300 Interview/Viva Questions and Answers for LLM Engineer Roles

Table of Contents

- 1. Stage 1: Foundation (0–1 years)
 - A. Python & Software Engineering (Q1–30)
 - B. Machine Learning & NLP Fundamentals (Q31–50)
- Stage 2: Intermediate (1–3 years)
 - C. LLM APIs, Prompting, and Fine-Tuning (Q51–100)
- 3. Stage 3: Advanced (3–5+ years)
 - o D. Deployment, RAG, and LLMOps (Q101–150)
- Evaluation, Safety, Tooling, and Advanced LLM Applications (Q151–200)
- 5. Multimodal LLMs, Federated Learning, and Interpretability (Q201–250)
 - Multimodal Models (Q201–215)
 - Federated Learning (Q216–230)
 - Interpretability Tools (Q231–250)
- 6. Multi-Agent Systems, Knowledge Integration, GenAl Startups & Future Trends (Q251–300)
 - Multi-Agent LLM Systems (Q251–265)
 - Knowledge & Retrieval (Q266–275)
 - LLM Applications & GenAl (Q276–285)
 - Future Trends (Q286–300)

Stage 1: Foundation (0–1 years)

A. Python & Software Engineering

1. What are Python's key data structures?

Lists, tuples, sets, and dictionaries. Lists are mutable sequences; tuples are immutable; sets avoid duplicates; dictionaries store key-value pairs.

2. Difference between is and == in Python?

is checks identity (same object in memory), while == checks equality of values.

3. What are Python decorators?

Functions that wrap other functions to modify behavior. Used in logging, authentication, etc.

4. How does list comprehension work in Python?

It allows compact expression of loops: [x for x in iterable if condition].

5. What is a lambda function?

A small anonymous function using the lambda keyword. Example: lambda x: x + 1.

6. What is the difference between __init__ and __new__?

__init__ initializes an object after creation, __new__ creates the object.

7. What is a Python generator?

Functions that yield values one at a time using yield, ideal for memory efficiency.

8. How does exception handling work in Python?

Use try-except-finally. except catches exceptions; finally runs regardless.

9. What are Python's scopes?

LEGB: Local, Enclosing, Global, Built-in.

10. Difference between mutable and immutable types?

Mutable can be changed (lists), immutable cannot (tuples, strings).

11. What is pip and venv?

pip is Python's package manager; venv creates isolated environments.

12. What are Python's magic methods?

Special methods with __ (e.g., __str__, __len__) for class behaviors.

13. What is the GIL in Python?

Global Interpreter Lock: prevents concurrent execution of bytecode in CPython.

14. Difference between multiprocessing and multithreading?

Multiprocessing uses separate processes; threading shares memory.

15. How to manage dependencies in a Python project?

Use requirements.txt or tools like pipenv, poetry.

16. What is a context manager?

Manages resources with with keyword, e.g., file operations.

17. What is duck typing?

Python checks behavior (methods/attributes) rather than type.

18. Explain Python's garbage collection.

Uses reference counting and cyclic garbage collector.

19. How to handle large files in Python?

Use generators, with open(...) as f: and read in chunks.

20. What are Python type hints?

Syntax like def func(a: int) -> str to annotate types.

21. What is a Python package vs module?

Module: .py file; Package: folder with __init__.py.

22. What is the difference between args and kwargs?

*args for positional, **kwargs for keyword variable-length arguments.

23. What is PEP8?

Python style guide for writing readable code.

24. Explain list vs generator comprehensions.

List comprehensions return list, generator comprehensions yield items lazily.

25. What is __slots__?

Restricts dynamic attribute creation; saves memory.

26. What are Python metaclasses?

Classes of classes; define class behavior.

27. Explain shallow vs deep copy.

Shallow: references inner objects; Deep: recursively copies all levels.

28. What is a static method vs class method?

Static: no access to class/object; Class method: receives cls.

29. Explain async and await in Python.

Enables asynchronous programming using async def and await.

