

# Introduction to AMD GPUs

Ivy Peng Assistant Professor in Computer Science Scalable Parallel System (ScaLab) Department of Computer Science, KTH





### **AMD GPUs**





| Rank | System                                                                                                                                                                             | Cores     | Rmax<br>(PFlop/s) | Rpeak<br>(PFlop/s) | Power<br>(kW) |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|--------------------|---------------|
| 1    | Frontier - HPE Cray EX235a, AMD Optimized 3rd<br>Generation EPYC 64C 2GHz, AMD Instinct MI250X,<br>Slingshot-11, HPE<br>D0E/SC/Oak Ridge National Laboratory<br>United States      | 8,699,904 | 1,194.00          | 1,679.82           | 22,703        |
| 2    | Supercomputer Fugaku - Supercomputer Fugaku,<br>A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu<br>RIKEN Center for Computational Science<br>Japan                                  | 7,630,848 | 442.01            | 537.21             | 29,899        |
| 3    | LUMI - HPE Cray EX235a, AMD Optimized 3rd<br>Generation EPYC 64C 2GHz, AMD Instinct MI250X,<br>Slingshot-11, HPE<br>EuroHPC/CSC<br>Finland                                         | 2,220,288 | 309.10            | 428.70             | 6,016         |
| 4    | Leonardo - BullSequana XH2000, Xeon Platinum 8358<br>32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA<br>HDR100 Infiniband, Atos<br>EuroHPC/CINECA<br>Italy                    | 1,824,768 | 238.70            | 304.47             | 7,404         |
| 5    | Summit - IBM Power System AC922, IBM POWER9 22C<br>3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR<br>Infiniband, IBM<br>DOE/SC/Oak Ridge National Laboratory<br>United States | 2,414,592 | 148.60            | 200.79             | 10,096        |



#### **AMD GPUs**

- AMD is a strong Nvidia competitor for High-performance data centers
- AMD Instinct MI250x powers upcoming supercomputers, such as Frontiers, El Capitan, LUMI and Dardel
  - Its performance is better / onpar than Nvidia A100.





#### **AMD GCN Architecture**





#### **AMD GCN Architecture**





#### **AMD Instinct MI250x GPU**





#### **AMD Instinct MI250x GPU**





#### **AMD Instinct MI250x GPU**

- Each GPU has 2 Graphic Compute Dies (GCD)
- The CUs feature Matrix Core Engines optimized for the matrix in machine learning, similar to Nvidia Tensor Cores

| MI250X                |                   |
|-----------------------|-------------------|
| Compute Units         | 220 (110 per GCD) |
| Stream Processors     | 14080             |
| MEMORY                |                   |
| Memory Size           | 128GB HBM2e       |
| Memory Interface      | 8,192 bits        |
| Memory Clock          | 1.6GHz            |
| Memory Bandwidth      | up to 3.2TB/sec2  |
| PERFORMANCE           |                   |
| Peak FP64/FP32 Vector | 47.9 TFLOPS       |
| Peak FP64/FP32 Matrix | 95.7 TFLOPS       |
| Peak FP16/BF16        | 383.0 TFLOPS      |
| Peak INT4/INT8        | 383.0 TOPS        |



## The Dardel Supercomputer

The GPU partition comprises 56 GPU nodes. Each node has:

- CPU: one AMD EPYC<sup>™</sup> 64-core processors (128 hardware threads)
- 512 GB of shared fast HBM2e memory (128GB x 4 GPUs)
- 4 AMD Instinct™ MI250X GPUs (8 GCD) connected by AMD Infinity Fabric® links

Optimized 3rd Gen AMD EPYC™ Processor + AMD Instinct™ MI250X Accelerator





# HIP, AMD's portable layer



#### AMD's Heterogeneous-compute Interface for Portability - HIP

- HIP is a C++ runtime API and kernel language
- Provides an API for an application to leverage GPU acceleration for both AMD and CUDA devices.
- Syntactically similar to CUDA.
  - Many CUDA applications can be easily converted to HIP using hipify



source: introduction to AMD GPU programming with hip", paul bauman et al.



