Advanced Risk Management Computer Lab 2

Ekaterina Ugulava Universiteit van Amsterdam e.ugulava@uva.nl

February 15, 2022

Assignment 1 (Lab)

Assignment 1 (Lab)

Question 1

Tips

- Install and import relevant libraries
- Import data: Excel file "raw_data_2021".
 - ▶ Remove irrelevant parts (seconds) from "Date" string: str[]
 - ▶ Transform "Date" string to format datetime: to_datetime()
 - Set index of Pandas DataFrame to "Date" column, allows to refer to a string using time index: set_index()
 - Calculate close-to-close returns (multiply by 100 to define % growth) and select for one particular index: loc[]
 - ▶ Select RV for one particular index: loc[]; multiply 100²
- Define new Pandas DataFrame: first column returns, second column RV
 - ▷ Plot: (i) return series, (ii) autocorr of return series, (iii) autocorr of squared return series

Question 2

Model with constant mean is given by:

$$r_{t} = \mu + \varepsilon_{t}$$

$$\sigma_{t}^{2} = \omega + \alpha \varepsilon_{t-1}^{2} + \beta \sigma_{t-1}^{2}$$

$$\varepsilon_{t} = \sigma_{t} e_{t}, \quad e_{t} \sim N(0, 1)$$
(1)

- \triangleright stationarity condition: $\alpha + \beta < 1$
- Use arch_model("Returns", p =..., o =..., q = ...)
- Obtain results: fit(last_obs = , disp = "off")
 - ▷ "last_obs" defines the last observation of sub-period to estimate the model
 - "disp" controls whether convergence information is show

Construct standardised residuals:

$$e_t = \frac{r_t - \mu}{\sigma_t} \tag{2}$$

- Obtain non-standardised residuals (ε_t) using method resid() applied to model estimation results
- Obtain conditional volatility using method conditional_volatility() applied to model estimation results
- Alternatively, plot() applied to results after fitting the model: plots e_t and σ_t
- Conduct diagnostic tests based on standardised residuals

Assignment 1 (Lab)

Question 3

• GJR-GARCH(1,1):

$$\sigma_t^2 = \omega + (\alpha + \gamma \mathbf{1}_{\varepsilon_{t-1} \le 0}) \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$
 (3)

- \triangleright NIC is asymmetric iff $\gamma \neq 0$
- \triangleright present leverage effect if $\gamma > 0$
- \triangleright stationarity condition: $\alpha + \frac{1}{2}\gamma + \beta < 1$
- arch_model(): o = 1 (asymmetric terms)
- Conduct diagnostic tests based on standardised residuals

- Is the log likelihood of the GJR model significantly higher?
- Does the LR test for the GARCH model, as a restricted version of the GJR-GARCH model, reject the null hypothesis?
 - ▶ $H0: \gamma = 0$
 - \triangleright LR = 2(LL_{GJR} LL_{GARCH}) $\sim \chi_1^2$
 - Done degree of freedom in chi-squared distribution because we test only one restriction

Assignment 1 (Lab)

HAR model (additional)

 HAR model: heterogeneous autoregressive model for the realised variance

$$RV_{t+1} = \phi_0 + \phi_d RV_{d,t} + \phi_w RV_{w,t} + \phi_m RV_{m,t} + \varepsilon_{t+1}, \quad (4)$$

where

- $\triangleright RV_{d,t}$ is daily mean
- $\triangleright RV_{w,t}$ is weakly mean
- $\triangleright RV_{m,t}$ is monthly mean
- Estimate rolling averages using .rolling(window = ...).mean() in pandas
- Estimate model using OLS: smf.ols(): shift regressors by one!

Advanced Risk Management Computer Lab 2

Ekaterina Ugulava Universiteit van Amsterdam e.ugulava@uva.nl

February 15, 2022