

工程力学

第 6 章

轴向拉伸和压缩

第六章 轴向拉伸和压缩

- 6.1 轴向拉伸和压缩的概念及实例
- 6.2 轴向拉伸(或压缩)时横截面上的内力和应力
- 6.3 轴向拉伸(或压缩)时斜截面上的内力和应力
- 6.4 材料在轴向拉伸和压缩时的力学性能
- 6.5 许用应力、安全系数和强度条件
- 6.6 轴向拉伸(或压缩)时的变形
- 6.7 轴向拉伸(或压缩)时的弹性变形能
- 6.8 杆件拉伸、压缩的超静定问题
- 6.9 应力集中的概念

6.1 轴向拉伸和压缩的概念及实例

6.1 轴向拉伸和压缩的概念及实例

6.1 轴向拉伸和压缩的概念及实例

二. 外力

外力作用特点:

力通过轴线

变形特点(主要):

沿轴线方向伸长或缩短

受力简图:

一. 横截面上的内力

截面法:

1.截 2.取 (任取) 3.代 4.平

$$F \longrightarrow F_{N}$$

$$\sum F_{x} = 0$$
 $F_{N} = F$

说明

- $1. F_N$ 为内力,因过轴线,称轴力
- 2. 轴力 F_N 的符号规定: 拉为正 压为负

轴力图

当杆件受多个外力作用时,各段的内力将发生变化,为了明显地表现出轴力的大小、正负,引出内力图

轴力图的画法

例 1 已知: F_1 =2.62kN F_2 =1.3kN F_3 =1.32kN 试判断危险截面(画轴力图)

解: 1.用截面法求内力

$$F_{\mathbf{N}_1} + F_1 = 0$$

$$F_{N1} = -F_1$$
 压力

$$F_{N_2} + F_3 = 0$$

$$F_{N2} = -F_3$$
 压力

2. 画轴力图:

二. 横截面上的应力

 $A_2 > A_1, F$ 相同,哪个危险? $A_2 > A_1, F_2 > F_1$, 哪个安全?

公式推导

1.实验观察: 直线平移

2.推理: 面平移

3.假设: 平面假设 $\varepsilon = C_1$, $\sigma = C_2$

4. 平衡方程: $F_N = \int_A \sigma dA = \sigma \int_A dA = \sigma A$

$$\sigma = \frac{F_{\rm N}}{A}$$

说明

- 1. 外力作用线必须与杆件轴线重合。
- 2. 若轴力沿轴线变化,先作轴力图,再求各面上的应力。
- 3. 若截面尺寸沿轴线缓慢变化,公式近似为:

$$\sigma(x) = \frac{F_{\rm N}(x)}{A(x)}$$

4. 公式只在距外力作用点较远处才适用。

圣维南原理:

加力点附近区域应力分布比较复杂,公式不适用。当a > b公式仍适用。

例2. 一悬臂吊车,载荷 F=15kN, AC=1.9m, BC=0.8m. 当F 移到A点时, 求AB杆横截面上的应力。

解: 1.求外力

$$\sum F_{y} = 0 \quad F_{AB} \sin \alpha - F = 0 \quad \text{#F} \quad F_{AB} = \frac{F}{\sin \alpha}$$

$$\sin \alpha = \frac{0.8}{\sqrt{0.8^{2} + 1.9^{2}}} = 0.388 \quad F_{AB} = \frac{15}{0.388} = 38.7 \text{ kN}$$

2. 求内力 $F_N = F_{AB} = 38.7 \text{k N}$

$$F_{\rm N} = F_{AB} = 38.7 \, \rm k \, N$$

3. 求应力

$$\sigma_{AB} = \frac{F_{N}}{A} = \frac{F_{AB}}{A} = \frac{38.7 \times 10^{3}}{\frac{\pi}{4} \cdot (20 \times 10^{-3})^{2}} = 123 \text{ MPa}$$

$$\sigma_{AB} = 123 \,\mathrm{MPa}$$

斜面上内力:

$$F_{\alpha} = F$$

斜面上全应力

$$p_{\alpha} = \frac{F_{\alpha}}{A_{\alpha}} = \frac{F}{\frac{A}{\cos \alpha}} = \frac{F \cos \alpha}{A} = \sigma \cos \alpha$$

