2.2 무결성 제약조건

■ 데이터 무결성(integrity, 無缺性)은 데이터베이스에 저장된 데이터의 일관성과 정확성을 지키는 것을 말함.

■ 도메인 무결성 제약조건

도메인 제약(domain constraint)이라고도 하며, 릴레이션 내의 투플들이 각 속성의 도메인에 지정된 값만을 가져야 한다는 조건임. SQL 문에서 데이터 형식(type), 널(null/not null), 기본 값(default), 체크(check) 등을 사용하여 지정할 수 있음.

■ 개체 무결성 제약조건

기본키 제약(primary key constraint)이라고도 함. 릴레이션은 기본키를 지정하고 그에 따른 무결성 원칙 즉, 기본 키는 NULL 값을 가져서는 안 되며 릴레이션 내에 오직 하나의 값만 존재해야 한다는 조건임.

■ 참조 무결성 제약조건

외래키 제약(foreign key constraint)이라고도 하며, 릴레이션 간의 참조 관계를 선언하는 제약조건임. 자식 릴레이션의 외래키는 부모 릴레이션의 기본키와 도메인이 동일해야 하며, 자식 릴레이션의 값이 변경될 때 부모 릴레이션의 제약을 받는다는 것임.

2.2 무결성 제약조건

표 2-3 제약조건의 정리

78	도메인	키		
구분	도메인 무결성 제약조건	개체 무결성 제약조건	참조 무결성 제약조건	
제약 대상	속성	투플	속성과 투플	
같은 용어	도메인 제약	기본키 제약	외래키 제약	
실근 중의	(Domain Constraint)	(Primary Key Constraint)	(Foreign Key Constraint)	
해당되는 키	해당되는 키 -		외래키	
NULL 값 허용 여부	허용	불가	허용	
릴레이션 내 제약조건의 개수	속성의 개수와 동일	1개	0~여러 개	
기타	• 투플 삽입, 수정 시 제약 사항 우선 확인	• 투플 삽입/수정 시 제약 사항 우선 확인	 투플 삽입/수정 시 제약사항 우선 확인 부모 릴레이션의 투플 수정/삭 제 시 제약사항 우선 확인 	

2.3.1 개체 무결성 제약조건

IT CONKBOOK

삽입 : 기본키 값이 같으면 삽입이 금지됨.

수정: 기본키 값이 같거나 NULL로도 수정이 금지됨.

삭제 : 특별한 확인이 필요하지 않으며 즉시 수행함.

학번	이름	학과코드
501	박지성	1001
401	김연아	2001
402	장미란	2001
502	추신수	1001

그림 2-12 학생 릴레이션

(501, 남슬찬, 1001)

삽입 거부

학번	이름	학과코드
501	박지성	1001
401	김연아	2001
402	장미란	2001
502	추신수	1001

(NULL, 남슬찬, 1001)

삽입 거부

학번	이름	학과코드
501	박지성	1001
401	김연아	2001
402	장미란	2001
502	추신수	1001

그림 2-13 개체 무결성 제약조건의 수행 예(기본키 충돌 및 NULL 값 삽입)

2.3.2 참조 무결성 제약조건

IT CONKBOOK

■ 삽입

- 학과(부모 릴레이션) : 투플 삽입한 후 수행하면 정상적으로 진행된다.
- 학생(자식 릴레이션): 참조받는 테이블에 외래키 값이 없으므로 삽입이 금지된다.

학생(자식 릴레이션)

학번	이름	학과코드
501	박지성	1001
401	김연아	2001
402	장미란	2001
502	추신수	1001

학과(부모 릴레이션)

학과코드	학과명
1001	컴퓨터학과
2001	체육학과
A	

참조

그림 2-14 학생관리 데이터베이스

■ 삭제

- 학과(부모 릴레이션): 참조하는 테이블을 같이 삭제할 수 있어서 금지하거나 다른 추가 작업이 필요함.
- 학생(자식 릴레이션) : 바로 삭제 가능함.
- ※ 부모 릴레이션에서 투플을 삭제할 경우 참조 무결성 조건을 수행하기 위한 고려사항
 - 즉시 작업을 중지
 - ② 자식 릴레이션의 관련 투플을 삭제
 - ③ 초기에 설정된 다른 어떤 값으로 변경 (컴퓨터학과 → default : 정보대학)
 - ₫ NULL 값으로 설정

■ 수정

- 삭제와 삽입 명령이 연속해서 수행됨.
- 부모 릴레이션의 수정이 일어날 경우 삭제 옵션에 따라 처리된 후 문제가 없으면 다시 삽입 제약조건
 에 따라 처리됨.

