Задача А. Разбор утверждения

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

На вход вашей программе дается утверждение в следующей грамматике:

```
      ⟨Файл⟩
      ::=
      ⟨Выражение⟩

      ⟨Выражение⟩
      ::=
      ⟨Дизъюнкция⟩ | ⟨Дизъюнкция⟩ '->' ⟨Выражение⟩

      ⟨Дизъюнкция⟩
      ::=
      ⟨Конъюнкция⟩ | ⟨Дизъюнкция⟩ '&' ⟨Отрицание⟩

      ⟨Конъюнкция⟩
      ::=
      ⟨Отрицание⟩ | ⟨Конъюнкция⟩ ' &' ⟨Отрицание⟩

      ⟨Отрицание⟩
      ::=
      '!' ⟨Отрицание⟩ | ⟨Переменная⟩ | '(' ⟨Выражение⟩ ')'

      ⟨Переменная⟩
      ::=
      ('A'...'Z') {'A'...'Z' | '0'...'9' | '''}*
```

Имена переменных не содержат пробелов. Между символами оператора '->' нет пробелов. В остальных местах пробелы могут присутствовать. Символы табуляции и возврата каретки должны трактоваться как пробелы.

Вам требуется написать программу, разбирающую утверждение и строящую его дерево разбора, и выводящую полученное дерево в единственной строке без пробелов в следующей грамматике:

Формат входных данных

В единственной строке входного файла дано утверждение в грамматике из условия. Размер входного файла не превышает 100 КБ.

Формат выходных данных

В единственной строке выходного файла выведите дерево разбора утверждения без пробелов.

стандартный ввод
!A&!B->!(A B)
стандартный вывод
(->,(&,(!A),(!B)),(!(,A,B)))
стандартный ввод
P1'->!QQ->!R10&S !T&U&V
стандартный вывод
(->,P1',(->,(!QQ),(,(&,(!R10),S),(&,(&,(!T),U),V))))

Задача В. Минимизация доказательства

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 15 секунд Ограничение по памяти: 512 мегабайт

На вход вашей программе дается доказательство утверждения в следующей грамматике:

```
⟨Файл⟩
                                                                                                                                                               ⟨Контекст⟩ 'І-' ⟨Выражение⟩ '\n' ⟨Строка⟩*
                                                                                                                                                               ⟨Выражение⟩ [', ' ⟨Выражение⟩]*
                     (Контекст)
                                   (Строка)
                                                                                                                                                               ⟨Выражение⟩ '\n'
                                                                                                                      ::=
                                                                                                                                                              «Выражение» '&' «Выражение»
   (Выражение)
                                                                                                                     ::=
                                                                                                                                                               (Выражение) '|' (Выражение)
                                                                                                                                                               ⟨Выражение⟩ '->' ⟨Выражение⟩
                                                                                                                                                              '!' (Выражение)
                                                                                                                                                              '(' (Выражение) ')'
                                                                                                                                                               (Переменная)
                                                                                                                                                             (`A'\ldots`Z')\ \{`A'\ldots`Z'\ |\ `0'\ldots`9'\ |\ `\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode{,}\ifmmode
(Переменная)
                                                                                                                      ::=
```

Операторы '&' и '|' левоассоциативны. Оператор '->' правоассоциативен. Операторы в порядке уменьшения приоритета: '!', '&', '|', '->'.

Имена переменных не содержат пробелов. Между символами одного оператора нет пробелов ('->' и '|-'). В остальных местах пробелы могут присутствовать. Символы табуляции и возврата каретки должны трактоваться как пробелы.

Требуется проверить доказательство на корректность. Если оно неверно, выведите «Proof is incorrect». Иначе минимизируйте и проаннотируйте доказательство.

Под минимизацией доказательства подразумевается создание нового доказательства такого, что:

- Новое доказательство доказывает то же самое утверждение в том же самом контексте
- Строки нового доказательства являются подпоследовательностью строк исходного доказательства
- В новом доказательстве ни одно выражение не встречается в нескольких строках
- В новом доказательстве нет неиспользуемых выражений, т.е. все выражения, кроме последнего, должны использоваться одним или более применением правила Modus Ponens.

Под аннотированием доказательства подразумевается:

- Все строки должны быть пронумерованы
- Каждая строка должна содержать пояснение, как она была выведена:
 - 1. Аксиома: номер аксиомы
 - 2. Предположение: номер предположения
 - 3. Modus Ponens: номера строк, в которых записаны выражения, используемые для вывода выражения в текущей строке

Формат входных данных

Во входном файле задано доказательство в приведенной выше грамматике. Размер входного файла не превышает 10 МБ.

