[Tsinghua Big Data Summer Camp, 2016]

Deep Learning

Jun Zhu

dcszj@mail.tsinghua.edu.cn
http://bigml.cs.tsinghua.edu.cn/~jun
State Key Lab of Intelligent Technology & Systems
Tsinghua University

July 28, 2016

Why going deep?

- Data are often high-dimensional.
- There is a huge amount of structure in the data, but the structure is too complicated to be represented by a simple model.
- Insufficient depth can require more computational elements than architectures whose depth matches the task.
- Deep nets provide simpler but more descriptive models of many problems.

Microsoft's speech recognition system

http://v.youku.com/v_show/id_XNDc0MDY4ODI0.html

Human-Level Control via Deep RL

Deep Q-network with human-level performance on A

[Mnih et al., Nature 518, 529–533, 2015]

AlphaGo

Neural network training pipeline and architecture

[Silver et al., Mastering the game of Go with deep neural networks and tree search. Nature, 484(529), 2016]

AlphaGo

Monte Carlo tree search

[Silver et al., Mastering the game of Go with deep neural networks and tree search. Nature, 484(529), 2016]

AlphaGo

[Silver et al., Mastering the game of Go with deep neural networks and tree search. Nature, 484(529), 2016]

Go

- A combinatorial game
 - □ Two players, deterministic, zero-sum, perfect information

MIT 10 Breakthrough Tech 2013

Introduction T

The 10 Technologies

Past Years

Deep Learning

With massive amounts of computational power, machines can now recognize objects and translate speech in real time. Artificial intelligence is finally getting smart.

http://www.technologyreview.com/featuredstory/513696/deep-learning/

Deep Learning in industry

Face identification

Speech recognition

Web search

Deep Learning Models

How brains seem to do computing?

The business end of this is made of lots of these joined in networks like this

Much of our own "computations" are performed in/by this network

Learning occurs by changing the effectiveness of the synapses so that the influence of one neuron on another changes

History of neural networks

Rosenblatt

Minsky **Papert**

Ackley Hinton Sejnowski

1969 **Perceptrons**

History of neural networks

Smolensky

Hinton

Hinton et al.

Model of a neuron

Activation function

Threshold function & piecewise linear function:

Sigmoid function

$$\psi_{\alpha}(v) = \frac{1}{1 + \exp(-\alpha v)}$$

 $a \to \infty$: step function

Activation function with negative values

Threshold function & piecewise linear function:

$$\operatorname{sgn}(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$$

Hyperbolic tangent function

McCulloch & Pitts's Artificial Neuron

- The first model of artificial neurons in 1943
 - Activation function: a threshold function

$$y_j = \operatorname{sgn}\left(\sum_i w_{ij} x_i - \theta_j\right)$$

Network Architecture

Feedforward networks

Recurrent networks

Learning Paradigms

- Unsupervised learning (learning without a teacher)
 - Example: clustering

Learning Paradigms

- Supervised Learning (learning with a teacher)
 - □ For example, classification: learns a separation plane

Learning Rules

- Error-correction learning
- Competitive learning
- Hebbian learning
- Boltzmann learning
- Memory-based learning
 - Nearest neighbor, radial-basis function network

Error-correction learning

The generic paradigm:

Error signal:

$$e_j = y_j - d_j$$

Learning objective:

$$\min_{\mathbf{w}} R(\mathbf{w}; \mathbf{x}) := \frac{1}{2} \sum_{i} e_j^2$$

Example: Perceptron

One-layer feedforward network based on error-correction learning (no hidden layer):

Current output (at iteration t):

$$d_j = (\mathbf{w}_t^j)^\top \mathbf{x}$$

Update rule (exercise?):

$$\mathbf{w}_{t+1}^j = \mathbf{w}_t^j + \eta(y_j - d_j)\mathbf{x}$$

Perceptron for classification

- Consider a single output neuron
- Binary labels:

$$y \in \{+1, -1\}$$

Output function:

$$d = \operatorname{sgn}\left(\mathbf{w}_t^{\mathsf{T}}\mathbf{x}\right)$$

Apply the error-correction learning rule, we get ... (next slide)

