SKAT Package

Seunggeun (Shawn) Lee
June 3, 2013

1 Overview

SKAT package has functions to 1) test an association between SNP sets and continuous/binary phenotypes and 2) compute power/sample size for future sequence association studies.

2 Testing association between SNP sets and outcome phenotypes.

2.1 Example Dataset

SKAT package provides an example dataset (SKAT.example) that has a genotype matrix (Z) of 2000 individuals and 67 SNPs, a vector of continuous phenotypes (y.c), a vector of binary phenotypes (y.b) and a covariates matrix (X).

```
> library(SKAT)
> data(SKAT.example)
> names(SKAT.example)

[1] "Z" "X" "y.c" "y.b"
> attach(SKAT.example)
```

To test an association, you first need to run SKAT_Null_Model function to get parameters and residuals from the null model of no association, and then to run SKAT to compute a p-value.

```
> # continuous trait
> obj<-SKAT_Null_Model(y.c ~ X, out_type="C")
> SKAT(Z, obj)$p.value
[1] 0.002877041
> # dichotomous trait
> obj<-SKAT_Null_Model(y.b ~ X, out_type="D")
> SKAT(Z, obj)$p.value
```

```
[1] 0.1401991
```

When the trait is binary and the sample size is small, SKAT can produce conservative results. We recently developed a small sample adjustment method that adjusts the asymptotic null distribution by estimating small sample moments. By default, SKAT (>= ver 0.7) will conduct a small sample adjustment when the sample size < 2000. In the following code, we only use 200 samples to run SKAT.

```
> IDX<-c(1:100,1001:1100)
> # With-adjustment
> obj.s<-SKAT_Null_Model(y.b[IDX] ~ X[IDX,],out_type="D")
Sample size = 200, which is < 2000. The small sample adjustment is applied!
> SKAT(Z[IDX,], obj.s, kernel = "linear.weighted")$p.value
[1] 0.1329388
>
```

If you don't want to use the adjustment, please set Adjustment=FALSE when you run the SKAT_Null_Model function.

```
> # Without-adjustment
> obj.s<-SKAT_Null_Model(y.b[IDX] ~ X[IDX,],out_type="D", Adjustment=FALSE)
> SKAT(Z[IDX,], obj.s, kernel = "linear.weighted")$p.value
[1] 0.147093
```

2.2 Assign weights for each SNP

It is generally assumed that rarer variants have larger effect sizes. To incorporate it, the linear weighted kernel is formulated as ZWWZ', where Z is a genotype matrix, and $W = diag\{w_1, \ldots, w_m\}$ is a weight matrix. In the previous examples, we have used the default beta(1,25) weight, $w_i = dbeta(p_i, 1, 25)$, where dbeta is the beta density function, and p_i is a minor allele frequincy (MAF) of the i^{th} SNP. The beta weight with different parameter can be used by changing the weights beta parameter. For example, if you want to use Madsen and Browning weight, use weight.beta=c(0.5,0.5).

```
> SKAT(Z, obj, kernel = "linear.weighted", weights.beta=c(0.5,0.5))$p.value [1] 0.4931639
```

If you want to use different types of weights, you should make your own weight vector and use it as weights parameter. For the logistic weight, we provide a function that generates it.

```
> # Shape of the logistic weight
>
> MAF<-1:1000/1000
> W<-Get_Logistic_Weights_MAF(MAF, par1=0.07, par2=150)
> par(mfrow=c(1,2))
> plot(MAF,W,xlab="MAF",ylab="Weights",type="l")
> plot(MAF[1:100],W[1:100],xlab="MAF",ylab="Weights",type="l")
> par(mfrow=c(1,2))
> # Use logistic weight
> weights<-Get_Logistic_Weights(Z, par1=0.07, par2=150)
> SKAT(Z, obj, kernel = "linear.weighted", weights=weights)$p.value
[1] 0.3293643
```

[1] 0.3293643

2.3 Combined Test of collapsing and SKAT

The test statistic of the combined test is

$$Q_{\rho} = (1 - \rho)Q_S + \rho Q_B,$$

where Q_S is a test statistic of SKAT, and Q_B is a score test statistic of weighted burden test. Thus, $\rho = 0$ results in the original weighted linear kernel SKAT, and $\rho = 1$ results in the weighted burden test. You can specify ρ value using the r.corr parameter (default: , r.corr=0).

```
> # Shape of the logistic weight
>
> #rho=0
> SKAT(Z, obj, r.corr=0)$p.value
[1] 0.1401991
> #rho=0.9
> SKAT(Z, obj, r.corr=0.9)$p.value
[1] 0.06031026
```

