# CÓDIGOS Y CRIPTOGRAFÍA

Autenticación de firma Cifrado ElGamal

# **INDEX**

1 Autenticación de firma en RSA

2 ElGamal

• Vamos a ver como podemos garantizar la identidad del emisor, es decir, como se puede firmar un criptograma.

- Vamos a ver como podemos garantizar la identidad del emisor, es decir, como se puede firmar un criptograma.
- Se puede llevar a cabo la firma con cualquier método de clave pública.

- Vamos a ver como podemos garantizar la identidad del emisor, es decir, como se puede firmar un criptograma.
- Se puede llevar a cabo la firma con cualquier método de clave pública.
- Para ello tanto el receptor como el emisor deben generar sus propias claves públicas y privadas.

- Vamos a ver como podemos garantizar la identidad del emisor, es decir, como se puede firmar un criptograma.
- Se puede llevar a cabo la firma con cualquier método de clave pública.
- Para ello tanto el receptor como el emisor deben generar sus propias claves públicas y privadas.
- La idea como veremos puede aplicarse con distintos métodos, pero aquí lo veremos con RSA.

#### Generación de claves

• Tanto el emisor como el receptor generan sus propias claves públicas y privadas:

#### Generación de claves

 Tanto el emisor como el receptor generan sus propias claves públicas y privadas:

#### Claves de A

CLAVE PÚBLICA:  $(n_A, e_A)$ CLAVE PRIVADA:  $(n_A, d_A)$ 

#### Claves de B

CLAVE PÚBLICA:  $(n_B, e_B)$ CLAVE PRIVADA:  $(n_B, d_B)$ 

ELAVE I KIVADA. (IIB, UB)

## Cifrado del mensaje (A)

• A quiere enviar a B el mensaje mensaje, firmado con la firma firma.

### Cifrado del mensaje (A)

- A quiere enviar a B el mensaje mensaje, firmado con la firma firma.
- Prepara el envío en 2 pasos:

### Cifrado del mensaje (A)

- A quiere enviar a B el mensaje mensaje, firmado con la firma firma.
- Prepara el envío en 2 pasos:
- Cifra el mensaje y la firma juntos del modo usual.
  - Es decir, cifra mensaje firma con la clave pública de B,  $(n_B, e_B)$ .

### Cifrado del mensaje (A)

- A quiere enviar a B el mensaje mensaje, firmado con la firma firma.
- Prepara el envío en 2 pasos:
- Cifra el mensaje y la firma juntos del modo usual.
   Es decir, cifra mensaje firma con la clave pública de B, (n<sub>B</sub>, e<sub>B</sub>).
- ② Hace un doble cifrado a su firma: primero con su clave privada,  $(n_A, d_A)$  y después con la clave pública de B,  $(n_B, e_B)$ . Para ello:
  - Cifra firma con  $(n_A, d_A)$ .
  - Completa los bloques para que tengan la misma longitud que dígitos $(n_A)$ .
  - Concatena y vuelve a cifrar con  $(n_B, e_B)$ .



### Cifrado del mensaje (A)

- A quiere enviar a B el mensaje mensaje, firmado con la firma firma.
- Prepara el envío en 2 pasos:
- Cifra el mensaje y la firma juntos del modo usual.
   Es decir, cifra mensaje firma con la clave pública de B, (n<sub>B</sub>, e<sub>B</sub>).
- 2 Hace un doble cifrado a su firma: primero con su clave privada,  $(n_A, d_A)$  y después con la clave pública de B,  $(n_B, e_B)$ . Para ello:
  - Cifra firma con  $(n_A, d_A)$ .
  - Completa los bloques para que tengan la misma longitud que dígitos $(n_A)$ .
  - Concatena y vuelve a cifrar con  $(n_B, e_B)$ .
  - Envía a B dos criptogramas distintos:

cifr-mensajefirma- $e_B$  y cifr-firma- $d_A$ - $e_B$ 

# Descifrado y autentificación de firma (B)

B recibe dos criptogramas

```
cifr-mensajefirma-e_B y cifr-firma-d_A-e_B
```

### Descifrado y autentificación de firma (B)

B recibe dos criptogramas

```
cifr-mensajefirma-e_B y cifr-firma-d_A-e_B
```

- y los descifra usando su clave privada,  $(n_B, d_B)$ .
- Obtiene mensajefirma y otro criptograma cifr-firma- $d_A$ .

