Univerza *v Ljubljani* Fakulteta za *matematik*o *in fizik*o

Linearno programiranje

2. naloga pri Modelski analizi 1

Avtor: Marko Urbanč (28232019) Predavatelj: prof. dr. Simon Širca Asistent: doc. dr. Miha Mihovilovič

Kazalo

1	Uvod	2
2	Naloga	2
3	Opis reševanja	2
4	Rezultati	2
5	Komentarji in izboljšave	2
Li	Literatura	

1 Uvod

Linearna optimizacija je zadnje čase zelo vroča tema, tako da me veseli, da sem se je lahko lotil tudi sam. Linearno programiranje oz. linearna optimizacija je metoda za iskanje maksimuma ali minimuma linearnega izraza, ki je podvržen linearnim omejitvam. Omenjen linearni izraz je funkcija več spremenljivk, ki najpogosteje ovrednoti oz. oceni neko količino, ki jo želimo optimizirati. To je lahko npr. dobiček, strošek, količina proizvodnje, itd. zato to funkcijo imenujemo cost function oz. objective function. Linearno programiranje je torej metoda, ki nam omogoča, da z linearno funkcijo in linearnimi omejitvami poiščemo optimalno rešitev. Uporablja v različnih panogah, kot so ekonomija, logistika, telekomunikacije, transport, kot pa tudi v znanosti, kot je npr. fizika.

Torej če si to pogledamo v matematični notaciji imamo našo cost funkcijo $f(x_1, x_2, ..., x_n)$, definirano kot neko linearno kombinacijo spremenljivk:

$$f(x_1, x_2, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n.$$
 (1)

in set vezi, ki so pogosto izražene kot neenačbe:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1,$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2,$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m.$$
(2)

To je pravzaprav to kar se tiče matematičnega opisa osnovnega problema. Seveda so potem izvedenke postopkov oz. algoritmov malo bolj zapletene, ampak to žal ni namen te naloge.

- 2 Naloga
- 3 Opis reševanja
- 4 Rezultati
- 5 Komentarji in izboljšave

Literatura