应力分解:

$$\sigma_{\alpha} = p_{\alpha} \cos \alpha$$

斜面上正应力 $\sigma_{\alpha} = \sigma \cos^2 \alpha$

$$\tau_{\alpha} = p_{\alpha} \sin \alpha = \sigma \cos \alpha \sin \alpha$$

斜面上切应力 $\tau_{\alpha} = \frac{\sigma}{2} \sin 2\alpha$

讨论

- $1. \sigma_{\alpha}$, τ_{α} 是三角函数
- $2. \sigma_{\alpha}$, τ_{α} 有极值
- 3. 符号规定:

4.列表找出 σ_{\max} , τ_{\max}

α	$\sigma_{\!\scriptscriptstyle{lpha}}$	$ au_{lpha}$	$\sigma_{ m max}$	$ au_{ ext{max}}$
00	σ	0	σ	
450	$\frac{\sigma}{2}$	$\frac{\sigma}{2}$		$\frac{\sigma}{2}$
900	0	0		
-450	$\frac{\sigma}{2}$	$-\frac{\sigma}{2}$		

结论

轴向拉压

 σ_{max} 发生在横截面

τ_{max}发生在与轴线成45⁰斜面上

粉笔拉伸、压缩破坏断口是什么样的?是什么应力引起的破坏?

前面计算的是构件所受到的工作载荷及工作应力,至于构件能否承受这些应力,要了解材料本身的性质,而了解材料的最好也是唯一的办法就是试验。

实验

实验条件: 常温、静载

实验设备: 万能实验机

标准试件: 国标

塑性材料 — 断裂前发生较大的塑性变形(如低碳钢)

脆性材料 — 断裂前发生较少的塑性变形(如铸铁)

实验设备: 万能实验机

拉、压实验属破坏性实验

观察实验过程 —— 试件、载荷(指针)、 $F-\Delta L$ 图的变化

比较 { 不同材料相同受力 } 材料的指标、相同材料不同受力 } 破坏形式

了解材料在拉、压时的力学性质

一、低碳钢的拉伸

塑性材料(钢)轴向拉伸的应力-应变图

四个阶段

1.弹性阶段

特点: 变形为弹性

oa 直线段内 $\sigma \propto \varepsilon$ $\sigma = \tan \alpha \varepsilon$

胡克定律 $\sigma = E\varepsilon$ E—弹性模量

力学指标: σ_{p} 比例极限

 $\sigma_{\rm e}$ 弹性极限

2. 屈服阶段

指针摆动,试件表面 出现45°划移线。

力学指标: σ_s 屈服极限

表达式:
$$\sigma_{\rm s} = \frac{F_{\rm s}}{A}$$

3.强化阶段

特点:大部分为塑性变形

卸载定律---直线规律

冷作硬化现象

力学指标: **5**强度极限

表达式: $\sigma_{\mathrm{b}} = \frac{F_{\mathrm{b}}}{A}$

4.颈缩阶段

特点: 大部分为塑性变形

局部颈缩 断口杯状

• What reason is the specimen broken?

如何区分塑性材料和脆性材料?

δ≥5% 为塑材材料 δ<5% 为脆材材料

伸长率
$$\delta = \varepsilon_f$$

二、其他塑性材料拉伸时的力学性质

不同: 多数塑性材料无明显屈服平台

共性: 有直线段,塑性变形较大,强度极限较高

条件屈服极限 $\sigma_{0,2}$:

产生0.2%的塑性变形所对应的应力。

三、铸铁拉伸

 σ - ε 微弯曲线,近似直线,

$$\sigma = E\varepsilon$$

 $\sigma_{\rm b}$ 较小。断口沿横截面,

平齐、粗糙

铸铁拉伸

: 什么应力引起的破坏?

