Fuel cell stack with exhaust gases after-burning region at the periphery of the stack

Patent number:

EP1037296

Publication date:

2000-09-20

Inventor:

DOGGWILER BRUNO (CH); KELLER MARTIN (CH)

Applicant:

SULZER HEXIS AG (CH)

Classification:

- international:

H01M8/24; H01M8/02

- european:

H01M8/02C; H01M8/24B2H; H01M8/24D2

Application number: EP20000810140 20000218

Priority number(s): EP20000810140 20000218; EP19990810235 19990317

Also published as:

EP1037296 (B1)

Cited documents:

EP0355420

EP0450336

EP0780917

WO9822991

Abstract of EP1037296

The fuel cell battery has at least one air or oxygen-containing gas inlet point (25) for each cell and post-combustion occurs in an annular chamber around the cell stack.. The inlet points communicate as a whole or in groups via at least one air chamber (115) extending axially along the stack and in direct contact with it. Each air chamber is divided from a post-combustion chamber (4) by at least one dividing wall (40).

Data supplied from the esp@cenet database - Worldwide

(11) EP 1 037 296 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 20.09.2000 Patentblatt 2000/38 (51) Int CI.7: H01M 8/24, H01M 8/02

(21) Anmeldenummer: 00810140.4

(22) Anmeldetag: 18.02.2000

(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 17.03.1999 EP 99810235

(71) Anmelder: Sulzer Hexis AG 8400 Winterthur (CH) (72) Erfinder:

- Doggwiler, Bruno 8215 Hallau (CH)
- Keller, Martin
 7406 Winterthur (CH)
- (74) Vertreter: Sulzer Management AG KS/Patente/0007,
 Zürcherstrasse 12
 8401 Winterthur (CH)

(54) Brennstoffzellenbatterie mit Nachverbrennung an der Peripherie eines Zellenstapels

(57) Die Brennstoffzellenbatterie wird mit einer Nachverbrennung an der Peripherie (20') eines Zellenstapels (2) betrieben. Jede Zelle der Batterie (1) weist mindestens eine Eintrittsstelle (25) für Luft (5, 50) oder ein anderes Sauerstoff enthaltendes Gas auf. Innerhalb eines ringförmigen Raums (11) um den Zellenstapel ist die Nachverbrennung vorgesehen. Die genannten Ein-

trittsstellen (25) sind als Gesamtheit oder jeweils gruppenweise über mindestens einen Luftraum (115), der sich axial entlang des Zellenstapels (2) erstreckt und der in unmittelbarem Kontakt mit diesem steht, kommunizierend verbunden. Jeder Luftraum ist von einem Nachverbrennungsraum (4), der ebenfalls einen axial entlang des Zellenstapels kommunizierenden Raum bildet, durch mindestens eine Wand (40) getrennt.

BEST AVAILABLE COPY

Printed by Jouve, 75001 PARIS (FR)

EP 1 037 296 A1

Beschreibung

[0001] Die Erfindung betrifft eine Brennstoffzellenbatterie mit Nachverbrennung an der Peripherie eines Zellenstapels gemäss Oberbegriff von Anspruch 1.

1

[0002] Aus der EP-A 0 580 918 (= P.6511) ist eine Vorrichtung mit Hochtemperatur-Brennstoffzellen bekannt, die einen zentralsymmetrischen Zellenstapel und eine wärmedämmende Hülle umfasst. Ein Nachverbrennungsraum liegt zwischen dem Zellenstapel und der Hülle. An der Peripherie des Stapels sind Luftzufuhrleitungen für die Brennstoffzellen angeordnet, die den Nachverbrennungsraum an einer Vielzahl von Stellen durchqueren.

[0003] Jede Brennstoffzelle umfasst zwei Teile, nämlich einen scheibenförmigen Interkonnektor und ein sogenanntes PEN (abgeleitet von: Positive Elektrode / Feststoff-Elektrolyt / Negative Elektrode). Das PEN ist ein elektrochemisch aktives Element, das in Form einer dünnen Feststoffelektrolyt-Platte mit zwei Elektrodenschichten zwischen Interkonnektoren angeordnet ist. Der Interkonnektor stellt zwischen PEN-Elektroden benachbarter Zellen elektrische Verbindungen her. Er enthält ein Kanalsystem für gasförmige Fluide, über das einerseits ein Brenngas von einer zentralen Eintrittstelle entlang dem PEN zur Peripherie des Zellenstapels transportiert wird und andererseits Luft oder ein Sauerstoff enthaltendes Gas von den Lufträumen zum Zentrum - zwecks eines weiteren Aufheizens der Luft - und von dort entlang dem PEN zurück zur Peripherie transportiert wird.

