Szeregi potęgowe

Ciąg Liczbowy

$$a_n = \left(\frac{9}{10}\right)^n$$

Ciąg Liczbowy

$$a_n = \left(\frac{9}{10}\right)^n$$

Ciąg Funkcyjny

$$f_n(x) = x^n, \ x \in [0, 1]$$

Ciąg Liczbowy

Ciąg Funkcyjny

$$a_n = \left(\frac{9}{10}\right)^n$$

$$f_n(x) = x^n, \ x \in [0, 1]$$

$$\frac{\text{SZEREG LICZBOWY}}{\displaystyle\sum_{n=1}^{\infty} \left(\frac{9}{10}\right)^n}$$

Szereg Liczbowy

$$\sum_{n=1}^{\infty} \left(\frac{9}{10}\right)^n$$

$$\sum_{n=1}^{\text{SZEREG FUNKCYJNY}} x^n, \ x \in [0,1)$$

$$\frac{\text{SZEREG LICZBOWY}}{\sum_{n=1}^{\infty} \left(\frac{9}{10}\right)^n}$$

$$\sum_{n=1}^{\infty} x^n, \ x \in [0,1)$$

Zbieżność ciągów i szeregów funkcyjnych

CIĄG FUNKCYJNY f_n jest zbieżny (punktowo) do f na zbiorze X, jeżeli dla każdego $x \in X$ (dla każdego x z osobna) $f_n(x) \xrightarrow{n \to \infty} f(x)$

Zbieżność ciągów i szeregów funkcyjnych

CIĄG FUNKCYJNY f_n jest zbieżny (punktowo) do f na zbiorze X, jeżeli dla każdego $x \in X$ (dla każdego x z osobna) $f_n(x) \xrightarrow{n \to \infty} f(x)$

SZEREG FUNKCYJNY $\sum f_n$ jest zbieżny (punktowo) do f na zbiorze X, jeżeli dla każdego $x \in X$ (dla każdego x z osobna) ciąg sum częściowych $\{S_n(x)\}$ tego szeregu jest zbieżny (punktowo) $S_n(x) \xrightarrow{n \to \infty} S(x) = \sum f_n(x)$

Szeregiem potęgowym o środku $x_0 \in \mathbb{R}$ i współczynnikach $c_n \in \mathbb{R}$, gdzie $n = 0, 1, 2, \ldots$, nazywamy szereg funkcyjny postaci:

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n = c_0 + c_1 (x - x_0) + c_2 (x - x_0)^2 + \dots, \qquad x \in \mathbb{R}$$

Szeregiem potęgowym o środku $x_0 \in \mathbb{R}$ i współczynnikach $c_n \in \mathbb{R}$, gdzie $n = 0, 1, 2, \ldots$, nazywamy szereg funkcyjny postaci:

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n = c_0 + c_1 (x - x_0) + c_2 (x - x_0)^2 + \dots, \qquad x \in \mathbb{R}$$

Uwaga

Tutaj przyjmujemy, że dla $x = x_0$, $(x - x_0)^0 = 1$.

Promieniem zbieżności szeregu potęgowego nazywamy liczbę R>0 taką, że dla $|x-x_0|< R$ szereg jest zbieżny, a dla $|x-x_0|> R$ rozbieżny.

Przedział $(x_0 - R, x_0 + R)$ nazywamy **przedziałem zbieżności** szeregu potęgowego.

Promieniem zbieżności szeregu potęgowego nazywamy liczbę R>0 taką, że dla $|x-x_0|< R$ szereg jest zbieżny, a dla $|x-x_0|> R$ rozbieżny.

Przedział $(x_0 - R, x_0 + R)$ nazywamy **przedziałem zbieżności** szeregu potęgowego.

• jeżeli szereg potęgowy jest zbieżny dla wszystkich $x \in \mathbb{R}$, to przyjmujemy, że $R = \infty$

Promieniem zbieżności szeregu potęgowego nazywamy liczbę R>0 taką, że dla $|x-x_0|< R$ szereg jest zbieżny, a dla $|x-x_0|> R$ rozbieżny.

