelajaran inkuiri Metode: Ceramah, Diskusi, dan Simulasi Media: Komputer, dan LCD Projector. Sumber belajar:	KT + PT :2x75" PM:2x95"	- Mendengar - Membaca - Mencari - Mencoba - Menjawab - Bertanya - Berdiskusi	- Ketepatan mahasiswa untuk mampu melakukan instalasi dan mempergunakan simulator LTspice untuk simulasi rangkaian dasar elektronika daya.	5	1 ~ 10
4	Mahasiswa mampu menyebutkan jenis-jenis diode, menjelaskan karakteristiknya dan membuat simulasi rangkaian dasar diode.	Karakteristik diode dan simulasi rangkaian dasar diode.	Modalitas: Pembelajaran bauran (<i>Blended Learning</i>) Bentuk: Kuliah dan praktik Strategi: Pembelajaran inkuiri Metode: Ceramah, Diskusi, dan Simulasi Media: Komputer, dan LCD Projector. Sumber belajar:	KT + PT :2x75" PM:2x95"	- Mendengar - Membaca - Mencari - Mencoba - Menjawab - Bertanya - Berdiskusi	- Ketepatan dalam membedakan tipe-tipe diode. - Ketepatan dalam membandingkan diode dengan sakelar ideal. - Ketepatan dalam penggunaan model diode di LTspice. - Kecepatan membuat simulasi rangkaian dasar diode dengan tepat.	5	1 ~ 12
5	Mahasiswa mampu melakukan perhitungan daya dengan bantuan perangkat lunak.	Komputasi daya menggunakan perangkat lunak.	 Modalitas: Pembelajaran bauran (Blended Learning) Bentuk: Kuliah 	KT + PT :2x75" PM:2x95"	- Mendengar - Membaca - Mencari - Mencoba - Menjawab	- Ketepatan mahasiswa dalam membuat simulasi dan perhitungan daya berdasarkan bentuk gelombang listrik.	5	1 ~ 12

			dan praktik • Strategi: Pembelajaran inkuiri • Metode: Ceramah, Diskusi, dan Simulasi • Media: Komputer, dan LCD Projector. • Sumber belajar:		- Bertanya - Berdiskusi			
6, 7	Mahasiswa mampu menjelaskan, menghitung, membuat simulasi, dan menganalisis rangkaian baku penyearah satu fase setengah gelombang tanpa pengendali.	Penyearah satu fase setengah gelombang tanpa pengendali.	Modalitas: Pembelajaran bauran (Blended Learning) Bentuk: Kuliah dan praktik Strategi: Pembelajaran inkuiri Metode: Ceramah, Diskusi, dan Simulasi Media: Komputer, dan LCD Projector. Sumber belajar:	KT + PT :2x75" PM:2x95"	- Mendengar - Membaca - Mencari - Mencoba - Menjawab - Bertanya - Berdiskusi	- Ketepatan mahasiswa dalam menjelaskan, menghitung, membuat simulasi, dan menganalisis rangkaian baku penyearah satu fase setengah gelombang tanpa pengendali.	5	1~ 12
8	Mahasiswa mampu menyelesaikan soal dengan baik sesuai dengan teori dan simulasi.	UTS berdasarkan materi pertemuan terdahulu.	Modalitas: Pembelajaran bauran (<i>Blended Learning</i>) Bentuk: Kuliah dan praktik Strategi: Pembelajaran inkuiri Metode: Membaca	KT + PT :2x75" PM:2x95"	- Mendengar - Membaca - Mencari - Mencoba - Menjawab	- Ketepatan dalam menjawab soal secara baik dengan benar dalam waktu yang ditentukan.	5	1 ~ 12

			Media: Komputer, dan LCD Projector. Sumber belajar:					
9, 10	Mahasiswa mampu membandingkan, membedakan, menjelaskan, menghitung, membuat simulasi, menganalisis, dan mengevaluasi rangkaian baku penyearah satu fase dan tiga fase gelombang penuh tanpa pengendali.	Penyearah satu fase gelombang penuh tanpa pengendali.	Modalitas: Pembelajaran bauran (Blended Learning) Bentuk: Kuliah dan praktik Strategi: Pembelajaran inkuiri Metode: Ceramah, Diskusi, dan Simulasi Media: Komputer, dan LCD Projector. Sumber belajar:	KT + PT :2x75" PM:2x95"	- Mendengar - Membaca - Mencari - Mencoba - Menjawab - Bertanya - Berdiskusi	- Ketepatan mahasiswa dalam membandingkan, membedakan, menjelaskan, menghitung, membuat simulasi, dan menganalisis rangkaian baku penyearah satu fase dan tiga fase gelombang penuh tanpa pengendali.	15	1~ 12
11, 12, 13	Mahasiswa mampu menjelaskan, menghitung, melakukan simulasi, dan menganalisis rangkaian sakelar elektronik menggunakan SCR dan rangkaian baku penyearah satu fase dan tiga fase dengan pengendali.	SCR	Modalitas: Pembelajaran bauran (<i>Blended Learning</i>) Bentuk: Kuliah dan praktik Strategi: Pembelajaran inkuiri Metode: Ceramah, Diskusi, dan Simulasi Media: Komputer, dan LCD Projector. Sumber belajar:	KT + PT :2x75" PM:2x95"	- Mendengar - Membaca - Mencari - Mencoba - Menjawab - Bertanya - Berdiskusi	- Ketepatan mahasiswa dalam menjelaskan, menghitung, melakukan simulasi, dan menganalisis rangkaian dengan komponen SCR.	5	1~ 12

