Lab Exercise 4 – Filtering Results and Manipulating Data

Description

In this lab exercise, you use eval, search, and where commands.

Steps

Task 1: Chart the total daily volume (in MB) of the web servers during the previous week.

- 1. Search online sales [access combined] during the previous week.
- 2. Use timechart to calculate the total bytes and name the field: bytes

Results Example:

_time \$	bytes 🗘 🖊
2018-03-11	7028552
2018-03-12	7685197
2018-03-13	7225343
2018-03-14	7501807
2018-03-15	7539912
2018-03-16	7543386
2018-03-17	7492738

3. Use eval to convert the bytes field to megabytes. $\it Results \, Example$:

_time \$	bytes 🗘 🧪	megabytes 🗘 🥒
2018-03-11	7028552	6.702949523925781
2018-03-12	7685197	7.329174995422363
2018-03-13	7225343	6.890624046325684
2018-03-14	7501807	7.154280662536621
2018-03-15	7539912	7.190620422363281
2018-03-16	7543386	7.193933486938477
2018-03-17	7492738	7.145631790161133

4. Use the round function to round the megabytes field values to two decimal places.

Results Example:

_time \$	bytes 🗢 🖊	megabytes 🗘 🖊
2018-03-11	7028552	6.70
2018-03-12	7685197	7.33
2018-03-13	7225343	6.89
2018-03-14	7501807	7.15
2018-03-15	7539912	7.19
2018-03-16	7543386	7.19
2018-03-17	7492738	7.15

5. Switch to the **Visualization** tab and display the data as a **Line Chart**. Set the X-axis label to **Day**. Notice that the bytes field still displays.

Results Example:

6. Use the fields command to remove the bytes field.

Results Example:

7. Save your search as report, L4S1.

Task 2: Calculate the ratio of GET requests to POST requests for each web server .

Final Results Example:

host \$	/	GET ≎ /	POST \$ /	Ratio 🗢 🥒
www1		709	381	1.86
www2		766	456	1.68
www3		782	466	1.68

- 8. Search for all events in the online store [access_combined] during the last 24 hours.
- 9. Use chart to count events over host by method.

Results Example:

Results Exam	pie.		
host \$	/	GET \$ /	POST \$ /
www1		709	381
www2		766	456
www3		780	461

10. Use eval to create a new column called Ratio, which divides GET by POST.

Results Example:

Tesuits Exai	upie.			
host \$	1	GET ≎ ✓	POST \$ /	Ratio 🗢 🥒
www1		709	381	1.8608923884514437
www2		766	456	1.6798245614035088
www3		780	461	1.6919739696312364

11. Round the Ratio field to two decimal places.

Results Example:

host \$	/	GET ≎ /	POST \$ /	Ratio 🗢 🖊
www1		709	381	1.86
www2		766	456	1.68
www3		782	466	1.68

12. Save your search as report, L4S2.

Task 3: Identify users with more than 3 failed logins during the last 60 minutes and sort in descending order.

Final Results Example:

13. Search the web server [linux secure] for failed password attempts during the last 60 minutes.

Results Example:

14. Use stats to count the number of failed password attempts by user.

Results Example:

15. Using the search command, filter the results to include only users with more than three failures and sort in descending order.

Results Example:

16. Save your search as report, L4S3.

Scenario: Evaluate and classify the number of bytes associated with each web server event during the last 24 hours as a pie chart. (Event sizes should be categorized as follows: Small, < 2000 bytes; Medium, from 2000 to 2500 bytes; Large, from 2500 to 3000 bytes; Extra Large, over 3000 bytes.)

Example of final output:

17. Search online transactions [access_combined] during the last 24 hours and—using the case function of the eval command—classify the size (bytes) of events into a field called dataSize. If the event is less than 2,000 bytes, classify it as Small; if 2,000 or more but less than 2,500 bytes, classify as Medium; finally, if 2,500 or more but less than 3,000 bytes, classify as Large. Include a default value of Extra Large for all events where the bytes value is 3,000 or greater.

Results example:

18. Using chart or stats, count the events by dataSize and display the results as a pie chart.

Results example:

19. Save your search with the name **L4S4**.

CHALLENGE Exercise:

Classify and report employee web traffic by content type during the previous business week.

Final Results Example:

- 20. Search web appliance data [cisco_wsa_squid] during the previous business week.
- 21. Use stats or chart to count events by the $http_content_type$ field.

NOTE: In this case, stats and chart are interchangeable—they use the same syntax and return the same results.

Results Example:

22. Use the if function of eval to create a new column named type. If the http_content_type value begins with "image", set the type field to "graphic". Otherwise, set the value to "other".

Hint: Use the LIKE operator and the % wildcard to define the expression as follows: http content type LIKE "image%"

Results Example:

23. Use another stats or chart command to sum the count column by the type field. Rename the sum of the count calculation to total.

Results Example:

24. Change the visualization to a **Pie Chart**.

Results Example:

25. Save your search as report, L4C1.

CHALLENGE Exercise:

Report which one-hour periods over the last 24 hours have seen the number of Buttercup Games online sales twice as numerous as the number of sales in retail stores.

Final Results Example:

_time \$	sales 🗢 🖊	web 🕏 🖊
2019-09-11 10:00	39	139
2019-09-11 11:00	40	122
2019-09-11 12:00	40	174
2019-09-11 13:00	36	145
2019-09-11 14:00	36	143
2019-09-11 15:00	39	142

- 26. Search online sales data [access_combined] and retail sales data [vendor_sales] for successful purchases during the last 24 hours.
- 27. Use timechart to count the sales events by index using a sampling interval of 1 hour.

Results Example:

_time \$	sales 🗢 🥒	web 🗘 🖊
2019-09-11 11:00	40	122
2019-09-11 12:00	40	174
2019-09-11 13:00	36	145
2019-09-11 14:00	36	143
2019-09-11 15:00	39	142
2019-09-11 16:00	39	159

28. Use a where command to keep only rows where the number of web sales are more than twice the number of retail sales.

Results Example:

_time \$	sales 🗢 🧪	web 🗢 🖊
2019-09-11 10:00	39	139
2019-09-11 11:00	40	122
2019-09-11 12:00	40	174
2019-09-11 13:00	36	145
2019-09-11 14:00	36	143
2019-09-11 15:00	39	142

- 29. Save your search as report, L4C2.
- 30. Modify your previous search to use search instead of where and observe the results. Why are the results different?