30. What is a memory view object in Python?

Efficient buffer access to binary data without copying.

B. Machine Learning & NLP Fundamentals

31. What is tokenization in NLP?

Breaking down text into tokens—words, subwords, or characters—for processing.

32. Difference between stemming and lemmatization?

Stemming truncates words to their root forms; lemmatization finds dictionary-based base forms.

33. What is TF-IDF?

A statistical measure of word importance, combining frequency in a document and inverse frequency across the corpus.

34. Define precision and recall.

Precision = TP / (TP + FP), Recall = TP / (TP + FN).

35. What is a confusion matrix?

A table summarizing prediction results: TP, TN, FP, FN.

36. What is overfitting?

When a model performs well on training data but poorly on unseen data.

37. How do you prevent overfitting?

Techniques include regularization, dropout, data augmentation, and early stopping.

38. Explain cross-validation.

A technique to assess model performance by splitting data into multiple train-test subsets.

39. What is a loss function?

A function that quantifies the difference between predicted and actual values.

40. Name some common loss functions.

MSE, Cross-Entropy, Hinge Loss, MAE.

41. What is backpropagation?

Algorithm for training neural networks by updating weights based on gradients.

42. What is the vanishing gradient problem?

In deep networks, gradients shrink and hinder learning in early layers.

43. What is ReLU?

Activation function: f(x) = max(0, x); helps alleviate vanishing gradient.

44. What is an embedding in NLP?

A dense vector representing a word or sentence, capturing semantic meaning.

45. Name common word embedding techniques.

Word2Vec, GloVe, FastText, BERT embeddings.

46. What is transfer learning?

Using a pre-trained model and fine-tuning it for a specific task.

47. What is a transformer?

A model architecture using self-attention to process sequences.

48. Explain attention mechanism.

It computes a weighted sum of input representations, focusing on relevant parts.

49. Difference between BERT and GPT?

BERT is bidirectional and used for understanding; GPT is autoregressive and used for generation.

50. What is positional encoding?

Adds order information to embeddings in transformer models.

C. LLM APIs, Prompting, and Fine-Tuning (51–100)

51. What is self-attention in transformers?

A mechanism that allows each token to attend to all other tokens, helping capture contextual relationships.

52. What is the role of the softmax function in attention?

Converts attention scores into a probability distribution to weigh input tokens.

53. What is the difference between encoder and decoder in transformers?

Encoder processes input sequences; decoder generates outputs based on encoder and previously generated tokens.

54. What are masked language models?

Models like BERT that predict masked tokens in a sentence to learn bidirectional context.

55. What is causal (autoregressive) language modeling?

Models like GPT that predict the next word given previous context.

56. How do you use HuggingFace Transformers?

Load models with from_pretrained, tokenize with AutoTokenizer, run inference with AutoModelFor....

57. What are LLM APIs used for?

Accessing powerful language models (e.g., GPT-4) via endpoints to generate, summarize, or classify text.

58. What is prompt engineering?

Designing effective inputs to elicit desired outputs from LLMs.

59. What is zero-shot prompting?

Giving the model a task without examples—relies on model's general language understanding.

60. What is few-shot prompting?

Including a few examples in the prompt to demonstrate task format.

61. What is chain-of-thought prompting?

Asking LLMs to show reasoning steps, improving performance on complex tasks.

62. What is temperature in generation APIs?

Controls randomness: 0 = deterministic, 1 = high creativity.

63. What is top-k sampling?

Selects randomly from top k most probable tokens to introduce variability.

64. What is top-p (nucleus) sampling?

Samples from smallest possible token set whose cumulative probability exceeds p.

65. What is token limit in LLMs?

The maximum number of input/output tokens the model can process. GPT-4-8k/32k, etc.

66. What is a system prompt?

A special instruction given to guide model behavior across conversations.

67. How do you evaluate prompt effectiveness?

Use metrics like BLEU/ROUGE or manual scoring; iterate based on output relevance.

68. What is prompt injection?

Security exploit where user input manipulates model behavior.