14, 15	Mahasiswa mampu menjelaskan, melakukan simulasi, dan menganalisis rangkaian TRIAC sebagai sakelar elektronik.	TRIAC	Modalitas: Pembelajaran bauran (<i>Blended Learning</i>) Bentuk: Kuliah dan praktik Strategi: Pembelajaran inkuiri Metode: Ceramah, Diskusi, dan Simulasi Media: Komputer, dan LCD Projector. Sumber belajar:	KT + PT :2x75" PM:2x95"	- Mendengar - Membaca - Mencari - Mencoba - Menjawab - Bertanya - Berdiskusi	- Ketepatan mahasiswa dalam menjelaskan, dan melakukan simulasi, dan menganalisis rangkaian TRIAC. - Ketepatan dalam menjelaskan SSR dan penerapannya.	5	1 ~ 12
16	UAS		Modalitas: Pembelajaran bauran (Blended Learning) Bentuk: Kuliah dan praktik Strategi: Pembelajaran inkuiri Metode: Ceramah, Diskusi, dan Simulasi Media: Komputer, dan LCD Projector. Sumber belajar:	KT + PT :2x75" PM:2x95"	- Mendengar - Membaca - Mencari - Mencoba - Menjawab	- Ketepatan dalam menjawab soal secara baik dengan benar dalam waktu yang ditentukan.	5	1 ~ 12

TUGAS-TUGAS YANG HARUS DISELESAIKAN MAHASISWA:

Hasil Quis / Tugas : 1, 2, 3
 Ujian Tengah Semester
 Ujian Akhir Semester

Mengetahui	Koordinator Program Studi	Samarinda, 20 – 01 - 2025.
Ketua Jurusan	Teknik Listrik S1 Terapan	Penanggung Jawab MK

Ketua Jurusan	Teknik Listrik S1 Terapan	Penanggung Jawab MK
Ir. Masing, MT.	Marson Ady Putra, S.S.T., M.T	Sunu Pradana, S.T., M.Eng.
NIP 19681231 199403 1 014	NIP 19930308 202321 1 016	NIP. 197801082006041002

CATATAN:

- (1) Proses pembelajaran harus dilaksanakan secara interaktif, inspiratif, menyenangkan, menantang, dan memotivasi mahasiswa untuk berpartisipasi aktif, serta memberikan kesempatan atas prakarsa, kreativitas, dan kemandirian sesuai dengan bakat, minat, dan perkembangan fisik serta psikologis mahasiswa, termasuk mahasiswa berkebutuhan khusus.
- (2) Proses pembelajaran secara umum dilaksanakan dengan urutan:
 - a. Kegiatan pendahuluan, merupakan pemberian informasi yang komprehensif tentang rencana pembelajaran beserta tahapan pelaksanaannya, serta informasi hasil asesmen dan umpan balik proses pembelajaran sebelumnya;
 - b. Kegiatan inti, merupakan kegiatan belajar dengan penggunaan metode pembelajaran yang menjamin tercapainya kemampuan tertentu yang telah dirancang sesuai dengan kurikulum;
 - c. Kegiatan penutup,merupakan kegiatan refleksi atas suasana dan capaian pembelajaran yang telah dihasilkan, serta informasi tahapan pembelajaran berikutnya.

POLITEKNIK NEGERI SAMARINDA

FORMULIR

SISTEM PENJAMINAN MUTU INTERNAL (SPMI)

Kode/No :
Tanggal:
Revisi : 0

Halaman: 1 dari ...

FORMULIR

RUBRIK PENILAIAN

Digunakan untuk melengkapi:	PLT 42445	
	STANDAR PROSES PEMBELAJARAN	

Proses	Penanggung Jawab				
	Nama	Jabatan	Tanda Tangan	Tanggal	
1. Perumusan	Sunu Pradana, S.T., M.Eng.	Pengajar		14-01- 2025	
2. Pemeriksaan					
3. Persetujuan					
4. Penetapan					
5. Pengendalian					

RENCANA ASESMEN DAN RUBRIK PENILAIAN

Mata Kuliah : Elektronika Daya I

Kode Mata Kuliah : PLT42527

Pengajar : Sunu Pradana, S.T, M.Eng.

