Elementary Linear Algebra - MATH 2250 - Day 4

Name:

1. Let A, B, and C be invertible, and A^{-1} , B^{-1} , and C^{-1} be their inverses, respectively. What is the inverse of ABC, in terms of A^{-1} , B^{-1} , and C^{-1} ?

$$(ABC)^{-1} =$$

Check your solution.

2. Let

$$M = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix}.$$

What is the inverse of M? (Hint: note that M is the product of three elementary matrices.) How can you

check your solution without finding M? Check your solution.

- 3. How many 4×4 permutation matrices are there?
- 4. How many 5×5 permutation matrices are there? Explain.

5. If A = LU is the LU-decomposition of A, for a lower triangular matrix L and an upper triangular matrix U, then to solve $A\mathbf{x} = \mathbf{b}$, one can solve $LU\mathbf{x} = \mathbf{b}$, by solving $L\mathbf{y} = b$ first, and then $U\mathbf{x} = \mathbf{y}$. Solve the matrix equation $A\mathbf{x} = \mathbf{b}$, using LU-decomposition of A when

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{bmatrix}, \qquad \boldsymbol{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

6. Find the LU-decomposition of the matrix

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$

What do you expect about the LU-decomposition of a lower-triangular matrix?

What about the LU-decomposition of an upper-triangular matrix?

7. Find the
$$LU$$
-decomposition of $A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 3 & 1 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 3 & 4 \end{bmatrix}$.

8. Find the inverse of
$$A = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Solve
$$Ax = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

9. Find
$$A^2, A^3, A^4$$
, and A^5 for $A = \begin{bmatrix} 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

- 10. What rows or columns or matrices do you multiply to find
 - (a) the third column of AB?
 - (b) the first row of AB?
 - (c) the entry in row 3, column 4 of AB
 - (d) the entry in row 1, column 1 of CDE?

11. Compute:
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} =$$