# Deep Learning CSI\_7\_DEL



Week 8: Restricted Boltzmann Machine (RBM)



## Lecture points

- Boltzmann Machine.
- Restricted Boltzmann Machine
- RBM applications.
- Gibbs Sampling
- Contrastive Divergence



#### **Boltzmann Machine**

- Unsupervised Generative Deep Learning models.
- Introduced by Geoffrey Hinton and Terry Sejnowski in <u>1985</u>
- Learns the probability distribution over a set of inputs.
- An energy-based model
- Only binary input and output is allowed



#### **Boltzmann Machine**

- Boltzmann distribution used in the sampling distribution (Ludwig Boltzmann)
- Contains two types of neurons: hidden and visible.
- Each neuron is connected to the other (bidirectional connections)





#### **Types of Boltzmann**

- Restricted Boltzmann Machines (RBM)
- Deep Belief Networks (DBN)
- Deep Boltzmann Machines (DBM)



#### **Restricted Boltzmann Machines**

- First introduced under the name "Harmonium model" by Smolensky (1986)
- Traditional Boltzmann Machine has connections growing exponentially.
- Unidirectional graphical model.
- Used to build Deep Belief Networks and Deep Boltzmann Machine





#### **RBM: Architecture**

- Shallow two-layer neural network.
- Visible neurons only connects to hidden neurons
- Hidden neurons only connects to visible neurons
- Each hidden neuron represents a data feature or pattern





#### **RBM Applications**

- Commonly used in unsupervised classification of images, text, voice etc.
- Heals the curse of dimensionality
- Pattern recognition and features extraction. (Autoencoders)
- Solve imbalanced data problem (One class dominates the other classes in the training data).
- Noisy label problems (Some observations in the training data contain wrongly assigned label).



### Conditional RBM for recommender system



Figure 1. An example of a user-based neighbor style explanation for a recommended item.



Figure 2. Conditional RBM for explainabilty.



Source: www.researchgate.net/publication/304350819 Explainable Restricted Boltzmann Machines for Collaborative Fiftering

#### **RBM: Hidden and Visible units**

- For any given hidden or visible neuron, to set any state The weighted combination of all input needs to be calculated.
- In For any hidden unit  $h_i$ , he probability P that  $h_i$  can be turn on can be computed as follow:

$$P(h_i=1)=rac{1}{1-e^{-z_i}}$$
 (a sigmoid basically also called partition function)

 $z_i$  represents the sum of all input combinations:

$$z_{i} = \sum_{i} w_{ji} v_{i} + b_{i}$$

Where  $w_{ji}$  is the weight connection between the visible and the hidden neurons and  $b_i$  is the bias added to the visible neuron.

• Similarly, for any visible unit  $v_i$ , he probability P that  $v_i$  can be turn on can be computed as follow:

$$P(v_i = 1) = \frac{1}{1 - e^{-y_i}}$$
Where  $y_i = \sum_j w_{ji} v_i + b_i$ 

## **Energy function**

- RBM is energy-based model
- Analogous to the cost function in other neural networks.
- The training algorithm attempts to minimize the energy function
- Low energy translates to high probability (High accuracy)
- Standard energy function with biases  $a_i$ ,  $b_i$  and weights  $w_{ii}$ :

$$E(v,h) = -\sum_{i} a_i v_i - \sum_{j} b_j h_j - \sum_{i,j} w_{ij} v_i h_j$$
$$= -a^T v - b^T h - v^T W h$$



# **RBM Training**

- RBM are trained using Stochastic Gradient Descent (SGD).
- There are two training steps
- Gibbs sampling
- Contrastive divergence.



### Gibb sampling

- The search technique used in the training for RBM is called Gibbs sampling.
- A variant of Markov chain Monte Carlo method (MCMC) introduced by German and German (1984)
- Gibbs sampling calculates two parts:

  - Part one  $P(v_i = 1 | h) = \frac{1}{1 e^{(-(w_{ij}h_j + a_i))}} = \sigma(\sum_j w_{ij}h_j + a_i)$ Part two:  $P(h_i = 1 | v) = \frac{1}{1 e^{(-(w_ih_j + b_i))}} = \sigma(w_{ij}h_j + b_i)$



### Gibbs sampling steps

Step 1: Initialize a matrix Q=0 where the estimates will be stored.

Step 2: Pick a random vector v.

Step 3: Repeat for *N* The following:

Sample 
$$h \sim p(h|v) = \sigma(b + W^T v)$$
  
Sample  $v \sim p(v|h) = \sigma(a + Wh)$   
 $Q < -Q + vh^T$ 

Step 4: End results =>  $E(v_i, h_i) \approx \frac{1}{N}Q$ 

Usually, Gibbs sampling tends to be slow.



### **Contrastive Divergence**

- A Markovian chain training technique used to learn the gradients of RBM
- The goal is to optimize weights and minimize the energy function.
- The weight values are updated during the contrastive divergence.

$$\Delta W = \boldsymbol{v}_0 \otimes p(\boldsymbol{h}_0 | \boldsymbol{v}_o) - \boldsymbol{v}_k \otimes p(\boldsymbol{h}_k | \boldsymbol{v}_k)$$
$$W_{new} = W_{old} + \Delta W$$



# Learning and generating samples





Source: <a href="https://ars.els-cdn.com/content/image/1-s2.0-S0031320313002495-gr1\_lrg.jpg">https://ars.els-cdn.com/content/image/1-s2.0-S0031320313002495-gr1\_lrg.jpg</a>

# **Training**

• Finally, The gradient of the log likelihood of p with respect to  $w_ij$  connections between hidden and visible neuros can be calculated.

$$\frac{\partial \log p(v)}{\partial w_{ij}} = \langle v_i h_j \rangle^0 - \langle v_i h_j \rangle^\infty$$

• Where  $\langle v_i h_i \rangle$  is the average over many generated samples



### Summary

- RBM networks are energy-based.
- Learn the probability distribution of a given input.
- Use Markovian techniques for learning and generating samples (Gibbs sampling and contrastive divergence)
- Useful for recognising patterns, curse of dimensionality and recommender systems.



# Questions & Answers



