Fys3110 Hjemmeeksamen

Kadnr.:

9. oktober 2017

1 Exercise 1:

1.1 1.1)

We have a qubit consisting of the two spin-1/2 basis states

$$|0\rangle \equiv |\downarrow\rangle \simeq \begin{pmatrix} 0\\1 \end{pmatrix} \tag{1}$$

$$|1\rangle \equiv |\uparrow\rangle \simeq \begin{pmatrix} 1\\0 \end{pmatrix} \tag{2}$$

we then introduce the operator $\hat{\sigma}_x$ represented by the Pauli-matrix

$$\hat{\sigma}_x \simeq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{3}$$

We can then look at how the operator acts on the basis states:

$$\hat{\sigma}_x |0\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |1\rangle \tag{4}$$

$$\hat{\sigma}_x |1\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |0\rangle \tag{5}$$

So the operator $\hat{\sigma}_x$ inverts the states:

$$\hat{\sigma}_x |0\rangle = |1\rangle, \qquad \hat{\sigma}_x |1\rangle = |0\rangle$$
 (6)

$1.2 \quad 1.2)$

We have two states $|i\rangle$ and $|o\rangle$, and the operator G which acts on the states as follows:

$$|o\rangle = G|i\rangle, \qquad |i\rangle = G|o\rangle$$
 (7)

We can see that

$$G(G|o\rangle) = G|i\rangle = |o\rangle \tag{8}$$

Thus we see that $GG = I \Rightarrow G = G^{-1}$. We can check if G is hermitian looking at the definition of the hermitian conjugate for some operator K:

$$\langle \psi | K | \phi \rangle = \langle \phi | K^{\dagger} | \psi \rangle^* \tag{9}$$

And if K is hermitian then $K = K^{\dagger}$ and

$$\langle \psi | K | \phi \rangle = \langle \phi | K | \psi \rangle^* \tag{10}$$

We can check if this holds for G. For this we calculate

$$\langle o|G|i\rangle = \langle o|o\rangle \tag{11}$$

$$\langle i|G|o\rangle^* = \langle i|i\rangle^* \tag{12}$$

But these qubits are normalized, so $\langle i|i\rangle^* = \langle i|i\rangle = \langle o|o\rangle = 1$, and we there for get

$$\langle o|G|i\rangle = 1 = \langle i|G|o\rangle^* \tag{13}$$

And thus we have used (1.2) to show that G is hermitian, $G = G^{\dagger}$. We have also shown that $G = G^{-1}$, but because G under multiplication is a operator group, we are ensured that the identity is unique, and we an therefore conclude that $G^{-1} = G^{\dagger}$, which means that G is unitary and hermitian.

$1.3 \quad 1.3$)

We want to find the NOT gate that switches the two states. But the operator G from sec. 1.2 does exactly that: it switches $|0\rangle$ to $|i\rangle$ and vice versa. Also, we showed in sec. 1.1 that the operator $\hat{\sigma}_x$ represented as the Pauli-matrix, took a spin up to down, and down to up. We therefore know that G is the operator for the NOT gate, represented by a Pauli-Matrix:

$$G = \hat{\sigma}_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{14}$$

And as shown in sec. 1.2, this operator, G, is unitary hermitian.

$1.4 \quad 1.4)$

For the Hadamard gate (H-gate) we have the following operation:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \tag{15}$$

We can look at its properties. First we find the hermitian transform of H:

$$H^{\dagger} = (H^T)^* = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} = H$$
 (16)

Thus showing that H is hermitian. If we multiply H with it self we get

$$H^{2} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (17)

This means that $H^2 = I \Rightarrow H = H^{-1}$ and that H is unitary.

