1.3 Laws of Limits

Suppose $\lim f(x) = L$ and $\lim g(x) = M$, where L and M are real numbers. Then the following apply:

1.
$$\lim_{\tau \to \tau} (f(\tau) + g(\tau)) = L + M$$

5.
$$\lim_{x\to c} \left(\frac{f(x)}{g(x)}\right) = \frac{L}{M}, M \neq 0$$

$$2. \lim_{x\to c} (f(x)-g(x))=L-M$$

6.
$$\lim_{x \to c} (f(x))^n = L^n, n > 0$$

$$\lim_{x \to x} (f(x) + g(x)) = L + M$$

6.
$$\lim_{x\to c} (f(x))^n = L^n, n > 0$$

reduce and conquer vs divide and conquer

 $O(b^{\alpha})$, where b > 1

CONSTANT OF

Logarithmi

Linear Con

log-linear (

Polynomial

Exponentia Factorial C

4.
$$\lim (f(x) \bullet g(x)) = LM$$

3. $\lim (kf(x)) - kL$

7.
$$\lim_{x\to c} \left(\sqrt[n]{f(x)} \right) = L^{\frac{1}{n}}, n > 0$$

o(n) w(n) Definition Limit

in-place, stability, order-optimal (secondary space) (keys are same) (best algorithm of type)

Begin with Let f and g be functions from $Z' \to R''$ Ø(n) Q(n) Θ(n) Definition Limit

- $f(n) \in O(g(n))$ iff 3 $o \in R$ and B n e Z B finis ogini. Vn: n
- $f(n) \in \Omega(g(n))$ iff $11 \circ 0 \in R$ and B n E Z B f(n) : og(n). Vn:n
- $f(n) \in \Theta(g(n))$ iff B $o \in R$ and 3 n E P 3 ag(n) : f(n) : ag(n). Vn : n
- $f(n) \in \mathcal{O}(g(n)) \hookrightarrow \lim_{n \to \infty} \frac{f(n)}{f(n)} : K, K \in [0, \infty)$
- $f(n) \in \Omega(g(n)) \Leftrightarrow \lim_{k \to \infty} f(k) \in K, K \in (0, \infty)$
- $f(n) \in \Theta(g(n)) \hookrightarrow \lim_{n \to \infty} \frac{f(n)}{f(n)} : X, X \neq 0, \infty$

 $f(n) \in o(g(n))$ iff $\forall o \in R \exists n_i \in P \ni f(n) \in og(n)$. $\forall n : n_i$

41141

O(n)

 $O(n^b)$

O(n!)

 $O(\log n)$

 $O(n \log n)$

- $f(n) \in \omega(g(n))$ iff $\forall \sigma \in R' \exists n_0 \in Z' \ni f(n) \circ cg(n)$. $\forall n \ni n_0$
- $f(n) \in o(g(n)) \leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$
- $f(n) \in \omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{dn} = \infty$
- For the growth rate function of an algorithm:
 - You can ignore lower terms. $O(n^2 + 4n^2 + 3n) = O(n^2)$
 - You can ignore coefficients $\Theta(5n^3) = \Theta(n^3)$
 - They are additive $\Omega(\vec{n}) + \Omega(n) = \Omega(\vec{n} + n) = \Omega(\vec{n})$

Selection Sort Visual Presentation

$$(n-1) + (n-2) + ... + 2 + 1 = \frac{n(n-1)}{2} \in O(n^2)$$

Insertion Sort 15 17 5 10 11 9 15 17 10 11 1+2+...+n-1 15 17 5 10 11 7 9 6 9 17 5 10 11 9 10 11 9 15 17 10 11 6 17 10 7 9 15 11 5 6 11 6 9 13 15 17

9

10 11 15

Binary Search

$$T(n) = 1 + T\left(\frac{n-1}{2}\right)$$

$$T(n) = 2 + T\left(\frac{n-3}{4}\right)$$

$$T(n) = 3 + T\left(\frac{n-7}{8}\right)$$

$$T(n) = k + T\left(\frac{n - 2^k + 1}{2^k}\right)$$

Worst case	Аметаде саг
n ³	n2
ri ²	n ²
n ²	n2
nlgn	nlgn
n ²	nlgn
11	11
n ²	nlgn
n log n	nlgn
	n ² n ² n ² n ³ n lg n n ² n lg n n ²

3.1 Quick Sort

void sort([tem[] array, int from, int to) if (from >= to) {return; }

p < partition(array. from, to)</pre> sort(array, from,p); sort(array, p+1.to);

5 6

best: T(n)=2T(n/2)+alpha*n worst n+(n-1)+(n-2)+. +2 or T(n) = T(n-1) + alpha*n, T(1)=1

12 16 27 27 36 39

T/n/=2T/n/2\-alpho*n

The claim is true.

