FRAGANCE

Modelo preditivo da avaliação de um perfume em parfumo.com

Amanda Rodrigues Cunha* Caio Cezar Veronezi Macedo[†] Renato dos Santos Silva[‡] Joao Victor Oliveira Correia de Brito[§] Luis Guilherme Redigolo Crosselli[¶]

15 December, 2024

1 Introdução

Parfumo é um website que reúne conhecedores e entusiastas de fragâncias, organizando uma base de dados com pouco mais de 190 mil perfumes, criados por cerca de 12 mil marcas. Segundo palavras registradas na sua página inicial:

Parfumo is the home for all fragrance connoisseurs & enthusiasts!

Discover new perfumes, organize your collection, connect with other fragrance lovers and much more!

Ou seja, é também uma rede social em que os participantes compartilham opiniões em *forums* e registram suas avaliações sobre perfumes.

Neste projeto, exploramos o conjunto de dados The Scent of Data (parfumo), geradas a partir da base de dados do parfumo.com e publicadas no TidyTuesday (quinquagésima semana). Na sua página de introdução, encontramos algumas perguntas de partida:

Quais fatores mais influenciam a avaliação de um perfume?

Há famílias de aromas específicas que dominam o mercado? Como são percebidas pelos usuários?

A popularidade de certas certas notas de fragâncias mudou ao longo do tempo?

A primeira exige uma abordagem de inferência, porquanto deseja-se encontrar a influência de certas características sobre a avaliação de um perfume. A terceira pede por uma análise exploratória. A segunda, porém, é passível de modelagem preditiva. Dadas certas características de um perfume, incluindo famílias olfativas, estamos interessados em prever sua avaliação. Tal modelo poderia ser usado, por exemplo, como instrumento para a projeção de aceitação de certo perfume em elaboração.

2 Análise e preparação dos dados

2.1 Descrição dos dados

A tabela abaixo lista as variáveis do conjunto de dados parfumo, junto de suas classes (R) e descrições:

^{*}amanda.cunha@aluno.ufabc.edu.br

[†]cezar.veronezi@aluno.ufabc.edu.br

[‡]renato.santos@aluno.ufabc.edu.br

[§]brito.joao@aluno.ufabc.edu.br

 $[\]P$ luis.crosselli@aluno.ufabc.edu.br

Variável	Classe	Tipo	Descrição
Number	character	nominal	Identificador único atribuído a cada perfume.
Name	character	nominal	Nome do perfume ou fragrância.
Brand	character	nominal	Marca ou fabricante da fragrância.
$Release_Year$	double	discreta	Ano em que a fragrância foi lançada.
Concentration	character	ordinal	Concentração da fragrância.
Rating_Value	double	discreta	Pontuação geral atribuída pelos usuários.
Rating_Count	t double	discreta	Número de avaliações de usuários para a fragrância.
Main_Accords	s character	nominal	Principais características ou acordes olfativos da fragrância.
Top_Notes	character	nominal	Notas iniciais percebidas logo após a aplicação.
Middle_Notes	character	nominal	Notas médias ou de coração da fragrância, que surgem após as
			notas de topo.
Base_Notes	character	nominal	Notas finais e duradouras que permanecem após a fragrância secar.
Perfumers	character	nominal	Criadores ou perfumistas responsáveis pela composição da
			fragrância.
URL	character	nominal	Link para a página do produto no Parfumo.com.

2.2 Análise de missings e data cleaning

Primeiramente, vamos analisar os possíveis valores para as variáveis olfativas, ou seja, quantas notas distintas podem ocorrer em cada uma:

Type	#Notes
Main_Accords	22
Top_Notes	2430
Middle_Notes	2629
${\bf Base_Notes}$	1835

Com exceção de Main_Accords, com 22 notas de fragância, as variáveis olfativas possuem um domínio de notas na casa de 10^3 possibilidades. Com isso, vamos restringir nosso modelo às características principais de cada perfume.

O gráficos abaixo resumem a ocorrência de missings no conjunto de dados:

Note que Main_Accords ocorre apenas em 54% dos dados. Além disso, Concentration está ausente em 79% deles, e Perfumers em 65%. Apenas Release_Year, Rating_Count, Rating_Value e Brand possuem presença que talvez não seja limitante à Main_Notes (Note que Number é irrelevante).

