Harmonic Analysis Notes: (*) By doing the experiments, we will get observed data in the form (40, 40), (21, 41), ... (2/m, ym) Where No, M... mare liputs yo, y, ... ym are outputs. (4) It we map these data in the xy axis plane, we will get some curve y= too) (+) we can ask to get the area under the curve in the given range by integration techniques. I find do = (Range) x (vinear of Let y= f(x) no a 18 fm) = (b-a) (= fca) yme 3. ('m-pouts of from cosfinata gda = (Range) (Mean of from cosfinata) Jb fra) sin (my) da= (Rouge) (mean of f(n) sin MI Now, our aim is to find the Fourier Harmonics if the observed data (xo, yo), (x1, y). are given. General Formula: +(2) in (C, C+2L) fm)= 3 + 3 (am cos (MT) + bn smi (my)) 聖+(a,cos 中+b,sm型)+(9,603型+b,sm型 First Harmonic second (22) Harmonic Fundamental

Harmonic

acz i franda = [Range (Mean of fra)] = 1 [(2x)(-\frac{\frac{1}{m}}{m})] (By Integration fechingue) (ab = 2 1 fg)/ an = 1 for cos(mx) dx = 1 [kange) (mean of for cos(mx)] = 1/(21) (xf(x) cos (1/2))] |a| = = Tfm) (05(TTM) b, = 2 I fon sin (17) If period = 21 (07) 361 If Period = 2'L Formula: (1) ap= 2 Ifm) a, = 2 2f(n) cos 2 (2) a = = 7 + (m) (or (T)) bi= = 5fmsinx b1 = 2 1 +(n) sm(II) 22 = 2 I fling los 22 (2) a= = 1 (a) cos (21/2) らっこ イナ(m) 5年か27L (4) b2= = 7 f(n) sin(2002) $a_3 = \frac{2}{m} 2 f(m) \cos 3n$ (5) ag = = I+(a) cos (3172) bg= 2 Ifm)Smign (6) b3 = 2 Ifm sin (3772) Compute apto three harmonics of the Fourier Series 100 113 1.5 Hint: (1) check always first Whether the mitial furthin Value and East function Value same or not. it toth are same, consider only one Value for further calculations (is the starting Pt for next rotation).

Period = 2TT-0 = 2TT =>[L=TT] : f(a)= 2+ (a; cos x+b, smix)+ (a, cos 2x+b2sm2x) aozi Z (fm) a1= = Ifan losa, bie = Itansma (o, and az= = = Ita) asaa, b== = Ita) Sin22 27 au same) ansider any 062 SMK COSZA ffn) cos x shing Smi 32 0013 n 0.849 -0.42 0 Here 0.866 m= 6) -0-5 0-866 -0.5 -0.866 ଚ Note: 0 M7 0 Don't include -0.5 -0.866 -0.5 0.866 6 last value 0.5 -0.866 -0.5 -0.866 0 27) Here. 1-21 0827 Sam a, = 22+(A)(D) = 2 [(1).(1)+.(1)+)(0.5)+(1.9)(-0.5)+. + (1-2) (0.5) = -0-37

 $b_1 = \frac{2}{6} I f(a) f(a) = 0.17$ $a_2 = \frac{2}{6} I f(a) f(a) = 0.17$ $b_2 = \frac{2}{6} I f(a) f(a) = 0.03$ $a_3 = \frac{2}{6} I f(a) cos 3a = 0.03$

b3 = & I fm) sin 3 = 0

f(a) = 1-45+ (-0.33 losa + 0.17 smin) +

(-0.1 cor 22 -0.06 sm27)+ (0.03 cos 32) -1-

The following table gives the variations of the periodic current over a Period.

1	1	1						,
x	0	1 +1/4	1-173	1-1/2	- / 27/2	151/6	1 7	
Amp	1-98	P NT	3 1.0	5 10	3 -0.88	-0.25	1.98	
Show that there is a direct current part of 0.75 amp								
Show that there is a direct current part of 0.75 amp in the Variable current. Also, find the amplitude of >								
the first harmonic.								
Jol: period = 2L= T Calculate upto first harmonoc								
L= 1/2/ far this problem, no need for								
dighine harmore								
Formula: $\frac{a_0}{f(a)} = \frac{a_0}{2} + \left(a_1 \cos \frac{\pi x}{L} + b_1 \sin \frac{\pi y}{L}\right) + \cdots$								
THE STATE								
2 - 100 2 - + fg 7 Cos(-) - m -								
$a_0 = \frac{1}{m} 2 + m$, $a_1 = \frac{1}{m} 2 + m$ $\sin(\frac{\pi x}{L}) = \frac{2}{m} 2 + m$								
2	0	161)	Cos O	smid	9.0	1000 2	- (a. 1a) -	A.2
0	10	1-98	1	0	20= 2 I	f(a) = T	(4° 6°) =	- 4 . 4
1/6	17/3	1.3	2:0	0,866	a,= 11	fm) ws d		
1/3	27/3	1-05	-0.5	0.866	2	1.12)=	0.37	
五	17	1.3	-1	0	b1 = 7	Itia) Sh	$i\theta = 0$	200
1 1	4 77	-0.81	2.0-5	-0.866	»(_ f	•		(a'
25/3	177	-0.25	2.0	-0.866	1 fm/= =	. T W	, ,	
5%	311	-0.25			+ HM= 0	1240,	31 0020	+ 1,005 gmb
From the given solution, we can collude that From the given solution, we can collude that is direct part $\frac{a_0}{2} = 0.75$ amp								
From the given solution, we can thought amp (i) there is direct part $\frac{20}{2} = 0.75$ amp (i) there is direct part $\frac{20}{2} = 0.75$ amp (i) there is direct part $\frac{20}{2} = 0.75$ amp (i) there is direct part $\frac{20}{2} = 0.75$ amp (i) there is direct part $\frac{20}{2} = 0.75$ amp (ii) there is direct part $\frac{20}{2} = 0.75$ amp (i) there is direct part $\frac{20}{2} = 0.75$ amp								
(i) there is the wife with								
(i) there is direct part $\frac{a_0}{2} = 0$. Conice it is not related with any 0). Can amplitude for first $\int = \sqrt{a_1^2 + b_1^2}$ amplitude for first $\int = \sqrt{0.37^2 + 1.005^2}$								
1 Links								
(ii) ampus dumonic 3 = \[0.37^2 + 1.005^2 \]								
{								
= 1.071								