Contenido

- Estados límites últimos
- Fórmula de hinca dinámica
- Ensayos dinámicos de campo
- Modelación

Fórmula de hinca dinámica

En la búsqueda de métodos racionales para determiner la capacidad geotécnica se buscó correlacionarla con las observaciones durante la hinca del pilote. Sin embargo la única medida realista que podía ser obtenida era el asiento por golpe.

Mediante la igualdad entre la energía potencial del martillo con el trabajo realizado por golpe durante la hinca se estimó la capacidad o resistencia nominal

Fórmula de hinca dinámica

• En un choque rígido ideal

$$R_n \cdot S = Q \cdot h$$

En un choque elástico

$$R_n \cdot (S + S_e) = Q \cdot h$$

El martillo es un motor: se pierde energía en el motor, el impacto y la compresión elástica de pilote y terreno

$$R_n \cdot (S + S_e) = \eta \cdot Q \cdot h$$

 Para control y reducción del error se mide el asiento permanente correspondiente a una cantidad de golpes: S_{N_p}

$$R_n \cdot (S_{N_b} + S_e) = \eta \cdot Q \cdot h \cdot N_b$$

Fundaciones profundas: Análisis del comportamiento dinámico

Energía aplicada en la hinca

La energía disponible en el trabajo del suelo E_s no es la energía potencial martillo E_k . Se deben considerar las pérdidas:

- Del sistema de hinca E_{ds}
- De la transmisión en el pilote E_{pl}
- De la transmisión en el suelo E_{sl}

El fabricante de los martillos brinda una energía nominal E_r que tendrá una eficiencia e_h para obtener $E_k = e_h \cdot E_r$

Los martillos modernos tienen un cabezal y capacetes superior e inferior. Si la pérdida E_{ds} se modela como una eficiencia e_d la energía disponible resulta:

$$R_n \cdot S = e_d \cdot e_h \cdot E_r - E_{pl} - E_{sl}$$

Energía aplicada en la hinca

de comportamiento dinámico de profundas: Análisis

Tipos de martillos

Los martillos pueden clasificarse según:

- Martillos diesel con inyección líquida
- Martillos diesel con inyección atomizada
- Martillos diesel de acción simple
- Martillos diesel de acción doble
- Martillos hidráulicos/vapor de acción simple
- Martillos hidráulicos/vapor de acción doble
- Martillos hidráulicos de caída
- Martillos hidráulicos de caída asistidos
- Martillos hidráulicos con medición interna
- Martillos de caída libre
- Martillos de caída controlada

Tipos de martillos

Hammer Description					SI Units		
GRLWEAP ID	Hammer Manufacturer	Hammer Name	Hammer Type	Rated Energy kJ	Ram Weight kN	Eq. Rated Stroke m	
81 120 146 1 36 82 147 402 578	LINKBELT ICE MKT DELMAG DELMAG LINKBELT MKT BERMINGH APE	LB 180 180 DE 10 D 5 D 6-32 LB 312 DE 20 B200 D 8-32	CED CED OED OED CED OED OED	10.98 11.03 11.93 14.24 18.31 20.36 21.70 24.41 24.41	7.70 7.70 4.90 4.90 5.87 17.18 8.90 8.90 7.83	1.43 1.43 3.35 2.93 3.12 1.19 2.74 2.74 3.12	
83 122	LINKBELT	LB 440 440	CED	24.41 24.68 25.17	17.80 17.80	1.39 1.41	
142	MKT 20	DE333020	OED	27.12	8.90	3.51	
2	DELMAG	D 8-22	OED	27.25	7.83	3.67	
151	MKT	DA 35B	CED	28.48	12.46	2.29	
167	MKT	DA 35C	CED	28.48	12.46	2.29	
422	BERMINGH	B2005	OED	28.48	8.90	3.20	
148	MKT	DE 30	OED	30.37	12.46	3.05	
50	FEC	FEC 1200	OED	30.50	12.24	2.49	
127	ICE	30-S	OED	30.51	13.35	2.34	
3	DELMAG	D 12	OED	30.65	12.24	3.29	
401	BERMINGH	B23	CED	31.17	12.46	2.50	
414	BERMINGH	B23 5	CED	31.17	12.46	2.50	
121	ICE	422	CED	31.35	17.80	1.76	