A. RENCANA ASESMEN DAN EVALUASI (RAE)

NO	Uraian Penilaian	Komponen Evaluasi	Deskripsi	Bobot
1	Kehadiran	Hadir Alpha Sakit Izin Keterlambatan	Kehadiran mahasiswa berpengaruh terhadap proses belajar mengajar disiplin waktu mengikuti peraturan akademik Politeknik Negeri Samarinda.	5%
2	Tugas dan/atau Quiz	 Pengerjaan Tugas Mandiri individu Quiz Presentasi 	Menyelesaikan tugas dari beberapa soal berdasarkan sub CPMK yang telah diberikan.	20%
3	UTS	Pengerjaan Soal Ujian Tengah Semester	Ujian tertulis di pertengahan semester untuk mengukur capaian pembelajaran (CPMK) yang telah diajarkan hingga minggu UTS	30%
4	UAS	Pengerjaan Soal Ujian Akhir Semester	Ujian tertulis komprehensif pada akhir semester guna menilai pencapaian seluruh CPMK yang telah ditetapkan	45%
			Total Bobot	100 %

Sistem penilaian mahasiswa dikonversi ke dalam bentuk Nilai Angka, Huruf, Angka Mutu, Kategori, dan Predikat. Skema ini memberikan gambaran capaian belajar mahasiswa dan menjadi dasar perhitungan Indeks Prestasi (IP). Rincian konversi ditampilkan pada tabel berikut:

Konversi Nilai	Huruf	Angka Mutu	Kategori	Predikat
79,60 – 100,00	A	4	Sangat Dails	Dongon Duijon
75,60 – 79,59	A-	3.7	Sangat Baik	Dengan Pujian
71,60 – 75,59	B+	3.3	Baik	Sangat Memuaskan
67,60 – 71,59	В	3		Memuaskan
63,60 - 67,59	B-	2.7		Memuaskan
59,60 - 63,59	C+	2.3	Cukup	Lulus
55,60 - 59,59	С	2		Luius
40,60 – 55,59	D	1	Kurang	Gagal
0,00 – 40,59	Е	0	Sangat Kurang	Gagal

No.	Uraian Penilaian	Indikator Penilaian	Teknik Penilaian	Bobot (%)
1	Mahasiswa mampu mempergunakan ICT (Information and Communication Technology) secara efektif untuk menunjang kegiatan belajar.	- Ketepatan dan kecepatan mahasiswa dalam memanfaatkan ICT untuk mencari, mengolah, membandingkan informasi mengenai elektronika daya.	Tugas	1,48
2	Mahasiswa mampu merinci dan menjelaskan tentang bagian-bagian dari ilmu elektronika daya beserta cara mempelajarinya secara efektif dan efisien.	- Ketepatan mahasiswa dalam merinci dan menjelaskan tentang bagian-bagian dari ilmu elektronika daya beserta cara mempelajarinya secara efektif dan efisien.	Tugas/Quiz	1,48
3	Mahasiswa mampu melakukan instalasi dan mempergunakan simulator LTspice untuk simulasi rangkaian dasar elektronika daya.	- Ketepatan mahasiswa untuk mampu melakukan instalasi dan mempergunakan simulator LTspice untuk simulasi rangkaian dasar elektronika daya.	Tugas	1,48
4	Mahasiswa mampu menyebutkan jenis-jenis diode, menjelaskan karakteristiknya dan membuat simulasi rangkaian dasar diode.	 Ketepatan dalam membedakan tipe-tipe diode. Ketepatan dalam membandingkan diode dengan sakelar ideal. Ketepatan dalam penggunaan model diode di LTspice. Kecepatan membuat simulasi rangkaian dasar diode dengan tepat. 	Tugas/Quiz	1,48
5	Mahasiswa mampu melakukan perhitungan daya dengan bantuan perangkat lunak.	- Ketepatan mahasiswa dalam membuat simulasi dan perhitungan daya berdasarkan bentuk gelombang listrik.	Tugas/Quiz	1,48
6	Mahasiswa mampu menjelaskan, menghitung, membuat simulasi, dan menganalisis rangkaian baku penyearah satu fase setengah gelombang tanpa pengendali.	- Ketepatan mahasiswa dalam menjelaskan, menghitung, membuat simulasi, dan menganalisis rangkaian baku penyearah satu fase setengah gelombang tanpa pengendali.	Tugas/Quiz	2,8
7	Mahasiswa mampu membandingkan, membedakan, menjelaskan, menghitung,	- Ketepatan mahasiswa dalam membandingkan, membedakan, menjelaskan, menghitung,	Tugas/Quiz	2,8

