Properties of least squares estimates

If
$$Y = X\beta + \epsilon$$
, with $E(\epsilon) = 0$ and $Cov(\epsilon) = \sigma^2 I_n$. then $E(\hat{\beta}) = \beta$ since $E(\hat{\beta}) = E((X'X)^{-1}X'Y) = (X'X)^{-1}X'E(Y)$
 $= (X'X)^{-1}X'X\beta = \beta$, and $Cov(\hat{\beta}) = Cov((X'X)^{-1}X'Y) = (X'X)^{-1}X'Cov(Y)X(X'X)^{-1}$
 $= \sigma^2(X'X)^{-1}X'X(X'X)^{-1} = \sigma^2(X'X)^{-1}$.

Theorem (Gauss-Markov). Consider the Gauss-Markov model, $Y = X\beta + \epsilon$, with $E(\epsilon) = 0$ and $Cov(\epsilon) = \sigma^2 I_n$. Let $\hat{\theta}$ be the least squares estimate of $\theta = X\beta$. Fix $c \in \mathcal{R}^p$ and consider estimating $c'\theta$. Then, in the class of all linear unbiased estimates of $c'\theta$, $c'\hat{\theta}$ is the unique estimate with minimum variance. (Thus $c'\hat{\theta}$ is BLUE of $c'\theta$.)

Proof. $\hat{\theta} = X\hat{\beta} = PY$, where P is the projection matrix onto $\mathcal{M}_C(X)$. In particular, PX = X. Therefore,

$$E(c'\hat{\theta}) = c'E(PY) = c'PE(Y) = c'PX\beta = c'X\beta = c'\theta,$$

so that $c'\hat{\theta} = PY$ is a linear unbiased estimate of $c'\theta$. Let d'Y be any other linear unbiased estimate of $c'\theta$. Then $c'\theta = E(d'Y) = d'\theta$, or $(c-d)'\theta = 0$ for all $\theta \in \mathcal{M}_C(X)$. i.e., (c-d) is orthogonal to $\mathcal{M}_C(X)$. Therefore P(c-d) = 0, and so Pc = Pd. Now,

$$Var(d'Y) - Var(c'\hat{\theta}) = Var(d'Y) - Var(c'PY)$$

$$= Var(d'Y) - Var(d'PY)$$

$$= \sigma^2(d'd - d'P^2d) = \sigma^2(d'd - d'Pd)$$

$$= \sigma^2d'(I - P)d = \sigma^2d'(I - P)(I - P)d$$

$$\geq 0$$

with equality iff (I - P)d = 0 or d = Pd = Pc. i.e., $d'Y = c'PY = c'\hat{\theta}$.

Remark. Since we have assumed that X has full column rank, $P = X(X'X)^{-1}X'$ and so, if $\theta = X\beta$, then $X'\theta = X'X\beta$ or $\beta = (X'X)^{-1}X'\theta$. Therefore, for every $a \in \mathcal{R}^p$, $a'\beta = a'(X'X)^{-1}X'\theta = c'\theta$, where $c = X(X'X)^{-1}a$. i.e., every linear function of β is a linear function of θ . Therefore, for every $a \in \mathcal{R}^p$, we have that $a'\hat{\beta} = a'(X'X)^{-1}X'\hat{\theta} = c'\hat{\theta}$ is BLUE of $a'\beta$. Thus, when X has full column rank, all linear functions of β have BLUE, all components of β are estimable (BLUE exists). This will not be the case when X has less than full column rank.

Result. In the model, $Y = X\beta + \epsilon$, $E(\epsilon) = 0$, $Cov(\epsilon) = \sigma^2 I_n$ and X has full column rank (p), we have that

$$E(RSS) = E((Y - X\hat{\beta})'(Y - X\hat{\beta})) = (n - p)\sigma^{2},$$

so that RSS/(n-p) is an unbiased estimate of σ^2 .