Perceptron for Classification

- \bullet Set $\mathbf{w}_1 = 0$ and t=1; scale all examples to have length 1 (doesn't affect which side of the plane they are on)
- Given example x, predict positive iff

$$\mathbf{w}_t^{\mathsf{T}} \mathbf{x} > 0$$

- If a mistake, update as follows
 - □ Mistake on positive: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \eta_t \mathbf{x}$
 - Mistake on negative: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t \eta_t \mathbf{x}$

$$t \leftarrow t + 1$$

Convergence Theorem

For linearly separable case, the perceptron algorithm will converge in a finite number of steps

Mistake Bound

Theorem:

- □ Let S be a sequence of labeled examples consistent with a linear threshold function $\mathbf{w}_*^\top \mathbf{x} > 0$, where \mathbf{w}_* is a unit-length vector.
- The number of mistakes made by the online Perceptron algorithm is at most $(1/\gamma)^2$, where

$$\gamma = \min_{\mathbf{x} \in \mathcal{S}} \frac{|\mathbf{w}_*^{\top} \mathbf{x}|}{\|\mathbf{x}\|}$$

- i.e.: if we scale examples to have length 1, then γ is the minimum distance of any example to the plane $\mathbf{w}_{\star}^{\top}\mathbf{x} = 0$
- \neg 1 is often called the "margin" of \mathbf{W}_* ; the quantity $\frac{\mathbf{W}_*^\top \mathbf{X}}{\|\mathbf{x}\|}$ is the cosine of the angle between \mathbf{X} and \mathbf{W}_*

Deep Nets

- Multi-layer Perceptron
- CNN
- Auto-encoder
- RBM
- Deep belief nets
- Deep recurrent nets

XOR Problem

Single-layer perceptron can't solve the problem

XOR Problem

- ♦ A network with 1-layer of 2 neurons works for XOR:
 - threshold activation function

Many alternative networks exist (not layered)

Multilayer Perceptrons

- Computational limitations of single-layer Perceptron by Minsky & Papert (1969)
- Multilayer Perceptrons:
 - Multilayer feedforward networks with an error-correction learning algorithm, known as error *back-propagation*
 - A generalization of single-layer percetron to allow nonlinearity

Backpropagation

Learning as loss minimization

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \frac{1}{2} \sum_{j} e_j^2(\mathbf{x})$$
$$e_j = y_j - d_j$$

Learning with gradient descent

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \lambda_t \nabla R(\mathbf{w}; \mathcal{D})$$

Backpropagation

- Step function in perceptrons is non-differentiable
- Differentiable activation functions are needed to calculate gradients, e.g., sigmoid:

$$\psi_{\alpha}(v) = \frac{1}{1 + \exp(-\alpha v)}$$

Backpropagation

 \bullet Derivative of a sigmoid function ($\alpha = 1$)

$$\nabla_v \psi(v) = \frac{e^{-v}}{(1 + e^{-v})^2} = \psi(v)(1 - \psi(v))$$

- Notice about the small scale of the gradient
- Gradient vanishing issue
- Many other activation functions examined

Gradient computation at output layer

Output neurons are separate:

Gradient computation at output layer

Signal flow:

$$f_{1}(\mathbf{x}) \bigcirc w_{j1} \qquad v_{j} \qquad d_{j} \qquad + \qquad 0$$

$$f_{2}(\mathbf{x}) \bigcirc w_{j2} \qquad v_{j} \qquad d_{j} \qquad + \qquad 0$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$f_{M}(\mathbf{x}) \bigcirc w_{jM} \qquad v_{j} = \mathbf{w}_{j}^{\top} \mathbf{f}(\mathbf{x}) \quad d_{j} = \psi(v_{j}) \quad e_{j} = y_{j} - d_{j}$$

