Тема 4. МЕТОДЫ ПОСТРОЕНИЯ ОЦЕНОК-1

4.1. Метод моментов

Идея метода. Неизвестный параметр следует выразить через моменты, а затем моменты заменить выборочными моментами.

Сначала напомним, как оценивать неизвестные моменты распределения.

Пусть имеется n независимых наблюдений $(\xi_1, \xi_2, ..., \xi_n) \equiv \xi$ (выборка) над случайной величиной, распределенной по закону с функцией распределения F(x).

Нас интересуют **начальные** моменты порядка $k: m_k = \mathbf{M} \boldsymbol{\xi}^k:$

первый момент $m_1 = \mathbf{M} \xi$, второй момент $m_2 = \mathbf{M} \xi^2$ и т.д.

Дежурной оценкой (**несмещенной** и **состоятельной**) является **среднее арифметическое** k -х степеней наблюдений:

$$\hat{m}_k = \frac{1}{n} \sum_{i=1}^n \xi_i^k \,. \tag{4.1}$$

Эти оценки обладают несмещённостью:

$$\mathbf{M}\hat{m}_{k} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{M} x_{i}^{k} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{M} \xi_{i}^{k} = \frac{1}{n} \cdot (m_{k} \cdot n) = m_{k}$$

и состоятельностью:

$$\mathbf{D}\hat{m}_{k} = \frac{nD\xi^{k}}{n^{2}} = \frac{1}{n} \mathbf{M}\xi^{2k} - (\mathbf{M}\xi^{k})^{2} = \frac{1}{n} m_{2k} - (m_{k})^{2} \xrightarrow{n \to \infty} \mathbf{0},$$

Построение оценок методом моментов

Метод поясним для случая $\dim a = n = 2$. Имеются n наблюдений $(\xi_1, \xi_2, ..., \xi_n) \equiv \xi$ — **независимых** и **одинаково** распределенных по закону $F(x; a_1, a_2)$ с **неизвестными** параметрами $a = (a_1, a_2)$.

Определим моменты, как функции параметров:

$$m_{1} = \int_{-\infty}^{+\infty} x \, dF(x; a_{1}, a_{2}) = f_{1}(a_{1}, a_{2}),$$

$$m_{2} = \int_{-\infty}^{+\infty} x^{2} \, dF(x; a_{1}, a_{2}) = f_{2}(a_{1}, a_{2}).$$

Получаем систему уравнений

$$m_1 = f_1(a_1, a_2),$$

 $m_2 = f_2(a_1, a_2).$

Пусть система разрешима относительно параметров:

$$a_1 = g_1(m_1, m_2),$$

 $a_2 = g_2(m_1, m_2).$

Далее, подставляя вместо неизвестных моментов m_k их оценки $\hat{m_k}$, получаем моментные оценки параметров a_1 и a_2 :

$$\hat{a}_{1} = g_{1}(\hat{m}_{1}, \hat{m}_{2}),$$

$$\hat{a}_{2} = g_{2}(\hat{m}_{1}, \hat{m}_{2}).$$

Если нужно оценить неизвестное значение функции $f(a_1,a_2)=?$ от параметров, подставляем в $f(a_1,a_2)$ оценки этих параметров: $\hat{f}=f(\hat{a}_1,\hat{a}_2)$.

Свойства оценок, полученных методом моментов

При широких условиях: они

—состоятельны;

—асимптотически нормальны.

Их преимущество: относительная простота вычислений.

Несмещенность не гарантируется

Пример 4.1 (оценка параметра показательного распределения).

Известно, что время работы (до **первой** поломки) **любого сложно- го** устройства (или любой сложной машины) является случайной величиной, распределённой по **показательному** закону с плотностью:

$$p(x;a) = \frac{ae^{-ax}, \text{ если } x \ge 0;}{0, \text{ если } x < 0,}$$
 с параметром $a > 0.$

Имеется n независимых наблюдений $\xi_1, \xi_2, ..., \xi_n$ над CB ξ' , распределённой по показательному закону с неизвестным параметром a, который требуется оценить методом моментов.

Решение. Вычислим первый момент:

$$m_1 = \mathbf{M}\xi' = \int_{-\infty}^{+\infty} xp(x;a)dx = \int_{0}^{+\infty} xae^{-ax}dx = \frac{1}{a}.$$

Выразим параметр через момент: $a = \frac{1}{m_1}$.