Proof. Note that $Y - X\hat{\beta} = Y - PY = (I - P)Y$. Therefore,

RSS =
$$(Y - X\hat{\beta})'(Y - X\hat{\beta}) = Y'(I - P)^2Y = Y'(I - P)Y$$
,

where I - P is symmetric idempotent with rank n - p.

$$E(RSS) = E(Y'(I-P)Y) = \operatorname{tr}(\sigma^{2}(I-P)) + (X\beta)'(I-P)(X\beta)$$
$$= \sigma^{2}(n-p) + \beta'X'(I-P)X\beta$$
$$= (n-p)\sigma^{2}.$$

For confidence statements and testing we need distribution theory.

Distribution Theory

Suppose ϵ_i are i.i.d. $N(0, \sigma^2)$. Then $\epsilon_{n \times 1} \sim N_n(0, \sigma^2 I_n)$ and so, $Y \sim N_n(X\beta, \sigma^2 I_n)$.

Theorem. If $Y \sim N_n(X\beta, \sigma^2 I_n)$ and X has rank p, then

- (i) $\hat{\beta} \sim N_p(\beta, \sigma^2(X'X)^{-1}),$
- (ii) $(\hat{\beta} \beta)'X'X(\hat{\beta} \beta)/\sigma^2 \sim \chi_p^2$,
- (iii) $\hat{\beta}$ is independent of RSS = $(Y X\hat{\beta})'(Y X\hat{\beta})$,
- (iv) RSS/ $\sigma^2 \sim \chi^2_{n-p}$.

Proof. $Y \sim N_n(X\beta, \sigma^2 I_n)$, so (i)

$$\hat{\beta} = (X'X)^{-1}X'Y \sim N_p((X'X)^{-1}X'X\beta, \sigma^2(X'X)^{-1}X'X(X'X)^{-1})$$

= $N(\beta, \sigma^2(X'X)^{-1}).$

(ii) Since $\hat{\beta} \sim N_p(\beta, \sigma^2(X'X)^{-1})$, note $(X'X)^{1/2}(\hat{\beta} - \beta) \sim N_p(0, \sigma^2 I_p)$, and hence

$$(\hat{\beta} - \beta)' X' X (\hat{\beta} - \beta) / \sigma^2 \sim \chi_p^2$$

(iii) $\hat{\beta} = (X'X)^{-1}X'Y = AY$ and RSS = Y'(I-P)Y. Since $Y \sim N_n(X\beta, \sigma^2 I_n)$, independence of $\hat{\beta}$ and Y'(I-P)Y holds iff A(I-P) = 0. But $(I-P)A' = (I-P)X(X'X)^{-1} = 0$. Alternatively, $\hat{\beta} = (X'X)^{-1}X'Y = (X'X)^{-1}X'P'Y = (X'X)^{-1}X'(PY)$, so that it is independent of (I-P)Y.

(iv) (a) RSS = $Y'(I-P)Y = (Y-X\beta)'(I-P)(Y-X\beta)$ since (I-P)X = 0. Note that since $Y-X\beta \sim N_n(0, \sigma^2 I_n)$, and I-P is idempotent of rank n-p,

$$(Y-X\beta)'(I-P)(Y-X\beta) \sim \chi^2_{n-p}$$
.
(b) Alternatively, note that $Q=(Y-X\beta)'(Y-X\beta) \sim \sigma^2\chi^2_n$. Now

$$Q = (Y - X\beta)'(Y - X\beta)$$

$$= (Y - X\hat{\beta} + X\hat{\beta} - X\beta)'(Y - X\hat{\beta} + X\hat{\beta} - X\beta)$$

$$= (Y - X\hat{\beta})'(Y - X\hat{\beta}) + (\hat{\beta} - \beta)'X'X(\hat{\beta} - \beta)$$

$$= Q_1 + Q_2,$$

where $Q_2 \sim \sigma^2 \chi_p^2$ and $Q_1 \geq 0$. Therefore, from a previous result, $Q_1 \sim \sigma^2 \chi_{n-p}^2$ independent of Q_2 .