# Modèle linéaire mixte et estimation de l'aptitude au mélange de variétés de blé en dispositif incomplet

Inès Krissaane Master 1 - UPMC

Christophe Ambroise, Stéphane Robin, Tristan Mary-Huard

Statistique & Génome

# Introduction

Contexte

#### Mélange de différentes variétés de blé

- Écologie : mobiliser la diversité génétique
- Agronomie : éviter les stress biotiques et abiotiques
- Agriculteurs : modifier les pratiques agro-écologiques

# Association végétale

Association de plusieurs plantes appartenant à une même espèce mais à des variétés différentes



## Données et questionnements

- Comment évaluer les performances en mélange des variétés ?
- Quels modèles statistiques faut-il choisir?
- Quels dispositifs expérimentaux permettraient de mieux estimer l'aptitude au mélange ?



# Modélisation de l'aptitude au mélange Définitions

"The term 'general combining ability' is used to designate the average performance of a line in hybrid combination... The term 'specific combining ability' is used to designate those cases in which certain combinations do relatively better or worse than would be expected on the basis of the average performance of the lines involved."

Griffing - 1956

### General Mixing Ability - GMA

Performance moyenne d'un génotype en mélange  $(GMA_i)$ 

## Specific Mixing Ability - SMA

Performance d'un mélange dû à l'interaction entre les deux génotypes  $(SMA_{ii})$ 

| Essai    | Genotype1 | Genotype2 | Rendement |  |
|----------|-----------|-----------|-----------|--|
| melanges | Altigo    | Tremie    | 75.06     |  |
| melanges | Altigo    | A208      | 80.20     |  |
|          |           |           |           |  |
|          |           |           |           |  |
|          |           |           |           |  |
| pur      | Alauda    |           | 58,44     |  |
| pur      | Sogood    |           | 72.78     |  |

Application



|    | G1              | G2              | G3              | G4              |
|----|-----------------|-----------------|-----------------|-----------------|
| G1 | Y <sub>11</sub> | $Y_{12}$        | Y <sub>13</sub> | Y <sub>14</sub> |
| G2 | Y <sub>21</sub> | Y <sub>22</sub> | Y <sub>23</sub> | Y <sub>24</sub> |
| G3 |                 |                 | Y <sub>33</sub> | Y <sub>34</sub> |
| G4 |                 |                 |                 | Y <sub>44</sub> |



Mélange Génotype 1 - Génotype 2

$$\mathbf{Y}_{12} \! = \mu \! + \! \tfrac{1}{2} (\mathit{GMA}_1 \! + \! \mathit{GMA}_2) \! + \! \tfrac{1}{4} (\mathit{SMA}_{11} \! + \! \mathit{SMA}_{22}) \! + \! \tfrac{1}{2} (\mathit{SMA}_{12}) \! + \! \mathbf{E}_{12}$$

# Modélisation de l'aptitude au mélange

#### Modèle linéaire mixte

$$Y = X\beta + Z_{\sigma} U_{\sigma} + Z_{c} U_{c} + E,$$

 $U_{\sigma}$  effet aléatoire associé aux GMA des génotypes

$$U_g \sim \mathcal{N}(0, \mathbf{D}_g)$$
, où  $\mathbf{D}_g = \sigma_g^2 I$ 

 $\boldsymbol{U_c}$  effet aléatoire associé aux SMA des génotypes croisés

$$Uc \sim \mathcal{N}(0, \mathbf{D}_c)$$
, où  $\mathbf{D}_c = \sigma_c^2 I$ 

E terme d'erreur

$$m{E} \sim \mathcal{N}(0, m{D}_e), \; \mathrm{où} \; m{D}_e = \sigma_e^2 m{I}$$

$$Z_g = \begin{pmatrix} 0.5 & 0.5 & 0 & \cdots & 0 \\ 0 & 0.5 & 0.5 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix} \quad Z_c = \begin{pmatrix} 0.5 & 0 & \cdots & 0 & 0 & 0.25 & 0.25 \\ 0 & 0.5 & \cdots & 0.25 & 0.25 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$Y \sim \mathcal{N}(X\beta, \Sigma)$$
, où  $\Sigma = Z_g D_g Z_g^t + Z_c D_c Z_c^t + E$ 