# HIP API (v.s. CUDA Runtime API)

|                      | HIP                                                            | CUDA                                                                   |
|----------------------|----------------------------------------------------------------|------------------------------------------------------------------------|
| Device<br>Management | hipSetDevice(),<br>hipGetDevice(),<br>hipGetDeviceProperties() | <pre>cudaSetDevice(), cudaGetDevice(), cudaGetDeviceProperties()</pre> |
| Memory<br>Management | hipMalloc(),<br>hipMemcpy(),<br>hipMemcpyAsync(),<br>hipFree() | cudaMalloc(),<br>cudaMemcpy(),<br>cudaMemcpyAsync(),<br>cudaFree()     |
| Device Kernels       | global,device<br>hipLaunchKernelGGL()                          | global,device<br>aKernel<<<,>>>()                                      |
| Synchronization      | hipDeviceSynchronize()                                         | cudaDeviceSynchronize();                                               |



## **Computational Grid – 1D**

Similar to CUDA, we can calculate a thread's global id by

- Its block ID: blockIdx.x
- the block's dimension: blockDim.x
- Its local thread ID in a block: threadIdx.x





## Computational Grid – 2D, 3D

Similar to CUDA, we use the .y .z index

- Its block ID: blockIdx.x, blockIdx.y, blockIdx.z
- the block's dimension: blockDim.x, blockDim.y, blockDim.z
- Its local thread ID in a block: threadIdx.x, threadIdx.y, threadIdx.z



A good practice is to make the block size a multiple of 64 (wavefront=64)



## **Device Memory**

#### Similar to Nvidia GPU and CUDA:

```
int main() {
   //allocate on device memory
  double *d a = NULL;
  hipMalloc(&d_a, Nbytes);
  //copy data into device memory
  hipMemcpy(d a,h a,Nbytes,hipMemcpyHostToDevice);
  //copy data from device memory to host
  hipMemcpy(h a,d a,Nbytes,hipMemcpyDeviceToHost);
  //free device memory
  hipFree(d_a);
```



#### **Kernel Launch**

```
global void myKernel(int N, double *d a) { . . .}
dim3 threads(256,1,1); //3D dimensions of a block of threads
dim3 blocks((N+256-1)/256,1,1); //3D dimensions the grid of blocks
hipLaunchKernelGGL(myKernel,
                  blocks, threads,
                  bytes LDS, //equal:CUDA dynamic shared memory
                   stream id, //equal:CUDA stream
                  kernel args...);
Equivalent to CUDA:
myKernel<<<blooks, threads, SMEM, stream id>>>(N,a);
```



#### **HIP Code Skeleton**

```
__global___void myKernel(args...)
{
    ...
    //calculate threads's global ID
    int tid = threadIdx.x + blockIdx.x*blockDim.x;
    ...
}
```

```
#include "hip/hip runtime.h"
int main()
   //allocate on device memory
   double *d a = NULL;
   hipMalloc(&d a, Nbytes);
   //copy data into device memory
hipMemcpy(d_a,h_a,Nbytes,hipMemcpyHostToDevice);
   //define thread block and launch kerner
   dim3 threads(256,1,1);
   dim3 blocks((N+256-1)/256,1,1);
   hipLaunchKernelGGL(myKernel
   //copy data from device memory to host
hipMemcpy(h a,d a,Nbytes,hipMemcpyDeviceToHost);
   //free device memory
   hipFree(d a);
```



# **Shared Memory (LDS)**

Access is faster than device memory but slower than register



Device Global Memory (HBM2e)



## **Shared Memory (LDS)**

The same keyword as in CUDA, variables are declared as:

```
__shared__ double s_a[256];
```

- Allocated on LDS memory
- Shared and accessible by all threads in the same block
- Best practice to use \_\_syncthreads to ensure all threads in the same block reached the same step
- Either use known size at compile time or dynamic allocate in kernel launch



### **Atomics Operations**

- Perform a read+write of a single 32 or 64-bit word in device global or LDS memory
- Work as a solution to race condition when data is updated by multiple threads

| Operation                       | Type T                            |
|---------------------------------|-----------------------------------|
| T atomicAdd(T* address, T val)  | int, long long int, float, double |
| T atomicExch(T* address, T val) | int, long long int, float         |
| T atomicMin(T* address, T val)  | int, long long int                |
| T atomicMax(T* address, T val)  | int, long long int                |
| T atomicAnd(T* address, T val)  | int, long long int                |
| T atomicOr(T* address, T val)   | int, long long int                |
| T atomicXor(T* address, T val)  | int, long long int                |



### Compile a HIP code

Compile using **hipcc** and **--**offload to target AMD GPU, e.g., hipcc --offload-arch=gfx90a vecAdd.cpp -o vecAdd

Set HIPCC\_VERBOSE=7 to see compilation information HIPCC\_VERBOSE=7 hipcc --offload-arch=gfx90a vecAdd.cpp -o vecAdd



## Hipify a CUDA code to HIP

Many applications are already written in CUDA, i.e., \*.cu AMD provides 'Hipify' tools to automatically convert most CUDA code to HIP code.

