UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO - INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E COMPUTAÇÃO CIENTÍFICA MS211A - CÁLCULO NUMÉRICO PROF. JOÃO FREDERICO DA COSTA AZEVEDO MEYER

TRABALHO: PONTE-TRELIÇA

GRUPO - TURMA A

BRYAN WOLFF RA: 214095
WESNA SIMONE BULLA DE ARAUJO RA: 225843
NADYA KAROLINE DA SILVA OLIVEIRA RA: 185851

CAMPINAS MAIO DE 2021

O problema da ponte-treliça

Dado a ponte ferroviária demonstrada na Figura 1, projete forças verticais e horizontais para que possa calcular as forças de tensão e tração deste modelo.

Figura 1 - Ponte-Treliça

Solução

A seguir serão abordados todos os passos para a resolução do problema.

• Análise do Problema

Para resolver o problema, foi projetado o seguinte modelo, estimando as forças horizontais e verticais (representadas em vermelho) em cada nó do sistema, e nomeando os elementos da ponte em azul.

Figura 2 - Representação do modelo da Ponte-Treliça

Dessa forma, em cada nó existe um peso atuando de cima para baixo, sendo essa a convenção que será utilizada para um sinal positivo. Além disso, será adotado as tensões com sinais positivos e as trações com sinais negativos.

Para equacionar o problema, teremos os denominados "nós de cima", que por convenção será adotado, por exemplo, o $N\acute{o}_{1C}$ como o nó superior esquerdo, $N\acute{o}_{2C}$ como o seu sucessor, até o último nó de cima, isto é, o $N\acute{o}_{7C}$ como o nó superior direito. Além disso, também temos os denominados "nós de baixo", que seguirá a mesma convenção, porém com as nomenclaturas começando por $N\acute{o}_{1B}$, $N\acute{o}_{2B}$, etc.

Para simplificação, denotaremos por s o $sin(30^{\circ}2)$, s" o $sin(60^{\circ}2)$, c o $cos(30^{\circ}2)$ e c" para o $cos(60^{\circ}2)$.

Equações utilizadas

Para calcular os nós da parte superior foram utilizados as seguintes equações:

Nó_{1C}:

$$s*F1-s*F3-F4=-2$$
 para as componentes horizontais
$$-F2-c*F1-c*F3=5$$
 para as componentes verticais

Nó_{2C}:

$$-F3 = 4$$
 para as componentes horizontais
 $F4 - F9 = 0$ para as componentes verticais

Nó_{3C}:

$$s*F10-s*F15+F9-F14=0$$
 para as componentes horizontais $-c*F10-c*F15-F12=8$ para as componentes verticais

Nó_{4C}:

$$F14 - F17 = 0$$
 para as componentes horizontais

$$F16 = 7$$

para as componentes verticais

Nó_{5C}:

$$F17 - F22 + s * F18 - s * F21 = 0$$
 para as componentes horizontais $-F20 - F18 * c - F21 * c = 8$ para as componentes verticais

Nó_{6C}:

$$F22 - F25 = 0$$

- $F24 = 4$

para as componentes horizontais para as componentes verticais

Nó_{7C}:

$$F25 + s * F26 - s * F29 = 2$$
 para as componentes horizontais
- $F28 - c * F - c * F29 = 5$ para as componentes vertice

para as componentes verticais

Já para os nós da parte inferior da ponte, utilizamos as seguintes equações:

Nó₁_B:

$$-F0 * s'' - F6 = 0$$

componentes para as

horizontais

$$F0 * C'' = 0$$

para as componentes verticais

Nó_{2B}:

$$F6 - F7 + F3 * s'' = 0$$

 $F5 * c'' + F2 = 10$

F6 - F7 + F3 * s'' = 0 para as componentes horizontais para as componentes verticais

Nó_{3B}:

$$F7-F11+F3*s''-F10*s''=0$$
 para as componentes horizontais $F8+F3*c''+F10*c''=15$ para as componentes verticais

