二分法收敛性分析:

因 $|x_k - x^*| \le (b_k - a_k)/2 = (b - a)/2^{k+1}$, 故有 $x_k = (a_k + b_k)/2 \to x^*$ (当 $k \to \infty$). 只要二分足够多次(即k 充分大),便有 $\left|x^*-x_k\right|<\varepsilon$,这里 ε 为预定的精度。 可以通过先解出k来,然后判断什么时候达到预定精度

例7-1 求 $f(x) = x^3 - x - 1 = 0$ 在[1.0,1.5]内的一个实根,准确到小

2. 为求方程 $x^3 - x^2 - 1 = 0$ 在 $x_0 = 1.5$ 附近的一个根,设将方程改写成下列等价形式,并 建立相应的迭代公式,

- (1) $x=1+1/x^2$, 迭代公式 $x_{k+1}=1+1/x_k^2$;
- (2) $x^3 = x^2 + 1$, 迭代公式 $x_{k+1} = \sqrt[3]{x_k^2 + 1}$;
- (3) $x^2 = \frac{1}{x-1}$, 迭代公式 $x_{k+1} = 1/\sqrt{x_k-1}$.

(2) $\leq x \in [1,3,1,6]$ $\forall x \in [1,3,1,6]$,

$$|\varphi'(x)| = \frac{2}{3} \left| \frac{x}{(1+x^2)^{2/3}} \right| < \frac{2}{3} \frac{1.6}{(1+1.3^2)^{2/3}} \approx 0.522 = L < 1,$$
分子取最大,分母取最小

(3)
$$\phi(x) = \frac{1}{\sqrt{x-1}}$$
, $|\phi'(x)| = \left|\frac{-1}{2(x-1)^{3/2}}\right| > \frac{1}{2(1.6-1)^{3/2}} \approx 1.0758 > 1$

$$|| x_k - x^* || \le \frac{L}{1-L} || x_k - x_{k-1}|| < \frac{1}{2} \times 10^{-3}$$

 $|x_k - x_{k-1}| < \frac{1-L}{L} \times \frac{1}{2} \times 10^{-3} < 0.5 \times 10^{-3}.$

取 $x_0 = 1.5$,	计算结果见下表.		
k	x_k	k	x_k

	k	x_k	k	x_k	k	x_k
	1	1. 481 248 034	3	1. 468 817 314	5	1, 466 243 010
2 1.472 705 730 4 1.467 047 973 6 1.465 876 8	2	1.472 705 730	4	1.467 047 973	6	1, 465 876 820

牛顿迭代法的局部收敛性:

$$\phi(x) = x - \frac{f(x)}{f'(x)}$$

$$\phi'(x) = 1 - \frac{[f'(x)]^2 - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2},$$

$$\phi''(x^*) = \frac{[f'(x^*)f''(x^*) + 0f'''(x^*)][f'(x^*)]^2 - 0}{[f'(x^*)]^4} = \frac{f''(x^*)}{f'(x^*)}.$$

当x*是f(x) 的单根时, $\phi'(x*)=0$, $\phi''(x*)\neq 0$ 。此时与

例7-4 比较求 $e^x + 10x - 2 = 0$ 根的误差小于 $10^4/2$ 所需的计算量:

- (1) 在区间[0,1] 内用二分法;
- (2) 用迭代法 $x_{k+1} = (2 e^{x_k})/10$, 取初值 $x_0 = 0$.

\mathbf{F}: (1) $\mathbf{E}(\mathbf{x}^*)$ ∈ [0,1], f(0) < 0, f(1) > 0, $\mathbf{E}(0) < \mathbf{x}^* < 1$,

用二分法计算,此时 $|x_{14}-x^*| \le \frac{1}{2^{15}} = 0.000030517 < \frac{1}{2} \times 10^{-4}$, $x^* \approx x_{14}$

(2) $\triangleq x \in [0, 0.5]$ $\exists t$, $\phi(x) \in [0, 0.5]$, $|\phi'(x)| = \frac{e^x}{10} \le L = 0.16487$

在[0,0.5]上整体收敛。取 $x_0 = 0$, 迭代计算结果如下:

此时 $|x_6 - x^*| \le \frac{L}{1 - L} |x_6 - x_5| \le 2.995 \times 10^{-7} \, \overline{\text{m}} |x_4 - x^*| \le 2.4978 \times 10^{-5} < \frac{10^4}{2}, \,$ 故 $x_4 \overline{\text{m}}$

例7-5 用不同方法求方程 $x^2 - 3 = 0$ 的根 $x^* = \sqrt{3}$

(1) $x_{k+1} = x_k^2 + x_k - 3$, $\phi(x) = x^2 + x - 3$, $\phi'(x) = 2x + 1$, $\phi'(x^*) = \phi'(\sqrt{3}) = 2\sqrt{3} + 1 > 1$;

(2)
$$x_{k+1} = \frac{3}{x_k}$$
, $\phi(x) = \frac{3}{x}$, $\phi'(x) = -\frac{3}{x^2}$, $\phi'(x^*) = -1$;

(3)
$$x_{k+1} = x_k - \frac{1}{4}(x_k^2 - 3), \quad \phi(x) = x - \frac{1}{4}(x^2 - 3), \quad \phi'(x) = 1 - \frac{x}{2}, \quad \underline{\phi'(x^*)} = 1 - \frac{\sqrt{3}}{2} \approx 0.134 < 1;$$

$$(4) \ \ x_{k+1} = \frac{1}{2} \left(x_k + \frac{3}{x_k} \right), \ \ \phi(x) = \frac{1}{2} \left(x + \frac{3}{x} \right), \ \ \phi'(x) = \frac{1}{2} \left(1 - \frac{3}{x^2} \right), \ \ \phi'(x^*) = \phi'\left(\sqrt{3}\right) = 0.$$

12. 应用牛顿法于方程 $x^3 - a = 0$,导出求立方根 $\sqrt[3]{a}$ 的迭代公式,并讨论其收敛性.

 $f(x)=x^3-a$,故 $f'(x)=3x^2$, f''(x)=6x,牛顿法迭代公式为

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^3 - a}{3x_k^2} = \frac{2x_k^3 + a}{3x_k^2}, \quad k = 0, 1, 2, \cdots,$$

当 $a \neq 0$ 时, $\sqrt[3]{a}$ 为 f(x)=0 的单根,此时,牛顿法在 x 附近是平方收敛的。 改进的欧拉方法(Heun 法)的增量函数为 改进欧拉法收敛性证明

 $x_{k+1} = \frac{2}{3}x_k$,

因而 $x_{k} \rightarrow 0$,即迭代公式收敛.

13. 应用牛顿法于方程 $f(x) = 1 - \frac{a}{x^2} = 0$, 导出求 \sqrt{a} 的迭代公式, 并用此公式求 $\sqrt{115}$

解 因为 $f(x)=1-\frac{a}{x^2}$,所以 $x^*=\sqrt{a}$ 为方程 f(x)=0 的单根.

