Teoria da Computação Complexidade de Tempo parte 3

Leonardo Takuno {leonardo.takuno@gmail.com}

Centro Universitário Senac

Sumário

Teorema de Cook-Levin

Problemas NP-Completos

Sumário

1 Teorema de Cook-Levin

2 Problemas NP-Completos

Nos anos de 1970 Stephen Cook e Leonid Levin descobriram, independentemente, que existem certos problemas em NP cuja complexidade está relacionada a todos os outros problemas da classe NP - estes problemas são chamados de NP-Completos.

Nós vimos anteriormente que os problemas NP-Completos estão relacionados a outros problemas NP via reduções polinomiais.

Problema da satisfabilidade (SAT)

Uma fórmula booleana é uma expressão que envolve variáveis booleanas (x, y, etc) e operações $(\land, \lor, \neg, \text{onde } \neg x = \overline{x})$.

$$\phi = (\overline{x} \wedge y) \vee (x \wedge \overline{z})$$

Uma fórmula booleana é verdadeira se alguma atribuição de variáveis (*true* ou *false*) torna o valor da fórmula igual a *true*.

Problema da satisfabilidade (SAT)

$$\phi = (\overline{x} \wedge y) \vee (x \wedge \overline{z})$$

É satisfazível pois a atribuição

$$x = false,$$

 $y = true,$
 $z = false.$

faz ϕ valor true.

Dizemos que a atribuição satisfaz ϕ .

Problema da satisfabilidade (SAT)

O **problema da satisfabilidade** é testar se uma fórmula booleana é satisfatível.

$$SAT = \{ \langle \phi \rangle | \phi \text{ \'e uma f\'ormula booleana satisfat\'ivel} \}$$

Teorema (Cook-Levin): SAT é NP-Completo

Idéia da prova:

- Primeiro mostramos que $SAT \in NP$
- Para qualquer linguagem $A \in NP$ mostramos que $A \leq_p SAT$

Teorema (Cook-Levin): SAT é NP-Completo

Prova:

- Primeiro mostramos que $SAT \in NP$
- Uma máquina de tempo polinomial não-determinístico pode adivinhar uma atribuição para uma dada fórmula ϕ e aceitar se a atribuição satisfaz ϕ

Teorema (Cook-Levin): SAT é NP-Completo

Prova (continuação):

- Precisamos mostrar que $A \leq_p SAT$ para todo $A \in NP$.
- Isto é feito por simular as computações de MTN decidindo A sobre alguma string w usando fórmulas booleanas tal que

$$w \in A \Leftrightarrow f(w) \in SAT$$

onde f converte a string w na fórmula booleana f(w).

Definição: Um **tableau** para N sobre w é uma tabela $n^k \times n^k$ cujas linhas são configurações de um ramo de computação de N sobre w.

- **3** Para toda linha i, C_i pode produzir C_{i+1} de acordo com as regras de \mathbb{N} .

- Todo tableau representa um computação de MT sobre a entrada w.
- Desde que N é não-determinístico, podem existir muitas computações.
- Consequentemente, pode haver muitos tableaus. Cada um correspondente a um ramo específico de computação.
- Um tableau de **aceitação** para N sobre w corresponde a um ramo de computação de aceitação de N sobre w.

- Defina uma redução em tempo polinomial f de A para SAT.
 Sobre a entrada w, a redução produz a fórmula φ. Segue a descrição da redução:
 - A MT N tem um conjunto ${\it Q}$ de estados e uma fita de alfabeto Γ
 - O conteúdo da célula é o conjunto $C = Q \cup \Gamma \cup \{\#\}$
 - Para cada i e j entre 1 e n^k e para cada $s \in C$, defina uma variável booleana da seguinte maneira:

$$x_{i,j,s} = \begin{cases} true & \text{se } celula[i,j] = s \\ false & \text{caso } contrário \end{cases}$$

- Vamos representar um tableau como uma fórmula ϕ .
- Para obter φ, nós tomamos a conjunção de quatro sub-fórmulas.

$$\phi = \phi_{\text{celula}} \land \phi_{\text{inicio}} \land \phi_{\text{movimento}} \land \phi_{\text{aceita}}$$

