Group 17

James Thomason, Xiaosheng Liu, Zhelong Ll

Residual plot

QQ Plot

Cook's distance

Graphs of stars vs variables

Why Lasso?

$$\text{minimize } \frac{1}{2n} \sum_{i=1}^n \left(Y_i - \beta_0 - \beta_1 X_{i1} - \dots - \beta_p X_{ip} \right)^2 + \lambda (|\beta_1| + |\beta_2| + \dots + |\beta_p|)$$

when λ is a "good" value in between 0 and ∞ , MSE for estimation of β_J S will be smallest and prediction of Y will have the smallest variance. When λ =0 (i.e. least square), we need n\betas. By having $\lambda \neq 0$, even when n<p, there is still a unique solution for β . For lasso, if we move λ from 0 to ∞ , the β_J s will become zero one after another (i.e. predictors being removed one after another), with less important predictors being removed first. For ridge regression, β s will not be zero unless λ = ∞ . So Lasso can give you sparse estimation of β and can be used for model selection, which makes it very popular

Mention dictionaries

Most helpful strategy:

- Finding dictionary
 - AFINN
 - Bing
- Trial and error
 - P-value of each word.
 - Words that appeared frequently in reviews.
- Narrowing down the variables
 - Removing funny and cool
 - Absolute value of sentiment scores
 - Adding "non-words" like emojis and money signs(\$).

AFINN:

## #	A tibble: 2,	477 x	2
##	word	value	
##	<chr></chr>	<dbl></dbl>	
## 1	abandon	- 2	
## 2	abandoned	-2	
## 3	abandons	-2	
## 4	abducted	- 2	
## 5	abduction	-2	
## 6	abductions	-2	
## 7	abhor	-3	
## 8	abhorred	-3	
## 9	abhorrent	-3	
## 10	abhors	-3	
## #	with 2,467	more	rows

Bing:

```
## # A tibble: 6,786 x 2
     word
                  sentiment
     (chr>
                  <chr>>
   1 2-faces
                  negative
    2 abnormal
                  negative
    3 abolish
                  negative
    4 abominable
                  negative
    5 abominably
                  negative
    6 abominate
                  negative
    7 abomination negative
   8 abort
                  negative
    9 aborted
                  negative
## 10 aborts
                  negative
## # ... with 6,776 more rows
```

Conclusion

Scoring a RMSE of 0.88133 means that the standard deviation of the prediction errors were relatively low and so our model had a standard deviation of unexplained variance less than one.