Problem 1:

We proceed by induction.

First, note that $O(S_1) = 1$ (there is only one map on a set with one element, and it is bijective.)

Next, assume that for all $n \leq N$, $O(S_n) = n!$.

Consider the set $\{1, 2 ... N + 1\}$. There are N + 1 ways to omit a single point, S, from this set; there are N! bijective functions from the set 1, 2 ... N to the set $\{1, 2 ... N + 1\} \setminus \{S\}$. For each such function, f there is a unique bijective function, ϕ_f from $\{1, 2 ... N + 1\}$ to $\{1, 2 ... N + 1\}$ such that $\phi_f(n) = f(n)$ if $n \leq N$; it is given by $\phi_f(n) = f(n)$ if $n \leq N$ and $\phi_f(N+1) = S$.

So there are N!(N+1) bijective functions from $\{1, 2 ... N+1\}$ to $\{1, 2 ... N+1\}$.

That is, $O(S_{N+1}) = (N+1)!$.

Thus, for all $n \in \mathbb{N}$, $O(S_n) = n!$.

Problem 2:

Let G be a group and $H \subset G$ be nonempty and finite.

If H < G, then if $a \in H$ and $b \in H$, then $ab \in H$. Else, H does not inherit the group operation of G.

Next, assume that $a, b \in H$ implies that $ab \in H$.

Then H inherits the group operation of G.

Because the group operation of G was associative, the inherited group operation on H is also associative.

Further, $e \in H$:

Because H is nonempty, there is an element, a, in H. So, let $a \in H$ A quick proof by induction shows that for all $n \in \mathbb{N}$, $a^n \in H$.

Yet, H is finite. So, there is a pair, $n, m \in \mathbb{N}$ with $n \neq m$ such that $a^n = a^m$.

Now, $a^{|n-m|} \in H$. Also, $a^{|n-m|} = e$, by the cancellation theorem proven in class. Note for future work that this also means that for all $a \in H$, there is an $l \in \mathbb{N}$ such that $a^l = e$.

So $e \in H$.

Next, for all $a \in H$, $a^{-1} \in H$:

Let $a \in H$.

From the above work, there is an $l \in \mathbb{N}$ such that $a^l = e$.

If l = 1, then $a = a^{-1}$.

Else, define $b=a^{l-1}.$ From earlier work, $b\in H.$ Also, $ab=ba=a^l=e.$

So $b = a^{-1}$; a has an inverse in H.

Thus, H is a group under the inherited group operation of G: H < G. So H < G if and only if for all $a, b \in H$, $ab \in H$.

Problem 3:

Let G be a group such that for all $a, b \in G$ and for three given consectuve integers i, $(ab)^i = a^i b^i$.

Then there is an $n \in \mathbb{Z}$ such that for all $a, b \in G$:

$$(ab)^{n} = a^{n}b^{n}$$

$$(ab)^{n-1} = a^{n-1}b^{n-1} = a^{-1}(ab)^{n}b^{-1}$$

$$(ab)^{n+1} = a^{n+1}b^{n+1} = a(ab)^{n}b$$

Now, for all $a, b \in G$,

$$ab = (ab)^{n}((ab)^{n-1})^{-1}$$

$$= a^{n}b^{n}b((ab)^{n})^{-1}a$$

$$= a^{n}b^{n}b((ab)^{n})^{-1}a$$

$$= a^{-1}a^{n+1}b^{n+1}((ab)^{n})^{-1}a$$

$$= a^{-1}(ab)^{n+1}(ab)^{-n}a$$

$$= a^{-1}(ab)a$$

$$= a^{-1}aba$$

$$= ba$$

To summarize, for all $a, b \in G$, ab = ba. That is, G is abelian.

Problem 4:

Let
$$G = \langle \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \rangle < GL_2(\mathbb{R}).$$

G has 8 elements; they are:

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \\ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Now, consider $D_4 = \langle r, s \rangle$, where r is a rotation by 90 degrees and s is a reflection.

Let $\phi: G \to D_4$ be given as follows:

$$\begin{split} \phi(\left[\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix} \right]) &= r, \\ \phi(\left[\begin{smallmatrix} -1 & 0 \\ 0 & -1 \end{smallmatrix} \right]) &= r^2, \\ \phi(\left[\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix} \right]) &= r^3, \\ \phi(\left[\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right]) &= e, \\ \phi(\left[\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix} \right]) &= s, \\ \phi(\left[\begin{smallmatrix} 0 & 1 \\ 0 & 1 \end{smallmatrix} \right]) &= sr, \\ \phi(\left[\begin{smallmatrix} 0 & -1 \\ -1 & 0 \end{smallmatrix} \right]) &= sr^2, \\ \phi(\left[\begin{smallmatrix} 1 & 0 \\ -1 & 0 \end{smallmatrix} \right]) &= sr^3. \end{split}$$

Then it is readily checked (where "readily" means "it takes not more than 64 matrix multiplications", and I can write code to do that) that ϕ is a homomorphism. It is clear that ϕ is both one-to-one and onto, so that ϕ is a bijection. That is, ϕ is an isomorphism.

Problem 5:

As described, Q_8 has at least 8 elements:

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \\ \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}, \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}, \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix}.$$

However, Q_8 does not have any more elements, as is readily checked ("readily" as above).

Moreover, Q_8 is not isomorphic to D_4 ; D_4 has only 2 distinct elements of order 4 $(r \text{ and } r^3)$. However, Q_8 has at least 4 distinct elements of order 4 (both generators and their inverses).

Problem 6:

Let G be a cyclic group, and H < G.

Then $G = \langle a \rangle$ for some $a \in G$.

If |H| = 1, then H is generated by e.

Else, there is a least positive $n \in \mathbb{N}$ such that $a^n \in H$.

Now, assume there is an $m \in \mathbb{N}$ such that $a^m \in H$ and $m \neq ln$ for all $l \in \mathbb{N}$.

Then m = qn + r for some r between 1 and n - 1 (inclusive).

So $a^m a^{-qn} \in H$. But $a^m a^{-qn} = a^{qn+r-qn} = a^r$, and r < n. This is contrary to n being the "least" positive such value.

So there is no $m \in \mathbb{N}$ such that $a^m \in H$ and $m \neq ln$ for all $l \in \mathbb{N}$.

That is, for all $m \in \mathbb{N}$ such that $a^m \in H$, m = ln for some $l \in \mathbb{N}$.

So $H = \langle a^n \rangle$. So H is cyclic.

So any subgroup of a cyclic group is cyclic.