

CS208: Applied Privacy for Data Science Reidentification & Reconstruction Attacks

School of Engineering & Applied Sciences
Harvard University

January 29. 2025

Announcements

- Fill out <u>first-class survey</u> if you haven't already: <u>https://shorturl.at/jSosl</u>
- Post questions to Ed rather than emailing us individually.
 Keep an eye on Ed for announcements!
- Let us know ASAP if you can't access course platforms (esp. Ed, Perusall).
- Office hours the rest of this week:
 - Salil Fri 10:30am-12pm (SEC 3.327)
 - Priyanka Wed 2:30pm-4:30pm (SEC 2.101)
 - Zach Thu 3pm-4pm (SEC 3.314)
- Probability/algorithms/stats review sessions this week:
 - Jason Wed 3pm-4pm, Science Center 304
 - Zach Thu 9:45-11:00am, SEC 4.308+Zoom+recording (possibly including programming)

Reidentification via Linkage

\ /				
Name	Sex	Blood		HIV?
Chen	F	В	•••	Υ
Jones	M	Α		N
Smith	M	0		N
Røss	M	0	•••	Υ
Lu	F	Α		N
Shah	M	В	•••	Υ
/				

[Sweeney `97]

Uniquely identify > 60% of the US population [Sweeney `00, Golle `06]

Deidentification via Generalization

• Def (generalization): A generalization mechanism is an algorithm A that takes a dataset $x = (x_1, ..., x_n) \in \mathcal{X}^n$ and outputs $A(x) = (T_1, ..., T_n)$ where $x_i \in T_i \subseteq \mathcal{X}$ for all i.

Example:

Name	Sex	Blood		HIV?
*	F	В	•••	Υ
*	М	Α	•••	N
*	М	0	•••	N
*	М	0	•••	Υ
*	F	А	•••	N
*	М	В	•••	Υ

$$T_i = \{\text{all strings}\} \times \{x_{i2}\} \times \cdots \times \{x_{im}\}$$

K-Anonymity [Sweeney `02]

- Def (generalization): A generalization mechanism A satisfies k-anonymity (across all fields) if for every dataset $x = (x_1, ..., x_n) \in \mathcal{X}^n$ the output $A(x) = (T_1, ..., T_n)$ has the property that every set T that occurs at all occurs at least k times.
- Example: 3-anonymizing a dataset

	ZIP	Income	COVID		ZIP	Income	COVID	
	91010	\$125k	Yes	\overline{A}	9101∗	\$75–150k	*	
	91011	\$105k	No		9101*	\$75–150k	*	
x =	91012	\$80k	No		9101*	\$75–150k	*	= A(x)
	20037	\$50k	No		20037	0-75k	*	
	20037	\$20k	No		20037	0-75k	*	
	20037	\$25k	Yes	_	20037	0-75k	*	

Quasi-Identifiers

• Typically, k-anonymity only applied on "quasi-identifiers" — attributes that might be linked with an external dataset. i.e. $\mathcal{X} = \mathcal{Y} \times \mathcal{Z}$, where \mathcal{Y} is domain of quasi-identifiers, and $T_i = U_i \times V_i$, where each U_i occurs at least k times.

•	Zip code	Age	Nationality	Condition
1	130**	<30	*	AIDS
	130**	<30	*	Heart Disease
	130**	<30	*	Viral Infection
	130**	<30	*	Viral Infection
	130**	≥40	*	Cancer
	130**	≥40	*	Heart Disease
	130**	≥40	*	Viral Infection
	130**	≥40	*	Viral Infection
1	130**	3*	*	Cancer
	130**	3*	*	Cancer
	130**	3*	*	Cancer
	130**	3*	*	Cancer

Q: what could go wrong?

Q: What if no quasi-identifiers?

Netflix Challenge Re-identification

[Narayanan & Shmatikov `08]

Q: Why would Netflix release such a dataset?

Anonymized

NetFlix data

Narayanan-Shmatikov Set-Up

- Dataset: x = set of records r (e.g. Netflix ratings)
- Adversary's inputs:
 - \hat{x} = subset of records from x, possibly distorted slightly
 - aux = auxiliary information about a record r ∈ D (e.g. a particular user's IMDB ratings)
- Adversary's goal: output either
 - r' = record that is "close" to r, or
 - ⊥ = failed to find a match

Narayanan-Shmatikov Algorithm

- 1. Calculate score(aux, r') for each $r' \in \hat{x}$, as well as the standard deviation σ of the calculated scores.
- 2. Let r_1' and r_2' be the records with the largest and second-largest scores.
- 3. If $score(aux, r_1') score(aux, r_2') > \phi \cdot \sigma$, output r_1' , else output \perp .

