06_02_Active_Fault_Tolerant_Control

1. Structure of Active FTC

2. One Active FTC Method: Model Matching Method

Pseudo-Inverse Method for Linear Systems

Linear Systems with State-Feedback

Output Feedback and Sensor Fault

Output Feedback and Actuator Fault

3. Virtual Sensors and Virtual Actuators

Virtual Sensors

Virtual Actuators

Summary

1. Structure of Active FTC

- Supervision Block
 - o fault diagnosis
 - $\circ \;\;$ an algorithm to $alter \; the \; control \; law \; based on the diagnosis$
 - alteration is described by a **parameters vector** θ_c
 - θ_c can contain coefficients used by controller (**online re-design**), or can select a pre-computed controller (**control switching**)

2. One Active FTC Method: Model Matching Method

Main Idea

Given a **general control law** $u(t) = k(y(t), y_{\text{ref}}(t), \theta_c)$, produce **new parameters** such that the accommodated faulty closed loop system and the nominal one are "the same"

Pseudo-Inverse Method for Linear Systems

- In general (nonlinear dynamics etc.), there is **no guarantee** that the model-matching fault accommodation approach **has a solution**
- It has, for linear systems (if some geometric conditions are met)

Linear Systems with State-Feedback

Model:

$$\begin{cases} \dot{\boldsymbol{x}}(t) &= \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t) \\ \boldsymbol{y}(t) &= \boldsymbol{C}\boldsymbol{x}(t) \end{cases} \underline{\boldsymbol{u}(t) = -\boldsymbol{K}\boldsymbol{x}(t)}$$

After a fault the dynamics become:

$$egin{aligned} \dot{oldsymbol{x}}(t) &= oldsymbol{A}_f oldsymbol{x}(t) + oldsymbol{B}_f oldsymbol{u}(t) \ oldsymbol{y}(t) &= oldsymbol{C}_f oldsymbol{x}(t) \end{aligned}$$

Controller Design

We want to design a **new controller gain** K_f such that

$$\boldsymbol{A} - \boldsymbol{B}\boldsymbol{K} = \boldsymbol{A}_f - \boldsymbol{B}_f \boldsymbol{K}_f$$

- If solution exits, then just calculate
 - \circ Solution exists when B and B_f have same image(column space), i.e. there are redundant actuators
- If not exists, use a **degraded goal:**

$$\|(oldsymbol{A}-oldsymbol{B}oldsymbol{K}_f-oldsymbol{B}_foldsymbol{K}_f-oldsymbol{B}_f^+\,(oldsymbol{A}_f-oldsymbol{A}+oldsymbol{B}oldsymbol{K})-(oldsymbol{A}_f-oldsymbol{B}_foldsymbol{K}_f)^{-1}\,oldsymbol{B}_f'\,(oldsymbol{A}_f-oldsymbol{A}+oldsymbol{B}oldsymbol{K})$$

Output Feedback and Sensor Fault

Model

$$\begin{cases} \dot{\boldsymbol{x}}(t) &= \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t) \\ \boldsymbol{y}(t) &= \boldsymbol{C}\boldsymbol{x}(t) \end{cases}$$

$$\begin{cases} \dot{\boldsymbol{x}}(t) &= (\boldsymbol{A} - \boldsymbol{B}\boldsymbol{K}\boldsymbol{C})\,\boldsymbol{x}(t) \\ \boldsymbol{y}(t) &= \boldsymbol{C}\boldsymbol{x}(t). \end{cases}$$

After a fault the dynamics become:

$$egin{aligned} \dot{m{x}}(t) &= m{A}m{x}(t) + m{B}m{u}(t) \ m{y}(t) &= m{C}_fm{x}(t) \end{aligned}$$

Controller Design

We want to design a new controller gain K_f such that

$$K_f C_f = KC$$

• Condition for exact solution:

$$\operatorname{Kern}\left(\boldsymbol{C}_{f}\right)\subseteq\operatorname{Kern}(\boldsymbol{C})$$

 Kern is the orthogonal complement of the row space, means that C_f is providing at least **the same information** as C

Take the control law into consideration, means, the u space we can reach is at least large as the nominal case.

