7. cvičení z Matematické analýzy 2

31. října - 4. listopadu 2022

7.1 (vázané extrémy)

Najděte nejmenší a největší hodnoty funkce f(x,y) = x - y + 3 za podmínky $3x^2 + 5xy + 3y^2 = 1$, Načrtněte útvar určený touto vazbou.

Řešení:

Hledáme absolutní extrémy funkce f(x,y) = x - y + 3 na množině

$$M = \{(x, y) \in U \mid \Phi(x, y) = 0\}$$

kde $U = \mathbb{R}^2$ (je tedy otevřená) a $\Phi(x,y) = 3x^2 + 5xy + 3y^2 - 1$.

• Ověříme, že grad $\Phi(a) \neq (0,0)$ pro každé $a \in M$:

Protože

$$\operatorname{grad} \Phi(x,y) = \left(6x + 5y, 5x + 6y\right)$$

tak grad $\Phi(x,y)=(0,0)$ právě když (x,y)=(0,0). Bod (0,0) ale není v M, takže v každém bodě $a\in M$ je grad $\Phi(a)\neq (0,0)$.

 \bullet Z Langrangeovy věty proto máme, že v bodě $a=(x,y)\in M$ lokálního extrému f na M existuje $\lambda\in\mathbb{R},$ že

$$(1,-1) = \operatorname{grad} f(a) = \lambda \cdot \operatorname{grad} \Phi(a) = \lambda \Big(6x + 5y, 5x + 6y \Big)$$

a

$$3x^2 + 5xy + 3y^2 = 1.$$

Jelikož z rovnic plyne, že $\lambda \neq 0$, dostáváme rovnici $6x + 5y = \frac{1}{\lambda} = -(5x + 6y)$. Odsud plyne x = -y a po dosazení do vazby získáme kandidáty na extrémy:

$$(1,-1), (-1,1)$$

s hodnotami

$$f(1,-1) = 5, \quad f(-1,1) = 1.$$

• Potřebujeme ještě zjistit, zda množina M je vůbec omezená (uzavřenost M plyne snadno z toho, že $M = \Phi^{-1}(\{0\})$, neboli že je to vzor uzavřené množiny $\{0\}$ při spojitém zobrazení Φ).

Doplněním na čtverec

$$1 = 3x^{2} + 5xy + 3y^{2} = 3\left(x + \frac{5}{6}y\right)^{2} + \frac{11}{12}y^{2}$$

zjistíme, že jde o omezenou množinu (konkrétně o (natočenou) elipsu). To lze zjistit i z toho, že kvadratická forma

$$Q(x,y) = 3x^2 + 5xy + 3y^2 = (x,y) \begin{pmatrix} 3 & \frac{5}{2} \\ \frac{5}{2} & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

je pozitivně definitní (např. pomocí Sylvestrova kritéria).

ullet Spojitá funkce f tak na uzavřené a omezené množině M skutečně nabývá svého maxima v bodě (1,-1) a minima v bodě (-1,1).

Poznámka: Úloha (a) je ekvivalentní tomu, když máme najít na implicitně zadané křivce $M: 3x^2 + 5xy + 3y^2 = 1$ body, kde tečna přímka je rovnoběžná s přímkou x - y + 3 = 0.

7.2 (vázané extrémy)

Najděte nejmenší a největší hodnoty funkce $f(x,y)=x^2+2y^2$ za podmínky $x^2-2x+2y^2+4y=0$. Načrtněte útvary určené touto vazbou.

Řešení:

Použijeme věty:

Věta: Spojitá funkce na uzavřené a omezené (tzv. kompaktní) množině nabývá svého maxima i minima.

