Deep Learning HW 1 Report

Filbert Hamijoyo - 122040012 March 16, 2025

1 Part A

We implemented our solution using PyTorch 2.6.0 with CUDA 12.1 support. The baseline architecture achieved 86.50% accuracy on CIFAR-10 through the following components:

- Basic CNN with 5 convolutional layers
- Max-pooling for downsampling
- Dropout layers for regularization
- SGD optimizer with 0.9 momentum

Our enhanced implementation achieves 89.78% accuracy on CIFAR-10 and 99.05% on MNIST, demonstrating significant improvements over the baseline.

2 Accuracy Improvement Strategies

2.1 Architectural Enhancements

- Batch Normalization: Added after each conv layer for stable training
- Adaptive Average Pooling: Replaced fixed-size pooling for better spatial adaptation
- Simplified Classifier: Reduced FC layers from 5 to 2 with careful dropout placement

2.2 Training Methodology

- Advanced Data Augmentation:
 - Random crops (32px with 4px padding)
 - Horizontal flipping (p=0.5)
 - Color jitter (brightness/contrast/saturation=0.2)

- Random rotation ($\pm 15^{\circ}$)
- Optimization:
 - AdamW optimizer (lr=1e-3, weight_decay=1e-4)
 - Cosine annealing learning rate schedule
 - Label smoothing (α =0.1)

Figure 1: CIFAR-10 training dynamics over 100 epochs showing (a) Continuous decrease in training loss with some oscillations, and (b) Steady improvement in validation accuracy reaching 89.78%

3 MNIST Adaptation

- Modified input layer for grayscale (1 channel)
- Simplified architecture while maintaining core components:
 - 3 convolutional blocks with LeakyReLU
 - Batch normalization after each conv layer
 - Final dropout rate of 0.3
- Maintained Adam optimizer with reduced learning rate (3e-4)

Figure 2: MNIST training loss progression showing rapid convergence within $10\ \rm epochs$

Table 1: Performance Summary (see Figures 1 and 2)

CIFAR-10	MNIST
100	10
0.6745	0.013
89.78%	99.05%
>80	5
	100 0.6745 89.78%

4 Code Organization

Our implementation follows modular design principles:

- Separate data loading and transformation pipelines
- Clear model definition in PyTorch modules
- Training loop with validation tracking
- Model checkpointing for best weights

5 Key Learnings

- Label smoothing significantly improves generalization (0.5% gain)
- Adaptive pooling outperforms fixed-size pooling (0.3% improvement)
- Cosine annealing enables smoother convergence than step decay
- Excessive dropout hurts CIFAR-10 performance more than MNIST

6 Part B

6.1 Core Components

Implemented the following modules with configurable parameters and proper gradient computation:

- Sigmoid: Standard sigmoid activation with numerical stability
- LeakyReLU: Implemented with configurable negative slope (0.01 default)
- SELU: Scaled exponential linear unit with self-normalizing properties
- Conv2d: Custom convolution using im2col optimization and matrix multiplication
- BatchNorm2d: Batch normalization with running mean/variance and momentum
- FocalLoss: Implemented with =0.25 and =2 configurable parameters
- Adam: Optimizer with bias-corrected momentum estimates

7 Training Results

Figure 3: Training loss showing convergence pattern with Adam optimizer (lr=1e-4) $\,$

Table 2: Performance Comparison

Metric	Part A (PyTorch)	Part B (Custom)
Training Epochs	10	5
Final Loss	0.013	0.041
Test Accuracy	99.05%	97.59%
Training Time	$2 \mathrm{min}$	15min

8 Implementation Challenges

Key technical considerations during implementation:

• Conv2d Backprop: Proper handling of input gradients through im2col transformation

- BatchNorm: Maintaining running statistics during train/test modes
- Memory Management: CuPy GPU memory optimization for large tensors
- Numerical Stability: Handling exponential operations in Softmax and FocalLoss

9 Key Learnings

- \bullet Custom convolution implementation is 5-7x slower than PyTorch's optimized version
- Proper weight initialization critical for convergence (He init vs PyTorch default)
- Adam optimizer requires careful tuning of learning rate (1e-4 optimal in tests)
- \bullet Batch Norm accounts for 30% of total computation time in custom implementation