- ϕ_{celula} : cada célula do tableau contém exatamente um símbolo $s \in Q \cup \Gamma \cup \{\#\}$
- ϕ_{inicio} : a primeira linha contém um q_0 seguido por w e seguido por branco.
- ϕ_{aceita} : C_{n^k} é uma configuração de aceitação.

$$\phi = \phi_{celula} \wedge \phi_{inicio} \wedge \phi_{movimento} \wedge \phi_{aceita}$$

- Se as quatro sub-fórmulas são satisfeitas, então há um tableau válido.
- Agora, a primeira coisa que devemos garantir de modo a obter uma correspondência entre uma atribuição e um tableau é que a atribuição ligue exatamente uma variável para cada célula.

Teorema (Cook-Levin): SAT é NP-Completo

• A fórmula ϕ_{celula} garante esse requisito:

$$\phi_{celula} = \bigwedge_{1 \leq i, j \leq n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \wedge \left(\bigwedge_{\substack{s,t \in C \\ s \neq t}} \left(\overline{x_{i,j,s}} \vee \overline{x_{i,j,t}} \right) \right) \right]$$

- Na fórmula acima, o primeiro \(\significa \) "cada célula do tableau"
- O primeiro parênteses indica "contém pelo menos um símbolo"
- O segundo parênteses estipula que "não mais que uma variável está ligada para cada célula".
- Isto pode ser produzido em $O(n^{2k})$ passos.

Teorema (Cook-Levin): SAT é NP-Completo

• A fórmula ϕ_{inicio} garante que a primeira linha da tabela é a configuração inicial:

$$\phi_{inicio} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \\ x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \dots \wedge x_{1,n+2,w_n} \wedge \\ x_{1,n+3,\sqcup} \wedge \dots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#}$$

• Isto pode ser produzido em tempo polinomial.

Teorema (Cook-Levin): SAT é NP-Completo

• A fórmula ϕ_{aceita} garante que uma configuração de aceitação ocorre no tableau.

$$\phi_{\text{aceita}} = \bigvee_{1 \le i, j \le n^k} x_{i,j,q_{\text{aceita}}}.$$

• Isto pode ser produzido em tempo polinomial

- A fórmula $\phi_{movimento}$ assegura que cada linha da tabela corresponde a uma configuração que segue legalmente da configuração da linha precedente conforme as regras de N.
- Uma janela 2 × 3 é legal se ela não viola as ações especificadas pela função de transição de N.

Teorema (Cook-Levin): SAT é NP-Completo

• Exemplo : $\delta(q_1, a) = \{q_1, b, D\}$ e $\delta(q_1, b) = \{(q_2, c, E), (q_2, a, D)\}$

(a)
$$\begin{array}{c|cccc} a & q_1 & b \\ \hline q_2 & a & c \\ \end{array}$$

(c)
$$\begin{array}{c|cccc} a & a & q_1 \\ \hline a & a & b \end{array}$$

(e)
$$\begin{array}{c|cccc} a & b & a \\ \hline a & b & q_2 \end{array}$$

Janelas legais

Teorema (Cook-Levin): SAT é NP-Completo

• As janelas mostradas abaixo não são legais para a máquina N.

Afirmação: Se a linha superior da tabela for a configuração inicial e toda janela na tabela for legal, cada linha da tabela é uma configuração que segue legalmente da precedente.

Prova:

- Considere as configurações C_i e C_{i+1} , chamadas de superior e inferior, respectivamente.
- Na configuração superior, toda célula que não é adjacente a um símbolo de estado e que não contém um símbolo de fronteira #, é a célula central superior em uma janela cuja linha superior não contém nenhum estado.
- Por conseguinte, esse símbolo deve aparecer imutável na posição central inferior da janela. Logo, ele aparece na mesma posição na configuração inferior.

Afirmação: Se a linha superior da tabela for a configuração inicial e toda janela na tabela for legal, cada linha da tabela é uma configuração que segue legalmente da precedente.

Prova (continuação):

- A janela contendo o símbolo de estado na célula central superior garante que as três posições correspondentes sejam atualizadas consistentemente com a função de transição.
- Consequentemente, se a configuração superior for uma configuração legal, o mesmo acontece com a configuração inferior, e a inferior segue a superior conforme as regras de N.