В полученной формуле заменим 1-й момент $m_{\mathbf{1}}$ его оценкой $\hat{m_{\mathbf{1}}}$:

$$\hat{m_1} = \frac{1}{n} \sum_{i=1}^n \xi_i = \overline{\xi}$$
 — среднее выборочное.

После подстановки получаем:

$$\tilde{a} = \frac{1}{\widehat{m_1}} = \frac{n}{\sum_{i=1}^{n} \xi_i} = \frac{1}{\overline{\xi}}$$
 — оценка по ММ найдена.

Пример 4.2 (оценка доли «работоспособных» приборов).

Эта задача является **продолжением предыдущего** примера. Задача о том, каков процент q=? **годных** приборов в **большой** партии. Под годными понимаем, например, те приборы, у которых время ξ безотказной работы **больше заданного** времени $T: \xi > T$, т.е.

$$q = P \xi > T = ?$$

В партии, содержащей N = 1000 приборов, каждый прибор имеет своё время безотказной работы. Если наудачу выбираем прибор из партии, то время ξ безотказной работы его есть CB, распределённая по **показательному** закону:

$$\xi \sim p(x;a) = egin{array}{ccc} ae^{-ax} , & \text{если } x \geq 0; \\ 0, & \text{если } x < 0, \end{array}$$
 с параметром $a > 0.$

Мы хотим найти долю тех приборов в партии, у которых, например, $\xi \ge T = 100\,$ часов. При **известном** значении параметра a всё очень просто: вычисляем вероятность

$$q = P\{\xi \ge T\} = \int_{T}^{+\infty} p(x;a) dx = \int_{T}^{+\infty} a e^{-ax} dx = e^{-aT} = f(a).$$

Но параметр a **неизвестен**, поэтому берём, например, n=20 приборов, включаем их и измеряем результаты испытаний CB ξ :

$$(\xi_1, \, \xi_2, \, ..., \, \xi_n).$$

Следует оценить величину q: $\hat{q} = \hat{q}(\xi_1, \xi_2, ..., \xi_n)$.

Решение. Оценим **методом моментов** параметр a по результатам испытаний $\xi_1, \, \xi_2, \, ..., \, \xi_n$.

$$\mathbf{M}\xi = \frac{1}{a} = m_1 \implies a = \frac{1}{m_1}.$$

В предыдущем примере получили оценку параметра a:

$$\hat{a} = \frac{1}{\hat{m}_1} = \frac{n}{\sum_{i=1}^n \xi_i}.$$

Оценка для q:

$$\hat{q}=f(\hat{a})=e^{-\hat{a}T}=e^{-nT/\sum \xi_i}.$$

Замечание 4.1. Было бы неграмотно по n наблюдениям определить неизвестную долю q: по числу тех K из n приборов, у которых время безотказ-

ной работы оказалось больше
$$T$$
, $\tilde{q} = \frac{K}{n}$. Это неграмотно, потому что $\sum_{i=1}^{n} \xi_{i}$

— достаточная статистика для параметра a показательного закона. Если мы использовали другую статистику, например K, значит, мы потеряли информацию, следовательно, и точность.

Пример 4.3 (конкретная физическая задача — обработка результатов эксперимента, 1940 г., Дания).

При нейтронном облучении ядер урана начинается расщепление ядра, при котором ядро распадается на две части A и B различного рода (в том числе, различного размера). В камере Вильсона это явление обнаруживается в виде двух траекторий, исходящих из одной точ-

Каждая из этих траекторий далее разделяется на несколько ветвей, возникающих от столкновения с молекулами газа в камере. Количество ветвей (т.е. количество столкновений) зависит от размера (часть A или B;

чем больше размер, тем чаще столкновения).

Пусть СВ ξ — количество наблюдаемых ветвей. Если летит часть A, то ξ распределена по **закону Пуассона** с параметром a_1 , а если часть B, — то с параметром a_2 . Коротко:

если
$$A$$
, то $\xi \sim Po(a_1)$, если B , то $\xi \sim Po(a_2)$.

Априорно мы не знаем, след A или B наблюдаем: P(A) = P(B).