	membuat simulasi, menganalisis,	membuat simulasi, dan		
	dan mengevaluasi rangkaian baku	menganalisis rangkaian baku		
	penyearah satu fase dan tiga fase	penyearah satu fase dan tiga fase		
	gelombang penuh tanpa	gelombang penuh tanpa		
	pengendali.	pengendali.		
8	Mahasiswa mampu menjelaskan,	- Ketepatan mahasiswa dalam	Tugas/Quiz	4,2
	menghitung, melakukan simulasi,	menjelaskan, menghitung,		
	dan menganalisis rangkaian sakelar	melakukan simulasi, dan		
	elektronik menggunakan SCR dan	menganalisis rangkaian dengan		
	rangkaian baku penyearah satu	komponen SCR.		
	fase dan tiga fase dengan			
	pengendali.			
9	Mahasiswa mampu menjelaskan,	- Ketepatan mahasiswa dalam	Tugas/Quiz	2,8
	melakukan simulasi, dan	menjelaskan, melakukan		
	menganalisis rangkaian TRIAC	simulasi, dan menganalisis		
	sebagai sakelar elektronik.	rangkaian TRIAC.		
		- Ketepatan dalam menjelaskan		
		SSR dan penerapannya.		
10	Ujian Tengah Semester	UTS mencakup materi minggu	Ujian	30
		1–7.	Tengah	
			Semester	
11	Ujian Akhir Semester	UAS mencakup seluruh capaian	Ujian Akhir	45
		pembelajaran.	Semester	
12	Kehadiran	Kehadiran di kelas saat	Presensi	5
		perkuliahan.		
Total				100

B. RUBRIK PENILAIAN

Rubrik Penilaian Kehadiran

Tujuan : Mahasiswa memiliki sikap disiplin dalam perkuliahaan

Dosen : Sunu Pradana, S.T., M.Eng.

Nama Mahasiswa : Tanggal : NIM :

SKOR	DESKRIPSI/INDIKATOR
100	Mahasiswa hadir tepat waktu sesuai jadwal yang telah ditentukan jurusan
78	Mahasiswa tidak hadir kuliah dengan keterangan sakit
70	Mahasiswa tidak hadir kuliah dengan keterangan izin maksimal sehari
60	Mahasiswa masuk kelas terlambat
0	Mahasiswa tidak hadir tanda keterangan, atau terlambat masuk kuliah lebih dari 15 menit

Penilaian dilakukan setiap pertemuan dan total nilai akan masuk dalam sistem SIAK yaitu 5% aktivitas dengan persamaan:

$$Nilai\ Pertemuan = \frac{Jumlah\ [Minggu\ 1\ sampai\ Minggu\ 16]}{16}x5\%$$

Format Rubrik Penilaian Tugas Dokumen

Kriteria	Level 4 Sangat Baik	Level 3 Baik	Level 2 Cukup	Level 1 Kurang
Kerapian & Tata Tulis	Struktur rapi & konsisten: penomoran gambar/tabel, margin & spasi konsisten, ejaan baik.	Umumnya rapi; Ada 1–2 ketidaktepatan minor.	Beberapa bagian tidak konsisten; struktur kurang jelas.	Berantakan; sulit diikuti; banyak salah ejaan; tanpa struktur.
Ketepatan Jawaban	Konsep/istilah tepati; contoh/perhitungan/ simulasi akurat.	Hampir seluruhnya tepat; kekeliruan minor tidak mengubah makna.	Beberapa kesalahan konsep/istilah; contoh kurang akurat.	Dominan keliru/ miskonsepsi; contoh/ perhitungan banyak salah.
Cakupan	Jawaban dan pembahasan meliputi seluruh aspek dari pertanyaan/tugas.	Hampir semua aspek tercakup; ada 1 aspek minor terlewat/dangkal.	Cakupan parsial; 2–3 aspek inti terlewat.	Sangat sempit; sebagian besar aspek inti terlewat.
Kedalaman	Alur logis; alasan why/how jelas; analisis perbandingan/ trade-off.	Ada analisis & alasan; belum konsisten di semua bagian; contoh cukup.	Lebih cenderung deskriptif daripada analitis; argumen tipis; contoh minim.	Hanya menyebut ulang; tanpa analisis atau argumen.
Rujukan/ Referensi yang Benar	Terdapat ≥3 referensi yang dirujuk dan dicantumkan dengan benar. Bisa diakses saat penilaian.	Ada sitasi & daftar pustaka; 1 kekurangan minor.	Referensi terbatas/tidak konsisten; beberapa entri tidak lengkap.	Hampir tanpa rujukan; format salah; sumber tidak kredibel.