Then a solution is:

$$oldsymbol{u}(t) = -oldsymbol{K}oldsymbol{P}oldsymbol{y}(t) \quad oldsymbol{P} = oldsymbol{C}oldsymbol{C}_f^+ = oldsymbol{C}oldsymbol{C}_f' \left(oldsymbol{C}_foldsymbol{C}_f'
ight)^{-1}$$

Output Feedback and Actuator Fault

Model

$$\begin{cases} \dot{\boldsymbol{x}}(t) &= \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t) \\ \boldsymbol{y}(t) &= \boldsymbol{C}\boldsymbol{x}(t) \end{cases} \qquad \underline{\boldsymbol{u}(t) = -\boldsymbol{K}\boldsymbol{y}(t)}$$

$$\downarrow \dot{\boldsymbol{x}}(t) &= (\boldsymbol{A} - \boldsymbol{B}\boldsymbol{K}\boldsymbol{C}) \boldsymbol{x}(t) \\ \boldsymbol{y}(t) &= \boldsymbol{C}\boldsymbol{x}(t).$$

After an actuator-only fault the dynamics become

$$\dot{oldsymbol{x}}(t) = (oldsymbol{A} - oldsymbol{B}_f oldsymbol{K} oldsymbol{C}) \, oldsymbol{x}(t) \ oldsymbol{y}(t) = oldsymbol{C} oldsymbol{x}(t).$$

Controller Design

We want to design a new controller gain K_f such that

$$\boldsymbol{B}_f \boldsymbol{K}_f = \boldsymbol{B} \boldsymbol{K}$$

• A **exact solution** exits when:

$$\operatorname{Im}\left(oldsymbol{B}_f
ight)\supseteq\operatorname{Im}(oldsymbol{B})$$

Then a solution is:

$$oldsymbol{u}(t) = -oldsymbol{N} oldsymbol{K} oldsymbol{y}(t) \quad oldsymbol{N} = oldsymbol{B}_f^+ oldsymbol{B} = \left(oldsymbol{B}_f' oldsymbol{B}_f
ight)^{-1} oldsymbol{B}_f' oldsymbol{B}$$

3. Virtual Sensors and Virtual Actuators

Virtual Sensors

Motivation

- Model Matching Limitations:
 - o controller must be re-designed
 - strong geometric assumptions
- Virtual Sensors Advantages:
 - does not require controller re-design
 - has less stringent assumptions (at least **detectability and stabilisability**)

Model 1: (Healthy Condition)

$$\begin{cases} \dot{\boldsymbol{x}}(t) &= \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t) + \boldsymbol{E}\boldsymbol{d}(t) \,, \quad \boldsymbol{x}(0) = \boldsymbol{x}_0 \\ \boldsymbol{y}(t) &= \boldsymbol{C}\boldsymbol{x}(t). \\ \boldsymbol{u}_c(t) = -\boldsymbol{K}\boldsymbol{y}_c(t) + \boldsymbol{V}\boldsymbol{y}_{\mathrm{ref}}(t) \end{cases}$$

The closed-loop dynamics:

$$\begin{cases} \dot{\boldsymbol{x}}(t) &= \left(\boldsymbol{A} - \boldsymbol{B}\boldsymbol{K}\boldsymbol{C}\right)\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{V}\boldsymbol{y}_{\mathrm{ref}}(t) + \boldsymbol{E}\boldsymbol{d}(t), & \boldsymbol{x}(0) = \boldsymbol{x}_0 \\ \boldsymbol{y}(t) &= \boldsymbol{C}\boldsymbol{x}(t). \end{cases}$$

Model 2: Fault Formulation

A fault is assumed to **completely disable a sensor:** (assume C_f is known by us)

$$egin{aligned} C
ightarrow C_f \ oldsymbol{y}
ightarrow oldsymbol{y}_f \end{aligned}$$

