Abbiamo visto, studiando l'analisi lessicale:

- 1. Definizione induttiva delle espressioni regolari. 1→3: costruzioni di Thompson
- 2. Definizione di NFA come riconoscitore di un linguaggio denotato da un'espressione regolare.
- 3. Definizione di DFA, e trasformazione di NFA in DFA mediante subset construction.

Oggi un po' di pratica sulle costruzioni.

Espressione regolare r = (a/b) * abb

I SUO NEA:

Proviamo a fare la subset construction dell'NFA per ottenere il Corrispondente DFA.

	a	Ь
$T_0 = \{0, 1, 2, 4, 6, 7\}$	T ₄	T ₂
T ₁ ={3,8,6,1,2,4,7}	T ₄	Т ₃
T ₂ = { 5, 6, 1, 2, 4, 7 }	T ₄	T ₂
T3 = {5,9,6,1,2,4,7}	Ta	T ₄
T4={5,40,6,4,2,4,7}	Τ ₁	T ₂

Disegnamo il DFA:

Vediamo un NFA alternativo per lo stesso linguaggio:

Domanda: "È normale che l'NFA sia più piccolo in memoria rispetto al DFA?". Memoria = quantità di nodi e di archi.

Proprietà del DFA minimo

Sia D un DFA con funzione di transizione totale (un DFA che ha funzione di transizione totale è, ad esempio, quello dell'esercizio prima proposto).

Abbiamo min(D) = subset(reverse(subset(reverse(D)))).

Per ottenere il reverse DFA è sufficiente, detto grezzamente, invertire ogni arco; inoltre, lo stato iniziale diventa quello finale, e quello finale diventa quello iniziale.

```
Un linguaggio L si dice regolare se: (4 condizioni equivalenti). esiste un'espressione regolare r t.c. L = L(r) \Leftrightarrow esiste un NFA N | L = L(N) \Leftrightarrow esiste un DFA D t.c. L = L(D) \Leftrightarrow esiste una grammatica G regolare t.c. L = L(G).
```

Ricordiamo che una grammatica è regolare se è libera (le produzioni sono del tipo $A \rightarrow aB$, o $A \rightarrow \epsilon$).

Sostanzialmente, abbiamo 4 armi per dimostrare che un certo linguaggio è regolare.

Esercizio

 $\{w \mid w \text{ è una stringa sull'alfabeto } \{a, b\}, e b \text{ occorre un numero dispari di volte } \}$ Soluzione: vedi lezione successiva.