Fachgebiet Maschinelles Lernen Institut für Softwaretechnik und theoretische Informatik Fakultät IV, Technische Universität Berlin Prof. Dr. Klaus-Robert Müller

Email: klaus-robert.mueller@tu-berlin.de

Exercise Sheet 3

Recall: For a sample of d_1 - and d_2 -dimensional data of size N, given as two data matrices $X \in \mathbb{R}^{d_1 \times N}$, $Y \in$ $\mathbb{R}^{d_2 \times N}$ (assumed to be centered), canonical correlation analysis (CCA) finds a one-dimensional projection maximizing the cross-correlation for constant auto-correlation. The primal optimization problem is:

Find
$$w_x \in \mathbb{R}^{d_1}, w_y \in \mathbb{R}^{d_2}$$
 maximizing $w_x^\top C_{xy} w_y$
subject to $w_x^\top C_{xx} w_x = 1$
 $w_y^\top C_{yy} w_y = 1$, (1)

where $C_{xx} = \frac{1}{N}XX^{\top} \in \mathbb{R}^{d_1 \times d_1}$ and $C_{yy} = \frac{1}{N}YY^{\top} \in \mathbb{R}^{d_2 \times d_2}$ are the auto-covariance matrices of X resp. Y, and $C_{xy} = \frac{1}{N}XY^{\top} \in \mathbb{R}^{d_1 \times d_2}$ is the cross-covariance matrix of X and Y.

Exercise 1: CCA (10+5 P)

We have seen in the lecture that a solution of the canonical correlation analysis can be found in some eigenvector of the generalized eigenvalue problem:

$$\begin{bmatrix} 0 & C_{xy} \\ C_{yx} & 0 \end{bmatrix} \begin{bmatrix} w_x \\ w_y \end{bmatrix} = \lambda \begin{bmatrix} C_{xx} & 0 \\ 0 & C_{yy} \end{bmatrix} \begin{bmatrix} w_x \\ w_y \end{bmatrix}$$

- (a) Show that among all eigenvectors (w_x, w_y) the solution is the one associated to the highest eigenvalue.
- (b) Show that if (w_x, w_y) is a solution, then $(-w_x, -w_y)$ is also a solution of the CCA problem.

Exercise 2: Kernel CCA (10+15+5+5 P)

In this exercise, we would like to kernelize CCA.

(a) Show, that it is always possible to find an optimal solution in the span of the data, that is,

$$w_x = X\alpha_x , \quad w_y = Y\alpha_y$$

with some coefficient vectors $\alpha_x \in \mathbb{R}^N$ and $\alpha_y \in \mathbb{R}^N$.

(b) Show that the solution of the resulting optimization problem is found in an eigenvector of the generalized eigenvalue problem

$$\begin{bmatrix} 0 & A \cdot B \\ B \cdot A & 0 \end{bmatrix} \begin{bmatrix} \alpha_x \\ \alpha_y \end{bmatrix} = \rho \cdot \begin{bmatrix} A^2 & 0 \\ 0 & B^2 \end{bmatrix} \begin{bmatrix} \alpha_x \\ \alpha_y \end{bmatrix}$$

where $A = X^{\top}X$ and $B = Y^{\top}Y$.

- (c) Show that the solution is given by the eigenvector associated to the highest eigenvalue.
- (d) Show how a solution to the original CCA problem can be obtained from the solution of the latter generalized eigenvalue problem.

Exercise 3: CCA and Least Square Regression (20 P)

Consider some supervised dataset with the inputs stored in a matrix $X \in \mathbb{R}^{D \times N}$ and the targets stored in a vector $y \in \mathbb{R}^N$. We assume that both our inputs and targets are centered. The least squares regression optimization problem is:

$$\min_{v \in \mathbb{R}^D} \|X^\top v - y\|^2$$

We would like to relate least square regression and CCA, specifically, their respective solutions v and (w_x, w_y) .

(a) Show that if X and y are the two modalities of CCA (i.e. $X \in \mathbb{R}^{D \times N}$ and $y \in \mathbb{R}^{1 \times N}$), the first part of the solution of CCA (i.e. the vector w_x) is equivalent to the solution v of least square regression up to a scaling factor.

Exercise 4: Programming (30 P)

Download the programming files on ISIS and follow the instructions.