Наблюдались n=327 траекторий. Количество k ветвей, на которые разделяется траектория, указано в таблице (n_k — количество траекторий, в которых наблюдалось k ветвей).

k	0	1	2	3	4	5	6	7	8	9	10	$\sum_{k} n_{k}$
n_k	28	47	81	67	53	74	13	8	3	2	1	327

Основываясь на этих эмпирических данных, найти оценки параметров a_1 и a_2 с помощью **метода моментов**. По соотношению параметров a_1 и a_2 можно судить о соотношении размеров частей A и B

Решение. Сначала нужно записать закон распределения одного наблюдения. Как его записать?

Известны **условные** распределения. Для частицы A это $Po(a_1)$, а для частицы B это $Po(a_2)$. Априорно P(A) = P(B) = 1/2. Полная вероятность получить k ветвей (формула **полной вероятности**):

$$P\{\xi = k\} = P\{\xi = k \mid A\}P(A) + P\{\xi = k \mid B\}P(B) = \frac{1}{2} \left(\frac{a_1^k}{k!}e^{-a_1} + \frac{a_2^k}{k!}e^{-a_2}\right).$$

Применяем метод моментов:

$$\mathbf{M}\xi = m_1 = \sum_{k=0}^{\infty} k \mathbf{P}\{\xi = k\} = \frac{1}{2} \left[\sum_{k=0}^{\infty} k \mathbf{P} \ k \mid a_1 + \sum_{k=0}^{\infty} k \mathbf{P} \ k \mid a_2 \right] = \frac{1}{2} \ a_1 + a_2 ,$$

$$\mathbf{M}\xi^{2} = m_{2} = \sum_{k=0}^{\infty} k^{2} P\{\xi = k\} = \frac{1}{2} \left[\sum_{k=0}^{\infty} k^{2} P \ k \mid a_{1} + \sum_{k=0}^{\infty} k^{2} P \ k \mid a_{2} \right] =$$

$$= \frac{1}{2} (a_{1} + a_{1}^{2}) + (a_{2} + a_{2}^{2}) = \frac{1}{2} (a_{1} + a_{2}) + (a_{1}^{2} + a_{2}^{2})$$

(здесь учтено, что второй момент m_2 для CB, распределённой по закону **Пуассона** Po(a), равен сумме $(a^2 + a)$).

$$m_1 = \frac{1}{2} a_1 + a_2$$
,
 $m_2 = \frac{1}{2} (a_1 + a_2) + (a_1^2 + a_2^2)$

Выразим a_2 через a_1 из первого уравнения

$$a_2 = 2m_1 - a_1$$
,

и подставим в второе. В результате получим квадратное уравнение, решая которое имеем:

$$a_{1,2} = m_1 \pm \sqrt{m_2 - m_1 - m_1^2}. \tag{4.4}$$

Вместо неизвестных m_1 и m_2 подставим в выборочные моменты

$$\hat{m}_1 = \frac{1}{n} \sum_{i=1}^n x_i$$
 $\hat{m}_2 = \frac{1}{n} \sum_{i=1}^n x_i^2$.

В результате получаем оценки:

$$\begin{cases} \hat{a}_1 = \hat{m}_1 + \sqrt{\hat{m}_2 - \hat{m}_1 - \hat{m}_1^2}; \\ \hat{a}_2 = \hat{m}_1 - \sqrt{\hat{m}_2 - \hat{m}_1 - \hat{m}_1^2}. \end{cases}$$
(4.5)

Вычислим $\hat{m_1}$ и $\hat{m_2}$

$$\hat{m_1} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{327} \sum_{k=0}^{10} k n_k = \frac{1}{327} (0.28 + 1.47 + 2.81 + ... + 10.1) = 2,838.$$

$$\hat{m}_2 = \frac{1}{n} \sum_{i=1}^n x_i^2 = \frac{1}{n} \sum_{k=0}^{10} k^2 n_k = \frac{1}{327} (0^2 \cdot 28 + 1^2 \cdot 47 + 2^2 \cdot 81 + \dots + 10^2 \cdot 1) = 11,42.$$

