

ECG Risk Stratification Using Multiple Instance Learning

Divya Shanmugam, Davis Blalock. Jen J. Gong, John Guttag {divyas, dblalock, guttag}@mit.edu, {jengong}@berkeley.edu

Goal

Identify patients at highest risk for cardiovascular death based on their ECG signal to efficiently avert adverse outcomes.

Challenges

- * Huge number of heartbeats share one global label
- * Most beats are not indicative of outcome

How do we accurately classify signals, given no outcome annotations for heartbeats?

Background

Tackle problem using *multiple instance learning* (MIL)

MIL: Classify collections of instances, given only collection-level labels

Method

(1) Separation

How do we separate collections into instances?

(2) Classification

How do we map each instance to a collection label?

$$F(x) \rightarrow [0,1]$$

$$\longrightarrow \bigcirc$$

$$\longrightarrow \bigcirc$$

$$\longrightarrow \bigcirc$$

$$\longrightarrow \bigcirc$$

$$\longrightarrow \bigcirc$$

$$[0,1]$$

(3) Aggregation

How do we assign a collection label based on instance predictions?

Results

1. Our method outperforms baseline methods.

A. Existing ECG metrics

2. The MIL approach reveals that 3 beats are more informative than 2, in contrast to a common assumption in ECG literature.

- 3. The proposed approach is more practical than existing MIL methods for datasets at this scale.
- * 6000 patients, 1000 instances/patient
- * Largest MIL benchmark dataset is two orders of magnitude smaller
- * Kernel-based methods do not scale to this dataset size

Conclusions

Method

- * Powerful framework for risk stratification
 - * Generalizes easily to other biometric signals
 - * Strong performance despite training on weak labels

0.55

Method

- * Contributions
 - * MIL Methods: Validation in new problem space
 - * ECG Risk Metrics: *Learned* relationship between beats