

Como as Derivadas Afetam a Forma de um Gráfico

Texto baseado nos livros:

Cálculo - v1 - James Stewart (Editora Cengage Learning)

Introdução ao Cálculo – Pedro Morettin et al. (Editora Saraiva)

Cálculo – v1 – Laurence D. Hoffmann et al. (Editora LTC)

AS DERIVADAS E A FORMA DE UM GRÁFICO

Como f'(x) representa a inclinação da curva y = f(x) no ponto (x, f(x)), ela nos informa para qual direção a curva segue em cada ponto.

Assim, é razoável esperar que informações sobre f'(x) nos dê informações sobre f(x).

 Para ver como a derivada de f pode nos dizer onde uma função é crescente ou decrescente, observe a Figura.

Entre A e B e entre C e D as retas tangentes têm inclinação positiva. Logo f'(x) > 0.

Entre *B* e *C*, as retas tangentes têm inclinação negativa.

Portanto f'(x) < 0.

Note que f cresce quando f'(x) é positiva e decresce quando f'(x) é negativa.

Ou seja, termos o seguinte resultado importante:

Teste C/D para verificar se uma função é crescente ou decrescente num dado intervalo:

- a. Se f'(x) > 0 num interval I, então f é crescente em I.
- b. Se f'(x) < 0 num interval I, então f é decrescente em I.

TESTE C/D

Exemplo 1

Encontre onde a função $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ é crescente e onde ela é decrescente.

$$f'(x) = 12x^3 - 12x^2 - 24x = 12x(x-2)(x+1)$$

Para usar o Teste C/D devemos saber onde f'(x) > 0 e onde f'(x).

Isso depende dos sinais dos três fatores, isto é:

$$12x$$
, $x - 2$ e $x + 1$.

$$f'(x) = 12x^3 - 12x^2 - 24x = 12x(x^2 - x - 2) = 0$$

$$x^{2} - x - 2 = 0 \implies x = \frac{-(-1) \pm \sqrt{(-1)^{2} - 4.1(-2)}}{2}$$

$$x_1 = 0$$
 , $x_2 = 2$ e $x_3 = -1$

TESTE CD

Exemplo 1

- Dividimos a reta real em intervalos cujas extremidades são os números críticos
 - -1, 0, e 2 e dispomos o que fizemos em uma tabela.

Intervalo	12 <i>x</i>	x-2	x + 1	f'(x)	f
<i>x</i> < −1	_	_	_	-	decrescente em (-∞, -1)
-1 < x < 0	_	_	+	+	crescente em $(-1,0)$
0 < x < 2	+	_	+	_	decrescente em (0, 2)
x > 2	+	+	+	+	crescente em $(2, \infty)$

TESTE C/D

O gráfico de f, mostrado na Figura, confirma a informação dada na tabela.

Exemplo 1

Intervalo	12x	x-2	x + 1	f'(x)	f
<i>x</i> < −1	_	_	_	_	decrescente em (-∞, -1)
-1 < x < 0	_	_	+	+	crescente em $(-1,0)$
0 < x < 2	+	_	+	_	decrescente em $(0, 2)$
x > 2	+	+	+	+	crescente em $(2, \infty)$

- Lembre-se de que se f tem um máximo ou mínimo local em c, então c deve ser um número crítico de f (pelo Teorema de Fermat).
 - Mas nem todo número crítico dá origem a um máximo ou mínimo.
 - Consequentemente, necessitamos de um teste que nos diga se f tem ou não um máximo ou mínimo local em um número crítico.

Em outras palavras, o sinal de f(x) muda de positivo para negativo em 0.

Essa observação é a base do teste a seguir.

TESTE DA PRIMEIRA DERIVADA PARA CLASSIFICAÇÃO DE MÁXIMOS E MÍNIMOS LOCAIS

Suponha que *c* seja um número crítico de uma função contínua *f*.

Se o sinal de f' mudar de positivo para negativo em c, então

f tem um máximo local em c.

TESTE DA PRIMEIRA DERIVADA PARA CLASSIFICAÇÃO DE MÁXIMOS E MÍNIMOS LOCAIS

b) Se o sinal de *f* ' mudar de negativo para positivo em *c*, então *f* tem um mínimo local em *c*.

TESTE DA PRIMEIRA DERIVADA

c) Se f' não mudar de sinal em c (isto é, se em ambos os lados de c o sinal de f' for positivo ou negativo), então f não tem máximo ou mínimo locais em c.

TESTE DA PRIMEIRA DERIVADA

É fácil memorizar o Teste da Primeira Derivada.

Exemplo 2

Da tabela na solução do Exemplo 1, vemos que o sinal de f'(x) muda de negativo para positivo em -1.

Logo, f(-1) = 0 é um valor mínimo local pelo Teste da Primeira Derivada.

Intervalo	12 <i>x</i>	x-2	$x \pm 1$	f'(x)	f
<i>x</i> < −1	-	-	-	-	decrescente em (-∞, -1)
-1 < x < 0	_	_	+	+	crescente em $(-1,0)$
0 < x < 2	+	_	+	_	decrescente em $(0, 2)$
x > 2	+	+	+	+	crescente em $(2, \infty)$

Exemplo 2

Analogamente, o sinal de f' muda de negativo para positivo em 2.

Portanto f(2) = -27 é também um valor mínimo local. Como observado anteriormente, f(0) = 5 é um valor máximo local, pois o sinal de f'(x) muda de positivo para negativo em 0.