표 2-4 참조 무결성 제약조건의 옵션(부모 릴레이션에서 투플을 삭제할 경우)

명령어	의미	예
RESTRICTED	자식 릴레이션에서 참조하고 있을 경우 부모 릴레이션의 삭제 작업을 거부함	학과 릴레이션의 투플 삭제 거부
CASCADE	자식 릴레이션의 관련 투플을 같이 삭제 처 리함	학생 릴레이션의 관련 투플을 삭제
DEFAULT	자식 릴레이션의 관련 투플을 미리 설정해둔 값으로 변경함	학생 릴레이션의 학과가 다른 학과로 자동 배정
NULL	자식 릴레이션의 관련 투플을 NULL 값으로 설정함(NULL 값을 허가한 경우)	학과 릴레이션의 학과가 NULL 값으로 변경

2.3.2 참조 무결성 제약조건

① RESTRICTED: 요청한 삭제 작업중지(에러 처리)

② CASCADE: 학생 릴레이션의 해당 투플을 같이 연쇄적으로 삭제(CASCADE)

③ 기본값으로 변경(미리 설정한 값, DEFAULT)

④ NULL 값으로 설정

그림 2-15 참조 무결성 제약조건에서 부모 릴레이션의 투플을 삭제할 경우

03. 관계대수

IT CONKBOOK

- 관계대수
- 셀렉션과 프로젝션
- 집합연산
- 조인
- 디비전
- 관계대수 예제

3.1 관계대수

관계대수(relational algebra, 關係代數)

릴레이션에서 원하는 결과를 얻기 위해 수학의 대수와 같은 연산을 이용하여 질의하는 방법을 기술하는 언어

■ 관계대수와 관계해석

- 관계대수 : 어떤 데이터를 어떻게 찾는지에 대한 처리 절차를 명시하는 절차적인 언어이며, DBMS 내부의 처리 언어로 사용됨
- 관계해석 : 어떤 데이터를 찾는지만 명시하는 선언적인 언어로 관계대수와 함께 관계 DBMS의 표준 언어인 SQL의 이론적인 기반을 제공함
- → 관계대수와 관계해석은 모두 관계 데이터 모델의 중요한 언어이며 실제 동일한 표현 능력을 가지고 있음.

3.1.1 관계의 수학적 의미

■ 릴레이션(relation)의 수학적 개념

예) A = {2, 4}, B = {1, 3, 5} 일 때 A×B = {(2,1), (2,3), (2,5), (4,1), (4,3), (4,5)} ◆ 카디전 프로덕트

릴레이션 R은 카티전 프로덕트의 부분집합으로 정의 예) R1 = {(2,1), (4,1)}, R2={(2, 1), (2, 3), (2, 5)}, R3={(2, 3), (2, 5), (4, 3), (4, 5)}

원소 개수가 n인 집합 S의 부분집합의 개수는 2^n 이므로, 카티전 프로덕트 A×B의 부분집합의 개수는 $2^{|A|\times|B|}$ 임.

카티전 프로덕트의 기초 집합 A, B 각각이 가질 수 있는 값의 범위를 도메인(domain)이라고 함. 즉 집합 A의 도메인은 {2, 4}임.

릴레이션 역시 집합이므로 집합에서 집합에서 가능한 연산은 합집합(∪), 교집합(∩), 카티전 프로덕트(×) 등이 있음.

R1 \cup R2 = {(2, 1), (4, 1), (2, 3), (2, 5)} R1 \cap R2 = {(2, 1)}

3.1.1 관계의 수학적 의미

■ 릴레이션(relation)의 현실 세계 적용

예) 학번={2, 4}, 과목={데이터베이스, 자료구조, 프로그래밍}일 때 두 집합의 카티전 프로덕트 학번×과목은 학번 원소와 과목 원소의 순서쌍의 집합임. 즉, 학번×과목={(2, 데이터베이스), (2, 자료구조), (2, 프로그래밍), (4, 데이터베이스), (4, 자료구조), (4, 프로그래밍)}을 말함.

학번×과목의 각 원소는 학생이 과목을 수강할 수 있는 모든 경우를 나열한 것임. 수강={(2, 데이터베이스), (2, 자료구조), (4, 프로그래밍)}은 카티전 프로덕트 학번×과목의 부분집합으로 하나의 릴레이션 인스턴스임. 수강 릴레이션의 투플은 위에서 나열한 여섯 개 원소 중 하나로, 아래 수강 테이블을 데이터베이스에서는 릴레이션(relation)이라고 함.

