

EMC TEST REPORT for Intentional Radiator No. 131001017SHA-001

Applicant : Hansong (Nanjing) Technology Ltd.

8th Kangping Road, Jiangning Economy & Technology

Development Zone, Nanjing, 211106, China

Manufacturer : Hansong (Nanjing) Technology Ltd.

8th Kangping Road, Jiangning Economy & Technology

Juj 2

Development Zone, Nanjing, 211106, China

Product Name : Wireless module

Type/Model : HSDWAM83

SUMMARY

The equipment complies with the requirements according to the following standard(s):

47CFR Part 15 (2012): Radio Frequency Devices

ANSI C63.4 (2009): American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

RSS-210 Issue 8 (December 2010): Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment

RSS-Gen Issue 3 (December 2010): General Requirements and Information for the Certification of Radiocommunication Equipment

Date of issue: Dec. 27, 2013

Daniel Those

Prepared by: Reviewed by:

Daniel Zhao (*Project Engineer*) Jonny Jing (*Reviewer*)

Description of Test Facility

Name: Intertek Testing Services Limited Shanghai

Address: Building No.86, 1198 Qinzhou Road(North), Shanghai 200233, P.R. China

FCC Registration Number: 236597

IC Assigned Code: 2042B-1

Name of contact: Steve Li Tel: +86 21 64956565 ext. 214 Fax: +86 21 54262335 ext. 214

Content

	JMMARY		
D	ESCRIPTION OF TEST FACILITY		
1.			
	1.1 Applicant Information		
	1.2 Identification of the EUT	5	í
	1.3 Technical specification	5	į
	1.4 Mode of operation during the test / Test peripherals used	(5
2.	TEST SPECIFICATION	7	7
	2.1 Instrument list.	7	7
	2.2 Test Standard	7	7
	2.3 Test Summary	8	3
3.	MINIMUM 6DB BANDWIDTH	9)
	3.1 Limit	9)
	3.2 Test Configuration	9)
	3.3 Test Procedure and test setup	9)
	3.4 Test Protocol	. 10)
4.	MAXIMUM PEAK CONDUCTED OUTPUT POWER	17	7
	4.1 Test limit	. 17	7
	4.2 Test Configuration	. 17	7
	4.3 Test procedure and test setup	. 17	7
	4.4 Test protocol	. 18	3
5.	POWER SPECTRUM DENSITY	19)
	5.1 Test limit	. 19)
	5.2 Test Configuration	. 19)
	5.3 Test procedure and test setup	. 19)
	5.4 Test Protocol	. 20)
6.	RADIATED EMISSION IN RESTRICTED FREQUENCY BANDS	27	7
	6.1 Test limit	. 27	7
	6.2 Test Configuration	. 27	7
	6.3 Test procedure and test setup		
	6.4 Test protocol	. 29)
7.	EMISSION OUTSIDE THE FREQUENCY BAND (IN NON-RESTRICTED FREQUENCY BANDS)	37	7
	7.1 Limit	. 37	7
	7.2 Test Configuration	. 37	7
	7.3 Test procedure and test setup	. 37	7
	7.4 Test protocol	. 37	7
8.	POWER LINE CONDUCTED EMISSION	46	5
	8.1 Limit	. 46	5
	8.2 Test configuration.	. 46	í
	8.3 Test procedure and test set up		
	8.4 Test protocol		
9.	OCCUPIED BANDWIDTH	50)
	9.1 Test limit	. 50)
	9.2 Test Configuration		
	9.3 Test procedure and test setup	. 50)

FCC ID: XCO-HSDWAM83
IC: 7756A-HSDWAM83

1. General Information

1.1 Applicant Information

1.1 Applicant illior mation				
Applicant	:	Hansong (Nanjing) Technology Ltd.		
		8th Kangping Road, Jiangning Economy & Technology		
		Development Zone, Nanjing, 211106, China		
Name of contact	:	Wyn B. Wang		
Tel	:	+86 25 66612888		
Fax	:	+86 25 66612098		
Manufacturer :		Hansong (Nanjing) Technology Ltd.		
		8th Kangping Road, Jiangning Economy & Technology		
		Development Zone, Nanjing, 211106, China		
Sample received	:	Nov. 22, 2013		
date				
Sample	:	20131122-21-001		
Identification No				
Date of test	:	Nov. 23 – Dec. 20, 2013		

