

Data Structures

Ch6

2024年11月8日

学而不厭 誨 人不倦

Chapter 6 图

- ☞ 6.1 引言
- ☞ 6.2 图的逻辑结构
- ☞ 6.3 图的存储结构及实现
- **6.4 最小生成树**
- **6.5 最短路径**
- ☞ 6.6 有向无环图及其应用
- ☞ 6.7 扩展与提高
- ☞ 6.8 应用实例

6-4-1 Prim算法

1. 最小生成树定义

★ 生成树: 连通图的生成树是包含全部顶点的一个极小连通子图

6-4-1 Prim算法

1. 最小生成树定义

★ 生成树的代价: 在无向连通网中, 生成树上各边的权值之和

★ 最小生成树: 在无向连通网中, 代价最小的生成树

生成树的代价: 16

E(x) 在x个城市之间建造通信网络,至少要架设x-1条通信线路,而每两个城市之间架设通信线路的造价是不一样的,那么如何设计才能使得总造价最小?

6-4-1 Prim算法

2. Prim算法

关键: 是如何找到连接 U 和 V-U 的最短边

算法: Prim

输入: 无向连通网G=(V, E)

输出:最小生成树T=(U, TE)

- 1. 初始化: *U* = {*v*}; TE={};
- 2. 重复下述操作直到U = V:
 - 2.1 在E中寻找最短边(i, j),且满足 $i \in U, j \in V-U$;
 - $2.2\ U = U + \{j\};$
 - 2.3 TE = TE + $\{(i, j)\}$;

6-4-1 Prim算法

2. Prim算法

关键: 是如何找到连接 U 和 V-U 的最短边?

U: 涂色

V-U: 尚未涂色

方法:一个顶点涂色、另一个顶点尚未涂色的最短边

46

25

17

25

2. Prim算法-运行实例

初始化:

$$U = \{v_0\}$$

$$\sqrt{38}$$
 $V-U=\{v_1, v_2, v_3, v_4, v_5\}$

cost={
$$(v_0, v_1)34, (v_0, v_2)46, (v_0, v_3)\infty, (v_0, v_4)\infty, (v_0, v_5)19$$
}

第一次迭代:

$$U=\{v_0, v_5\}$$

$$V-U=\{v_1, v_2, v_3, v_4\}$$

cost={
$$(v_0, v_1)34, (v_5, v_2)25, (v_5, v_3)25, (v_5, v_4)26$$
}

46

25

6-4-1 Prim算法

17

25

2. Prim算法-运行实例

第二次迭代:

$$U=\{v_0, v_5, v_2\} \quad \text{cost}=\{(v_0, v_1)34, (v_5, v_3)25, (v_5, v_4)26\}$$

$$\sqrt{38}$$
 $V-U=\{v_1, v_3, v_4\}$

cost = {
$$(v_0, v_1)34, (v_2, v_3)17, (v_5, v_4)26$$
}

第一次迭代:

第三次迭代:

$$U=\{v_0, v_5, v_2, v_3\}$$

$$V-U=\{v_1, v_4\}$$

$$cost = \{(v_0, v_1)34, (v_5, v_4)26\}$$

第四次迭代:

$$U=\{v_0, v_5, v_2, v_3, v_4\}$$

$$V-U=\{v_1\}$$

$$cost = \{(v_4, v_1)12\}$$

2. Prim算法-运行实例

第三次迭代:

$$U=\{v_0, v_5, v_2, v_3\}$$

$$V-U=\{v_1, v_4\}$$

$$cost=\{(v_0, v_1)34\}$$

6-4-1 Prim算法

3. Prim算法-存储结构

图采用什么存储结构呢?

需要不断读取任意两个顶点之间边的权值

图采用邻接矩阵存储

如何存储候选最短边集(连接U和V-U的候选最短边)?

例如: $\{(v_0, v_1)34, (v_0, v_2)46, (v_0, v_3)\infty, (v_0, v_4)\infty, (v_0, v_5)19\}$

数组adjvex[n]:表示候选最短边的邻接点

数组lowcost[n]:表示候选最短边的权值

 $\begin{cases} adjvex[i] = j \\ lowcost[i] = w \end{cases}$

含义是:候选最短边 (i,j) 的权值为w,其中ieV-U, jeU

3. Prim算法-存储结构

```
初始时, lowcost[v] = 0, 表示将顶点v加入集合U中; adjvex[i] = v, lowcost[i] = edge[v][i] (0 \le i \le n-1)
```

例如: $\{(v_0, v_0)0, (v_0, v_1)34, (v_0, v_2)46, (v_0, v_3)\infty, (v_0, v_4)\infty, (v_0, v_5)19\}$