### Descifrado y autentificación de firma (B)

B recibe dos criptogramas

```
cifr-mensajefirma-e_B y cifr-firma-d_A-e_B
```

- Obtiene mensajefirma y otro criptograma cifr-firma- $d_A$ .
- Como firma le dice que puede ser de A, procede a descifrar el segundo criptograma con la clave pública de A,  $(n_A, e_A)$ .

### Descifrado y autentificación de firma (B)

B recibe dos criptogramas

```
cifr-mensajefirma-e_B y cifr-firma-d_A-e_B
```

- Obtiene mensajefirma y otro criptograma cifr-firma- $d_A$ .
- Como firma le dice que puede ser de A, procede a descifrar el segundo criptograma con la clave pública de A,  $(n_A, e_A)$ . Para ello:
  - Completa los bloques de cifr-firma- $d_A$  para que todos tengan la misma longitud que  $n_B 1$ .
  - Concatena, separa en bloques de la misma longitud que  $n_A$  y descifra con  $(n_A, e_A)$ .
  - Obtiene firma.

### Descifrado y autentificación de firma (B)

• B recibe dos criptogramas

```
cifr-mensajefirma-e_B y cifr-firma-d_A-e_B
```

- Obtiene mensajefirma y otro criptograma cifr-firma- $d_A$ .
- Como firma le dice que puede ser de A, procede a descifrar el segundo criptograma con la clave pública de A,  $(n_A, e_A)$ . Para ello:
  - Completa los bloques de cifr-firma- $d_A$  para que todos tengan la misma longitud que  $n_B 1$ .
  - Concatena, separa en bloques de la misma longitud que  $n_A$  y descifra con  $(n_A, e_A)$ .
  - Obtiene firma.
- Compara mensajefirma con firma.

#### Generación de claves

• A y B generan sus propias claves:

#### Generación de claves

• A y B generan sus propias claves:

#### Claves de A

$$p_A = 11, q_A = 13$$
  
 $n_A = 143, \varphi(n_A) = 120$   
 $e_A = 7, d_A = 103$ 

#### Claves de B

$$p_B = 17, q_B = 59$$
  
 $n_B = 1003, \varphi(n_B) = 928$   
 $e_B = 3, d_B = 619$ 

# Cifrado y firma (A)

• A va a enviarle a B el mensaje prueba con la firma bya:

# Cifrado y firma (A)

- A va a enviarle a B el mensaje prueba con la firma bya:
- Cifra pruebabya con  $(n_B, e_B)$ :

```
C_1 = [801 \quad 465 \quad 811 \quad 9 \quad 725 \quad 122].
```

# Cifrado y firma (A)

- A va a enviarle a B el mensaje prueba con la firma bya:
- Cifra pruebabya con  $(n_B, e_B)$ :

$$C_1 = [801 \quad 465 \quad 811 \quad 9 \quad 725 \quad 122].$$

4 Hace un doble cifrado a bya:

### Cifrado y firma (A)

- A va a enviarle a B el mensaje prueba con la firma bya:
- Cifra pruebabya con  $(n_B, e_B)$ :

$$C_1 = [801 \quad 465 \quad 811 \quad 9 \quad 725 \quad 122].$$

- 4 Hace un doble cifrado a bya:
  - Primero con  $(n_A, d_A)$ :