1.2 Identification of the EUT

Product Name	:	Wireless module
Type/model :		HSDWAM83
FCC ID :		XCO-HSDWAM83
IC :		7756A-HSDWAM83

1.3 Technical specification

Operation	:	2412 – 2464 MHz & 5736 – 5814 MHz						
Frequency Band		5180 – 5240 MHz(refer to report 131001017SHA-002)						
Modulation	:	QPSK						
Description of EUT	:	This is wireless mo	This is wireless module for data transmission.					
Location for use	:	Indoor Only						
Antenna description	:	model	Туре	Gain (dBi	Frequency band(GHz)			
		Integral	PIFA	1.5	2. 4-2. 5			
				1.5	5. 1-5. 9			
		RC8WFI10042A RC1WFI0901A	mono antenna PIFA	3.6	2. 4-2. 5			
				3.8	5. 1-5. 9			
				4. 2	2. 4-2. 5			
		KCTWI-10301A	TITA	4.5	5. 1-5. 9			
Rating		DC 3.5 V						
Signal terminal		No						
Channel		9 channels, 2412MHz, 2438 MHz, 2464 MHz, 5736 MHz, 5762						
Description		MHz, 5814, MHz 5180 MHz, 5210 MHz, 5240 MHz						

1.4 Mode of operation during the test / Test peripherals used

Within this test report, EUT was tested under 120V/60Hz (supplied by a control board with AC-DC adaptor). The EUT has transmitting as well as receiving modes, so both were assessed.

While testing transmitting mode of EUT, the internal modulation was used.

While testing receiving mode of EUT, the signal generator was employed to generate continuous answer signal.

Radiated emission testing was performed for three different antennas.

	Model	Type	Gain (dBi	Frequency band(GHz)
	Intogral	PIFA	1. 5	2. 4-2. 5
	Integral	LILU	1. 5	5. 1-5. 9
	RC8WFI10042A	mono antenna	3. 6	2. 4-2. 5
	KCOWF 110042A		3.8	5. 1-5. 9
	RC1WFI0901A	PIFA	4. 2	2. 4-2. 5
	KCIWF10901A		4. 5	5. 1-5. 9

Test peripherals used:

Item No	Description	Band and Model	S/No
1 Mini-PCI control board		HanSang	/
2	Adaptor	GPE	/

2. Test Specification

2.1 Instrument list

Equipment	Type	Manu.	Internal no.	Cal. Date	Due date
Test Receiver	ESCS 30	R&S	EC 2107	2013-10-21	2014-10-20
Test Receiver	ESIB 26	R&S	EC 2107 EC 3045	2013-10-21	2014-10-20
Test Receiver	ESID 20 ESCI 7	R&S	EC 3043 EC4501	2013-10-21	2013-12-28
A.M.N.	ESH2-Z5	R&S	EC 3119	2012-12-29	2013-12-28
Ultra-broadband	HL 562	R&S	EC 3046-1	2013-5-16	2014-5-15
antenna	CDI (110D	TEGE O	FG 1204	2012 5 16	2014 5 15
Bilog Antenna	CBL 6112D	TESEQ	EC 4206	2013-5-16	2014-5-15
Horn antenna	HF 906	R&S	EC 3049	2013-5-13	2014-5-12
Pre-amplifier	Pre-amp 18	R&S	EC 3222	2013-4-12	2014-4-11
Pre-amplifier	Tpa0118-40	R&S	EC 4792-2	2013-4-12	2014-4-11
Log-period	AT 1080	AR	EC 3044-7	2013-5-22	2014-5-21
antenna					
Biconical	3109PX	ETS	EC3564	2013-8-25	2014-8-24
antenna					
Semi-anechoic	-	Albatross	EC 3048	2013-5-21	2014-5-20
chamber		project			
Shielded room	-	Zhongyu	EC 2838	2009-1-12	2014-1-11
Shielded room	-	Zhongyu	EC 2839	2009-1-12	2014-1-11
High Pass Filter	WHKX 1.0/15G-	Wainwright	EC4297-1	2013-2-1	2014-1-31
8	10SS	8			
High Pass Filter	WHKX 2.8/18G-	Wainwright	EC4297-2	2013-2-1	2014-1-31
8	12SS				
High Pass Filter	WHKX	Wainwright	EC4297-3	2013-2-1	2014-1-31
1118111 1100	7.0/1.8G-8SS	***************************************	20.277	2010 2 1	201.101
Band Reject	WRCGV	Wainwright	EC4297-4	2013-2-1	2014-1-31
Filter	2400/2483-	, am man	20.27, 1	2013 2 1	
1 11101	2390/2493-				
	35/10SS				
	33/1033				

