Catégories triangulées, exemples.

1 Compléments sur les définitions

On a vu dans l'épisode précédent que les foncteurs Hom sont cohomologiques : soient $A \in \mathcal{D}$ et $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ un triangle exact, on a une suite exacte

$$\operatorname{Hom}\left(A,X\right) \xrightarrow{f_{*}} \operatorname{Hom}\left(A,Y\right) \xrightarrow{g_{*}} \operatorname{Hom}\left(A,Z\right) \xrightarrow{h_{*}} \operatorname{Hom}\left(A,X[1]\right) \xrightarrow{f[1]_{*}} \operatorname{Hom}\left(A,Y[1]\right)$$

Une façon de voir cette suite exacte courte est de dire que f est un 'noyau faible' de g, au sens où , si $\iota: A \to Y$ est tel que $g\iota = 0$, alors $\iota \in \operatorname{Ker} g_* = \operatorname{Im} f_*$, autrement dit il existe $\varphi \in \operatorname{Hom}(A, X)$ tel que $f\varphi = \iota$. Tout ceci se résume dans le diagramme suivant :

$$X \xrightarrow{\exists \varphi} Y \xrightarrow{0} Z$$

Tout en rappelant la propriété universelle du noyau, ce résultat s'en éloigne car il manque l'unicité dans le morphisme de factorisation, c'est pour ça qu'on parle de noyau *faible*, plus généralement, on parlera de 'limite faible' ou de 'colimite faible' si on a existence d'un morphisme de factorisation, mais pas forcément unicité.

De la même manière, on peut montrer que g est un conoyau faible de f, et c'est le manque de 'canonicité' de la factorisation qui fait que Z = C(f) n'est pas défini fonctoriellement (le cône de f est simplement un 'conoyau faible' dans le sens précédent).

Manifestement, dans une catégorie triangulée, on a existence des noyaux faibles et conoyaux faibles (et même unicité à isomorphisme <u>non canonique</u> près), on peut se poser des questions similaires concernant les pushout et pullbacks :

1.1 Pushout et pullbacks faibles

Dans une catégorie additive, on voit qu'un carré de la forme

$$X \xrightarrow{f} Y$$

$$x \downarrow \qquad \qquad \downarrow y$$

$$X' \xrightarrow{f'} Y'$$

est commutatif si et seulement si la composée suivante est nulle

$$X \xrightarrow{\binom{-f}{x}} Y \oplus X' \xrightarrow{(y \ f')} Y'$$

<u>Lemme</u> 1.1. Dans une catégorie abélienne, soit un carré de la forme précédente. Alors le carré est un

- (a) Pushout \Leftrightarrow on a la suite exacte: $X \xrightarrow{\binom{-f}{x}} Y \oplus X' \xrightarrow{(y \ f')} Y' \longrightarrow 0$
- (b) Pullback \Leftrightarrow on a la suite exacte : $0 \longrightarrow X \xrightarrow{\binom{-f}{x}} Y \oplus X' \xrightarrow{(y \ f')} Y'$
- (c) Bicartésien \Leftrightarrow on a la suite exacte : $0 \longrightarrow X \xrightarrow{\binom{-f}{x}} Y \oplus X' \xrightarrow{(y \ f')} Y' \longrightarrow 0$

 $D\'{e}monstration$. Exercice (penser à la propriété universelle du noyau/ du conoyau)

On remarque ainsi que si f' est un épimorphisme, il en va de même de $(y \ f')$, et donc le carré, si il commute, est automatiquement un pushout. On peut tenter de reformuler ces caractésisations dans une catégorie abélienne, en remplacant suite exacte par triangle exacte!

Définition 1.2. Soit \mathcal{D} une catégorie triangulée, un carré

$$X \xrightarrow{f} Y$$

$$x \downarrow y$$

$$X' \xrightarrow{f'} Y'$$

est dit $carré\ homotopique\ s'il$ existe $\delta:Y'\to X[1]$ tel que l'on ait un triangle distingué

$$X \xrightarrow{\binom{-f}{x}} Y \oplus X' \xrightarrow{(y \ f')} Y' \xrightarrow{\delta} Y[1]$$

On a alors que (x, f) est un **pullback faible** de (f', y) et que (f', y) est un **pushout faible** de (x, f).

