Álgebra de Boole Introdução e formas de representação

GEN 253 - Circuitos Digitais

Prof. Luciano L. Caimi lcaimi@uffs.edu.br

Algebra de Boole

Definida por:

- 1. Um conjunto de valores que cada variável pode assumir
- 2. Um conjunto de operações válidas
- 3. Valores das Variáveis:

Seja
$$A \in B \Rightarrow A \in \{0,1\}$$
 ($\{F,V\}$, $\{high, low\}$, $\{on, off\}$...)

onde: A é uma variável

B são os valores que ela pode assumir (apenas dois valores)

De outra forma:

Se
$$A \neq 0 \Rightarrow A = 1$$

Se
$$A \neq 1 \Rightarrow A = 0$$

Algebra de Boole

2. Operações da Álgebra de Boole

Realizam funções elementares:

- Complemento (operação NOT)
- Multiplicação (operação AND)
- Soma (operação OR)

Cada operação possui pelo três formas de representação clássicas:

- Expressão lógica
- Tabela-verdade
- Porta lógica (circuito lógico)

Complemento: NOT

Também chamada inversão ou negação

Expressão

$$S = \bar{A}$$

[¬A, ~A, A´, not(A)] (lê-se "A negado") Tabela-Verdade

Α	S
0	1
1	0

Porta Lógica

- → É uma operação unária (i.e. só pode ser aplicada a uma variável por vez)
- → Tem como saída o valor oposto ao presente na entrada

Multiplicação booleana: AND (E)

Expressão

$$S = A \cdot B$$

$$S = A \wedge B$$

Simbolos (. ^)

I GDOIG VOI GGG	Tab	pela	a-V	erd	ade
-----------------	-----	------	-----	-----	-----

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Porta Lógica

- → Definição 1: a operação "E" resulta 1 se e somente se todas as variáveis de entrada valerem 1
- → Definição 2: a operação "E" resulta 0 <u>se ao menos uma</u> das variáveis de entrada valer 0

 UFFS Universidade Federal da Fronteira Sul Circuitos Digitais

Multiplicação booleana: AND (E)

Expressão

$$S = A . B . C$$

→ Definição 1: a operação "E" resulta 1 se e de entrada valerem 1

somente se todas as variáveis

Adição booleana: OR (OU)

Expressão

$$S = A + B$$

$$S = A \vee B$$

Simbolos (+ v)

Tabela-Verdade

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

Porta Lógica

- → Definição 1: a operação "OU" resulta 1 se ao menos uma das variáveis de entrada valer 1
- → Definição 2: a operação "OU" resulta 0 <u>se e somente se todas</u>

 variáveis de entrada valerem 0

 UFFS Universidade Federal da Fronteira Sul Circuitos Digitais

Adição booleana: OR (OU)

Expressão

$$S = A + B + C$$

→ Definição 1: a operação "OU" resulta 1 se ao menos uma das variáveis de entrada valer 1

$$\begin{array}{c|c} A & \hline \\ B & \hline \end{array}$$

A	В	A.B
0	0	1
0	1	1
1	0	1
1	1	0

$$S = \overline{A + B}$$
 $A \rightarrow B$

Α	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

 $\overline{A + B}$

$$S = A \oplus B$$
 $A \oplus B$

Α	В	а⊕в
0	0	0
0	1	1
1	0	1
1	1	0

XNOR

$$S = \overline{A \oplus B}$$

$$S = A \odot B$$

Α	В	A⊕ B
0	0	1
0	1	0
1	0	0
1	1	1

UFFS - Universidade Federal da Fronteira Sul - בווכעונס ביוטונס ביוטונט ביוטונס ביוטונס ביוטונס ביוטונס ביוטונס ביוטו

Ор	Bool Arith	Bool Calc	Verilog	Gate
NOT	Ā	¬А	~A (or !A)	->
AND	A•B	A∧B	A&B (or &&)	
OR	A+B	A∨B	A B (or)	
XOR	A⊕B	A⊕B	A ^ B	⇒
NAND	•B	¬ (A∧B)	!(A & B)	⋣
NOR	Ā+B	¬ (A∨B)	!(A B)	→
XNOR	Ā⊕B	¬ (A⊕B)	!(A ^ B)	→

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Outros formatos de representação

Diagrama de Decisão Binária
 Binary Decision Diagram - BDD

A	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1
		_

A partir de uma variável de entrada qualquer deriva-se todas as combinações até chegar no valor de saída (0 ou 1) correspondente

A	В	С	S
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Outros formatos de representação

Diagrama de Venn

Usamos o <u>preenchimento</u> para representar onde o resultado da operação será 1, ou <u>sem preenchimento</u> quando o resultado for <u>0</u>

Gerador de diagrama de Venn:

https://betterinformatics.com/resources/inf1-cl/venn

Circuitos Integrados comerciais:

74LS32 – OR 2 entradas 74LS86 – XOR 2 entradas 74LS73A – Flip-Flop JK 74LS74A - Flip-Flop D

https://pt.wikipedia.org/wiki/Lista dos circuitos integrados da série 7400 **UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais**

$$S = \overline{\overline{(A.C) + D} + \overline{\overline{A} + B}} + \overline{\overline{C}.(A + B)}$$

b) simplifique algebricamente as expressões;
 c) desenhe o circuito simplificado; (LogiSim ou

1.1
$$S = \overline{\overline{(A.C)} + \overline{D} + \overline{\overline{A} + B}} + \overline{\overline{C}.(A+B)}$$

1) Faça o que se pede sobre as expressões (1

a) desenhe o circuito das expressões; (LogiSir

$$P = (A + (\overline{B.C}))(\overline{D + B.E})$$

2. Manipule a expressão abaixo de forma que a mesma possua apenas portas NAND e NOT

$$S = (B.D) + (\overline{A}.\overline{C}) + (\overline{B}.C.\overline{D})$$

