MAECS

Generated by Doxygen 1.8.4

March 6, 2014

Contents

	Symb	bols	2
1	MAE	CS: Model for Adaptive Ecosystems in Coastal Seas	4
		General Overview	4
2	Todo) List	5
3	Data	Type Index	7
	3.1	Class Hierarchy	7
4		Type Index	8
	4.1	Data Types List	8
5	File I	Index	9
	5.1	File List	9
6	Data	Type Documentation	10
U	6.1	fabm_hzg_maecs Module Reference	10
	0.1	6.1.1 Detailed Description	10
		6.1.2 Member Function/Subroutine Documentation	11
		6.1.2.1 initialize	11
		6.1.2.2 get light extinction	12
		6.1.2.3 maecs do	12
		6.1.2.4 maecs get vertical movement	13
	6.2	fabm_hzg_maecs::maecs_do Interface Reference	14
	0.2	6.2.1 Detailed Description	14
	6.3	maecs functions Module Reference	14
	0.5	6.3.1 Detailed Description	15
		6.3.2 Member Function/Subroutine Documentation	15
		6.3.2.1 smooth small	15
		6.3.2.2 uptflex	15
		•	15
		6.3.2.3 foptupt	15
		6.3.2.4 queuefunc	16
		6.3.2.6 queuederiv	16
		6.3.2.7 sinking	16
		6.3.2.8 min mass	16
		6.3.2.9 calc_sensitivities	17
		6.3.2.10 calc_internal_states	17
	6.4	fabm_hzg_maecs::maecs_get_vertical_movement Interface Reference	18
	0.4		18
	6 E	6.4.1 Detailed Description	18
	6.5	maecs_grazing Module Reference	
		6.5.1 Detailed Description	18
			18
		6.5.2.1 grazing	18
	0.0	6.5.2.2 grazing_losses	18
	6.6	maecs_primprod Module Reference	19 19
		6.6.1 Detailed Description	- 19

CONTENTS

	6.6.2 Member Function/Subroutine Documentation	19
	6.6.2.1 photosynthesis	19
6.7	maecs_types Module Reference	19
	6.7.1 Detailed Description	20
6.8	maecs_types::stoich_pointer Type Reference	20
	6.8.1 Detailed Description	20
6.9	fabm_hzg_maecs::type_hzg_maecs Type Reference	20
	6.9.1 Detailed Description	20
6.10	maecs_types::type_maecs_allocation_fractions Type Reference	21
	6.10.1 Detailed Description	21
6.11	maecs_types::type_maecs_base_model Type Reference	21
	6.11.1 Detailed Description	21
6.12	maecs_types::type_maecs_basic_traits Type Reference	21
	6.12.1 Detailed Description	21
6.13	maecs_types::type_maecs_env Type Reference	21
	6.13.1 Detailed Description	21
6.14	maecs_types::type_maecs_life Type Reference	22
	6.14.1 Detailed Description	22
6.15	maecs_types::type_maecs_nutindex Type Reference	22
	6.15.1 Detailed Description	22
6.16	maecs_types::type_maecs_om Type Reference	22
	6.16.1 Detailed Description	22
6.17	maecs_types::type_maecs_phy Type Reference	23
	6.17.1 Detailed Description	23
6.18	maecs_types::type_maecs_rhs Type Reference	23
	6.18.1 Detailed Description	23
6.19	maecs_types::type_maecs_sensitivities Type Reference	23
	6.19.1 Detailed Description	23
6.20	maecs_types::type_maecs_switch Type Reference	23
	6.20.1 Detailed Description	23
6.21	maecs_types::type_maecs_traitdyn Type Reference	24
	6.21.1 Detailed Description	24
6.22	maecs_types::type_maecs_zoo Type Reference	24
	6.22.1 Detailed Description	24
File	Documentation	25
7.1	maecs_functions.F90 File Reference	
7.1	7.1.1 Detailed Description	
7.2	maecs_grazing.F90 File Reference	25
1.2	7.2.1 Detailed Description	25
7.3	maecs_maecsdo_combined.F90 File Reference	26
	7.3.1 Detailed Description	26
7.4		
	maecs primprod F90 File Reference	26
	maecs_primprod.F90 File Reference	26 26
7.5	7.4.1 Detailed Description	26
7.5	7.4.1 Detailed Description	26 26
7.5	7.4.1 Detailed Description	26
	7.4.1 Detailed Description	26 26
	7.4.1 Detailed Description	26 26 27
Text	7.4.1 Detailed Description	26 26 27 28
Text	7.4.1 Detailed Description maecs_types.F90 File Reference 7.5.1 Detailed Description cual Model Description Model structure	26 26 27 28 28
Text 8.1	7.4.1 Detailed Description maecs_types.F90 File Reference 7.5.1 Detailed Description tual Model Description Model structure 8.1.1 Mass equations	26 26 27 28 28 28
Text 8.1	7.4.1 Detailed Description maecs_types.F90 File Reference 7.5.1 Detailed Description tual Model Description Model structure 8.1.1 Mass equations Process Descriptions	26 26 27 28 28 28 29
Text 8.1	7.4.1 Detailed Description maecs_types.F90 File Reference 7.5.1 Detailed Description tual Model Description Model structure 8.1.1 Mass equations Process Descriptions 8.2.1 Growth rate components and primary production	26 26 27 28 28 28 29 29
Text 8.1	7.4.1 Detailed Description maecs_types.F90 File Reference 7.5.1 Detailed Description tual Model Description Model structure 8.1.1 Mass equations Process Descriptions 8.2.1 Growth rate components and primary production 8.2.2 Respiration and temperature	26 26 27 28 28 29 29 30
Text 8.1	7.4.1 Detailed Description maecs_types.F90 File Reference 7.5.1 Detailed Description tual Model Description Model structure 8.1.1 Mass equations Process Descriptions 8.2.1 Growth rate components and primary production 8.2.2 Respiration and temperature 8.2.3 Multi–nutrient co–limitation	26 27 28 28 29 29 30 30
Text 8.1	7.4.1 Detailed Description maecs_types.F90 File Reference 7.5.1 Detailed Description tual Model Description Model structure 8.1.1 Mass equations Process Descriptions 8.2.1 Growth rate components and primary production 8.2.2 Respiration and temperature 8.2.3 Multi–nutrient co–limitation 8.2.4 Uptake system allocation and PI-coefficients	26 26 27 28 28 29 29 30 30 31
Text 8.1	7.4.1 Detailed Description maecs_types.F90 File Reference 7.5.1 Detailed Description tual Model Description Model structure 8.1.1 Mass equations Process Descriptions 8.2.1 Growth rate components and primary production 8.2.2 Respiration and temperature 8.2.3 Multi–nutrient co–limitation 8.2.4 Uptake system allocation and PI-coefficients 8.2.5 Nutrient uptake	26 26 27 28 28 29 30 30 31 32

7

8

CONTENTS 1

Index			40
Biblio	graphy		38
8.4	Ackno	wledgements	38
	8.3.5	Photoacclimation and transport	
	8.3.4	Costs in P and Si uptake	37
	8.3.3	Uptake activity regulation	37
	8.3.2	Quota-uptake feed-back	36
	8.3.1	Growth derivatives under co-limitation	35
8.3	Adapti	ve trait regulation and differential trade-off	34
	8.2.9	Other stuff	34

Symbols

Symbols used in formulas, respective model parameters, and their descriptions

```
1/h
         syn nut synchrony n queue in nutrient quota limitation
\alpha
         alpha specific light adsorption by chloroplasts
\delta_{\theta}
         adap_theta adap_theta
\delta_R
         adap rub adap rub
\Delta t_{
m v}
         tau regV tau regV
a_{c}hl
         a chl attenuation coefficient due to Chl absorption
        a spm attenuation coefficient of SPM
a_spm
awater a water background attenuation coefficient
Ae<sub>a</sub>ll Ae all Activation energy
basal<sub>r</sub>esp<sub>z</sub>oo basal_resp_zoo basal respiration
const_N C_z oo const_NC_zoo zooplankton N:C ratio
const_{P}C_{z}oo\ const\_{P}C\_{z}oo\ zooplankton\ P:C\ ratio
detCinitial detC_initial Detritus Carbon
detNinitial detN_initial Detritus Nitrogen
detPinitial detP initial Detritus Phosphorus
detS<sub>i</sub>nitial detS_initial Detritus Silicon
dil
         dil dilution of all concentrations except dissolved inorganics
         nutN initial Dissolved Inorganic Nitrogen DIN
domCinitial domC_initial Dissolved Organic Carbon
domNinitial domN initial Dissolved Organic Nitrogen
domPinitial domP initial Dissolved Organic Phosphorus
exudphy exud_phy phytoplankton exudation per production
frac<sub>P</sub>AR frac PAR photosynthetically active fraction of light
gmax g_max maximum grazing rate
hydrol hydrolysis rate
k<sub>g</sub>razC k_grazC half saturation graing
mort<sub>z</sub>oo mort_zoo quadratic mortality
NutOrder NutOrder element order of recursive scheme. lower digit: synchrony element
phiagg phiagg quadratic aggregation rate
phyNinitial phyN_initial Phytplankton Nitrogen
phyPinitial phyP_initial Phytplankton Phosphorus
phyS<sub>i</sub>nitial phyS_initial Phytplankton Silicon
Phy<sub>C</sub> phyC_initial Phytplankton Carbon
Phy_{P}
         nutP initial Dissolved Inorganic Phosphorus DIP
        nutS_initial Dissolved Inorganic Silicon Si
Phy_{Si}
```

 $Q_{\rm P0}$

 $Q_{\rm Si0}$

```
rel<sub>c</sub>hloropl<sub>m</sub>in rel_chloropl_min chloroplast-C to phy-C ratio
remin remin pelagic remineralisation
         small lower limit for denominator in ratios; small_finite=sqrt(small)
small
T_ref
         T_ref reference temperature
vS<sub>d</sub>et vS det sinking velocity for detritus
vS<sub>p</sub>hy vS_phy sinking velocity for phytoplankton
yield<sub>z</sub>oo yield_zoo yield of herbivory
zooCinitial zooC initial Zooplankton Carbon
zstoich_PN zstoich_PN P-stoichiometry of active compounds(-> P costs)
σ
         sigma Q-dependency of Rubisco activity/chloroplast ratio
\theta_{\rm C}
         theta_LHC Chlorophylla-to-C ratio of LHC
         zeta_CN respiratory costs of N-synthesis/NO3-reduction
\zeta_{\rm CN}
A_{\rm N}^0
         AffN N-Affinity
A_{
m P}^0
         AffP P-Affinity
A_{\rm Si}^0
         AffSi Si-Affinity
f_{\theta}\theta_{C}
         frac_chl_ini Chl:C ratio
         frac_Rub_ini fraction of Rubisco
f_R
         P_max maximum potential photosynthetic rate
P_{\text{max}}
Q_{\rm N}^{\rm ref}
         QN_phy_max maximum N-quota
Q_{
m P}^{
m ref}
         QP phy max subsistence P-quota
Q_{\rm Si}^{\rm ref}
         QSi_phy_max subsistence Si-quota
Q_{\rm N0}
         QN_phy_0 subsistence N-quota
```

QP_phy_0 subsistence P-quota

QSi_phy_0 subsistence Si-quota

MAECS: Model for Adaptive Ecosystems in Coastal Seas

1.1 General Overview

With regard to the conceptualization of trophic interactions, MAECS resembles the classical N-P-Z-D models (1). The emphasis is on the regulation of a number of physiological processes in the phytoplankton unit, which are resolved following a sophisticated optimization scheme. Energy & nutrient allocation scheme of the phytoplankton, as well as the optimization concept used in MAECS is hinted by the model described by Wirtz and Pahlow (2010). See the last section (2) (available only in the pdf form of the documentation) for a detailed description and model equations with some narration.

Todo (1) include a diagram here

Todo (2) find out how to refer to the other sections, e.g., auto-generated by doxygen and added as extra latex packages (maybe Carsten knows already?)

In order to re-generate this documentation, make sure the prerequisites (doxygen,latex, bibtex) installed in your system, then type:

make

inside:

\$FABMDIR/src/models/hzg/maecs/doc/

Todo List

Type fabm_hzg_maecs

looking at the rhs calculations in maecs_do, id_Rub and id_chl are set (correctly) as bulk variables (X*phyC). however from the units, it looks as if they are registered (wrongly) as property variables (X)??

Subprogram fabm_hzg_maecs::initialize (self, configunit)

from the rhsv argument of the SET_ODE's in maecs_do, it looks as if id_chl and id_Rub are (correctly) handled as bulk variables (-phyC multiplied traits). however registered names, units and description of these variables looks as if they are (wrongly) handled as property variables?? So we should change the units, names and desc's?

Subprogram fabm_hzg_maecs::maecs_do (self, _ARGUMENTS_DO_)

: min_mass correction of phy% and phy%N at this stage requires specification of threshold values. What about back-calculating phy%reg%N from the smooth_small corrected phy%Q%N?

: add the rhs equations

page MAECS: Model for Adaptive Ecosystems in Coastal Seas

(1) include a diagram here (2) find out how to refer to the other sections, e.g., auto-generated by doxygen and added as extra latex packages (maybe Carsten knows already?)

Subprogram maecs_functions::calc_internal_states (maecs, phy, det, dom, zoo)

the theta-related calculations should obviously be related to eq:ftheta} but I get lost. See the Q's therein

???????? phy%frac%Rub=1-phy%frac%Rub: ????????

