

KITRA GTI BLACK USER MANUAL

Part Numbers:

KITRA GTI BLACK 4G/GPS E KITRA GTI BLACK 4G/GPS A KITRA GTI BLACK 4G/GPS V

Summary

.1	RE	VISION HISTORY	3
.2	KIT	RA GTI BLACK 4G/GPS IMAGES	3
.3	INT	RODUCTION	3
.4	DE	SCRIPTION AND BLOCK DIAGRAM	4
.5	НА	RDWARE & COMPONENTS DETAIL	4
.5	.1	Samsung ARTIK 710 module	4
.5	.2	4G/GPS MODULE	5
.5	.3	Accelerometers - Gyroscopes Sensors	8
.5	.4	Temperature sensor	8
.5	.5	Audio input and PDM converter	9
.5	.6	MEMS microphone	9
.5	5.7	GIGABIT ETHERNET	10
.5	8.8	HDMI	10
.5	.9	USB HOST 2.0	10
.5	.10	SD CARD	10
.5	.11	Debug UART	10
.6	KIT	RA GTI BLACK CONNECTORS	11
.6	5.1	MAIN CONNECTOR PINOUT AND DESCRIPTION	12
.7	CO	NNECTION EXAMPLES	14
.7	'.1	MAIN POWER SUPPLY	15
.7	.2	SLA BATTERY POWER SUPPLY	15
.7	.3	MAIN POWER SUPPLY WITH SLA BATTERY AS BACKUP	15
.7	.4	SENSORS	16
.7	.5	MODBUS POWER METER	17
.7	.6	RELAYS	17
.7	.7	CONTACT SWITCHES	17
.7	8.	AC CURRENT MEASUREMENT	18
.7	.9	DC CURRENT MEASUREMENT	18
.8	ВО	OTING SEQUENCE	18
.9	KIT	RA GTI BLACK 4G/GPS DEVELOPMENT BOARD BOOTING	19
.10	RF	ELECTRICAL SPECIFICATIONS	21
.11	SP	ECIFICATIONS	26
.12	ME	CHANICAL SPECIFICATIONS	27
.13	PA	CKAGING	27
.14	INE	DOOR USE ONLY FOR 5GHZ BAND	28
.15	OP	ERATING ENVIRONMENT	28
.16	DIC	CLAIMERS	28

.1 REVISION HISTORY

Date	Revision	Description				
30/03/2018	0.1	Draft version				
12/04/2018	0.2	Added connection indications and examples				
13/04/2018	0.3	Boot sequence clarification				
24/04/2018	0.4	New images				
15/06/2018	0.5	Antennas assembly, ADC conversion description on 5V input and pictures modified				

.2 KITRA GTI BLACK 4G/GPS IMAGES

.3 INTRODUCTION

This data sheet provides the description of the KITRA GTI BLACK 4G/GPS.

KITRA is a family of boards and includes a set of carrier boards for Samsung ARTIK modules, KITRA GTI BLACK 4G/GPS is a complete system (electronics board + enclosure + antenna cables) based on powerful Samsung ARTIK 710 module plus 4G/LTE connectivity.

As RushUp electronics platform, KITRA GTI BLACK 4G/GPS is a product accelerator and can be used from makers, developers, high mix low volume products and from all who want the benefit of an off the shelf industrialized system and doesn't have time and/or money to invest in a custom solution.

For details about RushUp and ARTIK, please visit: www.rushup.tech www.artik.io

.4 DESCRIPTION AND BLOCK DIAGRAM

Maximum performance in computing, complete solution in wireless, Industrial IoT enabler and connection to industrial legacy products, predictive maintenance sensors, analog and digital industrial IO and rugged architecture for harsh working environment.

Below is the block diagram of the KITRA GTI BLACK 4G/GPS.

.5 HARDWARE & COMPONENTS DETAIL

.5.1 Samsung ARTIK 710 module

Samsung ARTIK 710 is the module of the KITRA GTI BLACK 4G/GPS board and it embeds four specific functions:

- Processing;
- · Memory;
- Wireless;
- Data security.

Samsung's ARTIKTM 710 Module is a highly-integrated System in-Module that utilizes an octa-core ARM® Cortex®-A53 processor packaged DRAM and Flash memory, a hardware Secure Element and a wide range of wireless communication options such as 802.11a/b/g/n/ac, Bluetooth® 4.1 (Classic+BLE), and 802.15.4 (ZigBee® or Thread) communications all into an extremely compact footprint. The many standard digital control interfaces support external sensors and higher performance peripherals to expand the module's capabilities. With the combination of Wi-Fi, Bluetooth, ZigBee/Thread, the ARTIK 710 Module is the perfect choice for home automation and home hub devices, while also supporting a rich UI/UX capability with the camera and display support options. The hardware based Secure Element works with the ARM® TrustZone® and Trustonic's Trusted Execution Environment (TEE) to provide enhanced end-to-end security.

Analog and Digital I/O

2.0, JTAG, Analog Input

Please refer to www.artik.io website for more details on Samsung ARTIK 710 module.

.5.2 4G/GPS MODULE

4G/GPS connectivity is done through an LTE category 1 module adopting standard PCI Express® MiniCard form factor (Mini PCIe). Especially optimized for M2M and IoT applications, it features cost-saving, low power

LTE connectivity, and delivers M2M-optimized speeds of 10Mbit/s downlink and 5Mbit/s uplink. These make it ideal for numerous IoT applications that are not reliant on high speed connectivity but still require the longevity and reliability of LTE networks.

Module contains some variants depending on the geographic area on which it operates (see ordering information paragraph). This makes it backward-compatible with existing EDGE and GSM/GPRS networks, ensuring that it can easily migrate from LTE to 2G or 3G networks.

The module supports Qualcomm® IZat™ location technology Gen8C Lite (GPS, GLONASS, BeiDou, Galileo and QZSS). The integrated GNSS greatly simplifies product design, and provides quicker, more accurate and more dependable positioning.