Grâce aux axiomes TR1 (et TR2), on remarque que les pushout/pullback faibles existent dans une catégorie (pré)-triangulée, en construisant des triangles exacts à partir des morphismes $\binom{-f}{x}$ ou $(y\ f')$.

1.2 Équivalents à l'axiome de l'octaèdre

Désormais motivés par les notions de pushout et pullback faible, nous allons pouvoir introduire quelques versions équivalentes à l'axiome de l'octaèdre dans cette partie, essentiellement issue de [?], nous ne reproduirons pas les preuves des équivalences entre les axiomes : elles sont plutôt techniques et peu instructives.

Commençons par réecrire l'axiome de l'octaèdre : on peut le résumer dans le diagramme commutatif suivant, dont les lignes et les colonnes sont des triangles exacts :

avec f[1]h' = wv'.

Cet axiome un peu obscur admet un pendant bien plus familier dans une catégorie abélienne : Imaginons un instant que l'on travaille non pas avec des triangles exacts mais avec des suites exactes courtes $X \longrightarrow Y \longrightarrow Y/X$, le diagramme précédent se réecrirait comme :

$$X \xrightarrow{f} Y \xrightarrow{g} Y/X$$

$$\downarrow u \qquad \qquad \downarrow u'$$

$$X \xrightarrow{f'} Y' \xrightarrow{g'} Y'/X$$

$$\downarrow v \qquad \qquad \downarrow v'$$

$$Y'/Y = Y'/Y$$

Qui nous apprend en somme que $Y'/Y \sim Y'/X/Y/X$. On reconnaitra avec bonheur le troisième théorème d'isomorphisme!

Par ailleurs, on peut voir l'axiome de l'octaèdre comme un renforcement de l'axiome TR3 : en effet, dans un diagramme de la forme

$$X \longrightarrow Y \longrightarrow Z \longrightarrow X[1]$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \longrightarrow Y' \longrightarrow Z' \longrightarrow X[1]$$

On peut appliquer TR1 sur le morphisme $Y \to Y'$ pour se retrouver dans la situation initiale de l'octaèdre : ce dernier affirme alors en particulier l'existence d'un morphisme $Z \to Z'$ donnant un morphisme de triangles.

Une version équivalente de l'octaè dre consiste alors en un autre renforcement de TR3, imposant une condition de carré homotopique :

Proposition 1.3. Dans une catégorie pré-triangulée, il est équivalent d'avoir TR4 et d'avoir la propriété :

Dans tout diagramme commutatif de la forme

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$$

$$\parallel \qquad \qquad \downarrow^{y} \qquad \qquad \parallel$$

$$X \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{h'} X[1]$$

dont les lignes sont des triangles exacts, il existe $z:Z\to Z'$ faisant de $[1_X,y,z]$ un morphisme de triangles, tel que

$$Y \xrightarrow{\begin{pmatrix} -g \\ y \end{pmatrix}} Z \oplus Y' \xrightarrow{\begin{pmatrix} z & g' \end{pmatrix}} Z' \xrightarrow{f[1]h'} Y[1]$$

soit un triangle exact.

Cet axiome admet une version duale (elle aussi équivalente à TR4)

Proposition 1.4. Dans une catégorie pré-triangulée, il est équivalent d'avoir TR4 et d'avoir la propriété :

Dans tout diagramme commutatif de la forme :

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$$

$$\parallel \qquad \qquad \downarrow^{z} \qquad \parallel$$

$$X \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{h'} X[1]$$

dont les lignes sont des triangles exacts, il existe $y: Y \to Y'$ faisant de $[1_X, y, z]$ un morphisme de triangles, tel que

$$Y \xrightarrow{\begin{pmatrix} -g \\ y \end{pmatrix}} Z \oplus Y' \xrightarrow{\begin{pmatrix} z & g' \end{pmatrix}} Z' \xrightarrow{f[1]h'} Y[1]$$

soit un triangle exact.