Vamos usar Name, Brand e URL como chave primária, e filtrar Concentration e Perfumers dos dados. (Lembrando que Brand possui domínio da ordem de 10^3 possibilidades, vamos ignorá-la porquanto pode fragmentar excessivamente os dados):

Agora, temos o seguinte gráfico de missings:

Vamos alterar Release_Year para Years_Older por ser mais intuitivo:

```
df_years <- df_cleaned %>%
  mutate(Years_Older = as.integer(format(Sys.Date(), "%Y")) - Release_Year) %>%
  select(-Release_Year)
```

Ao filtrarmos os *missings* e transformarmos Main_Accords desdobrando-a em variáveis binárias, uma para cada nota olfativa via *one-hot encoding*, temos o seguinte resultado resumido:

Table 3: Data summary

Name Number of rows Number of columns	input_table 23389 26
Column type frequency: numeric	26
Group variables	None

Variable type: numeric

$skim_variable\ n_missing\ complete_rate mean$				sd	p0	p25	p50	p75	p100	hist
id	0	1	31911.82	16812.12	1.0	17941.0	33030.0	46659.0	59286	
$Note_Floral$	0	1	0.58	0.49	0.0	0.0	1.0	1.0	1	
$Note_Fresh$	0	1	0.49	0.50	0.0	0.0	0.0	1.0	1	
Note_Fruity	0	1	0.38	0.48	0.0	0.0	0.0	1.0	1	
Note_Green	0	1	0.26	0.44	0.0	0.0	0.0	1.0	1	
Note_Spicy	0	1	0.54	0.50	0.0	0.0	1.0	1.0	1	
Note_Citrus	0	1	0.26	0.44	0.0	0.0	0.0	1.0	1	

skim_variable n_	_missing complete	_rate	mean	sd	p0	p25	p50	p75	p100	hist
Note_Earthy	0	1	0.06	0.23	0.0	0.0	0.0	0.0	1	
Note_Smoky	0	1	0.09	0.28	0.0	0.0	0.0	0.0	1	
Note_Woody	0	1	0.49	0.50	0.0	0.0	0.0	1.0	1	
Note_Aquatic	0	1	0.09	0.28	0.0	0.0	0.0	0.0	1	
Note_Creamy	0	1	0.13	0.33	0.0	0.0	0.0	0.0	1	
$Note_Sweet$	0	1	0.53	0.50	0.0	0.0	1.0	1.0	1	
Note_Synthetic	0	1	0.20	0.40	0.0	0.0	0.0	0.0	1	
$Note_Animal$	0	1	0.05	0.22	0.0	0.0	0.0	0.0	1	
$Note_Oriental$	0	1	0.17	0.37	0.0	0.0	0.0	0.0	1	
$Note_Resinous$	0	1	0.11	0.31	0.0	0.0	0.0	0.0	1	
Note_Leathery	0	1	0.07	0.26	0.0	0.0	0.0	0.0	1	
Note_Powdery	0	1	0.23	0.42	0.0	0.0	0.0	0.0	1	
Note_Gourmand	0	1	0.12	0.32	0.0	0.0	0.0	0.0	1	
Note_Chypre	0	1	0.04	0.19	0.0	0.0	0.0	0.0	1	
Note_Fougère	0	1	0.02	0.12	0.0	0.0	0.0	0.0	1	
Rating_Value	0	1	7.32	0.85	0.9	6.9	7.4	7.9	10	
Rating_Count	0	1	73.36	129.51	2.0	9.0	27.0	79.0	2732	
$Years_Older$	0	1	14.45	16.41	0.0	6.0	10.0	17.0	315	
Note_Count	0	1	4.87	0.52	1.0	5.0	5.0	5.0	5	