Теперь применим наши оценки \hat{a}_1 и \hat{a}_2 к имеющимся данным:

$$\begin{cases} \hat{a}_1 = \hat{m}_1 + \sqrt{\hat{m}_2 - \hat{m}_1 - \hat{m}_1^2} \approx 3,57; \\ \hat{a}_2 = \hat{m}_1 - \sqrt{\hat{m}_2 - \hat{m}_1 - \hat{m}_1^2} \approx 2,11. \end{cases}$$

ДОМАШНЕЕ ЗАДАНИЕ ПО МЕТОДУ МОМЕНТОВ

- **4.1.** Пусть $x_1, x_2, ..., x_n$ выборка из генеральной совокупности, распределённой по закону Пуассона $Po(\lambda)$. Найти оценку неизвестного параметра λ методом моментов.
- **4.2.** Пусть $x_1, x_2, ..., x_n$ выборка из нормально распределённой генеральной совокупности $N(m, \sigma^2)$. Найти оценки неизвестных параметров m и σ^2 методом моментов.

- **4.3.** Пусть $x_1, x_2, ..., x_n$ выборка из генеральной совокупности, распределённой по закону $\chi^2(k)$. Найти оценку неизвестного параметра k методом моментов.
- **4.4.** Рассмотрим n систем с временами работы до первого отказа соответственно $X_1, X_2, ..., X_n$. Предположим, что $X_1, X_2, ..., X_n$ **независимые** (в совокупности) и **одинаково распределённые** случайные величины с **показательным** распределение $E(\lambda)$. Пусть, наконец, x_i , $i=\overline{1,n}$, измеренные значения времени отказа i-й системы (в часах). Используя метод моментов, найти оценку вероятности $\mathbf{P}\{X_1 \geq 1\}$ того, что первая система будет работать бесперебойно в течение часа.

4.2. Метод максимального правдоподобия (МП-метод)

Пусть $x \equiv (x_1, x_2, ..., x_n)$ — совокупность наблюдений случайного характера. Эти наблюдения (как всегда) являются конкретными значениями многомерной случайной величины $\xi \equiv (\xi_1, \xi_2, ..., \xi_n)$ (не обязательно выборка), закон распределения $p_{\xi}(x;a)$ известен с точностью до параметра a (будем считать $p_{\xi}(x;a)$ плотностью распределения, если СВ ξ — непрерывна, и вероятностью, если СВ ξ — дискретна). Размерность R параметра a — произвольна.

Функция $p_{\xi}(x;a)$ при фиксированном значении x является функцией параметра a и называется функцией правдоподобия. МП-оценка — это такое значение a^* параметра, при котором функция правдоподобия максимальна:

$$p_{\xi}(x;a^*) = \max_{a} p_{\xi}(x;a).$$

Оценка $a^*(x)$, т.е. точка максимума является функцией наблюдений, подчеркнём её случайность:

$$a^*(\xi)$$
.

Если максимум достигается внутри области определения, и $p_{\xi}(x;a)$ является гладкой функцией переменной a, то МП-оценка a^* является решением системы уравнений:

$$\frac{\partial \ln p_{\xi}(x;a)}{\partial u_{k}} = 0, \quad k = 1, ..., R.$$

Логарифм экстремальную точку не изменяет, но заменяет произведение на сумму, если наблюдения независимы

Известно, что (при выполнении <mark>тех же условий, что для неравенства Рао_Крамера)</mark> МП-оценки

- состоятельны,
- асимптотически нормальны,
- асимптотически эффективны.

Последнее означает, что <mark>МП-метод приводит к оценкам, наилучшим по точности.</mark>

Пример 4.4. Число вызовов, поступивших на АТС, оказалось равным:

в первую минуту $x_1 = 150$; во вторую минуту — $x_2 = 200$; в третью минуту — $x_3 = 120$.

Считать, что число вызовов на АТС в течение одной минуты является случайной величиной, распределённой по закону Пуассона с неизвестным параметром $a: \xi_i \sim Po(a), i = \overline{1,3}$. Построить оценку для этого параметра методом максимального правдоподобия.

Решение. Отвлекаемся от конкретных значений трёх наблюдений. Закон распределения **одного** наблюдения с номером *i* имеет вид:

$$p(x_i;a) = \frac{a^{x_i}}{x_i!}e^{-a}$$
, аргумент x_i — дискретный: $x_i = 0,1,2,...,$

$$\mathbf{M}\xi_i \equiv m_1 = a, \ i = \overline{1,3}.$$

Закон распределения всех n наблюдений имеет вид:

$$p(x;a) = \frac{\sum_{i=1}^{n} x_i}{\prod_{i=1}^{n} x_i!} e^{-na}$$
, где $x \equiv (x_1, x_2, ..., x_n)$.