Il existe encore d'autres équivalents, détaillés dans [?], notamment que l'on peut reconstituer des morphismes de triangles exacts à partir de carrés homotopiques...

2 Catégorie homotopique de la catégorie des complexes

2.1 Définition, cône de morphisme

On se place dans \mathcal{A} une catégorie abélienne, la catégorie $C(\mathcal{A})$ des complexes de chaînes sur \mathcal{A} est elle même une catégorie abélienne.

Soient $C, D \in C(A)$ et $f, g : C \to D$ deux morphisme, on rappelle que f et g sont **homotopes** s'il existe $h_n : C_n \to C_{n+1}$ pour $n \in \mathbb{Z}$, avec $\delta_{n+1}h_n + h_{n-1}d_n = f_n - g_n$.

$$\cdots \longrightarrow C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \longrightarrow \cdots$$

$$g_{n+1} \left(\begin{array}{c} h_n \\ f_{n+1} \end{array} \right) g_n \left(\begin{array}{c} h_{n-1} \\ f_n \end{array} \right) g_{n-1} \left(\begin{array}{c} f_{n-1} \\ f_{n-1} \end{array} \right)$$

$$\cdots \longrightarrow D_{n+1} \xrightarrow{\delta_{n+1}} D_n \xrightarrow{\delta_n} D_{n-1} \xrightarrow{\delta_{n-1}} \cdots$$

Cette relation d'homotopie est une relation d'équivalence, compatible à la composition, ce qui permet de définir $\mathcal{K}(\mathcal{A})$ la catégorie homotopique de la catégorie des complexes : ses objets sont ceux de $C(\mathcal{A})$, et les morphismes sont les morphismes de complexes à homotopie près.

<u>Proposition</u> 2.1. La catégorie $\mathcal{K}(A)$ est additive.

Démonstration. La somme des morphismes de complexe passe bien à l'homotopie, ainsi $\operatorname{Hom}_{\mathcal{K}}(C,D)$ est bien un groupe abélien. De même, si $(X_i)_{i\in \llbracket 1,k\rrbracket}$ est une famille finie de complexes, on a un biproduit des X_i dans $C(\mathcal{A})$, il s'agit encore d'un biproduit dans $\mathcal{K}(\mathcal{A})$. \square

<u>Remarque</u> 2.2. À ce stade, on est en droit de se poser la question : est-ce que $\mathcal{K}(\mathcal{A})$ est une catégorie abélienne. C'est (mal)heureusement faux, en effet nous allons voir que $\mathcal{K}(\mathcal{A})$ est une catégorie triangulée. Et les structures de catégories abéliennes et triangulées sont 'incompatibles' dans le sens suivant :

Proposition 2.3. Soit \mathcal{A} une catégorie abélienne. Si $(\mathcal{A}, [1], \mathbb{T})$ est une catégorie triangulée, alors \mathcal{A} est une catégorie semi-simple (toute les suites exactes courtes sont scindées).

Démonstration. Considérons une suite exacte courte $0 \longrightarrow X \xrightarrow{f} Y \xrightarrow{g} Z \longrightarrow 0$, par TR1, on inclus f dans un triangle exact

$$X \xrightarrow{f} Y \xrightarrow{g'} Z' \xrightarrow{h} X[1]$$

Par rotation, on a un triangle exact $Z'[-1] \xrightarrow{h[-1]} X \xrightarrow{f} y \xrightarrow{g'} Z'$, comme la composée de deux morphismes dans un triangle exact est nulle, on a fh[-1] = 0, et donc h[-1] = 0 car f est un monomorphisme, donc h = 0. On a ainsi un diagramme commutatif dont les lignes sont exactes

$$X \xrightarrow{f} Y \xrightarrow{g'} Z' \xrightarrow{0} X[1]$$

$$\downarrow 0 \qquad \qquad \downarrow 0$$

$$X \xrightarrow{1_{X}} X \xrightarrow{0} 0 \xrightarrow{0} X[1]$$

En utilisant TR2 et TR3, on obtient un morphisme $r: Y \to X$ donnant une morphisme de triangles, en particulier $rf = 1_X$, et f est un monomorphisme scindé.