69. What is grounding in LLM outputs?

Ensuring responses are backed by source documents or context to reduce hallucination.

70. How to connect LLMs to external tools?

Via agents, tool calling, or function-calling interfaces in APIs like OpenAI functions.

71. What is fine-tuning?

Adjusting pre-trained model weights on task-specific data.

72. What is SFT (Supervised Fine-Tuning)?

Trains the model on input-output pairs to perform specific tasks.

73. What is RLHF?

Reinforcement Learning with Human Feedback — used to align model outputs with human preferences.

74. What is LoRA?

Low-Rank Adaptation adds trainable matrices to existing model weights for efficient fine-tuning.

75. What is PEFT?

Parameter-Efficient Fine-Tuning techniques like LoRA, adapters, prompt tuning.

76. What is QLoRA?

Combines LoRA with quantized models (e.g., 4-bit) to reduce memory use during training.

77. What are adapters?

Lightweight modules inserted in model layers to adapt behavior with fewer parameters.

78. What is HuggingFace PEFT library?

Library supporting efficient fine-tuning methods for transformers.

79. What is DeepSpeed?

A library from Microsoft for large-scale training with parallelism and memory optimizations.

80. What is FSDP?

Fully Sharded Data Parallel — sharding model weights/gradients across GPUs to enable large model training.

81. What are evaluation metrics for LLMs?

BLEU, ROUGE, BERTScore, and GPT-based evaluators for text similarity and relevance.

82. What is hallucination in LLMs?

When a model generates incorrect or fabricated information.

83. What is a retrieval-augmented generation (RAG) system?

Combines document retrieval with language generation to answer questions based on external knowledge.

84. What is FAISS?

A library for efficient similarity search and clustering of dense vectors.

85. What is Pinecone?

A managed vector database for similarity search and RAG systems.

86. What is Qdrant?

Open-source vector search engine, used with embedding models.

87. How to use OpenAl embeddings for RAG?

Embed documents using OpenAl API, store in FAISS or similar, query top-k and pass to LLM.

88. What are LangChain and LlamaIndex?

Frameworks for building LLM-powered applications with tools, memory, agents, and retrieval.

89. What is a context window?

The number of tokens the model can see in a single interaction.

90. What are hallucination mitigation strategies?

Use RAG, factual consistency checks, system prompts, or output post-processing.

91. What is quantization in LLMs?

Reducing model precision (e.g., float $32 \rightarrow int8$) to speed up inference and reduce memory.

92. What is GPTQ?

Quantized Post-Training approach to reduce model size and retain accuracy.

93. What is INT8 quantization?

Representing weights using 8-bit integers instead of 32-bit floats.

94. What is ONNX?

Open Neural Network Exchange — a format to export models for cross-platform inference.

95. What is TensorRT?

NVIDIA's SDK to optimize inference on GPUs.

96. What is TGI (Text Generation Inference)?

HuggingFace server to deploy and serve LLMs with low latency.

97. What is vLLM?

Optimized transformer inference engine using PagedAttention for faster batch decoding.

98. What is FastAPI used for?

Building RESTful APIs; useful for serving models.

99. How to deploy LLMs in production?

Package with Docker, expose via FastAPI, monitor with Prometheus or W&B.

100. What is MLOps in the LLM context?

Practices for managing LLM lifecycle: training, serving, monitoring, and updating.

№ D. Advanced Deployment, LLMOps, and RAG Systems (101–150)

101. What is inference latency?

The time it takes for a model to produce an output after receiving an input.

102. How can you reduce inference latency?

Use quantization, batch processing, efficient tokenization, and optimized serving libraries like vLLM or TGI.

103. What is batch inference?

Running multiple inputs simultaneously to improve throughput and GPU utilization.

104. What is model checkpointing?

Saving model states during training to allow resuming or rollback.

105. What is TorchScript?

A way to serialize PyTorch models for production deployment.

106. What is model sharding?

Splitting model weights across multiple devices to handle large models.

