

Machine Learning

Finding Similar Items

U Kang Seoul National University

In This Lecture

Motivation of finding similar item

Representing documents

- Method for finding similar items
 - Approximate matching

Outline

- **→ □** Motivation
 - ☐ Finding Similar Items

10 nearest neighbors from a collection of 20,000 images

10 nearest neighbors from a collection of 20,000 images

A Common Metaphor

- Many problems can be expressed as finding "similar" sets:
 - □ Find near-neighbors in <u>high-dimensional</u> space
- Examples:
 - Pages with similar words
 - For duplicate detection, classification by topic

A Common Metaphor

- Examples (cont.):
 - Customers who purchased similar products
 - Products with similar customer sets
 - Images with similar features
 - Scene completion

Problem for Today's Lecture

- Given: High dimensional data points $x_1, x_2, ...$
 - □ For example: Image is a long vector of pixel colors

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 0 & 2 & 1 & 0 & 1 & 0 \end{bmatrix}$$

- And some distance function $d(x_1, x_2)$
 - \square Which quantifies the "distance" between x_1 and x_2
- Goal: Find all pairs of data points (x_i, x_j) that are within some distance threshold $d(x_i, x_i) \le s$
- **Note:** Naïve solution would take $O(N^2)$ ⊗ where N is the number of data points
- MAGIC: This can be done in O(N)!! How?

Outline

Motivation

Distance Measures

- Goal: Find near-neighbors in high-dim. space
 - We formally define "near neighbors" as points that are a "small distance" apart
- For each application, we first need to define what "distance" means
- **Today:** Jaccard distance/similarity
 - □ The Jaccard similarity of two sets is the size of their intersection divided by the size of their union: $sim(C_1, C_2) = |C_1 \cap C_2|/|C_1 \cup C_2|$
 - □ Jaccard distance: $d(C_1, C_2) = 1 |C_1 \cap C_2| / |C_1 \cup C_2|$

3 in intersection 8 in union Jaccard similarity= 3/8 Jaccard distance = 5/8

Task: Finding Similar Documents

- Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
- Applications:
 - Mirror websites, or approximate mirrors
 - Don't want to show both in search results
 - Similar news articles at many news sites
 - Cluster articles by "same story"
- How can we achieve the goal efficiently?

Task: Finding Similar Documents

U Kang

Task: Finding Similar Documents

 Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs

Applications:

- Mirror websites, or approximate mirrors
 - Don't want to show both in search results
- Similar news articles at many news sites
 - Cluster articles by "same story"

Problems:

- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many that they cannot fit in main memory

3 Essential Steps for Similar Docs

- 1. Shingling: Convert documents to sets
 - Find a right representation of documents
- 2. Min-Hashing: Convert large sets to short signatures, while preserving similarity
 - Decrease the size of each input
- 3. Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - Decrease the # of pairs to compare

The Big Picture

Candidate
pairs:
those pairs
of signatures

that we need to test for similarity

of strings of length **k** that appear in the document

Shingling

Step 1: Shingling: Convert documents to sets

Documents as High-Dim Data

Step 1: Shingling: Convert documents to sets

- Simple approaches:
 - Document = set of words appearing in document
 - Document = set of "important" words
 - Don't work well for this application. Why?
- Need to account for ordering of words!
- A different way: Shingles!

Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca}
 - Option: Shingles as a bag (multiset), count ab twice:
 S'(D₁) = {ab, bc, ca, ab}

Compressing Shingles

 To compress long shingles, we can hash them to (say) 4 bytes

 Represent a document by the set of hash values of its k-shingles

Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca} Hash the singles: $h(D_1)$ = {1, 5, 7}

Similarity Metric for Shingles

- Document D₁ is a set of its k-shingles C₁=S(D₁)
- Equivalently, each document is a
 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- A natural similarity measure is the Jaccard similarity:

$$sim(D_1, D_2) = |C_1 \cap C_2|/|C_1 \cup C_2|$$

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- Caveat: You must pick k large enough, or most documents will have most shingles
 - $\mathbf{k} = 5$ is OK for short documents
 - $\mathbf{k} = 10$ is better for long documents

Motivation for Minhash/LSH

- Suppose we need to find near-duplicate documents among N = 1 million documents
- Naïvely, we would have to compute pairwise
 Jaccard similarities for every pair of docs
 - Each document is represented by the set of its k-shingles
 - $N(N-1)/2 \approx 5*10^{11}$ comparisons
 - At 10⁵ secs/day and 10⁶ comparisons/sec,
 it would take 5 days
- For N = 10 million, it takes more than a year...

