Analyse II

David Wiedemann

Table des matières

1	$Int \epsilon$	égrales généralisées	4													
	1.1	Integrales absoluments convergentes	5													
	1.2	Integrale generalisee sur un intervalle non borne	7													
2	L'es	pace R^n														
	2.1	Espace vectoriel norme	7													
	2.2	Normes sur \mathbb{R}^n	9													
	2.3	Suites sur \mathbb{R}^n	9													
	2.4	Topologie de \mathbb{R}^n	10													
	2.5	Classification des points d'un ensemble $E \subset \mathbb{R}^n$	10													
	2.6	Caracterisation des ensembles ouverts	11													
	2.7	Caracterisation des ensembles fermes	11													
	2.8	Ensembles compacts	12													
3	Fon	Fonctions de plusieurs variables 12														
	3.1	Notion de limite	12													
	3.2	Caracterisation de limite par suites	13													
	3.3	Proprietes de l'operation de limite	13													
	3.4	Fonctions a valeurs dans R^m	14													
4	Fonctions continues 14															
		4.0.1 Definitions Equivalentes	14													
	4.1	Prolongement par continuite	14													
	4.2	Prolongement par continuite	16													
\mathbf{L}	ist	of Theorems														
	1	Definition (Intégrales généralisées (sur un intervalle borné non fermé))	4													
	2	Definition (Integrale sur un intervalle borne ouvert)	4													
	1	Theorème (Critere de Comparaison)	4													
	3	Definition (Integrale absolument convergente)	5													

3	Theorème (absolument convergente implique convergente)	Ę
5	Theorème (Critere de comparaison (II)) $\ \ldots \ \ldots \ \ldots$	6
4	Definition (Integrale sur un intervalle non borne)	7
5	Definition (Norme d'un vecteur)	7
6	Definition (Espace vetoriel norme)	7
7	Definition	7
8	Definition (Distance)	8
9	Definition (Produit Scalaire)	8
6	Theorème (Inegalite de Cauchy-Schwarz)	8
7	Theorème	8
10	Definition (Suites convergentes)	ç
9	Lemme	ç
11	Definition (Suites de Cauchy)	ç
10	Theorème	ç
11	Theorème (Bolzano-Weierstrass)	10
12	Definition (Boule)	10
13	Definition	11
14	Definition	11
15	Definition (Ensemble compact)	12
12	Theorème (Caracterisation par sous-suites convergentes)	12
13	Theorème (Caracterisation par recouvrements finis)	12
16	Definition (Chemin dans E)	12
17	Definition (Ensembles connexes par arcs)	12
18	Definition (Limite)	12
14	Theorème (Des deux gendarmes)	13
15	Theorème (Limites/Suites)	13
16	Theorème (Critere de Cauchy)	13
19	Definition (Limite)	14
20	Definition (Continuite en un point)	14
21	Definition (Continuite sur E)	14
22	Definition (continuite uniforme sur E)	14
23	Definition (Prolongement par continuite)	14
17	Theorème (Prolongement par continuite sur l'adherence)	15
18	Theorème	15
24	Definition	15
19	Theorème	16
20	Theorème	16
21	Theorème	16
25	Definition (Prolongement par continuite)	16
22	Theorème (Prolongement par continuite sur l'adherence)	16
23	Theorème	17

26	Definition																17
24	Theorème																17
25	Theorème																18
26	Theorème																18

Lecture 1: Introduction

Mon 22 Feb

1 Intégrales généralisées

Peut-on définir une intégrale sur un intervalle ouvert plutot que sur un intervalle fermé? ie.

$$f: [a, b] \to \mathbb{R} \text{ c.p.m.}$$

Definition 1 (Intégrales généralisées (sur un intervalle borné non fermé))

Soit $f: [a, b] \to \mathbb{R}$ continue par morceaux (a < b).

En particulier, f est c.p.m. sur tout intervalle [a, x], a < x < b Soit $F(x) = \int_a^x f(t)dt$.

On dit que l'integrale generalisee $\int_a^b f(x)dx$ existe (ou converge) si $\lim_{x\to b} F(X)$ existe, dans ce cas, on note

$$\int_{a}^{b} f(t)dt = \lim_{x \to b} F(x) - F(a)$$

 $Si \lim_{x\to b^{-}} F(x)$ n'existe pas, alors on dit que

$$\int_{a}^{b} f(t)dt$$

diverge. Definition analogue pour le cas |a,b|.

On souhaite definir $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} tan(x)dx = 0$.

Dans certains cas cette integrale vaut 0. Mais si on calcule

$$\lim_{\epsilon \to 0} \int_{-\frac{\pi}{2} + \epsilon^2} \frac{\pi}{2} - \epsilon t an(t) dt = \lim_{\epsilon \to 0+} \left(-\ln(\cos(\frac{\pi}{2} - \epsilon)) + \ln(\cos(-\frac{\pi}{2} + \epsilon^2))\right) = -\infty$$

Il faut donc une definition qui est coherente.

