Analytic thermoelectric couple modeling: variable material properties and transient operation

Jon Mackey

Mechanical Engineering, University of Akron

Alp Sehirlioglu

Materials Science and Engineering, Case Western Reserve University

Fred Dynys

NASA Glenn Research Center

NASA Cooperative Agreement: NNX08AB43A

NASA/USRA Contract: 04555-004

Thermoelectricity

- •Study of the coupled transport of electrical and thermal energy.
- Solid-state phenomenon requires no moving parts or working fluids, and generates no noise, torque, or vibrations.
 - As a result thermoelectric devices are extremely reliable.
- Power Generation
 - Spacecraft, automotive, aerospace, gas pipelines, well sites, and offshore platforms.
- Refrigeration
 - On chip cooling, electronics, and automotive.
- High reliability, low conversion efficiency.

Spacecraft Power

- Radioisotope thermoelectric generators (RTG) have powered 45 spacecraft.
 - Voyager (1977), Ulysses (1990),
 Cassini (1997), New Horizons (2006), and Curiosity (2011).

Lange et al. Energy Conversion and Management 49 (2008) 391-401.

GPHS-RTG (Galileo/Ulysses)

Bennett et al. AIP Proceedings 969 (2008) 663-671.

Tranciant

etticiency.

Thermo

- Study of the cou electrical and the
- Solid-state phen no moving parts and generates n vibrations.
 - As a resul devices ar
- Power Genera
 - Spacecraf aerospace sites, and
- Refrigeration
 - •On chip c automotiv
- High reliability efficiency.

wer

ric generators pacecraft. es (1990), lorizons (2011).

Lange et al. Energy Conversion and Management 49 (2008) 391-401.

Bennett et al. AIP Proceedings 969 (2008) 663-671.

Thermocouple

Irreversible Thermodynamics

- 1931 Lars Onsager discussed coupled irreversible processes to unify thermoelectric phenomena into a single study.
- •Study results in two transport laws for a thermoelectric conductor.

Ohm's Law-
$$eJ_N = -\sigma \frac{d\phi}{dx} - S\sigma \frac{dT}{dx},$$

Fourier's Law-
$$q^{''} = STeJ_N - k\frac{dT}{dx}$$
.

Classic Model

Thermal-

$$\frac{d}{dx} \left[-k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^2}{A_{A,B}^2 \sigma_{A,B}} = 0$$

Electrical-

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B}\frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

Classic Parameters

Geometric-

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials-
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_c Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^2}{T_h Z\left(X_{opt}\right)} + \left(1 + Y_{opt}\right) - \frac{1}{2}\eta_c}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

Classic Model

Thermal-

$$\frac{d}{dx} \left[-k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^2}{A_{A,B}^2 \sigma_{A,B}} = 0$$

Electrical-

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B}\frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

Classic Parameters

Geometric-

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials-
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_c Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^2}{T_h Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2}\eta_c}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

Classic Model

Thermal-

$$\left[\frac{d}{dx} \left[-k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^{2}}{A_{A,B}^{2} \sigma_{A,B}} = 0 \right]$$

Electrical-

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B}\frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

Classic Parameters

Geometric-

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials-
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_c Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^2}{T_h Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2}\eta_c}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

Classic Model

Thermal-

$$\frac{d}{dx} \left[-k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^{2}}{A_{A,B}^{2} \sigma_{A,B}} = 0$$

Electrical-

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B}\frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

Classic Parameters

Geometric-

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials-
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_{c} Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^{2}}{T_{h} Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2} \eta_{c}}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

Classic Model

Thermal-

$$\frac{d}{dx} \left[-k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^{2}}{A_{A,B}^{2} \sigma_{A,B}} = 0$$

Electrical-

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B}\frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

Classic Parameters

Geometric-

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials-
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_c Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^2}{T_h Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2}\eta_c}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

Classic Model

Thermal-

$$\frac{d}{dx} \left[-k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^{2}}{A_{A,B}^{2} \sigma_{A,B}} = 0$$

Electrical-

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

Classic Parameters

Geometric-

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials-
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_c Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^2}{T_h Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2}\eta_c}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{opt}) = \frac{(S_B - S_A)^2}{\left(\sqrt{\frac{k_A}{\sigma_A}} + \sqrt{\frac{k_B}{\sigma_B}}\right)^2}$$

Classic Model

Thermal-

$$\frac{d}{dx} \left[-k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^2}{A_{A,B}^2 \sigma_{A,B}} = 0$$

Electrical-

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

Classic Parameters

Geometric-

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials-
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_c Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^2}{T_h Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2}\eta_c}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

Classic Model

Thermal-

$$\frac{d}{dx} \left[-k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^{2}}{A_{A,B}^{2} \sigma_{A,B}} = 0$$

Electrical-

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

Classic Parameters

Geometric-

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials-
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_c Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^2}{T_h Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2}\eta_c}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

Classic Model

Thermal-

$$\frac{d}{dx} \left[-k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^2}{A_{A,B}^2 \sigma_{A,B}} = 0$$

