EE113: DIGITAL SIGNAL PROCESSING

Midterm 1 Practice Problems

Problem 1

Compute the convolution of x[n] and h[n], y[n] = x[n] * h[n].

a)
$$x[n] = \{-3, 7, 4\}$$
 and $h[n] = \{4, 3, 2, 1\}$

b)
$$x[n] = u[n] - u[n-7]$$
 and $h[n] = (0.9)^n u[n]$

Problem 2

a) Consider a discrete-time complex signal $x[n] = A[n]e^{j\phi[n]}$, where A[n] = |x[n]| and $\phi[n]$ is the phase of the signal x[n].

Derive the relationship between A[n] and A[-n], and $\phi[n]$ and $\phi[-n]$ when the signal is

- i) conjugate symmetric
- ii) conjugate antisymmetric
- b) Now consider a discrete-time complex signal x[n] = a[n] + jb[n], where a[n] is the real part and b[n] is the imaginary part of x[n]. Is a[n] and b[n] odd or even when the signal x[n] is:
 - i) conjugate symmetric
 - ii) conjugate antisymmetric

Problem 3

Assume x[n] has nonzero samples only in the interval $-N_1 \le n \le N_2$. Generally, over what interval of time will the following sequence have non-zero samples:

$$y[n] = x[n] \ast x[n]$$

Problem 4

Prove the distributive property of the periodic convolution:

$$\tilde{x}[n] \otimes (\tilde{y}[n] + \tilde{z}[n]) = \tilde{x}[n] \otimes \tilde{y}[n] + \tilde{x}[n] \otimes \tilde{z}[n]$$

Problem 5

Consider the following system: $y[n] = \sum_{k=0}^{n} \frac{1}{2^k} x[k]$

- (a) Is the system linear? Prove your answer.
- (b) Is the system time-invariant? Prove your answer.
- (c) Is the system causal? Prove your answer.
- (d) Is the system BIBO stable? Prove your answer. (Hint: You may need to use triangle inequality: $|x+y| \le |x| + |y|$)

Problem 6

Consider a signal x[n] that has a DTFT depicted in the figure below in the range $[-\pi, \pi]$.

Find the expression for the DTFT of the signals below:

- (a) $x_1[n] = nx[n-1]$
- (b) $x_2[n] = e^{j\frac{\pi n}{2}}(x[n] * x[n])$
- (b) $x_o[n]$, the odd part of x[n]

Problem 7

Consider the system composed of parallel connection of two LTI systems.

(a) If unit-step response of the equivalent system (the response when the input is a unit-step function) is y[n] = r[n+1] - r[n-1] and $h_1[n] = u[n] - 2u[n-1] + u[n-2]$, find and sketch $h_2[n]$.

2

- (b) Find the equivalent impulse response of the system $h_{eq}[n]$. The equivalent response is defined by the following relation: $y[n] = x[n] * h_{eq}[n]$.
- (c) Find the response of the system y[n] for x[n] shown in the figure below.

Problem 8

Let $\tilde{x}[n]$ be a periodic signal with period N. Its DTFS representation is given by

$$\tilde{x}[n] = \sum_{k=0}^{N-1} \tilde{c}_k e^{j\frac{2\pi}{N}kn},$$

where \tilde{c}_k are the DTFS coefficients.

Show that if $\tilde{x}[n]$ is a complex signal and conjugate symmetric $(\tilde{x}^*[n] = \tilde{x}[-n])$, then $\text{Im}\{\tilde{c}_k\} = 0$.

Problem 9

Consider a periodic signal $\tilde{x}[n]$ signal with one if its periods shown in the figure below. Calculate its DTFS coefficients \tilde{c}_k .