Věta: Nechť $U \subseteq \mathbb{R}^n$ je otevřená množina $k \leq n$ a $f: U \to \mathbb{R}$ a $\Phi: U \to \mathbb{R}^k$ jsou spojitě diferencovatelná zobrazení na U. Položme

$$M = \{a \in U \mid \Phi(a) = 0 \& \Phi'(a) \text{ je regulární}\}.$$

Jestliže $a_0 \in M$ je bodem lokálního extrému funkce f zúžené na M, pak existují $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ (tzv. Langrangeovy multiplikátory), že

$$f'(a_0) = \sum_{i=1}^k \lambda_i g_i'(a_0),$$

kde g_i jsou jednotlivé složky zobrazení Φ , tj. $\Phi(a) = (g_1(a), \dots, g_k(a))$.

(Regularita derivace znamená, že její matice má maximální možnou hodnost, tedy hodnost k, tj. její řádky jsou lineárně nezávislé. Množina M se pak nazývá varieta (angl. manifold) a je možné ji přiřadit dimenzi - pomocí věty o implicitní funkci - a sice dim M=n-k. Dimenze tak odpovídá dimenzi n původního prostoru \mathbb{R}^n sníženou o počet k nezávislých vazeb daných zobrazením Φ .)

Doplněním na čtverec snadno zjistíme, že vazba představuje kružnici

$$M: (x-1)^2 + 2(y+1)^2 = 3$$

tedy omezenou uzavřenou množinu. Použijeme metodu Langrangeových multiplikátorů pro

$$\Phi(x,y) = (x-1)^2 + 2(y+1)^2 - 3.$$

Protože

$$\Phi'(x,y) = (2(x-1), 4(y+1))$$

tak $\Phi'(x,y)$ není regulární (tj. v tomto případě $\Phi'(x,y)=0$) právě když (x,y)=(1,-1). Nemůže se tedy stát, aby $\Phi(x,y)=0$ a $\Phi'(x,y)=0$. Takže v každém bodě množiny M je $\Phi'(x,y)$ regulární. Pro extrém a=(x,y) na M tak existuje $\lambda\in\mathbb{R}$, že

$$(2x, 4y) = f'(a) = \lambda \cdot \Phi'(a) = \lambda \cdot (2(x-1), 4(y+1))$$

a

$$(x-1)^2 + 2(y+1)^2 = 3.$$

Vyjádříme $x = \frac{\lambda}{\lambda - 1}$ a $y = \frac{\lambda}{1 - \lambda}$ pomocí λ (zřejmě $\lambda \neq 1$ jinak by rovnice neměly řešení) a dosadíme do vazby. Dostaneme $(\lambda - 1)^2 = 1$ s řešením $\lambda \in \{0, 2\}$ a kandidáty na extrémy:

$$(2,-2), (0,0)$$

s hodnotami

$$f(2,-2) = 12, \quad f(0,0) = 0.$$

Množina M je uzavřená a omezená a spojitá funkce f tak v těchto kandidátech skutečně nabývá svého maxima a minima.

7.3 (vázané extrémy na uzavřené množině s vnitřkem a hladkým okrajem) Najděte nejmenší a největší hodnoty funkce

$$f(x,y) = x^2 - (y-1)^2$$

na množině

$$M: y^2 \le 1 - x^2.$$

Načrtněte tuto množinu.

Řešení:

Množina M je kruh o poloměru 1 se středem v počátku. Příklad rozdělíme na vyšetření (volného) extrému na otevřené množině

$$M^{\circ}: \quad x^2 + y^2 < 1$$

a vázaného extrému na hranici

$$\partial M: \quad x^2 + y^2 = 1$$
.

Extrém na M° : Absolutní extrém na M° musí být lokální a tedy musí platit

$$(0,0) = df(x,y) = (2x, -2(y-1))$$

což nastává právě když (x,y)=(0,1). Tento bod ale neleží v M° , takže žádné podezřelé body zatím nedostáváme.