Goal

• Strong Goal:

$$oldsymbol{y}_f(t) = oldsymbol{y}(t)$$

- Weak Goal:
 - \circ static: for constant d and y_{ref}

$$oldsymbol{y}_f(t)
ightarrow oldsymbol{y}(t) ext{ for } t
ightarrow \infty$$

- dynamic: **transfer function** of reconfigured closed loop should be "**approximately the same**" as the one of the healthy system
- In practice: dominant poles and zeros the same

Virtual Sensor Design

The virtual sensor is implemented as a Luenberger observer

$$\begin{cases} \dot{\boldsymbol{x}}_V(t) &= \boldsymbol{A}_V \boldsymbol{x}_V(t) + \boldsymbol{B}_V \boldsymbol{u}_c(t) + \boldsymbol{L} \boldsymbol{y}_f(t), & \boldsymbol{x}_V(0) = \boldsymbol{x}_{V0} \\ \boldsymbol{u}_f(t) &= \boldsymbol{u}_c(t) \\ \boldsymbol{y}_c(t) &= \boldsymbol{C}_V \boldsymbol{x}_V(t) + \boldsymbol{P} \boldsymbol{y}_f(t) \end{cases}$$

where P and L are design parameters and

$$A_V = A - LC_f$$

 $B_V = B$
 $C_V = C - PC_f$

$$\left(egin{array}{ll} \dot{m{x}}_f(t) \ \dot{m{x}}_V(t) \end{array}
ight) &= \left(egin{array}{ll} m{A} & m{O} \ m{L}m{C}_f & m{A} - m{L}m{C}_f \end{array}
ight) \left(egin{array}{ll} m{x}_f(t) \ m{x}_V(t) \end{array}
ight) \ &+ \left(egin{array}{ll} m{B} \ m{B} \end{array}
ight) m{u}_c(t) + \left(m{E} \ m{O} \end{array}
ight) m{d}(t) \ & \ m{y}_c(t) &= \left(m{P}m{C}_f & m{C}_V \end{array}
ight) \left(m{x}_f(t) \ m{x}_V(t) \end{array}
ight)$$

introduce **observation error** $x_{\Delta} = x_f - x_V$

$$\left(egin{array}{ll} \dot{m{x}}_f(t) \\ \dot{m{x}}_{arDelta}(t) \end{array}
ight) &= \left(egin{array}{ll} m{A} & m{O} \\ m{O} & m{A} - m{L} m{C}_f \end{array}
ight) \left(m{x}_f(t) \\ m{x}_{arDelta}(t) \end{array}
ight) \\ &+ \left(m{B} \\ m{O}
ight) m{u}_c(t) + \left(m{E} \\ -m{E} \end{array}
ight) m{d}(t) \\ m{y}_c(t) &= \left(m{C} & m{C}_V \end{array}
ight) \left(m{x}_f(t) \\ m{x}_{arDelta}(t) \end{array}
ight) \\ \left(m{x}_f(0) \\ m{x}_{arDelta}(0) \end{array}
ight) &= \left(m{x}_{f0} \\ m{x}_{V0} - m{x}_{f0} \end{array}
ight).$$

Then the **closed-loop dynamics** are

$$\left(egin{array}{ll} \dot{m{x}}_f(t) \\ \dot{m{x}}_{\Delta}(t) \end{array}
ight) &= \left(egin{array}{ll} m{A} - m{B}m{K}m{C} & -m{B}m{K}m{C}_V \\ m{O} & m{A} - m{L}m{C}_f \end{array}
ight) \left(egin{array}{ll} m{x}_f(t) \\ m{x}_{\Delta}(t) \end{array}
ight) + \left(egin{array}{ll} m{E} \\ -m{E} \end{array}
ight) m{d}(t) + \left(m{B}m{V} \\ m{O} \end{array}
ight) m{y}_{\mathrm{ref}}(t) \\ m{y}_f(t) &= \left(m{C}_f & m{O} \end{array}
ight) \left(m{x}_f(t) \\ m{x}_{\Delta}(t) \end{array}
ight).$$