Формат выходных данных

Если данное доказательство является некорректным, в единственной строке выходного файла должна быть запись «Proof is incorrect».

Иначе в файле должно быть минимизированное проаннотированое корректное доказательство. Каждая строка, кроме последней, должна быть использована хотя бы в одной аннотации Modus Ponens. Подробный формат аннотаций смотрите в примерах.

```
стандартный ввод
|- A -> A
A & A -> A
A -> A -> A
A \rightarrow (A \rightarrow A) \rightarrow A
A & A -> A
(A \rightarrow A \rightarrow A) \rightarrow (A \rightarrow (A \rightarrow A) \rightarrow A) \rightarrow A \rightarrow A
(A \rightarrow (A \rightarrow A) \rightarrow A) \rightarrow A \rightarrow A
A & A -> A
A \rightarrow A
                                                  стандартный вывод
|-(A->A)
[1. Ax. sch. 1] (A \rightarrow (A \rightarrow A))
[2. Ax. sch. 1] (A \rightarrow ((A \rightarrow A) \rightarrow A))
[3. Ax. sch. 2] ((A \rightarrow (A \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)))
[4. M.P. 3, 1] ((A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A))
[5. M.P. 4, 2] (A \rightarrow A)
                                                  стандартный ввод
A->B, !B |- !A
A->B
!B
!B -> A -> !B
A -> !B
(A \rightarrow B) \rightarrow (A \rightarrow !B) \rightarrow !A
(A \rightarrow !B) \rightarrow !A
! A
                                                 стандартный вывод
(A \rightarrow B), !B \mid - !A
[1. Hypothesis 1] (A -> B)
[2. Hypothesis 2] !B
[3. Ax. sch. 1] (!B \rightarrow (A \rightarrow !B))
[4. M.P. 3, 2] (A \rightarrow !B)
[5. Ax. sch. 9] ((A \rightarrow B) \rightarrow ((A \rightarrow !B) \rightarrow !A))
[6. M.P. 5, 1] ((A \rightarrow !B) \rightarrow !A)
[7. M.P. 6, 4] !A
                                                  стандартный ввод
A, C |- B,
в,
                                                  стандартный вывод
Proof is incorrect
```

Задача С. Теорема Гливенко

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 15 секунд Ограничение по памяти: 512 мегабайт

На вход вашей программе дается **корректное** доказательство утверждения α в классическом исчислении высказываний. Доказательство записано с использованием грамматики из предыдущего задания.

Вам требуется построить корректное доказательство утверждения $\neg\neg\alpha$ в интуиционистском исчислении высказываний.

Формат входных данных

Во входном файле задано доказательство утверждения α в классическом исчислении высказываний. Размер входного файла не превышает 5 КБ.

Формат выходных данных

Файл должен содержать корректное доказательство утверждения $\neg \neg \alpha$ в интуиционистском исчислении высказываний в том же контексте, что доказательство α во входном файле.

Пример

```
стандартный ввод
A | - A
Α
                                                      стандартный вывод
A |- !!A
Α
(A \rightarrow (!A \rightarrow A))
(!A \rightarrow A)
(!A \rightarrow (!A \rightarrow !A))
((!A \rightarrow (!A \rightarrow !A)) \rightarrow ((!A \rightarrow (!A \rightarrow !A) \rightarrow !A)) \rightarrow (!A \rightarrow !A)))
((!A -> ((!A -> !A) -> !A)) -> (!A -> !A))
(!A \rightarrow ((!A \rightarrow !A) \rightarrow !A))
(!A \rightarrow !A)
((!A \rightarrow A) \rightarrow ((!A \rightarrow !A) \rightarrow !!A))
((!A \rightarrow !A) \rightarrow !!A)
!!A
```

Замечание

В классическом исчислении высказываний используются следующие схемы аксиом:

- (1) $\alpha \to \beta \to \alpha$
- $(2) \qquad (\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$
- (3) $\alpha \to \beta \to \alpha \& \beta$
- (4) $\alpha \& \beta \to \alpha$
- (5) $\alpha \& \beta \to \beta$
- (6) $\alpha \to \alpha \vee \beta$
- $(7) \qquad \beta \to \alpha \vee \beta$
- (8) $(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$
- $(9) \qquad (\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$
- (10) $\neg \neg \alpha \rightarrow \alpha$