由 $f'(x) = \frac{2a}{x^3}$,知牛顿法迭代公式为

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{1 - \frac{a^2}{x_k^2}}{\frac{2a}{x_k^2}} = x_k - \frac{x_k^3 - ax_k}{2a} = \frac{1}{2a}(3ax_k - x_k^3).$$

令 a=115,则有

$$x_{k+1} = \frac{x_k}{230}(345 - x_k^2),$$

取 $x_0 = 10$,则

 $x_1 = 10.65217391$, $x_2 = 10.73208918$, $x_3 = 10.72280522$, $x_4 = 10.72380529$,

√115≈10,723 805.

$$\frac{x_k - \sqrt{C}}{x_k + \sqrt{C}} = \left[\frac{x_0 - \sqrt{C}}{x_0 + \sqrt{C}}\right]^{2^k}$$
 整理上式,得
$$x_k - \sqrt{C} = 2\sqrt{C} \frac{q^{2^k}}{1 - q^{2^k}}, \quad x_k = \sqrt{C} \frac{1 + q^{2^k}}{1 - q^{2^k}}$$
 对任音x > 0. 单有 | q| < 1. 故中上式推制,当k

对任意 $x_0 > 0$, 总有 |q| < 1, 故由上式推知,当 $k \to \infty$ 时 $x_{\iota} \to \sqrt{C}$, 即迭代过程恒收敛。

根源的公式: 本质是用 不同的方法来近似右边 $y(x_{n+1}) = y(x_n) + \int_x^{x_{n+1}} f(t, y(t)) dt$

$$\begin{split} y_{n+1} - y_{n+1}^{(k+1)} &= \frac{h}{2} \Big[f(x_{n+1}, y_{n+1}) - f(x_{n+1}, y_{n+1}^{(k)}) \Big] \\ & |y_{n+1} - y_{n+1}^{(k+1)}| \leq \frac{hL}{2} |y_{n+1} - y_{n+1}^{(k)}| \leq \dots \leq \left(\frac{hL}{2}\right)^{k+1} |y_{n+1} - y_{n+1}^{(0)}| \end{split}$$

L为 f(x,y) 关于 y 的利普希茨常数。若 h 充分小使得 $\frac{hL}{2}$ < 1,

则当 $k \to \infty$ 时有 $y_{n+1}^{(k)} \to y_{n+1}$, 迭代过程收敛。

 $= hy'(x_n) + \frac{h^2}{2}y''(x_n) + \frac{h^3}{2!}y'''(x_n) - \frac{h}{2}[y'(x_n) + y'(x_n)]$ $+\frac{1}{2!}\left[\frac{\partial^2 f(x_n,y_n)}{\partial x^2}h^2 + 2\frac{\partial^2 f(x_n,y_n)}{\partial x \partial y}hk + \frac{\partial^2 f(x_n,y_n)}{\partial y^2}k^2\right] + \cdots$

另外, 在 $y_n = y(x_n)$ 的条件下, 考虑到y'(x) = f(x,y(x)), 则有 $y'(x_n)=f(x_n,y(x_n))=f(x_n,y_n)=f_n$

 $+hy''(x_n) + \frac{h^2}{2}y'''(x_n)] + O(h^4) = -\frac{h^3}{12}y'''(x_n) + O(h^4)$

$$\begin{split} y'(x_n) &= f(x_n, y(x_n)) = f(x_n, y_n) = f_n \\ y''(x_n) &= \frac{\mathrm{d}}{\mathrm{d}x} \left[f(x_n, y(x_n)) \right] = \frac{\partial f_n}{\partial x} + \frac{\partial f_n}{\partial y} f_n \\ y'''(x_n) &= \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f_n}{\partial x} + \frac{\partial f_n}{\partial y} f_n \right) \\ &= hy'(x_n) + \frac{h^2}{2} y''(x_n) + O(h^3) - h[y'(x_n) + hy''(x_n) + O(h^2)] \\ &= -\frac{h^2}{2} y''(x_n) + O(h^3) \end{split}$$

$$=\frac{\partial^2 f_n}{\partial x^2}+2\frac{\partial^2 f_n}{\partial x\partial y}f_n+\frac{\partial^2 f_n}{\partial y^2}f_n^2+\frac{\partial f_n}{\partial x}\frac{\partial f_n}{\partial y}+\left(\frac{\partial f_n}{\partial y}\right)^2f_n$$

二阶龙格库塔收敛阶推导
利用泰勒展开式
$$y(x_{n+1}) = y_n + hy'_n + \frac{h^2}{2}y''_n + \frac{h^3}{2!}y'''_n + O(h^4)$$

$$y'_n = f(x_n, y_n) = f_n$$

$$y_n = f(x_n, y_n) = f_n$$

$$y_n'' = f_y'(x_n, y_n) + f_y'(x_n, y_n) \cdot f_n$$

$$y_n''' = f_{xx}''(x_n, y_n) + 2f_n f_{xy}'(x_n, y_n) + f_n^2 f_{yy}''(x_n, y_n) + f_y'(x_n, y_n) [f_x'(x_n, y_n) + f_n f_y'(x_n, y_n)])$$

局部截断误差为 $T_{n+1} = y(x_{n+1}) - y(x_n) - h[c_1 f(x_n, y_n) + c_2 f(x_n + \lambda_2 h, y_n + \mu_2 h f_n)]$

$$f(x_n + \lambda_2 h, y_n + \mu_{21} h f_n) = f_n + f'_x(x_n, y_n) \lambda_2 h + f'_y(x_n, y_n) \mu_{21} h f_n + O(h^2)$$

$$T_{n+1} = hf_n + \frac{h^2}{2} [f_x'(x_n, y_n) + f_y'(x_n, y_n)f_n] - h[c_1f_n + c_2(f_n + \lambda_2 f_x'(x_n, y_n)h + \mu_{21}f_y'(x_n, y_n)f_nh)] + O(h^3)$$

$$= (1 - c_1 - c_2)f_nh + \left(\frac{1}{2} - c_2\lambda_2\right)f_x'(x_n, y_n)h^2 + \left(\frac{1}{2} - c_2\mu_{21}\right)f_y'(x_n, y_n)f_nh^2 + O(h^3)$$

要使公式具有p=2 阶,必须满足(9.6) 式。

定义9-3 若一种数值方法(如单步法(9.5))对于固定的 $x_n = x_0 + nh$, 当h→0时 $\frac{f(y_n)}{f(y_n)}$, 其中y(x) 是(9.1)的准确解,则称该方法是

可见, 若方法如(9.5)是收敛的, 则当h→0时, 整体截断误差

e,=y(x,)-y,将趋于零.

$$\phi(x, y, h) = \frac{1}{2} [f(x, y) + f(x + h, y + hf(x, y))]$$

$$\left| \phi(x, y, h) - \phi(x, y, h) \right| \le \frac{1}{2} \left[\left| f(x, y) - f(x, y) \right| \right]$$

$$+|f(x+h,y+hf(x,y))-f(x+h,y+hf(x,y))|$$

 $\leq \frac{1}{2}L\left|y-\overline{y}\right| + \frac{1}{2}L\left|y-\overline{y}\right| + \frac{h}{2}L^2\left|y-\overline{y}\right| = L\left(1 + \frac{h}{2}L\right)\left|y-\overline{y}\right|$ 因此改进的欧拉方法(Heun法)收敛。

根据绝对稳定区间来算 h 的取值范围

对隐式单步方法也可类似讨论. 如将梯形公式用于方程y'= \(\lambda\rhy\),则有

$$y_{n+1} = y_n + (h/2)^* \lambda (y_n + y_{n+1})$$
 梯形公式绝对稳定区间

$$y_{n+1} = y_n + (h/2)^* \lambda (y_n + y_{n+1})^{\frac{1}{16}}$$

解出y_{n+1}得

$$y_{n+1} = \frac{1 + \frac{1}{2} \lambda h}{1 - \frac{1}{2} \lambda h} y_n$$

$$\left| \frac{1 + \frac{1}{2} \lambda h}{1 + \frac{1}{2} \lambda h} \right| < 1$$

$$(x,y) = \sum_{i=1}^{n} \rho_i x_i y_i$$

例如(1)在 \mathbb{R}^n 上, $x,y \in \mathbb{R}^n$, $\rho_i > 0$ ($i = 1,2,\cdots,n$)为权系数,可以定义带权内积与

$$\|x\|_{2} = \left(\sum_{i=1}^{n} \rho_{i} x_{i}^{2}\right)^{\frac{1}{2}}$$

$$y_{n+1} = \frac{1 + \frac{1}{2} \lambda h}{1 - \frac{1}{2} \lambda h} y_n$$

类似前面分析,可知绝对稳定区域为 $(-\infty, 0)$

$$\frac{1}{2}\lambda h$$
 <1 利用多元函数求极值的必要条件:

$$\frac{\partial I}{\partial a_k} = 0 \qquad (k = 0, 1, \dots, k)$$

对二阶 R-K 方法,解模型方程(4.8)可得到

$$y_{n+1} = \left[1 + h\lambda + \frac{(h\lambda)^2}{2}\right]y_n,$$

$$E(h\lambda) = 1 + h\lambda + \frac{(h\lambda)^2}{2}.$$

绝对稳定域由
$$\left|1+h\lambda+\frac{(h\lambda)^2}{2}\right|<1$$
 得到

于是可得绝对稳定区间为 $-2 < h\lambda < 0$,

定理2-2 表明: 插值法的性质

(1) 插值误差与节点和插值点 x 之间的距离有关, x 距离节点 越近,插值误差一般情况下越小。

(2) 若被插值函数 f(x) 本身就是不超过 n 次的多项式,则有

 $f(x)\equiv L_n(x)$ 。因为余项Rn(x)=0

例2-4 证明

(1)
$$\sum_{j=0}^{n} x_{j}^{k} l_{j}(x) \equiv x^{k} \quad (k = 0, 1, \dots, n)$$