Electrical-

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B}\frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

Classic Parameters

Geometric-

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials-
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_c Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^2}{T_h Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2}\eta_c}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

Classic Model

Thermal-

$$\frac{d}{dx} \left[-k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^2}{A_{A,B}^2 \sigma_{A,B}} = 0$$

Electrical-

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B}\frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

Classic Parameters

Geometric-

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials-
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_c Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^2}{T_h Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2}\eta_c}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_B - S_A)^2}{\left(\sqrt{\frac{k_A}{\sigma_A}} + \sqrt{\frac{k_B}{\sigma_B}}\right)^2}$$

c Parameters

$$X = \frac{A_B L_A}{A_A L_B}$$

R

Solution Parameters

$$X = \frac{A_B L_A}{A_A L_B}$$

$$Y = \frac{R}{\frac{L_B}{\sigma_R A_B} + \frac{L_A}{\sigma_A A_A}}$$

$$\eta_{opt} = \frac{\eta_{c} Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^{2}}{T_{h} Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2} \eta_{c}}$$

$$\int_{\text{opt}} = \sqrt{\frac{\kappa_{A} \sigma_{A}}{k_{B} \sigma_{B}}}$$

$$\sqrt{1 + Z(X_{\text{opt}}) T_{\text{avg}}}$$

$$) = \frac{(S_{B} - S_{A})^{2}}{\left(\sqrt{\frac{k_{A}}{\sigma_{A}}} + \sqrt{\frac{k_{B}}{\sigma_{B}}}\right)^{2}}$$

Variable Properties Model

Material Properties by Asymptotic Expansion-

$$\frac{1}{\sigma(T)} = \rho(T) = \tilde{\rho} \frac{\rho(T)}{\tilde{\rho}} = \tilde{\rho} (\rho_0 + \epsilon \rho_1 \Delta T \hat{T})$$

$$S(T) = \tilde{S}\frac{S(T)}{\tilde{S}} = \tilde{S}(S_0 + \epsilon S_1 \Delta T \hat{T})$$

$$k(T) = \tilde{k} \frac{k(T)}{\tilde{k}} = \tilde{k} (k_0 + \epsilon k_1 \Delta T \hat{T})$$

Asymptotic Expansion

$$\widehat{T} = \frac{T}{\Delta T}$$

-0.5 -0.5

$$\hat{T} = \frac{T}{\Delta T}$$
 $\hat{\varphi} = \frac{\varphi}{\Delta S \Delta T}$ $\hat{I} = \frac{IR}{\Delta S \Delta T}$

$$\hat{I} = \frac{IR}{\Delta S \Delta T}$$

$$\hat{T} = T_0 + \epsilon T_1$$

$$\hat{\varphi} = \varphi_0 + \epsilon \varphi_1$$

Variable Seebeck

Max Conversion Efficiency [%], Fixed Average Seebeck 6.3 2-Type S₁ [1/K] 6.2 6.1

N-Type S₁ [1/K]

0.5

Variable Properties Model

Material Properties by Asymptotic Expansion-

$$\frac{1}{\sigma(T)} = \rho(T) = \tilde{\rho} \frac{\rho(T)}{\tilde{\rho}} = \tilde{\rho} (\rho_0 + \epsilon \rho_1 \Delta T \hat{T})$$

$$S(T) = \tilde{S} \frac{S(T)}{\tilde{S}} = \tilde{S} (S_0 + \epsilon S_1 \Delta T \hat{T})$$

$$k(T) = \tilde{k} \frac{k(T)}{\tilde{k}} = \tilde{k} (k_0 + \epsilon k_1 \Delta T \hat{T})$$

Asymptotic Expansion

$$\hat{T} = \frac{T}{\Delta T}$$
 $\hat{\varphi} = \frac{\varphi}{\Delta S \Delta T}$ $\hat{I} = \frac{IR}{\Delta S \Delta T}$ $\hat{T} = T_0 + \epsilon T_1$

$$\hat{\varphi} = \varphi_0 + \epsilon \varphi_1$$

Variable Seebeck

Variable Properties

Asymptotic Expansion Method

$$\rho(T) = \tilde{\rho} \frac{\rho(T)}{\tilde{\rho}} = \tilde{\rho} (\rho_0 + \epsilon \rho_1 \Delta T \hat{T})$$

$$S(T) = \tilde{S}\frac{S(T)}{\tilde{S}} = \tilde{S}(S_0 + \epsilon S_1 \Delta T \hat{T})$$

$$k(T) = \tilde{k} \frac{k(T)}{\tilde{k}} = \tilde{k} (k_0 + \epsilon k_1 \Delta T \hat{T})$$

Ma

$$S(T) = \tilde{S}\frac{S(T)}{\tilde{S}} = \tilde{S}(S_0 + \epsilon)$$

$$k(T) = \tilde{k} \frac{k(T)}{\tilde{k}} = \tilde{k} (k_0 + \epsilon)$$

$$\frac{d}{dx} \left[-k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^{2}}{A_{A,B}^{2} \sigma_{A,B}} = 0$$