We can now see what H does to qubit basis states

$$H|0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix} \tag{18}$$

$$H|1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix} \tag{19}$$

We can recognize these as the eigenstates for spin in x-direction, so

$$H\left|0\right\rangle = \left|\downarrow_{x}\right\rangle \tag{20}$$

$$H|1\rangle = |\uparrow_x\rangle \tag{21}$$

$1.5 \quad 1.5$)

We want to find a magnetic field that that results in the effect of H found is eq. (1.4) and (1.4). We look at H and see that

$$H = \frac{1}{\sqrt{2}} \left(\sigma_x + \sigma_z \right) \tag{22}$$

So we make an educated guess that the magnetic field has to we in $\hat{i} + \hat{k}$ direction. So our Hamiltonian for the magnetic field will be:

$$\hat{H} = -\mu \cdot \mathbf{B} = -g \frac{\mu_B}{\hbar} \left(\frac{h}{\sqrt{2}} \frac{\hbar}{2} \sigma_x + \frac{h}{\sqrt{2}} \frac{\hbar}{2} \sigma_z \right) = -g \frac{h\mu_B}{2\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$
 (23)

With

$$\mathbf{B} = \frac{h}{\sqrt{2}} \begin{pmatrix} 1\\0\\1 \end{pmatrix} \tag{24}$$

The $\sqrt{2}$ being there to ensure that the magnitude of h.

We now what to find the eigenstates of the Hamiltonian so we can express the time evolution of $|0\rangle$ and $|1\rangle$:

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \longrightarrow |h_1\rangle = \begin{pmatrix} 1 + \sqrt{2} \\ 1 \end{pmatrix}, |h_2\rangle = \begin{pmatrix} 1 - \sqrt{2} \\ 1 \end{pmatrix}$$
 (25)

with eigenvalues

$$h_1 = \sqrt{2}, \qquad h_2 = -\sqrt{2}$$
 (26)

This gives us the energies for the Hamiltonian

$$E_1 = -g\frac{h\mu_B}{2}, \qquad E_2 = g\frac{h\mu_B}{2}$$
 (27)

We can now express our qubit states as linear combinations of the eigenvalues of the Hamiltonian:

$$|1\rangle = a |h_1\rangle + b |h_2\rangle, \qquad |0\rangle = c |h_1\rangle + d |h_2\rangle$$
 (28)

This turns out to be

$$|1\rangle = \frac{\sqrt{2}}{4} \begin{pmatrix} 1 + \sqrt{2} \\ 1 \end{pmatrix} - \frac{\sqrt{2}}{4} \begin{pmatrix} 1 - \sqrt{2} \\ 1 \end{pmatrix}$$
 (29)

$$|0\rangle = \frac{2 - \sqrt{2}}{4} \begin{pmatrix} 1 + \sqrt{2} \\ 1 \end{pmatrix} + \frac{2 + \sqrt{2}}{4} \begin{pmatrix} 1 - \sqrt{2} \\ 1 \end{pmatrix}$$
 (30)

2 Exercise 2:

$2.1 \quad 2.1)$

$2.2 \quad 2.2)$

We have the operators which works like

$$F|i\rangle = \begin{cases} -|i^*\rangle &, i = i^* \\ |i\rangle &, i \neq i^* \end{cases}$$
(31)

We want to show that F can be written as

$$F = I - 2|i^*\rangle\langle i^*| \tag{32}$$

Let's use the operator on a ket

$$F|i\rangle = (I - 2|i^*\rangle\langle i^*|)|i\rangle = I|i\rangle - 2|i^*\rangle\langle i^*|i\rangle$$
(33)

$$= |i\rangle - 2\delta_{i,i^*} |i^*\rangle = \begin{cases} -|i^*\rangle &, i = i^* \\ |i\rangle &, i \neq i^* \end{cases}$$
(34)

We can see that this gives the same as (2.2), and we can therefore write $F = I - 2|i^*\rangle\langle i^*|$. We can see from eq. 2.2 that F is a Householder transformation, which ensures that F is unitary hermitian, but we can also show this:

$$F(F|i\rangle) = (I - 2|i^*\rangle\langle i^*|)(I - 2|i^*\rangle\langle i^*|)|i\rangle$$
(35)

$$= I |i\rangle - 2|i^*\rangle \langle i^*| I |i\rangle - 2I |i^*\rangle \langle i^*|i\rangle + 4|i^*\rangle \langle i^*|i^*\rangle \langle i^*|i\rangle$$
(36)

$$= |i\rangle - 4|i^*\rangle \langle i^*|i\rangle + 4|i^*\rangle \langle i^*|i\rangle = |i\rangle \tag{37}$$