 Hipify-perl is a script that comes in rocm module on Dardel module load rocm/5.3.3
 hipify-perl -print-stats hello.cu > hello.cpp

Most codes (>90%) in large applications can be automatically converted. What cannot be hipified?

- Intrinsic code
- User inerted assembly
- Nvidia GPU specific hardcoded



## Make Sure your code is running on GPU

While your code is running, check the GPU activities using rocm-smi. In the following example, only 1 (GPU 0) out of 8 GPUs are being utilized – each GCD is presented as a GPU device

| ARNING: |        |        | One or more commands failed |         |            |      |               |       |             |       |
|---------|--------|--------|-----------------------------|---------|------------|------|---------------|-------|-------------|-------|
|         |        |        | ==== ROCm                   |         | lanage     |      | nterface      | ===== | =======     | ===== |
| PU      | Temp   | AvgPwr | SCLK                        | MCLK    | Fan        | Perf | PwrCap        | VRAM% | GPU%        |       |
|         | 33.0c  | 132.0W | 1700Mhz                     | 1600Mhz | 0%         | auto | 560.0W        | 0%    | 100%        |       |
|         | ۷/. ७C | N/A    | ช <sub>ี</sub> ๒๓๓๔         | Temmuz  | <b>U</b> % | auto | <b>ช</b> . ชพ | ⊎%    | <b>U</b> 76 |       |
|         | 20.0c  | 91.0W  | 800Mhz                      | 1600Mhz | 0%         | auto | 560.0W        | 0%    | 0%          |       |
|         | 24.0c  | N/A    | 800Mhz                      | 1600Mhz | 0%         | auto | 0.0W          | 0%    | 0%          |       |
|         | 21.0c  | 92.0W  | 800Mhz                      | 1600Mhz | 0%         | auto | 560.0W        | 0%    | Θ%          |       |
|         | 22.0c  | N/A    | 800Mhz                      | 1600Mhz | 0%         | auto | 0.0W          | 0%    | Θ%          |       |
|         | 20.0c  | 90.0W  | 800Mhz                      | 1600Mhz | 0%         | auto | 560.0W        | 0%    | Θ%          |       |
|         | 28.0c  | N/A    | 800Mhz                      | 1600Mhz | 0%         | auto | 0.0W          | 0%    | 0%          |       |



# **AMD GPU Profiling with rocprof**



Run rocprof with --stats for a summary in results.stats.csv

```
4 reduction> srun -n 1 rocprof --stats ./reduction
RPL: on '230811 145940' from '/cfs/klemming/root/rocm/opt/rocm-5.3.3' in './amd part2/4_reduction'
RPL: profiling "'./reduction"
RPL: input file "
RPL: output dir '/tmp/rpl data 230811 145940 117170'
RPL: result dir '/tmp/rpl data 230811 145940 117170/input results 230811 145940'
Usage: ./reduction num of elems
using default value: 52428800
ARRAYSIZE: 52428800
Array size: 200 MB
ROCProfiler: input from "/tmp/rpl data 230811 145940 117170/input.xml"
0 metrics
The average performance of reduction is 396.195 GBytes/sec
VERIFICATION: result is CORRECT
ROCPRofiler: 20 contexts collected, output directory /tmp/rpl data 230811 145940 117170/input results 230811 145940
File '/amd part2/4 reduction/results.csv' is generating
File '/amd part2/4 reduction/results.stats.csv' is generating
```



Run rocprof with a selected list of hardware counters specified in <u>my counters.txt</u>

```
4 reduction > cat my counters.txt
pmc: Wavefronts VALUInsts VFetchInsts VWriteInsts VALUUtilization VALUBusy WriteSize
4 reduction> srun -n 1 rocprof -i my counter.txt ./reduction
ROCProfiler: input from "/tmp/rpl data 230810 164433 16749/input0.xml"
 apu index =
 kernel =
 range =
 7 metrics
  Wavefronts, VALUInsts, VFetchInsts, VWriteInsts, VALUUtilization, VALUBusy, WriteSize
The average performance of reduction is 91.2052 GBytes/sec
VERIFICATION: result is CORRECT
ROCPRofiler: 20 contexts collected, output directory
/tmp/rpl_data_230810_164433_16749/input0_results_230810_164433
File '4 reduction/my counter.csv' is generating
```