- · · · voltando à construção de $\phi_{movimento}$
 - φ_{movimento} estipula que todas as janelas no tableau são legais.
 Cada janela contém seis células, que podem ser inicializada de um número fixo de maneiras para originar uma janela legal.

$$\phi_{movimento} = \bigwedge_{1 < i \le n^k, 1 < j < n^k} (a janela (i,j) é legal)$$

Teorema (Cook-Levin): SAT é NP-Completo

Nessa fórmula, substituímos o texto "a janela (i,j) é legal" pela fórmula a seguir :
 Escrevemos o conteúdo de seis células de uma janela como a₁,..., a₆

$$\bigvee_{a_1,\ldots,a_6} (x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j+1,a_3} \wedge x_{i+1,j-1,a_4} \wedge x_{i+1,j,a_5} \wedge x_{i+1,j+1,a_6})$$

• Requer tempo $O(n^{2k})$.

- Para resumir:
 - Se $w \in A \Rightarrow N$ aceita $w \Rightarrow \exists$ um tableau válido $\Rightarrow \phi(w)$ é satisfazível
 - Se $w \notin A \Rightarrow N$ rejeita $w \Rightarrow \beta$ um tableau válido $\Rightarrow \phi(w)$ não é satisfazível

Teorema (Cook-Levin): SAT é NP-Completo

 Para obter φ, nós tomamos a conjunção de quatro sub-fórmulas.

$$\phi = \phi_{\text{celula}} \wedge \phi_{\text{inicio}} \wedge \phi_{\text{movimento}} \wedge \phi_{\text{aceita}}$$

- Requer $O(n^{2k})$ de tempo e espaço: complexidade polinomial.
- Conclusões:
 - O mapeamento de w para ϕ é uma redução de tempo polinomial do problema $A \in NP$ para SAT:

$$A \leq_p SAT$$
 para todo $A \in NP$

Como $SAT \in NP$, então SAT é NP-Completa. \square

Sumário

1 Teorema de Cook-Levin

Problemas NP-Completos

- Literal: variável booleana (x) ou sua negação (\overline{x})
- **Cláusula:** Um conjunto de literais conectados por OR, ex: $(x \lor \overline{y} \lor z)$
- Uma fórmula φ está na forma normal conjuntiva (FNC), se houver cláusulas conectados por AND.
 Ex:

$$\phi(x, y, z) = (x \vee \overline{y}) \wedge (z) \wedge (\overline{z} \vee y \vee \overline{y})$$

Uma 3fnc-fórmula tem somente cláusulas com 3 literais:

$$3SAT = \{\langle \phi \rangle | \phi \text{ é uma 3fnc-fórmula satisfazível} \}$$

Teorema:

 $3SAT \in NP$ -Completo

Prova:

- Mostramos isto ao construir uma redução de SAT para 3SAT
- Primeiro observe que $\phi \in SAT$ pode ser reescrito em FNC $\phi = c_1 \wedge c_2 \wedge \cdots \wedge c_m$ onde cada cláusula c_i é uma disjunção de booleanos digamos $a_1, \cdots a_n$.
- Agora construimos uma redução f:SAT o 3SAT tal que $f(\phi) = \phi_{3SAT}$

- Substituiremos cada c_i em ϕ por uma coleção de cláusulas com 3 literais. Mais especificamente seja $c_i = a_1 \lor a_2 \lor \cdots \lor a_k$, onde cada a_i é uma variável booleana, então
 - k = 1: Aqui c_i = a₁. Use variáveis adicionais z₁ e z₂ para construir 3cfn
 (a₁ ∨ z₁ ∨ z₂) ∧ (a₁ ∨ \overline{z₁} ∨ z₂) ∧ (a₁ ∨ \overline{z₂} ∨ \overline{z₂}) ∧ (a₁ ∨ \overline{z₁} ∨ \overline{z₂})
 - k=2: Aqui $c_i=(a_1\vee a_2)$. Use variáveis adicionais z_1 e z_2 para construir 3cfn $(a_1\vee a_2\vee z_1)\wedge (a_1\vee a_2\vee \overline{z_1})$
 - k = 3: Aqui $c_i = (a_1 \lor a_2 \lor a_3)$. Já está em 3cfn, não há nada a fazer.

