SA 2 [5 marks]

Consider the circuit shown below. Determine the voltages V_a and V_b (with respect to ground) using nodal analysis.

$$\frac{1 \text{ k}\Omega}{\text{W}} = \frac{3 \text{ V}}{\text{V}_{b}} = \frac{\text{"supernode"}}{\text{Supernode"}}$$

$$2 \text{ k}\Omega \approx 3 \text{ mA} = \frac{1 \text{ mA}}{\text{M}} = \frac{1$$

KCL @ supernode:
$$\frac{Va}{3k2} - 3mA + \frac{Vb}{6k2} + 1mA = 0$$
 -C

$$2 \rightarrow 0$$
: $\frac{Va}{3k2} - 3mA + \frac{Va}{6k2} + \frac{3V}{6k2} + 1mA = 0$

$$\sqrt{a} = 3V.$$

$$\sqrt{b} = (3V) + (3V) = 6V \quad (from ②)$$

Atternatively (without "supernode");

This page intentionally left blank as additional workspace.

Define Iab flowing from node a to node b.

KCL @ node a:
$$Va = 3mA + Iab = 0$$
 — ①

KCL @ node b: $-Iab + \frac{Vb}{6k2} + ImA = 0$ — ②

$$Iab = \frac{Vb}{6k2} + ImA$$
 — ③

$$Va + 3V = Vb$$
 — ④

① \rightarrow ③: $Iab = \frac{Va}{6k2} + \frac{3V}{6k2} + ImA$ — ⑤

② \rightarrow ①: $\frac{Va}{3k2} - 3mA + \frac{Va}{6k2} + \frac{3V}{6k2} + ImA = 0$
 $Va = 3V$

$$Va = 3V$$

$$Va = (3V) + (3V) = 6V$$
 (from ④)