

Alfor Future Workforce

Module 16: ML/DL 기술

intel digital readiness

법률 고지사항

- Intel® 디지털 준비 프로그램 및 Intel® AI for Future Workforce 프로그램은 Intel Corporation에서 개 발했습니다.
- © Intel Corporation. Intel, Intel 로고 및 기타 Intel 마크는 Intel Corporation 또는 자회사의 상표입니다. 다른 이름 및 브랜드는 다른 사람의 재산으로 주장될 수 있습니다. 프로그램 날짜와 수업 계획은 변경될 수 있습니다.
- Intel 기술에는 활성화된 하드웨어, 소프트웨어 또는 서비스 활성화가 필요할 수 있습니다.
- 모든 제품과 구성 요소는 안전을 보장 할 수 없습니다.
- 결과물은 추정되거나 시뮬레이션 되었습니다.
- Intel은 타사 데이터를 제어하거나 감사하지 않습니다. 정확성을 평가하려면 다른 출처를 참조해야 합니다.
- 당신이 투자한 비용과 그에 대한 결과물은 다를 수 있습니다.

학습 성과

이 모듈의 학습이 완료되면:

- 지도 학습, 비지도 학습 및 강화 학습의 차이점을 학습합니다.
- 강화 학습에서 얻은 지식을 문제에 적용합니다.

AI의 3개 도메인

통계 데이터

컴퓨터 비전

컴퓨터 비전

- cv 문제는 무엇인가?
- AI의 이 영역을 정의하는 것은 무엇인가?
- 큰 회사에서 진행 중인 cv 문제는 무엇이 있나?

컴퓨터 비전 사례 문제

- 이 이미지가 무엇인지 추측 할 수 있습니까?
- 쌀품질 검사는 많은 사람들이
 쌀에 파편과 기타 원치 않는
 품목을 제거하기 위해 쌀을 체로
 걸러내야 하는 노동 집약적인
 작업입니다.

컴퓨터 비전 데이터 세트

예제

Source: YE 2018, fig A1-A (ImageNet Dataset)

통계 데이터

- 통계 데이터 문제란 무엇인가?
- AI의 이 영역을 정의하는 것은 무엇인가?
- 큰 회사에서 진행 중인 통계 데이터 문제는 무엇이 있나?

통계 데이터 사례 문제

- 이 이미지에 대해 무엇을 알 수 있습니까?
- 모듈 11의 유지 보수 예측 예제를 기억하십니까? 그 예에서 항공기 센서 데이터를 사용하여 센서에 결함이 있는지 아닌지 감지했습니다.

통계 데이터

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Source: Tom M,. Mitchell Machine Learning(free)

자연어 처리 (Natural Language Processing)

- NLP 문제는 무엇인가?
- AI의 이 영역을 정의하는 것은 무엇인가?
- 큰 회사에서 진행 중인 NLP 문제는 무엇이 있나?

NLP 사례 문제

- Google에서 유사한 이미지를 검색해 보셨습니까?
- 유사도 탐지 모델을
 사용하면 주어진 이미지와
 유사한 이미지를 찾을 수
 있으므로 검색 엔진의 검색
 시간을 크게 줄일 수
 있습니다.

NLP 데이터 집합 예제

Tourist: ACTION:TURNRIGHT ACTION:TURNRIGHT

Guide: Hello, what are you near?

Tourist: ACTION:TURNLEFT ACTION:TURNLEFT ACTION:TURNLEFT

Tourist: Hello, in front of me is a Brooks Brothers

Tourist: ACTION:TURNLEFT ACTION:FORWARD ACTION:TURNLEFT ACTION:TURNLEFT

Guide: Is that a shop or restaurant?

Tourist: ACTION:TURNLEFT

Tourist: It is a clothing shop.

Tourist: ACTION:TURNLEFT

Guide: You need to go to the intersection in the northwest corner of the map

Tourist: ACTION: TURNLEFT

Tourist: There appears to be a bank behind me.

Tourist: ACTION: TURNLEFT ACTION: TURNLEFT ACTION: TURNRIGHT ACTION: TURNRIGHT

Guide: Ok, turn left then go straight up that road

Tourist: ACTION:TURNLEFT ACTION:TURNLEFT ACTION:TURNLEFT ACTION:FORWARD ACTION:TURNRIGHT

ACTION:FORWARD ACTION:FORWARD ACTION:TURNLEFT ACTION:TURNLEFT ACTION:TURNLEFT

Guide: There should be shops on two of the corners but you

need to go to the corner without a shop.