수강

학번	과목
2	데이터베이스
2	자료구조
4	프로그래밍

그림 2-16 수강 릴레이션

연산자 종류	대상		연산자 0	l름	기호	설명
기본	단항	1	넬렉션(시	크마)	σ	릴레이션에서 조건에 만족하는 투플을 선택
기본	단항	3	프로젝션(រ	파이)	π	릴레이션의 속성을 선택
추가	단항		개명		ρ	릴레이션이나 속성의 이름을 변경
유도	이항		디비전	<u> </u>	÷	부모 릴레이션에 포함된 투플의 값을 모두 갖고 있는 투플을 분자 릴레이션 에서 추출
기본	이항		합집힙	t	U	두 릴레이션의 합집합
기본	이항	차집합		_	두 릴레이션의 차집합	
유도	이항	교집합		\cap	두 릴레이션의 교집합	
기본	이항	카디전 프로덕트		×	두 릴레이션에 속한 모든 투플의 집합	
			세	타	\bowtie_{θ}	두 릴레이션 간의 비교 조건에 만족하는 집합
			동	등	X	두 릴레이션 간의 같은 값을 가진 집합
		자연		\bowtie_{N}	동등 조인에서 중복 속성을 제거	
유도	이항	조	세미	left	\times	자연 조인 후 오른쪽 속성을 제거
TT	M S	인	\ \ \ \ \	right	X	자연 조인 후 왼쪽 속성을 제거
			외부	left right	\bowtie	• 자연 조인 후 각각 왼쪽(left), 오른쪽(right), 양쪽(full)의 모든 값을 결과로 추출
				full	M	• 조인이 실패(또는 값이 없을 경우)한 쪽의 값을 NULL로 채움

3.1.3 관계대수식

■ 관계대수식

관계대수는 릴레이션 간 연산을 통해 결과 릴레이션을 찾는 절차를 기술한 언어로, 이 연산을 수행하기 위한 식을 관계대수식(relational algebra expression)이라고 함. 관계대수식은 대상이 되는 릴레이션과 연산자로 구성되며, 결과는 릴레이션으로 반환됨. 반환된 릴레이션은 릴레이션의 모든 특징을 따름.

■ 단항 연산자 : 연산자_{<조건>} 릴레이션

■ 이항 연산자 : 릴레이션1 연산자_{<조건>} 릴레이션2

R1

Α	В	С
a1	b1	c1
a2	b3	c3
a3	b4	c2

R2

Α	В	С
a1	b1	c1
a2	b3	c3
a3	b3	c1

그림 2-17 관계대수식을 이해하기 위한 예제 데이터

R1

Α	В	С
a1	b1	c1
a2	b3	c3
a3	b4	c2

R2

Α	В	С
a1	b1	c1
a2	b3	c3
a3	b3	c1

$\frac{1}{1}$	2-6	관계대수	식의	사용	예
---------------	-----	------	----	----	---

주요 연산자	사용 예	결과	설명
셀렉션(σ)	σ _{A=a1 or A=a2} (R1)	A B C a1 b1 c1 a2 b3 c3	R1에서 조건에 맞는 투플을 추출함.(row, 개체)
프로젝션(π)	π дв(R2)	A B a1 b1 a2 b3 a3 b3	R2에서 조건에 맞는 속성만을 추출함.(col, 스키마)
합집합(U)	R1 ∪ R2	A B C a1 b1 c1 a2 b3 c3 a3 b4 c2 a3 b3 c1	R1과 R2의 합집합을 구함.
차집합(-)	R1 - R2	A B C a3 b4 c2	R1과 R2의 차집합을 구함.
조인	R1 ⊠r1.c=R2c R2	R1.A R1.B R1.C R2.A R2.B R2.C a1 b1 c1 a1 b1 c1 a1 b1 c1 a3 b3 c1 a2 b3 c3 a2 b3 c3	R1과 R2의 카티전 프로덕트를 구하여 조건에 맞는 투플을 추출함.

- 릴레이션의 투플을 추출하기 위한 연산임. 하나의 릴레이션을 대상으로 하는 단항 연산자며, 찾고자 하는 투플의 조건(predicate)을 명시하고 그 조건에 만족하는 투플을 반환함.
- **형식 :** $\sigma_{< x_{7}}$ (R) (R은 릴레이션, σ 는 그리스 문자이며 대문자는 Σ)

질의 2-1 마당서점에서 판매하는 도서 중 8,000원 이하인 도서를 검색하시오.

도서

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
2	축구아는 여자	나무수	13000
3	축구의 이해	대한미디어	22000
4	골프 바이블	대한미디어	35000
5	피겨 교본	굿스포츠	8000

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
5	피겨 교본	굿스포츠	8000

그림 2-18 셀렉션의 예

3.2.1 셀렉션(selection)의 확장

- **형식 :** σ_{<복합조건>} (R) (R은 릴레이션, σ는 그리스 문자이며 대문자는 Σ)
- 여러 개의 조건을 ^(and), ∨ (or), ¬ (not) 기호를 이용하여 복합조건을 표시할 수 있다. 예를 들어, "가격이 8,000원 이하이고, 도서번호가 3 이상인 책을 찾아라"는 질의는 다음과 같이 표현한다.

