Probablistic Machine Learning

JHU ECE EN 520.651 2021 Fall M. Zhou / Simplified Course Notes / Cheatsheet

Probability Review

Probablistic Model. Ω : sample space. For instance, single roll of dice $\Omega = \{1, 2, 3, 4, 5, 6\}$; A: event, a set of outcomes. Venn diagrams can be used to visualize basic set operations; P(A): probability measure, non-negative; For a event, the boundary case is Ω (certain set) and ϕ (null set).

Sigma Field. Given a sample space Ω and events E, F, the collection of subsets of Ω , defined as M, forms a field if (1) $\phi \in M$, $\Omega \in M$; (2) If $E, F \in M$, then $E \cup F \in M$ and $E \cap F \in M$; (3) If $E \in M$, then $E^C \in M$. A sigma field is closed under a countable number of unions, intersections, and complements. We care about fields and sigma fields because of consistency. When P(E) and P(F) are defined, but not $P(E \cap F)$, then the rule will be broken.

Strategy for the smallest σ -field. (1) Include ϕ and Ω ; (2) Include disjoint parts; (3) Include all pairs, triplets, quadruplets, etc. Alternative strategy: use a binary mask, and the size of the set would be 2^N .

Probability. Set function $P: E \in \mathcal{F} \mapsto P(E) \in \mathbb{R}^+$. (1) $P(E) \ge 0$ (2) $P(\Omega) = 1$ i.e., normalization (3) $P(E \cup F) =$ $P(E) + P(F), \forall E, F \in \Omega, s.t.E \cap F = \phi$. Then we can establish (4) $P(\phi) = 0$ (5) $P(E) = 1 - P(E^C)$ (6) $P(E \cup F) =$ $P(E) + P(F) - P(E \cap F)$ (7) $P(\bigcap_{i=1}^{n} E_i) \le \sum_{i=1}^{n} P(E_i)$.

Relationship Between Events: Joint probability $P(A \cap$ B); Conditional probability $P(B|A) = P(A \cap B)/P(A)$ which means P(B|A)P(A) = P(A|B)P(B). Two events $A \in \mathcal{F}$ and $B \in \mathcal{F}$ are independent if $P(A \cap B) = P(A)P(B)$ for P(A) > 0 and P(B) > 0. Three events A, B, C (nonzero probability) are jointly independent if (1) $P(A \cap$ (B) = P(A)P(B) – all pairwise combinations alike; (2) $P(A \cap B \cap C) = P(A)P(B)P(C)$ – mutual independence. Independent Experiments: the outcome of one experiment is not affected by the past, present, or future values of the other experiment.

Total Probability: Let $A_i (i = 1, ..., n)$ be mutually exclusive and exhaustive w/ nonzero probability, for all $B \in \Omega$, we can write

$$P(B) = \sum_{i=1}^{n} P(A_i)P(B|A_i)$$

Bayes Rule: Given the above setup and P(B) > 0, then

$$P(A_j|B) = \frac{P(A_j \cap B)}{P(B)} = \frac{P(A_j)P(B|A_j)}{\sum_{i=1}^{n} P(A_i)P(B|A_i)}$$

where $P(A_i)$ is "prior", $P(B|A_i)$ is "likelihood", and $P(A_i|B)$ is "posterior".

1.2 **Random Variables**

Random variable $X(\cdot)$ is a function that maps outcome $\omega \in \Omega$ onto the real number line $X(\omega) \in \mathbb{R}$, i.e., $X : \Omega \mapsto \mathbb{R}$.

Cumulative Distribution Function (CDF):

$$F_X(x) = P(\omega \in \Omega | X(\omega) \le x) \triangleq P(X \le x)$$

(1)
$$F_X(-\infty) = P(\phi) = 0$$
, $F_X(+\infty) = P(\phi) = 1$

(2)
$$x_1 \le x_2$$
, $F_X(x_1) < F_X(x_2)$

(3)
$$F_X(x) = \lim_{\epsilon \to 0^+} F_X(x + \epsilon)$$

Implication: $P(a < X \le b) = F_X(b) - F_X(a)$

Probability Density Function (PDF):

$$f_X(x) = \frac{d}{dx} F_X(x)$$

 $(1) f_X(x) \ge 0$

$$(2) \int_{-\infty}^{\infty} f_X(\xi) d\xi = F_X(\infty) - F_X(-\infty) = 1$$

(3)
$$F_X(x) = \int_{-\infty}^x f_X(\xi) d\xi = P(X \le x)$$

$$(4) \int_{x_1}^{x_2} f_X(\xi) d\xi = F_X(x_2) - F_X(x_1) = P(x_1 < X \le x_2)$$

See appendix for a list of useful distributions.

Mixed Random Variables.

$$P(X = x) = \lim_{e \to 0^+} \int_x^{x+e} f_X(\xi) d\xi$$

The value is generally 0 for continuous RV. When we need nonzero mass at $x = x_0$, we can use a Dirac delta $\delta(x - x_0)$.

Conditional Distribution of X given B is,

$$F_X(x|B) = \frac{P(X \le x, B)}{P(B)} \qquad f_X(x|B) = \frac{d}{dx} F_X(x|B)$$

Joint Distribution of $X : \Omega \mapsto \mathbb{R}$ and $Y : \Omega \mapsto \mathbb{R}$

$$F_{XY}(x, y) = P(\omega \in \Omega | X(\omega) \le x, Y(\omega) \le y) \triangleq P(X \le x, Y \le y)$$

where $F_{XY}(\infty, \infty) = 1$, $F_{XY}(-\infty, -\infty) = 0$. $F(x, +\infty) =$ $F_X(x)$. $\forall x_1 \le x_2, y_1 \le y_2, F(x_1, y_1) \le F(x_2, y_2)$. PDF is

$$f_{XY}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{XY}(x,y)$$

and marginal is $f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x,y) dy$. The conditional is $f_{X|Y}(x|y) = \frac{f_{XY}}{f_Y} = \frac{f_X f_{Y|X}}{\int_{-\infty}^{\infty} f_X(x') f_{Y|X}(y|x') dx'}$ (a slice). **Independence.** X and Y are independent if $F_{XY} = \int_{-\infty}^{\infty} f_X(x') f_{Y|X}(y|x') dx'$

 $F_X F_Y$ or $f_{XY} = f_X f_Y$ or $f_{X|Y} = f_X$.

1.3 **Functions of Random Variables**

Discrete RV. $x \in \mathcal{X}$. $P_X(x) = P(X = x)$ s.t. $\sum_{x \in \mathcal{X}} P_X(x) =$ 1. Then for Y = g(X) we have $P_Y(y) = \sum_{x:g(x)=y} P_X(x)$.

Continuous RV. Method I: direct computation. First compute the CDF of Y, then differentiate to obtain PDF. $P(Y \le y) = P(g(X) \le y) = P(X \le g^{-1}(y)) = F_X(g^{-1}(y)).$ Method II. Root Formula. x_i are the roots of y = g(x).

$$f_Y(y) \approx \sum_{i=1}^N f_X(x_i) \left| \frac{dx_i}{dy} \right| \rightarrow \sum_{i=1}^N f_X(x_i) \frac{1}{|g'(x_i)|}$$

Multivariate Function. We cannot derive a root formula for Z = g(X, Y). We use direct computation: $F_Z(z) =$ $P(Z \le z) = P(g(X,Y) \le z) = \iint_{C_Z} f_{XY}(x,y) dx dy$. Then $f_Z(z) = \frac{d}{dz} F_Z(z)$.