3. Prim算法-存储结构

每一次迭代,设数组lowcost[n]中的最小权值是lowcost[j],则

令lowcost[j] = 0, 表示将顶点 j 加入集合 U中;

由于顶点j从集合V-U进入集合U,候选最短边集发生变化,需要更新:

```
\begin{cases} lowcost[i] = min\{lowcost[i], edge[i][j]\} \\ adjvex[i] = j (如果edge[i][j] < lowcost[i]) \end{cases}  (0 \le i \le n-1)
```

例如: $\{(v_0, v_0)0, (v_0, v_1)34, (v_0, v_2)46, (v_0, v_3)\infty, (v_0, v_4)\infty, (v_0, v_5)19\}$

例如: $\{(v_0, v_0)0, (v_0, v_1)34, (v_5, v_2)25, (v_5, v_3)25, (v_5, v_4)26, (v_0, v_5)0\}$

 $lowcost[n] = \begin{bmatrix} 0 & 34 & 46 \\ \infty & \infty & 50 \end{bmatrix}$ $lowcost[n] = \begin{bmatrix} 0 & 34 & 25 & 25 \\ 0 & 0 & 50 \end{bmatrix}$

最小生成树-Prim算法


```
void Prim(int v)
                                                                    4. Prim算法-写
  int i, j, k, adjvex[MaxSize], lowcost[MaxSize];
                                                                                                          v_5
   for (i = 0; i < vertexNum; i++)
                                                                                   34
                                                                                                         19
                                                                                        46
                                                                                            100
                                                                                                  100
                                                                                       100
                                                                                            100
      lowcost[i] = edge[v][i]; adjvex[i] = v;
                                                                                  100
                                                                                                         25
                                                                                                         25
                                                                             100
                                                                                  100
   lowcost[v] = 0;
                                                                                                         26
   for (k = 1; k < vertexNum; k++)
                                                                                              25
                                                                                                    26
      i = MinEdge(lowcost, vertexNum)
                                                                              template <class DataType>
                                                                              int MGraph<DataType> :: MinEdge(int r[], int n)
      cout \ll j \ll adjvex[j] \ll lowcost[j]; lowcost[j] = 0;
                                                                                 int index = 0, min = 100;
      for (i = 0; i < vertexNum; i++)
                                                                                 for (int i = 1; i < n; i++)
                                                             O(n)
                                                                                    if (r[i] != 0 \&\& r[i] < min)
         if (edge[i][i] < lowcost[i])
            lowcost[i] = edge[i][i]; adjvex[i] = i;
                                                                                      min = r[i]: index = i:
                                                                                 return index:
```

最小生成树-Prim算法

int adjvex[MaxSize], lowcost[MaxSize];

借助邻接矩阵,候选最短边的邻接点adjvex,候选最短边的权值lowcost,依次加入新顶点,直到全部结点都加入。

6-4-2 Kruskal算法

1. Kruska I 算法思路

Prim算法的关键是什么?

找到连接 U和 V-U 的最短边

最短边

顶点分别位于U和 V-U中

Prim算法: 先构造满足条件的候选最短边集, 再查找最短边

Kruskal算法: 先查找最短边, 再判断是否满足条件

1. Kruska I 算法思路

算法: Kruskal算法

输入: 无向连通网G=(V, E)

输出: 最小生成树T=(U, TE)

- 1. 初始化: U=V; TE={};
- 2. 重复下述操作直到所有顶点位于一个连通分量:
 - 2.1 在E中选取最短边(u, v);
 - 2.2 如果顶点 u、v 位于两个连通分量,则
 - 2.2.1 将边(u, v)并入TE;
 - 2.2.2 将这两个连通分量合成一个连通分量;
 - 2.3 在 E 中标记边 (u, v), 使得 (u, v) 不参加后续最短边的选取;

6-4-2 Kruskal算法

1. Kruskal 算法思路

初始化: 连通分量 = $\{v_0\}$, $\{v_1\}$, $\{v_2\}$, $\{v_3\}$, $\{v_4\}$, $\{v_5\}$

第一次迭代: 连通分量 = $\{v_0\}$, $\{v_1, v_4\}$, $\{v_2\}$, $\{v_3\}$, $\{v_5\}$

第二次迭代: 连通分量 = $\{v_0\}$, $\{v_1, v_4\}$, $\{v_2, v_3\}$, $\{v_5\}$

第三次迭代: 连通分量 = $\{v_0, v_5\}$, $\{v_1, v_4\}$, $\{v_2, v_3\}$

第四次迭代: 连通分量 = $\{v_0, v_2, v_3, v_5\}$, $\{v_1, v_4\}$

第五次迭代: 连通分量 = $\{v_0, v_2, v_3, v_5, v_1, v_4\}$

2. Kruska I 算法存储结构

び 图采用什么存储结构呢? □ 边集数组表示法

算法: Kruskal算法

输入: 无向连通网G=(V, E)