Subprogram maecs_functions::calc_sensitivities (maecs, sens, phy, env, nut)

: add a better description and equations

Subprogram maecs_functions::foptupt (Aff0, Vmax0, Nut)

: find where it is in the text, add equations

Subprogram maecs_functions::min_mass (maecs, phy, method)

: assign some meaningful names to case numbers

: mm_method to be read from the nml?

: add equations

: Q: why phy%P is not stored also in phy%reg%P??

Subprogram maecs_functions::queuederiv (n, x)

: add equations

Subprogram maecs_functions::queuefunc (n, x, qfunc, qderiv)

: add equations

Subprogram maecs_functions::queuefunc1 (n, x, qfunc, qderiv)

: add equations

6 Todo List

Subprogram maecs_functions::sinking (vS, phys_status, sinkvel)

: add equations

Subprogram maecs_functions::uptflex (Aff0, Vmax0, Nut, fAv)

: find where it is in the text, add equations

Subprogram maecs_grazing::grazing (Imax, HalfSat, preyconc, rate)

: add a description and details

Subprogram maecs_grazing::grazing_losses (zoo, resC, Q_prey, lossZNut, lossZDet, mswitch)

: add a description and details

Data Type Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

fabm_hzg_maecs
$fabm_hzg_maecs::maecs_do \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
maecs_functions
fabm_hzg_maecs::maecs_get_vertical_movement
maecs_grazing
maecs_primprod
maecs_types
maecs_types::stoich_pointer
type_base_model
maecs_types::type_maecs_base_model
maecs_types::type_maecs_allocation_fractions
type_maecs_base_model
fabm_hzg_maecs::type_hzg_maecs
maecs_types::type_maecs_basic_traits
maecs_types::type_maecs_env
maecs_types::type_maecs_nutindex
maecs_types::type_maecs_om
maecs_types::type_maecs_life
maecs_types::type_maecs_phy
maecs_types::type_maecs_zoo
maecs_types::type_maecs_rhs
maecs_types::type_maecs_sensitivities
maecs_types::type_maecs_switch
maecs_types::type_maecs_traitdyn

Data Type Index

4.1 Data Types List

Here are the data types with brief descriptions:

labin_nzg_maecs			
This is the module registered in FABM			
fabm_hzg_maecs::maecs_do			
maecs_functions			
Functions called by maecs_do, maecs_grazing and maecs_primprod	14		
fabm_hzg_maecs::maecs_get_vertical_movement	18		
maecs_grazing			
Grazing module	18		
maecs_primprod			
Primary production module	19		
maecs_types			
Data types used in fabm_hzg_maecs are defined here	19		
maecs_types::stoich_pointer	20		
fabm_hzg_maecs::type_hzg_maecs			
This is the model type FABM uses to create the mode	20		
maecs_types::type_maecs_allocation_fractions	21		
maecs_types::type_maecs_base_model	21		
maecs_types::type_maecs_basic_traits	21		
maecs_types::type_maecs_env	21		
maecs_types::type_maecs_life	22		
maecs_types::type_maecs_nutindex	22		
maecs_types::type_maecs_om	22		
maecs_types::type_maecs_phy	23		
maecs_types::type_maecs_rhs	23		
maecs_types::type_maecs_sensitivities	23		
maecs_types::type_maecs_switch	23		
maecs_types::type_maecs_traitdyn	24		
maecs_types::type_maecs_zoo	24		

File Index

5.1 File List

Here is a list of all documented files with brief descriptions:

maecs_functions.F90	25
maecs_grazing.F90	25
maecs_maecsdo_combined.F90	
A temporary file built by combining maecs.F90 and maecs_do.F90 for documentation purposes	26
maecs_primprod.F90	26
maecs_types.F90	
Maecs_types module	26
mainpage.doxygen	??

Data Type Documentation

6.1 fabm_hzg_maecs Module Reference

This is the module registered in FABM.

Data Types

- · interface maecs_do
- interface maecs_get_vertical_movement
- type type_hzg_maecs

this is the model type FABM uses to create the mode

Private Member Functions

• subroutine initialize (self, configurit)

initializes the model

subroutine get_light_extinction (self, _ARGUMENTS_GET_EXTINCTION_)

to calculate light extinction when kc changes with depth

• subroutine maecs_do (self, _ARGUMENTS_DO_)

This is the main routine where right-hand-sides are calculated.

• subroutine maecs_get_vertical_movement (self, _ARGUMENTS_GET_VERTICAL_MOVEMENT_)

handles vertical movement for depth-varying movement rates

6.1.1 Detailed Description

This is the module registered in FABM.

all the maecs_types are made available to this module

Todo looking at the rhs calculations in maecs_do, id_Rub and id_chl are set (correctly) as bulk variables (X*phyC). however from the units, it looks as if they are registered (wrongly) as property variables (X)??

Definition at line 12 of file maecs_maecsdo_combined.F90.

6.1.2 Member Function/Subroutine Documentation

6.1.2.1 fabm_hzg_maecs::initialize (class (type_hzg_maecs), intent(inout), target *self*, integer, intent(in) *configunit*)

[private]

initializes the model

here the maecs namelists are read and assigned respectively in the model type (self), state & diagnostic variables are registered in FABM and dependencies are imported from FABM

Model parameters, descriptions and corresponding symbols used in formulas:

Parameters

nutN_initial	DIN Dissolved Inorganic Nitrogen DIN	
nutP_initial	Phy _P Dissolved Inorganic Phosphorus DIP	
nutS_initial	<u> </u>	
phyC_initial PhyC Phytplankton Carbon		
phyN_initial	phyN _i nitial Phytplankton Nitrogen	
phyP_initial	phyP _i nitial Phytplankton Phosphorus	
phyS_initial	phyS _i nitial Phytplankton Silicon	
zooC_initial	zooC _i nitial Zooplankton Carbon	
detC_initial	detC _i nitial Detritus Carbon	
detN_initial	detN _i nitial Detritus Nitrogen	
detP_initial	detP _i nitial Detritus Phosphorus	
detS_initial	detS _i nitial Detritus Silicon	
domC_initial	domCinitial Dissolved Organic Carbon	
domN_initial	domN _i nitial Dissolved Organic Nitrogen	
domP_initial	domP _i nitial Dissolved Organic Phosphorus	
$frac_Rub_ini$ f_R fraction of Rubisco {Rub , f_R{Phy}_{C}, trait x biomass}		
frac_chl_ini	$f_{\theta}\theta_{C}$ Chl:C ratio {chl , f_{Phy}_{C}, trait x biomass}	
P_max P _{max} maximum potential photosynthetic rate		
alpha $lpha$ specific light adsorption by chloroplasts		
sigma σ Q-dependency of Rubisco activity/chloroplast ratio		
theta_LHC $ heta_{ m C}$ Chlorophylla-to-C ratio of LHC		
rel_chloropl_min	rel _c hloropl _m in chloroplast-C to phy-C ratio	
QN_phy_0	$Q_{ m N0}$ subsistence N-quota	
QN_phy_max	$Q_{\rm N}^{\rm ref}$ maximum N-quota {V_NC_max , V_{max,N}^0 , maximum N uptake rate, 0.3 mol-N/(mol-C d)}	
AffN	$A_{ m N}^0$ N-Affinity	
zeta_CN	$\zeta_{ m CN}$ respiratory costs of N-synthesis/NO3-reduction	
zstoich_PN	zstoich _P N P-stoichiometry of active compounds(-> P costs)	
exud_phy	exud _p hy phytoplankton exudation per production	
QP_phy_0	$Q_{ m P0}$ subsistence P-quota	
QP_phy_max	$Q_{\rm P}^{\rm ref}$ subsistence P-quota {V_PC_max , V_{max,P}^0 , maximum P uptake rate, 0.03 mol-P/(mol-C d)}	
AffP	$A_{\rm P}^0$ P-Affinity	
QSi_phy_0	$Q_{ m Si0}$ subsistence Si-quota	
QSi_phy_max	$Q_{\rm Si}^{\rm ref}$ subsistence Si-quota {V_SiC_max , V_{max,Si}^0 , maximum Si-uptake rate, 0.02 mol-Si/(mol-C d)}	

