Deux nouvelles opérations d'addition et de multiplication dans l'ensemble des nombres réels : corrigé

Partie 1 : quelques calculs avec les nouvelles opérations

1. On a
$$3 \otimes 4 = 3 \times 4 - 3 - 4 + 2 = 12 - 5 = 7$$
, donc $3 \otimes 4 = 7$ et $5 \otimes 6 = 30 - 5 - 6 + 2 = 21$, donc $5 \otimes 6 = 21$.

- **2.** On a pour tout x réel, $x \oplus 7 = 11 \Leftrightarrow x + 7 1 = 11 \Leftrightarrow x = 5$, donc l'équation admet pour unique solution 5.
- **3.** On a pour tout x réel, $x \otimes 8 = 13 \Leftrightarrow 8x 8 x + 2 = 13 \Leftrightarrow 7x = 19 \Leftrightarrow x = \frac{19}{7}$ donc la seule solution de l'équation est $\frac{19}{3}$.
- **4.** Pour tous réels x et y,

$$(x-1)(y-1) + 1 = xy - x - y + 1 + 1 = xy - x - y + 2 = x \otimes y$$
, soit $x \otimes y = (x-1)(y-1) + 1$.

5. Pour tous réels
$$x$$
 et y , on a, d'après la question 4,
$$\begin{cases} x \oplus y = 5 \\ x \otimes y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ (x - 1)(y - 1) + 1 = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ (x - 1)(y - 1) = 0 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x = 1 \text{ ou } y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - 1 = 5 \\ x$$

on peut donc prendre x = 1 et y = 5 ou x = 5 et y = 1.

Partie 2 : des propriétés algébriques des nouvelles opérations

- **1.** Pour tous les réels x et y, $x \oplus y = x + y 1 = y + x 1 = y \oplus x$, donc $x \oplus y = y \oplus x$, et $x \otimes y = xy - x - y + 2 = yx - y - x + 2 = y \otimes x$, donc $x \otimes y = y \otimes x$.
- **2.** Pour tous les réels x, y et z,

$$(x \oplus y) \oplus z = (x + y - 1) \oplus z = (x + y - 1) + z - 1 = x + (y + z - 1) - 1$$

= $x + y \oplus z - 1 = x \oplus (y \oplus z)$,

donc,
$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$
,

$$(x \otimes y) \otimes z = (xy - x - y + 2)z - (xy - x - y + 2) - z + 2$$

$$= xyz - xz - yz + 2z - xy + x + y - 2 - z + 2$$

$$= xyz - xz - xy + 2x - x - yz + y + z - 2 + 2$$

$$= x(yz - z - y + 2) - x - (yz - y - z + 2) + 2$$

$$= x(y \otimes z) - x - y \otimes z + 2 = x \otimes (y \otimes z),$$

 $donc(x \otimes y) \otimes z = x \otimes (y \otimes z).$

- **3.** Pour tout réel $x, x \oplus 1 = x + 1 1 = x = 1 + x 1 = 1 \oplus x$, donc $x \oplus 1 = 1 \oplus x = x$, et $x \otimes 2 = 2x - x - 2 + 2 = x$ et $x \otimes 2 = 2 \otimes x$ d'après la question 1, donc $x \otimes 2 = 2 \otimes x = x$.
- **4.** Pour tous réels x et y, $x \oplus y = 1 \Leftrightarrow x + y 1 = 1 \Leftrightarrow y = 2 x$, donc grâce à la question 1, pour tout réel x, il existe un unique réel y tel que $x \oplus y = y \oplus x = 1$.
- **5.** Grâce à la question 1, pour tout réel x tel que $x \ne 1$, tout réel y, $x \otimes y = y \otimes x = 2 \Leftrightarrow x \otimes y = 2 \Leftrightarrow xy - x - y + 2 = 2 \Leftrightarrow xy - x - y = 0$

$$\Leftrightarrow y(x-1) = x \Leftrightarrow y = \frac{x}{x-1}$$

Donc pour tout réel x tel que $x \ne 1$, il existe un unique réel y tel que $x \otimes y = y \otimes x = 2$.

Partie 3: un peu d'algorithmique en langage Python

suite(7,3) renvoie (7 \otimes 3; 2 \otimes 7 \otimes 7 \otimes 7) c'est-à-dire (7 \otimes 3; 7 \otimes 7 \otimes 7)

Partie 4 : nouvelles opérations et relation d'ordre

- **1.** Pour tous les réels x, y et z, $x \ge y \Leftrightarrow x + z 1 \ge y + z 1 \Leftrightarrow x \oplus z \ge y \oplus z$, donc $x \ge y$ si et seulement si $x \oplus z \ge y \oplus z$.
- **2.** Pour tous les réels x, y et z, si $x \ge y$ et $z \ge 1$, alors, comme $z 1 \ge 0$, $x(z 1) \ge y(z 1)$ $xz x \ge yz y$, $xz x z + 2 \ge yz y z + 2$, donc $x \otimes z \ge y \otimes z$.
- **3.** Pour tous réels x et a, avec a > 1, tout entier naturel n, comme a 1 > 0, on a : $n \otimes a \geqslant x \Leftrightarrow na n a + 2 \geqslant x \Leftrightarrow n(a 1) \geqslant x + a 2 \Leftrightarrow n \geqslant \frac{x + a 2}{a 1}$, il suffit donc de choisir un entier naturel supérieur ou égal à $\frac{x + a 2}{a 1}$.

