## Intro to deep learning







# Recap: logistic regression



# Nonlinear dependencies



How to get that?

### Feature extraction

### Loss, for example:

$$L(y, y_{pred}) = y \cdot \log y_{pred} + (1 - y) \cdot \log (1 - y_{pred})$$

#### Model:



Training:  $argmin_{\theta}L(y, y_{pred}(X, \theta))$ 

### Feature extraction

### Loss, for example:

$$L(y, y_{pred}) = y \cdot \log y_{pred} + (1 - y) \cdot \log (1 - y_{pred})$$

#### Model:



**Gradient:** 

$$\frac{\delta L(y, y_{pred}(X, \theta 1))}{\delta \theta 1}$$



Features would tune to your problem automatically!

### What do we want, exactly?

### Loss, for example:

$$L(y, y_{pred}) = y \cdot \log y_{pred} + (1 - y) \cdot \log (1 - y_{pred})$$

#### Model:



**Training:** 

?

 $argmin_{\theta_1}L(y,y_{pred}(X,\theta_{1},\theta_2))$ 

### What do we want, exactly?

### Loss, for example:

$$L(y, y_{pred}) = y \cdot \log y_{pred} + (1 - y) \cdot \log (1 - y_{pred})$$

#### Model:



Gradients:

$$\frac{\delta L(y, y_{pred}(X, \theta_{1}, \theta_{2}))}{\delta \theta_{2}} \qquad \frac{\delta L(y, y_{pred}(X, \theta_{1}, \theta_{2}))}{\delta \theta_{1}}$$

## Try linear

#### Model:



$$y_{pred} = \sigma(\sum_{j} w_{j}^{o}(\sum_{i} w_{ij}^{h} x_{i} + b_{j}^{h}) + b^{o})$$

Is it any better than logistic regression?

# Try linear

$$y_{pred} = \sigma(\sum_{i} w_{j}^{o}(\sum_{i} w_{ij}^{h} x_{i} + b_{j}^{h}) + b^{o})$$

$$w'_{i} = \sum_{j} w_{j}^{o} w_{ij}^{h}$$
  $b' = \sum_{j} w_{j}^{o} b_{j}^{h} + b^{o}$ 

$$y_{pred} = \sigma(\sum_{i} w'_{i} x_{i} + b')$$

## Try linear

#### Model:



Output: 
$$y_{pred} = \sigma(\sum_{i} w_{j}^{o}(\sum_{i} w_{ij}^{h} x_{i} + b_{j}^{h}) + b^{o})$$

Is it any better than logistic regression?

## Nonlinearity

#### Model:



**Gradients:** 

$$\frac{\delta L(y, y_{pred}(X, w_j^o, b^o, w_{ij}^h, b_j^h))}{\delta w_i^o, \delta b^o, \delta w_{ii}^h, \delta b_i^h}$$

## Nonlinearity

• 
$$f(a) = 1/(1+e^a)$$

• 
$$f(a) = tanh(a)$$

$$\bullet f(a) = \max(0,a)$$

• 
$$f(a) = log(1+e^x)$$



# Biological inspiration



# Biological inspiration



# Biological inspiration



## Not actual neurons:)

- Neurons react in "spikes", not real numbers
- Neurons maintain/change their states over time
- No one knows for sure how they "train"
- Neuroglial cells are important But noone knows, why



Oligodendrocyte

Microglia

Ependymal cells

Neuroglial Cells of the CNS

## Connectionist phrasebook

- Layer a building block for NNs :
  - "Dense layer": f(x) = Wx+b
  - "Nonlinearity layer":  $f(x) = \sigma(x)$
  - Input layer, output layer
  - A few more we gonna cover later
- Activation layer output
  - i.e. some intermediate signal in the NN
- Backpropagation a fancy word for "chain rule"

## Connectionist phrasebook



"Train it via backprop!"

### Connectionist phrasebook



How do we train it?



#### **Discrete Choices**

:

**Layer 2 Features** 

**Layer 1 Features** 

**Original Data** 

### Potential caveats?

### Potential caveats?

Hardcore overfitting

No "golden standard" for architecture

Computationally heavy

## Regularization

L1, L2, as usual

### Dropout



(a) Standard Neural Net



(b) After applying dropout.

# Computation





# Application: Image recognition



"Dog"

# Application: Image recognition



"Dog"

<a particular kind of dog>

"Dog tongue"

"Animal sadism"

## Application: Image recognition



$$K_S^0 \rightarrow \pi^+ \pi^-$$

# Classical approach



## NN approach





Intuition: how cat-like is this square?



Intuition: how cat-like is this square?



Intuition: What is the max catlikelihood over this area?



### Gradient descent

#### Gradient descent algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) (for j = 1 and j = 0) }
```



## Newton-Raphson

### Parameter update

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma [\mathbf{H} f(\mathbf{x}_n)]^{-1} \nabla f(\mathbf{x}_n).$$

#### Hessian:

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \, \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \, \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \, \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \, \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \, \partial x_1} & \frac{\partial^2 f}{\partial x_n \, \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}.$$



Red: Newton-Raphson Green: gradient descent

Any drawbacks?

## Newton-Raphson

### Parameter update

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma [\mathbf{H} f(\mathbf{x}_n)]^{-1} \nabla f(\mathbf{x}_n).$$

#### Hessian:





Red: Newton-Raphson Green: gradient descent

Impractical for large NNs

### SGD with momentum

Idea: move towards "overall gradient direction", Not just current gradient.

$$\Delta w := \eta 
abla Q_i(w) + lpha \Delta w$$

$$w := w - \Delta w$$

### AdaGrad

Idea: decrease learning rate individually for each parameter in proportion to sum of it's gradients so far.

Let 
$$g_{\tau,j} = \frac{\delta L}{\delta w_j}$$
 on  $\tau_{th}$  tick  $G_{j,j} = \sum_{\tau=1}^t g_{\tau,j}^2$   $w_j := w_j - \frac{\eta}{\sqrt{G_{j,j}}} g_j.$ 

### **RMSProp**

Idea: make sure all gradient steps have approximately same magnitude (by keeping moving average of magnitude)

$$v(w,t) := \gamma v(w,t-1) + (1-\gamma)(\nabla Q_i(w))^2$$

$$w := w - rac{\eta}{\sqrt{v(w,t)}} 
abla Q_i(w)$$

# Alltogether



### Moar stuff

- Adadelta
  - Adam
- Adamax
- Hessian-free
- Nesterov-momentum

### Nuff

Let's code some neural networks!