

PW VI – Podstawy automatyki laboratorium

Kierunek studiów:	Informatyka I-go stopnia	Rok studiów:	III
Numer grupy:	3		
Rok akademicki:	2020/2021	Semestr:	V

Temat:		
	Mod	delowanie układów z opóźnieniem - SIMULINK

Nr indeksu	lmię i nazwisko	Data oddania I	Data oddania II	OCENA
84127	Klaudia Sukiennik	21.12.2020		

Termin zajęć:		Prowadzący:	
dzień:	wtorek	drini Makarrata Zugarliaka	
godzina:	16:20	dr inż. Małgorzata Zygarlicka	

Charakterystyki czasowe i częstotliwościowe podstawowych obiektów dynamicznych

Cz. 1 Modelowanie układów z opóźnieniem – SIMULINK

1. Wstęp teoretyczny

Simulink jest jedną z nakładek środowiska MATLAB. Służy głównie do przeprowadzania badań symulacyjnych. Simulink pozwala budować schematy blokowe układów (modele symulacyjne) przy pomocy interfejsu graficznego i tzw. bloków. Simulink umożliwia przeprowadzanie zarówno symulacji z czasem dyskretnym jak i ciągłym. Definiując obiekty w Simulinku mamy możliwość odwoływania się do istniejących w pamięci zmiennych, dostępnych z wiersza poleceń środowiska MATLAB.

Układ z opóźnieniem do postaci wielomianowej – aproksymacja Pade'go:

Aproksymacja Pade'go 1-go rzędu	Aproksymacja Pade'go 2-go rzędu
$e^{-s\theta} \approx \frac{1 - \frac{\theta}{2}s}{1 + \frac{\theta}{2}s}$	$e^{-s\theta} \approx \frac{1 - \frac{\theta}{2}s + \frac{\theta^2}{12}s^2}{1 + \frac{\theta}{2}s + \frac{\theta^2}{12}s^2}$

2. Cel i opis ćwiczenia

Celem ćwiczenia było zbudowanie układu przy pomocy pakietu SIMULINK, w którym przeprowadzone zostanie porównanie modeli otrzymanych poprzez aproksymację Pade'go 1- go i 2-go rzędu (dla parametrów: k = 1, T = 1, $\theta = 2$, czas symulacji 8s) z oryginalnym układem z opóźnieniem transportowym (bloczek Transport Delay).

Rys. 1 Model ukladu w SIMULINK.

2.2. Ustawienia parametrów bloków w modelu układu.

Rys. 2 Parametry dla G1.

Rys. 3 Parametry dla G2.

Rys. 4 Parametry dla G3.

Rys. 5 Parametry dla Pade I.

Rys. 6 Parametry dla Pade II.

Wykres modelu

Po zdefiniowaniu parametrów modelu przeprowadziłam symulację układu w SIMULINKU. Poniżej znajdują się odpowiedzi skokowe przedstawione na wykresie.

Rys. 7 Wykres z odpowiedziami skokowymi układu.

Podsumowanie

Dzięki ćwiczeniu poznałam nowe funkcje w Matlabie. Zaznajomiłam się z elementami bloków Simulinka w środowisku MATLAB. Podczas budowania układu nauczylam się jak szukać, wybierać, łączyć, umieszczać poszczególne bloki w odpowiednie miejsce mojego projektu oraz mogłam zapoznać się z interakcjami pomiędzy etapami np. ustawienie opóźnienia, zmiany struktur i parametrów modelu.