• k > 3: Aqui $c_i = (a_1 \lor a_2 \lor \cdots \lor a_k)$, use variáveis adicionais $z_1, z_2, \cdots z_{k-3}$ para construir as cláusulas em 3cnf

$$(a_1 \lor a_2 \lor z_1) \land (\overline{z_1} \lor a_3 \lor z_2) \land (\overline{z_2} \lor a_4 \lor z_3) \land (\overline{z_3} \lor a_5 \lor z_4) \land \cdots \land (\overline{z_{k-3}} \lor a_{k-1} \lor a_k)$$

- Mostramos que f é uma redução de tempo polinomial.
- Primeiro observe que o número máximo de variáveis que podem ocorrer em uma clásula ϕ é n.
- Também observe que há m clásulas.
- Portanto, o número máximo de conversões é limitado a O(mn) que é claramente polinomial.
- Concluímos que f é uma função de tempo polinomial.

Agora temos que mostrar que

$$\phi \in SAT \Leftrightarrow f(\phi) \in 3SAT$$

Para o caso que $k \le 3$:

- "se": Note que quando ϕ é satisfeito então $f(\phi)$ também é.
- "somente se": Para o reverso note que se $f(\phi)$ é satisfeito, nós simplesmente restringimos as variáveis que aparecem em ϕ para obter uma atribuição que satisfaz ϕ .

3SAT

"Se ...": Para o caso que k > 3, dado uma atribuição em alguma cláusula c_i em ϕ :

- (a) Se a_1 ou a_2 é true, atribua todas as variáveis adicionais para false. Neste caso o primeiro literal em cada cláusula é true.
- (b) Se a_{k-1} ou a_k é true, atribua todas as variáveis adicionais para true. Neste caso o terceiro literal em cada cláusula é true.
- (c) Caso contrário, se a_l é true, atribua z_j para true quando $1 \le j \le j-2$ e o valor false quando $l-1 \le j \le k-3$. Neste caso o terceiro literal em cada cláusula precede àquela que inclui a_l é true, enquanto que o primeiro literal em cada cláusula sucessora àquela que inclui a_l é true.

Assim, a satisfabilidade de ϕ implica que a satisfabilidade de $f(\phi)$.

3SAT

"Somente se ...": Para o reverso, simplesmente restrinja a atribuição que satisfaz $f(\phi)$ para variáveis que ocorrem em ϕ . \square

Teorema:

 $CLIQUE \in NP$ -Completo

Prova: Provamos isto por uma redução polinomial f de 3SAT para CLIQUE, tal que

$$\phi_k \in 3SAT \Leftrightarrow f(\phi_k) \in CLIQUE$$
,

onde ϕ_k é uma 3*cnf*-fórmula com k cláusulas e $f(\phi_k) = \langle G, k \rangle$.

Dado

$$\phi_k = (a_1 \vee b_1 \vee c_1) \wedge (a_2 \vee b_2 \vee c_2) \wedge \cdots \wedge (a_k \vee b_k \vee c_k)$$

A redução $f(\phi_k)$ gera a cadeia $\langle G, k \rangle$ onde G é um grafo não-direcionado. Os nós são organizados em triplas que representam os literais das cláusulas.

Construímos arestas conectando todos os nós exceto para

- nós que estão na mesma tripla, e
- nós que tem rótulos contraditórios, i.e., $x \in \overline{x}$

Exemplo de construção para

$$\phi_3 = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee x_2)$$

produz o grafo

• É fácil ver que esta é uma construção de tempo polinomial (seja n o número de nós então o algoritmo executa em $O(n^2)$).

