Brady Exoo

September 6, 2022

Abstract

Notes for the MA 113 (Mutlivariable Calculus) taught by Dr. Holder.

Contents

1	Coc	ordinate Systems and Polar Functions	2
	1.1	Rectangular Coordinates	4
	1.2	Polar Coordinates	4
	1.3	Transformations	4
	1.4	Polar Graphs	,
	1.5	Differentiating Polar Functions	•
		1.5.1 Chain Rule	,
		1.5.2 Polar Derivatives	4
	1.6	Arc Lengths	4

1 Coordinate Systems and Polar Functions

1.1 Rectangular Coordinates

- \bullet (x,y)
- Every point has only one set of coordinates
- Unique representation!

1.2 Polar Coordinates

- (r, θ)
 - -r is the distance from the origin
 - $-\theta$ is the angle the radius faces
- Lacks unique representation
 - Can add 2π to any angle and get the same point
 - Can make radius negative and add $\frac{\pi}{2}$ to the angle and get the same point

These coordinates are helpful for setting up integrals later.

1.3 Transformations

Definition. $\tan \theta$ is the distance from the intersection of the extended radius and the vertical tangent to the tangent point.

$$\bullet \ x^2 + y^2 = r^2$$

•
$$\tan \theta = \frac{y}{x}$$

$$-x=0 \implies \theta \in \{\frac{\pi}{2}, \frac{3\pi}{2}\}$$

- $\theta = \tan^{-1} \frac{y}{x}$
 - $-\tan\theta$ is the distance from the intersection of the extended radius and the vertical tangent to the tangent point
 - This is problematic! Range of arctan is $(\frac{-\pi}{2}, \frac{\pi}{2})$, so we do not get all 360 degrees.

$$-\theta = \begin{cases} \tan^{-1} \frac{y}{x} & x \le 0\\ \frac{\pi}{2} & x = 0, y > 0\\ \frac{3\pi}{2} & x = 0, y < 0\\ \tan^{-1} \frac{y}{x} + \pi & x < 0 \end{cases}$$

- $r\cos\theta = x$
- $r \sin \theta = y$

1.4 Polar Graphs

- Graphs are of the form $r(\theta)$, r is a function of θ .
- $r(\theta) = \cos \theta 1$ is a cardioid.
- $r(\theta) = \cos(2\theta)$ is a 4-flower.
 - $-\cos(n\theta)$ has 2n petals if n is even, n petals if n is odd.

1.5 Differentiating Polar Functions

- We come to a problem, we wish to find $\frac{dy}{dx}$ but our functions are in terms of r and θ !
- $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$ by the Chain Rule.
 - Not because we can cancel out the $d\theta$ terms!

1.5.1 Chain Rule

The default way the Chain Rule is portrayed is

$$\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x).$$

Other notation is

$$\frac{df}{dx} = \frac{df}{dq} \cdot \frac{dg}{dx}.$$

The Chain Rule allows us to change variables which we do not wish to differentiate by.

1.5.2 Polar Derivatives

Now we can substitute y and x with our earlier transformations to get

$$\frac{dy}{dx} = \frac{\frac{d}{d\theta}r\sin\theta}{\frac{d}{d\theta}r\cos\theta}.$$

1.6 Arc Lengths

In Calculus II, we learned the arclength of a function from a to b as

$$\int_a^b \sqrt{1 + (f'(x))^2} dx$$

This is somewhat related to

$$\frac{d}{dx}\langle x, f(x)\rangle = \langle 1, f'(x)\rangle$$

$$||\langle 1, f'(x)\rangle|| = \sqrt{1 + (f'(x))^2}.$$

We are essentially integrating the magnitude of the derivative of the vector, which gives us the arclength (think about this visually).