

32 位微控制器

HC32F460 系列的中断控制器 INTC

适用对象

F系列	HC32F460
-----	----------

目 录

1	摘要						
2	INT	'C 简介		3			
3	HC	32F460	系列的 INTC	4			
	3.1	NMI 不可屏蔽中断					
		3.1.1	NMI 主要特点	4			
		3.1.2	NMI 寄存器说明	4			
		3.1.3	NMI 配置流程说明	5			
	3.2	外部管	管脚中断	6			
		3.2.1	外部管脚中断寄存器	6			
		3.2.2	外部管脚中断配置流程说明	6			
	3.3	软件。	中断	7			
	3.4	中断》	原选择	7			
		3.4.1	中断选择寄存器	7			
		3.4.2	中断选择寄存器方法说明	8			
4	样例	化码		9			
	4.1	代码分	介绍	9			
4.2 代码运行							
5	总组	<u>+</u>		12			
6	版才	x信息 &	双联系方式	13			

1 摘要

本篇应用笔记主要介绍 HC32F460 系列芯片的中断控制器(Interrupt Controller, INTC)模块,并通过展示外部管脚中断、软件中断、NMI 中断样例代码简要说明如何使用 INTC 模块。

2 INTC 简介

HC32F460系列的中断控制器(INTC)模块丰富的功能,其中包括了对不可屏蔽中断(NMI)、外部管脚中断(EXINT)、软件中断(SWI)、中断、事件使能的配置;外设模块中断源自由设置到除系统中断向量入口的任意入口。

INTC 主要特性:

- 外设中断向量入口中断源可配置
- 16个可编程中断优先级
- 多种可选择的 NMI 中断源
- 16个外部管脚中断
- 32个软件中断
- 系统休眠模式唤醒源配置
- 系统停止模式唤醒源配置
- 支持 WFI、WFE 后的唤醒

应用笔记 Page 3 of 13

3 HC32F460 系列的 INTC

3.1 NMI不可屏蔽中断

不可屏蔽中断(NMI)具有最高优先级,HC32F460 系列的 NMI 可选择多个中断事件请求,应用程序可通过查询 NMIFR 寄存器来确定 NMI 中断的来源,并通过 NMICFR 寄存器来清除对应标志位。

3.1.1 NMI 主要特点

- 可选择多个中断请求作为 NMI 信号来源:
 - NMI 管脚中断
 - 外部高速 XTAL 振荡停止中断
 - 外部低速 XTAL32 振荡停止中断
 - WDT下溢、刷新错误中断
 - SWDT下溢、刷新错误中断
 - 低电压监测 PVD1 中断
 - 低电压监测 PVD2 中断
 - SRAM 奇偶校验错误中断
 - SRAM ECC 校验错误中断
 - MPU 总线错误中断
- NMI 管脚中断数字滤波功能及滤波器时钟可设
- NMI 管脚中断上升沿、下降沿触发

3.1.2 NMI 寄存器说明

英文说明(缩写)	中文说明
NMI Control Register(INT_NMICR)	NMI 管脚不可屏蔽中断控制寄存器
NMI Enable Register (INT_NMIENR)	不可屏蔽中断使能寄存器
NMI Flag Register (INT_NMIFR)	不可屏蔽中断标志寄存器
NMI Clear Flag Register (INT_NMICFR)	不可屏蔽中断标志清除寄存器

应用笔记 Page 4 of 13

3.1.3 NMI 配置流程说明

下面流程图以 NMI 管脚中断为例,给出了配置流程。

至此,NMI 管脚中断的相关配置结束,如需使用 NMI 管脚中断功能,还需要配置中断选择寄存器以及 NVIC 部分,这部分配置说明将在**中断源选择**章节进行详细讲解。

应用笔记 Page 5 of 13

3.2 外部管脚中断

HC32F460 系列有 16 个外部管脚中断事件,可通过寄存器配置每个通道的属性,包括数字滤波功能、触发电平选择。

3.2.1 外部管脚中断寄存器

英文说明 (缩写)	中文说明
External Interrupt Control Register(INT_EIRQCRx), x = 0~15	NMI 管脚不可屏蔽中断控制寄存器
External Interrupt Flag Register (INT_EIFR)	外部管脚中断标志寄存器
External Interrupt Clear Flag Register (INT_EICFR)	外部管脚中断标志清除寄存器

