Esercitazione 8 – Wireshark e ping SO Linux a windows con policy firewall che consentono il ping agli indirizzi ip dei sistemi Linux Based – Alessio Russo

Nello specifico veniva richiesto:

- Configurazione di una policy per permettere il ping da macchine Linux a macchina Windows 7 nel nostro laboratorio;
- Utilizzo dell'utility InetSim per l'emulazione dei servizi Internet;
- Cattura dei pacchetti con Wireshark;

Configurazione policy per ping da macchine Linux a Windows 7

Per configurare una policy che consenta di far comunicare le macchineLinux based con Windows con Firewall attivo bisogna modificare i permessi di connessione all' interno delle impostazioni avanzate di windows, andando ad inserire gli ip di destinazione e quello di partenza delle macchine, consentendo successivamente, la connessione senza aver bisogno di autorizzazioni di alcun tipo. Rispettivamente le 3 macchine hanno i seguenti IP:

Windows: 192.168.50.102;
Kali Linux: 192.168.50.100;
Metasploitable: 192.168.50.101;

Queste sopra sono le policy attive del firewall windows che permettono l'ingresso della connessione dalle macchine Linux. Come possiamo vedere di seguito i sistemi linux pingano senza problemi il sistema windows.

Kali -> Windows

```
msfadmin@metasploitable: "$ ping 192.168.50.102

PING 192.168.50.102 (192.168.50.102) 56(84) bytes of data.
64 bytes from 192.168.50.102: icmp_seq=1 ttl=128 time=14.2 ms
64 bytes from 192.168.50.102: icmp_seq=2 ttl=128 time=0.739 ms
64 bytes from 192.168.50.102: icmp_seq=3 ttl=128 time=0.668 ms
64 bytes from 192.168.50.102: icmp_seq=4 ttl=128 time=0.625 ms
64 bytes from 192.168.50.102: icmp_seq=5 ttl=128 time=0.631 ms
^X64 bytes from 192.168.50.102: icmp_seq=6 ttl=128 time=0.636 ms
64 bytes from 192.168.50.102: icmp_seq=7 ttl=128 time=0.491 ms
--- 192.168.50.102 ping statistics ---
7 packets transmitted, 7 received, 0% packet loss, time 6004ms
rtt min/avg/max/mdev = 0.491/2.578/14.256/4.768 ms
msfadmin@metasploitable: "$
```

Per l'utilizzo dell'utility InetSim dobbiamo innanzitutto effettuare la configurazione su macchina virtuale, in questo caso abbiamo scelto Kali linux.

Aprendo la macchina virtuale ci basterà digitare in prompt dei comandi il percorso Nano /etc/inetsim/ -> ls -> sudo nano inetsim.conf

Andando a configurare i parametri come nella seguente immagine.

N.B. i parametri in bianco sono quelli attivi mentre quelli in celestino sono quelli che abbiamo disattivato andando a mettere un '#' avanti ad ogni riga di parametro che non ci interessa utilizzare, in questo caso i servizi attivi sono http e https.

Scendendo andremo a configurare ip del server interno che ci servira per la comunicazione del pacchetto in loopbak. Nello specifico bisognerà togliere il '#' dalla voce service_bind_address 127.0.0.1.

Infine, andremo a salvare la configurazione con ctrl + x -> Y + invio

Successivamente bisogna digitare sudo inetsim per avviare il servizio di loopback:

Una vola avviata la simulazione bisogna innanzitutto aprire il browser e digitare: https://localhost Ci apparirà una pagina come la seguente.

Infine basterà aprire wireshark, selezionare la porta di loopback e avviare la procedura di analisi della rete per far vedere come la richiesta arriva al server e questo la accetta dando un OK alla richiesta GET, che sarà una richiesta https sulla porta 80.

Inoltre, poiché le 3 macchine comunicano tra di loro è possibile effettuare l'analisi dei ping scambiati su rete eth0.

Kali -> Metasploitable;

