by

M. H. Thomas

and

E. Wierbicki

January 1971

UNITED STATES ARMY NATICK LABORATORIES Natick, Massachusetts 01760

Food Laboratory FL-128 This document has been approved for public release and sale; its distribution is unlimited.

AD)	
		_

AD 726 380

TECHNICAL REPORT 71-44-FL

EFFECT OF IRRADIATION DOSE AND TEMPERATURE ON THE THIAMINE CONTENT OF HAM

bу

Miriam H. Thomas and Eugen Wierbicki

Project Reference: 1J062110A033

Series: FL-128

January 1971

Food Laboratory
U. S. ARMY NATICK LABORATORIES
Natick, Massachusetts 01760

Security Classification DOCUMENT CONTROL DATA D & D					
DOCUMENT CONTROL DATA - P. & D (Security Sinssification of title, body of abstract and indexing annotation must be entered when the overall report is classified)					
1. ORIGINATING ACTIVITY (Corporate author)			CHRITY CLASSIFICATION		
US Army Natick Laboratories		UNCLASSI	FIED		
Natick, Maseachusetts 01760	Î	2b. GROUP			
3. REPORT TITLE					
Effect of Irradiation Dose and Temperatur	e on the Thia	mine Cont	ent of Ham		
4. DESCRIPTIVE NCTAS (Type of seport and inclusive dates)					
3. AUTHORIS) (First name, middle initial, last name)					
Miriam H. Thomas and Eugen Wierbicki					
Miliam ne inomas and rogen wieldicki					
6. REPORT DATE	74. TOTAL NO. OF	PAGES	76. NO. OF REFS		
January 1971	28		2		
SE. CONTRACT OR GRANT NO.	Sa. ORIGINATOR'S	REPORT HUM	DER(3)		
	71-44-FL				
b. PROJECT NO. 1J062110A033	71-4				
с.	Sb. OTHER REPOR	T NO(2) (Any o	ther numbers that may be assigned		
	FL-128				
d.	FL-120				
10. DISTRIBUTION STATEMENT					
This document has been approved for publ is unlimited.	ic release ar	nd sale; i	ts distribution		
re durinified.					
II. SUPPLEMENTARY NOTES	12. SPONSORING M	ILITARY ACTI	VITY		
	US Army Nat	ick Labor	atories		
	Natick, Mas				
	Nation, Mas	sacnusect	S 01750		
13. ABSTRACY					
A study was conducted to decermine the eff	ect of irradi	iation dos	e from a cobalt=60		
source with respect to irradiation tempera					
addition, thermal sterilizing (Fo) values					
were determined for ham in respect to its	thiamine cont	ent for c	comparison with radia-		
tion sterilizing doses for ham. The produ	cts selected	for testi	ng were fully-cooked		
smoked ham, pasteurized-cooked canned ham,	and thermall	ly process	ed commercially.		
sterile canned ham. The irrad ation was p					
levels (3.0 to 4.0, 4.5 to 5.6, 6.0 to 7.5					
$\pm 5^{\circ}$; -20°, -40°, -60°, and -80°C $\pm 10^{\circ}$ C).					
of irradiation was decreased, thiamine ret					
irradiation dose was increased, the thiami	ne content wa	s decreas	ed. During heat		
treatment of cured ham at an Fo value of 0.2, there was a 30% loss of thiamine. An					
additional 5 to 10% decrease in thiamine content took place at Fo values from 0.4 to					
1.0.					
			•		
			į		

PORM 1473 REPLACES OD FORM 1473, 1 JAN 64, WHICH IS

UNCLASSIFIED

Security Classification

This document has been approved for public release and sale; îts distribution is unlimited.