### Cifrado y firma (A)

- A va a enviarle a B el mensaje prueba con la firma bya:
- Cifra pruebabya con  $(n_B, e_B)$ :

$$C_1 = [801 \quad 465 \quad 811 \quad 9 \quad 725 \quad 122].$$

- 4 Hace un doble cifrado a bya:
  - Primero con  $(n_A, d_A)$ :

• Completa los bloques para que tengan la longitud de  $n_A$ :

### Cifrado y firma (A)

- A va a enviarle a B el mensaje prueba con la firma bya:
- Cifra pruebabya con  $(n_B, e_B)$ :

$$C_1 = [801 \quad 465 \quad 811 \quad 9 \quad 725 \quad 122].$$

- 4 Hace un doble cifrado a bya:
  - Primero con  $(n_A, d_A)$ :

• Completa los bloques para que tengan la longitud de  $n_A$ :

• Concatena, 001038000, y cifra con  $(n_B, e_B)$ :

$$C_2 = [1 \quad 710 \quad 0]$$

#### Cifrado y firma (A)

- A va a enviarle a B el mensaje prueba con la firma bya:
- Cifra pruebabya con  $(n_B, e_B)$ :

$$C_1 = [801 \quad 465 \quad 811 \quad 9 \quad 725 \quad 122].$$

- 2 Hace un doble cifrado a bya:
  - Primero con  $(n_A, d_A)$ :

• Completa los bloques para que tengan la longitud de  $n_A$ :

• Concatena, 001038000, y cifra con  $(n_B, e_B)$ :

$$C_2 = [1 \quad 710 \quad 0]$$

• Envía a B  $C_1 = [801 \ 465 \ 811 \ 9 \ 725 \ 122]$  y  $C_2 = [1 \ 710 \ 0]$ .

### Descifrado y autentificación (B)

• B recibe  $C_1 = [801 \ 465 \ 811 \ 9 \ 725 \ 122]$  y  $C_2 = [1 \ 710 \ 0]$ .

#### Descifrado y autentificación (B)

- B recibe  $C_1 = [801 \ 465 \ 811 \ 9 \ 725 \ 122]$  y  $C_2 = [1 \ 710 \ 0]$ .
- Descifra ambos criptogramas usando su clave privada,  $(n_B, d_B)$ .

999

#### Descifrado y autentificación (B)

- B recibe  $C_1 = [801 \ 465 \ 811 \ 9 \ 725 \ 122]$  y  $C_2 = [1 \ 710 \ 0]$ .
- Descifra ambos criptogramas usando su clave privada,  $(n_B, d_B)$ .
- Del primer criptograma obtiene pruebabya.

### Descifrado y autentificación (B)

- B recibe  $C_1 = [801 \ 465 \ 811 \ 9 \ 725 \ 122]$  y  $C_2 = [1 \ 710 \ 0]$ .
- Descifra ambos criptogramas usando su clave privada,  $(n_B, d_B)$ .
- Del primer criptograma obtiene pruebabya.
- Del segundo criptograma no obtiene un mensaje coherente, se queda con los bloques numéricos:

### Descifrado y autentificación (B)

- B recibe  $C_1 = [801 \ 465 \ 811 \ 9 \ 725 \ 122]$  y  $C_2 = [1 \ 710 \ 0]$ .
- Descifra ambos criptogramas usando su clave privada,  $(n_B, d_B)$ .
- Del primer criptograma obtiene pruebabya.
- Del segundo criptograma no obtiene un mensaje coherente, se queda con los bloques numéricos:

• Completa los bloques para que tengan la misma longitud que  $n_B - 1$ :

### Descifrado y autentificación (B)

- B recibe  $C_1 = [801 \ 465 \ 811 \ 9 \ 725 \ 122]$  y  $C_2 = [1 \ 710 \ 0]$ .
- Descifra ambos criptogramas usando su clave privada,  $(n_B, d_B)$ .
- Del primer criptograma obtiene pruebabya.
- Del segundo criptograma no obtiene un mensaje coherente, se queda con los bloques numéricos:

• Completa los bloques para que tengan la misma longitud que  $n_B - 1$ :

• Concatena y separa los bloques para que tengan la misma longitud que  $n_A$  (en este caso se quedan igual:  $\begin{bmatrix} 1 & 38 & 0 \end{bmatrix}$ .) y descifra con  $(n_A, e_A)$ , bya.