Agora, temos que verificar a condição de redução

$$\phi_k \in 3SAT \Leftrightarrow f(\phi_k) \in CLIQUE$$

"Se ...": Suponha que ϕ_k tem uma atribuição que a satisfaz, o que significa que cada cláusula tem um literal que é true. Em cada tripla de G escolhemos um nó que corresponde a um literal true. O número de nós selecionados é k, uma em cada tripla. Todos os nós selecionados são conectados por uma aresta. Isto mostra que uma atribuição que satisfaz ϕ_k produz um k-clique

$$\phi_k \in 3SAT \Leftrightarrow f(\phi_k) \in CLIQUE$$

"Somente se ...": Para o reverso, assuma que G tem um k-clique. Por construção, dois nós não podem estar conectados na mesma tripla. Portanto, cada k tripla contém exatamente um dos nós do k-clique. Cada nó no k-clique denota uma atribuição para true para um literal em ϕ_k . Isto é sempre verdadeiro pois literais opostos não estão conectados. \square

Cobertura por vértice

Problema: Dado um grafo G e um k inteiro, G possui uma cobertura por vértices com k vértices?

Cobertura com k vértices significa que toda aresta tem uma ponta em um dos k vértices.

Cobertura por vértice

 $COB - VERT = \{\langle G, k \rangle | G \text{ \'e um grafo n\~ao-direcionado que tem cobertura por v\'ertices de tamanho } k \}$

Teorema:

$$COB - VERT \in NP$$
-Completo

Teorema:

$$COB - VERT \in NP$$
-Completo

Prova: Descreveremos uma redução polinomial f que recebe uma fórmula ϕ com m variáveis e I cláusulas e exatamente 3 literais por cláusula.

 ϕ é satisfatível \Leftrightarrow G possui uma cobertura com k vértices.

Teorema:

 $COB - VERT \in \mathsf{NP}\text{-}\mathsf{Completo}$

...continuação

- Para cada variável x em ϕ temos em G um vértice x e outro \overline{x} ligados por uma aresta. (engrenagens variáveis)
- Para cada cláusula $(l_1 \lor l_2 \lor l_3)$ temos em G vértices correspondentes a cada literal da cláusula ligados entre si. (engrenagens cláusulas)
- Há ainda uma aresta entre cada vértice correspondente a um literal l_i e o vértice correspondente a uma variável que tem o mesmo rótulo do literal.

Desta forma G tem 2m + 3l vértices

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

 ϕ é satisfatível \Rightarrow existe cobertura com m+2l vértices.

Prova:

- Escolha m vértices das variáveis ou negação das variáveis que correspondem a literais verdadeiros e coloque na cobertura (candidata).
- Em cada cláusula selecione um literal verdadeiro e coloque os outros dois vértices na cobertura (candidata)
- Verifique que a candidata é uma cobertura.

 ϕ é satisfatível \Rightarrow existe cobertura com m+2l vértices. Prova:

- A cobertura por vértices precisa conter pelo menos um vértice da engrenagem de variáveis.
- A cobertura por vértices precisa conter pelo menos dois vértices da engrenagem de cláusulas.
- Tome a atribuição de forma a tornar verdadeira os literais correspondentes a variáveis da cobertura que estão na engrenagens das variáveis.

Teorema:

 $CAMHAM = \{\langle G, s, t \rangle | G \text{ \'e um grafo direcionado com um caminho hamiltoniano de s para t } \} \in NP$ -Completo

Um caminho Hamiltoniano é um caminho no grafo que passa em cada nó exatamente uma vez.

Teorema:

 $CAMHAM = \{\langle G, s, t \rangle | G \text{ \'e um grafo direcionado com um caminho hamiltoniano de s para t } \} \in NP$ -Completo

Idéia da prova: Sabemos que $CAMHAM \in NP$. Temos que mostrar que $A \leq_p CAMHAM$, para todo $A \in NP$. Mostramos isso por uma redução de tempo polinomial f de 3SAT para CAMHAM

$$\phi \in 3SAT$$
 sse $f(\phi) \in CAMHAM$

onde
$$f(\phi) = \langle G, s, t \rangle$$

Teorema:

 $CAMHAM = \{\langle G, s, t \rangle | G \text{ \'e um grafo direcionado com um caminho hamiltoniano de s para t } \} \in NP$ -Completo

Prova: Assumimos que temos uma fórmula 3 $SAT \phi$ que contenha k cláusulas.

$$\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land (a_1 \lor b_1 \lor c_1)$$

Precisamos construir (em tempo polinomial) um grafo G tal que um caminho Hamiltoniano existe sse ϕ é satisfativel.

Para cada variável produzimos um diamante como este.

Representamos cada cláusula de ϕ como um único nó, e dispomos ao lado do diamante.