Xa ₁ A _{S₁} 3-P-Initity syn_nut 1/h synchrony n_queue in nutrient quota limitation adap_rub δ _R adap_rub adap_theta δ _B adap_theta tau_regV Δt _v tau_regV phi_agg phiagg quadratic aggregation rate vS_phy vS _p hy sinking velocity for phytoplankton vS_det vS _p hy sinking velocity for detritus hydrol hydrol hydrolysis rate remin remin pelagic remineralisation Ae_all Ac _a II Activation energy T_ref T _r ef reference temperature NutOrder NutOrder element order of recursive scheme. lower digit: synchrony element const_NC_zoo cooplankton N:C ratio const_NC_zoo cooplankton N:C ratio g_max maximum grazing rate k_grazC k _g razC half saturation graing yield_zoo yield_zoo yield_zoo yield, so yield of herbivory basal_resp_zoo basal, esp_zoo basal respiration mort_zoo mort_zoo quadratic mortality a_water a_spm attenuation coefficient of SPM a_chl a_chl attenuation coefficient due to Chl absorption	AffSi	A_{Si}^{0} Si-Affinity
$ \begin{array}{c} \textit{adap_rub} & \delta_{\text{R}} \textit{adap_rub} \\ \textit{adap_theta} & \delta_{\theta} \textit{adap_theta} \\ \textit{tau_regV} & \Delta \textit{I}_{\text{V}} \textit{tau_regV} \\ \textit{phi_agg} & \textit{phi_agg} \textit{quadratic aggregation rate} \\ \textit{vS_phy} & \textit{vS_phy} \textit{sinking velocity for phytoplankton} \\ \textit{vS_det} & \textit{vS_det} \textit{sinking velocity for detritus} \\ \textit{hydrol} & \textit{hydrol} \textit{hydrol hydrolysis rate} \\ \textit{remin} & \textit{remin pelagic remineralisation} \\ \textit{Ae_all} & \textit{Ae_all} \textit{Activation energy} \\ \textit{T_ref} & \textit{T_ref reference temperature} \\ \textit{NutOrder} & \textit{NutOrder element order of recursive scheme. lower digit: synchrony element} \\ \textit{const_NC_zoo} & \textit{const_NC_zoo} \textit{zooplankton N:C ratio} \\ \textit{const_PC_zoo} & \textit{const_PC_zoo} \textit{zooplankton P:C ratio} \\ \textit{g_max} & \textit{g_max maximum grazing rate} \\ \textit{k_grazC} & \textit{k_grazC half saturation graing} \\ \textit{yield_zoo} & \textit{yield_zoo} \textit{yield_zoo} \textit{yield}_{\textit{zoo}} \textit{vield} \textit{f herbivory} \\ \textit{basal_resp_zoo} & \textit{basal_resp_zoo} \textit{basal_resp_zoo} \textit{basal_resp_zoo} \textit{basal_resp_zoo} \textit{a_water} \textit{a_water} \textit{a_water} \textit{a_water} \textit{a_spm} \textit{a_chl} \textit{a_chl} \textit{a_chl} \textit{a_chl} \textit{atenuation coefficient due to Chl absorption} \\ \textit{frac_PAR} & \textit{frac_PAR} \textit{frac_PAR} \textit{photosynthetically active fraction of light} \\ \textit{small} \textit{small} \textit{lower limit for denominator in ratios; small_finite=sqrt(small)} \\ \end{cases}$		91
adap_theta tau_regV \(Data_{V}\) tau_regV phi_agg phi_agg quadratic aggregation rate vS_phy vS_phy sinking velocity for phytoplankton vS_det vS_det sinking velocity for detritus hydrol hydrol hydrolysis rate remin remin pelagic remineralisation Ae_all Activation energy T_ref T_ref reference temperature NutOrder NutOrder element order of recursive scheme. lower digit: synchrony element const_NC_zoo const_NC_zoo zooplankton N:C ratio const_PC_zoo const_PC_zoo zooplankton P:C ratio g_max max maximum grazing rate k_grazC k_grazC half saturation graing yield_zoo yield_zoo yield_zoo yield of herbivory basal_resp_zoo basal_resp_zoo basal_resp_zoo basal_respiration mort_zoo mort_zoo mort_zoo quadratic mortality a_water a_water background attenuation coefficient a_chl attenuation coefficient due to Chl absorption frac_PAR frac_PAR photosynthetically active fraction of light small small lower limit for denominator in ratios; small_finite=sqrt(small) <td></td> <td>, , , , , , , , , , , , , , , , , , , ,</td>		, , , , , , , , , , , , , , , , , , , ,
tau_regV		· -
phi_agg phi_agg quadratic aggregation rate vS_phy vS_phy sinking velocity for phytoplankton vS_det vS_det sinking velocity for detritus hydrol hydrol hydrolysis rate remin remin pelagic remineralisation Ae_all Acall Activation energy T_ref T_ref reference temperature NutOrder NutOrder element order of recursive scheme. lower digit: synchrony element const_NC_zoo constpC_zoo zooplankton N:C ratio const_PC_zoo constpC_zoo zooplankton P:C ratio g_max g_max maximum grazing rate k_grazC k_grazC half saturation graing yield_zoo yield_zoo yield of herbivory basal_resp_zoo basal_resp_zoo basal respiration mort_zoo mort_zoo quadratic mortality a_water a_water background attenuation coefficient a_spm a_chl attenuation coefficient due to Chl absorption frac_PAR frac_PAR photosynthetically active fraction of light small small lower limit for denominator in ratios; small_finite=sqrt(small)	· -	
vS_phy vS_phy sinking velocity for phytoplankton vS_det vS_det sinking velocity for detritus hydrol hydrol hydrolysis rate remin remin pelagic remineralisation Ae_all Activation energy T_ref T_ref reference temperature NutOrder NutOrder element order of recursive scheme. lower digit: synchrony element const_NC_zoo constpCzoo zooplankton N:C ratio const_PC_zoo constpCzoo zooplankton P:C ratio g_max max maximum grazing rate k_grazC k_grazC half saturation graing yield_zoo yield_zoo yield of herbivory basal_resp_zoo basal_resp_zoo basal respiration mort_zoo mort_zoo quadratic mortality a_water a_water background attenuation coefficient a_spm attenuation coefficient of SPM a_chl a_chl attenuation coefficient due to Chl absorption frac_PAR frac_PAR photosynthetically active fraction of light small small lower limit for denominator in ratios; small_finite=sqrt(small)		$\Delta t_{\rm v}$ tau_regV
vS_det vS_det sinking velocity for detritus hydrol hydrol hydrolysis rate remin remin pelagic remineralisation Ae_all Activation energy T_ref Tref reference temperature NutOrder NutOrder element order of recursive scheme. lower digit: synchrony element const_NC_zoo const_NC_zoo zooplankton N:C ratio const_PC_zoo const_PC_zoo zooplankton P:C ratio g_max maximum grazing rate k_grazC kgrazC half saturation graing yield_zoo yield_zoo yield of herbivory basal_resp_zoo basal_resp_zoo basal respiration mort_zoo mort_zoo quadratic mortality a_water a_water background attenuation coefficient a_spm a_chl a_chl attenuation coefficient due to Chl absorption frac_PAR frac_PAR photosynthetically active fraction of light small small lower limit for denominator in ratios; small_finite=sqrt(small)	phi_agg	
hydrol hydrol hydrolysis rate remin remin pelagic remineralisation Ae_all Activation energy T_ref Tref reference temperature NutOrder NutOrder element order of recursive scheme. lower digit: synchrony element const_NC_zoo const _N C _z oo zooplankton N:C ratio const_PC_zoo const _P C _z oo zooplankton P:C ratio g_max gaxmaximum grazing rate k_grazC kg razC half saturation graing yield_zoo yield _z oo yield of herbivory basal_resp_zoo basal_resp_zoo basal respiration mort_zoo mort_zoo quadratic mortality a_water a_water background attenuation coefficient a_spm a_spm attenuation coefficient of SPM a_chl a_chl attenuation coefficient due to Chl absorption frac_PAR fracpAR photosynthetically active fraction of light small small lower limit for denominator in ratios; small_finite=sqrt(small)	vS_phy	
remin remin pelagic remineralisation Ae_all Ae_all Activation energy T_ref T_ref reference temperature NutOrder NutOrder element order of recursive scheme. lower digit: synchrony element const_NC_zoo const_NC_zoo zooplankton N:C ratio const_PC_zoo const_PC_zoo zooplankton P:C ratio g_max g_max maximum grazing rate k_grazC k_grazC half saturation graing yield_zoo yield_zoo yield of herbivory basal_resp_zoo basal_resp_zoo basal respiration mort_zoo mort_zoo quadratic mortality a_water background attenuation coefficient a_spm a_spm attenuation coefficient of SPM a_chl attenuation coefficient due to Chl absorption frac_PAR frac_PAR photosynthetically active fraction of light small lower limit for denominator in ratios; small_finite=sqrt(small)	vS_det	vS_d et sinking velocity for detritus
Ae_all Activation energy T_ref Tref reference temperature NutOrder NutOrder element order of recursive scheme. lower digit: synchrony element const_NC_zoo const_NC_zoo zooplankton N:C ratio const_PC_zoo const_PC_zoo zooplankton P:C ratio g_max g_max maximum grazing rate k_grazC k_grazC half saturation graing yield_zoo yield_zoo yield of herbivory basal_resp_zoo basal_resp_zoo basal respiration mort_zoo mort_zoo quadratic mortality a_water a_water background attenuation coefficient a_spm a_spm attenuation coefficient of SPM a_chl attenuation coefficient due to Chl absorption frac_PAR frac_PAR photosynthetically active fraction of light small small lower limit for denominator in ratios; small_finite=sqrt(small)	hydrol	hydrol hydrolysis rate
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	remin	remin pelagic remineralisation
NutOrder NutOrder element order of recursive scheme. lower digit: synchrony element const_NC_zoo const_NC_zoo zooplankton N:C ratio const_PC_zoo const_PC_zoo zooplankton P:C ratio g_max g_max maximum grazing rate k_grazC k_grazC half saturation graing yield_zoo yield_zoo yield of herbivory basal_resp_zoo basal_resp_zoo basal respiration mort_zoo mort_zoo quadratic mortality a_water a_water background attenuation coefficient a_spm aspm attenuation coefficient of SPM a_chl achl attenuation coefficient due to Chl absorption frac_PAR frac_PAR photosynthetically active fraction of light small small lower limit for denominator in ratios; small_finite=sqrt(small)	Ae_all	Ae _a ll Activation energy
const_NC_zoo const_NC_zoo zooplankton N:C ratio const_PC_zoo const_PC_zoo zooplankton P:C ratio g_max g_max maximum grazing rate k_grazC k_grazC half saturation graing yield_zoo yield_zoo yield of herbivory basal_resp_zoo basal_resp_zoo basal respiration mort_zoo mort_zoo quadratic mortality a_water a_water background attenuation coefficient a_spm a_spm attenuation coefficient of SPM a_chl a_chl attenuation coefficient due to Chl absorption frac_PAR frac_PAR photosynthetically active fraction of light small small lower limit for denominator in ratios; small_finite=sqrt(small)	T_ref	T _r ef reference temperature
$ \begin{array}{cccc} \textit{const}_P C_z \textit{oo} & \textit{const}_P C_z \textit{oo} \textit{zooplankton} P\text{:C} \text{ratio} \\ & g_m \textit{ax} & g_m \textit{ax} \textit{maximum} \textit{grazing} \textit{rate} \\ & k_g \textit{razC} & k_g \textit{razC} \textit{half} \textit{saturation} \textit{graing} \\ & \textit{yield}_z \textit{oo} & \textit{yield}_z \textit{oo} \textit{yield} \textit{of} \textit{herbivory} \\ & \textit{basal}_r \textit{esp}_z \textit{oo} & \textit{basal}_r \textit{esp}_z \textit{oo} \textit{basal} \textit{respiration} \\ & \textit{mort}_z \textit{oo} & \textit{mort}_z \textit{oo} \textit{quadratic} \textit{mortality} \\ & a_w \textit{ater} & a_w \textit{ater} \textit{background} \textit{attenuation} \textit{coefficient} \\ & a_s \textit{pm} & a_s \textit{pm} \textit{attenuation} \textit{coefficient} \textit{of} SPM \\ & a_c \textit{hl} \textit{attenuation} \textit{coefficient} \textit{due} \textit{to} \textit{Chl} \textit{absorption} \\ & \textit{frac}_P \textit{AR} \textit{photosynthetically} \textit{active} \textit{fraction} \textit{of} \textit{light} \\ & \textit{small} & \textit{small} $	NutOrder	NutOrder element order of recursive scheme. lower digit: synchrony element
g_max g_max maximum grazing rate k_grazC k_grazC half saturation graing yield_zoo yield_zoo yield of herbivory basal_resp_zoo basal_resp_zoo basal respiration mort_zoo mort_zoo quadratic mortality a_water a_water background attenuation coefficient a_spm aspm attenuation coefficient of SPM a_chl a_chl attenuation coefficient due to Chl absorption frac_PAR frac_PAR photosynthetically active fraction of light small small lower limit for denominator in ratios; small_finite=sqrt(small)	const_NC_zoo	const _N C _z oo zooplankton N:C ratio
k_grazC k_grazC half saturation graing yield_zoo yield_zoo yield of herbivory basal_resp_zoo basal_resp_zoo basal respiration mort_zoo mort_zoo quadratic mortality a_water a_water background attenuation coefficient a_spm aspm attenuation coefficient of SPM a_chl a_chl attenuation coefficient due to Chl absorption frac_PAR frac_PAR photosynthetically active fraction of light small small lower limit for denominator in ratios; small_finite=sqrt(small)	const_PC_zoo	const _P C _z oo zooplankton P:C ratio
yield_zoo yield_zoo yield of herbivory basal_resp_zoo basal_resp_zoo basal respiration mort_zoo mort_zoo quadratic mortality a_water a_water background attenuation coefficient a_spm a_spm attenuation coefficient of SPM a_chl a_chl attenuation coefficient due to Chl absorption frac_PAR frac_PAR photosynthetically active fraction of light small small lower limit for denominator in ratios; small_finite=sqrt(small)	g_max	g _m ax maximum grazing rate
basal_resp_zoo basal_resp_zoo basal respiration mort_zoo mort_zoo quadratic mortality a_water a_water background attenuation coefficient a_spm a_spm attenuation coefficient of SPM a_chl a_chl attenuation coefficient due to Chl absorption frac_PAR frac_PAR photosynthetically active fraction of light small small lower limit for denominator in ratios; small_finite=sqrt(small)	k_grazC	k _g razC half saturation graing
	yield_zoo	yield _z oo yield of herbivory
a_water a_water background attenuation coefficient a_spm a_spm attenuation coefficient of SPM a_chl a_chl attenuation coefficient due to Chl absorption frac_PAR frac_PAR photosynthetically active fraction of light small small lower limit for denominator in ratios; small_finite=sqrt(small)	basal_resp_zoo	basal _r esp _z oo basal respiration
a_spm a_spm attenuation coefficient of SPM a_chl a_chl attenuation coefficient due to Chl absorption frac_PAR frac_PAR photosynthetically active fraction of light small small lower limit for denominator in ratios; small_finite=sqrt(small)	mort_zoo	mort _z oo quadratic mortality
a_chl achl attenuation coefficient due to Chl absorption frac_PAR frac_PAR photosynthetically active fraction of light small lower limit for denominator in ratios; small_finite=sqrt(small)	a_water	awater background attenuation coefficient
frac_PAR frac_PAR photosynthetically active fraction of light small small lower limit for denominator in ratios; small_finite=sqrt(small)	a_spm	a _s pm attenuation coefficient of SPM
small small lower limit for denominator in ratios; small_finite=sqrt(small)	a_chl	a _c hl attenuation coefficient due to Chl absorption
	frac_PAR	frac _P AR photosynthetically active fraction of light
dil dilution of all concentrations except dissolved inorganics	small	small lower limit for denominator in ratios; small_finite=sqrt(small)
	dil	dil dilution of all concentrations except dissolved inorganics

Todo from the rhsv argument of the SET_ODE's in maecs_do, it looks as if id_chl and id_Rub are (correctly) handled as bulk variables (-phyC multiplied traits). however registered names, units and description of these variables looks as if they are (wrongly) handled as property variables?? So we should change the units, names and desc's?

Definition at line 144 of file maecs_maecsdo_combined.F90.

to calculate light extinction when kc changes with depth

```
extinction coef= a_{\text{water}} + a_{\text{spm}} * (p + d + z)
```

Definition at line 576 of file maecs_maecsdo_combined.F90.

```
6.1.2.3 fabm_hzg_maecs::maecs_do ( class (type_maecs_base_model), intent(in) self, _ARGUMENTS_DO_ )

[private]
```

This is the main routine where right-hand-sides are calculated.

NOTE: Although this subroutine looks as if it's not a part of any module, it is temporarily included in the fabm_hzg_maecs module (inside maecs.F90) when compiling the documentation, such that the subroutine is documented under the 'Data Type Documentation' chapter, where the in-body docs are listed

Phytoplankton Equations

We distinguish between mass state variables (in units of carbon, nitrogen, & phosphorus) and property state variables. For a textual narration and equations, see: Section 8.1

Current 'traits' are:

• nitrogen allocated to rubisco (frac_Rub)

Chla content of chloroplasts (theta)

General code structure:

- 1. Calculation of quotas
- 2. Calculation of fluxes and mass exchange rates & Specify rates of change of traits variables
- 3. Assign mass exchange rates ('rhs(j,i)')
- 4. Assign rates of change of 'traits' property variables

Detailed Descriptions:

- 1. Calculation of quotas
 - call min_mass with method=2, store phy%C and %N in phy%reg
 - · call calc internal states
 - if PhotoacclimOn=.false., calculate:
 - phy%chl=phy%C * self%frac_chl_ini
 - phy%frac%theta = self%frac_chl_ini * self%itheta_max
 - phy%theta= self%frac_chl_ini / (self%frac_Rub_ini * phy%relQ%N**self%sigma)
 - call calc_sensitivities

Todo: min_mass correction of phy% and phy%N at this stage requires specification of threshold values. What about back-calculating phy%reg%N from the smooth_small corrected phy%Q%N?

