Exercice sur le thème du GRC

Soit une réaction d'ordre 2 2A→B

La cinétique de cette réaction peut être décrite par l'équation différentielle suivante : $\frac{dC}{dt} = -kC^2$

Question 1 Calculer l'évolution de la concentration entre 0 et 1000 s sachant que la concentration initiale vaut 1000 mol.l⁻¹ et que la constante de vitesse est égale à 10⁻⁵ l².mol⁻¹.s⁻¹.

- Ecrire la fonction définissant l'équation différentielle
- Utiliser une procédure odexxx pour intégrer la fonction

Une manipulation expérimentale a permis de déterminer l'évolution des concentrations et des températures :

t(s)	0	100	200	300	400	500	600	800	1000
C(mol.l-1)	1000	650	420	280	180	120	80	60	40

Question 2 : Rechercher k tel que la résolution de l'équation différentielle décrive correctement l'évolution de la concentration.

- Tracer la concentration mesurée
- Choisir une procédure de recherche de k
- Appliquer la procédure à la recherche de k
- Faire une RG de l'évolution de la concentration

On suppose maintenant que la température varie au cours de l'expérience

t(s)	0	100	200	300	400	500	600	800	1000
T(K)	293	378	405	423	428	433	434	437	435

Question 3: On cherche à décrire l'évolution de la température grâce à l'équation suivante : $T = T_1 - (T_1 - T_0) \times \exp(-t/\tau)$

Avec T_1 =435 K, T_0 =293 K.

- Faire une RG de l'évolution de la température
- Choisir une procédure de recherche de τ
- Appliquer la procédure à la recherche de τ
- Faire une RG de l'évolution de la température

Question 4: On suppose que k peut-être décrit par l'équation d'Arrhénius suivante : $k = Ae^{-E/RT}$

- En supposant que k vaut 10-5, faire une RG de l'évolution de k avec la température
- Modifier le programme de la question 3 pour tenir compte de la température
- Choisir une procédure de recherche de A et E
- Appliquer la procédure à la recherche de A et E
- Faire une RG du résultat

Question 5: La présence de la loi d'Arrhénius introduit une fonction non linéaire dans le système à résoudre ce qui peut déstabiliser le solveur. Pour éviter cela, on se propose de remplacer la recherche de A et E par k1 et k2, deux constantes de vitesse à deux températures différentes T_1 et T_2 .

- Etablir la relation entre A,E, k1, k2, T₁ et T₂
- Modifier le programme de la question 4 pour tenir compte de cette modification
- Même question avec ln(k1) et ln(k2)