# **INDEX**

Autenticación de firma en RSA

2 ElGamal

# Cifrado ElGamal

• Cifrado de clave púplica basado en la exponenciación binaria y en el logaritmo discreto.

# Cifrado ElGamal

- Cifrado de clave púplica basado en la exponenciación binaria y en el logaritmo discreto.
- Supongamos dos interlocutores: el receptor A y el emisor B.

- Cifrado de clave púplica basado en la exponenciación binaria y en el logaritmo discreto.
- Supongamos dos interlocutores: el receptor A y el emisor B.
- Para comenzar, ambos interlocutores se ponen de acuerdo en la elección de un número primo q y de un número  $0 \le g \in \mathbb{Z}_q$  (no necesariamente generador).

- Cifrado de clave púplica basado en la exponenciación binaria y en el logaritmo discreto.
- Supongamos dos interlocutores: el receptor A y el emisor B.
- Para comenzar, ambos interlocutores se ponen de acuerdo en la elección de un número primo q y de un número  $0 \le g \in \mathbb{Z}_q$  (no necesariamente generador).

#### Generación de claves (A)

- Cifrado de clave púplica basado en la exponenciación binaria y en el logaritmo discreto.
- Supongamos dos interlocutores: el receptor A y el emisor B.
- Para comenzar, ambos interlocutores se ponen de acuerdo en la elección de un número primo q y de un número  $0 \le g \in \mathbb{Z}_q$  (no necesariamente generador).

#### Generación de claves (A)

• CLAVE PRIVADA: Un número a de modo que  $2 \le a \le q - 2$ .

- Cifrado de clave púplica basado en la exponenciación binaria y en el logaritmo discreto.
- Supongamos dos interlocutores: el receptor A y el emisor B.
- Para comenzar, ambos interlocutores se ponen de acuerdo en la elección de un número primo q y de un número  $0 \le g \in \mathbb{Z}_q$  (no necesariamente generador).

### Generación de claves (A)

- CLAVE PRIVADA: Un número a de modo que  $2 \le a \le q 2$ .
- CLAVE PÚBLICA: El número  $ga = g^a \mod q$ .

## Cifrado (B)

• B quiere enviar el mensaje mensaje a A.

 $\sim$  > < <

## Cifrado (B)

- B quiere enviar el mensaje mensaje a A. Para ello:
- Elige un número k de modo que  $2 \le k \le q 2$ .

990

- B quiere enviar el mensaje mensaje a A. Para ello:
- Elige un número k de modo que  $2 \le k \le q 2$ .
- Calcula  $gk = g^k \mod q$  y  $gak = ga^k = g^{ak} \mod q$ .

- B quiere enviar el mensaje mensaje a A. Para ello:
- Elige un número k de modo que  $2 \le k \le q 2$ .
- Calcula  $gk = g^k \mod q$  y  $gak = ga^k = g^{ak} \mod q$ .
- Escribe M numéricamente utilizando dos dígitos por letra y separa en bloques de tamaño dígitos(q) 1. Si es necesario añade varios 30's y/o un 0.

$$M = [M_1 \ M_2 \ M_3 \ ... ]$$

- B quiere enviar el mensaje mensaje a A. Para ello:
- Elige un número k de modo que  $2 \le k \le q 2$ .
- Calcula  $gk = g^k \mod q$  y  $gak = ga^k = g^{ak} \mod q$ .
- Escribe M numéricamente utilizando dos dígitos por letra y separa en bloques de tamaño dígitos(q) 1. Si es necesario añade varios 30's y/o un 0.

$$M = [M_1 \quad M_2 \quad M_3 \quad \dots \quad]$$

- Realiza dos envíos a A:
  - 1 Envía el número gk anterior.