Definition 2 (Integrale sur un intervalle borne ouvert)

Soit $f:]a, b[\to \mathbb{R} \ c.p.m \ et \ c \in]a, b[$.

Si les integrales generalisees $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ existent, alors on definit l'integrale

$$\int_a^b f(t)dt = \int_a^c f(t)dt + \int_c^b f(t)dt$$

Si une des deux integrales diverge, alors le tout diverge.

Lecture 2: Integrales Generalisees

Wed 24 Feb

Theorème 1 (Critere de Comparaison)

Soit $f, g : [a, b] \to \mathbb{R}$ c.p.m. et supposons $\exists c \in [a, b]$ tel que

$$0 \le f(x) \le g(x) \forall x \in [c, b[$$

Si $\int_a^b g(x)dx$ existe alors $\int_a^b f(x)dx$ existe aussi Si $\int_a^b f(x)dx$ diverge alors $\int_a^b g(x)dx$ diverge aussi.

Preuve

Si $\int_a^b g(x)dx$ existe, alors $\int_c^b g(x)dx$ existe.

$$\int_{a}^{b} f(x)dx = \lim_{x \to b-} \int_{a}^{x} f(t)dt$$

$$= \lim_{x \to b-} \left(\int_{a}^{c} f(t)dt + \int_{c}^{x} f(t)dt \right)$$

$$= \int_{a}^{c} f(t)dt + \lim_{x \to b-} \int_{c}^{x} f(t)dt$$

$$\leq \int_{a}^{c} f(t)dt + \lim_{x \to b-} \int_{c}^{x} g(t)dt < +\infty$$

En notant $F(x) = \int_a^x f(t)dt$, F est non decroissante, et bornee superieurement sur l'intervalle $[a,b] \Rightarrow \lim_{x\to b^-} F(x)$ existe.

Exemple

$$f(x) = \left| \sin(\frac{1}{x}) \right| \ sur \]0, 1], \ on \ a$$

$$0 \le f(x) \le 1$$

1 est integrable, et donc l'integrale de f(x) existe.

1.1 Integrales absoluments convergentes

Definition 3 (Integrale absolument convergente)

Soit I un intervalle du type [a,b[,]a,b] ou]a,b[et $f:I\to\mathbb{R}$ c.p.m. On dit que l'integrale generalisee de f sur I est absolument convergente si

$$\int_{I} |f(x)| dx$$

existe.

Theorème 3 (absolument convergente implique convergente)

Si l'integrale $\int_a^b f(x)dx$ converge absolument, alors il converge.

Preuve

Notons $f_{+}(x) = \max\{f(x), 0\}$ et $f_{-}(x) = -\min\{f(x), 0\}$ et on $a |f(x)| = f_{+}(x) + f_{-}$.

Donc

$$0 \le f_{+}(x) \le |f(x)| \ et \ 0 \le f_{-}(x) \le |f(x)| \forall x \in I$$

Par critere de comparaison, si

$$\int_a^b |f(x)| dx \ existe \ \Rightarrow \ alors \ \int_a^b f_+(x) dx, \int_a^b f_-(x) \ existent$$

et donc $\int_a^b f(x)dx$

Remarque

Soit $f: I \to \mathbb{R}$ c.p.m Si f est bornee sur I, alors

$$\int_{I} f(x) dx$$

existe.

Theorème 5 (Critere de comparaison (II))

Soit $f:[a,b[\to \mathbb{R} \ c.p.m.$

S'il existe $\alpha \in]-\infty,1[$ tel que

$$\lim_{x \to b-} f(x)(b-x)^{\alpha} = l \in \mathbb{R}$$

Alors

$$\int_{a}^{b} f(x)dx$$

existe.

 $S'il\ existe\ \alpha \geq 1\ tel\ que$

$$\lim_{x \to b^{-}} f(x)(b-x)^{\alpha} = l \neq 0$$

alors

$$\int_{a}^{b} f(x)dx$$

diverge.

Preuve

Par definition de la limite $\forall \epsilon > 0, \exists b - a > \delta_{\epsilon} > 0$ tel que

$$|f(x)(b-x)^{\alpha}-l|<\epsilon \forall x$$

$$\Rightarrow l - \epsilon \le f(x)(b - x)^{\alpha} \le l + \epsilon$$

 $et\ donc$

$$0 \le |f(x)| \le \frac{|l| + \epsilon}{(b-x)^{\alpha}}$$

Puisque le terme de droite est integrable, on conclut par le critere de comparaison. Pour la deuxieme partie, soit $\alpha \geq 1$ et $l \neq 0$.