Ainsi, si $\mathcal{K}(\mathcal{A})$ est abélienne, elle est semi simple, ce qui entraîne que \mathcal{A} est semi-simple : soit $0 \to A \to B \to C \to 0$ une suite exacte courte de \mathcal{A} , on peut la voir comme une suite exacte courte de $C(\mathcal{A})$ (en voyant A, B, C comme des complexes concentrés en degré 0), cette suite est également une suite exacte courte dans $\mathcal{K}(\mathcal{A})$ (en effet, si C et D sont deux complexes concentrés en degré 0, il n'y a pas d'homotopie non nulle entre les morphismes $C \to D$). Elle est donc scindée par ce qui précède, et il en va alors de même de la suite de départ, donc \mathcal{A} est semi-simple.

Mais revenons à nos moutons : il faut montrer que $\mathcal{K}(\mathcal{A})$ est une catégorie triangulée, et pour ça nous devons construire le foncteur de translation. Soit $C \in C(\mathcal{A})$, on définit C[1] comme le complexe décalé vers la gauche :

$$\cdots \longrightarrow C_n \xrightarrow{-d_n} C_{n-1} \xrightarrow{-d_{n-1}} C_{n-2} \longrightarrow \cdots$$

$$n+1 \qquad n \qquad n-1$$

On a donc $C[1]_n = C_{n-1}$ et $d[1]_n = -d_{n-1}$ (le signe est important, on verra pourquoi). De même, si $f: C \to D$ est un morphisme de complexes, on peut poser $f[1]: C[1] \to D[1]$ par $f[1]_n = f_{n-1}$, qui donne évidemment un morphisme de complexe : on a bien un foncteur $C(A) \to C(A)$, on voit de plus que si f est homotope à 0, il en va de même de f[1] : le foncteur [1] donne bien un foncteur $\mathcal{K}(A) \to \mathcal{K}(A)$.

<u>Lemme</u> 2.4. Le foncteur [1] est un automorphisme additif de $\mathcal{K}(\mathcal{A})$, sa réciproque est le décalage vers la droite [-1].

À présent, pour $f:C\to D$ un morphisme de complexe, on définit le $c\hat{o}ne$ de f par $M(f)_n=X_{n-1}\oplus Y_n$, muni de la différentielle $\Delta_n=\begin{pmatrix} -d_{n-1} & 0\\ f_{n-1} & \delta_n \end{pmatrix}$, on obtient bien un complexe de chaîne (calcul immédiat). On a de plus des morphismes canoniques $\alpha(f):Y\to M(f)$ et $\beta(f):M(f)\to X[1]$ donnés par $\alpha(f)_n=\begin{pmatrix} 1_{Y_n}\\ 0 \end{pmatrix}$ et $\beta(f)=\begin{pmatrix} 0&1_{X_{n-1}}\end{pmatrix}$ (c'est bien grâce au signe dans la différentielle de X[1] que $\beta(f)$ est un morphisme).

Exemple 2.5. • Le morphisme nul $X \to 0$ a pour cône X[1], le morphisme nul $0 \to X$ a pour cône X.

• Si A et B sont des complexes concentrés en degré 0, et $f:A\to B$ un morphisme, alors le cône de f est le complexe

• Le cône $M(1_X)$ est un complexe contractile, donc isomorphe au complexe nul dans $\mathcal{K}(\mathcal{A})$.