Agora, mostramos como conectar os diamantes das variáveis aos nós representando as cláusulas.

- Cada estrutura em diamante contém uma linha horizontal de nós conectados por arestas em ambas as direções.
- A linha horizontal tem 3k + 1 nós além de dois nós nas extremidades pertencente ao diamante.
- Esses nós são agrupados em pares adjacentes, um para cada cláusula, com nós separadores extras em seguida aos pares.

Os nós horizontais em uma estrutura no formato diamante

Se a variável x_i aparece na cláusula c_j , adicionamos duas arestas seguintes do j-ésimo par no i-ésimo diamante ao j-ésimo nó da cláusula.

Se a variável $\overline{x_i}$ aparece na cláusula c_j , adicionamos duas arestas no i-ésimo diamante ao j-ésimo nó da cláusula, como abaixo

Dado uma atribuição verdadeira para ϕ , existe um caminho através do Grafo.

- Para exibir um caminho hamiltoniano de s para t, primeiro ignoramos os nós cláusulas.
- O caminho começa em s e passa por cada diamante e termina em t.

- Se x_i for atribuída VERDADEIRO, o caminho zigue-zagueia pelo diamante.
- Se x_i for atribuída FALSO, o caminho zague-zigueia pelo diamante.

- Para alcançar os nós cláusulas, incluimos os desvios nos nós horizontais dos diamantes.
- Em cada cláusula selecionamos um literal atribuído VERDADEIRO pela atribuição satisfeitora.
- Se selecionar x_i na cláusula c_j , podemos desviar no j-ésimo par no i-ésimo diamante. Como x_i é VERDADEIRO, o caminho é um zigue-zague da esquerda para a direita pelo diamante correspondente a x_i
- Logo, as arestas de c_j estão na ordem correta para permitir um desvio e um retorno.

- Similarmente, se selecionar $\overline{x_i}$ na cláusula c_j , podemos desviar no j-ésimo par no i-ésimo diamante. Como x_i é FALSO, o caminho é um zague-zigue da direita para a esquerda pelo diamante correspondente a x_i
- Logo, as arestas de c_j estão novamente na ordem correta para permitir um desvio e um retorno.

Para a direção reversa, G tem um caminho hamiltoniano de s para t, exibimos uma atribuição satisfeitora para ϕ .

- Se o caminho hamiltoniano é normal ele passa pelos diamantes da ordem superior para o inferior.
- Se o caminho zigue-zagueia pelo diamante, atribuimos à variável correspondente VERDADEIRO
- Se o caminho zague-zigueia pelo diamante, atribuimos à variável correspondente FALSO
- Em razão do fato de que cada cláusula aparece no caminho, observando como o desvio para ele é tomado, determinamos qual literal é VERDADEIRO

Um caminho hamiltoniano tem que ser normal. Normalidade pode falhar se o caminho entra numa cláusula de um diamante mas retorna em outro.

Se isso ocorre, ou a_2 ou a_3 é um separador.

Se a2 é um separador

• As únicas arestas entrando em a_2 seriam a_1 e a_2

Se a₃ é um separador

- ullet a_1 e a_2 estariam no mesmo par, e portanto
- As únicas arestas entrando em a_2 seriam a_1 e a_2 e a_3 e a_4

O caminho não pode entrar em a_2 a partir c ou a_1 porque o caminho vai para outros lugares a partir desses nós.

O caminho não pode entrar em a_2 a partir a_3 , pois o a_3 é o único nó disponível para o qual a_2 aponta, portanto a_2 tem que deixar a_2 via a_3 .

Logo, o caminho tem que ser normal.

Essa redução opera em tempo polinomial e a prova está completa.

Caminho Hamiltoniano para grafo não-direcionado

Teorema:

 $CAMHAMN = \{\langle G, s, t \rangle | G \text{ \'e um grafo n\~ao-direcionado com um caminho hamiltoniano de s para t } \in NP-Completo$

Idéia da prova:

Construir uma redução CAMHAM ≤_p CAMHAMN tal que

$$G \in CAMHAM \Leftrightarrow f(G) = G' \in CAMHAMN$$

Todos os nós, exceto s e t no grafo direcionado G, mapeiam para 3 nós no grafo não direcionado G'.

