Loops + Voids

K.G. Field^{1,a},

^a kgfield@umich.edu

¹University of Michigan

Dislocation loop energy in FCC alloys

 For FCC, we must consider both the energy created because of the loop and of the possible stacking fault:

Dislocation loop energy in FCC alloys

- For an FCC crystal we can typically see two loop types:
 - Faulted:

$$E_L^f = 2\pi r_L \Gamma + \pi r_L^2 \gamma_{SFE}$$

Writing in terms of materials constants we get:

$$E_L^f = \frac{2}{3} \frac{1}{(1-v)} \mu b^2 r_L \left[ln \frac{4r_L}{r_0} - 2 \right] + \pi r_L^2 \gamma_{SFE}$$

- Perfect:

$$E_L^p = \left[\frac{2}{3} \frac{1}{(1-v)} + \frac{1}{3} \left(\frac{2-v}{2(1-v)} \right) \right] \mu b^2 r_L \left[ln \frac{4r_L}{r_0} - 2 \right]$$

Dislocation loop energy in FCC alloys

$$\gamma_{SFE} > \frac{\mu b^2}{3\pi r_L} \left(\frac{2 - \nu}{2(1 - \nu)} \right) ln \left[\frac{4r_L}{r_0} - 2 \right]$$

Metal/Alloy	$\gamma (mJm^{-2})$	Reference
SS-304	21	Murr 1975, Hadji & Badji 2002
SS-316	42	Hadji & Badji 2002
Ni	128	Murr 1975
Ti	15	Conrad 1981
Al	166	Murr 1975
Zr	240	Murr 1975

A simple loop growth model

A simple loop growth model

$$\left(\frac{dr_L}{dt}\right)_v = \frac{1}{b} \left[D_v C_v - Z_i D_i C_i - D_s^v \exp\left(\frac{\tau b^2}{r_L k_b T}\right) + D_s^i \exp\left(-\frac{\tau b^2}{r_L k_b T}\right) \right]$$

$$\left(\frac{dr_L}{dt}\right)_i = \frac{1}{b} \left[Z_i D_i C_i - D_v C_v - D_s^i \exp\left(\frac{\tau b^2}{r_L k_b T}\right) + D_s^v \exp\left(-\frac{\tau b^2}{r_L k_b T}\right) \right]$$

Dose dependence

Temperature dependence

Image Stitching

Now let's consider vacancy condensation

• For the same n_v , $E_c > E_s$ meaning an activation energy is required to generate large spherical voids

Now let's consider vacancy condensation

• For the same nv, $E_c > E_s$ meaning an activation energy is required to generate loops

Visualizing the energetics

Voids formed in metals

- Voids form by vacancy condensation. Vacancies are supersaturated in irradiated metals.
- Void formation requires "bias" or preferential absorption of self-interstitials at dislocations or other sinks, relative to vacancies
 - V I recombination is an "unbiased" process since it removes vacancies and interstitials at the same rate
 - Cavities are unbiased sinks for point defects
 - Because of dislocation bias, slightly more interstitials (~20%) are absorbed by dislocations, leaving a slight excess of vacancies to first *nucleate* and then *grow* voids.
- These processes are very sensitive to gas pressure in the cavity
- A void has no gas (in practice, could have very low levels of gas atoms)
- Impurity atoms within the metal (e.g., O, N) and He produced by (n,a) reactions or by direct implantation are the principal radiation-produced gases that can be trapped by cavities.

Effect of materials variables on void growth

No Element Tested Has Ever Failed to Swell

Comparison of Temperature-Dependent Void Swelling in Neutron Irradiated Cu and Fe at 1 dpa

Void swelling is typically of concern for irradiation temperatures between ~ 0.3 and $\sim 0.6 \, T_M$

Temperature dependence for void swelling involves balance between recombination and vacancy emission

Zinkle, ASTM STP 1125 (1992) p. 813

Physical effect of void formation in a material

ion-irradiated austenitic stainless steel (625°C, 70 dpa)

N. Packan & K. Farrell, J. Nucl. Mater. <u>85&86</u> (1979) 677

neutron irradiated 20%CW 316 steel at T=523°C, 1.5x10²³n/cm²

J.L. Straalsund et al., J. Nucl. Mater. <u>108&109</u> (1982) 299

Physical effect of void formation in a material

Dimensional changes >5-10 vol.% are unacceptable for typical engineering designs E.g., linear dimensional change due thermal expansion in 316SS between room temperature and 500°C is:

 $DI=a\Delta T=18x10^{6}/^{\circ}C*480^{\circ}C=0.86\%$

Zinkle & Was, Acta Mater. <u>61</u> (2013)

Half Time! – This pink elephant is in DeForest, Wisconsin. Based Google Maps how many miles is it from the ERB building at University of Wisconsin – Madison?