$$R_{j} = \frac{1}{2}e_{j}^{2} \qquad \nabla_{w_{ji}}R = \frac{\partial R_{j}}{\partial e_{j}} \frac{\partial e_{j}}{\partial d_{j}} \frac{\partial d_{j}}{\partial v_{j}} \frac{\partial v_{j}}{\partial w_{ji}}$$

$$= e_{j} \cdot (-1) \cdot \psi'(v_{j}) \cdot f_{i}(\mathbf{x})$$

$$= -e_{j} \psi'(v_{j}) f_{i}(\mathbf{x})$$

$$= -e_{j} \psi'(v_{j}) f_{i}(\mathbf{x})$$
Local gradient: $\delta_{j} = -\frac{\partial R_{j}}{\partial v_{j}} \frac{\partial e_{j}}{\partial v_{j}} \frac{\partial v_{j}}{\partial v_{j}} \frac{\partial v_{j}}{\partial v_{j}}$

Gradient computation at hidden layer

Output neurons are NOT separate:

Gradient computation at hidden layer

$$v_i = (\mathbf{w}_i')^{\top} \mathbf{g}$$
 $f_i = \psi(v_i)$ $v_j = \mathbf{w}_j^{\top} \mathbf{f}$ $d_j = \psi(v_j)$ $e_j = y_j - d_j$

$$\begin{aligned}
v_{i} &= (\mathbf{w}_{i}) \quad \mathbf{g} \quad f_{i} &= \psi(v_{i}) \quad v_{j} - \mathbf{w}_{j} \quad \text{as} \quad \varphi(v_{j}) \quad v_{j} \quad \text{gy} \quad \text{as} \\
\nabla_{w_{ik}'} R &= \sum_{j} \frac{\partial R_{j}}{\partial e_{j}} \frac{\partial e_{j}}{\partial d_{j}} \frac{\partial d_{j}}{\partial v_{j}} \frac{\partial v_{j}}{\partial f_{i}} \frac{\partial v_{i}}{\partial v_{i}} \frac{\partial v_{i}}{\partial w_{ik}'} \\
R_{j} &= \frac{1}{2} e_{j}^{2} \\
R &= \frac{1}{2} \sum_{j} e_{j}^{2} \\
&= -\sum_{j} e_{j} \psi'(v_{j}) w_{ji} \psi'(v_{i}) g_{k}(\mathbf{x}) \\
&= -\sum_{j} \delta_{j} w_{ji} \psi'(v_{i}) g_{k}(\mathbf{x}) \quad \delta_{i} = -\frac{\partial R}{\partial v_{i}}
\end{aligned}$$
Local gradient:

Back-propagation formula

- The update rule of local gradients:
 - for hidden neuron *i*:

$$\delta_i = \psi'(v_i) \sum_j \delta_j w_{ji}$$

Only depends on the activation function at hidden neuron i

Flow of error signal:

Back-propagation formula

- The update rule of weights:
 - Output neuron:

$$\Delta w_{ji} = \lambda \cdot \delta_j \cdot f_i(\mathbf{x})$$

Hidden neuron:

$$\Delta w_{ik}' = \lambda \cdot \delta_i \cdot g_k(\mathbf{x})$$

$$\begin{pmatrix} Weight \\ correction \\ \Delta w_{ji} \end{pmatrix} = \begin{pmatrix} learning \\ rate \\ \lambda \end{pmatrix} \cdot \begin{pmatrix} local \\ gradient \\ \delta_{j} \end{pmatrix} \cdot \begin{pmatrix} input \ signal \\ of \ neuron \ j \\ v_{i} \end{pmatrix}$$

Two Passes of Computation

- Forward pass
 - Weights fixed
 - Start at the first hidden layer
 - Compute the output of each neuron
 - End at output layer
- Backward pass
 - Start at the output layer
 - Pass error signal backward through the network
 - Compute local gradients

Stopping Criterion

- No general rules
- Some reasonable heuristics:
 - □ The norm of gradient is small enough
 - □ The number of iterations is larger than a threshold
 - The training error is stable
 - **...**