- B quiere enviar el mensaje mensaje a A. Para ello:
- Elige un número k de modo que  $2 \le k \le q 2$ .
- Calcula  $gk = g^k \mod q$  y  $gak = ga^k = g^{ak} \mod q$ .
- Escribe M numéricamente utilizando dos dígitos por letra y separa en bloques de tamaño dígitos(q) 1. Si es necesario añade varios 30's y/o un 0.

$$M = [M_1 \quad M_2 \quad M_3 \quad \dots \quad]$$

- Realiza dos envíos a A:
  - 1 Envía el número gk anterior.
  - 2 Opera cada bloque del mensaje mediante la fórmula

$$C_i = M_i \cdot gak \mod q$$
,



### Cifrado (B)

- B quiere enviar el mensaje mensaje a A. Para ello:
- Elige un número k de modo que  $2 \le k \le q 2$ .
- Calcula  $gk = g^k \mod q$  y  $gak = ga^k = g^{ak} \mod q$ .
- Escribe M numéricamente utilizando dos dígitos por letra y separa en bloques de tamaño dígitos(q) 1. Si es necesario añade varios 30's y/o un 0.

$$M = [M_1 \quad M_2 \quad M_3 \quad \dots \quad ]$$

- Realiza dos envíos a A:
  - 1 Envía el número gk anterior.
  - 2 Opera cada bloque del mensaje mediante la fórmula

$$C_i = M_i \cdot gak \mod q$$
,

y envía

$$\begin{bmatrix} C_1 & C_2 & C_3 & \dots \end{bmatrix}$$

### Descifrado (A)

• A recibe un número gk, y un vector numérico  $\begin{bmatrix} C_1 & C_2 & C_3 & ... \end{bmatrix}$ .

### Descifrado (A)

- A recibe un número gk, y un vector numérico  $[C_1 \quad C_2 \quad C_3 \quad ... \quad ]$ .
- Cacula  $(gk^a)^{-1} \mod q$ .

#### Descifrado (A)

- A recibe un número gk, y un vector numérico  $\begin{bmatrix} C_1 & C_2 & C_3 & ... \end{bmatrix}$ .
- Cacula  $(gk^a)^{-1} \mod q$ .
- Cada elemento del vector recibido lo opera multiplicándolo modularmente por el inverso anterior y obtiene

$$[M_1 \ M_2 \ M_3 \ ... ].$$

#### Descifrado (A)

- A recibe un número gk, y un vector numérico  $\begin{bmatrix} C_1 & C_2 & C_3 & ... \end{bmatrix}$ .
- Cacula  $(gk^a)^{-1} \mod q$ .
- Cada elemento del vector recibido lo opera multiplicándolo modularmente por el inverso anterior y obtiene

$$[M_1 \ M_2 \ M_3 \ ... ].$$

• Completa los bloques para que todos sean de longitud dígitos(q) - 1.

#### Descifrado (A)

- A recibe un número gk, y un vector numérico  $\begin{bmatrix} C_1 & C_2 & C_3 & ... \end{bmatrix}$ .
- Cacula  $(gk^a)^{-1} \mod q$ .
- Cada elemento del vector recibido lo opera multiplicándolo modularmente por el inverso anterior y obtiene

$$[M_1 \ M_2 \ M_3 \ ... ].$$

- Completa los bloques para que todos sean de longitud dígitos(q) 1.
- Concatena todos los bloques, separa de dos en dos dígitos, y vuelve a convertir alfabéticamente recuperando el mensaje.

### Elección de elementos comunes y claves

• A y B se ponen de acuerdo en q = 13 y g = 2.