AD				

TECHNICAL REPORT 71-44-FL

EFFECT OF IRRADIATION DOSE AND TEMPERATURE ON THE THIAMINE CONTENT OF HAM

by

Miriam d. Thomas and Eugen Wierbicki

Project Reference: 1J062110A033

Series: FL-128

January 1971

Food Laboratory
U. S. ARMY NATICK LAZORATORIES
Natick, Massachusetts 01760

FOREWORD

No food preservation method is uniformly superior for all foods. Food technologists and those in associated scientific or engineering disciplines strive constantly to improve and refine food processing methods in current use, and to expand their use to additional food items, thereby improving in some manner the quality of our food supply. Before a major change in a food processing method can be fully accepted for universal use, its impact upon food attributes = including nutrient content - should be assessed. Patently, an innovation must not result in nutritional detriment to the individual when food processed by the altered method is consumed. Ideally, the new method will result in a nutritionally superior product.

Preservation of food by ionizing radiation is a relatively recent concept compared to established processing methods. As such, it is essential that thorough knowledge of its effect upon the nutritional quality of food be established.

This report deals with the effect of irradiation upon the thiamine content of ham. Pork products are much higher in thiamine than other commonly used meat products. On a unit-weight basis, ham contains approximately ten times as much of this vitamin as does beef round. No such differences exist in respect to other vitamins. Since pork products are important dietary sources of thiamine in this country, it became necessary to determine the effect of irradiation dose and temperature upon the retention of this vitamin for use in obtaining acceptance of ionizing energy as a process for sterilizing ham for human consumption.

The work reported was conducted under Project No. 1J062110A033.

TABLE OF CONTENTS

	Page No.
List of Tables	. iv
List of Figures	, ν
Abstract	vi
Introduction	. 1
Procedure	. 1
Results and Discussion	. 2
Summary	3

LIST OF TABLES

Table		Page No.
1	Experimental Design	4
2	Effect of Irradiation Temperature at 4.5 to 5.6 Mrad on the Thiamine Content of Whole, Fully-Cooked, Smoked Ham	5
3	Effect of Irradiation Temperature at 4.5 to 5.6 Mrad on the Thiamine Content of Whole, Pasteurized-Cooked Ham	5
4	Effect of Irradiation Dose and Temperature on Thiamine Content of Smoked, Skinless, Boneless, Cured, Rolled, Fully-Cooked, Ground Ham (3.0 to 4.0 Mrad)	6
5	Effect of Irradiation Dose and Temperature on Thiamine Content of Smoked, Skinless, Boneless, Cured, Rolled, Fully-Cooked, Ground Ham (4.5 to 5.6 Mrad)	7
6	Effect of Irradiation Dose and Temperature on Thiamine Content of Smoked, Skinless, Boneless, Cured, Rolled, Fully-Cooked, Ground Ham (6.0 to 7.5 Mrad)	8
7	Summary of Effect of Irradiation Dose and Temperature on Thiamine Retention in Fully-Cooked, Smoked, Ground Ham	9
8	Effect of Irradiation Temperature at 4.5 to 5.6 Mrad on the Thiamine Content of Pasteurized-Cooked, Ground Ham	10
9	Effect of Thermal Sterilization on the Thiamine Content of Ham	11
10	Comparison of Thiamine Retention in Fully-Cooked, Smoked, Ground, Irradiated Ham with Cured, Ground, Thermally-Sterilized Ham	12

LIST OF FIGURES

Figure		Ī	age No.
1	Comparison of Thiamine Destruction in Whole Ham Irradiated with 4.5 to 5.6 Mrad at Various Temperatures	•	13
2	Comparison of Thiamine Destruction in Ground Ham Irradiated at Various Doses and Temperatures		14
3	Comparison of Thiamine Destruction in Ham Irradiated at 4.5 to 5.6 Mrad at Various Temperatures		15

AB ST RACT

A study was conducted to determine the effect of irradiation dose from a cobalt-6G source with respect to irradiation temperature on the thiamine content of ham. In addition, thermal sterilizing (F_0) values ranging from 0.0 to 1.0 in 0.2 increments were determined for ham in respect to its thiamine content for comparison wir' radiation sterilizing doses for ham. The products selected for testir were fully-cooked smoked ham, pasteurized-cooked canned ham, and therm by processed commercially-sterile canned ham. The irradiation was performed at three different irradiation levels (3.0 to 4.0, 4.5 to 5.6, 6.0 to 7.5 Mrad) at five different temperatures ($+5^{\circ} + 5^{\circ}$ C -20°, -40°, -60°, and -80°C + 10°C). The results show that as the temperature of irradiation was decreased, thiamine retention was increased. Furthermore, as the irradiation dose was increased, the thiamine content was decreased. During heat treatment of cured ham at an F_0 value of 0.2, there was a 30% loss of thiamine. An additional 5 to 10% decrease in thiamine content took place at F_0 values from 0.4 to 1.0.