107. What is a model registry?

A centralized store for model versions, metadata, and tracking (e.g., MLflow, W&B).

108. What is containerization?

Packaging code and dependencies into a portable environment using Docker or similar tools.

109. What is CI/CD in MLOps?

Continuous Integration and Delivery — automating testing and deployment pipelines.

110. What are health checks in model serving?

API endpoints that confirm if the model is live, responsive, and functioning correctly.

111. How do you monitor model performance post-deployment?

Use tools like Prometheus, Grafana, and Weights & Biases to track latency, throughput, accuracy.

112. What is concept drift?

Change in the data distribution over time, affecting model performance.

113. How to detect concept drift?

Monitor prediction confidence, model accuracy trends, and statistical tests.

114. What is model versioning?

Managing multiple versions of models for rollback and experimentation.

115. What is a shadow deployment?

Running new models in parallel with production to compare outputs without affecting users.

116. What is a blue-green deployment?

A technique to minimize downtime and risks by switching between two identical environments.

117. What is load balancing in model serving?

Distributing requests across multiple servers or instances to prevent overload.

118. What are cold starts in LLMs?

Latency spikes when inactive models are restarted or reloaded.

119. What is warm start?

Initializing model inference with preloaded weights to avoid startup delays.

120. How to persist chat history across sessions?

Store messages in a database or vector store; use session IDs to associate context.

121. What is a vector store?

A database optimized for similarity search on dense embeddings (e.g., FAISS, Pinecone).

122. What is cosine similarity?

A metric to compute similarity between two vectors; widely used in RAG systems.

123. How do you generate embeddings for documents?

Use OpenAI, HuggingFace, or Cohere models to encode text into dense vectors.

124. How to chunk documents for RAG?

Break content into meaningful segments (e.g., by sentence or paragraph) to maintain context.

125. What is hybrid retrieval?

Combining keyword-based (BM25) and vector-based retrieval for more robust search.

126. What is reranking in RAG?

Reordering retrieved chunks based on relevance using cross-encoders or LLMs.

127. What is the difference between dense and sparse retrieval?

Dense uses embeddings; sparse relies on term frequency and inverted indexes.

128. What is LangChain Retriever?

An abstraction to interface with various retrieval methods in LangChain.

129. What is context window overflow?

When the combined prompt and documents exceed the token limit of the LLM.

130. How to handle context window limitations?

Use sliding windows, summarization, chunk reranking, or use longer context models.

131. What is token truncation?

Cutting input text to fit within token limits; risks loss of key context.

132. How to build a multi-document QA system?

Retrieve top passages from multiple documents, format them into a prompt, and query an LLM.

133. What is chunk overlap?

Slightly overlapping segments when chunking documents to maintain continuity.

134. How to evaluate retrieval performance?

Use recall@k, precision@k, MRR, and relevance judgments.

135. What is document reranking with BERT?

Re-ranking retrieved results using BERT-based models for higher semantic accuracy.

136. What are hallucinations in RAG systems?

Generated content not supported by retrieved context.

137. How to reduce hallucinations in RAG?

Improve chunk quality, reranking, context relevance, or use factuality filters.

138. What is prompt stuffing?

Overloading the prompt with too much context, leading to degraded performance.

139. What is few-shot RAG?

Combines few-shot examples and retrieved documents for stronger grounding.

140. What are long-context LLMs?

Models like Claude 2 or GPT-4-32k that support extended token inputs.

141. What are the risks of retrieval-based systems?

Mismatched context, hallucinations, stale documents, or irrelevant chunks.

142. What is document ranking?

Ordering documents based on their relevance to the guery.

143. What is multi-hop retrieval?

Chaining multiple retrieval steps to answer complex gueries.

144. What is cross-encoder vs bi-encoder?

Cross-encoder scores query-doc pairs jointly; bi-encoder embeds separately and compares via dot product.

145. How do you evaluate a chatbot?

Use automated metrics (BLEU, ROUGE), human feedback, task success rate, and safety benchmarks.

