An Architecture for Resource Analysis, Prediction and Visualization in Microservice Deployments

Xavier Geerinck

Supervisors: Wim Van Den Breen, dhr Pieter Leys (Cisco)

Counsellor: dhr. Stefaan Vander Rasieren (Cisco)

Master's dissertation submitted to obtain the academic degree of Master of Science in Information Engineering Technology

Department of Information Technology Faculty of Engineering and Architecture In conjunction with Cisco Systems Academic Year 2016 - 2017

An Architecture for Resource Analysis, Prediction and Visualization in Microservice Deployments

Xavier Geerinck

Supervisors: Wim Van Den Breen, dhr Pieter Leys (Cisco)

Counsellor: dhr. Stefaan Vander Rasieren (Cisco)

Master's dissertation submitted to obtain the academic degree of Master of Science in Information Engineering Technology

Keywords

Architecture, Machine Learning, Prediction, Regression, Analysis, Visualization

Abstract

Foreknowledge is one of the critical factors for any enterprise to outdistance the competi-

tion in a timely manner. When a cloud enterprise is not able to detect scaling problems

within a timely manner, this can lead to decreasing revenues and the occurrence of po-

tential bottleneck issues. Which results in decreased customer statisfaction and Service

Level Agreement violations due to the decreased uptime of these services.

This dissertation tackles this by introducing a multi-layered architecture that is able to

analyse, visualize and predict the resource usage of microservices in a large scale deploy-

ment. Through the use of this analysis, prediction models can be created that are able

to issue warnings before the occurrence of bottlenecks. The enterprise can then use these

warnings to devise a new strategy for the microservices deployments to comply the the

Service Level Agreements and increase the customer statisfaction.

From the results obtained in this thesis, it was made clear that the introduced architecture

is able to grow, iteratively learn by itself and return the models needed. All of this is

achieved, while still maintaining an architecture that is modular enough to adapt to the

different complex enterprise structures.

Xavier Geerinck, Januari 2017

Abstract Dutch

Voorkennis is een van de meest kritische factors die beslissen of een onderneming in staat is om op tijd te reageren op de competitie en deze voor te blijven. Wanneer een cloudonderneming dit niet op tijd detecteert, kan dit leiden tot verminderde inkomsten en het
voorkomen van mogelijke bottleneck problemen. Wat leidt tot verminderde klantenvredenheid en een mogelijke impact op de verschillende Service Level Agreements omwille
van de verminderde uptime van deze services.

Deze masterproef pakt dit aan door een meerlagenarchitectuur te introduceren die het mogelijk maakt om microservices te analyseren, visualiseren en hun resource gebruik te voorspellen in grote microservice omgevingen. Door gebruik te maken van deze analyse en voorspellingsmodellen kunnen we waarschuwingen weergeven voor deze problemen zich stellen. Een onderneming kan deze waarschuwingen dan gebruiken om een nieuwe strategie uit te denken om aan hun Service Level Agreements te voldoen en de klantentevredenheid te verbeteren.

Uit de gevonden resultaten kan het duidelijk gemaakt worden dat de gentroduceerde architectuur kan groeien, zelfstandig kan bijleren en de noodzakelijke modellen kan teruggeven. Dit terwijl deze nog steeds modulair genoeg is om aan de complexe eisen van verschillende bedrijfsstructuren te voldoen.

Xavier Geerinck, Januari 2017

Acknowledgments

I would like to start by thanking Cisco Systems for giving me the chance and providing the utilities needed to create this thesis.

Next to that I would like to start by thanking Mr. Pieter Leys who was my promotor at Cisco Systems, whom without I would never have been able to get this far and create such a finetuned thesis. With his long lasting patience and ability to proofread so well, I was able to create a masterpiece that I will remember for my entire life.

I am also grateful for Mr. Stefaan Vander Rasieren, who guided my initial subject finding at Cisco and who found the best persons available for me to help me with this thesis. His continued support and availability towards me contributed to this thesis in an unimaginable way.

Thanks to Mr. Wim Van Den Breen who was my promotor assigned to me by my University, for his continued guidance and help.

Also a big thanks to my family and close friends, who have been a big help on both the emotional and technical side. Without them I would never have had the courage or the perseverance required to continue this dissertation for such a long time.

Finally the greatest thanks goes towards my parents, who supported me through the life choices I made and who raised me as the person that I am today. Without them I would never have had the chance to come this far.

License

"The author hereby grants permission to access and share this thesis for personal use. Any other use is subject to the restrictions of copyright, in particular with regard to the duty to expressly mention the source when citing results from this thesis."

Xavier Geerinck, Januari 2017

CONTENTS i

Contents

1	Intr	ntroduction		
	1.1	Background	2	
		1.1.1 Microservices	2	
		1.1.2 Containers	2	
		1.1.3 Cisco Systems	3	
		1.1.4 Datacenters	3	
		1.1.5 Container Orchestration Services	4	
	1.2	Motivation	5	
	1.3	Objectives	6	
	1.4	Thesis Organization	7	
2	Test	t Infrastructure	8	
	2.1	Introduction	8	
	2.2	Technologies Used	9	
		2.2.1 ESXi	9	
		2.2.2 Docker	9	
		2.2.3 Vagrant	10	
		2.2.4 Docker Swarm	10	
	2.3	Infrastructure Creation	12	
	2.4	Conclusion	12	
3	Plat	tform Architecture	15	
	3.1	Introduction	16	
	3.2	Technologies Used	16	
		3.2.1 Apache Kafka	16	

CONTENTS ii

		3.2.2 Apache Flink	17
		3.2.3 cAdvisor	17
	3.3	Related Works	18
		3.3.1 The Lambda Architecture	18
	3.4	$Methodology \dots \dots$	19
		3.4.1 Real Time Layer	20
		3.4.2 Batch Layer	21
		3.4.3 Visualization Layer	21
	3.5	Scaling the Platform Architecture	23
	3.6	Conclusions	23
4	Mae	hine Learning	25
	4.1	Introduction	25
	4.2	Prediction Algorithms	27
		4.2.1 Simple Linear Regression	27
		4.2.2 Gradient Descent Introduction	28
		4.2.3 Linear Regression with Stochastic Gradient Descent	29
	4.3	Methodology	30
		4.3.1 Batch Layer Implementation	30
		4.3.2 Realtime Layer Implementation	32
		4.3.3 Normalizing data	34
	4.4	Evaluations and Applications	35
		4.4.1 Real-Time Model	35
		4.4.2 Batch Model	37
		4.4.3 Combined Model	39
	4.5	Conclusions	40
5	Vis	alization of the created Architecture	41
	5.1	Introduction	41
	5.2	Technologies	41
		5.2.1 Proxy Server	41
		5.2.2 React	42
		5.2.3 Redux	43

CONTENTS iii

		5.2.4 Socket.io	45
	5.3	Methodology	45
		5.3.1 Interfacing with Docker Swarm	45
		5.3.2 Important design aspects	46
		5.3.3 Creating the React.js and Redux data flow	46
		5.3.4 Alerts	47
	5.4	Evaluations and Applications	48
	5.5	Conclusions	48
6	Con	nclusion	49
	6.1	General	49
	6.2	Contributions	49
		6.2.1 Docker swarm deadlock	49
		6.2.2 Visualizer	49
	6.3	Future Work	50
		6.3.1 Machine Learning Algorithm	50
		6.3.2 Apache Flink	50

INTRODUCTION 1

Chapter 1

Introduction

The Information Technology environment is an ever-growing environment that is highly volatile, where new technologies are introduced at an ever expanding rate. Because of this expansion speed, there is a need for a clearer and easier to manage infrastructure that is able to keep up with these developments.

This chapter provides an overview of the technologies used in this thesis, as well as the company where this thesis was created. It also includes the motivation that guided the effort, its key findings and how this thesis is organized.

1.1 Background 2

1.1 Background

1.1.1 Microservices

Looking at the different application structure models throughout history, we can conclude that there were three big structure changes that happened.

In the 1990s applications were developed as one big monolith. This meant that different business components were all woven together as one component. Often referred as creating 'spaghetti' code, because components were so tightly coupled that it was impossible to separate them.