[0004] Die Luftzufuhrleitungen zu den Zellen verursachen aufgrund ihrer grossen Anzahl beträchtliche Kosten. Es ist Aufgabe der Erfindung, eine Brennstoffzellenbatterie zu schaffen, die bezüglich der Lufteinspeisung in die Brennstoffzellen kostengünstiger ist. Diese Aufgabe wird durch die im Anspruch 1 definierte Brennstoffzellenbatterie gelöst.

[0005] Die Brennstoffzellenbatterie wird mit einer Nachverbrennung an der Peripherie eines Zellenstapels betrieben. Jede Zelle der Batterie weist mindestens eine Eintrittsstelle für Luft oder ein anderes Sauerstoff enthaltendes Gas auf. Innerhalb eines ringförmigen Raums um den Zellenstapel ist die Nachverbrennung vorgesehen. Die genannten Eintrittsstellen sind als Gesamtheit oder jeweils gruppenweise über mindestens einen Luftraum, der sich axial entlang des Zellenstapels erstreckt und der in unmittelbarem Kontakt mit diesem steht, kommunizierend verbunden. Jeder Luftraum ist von einem Nachverbrennungsraum, der ebenfalls einen axial entlang des Zellenstapels kommunizierenden Raum bildet, durch mindestens eine Wand getrennt.

[0006] Die abhängigen Ansprüche 2 bis 10 beziehen sich auf vorteilhafte Ausführungsformen der erfindungsgemässen Brennstoffzellenbatterie. Für eine dieser Ausführungsformen sind die Interkonnektoren zweilagig ausgebildet. Jede Lage des Interkonnektors besteht aus einem geformten und beschichteten Grundkörper,

der ein zumindest angenähert gleiches Wärmeausdehnungsverhalten wie das PEN hat und der aus einem metallischen Pulver weitgehend in die Form des Fertigteils gesintert worden ist. Zwei derartige Lagen werden beispielsweise durch Löten zu einer Einheit zusammengefügt. Die Kanäle der Interkonnektoren, auf dessen beiden Seiten jeweils ein PEN die dort offenen Kanäle überdeckt, haben beispielsweise eine Spiralform, und zwar derart, dass im Betrieb der Batterie die PEN-Elektroden weitgehend gleichmässig von den gasförmigen Fluiden (Brenngas und Luft oder Sauerstoff enthaltendes Gas) überstrichen werden.

[0007] Die Interkonnektoren und PEN sind als Einzelteile zu einem Stapel - eine alternierenden Abfolge bildend - aufgeschichtet. Dieser Zellenstapel wird mittels Spannmittel, beispielsweise Zugstangen, in Richtung der Stapelachse zusammengepresst. An der Peripherie des Zellenstapels befinden sich diskret angeordnete Öffnungen für den Eintritt bzw. Austritt der gasförmigen Fluide. Die Positionen dieser Öffnungen sind durch die Ausgestaltung der Kanäle und die erfindungsgemäss vorgesehene Zu- bzw. Abführung der Fluide festgelegt. Die Öffnungen können entsprechend in den gesinterten Interkonnektorlagen vorgeformt werden. Die Herstellung der Interkonnektoren 22 mittels Sinterns ermöglicht eine sehr hohe Massgenauigkeit. Es sind daher an den Stossstellen zwischen den Interkonnektoren 22 und den PEN-Platten im Zellenstapel 2 Kontakte möglich, die ausreichend dicht gegenüber einem radialen Durchtritt von Luft bzw. Gas sind.

[0008] Wie bereits bei der bekannten Batterie der EP-A 0 580 918 kann die Hülle als Wärmedämmsystem ausgebildet werden, so dass die Hülle neben ihrer wärmedämmenden Funktion die Rolle eines externen Rekuperators übernimmt: Statt dass die in den Zellen für die elektrochemischen Prozesse benötigte Luft zuerst in einem separaten externen Rekuperator vorerhitzt wird, wird die Luft als Wärmesenke verwendet, indem die aus dem Zellenstapel wegfliessende Wärme in der Hülle zumindest teilweise aufgefangen und wieder zum Reaktionsort zurückgeführt wird.

