ZADANIE 2: PROBLEM Q5 $| r_i | F$

- 5 maszyn równoległych jednorodnych, opisanych współczynnikiem prędkości b_k wskazującym ile razy maszyna M_k jest wolniejsza od najszybszej maszyny w systemie (tym samym jeden ze współczynników b_k musi wynosić 1)
- n zadań do wykonania $J_1,, J_n$
- każde zadanie J_i opisane jest czasem trwania p_i i momentem gotowości r_i
- należy przydzielić zadania do maszyn i ustalić kolejność ich wykonania na maszynach (Ci oznacza moment zakończenia wykonywania zadania J_j w uszeregowaniu) minimalizując średni czas przepływu $F = \frac{1}{n} \sum_{j=1}^{n} F_j$, gdzie czas przepływu dla zadania J_j wynosi $F_j = C_j - r_j$
- jedna maszyna wykonuje tylko jedno zadanie i jedno zadanie jest wykonywane tylko przez jedną maszynę w tym samym czasie
- zadania wykonywane są bez przerwań na przydzielonej maszynie
- zadanie nie może rozpocząć się przed swoim momentem gotowości $r_i \leq C_i p_i$

PLIK WEJŚCIOWY

```
b_1 b_2 b_3 b_4 b_5
p_1 r_1
p_2 r_2
p_n r_n
```

(liczby rozdzielone spacjami, wszystkie wartości poza b_k to na pewno liczby całkowite)

PLIK WYNIKOWY

 $J_{1.1} J_{1.2} \dots$ $J_{2.1} J_{2.2} \dots$ $J_{3.1} J_{3.2} \dots$ $J_{4.1} J_{4.2} \dots$ $J_{5.1} J_{5.2} \dots$

(w pierwszej linii wartość kryterium, w kolejnych 5 liniach sekwencje zadań przypisanych do 5 maszyn, czyli sekwencje numerów zadań rozdzielonych spacjami; numeracja zadań powinna odpowiadać kolejności ich występowania w pliku wejściowym)

Testowy plik wynikowy dla liczby zadań *n* powinien zawierać F = 0 oraz uporządkowane rosnąco $\lfloor n/5 \rfloor$ zadań przypisanych kolejno do kolejnych maszyn, poza ostatnią maszyną, do której należy przypisać pozostałe zadania, np. dla n = 11

0 12

3 4

56

78

9 10 11