All of this changed for the first time in the 2000s. Companies started moving towards more loosely coupled components. To be able to grow more easily and expand their businesses more rapidly. This trend was mostly lead by Amazon who referred to this structure as the 'Pizza Model'. Which stated that new business ideas should lead by a small team that can be fed by two pizzas. [1]

This trend changed for the last time in the 2010s. Applications became completely decoupled from each other and run as different independent components called 'microservices'. Microservices can be created by developers who do not need to have prior knowledge about the other different microservices within the infrastructure. Microservices communicate with one another through the use of a protocol defined at level 7 of the OSI Model. [2]

1.1.2 Containers

To be able to easily manage and deploy microservices, the concept of containers was introduced. A container is an isolated environment within the system it is running on, packing an application its code required to run. In contrast to a virtual machine, containers do not require a complete operating system to be included within their code. They share the underlying operating system code and utilize the different systems calls exposed by it. [3]

1.1 Background 3

1.1.3 Cisco Systems

Cisco Systems is an Information Technology company, focused on Network and Communications equipment, with a growing interest in the Software-as-a-Platform landscape. It is currently ranked number 54 on the Fortune 500 [4]. With Its vision to change the way we work, live, play and learn, Cisco tries to connect the world in a high-speed way. [5].

Because of its global scale, Cisco has the need to be able to manage and deploy Microservices more optimally, which is why it initially developed an open-source platform called Mantl and acquired a company called ContainerX. Through these recent developments, Cisco is now able to manage its datacenters more optimally, resulting in a larger ever-growing consumer base.

1.1.4 Datacenters

Datacenters are facilities where a collection of servers is brought together to be 'hosted' under climatological ideal circumstances. These facilities try to accomplish an around the clock operation time for these servers resulting in an ideal experience for the end-user.

The traditional model of a datacenter works by renting out servers to end-users. This however means that a large amount of the installed resources will sit idle within this environment. Through the use of microservices, newer models can be found that try to solve this problem.

Microservices are small in nature, allowing for a finer utilization of these resources. Because of this a change in the traditional model is made possible. by transforming the traditional model from an 'Infrastructure as a Service' towards a 'Service as a Platform' one, margins on revenue can be increased further.

1.1 Background 4

1.1.5 Container Orchestration Services

With the growth of the amount of microservices and containers being deployed, the need of a new service was created. Orchestration can be seen as a management layer on top of the different microservices, performing tasks such as grouping, replicating, deploying and monitoring the different microservices.

This service has three core properties that can be identified within a microservice deployment:

- Affinity: affinity tells us where a specific type of microservice should be deployed. This can be useful for grouping the same types of microservices on the same machines, or spread them across different machines. For example, cAdvisor is a logging microservice, which will use anti-affinity to spread the different instances over all our different machines, while as a Wordpress microservice will have a shared affinity to group them on the same machine as much as possible, reutilizing shared packages as much as possible.
- Replication: replication is a system used to create fault-tolerant and high-availability systems. Through Replication, the system can be told how many instances of a specific microservice should be running at a given time. By combining replication with affinity, we can spread these replications over our different machines, giving us full control over the placement of these microservices. [6]
- Monitoring: monitoring is a critical part of any system that changed with the introduction of microservices. The Orchestration Service has to be able to monitor itself and the microservices to measure different statistics such as resource usage and the number of created microservices.

Today there are multiple different high quality orchestration services available which are developed by high reputation vendors such as 'Google' and 'Docker'. For example: Kubernetes, Marathon and Docker Swarm. The choice was made to continue with Docker Swarm in this thesis for several reasons. First of all the deciding reason is that Docker Swarm is open-source project which allows for a continued development without a vendor lock-in disadvantage. Secondly, Docker Swarm is built in with the Docker Engine, removing the need for an extra dependency that had to be installed seperately. Lastly, Docker Swarm is a relative new project which increases the research and contributions that can be made in this thesis.

1.2 Motivation 5

1.2 Motivation

By reading the sections above, it can be made clear that microservices solve an important aspect in the Information Technology sector. However as with each technology there are several downsides of it that should be taken into account.

While before there was only one service that included all of the application logic and frameworks required to run the application. There are now different smaller services that all need to re-include certain parts of the application to be able to communicate with one another. This creates an overhead on the storage layer, increasing the need for a distributed storage pool that can be accessed by the different microservices.

Another critical aspect that changed because of the introduction of microservices is monitoring. Before we only had to monitor the system that was running the monolithic application, whereas now we need to monitor the different containers, the orchestration service and the machine that is running these microservices. This increases the amount of metrics that are collected from the different services. Increasing factors such as the bandwidth required to export these metrics and the storage needed to store the collected data.

The most critical aspect that changed is the increasingly distributed nature of these microservices. In a monolithic model, the application was scaled by introducing more resources on the machine such as memory, processing power and disk storage, oftenly referred as 'vertical scaling'. While as now these services are replicated over multiple different machines, which can be referred as 'horizontal scaling'.

By combining the different aspects above, several problems can be identified that require new solutions to be created. This thesis will look into creating an architecture that is able to efficiently monitor the different microservices, process the different monitored metrics in a realtime fashion and automatically update models that are able to predict resource usage through the use of machine learning. 1.3 Objectives 6

1.3 Objectives

Looking at the different problems that were posed, several key performance indicators can be identified that are used to create the objectives of this thesis:

- Latency: the latency between the different microservices. Every additional latency created results in the loss of customers.
- Errors: how many errors appear on the different systems and microservices?
- **Traffic:** is our traffic trend growing or decreasing? When do microservices have to be upscaled or downscaled?
- Saturation: is a microservice satured such as that no traffic is able to be consumed anymore?

From these different performance indicators, we can summarize different objectives that can be seen in Table 1.1.

	Objective	Description	
1	Metric Collection	How can we create an architecture that is able to collect and	
		store metrics in a realtime fashion, without hitting process-	
		ing power and storage limits.	
2	Metric Analyzation	How do we analyze the collected metrics to be able to ex-	
		tract relevant data from them that can solve the different	
		problems that were posed.	
3	Visualization	Can we create a visualization infrastructure that is able to	
		show the different microservices running on the different ma-	
		chines, and gather detailed graphs about these.	

Table 1.1: Objectives and Research Goals

1.4 Thesis Organization

The first chapter covered the basic introduction, background, motivation and objectives for this thesis that will be looked at in the following chapters.

In Chapter 2 a detailed description will be given that lead to the creation of the testing environment that was used to generate the acquired results in this thesis.

Chapter 3 will provide a detailed overview of the created platform that solves the first objective posed earlier in this chapter.

Chapter 4 is the core of this thesis. Here a detailed analysis will be done on the data gathered in Chapter 3. Through the use of Regression algorithms, a Proof Of Concept will be demonstrated that is able to provide a solution for the second objective posed.

The visualization step will be covered in Chapter 5. This will cover the ability to visualize the cluster that has been created, showing the different microservices that are created and showing the ability for showing detailed information about them.

This thesis ends with Chapter 6, where a summary of the topics that were covered, as well as the conclusions that can be drawn from it, the contributions made and future work to look into.

Chapter 2

Test Infrastructure

2.1 Introduction

Creating a good Testing Infrastructure is not an easy task. It should be able to replicate an environment that matches the real world environment as close as possible, to validate the different objectives in an accurate way to minimize the issues that can arise when deploying the infrastructure to a production environment.

To minimize these issues, several requirements have to be identified and met by the end of this chapter. In our case these are that the infrastructure should be able to be scalable such that it can grow over time when more components are introduced. It should be distributed, to increase the bandwith once this becomes a bottleneck in the future. Be easy to manage to lower the maintenance costs. With as a last requirement to be able to integrate into existing infrastructure, where many of the used components within this thesis are mostly changed by in-house developed components that have the same end goal.

This Chapters offers a detailed overview of the infrastructure that was created to generate the results obtained in this thesis. These results were obtained by a theoretical model, which was implemented by utilizing new technology components such as Docker Swarm, cAdvisor and Apache Kafka which will be explained further on. These components can however by inter swapped by their respective alternatives.