Partie 5 : divisibilité et nombres premiers avec la nouvelle multiplication

- **1.** On cherche d entier supérieur ou égal à 1 tel que $26 \otimes d = 76$, soit 26d 26 d + 2 = 76, soit 25d = 100, soit d=4, donc $26 \otimes 4 = 76$.
- **2.** Liste des nombres premiers au sens de la multiplication \otimes , inférieurs ou égaux à 10 : 3 ; 4 ; 6 ; 8.

Liste établie par test pour chaque entier inférieur ou égal à 10.

On a $1 \otimes 3 = 3 - 1 - 3 + 2 = 1$, donc 1 n'est pas premier.

Le nombre 2 n'est pas distinct de lui-même, donc 2 n'est pas premier.

Pour tous *d* et *e*, entiers supérieurs ou égaux à 1, on a, d'après la question A] 4,

$$e \otimes d = 3 \Leftrightarrow (e-1)(d-1) + 1 = 3 \Leftrightarrow (e-1)(d-1) = 2$$
,

donc
$$e - 1 = 1$$
 et $d - 1 = 2$, soit $e = 2$ et $d = 3$, ou $e - 1 = 2$ et $d - 1 = 1$,

soit
$$e = 3$$
 et $d = 2$.

donc 3 est premier au sens de la multiplication \otimes , donc 3 est le plus petit nombre premier au sens de la multiplication \otimes .

3. Pour tous d et e entiers supérieurs ou égaux à 1, on a, d'après la question P1-Q4,

$$e \otimes d = 46 \Leftrightarrow (e-1)(d-1) + 1 = 45 \Leftrightarrow (e-1)(d-1) = 45$$

donc e = 6 et d = 10 conviennent;

Pour tous x et y entiers supérieurs ou égaux à 1,

$$x \otimes y = 6 \Leftrightarrow (x-1)(y-1) + 1 = 6 \Leftrightarrow (x-1)(y-1) = 5$$

donc x = 2 et y = 6, ou x = 6 et y = 2, donc 6 est premier au sens de la multiplication \otimes ;

en outre, pour tous x et y entiers supérieurs ou égaux à 1,

$$x \otimes y = 10 \Leftrightarrow (x-1)(y-1) + 1 = 10 \Leftrightarrow (x-1)(y-1) = 9$$
, donc $x = y = 4$ convient; de plus, pour tous x et y entiers supérieurs ou égaux à 1,

$$x \otimes y = 4 \Leftrightarrow (x-1)(y-1) + 1 = 4 \Leftrightarrow (x-1)(y-1) = 3$$

donc x = 4 et y = 2, ou x = 2 et y = 4, donc 4 est premier au sens de la multiplication \otimes .

D'où $46 = 4 \otimes 4 \otimes 6$.

On établit de même que $71 = 3 \otimes 6 \otimes 8$.

Les bougies de Leonhard

Partie 1 : Quelques résultats de géométrie

- 1. En prenant [AB] pour base :2 × $A(ABC) = AB \times AC$ En prenant [BC] pour base : $2 \times A(ABC) = AH \times BC$ On en déduit alors l'égalité demandée $AB \times AC = AH \times BC$
- 2. En élevant au carré l'égalité obtenue ci-dessus en utilisant le théorème de Pythagore dans le

triangle ABC rectangle en A :
$$AB^2 \times AC^2 = AH^2(AB^2 + AC^2)$$
.
En divisant par $AB^2 \times AC^2 \times AH^2$, on obtient : $\frac{1}{AH^2} = \frac{AB^2 + AC^2}{AB^2AC^2} = \frac{1}{AC^2} + \frac{1}{AB^2}$.