O(가격<=8000 ∧ 도서번호 >=3) (도서)

- 릴레이션의 속성을 추출하기 위한 연산으로 단항 연산자임.
- **형식:** $\pi_{< 4d \text{d} \triangle E>}$ (R) (R은 릴레이션, π 는 그리스 문자이며 대문자는 Π)

질의 2-2 신간도서 안내를 위해 고객의 (이름, 주소, 핸드폰)이 적힌 카탈로그 주소록을 만드 시오.

π_{이름, 주소, 핸드폰} (고객)

고객

고객번호	이름	주민번호	주소	핸드폰
1	박지성	810225-1111111	영국 맨체스타	000-5000-0001
2	김연아	900905-2222222	대한민국 서울	000-6000-0001
3	장미란	831009-2333333	대한민국 강원도	000-7000-0001
4	추신수	820713-1444444	미국 클리블랜드	000-8000-0001

이름	주소	핸드폰
박지성	영국 맨체스타	000-5000-0001
김연아	대한민국 서울	000-6000-0001
장미란	대한민국 강원도	000-7000-0001
추신수	미국 클리블랜드	000-8000-0001

3.3.1 합집합

IT CONKBOOK

■ 두 개의 릴레이션을 합하여 하나의 릴레이션을 반환함. 이 때 두 개의 릴레이션은 서로 같은 속성 순서와 도메인을 가져야 함.

■ 형식 : R ∪ S

질의 2-3 마당서점은 지점A와 지점B가 있다. 두 지점의 도서는 각 지점에서 관리하며 릴레이션 이름은 각각 도서A, 도서B다. 마당서점의 도서를 하나의 릴레이션으로 보이시오.

도서A U 도서B

도서A

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
2	축구아는 여자	나무수	13000
3	축구의 이해	대한미디어	22000

도서B

도서번호도서이름출판사가격1축구의 역사굿스포츠70004골프 바이블대한미디어350005피겨 교본굿스포츠8000

U

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
2	축구아는 여자	나무수	13000
3	축구의 이해	대한미디어	22000
4	골프 바이블	대한미디어	35000
5	피겨 교본	굿스포츠	8000

그림 2-20 합집합의 예

3.3.2 교집합

IT CONKBOOK

■ 합병가능한 두 릴레이션을 대상으로 하며, 두 릴레이션이 공통으로 가지고 있는 투플을 반환함.

■ 형식 : R ∩ S

질의 2-4 마당서점의 두 지점에서 동일하게 보유하고 있는 도서 목록을 보이시오.

8000

도서A ∩ 도서B

도서A

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
2	축구아는 여자	나무수	13000
3	축구의 이해	대한미디어	22000

도서B

5

도서번호도서이름출판사가격1축구의 역사굿스포츠70004골프 바이블대한미디어35000

굿스포츠

피겨 교본

 \cap

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000

그림 2-21 교집합의 예

3.3.3 차집합

IT CONKBOOK

- 첫 번째 릴레이션에는 속하고 두 번째 릴레이션에는 속하지 않는 투플을 반환함.
- 형식 : R S

질의 2-5 마당서점 두 지점 중 지점 A에서만 보유하고 있는 도서 목록을 보이시오.

도서A - 도서B

도서A

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
2	축구아는 여자	나무수	13000
3	축구의 이해	대한미디어	22000

도서B

도서번호	도서이름 출판사		가격
1	축구의 역사	굿스포츠	7000
4	골프 바이블	대한미디어	35000
5	피겨 교본	굿스포츠	8000

도서번호	도서이름	출판사	가격
2	축구아는 여자	나무수	13000
3	축구의 이해	대한미디어	22000

그림 2-22 차집합의 예

3.3.4 카티전 프로덕트(cartesian product)

■ 두 릴레이션을 연결시켜 하나로 합칠 때 사용함. 결과 릴레이션은 첫 번째 릴레이션의 오른쪽에 두 번째 릴레이션의 모든 투플을 순서대로 배열하여 반환함. 결과 릴레이션의 차수는 두 릴레이션의 차수의 합이며, 카디날리티는 두 릴레이션의 카디날리티의 곱임.

■ 형식:R×S

질의 2-6 고객 릴레이션과 주문 릴레이션의 카티전 프로덕트를 구하시오 (결과가 많으므로 투플을 일부 삭제한 릴레이션을 사용함).

