Análisis de Algoritmos Notaciones O, o, Ω , Θ

Luis Alfredo Alvarado Rodríguez

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA ESCUELA DE CIENCIAS FÍSICAS Y MATEMÁTICAS

22 de julio de 2025

Sumario

- Definiciones
- 2 Propiedades y equivalencias
- 3 Reglas de cálculo
- 4 Resumen
- 6 Ejercicios

o pequeña — "crece estrictamente más lento"

Definición. Sean $f, g: \mathbb{R} \to \mathbb{R}$ con $g(x) \neq 0$ para x grande.

$$f(x) = o(g(x)) (x \to \infty) \iff \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$$

o pequeña — "crece estrictamente más lento"

Definición. Sean $f, g: \mathbb{R} \to \mathbb{R}$ con $g(x) \neq 0$ para x grande.

$$f(x) = o(g(x)) (x \to \infty) \iff \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$$

Ejemplos

$$x^2 = o(x^3)$$

$$\bullet \ \operatorname{sen} x = o(x)$$

$$23 \log x = o(x^{0,02})$$

$$\bullet e^{-x} = o(x^{-k}) \ \forall k > 0$$

O grande — "no crece más rápido que"

$$f(x) = O(g(x)) \iff \exists C > 0, x_0 : |f(x)| \le C g(x) \quad \forall x > x_0.$$

O grande — "no crece más rápido que"

Definición.

$$f(x) = O(g(x)) \iff \exists C > 0, \ x_0 : |f(x)| \le C g(x) \quad \forall x > x_0.$$

Observaciones

- f = o(g) implica f = O(g) (relación estricta \subseteq).
- Cota superior de *peor caso* en complejidad temporal.
- No exige límite; basta una cota después de algún x_0 .

Θ — "misma tasa de crecimiento"

$$f(x) = \Theta(g(x)) \iff \exists c_1, c_2 > 0, \ x_0 \text{ tal que}$$

 $c_1 g(x) \le |f(x)| \le c_2 g(x) \text{ para todo } x > x_0.$

 Θ — "misma tasa de crecimiento"

$$f(x) = \Theta(g(x)) \iff \exists c_1, c_2 > 0, x_0 \text{ tal que}$$

 $c_1 g(x) \le |f(x)| \le c_2 g(x) \text{ para todo } x > x_0.$

- Precisa hasta factor constante.
- Es relación de equivalencia: reflexiva, simétrica y transitiva.
- $f \sim g \implies f = \Theta(g)$, pero no recíprocamente.

$$\Omega$$
 — "crece al menos tan rápido"

$$f(x)=\Omega\big(g(x)\big)\iff\exists\,\varepsilon>0,$$
una subsecuencia infinita $x_k\to\infty$ tal que
$$|f(x_k)|>\varepsilon\,g(x_k).$$

$$\Omega$$
 — "crece al menos tan rápido"

Definición.

$$f(x)=\Omega\big(g(x)\big)\iff\exists\,\varepsilon>0,$$
una subsecuencia infinita $x_k\to\infty$ tal que
$$|f(x_k)|>\varepsilon\,g(x_k).$$

En análisis de algoritmos

- Cotas <u>inferiores</u>: todo algoritmo de multiplicación de matrices requiere $\Omega(n^2)$ operaciones (lectura de datos).
- Dual de O: $f = \Omega(g) \iff g = O(f)$.

$$\sim$$
 — "crece igual"

Definición 1.4.

$$f(x) \sim g(x) \iff \lim_{x \to \infty} \frac{f(x)}{g(x)} = 1.$$

$$\sim$$
 — "crece igual"

Definición 1.4.

$$f(x) \sim g(x) \iff \lim_{x \to \infty} \frac{f(x)}{g(x)} = 1.$$

Ejemplos

$$x^{2} + x \sim x^{2}$$
, $(3x+1)^{4} \sim 81x^{4}$, $\operatorname{sen} \frac{1}{x} \sim \frac{1}{x}$.

Implica $f = \Theta(g)$, pero añade la igualdad exacta de su cociente al tender $x \to \infty$.

Funciones de crecimiento exponencial moderado

Definición 1.6. Una función f(x) presenta crecimiento exponencial moderado si

$$\forall a > 0: f(x) = \Omega(x^a) \quad \text{y} \quad \forall \varepsilon > 0: f(x) = o((1+\varepsilon)^x).$$

Funciones de crecimiento exponencial moderado

Definición 1.6. Una función f(x) presenta crecimiento exponencial moderado si

$$\forall a > 0: f(x) = \Omega(x^a) \quad \text{y} \quad \forall \varepsilon > 0: f(x) = o((1+\varepsilon)^x).$$

Intuición

- lacktriangle Crece más rápido que toda potencia fija de x...
- \bullet ... pero todavía más lento que cualquier exponencial c^x (c>1).

