PRATEEK MISHRA PRESIDENTI

Let the hypothesis be Y= hw(X) = wo+w,X

using founda
$$w_0 = \frac{BC - AD}{mC - A^2}$$
 $w_1 = \frac{AB - mD}{A^2 - mC}$

$$A = \tilde{E} \times i = 22129$$
 $B = \tilde{E} \times i = 859.6$
 $C = \tilde{E} \times i^2 = 44517661$

$$W_{\circ} = \frac{859.6 \times 44517661 - 22129 \times 1729765.1}{44517661 \times 11 - 22129 \times 22129}$$
$$= -6320.32$$

$$Y = -6520.32 + 3.28 \times 2019$$

$$= -6520.32 + 3.28 \times 2019$$

$$= 102.$$

Error:
$$J = \frac{1}{2m} \mathcal{E}(h_{\omega}(x) - Y)^2$$

$$= \frac{1}{2\pi i} \left[w_{o} + w_{i}Y - X \right]^2$$

$$= \frac{1}{2611} \left\{ [1532 - 61.2]^{2} + [65.94 - 58.3]^{2} + [9.22 - 67.1]^{2} + [75.5 - 68.9]^{2} + [75.78 - 385]^{2} + [79.06 - 89.1]^{2} + [82.3 - 80]^{2} + [85.6 - 92.3]^{2} + [92.18 - 93]^{2} + [95.46 - 97]^{2} \right\}$$

$$J = \frac{1}{2 \cdot 11} \left(\frac{64 + 58.37 + 4.5 + 12.96 + 22.27 + 100.8 + 5.29 + 44.89}{10.69 + 0.67 + 2.37} \right)$$

Q2.

×	Y	X-X	7-7	(X-X)2	(Y- \(\bar{Y}\)^2	(x-x)(y-y)
75 80 93 65 77 98 68 477	82 78 86 72 91 80 95 72 89 74	-4.8 0.2 13.2 -14.8 7-2 -8-8 18.2 -11.8 4.2 -2.8	0.1 -3.9 4.1 -9.9 -1.9 -1.9 -3.9 -7.9	23.04 0.04 174.24 219.04 51.84 77.44 331.24 139.24 17.64 7.84	0.01 15.21 16.81 98.01 82.81 3.61 171.61 98.01 50.41 62.41	- 0.48 0.78 54.12 146.52 65.52 16.72 238.42 116.82 29.82 22.12
				1041.6	598.9	688.8

$$\omega_{1} = \underbrace{\mathcal{E}(x - \bar{x}) | Y - \bar{Y}}_{\mathcal{E}(y - \bar{x})^{2}}$$

$$= \underbrace{688.8}_{1041.6} = 0.66$$

$$\omega_{1} = \underbrace{\xi_{1}(X-X)(Y-Y)}_{\xi_{1}(Y-Y)^{2}}$$

$$= \underbrace{638.8}_{598.2} = 1.150$$

$$X = 1.15 \times -14.38$$

- c) Here me mill use og@ Y= 0.66 ×96+ 29.12 = 92.48.
- d) Her me mil use eq (b)

 X = 1.15 Y 14.38

 = 1.15 ×95 14.38

 = 94.87.

Mean square elevar = 14.2815

Thus 1) 1st line will give more accurate results.
2) Both lines are independent and cannot be derived from other

$$lnP + n lnV = lnC$$

$$lnP - n ln = lnC$$

$$C = \tilde{E} X_i^2 = E[h_1]^2 = 120.450$$

$$W_0 = BC - AD$$

$$MC - A^2$$

$$W_1 = AB - mD$$

$$A^2 - mC$$

$$V_0 = 9.67$$
 $W_1 = 1.40$

Q4. Y= Wo + W1X + W2X2

This luiear hyprothesis has 3 namalile, thus there will be 3 equations.

$$\frac{2}{3} \times_{i}^{2} Y_{i} = w_{0} \times_{i}^{2} + w_{1} \times_{i}^{2} \times_{i}^{3} + w_{2} \times_{i}^{4} \times_{i}^{4}$$

$$\frac{2}{3} \times_{i} Y_{i} = w_{0} m_{+} w_{1} \times_{i}^{2} \times_{i}^{4} + w_{2} \times_{i}^{2} \times_{i}^{2}$$

$$\frac{2}{3} \times_{i}^{4} Y_{i} = w_{0} m_{+} w_{1} \times_{i}^{4} \times_{i}^{4} + w_{2} \times_{i}^{2} \times_{i}^{4}$$

$$\frac{2}{3} \times_{i}^{4} Y_{i} = w_{0} m_{+} w_{1} \times_{i}^{4} \times_{i}^{4} + w_{2} \times_{i}^{4} \times_{i}^{4}$$

$$\frac{2}{3} \times_{i}^{4} Y_{i} = w_{0} m_{+} w_{1} \times_{i}^{4} \times_{i}^{4} + w_{2} \times_{i}^{4} \times_{i}^{4}$$

$$\frac{2}{3} \times_{i}^{4} Y_{i} = w_{0} m_{+} w_{1} \times_{i}^{4} \times_{i}^{4} + w_{2} \times_{i}^{4} \times_{i}^{4}$$

$$\frac{2}{3} \times_{i}^{4} Y_{i} = w_{0} m_{+} w_{1} \times_{i}^{4} \times_{i}^{4} + w_{2} \times_{i}^{4} \times_{i}^{4}$$

$$\frac{2}{3} \times_{i}^{4} Y_{i} = w_{0} m_{+} w_{1} \times_{i}^{4} \times_{i}^{4} \times_{i}^{4}$$

$$\frac{2}{3} \times_{i}^{4} Y_{i} = w_{0} m_{+} w_{1} \times_{i}^{4} \times_{i}^{4} \times_{i}^{4}$$

$$\frac{2}{3} \times_{i}^{4} Y_{i} = w_{0} \times_{i}^{4} \times_{i}^{4} \times_{i}^{4}$$

$$\frac{2}{3} \times_{i}^{4} Y_{i} = w_{0} \times_{i}^{4} X_{i}^{4}$$

$$\frac{2}{3} \times_{i}^{4} Y_{i} = w$$

Forming equations.

$$7a + 215 + 31c = 59.1 - ①$$

 $91a + 441b + 2275c = 1367.5 - ①$
 $21a + 91b + 441c = 266.9 - ①$

on soling these

Y = 2.5095 - 1.2 re + 0. 733 x2