고객 × 주문

3.3.4 카티전 프로덕트(cartesian product)

IT CONKBOOK

고객

고객번호	이름	주소	핸드폰
1	박지성	영국 맨체스타	000-5000-0001
2	김연아	대한민국 서울	000-6000-0001
3	장미란	대한민국 강원도	000-7000-0001

주문

	주문번호	고객번호	도서번호	판매가격	주문일자
	1	2	1	7000	2014-07-01
×	2	1	2	13000	2014-07-03
	3	2	5	8000	2014-07-03
	4	1	2	13000	2014-07-04

고객번호	이름	주소	핸드폰	주문번호	고객번호	도서번호	판매가격	주문일자
1	박지성	영국 맨체스타	000-5000-0001	1	2	1	7000	2014-07-01
1	박지성	영국 맨체스타	000-5000-0001	2	1	2	13000	2014-07-03
1	박지성	영국 맨체스타	000-5000-0001	3	2	5	8000	2014-07-03
1	박지성	영국 맨체스타	000-5000-0001	4	1	2	13000	2014-07-04
2	김연아	대한민국 서울	000-6000-0001	1	2	1	7000	2014-07-01
2	김연아	대한민국 서울	000-6000-0001	2	1	2	13000	2014-07-03
2	김연아	대한민국 서울	000-6000-0001	3	2	5	8000	2014-07-03
2	김연아	대한민국 서울	000-6000-0001	4	1	2	13000	2014-07-04
3	장미란	대한민국 강원도	000-7000-0001	1	2	1	7000	2014-07-01
3	장미란	대한민국 강원도	000-7000-0001	2	1	2	13000	2014-07-03
3	장미란	대한민국 강원도	000-7000-0001	3	2	5	8000	2014-07-03
3	장미란	대한민국 강원도	000-7000-0001	4	1	2	13000	2014-07-04

- 두 릴레이션의 공통 속성을 기준으로 속성 값이 같은 투플을 수평으로 결합하는 연산임. 조인을 수행하기 위해서는 두 릴레이션의 조인에 참여하는 속성이 서로 동일한 도메인으로 구성되어야 함. 조인 연산의 결과는 공통 속성의 속성 값이 동일한투플만을 반환함.
- **형식 :** R ⋈_c S = σ_c (R×S) (R과 S는 릴레이션, c 는 조인조건)
- 조인 연산의 구분
 - 기본연산 : 세타조인(\bowtie ₀), 동등조인(\bowtie), 자연조인(\bowtie _N)
 - 확장된 조인 연산 : 세미조인(⋉, ⋈), 외부조인(⋈, ⋈, ⋈)

3.4.1 세타조인과 동등조인

IT CONKBOOK

세타조인(theta join, θ)

- 조인에 참여하는 두 릴레이션의 속성 값을 비교하여 조건을 만족하는 투플만 반환함.
- 세타조인의 조건은 {=, ≠, ≤, ≥, <, >} 중 하나가 됨.
- 형식 : R ⋈ (r 조건 s) S (R과 S는 릴레이션이며 r은 R의 속성, s는 S의 속성)

■ 동등조인(equi join)

- 세타조인에서 = 연산자를 사용한 조인을 말함. 보통 조인 연산이라고 하면 동등조인을 지칭함
- 형식 : R ⋈ (r = s) S

질의 2-7 고객과 고객의 주문 사항을 모두 보이시오.

고객

고객번호	이름	주소	핸드폰
1	박지성	영국 맨체스타	000-5000-0001
2	김연아	대한민국 서울	000-6000-0001
3	장미란	대한민국 강원도	000-7000-0001
4	추신수	미국 클리블랜드	000-8000-0001

주문

주문번호	고객번호	도서번호	판매가격	주문일자
1	2	1	7000	2014-07-01
2	1	2	13000	2014-07-03
3	2	5	8000	2014-07-03
4	1	2	13000	2014-07-04
5	4	4	35000	2014-07-05
6	5	3	22000	2014-07-07
7	4	3	22000	2014-07-07

고객 고객.고객번호=주문.고객번호 주문

3.4.2 자연조인(natural join)

IT CONKBOOK

- 동등조인에서 조인에 참여한 속성이 두 번 나오지 않도록 두 번째 속성을 제거한 결과를 반환함.
- **형식**: R ⋈ N(r, s) S

질의 2-8 고객과 고객의 주문 사항을 모두 보여주되 같은 속성은 한 번만 표시하시오.