Проведём несложные преобразования: (продиф-ем и приравняем 0):

$$\frac{\partial \ln p(x;a)}{\partial a} \equiv \left[-an + \ln a \cdot \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \ln (x_i!) \right]_a^{\prime} \equiv -n + \frac{1}{a} \sum_{i=1}^{n} x_i + 0 = 0,$$

откуда

$$a^* = \frac{1}{n} \sum_{i=1}^n x_i$$
 ИЛИ $a^* = \frac{1}{n} \sum_{i=1}^n \xi_i$.

Пример 4.5. Оценить параметр λ **простейшего потока** событий по n наблюдениям: $\xi_{i} \sim Po(a = \lambda T), i = \overline{1, n}$. Время T известно.

Решение. Распределение выборки имеет вид:

$$p(x_1,...,x_n;a=\lambda T)=e^{-\lambda_{\mathbb{T}^n}}rac{(\lambda T)^{(\mathbf{x}_1+...+\mathbf{x}_n)}}{\mathbf{x}_1!\cdot...\cdot\mathbf{x}_n!}.$$
 где $\lambda T=a.$

Поэтому

$$\frac{\partial \ln p}{\partial \lambda} \equiv \frac{\partial \ln p}{\partial a} \cdot \frac{\partial a}{\partial \lambda} \equiv \left[-n + \frac{1}{\lambda T} \sum_{i=1}^{n} x_i \right] \cdot T = 0,$$

$$\sum_{i=1}^{n} x_{i} = n\lambda T, \qquad \hat{\lambda} = \frac{1}{nT} \sum_{i=1}^{n} x_{i}, \qquad \hat{\lambda} = \frac{1}{nT} \sum_{i=1}^{n} \xi_{i}.$$

Пример 4.6. Испытание прибора состоит в повышении напряжения до некоторого определённого уровня. Неизвестным параметром a является вероятность p выхода при этом прибора из строя, a = p. Отказ прибора произошёл при k = 7-м испытании. Найти МП-оценку неизвестной вероятности.

Решение. Сначала выпишем закон распределения наших наблюдений. В нашем случае это одно наблюдение

$$k = 7 - - \frac{4}{4}$$

<mark>до первого «успеха» (</mark>выхода прибора из строя). Вводим СВ

ξ — количество испытаний до первого «успеха».

Она имеет геометрическое распределение:

$$P_{\varepsilon}(k;a) = P\{\xi = k,a\} = (1-a)^{k-1}a.$$

Здесь записана вероятность такого события:

(k-1) неуспехов подряд, а затем при k -м испытании — успех. Воспользуемся методом **МП**.

$$\ln P_{\xi}(k;a) = (k-1)\ln(1-a) + \ln a \quad \Rightarrow \quad \frac{\partial \ln P_{\xi}(k;a)}{\partial a} = (k-1)\frac{-1}{(1-a)} + \frac{1}{a}$$
$$\frac{\partial \ln P_{\xi}(k;a)}{\partial a} = 0 \quad \Leftrightarrow \quad (k-1)\frac{1}{(1-a)} = \frac{1}{a}, \quad \Leftrightarrow$$

$$\iff$$
 $(k-1)=\frac{(1-a)}{a}=\frac{1}{a}-1, \iff a^*=\frac{1}{k}.$

Чтобы подчеркнуть, что a^* — функция случайной величины, записываем

$$a^* = \frac{1}{\xi}.$$

Если нас интересует **несмещённость** этой оценки, вычислим её математическое ожидание:

$$\mathbf{M}a^* = \mathbf{M}\frac{1}{\xi} = \sum_{k=1}^{\infty} \frac{1}{k} \mathbf{P}\{\xi = k\} = \sum_{k=1}^{\infty} \frac{1}{k} (1-a)^{k-1} a = \frac{a}{1-a} \sum_{k=1}^{\infty} \frac{(1-a)^k}{k} =$$
 узнаем ло гарифм $= \frac{a}{1-a} \cdot (-\ln a) = \frac{-a \ln a}{1-a}.$ \Rightarrow $\mathbf{M}a^* = \frac{-a \ln a}{1-a} \neq a.$ 1 $\mathbf{M}a^*$

Оценка a^* не является несмещённой.