Format Rubrik Penilaian Tugas Simulasi

Kriteria	Baik	Cukup	Kurang
Kerapian & Organisasi Skematik	Sangat rapi, kelompok fungsi jelas.	Layout cukup rapi.	Skematik berantakan, banyak <i>crossing</i> .
Ketepatan Tipe/Model Komponen & Nilai Komponen	Semua tipe/nilai/polaritas dan model tepat.	Sebagian besar benar, 1–2 kesalahan minor.	Banyak nilai/model salah atau hilang; polaritas keliru.
Konfigurasi Simulasi & Penggunaan Directive LTspice	Semua konfigurasi dan directive sesuai tujuan dan teroptimasi.	Tipe simulasi benar; tetapi beberapa parameter kurang tepat.	Tidak ada/tipe simulasi salah; directive penting hilang/keliru.
Keberhasilan Eksekusi & Validitas Hasil	Simulasi berjalan lancar tanpa peringatan; waveform/hasil relevan & konsisten.	Simulasi selesai dengan warning; output tersedia namun perlu verifikasi.	File tidak bisa dijalankan atau output tidak benar (fatal error).
Anotasi & Dokumentasi di Skematik	Anotasi/dokumentasi di skematik lengkap.	Ada anotasi/ dokumentasi dasar tetapi kurang lengkap.	Tidak ada/nyaris tidak ada anotasi/dokumentasi.

Nilai akhir yang akan diperoleh mahasiswa berdasarkan akumulasi nilai jawaban yang diperoleh dari tiap soal/tugas dan bobot untuk masing-masing soal. Distribusi bobot nilai tiap tugas dapat berbeda, menyesuaikan dengan fokus yang hendak dicapai.

Rubrik Penilaian Quiz

Tujuan : Mengetahui kemampuan mahasiswa dalam hal pemahaman materi belajar.

Dosen :

Nama Mahasiswa :

Tanggal:

NIM :

Penilaian dilakukan dengan memperhatikan jumlah soal yang diberikan kepada mahasiswa, soal berupa pilihan ganda atau ujian lisan. Nilai akhir disesuaikan dengan bobot nilai setiap soal.

Rubrik Penilaian Presentasi

Tujuan :

Dosen :

Nama Mahasiswa :

NIM :

Tanggal :

Unjuk Kerja	Sangat Baik	Cukup Baik	Baik	Kurang	Sangat Kurang	Skor
Kesesuaian materi						
(25%)						
Struktur Presentasi						
(20%)						
Keterampilan						
berbicara (25%)						
Kualitas materi						
visual (10%)						
Interaksi dengan						
Audiens (10%)						
Kepatuhan Waktu						
(10%)						
					Total Skor	

Kategori:

1. Sangat Baik : 100

2. Cukup Baik : 80

3. Baik : 70

4. Kurang : 50

5. Sangat Kurang : 30

Rubrik Penilaian UTS

Tujuan : Mengetahui kemampuan mahasiswa dalam hal pemahaman materi belajar.

Dosen :

Nama Mahasiswa :

NIM :

Tanggal :

Nomor	Soal-soal	Bobot soal
1.		
2.		
3.		
	Total Bobot	100%

Rubrik Penilaian Ujian Akhir Semester

Tujuan : Mengetahui kemampuan mahasiswa dalam hal pemahaman materi belajar.

Dosen :

Nama Mahasiswa :

NIM :

Tanggal :

Nomor	Soal-soal	Bobot soal
1.		
2.		
3.		
•••		
	Total Bobot	100

	NIM	Nama	UTS	UAS		TUGAS, QUIZ, KEAKTIFAN		ABSENSI				NILAI				
NO		Mahasiswa	30%	45%	1	2	3	4	5	AVG	20%	1 - 16	dst	AVG	5%	AKHIR
1			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
2			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
3			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
4			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
5			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
6			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
7			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
8			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
9			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
10			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
11			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
12			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
13			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
14			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
15			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
16			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
17			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
18			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
19			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
20			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
21			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
22			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
23			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
24			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
25			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
26			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!
27			0	15						#DIV/0!	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!

POLITEKNIK NEGERI SAMARINDA

FORMULIR

SISTEM PENJAMINAN MUTU INTERNAL (SPMI)

Kode/No :
Tanggal:
Revisi : 0

Halaman: 1 dari ...

FORMULIR

KONTRAK PERKULIAHAN

Digunakan untuk melengkapi:	PLT 42445
	STANDAR PROSES PEMBELAJARAN

Proses	Penanggung Jawab							
	Nama	Jabatan	Tanda Tangan	Tanggal				
1 D	Cunu Dradona CT M Fng	Dongoian		14-01-				
1. Perumusan	Sunu Pradana, S.T., M.Eng.	Pengajar		2025				
2. Pemeriksaan								
3. Persetujuan								
4. Penetapan								
5. Pengendalian								

KONTRAK PERKULIAHAN

Mata Kuliah : Elektronika Daya I

Kode Mata Kuliah : PLT42527

Pengajar : Sunu Pradana, S.T., M.Eng.

Semester : 5

Hari Pertemuan / Jam : 16/2 x 75"

Tempat Perkuliahan: Laboratorium Elektronika Daya

1. Capaian Pembelajaran Mata Kuliah

CPMK -1. Mampu mempergunakan teknologi secara efektif dan efisien untuk mencari dan mengelola informasi yang diperlukan untuk mempelajari dan menyelesaikan masalah di bidang elektronika daya.