146. What are hallucination detection techniques?

Consistency checks, fact-checking models, retrieval alignment, and user feedback.

147. What are grounding techniques?

Linking outputs back to retrieved context; citation markers, reranking, or references.

148. What is document summarization?

Condensing a document into a shorter version using extractive or abstractive methods.

149. What is latent space in embeddings?

High-dimensional space where semantically similar texts are located close together.

150. What is top-k retrieval?

Selecting the k most similar documents based on embedding similarity.

E. Evaluation, Safety, Tooling, and Advanced LLM Applications (151–200)

151. What is BLEU score?

A metric to evaluate generated text against a reference by comparing n-gram overlaps.

152. What is ROUGE score?

Measures recall-oriented overlap between generated and reference texts, useful for summarization.

153. What is BERTScore?

Uses BERT embeddings to compute semantic similarity between candidate and reference text.

154. What are GPT-based evaluators?

LLMs (e.g., GPT-4) used to assess coherence, accuracy, and fluency of generated text.

155. What is human-in-the-loop (HITL) evaluation?

Involves humans rating outputs for quality, grounding, and safety.

156. How to conduct A/B testing for LLM outputs?

Show users two model responses, gather preferences, and measure engagement or success.

157. What is model alignment?

Ensuring model outputs follow human values, instructions, and avoid harmful content.

158. What is toxicity detection?

Identifying harmful, offensive, or biased language in model outputs using classifiers or heuristics.

159. What is red teaming in LLMs?

Systematic probing of models to expose safety vulnerabilities and generate adversarial prompts.

160. What is output filtering?

Post-processing model responses to block unsafe or undesired content.

161. How to reduce bias in LLMs?

Use debiasing datasets, diverse training data, and post-hoc adjustment techniques.

162. What is prompt grounding?

Anchoring generation to a trusted source document or retrieval context.

163. What is hallucination feedback loop?

When a model's past hallucinated outputs are reused and reinforced as context.

164. What is the purpose of system messages in chat models?

Provide high-level behavior guidelines to steer the assistant's tone and style.

165. What is an LLM tool agent?

An orchestrated agent that uses tools like calculators, web search, or file I/O in conjunction with LLM.

166. What is a memory in LLM apps?

Mechanism to retain information between user turns or sessions.

167. What is a conversational agent framework?

A structured platform for building LLM-powered chat systems with memory, tools, and context handling (e.g., LangChain).

168. What are OpenAl function calls?

Structured calls from LLMs to predefined tools or functions, improving interaction reliability.

169. What is LangServe?

A serving utility from LangChain for deploying chains and agents as APIs.

170. What is LangGraph?

A graph-based framework to build multi-agent workflows using LLMs.

171. What are vector-capable document loaders?

Tools in LangChain or LlamaIndex to load and convert documents into retrievable chunks.

172. What is document parsing?

Extracting clean, structured text from PDFs, DOCX, HTML, etc., for NLP/RAG workflows.

173. How to build a multi-turn chatbot?

Track chat history, use memory/context storage, and design prompts to maintain persona.

174. What is long-term memory in chatbots?

Persistence of important user preferences or prior facts across sessions.

175. What is function-calling JSON format?

Structured schema for LLMs to return JSON to call specific backend functions.

176. What is a tool-using agent loop?

A cycle where LLM generates an action, invokes a tool, observes the result, and iterates.

177. What is a planner-executor pattern?

A planning module generates high-level goals; executor LLM/tool carries out steps.

178. What is an autonomous agent?

A system that makes decisions and takes actions with minimal human oversight, often with LLM+tools.

179. What is evaluation for autonomous agents?

Includes task success, number of tool calls, safety checks, and runtime duration.

180. What are benchmarks for LLMs?

HELM, MMLU, BIG-bench, TruthfulQA, ARC — measure reasoning, safety, and factuality.

181. What is the difference between OpenAl Evals and human evals?

OpenAl Evals automate performance tracking using templates; human evals rely on real user judgments.

182. What is instruction tuning?

Training models to follow natural language instructions more reliably.

