Solution to Homework 5 — Strongest Postconditions, Proof Rules

To help remind that you doesn't matter what logical constant you use to name the old value of a variable, I'll use different ones below: maybe x', maybe x_0 , and maybe something else.

Lecture 13: Strongest Postconditions

1. (Validity under partial correctness but not total correctness)

For $\{T\}$ S $\{sp(p, S)\}$ to be valid for total correctness, it has to be valid for partial correctness and also always terminate. So to be invalid for total correctness, we a state in which either $\{T\}$ S $\{sp(p, S)\}$ is not partially correct or S does not terminate. But we're given that $\{T\}$ S $\{sp(p, S)\}$ is partially correct, so we need a state in which S doesn't terminate (gets a runtime error or diverges). A couple of examples:

```
{T} x := 0; y := 2 / x \{x = 0 \land y = 2 / x\}
{T} x := -1; while x \neq 0 do x := x - 1 od; x := 3 \{x = 3\}
```

(This last one is a bit sneaky; we don't know how to calculate the sp of a loop, but sp of the sequence above has to be sp(x := 3).)

(The relationship with $\vDash \{T\}$ $S \{F\}$ is that $\sigma \vDash \{T\}$ $S \{F\}$ means S doesn't terminate when run in σ , since if it terminated, it would have to be in a state in which false is true.)

2. (Calculate *sp*, no logical simplification)

```
\begin{split} sp(\texttt{i} < \texttt{j} \land \texttt{j} - \texttt{i} \leq \texttt{n}, & \texttt{i} := \texttt{f}(\texttt{i} + \texttt{j}); \; \texttt{j} := \texttt{g}(\texttt{i} * \texttt{j})) \\ & \equiv sp(sp(\texttt{i} < \texttt{j} \land \texttt{j} - \texttt{i} < \texttt{n}, \; \texttt{i} := \texttt{f}(\texttt{i} + \texttt{j})), \; \texttt{j} := \texttt{g}(\texttt{i} * \texttt{j})) \\ & \equiv sp(\texttt{i}_0 < \texttt{j} \land \texttt{j} - \texttt{i}_0 \leq \texttt{n} \land \texttt{i} = \texttt{f}(\texttt{i}_0 + \texttt{j}), \; \texttt{j} := \texttt{g}(\texttt{i} * \texttt{j})) \\ & \equiv \texttt{i}_0 < \texttt{j}_0 \land \texttt{j}_0 - \texttt{i}_0 \leq \texttt{n} \land \land \texttt{i} = \texttt{f}(\texttt{i}_0 + \texttt{j}_0) \land \texttt{j} := \texttt{g}(\texttt{i} * \texttt{j}_0) \end{split}
```

3. (Calculate *sp*, logical simplifications allowed where specified)

```
3a. sp(x = 2^k, x := x/2) \equiv x' = 2^k \land x = x'/2 \Rightarrow x = 2^k-1) [note x' was dropped] wp(x := x/2, x = 2^k) \equiv x/2 = 2^k \Leftrightarrow x = 2^k+1
```

3b. $(S \equiv \mathbf{if} \operatorname{even}(\mathbf{x}) \operatorname{\mathbf{then}} \mathbf{x} := \mathbf{x} + 1 \operatorname{\mathbf{fi}})$ $sp(\mathbf{x} = \mathbf{x}_0, \operatorname{\mathbf{if}} \operatorname{even}(\mathbf{x}) \operatorname{\mathbf{then}} \mathbf{x} := \mathbf{x} + 1 \operatorname{\mathbf{else}} \operatorname{\mathbf{skip}} \operatorname{\mathbf{fi}})$ $\equiv sp(\mathbf{x} = \mathbf{x}_0 \wedge \operatorname{even}(\mathbf{x}), \mathbf{x} := \mathbf{x} + 1) \vee sp(\mathbf{x} = \mathbf{x}_0 \wedge \operatorname{odd}(\mathbf{x}), \operatorname{\mathbf{skip}})$ $\equiv (\operatorname{even}(\mathbf{x}_0) \wedge \mathbf{x} = \mathbf{x}_0 + 1) \vee (\mathbf{x} = \mathbf{x}_0 \wedge \operatorname{odd}(\mathbf{x}))$ $\text{If you don't mind losing the relationship with } \mathbf{x}_0, \text{ this last predicate implies odd}(\mathbf{x}).$ $wp(S, \operatorname{odd}(\mathbf{x}))$ $\equiv wp(\operatorname{\mathbf{if}} \operatorname{even}(\mathbf{x}) \operatorname{\mathbf{then}} \mathbf{x} := \mathbf{x} + 1 \operatorname{\mathbf{else}} \operatorname{\mathbf{skip}} \operatorname{\mathbf{fi}}, \operatorname{odd}(\mathbf{x}))$

 $\equiv (\text{even}(x) \rightarrow wp(x := x+1, \text{odd}(x))) \land (\text{odd}(x) \rightarrow wp(\text{skip}, \text{odd}(x)))$

$$\equiv (\operatorname{even}(x) \to \operatorname{odd}(x+1)) \wedge (\operatorname{odd}(x) \to \operatorname{odd}(x))$$

$$\Leftrightarrow \operatorname{odd}(x)$$

3c.
$$(p \equiv L < R \land b[L] \le x < b[R]$$

and $S \equiv \mathbf{if} \times \langle b[M] \mathbf{then} R := M \mathbf{else} L := M \mathbf{fi})$
 $sp(R = R_0 \land L = L_0 \land p, S)$
 $\equiv sp(R = R_0 \land L = L_0 \land p \land x < b[M], R := M)$
 $\lor sp(R = R_0 \land L = L_0 \land p \land x \ge b[M], L := M)$
 $\equiv (L = L_0 \land L < R_0 \land b[L] \le x < b[R_0] \land x < b[M] \land R = M)$
 $\lor (R = R_0 \land L_0 < R \land b[L_0] \le x < b[R] \land x < b[M] \land L = M)$