Sum of Independent RVs. Special case of multivar. X and Y are independent. Z = X + Y. Convolution for PDF:

$$f_Z(z) = \int_{-\infty}^{+\infty} f_Y(y) f_X(z - y) dy = \int_{-\infty}^{+\infty} f_X(x) f_Y(z - y) dx$$

Moment Generating Functions

Expectation. 1st order raw moment. For discrete RV $E[X] = \sum_{-\infty}^{+\infty} x \cdot P_X(x)$. For continuous RV $E[X] = \int_{-\infty}^{+\infty} x \cdot P_X(x)$ $f_X(x)dx$. For Y = g(X), $E[Y] = \int_{-\infty}^{+\infty} g(x) f_X dx$. For Z = g(X,Y), $E[Z] = \iint_{-\infty}^{+\infty} g(x,y) f_{XY} dx dy$. Properties: (1) E[X+Y] = E[X] + E[Y]; (2) E[XY] = E[X]E[Y] for independent X and Y.

Conditional Expect. $E[Y|X=x] = \int_{-\infty}^{+\infty} y f_{Y|X}(y|x) dy$. Law of iterated expectations $E[Y] = E_X[E_{Y|X}[Y|X]]$.

High Order Moments. The r^{th} moment of X is $m_r =$ $E[X^r] = \int_{-\infty}^{+\infty} x^r f_X(x) dx$. The r^{th} central moment is $c_r =$ $E[(x-\mu_x)^r] = \int_{-\infty}^{+\infty} (x-\mu_x)^r f_X(x) dx$. The variance is

$$c_2 \triangleq \sigma_X^2 = E[(x - \mu_X)^2] = E[X^2] - \mu_X^2$$

Moments do not always exist. For example, Cauthy distribution does not have that. Some properties Var[X + $[a] = Var[X], Var[aX] = a^2Var[X], Var[aX + bY] =$ $a^2Var[X] + b^2Var[Y] + 2abCov[X,Y].$

Joint Moments. The $(i,j)^{th}$ joint and joint central moments are $m_{ij} = E[X^i Y^j]$ and $c_{ij} = E[(X - \mu_X)^i (Y - \mu_X)^j]$ $(\mu_Y)^j$]. The covariance is

$$\sigma_{XY} = Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$$

Uncorrelatedness is weaker than independence.

Moment Generating Functions. $M_X(S) = E[e^{SX}].$

$$\frac{d^r}{dS^r} M_X(S) \Big|_{S=0} = \int_{-\infty}^{+\infty} x^r f_X(x) dx \triangleq E[X^r] = m_r$$

Weak Law of Large Numbers. Let $X_1, ..., X_N \sim i.i.d$ with mean μ_X and $\sigma_X^2 < \infty$. The mean estimator $\hat{\mu}_X =$

 $\frac{1}{N} \sum_{i=1}^{N} X_i \text{ satisfies } P(|\hat{\mu}_X - \mu_X| \ge \delta) \le \frac{\sigma_X^2}{N \delta^2}.$ **Central Limit Theorem.** Characteristic function: $\Phi_X(\omega) = \int_{-\infty}^{+\infty} e^{j\omega x} f_X(x) dx$ is Fourier equivalent of MGF. Let $X_1, \ldots, X_n \sim i.i.d$ with $\mu_X = 0$, Var(X) = 1. Define $Z_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i$, then $\lim_{n \to \infty} \Phi_{Z_n}(\omega) = \exp\{-\frac{1}{2}\omega^2\}$.

Random Vectors

$$P(\underline{X} \le \underline{x}) = P(X_1 \le x_1, \dots, X_N \le x_N) \quad f_{\underline{X}}(\underline{x}) = \frac{\partial^N F_{\underline{X}}(\underline{x})}{\partial x_1 \dots \partial x_N}$$

Function of Rand Vectors. $y_i = g_i(x_1, \ldots, x_n),$ $x_i = \phi_i(y_1,\ldots).$ Root formula $f_Y(y) =$ $\sum_{r=1}^{R} f_{\underline{X}}(\underline{x}^r) \frac{1}{|J_r|}, s.t. \underline{y} = \underline{g}(\underline{x}^r).$

$$\frac{\partial x}{\partial y} = \begin{vmatrix} \frac{\partial \phi_1}{\partial y_1} & \cdots & \frac{\partial \phi_n}{\partial y_1} \\ \vdots & & \vdots \\ \frac{\partial \phi_1}{\partial y_n} & \cdots & \frac{\partial \phi_n}{\partial y_n} \end{vmatrix} = \begin{vmatrix} \frac{\partial g_1}{\partial y_1} & \cdots & \frac{\partial g_n}{\partial y_1} \\ \vdots & & \vdots \\ \frac{\partial g_1}{\partial y_n} & \cdots & \frac{\partial g_n}{\partial y_n} \end{vmatrix}^{-1} = |J|^{-1}$$

 $\underline{X} = [X_1, ..., X_N]^T$, Mean $E[\underline{X}] = [\mu_1, ..., \mu_N]^N = \mu_X$. $\mu_i = E[X_i] = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} x_i f_X dx_1 \cdots dx_N = \int_{-\infty}^{+\infty} x_i f_{X_i} dx_i.$ Covariance $\mathbb{K} = E[(X_i - \mu_X)(X_i - \mu_X)^T] \in \mathbb{R}^N$. The correlation matrix $\mathbf{R} = E[XX^T] = \mathbb{K} + \mu_X \mu_X^T$.

Covariance Matrix. K is positive semi-definite, i.e., $z^T \mathbb{K} z \ge 0$. \mathbb{K} is symmetric. $\mathbb{K} = U \Lambda U^T$ where $U^T U = I$ and any eivenvalue $\lambda_i \geq 0, \forall i = 1, ..., N$.

Whitening Transform. $\underline{X} \sim f_{\underline{X}}$ with $\mu_x = 0$ and PD covariance $\mathbb{K}_X = U\Lambda U^T$. Find a linear transformation y = $C\underline{x}$ so that $\mathbb{K}_Y = I$. Thus, $\mathbb{K}_Y = E[YY^T] = E[CXX^TC^T] =$ $C\mathbb{K}_X C^T = I$, and hence $C = \Lambda^{-\frac{1}{2}} U^T$.

Multivariate Gaussian.

$$f_{\underline{X}}(\underline{x}) = \frac{1}{(2\pi)^{n/2} |\mathbb{K}_X|^{1/2}} \exp\{-\frac{1}{2} (\underline{x} - \mu_x)^T \,\mathbb{K}_X^{-1} (\underline{x} - \mu_X)\}\$$

y = Ax is also gaussian w/ $\mu_Y = A\mu_X$ and $\mathbb{K}_Y = A\mathbb{K}_X A^T$.

