α最適化編 #3. 連立1次方程式と掃き出し法1 腕試し問題

α 最適腕 3 (ASU3)

学籍番号	氏 名	提出方法(〇 で囲む)	答案枚数	提出(〇 で囲む)
IW152314	樋口陽祐	対面 / 提出用フォルダ / FAX / 郵送	2 枚	新規 / 再提出

【TA 記入】	提出日時	添削日時	得 点
/ ()	: 担当	/ () : 担当	/10 点

この授業で得た知識を駆使し、次の問題を解きなさい(10点満点).

解答は 枠内に、濃く はっきり と記入 すること.

△要説明 の問では、答えを導くための過程を数式や日本語で詳しく説明すること、答えのみの場合は 0 点とする.

(高校までの数学を除いて) 授業を超えるような知識・定理を使うのであれば説明・証明してから使うこと.

♠ 要説明 実数 a が a > -1 を満たすとき, x, y, z に関する次の連立 1 次方程式を考える:

$$\begin{cases} 2x + y + 3z &= 2\\ 3x + 2y + 2z &= 5\\ x + y + az &= 6 \end{cases}$$

- (1) 掃き出し法を用いて、上の連立1次方程式を解きなさい.
- (2) (1) で求めた解を $x = x_0$, $y = y_0$, $z = z_0$ とするとき, 実数 x_0 , y_0 , z_0 の大小関係を不等式を用いて表せ.
- (3) 更に a が整数のとき, x_0 , y_0 , z_0 がすべて整数となるような組 (x_0, y_0, z_0) をすべて答えなさい.

(解答にかかった時間 _____ 分)

【TA 記入】

口頭説明

あり ・ なし

【解答欄】 0=0-3 (D = (D - (3) x 3 (3) = (3) = (a+1) (a7-1) @=@-0x3 3=3-0x2 0=0-0 Q 0 -1 2-30 -13 3 [0 -1 3-20 -10] @=@x(-1) 3 = 3 - 2 0 = 0 - 3 x 4 2) = 2) + 1) × 5 @ 0 1 3a-2/13 a 60 a+1 3 = 3 = (a+1) (a7+1)