Quiz di algebra lineare e geometria

Spazi vettoriali, sottospazi vettoriali, vettori linearmente dipendenti, insiemi di generatori

•	Sappia un cam	mo che un campo K è anche uno spazio vettoriale. Ma, in generale, uno spazio vettoriale V è npo ?	
	0	No	
	0	Sì	
•	-	insieme di \mathbb{R}^2 costituito dai vettori $v=(a,b)$ con $a\geq 0$ e $b\geq 0$ è un sottospazio vettoriale di	
	\mathbb{R}^2 .		
	0	Vero	
	0	Falso	
•	II sotto	insieme di \mathbb{R}^2 costituito dai vettori $v=(2a,3a)$ al variare di $a\in\mathbb{R}$ è un sottospazio vettoriale	
	di \mathbb{R}^2 .		
	0	Vero	
	0	Falso	
•	Il sotto di \mathbb{R}^2 .	insieme di \mathbb{R}^2 costituito dai vettori $v=(a,a^2)$ al variare di $a\in\mathbb{R}$ è un sottospazio vettoriale	
	0	Vero	
	0	Falso	
•	Nello s	pazio vettoriale \mathbb{R}^2 due vettori non nulli e non paralleli sono linearmente indipendenti.	
	0	Vero	
	0	Falso	
•	In uno	spazio vettoriale ${\it V}$ se ho tre vettori e nessuno di questi è parallelo a uno degli altri due, allora	
	i tre ve	ttori dati sono linearmente indipendenti.	
	0	Vero	
	0	Falso	
•	_	v_2,v_3 sono tre vettori linearmente dipendenti, allora sicuramente v_1 si può scrivere come nazione lineare dei vettori v_2 e v_3 .	
	0	Vero	
	0	Falso	
•	Consid	eriamo i seguenti vettori di \mathbb{R}^3 : $v_1=(2,0,-1)$, $v_2=(1,1,2)$, $v_3=(0,2,a)$. Per quale valore	
	$di\ a \in$	${\mathbb R}$ essi sono linearmente dipendenti?	
	0	a = 0	
	0	a = 5	
	0	per nessun valore di a	
	0	a = 3	
•	Consideriamo i seguenti vettori di \mathbb{R}^4 : $v_1=(1,-1,2,-1), v_2=(3,1,a,3), v_3=(0,2,-1,3)$. Per quale valore di $a\in\mathbb{R}$ essi sono linearmente dipendenti?		
	0	a = -2	
	0	a = 0	
	0	a = 4	
	0	per nessun valore di a	
	0	a = -5	

Vettori linearmente dipendenti, insiemi di generatori, basi, dimensione, equazioni dei sottospazi vettoriali, intersezione, somma e somma diretta di sottospazi vettoriali	
 Prendendo quattro vettori in R³ essi saranno linearmente dipendenti? Sì, sempre 	
Dipende da come scelgo i vettori	
• Sia V uno spazio vettoriale di dimensione n e siano $v_1, v_2, \dots, v_k \in V$. Una delle seguenti affermazioni è corretta:	
\circ se v_1, v_2, \dots, v_k sono linearmente dipendenti allora $k \geq n$	
\circ se $k \leq n$ allora v_1, v_2, \dots, v_k sono linearmente indipendenti	
\circ se v_1, v_2, \dots, v_k sono linearmente indipendenti allora $k \leq n$	
• Sia V uno spazio vettoriale di dimensione n e siano $v_1, v_2, \dots, v_k \in V$. Una delle seguenti affermazioni	
è corretta:	
$\circ $ se v_1, v_2, \ldots, v_k sono un insieme di generatori di V allora $k \leq n$	
$\circ $ se v_1, v_2, \ldots, v_k sono un insieme di generatori di V allora $k \geq n$	
\circ se $k \geq n$. allora v_1, v_2, \dots, v_k sono un insieme di generatori di V	
• Dati tre vettori $v_1,v_2,v_3\in\mathbb{R}^4$ tali che nessuno di essi è parallelo a uno degli altri due, il sottospazio	
vettoriale da essi generato ha necessariamente dimensione 3.	
o Vero	
o Falso	
• In \mathbb{R}^4 il sottospazio di equazione $x_1-2x_3+x_4=0$ ha dimensione:	
0 1	
o 2	
o 3	
$ullet$ In \mathbb{R}^3 il sottospazio U di equazione $x_2=0$ ha dimensione:	
0 0	
o 2	
0 1	
• Siano U e W sottospazi vettoriali di \mathbb{R}^n . Se U e W sono in somma diretta, allora deve necessariam	
essere $U + W = \mathbb{R}^n$.	
o Vero	
o Falso	
• Siano U_1, U_2, W sottospazi vettoriali di V . Se $U_1 \oplus W = U_2 \oplus W$ allora deve necessariamente essere	
U_1 , = U_2 .	
o Vero	
o Falso	
• Siano U_1 , U_2 due sottospazi vettoriali di \mathbb{R}^n , entrambi di dimensione 2 e tali che $U_1 \oplus U_2 = \mathbb{R}^4$. Allora	
è sempre possibile trovare un sottospazio vettoriale W di \mathbb{R}^4 tale che $U1 \oplus W = \mathbb{R}^4$ e $U2 \oplus W = \mathbb{R}^4$.	
o Vero	
o Falso	