	1 0.000000000	192.168.50.101	192.168.50.100	ICMP	98 Echo (ping) request id=0x4313, seg=5
4	2 0.000029807	192.168.50.100	192.168.50.101	ICMP	98 Echo (ping) reply id=0x4313, seq=5
	3 0.449822644	PcsCompu_aa:75:24	Broadcast	ARP	60 Who has 192.168.50.1? Tell 192.168.50
	4 0.842278706	PcsCompu_cb:7e:f5	Broadcast	ARP	42 Who has 192.168.50.102? Tell 192.168.
	5 0.995684064	192.168.50.101	192.168.50.100	ICMP	98 Echo (ping) request id=0x4313, seq=6
	6 0.995749507	192.168.50.100	192.168.50.101	ICMP	98 Echo (ping) reply id=0x4313, seq=6
	7 1.069990415	PcsCompu_cb:7e:f5	PcsCompu_aa:75:24	ARP	42 Who has 192.168.50.101? Tell 192.168.
	8 1.070602119	PcsCompu_aa:75:24	PcsCompu_cb:7e:f5	ARP	60 192.168.50.101 is at 08:00:27:aa:75:2
	9 1.867665537	PcsCompu_cb:7e:f5	Broadcast	ARP	42 Who has 192.168.50.102? Tell 192.168.
	10 1.991794158	192.168.50.101	192.168.50.100	ICMP	98 Echo (ping) request id=0x4313, seq=7
	11 1.991862515	192.168.50.100	192.168.50.101	ICMP	98 Echo (ping) reply id=0x4313, seq=7
	12 2.891036094	PcsCompu_cb:7e:f5	Broadcast	ARP	42 Who has 192.168.50.102? Tell 192.168.
	13 2.987918617	192.168.50.101	192.168.50.100	ICMP	98 Echo (ping) request id=0x4313, seq=8
	14 2.987952192	192.168.50.100	192.168.50.101	ICMP	98 Echo (ping) reply id=0x4313, seq=8
	15 3.436591007	PcsCompu_aa:75:24	Broadcast	ARP	60 Who has 192.168.50.1? Tell 192.168.50
	16 3.915068676	PcsCompu_cb:7e:f5	Broadcast	ARP	42 Who has 192.168.50.102? Tell 192.168.
	17 3.983485701	192.168.50.101	192.168.50.100	ICMP	98 Echo (ping) request id=0x4313, seq=9
L	18 3.983508290	192.168.50.100	192.168.50.101	ICMP	98 Echo (ping) reply id=0x4313, seq=9
	19 4.433399737	PcsCompu_aa:75:24	Broadcast	ARP	60 Who has 192.168.50.1? Tell 192.168.50

Windows - Kali

10.000000000	rescompu_cu.re.ra	DIVAUCASE	ARE	42 WHO HAS 132.100.30.102? TELL 132.100.
2 0.000515776	PcsCompu_12:5c:b9	PcsCompu_cb:7e:f5	ARP	60 192.168.50.102 is at 08:00:27:12:5c:b
3 0.000523339	192.168.50.100	192.168.50.102	ICMP	98 Echo (ping) request id=0x2dd3, seq=1.
4 0.001024389	192.168.50.102	192.168.50.100	ICMP	98 Echo (ping) reply id=0x2dd3, seq=1.
5 1.001553050	192.168.50.100	192.168.50.102	ICMP	98 Echo (ping) request id=0x2dd3, seq=2.
6 1.002458290	192.168.50.102	192.168.50.100	ICMP	98 Echo (ping) reply id=0x2dd3, seq=2.
7 2.007066159	192.168.50.100	192.168.50.102	ICMP	98 Echo (ping) request id=0x2dd3, seq=3.
8 2.007661179	192.168.50.102	192.168.50.100	ICMP	98 Echo (ping) reply id=0x2dd3, seq=3.
9 3.017286803	192.168.50.100	192.168.50.102	ICMP	98 Echo (ping) request id=0x2dd3, seq=4.
10 3.017812315	192.168.50.102	192.168.50.100	ICMP	98 Echo (ping) reply id=0x2dd3, seq=4.
11 4.042003783	192.168.50.100	192.168.50.102	ICMP	98 Echo (ping) request id=0x2dd3, seq=5.
12 4.042811803	192.168.50.102	192.168.50.100	ICMP	98 Echo (ping) reply id=0x2dd3, seq=5.
13 4.594495730	PcsCompu_12:5c:b9	PcsCompu_cb:7e:f5	ARP	60 Who has 192.168.50.100? Tell 192.168.
14 4.594532554	PcsCompu_cb:7e:f5	PcsCompu_12:5c:b9	ARP	42 192.168.50.100 is at 08:00:27:cb:7e:f
15 5.043655325	192.168.50.100	192.168.50.102	ICMP	98 Echo (ping) request id=0x2dd3, seq=6.
16 5.044639304	192.168.50.102	192.168.50.100	ICMP	98 Echo (ping) reply id=0x2dd3, seq=6.
17 6.046691259	192.168.50.100	192.168.50.102	ICMP	98 Echo (ping) request id=0x2dd3, seq=7.
18 6.047185112	192.168.50.102	192.168.50.100	ICMP	98 Echo (ping) reply id=0x2dd3, seq=7.
19 7.049620308	192.168.50.100	192.168.50.102	ICMP	98 Echo (ping) request id=0x2dd3, seq=8.
20 7.050183164	192.168.50.102	192.168.50.100	ICMP	98 Echo (ping) reply id=0x2dd3, seq=8.

Concludendo si può dire che le richieste sono state effettuate correttamente e che il tutto funziona.