Algebra Lineare e Geometria Analitica Ingegneria dell'Automazione Industriale

Ayman Marpicati

A.A. 2022/2023

Indice

Chapter 1	Nozioni preliminari	Page 2
1.1	Relazioni su un insieme	2
1.5	2 Strutture algebriche	2
Chapter 2	Spazi vettoriali	Page 4
2.	1 Generalità	4
2.5	2 Sottospazi di uno spazio vettoriale	4
2.3	3 Indipendenza e dipendeva lineare	5
2.4	4 Sistemi di generatori di uno spazio vettoriale	7
$2 \perp$	5 Basi e dimensione	7

Capitolo 1

Nozioni preliminari

1.1 Relazioni su un insieme

Definizione 1.1.1: Relazione su un insieme

Una **relazione** su un insieme A è un qualunque sottoinsieme di \mathcal{R} del prodotto cartesiano $A \times A$. Una relazione \mathcal{R} su un insieme A si dice:

- riflessiva se, per ogni $a \in A$, $a\mathcal{R}a$;
- simmetrica se, per ogni $a, b \in A$, aRb allora a = b;
- antisimmetrica se, per ogni $a, b \in A$, $aRb \in bRa$ allora a = b;
- transitiva se, per ogni $a, b, c \in A$, $aRb \in bRc$ allora aRc;

Definizione 1.1.2: Relazione d'ordine totale

Una relazione d'ordine \mathcal{R} su un insieme A si dice **relazione d'ordine** se è riflessiva, antisimmetrica e transitiva. Se inoltre, gli elementi di A sono a due a due confrontabili, cioè, per ogni $a, b \in A$, risulta $a\mathcal{R}b$ oppure $b\mathcal{R}a$, la relazione \mathcal{R} si dice **relazione d'ordine totale**.

1.2 Strutture algebriche

Definizione 1.2.1: Gruppo

Sia (G, \star) un insieme con un'operazione \star . La struttura (G, \star) si dice **gruppo** se:

- l'operazione ★ è associativa;
- esiste in G l'elemento neutro;
- \bullet ogni elemento di $g \in G$ è simmetrizzabile.

Se l'operazione \star soddisfa anche la proprietà commutativa, il gruppo si dice abeliano.

Definizione 1.2.2: Campo

Sia A un insieme sul quale sono definite due operazioni che indichiamo con i simboli "+" e "·" e che chiamiamo somma e prodotto rispettivamente. La struttura $(A, +, \cdot)$ è un **campo** se sussistono le condizioni seguenti:

- (A, +) è un gruppo abeliano il cui elemento neutro è indicato con 0;
- $(A \setminus \{0\}, \cdot)$ è un gruppo abeliano con elemento neutro $e \neq 0$;
- \bullet valgono le proprietà distributive (sinistra e destra) del prodotto rispetto alla somma, cioè per ogni $a,b,c\in A$

$$a \cdot (b+c) = a \cdot b + a \cdot c; (a+b) \cdot c = a \cdot c + b \cdot c$$

Capitolo 2

Spazi vettoriali

2.1 Generalità

Definizione 2.1.1: Spazio vettoriale

Siano K un campo e V un insieme. Si dice che V è uno **spazio vettoriale** sul campo K, se sono definite due operazioni: un'operazione interna binaria su V, detta somma, $+: V \times V \to V$ e un'operazione estrema detta prodotto esterno o prodotto per scalari, $\cdot: K \times V \to V$, tali che

- (V, +) sia un gruppo abeliano;
- $\bullet\,$ il prodotto esterno \cdot soddisfi le seguenti proprietà:
 - $-(h \cdot k) \cdot v = h \cdot (k \cdot v) \quad \forall h, k \in K \quad e \quad \forall v \in V$
 - $-(h+k)\cdot v = h\cdot v + k\cdot v \quad \forall h, k \in K \quad e \quad \forall v \in V$
 - $-h \cdot (v+w) = h \cdot v + h \cdot w \quad \forall h, k \in K \quad e \quad \forall v, w \in V$
 - $-1 \cdot v = v \quad \forall v \in V$

Gli elementi dell'insieme V sono detti **vettori**, gli elementi del campo K sono chiamati **scalari**. L'elemento neutro di (V, +) è detto **vettor nullo** e indicato $\underline{0}$ per distinguerlo da 0, zero del campo K. L'opposto di ogni vettore \mathbf{v} viene indicato con $-\mathbf{v}$.

