Laboratory 4

Deadline: 1-5 April 2024

Hermite interpolation

1. Let us consider the following table (that contains some data regarding a moving car).

Time	0	3	5	8	13
Distance	0	225	383	623	993
Speed	75	77	80	74	72

- Use the Hermite interpolation polynomial to estimate position and speed of the car when the time is t = 10.
- 2. Let us consider $f(x) = \ln x$ and f(1) = 0, f(2) = 0.6931, f'(1) = 1, f'(2) = 0.5.
 - Approximate f(1.5) by cubic interpolation.
 - Find the absolute approximation error.
- 3. Plot (in a single figure) the graphs of the function $f: [-5,5] \to \mathbb{R}$ given by $f(x) = \sin(2x)$ and of the corresponding Hermite interpolation polynomial (considering 15 equidistant nodes between -5 and 5).
- 4. The data from the following table are generated using the function $f(x) = x \ln x$.

x	f(x)	f'(x)
8.3	17.56492	3.116256
8.6	18.50515	3.151762

• Use the Hermite interpolation polynomial to approximate f(8.4) and find the absolute error.

Remark: 1 (1p), 2-4 (0.5p)