 $\sum (x_i - x)^2 l_i(x) = 0$, 其中 $l_i(x)$ 是关于点 x_0, x_1, \dots, x_5 的插值基函数。

(2)
$$\sum_{i=0}^{5} (x_i - x)^2 l_i(x) = \sum_{i=0}^{5} (x_i^2 - 2x_i x + x^2) l_i(x)$$
$$= \sum_{i=0}^{5} x_i^2 l_i(x) - \sum_{i=0}^{5} 2x_i x l_i(x) + \sum_{i=0}^{5} x^2 l_i(x)$$
$$= \sum_{i=0}^{5} x_i^2 l_i(x) - 2x \sum_{i=0}^{5} x_i l_i(x) + x^2 \sum_{i=0}^{5} l_i(x)$$
$$= x^2 - 2x^2 + x^2 = 0 \text{ (B \text{\beta}5>2, \text{fiy}\text{\beta}\text{\text{\beta}6})}$$

例2-5 设 $f \in C^2[a,b]$, 试证:

$$\max_{a \le x \le b} \left| f(x) - [f(a) + \frac{f(b) - f(a)}{b - a} (x - a)] \right| \le \frac{1}{8} (b - a)^2 M_2$$

其中 $M_2 = \max |f'(x)|$ 。记号 $C^2[a,b]$ 表示在区间[a,b]上二阶导数连续的函数空间。

证明 通过两点(a, f(a)), (b, f(b))的线性插值为

于是
$$\begin{aligned} & l_{1}(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a) & \quad \underset{A \le x \le b}{\text{L}} \text{ 点斜式公式: } \mathcal{Y}.简可能要用 \\ & L_{1}(x) = y_{k} + \frac{y_{k+1} - y_{k}}{x_{k+1} - x_{k}}(x - x_{k}) \end{aligned}$$

$$= \max_{a \le x \le b} \left| f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)J \right| \\ &= \max_{a \le x \le b} \left| f(x) - L_{1}(x) \right| = \max_{a \le x \le b} \left| \frac{f'(\zeta)}{2}(x - a)(x - b) \right| \\ &\leq \frac{M_{2}}{2} \max_{a \le x \le b} \left| (x - a)(x - b) \right| = \frac{1}{8}(b - a)^{2} M_{2} \end{aligned}$$

 $R_n(x) = f[x, x_0, \cdots, x_n](x - x_0) \cdots (x - x_n)$

误差计算(估算)的两种方式:
用下一阶均差近似

(1) $f[x, x_0, \dots, x_n]$ 用 $f[x_0, \dots, x_{n+1}]$ 近似;

(2) 令 $f(x) \approx N_n(x)$ 计算 $f[x, x_0, \dots, x_n]$ 值。

5. 设 $f(x) \in C^2[a,b]$ 且 f(a) = f(b) = 0,求证:作业题

$$\max_{x} | f(x) | \leq \frac{1}{8} (b-a)^2 \max_{x} | f''(x) |$$

以 $x_0 = a$, $x_1 = b$ 为节点作线性插值多项式 $p_1(x)$,则

$$p_1(x) = \frac{x-b}{a-b}f(a) + \frac{x-a}{b-a}f(b).$$

因为 f(a)=f(b)=0,所以 $p_1(x)=0$. 而由插值余项公式有

$$f(x) - p_1(x) = \frac{1}{2!} f''(\xi)(x-a)(x-b), \quad \xi \in (a,b),$$

$$\max_{a \leqslant x \leqslant b} | f(x) | \leqslant \max_{a \leqslant x \leqslant b} \frac{|f''(x)|}{2!} | (x-a)(x-b) |$$

$$\leqslant \max_{a \leqslant x \leqslant b} \frac{|f''(x)|}{2} \cdot \left(\frac{b-a}{2}\right)^2$$

$$= \frac{1}{8} (b-a)^2 \max_{a \leqslant x \leqslant b} | f''(x) |.$$

 $\frac{\partial I(a_0, \dots, a_n)}{\partial a_k} = 2 \int_a^b \rho(x) \left| \sum_{j=0}^n a_j \phi_j(x) - f(x) \right| \phi_k(x) dx = 0$

相应的范数为

 $\Rightarrow 2\left[\sum_{j=1}^{n} a_{j} \phi_{j}(x) - f(x), \phi_{k}(x)\right] = 0$

 $\Rightarrow \sum_{i=0}^{n} (a_{i}\phi_{j}(x), \phi_{k}(x)) - (f(x), \phi_{k}(x)) = 0$ 干是有

$$\sum_{j=0}^{n} (\phi_j(x), \phi_k(x)) a_j = (f(x), \phi_k(x)) \quad (k = 0, 1, \dots, n)$$

例3-1 求 $f(x) = \sqrt{x}$ 在 $\left[\frac{1}{4}, 1\right]$ 上的在 $\phi = \text{span}\{1, x\}$ 中的关于(3. 14) $a_k^*(x) = \frac{(f(x), P_k(x))}{(P_k(x), P_k(x))} = \frac{2k + 2k}{2}$ $\rho(x)=1$ 的最佳平方逼近多项式,并求出平方逼近的误差

已知
$$\phi_0 = 1$$
, $\phi_1 = x$, 设所求 $S_1^*(x) = a_0 + a_1 x$, 得法方程
$$\begin{bmatrix} (\phi_0, \phi_0) & (\phi_0, \phi_1) \\ (\phi_1, \phi_0) & (\phi_1, \phi_1) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} (f, \phi_0) \\ (f, \phi_1) \end{bmatrix},$$

$$(\phi_0, \phi_0) = \int_{\frac{1}{4}}^1 dx = \frac{3}{4}, \quad (\phi_1, \phi_1) = \int_{\frac{1}{4}}^1 x^2 dx = \frac{21}{64}$$

$$(\phi_1, \phi_0) = (\phi_0, \phi_1) = \int_{\frac{1}{4}}^{1} x dx = \frac{15}{32}$$

$$(f, \phi_0) = \int_{\frac{1}{4}}^{1} \sqrt{x} dx = \frac{7}{12}$$

$$(f, \phi_1) = \int_{\frac{1}{4}}^{1} x \sqrt{x} dx = \frac{31}{80}$$

$$\begin{bmatrix} \frac{3}{4} & \frac{15}{32} \\ \end{bmatrix} \begin{bmatrix} a_0 \end{bmatrix} \begin{bmatrix} \frac{7}{12} \end{bmatrix} \qquad \begin{bmatrix} a_0 \end{bmatrix}$$

$$\begin{bmatrix} \frac{15}{32} & \frac{21}{64} \end{bmatrix} \begin{bmatrix} a_1 \end{bmatrix} = \begin{bmatrix} \frac{31}{80} \end{bmatrix}, \Rightarrow \begin{cases} a_1 = \frac{88}{135} \\ S_1^*(x) = \frac{10}{27} + \frac{88}{125} x. \end{cases}$$

