Examination Question Paper

Pioneering Futures Since 1898

Module Code:	CN6005			
Component No:	001	Paper Typ	oe:	EXA1
Module Title:	Artificial Intelligence			
Term	Term 1			
Level:	6			
Credits:	20			
Date:	13 Dec 2023	Time	:	
Duration:				

Instruction to Candidates:

- 1. On each answer book write:
 - your full 7 digit student enrolment number as on your Student ID card
 - the title of the module and the module code, as above
 - the number of the questions answered

How to submit:

Take the scanned copy of your Exam solution change it into PDF and submit on Moodle link.

Examination Questions Total Marks 50

Question 1: (10 Marks)

Predict the class label using Naïve Bayes algorithm for the following scenario:

Student = Is_a_student , Salary < 20K, Studies = Engineering, Credit rating = Good , Refer to Table below.

Show all the steps that lead to the answer.

Student	Salary	Studies	Credit rating	CLASS Buys a car
ls_a_student	>20k	Computer Science	Fair	YES
Not_a_student	<20k	Computer Science	<mark>Good</mark>	NO
Not_a_student	>20k	Maths	Excellent	NO
Is_a_student	>20k	Engineering	Fair	MAYBE
Is_a_student	>20k	Maths	<mark>Good</mark>	MAYBE
Not_a_student	>20k	Engineering	Excellent	YES
Is_a_student	>20k	Maths	Fair	YES
Not_a_student	>20k	Computer Science	<mark>Good</mark>	YES
Is_a_student	<20k	Computer Science	Fair	NO
Is_a_student	<20k	Maths	Excellent	MAYBE

Question 2: 5 Marks

Refer to table below, Calculate the sentiment for the following sentences using the formula: Polarity= Sum of words (Please note that each positive word equals to 1 and each negative word equals to -1)

Positive words:	Negative words:	
Engaging	Boring	
Stimulating	Tedious	
Enriching	Stultifying	
Empowering	Disengaging	
Liberating	Alienating	
Transformative	Uninspiring	
Inspiring	Unmotivating	
Motivating	Unrewarding	
Enlightening	Frustrating	
Rewarding	Demeaning	

Sentence 1:

Engaging, exciting, and **stimulating** education can be **enriching** and **empowering**, while **boring** and **tedious** education can be **stultifying** and **disengaging.** (2 Marks)

Sentence 2:

Liberating and **transformative** education can be **inspiring** and **motivating**, while **alienating** education can be **unmotivating**. (2 Marks)

Sentence 3:

Enlightening education can be **frustrating** and **demeaning**, but it is still worthwhile in the long run. (2 Marks)

Question 3) (7 Marks)

Using the table below, calculate the lift support and confidence of the following:

ITEM 1	Maths, Computer, English, Drama
ITEM 2	Drama, Maths, Computer, PE
ITEM 3	Music, Physics, Maths, Geography
ITEM 4	Biology, Drama, Physics, Computer
ITEM 5	Computer, Drama, PE

Support = Frequency (X,Y)/total of items
Confidence = Frequency (X,Y)/ Frequency (X)
Lift: Support / (Support (x) * Support (y)

- 1) Maths, Computer => Drama
- 2) Drama => Maths, Computer
- 3) Computer, Drama => Physics

Q4 (25Marks)

Look at the figure below and answer the following Questions

- 1. In above figure, there are two units represented as red and blue. What is name and functions of these red and blue unit in the above figure, and what this network is called **(2)**
- 2. How many classes the above network can classify. (1)
- **3.** What is name of the function represent in yellow unit and what is its function in the network **(1)**
- 4. Looking at red rectangle, where F represents filter size, S represents stride, P represents passing What would dimension of Layer C1 and C2 using the formula (n-f+2p)/s+1 (n-f+2p)/s+1 (4)
- suppose you have 8000 training images to train this network, how many iteration it takes to complete 1 epoch of you use batch size of 500
 (2)
- 6. suppose you use Keras Library and sequential model to code this model. Following is the line of the code to create first two layers. What should you write for input_shape. (2)

7. Look at the figure below and Calculate the max and average pooling (2)

Average Pooling

8. Look at the figure below

Assuming

 $W_{11}=1$, $W_{21}=-1$, $W_{22}=1$, $W_{12}=-2$,

 $W_{31}=-2, W_{32}=1, W_{41}=2, W_{42}=-3$

Assume X1 = 1 and X2=-1

Each of Node 1,2,3,4, uses following activation function

- f(v)=0 when v≥0;
- f(v)=1 otherwise

Calculate the output of Neuron1, Neuron2, Neuron3 and Neuron4 (4)

- Suppose you want to predict the Car price based on milage area (M) and Number of Years used (Y) and Engine Size €, suggest a Linear Regression formula to predict the car price (CP).
- 10. Differentiate between machine learning and Deep learning, how does the number of training samples effects the accuracy of classifiers in both of these cases.
 2
- 11. How do you measure the accuracy of KMean Clustering (1)
- **12.**What is padding used for in CNN **(1)**
- 13. What is the Stride in CNN (1)
- 14. Write down the activation function for perceptron (1)
- 15. Suppose we receive 2x2 matrix at the end of the CNN network, what would be the size of this matrix after flattening process before the fully connected layer (1)
- 16.Differentiate between supervised , unsupervised and Reinforcement Learning (1)
- 17. Write down steps required for the classification (1)