IMDB movies Similarity of Downweight movies rated by user rating & date watched by many Netflix users

An instantiation:

$$score(aux, r') = \sum_{a \in supp(aux)} sim(aux_a, r'_a)$$

eccentricity $\phi = 1.5$

Narayanan-Shmatikov Results

- For the \$1m Netflix Challenge, a dataset of ~.5 million subscribers' ratings (less than 1/10 of all subscribers) was released (total of ~\$100m ratings over 6 years).
- Out of 50 sampled IMBD users, two standouts were found, with eccentricities of 28 and 15.
- Reveals all movies watched from only those publicly rated on IMDB.
- Class action lawsuit, cancelling of Netflix Challenge II.

Message: any attribute can be a "quasi-identifier"

k-anonymity across all attributes?

Utility concerns?

 Significant bias even when applied on quasiidentifiers, cf. [Daries et al. `14]

Privacy concerns?

- Consider mechanism A(x): if Salil is in x and has tuberculosis, generalize starting with rightmost attribute. Else generalize starting on left.
- Message: privacy is not only a property of the output, but of the input-output relationships.

Downcoding Attacks [Cohen `21]

	ZIP	Income	COVID
	91010	\$125k	Yes
	91011	\$105k	No
$\mathbf{X} =$	91012	\$80k	No
	20037	\$50k	No
	20037	\$20k	No
	20037	\$25k	Yes

- Downcoding undoes generalization
- X is the original dataset → Y is a 3-anonymized version
- Z is a downcoding: It generalizes X and refines Y

Cohen's Result

Theorem (informal): There are settings in which every minimal, hierarchical k-anonymizer (even enforced on all attributes) enables strong downcoding attacks.

Setting

 A (relatively natural) data distribution and hierarchy, which depend on k

Strength

- How many records are refined? $\Omega(N)$ (> 3% for $k \le 15$)
- How much are records refined? 3D/8 (38% of attributes)
- How often? w.p. 1 o(1) over a random dataset

Composition Attacks

[Ganti-Kasiviswanathan-Smith `08]:
 Two k-anonymous generalizations of the same dataset can be combined to be not k-anonymous.

• [Cohen `21]:

Reidentification on Harvard-MIT EdX Dataset [Daries et al. `14]

 5-anonymity enforced separately (a) on course combination, and (b) on demographics + 1 course

EdX Quasi-identifiers

_	Year of Birth	Gender	Country	Course 1	Course 2	Course 3	
	2000	F	India	Yes	No	Yes	Enrolled
Se				5		8	# Posts
				Yes		No	Certificate

{Year of Birth, Gender, Country, Course(i).Enrolled, Course(i).Posts} for i = 1, . . ., 16

7	Year of Birth	Gender	Country	Course 1	Course 2	Course 3	
	2000	F	India	Yes	No	Yes	Enrolled
⊕ O				5		8	# Posts
NS N				Yes		No	Certificate

{Course(1).Enrolled, Course(2).Enrolled, . . ., Course(16).Enrolled

Slide credit: Aloni Cohen

Failure of Composition

7	YoB	Gender	Country	Course 1	Course 2	Course 3	
	2000	F	India	Yes	No	Yes	Enrolled
e T				5		8	# Posts
S				Yes		No	Certificate

If you combine the QIs:

- 7.1% uniques (34,000)
- 15.3% not 5-anonymous

Reidentification carried out using LinkedIn profiles

→ dataset heavily redacted

Slide credit: Aloni Cohen

Reading & Discussion for Next Time

- Q: How should we respond to the failure of de-identification?
- Not assigned: writings claiming that de-identification works (see <u>cs208 annotated bibliography</u>)
- Next: what if we only release aggregate statistics?

Attacks on Aggregate Statistics

- Stylized set-up:
 - Dataset $x \in \{0,1\}^n$.
 - (Known) person i has sensitive bit x_i .
 - Adversary gets $q_S(x) = \sum_{i \in S} x_i$ for various $S \subseteq [n]$.
- How to attack if adversary can query chosen sets S?
- What if we restrict to sets of size at least n/10?

This attack has been used on Israeli Census Bureau! (see [Ziv `13])

ID	US?
1	1
2	0
3	0
4	1
:	÷
n	1

Attacks on Exact Releases

- What if adversary cannot choose subsets, but $q_S(x)$ is released for "innocuous" sets S?
- Example: uniformly random $S_1, S_2, ..., S_m \subseteq [n]$ are chosen, and adversary receives:

$$(S_1, a_1 = q_{S_1}(x)), (S_2, a_2 = q_{S_2}(x)), \dots, (S_m, a_m = q_{S_m}(x))$$

- Claim: for m = n, with prob. 1 o(1) adversary can reconstruct entire dataset!
- Proof?