使s*(x)满足

由多元函数求极值的必要条件

 $(\phi_k, \phi_i) = \sum_{i=1}^{m} \rho(x_i) \phi_k(x_i) \phi_i(x_i)$

 $(f,\phi_j) = \sum_{i=1}^{m} \rho(x_i) f(x_i) \phi_j(x_i)$

取得极小值

引进内积

 $||\mathbf{\delta}||_2^2 = \sum_{i=1}^m S_i^2 = \sum_{i=1}^m [s*(x_i) - y_i]^2$

 $= \min_{s(x) \in \mathcal{A}} \sum_{i=1}^{m} [s(x_i) - y_i]^2.$

 $I(a_0,\dots,a_n) = \sum_{i=1}^{m} \rho(x_i) \left| \sum_{i=1}^{n} \overline{a_k} \phi_k(x_i) - f(x_i) \right|^2$

问题归结为求 $s*(x) = \sum_{k=0}^{n} a_{k}^{*} \phi_{k}(x)$,即求系数 a_{k}^{*} ,使得

 $(k=0,1,\cdots,n)$ 若令 $\delta(x)=f(x)-S^*(x)$,则<mark>最佳平方逼近的误差</mark>为 $\|\delta(x)\|_2^2 = (f(x) - S^*(x), f(x) - S^*(x))$ $= (f(x), f(x)) - (S^*(x), f(x))$ $= || f(x) ||_2^2 - \sum_{k=0}^{\infty} a_k^* (\phi_k(x), f(x))$

定义: (f(求 $f(x) = e^x$ 在[-1,1] 上的三次最佳平方逼近多项式 先计算 $(f(x), \tilde{P}_k(x))$ (k = 0,1,2,3).

 $(f(x), P_0(x)) = \int_{-1}^{1} e^x dx = e - \frac{1}{a} \approx 2.3504;$

 $(f(x), P_1(x)) = \int_{-1}^{1} x e^x dx = 2e^{-1} \approx 0.7358;$

 $(f(x), P_2(x)) = \int_{-1}^{1} (\frac{3}{2}x^2 - \frac{1}{2})e^x dx = e - \frac{7}{e} \approx 0.1431;$

 $(f(x), P_3(x)) = \int_{-1}^{1} (\frac{5}{2}x^3 - \frac{3}{2}x)e^x dx = 37\frac{1}{e}$

 $a_0^* = (f(x), P_0(x))/2 = 1.1752,$

 $a_1^* = 3(f(x), P_1(x))/2 = 1.1036,$

 $a_2^* = 5(f(x), P_2(x))/2 = 0.3578$

 $a_3^* = 7(f(x), P_3(x))/2 = 0.07046$

 λ (3.13) $S_n^*(x) = a_0^* P_0(x) + a_1^* P_1(x) + \cdots + a_n^* P_n(x)$ 三次最佳平方逼近多项式

 $S_3^*(x) = 0.9963 + 0.9979x + 0.5367x^2 + 0.1761x^3$

$$\|\delta_n(x)\|_2 = \|\mathbf{e}^{\epsilon} - S_3^{\epsilon}(x)\|_2 \qquad = \sqrt{\int_{-1}^1 \mathbf{e}^{2x} dx} - \sum_{k=0}^3 \frac{2}{2k+1} a_k^{*2}$$

 $\leq 0.0084.$

最大误差

$$\|\delta_n(x)\|_{\infty} = \|\mathbf{e}^x - S_3^*(x)\|_{\infty} \le 0.0112$$

并计算拟合误差。

i	0	1	2	3	4
x_i		25	31	38	44
y_i	19.0	32.3	49.0	73.3	97.8

解: $\varphi_0(x) = 1$, $\varphi_1(x) = x^2$, $\rho(x) = 1$,

$$(\varphi_0(x), \varphi_0(x)) = \sum_{i=0}^{4} 1 = 5 , (\varphi_0(x), \varphi_i(x)) = (\varphi_i(x), \varphi_0(x)) = \sum_{i=0}^{4} x_i^2 = 5327$$

$$(\varphi_1(x), \varphi_1(x)) = \sum_{i=0}^{\infty} x_i^4 = 7277699$$

$$(\varphi_0(x),y) = \sum_{i=0}^4 y_i = 271.4, \ (\varphi_1(x),y) = \sum_{i=0}^4 x_i^2 y_i = 369321.5$$

$$\begin{bmatrix} 5 & 5327 \\ 5327 & 7277699 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 271.4 \\ 369321.5 \end{bmatrix},$$

得 a = 0.972579, b = 0.050035, 于是最小二乘拟合曲线为 $y = 0.972579 + 0.050035x^2$

误差
$$\delta = \left(\sum_{i=1}^{4} [y(x_i) - y_i]^2\right)^{\frac{1}{2}} \approx 0.1226$$

田多元函数求极值的必要条件 误差
$$\delta = \left(\sum_{i=0}^{n} [y(x_i) - y_i]^2\right)^2 \approx 0.12$$
 $\frac{\partial I}{\partial a_k} = 2\sum_{i=0}^{m} \rho(x_i) \left[\sum_{i=0}^{n} a_i \phi_j(x_i) - f(x_i)\right] \phi_k(x_i) = 0 \quad (k = 0, 1, \dots, n)$

$$f(x) \sim a_0^* P_0(x) + a_1^* P_1(x) + a_2^* P_2(x) + a_3^* P_3(x),$$

 $(f_* P_*) = 2b + 1 \int_1^1 \dots P_n(x) + a_n^* P_n(x) + a_n^* P_n(x)$

$$a_k^* = \frac{(f, P_k)}{(P_k, P_k)} = \frac{2k+1}{2} \int_{-1}^1 f(x) P_k(x) dx, \quad k = 0, 1, 2, 3.$$

由 $P_0(x) = 1$, 得 $a_0^* = 0$

由
$$P_1(x) = x$$
,得 $a_1^* = \frac{3}{2} \int_{-1}^1 \sin \frac{\pi}{2} x \cdot x dx \approx 1.2158542$;

由
$$P_2(x) = \frac{1}{2}(3x^2 - 1)$$
,得 $a_2^* = \frac{5}{2} \int_{-1}^{1} \sin \frac{\pi}{2} x \cdot P_2(x) dx = 0$;

由
$$P_3(x) = \frac{1}{2}(5x^3 - 3x)$$
,得 $a_3^* = \frac{7}{2} \int_{-1}^1 \sin \frac{\pi}{2} x \cdot P_3(x) dx \approx -0.2248914$

因此所求三次最佳平方逼近多项式为

$$S_3^*(x) = a_1^* P_1(x) + a_3^* P_3(x)$$

$$= 1.2158542x - 0.2248914 \cdot \frac{1}{2}(5x^3 - 3x)$$

$$= 1.5531913x - 0.5622285x^3.$$

例2-7 给出 f(x) 的函数值表,求4次牛顿插值多项式,并

丌昇1(n.596) 即:	近似阻。				
x_i	$f(x_i)$	一阶均差	二阶均差	三阶均差	四阶均差	五阶
						均差
0.40	0.41075					
0.55	0.57815	1.11600				
0.65	0.69675	1.18600	0.28000			
0.80	0.88811	1.27573	0.35893	0.19733		
0.90	1.02652	1.38410	0.43348	0.21300	0.03134	
1.05	1.25382	1.51533	0.52493	0.22863	0.03126	-0.00012

$$\begin{split} N_4(x) &= 0.41075 + 1.116(x - 0.4) + 0.28(x - 0.4)(x - 0.55) \\ &+ 0.19733(x - 0.4)(x - 0.55)(x - 0.65) \\ &+ 0.03134(x - 0.4)(x - 0.55)(x - 0.65)(x - 0.8) \end{split}$$

$$f(0.596) \approx N_4(0.596) = 0.63192$$

用下一阶均差来近似

 $|R_4(x)| \approx |f[x_0, \dots, x_5]\omega_5(0.596)| = 3.63 \times 10^{-9}$ 或 $|R_4(x)| \approx |f[x_0, \dots, x_4, 0.596]\omega_5(0.596)|$

$$\int_{a}^{b} f(x) \mathbf{d}x \approx \sum_{k=0}^{n} A_{k} f(\underline{x_{k}}) \frac{\sqrt{2}{2}}{\sqrt{2}}$$
求积系数 求积节点