四、压缩

1. 低碳钢压缩

与拉伸比较 $E_t \approx E_c = E$

$$\sigma_{\rm st} pprox \sigma_{\rm sc} = \sigma_{\rm s}$$

得不到 σ_{b_i} 压短而不断裂,

以屈服极限作为破坏依据。

2.铸铁压缩

$$\sigma_{
m tb} << \sigma_{
m cb}$$

断口沿与轴线大致 成45⁰面错开

6.4 材料在轴向拉伸和压缩时的力学性能

五、材料的塑性和脆性及其相对性

常温、静载下

塑性材料强度指标: 屈服极限 σ_s 和强度极限 σ_b

脆性材料的强度指标:强度极限 σ_{tb} 和 σ_{cb}

塑性材料的塑性指标高, $\delta \geq 5\%$

脆性材料的塑性指标低, $\delta < 5\%$

温度发生变化时,材料的性质也会随之发生改变

6.4 材料在轴向拉伸和压缩时的力学性能

温度影响

一、工作应力

构件受到的
$$\sigma = \frac{F_{\text{N}}}{A}$$

二、极限应力 $\sigma_{\rm u}$

材料不失效(破坏)所能承受的最大应力

塑性材料
$$\sigma_{\rm u} = \sigma_{\rm s}$$

脆性材料
$$\sigma_{\!\!\scriptscriptstyle u}$$
 $<$ $\sigma_{\!\!\scriptscriptstyle cb}$

三、安全系数与许用应力

安全系数
$$n > 1$$
, $n_s = 1.2 \sim 2.5$, $n_b = 2 \sim 3.5$

许用应力
$$[\sigma] = \frac{\sigma_{\rm u}}{n}$$

$$[\sigma_t] = \frac{\sigma_{tb}}{n_b}$$

塑性材料 $[\sigma] = \frac{\sigma_s}{n_s}$ 脆性材料 $[\sigma_c] = \frac{\sigma_{cb}}{n_b}$
 $[\sigma_c] = \frac{\sigma_{cb}}{n_b}$

$$\left[\sigma_{\rm c}\right] = \frac{\sigma_{\rm cb}}{n_{\rm b}}$$

四、强度条件

等直拉压杆
$$\sigma_{\max} = \frac{F_{\text{Nmax}}}{A} \le [\sigma]$$

五、强度条件可解决的三类问题:

1.校核:已知外力、截面、材料

$$\sigma \leq [\sigma]$$
 安全 $\sigma > [\sigma]$ 不安全

- 2.设计:已知外力、材料,可求 $A \ge \frac{F_N}{|\sigma|}$
- 3.确定许可载荷:已知截面 材料,可求 $[F] = A[\sigma]$

步骤

- 1. 外力分析 2.内力分析 (画 F_N 图, 得 F_{Nmax})
- 3.用 $\sigma_{\text{max}} = \frac{F_{\text{Nmax}}}{A} \leq [\sigma]$ 作校核、设计、确载计算。

例3 已知: 吊杆材料的许用应力, $[\sigma]=80$ MPa, 铁水包自重为8kN, 最多能容30kN重的铁水. 试校核吊杆的强度。

解: 1.吊杆外力
$$F = \frac{30+8}{2} = 19 \text{kN}$$

- 2. 吊杆内力 $F_{\rm N} = F = 19 \, {\rm kN}$
- 3.校核吊杆强度

$$\sigma_{\text{max}} = \frac{F_{\text{N}}}{A} = \frac{19 \times 10^3}{25 \times 50 \times 10^{-6}} = 15.2 \,\text{MPa}$$

