Analyse de Fourier

Devoir surveillé

Par définition, une mesure tempérée sur \mathbf{R}^n est une distribution tempérée $\mu \in \mathscr{S}'(\mathbf{R}^n)$ positive, au sens où

$$\forall \varphi \in \mathscr{S}(\mathbf{R}^n), \qquad \varphi \geqslant 0 \implies \mu(\varphi) \geqslant 0.$$

On note $M(\mathbf{R}^n) \subset \mathscr{S}(\mathbf{R}^n)$ l'ensemble des mesures tempérées sur \mathbf{R}^n . Soit χ une fonction plateau, c'est-à-dire une fonction de $\mathscr{C}_c^{\infty}(\mathbf{R}^n)$ à valeurs dans [0,1] telle que $\chi(x)=1$ pour $|x|\leqslant 1$. La masse d'une mesure $\mu\in M(\mathbf{R}^n)$ est par définition

$$|\mu| = \sup_{k \in \mathbf{N}} \mu(\chi_k) \in [0, \infty]$$

où on a noté $\chi_k(x) = \chi(x/k)$ pour k > 0. Dans toute la suite on notera

$$\mathscr{C}_0(\mathbf{R}^n) = \left\{ \varphi \in \mathscr{C}(\mathbf{R}^n) : \varphi \xrightarrow{\infty} 0 \right\}$$

l'espace des fonctions continues qui tendent vers 0 à l'infini. Enfin, si $A, B \subset \mathbf{R}^n$, on notera

$$A + B = \{x + y : x \in A, y \in B\}.$$

Les parties II et III sont indépendantes.

I. Mesures et formes linéaires sur $\mathscr{C}_0(\mathbf{R}^n)$

- 1. a) Donner un exemple de mesure tempérée non nulle de masse finie.
 - b) Donner un exemple de mesure tempérée de masse infinie.
 - c) Donner un exemple de distribution qui n'est pas une mesure.
- **2.** Soit $\mu \in M(\mathbf{R}^n)$ et χ une fonction plateau.
 - a) Montrer que pour tout $k \in \mathbf{N}$, il existe $\ell_0 \in \mathbf{N}$ tel que $\mu(\chi_\ell) \geqslant \mu(\chi_k)$ pour tout $\ell \geqslant \ell_0$.
 - b) En déduire que $|\mu| = \lim_{k \to \infty} \mu(\chi_k)$.
 - c) Montrer que $|\mu|$ ne dépend pas de la fonction plateau choisie.
- 3. Soit $\mu \in M(\mathbf{R}^n)$.
 - a) Soit $\psi \in \mathscr{S}(\mathbf{R}^n)$ à valeurs réelles. Montrer que $|\mu(\psi)| \leq |\mu| \|\psi\|_{\infty}$. Indication: on pourra prendre une fonction plateau χ comme au dessus et remarquer que l'on a $-\chi_k \|\psi\|_{\infty} \leq \chi_k \psi \leq \chi_k \|\psi\|_{\infty}$.
 - b) Montrer que $\|\operatorname{Re}\varphi\|_{\infty} + \|\operatorname{Im}\varphi\|_{\infty} \leq 2\|\varphi\|_{\infty}$ pour $\varphi \in \mathscr{S}(\mathbf{R}^n)$.
 - c) Déduire des questions précédentes que

$$|\mu(\varphi)| \leq 2|\mu| \|\varphi\|_{\infty}, \quad \varphi \in \mathscr{S}(\mathbf{R}^n).$$

En déduire que si $|\mu| < \infty$, alors μ s'étend à une forme linéaire continue sur $\mathscr{C}_0(\mathbf{R}^n)$, muni de $\|\cdot\|_{\infty}$. Indication. Pour le dernier point on pourra montrer (ou admettre) que $\mathscr{C}_c^{\infty}(\mathbf{R}^n)$ est dense dans $\mathscr{C}_0(\mathbf{R}^n)$.

Dans toute la suite, on note $M_c(\mathbf{R}^n)$ l'ensemble des mesures tempérées à support compact.

- **4.** Montrer que $|\mu| < \infty$ pour tout $\mu \in M_c(\mathbf{R}^n)$.
- 5. Soient $\mu, \nu \in M_c(\mathbf{R}^n)$. Montrer que le produit de convolution $\mu \star \nu$ est bien défini au sens des distributions, et qu'on a $\mu \star \nu \in M_c(\mathbf{R}^n)$ avec

$$\operatorname{supp}(\mu \star \nu) \subset \operatorname{supp} \mu + \operatorname{supp} \nu, \qquad |\mu \star \nu| = |\mu||\nu| \qquad \text{et} \qquad \widehat{\mu \star \nu} = \widehat{\mu} \,\widehat{\nu}.$$

II. Dimension de Fourier

Définition. La dimension de Fourier d'un ensemble non vide $A \subset \mathbf{R}^n$ est définie par

$$\dim_{\mathcal{F}} A = \sup \Big\{ \alpha \leqslant n \ : \ \exists \mu \in \mathcal{P}_c(A), \quad |\widehat{\mu}(\xi)| \ |\xi|^{\alpha/2} \underset{|\xi| \to \infty}{\longrightarrow} 0 \Big\}$$

où $P_c(A) = \{ \mu \in M_c(\mathbf{R}^n) : \text{ supp } \mu \subset A, |\mu| = 1 \}$ est l'ensemble des mesures de probabilités à support compact contenu dans A.

