《计算机组成原理与接口技术》期末考试试卷(B)

(考试形式: 闭卷 考试时间:2小时)

《中山大学授予学士学位工作细则》第六条

考试作弊不授予学士学位

方[句:	姓名:	学号:	成绩:	
出	长:	邓革、李国桢	审核:		
注道	:意	答案一定要写在答题纸上,写在本试	卷中不给分。本证	式卷要和答卷一起交回。	
Part I Choose the best answer from the choices. (2 points for each question,				pints for each question, 20	
points total)					
1.	Gi	ven $x=-0.1010$, the representation	of 1.0110 is ().	
	Α.	Sign-Magnitude Representation	B. One's Comple	ement Representation	
	C.	Two's Complement Representation	D. Floating-Po	oint Representation	
2.	Wh	nich one is independent of the hit	ratio of cache	?	
	Α.	Access time of memory B. T	he size of blo	ck	
	С.	Cache organization D. T	he size of cac	he	
3. Which of the following operations do not exist for ADD instruction				ADD instruction in RISC?	
	Α.	memory to register B. regis	ter to registe	r	
	С.	immediate to register D. eithe	r B or C		
4.	In	the instruction "OUT DX, AL", the	port address	is:	
	Α.	8 bits B. 16 bits C. eith	er A or B	D. none of the above	
5.	The	The main components in CPU are ().			
	Α.	Control Unit, ALU, Memory	B. Control	Unit, Register, Memory	
	С.	Control Unit, ALU, Cache	D. Instruct	ion Pointer, I/O module	
6.	Mi	Microinstructions are placed in ()			
	Α.	memory controller B. main	memory		
	C.	control memory D. Cache			
7.	A b	byte is being transferred on the D8-	D15 data bus fr	om an odd-address location,	

the status of AO and BHE are ()					
A. A0=0, BHE=0 B. A0=0, BHE=1 C. A0=1, BHE=0 D. A0=1, BHE=1					
8. For a special RAM chip, the organization is 256×4 , the total number of address					
pins and data pins is ().					
A. 10 B. 12 C. 16 D. 8					
9. Computer organization is a computer architecture () implementation. A. physics B. logical C. circuit D. simulate					
10. DATA1 DB 5 DUP (0, 2 DUP (1, 0, 0)), the size of DATA1 is ().					
A. 35 B. 30 C. 20 D. 16					
Part II True or Fault (1 points for each question, 10 points total)					
1. The last instruction in the ISR is IRET, whereas the last instruction in a FAR					
subroutine is RET. ()					
2. While CISC instructions are variable sizes, RISC instructions are all the same					
size. ()					
3. To ensure the integrity of the contents of RAM, the check sum is used . ()					
4. The more address pins, the more memory locations are inside the chip. The more					
data pins, the more each location inside the chip will hold. ()					
5. IP(instruction pointer) register is available in low-byte and high-byte formats.					
()					
6. Port and interfaces have the same concepts, both can be implemented in the same					
way. ()					
7. In 8086, physical address is the 20-bit address, logical address can be					
consists of 16-bit segment value, and 16-bit offset address. ()					
8. The NMI has a higher priority than INTR. ()					
9. While memory contains both code and data, ports contain data only. ()					
10. Memory-mapped I/O uses controls MEMR and MEMW. ()					

Part III Answer the following questions. (22 points)

1. (5 points) How many bytes are used by the interrupt vector table, and why?

- 2. (5 points) What is the purpose of pseudo-instructions?
- 3. (5points) Which control signal is activated during the memory write cycle? Which control signal is activated during the I/O read cycle?
- 4. (7 points) Express the following number in IEEE 754 32-bit floating-point format.

 -138.125

Part IV Write a program to find the numbers of zero in a 16-bit word stored in DS:0300 and DS:0301. (10 points)

Part V The following program contains some errors. Fix the errors and make the program run correctly. (8 points)

```
. MODEL SMALL
```

.STACK 32

. DATA

DATA DW 234DH, DE6H, 3BC7H, 566AH

SUM DW ?

. CODE

START: PROC FAR

MOV AX, DATA

MOV DS, AX

MOV CX, 04

MOV BX, 0

MOV DI, offset DATA

LOOP1: ADD BX, [DI]

INC DI

JNZ LOOP1

MOV SI, offset RESULT

MOV [SI], BX

MOV AH, 4CH

INT 21H

START ENDP

END STRT

Part VI A computer has 32-bit instructions and 12-bit addresses. Suppose there are 250 2-address instructions. How many 1-address instructions can be formulated? Explain your answer. (10 points)

Part VII Suppose that CPU has 16-bit address pins and 8-bit data pins, access the memory when \overline{MREQ} is active low, \overline{WR} is control signal (low for writing/ high for reading). Using this CPU and RAM (1K x 4, 2K x 8, 8K x 8, 16k x 1, 4k x 4), ROM (2K x 8, 8K x 8, 32K x 8), 74LS138, and several logic gates to build the system satisfy the following requests:

0~2047 is set aside for system program;

2048~8191 is set aside for user program.

Which chip and how many chips will be used to build the system? Show the diagram.

(10 points)

Part VIII Write a program in Assembly language to get a byte of data from PA of 8255. If DO of the received byte is 1, then send the data stored in DS:0001H to PB; if DO of the received byte is 0, then send data stored in DS:0002H to PB. The port address of PA is 310H. (10 point)

Appendix

8255Control word

Figure 11-12. 8255 Control Word Format (I/O Mode)

(Reprinted by permission of Intel Corporation, Copyright Intel, 1983)

74LS138

Figure 11-8. 74LS138 Decoder (Reprinted by permission of Texas Instruments, Copyright Texas Instruments, 1988)