INTRODUCTION

All food preservation methods reduce the nutritive value of foodstuffs to some degree, and the preservation of food by exposure to ionizing energy is no exception. Since pork products, when consumed, make a significant contribution to the daily food thiamine intake, it was more than of academic interest to determine the extent of thiamine loss which occurs during irradiation. A study was conducted to determine the extent of the thiamine loss which occurs in ham during irradiation under various specified conditions.

The specific purpose of this study was to investigate the effects of irradiation dose from a ${\rm Co}^{60}$ source with respect to irradiation temperature on the thiamine content of ham. Additionally, provision was made to determine the thermal sterilizing (F) values for ham with reference to its thiamine content for comparison with radiation sterilizing values for ham.

PROCEDURE

Three products were selected for study, as follows:

- A. Smoked, skinless, boneless, cured, rolled, fully-cooked ham (internal temperature 67-69°C; no added substance);
- B. Non-smoked, skinless, boneless, cured, pasteurized-cooked, canned ham (with gelatin added) and;
- C. Thermally-processed, commercially-sterile ham.

The experimental plan is given in Table 1. The products were processed both as whole ham and as ground ham. The ground product was included to reduce variability in proximate composition, thiamine content and processing effects among replicate samples. The irradiation of whole ham was performed at -20° , -30° , and $-40^\circ\text{C} + 10^\circ\text{C}$ at 4.5 to 5.5 Mrad. For the ground ham, three different irradiation levels (3.0 to 4.0. 4.5 to 5.6, 6.0 to 7.5 Mrad) were utilized, at each of five different temperatures ($+5^\circ + 5^\circ\text{C}$ and -20° , -40° , -60° and $-80^\circ\text{C} + 10^\circ\text{C}$). The whole ham was cut into chunks and placed in 404×700 cans (2 lbs, 12 oz. ham per can) and brought to the process temperature prior to irradiation. The other samples were ground, put into 404×309 cans (1 lb, 6 oz. ham per can) and brought to the process temperature before irradiation.

The thermally-processed product was commercially prepared in oval-shaped, 1-1/2 lb. cans. The sterile process used by the meat processor is not known. However, it is considered to be in the range of F_0 0.2 to 0.4. Our laboratory heat-treated raw, cured, ground ham in 404 x 309 cans was processed to F_0 values ranging from 0.0 to 1.0 in increments of 0.2.

All samples - irradiated and their non-irradiated controls, thermally-processed and their appropriate controls - were frozen (-29°C) after the processing treatment and held frozen until time of analyses. Five replicates for each variable were analyzed in duplicate for moisture, fat, salt (1), and thiamine (2) content by a contractor (Shankman Laboratories, Los Angeles, Cal.). Before analyses, all ground ham samples were remixed and the whole ham samples were ground and thoroughly homogenized. Juices, when present, were discarded before grinding. The values reported represent the average of five replicates analyzed in duplicate and corrected for their individual moisture, fat, and salt contents.

RESULTS AND DISCUSSION

The results on whole, fully-cooked, smoked ham irradiated at 4.5 to 5.6 Mrad show that as the temperature during irradiation decreased from -20° to -40°C, thiamine retention increased from 25 to 44 percent (Table 2). When whole, p steurized-cooked, ham was irradiated at the same dose, higher thiamine retention was also obtained at -40°C (Table 3) than at -20°C. The calculated and observed points are shown in Figure 1. The slopes are parallel for the two products, the fully-cooked, smoked ham being slightly superior.