Bayesian Hypothesis Testing

Bayesian Hypothesis Testing. Observation vector y, unknown state of the world H, prior $P_H(H_m)$, likelihood $P_{Y|H}(y, H_m)$, posterior $P_{H|Y}(H_m|y)$. From Bayes rule,

$$P_{H|Y}(H_m|y) = \frac{P_H(H_m)P_{Y|H}(y|H_m)}{\sum_{m'} P_H(H_{m'})P_{Y|H}(y|H_{m'})}$$

Binary Hypothesis Testing. $H \in \{H_0, H_1\}$. $P_H(H_0) \triangleq$ $\sigma_{XY} = Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y P_0, H_0 : P_{Y|H}(y|H_0)$. A decision rule $\hat{H}(\cdot)$ maps observation y onto a hypothesis $H \in \{H_0, H_1\}$. Cost function $c_{ij} \triangleq \tilde{C}(H_j, H_i)$ where H_i true state, H_i our guess. A cost function is valid when $c_{01} > c_{11}$ and $c_{10} > c_{00}$.

> **Likelihood Ratio Test (LRT).** Minimize $\phi(\hat{H}) =$ $E_{Y,H}[\tilde{C}(H,\hat{H}(y))] = E_Y[E_{H|Y}[\tilde{C}(H,\hat{H}(y))|Y=y]] =$ $\sum_{y} p_{Y}(y) E_{H|Y}[\hat{C}(H, \hat{H}(y))|Y = y].$

$$L(y)\triangleq\frac{P_{Y|H}(y|H_{1})}{P_{Y|H}(y|H_{0})}\gtrsim_{(H_{0})}^{(H_{1})}\frac{P_{0}(c_{10}-c_{00})}{P_{1}(c_{01}-c_{11})}\triangleq\eta$$

MAP decision rule: symmetric cost $c_{00} = c_{11} = 0$, $c_{01} = c_{10} = 1$. $P_1P(y|H_1) \gtrless_{(H_0)}^{(H_1)} P_0P(y|H_0)$, i.e., $P(H_1|y) \gtrless_{(H_0)}^{(H_1)} P(H_0|y)$. ML decision rule: symmetric cost and $P_0 = P_1 = \frac{1}{2}$. $P(y|H_1) \gtrless_{(H_0)}^{(H_1)} P(y|H_0)$.

1.7 NonBayesian Hypothe sis Testing

Classical Hypothesis Testing. $L(y) \triangleq \frac{P(y|H_1)}{P(y|H_0)} \gtrsim_{(H_0)}^{(H_1)} \eta$. This is the generalization of the Bayesian case.

Operating Characteristics. $P_D = P(\hat{H}(y) = H_1|H_1) = \int_{y_1} P(y|H_1)dy$. $P_F = P(\hat{H}(y) = H_1|H_0) = \int_{y_1} P(y|H_0)dy$.

ROC. P_F - P_D curve. Axes limits [0,1]. $\eta = 0$ (upper right corner), $\eta \to \infty$ (lower left corner). Mototonically non-decreasing in η . Lies above the diagonal.

Neyman-Pearson HT. $\max_{\hat{H}(\cdot)} P_D$ *s.t.* $P_F \le \alpha$. The optimal solution can be expressed as LRT, where $\eta = \lambda$ such that $P_F = \alpha$. It is intersection of ROC w/ $P_F = \alpha$ line.

Randomized Decision Rule for discrete-valued data. $\eta_{i+1} > \eta_i$. $P_D = p \cdot P_D(\eta_i) + (1-p)P_D(\eta_{i+1})$. $P_F = p \cdot P_F(\eta_i) + (1-p)P_F(\eta_{i+1})$.

Efficient Frontier for LRT. The achievable (P_F, P_D) operating points. On efficient frontier, (1) the (0,0) and (1,1) points always lie here; (2) $P_D \ge P_F$; (3) is concave (randomized decision should not beat NP); (4) $\frac{dP_D}{dP_F} = \eta$.

1.8 Minmax Hypothesis Testing

Setup. Adversarial game w/ cost but w/o priors

$$\hat{H}_{M}(\cdot) = \arg\min_{f(\cdot)} \left[\max_{p=Pr(H=H_{1})\in[0,1]} E_{Y,H} \left[\tilde{C}(H,f(Y)) \right] \right]$$

The class of $f(\cdot)$ is restricted to LRTs, $\hat{H}_B(y,q) = H_1 \cdot \mathbf{1}\{\mathcal{L}(y) > \frac{1-q}{q} \frac{c_{10}-c_{00}}{c_{01}-c_{11}}\} + H_0\{o.w.\}$. The solution is

$$P_D(q^*) = \frac{c_{10} - c_{00}}{c_{01} - c_{11}} - P_F(q^*) \left[\frac{c_{10} - c_{00}}{c_{01} - c_{11}} \right]$$

1.9 Bayesian Parameter Estimation

Problem Setting. Hidden parameter $X \in X$ continuous (RV); Noisy observation $Y \in \mathcal{Y}$ either continuous or discrete; Prior belief $P_X(x)$; Likelihood (observation model) $P_{Y|X}(y|x)$; The goal is to construct an estimator $\hat{x}(\cdot)$ that produces an estimate of x given the observation Y = y. Similar to Bayesian HT, an objective criterion $C(a, \hat{a})$ is required to build and evaluate this estimator, so

$$\hat{x}(\cdot) = \arg\min_{f(\cdot)} E_{XY} [\tilde{C}(x, f(y))]$$

$$= \arg\min_{a} \int_{-\infty}^{\infty} C(x, a) P_{X|Y}(x|y) dx$$

$$= \arg\min_{a} E_{X|Y} [C(x, a)|Y = y]$$

Minimum Absolute Error (MAE), $C(a, \hat{a}) = |a - \hat{a}|$

$$\hat{x}_{MAE}(y) = \arg\min_{a} \int_{-\infty}^{\infty} |x - a| P_{X|Y}(x|y) dx$$

$$\Rightarrow \int_{-\infty}^{a} P_{X|Y}(x|y) dx - \int_{a}^{\infty} P_{X|Y}(x|y) dx = 0$$

 $\hat{x}_{MAE}(y)$ is the MEDIAN of $P_{X|Y}$ – not always unique. **Minimum Uniform Cost,** $C(a, \hat{a}) = \mathbf{1}\{|a - \hat{a}| > \epsilon\}$

$$\hat{x}_{MUC}(y) = \arg\max_{a} \int_{a-\epsilon}^{a+\epsilon} P_{X|Y}(x|y) dx$$

The $\hat{x}_{MUC}(y)$ is the center of the 2ϵ interval with the most mass of $P_{X|Y}$. When ϵ tends to zero, MUC is defined as the MAP estimator, $\lim_{\epsilon \to 0} \hat{x}_{MUC}(y) = \arg\max_a P_{X|Y}(x|y) \triangleq \hat{x}_{MAP}(y)$.

Bayes Least Squares (BLS):

$$C(a, \hat{a}) = ||a - \hat{a}|| = (a - \hat{a})^{T} (a - \hat{a})$$

We plug the cost into the optimization problem, then derive the internal part and letting the derivative be zero, then

$$\hat{x}_{BLS}(y) = \int_{-\infty}^{\infty} x P_{X|Y} dx = E[X|y]$$

Performance Characteristics. Vector by default. Error. Given an instance x, $e(x,y) = \hat{x}(y) - x$. Bias $b = E_{XY}[e(x,y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e(x,y)P_{x,y}dxdy$. Variance $\Lambda_e = E_{xy}\{[e(x,y)-b][e(x,y)-b]^T\}$. $MSE = E_{xy}[e(x,y)e(x,y)^T] = \Lambda_e + bb^T$. (1) $\hat{x}_{BLS}(y)$ is unbiased, b = 0. (2) $\hat{x} = \hat{x}_{BLS}$ iff e(x,y) is orthogobal to any function of y, $E_{XY}[(\hat{x}(y)-x)g^T(y)] = 0$.

