NATIONAL UNIVERSITY OF SINGAPORE

CS2100 – COMPUTER ORGANISATION

(Semester 2: AY2024/25)

Final Assessment Answer Sheets (ANSWERS)

Time Allowed: 2 Hours

PLEASE READ THE INSTRUCTIONS IN THE QUESTION PAPER CAREFULLY BEFORE PROCEEDING

Please write and shade your Student Number correctly on the box on the right with a pencil.

For Examiner's Use Only

Question	Marks
PART A: MCQs	/36
PART B: Q19	/12
PART B: Q20	/14
PART B: Q21	/13
PART B: Q22	/12
PART B: Q23	/13
TOTAL	/100

Part A: Multiple Choice Questions (Total: 36 marks)

Please shade using **pencil** only ONE bubble for each question.

Q	(A)	(B)	(C)	(D)	(E)
1.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6.	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
	(A)	(B)	(C)	(D)	(E)

Q	(A)	(B)	(C)	(D)	(E)
7.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12.	\bigcirc	\circ	\bigcirc	\circ	\circ
	(A)	(B)	(C)	(D)	(E)

Q	(A)	(B)	(C)	(D)	(E)
13.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
15.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
16.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
17.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ
18.	\bigcirc	\circ	\circ	\bigcirc	\bigcirc
	(A)	(B)	(C)	(D)	(E)

Part B (Total: 64 marks) Write your answers within the boxes provided.

19. Sequential circuit [12 marks]

(a)

- (b) Sink states.
- [1]

States 2 and 6

(c) $TB = A' \cdot B' + B \cdot C$ [4]

 $TC = B' \cdot C' + B \cdot C$

- (d)
- 4 logic gates [1]

20. Combinational circuits [14 marks]

(a) [4]

$$F = B' \cdot C'$$

(b) [4]

(c) [6]

ALUcontrol2 = ALUop0 + ALUop1·F3'

ALUcontrol1 = **ALUop1' + F4**

ALUcontrol0 = ALUop1.F5

21. MIPS [13 marks]

(a) Contents of array B after the execution of the code:

```
[2] B = {11, 22, 32, 44, 54, 66, 77, 88, 98}
```

(b) Write an equivalent C code using a for loop:

```
[3]

// $a0 = size; $a1 = arrayA; $a2 = arrayB

for (i = 0; i < size; i=i+2) {
    if ((A[i] % 4)) == 0) {
        B[i] = B[i]-1;
    }
}</pre>
Alternative: if (!(A[i] % 4))
```

(c) Total number of instructions executed:

```
[2] 61
```

(d) Encoding of lw \$s1, 0(\$t1) in hexadecimal:

```
0x 8D31 0000
```

(e) Encoding of bne \$s3, \$0, skip in hexadecimal:

```
[2] Ox 1660 0002
```

(f) Encoding of j loop in hexadecimal:

```
[2] Ox 0807 FFF5
```

22. Pipelining [12 marks]

(a) [1] **17**

(b) [3] **11**

(c) [3] 6 (d) [3] **3**

(e) [2] Better, Worse, or Same?

Same

23. Cache [13 marks]

Direct-mapped data cache:

(a) Byte-offset

[1] 5

(b) Index

[1] 6

(c) #hits

[3] **256**

2-way set-associative data cache:

(d) Set-index

[1] 5

(e) #hits

[3] 770

Direct-mapped instruction cache:

(f) Index

[1] 1

(g) #hits

[3] **402**

=== END OF PAPER ===

Working/explanation

- Q1. A.
- Q2. D.

a == -1 (true) so foo(&b) is not called (short-circuit evaluation). foo(&c) changes c to 0 (false). foo(&c) and !c returns true. result = a + b + c = -1 + 2 + 0 = 1.

- Q3. B. $3333_4 = 111111111_2$; $111111111_22 = -1_{10}$.
- Q4. B.

Q5. D.

 $0x212A000A = 0b001000 \ 01001 \ 01010 \ 00000000001010$ Opcode = 0b001000 = addi; rs = \$9 = \$t1; rt = \$10 = \$t2; immed = $10_{10} - 32768_{10} = -32758_{10}$.

- Q6. B.
- Q7. D. Consensus theorem: $X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$
- Q8. C. ← Give-away question!
- Q9. B.

I actually expected many to give 5 NAND gates, a direct conversion of the 2-level AND-OR circuit in Q8 into a NAND-only circuits (by converting the AND gates and the OR gate into NAND gates). However, many students gave 3 NAND gates. How do you get 3 NAND gates?

- Q10. B. $F(A,B,C,D,E) = \sum m(0,2,7,8,10,11,15,16,18,23,24,26,27,30,31)$.
- Q11. D. See table below.