[0009] Die bekannte Hülle ist mehrlagig ausgebildet; sie weist ein Kanalsystem für den Luftstrom auf. Zwischen einer äusseren Wand, die eine erste Lage der Hülle bildet, und den inneren Teilen der Hülle liegt ein erster Hohlraum, in welchem eine Kühlung der Hülle durch die Luft erfolgt. In dem Kanalsystem, das an den ersten Hohlraum anschliesst, ergibt sich eine weitere Erwärmung der Luft. Anstelle oder zusätzlich zu den Kanälen können auch poröse, luftdurchlässige Teile in der Hülle eingebaut sein.

[0010] Nachfolgend wird die Erfindung anhand der Zeichnungen erläutert. Es zeigen:

- 55 Fig. 1 eine Brennstoffzellenbatterie mit einem zentralsymmetrischen Zellenstapel,
 - Fig. 2 ein Bruchstück von einem Interkonnektor der

2

15

30

35

erfindungsgemässen Brennstoffzellenbatterie,

- Fig. 3 einen Querschnitt durch die Batterie,
- Fig. 4 ein Bruchstück von einem Zellenstapel der erfindungsgemässen Batterie und
- Fig. 5 ein mäanderförmiges Kanalsystem für einen Interkonnektor.

[0011] Die in Fig. 1 dargestellte Brennstoffzellenbatterie 1 umfasst folgende Komponenten: Einen Zellenstapel 2 zwischen einer Deckplatte 20a und einer Bodenplatte 20b, die als elektrische Pole der Batterie 1 ausgebildet sind; einen ringförmigen Raum 11 an der Peripherie 20' des Zellenstapels 2, innerhalb dem eine Nachverbrennung vorgesehen ist; eine wärmedämmende Hülle 12, von der nur die Umrisse strichpunktiert gezeichnet sind; eine äussere Wand 10 der Batterie 1 mit einem Stutzen 15 für die Zufuhr von Luft 5 oder von einem Sauerstoff enthaltenden Gas 5; eine Einspeiseleitung 16 für einen fluidförmigen Brennstoff 6, der längs eines zentralen Kanals 26 - gegebenenfalls nach einer Vergasung und/oder Reformierung - gasförmig auf die einzelnen Zellen verteilt wird; ein ringförmiger Sammelkanal 47 für ein Abgas 7, das über einen Stutzen 17 aus der Batterie 1 abgezogen werden kann; ferner Stangen 3 (nur eine sichtbar) und Zugfedern 32, mit denen die beiden Platten 20a und 20b gegeneinander gezogen werden können. Kammern 4 (siehe Figuren 2 und 4) für die Nachverbrennung, die im Ringraum 11 angeordnet sind, aber in Fig. 1 nicht dargestellt sind, stehen über Durchbrüche 40' in der Bodenplatte 20b mit dem Sammelkanal 47 in Verbindung. Der in der Batterie erzeugte elektrische Strom kann über Anschlüsse 8a und 8b abgenommen werden, wobei die Stange 3 zusätzlich zu ihrer Funktion als Spannmittel auch als elektrische Verbindung zur Deckplatte 20a verwendet wird.

[0012] Jede Zelle umfasst einen scheibenförmigen Interkonnektor 22 - siehe Fig. 2 - und ein PEN 21 (siehe Fig. 4), das ein elektrochemisch aktives Element in Form einer dünnen Platte ist und aus einem Feststoffelektrolyten sowie zwei durch Beschichten aufgebrachte Elektroden besteht. Der Interkonnektor 22 ist aus zwei Lagen 22a und 22b zusammengesetzt. Er enthält ein Kanalsystem 250, 260, über das einerseits Brenngas 60 von einer zentralen Eintrittstelle 26' entlang dem PEN zur Peripherie 20' transportiert wird - Pfeile 60 und 64 - und andererseits Luft 50 (oder Sauerstoff enthaltendes Gas) von Lutträumen 115 an der Peripherie 20' zum Zentrum 26, dort durch Löcher 25' und anschliessend entlang dem PEN 21 wieder zurück zur Peripherie 20' transportiert wird: Pfeile 51, 52, 53 und 54. An der Peripherie 20' des Zellenstapels 2 befinden sich diskret angeordnete Eintrittsöffnungen 25 für die Luft 50 und Austrittsöffnungen 27a, 27b für die bei Elektrodenreaktionen genutzten Gasen 54 und 64.

