GROUP-NO: 1

CS22B2012, CS22B2013, CS22B2014, CS22B2020, CS22B2023

1) Given an integer, the objective is to find all the prime factors. Present an algorithm and its step count analysis analysis. Also asymptotic analysis using 0, 12, 19 notation Algorithm

- 1) Intialize an empty vector: This vector is used to store all the prime factors.
- 2) while the integer is divisible by 2, repeatedly divide it by 2. at each step add 2 to vector
- 3) Check for odd divisors: Start checking the divisibility from 3 & proceed with odd numbers for check each odd number theck if integer is divisible by odd number if yes add the current odd number to list of Prime factors and update the integer by dividing it by the current odd
 - =) if No then move on to next odd number.
- 4) After dividing by all possible Prime factors if the remaining is greater than 2, it is a prime factor itself. Add this remaining integer
- 5) return the vector.

 \mathfrak{T}

divide by 2: This step takes O(logn) steps in worst case, where n is the given integer. As dividing by a reduces the no of digits in binary representation by 1 checking odd divisors: checking divisibility for odd numbers from 3 to savt(n) takes O(savt(n)). [savt-square root]

This is because we are iterating numbers upto Square root of n

Checking remains Integer: This step takes O(1) time

Total step Count = O(logn) + O(savt(n)) + O(1)

Asymtotic Analysis

=) O notation :-

For larger values of n sgrt(n) dominates Log(n) hence, the time complexity is O (sart(n))

- Prime number (ex=2) then the Algorithm takes

 Const time Hence 12(1)
- time complenity is O(savt(n)) since it lis b/w Lower bound of I(1) & upper bound of O(savt(n))

$$\rightarrow \theta$$
 (m3) $f(n) = O(g(n)) \wedge f(n) = 2 (g(n))$

$$\rightarrow \theta$$
 (100m) $\xi(n) = O(g(n)) \wedge \xi(n) = \Lambda(g(n))$

$$\rightarrow \theta (4^n) f(n) = 0g(n) \wedge f(n) = -2 g(n)$$

d)
$$\rightarrow \mathcal{O}(n^k)$$
 $\exists c>0, \forall n>n_0, n_0>0$
 $\rightarrow \mathcal{N}(m)$ $\exists c>0, \forall n>n_0, n_0>0$
 $\rightarrow \mathcal{N}(m)$ $\forall c, \exists n_0>0, \forall n\geq n_0$
 $\rightarrow \mathcal{O}(n^n)$ $\forall c, \exists n_0>0, \forall n\geq n_0$

$$\rightarrow \theta(1)$$
 $f(m) = O(g(m)) \wedge f(m) = \Omega(g(m))$

and the vertical states of the content to

9)50

$$\rightarrow O(i)$$
 $\mathcal{E}(n) = O(g(n)) \wedge ((n) = n (g(n)))$

```
93-
```

Algo add Recursive (a, b)

g ? if (b==0) return a;

if (p20)

& return add Recursive (at1, b-1); }

if (6<0)

E return add Recursive (a-1, b+1); }

Addition of A+B 13 Same as adding 1 to A B times.

Regoodless of the sign of A we can opply either add by

(or) add -B to it depending on suput.

T(a,b) = T(a+1, b-1)+1

T (a+1,b-1) = T (a+2,b-2)+1

T (at2,b-2) = T(at3,b-3)+1

T (a+b-1,1) = T (a+b,0)+1

T((a, b) = T(a+16, 10) to 6-10

only one

Composision

takes place

1. T(a,b)= 1+b-1=b

 $T(a_1b) = T(a-1,b+1) + 1$

T(a-1,6+1)=T(a-2,6+2)+1

T(a-2,6+2) =T(a-3,6+3)+1

Tarto Ta

T(a-b-1,1) = T(a-b,0)+1

only one comparision takes place there

T(aib)=+(a-b,0)+b-1

 $T(a_1b) = T(a_7b,0)+|b|-1$

 $T(a_1b) = 1 + |b| - 1 = |b|$

```
Algo for multiply recursively
multiply Reconsire (a, b)
    if (a==011 b==0)
    3 return 0; 3
    if (b==1)
   & networn a; }
   action at multiply Recursive (a, b-1);
Algo multiply (int a, int b)
    int sign = +1;
     j ((a < 0 & 6 > 0) 11 (a > 0 & 6 < 0)) & sign=-1; }
  //if (a co $8 b co) { sign == 1;}
    a=abs(a);
    b = abs(b);
           sign * multiply Recursive (a, b),
  Muliplication it nothing but repeated addition.
  we repeatedly add a to itself - b-1 times (-a+ a(b-1) = a'b)
 Time Complexity of Algo Multiply is Tony=fon, fon) & coi) =
                                         => TCn)=04)
```