183. What is dataset curation?

Collecting and cleaning task-specific data with annotations for training and evaluation.

184. What is data labeling noise?

Inconsistent or incorrect human labels that reduce model quality.

185. How to automate LLM evaluation?

Use GPT-4 to score outputs, apply regex checks, or embed-based similarity metrics.

186. What is prompt compression?

Reducing prompt length via summarization or abstraction to fit context windows.

187. What is hybrid summarization?

Combines extractive and abstractive techniques to generate informative summaries.

188. What is a jailbreak in LLMs?

A prompt or trick designed to bypass safety filters or restrictions.

189. How to defend against jailbreaks?

Fine-tuning, input validation, layered safety filters, and adversarial training.

190. What is user intent classification?

Predicting the user's goal or category to route queries or enhance understanding.

191. What is fallback prompting?

A backup prompt used when a model fails or produces an irrelevant answer.

192. What is an LLM safety harness?

A protective layer that monitors, filters, and validates LLM outputs before delivery.

193. What is adversarial prompting?

Intentionally crafted inputs to confuse, break, or mislead the model.

194. What is semantic caching?

Storing embeddings and outputs to reuse answers for similar queries.

195. What are cost control techniques for LLM apps?

Use token-efficient models, rate-limiting, caching, and content filtering.

196. What are LLMOps pipelines?

Orchestration workflows for model tuning, deployment, monitoring, and feedback collection.

197. What is API rate limiting?

Controlling how many requests users can make to an API in a time window.

198. What are open-weight vs closed-weight models?

Open-weight: source and weights available (e.g., LLaMA); closed-weight: proprietary (e.g., GPT-4).

199. What is model distillation?

Training a smaller model to replicate a larger model's behavior for efficiency.

200. What is the future of LLM engineering?

Real-time multimodal agents, continual learning, scalable infrastructure, and personalized copilots.

F. Multimodal LLMs, Federated Learning, and Interpretability (201–300)

Multimodal LLMs (Images/Video + Text)

201. What are multimodal models?

Models that process and generate across more than one data modality, e.g., text + image.

202. Name some examples of multimodal LLMs.

GPT-4-Vision, Flamingo, LLaVA, Kosmos-1, Gemini.

203. What is CLIP?

Contrastive Language-Image Pretraining — links images and text by aligning their embeddings.

204. What is BLIP-2?

Bootstrapped Language-Image Pretraining — an architecture for image captioning and VQA.

205. What is visual grounding in LLMs?

Linking textual descriptions to image regions or visual concepts.

206. How do multimodal LLMs encode images?

Use vision encoders (e.g., ViT, ResNet) to convert images to embeddings.

207. What is an image-text embedding space?

A shared vector space where similar text/image pairs are close together.

208. How do you fine-tune multimodal LLMs?

Combine image-caption pairs or use instruction tuning with image inputs.

209. What is visual question answering (VQA)?

The task of answering natural language questions about images.

210. What is image captioning?

Generating a natural language description of an image.

211. What is vision-language pretraining (VLP)?

Joint training of visual and textual inputs to improve multimodal understanding.

212. How does GPT-4-Vision process images?

Uses an internal vision encoder to embed image data and feed it into the transformer.

213. What are challenges in multimodal training?

Data alignment, modality imbalance, large compute requirements, image resolution handling.

214. What are applications of multimodal LLMs?

OCR, VQA, image search, autonomous agents, multimodal assistants.

215. What is multimodal context fusion?

Combining visual, auditory, and textual signals for integrated reasoning.

Federated Learning & Decentralized AI

216. What is federated learning?

A technique to train models across decentralized devices while keeping data local.

217. What is FL client-server architecture?

Clients train local models; the server aggregates updates to form a global model.

218. What is FedAvg?

Federated Averaging algorithm used to aggregate model weights across clients.

219. What are challenges in FL?

Data heterogeneity, unreliable clients, communication cost, model drift.

220. How is privacy preserved in FL?

Data never leaves local device; use of differential privacy or secure aggregation.