1.10 Linear Least Squares Estimation

The previous estimators require complete characterization of P_X and $P_{Y|X}$, and posterior is difficult to compute.

Linear Least-Squares Estimation.

$$\hat{x}_{LLS} = \arg\min_{f(\cdot)} E_{XY} [\|x - f(y)\|^2] \ s.t. \ f(y) = \mathbb{A}\underline{y} + \underline{d}$$

A linear estimator $\hat{x}(y)$ is LLS iff unbiased and orthogonal to data:

$$E_{XY}[\hat{x}(y) - x] = 0$$
 $E_{XY}[(\hat{x}(y) - x)y^T] = 0_{N \times N}$

Constructing LLS. Use defintion if moment unavailable.

$$\hat{x}_{LLS}(\underline{y}) = \underline{\mu}_X + \Lambda_{XY} \Lambda_Y^{-1}(\underline{y} - \underline{\mu}_Y)$$

Error covariance $\Lambda_{LLS} = \Lambda_X - \Lambda_{XY} \Lambda_Y^{-1} \Lambda_{XY}^T$. When *X* and *Y* are jointly Gaussian, $\hat{x}_{LLS} = \hat{x}_{BLS}$.

1.11 NonBayesian Parameter Estimation

Y is parameterized by x, $P_{Y|X}(y|x) \rightarrow P_Y(y;x)$. An estimator is valid if it does not depend explicitly on the parameter we are trying to estimate. We want to minimize MSE, i.e., $tr(e(y)e(y)^T) = \Lambda_e(x) + b_{\hat{x}}b_{\hat{x}}^T$. Estimator $\hat{x}(y)$ is unbiased if $b_x(x) = 0$. $\Lambda_e(x) = \Lambda_{\hat{x}}$.

Minimum Variance Unbiased Estimators.

$$\hat{x}_{MVU}(y) = \arg\min_{\hat{x} \in \mathcal{A}} \lambda_{\hat{x}}(x) = \arg\min_{\hat{x} \in \mathcal{A}} E_Y[e^2(y)] \ \forall x$$

where admissible estimators $\mathcal{A} = \{\hat{x}(\cdot): \text{ valid and unbiased}\}$. It might not exist.

Cramer-Rao Bound (CRB). Score function $S(y;x) = \frac{\partial}{\partial x} \ln P_Y(y;x)$. Fisher Information $J_Y(x) = E_Y[S^2(y;x)] = -E_Y[\frac{\partial^2}{\partial x^2} \ln P_Y(y;x)]$. If $\hat{x}(\cdot)$ is valid and unbiased, then $\lambda_{\hat{x}} \geq \frac{1}{J_Y(x)} \forall x$.

Efficient Estimators. $\hat{x}(y) = x + \frac{1}{J_Y(x)} \frac{\partial}{\partial x} \ln P_Y(y; x)$. (1) $\hat{x}_{eff}(y)$ is guaranteed to be unbiased. (2) if $\hat{x}_{eff}(y)$ exists and is valid, then it is unique. (3) if $\hat{x}_{eff}(y)$ exists, then it meets CRB and is MVU.

1.12 Maximum Likelihood Estimation

Proxy for efficient estimator with nice properties:

$$\hat{x}_{ML}(y) = \arg\max_{x \in \mathcal{X}} P_Y(y; x)$$

ML estimator is simpler to compute or numerically approximate. Meanwhile, it is intuitive because picking x that gives you the largest chance of observing data Y = y. If $\hat{x}_{eff}(y)$ exists, then it equals $\hat{x}_{ML}(y)$.

Invertible Mapping. $\theta = g(x) \rightarrow \hat{\theta}_{ML}(y) = g(\hat{x}_{ML}(y)).$

Vector Parameters. Score function $\vec{S}_{\vec{Y}}(\vec{x}) = \left[\frac{\partial \log P_Y(\vec{y};x)}{\partial x_1}, \dots, \frac{\partial \log P_Y(\vec{y};x)}{\partial x_N}\right]$. Fisher information $J_{\vec{Y}}(\vec{x}) = E_Y[\vec{S}_Y(\vec{x})^T \vec{S}_Y(\vec{x})]$. CRB: Covariance matrix $\Lambda_{\hat{x}}(x)$ of any unbiased estimator satisfies the following inequality: $\Lambda_{\hat{x}(x)} \geq J_Y^{-1}(x) \leftrightarrow (\Lambda_{\hat{x}(x)} - J_Y^{-1}(x))$ is PSD. (1) $J_Y(x) = -E_Y[\frac{\partial^2}{\partial x^2} \ln P_Y(y;x)]$; (2) $\hat{x}_{eff}(y)$ exists if it can be expressed $\hat{x}_{eff}(y) = x + J_Y^{-1}(x)[\frac{\partial}{\partial x} \ln P_Y(y;x)]^T$; (3) if $\hat{x}_{eff}(y)$ exists, then it is the ML estimator.

Misc. MAP estimator maximizes the joint distribution.

1.13 Exponential Families

A parameterized family of distributions $\{Pr(\cdot;x), x \in X\}$ over the alphabet \mathcal{Y} is a one-parameter exponential family if it can be written as

$$P_Y(y;x) = \exp{\{\lambda(x)t(y) - \alpha(x) + \beta(y)\}} \ \forall x \in \mathcal{X}, y \in \mathcal{Y}$$

Construction. I. Geometric mean, $p_1(y)$ and $p_2(y)$ strictly positive on \mathcal{Y} . $P_Y(y;x) = \frac{1}{Z(x)}p_1(y)^xp_2(y)^{1-x}$, $x \in \mathcal{X} = [0,1]$. So $\log P_Y(y;x) = x \log(\frac{p_1(y)}{p_2(y)}) + \log p_2(y) - \log Z(x)$.

II. Tilting based on distribution q(y). $P_Y(y;x) = q(y)e^{xy}/Z(x)$. $\log P_Y(y;x) = xy + \log q(y) - \log Z(x)$.

Moment Generation. A linear exponential family has $\lambda(x) = x$. (1) $\alpha'(x) = E_Y[t(Y)]$; (2) $\alpha''(x) = Var[t(Y)]$; (3) $J_Y(x) = Var[t(Y)]$.

Efficient Estimators. If \hat{x}_{eff} exists, then $P_Y(y;x)$ is a member of an exponential family with $\lambda(x) = \int^x J_Y(u) du$ and $t(y) = \hat{x}_{ML}(y) = \hat{x}_{eff}(y)$.

Conjugate Priors. Let $Q = \{q(\cdot;\theta) : \theta \in \Theta \subset \mathbb{R}^K\}$ be a family of distributions based on K parameters $\theta = [\theta_1, \dots, \theta_K]^T$ such that $q(x;\theta)$ is continuously invertible in θ . Then Q is a conjugate prior family for $P_{Y|X}$ if $P_X(\cdot) \in Q \to P_{X|Y}(\cdot|y) \in Q$.

1.14 Directed Graphical Models

Defines a family of joint probability distributions over set of RVs. The setup if Directed Acyclic Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ with nodes (RVs) and edges. For each node $i \in \mathcal{V}$, let π_i be the set of parent nodes. Then the family of distributions satisfy $P_X(x_1, \ldots, x_n) = \prod_{i=1}^n P_X(x_i | x_{\pi_i})$. In this graph, absence of edge means conditional independence.

