### 2048-word x 8-bit High Speed CMOS Static RAM

#### **FEATURES**

Single 5V Supply

High speed: Fast Access Time 120ns/150ns/200ns (max.)

• Low Power Standby and Low Power Operation

Standby:

100μW (typ.)

10μW (typ.) (L-version)

Operation:

200mW (typ.)

175mW (typ.) (L-version)

Completely Static RAM: No clock or Timing Strobe Required
 Directly TTL Compatible: All Input and Output

• Pin Out Compatible with Standard 16K EPROM/MASK ROM

• Equal Access and Cycle Time

• Capability of Battery Back Up Operation (L-version)

#### **MORDERING INFORMATION**

| Type No.                                                    | Access Time                | Package           |
|-------------------------------------------------------------|----------------------------|-------------------|
| HM6116P-2<br>HM6116P-3<br>HM6116P-4                         | 120ns<br>150 ns<br>200 ns  | 600mil 24pin      |
| HM6116LP-2 120 ns<br>HM6116LP-3 150 ns<br>HM6116LP-4 200 ns | Plastic DIP                |                   |
| HM6116FP-2<br>HM6116FP-3<br>HM6114FP-4                      | HM6116FP-3 150 ns          |                   |
| HM6116LFP-2<br>HM6116LFP-3<br>HM6116LFP-4                   | 120 ns<br>150 ns<br>200 ns | 24pin Plastic SOP |

#### **BFUNCTIONAL BLOCK DIAGRAM**





#### **PIN ARRANGEMENT**



Note) This device is not available for new application.

### MABSOLUTE MAXIMUM RATINGS

| ltem                               | Symbol         | Rating         | Unit |
|------------------------------------|----------------|----------------|------|
| Voltage on Any Pin Relative to Vss | V r            | -0.5*1 to +7.0 | V    |
| Operating Temperature              | T.,.           | 0 to +70       | *C   |
| Storage Temperature                | T,,,           | -55 to +125    | ·c   |
| Storage Temperature Under Bias     | T              | -10 to +85     | .c   |
| Power Dissipation                  | P <sub>t</sub> | 1.0            | W    |

Note) \*1. -3.5V for pulse width \$50ns

#### **TRUTH TABLE**

| <u>CS</u> | ŌĒ | WE | Mode         | Vcc Current | 1/0 Pin | Ref. Cycle         |
|-----------|----|----|--------------|-------------|---------|--------------------|
| Н         | ×  | ×  | Not Selected | Isu, Isu    | High Z  |                    |
| L         | L  | Н  | Read         | Icc         | Dout    | Read Cycle (1)~(3) |
| 1.        | Н  | L  | Write        | Icc         | Din     | Write Cycle (1)    |
|           | L  | L  | Write        | Icc         | Din     | Write Cycle (2)    |

# **TRECOMMENDED DC OPERATING CONDITIONS** (Ta-0 to +70°C)

| Item           | Symbol | min    | typ | max | Unit |
|----------------|--------|--------|-----|-----|------|
| Supply Voltage | Vcc    | 4.5    | 5.0 | 5.5 | v    |
|                | Vss    | 0      | 0   | 0   | V    |
| Input Voltage  | VIH    | 2.2    | 3.5 | 6.0 | v    |
|                | VIL    | -0.3*1 | _   | 0.8 | v    |

Note) \*1. -3.0V for pulse width≤50ns.

# **DC** AND OPERATING CHARACTERISTICS ( $Vcc = 5V \pm 10\%$ , Vss = 0V, Ta = 0 to $+70^{\circ}C$ )

|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | HM6116-2 |       | -2 I          |      | M6116-3/ | Unit |            |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------|-------|---------------|------|----------|------|------------|
| Item                                    | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Test Conditions                                                               | min      | typ*1 | max           | min  | typ*1    | max  |            |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |          |       | 10            | _    | -        | 10   | μA         |
| Input Leakage Current                   | ILI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $V_{CC} = 5.5 \text{V}, V_{IN} = V_{SS} \text{ to } V_{CC}$                   | _        | - 1   | 2*3           |      | _        | 2*3  | μ <b>A</b> |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\overline{CS} = V_{IH} \text{ or } \overline{OE} = V_{IH},$                  | _        | _     | 10            | _    |          | 10   | μA         |
| Output Leakage Current                  | ILO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $V_{I/O} = V_{SS}$ to $V_{CC}$                                                |          | -     | 2*3           | _    | _        | 2*3  | μA.        |
|                                         | age Current $ ILI $ $Vcc = 1$ $ ILI $ $ I$                                                                                                                                                                                                                   |                                                                               | _        | .40   | 80            | -    | 35       | 70   | mA         |
| Operating Power Supply                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $CS = V_{IL}, I_{I/O} = 0 \text{mA}$                                          |          | 35*3  | 70 <b>*</b> 3 | -    | 30*3     | 60*3 | IIIA       |
| •                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{IH} = 3.5 \text{V}, \ V_{IL} = 0.6 \text{V},$                             |          | 35    | _             | _    | 30       | -    | mA         |
| Operating Power Supply  Current  Icc1*2 | $I_{I/0} = 0 \text{mA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                             | 30*3     | _     | _             | 25*3 | _        | III  |            |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Min avalo duty=100%                                                           |          | 40    | 80            | -    | 35       | 70   | mA.        |
| Average Operating Current               | Icc 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $I_{I/O} = 0 \text{mA}$                                                       |          | 35*3  | 70*3          | _    | 30 * 3   | 60*3 | IIIA       |
|                                         | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               | -        | 5     | 15            |      | 5        | 15   | mA         |
| Standby Power Supply                    | Isa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $CS = V_{IH}$                                                                 | _        | 4*3   | 12*3          |      | 4*3      | 12*3 | , iiii k   |
| Current                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\overline{\text{CS}} \ge V_{CC} - 0.2 \text{V}, \ 0 \text{V} \le V_{IN} \le$ | -        | 0.02  | 2             | -    | 0.02     | 2    | μA         |
| Current                                 | $ I_{LI}   V_{CC} = 5.5V, \ V_{IN} = V_{SS} \text{ to } V_{CC} \qquad - \qquad - \qquad 10 \qquad - \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 * 3                                                                         | 50*3     | μΛ.   |               |      |          |      |            |
|                                         | Leakage Current   ILLI    ut Leakage Current   ILLI    ating Power Supply    ent   Icc    Icc | IoL=4mA                                                                       | -        | _     | 0.4           | _    | -        | _    | V          |
| Output Voltage                          | Voi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IoL=2.1mA                                                                     | -        | -     | -             |      | _        | 0.4  | V          |
| Output                                  | Vон                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>Iон</i> = − 1.0mA                                                          | 2.4      |       | _             | 2.4  |          |      | V          |

