

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Licenciatura en Ciencias de la Computación Facultad de Ciencias

Programa de la asignatura

Denominación de la asignatura:

Teoría de la Concurrencia

100114 40 14 001104110114						
Clave:	Clave: Semestre: Eje temático:			No. Créditos:		
	7-8 Lenguajes de Programación					
Carácter: Optativa			Horas		Horas por semana	Total de Horas
Tipo: Teórico-Práctica			Teoría:	Práctica:		
			3	4	6	112
Modalidad: Curso			Duración del programa: Semestral			

Asignatura con seriación indicativa antecedente: Lenguajes de Programación

Asignatura con seriación indicativa subsecuente: Ninguna

Objetivo general:

Conocer y aplicar los conocimientos de la teoría de la concurrencia mediante el uso de lenguajes de programación minimales que capturen conceptos fundamentales como la sincronización, el paso de mensajes y la movilidad.

Índice temático				
Unidad	Tomas	Horas		
	Temas	Teóricas	Prácticas	
	Introducción	3	4	
[]	El cálculo de sistemas comunicantes (CCS)	9	12	
III	El cálculo π	12	16	
IV	Sistemas de tipos para concurrencia	12	16	
V	Aplicaciones	12	16	
	Total de horas:	48	64	
Suma total de horas:		112		

Contenido temático			
Unidad	Tema		
I Introducción			
I.1	¿Qué es la programación concurrente?		
1.2	Terminología de la concurrencia.		

1.3	Álgebras de proceso.			
II El cálculo	de sistemas comunicantes (CCS)			
II.1	Ejemplos de procesos y su comportamiento.			
II.2	Sintaxis y semántica: sistemas de transición etiquetados, paso de valores.			
II.3	Bisimulación fuerte y débil.			
11.4	Equivalencia observacional y contextual.			
III El cálcul	ο π			
III.1	Sintaxis y semántica.			
III.2	Bisimulación y equivalencia de procesos.			
III.3	Congruencia.			
III.4	Variantes: cálculo π asíncrono y poliádico.			
IV Sistema	s de tipos para concurrencia			
IV.1	Fundamentos, tipos canal, tipos de entrada y salida.			
IV.2	Linearidad, subtipado y polimorfismo.			
IV.3	Tipos de sesión.			
V Aplicacio	nes			
V.1	Seguridad de protocolos.			
V.2	Sistemas biológicos.			
V.3	Prototipos e implementaciones.			

Bibliografía básica:

- S. Gay, V. Vasconcelos, A. Ravara., Session Types for Inter-Process Communication, Technical Report TR-2003-133. Department of Computing Science. University of Glasgow. 2003.
- N. Kobayashi, Type Systems for Concurrent Programs, LNCS 2757, pp. 439-453. Springer 2003.
- 3. Milner R., Communicating and Mobile Systems: The π -calculus, Cambridge University Press. 1999. ISBN 0521 65869 1.
- 4. Sangiorgi D., Walker D., *The* π -calculus, *A Theory of Mobile Processes*, Cambridge University Press 2001. ISBN 0 521 78177 9.

Bibliografía complementaria:

- 1. M. Abadi, A. D. Gordon, A Calculus for Cryptographic Protocols: The π Calculus. Information and Computation, 148, pp. 1-70. Academic Press 1999.
- 2. J.A. Bergstra, A. Ponse, S. A., Smolka, editors, *Handbook of Process Algebra*, Elsevier Science, 2001.
- 3. Guerriero, M.L., Prandi, D., Priami, C., Quaglia, P. *Process Calculi Abstractions for Biology*, Algorithmic Bioprocesses. pp. 463-486. Natural Computing Series, Springer 2009.
- 4. C.A.R. Hoare, *Communicating Sequential Processes*, Prentice Hall 1985. Versión disponible en http://www.usingcsp.com/cspbook.pdf. 2004.

- 5. M. Neubauer, P. Thiemann, *An implementation of session types*, Proc. 7th International Symposium on Practical Aspects of Declarative Languages (PADL'04). LNCS 3057, pp 56-70. Springer 2004.
- 6. B. C. Pierce, D. N. Turner, *Pict: A Programming Language Based on the Pi-Calculus*, G. Plotkin, C. Stirling, M. Tofte, editores, Proof, Language and Interaction: Essays in Honour of Robin Milner, pp. 455-494. MIT Press, 2000.

Sugerencias didácticas:		Métodos de evaluación:	
Exposición oral	(X)	Exámenes parciales	()
Exposición audiovisual	(X)	Examen final escrito	()
Ejercicios dentro de clase	(X)	Trabajos y tareas fuera del aula	(X)
Ejercicios fuera del aula	(X)	Prácticas de laboratorio	()
Seminarios	(X)	Exposición de seminarios por los alumnos	(X)
Lecturas obligatorias	(X)	Participación en clase	(X)
Trabajo de investigación	(X)	Asistencia	()
Prácticas de taller o laboratorio	()	Proyectos de programación	()
Prácticas de campo	()	Proyecto final	()
·	. ,	Seminario	()
Otras:			` ,
		Otras:	

Perfil profesiográfico:

Egresado preferentemente de la Licenciatura en Ciencias de la Computación o matemático con especialidad en Computación. Es conveniente que posea un posgrado en la disciplina. Con experiencia docente.