3.2.2 外部管脚中断配置流程说明

下面流程图以外部管脚中断 8 为例,给出了配置流程。

应用笔记 Page 6 of 13

至此,外部管脚中断的相关配置结束,如需使用外部管脚中断功能,需要将对于的引脚配置为外部中断使能(请参考芯片手册第 11 章通用 IO 部分,设置 PCRxy.INTE = 1;);此外,请参考本文中断源选择章节配置中断选择寄存器以及 NVIC 部分。

3.3 软件中断

HC32F460 系列有 32 个软件中断请求,且与中断向量 0~31 ——对应,可通过软件置位寄存器 INT SWIER 的对应 bit,来产生一次软件中断事件请求。

3.4 中断源选择

HC32F460 系列一共有 16 个系统中断向量入口和 144 个外设中断向量入口,用户可通过中断源选择寄存器,将芯片的 239 个外设的中断请求配置到 144 个中断向量入口,灵活管理中断服务程序。

3.4.1 中断选择寄存器

英文说明 (缩写)	中文说明
Interrupt Select Register(INT_SELx), x = 0~31, 共32个	中断选择寄存器,所有中断事件请求可对应
Interrupt Select Register (INT_SELy), y = 32 ~ 127, 共 96 个	中断选择寄存器,分为16组,每组6个,以中断事件请求序号32为模进行对应
Interrupt Vector Share Select Register (INT_VSSELz), z = 128~143, 共 16 个	中断向量共享选择寄存器,每一个 bit 对应一个中断事件请求,具体对应关系请参考芯片手册的 12.3.2 中断事件序号章节

应用笔记 Page 7 of 13

3.4.2 中断选择寄存器方法说明

下面同样以外部管脚中断8为例,对中断选择寄存器进行说明。

配置中断选择寄存器前,先查询芯片手册的 12.3.2 中断事件请求序号章节,获取欲配置的中断事件序号,下图摘抄至手册此章节。

	中断事			是否可	可否选择	对应NVIC向量的中断选择寄存器" ¹		
编号	件请求	功能	功能名称	选择为	为AOS触	NVIC向量	NVIC向量	NVIC向量
	序号			中断	发源	0~31	32~127	128~143
0	000h	PORT	PORT_EIRQ0	√	√	INT_SEL0~31	INT_SEL32~37	INT_VSSEL128[0]
1	001h		PORT_EIRQ1	√	√	INT_SEL0~31	INT_SEL32~37	INT_VSSEL128[1]
2	002h		PORT_EIRQ2	√	√	INT_SEL0~31	INT_SEL32~37	INT_VSSEL128[2]
3	003h		PORT_EIRQ3	√	√	INT_SEL0~31	INT_SEL32~37	INT_VSSEL128[3]
4	004h		PORT_EIRQ4	√	√	INT_SEL0~31	INT_SEL32~37	INT_VSSEL128[4]
5	005h		PORT_EIRQ5	√	√	INT_SEL0~31	INT_SEL32~37	INT_VSSEL128[5]
6	006h		PORT_EIRQ6	√	√	INT_SEL0~31	INT_SEL32~37	INT_VSSEL128[6]
7	007h		PORT_EIRQ7	√	√	INT_SEL0~31	INT_SEL32~37	INT_VSSEL128[7]
8	008h		PORT_EIRQ8	√	√	INT_SEL0~31	INT_SEL32~37	INT_VSSEL128[8]

从上表中可以看到,外部管脚中断 8 的序号为 8,可使用的中断选择寄存器为 INT_SEL0~31, INT_SEL32~37, INT_VSSEL128[8]。

如设置 INT_SEL10 = 8; 当外部管脚中断 8 产生时,程序将响应 8 号中断向量;如设置 INT_VSSEL128[8] = 1;程序将响应 128 号中断向量。如将同一中断事情请求序号同时设置到多个中断选择寄存器,当此中断请求来临时,若设置相同中断优先级,程序将根据中断向量号编号,由小至大依次响应,直至执行完所有已配置的中断选择寄存器。

应用笔记 Page 8 of 13

4 样例代码

4.1 代码介绍

用户可根据上述的工作流程编写自己的代码来学习验证该模块,也可以直接通过小华半导体的网站下载到设备驱动库(Device Driver Library, DDL)的样例代码并使用其中的 INTC 的样例进行验证。