221. What is secure aggregation?

Ensures server can only see aggregated updates, not individual contributions.

222. What is differential privacy in FL?

Adds noise to updates to protect individual data points.

223. What is split learning?

Splits model across client/server to reduce computation on edge devices.

224. What is homomorphic encryption in FL?

Enables computation on encrypted data, ensuring privacy.

225. Use cases for FL in LLMs?

On-device personalization, edge AI, healthcare, and finance applications.

226. How does personalization work in FL?

Each client fine-tunes a shared base model to local data.

227. What is cross-device vs cross-silo FL?

Cross-device: many small devices (e.g., phones); cross-silo: fewer institutional clients.

228. What is model poisoning in FL?

A malicious client sends manipulated updates to degrade model performance.

229. How to defend FL from adversarial attacks?

Use robust aggregation, anomaly detection, and secure protocols.

230. What is continual learning in FL?

Adapting models over time with evolving client data.

Interpretability & Explainability Tools

231. What is model interpretability?

The ability to understand how a model makes its decisions.

232. What is AttentionViz?

A tool for visualizing attention weights in transformer models.

233. What is Captum?

A PyTorch library for interpretability using methods like saliency, integrated gradients.

234. What are saliency maps?

Visual overlays showing input areas most responsible for the model's output.

235. What are SHAP values?

Explain output by assigning contribution scores to each feature.

236. What is Integrated Gradients?

A technique that accumulates gradients along the input path to explain predictions.

237. What is LIME?

Local Interpretable Model-Agnostic Explanations — approximates predictions with simple local models.

238. What is attention rollout?

Aggregates attention across layers to track how input tokens influence output.

239. What is a probe in model analysis?

A simple classifier trained on model internals to test for encoded knowledge.

240. What are counterfactual explanations?

Describe how an input must change to alter the model's prediction.

241. What is feature attribution?

Assigning importance scores to input features.

242. What is a neuron activation visualization?

Plots or highlights the firing strength of model neurons for given inputs.

243. How to debug LLM prompts?

Log token-level probabilities, use reduced prompts, test systematically.

244. What is model introspection?

Techniques to explore internal representations or embeddings.

245. What is embedding projection?

Visualizes high-dimensional embeddings using t-SNE or PCA.

246. How to interpret classification logits?

Raw scores before softmax — can indicate model confidence or uncertainty.

247. What is layer-wise relevance propagation (LRP)?

Attribution method that traces output relevance backward through layers.

248. How to evaluate interpretability tools?

Use faithfulness, consistency, and completeness as metrics.

249. Why interpretability is important for LLMs?

Ensures trust, safety, accountability, and bias detection.

250. What is transparency in Al systems?

The ability to audit, understand, and reproduce model decisions.

G. Multi-Agent Systems, Knowledge Integration, GenAl Startups & Future Trends (251–300)

Multi-Agent & Autonomous Systems

251. What is a multi-agent LLM system?

A system where multiple LLMs (or LLM + tools) collaborate to solve complex tasks.

252. What is an agent in Al?

A component that observes, reasons, and acts within an environment to achieve a goal.

253. What is an executor in multi-agent LLM frameworks?

The agent or component responsible for carrying out planned tasks or steps.

254. What is a planner in LLM agents?

A module that decomposes high-level goals into sub-tasks.

255. What is a coordinator agent?

An agent responsible for assigning or delegating tasks among other agents.

256. What is ReAct framework?

Combines reasoning and acting: LLM outputs thought and action alternately.

257. What are tool-using LLM agents?

Agents that invoke external tools (APIs, calculators, search engines) via structured calls.

258. What is LangGraph used for?

Building complex multi-agent workflows with branching, retries, and conditional logic.

259. What are autonomous Al agents?

Systems like AutoGPT and AgentGPT that perform tasks with minimal human guidance.

260. What are memory types in agents?

Short-term (chat history), long-term (external knowledge), episodic (task events).

261. What is an agent loop?

The cycle of observation \rightarrow reasoning \rightarrow action \rightarrow observation, repeated until goal is met.