Run rocprof to collect a trace of events and visualize the trace 1. Collect traces, a set of json files are generated

```
> srun -n 1 rocprof --hip-trace --hsa-trace ./helloworld
RPL: on '230811_161421' from '/cfs/klemming/root/rocm/opt/rocm-5.3.3' in
. . .

RPL: output dir '/tmp/rpl_data_230811_161421_1594'
RPL: result dir '/tmp/rpl_data_230811_161421_1594/input_results_230811_161421'
. . .

ROCProfiler: input from "/tmp/rpl_data_230811_161421_1594/input.xml"
    0 metrics
ROCtracer (1615):
    HSA-trace(*)
    HSA-activity-trace()
    HIP-trace(*)
. . .
```



Run rocprof to collect a trace of events and visualize the trace

- 2. download result.json to your laptop
- 3. Open Chrome browser





#### 4. Load the json file in Chrome browser





## **Use Math Libraries**



## **Optimized Math Libraries**

#### BLAS

- rocBLAS(https://github.com/ROCmSoftwarePlatform/rocBLAS)
- cuBLAS(https://docs.nvidia.com/cuda/cublas/index.html)

#### FFTs

- rocFFT(https://github.com/ROCmSoftwarePlatform/rocFFT)
- cuFFT(https://developer.nvidia.com/cufft)

#### Sparse linear algebra

- rocSPARSE(https://github.com/ROCmSoftwarePlatform/rocSPARSE)
- cuSPARSE(https://docs.nvidia.com/cuda/cusparse/index.html)

#### Solvers

- rocALUTION(<u>https://github.com/ROCmSoftwarePlatform/rocALUTION</u>)
- cuSOLVER(https://docs.nvidia.com/cuda/cusolver/index.html#)



## **BLAS (Basic Linear Algebra Subprograms)**

A, B, C are matrices, x, y are vectors, alpha, beta are scalars

- BLAS level 1 vector-vector operations
  - e.g., <u>axpy</u> computes constant alpha multiplied by vector x, plus vector y: vector-vector

$$y := alpha * x + y$$

BLAS level 2 matrix-vector operations

$$y := alpha*A*x + beta*y$$

BLAS level 3 matrix-matrix operations



## rocBLAS level 1: axpy

#### rocblas\_Xaxpy: X represent data types, e.g., s = single precision

#### Nvidia provides similar cuBLAS

```
cublasStatus_t cublasSaxpy(cublasHandle_t handle,
int n, const float *alpha, const float *x, int incx, float *y, int incy)
```



## rocBLAS level 3: gemm

#### rocblas\_Xgemm: X represent data types, e.g., s = single precision

```
C := alpha*A * B + beta*C

rocblas_sgemm(rocblas_handle handle, r

ocblas_operation transA, rocblas_operation transB,

rocblas_int m, rocblas_int n, rocblas_int k, const float *alpha,

const float *A, rocblas_int lda, const float *B, rocblas_int ldb,

const float *beta, float *C, rocblas_int ldc)
```

#### A is a m x k matrix, B is a k x n matrix, C is a m x n matrix



## Use rocBLAS: an example

rocblas\_sgemm(rocblas\_handle handle, rocblas\_operation transA, rocblas\_operation transB, rocblas\_int m, rocblas\_int n, rocblas\_int k, const float \*alpha, const float \*A, rocblas\_int lda, const float \*B, rocblas\_int ldb, const float \*beta, float \*C, rocblas\_int ldc)

```
int main(){
//1. create rocblas handle
rocblas handle handle;
rocblas create handle(&handle);
//2. memory allocation on device
hipMemcpy(...hipMemcpyHostToDevice)
//3. calculation using rocblas
rocblas sgemm(handle, transA, transB, M, N, K,
&hAlpha, dA, lda, dB, ldb, &hBeta, dC, ldc);
//4. copy results from device to host
hipMemcpy(...hipMemcpyDeviceToHost)
```



# Q&A