For example, within a Google infrastructure it would be beneficial to swap the Docker Swarm Orchestration Service with a Kubernetes one.

2.2 Technologies Used

2.2.1 ESXi

Figure 2.1: ESXi

VMWare vSphere Hypervisor is a type 1 hypervisor that virtualizes servers on the hardware itself rather than on the Operating System. When virtualization on top of an Operating System happens, this is called a type 2 hypervisor. The advantage of utilizing virtualization is that it allows multiple operating systems to be run on the same hardware available. [7]

2.2.2 Docker

Figure 2.2: Docker

Docker introduced a way to run applications as an isolated container bundled with all its code and dependencies. By doing this it increase the management and scale of these applications, allowing for improvements to be made.

These improvements included the easiness to deploy the application to different machines, test the applications for different errors, run the container on different machines without the need to reinitialize this machine after each run, remove the need for a hypervisor by utilizing the underlying kernel and many others.

All these improvements allow us to get more out of the existing hardware by moving the application from a virtual or physical machine towards a container. [8]

Figure 2.3: Vagrant

2.2.3 Vagrant

Vagrant is a command line utility used to generate lightweight and portable development environments. It does this by creating a Vagrantfile that defines how the development environment looks in terms of allocated resources and operating systems. Whereafter it will use a Virtual Machine provider to create this environment. [9]

2.2.4 Docker Swarm

Figure 2.4: Docker Swarm Logo

Docker Swarm is a clustering engine for Docker delivered as a standalone component for Docker. Since version 1.12.0, Docker decided to include this clustering engine within its core package. The goal of Docker Swarm is to turn a pool of Docker hosts into one single Docker host that can be managed through the standard Docker API. By utilizing clustering, a system is able to easily scale up services to span multiple hosts.

The figure below illustrates how the Docker Swarm clustering engine is used in combination with two different hosting platforms called 'AWS' and 'Microsoft Azure'. The setup exists out of two environments containing three docker engines each. The first three docker engines are being created on the Amazon AWS Cloud whereas the other three will be created on a Microsoft Azure Cloud environment. Of these different nodes, one node will be selected as the 'manager node'. This manager node its task is to dispatch the different service tasks towards the other 'worker nodes' within the cluster. When Worker nodes receive these tasks, they will then execute these. [10] [11]

Figure 2.5: Docker Swarm Infrastructure Example

To create a Docker Swarm cluster, the Docker Command Line interface is used. This Command Line interface allows us to configure the different nodes within the cluster and the roles of these nodes. This way we are able to tell which node will act as the manager and which ones will be the agent node. When a node joins the swarm, it will act as a worked node by default.

To create this swarm, we first start by initializing it through the 'docker swarm init' command. After running this command, we get appointed a swarm token that is used to let other nodes join this swarm. With this token, other nodes can join this swarm by running 'docker swarm join token' where 'token' is the token returned by the initial creation. An example of these different steps can be found in listing 2.2.4

```
#!/bin/bash
# Create a manager node and get the token
sudo docker swarm init --advertise-addr 10.0.7.11 --listen-addr 10.0.7.11
SWARM_TOKEN='sudo docker swarm join-token -q worker --quiet'
# Add a node to this manager
ssh vagrant@10.0.7.12 "sudo docker swarm join --token ${SWARM_TOKEN} 10.0.7.11:2377"
```

Figure 2.6: Docker Swarm Initialization

2.3 Infrastructure Creation

To be able to generate the results obtained in this thesis, the choice was made to create a portable and isolated environment that can be set-up in a matter of hours on a single system. This Allows it to be used on development machines while still providing the provisioning of real-scale infrastructures without requiring a lot of configuration changes.

The foundation of this setup is created on a Bare metal physical server preconfigured with the ESXi virtualization platform, which connects to the network through Network Address Translation to make its IP address available in the lab environment.

A Virtual Machine containing the latest version of CentOS 7 is spun up. We can see this Virtual Machine as a new Physical Server that could be our Developer Machine or our Physical server used to host the entire infrastructure.

After this initial creation, the Vagrant provisioning system is used to create 3 Virtual Machines on top of the CentOS system. These Virtual Machines represent the ability to distribute the system over different physical hosts, while still maintaining the portability for the developers. Vagrant will create these Virtual Machines through the use of a Vagrantfile as represented in listing 2.3

This script will specify specific parameters for our Virtual Machine such as the available memory, cpu, ip address and hostname. By specifying a 'provisioning script' it is also able to execute certain commands after the initial booting of these Virtual Machines, giving the ability to initialize the systems for first use. Running 'vagrant up' will then start and provision Virtual Machines with names 'swarm_manager_00', 'swarm_agent_00', 'swarm_agents_01' and their respective IP Addresses '10.0.7.11', '10.0.7.12' and '10.0.7.13'. Now a Docker Swarm Cluster is created that is composed of these Virtual Machines with the 'swarm_manager_00' node as the leader. The code to accomplish this, is made available online [12].

Figure 2.8 illustrates this setup with the respective IP-addresses that are assigned to each VM and container.

2.4 Conclusion

This chapter introduced the building blocks of a test setup that is scalable and dynamic enough to be expanded to meet the criteria needed in this thesis. The next chapter will use this foundation to create the thesis its architecture. 2.4 Conclusion 13

```
$prepare_swarm_manager_script = <<SCRIPT</pre>
# Install Docker
curl -sSL https://get.docker.com/ | sh
SCRIPT
// ... the same is done for a $$prepare_swarm_node1_script and
   $$prepare_swarm_node2_script
Vagrant.configure(2) do |config|
 config.vm.define "swarm_manager_00" do |config|
   config.vm.box = "ubuntu/trusty64"
   config.vm.hostname = "swarm-manager-00"
   config.vm.network "private_network", ip: "10.0.7.11"
   config.vm.provision "shell", inline: $prepare_swarm_manager_script
   config.vm.synced_folder "../", "/vagrant"
   config.vm.provider "virtualbox" do |v|
     v.memory = 1024
     v.cpus = 2
   end
 end
 config.vm.define "swarm_agent_00" do |config|
   config.vm.box = "ubuntu/trusty64"
   config.vm.hostname = "swarm-agent-00"
   config.vm.network "private_network", ip: "10.0.7.12"
   config.vm.provision "shell", inline: $prepare_swarm_node1_script
   config.vm.synced_folder ".", "/vagrant", disabled: true
   config.vm.provider "virtualbox" do |v|
     v.memory = 4096
     v.cpus = 2
   end
 end
 // ... another swarm_agent_01 is created that uses $prepare_swarm_node2_script
end
```

2.4 Conclusion 14

Figure 2.8: Test Infrastructure Setup

Chapter 3

Platform Architecture

Data Collection is a task in the world today that is becoming more and more important. Big data warehouses are not unusual anymore and are more and more becoming data lakes, increasing the need to store and process this data within given time constraints.

This thesis is no different from that, the main part being the collection of data and analyzing this data to predict the future and what should happen in it.

In this chapter a platform architecture is detailed that is able to process, analyze and visualize data that is being produced by different microservices with the goal to predict their resource usage and to issue alerts once a microservice should be scaled up to be able to handle the load on the service.

3.1 Introduction 16

3.1 Introduction

Before we are able to create a platform that is able to process, analyze and visualize big amounts of data, we first need to set goals which we want to achieve with this data. In the case of this thesis, these goals are clear.

First of all, the platform should be able to process huge amounts of incoming data in a real-time distributed way that is able to scale over different machines.

Secondly, the architecture should then be able to analyze this incoming data through the use of machine learning algorithms to extract predictions from it.

As a last goal, these extracted predictions have to be combined with the created microservices architecture to visualize them in one overview.

These different goals are achieved through usage of technologies and works such as Apache Kafka [13], Apache Flink [14], [15] and the Lambda Architecture [16], which are explained in Sections 3.2 and 3.3.

Section 3.4 will then introduce the platform architecture that achieves those goals, which is then concluded in Section 3.6.