A proof using the definition of O-notation.

roof:

- A. Definition 1. Let f and g be functions from Z⁺ → R⁺ that is, positive real-valued functions on the domain of positive integers. If f(n) ∈ Θ(g(n)), then g(n) is said to be an asymptotic tight bound for f(n). Mathematically, there are constants ε₁ > 0, ε₂ > 0 and an integer constant n₀ ≥ 1 such that ε₁g(n) ≤ f(n) ≤ ε₂g(n) ∀n ≥ n_n.
- B. Let $f(n) = (n^3 + 4n 5)^2$ and $g(n) = n^6$
- C. I want to find c_1 , c_2 and n_a such that $c_1n^6 \le (n^3 + 4n 5)^2 \le c_2n^6$ where $n \ge n_a$
- D. Proving the first half of the inequality
 - (a) $n^3 \le n^3$, $n \ge 1$
 - (b) $0 \le 4n 5, n \ge 2$
 - (c) Using the additive property of inequality and comilining D.(a) and D.(b) and using the intersection of the half open intervals, we get n³ ≤ n³ + 4n − 5, n ≥ 2.
 - (d) Squaring both sides of the inequality in D(c), we get n⁶ ≤ (n³ + 4n − 5)², n ≥ 2
- E. Proving the second half of the inequality:
 - (a) n³ < n³, n ≥ 1
 - (b) $4n 5 < 4n^3, n > 1$
 - (c) Using the additive property of inequality and combining E.(a) and E.(b) and using the intersection of the half open intervals, we get n³ + 4n − 5 ≤ 5n³, n ≥ 1.
 - (d) Squaring both sides of the inequality in E(c), we get (n³ + 4n - 5)² < 25n⁶, n > 1
- F. Combining D.(d) and E.(d) and using the intersection of the half open intervals, we get n⁶ ≤ (n³ + 4n − 5)² ≤ 25n⁶, n ≥ 2. For c₁ = 1, c₂ = 25 and n_o = 2, we get c₁g(n) ≤ f(n) ≤ c₂g(n), n ≥ n_o. Therefore (n³ + 4n − 5)² ∈ Θ(n⁶).

Claim 2. $3n \lg n \in \Theta(n^2)$

The claim is false.

Proof:

- A. Let f and g be functions from Z⁺ → R⁺ that is, positive real-valued functions on the domain of positive integers. $f(n) ∈ Θ(g(n)) ⇔ \lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c < \infty.$
- B. Let $f(n) = 3n \lg n$ and $g(n) = n^2$.
- C. I want to show that $\lim_{n \to \infty} \frac{n \lg n}{n!} = c$, $0 < c < \infty$ is impossible
- D. $\lim_{n \to \infty} \frac{n \lg n}{n^2} = \lim_{n \to \infty} \frac{\lg n}{n} = \lim_{n \to \infty} \frac{(\lg n)'}{(n)'} = \lim_{n \to \infty} \frac{\frac{1}{n}}{1} = \lim_{n \to \infty} \frac{1}{n} = 0$ For c = 0, $0 < c < \infty$ is false. Therefore $3n \lg n \notin \Theta(n^2)$.

Heap: complete binary tree

insert put bottom, then trickle up if necessary

remove last node swapped with root, trickle down if necessary

- height: floor(ign)

- insert: O(lgn) because height

delete: 3(floor(lg(n-1))+1) is O(lgn)

re-order +LR In-order: L+R Post-order LR+

in-order predecessor: left, rightmost in-order successor: right, leftmost

phi = (1 + sqrt(5))/2

fibbonaci(n) = (phi^n-(-phi)^(-n))/sqrt(5),

(n/2)ig(n/2) = (n/2)(ign-ig2) = (n/2)(ign-(1/2)ign) n = 4(n/4)ign c=1/4

(a) Simple Double Rotation Left

(b) Complex Double Rotation Left

Figure 7: Double Rotation Left

path from the root to a leaf. An empty tree has a height of -1; a tree with only one node has a height of 0.

Definition 16. A perfect binary tree is a binary tree of height h with no missing nodes. All leaves are at level n and all other nodes each have two children

Definition 17. A full binary tree is a binary tree in which each node has 0 or two children.

Definition 18. A complete binary tree is a binary tree of height h that is perfect to level h 1 and has level h filled in from left to right

Definition 19. A balanced binary tree is a binary tree in which the left and right subtrees of any node have heights that differ by at most 1.

tail-recursion: your last call is to the function ex: return n * f(n-1) non-tail-recursion: not the top ex: return n * f'(n) mutual recursion: ex: the even odd thing

box method trace of recursion

memoization: top-down f(5) = 5*f(4) = 5*4*f(3)

tabulization: bottom-up 1*2*3*4*5.... 1, 2, 6, 24, 120.....