Supposons l > 0, on a

$$l - \epsilon \le f(x)(b - x)^{\alpha}$$

Le meme raisonnement que ci-dessus donne que l'integrale de f diverge. \Box

1.2 Integrale generalisee sur un intervalle non borne

Definition 4 (Integrale sur un intervalle non borne)

Soit $f: [a, +\infty[\to \mathbb{R} \ c.p.m.$

On dit que $\int_a^{+\infty} f(x)dx$ existe si

$$\lim_{x \to +\infty} \int_{a}^{x} f(x) dx$$

existe et dans ce cas, on note

$$\int_{a}^{+\infty} f(x)dx = \lim_{x \to +\infty} \int_{a}^{x} f(t)dt$$

idem si $f:]-\infty, a[\to \mathbb{R}$. Soit $f:]a, +\infty[\to \mathbb{R}$ c.p.m. on dit que $\int_a^\infty f(x)dx$ existe s'il existe $c\in]a, \infty[$ tel que

$$\lim_{x \to a+} \int_{x}^{c} f(t)dt \ et \ \lim_{y \to +\infty} \int_{c}^{y} f(t)dt$$

existent.

Lecture 3: L'espace \mathbb{R}^n

Mon 01 Mar

2 L'espace \mathbb{R}^n

2.1 Espace vectoriel norme

Soit un ensemble V sur lequel on definit deux operations

- 1. somme : $+: V \times V \to V$
- 2. multiplication par un scalaire $\mathbb{R} \times V \to V$

On definit R^n par $R^n = \mathbb{R} \times \mathbb{R} \dots \times \mathbb{R}$

Definition 5 (Norme d'un vecteur)

C'est une application $N: V \to \mathbb{R}$, c'est une application qui satisfait

- $-\forall x \in V : N(x) \ge 0 \text{ et } N(x) = 0 \text{ si et seulement si } x = 0.$
- $-\forall \lambda \in \mathbb{R}, x \in V : N(\lambda x) = |\lambda| N(x)$
- $-- \forall x, y \in V, N(x+y) \le N(x) + N(y)$

On utilise souvent la notation N(x) = ||x||

Definition 6 (Espace vetoriel norme)

Un espace vectoriel norme est note (V, ||.||)

Definition 7

Soit V un espace vectoriel et N_1, N_2 deux normes sur V. On dit que N_1 et N_2 sont equivalentes si $\exists c_1, c_2 > 0$ tel que

$$c_1 N_2(x) < N_1(x) < c_2 N_2(x) \forall x \in V$$

Definition 8 (Distance)

Soit X un ensemble.

Une distance est une application $d: X \times X \to \mathbb{R}_+$ qui satisfait les proprietes suivantes

- $-\forall x, y \in X, d(x, y) \ge 0, d(x, y) = 0 \iff x = y$
- La distance est symmetrique
- $-\forall x, y, z \in V, d(x, y) \le d(x, z) + d(z, y)$

Un espace X muni d'une distance est appele un espace metrique et est note (X,d).

On peut toujours definir une distance sur un espace vectoriel norme, defini par

$$d(x,y) = ||x - y||$$

On appelle cette distance, la distance induite par la norme.

Tout espace vectoriel norme est aussi un espace metrique.

Definition 9 (Produit Scalaire)

Soit V un espace vectoriel.

Un produit scalaire est une application $b: V \times V \to \mathbb{R}$ qui satisfait les proprietes suivantes

- $\forall x, y \in V, b(x, y) = b(y, x)$
- $\forall x, y \in V, \forall \alpha, \beta \in \mathbb{R}, b(\alpha x + \beta y, z) = \alpha b(x, z) + \beta b(y, z)$
- $-\forall x \in V, b(x,x) \ge 0, b(x,x) = 0 \iff x = 0$

Theorème 6 (Inegalite de Cauchy-Schwarz)

Soit V un espace vectoriel et $b: V \times V \to \mathbb{R}$ un produit scalaire. Alors

$$\forall x, y \in V | b(x, y) \le \sqrt{b(x, x)b(y, y)}$$

Preuve

 $\forall x, y \in V, \alpha \in \mathbb{R}.$

$$0 \le b(\alpha x + y, \alpha x + y) = \alpha^2 b(x, x) + 2\alpha b(x, y) + b(y, y)$$

Donc on a

$$\Delta = b(x,y)^2 - b(x,x)b(y,y)$$

Theorème 7

Soit $b: V \times V \to \mathbb{R}$ un produit scalaire, alors l'application $x \to \sqrt{b(x,x)} = \|x\|_b$ est une norme sur V.

Donc, si V est muni d'un produit scalairel, alors V est un espace norme et donc V est un espace metrique pour la distance induite par le produit scalaire.