Agora, vamos realizar uma regressão linear para verificar a importância das variáveis:

```
data <- input_table %>%
    select(-id)

linear_model <- lm(Rating_Value ~ ., data = data)
print(tidy(linear_model), n = Inf)</pre>
```

```
## # A tibble: 25 x 5
##
      term
                      estimate std.error statistic p.value
##
      <chr>
                                    <dbl>
                                               <dbl>
                                                        <dbl>
                          <dbl>
##
   1 (Intercept)
                      7.12
                                0.0476
                                            150.
                                                     0
##
   2 Note_Floral
                      0.0591
                                0.0871
                                              0.678 4.98e- 1
    3 Note_Fresh
                      -0.0772
                                0.0870
                                             -0.887 3.75e- 1
##
                                             -0.600 5.49e- 1
##
   4 Note_Fruity
                      -0.0522
                                0.0870
                                              1.54 1.24e- 1
##
   5 Note Green
                      0.134
                                0.0870
##
    6 Note_Spicy
                      0.123
                                0.0870
                                              1.41 1.57e- 1
##
    7 Note_Citrus
                      0.0644
                                0.0870
                                              0.740 4.59e- 1
##
    8 Note_Earthy
                      0.0785
                                0.0892
                                              0.880 3.79e- 1
    9 Note_Smoky
                      0.120
                                0.0882
                                              1.36
                                                    1.73e- 1
## 10 Note_Woody
                                                    2.48e- 1
                      0.100
                                0.0869
                                               1.15
## 11 Note_Aquatic
                      -0.101
                                0.0881
                                             -1.14
                                                    2.53e- 1
## 12 Note_Creamy
                      0.391
                                0.0874
                                              4.47
                                                    7.76e- 6
## 13 Note_Sweet
                       0.0450
                                0.0869
                                              0.518 6.05e- 1
                                             -5.97
                                                    2.35e- 9
## 14 Note_Synthetic -0.520
                                0.0870
## 15 Note_Animal
                       0.224
                                0.0893
                                               2.51
                                                     1.21e- 2
## 16 Note_Oriental
                      0.256
                                              2.93 3.36e- 3
                                0.0873
## 17 Note_Resinous
                      0.184
                                0.0877
                                              2.10 3.56e- 2
## 18 Note_Leathery
                      0.223
                                0.0886
                                              2.51
                                                    1.20e- 2
## 19 Note_Powdery
                      0.0934
                                0.0872
                                               1.07
                                                    2.84e- 1
## 20 Note_Gourmand
                       0.0702
                                0.0880
                                              0.797 4.25e- 1
## 21 Note_Chypre
                      0.421
                                0.0905
                                              4.65 3.31e- 6
```

```
## 22 Note_Fougère 0.170 0.0943 1.81 7.07e- 2
## 23 Rating_Count 0.000575 0.0000391 14.7 1.01e-48
## 24 Years_Older 0.000982 0.000325 3.02 2.53e- 3
## 25 Note_Count -0.0239 0.0868 -0.276 7.83e- 1
```

3 Modelagem

Nosso objetivo é encontrar $\hat{y} := f(X) + \epsilon$, em que \hat{y} é a predição para $y \in [0, 10] \subseteq \mathbb{R}$, a avaliação de um perfume. Logo, temos um problema de **regressão**. Para isso, vamos usar **Elastic Net**, **Gradient Boosting** e **Support Vector Machines**.

Para reproducibilidade, vamos fixar a semente usada para geração de números pseudoaleatórios:

```
seed <- 42
set.seed(seed)</pre>
```

Os dados são divididos em conjuntos de treinamento e teste com:

```
data <- input_table %>%
    select(-id)

data_split <- initial_split(data, prop = 0.8)
train_data <- training(data_split)
test_data <- testing(data_split)</pre>
```

Os dados precisam ser normalizados. Neste caso, apenas as variáveis numéricas não binárias:

```
recipe_spec <- recipe(Rating_Value ~ ., data = data) %>%
# step_normalize(Rating_Count, Years_Older, Note_Count)
step_normalize(all_predictors())
```