- CPMK-2. Mampu menjelaskan karakteristik komponen diode, SCR, dan TRIAC.
- CPMK-3. Mampu membuat simulasi rangkaian penyearah, rangkaian SCR dan rangkaian TRIAC.
- CPMK-4. Mampu menghitung unjuk kerja rangkaian konverter dan sakelar yang mempergunakan diode, SCR atau TRIAC.
- CPMK-5. Mampu menganalisis rangkaian konverter dc/dc dan ac/ac.
- CPMK-6. Mampu mengevaluasi kerja rangkaian penyearah.

2. Deskripsi Perkuliahan

Seluruh rangkaian proses perkuliahan dimulai dari kesadaran penuh bahwa kegiatan dilakukan di lingkungan yang merupakan tempat pendidikan yaitu merupakan perguruan tinggi vokasi. Bahwa proses yang dilakukan bertujuan untuk mendapatkan hasil berupa perubahan dan perbedaan yang positif pada diri mahasiswa peserta pendidikan. Pembelajaran yang efektif akan menghasilkan perbedaan yang dapat terlihat dan dipantau dari berbagai bentuk evaluasi di setiap tahapan proses.

Di mata kuliah ini mahasiswa belajar mengenai aspek rekayasa mengenai AC/DC *converter*, AC/AC *converter* dan komponen yang berkaitan. Mahasiswa diajak untuk mengenal dan menerapkan esensi ilmu *engineering* secara umum yang berbasis asas sains dalam proses belajar, termasuk tentang korelasi dan kausalitas. Mahasiswa berlatih

untuk dapat secara efektif dan efisien mencari dan mengolah informasi yang diperlukan untuk belajar.

Pada dasarnya proses perkuliahan dan pembelajaran dilakukan mengacu pada sasaran untuk tingkat *engineering technologist* dalam Sydney Accord sebagaimana yang diserap dalam beberapa acuan nasional. Atas dasar tersebut, penilaian dalam mata kuliah ini dilakukan berdasarkan sejumlah acuan tersebut, tetapi penempatan nilai akhirnya akan disesuaikan dengan format pengaturan yang ada di Politeknik Negeri Samarinda.

Gambar 1. Pembagian jenjang kualifikasi dalam KKNI [1].

Sebagaimana yang ditampilkan di Gambar 1, tiga kandungan unsur kompetensi dalam pendidikan merupakan satu kesatuan yang utuh yang semestinya tercermin dalam hasil akhir penilaian proses pendidikan. Mengingat umumnya seleksi tenaga kerja dilakukan terutama berdasarkan nilai indeks prestasi. Karena itu aspek afektif (attitude), psiko-motorik (skill), dan kognitif (cognitive), merupakan kesatuan yang utuh yang dinyatakan dalam penilaian di setiap mata kuliah.

Dengan pemahaman bahwa keterampilan (*skill*) relatif lebih mudah untuk diajarkan daripada sikap (*attitude*), maka dalam proses belajar aspek sikap merupakan hal penting untuk masuk ke dalam penilaian. Pengamatan antara lain meliputi kemauan untuk kemauan untuk mencari informasi, kemauan untuk mencatat, kemampuan untuk menjaga suasana belajar yang kondusif, mengerjakan tugas, dan kemampuan untuk bersikap yang sesuai dengan lingkup bidang pekerjaan sebagai *engineering technologist*.

Secara lebih rinci, beberapa indikator umum yang dipakai untuk melakukan penilaian baik secara individu maupun kelompok, baik dilakukan untuk seluruh mahasiswa pada saat yang sama maupun dilakukan dengan uji petik adalah sebagai berikut:

- kemampuan mengelola kekondusifan dinamika belajar di kelas;
- keaktifan dalam merespons pertanyaan dengan jawaban yang logis;
- kecepatan pencarian informasi dengan hasil yang tepat;
- ketepatan cara membandingkan informasi yang diperoleh;
- ketepatan catatan dari kuliah terdahulu;
- ketepatan pengutipan kembali isi materi kuliah terdahulu.

Pembelajaran menekankan pada prinsip mengutamakan penguasaan yang baik akan dasar-dasar pemahaman yang diperlukan untuk layak menjadi lulusan jenjang S1-Terapan dalam bidang teknik elektro. Penekanan diutamakan kepada pengembangan kemampuan belajar yang riil sebagai individu pembelajar yang mau dan mampu untuk terus menerus belajar sepanjang hayat melalui berbagai metode. Penguasaan isi materi merupakan salah satu indikator, wujud dari sikap belajar yang baik. Adanya perubahan di setiap tahapan perkuliahan merupakan indikator kuat terjadinya proses belajar yang baik.

Pelaksanaan kuliah diutamakan menggunakan prinsip *active learning*, mahasiswa menjadi pusat pembelajaran sehingga menjadi pelaku utama proses belajar.