- 2. Calculation of fluxes and mass exchange rates & Specify rates of change of traits variables
 - · call photosynthesis
 - · if GrazingOn:
 - call grazing
 - call grazing_losses
 - calculate graz_rate and zoo_mort
 - · calc. aggreg_rate
 - calc. degradT and reminT
- 3. Assign mass exchange rates ('rhs(j,i)')
 - phyC= uptake dil exud aggreg_rate graz_rate

Todo: add the rhs equations

- 4. Assign rates of change of 'traits' property variables
 - · if PhotoacclimOn: rhsvchl
 - · if RubiscoOn: rhsvRub

Definition at line 630 of file maecs_maecsdo_combined.F90.

References maecs_functions::calc_internal_states(), maecs_functions::calc_sensitivities(), maecs_grazing::grazing(), maecs_grazing::grazing_losses(), maecs_functions::min_mass(), and maecs_primprod::photosynthesis().

6.1.2.4 subroutine fabm_hzg_maecs::maecs_get_vertical_movement (class(type_maecs_base_model), intent(in) self, _ARGUMENTS_GET_VERTICAL_MOVEMENT_) [private]

handles vertical movement for depth-varying movement rates

phyto sinking rate depends on the nutritional state, so for each node:

phy%relQ obtained by calling calc_internal_states(self,phy,det,dom,zoo)

then phyQstat = phy%relQ%N * phy%relQ%P

finally, vsink = maecs_functions::sinking(self%vS_phy, phyQstat, vsink)

Definition at line 1047 of file maecs_maecsdo_combined.F90.

References maecs_functions::calc_internal_states(), maecs_functions::min_mass(), and maecs_functions::sinking().

The documentation for this module was generated from the following file:

· maecs maecsdo combined.F90

6.2 fabm_hzg_maecs::maecs_do Interface Reference

6.2.1 Detailed Description

Definition at line 58 of file maecs_maecsdo_combined.F90.

The documentation for this interface was generated from the following file:

maecs_maecsdo_combined.F90

6.3 maecs_functions Module Reference

functions called by maecs_do, maecs_grazing and maecs_primprod

Public Member Functions

- pure real(rk) function, public smooth_small (x, eps)
 continous smoothing function by kw Apr 2012
- pure real(rk) function, public uptflex (Aff0, Vmax0, Nut, fAv)
 calc's pot nut upt as f(external conc, allocations)
- pure real(rk) function foptupt (Aff0, Vmax0, Nut)

opt. partitioning between surf upt sites and intern. enzymes for nut assim.

• subroutine, public queuefunc (n, x, qfunc, qderiv)

the queue function

• subroutine queuefunc1 (n, x, qfunc, qderiv)

approximation of the queue function

• real(rk) function, public queuederiv (n, x)

derivative of the queue function ??

subroutine, public sinking (vS, phys_status, sinkvel)

calculation of the sinking rate

• subroutine, public min mass (maecs, phy, method)

minimum mass

• subroutine, public calc_sensitivities (maecs, sens, phy, env, nut)

calculate sensitivities

• subroutine, public calc_internal_states (maecs, phy, det, dom, zoo)

calculate the internal states

6.3.1 Detailed Description

functions called by maecs_do, maecs_grazing and maecs_primprod

Definition at line 8 of file maecs functions.F90.

6.3.2 Member Function/Subroutine Documentation

6.3.2.1 pure real(rk) function, public maecs_functions::smooth_small (real(rk), intent(in) x, real(rk), intent(in) eps)

continous smoothing function by kw Apr 2012

smoothly converges x to eps/2 for x<eps

$$x = eps + (x - eps) * e^{x/eps}/(1 + e^{x/eps})$$

Definition at line 28 of file maecs_functions.F90.

Referenced by calc_internal_states(), calc_sensitivities(), min_mass(), and maecs_primprod::photosynthesis().

6.3.2.2 pure real(rk) function, public maecs_functions::uptflex (real(rk), intent(in) Aff0, real(rk), intent(in) Vmax0, real(rk), intent(in) Nut, real(rk), intent(in) fAv)

calc's pot nut upt as f(external conc, allocations)

Returns

uptflex

Todo: find where it is in the text, add equations

Definition at line 49 of file maecs functions.F90.

Referenced by calc_sensitivities().

6.3.2.3 pure real(rk) function maecs_functions::foptupt (real(rk), intent(in) Aff0, real(rk), intent(in) Vmax0, real(rk), intent(in) Nut)

opt. partitioning between surf upt sites and intern. enzymes for nut assim.

Returns

fOptUpt

Todo: find where it is in the text, add equations

Definition at line 67 of file maecs_functions.F90.

Referenced by calc_sensitivities().

6.3.2.4 subroutine, public maecs_functions::queuefunc (real(rk), intent(in) n, real(rk), intent(in) x, real(rk), intent(out) qfunc, real(rk), intent(out) qderiv)

the queue function

provides both the queuing function and it's derivative with the parameter n->inf :liebig and $n\sim1$:product For narration and equations, see: Section 8.2.3

Todo: add equations

Definition at line 82 of file maecs functions.F90.

Referenced by maecs_primprod::photosynthesis().

subroutine maecs_functions::queuefunc1 (real(rk), intent(in) n, real(rk), intent(in) x, real(rk), intent(out) qfunc, real(rk), intent(out) qderiv) approximation of the queue function n->inf :liebig n~1:product Todo: add equations Definition at line 104 of file maecs_functions.F90. 6.3.2.6 real(rk) function, public maecs_functions::queuederiv (real(rk), intent(in) n, real(rk), intent(in) x) derivative of the queue function ?? Returns queuederiv Todo: add equations Definition at line 127 of file maecs_functions.F90. 6.3.2.7 subroutine, public maecs_functions::sinking (real(rk), intent(in) vS, real(rk), intent(in) phys_status, real(rk), intent(out) sinkvel) calculation of the sinking rate For a textual narration and equations, see: Section 8.2.7 Todo: add equations Definition at line 143 of file maecs functions. F90. Referenced by fabm_hzg_maecs::maecs_get_vertical_movement(). 6.3.2.8 subroutine, public maecs_functions::min_mass (type (type_maecs_base_model), intent(in) maecs, type (type_maecs_phy), intent(inout) phy, integer, intent(in), optional method) minimum mass pushes the phyC,N and P to some lower boundary according to 4 different methods (controlled by the mm_method parameter): phy%N and phy%C are stored in phy%reg%N and phy%reg%C, respectively 1. if phy%N \leq = 1e-7; phy%N=1e-7, phy%C=phy%N/QN(aver), phy%P=phy%C*QP(aver) 2. .. 3. .. 4. ..

Todo : assign some meaningful names to case numbers

: mm method to be read from the nml?

: add equations

: Q: why phy%P is not stored also in phy%reg%P??

Definition at line 213 of file maecs functions.F90.

References smooth small().

Referenced by fabm_hzg_maecs::maecs_do(), and fabm_hzg_maecs::maecs_get_vertical_movement().

6.3.2.9 subroutine, public maecs_functions::calc_sensitivities (type (type_maecs_base_model), intent(in) maecs, type (type_maecs_sensitivities), intent(out) sens, type (type_maecs_phy), intent(in) phy, type (type_maecs_env), intent(in) env, type (type_maecs_om), intent(in) nut)

calculate sensitivities

Todo: add a better description and equations

Definition at line 318 of file maecs functions.F90.

References foptupt(), smooth small(), and uptflex().

Referenced by fabm hzg maecs::maecs do().

6.3.2.10 maecs_functions::calc_internal_states (type (type_maecs_base_model), intent(in) maecs, type (type_maecs_phy), intent(inout) phy, type (type_maecs_om), intent(inout) det, type (type_maecs_om), intent(inout) dom, type (type_maecs_zoo), intent(inout) zoo)

calculate the internal states

Todo the theta-related calculations should obviously be related to eq:ftheta} but I get lost. See the Q's therein

- 1. Calculate elemental absolute and relative quotas (Q and relQ):
 - phy%Q%X = phy%X / phy%C where x=N,P,Si
 - phy%relQ%X= (phy%Q%X maecs%qN_phy_0) / maecs%iK_QN where x=N,P,Si
- 2. Calculate Rubisco fraction (convert from the bulk variable)
 - $f_R = \text{phy}\%\text{Rub}/phy_C$
 - Todo ????????? phy%frac%Rub=1-phy%frac%Rub: ?????????
- 3. Calculate θ and f_{θ} See also: 8.2.4
 - phy%rel_chloropl = $f_R * q_N^{\sigma}$
 - Q: phy%rel_chloropl = What is this variable? units? chloroplast/carbon?
 - phy%theta = $phy_{chl}/phy_{C}/phy%rel_{c}hloropl$
 - Q: does not seem to be equal to eq:ftheta} unless $phy_{chl}/phy_{C} = f_{\theta}/\theta_{C}$
 - Q: what is actually phy%chl? the bulk or the trait variable? i assumed it is the bulk
 - phy%frac%theta = phy_{chl}/phy_C* maecs%itheta_max
 - Q: does not seem to be related to anything ??
 - $f_V = \text{phy\%frac\%TotFree} f_{\theta} f_R$, where phy%frac%TotFree=1.0
- 4. Calculate zooplankton states:
 - $zoo_{QX} = \text{maecs\%const}_{N}C_{z}oo, zoo_{X} = zoo_{C} * zoo_{QN}, X = N, P$
 - $zoo_{yield} = maecs\%yield_zoo, zoo_{flopp} = 1 maecs\%yield_zoo$

Definition at line 379 of file maecs functions.F90.

References smooth small().

Referenced by fabm_hzg_maecs::maecs_do(), and fabm_hzg_maecs::maecs_get_vertical_movement().

The documentation for this module was generated from the following file:

· maecs functions.F90

6.4 fabm_hzg_maecs::maecs_get_vertical_movement Interface Reference

6.4.1 Detailed Description

Definition at line 45 of file maecs_maecsdo_combined.F90.

The documentation for this interface was generated from the following file:

• maecs_maecsdo_combined.F90

6.5 maecs_grazing Module Reference

Grazing module.

Public Member Functions

subroutine, public grazing (Imax, HalfSat, preyconc, rate)
 calculates grazing rate

subroutine, public grazing_losses (zoo, resC, Q_prey, lossZNut, lossZDet, mswitch)

loss rates of grazers to inorganic and organic particulate

6.5.1 Detailed Description

Grazing module.

Definition at line 7 of file maecs_grazing.F90.

6.5.2 Member Function/Subroutine Documentation

6.5.2.1 subroutine, public maecs_grazing::grazing (real(rk), intent(in) *lmax*, real(rk), intent(in) *HalfSat*, real(rk), intent(in) *preyconc*, real(rk), intent(out) *rate*)

calculates grazing rate

Todo: add a description and details

Definition at line 20 of file maecs_grazing.F90.

Referenced by fabm_hzg_maecs::maecs_do().

6.5.2.2 subroutine, public maecs_grazing::grazing_losses (type (type_maecs_zoo), intent(in) zoo, real(rk), intent(in) resC, type (type_maecs_om), intent(in) Q_prey, type (type_maecs_om), intent(out) lossZNut, type (type_maecs_om), intent(out) lossZDet, type (type_maecs_switch), intent(in) mswitch)

loss rates of grazers to inorganic and organic particulate

assumes a constant C:N:P unit feeding on variable C:N:P food

Todo: add a description and details

Definition at line 37 of file maecs_grazing.F90.

Referenced by fabm_hzg_maecs::maecs_do().

The documentation for this module was generated from the following file:

• maecs_grazing.F90

6.6 maecs_primprod Module Reference

Primary production module.

Public Member Functions

subroutine, public photosynthesis (self, sens, phy, uptake, exud, acc)
 calculates grazing rate

6.6.1 Detailed Description

Primary production module.

Definition at line 7 of file maecs_primprod.F90.

6.6.2 Member Function/Subroutine Documentation

6.6.2.1 subroutine, public maecs_primprod::photosynthesis (type (type_maecs_base_model), intent(in) self, type (type_maecs_sensitivities), intent(in), target sens, type (type_maecs_phy), intent(inout) phy, type (type_maecs_om), intent(out), target uptake, type (type_maecs_om), intent(out) exud, type (type_maecs_traitdyn), intent(out), target acc)

calculates grazing rate

This is the subroutine, where the optimal regulation of phytoplankton traits are described, which is central to the physiological-MAECS

Definition at line 20 of file maecs_primprod.F90.

References maecs functions::queuefunc(), and maecs functions::smooth small().

Referenced by fabm_hzg_maecs::maecs_do().

The documentation for this module was generated from the following file:

• maecs_primprod.F90

6.7 maecs_types Module Reference

Data types used in fabm_hzg_maecs are defined here.

Data Types

- type stoich_pointer
- · type type maecs allocation fractions
- type type_maecs_base_model
- type type_maecs_basic_traits
- type type_maecs_env
- type type_maecs_life
- type type_maecs_nutindex
- type type_maecs_om
- type type_maecs_phy
- type type_maecs_rhs

- · type type_maecs_sensitivities
- · type type maecs switch
- type type_maecs_traitdyn
- type type_maecs_zoo

6.7.1 Detailed Description

Data types used in fabm_hzg_maecs are defined here.

todo: we should consider including parameter tables for some maecs types. Parser could do it just like in the initialize subroutine.

Definition at line 14 of file maecs_types.F90.

The documentation for this module was generated from the following file:

· maecs types.F90

6.8 maecs_types::stoich_pointer Type Reference

6.8.1 Detailed Description

Definition at line 121 of file maecs_types.F90.

