MATH 2023 – Multivariable Calculus

Lecture #07 Worksheet ♦ February 28, 2019

Problem 1. Let $z = f(x,y) = e^{-x-y}$.

- (a) Find ∇f at the point $P = (\ln 2, \ln 3)$
- (b) Find the directional derivative $D_{\bf u}f$ where $\bf u$ is the unit vector parallel to $\bf v=i+2j$
- (c) Find the unit direction such that $|D_{\mathbf{u}}f|$ is maximum.

Problem 2. At what point on the surface

$$x^2 + 2y^2 + 3z^2 = 4$$

is the tangent plane parallel to x + 2y + 3z = 4?

n=<1,2,3>

Problem 3. Two surfaces are **orthogonal** at a point of intersection if their normal lines are perpendicular at that point.

(a) Show that two surfaces F(x,y,z)=0, G(x,y,z)=0 are orthogonal at a point P where $\nabla F\neq 0$, $\nabla G\neq 0$ if and only if

$$F_x G_x + F_y G_y + F_z G_z = 0 \quad \text{at } P$$

- (b) Given r > 0. Show that the surfaces $z^2 = x^2 + y^2$ and $x^2 + y^2 + z^2 = r^2$ intersects orthogonally everywhere.
- (c) Explain (b) without using calculus.