If method="optimal.adj", ρ is selected from a grid of eight points $\rho = (0,0.1^2,0.2^2,0.3^2,0.4^2,0.5^2,0.5,1)$ to maximize the power. If you want to use the original implementation of SKAT-O, use method="optimal". We recommend to use "optimal.adj", since it has a better type I error control in the tail area.

```
> #Optimal Test
> SKAT(Z, obj, method="optimal.adj")$p.value
[1] 0.1013505
```

2.4 Combined test of rare and common variants

If you want to test the combined effects of common and rare variants, you can use SKAT_CommonRare function.

```
> # Combined sum test (SKAT-C and Burden-C)
>
> SKAT_CommonRare(Z, obj)$p.value

[1] 0.2238025
> SKAT_CommonRare(Z, obj, r.corr.rare=1, r.corr.common=1)$p.value

[1] 0.1546374
> # Adaptive test (SKAT-A and Burden-A)
> SKAT_CommonRare(Z, obj, method="A")$p.value

[1] 0.4372293
> SKAT_CommonRare(Z, obj, r.corr.rare=1, r.corr.common=1, method="A")$p.value

[1] 0.1532784
```

The detailed description of each method can be found in the following reference.

Ionita-Laza, I.*, Lee, S.*, Makarov, V., Buxbaum, J. Lin, X. (2013). Sequence kernel association tests for the combined effect of rare and common variants. *American Journal of Human Genetics*, in press.

* contributed equally.

2.5 Imputing missing genotypes.

If there are missing genotypes, SKAT automatically imputes them based on Hardy-Weinberg equilibrium. You can choose either "random" or "fixed" imputation (default="fixed"). The "random" imputation generates binomial $(2,p_i)$ random numbers to impute missing values, where p_i is the MAF of the i^{th} SNP calculated from non-missing genotypes, and the "fixed" imputation uses the mean genotype value, $2p_i$, to impute missing values.

```
> # Assign missing
> Z1<-Z
> Z1[1,1:3]<-NA
> # random imputation
> SKAT(Z1,obj,impute.method = "random")$p.value
```

```
[1] 0.1401991
> # fixed imputation
> SKAT(Z1,obj,impute.method = "fixed")$p.value
[1] 0.1401982
```

2.6 Resampling

SKAT package provides functions to conduct resampling methods to compute resampling p-values and to control family wise error rate. Two different resampling methods are implemented. "bootstrap" conducts the parametric bootstrap to resample residuals from H_0 with considering covariates. When there is no covariate, "bootstrap" is equivalent to the permutation method. "perturbation" perturbs the residuals by multiplying mean zero and variance one normal random variables. The default method is "bootstrap". From ver 0.7, we do not provide the "perturbation" method.

When there are many genes/SNP sets to test, resampling methods can be used to control family-wise error rate. You can find an example in the next section.

2.7 Plink Binary format files

SKAT package can read plink binary format files for genome-wide data analysis. To use plink files, plink bed, bim and fam files, and your own setid file that contains information of SNP sets are needed. Example files can be found on the SKAT webpage.

```
> # To run this code, first download and unzip example files
Generate SSD file
> #
> # Create the MW File
> File.Bed<-"./Example1.bed"
> File.Bim<-"./Example1.bim"</pre>
> File.Fam<-"./Example1.fam"
> File.SetID<-"./Example1.SetID"
> File.SSD<-"./Example1.SSD"
> File.Info<-"./Example1.SSD.info"
> # To use binary ped files, you have to generate SSD file first.
> # If you already have a SSD file, you do not need to call this function.
> Generate_SSD_SetID(File.Bed, File.Bim, File.Fam, File.SetID, File.SSD, File.Info)
Check duplicated SNPs in each SNP set
No duplicate
1000 Samples, 10 Sets, 984 Total SNPs
[1] "SSD and Info files are created!"
  Now you can open SSD and Info file and run SKAT. After finishing using it,
you must call close function to clse SSD file.
> FAM<-Read_Plink_FAM(File.Fam, Is.binary=FALSE)
> y<-FAM$Phenotype
> # To use a SSD file, please open it first. After finishing using it, you must close it.
> SSD.INFO<-Open_SSD(File.SSD, File.Info)
1000 Samples, 10 Sets, 984 Total SNPs
Open the SSD file
> # Number of samples
> SSD.INFO$nSample
[1] 1000
> # Number of Sets
> SSD.INFO$nSets
[1] 10
> obj<-SKAT_Null_Model(y ~ 1, out_type="C")</pre>
> out<-SKAT.SSD.All(SSD.INFO, obj)
> out
```

