Berechnung der Gravitationskonstanten aus SI-Konstanten

Die T0-Theorie: Emergenz von G aus der Raumzeit-Geometrie

Vollständige Herleitung ohne experimentelle Eingangswerte

Johann Pascher

Abteilung Kommunikationstechnik,
Höhere Technische Lehranstalt (HTL), Leonding, Österreich
johann.pascher@gmail.com

Dezember 2025

Zusammenfassung

Diese Arbeit präsentiert die neue Erkenntnis, dass die Gravitationskonstante G keine fundamentale Naturkonstante ist, sondern aus anderen SI-Konstanten berechenbar: $G = \ell_P^2 \times c^3/\hbar$. Die zentrale Innovation der T0-Theorie besteht darin, dass G aus der Geometrie der Raumzeit emergiert, analog zu $c = 1/\sqrt{\mu_0 \varepsilon_0}$ in der Elektrodynamik. Alle SI-Konstanten erweisen sich als verschiedene Projektionen einer zugrunde liegenden dimensionslosen Geometrie. Die perfekte Übereinstimmung zwischen berechneten und experimentellen Werten $(G=6.674\times 10^{-11}~\text{m}^3/(\text{kg}\cdot\text{s}^2))$ bestätigt diese fundamentale Neuinterpretation der Gravitation.

Inhaltsverzeichnis

1	Die fundamentale T0-Erkenntnis	3
2	Die fundamentale Formel	3
3	Schritt-für-Schritt Berechnung	3
	3.1 Gegebene SI-Konstanten	
	3.2 Numerische Berechnung	4
4	Ergebnis und Verifikation	4
5	Dimensionsanalyse	5
	5.1 Überprüfung der Einheiten	Ę

6	Physikalische Interpretation	5
	6.1 Was bedeutet diese Formel?	5
	6.2 Analogie zur elektromagnetischen Konstante	5
7	Die neue T0-Erkenntnis	6
8	Praktische Konsequenzen	6
	8.1 Für Experimente	6
	8.2 Für die theoretische Physik	6
9	Zusammenfassung	7

1 Die fundamentale T0-Erkenntnis

Neuer Paradigmenwechsel

Aus T0-Sicht sind ALLE SI-Konstanten nur Ümrechnungsfaktoren"!

- In natürlichen Einheiten: $G = 1, c = 1, \hbar = 1$ (exakt)
- SI-Werte sind nur verschiedene Beschreibungen derselben Geometrie
- Die wahre Physik ist dimensionslos und geometrisch

Analog zu: $c = 1/\sqrt{\mu_0 \varepsilon_0}$ (elektromagnetische Struktur)

Jetzt auch: $G = f(\hbar, c, \ell_P)$ (geometrische Struktur)

2 Die fundamentale Formel

G aus SI-Konstanten

Gravitationskonstante als emergente Größe:

$$G = \frac{\ell_P^2 \times c^3}{\hbar} \tag{1}$$

Wobei alle Konstanten in SI-Einheiten:

- $\ell_P = 1.616 \times 10^{-35} \text{ m} \text{ (Planck-Länge)}$
- $c = 2.998 \times 10^8 \text{ m/s}$ (Lichtgeschwindigkeit)
- $\hbar = 1.055 \times 10^{-34} \text{ J} \cdot \text{s}$ (reduzierte Planck-Konstante)

3 Schritt-für-Schritt Berechnung

3.1 Gegebene SI-Konstanten

Konstante	Wert	Einheit
Planck-Länge ℓ_P	1.616×10^{-35}	m
Lichtgeschwindigkeit c	2.998×10^{8}	m/s
Reduzierte Planck-Konstante \hbar	1.055×10^{-34}	$J \cdot s$

Tabelle 1: SI-Konstanten (aus T0-Sicht: Umrechnungsfaktoren)

3.2 Numerische Berechnung

Schritt 1: Planck-Länge im Quadrat

$$\ell_P^2 = (1.616 \times 10^{-35})^2 \tag{2}$$

$$= 2.611 \times 10^{-70} \text{ m}^2 \tag{3}$$

Schritt 2: Lichtgeschwindigkeit hoch drei

$$c^3 = (2.998 \times 10^8)^3 \tag{4}$$

$$= 2.694 \times 10^{25} \text{ m}^3/\text{s}^3 \tag{5}$$

Schritt 3: Zähler berechnen

$$\ell_P^2 \times c^3 = 2.611 \times 10^{-70} \times 2.694 \times 10^{25} \tag{6}$$

$$=7.035 \times 10^{-45} \text{ m}^5/\text{s}^3 \tag{7}$$

Schritt 4: Division durch \hbar

$$G = \frac{7.035 \times 10^{-45}}{1.055 \times 10^{-34}} \tag{8}$$

$$= 6.674 \times 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{s}^2)$$
 (9)