#### Best Linear Unbiased Prediction - BLUP

$$\mathbb{E}(U|Y) = DZ^t \Sigma^{-1} (Y - X\beta)$$

#### Mesure d'incertitude

- Variance de la loi conditionnelle  $Var(U|Y) = D DZ^t \Sigma^{-1} ZD$
- Variance du Blup  $Var(\mathbb{E}_{\beta}(U|Y)) = D Z^{t} \Sigma^{-1} Z D$
- ③ Variance du Blup avec prise en compte de l'estimation de  $\beta$   $\text{Var}(\mathbb{E}_{\widehat{\beta}}(U|Y)) =$   $\text{Var}(\mathbb{E}_{\beta}(U|Y)) + DZ^t \Sigma^{-1} X (X^t \Sigma^{-1} X)^{-1} X^t \Sigma^{-1} Z D$

Intervalles de confiance et test

Simulations suivant le modèle

$$Y \sim \mathcal{N}(X\beta, \Sigma)$$
, où  $\Sigma = Z_g D_g Z_g^t + Z_c D_c Z_c^t + D_e$ 

- Package Ime4 Matrice d'entrée Z. variances des Blups, test et interface graphique
- Approximation par loi de Student Procédure SAS Estimation des degrés de liberté (Satterthwaite), intervalles de confiance

#### 1. Variance conditionnelle





#### 2. Variance du blup





3. Variance du blup avec prise en compte de l'estimation de beta





# Dispositifs expérimentaux

Modifier la matrice de design Z

|      | Var1 | Var2 | Var3 | Var4 | Var5 |
|------|------|------|------|------|------|
| Var1 |      |      |      |      |      |
| Var2 |      |      |      |      |      |
| Var3 |      |      |      |      |      |
| Var4 |      |      |      |      |      |
| Var5 |      |      |      |      |      |

Fig.1: Complete design

|      | Var1 | Var2 | Var3 | Var4 | Var5 |
|------|------|------|------|------|------|
| Var1 |      |      |      |      |      |
| Var2 |      |      |      |      |      |
| Var3 |      |      |      |      |      |
| Var4 |      |      |      |      |      |
| Var5 |      |      |      |      |      |

Fig.2: Incomplete design

#### Choix du dispositif

 un bloc équilibré répété deux fois qui correspond au dispositif initial

$$Z = \left[ \begin{array}{c} Z1 \\ Z1 \end{array} \right]$$

deux blocs équilibrés différents

$$Z = \left[ \begin{array}{c} Z1 \\ Z2 \end{array} \right]$$

# Mélanges d'ordre supérieur

# Dispositif expérimental

- 16 génotypes en pur
- 24 mélanges binaires
- 28 mélanges quaternaires
- 20 mélanges octonaires



# Conclusion et Perspectives

#### Bilan

- Intervalles de confiance et tests : simulations, Satterthwaite, Ime4
- Planifications expérimentales : choix de la variance, critères d'optimalité
- Perspectives
  - Mélanges d'ordre supérieures
  - Intégrer les clusters dans le modèle
  - Complétion de matrice



Daudin, J.J. (2015). Le modèle linéaire et ses extensions

Application

- Bates, D. (2010). Ime4: Mixed-effects modeling with R
- Bergonzini, J.Cl., (1995). Analyse et planifications des expériences
- Searle, S., Casella, G., E. McCulloch (1992). Variance Components
- Zhou, H., Hu, L., Lange, K., Zhou, J. (2015). MM Algorithms for Variance Components Models. Statistics and Computing, Los Angeles
- Zhaoa ,Yusheng. (2015). Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding, Department of Breeding Research, Stuttgart