Mathématiques & Abstraction

Chapitre 3: Les applications

Preuve n°1 : Le complémentaire

Propriétés

Soient E et F deux ensembles non vides, $A, A' \subset E, B, B' \subset F$ et $f: E \to F$ une application. On a :

- 1. $f\langle \emptyset \rangle = \emptyset$ et $f^{-1}\langle \emptyset \rangle = \emptyset$
- 2. $A \subset A' \Rightarrow f(A) \subset f(A')$
- 3. $B \subset B' \Rightarrow f^{-1}\langle B \rangle \subset f^{-1}\langle B' \rangle$
- 4. $f(A \cap A') \subset f(A) \cap f(A')$
- 5. $f(A \cup A') = f(A) \cup f(A')$
- 6. $f^{-1}\langle B \cap B' \rangle = f^{-1}\langle B \rangle \cap f^{-1}\langle B' \rangle$
- 7. $f^{-1}\langle B \cup B' \rangle = f^{-1}\langle B \rangle \cup f^{-1}\langle B' \rangle$
- 1. $f(\emptyset) = \emptyset$ et $f^{-1}(\emptyset) = \emptyset$

Il n'y a pas d'image ou d'antécédent d'éléments de l'ensemble vide puisque l'ensemble vide n'a pas d'élément.

2. $A \subseteq A' \Rightarrow f(A) \subseteq f(A')$

Soit $y \in f(A)$. Alors $\exists x \in A \ tq \ y = f(x)$. Mais comme $A \subset A'$, $x \in A'$ et donc $y \in f(A')$.

3. $B \subset B' \Rightarrow f^{-1}(B) \subset f^{-1}(B')$

Soit $x \in f^{-1}(B)$. Alors $f(x) \in B$. Mais comme $B \subset B'$, $f(x) \in B'$ et $x \in f^{-1}(B')$.

4. $f(A \cap A') \subset f(A) \cap f(A')$

Soit $y \in f(A \cap A')$. Alors $\exists x \in A \cap A'$ Soit $y \in f(A \cap A')$. Alors $\exists x \in A \cap A'$ tq y = f(x). Mais comme $x \in A$ et $x \in A'$, $f(x) \in f(A)$ et $f(x) \in f(A')$, donc $y = f(x) \in f(A) \cap f(A')$.

5. $f(A \cup A') = f(A) \cup f(A')$

Soit $y \in f(A \cup A')$. Alors $\exists x \in A \cup A' tq y = f(x)$ et on a :

$$x \in A \cup A' \Leftrightarrow \begin{cases} x \in A \\ ou \\ x \in A' \end{cases} \Leftrightarrow \begin{cases} y \in f\langle A \rangle \\ ou \\ y \in f\langle A' \rangle \end{cases} \Leftrightarrow y \in f\langle A \rangle \cup f\langle A' \rangle$$

Soit $x \in E$

6. $f^{-1}\langle B \cap B' \rangle = f^{-1}\langle B \rangle \cap f^{-1}\langle B' \rangle$

$$x \in f^{-1}\langle B \cap B' \rangle \Leftrightarrow f(x) \in B \cap B' \Leftrightarrow f(x) \in B \text{ et } f(x) \in B' \Leftrightarrow x \in f^{-1}\langle B \rangle \text{ et } x \in f^{-1}\langle B' \rangle$$
$$\Leftrightarrow x \in f^{-1}\langle B \rangle \cap f^{-1}\langle B' \rangle$$

7. $f^{-1}\langle B \cup B' \rangle = f^{-1}\langle B \rangle \cup f^{-1}\langle B' \rangle$

$$x \in f^{-1}\langle B \cup B' \rangle \Leftrightarrow f(x) \in B \cup B' \Leftrightarrow f(x) \in B \ ou \ f(x) \in B' \Leftrightarrow x \in f^{-1}\langle B \rangle \ ou \ x \in f^{-1}\langle B' \rangle$$

$$\Leftrightarrow x \in f^{-1}\langle B \rangle \cup f^{-1}\langle B' \rangle$$

Preuve n°2 : Associativité de la composition

Proposition

Soient E, F, G et H quatre ensembles non vides et soient $f: E \to F$, $g: F \to G$ et $h: G \to H$ trois applications.

Alors on a:

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Soit $x \in E$. On a:

$$(h o (g o f))(x) = h((g o f)(x)) = h(g(f(x)))$$

Εt

$$((h \circ g)\circ f)(x) = (h \circ g)(f(x)) = h(g(f(x)))$$

❖ Preuve n°3 : Bijection réciproque

Proposition

Soient E, F et g trois ensembles non vides et soient $f: E \to F$ et $g: F \to G$ deux bijections. Alors $g \circ f$ est une bijection et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

- o Montrons que g o f est une bijection.
 - $g \circ f$ est injective: soient $x, x' \in E \ tq \ (g \circ f)(x) = (g \circ f)(x')$. On a alors g(f(x)) = g(f(x')) et donc f(x) = f(x') car g est injective. Mais alors x = x' car f est injective.
 - $g \circ f$ est surjective : on a $g \circ f \langle E \rangle = g \langle f \langle E \rangle \rangle = g \langle F \rangle$ car f est surjective. Mais alors $g \circ f \langle E \rangle = g \langle F \rangle = G$ car g est surjective.
- o Ona:

$$(g \ o \ f)^{-1}o(g \ o f) = (f^{-1}og^{-1})o(gof) = f^{-1}oId_Fof = f^{-1}of = Id_E$$

Εt

$$(gof)o(gof)^{-1} = (gof)\,o(f^{-1}og^{-1}) = goId_Fog^{-1} = gog^{-1} = Id_G$$