Caminho Hamiltoniano para grafo não-direcionado

Teorema:

 $CAMHAMN = \{\langle G, s, t \rangle | G \text{ \'e um grafo n\~ao-direcionado com um caminho hamiltoniano de s para t } \in NP-Completo$

Prova: Para todos os nós de $G \in CAMHAM$, substitua por nós u^{entra} , u^{meio} , u^{sai} em G', para s e t em G substitua por s^{sai} , t^{entra} em G'.

Introduza arestas que conectam u^{entra} com u^{meio} e este com u^{sai} . Acrescente uma conexão entre u^{sai} e v^{entra} se existe uma aresta de u para v.

Caminho Hamiltoniano para grafo não-direcionado

Para mostrar que a construção funciona:

(⇒) Observamos que um caminho hamiltoninano P em G

$$s, u_1, u_2, \cdots, u_k, t,$$

tem um caminho hamiltoniano P' em G',

$$s^{\mathit{sai}}, u_1^{\mathit{entra}}, u_1^{\mathit{meio}}, u_1^{\mathit{sai}}, u_2^{\mathit{entra}}, u_2^{\mathit{meio}}, u_2^{\mathit{sai}}, \cdots, t,$$

(\Leftarrow) Qualquer caminho hamiltoniano em G' de s^{sai} para t^{entra} deve ir de uma tripla de nós para uma tripla de nós, exceto pelo início e o fim, como faz o caminho P' que acabamos de descrever.

Teorema:

$$SOMA-SUBC=\{\langle S,t\rangle|S=\{x_1,\cdots,x_m\}\ \text{e para algum}\ \{y_1,\cdots,y_n\}\subseteq S,\sum y_i=t\}\in NP ext{-}Completo$$

Idéia da prova: Reduzimos uma instância de 3SAT para uma instância de SOMA - SUBC com um conjunto S e um valor t, para que

- se ϕ tem uma atribuição que a satisfaz,
- então S tem um subconjunto T que soma um valor t.

Nós já sabemos que SOMA – SUBC está em NP.

Teorema:

$$SOMA-SUBC=\{\langle S,t\rangle|S=\{x_1,\cdots,x_m\}\ \text{e para algum}\ \{y_1,\cdots,y_n\}\subseteq S, \sum y_i=t\}\in NP ext{-}Completo$$

Prova:

- Seja ϕ uma fórmula booleana com I variáveis x_1, \dots, x_I , e k cláusulas c_1, \dots, c_k
- A redução converte ϕ para uma instância de SOMA SUBC $\langle S, t \rangle$, na qual os elementos de S e o número de linhas t definem uma tabela (mostraremos posteriormente), expressos na notação decimal ordinária.

A redução $3SAT \leq_p SOMA - SUBC$, constrói uma tabela da seguinte maneira:

- Como ϕ tem I variáveis x_i , $1 \le i \le I$, e k cláusulas c_j , $1 \le j \le k$
- Para cada variável x_i , construa números y_i , z_i de l + k dígitos.
 - O i-ésimo dígito de y_i e z_i é igual a 1
 - Para a parte direita contém um dígito para cada cláusula:
 - O *j*-ésimo dígito de y_i é 1 se a cláusula c_i contém o literal x_i .
 - O j-ésimo dígito de z_i é 1 se a cláusula c_i contém o literal $\overline{x_i}$.
- Os dígitos não especificados como sendo 1 são 0.

- Adicionalmente, S contém um par de números, g_j, h_j , para cada cláusula c_i , $1 \le j \le k$.
 - Esses dois números são iguais e consistem de 1, os demais k-j dígitos valem 0.
- Finalmente, o número alvo t, na linha inferior da tabela, consiste de l números 1s, onde l é o número de variáveis, seguidos por k números 3s, k é o número de cláusulas.

