Descriptive Set Theory: Moschovakis

Jad Damaj

Contents

Ι	Notes		3
II	Exercises		4
1	The Basic Classical Notions		5
	1.1 Perfect Polish Spaces	 	Ę
	1.2 The Borel Pointclasses of Finite Order		
	1.3 Computing with Relations; Closure Properties	 	Ę
	1.4 Parameterization and Hierarchy Theorems	 	Ę
	1.5 The Projective Sets	 	Ę
	1.6 Countable Operations	 	Ę
	1.7 Borel Functions and Isomorphisms	 	Ę
2	κ -Suslin and λ -Borel		6
	2.1 The Cantor-Bendixson Theorem	 	6
	2.2 κ -Suslin Sets	 	6
	2.3 Trees and the Perfect Set Theorem		
	2.4 Wellfounded Trees	 	6
	2.5 The Suslin Theorem	 	6
	2.6 Inductive Analysis of Projective Trees	 	6
	2.7 The Kunen Martin Theorem		c

Part I

Notes

Part II Exercises

Chapter 1

The Basic Classical Notions

- 1.1 Perfect Polish Spaces
- 1.2 The Borel Pointclasses of Finite Order
- 1.3 Computing with Relations; Closure Properties
- 1.4 Parameterization and Hierarchy Theorems
- 1.5 The Projective Sets
- 1.6 Countable Operations
- 1.7 Borel Functions and Isomorphisms

Chapter 2

κ -Suslin and λ -Borel

- 2.1 The Cantor-Bendixson Theorem
- 2.2 κ -Suslin Sets
- 2.3 Trees and the Perfect Set Theorem
- 2.4 Wellfounded Trees
- 2.5 The Suslin Theorem
- 2.6 Inductive Analysis of Projective Trees
- 2.7 The Kunen-Martin Theorem

Exercise 2.7.1. Prove that a binary relation R(x, y) on a set S is wellfounded if an only if there are no infinite \leq_R -descending chains.

Proof. If R(x,y) is not wellfounded then there must be some nonempty set A such that A has no $<_R$ minimal element. Using A, we construct an infinite $<_R$ -descending chain as follows: Let $x_0 \in A$ arbitrary and given x_i , choose $x_{i+1} \in A$ such that $x_i >_R x_{i+1}$. Such an element will always exist since A has no least element and so $x_0 >_R x_1 > \cdots$ is an infinite $<_R$ -descending chain.

Conversely, suppose there is an infinite $<_R$ -descending chain $x_0 >_R x_1 >_R \cdots$ and let $A = \{x_i : in \in \omega\}$. A is nonempty set with no $<_R$ minimal element and so R(x,y) is not wellfounded.

Exercise 2.7.2. Prove that every Borel wellfounded relation has countable length and every Δ_2^1 wellfounded relation has length less than \aleph_2 .

Proof. Recall that if R(x,y) is a relation we define its strict part to be

$$<_R = \{(x,y) : R(x,y) \& \neg R(y,x)\}$$

So, if R is Δ_n^1 we see that $<_R$ is Δ_n^1 as well. Hence, if R is a Borel relation then $<_R$ must be \aleph_0 -Suslin and so, applying the Kunen-Martin theorem, it must have length less than \aleph_1 . Similarly, if R is Δ_2^1 then $<_R$ is \aleph_1 -Suslin and so has length less that \aleph_2 .

Exercise 2.7.3. Let R be a wellfounded relation on S with rank function ρ , and let $f: S \to \text{Ordinals}$ be an order preserving function, ie.

$$x <_R y \Rightarrow f(x) < f(y)$$

Prove that for every x in S, $\rho(x) \leq f(x)$.

Proof. We show this by induction on the relation. Suppose that for all $y <_R x$, $\rho(y) \le f(y)$ then, since we have f(y) < f(x) for each $y <_R x$, $f(x) \ge f(y) + 1$ for all $y <_R x$ and so

$$f(x) \geqslant \sup\{f(y) + 1 \colon y <_R x\} \geqslant \sup\{\rho(y) + 1 \colon y <_R x\} = \rho(x)$$

A norm φ on S is called regular if it is onto some ordinal λ . Given a norm φ on S the associated the binary relation \leq^{φ} on S is defined by

$$x \leqslant^{\varphi} y \Leftrightarrow \varphi(x) \leqslant \varphi(y)$$

Exercise 2.7.4. Prove that a binary relation \leq on a set S is a prewellordering if and only if there is a norm φ on S such that $\leq = \leq^{\varphi}$. Moreover if \leq is a prewellordering, then there is a unique regular φ on S such that $\leq = \leq^{\varphi}$.

Proof.