A rich set of Internet protocols, industry-standard interfaces and abundant functionalities (USB drivers for Windows XP, Windows Vista, Windows 7/8/8.1/10, Linux, Android/eCall) extend the applicability of the module to a wide range of M2M applications such as smart metering, tracking and tracing, fleet management, wearable devices, smart home gateways, digital signs, and even drones.

Key Benefits

- Lower-power LTE connectivity optimized for broadband IoT applications.
- Worldwide LTE, UMTS/HSPA+ and GSM/GPRS/EDGE coverage.
- MIMO technology meets demands for data rate and link reliability in modem wireless communication systems.
- Multi-constellation GNSS receiver available for applications requiring fast and accurate fixes in any environment

	Frequency	KITRA_GTI_BLACK_4G/GPS_E	KITRA_GTI_BLACK_4G/GPS_A	KITRA_GTI_BLACK_4G/GPS_V		
LTE	FDD-LTE	B1/ B3/ B5/ B7/ B8/ B20	B2/ B4/ B12	B4/ B13		
	TDD-LTE					
3G	WCDMA	B1/ B5/ B8	B2/ B4/ B5			
GSM/E	EDGE	B3/ B8				
Regio	1	EMEA, Korea, Thailand, India	America	America		
Certification		CE/ GCF/ Vodafone*/ FAC	FCC/ PTCRB/ AT&T*/ IC/ ROGERS	FCC/ GCF/ Verizon		

^{*} Under development

KITRA GTI BLACK 4G/GPS embeds a nano SIM connector on the bottom side of the electronics board and the 4G/GPS SMA connectors for external antennas are located on side 2 of the enclosure (see connectors paragraph for details).

Electrical Characteristics

Output Power:

- Class 3 (23dBm±2dB) for LTE
- Class 3 (24dBm+1/-3dB) for UMTS
- Class E2 (27dBm±3dB) for EDGE 850/900MHz
- Class E2 (26dBm±3dB) for EDGE1800/1900MHz
- Class 4 (33dBm±2dB) for GSM 850/900MHz
- Class 1 (30dBm±2dB) for GSM 1800/1900MHz

Sensitivity:

- LTE B1: -101.5dBm (10M)
- LTE B2: -101dBm (10M)
- LTE B3: -101.5dBm (10M)

- LTE B4: -101dBm (10M)
- LTE B5: -101dBm (10M)
- LTE B7: -99.5dBm (10M)
- LTE B8: -101dBm (10M)
- LTE B12: -101dBm (10M)
- LTE B13: -100dBm (10M)
- LTE B20: -102.5dBm (10M)
- LTE B28: -102dBm (10M)
- UMTS B1: -110dBm
- UMTS B2: -110dBm
- UMTS B4: -110dBm
- UMTS B5: -110.5dBm
- UMTS B8: -110.5dBm
- GSM: -109dBm
- DCS: -109dBm

Protocols:

- TCP/UDP/PPP/FTP/HTTP/NTP/PING/QMI/
- CMUX*/HTTPS*/SMTP*/MMS*/FTPS*/SMTPS*/
- SSL*/FILE*

General Features

- 3GPP E-UTRA Release 11
- Bandwidth: 1.4/3/5/10/15/20MHz

Nano SIM connector is located in the bottom side of the internal electronics board.

INTERNAL KITRA GTI BLACK PCBA (electronics board) BOTTOM VIEW

.5.3 Accelerometers - Gyroscopes Sensors

The LSM6DSL is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope performing at 0.65 mA in high-performance mode and enabling always-on low-power features for an optimal motion experience for the consumer.

The LSM6DSL supports main OS requirements, offering real, virtual and batch sensors with 4 kbyte for dynamic data batching.

ST's family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers and gyroscopes.

The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The LSM6DSL has a full-scale acceleration range of $\pm 2/\pm 4/\pm 8/\pm 16$ g and an angular rate range of $\pm 125/\pm 245/\pm 500/\pm 1000/\pm 2000$ dps.

High robustness to mechanical shock makes the LSM6DSL the preferred choice of system designers for the creation and manufacturing of reliable products.

The LSM6DSL is available in a plastic land grid array (LGA) package.

Features

- Power consumption: 0.4 mA in combo normal mode and 0.65 mA in combo high-performance mode
- "Always-on" experience with low power consumption for both accelerometer and gyroscope
- Smart FIFO up to 4 kbyte based on features set
- Android M compliant
- Hard, soft ironing for external magnetic sensor corrections
- ±2/±4/±8/±16 g full scale
- ±125/±245/±500/±1000/±2000 dps full scale
- Analog supply voltage: 1.71 V to 3.6 V
- Independent IOs supply (1.62 V)
- Compact footprint, 2.5 mm x 3 mm x 0.83 mm
- SPI & I² C serial interface with main processor data synchronization feature
- Pedometer, step detector and step counter
- Significant motion and tilt function
- Standard interrupts: free-fall, wakeup, 6D/4D orientation, click and double-click
- Embedded temperature sensor
- ECOPACK®, RoHS and "Green" compliant

For any specific information and for the firmware commands and procedures, please refer to the data sheet of the components.

.5.4 Temperature sensor

KITRA GTI embeds TC74A0-3.3VAT temperature sensor.

The TC74 is a serially accessible, digital temperature sensor particularly suited for small form factor applications. Temperature data is converted from the onboard thermal sensing element and made available as an 8-bit digital word. Communication with the TC74 is accomplished via a 2- wire SMBus/I2C compatible serial port. This bus also can be used to implement multi-drop/multi-zone monitoring. The SHDN bit in the CONFIG register can be used to activate the low power Standby mode. Temperature resolution is 1°C. Conversion rate is a nominal 8 samples/sec. During normal operation, the quiescent current is 200 μ A (typ). During standby operation, the quiescent current is 5 μ A (typ). Small size, low installed cost and ease of use make the TC74 an ideal choice for implementing thermal management in a variety of systems.

Features

- Outputs Temperature as an 8-Bit Digital Word.
- Simple SMBus/I2C™ Serial Port Interface.
- Solid-State Temperature Sensing:
 - o ±2°C (max.) Accuracy from +25°C to +85°C
 - ±3°C (max.) Accuracy from 0°C to +125°C
- Supply Voltage of 2.7V to 5.5V
- Low Power:
 - 200 μA (typ.) Operating Current
 - 5 μA (typ.) Standby Mode Current

Functional Block Diagram

.5.5 Audio input and PDM converter

.5.6 MEMS microphone

The MP34DT04 is an ultra-compact, low-power, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface.

