Rješenja međuispita iz Matematike 2

održanoga 29. travnja 2013.

1. a) (2 boda) Odredite konvergenciju reda

$$\sum_{n=0}^{\infty} (-1)^n \left(\sqrt{n^2 + n + 1} - n \right).$$

- b) (2 boda) Iskažite i dokažite teorem koji ste koristili u rješavanju zadatka pod a).
- c) (1 boda) Navedite kontraprimjer koji pokazuje da je teorem korišten u b) dijelu zadatka implikacija, a nije ekvivalencija.

Rješenje: U a) dijelu zadatka po racionalizaciji dobiva se izraz za opći član oblika $\frac{n+1}{\sqrt{n^2+n+1}+n}$ koji konvergira u 1/2 pa red ne zadovoljava nužni uvjet konvergencije. Rješenje b) dijela je nuždan uvjet konvergencije reda koji je opisan na 7. stranici 1. knjižice. Tipični protuprimjer tražen u c) dijelu zadatka je harmonijski red, gdje $\frac{1}{n} \to 0$, ali $\sum_{n=1}^{\infty} \frac{1}{n} = +\infty$.

2. (4 boda) Razvijte u Taylorov red oko c=1 funkciju

$$f(x) = \frac{(x-1)^3}{x^2 - 2x + 26}$$

i odredite područje konvergencije tog reda.

Rješenje: Svođenjem na geometrijski red dobivamo

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{25^{n+1}} (x-1)^{2n+3}.$$

Područje konvergencije dobivamo iz |x-1| < 5, pa je $x \in \langle -4,6 \rangle$. U rubovima imamo alternirajuće redove, ali koji ne zadovoljavaju uvjet monotonotsi iz Leibnizovog kriterija.

3. (4 boda) U trokutu $\triangle ABC$ točka Ddijeli stranicu \overline{AB} u omjeru 1 : 2. Točka Eleži na dužini \overline{CD} tako da vrijedi

$$\overrightarrow{CE} = \frac{3}{5}\overrightarrow{CD}.$$

Točka F je sjecište pravaca AE i BC. Izrazite vektor \overrightarrow{AF} kao linearnu kombinaciju vektora \overrightarrow{AB} i \overrightarrow{AC} .

Rješenje: Ozanačimo $\overrightarrow{c} = \overrightarrow{AC}$ i $\overrightarrow{b} = \overrightarrow{AB}$. Kako je F na pravcima AE i BC, to imamo konstante α i β takve da je $\alpha \overrightarrow{AE} = \overrightarrow{AF}$ i $\overrightarrow{CF} = \beta \overrightarrow{CB}$. Uvrštavajući poznate uvjete dobivamo

$$(\frac{2}{5}\alpha + \beta - 1)\overrightarrow{c} + (\frac{\alpha}{5} - \beta)\overrightarrow{b} = \overrightarrow{0},$$

iz čega slijedi $\beta = \frac{1}{3}$ i $\alpha = \frac{5}{3}$. Kako je vektor $\overrightarrow{AE} = \frac{2}{5}\overrightarrow{c} + \frac{1}{5}\overrightarrow{b}$, to je

$$\overrightarrow{AF} = \frac{2}{3}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB}.$$

 \wedge

4. (5 bodova) Točka C(2,0,1) je vrh jednakokračnog trokuta $\triangle ABC$ površine $4\sqrt{3}$ čija osnovica \overline{AB} leži na pravcu

$$p \dots \frac{x+2}{1} = \frac{y}{1} = \frac{z+3}{2}.$$

Odredite koordinate točaka A i B.

Rješenje: Prvo odredimo vektor normale ravnine u kojoj se nalaze i pravac i točka; to dobivamo iz vektora smjera pravca $\overrightarrow{i}+\overrightarrow{j}+2\overrightarrow{k}$ i vektora koji spaja točku C i točku (-2,0,-3) na pravcu, vektor $4(\overrightarrow{i'}+\overrightarrow{k'})$. Dobivamo vektor normale $\overrightarrow{n}=-\overrightarrow{i'}-\overrightarrow{j'}+\overrightarrow{k'}$, te pomoću njega vektor untar ravnine okomit na smjer pravca, $\overrightarrow{v}=-\overrightarrow{i}+\overrightarrow{j}$. Parametarskim računom dobivamo da $2\overrightarrow{v}$ upravo spaja točku C i pravac p, pa je visina na stranicu c po iznosu jednaka $2|\overrightarrow{v}|=2\sqrt{2}$. Iz toga i podatka o površini dobivamo da je duljina stranice c jednaka $2\sqrt{6}$, što je upravo duplo dulje od vektora smjera pravca

na kojem se ta stranica nalazi. Nožište visine iz vrha C je točka $N_C(0,2,1)$, pa iz svega poznatoga dobivamo točke A(1,3,3) i B(-1,1,-1).

