1. Saját jelölések

Jelölés Az $\{i \in \mathbb{N} | 1 \le n\}$ halmazt \underline{n} jelöli.

- **1. Tétel.** V vektortér K felett, S független V-beli vektorok halmaza, ekkor ha $v \notin \text{span}(S)$, akkor $S \cup \{s\}$ is független.
- **2. Lemma.** V vektortér K felett, S V-beli lineárisan független vektorok halmaza, T V-beli generátor vektorok halmaza, v eleme S-nek, de nem eleme T-nek, akkor létezik egy olyan T, de nem S-beli vektor, hogy az S-ből a v-t kivéve és w-t hozzáadva $((S \{v\}) \cup \{w\})$ független vektorrendszert kapunk.
- **3. Lemma.** V vektortér K felett, $f_1, \ldots, f_n \in V$ lineárisan függetlenek, $g_1, \ldots, g_m \in V$ generátorrendszer, ekkor $n \leq m$.
- 4. Tétel. Ha V vektortér K felett, ekkor
 - 1. ha S V-beli generátorrendszer, akkor létezik egy B bázis V-ben, ami S-nek része,
 - 2. ha S V-beli független, akkor létezik egy olyan B bázis, aminekS része,
 - 3. ha B₁ és B₂ V-beli bázisok, akkor a számosságuk megegyezik.
- 5 Deffiníció Ha (X, \leq) parciálisan rendezett halmaz, ha \leq parciális rendezés.
 - A parciális rendezés reflexív, antiszimmetrikus és tranzitív.
- **6 Deffiníció** Ha (X, \leq) parciálisan rendezett halmaz, ekkor $a \in X$ maximális, ha $\forall b \in X, a \leq b$ esetén a = b.
- 7 Deffiníció Ha (X, \leq) parciálisan rendezett halmaz, ekkor $Y \subset X$ lánc, ha (Y, \leq) teljesen rendezett halmaz.
 - | Teljesen rendezett halmaz bármely két eleme összehasonlítható.
- **8. Lemma** (Zorn). Ha (X, \leq) nem üres parciálisan rendezett halmaz és minden $Y \subset X$ láncnak van X-ben felső korlátja, akkor X-nek van maximális eleme.

2. Alterek összege

Jelölés V_K jelöli a V vektorteret K test felett, de következetesség miatt mindig megjegyezzük, hogy " V_K vektortér", ami még mindig rövidebb, mint a hosszú "V K test feletti vektortér".

9 Deffiníció Ha V_K vektortér és $V_1,\ldots,V_n\leq V$, akkor ezen alterek összege:

$$V_1 + \ldots + V_n = \{v_1 + \ldots + v_n | v_i \in V_i, 1 \le i \le n\}$$

- 10 Deffiníció Ha V_K vektortér és $V_1, \ldots, V_n \leq V$, akkor ezen alterek direkt összege, olyan összeg, aminek minden eleme egyértelműen áll elő $v_1 + \ldots + v_n$ ($\forall v_i \in V_i, i \in \underline{n}$). ha benne minden összeg egyértelmű.
- **11 Deffiníció** V_k vektortér, $U,W \leq V,~V = U \oplus W,~\pi:V \to v$ lineáris leképezés, $u \in U,~w \in W$, hogy $v = u + w \in V$ esetén $\pi(v) = u$. Ekkor π -t az U altétrre való W irányú vetítésnek nevezzük.

3. Konjugált mátrixok

- **12 Deffiníció** $A,B \in K^{n \times n}$ A és B konjugáltak (hasonlók), ha létezik egy olyan $X \in K^{n \times n}$, melyre $B = X^{-1}AX$.
- 13 Deffiníció V_K vektortér, $f:V\to V$ lin
ráris leképezés a V endomorfizmusa.

Jelölés $\operatorname{End}_K V$

- **14 Deffiníció** V_K vektortér, $f \in \operatorname{End}_K V$, $t \in K$:
 - 1. $t \in K$ sajátértéke f-nek, ha létezik egy olyan nemnulla V-beli vektor, amire f(v) = tv,
 - 2. $t \in K$ sajátvektor, ekkor a V-beli v vektor a t-hez tartozó sajátvektor, ha f(v) = tv.
 - 3. az f összes sajátértékének halmaza f spektruma.
- 15 Deffiníció Ha $n \ge 1$, $A \in K^{n \times n}$, ekkor A mátrix sajátértékei, sajátvektorai, spektruma az $f_A : K^n \to K^n$, endomorfizmus sajátértékei, sajátvektorai és spektruma.