4 Ergebnis und Verifikation

Perfekte Übereinstimmung

Berechnetes Ergebnis:

$$G_{\text{berechnet}} = 6.674 \times 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{s}^2)$$
 (10)

Experimenteller Wert (CODATA):

$$G_{\text{experimentell}} = 6.67430 \times 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{s}^2)$$
 (11)

Übereinstimmung: Exakt bis auf Rundungsfehler!

5 Dimensionsanalyse

Überprüfung der Einheiten 5.1

$$\left[\frac{\ell_P^2 \times c^3}{\hbar}\right] = \frac{[\mathbf{m}]^2 \times [\mathbf{m}/\mathbf{s}]^3}{[\mathbf{J} \cdot \mathbf{s}]} \tag{12}$$

$$= \frac{[m]^2 \times [m]^3/[s]^3}{[kg \cdot m^2/s^2] \times [s]}$$
 (13)

$$= \frac{[\mathbf{m}]^5/[\mathbf{s}]^3}{[\mathbf{kg} \cdot \mathbf{m}^2/\mathbf{s}]} \tag{14}$$

$$= \frac{[m]^{5}/[s]^{3}}{[kg \cdot m^{2}/s]}$$

$$= \frac{[m]^{5}/[s]^{3} \times [s]}{[kg \cdot m^{2}]}$$
(14)

$$= \frac{[\mathbf{m}]^5/[\mathbf{s}]^2}{[\mathbf{kg} \cdot \mathbf{m}^2]} \tag{16}$$

$$=\frac{[m]^3}{[kg \cdot s^2]} \checkmark \tag{17}$$

Die Dimensionen stimmen perfekt mit der Gravitationskonstanten überein!

Physikalische Interpretation 6

6.1 Was bedeutet diese Formel?

- ℓ_P^2 : Planck-Fläche fundamentale geometrische Skala
- \bullet c^3 : Dritte Potenz der Lichtgeschwindigkeit relativistische Dynamik
- \hbar : Quantencharakter kleinste Wirkung

G entsteht aus der Kombination von Geometrie, Relativität und Quantenmechanik!

Analogie zur elektromagnetischen Konstante 6.2

Elektromagnetismus	Gravitation
$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$	$G = \frac{\ell_P^2 \times c^3}{\hbar}$
emergent aus EM-Vakuum	emergent aus Raumzeit-Geometrie
μ_0, ε_0 fundamental	ℓ_P, c, \hbar fundamental

Tabelle 2: Parallelität zwischen elektromagnetischen und gravitativen Konstanten

7 Die neue T0-Erkenntnis

T0-Theorie: G aus SI-Konstanten

Fundamentaler Paradigmenwechsel

Traditionelle Physik:

- ullet G ist eine fundamentale Naturkonstante
- Muss experimentell bestimmt werden
- Ungeklärter Ursprung

T0-Physik:

- \bullet G ist emergent aus anderen Konstanten
- Berechenbar aus ersten Prinzipien
- Ursprung: Geometrie der Raumzeit

Alle SI-Konstanten sind nur verschiedene Projektionen der zugrunde liegenden dimensionslosen T0-Geometrie!

8 Praktische Konsequenzen

8.1 Für Experimente

- G-Messungen dienen zur Verifikation der T0-Theorie
- Präzisionsexperimente können Abweichungen von der T0-Vorhersage suchen
- Neue Kalibrationen werden möglich

8.2 Für die theoretische Physik

- Vereinheitlichung: Eine Konstante weniger im Standardmodell
- Quantengravitation: Natürliche Verbindung zwischen \hbar und G
- Kosmologie: Neue Einsichten in die Struktur der Raumzeit

9 Zusammenfassung

Die revolutionäre Erkenntnis

Gravitationskonstante ist nicht fundamental:

$$G = \frac{\ell_P^2 \times c^3}{\hbar} = 6.674 \times 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{s}^2)$$
 (18)

Kernaussagen:

- $\bullet\,$ G folgt aus der Geometrie der Raumzeit
- Alle SI-Konstanten sind Umrechnungsfaktoren
- Die wahre Physik ist dimensionslos (T0)
- Perfekte experimentelle Übereinstimmung

Das ist der Durchbruch der T0-Theorie!