The documentation for this type was generated from the following file:

maecs_types.F90

6.9 fabm_hzg_maecs::type_hzg_maecs Type Reference

this is the model type FABM uses to create the mode

Inheritance diagram for fabm_hzg_maecs::type_hzg_maecs:

6.9.1 Detailed Description

this is the model type FABM uses to create the mode

the parent type (type_maecs_base_model) was defined in maecs_types module

Definition at line 30 of file maecs_maecsdo_combined.F90.

The documentation for this type was generated from the following file:

maecs_maecsdo_combined.F90

6.10 maecs_types::type_maecs_allocation_fractions Type Reference

6.10.1 Detailed Description

Definition at line 71 of file maecs_types.F90.

The documentation for this type was generated from the following file:

· maecs_types.F90

6.11 maecs_types::type_maecs_base_model Type Reference

Inheritance diagram for maecs_types::type_maecs_base_model:

6.11.1 Detailed Description

Definition at line 27 of file maecs_types.F90.

The documentation for this type was generated from the following file:

maecs_types.F90

6.12 maecs_types::type_maecs_basic_traits Type Reference

6.12.1 Detailed Description

Definition at line 66 of file maecs_types.F90.

The documentation for this type was generated from the following file:

· maecs_types.F90

6.13 maecs_types::type_maecs_env Type Reference

6.13.1 Detailed Description

Definition at line 47 of file maecs_types.F90.

The documentation for this type was generated from the following file:

· maecs_types.F90

6.14 maecs_types::type_maecs_life Type Reference

Inheritance diagram for maecs_types::type_maecs_life:

6.14.1 Detailed Description

Definition at line 78 of file maecs_types.F90.

The documentation for this type was generated from the following file:

· maecs_types.F90

6.15 maecs_types::type_maecs_nutindex Type Reference

6.15.1 Detailed Description

Definition at line 22 of file maecs_types.F90.

The documentation for this type was generated from the following file:

maecs_types.F90

6.16 maecs_types::type_maecs_om Type Reference

Inheritance diagram for maecs types::type maecs om:

6.16.1 Detailed Description

Definition at line 62 of file maecs_types.F90.

The documentation for this type was generated from the following file:

· maecs_types.F90

6.17 maecs_types::type_maecs_phy Type Reference

Inheritance diagram for maecs_types::type_maecs_phy:

6.17.1 Detailed Description

Definition at line 83 of file maecs_types.F90.

The documentation for this type was generated from the following file:

• maecs_types.F90

6.18 maecs_types::type_maecs_rhs Type Reference

6.18.1 Detailed Description

Definition at line 50 of file maecs_types.F90.

The documentation for this type was generated from the following file:

• maecs_types.F90

6.19 maecs_types::type_maecs_sensitivities Type Reference

6.19.1 Detailed Description

Definition at line 112 of file maecs_types.F90.

The documentation for this type was generated from the following file:

• maecs_types.F90

6.20 maecs_types::type_maecs_switch Type Reference

6.20.1 Detailed Description

Definition at line 57 of file maecs_types.F90.

The documentation for this type was generated from the following file:

· maecs_types.F90

6.21 maecs_types::type_maecs_traitdyn Type Reference

6.21.1 Detailed Description

Definition at line 100 of file maecs_types.F90.

The documentation for this type was generated from the following file:

• maecs_types.F90

6.22 maecs_types::type_maecs_zoo Type Reference

Inheritance diagram for maecs_types::type_maecs_zoo:

6.22.1 Detailed Description

Definition at line 94 of file maecs_types.F90.

The documentation for this type was generated from the following file:

• maecs_types.F90

File Documentation

7.1 maecs_functions.F90 File Reference

```
#include "fabm_driver.h"
```

Data Types

• module maecs_functions

functions called by maecs_do, maecs_grazing and maecs_primprod

7.1.1 Detailed Description

Author

Richard Hofmeister, Markus Schartau, Kai Wirtz, Onur Kerimoglu Definition in file maecs_functions.F90.

7.2 maecs_grazing.F90 File Reference

```
#include "fabm_driver.h"
```

Data Types

• module maecs_grazing

Grazing module.

7.2.1 Detailed Description

Author

Richard Hofmeister, Markus Schartau, Kai Wirtz

Definition in file maecs_grazing.F90.

26 File Documentation

7.3 maecs_maecsdo_combined.F90 File Reference

A temporary file built by combining maecs.F90 and maecs_do.F90 for documentation purposes.

```
#include "fabm_driver.h"
```

Data Types

• module fabm_hzg_maecs

This is the module registered in FABM.

type fabm_hzg_maecs::type_hzg_maecs

this is the model type FABM uses to create the mode

- interface fabm_hzg_maecs::maecs_get_vertical_movement
- interface fabm_hzg_maecs::maecs_do

7.3.1 Detailed Description

A temporary file built by combining maecs.F90 and maecs_do.F90 for documentation purposes.

Definition in file maecs maecsdo combined.F90.

7.4 maecs_primprod.F90 File Reference

```
#include "fabm_driver.h"
```

Data Types

• module maecs_primprod

Primary production module.

7.4.1 Detailed Description

Author

Richard Hofmeister, Markus Schartau, Kai Wirtz, Onur Kerimoglu

Definition in file maecs_primprod.F90.

7.5 maecs_types.F90 File Reference

```
maecs_types module
```

```
#include "fabm_driver.h"
```

Data Types

• module maecs_types

Data types used in fabm_hzg_maecs are defined here.

- type maecs_types::type_maecs_nutindex
- type maecs_types::type_maecs_base_model
- type maecs_types::type_maecs_env
- type maecs_types::type_maecs_rhs
- type maecs_types::type_maecs_switch
- type maecs_types::type_maecs_om
- type maecs_types::type_maecs_basic_traits
- type maecs_types::type_maecs_allocation_fractions
- type maecs_types::type_maecs_life
- type maecs_types::type_maecs_phy
- type maecs_types::type_maecs_zoo
- type maecs_types::type_maecs_traitdyn
- type maecs_types::type_maecs_sensitivities
- type maecs_types::stoich_pointer

7.5.1 Detailed Description

maecs_types module

Author

Richard Hofmeister, Kai Wirtz

Definition in file maecs_types.F90.

Textual Model Description

8.1 Model structure

MAECS resolves major functional groups and their dynamics not unlike simple state-of-the-art ecosystem models. All energy and material fluxes in the ecosystem derive from primary production of phytoplankton, here expressed in terms of biomass carbon (C) concentration. Phytoplankton experiences various local and trait dependent loss rates, from sinking, respiration, exudation, to grazing. MAECS versions differ in the degree of resolution in ecological processes; a full account of grazing interactions in the plankton is only addressed by versions that includes size as a major trait. Grazers convert only a fraction of captured phytoplankton to their own biomass; in size-based variants of MAECS we have implemented different formulations for whether this fraction immediately contributes to the biomass of adult grazers or their egg stage, or how many grazer groups are simulated (see below).

Physiological regulation in unicellular autotrophs makes the very kernel of the MAECS version documented here. The intracellular nutrient quotas, in this model version resolved for nitrogen (N), phosphorus (P), and silicon (Si), change over time when uptake does not match demand due to biomass build-up. Differential uptake regulation then leads to highly variable stoichiometries, that not only reflect ambient nutrient and light concentration, but also generalized optimality criteria.

For describing the living compartment of plankton ecosystems MAECS employs much more trait variables (e.g., allocation coefficients) compared to bulk variables (e.g., phytoplankton or zooplankton biomass). The adaptive trait dynamics infers the need of calculating (sometimes long) derivative terms, which also challenges this documentation; however, the gradient-derived terms include very few additional process parameters, so that the number of tunable parameters in relation to simulated and testable dynamics is significantly reduced compared to models that share a similar resolution in plankton physiology or ecology. Most importantly, MAECS seeks to account for biophysical and evolutionary principles as much as possible; resulting in expressions replacing heuristic functions such as Michaelis-Menten approximations of nutrient uptake, Droop representation of cell growth, or Liebig's rule of minimum. Biophysical origins of model formulations further reduces the number of tunable parameters, in particular in the ecological part. Prominent counter-examples, i.e. yet uncertain model formulations or parameters, comprise aggregation dynamics or variations in metabolic interdependency.

8.1.1 Mass equations

Basic mass equations common to the two MAECS variants (size and physiology). All coefficients and their meanings are listed in Table ??.

Net change in autotroph C, N, P, Si (cf. Eq.(8.8) and Eq.(8.29)) ...

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Phy}_{\mathrm{C}} = \mu_{\mathrm{tot}} \cdot \mathrm{Phy}_{\mathrm{C}}$$
(8.1)

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Phy}_{X} = \underset{(8.23)}{V_{\mathrm{X}}}\cdot\mathrm{Phy}_{\mathrm{C}} - \underset{(8.9)}{M}\cdot\mathrm{Phy}_{X} \qquad \text{with} \quad \mathrm{X} = \mathrm{N,P,Si} \tag{8.2}$$

... in dissolved inorganic nutrients (X=N, P), optionally including silicate

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DIX} = -V_{\mathrm{X}}\,\mathrm{Phy}_{\mathrm{C}} + \omega_{\mathrm{DOM}}\,\mathrm{DOX} \tag{8.3}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DSi} = -V_{\mathrm{Si}}\,\mathrm{Phy_{\mathrm{C}}} + \omega_{\mathrm{Det}}\,\mathrm{Det_{\mathrm{Si}}}_{(8.7)} \tag{8.4}$$

[TODO: include DIC into code]

 \dots in dissolved organic nutrients (X=C, N, P),

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DOX} = E\,\mathrm{Phy}_X + \omega_{\mathrm{Det}}\,\mathrm{Det}_X - \omega_{\mathrm{DOM}}\,\mathrm{DOX} \tag{8.5}$$

... and in the detrital pool (X=C, N, P, Si).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Det}_{\mathrm{X}} = M'\,\mathrm{Phy}_{X} + M_{Z}\,\mathrm{Zoo}_{X} - \omega_{\mathrm{Det}}\,\mathrm{Det}_{\mathrm{X}} \tag{8.6}$$

where the phytoplankton mortality M' collects contributions from sloppy grazing ((1-y)G) and, in 0D setups, and from sinking (S in Eq.(8.33)). Remineralization of DOM ω_{DOM} and hydrolysis of detritus ω_{Det} both change with ambient temperature and substrate quality

$$\omega_{\text{DOM}} = f_T \frac{\text{DON}}{\text{DOC}} \, \omega_{\text{DOM}}^* \qquad \qquad \omega_{\text{Det}} = f_T \, \frac{\text{Det}_{\text{N}}}{\text{Det}_{\text{C}}} \, \omega_{\text{Det}}^*$$
 (8.7)

Because of the quality dependency in degradation rates [TODO: justify], element cycles in the water column are easily decoupled within MAECS.

Note that in a chemostat mode, to the dynamics of *all* concentration variables a dilution (D) loss is added, which only for dissolved nutrients also contains reservoir inflow ($-D \cdot (DIX - DIX^0)$).

[TODO: Parameter table]

8.2 Process Descriptions

8.2.1 Growth rate components and primary production

Temporal changes of the bulk phytoplankton concentration Phy_C are per construction given in terms of the over all relative growth rate μ_{tot} :

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Phy}_{\mathrm{C}} = \mu_{\mathrm{tot}} \cdot \mathrm{Phy}_{\mathrm{C}} \tag{8.8}$$

The relative growth rate of autotrophic unicells (phytoplankton) collects primary production and a number of loss terms

$$\mu_{\text{tot}} = \underbrace{P - \underset{\mu}{R} - (\underbrace{E}_{(8.43)} + \frac{GZ_{\text{OO}_{\text{C}}}}{Phy_{\text{C}}} + \underset{(8.33)}{S} + \underset{(8.38)}{AF} + D) = \mu - M}_{\text{(8.9)}}$$

with sinking loss given in Eq.(8.33) (relevant only in 0D), aggregate formation in Eq.(8.38) [TODO: living cells in aggregates], grazing G explained in Sec. 8.2.6, exudation rate E formulated in Eq.(8.43), dilution rate D (for running the model in a chemostat mode), and respiration R in Eq.(8.12).

Gross C assimilation P changes with stoichiometric balance as expressed by the multi–nutrient co–limitation factor LF(Eq.(8.14)), maximal photosynthetic capacity P_{max} (further depending on, e.g. partitioning, Eq.(8.20), or size in the ecological version, Wirtz (2011, 2013)) and light harvesting success LH

$$P = P_{\text{max}} \cdot \underset{(8.20)}{\text{LF}} \cdot \text{LH}$$
 (8.10)

Light harvesting LH is primarily controlled by ambient light intensity PAR and light adsorption by chloroplasts $\alpha \cdot \theta$ proportional to the chlorophyll concentration θ (cf.Eq.(8.21)). Its functional form derives from Poisson arrival statistics of photons

$$LH = 1 - e^{-\alpha\theta PAR/P_{max}}$$
 (8.11)

8.2.2 Respiration and temperature

Respiratory losses reflect costs of N uptake (Raven, 1984; Pahlow, 2005), while neglecting energetic costs of P-and Si-assimilation

$$R = \zeta V_{\rm N} \tag{8.12}$$

Temperature dependency of respiration thus follows from the factor f_T in the uptake coefficients in Eq.(8.24). In the current MAECS version, all metabolic rates equally increase with rising temperature following the Arrhenius equation,

$$f_T = e^{-E_a(T^{-1} - T_0^{-1})}$$
 with $E_a = \frac{T_0^2}{10} \cdot \log(Q_{10})$ (8.13)

with a reference temperature T_0 (here 18°C) where f_T equals one.