Р	Q	R	S	X1	X0	Y1	Y0	X <y< th=""></y<>
0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0
0	0	1	0	0	1	0	0	0
0	0	1	1	1	0	0	0	0
0	1	0	0	0	0	0	1	1
0	1	0	1	0	1	0	1	0
0	1	1	0	0	1	0	1	0
0	1	1	1	1	0	0	1	0

Р	Q	R	S	X1	X0	Y1	Y0	X <y< th=""></y<>
1	0	0	0	0	0	0	1	1
1	0	0	1	0	1	0	1	0
1	0	1	0	0	1	0	1	0
1	0	1	1	1	0	0	1	0
1	1	0	0	0	0	1	0	1
1	1	0	1	0	1	1	0	1
1	1	1	0	0	1	1	0	1
1	1	1	1	1	0	1	0	0

- Q12. C. A maxterm is a sum term, not a product term.
- Q13. C. Option (A): Inputs = D100DD11; (B) C1000111; (C) 01A'11111; (D) DD011D01

Q14. C.

5 PIs: A'·D', A'·C, A'·B, C·D, A·D. Note that B·D is not a PI.

Q15. E.

2 EPIs: A'·D' and A·D.

Q16. C.

	0	1	2	3	4	5	6	7	8	9
84-2-1	0000	0111	0110	0101	0100	1011	1010	1001	1000	1111
5211	0000	0001	0011	0110	0111	1000	1001	1100	1110	1111

Q17. A.

Q18. A. State transition: 0101 \rightarrow 1010 \rightarrow 0101 \rightarrow 1010 \rightarrow ... Hence, the 2 unique states are 0101 and 1010.

Part B: Answers and Workings

Q19. Sequential circuit (12 marks)

(a) [6 marks]

Pre	Present state Next state						Flip-fl	op inputs	
Α	В	С	A^{+}	B ⁺	C ⁺	TA=C	JB=A'	KB= B⋅C	DC=B'
0	0	0	0	1	1	0	1	0	1
0	0	1	1	1	1	1	1	0	1
0	1	0	0	1	0	0	1	0	0
0	1	1	1	0	0	1	1	1	0
1	0	0	1	0	1	0	0	0	1
1	0	1	0	0	1	1	0	0	1
1	1	0	1	1	0	0	0	0	0
1	1	1	0	0	0	1	0	1	0

(b) [1 mark] States 2 and 6.

(c) [4 marks] $TB = A' \cdot B' + B \cdot C$; $TC = B' \cdot C' + B \cdot C$

Pre	esent st	ate	N	ext stat	te	Flip	-flop in	outs
Α	В	С	A^{+}	B ⁺	C ⁺	TA	TB	TC
0	0	0	0	0 1 1		0	1	1
0	0	1	1	1	1	1	1	0
0	1	0	0	1	0	0	0	0
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	0	0	1	1	0	0
1	1	0	1	1	0	0	0	0
1	1	1	0	0	0	1	1	1

(d) [1 mark] A total of **4** logic gates. 3 gates for *TB* (2 AND gates and 1 OR gate, or 3 NAND gates) and 1 XNOR gate for *TC*.

Q20. Combinational circuits (14 marks)

(a)
$$F = B' \cdot A' \cdot C' + B' \cdot A \cdot C' = B' \cdot C'$$
 (4 marks)

(b) $G(A,B,C,D) = \Pi M(1,3,4,12)$.

(4 marks)

Α	В	С	D	G
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

(c) ALUcontrol2 = ALUop0 + ALUop $1 \cdot F3'$ (6 marks)

ALUcontrol1 = ALUop1' + F4

ALUcontrol0 = ALUop1·F5

 $27 = 011011_2$; $19 = 010011_2$; $11 = 001011_2$; $43 = 101011_2$; $51 = 110011_2$.

	ALU	Jop	funct							ALUcontrol		
	ALUop1	ALUop0	F5	F4	F3	F2	F1	F0	3	2	1	0
lw	0	0	Х	Χ	Χ	Х	Х	Х	0	0	1	0
sw	0	0	Χ	Х	Х	Χ	Х	Х	0	0	1	0
beq	0	1	Х	Χ	Χ	Х	Х	Х	0	1	1	0
add	1	0	0	1	1	0	1	1	0	0	1	0
sub	1	0	0	1	0	0	1	1	0	1	1	0
and	1	0	0	0	1	0	1	1	0	0	0	0
or	1	0	1	0	1	0	1	1	0	0	0	1
slt	1	0	1	1	0	0	1	1	0	1	1	1

Q21. MIPS (13 marks)

(b) (3 marks)

```
// $a0 = size; $a1 = arrayA; $a2 = arrayB
for (i = 0; i < size; i=i+2) {
   if ((A[i] % 4)) == 0) {
       B[i] = B[i]-1;
   }
}</pre>
Alternative: if (!(A[i] % 4))
```

(c) (2 marks) Answer: 3 + 10 + 12 + 12 + 10 + 12 + 2 = 61

If A[i] is divisible by 4 (2^{nd} , 3^{rd} and 5^{th} iterations), 12 instructions in the loop, otherwise (1^{st} and 4^{th} iterations) 10 instructions. 3 instructions before the loops, and 2 instructions (Inst4 and Inst5) before exiting.