\$results

```
SetID
             P.value N.Marker.All N.Marker.Test
1 GENE_01 0.77747880
                              94
2 GENE_02 0.06245208
                                            84
                              84
3 GENE_03 0.38416582
                             108
                                           108
4 GENE_04 0.46179268
                             101
                                           101
5 GENE_05 0.18548863
                             103
                                           103
6 GENE_06 0.93255760
                              94
                                           94
7 GENE_07 0.18897220
                             104
                                           104
8 GENE_08 0.73081683
                             96
                                           96
9 GENE_09 0.67366458
                             100
                                           100
10 GENE_10 0.40310682
                             100
                                           100
```

\$P.value.Resampling
NULL

attr(,"class")
[1] "SKAT_SSD_ALL"

If you have a plink covariate file, you can use Read_Plink_FAM_Cov file to read both FAM and covariate files.

- > File.Cov<-"./Example1.Cov"</pre>
- > FAM_Cov<-Read_Plink_FAM_Cov(File.Fam, File.Cov, Is.binary=FALSE)
- > # First 5 rows
- > FAM_Cov[1:5,]

	FID	IID	PID	MID	Sex	Phenotype	X1	Х2
1	FID454	1	0	0	1	0.679793	1.0297614	1
2	FID977	1	0	0	1	0.836566	0.1846235	1
3	FID462	1	0	0	1	-0.408388	-0.6141158	1
4	FID958	1	0	0	1	-0.522305	-2.0226759	0
5	FID668	1	0	0	1	-0.328300	-0.8213776	0

- > # Run with covariates
- $> X1 = FAM_Cov$X1$
- $> X2 = FAM_Cov$X2$
- > y<-FAM_Cov\$Phenotype
- > obj<-SKAT_Null_Model(y ~ X1 + X2, out_type="C")
- > out<-SKAT.SSD.All(SSD.INFO, obj)
- > out

\$results

	${\tt SetID}$	P.value	N.Marker.All	N.Marker.Test
1	GENE_01	0.77771227	94	94
2	GENE_02	0.06157071	84	84
3	GENE_03	0.39818504	108	108

```
GENE_04 0.46548442
                               101
                                              101
 GENE_05 0.18981516
                               103
                                              103
6 GENE_06 0.94073952
                                94
                                              94
7 GENE_07 0.18779019
                               104
                                             104
8 GENE_08 0.74559501
                                96
                                              96
9 GENE_09 0.66573796
                               100
                                             100
10 GENE_10 0.40204308
                               100
                                             100
```

\$P.value.Resampling
NULL

```
attr(,"class")
[1] "SKAT_SSD_ALL"
```

If you have more than one gene/SNP set to test an association, you should adjust multiple testing. It can be done either by conducting bonferroni correction or by estimating false discovery rate. However, if gene/SNP sets are correlated, these approaches would produce conservative results. Alternatively, you can directly control family wise error rate (FWER) using the resampling method. Example code is given in following.

```
> obj<-SKAT_Null_Model(y ~ 1, out_type="C", n.Resampling=1000, type.Resampling="bootstrap")
> out<-SKAT.SSD.All(SSD.INFO, obj)
> # No gene is significant with controling FWER = 0.05
> Resampling_FWER(out,FWER=0.05)
$result
NULL
$n
[1] 0
$ID
NULL
> # 1 gene is significant with controling FWER = 0.5
> Resampling_FWER(out,FWER=0.5)
$result
             P.value N.Marker.All N.Marker.Test
2 GENE_02 0.06245208
                               84
$n
[1] 1
$ID
[1] 2
```