8.2.3 Multi-nutrient co-limitation

The co-limitation factor LF is constructed within a metabolic network view of cellular physiology. There, LF reflects not only the availability of singular resources (nutrients) but also how dependent the sub-networks (protein turnover) associated to those nutrients can evolve. In this view, LF quantifies the turnover of the first sub-process (here intracellular nitrogen turnover) times the queuing function that gives the intermittency between the first and the other sub-processes (associated to elements X):

LF =
$$q_N \cdot g_h (q'_X/q_N) \cdot c_{hq}$$
 with $c_{hq} = 1 + c_h + h \cdot q_N q'_X$ (8.14)

The relative quota q_X expresses the availability of nutrient X above a subsistence threshold Q_X^0 normalized by a reference pool size $Q_X^* - Q_X^0$. In contrast to most other models resolving variable internal stores (e.g. Morel, 1987), Q_X^* does not impose [TODO: 'does not impose'=? is it rather 'is not a prescribed'? but what is it then?] an upper boundary of the cell quota Q_X .

$$q_{\rm X}=rac{Q_{\rm X}-Q_{\rm X}^0}{\Delta Q_{\rm X}} \quad {\rm with} \quad \Delta Q_{\rm X}=Q_{\rm X}^*-Q_{\rm X}^0 \quad {\rm and} \quad {\rm X=N,P,Si,\dots}$$
 (8.15)

In Eq.(8.14), the product hq_Nq_X' describes the non-linear metabolic interdependency between intracellular turnover of element N and X that is not covered by the simple queuing function. g_h expresses a "stop and go" dependency while neglecting possible amplification and inhibition effects as explained by Wirtz&Kerimoglu (in prep.). The product term leads to a quadratic influence of the first element (q_N) and can be considered as most simple account of nonlinear metabolic interdependency. It also ensures symmetry of LF with respect to exchanging the order of nutrients as $q_1g_h(q_2'/q_1)c_{hq12}\approx q_2g_h(q_1'/q_2)c_{hq21}$.

The queuing function g_h can be derived from assuming Poisson statistics in phase-locking of sub-networks [TODO: 'Poisson statistics in phase-locking of sub-networks' sounds scary, please expand!]:

$$g_h(x) = \frac{x - x_h}{1 - x_h}$$
 with $x_h = x^{1 + h^{-1}}$ (8.16)

The function g_h introduces as new control parameter the metabolic interdependency h. h resembles the processing intermittency introduced by Wirtz (2012), which describes the probability of phase-locking [TODO: 'phase-locking' is again an unusual term: expand with a sentence?] in independent sub-steps in a process chain.

The correction coefficient c_h in Eq.(8.14) follows from imposing convergence of LF to the product and Liebig rules. Compliance to the Liebig rule leads to $c_0=0$ since g_0 describes a stepwise linear function [TODO: it's not clear: when ch=h=0, Eq.(8.14) reduces to $q_Ng_0(q_X'/q_N)$, $withg_0=-\inf/-\inf$]. For the product rule, we use the identity $g_h(1)=1/(1+h)$ and assume that $q_X=q_Y=1/2$, to obtain $1/4=1/2\cdot(1+h/4+c_h)/(1+h)$ [TODO: it's very unclear where this equation came from], or $c_h=-1/2+h/4$. However, the offset in this linear relation conflicts with the condition $c_0=0$. Both conditions can be approximately reconciled by a logarithmic function [TODO: does Eq.(8.17) have something to do with all the other equations in this paragraph? if so, how? if not, why not directly listing those 'conditions', providing Eq.(8.17) saying that it is one of the potentially many pragmatic solutions?]

$$c_h = \log(1/4^h + h/2) \tag{8.17}$$

It is mandatory in MAECS to resolve nitrogen. If optionally one, two, or more further nutrients are considered (e.g., P or Si, P and Si, or a micro-nutrient), a recursive scheme is applied. The limiting effect of element X+1 on the processing of element $X(q_X')$ is then formally equivalent to the LF of the first element (N) limited by the remainder metabolism (LF = q_N') as given in Eq.(8.14):

$$q'_{X} = q_{X} \cdot g_{h}(q'_{X+1}/q_{X}) \cdot c_{hq} \qquad X = P, Si, ...$$
 (8.18)

For the final element we have $q'_{\rm X}=q_{\rm X}$. From the (subjective) ordering of elements in the recursive scheme only a small asymmetry arises. [TODO: no matter how small it is, the asymmetry probably requires us to document (and maybe also provide justification, if any) the order we chose]

8.2.4 Uptake system allocation and PI-coefficients

It is assumed that the fraction of free proteins or allocatable resources does not change. [TODO: it is not clear what this means: maybe a diagram helps?] Structural compounds such as cell wall, nucleus, or other non directly functional components are thus kept at a fixed ratio. The pool of free organics (in terms of cellular carbon) is partitioned between photosynthetic machinery and nutrient uptake. Photosynthetic machinery is further sub-divided into light harvesting and processing. The relative pool size of free resource (here in units C!) invested into light-independent reactions, primarily those in Rubisco and the Calvin cycle (Friend, 1991) is denoted as f_R , the one for the light harvesting complex (LHC) f_{θ} . This way, the coefficient f_V for C-allocation to nutrient uptake becomes a linear function of the C-allocation to LHC f_{θ} and to Rubisco f_R :

$$f_V = 1 - f_R - f_\theta (8.19)$$

Maximum photosynthesis rate P_{max} is controlled by the pool fraction f_R invested into Rubisco/processing and a temperature dependency f_T given in Eq.(8.13), while the effect of nutrient limitation (namely N) is already included in Eq.(8.10)

$$P_{\text{max}} = f_R \cdot f_T \cdot P_{\text{max}}^*$$
 (8.20)

The fraction of light harvesting carbon depends on the C-fraction partitioned to photosystem processing (electron chain) and the chlorophyll concentration θ (relative to a reference value θ_C):

$$f_{\theta} = f_R q_N^{\sigma} \theta / \theta_C$$
 or $\theta = f_{\theta} / f_R q_N^{-\sigma} \theta_C$ (8.21)

where C stoichiometry of pigment complexes is denoted by θ_C . The exponent σ describes an additional linkage of LHC synthesis on the N-status of the cell. Wirtz and Pahlow (2010) proposed that $\sigma=1$ for diatoms, while $\sigma=0$ for other autotrophs.

[TODO: 1) so far, it's not clear what's the relevance of θ or f_{θ} for physiological processes. Maybe a sentence. 2) it's also not clear where these novel and mysterious parameters such as f_R and θ come from. Maybe it's helpful to hint that they are being dynamically optimized, referring to Sec. 8.3]

8.2.5 Nutrient uptake

Nutrient uptake rate of the cell varies with a number of internal, physiological factors, such as the partitioning coefficient f_V (see above) and the (enzymatic) activity $a_{V,X}$ (X= N, P, Si, ...), and is furthermore determined by the potential uptake V_X^*

$$V_{X} = f_{V} \cdot a_{V,X} \cdot V_{X}^{*}$$
(8.22)

Potential uptake $V_{\rm X}^*$ reflects ambient nutrient concentration, but also affinity and transport capacities denoted by $A_{\rm X}$ and $V_{\rm max,X}$. Nutrient uptake is a sequential 2-stage process (membrane uptake and intracellular transport) as described by the nutrient affinity $A_{\rm X}$ and maximal uptake rate $V_{\rm max,X}$ such that the effective uptake time equals the sum of turnover times in each stage:

$$V_{\rm X}^{*-1} = V_{\rm max,X}^{-1} + (A_{\rm X} \, {\rm DIX})^{-1}$$
 with ${\rm DIX} = {\rm DIN}, {\rm DIP}, {\rm DSi}, \dots$ (8.23)

Nutrient uptake characteristics are temperature sensitive and assumed to depend on a sub-partitioning of allocatable proteins expressed by the coefficient $f_{A,X}$

$$V_{\text{max},X} = (1 - f_{A,X}) \cdot Q_0 \cdot f_T \cdot V_{\text{max},X}^0$$
 (8.24)

$$A_{\mathbf{X}} = f_{\mathbf{A},\mathbf{X}} \cdot Q_0 \cdot f_T \cdot A_{\mathbf{X}}^0 \tag{8.25}$$

[TODO: differential temperature sensitivity; see Smith 2013]

Protein sub-partitioning of overall uptake machinery (f_V) into affinity and transport capabilities is instantaneously optimized

$$\frac{\partial V_{\mathbf{X}}^*}{\partial f_{A|\mathbf{X}}} = 0 \tag{8.26}$$

and the resulting optimal sub-partitioning depends on nutrient availability (Pahlow, 2005; Smith et al., 2009)

$$f_{A,X} = \left(1 + \sqrt{A_X^0 \cdot \text{DIX}/V_{\text{max},X}^0}\right)^{-1}$$
 (8.27)

In terms of the autotroph nutrient quota $Q_{\rm X}$ (X=N, P, Si) imbalance between nutrient uptake and growth demand leads to

$$\frac{\mathrm{d}}{\mathrm{d}t}Q_{\mathrm{X}} = V_{\mathrm{X}} - \mu \cdot Q_{\mathrm{X}} \tag{8.28}$$

or, in the MAECS notation where traits/characteristics are transported as bulk biomasses Phy_X parallel to the basic phytoplankton concentration Phy_C

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Phy}_{X} = V_{\mathrm{X}} \cdot \mathrm{Phy}_{\mathrm{C}} - \underbrace{M}_{(8.9)} \cdot \mathrm{Phy}_{X} \quad \text{with} \quad Q_{\mathrm{X}} = \frac{\mathrm{Phy}_{X}}{\mathrm{Phy}_{\mathrm{C}}}$$
(8.29)

[TODO: exudation]

8.2.6 Grazing

Before merging with the ecological MAECS version, we use primitive (non-biophysical) standards for describing heterotrophic activities:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Zoo}_{\mathrm{C}} = (y \cdot G - \tau_{\mathrm{C}} - M_{\mathrm{Z}}) \cdot \mathrm{Zoo}_{\mathrm{C}}$$
(8.30)

with quadratic and temperature sensitive mortality to represent top-down pressure

$$M_Z = f_T \cdot M_Z^0 \cdot \text{Zoo}_{\mathcal{C}} \tag{8.31}$$

and a Holling-III response function for functional grazing response:

$$G = g_{\text{max}} f_T \cdot \frac{\text{Phy}_C^2}{K_G^2 + \text{Phy}_C^2}$$
(8.32)

[TODO: more complicated loss/leakage terms τ_X to ensure homeostasis and mass conservation]

8.2.7 Sinking loss

Vertical losses account for enhanced settling due to aggregate formation which occurs under high concentrations of particles and exopolymeres. As a coastal model, already the basic version of MAECS resolves a benthic compartment independently from the coupled diagenesis model (see below).

The relative loss rate S is, in an idealized picture, the ratio between v_s and the mixed layer depth (MLD)

$$S = (1 + f_{\text{agg}}) \cdot \frac{v_{\text{S}}}{\text{MLD}}$$
 (8.33)

[TODO: add size as trait or explicit parameter; the following part comes from the size-based model version]

The velocity v_s of a sinking particle is described by Stokes' law, which for a spherical cell with diameter ESD= e^{ℓ} reads

$$v_{\rm s} = \frac{g \, \rho'(\ell) \, {\rm e}^{2\ell}}{18 \nu(T)} \tag{8.34}$$

The unitless excess density ρ' , the density difference between water and the suspended body, divided by water density, is known to be a function of the physiology and size of the suspended cells (Waite et al., 1997; Kiørboe et al., 1998; Miklasz and Denny, 2010). Dead cells are relatively heavy-weighted ($\rho' = \rho^{\dagger}$, $\rho^{\dagger} > 0$), but ρ^{\dagger} decreases in large (siliceous) phytoplankton due to an increasing fraction of vacuoles. The allometric relation of vacuolation and excess density reduction is

$$\rho^{\dagger} = \rho_0^{\dagger} e^{-\alpha_{\rho}\ell} \tag{8.35}$$

As vacuoles usually contain a higher concentration of inorganic compounds than the surrounding cytoplasm, the exponent α_{ρ} should be close to the size scaling slope reported for carbon density by Menden-Deuer and Lessard (2000).