Autonomous Behavior Case

Assume autonomous behavior ($y_{ref}=0$ and d=0)

$$\left(egin{array}{lll} \dot{x}_f(t) \ \dot{x}_\Delta(t) \end{array}
ight) &= \left(egin{array}{c} A - BKC \ \hline A - BKC \ \hline O \end{array}
ight) \left(egin{array}{c} x_f(t) \ x_\Delta(t) \end{array}
ight) \ \left(egin{array}{c} x_f(t) \ x_\Delta(t) \ x_\Delta(t) \end{array}
ight) \ \left(egin{array}{c} x_f(t) \ x_\Delta(t) \ x_\Delta(t) \end{array}
ight) \ \left(egin{array}{c} x_f(t) \ x_\Delta(t) \ \left(egin{array}{c} x_f(t) \ x_\Delta(t) \ x_\Delta($$

• By using Separation principle

- The eigenvalues of the reconfigured closed loop are the union of
 - the eigenvalues of A-BKC
 - the eigenvalues of $A LC_f$
- If the healthy closed loop is stable, the first ones are stable
- \circ the second ones can be made stable by choosing L
 - ullet always possible assuming the pair (A,C_f) is **observable**

Tracking Behavior Case

Assume x_{f_0} , x_{V_0} and d are all 0

$$\begin{cases} \dot{\boldsymbol{x}}_f(t) &= (\boldsymbol{A} - \boldsymbol{B}\boldsymbol{K}\boldsymbol{C})\,\boldsymbol{x}_f(t) + \boldsymbol{B}\boldsymbol{V}\boldsymbol{y}_{\text{ref}}(t), & \boldsymbol{x}_f(0) = \boldsymbol{O} \\ \boldsymbol{y}_f(t) &= \boldsymbol{C}_f\boldsymbol{x}_f(t), \end{cases}$$

• Identical to the nominal one (**strong goal is reached**)

Virtual Actuators

Model 1: Healthy Condition

$$\begin{cases} \dot{\boldsymbol{x}}(t) &= \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t) + \boldsymbol{E}\boldsymbol{d}(t), & \boldsymbol{x}(0) = \boldsymbol{x}_0 \\ \boldsymbol{y}(t) &= \boldsymbol{C}\boldsymbol{x}(t). \\ \boldsymbol{u}_c(t) &= -\boldsymbol{K}\boldsymbol{y}_c(t) + \boldsymbol{V}\boldsymbol{y}_{\mathrm{ref}}(t) \end{cases}$$

The Closed-Loop Dynamics:

$$\begin{cases} \dot{\boldsymbol{x}}(t) &= \left(\boldsymbol{A} - \boldsymbol{B}\boldsymbol{K}\boldsymbol{C}\right)\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{V}\boldsymbol{y}_{\mathrm{ref}}(t) + \boldsymbol{E}\boldsymbol{d}(t), \ \boldsymbol{x}(0) = \boldsymbol{x}_0 \\ \boldsymbol{y}(t) &= \boldsymbol{C}\boldsymbol{x}(t). \end{cases}$$

Fault Formulation

A fault is assumed to completely disable an actuator

$$m{B}
ightarrow m{B}_f \ m{u}
ightarrow m{u}_f$$

Virtual Actuator Design

The virtual actuator is the dual of the virtual sensor: requires **controllability** in the faulty condition

$$egin{cases} \dot{oldsymbol{x}}_{\Delta}(t) &= oldsymbol{A}_{\Delta}oldsymbol{x}_{\Delta}(t) + oldsymbol{B}_{\Delta}oldsymbol{u}_{c}(t), & oldsymbol{x}_{\Delta}(0) = oldsymbol{x}_{\Delta0} \ oldsymbol{u}_{f}(t) &= oldsymbol{C}_{\Delta}oldsymbol{x}_{\Delta}(t) + oldsymbol{D}_{\Delta}oldsymbol{u}_{c}(t) \ oldsymbol{y}_{c}(t) &= oldsymbol{C}oldsymbol{x}_{\Delta}(t) + oldsymbol{y}_{f}(t) \end{cases}$$