2.2 La catégorie $\mathcal{K}(\mathcal{A})$ est triangulée

On appelle triangle standard dans $\mathcal{K}(\mathcal{A})$ tout triangle de la forme

$$X \xrightarrow{f} Y \xrightarrow{\alpha(f)} M(f) \xrightarrow{\beta(f)} X[1]$$

et on définit les triangles exacts de $\mathcal{K}(\mathcal{A})$ comme les triangles isomorphes (comme triangles dans $\mathcal{K}(\mathcal{A})$) à un triangle standard.

<u>Théorème</u> 2.6. La catégorie $\mathcal{K}(A)$, munie du foncteur [1] et de la classe de triangles exacts ainsi définie est une catégorie triangulée.

<u>Remarque</u> 2.7. Cette procédure de définir une classe de triangles 'standards', puis de définir <u>les triangles</u> exacts comme les triangles isomorphes aux triangles standards est une stratégie assez commune pour construire des catégories triangulées.

Démonstration. On vérifie machinalement les différents axiomes :

<u>TR1</u>: Par définition, la classe des triangles exacts est stable par isomorphisme de triangles. Ensuite, tout morphisme $f: C \to D$ dans $\mathcal{K}(\mathcal{A})$ se complète en un triangle standard, en particulier en un triangle exact.

Enfin, le cône du morphisme $1_C:C\to C$ est un complexe contractile (cf remarque précédente) : on a alors un isomorphisme de triangles :

$$C \xrightarrow{1_C} C \xrightarrow{\alpha(1_C)} M(1_C) \xrightarrow{\beta(1_C)} C[1]$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \downarrow_0 \qquad \qquad \parallel$$

$$C \xrightarrow{1_X} C \longrightarrow 0 \longrightarrow C[1]$$

(notons bien que c'est un isomorphisme dans $\mathcal{K}(\mathcal{A})$, pas du tout dans $C(\mathcal{A})$ à priori), ainsi, on a bien un triangle exact

$$C \xrightarrow{1_C} C \longrightarrow 0 \longrightarrow C[1]$$

 $\underline{\mathrm{TR2}}$: Il suffit de montrer TR2 pour la classe des triangles standards. Considérons donc $C \xrightarrow{f} D \xrightarrow{\alpha(f)} M(f) \xrightarrow{\beta(f)} C[1]$ un triangle standard, nous allons montrer que les triangles

$$D \xrightarrow{\alpha(f)} M(f) \xrightarrow{\beta(f)} C[1] \xrightarrow{-f[1]} D[1] \quad \text{ et } \quad D \xrightarrow{\alpha(f)} M(f) \xrightarrow{\alpha(\alpha(f))} M(\alpha(f)) \xrightarrow{\beta(\alpha(f))} D[1]$$

Sont isomorphes dans $\mathcal{K}(\mathcal{A})$, on travaille donc à homotopie près.

Pour construire notre isomorphisme, on considère les morphismes $\phi:C[1]\to M(\alpha(f))$ et $\psi:M(\alpha(f))\to C[1]$ définis par

$$\phi_n = \begin{pmatrix} -f_{n-1} \\ 1_{C_{n-1}} \\ 0 \end{pmatrix} : C_{n-1} \to D_{n-1} \oplus C_{n-1} \oplus D_n \text{ et } \psi_n = \begin{pmatrix} 0 & 1_{C_{n-1}} & 0 \end{pmatrix} : D_{n-1} \oplus C_{n-1} \oplus D_n \to C_{n-1}$$

(on vérifie immédiatement qu'ils s'agit de morphismes de complexes) On construit alors les diagrammes :

On doit montrer qu'il s'agit bien de morphismes de triangles : d'un côté, on a bien $\beta(\alpha(f)) \circ \phi = -f[1]$, et de l'autre, on a seulement une homotopie entre $\phi \circ \beta(f)$ et $\alpha(\alpha(f))$, homotopie donné par les morphismes d'homotopie

$$s_n = \begin{pmatrix} 0 & -1_{Y_n} \\ 0 & 0 \\ 0 & 0 \end{pmatrix} : M(f)_n = X_{n-1} \oplus Y_n \to M(\alpha(f))_{n+1} = Y_n \oplus X_n \oplus Y_{n+1}$$