Data obtained from analyses of fully-cooked, smoked, ground ham irradiated at various doses and each dose at five different temperatures corroborate those obtained with the whole ham. As indicated previously, the ground product was used to reduce variability in proximate composition, thiamine content, and processing effects among replicate samples. Tables 4-6 demonstrate that when the dose is held constant and the temperature is decreased, the thiamine retention is increased. It should be pointed out that, as expected, the deviation among replicates was less for ground than for whole samples of ham. The data in the three previous tables are summarized in Table 7 which clearly shows that the best retention of thiamine was obtained at the lowest irradiation temperature. Furthermore, as the irradiation dose increased, the thiamine content decreased at corresponding irradiation temperatures. Attention is directed to the poor retention of thiamine at +5°

 \pm 5°C, irrespective of the irradiation level. Little or no difference in thiamine retation occurred between irradiation at -40° and -60° C at the two highest dose levels. Regression analyses (Fig. 2) show that the slopes vary with the treatment.

Pasteurized-cooked, ground ham irradiated at 4.5 to 5.6 Mrad at several temperatures (Table 8) follows the same pattern as fully-cooked, smoked, ground ham treated similarly. Again, there was no difference in thiamine retention between irradiation at -40° and -60°C, and the pasteurized samples appeared to retain less thiamine than the fully-cooked, smoked sample receiving comparable treatment. A comparison of thiamine destruction in ham irradiated at 4.5 to 5.6 Mrad is given in Figure 3.

The effect of curing and thermal processing on the thiamine content of ham is given in Table 9. In the curing process, approximately 80% of the thiamine from the raw product was retained. During the heat treatment, based on the thiamine content of the raw, cured product, there was 70% retention of thiamine at an F_0 value of 0.2. At F_0 values from 0.4 to 1.0, an additional 5 to 10% decrease of thiamine took place. If one assumes that the thermally-processed, commercially-sterile ham was made from a raw, cured product like the one in this study then 64% of the thiamine was retained.

At this writing, the thermally-processed, commercially-sterile, canned ham used in this study represents the commercial product which would be replaced by an irradiated product sterilized with 3.0 - 4.0 Mrads at -30°C \pm 10°C. Since the commercial sample utilized in this study does not originate from the same starting material as the irradiated samples, no direct comparisons with these data can be made. However, the products are equivalent if one compares the thiamine retention in fully-cooked, smoked, ground ham irradiated with either 3.0 to 4.0 or 4.5 to 5.6 Mrad at -40° to -80°C \pm 10°C with cured, ground ham thermally sterilized with $F_{\rm O}$ values of 0.4 to 0.6 (Table 10), which are the typical $F_{\rm O}$ values for thermal processing of commercially-sterile canned hams.

SUMMARY

A study was conducted to determine the effect of irradiation dose and temperature on the thiamine content of fully-cooked, smoked and pasteurized-cooked, canned ham. The irradiation dose levels employed were 3.0 to 4.0, 4.5 to 5.6, and 6.0 to 7.0 Mrad. The temperatures utilized were $\pm 5^{\circ} \pm 5^{\circ}$ C; -20°, -30°, -40°, -60° and -80°C $\pm 10^{\circ}$ C. The results show that the retention of thiamine was decreased with an increase in irradiation dose. The retention of thiamine was increased as the temperature of irradiation was decreased.