3.4.2 자연조인(natural join)

고객

고객번호	이름	주소	핸드폰
1	박지성	영국 맨체스타	000-5000-0001
2	김연아	대한민국 서울	000-6000-0001
3	장미란	대한민국 강원도	000-7000-0001
4	추신수	미국 클리블랜드	000-8000-0001

주문

주문번호	고객번호	도서번호	판매가격	주문일자
1	2	1	7000	2014-07-01
2	1	2	13000	2014-07-03
3	2	5	8000	2014-07-03
4	1	2	13000	2014-07-04
5	4	4	35000	2014-07-05
6	5	3	22000	2014-07-07
7	4	3	22000	2014-07-07

고객번호	이름	주소	핸드폰	주문번호	도서번호	판매가격	주문일자
1	박지성	영국 맨체스타	000-5000-0001	2	2	13000	2014-07-03
1	박지성	영국 맨체스타	000-5000-0001	4	2	13000	2014-07-04
2	김연아	대한민국 서울	000-6000-0001	1	1	7000	2014-07-01
2	김연아	대한민국 서울	000-6000-0001	3	5	8000	2014-07-03
4	추신수	미국 클리블랜드	000-8000-0001	5	4	35000	2014-07-05
4	추신수	미국 클리블랜드	000-8000-0001	7	3	22000	2014-07-07

IT CONKBOOK

■ 외부조인(outer join)

- 자연조인 시 조인에 실패한 투플을 모두 보여주되 값이 없는 대응 속성에는 NULL 값을 채워서 반환
- 모든 속성을 보여주는 기준 릴레이션 위치에 따라 왼쪽(left) 외부조인, 오른쪽(right) 외부조인, 완전 (full) 외부조인으로 나뉨.
- 형식 : 왼쪽(left) 외부조인 R ^{▶ (r, s)} S

완전(full) 외부조인 - R ◯ (r, s) S

오른쪽(right) 외부조인 - R ⋉ (r, s) S

R1

Α	В
aa	1
СС	2
СС	3

R2

В	С
1	dd
3	ee
4	ff

R1 (R1.B, R2.B) R2

Α	В	С
aa	1	dd
СС	2	NULL
СС	3	ee

그림 2-26 왼쪽 외부조인의 예

IT CONKBOOK

질의 2-9 마당서점의 고객과 고객의 주문 내역을 보이시오.

- ① 고객 기준으로 주문내역이 없는 고객도 모두 보이시오.
- ② 주문내역이 없는 고객과, 고객 릴레이션에 고객번호가 없는 주문을 모두 보이시오.
- ③ 주문내역 기준으로 고객 릴레이션에 고객번호가 없는 주문도 모두 보이시오.
- ① 고객 ^(고객,고객번호, 주문,고객번호) 주문
- ② ユヸ^{ン (ユヸ,ユヸ번호, 주문,ユヸ번호)} 주문
- ③ 고객 (고객.고객번호, 주문.고객번호) 주문

고객

고객번호	이름
1	박지성
2	김연아
3	장미란
4	추신수

주문

주문번호	고객번호	판매가격
1	2	7000
2	1	13000
3	2	8000
4	1	13000
5	4	35000
6	5	22000
7	4	22000

고객 🖂 고객.고객번호=주문.고객번호 주문

고객번호	이름	주문번호	판매가격
1	박지성	2	13000
1	박지성	4	13000
2	김연아	1	7000
2	김연아	3	8000
3	장미란	NULL	NULL
4	추신수	5	35000
4	추신수	7	22000
5	NULL	6	22000

고객 🖂 고객.고객번호=주문.고객번호 주문

이름	주문번호	고객번호	판매가격
김연아	1	2	7000
박지성	2	1	13000
김연아	3	2	8000
박지성	4	1	13000
추신수	5	4	35000
NULL	6	5	22000
추신수	7	4	22000

① 왼쪽 외부조인

② 완전 외부조인

③ 오른쪽 외부조인

그림 2-27 외부조인의 예

IT CONKBOOK

■ 세미조인(semi join)

- 자연조인을 한 후 두 릴레이션 중 한쪽 릴레이션의 결과만 반환하며, 기호에서 닫힌 쪽 릴레이션의 투플만 반환함.
- 형식 : R ⋈ (r, s) S

질의 2-10 마당서점의 고객 중 주문 내역이 있는 고객의 고객 정보를 보이시오.