输出: 最小生成树T=(U, TE)

- 1. 初始化: U=V; TE={ };
- 2. 重复下述操作直到所有顶点位于一个连通分量:
 - 2.1 在 E 中选取最短边(u, v);
 - 2.2 如果顶点 u、v 位于两个连通分量,则
 - 2.2.1 将边(u, v)并入TE;
 - 2.2.2 将这两个连通分量合成一个连通分量;
 - 2.3 在 E 中标记边 (u, v), 使得 (u, v) 不参加后续最短边的选取;

2. Kruskal 算法存储结构

图采用什么存储结构呢? 🗅 边集数组表示法

下标:	0	1	2	3	4	5
	v_0	v_1	v_2	v_3	v_4	v_5

from	1	2	0	2	3	4	0	3	0
to	4	3	5	5	5	5	1	4	2
weight	12	17	19	25	25	26	34	38	46

2. Kruska I 算法存储结构

图采用什么存储结构呢?

```
const int MaxVertex = 10;
const int MaxEdge = 100;
template <typename DataType>
class EdgeGraph
public:
  EdgeGraph(DataType a[], int n, int e);
  ~EdgeGraph();
  void Kruskal( );
private:
  int FindRoot(int parent[], int v)
  DataType vertex[MaxVertex];
  EdgeType edge[MaxEdge];
  int vertexNum, edgeNum;
```

□ 边集数组表示法

下标: 0 1 2 3 4 5 v_0 v_1 v_2 v_3 v_4 v_5 struct EdgeType

int from, to, weight;
};

from	1	2	0	2	3	4	3	0	0
to	4	3	5	5	5	5	4	1	2
weight	12	17	19	25	25	26	38	34	46

6-4-2 Kruskal算法

2. Kruska I 算法存储结构

- 如何存储连通分量呢?
- ★ 并查集:集合中的元素组织成树的形式:
 - (1) 查找两个元素是否属于同一集合: 所在树的根结点是否相同
 - (2) 合并两个集合——将一个集合的根结点作为另一个集合根结点的孩子

 $\{v_0, v_5\}, \{v_1, v_4\}, \{v_2, v_3\}$

6-4-2 Kruskal算法

2. Kruska I 算法存储结构

- び 如何存储并查集呢? □ 双亲表示法 □ parent[n]
- ★ 并查集:集合中的元素组织成树的形式:
 - (1) 查找两个元素是否属于同一集合: 所在树的根结点是否相同
 - (2) 合并两个集合——将一个集合的根结点作为另一个集合根结点的孩子

 $\{v_0, v_5\}, \{v_1, v_4\}, \{v_2, v_3\}$

3. Kruskal 算法实现

如何判断两个顶点是否位于同一个连通分量呢?

例如,边(v2, v5)?

```
vex1 = FindRoot(parent, i);
vex2 = FindRoot(parent, j);
if (vex1 != vex2) {
}
```

```
v_0 v_1 v_2 v_5 v_4 v_3 v_5 v_4 v_4 v_4 v_4 v_5 v_5 v_4 v_4 v_4 v_5 v_5 v_6 v_6 v_7 v_8 v_9 v_9 v_9
```

```
int FindRoot(int parent[], int v)
{
  int t = v;
  while (parent[t] > -1)
    t = parent[t];
  return t;
}
```


6-4-2 Kruskal算法

3. Kruskal 算法实现


```
vex1 = FindRoot(parent, i);
vex2 = FindRoot(parent, j);
if (vex1 != vex2) {
    parent[vex2] = vex1;
}
```


例如,边(v2, v5)?

0

34

46

```
vertex
                                                                                      v_2
                                                                                           v_3
                                                                                                    v_5
                                                                                 v_1
for (num = 0, i = 0; num < vertexNum-1; i++)
                                                                    parent
       vex1 = FindRoot(parent, edge[i].from);
       vex2 = FindRoot(parent, edge[i].to);
                                                                    int FindRoot(int parent[], int v)
       if (vex1 != vex2)
                                                                       int t = v;
            cout << edge[i].from << edge[i].to << edge[i].weight;</pre>
                                                                       while (parent[t] > -1)
            parent[vex2] = vex1;
                                                                          t = parent[t];
            num++;
                                                                       return t;
```