The sensing element, capable of detecting acoustic waves, is manufactured using a specialized silicon micromachining process dedicated to produce audio sensors.

The IC interface is manufactured using a CMOS process that allows designing a dedicated circuit able to provide a digital signal externally in PDM format.

The MP34DT04 has an acoustic overload point of 120 dBSPL with a 64 dB signal-to-noise ratio and -26 dBFS sensitivity.

The MP34DT04 is available in a top-port, SMDcompliant, EMI-shielded package and is guaranteed to operate over an extended temperature range from -40 °C to +85 °C.

Features

- Single supply voltage
- Low power consumption
- 120 dBSPL acoustic overload point
- 64 dB signal-to-noise ratio
- Omnidirectional sensitivity
- 26 dBFS sensitivity
- PDM output
- HCLGA package
 - Top-port design
 - SMD-compliant
 - EMI-shielded
 - ECOPACK®, RoHS, and "Green" compliant

Output of the MEMS microphone is connected to a Stereo PDM-to-I2S converter (ADAU7002ACBZ).

The ADAU7002 converts a stereo PDM bit stream into a PCM output. The PCM audio data is output on a serial audio interface port in either I2 S or TDM format.

Features

- 64x decimation of a stereo pulse density modulation (PDM) bit stream to pulse code modulation (PCM) audio data
- Slave I2S or time division multiplexed (TDM) output interface
- Configurable TDM slots
- I/O supply operation: 1.62 V to 3.6 V
- 64x output sample rate PDM clock
- 64x/128x/192x/256x/384x/512x output sample rate BCLK
- Automatic BCLK ratio detection
- Output sample rate: 4 kHz to 96 kHz

- Automatic PDM CLK drive at 64x the sample rate
- Automatic power down with BCLK removal
- 0.67 mA operating current at 48 kHz and 1.8 V IOVDD supply
- Shutdown current: <1uA

Functional Block Diagram

For any specific information and for the firmware commands and procedures, please refer to the data sheet of the components.

.5.7 GIGABIT ETHERNET

The KSZ9031RNX is a completely integrated triple speed (10Base-T/100Base-TX/1000Base-T) Ethernet Physical Layer Transceiver for transmission and reception of data over standard CAT-5 unshielded twisted pair (UTP) cable. The KSZ9031RNX reduces board cost and simplifies board layout by using on-chip termination resistors for the four differential pairs and by integrating a LDO controller to drive a low cost MOSFET to supply the 1.2V core. On the copper media interface, the KSZ9031RNX can automatically detect and correct for differential pair misplacements and polarity reversals, and correct propagation delays and re-sync timing between the four differential pairs, as specified in the IEEE 802.3 standard for 1000Base-T operation. The KSZ9031RNX provides the Reduced Gigabit Media Independent Interface (RGMII) for direct connection to RGMII MACs in Gigabit Ethernet Processors and Switches for data transfer at 10/100/1000 Mbps speed. The KSZ9031RNX Evaluation Board (KSZ9031RNX-EVAL) provides a comprehensive platform to evaluate the KSZ9031RNX features. All KSZ9031RNX configuration pins are accessible either by jumpers, test points or interface connectors.

For any specific information and for the firmware commands and procedures, please refer to the data sheet of the components.

.5.8 HDMI

The board has one HDMI 1.4a connector (Micro D-Type).

The following video formats are supported:

- 480p/480i @59.94Hz/60Hz, 576p/576i@50Hz
- 720p/720i @50Hz/59.94Hz/60Hz
- 1080p/1080i @50Hz/59.94Hz/60Hz

.5.9 USB HOST 2.0

The board has one USB HOST 2.0.

.5.10 SD CARD

The Platform board has one SD-CARD interface supporting SD3.0.

The SD card can be used for flashing a new image to internal MMC or as a mass storage device.

.5.11 Debug UART

The platform has an internal connector that can be used for debug during the development.

It can be used with an external UART to USB converter simply connecting the cable to the pins following the next indications.

INTERNAL KITRA GTI BLACK PCBA (electronics board) TOP VIEW

As a simple example of UART to USB converter you can use one of these:

- https://www.digikey.com/product-detail/en/adafruit-industries-llc/954/1528-2128-ND/7064488
- https://www.mouser.it/ProductDetail/Adafruit/954?qs=sGAEpiMZZMsMyYRRhGMFNg7907eNh002i%2fEnSsNEsb4%3d

Simply connect

- BLACK to pin #4 (GND).
- WHITE to pin #3 (TX of ARTIK and RX of USB converter).
- GREEN to pin #2 (RX of ARTIK and TX of USB converter).

See the chapter 10 for the development details and how this serial port can be used.

.6 KITRA GTI BLACK CONNECTORS

USB host type A (female)

HDMI: Micro D-Type ETHERNET: Standard RJ45

MAIN CONNECTOR: Mounted on KITRA GTI PCBA Wurth Elekronik WR-MPC3 P/N 662024231722

The external cable needs to be equipped with the matching connector and terminals as follow indicated:

3.00mm Female Dual Row Receptacle WR-MPC3 24 pins P/N 662024113322

3.00mm Female Crimp Terminal 20 to 24 AWG WR-MPC3 P/N 66200113722

Second source option from Molex:

- Micro-Fit 3.0 43025 Series Molex Connector Free Hanging Pitch 3,0mm 24 positions P/N 43025-2400.
- Crimp Contact P/N 43030-0038.

.6.1 MAIN CONNECTOR PINOUT AND DESCRIPTION

Here in after the electrical diagram of the main connector and in the table below the pinout indication with detailed indications.