Mengingat pentingnya aspek afektif dan psiko-motorik maka nilai UAS tidak hanya akan berasal dari nilai aspek kognitif sebagai hasil pengerjaan soal UAS yang berlangsung satu hari. Hal ini berbeda dengan nilai UTS yang hanya berasal dari hasil penilaian jawaban soal. Persentase nilai UAS yang ditetapkan sebesar 45% mencerminkan hampir separuh nilai dari proses belajar. Maka aspek afektif dan psiko-motorik akan juga menjadi unsur pertimbangan.

Aspek teoritis yang bisa diperoleh dari *body of knowledge* yang tercantum dalam sejumlah buku rujukan disesuaikan dan dibatasi untuk jenjang S1-Terapan perguruan tinggi vokasi, yaitu sampai pada konsep teoritis secara umum dengan beberapa bagian dengan lingkup khusus. Cakupan luas dan kedalaman bahasan disesuaikan dengan sejumlah aspek seperti keperluan kemampuan untuk menyelesaikan masalah praktis yang sudah terdefinisi secara umum, kemampuan awal pemahaman mahasiswa, daya dukung untuk proses pembelajaran. Dengan demikian penilaian unjuk kerja mahasiswa disesuaikan dengan sejumlah pembatasan sebagaimana yang telah disebutkan, baik mengenai kedalaman maupun luas cakupan.

Rujukan Gambar:

[1] Endrotomo, "Kerangka Kualifikasi Nasional Indonesia dan Implikasinya pada Dunia Kerja dan Pendidikan Tinggi," SlideServe, 2013. [Online]. Tersedia: https://www.slideserve.com/asabi/kerangka-kualifikasi-nasional-indonesia-dan-implikasinya-pada-dunia-kerja-dan-pendidikan-tinggi. [Diakses: Jan. 04, 2025].

3. Kemampuan Akhir Yang Diharapkan

- 1. Mahasiswa mampu mempergunakan ICT secara efektif untuk mempelajari elektronika daya;
- 2. mahasiswa mampu merinci dan menjelaskan tentang bagian-bagian dari ilmu elektronika daya beserta cara mempelajarinya secara efektif dan efisien;
- 3. mahasiswa mampu melakukan instalasi dan mempergunakan simulator LTspice untuk simulasi rangkaian dasar elektronika daya;
- 4. mahasiswa mampu menyebutkan jenis-jenis diode, menjelaskan karakteristiknya dan membuat simulasi rangkaian dasar diode;
- 5. mahasiswa mampu melakukan perhitungan daya dengan bantuan perangkat lunak;
- 6. mahasiswa mampu menjelaskan, menghitung, membuat simulasi rangkaian baku penyearah satu fase setengah gelombang tanpa pengendali;
- 7. mahasiswa mampu membandingkan, membedakan, menjelaskan, menghitung, membuat simulasi, menganalisis, dan mengevaluasi rangkaian baku penyearah satu fase dan tiga fase gelombang penuh tanpa pengendali.;

- 8. mahasiswa mampu menjelaskan, menghitung, melakukan simulasi, dan menganalisis rangkaian sakelar elektronik menggunakan SCR dan rangkaian baku penyearah satu fase dan tiga fase dengan pengendali;
- 9. mahasiswa mampu menjelaskan, melakukan simulasi rangkaian TRIAC sebagai sakelar elektronik.

4. Strategi Perkuliahan

- 1. Ceramah interaktif.
- 2. Pencarian informasi menggunakan teknologi.
- 3. Kolaborasi dan diskusi kelompok.
- 4. Studi kasus.
- 5. Simulasi atau perancangan.
- 6. Studi mandiri.
- 7. Refleksi.
- 8. Presentasi.

5. Materi/Bacaan Perkuliahan

- 1. W. Xiao, *Power Electronics Step-by-Step: Design, Modeling, Simulation, and Control.* New York [NY]: McGraw Hill, 2021.
- 2. V. Jagannathan, *Power Electronics : Devices and Circuits*, 2nd Ed. PHI Learning Pvt. Ltd., 2011.
- 3. S. K. Mandal, *Power Electronics*, 1st Ed. McGraw Hill Education (India), 2014.
- 4. I. W. Djatmiko, Bahan Ajar Elektronika Daya. Yogyakarta, Indonesia: Program Studi Pendidikan Teknik Elektro, Universitas Negeri Yogyakarta, 2010.
- 5. M. Ali, *Aplikasi Elektronika Daya pada Sistem Tenaga Listrik*, 1st ed. Yogyakarta, Indonesia: UNY Press, 2018.

6. Tugas

Tugas-tugas yang diberikan terutama adalah penjabaran langsung dari indikator/kriteria penilaian. Tugas umumnya dikerjakan dengan memanfaatkan layanan Google Docs. Tugas simulasi terutama akan mempergunakan LTspice. Teknologi lainnya akan dipergunakan sesuai dengan keperluan.

