Cálculo da resistência (1/2)

Segunda Lei de Ohm:

$$R = \frac{\rho . L}{S}$$

Material	ρ(Ohms.m)	ρ(Ohms.mm²/m)
Alumínio	2,8x10 ⁻⁸	2,8x10 ⁻²
Cobre	1,7x10 ⁻⁸	1,7x10 ⁻²
Prata	1,6x10 ⁻⁸	1,6x10 ⁻²

Cálculo da resistência (2/2)

Exemplo:

Um condutor de alumínio tem 300m de comprimento e 2mm de diâmetro. Calcule a sua resistência elétrica.

R: São dados L=300m, D=2mm portanto o raio R=1mm e a área da secção poderá ser calculada:

$$S=PI*R_2=3,14.(1mm)_2=3,14mm_2=3,14.10-6m_2$$

a) Considerando a resistividade expressa em (Ohmns.m). Nesse caso o comprimento deve estar expresso em m, e a área da secção em m², portanto entrando na expressão que dá a resistência resulta:

$$R = \frac{2,8 \times 10^{-8} \times 300}{3,14 \times 10^{-6}} = 2,67\Omega$$

b) Considerando a resistividade expressa em (Ohms.mm₂/m). Nesse caso o comprimento deve estar expresso em m, e a área da secção em mm₂, portanto entrando na expressão que dá a resistência resulta:

$$R = \frac{2,8 \times 10^{-2} \times 300}{3.14} = 2,67 \Omega$$

Resistências Variáveis...

Termistores

LDR (Light Dependent Resistor) – escuro: resistência alta; feito com sulfeto de cádmio ou Sulfeto de Chumbo

Associação de Resistências

Vtotal = V1 + V2 + V3 + ...

Rtotal = R1 + R2 + R3 + ...

Divisor de Tensão*

$$U1 = \frac{R1}{R1 + R2}.E$$

$$U2 = \frac{R2}{R1 + R2}.E$$

$$\frac{E}{R1+R2}$$
 = resistência no circuito

* sem carga

Divisor de Tensão - testando...

Valores nos instrumentos = ?

Divisor de Tensão - resultado

Associação em Paralelo

Vtotal = V1 = V2 = V3 = ... Itotal = I1 + I2 + I3 + ...
$$1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ...$$

Associação em Paralelo - testando...

Rtotal = ?

Corrente em cada R = ?

Associações - testando...

Rtotal = ?

Proposto...

Resistência e correntes equivalentes = ?

Definições

Ramo = trecho de circuito formado por dois ou mais bipolos ligados em serie.

E 4/0 F

Nó: É a intersecção de dois ou mais ramos

Malha: Toda poligonal fechada cujos lados são constituídos de ramos

Malhas enumeradas (caminhos fechados):

Malha 1: ABGEFA
Malha 2: BCDEGB
Malha 3: ABCDEFA

1ª Lei de Kirchhoff ou Lei dos Nós

Enunciado: "A soma das correntes que chegam a um nó deve ser igual à soma das correntes que dele saem".

Já usada de forma intuitiva em circuitos com associações em paralelo...

Equação do nó A: **I1 + I2 = I3**

2ª Lei de Kirchhoff ou Lei dos Nós

Enunciado: " A soma das tensões orientadas no sentido horário em uma malha deve ser igual à soma das tensões orientadas no sentido anti -horário na mesma malha ".

(Essa lei já foi usada quando vimos o circuito série...)

Exemplo de Aplicação de Kirchhoff

Qual os valores da tensão e corrente no resistor? Indique o sentido da corrente...

Adotando-se um sentido arbitrário:

$$12V + Vr = 2V$$

 $12 + 5*I = 2$
 $I = -2A$

Logo, adotou-se o sentido errado da corrente sobre o resistor... Vr = 5 * I = 5 * 2 = 10 V