2.2 Test Standard

47CFR Part 15:2012 ANSI C63.4: 2009 RSS-210 Issue 8: 2010 RSS-Gen Issue 3: 2010

2.3 Test Summary

This report applies to tested sample only. This report shall not be reproduced in part without written approval of Intertek Testing Service Shanghai Limited.

TEST ITEM	FCC REFERANCE	IC REFERANCE	RESULT
Minimum 6dB Bandwidth	15.247(a)(2)	RSS-210 Issue 8	Pass
		Annex 8	
Maximum peak conducted	15.247(b)	RSS-210 Issue 8	Pass
output power		Annex 8	
Power spectrum density	15.247(e)	RSS-210 Issue 8	Pass
		Annex 8	
Radiated emission in restricted	15.205 & 15.209	RSS-210 Issue 8	Pass
frequency bands		Clause 2	
Emission in non-restricted	15.247(d)	RSS-210 Issue 8	Pass
frequency bands		Annex 8	
Power line conducted emission	15.207	RSS-Gen Issue 3	Pass
		Clause 7.2.4	
Occupied bandwidth	-	RSS-Gen Issue 3	Tested
		Clause 4.6.1	

3. Minimum 6dB Bandwidth

Test result: PASS

3.1 Limit

For systems using digital modulation techniques that may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz and 5725 - 5850 MHz bands, the minimum 6 dB bandwidth shall be at least 500 kHz.

3.2 Test Configuration

3.3 Test Procedure and test setup

The minimum 6dB bandwidth per FCC §15.247(a)(2) is measured using the Spectrum Analyzer according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance v03r01" for compliance to FCC 47CFR 15.247 requirements.

3.4 Test Protocol

Temperature : 18°C Relative Humidity : 40%

Test frequency	6 dB E (N	Limit	
(MHz)	Port A	Port B	(MHz)
2412	12.36	12.36	
2438	12.30	12.36	
2464	12.30	12.36	≥0.5
5736	12.30	12.30	2 0.0
5762	12.33	12.36	
5814	12.30	12.30	

CHAIN A, CHANNEL: 2412 MHZ:

Date: 4.DEC.2013 18:41:04

CHAIN A, CHANNEL: 2438 MHZ:

Date: 4.DEC.2013 18:44:32

CHAIN A, CHANNEL: 2464 MHZ:

Date: 4.DEC.2013 18:52:19

Date: 4.DEC.2013 19:00:46

CHAIN A, CHANNEL: 5762 MHZ:

Date: 4.DEC.2013 19:03:06

CHAIN A, CHANNEL: 5814 MHZ:

Date: 4.DEC.2013 19:05:47

CHAIN B, CHANNEL: 2412 MHZ:

Date: 4.DEC.2013 19:09:00

CHAIN B, CHANNEL: 2438 MHZ:

Date: 4.DEC.2013 18:13:06

CHAIN B, CHANNEL: 2464 MHZ:

Date: 4.DEC.2013 18:22:51

CHAIN B, CHANNEL: 5736 MHZ:

Date: 4.DEC.2013 18:27:39

CHAIN B, CHANNEL: 5762 MHZ:

Date: 4.DEC.2013 18:31:10

CHAIN B, CHANNEL: 5814 MHZ:

Date: 4.DEC.2013 18:34:33

4. Maximum peak conducted output power

Test result: Pass

4.1 Test limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at
least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-
5850 MHz band: 1 watt
☐ For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts
For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and
5725-5850 MHz bands: 1 Watt.