[0013] Die Deckplatte 20a und die Bodenplatte 20b sind Stromsammlerplatten. Zwischen dem obersten bzw. untersten PEN 21 und der entsprechenden Stromsammlerplatte 20a, 20b sind mit Vorteil Elektrodenendplatten, nämlich eine Kathoden- bzw. eine Anodenendplatten, nämlich eine Kathoden- bzw. eine Anodenendplatte, eingelegt, die jeweils einen Abschluss des Zeltenstapels bilden. Die Kontaktflächen zwischen den Stromsammlerplatten und den Elektrodenendplatten werden mit Beschichtungen versehen, die gegen Oxidation schützen, die eine langzeitbeständige elektrische Leitung gewährleisten und die eine lösbare Verbindung der Stromsammlerplatten 20a, 20b ermöglichen. Zur Beschichtung kann ein thermisch aufspritzbarer Perowskit (LSM) verwendet werden.

[0014] Die Gas- bzw. Luftkanäle 260, 250 des Interkonnektors 22, auf dessen beiden Seiten jeweils ein PEN 21 eine Abdeckung bildet, haben eine Spiralform, so dass im Betrieb der Batterie 1 die PEN-Elektroden weitgehend gleichmässig von dem Gas 60 bzw. der Luft 53 überstrichen werden.

[0015] Jede Lage 22a, 22b des Interkonnektors 22 besteht aus einem gesinterten und beschichteten Grundkörper, der ein zumindest angenähert gleiches Wärmeausdehnungsverhalten wie das PEN hat (vgl. europäische Patentanmeldung Nr. 98810125.9 = P. 6864). Zwei derartige Lagen 22a und 22b sind zu einem Interkonnektor zusammengefügt. Die Interkonnektoren sind derart geformt, dass sich die Öffnungen 25, 27a und 27b für den Eintritt bzw. Austritt der Gase an geeigneten Stellen - nämlich gemäss der Erfindung - ergeben: Die Luft-Eintrittsstellen 25 sind gruppenweise über mindestens einen Luftraum 115, der sich axial entlang des Zellenstapels 2 erstreckt und der in unmittelbarem Kontakt mit diesem steht, kommunizierend verbunden. Dabei ist jeder Luftraum 115 von Nachverbrennungsräumen 4, die ebenfalls axial entlang des Zellenstapels kommunizierende Räume bilden, durch Wände 40 getrennt. Folglich werden keine einzelnen Luftzuführleitungen benötigt, mit denen ein zusammenhängend ringförmiger Nachverbrennungsraum zu durchqueren ist. Somit entfallen die Kosten für solche einzelnen Luftleitungen.

[0016] Im Querschnitt durch die erfindungsgemässe Batterie 1 der Fig. 3 ist ein den ringförmigen Raum 11 umschliessendes Wärmedämmsystem als Teilstück gezeigt. Es umfasst die äussere Wand 10 - im dargestellten Beispiel eine Doppelwand, die ein Vakuum enthalten kann - sowie eine Lage 12 aus einem wärmedämmenden Material, in der radiale Kanäle 125 für einen Luftdurchlass angeordnet sind. Die Lage 12 kann auch aus einem porösen, gleichmässig luftdurchlässigen Material bestehen, so dass die Kanäle 125 wegfallen können. In Fig. 3 sind auch ein PEN 21 des Zellenstapels 2 mit dem zentralen Gasverteilkananl 26, Nachverbrennungskammern 4 und zwischen diesen angeordnete Spannstangen 3 erkennbar. Mit gestrichelten Pfeilen ist die Zufuhr von frischer, vorerwärmter Luft 50 und der Austritt von Luft 54 sowie Gas 64 nach deren Nutzung

50

55

10

15

20

30

35

bei den stromliefernden Elektrodenreaktionen angedeutet

[0017] Eine als Fragment dargestellte Seitenansicht des Zellenstapels 2 zeigt die in vertikalen Gruppen angeordneten Öffnungen 25 für die Luftzufuhr und die Öffnungen 27a und 27b für die Abgabe von Luft bzw. Gas. Die Öffnungen 25 befinden sich jeweils an der Grenze zwischen den beiden Lagen 22a und 22b der Interkonnektoren 22. Die Öffnungen 27a und 27b sind jeweils auf den beiden Seiten eines PEN 21 angeordnet, so dass sie Doppelöffnungen 27 bilden. Die äussere Grenze des ringförmigen Raums 11 ist strichpunktiert angedeutet.