Przedział $(x_0 - R, x_0 + R)$ nazywamy **przedziałem zbieżności** szeregu potęgowego.

- \bullet jeżeli szereg potęgowy jest zbieżny dla wszystkich $x\in\mathbb{R},$ to przyjmujemy, że $R=\infty$
- jeżeli szereg potęgowy jest zbieżny tylko dla $x = x_0$, to przyjmujemy R = 0.

Jak znaleźć
$$R$$
 dla $\sum_{n=0}^{\infty} c_n (x-x_0)^n$?

Jak znaleźć
$$R$$
 dla

Jak znaleźć
$$R$$
 dla $\sum_{n=0}^{\infty} c_n (x-x_0)^n$?

Twierdzenia.

Jeżeli dla szeregu potęgowego istnieje granica

• $\lim_{n\to\infty} \sqrt[n]{|c_n|} = g$ (Tw. Cauchy-Hadamarda)

<u>Inf</u>ormatyka

Jak znaleźć
$$R$$
 dla $\sum_{n=0}^{\infty} c_n (x-x_0)^n$?

Twierdzenia

Jeżeli dla szeregu potęgowego istnieje granica

• $\lim_{n\to\infty} \sqrt[n]{|c_n|} = g$ (Tw. Cauchy-Hadamarda)

lub

•
$$\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = g$$
 (Tw. d'Alemberta)

Jak znaleźć R dla $\sum c_n(x-x_0)^n$?

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n ?$$

Twierdzenia

Jeżeli dla szeregu potęgowego istnieje granica

- $\lim_{n \to \infty} \sqrt[n]{|c_n|} = g$ (Tw. Cauchy-Hadamarda)
 - lub
- $\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = g$ (Tw. d'Alemberta)

to promień zbieżności wyraża się wzorem

$$R = \begin{cases} \frac{1}{g} & \text{dla } 0 < g < \infty \\ \end{cases}$$

◆□▶ ◆圖▶ ◆意▶ ◆意▶ ■意

Jak znaleźć R dla $\sum c_n(x-x_0)^n$?

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n ?$$

Twierdzenia

Jeżeli dla szeregu potęgowego istnieje granica

- $\lim_{n \to \infty} \sqrt[n]{|c_n|} = g$ (Tw. Cauchy-Hadamarda)
 - lub
- $\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = g$ (Tw. d'Alemberta)

to promień zbieżności wyraża się wzorem

$$R = \begin{cases} \frac{1}{g} & \text{dla } 0 < g < \infty \\ 0 & \text{dla } g = \infty \end{cases}$$

←□→ ←□→ ← □→ ← □→ □

Jak znaleźć
$$R$$
 dla $\sum_{n=0}^{\infty} c_n (x-x_0)^n$?

Twierdzenia

Jeżeli dla szeregu potęgowego istnieje granica

• $\lim_{n \to \infty} \sqrt[n]{|c_n|} = g$ (Tw. Cauchy-Hadamarda) lub

• $\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = g$ (Tw. d'Alemberta)

to promień zbieżności wyraża się wzorem

$$R = \begin{cases} \frac{1}{g} & \text{dla } 0 < g < \infty \\ 0 & \text{dla } g = \infty \\ \infty & \text{dla } g = 0 \end{cases}$$

◆□▶ ◆圖▶ ◆園▶ ◆園▶ ■園

Szereg Taylora i McLaurina

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots$$

Definicja

Jeżeli funkcja f ma w punkcie x_0 pochodne dowolnego rzędu, to powyższy szereg potęgowy nazywamy **szeregiem Taylora** funkcji f o środku w punkcie x_0 .

Jeżeli $x_0 = 0$, to szereg ten nazywamy **szeregiem McLaurina**.

