

7941W 多协议双频读写模块

介绍:

7941W 多协议双频读写模块,集 IC 和 ID 读写一体,可读多种 IC 和 ID 卡号,同时可支持对 Mifare1K,空白 UID 卡等 IC 卡片的扇区读写,以及 T5577 之类 ID 卡片的读写。

参数:

电压: DC5V 电流: 50mA

距离: 4-5CM(IC),6-7CM(ID) 尺寸: 47mm*26mm*5mm 接口: UART(TTL),Wiegand

支持卡片: ISO/IEC 14443 A/MIFARE,NTAG,MF1xxS20,MF1xxS70,MF1xxS50,EM4100,T5577

工作温度: -25 到+85 摄氏度

规格:

接口说明:

5V RX TX GND IO

5V 直流 5V 电源供电脚, 选择线性电源可以获得更好的读卡效果

RX 接收脚 TX 发送脚 GND 供电地线 IO 未定义

协议说明:

以下为UART 串口的通信协议

串口设置: 115200,8,1,None,None

发送协议:

协议头	地址	命令	数据长度	数据	异或校验
AB BA	1Byte	1Byte	1Byte	1-255Byte	1Byte
接收协议:					
协议头	地址	状态	数据长度	数据	异或校验
CD DC	1Bvte	1Bvte	1Bvte	1-255Byte	1Bvte

协议头: 发送(0xAB 0xBA),接收(0xCD 0xDC)

地址: 默认 0x00

命令:

- 1) 发送
 - 1.0x10 读 UID 号码
 - 2.0x11 写 UID 号码 (4 字节), 使用默认密码 fffffffffff
 - 3.0x12 读指定扇区
 - 4.0x13 写指定扇区
 - 5.0x14 修改 A 组或者 B 组密码
 - 6.0x15 读 ID 卡号
 - 7.0x16 写 T5577 卡号
 - 8. 0x17 读出所有扇区所有块的数据(M1-1K 卡)
 - 9.0x19 读标签卡 UID(Ultralight 卡)
 - 10.0x20 读标签卡扇区
 - 11.0x21 写标签卡扇区
 - 12.0X30 寻卡
 - 13.0X31 防冲撞/防冲突
 - 14.0X32 选卡
 - 15.0X33 密码验证
 - 16.0X34 读指定块
 - 17.0X35 写指定块
 - 18.0X36 命令卡片休眠
- 2) 接收
 - 1.0x81 返回操作成功
 - 2.0x80 返回操作失败

数据长度:表示后面数据的长度,如果是 0,则后面数据不需要出现

数据: 读写的数据;

发送数据:

读指定扇区:数据中第一个字节表示扇区,第二个字节表示扇区的第几块,第三个字节表示 A 组密码还是 B 组密码(0x0A/0x0B),接着是 6 个字节的密码。

写指定扇区:数据中第一个字节表示扇区,第二个字节表示扇区的第几块,第三个字节表示 A 组密码还是 B 组密码(0x0A/0x0B),接着是 6 个字节的密码,然后是 16 字节的块数据。

修改密码:数据中第一个字节表示第几扇区,第二个字节表示 A 组密码还是 B 组密码 (0x0A/0x0B),然后是 6 个字节的旧密码,接着是 6 个字节的新密码。

特殊说明: 读写标签卡数据区中第一个字节表示块,接下来四个字节表示块数据,这和普通的 IC 卡读写不一样,所以有 3 条命令是专门操作标签卡的。

接收数据:

读指定扇区返回数据格式,第一个字节是扇区,第二个字节是扇区的第几块,然后是 16 字节的块数据。

异或校验:除了协议头,其他字节进行校验的结果

例子说明:

命令代码	发送成功	发送失败
AB BA 00 10 00 10	CD DC 00 81 04 29 54 6E 72 E4	CD DC 00 80 00 80
AB BA 00 11 04 6D E9 5C 17 DA	CD DC 00 81 00 81	CD DC 00 80 00 80
AB BA 00 12 09 00 01 0A FF FF	CD DC 00 81 12 00 01 00 01 02 03 04 05	CD DC 00 80 00 80
FF FF FF FF 10	06 07 08 09 01 02 03 04 05 06 94	
AB BA 00 13 19 00 01 0A FF FF		
FF FF FF FF 00 01 02 03 04 05		
06 07 08 09 01 02 03 04 05 06	CD DC 00 81 00 81	CD DC 00 80 00 80
07		
AB BA 00 14 0E 00 0A FF FF FF	CD DC 00 81 00 81	CD DC 00 80 00 80
FF FF FF 01 02 03 04 05 06 17		
AB BA 00 15 00 15	CD DC 00 81 05 49 00 70 14 2F 86	CD DC 00 80 00 80
AB BA 00 16 05 2E 00 B6 A3 02	CD DC 00 81 00 81	CD DC 00 80 00 80
2A		
AB BA 00 17 07 0A FF FF FF FF	如下图1所示	CD DC 00 80 00 80
FF FF 1A		

图 1 执行命令返回结果

命令说明:

状态查询命令 命令代码

返回: 0x81 返回操作成功

0x80 返回操作失败

读取IC卡UID

命令 0x10数据 无返回:

读卡成功返回卡片 UID 读卡失败返回: 0X80

例如:

Host: AB BA 00 10 00 10

Reader: CD DC 00 81 04 29 54 6E 72 E4 //读卡成功返回 4 字节卡号

Reader: CD DC 00 80 00 80 //读卡失敗

説明:

該命令用於读取卡片 UID; 其中最后一个字节 'E4'为除协议头外其他字节进行异或校验的结果; 蓝色字为所读 IC 卡的卡号。

写入 IC 卡 UID

命令 0x11

返回:

写卡成功返回: 0x81 写卡失败返回: 0x80

例如:

Host: AB BA 00 11 04 6D E9 5C 17 DA 写入 UID 号码 Writer: AB BA 00 11 04 6D E9 5C 17 DA //写卡成功返回 Writer: CD DC 00 80 00 80 //写卡失敗

说明:

该命令用于写入 IC 卡 UID 号码;其中蓝色字为写入的 4 字节卡号。

特别注意: 该命令只对空白卡有效

读取 IC 卡的扇区数据

命令 0x12

 Data[0]
 扇区代码 0~16

 Data[1]
 块编码 0~3

 Data[2]
 验证密码类型

OxOa A 密码

0x0b B 密码

Data[3]-[8] 密码 6Byte

返回:

执行结果,参考返回状态表

例如:

说明:

该命令用于读取指定的扇区数据

在IC卡指定扇区写入数据

命令 0x13

 Data[0]
 扇区代码 0~16

 Data[1]
 块编码 0~3

 Data[2]
 验证密码类型

 0x0a
 A 密码

 0x0b
 B 密码

Data[3]-[8] 密码 6Byte Data[9]-[25] 16 字节写入数据

返回:

执行结果,参考返回状态表

例如:

Host: AB BA 00 13 19 00 01 0A FF FF FF FF FF FF 00 01 02 03 04 05 06 07 08 09 01 02

03 04 05 06 07 //对指定块写入数据操作

说明:

该命令用于扇区信息写入,请注意该命令不能跨扇区写入。

修改 IC 卡密码 (A 组或 B 组)

命令代码 0x14

Data[2] 验证密码类型

 0x0a
 A 密码

 0x0b
 B 密码

oxuu 宓码 6Pvto

Data[3]-[8] 密码 6Byte Data[9-14] 6Byte 新密码

返回:

执行结果,参考返回状态表

例如:

Host: AB BA 00 14 0E 00 0A FF FF FF FF FF 01 02 03 04 05 06 17

//将密码改为 01 02 03 04 05 06

说明:

该命令用于修改 A 组密码,访问卡片扇区的密码修改成功后,再次访问时要先进行异或校验得出结果,发送重新组成的新命令才能读取卡片扇区的信息

读取ID卡号

命令代码 0x15

返回:

读卡成功返回 ID 卡号 读卡失败返回: 0X80

例如:

Host: AB BA 00 15 00 15 //读 ID 卡号

Reader: AB BA 00 15 00 15 //读卡成功返回 4 字节卡号

Reader: AB BA 00 15 00 15 //读卡失败

说明:

该命令用于读取 ID 卡号。

写入 T5577 卡号

命令代码 0x16

Data[1-5] 写入的 T5577 卡号

返回:

写卡成功返回: 0x81

写卡失败返回: 0x80

例如:

Host: AB BA 00 16 05 2E 00 B6 A3 02 2A

说明:

