5. Aufgabenblatt vom Mittwoch, den 16. Mai 2018 zur Vorlesung

Lineare Algebra für Informatik (F. Hoffmann/K. Kriegel)

Abgabe: bis Montag, den 28. Mai 2018, 14 Uhr.

1. Lineare Abbildungen (3+2+1 Punkte)

Sei $V = \{ f : \mathbb{R} \longrightarrow \mathbb{R} \mid \exists a, b, c \in \mathbb{R} \ \forall x \in \mathbb{R} \ f(x) = ax^2 + bx + c \}$ der Vektorraum aller quadratischen Funktionen mit der Basis $B = \{f_1, f_2, f_3\}$ wobei $f_1(x) = 1, \ f_2(x) = x$ und $f_3(x) = x^2$. Eine Abbildung $\varphi : V \longrightarrow \mathbb{R}^3$ wird durch $\varphi(f) = (f(0), f(1), f(2))$ definiert.

- (a) Zeigen Sie, dass φ eine lineare Abbildung ist und begründen Sie (z.B. durch Konstruktion der Umkehrabbildung φ^{-1}), dass diese ein Isomorphismus ist.
- (b) Sei die Abbildung $\psi: V \longrightarrow \mathbb{R}^4$ durch $\psi(f) = (f(0), f(1), f(2), f(3))$ definiert. Bestimmen Sie eine Basis des Bildes Im ψ (dafür muss man nicht viel rechnen, aber die Lösung sollte kurz begründet werden).
- (c) Bestimmen Sie die Matrixdarstellung von ψ für die Basis B von V und die kanonische Basis $\{\vec{e_1}, \vec{e_2}, \vec{e_3}, \vec{e_4}\}$ von \mathbb{R}^4 .

2. **Kern und Bild** (4 Punkte)

Die lineare Abbildung $f \in \text{Hom}(\mathbb{R}^4, \mathbb{R}^3)$ ist wie folgt durch die Bilder der Basisvektoren von \mathbb{R}^4 gegeben:

$$f(\vec{e_1}) = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$$
 $f(\vec{e_2}) = \begin{pmatrix} 2 \\ -6 \\ 4 \end{pmatrix}$ $f(\vec{e_3}) = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ $f(\vec{e_4}) = \begin{pmatrix} 0 \\ 8 \\ -3 \end{pmatrix}$

Bestimmen Sie Kern und Bild von f durch Konstruktion entsprechender Basen. Vergessen Sie nicht, den Lösungsweg ausreichend zu kommentieren.

Hinweis: Wenn man sich die Bilder der Basisvektoren genau anschaut, kann man beide Basen ohne aufwändige Lösung eines Gleichungssystems angeben. Man muss aber in diesem Fall seine Antworten kurz begründen (Dimensionsargumente).

3. Matrix und lineare Abbildungen (6 Punkte)

Sei $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ eine lineare Abbildung deren Matrix bei Verwendung der kanonischen

Basis
$$B_1$$
 die folgende Form hat: $A = \begin{pmatrix} -1 & 0 & 1 \\ 2 & 1 & 0 \\ 1 & 2 & 3 \end{pmatrix}$

- (a) Bestimmen Sie die Matrixdarstellung von f, wenn man auf beiden Seiten der Abbildung die Basis B_2 mit den Vektoren $\vec{v_1} = \vec{e_1}, \vec{v_2} = \vec{e_1} + \vec{e_2}, \vec{v_3} = \vec{e_1} + \vec{e_2} + \vec{e_3}$ zugrunde legt.
- (b) Nehmen Sie umgekehrt an, dass A die Matrix einer Abbildung $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ bei beidseitiger Verwendung der Basis B_2 ist und bestimmen Sie dazu die Matrixdarstellung von g für die kanonische Basis.