例4-2 确定下面公式中的待定参数, 使其代数精度尽量高, 并指明所 构造的求积公式所具有的代数精度

$$\int_0^1 f(x) dx \approx Af(0) + Bf(x_1) + Cf(1)$$

$$\begin{cases} A+B+C=1 & 解积, \ x_1=\frac{1}{2}, \ A-\frac{1}{6}, \ B-\frac{2}{3}, \ C-\frac{1}{6}, \ \mp \mathbb{R} \\ Bx_1+C=\frac{1}{2} & \int_{\mathbb{R}^3} f(x) dx \approx \frac{1}{6} f(0) + \frac{2}{3} f\left(\frac{1}{2}\right) + \frac{1}{6} f(0) \\ Bx_1^2+C=\frac{1}{3} & \mathbb{H} \Leftrightarrow f(x) = x^4, \ \mathcal{H} \\ Bx_1^2+C=\frac{1}{4} & \frac{1}{8} = \int_{\mathbb{R}^3} x^4 dx \neq \frac{2}{3} \left(\frac{1}{2}\right)^4 + \frac{1}{6} = \frac{5}{24} \\ \frac{1}{8} = \frac{1}{3} \left(\frac{1}{2}\right)^4 + \frac{1}{6} = \frac{5}{24} \\ \frac{1}{8} \left(\frac{1}{2}\right)^4 \left$$

同理, 辛普森公式余项: $R[f] = -\frac{b-a}{180} \left(\frac{b-a}{2}\right)^4 f^{(4)}(\eta)$, $\eta \in (a,b)$

容易证明Simpson公式对不高于三次的多项式精确成立,即

$$\int_{a}^{b} p_{3}(x)dx = \frac{b-a}{6} [p_{3}(a) + 4p_{3}(\frac{a+b}{2}) + p_{3}(b)]$$

构造三次多项式 $H_3(x)$,使满足 $H_3(a)=f(a)$, $H_3(b)=f(b)$, ^{用复合梯形公式计算,截断误差不超过 $10^3/2$ 。}

$$H_3(\frac{a+b}{2}) = f(\frac{a+b}{2}), H_3'(\frac{a+b}{2}) = f'(\frac{a+b}{2}),$$
 这时插值误差为

$$R[f] = \int_{a}^{b} f(x)dx - S$$

$$= \int_{a}^{b} f(x)dx - \int_{a}^{b} H_{3}(x)dx$$

$$= \frac{1}{4!} \int_{a}^{b} f^{(4)} (\xi_{x})(x-a)(x-\frac{a+b}{2})^{2} (x-b)dx$$

$$= \frac{f^{(4)}(\eta)}{4!} \int_{a}^{b} (x-a)(x-\frac{a+b}{2})^{2} (x-b)dx$$

$$= -\frac{(b-a)^{5}}{2880} f^{(4)}(\eta) , \eta \in (a,b)$$

若记 $M_4 = \max_{x} |f^{(4)}(x)|$, 则有

$$|R[f]| \le \frac{M_4}{2880} (b-a)^5$$

例4-3 运用梯形公式、辛普森公式分别计算积分∫'e*dx , 并估计误差

解: 运用梯形公式

$$\int_0^1 e^x dx \approx \frac{1}{2} [e^0 + e^1] = 1.8591409$$

其误差为 $|R[f]| = \left| -\frac{1}{12} e^{\eta} (1-0)^3 \right| \le \frac{e}{12} = 0.2265235, \ \eta \in (0,1)$

$$\int_0^1 e^x dx \approx \frac{1}{6} \left[e^0 + 4e^{\frac{1}{2}} + e^1 \right] = 1.7188612$$

$$|R[f]| = \left| -\frac{1}{180} e^{\eta} \left(\frac{1-0}{2} \right)^4 \right| = \left| -\frac{1}{2880} e^{\eta} \right| \le \frac{e}{2880} = 0.00094385, \quad \eta \in (0,1)$$

例8 试确定参数 A_0 , A_1 和 X_0 , X_1 , 使求积公式

$$\int_{-1}^{1} f(x)dx \approx A_0 f(x_0) + A_1 f(x_1)$$

具有尽可能高的代数精度, 并问代数精度是多少?

求积公式为

$$\int_{-1}^{1} f(x)dx \approx f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$$
求积公式的代数精度为3。

例4-4 对于函数 $f(x) = \frac{\sin x}{x}$, 给出n = 8 时的函数表, 试用复合梯形

公式及复合辛普森公式计算积分 $I = \int_0^1 \frac{\sin x}{x} dx$ 辛普森: 1, 4, 2, 4, ..., 4, 2, 4, 1

x_i	0	1/8	1/4	3/8	1/2
f (x)	1 (极限)	0.9973978	0.9896158	0.9767	267 0.9588510
x_i	5/8	1	3/4	7/8	1
f (x _i)	0.9361	556 0.90	88516 0.8	8414709	0.8414709

 $T_{8} = \frac{1}{8} \left[\frac{f(0)}{2} + f\left(\frac{1}{8}\right) + f\left(\frac{1}{4}\right) + f\left(\frac{3}{8}\right) + f\left(\frac{1}{2}\right) + f\left(\frac{5}{8}\right) + f\left(\frac{3}{4}\right) + f\left(\frac{7}{8}\right) + \frac{f(1)}{2} \right] \right]$

$$\begin{split} S_4 = & \frac{1}{4 \times 6} \left\{ f(0) + 4 \left[f\left(\frac{1}{8}\right) + f\left(\frac{3}{8}\right) + f\left(\frac{5}{8}\right) + f\left(\frac{7}{8}\right) \right] \right. \\ & \left. + 2 \left[f\left(\frac{1}{4}\right) + f\left(\frac{1}{2}\right) + f\left(\frac{3}{4}\right) \right] + f(1) \right\} \approx 0.946\ 083\ 2 \end{split}$$

$$|R[f]| = \left| -\frac{b-a}{12}h^2 f''(\xi) \right| \le \left| -\frac{1}{12} \left(\frac{1}{n} \right)^2 e \right| \le \frac{1}{2} \times 10^{-5}$$

由此有 $n^2 \ge \frac{e}{6} \times 10^5$, $n \ge 212.85$, 可取n = 213, 即将区间[0,1]分为213等份,则

复合辛普森公式计算积分,则由余项公式可知要满足精度要求,必须使

$$|R[f]| = \frac{b-a}{180} \left(\frac{h}{2}\right)^4 |f^4(\xi)| \le \frac{1}{180} \left(\frac{1}{2n}\right)^4 e \le \frac{1}{2} \times 10^{-5}$$

由此得 $n^4 \ge \frac{e}{144} \times 10^4$, $n \ge 3.707$ 収4, $2n \ge 2*3.707 = 7.414$ 収8, 也即, 复合辛普森公式可 达到精度要求,此时区间[0,1] 实际上应分为8 等份。

例4-5 计算积分 $I = \int_0^{\pi/2} \sin x \, dx$, 若用复合梯形公式, 问区间[0,7/2]应分多少等份才能使误差不超过103/2, 若取同样的求积节点,改用复合辛普森公式,截断 误差是多少?(辛普森公式需引入半个节点值)

解: 由于 $f'(x) = \cos x$, $f''(x) = -\sin x$, $f^{(4)}(x) = \sin x$, $b - a = \frac{\pi}{2}$

故复合梯形公式, 要求

$$|R_n[f]| = \left| -\frac{b-a}{12}h^2f''(\eta) \right| \le \frac{1}{12} \cdot \frac{\pi}{2} \cdot \left(\frac{\pi}{2n}\right)^2 \le \frac{1}{2} \times 10^{-3}, \ \eta \in \left(0, \frac{\pi}{2}\right)$$