Extrém na ∂M :

Použijeme metodu Langrangeových multiplikátorů. Pro extrém a=(x,y) na kružnici dané vazbovou funkcí

$$\Phi(x, y) = x^2 + y^2 - 1$$

existuje $\lambda \in \mathbb{R}$, že

$$(2x, -2(y-1)) = \operatorname{grad} f(a) = \lambda \cdot \operatorname{grad} \Phi(a) = \lambda \cdot (2x, 2y)$$

a

$$x^2 + y^2 = 1.$$

Tedy má platit

$$x = x\lambda$$

$$1 - y = y\lambda .$$

Odsud máme, že buď je x=0 nebo $\lambda=1$. Z první možnosti a rovnice kružnice máme body $(0,\pm 1)$. Z druhé, tj. $\lambda=1$ dostáváme $y=\frac{1}{2}$ a tudíž body $\left(\pm\frac{\sqrt{3}}{2},\frac{1}{2}\right)$. Jejich funkční hodnoty jsou:

$$f(0,1) = 0, \quad f(0,-1) = -4$$

$$f\left(\pm\frac{\sqrt{3}}{2},\frac{1}{2}\right) = \frac{1}{2} .$$

Množina M je uzavřená a omezená množina a spojitá funkce tak v těchto bodech nabývá svého maxima a minima.

Porovnáním hodnot podezřelých bodů dostáváme, že funkce nabývá svého maxima v bodech $\left(\pm\frac{\sqrt{3}}{2},\frac{1}{2}\right)$ a minima v bodě (0,-1).

7.4 (vázané extrémy na uzavřené množině s vnitřkem a hladkým okrajem) Najděte nejmenší a největší hodnoty funkce f(x,y) = 3xy na množině

$$M: x^2 + y^2 \le 2.$$

Načrtněte tuto množinu.

Řešení:

Množina M je kruh o poloměru 2. Příklad rozdělíme na vyšetření (volného) extrému na otevřené množině

$$M^{\circ}: \quad x^2 + y^2 < 2$$

a vázaného extrému na hranici

$$\partial M: \quad x^2 + y^2 = 2 \ .$$

Extrém na M° : Absolutní extrém na M° musí být lokální a tedy musí platit

$$f'(x,y) = (3y, 3x) = (0,0)$$

což nastává právě když (x,y)=(0,0). Máme tak podezřelý bod (x,y)=(0,0) s hodnotou f(0,0)=0.

Extrém na ∂M :

Použijeme metodu Langrangeových multiplikátorů. Pro extrém a=(x,y) na kružnici dané vazbovou funkcí

$$\Phi(x, y) = x^2 + y^2 - 2$$

existuje $\lambda \in \mathbb{R}$, že

$$(3y, 3x) = f'(a) = \lambda \Phi'(a) = \lambda \cdot (2x, 2y)$$

a

$$x^2 + y^2 = 2.$$

Ani jedna z proměnných nemůže být nulová, takže máme $\frac{x}{y} = \frac{2}{3}\lambda = \frac{y}{x}$, tedy $x^2 = y^2$. Dosazením do rovnice kružnice dostaneme kandidáty na extrémy:

$$\pm (1,-1), \pm (1,1),$$

s odpovídajícími hodnotami

$$f(-1,1) = f(1,-1) = -3,$$
 $f(1,1) = f(-1,-1) = 3.$

Množina M je uzavřená a omezená množina a spojitá funkce tak na M nabývá svého maxima a minima. Porovnáním hodnot podezřelých bodů dostáváme, že funkce nabývá svého maxima v bodech $\pm (1,1)$ a minima v bodech $\pm (1,-1)$.

7.5 (vázané extrémy na uzavřené množině s vnitřkem a hladkým okrajem)

Kruhový talíř o rovnici $x^2 + y^2 \le 1$ je zahřátý na teplotu $T(x,y) = x^2 + 2y^2 - x$. Najděte nejteplejší a nejstudenější bod na talíři.

Řešení:

Vyšetření extrému T na uzavřené a omezené množině $A=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2\leq 1\}$ rozdělíme na případ (volného) extrému na otevřené množině

$$A^{\circ}: \quad x^2 + y^2 < 1$$

a případ vázaného extrému na

$$\partial A: \quad x^2 + y^2 = 1.$$

Extrém na A° :

Jestliže $a=(x,y)\in A^\circ$ je extrémT na A, pak je i lokálním extrémem T na $A^\circ.$ Takže musí platit, že

$$(0,0) = dT(a) = (2x - 1, 4y)$$

tedy $a=(\frac{1}{2},0)$ a tento bod skutečně patří do A° . Máme tedy první podezřelý bod.