Thus $FF = I \Rightarrow F = F^{-1}$. We then show that F is hermitian:

$$F^{\dagger} = (I - 2|i^*\rangle\langle i^*|)^{\dagger} = I - 2(|i^*\rangle\langle i^*|)^{\dagger}$$
(38)

$$= I - 2(\langle i^* |)^{\dagger} (|i^*\rangle)^{\dagger} = I - 2|i^*\rangle \langle i^* | = F$$
(39)

So F is hermitian, $F = F^{\dagger}$. This implies that F is unitary hermitian:

$$F^{-1} = F = F^{\dagger} \Leftrightarrow F^{\dagger} = F^{-1} \tag{40}$$

2.3 2.3

We now introduce the superposition of the states $|i\rangle$

$$|s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle \tag{41}$$

We then calculate

$$\langle i^*|s\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \langle i^*|i\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \delta_{i,i^*} = \frac{1}{\sqrt{N}}$$

$$\tag{42}$$

and

$$F|s\rangle = I|s\rangle - 2|i^*\rangle \langle i^*|s\rangle = |s\rangle - \frac{2}{\sqrt{N}}|i^*\rangle \tag{43}$$

$2.4 \quad 2.4)$

We now consider the state:

$$|g\rangle = \alpha |s\rangle + \beta |i^*\rangle \tag{44}$$

We want this to be normalized:

$$\langle g|g\rangle = 1\tag{45}$$

Due to Riesz representation theorem, we know that such a bra $\langle g|$ exist, so we can then find the condition for α and β such that $|g\rangle$ is normalized.

$$(\alpha * \langle s| + \beta * \langle i^*|)(\alpha | s \rangle + \beta | i^* \rangle) = |\alpha|^2 + |\beta|^2 + \alpha \beta * \langle s|i^* \rangle + \alpha * \beta \langle i^*|s \rangle$$
(46)

 α and β are both real. We know that $\langle i^*|s\rangle$ is real from (2.3), so $\langle s|i^*\rangle = \langle i^*|s\rangle * = \langle i^*|s\rangle$. So:

$$\alpha^2 + \beta^2 + \frac{2\alpha\beta}{\sqrt{N}} = 1\tag{47}$$

Is the condition that makes sure that $|g\rangle$ is normalized.

$2.5 \quad 2.5$

The operator for measuring the measurement i of state $|i\rangle$ is named X, so X acting on a state $|i\rangle$ is:

$$X|i\rangle = i|i\rangle \tag{48}$$

meaning that $|i\rangle$ are eigenstates of X with eigenvalue i. This means that we can use the spectral theorem to write X as a spectral representation with $|i\rangle$ and i:

$$X = \sum_{j=1}^{N} j |j\rangle \langle j| \tag{49}$$

(j and i are dummy indices and therefore interchanged).

$2.6 \quad 2.6$

We want to find the probability of measuring i^* when observing $|q\rangle$. From X we find

$$X|i^*\rangle = i^*|i^*\rangle \tag{50}$$

Meaning that $|i^*\rangle$ is the state where we measure i^* , meaning that we need to find the probability of measuring $|g\rangle$ in state $|i^*\rangle$. We d this with the projection operator

$$\hat{P} = |i^*\rangle\langle i^*| \tag{51}$$

We then find the expectation value of P acting on $|q\rangle$:

$$P(i^*) = \langle g | \hat{P} | g \rangle = \langle g | i^* \rangle \langle i^* | g \rangle = |\langle i^* | g \rangle|^2$$
(52)

We can calculate this

$$\langle i^*|g\rangle = \langle i^*|\left(\alpha|s\rangle + \beta|i^*\rangle\right) = \alpha\langle i^*|s\rangle + \beta\langle i^*|i^*\rangle = \frac{\alpha}{\sqrt{N}} + \beta \tag{53}$$

All the terms are real, so the norm in the probability just becomes a power of two:

$$\Rightarrow P(i^*) = |\langle i^* | g \rangle|^2 = \left(\frac{\alpha}{\sqrt{N}} + \beta\right)^2 = \frac{\alpha^2}{N} + \beta^2 + \frac{\alpha\beta}{\sqrt{N}}$$
 (54)