Until b= abs(b) then recursive call time complexity how to be added

661.101 Juga 10 56 4141 1

```
Static int count = 0;
   y (a>= b)
     Count ++ ?
     retion division Recursive (a-b,b);
  eise if (b==0) { tout << "ZoroDivision From acendl; }
                                       else & Retion conint; }
Algo Division
    int 8ign == 15
    g ((acocc b>0) [(a>0 12 b<0)) 2 sign==1;3
  118 (aco & b 60) { sign = 1,3
   a = abs (a);
                                  5. + (+ 10 = 4) - 5 1 1 - (+ 4 + 0) 1
   b = abs (b);
   geturn sign division Recursive (a, b);
Division is nothing but repeated subtraction of 6 from a
The number of times we are able to subtract b from a will
       outs quotient.
     Time Complexity of Algo_Division is T(n) = f(n), f(n) < C(1)
                                      => T(n) = O(1)
```

Until b=abs(b) then recursive call time Complexity has to be added.

T60/6)- TA

 $T(a_1b) = T(a_1b-1)+2$

 $T(a_1b-1) = T(a_1b-2)+2$

T (a, b-2) = T(a, b-3)+2

T(a, b-(b-2)) = T(a, 1)+2

one comptalis

T(a1b) = T(a1)+ 2(b)

= 1+26-2 = 2B+ 2b-1 T(a,b) = O(max(216171,1)) = 0 (max (161,1)

of versions * arge consults.€

Recursive Division

T(a,b)= T(a-b,b)+2

T (a-b,b) = T (a-2b,b)+2

T(a-Kb,b)=T(a-(K+1)b,b)+2

ome comp Assuming that a-Kb Lb termination takes place

con difion

TLA KOTO TE

T(a1b) = T(a-(x+1)b,b) + (x+1)2

T(a,b) = 2x+3 => 0(2x+3)

= (a/b)

I gardynit on the is not a short of

efurty by some the Mar where is a fire the first

identify f(n) & g(n) such that $f(n) \neq O(g(n))$ & $f(n) \neq \Lambda(g(n))$ let us take f(n) = n & $g(n) = n^2$ $f(n) = n^{1+\sin(n)} \text{ as the sin(n) Oscillates } b|_{W} - 1 \text{ to } 1$ as n increases. It never settles in to a specific growth rate making it hard to find $C \text{ W no which are positive to define } f(n) = O(g(n)) \text{ or } f(n) = \Lambda(g(n))$ there's $f(n) \neq O(g(n))$ as f(n) = O(g(n)) or $f(n) = \Lambda(g(n))$ $f(n) \neq O(g(n)) \text{ as } f(n) \text{ constant } C \text{ W no such that } I \text{ $n^{1+\sin(n)}} | \leq C^* n^2 \text{ $f(n)$ and } I \text{ $n \geq n_0$}.$

f(n) + \Pa(g(n1)) as there's no constant Ckno such that \\ \lambda n' \in \text{sin(n)} \geq C^2 \text{n}^2 \text{ for all } n \geq n_0.

Scanf (n) // Number in decimal

Scanf (r) // Bose

i=0

While(n!=0)

int d=ny,y; // To get the remainder if

a(i++]=d; the decimal number is

n=n/r;

Output=0

for (int j=0; j/i;j++)

output = output + a[j] * paw(10,j)

print (output)

Q5)

Time Complexity Analysis

Best case: When n=0 while loop won't be entered and since i=0 for loop won't be entered. So ICI)

worst case: when no while loop is pritered and at each iteration inside while loop 3 statements are done at each step. We can see that every time n=n/t the value of n decreases by r times so the while loop runs for 3 [log_n] and for loop also runs for [log_n] due to i = [log_n] at the end of while loop So worst case is O([log_n])

Average lase is also same as worst are so	
(Clogran)	5
	,
asymptotic growth. n3, 4 log1, (1.5), 2 nlog1, n, no.	
Ans) 4 logg? can also be written as n logg = n2	ř.
onlogn can also be written as 2 logn = 0	
So, the order (non-decreasing): n, 2 nlog, , (1.5), n	100
7a) A program has three-modules: time complexities are	
(1/2) a (2) Q(2) what is the overall time	,
complexity. Present O, D, & if exists.	1
Am) Program: P1: popular 1 chierty no	
$M_1 \rightarrow O(n^2)$ at most n^2	
M2 -> si (n2) at least n2 -> this mod	tule
$M_2 \longrightarrow (n^2)$ and $mould$ be	
major note in computing the time complexity of	£
the program.	
M -> Lower bound is given, so upper bound can be	و
anything time-complexity of the	
1) Arvange the following in increasing order: 1	ກີບ)
2) => for 2n= 2(1), n10000 = 22(1) =tc.	510
2(1) is Lower bound & upper bound can be anythings	
$P(1) \Rightarrow fon 2^n = \Omega(1), N^{10000} = \Omega(1) = tc.$ $Q(1) \text{ is Lower bound & upper bound can be anything:}$ $P(1) \Rightarrow O(1), P(1), $	