R. V. COLLEGE OF ENGINEERING

Autonomous Institution affiliated toVTU
III Semester B. E. Examinations Nov/Dec-18
Computer Science and Engineering
LOGIC DESIGN

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B.In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1 1.1	Give the simplest logic circuit for the following logic equation:	
	$F(A,B,C,D) = \sum_{i=1}^{n} m(7) + d(10,11,12,13,14,15)$	02
1.2	Justify positive $OR \leftrightarrow \text{negative } AND$.	02
1.3	Design a comparator to check if two n -bit numbers are equal.	
	Configure these using cascaded stages of 1-bit comparators.	02
1.4	Write the truth table for 2 to 4 line decoder.	01
1.5	Implement the following function using a 4 to 1 MUX:	
	$f(a,b,c) = \sum m(0,1,2,7).$	02
1.6	Differentiate between PROM (Programmable ROM) and	
	PLA(Programmable Logic Array).	01
1.7	What is 0's catching problem in Master-Slave JK FF? Give solution for	
	the same.	02
1.8	Write the characteristic equation for 'T' flip flop.	01
1.9	Configure a synchronous 4-bit up-counter with parallel load inputs to	
	count from 0000 to 1001.	02
1.10	Draw the state diagram for a Mealy serial binary adder.	02
1.11	Write the 4 to 2 line priority encoder table by assigning highest	
	priority to the least significant input.	02
1.12	Define "Minimum pulse width"	01

PART-B

2	a	Design a minimal sum and a minimal product combinational gate circuit to generate the odd parity bit for a 8421 <i>BCD</i> code.	08
	b	Obtain all the prime implicants of the given Boolean function using	
		Quine-Mccluskey method: $f(a, b, c) = \sum m(0,1,2,3,4,5,6)$	08
3	а	With a neat diagram explain decimal adder.	08
	b	Implement the following function using	
		i) 8 to $1 MUX(a, b, c)$ as select lines)	
		ii) 4 to 1 $MUX(a, b)$ as select lines) for the function	
		$f(a,b,c) = \sum m(0,1,5,6,7,9,10,15)$	08

		OR	
4	a b	Construct a 3 to 8 line decoder using two 2 to 4 line decoder. Implement the following Boolean function using a <i>PLA</i> with both true and complemented outputs. Map 1's and 0's to arrive at a design with minimal number of product terms in <i>PLA</i> . Write <i>PLA</i> table. (<i>PLA</i> -Programmable Logic Array) $f_1(a,b,c) = \sum_{} m(0,1,2,5,7)$ $f_2(a,b,c) = \sum_{} m(3,4,5)$ $f_3(a,b,c) = \sum_{} m(3,4,5,6)$	06
		$J_3(u,b,c) = \sum_{i=1}^{n} m(3,4,3,6)$	10
5	a b	Illustrate how Master-Slave <i>JK</i> flip flop overcomes the problem of race around condition in <i>JK</i> flip flop. With a neat diagram explain the working of universal shift register.	08 08
		OR	
6	a	With the help of function table and symbols, explain positive edge triggered 'D' flip flop.	08
	b	With a neat diagram explain parallel-in unidirectional shift register.	08
7	a b	Design a self-correcting mod-6 counter using clocked <i>SR</i> flip flop(redirect invalid entries to 000). Describe how registers are applications of mod-7 twisted-ring counter.	10 06
8	a	Construct the excitation table, transition table, state table and state diagram for the synchronous sequential circuit shown in figure 8a.	
	b	figure 8a Differentiate between Mealy model and Moore model synchronous sequential networks.	12 04