SID : 22083095

Name: LIM MIN KYE ANDY

GitHub Link : https://github.com/22083095/wgd7005

Data Import and Preprocessing

Import your dataset into SAS Enterprise Miner, handle missing values, and specify variable roles.

- 1000 response on ecommerce are generated from https://www.mockaroo.com/

```
customerid,age,gender,location,creditcard,totalpurchases,totalspent,favouritecategory,lastpurchasedate,frequency,churn
1,46,M,United States,mastercard,35,49,Toys,01/11/2023,26,0
2,36,F,Canada,americanexpress,35,251,Toys,01/08/2023,76,1
3,21,F,Mexico,mastercard,19,179,Toys,01/07/2023,71,
5,73,M,United States,visa,24,70,Toys,91/07/2023,53,1
5,73,M,Canada,mastercard,33,160,Toys,01/07/2023,12,0
7,648,M,United States,americanexpress,4,317,Toys,01/11/2023,16,0
7,36,M,United States,americanexpress,14,23,Toys,01/09/2023,76,0
8,73,M,Canada,mastercard,18,115,Toys,01/09/2023,82,1
10 9,56,M,United States,americanexpress,46,360,Toys,01/09/2023,21,0
11 10,23,M,United States,americanexpress,44,147,Toys,01/09/2023,63,1
12 11,71,M,Canada,americanexpress,44,147,Toys,01/09/2023,63,1
13 12,46,M,Canada,americanexpress,5,304,Toys,01/11/2023,48,0
14 13,39,M,Canada,visa,48,252,Toys,01/07/2023,27,1
15 14,29,M,United States,americanexpress,25,456,Toys,01/09/2023,110,0
15,44,F,United States,visa,30,119,Toys,01/09/2023,61,0
17,33,F,United States,visa,30,119,Toys,01/09/2023,56,0
17,33,F,United States,visa,34,473,Toys,01/11/2023,35,1
```

- They are then imported to local file for local SAS EM or SAS EM Online

- Import data to SAS EM Online option

- For local option

- Variable role edited here

(none)	~ _ r	not Equal to	~		1211		
Columns: [] [Label			Mining		Basic	
Name	Role	Level	Report	Order	Drop	Lower Limit	Upper Limit
age	Input	Interval	No		No		
churn	Target	Binary	No		No		
customerid	Input	Interval	No		No		
favouritecatego	Input	Nominal	No		No		
frequency	Frequency	Interval	No		No		
gender	Input	Nominal	No		No		
lastpurchasedat	Time ID	Interval	No		No		
location	Input	Nominal	No		No		
membershipleve	Input	Nominal	No		No		
totalpurchases	Input	Interval	No		No		
totalspent	Input	Interval	No		No		

- In our case today, we do not have missing value, if we do have missing value, missing value can be resolved by using regression. (excerpted from our project assignment)

- Furhter insight into customer behaviour and data can be seen below using Explore > Stat Explore

Decision Tree Analysis

Create a decision tree model in SAS Enterprise Miner to analyse customer behaviour.

- The following nodes are constructed, and configuration is screenshot if given any.

*______

User: u63455878 Date: 07 January 2024

Time: 09:45:22

* Training Output

Variable Summary

	Measurement	Frequency
Role	Level (Count
FREQ	INTERVAL	1
ID	INTERVAL	2
INPUT	INTERVAL	3
INPUT	NOMINAL	4
TARG	ET BINARY	1
TIMEI	D INTERVAL	1

Number

Measurement of

Target Event Level Levels Order Label

churn 1 BINARY 2 Descending

Predicted and decision variables

Type Variable Label

TARGET churn

PREDICTED P_churn1 Predicted: churn=1
RESIDUAL R_churn1 Residual: churn=1
PREDICTED P_churn0 Predicted: churn=0
RESIDUAL R_churn0 Residual: churn=0
FROM F_churn From: churn
INTO I_churn Into: churn

FREQ frequency

*	*
* Score Output	*
*	*
* Report Output	•

Variable Importance

	Ratio of							
	Number of	of	Validation					
	Splitting		Validation to Training					
Variable Name	Label	Rules	Importa	ınce	Import	ance	Importance	
favouritecategory		2	1.0000	0.0	0000	0.00	00	
totalpurchases	4	ļ	0.7331	1.00	000	1.364	2	
totalspent	3		0.6513	0.339	0	0.5204		
age	1		0.6121	0.0000		0.0000		

Tree Leaf Report

		Tra				
Nod	е	Training	Percent	Validation Validation		
ld	Depth	Observat	ions 1	Observ	ations	Percent 1
4	2	13781	0.39	12513	0.50	
17	4	2038	0.76	1555	0.73	
29	5	1693	0.65	2391	0.50	
33	5	1551	0.98	1012	0.56	
28	5	1545	0.33	1726	0.31	
13	3	1246	0.60	1353	0.65	
11	3	1174	0.32	1511	0.38	
48	6	417	0.96	200	1.00	
20	4	352	0.72	626	0.50	

5	2	309	1.00	665	0.87
49	6	105	0.47	240	0.00

Fit Statistics

Target=churn Target Label=' '