En effet, on a

$$(\phi \circ \beta(f))_n - \alpha(\alpha(f)) = \begin{pmatrix} -f_{n-1} \\ 1_{X_{n-1}} \\ 0 \end{pmatrix} \begin{pmatrix} 1_{X_{n-1}} & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 1_{X_{n-1}} & 0 \\ 0 & 1_{Y_n} \end{pmatrix}$$

$$= \begin{pmatrix} -f_{n-1} & 0 \\ 1_{X_{n-1}} & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 1_{X_{n-1}} & 0 \\ 0 & 1_{Y_n} \end{pmatrix}$$

$$= \begin{pmatrix} -f_{n-1} & 0 \\ 0 & 0 \\ 0 & -1_{Y_n} \end{pmatrix}$$

et

$$\begin{split} d_{n+1}^{M(\alpha(f))} \circ s_n + s_{n-1} \circ d_n^{M(f)} &= \begin{pmatrix} -d_n^Y & 0 & 0 \\ 0 & -d_n^X & 0 \\ 1_{Y_n} & f_n & d_{n+1}^Y \end{pmatrix} \begin{pmatrix} 0 & -1_{Y_n} \\ 0 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -1_{Y_{n-1}} \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -d_{n-1}^X & 0 \\ f_{n-1} & d_n^Y \end{pmatrix} \\ &= \begin{pmatrix} 0 & d_n^Y \\ 0 & 0 \\ 0 & -1_{Y_n} \end{pmatrix} + \begin{pmatrix} -f_{n-1} & -d_n^Y \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &= \begin{pmatrix} -f_{n-1} & 0 \\ 0 & 0 \\ 0 & -1_{Y_n} \end{pmatrix} \end{split}$$

De la même manière, ψ est un morphisme de triangles car $\beta(f) = \psi \circ \alpha(\alpha(f))$ par définition, et $-f[1] \circ \psi \sim \beta(\alpha(f))$ par l'homotopie $(0\ 0\ -1_{X_n}): M(\alpha(f))_n \to Y[1]_n$. Enfin ces morphismes sont des isomorphismes dans $\mathcal{K}(\mathcal{A})$ car $\psi \circ \phi = 1_{X[1]}$ (par définition) et $\phi \circ \psi \sim 1_{M(\alpha(f))}$ par les morphismes d'homotopie

$$\begin{pmatrix} 0 & 0 & -1_{Y_{n+1}} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} : M(\alpha(f))_n \to M(\alpha(f))_{n+1}$$

<u>TR3</u>:À nouveau, il suffit de montrer le résultat pour les triangles standards : soit donc un diagramme commutatif

$$C \xrightarrow{f} D \xrightarrow{\alpha(f)} M(f) \xrightarrow{\beta(f)} C[1]$$

$$\downarrow^{x} \qquad \downarrow^{y} \qquad \downarrow^{x[1]}$$

$$C' \xrightarrow{f'} D' \xrightarrow{\alpha(f')} M(f') \xrightarrow{\beta(f')} C'[1]$$

On pose $z: M(f) \to M(f')$ par $z_n = \begin{pmatrix} x_{n-1} & 0 \\ 0 & y_n \end{pmatrix}$, il s'agit d'un morphisme de complexes, qui fait commuter le diagramme ci-dessus dans $C(\mathcal{A})$ (donc à fortiori dans $\mathcal{K}(\mathcal{A})$). TR4: L'axiome de l'octaèdre: On le montre directement dans sa forme classique. À nouveau on peut se contenter du cas des triangles standards, soit un diagramme commutatif

$$C \xrightarrow{f} D \xrightarrow{\alpha(f)} M(f) \xrightarrow{\beta(f)} C[1]$$

$$\parallel \qquad \qquad \downarrow^{y} \qquad \qquad \parallel$$

$$C \xrightarrow{f'} D' \xrightarrow{\alpha(f')} M(f') \xrightarrow{\beta(f')} C[1]$$