3.2 Technologies Used

3.2.1 Apache Kafka

Figure 3.1: Apache Kafka

Apache Kafka is an open-source platform for processing real-time data streams that are coming in from multiple Producers which provide this data. [13] These data streams are then fed into different 'Topics' that collect the real-time data in a time ordered way for being processed by multiple Consumers. Apache Kafka ensures the delivery of messages through the use of a commit log for every topic. [17] Every message being received by the Apache Kafka platform is retained for a specific amount of days before being removed from the system.

3.2.2 Apache Flink

Figure 3.2: Apache Flink

Apache Flink is a open source framework for big data processing. It supports batch- and stream processing allowing for data to be processed in an efficient way. On top of this framework, Apache Flink also offers implementations to make Machine Learning, Graph Processing (Gelly) and Event processing (CEP) easier for their respective domain uses. [14]

By utilizing Apache Flink in this thesis, we are able to effectively process both real-time data and historical data. Making it the perfect framework for detecting trends through analyzing our historical data, as well as updating our historical model to adapt in real-time to the newer data that is coming in.

3.2.3 cAdvisor

Figure 3.3: cAdvisor

cAdvisor is an open-source project created by Google that gathers information about containers running on the host where cAdvisor is running. cAdvisor has been built to work with different type of containers in mind such as Kubernetes Pods and Docker containers.

Besides gathering resources, cAdvisor is also able to export these resources to different consumers through the use of a storage layer. Some of the included export consumers include 'Apache Kafka', 'InfluxDB', StatsD' and others. [?]

All of this together makes cAdvisor the perfect tool to gather information about the resource usage of the different microservices being analyzed within this thesis. By exporting the data to a kafka queue, we are then able to perform statistic processing and predict certain bottlenecks.

3.3 Related Works

3.3 Related Works

3.3.1 The Lambda Architecture

Different options are available to perform Big Data analysis. One of the most widely used architectures is the 'Lambda Architecture' created by Nathan Marz [16] who came up with it while working on systems at Twitter [18] and Backtype. This architecture is able to work with realtime data, as well as collecting information on historical data by using different layers.

The Lambda Architecture is a multi-layered architecture consisting of a 'Batch', 'Speed' and 'Serving' layer as illustrated in Figure 3.4.

Figure 3.4: Lambda Architecture

The first layer is the **Batch Layer**. This layer will work with a collection of datapoints that is called a 'batch' rather than with individual datapoints. These datapoints can be acquired by buffering incoming data for a certain time interval; or by retrieving previously stored historical data. After this data has been acquired, an algorithm is run on this batch that is able to detect anomalies, peaks and other pattern related information to create predictions that are as accurate as possible.

An example of an algorithm that can be run on batches of data is 'Normal Linear Regression'. Linear Regression will go through all the different datapoints and find a curve that goes through these points. Whereafter it is able to 'predict' future points by extending this line.

In contrast to the batch layer, the **Speed Layer** will not buffer or retrieve historical, but will instead deal with recent data only. This makes the layer ideal for 'iterative' trainable algorithms. Which continue on improving the already existing model by continuously feeding new data towards them. This is what the 'SimpleRegression' algorithm does [19]. It uses newly

fed datapoints to calculate the new curve through our points, without the need of saving all the previous points.

To be able to answer the extracted data from the batch layer, a new layer is introduced that is called the **Serving Layer**. This layer will index the data gathered from the batch layer to be able to answer specific questions while keeping a low latency. When a query is now sent towards this serving layer, it will collect the relevant data from this index and send the answer back.

3.4 Methodology

Before the layers can be created in this architecture, data collection has to happen first. By creating a cAdvisor monitoring container in global mode to distribute it to each server within the architecture as described in Listing 3.5 and sending this data to the Apache Kafka platform, data can be received from multiple servers and processed in a centralized way. From this central platform, data is forwarded towards our different layers described in subsections 3.4.1, 3.4.2 and 3.4.3

```
sudo docker service create --mode global --name cadvisor \
    // ...
    google/cadvisor:latest \
    -storage_driver=kafka \
    -storage_driver_kafka_broker_list=kafka:9092 ' \ # The Kafka Address
    -storage_driver_kafka_topic=container_stats '# The Kafka Topic name'
```

Figure 3.5: Start cAdvisor in Global Mode

Seeing that our data is now flowing into the Apache Kafka Platform, we are able to create the processing layers for this data. These layers are built on the initial idea described in the Lambda Architecture.

3.4.1 Real Time Layer

Starting with the **Real Time Layer**, we need to process the data coming in on the Kafka Platform, one item at a time. This is done by creating a consumer through an Apache Flink job, that is able to create 'Direct Streams' to our Apache Kafka platform. This Apache Flink job then also applies different algorithms that will create our results.

Once Apache Flink is done processing the data, we can forward the found facts into a different topic on the Apache Kafka platform.

The code illustrated in Figure 3.6 is used to open a stream that allows us to read data from our Apache Kafka Platform in real-time.

Figure 3.6: Creating a Apache Kafka consumer in Apache Flink

3.4.2 Batch Layer

For our **Batch Layer** data has to be collected first through a Flink Replayer Job. This will create a consumer on the Apache Kafka Platform such as in Listing 3.7 that will forward the data into a database that is chosen by us. In this case the choice was made to use InfluxDB as the database system because it is ideal for storing time related data. This forwarding is done by creating a 'sink' where all our processed data will be sent to. Seeing that this is a custom sink which is not available as a library, custom code was written to do this as illustrated in Listing 3.8

This layer is introduced to create a base model that is able to predict patterns that occurred in the history of the different microservices and that can then be updated through the use of the real- ime layer. This can be seen as creating a preconfiguration model that will be utilized when starting a new microservice. This preconfiguration model will allow the real time layer to create more accurate predictions from the start. It is important to note that this layer should not be a continuous running process but rather a process that should be run after a specific period.

3.4.3 Visualization Layer

The visualization layer takes care of visualizing the microservices and their alerts. The details about this layer can be found in Chapter 5.

Figure 3.7: Replaying data to InfluxDB

Figure 3.8: Apache Flink InfluxDB Sink

3.5 Scaling the Platform Architecture

Should bottlenecks in this architecture appear, then there are different solutions available to scale this architecture:

- Split Apache Kafka and Zookeeper: In the proposed architecture, Apache Kafka and Zookeeper are on the same node. By separating those 2 applications, more resources can be made available on the Apache Kafka node, allowing for an increase in resources for the Apache Kafka node and higher processing power.
- Distributing Apache Kafka: Apache Kafka has been built as a scalable solution on its own [13]. By distributing it over different nodes, we are able to distribute the 'monitoring' topic and the processed data topic on different nodes, allowing for an increase in topic size for both these topics.
- Scale Apache Flink: Apache Flink jobs can be submitted on a cluster infrastructure that will distribute the job over a set of machines [20]. This allows larger jobs to be done by horizontally scaling instead of vertically scaling them.

3.6 Conclusions

This chapter introduced an architecture as shown in Figure 3.9 that is able to gather and transform data in a scalable and real-time environment while still being able to detect patterns occurring in historical collected data. This platform has several core concepts that were taken into account:

- Scaling: The system can be scaled to work on any scale, creating an architecture that can be used for small to large sized enterprises.
- Modular: By using different layers and components, the whole architecture has been built in a modular way. This allows for an inter-swapping of the different layers and applications within.

3.6 Conclusions 24

Figure 3.9: Platform Architecture

MACHINE LEARNING 25

Chapter 4

Machine Learning

4.1 Introduction

Since recent years, machine learning has found its way to the enterprise, being used for a broad range of applications, going from fraud detection systems, auto-pilot technology and ranking webpages to creating artificial minds that are able to learn on their own and beating the highest ranking players at a complex game called Go [21]

Within enterprises, an important aspect of staying ahead of the competition is being able to predict the future. By using this future, enterprises are able to use prior knowledge to extract and gain information regarding the paths that they should take to stay ahead.

Machine Learning algorithms their goal is to return a output value for a set of given input values. To achieve this goal, machine learning algorithms commonly use a training set that holds a set of values where we know the end result. By utilizing this training set, we are then able to finetune the internal parameters between input and output to achieve a specific result.