$$\sigma_{\max} \leq [\sigma]$$

吊杆满足强度条件

例4 连杆AB接近水平,镦压力 F = 3.78MN,横截面为矩形 h:b = 1.4 $\sigma = 90$ MPa,试设计截面尺寸。

解: 1. 求杆AB的外力
$$F = 3.78$$
MN

2. 求轴力
$$F_N$$
 $F_N = F = 3.78 \,\text{MN}$

3. 由强度条件
$$\sigma_{\text{max}} = \frac{F_{\text{N max}}}{A} \leq [\sigma]$$

$$A \ge \frac{F_{\rm N}}{[\sigma]} = \frac{3.78 \times 10^6}{90 \times 10^6} = 0.42 \text{m}^2 = 420 \text{cm}^2$$

$$A = bh = 1.4b^2 = 420 \text{ cm}^2$$
 $b = 17.3 \text{ cm}$ $h = 24.3 \text{ cm}$

例5 木杆 $AC A_1 = 100 \text{cm}^2 \left[\sigma\right]_1 = 7 \text{MPa} 钢杆 AB A_2 = 6 \text{cm}^2 \left[\sigma\right]_2 = 160 \text{MPa}$

载荷在A处时,求许可吊重 [F]。

解: 1. 求杆AC和杆AB的外力

$$\sum F_x = 0$$
 $F_{AC} - F_{AB} \cos 30^0 = 0$

$$\sum F_{v} = 0$$
 $F_{AB} \sin 30^{\circ} - F = 0$

解得:
$$F_{AB} = \frac{F}{\sin 30^{\circ}}$$
, $F_{AC} = \frac{F}{\tan 30^{\circ}}$

2. 杆AB、AC 的轴力

$$F_{\mathrm{N}_{AC}} = F_{AC}$$
 $F_{\mathrm{N}_{AB}} = F_{AB}$

3. 由强度条件
$$\sigma_{\text{max}} = \frac{F_{\text{N max}}}{A} \leq [\sigma]$$
 确定[F]

$$\sigma_{AC} = \frac{F_{NAC}}{A_1} = \frac{F_{AC}}{A_1} = \frac{F_1}{\tan 30^0 A} \le [\sigma]_1$$
得 $F_1 \le [\sigma]_1 \tan 30^0 A_1$

$$[F]_1 = 7 \times 10^6 \times \frac{\sqrt{3}}{3} \times 100 \times 10^{-4} = 40.5 \text{ kN}$$

同理可得
$$[F]_2 = 48 \text{ kN}$$

许可吊重
$$[F] = 40.5 \,\mathrm{kN}$$

一.纵向变形和横向变形

纵向变形
$$\Delta l = l_1 - l$$
 纵向应变 $\varepsilon = \frac{\Delta l}{l}$

$$\varepsilon = \frac{\Delta l}{l}$$

横向变形 $\Delta b = b_1 - b$ 横向应变 $\varepsilon' = \frac{\Delta b}{b}$

试验表明:在线弹性范围内

$$\mu = \left| \frac{\varepsilon'}{\varepsilon} \right| \qquad \varepsilon' = -\mu \varepsilon$$

μ-泊松比(横向变形系数)

二. 胡克定律 (Hooke's law)

由实验知: $\sigma \leq \sigma_p$ $\sigma = E\varepsilon$ $\varepsilon = \frac{\sigma}{F}$

$$\sigma = E\varepsilon$$

$$\varepsilon = \frac{\sigma}{E}$$

当
$$\varepsilon = C$$
时 $\Delta l = \varepsilon l = \frac{\sigma}{E} l = \frac{F_{N} l}{EA}$

胡克定律的两种表达式:

$$\varepsilon = \frac{\sigma}{E}$$

$$\Delta l = \frac{F_{
m N} l}{EA}$$

EA—抗拉(压)刚度

说明

1.当 $F_{\rm N}$, EA 沿轴线为分段常数时

$$\Delta l = \sum_{i=1}^{n} \frac{F_{Ni} l_i}{E_i A_i}$$

2.当 $F_N(x)$, A(x)沿轴线变化时,取微段dx后再积分

例6 已知:
$$F_1 = 50 \,\mathrm{kN}$$
 $F_2 = 20 \,\mathrm{kN}$ $l_1 = 120 \,\mathrm{mm}$ $l_2 = l_3 = 100 \,\mathrm{mm}$ $A_1 = A_2 = 500 \,\mathrm{mm}^2$ $A_3 = 250 \,\mathrm{mm}^2$ $E = 200 \,\mathrm{GPa}$ 求: $u_B \,\varepsilon_{\mathrm{max}}$