고객 🔀 고객.고객번호, 주문.고객번호 주문

고객

고객번호	이름	주소	핸드폰
1	박지성	영국 맨체스타	000-5000-0001
2	김연아	대한민국 서울	000-6000-0001
3	장미란	대한민국 강원도	000-7000-0001
4	추신수	미국 클리블랜드	000-8000-0001

주문

주문번호	고객번호	도서번호	판매가격	주문일자
1	2	1	7000	2014-07-01
2	1	2	13000	2014-07-03
3	2	5	8000	2014-07-03
4	1	2	13000	2014-07-04
5	4	4	35000	2014-07-05
6	5	3	22000	2014-07-07
7	4	3	22000	2014-07-07

고객 ⋉ (고객.고객번호,주문.고객번호) 주문

고객번호	이름	주소	핸드폰
1	박지성	영국 맨체스타	000-5000-0001
2	김연아	대한민국 서울	000-6000-0001
4	추신수	미국 클리블랜드	000-8000-0001

그림 2-28 세미조인(왼쪽이 닫힌 경우)의 예

- 릴레이션의 속성 값의 집합으로 연산을 수행함.
- 형식:R÷S

그림 2-29 디비전 연산의 예

3.6.1 셀렉션, 프로젝션, 집합연산의 복합 사용

IT CONKBOOK

질의 2-11 마당서점의 도서 중 가격이 8,000원 이하인 도서이름과 출판사를 보이시오.

■ 마당서점의 지점이 하나인 경우

TT도서이름, 출판사 (O가격 < =8000 도서)

도서

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
2	축구아는 여자	나무수	13000
3	축구의 이해	대한미디어	22000
4	골프 바이블	대한미디어	35000
5	피겨 교본	굿스포츠	8000

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
5	피겨 교본	굿스포츠	8000

	\Rightarrow
∏도서이름, 출	판사

도서이름	출판사
축구의 역사	굿스포츠
피겨 교본	굿스포츠

그림 2-30 단일 릴레이션에서 셀렉션, 프로젝션 연산의 복합 사용

3.6.1 셀렉션, 프로젝션, 집합연산의 복합 사용

IT CONKBOOK

■ 마당서점의 지점이 둘 이상인 경우

П 도서이름, 출판사 ((О 가격 <=8000 도서А) U (О 가격 <=8000 도서В))

도서A

도서번호	도서이름	출판사	가격	
1	축구의 역사	굿스포츠	7000	
2	축구아는 여자	나무수	13000	
3	축구의 이해	대한미디어	22000	

○ 가격 < =8000 (도서A)

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000

도서B

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
4	골프 바이블	대한미디어	35000
5	피겨 교본	굿스포츠	8000

○ 가격 < =8000 (도서B)

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
5	피겨 교본	굿스포츠	8000

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
5	피겨 교본	굿스포츠	8000

∏도서이름, 출판사

도서이름	출판사
축구의 역사	굿스포츠
피겨 교본	굿스포츠

3.6.2 카티전 프로덕트를 사용한 연산과 조인을 사용한 연산

IT CONKBOOK

질의 2-12 마당서점의 박지성 고객의 거래 내역 중 주문번호, 이름, 가격을 보이시오.

■ 카티전 프로덕트를 사용한 연산

П주문.주문번호, 고객.이름, 주문.판매가격 (の고객.고객번호=주문.고객번호 AND 고객.이름='박지성' (고객×주문))

고객

고객번호	이름	주민번호	주소	핸드폰
1	박지성	810225-1111111	영국 맨체스타	000-5000-0001
2	김연아	900905-2222222	대한민국 서울	000-6000-0001
3	장미란	831009-2333333	대한민국 강원도	000-7000-0001
4	추신수	820713-1444444	미국 클리블랜드	000-8000-0001

주문

주문번호	고객번호	도서번호	판매가격	주문일자
1	1	1	7000	2014-07-01
2	1	2	13000	2014-07-03
3	2	5	8000	2014-07-03
4	3	2	13000	2014-07-04
5	4	4	35000	2014-07-05
6	1	3	22000	2014-07-07
7	4	3	22000	2014-07-07

고객 × 주문

고객번호	이름	주민번호	주소	핸드폰	<u>주문번호</u>	고객번호	도서번호	판매가격	주문일자
1	박지성	810225-1111111	영국 맨체스타	000-5000-0001	1	1	1	7000	2014-07-01
1	박지성	810225-1111111	영국 맨체스타	000-5000-0001	2	1	2	13000	2014-07-03
1	박지성	810225-1111111	영국 맨체스타	000-5000-0001	3	2	5	8000	2014-07-03
1	박지성	810225-1111111	영국 맨체스타	000-5000-0001	4	3	2	13000	2014-07-04
1	박지성	810225-1111111	영국 맨체스타	000-5000-0001	5	4	4	35000	71 71
1	박지성	810225-1111111	영국 맨체스타	000-5000-0001	6	1	3	22000	결과
1	박지성	810225-1111111	영국 맨체스타	000-5000-0001	7	4	3	22000	생략
2	김연아	900905-2222222	대한민국 서울	000-6000-0001	1	1	1	7000	201 /-01
4	추신수	820713-1444444	미국 클리블랜드	000-8000-0001	5	4	4	35000	2014-07-05
4	추신수	820713-1444444	미국 클리블랜드	000-8000-0001	6	1	3	22000	2014-07-07
4	추신수	820713-1444444	미국 클리블랜드	000-8000-0001	7	4	3	22000	2014-07-07