16 Deffiníció V_K vektortér, $f \in \operatorname{End}_K V$, az S_t a t-hez tartozó sajátvektorokat tartalmazó halmaz, akkor $S \cup 0_V$ az f t-hez tartozó sajátaltere.

Jelölés Eig_{f,t}

17 Deffiníció V_K vektortér $f \in \operatorname{End}_K V$, $t \in K$ változó, akkor $\det(f - tI)$ polinom az f karakterisztikus polinomja.

Jelölés $\operatorname{char}_f(t)$

18 Deffiníció V_K vektortér, $f \in \operatorname{End}_K V$, $t \in K$, ekkor $\dim(\operatorname{Eig}_{f,t})$ a t sajátártákánek geometriai multiplicitása.

19 Deffiníció V_K vektortér, t_0 az $f \in \operatorname{End}_V K$ sajátértéke, ekkor t_0 algebrai multiplicitása k, ha t_0 p
ntosan k-szoros gyöke $\operatorname{char}_f(t)$ -nek.

20 Deffiníció V_K vektortér, ekkor $f \in \operatorname{End}_K V$ diagonalizálható, ha létezik egy $\mathcal B$ bázis, amiben $[f]_{\mathcal B}$ diagonális.

4. Mátrixok sajátfelbontása

21 Deffiníció $A \in K^{n \times n}$, $y \in K^n - 0$, akkor az y^T sorvektor az A baloldali sajátvektora, ha $y^T A = \lambda y^T$

22 Deffiníció $A \in K^{n \times n}$ diagonilazálható mátrix sajátfelbontása PDP^{-1} , ahol P i-edik oszlopa az A mátrixhoz tartozó t_i -edik egyik sajátvektora (jelölje ezt most \underline{x}_i), P^{-1} i-edik sora az A mátrix t_i -hez tartozó egyik baloldali sajátvektora (jelölje most ezt \underline{y}_i). Ekkor:

$$\sum_{i=1}^{n} t_i \underline{x}_i \underline{y}_i$$

a sajátfelbontás diadikus alakja.

5. Spektrálfelbontás

23 Deffiníció Ha $A \in K^{n \times n}$ -nak létezik sajátfelbontása és P_i a $\operatorname{Eig}_{A,t(i)}$ -re való vetítés mátrixa (a vetítés iránya a többi sajátaltér direkt összege), akkor A spektrálfelbontása:

$$A = t_1 P_1 + \ldots + t_k P_k$$

6. Bilineáris leképezések

Dián vannak itt dolgok, amit nem akarok leírni.

Dia (deffiníció)tartalma:

- 1. bilineáris leképezés
- 2. szimmetrikus bilineáris leképezés
- 3. Gram-mátrix
- 4. baloldali, jobboldali mag, reguláris
- 5. ortogonalitás bilineáris leképezésre nézve
- 6. ortogonális kiegészítő
- 7. Tehetetlenségi Tétel

7. Euclides-terek

24 Deffiníció $V_{\mathbb{R}}$, $\beta: V \times V \to \mathbb{R}$ bilineáris leképezés, ekkor β pozitív definit, ha szimmetrikus és minden V-beli v vektorra $\beta(v,v) \geq 0$, továbbá $\beta(v,v) = 0$ pontosan akkor, ha v = 0. Másik elnevezés a skalárszorzat.

25 Deffiníció

- 1. $V_{\mathbb{R}}$, $\beta := \langle ., . \rangle : V^2 \to \mathbb{R}$ skalárszorzat (másnéven belsőszorzat), ekkor a $(V, \langle ., . \rangle)$ pár Euclides-tér (inner product space).
- 2. $v \in V$, akkor $||v|| = \sqrt{\langle v, v \rangle}$ a v normája
- 3. $v, w \in V$, akkor d(v, w) = ||v w|| a v és a w távolsága

Jelölés $(V, \langle ., . \rangle)_E$ jelöli a $V_{\mathbb{R}}$ vektorteret, amiben $\langle ., . \rangle$ vektorszorzat. Ha emellett V még véges dimenziós is, akkor ezt $(V, \langle ., . \rangle)_E \lesssim$ jelöli.

