MATH 4000/6000 – Summary of course topics

Topical outline

Part I: The Integers

- Axioms: \mathbb{Z} is a commutative ring with $1 \neq 0$, ordered, and satisfies the well-ordering principle (see the initial handout)
- Binomial theorem
- Theory of divisibility
 - basic definitions and properties of divisibility
 - definition of the gcd
 - Euclid's algorithm for computing the gcd
 - gcd can be written as a linear combination of starting numbers
- Euclid's lemma
- Unique factorization theorem
- Congruences
 - basic definitions
 - congruence mod m is an equivalence relation
 - Fermat's little theorem
 - solving $ax \equiv b \mod m$
 - simultaneous congruences and the Chinese remainder theorem

Part II: Rings: First examples

- Ring axioms
- Definition of **fields** and **integral domains**
- Detailed discussion of \mathbb{Z}_m
 - $-\bar{a}$ is a unit in $\mathbb{Z}_m \iff \gcd(a,m) = 1$
 - for positive integers m, \mathbb{Z}_m is a field $\iff m$ is prime $\iff \mathbb{Z}_m$ is an integral domain
- Definition of \mathbb{Q} from \mathbb{Z} (ordered pairs up to cross-multiplication equivalence); verification that + and \cdot are well-defined
- Definition and properties of \mathbb{R} : not examinable!
- Definition of \mathbb{C} from \mathbb{R}
- Basic properties of complex numbers

- basic concepts: complex conjugation, absolute value, polar form
- multiplication of complex numbers in polar form
- de Moivre's theorem
- -n distinct *n*th roots of 1 for every *n*
- solving linear, quadratic, and cubic equations over $\mathbb C$

Part III: Polynomials over commutative rings

- Definition of the polynomial ring R[x]
- Basic properties
 - if R is a domain, deg(a(x)b(x)) = deg(a(x)) + deg(b(x))
 - if R is a domain, then R[x] is a domain
- Division algorithm in F[x], F a field
- \bullet gcds in F[x] and their properties
- irreducibles in F[x], Euclid's lemma, unique factorization theorem in F[x]
- remainder theorem and root-factor theorem
- The Fundamental Theorem of Algebra (**proof** non-examinable, but understand the statement!)
- testing irreducibility of polynomials in $\mathbb{Q}[x]$
 - rational root test
 - reduction modulo p
 - Eisenstein's criterion

Part IV: Field extensions, part 1

- definition of a subfield/field extension
- definition of $F[\alpha]$, where α belongs to an extension of F
- definition of f(x) splitting completely; definition of a splitting field for f(x) over F
- if K/F is a field extension, and $\alpha \in K$ is the root of a nonzero polynomial in F[x], then $F[\alpha]$ is a field

Part V: Ring homomorphisms

- definition of a ring homomorphism
- kernel of a homomorphism
- \mathbb{Z} , F[x], and $\mathbb{Z}[i]$ have all their ideals principal; that is, all ideals are of the form $\langle a \rangle$ for a single element a
- construction of the quotient ring R/I, for an ideal I of R
- description of the elements of $F[x]/\langle m(x)\rangle$; determination when $F[x]/\langle m(x)\rangle$ is a domain and when it is a field
- ring isomorphisms (basic properties)
- the fundamental homomorphism theorem
- direct product of two rings

Part VI: Gaussian integers

- definition of $\mathbb{Z}[i]$
- division algorithm in $\mathbb{Z}[i]$
- every ideal of $\mathbb{Z}[i]$ is principal
- definition of a prime in $\mathbb{Z}[i]$
- every prime number p (in \mathbb{Z}) with $p \equiv 1 \pmod{4}$ is the norm of an element of $\mathbb{Z}[i]$, and hence a sum of two squares

Part VII: Field extensions, part 2

- If $f(x) \in F[x]$ is irreducible, then $K = F[t]/\langle f(t) \rangle$ is an extension of F that contains at least one root of f(x) (namely, \bar{t})
- If $f(x) \in F[x]$, there is an extension K of F over which f splits; moreover, there is a splitting field for f(x) over F
- definition of the degree of a field extension
- degree is multiplicative in towers L/K/F; that is, $[L:F] = [L:K] \cdot [K:F]$
- if K/F is a field extension, and $\alpha \in K$ is the root of an irreducible polynomial of degree n in F[x], then $[F[\alpha]:F]=n$
- if L/F has degree n, then every $\alpha \in L$ is the root of a nonconstant polynomial in F[x]; moreover, if $\alpha \in L$ is the root of $p(x) \in F[x]$ where p(x) is irreducible, then the degree of p(x) divides n

Part VIII: Finite fields (not examinable)

- Every finite field contains a subring isomorphic to \mathbb{Z}_p for some prime p
- If F is a finite field, then F has p^n elements for some prime p and some positive integer n
- For each prime p, and positive integer n, there is a field F with p^n elements: namely, take a field K containing \mathbb{Z}_p over which $x^{p^n} x$ splits, and let F be the collection of roots of $x^{p^n} x$ inside K
- Any two finite fields of size p^n are isomorphic