where M and N are design parameters

$$egin{array}{lcl} m{A}_{\Delta} & = & m{A} - m{B}_f m{M} \ m{B}_{\Delta} & = & m{B} - m{B}_f m{N} \ m{C}_{\Delta} & = & m{M} \ m{D}_{\Delta} & = & m{N}. \end{array}$$

$$egin{aligned} \left(egin{aligned} \dot{m{x}}_f(t) \\ \dot{m{x}}_{\Delta}(t) \end{aligned}
ight) = \left(egin{aligned} m{A} & m{B}_f \, m{M} \\ m{O} & m{A} - m{B}_f \, m{M} \end{aligned}
ight) \left(m{x}_f(t) \\ m{x}_{\Delta}(t) \end{aligned}
ight) \\ + \left(m{B}_f \, m{N} \\ m{B} - m{B}_f \, m{N} \end{aligned} m{u}_c(t) + \left(m{E} \\ m{O} \end{aligned} m{d}(t) \\ m{y}_c(t) = \left(m{C} \quad m{C} \quad m{C} \quad m{C} \quad m{x}_f(t) \\ m{x}_{\Delta}(t) \quad m{x}_{\Delta}(t) \end{aligned} .$$

Introduce a **new state** $\hat{m{x}}(t) = m{x}_f(t) + m{x}_{\Delta}(t)$

$$\frac{d}{dt} \begin{pmatrix} \hat{\boldsymbol{x}}(t) \\ \boldsymbol{x}_{\Delta}(t) \end{pmatrix} = \begin{pmatrix} \boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{A} - \boldsymbol{B}_{f} \boldsymbol{M} \end{pmatrix} \begin{pmatrix} \hat{\boldsymbol{x}}(t) \\ \boldsymbol{x}_{\Delta}(t) \end{pmatrix} \\
+ \begin{pmatrix} \boldsymbol{B} \\ \boldsymbol{B} - \boldsymbol{B}_{f} \boldsymbol{N} \end{pmatrix} \boldsymbol{u}_{c}(t) + \begin{pmatrix} \boldsymbol{E} \\ \boldsymbol{O} \end{pmatrix} \boldsymbol{d}(t) \\
\boldsymbol{y}_{c}(t) = \begin{pmatrix} \boldsymbol{C} & \boldsymbol{O} \end{pmatrix} \begin{pmatrix} \hat{\boldsymbol{x}}(t) \\ \boldsymbol{x}_{\Delta}(t) \end{pmatrix} \\
\begin{pmatrix} \hat{\boldsymbol{x}}(0) \\ \boldsymbol{x}_{\Delta}(0) \end{pmatrix} = \begin{pmatrix} \boldsymbol{x}_{0} + \boldsymbol{x}_{\Delta 0} \\ \boldsymbol{x}_{\Delta 0} \end{pmatrix}.$$

• x_{Δ} is not observable from y_c , it does not influence the I/O behavior. We can rewrite the dynamics:

$$\begin{cases} \dot{\boldsymbol{x}}(t) &= \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}_c(t), & \boldsymbol{x}(0) = \boldsymbol{x}_0 + \boldsymbol{x}_{\Delta 0} \\ \boldsymbol{y}_c(t) &= \boldsymbol{C}\boldsymbol{x}(t). \end{cases}$$

which is the similar to the healthy system

Autonomous Behavior

Assume autonomous behavior ($y_{ref}=0$ and d=0)