即 $n^2 \ge \frac{\pi^3}{48} \times 10^3$, $n \ge 25.416$, 取n = 26, 即将区间 $[0, \pi/2]$ 分为26等份时,

用复合辛普森公式(考虑引入半个节点值),截断误差为

$$f(x) - H_3(x) = \frac{f^{(4)}(\xi_3)}{4!}(x - a)(x - \frac{a + b}{2})^2(x - b), \quad \xi_3 \in (a, b) |R_8[f]| = \left| -\frac{b - a}{180}h^4 f^{(4)}(\eta) \right| \le \frac{\pi}{180 \times 2} \left(\frac{\pi}{2n}\right)^4 \le 0.1162608 \times 10^{-7}$$

 $\int_{a}^{b} f(x) dx - T_{s} = -\frac{b-a}{12} h^{2} f^{2}(\xi) \int_{a}^{b} f(x) dx - T_{s} \approx -\frac{1}{12} h^{2} [f(b) - f(a)]$ 先证 (4.12)。由于 f(x)在 [a,b]上连续,故由定理知,对每

个小区间上积分 $\int_{x_{k+1}}^{x_k} f(x) dx$ 使用梯形公式时,所得近似值的误差为 $-\frac{1}{12}h^3 f(\xi_k)(\xi_k \in [x_{k-1},x_k])$,故

$$\int_{a}^{b} f(x)dx - T_{n} = -\frac{1}{12}h^{3} \left[f^{*}(\xi_{1}) + f^{*}(\xi_{2}) + \dots + f^{*}(\xi_{n}) \right]$$

$$\int_{a}^{b} f(x)dx - T_{n} = -\frac{b-a}{12}h^{2} \frac{1}{n} \left[f^{*}(\xi_{1}) + f^{*}(\xi_{2}) + \dots + f^{*}(\xi_{n}) \right]$$
(4.18)

 $\min_{x \in [a,b]} f''(x) \le \frac{1}{n} \Big[f''(\xi_1) + f''(\xi_2) + \dots + f''(\xi_n) \Big]$

由介值定理知,在 [a,b] 中必有点 ξ ,使

$$f^*(\xi) = \frac{1}{n} [f^*(\xi_1) + f^*(\xi_2) + \cdots f^*(\xi_n)]$$

再证<u>(4.15)</u>。由<u>(4.18)</u>和定积分的定义,有

$$\lim_{h \to 0} \frac{\int_{a}^{b} f(x)dx - T_{n}}{h^{2}} = \lim_{h \to 0} \left(-\frac{1}{12} \sum_{k=1}^{n} f'(\xi_{k})h \right)$$
$$= -\frac{1}{12} \int_{a}^{b} f'(x)dx = -\frac{1}{12} [f'(b) - f'(a)]$$

例如 利用变步长的梯形法求 $I = \int_0^1 \frac{\sin x}{x} dx$ 的近似值。

解: $T_1 = \frac{1}{2}[f(0) + f(1)] = 0.9207355$

$$T_2 = \frac{1}{2}T_1 + \frac{1}{2}f\left(\frac{1}{2}\right) = 0.9397933$$

$$T_4 = \frac{1}{2}T_2 + \frac{1}{4}\left[f\left(\frac{1}{4}\right) + f\left(\frac{3}{4}\right)\right] = 0.9445135$$

$$T_8 = \frac{1}{2}T_4 + \frac{1}{8}\left[f\left(\frac{1}{8}\right) + f\left(\frac{3}{8}\right) + f\left(\frac{5}{8}\right) + f\left(\frac{7}{8}\right)\right] = 0.956909$$

先确定了节点 x_k , 后利用方程组求解系数 A_k 。

定理4-3 插值型求积公式的节点 $a \le x_0 < x_1 < \cdots < x_n \le b$

$$\omega_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$$

与任何次数不超过n 的多项式P(x) 带权 $\rho(x)$ 正交, 即

$$\int_{a}^{b} \rho(x)\omega_{n+1}(x)P(x)dx = 0.$$

区间[a,b]上权函数为 $\rho(x)$ 的积分

区间[a,b]上权函数为 $\rho(x)$ 的正交多项式 $p_a(x)$ 的n个零点

由定理Z4.2可见,构造Gauss型求积公式的方法为:

(1) 求出区间[a, b]上权函数为 $\rho(x)$ 的正交多项式 $p_n(x)$

(2) 求出 $p_n(x)$ 的n个零点 $x_1, x_2, ... x_n$ 即为Gauss点.

(3) 计算积分系数 $A_i = \int_a^b l_i(x) \rho(x) dx$ $(i=1,2,\cdots,n)$.

列12 求积分 $\int_{\mathbb{T}} x^2 f(x) dx$ 的2点Gauss公式.

按Schemite正交化过程作出正交多项式:

$$p_{\alpha}(x)$$
=1. 计算函数内积的时候记得算上 $p_{(\alpha)}(x)$

$$p_1(x) = x - \frac{(x, p_0(x))}{(p_0(x), p_0(x))} p_0(x) = x - \frac{\int_{-1}^{1} x^2 dx}{\int_{-1}^{1} x^2 dx} = x$$

$$p_1(x) = x^2 - \frac{(x^2, p_0(x))}{(p_0(x), p_0(x))} p_0(x) - \frac{(x^2, p_1(x))}{(p_0(x), p_0(x))} p_1(x)$$

$$\begin{aligned} p_1(x) &= x^2 - \frac{(x^2, p_0(x))}{(p_0(x), p_0(x))} p_0(x) - \frac{(x^2, p_1(x))}{(p_1(x), p_1(x))} p_1(x) \\ &= x^2 - \frac{\int_{-1}^{1} x^4 dx}{\int_{-1}^{1} x^2 dx} - \frac{\int_{-1}^{1} x^5 dx}{\int_{-1}^{1} x^4 dx} x = x^2 - \frac{3}{5} \end{aligned}$$

 $P_2(x)$ 的两个零点为 $x_1 = -\sqrt{\frac{3}{5}}$, $x_2 = \sqrt{\frac{3}{5}}$, 积分系数为

$$A_1 = \int_{-1}^{1} x^2 I_1(x) dx = \int_{-1}^{1} x^2 \frac{x - x_2}{x_1 - x_2} dx = \frac{1}{3}$$

$$A_2 = \int_{-1}^{1} x^2 I_2(x) dx = \int_{-1}^{1} x^2 \frac{x - x_1}{x_1 - x_2} dx = \frac{1}{3}$$

$$\int_{-1}^{1} x^2 f(x) dx \approx \frac{1}{3} \left[f(-\sqrt{\frac{3}{5}}) + f(\sqrt{\frac{3}{5}}) \right]$$
Gauss Legendre 求和公式的全面为

$$R[f] = \frac{2^{2nn!}(n!)^4}{[(2n)!]^2(2n+1)} f^{(2n)}(\eta)$$
 , $\eta \in (-1,1)$
例13 用3点后auss公式计算积分 $I = \int_1^\infty \cos x dx$.
解 查表传表—0. 7745966692, x_2 =0. x_3 =0. 77459666
 A_i = A_3 =0. 5555555556, A_2 =0. 888888889,所以有

 $R[f] = \left| \frac{2^7 \times 6^4}{(6!)^3 \times 7} (-\cos \eta) \right| \le 6.3492 \times 10^{-5}$

实际上,J=2sin1=1.68294197,误差为|R[J]|=6.158×10⁻⁵ 用Simpson公式,则有I≈1.69353487,误差为|R[/]|=1.06×10⁻².