26 Deffiníció $(V, \langle ., . \rangle)_E$ ekkor ha $v, w \in V$, akkor a szögük:

$$\arccos\frac{\langle v,w\rangle}{\|v\|\|w\|}$$

27 Deffiníció $(V, \langle ., . \rangle)_E$ és $v, w \in V$, akkor $v \perp_{\langle ., . \rangle} w$, ha v és w szöge $\frac{\pi}{2}$.

8. Ortogonális bázisok

28 Deffiníció $(V, \langle ., . \rangle)_E$ $S \subset V$ ortogonális részhalmaz, ha minden $v, w \in S$ esetén $v \perp_{\langle ., . \rangle} w$, valamint S ortonormált, ha ortogonális és minden S-beli v-re ||v|| = 1, és S ortonormált bázis, ha ortonormált és bázis.

29 Deffiníció $A \in \mathbb{R}^{n \times n}$ pozitív definit mátrix, ha $\beta(x,y) = x^T A y$ pozitív definit pontosan akkor, ha A szimmetrikus és $x^T x > 0$ minden nemnulla $\mathbb{R}^n - 0$ -beli vektorra.

9. Ortogonális kiegészítő

10. Adjungált

30 Deffiníció $(V_1, \langle ., . \rangle_1)_E$, $(V_2, \langle ., . \rangle_2)_E$, $f: V_1 \to V_2$ lineáris leképezés $f^*: V_2 \to V_1$ lineáris függvényt az f adjungáltjának nevezzük, ha minden v V_1 -beli,w V_2 -beli vektorokra:

$$\langle f(v), w \rangle_2 = \langle v, f^*(w) \rangle_1.$$

31 Deffiníció $(V, \langle .,. \rangle)_E$ $f \in \text{End}_{\mathbb{R}} V$, ekkor f önadjungált, ha $f^* = f$.

32 Deffiníció $X \in \mathbb{R}^{n \times n}$ ortogonális, ha $X^T X = I$ (azaz $X^T = X^{-1}$).

11. Ortogonális transzformációk

33 Deffiníció $(V, \langle .,. \rangle)_E$, $f \in \text{End } \mathbb{R}V$, ekkor f ortogonális transzformácó, ha bijektív (izomorfizmus) és minden V-beli v és w esetén:

$$\langle v, w \rangle = \langle f(v), f(w) \rangle.$$

34 Deffiníció A (G, \cdot) páros csoport, ha $G \neq \emptyset$.

35 Deffiníció A (G,\cdot) páros Abel-csoport, ha (G,\cdot) csoport és \cdot kommutatív.

Jelölés Az $\langle .,. \rangle$ -ra ortogonális transzformációk csoportját $O_{\langle .,. \rangle}$ jelöli (vagy $O_{\langle \rangle}$).

36 Deffiníció Ha $(V, \langle .,. \rangle)_{E, \lesssim}$, $V = \mathbb{R}^{n \times n} A \in V$ ortogonális leképezés mátrixa, ekkor az ilyen leképezések csoportja $\langle .,. \rangle$ -ra nézve az n-edrendű ortogonális csoport.

Jelölés $O_{n,\langle\rangle}(\mathbb{R})$

37 Deffiníció $(V, \langle .,. \rangle)_{E, \overset{<}{\infty}}, f \in \mathcal{O}(V)$, ekkor az olyan f-ek melyekre det(f) = 1 a speciális ortogonális csoportot alkotnak.

Jelölés SO(V)

12. Szemiortogonális mátrixok

38 Deffiníció $A \in \mathbb{R}^{m \times n}$ szemiortogonális, ha az oszlopok vagy sorok ortonormált bázist (vagy csak rendszert?) alkotnak. Tehát $A^T A = I_n$, ha az oszlopok alkotnak, $AA^T = I_m$, ha a sorok alkotnak ortonormált rendszert.

39 Deffiníció A teljes oszloprangú (rkA = n) $A \in \mathbb{R}^{m \times n}$ QR-felbontása QR = A, ha $Q \in \mathbb{R}^{m \times n}$ szemiortogonális, $R \in \mathbb{R}^{n \times n}$ pedig felsőháromszögmátrix, ahol a diagonális elemek nemnegatívok.

