

Eintwicklung eines CO2-Messers

Mikrocomputertechnik - Bericht

Studiengang Elektrotechnik

Studienrichtung Fahrzeugelektronik

Duale Hochschule Baden-Württemberg Ravensburg, Campus Friedrichshafen

von

Alexander Herrmann Johannes Ruffer Serkant Soylu

Abgabedatum: 19.04.2020

Bearbeitungszeitraum: 01.10.2019 - 19.04.2020

Matrikelnummer: 9859538 x 1011921 x 9964027

Kurs: TFE18-2

Gutachter der Dualen Hochschule: Hans Jürgen Herpel

Eidesstattliche Erklärung

Gemäß Ziffer 1.1.13 der Anlage 1 zu §§ 3, 4 und 5 der Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg vom 29.09.2015.

Wir versichern hiermit, dass wir unsere Projektarbeit mit dem Thema:

Eintwicklung eines CO2-Messers

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben. Wir versichern zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

Friedrichshafen, den 3. März 2020

Alexander Herrmann	Johannes Ruffer	Serkant Soylu
	Autoren	

Kurzfassung

Inhaltsverzeichnis

1. Einleitung	J
2. Anforderungen	3
3. Kosten und Arbeitsplan	5
4. Entwurf	7
5. Softwareimplementation	g
6. Hardware	11
7. Testing	13
8. Handbuch	15
9. Installationsanleitung	17
10.Fazit	19
Verzeichnis verwendeter Abkürzungen und Formelzeichen	21
Literaturverzeichnis	23
Sachwortverzeichnis	23
Abbildungsverzeichnis	25
Tabellenverzeichnis	27
A. Anhang A.1. Weitere Abbildungen	29

1. Einleitung

Mithilfe eines Arduinos wurde in diesem Projekt ein CO2-gesteuerter Fensterheber simuliert, welcher dazu dienen soll die Räumlichkeiten bei schlechter Luftqualität automatisch zu lüften. Damit dies möglich ist, wurde die Entwicklung von Software-Code, sowie ein Schaltungslayout und der 3D-Druck des Gehäuses selbständig vorgenommen.

2. Anforderungen

Damit die Bewertung des Projektes erfolgreich wird, müssen zu Projektbeginn Anforderungen erarbeitet und festgelegt werden. Diese sind unveränderbar, da das Ergebnis sonst verfälschen würde.

Nummer	Anforderungen	Verifikationsmethode
1	Echtzeitmessung der Luftgüte	Measurement
2	Mindestmessbereich von 300 ppm bis 3000 ppm	Review
3	Visualisierung der Luftgüte mithilfe von LEDs	Test
	(gut, mittel, schlecht)	
4	Ausgabe der Luftgüte mithilfe von LCD-	Test
	Display	
5	Ansteuern eines Fensterscheibenmotors mithil-	Test
	fe einer LED simulieren	
6	Bei schlechter Luftgüte: Fenster öffnet sich	Test
	(LED an)	
7	Bei guter Luftgüte: Fenster schließt sich (LED	Test
	aus)	
8	Speichern im CSV-Format	Test, Analysis
9	Externe Abfrage über USB-Schnittstelle	Test
10	Benutzer kann zwischen drei Messprofilen aus-	Test
	wählen (Messprofil: Abtastrate)	

Tabelle 2.1.: Anforderungen an das Projekt

3. Kosten und Arbeitsplan

4. Entwurf

Abbildung 4.1.: Schaltungslayout vom 27.02.2020

5. Softwareimplementation

Die Softwareimplementierung erfolgt über die Programmiersprache C.

6. Hardware

7. Testing

Projekt: CO2-Sensor	Datum:			
ID: CO201	Version: 1.0			
Titel: Visualisierung der Luftqualität auf Basis von CO2-Grenzen				
Items: void ask(int)	TestKfg: 01			
Zielsetzung: Der Test soll zeigen, dass die Software die gemessenen CO2-Werte richtig inter-				
pretieren kann.				
Anforderungen: R01				
Erforderliche Inputs zu Testbeginn: CO2 Werte				

Tabelle 7.1.: Test 1

Tester:	Beobachter:
Protokolldatei:	
Status:	Problembericht:

Tabelle 7.2.: Tester 1

Projekt: CO2-Sensor	Datum:		
ID: CO202	Version: 1.0		
Titel: Auswahl von verschiedenen Messprofilen			
Items: void ask(int)	TestKfg: 01		
Zielsetzung: Der Test soll zeigen, dass der Anwender zwischen drei verschiedenen Messprofilen			
wählen kann.			
Anforderungen: R03			
Erforderliche Inputs zu Testbeginn: Anwender			

Tabelle 7.3.: Test 2

Tester:	Beobachter:
Protokolldatei:	
Status:	Problembericht:

Tabelle 7.4.: Tester 2

8. Handbuch

9. Installationsanleitung

Nummer	Bauteil	Spezifikation	Anschlusspin Arduino
1	LCD-Display	RS	D7
		RW	GND
		E	D6
		D4	D5
		D5	D4
		D6	D3
		D7	D2
		A	5V
		K	GND
2	LEDs	Rot	A3
		Gelb	A2
		Grün	A1
		Blau	A0
3	Taster	Up-Button	12
		Enter-Button	13
4	CCS811	WAK	GND
		SDA	SDA
		SCL	SCL
		VCC	5V
5	MicroSD-Slot	GND	GND
		MISO	D11
		MOSI	D10
		SCK	9
		CS	8
		VCC	5V

Tabelle 9.1.: Zuordnung der Pins

10. Fazit

Verzeichnis verwendeter Abkürzungen und Formelzeichen

Literaturverzeichnis

Abbildungsverzeichnis

4.1.	Schaltungslayout v	vom 27.02.2020							 				,

Tabellenverzeichnis

2.1.	Anforderungen an das Projekt	Ş
7.1.	Test 1	13
7.2.	Tester 1	13
7.3.	Test 2	13
7.4.	Tester 2	13
9.1.	Zuordnung der Pins	17

A. Anhang

A.1. Weitere Abbildungen