104 - Normal model

STAT 587 (Engineering) - Iowa State University

February 20, 2019

Outline

- Normal model with known population variance
- Normal model with known population mean
- Normal model

Corn yield

For the following examples, we will consider measuring corn yield on fields. We will base our analyses on the following true parameter values:

- Mean yield per field is 200 bushels per acre
- Standard deviation of yield per field is 20 bushels per acre

In the following analyses, we will be assuming

- Population mean is unknown while population SD is known to be 20
- Population mean is known to be 200 while population SD is unknown
- Population mean and population SD are both unknown.

Normal model with known population variance

Suppose $Y_i \stackrel{ind}{\sim} N(\mu, v^2)$ and we assume the default prior $p(\mu) \propto 1$.

This "prior" is actually not a distribution at all, since its integral is not finite. Nonetheless, we can still use it to derive a posterior.

If you work through the math (lots of algebra and a little calculus), you will find

$$\mu|y \sim N(\overline{y}, v^2/n).$$

This looks exactly like the likelihood, but now it is normalized, i.e. it integrates to 1 and therefore it is a valid probability density function.

The Bayes estimator is

$$E[\mu|y] = \overline{y}.$$

```
v <- 20 # Population standard deviation is known
n <- 9
y <- rnorm(n, mean = m, sd = v); mean(y)</pre>
```

[1] 205.0007

Credible intervals

We can obtain credible intevals directly.

```
a <- .05
qnorm(c(a/2,1-a/2), mean(y), sd = v/sqrt(n))
[1] 191.9342 218.0671
```

Or we can use the fact that

$$\frac{\mu - y}{v/\sqrt{n}} = Z \sim N(0, 1)$$

to construct the interval using

$$\overline{y} \pm z_{a/2} v / \sqrt{n}$$

where $a/2=\int_{z_{a/2}}^{\infty}\frac{1}{\sqrt{2\pi}}e^{-x^2/2}dx$, i.e. the area to the right of $z_{a/2}$ under the pdf of a standard normal is a/2.

```
mean(y) + c(-1,1)*qnorm(1-a/2)*v/sqrt(n) # equivalently mean(y) + qnorm(c(a/2,1-a/2))*v/sqrt(n)
[1] 191.9342 218.0671
```

7 / 20

Normal model with known population mean

Suppose $Y_i \overset{ind}{\sim} N(m,\sigma^2)$ and we assume the default prior $p(\sigma^2) \propto \frac{1}{\sigma^2} \mathrm{I}(\sigma^2 > 0)$.

Again, this "prior" is actually not a distribution at all, since its integral is not finite. Nonetheless, we can still use it to derive a posterior.

If you work through the math (lots of algebra and a little calculus), you will find

$$\sigma^2 | y \sim IG\left(\frac{n}{2}, \frac{\sum_{i=1}^n (y_i - m)^2}{2}\right)$$

where IG indicates an inverse gamma distribution.

The Bayes estimator is

$$E[\sigma^2|y] = \frac{\frac{\sum_{i=1}^n (y_i - m)^2}{2}}{\frac{n}{2} - 1} = \frac{\sum_{i=1}^n (y_i - m)^2}{n - 2} \text{ for } n > 2$$

(STAT587@ISU) I04 - Normal model February 20, 2019

Posterior

Credible intervals for variance - exact

For some reason, nobody has created a function to calculate the quantiles of an inverse gamma. So here is one

```
qinvgamma <- function(p, shape, scale = 1) {
   1/qgamma(1-p, shape = shape, rate = scale)
}</pre>
```

This function is slightly confusing because the 'scale' parameter for the inverse gamma is the 'rate' parameter for the gamma.

