Moisture Magic

UFZ "Hohes Holz" Soil Moisture Time-Series Analysis
HIDA Datathon, 2020

Maximilian Graf, Alexander Merdian-Tarko, Julius Polz, Christian Werner @Max_Grave_, @jpolz3, @cwerner76

Source: https://github.com/HIDA-Datathon/moisturemagic.git

Steps

- Transform raw data into coherent netcdf format (xarray)
- Exploratory data analysis
- Semi-Unsupervised Time-Series Classification (UMAP)

Resources:

https://umap-learn.readthedocs.io/en/latest/ http://xarray.pydata.org/en/stable/

Preprocessing

- Regularize and convert raw data
- Resample time-interval to fixed 15min steps
- Coordinates: time, box (one profile), level (vertical sensor position)
- Export to netCDF file

How our data looks...

.. kinda wild 😱

Data Exploration - Soil Moisture Flags

- Yearly occurrence of soil moisture flags for almost all boxes and sensors over the entire period (2010 - 2019)
- Period 2014 2015 has the best data in terms of number of missing values and availability of manual flags

Data Exploration - Soil Temperature Flags

- Yearly occurrence of soil temperature flags for almost all boxes and sensors over the entire period (2010-2019)
- Period 2014-2015 has the best data in terms of number of missing values and availability of manual flags

Experimental Setup

Input

Dataset

Windows of 40 time steps (10h)

One Sensor only, no neighbour data

Soil moisture+Temp+Battery

→ Input.shape = (n_samples, 40, 3)

Train: All sensors 2014

 \rightarrow n_samples = 160.000

Test: All sensors 2015

 \rightarrow n_samples = 158.000

Reference

Goal

contains a temp or moisture flag

Unsupervised detection of flags

Semi-Unsupervised TS Classification using UMAP

Density of points in 2D layout shows differences

Clustering by k-means (supervised part)

Receiver Operating Characteristic

Positive = Outlier

Receiver
Operating
Characteristic

Positive = Outlier

What could be next?

- Conceptual: use all data vs. use trustworthy data
 - Select trustworthy periods
 - Select trustworthy boxes/sensors
- Use additional information in TS classification e.g. rainfall data

 UMAP: Many opportunities to optimize. E.g. neighbouring sensors can be used easily → Should improve performance

Moisture Magic

#moisture magic

