

# 公開実用 昭和62- 31207

⑨ 日本国特許庁 (JP)

⑪実用新案出願公開

⑫ 公開実用新案公報 (U)

昭62-31207

⑬Int.Cl.\*

F 24 C 13/00  
7/02

識別記号

府内整理番号

A-7116-3L  
H-6783-3L

⑭公開 昭和62年(1987)2月25日

審査請求 未請求 (全頁)

⑮考案の名称 調理器

⑯実願 昭60-121802

⑰出願 昭60(1985)8月8日

⑱考案者 大森 義治 守口市京阪本通2丁目18番地 三洋電機株式会社内

⑲出願人 三洋電機株式会社 守口市京阪本通2丁目18番地

⑳代理人 弁理士 西野 卓嗣 外1名

## 明 細 書

### 1. 考案の名称 調理器

### 2. 實用新案登録請求の範囲

(1) 水を直接加熱する熱源を用いないで水蒸気を加熱室内に供給する加湿器を有し、該加湿器からの水蒸気を調理器内に存在する熱源を用いて昇温することを特徴とする調理器。

### 3. 考案の詳細な説明

#### (1) 産業上の利用分野

本考案は調理器に関する。

#### (2) 従来の技術

従来、実公昭52-51305号公報に見られる如く、電子レンジなどの調理器においては、加湿器（水を直接加熱して水蒸気を発生するものでない）を備え、食品に適宜加湿せしめて食品が不所望に乾燥しないように構成したものがある。

しかるに、斯る構成においては、加湿器から発生する水蒸気は冷たいままであるため、斯る水蒸気が食品に付着した状態では食品の乾燥を防止できる半面、食品の調理時間が長くなると云う悪影

響を及ぼしてしまう。

(イ) 考案が解決しようとする問題点

加湿器の発生する水蒸気はできるだけ昇温できるのが好ましく、且つこの場合昇温は新たな部品を追加することなく行なえるのが好ましい。

(ロ) 問題点を解決するための手段

水を直接加熱する熱源を用いないで水蒸気を加熱室内に供給する加湿器を有し、該加湿器からの水蒸気を調理器内に存在する熱源を用いて昇温することを特徴とする。

附 作 用

加湿器から発生する水蒸気は別部品を設けることなく昇温できる。

(ハ) 実 施 例

本考案実施例の電子レンジを図面を参照して説明する。

第1図乃至第4図は第1の実施例を示し、(1)はマイクロ波加熱室、(2)は該加熱室に導波管(3)を介してマイクロ波を供給するマグネットロン、(4)は該マグネットロンを冷却する冷却風を発生するプロペ

ラフアン、(5)は上記マグネットロン(2)冷却後の冷却風を上記加熱室(1)内へ導くダクトで、該ダクトはダンパ(6)にて切換えられる第1及び第2経路(7)、(8)を有している。上記ダンパ(6)が実線(第3図)の位置に切換えられるとマグネットロン(2)冷却風は第1経路(7)を通り、上記ダンパ(6)が破線の位置に切換えられるとマグネットロン(2)冷却風は第2経路(8)を通る。上記第1経路(7)は幅狭部(7a)を有する。(9)は上記第1経路(7)の下方に位置する水容器、(10)は下端が上記水容器(9)に差込まれると共に上端が上記幅狭部(7a)に臨むパイプである。

而して、マグネットロン冷却風が上記第1経路(7)を通る場合には、マグネットロン冷却風は上記幅狭部(7a)にて風速が増し、幅狭部(7a)の圧力が低下し、すると水容器(9)からパイプ(10)を通して水が上昇すると共に斯る水はマグネットロン冷却風にて飛散され、パイプ(10)の上端から水蒸等が発生する。この場合、上記マグネットロン冷却風はマグネットロン(2)の熱を受けてかなり温度上昇しており、よって上記水蒸気は上記マグネットロン冷却風

にて飛散される時に同時に昇温することになる。

ここに、マグネットロン冷却風を発生するプロペラファン(4)、幅狭部(7a)を有する第1経路(7)、水容器(9)及びパイプ(10)から、水を直接加熱する熱源を用いないで水蒸気を発生する加湿器が形成され、且つマグネットロン(2)がマグネットロン冷却風を介して上記水蒸気を昇温する熱源となっている。マグネットロン(2)は電子レンジに従来から必要なものとして存在している。