For example, when we have an training set of two input nodes and one output node, where the input node represents the hours of work performed on an application and the hours of uptime. With the output node representing the revenue earned on that day. Then we can train our model to predict the revenue in the future based on the hours worked and the hours of uptime. This training set thus has two input parameters and one output parameter.

Today with science there are many different machine learning algorithms to be able to predict the most plausible future. These algorithms are categorized as 'Regression' algorithms. They will assess a relation between different datapoints in our dataset resulting in a continuous response variable [22]. 4.1 Introduction 26

Table 4.1 describes the different regression machine learning algorithms available that are commonly used today. For the scope of thesis the choice was made for Linear Regression which will be explained in Section 4.2. This choice was made because this thesis is about creating the architecture rather than focusing on the prediction algorithm. However when needed, this algorithm can easily be replaced by a more advanced algorithm that is more accurate [23], [24].

Algorithm	Description	
Ordinal Regression	When our data is in rank ordered categories	
Poisson Regression	Used for predicting counts and contingency tables	
Fast Forest Quantile Regression	Predicts values for a number of quantiles	
Linear Regression	Creates a linear model through a set of datapoints	
Bayesian Linear Regression	Bayesian networks will combine linear regression and addi-	
	tional information from a prior probability distribution form	
Neural Network Regression	Instead of using pixel data, datapoints are now used to train	
	a Neural Network and predict values based on this training	
	data.	
Decision Forest Regression	Decision Trees will traverse a Binary Tree path until a leaf	
	node is reached. Based on this it will create predictions.	
Boosted Decision Tree Regression	Boosted Decision Trees will use the MART gradient boosting	
	algorithm to improve the decision tree algorithm.	

Table 4.1: Machine Learning Regression Algorithms

The remainder of this chapter is organized as follows. Section 4.2 provides a basic introduction to normal linear regression, gradient descent and linear regression through stochastic gradient descent. This section only covers the pure basics seeing that the scope of this thesis is creating an architecture to perform these algorithms as accurate as possible.

Whereafter Section 5.3 will explain the method used to apply this algorithm to the different layers within the created architecture. After applying this method, a prediction can be made that is able to pinpoint when a certain microservice is going to create a bottleneck in the future.

The evaluation and results of this implementation are then discussed in Section 5.4 following a conclusion of it in Section 5.5.

4.2 Prediction Algorithms

4.2.1 Simple Linear Regression

Linear Regression is an predictive analysis approach that falls in the category of 'Regression' algorithms. Regression algorithms try to predict results for a given set of values.

For Linear Regression, this prediction is done by finding a polynomial curve of the form y = slope * x + intercept through a given set of scalar datapoints. In a 2-dimensional space, these points would be defined by a x and y coordinate. This is illustrated in Figure 4.1. [19]

Figure 4.1: Linear Regression

The way Linear Regression works is that it will calculate the sum of squares of the deviations from the mean as described with the following formula:

$$\frac{1}{N} \sum_{i=1}^{N} (x_i - y_i)^2$$

This has as disadvantage that it needs to go through each point, increasing the computation time for large N. To prevent the need to recalculate the Linear Regression equation, a method has been found that is able to iteratively update this equation, resulting in an algorithm that is ideal for Real-Time learning and that can be used in our **Speed Layer** [25].

4.2.2 Gradient Descent Introduction

The Linear Regression algorithm described above is an iterative algorithm that is being updated in realtime based on the previous parameters. A disadvantage of this method is that when our dataset becomes more complex and larger that we need to iterate through each point in this dataset, increasing the time required to find our result.

To solve the disadvantage above, a more optimized and faster method is required. Which is why Gradient Descent is used within this thesis. Gradient Descent is a method that tries to optimize the time required to find a result. This method can be seen as a method that is able to find a needle in a haystack in the fastest time.

Gradient Descent works by defining a **cost function J** that illustrates the *amount of wrong*ness for a certain value. This cost function is thus the sum of the different error values in our model.

If **y** represents our actual score and $\hat{\mathbf{y}}$ represents our predicted value that should match this actual score, then the error for these two values can be represented as $y - \hat{y}$.

By applying the definitions above, we are able to define the cost function more formally and apply the squared deviation function that we know from the statistics field. Resulting in the formula described below. The reason for using squared deviation is explained further on in this section.

$$J = \sum_{i=1}^{n} \frac{1}{2} (y - \hat{y})^2$$

Gradient Descent will now try to find values that result in the cost function becoming minimal. In a normal use case we would iterate through each different parameter that results in our predicted value, to see which of these parameters would result in the smallest value for our cost function. However this means that when this has to be done on a function with three dimensions, that we would have to check 3 * 3 * 3 = 27 different parameters.

By using mathemetics, the time required to find these parameters can be optimized. Through calculation of the cost function its derivative, we are able to determine where our cost function will have a minimum or a maximum. After finding this minimum or maximim, we now need to validate if we have to follow the left or the right side of this equation to end in a minimum. For this **numeric estimation** can be used. Numeric estimation will look directly at the left and right of our equation to see which side results in a smaller value, and which way we should follow.

After looking in-depth of the method described above, an important problem can be identified. What happens when a local minimum is reached instead of a global minimum? This would mean that the algorithm would stop and that the global minimum can not be found. To overcome this problem, the squared deviation function is introduced. This function will convert the original function into a convex one. Which provides a solution for *almost* every dimension.

When iterating through a lot of values with Gradient Descent the gradient sum value will be large. To keep this value small, 'Batched Gradient Descent' is used. This will allow us to execute the Gradient Descent algorithm a lot faster, by using a predefined amount of datapoints that do not span the whole dataset. When using one datapoint at a time, we refer to this as 'Stochastic Gradient Descent'. Allowing for a realtime algorithm to be created.

Everything described above allows us to extract a hypothesis function:

$$h_{\theta}(x) = \theta^T x = \sum_{i=0}^{n} \theta_i x_i$$

With the update rule for Gradient Descent to minimize this hypothesis resulting in:

Algorithm 1 Gradient Descent

- 1: repeat
- 2: $\forall j \in \{0, ..., \#features\}, \theta_j = \theta_j \alpha \frac{\delta}{\delta \theta_i} J(\theta_0, ..., \theta_j)$
- 3: until convergence

4.2.3 Linear Regression with Stochastic Gradient Descent

Applying the 'Stochastic Gradient Descent' algorithm on Linear Regressions means that we first have to write our linear regression algorithm as the cost function for Gradient Descent.

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (y_i - (\theta_1 * x_i + \theta_0))^2$$

If we then minimize this function through the use of Gradient Descent as described in the previous subsection, we find the line that fits out datapoints and is able to detect the trendline.

A more detailed overview of this method using Stochastig Gradient Descent is described in the paper 'Solving large scale linear prediction problems using stochastic gradient descent algorithms' [26]

4.3 Methodology

Since the Platform Architecture has been built modular, implementing the machine learning algorithms is trivial. By adapting the Apache Flink Jobs that are running within those two layers, we are able to integrate the linear regression machine learning algorithms and retrieve predictions from them.

This chapter will go in depth on how the batch and real time layer models are trained to return models that are able to predict the future.

4.3.1 Batch Layer Implementation

Implementing our Batch Layer is done by gathering the different datapoints from the datastore through the use of a InfluxDB query as illustrated in Listing 4.2. This InfluxDB query will return the given datapoints for a certain period in time, being bigger than zero.

Afterwards the actual machine learning algorithm is called that will process this data and run our Gradient Descent algorithm on the datapoints to find the best linear fit through them.

This algorithm is written in the java coding language as described in Listing 4.3.