Linear dependency between excess density and relative production

$$\rho' = (1 - f_{\text{vac}} \cdot p) \cdot \rho^{\dagger} \tag{8.36}$$

 $f_{\rm vac}$ is the relative volumetric fraction that can be filled with material of reduced density (e.g., gases, lipids, or solutes, the latter listed in Boyd and Gradmann (2002)). This quantity relates to the vacuole structure (Raven and Waite, 2004) and can therefore be formulated as the relative density difference with respect to cells without vacuolation (ρ_0^{\dagger} in Eq.(8.35))

$$f_{\text{vac}} = \frac{\rho_0^{\dagger} - \rho^{\dagger}}{\rho_0^{\dagger}} = 1 - e^{-\alpha_{\rho}\ell}$$
 (8.37)

8.2.8 Particle aggregation

[check with Richard; re-introduce into code]

Aggregation depends on stickiness and particle surface

$$f_{\text{agg}} = f_{\text{agg}}^* \operatorname{EP} \cdot \operatorname{Phy}_{\mathbf{C}} \cdot \operatorname{ESD}^n$$
 (8.38)

The relative fraction of exopolymeres within the DOM pool is inversely related to DOM quality, which is expressed in terms of the N:C stoichiometry. Stickiness associated with exopolymeres (EP) correlates with DOM quantity and inverse quality

$$EP = \frac{DOC}{DON}DOC$$
 (8.39)

Stickiness not only enhances coagulation efficiency in particle aggregation, it also increases the critical bottom shear stress for sediment resuspension ("biostabilization"). Resuspension of benthic material occurs when bottom shear stress exceeds that "sticky" threshold.

$$RS = RS^* \max \left\{ V_{bshear} - V_{EP}^* EP, 0 \right\}$$
 (8.40)

so we have for material fluxes due to resuspension

$$\frac{\mathrm{d}}{\mathrm{d}t}C_X^{\mathrm{z=H}} = \dots + \mathrm{RS}C_X^{\mathrm{ben}} \quad \text{with} \quad C_X = \mathrm{Phy}_X, \mathrm{Det}_X$$
 (8.41)

8.2.9 Other stuff

Photoinhibition by depletion of D1-protein

$$u = \frac{q_{\rm N}}{q_{\rm N} + u^* \, \text{Chl:} \, \text{C}^2} \tag{8.42}$$

Exudation reflects imbalance between C uptake and assimilation

$$E = e^* P_{\text{max}}^* f_T \text{ LH} \tag{8.43}$$

8.3 Adaptive trait regulation and differential trade-off

Adaptive trait dynamics in its general form has been proposed as an optimality-seeking principle guiding transient adaptive regulation phenomena on very different levels of description, from organ physiology to population ecology (Wirtz, 2000, 2003; Smith et al., 2011). This principle/equation is applied to all physiological traits in MAECS, in particular to those that primarily control nutrient uptake (f_R and θ through f_V , and activity $a_{V,X}$. C-growth as goal function needs to be extended by "hidden" or indirect effects through a differential link between nutrient uptake V_X and quota Q_X for all macro-nutrients:

$$\frac{\mathrm{d}f_{m,X}}{\mathrm{d}t} = \delta_m \left(\frac{\partial \mu}{\partial f_{m,X}} + \sum_{\mathbf{x}} \frac{\partial \mu}{\partial Q_{\mathbf{x}}} \frac{\mathrm{d}Q_{\mathbf{x}}}{\mathrm{d}V_{\mathbf{x}}} \Big|_{\text{tot}} \frac{\partial V_{\mathbf{x}}}{\partial f_{m,X}} \right) \quad \text{with} \quad f_{m,X} = f_{\mathbf{R}}, \theta, a_{\mathbf{V},X} \quad \mathbf{X} = \mathbf{N}, \mathbf{P}, \mathbf{Si}, \dots$$
 (8.44)

[TODO: reduce text or spread to individual eugations]

Diverging from most standard ecosystem models, however, MAECS assumes intricate interdependencies between independent C, N, or P assimilation functions while avoiding prescribed stoichiometric control settings such as maximal N:C or P:C ratios. For doing so, it implies optimality criteria already in the description of basic uptake formulations (lower part of Table ??). These criteria control shifts between high affinity and fast transport nutrient uptake (see above Eq.(8.27)) and in the enzymatic down-regulation of all nutrient uptake activities. Adaptive control in activity secures phytoplankton cells from non-beneficial intracellular accumulation of nutrients, but in the model also requires to formulate an extended optimality principle by which C costs of nutrient uptake have to be balanced with corresponding C benefits arising fro associated quota changes (Eq.(??)). For both regulations (uptake site/transport partitioning, activity), steady-state solutions or approximations are calculated since physiological uptake regulations proceed at very high speed.

For nitrogen (N), the differential effect of increasing nutrient uptake rate on the quota derives from functional variation applied to the quota uptake equation Eq.(8.28):

$$\delta V_{\rm X} + \frac{\partial V_{\rm X}}{\partial Q_{\rm X}} \delta Q_{\rm X} - \mu \cdot \delta Q_{\rm X} - Q_{\rm X} \cdot \frac{\partial \mu}{\partial Q_{\rm X}} \delta Q_{\rm X} - Q_{\rm X} \cdot \frac{\partial \mu}{\partial V_{\rm X}} \delta V_{\rm X} = 0 \tag{8.45}$$

or

$$\frac{\mathrm{d}Q_{\mathrm{X}}}{\mathrm{d}V_{\mathrm{X}}} = (1 + \zeta_{\mathrm{X}}Q_{\mathrm{X}}) \cdot \left(\mu + Q_{\mathrm{X}}\frac{\partial\mu}{\partial Q_{\mathrm{X}}} - \frac{\partial V_{\mathrm{X}}}{\partial Q_{\mathrm{X}}}\right)^{-1} \tag{8.46}$$

where the derivative of uptake rate on quota may only become non-zero (1) for nitrogen (N) and (2) if C-partitioning to chlorophyll (f_{θ} in Eq.(8.21)) is hardwired to the N-quota:

$$\frac{\partial V_{\rm N}}{\partial Q_{\rm N}} = \frac{V_{\rm N}}{f_{\rm V}} \frac{\partial f_{\rm V}}{\partial Q_{\rm N}} = -\frac{\sigma f_R \theta}{f_{\rm V} \theta_{\rm C} \Delta Q_{\rm N}} V_{\rm N} = -\sigma' V_{\rm N} \tag{8.47}$$

8.3.1 Growth derivatives under co-limitation

For the N-turnover and regulation, the differential dependency of $V_{\rm N}$ on $Q_{\rm N}$ also enters the marginal increase in primary production when raising intracellular quota; an analytical derivation of the photosynthesis rate P in Eq.(8.10) with respect to each co-limiting quota $Q_{\rm X}$ reads

$$\frac{\partial \mu}{\partial Q_{X}} = \frac{P}{LF} \frac{\partial LF}{\partial q_{X}} \frac{\partial q_{X}}{\partial Q_{X}} - \zeta \frac{\partial V_{N}}{\partial Q_{X}}$$

$$= d_{X} \frac{\mu + \zeta V_{N}}{\Delta Q_{X}} + \sigma' \zeta V_{N} \qquad \text{with } d_{X} = LF^{-1} \frac{\partial LF}{\partial q_{X}}$$

$$= \left(d_{X} \frac{1 + \zeta Q_{N}}{\Delta Q_{X}} + \sigma' \zeta Q_{N} \right) \cdot \mu$$

$$= d_{OX} \cdot \mu \qquad (8.48)$$

where we assumed a balanced growth relation between growth and uptake ($\mu Q_{\rm N}=V_{\rm N}$), used the relation $P=\mu+\zeta V_{\rm N}$. In light of Eq.(8.47) we have $\sigma_N'=\sigma'$ and $\sigma_X'=0$ for other elements that lack direct influence on N-uptake rate.

The derivation result d_X of the (recursive) co-limitation factor $LF \equiv q_1'$ may contain a number of product terms, depending on where in the scheme the limiting effect of Q_X is calculated. Consider the series of limitation factors $q_1, q_2, \ldots q_{No^{nut}}$ (e.g., for q_N, q_P, q_{Si}) we start from the first element where the recursive scheme Eq.(8.18) has been invoked only once. For example, if MAECS just resolves its basic element N,

$$d_N = \frac{1}{q'_N} \qquad \qquad \text{for No}^{\text{nut}} = 1 \tag{8.49}$$

or N and P,

$$d_{\rm N} = \frac{1}{q'_{\rm N}} \frac{\partial q'_{\rm N}}{\partial q_{\rm N}} \qquad d_{\rm P} = \frac{1}{q'_{\rm N}} \frac{\partial q'_{\rm N}}{\partial q'_{\rm P}} \frac{\partial q'_{\rm P}}{\partial q_{\rm P}} \qquad \text{for No}^{\rm nut} = 2$$
 (8.50)

Note that $\partial q_P'/\partial q_P$ is one because P makes the last element in the list, so that the metabolic effect of Q_P as quantified by q_P' exclusively depends on the availability of Q_P as quantified by q_P . The general form for an arbitrary No^{nut} continues the sequential differentiation from the first element (here usually N) to the element X under consideration. So starting from q_1' we calculate the use efficiency of element X again using the chain-rule:

$$d_{X} = \frac{1}{q_{1}'} \frac{\partial q_{1}'}{\partial q_{2}'} \frac{\partial q_{2}'}{\partial q_{3}'} \cdots \frac{\partial q_{X}'}{\partial q_{X}}$$
(8.51)

Note that the last term in the product of differentials $(\partial q'_{\rm X}/\partial q_{\rm X})$ is either one if X is the last element in the sequence, and otherwise given by Eq.(8.52). The differentials in Eqs.(8.49)–(8.51) characterize the recursive effect of metabolic efficiencies of $q'_{\rm X}$ formulated in Eq.(8.18)

$$\frac{\partial q_{\mathbf{X}}'}{\partial q_{\mathbf{X}}} = q_{\mathbf{X}}' \cdot \left(q_{\mathbf{X}}^{-1} - \frac{\partial g_h}{\partial x} \frac{q_{\mathbf{X}+1}'}{g_h q_{\mathbf{X}}^2} + \frac{h q_{\mathbf{X}+1}'}{c_{hq}} \right) \tag{8.52}$$

or, if we differentiate with respect to the second efficiency:

$$\frac{\partial q_{\mathbf{X}}'}{\partial q_{\mathbf{X}+1}'} = q_{\mathbf{X}}' \cdot \left(\frac{\partial g_h}{\partial x} \frac{1}{g_h q_{\mathbf{X}}} + \frac{h q_{\mathbf{X}}}{c_{hq}} \right) \tag{8.53}$$

where the coefficient c_{hq} given in Eq.(8.14) is written without nutrient specific indices. Step-wise derivation of the queuing function $(x-x_h)/(1-x_h)$ with $x_h=x^{1+h^{-1}}$ in Eq.(8.16) yields

$$\frac{\partial g_{h}}{\partial x} = \frac{(1 - (1 + h^{-1})x_{h}/x) \cdot (1 - x_{h}) + (x - x_{h}) \cdot (1 + h^{-1})x_{h}/x}{(1 - x_{h})^{2}}$$

$$= \frac{(xh - (h+1)x_{h}) \cdot (1 - x_{h}) + (x - x_{h}) \cdot (h+1)x_{h}}{xh \cdot (1 - x_{h})^{2}}$$

$$= \frac{xh - (h+1)x_{h} - xhx_{h} + (h+1)x_{h}^{2} + x \cdot (h+1)x_{h} - (h+1)x_{h}^{2}}{xh \cdot (1 - x_{h})^{2}}$$

$$= \frac{xh + (x-1-h) \cdot x_{h}}{xh \cdot (1 - x_{h})^{2}} \tag{8.54}$$

[TODO: numerical approximation to avoid problems at x = 1]

8.3.2 Quota-uptake feed-back

Eq.(8.46) provides a first estimate for the differential trade-off required for a fully coherent application of the optimality principle to physiological regulation. However, a marginal change in quota after a differential change in uptake rate may propagate back to the uptake rate, if the latter directly depends on Q_N . This direct, differential feed-back between changes in Q_N and V_N reads

$$\frac{dQ_{N}}{dV_{N}}\Big|_{\text{tot}} = \frac{dQ_{N}}{dV_{N}} \cdot \left(1 + \frac{dQ_{N}}{dV_{N}} \frac{\partial V_{N}}{\partial Q_{N}}\right)$$
(8.55)

$$\frac{dQ_{N}}{dV_{N}} \frac{\partial V_{N}}{\partial Q_{N}} = -(1 + \zeta Q_{N}) \cdot \left(\mu + Q_{N} \frac{\partial \mu}{\partial Q_{N}} - \frac{\partial V_{N}}{\partial Q_{N}}\right)^{-1} \sigma' V_{N}$$

$$= -(1 + \zeta Q_{N}) \cdot \left(1 + Q_{N} \left[d_{N} \frac{1 + \zeta Q_{N}}{Q_{N} - Q_{N0}} + \sigma' \zeta Q_{N}\right] + \sigma' Q_{N}\right)^{-1} \sigma' Q_{N}$$

$$= -(1 + \zeta Q_{N}) \cdot \left((Q_{N})^{-1} + d_{N} \frac{1 + \zeta Q_{N}}{Q_{N} - Q_{N0}} + \sigma' \cdot (1 + \zeta Q_{N})\right)^{-1} \sigma'$$

$$= -\sigma' \cdot \left(\underbrace{(Q_{N} (1 + \zeta Q_{N}))^{-1} + d_{N} (Q_{N} - Q_{N0})^{-1}}_{e_{N}} + \sigma'\right)^{-1}$$

$$= -\frac{\sigma'}{e_{N} + \sigma'}$$
(8.56)

In all other cases apart of nitrogen, the uptake dependency on the quota vanishes:

$$\frac{\partial V_{X}}{\partial Q_{X}} = 0$$
 and $\frac{dQ_{X}}{dV_{X}}\Big|_{\text{tot}} = \frac{dQ_{X}}{dV_{X}}$ with $X = P, Si$ (8.57)

