```
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read csv("Mall Customers.csv")
features = ['Annual Income (k$)','Spending Score (1-100)']
X = df[features].values
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n clusters=i)
    kmeans.fit(X)
    wcss.append(kmeans.inertia )
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
kmeans.py:1412: FutureWarning: The default value of `n init` will
change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
  super(). check params vs input(X, default n init=10)
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
 warnings.warn(
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
_kmeans.py:1412: FutureWarning: The default value of `n_init` will
change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
  super(). check params vs input(X, default n init=10)
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
  warnings.warn(
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
kmeans.py:1412: FutureWarning: The default value of `n init` will
change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
  super()._check_params_vs_input(X, default n init=10)
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
 warnings.warn(
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
```

```
_kmeans.py:1412: FutureWarning: The default value of `n_init` will
change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
  super(). check params vs input(X, default n init=10)
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
 warnings.warn(
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
kmeans.py:1412: FutureWarning: The default value of `n init` will
change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
  super(). check params vs input(X, default n init=10)
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
  warnings.warn(
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
kmeans.py:1412: FutureWarning: The default value of `n init` will
change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
  super(). check params vs input(X, default n init=10)
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
  warnings.warn(
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
kmeans.py:1412: FutureWarning: The default value of `n init` will
change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
  super(). check params vs input(X, default n init=10)
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
 warnings.warn(
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
_kmeans.py:1412: FutureWarning: The default value of `n init` will
change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
  super(). check params vs input(X, default n init=10)
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
```

```
kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
 warnings.warn(
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
kmeans.py:1412: FutureWarning: The default value of `n init` will
change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
  super(). check params vs input(X, default n init=10)
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
  warnings.warn(
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
_kmeans.py:1412: FutureWarning: The default value of `n init` will
change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
  super(). check params vs input(X, default n init=10)
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
 warnings.warn(
plt.plot(range(1, 11), wcss)
plt.title('Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```



```
kmeans = KMeans(n clusters=5)
y means = kmeans.fit predict(X)
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
_kmeans.py:1412: FutureWarning: The default value of `n_init` will
change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
  super(). check params vs input(X, default n init=10)
C:\Users\abyji\anaconda3\Lib\site-packages\sklearn\cluster\
kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on
Windows with MKL, when there are less chunks than available threads.
You can avoid it by setting the environment variable
OMP NUM THREADS=1.
 warnings.warn(
for i in range(5):
    cluster_data = df[y_means == i]
    print(f"\nCluster {i+1} characteristics:")
    print(cluster data[features].describe())
Cluster 1 characteristics:
       Annual Income (k$) Spending Score (1-100)
```

count 81.000000 81.000000 mean 55.296296 49.518519 std 8.988109 6.530909 min 39.000000 34.000000 25% 48.000000 50.000000 50% 54.000000 50.000000 75% 62.000000 55.00000 max 76.000000 55.00000 Count 23.000000 23.00000 mean 26.304348 20.913043 std 7.893811 13.017167 min 15.000000 3.000000 25% 19.500000 9.500000 50% 25.000000 17.000000 75% 33.000000 33.500000 max 39.000000 17.114286 std 16.399067 9.952154 min 70.000000 16.000000 25% 77.500000 10.00000 25% 77.500000 10.00000 25% 77.500000 39.000000 75% 97.500000 39.000
Annual Income (k\$) Spending Score (1-100) count 23.000000 mean 26.304348 20.913043 std 7.893811 13.017167 min 15.000000 3.000000 25% 19.500000 17.000000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000 30.00000000
Annual Income (k\$) Spending Score (1-100) count 35.000000 35.000000 mean 88.200000 17.114286 std 16.399067 9.952154 min 70.0000000 10.000000 10.000000 50% 85.000000 16.000000 23.500000 max 137.000000 39.000000 39.000000 Cluster 4 characteristics: Annual Income (k\$) Spending Score (1-100) count 39.000000 39.000000 mean 86.538462 82.128205 std 16.312485 9.364489 min 69.000000 63.000000 25% 75.500000 74.500000 50% 79.000000 83.000000 75% 95.000000 90.0000000
Annual Income (k\$) Spending Score (1-100) count 39.000000 39.000000 mean 86.538462 82.128205 std 16.312485 9.364489 min 69.000000 63.000000 74.500000 50% 79.000000 83.000000 75% 95.000000 90.0000000
Cluster 5 characteristics:

```
75%
                32.250000
                                         85.750000
                39.000000
                                         99.000000
max
plt.scatter(X[y means == 0,0],X[y means ==
0,1],color='blue',label='Cluster 1')
plt.scatter(X[y means == 1,0], X[y means ==
1,1],color='pink',label='Cluster 2')
centroids = kmeans.cluster centers
plt.scatter(centroids[0, 0], centroids[0, 1], marker='*',
color='yellow', label='Centroid 1')
plt.scatter(centroids[1, 0], centroids[1, 1], marker='*',
color='yellow', label='Centroid 2')
plt.title('Clusters of customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
```

Clusters of customers


```
df["Target"]=y_means
Clustered df=df
Clustered df.head()
   CustomerID Gender Age Annual Income (k$) Spending Score (1-100)
Target
            1
                 Male
                                             15
                                                                     39
0
                        19
1
1
            2
                 Male
                        21
                                             15
                                                                     81
4
2
            3
               Female
                        20
                                             16
                                                                      6
1
3
              Female
                        23
                                             16
                                                                     77
4
4
               Female
                        31
                                             17
                                                                     40
1
X=Clustered_df.iloc[:,1:5]
y=Clustered_df.iloc[:,-1]
y.head()
0
     1
1
     4
2
     1
3
     4
4
     1
Name: Target, dtype: int32
from sklearn.model selection import train test split
from sklearn.preprocessing import LabelEncoder, StandardScaler
le=LabelEncoder()
X['Gender'] = le.fit transform(X['Gender'])
X_train, X_test, y_train, y_test = train_test_split(X, y,
test size=0.2, random state=42)
sc=StandardScaler()
X_train=sc.fit_transform(X_train)
X test=sc.transform(X test)
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import accuracy score
gbdt = GradientBoostingClassifier(n estimators=50, random state=2)
gbdt.fit(X train,y train)
y_pred=gbdt.predict(X test)
accuracy = accuracy score(y test, y pred)
accuracy
```

```
0.975
y pred=gbdt.predict(X test)
y_pred
array([0, 4, 1, 2, 2, 0, 0, 2, 2, 0, 0, 2, 3, 0, 2, 3, 0, 2, 0, 0, 2,
       2, 0, 0, 0, 0, 0, 3, 0, 4, 1, 0, 0, 2, 0, 3, 3, 2, 0])
prediction = pd.DataFrame({'Original Value': y_test, 'Predicted
Value': y pred})
display(prediction)
     Original Value
                       Predicted Value
95
15
                    4
                                      4
                    1
                                      1
30
158
                    2
                                      2
                    2
                                      2
128
                    0
115
                                      0
                    0
                                      0
69
                    2
                                      2
170
                    2
                                      2
174
                    4
                                      0
45
                    0
66
                                      0
                                      2
182
                    2
                   3
                                      3
165
                    0
78
                                      0
                    2
                                      2
186
                    3
                                      3
177
                    0
                                      0
56
152
                    2
                                      2
82
                    0
                                      0
                    0
                                      0
68
                                      2
124
                    2
                    1
                                      1
16
                    2
                                       2
148
93
                    0
                                      0
65
                    0
                                      0
60
                    0
                                      0
                    0
                                      0
84
                    0
67
                                      0
                    3
                                      3
125
132
                    0
                                      0
9
                    4
                                      4
                    1
                                      1
18
55
                    0
                                      0
75
                    0
                                      0
150
                    2
                                      2
```

104	0	Θ
104 135 137 164 76	3	3
137	3	3
164	2	2
76	0	0