O고객.고객번호=주문.고객번호 AND 고객.이름='박지성'

고객번호	이름	주민번호	주소	핸드폰	<u>주문번호</u>	고객번호	도서번호	판매가격	주문일자
1	박지성	810225-1111111	영국 맨체스타	000-5000-0001	1	1	1	7000	2014-07-01
1	박지성	810225-1111111	영국 맨체스타	000-5000-0001	2	1	2	13000	2014-07-03
1	박지성	810225-1111111	영국 맨체스타	000-5000-0001	6	1	3	22000	2014-07-07

Π_{주문.주문번호,고객.이름,주문.판매가격}

주문번호	이름	판매가격
1	박지성	7000
2	박지성	13000
6	박지성	22000

그림 2-32 카티전 프로덕트를 사용한 연산

3.6.2 카티전 프로덕트를 사용한 연산과 조인을 사용한 연산

IT CONKBOOK

■ 조인을 사용한 연산

TT 주문번호, 이름, 판매가격 (O 이름='박지성' (고객) 고객.고객번호=주문.고객번호 주문))

■ **카티전 프로덕트를 사용한 연산 (**위 연산식과 동일함)

 $\Pi_{\text{주문.주문번호, 2객.이름, 주문.판매가격}}(\sigma_{\text{2객.2객번호=주문.2객번호 AND 2객.이름='박지성'}}(\mathbf{2객\times주문})$

고객

고객번호	이름	주민번호	주소	핸드폰
1	박지성	810225-1111111	영국 맨체스타	000-5000-0001
2	김연아	900905-2222222	대한민국 서울	000-6000-0001
3	장미란	831009-2333333	대한민국 강원도	000-7000-0001
4	추신수	820713-1444444	미국 클리블랜드	000-8000-0001

주문

주문번호	고객번호	도서번호	판매가격	주문일자
1	1	1	7000	2014-07-01
2	1	2	13000	2014-07-03
3	2	5	8000	2014-07-03
4	3	2	13000	2014-07-04
5	4	4	35000	2014-07-05
6	1	3	22000	2014-07-07
7	4	3	22000	2014-07-07

고객 ⋈_{고객.고객번호=주문.고객번호} 주문

고객번호	이름	주민번호	주소	핸드폰	<u>주문번호</u>	고객번호	도서번호	판매가격	주문일자
1	박지성	810225-1111111	영국 맨체스타	000-5000-0001	1	1	1	7000	2014-07-01
1	박지성	810225-1111111	영국 맨체스타	000-5000-0001	2	1	2	13000	2014-07-03
1	박지성	810225-1111111	영국 맨체스타	000-5000-0001	6	1	3	22000	2014-07-07
2	김연아	900905-2222222	대한민국 서울	000-6000-0001	3	2	5	8000	2014-07-03
3	장미란	831009-2333333	대한민국 강원도	000-7000-0001	4	3	2	13000	2014-07-04
4	추신수	820713-1444444	미국 클리블랜드	000-8000-0001	5	4	4	35000	2014-07-05
4	추신수	820713-1444444	미국 클리블랜드	000-8000-0001	7	4	3	22000	2014-07-07

$\sigma_{\text{이름='박지성'}}$

고객번호	이름	주민번호	주소	핸드폰	<u>주문번호</u>	고객번호	도서번호	판매가격	주문일자
1	박지성	810225-1111111	영국 맨체스타	000-5000-0001	1	1	1	7000	2014-07-01
1	박지성	810225-1111111	영국 맨체스타	000-5000-0001	2	1	2	13000	2014-07-03
1	박지성	810225-1111111	영국 맨체스타	000-5000-0001	6	1	3	22000	2014-07-07

$\Pi_{ extstyle au_{ extstyle au_{$

주문번호	이름	판매가격
1	박지성	7000
2	박지성	13000
6	박지성	22000

그림 2-33 조인을 사용한 연산

- 1. 릴레이션
- 2. 릴레이션 스키마
- 3. 릴레이션 인스턴스
- 4. 관계 데이터베이스 시스템
- **5**. ヲ
- 6. 무결성 제약조건
- 7. 참조 무결성 제약조건의 옵션
- 8. 관계대수
- 9. 셀렉션
- 10. 프로젝션
- 11. 집합연산
- 12. 조인
- 13. 디비전