The product of the quota-uptake differential (without feed-back) and the growth-quota differential in Eq.(8.44) com-

bines Eq.(8.46) and Eq.(8.48) and again assumes $V_{\rm X}=Q_{\rm X}\mu$:

$$\frac{dQ_X}{dV_X} \frac{\partial \mu}{\partial Q_X} = (1 + \zeta_X Q_X) \cdot \left(\mu + Q_X \frac{\partial \mu}{\partial Q_X} - \frac{\partial V_X}{\partial Q_X}\right)^{-1} \cdot d_{QX} \cdot \mu$$

$$= (1 + \zeta_X Q_X) \cdot \left(1 + Q_X d_{QX} + \sigma_X' V_X \mu^{-1}\right)^{-1} \cdot d_{QX}$$

$$= \frac{(1 + \zeta_X Q_X) \cdot d_{QX}}{1 + Q_X \cdot (d_{QX} + \sigma_X')}$$
(8.58)

8.3.3 Uptake activity regulation

In the current version of MAECS, regulation of all uptake activity traits $a_{\rm X}$ is supposed to be very fast compared to the simulated dynamics and therefore not integrated in time according to Eq.(8.44), but assumed to be in steady-state. If the marginal benefit of uptake ${\rm d}\mu/{\rm d}a_{\rm X}$ is negative, activity is ceased; at positive benefit, $a_{\rm X}$ approaches one, while at neutral growth effect ${\rm d}\mu/{\rm d}a_{\rm X}\approx 0$, the activity smoothly varies at 1/2. This behavior is emulated by the non-linear function

$$a_{\mathbf{X}} = \left(1 + \mathrm{e}^{-\Delta t_{\mathbf{V}} \mathrm{d}\mu/\mathrm{d}a_{\mathbf{X}}}\right)^{-1} \tag{8.59}$$

For optimization in N-uptake activity a_N based on its the marginal C gain the extended optimality principle integrates Eq.(8.44) and Eqs.(8.48)–(8.58):

$$\frac{d\mu}{da_{X}} = \frac{\partial \mu}{\partial a_{X}} + \frac{\partial \mu}{\partial Q_{X}} \frac{dQ_{X}}{dV_{X}} \Big|_{tot} \frac{\partial V_{X}}{\partial a_{X}}$$

$$= -\zeta_{X} \frac{V_{X}}{a_{X}} + \frac{\partial \mu}{\partial Q_{X}} \frac{dQ_{X}}{dV_{X}} \frac{e_{N}}{e_{N} + \sigma'_{X}} \frac{V_{X}}{a_{X}}$$

$$= \left(-\zeta_{X} + \frac{(1 + \zeta_{X}Q_{X}) \cdot d_{QX}}{1 + Q_{X} \cdot (d_{QX} + \sigma'_{X})} \frac{e_{N}}{e_{N} + \sigma'_{X}}\right) \cdot \frac{V_{X}}{a_{X}} \tag{8.60}$$

where, again, $\sigma_N' = \sigma'$ and $\sigma_X' = 0$ for other elements that lack direct influence on uptake.

8.3.4 Costs in P and Si uptake

For a first estimation of the C-costs of P- and Si-uptake (with units mol-C/mol-X) we link the latter to N-assimilation. This means that energetic costs of P- and Si-assimilation are not accounted for as additional terms but assumed to be already included in protein synthesis that are chararized by $\zeta \equiv \zeta_N$ (with units mol-C/mol-N). For the P-link, we use the N-stoichiometry in RNA (N:P \approx 3.8:1) and phospholipids (N:P \approx 0.8:1 mol-N/mol-P)

$$\frac{\partial \mu}{\partial V_{\rm X}} = \frac{\partial \mu}{\partial V_{\rm N}} \frac{\partial V_{\rm N}}{\partial V_{\rm X}} = -\zeta_{\rm N} \cdot \frac{Q_{\rm N}^{0*}}{Q_{\rm X}^{0*}} = -\zeta_{\rm X} \tag{8.61}$$

with Eq.(8.14) Eq.(8.18)

$$\zeta_{\rm P} = \left[(1 - f_{\rm Lip}) \, 3.8 + f_{\rm Lip} \, 0.8 \right] \cdot \zeta_{\rm N} \quad \text{and} \quad \zeta_{\rm Si} = 0$$
 (8.62)

[TODO: check and simplify]

[TODO: include proteins/membranes (N:P ≫ 16:1) under low growth conditions]

8.3.5 Photoacclimation and transport

MAECS resolves transient photoacclimation as adaptive dynamics in allocation traits (Eq.(8.44)). The optimality principle extended by the differential quota-based trade-off Eq.(8.58) seeks to find an allocation key between nutrient uptake, LHC and light-independent processes (Rubisco) that maximizes relative C-uptake rate μ . The optimality condition includes marginal growth benefits of all nutrients (see Eq.(8.44)):

$$\frac{\mathrm{d}}{\mathrm{d}t} f_{\mathrm{R}} = \delta_{\mathrm{R}} \left(\frac{\partial \mu}{\partial f_{\mathrm{R}}} + \sum_{\mathrm{x}} \frac{\partial \mu}{\partial Q_{\mathrm{X}}} \frac{\mathrm{d}Q_{\mathrm{X}}}{\mathrm{d}V_{\mathrm{X}}} \Big|_{\mathrm{tot}} \frac{\partial V_{\mathrm{X}}}{\partial f_{\mathrm{R}}} \right)$$

$$(8.63)$$

and similar for the chloroplast CHL:C ratio θ :

$$\frac{\mathrm{d}}{\mathrm{d}t}\theta = \delta_R \left(\frac{\partial \mu}{\partial \theta} + \sum_{\mathbf{x}} \frac{\partial \mu}{\partial Q_{\mathbf{x}}} \frac{\mathrm{d}Q_{\mathbf{x}}}{\mathrm{d}V_{\mathbf{x}}} \Big|_{\text{tot}} \frac{\partial V_{\mathbf{x}}}{\partial \theta} \right)$$
(8.64)

The differential growth loss by increasing allocation to photosynthesis apparati down-sizes the nutrient uptake machinery. All uptake and indirect derivatives of the photoacclimation traits that induce these differential costs had been already introduced above.

Flexibilities in chloroplast CHL:C ratio and in C-allocation to Rubisco are given following Wirtz and Eckhardt (1996); Wirtz (2000)

$$\delta_{\theta} = \delta_{\theta}^* \cdot \theta \cdot (\theta_C - \theta) \qquad \delta_R = \delta_R^* \cdot f_R \cdot (1 - f_R)$$
(8.65)

Partial derivatives of photosynthesis rates with respet to θ and f_R (see Eq.(8.20) and Eq.(8.22)):

$$\frac{\partial \mu}{\partial f_{R}} = \frac{P}{f_{R}} - \zeta \frac{\partial V_{N}}{\partial f_{R}}$$

$$= \frac{P}{f_{R}} + \zeta \cdot \left(1 + \frac{q_{N}^{\sigma} \theta}{\theta_{C}}\right) \cdot a_{V,N} V_{X}^{*}$$
(8.66)

$$\frac{\partial \mu}{\partial \theta} = \frac{P}{LH} \frac{\partial LH}{\partial \theta} - \zeta \frac{\partial V_{N}}{\partial \theta}$$

$$= \frac{P}{LH} \frac{\alpha PAR}{P_{\text{max}}} (1 - LH) - \zeta \frac{q_{N}^{\sigma} f_{R}}{\theta_{C}} \cdot a_{V,N} V_{X}^{*} \tag{8.67}$$

For transporting photoacclimation traits in 1D-3D, MAECS integrates them as bulk variables by employing a "carrier" biomass variable (usually Phy_C). With Eq.(8.21) we have for the bulk chlorophylla concentration

$$Chl = f_{\theta} \theta_{C} Phy_{C} = f_{R} q_{N}^{\sigma} \theta Phy_{C}$$
(8.68)

and bulk Rubisco concentrations

$$Rub = f_R Phy_C (8.69)$$

[TODO: write down full equations]

8.4 Acknowledgements

We thank The work was supported by the Helmholtz society via the program PACES.

Bibliography

- C. Boyd and D. Gradmann. Impact of osmolytes on buoyancy of marine phytoplankton. 141(4):605-618, 2002. 33
- A. D. Friend. Use of a model of photosynthesis and leaf microenvironment to predict optimal stomatal conductance and leaf nitrogen partitioning. 14:895–905. 1991. 31
- T. Kiørboe, P. Tiselius, B. Mitchell-Innes, J.L.S. Hansen, A.W. Visser, and X. Mari. Intensive aggregate formation with low vertical flux during an upwelling-induced diatom bloom. 43:104–116, 1998. 33
- S. Menden-Deuer and E. J. Lessard. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. 45(3):569–579, 2000. 33
- K.A. Miklasz and M.W. Denny. Diatom sinking speeds: improved predictions and insight from a modified Stokes' law. 55(6):2513–2525, 2010.
- F. M. M. Morel. Kinetics of nutrient uptake and growth in phytoplankton. 23(2):137-150, 1987. 30
- M. Pahlow. Linking chlorophyll-nutrient dynamics to the Redfield N: C ratio with a model of optimal phytoplankton growth. 287:33–43, 2005. 30,
- J. A. Raven and A. M. Waite. The evolution of silicification in diatoms: inescapable sinking and sinking as escape? 162:45-61, 2004. 33
- JA Raven. Dark respiration. In *Energetics and transport in aquatic plants*, volume 4 of *MBL Lectures*, pages 253–317. Alan R. Liss; Inc., New York, 1984. 30
- S. L. Smith, Y. Yamanaka, M. Pahlow, and A. Oschlies. Optimal uptake kinetics: physiological acclimation explains the pattern of nitrate uptake by phytoplankton in the ocean. 384:1–12, 2009. 32
- S. L. Smith, M. Pahlow, A. Merico, and K. W. Wirtz. Optimality as a unifying concept for planktonic organisms and their ecology. 56:2080–2094, 2011. 34
- A. Waite, A. Fisher, P.A. Thompson, and P.J. Harrison. Sinking rate verses cell volume relationships illuminate sinking rate control mechanisms in marine diatoms. 157:97–108, 1997. 33
- K. W. Wirtz. Simulating the dynamics of leaf physiology and morphology with an extended optimality approach. 86:753–764, 2000. 34, 38
- K. W. Wirtz. Adaptive significance of C partitioning and SLA regulation in Betula pendula. 23(3):181-190, 2 2003. 34
- K. W. Wirtz. Non-uniform scaling in phytoplankton growth rate due to intracellular light and CO₂ decline. 33:1325–1341, 2011. 29
- K. W. Wirtz. Intermittency in processing explains the diversity and shape of functional grazing responses. 169:879–894, 2012. 30
- K. W. Wirtz. Mechanistic origins of variability in phytoplankton dynamics. Part I: Niche formation revealed by a size-based model. DOI 10.1007/s00227-012-2163-7, 2013. doi: 10.1007/s00227-012-2163-7. 29
- K. W. Wirtz and B. Eckhardt. Effective variables in ecosystem models with an application to phytoplankton succession. 92:33-53, 1996. 38
- K. W. Wirtz and M. Pahlow. Dynamic CHL and N-C regulation in algae optimizes instantaneous growth rate. 402:81-96, 2010. 4, 31

Index

calc_internal_states	maecs_primprod.F90, 26
maecs_functions, 17	maecs_types, 19
calc_sensitivities	maecs_types.F90, 26
maecs_functions, 16	maecs_types::stoich_pointer, 20
folym had mades 10	maecs_types::type_maecs_allocation_fractions, 2
fabm_hzg_maecs, 10	maecs_types::type_maecs_base_model, 21
get_light_extinction, 12	maecs_types::type_maecs_basic_traits, 21
initialize, 11	maecs_types::type_maecs_env, 21
maecs_do, 12	maecs_types::type_maecs_life, 22
maecs_get_vertical_movement, 13	maecs_types::type_maecs_nutindex, 22
fabm_hzg_maecs::maecs_do, 14	maecs_types::type_maecs_om, 22
fabm_hzg_maecs::maecs_get_vertical_movement,	maecs_types::type_maecs_phy, 23
18	maecs_types::type_maecs_rhs, 23
fabm_hzg_maecs::type_hzg_maecs, 20	maecs_types::type_maecs_sensitivities, 23
foptupt	maecs_types::type_maecs_switch, 23
maecs_functions, 15	maecs_types::type_maecs_traitdyn, 24
and Bala materials	maecs_types::type_maecs_zoo, 24
get_light_extinction	min_mass
fabm_hzg_maecs, 12	maecs_functions, 16
grazing	nh ata ayatha aig
maecs_grazing, 18	photosynthesis
grazing_losses	maecs_primprod, 19
maecs_grazing, 18	queuederiv
initialities	maecs_functions, 16
initialize	queuefunc
fabm_hzg_maecs, 11	maecs_functions, 15
massa da	queuefunc1
maecs_do	maecs_functions, 15
fabm_hzg_maecs, 12	macos_functions, To
maecs_functions, 14	sinking
calc_internal_states, 17	maecs_functions, 16
calc_sensitivities, 16	smooth_small
foptupt, 15	maecs functions, 15
min_mass, 16	
queuederiv, 16	uptflex
queuefunc, 15	maecs functions, 15
queuefunc1, 15	_ ,
sinking, 16	
smooth_small, 15	
uptflex, 15	
maecs_functions.F90, 25	
maecs_get_vertical_movement	
fabm_hzg_maecs, 13	
maecs_grazing, 18	
grazing, 18	
grazing_losses, 18	
maecs_grazing.F90, 25	
maecs_maecsdo_combined.F90, 26	
maecs_primprod, 19	
photosynthesis, 19	