Guía de programación entre pares sobre solución de sistemas de ecuaciones

Objetivo de la Actividad	Comprender e implementar algoritmos para solucionar sistemas de ecuaciones diferenciales.
Fecha de la actividad	18 de octubre de 2021
Descripción de las actividades	

Instrucciones generales

- 1. Estudie autónoma y previamente a la clase el recurso sobre programación entre pares, disponible en el aula virtual.
- 2. Conforme parejas, de acuerdo con las indicaciones del profesor.
- 3. Converse con su compañero sobre las cosas que se le dificultan al programar y aquellas que usted cree que hace muy bien.
- 4. Decida con su compañero quién iniciará interpretando el rol de conductor y quién el de navegador. La interpretación de los roles se intercambiará a lo largo del ejercicio.
- 5. Analice con su compañero la sección de "actividades del ejercicio de programación" que aparece en esta guía y decidan el plan de acción a implementar.
- 6. Pruebe los procedimientos programados con parámetros previamente definidos por su grupo.
- 7. Al finalizar, cargue un archivo de códigos con los resultados y los comentarios de cada actividad de programación en el enlace disponible en el aula virtual. Cada ejercicio debe estar separado por celdas.

Actividades del ejercicio de programación:

- 1. Para un sistema matricial de la forma Ax = b, donde A es una matriz de coeficientes constantes de NxN, x un vector de incógnitas de Nx1 y b un vector de constantes de tamaño Nx1, realice una función en Python que devuelva el vector de solución x, usando el método de Gauss. Pruebe la función con una matriz A aleatoria (rand) de 3x3 y un vector b aleatorio de 3x1. Compare la solución encontrada con las funciones de la librería numpy del paquete linalg.
- 2. Para un sistema matricial de la forma Ax = b, donde A es una matriz de coeficientes constantes de NxN, x un vector de incógnitas de Nx1 y b un vector constantes de Nx1, realice una función en Python que devuelva el vector de solución x usando el método de Gauss-Jordan. La función debe devolver igualmente la matriz inversa A^{-1} . Pruebe la función con una matriz A aleatoria (rand) de 3x3 y un vector b aleatorio de 3x1. Compare la solución encontrada con las funciones de la librería numpy del paquete *linalg*.

- 3. Para el sistema matricial de la forma Ax=b, explique cada uno de los casos en los cuales el sistema tiene una única solución, infinitas soluciones o no tiene solución. Refiérase a la matriz aumentada para explicar cada caso.
- 4. El círculo que pasa por los puntos (-2, 0), (-7, 1) y (5, -1) está dado por la ecuación $x^2 + y^2 + ax + by + c = 0$ x. Utilice las funciones desarrolladas en los puntos 1 y 2 para hallar los coeficientes a, b y c. Compare la solución encontrada con las funciones de la librería numpy del paquete linalg. Realice una gráfica del círculo encontrado para 50 valores (x, y) equidistantes alrededor del círculo.
- 5. Un polinomio de orden 4 está dado por la ecuación $P(x) = c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + c_0$, donde c_4 , c_3 , c_2 , c_1 , c_0 corresponden a coeficientes constantes. Encuentre la ecuación P(x) del polinomio de orden 4 que pasa por los puntos (-2.68, 0), (-3.25, 1.15), (-4.45, -1.56), (-6.25, -2.84) y (-8.15, 0.23). Utilice las funciones desarrolladas en los puntos 1 y 2 para hallar los coeficientes requeridos. Compare la solución encontrada con las funciones de la librería numpy del paquete *linalg*. Realice una gráfica del polinomio encontrado para x = -8.15 : 0.1 : -2.68.

Evaluación

Productos:

- 1. Un único archivo de Python con los códigos implementados. Los ejercicios deben estar debidamente comentados y separados por celdas.
- 2. Se debe generar un video (grabación de la sesión en Teams) y el enlace correspondiente se debe poner en el archivo de Excel que se encuentra dentro de los archivos del grupo de la clase en Teams.

Cada actividad debe cumplir con las siguientes condiciones:

- Probada y verificada
- Debidamente comentada
- Separada por celdas

Fecha de entrega: octubre 26 de 2021, 23:59pm.