La présentation et la rédaction interviennent pour une part importante dans la notation.

Exercice I

Questions rapides de cours et exercices basiques : les questions sont | indépendantes

- 1) Notion de limite : :
- •Notion de limite d'une fonction : :
 - a) Soit $f:\mathcal{D}\subset\mathbb{R}\to\mathbb{R}$ une fonction ; $a\in\overline{\mathcal{D}}.$ Rappeler la définition de : $\lim_{x\to a}f(x)=L$:
- avec des " ϵ " puis en termes d'intervalles.
- b) Une application : Soient $f,g:\mathcal{D}\subset\mathbb{R}\to\mathbb{R}$ 2 functions; $a\in\overline{\mathcal{D}}$.

Redémontrer que si $\lim_{x \to a} f(x) = L > 0$ alors : $(\exists I_a \text{ intervalle ouvert de centre } a)$ tel que : $(\forall x \in I_a \cap \mathcal{D}_f) \quad 0 < f(x)$.

•Notion de limite d'une suite : u une suite définie sur \mathbb{N} . Rappeler la définition de : $\lim_{n \to \infty} u_n = +\infty$.

Donner un exemple de suite divergeant vers $+\infty$ sans être croissante à partir d'un certain rang.

- 2) Suites particulières :
 - a) Prouver: $(\forall n \in \mathbb{N}^*)$ $1+2+\ldots+(n-1)+n+(n-1)+\ldots+2+1=n^2$.
 - b) Soit $n \in \mathbb{N}^*$; $q \in \mathbb{R}$.

Que vaut $S_n = 1 + q + q^2 + \ldots + q^{n-1}$?

A quelle condition nécessaire et suffisante S est-elle convergente et vers quoi ?

c) On a vu en TD différentes propriétés de la suite de Fibonacci définie par : $\left\{ \begin{array}{ll} F_0 = 0 \; ; F_1 = 1 \\ (\forall n \in \mathbb{N}) \quad F_{n+2} = F_{n+1} + F_n \end{array} \right.$

En voici une autre ; prouver que : $(\forall n \in \mathbb{N}^*)$ $F_1^2 + F_2^2 + \ldots + F_n^2 = F_n F_{n+1}$

Exercice II

Etude d'une suite définie par une relation de récurrence.

On considère la fonction $f: x \mapsto \frac{2x+2}{x+2}$

- 1) 1^{ère} méthode.
- a) Donner \mathcal{D}_f et étudier f seulement $|\mathbf{sur}| 2, +\infty[|]$. Etudier le(s) point(s) fixes de f sur $]-\overline{2,+\infty[}$.
- b) Représenter **soigneusement** f, la droite d'équation y=x, ainsi que la suite u définie par : $\begin{cases} u_0=-1 \\ (\forall n\in\mathbb{N}) & u_{n+1}=f(u_n) \end{cases}$

(en l'absence de machine, on rappelle : $\sqrt{2} \approx 1,41$)

- c) Etudier classiquement la suite.
- 2) Question subsidiaire, hors barème $2^{i\text{ème}}$ méthode.

Soit $v_n = \frac{u_n - \sqrt{2}}{u_n + \sqrt{2}}$. Prouver : $(\forall n \in \mathbb{N})$ $v_{n+1} = qv_n$ avec $q = \frac{2 - \sqrt{2}}{2 + \sqrt{2}}$. Prouver que : $\lim_{n \to +\infty} v_n = 0$ et retrouver le résultat du 1).

Exercice III

Négligeabilité et équivalence au voisinage d'un point : les questions sont | indépendantes

- 1) $\lim_{x\to 0} \frac{(\sin 2x)(\tan 3x)}{1-\cos x}$. 2) **Redémontrer** que : si $f(x) \sim g(x)$ avec g>0 au voisinage de a, alors, pour $\alpha\in\mathbb{R}$, $f(x)^{\alpha}\sim g(x)^{\alpha}$.

Prouver que si $f(x) \sim g(x)$ on n'a pas nécessairement $e^{f(x)} \sim e^{g(x)}$ en donnant un contre-exemple.

- 3) Donner un équivalent (le plus simple possible) :
- a) au voisinage de $+\infty$ de : $x^5 + 3^x + (\ln x)^{10} + 2$. b) au voisinage de $+\infty$ de : $\ln (e^{2x} + x^2 + x + 1)$
- c) au voisinage de 0 de : $e^{\arcsin x} 1$ d) au voisinage de $+\infty$ de : $1 + 2 + \ldots + n$.
- 4) Déterminer les limites :
- $\mathrm{a)} \lim_{x \to +\infty} x^{\alpha} \ln \left(1 + \frac{1}{x}\right) \text{ (discuter suivant } \alpha \in \mathbb{R}) \quad \mathrm{b)} \lim_{x \to 0} (\cos x)^{\left(\frac{1}{\sin(x^2)}\right)} \quad \mathrm{c)} \lim_{x \to 0^+} \frac{x^x 1}{x}.$
- 5) Deux fonctions qui tendent vers la même limite $l \in \mathbb{R}$, quand x tend vers a, sont-elles équivalentes au voisinage de a?