$$\downarrow^{\alpha(y)} \qquad \qquad \downarrow^{\beta(y)}$$

$$D[1]$$

Il reste à construire les morphismes $z:M(f)\to M(f'),\ z':M(f')\to M(y)$ et $z'':M(y)\to M(f)$ [1] qui conviennent : on pose

$$z_n = \begin{pmatrix} 1_{C_{n-1}} & 0 \\ 0 & y_n \end{pmatrix} \qquad z'_n = \begin{pmatrix} f_{n-1} & 0 \\ 0 & 1_{D'_n} \end{pmatrix} \qquad z''_n = \alpha(f)[1] \circ \beta(y) = \begin{pmatrix} 0 & 0 \\ 1_{D_{n-1}} & 0 \end{pmatrix}$$

On vérifie immédiatement les relations de commutativité (elle sont vraies dans C(A), pas besoin d'avoir recours à des homotopies). Il ne reste plus qu'à montrer que le triangle

$$M(f) \xrightarrow{z} M(f') \xrightarrow{z'} M(y) \xrightarrow{z''} M(f)[1]$$

est exact, pour ce faire, on va construire un isomorphisme (dans $\mathcal{K}(\mathcal{A})$) entre ce triangle et le triangle standard

$$M(f) \xrightarrow{z} M(f') \xrightarrow{\alpha(z)} M(z) \xrightarrow{\beta(z)} M(f)[1]$$

On recherche donc des morphismes de triangles de la forme $(1_{M(f)}, 1_{M(f')}, \sigma)$ et $(1_{M(f)}, 1_{M(f')}, \tau)$, étant inverses l'un de l'autre. Donc les morphisme σ et τ doivent donc respecter (dans $\mathcal{K}(\mathcal{A})$):

$$\sigma \circ z' = \alpha(z) \quad \beta(z) \circ \sigma = z'' \quad \tau \circ \sigma = 1_{M(y)}$$

$$z' = \tau \circ \alpha(z) \quad \beta(z) = z'' \circ \tau \quad \sigma \circ \tau = 1_{M(z)}$$

On pose

$$\sigma_{n} = \begin{pmatrix} 0 & 0 \\ 1_{D_{n-1}} & 0 \\ 0 & 0 \\ 0 & 1_{D'_{n}} \end{pmatrix} : D_{n-1} \oplus D'_{n} \to C_{n-2} \oplus D_{n-1} \oplus C_{n-1} \oplus D'_{n}$$

$$\tau_{n} = \begin{pmatrix} 0 & 1_{D_{n-1}} & f_{n-1} & 0 \\ 0 & 0 & 0 & 1_{D'} \end{pmatrix} : C_{n-2} \oplus D_{n-1} \oplus C_{n-1} \oplus D'_{n} \to D_{n-1} \oplus D'_{n}$$

On obtient directement

$$(\tau \circ \alpha(z))_n = \begin{pmatrix} 0 & 1_{D_{n-1}} & f_{n-1} & 0 \\ 0 & 0 & 0 & 1_{D'_n} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1_{D_{n-1}} & 0 \\ 0 & 1_{D'_n} \end{pmatrix} = \begin{pmatrix} f_{n-1} & 0 \\ 0 & 1_{D'_n} \end{pmatrix} = z'_n$$

$$(\beta(z) \circ \sigma)_n = \begin{pmatrix} 1_{C_{n-1}} & 0 & 0 & 0 \\ 0 & 1_{D_{n-1}} & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1_{D_{n-1}} & 0 \\ 0 & 0 \\ 0 & 1_{D'_n} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1_{D_{n-1}} & 0 \end{pmatrix} = z''_n$$

En revanche, les autres relations ne tiendrons qu'à l'aide d'une homotopie : On va montrer que