Замечание 4.2. При вычислении Ma^* использован следующий ряд:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots, \qquad \ln(1+x) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k} \quad |x| < 1.$$

Подставив в этот ряд x = -(1-a), 0 < a < 1, получим то, что нужно:

$$-\ln a = \sum_{k=1}^{\infty} \frac{(1-a)^k}{k}.$$

Пример 4.7. Продолжение предыдущего. Для оценки **вероятности отказа прибора** испытывалось n приборов. В результате были получены следующие результаты: $k_1, k_2, ..., k_n$. Построить МП-оценку a^* для вероятности $p \equiv a$ отказа прибора.

Решение. В этом случае **закон распределения наблюдений** имеет вид:

$$P(k_1, k_2, ..., k_n; a) = \prod_{i=1}^{n} (1-a)^{k_i-1} a = (1-a)^{k_1+...+k_n} \cdot \frac{a}{1-a}^{n}.$$

Поэтому

$$\ln P(k_1, k_2, ..., k_n; a) = \ln (1-a) \cdot \sum_{i=1}^{n} k_i + n \ln \frac{a}{1-a},$$

$$\frac{\partial \ln P}{\partial a} = \frac{-1}{1-a} \cdot \sum_{i=1}^{n} k_i + n \left[\frac{1}{a} + \frac{1}{1-a} \right] = \frac{-1}{1-a} \cdot \sum_{i=1}^{n} k_i + \frac{n}{a(1-a)};$$

$$\frac{\partial \ln P}{\partial a} = 0 \quad \Leftrightarrow \quad \frac{-1}{1-a} \cdot \sum_{i=1}^{n} k_i + \frac{n}{a(1-a)} = 0 \quad \Leftrightarrow \quad \sum_{i=1}^{n} k_i = \frac{n}{a}.$$

Получили следующую оценку:

$$a^* = \frac{n}{\sum_{i=1}^n k_i} = \frac{1}{\sum_{i=1}^n k_i/n} = \frac{1}{k_{cp}},$$
 где k_{cp} — среднее.

i=1 i=1 Подчёркивая случайность, запишем $a^* = \frac{n}{\sum_{i=1}^{n} \xi_i}$.

Замечание 4.3. Если перейти к другой параметризации, а именно, вместо a использовать параметр $b = \frac{1}{a}$, то анализ оценки упростится. Оценка будет иметь вид:

$$b^* = rac{\sum\limits_{i=1}^n k_i}{n}$$
 или $b^* = rac{\sum\limits_{i=1}^n \xi_i}{n}.$ $\mathbf{M}b^* = b,$ $\mathbf{D}b^* = rac{b^2}{n}.$

Пример 4.8. МП-оценка параметра равномерного распределения.

Пусть $\xi \equiv (\xi_1, \xi_2, ..., \xi_n)$ — выборка из совокупности, распределенной по **равномерному** закону R[0,a] с **неизвестным** правым концом a>0. Плотность распределения выборки, очевидно, равна

$$p(x_1, ..., x_n; a) = \begin{cases} 1/a^n, \text{ если } 0 < x_i < a, i = \overline{1, n}; \\ 0 & \text{в остальных случаях,} \end{cases} = \begin{cases} 1/a^n, \text{ если } \min x_i > 0, \max_i x_i < a; \\ 0 & \text{в остальных случаях,} \end{cases}$$

поскольку

$$p(x_i; a) = \begin{cases} \frac{1}{a}, & \text{если } 0 < x_i < a; \\ 0 & \text{в остальных случаях.} \end{cases}$$

Все имеющиеся измерения $x_1, x_2, ..., x_n$ положительны: $\min_i x_i > 0$. Фиксируем их. В результате получаем функцию правдоподобия $p(x_1, ..., x_n; a) = p(a)$ (функцию аргумента a). Она оказалась разрывной, поэтому искать её максимум с помощью операции дифференцирования нельзя. Построим график функции правдоподобия $p(x_1, ..., x_n; a) = p(a)$. Очевидно, что она достигает своего максимума в точке $a^* = \max_{1 \le i \le n} x_i$.

