

Hi-C

Lieberman-Aiden 2010

GAAATT

AAGGAG

CGCCAG

AATTI

Hi-C

Lieberman-Aiden 2010

CGCCA

AAGG(

Dovetail Sequencing (Putnam 2015)

CGCCAG

10X Genomics

AAGGO AATTT GCAC ATAC

GG

'GA

25x linked –read coverage

• 60 kb deletion

AAGGAG

AAGGC

GAAATT AAGGAG TTTGGG CGCCAG AAGGC AATTT

Illumina sequencing workflow

- **►** Library Construction
- ➤ Cluster Formation
- > Sequencing
- ➤ Data Analysis

Fragmentation

- Mechanical shearing:
 - BioRuptor
 - Covaris

DNA, RNA

- Enzymatic:
 - Fragmentase, RNAse3

DNA, RNA

Chemical: Mg2+, Zn2+

 \rightarrow RNA

DNA library construction

Enrichment of library fragments

Illumina Sequencing Technology

Sequencing By Synthesis (SBS) Technology

TruSeq Chemistry: Flow Cell

Sequencing

GAAATT

AAGGAG

CGCCAG

Sequencing

Patterned Flowcell

GAAATT **IGTTGA** AAGGAG TTTGGG CGCCAG AATTI

Hiseq 3000: 478 million nanowells per lane

CGCCAG AATTI

GCAC

GAAATT CGCCAG

AATTT

CTGGG GAAATT AAGGAG CGCCAG AATTT

What will go wrong?

- cluster identification
- bubbles
- > synthesis errors:

ClusterCluster ClustsrCluster ClusterCluster ClusterCluster CllsterCluster

What will go wrong?

> synthesis errors:

ClusterCluster ClustsrCluster ClusterCluster ClusterCluster Cl1sterCluster

ClsterClusterC ClusterCluster ClusterCluster Cl<mark>usterCluste</mark> ClusterCluster

Phasing & Pre-Phasing problems

Illumina SAV viewer

base composition

fluorescence intensity

amplicon mix

amplicon

amplicon mix Q30

A Review of Sequencing Duplicate Types

"If you can put adapters on it, we can sequence it!"

Know your sample

No need to be scared of HTS

UC Davis Center for Plant Diversity/Herbarium

- > The Herbarium archives contain over 300,000 dried specimens.
- > Search for Grapevine Red Blotch-Associated Virus
- > Virus traces found by PCR

Maher Al Rwahnih
UCD Plant Foundation
Plant Services

Studying historic Bean varieties from herbarium samples

- GBS (Genotyping-By-Sequencing)
- 60 year old herbarium samples

Sarah Dohle, Gepts Lab

AATT

Quantitation & QC methods

Intercalating dye methods (PicoGreen, Qubit, etc.): Specific to dsDNA, accurate at low levels of DNA Great for pooling of indexed libraries to be sequenced in one lane Requires standard curve generation, many accurate pipetting steps

➤ Bioanalyzer:

Quantitation is good for rough estimate Invaluable for library QC High-sensitivity DNA chip allows quantitation of low DNA levels

>qPCR

Most accurate quantitation method More labor-intensive Must be compared to a control

Optional: PCR-free libraries

- PCR-free library:
 - if concentration allows
 - Reduction of PCR bias against e.g. GC rich or AT rich regions, especially for metagenomic samples

OR

- Library enrichment by PCR:
 - Ideal combination: high input and low cycle number; low-bias polymerase

Library QC by Bioanalyzer

Predominant species of appropriate MW

Minimal primer dimer or adapter dimers

Minimal higher MW material

Library QC by Bioanalyzer

Beautiful

Beautiful

GAAATT

Library QC

Examples for successful libraries

GAAATT

AAGGAG

CGCCAG

AATTT

Adapter contamination at ~125 bp

RNA-seq targeted sequencing:

- Capture-seq (Mercer et al. 2014)
- Nimblegen and Illumina
- Low quality DNA (FFPE)
- Lower read numbers 10 million reads
- Targeting lowly expressed genes.

http://pacificbiosciences.com

THIRD GENERATION DNA SEQUENCING

Single Molecule Real Time (SMRT™) sequencing Sequencing of single DNA molecule by single polymerase

Very long reads: average reads over 8 kb, up to 30 kb High error rate (~13%).

Complementary to short accurate reads of Illumina

Third Generation Sequencing : Single Molecule Sequencing

Pacific Biosciences

4 nucleotides with different fluorescent dye simultaneous present

2-3 nucleotides/sec 2-3 Kb (up to 50) read length 6 TB data in 30 minutes

laser damages polymerase

70 nm aperture "Zero Mode Waveguide"

Damien Pelt

First Sequencing of CGG-repeat Alleles in Human Fragile X Syndrome using PacBio RS Sequencer

Paul Hagerman, Biochemistry and Molecular Medicine, SOM.

- Single-molecule sequencing of pure CGG array,
- first for disease-relevant allele. Loomis *et al.* (2012) *Genome Research*.
 - applicable to many other tandem repeat disorders.
- Direct genomic DNA sequencing of methyl groups,
 - direct epigenetic sequencing (paper under review).
- Discovered 100% bias toward methylation of 20 CGGrepeat allele in female,

CTGGG

GAAATT

IGTTGA

AAGGAG

TTTGGG

CGCCAG

rcccgc

AATTGO

AAGGC

AATTI

ATAC

Thank you!

AAGGAG CGCCAG AAGGC AATTT