PIN	FUNCTION	ELECTRICAL RANGE AND DESCRIPTION				
#	Vnower (CND)	Negative reference for newer cumply				
1 2	-Vpower (GND) +Vdd Output 2	Negative reference for power supply Positive power supply for OUTPUT 2.				
2	+vaa Output 2	Range 930V				
3	Output 2	Open collector NPN transistor.				
3	Output 2	Maximum sink current of 1A.				
		Protected by a resettable fuse (Hold at 1,5A, trip to 3A).				
4	+Vdd Output 1	Positive power supply for OUTPUT 1.				
7	+vaa Oatpat 1	Range 930V				
5	Output 1	Open collector NPN transistor.				
	Output 1	Maximum sink current of 1A.				
		Protected by a resettable fuse (Hold at 1,5A, trip to 3A).				
6	Digital Input 4	Push pull voltage input up to 30Vdc.				
7	Digital Input 3	Push pull voltage input up to 30Vdc.				
8	Digital Input 2	Push pull voltage input up to 30Vdc.				
9	Digital Input 1	Push pull voltage input up to 30Vdc.				
10	GND	Negative reference for external active sensor.				
11	ADC 1 (05Vdc input)	Analog input 05V range.				
		Internal ADC channel of ARTIK module is 1,8V range with 12 bit				
		resolution and the internal voltage divider is set to 1000/3100 so				
		when 5V is applied at this input the digital value is 3669.				
		The formula for ADC conversion is then:				
		DIV(digital value)=Vin/5*3669				
		Vin=DIV/3669*5V				
12	+5Vdc (power output)	5Vdc power supply for external active sensor. Max 250mA				
13	+Vpower (930Vdc)	Main power supply. 930Vdc range, typical 12Vdc or 24Vdc.				
14	+Vbatt (SLA 12V or 24V)*	SLA backup external battery. 12Vdc or 24Vdc.				
	1 V Datt (OL) (12 V OI 24 V)	The SLA battery nominal voltage must be compatible with the main				
		power supply used.				
		If +Vpower is 12V, SLA must be 12V				
		If +Vpower is 24V, SLA must be 24V				
15	GND	Negative reference of the power supply				
16	SHUNT DC-	External continuous current negative wire				
		Internal shunt resistor between CT- and CT+ of $68m\Omega$.				
		Current input range: 0 - 3A DC				
		ADC input range of 1,8V referred to GND				

		ANALOG TO DIGITAL CONVERSION FORMULA
		Vadc=linput*0.068
		Vadcmax=3*0.068=200mV
17	SHUNT DC+	External continuous current positive wire
		Internal shunt resistor between CT- and CT+ of $68m\Omega$.
		Current input range: 0 - 3A DC
		ADC input range of 1,8V referred to GND
		ANALOG TO DIGITAL CONVERSION FORMULA
		Vadc=linput*0.068
40	O.T.	Vadcmax=3*0.068=200mV
18	CT-	External CT sensor negative wire
		Internal burden resistor between CT+ and CT- of 43,2ohm. ADC input range of 1,8V with virtual ground of 0,9V.
		ANALOG TO DIGITAL CONVERSION FORMULA Vadc=43.2*lin/CTratio+0.9
		With CTratio 1:3000
		linMAX=55A
		Vadcmax=1.692V
19	CT+	External CT sensor positive wire
		Internal burden resistor between CT+ and CT- of 43,2ohm.
		ADC input range of 1,8V with virtual ground of 0,9V.
		ANALOG TO DIGITAL CONVERSION FORMULA
		Vadc=43.2*lin/CTratio+0.9
		With CTratio 1:3000
		linMAX=55A
20	DC405 D	Vadcmax=1.692V Non isolated B terminal of RS485 electrical interface
20 21	RS485-B RS485-A	Non isolated A terminal of RS485 electrical interface
22	RS485-TR	RS485 termination resistor of 120Ω that can be inserted if connect-
	110400 111	ing this terminal with RS485-A
23	ADC 2 (NTC1)	Analog input 01,8V range
	,	Internal $10k\Omega$ pull up resistor to 1,8V with 100Ω series resistor be-
		tween ADC input and internal pull up.
		Can be connected and external NTC temperature sensor of 10kohm@25°C model B=3380K
		NTC formula Vadc=1.8*Rntc/(Rntc+10k)
		Conversion points:
		-40 -> Vadc= 1.71V
		0 -> Vadc=1.32V
		25° -> Vadc=900mV 50° -> Vadc=540mV
		120° -> Vadc=107mV
24	ADC 3 (NTC2)	Analog input 01,8V range
		Internal $10k\Omega$ pull up resistor to 1,8V with 100Ω series resistor be-
		tween ADC input and internal pull up. Can be connected and external NTC temperature sensor of
		10kohm@25°C model B=3380K
		NTC formula

Vadc=1.8*Rntc/(Rntc+10k)
Conversion points: -40 -> Vadc= 1,71V 0 -> Vadc=1,32V
25° -> Vadc=900mV
50° -> Vadc=540mV
120° -> Vadc=107mV

MAIN: SMA female connector for 4G antenna that have to be screwed on it

GNSS: SMA female connector for GPS active antenna that have to be screwed on it

WIFI/BLE: SMA female connector for Wi-Fi and Bluetooth antenna that have to be screwed on it

ZIGBEE/THREAD: SMA female connector for GPS active antenna that have to be screwed on it LD1: General purpose RGB LED 1 (available for the user, driven by software) LD2: General purpose RGB LED 2 (available for the user, driven by software)

MIC: Openings for internal microphone

USR: General purpose push button (available for the user, read by software)

RST: Opening for internal reset push button (if pressed ARTIK 710 will be reset and the sys-

tem will reboot).

.6.1.1 ASSEMBLEY OF THE ANTENNAS

4G quad band antenna must be connected to MAIN SMA connector and is the only one with golden internal screw as indicated in the picture blow.

The plastic package of this antenna has a green round label.

2.4GHz antennas used for WiFi/BLE and for Zigbee/Thread as exactly the same and are similar to the 4G antenna except that the inner screw is not golden.

GPS active antenna is the square one with a cable connected.

For every antenna simply screw it into the related SMA male connector present in the KITRA GTI BLACK.

.7 CONNECTION EXAMPLES

Here in after you can find wiring indications and some example on how you can connect external sensors or devices to the main connector of the KITRA GTI BLACK 4G/GPS.

