Robot keyboard control

Note: The virtual machine needs to be in the same LAN as the robot, and the ROS_DOMAIN_ID needs to be consistent. You can check [Must Read Before Use] to set the IP and ROS_DOMAIN_ID on the board.

1. Start and connect the agent

Take the supporting virtual machine as an example, enter the following command to start the agent,

```
sudo docker run -it --rm -v /dev:/dev -v /dev/shm:/dev/shm --privileged --
net=host microros/micro-ros-agent:humble udp4 --port 8899 -v4
```

Then, turn on the car switch and wait for the car to connect to the agent. The connection is successful as shown in the figure below,

```
| init
| set_verbose_level
| create_client
                                                                                                       port: 8899
                                                                                                      | client_key: 0x0E5C3397, sess
lon_id: 0x81
                                                 | establish session
                                                                                                     | client key: 0x0E5C3397, addr
ess: 192.168.2.102:49954
                                                 | create_participant
                                                                                                     | client_key: 0x0E5C3397, part
icipant id: 0x000(1)
                                                                                                    | client_key: 0x0E5C3397, topi
_id: 0x000(2), participant_id: 0x000(1)
                                                 | create_publisher
                                                                                                     | client key: 0x0E5C3397, publ
sher_id: 0x000(3), participant_id: 0x000(1)
                                                                            | datawriter created | client_key: 0x0E5C3397, data
                                                 I create datawriter
riter_id: 0x000(5), publisher_id: 0x000(3)
                                                                                                    | client_key: 0x0E5C3397, topi
                                                 | create_topic
_id: 0x001(2), participant_id: 0x000(1)
                                                 | create_publisher
                                                                                                     | client_key: 0x0E5C3397, publ
isher_id: 0x001(3), participant_id: 0x000(1)
                                                 | create_datawriter
                                                                            | datawriter created | client_key: 0x0E5C3397, data
vriter_id: 0x001(5), publisher_id: 0x001(3)
                                                                                                     | client_key: 0x0E5C3397, topi
                                                 | create_topic
_id: 0x002(2), participant_id: 0x000(1)
                                                | create publisher
                                                                                                    | client_key: 0x0E5C3397, publ
isher_id: 0x002(3), participant_id: 0x000(1)
                                                | create_datawriter
                                                                            | datawriter created | client_key: 0x0E5C3397, data
writer_id: 0x002(5), publisher_id: 0x002(3)
                                                                                                     | client_key: 0x0E5C3397, topi
                                                 | create topic
_id: 0x003(2), participant_id: 0x000(1)
                                                 | create_publisher
                                                                                                     | client_key: 0x0E5C3397, publ
isher_id: 0x003(3), participant_id: 0x000(1)
                                                 | create_datawriter
                                                                                                     | client_key: 0x0E5C3397, data
vriter_id: 0x003(5), publisher_id: 0x003(3)
                                                                                                     | client_key: 0x0E5C3397, topi
                                                 | create topic
_id: 0x004(2), participant_id: 0x000(1)
                                                 | create_subscriber
                                                                                                     | client_key: 0x0E5C3397, subs
criber_id: 0x000(4), participant_id: 0x000(1)
                                                                                                     | client_key: 0x0E5C3397, data
                                                 | create datareader
reader_id: 0x000(6), subscriber_id: 0x000(4)
```

2. Start the keyboard control program

2.1 Code path

Code path:

```
/root/yahboomcar_ws/src/yahboomcar_ctrl/yahboomcar_ctrl
```

2.2 Run command

Take the matching virtual machine as an example, terminal input,

```
ros2 run yahboomcar_ctrl yahboom_keyboard
```

```
yahboom@yahboom-VM:~$ ros2 run yahboomcar_ctrl yahboom_keyboard
Control Your SLAM-Bot!
Moving around:
       i
   u
        k
            ι
   j
q/z : increase/decrease max speeds by 10%
w/x : increase/decrease only linear speed by 10%
e/c : increase/decrease only angular speed by 10%
t/T : x and y speed switch
s/S : stop keyboard control
space key, k : force stop
anything else : stop smoothly
CTRL-C to quit
currently:
               speed 20.0
                                turn 300.0
```

The keyboard key description is as follows,

2.3 Direction control

Key	Linear angular velocity	Direction	Key	Linear angular velocity	Direction
[i] or [l]	【linear, 0】	Go forward	(u) or (U)	【linear, angular】	Turn left
[,]	【-linear, 0】	Go backward	(o) or (O)	【linear, - angular】	Turn right
[j] or	【0, angular】	Rotate left	[m] or [M]	【-linear, - angular】	Reverse left
[l] or [L]	【0, - angular】	Rotate right	[.]	【-linear, angular】	Reverse right

2.4 Speed control

Button	Speed change	Button	Speed change	
[q]	Increase linear and angular speeds by 10%	[z]	Both linear speed and angular speed decrease by 10%	

Button	Speed change	Button	Speed change	
[w]	Only linear speed increases by 10%	[x]	Only linear speed decreases by 10%	
[e]	Only angular speed increases by 10%	[c]	Only angular speed decreases by 10%	
[t]	Linear speed X-axis/Y-axis direction switch	[s]	Stop keyboard control	

Note: Since the car has a common tire differential wheel structure and cannot move sideways, the **[t]** key is meaningless. Before using keyboard control each time, you need to click the terminal that starts the program, otherwise the key event cannot be detected.