6-4-2 Kruskal算法

3. Kruskal 算法实现

下标	0	1	2	3	4	5		
parent V	v_0	v_1	v_2	v_3	v_4	v_5	最短边	说明
parent	_1	_1	_1	_1	_1	_1		初始化
parent	1		1	_I		_1		$\{v_0\}\{v_1\}\{v_2\}\{v_3\}\{v_4\}\{v_5\}$

```
void Kruskal()
{
  int i, num = 0, vex1, vex2;
  for (i = 0; i < vertexNum; i++)
    parent[i] = -1;
}</pre>
```


6-4-2 Kruskal算法

3. Kruskal 算法实现

下标	0	1	2	3	4	5		
parent V	v_0	v_1	v_2	v_3	v_4	v_5	最短边	说明
parent	-1	-1	-1	-1	-1	-1	$(v_4,v_1)12$	初始化 $\{v_0\}\{v_1\}\{v_2\}\{v_3\}\{v_4\}\{v_5\}$
parent	-1	-1	-1	-1	1	-1	$(v_2, v_3)17$	vex1=1, vex2=4, parent[4]=1 $\{v_0\}\{v_1,v_4\}\{v_2\}\{v_3\}\{v_5\}$
parent	-1	-1	-1	2	1	-1		vex1=2, vex2=3, parent[3]=2 $\{v_0\}\{v_1,v_4\}\{v_2,v_3\}\{v_5\}$

3. Kruskal算法实现

6-4-2 Kruskal算法

下标	0	1	2	3	4	5		
parent V	$ v_0 $	v_1	$\overline{v_2}$	v_3	v_4	v_5	最短边	说明
parent	-1	-1	-1	-1	-1	-1	$(v_4,v_1)12$	初始化 {v ₀ } {v ₁ } {v ₂ } {v ₃ } {v ₄ } {v ₅ }
parent	-1	-1	-1	-1	1	-1	$(v_2, v_3)17$	vex1=1, vex2=4, parent[4]=1 $\{v_0\}\{v_1,v_4\}\{v_2\}\{v_3\}\{v_5\}$
parent	-1	-1	-1	2	1	4	$(v_0, v_5)19$	vex1=2, vex2=3, parent[3]=2 $\{v_0\}\{v_1,v_4\}\{v_2,v_3\}\{v_5\}$
parent	-1	-1	-1	2	1	0	$(v_2, v_5)25$	vex 1=0, vex 2=5, parent[5]=0 $\{v_0, v_5\} \{v_1, v_4\} \{v_2, v_3\}$
parent	2	-1	1	2	1	0	$(v_3,v_5)25$	vex1=2, vex2=0, parent[0]=2 $\{v_0,v_5\}\{v_1,v_4\}\{v_2,v_3\}$
parent							$(v_4, v_5)26$	vex1=2, vex2=2 在一个连通分量中
parent	2	-1	1	2	1	0		vex1=1, vex2=2, parent[2]=1 $\{v_0, v_5, v_1, v_4, v_2, v_3\}$

3. Kruskal 算法实现

```
void Kruskal()
  int i, num = 0, vex1, vex2;
  for (i = 0; i < vertexNum; i++)
                                                  O(n)
    parent[i] = -1;
  for (num = 0, i = 0; num < vertexNum-1; i++)
    vex1 = FindRoot(parent, edge[i].from);
                                                   O(\log_2 n)
    vex2 = FindRoot(parent, edge[i].to);
    if (\text{vex1} != \text{vex2}) {
                                                                                  O(e)
       cout << edge[i].from << edge[i].to << edge[i].weight;
       parent[vex2] = vex1;
       num++;
                           时间复杂度?
                                                    O(e\log_2 e) 排序
                           注: Kruskal算法时间复杂度取决于边数,因此适用于稀疏网
```

小结

- 1. 掌握Prim算法及实现方法
- 2. 理解Kruskal算法及实现方法
- 3. 理解Prim算法与Kruskal算法的区别

作业

带权无向图如下图所示,请分别画出对应的最小生成树。

实验安排

实验七、最小生成树和最短路径的实现与应用

一、实验目的

- 1. 掌握图的邻接矩阵存储及实现方法
- 2. 掌握Prim和Kruskal最小生成树算法原理
- 3. 掌握Dijkstra和Floyd最短路径算法原理
- 3. 用C++语言实现相关算法,并上机调试。

二、实验内容

- 1. 实现Prim算法,完成最小生成树的生成和输出。
- 2. 实现Dijkstra算法,完成最短路径的生成和输出。
- 3. 实现Kruskal算法和Floyd算法(扩展)
- 4. 给出测试过程和测试结果。

测试用例

实验时间: 第14周周四晚 19:00-21:00

实验地点: 格物楼A216

Thank You ?