2.2 Normes sur \mathbb{R}^n

- La norme euclidienne $||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}$
- Norme "max" $||x||_{\infty} = \max |x_i|$
- Norme 1 : $||x||_1 = \sum |x_i|$
- Normes $p \in [1, +\infty[\|x\|_p = (\sum |x_i|^p)^{\frac{1}{p}}]$

Pour p infinie, on retrouve la norme infinie

On montre en exercices que toutes les normes p sont equivalentes.

De meme, on montre que toutes les normes sur \mathbb{R}^n sont equivalentes. Par contre, seulement la norme 2 est deduite d'un produit scalaire.

Definition 10 (Suites convergentes)

Soit
$$\{x^{(k)}\}_{k=0}^{\infty} \subset \mathbb{R}^n$$
.

On dit que cette suite converge s'il existe $x \in \mathbb{R}^n$

$$\lim_{k \to +\infty} \left\| x^{(k)} - x \right\| = 0$$

Lecture 4: Boules sur \mathbb{R}^n

Wed 03 Mar

2.3 Suites sur \mathbb{R}^n

Remarque

Supposons que $\{x^{(k)}\} \to \overrightarrow{x}$ par rapport a la norme euclidienne. Et oit $||| \cdot |||$ une autre norme sur \mathbb{R}^n . Puisque toutes les normes sont equivalentes sur \mathbb{R}^n $|||\overrightarrow{x}||| \le c||\overrightarrow{x}||_2$ Donc toutes les suites converge peu importe la norme.

En particulier, on peut choisir la norme infinie.

Lemme 9

Une suite $\{x^{(k)}\}$ converge si et seulement si toutes les composantes convergent

Definition 11 (Suites de Cauchy)

On dit qu'une suite $\{x^{(k)}\}$ est de Cauchy si

$$\forall \epsilon > 0 \exists N > 0 : \forall k, l \ge N \left\| x^{(k)} - x^{(l)} \right\| \le \epsilon$$

Theorème 10

Une suite converge si et seulement si elle est de Cauchy.

Preuve

Si la suite $x^{(k)}$ converge \iff $\left\{x_i^{(k)}\right\}$ converge pour tout $i=1,\ldots,n$ donc toutes ces suites sont de Cauchy et donc $x^{(k)}$ converge.

Theorème 11 (Bolzano-Weierstrass)

Soit $\{x^{(k)}\}$ une suite bornee.

Alors il existe une sous-suite $\{x^{(k_j)}\}$ qui converge

Preuve

 $Si\left\{x^{(k)}\right\}$ est bornee, en particulier chaque suite $x^{(k)_i}$ sera bornee.

En i = 1, la suite $x^{(k)}$ est bornee, donc il existe une sous-suite convergente vers une valeur x_1 .

On considere les index de cette sous-suite et on reapplique l'argument ci-dessus en i = 2, etc.

2.4 Topologie de \mathbb{R}^n

Definition 12 (Boule)

Pour tout $x \in \mathbb{R}^n$ et $\delta > 0$, la boule ouverte centree en x et de rayon δ

$$B(x,\delta) = \{ y \in \mathbb{R}^n : ||y - x|| < \delta \}$$

La boule fermee

$$\overline{B}(x,\delta) = \{ y \in \mathbb{R}^n : ||y - x|| \le \delta \}$$

La sphere centree en x et de rayon δ

$$S(x,\delta) = \{ y \in \mathbb{R}^n : ||y - x|| = \delta \}$$

2.5 Classification des points d'un ensemble $E \subset \mathbb{R}^n$

Le complementaire de E est

$$E^c = \{ y \in \mathbb{R}^n, y \notin E \}$$

On dit que x est un point interieur de E si $\exists \delta : B(x,\delta) \subset E$, on dit que x est un point frontiere de E si $\forall \delta B(x,\delta) \cap E \neq \emptyset$ et $B(x,\delta) \cap E^c \neq \emptyset$ On dit que E^o est l'ensemble des points interieurs de E, E^o est appele l'interieur de E.

On note ∂E l'ensemble des points frontieres, appele la frontiere ou le bord de E.

On dit que x est un point adherent de E si $\forall \delta > 0, B(x, \delta) \cap E \neq \emptyset$ On note E l'ensemble des points adherents de E, appele l'adherence de E.

On a $\bar{E} = E \cup \partial E$

On dit que x est un point isole si

$$\exists \delta > 0B(x,\delta) \cap E = \{x\}$$

On dit que x est un point d'accumulation de E, si $\forall \delta > 0$

$$B(x,\delta)\cap (E\setminus \{x\})\neq \emptyset$$

Donc, en particulier, si on prend $\delta = \frac{1}{k}, k \in \mathbb{N}$

$$\exists x^{(k)} \in E$$
, tel que $\left\| x^{(k)} - x \right\| \le \frac{1}{k}$

La suite $x^{(k)}$ converge vers x.