Рис. 4.1

Подчеркивая случайность, пишем

$$a^* = \max_{1 \le i \le n} \xi_i.$$

Проанализируем эту оценку. Её функция распределения имеет вид:

$$F_{a^*}(y) = \mathbf{P}\{\max_i \xi_i < y\} = \prod_{i=1}^n \mathbf{P}\{\xi_i < y\} = F_{\xi}(y)^n = \begin{cases} 0, & \text{если} y < 0, \\ y/a^n, & \text{если} y \in [0, a], \\ 1, & \text{если} y > a. \end{cases}$$

Дифференцируя её, найдём плотность распределения:

$$p_{a^*}\left(y\right) = \ F_{a^*}\left(y\right)' = \ \frac{ny^{n-1} \left/a^n \right., \, \text{если} y \in [0,a];}{0}$$
 в противном случае.

Вычислим математическое ожидание:

$$\mathbf{M}a^* = \int_{0}^{a} y p_{a^*}(y) dy = \frac{n}{n+1}a.$$

Поскольку $\mathbf{M}a^* = \frac{n}{n+1}a \neq a$, оценка a^* — **смещенная**. Её дисперсия

$$\mathbf{D}a^* = \int_0^a y^2 p_{a^*}(y) dy - (\mathbf{M}a^*)^2 = \frac{n}{(n+2)(n+1)^2} a^2.$$

Эту оценку легко исправить — сделать **несмещенной**, умножив на коэффициент $\frac{n+1}{n}$. В результате получим **несмещённую** оценку

$$\hat{a} = \frac{n+1}{n} \max_{i} x_{i}$$
: $M\hat{a} = a$ при **любом** a ,

дисперсия которой

$$\mathbf{D}\hat{a} = \frac{n+1}{n}^{2} \mathbf{D}a^{*} = \frac{1}{(n+2)n}a^{2}.$$

Замечаем, что она убывает быстрее, чем 1/n. Это **противоречит** неравенству (2.7) раздела 2.2. Однако, в этом примере условия **неравенства** Рао-Крамера **не выполняются**, и дисперсия может убывать **быстрее**. Это ещё один пример **сверхэффективной** оценки.

Пример 4.9 (оценка связанных параметров).

Имеются три **неизвестные** величины a, b, c. Каждая измерялась **отдельно** n раз со **случайными** погрешностями. Результаты **независимых** измерений таковы:

для
$$a: x \equiv (x_1, x_2, ..., x_n)$$
, где $x_i \sim N(a, \sigma^2)$, $i = \overline{1, n}$; для $b: y \equiv (y_1, y_2, ..., y_n)$, где $y_i \sim N(b, \sigma^2)$, $i = \overline{1, n}$; для $c: z \equiv (z_1, z_2, ..., z_n)$, где $z_i \sim N(c, \sigma^2)$, $i = \overline{1, n}$.

Между параметрами a, b, c имеется связь:

$$a+b+c=0.$$
 (4.6)

Найти **несмещённые** оценки для параметров a, b, c и **сравнить** их с оценками, которые **не учитывают** связь, т.е. с оценками

$$\hat{a} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \hat{b} = \frac{1}{n} \sum_{i=1}^{n} y_i, \quad \hat{c} = \frac{1}{n} \sum_{i=1}^{n} z_i,$$

имеющими, очевидно, дисперсии: $\mathbf{D}\hat{a} = \mathbf{D}\hat{b} = \mathbf{D}\hat{c} = \frac{\sigma^2}{n}$ (сравнить также дисперсии в одном и другом случае).

Решение. Выпишем закон распределения всех наблюдений:

$$p(x, y, z; a, b, c) = p_x(x; a) \cdot p_y(y; b) \cdot p_z(z; c) =$$

$$= C_1 e^{-\frac{1}{2\sigma^2} \sum (x_i - a)^2} \cdot C_1 e^{-\frac{1}{2\sigma^2} \sum (y_i - b)^2} \cdot C_1 e^{-\frac{1}{2\sigma^2} \sum (z_i - c)^2}.$$

Прологарифмируем выражение для плотности:

$$\ln p(x, y, z; a, b, c) =$$

$$= C_2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - a)^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - b)^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (z_i - c)^2.$$

Найти **МП-оценку** означает решить следующую задачу на **услов- ный** экстремум:

найти $\max_{a,b,c} \ln p(x,y,z;a,b,c)$ при **условии** связи a+b+c=0.