0

a) (2 boda) Skicirajte i odredite tip plohe zadane izrazom

$$z = 9x^2 + 4y^2 + 2.$$

- b) (1 bod) Odredite nivo-krivulju plohe z = z(x, y) koja prolazi točkom P(2, 0).
- c) (2 boda) Nađite one točke na plohi z u kojima je tangencijalna ravnina na plohu okomita na vektor $6\overrightarrow{i} + 4\overrightarrow{j} + \overrightarrow{k}$.

Rješenje: U a) zadatku radi se o eleptičkom paraboloidu kojemu je tjeme u točki (0,0,2). U b) dijelu zadatka dobivamo z(2,0) = 38, pa uvrštavanjem i dijeljenjem s 36 dobivamo jendnadžbu elipse

$$1 = \frac{x^2}{4} + \frac{y^2}{9}.$$

U c) dijelu zadatka promatramo funkciju $F(x,y,z) = 9x^2 + 4y^2 + 2 - z$. Tada je $\nabla F(x,y,z) =$ (18x, 8y, -1). Tangencijalna ravnina će biti okomita na traženi vektor ako je taj vektor kolinearan s (18x, 8y, -1). Iz toga dobivamo da je x = -1/3 i y = -1/2, te dobivamo traženu točku (-1/3, -1/2, 4).

 \Diamond

6. (3 boda) Transformirajte na nove nezavisne varijable u i v izraz

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y},$$

ako je u=xy i $v=e^{x+2y}$. Rješenje: Prvo računamo $\frac{\partial u}{\partial x}=y, \ \frac{\partial u}{\partial y}=x, \ \frac{\partial v}{\partial x}=v$ i $\frac{\partial u}{\partial y}=2v$. Dalje, direktnim uvrštavanjem dobivamo $x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=2xy\frac{\partial z}{\partial u}+(x+2y)v\frac{\partial z}{\partial v}=2u\frac{\partial z}{\partial u}+v\ln v\frac{\partial z}{\partial v}.$

 \Diamond

- a) (2 boda) Definirajte derivaciju vektorske funkcije $\overrightarrow{r}: \mathbb{R} \to \mathbb{R}^3$ i izvedite koordinatni zapis 7. po kojemu se ona računa.
 - b) (2 boda) Zadana je jednadžba gibanja

$$\overrightarrow{r}(t) = (t^2 - 5t)\overrightarrow{i} + (2t + 1)\overrightarrow{j} + 3t^2\overrightarrow{k}.$$

Za koje vrijednosti od t su vektor brzine i vektor akceleracije okomiti? Rješenje: Definicija tražena u a) dijelu zadatka je

$$\overrightarrow{r}'(t) := \lim_{\delta \to 0} \frac{1}{\delta} (\overrightarrow{r}(t+\delta) - \overrightarrow{r}(t)).$$

Koordinatno je, za $\overrightarrow{r}(t) = r_x(t)\overrightarrow{i} + r_y(t)\overrightarrow{j} + r_z(t)\overrightarrow{k}$, taj izraz upravo $\overrightarrow{r}'(t) = r_x'(t)\overrightarrow{i} + r_y'(t)\overrightarrow{j} + r_z(t)\overrightarrow{k}$ $r'_z(t)\vec{k}$, direktnim računom.

U b) dijelu zadatka je $\overrightarrow{r}'(t) = (2t-5)\overrightarrow{i} + 2\overrightarrow{j} + 6t\overrightarrow{k}$ i $\overrightarrow{r}''(t) = 2\overrightarrow{i} + 6\overrightarrow{k}$, pa skalarnim produktom dobivamo 40t - 10 = 0, odnosno $t = \frac{1}{4}$.