В интуиционистском исчислении высказываний 10-я схема аксиом заменяется на:

(10)
$$\alpha \to \neg \alpha \to \beta$$

Задача D. Полнота исчисления высказываний

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 15 секунд Ограничение по памяти: 512 мегабайт

На вход вашей программе дается утверждение α в грамматике из предыдущих заданий. От вас требуется найти:

- Набор гипотез Γ_1 со следующими свойствами:
 - Γ_1 состоит только из переменных
 - $-\Gamma_1 \vdash \alpha$

В этом случае вам нужно вывести доказательство $\Gamma_1 \vdash \alpha$.

- Если такого набора гипотез не нашлось, то нужно найти наименьший набор гипотез Γ_2 :
 - Γ_2 состоит только из отрицаний переменных
 - $-\Gamma_2 \vdash \neg \alpha$

В этом случае вам нужно вывести доказательство $\Gamma_2 \vdash \neg \alpha$.

• Если и такого набора гипотез не нашлось, то выведите «: (».

Если среди предыдущих случаев существует несколько подходящих наборов гипотез (а если такие наборы есть, то их всегда бесконечно много), то требуется вывести любой подходящий набор наименьшего размера.

Формат входных данных

Во входном файле задано утверждение α . Размер входного файла не превышает 50 байт. Количество различных переменных, входящих в α , не превосходит 3.

Формат выходных данных

Если требуемого набора гипотез не существует, в единственной строке выведите «: (». Иначе выведите требуемое в условии доказательство, используя грамматику из предыдущих заданий.

стандартный ввод
!A
стандартный вывод
:(
стандартный ввод
A -> A & B
стандартный вывод
B - A -> A & B
В
B -> A -> B
A -> B
A -> B -> A & B
(A -> B) -> (A -> B -> A & B) -> A -> A & B
(A -> B -> A & B) -> A -> A & B
A -> A & B

Задача Е. Формальная арифметика

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 15 секунд Ограничение по памяти: 1024 мегабайта

Напишите программу, проверяющую доказательство в формальной арифметике на корректность.

Формат входных данных

```
⟨Файл⟩
                             ⟨заголовок⟩'\n'⟨доказательство⟩
                             'I-'⟨выражение⟩
      (заголовок)
(доказательство)
                       ::= \{\langle выражение \rangle `\n'\}^+
                             ⟨дизъюнкция⟩ | ⟨дизъюнкция⟩ '-> '⟨выражение⟩
     (выражение)
                       ::=
                             ⟨конъюнкция⟩ | ⟨дизъюнкция⟩ '| '⟨конъюнкция⟩

    ⟨дизъюнкция⟩

                       ::=
   (конъюнкция)
                             ⟨унарное⟩ | ⟨конъюнкция⟩'&'⟨унарное⟩
                       ::=
         (унарное)
                             \langle \text{предикат} \rangle | '!' \langle \text{унарное} \rangle | '(' \langle \text{выражение} \rangle')'
                             ('@'|'?') (переменная). (выражение)
                             'a'...'z'
    (переменная)
                       ::=
                             'A' . . . 'Z'
       (предикат)
                       ::=
                             \langle \text{терм} \rangle '='\langle \text{терм} \rangle
             (терм)
                            ⟨слагаемое⟩ | ⟨терм⟩'+'⟨слагаемое⟩
                            ⟨умножаемое⟩ | ⟨слагаемое⟩'*'⟨умножаемое⟩
       (слагаемое)
                             \langleпеременная\rangle | '('\langleтерм\rangle')'
   (умножаемое)
                             '0' | (умножаемое)'',
```

Коды символов: символ апострофа (') — 0x27, вертикальная черта (|) — 0x7c.

Формат выходных данных

Если доказательство корректно, проаннотируйте его. Первая строка должна повторять строку из входного файла, остальные строки доказательства должны быть предварены аннотацией:

- [n. Ax. sch. k], где n номер выражения, а k номер схемы аксиом: либо число от 1 до 12, либо A9.
- [n. Ax. k], где k значение от A1 до A8.
- [n. M.P. k, 1], [n. ?@-intro k] для правил вывода. Смысл индексов для М.Р.: если доказательство представлено формулами δ_i , то запись слева означает $\delta_l \equiv \delta_k \to \delta_n$.