 $\alpha(z)$ est homotope à $\sigma \circ z'$, par les morphismes d'homotopie donnés par $s_n = \begin{pmatrix} 1_{C_{n-1}} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$:

$$M(f')_n \to M(z)_{n+1}$$
. On a

$$(\alpha(z) - \sigma \circ z')_n = \begin{pmatrix} 0 & 0 \\ -f_{n-1} & 0 \\ 1_{C_{n-1}} & 0 \\ 0 & 0 \end{pmatrix}$$

et en notant que

$$d_n^{M(z)} = \begin{pmatrix} -d_{n-1}^{M(f)} & 0 \\ z_{n-1} & d_n^{M(f')} \end{pmatrix} = \begin{pmatrix} d_{n-2}^C & 0 & 0 & 0 \\ -f_{n-2} & -d_{n-1}^D & 0 & 0 \\ 1_{C_{n-2}} & 0 & -d_{n-1}^C & 0 \\ 0 & y_{n-1} & f'_{n-1} & d_n^{D'} \end{pmatrix}$$

On vérifie directement qu'on a bien l'homotopie voulue :

$$d_{n+1}^{M(z)} \circ s_n + s_{n-1} \circ d_n^{M(f')} = \begin{pmatrix} d_{n-1}^C & 0 & 0 & 0 \\ -f_{n-1} & -d_n^D & 0 & 0 \\ 1_{C_{n-1}} & 0 & -d_n^C & 0 \\ 0 & z_n & f'_n & d_{n+1}^{D'} \end{pmatrix} \begin{pmatrix} 1_{C_{n-1}} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1_{C_{n-2}} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -d_{n-1}^C & 0 \\ f'_{n-1} & d_n^{D'} \end{pmatrix}$$
$$= \begin{pmatrix} d_{n-1}^C & 0 \\ -f_{n-1} & 0 \\ 1_{C_{n-1}} & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} -d_{n-1}^C & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ -f_{n-1} & 0 \\ 1_{C_{n-1}} & 0 \\ 0 & 0 \end{pmatrix}$$

De la même manière, on obtient que $\beta(z)$ est homotope à $z'' \circ \tau$ par les morphismes d'homotopie $s_n = \begin{pmatrix} 0 & 0 & 1_{C_{n-1}} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} : M(z)_n \to M(f)[1]_{n+1}.$

Il ne reste plus qu'à montrer que σ et τ sont des isomorphismes dans $\mathcal{K}(\mathcal{A})$, on a déjà $\tau \circ \sigma = 1_{M(y)}$ par définition, et réciproquement, on a

$$(\sigma \circ \tau)_n = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1_{D_{n-1}} & f_{n-1} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1_{D'_n} \end{pmatrix}$$

Si l'on pose les morphismes d'homotopie par $s_n: M(z)_n \to M(z)_{n+1}$ par

alors on a à nouveau $\sigma \circ \tau \sim 1_{M(z)}$. On a donc bien que $\mathcal{K}(\mathcal{A})$ est une catégorie triangulée. \square

Bibliographie

- [1] Cody Holdaway, Kevin Zatloukal, THE STABLE CATEGORY OF A FROBENIUS CATE-GORY IS TRIANGULATED, manuscript.
 https://sites.math.washington.edu/~julia/teaching/581D_Fall2012/StableFrobIsTriang.pdf
- [2] Andrew Hubery, NOTES ON THE OCTAHEDRAL AXIOM (2008). https://pdfs.semanticscholar.org/2246/900fb2f9694d965b6b6482f76d4d3c6b1206. pdf
- [3] Amnon Neeman, TRIANGULATED CATEGORIES Princeton University Press (2001). http://hopf.math.purdue.edu/Neeman/triangulatedcats.pdf
- [4] Jean-Louis Verdier, DES CATÉGORIES DÉRIVÉES DES CATÉGORIES ABÉLIENNES (1966).
- [5] Charles A. Weibel, AN INTRODUCTION TO HOMOLOGICAL ALGEBRA, Cambridge University Press (1994).
- [6] Alexander Zimmermann, REPRESENTATION THEORY: A HOMOLOGICAL POINT OF VIEW, Springer (2014).