Ejemplos $x^{\log x}$, $e^{\sqrt{x}}$, $e^{(\log x)^2}$.

Funciones de crecimiento exponencial

Definición 1.7. Una función f es de crecimiento exponencial si

$$\exists c > 1 : f(x) = \Omega(c^x) \quad \text{y} \quad \exists d > 1 : f(x) = O(d^x).$$

Funciones de crecimiento exponencial

Definición 1.7. Una función f es de crecimiento exponencial si

$$\exists c > 1: f(x) = \Omega(c^x) \quad \text{y} \quad \exists d > 1: f(x) = O(d^x).$$

Ejemplos típicos

$$2^x$$
, $(1,03)^x$, n^{97n} , e^x .

Añadir factores "pequeños" (polinomios, logaritmos) no cambia la categoría: $e^{\sqrt{x}+2x/(x^{49}+37)}$ sigue siendo exponencial.

Jerarquía de precisión

$$f \sim g \ \Longrightarrow \ f = \Theta(g) \ \Longrightarrow \ f = O(g) \ \land \ g = \Omega(f).$$

Jerarquía de precisión

$$f \sim g \implies f = \Theta(g) \implies f = O(g) \, \wedge \, g = \Omega(f).$$

- Relación estricta: cada flecha es "si ... entonces", pero la inversa no vale en general.
- Little-o es la negación fuerte de Ω :

$$f = o(g) \iff f \neq \Omega(g).$$

Propiedades algebraicas básicas

Sean f, g, h funciones positivas a partir de algún x_0 .

Suma (término dominante)

$$f = O(h) y g = O(h) \implies f + g = O(h).$$

Propiedades algebraicas básicas

Sean f, g, h funciones positivas a partir de algún x_0 .

Suma (término dominante)

$$f = O(h) y g = O(h) \implies f + g = O(h).$$

Producto

$$f = O(h), g = O(k) \implies fg = O(hk).$$

Propiedades algebraicas básicas

Sean f, g, h funciones positivas a partir de algún x_0 .

Suma (término dominante)

$$f = O(h) y g = O(h) \implies f + g = O(h).$$

Producto

$$f=O(h),\;g=O(k)\implies fg=O(hk).$$

Composición (monótona)

Si f = O(g) y φ es creciente, entonces $\varphi \circ f = O(\varphi \circ g)$.

Transitividad

Sí es transitivo

- O, o, Θ.
- Ejemplo: f = o(g) y $g = o(h) \Rightarrow f = o(h)$.

No siempre transitivo

- lacktriangledown Ω lo es si restringimos a funciones positivas.
- $f = \Omega(g)$ y $g = \Omega(h) \Rightarrow$ $f = \Omega(h)$ si g cambia de signo.

Dominar la suma: regla del "más grande gana"

Si
$$f(n) = O(g(n))$$
 entonces

$$f(n) + g(n) = \Theta(g(n)).$$

Dominar la suma: regla del "más grande gana"

Si
$$f(n) = O(g(n))$$
 entonces

$$f(n) + g(n) = \Theta(g(n)).$$

Ejemplo.
$$n^3 + 5n^2 + 77\cos n = \Theta(n^3)$$
.

Potencias y logaritmos

$$\log^k n = o(n^{\varepsilon}) \quad \forall k, \varepsilon > 0, \qquad n^a = o(c^n) \quad \forall a, \ c > 1.$$

Útiles para:

- Separar algoritmos polinómicos de exponenciales.
- Justificar mejoras sub-cuadráticas (p. ej. $n \log n$ frente a n^2).

Cuadro de resumen

Relación	Límite	Cota sup.	Cota inf.	Equivalencia
f = o(g)	=0	✓		
f = O(g)	$\leq C$	✓		
$f = \Omega(g)$			✓	
$f = \Theta(g)$	$1/C \le \frac{f}{a} \le C$	\checkmark	✓	✓
$f \sim g$	=1	✓	✓	✓

Para pensar antes de la próxima clase

- 1. Ordena las siguientes funciones por su tasa de crecimiento para $n \to \infty$: $(\log \log n)^3, \ n^{1,6}, \ n^3 \log n, \ 2^{\sqrt{n}}, \ n^{\log n}.$
- 2. Demuestra que $f(n) = O((2+\varepsilon)^n) \ \forall \varepsilon > 0 \iff f(n) = o((2+\varepsilon)^n) \ \forall \varepsilon > 0.$
- 3. Diseña una función h tal que $n^2 = o(h(n))$ y $h(n) = o(n^3 \log n)$.

Basado en el Capítulo 1 de Algorithms & Complexity (traducción ES).