BLG311E - FORMAL LANGUAGES AND AUTOMATA

2013 SPRING

RECITEMENT 6

- 1) For the given automata,
 - a) Heuristically, find its regular expression
 - **b)** Find determinist equivalent
 - c) Systematically produce the regular expression for the language defined by the DFA you have designed. Show that it is equivalent to the expression you define in a).

2)

$$L(M) = \{a^n b^m, \quad 0 \le n \le m \le 2n\}$$

- a) Construct DFA accepting this language
- **b)** Choose an example string and show that it is accepted by the PDA you designed.

Solutions:

1)

a)
$$L(M) = (ab)*a v (ab)*ab = (ab)*(a v ab)$$

$$\begin{array}{ll} \textbf{b)} & q_0 = x_0 \\ & \delta(x_0,a) = \delta(q_0,a) = \{\ q_1,\ q_2\} = x_1 \\ & \delta(x_0,b) = \delta(q_0,b) = \emptyset \\ & \delta(x_1,a) = \delta(\{\ q_1,\ q_2\},a) = \emptyset \\ & \delta(x_1,b) = \delta(\{\ q_1,\ q_2\},b) = \{\ q_0,\ q_2\} = x_2 \\ & \delta(x_2,a) = \delta(\{\ q_0,\ q_2\},a) = \{\ q_1,\ q_2\} = x_1 \\ & \delta(x_2,b) = \delta(\{\ q_0,\ q_2\},b) = \emptyset \\ & \delta(\emptyset,a) = \delta(\emptyset,b) = \emptyset = x_3 \end{array}$$

c)

Teorem: $x = xa \ v \ b \ \land \ \Lambda \notin A \Rightarrow x = ba^*$

$$x_1$$
 v x_2 = ? Place x_2 in the expression of x_1 :
$$x_1 = x_0 a \text{ v } x_2 a = x_0 a \text{ v } x_1 b a$$

$$x_0 = \Lambda$$

```
Place x_0 and according to the Theroem defined above:
              x_1 = x_0 a v x_2 a
                                                            x_1 = x_0 a v x_1 ba = a v x_1 ba = a(ba)*
              x_2 = x_1b
              x_3 \rightarrow kuyu
                                                     Place x_1 in the expression of x_2:
                                                           x_2 = x_1b = a(ba)*b
              L(M) = x_1 \vee x_2 = a(ba)^* \vee a(ba)^*b = a(ba)^* (\land \lor b)
        Language defined in a was: (ab)*(a v ab)
              L(M) = (ab)*(a v ab) = (ab)*a (\Lambda v b)
        (ab)^* a \stackrel{?}{=} a(ba)^* \rightarrow  can be proved by induction
                          (ab)^n a \stackrel{?}{=} a(ba)^n
        Induction:
                            n=0: a = a
                            n=k:(ab)^k a=a(ba)^k Assume True
                            n=k+1: (ab)^{k+1}a \stackrel{?}{=} a(ba)^{k+1}
                                           (ab)^k aba \stackrel{?}{\underline{\phantom{}}} a(ba)^k ba
                                           It was assumed that: (ab)^k a = a(ba)^k. Then,
                                           [(ab)^k a]ba \stackrel{?}{=} [a(ba)^k]ba \rightarrow ba = ba \quad \checkmark
a) Production rules:
            S \rightarrow aSB \mid \Lambda
            B \rightarrow bb \mid b
```

2)

PDA definition

}

 $M = (S, \Sigma, \Gamma, \Delta, s, F)$

 $\Delta = \{ [(q0, \Lambda, \Lambda), (q3, \Lambda)],$ $[(q0, a, \Lambda), (q1, a)],$ $[(q0, a, \Lambda), (q0, a)],$ $[(q0, b, a), (q2, \Lambda)],$ $[(q1, \Lambda, \Lambda), (q0, a)],$ $[(q2, b, a), (q2, \Lambda)]$

 $S = \{ q0, q1, q2, q3 \}, \Sigma = \{a, b\}, \Gamma = \{a\}, F = \{q2, q3\} \}$

b) Example String: aabbbb

State	Tape	Stack	Transition Rule
q0	aabbbb	٨	(q0, a, Λ), (q1, a)
q1	abbbb	а	(q1, Λ, Λ), (q0, a)
q0	abbbb	aa	(q0, a, Λ), (q1, a)
q1	bbbb	aaa	(q1, Λ, Λ), (q0, a)
q0	bbbb	aaaa	(q0, b, a), (q2, Λ)
q2	bbb	aaa	(q2, b, a), (q2, Λ)
q2	bb	aa	(q2, b, a), (q2, Λ)
q2	b	а	(q2, b, a), (q2, Λ)
q2	٨	٨	(q2, b, a), (q2, Λ)