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$
由 Taylor 展开

0,555555556

+0.7745966692

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2!}f''(x_0) + \frac{h^3}{3!}f'''(\xi_1), x_0 \le \xi_1 \le x_0 + h$$

$$f(x_0 - h) = f(x_0) - hf'(x_0) + \frac{h^2}{2!} f''(x_0) - \frac{h^3}{3!} f'''(\xi_2), x_0 - h \le \xi_2 \le x_0$$

因此,有误差

$$= f'(x_0) - \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$

$$= \frac{h^2}{12} [f'''(\xi_1) + f'''(\xi_2)] = \frac{h^2}{6} f'''(\xi) = O(h^2)$$

$$f'(x_0) \approx \frac{y_1 - y_{-1}}{2h}.$$

(18)
$$f'(x_0) = \frac{y_1 - y_{-1}}{2h} + E(f, h),$$

(18)
$$f'(x_0) = \frac{y_1 - y_{-1}}{2f} + E(f, h)$$

where

(19)
$$E(f,h) = E_{\text{round}}(f,h) + E_{\text{trunc}}(f,h) = \frac{e_1 - e_{-1}}{2h} - \frac{h^2 f^{(3)}(c)}{6},$$

Corollary 6.1(b). Assume that f satisfies the hypotheses of Theorem 6.1 and that numerical computations are made. If $|e_{-1}| \le \epsilon$, $|e_1| \le \epsilon$, and $M = \max_{a \le x \le b} \{|f^{(3)}(x)|\}$,

(20)
$$|E(f,h)| \le \frac{\epsilon}{h} + \frac{Mh^2}{6},$$

$$\frac{a+b+c \ge 3(abc)^{1/3}}{4} \sharp \oplus a,b,c > 0$$
and the value of h that minimizes the right band side of (70) is

$$h = \left(\frac{3\epsilon}{M}\right)^{1/3}$$
 17. 确定數值微分公式的截断误差表达式

$$f'(x_0) \approx \frac{1}{2h} [4f(x_0 + h) - 3f(x_0) - f(x_0 + 2h)].$$

$$f'(x_0) \approx \frac{1}{2h} \left[4f(x_0 + h) - 3f(x_0) - f(x_0 + 2h) \right]$$

是由对过节点 $(x_0,f(x_0)),(x_0+h,f(x_0+h))$ 及 $(x_0+2h,f(x_0+2h))$ 的二次插值多项式

$$f(x) = P_z(x) + \frac{f''(\xi)}{3!}(x - x_0)(x - x_1)(x - x_2)$$

= $P_z(x) + \frac{f''(\xi)}{3!}w_3(x), \quad \xi \in (x_0, x_2),$

其中
$$x_i = x_0 + ih, i = 0, 1, 2, P_2(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_1 - x_1)} f(x_2),$$

对ェ求导得

$$f'(x) = P'_{z}(x) + \frac{f'''(\xi)}{3!}w'_{3}(x) + \frac{w_{3}(x)}{3!}\frac{\mathrm{d}}{\mathrm{d}x}f'''(\xi),$$

$$\begin{aligned} x_0 \rangle &= P_2'(x_0) + \frac{f_2(\xi')}{3!} w_3'(x_0) \\ &= \frac{1}{2h} \left[4f(x_0 + h) - 3f(x_0) - f(x_0 + 2h) \right] + \frac{f''(\xi)}{3} h^2. \end{aligned}$$

从而得截断误差为 $\frac{h^2}{3}f'''(\xi)(\xi \in [x_0, x_0 + 2h])$.

Example 3.21. Use Gaussian elimination to construct the triangular factorization of the

$$\mathbf{A} = \begin{bmatrix} 4 & 3 & -1 \\ -2 & -4 & 5 \\ 1 & 2 & 6 \end{bmatrix}.$$

The matrix L will be constructed from an identity matrix placed at the left. For operation used to construct the upper-triangular matrix, the multipliers m_{ij} will be put in their proper places at the left. Start with

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 & -1 \\ -2 & -4 & 5 \\ 1 & 2 & 6 \end{bmatrix}$$

Row 1 is used to eliminate the elements of A in column 1 below a_{11} . The multiples $m_{21} = -0.5$ and $m_{31} = 0.25$ of row 1 are subtracted from rows 2 and 3, respectively. These multipliers are put in the matrix at the left and the result is

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -0.5 & 1 & 0 \\ 0.25 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 & -1 \\ 0 & -2.5 & 4.5 \\ 0 & 1.25 & 6.25 \end{bmatrix}.$$

Row 1 is used to eliminate the elements of A in column 1 below a_{11} . The multiples m_{21} : -0.5 and $m_{31} = 0.25$ of row 1 are subtracted from rows 2 and 3, respectively. These multipliers are put in the matrix at the left and the result is

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -0.5 & 1 & 0 \\ 0.25 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 & -1 \\ 0 & -2.5 & 4.5 \\ 0 & 1.25 & 6.25 \end{bmatrix}$$

Row 2 is used to eliminate the elements in column 2 below the diagonal of the seco factor of A in the above product. The multiple $m_{32} = -0.5$ of the second row is subtract from row 3, and the multiplier is entered in the matrix at the left and we have the desir triangular factorization of A.

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ -0.5 & 1 & 0 \\ 0.25 & -0.5 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 & -1 \\ 0 & -2.5 & 4.5 \\ 0 & 0 & 8.5 \end{bmatrix}$$

例5-4 求A的LU分解,并利用分解结果求 A^{-1}

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 3 \\ 2 & 6 & 9 \end{bmatrix}$$

A 的LU分解为 L= 1 1 0 , U= 0 2 1

从而
$$L^1 = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -3 & 1 \end{bmatrix}, U^{-1} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1/2 & -1/4 \\ 0 & 0 & 1/2 \end{bmatrix}$$

$$A^{-1} = U^{-1}L^{1} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & \frac{1}{2} & -\frac{1}{4} \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -3 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 3 & -1 \\ -\frac{3}{4} & \frac{5}{4} & -\frac{1}{4} \\ \frac{1}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}$$

例5-5 用追赶法解方程组

$$\begin{bmatrix} 2 & -1 & & & x_1 & 1 \\ -1 & 2 & -1 & & x_2 & 0 \\ & -1 & 2 & -1 & & x_3 & = 0 \\ & & -1 & 2 & -1 & x_4 & 0 \\ & & & -1 & 2 & x_5 & 0 \end{bmatrix}$$

-1 3/2 -1 4/3 -1 5/4

 $, \overline{U}x = y \Rightarrow x =$

矩阵的F-范数: $\|A\|_F = \sqrt{\sum_{i=1}^{n} a_y^2}$

例 设矩阵 A=

3)顶点: $\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$

 $\Delta = b^2 - 4ac$ Δ>0,则函数图像与x轴交于两点

求矩阵A的范数 $\|A\|_p$, $p=1,2,\infty,F$. $\left(\frac{-b-\sqrt{\Delta}}{2a}, 0\right) R \left(\frac{-b+\sqrt{\Delta}}{2a}, 0\right)$ **解** $\|A\|_1 = 4$, $\|A\|_{\infty} = 5$, $\|A\|_F = \sqrt{15}$

$$A^{\mathrm{T}}A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 5 & 5 \\ 5 & 10 \end{pmatrix}$$

$$\Leftrightarrow \begin{vmatrix} 5 - \lambda & 5 \\ 5 & 10 - \lambda \end{vmatrix} = 0, \ \# \ \lambda_1 = \frac{15 + 5\sqrt{5}}{2}, \ \lambda_2 = \frac{15 - 5\sqrt{5}}{2}$$

 $15 + 5\sqrt{5}$ 所以 ||A||,=1

A = D - L - U,

$$D = \begin{bmatrix} a_{11} & & & \\ & a_{22} & & \\ & & \ddots & \\ & & & a_{nn} \end{bmatrix}, L = \begin{bmatrix} 0 & & \\ -a_{21} & 0 & \\ \vdots & \ddots & \ddots & \\ -a_{n1} & \cdots & -a_{n,n-1} & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 0 & -a_{12} & \cdots & -a_{1n} \\ 0 & \ddots & \vdots & \\ & & \ddots & -a_{n-1,n} \\ & & & 0 \end{bmatrix}.$$