If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

4.2 Test Configuration

4.3 Test procedure and test setup

The EUT was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance v03r01" for compliance to FCC 47CFR 15.247 requirements (clause 9.1.2).

4.4 Test protocol

Temperature : 18°C Relative Humidity : 40%

Test frequency (MHz)	Cable loss (dB)		Measured output power (dBm) Port A Port B	
2412	0.50	19.49	19.48	
2438	0.50	18.85	18.78	
2464	0.50	18.11	18.02	≤30
5736	0.50	16.95	16.15	
5762	0.50	16.75	15.97	
5814	0.50	16.17	15.28	

Note:

2412 - 2464 MHz: The maximum EIRP of the EUT = 19.49dBm + 4.2dBi = 23.69 dBm = 233.88 mW which is lower than the EIRP limit (4W) of RSS-210.

5736 - 5814 MHz: The maximum EIRP of the EUT = 16.95dBm + 4.5dBi = 21.45dBm = 139.64 mW which is lower than the EIRP limit (4W) of RSS-210.

5. Power spectrum density

Test result: Pass

5.1 Test limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

5.2 Test Configuration

5.3 Test procedure and test setup

The power output per FCC §15.247(e) was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance v03r01" (clause 10.2) for compliance to FCC 47CFR 15.247 requirements.

5.4 Test Protocol

Temperature : 18 °C Relative Humidity: 40 %

Test frequency (MHz)	Cable loss (dB)	Spectrum Density (dBm/100kHz) Port A Port B		Limit (dBm/3kHz)
2412	0.50	0.02	0.07	
2438	0.50	-0.44	0.00	
2464	0.50	-0.79	-0.73	≤8.00
5736	0.50	-2.34	-3.05	
5762	0.50	-2.15	-3.40	
5814	0.50	-2.52	-3.44	

CHAIN A, CHANNEL: 2412 MHZ:

Date: 4.DEC.2013 18:42:48

CHAIN A, CHANNEL: 2438 MHZ:

Date: 4.DEC.2013 18:45:52

CHAIN A, CHANNEL: 2464 MHZ:

Date: 4.DEC.2013 18:54:13

CHAIN A, CHANNEL: 5736 MHZ:

Date: 4.DEC.2013 19:01:48

CHAIN A, CHANNEL: 5762 MHZ:

Date: 4.DEC.2013 19:04:13

CHAIN A, CHANNEL: 5814 MHZ:

Date: 4.DEC.2013 19:06:39

CHAIN B, CHANNEL: 2412 MHZ:

Date: 4.DEC.2013 19:09:39

CHAIN B, CHANNEL: 2438 MHZ:

Date: 4.DEC.2013 18:20:07

CHAIN B, CHANNEL: 2464 MHZ:

Date: 4.DEC.2013 18:24:43

CHAIN B, CHANNEL: 5736 MHZ:

Date: 4.DEC.2013 18:29:22

CHAIN B, CHANNEL: 5762 MHZ:

Date: 4.DEC.2013 18:32:39

CHAIN B, CHANNEL: 5814 MHZ:

Date: 4.DEC.2013 18:36:12

6. Radiated emission in restricted frequency bands

Test result: PASS

6.1 Test limit

The radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) showed as below:

Frequency Field Strength (MHz) (dBuV/m)		Measurement Distance (m)
30 - 88	40.0	3
88 - 216	43.5	3
216 - 960	46.0	3
Above 960	54.0	3

6.2 Test Configuration

6.3 Test procedure and test setup

The measurement was applied in a semi-anechoic chamber. While testing for spurious emission higher than 1GHz, if applied, the pre-amplifier would be equipped just at the output terminal of the antenna.

The EUT and simulators were placed on a 0.8m high wooden turntable above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mast. The antenna moved up and down between from 1meter to 4 meters to find out the maximum emission level.

The EUT was tested according to DTS test procedure of KDB558074 D01 DTS "Meas Guidance v03r01" (clause 10.2) for compliance to FCC 47CFR 15.247 requirements.