该命令用于写入 T5577 卡号

读取所有扇区所有块的数据(M1-1K卡)

命令代码 0x17

Data[0]扇区代码 0~16Data[1]块编码 0~3Data[2]验证密码类型

OxOa A 密码 OxOb B 密码

Data[3]-[8] 密码 6Byte

返回:

读卡卡成功返回卡片扇区所有块的数据

读卡失败返回: 0x80

例如:

Host: AB BA 00 17 07 0A FF FF FF FF FF FF 1A

说明:

该命令用于读取所有扇区所有块的数据(此处所有扇区密码为 ffffffffff)。

特别说明:

下面的操作步骤必须按照顺序来,中间不能有其它的操作,否则需重新开始。 寻卡——>防冲撞——>选卡——> 密码验证——>读指定块——> 写指定块——> 命令卡片休眠

注:

- 1) 读同一个扇区的块数据时,可连读该扇区内的块数据;读不同扇区的块数据时需要先将卡片休眠,然后在从寻卡开始操作。
- 2) 下面步骤是对块1进行操作。

寻卡

命令代码 0x30 Data[] 无

返回:

寻卡成功并返回卡片类型

寻卡失败返回: 0x80

例如:

Host: AB BA 00 30 00 30 //寻卡

说明:

该命令用于寻感应区内所有符合 14443A 标准的卡。

防冲撞

命令代码 0X31

Data 无

返回:

成功并返回卡片 UID 号

失败返回: 0x80

例如:

Host: AB BA 00 31 00 31 //防冲撞

说明:

该命令用于防冲突,在多张卡片中选定一张卡片后并返回该卡片的 UID 号。

选卡

命令代码 0X32

Data[2-5] 卡片 UID 号

返回:

选卡成功返回: 0x81 选卡失败返回: 0x80

例如:

Host: AB BA 00 32 04 E9 50 6E 72 93 //选取卡片

说明:

该命令用于读取选定的卡片, 其中 E9 50 6E 72 为所选卡片的 UID 号。

密码验证

命令代码 0X33

Data[0] 验证密码类型

0x60 A 密码

0x61 B 密码

Data[1] 块编码 0~255

Data[2-7] 6byte Data[8-11] 卡片 UID

返回:

选卡成功返回: 0x81 选卡失败返回: 0x80

例如:

Host: AB BA 00 33 0C 60 01 FF FF FF FF FF E9 50 6E 72 FB //密码验证说明:

该命令用于验证卡片密码,若密码验证成功;则可以继续下一步,读出卡片数据,反之不能读取卡片数据。(0C表示后面字节的数据长度为12)

读指定块

命令代码 0x34

Data[1] 块编码 0~255

返回:

读取成功返回块内数据 读取失败返回: 0x80

例如:

Host: AB BA 00 34 01 01 34 //读指定块

说明:

该命令用于读取读取 M1 卡一块数据。

写指定块

命令代码 0x35

Data[1]块编码0~255Data[2-17]16 字节写入数据

返回:

写入成功返回: 0x81 写入失败返回: 0x80

例如:

Host: AB BA 00 35 11 01 01 02 03 05 06 07 08 09 02 05 06 04 05 03 03 02 19
// 写指定块

说明:

该命令用于将数据写入到 M1 卡一块,其中 01 02 03 05 06 07 08 09 02 05 06 04 05 03 03 02 为写入的数据。

命令卡片休眠

命令代码 0X36

Data[] 无

返回:

选卡成功返回: 0x81 选卡失败返回: 0x80

例如:

Host: AB BA 00 36 00 36 //命令卡片休眠

说明:

该命令用于命令卡片进入休眠状态。

运用:

- 考勤指纹读卡模块
- 门禁对讲读卡模块
- 复制器

产品分类:

保修卡

为保证用户享受到满意的售后服务,请您保存好保修卡。产品自售出之日起一年内,若出现非人为损坏的故障,用户享有免费保修服务。 保修说明:

保修服务只限于正常使用下有效。一切人为破坏(例如:用户自行拆装、连接不适当配件、未依说明书使用或其它意外造成的损坏、非经本公司认可之维修和改装、机器进水、震裂、附件超过保修期需要更新等),均不在免费保修范围内。

维修时请携带保修卡、保修卡不得涂改、否则作废。出厂日期请参照出厂合格证。