Definition 13

Soit E un ensemble de \mathbb{R}^n , on dit que E est ouvert si tous ses points sont interieurs

Definition 14

E est ferme si E^c est ouvert.

Lecture 5: Ensembles compacts/connexes par arcs

Mon 08 Mar

2.6 Caracterisation des ensembles ouverts

- $\stackrel{\circ}{E}$ est toujours ouvert.
- E est ouvert si et seulement si $E = \stackrel{\circ}{E}$
- L'union (meme infinie) d'ensembles ouverts est ouverte.

Soit $E = \bigcup_{\alpha \in A} K_{\alpha}$ et K_{α} sont ouverts.

Alors $\forall x \in E, x \in K_{\alpha}$ et donc il existe une boule ouverte centree en x et contenue dans K_{α} .

— L'intersection finie d'ensembles ouverts est ouverte. Soit $E = \bigcap K_i$, alors $\forall x \in E, x \in K_i \forall i$, mais chaque K_i est ouvert, donc en prendant $\delta = \min \{\delta_1, \ldots\}, B(x, \delta) \in E$ et donc E est ouvert.

2.7 Caracterisation des ensembles fermes

- $--\mathbb{R}^n \setminus \overline{E} = \overset{\circ}{E}, \overline{E^c} = \mathbb{R}^n \setminus \overset{\circ}{E}$
- \overline{E} est toujours ferme.
- L'intersection (meme infinie) d'ensembles fermes est fermee.
- L'union finie d'ensembles fermes est fermee.
- E est ferme si et seulement si toute suite $\{x^{(k)}\}$ convergente, converge vers un element $x \in E$.

Preuve

Soit E ferme et $\{x^{(k)}\}$ une suite convergente vers $x \in \mathbb{R}^n$, $\forall \epsilon > 0 \exists N_{\epsilon} : \forall k > N_{\epsilon}, ||x - x^{(k)}|| \leq \epsilon$.

 $Donc \ \forall \epsilon B(x, \epsilon) \cap E \neq \emptyset, \ donc \ x \in \overline{E} = E.$

Supposons que E n'est pas ferme, donc E^c n'est pas ouvert. Donc $\exists x \in E^c : \forall \delta > 0, B(x, \delta) \cap E \neq \emptyset$.

Si on prend $\delta = \frac{1}{k}, k \in \mathbb{N} \exists x^{(k)} \in B(x, \delta) \cap E \text{ et } \{x^{(k)}\} \text{ converge vers } x, donc \ x \in E \not\downarrow$

2.8 Ensembles compacts

Definition 15 (Ensemble compact)

On dit que E est compact si E est a la fois ferme et borne.

Theorème 12 (Caracterisation par sous-suites convergentes)

Un ensemble non vide $E \subset \mathbb{R}^n$ est compact si et seulement si de toute suite $\{x^{(k)}\}\subset E$ on peut extraire une sous-suite convergente vers un element $x\in E$

Theorème 13 (Caracterisation par recouvrements finis)

Un ensemble non vide $E \subset \mathbb{R}^n$ est compact si et seulement si de toute famille $\{K_{\alpha}, \alpha \in A\}$ d'ouverts tel que $E \subset K_{\alpha}$, on peut extraire une sousfamille finie qui est encore un recouvrement de E.

Definition 16 (Chemin dans E)

Soit $E \subset \mathbb{R}^n$ non vide. On appelle chemin de E une application $\gamma : [0,1] \to E$, $\gamma(t) = (\gamma_1, \ldots)$, tel que γ_i est continu pour tout i.

Definition 17 (Ensembles connexes par arcs)

Un ensemble $E \subset \mathbb{R}^n$ est connexe par arcs si $\forall x, y \in E$, il existe un chemin γ tel que $\gamma(0) = x, \gamma(1) = y$.

3 Fonctions de plusieurs variables

Soit $E \subset \mathbb{R}^n$ non vide. On appelle fonction sur E a valeurs reelles une application $f:E \to \mathbb{R}$

$$\forall x \in E, x \to f(x) \subset \mathbb{R}^n$$

On note D(f) le domaine de f, $\operatorname{Im} f$ l'image, g(f) le graphe .

3.1 Notion de limite

Definition 18 (Limite)

Soit $f: E \to \mathbb{R}$ et $x_0 \in \mathbb{R}^n$ un point d'accumulation de E. On dit que

$$\lim_{x \to x_0} f(x) = l \in \mathbb{R}$$

si

$$\forall \epsilon > 0, \exists \delta > 0 : ||x - x_0|| < \delta$$

Alors

$$||f(x) - l|| < \epsilon$$

Theorème 14 (Des deux gendarmes)

Soit $f, g, h : E \to \mathbb{R}^n$ et $x_0 \in \mathbb{R}^n$ un point d'accumulation de E. Si $\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = l$ et $\exists \alpha > 0$

$$h(x) \le f(x) \le g(x)0 < ||x - x_0|| \le \alpha$$

Alors $\lim_{x\to x_0} f(x)$ existe et est egale a l.

