Математика для Data Science. Математический анализ. Шпаргалка

Содержание

Третья неделя. Пределы, производные и исследование функций	2
Пределы функций и непрерывные функции	. 2
Производные: интуиция без доказательств	. 2
Производные: формально с доказательствами	. 2
Производная: вычисления без доказательств.	. 3
Исследование функций при помощи производных	. 3

Третья неделя. Пределы, производные и исследование функций

Пределы функций и непрерывные функции

Пусть f — функция с областью определения $D \subset \mathbb{R}$ и значениями в \mathbb{R} . Число $a \in \mathbb{R}$ называется npederom функции f в точке x_0 , если $\lim_{n \to \infty} f(x_n) = a$ для любой последовательности $\{x_n\}$, такой что $\lim_{n \to \infty} (x_n) = x_0$ и $x_n \in D \setminus \{x_0\}$ для всех n (мы предполагаем, что хотя бы одна такая последовательность существует). Предел функции f в точке x_0 обозначается $\lim_{n \to \infty} f(x)$.

Свойства предела функции

- 1. Если у функции есть предел в точке, то он единственен.
- 2. Пусть даны две функции f и g с совпадающими областями определения, такие что $\lim_{x \to x_0} f(x) = a$ и $\lim_{x \to x_0} g(x) = b$, тогда
 - $\lim_{x \to x_0} c \cdot f(x) = c \cdot a$, где $c \in \mathbb{R}$,
 - $\bullet \lim_{x \to x_{-}} f(x) + g(x) = a + b,$
 - $\lim_{x \to x_0} f(x) \cdot g(x) = a \cdot b$,
 - если $b \neq 0$, то $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b}$.

Функция f называется непрерывной в точке x_0 , если f определена в точке x_0 и $\lim_{x \to x_0} f(x)$ существует и равен $f(x_0)$.

 Φ ункция f называется непрерывной, если она непрерывна во всех точках своей области определения.

Точки области определения f, в которых f не является непрерывной, называются mочками разрыва.

Есть и эквивалентное первому определение непрерывности: функция f называется непрерывной в точке x_0 , если $x_0 \in D$, и для любого $\varepsilon > 0$ найдётся $\delta > 0$, такое что выполнено $|f(x) - f(x_0)| < \varepsilon$ для всех $x \in D$, удовлетворяющих $|x - x_0| < \delta$.

Свойства непрерывных функций Пусть f и g — непрерывные функции с совпадающими областями определения, тогда

- функция $c \cdot f$, где $c \in \mathbb{R}$, непрерывна,
- \bullet функция f+g непрерывна,
- \bullet функция $f \cdot g$ непрерывна.

Производные: интуиция без доказательств

Меновенной скоростью в момент времени t_0 называется предел $\lim_{t \to t_0} \frac{S(t) - S(t_0)}{t - t_0}$, где S(t) — расстояние, пройденное к моменту времени t.

Обозначив в этом определении $t-t_0$ за Δt , получим, что $\lim_{t \to t_0} \frac{S(t)-S(t_0)}{t-t_0} = \lim_{\Delta t \to 0} \frac{S(t_0+\Delta t)-S(t_0)}{\Delta t}$.

Производные: формально с доказательствами

Пусть функция f определена на некотором интервале, и точка x_0 принадлежит этому интервалу. Тогда npouseodnoŭ функции f в точке x_0 называется число $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ или, эквивалентно, число $\lim_{t\to 0} \frac{f(x_0+t)-f(x_0)}{t}$. Производная обозначается $f'(x_0)$.

Если производная в точке x_0 существует, то функция f называется дифференцируемой в точке x_0 .

Функция f называется $\partial u \phi \phi$ еренцируемой на некотором интервале, если она дифференцируема в каждой точке этого интервала. Тогда производной функции f называется функция f', которая отображает x в f'(x).

Производная: вычисления без доказательств.

Производные часто встречающихся функций

- c'=0, где $c\in\mathbb{R}$
- $(x^n)' = nx^{n-1}$, где n произвольное действительное число, например: $x^{\frac{1}{2}} = (\sqrt{x})' = \frac{1}{2\sqrt{x}}$
- $(a^x)' = a^x \cdot \ln a$, в частности $(e^x)' = e^x$
- $(\log_a x) = \frac{1}{x \ln a}$, в частности $(\ln x) = \frac{1}{x}$
- $(\sin x)' = \cos x$
- $\bullet \ (\cos x)' = -\sin x$
- $(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$
- $(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$

Свойства производных

Пусть функции f и g определены и дифференцируемы на интервале (a,b), тогда

- 1. функция cf тоже дифференцируема на (a,b) и (cf)'=cf', где c- произвольное действительное число,
- 2. функция f + g тоже дифференцируема на (a, b) и (f + g)' = f' + g',
- 3. функция fg тоже дифференцируема на (a,b) и (fg)' = f'g + fg',
- 4. если g не обращается в ноль на этом интервале, то функция $\frac{f}{g}$ тоже дифференцируема на (a,b) и $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$.

Пусть теперь функция f непрерывна и дифференцируема в точке x_0 , а g непрерывна и дифференцируема в точке $y_0 = f(x_0)$. Тогда

5. функция g(f(x)) непрерывна и дифференцируема в точке x_0 и её производная в точке x_0 равна $g'(y_0)f'(x_0) = g'(f(x_0))f'(x_0)$.

Функция q(f(x)) называется композицией функций f и g и обозначается $g \circ f$.

Исследование функций при помощи производных.

Пусть дана функция f с областью определения D. Точка $x_0 \in D$ называется точкой локального минимума, если существует такой $\varepsilon > 0$, что $f(x) \ge f(x_0)$ для всех $x \in D \cap (x_0 - \varepsilon, x_0 + \varepsilon)$. При этом $f(x_0)$ называется локальным минимумом.

Точка x_0 называется точкой минимума (иногда говорят точкой глобального минимума) функции f, если $f(x_0) \leq f(x)$ для всех x из области определения f. Число $f(x_0)$ называют минимумом функции или глобальным минимумом функции или минимальным значением функции.

 x_0 называется точкой перегиба функции f(x), если производная в этой точке равна нулю: $f'(x_0) = 0$, но функция не достигает в x_0 ни локального минимума, ни локального максимума.