[0018] Beim Interkonnektor 22 der Fig. 2 sind die an die PEN-Platten angrenzenden Kanäle 250 bzw. 260 spiralförmig. Der Hohlraum für die Luft 51, die von den Öffnungen 25 einwärts zu den Durchtrittslöcher 25' fliesst, kann auch eine Kanalstruktur enthalten, beispielsweise in Mäanderform, wie es in Fig. 5 gezeigt ist. Die Luft 50, 51 wird durch Kanäle 250' zwischen Rippen 252 geführt. Ein äusserer Rand 251, die Rippen 252 und ein Rand 253 beim zentralen Gaskanal 26 bilden Oberflächen, die in einer gemeinsamen Ebene tiegen. Die eine Lage 22a kann an den Rändern 251 und 253 mit ihrer Partnerlage 22b mittels Lötens zusammengefügt werden. Für die äusseren Kanäle 250 und 260 kann ebenfalls eine Mäanderform vorgesehen sein.

[0019] Das Kanalsystem in den Interkonnektoren kann auch so gestaltet werden, dass nur über eine vertikale Gruppe von Öffnungen 25 die Luft 50 in den Zellenstapel 2 eingespeist wird. Entsprechendes gilt für die Doppelöffnungen 27 für Luft- und Gasaustritte in den Nachverbrennungsraum 4. In diesen Fällen wird lediglich ein Nachverbrennungsraum benötigt.

Patentansprüche

- Brennstoffzellenbatterie mit Nachverbrennung an der Peripherie (20') eines Zellenstapels (2), in welcher Batterie (1) jede Zelle mindestens eine Eintrittsstelle (25) für Luft (5, 50) oder ein anderes Sauerstoff enthaltendes Gas aufweist und innerhalb eines ringförmigen Raums (11) um den Zellenstapel die Nachverbrennung vorgesehen ist, dadurch gekennzeichnet, dass die genannten Eintrittsstellen (25) als Gesamtheit oder jeweils gruppenweise über mindestens einen Luftraum (115), der sich axial entlang des Zellenstapels (2) erstreckt und der in unmittelbarem Kontakt mit diesem steht, kommunizierend verbunden sind und dass jeder Luftraum von einem Nachverbrennungsraum (4), der ebenfalls einen axial entlang des Zellenstapels kommunizierenden Raum bildet, durch mindestens eine Wand (40) getrennt ist.
- Brennstoffzellenbatterie nach Anspruch 1, dadurch gekennzeichnet, dass jede Zelle zwei Teile um-

fasst, nämlich einen scheibenförmigen Interkonnektor (22) und ein sogenanntes PEN (21), das ein elektrochemisch aktives Element in Form einer dünnen Platte aus einem Feststoffelektrolyten und zwei durch Beschichten aufgebrachten Elektroden ist, dass der Interkonnektor (22a, 22b) zweilagig aufgebaut ist und ein Kanalsystem (250', 250, 260) enthält, über das einerseits ein Brenngas (6, 60) von einer zentralen Eintrittstelle (26, 26') entlang dem PEN (21) zur Peripherie (20') transportierbar ist und andererseits die Luft (5) oder das Sauerstoff enthaltende Gas von den Lufträumen zum Zentrum (26) und von dort entlang dem PEN zurück zur Peripherie transportierbar ist, wobei an der Peripherie des Zellenstapels (2) diskret angeordnete Öffnungen (25, 27a, 27b) für den Eintritt bzw. Austritt der Gase durch die Interkonnektoren (22) gebildet sind.

- 3. Brennstoffzellenbatterie nach Anspruch 2, dadurch gekennzeichnet, dass die Gas- bzw. Luftkanäle (260, 250) des Interkonnektors (22), auf dessen beiden Seiten jeweils ein PEN (21) die dort offenen Kanäle überdeckt, eine Spiral- oder Mäanderform haben, so dass im Betrieb der Batterie die PEN-Elektroden weitgehend gleichmässig von den Gasen bzw. der Luft überstrichen werden.
- 4. Brennstoffzellenbatterie nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass jede Lage (22a, 22b) des Interkonnektors (22) aus einem geformten und beschichteten Grundkörper besteht, der ein zumindest angenähert gleiches Wärmeausdehnungsverhalten wie das PEN (2) hat und der aus einem metallischen Pulver weitgehend in die Form des Fertigteils gesintert ist, und dass zwei derartige Lagen zu einem Interkonnektor zusammengefügt sind.
- Brennstoffzellenbatterie nach Anspruch 4, dadurch gekennzeichnet, dass die Interkonnektoren (22) und PEN (21) als Einzelteile zum Zellenstapel (2) in einer alternierenden Anordnung aufgeschichtet sind und dass der Zellenstapel durch Spannmittel (3) in axialer Richtung zusammengepresst ist.
 - 6. Brennstoffzellenbatterie nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass über den ringförmigen Raum (11) um den Zellenstapel (2) die Luft (5) oder das Sauerstoff enthaltende Gas in den Zellenstapel eingespeist wird und dass eine Mehrzahl von kanalförmigen Nachverbrennungsräumen (4) den ringförmigen Raum in weitgehend gleich breite Lufträume (115) gliedert.
 - Brennstoffzellenbatterie nach Anspruch 6, dadurch gekennzeichnet, dass in allen oder einzelnen der Lufträume (115) axiale Stangen (3) angeordnet sind, mittels derer der Zellenstapel (3) zusammen-