You didn't have to simplify, but if you wanted to, one possibility is

$$\begin{split} \mathbf{L}_0 < \mathbf{R}_0 \wedge \mathbf{b}[\mathbf{L}_0] &\leq \mathbf{x} < \mathbf{b}[\mathbf{R}_0] \\ & \wedge (\mathbf{x} < \mathbf{b}[\mathbf{M}] \rightarrow \mathbf{L} = \mathbf{L}_0 \wedge \mathbf{R} = \mathbf{M}) \wedge (\mathbf{x} < \mathbf{b}[\mathbf{M}] \rightarrow \mathbf{R} = \mathbf{R}_0 \wedge \mathbf{L} = \mathbf{M}) \\ wp(S, p) \\ & \equiv (\mathbf{x} < \mathbf{b}[\mathbf{M}] \rightarrow wp(\mathbf{R} := \mathbf{M}, p)) \wedge (\mathbf{x} \geq \mathbf{b}[\mathbf{M}] \rightarrow wp(\mathbf{L} := \mathbf{M}, p)) \\ & \equiv (\mathbf{x} < \mathbf{b}[\mathbf{M}] \rightarrow p[\mathbf{M}/\mathbf{R}])) \wedge (\mathbf{x} \geq \mathbf{b}[\mathbf{M}] \rightarrow p[\mathbf{M}/\mathbf{L}])) \\ & \equiv (\mathbf{x} < \mathbf{b}[\mathbf{M}] \rightarrow \mathbf{L} < \mathbf{M} \wedge \mathbf{b}[\mathbf{L}] \leq \mathbf{x} < \mathbf{b}[\mathbf{M}]) \wedge (\mathbf{x} \geq \mathbf{b}[\mathbf{M}] \rightarrow \mathbf{M} < \mathbf{R} \wedge \mathbf{b}[\mathbf{M}] \leq \mathbf{x} < \mathbf{b}[\mathbf{R}]) \end{split}$$

Lectures 14-15: Proof Rules

(Find predicates)

- $p_1 \equiv x = 2^{(k+1)} \land k+1 \le n, p_2 \equiv 2 * x = 2^{(k+1)} \land k+1 \le n, \text{ and}$ $p_3 \equiv p \land k \ge n \equiv x = 2^k \land k \le n \land k \ge n$
 - 1. $\{p_1\}$ k := k+1 $\{p\}$ assignment where $p \equiv x = 2^k \land k \le n$ and $S \equiv x := x*2$; k := k+1
 - $\{p_2\} \mathbf{x} := \mathbf{x} \cdot \mathbf{2} \{p_1\}$ assignment
 - 3. $\{p_2\}$ x := x*2; k := k+1 $\{p\}$ sequence 2, 1
 - 4. $p \wedge k < n \rightarrow p_2$ pred logic
 - 5. $\{p \land k < n\}$ **x** := **x***2; **k** := **k**+1 $\{p\}$ pre str. 4, 3
 - while, 3 6. $\{inv p\}$ while $k < n do S od \{p_3\}$
- $q_1 \equiv (r = X*Y (x/2)*(2*y))$ and $q_2 \equiv (r+y = X*Y (x-1)*y)$ in
 - 1. $\{q_1\}$ x := x/2; y := 2*y $\{r = X*Y-x*y\}$ (*)
 - $\{q_2\} \times := x-1; r := r+y \{r = X*Y-x*y\}$ 2. (*)
 - 3. $\{(r = X*Y-x*y \land even(x) \rightarrow q_1)\}$

$$\land (r = X*Y-x*y \land odd(x) \rightarrow q_2) \}$$
 conditional 1, 2
 if even(x) **then** x := x/2; r := 2*r

else x := x-1; r := r+y **fi** $\{X*Y = r-x*y\}$

- (*) Subproof used assignment, assignment, and sequence as in Question 4

- 6. $r_1 \equiv (r = r_0 \land r = X*Y-x_0*y_0 \land even(x_0) \land x = x_0/2 \land y = 2*y_0),$ $r_2 \equiv (y = y_0 \land r_0 = X*Y-x_0*y \land odd(x_0) \land x = x_0-1 \land r = r_0+y), \text{ and } r_3 \equiv r_1 \lor r_2 \text{ in}$ 1. $\{x = x_0 \land y = y_0 \land r = r_0 \land r = X*Y-x*y \land even(x)\}$ (*) $x := x/2; y := 2*y \{r_1\}$ 2. $\{x = x_0 \land y = y_0 \land r = r_0 \land r = X*Y-x*y \land odd(x)\}$ (*) $x := x-1; r := r+y \{r_2\}$ 3. $\{x = x_0 \land y = y_0 \land r = r_0 \land r = X*Y-x*y\}$ conditional 1, 2 $\mathbf{if} \ even(x) \ \mathbf{then} \ x := x/2; \ y := 2*y$ $\mathbf{else} \ x := x-1; \ r := r+y \ \mathbf{fi} \ \{r_3\}$
- (*) Subproof used assignment, assignment, and sequence