TABLE 1
Experimental Design

Form	Dose (Mrad)	Temperature °C ± 10°C
Smoked, Skinless, Boneless, Cured, Rolled, Fully-Cooked Ham (Internal Tempera- ture 67-69°C; No Added Substance)		
Whole Whole Ground Ground Ground Ground	None 4.5 to 5.6 None 3.0 to 4.0 4.5 to 5.6 6.0 to 7.5	Held Frozen ¹ -20°, -30°, -40° Held Frozen +5° ± 5°, -20°, -40°, -60°, -80 +5° ± 5°, -20°, -40°, -60°, -80 +5° ± 5°, -20°, -40°, -60°, -80
Non-Smoked, Skinless, Boneless, Cured, Pasteurized-Cooked, Canned Ham (With Gelatin Added)		
Whole Whole Ground Ground	None 4.5 to 5.6 None 4.5 to 5.6	Held Frozen -20°, -30°, -40° Held Frozen +5° ± 5°, -20°, -40°, -60°, -80
Raw, Cured, and Thermally-Processed Commercially-Sterile Ham		
Whole (1-1/2 lbs) Ground, raw Whole, Raw, Cured Ground, Raw, Cured	None None None None	Held Frozen Held Frozen Held Frozen Fo0, Fo0.2, Fo0.4, Fo0.6, Fo0.8 Fol.0

⁻ Until analyzed

TABLE 2

Effect of Irradiation Temperature at 4.5 to 5.6 Mrad on the Thiamine Content of Whole, Fully-Cooked, Smoked Ham

	Thiamine		
Temperature °C ± 10°	mg/100 gms	Average Retention Percent	
Control	3.99 ± 1.46^2		
-20°	1.01 + 0.63	25	
-30°	0.77 ± 0.31	19	
-4 9 °	1.75 ± 0.58	44	

Values represent duplicate analyses on five replicates and have been corrected for their moisture, fat, and salt contents.

TABLE 3

Effect of Irradiation Temperature at .5 to 5.6 Mrad on the Thiamine Content of Whole, Pasteurized-Cooked Ham

	Thiamine ¹		
Temperature °C ± 10°	mg/100 gms	Average Retention Percent	
Control	4.06 ± 0.45 ²		
-20°	0.30 <u>+</u> 0.10	7	
-30°	1.27 <u>+</u> 0.14	31	
-40°	1.27 ± 0.16	31	

Values represent duplicate analyses on five replicates and have been corrected for their moisture, far, and salt contents.

Mean plus or minus standard deviation

Mean plus or minus standard deviation

TABLE 4

Effect of Irradiation Dose and Temperature on Thiamine Content of Smoked, Skinless, Boneless, Cured, Rolled, Fully-Cooked, Ground Ham

3.0 to 4.0 Mrad

	Thiamine 1		
Temperature °C ± 10°	mg/100 gms	Average Retention Percent	
Control	3.67 ± 0.39 ²		
+5° <u>+</u> 5°	0.33 ± 0.03	9	
-20°	1.94 ± 0.05	53	
-40°	2.91 ± 0.22	79	
-60°	3.21 ± 0.19	87	
-80°	3.40 ± 0.14	93	

Values represent duplicate analyses of five replicates and have been corrected to their moisture, fat, salt-free basis.

Mean plus or minus standard deviation.

TABLE 5

Effect of Irradiation Dose and Temperature on Thiamine Content of Smokeu, Skinless, Boneless, Cured, Rolled, Fully-Cooked, Ground Ham

4,5 to 5.6 Mrad				
	l Thiamine			
Temperature °C ± 10°	mg/100 gms	Average Retention Percent		
Control	3.67 ± 0.39^2			
+5° ± 5°	0.22 ± 0.04	6		
-20°	1.72 ± 9.18	47		
-40°	2.38 ± 0.08	65		
-60°	2.46 ± 0.10	67		
-80°	2.97 ± 0.11	81		

Values represent duplicate analyses of five replicates and have been corrected to their moisture, fat, salt-free basis.

² Mean plus or minus standard deviation

TABLE 6

Effect of Irradiation Dose and Temperature on Thiamine Content of Smoked, Skinless, Boneless, Cured, Rolled, Fully-Cooked, Ground Ham

6.0 to 7.5 Mrad			
	Thiamin	e ¹	
Temperature °C + 10°	mg/100 gms	Average Retention Percent	
Control	3.67 ± 0.39^2		
+5° ± 5°	0.13 ± 0.01	4	
-20°	0.75 ± 0.18	20	
-40°	1.85 ± 0.26	50	
-60°	1.93 ± 0.06	52	
-80°	2.73 ± 0.07	74	

Values represent duplicate analyses of five replicates and have been corrected to their moisture, fat, salt-free basis.