Partie 2

- 1. La valeur indiquée est proportionnelle au carré de la distance séparant la bougie du capteur, donc est de la forme $k \times \frac{1}{d^2}$ où d est la distance en mètres de la bougie au capteur. Si d = 1m, la valeur affichée est de 1 on en déduit que k = 1.
- 2. Lorsque les 3 bougies sont allumées, l'intensité affichée par le capteur est égale à : $\frac{1}{CL_1^2} + \frac{1}{CL_2^2} + \frac{1}{CL_3^2} = 2 + \frac{1}{2} = \frac{5}{2}.$

$$\frac{1}{CL_1^2} + \frac{1}{CL_2^2} + \frac{1}{CL_3^2} = 2 + \frac{1}{2} = \frac{5}{2}.$$

En notant d la distance entre le capteur et la bougie qui doit remplacer les 3 premières bougies :

$$\frac{1}{d^2} = \frac{5}{2} \qquad \text{d'où} \quad d = \sqrt{\frac{2}{5}}$$

Leonhard peut donc placer la bougie n'importe où sur le cercle de centre Cet de rayon d.

3. a. Le cercle a une circonférence de 2 m, donc un diamètre de $\frac{2}{\pi}$ m.

Par conséquent $V_{capteur} = \frac{\pi^2}{4}$.

b. Le triangle CL_1L_2 est rectangle en C. En utilisant la question 2) de la partie A: $\frac{1}{CL_1^2} + \frac{1}{CL_2^2} = \frac{1}{CL_0^2}.$

Le capteur affichera donc la même valeur que dans 3.a).

4. a. D'après le théorème de l'angle au centre dans le cercle (E_2) :

$$\widehat{L_6L_0'}$$
C = $\widehat{L_2L_0'}$ C = $\frac{1}{2}\widehat{L_2L_0}$ C = 45°. De même $\widehat{L_3L_0'}$ C = 45°, ainsi $\widehat{L_3L_0'}L_6$ = 90° et de même $\widehat{L_6L_0'}L_5$ = 90°.

Les diagonales du quadrilatère $L_3L_4L_5L_6$ se coupent perpendiculairement et ont même mesure. Donc le quadrilatère $L_3L_4L_5L_6$ est un carré.

b.
$$\frac{1}{CL_3^2} + \frac{1}{CL_4^2} + \frac{1}{CL_5^2} + \frac{1}{CL_6^2} = \frac{1}{CL_1^2} + \frac{1}{CL_2^2} = \frac{1}{CL_0^2}$$

- c. On construit L_4L_6 , puis son milieu ${L_0}^\prime$. On place ensuite les points L_3 et L_5 appartenant à la médiatrice de (L_4L_6) afin d'obtenir le carré $L_3L_4L_5L_6$.
- d. Tracer le cercle (E_4) de centre L_0'' , intersection $de(E_3)$ et de (CL_0) .
 - Tracer la perpendiculaire à (CL_3) passant par L_3 , elle coupe le cercle (E_4) en L_7 et L_8 .

• Recommencer, en remplaçant L_3 par L_4 , L_5 puis L_6 , ce qui permet de définir six points supplémentaires situés sur (E_4) : L_9 , L_{10} , L_{11} , L_{12} , L_{13} , L_{14} .

D'après le théorème de l'angle au centre dans le cercle (E_3) : $\widehat{L_6L_0{''}L_5} = \frac{1}{2}\widehat{L_6L_0{''}L_5} = 45^\circ$. Or par construction $\widehat{L_{13}L_0{''}L_{14}} = \widehat{L_6L_0{''}L_5}$. En réitérant ce raisonnement, on obtient que $\widehat{L_{13}L_0{''}L_{14}} = \widehat{L_6L_0{''}L_5} = \widehat{L_{14}L_0{''}L_7} = \widehat{L_7L_0{''}L_8} = \ldots = \widehat{L_{12}L_0{''}L_{13}} = 45^\circ$. Ceci prouve que l'octogone obtenu est régulier.

Chaque arc de cercle sur la plage joignant deux sommets consécutifs mesure 2 m : en effet sur le sable la circonférence du premier cercle est de 2 m, (E_2) a donc une circonférence de 4 m sur le sable, (E_3) a une circonférence de 8 mètres et (E_4) a une circonférence de 16 m. Les huit sommets de l'octogone sont donc espacé de 2 m sur (E_4) .

5) Leonhard utilisant le même processus, le capteur indiquera à chaque fois la même valeur, à savoir $\frac{\pi^2}{4}$. Il obtient aussi d'autre part la somme des inverses des carrés des distances du capteur aux bougies. Les bougies vont se « rapprocher » de plus en plus des points de l'axe des abscisses, d'abscisses impaires. On peut donc conjecturer que la somme $\frac{1}{1^2} + \frac{1}{(-1)^2} + \frac{1}{3^2} + \frac{1}{(-3)^2} + \frac{1}{5^2} + \frac{1}{5^2}$

$$\frac{1}{(-5)^2} + \dots + \frac{1}{(2n+1)^2} + \frac{1}{(-2n-1)^2}$$
 va se rapprocher de $\frac{\pi^2}{4}$.

La fonction carré étant paire, la somme $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots + \frac{1}{(2n+1)^2}$ tend vers $\frac{\pi^2}{8}$.