Teorema 2.1.1

Sia V uno spazio vettoriale sul campo K, siano $k \in K$ e $v \in V$. Allora

$$kv = 0 \iff k = 0 \text{ oppure } v = 0$$

Dimostrazione: Se k = 0

$$0v = (0+0)v = 0v + 0v$$

e sommando -0v ad ambo i membri si ottiene appunto $\underline{0} = 0v$. Se è $v = \underline{0}$, si procede nel modo analogo. Viceversa, se $kv = \underline{0}$ e $k \neq 0$ dimostriamo che $v = \underline{0}$. Dato che $k \neq 0$, esiste l'inverso $k^{-1} \in K$ e, moltiplicando ambo i membri della precedente uguaglianza per k^{-1} si ottiene $k^{-1}(kv) = k^{-1}\underline{0}$ che, per quanto dimostrato in precedenza dà il $\underline{0}$. Dato che $k^{-1}(kv) = (k^{-1}k)v = 1v = v$, per la proprietà 4, si ha v = 0.

2.2 Sottospazi di uno spazio vettoriale

Definizione 2.2.1

Sia $\emptyset \neq U \subseteq V$, diremo che U è **sottospazio vettoriale** di V se è esso stesso uno spazio vettoriale rispetto alla restrizione delle stesse operazioni.

Proposizione 2.2.1 Primo criterio di riconoscimento

Sia V(K) uno spazio vettoriale e sia $\emptyset \neq U \subseteq V$ un suo sottoinsieme. Il sottoinsieme U è uno spazio vettoriale di V se, e soltanto se, sono verificate le seguenti condizioni:

- 1. $\forall u, u' \in U \quad u + u' \in U$
- 2. $\forall k \in K, \ \forall u \in U \quad ku \in U$

Proposizione 2.2.2 Secondo criterio di riconoscimento

Sia V(K) uno spazio vettoriale sul campo K e sia $\emptyset \neq U \subseteq V$, U è sottospazio di V(K) se e soltanto se

$$hv_1 + kv_2 \in U \quad \forall v_1, v_2 \in U \quad e \quad h, k \in K$$

2.3 Indipendenza e dipendeva lineare

Definizione 2.3.1: Combinazione lineare

Siano $v_1, v_2, ..., v_n \in V(K)$ si dice combinazione lineare di vettori $v_1, v_2, ..., v_n$ ogni vettore v:

$$v = k_1 \cdot v_1 + k_2 \cdot v_2 + \dots + k_n \cdot v_n \quad \text{con } k_1, k_2, \dots, k_n \in K$$

Definizione 2.3.2: Sistema di vettori libero

Sia V(K) e sia A un sistema di vettori di V(K), $A = [v_1, v_2, ..., v_n]$, allora A si dice **libero** se l'unica combinazione lineare di vettori di A che dà il vettore nullo è a coefficienti tutti nulli

$$0 = k_1 \cdot v_1 + k_2 \cdot v_2 + \dots + k_n \cdot v_n \implies k_1 = k_2 = \dots = k_n = 0$$

Se A è libero i suoi vettori si dicono linearmente indipendenti.

Definizione 2.3.3: Sistema di vettori legato

Sia V(K) e sia A un sistema di vettori di V(K), $A = [v_1, v_2, ..., v_n]$, allora A si dice **legato** se **non** è libero. Quindi:

$$\exists k_1, k_2, ..., k_n \text{ non tutti nulli}: 0 = k_1 \cdot v_1 + k_2 \cdot v_2 + ... + k_n \cdot v_n$$

Se A è legato i suoi vettori si dicono linearmente dipendenti.

Qui di seguito daremo delle proposizioni riguardo ai sistemi liberi e legati:

Proposizione 2.3.1

Sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori di V(K). Se $\underline{0}$ appartiene ad A, il sistema A è legato.

Dimostrazione: Sia $\underline{0} \in A$, senza perdita di generalità, possiamo supporre che $\underline{0} = v_1$ quindi:

$$1 \cdot v_1 + 0 \cdot v_2 + \dots + 0 \cdot v_n = 1 \cdot 0 + 0 = 0 \implies A$$
è legato

⊜

Proposizione 2.3.2

Sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori di V(K). Se in A appaiono due vettori proporzionali allora A è legato.

Dimostrazione: Senza perdita di generalità possiamo supporre che $v_1 = kv_2$ e quindi:

$$1v_1 + kv_2 + 0v_3 + ... + 0v_n = v_1 - kv_2 + 0 = 0 \implies A$$
è legato

☺

Proposizione 2.3.3

Sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori di V(K). A è legato se e solo se almeno uno dei vettori si può riscrivere come combinazione lineare degli altri.

Dimostrazione: \implies : Per ipotesi A è legato e quindi:

$$\underline{0} = k_1 v_1 + k_2 v_2 + \dots + k_n v_n \text{ con almeno un } k_i = 0$$

Senza perdita di generalità supponiamo che $k_1 \neq 0$

$$-k_1 v_1 = k_2 v_2 + \dots + k_n v_n \qquad v_1 = \frac{1}{k_1} (-k_2 v_2 - \dots - k_n v_n)$$
$$v_1 = -\frac{k_2}{k_1} v_2 - \frac{k_3}{k_1} v_3 - \dots - \frac{k_n}{k_1} v_n$$

e quindi v_1 è combinazione lineare di $v_1, ..., v_n$.

