L11 Uncertainty

- <u>L11 Uncertainty</u>
 - Random Variable
 - Explanation
 - Probability Distribution Table
 - Example
 - Probability Rules
 - Joint Distribution
 - o <u>Events</u>
 - <u>Calculating Probability of an Event</u>
 - Marginal Distributions
 - Conditional Distributions
 - o Product Rule
 - o Probabilistic Inference
 - o <u>Inference by enumeration</u>
 - o Causal and Diagnostic Probability

Random Variable

An aspect of the problem domain which we may have uncertainty about

Random Variable (RV)	Description	Domain (D)
D	Result from flipping a die	{1,2,3,4,5,6}
R	Raining?	{yes, no}
M	Winning a football match	{win, lose}

Explanation

Random Variable: Always capital letters

Domain: Small letters enclosed in {}; A list of possible values

Probability Distribution Table

Specifies the P() of all the values (outcomes) for a given **RV**

Example

Т	P(T)
hot	0.6
cold	0.4

Probability Rules

- ullet \forall_x within the **RV**, $0 \leq P(x) \leq 1$
- Sum of all P(x) is 1

Joint Distribution

A table specifying the P() for multiple **RV**s

Probalistic Model: joint distribution over a set of **RV**s

$$W = \{hazy, sunny, rainy\}$$

 $T = \{hot, cold\}$

P(T, W)

	hazy	sunny	rainy
hot	0.25	0.3	0.05
cold	0.15	0.05	0.20

P(T,W)

hot, hazy	0.25	
cold, hazy	0.15	
hot, sunny	0.30	
cold, sunny	0.05	
hot, rainy	0.05	
cold, rainy	0.20	

Note: The probability rules apply here too

Events

It is a **set** of outcomes for the **set of RV** (inferred from Joint Distributions)

Calculating Probability of an Event

Add up all the entries which are consistent with the event

$$P(E) = \sum_{x_1,x_2,...,x_n} P(x_1,x_2,\ldots,x_n)$$

Example: Find the probability of hazy

P(T,W)

	hazy	sunny	rainy
hot	0.25	0.3	0.05
cold	0.15	0.05	0.20

$$P(hazy) = P(hazy, hot) + P(hazy, cold)$$

= 0.25 + 0.15 = 0.40

^ AND, v OR

Example Events

P	T	ា	W	1
Γ	(1	۱,	v	J

	hazy	sunny	rainy
hot	0.25	0.3	0.05
cold	0.15	0.05	0.20

$$0.25 + 0.3 + 0.05 = 0.6$$

•
$$P(\neg hazy)$$
?

$$0.3 + 0.05 + 0.05 + 0.2 = 0.6$$

•
$$P(\neg hazy \lor cold)$$
?

$$0.3 + 0.05 + 0.05 + 0.2 + 0.15 = 0.75$$

$$0.25 + 0.05 = 0.30$$

• $P(hazy \land rainy)$?

Not possible

Marginal Distributions

Sub-tables which **eliminates** certain variables

The process of **summing out/marginalization** helps us extract the distribution over some subset of variables

	hazy	sunny	rainy
hot	0.25	0.3	0.05
cold	0.15	0.05	0.20

hot	0.6
cold	0.4

P(W)

hazy	sunny	rainy
0.4	0.35	0.25

sum out T

P(hot) = P(hot, hazy) + P(hot, sunny) + P(hot, rainy) P(cold) = P(cold, hazy) + P(cold, sunny) + P(cold, rainy)

Conditional Distributions

P(W|T) is the probability of the weather given it is hot/cold

Example : Converting a joint distribution P(W,T) to conditional

Suppose the **temperature** is **hot**:

Full joint distribution P(T, W)

	hazy	sunny	rainy
hot	0.25	0.3	0.05
cold	0.15	0.05	0.20

$\sqrt{}$

Retain the entries conforming to the given fact

Part of the full joint distribution P(**T**=hot, **W**)

Conditional distribution P(W | hot)

Product Rule

$$P(x,y) = P(x|y)P(y) \equiv P(x|y) = rac{P(x,y)}{P(y)}$$

Using that,

Example:

	hazy	sunny	rainy
hot	0.25	0.3	0.05
cold	0.15	0.05	0.20

$$P(hazy) = P(hazy, hot) + P(hazy, cold)$$

= 0.25 + 0.15 = 0.4

P(hazy, hot) = P(hot | hazy) P(hazy)
=
$$0.625 \times 0.4$$

= 0.25

Refer to Slide 17,18 Example 2 and 3

Probabilistic Inference

Compute a desired probability from other know probas (e.g conditional from joint)

Inference by enumeration

Given the following:

and we want to find:

• Query event: Q_E

• Query variables: $Q = Q_1 \dots Q_p$

• Evidence variables: $E=E_1 \dots E_k=e_1 \dots e_k$

• Hidden variables: $H = H_1 \dots H_r$

$P(Q_E | e_1 \dots e_k)$

The inference process:

1. Select consistent entries

Select the entries consistent with the evidence to get: $P(Q, H, e_1 \dots e_k)$

2. Marginalize

Sum out H to get the joint distribution of query and evidence to get: $P(Q, e_1 \dots e_k)$

4. Get Event

Sum the entries consistent with the event: $P(Q_E|e_1 \dots e_k)$

3. Normalize

Normalize to get the conditional probability: $P(Q|e_1 ... e_k)$

2

Causal and Diagnostic Probability

Take Cause = Dengue, Effect = Fever

Usually we have P(Effect|Cause), causal probability

We want this P(Cause|Effect), diagnostic probability

So we need **Bayes Rule** to help us get the reverse

$$P(x|y) = rac{P(y|x)P(x)}{P(y)}$$
 OR $P(ext{Cause}| ext{Effect}) = rac{P(Effect|Cause)P(Cause)}{P(Effect)}$