- 40. Tétel. A QR-felbontás egyértelműen létezik.
- 41 Deffiníció $(V,\langle.,.\rangle)_{E,\lesssim}, \beta:V\times V\to\mathbb{R},$ szimmetrikus, bilineáris, akkor $\beta:$
 - 1. pozitív definit, ha $\forall v \in V : \beta(v,v) \geq 0$ és $\beta(v,v) = 0 \leftrightarrow v = 0$,
 - 2. pozitív semidefinit, ha $\forall v \in V : \beta(v, v) \geq 0$,
 - 3. negatív definit, ha $\forall v \in V : \beta(v, v) \leq 0$ és $\beta(v, v) = 0 \leftrightarrow v = 0$,
 - 4. negatív semidefinit, ha $\forall v \in V : \beta(v, v) \leq 0$,
 - 5. indefinit, ha $\exists v, w : \beta(v, v) > 0, \beta(w, w) < 0.$
- **42. Állítás.** $(V,\beta)_{\mathbb{R},\tilde{\infty}}$, ha \mathcal{B} , egy V-beli bázis, úgy, hogy $[\beta]_{\mathcal{B}}$ diagonalizálható, a diagonális elemek d_1,\ldots,d_n akkor:
 - 1. β pozitív definit pontosan akkor, ha minden $\forall d_i > 0$,
 - 2. β pozitív semidefinit pontosan akkor, ha minden $\forall d_i \geq 0$,
 - 3. β negatív definit pontosan akkor, ha minden $\forall d_i < 0$,
 - 4. β negatív semidefinit pontosan akkor, ha minden $\forall d_i \leq 0$,
 - 5. β indefinit egyébként.
- **43.** Állítás. $(V, \beta)_{\mathbb{R}, \lesssim}$, ha \mathcal{B} , egy V-beli bázis, úgy, hogy $[\beta]_{\mathcal{B}}$ szimmetrikus akkor:
 - 1. β pozitív definit pontosan akkor, ha minden sajátértéke pozitív,
 - $2.~\beta~pozitív~semidefinit~pontosan~akkor,~ha~minden~sajátértéke~nemnegatív,$
 - 3. β negatív definit pontosan akkor, ha minden sajátértéke negatív,
 - 4. β negatív semidefinit pontosan akkor, ha minden sajátértéke nempozitív,
 - 5. β indefinit egyébként.
- **44. Állítás.** $(V,\beta)_{\mathbb{R},\infty}$, $\mathcal{B}=\{b_1,\ldots,b_n\}$ bázis V-ben, $A=[\beta]_{\mathcal{B}}$. Ha A_k a az A főminorja, akkor:
 - 1. β pontosan akkor pozitív definit, ha det $A_k > 0$,
 - 2. β pontosan akkor negatív definit, ha $(\det A_k)(-1)^k > 0, \forall k \in n$,
 - 3. ha det $A \neq 0$ és se az 1., se a 2. eset nem áll fenn, akkor β indefinit.

13. Qadratikus alak

45 Deffiníció $V_{\mathbb{R},\tilde{\infty}}$ és $\beta: V \times V \to \mathbb{R}$ szimmetrikus, bilineáris leképezés, $\mathcal{B} = \{b_1,\ldots,b_n\}$ V vektortér egy bázisa, $[x]_{\mathcal{B}} = (x_1,\ldots,b_n)^T$, ekkor a qadratikus alak:

$$Q(x) = [x]_{\mathcal{B}}^{T}[\beta]_{\mathcal{B}}[x]_{\mathcal{B}} = \sum_{i,j=1}^{n} \beta(b_i, b_j) x_i x_j = \sum_{i,j=1}^{n} a_{ij} x_i x_j$$

Ekkor ez az alak az x_1, \ldots, x_n egy homogén másodfokú polinomja.

Jelölés Az a szimmetrikus, bilineáris β függvény, amit Q meghatároz β_Q jelöli. jelöli.

Jelölés $(V, \beta)_{\mathbb{R}, \text{inf}}$ jelöli innentől (amíg másképpen nincs meghatározva) az \mathbb{R} feletti véges vektorteret, amin β egy szimmetrikus, bilineáris függvény.

46 Deffiníció $(V,\beta)_{\mathbb{R},\infty}$ $\mathcal{C} = \{c_1,\ldots,c_n\}$ V-nek egy ortonormált bázisa, akkor $\mathcal{B} = \{b_1,\ldots,b_n\}$ V-beli bázis által feszített egydimenziós altereket (egyeneseket), a Q főtengelyeinek nevezzük.

47 Deffiníció A