解: 1. 求各段内力

$$F_2$$
 $F_{N_1} = 20 - 50 = -30 \text{kN}$ $F_{N_2} = 20 \text{kN}$ $F_{N_3} = 20 \text{kN}$

$$2.$$
求 u_B $u_B = \Sigma \Delta l_i$ Δl_i 有正负

$$\Delta l_1 = \frac{F_{N_1} l_1}{E_1 A_1} = \frac{-30 \times 10^3 \times 120 \times 10^{-3}}{200 \times 10^9 \times 500 \times 10^{-6}} = -0.036 \,\text{mm}$$

同理 $\Delta l_2 = 0.02 \,\mathrm{mm}$ $\Delta l_3 = 0.04 \,\mathrm{mm}$

$$\sum \Delta l_i = -0.036 + 0.02 + 0.04 = 0.024 \,\text{mm}$$
 $u_B = 0.024 \,\text{mm}$

 $3. 菜 \varepsilon_{\max}$

$$\mathcal{E}_i = \frac{\Delta l_i}{l_i}$$
 $\mathcal{E}_i = \frac{\sigma_i}{E} = \frac{F_i}{EA_i}$

$$\varepsilon_1 = \frac{\Delta l_1}{l_1} = \frac{-3.6 \times 10^{-5}}{120 \times 10^{-3}} = -3.0 \times 10^{-4}$$

同理
$$\varepsilon_2 = 2.0 \times 10^{-4}$$
 $\varepsilon_3 = 4.0 \times 10^{-4}$

$$\varepsilon_{\text{max}} = 4.0 \times 10^{-4}$$
 ε 量纲1

例7 如图所示, BDE为刚体, 杆AB材料为铝, E = 70GPa, 截面面积为 500mm². 杆CD材料为钢, E = 200GPa, 截面面积为600mm², 当结构受到 30kN的力作用时, 求: B, D和E点的位移。

6.6 轴向拉伸

解:对刚体BDE受力分析

$$\sum M_B = 0$$

$$0 = -30 \times 10^3 \times 0.6 + F_{CD} \times 0.2$$

$$F_{CD} = +90 \text{kN tension}$$

$$\sum M_D = 0$$

$$0 = -30 \times 10^{3} \times 0.4 - F_{AB} \times 0.2$$
$$F_{AB} = -60 \text{kN compression}$$

B点位移:

$$\delta_B = \frac{F_{NAB}l}{EA} = \frac{F_{AB}l}{EA}$$
$$= \frac{-60 \times 10^3 \times 0.3}{500 \times 10^{-6} \times 70 \times 10^9}$$
$$= -514 \times 10^{-6} \,\mathrm{m}$$

D点位移:

$$\delta_D = \frac{F_{NCD}l}{EA} = \frac{F_{CD}l}{EA}$$

$$= \frac{90 \times 10^3 \times 0.4}{600 \times 10^{-6} \times 200 \times 10^9}$$

$$= 300 \times 10^{-6} \text{ m}$$

$$\delta_D = 0.300 \text{ mm}$$

E点位移:

$$\frac{BB'}{DD'} = \frac{BH}{HD}$$

$$\frac{0.514}{0.300} = \frac{(200) - HD}{HD}$$

$$HD = 73.7 \text{ mm}$$

$$\frac{EE'}{DD'} = \frac{HE}{HD}$$

$$\frac{\delta_E}{0.300} = \frac{400 + 73.7}{73.7}$$

$$\delta_E = 1.928 \text{ mm}$$

$$\delta_E = 1.928 \text{ mm} \downarrow$$

例8 已知: F, ρ, l, A, E 求: $\sigma_{\text{max}} \Delta l$

解: 内力计算 $F_N(x) = F + \rho gAx$

应力计算
$$\sigma(x) = \frac{F_N(x)}{A}$$

$$\sigma_{\text{max}} = \frac{F_{\text{Nmax}}}{A} = \frac{F + \rho gAl}{A} = \frac{F}{A} + \rho gl$$