Para comparação, usamos o modelos Naive Mean e Naive Median, dados a seguir:

```
# Calculate naive mean
naive_mean <- train_data %>%
  summarise(naive_mean = mean(Rating_Value))
print(naive_mean)
## # A tibble: 1 x 1
     naive_mean
##
          <dbl>
## 1
           7.32
# Calculate naive median
naive_median <- train_data %>%
  summarise(naive_median = median(Rating_Value))
print(naive_median)
## # A tibble: 1 x 1
     naive_median
##
            <dbl>
              7.4
rmse_mean <- test_data %>%
  summarise(rmse_mean = sqrt(mean((Rating_Value - naive_mean$naive_mean)^2)))
```

```
# Calculate RMSE for naive median model
rmse_median <- test_data %>%
  summarise(rmse_median = sqrt(mean((Rating_Value - naive_median$naive_median)^2)))
print(rmse_mean)
## # A tibble: 1 x 1
##
   rmse_mean
##
         <dbl>
## 1
         0.845
print(rmse_median)
## # A tibble: 1 x 1
## rmse median
##
           <dbl>
## 1
           0.849
3.1 Elastic Net
elastic_net_spec <-</pre>
  linear_reg(penalty = tune(), mixture = tune()) %>%
  set_engine("glmnet") %>%
  set_mode("regression")
workflow_spec <- workflow() %>%
  add_recipe(recipe_spec) %>%
  add_model(elastic_net_spec)
# Define a grid of hyperparameters to tune
grid_spec <- grid_regular(</pre>
                              # Range for lambda (penalty)
  penalty(range = c(-5, 5)),
  mixture(range = c(0, 1)),
                              # Range for alpha (mixture)
  levels = 10
                                # 5 levels for each parameter
)
# Perform cross-validation for hyperparameter tuning
cv_folds <- vfold_cv(train_data, v = 5) # 5-fold cross-validation</pre>
# Tune the model using the grid of hyperparameters
tuned results <- tune grid(</pre>
  workflow_spec,
 resamples = cv_folds,
  grid = grid_spec,
  metrics = metric_set(rmse)
# View the best hyperparameters
best_params <- tuned_results %>%
  select_best()
print(best_params)
## # A tibble: 1 x 3
   penalty mixture .config
```

```
<dbl>
              <dbl> <chr>
# Finalize the workflow with the best parameters
final_workflow <- workflow_spec %>%
 finalize_workflow(best_params)
# Fit the final model on the full training data
final_model <- fit(final_workflow, data = train_data)</pre>
# Evaluate the model on the test set
test_results <- predict(final_model, test_data) %>%
 bind_cols(test_data %>% select(Rating_Value)) %>%
 metrics(truth = Rating_Value, estimate = .pred)
print(test_results)
## # A tibble: 3 x 3
    .metric .estimator .estimate
   <chr> <chr>
                           <dbl>
                         0.741
## 1 rmse standard
## 2 rsq standard
                         0.230
## 3 mae
          standard
                           0.543
3.2 Gradient Boosting
# Define the Gradient Boosting model specification
boosting_spec <- boost_tree(</pre>
 trees = tune(),
                          # Number of trees
                       # Learning rate
 learn_rate = tune(),
 tree_depth = tune(),  # Maximum tree depth
min_n = tune(),  # Minimum number of observations in a node
 loss_reduction = tune() # Minimum loss reduction (gamma in xgboost)
) %>%
 set_engine("xgboost") %>%
 set_mode("regression")
# Define the workflow
workflow_spec <- workflow() %>%
 add_recipe(recipe_spec) %>%
 add_model(boosting_spec)
# Define a grid of hyperparameters to tune
grid_spec <- grid_random(</pre>
 trees(range = c(50, 500)),
                                      # Number of trees
 learn_rate(range = c(0.01, 0.3)),
                                      # Learning rate
 tree_depth(range = c(3, 10)),
                                    # Maximum tree depth
 min_n(range = c(2, 20)),
                                     # Minimum number of observations in a node
 loss_reduction(range = c(0, 10)),  # Minimum loss reduction
 size = 10
                                      # Number of random combinations
# Create cross-validation folds
cv_folds <- vfold_cv(train_data, v = 5) # 5-fold cross-validation</pre>
```

```
# Tune the model using the hyperparameter grid
tuned_results <- tune_grid(</pre>
  workflow_spec,
 resamples = cv_folds,
 grid = grid_spec,
 metrics = metric_set(rmse) # Use RMSE as the evaluation metric
# View the tuning results
tuned results
## # Tuning results
## # 5-fold cross-validation
## # A tibble: 5 x 4
    splits
                                .metrics
##
                          <chr> <list>
                                                  st>
     st>
## 1 <split [14968/3743] > Fold1 <tibble [10 x 9] > <tibble [0 x 3] >
## 2 <split [14969/3742]> Fold2 <tibble [10 \times 9]> <tibble [0 \times 3]>
## 3 <split [14969/3742] > Fold3 <tibble [10 x 9] > <tibble [0 x 3] >
## 4 <split [14969/3742]> Fold4 <tibble [10 x 9]> <tibble [0 x 3]>
## 5 <split [14969/3742] > Fold5 <tibble [10 x 9] > <tibble [0 x 3] >
# View the best hyperparameters
best_params <- tuned_results %>%
  select_best()
print(best_params)
## # A tibble: 1 x 6
    trees min_n tree_depth learn_rate loss_reduction .config
##
     <int> <int>
                 <int>
                                 <dbl>
                                        <dbl> <chr>
                                  1.41
      132
             19
                                                 930. Preprocessor1_Model06
# Finalize the workflow with the best parameters
final_workflow <- workflow_spec %>%
 finalize_workflow(best_params)
# Fit the final model on the full training data
final_model <- fit(final_workflow, data = train_data)</pre>
# Evaluate the model on the test set
test_results <- predict(final_model, test_data) %>%
  bind_cols(test_data %>% select(Rating_Value)) %>%
 metrics(truth = Rating_Value, estimate = .pred)
print(test_results)
## # A tibble: 3 x 3
##
    .metric .estimator .estimate
   <chr> <chr>
                           <dbl>
## 1 rmse
            standard
                           0.790
## 2 rsq standard
                           0.142
                           0.588
## 3 mae
           standard
```