そして、上述のように昇温した水蒸気は、加熱室(1)内に至ると加熱室(1)内に浮遊したり、食品の表面に付着したり、又加熱室(1)の壁面に付着して水滴となったりする。斯る状態で加熱室(1)内にマイクロ波が供給されるのであり、この場合食品は昇温した水蒸気が付着しているため乾燥することなく短時間の内に効率良くマイクロ波加熱される。尚、上記加熱室(1)の壁面に付着した水滴はその後マイクロ波を受けて加熱され再び水蒸気となる。

第5図及び第6図は第2の実施例を示し、マグネットロン(2)からのマイクロ波は、加熱室(1)の外上

部に配置された導波管(3)を通して、加熱室(1)の上部中央から加熱室(1)内へ供給される。又、上記ダクト(5)の第1経路(7)は上記導波管(3)に連結され、よって昇温した水蒸気は上記第1経路(7)から導波管(3)を通してこれ亦加熱室(1)の上部中央から加熱室(1)内に供給される。尚、上記導波管(3)には水蒸気がマグネットロン(2)側へ行かないようマイクロ波透過性仕切板(11)が設けられている。斯る第2の実施例において、第1の実施例と同一部分には同一符号を記してその説明を省略した。

第7図及び第8図は第3の実施例を示し、(12)、(13)はオープン調理を行なうための上ヒータ及び下ヒータで、これらヒータはマイクロ波調理の他にオープン調理を行なう電子レンジには必要なものである。(14)は加熱室(1)の左側に配置された加湿器である。該加湿器において、(15)は加湿器専用ファン、(16)は幅狭部(16a)を有するダクト、(17)は水容器、(18)はパイプである。そして、上記ファン(15)から風が発生すると、上述の第1実施例の加湿器と同様にしてパイプ(18)の上端から水蒸気が発生

する。この場合ファン(5)からの風は冷たく、よってパイプ(8)上端から発生した水蒸気は上述の如くその発生時点から直ちに昇温することはない。

而して上記水蒸気は加熱室(1)内に至ると下ヒータ(3)に吹付けられ、ここで下ヒータ(3)が発熱している（上ヒータ(2)も発熱する）場合には水蒸気は昇温する。そして、昇温した水蒸気は加熱室内に浮遊したり、食品表面に付着したり、又加熱室(1)の壁面に付着して水滴となったりする。斯る状態で、食品は昇温した水蒸気が付着しているため乾燥することなく比較的短い時間で効率良くヒータ熱によりオーブン調理がなされる。この場合ヒータ(2)、(3)の発熱及びマグネットロン(2)からのマイクロ波の発振を交互に行ない、マイクロ波加熱を併用しても良い。尚、上記加湿器(4)は水を超音波振動させて水蒸気とするものでも良い。斯る第3の実施例において、第1の実施例と同一部分には同一符号を記してその説明を省略した。

#### (1) 考案の効果

本考案によれば、加湿器の発生する水蒸気を

できるだけ昇温でき、食品を乾燥防止した状態で且つできるだけ短い時間にて効率良く加熱でき、更に、この場合上記昇温は新たな熱源を用いることなく達成できる。

#### 4. 図面の簡単な説明

第1図は本考案の第1の実施例の正面断面図、第2図は同側面断面図、第3図は同要部平面断面図、第4図は第3図におけるIV - IV線断面図、第5図は本考案の第2の実施例の正面断面図、第6図は同平面断面図、第7図は本考案の第3の実施例の正面断面図、第8図は同要部断面図である。

(1)…加湿器、(2)…マグネットロン、(3)…下ヒータ。

出願人 三洋電機株式会社

代理人 弁理士 佐野 静夫

公開実用 昭和62- 31207

第1図



第2図



第3図



66

出願人 三洋電機株式会社  
代理人 弁理士 佐野 静夫

公開 62-31207

第4図



第5図



第6図



公開実用 昭和62- 31207

第7図



第8図



68

出願人 三洋電機株式会社

代理人 弁理士 佐野 静

2011.02.01 207