• In \mathbb{R}^3 i vettori $v_1=(1,-1,2)$ e $v_2=(0,2,1)$ formano un sistema di generatori.

VeroFaso

- Sia V uno spazio vettoriale di dimensione 6 e siano U_1 , U_2 sottospazi di V, con dim $U_1 = 5$ e dim $U_2 =$ 2. Una delle seguenti affermazioni è vera.
 - o $U_1 \cap U_2$ può avere dimensione 3 e in tal caso si ha dim $(U_1 + U_2) = 4$
 - \circ $U_1 \cap U_2$ può avere dimensione 0 e in tal caso U_1 e U_2 sono in somma diretta
 - La dimensione di U_1 ∩ U_2 può essere solo 1 oppure 2

Funzioni lineari, nucleo e immagine, matrice di una funzione lineare, operazioni sulle matrici

- Per quale valore di t la funzione $f: \mathbb{R}^2 \to \mathbb{R}$ definita ponendo f(x, y) = 2x 3y + txy è lineare?
 - Per ogni valore di t
 - \circ Per t=0
 - \circ Per t=1
- Sia V lo spazio vettoriale dei polinomi nella variabile x, a coefficienti reali. La funzione che ad ogni polinomio $p(x) \in V$ associa la sua derivata p'(x) è una funzione lineare.
 - o Vero
 - Falso
- Sia $f: V \to W$ una funzione lineare e siano $v_1, v_2, ..., v_k \in V$ vettori linearmente indipendenti. I vettori $w_1 = f(v_1)$, $w_2 = f(v_2)$, ..., $w_k = f(v_k)$ sono linearmente indipendenti?
 - o Sì, se il nucleo di $f \in \{0\}$
 - \circ Sì, ma solo se $v_1, v_2, ..., v_k$ sono una base di V
 - o Sì, sempre
- Sia $f: V \to W$ una funzione lineare e siano $v_1, v_2, ..., v_k \in V$ un sistema di generatori di V. I vettori $w_1 = f(v_1), w_2 = f(v_2), \dots, w_k = f(v_k)$ sono un sistema di generatori di W?
 - \circ Sì, ma solo se f e suriettiva
 - \circ Sì, ma solo se $v_1, v_2, ..., v_k$ sono una base di V
 - o Sì, sempre
- Siano $f: \mathbb{R}^4 \to \mathbb{R}^3$ e $g: \mathbb{R}^3 \to \mathbb{R}^4$ due funzioni lineari. Il nucleo della funzione composta $g \circ f: \mathbb{R}^4 \to \mathbb{R}^4$ \mathbb{R}^4 deve necessariamente avere dimensione ≥ 1 ?
 - \circ Sì, indipendentemente da $f \in g$
 - o No, può anche avere dimensione 0
- Sia $f: V \to V$ una funzione lineare. Una delle seguenti affermazioni è vera:
 - \circ se f è iniettiva non è detto che sia anche suriettiva
 - \circ se f è suriettiva non è detto che sia anche iniettiva
 - \circ se f è iniettiva allora deve essere anche suriettiva
- Esiste una funzione lineare $f: \mathbb{R}^5 \to \mathbb{R}^5$ tale che il nucleo di a è uguale all'immagine di f.
 - o Vero
 - o Falso
- Esiste una funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che il nucleo di f è uguale all'immagine di f.
 - o Vero
 - o Falso
- Sia $f: \mathbb{R}^2 \to \mathbb{R}^2$ la funzione lineare definita ponendo f(x,y) = (2x-3y,x+4y). Sia $v_1 =$ $(1,1), v_2 = (2,-1)$. La matrice di f rispetto alla base di \mathbb{R}^2 formata dai vettori v_1, v_2 è:

 - $\begin{array}{ccc}
 & \begin{pmatrix} 3 & 1 \\ -2 & 3 \end{pmatrix} \\
 & \begin{pmatrix} -1 & 7 \\ 5 & -2 \end{pmatrix} \\
 & \begin{pmatrix} 2 & -3 \\ 1 & 4 \end{pmatrix}
 \end{array}$

Esistono matrici non nulle A e B tali che la matrice prodotto AB sia nulla.
 Vero
 Falso

Funzioni lineari, nucleo e immagine, matrice di una funzione lineare, cambiamento di basi, sistemi lineari, riduzione di una matrice in forma a scala

- Esistono delle matrici A e B tali che AB = I ma $BA \neq I$.
 - Vero
 - o Falso
- Date due matrici $A \in B$ si ha, in generale, ${}^{T}(AB) = {}^{T}A^{T}B$.
 - o Vero
 - o Falso
- Per quale valore di t la seguente matrice non ha rango $3?\begin{pmatrix} 2 & -1 & 3 \\ 1 & -2 & 2 \\ 1 & t & 0 \end{pmatrix}$
 - \circ t=3
 - \circ t=4
 - \circ t=0
- Se A è una matrice quadrata tale che $A^2 = 0$ allora la matrice I A è invertibile.
 - o Vero
 - o Falso
- Sia A una matrice reale quadrata di ordine n, con $n \ge 2$. Siano P e Q matrici reali quadrate invertibili di ordine n. Allora la matrice A' = PAQ ha lo stesso rango di A.
 - o Vero
 - o Falso
- Sia V uno spazio vettoriale reale e $f: V \to V$ una funzione lineare. Sia $\mathbf{v} = \{v_1, v_2, \dots, v_n\}$ una base di V e indichiamo con A la matrice di f rispetto alla base \mathbf{v} . Supponiamo che A = aI, ove I è la matrice identica e $a \in \mathbb{R}$. Allora la matrice A' di f rispetto ad una qualunque altra base $\mathbf{v}' = \{v_1', v_2', \dots, v_n'\}$ di V deve necessariamente essere uguale alla matrice A.
 - o Vero
 - o Falso
- Sia V uno spazio vettoriale e siano $\mathbf{v} = \{v_1, v_2, ..., v_n\}$ e $\mathbf{v}' = \{v_1', v_2', ..., v_n'\}$ due basi di V. Le colonne della matrice di cambiamento di base $M_v^{v'}(id)$ sono:
 - $\circ \quad \text{le coordinate dei vettori } v_1, v_2, \dots, v_n \text{ rispetto alla base } v_1', v_2', \dots, v_n'$
 - o le coordinate dei vettori $v_1', v_2', ..., v_n'$ rispetto alla base $v_1, v_2, ..., v_n$
- Sia V uno spazio vettoriale e siano $\mathbf{v} = \{v_1, v_2, ..., v_n\}$ e $\mathbf{v}' = \{v_1', v_2', ..., v_n'\}$ due basi di V. La matrice di cambiamento di base $M_v^{v'}(id)$ agisce nel modo seguente:
 - o $M_v^{v'}(id)$ moltiplica il vettore colonna delle coordinate di un vettore u rispetto alla base $v = \{v_1, v_2, ..., v_n\}$ e dà come risultato il vettore colonna delle coordinate di u rispetto alla base $v' = \{v'_1, v'_2, ..., v'_n\}$
 - o $M_v^{v'}(id)$ moltiplica il vettore colonna delle coordinate di un vettore u rispetto alla base $v' = \{v_1', v_2', ..., v_n'\}$ e dà come risultato il vettore colonna delle coordinate di u rispetto alla base $v = \{v_1, v_2, ..., v_n\}$
- Una matrice triangolare superiore è sempre una matrice a scala.
 - o Vero
 - o Falso