gespannt ist.

 Brennstoffzellenbatterie nach Anspruch 7, dadurch gekennzeichnet, dass mindestens eine der axialen Stangen (3) als Stromleiter für den in der Batterie erzeugten elektrischen Gleichstrom ausgebildet ist.

 Brennstoffzellenbatterie nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Zellen kreisförmig sind und das Brenngas (6) über einen Kanal (26), der durch zentrale Durchbrüche der Zellen gebildet ist, auf die einzelnen Zellen verteilbar ist

10. Brennstoffzellenbatterie nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass zwischen einer äusseren Wand (10) der Batterie (1) und dem ringförmigen Raum (11) um den Zellenstapel (2) ein Wärmedämmsystem (12) angeordnet ist, in das Kanäle (125) für die Luft (5) integriert sind und/oder in dem poröse, luftdurchlässige Teile enthalten sind, derart, dass im Betrieb der Batterie die durch das Wärmedämmsystem inwärts strömende Luft durch Wärmeaufnahme einen Rücktransport von Wärme zum Zellenstapel ermöglicht, und dass insbesondere für die das Wärmedämmsystem durchströmende Luft sich eine gleichmässige Verteilung auf die einzelnen Lufträume (115) an der Peripherie (20') des Zellenstapels ergibt, wobei anstelle der Luft auch ein anderes Sauerstoff enthaltendes Gas vorgesehen sein kann.

10

15

20

25

30

35

40

45

50

55

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 00 81 0140

Categorie	Kennzeichnung des Dokuments mit A	Angabe, soweit erforderlich,	Betrifft	KLASSIFIKATION DER		
X	dermaßgeblichen Teile EP 0 355 420 A (FUJI ELEC 28. Februar 1990 (1990-02 * Ansprüche 1-19; Abbildu Beispiel 3 *	:-28)	Anspruch	H01M8/24 H01M8/02		
A	EP 0 450 336 A (MITSUBISH 9. Oktober 1991 (1991-10- * Ansprüche 1-6 *		1-10			
A	EP 0 780 917 A (SULZER IN 25. Juni 1997 (1997-06-25 * Ansprüche 1-11 *		1-10			
A	WO 98 22991 A (KLOEV KAAR (NO); NORSKE STATS OLJESE 28. Mai 1998 (1998-05-28) * Ansprüche 12-15 *	LSKAP (NO))	1-10			
				RECHERCHIERTE SACHGEBIETE (Int.Cl.7)		
				H01M		
			·			
	rliegende Recherchenbericht wurde für alle	Abschußdatum der Recherche	Ll	Prufer		
•	DEN HAAG	12. Juli 2000		tistig, M		
X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer sinderen Veröffentlichung dereelbem Kategorie A : technologischer Hintergrund O : nichtschriftliche Offenbanung		T der Erfindung zug E : älleres Patentdok nach dem Anmeld D : in der Anmeldung L : aus anderen Grür	Tilder Erfindung zugrunde liegende Theorien oder Grundsätze			

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 00 81 0140

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

12-07-2000

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentlamilie		Datum der Veröffentlichu		
EP	0355420	A	28-02-1990	JP JP DE DE JP	2555731 3219563 68909720 68909720 2168568	A D T	20-11-19 26-09-19 11-11-19 03-02-19 28-06-19
EP	0450336	А	09-10-1991	JP JP AU AU DE DE US	637203 7279291 69103455	A B A D T	25-11-19 13-12-19 20-05-19 19-09-19 22-09-19 24-11-19 30-03-19
EP	0780917	A	25-06-1997	AT AU AU DE JP US	706593	A D A	15-02-20 17-06-19 26-06-19 02-03-20 11-07-19 24-11-19
WO	9822991	Α	28-05-1998	NO AU	964898 5071098		19-05-19 10-06-19

EPO FORM F0461

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82