6.4 Test protocol

Emission below 1 GHz:

Worst case (With PCBA (RC1WFI0901A)):

Polariza tion	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
V	37.78	14.00	20.00	40.00	20.00	PK
Н	133.03	25.50	15.70	43.50	18.00	PK
Н	263.27	24.40	25.20	46.00	20.80	PK
Н	440.16	18.90	24.90	46.00	21.10	PK
Н	673.43	22.60	27.60	46.00	18.40	PK
Н	924.19	25.20	31.60	46.00	14.40	PK

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (-Amplifier, is employed)

- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = limit Corrected Reading
- 4. If the PK reading is lower than QP limit, the QP test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10dBuV.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading =

10dBuV + 0.20dB/m = 10.20dBuV/m

 $Assuming\ limit = 54 dBuV/m,\ Corrected\ Reading = 10.20 dBuV/m,\ then\ Margin = 10.20 dBuV/m,\ Assuming\ limit = 10.20 dBuV/m,\ Corrected\ Reading = 10.20 dBuV/m,\ Correct$

54 - 10.20 = 43.80 dBuV/m

Vertical polarization

Emission above 1GHz: With integral antenna:

Chan. Fre. (MHz)	Polariza tion	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	V	2412.00	34.10	97.40	Fundamental	/	PK
	V	2390.00	34.10	59.80	74.00	14.20	PK
2412	V	2390.00	34.10	48.60	54.00	5.40	AV
2412	Н	4824.00	-3.50	42.80	54.00	11.20	PK
	Н	7250.00	2.90	44.20	54.00	9.80	PK
	Н	12060.00	7.60	47.00	54.00	7.00	PK
	V	2438.00	34.30	100.20	Fundamental	/	PK
2438	Н	4876.00	-3.50	42.80	54.00	16.40	PK
2438	Н	7314.00	2.90	44.20	54.00	9.80	PK
	V	12190.00	7.60	47.00	54.00	7.00	PK
	V	2464.00	34.40	97.30	Fundamental	/	PK
	V	2483.50	34.40	54.40	74.00	19.60	PK
2464	V	2483.50	34.40	44.00	54.00	10.00	AV
2404	Н	4928.00	-3.50	42.80	54.00	11.20	PK
	Н	7392.00	2.90	44.20	54.00	9.80	PK
	V	12320.00	10.40	47.00	54.00	7.00	PK

Remark: 1. For fundamental & restrict emission at 2310 - 2390MHz and 2483.5-2450MHz test, no amplifier is employed.

- 2. Correct Factor = Antenna Factor + Cable Loss (-Amplifier, is employed)
- 3. Corrected Reading = Original Receiver Reading + Correct Factor
- 4. Margin = limit Corrected Reading
- 5. If the PK reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10dBuV.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading =

10dBuV + 0.20dB/m = 10.20dBuV/m

Assuming limit = 54dBuV/m, Corrected Reading = 10.20dBuV/m, then Margin = 54 - 10.20 = 43.80dBuV/m

With integral antenna:

Chan. Fre. (MHz)	Polariza tion	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
5736	V	5736.00	32.10	100.10	Fundamental	/	PK
3730	V	11472.00	7.30	46.40	54.00	7.60	PK
5762	V	5762.00	32.10	99.90	Fundamental	/	PK
	V	11524.00	7.30	46.40	54.00	7.60	PK
5814	V	5814.00	32.10	97.80	Fundamental	/	PK
3014	V	11628.00	7.30	46.40	54.00	7.60	PK

Remark: 1. For fundamental test, no amplifier is employed.

- 2. Correct Factor = Antenna Factor + Cable Loss (-Amplifier, is employed)
- 3. Corrected Reading = Original Receiver Reading + Correct Factor
- 4. Margin = limit Corrected Reading
- 5. If the PK reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10dBuV.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading =

10dBuV + 0.20dB/m = 10.20dBuV/m

Assuming limit = 54dBuV/m, Corrected Reading = 10.20dBuV/m, then Margin = 54 -10.20 = 43.80dBuV/m

With mono-antenna (RC8WFI10042A):