Intervalo	12x	x-2	$x \pm 1$	f'(x)	f
<i>x</i> < −1	_	_	-	_	decrescente em $(-\infty, -1)$
-1 < x < 0	_	_	+	+	crescente em $(-1,0)$
0 < x < 2	+	_	+	_	decrescente em $(0, 2)$
x > 2	+	+	+	+	crescente em $(2, \infty)$

Observe a curva $y = x^4 - 4x^3$, em relação aos mínimos e máximos locais.

Se
$$f(x) = x^4 - 4x^3$$
, então:

$$f'(x) = 4x^3 - 12x^2 = 4x^2(x-3)$$

Para achar os números críticos fazemos f'(x) = 0 e obtemos x = 0 e x = 3.

Para usar o Teste da primeira derivada, fazemos:

$$(-\infty;3)\Rightarrow f'(x)<0$$

$$(3; \infty) \Rightarrow f'(x) > 0$$

Como f'(3) = 0 e o sinal de f'(x) em 3 muda de negativo para positivo, f(3) = -27 é um mínimo local.

Uma vez que f'(x) < 0 para x < 0 e também para 0 < x < 3, o Teste da Primeira Derivada nos diz que f não tem um máximo ou mínimo local em 0.

De fato, a expressão para f'(x) mostra que f decresce à esquerda de 3 e cresce à direita de 3.

Abaixo temos o gráfico da função f(x):

TESTE DE CONCAVIDADE

- a. Se f''(x) > 0 para todo x em I, então o gráfico de f é côncavo para cima em I.
- b. Se f''(x) < 0 para todo x em I, então o gráfico de f é côncavo para baixo em I.

PONTO DE INFLEXÃO

- No Exemplo, a curva populacional varia de côncava para cima para côncava para baixo aproximadamente no ponto (12, 38.000).
 - Denominado ponto de inflexão da curva.

PONTO DE INFLEXÃO

 Em geral, um ponto de inflexão é aquele em que uma curva muda a direção de sua concavidade.

PONTO DE INFLEXÃO - DEFINIÇÃO

• Um ponto P na curva y = f(x) é chamado **ponto de inflexão** se f é contínua no ponto e a curva mudar de côncava para cima para côncava para baixo ou vice-versa em P.

PONTO DE INFLEXÃO

- Por exemplo, na Figura, B, C, D e P são os pontos de inflexão.
 - Observe que se uma curva tiver uma tangente em um ponto de inflexão, então a curva cruza sua tangente aí.

PONTO DE INFLEXÃO

 Em vista do Teste da Concavidade, há um ponto de inflexão sempre que a segunda derivada mudar de sinal. Outra aplicação da segunda derivada é o teste a seguir para classificar os valores máximo e mínimo.

Ele é uma consequência do Teste da Concavidade.

Teste da segunda derivada para classificação de pontos extremos: Suponha que *f* seja contínua na proximidade de *c*.

- 1. Se f'(c) = 0 e f''(c) > 0, então f tem um mínimo local em c.
- 2. Se f'(c) = 0 e f''(c) < 0, então f tem um máximo local em c.

O QUE f' NOS DIZ SOBRE f? Exemplo

Estude a curva $y = x^4 - 4x^3$, em relação à concavidade, aos pontos de inflexão e mínimos e máximos locais.

Se
$$f(x) = x^4 - 4x^3$$
, então:

$$f'(x) = 4x^3 - 12x^2 = 4x^2(x-3)$$

$$f''(x) = 12x^2 - 24x = 12x(x-2)$$

Para achar os números críticos fazemos f'(x) = 0 e obtemos x = 0 e x = 3.

Para usar o Teste da Segunda Derivada, calculamos f'' nesses pontos críticos:

$$f''(0) = 0$$
 e $f''(3) = 36 > 0$

- Como f'(3) = 0 e f''(3) > 0, f(3) = -27 é um mínimo local.
- Uma vez que f''(0) = 0, o Teste da Segunda Derivada não fornece informações sobre o número crítico 0.
- Mas, uma vez que f'(x) < 0 para x < 0 e também para 0 < x < 3, o Teste da Primeira Derivada nos diz que f não tem um máximo ou mínimo local em 0.
- De fato, a expressão para f'(x) mostra que f decresce à esquerda de 3 e cresce à direita de 3.

\overline{O} QUE f' NOS DIZ SOBRE f?

• Como f''(x) = 0 quando x = 0 ou 2, dividimos a reta real em intervalos com esses números como extremidades e completamos a seguinte tabela.

Intervalo	f''(x) = 12x(x-2)	Concavidade
$(-\infty,0)$	+	para cima
(0, 2)	_	para baixo
(2,∞)	+	para cima

Também, (2, -16) um ponto de inflexão, uma vez que é ali que a curva muda de côncava para baixo para côncava para cima.

Intervalo	f''(x) = 12x(x-2)	Concavidade
$(-\infty,0)$	+	para cima
(0, 2)	_	para baixo
(2,∞)	+	para cima

 Usando o mínimo local, os intervalos de concavidade e os pontos de inflexão, esboçamos a curva na Figura.

OBSERVAÇÃO

O Teste da Segunda Derivada é inconclusivo quando

$$f^{\prime\prime}(c)=0.$$

Em outras palavras, esse ponto pode ser um máximo, um mínimo ou nenhum dos dois.

OBSERVAÇÃO

- Esse teste também falha quando f''(c) não existe.
- Em tais casos, o Teste da Primeira Derivada deve ser usado. De fato, mesmo quando ambos os testes são aplicáveis, o Teste da Primeira da Derivada é frequentemente mais fácil de aplicar.