Lecture 6: Fonctions continues

Wed 10 Mar

3.2 Caracterisation de limite par suites

Theorème 15 (Limites/Suites)

Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}$ et $x_0 \in \mathbb{R}^n$ un point d'accumulation de E. La limite $\lim_{x \to x_0} f(x) = l$ si et seulement si pour toute suite suite $\{x^{(k)}\} \subset E$ qui converge vers x_0 , on a $\lim_{k \to +\infty} f(x^{(k)}) = l$.

Preuve

Soit $\{x^{(k)}: \lim_{k\to+\infty} x^{(k)} = x_0\}$, on sait que $\lim_{x\to x_0} f(x) = l$ donc

$$\forall \epsilon > 0, \exists \delta > 0 \forall x \in E, ||x - x_0|| < \delta, |f(x) - l| < \epsilon$$

il existe N tq $\forall k > n$ tq $||x^{(k)} - x_0|| < \delta$

Si la limite $\lim_{k\to+\infty} f(x^{(k)}) = l$ pour toute suite $x^{(k)}$.

Par l'absurde, supposons que $\lim_{x\to x_0} f(x)$ n'existe pas.

$$\exists \epsilon > 0 \forall \delta > 0 \exists x \in E, x \neq x_0 : ||x - x_0|| < \delta$$

et

$$|f(x) - l| \ge \epsilon$$

Si on prend $\delta = \frac{1}{k}$, alors $\exists x^{(k)} \neq x_0 : ||x^{(k)} - x_0|| < \frac{1}{k} \text{ tel que } |f(x^{(k)}) - l| \ge \epsilon$. Or cette suite $x^{(k)}$ converge vers x_0 , ξ

3.3 Proprietes de l'operation de limite

Soit $f,g: E \subset \mathbb{R}^n \to \mathbb{R}$, $x_0 \in \mathbb{R}^n$ un point d'accumulation de E et $\lim_{x\to x_0} f(x) = l_1$, $\lim_{x\to x_0} g(x) = l_2$, alors l'operation de limite est lineaire, respecte les regles de multiplication.

Theorème 16 (Critere de Cauchy)

Idem qu'en analyse I.

3.4 Fonctions a valeurs dans R^m

Soit $f: \mathbb{R}^n \to \mathbb{R}^m$.

Definition 19 (Limite)

On dit que $\lim_{x\to x_0} f(x) = \overrightarrow{l} \in \mathbb{R}^m$ existe si

$$\forall \epsilon > 0, \exists \delta > 0 : \forall x \in E \setminus \{x_0\}, 0 < \|x - x_0\| < \delta$$

on a

$$||f(x) - l|| < \epsilon$$

De plus, chaque composante de f converge vers la composante correspondante de la limite.

4 Fonctions continues

Definition 20 (Continuite en un point)

Soit $E \subset \mathbb{R}^n$ non vide, $f: E \to \mathbb{R}^m$, et $x_0 \in E$.

Si x_0 est un point d'accumulation de E, on dit que f est continue en x_0 si $\lim_{x\to x_0} f(x) = f(x_0)$.

 $Si x_0$ est un point isole, on admet que f est continue en x_0

4.0.1 Definitions Equivalentes

- $\forall \epsilon > 0, \exists \delta : \forall x \in E, ||x x_0||, ||f(x) f(x_0)|| < \epsilon$
- pour toute suite $x^{(k)} \subset E$ qui converge vers x_0 on a que $\lim_{k \to +\infty} f(x^{(k)}) = f(x_0)$

Definition 21 (Continuite sur E)

On dit que $f: E \to \mathbb{R}^m$ est continue sur E si elle est continue en tout point $x \in E$.

Dans ce cas, on note $f \in C^0(E)$

Definition 22 (continuite uniforme sur E)

On dit que f est uniformement continue sur E si $\forall \epsilon$, $\exists \delta$ tel que $\forall x \in E, \forall y \in E \|y - x\| < \delta$, on a $\|f(y) - f(x)\| < \epsilon$

Evidemment, la continuite uniforme implique la continuite.

Lecture 7: Prolongement par continuite

Mon 15 Mar

4.1 Prolongement par continuite

Definition 23 (Prolongement par continuite)

Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}^m$ continue, avec $E \neq \overline{E}$, soit $x_0 \in \overline{E} \setminus E$. Une fonction $\tilde{f}: E \cup \{x_0\} \to \mathbb{R}^m$ est appellee un prolongement si \tilde{f} est continue en x_0 et

coincide avec f sur E.

Le prolongement par continuite est uniquement defini par $\tilde{f}(x) = f(x)$ si $x \in E$ et $\tilde{f}(x_0) = \lim_{x \to x_0} f(x)$ si la limite existe.