Bayes' Ball Algorithm. It determines conditional independence given obserations. Examine whether x and z are marginally independent p(x,z) = p(x)p(z), or conditionally independent p(x,z|y) = p(x|y)p(z|y).

Plate Notation. See wikipedia. Circles: random variable; Squares: non-random parameters.

1.15 Mixture Models

K-Means. Centroid of k-th cluster μ_k . Cluster assignment of the n-th point $Z_n \in \{1, \dots, K\}$. We define $Z_n = [Z_n^1, \dots, Z_n^k]$ as binary indicator vector. (1) Given centroids, we can assign clusters as $Z_n^k = \mathbf{1}\{k = \arg\min_{k'} \|y_n - \mu_{k'}\|\}$. (2) Given assignments, we compute the centroids as $\mu_k = (\sum_n Z_n^k y_n)/\sum_n Z_n^k$. In this algorithm, we are actually doing coordinate descent to minimize the L2 objective $J = \sum_n \sum_k Z_n^k \|y_n - \mu_k\|^2$. This leads to solution to a Gaussian mixture model w/ equal variances.

Mixture Model. Observe i.i.d. scalars $Y_1, ..., Y_N$. Then $P_Y(Y_1, ..., Y_N | \theta) = \prod_n \sum_k \pi_k p_k(y_n; \theta_k)$. Goal is to find ML parameter estimates for π_k and θ_k . The log likelihood is $\ell(\underline{Y}, \theta) = \sum_n \log(\sum_k \pi_k p_k(y_n; \theta_k))$. This is not easy to optimize. We introduce auxilliary one-hot RV Z_n ,

$$P(Y_1,\ldots,Y_N,Z_1,\ldots,Z_N;\theta) = \prod_n \prod_k [\pi_k p_k(y_n;\theta_k)]^{Z_n^k}$$

and the corresponding $\ell_c(Y, Z; \theta)$ is easier to optimize as the summation inside log has been eliminated. Then we want to maximize the lower bound of $\ell_c(\underline{y}, \theta)$, namely $E_{Z|Y}[\ell_c(y,\underline{z};\theta)]$. We let the posterior $\tau_n^k = E[Z_n^k]$.

$$E_{Z|Y}[\ell_c(y, z; \theta)] = \sum_{n=1}^{N} \sum_{k=1}^{K} E[z_n^k] (\log \pi_k + \log p_k(y_n; \theta_k))$$

Clustering Algorithm. Step (E): find posterior $\{\tau_n^k\}$ given y and parameters $\{\pi_*, \theta_*\}$.

$$\begin{split} \tau_{n}^{k} &= E_{Z|Y}[Z_{n}^{k}] = Pr(Z_{n}^{k} = 1 | y_{n}; \theta) \\ &= \frac{Pr(Z_{n} = k) p_{k}(y_{n}; \theta_{k})}{P_{Y}(y_{n}; \theta)} = \frac{\pi_{k} p_{k}(y_{n}; \theta_{k})}{\sum_{k'} \pi_{k'} p_{k'}(y_{n}; \theta_{k})} \end{split}$$

Step (M): Find mixing weights $\{\pi_k\}$ given \underline{y} , $\{\tau_n^k\}$ and $\{\theta_*\}$ using Lagrangian,

$$\phi(\underline{y},\underline{z};\theta) = E_{Z|Y}[\ell(\underline{y},\underline{z};\theta)] - \lambda(\sum_k \pi_k - 1)$$

And setting $\partial \phi / \partial \pi_k$ to zero yields $\pi_k = \frac{1}{N} \sum_n \tau_n^k$. Then we optimize $\{\theta_*\}$ based on specified densities.

Gaussian Mixture. $p_k(y_n; \theta_k) = \mathcal{N}(y_n; \mu_k, \sigma_k^2)$.

$$\mu_k = \frac{\sum_n \tau_n^k y_n}{\sum_n \tau_n^k} \qquad \sigma_k^2 = \frac{\sum_n \tau_n^k (y_n - \mu_k)^2}{\sum_n \tau_n^k}$$

1.16 Generalized Mixture Model

Setup. Observed data $y \in \mathcal{Y}$, unknown (deterministic) parameters $x \in \mathcal{X}$, latent/hidden random variables $z \in \mathcal{Z}$. Objective: $\hat{x} = \arg \max_{x} \log P_{Y}(y;x)$.

Jensen's Inequality.

$$\log(\lambda z_1 + (1 - \lambda)z_2) \ge \lambda \log(z_1) + (1 - \lambda)\log(z_2)$$

Construct Lower Bound. Introduce q(z|y) an arbitrary distribution. $\ell(y;x) = \log P_Y(y;x) = \log(\sum_z P_{Y,Z}(y,z;x)) = \log(\sum_z q(z|y) \frac{P_{Y,Z}(y,z;x)}{q(z|y)}) \ge \sum_z q(z|y) \log(\frac{P_{Y,Z}(y,z;x)}{q(z|y)}) \triangleq \mathcal{L}(q,x).$

EM Algorithm. Coordinate ascent on $q(\cdot|y)$ and x at $(t+1)^{st}$ iteration. E-step $q^{(t+1)} = \arg\max_{q(\cdot)} \mathcal{L}(q,x^{(t)})$. M-step $x^{(t+1)} = \arg\max_{x} \mathcal{L}(q^{(t+1)},x)$. Step order can be switched depending on initialization.

M-Step. $x^{(t+1)} = \arg\max_{x} \sum_{z} q^{(t+1)}(z|y) [\log P(y,z;x) - \log q^{(t+1)}(z|y)] = \arg\max_{x} \sum_{z} q^{(t+1)}(z|y) \log P(y,z;x) = \arg\max_{x} E_{a^{(t+1)}} [\log P(y,z|x)].$

 $\sum_{z} q(z|y) \log(\frac{p_Y(y;x^{(t)})p_{Z|Y}(z|y;x^{(t)})}{q(z|y)}) = \sum_{z} q(z|y) \log(p_Y(y;x^{(t)})) + \sum_{z} q(z|y) \log(\frac{p_{Z|Y}(z|y;x^{(t)})}{q(z|y)}).$ The left item = $\log P_Y(y;x^{(t)}) \sum_{z} q(z|y) = \ell(y;x^{(t)}).$ Gibb's Inequality: $E_P[\log p(z)] \geqslant E_q[\log p(z)]$ with equality iff p(z) = q(z). So right item < 0 unless $q(z|y) = p(z|y;x^{(t)}).$ So the solution is $q^{(t+1)}(z|y) = P_{Z|Y}(z|y;x^{(t)}),$ and $\mathcal{L}(q^{(t+1)},x^{(t)}) = \log P_Y(y;x^{(t)}).$ MAP Estimation. $\hat{x}_{MAP}(y) = \operatorname{arg\,max}_x p(x|y) =$

MAP Estimation. $\hat{x}_{MAP}(y) = \arg\max_{x} p(x|y) = \arg\max_{x} \frac{p(x,y)}{p(y)} = \arg\max_{x} p(x,y).$

1.17 Deterministic Approximations

The goal of "belief approximation" is to find a simpler distribution $q(\cdot)$ that is sufficiently "close" to posterior $P_{X|Y}(\cdot|y)$.