Fit

Statistics	Statistics Label	Train	Valida	tion	Test	
NOBS	Sum of Frequencies	24	211.00	23792	.00	12426.00
MISC	Misclassification Rate	0	.33	0.43	0.4	9
MAX	Maximum Absolute Error	r	0.98	1.00		1.00
SSE	Sum of Squared Errors	10 ⁻	135.83	12067.	16	6862.60
ASE	Average Squared Error	(0.21	0.25	0.	28
RASE	Root Average Squared E	rror	0.46	0.50)	0.53
DIV	Divisor for ASE 4	8422.0	0 475	584.00	248	52.00
DFT	Total Degrees of Freedon	n 24	1211.00			

Classification Table

Data Role=TRAIN Target Variable=churn Target Label=' '

		Targe	et	Outco	me	Frequency	Total	
Target	Outco	ome	Perc	entage	e Pe	ercentage	Count	Percentage
0	0	62.1	1078	85.	7487	10313	42.596	3
1	0	37.8	3922	51.	6415	6292	25.9882	2
0	1	22.5	5348	14.	2513	1714	7.0794	
1	1	77.4	1652	48.	3585	5892	24.3360)

Data Role=VALIDATE Target Variable=churn Target Label=' '

	•	Target (Outcome Frequency		Total		
Target	Outco	ome	Perce	entage	e Pe	ercentage	Count	Percentage
_								_
0	0	54.0	525	74.6	3438	8643	36.3273	
1	0	45.9	475	60.	1572	7347	30.8801	
0	1	37.6	314	25.3	3562	2936	12.3403	1
1	1	62.3	686	39.8	3428	4866	20.4523	1

Event Classification Table

Data Role=TRAIN Target=churn Target Label=' '

False True False True Negative Negative Positive Positive 6292 10313 1714 5892

Data Role=VALIDATE Target=churn Target Label=' '

False True False True

Assessment Score Rankings

Data Role=TRAIN Target Variable=churn Target Label=' '

		Mean										
		Cumula	ative	%	Cun	nulat	ive	Num	ber of	Post	erior	
Depth	n Gain	Lift	Lift	Resp	oonse	% F	Respon	se	Observ	ations	Proba	bility
5	95.2760	1.95276	1.95	276	98.27	12	98.27		121	-	0.9827	1
10	91.6315	1.87987	1.9	1632	94.60	030	96.4	371	12 ⁻	11	0.9460)3
15	78.3333	1.51715	1.78	3333	76.34	494	89.7	449	12	10	0.7634	19
20	70.2805	1.46129	1.70	0281	73.53	382	85.6	924	12	11	0.7353	38
25	62.2146	1.29931	1.6	2215	65.38	369	81.6	333	12	10	0.6538	37
30	55.5481	1.22226	1.5	5548	61.50	094	78.2	784	12 ⁻	11	0.6150)9
35	46.2792	0.90635	1.40	6279	45.6°	114	73.6	139	12 ⁻	10	0.456°	11
40	37.6615	0.77359	1.3	7661	38.93	304	69.2	771	12 ⁻	11	0.3893	30
45	30.9643	0.77359	1.30	0964	38.93	304	65.9	068	12 ⁻	10	0.3893	30
50	25.6020	0.77359	1.2	5602	38.93	304	63.2	083	12 ⁻	11	0.3893	30
55	21.2150	0.77359	1.2	1215	38.93	304	61.0	005	12 ⁻	11	0.3893	30
60	17.5621	0.77359	1.1	7562	38.93	304	59.1	622	12 ⁻	10	0.3893	30
65	14.4686	0.77359	1.14	4469	38.93	304	57.6	054	12 ⁻	11	0.3893	30
70	11.8192	0.77359	1.1	1819	38.93	304	56.2	721	12 ⁻	10	0.3893	30
75	9.5211	0.77359	1.09	521	38.93	04	55.11	156	121	1	0.3893	0
80	7.5119	0.77359	1.07	512	38.93	04	54.10)45	121	0	0.3893	0
85	5.7376	0.77359	1.05	738	38.93	04	53.21	116	121	1	0.3893	0
90	3.9938	0.74335	1.03	994	37.40	85	52.33	341	121	0	0.3740	8
95	1.9450	0.65080	1.01	945	32.75	80	51.30	030	121	1	0.3275	1
100	0.0000	0.63028	1.0	0000	31.7	182	50.3	242	12	10	0.317	18

Data Role=VALIDATE Target Variable=churn Target Label=' '