² Mean plus or minus standard deviation

TABLE 7

Summary of Effect of Irradiation Dose and Temperature on Thiamine Retention in Fully-Cooked, Smoked, Ground Ham

Temperature °C + 10°	Dose (Mrad)			
	3.0 - 4.0	4.5 - 5.6	6.0 - 7.5	
+5° ± 5°	9	6	4	
-20°	53	47	20	
-40°	79	65	50	
-60°	87	67	52	
-80°	93	81	74	

TABLE 8

Effect of Irradiction Temperature at 4.5 to 5.6 Mrad on the Thiamine Content of Pasteurized-Cooked, Ground Ham

	Thiamine		
Temperature °C ± 10°	mg/100 gms	Average Retention Percent	
Control	3.71 ± 0.18 ²		
+5° ± 5°	0.10 ± 0.01	3	
-20°	0.76 ± 0.07	20	
-40°	1.53 ± 0.07	41	
-60°	1.53 ± 0.08	41	
-80°	2.02 ± 0.12	54	

Values represent duplicate analyses of five replicates and have been corrected to their moisture, fat, salt-free basis,

Mean plus or minus standard deviation

TABLE 9

Effect of Thermal Sterilization on the Thiamine Content of Ham

Product	Treatment	Thiamine		
		mg/100 gms	Average Retention Percent	
Raw, Uncured Ham	None	5.38 ± 0.15^2	100	
Raw, Cured Whole Ham	Cured	4.16 ± 0.99	77	
Raw, Cured Ground Ham	F ₀ 0.0	4.31 ± 0.08	80 100	
	F ₀ 0.2	3.04 + 0.14	70	
	F ₀ 0.4	2.71 ± 0.29	- 63	
	F ₀ 0.6	2.83 ± 0.30	66	
	F ₀ 0.8	2.78 ± 0.21	64	
	F ₀ 1.0	2.54 ± 0.11	59	
Thermally Sterilized ³		2.66 ± 0.32		

Values represent duplicate analyses of five replicates and have been corrected to their moisture, fat, salt-free basis.

Mean plus or minus standard deviation

³ Commercial product

TABLE 10

Comparison of Thiamine Retention in Fully-Cooked Smoked, Ground, Irradiated Ham with Cured, Ground, Thermally-Sterilized Ham

Temperature	Method of Processing				
	Irradiation Mrad		Thermal		
	3.0 - 4.0		Fo	Retention (%)	
-40°C ± 10°	79	65	0.4	63	
-60°C ± 10°	87	67	0.6	66	
-80°C ± 10°	93	81			

FULLY-COOKED, SMOKED — O PASTEURIZED, COOKED - - C.

$$y = \overline{y} + b(x - \overline{x})$$
 where

$$b = \frac{\sum xy - \sum x \sum y/n}{\sum x^2 - (\sum x)^2/n}$$

FIGURE 1. COMPARISON OF THIAMINE DESTRUCTION IN WHOLE HAM IRRADIATED WITH 4.5 TO 5.6 MRAD AT VARIOUS TEMPERATURES

FIGURE 2. COMPARISON OF THIAMINE DESTRUCTION IN GROUND HAM IRRADIATED AT VARIOUS DOSES AND TEMPERATURES

FULLY-COOKED, SMOKED, WHOLE —— O FULLY-COOKED, SMOKED, GROUND —— \diamondsuit PASTEURIZED-COOKED, WHOLE ---- \diamondsuit PASTEURIZED-COOKED, GROUND —— \Box

FIGURE 3. COMPARISON OF THIAMINE DESTRUCTION IN HAM IRRADIATED AT 4.5 TO 5.6 MRAD AT VARIOUS TEMPERATURES

LITERATURE CITED

- 1. Official Methods of Analyses, AOAC, Tenth Edition, 1965.
- 2. Methods of Vitamin Assay, Assoc. of Vitamin Chemists, Third Edition, 1966.

(a) A Company of Market Company of the Company o