Since matrix $A(m \times n)$ follows RIP of order s with RIC δ_s , for any s-sparse vector y,

$$(1 - \delta_s) \|y\|_2^2 \le \|Ay\|_2^2 \le (1 + \delta_s) \|y\|_2^2$$

Let $\tau \subset \{1,2,...n\}$ be a s-sized index set $(i.e. |\tau|=s)$. Then we have,

$$(1 - \delta_s) \|y_\tau\|_2^2 \le \|A_\tau y_\tau\|_2^2 \le (1 + \delta_s) \|y_\tau\|_2^2$$
 where

 y_{τ} , A_{τ} are subvector and submatrix (selection of columns) of y and A respectively.

Note that in the above equation y_{τ} can be any general s-size vector since we can then fill zeros and make a y to be used with the first equation.

 A_{τ} is $m \times s$ matrix. Note that A_t has all non – zero eigenvalues (to satisfy left inequality).

We have for all non-zero y_{τ} , $1-\delta_{\scriptscriptstyle S} \leq \frac{\|A_{\tau}y_{\tau}\|_2^2}{\|y_{\tau}\|_2^2} \leq 1+\delta_{\scriptscriptstyle S}$.

<u>Claim1:</u> The nonzero singular values of A are the square roots of the nonzero eigenvalues of A*A.

<u>Proof:</u> Considering USV^* as the SVD of A_{τ} :

$$A_{\tau}^* A_{\tau} = (VS^*U^*)(USV^*) = V(S^*S)V^*$$

which is the eigendecomposition. S^*S contains σ_1^2 , ... σ_s^2 . Thus eigen values of $A_\tau^*A_\tau$ are square of magnitudes of singular values of A_τ .

For every eigenvector v of A_{τ} , $\frac{\|A_{\tau}v\|_2}{\|v\|_2} = |\sigma_v|$, with σ_v being the eigenvalue which implies (using the claim)

$$\max(|\sigma(A_{\tau})|) = \max \sqrt{\lambda(A_{\tau}^*A_{\tau})} \le \sqrt{1 + \delta_s}$$

$$\min(|\sigma(A_{\tau})|) = \min \sqrt{\lambda(A_{\tau}^* A_{\tau})} \ge \sqrt{1 - \delta_s}$$

Here λ denotes the non – zero eigenvalues of $A_{\tau}^*A_{\tau}$.

Therefore $\delta_s \ge \max(\lambda(A_\tau^*A)) - 1$ and $\delta_s \ge -\min(\lambda(A_\tau^*A)) + 1$. Since δ_s is the smallest such number and all $\delta's$ satifying the above follow the rip condition[#], $\delta_s = \max(\max(\lambda(A_\tau^*A)) - 1, -\min(\lambda(A_\tau^*A)) + 1)$.

Proof:

Let
$$\delta_s \geq \max \left(\lambda(A_\tau^*A)\right) - 1$$
 and $\delta_s \geq -\min \left(\lambda(A_\tau^*A)\right) + 1$. Then,
$$1 + \delta_s \geq \lambda_i(A_\tau^*A) \geq 1 - \delta_s \ for \ all \ i. \quad \text{By Claim1, all}$$
 $\sigma(A)$ are in the range $\left(\sqrt{1 - \delta_s}, \sqrt{1 + \delta_s}\right)$ yielding the RIP condition.

This is because maximum/minimum of $||Av||_2$ for a unit vector v occurs at max/min absolute value eigenvalue.

$$\begin{aligned} \|Av\|_2^2 &= (Av)^*(Av) = v^*(A^*A)v = v^*V(S^*S)V^*v = Q^*(S^*S)Q = \sum q_i^2\sigma_i^2 \leq \sigma_{max}^2\sum q_i^2 \\ &= \sigma_{max}^2 \text{ , since } \sum q_i^2 = 1 \text{ as } \|Q\|_2^2 = Q^*Q = v^*(VV^*)v = v^*v = 1 \end{aligned}$$

Similiarly for minimum.

Consider $M=A_{\tau}^*A_{\tau}-I_{\tau}$ which has then eigenvalues in the range $[-\delta_s,\delta_s]$ with at least one eigenvalue with absolute value δ_s . (since δ_s is achieving atleast one bound (either the left or the right) both of which

Also max element of $M \le \mu$ since each element in M is a dot product between two distinct columns in A_{τ} or zero.

Claim2: $||Mv||_2 \le \mu(s-1)||v||_2$

Proof:

$$||Mv||_{2}^{2} = \sum_{r=1}^{r=s} (\sum_{c=1,c\neq r}^{c=s} M_{rc} v_{c})^{2} \leq \sum_{r=1}^{r=s} \mu^{2} (\sum_{c=1,c\neq r}^{c=s} |v_{c}|)^{2} \leq \sum_{r=1}^{r=s} \mu^{2} (s-1) \sum_{c=1,c\neq r}^{c=s} (|v_{c}|)^{2}$$
$$= \mu^{2} (s-1)^{2} ||v||_{2}^{2}$$

where $(\sum_{c=1,c\neq r}^{c=s}|v_c|)^2 \leq (s-1)*\sum_{c=1,c\neq r}^{c=s}|v_c|^2$ by Cauchy – Schwartz inequality.

If v is a eigenvector $||Mv||_2 = |\lambda| ||v||_2$.

 $\mu(s-1)$ is thus greater than all absolute eigenvalues of M.

We have thus $\delta_s \leq \mu(s-1)$.