变形计算

$$\Delta l = \int_{l} \frac{F_{N}(x) dx}{EA} = \int_{0}^{l} \frac{(F + \rho gAx)}{EA} dx = \frac{Fl}{EA} + \frac{\rho g l^{2}}{2E}$$

注意内力为x的函数

例9 已知: α , l, d, E, F 求: Δ_A

解:
$$1.$$
求外力 $F_1 = F_2 = \frac{F}{2\cos\alpha}$

2.求内力
$$F_{N1} = F_{N2} = F_1 = F_2$$

3.计算变形
$$\Delta l_1 = \Delta l_2 = \frac{F_{N_1} l}{EA}$$

4.位移分析
$$\Delta_A = \frac{\Delta l_2}{\cos \alpha} = \frac{Fl}{2EA\cos^2 \alpha}$$

注意: 小变形条件的应用

6.7 轴向拉伸(或压缩)时的弹性变形能

一、变形能的概念和功能原理

不计其他能量损失

6.7 轴向拉伸或压缩时的弹性变形能

二、轴向拉压杆的变形能及比能

对线弹性体:外力作用点位移 $\delta = \Delta l$

$$U = W = \frac{1}{2}F\delta = \frac{1}{2}F\Delta l$$

$$\Delta l = \frac{F_{\rm N}l}{EA}$$
 古女 $U = \frac{F_{\rm N}^2 l}{2EA}$

比能
$$u = \frac{1}{2}\sigma\varepsilon = \frac{\sigma^2}{2E}$$

利用功能原理可求力的作用点位移

6.7 轴向拉伸(或压缩)时的弹性变形能

例10 杆BD外径90cm, 壁厚2.5mm, l_{BC} =3m ,E=30GPa . BC是两条钢索, 面积 171.82mm², EI=177GPa, F=30kN. 求: δ_B

解: 1. 求外力

$$\sum F_x = 0$$
 $F_{BD} \sin 45^{\circ} - F_{BC} \sin 75^{\circ} = 0$

$$\sum F_{y} = 0$$
 $F_{BD} \cos 45^{\circ} - F_{BC} \cos 75^{\circ} - F = 0$

解得
$$F_{BC} = 1.41F$$
 $F_{BD} = 1.93F$

2. 求内力 $F_{N_{BC}}$, $F_{N_{BD}}$

$$F_{N_{BC}} = 1.41F$$
 $F_{N_{BD}} = 1.93F$

2.7 轴向拉伸(或压缩)时的弹性变形能

$$3. 菜 U \quad U = U_{BC} + U_{BD}$$

$$U = U_{BC} + U_{BD} = \frac{F_{N_{BC}}^{2} l_{BC}}{2E_{1}A_{1}} + \frac{F_{N_{BD}}^{2} l_{BD}}{2EA_{2}}$$

其中
$$A_1 = 344 \text{mm}^2$$
, $A_2 = 687 \text{mm}^2$

$$4. 求 W, 代入W = U$$

$$W = \frac{1}{2} F \delta_{B} \qquad \frac{1}{2} F \delta_{B} = \frac{F_{N_{BC}}^{2} l_{BC}}{2E_{1} A_{1}} + \frac{F_{N_{BD}}^{2} l_{BD}}{2E A_{2}}$$

解得
$$\delta_B = \frac{1}{F} \left(\frac{F_{BC}^2 l_{BC}}{E_1 A_1} + \frac{F_{BD}^2 l_{BD}}{E A_2} \right) = 4.48 \times 10^{-3} \,\mathrm{m}$$

一、超静定的概念

超静定: 未知力数 > 独立平衡方程数

称超静定问题 结构称超静定结构

二、超静定问题的解法(步骤)

1.判定次数

超静定次数=全部未知力数-有效静力平衡方程数

$$n = 2 - 1 = 1$$

$$n = 3 + 6 - 2 \times 4 = 1$$

2.列出静力平衡方程(外力—内力)

$$F_1 + F_2 = F$$

3.补充方程

补充方程数 = 超静定的次数.

