NetID: msm160530

ASSIGNMENT - 3

Data Compression using K-means clustering

Image compression is carried out using k-means algorithm, using JAVA. The program is fed an image (Koala.jpg or Penguins.jpg), and a compressed image is produced, depending on the K value. The K values that are considered are 2, 5, 10, 15, 20 and the number of iterations are 100.

COMPRESSED IMAGE:

Koala.jpg

1. K = 2

Compressed file size: 130163 Bytes

NetID: msm160530

2. K = 5

Compressed file size: 175621 Bytes

NetID: msm160530

3. K = 10

Compressed file size: 163505 Bytes

NetID: msm160530

4. K = 15

Compressed file size: 156982 Bytes

NetID: msm160530

5. K = 20

Compressed file size: 157328 Bytes

NetID: msm160530

Penguins.jpg

1. K = 2

Compressed file size: 85013 Bytes

NetID: msm160530

2. K = 5

Compressed file size: 107571 Bytes

NetID: msm160530

3. K = 10

Compressed file size: 117640 Bytes

NetID: msm160530

4. K = 15

Compressed file size: 118302 Bytes

NetID: msm160530

5. K = 20

Compressed file size: 115324 Bytes

NetID: msm160530

Compression ratio:

1. Koala.jpg

a. K=2: Compression ratio: 0.16669804349468706
b. K=5: Compression ratio: 0.22491550668454505
c. K=10: Compression ratio: 0.20939870471331185
d. K=15: Compression ratio: 0.20104478433873654
e. K=20: Compression ratio: 0.20148790199159614

Average: 0.20071 Variance: 0.00045

2. Penguins.jpg

a. K=2: Compression ratio: 0.109294387627196
b. K=5: Compression ratio: 0.13829539683866116
c. K=10: Compression ratio: 0.15124030160638183
d. K=15: Compression ratio: 0.15209138184833546
e. K=20: Compression ratio: 0.14887604697654386

Average: 0.13996 Variance: 0.00032

Average and Variance

Average and variance is calculated over each value of k, running the code 5 times for each image.

Koala.jpg

1. K=2

[0.16668267525239136, 0.16668267525239136, 0.16758171742669029, 0.16668267525239136, 0.16669804349468706]

Average: 0.16686555733571 Variance: 1.2825674640881E-7

2. K=5

[0.2260924579070247, 0.2261334398864799, 0.22491038393711316, 0.22492062943197697, 0.22492062943197697]

Average: 0.22539550811891 Variance: 3.433294614225E-7

3. K=10

[0.20976626184155087, 0.20995708418338924, 0.2103950790888169, 0.20879422051634733, 0.21059358555180313]

Average: 0.20990124623638 Variance: 3.940098443628E-7

NetID: msm160530

4. K=15

 $[0.20043901945491405, \quad 0.2014059380326857, \quad 0.202443294387646, \quad 0.2014059380326857, \quad 0.20140593807, \quad 0.20140597, \quad 0.201$

0.20367275377130262, 0.20372910399305355]

Average: 0.20233802192792 Variance: 1.6405382953381E-6

5. K=20

 $[0.19886633599331993,\ 0.19817604577687106,\ 0.20034296794056589,$

0.20218587632919288, 0.2001047601849824]

Average: 0.19993519724499 Variance: 1.8995326267929E-6

Penguins.jpg

1. K=2

[0.10926996085288011, 0.109294387627196, 0.109294387627196,

0.10926996085288011, 0.10926996085288011]

Average: 0.10927973156261 Variance: 1.4320015283498E-10

2. K=5

 $[0.13606098979860767,\ 0.14050409148469792,\ 0.13996027435124417,$

0.13661380626996728, 0.13922232864296413]

Average: 0.1384722981095 Variance: 3.234640620882E-6

3. K=10

[0.15099860510262458, 0.14916659702893287, 0.1517391220503063,

0.151458856955524, 0.14948543071474027]

Average: 0.15056972237043 Variance: 1.0972890876459E-6

4. K=15

[0.14883233590671544, 0.1473037340824211, 0.14949957253144947,

0.14879119607628868, 0.1503930782235307]

Average: 0.14896398336408 Variance: 1.0265564101227E-6

5. K=20

 $[0.14959727962871303, \quad 0.150736338683654, \quad 0.14684991032802586,$

0.14930544395662318, 0.14960627896661888

Average: 0.14921905031273 Variance: 1.6430911150464E-6

NetID: msm160530

TRADEOFF

As the value of **K** increases, the value of compression decreases. And Higher the compression ratio, lower the quality of the image that is being produced. This is observed from the compressed images that are produced.

Koala.jpg

Since the compressed image is similar for k = 10, k = 15 and k = 20, the optimum trade-off between compression and quality would be best for k = 10.

Penguin.jpg

Since the compressed image is similar for k = 15 and k = 20, the optimum trade-off between compression and quality would be best for k = 15.