### Vowel Tuner

Soklong HIM Nora LINDVALL Maxime MÉLOUX Jorge VASQUEZ-MERCADO

NLP M2

Software Project Nov. 7, 2022



### Outline

- Introduction
- Rule-based approach
- First experiments and results
- Deep learning approach
- 5 Timeline

### Our idea

### Main goal

Help language learners improve their pronunciation of French oral vowels

### Two approaches

- Rule-based approach
- Deep learning approach

## Rule-based approach

### Plan

- Extract formants from wav file
- Compare vowels
- Provide feedback

## **Extracting formants**

For extracting formants we use the python library **Parselmouth**<sup>1</sup>:

- take the audio file as input
- computes the list of each formant
- computes the average value of each formant



<sup>&</sup>lt;sup>1</sup>https://parselmouth.readthedocs.io

### Prediction of the vowel

Vowel formants defined by: Reconnaissance de phonèmes par analyse formantique dans le cas de transitions voyelle-consonne.

|    | vowel | F1  | F2   | F3   | F4   |
|----|-------|-----|------|------|------|
| 0  | [i]   | 250 | 2250 | 2980 | 3280 |
| 1  | [e]   | 420 | 2050 | 2630 | 3340 |
| 2  | [7]   | 590 | 1770 | 2580 | 3480 |
| 3  | [a]   | 760 | 1450 | 2590 | 3280 |
| 4  | [u]   | 290 | 750  | 2300 | 3080 |
| 5  | [0]   | 360 | 770  | 2530 | 3200 |
| 6  | [0]   | 520 | 1070 | 2510 | 3310 |
| 7  | [A]   | 710 | 1230 | 2700 | 3700 |
| 8  | [y]   | 250 | 1750 | 2160 | 3060 |
| 9  | [0]   | 350 | 1350 | 2250 | 3170 |
| 10 | [@]   | 500 | 1330 | 2370 | 3310 |
| 11 | [E]   | 570 | 1560 | 2560 | 3450 |

### **Vowel Prediction Function**



## Example

### Input Formants

#We define a formant value for our input F1=220#590 F2=250#1780 F3=2980 input formant=[F1,F2,F3] input formant

[220. 2260. 2980]

#### Executing the function

vowel prediction(input formant, data)

The vowel predicted is [i]
Its minimum distance is 31.622776601683793
('[i]', 31.622776601683793)



### Feedback

- Openness score (int)
- Frontness score (int)
- Rounding (boolean)

"Close your mouth"

"Move your tongue forward!"

"Round your lips!"



InterFra corpus (Inge Bartning and Fanny Forsberg Lundell), available at https://spraakbanken.gu.se/en/resources/interfra

- 105 hours of L2 French, 4 hours of L1 French
- Transcribed and annotated with Penn POS tags
- Many speaker groups

| Age   | French level              | L1s                                    |  |  |
|-------|---------------------------|----------------------------------------|--|--|
| 13    | 3 years                   | Swedish, Russian, (English)            |  |  |
| 19-25 | beginner                  | Swedish, Estonian, Spanish, Latvian    |  |  |
| 19-25 | 3.5-6 years (4 terms)     | Swedish                                |  |  |
| 19-25 | 3.5-6 years               | Swedish                                |  |  |
| 25-35 | 7-8 years, future teacher | Swedish                                |  |  |
| 25-30 | 9-10 years                | Swedish                                |  |  |
| 25-30 | 10+ years in France       | Swedish                                |  |  |
| 40-50 | 15-35 years in France     | Swedish, (Italian)                     |  |  |
| 19-25 | native, northern France   | French, (Swedish, Portuguese, Italian) |  |  |
| 25-30 | native                    | French, (Spanish)                      |  |  |
| 40-50 | native                    | French, (Italian)                      |  |  |
| 20-35 | native                    | French                                 |  |  |

- 4 speakers selected: 2 non-native (M Swedish/F Estonian), 2 native (M/F)
- 50 vowels or 30 seconds of vowels
- Annotated with left and right phonemic context
- Annotated with perceived vowel
- Result: 225 vowels

## Results (corpus 1)

| Subset              | 2 formants | 3 formants | 4 formants |
|---------------------|------------|------------|------------|
| Native speakers     | 0.120      | 0.133      | 0.157      |
| Non-native speakers | 0.170      | 0.205      | 0.114      |
| Female speakers     | 0.178      | 0.208      | 0.168      |
| Male speakers       | 0.100      | 0.114      | 0.086      |
| Overall             | 0.146      | 0.170      | 0.135      |

Table: Accuracy between the detected and perceived vowels in the InterFra sub-corpus

```
[E/E] Excellent! You sound like a native!
```

[a/a] Excellent! You sound like a native!

<sup>[</sup>a/O] Round your lips! Close your mouth more! Move your tongue further back!

Better than random chance! (1/12  $\approx$  0.083) It seems using 3 formants is the best.

#### But...

- Reference vowels are for male speakers
- Context, speed
- Difficulty and subjectivity of annotation
- $\rightarrow$  Back to the experimental corpus

## Results (corpus 2)

| Subset              | 2 formants | 3 formants | 4 formants |
|---------------------|------------|------------|------------|
| Native speakers     | 0.312      | 0.359      | 0.344      |
| Non-native speakers | 0.359      | 0.256      | 0.282      |
| Female speakers     | 0.346      | 0.192      | 0.038      |
| Male speakers       | 0.325      | 0.364      | 0.416      |
| Overall             | 0.330      | 0.320      | 0.320      |

Table: Accuracy between the detected and perceived vowels in the experimental corpus

## **Analysis**



Figure: Confusion matrices on the InterFra sub-corpus and the experimental corpus

## **Analysis**

### A few discussion points:

- Significantly better!
- How many formants?
- Pertinence of the reference vowels
- Still a single annotator, highly subjective

### What can be improved?

- The metric
- The input (more features)
- The annotations
- The method

## Deep learning approach

#### First draft:

- Corpus annotated with perceived vowels
- Train model to recognize vowel (classification)
- Compare output vowel to target vowel

### Issue

Sometimes /i/ and /i/ are different

## Deep learning approach

#### Second draft:

- Find corpus annotated with perceived vowel + fluency score
- Train model to recognize vowel
- Add classifier for fluency score
- Compare output vowel to target vowel
- If phoneme is correct, give fluency feedback

### Issue

Corpus annotated with perceived vowels?

## Corpus creation

- Size: 28 individuals
  - 50% native, 50% non-native
  - 50% male, 50% female
  - preferably native speakers from the same region
- Recording: real-life conditions
- Annotation: by French native speakers
   Did you hear 'doux' or 'du'?
   Did you hear 'o' as in 'mot' or as in 'mort'?

### Plan

### Task partition

- Data collection All
- Corpus annotation Maxime
- Provide good feedback Nora
- Create/train model Jorge
- Create interface Soklong

#### Provisional timeline

- Corpus complete by Nov 30
- Feedback plan ready by Nov 30
- Model trained and evaluated by Dec 7
- Interface ready by Jan 13



## Mitigation plan

If it doesn't work out?

Abandon deep learning and perfect rule-based approach



# Thank you!

Questions? Feedback?