Chan. Fre. (MHz)	Polariza tion	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	V	2412.00	34.10	103.20	Fundamental	/	PK
	V	2390.00	34.10	60.80	74.00	13.20	PK
2412	V	2390.00	34.10	49.40	54.00	4.60	AV
2412	Н	4824.00	-3.50	42.80	54.00	11.20	PK
	Н	7250.00	2.90	44.20	54.00	9.80	PK
	Н	12060.00	7.60	47.00	54.00	7.00	PK
	V	2438.00	34.30	102.40	Fundamental	/	PK
2438	Н	4876.00	-3.50	42.80	54.00	16.40	PK
2436	Н	7314.00	2.90	44.20	54.00	9.80	PK
	V	12190.00	7.60	47.00	54.00	7.00	PK
	V	2464.00	34.40	100.50	Fundamental	/	PK
	V	2483.50	34.40	55.60	74.00	18.40	PK
2464	V	2483.50	34.40	46.10	54.00	7.90	AV
2464	Н	4928.00	-3.50	42.80	54.00	11.20	PK
	Н	7392.00	2.90	44.20	54.00	9.80	PK
	V	12320.00	10.40	47.00	54.00	7.00	PK

Remark: 1. For fundamental & restrict emission at 2310 - 2390MHz and 2483.5-2450MHz test, no amplifier is employed.

- 2. Correct Factor = Antenna Factor + Cable Loss (-Amplifier, is employed)
- 3. Corrected Reading = Original Receiver Reading + Correct Factor
- 4. Margin = limit Corrected Reading
- 5. If the PK reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10dBuV.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading = 10dBuV + 0.20dB/m = 10.20dBuV/m

Assuming limit = 54 dBuV/m, Corrected Reading = 10.20 dBuV/m, then Margin = 54 - 10.20 = 43.80 dBuV/m

With mono-antenna (RC8WFI10042A):

Chan. Fre. (MHz)	Polariza tion	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
5736	V	5736.00	32.10	103.00	Fundamental	/	PK
3730	V	11472.00	7.30	46.40	54.00	7.60	PK
5762	V	5762.00	32.10	102.40	Fundamental	/	PK
	V	11524.00	7.30	46.40	54.00	7.60	PK
5814	V	5814.00	32.10	102.60	Fundamental	/	PK
3014	V	11628.00	7.30	46.40	54.00	7.60	PK

Remark: 1. For fundamental test, no amplifier is employed.

- 2. Correct Factor = Antenna Factor + Cable Loss (-Amplifier, is employed)
- 3. Corrected Reading = Original Receiver Reading + Correct Factor
- 4. Margin = limit Corrected Reading
- 5. If the PK reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10dBuV.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading =

10dBuV + 0.20dB/m = 10.20dBuV/m

Assuming limit = 54dBuV/m, Corrected Reading = 10.20dBuV/m, then Margin = $54 \cdot 10.20 = 43.80dBuV/m$

With PIFA antenna (RC1WFI0901A):

Chan. Fre. (MHz)	Polariza tion	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	V	2412.00	34.10	104.50	Fundamental	/	PK
	V	2390.00	34.10	62.60	74.00	11.40	PK
2412	V	2390.00	34.10	52.10	54.00	1.90	AV
2412	Н	4824.00	-3.50	42.80	54.00	11.20	PK
	Н	7250.00	2.90	44.20	54.00	9.80	PK
	Н	12060.00	7.60	47.00	54.00	7.00	PK
	V	2438.00	34.30	105.30	Fundamental	/	PK
2438	Н	4876.00	-3.50	42.80	54.00	16.40	PK
2436	Н	7314.00	2.90	44.20	54.00	9.80	PK
	V	12190.00	7.60	47.00	54.00	7.00	PK
	V	2464.00	34.40	105.50	Fundamental	/	PK
	V	2483.50	34.40	58.70	74.00	15.30	PK
2464	V	2483.50	34.40	48.10	54.00	5.90	AV
2404	Н	4928.00	-3.50	42.80	54.00	11.20	PK
	Н	7392.00	2.90	44.20	54.00	9.80	PK
	V	12320.00	10.40	47.00	54.00	7.00	PK

Remark: 1. For fundamental & restrict emission at 2310 - 2390MHz and 2483.5-2450MHz test, no amplifier is employed.

