MAT327: Introduction to Topology. Solutions to the Big List Problems

Anmol Bhullar

 $\begin{tabular}{ll} Undergraduate Student University of Toronto, Scarborough E-mail $address$: anmol.bhullar@mail.utoronto.ca \end{tabular}$

Thank you to my instructor Ivan Khatchatourian for providing these wonderful problems.

Contents

Chapter 1.	Preface	i	X
Chapter 2.	Topologies		1

Preface

I attempt to answer and LATEXall of the solutions to the big list of problems posted by my instructor Ivan Khatchatourian for MAT327: Introduction to Topology. The problems are separated into difficulties which are labelled via asterisks. One asterisk being the lowest difficulty and 3 being the highest. Especially hard problems are marked via a cross. This is the format my instructor uses and I'm merely copying it for consistency's sake.

Chapter 2

Topologies

Ex. 1 — * Fix $a < b \in \mathbb{R}$. Show explicitly that the open interval (a, b) is open in \mathbb{R}_{usual} . Show explicitly that the interval [a, b) is not open in \mathbb{R}_{usual} .

Answer (Ex. 1) — First, we show that (a, b) is open in \mathbb{R}_{usual} .

Ex. 2 — * Let X be a set and $\mathcal{B} = \{\{x\} : x \in X\}$. Show that the only topology on X that contains \mathcal{B} as a subset is the discrete topology.