Nó₄R:

$$F11 - F13 = 0$$

 $F12 = 10$

para as componentes horizontais para as componentes verticais

Nó_{5R}:

$$F13-F19+F15*s''-F18*s''=0$$
 para as componentes horizontais

$$F16 + F18 * c'' + F15 * c'' = 0$$

para as componentes verticais

Nó_{6B}:

$$F19 - F23 = 0$$

 $F20 = 10$

para as componentes horizontais para as componentes verticais

Nó_{7B}:

F23-F27-F26*s"+F21*s"=0 para as componentes horizontais

$$F24 + F21 * c'' + F26 * c'' = 15$$

para as componentes verticais

Nó_{8B}:

$$F27 - F32 - F30 * s'' = 0$$

 $F28 + F230 * c'' = 10$

para as componentes horizontais para as componentes verticais

Nó_{9B}:

$$F31 * s'' + F32 = 0$$

 $F31 * c'' = 0$

para as componentes horizontais para as componentes verticais

As equações utilizadas para representar os nós localizados na lateral esquerda (Diagonal 1) e na lateral direita (Diagonal 2) são dadas por:

Diagonal 1
$$\left\{ -F_{_{0}}c'' - F_{_{5}}c'' + F_{_{1}}c'' = 0, 5 \times c'' \right\}$$

$$\left\{ F_{_{0}}s'' - F_{_{5}}s'' - F_{_{1}}s'' = 0, 5 \times s'' \right\}$$

Diagonal 2
$$\left\{ \begin{array}{ll} -F_{31}s'' + F_{29}s''^{\underline{o}} + F_{30}s'' = & -0.5 \times s'' \\ -F_{31}c'' + F_{29}c'' - F_{28}c'' = & 0.5 \times c'' \end{array} \right\}$$

• Resolução do problema

O problema pode ser reduzido em uma expressão A * F = b, onde A é a matriz que representa todas as equações demonstradas anteriormente (Figura 4), F é a matriz das variáveis das forças de tensão e b a matriz dos coeficientes do sistema linear. É importante notar que cada coluna da Matriz representa uma força, ou seja, a primeira coluna se refere a F_0 , a segunda a F_1 e assim por diante. Ademais, cada linha está associada a um valor contido na matriz b conforme indicado na Figura 3.

Figura 3 - Matriz b dos coeficientes

Figura 4 - Matriz A resultante das tensões

Assim, tendo em mãos as matrizes A, b e utilizando o Método de Eliminação de Gauss com Pivoteamento Parcial, foi possível obter os seguintes resultados para as tensões:

$F_0 = -22.28921$	F ₈ = 5.36153	F_{16} = 0.57845
$F_1 = -24.85363$	F ₉ = -21.38489	F_{17} = -37.99225
$F_2 = 3.47957$	F ₁₀ = -21.34375	F_{18} = 5.83373
$F_3 = 21.89764$	F ₁₁ = 59.32799	F_{19} = 65.56448
$F_4 = -21.38026$	$F_{12} = 5.10985$	F_{20} = 6.13931
$F_5 = 1.20163$	F ₁₃ = 59.84005	F_{21} = -17.70245
F ₆ = 19.81508	F ₁₄ = -37.98762	F ₂₂ = -26.22878
F ₇ = 21.36778	F ₁₅ = 11.85246	F_{23} = 66.07654

F_{24} = 1.79538	F ₂₇ = 23.09386	F_{30} = 19.8244
F_{25} = -26.23341	F_{28} = -9.5870	F_{31} = -8.0246
F ₂₆ = 32.52095	F ₂₉ = -23.9551	F_{32} = 6.4374

Nesta perspectiva, é notável a presença de forças aproximadamente simétricas, dado a existência simetria presente na ponte e na distribuição de cargas contidas nela. Além disso, a escolha do método numérico utilizado levou em conta a praticidade de executá-lo e a alta precisão quando comparado com os métodos de Newton e Jacobi.