.7.1 MAIN POWER SUPPLY

KITRA GTI BLACK 4G/GPS is powered by an external DC voltage source (typically 12V or 24V) as indicated here in after.

.7.2 SLA BATTERY POWER SUPPLY

KITRA GTI BLACK 4G/GPS can also be powered by an external SLA battery (typically 12V or 24V) using the dedicated pins as indicated here in after.

.7.3 MAIN POWER SUPPLY WITH SLA BATTERY AS BACKUP

KITRA GTI BLACK 4G/GPS can be powered by an external DC voltage source and has an SLA battery as a backup of the main power source.

VERY IMPORTANT NOTE:

• SLA BATTERY AND VOLTAGE SOURCE MUST BE AT THE SAME VOLTAGE LEVEL AS INDI-CATED IN THE TABLE BELOW.

CONDITION	SLA NOMINAL VOLTAGE	MAIN VOLTAGE SOURCE
OK	12V	12V
OK	24V	24V
PROHIBITED	12V	24V
PROHIBITED	24V	12V

SLA BATTERY

.7.4 SENSORS

.7.4.1 Connection of NTC temperature sensors.

This example is suitable also for any other resistive passive sensor like potentiometers, force sensors etc. etc.

.7.4.2 Connection of an active 5Vdc sensor.

Sensor used: HM1500LF.

RH (%)	Vout (mV)	RH (%)	Vout (mV)
10	1325	55	2480
15	1465	60	2605
20	1600	65	2730
25	1735	70	2860
30	1860	75	2990
35	1990	80	3125
40	2110	85	3260
45	2235	90	3405
50	2360	95	3555

.7.5 MODBUS POWER METER

Power meter used: Lovato Electric DMG210 (http://www.lovatoelectric.com/DMG210/DMG210/snp)

Dotted lines indicate the termination resistor (TR) connection that can be present if needed in the application (normally used in the first and last nodes).

.7.6 RELAYS

.7.7 CONTACT SWITCHES

.7.8 AC CURRENT MEASUREMENT

Examples of CT that can be used for AC current measurement: CR3110-3000 (sensor measures up to 75A).

The CR3100 Series Split Core Current Transformer is designed to provide a low cost method to monitoring electrical current. A unique hinge and locking snap allows attachment without interrupting the current-carrying wire. High secondary turn will develop signals up to 10.0 VAC across a burden resistor

.7.9 DC CURRENT MEASUREMENT

Example of DC DEVICE can be a 12V/24V LED strip and the measure can be used to check if the light is ON or OFF.

.8 BOOTING SEQUENCE

This section describes the boot mode that is supported on the KITRA GTI BLACK 4G/GPS board. Here you can see show how to manipulate dipswitch located on the board to set the booting option that is available.

INTERNAL KITRA GTI BLACK PCBA (electronics board) TOP VIEW

INTERNAL KITRA GTI BLACK PCBA (electronics board) BOTTOM VIEW

When 'eMMC 1st Boot' is selected as a booting option, the system will first try to boot from eMMC, if ROM bootloader fails launching the MMC bootloader (U-boot), the system will boot from SD-Card. If the boot fails due to file system corruption, the system can be recovered from the bootloader (U-boot). When choosing the SD-Card booting option, the system starts booting from SD.

.9 KITRA GTI BLACK 4G/GPS DEVELOPMENT BOARD BOOTING

This section will describe how to start working with your KITRA GTI BLACK 4G/GPS Development Environment by setting up a serial connection on your development PC and booting up the ARTIK 710 Development Environment.

SERIAL PORT CONNECTION

As a first step we will select a serial console to communicate with the ARTIK 710 Module that is located on the ARTIK 710 Development Environment.

You can use a typical Linux® serial console as depicted in the next Figure, using the USB 2.0 DEBUG connector.

To use the serial USB cable you need to install the associated device driver.

Setting up a connection with the ARTIK 710 Module can be done in a wired or wireless manner. Here we choose to install PuTTY a free serial console.

The software can be downloaded from HTTP://WWW.PUTTY.ORG/.

Once downloaded go through the following steps:

- 1) Open the device manager on the control panel.
- 2) When using a PC install the USB to Serial driver. The driver can be found at the following location: (http://www.ftdichip.com/Drivers/CDM/CDM21218_Setup.zip). For other drivers please visit (http://www.ftdichip.com/Drivers/D2XX.htm).
- Check the COM port number on your PC when you connect the USB serial cable. In our case the COM port allocated is COM9.

- 4) Set the PuTTY configuration as follows:
 - a) Set the "Serial line" as the COM port number found in step 3.
 - b) Set the COM speed to "115200".
 - c) Set the connection type to "Serial".
 - d) Save the session under ARTIK7.
- 5) Select your saved session and click the "Open" button.

POWER ON THE KITRA GTI 4G/GPS

Once the connector is applied and the board is powered, KITRA GTI BLACK 4G/GPS will automatically start the booting process and you should see the messages from your console, using the serial connection that you previously established.

.10 RF ELECTRICAL SPECIFICATIONS

All performance numbers related to 802.11, 802.15.1 and 802.15.4 mentioned in this section are preliminary and likely to change once module characterization has taken place. All these data are taken from the Samsung ARTIK 710 data sheet because the RF functions are integrated in the module, for more info visit www.artik.io.

