Homework 1 – Maths Review

Calculus

Bài 1. Cho ví dụ một vector 4 chiều thỏa mãn các yêu cầu sau:

- a. Vector $v \in R^4$ sao cho $||v||_1 = 1$.
- b. Vector $v \in R^4$ sao cho $||v||_2 = 1$.
- c. Vector $v \in \mathbb{R}^4$ sao cho $||v||_1 = ||v||_2$
- d. Vector $v \in \mathbb{R}^4$ sao cho $||v||_2 = 0.5||v||_1$
- e. Vector $v \in \mathbb{R}^4$ sao cho $v^T u = 0$, với u = (1, -1, 1, -1)

Bài 2. Tính f'(x) trong các trường hợp sau:

a.
$$f(x) = \frac{3x}{(2+3x)^3}$$

b.
$$f(x) = e^{4xe^{2x}}$$
.

Bài 3. Cho $D = \left\{ \left(x_1^{(i)}, x_2^{(i)}, y^{(i)} \right) \right\}_{i=1}^4 = \left\{ (2, -1, 0), (0, 2, -1), (-3, -2, 0), (1, 3, 2) \right\}$. Ta muốn xây dựng mô hình linear regression (không có bias term) có hàm dự đoán:

$$\hat{y} = f(x) = w_1x_1 + w_2x_2$$

Mục tiêu của ta là tìm các tham số w_1 , w_2 sao cho hàm loss (mean square error) trên dữ liệu đã cho là nhỏ nhất.

$$J(w_1, w_2; D) = \frac{1}{4} \sum_{i=1}^{4} (y^{(i)} - \hat{y}^{(i)})^2$$

a. Hàm $J(w_1, w_2; D)$ có thể viết lại dưới dạng:

$$J(w_1, w_2; D) = aw_1^2 + bw_2^2 + cw_1w_2 + dw_1 + ew_2 + f$$

Tìm các hệ số a, b, c, d, e, f.

b. Tính
$$\frac{\partial J}{\partial w_1}$$
, $\frac{\partial J}{\partial w_2}$.

c. Tìm w_1, w_2 để $J(w_1, w_2; D)$ đạt giá trị nhỏ nhất.

Bài 4. Cho $f(x) = ax^2 + bx + c$ với $a, b, c \in \mathbf{R}$ và a > 0. Chứng minh rằng f là hàm lồi.

Probability

- **Bài 1**. Cho biết có 4 xúc xắc gồm 1 xúc xắc 4 mặt, 1 xúc xắc 6 mặt, 2 xúc xắc 8 mặt. Bạn chọn ngẫu nhiên 1 xúc xắc. Gọi S số mặt của xúc xắc được chọn.
- a. Cho biết hàm khối lượng xác suất, pmf, củaS?

Tiếp theo, giả sử bạn tung xúc xắc đã chọn và gọi R kết quả (số nút của xúc xắc). Trả lời các câu hỏi sau:

- b. Tính $P(S=k \mid R=3)$ với k=4, 6, 8. Cho biết loại xúc xắc nào có khả năng được chọn cao nhất nếu R=3?
- c. Loại xúc xắc nào có khả năng được chọn cao nhất nếu R = 6?
- d. Loại xúc xắc nào có khả năng được chọn cao nhất nếu R = 7?

Bài 2. Cho phân bố xác suất đồng thời (joint probability distribution) của X và Y, p(x, y), như bảng sau:

		X		
		0	1	2
	0	1/9	2/9	1/9
Y	1	2/9	2/9	0
	2	1/9	0	0

Cho biết hai biến X và Y có độc lập hay không? Giải thích.

Bài 3. Giả sử ta có dữ liệu $D = \{(x^{(i)})\}_{i=1}^n$, với $x^{(i)} \in \mathbf{R}$ là độc lập và có cùng phân bố (independent and identically distributed - i.i.d) từ một phân bố với hàm mật độ:

$$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$$

- a. Viết biểu thức của likelihood của dữ liệu, $L(D|\lambda)$, cho phân bố này với tham số λ .
- b. Viết biểu thức của log-likelihood của dữ liệu, $LL(D|\lambda)$, cho phân bố này với tham số λ .
- c. Ước lượng λ dựa trên dữ liệu D dùng phương pháp MLE (maximum likelihood estimation).

Linear Algebra

Bài 1. Cho ma trận A và B như sau:

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 1 & -1 \\ 0 & 1 \end{pmatrix}$$

Tính các biểu thức sau:

- a. AB
- b. |A| (định thức của A)
- c. A^{-1} (ma trận nghịch đảo của A)
- d. $B^T A^T (B^T, A^T | \hat{a} \hat{n})$ luọt là ma trận chuyển vị của $B \hat{n}$ và A)

Bài 2. Cho ma trân A

$$A = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$$

Chéo hóa (diagonalize) ma trận A, tức phân tích ma trận A thành $A = VDV^{-1}$. Trong đó, V là ma trận được tạo nên bởi các vector riêng (eigen vectors) của A và D là ma trận đường chéo gồm các trị riêng (eigen values) của A.

$$V = (v_1 v_2 \dots v_n), D = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$$

Bài 3. Tìm phân tích SVD của ma trận A, với

$$A = \begin{pmatrix} 2 & -1 \\ 2 & 2 \end{pmatrix}$$

Ghi chú: Giả sử A là một ma trận $m \times n$ với các singular values $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$. Các singular values của A là các căn bậc hai của các eigenvalues của A^TA . Gọi r là hạng (rank) của A (cũng là số singular values khác không của A). Một phân tích SVD (singular value decomposition) của A được biểu diễn bởi

$$A = U\Sigma V$$

Trong đó,

- U là một ma trận trực giao (orthogonal matrix) $m \times m$, tức, $U^T U = I_m$,
- V là một ma trận trực giao (orthogonal matrix) $n \times n$, $V^T V = I_n$.
- Σ là một ma trận $m \times n$ mà phần tử thứ i trên đường chéo là singular value thứ i, σ_i với $i=1,2,\ldots,r$. Tất cả các phần tử khác của Σ là 0.