

Objectives

- Define the derivative and the integral of a quantity
- Understand the relationship between changes in a quantity, time and their graphical representation
- Estimate values using numerical methods

Recap: functions and graphs

■ Define a function $f: S \to T$ as $f(s) \in T$ for $s \in S$

■ Represent the function $f: \mathbb{R} \to \mathbb{R}$ as a graph by plotting the

points (x, f(x)) against 2D axes

• AKA y = f(x)

Graph properties: tangent and rate of change

 Definition: the <u>slope</u> (or gradient) is a quantity which gives the inclination of a curve or line with respect to another curve or line.

•
$$m = \frac{\text{Change in } y}{\text{Change in } x} = \frac{\Delta y}{\Delta x} = \tan \theta$$

For a quantity that changes over time:

Rate of change =
$$\frac{\text{Change in quantity}}{\text{Change in time}}$$

How much the quantity changes in a single unit of time

Low gear

now

Derivatives

- **Definition**: the <u>derivative</u> of a quantity x with respect to time t is the rate of change of x with respect to t x = f(t)
- Denoted $\frac{dx}{dt}$ for x = f(t) $\frac{dy}{dx}$ for y = f(x)
- The mathematical process of finding $\frac{dx}{dt}$ given x is called differentiation
 - For polynomials:
 - Multiply coefficients by corresponding exponents
 - Lower each exponent by one degree
 - Remove constant (exponent = 0)

Also written f'(x) or \dot{x}

e.g.
$$x = 2t^3 + t^2 + 3t + 4$$

$$\Rightarrow \frac{dx}{dt} = 6t^2 + 2t + 3$$

$$t^0 = 1$$

Derivatives: example

- A car drives along a straight road at a constant speed
- In half an hour, it covers a distance of 20 miles
- Its speed (which we know is constant) is $\frac{20 \text{ miles}}{0.5 \text{ hours}}$
- In other words...
 - "Distance travelled" is a quantity varying with time
 - We call the rate of change (the derivative) of this quantity "speed"
 - If x is distance travelled and t is time, then

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{20}{0.5} = 40$$

Integrals

- Definition: the integral is the reverse of the derivative...
- Given $\frac{dx}{dt}$, x is the integral of $\frac{dx}{dt}$
- The process of finding this is called integration the opposite of differentiation
 - For polynomials:
 - Increase each exponent by one degree
 - Divide coefficients by new exponents
 - Add a constant...

e.g.
$$\frac{dx}{dt} = 6t^2 + 2t + 3$$

 $\Rightarrow x = 2t^3 + t^2 + 3t + c$

Some constant value...

Leonhard Euler (1707-1783), Swiss mathematician

Numerical integration – Euler's method

• Given the values of x and $\frac{dx}{dt}$ at time t, we can estimate the value of x at time t + h for small h:

$$x(t+h) \approx x(t) + h \frac{\mathrm{d}x}{\mathrm{d}t}$$

Demonstration here

How much x changes by if t changes by h

Calculus with vectors

- The rate of change of a vector is also a vector
- If $\mathbf{v} \in \mathbb{R}^n$ then $\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} \in \mathbb{R}^n$
- Differentiate component-wise: if $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$ then

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \begin{pmatrix} \frac{\mathrm{d}x}{\mathrm{d}t} \\ \frac{\mathrm{d}y}{\mathrm{d}t} \end{pmatrix}$$