Theorème 17 (Prolongement par continuite sur l'adherence)

Soit $E \subset \mathbb{R}^n$ non vide et $f: E \to \mathbb{R}^n$ continue sur E. Supposons que $\forall x \in \overline{E} \setminus E$ la limite $\lim_{y \to x} f(y)$ existe. Alors on peut definir un prolongement $\tilde{f}: \overline{E} \to \mathbb{R}^m$, $\tilde{f}(x) = f(x) \forall x \in E$ et $\tilde{f}(x) = \lim_{y \to x} f(y)$ sinon, de plus \tilde{f} est continue sur \overline{E} .

Preuve

Si $x \in E$, f(x) est continue en x donc $\tilde{f}(x) = f(x)$ est continue en x. On a

$$\tilde{f}(x) = \lim_{y \to x, y \in E} f(y) = \lim_{y \to x, y \in E} \tilde{f}(y)$$

Pour montrer que \tilde{f} est continue en x, il faut montrer que $\tilde{f}(x) = \lim_{y \to x, y \in \overline{E}} \tilde{f}(y)$ Il faut montrer que pour toute suite $x^{(k)} \subset \overline{E}$ convergeant en $x \in \overline{E} \setminus E$ on a

$$\lim_{k \to +\infty} \tilde{f}(x^{(k)}) = \tilde{f}(x)$$

On construit une deuxieme suite $y^{(k)}$ convergent vers x.

Si $x^{(k)} \in E$, alors $y^{(k)} = x^{(k)}$.

 $Si\ x^{(k)} \in \overline{E} \setminus E$ on peut toujours trouver une valeur $y^{(k)} \in E$ tel que $\|y^{(k)-x^{(k)}}\| \le E$

$$2^{-k}, \ \left\| f(y^{(k)} - \tilde{f}(x^{(k)})) \right\| \leq 2^{-k}.$$

On aura donc

$$||y^{(k)} - x|| \le ||y^{(k)} - x^{(k)}|| + ||x^{(k)} - x||$$

Ainsi $y^{(k)} \subset E$ converge vers x, et ainsi

$$\lim_{k \to +\infty} \tilde{f}(x^{(k)}) = \lim_{k \to +\infty} (\tilde{f}(x^k) - \tilde{f}(y^k)) + \lim_{k \to +\infty} \tilde{f}(y^{(k)}) = \lim_{k \to +\infty} \tilde{f}(y^{(k)})$$

Theorème 18

Soit $E \subset \mathbb{R}^n$ non vide $f: E \to \mathbb{R}^n$ uniformement continue. Alors f peut etre prolongee par continuite sur \overline{E} et le prolongement $\tilde{f}: \overline{E} \to \mathbb{R}^m$ est uniformement continu.

Definition 24

Soit $E \subset \mathbb{R}^n$ non vide, $f: E \to \mathbb{R}$ Si $\sup f = \infty$ on dit que f n'est pas bornee superieurement.

Si $M < \infty$ on appelle M la borne superieure de f.

S'il existe $x_M \in E$, $f(x_M) = M$ alors on dit que M est le maximum de f sur E et x_M est un point maximum de f. Meme definition pour borne inferieure.

Theorème 19

Soit E non vide et compact, $f: E \to \mathbb{R}$ continue. Alors f atteint son maximum et son minimum sur E.

Preuve

Par l'absurde f n'est pas bornee, il existe $x^{(k)}$ tel que $|f(x^{(k)})| > k$ Mais E est compact, donc il existe une sous-suite $x^{(k_i)}$ qui converge, or f est continue, donc

$$\lim_{i \to +\infty} f(x^{(k_i)}) = f(x) < \infty \not\downarrow$$

Supposons que f n'atteint pas ses bornes Il existe $x^{(k)}$ qui converge vers le sup, or E est ferme.

Theorème 20

Soit $E \subset \mathbb{R}^n$ non vide, compact, connexe par arcs, et $f: E \to \mathbb{R}$ continue. Alors f atteint toutes les valeurs entre son minimum et maximum.

Preuve

f est continue sur un compact donc f atteint son min et son max. Puisque E est connexe, il existe γ un chemin du minimum au maximum. On conclut par TVI sur la fonction $f \circ \gamma$

Theorème 21

Soit $E \subset \mathbb{R}^n$ non vide et compact avec $f: E \to \mathbb{R}^m$ continue. Alors f est uniformement continue sur E.

Lecture 7: Prolongement par continuite

Mon 15 Mar

4.2 Prolongement par continuite

Definition 25 (Prolongement par continuite)

Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}^m$ continue, avec $E \neq \overline{E}$, soit $x_0 \in \overline{E} \setminus E$. Une fonction $\tilde{f}: E \cup \{x_0\} \to \mathbb{R}^m$ est appellee un prolongement si \tilde{f} est continue en x_0 et coincide avec f sur E.