If you want to test a single gene/SNP set, not all genes/SNP sets, you can use either "SKAT.SSD.OneSet" or "SKAT.SSD.OneSet_SetIndex". Or you can get a genotype matrix using "Get_Genotypes_SSD" function and then run SKAT. If you want to use different types of weights (ex. logistic weights), you should use this approach.

```
> obj<-SKAT_Null_Model(y ~ 1, out_type="C")
> # test the second gene
> id<-2
> SetID<-SSD.INFO$SetInfo$SetID[id]
> SKAT.SSD.OneSet(SSD.INFO,SetID, obj)$p.value
[1] 0.06245208
> SKAT.SSD.OneSet_SetIndex(SSD.INFO,id, obj)$p.value
[1] 0.06245208
> # test the second gene with the logistic weight.
> Z<-Get_Genotypes_SSD(SSD.INFO, id)
> weights = Get_Logistic_Weights(Z, par1=0.07, par2=150)
> SKAT(Z, obj, weights=weights)$p.value
[1] 0.7227001
   SKAT_CommonRare function also can be used with SSD files.
> # test all genes in SSD file
> obj<-SKAT_Null_Model(y ~ X1 + X2, out_type="C")</pre>
> out<-SKAT_CommonRare.SSD.All(SSD.INFO, obj)
> out
$results
     SetID
              P.value N.Marker.All N.Marker.Test N.Marker.Rare N.Marker.Common
1 GENE_01 0.70833804
                                94
                                               94
                                                              0
2 GENE_02 0.01961982
                                84
                                               84
                                                              0
                                                                             84
3 GENE_03 0.53912934
                               108
                                             108
                                                              0
                                                                             108
4 GENE_04 0.34134633
                               101
                                             101
                                                              0
                                                                             101
5 GENE_05 0.20548007
                               103
                                             103
                                                              0
                                                                             103
6 GENE_06 0.92017774
                                94
                                              94
                                                              0
                                                                             94
7 GENE_07 0.24712642
                                                              0
                                                                            104
                               104
                                             104
8 GENE_08 0.66303494
                                96
                                              96
                                                              0
                                                                             96
9 GENE_09 0.66044604
                               100
                                             100
                                                              0
                                                                            100
10 GENE_10 0.30882075
                               100
                                              100
                                                              0
                                                                            100
$P.value.Resampling
```

Close the opened SSD file: /private/var/folders/zs/nf_6qpd12r1dm4v3y2y298fr0000gn/T/RtmpTPKz

3 Power/Sample Size calculation.

3.1 Dataset

SKAT package provides a haplotype dataset (SKAT.haplotypes) which contains a haplotype matrix of 10,000 haplotypes over 200kb region (Haplotype), and a dataframe with informations of each SNP. These haplotypes were simulated using a calibrated coalescent model with mimicking linkage disequilibrium structure of European ancestry. If you don't have any haplotype information, please use this dataset to compute power/sample size.

```
> data(SKAT.haplotypes)
> names(SKAT.haplotypes)
[1] "Haplotype" "SNPInfo"
> attach(SKAT.haplotypes)
```

3.2 Power/Sample Size calculation

SKAT package provides functions to compute the power/sample size for future sequence association studies. In the following example, we carried out sample size calculation using the haplotypes in SKAT.haplotypes with the following parameters.

- 1. Subregion length = 3k bp
- 2. Causal percent = 20%
- 3. Negative percent = 20%
- 4. For continuous traits, $\beta=c|log_{10}(MAF)|$ (BetaType = "Log") with $\beta=2$ at MAF = 10^{-4}

```
= 2 at MAF = 10^{-4}, and 50% of samples are cases and 50% of samples
     are controls
> set.seed(500)
> out.c<-Power_Continuous(Haplotype,SNPInfo$CHROM_POS, SubRegion.Length=5000,
+ Causal.Percent= 20, N.Sim=10, MaxBeta=2,Negative.Percent=20)
[1] "10/10"
> out.b<-Power_Logistic(Haplotype, SNPInfo$CHROM_POS, SubRegion.Length=5000,
+ Causal.Percent= 20, N.Sim=10 ,MaxOR=7, Negative.Percent=20)
[1] "10/10"
> out.c
$Power
                   0.001
          0.01
                             1e-06
500 0.5601495 0.4507543 0.2745436
1000 0.6983510 0.6372979 0.4477310
1500 0.7393476 0.6978347 0.5840998
2000 0.7741144 0.7169529 0.6649380
2500 0.8041370 0.7386689 0.6938517
3000 0.8224103 0.7660432 0.6997755
3500 0.8349515 0.7896737 0.7015918
4000 0.8484832 0.8037123 0.7049269
4500 0.8647970 0.8109526 0.7122846
5000 0.8834324 0.8165985 0.7253563
$R.sq
[1] 0.0693529
attr(,"class")
[1] "SKAT_Power"
> out.b
$Power
                             1e-06
          0.01
                   0.001
500 0.3894872 0.2757429 0.1330505
1000 0.5888308 0.4573657 0.2436726
1500 0.7021843 0.5859396 0.3485361
2000 0.7763091 0.6650800 0.4668508
2500 0.8234240 0.7280271 0.5483447
3000 0.8516985 0.7775865 0.5943673
```