The set of strings of length *k* that appear in the document

Signatures:

short integer vectors that represent the sets, and reflect their similarity

MinHashing

Step 2: *Minhashing:* Convert large sets to short signatures, while <u>preserving similarity</u>

Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that have significant intersection

- Encode sets using 0/1 (bit, boolean) vectors
 - One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- **Example:** $C_1 = 10111$; $C_2 = 10011$
 - □ Size of intersection = 3; size of union = 4,
 - Jaccard similarity (not distance) = 3/4
 - □ Distance: $d(C_1,C_2) = 1 (Jaccard similarity) = 1/4$

From Sets to Boolean Matrices

- Rows = elements (shingles)
- Columns = sets (documents)
 - 1 in row e and column s if and only if
 e is a member of s
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!
- Each document is a column:
 - □ Example: $sim(C_1, C_2) = ?$
 - Size of intersection = 3; size of union = 6,
 Jaccard similarity (not distance) = 3/6
 - $d(C_1,C_2) = 1 (Jaccard similarity) = 3/6$

Docu	ments	3
------	-------	---

	1	1	1	0
	~	~	0	1
0	0	1	0	1
ပါ။၊ပြုင်ခ	0	0	0	1
5	1	0	0	1
	1	1	1	0
	1	0	1	0

Outline: Finding Similar Columns

■ So far:

- □ Documents → Sets of shingles
- Represent sets as boolean vectors in a matrix
- Next goal: Find similar columns while computing small signatures
 - □ Similarity of columns == similarity of signatures

Hashing Columns (Signatures)

- Key idea: "hash" each column C to a small signature h(C), such that:
 - □ (1) h(C) is small enough that the signature fits in RAM
 - (2) $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$
- Goal: Find a hash function h(·) such that:
 - □ If $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - □ If $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

U Kang 2₉

Min-Hashing

- Goal: Find a hash function $h(\cdot)$ such that:
 - \Box if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - □ if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function
- There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing

Documents				
	1	1	1	0
	1	1	0	1
Š	0	1	0	1
Shingles	0	0	0	1
S	1	0	0	1
	1	1	1	0
	1	0	1	0

- Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1:

$$h_{\pi}(\mathbf{C}) = \min \pi(\mathbf{C})$$

 Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column UKang

Min-Hashing

Original Sets

```
\Box S1 = {1, 4} min(S1) = 1
\square S2 = {2, 3, 4} min(S2) = 2
\square S3 = {3, 5} min(S3) = 3
```

- Permutation π : (1 2 3 4 5) \Rightarrow (4 1 5 3 2)
 - This means row 1 is mapped to row 4, row 2 is mapped to row 1, ...
 - \square Min-hash(S1) = 3
 - \square Min-hash(S2) = 1
 - Min-hash(S3) = 2
- Intuition: if two sets are similar, their min-hashes are likely to be the same

Min-Hashing Example

Permutation π Input matrix (Shingles x Documents)

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

The Min-Hash Property

- Choose a random permutation π
- Claim: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Why? (intuition)

Let w be an item which has the smallest hash value among all items in set1 and set2.

When do the min-hashes of the two sets agree?

U Kang

Similarity for Signatures

- We know: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions

[Aside]

- □ Assume we have a biased coin with P(head) = $c \neq 0.5$
- How can we find out c?
- We toss coin n times, and find out the number h for the 'head'.
- A good estimator (called "maximum likelihood estimator") of c
 is h/n
- (expected number of 'head' : n * c = h)

Similarity for Signatures

- We know: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions
- The *similarity of two signatures* is the fraction of the hash functions in which they agree

Min-Hashing Example

Permutation π Input matrix (Shingles x Documents)

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

Col/Col Sig/Sig

1-3	2-4	1-2	3-4
0.75	0.75	0	0
0.67	1.00	0	0

37

Min-Hash Signatures

- Pick K=100 random permutations of the rows
- Think of sig(C) as a column vector
- sig(C)[i] = according to the i-th permutation, the index of the first row that has a 1 in column C

$$sig(C)[i] = min(\pi_i(C))$$

- Note: The sketch (signature) of document *C* is small ~100 bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

- Permuting rows even once is prohibitive
- Row hashing!
 - □ Pick K = 100 hash functions k_i
 - \Box Ordering under k_i gives a random row permutation!
- One-pass implementation
 - lacktriangle For each column $m{C}$ and hash-func. $m{k_i}$ keep a "slot" for the min-hash value
 - □ Initialize all $sig(C)[i] = \infty$
 - Scan rows looking for 1s
 - Suppose row j has 1 in column C
 - Then for each k_i :
 - □ If $k_i(j) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(j)$

How to pick a random hash function h(x)? Universal hashing:

 $h_{a,b}(x)=((a\cdot x+b) \mod p) \mod N$ where:

a,b: integers

p: prime number (p > N)