Now we can use this to calculate our credible intervals

```
SS <- sum((y-m)^2)
(q <- qinvgamma(c(.025,.975), shape = n/2, scale = SS/2))
[1] 192.5775 1356.6034
```

Credible intervals for variance - estimates via simulation

We can also obtain estimates of the interval endpoints by taking a bunch of simulated draws from the inverse gamma distribution and finding their sample quantiles.

```
draws <- MCMCpack::rinvgamma(1e5, shape = n/2, scale = SS/2)
quantile(draws, c(a/2, 1-a/2))

2.5% 97.5%
192.6423 1353.9686</pre>
```

If you don't have the MCMCpack library, you can draw from the gamma distribution and then invert the draws (which is the same trick that is used for the qinvgamma function).

```
draws <- 1/rgamma(1e5, shape = n/2, rate = SS/2)
quantile(draws, c(a/2, 1-a/2))

2.5% 97.5%
193.2657 1364.9407</pre>
```

These are both Monte Carlo estimates of the true credible intervals and these estimates improve as the number of simultions increase.

Posterior and credible intervals for standard deviation

Posterior for standard deviation

There is actually a more sophisticated way to do this via transformations. You can learn this technique in STAT 588.

Normal model (unknown population mean and variance)

Suppose $Y_i \overset{ind}{\sim} N(\mu, \sigma^2)$ and we assume the default prior $p(\mu, \sigma^2) \propto \frac{1}{\sigma^2} I(\sigma^2 > 0)$.

Again, this "prior" is actually not a distribution at all, since its integral is not finite. Nonetheless, we can still use it to derive a posterior.

If you work through the math (lots of algebra and a little calculus), you will find

$$\mu | \sigma^2, y \sim N(\overline{y}, \sigma^2/n)$$

$$\sigma^2 | y \sim IG\left(\frac{n-1}{2}, \frac{\sum_{i=1}^n (y_i - \overline{y})^2}{2}\right)$$

The joint posterior is obtained using

$$p(\mu, \sigma^2 | y) = p(\mu | \sigma^2, y) p(\sigma^2 | y).$$

The Bayes estimator is

$$\begin{array}{ll} E[\mu|y] & = \overline{y} \\ E[\sigma^2|y] & = \frac{\sum_{i=1}^n (y_i - \overline{y})^2}{\frac{2}{n-1} - 1} = \frac{\sum_{i=1}^n (y_i - \overline{y})^2}{n-3} \text{ for } n > 3 \end{array}$$

Focusing on μ

Typically, the main quantity of interest in the normal model is the mean, μ . Thus, we are typically interested in the marginal posterior for μ :

$$p(\mu|y) = \int p(\mu|\sigma^2, y)p(\sigma^2|y)d\sigma^2.$$

lf

$$\mu|\sigma^2,y\sim N(\overline{y},\sigma^2/n)\quad\text{and}\quad \sigma^2|y\sim IG\left(\frac{n-1}{2},\frac{\sum_{i=1}^n(y_i-\overline{y})^2}{2}\right),$$

then

$$\mu|y \sim t_{n-1}(\overline{y}, s^2/n)$$
 where $s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2$

that is, $\mu|y$ has a t distribution with n-1 degrees of freedom, location parameter \overline{y} and scale parameter s^2/n .

14 / 20

t distribution

Definition

A t distributed random variable, $T \sim t_v(m, s^2)$ has probability density function

$$f_T(t) = \frac{\Gamma([v+1]/2)}{\Gamma(v/2)\sqrt{v\pi}s} \left(1 + \frac{1}{v} \left[\frac{x-m}{s}\right]^2\right)^{-(v+1)/2}$$

with degrees of freedom v, location m, and scale s^2 . It has

$$E[T] = m \qquad v > 1$$

$$Var[T] = s^2 \frac{v}{v-2} \quad v > 2.$$

In addition,

$$t_v(m, s^2) \stackrel{d}{\to} N(m, s^2)$$
 as $v \to \infty$.

