

Chronic Kidney Disease Detection

Aeris Li

Cheryl Jiao

Zhe Sun

Richard Yang

Jean Chao

Group 6 03/08/2023

Agenda

CONTENTS

Problem Statement

01

- Project Background
- Problem Statement
- Project Purpose

Methodology

03

- Feature Selection
- Model Construction
- Model Result & Comparison
- Model Validation

Definition of variables & Exploratory Data Analysis

02

- Definition of Variables
- Data Preprocessing
- Exploratory Data Analysis

Conclusion & Future Improvement

04

- Final Model & Feature Importance
- · Business Value
- Future Improvements

Problem Statement

Problem Statement

Project Background

According to CDC, an estimated **15%** of US adults have Chronic Kidney Disease (CKD), and **9 in 10 adults** with CKD do not know they have CKD

Problem Statement

The high prevalence of CKD in the U.S. motivates us to develop a predictive model that uses a patient's health-related information, such as medical history, lab results, and demographic factors, to identify patients who are at high risk of developing CKD and thus empower healthcare providers

Purpose

- Early Detection: Identify individuals at risk of developing CKD at an early stage, allowing for early intervention and treatment
- 2. Improved Diagnosis: A predictive model can provide a more accurate diagnosis, reducing the rate of misdiagnosis
- Cost Savings: Early detection and effective treatment can reduce the cost of managing CKD

Definition of variables & Exploratory Data Analysis

Definition of variables

Data Source:

Early stage of Indians Chronic Kidney Disease (CKD) dataset was originally posted on UC Irvine Machine Learning Repository in 2015. The data was collected over a 2-month period from hospitals in India.

- This dataset contains 24 features
- 10 categorical and 14 numerical features

 This is a classification problem, with target variable being binary outcomes (CKD/non-CKD)

- Data is relatively balanced
 - CKD: Non-CKD = 6:4

Data Preprocessing

Data type conversion

Converting necessary columns to numeric type:

- packed_cell_volume
- · white blood cell count
 - red_blood_cell_count

Maps the target values

Maps the target values to 0 or 1:

Data Wrangling

- '\tno' -> 'no'
- 'yes' -> 'yes'
- 'ckd\t' -> 'ckd'
- 'notckd' -> 'not ckd'

Encoding for categorical variables

Since all categorical variables have only 2 categories, use label encoder to convert categorical variables into binary variables (0s and 1s).

Data Preprocessing Continued

Handling missing values: Random imputation & Mode imputation

- Random imputation: for all numerical variables and categorical variables with a large portion of missing values ("red_blood_cells" and "pus_cell")
- This method preserves the statistical properties of the original data and avoids bias.

 Mode imputation: for categorical variables with a small portion of missing value

Exploratory Data Analysis

Our response variable is relatively balanced (CKD: 62.5% vs Non-CKD: 37.5%)

Low correlation and linearly dependency between features

Feature Visualization

Categorical variables part

 Most of the categorical features are relatively balanced

0.025 0.030 0.020 Density 90.0 ₹ 0.015 0.020 0.015 0.010 0.04 0.005 0.02 0.005 0.000 0.000 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 haemoglobin packed cell volume

Numerical variables part

 Most of our numerical features have a normal distribution **/03**

Methodology

Feature Selection

We used **Recursive Feature Elimination (RFE)** method to fit a **Random Forest Regressor**, which
generates the optimal number of features
to select, as well as the features to select
given that optimal number.

01 Methodology 02

Result

12 Features Selected:

Age, Specific_Gravity, Albumin,
Blood_Glucose_Random,
Blood_Urea, Serum_Creatinine,
Haemoglobin, Packed_Cell_Volume,
Red_Blood_Cell_Count,
Hypertension, Diabetes_Mellitus,
Appetite

Model Overview

1 XgBoost

Random Forest Classifier

Gradient Boosting Classifier

5 KNN

3 Decision Tree Classifier

6 Cat Boost

Model Methodology

Preparation

- Set a seed to ensure reproducibility of the results
- Use the 70-30 split (70% of the data is used for training and 30% is used for testing) for our dataset.

02

Construction

· Consider factors such as the

size and complexity of our dataset, the interpretability of the model, and the computational resources available to choose models for our binary classification

problem

)3

Optimization

Use grid search
 hyperparameter tuning
 technique to improve the
 performance of models and
 ensure that the
 hyperparameters are
 well-defined and
 reproducible

04

Validation

- Compare their performance using metrics such as Precision, Recall, F-1 Score and Adjusted R Squared.
- Use K-fold
 Cross-Validation to better
 evaluate the performance of models and detect

 overfitting.

Model Result & Comparison

	Gradient Boosting Classifier	XgBoost	Decision Tree Classifier	Random Forest Classifier	KNN	Cat Boost
F1	0.97	0.98	0.90	0.97	0.64	0.98
Precision	1.00	1.00	0.88	1.00	0.67	1.00
Recall	0.94	0.96	0.92	0.94	0.60	0.96
Adj R^2	0.89	0.85	0.89	0.93	-0.22	0.89

Based on the result, XGboost and Cat Boost has the best recall performance

Model Validation

K-fold cross-validation:

- Helps to get a more accurate estimate of the model's true performance on unseen data
- Helps to identify the model with the best generalization performance, which is less likely to overfit to the training data

	CrossValMeans	CrossValerrors	Algorithm
0	0.564286	0.085714	KNN
1	0.982143	0.023958	Decision Tree Classifier
2	0.996429	0.010714	Random Forest Classifier
3	0.985714	0.017496	Gradient Boosting Classifier
4	0.982143	0.023958	XgBoost
5	0.978571	0.023690	Cat Boost

☐ Higher means and lower errors are preferred

Conclusion & Future Improvement

Why XgBoost?

Recall:

Cat Boost	<u>XgBoost</u>
0.96	0.96

Compared to Cat Boost, XgBoost has:

Faster training times

More flexible hyperparameter tuning

Better handling of high-dimensional data

As XGboost is so efficient and accurate,

We choose XGboost as our final Model!

Final Model

Feature Importance

Business Value

Our predictive model

Health management App

Self-test CKD

- Upload their medical report
- ☐ The model can identify risk of CKD

Partner with healthcare providers

 If result is positive, advise the patient to schedule an appointment with doctors for further evaluation

Partner with insurance providers

- Patient can upload their medical report on insurance app
- Insurance fee can be determined on CKD risk

Future Improvements

More data observation

 Help reduce the sampling error, capture more diverse patterns, and allow model to generalize well in unseen dataset

Transform the skewed variables

 A few of our numerical variables have skewness, we may use Preprocessing / MinMaxScaler / StandardScaler to transform them and to reduce the potential bias.

Model efficiency

 Consider running time, memory usage, and energy consumption when selecting models

Case by case Analysis

 Allows healthcare provider to examine each patient's medical history to make informed decision on predict outcomes.

Thanks

Q&A

Reference:

L. Jerlin Rubini. (2015, July 3). *Chronic_Kidney_Disease Data Set*. UCI Machine Learning Repository: Chronic_kidney_disease Data set. Retrieved March 8, 2023, from

https://archive.ics.uci.edu/ml/datasets/Chronic_Kidney_Disease