- Leading order temperature solution
- First order temperature correction
 - Combined temperature solution

Variable Property Model Summary

Material Property	Temperature Dependence	Conversion Efficiency	Sensitivity (K)
Thermal Conductivity	↑	↑	0.60
Absolute Seebeck Coefficient	\uparrow	↑	0.25
Electrical Resistivity	↑	\downarrow	0.08

$$Sensitivity = \frac{\Delta \eta}{\Delta(S_1)}$$

Conversion Efficiency 6.30%

Conversion Efficiency 6.10%

Transient Model

Thermal-
$$\frac{\partial}{\partial x} \left[-k_{A,B} \frac{\partial T_{A,B}}{\partial x} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{\partial T_{A,B}}{\partial x} - \frac{I_{A,B}^2}{A_{A,B}^2 \sigma_{A,B}} = \rho_{A,B} c_{p_{A,B}} \frac{\partial T_{A,B}}{\partial t}$$

$$\frac{\partial \varphi_{A,B}}{\partial x} = -S_{A,B} \frac{\partial T_{A,B}}{\partial x} - \frac{I_{A,B}}{A_{A,B} \sigma_{A,B}}$$

$$\varphi_B(L_B) - \varphi_A(L_A) = IR + H \frac{dI}{dt}$$

Green's Function Solution

Transient Parameters

Thermal diffusivity factor-

$$\Gamma_{A,B} = rac{lpha_{avg} L_{A,B}^2}{lpha_{A,B} L_{avg}^2}$$

Inductance factor-

$$\beta = \frac{H\alpha_{avg}}{RL_{avg}^2}$$

Transient Model

Thermal-
$$\frac{\partial}{\partial x} \left[-k_{A,B} \frac{\partial T_{A,B}}{\partial x} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{\partial T_{A,B}}{\partial x} - \frac{I_{A,B}^2}{A_{A,B}^2 \sigma_{A,B}} = \rho_{A,B} c_{p_{A,B}} \frac{\partial T_{A,B}}{\partial t}$$

$$\frac{\partial \varphi_{A,B}}{\partial x} = -S_{A,B} \frac{\partial T_{A,B}}{\partial x} - \frac{I_{A,B}}{A_{A,B} \sigma_{A,B}}$$

$$\varphi_B(L_B) - \varphi_A(L_A) = IR + H \frac{dI}{dt}$$

Green's Function Solution

Transient Parameters

Thermal diffusivity factor-

$$\Gamma_{A,B} = \frac{\alpha_{avg} L_{A,B}^2}{\alpha_{A,B} L_{avg}^2}$$

Inductance factor-

$$\beta = \frac{H\alpha_{avg}}{RL_{avg}^2}$$

Green's Function Solution

Thermal Green's Function

Eigenfunction expansion-

Temperature-

$$\lambda_n = \frac{(2n+1)\pi}{2},$$

$$\begin{split} \hat{T}_{a,b}(x,t) &= \boxed{-\Gamma_{a,b} \int_0^1 G_{a,b}(\xi,0;x,t) T_i d\xi} + \boxed{\int_0^t G_{\xi_{a,b}}(1,\tau;x,t) T_c d\tau} \\ &- \int_0^t G_{a,b}(0,\tau;x,t) (A\sin(\omega\tau) + B) d\tau - \boxed{\int_0^t \int_0^1 G_{a,b}(\xi,\tau;x,t) \gamma I^2(\tau) d\xi d\tau}. \end{split}$$

Thermal-
$$\frac{\partial}{\partial x}$$
[-

 $T_{C}(t), \varphi_{C_{A,B}}$

Electrical-
$$\frac{\partial \varphi_{A,B}}{\partial x} = -S_{A,B} \frac{\partial T_{A,B}}{\partial x} - \frac{I_{A,B}}{A_{A,B} \sigma_{A,B}}$$

$$\varphi_B(L_B) - \varphi_A(L_A) = IR + H \frac{dI}{dt}$$

factor-

Inductance factor-
$$\beta = \frac{H\alpha_{avg}}{RL_{avg}^2}$$

 $(\xi - \xi)$

ers

120

100

500

20

40

Time (sec)

Conclusion

- Asymptotic expansions are an effective means of understanding thermocouple behavior.
- Conversion efficiency is most sensitive to thermal conductivity temperature dependence.
- Thermal diffusivity factor
 - Governs transient operation of a thermocouple, with an ideal value of unity.
- Inductance factor
 - Governs the balance between thermal and electrical inductance.

Acknowledgements

Tom Sabo, Ray Babuder, Ben Kowalski NASA Glenn Research Center/ Case Western Reserve University

Dr. Sabah Bux, Dr. Jean-Pierre Fleurial JPL

NASA Cooperative Agreement: NNX08AB43A

NASA/USRA Contract: 04555-004