Le prolongement par continuite est uniquement defini par $\tilde{f}(x) = f(x)$ si $x \in E$ et $\tilde{f}(x_0) = \lim_{x \to x_0} f(x)$ si la limite existe.

Theorème 22 (Prolongement par continuite sur l'adherence)

Soit $E \subset \mathbb{R}^n$ non vide et $f: E \to \mathbb{R}^n$ continue sur E. Supposons que $\forall x \in \overline{E} \setminus E$ la limite $\lim_{y \to x} f(y)$ existe. Alors on peut definir un prolongement $\tilde{f}: \overline{E} \to \mathbb{R}^m$, $\tilde{f}(x) = f(x) \forall x \in E$ et $\tilde{f}(x) = \lim_{y \to x} f(y)$ sinon, de plus \tilde{f} est continue sur \overline{E} .

Preuve

Si $x \in E$, f(x) est continue en x donc $\tilde{f}(x) = f(x)$ est continue en x. On a

$$\tilde{f}(x) = \lim_{y \to x, y \in E} f(y) = \lim_{y \to x, y \in E} \tilde{f}(y)$$

Pour montrer que \tilde{f} est continue en x, il faut montrer que $\tilde{f}(x) = \lim_{y \to x, y \in \overline{E}} \tilde{f}(y)$ Il faut montrer que pour toute suite $x^{(k)} \subset \overline{E}$ convergeant en $x \in \overline{E} \setminus E$ on a

$$\lim_{k \to +\infty} \tilde{f}(x^{(k)}) = \tilde{f}(x)$$

On construit une deuxieme suite $y^{(k)}$ convergent vers x.

 $Si \ x^{(k)} \in E, \ alors \ y^{(k)} = x^{(k)}.$

 $Si\ x^{(k)} \in \overline{E} \setminus E \ on \ peut \ toujours \ trouver \ une \ valeur \ y^{(k)} \in E \ tel \ que \ \left\| y^{(k)-x^{(k)}} \right\| \le 2^{-k}, \ \left\| f(y^{(k)} - \tilde{f}(x^{(k)})) \right\| \le 2^{-k}.$

On aura donc

$$||y^{(k)} - x|| \le ||y^{(k)} - x^{(k)}|| + ||x^{(k)} - x||$$

Ainsi $y^{(k)} \subset E$ converge vers x, et ainsi

$$\lim_{k \to +\infty} \tilde{f}(x^{(k)}) = \lim_{k \to +\infty} (\tilde{f}(x^k) - \tilde{f}(y^k)) + \lim_{k \to +\infty} \tilde{f}(y^{(k)}) = \lim_{k \to +\infty} \tilde{f}(y^{(k)}) \qquad \Box$$

Theorème 23

Soit $E \subset \mathbb{R}^n$ non vide $f: E \to \mathbb{R}^n$ uniformement continue. Alors f peut etre prolongee par continuite sur \overline{E} et le prolongement $\tilde{f}: \overline{E} \to \mathbb{R}^m$ est uniformement continu.

Definition 26

Soit $E \subset \mathbb{R}^n$ non vide, $f: E \to \mathbb{R}$ Si $\sup f = \infty$ on dit que f n'est pas bornee superieurement.

Si $M < \infty$ on appelle M la borne superieure de f.

S'il existe $x_M \in E$, $f(x_M) = M$ alors on dit que M est le maximum de f sur E et x_M est un point maximum de f. Meme definition pour borne inferieure.

Theorème 24

Soit E non vide et compact, $f: E \to \mathbb{R}$ continue. Alors f atteint son maximum et son minimum sur E.

Preuve

Par l'absurde f n'est pas bornee, il existe $x^{(k)}$ tel que $|f(x^{(k)})| > k$ Mais E est compact, donc il existe une sous-suite $x^{(k_i)}$ qui converge, or f est continue, donc

$$\lim_{i \to +\infty} f(x^{(k_i)}) = f(x) < \infty \not$$

Supposons que f n'atteint pas ses bornes

Il existe $x^{(k)}$ qui converge vers le sup, or E est ferme.

Theorème 25

Soit $E \subset \mathbb{R}^n$ non vide, compact, connexe par arcs, et $f: E \to \mathbb{R}$ continue. Alors f atteint toutes les valeurs entre son minimum et maximum.

Preuve

f est continue sur un compact donc f atteint son min et son max. Puisque E est connexe, il existe γ un chemin du minimum au maximum. On conclut par TVI sur la fonction $f \circ \gamma$

Theorème 26

Soit $E \subset \mathbb{R}^n$ non vide et compact avec $f: E \to \mathbb{R}^m$ continue. Alors f est uniformement continue sur E.