Twierdzenie (o rozwijaniu funkcji w szereg Taylora)

Jeżeli

• funkcja f ma wszystkie pochodne w otoczeniu $O(x_0, \delta)$,

Twierdzenie (o rozwijaniu funkcji w szereg Taylora)

Jeżeli

- funkcja f ma wszystkie pochodne w otoczeniu $O(x_0, \delta)$,
- ${\color{blue} 2}$ dla każdego $x\in O$ spełniony jest warunek $\lim_{n\to\infty}R_n(x)=0,$ gdzie

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$$

oznacza n-tą resztę we wzorze Taylora dla funkcji f, to

Twierdzenie (o rozwijaniu funkcji w szereg Taylora)

Jeżeli

- funkcja f ma wszystkie pochodne w otoczeniu $O(x_0, \delta)$,
- 2 dla każdego $x \in O$ spełniony jest warunek $\lim_{n \to \infty} R_n(x) = 0$, gdzie

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$$

oznacza n-tą resztę we wzorze Taylora dla funkcji f, to

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \quad , \text{ dla każdego } x \in O(x_0, \delta)$$

◆□ > ◆□ > ◆豆 > ◆豆 > 豆 のQで

Przykładowe rozwinięcia w szereg McLaurina

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots, \quad |x| < 1$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots, \quad x \in \mathbb{R}$$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = x - \frac{1}{2} x^2 + \frac{1}{3} x^3 - \frac{1}{4} x^4 + \dots, \quad -1 < x \le 1$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots, \quad x \in \mathbb{R}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots, \quad x \in \mathbb{R}$$

4□▶ 4團▶ 4厘▶ 4厘▶ 厘 ∽9<</p>

Informatyka

Rozwinięcie funkcji w szereg potęgowy jest jednoznaczne

Twierdzenie

Jeżeli
$$f(x) = \sum_{n=0}^{\infty} c_n (x-x_0)^n$$
 dla każdego x z pewnego otoczenia punktu x_0 , to

$$c_n = \frac{f^{(n)}(x)}{n!}$$
, dla $n = 0, 1, 2, \dots$

Czyli mówiąc po polsku ...

Jeżeli w otoczeniu punktu funkcja jest sumą pewnego szeregu potęgowego, to jest to jej szereg Taylora.

Różniczkowanie i całkowanie szeregu potęgowego

Jeżeli $x \in (-R, R)$, gdzie R to promień zbieżności szeregu $\sum_{n=0}^{\infty} c_n x^n$, to

$$\frac{d}{dx}\left(\sum_{n=0}^{\infty}c_nx^n\right) = \sum_{n=1}^{\infty}nc_nx^{n-1}$$

Różniczkowanie i całkowanie szeregu potęgowego

Jeżeli $x \in (-R, R)$, gdzie R to promień zbieżności szeregu $\sum_{n=0}^{\infty} c_n x^n$, to

$$\frac{d}{dx}\left(\sum_{n=0}^{\infty}c_nx^n\right) = \sum_{n=1}^{\infty}nc_nx^{n-1}$$

$$\int_{0}^{x} \left(\sum_{n=0}^{\infty} c_n t^n \right) dt = \sum_{n=0}^{\infty} \frac{c_n}{n+1} x^{n+1}$$

Różniczkowanie i całkowanie szeregu potęgowego

Jeżeli $x \in (-R, R)$, gdzie R to promień zbieżności szeregu $\sum_{n=0}^{\infty} c_n x^n$, to

$$\frac{d}{dx}\left(\sum_{n=0}^{\infty}c_nx^n\right) = \sum_{n=1}^{\infty}nc_nx^{n-1}$$

$$\int_{0}^{x} \left(\sum_{n=0}^{\infty} c_n t^n \right) dt = \sum_{n=0}^{\infty} \frac{c_n}{n+1} x^{n+1}$$

Notka

Podobne wzory są prawdziwe dla szeregów $\sum_{n=0}^{\infty} c_n (x-x_0)^n$

→□ → →□ → → □ → □ → ○ ○ ○