УРАЛЬСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Кафедра физики

OT4ET

по лабораторной работе №1 «Определение плотности твердых тел правильной формы»

Студент(ка)	
Группа	
Преподаватель	
Лата	

1. Расчетная формул	1.	Расчетная	формула
---------------------	----	-----------	---------

$$\langle \rho \rangle = \frac{4m}{\pi \langle d \rangle^2 \langle h \rangle},$$

где $<\!\!\rho\!\!>\!-$; m- ; $<\!\!h\!\!>\!-$.

2. Средства измерений и их характеристики

Наименование	Предел	Цена деления	Предел
средства	измерений или	шкалы	основной
измерения	номинальное		погрешности
	значение		$\theta_{ m och}$
Весы	200 г.	0,001 г.	0,001 г.
Микрометр			
линейная	25,0 мм	0,5 мм	4 мкм.
круговая	0,5 мм	0,01 мм	
Штангенциркуль	250 мм.	0,05 мм.	0,05 мм.

Образец № ...

3. Результаты измерений

3.1. Измерение массы образца

$$m = \dots$$
 Γ ; $\Delta_m = \theta_m = 1, 1 \cdot \sqrt{\theta_{\text{och}}^2 + \theta_{\text{otc}}^2} = \dots \Gamma$.

3.2. Измерение диаметра образца

d_i MM	$(d_i - \langle d \rangle)$, mm	$(d_i - \langle d \rangle)^2$, MM ²

$$< d> = ...$$
 MM. $\sum_{i=1}^{n} (d_i - < d>)^2 = ...$ MM².

Среднее квадратичное отклонение:

$$S_{< d>} = \sqrt{\frac{\displaystyle\sum_{i=1}^{n} (d_i - < d>)^2}{n(n-1)}} = \dots$$
 MM.

Граница случайной погрешности

$$\varepsilon_d = t_{P,n} S_{< d>} = \dots MM,$$

где $t_{P,n}-$ коэффициент Стьюдента для числа измерений n и доверительной вероятности P=0.95.

Граница неисключенной систематической погрешности

$$\theta_d = \theta_{\text{och}} = \dots$$
 MM

Граница полной погрешности результата измерения диаметра

$$\Delta_d = \sqrt{\varepsilon_d^2 + \theta_d^2} = \dots \qquad \text{MM.}$$

Результат измерения диаметра:

$$<\!d>=\dots$$
 MM,
$$\Delta_d = \dots$$
 MM, $P=0.95$.

3.3. Измерение высоты образца

h_i , MM	$(h_i - < h >), MM$	$(h_i - < h >)^2$, mm ²

$$< h> = ...$$
 MM, $\sum_{i=1}^{n} (h_i - \langle h \rangle)^2 = ...$ MM².

Среднее квадратическое отклонение

$$S_{< h>} = \sqrt{\frac{\sum_{i=1}^{n} (h_i - \langle h \rangle)^2}{n(n-1)}} = \dots MM.$$

Граница случайной погрешности

$$\varepsilon_h = t_{P_n} S_{< h>} = \dots$$
 MM.

Граница неисключенной систематической погрешности

$$\theta_h = \theta_{\text{och}} = \dots$$
 MM

Граница полной погрешности результата измерения высоты

$$\Delta_h = \sqrt{\varepsilon_h^2 + \theta_h^2} = \dots$$
 MM.

Результат измерения высоты:

$$< h > = ...$$
 MM,

$$\Delta_h = \dots$$
 MM, $P = 0.95$.

4. Расчет искомой величины в СИ:

5. Оценка границы относительной погрешности результата измерения плотности:

$$\gamma = \frac{\Delta_{\rho}}{\langle \rho \rangle} = \sqrt{\left(\frac{\Delta_{m}}{m}\right)^{2} + \left(2\frac{\Delta_{d}}{\langle d \rangle}\right)^{2} + \left(\frac{\Delta_{h}}{\langle h \rangle}\right)^{2}}$$

$$= \sqrt{\frac{\Delta_{\rho}}{\langle \rho \rangle}} = \sqrt{\frac{\Delta_{m}}{\langle h \rangle}} = \frac{1}{\sqrt{\frac{\Delta_{m}}{\langle h \rangle}}} = \frac{1}{\sqrt{\frac{\Delta_{m}}{\langle h \rangle}}}} = \frac{1}{\sqrt{\frac{\Delta_{m}}{\langle h \rangle}}} = \frac{1}{\sqrt{\frac{\Delta_{m}}{\langle h \rangle}}} = \frac{1}{\sqrt{\frac{\Delta_{m}}{\langle h \rangle}}} = \frac{1}{\sqrt{\frac{\Delta_{m}}{\langle h \rangle}}} = \frac{1}{\sqrt{\frac{\Delta_{m}}{\langle h \rangle}}}} = \frac{1}{\sqrt{\frac{\Delta_{m}}{\langle h \rangle}}} = \frac{1}{\sqrt{\frac$$

6. Оценка границы абсолютной погрешности результата измерения плотности:

$$\Delta_{\rho} = \gamma < \rho > = \dots K\Gamma/M^3, \qquad P = 0.95.$$

7. Окончательный результат:

$$\rho = (\langle \rho \rangle \pm \Delta_{\rho}) = (\dots \pm \dots)$$
 κΓ/M³, $P = 0.95$.

8. Выводы.