802.11, 2,4GHz Receive RF specifications

		_							
Parameter	Conditions	Min	Тур.	Max	Unit				
Frequency Range	-	2400	-	2500	MHz				
Minimum receiver sensitivity in 802.11b mode									
1Mbps		-	-	-92	dBm				
2Mbps	PER < 8%,	-	-	-80	dBm				
5.5Mbps	Packet size = 1024 bytes	-	-	-76	dBm				
11Mbps		-	-	-83	dBm				
Minimum receiver sensitiv	Minimum receiver sensitivity in 802.11g mode								
6Mbps		-	-	-82	dBm				
9Mbps		-	-	-81	dBm				
12Mbps		-	-	-79	dBm				
18Mbps	PER < 10%,	-	-	-77	dBm				
24Mbps	Packet size= 1024 bytes	-	-	-74	dBm				
36Mbps		-	-	-70	dBm				
48Mbps		-	-	-66	dBm				
54Mbps		-	-	-65	dBm				
Minimum receiver sensitiv	rity in 802.11n mode			•					
MCS 0		-	-	-82	dBm				
MCS 1		-	-	-79	dBm				
MCS 2		-	-	-77	dBm				
MCS 3	PER<10%,	-	-	-74	dBm				
MCS 4	Packet size= 4096 bytes, GF, 800ns GI, Non-STBC	-	-	-70	dBm				
MCS 5	di, soons di, Non-STBC	-	-	-68	dBm				
MCS 6		-	-	-65	dBm				
MCS 7		-	-	-64	dBm				
Maximum input level				•	1				
Maximum input signal level in 802.11b mode	PER < 8%	-10	-	-	dBm				
Maximum input signal level in 802.11g mode	PER < 10%	-20	-	-	dBm				
Maximum input signal level in 802.11n mode	PER < 10%	-20	-	_	dBm				

802.11, 2,4GHz Transmit RF specifications

Parameter	Conditions	Min	Тур.	Max	Unit
Linear output power		•		•	•
Maximum output power in 802.11b mode		-	16	-	dBm
Maximum output power in 802.11g mode	As specified in IEEE802.11	-	12.5	-	dBm
Maximum output power in 802.11n mode	ILLLOUZ.TT	-	13	-	dBm
Transmit spectrum mask	•				
Margin to 802.11b spectrum mask		0	-	-	dBr
Margin to 802.11g spectrum mask	Maximum output power	0	-	-	dBr
Margin to 802.11n spectrum mask	output power	0	-	-	dBr
Transmit modulation accuracy in 802.11b mode	e		'	_	-
1Mbps		-	-	35	%
2Mbps	As specified in	-	-	35	%
5.5Mbps	IEEE 802.11b	-	-	35	%
11Mbps	1	-	-	35	%
Transmit modulation accuracy in 802.11g mode	2				1
6Mbps	Mandatory	-	-	-5	dB
9Mbps	Optional	-	-	-8	dB
12Mbps	Mandatory	-	-	-10	dB
18Mbps	Optional	-	-	-13	dB
24Mbps	Mandatory	-	-	-16	dB
36Mbps	Optional	-	-	-19	dB
48Mbps	Optional	-	-	-22	dB
54Mbps	Optional	-	-	-25	dB
Transmit modulation accuracy in 802.11n mode	2	•	•	-	•
MCS7	As specified in IEEE 802.11n	-	-	-27	dB
Transmit power-on and power-down ramp time	e in 802.11b mode		1	1	-
Transmit power-on ramp time from 10% to 90% output power	-	-	-	2	μs
Transmit power-down ramp time from 90% to 10% output power	-	-	-	2	μs

802.11, 5GHz Receive RF specifications

Parameter	Conditions	Min	Тур.	Max	Unit
Frequency Range	-	4900	-	5845	MHz
Minimum receiver sensitivity in 802.11	a mode	•			
6Mbps		-	-	-82	dBm
12Mbps		-	-	-79	dBm
24Mbps	PER < 10%	-	-	-74	dBm
36Mbps	PER < 10%	-	-	-70	dBm
48Mbps		-	-	-66	dBm
54Mbps		-	-	-65	dBm
Minimum receiver sensitivity in 802.11	n (HT-20) mode				
MCS 0	-	-	-	-82	dBm
MCS 1		-	-	-79	dBm
MCS 2		-	-	-77	dBm
MCS 3		-	-	-74	dBm
MCS 4		_	-	-70	dBm

Parameter	Conditions	Min	Тур.	Max	Unit
Frequency Range	-	4900	тур.	5845	MHz
MCS 5	_	-500	_	-66	dBm
MCS 6	-	_	_	-65	dBm
MCS 7	1	_	_	-64	
Minimum receiver sensitivity in 802.11n (HT-40) mode	-	-	-04	dBm
MCS 0	mode	_	_	-79	dBm
MCS 1	-	_	_	-76	dBm
	1			-76	
MCS 2 MCS 3	-	-	-		dBm
	PER<10	-	-	-71 -67	dBm
MCS 4	1	-	-		dBm
MCS 5	-	-	-	-63	dBm
MCS 6	1	-	-	-62	dBm
MCS 7		-	-	-61	dBm
Minimum receiver sensitivity in 802.11ac (VHT-	20) mode				l
MCS 0	-	-	-	-82	dBm
MCS 1	-	-	-	-79	dBm
MCS 2	-	-	-	-77	dBm
MCS 3		-	-	-74	dBm
MCS 4	PER<10	-	-	-70	dBm
MCS 5	1	-	-	-66	dBm
MCS 6]	-	-	-65	dBm
MCS 7]	-	-	-64	dBm
MCS 8		-	-	-59	dBm
Minimum receiver sensitivity in 802.11ac (VHT-	40) mode				
MCS 0]	-	-	-79	dBm
MCS 1		-	-	-76	dBm
MCS 2		-	-	-74	dBm
MCS 3]	-	-	-71	dBm
MCS 4	PER<10	-	-	-67	dBm
MCS 5	PERSIO	-	-	-63	dBm
MCS 6]	-	-	-62	dBm
MCS 7		-	-	-61	dBm
MCS 8]	-	-	-56	dBm
MCS 9		-	-	-54	dBm
Minimum receiver sensitivity in 802.11ac (VHT-	80) mode				
MCS 0		-	-	-76	dBm
MCS 1]	-	-	-73	dBm
MCS 2]	-	-	-71	dBm
MCS 3]	-	-	-68	dBm
MCS 4	PER<10	-	-	-64	dBm
MCS 5]-	-	-	-60	dBm
MCS 6	1	-	-	-59	dBm
MCS 7	1	-	-	-58	dBm
MCS 8	1	-	-	-53	dBm
MCS 9	1	-	-	-51	dBm
Maximum input level					
Maximum input signal level	DED = 10%	20			dBm
in 802.11a mode	PER < 10%	-30	-		dBm
Maximum input signal level	PER < 10%	-30			dBm
in 802.11n mode	PER < 1070	-30	-	_	dbm
Maximum input signal level	PER < 10%	-30	_	_	dBm
in 802.11ac mode					