以下部分简要介绍本 AN 基于 DDL 的 INTC 模块样例 exint nmi swi 代码所涉及的各项配置。

1) 设置 NMI 管脚中断初始化结构体变量:

2) NMI 中断初始化

```
NMI_Init(&stcNmiConfig);
```

3) 设置软件中断初始化结构体变量

```
/**********************************/
/* SWI 31 configuration
/******************************
/* SWI Ch.31 */
stcSwiConfig.enSwiCh = SwiCh31;
/* Software interrupt */
stcSwiConfig.enSwiType = SwInt;
/* Software interrupt callback function */
stcSwiConfig.pfnSwiCallback = SWI31_Callback;
```

4) 软件中断初始化

```
SWI_Init(&stcSwiConfig);
```

5) 设置外部管脚中断初始化结构体变量

应用笔记 Page 9 of 13


```
/***********************************/
/* External Int Ch.3
/***********************

stcExtiConfig.enExitCh = ExtiCh03;
/* Filter setting */
stcExtiConfig.enFilterEn = Enable;
stcExtiConfig.enFltClk = Pclk3Div8;
/* Both edge */
stcExtiConfig.enExtiLvl = ExIntBothEdge;
```

6) 初始化外部管脚中断引脚:

```
/* Set PD03 as External Int Ch.3 input */
MEM_ZERO_STRUCT(stcPortInit);
stcPortInit.enExInt = Enable;
PORT_Init(SW2_PORT, SW2_PIN, &stcPortInit);
```

7) 中断注册:

```
/* Select External Int Ch.3 */
stcIrqRegiConf.enIntSrc = INT_PORT_EIRQ3;
/* Register External Int to Vect.No.000 */
stcIrqRegiConf.enIRQn = Int000_IRQn;
/* Callback function */
stcIrqRegiConf.pfnCallback = ExtInt03_Callback;
/* Registration IRQ */
enIrqRegistration(&stcIrqRegiConf);
```

8) NVIC 配置:

```
/* Clear pending */
NVIC_ClearPendingIRQ(stcIrqRegiConf.enIRQn);
/* Set priority */
NVIC_SetPriority(stcIrqRegiConf.enIRQn, DDL_IRQ_PRIORITY_15);
/* Enable NVIC */
NVIC_EnableIRQ(stcIrqRegiConf.enIRQn);
```

应用笔记 Page 10 of 13

4.2 代码运行

用户可以通过小华半导体的网站下载到 HC32F460 的 DDL 的样例代码(exint_nmi_swi),并配合评估用板(EV-HC32F460-LQFP100-050-V1.1)运行相关代码学习使用 INTC 模块。

以下部分主要介绍如何在评估板上运行 INTC 样例代码并观察结果:

- 一 确认安装正确的 IAR EWARM v7.7 工具(请从 IAR 官方网站下载相应的安装包,并参考用户手册进行安装)。
- 一 从小华半导体网站下载 HC32F460 DDL 代码。
- 下载并运行 exint nmi swi\中的工程文件:
 - 1) 打开 exint nmi swi\工程,并打开'main.c'如下视图:

- 2) 点击 單 重新编译整个项目。
- 3) 点击 🕹 将代码下载到评估板上,全速运行。
- 4) 通过按下评估板上的 SW2~SW5, 短接 NMI 跳线帽,来观测 LED 的亮灭变化,来确定各中断服务程序以执行。

应用笔记 Page 11 of 13

5 总结

以上章节简要介绍了 HC32F460 系列的 INTC, 说明了 INTC 模块的寄存器及部分操作流程,并且演示了如何使用 INTC 样例代码,在实际开发中用户可以根据自己的需要配置和使用 INTC 模块。

应用笔记 Page 12 of 13

6 版本信息 & 联系方式

日期	版本	修改记录
2019/3/15	Rev1.0	初版发布。
2020/8/26	Rev1.1	更新支持型号。
2022/7/15	Rev1.2	公司 Logo 更新。

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@xhsc.com.cn

网址: http://www.xhsc.com.cn

通信地址:上海市浦东新区中科路 1867号 A座 10层

邮编: 201203

应用笔记 AN0100011C