7. Kriteria Penilaian

1. Hasil pembelajaran akan dinilai dengan menggunakan rentang nilai sesuai dengan **peraturan akademik yang berlaku di Politeknik Negeri Samarinda,** yaitu:

Konversi Nilai	Huruf	Angka Mutu	Kategori	Predikat	
79,60 – 100,00	A	4	Compat Dails	Dangan Duitan	
75,60 – 79,59	A-	3.7	Sangat Baik	Dengan Pujian	
71,60 – 75,59	B+	3.3	Baik	Sangat Memuaskan	
67,60 – 71,59	В	3		Mamuaaltan	
63,60 – 67,59	B-	2.7		Memuaskan	
59,60 - 63,59	C+	2.3	Cukup	Lulua	
55,60 - 59,59	С	2]	Lulus	
40,60 - 55,59	D	1	Kurang	Gagal	
0,00 - 40,59	Е	0	Sangat Kurang	Gagal	

2. Aspek-aspek yang dinilai dalam penentuan nilai akhir, meliputi:

Ujian tengah semester : 30% Ujian akhir semester : 45% Quiz dan Tugas-tugas : 20% Kehadiran : 5%

8. Jadwal Perkuliahan:

MINGGU KE	BAHAN KAJIAN
1	Pengenalan sumber ilmu elektronika daya & literasi
1	digital.
2	Peta ilmu dan metode belajar efektif untuk elektronika
۷	daya.
3	Simulasi komponen dan rangkaian elektronika daya
3	menggunakan LTspice.
4	Karakteristik diode dan simulasi rangkaian dasar diode.
5	Komputasi daya menggunakan perangkat lunak.
6, 7	Penyearah satu fase setengah gelombang tanpa
3, .	pengendali.
8	UTS berdasarkan materi pertemuan terdahulu.
0.10	Penyearah satu fase gelombang penuh tanpa
9, 10	pengendali.

11, 12, 13	SCR
14, 15	TRIAC
16	UAS

9. Tata Tertib Perkuliahan:

- 1. Mahasiswa wajib hadir mengikuti perkuliahan (tidak opsional).
- 2. Mahasiswa yang izin atau sakit harus mengirim pesan via Telegram atau WhatsApp kepada dosen pengampu mata kuliah. Jika tidak kondisi sakit tidak memungkinkan pengiriman pesan, bisa diwakili orang tua/wali.
- 3. Surat izin tertulis atau surat dokter wajib disampaikan kemudian ke bagian administrasi sesuai ketentuan.
- 4. Jika datang terlambat sampai 15 menit atau lebih akan dianggap tidak hadir tanpa izin untuk keseluruhan jam pelajaran di hari yang sama untuk mata kuliah ini. Pengecualian dapat dilakukan berdasarkan pertimbangan oleh dosen untuk mahasiswa yang tidak sering terlambat atau tidak sering tidak hadir, berdasarkan alasan yang logis.
- 5. Mahasiswa berpakaian sopan, bersepatu. Bagi mahasiswa putra, berambut pendek rapi/tidak menutup kerah.
- 6. Berperilaku sopan dan santun kepada sesama mahasiswa dan kepada dosen.
- 7. Tidak diperkenankan untuk mempergunakan laptop dan ponsel (termasuk *smartphone*) untuk bermain *game* atau hal lain yang tidak sesuai dengan keperluan belajar mahasiswa.
- 8. Mahasiswa fokus dalam belajar dan menjaga kekondusifan suasana belajar.
- 9. Dosen mengelola perkuliahan berdasarkan pengetahuan yang baku dalam bidang *science, engineering & technology*.
- 10. Dosen menilai proses belajar mahasiswa berdasarkan acuan keilmuan yang berlaku universal secara internasional dengan memperhatikan aturan yang berlaku secara nasional.
- 11. Dosen dan mahasiswa mengikuti perkembangan kemajuan ilmu pengetahuan dan teknologi yang sesuai dengan jenjang dan pola pendidikan vokasi dengan memperhatikan sumber daya yang tersedia.
- 12. Mahasiswa mengikuti peraturan khusus yang berlaku di lingkungan Laboratorium Jurusan Teknik Elektro Politeknik Negeri Samarinda.
- 13. Mahasiswa mengikuti peraturan umum yang berlaku di lingkungan Politeknik Negeri Samarinda.

Samarinda, 19 Agustus 2025

Menyetujui

Pihak I	Pihak II
Dosen Pengampu	Perwakilan Mahasiswa
Sunu Pradana, S.T, M.Eng.	
NIP. 197801082006041002	NIM
Mengetahui	
Mengetanui	
Ketua Jurusan	Koordinator Program Studi Teknik Listrik S1 Terapan
Ir Macing MT	Marcon Adv Dutra CCT MT
Ir. Masing, MT. NIP 196812311994031014	Marson Ady Putra, S.S.T., M.T NIP 19930308 2023211016