3. Right of Left A subtree of a tree that is left high becomes right high.

leaf node: just remove it only left/right rode: replace w/ child both: sucessor/predessor node

Determine x, y and z him the tri mode restructure operation:

discrete (0/1) knapsack:

$$V[i,j] = \begin{cases} \max \left(V[i-1,j], V[i-1,j-w_i] + v_i\right), & w_i \leq W_j \\ V[i-1,j], & otherwise \end{cases}$$

fractional(continuous) knapsack: greedy

Claim is true

A.) Determinal Let f and a be functions from 2 = 2!

Ken E. (gen)) if the Cent In. 62! I fend egen), to 2 ho B.) fen E orgen) and fine K., K=0

C.) Let fen)=3 Innor and gen=n. I want to show

The Line Sinner and gen=n. I want to show

The Line Sinner and gen = now In . 2 = 2 = 0

E.) e. (Sinner) = now In . 2 = 2 = 0

E.) e. (Sinner) = now In . 2 = 2 = 0

Claim Let typ, h be further from 2 = 2 = 0

If ten to egen and gen to others then the cogn)

A proof using family

Proof:

- A. Let f and g be functions from Z⁺ → R⁺ that is, positive real valued functions on the domain of positive integers, f(n) ∈ ⊕(g(n)) ⇔ lum ^{D(n)}/_{g(n)} = v, 0 < v < ∞.</p>
- If Let $f(n) = (n^2 + 4n 5)^2$ and $g(n) = n^n$
- C. I want to show that $\lim_{n\to\infty} \frac{\left(n^2+4n-1\right)^2}{s^2} c$, $0 < c < \infty$
- D. $\lim_{n\to\infty} \frac{\left(\frac{n^2+4n-2}{n^2}\right)^2}{n^2} = \lim_{n\to\infty} \left(\frac{n^2+4n-2}{n^2}\right)^2 = \lim_{n\to\infty} \left(\frac{n^2}{n^2} + \frac{n^2}{n^2} \frac{n^2}{n^2}\right)^2 = \left[\lim_{n\to\infty} \left(\frac{n^2}{n^2} + \frac{n^2}{n^2} \frac{n^2}{n^2}\right)^2 (1+0-0)^4 1\right]$ For r = 1, $\lim_{n\to\infty} \frac{P(n)}{n^2} = r$, $0 \le r < \infty$. Therefore $(n^2 + 4n - 5)^2 \in \Theta(n^2)$.

*rove the following theorem using the defintion of the Big-O asymptotic intation

Theorem 3.

impose d, e, f and g are functions from $\mathbb{Z}^+ \to \mathbb{R}^+$. If $d(n) \in O(c(n))$ and $\ell(n) \in O(g(n))$, then $d(n) + f(n) \in O(c(n) + g(n))$

*roof:

- A. Given $d(n) \in \Omega(c(n)) \iff d(n) \le c_1c(n) \ \forall n \ge n_1$, where $c_1 \in \mathbb{R}^s$ and $n_1 \in \mathbb{Z}^s$.
- B. Given f(n) ∈ O(g(n)) «⇒ f(n) ≤ eg(n) ∀n ≥ n_Z, where e_Z ∈ ℝ^{*} and n_Z ∈ Z^{*}
- C. I want to find c ∈ R⁺ and n₀ ∈ Z⁺ such that d(n)+f(n) ≤ c(c(n) + g(n)) ∀n ≥ n₀, where c ∈ R⁺ and n₀ ∈ Z⁺.
- D. Using the additive property of inequality on the inequalities in A and B and using the intersection of the half open intervals defined in A and B, we get: d(n) + f(n) ≤ c₁e(n) + c₂g(n) ∀n ≥ max(n₁, n₂).
- E. Using the inequality in D, the fact that c₁e(n)+c₂g(n) ≤ max(c₁, c₂) (e(n) + g(n)).
 ∀n ≥ max(n₁, n₂) and the transitive property of inequality, we get d(n) + f(n) ≤ max(c₁, c₂) (e(n) + g(n)). ∀n ≥ max(n₁, n₂).
- F. For $e = max(e_1, e_2)$ and $n_o = max(n_1, n_2)$, we get $d(n)+f(n) \le e(e(n)+g(n))$. $\forall n \ge n_0 \Rightarrow d(n)+f(n) \in O(e(n)+g(n))$. Therefore, if $d(n) \in O(e(n))$ and $f(n) \in O(g(n))$, then $d(n)+f(n) \in O(e(n)+g(n))$.