- 2. Correct Factor = Antenna Factor + Cable Loss (-Amplifier, is employed)
- 3. Corrected Reading = Original Receiver Reading + Correct Factor
- 4. Margin = limit Corrected Reading
- 5. If the PK reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10dBuV.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading =

10dBuV + 0.20dB/m = 10.20dBuV/m

Assuming limit = 54 dBuV/m, Corrected Reading = 10.20 dBuV/m, then Margin = 54 - 10.20 = 43.80 dBuV/m

With PIFA antenna (RC1WFI0901A):

Chan. Fre. (MHz)	Polariza tion	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
5736	V	5736.00	32.10	105.50	Fundamental	/	PK
3730	V	11472.00	7.30	46.40	54.00	7.60	PK
5762	V	5762.00	32.10	104.90	Fundamental	/	PK
	V	11524.00	7.30	46.40	54.00	7.60	PK
5014	V	5814.00	32.10	105.10	Fundamental	/	PK
5814	V	11628.00	7.30	46.40	54.00	7.60	PK

Remark: 1. For fundamental test, no amplifier is employed.

- 2. Correct Factor = Antenna Factor + Cable Loss (-Amplifier, is employed)
- 3. Corrected Reading = Original Receiver Reading + Correct Factor
- 4. Margin = limit Corrected Reading
- 5. If the PK reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10dBuV.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading =

10dBuV + 0.20dB/m = 10.20dBuV/m

 $Assuming\ limit = 54 dBuV/m,\ Corrected\ Reading = 10.20 dBuV/m,\ then\ Margin = 10.20 dBuV/m,\ Assuming\ limit = 10.20 dBuV/m,\ A$

54 - 10.20 = 43.80 dBuV/m

7. Emission outside the frequency band (in non-restricted frequency bands)

Test result: PASS

7.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

7.2 Test Configuration

Antenna connector

7.3 Test procedure and test setup

The Emission outside the frequency Band per FCC §15.247(d) is measured using the Spectrum Analyzer with the resolutions bandwidth set at 100kHz, the video bandwidth set at 300kHz, and the SPAN>>RBW.

The EUT was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance v03r01" (clause 11.0) for compliance to FCC 47CFR 15.247 requirements.

7.4 Test protocol

: 25 °C Temperature

Relative Humidity: 55 %

Port A (Chain A):

Test frequency (MHz)	Cable loss (dB)	Max reading among band (dBm)	The most restrict Attenuation outside band (dB)	Limit (dB)
2412	0.50	-0.06	35.48	
2438	0.50	-0.37	38.32	
2464	0.50	-0.71	37.90	≥20
5736	0.50	-2.14	31.55	_20
5762	0.50	-1.97	36.49	
5814	0.50	-2.62	35.10	

Note: The test was performed from 9kHz to 26GHz and the graph of band edge emission is listed below.

CHAIN A, CHANNEL: 2412 MHZ:

Date: 4.DEC.2013 19:51:31

CHAIN A, CHANNEL: 2438 MHZ:

Date: 4.DEC.2013 19:52:17

CHAIN A, CHANNEL: 2464 MHZ:

Date: 4.DEC.2013 19:53:20

CHAIN A, CHANNEL: 5736 MHZ:

Date: 4.DEC.2013 19:49:53

CHAIN A, CHANNEL: 5762 MHZ:

Date: 4.DEC.2013 19:47:33

CHAIN A, CHANNEL: 5814 MHZ:

Date: 4.DEC.2013 19:48:27

Port B (Chain B):

Test frequency (MHz)	Cable loss (dB)	Max reading among band (dBm)	The most restrict Attenuation outside band (dB)	Limit (dB)
2412	0.50	0.16	35.46	
2438	0.50	-0.31	37.82	
2464	0.50	-0.76	36.99	≥20
5736	0.50	-2.91	31.52	<u>≥</u> 20
5762	0.50	-2.98	35.04	
5814	0.50	-3.29	33.75	

Note: The test was performed from 9 kHz to 26 GHz and the graph of band edge emission is listed below.