← : Per ipotesi uno dei vettori di A è combinazione lineare degli altri e senza perdita di generalità:

$$v_1 = k_2 v_2 + k_3 v_3 + \dots + k_n v_n$$
 $0 = -1v_1 + k_2 v_2 + \dots + k_n v_n$

siccome $-1 \neq 0$ A è legato.

⊜

Proposizione 2.3.4

Sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori di V(K) e sia $u \in V(K)$. Se $A \cup \{u\}$ è legato, allora u è combinazione lineare dei vettori di A.

Dimostrazione: Per ipotesi $A \cup \{u\}$ è legato, cioè:

$$\exists k_1, k_2, ..., k_n, b \in K$$
 non tutti nulli : $0 = k_1 v_1 + k_2 v_2 + ... + k_n v_n + bu$

sia per assurdo b = 0

$$\underline{0} = k_1 v_1 + k_2 v_2 + ... + k_n v_n \text{ con } k_1 \neq 0 \implies A \text{ è legato, assurdo!} \implies b \neq 0$$

$$-bu = k_1v_1 + k_2v_2 + \dots + k_nv_n \quad u = -\frac{k_1}{h}v_1 - \frac{k_2}{h}v_2 - \dots - \frac{k_n}{h}v_n$$

 $\implies u$ è combinazione lineare dei vettori $v_1,v_2,...,v_n$

⊜

Proposizione 2.3.5

Sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori di V(K) e sia $B \supseteq A$ sistema di vettori di V(K). Se A è legato allora anche B è legato.

Dimostrazione:

$$\exists k_1, k_2, ..., k_n \in K$$
 non tutti nulli : $0 = k_1 v_1 + k_2 v_2 + ... + k_n v_n$

Se $B = [v_1, v_2, ..., v_n, w_1, w_2, ..., w_m]$ allora

$$0 = k_1 v_1 + k_2 v_2 + \dots + k_n v_n + 0 w_1 + 0 w_2 + \dots + 0 w_m$$

 \implies B è legato.

⊜

Proposizione 2.3.6

Sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori di V(K) e sia $B \subseteq A$ sistema di vettori di V(K), se A è libero, allora B è libero.

Dimostrazione: Sia, per assurdo, B legato, allora per la proposizione precedente anche A è legato. **Assurdo!** Quindi B è libero.

2.4 Sistemi di generatori di uno spazio vettoriale

Definizione 2.4.1: Sistema di generatori

Sia A sistema di vettori di V(K). A si dice sistema di generatori di V(K) se ogni $v \in V(K)$ si può scrivener come combinazione lineare di un numero finito di vettori di A.

Definizione 2.4.2: Copertura lineare

Sia A un sistema di vettori di V(K) si dice copertura (o chiusura) lineare di A l'insieme $\mathcal{L}(A)$ di tutte le combinazioni lineari di sottoinsiemi finiti di A.

Note:-

Dato A sistema di vettori di V(K)

- 1. $\mathcal{L}(A)$ è il più piccolo sottospazio di V(K) che contiene A
- 2. $\mathcal{L}(A) \leq V(K)$
- 3. $\mathcal{L}(\mathcal{L}(A)) = \mathcal{L}(A)$

Ogni spazio vettoriale ammette un sistema di generatori e:

- \bullet se V(K) ammette un sistema di generatori finito $\implies V(K)$ si dice finitamente generato.
- se ogni sistema di generatori di V(K) ha cardinalità infinita $\implies V(K)$ non è finitamente generato.

2.5 Basi e dimensione

Lemma 2.5.1

Sia $S = [v_1, v_2, ..., v_n]$ un sistema di generatori per uno spazio vettoriale V(K), e sia $v \in S$ combinazione lineare degli altri vettori (linearmente dipendente dagli altri) $\Longrightarrow S \setminus \{v\}$ è sistema di generatori per V(K)

Dimostrazione: Sia, senza perdere di generalità, v_1 combinazione lineare di $v_2, v_3, ..., v_n$

$$v_1 = k_2 v_2 + k_3 v_3 + \dots + k_n v_n$$

$$sia v \in V(K)$$

$$v = h_1 v_1 + h_2 v_2 + \dots + h_n v_n = h_1 (k_2 v_2 + \dots + k_n v_n) + h_2 v_2 + \dots + h_n v_n$$

$$v = \underbrace{(h_1 k_2 + h_2)}_{\in K} v_2 + \dots + \underbrace{(h_1 k_n + h_n)}_{\in K} v_n \in \mathcal{L}([v_2, v_3, \dots, v_n]) = \mathcal{L}(S \setminus \{v_1\})$$

 $\implies S \setminus \{v_1\}$ è un sistema di generatori.