- - \circ il numero di colonna lineamenti indipendenti di A
 - \circ il numero di righe linearmente indipendenti di A
 - \circ il numero di righe non nulle in una forma a scala di A
 - \circ il numero di colonne non nulle di A
 - \circ il numero di colonne non nulle in una forma a scala di A
 - Volendo determinare il rango di una matrice mediante la riduzione in forma a scala si possono effettuare operazioni elementari sia sulle righe che sulle colonne.
 - o Vero
 - o Falso
 - Sia A una matrice $m \times n$. Allora:
 - \circ rango(A) = max{m, n}
 - \circ rango(A) = mmin{m, n}
 - \circ rango(A) \leq min{m, n}
 - L'insieme delle soluzioni di un sistema lineare non omogeneo è un sottospazio vettoriale.
 - o Vero
 - o Falso
 - Il sistema lineare AX = B ha soluzione se e solo se:
 - \circ rango(A) < rango(A|B)
 - \circ rango(A|B) = rango(A) + 1
 - \circ rango(A) = rango(A|B)
 - Un sistema lineare AX = B ammette soluzioni se e solo se:
 - o B appartiene allo spazio generato dalle righe di A
 - \circ B appartiene allo spazio generato dalle colonne di A
 - Volendo calcolare l'inversa della matrice $\begin{pmatrix} 2 & t \\ 4 & 6 \end{pmatrix}$ utilizzando l'eliminazione di Gauss, per quale valore di t non è posibile determinare A^{-1} ?
 - \circ t=-1
 - \circ t=3
 - 0 t = 6
 - $0 \quad t = 0$

Nella permutazione $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 5 & 2 & 3 \end{pmatrix}$ quante sono le inversioni presenti? 0 0 4 0 5 Il determinante della matrice $\begin{pmatrix} 0 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & 0 \end{pmatrix}$ è uguale a: 7 0 0 0 0 5 Determinanti, autovalori, autovettori, diagonalizzazione di una matrice Moltiplicando tutti gli elementi di una matrice quadrata per uno stesso numero α il determinante della matrice risulta moltiplicato per α . o Vero o Falso Se A è una matrice quadrata di ordine n si ha det(-A) = -det(A). o Vero o Falso Se due matrici quadrate di ordine *n* hanno lo stesso determinante allora sono simili. o Vero o Falso Se una funzione lineare $f: V \to V$ non è iniettiva allora il determinante della matrice di f rispetto a una qualunque base di V è uguale a 0. o Vero o Falso Se una funzione lineare $f: V \to V$ è suriettiva allora il determinante della matrice di f rispetto a una qualunque base di V è necessariamente diverso da 0. o Vero o Falso

Esistono matrici quadrate di ordine n, diverse dalla matrice identica, che sono simili alla matrice

Se due matrici quadrate di ordine n, A e B, sono entrambe diagonalizzabili, allora ciò significa che A

Se v_1 e v_2 sono autovettori di $f: V \to V$ allora sicuramente anche $v_1 + v_2$ è un autovettore di f.

Se due matrici quadrate A e B hanno lo stesso polinomio caratteristico allora sono simili.

identica.

VeroFalso

e A sono simili.VeroFalso

o Vero

VeroFalso

•	Se λ è un autovalore di una matrice quadrata A allora, per ogni intero $n\geq 1$, λ^n è un autovalore A^n .	di di	
	VeroFalso		
Prodotto scalare di vettori, angoli, aree, volumi, ortogonalità tra vettori e tra sottospazi, proiezioni ortogonali			
•	Se $v, w \in \mathbb{R}^n$ sono due vettori paralleli, si ha sempre $\ v + w\ = \ v\ + \ w\ $. O Vero O Falso		
•	Siano v_1,v_2,\ldots , $v_n\in\mathbb{R}^n$ vettori non nulli a due a due ortogonali, cioè tali che $v_i\cdot v_j=0$ per ogni i . Allora essi sono linearmente indipendenti e quindi sono una base di \mathbb{R}^n . \circ Vero	; ≠	
	o Falso		
•	Siano $v=(a,b)$ e $w=(c,d)$ vettori di \mathbb{R}^2 e sia P il parallelogramma di lati v e w . L'area di P è ugu	ale	
	al valore assoluto del determinante della matrice $egin{pmatrix} a & b \\ c & d \end{pmatrix}$.		
	o Vero		
	o Falso		
•	Se $S \subset \mathbb{R}^n$ non è un sottospazio vettoriale e se poniamo $S^\perp = \{v \in \mathbb{R}^n v \cdot u = 0, \forall u \in S\}$ S^\perp	^L è	
	comunque un sottospazio vettoriale di \mathbb{R}^n .		
	o Vero		
	o Falso		
•	Se $S \subset \mathbb{R}^n$ non è un sottospazio vettoriale e se poniamo $S^\perp = \{v \in \mathbb{R}^n v \cdot u = 0, \forall u \in S\}$ allora	a si	
	$\operatorname{na}(S^{\perp})^{\perp} = S.$		
	o Vero		
	\circ Falso Siano U e W sottospazi vettoriali di \mathbb{R}^n . Allora si ha $(U+W)^\perp=U^\perp+W^\perp$.		
•			
	VeroFalso		
•	Siano U e W sottospazi vettoriali di \mathbb{R}^n . Allora si ha $(U\cap W)^\perp=U^\perp\cap W^\perp$.		
	O Vero		
	o Falso		
•	Sia U un sottospazio vettoriale di \mathbb{R}^n e consideriamo due vettori $v_1,v_2\in\mathbb{R}^n$. Siano u_1 e u_2	le	
	proiezioni ortogonali di v_1 e v_2 su U . Allora la proiezione ortogonale di v_1+v_2 su U è data da		
	somma $u_1 + u_2$.		
	o Vero		
	o Falso		
•	n \mathbb{R}^3 sono dati i vettori $v=(2,-1,0)$ e $w=(1,1,-2)$. L'area del parallelogramma determinato	dai	
	vettori $v \in w$ è:		
	$\circ \sqrt{29}$		
	$\circ \sqrt{15}$		
	$\circ \sqrt{34}$		
	\circ $\sqrt{27}$		