补充方程

$$\frac{F_1 l_1}{EA} - \frac{F_2 l_2}{EA} = 0$$

几何方程 $\Delta l_1 + \Delta l_2 = 0$

物理方程
$$\begin{cases} \Delta l_1 = rac{F_1 l_1}{EA} \ \Delta l_2 = -rac{F_2 l_2}{EA} \end{cases}$$

4.联立求解平衡方程和补充方程,即可求出全部未知力。

例11 已知:
$$l_1 = l_2$$
 $A_1 = A_2$ $E_1 = E_2$ E_3A_3

解: 1.一次超静定

2.平衡方程:

$$\sum F_x = 0 \qquad F_{N_1} \sin \alpha - F_{N_2} \sin \alpha = 0$$

$$\sum F_y = 0 \qquad F_{N_3} + F_{N_1} \cos \alpha + F_{N_2} \cos \alpha - F = 0$$

3.几何方程:
$$\Delta l_3 \cos \alpha = \Delta l_1 = \Delta l_2$$

4.物理方程:
$$\Delta l_1 = \frac{F_{N_1} l_1}{E_1 A_1}$$
 $\Delta l_2 = \frac{F_{N_2} l_2}{E_2 A_2}$ $\Delta l_3 = \frac{F_{N_3} l_3}{E_3 A_3}$

$$F_{N_1} \sin \alpha - F_{N_2} \sin \alpha = 0$$

$$F_{N_3} + F_{N_1} \cos \alpha + F_{N_2} \cos \alpha - F = 0$$

补充方程:
$$\frac{F_{N_3}l_3}{E_3A_3}\cos\alpha = \frac{F_{N_1}l_1}{E_1A_1\cos\alpha}$$

5.联立求解平+补

解得:
$$F_{N_1} = F_{N_2} = \frac{F}{2\cos\alpha + \frac{E_3A_3}{E_1A_1\cos^2\alpha}}$$

$$F_{N_3} = \frac{F}{1 + 2\frac{E_1 A_1}{E_3 A_3} \cos^3 \alpha}$$

讨论

1.超静定结构的特点

超静定结构的内力与该杆的刚度及各杆的刚度有关, 超静定结构的内力与材料有关, 这是与静定结构的最大差别。

内力与自身的刚度成正比,这使力按刚度来合理分配,这也 是超静定结构的最大特点—合理分配载荷。

2.变形分析中要画出变形图

变形的可能性

变形的一般性

变形与受力的一致性

例13 AB为刚体,杆1、2、3的长度l、EA均相等。

求: 三杆轴力。

解: 1. 结构为1次超静定;

- 3. 几何方程 $\Delta l_1 + \Delta l_3 = 2\Delta l_2$
- 4. 物理方程 $\Delta l_i = \frac{F_{Ni}l_i}{E_iA_i}$

由上两式,得
$$\frac{F_{N_1}l_1}{E_1A_1} + \frac{F_{N_3}l_3}{E_3A_3} = \frac{2F_{N_2}l_2}{E_2A_2}$$
 (b)

解(a) (b)得
$$F_{N_1} = -\frac{F}{6}$$
, $F_{N_2} = \frac{F}{3}$, $F_{N_3} = \frac{5F}{6}$

三、装配应力

1.什么叫装配应力?

