EE230: Lab 6 Measurement of Offset Voltage, Bias Currents and DC Open-Loop Gain for an Op-Amp

Anubhav Bhatla, 200070008

March 3, 2022

1 Overview of the experiment

1.1 Aim of the experiment

- 1. Measuring the Offset Voltage and Bias Currents for an Operational Amplifier and comparing the observed readings with the values given in the datasheet.
- 2. Measuring the DC Open-Loop Gain for an Operational Amplifier and comparing the observed readings with the value given in the datasheet.

1.2 Methods

The circuit diagrams for all the 4 parts were provided in the lab handout, using which I built the circuits on a breadboards and measured the required values.

2 Design & Working

Fig. Measurement of V_{OS}

Fig. Measurement of I_B^-

Fig. Measurement of I_B^+

Fig. Measurement of A_{OL}

3 Experimental results

3.1 Offset Voltage and Bias Currents

3.1.1 Offset Voltage (V_{OS})

$$V_o = V_{OS}(1 + \frac{R_2}{R_1}) + R_2 I_B^- \tag{1}$$

neglecting I_B^- ,

$$V_{OS} = \frac{V_o}{1 + R_2/R_1} \approx \frac{V_o}{R_2/R_1} \tag{2}$$

Upon performing the experiment, I got $V_o = 1.05V$. Since $R_2/R_1 = 1000$, we get $V_{OS} = 1.05mV$

3.1.2 Bias Current (I_B^-)

$$V_o = V_{OS} + I_B^- R \tag{3}$$

neglecting V_{OS} ,

$$I_B^- = \frac{V_o}{R} \tag{4}$$

Upon performing the experiment, I got $V_o = 0.309V$. Since $R = 10M\Omega$, we get $I_B^- = 30.9nA$

3.1.3 Bias Current (I_B^+)

$$V_o = V_{OS} + I_B^+ R \tag{5}$$

neglecting V_{OS} ,

$$I_B^+ = \frac{V_o}{R} \tag{6}$$

Upon performing the experiment, I got $V_o = -0.308V$. Since $R = 10M\Omega$, we get $I_B^+ = -30.8nA$

Characteristic	$V_0(V)$	Observation	Datasheet
Offset Voltage	1.05	1.05mV	1mV
I_B^-	0.309	30.9nA	20nA
I_B^+	-0.308	-30.8nA	20nA

3.2 DC Open-Loop Gain

We start by connecting the switch in the 1^{st} position. Using the 10k pot, we first nullify the effect of the offset voltage of the DUT, obtaining $V_{oA} = 0V$. Because of the large gain of the auxiliary op-amp, we can say that $V_{o1A} = 0V$.

We now change the switch to position 2. We get $V_{o1B} = V_{-} - i_{2}R_{4} = -V'$. This change in the output voltage of the DUT can be attributed to the change in $(V_{+} - V_{-})$ which is equal to $\frac{R_{2}}{R_{2} + R_{3}}(V_{oB} - V_{oA})$. Therefore, we get the following formula:

$$\frac{R_2}{R_2 + R_3} (V_{oB} - V_{oA}) \times A_{OL} = -V' \tag{7}$$

Given below are the readings obtained for V_{oB} and A_{OL} for different values of V':

V'(V)	$V_{oB}(mV)$	Observation	Datasheet
1	-58	1.724×10^{5}	_
2	-120	1.667×10^{5}	
3	-175	1.714×10^{5}	
Av	verage	1.702×10^{5}	2×10^{5}