Figure 4.2: Connecting to the InfluxDB Data Source

```
MultipleLinearRegression mlr = new MultipleLinearRegression()
              .setIterations(10)
              .setStepsize(0.5)
              .setConvergenceThreshold(0.001);
QueryResult.Series s = result.getResults().get(0).getSeries().get(0);
System.out.println(s.getValues().get(s.getColumns().indexOf("value")));
int valueColumnIndex = s.getColumns().indexOf("value");
int timeColumnIndex = s.getColumns().indexOf("time");
List<LabeledVector> trainingSetList = s.getValues().stream().map(r -> new
   LabeledVector(
       Double.parseDouble(r.get(valueColumnIndex).toString()),
       new DenseVector(new double[] {
           (double)Instant.parse(r.get(timeColumnIndex).toString()).getEpochSecond()
       })
))
.collect(Collectors.toList());
DataSet<LabeledVector> trainingSet = env.fromCollection(trainingSetList);
mlr.fit(env.fromCollection(trainingSetList));
```

Figure 4.3: Training a Batch Model

4.3.2 Realtime Layer Implementation

Our Realtime implementation will use the same linear regression as our Batch layer, seeing that this algorithm can be used in a realtime fashion. By using microbatched gradient descent, we are able to update the different parameters in realtime and improve the resulting equation.

To start we will open the output file created by the batch gradient descent algorithm if this exist. This ensures us to use preconfigured parameters resulting in a more accurate model from the start, than when we would start from no metrics.

Illustrating this with an example. Let us say that we have an Apache Kafka Queue component that is using almost the maximum cpu usage once it starts to run. When we do not use a preconfigured model through the use of our Batch Layer, we will get predictions that generate a prediction illustrationg a need to upscale the microservice within the first few seconds. This happens because our Batch Gradient descent algorithm will see the first two datapoints and plot a line through it, resulting in a steep slope that will hit the threshold almost instantly. In contrast to our Batch Layer, we can now see that the batch layer generates an initial result that contains more datapoints and is thus able to generate a prediction that lies further in the future. By now updating this already preconfigured model in realtime, we are able to achieve an accuracy that lies much higher than when we would start from no data.

Implementing this in Apache Flink is done by using the same code as in the Batch Layer. Here we will however use one single value as the batch. The resulting model will then be sent towards Apache Kafka, returning the required parameters to create predictions. To do this, we utilize Apache Flink its real time data stream mechanism, mapping every value to create an update for the theta values as described in listing 4.4.

To use these parameters to generate predictions, we will transform the given equation $y = \theta_1 * x + \theta_0$ to return the x value. Thus becoming: $x = \frac{y-b}{a}$ where x notates our epoch time, y our predicted value being the threshold that we will use to find the intersection, b the intercept and a the slope.

```
DataStream < NormalizationParams > normalizedDataStream = dataStream.flatMap(new
   UpdateModel());
// ...
public static final class UpdateModel extends RichFlatMapFunction<CAdvisor,</pre>
   NormalizationParams> {
   @Override
   public void flatMap(CAdvisor c, Collector<NormalizationParams> out) throws
       Exception {
       // 1. Load in the model
       // 2. Normalize the datastream point by using the minX, maxX, minY and maxY
             from the model
       // 3. Update theta values
       // 4. Add the theta values to the old theta values, recalculating the average
       // 5. Save the new theta values
       // 6. Update the model file
       // 7. Return our updated values
   }
}
public static long normalizeValue(long value, long min, long max) {
   return (value - min) / (max - min);
}
```

Figure 4.4: Stochastic Gradient Descent Adaptation

4.3.3 Normalizing data

One of the most important steps to perform when working with machine learning algorithms is the step of normalizing the data.

Through normalization we are able to provide uniform data towards the algorithm, allowing it to converge faster. This is often called 'feature scaling' [27].

To normalize the data from our dataset, we start of by finding the maximum and minimum within the dataset. Whereafter we can apply the following equation:

$$x' = \frac{x - max(x)}{(max(x) - min(x))}$$

Applying this on our incoming data. We can see that we are receiving data from the Apache Kafka component, which is getting parsed through the Apache Flink consumer that was created earlier. Now we find the maximum and minimum timestamp of the dataset being consumed and will normalize the dataset towards it.

Several optimizations were made to improve this process. First the real value was adapted to use megabytes instead of bytes, reducing the computation cost required for these bigger values. While secondly, the choice was made to change the timestamp notated as an epoch value to subtract the startdate from it, also lowering the computation cost due to these large numbers being removed.

4.4 Evaluations and Applications

The structure of this section is as follows. Two subsections will follow detailing the realtime and batch layer.

Within these subsections, four parts are looked at. First a detailed description of how the model its results are measured is given. Whereafter an expectation follows that describes the expected result. After the expectation the results are illustrated. These results will then be concluded in the conclusion stating how the results differ from our expectations and the possible reason for this.

4.4.1 Real-Time Model

Measurement Setup

To analyze the prediction model for the Realtime Model a measurement utility script is written. This script will consume the different predicted parameters for our linear regression model from the 'modelsbundled' Apache Kafka topic.

By using these different parameters, a graph is created illustrating the real usage metrics and the predicted metrics. These real usage metrics will be consumed from the 'container_stats' Apache Kafka topic containing the raw metrics data from our containers and the predicted metrics will be calculated based on the different parameters consumed from the 'modelsbundled' topic. This results in the graph as illustrated in Figure 4.5.

Expectation

Our expectations for the real time algorithm are that the predicted line will start from a predicted value that is not nearly as close as the real metrics being consumed. After a few iterations this predicted line should converge towards the real metrics, illustrating the disadvantage of our linear algorithm.

After running the measurement script the following results were obtained:

Results

Figure 4.5: Predicted vs Real RAM Usage RealtimeModel

Conclusion

Looking at the Figure illustrated above, it can be seen that the realtime machine learning algorithm works as expected. Starting from the first point at x is zero and y is zero, gradually improving itself while more data is entering from the real time consumer.

We can however detect that our real time algorithm alone is not sufficient. In the figure illustrated, it is made clear that the initial values predict an upscaling that is being needed within the first few minutes of data being gathered. After these few minutes our predictions stabilize.

Since containers are mostly short lived services, it is not desirable to have predictions matching our expectations after a period of time. Therefor a new layer is needed which will be able to provide a preconfiguration of the parameters used within our regression algorithm. This preconfiguration will also keep detections such as anomalies in mind and will filter out certain spikes happening.

4.4.2 Batch Model

Measurement Setup

To analyze the Batch Model a subset of data will be extracted from the InfluxDB database. This subset of data will show a larger amount of points in time in contrast to our realtime layer, illustrating the historical data with several attention points:

- **Peaks:** resource data should have peaks. These represent spikes happening during intensive processor calculations, garbage collection that happens on the memory or network traffic that suddenly increases.
- Trend: a trend line should identifiable, describing how our data increases or decreases.

 This trend line is important since it will show us if we have to scale-up or scale-down the microservice.
- **Stagnation:** does the data stagnates or not? When it does, we should be able to detect this and our prediction algorithm should show a point that is not in the near future.

For this subset of data, our Batch learning algorithm will be run with the following parameters:

Parameter	Value	
Learning Rate	0.1	
Training Iterations	1000	

Table 4.2: Batch Training Parameters

With these parameters, predictions will be created resulting in the graph illustrated in Figure 4.7.

Expectations

The expectations for our resulting graph is that we will see data containing the attention points described above. Next to these attention points we should see a prediction line that tries to converge to our rising data, showing the general trend line as well as possible. An important thing to pay attention here is that our prediction line should go through the peaks that are created. These peaks do not contribute to the trend line and should therefor be ignored.

Results

Figure 4.6: Predicted vs Real RAM Usage BatchModel

Conclusions

After analyzing the Figure illustrated above, conclusions can be drawn that our model adapts based on the different peaks appearing in our data. The maximum deviation of this prediction being 34 megabyte, which is reasonable for memory usage prediction.

For a Linear model, these results are acceptable seeing that a linear model is used that does not follow the peaks and patterns exactly.

4.4.3 Combined Model

Measurement Setup

The measurement setup is identical to the real time layer, with the only change being that we start by executing the batch layer first to create the initial preconfiguration of our machine learning model. Hereafter the real time layer is being run, utilizing this created preconfiguration.

Expectations

Our expectations here are that the linear regression algorithm will create predictions which are within a reasonable deviation range from the start. This should eliminate the wrong predictions which occur when only running the real time algorithm.