Extrém na ∂A :

Jestliže $a=(x,y)\in\partial A$ je extrémT na A, pak je i (vázaným) extrémem T na

$$\partial A: \quad \Phi(x,y) = 0$$

kde $\Phi(x,y) = x^2 + y^2 - 1$. Musí tedy existovat $\lambda \in \mathbb{R}$, že

$$(2x-1,4y) = \operatorname{grad} T(a) = \lambda \cdot \operatorname{grad} \Phi(a) = \lambda(2x,2y)$$

a

$$x^2 + y^2 = 1.$$

Takže máme

$$2x - 1 = \lambda 2x$$

$$2y = \lambda y$$

$$x^2 + y^2 = 1$$

$$y = 0: \quad x^2 = 1 \Rightarrow \quad x = \pm 1$$

$$\lambda = 2: \quad 2x - 1 = 2 \cdot 2x \Rightarrow \quad x = -\frac{1}{2} \stackrel{y^2 = 1 - x^2}{\Longrightarrow} \quad y = \pm \frac{\sqrt{3}}{2}$$

Dostáváme $a=\pm(1,0)$ nebo $a=(-\frac{1}{2},\pm\frac{\sqrt{3}}{2})$. Teď víme, že jedinými možnými kandidáty na extrémy jsou body

$$\left(\frac{1}{2},0\right),\ (1,0),\ (-1,0),\ \left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)\ \mathrm{a}\ \left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right).$$

Protože T nabývá na (uzavřené a omezené) množině A extrému, porovnáním funkčních hodnot

$$T\left(\frac{1}{2},0\right) = -\frac{1}{4}, \quad T(1,0) = 0, \quad T(-1,0) = 2, \quad T\left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right) = \frac{9}{4} = T\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$$

zjistíme, že T nabývá minima v $\left(\frac{1}{2},0\right)$ a maxima v $\left(-\frac{1}{2},\pm\frac{\sqrt{3}}{2}\right)$.

7.6 (extrémy pro po částech hladký okraj)

Nalezněte největší a nejmenší hodnotu funkce $f(x,y) = 2x^3 + 4x^2 + y^2 - 2xy$ na množině

$$M: x^2 < y < 4$$
.

Řešení:

Množina M je část ležící nad parabolou a pod přímkou a je zřejmě omezená i uzavřená (je průnikem uzavřených množin).

Příklad opět rozdělíme na vyšetření (volného) extrému na otevřené množině

$$M^{\circ}: \quad x^2 < y < 4$$

a vázaného extrému na hranici

$$\partial M: \qquad (y=x^2 \& -2 \le x \le 2) \lor (y=4 \& -2 \le x \le 2)$$

kterou ale nejde vyjádřit pomocí jediné diferencovatelné vazby. Vazbami jsou dvě křivky (část paraboly a úsečka). POZOR: tyto dvě vazby ale NEPLATÍ současně! Každá vyjadřuje JINOU část okraje!

Extrém na M° :

$$(0,0) = df(x,y) = (6x^2 + 8x - 2y, 2y - 2x)$$

nastává (vzhledem kx, y > 0) právě když je splněna soustava

$$y = 3x^2 + 4x$$

$$y = x$$
.

Jediná řešení této soustavy (0,0) a (-1,-1) ale nepatří do M° , takže žádné podezřelé body zatím nedostáváme.

Extrém na ∂M :

Na obou křivkách můžeme použít Lagrangeovu větu, ale nejvhodnější bude zavést nějakou parametrizac a vyšetřit lokální extrémy zúžených funkcí:

• část paraboly parametrizujeme přirozeně pomocí

$$\varphi_1: (-2,2) \to \mathbb{R}^2, \quad \varphi_1(t) = (t,t^2).$$

Pokud $a = \varphi_1(t_0)$ je bodem extrému f na části paraboly, pak je t_0 extrémem funkce $f \circ \varphi_1$ a tedy musí být $(f \circ \varphi_1)'(t_0) = 0$. Tuto úvahu ovšem můžeme udělat právě jen proto, že t_0 je VNITRNÍM bodem intervalu (-2, 2). Z tohoto důvodu MUSÍME při vyšetřování části paraboly vynechat její koncové body, kde navazuje na úsečku (tvto koncové body automaticky zařadíme do podezřelých bodů).