Составляем функцию Лагранжа:

$$L(a,b,c,\lambda) = \ln p(a,b,c) + \lambda(a+b+c)$$

и находим безусловный экстремум:

$$\frac{\partial}{\partial a} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - a) + \lambda = 0; \qquad \frac{\partial}{\partial c} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - b) + \lambda = 0;$$

$$\frac{\partial}{\partial c} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (z_i - c) + \lambda = 0;$$

$$\frac{\partial}{\partial c} = a + b + c = 0.$$

Из первых трёх уравнений находим выражения:

$$a^* = \frac{1}{n} \left(\sum_{i=1}^n x_i + \lambda \sigma^2 \right), \quad b^* = \frac{1}{n} \left(\sum_{i=1}^n y_i + \lambda \sigma^2 \right), \quad c^* = \frac{1}{n} \left(\sum_{i=1}^n z_i + \lambda \sigma^2 \right).$$

Из четвёртого уравнения (подставляя a^* , b^* , c^*) находим λ :

$$\frac{1}{n} \left(\sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i + \sum_{i=1}^{n} z_i + 3\lambda \sigma^2 \right) = 0 \implies \lambda = -\frac{1}{3n\sigma^2} \left(\sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i + \sum_{i=1}^{n} z_i \right).$$

Окончательно получаем оценки:

$$a^* = \frac{1}{3n} \left(2 \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} z_i \right),$$

$$b^* = \frac{1}{3n} \left(2 \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} z_i \right),$$

$$c^* = \frac{1}{3n} \left(2 \sum_{i=1}^{n} z_i - \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} y_i \right).$$

Проверим несмещённость оценок:

$$\mathbf{M}a^* = \frac{1}{3n}(2na - nb - nc) = \frac{n}{3n}(2a - b - c) = \frac{1}{3}(3a - a - b - c) = a.$$

Аналогично получаются равенства $\mathbf{M}b^* = b$, $\mathbf{M}c^* = c$. Определим дисперсии:

$$Da^* = Db^* = Dc^* = \frac{1}{9n^2} (4n\sigma^2 + n\sigma^2 + n\sigma^2) = \frac{2}{3} \frac{\sigma^2}{n}.$$

Сравнивая эти дисперсии с дисперсиями оценок \hat{a},\hat{b},\hat{c} (без учёта связи), получаем, что дисперсии оценок уменьшились.

Замечание 4.4. Задачу можно было бы решать с одинаковым успехом при различных дисперсиях измерений и различных количествах наблюдений.

ДОМАШНЕЕ ЗАДАНИЕ ПО МП-МЕТОДУ

- **4.5. Независимые** СВ имеют биномиальные распределения соответственно $Bi(n_1,p),\ Bi(n_2,p),\ ...,\ Bi(n_k,p).$ Пусть $x_1,x_2,...,x_k$ значения, которые приняли эти СВ в некотором эксперименте. Найти **МПоценку** параметра p. Показать, что полученная оценка является несмещённой, и вычислить её дисперсию.
- **4.6.** Пусть $x_1, x_2, ..., x_n$ выборка из генеральной совокупности, имеющей **равномерное** распределение R[a,b]. Найти **МП-оценки** параметров a и b по выборке.
 - **4.7.** СВ ξ имеет следующую **плотность** распределения:

$$p_{\xi}(x) = \begin{cases} kx & \text{при } x \in [0, \sqrt{2/k}], \\ 0 & \text{при } x \notin [0, \sqrt{2/k}]. \end{cases}$$

Найти **МП-оценку** математического ожидания СВ ξ по выборке **объё-** ма n.

4.8. Длина l объекта измерялась **независимо** друг от друга **двумя** приборами. Оба прибора дают при измерении **случайные** ошибки, имеющие **нормальное** распределение со средним, равным **нулю**, и дисперсиями σ_1^2 и σ_2^2 . Найти **МП-оценку** величины l, если первым прибором сделано n_1 измерений, а вторым — n_2 измерений.