#### Elección de elementos comunes y claves

- A y B se ponen de acuerdo en q = 13 y g = 2.
- A genera sus claves eligiendo a = 5 ( $2 \le a \le q 2$ ):

#### Elección de elementos comunes y claves

- A y B se ponen de acuerdo en q = 13 y g = 2.
- A genera sus claves eligiendo a = 5 ( $2 \le a \le q 2$ ):

CLAVE PRIVADA: a = 5

#### Elección de elementos comunes y claves

- A y B se ponen de acuerdo en q = 13 y g = 2.
- A genera sus claves eligiendo a = 5 ( $2 \le a \le q 2$ ):

CLAVE PRIVADA: a = 5

CLAVE PÚBLICA:  $ga = 2^5 \mod 13 = 6$ 

#### Elección de elementos comunes y claves

- A y B se ponen de acuerdo en q = 13 y g = 2.
- A genera sus claves eligiendo a = 5 ( $2 \le a \le q 2$ ):

CLAVE PRIVADA: a = 5

CLAVE PÚBLICA:  $ga = 2^5 \mod 13 = 6$ 

### Cifrado del mensaje (B)

• B quiere enviar el mensaje hola a A.

#### Elección de elementos comunes y claves

- A y B se ponen de acuerdo en q = 13 y g = 2.
- A genera sus claves eligiendo a = 5 ( $2 \le a \le q 2$ ):

CLAVE PRIVADA: a = 5

CLAVE PÚBLICA:  $ga = 2^5 \mod 13 = 6$ 

### Cifrado del mensaje (B)

- B quiere enviar el mensaje hola a A.
- Elige  $k = 7 \ (2 \le k \le q 2)$ .

#### Elección de elementos comunes y claves

- A y B se ponen de acuerdo en q = 13 y g = 2.
- A genera sus claves eligiendo a = 5 ( $2 \le a \le q 2$ ):

CLAVE PRIVADA: a = 5

CLAVE PÚBLICA:  $ga = 2^5 \mod 13 = 6$ 

### Cifrado del mensaje (B)

- B quiere enviar el mensaje hola a A.
- Elige  $k = 7 \ (2 \le k \le q 2)$ .
- Halla  $gk = 2^7 \mod 13 = 11$  y  $gak = ga^k = 6^7 \mod 13 = 7$

#### Elección de elementos comunes y claves

- A y B se ponen de acuerdo en q = 13 y g = 2.
- A genera sus claves eligiendo a = 5 ( $2 \le a \le q 2$ ):

CLAVE PRIVADA: a = 5

CLAVE PÚBLICA:  $ga = 2^5 \mod 13 = 6$ 

#### Cifrado del mensaje (B)

- B quiere enviar el mensaje hola a A.
- Elige  $k = 7 \ (2 \le k \le q 2)$ .
- Halla  $gk = 2^7 \mod 13 = 11$  y  $gak = ga^k = 6^7 \mod 13 = 7$
- Convierte el mensaje numéricamente (dos dígitos por letra):

| h  | 0  | 1  | а  |
|----|----|----|----|
| 07 | 15 | 11 | 00 |

### Cifrado del mensaje (B)

 Concatena los dígitos y separa en bloques de longitud 1 = digitos(q) - 1:

0 7 1 5 1 1 0 0

#### Cifrado del mensaje (B)

Concatena los dígitos y separa en bloques de longitud
 1=dígitos(q) - 1:

• Multiplicada cada bloque por 7 módulo 13:

$$0 \cdot 7 \mod 13 = 0$$
,  $7 \cdot 7 \mod 13 = 10$ ,  $1 \cdot 7 \mod 13 = 7$ 

$$5 \cdot 7 \mod 13 = 9$$
,  $1 \cdot 7 \mod 13 = 7$ ,  $1 \cdot 7 \mod 13 = 7$ 

$$0 \cdot 7 \mod 13 = 0$$
,  $0 \cdot 7 \mod 13 = 0$ 

#### Cifrado del mensaje (B)

Concatena los dígitos y separa en bloques de longitud
 1=dígitos(q) - 1:

• Multiplicada cada bloque por 7 módulo 13:

$$0 \cdot 7 \mod 13 = 0$$
,  $7 \cdot 7 \mod 13 = 10$ ,  $1 \cdot 7 \mod 13 = 7$   
 $5 \cdot 7 \mod 13 = 9$ ,  $1 \cdot 7 \mod 13 = 7$ ,  $1 \cdot 7 \mod 13 = 7$   
 $0 \cdot 7 \mod 13 = 0$ ,  $0 \cdot 7 \mod 13 = 0$ 

• Envía a A:

$$gk = 11$$
 y [0 10 7 9 7 7 0 0].



### Descifrado del mensaje (A)

A recibe

$$gk = 11$$
 y [0 10 7 9 7 7 0 0].

#### Descifrado del mensaje (A)

• A recibe

$$gk = 11$$
 y  $[0 \ 10 \ 7 \ 9 \ 7 \ 7 \ 0 \ 0].$ 

• Calcula  $gk^a \mod q = 11^5 \mod 13 = 7$ , y su inverso modular:  $7^{-1} \mod 13 = 2$ .

#### Descifrado del mensaje (A)

• A recibe

$$gk = 11$$
 y [0 10 7 9 7 7 0 0].

• Calcula  $gk^a \mod q = 11^5 \mod 13 = 7$ , y su inverso modular:

$$7^{-1} \mod 13 = 2$$
.

Multiplica cada bloque recibido por el valor obtenido:

$$0 \cdot 2 \mod 13 = 0$$
,  $10 \cdot 2 \mod 13 = 7$ ,  $7 \cdot 2 \mod 13 = 1$ 

$$9 \cdot 2 \mod 13 = 5$$
,  $7 \cdot 2 \mod 13 = 1$ ,  $7 \cdot 2 \mod 13 = 1$ 

$$0 \cdot 2 \mod 13 = 0$$
,  $0 \cdot 2 \mod 13 = 0$ .

#### Descifrado del mensaje (A)

• A recibe

$$gk = 11$$
 y [0 10 7 9 7 7 0 0].

• Calcula  $gk^a \mod q = 11^5 \mod 13 = 7$ , y su inverso modular:  $7^{-1} \mod 13 = 2$ 

$$0 \cdot 2 \mod 13 = 0$$
,  $10 \cdot 2 \mod 13 = 7$ ,  $7 \cdot 2 \mod 13 = 1$ 

$$9 \cdot 2 \mod 13 = 5$$
,  $7 \cdot 2 \mod 13 = 1$ ,  $7 \cdot 2 \mod 13 = 1$ 

$$0 \cdot 2 \mod 13 = 0$$
,  $0 \cdot 2 \mod 13 = 0$ .

• No hace falta que complete los bloques (ya tienen longitud 1)

#### Descifrado del mensaje (A)

A recibe

$$gk = 11$$
 y [0 10 7 9 7 7 0 0].

• Calcula  $gk^a \mod q = 11^5 \mod 13 = 7$ , y su inverso modular:

$$7^{-1} \mod 13 = 2$$
.

Multiplica cada bloque recibido por el valor obtenido:

$$0 \cdot 2 \mod 13 = 0$$
,  $10 \cdot 2 \mod 13 = 7$ ,  $7 \cdot 2 \mod 13 = 1$ 

$$9 \cdot 2 \mod 13 = 5$$
,  $7 \cdot 2 \mod 13 = 1$ ,  $7 \cdot 2 \mod 13 = 1$ 

$$0 \cdot 2 \mod 13 = 0$$
,  $0 \cdot 2 \mod 13 = 0$ .

- No hace falta que complete los bloques (ya tienen longitud 1)
- Concatena los bloques, separa de dos en dos y recupera el mensaje:

| 07 | 15 | 11  | 00 |
|----|----|-----|----|
| h  | 0  | - 1 | а  |