KL Divergence. Given a true distribution $p(\cdot)$, and an approximating distribution $q(\cdot)$,

$$D(p||q) = E_p[\log \frac{p(x)}{q(x)}] = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}$$

Gibb's inequality $\to D(p\|q) = E_p[\log p(x)] - E_p[\log q(x)] \ge 0$. Only when p = q, $D(p\|q) = 0$. Besides, $D(p\|q) \ne D(q\|p)$. $I(X,Y) = D(P_{XY}\|P_XP_Y)$. **Laplace's Method.**

$$\hat{P}_X(x) = \frac{\hat{P}_0(x)}{Z_{\hat{P}}} = P_0(x) \exp\{-\frac{1}{2}J(\hat{x})(x-\hat{x})^2\}$$

where $-J(\hat{x}) = \frac{d^2}{dx^2} \log P_0(x)|_{x=\hat{x}}$ is the observed fisher info, partition function $Z_p = P_0(x) \sqrt{2\pi(1/J(\hat{x}))}$.

$$P_{X|Y}(x|y) \approx \mathcal{N}(x; \hat{x}_{MAP}(y), \hat{\sigma}^2(y))$$

$$\hat{\sigma}^2(y) = \left[-\frac{\partial^2}{\partial x^2} \log P_X(x) |_{\hat{x}_{MAP}} - \frac{\partial^2}{\partial x^2} \log P_{Y|X}(y|x) |_{\hat{x}_{MAP}} \right]^{-1}$$

The empirical fisher info is $J_{Y=y}(\hat{x}_{MAP}(y))$. For large dataset use \hat{x}_{ML} instead.

Variational Methods.

$$\hat{p}(x) = \arg\min_{q \in Q} D(q || p_{X|Y})$$

$$\hat{p}(x) = \arg\min_{q \in Q} D(q || p_{X,Y})$$

And variational free energy is $\mathcal{FE} = D(q||p_{XY})$.

1.18 Stochastic Approximations

Goal: approximate $E_p[f(x)]$ for general $f(\cdot)$.

Approach: suppose we had samples of $x_1, ..., x_n \sim iid p(x)$.

$$E_p[f(x)] \approx \hat{f} = \frac{1}{n} \sum_{i=1}^n f(x_i)$$

$$E_p[\hat{f}] = \frac{1}{n} \sum_{i=1}^n E_p[f(x_i)] = E_p[f(x)]$$

$$Var[\hat{f}] = \frac{1}{n^2} \sum_{i=1}^n Var[f(x_i)] = \frac{Var[f(x)]}{n} \rightarrow_{n \to \infty} 0$$

We obtain samples from $q(\cdot)$, which is easy to handle, and transform them into samples of $p(\cdot)$.

$$q(x) > 0 \ \forall \ x \in \mathcal{X} \ s.t. \ p(x) > 0$$

Importance Sampling. We call $q(\cdot)$ as "proposal" or "sampling" distribution.

$$q(x) = \frac{q_0(x)}{Z_q} = \frac{q_0(x)}{\int_{x \in X} q_0(x) dx} \qquad w(x_i) = \frac{p_0(x_i)}{q_0(x_i)}$$
$$\hat{f} \triangleq \sum_{i=1}^n \frac{w(x_i)}{\sum_{i=1}^n w(x_i)} f(x_i)$$

Rejection Sampling. Draw samples from $p(\cdot)$, with unnormalized "proposal distribution" $q_0(\cdot)$ where $cq_0(x) > p_0(x)$ and c is constant. (1) sample $x \sim q(\cdot)$. (2) sample $u \sim U[0, cq_0(x)]$. (3) keep sample if $u \leq p_0(x)$, otherwise discard.

Markov-Chain Monte Carlo (MCMC). Generate samples from $p(\cdot)$, and does not require proposal distribution $q(\cdot)$ to be close to $p(\cdot)$. It produce correlated samples. Metropolis-Hastings: proposal distribution at time (n+1) is $q(\cdot;x_n)$, parametrized by previous state. (1) given x_n , generate candidate x' from $q(\cdot;x_n)$. (2) compute acceptance probability $\alpha(x_n \to x') = \min\{1, \frac{p_0(x')q(x_n:x')}{p_0(x_n)q(x';x_n)}\}$. (3) transition to x' wp. α otherwise stay in x_n . State transition probability is hence $q(\cdot;x_n)\alpha(x_n;x)$.

Gibbs Sampling.

$$p(x)\alpha(x;y)q(y;x) = p(x)\min\{1, \frac{p(y)q(x;y)}{p(x)q(y;x)}\}q(y;x)$$

1.19 Hidden Markov Models

Graphical Models -> (Discrete states from ML perspective) -> HMMs; Parametrization for Homogeneous HMM does not depend on time.

Binary indicator vector and initial state probabilities

$$q_t = [q_t^1, \dots, q_t^M]^T$$
 $\pi = [\pi^1, \dots, \pi^M]^T$ $p(q_0^i = 1) = \pi^i$

We augment the prior π w/ $M \times M$ transition probability matrix **A**, where

$$a_{ij} = p(q_{t+1} = j | q_t = i)$$

With q as hidden state, we observe y. The likelihood is $p(y_t|q_t;\eta)$. And the joint density of HMM is

$$p(\mathbf{q}, \mathbf{y}) = p(q_0) \prod_{t=0}^{T-1} p(q_{t+1}|q_t) \prod_{t=0}^{T} p(y_t|q_t; \eta)$$

Inference. Assume parameters $\{\pi,A,\eta\}$ are known. For a given sequence \underline{q} , we compute $p(\underline{q}|\underline{y})$. This can be simplified to computing $p(q_t|\underline{y}) = \frac{p(q_t)p(\underline{y}|q_t)}{p(\underline{y})} = \frac{p(y_0,\dots,y_t,q_t)p(y_{t+1},\dots,y_T|q_t)}{p(\underline{y})}$ where $\alpha(q_t) = p(y_0,\dots,y_t,q_t)$ and $\beta(q_t) = p(y_{t+1},\dots,y_T|q_t)$. Partition function $p(\underline{y}) = \sum_{\underline{q_t}} \alpha(q_t)\beta(q_t)$.

Forward Recursion. $\sum_{q_t} \alpha(q_t) a_{q_{t+1}, q_t} p(y_{t+1} | q_{t+1}),$ starting from $\alpha(q_0) = p(y_0, q_0) = \pi_{q_0} p(y_0 | q_0).$

Backward Recursion. $\beta(q_t) = \sum_{q_{t+1}} \beta(q_{t+1}) a_{q_{t+1},q_t} p(y_{t+1}|q_{t+1}),$ starting from $\beta(q_T) = [1, ..., 1]^T$.

Parameter Estimation. $\hat{\theta} = \{\hat{A}, \hat{\pi}, \hat{\eta}\} = \arg\max_{A,\pi,\eta} \log \sum_{q_0} \cdots \sum_{q_T} \pi_{q_0} \prod_{t=0}^{T-1} a_{q_{t+1},q_t} \prod_{t=0}^{T} p(y_t|q_t;\eta).$ E-step. $E_{q|y;\theta^{(p)}}[\log p(q,y)]$. M-step. update parameters based on statistics.

1.20 Kalman Filtering

Graphical Models -> (Continuous states from SP perspective) -> Kalman Filter (Tracking / Online Learning).