Improve Backpropagation

- Many methods exist to improve backpropagation
- E.g., backpropagation with momentum

$$\Delta w_{ij}^t = -\lambda \frac{\partial R}{\partial w_{ij}} + \alpha \Delta w_{ij}^{t-1}$$

Neurons as Feature Extractor

- Compute the similarity of a pattern to the ideal pattern of a neuron
- Threshold is the minimal similarity required for a pattern
- Reversely, it visualizes the connections of a neuron

Vanishing gradient problem

- The gradient can decrease exponentially during back-prop
- Solutions:
 - Pre-training + fine tuning
 - Rectifier neurons (sparse gradients)

- Ref:
 - Gradient flow in recurrent nets: the difficulty of learning longterm dependencies. Hochreiter, Bengio, & Frasconi, 2001

Deep Rectifier Nets

Sparse representations without gradient vanishing

- Non-linearity comes from the path selection
 - Only a subset of neurons are active for a given input
- Can been seen as a model with an exponential number of linear models that share weights

[Deep sparse rectifier neural networks. Glorot, Bordes, & Bengio, 2011]

CNN

- Hubel and Wiesel's study on annimal's visual cortex:
 - Cells that are sensitive to small sub-regions of the visual field,
 called a *receptive field*
 - Simple cells respond maximally to specific edge-like patterns within their receptive field. Complex cells have larger receptive fields and are locally invariant to the exact position of the pattern.

Convolutional Neural Networks

Sparse local connections (spatially contiguous receptive fields)

Shared weights: each filter is replicated across the entire visual field, forming a feature map

CNN

Each layer has multiple feature maps

CNN

♦ The full model

- ♦ Max-pooling, a form of non-linear down-sampling.
 - Max-pooling partitions the input image into a set of non-overlapping rectangles and, for each such sub-region, outputs the maximum value.

Example: CNN for image classification

- Network dimension: 150,528(input)-253,440—186,624—64,896— 64,896-43,264-4096-4096-1000(output)
 - In total: 60 million parameters
 - □ Task: classify 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes
 - Results: state-of-the-art accuracy on ImageNet

Issues with CNN

- Computing the activations of a single convolutional filter is much more expensive than with traditional MLPs
- Many tuning parameters
 - # of filters:
 - Model complexity issue (overfitting vs underfitting)
 - Filter shape:
 - the right level of "granularity" in order to create abstractions at the proper scale, given a particular dataset
 - Usually 5x5 for MNIST at 1st layer
 - Max-pooling shape:
 - typical: 2x2; maybe 4x4 for large images

Auto-Encoder

♦ Encoder: (a distributed code)

$$y = s(Wx + b)$$

Decoder:

$$\mathbf{z} = s(\mathbf{W}'\mathbf{y} + \mathbf{b}')$$

- Minimize reconstruction error
- Connection to PCA
 - PCA is linear projection, which Auto-Encoder is nonlinear
 - Stacking PCA with nonlinear processing may perform as well (MaYi's work)
- Denoising Auto-Encoder
 - A stochastic version with corrupted noise to discover more robust features
 - E.g., randomly set some inputs to zero

Left: no noise; right: 30 percent noise

Deep Generative Models

Probabilistic Generative Models

Assumption: data is described by some factors, which are often hidden

- ♦ Inference with top-down & bottom-up cues: infer the posterior distribution $p(z|x) \propto p(z|\alpha)p(x|z,\beta)$
- Learning: estimate the parameters

$$\hat{\theta} = \operatorname{argmax} p(D|\theta)$$

Bayesian inference: infer the posterior distribution of parameters $p(\theta|D) \propto p_0(\theta)p(D|\theta)$

Deep Generative Models

• Multi-layer *latent-feature* representations with nonlinear transformations

$$z \sim p(z|\alpha)$$
 $x \sim p(x|z, \beta)$

Many variants by combining different building blocks

Recent Advances on DGMs

- Models:
 - Deep belief networks (Salakhutdinov & Hinton, 2009)
 - Autoregressive models (Larochelle & Murray, 2011; Gregor et al., 2014)
 - Stochastic variations of neural networks (Bengio et al., 2014)
 - **...**
- Applications:
 - □ Image recognition (Ranzato et al., 2011)
 - Inference of hidden object parts (Lee et al., 2009)
 - Semi-supervised learning (Kingma et al., 2014)
 - Multimodal learning (Srivastava & Salakhutdinov, 2014; Karpathy et al., 2014)
- Learning algorithms
 - Stochastic variational inference (Kingma & Welling, 2014; Rezende et al., 2014)