5. For binary traits, $log(OR) = c |log_{10}(MAF)|$ (OR.Type = "Log") with OR

3500 0.8718116 0.8108489 0.6269605

```
4000 0.8899993 0.8317031 0.6603647
4500 0.9081573 0.8464714 0.6968862
5000 0.9262225 0.8594656 0.7324297
attr(,"class")
[1] "SKAT_Power"
> Get_RequiredSampleSize(out.c, Power=0.8)
\alpha = 1.00e-02
[1] 2431.102
\alpha = 1.00e-03
[1] 3867.782
\alpha = 1.00e-06
[1] "> 5000"
> Get_RequiredSampleSize(out.b, Power=0.8)
\alpha = 1.00e-02
[1] 2251.417
\alpha = 1.00e-03
[1] 3336.919
\alpha = 1.00e-06
[1] "> 5000"
```

In this example, we used N.Sim=10 to get results quickly. When you do the power calculation, please increase it to more than 100. When BetaType = "Log" or OR.Type = "Log", the effect size of continuous trait and the log odds ratio of binary traits are $c|log_{10}(MAF)|$, where c is determined by Max_Beta or Max_OR. For example, c=2/4=0.5 when the Max_Beta = 2. In this case, a causal variant with MAF=0.01 has $\beta=1$. For binary traits, c=log(7)/4=0.486 with MAX_OR=7. And thus, a causal variant with MAF=0.01 has log OR = 0.972.

If you consider non-zero r.corr (ρ) values to compute the power, Power_Continuous_R or Power_Logistic_R functions can be used instead. For example, r.corr=0 is SKAT and r.corr=1 is a burden test. Since they use slightly different method to compute the power, the powers from Power_Continuous_R and Power_Logistic_R can be slightly different from the powers from Power_Continuous and Power_Logistic although r.corr=0.

If you want to computer the power of SKAT-O by estimating the optimal r.corr, use r.corr=2. The estimated optimal r.corr is

$$r.corr = p_1^2 (2p_2 - 1)^2,$$

```
where p_1 is the proportion of nonzero \betas, and p_2 is the proportion of negative (or positive) \betas among the non-zero \betas.
```

```
> set.seed(500)
> out.c<-Power_Continuous_R(Haplotype,SNPInfo$CHROM_POS, SubRegion.Length=5000,
+ Causal.Percent= 20, N.Sim=10, MaxBeta=2, Negative.Percent=20, r.corr=2)
[1] "10/10"
> out.c
$Power
          0.01
                 0.001
                             1e-06
500 0.5584048 0.4465557 0.2700370
1000 0.6980094 0.6374870 0.4403217
1500 0.7367947 0.6977547 0.5830013
2000 0.7707641 0.7148115 0.6664808
2500 0.8032711 0.7341910 0.6946357
3000 0.8253110 0.7606592 0.6998229
3500 0.8407660 0.7863270 0.7011542
4000 0.8569269 0.8038311 0.7035340
4500 0.8759197 0.8137950 0.7089662
5000 0.8968032 0.8214246 0.7192218
$R.sq
[1] 0.0693529
$r.corr
[1] 0.0144
attr(,"class")
[1] "SKAT_Power"
> Get_RequiredSampleSize(out.c, Power=0.8)
\alpha = 1.00e-02
[1] 2449.686
\alpha = 1.00e-03
[1] 3890.566
\alpha = 1.00e-06
[1] "> 5000"
```