3.3 Support Vector Machines

```
# Define the SVM model specification
svm_spec <- svm_rbf(</pre>
 cost = tune(), # Cost (regularization parameter)
  rbf_sigma = tune() # Sigma (kernel parameter for RBF)
) %>%
  set_engine("kernlab") %>%
  set_mode("regression")
# Define the workflow
workflow spec <- workflow() %>%
  add_recipe(recipe_spec) %>%
  add_model(svm_spec)
# Define a grid of hyperparameters to tune
grid spec <- grid regular(</pre>
  cost(range = c(-2, 2)),
                             # Cost range (log scale)
  rbf_sigma(range = c(-2, 2)), # Sigma range (log scale)
  levels = 5
                              # Number of levels for each parameter
# Create cross-validation folds
cv_folds <- vfold_cv(train_data, v = 5) # 5-fold cross-validation</pre>
# Tune the model using the hyperparameter grid
tuned_results <- tune_grid(</pre>
  workflow_spec,
 resamples = cv_folds,
 grid = grid_spec,
 metrics = metric_set(rmse) # Use RMSE as the evaluation metric
# View the tuning results
tuned_results
## # Tuning results
## # 5-fold cross-validation
## # A tibble: 5 x 4
##
                          id
                                .metrics
                                                 .notes
   splits
   <list>
                          <chr> <list>
                                                   st>
## 1 <split [14968/3743] > Fold1 <tibble [25 x 6] > <tibble [0 x 3] >
## 2 <split [14969/3742] > Fold2 <tibble [25 x 6] > <tibble [0 x 3] >
## 3 <split [14969/3742] > Fold3 <tibble [25 x 6] > <tibble [0 x 3] >
## 4 <split [14969/3742] > Fold4 <tibble [25 x 6] > <tibble [0 x 3] >
## 5 <split [14969/3742]> Fold5 <tibble [25 x 6]> <tibble [0 x 3]>
# View the best hyperparameters
best_params <- tuned_results %>%
  select_best()
print(best_params)
## # A tibble: 1 x 3
##
   cost rbf_sigma .config
##
     <dbl> <dbl> <chr>
```

```
## 1
               0.01 Preprocessor1_Model05
# Finalize the workflow with the best parameters
final_workflow <- workflow_spec %>%
 finalize_workflow(best_params)
# Fit the final model on the full training data
final_model <- fit(final_workflow, data = train_data)</pre>
# Evaluate the model on the test set
test_results <- predict(final_model, test_data) %>%
 bind_cols(test_data %>% select(Rating_Value)) %>%
 metrics(truth = Rating_Value, estimate = .pred)
print(test_results)
## # A tibble: 3 x 3
    .metric .estimator .estimate
##
    <chr> <chr>
                           <dbl>
## 1 rmse standard
                           0.719
## 2 rsq standard
                           0.279
## 3 mae
            standard
                           0.520
```

- 4 Análise dos resultados
- 5 Conclusões
- 6 Anexos