Kalman Filtering. Vector x_t and y_t are true and measured position at time t respectively. u_t is driving input, deterministic and known.

$$x_t = A_t x_{t-1} + B_t u_t + \mathcal{E}_t \qquad \mathcal{E}_t \sim iid \ \mathcal{N}(0, Q_t)$$

$$y_t = C_t x_t + D_t u_t + \delta_t \qquad \delta_t \sim iid \ \mathcal{N}(0, R_t)$$

(1) Predict (prime): compute $p(x_t|y_{1:t-1}, u_{1:t}; \theta) \sim \mathcal{N}(\mu_t', \Sigma_t')$. $\mu_t' = E[x_t] = A_t \hat{\mu}_{t-1} + B_t \mu_t$. $\Sigma_t' = E[(x_t - \mu_t')(x_t - \mu_t')^T] = A_t \hat{\Sigma}_{t-1} A_t^T + Q_t$. (2) Refine to $p(\hat{x}_t|y_{1:t}; \theta)$ (hat). For Gaussians, BLS=LLS= $\hat{\mu}_t$. So $\hat{\mu}_t = \mu_t' + \Lambda_{XY} \Lambda_Y^{-1}(y_t - E[y_t])$, where $E[y_t] = C_t \mu_t' + D_t u_t$, $\Lambda_Y = C_t \Sigma_t' C_t^T + R_t$, $\Lambda_{XY} = E[(x_t - \mu_t')(y - E[y_t])^T] = \Sigma_t' C_t^T$. Let Kalman

Gain Matrix be $\mathbb{K}_t = \Sigma_t' C_t^T [C_t \Sigma_t' C_t^T + R_t]^{-1}$, and residual $r_t = y_t - C_t \hat{\mu}_{t-1} - D_t u_t$. Hence $\hat{\mu}_t = \mu_t' + \mathbb{K}_t r_t$. $\hat{\Sigma}_t = \Sigma_t' - \mathcal{L}_t$ $\Lambda_{XY}\Lambda_Y^{-1}\Lambda_{XY}^T = (I - \mathbb{K}_t C_t)\Sigma_t'.$

Extended Kalman Filter. Non-linear function $g(\cdots)$ and $h(\cdots)$. $x_t = g(x_{t-1}, u_t) + \mathcal{E}_t, \ y_t = h(x_t, u_t) + \delta_t$. $\{x_t, y_t\}$ are nolonger jointly Gaussian, but we can linearly approximate. (1) Let Jacobian $G_{ij} = \frac{\partial g_i(x,u)}{\partial x_i}$ and $G_t = G|_{x=\hat{\mu}_{t-1}}, x_t \approx g(\hat{\mu}_{t-1}, u_t) + G_t(x_{t-1} - \hat{\mu}_{t-1}) + \mathcal{E}_t$. So $\mu'_t = g(\hat{\mu}_{t-1}, u_t)$. $\Sigma'_t = G_t \hat{\Sigma}_t G_t^T + Q_t$. (2) Let Jacobian $H_{ij} = \frac{\partial h_i(x,u)}{\partial x_j} \text{ and } H_t = H_{x=\mu'_t}, \ y_t \approx h(\mu'_t,u_t) + H_t(x_t - \mu'_t) + \delta_t. \quad \text{So } \mathbb{K}_t = \sum_{t}' H_t^T (H_t \sum_{t}' H_t^T + R_t)^{-1}, \ \hat{\mu}_t = \mu'_t + \frac{\partial h_t(x,u)}{\partial x_j} +$ $\mathbb{K}_t(y_t - h(\mu'_t, u_t)), \hat{\Sigma}_t = (I = \mathbb{K}_t H_t) \Sigma'_t$

Conjugate Priors. (successive belief revision). Let Q = $\{q(\cdot;\theta);\theta\in\mathbb{R}^K\}$ denote a family of distributions specified by some dimension K. Q is a conjugate prior family for the above iid model if $\forall y \in \mathcal{Y}, p_X(\cdot) \in Q \rightarrow P_{X|Y}(\cdot|y) \in Q$. If X is finite, then a conjugate prior family always exists. Namely $q(\cdot)$ is categorical of dimension |X|. Suppose data is coming sequentially,

$$p_{X|Y_1} = \frac{p_X p_{Y_1|X}}{\int_X P_X p_{Y_1|X} dx} \quad P_{X|Y_1, Y_2} = \frac{p_X |Y_1 p_{Y_2|X, Y_1}}{\int_X p_X |Y_1 p_{Y_2|X, Y_1} dx}$$

The X separates Y_1 and Y_2 so Y_1 can be removed from terms involving Y_2 from above right side Eq.

1.21 **Dirichlet Process**

Probability Simplex. Categorical $Z \in \{1, ..., K\}$. $P_Z =$ $[P_Z(1),...,P_Z(K)]^T$ s.t. $P_Z(k) \ge 0$ and $\sum P_Z(k) = 1$. It lies on an affine hyperplane of dimension (K-1) known as probability simplex. More "uniform" distributions lie at the center, while "skewed" distribution concentrate on edges or at vertices.

Dirichlet Distribution. Continuous-valued distribution w/ support over P_K . $X = [x_1, ..., x_K]^T$, $\forall x_k \ge 0$, $\sum_k x_k =$ 1; $\alpha = [\alpha_1, \dots, \alpha_K]^T$, $\alpha_k \ge 0$.

$$Dir(X;\alpha) = \frac{1}{B(\alpha)} \prod_{k=1}^{K} x_k^{\alpha_k - 1} \quad B(\alpha) = \frac{\prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma(\sum_k \alpha_k)}$$
$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx \quad \Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$$

We define $\alpha_0 = \sum_k \alpha_k$ which controls the strength or "concentration" of the distribution. Ratio among $\{\alpha_1, \dots, \alpha_K\}$ controls peak location. $E[x_k] = \frac{\alpha_k}{\alpha_0}$; $Var(x_k) = \frac{\alpha_k(\alpha_0 - \alpha_k)}{\alpha_0^2(\alpha_0 + 1)}$

Multinomial Conjugacy. $p_X(x;\alpha) = Dir(x;\alpha)$. $Z \in$ $\{1,...,K\}$ and $P(z = k|x) = x_k$, $p(z|x) = \prod_k (x_k)^{z_k}$. Observe iid z_N , $p(x,z) = p_X(x;\alpha) \prod_k p(z_i|x)$. So $p(x|z) = Dir(x; \{\alpha_k + \sum_{i=1}^N z_i^k\}_k)$. Observing data changes both the center and concentration of underlying parameter.

Dirichlet Process. Denote $G \sim DP(\alpha, H)$. $P(\theta_k; \lambda) \triangleq$

is mixture of delta funcs centered on $\{\theta_k\}$. $Pr(\bar{\theta}_i =$ Sampling will always result in K clus- θ_k) = x_k . ters. Dir process is Distribution over probability measures $G: \theta \mapsto R^+$ defined by $[G(T_1), \dots, G(T_K)]^T \sim$ $Dir(\alpha H(T_1),...,\alpha H(T_K))$ for any partition $\{T_1,...,T_K\}$ of parameter domain θ .