(STAT587@ISU) I04 - Normal model February 20, 2019

15 / 20

$t \ {\it distribution} \ {\it as} \ v \ {\it changes}$

(STAT587@ISU) I04 - Normal model February 20, 2019

Credible intervals

In R, there is no way to obtain t credible intervals directly. Thus we can use the fact that

$$\frac{\mu - \overline{y}}{s/\sqrt{n}} \sim t_{n-1}(0,1)$$

to construct the interval using

$$\overline{y} \pm t_{n-1,a/2} s / \sqrt{n}$$

where the area to the right of $t_{n-1,a/2}$ under the pdf of a standard t is a/2.

mean(y) + c(-1,1)*qt(.975, df=n-1)*sd(y)/sqrt(n)
[1] 189.0652 220.9362

Corn yield

In evaluating corn yield for a particular year, the yield on a number of fields is measured. (For simplicity, assume that fields are standardized in size.) We measure 9 randomly selected fields in lowa and find the sample average is 205 bushels per acre and the sample standard deviation is 21 bushels per acre. Provide a 90% credible interval for the mean yield across all fields in lowa.

Let Y_i be the yield in field i and assume

$$Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2).$$

If we assume the default prior $p(\mu, \sigma^2) \propto 1/\sigma^2$, then we have

$$\mu|y \sim t_{n-1}(\overline{y}, s^2/n).$$

A 90% interval is

a <- 0.1
mean(y) +c(-1,1)*qt(1-a/2, df=n-1)*sd(y)/sqrt(n)
[1] 192.1504 217.8510

Informative Bayesian analysis when pop. variance is known

Let Y_i be the corn yield (in bushels/ac) from field i. Assume

$$Y_i \overset{ind}{\sim} N(\mu, v^2) \quad \text{and} \quad \mu \sim N(m, C)$$

where m provides your prior guess about the mean yield (not the population mean as was used previously in this slide set) and C provides your variance around that guess. Then

$$\begin{array}{ll} \mu|y & \sim N(m',C') \\ C' & = \left[\frac{1}{C} + \frac{n}{v^2}\right]^{-1} \\ m' & = C' \left[\frac{1}{C}m + \frac{n}{v^2}\overline{y}\right] = \frac{1/C}{1/C + n/v^2}m + \frac{n/v^2}{1/C + n/v^2}\overline{y} \end{array}$$

 $m = 200; C = 10^2$

$$Cp = 1/(1/C+n/v^2); mp = Cp*(m/C+n*mean(y)/v^2)$$

So if we assume m=200 and $C=10^2$ and combine this with our observed data n=9 and $\overline{y}=205$ with population sd known to be v=20, then we have the posterior $\mu|y\sim N(203,6^2)$.

Comparison of default vs informative Bayesian analysis

```
ybar = mean(y); se = v/sqrt(n)
curve(dnorm(x, mean=ybar, sd=se), ybar-3*se, ybar+3*se,
    ylim=c(0,.1),
    xlab=expression(mu),
    ylab=expression(paste("p(",mu,"|y)")),
    main="Default vs informative Bayesian analysis")
curve(dnorm(x, mean=mp, sd=sqrt(Cp)), col='red', lty=2, add=TRUE)
legend("topleft", c("Default", "Informative"), col=c("black", "red"),
    lty = 1:2)
```

Default vs informative Bayesian analysis

(STAT587@ISU) I04 - Normal model February 20, 2019

19 / 20

Informative Bayesian analysis

The joint conjugate prior for μ and σ^2 is

$$\mu | \sigma^2 \sim N(m, \sigma^2/k) \qquad \sigma^2 \sim IG(d/2, dv^2/2)$$

where v^2 serves as a prior guess about σ^2 and d controls how certain we are about that guess.

The posterior under this prior is

$$\mu | \sigma^2, y \sim N(m', \sigma^2/k')$$
 $\sigma^2 | y \sim IG(d'/2, d'(v')^2/2)$

where

$$k' = k + n$$

$$m' = [km + n\overline{y}]/k'$$

$$d' = d + n$$

$$d'(v')^2 = dv^2 + (n - 1)s^2 + \frac{kn}{k'}(\overline{y} - m)^2$$