N: # of documents

Implementation Trick

Raw Data and Hash Functions

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

In the beginning

	S_1	S_2	S_3	S_4
h_1	8	8	8	∞
h_2	∞	∞	∞	∞

Implementation Trick

Row 0

	S_1	S_2	S_3	S_4
h_1	1	00	2	1
h_2	1	∞	4	1

	S_1	S_2	S_3	S_4
h_1	1	3	2	1
h_2	0	2	0	0

... Finally

	S_1	S_2	S_3	S_4
h_1	1	3	0	1
h_2	0	2	0	0

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

candidate pairs: those pairs of signatures that we need to test for similarity

Locality Sensitive Hashing

Step 3: Locality-Sensitive Hashing:
Focus on pairs of signatures likely to be from similar documents

LSH: First Cut

2	1	4	1
1	2	1	2
2	1	2	1

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)
- **LSH General idea:** Use a function *f(x,y)* that tells whether *x* and *y* is a *candidate pair:* a pair of elements whose similarity must be evaluated

Candidates from Min-Hash

- Pick a similarity threshold s (0 < s < 1)
- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:
 - M(i, x) = M(i, y) for at least frac. s values of i
 - We expect documents x and y to have the same
 (Jaccard) similarity as their signatures

Problem: we have to compare all pairs of columns!

U Kang 44

2

LSH for Min-Hash

2	1	4	1
1	2	1	2
2	1	2	1

- Big idea: Hash columns of signature matrix M several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

Partition M into b Bands

Signature matrix *M*

Partition M into Bands

- Divide matrix M into b bands of r rows
- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band
- Tune b and r to catch most similar pairs, but few non-similar pairs

Hashing Bands

Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

Example of Bands

2	1	4	1
1	2	1	2
2	1	2	1

Assume the following case:

- Suppose 100,000 columns of *M* (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose b = 20 bands of r = 5 integers/band
- **Goal:** Find pairs of documents that are at least s = 0.8 similar

C₁, C₂ are 80% Similar

- Find pairs of \geq s=0.8 similarity, set **b**=20, **r**=5
- **Assume:** $sim(C_1, C_2) = 0.8$
 - □ Since $sim(C_1, C_2) \ge s$, we want C_1, C_2 to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$
- Probability C_1 , C_2 are **not** similar in all of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - □ i.e., about 1/3000th of the 80%-similar column pairs are **false negatives** (we miss them)
 - We would find 99.965% pairs of truly similar documents

False Positive and Negative

		(Truth)	
		Similar	Not similar
Our Algorithm says	Similar	True Positive	False Positive
	Not Similar	False Negative	True Negative

- False Positive is called Type 1 Error
- False Negative is called Type 2 error

U Kang

C₁, C₂ are 30% Similar

- Find pairs of \geq s=0.8 similarity, set **b**=20, **r**=5
- **Assume:** $sim(C_1, C_2) = 0.3$
 - □ Since $sim(C_1, C_2) < s$ we want C_1, C_2 to hash to NO common buckets (all bands should be different)
- Probability C_1 , C_2 identical in one particular band: $(0.3)^5 = 0.00243$
- Probability C_1 , C_2 identical in at least 1 of 20 bands: 1 $(1 0.00243)^{20} = 0.0474$
 - In other words, approximately 4.74% pairs of docs with similarity 0.3 end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

U Kang

LSH Involves a Tradeoff

Pick:

- □ The number of Min-Hashes (rows of *M*)
- The number of bands b, and
- The number of rows r per band

to balance false positives/negatives

Analysis of LSH – What We Want

Similarity $t = sim(C_1, C_2)$ of two sets ———

What 1 Band of 1 Row Gives You

Similarity $t = sim(C_1, C_2)$ of two sets———

b bands, r rows/band

- Columns C₁ and C₂ have similarity t
- Pick any band (r rows)
 - \square Prob. that all rows in band equal = t^r
 - Prob. that some row in band unequal = 1 t'
- Prob. that no band identical = $(1 t^r)^b$
- Prob. that at least 1 band identical = $1 - (1 - t^r)^b$

What b Bands of r Rows Gives You

By controlling s, you can determine the shape of the function

Example: b = 20; r = 5

- Similarity of two sets = t
- Prob. that at least 1 band is identical:

t	1-(1-t ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Picking *r* and *b*: The S-curve

- Picking r and b to get the best S-curve
 - □ 50 hash-functions (r=5, b=10)

Green area: False Negative rate

Black area: False Positive rate

Picking *r* and *b*: The S-curve

- If avoiding false
 negatives is important
 (don't want to miss
 truly similar pairs)
 - Make (1/b)^{1/r} smaller
 than s (desired similarity)

(Large b and small r)

- If avoiding false positives is important (don't want to accept dissimilar pairs)
 - Make (1/b)^{1/r} larger than
 s (desired similarity)

(Small b and large r)

LSH Summary

- Tune *M*, *b*, *r* to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents

What You Need to Know

- Three steps for finding similar documents
- Shingling: Convert documents to sets
 - We used hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
 - We used **similarity preserving hashing** to generate signatures with property $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - We used hashing to get around generating random permutations
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - ullet We used hashing to find **candidate pairs** of similarity \geq **s**

Questions?