802.11, 5GHz Transmit RF specifications

Parameter	Conditions	Min	Тур.	Max	Unit
Frequency Range	-	4900		5845	MHz
Linear output power		•	•	•	
Maximum output power in 802.11a mode	54M, UNII-2e	-	12.5	-	dBm
Maximum output power in 802.11n mode	HT20, MCS7, UNII-2e	-	12	-	dBm
	HT40, MCS7, UNII-2e	-	11	-	dBm
Maximum output power in 802.11ac mode	VHT20, MCS8, UNII-2e	-	12	-	dBm
	VHT40, MCS9, UNII-2e	-	11	-	dBm
	VHT80, MCS9, UNII-2e	-	8	-	dBm
Transmit spectrum mask	<u> </u>				
Margin to 802.11a spectrum mask		0	-	-	dBr
Margin to 802.11n spectrum mask	Maximum output power	0	-	-	dBr
Margin to 802.11ac spectrum mask	output power	0	-	-	dBr
Transmit constellation error in 802.11a mode					•
54Mbps	As specified in IEEE 802.11n	-	-	-25	dB
Transmit constellation error in 802.11n (HT-20,	HT-40) mode	•	•	•	•
MCS 7	As specified in IEEE 802.11n	-	-	-27	dB
Transmit constellation error in 802.11ac (VHT-2	20) mode				
MCS 8	As specified in IEEE 802.11n	-	-	-30	dB
Transmit constellation error in 802.11ac (VHT-4	10, VHT-80) mode				•
MCS 9	As specified in IEEE 802.11n	-	_	-32	dB

Bluetooth receive RF specifications

D	C - 1141		-		11-14
Parameter	Conditions	Min	Тур	Max	Unit
Frequency Range	-	2402	-	2480	MHz
e sis men	GPSK, BER ≤0.1%	_	-	-80	dBm
Sensitivity (BER)	π/4-DQPSK, BER ≤ 0.01%	-	-	-80	dBm
	BER ≤ 0.01%, 8DPSK	-	-	-80	dBm
	GPSK, BER ≤0.1%	-20	-	-	dBm
Maximum Input Level	π/4-DQPSK, BER ≤ 0.1%	-20	-	-	dBm
	BER ≤ 0.1%, 8 DPSK	-20	-	-	dBm
BDR	•		•	•	·
Intermodulation Performance	-	-	-	0.1	%
	1DH1	-	-	0.1	%
Rx C/I Performance	1DH3	-	-	0.1	%
	1DH5	-	-	0.1	%
EDR	•	•	•	•	•
	2DH1	-	-	0.1	%
	2DH3	-	-	0.1	%
Rx C/I Performance	2DH5	-	-	0.1	%
RX C/I Performance	3DH1	-	-	0.1	%
	3DH3	-	-	0.1	%
	3DH5	-	-	0.1	%
Rx BER Floor Performance	BER ≤ 0.001%	_	-	-70	dBm

Bluetooth transmit RF specifications

Parameter	Conditions	Min	Тур	Max	Unit	
Frequency Range	-	2402	-	2480	MHz	
Output Power (Average)						
BDR (QPSK)	2440 MHz	-	7	-	dBm	
EDR (π/4-DQPSK)	2440 MHz	-	3	-	dBm	
EDR (8DPSK)	2440 MHz	-	3	-	dBm	

BLE RF specifications

Parameter	Conditions	Min	Тур	Max	Unit
Frequency Range	-	2402	-	2480	MHz
Rx Receiver Sensitivity PER	@ -70dBm	-	-	30.8	%
Rx C/I and Receiver Selectivity Performance PER	-	-	ı	30.8	%
Tx Power	-	-	7	-	dBm

802.15.4 receive RF specifications

Receive measurements were collected with the 802.15.4 SoC Ceramic Balun Reference Design (Version A0) at 2440MHz. The typical number indicates one standard deviation above the mean, measured at room temperature (25°C). The Min and Max numbers were measured over process corners at room temperature.

Parameter	Test Condition	Min	Тур	Max	Unit
Frequency range		2400	-	2500	MHz
Sensitivity (boost mode)	1% PER, 20 byte packet defined by IEEE 802.15.4-2003;	-	-102	-96	dBm
Sensitivity	1% PER, 20 byte packet defined by IEEE 802.15.4-2003;	-	-100	-94	dBm
High-side adjacent	IEEE 802.15.4-2003 interferer signal,		35		dB
channel rejection	wanted IEEE 802.15.4-2003 signal at -82 dBm	_	35	_	ав
Low-side adjacent channel	IEEE 802.15.4-2003 interferer signal,	_	35	_	dB
rejection	wanted IEEE 802.15.4-2003 signal at -82 dBm		33		ub.
2nd high-side adjacent	IEEE 802.15.4-2003 interferer signal,	_	46	_	dB
channel rejection	wanted IEEE 802.15.4-2003 signal at -82 dBm				40
2nd low-side adjacent	IEEE 802.15.4-2003 interferer signal,	_	46	_	dB
channel rejection	wanted IEEE 802.15.4-2003 signal at -82 dBm				
High-side adjacent	Filtered IEEE 802.15.4-2003 interferer signal,	_	39	_	dB
channel rejection	wanted IEEE 802.15.4-2003 signal at -82 dBm				
Low-side adjacent	Filtered IEEE 802.15.4-2003 interferer signal,	_	47	_	dB
channel rejection	wanted IEEE 802.15.4-2003 signal at -82 dBm				
2nd high-side adjacent	Filtered IEEE 802.15.4-2003 interferer signal,	_	49	_	dB
channel rejection	wanted IEEE 802.15.4-2003 signal at -82 dBm				
2nd low-side adjacent channel rejection	Filtered IEEE 802.15.4-2003 interferer signal, wanted IEEE 802.15.4-2003 signal at -82 dBm	-	49	-	dB
	CW interferer signal, wanted IEEE 802.15.4-2003				
High-side adjacent channel rejection	signal at -82 dBm	-	44	-	dB
Low-side adjacent	CW interferer signal, wanted IEEE 802.15.4-2003				
channel rejection	signal at -82 dBm	-	47	-	dB
2nd high-side adjacent	CW interferer signal, wanted IEEE 802.15.4-2003				
channel rejection	signal at -82 dBm	-	59	-	dB
2nd low-side adjacent	CW interferer signal, wanted IEEE 802.15.4-2003				
channel rejection	signal at -82 dBm	-	59	-	dB
Channel rejection for all	IEEE 802.15.4-2003 interferer signal,				
other channels	wanted IEEE 802.15.4-2003 signal at -82 dBm	-	40	-	dB
802.11g rejection centered	IEEE 802.15.4-2003 interferer signal,		36		dB
at +12 MHz or -13 MHz	wanted IEEE 802.15.4-2003 signal at -82 dBm	_	36	_	ав
Maximum input signal level		0			dBm
for correct operation		•			GDIII
Co-channel rejection	IEEE 802.15. 4-2003 interferer signal,		-6		dBc
Co-chainler rejection	wanted IEEE 802.15.4-2003 signal at -82 dBm		-0		ubc
Relative frequency error					
(50% greater than the		-120	_	+120	ppm
2x40 ppm required by					
IEEE 802.15.4-2003)					
Relative timing error (50% greater than the					
2x40 ppm required by		-120	-	+120	ppm
IEEE 802.15.4-2003)					
Linear RSSI range	As defined by IEEE 802.15.4-2003	40	_	_	dB
RSSI Range	TO GETTING BY TELE GOE. 15.4-2005	-90	_	-40	dB
Noor Name		-50		40	00