在超静定中,由于制造误差,使结构在未受力之前就使结构中存在的应力(初应力)称为装配应力。

2. 装配应力的计算方法

解法与解超静定相同。

3. 装配应力的利弊

利: 靠装配应力紧配合; 产生与受力相反的预应力;

害: 要控制误差,避免由于装配而产生的附加应力。

例12 已知1, 2杆与3杆夹角 α , $E_1A_1=E_2A_2$, $l_1=l_2$, 3杆刚度为 E_3A_3 , 设计杆长为l, $\delta << l$, 加工时实际尺寸短了.求:强行装配后, 各杆所产生的装配应力。

解: 1. 平衡方程

$$\sum F_{x} = 0 \qquad F_{N_{1}} \sin \alpha - F_{N_{2}} \sin \alpha = 0$$

$$\sum F_{y} = 0 \qquad F_{N_{3}} - F_{N_{1}} \cos \alpha - F_{N_{2}} \cos \alpha = 0$$

- 2. 几何方程 $\Delta l_3 + \Delta = \Delta l_3 + \frac{\Delta l_1}{\cos \alpha} = \delta$
- 3. 物理方程 $\Delta l_i = \frac{F_{N_i} l_i}{E_i A_i}$

解得
$$F_{N_1} = F_{N_2} = \frac{F_{N_3}}{2\cos\alpha}$$
, $F_{N_3} = \frac{E_3 A_3 \delta}{l(1 + \frac{E_3 A_3}{2E_1 A_1 \cos^3\alpha})}$

四、温度应力

1.什么叫温度应力?

由于温度的变化而引起的应力。

2.温度应力的解法

与解超静定问题相同。

例14 已知:E=200GPa, $\alpha=12.5\times10^{-6}$ /C° 求: $\Delta T=40$ C° $\sigma=?$

解: 几何方程 $\Delta l_{\mathrm{T}} = \Delta l_{\mathrm{N}}$

物理方程 $\Delta l_{\mathrm{T}} = \alpha l \Delta T$

$$\Delta l_{\rm N} = \frac{F_{\rm N}l}{EA} = \frac{Fl}{EA}$$

补充方程
$$\alpha l \Delta T = \frac{Fl}{EA}$$

解得
$$\sigma = E\alpha \Delta T = 100 MP_a$$

40°度的温度变化产生较大应力。设计中必须考虑温度应力

例15 AB为刚体,钢杆AD的 $E_1 = 200$ GPa, $A_1 = 100$ mm²,线膨胀系数 $\alpha_1 = 12.5 \times 10^{-6}$ °C;铜杆EB的 $E_2 = 100$ GPa, $A_2 = 200$ mm², $\alpha_2 = 16.5 \times 10^{-6}$ °C 求温度升高30°C时两杆的轴力。

解: • 一次超静定

• 平衡方程
$$\sum M_C = 0$$
 240 $F_{N_1} + 150F_{N_2} = 0$

$$\frac{\Delta l_1}{\Delta l_2} = \frac{240}{150} = \frac{8}{5}$$

$$\Delta l_1 = \frac{F_{N_1} l_1}{E_1 A_1} + \alpha_1 \Delta T l_1, \quad \Delta l_2 = \frac{F_{N_2} l_2}{E_2 A_2} - \alpha_2 \Delta T l_2$$

得补充方程

$$124 + 0.0165F_{N_1} = 1.6 \times (0.011F_{N_2} - 109)$$

联立求解、得

$$F_{\rm N1} = -6.68 \,\mathrm{kN}$$
, $F_{\rm N2} = 10.7 \,\mathrm{kN}$

6.9 应力集中的概念

一、应力集中现象

由于构件外形、截面尺寸突然变化而引起局部应力急剧增大的现象。

6.9 应力集中的概念

二、理论应力集中系数

理论应力集中系数可衡量应力集中程度。

三、应力集中对构件强度的影响

应力集中是一个很复杂而且很重要的问题,其影响的程度与材料性质,载荷的形式都有密切关系。

6.9 应力集中的概念

静载荷作用下

塑性材料:有屈服,可不考虑应力集中

脆性材料:无屈服,在应力集中处首先断裂

动载荷作用下

不论什么材料都必须考虑应力集中的影响,而且往往是造成构件破坏的主要根源。

Thank you!