- In \mathbb{R}^3 sono dati i vettori v = (1, 0, 1) e w = (0, 1, -1). L'angolo compreso tra i vettori v e w è:
 - o 120 gradi
 - o 90 gradi
 - o 30 gradi
 - o 60 gradi

Basi ortogonali e ortonormali, forme bilineari simmetriche, matrici delle forme bilineari simmetriche, forme definite positive, negative, indefinite, vettori isotropi

- La funzione $g: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ definita ponendo $g((x_1, y_1), (x_2, y_2)) = 3x_1x_2 y_1y_2 + 2x_1y_2$ è una forma bilineare simmetrica.
 - o Vero
 - o Falso
- Sia $V = M_2(\mathbb{R})$ lo spazio vettoriale delle matrici quadrate di ordine 2 a coefficienti reali. Sia $g: V \times V \to \mathbb{R}$ la funzione che associa a due matrici $A, B \in V$ la traccia della matrice prodotto AB (la traccia di una matrice quadrata è la somma degli elementi sulla diagonale principale). La funzione g così definita è una forma bilineare simmetrica.
 - o Vero
 - o Falso
- Sia $g: V \times V \to \mathbb{R}$ una forma bilineare simmetrica e sia S l'insieme dei vettori isotropi: $S = \{v \in V \mid g(v,v) = 0\}$. S è sempre un sottospazio vettoriale di V.
 - o Vero
 - o Falso
- Due matrici A e B sono congruenti se esiste una matrice invertibile P tale che:
 - \circ $B = P^{-1}AP$
 - \circ $B = P^T A P$
- Due matrici congruenti G e G' hanno lo stesso determinante.
 - o Vero
 - o Falso
- Due matrici congruenti G e G' non hanno necessariamente lo stesso determinante, ma $\det G$ e $\det G'$ hanno lo stesso segno.
 - o Vero
 - o Falso
- La matrice $G = \begin{pmatrix} -1 & 2 & 1 \\ 2 & -2 & -1 \\ 1 & -1 & 1 \end{pmatrix}$ è
 - o definita negativa
 - o definita positiva
 - o indefinita
- Sia $g: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ una forma bilineare simmetrica indefinita. Allora esistono sicuramente dei vettori isotropi non nulli.
 - o Vero
 - o Falso

- Sia $V = M_2(\mathbb{R})$ lo spazio vettoriale delle matrici quadrate di ordine 2 a coefficienti reali. Sia $g: V \times V \to \mathbb{R}$ la forma bilineare simmetrica che associa a due matrici $A, B \in V$ la traccia della matrice prodotto AB (la traccia di una matrice quadrata è la somma degli elementi sulla diagonale principale). La forma g è:
 - o definita negativa
 - o definita positiva
 - o indefinita
- La forma bilineare simmetrica $g: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ la cui matrice (rispetto alla base canonica) è G =

$$\begin{pmatrix} -1 & 2 & -1 \\ 2 & 3 & 0 \\ -1 & 0 & -3 \end{pmatrix} \grave{e}:$$

- o degenere
- o non degenere