$$\begin{array}{lcl} \frac{d}{dt} \left(\begin{array}{c} \hat{\boldsymbol{x}}(t) \\ \boldsymbol{x}_{\Delta}(t) \end{array} \right) & = & \left(\begin{array}{c} \boldsymbol{A} - \boldsymbol{B}\boldsymbol{K}\boldsymbol{C} & \boldsymbol{O} \\ -\boldsymbol{B}_{\Delta}\boldsymbol{K}\boldsymbol{C} & \boldsymbol{A} - \boldsymbol{B}_{f}\boldsymbol{M} \end{array} \right) \left(\begin{array}{c} \hat{\boldsymbol{x}}(t) \\ \boldsymbol{x}_{\Delta}(t) \end{array} \right) \\ \left(\begin{array}{c} \hat{\boldsymbol{x}}(0) \\ \boldsymbol{x}_{\Delta}(0) \end{array} \right) & = & \left(\begin{array}{c} \boldsymbol{x}_{0} + \boldsymbol{x}_{\Delta 0} \\ \boldsymbol{x}_{\Delta 0} \end{array} \right). \end{array}$$

- > The eigenvalues of the reconfigured closed loop are the union of
 - a. the eigenvalues of A-BKC
 - b. the eigenvalues of A- B_fM
- > If the healthy closed loop is stable, the first ones are stable
- > the **second** ones can be **made stable** by **choosing** M
 - > always possible assuming the pair (A,B_f) is stabilisable

Analysis of I/O behavior of reconfigured closed-loop system

$$\begin{array}{lll} \frac{d}{dt} \left(\begin{array}{c} \hat{\boldsymbol{x}}(t) \\ \boldsymbol{x}_{\Delta}(t) \end{array} \right) & = & \left(\begin{array}{c} \boldsymbol{A} - \boldsymbol{B}\boldsymbol{K}\boldsymbol{C} & \boldsymbol{O} \\ -\boldsymbol{B}_{\Delta}\boldsymbol{K}\boldsymbol{C} & \boldsymbol{A} - \boldsymbol{B}_{f}\boldsymbol{M} \end{array} \right) \left(\begin{array}{c} \boldsymbol{x}(t) \\ \boldsymbol{x}_{\Delta}(t) \end{array} \right) \\ & + \left(\begin{array}{c} \boldsymbol{B}\boldsymbol{V} \\ \boldsymbol{B}_{\Delta}\boldsymbol{V} \end{array} \right) \boldsymbol{y}_{\mathrm{ref}}(t) + \left(\begin{array}{c} \boldsymbol{E} \\ \boldsymbol{O} \end{array} \right) \boldsymbol{d}(t) \\ \left(\begin{array}{c} \hat{\boldsymbol{x}}(0) \\ \boldsymbol{x}_{\Delta}(0) \end{array} \right) & = & \left(\begin{array}{c} \boldsymbol{x}_{0} + \boldsymbol{x}_{\Delta 0} \\ \boldsymbol{x}_{\Delta 0} \end{array} \right) \\ \boldsymbol{y}_{c}(t) & = & \left(\boldsymbol{C} \quad \boldsymbol{O} \right) \left(\begin{array}{c} \hat{\boldsymbol{x}}(t) \\ \boldsymbol{x}_{\Delta}(t) \end{array} \right) \\ \boldsymbol{y}_{f}(t) & = & \left(\boldsymbol{C} \quad - \boldsymbol{C} \right) \left(\begin{array}{c} \hat{\boldsymbol{x}}(t) \\ \boldsymbol{x}_{\Delta}(t) \end{array} \right). \end{array}$$

- ullet I/O behaviour from y_{ref} and d to y_c is the same as nominal system
- ullet I/O behaviour from y_{ref} and d to y_f is affected by "difference system"
- To have complete reconfiguration, we would like to have

$$B_{\Delta} = B - B_f N = O$$

Note:

- The graph above is not a direct mapping from the virtual actuators real block graph. The mapping sequence is: VA real block graph → state-space model → I/O graph
- ullet This graph is an I/O graph, that is from y_{ref},d to y_f

Summary

- Structure of Active FTC:
 - diagnoser
 - supervisor → choose/change controller
- Method 1: Model Matching Method
 - \circ Need model, then calculate new K to try to get the same performance or minimize the loss
 - o Different scenarios
- Method 2: Virtual Sensors and Virtual Actuators
 - o Need model
 - Design using **Separation Principle**