Para

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee \cdots) \wedge \cdots \wedge (\overline{x_3} \vee \cdots \vee \cdots)$$

	1	2	3	4		l	c_1	c_2		c_k
y_1	1	0	0	0		0	1	0		0
z_1	1	0	0	0		0	0	0		0
y_2		1	0	0		0	0	1		0
z_2		1	0	0		0	1	0		0
y_3			1	0		0	1	1		0
z_3			1	0		0	0	0		1
~3			•				ľ			•
:					٠.	:	:		:	:
:						:	:		:	- :
y_l						1	0	0		0
						1	0	0		0
z_l						1				
g_1							1	0		0
h_1							1	0		0
g_2								1		0
h_2								1		0
:									٠.	:
									٠.	
g_k										1
h_k										1
	÷	_	_	_						
t	1	1	1	1		1	3	3		3

- Temos que mostrar a redução funciona demonstrando que ϕ é satisfatível sse existe um $T\subseteq S$ que soma t. (\Rightarrow)
 - Selecionar y_i se x_i é VERDADEIRO
 - Selecionar z_i se x_i é FALSO
 - Selecionar uma quantidade suficente de número g e h para trazer cada um dos k últimos dígitos para 3, portanto é atingido o alvo.

Exemplo: Todas as variáveis são VERDADEIRAS.

$$\phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor x_3)$$

	1	2	3	1	2	3	4
y1	1	0	0	1	0	0	1
z1	1	0	0	0	1	1	0
y2	0	1	0	1	0	1	0
z2	0	1	0	0	1	0	1
y3	0	0	1	1	1	0	1
z3	0	0	1	0	0	1	0
g1	0	0	0	1	0	0	0
h1	0	0	0	1	0	0	0
g2	0	0	0	0	1	0	0
h2	0	0	0	0	1	0	0
g3	0	0	0	0	0	1	0
h3	0	0	0	0	0	1	0
g4	0	0	0	0	0	0	1
h4	0	0	0	0	0	0	1
t	1	1	1	3	3	3	3

Primeiro montamos a tabela

Exemplo: Todas as variáveis são VERDADEIRAS.

$$\phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor x_3)$$

	1	2	3	1	2	3	4
*v1	1	0	0	1	0	0	1
z1	1	0	0	0	1	1	0
*y2	0	1	0	1	0	1	0
z2	0	1	0	0	1	0	1
*y3	0	0	1	1	1	0	1
z3	0	0	1	0	0	1	0
g1	0	0	0	1	0	0	0
h1	0	0	0	1	0	0	0
g2	0	0	0	0	1	0	0
h2	0	0	0	0	1	0	0
g3	0	0	0	0	0	1	0
h3	0	0	0	0	0	1	0
g4	0	0	0	0	0	0	1
h4	0	0	0	0	0	0	1
t	1	1	1	3	3	3	3

Depois, selecionamos somente as variáveis

Exemplo: Todas as variáveis são VERDADEIRAS.

$$\phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor x_3)$$

	1	2	3	1	2	3	4
*y1	1	0	0	1	0	0	1
z1	1	0	0	0	1	1	0
*y2	0	1	0	1	0	1	0
z2	0	1	0	0	1	0	1
*y3	0	0	1	1	1	0	1
z3	0	0	1	0	0	1	0
g1	0	0	0	1	0	0	0
h1	0	0	0	1	0	0	0
*g2	0	0	0	0	1	0	0
*h2	0	0	0	0	1	0	0
*g3	0	0	0	0	0	1	0
*h3	0	0	0	0	0	1	0
*g4	0	0	0	0	0	0	1
h4	0	0	0	0	0	0	1
t	1	1	1	3	3	3	3

Para completar os últimos dígitos para 3 selecione as linhas g e h.

 (\Leftarrow)

- Mostrar que se existe um subconjunto S então ϕ é satisfatível
 - Atribua VERDADEIRO a x_i se y_i está no subconjunto
 - Atribua FALSO a x_i se o z_i está no subconjunto
 - Exatamente um número por variável deve estar no subconjunto.
 - Caso contrário, os primeiros dígitos da soma é maior do que 1
 - Pelo menos uma variável que corresponde ao literal na cláusula deve estar dentro do conjunto.
 - Caso contrário, os k últimos dígitos da tabela será menor do que 3.
 - Cada cláusula está satisfeita. □

Exercícios

- 1) Seja $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$ construa o grafo G como descrito na redução de 3SAT para o Caminho Hamiltoniano.
- 2) O que você acha do problema 2 SAT (Ele é NP-Completo?)