802.15.4 RF transmit specifications

Transmit measurements were collected with the Silicon Labs 802.15.4 SoC ceramic balun reference design (Version A0) at 2440MHz. The typical number indicates one standard deviation below the mean, measured at room temperature of 25°C. The Min and Max numbers were measured over process corners at room temperature. In terms of impedance, this reference design presents a 3n3 inductor in parallel with a $100:50\Omega$ balun to the RF pins.

ZigBee/Thread RF transmit specifications

Parameter	Test Condition	Min	Тур	Max	Unit
Maximum output power	At highest normal mode power setting (+3)	-3	6.5	-	dBm
Minimum output power	At lowest power setting	-	-55	-	dBm
Error vector magnitude (Offset-EVM)	As defined by IEEE 802.15.4-2003, which sets a 35% maximum	-	-	10	%
Carrier frequency error	-	-40	-	+40	ppm
PSD mask relative	3.5 MHz away (Normal)	-20	-	-	dBm
PSD mask absolute	100 KHz BW	-30	-	-	dBm

ZigBee/Thread RF receive specifications

Parameter	Test Condition	Min	Тур	Max	Unit
Operating Frequency Range		2400	-	2483.5	MHz
Receiver Sensitivity PER	@[-95dBm]	-	-	1	%
Receiver Sensitivity Search	@PER 1%	-	-	-95	dBm
Receiver Interference Rejection PER	@[-2 Channel, Alternate Channel, 30dB]	-	-	1	%
Receiver Interference Rejection PER	@[-1 Channel, Adjacent Channel, 0dB]	-	-	1	%
Receiver Interference Rejection PER	@[+1 Channel, Adjacent Channel, 0dB]	-	-	1	%
Receiver Interference Rejection PER	@[+2 Channel, Alternate Channel, 30dB]	-	-	1	%
Error Vector Magnitude - RMS (EVM)	@[Target Power]	-	-	30	%
Error Vector Magnitude - Offset (EVM)	@[Target Power]	-	-	10	%
Receiver Maximum Input Level of Desired Signal	@[-20dBm Input]	-	-	1	%

.11 SPECIFICATIONS

Parameter	Minimum	Typical	Maximum	Conditions
External power supply	9Vdc	12Vdc/24Vdc	28Vdc	Pins #1 and #13
Power rating			30W	
Operation temperature	0	-	50°C	
Storage temperature	-25	-	70°C	

For the electrical characteristics of the I/O refer to chapter 6.1.

Wireless standard	Frequency band low	Frequency band high	Transmitted power
Bluetooth	2402 MHz	2480 MHz	9,8 dBm
Wi-Fi	2412 MHz	2472 MHz	17,6 dBm
Wi-Fi	5150 MHz	5350 MHz	17,1 dBm
Wi-Fi	5470 MHz	5725 MHz	16,1 dBm
Wi-Fi	5725 MHz	5850 MHz	11,6 dBm
Zigbee	2405 MHz	2480 MHz	7,8 dBm

.12 MECHANICAL SPECIFICATIONS

All the measures are in [mm].

TOP VIEW

.13 PACKAGING

Standard package of the KITRA GTI BLACK 4G/GPS bundle kit is made up with these items:

- KITRA GTI BLACK 4G/GPS.
- Two 2.4GHz uFL antennas (WiFi/BLE & Zigbee/Thread).
- Quad band GSM antenna (MAIN).
- GPS active antenna (GNSS).
- One connector (3.00mm Female Dual Row Receptacle WR-MPC3 24 pins P/N 662024113322)
- 24 crimp terminals (Female Crimp Terminal 20 to 24 AWG WR-MPC3 P/N 66200113722)

.14 INDOOR USE ONLY FOR 5GHZ BAND

In the frequency band 5150-5350 MHz, the use of the KITRA GTI BLACK 4G/GPS with Wi-Fi wireless communications is restricted to indoor use only.

.15 OPERATING ENVIRONMENT

The operating environment excludes special environments (extreme temperatures, dust, humidity, vibrations, flammable gases, corrosive or explosive atmosphere, etc.).

.16 DICLAIMERS

RushUp srl reserves the right to change products, information and specifications without notice.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind. This document and all information discussed herein remain the sole and exclusive property of RushUp. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or other-wise.

RushUp products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. For updates or additional information about RushUp products, contact RushUp office. All brand names, trademarks and registered trademarks belong to their respective owners.

RushUp and KITRA are trademarks of RushUp srl.