Tourist: ACTION:FORWARD ACTION:FORWARD ACTION:FORWARD ACTION:TURNLEFT ACTION:TURNLEFT

Guide: let me know when you get there.
Tourist: on my left is Radio city Music hall

Source: Facebook opensource dataset for NLP

Al 모델 유형

Al for Future Workforce

AI, ML 및 DL의 차이점

- AI 컴퓨터가 인간의 지능을 모방할 수 있는 모든 기술
- ML- 기계가 경험이 있는 작업에서 개선할 수 있는 AI의 하위 집합
- DL- 소프트웨어가 방대한 양의 데이터로 작업을 수행하도록 스스로 훈련할 수 있게 해주는 ML의 하위 집합

지도학습 VS 비지도 학습

지도학습	비지도학습	
레이블이 지정된 데이터를 처리	레이블이 지정되지 않은 데이터 처리	
품목 가격과 같은 과거의 추세 에 의존하는 문제를 해결하는 데 유용	실험 장치의 데이터에서 알 수 없는 패턴을 찾는 데 유용	
필요한 컴퓨팅 성능이 더 간단	필요한 컴퓨팅 성능이 더 큼	

모델링유형

<u>링크1</u> <u>링크2</u> <u>링크3</u>

	분류	회귀	군집화
학습 유형	지도 학습	지도 학습	비지도 학습
데이터 유형	레이블 지정된 범주형	레이블된 숫자	레이블이 없는
<u>응</u>	Class A Class B	5.5 5.0 4.5 > 4.0 3.5 3.0 2.5 0.0 0.2 0.4 0.6 0.8 1.0	

이제 강화 학습을 시작합시다!

강화 학습이란 무엇인가?

한 걸음 뒤로 물러서서 비유로이 해 봅시다!

NLP 사례 문제

- 이 경우 치즈는 보상이며, 쥐는 에이전트이며 미로는 환경이다.
- 쥐는 치즈로 가는 길을 선택해야 한다.
- 쥐는 잘못된 모든 길을 기억해야 한다. 그래서 다시 그곳에 가지 않도록 해야 한다.
- 이것은 쥐가 보상에 점점 더 가까이 다가갈 수 있도록 도와준다.

강화 학습과 관련된 5가지 용어

- 상태 State
- 에이전트 Agent
- 동작 Action
- 보상 Reward
- 처벌 Punishment

다음 용어를 유추하여 이해합시다:

- 상태: 이 용어는 미로에서 쥐의 현재 위치를 나타냅니다. 미로 속의 임의의 위치가 될 수 있다.
- 에이전트: 여기 우리의 에이전트는 쥐 입니다.
- 행동: 쥐가 취해야 할 행동은 치즈를 향해 올바른 경로로 움직이는 것이다.
- 보상: 보상은 맛있는 치즈입니다.
- 처벌: 처벌은 쥐가 치즈를 전혀 얻지 못하는 것이 될 수 있습니다.
- 환경: 임의 경로가 있는 미로입니다.

팩맨의 도움으로 이것이 실제로 어떻게 작동하는지 이해해보자!

팩맨에서의 심층 강화 학습

Tycho Vander Oderaa. (2016, June 23). Deep reinforcement learning using pac-man' [Video]. YouTube. https://www.youtube.com/watch?v=QilHGSYbjDQ

이제 강화 학습에 대한 아이디어를 얻었으므로 Q-Learning에 대해 조금 더 자세히 알아보겠습니다.

Q-러닝 이란?

- Q-러닝은 Model Free 형태의 강화 학습입니다. 기본적으로 이전에 수행한 작업의 <u>품질</u>을 학습합니다.
- Q-러닝 알고리즘은 이제 어떤 상황에서 어떤 조치를 취할지 현명하게 결정할 수 있습니다.
- 우리의 비유를 통해, 이제 쥐는 더 똑똑해졌고 <u>어떤</u> 미로에서도 치즈의 위치를 알아낼 수 있습니다.

강화 학습과 어떻게 다른가요?

- Q-러닝은 강화 학습의 유사한 원칙에 따라 작동하지만, 추가로 행동 대 보상 비율을 기록합니다. 그것은 강화 학습의 탐욕스러운 형태입니다.
- 어떤 행동이 보상을 극대화하고 어떤 행동이 보상을 가져 오는데 도움이 되지 않는지 기록합니다. 이것이 Q-러닝의 고유한부분입니다.
- 만약 쥐가 치즈를 가져오기 위해 Q-러닝을 사용한다면, 그것은 가장 짧은 시간에 치즈를 얻는 결과를 가져올 가장 짧은 경로를 선택할 것입니다.

자기 주도 학습

노트북: Reinforcement Learning

주요 학습 포인트

강화 학습

- 1. 강화 학습의 실제 응용 프로그램은 무엇입니까?
- 2. Q-러닝은 어떻게 수행하나요?
- 3. 강화 학습과 관련된 중요한 용어는 무엇입니까?

이제 강화 학습이 실제 비즈니스에 어떻게 도움이 되는지 알아보겠습니다.

동작 인식 로봇

심층 강화 학습을 통한 사회적 인식 모션 계획

복습

intel digital readiness

오늘 배운 내용 중 개인적으로 유용하다고 생각되는 한 가지를 공유해 보세요!

여러분이 오늘 사용한 새로운 기술 중하나를 공유해 보세요!

오늘 배운 내용으로 하고 싶은/구축하고 싶은 것 한 가지를 공유해 보십시오!

배운 것을 어떻게 적용하겠습니까?

학습 성과

이 모듈의 학습이 완료되면:

- 지도 학습, 비지도 학습 및 강화 학습의 차이점을 학습합니다.
- 강화 학습에서 얻은 지식을 문제에 적용합니다.

적용

- 오늘 배운 것을 어떻게 적용하고 싶습니까?
- 강화 학습에서 가장 흥미로운 점은 무엇입니까?,
- 강화 학습이 미래에 어떻게 작동할 것으로 생각합니까?