Results

Figure 4.7: Predicted vs Real RAM Usage BatchRealtimeModel

Conclusion

Analyzing our results illustrated above, it can clearly be seen that our expectations match the reality. The preconfiguration does it work, providing a initial starting point for our predictions.

4.5 Conclusions 40

4.5 Conclusions

This chapter introduced two different ways to generate a machine learning model that is able to generate predictions for the future. By combining both real time and batch based learning algorithms, we are able to pinpoint the point in time where a bottleneck is going to occur, while still looking at historical data. This allows us to detect when a service should be scaled. By scaling a service beforehand, we are then able to handle incoming traffic more efficiently.

Chapter 5

Visualization of the created

Architecture

5.1 Introduction

Visualization is an important aspect in every development project. It allows us to grasp the concept that we are tackling. Different questions should be asked when creating a visualization platform. How do we make an interface for a user that is both intuitive and easy to use? Which technologies do we use that allow for a fast development iteration? Can we create a look and feel that is modern? What features should our platform have?

This chapter will provide an answer to each of these questions. The goal is to create a visualization platform that is easy to use, but still provides all the data needed to understand the platform.

5.2 Technologies

5.2.1 Proxy Server

A proxy server is an intermediate server between the target machine and the client allowing the guest to access the information on the target machine. This proxy server allows the administrator to restrict, monitor and create content that is made available to the guest user.

5.2 Technologies 42

5.2.2 React

Figure 5.1: React logo

React is a javascript library created with as goal to simplify and modularize User Interface creation. This is done by focusing on 3 core aspects within the React library. First of all it works **Declarative**, by creating views for each state it is able to update and render the correct components when data changes. Secondly it is **Component-Based**, making it easy to create components that manage their own state. By using components, we are able to create much more complex UIs. The last aspect is the concept of **Learn Once**, **Write Anywhere**. This says that React can be used within any technology stack to maximize code reuse. React can therefor be rendered on a server, run as a standalone Single Page Application or even create Mobile Apps through React Native. [28]

5.2 Technologies 43

5.2.3 Redux

Figure 5.2: Redux logo

Redux is created to manage the state of an application in an immutable way. It does this by creating one state tree that keeps track of the different variables within an application, called the state. This state can get updated through different actions that are being created by different events, such as clicking a button, which will then be forwarded towards a dispatcher. This dispatcher will distribute these actions over the different reducers. These listen for a specific action unique for the part of the state tree it is handling and update the state tree based on it.

Once the state tree is updated, the different web components will then compile a new version of the user interface changes that have been made. This will reflect the state change that has happened [29]. A store is connected to this state tree to be able to fetch information of the different states of our components. This store can not be changed directly since that would void the principle of having a state tree, and thus actions are used. This concept is illustrated in Figure 5.3 and Figure 5.4

Figure 5.3: Redux State Tree

It is important to note that while the idea of redux is the create reusable components, that is it not always trivial to do this. Sometimes components need to be created that contain logic

5.2 Technologies 44

Figure 5.4: Redux Flow

such as pages and that can not be reused. This is why the concept of **Smart Components** and **Dumb Components** has been introduced. Smart Components are components that contain actions and delegate the results of these actions to the Dumb Components. Whereas Dumb Components only render specific data sent to them.

5.2.4 Socket.io

Figure 5.5: Socket.io logo

Socket.io is a Javascript library that makes realtime transport between a browser or mobile device and a webserver easy. It does this by utilizing the WebSocket Protocol [30]. Together with this Protocol, Socket.io also provides intelligent 'fallback' algorithms that will try to use different communication protocols if the WebSocket Protocol implementation is not available. [31]

5.3 Methodology

5.3.1 Interfacing with Docker Swarm

Before being able to start working on the visualization part, an important aspect should be solved first. The interface that allows us to fetch the information about our different containers that are running and the machines they are running on.

To create this interface, we have to be able to interact with our Docker daemon that is running on one of the Manager hosts. This management host has as an advantage that it is a leader in the Docker Swarm infrastructure, thus it is able to manage the different nodes within the Swarm. Docker itself provides a remote API which we can connect to. By using a unix named pipe socket which can be found at '/var/run/docker.sock'. Since this connection is only available on the local client, a proxy server is created that forwards the requests from a remote host towards this unix socket. Here an important security detail is introduced, where the administrator has to refrain users from getting access on a public network, due to the critical endpoints that are included in this proxy server.

5.3.2 Important design aspects

Looking at the data that is available for consumption through the Docker interface, we can see that only some of this data is relevant for the user. Therefor the following items are used as main markers that allow us to pinpoint the exact data that should be extracted for visualization:

- Swarm Nodes: An overview of the different swarm nodes that are available in the system should be provided. This interface should visualize the different nodes, including their status and memory usage.
- Containers: These are running on the different swarm nodes. These should be represented by nodes running on a specific swarm node, each with their own status, memory usage and other statistics.
- Alerts: The main goal of this thesis is to detect and represent growing bottlenecks within our infrastructure. To accomplish this, alerts are introduced that can tell the user if and when a certain container is going to reach its predicted resource bottleneck. Through these alerts, an automation interface can be built that allows the system to automatically scale the container once it is going to hit this potential bottleneck.
- **Graphs:** To be able to visualize the data and the analysis done in the next chapter, a graph has to be introduced. This graph visualizes the current data flowing in, and our prediction being made.

5.3.3 Creating the React.js and Redux data flow

Since all our data is available now and the design aspects have been found, the data flow can be created now. Our design elements are created through the use of React.js, focusing on components such as a Swarm, SwarmNode, SwarmNodeContainer and Alert component that each visualize a different design aspect.

Data will then be provided to these components through the Redux pattern. This is done by keeping one state tree, containing the information about our different nodes and containers that is being fetched from our proxy interface. Once new data is available through an action, our root reducer is being called and updates this state tree and the components using it.

5.3.4 Alerts

Alerts are time sensitive components that should inform the user about an upcoming event as soon as possible. To create this real-time update, 2 components are needed:

- Server: A server provides data, that it aggregates from different other sources. In our system, this server will read events from kafka and it forwards these events to the Socket.io connection that connects to the frontend.
- Client: Our client can be seen as a consumer. It will connect to the Socket.io server and process data when it arrives through an asynchronous event.

Once events are being processed by our client, they can be visualized as an alert component in the Graphical User Interface.

Due to the real time nature of this architecture, an important problem was initially overlooked. What if our data flows in as quickly as possible, and the user interface keeps updating throughout these alerts? This would mean that the user interface would have to redraw itself in realtime, creating possible updates every few milliseconds, which is something our browser is not supposed to handle.

There are different possible solutions for this problem, the events could be delayed in a specific time-window of a few seconds, allowing for an improved refreshing rate of the user interface elements, while still keeping our realtime data as fresh as possible; or we could keep a cache of the different alert components, such that these do not have to be redrawn each time our updates flow in.

In this case, the solution chosen was based on the predictability of our data. Our data does not change within seconds, but grows gradually towards a point where a server should be upscaled. Which is why a small delay can be introduced that will not have an impact on the freshness of our data. If however realtime data is needed for other applications, an extra consumer could be written that reads the data in from the Apache Kafka Infrastructure, still allowing data to be processed in realtime.

5.4 Evaluations and Applications

Looking at the functionality introduced in this Chapter, we can see that our architecture changed. Elements such as a Kafka queue consumer, Socket.IO frontend connections and Proxies have all been introduced allowing for a real-time interaction with the data that is being gathered from different microservices running within our infrastructure.

5.5 Conclusions

To review this chapter, we can see a subsystem that was introduced to visualize the architecture introduced in Chapter 3. The system allows the user to get real-time alerts and information, for a volatile system.

CONCLUSION 49

Chapter 6

Conclusion

6.1 General

This thesis introduced a platform architecture that is able to predict how microservices their resources are going to change over a period of time. By creating a modular design, we introduced a platform that can achieve higher accuracies by adapting specific components within the architecture.

Through this platform, enterprises are now able to scale their microservice deployments more efficiently. This results in a cost decrease by freeing up resources when they are not needed.