Budeme tedy vyšetřovat funkci

$$g_1(t) := f(\varphi_1(t)) = f(t, t^2) = 4t^2 + t^4$$
 pro $t \in (-2, 2)$.

Máme $g_1'(t) = 8t + 4t^3 = 0$ právě když t = 0. Podezřelým bodem tak je $(0,0) \in \partial M$ s hodnotou f(0,0) = 0.

• podobně úsečku parametrizujeme přirozeně pomocí OTEVŘENÉHO intervalu

$$\varphi_2: (-2,2) \to \mathbb{R}^2, \quad \varphi_2(t) = (t,4)$$
.

Budeme tedy vyšetřovat funkci

$$g_2(t) := f(\varphi_2(t)) = f(t,4) = 2t^3 + 4t^2 - 8t + 16$$
 pro $t \in (-2,2)$.

Rovnice $g_2'(t)=6t^2+8t-8=2(3t-2)(t+2)=0$ má řešení pro $t=\frac{2}{3}\in(-2,2)$. Podezřelým bodem tak je $(\frac{2}{3},4)\in\partial M$ s hodnotou $f\left(\frac{2}{3},4\right)=\frac{16\cdot22}{27}$.

• zbývají už jen dva průsečíky křivek (-2,4) a (2,4) s hodnotami f(-2,4)=f(2,4)=32, které taky

zahrneme mezi podezřelé body.

Porovnáním hodnot podezřelých bodů (tj. $32 > \frac{16 \cdot 22}{27} > 0$) dostáváme, že funkce evidentně nabývá svého maxima v bodech (-2,4) a (2,4) a minima v bodě (0,0).

7.7 (extrémy pro po částech hladký okraj)

Nalezněte největší a nejmenší hodnotu funkce $f(x,y) = x^2y(4-x-y)$ na množině

$$M: \quad x \ge 0 \& y \ge 0 \& x + y \le 6$$
.

Řešení:

Množina M je trojúhelník s vrcholy (0,0), (6,0) a (0,6) a je zřejmě omezená i uzavřená (je průnikem uzavřených polorovin).

Příklad opět rozdělíme na vyšetření (volného) extrému na otevřené množině

$$M^{\circ}: \quad x > 0 \& y > 0 \& x + y < 6$$

a vázaného extrému na hranici

$$\partial M: \begin{array}{cccc} (y=0 & \& & 0 \leq x \leq 6) & \lor \\ (x=0 & \& & 0 \leq y \leq 6) & \lor \\ (x+y=6 & \& & 0 \leq x \leq 6) \end{array}$$

kterou ale nejde vyjádřit pomocí jediné diferencovatelné vazby. Vazbami jsou tři otevřené úsečky (hraný trojúhelníky) a tři body (vrcholy trojúhelníků). Tyto vazby ale opět NEJSOU splněné SOUČASNĚ (což je vidět i tím, že používáme logickou spojku "NEBO", nikoliv "A").

Extrém na M° :

$$(0,0) = df(x,y) = (8xy - 3x^2y - 2xy^2, 4x^2 - x^3 - 2x^2y)$$

nastává (vzhledem k tomu, že x, y > 0) právě když je splněna soustava

$$8 = 3x + 2y$$

$$4 = x + 2y$$
.

Tedy podezřelým bodem je řešení $a=(2,1)\in M^\circ$ s hodnotou f(2,1)=4.