雅可比迭代法的矩阵表示形式为

$$x^{(k+1)} = D^{-1}(L+U)x^{(k)} + D^{-1}b = B_1x^{(k)} + f$$

采用矩阵4的分裂记号, 迭代法等价于 $Dx^{(k+1)} = Lx^{(k+1)} + Ux^{(k)} + b$

高斯赛德尔迭代法的矩阵表示形式为

 $x^{(k+1)} = (D-L)^{-1}Ux^{(k)} + (D-L)^{-1}b = B_Gx^{(k)} + f$

采用矩阵
$$4$$
 的分裂记号,化为 $\frac{1}{2}$ 的分裂记号,化为 $\frac{1}{2}$ 及 $x^{(k+1)} = Dx^{(k)} + \omega(b + Lx^{(k+1)} + Ux^{(k)} - Dx^{(k)})$ SOR迭代法的矩阵表示形式为 $x^{(k+1)} = (D - \omega L)^{-1} \{(1 - \omega)D + \omega U\}x^{(k)} + \omega(D - \omega L)^{-1}b$.

$$\begin{split} x_1^{(k+1)} &= (3x_2^{(k)} - 2x_3^{(k)} + 20)/8, \\ x_2^{(k+1)} &= (-4x_1^{(k)} + x_3^{(k)} + 33)/11, \\ x_3^{(k+1)} &= (-6x_1^{(k)} - 3x_2^{(k)} + 36)/12. \end{split}$$
 $8x_1 - 3x_2 + 2x_3 = 20,$ J迭代公式: $4x_1 + 11x_2 - x_3 = 33,$ $6x_1 + 3x_2 + 12x_3 = 36.$

 $x_1^{(k+1)} = (20 + 3x_2^{(k)} - 2x_3^{(k)})/8$ $\begin{cases} x_1^{(k+1)} = (33 - 4x_1^{(k+1)} + x_3^{(k)})/11, \\ x_3^{(k+1)} = (36 - 6x_1^{(k+1)} - 3x_2^{(k+1)})/12. \end{cases}$ G-S迭代公式:

 $c^{(7)} = (3.000\ 002,\ 1.999\ 998\ 7,\ 0.999\ 993\ 2)^{T},$

 $= ||x * - x^{(7)}|| < 6.8 \times 10^{-6}$

 $x^{(k+1)} = x^{(k)} - \omega(1 + 4x^{(k)} - x^{(k)})$ $\begin{array}{lll} x_1 & -x_1 & \omega(x^{(1+3)} - x_2 - x_3 - x_4 - y) + \omega(x^{(2+1)} - x_2^{(2+1)} - x_2^{(4)} - \omega(1 - x_1^{(4+1)} + 4x_2^{(4)} - x_3^{(4)} - x_4^{(4)}) / 4 \\ x_3^{(3+1)} & = x_3^{(3)} - \omega(1 - x_1^{(4+1)} - x_2^{(4+1)} + 4x_2^{(4)} - x_4^{(4)}) / 4 \\ x_4^{(4+1)} & = x_4^{(4)} - \omega(1 - x_1^{(4+1)} - x_2^{(4+1)} - x_3^{(4+1)} + 4x_4^{(4)}) / 4 \end{array}$

=1.3, 第11次迭代结果为

c⁽¹¹⁾ = (-0.999 996 46, -1.000 003 10, -0.999 999 53, -0.999 999 12) 此时, ||e(11)|| = 0.46×10-5

定理6-3 设矩阵B=(b^(k))∈R

- (2) B 的谱半径ρ(B) < 1;</p>
- (3) 至少存在一种从属矩阵范数 || , 使 || B || < 1.</p>

定理6-4 设线性方程组Ax = b对应有

x = Bx + f

 $x^{(k+1)} = Bx^{(k)} + f$

则,对任意初始向量x⁽⁰⁾,该迭代法收敛的充要条件是 迭代矩阵B 的谱半径 $\rho(B)$ < 1

例6-4 考察迭代法解方程组
$$x^{(k+1)} = Bx^{(k)} + f$$
 的收敛性其中 $B = \begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix}$ 和 $f = \begin{pmatrix} 5 \\ 5 \end{pmatrix}$ 解:特征方程为 $\det(\lambda I - B) = \lambda^2 - 6 = 0$,特征根 $\lambda_{1,2} = \pm \sqrt{6}$ 即 $\rho(B) > 1$,这说明所用迭代法解此方程组不收敛。

例如 考察用雅可比迭代法求解线性方程组

$$\begin{cases} 8x_1 - 3x_2 + 2x_3 = 20, \\ 4x_1 + 11x_2 - x_3 = 33, \\ 6x_1 + 3x_2 + 12x_3 = 36. \end{cases}$$

解: 迭代矩阵的特征方程为

 $\det(\lambda I - B_1) = \lambda^3 + 0.034090909\lambda + 0.039772727 = 0$

解得 1 = -0.3082

 $\lambda_2 = 0.1541 + 0.3245i$ $\lambda_3 = 0.1541 - 0.3245i$

 $|\lambda_2| = |\lambda_3| = 0.35921 < 1, |\lambda_1| < 1$

 $\mathbb{H} \ \rho(B_{\rm J}) < 1.$

所以用雅可比迭代法解方程组是收敛的。

常用线性方程组迭代法收敛性判别顺序:

1、应用定理6-9和定理6-10(系数矩阵);

2、应用定理6-5(迭代矩阵)。

分析: 自变量相对误差一般不会太大,如果条件数 C_p 很大,将 引起函数值相对误差很大, 出现这种情况的问题就是病态问题。

例如 取
$$f(x) = x^n$$
,则有 $C_p = \left| \frac{x \cdot nx^{n-1}}{x^n} \right| = n$ 。它表示相对

误差可能放大 n 倍。如 n=10, 有 f(1)=1, $f(1.02) \approx 1.24$, 若取 x=1, $\tilde{x}=1.02$ 自变量相对误差为2%, 函数相对误 差为24%,这时问题可以认为是病态的。一般情况条件 数 C_0 ≥10就认为是病态, C_0 越大病态越严重。

三、避免误差危害的若干原则

 要避免除数绝对值远远小于被除数绝对值的除法。 用绝对值小的数作除数含入误差会增大,如计算 x/y, 若0<|v|<<|x|,则可能对计算结果带来严重影响,应尽量

2、要避免两相近数相减

在数值中两相近数相减有效数字会严重损失。

例如 x=532.65, y=532.52都具有五位有效数字, 但 x - y = 0.13只有两位有效数字。

3、要防止"大数"吃掉小数

数值运算中参加运算的数有时数量级相差很大,而计 算机位数有限,如不注意运算次序就可能出现大数"吃掉" 小数的现象,影响计算结果的可靠性。

4、注意简化计算步骤,减少运算次数

Table 1.2 Horner's Table for the Synthetic Division Process

Input	a_n	a_{n-1}	a_{n-2}	 a_k	 a_2	a_1	a_0
c		xb_n	xb_{n-1}	 xb_{k+1}	 xb_3	xb_2	xb_1
	b_n	b_{n-1}	b_{n-2}	 b_k	 b_2	b_1	$b_0 = P(c)$
							Output

Example 1.9. Use synthetic division (Horner's method) to find P(3) for the polynomial

$$P(x) = x^5 - 6x^4 + 8x^3 + 8x^2 + 4x - 40.$$

us	ci4	uz	uz	u	an)
1	-6	8	8	4	-40
4,45	3	-9	-3	15	57
1	-3	-1	5	19	$17 = P(3) = b_0$
b_5	b_4	b_3	b_2	b_1	Output
	1	1 -6 3 1 -3	1 -6 8 3 -9 1 -3 -1	1 -6 8 8 3 -9 -3 1 -3 -1 5	1 -6 8 8 4 3 -9 -3 15 1 -3 -1 5 19

Therefore, P(3) = 17.