262. What is task decomposition?

Splitting a complex task into smaller, manageable subtasks.

263. What is inter-agent communication?

The process of agents exchanging messages or outputs to collaborate effectively.

264. What is the OpenAgents project?

An open framework for building LLM-based multi-agent systems.

265. What are evaluation metrics for agents?

Task completion rate, steps taken, reward score, and human ratings.

Knowledge Integration & Retrieval

266. What is a knowledge graph?

A structured representation of entities and relationships used to augment reasoning.

267. What is knowledge distillation?

A smaller model learns to mimic the behavior of a larger, more complex model.

268. How do LLMs use external knowledge?

Through retrieval-augmented generation (RAG), APIs, or linked databases.

269. What is a knowledge base chatbot?

An assistant grounded in static or dynamic documentation (e.g., internal wikis).

270. What is semantic search?

Retrieval based on meaning and context rather than keyword matching.

271. What is knowledge-aware generation?

Tailoring responses to facts retrieved from structured/unstructured sources.

272. What are ontology-based systems?

Systems guided by a formal specification of concepts and relationships in a domain.

273. What is triple extraction?

Extracting subject-predicate-object triples from text to populate a knowledge graph.

274. What are open-domain QA systems?

Question-answering models capable of responding to queries across multiple topics.

275. What is few-shot retrieval?

Retrieval enhanced by including few-shot examples in the search or generation context.

LLM Applications & GenAl Products

276. What are copilots?

Context-aware assistants embedded in development, writing, or design environments.

277. What is a domain-specific LLM?

An LLM fine-tuned or trained for a specific industry or task (e.g., legal, medical).

278. What are some popular LLM APIs?

OpenAl, Anthropic Claude, Google Gemini, Mistral, Cohere.

279. What is text-to-SQL generation?

Automatically converting natural language questions to SQL queries.

280. What is structured data extraction?

Parsing documents or chat into JSON, tables, or forms.

281. What is code generation with LLMs?

Using prompts to generate boilerplate, functions, or explain existing code.

282. What is Al content moderation?

Using LLMs or classifiers to detect and filter toxic, unsafe, or off-topic content.

283. What is automated summarization?

Reducing long text into concise summaries using extractive or abstractive methods.

284. What are LLM-driven workflows?

Automating multi-step processes by chaining LLM outputs and tool invocations.

285. What are retrieval-enhanced copilots?

Tools like GitHub Copilot + RAG context from codebases or documentation.

Future Trends & Advanced Ideas

286. What is continual pretraining?

Ongoing model training with new data to maintain relevance and reduce drift.

287. What is multimodal agent architecture?

An agent capable of understanding and generating across text, image, and audio.

288. What is self-evaluation in LLMs?

The model critiques or ranks its own output to refine generation.

289. What is synthetic data generation?

Using LLMs to create training or test data for low-resource domains.

290. What is open-ended task planning?

Allowing agents to formulate goals and steps dynamically based on environment.

291. What are personalized LLMs?

Models tailored to individual users' preferences, goals, or prior behavior.

292. What is edge deployment of LLMs?

Running models on mobile or embedded devices with low latency requirements.

293. What is agentic evaluation?

Judging performance of LLM agents over extended tasks and interactions.

294. What is LLM watermarking?

Embedding invisible patterns into output to trace origin or verify authenticity.

295. What is synthetic QA pair generation?

Automatically generating question-answer pairs to augment datasets.

296. What is the role of GenAl in education?

Intelligent tutors, feedback tools, and curriculum design through LLMs.

297. What are Al copilots for enterprise?

Internal assistants trained on org-specific data for search, support, and automation.

298. What is auto-labeling?

Using LLMs to annotate datasets for training downstream models.

299. What is Al-assisted research?

LLMs help summarize papers, generate hypotheses, or draft content.

300. What is the outlook for LLM engineers?

High demand across sectors; future skills include multi-agent design, safety alignment, and custom LLM pipelines.