From eq. (2.4) we see that

$$\beta^2 + \frac{2\alpha\beta}{\sqrt{N}} = 1 - \alpha^2 \tag{55}$$

So we get that the probability of measuring i^* becomes:

$$P(i^*) = 1 - \alpha^2 \left(1 - \frac{1}{N} \right) \tag{56}$$

$2.7 \quad 2.7)$

We now introduce the operator

$$U = 2|s\rangle\langle s| - I \tag{57}$$

We want to look at $UF|s\rangle$. We already calculated $F|s\rangle(2.3)$, so we get:

$$UF|s\rangle = U(|s\rangle - \frac{2}{\sqrt{N}}|i^*\rangle)$$
 (58)

$$= 2 |s\rangle \langle s|s\rangle - I |s\rangle - \frac{4}{\sqrt{N}} |s\rangle \langle s|i^*\rangle + \frac{2}{\sqrt{N}} I |i^*\rangle = |s\rangle - \frac{4}{N} |s\rangle + \frac{2}{\sqrt{N}} |i^*\rangle$$
 (59)

So

$$UF|s\rangle = \left(1 - \frac{4}{N}\right)|s\rangle + \frac{2}{\sqrt{N}}|i^*\rangle$$
 (60)

If we look at U(2.7) we see that it too is a Householder transformation (with a negative sign), thus we know that it is unitary hermitian. A unitary always preserves the norm. So if we first apply F(which we showed was unitary) to $|s\rangle$, its norm is still 1 ($|s\rangle$ is a normalized sum of normalized states). So when we then apply U, the norm is still 1. Thus the norm of $UF(|s\rangle)$ is 1. But we can also show this explicit:

$$\left[\left(1 - \frac{4}{N} \right) \langle s | + \frac{2}{\sqrt{N}} \langle i^* | \right] \left[\left(1 - \frac{4}{N} \right) | s \rangle + \frac{2}{\sqrt{N}} | i^* \rangle \right] \tag{61}$$

(remember that all the constants are real)

$$= \left(1 - \frac{4}{N}\right)^2 \langle s|s\rangle + \frac{2}{\sqrt{N}} \left(1 - \frac{4}{N}\right) \langle s|i^*\rangle + \frac{2}{\sqrt{N}} \left(1 - \frac{4}{N}\right) \langle i^*|s\rangle + \frac{4}{N} \langle i^*|i^*\rangle \tag{62}$$

$$= \left(1 - \frac{4}{N}\right)^2 + \frac{4}{N}\left(1 - \frac{4}{N}\right) + \frac{4}{N} \tag{63}$$

$$=1-\frac{8}{N}+\frac{16}{N^2}+\frac{4}{N}-\frac{16}{N^2}+\frac{4}{N}=1$$
(64)

So we have showed that the norm of $UF|s\rangle$ is 1.

2.8 2.8)

We now want to calculate $UF|g\rangle$:

$$UF |g\rangle = UF(\alpha |s\rangle + \beta |i^*\rangle) = \alpha UF |s\rangle + \beta UF |i^*\rangle$$
(65)

We have already found $UF|s\rangle(2.7)$, but we need to find

$$UF |i^*\rangle = -U |i^*\rangle = -(2|s\rangle\langle s| - I) |i^*\rangle = -2|s\rangle\langle s|i^*\rangle + I|i^*\rangle$$
(66)

$$=|i^*\rangle - \frac{2}{\sqrt{N}}|s\rangle \tag{67}$$

We can now combine these

$$\alpha UF |s\rangle + \beta UF |i^*\rangle = \alpha \left[\left(1 - \frac{4}{N} \right) |s\rangle + \frac{2}{\sqrt{N}} |i^*\rangle \right] + \beta \left[|i^*\rangle - \frac{2}{\sqrt{N}} |s\rangle \right]$$
 (68)

We can so sort these and find

$$UF(\alpha|s\rangle + \beta|i^*\rangle) = \left[\alpha\left(1 - \frac{4}{N}\right) - \frac{2\beta}{\sqrt{N}}\right]|s\rangle + \left[\frac{2\alpha}{\sqrt{N}} + \beta\right]|i^*\rangle \tag{69}$$