6.2 Contributions

6.2.1 Docker swarm deadlock

While working with Docker Swarm, a deadlock was found that occurred in specific events when the swarm and its hosts were terminated within seconds. Here the swarm would not detect the hosts leaving, and an invalid state was kept.

This was solved by providing a stack trace to the docker swarm developers, who pinpointed this issue and provided a solution for this that got published in version 1.13.0. [32]

6.2.2 Visualizer

A docker swarm visualizer is already existing on Github. This visualizer is built on outdated technologies such as jQuery and D3 graphing. Because of this, the decision was made to start a new project with technologies such as React and Redux to create an architecture that allows

6.3 Future Work 50

developers to easily add new features and expand the project. This visualizer has been published to the open-source community for other people to use and contribute to.

6.3 Future Work

This Thesis only touched the surface of what can be done in the area of microservice analysis. Because of the structure of the architecture that was built, different components can be replaced or upgraded to fit the needs of enterprises. This section will provide an overview of these different components, and the work that can be done on them to improve them.

6.3.1 Machine Learning Algorithm

A major factor within this architecture is the accuracy of the machine learning model. While in this thesis a Linear Model was used to create predictions, it should be noted that this model is only able to detect rising or decreasing trend lines over the span of the collected data. When more accurate algorithms are required that can detect both, other algorithms should be looked at. To transform this thesis towards a production ready architecture, an algorithm should be chosen that is able to create predictions that match the expected value more closely. A good example for such an algorithm could be a Bayesian Network. This model can be preconfigured in the batch layer, while refinement of it can happen in the realtime layer. By also introducing buckets, we are able to create models for the different seasons, days and container types. Improving the accuracy of the used algorithm.

6.3.2 Apache Flink

Apache Flink was used in this thesis for the training of the batch and linear models. To further improve the portability and modular architecture, it could be beneficial to use an abstraction layer for this framework. Apache SAMOA [33] is a 'distributed streaming machine learning framework that contains a programing abstraction', essentially doing just this.

6.3.3 Visualizer

The visualizer can be updated to include extra functionality. Currently it will fetch the state of the swarm as it is on first load. However when this swarm state changes in time, it would be beneficial to update the visualization through its socket data. 6.3 Future Work 51

Other extra functionality that can be included is a REST API for the visualizer that can send alerts towards different consumers to inform when a service should be upscaled to handle a higher load.

BIBLIOGRAPHY 52

Bibliography

- [1] Microservices. http://microservices.io/patterns/microservices.html. [Online; accessed 13-December-2016].
- [2] John Day. The (un)revised OSI reference model. Computer Communication Review, 25(5):39–55, 1995.
- [3] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated performance comparison of virtual machines and linux containers. *technology*, 28:32, 2014.
- [4] Fortune 500. Cisco systems. http://beta.fortune.com/fortune500/cisco-systems-54, 2016. [Online; accessed 14-September-2016].
- [5] Cisco Systems. About us cisco. http://weare.cisco.com/c/r/weare/about-us.html, 2016. [Online; accessed 14-September-2016].
- [6] Matthias Wiesmann, Fernando Pedone, André Schiper, Bettina Kemme, and Gustavo Alonso. Understanding replication in databases and distributed systems. In *Distributed Computing Systems*, 2000. Proceedings. 20th International Conference on, pages 464–474. IEEE, 2000.
- [7] Esxi. http://www.vmware.com/products/vsphere-hypervisor.html. [Online; accessed 14-October-2016].
- [8] Docker. https://mesos.apache.org. [Online; accessed 27-September-2016].
- [9] Vagrant. https://www.vagrantup.com/. [Online; accessed 29-November-2016].
- [10] Docker swarm. https://docs.docker.com/swarm/overview. [Online; accessed 11-October-2016].

BIBLIOGRAPHY 53

[11] Docker swarm key concepts. https://docs.docker.com/engine/swarm/key-concepts/.
[Online; accessed 29-November-2016].

- [12] Vagrant docker swarm code repository. https://github.com/thebillkidy/vagrant-swarm-cluster. [Online; accessed 13-October-2016].
- [13] Apache kafka. https://kafka.apache.org/. [Online; accessed 12-October-2016].
- [14] Apache flink. https://flink.apache.org/. [Online; accessed 17-October-2016].
- [15] cadvisor. https://github.com/google/cadvisor. [Online; accessed 01-December-2016].
- [16] Nathan Marz. Lambda architecture, 2015.
- [17] Apache kafka delivery guarantee. https://kafka.apache.org/08/documentation.html#semantics. [Online; accessed 29-November-2016].
- [18] How twitter uses apache kafka. https://blog.twitter.com/2015/ handling-five-billion-sessions-a-day-in-real-time. [Online; accessed 29-November-2016].
- [19] Apache simple regression. http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.4_Simple_regression. [Online; accessed 26-October-2016].
- [20] Apache flink clustering. https://ci.apache.org/projects/flink/flink-docs-release-0.8/cluster_setup.html. [Online; accessed 01-December-2016].
- [21] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with deep neural networks and tree search. *Nature*, 529:484–503, 2016.
- [22] Linear regression and modeling. https://www.coursera.org/learn/linear-regression-model. [Online; accessed 02-December-2016].
- [23] Azure machine learning cheat sheet. http://aka.ms/MLCheatSheet. [Online; accessed 02-December-2016].

BIBLIOGRAPHY 54

[24] Azure machine learning. https://msdn.microsoft.com/en-us/library/azure/dn906022.aspx. [Online; accessed 02-December-2016].

- [25] Tony F Chan, Gene H Golub, and Randall J LeVeque. Algorithms for computing the sample variance: Analysis and recommendations. *The American Statistician*, 37(3):242–247, 1983.
- [26] Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In Proceedings of the Twenty-first International Conference on Machine Learning, ICML '04, pages 116-, New York, NY, USA, 2004. ACM.
- [27] Feature scaling. https://www.coursera.org/learn/machine-learning/lecture/xx3Da/gradient-descent-in-practice-i-feature-scaling. [Online; accessed 04-December-2016].
- [28] React. https://facebook.github.io/react/. [Online; accessed 15-November-2016].
- [29] Redux cartoon introduction. https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6#.6pllscez4. [Online; accessed 15-November-2016].
- [30] Inc. A. Melnikov Isode Ltd. I.Fette, Google. The websocket protocol, 12 2011.
- [31] Socket.io. http://socket.io/. [Online; accessed 15-November-2016].
- [32] Docker deadlock fix. https://github.com/docker/docker/issues/25432. [Online; accessed 16-November-2016].
- [33] Apache samoa. https://samoa.incubator.apache.org/. [Online; accessed 05-December-2016].

LIST OF FIGURES 55

List of Figures

2.1	ESXi	9
2.2	Docker	9
2.3	Vagrant	10
2.4	Docker Swarm Logo	10
2.5	Docker Swarm Infrastructure Example	11
2.6	Docker Swarm Initialization	11
2.7	Vagrantfile Code	13
2.8	Test Infrastructure Setup	14
3.1	Apache Kafka	16
3.2	Apache Flink	17
3.3	$cAdvisor \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	17
3.4	Lambda Architecture	18
3.5	Start cAdvisor in Global Mode	19
3.6	Creating a Apache Kafka consumer in Apache Flink	20
3.7	Replaying data to InfluxDB	21
3.8	Apache Flink InfluxDB Sink	22
3.9	Platform Architecture	24
4.1	Linear Regression	27
4.2	Connecting to the InfluxDB Data Source	30
4.3	Training a Batch Model	31
4.4	Stochastic Gradient Descent Adaptation	33
4.5	Predicted vs Real RAM Usage $RealtimeModel$	36
4.6	Predicted vs Real RAM Usage BatchModel	38

LIST OF FIGURES 56

4.7	Predicted vs Real RAM Usage BatchRealtimeModel	39
5.1	React logo	42
5.2	Redux logo	43
5.3	Redux State Tree	43
5.4	Redux Flow	44
5.5	Socket jo logo	45

LIST OF TABLES 57

List of Tables

1.1	Objectives and Research Goals	6
4.1	Machine Learning Regression Algorithms	26
4 2	Ratch Training Parameters	37

LIST OF TABLES 58