Extrém na ∂M :

Na obou odvěsnách trojúhelníku je funkce f identicky nulová, takže všechny tyto body prostě zařadíme do podezřelých bodů. Zbývá vyšetřit otevřenou úsečku, která představuje třetí stranu. Tentokrát ji prostě zparametrizujeme pomocí

$$\varphi(t) = (t, 6 - t)$$
 pro $t \in (0, 6)$

a vyšetříme tak (lokální) extrémy funkce

$$g(t) := (f \circ \varphi)(t) = -2t^2(6-t) = 2t^3 - 12t^2$$

pro $t \in (0,6)$. Máme

$$g'(t) := 6t^2 - 24t = 6t(t-4) = 0$$

právě když $t=4\in(0,6)$ (zdůrazněme, že tento interval nutně musí být OTEVŘENÝ - jinak nemůžeme použít nutnou podmínku, tj. nulovost derivace). Tedy podezřelý bod je a=(4,2) s hodnotou f(4,2)=-64.

Porovnáním hodnot podezřelých bodů (zejména nezapomínejme na vrcholy trojúhelníku jako samostatné vazby, které nelze zařadit do ostatních vazeb, protože ty musí být definovány v rámci otevřených množin - opět proto, abychom mohli derivovat) dostáváme, že funkce tedy evidentně nabývá svého maxima v bodě (2, 1) a minima v bodě (4, 2).

7.8 (vázané extrémy - aplikace)

Najděte tři pozitivní čísla jejichž součin je maximální, a jejichž součet je roven 100.

Řešení:

Zadání příkladu lze interpretovat také tak, že hledáme maximální objem kvádru, který se vejde do pravidelného trojbokého jehlanu, jehož jeden vrchol je společný s vrcholem kvádrů. Intuitivně lze očekávat, že maximální takový objem bude odpovídat krychli.

Budeme tedy hledat body maxima funkce

$$f(x, y, z) = xyz$$

na množině

$$M = \{(x, y, z) \in U \mid \Phi(x, y, z) = 0\},\$$

kde

je otevřená množina a

$$\Phi(x, y, z) = x + y + z - 100$$

je vazbová funkce.

Protože U je OTEVŘENÁ (což je podstatné!) a grad $\Phi(a) \neq (0,0,0)$ pro každé $a \in M$, tak můžeme použít Langrangeovu podmínku pro extrém na M. Pro bod extrému $a=(x,y,z)\in M$ pak musí existovat $\lambda \in \mathbb{R}$, že

$$(yz, xz, xy) = \operatorname{grad} f(a) = \lambda \cdot \operatorname{grad} \Phi(a) = \lambda(1, 1, 1)$$

a

$$x + y + z = 100.$$

Odsud máme např. že $yz = \lambda = xz$ a protože z > 0, tak dostaneme x = y. Podobně odvodíme, že x=y=z a tedy x+x+x=100. Takže jediný podezřelý bod z extrému je $a=\left(\frac{100}{3},\frac{100}{3},\frac{100}{3}\right)$ s hodnotou $f\left(\frac{100}{3},\frac{100}{3},\frac{100}{3}\right)=\left(\frac{100}{3}\right)^3$. Abychom mohli využít věty o nabytí extrémů, potřebujeme ale uzavřenou množinu, což M není (je

to trojúhelník, ale bez hran). Tak si M prostě uzavřeme, čímž dostaneme

$$\overline{M} = \{(x, y, z) \in \mathbb{R}^3 \mid x, y, z \ge 0 \quad \& \quad \Phi(x, y, z) = 0\},\$$

což je trojúhelník i s hranami. Na těchto přidaných hranách je ale funkce f nulová (a tudíž snadno uchopitelná), takže všechny hrany můžeme zařadit mezi podezřelé body z extrémů na \overline{M} . Tím jsme prošli všechny body M.

Množina \overline{M} je teď už uzavřená a omezená, takže spojitá funkce f zde nabývá svých extrémů. Porovnáním funkčních hodnot v podezřelých bodech teď snadno dostáváme, že na hranách nabývá f svého minima a v bodě $\left(\frac{100}{3}, \frac{100}{3}, \frac{100}{3}\right)$ svého (jediného) maxima (jak jsme očekávali).