Symmetric Q-P Network

• P-network with two deterministic layers

Symmetric Q-P Network

• **Q-network** approximates the posterior (Kingma & Welling, 2014; Rezende et al. 2014)

Neural Evidence?

- Our visual systems contain multilayer generative models
- Top-down connections:
 - Generate low-level features of images from high-level representations
 - Visual imagery, dreaming?
- Bottom-up connections:
 - Infer the high-level representations that would have generated an observed set of low-level features

Symmetric Q-P Network

Problem: detail information is lost during abstraction

Symmetric Q-P Network

♦ Ideal case: get the lost information back!

A Layer with Memory and Attention

[Li, Zhu & Zhang. Learning to Generate with Memory, ICML 2016]

A Stacked Deep Model with Memory

Asymmetric architecture

Some Results

Density estimation

Models	MNIST	OCR-LETTERS			
VAE	-85.69	-30.09			
MEM-VAE(ours)	-84.41	-29.09			
IWAE-5	-84.43	-28.69			
MEM-IWAE-5(ours)	-83.26	-27.65			
IWAE-50	-83.58	-27.60			
MEM-IWAE-50(ours)	-82.84	-26.90			

Some Results

Density estimation

Models	MNIST	OCR-LETTERS		
VAE	-85.69	-30.09		
MEM-VAE(ours)	-84.41	-29.09		
IWAE-5	-84.43	-28.69		
MEM-IWAE-5(ours)	-83.26	-27.65		
IWAE-50	-83.58	-27.60		
MEM-IWAE-50(ours)	-82.84	-26.90		
DBN	-84.55	- 1/3		
S2-IWAE-50	-82.90	- 🔍		
RWS-SBN/SBN*	-85.48	-29.99		
RWS-NADE/NADE*	-85.23	-26.43		
NADE*	-88.86	-27.22		
DARN*	-84.13	-28.17		

Missing Value Imputation

(a) Data

(b) Noisy data

(c) Results of VAE

(d) Results of MEM-VAE

Learnt Memory Slots

Average preference over classes of the first 3 slots:

"0"	"1"	"2"	"3"	"4"	"5"	"6"	"7"	"8"	"9"
0.27	0.82	0.33	0.11	0.34	0.15	0.49	0.27	0.09	0.28
0.24	0.09	0.06	0.11	0.30	0.13	0.12	0.27	0.09	0.21
0.18	0.05	0.06	0.11	0.07	0.07	0.05	0.11	0.09	0.18

Corresponding images:

Discussions

Some Counter-intuitive Properties of DL

Stability w.r.t small perturbations to inputs

differences

 Imperceptible non-random perturbation can arbitrarily change the prediction (adversarial examples exist!)

[Szegedy et al., Intriguing properties of neural nets, 2013]

Overfitting in Big Data

- Surprisingly, regularization to prevent overfitting is increasingly important, rather than increasingly irrelevant!
- ♦ Increasing research attention, e.g., dropout training (Hinton, 2012)

- More theoretical understanding and extensions
 - Dropout as a Bayesian approximation (Gal & Ghahramani, 2016)
 - □ MCF (van der Maaten et al., 2013); Logistic-loss (Wager et al., 2013);
 - □ Dropout SVM (Chen, et al., 2014; Zhuo et al., 2015)

CNNVis: Turn black-box into gray

http://cgcad.thss.tsinghua.edu.cn/mengchen/video/CNNVis-final.mp4

[Liu, Shi, Li, Li, Zhu & Liu. Towards Better Analysis of Deep CNNs, IEEE VIS 2016]

CNNVis: Turn black-box into gray

Thank You!