ECE 310 Notation Translation Table

Spring 2019

	Lectures, exams & homework	Singer & Munson course notes	Manolakis & Ingle	Oppenheim & Schafer	Proakis & Manolakis*	Kamalabadi videos
Continuous-time signal	$x_{c}(t)$	x(t)	x(t)	$x_c(t)$	$x_a(t)$	$x_a(t)$
Discrete-time signal (sequence)	x[n]	x[n]	x[n]	x[n]	x(n)	x(n)
Continuous-time Fourier-transform signal	$X_{\rm c}(\Omega)$	$X_c(\Omega)$	$X(j\Omega)$	$X_c(j\Omega)$	X(F)	$X_a(\Omega)$
Discrete-time Fourier-transform signal	$X_{\mathrm{d}}(\omega)$	$X_d(\omega)$	$X(e^{j\omega})$	$X(e^{j\omega})$	$X(\omega)$	$X_d(\omega)$
Discrete-Fourier- transform coefficient	X[k]	X[k]	X[k]	X[k]	X(k)	X(m)
Convolution sum	(x*h)[n]	None	x[n] * h[n]	x[n] * h[n]	x(n) * h(n)	x(n) * h(n)
Modulo operation	$\langle k \rangle_N$	$\left<\left< k \right>\right>_N$	$\langle k \rangle_N$	$(k)_N$	k, (mod N)	$\langle k \rangle_N$

^{*}Note: Proakis & Manolakis often uses natural frequency F instead of radian frequency $\Omega=2\pi F$ in continuous time.