Fórmulas de hinca dinámica

Fórmula	Expresión	Comentarios
Eytelwein (holandesa) (1820)	$R_n = \frac{e_h E_h}{S (1 + q/Q)}$ $R_n = \frac{e_h E_h}{S + 2.5 \text{ mm } q/Q}$	No tiene ϕ_{din} . FS=6 martillo de caída (C) martillo de vapor (V)
Gates modificada (FHWA) (1977)	$R_n = 1.75\sqrt{E_h}\log_{10}(10\ N_b) - 100$	R_n , en kips E_h , en ft-lbs N_b , en golpes/in Incluye $e_h=80\%$
Engineering News Record (AASHTO) (1974)	$R_n = \frac{12E_h}{S + 0.1\text{in}}$	R_n , en kips E_h , en ft-lbs S , en in
WSDOT (Allen, 2005)	$R_n = 6.6F_{ef}E_h \ln(10N_b)$	R_n , en kips $F_{ef}=0.28$ -0.58, f(pilote,martillo) E_h , en ft-kips N_b , en golpes/in. Promedio de últimas 4 pulgadas

q peso del pilote, Q peso del martillo

Validación de fórmula de hinca ENR (AASHTO)

Validación de fórmula de hinca FHWA

Validación de fórmula de hinca WSDOT

Fundaciones profundas: Análisis del comportamiento dinámico de

Fórmulas de hinca dinámica

Acomodamos las expresiones en función de S_{10} bajo las unidades de SI, unidad de fuerza en kN y resultado es mm.

Fórmula	Expresión		
Eytelwein (holandesa)	$S_{10} = 10 \frac{e_h E_h 1000}{R_n (1 + q/Q)}$ $S_{10} = 10 \left(\frac{e_h E_h 1000}{R_n} - 2.54 \frac{q}{Q} \right)$		
Gates modificada (FHWA)	$S_{10} = 10 \frac{10 \cdot 25.4}{10^{(0.225 R_n + 100)/(1.75\sqrt{737.56 E_h})}}$		
Engineering News Record (AASHTO)	$S_{10} = 10 \left(\frac{e_h E_h 1000}{R_n} - 2.54 \right)$		
WSDOT	$S_{10} = 10 \frac{10 \cdot 25.4}{e^{(0.225 R_n/(6.6F_{ef}E_h0.7376)}}$		

Fundaciones profundas: Análisis del comportamiento dinámico de

Ejemplo de aplicación

Analizamos la dispersión de las curvas para la siguiente hinca: Pilote:

- Hormigón
- L = 24m
- $\phi_e = 0.6 \text{m}, \, \phi_i = 0.3 \text{m}$

Martillo:

- **DELMAG 36-32**
- Q = 35.3 kN
- $E_h = 122.83 \text{ kN m}$
- $e_h = 80\%$
- $F_{ef} = 0.37$

Ejemplo de aplicación

La resistencia requerida es 2100kN. Para un criterio de rechazo $S_{10} = 20 \text{mm}$ la resistencia **nominal** de cada expresión es:

FHWA: 4483 kN

H-C: 11185 kN

H-V: 9258 kN

WSDOT: 4765 kN

AASHTO: 21635 kN

Ejemplo de aplicación

La resistencia requerida es 2100kN. Para un criterio de rechazo $S_{10} = 20 \text{mm}$ la resistencia **factorizada** de cada expresión es:

FHWA(0.4): 1793 kN

• H-C(1/6): 1864 kN

• H-V(1/6): 1543 kN

WSDOT(0.45): 2144 kN

• AASHTO(0.1): 2164 kN

