11.10 习题

张志聪

2025年1月8日

11.10.1

因为 F,G 在闭区间 [a,b] 上可微,则 F,G 都是连续函数,于是推论 11.5.2 可知,F,G 都是 [a,b] 上的黎曼可积的函数。

由定理 11.4.5 可知,FG', F'G 都是 [a,b] 上的黎曼可积的函数。由定理 10.1.13(d) 可知

$$(FG)' = F'G + FG'$$

所以

$$\int_{[a,b]} (FG)' = \int_{[a,b]} F'G + \int_{[a,b]} FG'$$
$$= (FG)(b) - (FG)(a)$$

第一个等式使用了定理 11.4.1(a),第二个等式使用了定理 11.9.4 (微积分第二基本定理)。于是经过变换可得

$$\int_{[a,b]} FG' = F(b)G(b) - F(a)G(a) - \int_{[a,b]} F'G$$

11.10.2

• $\phi^{-1}(J)$ 是连通的。

反证法,假设 $\phi^{-1}(J)$ 不是连通的,那么存在 $x,y \in \phi^{-1}(J), x \neq y$ 且 x < c < y 满足 $c \notin \phi^{-1}(J)$ 。

由 ϕ 在闭区间 [a,b] 上单调递增的连续函数可知

$$\phi(x) \le \phi(c) \le \phi(y)$$

而由假设可知 $c \notin \phi^{-1}(J)$,所以 c 应该小于 J 的左端点 J_l (大于 J 的右端点,同理),于是

$$\phi(c) \le \phi(J_l)$$

满足上述两个不等式只能是

$$\phi(c) = \phi(x) = \phi(y)$$

因为 $\phi(x) \in J$, 于是 $\phi(c) \in J$ 进而 $c \in \phi^{-1}(J)$, 存在矛盾。

c_J 还是 f ∘ φ 在 φ⁻¹(J) 上的常数值。
 任意 x ∈ φ⁻¹(J), 由集合 φ⁻¹(J) 的定义可知,

$$\phi(x) \in J$$

于是

$$(f \circ \phi)(x) = f(\phi(x)) = c_J$$

• **Q** 是 [a,b] 的一个划分。

任意 $x \in [a,b]$, 都有 $\phi(x) \in [\phi(a),\phi(b)]$, 因为 **P** 是 $[\phi(a),\phi(b)]$ 的一个划分,所以存在一个 $J \in \mathbf{P}$ 使得

$$\phi(x) \in J$$

于是

$$x \in \phi^{-1}(J)$$

是否还存在另一个区间 $K \in \mathbf{P}$ 使得

$$x \in \phi^{-1}(K)$$

不会存在,因为如果存在,则 $\phi(x) \in K, \phi(x) \in J$ 这与 **P** 是划分矛盾。

• $\phi[\phi^{-1}(J)] = |J|$

不妨设 J 的左右端点为 l,r, 现在需要证明

$$\begin{cases} \sup \phi^{-1}(J) = \phi^{-1}(r) \\ \inf \phi^{-1}(J) = \phi^{-1}(l) \end{cases}$$

反证法, 假设存在 $x \in \phi^{-1}(J)$ 且 $x > \phi^{-1}(r)$ 。因为 $x \in \phi^{-1}(J)$,所以

$$\phi(x) \in J$$

又因为 $x > \phi^{-1}(r)$,且 ϕ 在闭区间 [a,b] 上单调递增的连续函数,所以

$$\phi(x) > \phi(\phi^{-1}(r)) = r$$

这与 $\phi(x) \in J$ 矛盾, 所以不存在这样的 x。于是

$$\sup \phi^{-1}(J) = \phi^{-1}(r)$$

类似地,可得

$$\inf \phi^{-1}(J) = \phi^{-1}(l)$$

于是

$$\phi[\phi^{-1}(J)] = \phi(\sup \phi^{-1}(J)) - \phi(\inf \phi^{-1}(J))$$

= $r - l$

又因为

$$|J| = r - l$$

综上, 命题得证。

11.10.3

设 $\epsilon > 0$,那么我们能够找到一个在 [a,b] 上从上方控制 f 的分段常数 函数 \overline{f} 和一个在 [a,b] 上从下方控制 f 的分段常数函数 f,它们使得

$$\int_{[a,b]} f - \epsilon \le \int_{[a,b]} \underline{f} \le \int_{[a,b]} \overline{f} \le \int_{[a,b]} f + \epsilon$$

令 $\overline{g}(x) = \overline{f}(-x), \underline{g}(x) = \underline{f}(-x)$ 是 [-b, -a] 上的函数。对任意 $x \in [-b, -a]$,有

$$\overline{g}(x) = \overline{f}(-x) \ge f(-x) = g(x)$$

所以 \overline{g} 在 [-b, -a] 上从上方控制 g。类似地, \underline{g} 在 [-b, -a] 上从下方控制 g。对任意 $J \in \mathbf{P}$ 我们定义 $G_J := \{x \in [-b, -a] : -x \in J\}$,于是 $\mathbf{P}' := \{G_J : J \in \mathbf{P}\}$ 是 [-b, -a] 的一个划分。

此外,任意 $G_J \in \mathbf{P}', \overline{g}$ 在 G_J 上的常数值也是 \overline{f} 在 J 上的常数值。类似地,任意 $G_J \in \mathbf{P}', \underline{g}$ 在 G_J 上的常数值也是 \underline{f} 在 J 上的常数值。 于是

$$\int_{[-b,-a]} \overline{g} = p.c. \int_{[-b,-a]} \overline{g}$$

$$= \sum_{G_J \in \mathbf{P'}} c_J |G_J|$$

$$= \sum_{J \in \mathbf{P}} c_J |J|$$

$$= \int_{[a,b]} \overline{f}$$

类似地,

$$\int_{[-b,-a]} \underline{g} = \int_{[a,b]} \underline{f}$$

所以

$$\int_{[a,b]} f - \epsilon \leq \int_{[-b,-a]} \underline{g} \leq \underbrace{\int}_{[-b,-a]} g \leq \overline{\int}_{[-b,-a]} g \leq \int_{[-b,-a]} \overline{g} \leq \int_{[a,b]} f + \epsilon$$

由 ϵ 的任意性可知,据此可得出结论。

11.10.4

(1) 命题

设 [a,b] 是一个闭区间, $\phi:[a,b]\to [\phi(b),\phi(a)]$ 是一个单调递减的可微函数,并且使得 ϕ' 是黎曼可积的。设 $f:[\phi(b),\phi(a)]\to\mathbb{R}$ 是 $[\phi(b),\phi(a)]$ 上的黎曼可积的函数,那么 $(f\circ\phi)\phi':[a,b]\to\mathbb{R}$ 是 [a,b] 上是黎曼可积的,并

$$\int_{[a,b]} (f \circ \phi) \phi' = - \int_{[\phi(b),\phi(a)]} f$$