

http://www.portal.ifba.edu.br/santoantonio

LINGUAGEM DE PROGRAMAÇÃO

Prof. George Pacheco Pinto

AGENDA

- ☐ Linguagem C
 - ☐ Vetores e Matrizes

VETORES

- ☐ Um vetor é um conjunto de dados HOMOGÊNEO;
- Permite trabalhar com o agrupamento de várias informações dentro de uma mesma variável;
- A quantidade de informações disponíveis para armazenamento é indicada na declaração do vetor.

0	1	2	.***	N
elemento 1	elemento2	elemento3		elementoN

DECLARANDO VETORES

- <tipo> identificador [<numero de posições>];
- 🖵 Tipo
 - ☐ Qualquer um dos tipos primitivos estudados. Ex: int, float, char.
- ☐ Identificador
 - □ Nome da variável que será referenciada no programa.
- Número de posições
 - ☐ Número máximo de posições para armazenamento.

DECLARANDO VETOR

int numeros[1000]; /* conjunto de 1000 números inteiros */
float notas[65]; /* conjunto de 65 números reais */
char nome[40]; /* conjunto de 40 caracteres */

ATRIBUIÇÃO DE DADOS

Exemplos

```
numeros[0] = 34; /* insere o valor 34 na primeira posição do vetor de números. */
```

```
notas[1] = 10.0; /* insere a nota 10.0 na segunda posição do
vetor de notas*/
```

```
notas[99] = 3.5; /* insere a nota 3.5 na posição 99 do
vetor*/
```

PERCORRENDO UM VETOR

- Utilizada estrutura de repetição para percorrer todos os registros de um vetor de forma sequencial.
- □ 0 valor da variável de teste é utilizado como índice de acesso ao vetor.

```
for(i = 0; i < 100; i++){
  vetor[i];
}</pre>
```

EXEMPLO

```
int main () {
    float notas[10];
    int i = 0;
    for(i = 0; i < 10; i++) {
      printf("Digite a nota do aluno %d: ", i+1);
      scanf("%f", &notas[i]);
    for(i = 0; i < 10; i++){
       printf("Nota do aluno %d: %f", i+1, notas[i]);
```

Como armazenar as notas de 3 disciplinas de 100 alunos? float portugues[100], matematica[100], geografia[100]; int i; for(i = 0; i < 100; i++)printf("Nota de Português do aluno %d: ", i+1); scanf("%f",&portugues[i]); printf("Nota de Matemática do aluno %d: ", i+1); scanf("%f",&matematica[i]); printf("Nota de Geografia do aluno %d: ", i+1); scanf("%f",&geografia[i]);

```
Como armazenar as notas de 20 disciplinas de 100 alunos?
float disci1[100], disci2[100] ...., disci20[100];
for(i = 0; i < 100; i++)
    printf("Nota da disciplina1 do aluno %d: ", i+1);
    scanf("%f",&disci1[i]);
    printf("Nota de disciplina2 do aluno %d: ", i+1);
    scanf("%f",& disci2[i]);
    /* ... */
    printf("Nota de disciplina20 do aluno %d: ", i+1);
    scanf("%f", & disci20[i]);
```

```
Como armazenar as notas de 20 disciplinas de 100 alunos?

float disci1[100],disci2[100] ...., disci20[100];
for(i = 0; i < 100; i++)
{
    for(j = 0; j < 20; j++){
        printf("Nota da disciplina%d do aluno %d: ", j + 1,i+1);
        scanf("%f",&disci???[i]);
    }
}</pre>
```

*Não é possível selecionar o vetor correto em tempo de execução dentro da estrutura do segundo lanço de repetição for.

**Precisamos de um tipo de vetor capaz de armazenar todas as notas de todas as disciplinas.

Como armazenar as notas de 20 disciplinas de 100 alunos?

	1	2	3		100
disci1	9.0	7.5	3.5		8.5
disci2	3.5	6.0	4.0	9.5	7.0
disci3	2.0	10.0	4.2	7.0	8.0
disci4	4.5	7.0	8.0	10.0	9.0
disci20	0.0	5.0	6.0	9.0	10.0

- Uma matriz é um vetor (ou seja, um conjunto de variáveis de mesmo tipo) que possui duas ou mais dimensões.
- ☐ Um vetor de vetores

- Em um vetor, para acessar um valor qualquer, é necessário usar um índice para determinar sua posição.
 - \square Ex: numeros[2], idades[15].
- Na matriz são necessários dois índices. O primeiro determina em que linha da matriz se encontra o elemento, enquanto o segundo determina a coluna.

■ Exemplo: matriz de dados 5 X 5 m[5][5]

۲			Colunas		
	m[0][0]	m[0][1]	m[0][2]	m[0][3]	m[0][4]
i	m[1][0]	m[1][1]	m[1][2]	m[1][3]	m[1][4]
ا n ا	m[2][0]	m[2][1]	m[2][2]	m[2][3]	m[2][4]
a	m[3][0]	m[3][1]	m[3][2]	m[3][3]	m[3][4]
S	m[4][0]	m[4][1]	m[4][2]	m[4][3]	m[4][4]

DECLARANDO MATRIZES

- <tipo> identificador [<numero de linhas>][<numero de colunas>];
- ☐ Tipo: Qualquer um dos tipos primitivos estudados.
- Identificador: Nome da variável que será referenciada no programa.
- ☐ Número de linhas: Número máximo de linhas.
- Número de colunas: Número máximo de colunas.

DECLARANDO MATRIZES

```
int numeros[10][1000];
float notas[20][100];
char nomes [10][30];
```

MANIPULANDO MATRIZES

```
int main() {
    float notas[20][100];
    //Percorre todas as linhas (0 até 19)
    for(i = 0; i < 20; i++)
       //Percorre todas as colunas (0 até 99)
       for(j = 0; j < 100; j++){
           printf("Nota da disciplina %d do aluno %d: ", j+1,i+1);
           scanf("%f",&notas[i][j]);
```

EXERCÍCIOS

- Construa um programa em C para armazenar as notas de uma turma com 15 alunos utilizando vetores. Imprima a menor nota do vetor.
- Construa um programa em C que solicite a idade de dez pessoas armazenando os dados em um vetor. Imprimir a idade de todas as pessoas. Imprimir a menor idade digitada.
- 3. Fazer um programa em C para ler um vetor de inteiros positivos de 50 posições. Imprimir a quantidade de números pares e de múltiplos de 5.

EXERCÍCIOS

4. Construa um programa para armazenar as notas de 5 turmas com 15 alunos cada.

Imprima todas as notas no formato matriz.

Imprima a média das notas de cada turma.

Imprima a menor nota de cada turma.

EXERCÍCIOS

- 5. Criar um programa em C que leia os elementos de uma matriz inteira de 4 x 4 e imprimir os elementos da diagonal principal.
- 6. Criar um programa em C que leia os elementos de uma matriz inteira de 3 x 3 e imprimir outra matriz multiplicando cada elemento da primeira matriz por 2.

REFERÊNCIAS

Consultar ementário.