实验7非线性方程求根

2015011313 徐鉴劲 计54

实验目标

研究二分法、牛顿法、迭代法解方程的性质,在几个方程上进行了测试。

题目1

求解方程 $2x^3 - x^2 + 3x - 1 = 0$ 在区间[-3, 3]上的根。

方程如图所示:

二分法

实现方法:

- 1. 首先要取一个区间,这个区间的两端符号要相反。
- 2. 然后判断这个区间中点的函数值是否满足了精度要求,如果是就要返回。

- 3. 如果不是,大于0正号端点就要收缩到中点,小于0负号端点就要收缩到中点。
- 4. 返回到第二步。

Iteration	X	у
1	0.00000	-1.00000
2	1.50000	8.00000
3	0.75000	1.53125
4	0.37500	0.08984
5	0.18750	-0.45947
6	0.28125	-0.19086
7	0.32812	-0.05264
8	0.35156	0.01799
9	0.33984	-0.01746
10	0.34570	0.00023
11	0.34277	-0.00863
12	0.34424	-0.00420
13	0.34497	-0.00199
14	0.34534	-0.00088
15	0.34552	-0.00032
16	0.34561	-0.00005
17	0.34566	0.00009
18	0.34563	0.00002
19	0.34562	-0.00001
20	0.34563	0.00000

Solution: x = 0.3456287384.

误差: e = 0.0000040727,在 10^{-6} 的级别。

牛顿法

实现方法:

1. 首先随机选取一个点。

2. 然后判断它是否满足精度要求,是就要返回。

3. 进行导数更新: $x-=rac{f(x)}{f'(x)}$.

4. 返回到2.

Iteration	x	У
0	3.00000	53.00000
1	1.96078	16.11484
2	1.23314	4.92906
3	0.72275	1.40096
4	0.42395	0.24452
5	0.34826	0.00798
6	0.34563	0.00001

Solution: x = 0.3456298744.

误差: e = 0.0000075096,在 10^{-6} 级别。

分析

两种方法均能正确地找到解答,解答的具体数值上略有差别,在 10^{-6} 的级别。两种方法在解法精度上都是 10^{-6} 的级别,具体数值上略有不同。

题目 2(1)

实现非常简单,迭代每一次的x就可以了。

方案一:

Iteration	x	func	у
0	0.00000	0.79370	-1.00000
1	0.79370	0.96436	-0.79370
2	0.96436	0.99402	-0.17066
3	0.99402	0.99900	-0.02966

Iteration	x	func	у
4	0.99900	0.99983	-0.00498
5	0.99983	0.99997	-0.00083
6	0.99997	1.00000	-0.00014
7	1.00000	1.00000	-0.00002
8	1.00000	1.00000	-0.00000
9	1.00000	1.00000	-0.00000

Solution: x=0.999999786

方案二:

Iteration	х	func	у
0	0.00000	-1.00000	-1.00000
1	-1.00000	-3.00000	-2.00000
2	-3.00000	-55.00000	-52.00000
3	-55.00000	-332751.00000	-332696.00000
	inf	inf	inf

第一种迭代方案收敛性良好,找到了方程的解。第二种方法则不收敛。

第一种方案满足李普希兹条件,不动点存在、唯一且迭代算法稳定。

第二种方案中的函数不满足这个条件(导数大于1了),迭代算法不能稳定找到不动点。

题目2(2)

用牛顿法的不同初值求方程 $2x^3-x-1=0$ 的在1.5附近的根。

方程如图所示:

方案一: 初始化是1.5.

Iteration	x	У
0	1.50000	0.87500
1	1.34783	0.10068
2	1.32520	0.00206
3	1.32472	0.00000

Solution: x=1.3247181740

Error: 0.0000009244

方案二:初始化是0.

Iteration	х	у
0	0.00000	-1.00000
1	-1.00000	-1.00000
2	-0.50000	-0.62500

Iteration	x	У
3	-3.00000	-25.00000
4	-2.03846	-7.43201
5	-1.39028	-2.29697
6	-0.91161	-0.84597
7	-0.34503	-0.69605
8	-1.42775	-2.48268
9	-0.94242	-0.89459
10	-0.40495	-0.66146
11	-1.70690	-4.26620
12	-1.15576	-1.38807
13	-0.69419	-0.64034
14	0.74249	-1.33316
15	2.78130	17.73372
16	1.98273	4.81176
17	1.53693	1.09352
18	1.35726	0.14303
19	1.32566	0.00403
20	1.32472	0.00000

Solution: x=1.3247187886

Error: 0.0000035455

分析

在本题目中,初始值取1.5就是非常好的结果,收敛得又快又准。初始值取0却经历了大幅度的震荡,经过很长一段很长的迭代才找到解答。

牛顿法对于初值十分敏感,不同初始化值会导致完全不一样的收敛特性。

而且牛顿法是不可预测的,在一些情况中,它会接近到极值点上,这是再求斜率就是一个病态问题了,直线的倾斜角会很平,导致最终更新出来的x可能非常非常巨大。

复现代码的结果

mkdir data
make
build/main
python src/plot.py