

Unit 1:Data Reduction

Mamatha.H.R

Department of Computer Science and Engineering

Unit 1:Data Reduction

Mamatha H R

Department of Computer Science and Engineering

Data Reduction 2: Numerosity Reduction

- Reduce data volume by choosing alternative, smaller forms of data representation
- Parametric methods (e.g., regression)
 - Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data (except possible outliers)
 - Ex.: Log-linear models—obtain value at a point in *m*-D space as the product on appropriate marginal subspaces
- Non-parametric methods
 - Do not assume models
 - Major families: histograms, clustering, sampling, ...

Parametric Data Reduction: Regression and Log-Linear Models

Linear regression

- Data modeled to fit a straight line
- Often uses the least-square method to fit the line

Multiple regression

 Allows a response variable Y to be modeled as a linear function of multidimensional feature vector

Log-linear model

Approximates discrete multidimensional probability distributions

Regression Analysis

- Regression analysis: A collective name for techniques for the modeling and analysis of numerical data consisting of values of a *dependent variable* (also called *response variable* or *measurement*) and of one or more *independent variables* (aka. *explanatory variables* or *predictors*)
- The parameters are estimated so as to give a "best fit" of the data
- Most commonly the best fit is evaluated by using the *least* squares method, but other criteria have also been used

Regression Analysis

 Used for prediction (including forecasting of time-series data), inference, hypothesis testing, and modeling of causal relationships

Regression Analysis and Log-Linear Models

- Linear regression: Y = w X + b
- Two regression coefficients, w and b, specify the line and are to be estimated by using the data at hand
- Using the least squares criterion to the known values of Y1, Y2, ..., X1, X2,
- Multiple regression: Y = b₀ + b₁ X₁ + b₂ X₂
- Many nonlinear functions can be transformed into the above

Regression Analysis and Log-Linear Models

Log-linear models:

- Approximate discrete multidimensional probability distributions
- Estimate the probability of each point (tuple) in a multi-dimensional space for a set of discretized attributes, based on a smaller subset of dimensional combinations
- Useful for dimensionality reduction and data smoothing

Histogram Analysis

- Divide data into buckets and store average (sum) for each bucket
- Partitioning rules:
 - Equal-width: equal bucket range
 - Equal-frequency (or equaldepth)

Clustering

- Partition data set into clusters based on similarity, and store cluster representation (e.g., centroid and diameter) only
- Can be very effective if data is clustered but not if data is "smeared"
- Can have hierarchical clustering and be stored in multidimensional index tree structures
- There are many choices of clustering definitions and clustering algorithms

SAMPLING

The process of identifying a subset from a population of elements (aka observations or cases) is called sampling process or simply sampling

Steps used in any Sampling process:

- ➤ Identification of target population that is important for a given problem under study
- ➤ Decide the sampling frame.
- ➤ Determine the sample size
- ➤ Sampling method

Sampling

- Sampling: obtaining a small sample s to represent the whole data set N
- Allow an analytics algorithm to run in complexity that is potentially sub-linear to the size of the data
- Key principle: Choose a representative subset of the data
 - Simple random sampling may have very poor performance in the presence of skew
 - Develop adaptive sampling methods, e.g., stratified sampling:
- Note: Sampling may not reduce database I/Os (page at a time)

Sampling: With or without Replacement

Types of Sampling Methods

Data Cube Aggregation

- The lowest level of a data cube (base cuboid)
 - The aggregated data for an individual entity of interest
 - E.g., a customer in a phone calling data warehouse
- Multiple levels of aggregation in data cubes
 - Further reduce the size of data to deal with
- Reference appropriate levels
 - Use the smallest representation which is enough to solve the task
- Queries regarding aggregated information should be answered using data cube, when possible

Data Reduction 3: Data Compression

- String compression
 - There are extensive theories and well-tuned algorithms
 - Typically lossless, but only limited manipulation is possible without expansion
- Audio/video compression
 - Typically lossy compression, with progressive refinement
 - Sometimes small fragments of signal can be reconstructed without reconstructing the whole
- Time sequence is not audio
 - Typically short and vary slowly with time
- Dimensionality and numerosity reduction may also be considered as forms of data compression

Data Compression

Exercise

- ☐ Mention and explain the different parametric and non parametric methods used in data reduction.
- □ Compare and contrast the probability and non probability sampling methods.

References

Text Book:

<u>Data Mining: Concepts and Techniques</u> by Jiawei Han,
Micheline Kamber and Jian Pei, The Morgan Kaufmann Series in Data Management Systems, 3rd Edition.

THANK YOU

Dr.Mamatha H R

Professor, Department of Computer Science mamathahr@pes.edu

+91 80 2672 1983 Extn 834