

deng@tsinghua.edu.cn

<u>Quicksort</u>

- ❖ C. A. R. Hoare, 1960
 - partition the input array A into 2 sub-arrays L and R s.t.

 $L \le pivot \le R$

- partition L and R respectively in the same manner
- continue this procedure
 recursively until ...

Pivot

- ❖ The most critical issue concerning efficiency of Quicksort is the pivot
- ❖ Which element is the best pivot? [median]!
 It partitions the array into 2 sub-arrays with almost equal sizes
- \clubsuit However, Quicksort needs $\boxed{O(n^2)}$ time for worst inputs //examples please
- ❖ Fortunately, the average performance of Quicksort is good enough

M

Intuition

- ❖ In many CH applications,

 most of the input points lie interior to the hull
- ❖ Specifically, as we know,
 if the points are
 uniformly distributed in a square,
 the expected number of EP's is ∅(logn)
- ❖ In such kind of conditions, can we determine and exclude the non-extreme points even more quickly?

Upper & Lower Hulls

❖ Each convex hull has

a unique leftmost-then-lowest/rightmost-then-highest EP s/t

❖ Each convex hull is divided by s and t

into 2 subhulls

the upper hull: U_CH(P)

the lower hull: L_CH(P)

❖ CH(P) can be computed

from U_CH(P) and L_CH(P) in |O(1) | time

❖ By symmetry

the construction of CH(P) can be reduced to the construction of U CH(P)

Computing U_CH(P)

❖ Idea

partition the input set P into 3 subsets P_a , P_1 and P_2 s.t.

- 1) P_0 doesn't intersect U_CH(P) and hence can be excluded
- 2) $U_CH(P_1)$ and $U_CH(P_2)$ will be computed recursively and their concatenation gives $U_CH(P)$

i.e.,
$$U_CH(P) = U_CH(P_1) + U_CH(P_2)$$

❖ How would the partition be done?

Apex of the Roof

- ❖It suffices to consider only those points lying above the segment st
 Or, equivalently, those lying left to the directed line st
- ❖ Consider the point, say r, with the maximal distance to st
- ❖ Hence r belongs to U_CH(P)
- ❖ The directed segments sr and rt are called the roof of P, with r the apex and st the base

Divide-and-conquer

❖ Point set partition

P_o: points below the roof

P₁: points left to the directed sr

P₂: points left to the directed rt

 \diamond Could P_1 intersect with P_2 ?

Why?

Time Cost

- \clubsuit Generally, subset P_0 has much more points than the other two s.t.
 - 1) the number of points to be considered will decrease tremendously and
 - 2) a small depth of recursion will be achieved
- ❖ Best case: O(n) //example ...
- **♦** Worst case:
- **❖** Average case: depends on
 - 1) how evenly the points are distributed and

2) ...

Further readings

- ❖ Randomized Quickhull
 - 1) R. Wenger

Randomized Quick Hull

Algorithmica, 17 (1997), pp. 322-329

2) C. B. Barber, <u>D. P. Dobkin</u>, H. Huhdanpaa

The Quickhull Algorithm for Convex Hulls

ACM Trans. Mathematical Software, 22 (1996), pp. 469-483