- **6.** Soit $a \in \mathbf{R}^n$ et $\mu \in P_c(\{a\})$.
 - (i) Montrer qu'il existe $m \in \mathbf{N}$ et $a_{\alpha} \in \mathbf{C}$ pour $\alpha \in \mathbf{N}^n$ avec $|\alpha| \leq m$, tels que $\mu = \sum_{|\alpha|} a_{\alpha} \partial^{\alpha} \delta_a$.
 - (ii) Montrer que si $\alpha \neq 0$ alors $a_{\alpha} = 0$. Indication. Pour $\alpha \in \mathbf{N}^n$ et $\varepsilon > 0$ on pourra calculer $\mu(\varphi_{\varepsilon})$ où $\varphi_{\varepsilon}(x) = \chi(x/\varepsilon)x^{\alpha}$ avec χ une fonction plateau, puis utiliser la question $\mathbf{3.c}$.
 - (iii) En déduire que $\mu = \delta_a$ et que $\dim_{\mathbf{F}}(\{a\}) = 0$.
 - (iv) (*) Montrer plus généralement que si $a_1, \ldots, a_N \in \mathbf{R}^n$ alors $\dim_{\mathbf{F}}(\{a_1, \ldots, a_N\}) = 0$.
- 7. Montrer que si $A \subset \mathbf{R}^n$ est ouvert et non vide alors $\dim_{\mathbf{F}} A = n$.

Dans la suite, pour $A \subset \mathbf{R}^n$ et $k \in \mathbf{N}^*$, on note $A^k = A + \cdots + A$ (k fois).

- **8.** Soit $A \subset \mathbf{R}^n$ un ensemble non vide et $k \in \mathbf{N}^*$.
 - a) Soit $\mu \in P_c(A)$. Montrer que si $\mu^{\star k} = \mu \star \cdots \star \mu$ (k fois) alors

$$\operatorname{supp} \mu^{\star k} \subset A^k \quad \text{et} \quad \widehat{\mu^{\star k}} = \widehat{\mu}^k.$$

- b) On suppose $\dim_{\mathbf{F}} A > n/k$. Montrer que A^k a une mesure de Lebesgue positive.
- c) On suppose $\dim_{\mathbf{F}} A > 2n/k$. Montrer que A^k est d'intérieur non vide.

III. L'ensemble triadique de Cantor

Soit $T:[0,1] \rightarrow [0,1]$ l'application définie par

$$T(x) = 3x - |3x|, \qquad x \in [0, 1],$$

où $|\cdot|$ désigne la partie entière. On note J=[1/3,2/3]. L'ensemble triadique de Cantor C est défini par

$$C = \bigcap_{N \in \mathbb{N}} A_N$$
 avec $A_N = \{ x \in [0, 1] : T^{\ell}(x) \notin J, \ \ell = 0, \dots, N \},$

où $T^N = T \circ \cdots \circ T$ (N fois) et $T^0 = id$.

9. Tracer les graphes des applications T^0, T^1, T^2 et dessiner A_0, A_1, A_2 .

Dans toute la suite, on fixe $\mu \in P_c(C)$. On se donne aussi une fonction $\varphi \in \mathscr{C}_c^{\infty}(\mathbf{R})$ telle que $\int \varphi = 1$ et supp $\varphi \subset J$. Enfin pour $j \in \mathbf{N}$, on note $\varphi_j(x) = \varphi(T^j(x))$ si $x \in [0,1]$ et $\varphi_j(x) = 0$ si $x \notin [0,1]$.

10. Montrer que pour tout K > 0 il existe C > 0 telle que

$$|\widehat{\varphi}(2\pi\ell)| \leqslant C\langle \ell \rangle^{-K}, \quad \ell \in \mathbf{Z},$$

et qu'on a $\varphi(x) = \sum_{\ell \in \mathbf{Z}} \widehat{\varphi}(2\pi\ell) \exp 2\pi i \ell x$ pour tout $x \in [0,1]$.

- 11. En déduire que pour tout j, on a $\varphi_j \in \mathscr{C}_c^{\infty}(]0,1[)$ et montrer que supp $\varphi_j \cap C = \emptyset$.
- **12.** Montrer que pour tout j on a $\widehat{\varphi_j}(2\pi 3^j \ell) = \widehat{\varphi}(2\pi \ell)$ pour tout $\ell \in \mathbf{Z}$ et $\widehat{\varphi_j}(2\pi k) = 0$ si 3^j ne divise pas k.
- **13.** Soient $\psi \in \mathscr{C}_c^{\infty}(]0,1[)$ et $\delta > 0$ tels que supp $\psi \subset [\delta,1-\delta]$.
 - a) Montrer que pour toute fonction $\rho \in \mathscr{C}_c^{\infty}([-\delta, 1+\delta])$ on a $\int_{\mathbf{R}} \rho(x)\psi(x)\mathrm{d}x = \sum_{\ell \in \mathbf{Z}} \widehat{\rho}(2\pi\ell)\widehat{\psi}(-2\pi\ell)$.
 - b) En déduire que $\mu(\psi) = \sum_{\ell \in \mathbb{Z}} \widehat{\mu}(2\pi\ell)\widehat{\psi}(-2\pi\ell)$.
- 14. Déduire des trois questions précédentes que pour tout $j \in \mathbf{N}$ on a

$$1 + \sum_{\ell \neq 0} \widehat{\varphi}(-2\pi\ell)\widehat{\mu}(2\pi 3^{j}\ell) = 0.$$

2

15. Montrer que $\limsup_{|\xi|\to\infty} |\widehat{\mu}(\xi)| > 0$ et en déduire que $\dim_{\mathrm{F}} C = 0$.