Nucleation vs. Growth

Nucleation

The nucleation theory used in nuclear materials is commonly the <u>classical pathway</u> description

Void Nucleation Theory

The base driving force for void formation can simply be put as:

$$S_{v} = \frac{C_{v}}{C_{v}^{0}}$$

$$E_s = 4\pi r^2 \sigma$$

Full derivations and discussion in Was 8.1

Fig. 8.2 Schematic illustration of ΔG_n^0 , the free energy of formation of a spherical void consisting of n vacancies and the effect of thermal fluctuations on the critical size void embryo

$$\Delta G_n^0 = -nkT \cdot \ln(S_v) + (36\pi\Omega^2)^{1/3} \gamma n^{2/3}$$

We can solve for n* by:

Derivations and discussion in Was 8.1

Homogeneous nucleation:

When supercritical particles are formed due to thermal fluctuations

Heterogeneous nucleation:

When external objects (surfaces, interfaces, impurities, defects, seeds) lower the barrier for nucleation

Derivations and discussion in Was 8.1

• Homogeneous nucleation:

When supercritical particles are formed due to thermal fluctuations

Heterogeneous nucleation:

When external objects (surfaces, interfaces, impurities, defects, seeds) lower the barrier for nucleation

What happens to the graph with heterogeneous nucleation?

Derivations and discussion in Was 8.1

Design for Radiation Resistance III: High Sink Strength

Nucleation vs. Growth

Nucleation rate can be generalized as:

$$J_0 = exp\left(-\frac{\Delta G}{kT}\right)$$

But it depends on:

- Dose rate
- Temperature
- Sink density, etc.

- Nucleation of v_j on one particular kind of attractive sites (e.g. compressive stress field around a dislocation). The following assumptions are made:
 - The lattice is in thermal and dynamic equilibrium, which are minimally affected by displacement and thermal spikes
 - 2. Mono-vacancies and solvent mono-interstitials are the only mobile point defects present (gas atoms are neglected)
 - 3. The defects obey dilute solution thermodynamics
 - 4. A steady state concentration of vacancies and interstitials exist
 - 5. Void growth rate is diffusion limited

- Voids are three-dimensional clusters of vacancies formed by the following reactions
 - 1. Cluster growth by v absorption: $v + v_j \rightarrow v_{j+1}$
 - 2. More generally, we consider small cluster mobility: $v_{\rm j}$ + $v_{\rm k}$ \rightarrow $v_{\rm j+k}$
 - 3. Cluster shrinkage by v emission: $v_j \rightarrow v_{j-1} + v$
 - Depends on equilibrium v concentration at void surface \mathcal{C}_v^0 from the rate of absorption of v by cavities and also depends on the binding energy between the v and the cluster
 - **4. Cluster shrinkage** by *i* absorption: $v_j + i_k \rightarrow v_{j-k}$
 - Depends on i and i_k concentrations
 - 5. Growth by i emission is neglected, e.g. $C_i^0 \sim 0$

• The flux between any two sized voids, say n and n+1: $J_n = \beta_v(n)\rho(n) - p(n+1)(\alpha_v(n+1) + \beta_i(n+1))$

- $\beta_v(n)\rho(n)=$ rate of v absorption by clusters of size n
- $\alpha_v(n+1)$ p(n+1) = rate of v emission by clusters of size n+1
- $\beta_i(n+1)p(n+1)$ = rate of i absorption by clusters of size n+1

- Lengthy derivation covered in Was 8.1.2
- For sake of simplicity, the # of void embryos can be written as:

$$\frac{\rho^{0}(n)}{C_{n}} = e^{\sum_{k=1}^{n-1} \ln \left(\frac{\sqrt[3]{\frac{k}{k+1}}}{\sqrt[3]{\frac{eq}{C_{v}}} e^{\left(\frac{8\pi\gamma}{\xi^{3}\sqrt{k+1}} - p\right)\frac{\Omega}{kT}} + \frac{D_{i}C_{i}}{D_{v}C_{v}} \right)}$$

- C_v^{eq}/C_v is the inverse of vacancy supersaturation S_v^{-1}
- $(D_iC_i)/(D_vC_v)$ is the arrival rate ratio between v and i
- γ is the surface energy of the cavity
- p is the gas pressure in the cavity (p=0 for voids!)