Аннотации перечислены в порядке предпочтения: если выражение может быть обосновано, допустим, как аксиома A8 или как M.P., в ответе должно быть указано Ax. A8. В случае пересечения аксиом/схем (упражнение: бывает ли такое?) указывайте аксиому/схему с минимальным номером; арифметические аксиомы/схемы идут после логических. Если выражение может быть получено при помощи одного правила вывода несколькими способами, предпочтение должно отдаваться наиболее поздним ссылкам в лексикографическом порядке: М.Р. 10,1 предпочтительнее M.P. 1,10. М.Р. предпочтительнее правил с кванторами, правило с квантором существования предпочтительнее правила с квантором всеобщности (даже если номер исходной формулы для правила с квантором существования меньше).

В выражениях должны быть расставлены все скобки в точности по одному разу (т.е. скобки вокруг всех унарных и бинарных выражений, кроме апострофа).

Если доказательство некорректно, выведите одну из следующих строк, в зависимости от типа ошибки. Ваша программа должна находить первое некорректное выражение в доказательстве, и для него указывать тип ошибки с минимальным номером (в соответствии со списком ниже):

- 1. Expression n: variable v occurs free in ?@-rule. При коллизии между правилами по кванторам существования и всеобщности указывайте информацию для правила по квантору существования.
- 2. Expression n: variable v is not free for term t in ?@-axiom. При коллизии между аксиомами для кванторов сущестования и всеобщности указывайте информацию из аксиомы для квантора всеобщности (номер 11).
- 3. Expression n is not proved.
- 4. The proof proves different expression.

Все строки доказательства, предшествующие некорректной, должны быть проаннотированы. Столь подробные правила введены для того, чтобы упростить проверяющую программу: ответ сравнивается с эталонным на равенство; будьте внимательны.

```
стандартный ввод
1-a+0=a
(((a)+0))=a
(@y.y+0*0'=y)->(?x.@y.x=y)
                                      стандартный вывод
|-((a+0)=a)|
[1. Ax. A5] ((a+0)=a)
Expression 2: variable x is not free for term (y+(0*0')) in ?@-axiom.
                                       стандартный ввод
I-A->W->A
A->B->A&B
A -> A \mid B
(A->P)->(B->P)->(A|B->P)
(@a.a+0=a)->b+0=b
0=0 -> (?x.x=0)
a=b->a=c->b=c
a=b->a'=b'
a'=b'->a=b
0=0&(0x.x=x->x'=x')->x=x
A \rightarrow W \rightarrow A
                                      стандартный вывод
|-(A->(W->A))
[1. Ax. sch. 5] (A \rightarrow (B \rightarrow (A\&B)))
[2. Ax. sch. 6] (A \rightarrow (A|B))
[3. Ax. sch. 8] ((A \rightarrow P) \rightarrow ((B \rightarrow P) \rightarrow ((A|B) \rightarrow P)))
[4. Ax. sch. 11] ((@a.((a+0)=a))->((b+0)=b))
[5. Ax. sch. 12] ((0=0) \rightarrow (?x.(x=0)))
[6. Ax. A1] ((a=b)->((a=c)->(b=c)))
[7. Ax. A2] ((a=b)->(a'=b'))
[8. Ax. A3] ((a'=b')->(a=b))
[9. Ax. sch. A9] (((0=0)&(0x.((x=x)->(x'=x'))))->(x=x))
[10. Ax. sch. 1] (A \rightarrow (W \rightarrow A))
```

Математическая логика, Stepik Университет ИТМО, Осень 2020

```
стандартный ввод
|-(?x.X->X->X)->(@x.X->X->X)
X->X->X
(X-X-X)-(X-X-X)-(X-X-X)
(X-X-X)-(X-X-X)
(X->X->X)->0x.(X->X->X)
(?x.(X->X->X))->(X->X->X)
(?x.(X->X->X))->0x.(X->X->X)
                                стандартный вывод
|-((?x.(X->(X->X)))->(@x.(X->(X->X))))
[1. Ax. sch. 1] (X \rightarrow (X \rightarrow X))
[2. Ax. sch. 1] ((X->(X->X))->((X->(X->X))->(X->(X->X)))
[3. M.P. 1, 2] ((X -> (X -> X)) -> (X -> (X -> X)))
[4. ?@-intro 3] ((X->(X->X))->(@x.(X->(X->X)))
[5. ?@-intro 3] ((?x.(X->(X->X)))->(X->(X->X)))
[6. ?@-intro 4] ((?x.(X->(X->X)))->(@x.(X->(X->X))))
```