			Mean						
		Cumula	ative 9	% Cun	nulative	Number of	Posterior		
Depth	n Gain	Lift	Lift Re	esponse	% Respor	se Observ	ations Probability		
·				•			·		
5	42.9320	1.42932	1.42932	73.37	04 73.3°	704 119	0 0.98976		
10	40.1694	1.37407	1.4016	9 70.53	342 71.9	523 119	0.88408		
15	39.1489	1.37106	1.3914	9 70.37	⁷ 98 71.4	284 118	39 0.75867		
20	28.6846	0.97301	1.2868	5 49.94	167 66.C	569 119	0.68170		
25	22.4399	0.97445	1.2244	0 50.02	209 62.8	513 118	39 0.65387		
30	21.0555	1.14136	1.2105	6 58.58	888 62.1	407 119	0.62379		
35	17.1645	0.93825	1.1716	5 48.16	626 60.1	433 119	0.52355		
40	14.6734	0.97225	1.1467	3 49.90	081 58.8	646 118	39 0.38930		
45	12.7342	0.97225	1.1273	4 49.90	081 57.8	692 119	0.38930		
50	11.1841	0.97225	1.1118	4 49.90	081 57.0	735 118	39 0.38930		
55	9.9148	0.97225	1.09915	49.90	81 56.4	219 119	0.38930		
60	8.8570	0.97225	1.08857	49.90	81 55.8°	789 119	0.38930		
65	7.9627	0.97225	1.07963	49.90	81 55.4°	198 118	9 0.38930		
70	7.1955	0.97225	1.07196	49.90	81 55.0	260 119	0.38930		
75	6.5312	0.97225	1.06531	49.90	81 54.6	350 118	9 0.38930		
80	5.9494	0.97225	1.05949	49.90	81 54.3	364 119	0 0.38930		
85	5.4361	0.97225	1.05436	49.90	81 54.1	228 119	0 0.38930		
90	3.5040	0.70640	1.03504	36.26	12 53.13	310 118	9 0.34471		
95	1.4150	0.63825	1.01415	32.76	30 52.0	587 119	0 0.32463		
100	0.0000	0.73102	1.0000	0 37.52	248 51.3	324 118	39 0.31687		

Assessment Score Distribution

Data Role=TRAIN Target Variable=churn Target Label=' '

Posterior	Number	•	Mean	
Probability	of 1	Number of	Posterior	
Range	Events	Noneven ³	ts Probabil	ity Percentage
0.95-1.00	2225	52	0.97716	9.4048
0.75-0.80	1556	482	0.76349	8.4177
0.70-0.75	254	98	0.72159	1.4539
0.65-0.70	1107	586	0.65387	6.9927
0.60-0.65	750	496	0.60193	5.1464
0.45-0.50	49	56	0.46667	0.4337
0.35-0.40	5365	8416	0.38930	56.9204
0.30-0.35	878	1841	0.32291	11.2304

Data Role=VALIDATE Target Variable=churn Target Label=' '

Posterior Probability	Numbe of	r Number of	Mean Posterior	
Range	Events	Nonevents		Percentage
	1015	500		7.000
0.95-1.00	1345	532	0.98340	7.8892
0.75-0.80	1136	419	0.76349	6.5358
0.70-0.75	312	314	0.72159	2.6311
0.65-0.70	1196	1195	0.65387	10.0496
0.60-0.65	877	476	0.60193	5.6868
0.45-0.50	0	240 C).46667	1.0087
0.35-0.40	6245	6268	0.38930	52.5933
0.30-0.35	1102	2135	0.32254	13.6054

From the result output, we can deduce that the importance for:

favouritecategory:

Training: Importance ratio is 1.0000

Validation: not provided

totalpurchases:

Training: Importance ratio is 0.7331 Validation: Importance ratio is 1.0000

totalspent:

Training: Importance ratio is 0.6513 Validation: Importance ratio is 0.3390

age:

Training: Importance ratio is 0.6121

Validation: not provided.

Fit Statistics:

Misclassification Rate:

Training: 0.33 Validation: 0.43

Maximum Absolute Error:

Training: 0.98 Validation: 1.00

Sum of Squared Errors (SSE):

Training: 10135.83 Validation: 12067.16

Generally we can observe that the:

- The model seems to perform slightly better on the training dataset than on the validation dataset, as indicated by lower misclassification rates and higher gain values.

- Variable importance suggests that "favouritecategory" is the most important feature, followed by "totalpurchases," "totalspent," and "age."

From the report, we know that:

- > favouritecategory has been identified as the most important variable.
- > Therefore, we can see that customers' preferred categories significantly influence their likelihood of churn.

These are the steps we can do, to improve business and retention, based on the information we know so far:

1. Customer Engagement: Leverage insights from "favouritecategory" to tailor marketing strategies and promotions based on customers' preferred product categories. Personalized campaigns can greatly enhance customer engagement.

2. Retention Programs:

Implement targeted retention programs for customers with high totalpurchases and totalspent. We can tailor communication and services to serve this segment's preferences and needs.

Ensemble Methods

Apply Bagging and Boosting, using the Random Forest algorithm as a Bagging example.

- In ensemble, two or more predictive models combined to create a potentially more accurate model
- Works better when model predictions are uncorrelated
- There are 3 ways to ensemble modelling, they are namely Averaging(voting)/ Stacking(Blending)/ Cluster-based selection
- In the diagram below, we can see it is a machine learning technique that involves combining the predictions of multiple models to produce a stronger, more robust model.

Challenge faced:

- Unable to proceed with Ensemble although multiple effort. However, the concept is clear and well known to increase accuracy and robustness to unseen data.
- The model might not be accurate due to the data is randomly generated from a website (does not reflect real customer behaviour)
- Therefore, there might be unrelavent relationship between them.