Number of vacancy in nuclei n

- To obtain void nucleation as (D_iC_i)/(D_vC_v) approaches 1 requires higher vacancy supersaturation
- Strong dependence of nucleation on vacancy supersaturation

Typical results:

T = 700 K; $C_v/C_v^{eq} = 10^4$ arr = $(D_lC_l)/(D_vC_v) = 0.99$ $J \sim 10^8$ voids nucleated/cm³/s

- After 1 year, 3x10¹⁵ voids/cm³
- The voids are small, about the critical size

Nucleation vs. Growth

- During the *nucleation* period, the number density of cavities increases with time, but the sizes remain small
- During the **growth** period that follows, the number density stabilizes at a value of N cm⁻³ and the cavity size increases with time R(t)
- In most cases, we're interested in quantifying **swelling** either in the growth or nucleation stage:

• For void growth, we need to know the net flux of vacancies to a void embryo. The net rate is thus a combination of the fluxes of interstitials and vacancies to a void, where:

$$\frac{dV}{dt} = 4\pi R\Omega(D_v C_v - D_i C_i)$$

$$K_0 - K_{iv}C_iC_v - K_{vs}C_vC_s = 0$$

$$K_0 - K_{iv}C_iC_v - K_{is}C_iC_s = 0$$

Solving for C_i and C_v , we get the familiar solution of:

$$C_{v} = \frac{-K_{is}C_{s}}{2K_{iv}} + \left[\frac{K_{0}K_{is}}{K_{iv}K_{vs}} + \frac{K_{is}^{2}C_{s}^{2}}{4K_{iv}}\right]^{1/2}$$

$$C_{i} = \frac{-K_{vs}C_{s}}{2K_{iv}} + \left[\frac{K_{0}K_{vs}}{K_{iv}K_{is}} + \frac{K_{vs}^{2}C_{s}^{2}}{4K_{iv}}\right]^{1/2}$$

Remember:

$$C_{v} = \frac{-K_{is}C_{s}}{2K_{iv}} + \left[\frac{K_{0}K_{is}}{K_{iv}K_{vs}} + \frac{K_{is}^{2}C_{s}^{2}}{4K_{iv}}\right]^{1/2}$$

$$C_{i} = \frac{-K_{vs}C_{s}}{2K_{iv}} + \left[\frac{K_{0}K_{vs}}{K_{iv}K_{is}} + \frac{K_{vs}^{2}C_{s}^{2}}{4K_{iv}}\right]^{1/2}$$
and
$$k_{jx}^{2} = \frac{K_{jx}C_{x}}{D_{j}}$$

With everything defined,

$$C_{v} = \frac{D_{v}(4\pi R \rho_{v} + z_{v} p_{d})}{2K_{iv}} (\sqrt{1 + \eta} - 1) \qquad \eta = \frac{4K_{0}K_{iv}}{D_{i}D_{v}(4\pi R \rho_{v} + z_{v} p_{d})^{2}}$$

$$C_{i} = \frac{D_{i}(4\pi R \rho_{v} + z_{i} p_{d})}{2K_{iv}} (\sqrt{1 + \eta} - 1) \qquad dR/_{dt} = \dot{R} = \frac{\Omega}{R} (D_{v}(C_{v} - C_{v}^{V}) - D_{i}C_{i})$$

We can now rewrite the growth law as:

$$R\dot{R} = K_o \Omega \left(\frac{z_i - z_v}{z_v}\right) \frac{z_v \rho_d}{(4\pi R\rho_v + z_v \rho_d)(4\pi R\rho_v + z_i \rho_d)} F(\eta)$$

- The first term is the main dpa-rate effect on void growth
- The second term is the "bias" term: if $Z_1 = Z_v$, void growth is impossible
- The third term is the sink-strength balance term. Void growth is eliminated if there are too many or too few dislocations. Optimum growth occurs when the void sink term $(4\pi R\rho_v)$ and the dislocation sink term $(z_v\rho_d)$ are equal.
- The fourth term contains the effect of point defect recombination:

$$F(h) = 2\left(\sqrt{1+h} - 1\right)/h$$

Since h decreases with increasing temperature and F decreases with increasing η :

- ullet At high temperature, F ightarrow 1 and recombination does not effect void growth
- At low temperature, $F \rightarrow 0$ and recombination prevents void growth.

$$R\dot{R} = K_0 \Omega \left(\frac{z_i - z_v}{z_v}\right) \frac{z_v \rho_d}{(4\pi R \rho_v + z_v \rho_d)(4\pi R \rho_v + z_i \rho_d)} F(\eta)$$

Vacancy Thermal Emission

• The four factor formula does not account for \mathcal{C}_v^0 , but at high temperatures this assumption is not valid. At very high temperatures, void growth ceases due to vacancies "boiling off", e.g. vacancy emission. If we repeat taking into account \mathcal{C}_v^0 , we get:

Dose, dose rate & temperature effects on swelling

- Theory predicts that void selling rate passes through a maximum with temperature. The maximum is $\sim 1/3$ the melting temperature of the metal (T_m K)
- The void growth model also includes the effect of dose rate and accumulated dose
- The dose rate effect means that void swelling at the same dose is different for ion or electron irradiation (high dose rates) compared to neutrons (low dose rate)
- The steady state swelling is roughly correlated to the damage:
- O

The onset of void swelling can be a strong function of the dose rate