Example for n = 5

$$S_1 = \{1,2,3\}, a_1 = 2, S_2 = \{1,3,4\}, a_2 = 1, S_3 = \{4,5\}, a_3 = 1, S_4 = \{2,3,4,5\}, a_4 = 3, S_5 = \{1,2,4,5\}, a_5 = 2$$

Unknowns: x_1, x_2, \dots, x_5

Equations:

1.
$$x_1 + x_2 + x_3 = 2$$

2.
$$x_1 + x_3 + x_4 = 1$$

3.
$$x_4 + x_5 = 1$$

4.
$$x_2 + x_3 + x_4 + x_5 = 3$$

5.
$$x_1 + x_2 + x_4 + x_5 = 2$$

Unique Solution:

$$x_1 = 0$$

$$x_2 = 1$$

$$x_3 = 1$$

$$x_4 = 0$$

$$x_5 = 1$$

Attacks on Approximate Statistics

- What if we release statistics $a_i \approx q_{S_i}(x)$?
- Thm [Dinur-Nissim `03]: given m=n uniformly random sets S_j and answers a_j s.t. $\left|a_j-q_{S_j}(x)\right|\leq E=o(\sqrt{n})$, whp adversary can reconstruct 1-o(1) fraction of the bits x_i .
- Proof idea: $A(S_1, a_1, ..., S_m, a_n) = \text{any } \hat{x} \in \{0,1\}^n \text{ s.t.}$ $\forall j \ \left| a_j q_{S_j}(\hat{x}) \right| \leq E.$

(Show that whp, for all \hat{x} that differs from x in a constant fraction of bits, $\exists j$ such that $\left|q_{S_j}(\hat{x}) - q_{S_j}(x)\right| > 2E$.)

Integer Programming Implementation

$$A(S_1, a_1, ..., S_m, a_n)$$
:

1. Find a vector $\hat{x} \in \mathbb{Z}^n$ such that:

$$-0 \le \hat{x}_i \le 1$$
 for all $i = 1, ..., n$

$$-E \le a_j - \sum_{i \in S_j} \hat{x}_i \le E \text{ for all } j = 1, ..., m$$

2. Output \hat{x} .

Problem: Can be computationally expensive ("NP-hard", exponential time in worst case)

Faster: Linear Programming Implementation

$$A(S_1, a_1, ..., S_m, a_n)$$
:

1. Find a vector $\hat{x} \in \mathbb{R}^n$ such that:

$$-0 \le \hat{x}_i \le 1$$
 for all $i = 1, ..., n$

$$-E \le a_j - \sum_{i \in S_j} \hat{x}_i \le E \text{ for all } j = 1, ..., m$$

2. Output \hat{x}

Linear Programming Implementation for Average Error

$$A(S_1, a_1, ..., S_m, a_n)$$
:

- 1. Find vectors $\hat{x} \in \mathbb{R}^n$ and $E \in \mathbb{R}^m$
 - Minimizing $\sum_{j=1}^{m} E_j$ and such that
 - $-0 \le \hat{x}_i \le 1$ for all i = 1, ..., n
 - $-E_j \le a_j \sum_{i \in S_j} \hat{x}_i \le E_j \text{ for all } j = 1, ..., m$
- 2. Output round(\hat{x}).

Least-Squares Implementation for MSE

$$A(S_1, a_1, ..., S_m, a_n)$$
:

1. Find vector $\hat{x} \in \mathbb{R}^n$ minimizing

$$\sum_{j=1}^{m} \left(a_j - \sum_{i \in S_j} \hat{x}_i \right)^2 = \|a - M_S \hat{x}\|^2$$

2. Output round(\hat{x}).

Also works for random S_j 's, and is much faster than LP!

On the Level of Accuracy

- The theorems require the error per statistic to be $o(\sqrt{n})$. This is necessary for reconstructing almost all of x.
- Q: What is significant about the threshold of \sqrt{n} ?
 - If dataset is a random sample of size n from a larger population, the standard deviation of a count query is $O(\sqrt{n})$.
 - Reconstruction attacks ⇒ if we want to release many (> n)
 arbitrary or random counts, then we need introduce error at
 least as large as the sampling error to protect privacy.

How to Make Subset Sum Queries?

- Stylized set-up:
 - Dataset $x \in \{0,1\}^n$.
 - (Known) person i has sensitive bit x_i .
 - Adversary gets $a_S \approx q_S(x) = \sum_{i \in S} x_i$ for various $S \subseteq [n]$.
- Q: How to attack if the subjects aren't numbered w/ ID's?
 - If we know the set of people but not their IDs?
 (e.g. current Harvard students)
 - If we only know the size n of the dataset?

ID	US?
1	1
2	0
3	0
4	1
:	÷
n	1

Overall Message

- Every statistic released yields a (hard or soft) constraint on the dataset.
 - Sometimes have nonlinear or logical constraints ⇒ use fancier solvers (e.g. SAT or SMT solvers)
- Releasing too many statistics with too much accuracy necessarily determines almost the entire dataset.
- This works in theory and in practice (see readings, ps2).