(d) (2 marks) Answer: 0x8D31 0000

Likely mistake (swapping rs with rt): 0b100011 10001 01001 0000... = 0x8E29 0000

(e) (2 marks) Answer: 0x1660 0002

(f) (2 marks) Answer: 0x0807 FFF5

(3 marks)

Q22. Pipeline (12 marks)

(d) **3**

```
(a) 13 + 5 - 1 = 17 cycles. (1 mark)

(b) 11 (3 marks)

(c) 6 (3 marks)
```

Delays are highlighted under the columns (b), (c), (d) for parts (b),(c),(d) below respectively.

Note that since A[0] = 23, Inst10 and Inst11 are skipped in the first iteration.

```
(b)
                                                    (c)
                                                           (d)
      add $t0, $0, $0
                            # Inst1
      addi $t1, $a1, 0
                            # Inst2
      addi $t2, $a2, 0
                            # Inst3
loop: slt $t9, $t0, $a0
                           # Inst4
      beq $t9, $0, exit
                           # Inst5
                                             +2
                                                           +1
           $s1, 0($t1)
                            # Inst6
                                             +3
                                                    +3
           $s2, 0($t2)
                            # Inst7
      andi $s3, $s1, 3
                            # Inst8
                                             +1
      bne $s3, $0, skip
                           # Inst9
                                             +2
                                                           +1
      addi $s2, $s2, -1
                           # Inst10
      sw $s2, 0($t2)
                            # Inst11
skip: addi $t0, $t0, 2
                            # Inst12
                                             +3
                                                    +3
                                                           +1
      addi $t1, $t1, 8
                            # Inst13
      addi $t2, $t2, 8
                            # Inst14
           loop
                            # Inst15
      j
exit:
                                     Total:
                                            +11
                                                    +6
                                                           +3
```

(e) Same (2 marks)

Original:

6	lw \$s1, 0(\$t	1) F	D	Е	М	W						
7	lw \$s2, 0(\$t	2)	F	D	Е	М	W					
8	andi \$s3, \$s1,	3		F		D	Ε	М	W			
9	bne \$s3, \$0,	skip			F				D	Ε	М	W

After swapping Inst7 and Inst8:

6	lw \$s1, 0(\$t1)	F	D	E	М	W						
8	andi \$s3, \$s1, 3		F			D	Ε	М	W			
7	lw \$s2, 0(\$t2)			F			D	Ε	М	W		
9	bne \$s3, \$0, skip				F				D	E	М	W

Q23. Cache (13 marks)

- (a) There are $8 \times 4 = 32 = 2^5$ bytes in each block. So there are **5** bits in the byte offset field. (1 mark)
- (b) There are $512/8 = 64 = 2^6$ blocks in the cache. So there are **6** bits in the index field. (1 mark)
- (c) Address of A[0] = 0x10010004 = 0b.....0000 0000 0000 0100. Index = 0, word 1. $1028 \times 4 = 4112 = 2^{12} + 2^4 = 0x1010$.

Address of B[0] = 0x10011014 = 0b.....0001 0000 0001 0100. Index = 0, word 5.

The following tables show the mapping of arrays A and B on the cache:

Index	Word0	Word1	Word2	Word3	Word4	Work5	Word6	Word7
0		A[0]M	A[1]	A[2]M	A[3]	A[4]M	A[5]	A[6]H
1	A[7]	A[8]M	A[9]	A[10]M	A[11]	A[12]M	A[13]	A[14]H

Index	Word0	Word1	Word2	Word3	Word4	Work5	Word6	Word7
0						B[0]M	B[1]	B[2]M
1	B[3]	B[4]M	B[5]	B[6]H	B[7]	B[8]M	B[9]	B[10]M
2	B[11]	B[12]M	B[13]	B[14]H	B[15]	B[16]M	B[17]	B[18]M

Therefore, the hits for array A are at A[6], A[14], A[22], ..., A[1022], altogether 128 hits.

Similarly, 128 hits for array B. Hence, total = **256** hits.

(3 marks)

- (d) There are $512/8/2 = 32 = 2^5$ sets in the cache. So there are **5** bits in the set index field. (1 mark)
- (f) There are two blocks. So there is **1** bit in the index field. (1 mark)
- (g) Address of Inst1 = 0x001F FFC4 = 0b... $110\underline{0}$ 0100. Note that Inst10 and Inst11 are not executed as all elements in array A contain the value 99.

The following table shows the mapping of the instructions on the cache and the misses and hits in the first iteration.

Index	Word0	Word1	Word2	Word3
0	Inst8(M)	Inst1(M)/Inst9(H)	Inst2(H)	Inst3(H)
1	Inst4(M)/Inst12(M)	Inst5(H)/Inst13(H)	Inst6(H)/Inst14(H)	Inst7(H)/Inst15(H)

The following table the misses and hits in the subsequent 49 iterations.

Index	Word0	Word1	Word2	Word3
0	Inst8(H)	Inst9(H)		
1	Inst4(M)/Inst12(M)	Inst5(H)/Inst13(H)	Inst6(H)/Inst14(H)	Inst7(H)/Inst15(H)

9 hits in the first iteration. 8 hits in each of the subsequent 49 iterations. Hit for Inst5 after the last iteration. Hence, total number of hits = $9 + (49 \times 8) + 1 = 9 + 392 + 1 = 402$ (3 marks)