"Life's like a movie, write your own ending.

Keep believing, keep pretending."

- Jim Henson

Good Evening

Content

01. Unbounded knapsack

02. Rod culting problem

03. Coin sum permutation

04. Coin sum combination

05. 0-1 Knapsack 2 1 I dea for thisy

G Given N toys with their happiness & weight Find max total happiness that can be kept in a bag with weight = W Note + toys can't be divided Note - Infinite supply of toys

$$N=3$$
 $h() \rightarrow \{2,3,5\}$
 $W=8$ $wl() \rightarrow \{3,4,7\}$

db() -> size = W+1

0	1	1	3	٧	 9

dp(i) = max happinness we can generate with bag copacity as P.

of for all i, dp(i)=0

for (j=0; j<N; j++)?

"if (i > wt(j))?

| dp(i) = max (dp(i), h(j)+ dp(i-wt(j));

3

return dp[w];

TC:0(W*N)

Sc: 0 (w)

$$h() \rightarrow \{2 \ 3 \ 5\}$$

$$wl[] \rightarrow \{3 \ 4 \ 7\}$$

$$h(0) + dp(s-3) \quad h(1) + 2 + 0$$

$$\frac{2+0}{2} \quad 3+0$$

$$= 3$$

Q Given a rod of length N & an array of length N.

A(i) -> price of i length rod find the maximum value we can obtain by selling the rod

Note - we can sell the rod in pieces.

5

Limited cap = length of given rod weight of item = diff len of rod volve [i] = A[i] (price)

db(i) → Max profit you can get by selling
a rod of length i

N=5

proices of rods of

 $\Delta(1) = \{0, 1, 4, 2, 5, 6\}$ i length 0 1 2 3 4 5 E len of rod

O	1	2	3	4	5
0	l	4	v)	8	9
	len	21en	1+2	2+2	

TC: O(N2)
SC: O(N)

for
$$(i=1 \text{ to } N)$$

for $(j=1 \text{ to } i)$
 $dp(i) = max(dp(i), A(j) + dp(i-j));$

Mox profit

we can make return $dp(N)$:

for len i-j

10:07pm -> 10:17pm

Coin change permutations

In how many ways, can sum be equal to N by using coins given in the array. One coin can be used multiple times Ordered selection $(2,y) \neq (y,z)$

11,49 14,13 11,1,1,13

$$Cap = 5$$
weight = $\{3, 1, 4\}$

dp(i) = No. of permutation with which i sum can be actived

0	١	(2)	3	4	5
1	1	l	2	4	6
_	ı	1-1	-3	13	
			1.1.1	31	
				1711	
				4	

* (oin sum combination

Unordered selection
$$(z,y) = (y,x)$$

Ans = 3

* Criteria -> Go with array order

- -> 311
- → | | | | | |

return dp(N);

			4		
0	1	2	3	4	S
Ţ	1	1	X 2	ઝ	23
	— f	1 1	-3	31 1111 - 4	311 11111 14

0/1 knapSack2

Given N items each with a weight 4 value, find max value which can be obtained by picking items such that total weight of all items < k

Note 1:- Every item can be picked at max I fine

Note 1:- We cannot take a part of item

Constraints

 $1 \le N \le 500$ $1 \le val(i) \le 50$ $1 \le val(i) \le 10^9$ $1 \le W \le 10^9$

wt

500 * 25000