Extend Dirichlet Conjugacy. $X \sim Dir(\alpha_1, ..., \alpha_K)$, $Z_i \sim Multi(x)$. $x|z_1...z_n \sim Dir(\alpha_1 + N_1,...,\alpha_k + N_k)$. And $G|\bar{\theta}_1,...,\bar{\theta}_N,\alpha,H \sim DP(\alpha + N,\frac{1}{\alpha+N}(\alpha H + N_k))$ $\sum_{i=0}^N \delta_{\bar{\theta_i}})).$

Stick-Breaking Construction. Infinite sequence of mixture weights $X = \{x_k\}_{k=1}^{\infty}$, $\beta_k \sim Beta(1, \alpha)$. $x_k =$ $\beta_k(1-\sum_{i=1}^{k-1}x_i)$. This is denoted as $X \sim GEM(\alpha)$.

Gaussian Processes 1.22

Problem setup. X_i input feature. $Y_i = f(X_i)$ output value. $f(\cdot)$ is an unknown function. Goal: given $D = \{(x_i, y_i)\}$ predict output y_* for new x_* .

Prediction. (1) Infer the posterior distribution of f(x); (2) marginalize over f(x) to obtain y_* .

$$\begin{split} &P(Y_*|X_{1:N},Y_{1:N},X_*)\\ &= \int P(f(x),Y_*|X_{1:N},Y_{1:N},X_*)df(x)\\ &= \int P(f(x)|X_{1:N},Y_{1:N})P(Y_*|f(x),X_*)df(x) \end{split}$$

Gaussian Process. Prior for $f(\cdot)$ w/o explicit parametrization. The distribution $P(\cdot)$ over f(x) is a Gaussian Process if for any finite $\{x_1, \dots, x_N\}$ the vector f = $[f(x_1),...,f(x_N)]^T$ is Gaussian. $\mu = [E[f(x_1),...] =$ $[\mu(x_1),...]$. $\mathbb{K} = E[(f-\mu)(f-\mu)^T]$ with $K_{ij} = K(x_i,x_j)$ PSD kernel Fn.

GP Regression. $f(\cdot) \sim GP(\mu(x), K(x, x'))$. (1) Noise free observations $Y_i = f(x_i) \triangleq f_i$, training New observadata $D = \{(x_1, f_1), \dots, (x_N, f_N)\}.$ tion x_* . $f = [f(x_1), ...]^T = [f_1, ...]^T \sim \mathcal{N}(\mu, \mathbb{K})$. $[f, f(x_*) = f_*]^T \sim \mathcal{N}([\mu, \mu_*]^T, [\mathbb{K}, k_*; k_*^T, k_*'])$ where $\mathbb{K} =$ $K(x_{1:N}, x_{1:N}), k_* = K(x_{1:N}, x_*), k'_* = K(x_*, x_*).$ Posterior $P(f_*|x_*,D) \sim \mathcal{N}(m,\sigma^2)$ where $m = E[f_*] + \Lambda_{*f}^T \Lambda_f^{-1}(f - f_*)$ μ) = $\mu_* + k_*^T \mathbb{K}^{-1}(f - \mu)$, $\sigma^2 = k_*' - k_*^T \mathbb{K}^{-1} k_*$. Generalize to multiple testing points $x_1^*, ..., x_M^*, [f, f_*] \sim$ $\mathcal{N}([\mu,\mu_*]^T,[\mathbb{K},\mathbb{K}_*;\mathbb{K}_*^T,\mathbb{K}_*']). \qquad P(f|x_1^*,\ldots,x_M^*,D) =$ $\mathcal{N}(f_*; m, \Sigma). \ m = \mu_* + \mathbb{K}_*^T \mathbb{K}^{-1}(f - \mu). \ \Sigma = K_*' - K_*^T K^{-1} K_*.$ (2) Noisy observations. $Y_i = f(x_i) + \epsilon_i$, where $\epsilon_i \sim$ iid $\mathcal{N}(0,\sigma_{v}^{2})$. $E[Y_{i}] = \mu_{i}$, $Cov(Y_{i},Y_{j}) = K(x_{i},x_{j}) +$ $\sigma_Y^2 \delta_{ij}$. So $Cov(Y_{1:N}) = K + \sigma_Y^2 I \triangleq K_Y$. observation $[Y_{1:N}, f_*]^T \sim \mathcal{N}([\mu, \mu_*]^T, [K_Y, k_*; k_*^T, k_*']).$ $p(f_*|x_*,D) = \mathcal{N}(f_*;m,\sigma^2)$ where $m = \mu_* + k_*^T K_Y^{-1}(y-\mu)$, $\sigma^2 = k_*' - k_*^T K_Y^{-1} k_*.$

Kernel Function. (prediction performance). RBF Ker- $H(\theta_k), X \sim Dir(\frac{\alpha}{K}, \dots, \frac{\alpha}{K}). \ G(\theta) = \sum_{k=1}^K x_k \delta_{\theta_k}(\theta). \ G(\cdot) \quad \text{nel.} \quad K(x, x') = \beta \exp\{-\frac{1}{2r^2} \|x - x'\|_F^2\}. \quad \text{Or generalized}$

form $K(x,x') = \beta \exp\{-\frac{1}{2r^2}(x-x')^T M(x-x')\}$ which can emphasize certain directions in data.

1.23 A. Useful Distributions

(1) Normal $X \sim \mathcal{N}(x; \mu, \sigma^2)$ (Continuous RV), $E[X] = \mu$, $Var[X] = \sigma^2$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\}$$

(2) Uniform $X \sim Unf(x; [a, b])$ (Continuous), $E[X] = \frac{a+b}{2}$, $Var[X] = \frac{(b-a)^2}{12}$.

$$f_X(x) = \frac{1}{b-a} \mathbb{I}\{x \in [a,b]\} + 0\mathbb{I}\{x \notin [a,b]\}$$

(3) Exponential $X \sim Exp(x; \lambda)$ (Continuous), $E[X] = 1/\lambda$, $Var[X] = 1/\lambda^2$.

$$f_X(x) = \lambda e^{-\lambda x} u(x)$$

(4) Bernoulli $X \sim B(x; p)$ (discrete RV), E[X] = p, Var[X] = p(1-p).

$$f_X(x) = p^x (1-p)^{1-x}$$

(5) Poisson $X \sim Poisson(x; \mu)$ (discrete), $E[X] = \mu$, $Var[X] = \mu$.

$$f_X(x) = \frac{\mu^x}{x!}e^{-\mu}, x = 0, 1, 2, \dots$$

(6) Beta $B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$ where $\Gamma(z) = \int_0^\infty u^{z-1}e^{-u}du$, namely $\Gamma(z+1) = z\Gamma(z)$. $E[X] = \frac{\alpha}{\alpha+\beta}$, $Var[X] = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$.

$$f_X(x) = \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{B(\alpha, \beta)}$$

1.24 B. Tricks

 $(AB)^{-1} = B^{-1}A^{-1}$.

A PSD means $x \in \mathbb{R}^n \notin \{0\}, x^T A x \ge 0$.

$$E[Ax] = AE[x]$$

 $Var[Ax] = AVar[x]A^T$

E[tr(AB)] = tr(E[AB])

 $\det |\alpha A| = \alpha^n A$

tr(AB) = tr(BA)

 $|Cov(x,y)| \le \sqrt{Var(x)Var(y)}$

Gaussian Integral $\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$.

$$\int_{-\infty}^{+\infty} ae^{-\frac{(x-b)^2}{2c^2}} dx = ac\sqrt{2\pi}.$$

Integral by parts. $\int u dv = uv - \int v du$.

steady markov: $\pi = A\pi$.