CHAIN B, CHANNEL: 2412 MHZ:

Date: 4.DEC.2013 19:18:51

CHAIN B, CHANNEL: 2438 MHZ:

Date: 4.DEC.2013 19:23:39

CHAIN B, CHANNEL: 2464 MHZ:

Date: 4.DEC.2013 19:25:12

CHAIN B, CHANNEL: 5736 MHZ:

Date: 4.DEC.2013 19:34:30

CHAIN B, CHANNEL: 5762 MHZ:

Date: 4.DEC.2013 19:41:23

CHAIN B, CHANNEL: 5814 MHZ:

Date: 4.DEC.2013 19:43:07

8. Power line conducted emission

Test result: Pass

8.1 Limit

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	QP	AV		
0.15-0.5	66 to 56*	56 to 46 *		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the frequency.				

8.2 Test configuration

 \boxtimes For table top equipment, wooden support is 0.8m height table

For floor standing equipment, wooden support is 0.1m height rack.

8.3 Test procedure and test set up

The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a $50\Omega/50uH$ coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a $50\Omega/50uH$ coupling impedance with 50Ω termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4 on conducted measurement. The bandwidth of the test receiver is set at 9 kHz.

8.4 Test protocol

Frequenc	Correct	Line	Correcte	d Reading	Lin	nit	Mar	gin
y	Factor		(dF	BuV)	(dBı	ıV)	(dI	3)
(MHz)	(dB)		QP	AV	QP	AV	QP	AV
0.33	3.00	L	43.95	31.05	59.44	49.44	15.49	18.39
0.71	3.00	L	36.98	23.73	56.00	46.00	19.02	22.27
1.14	3.00	L	36.44	23.17	56.00	46.00	19.56	22.83
2.11	3.10	L	37.07	24.48	56.00	46.00	18.93	21.52
2.66	3.10	L	34.47	22.05	56.00	46.00	21.53	23.95
21.18	3.40	L	8.76	0.14	60.00	50.00	51.24	49.86

Remark: 1. Correction Factor (dB) = LISN Factor (dB) + Cable Loss (dB).

2. Margin (dB) = Limit - Corrected Reading.

L line:

N Line:

9. Occupied Bandwidth

Test Status: Tested

9.1 Test limit

None

9.2 Test Configuration

9.3 Test procedure and test setup

The occupied bandwidth per RSS-Gen Issue 3 Clause 4.6.1 was measured using the Spectrum Analyzer.

9.4 Test protocol

 $\begin{array}{lll} \mbox{Temperature} & : & 25 \ ^{\circ}\mbox{C} \\ \mbox{Relative Humidity} & : & 55 \ \% \\ \end{array}$

Test frequency	99% Bandwidth (MHz)		
(MHz)	Port A	Port B	
2412	13.92	13.92	
2438	13.92	13.92	
2464	13.92	13.92	
5736	13.92	13.98	
5762	13.92	13.92	
5814	13.92	13.98	

CHAIN A, CHANNEL: 2412 MHZ:

Date: 4.DEC.2013 18:58:42

CHAIN A, CHANNEL: 2438 MHZ:

Date: 4.DEC.2013 18:59:15

CHAIN A, CHANNEL: 2464 MHZ:

Date: 4.DEC.2013 18:55:12

CHAIN A, CHANNEL: 5736 MHZ,

Date: 4.DEC.2013 18:56:09

CHAIN A, CHANNEL: 5762 MHZ,

Date: 4.DEC.2013 18:57:20

CHAIN A, CHANNEL: 5814 MHZ,

Date: 4.DEC.2013 18:57:49

CHAIN B, CHANNEL: 2412 MHZ,

Date: 4.DEC.2013 19:10:20

CHAIN B, CHANNEL: 2438 MHZ,

Date: 4.DEC.2013 19:10:44

CHAIN B, CHANNEL: 2464 MHZ,

Date: 4.DEC.2013 19:11:23

CHAIN B, CHANNEL: 5736 MHZ,

Date: 4.DEC.2013 19:11:55

CHAIN B, CHANNEL: 5762 MHZ,

Date: 4.DEC.2013 19:12:28

CHAIN B, CHANNEL: 5814 MHZ,

Date: 4.DEC.2013 19:13:52