Notes)  $*1. V_{CC} = 5V, Ta = 25^{\circ}C$ 

◆ 2. Reference Only

\*3. This characteristics are guaranteed only for L-version.

#### **ECAPACITANCE** $(f-1MHz, Ta-25^{\circ}C)$

| Item                     | Symbol            | Test Conditions           | typ | max | Unit |
|--------------------------|-------------------|---------------------------|-----|-----|------|
| Input Capacitance        | С.,               | V0V                       | 3   | 5   | pF   |
| Input/Output Capacitance | C <sub>1</sub> ,0 | V <sub>t&gt;0</sub> = 0 V | 5   | 7   | pF   |

Note) This parameter is sampled and not 100% tested.

**EAC CHARACTERISTICS** ( $V_{cc}$  - 5V  $\pm$  10%,  $T_a$  - 0 to +70°C)

#### • AC TEST CONDITIONS

Input Pulse Levels: 0.8 to 2.4V Input Rise and Fall Times: 10 ns

Input and Output Timing Reference Levels: 1,5V

Output Load: 1TTL Gate and  $C_L$  (100pF) (including scope and jig)

#### ● READ CYCLE

| ltem .                               |                   | HM6116-2 |     | HM6116-3 |     | HM6116-4 |     |      |  |
|--------------------------------------|-------------------|----------|-----|----------|-----|----------|-----|------|--|
| item                                 | Symbol            | min      | max | min      | max | min      | max | Unit |  |
| Read Cycle Time                      | tac               | 120      | _   | 150      | _   | 200      | _   | ns   |  |
| Address Access Time                  | LAA               | _        | 120 | _        | 150 | _        | 200 | ns   |  |
| Chip Select Access Time              | lacs              | _        | 120 | _        | 150 | _        | 200 | ns   |  |
| Chip Selection to Output in Low Z    | lcLz              | 10       | _   | 15       | _   | 15       | -   | ns   |  |
| Output Enable to Output Valid        | los               |          | 80  | -        | 100 |          | 120 | ns   |  |
| Output Enable to Output in Low Z     | l <sub>OL</sub> z | 10       | _   | 15       | _   | 15       |     | ns   |  |
| Chip Deselection to Output in High Z | tenz              | 0        | 40  | 0        | 50  | 0        | 60  | ns   |  |
| Chip Disable to Output in High Z     | ionz              | 0        | 40  | 0        | 50  | 0        | 60  | ns   |  |
| Output Hold from Address Change      | ton               | 10       |     | 15       |     | 15       | _   | ns   |  |

#### • WRITE CYCLE

|                                    |        | HM6116-2 |     | HM6116-3 |     | HM6116-4 |     | 11   |  |
|------------------------------------|--------|----------|-----|----------|-----|----------|-----|------|--|
| Îtem                               | Symbol | min      | max | min      | max | min      | max | Unit |  |
| Write Cycle Time                   | twc    | 120      |     | 150      |     | 200      |     | ns   |  |
| Chip Selection to End of Write     | tew    | 70       | Ī — | 90       |     | 120      | _   | ns   |  |
| Address Valid to End of Write      | LAW    | 105      | -   | 120      | _   | 140      |     | NS   |  |
| Address Set Up Time                | las    | 20       |     | 20       | _   | 20       | _   | n:s  |  |
| Write Pulse Width                  | lwp    | 70       |     | 90       | _   | 120      | _   | ns   |  |
| Write Recovery Time                | Lwg    | 5        |     | 10       | -   | 10       |     | ns   |  |
| Output Disable to Output in High Z | tonz   | 0        | 40  | 0        | 50  | 0        | 60  | ns   |  |
| Write to Output in High Z          | twaz   | 0        | 50  | 0        | 60  | 0        | 60  | ns   |  |
| Data to Write Time Overlap         | tow    | 35       | -   | 40       | _   | 60       | _   | ns   |  |
| Data Hold from Write Time          | ton    | 5        | _   | 10       | _   | 10       |     | ns   |  |
| Output Active from End of Write    | tow    | 5        | _   | 10       | _   | 10       |     | ns   |  |

#### **MITIMING WAVEFORM**

### ● READ CYCLE (1)(1)



## ● READ CYCLE (2)(1)(2)(4)



# ● READ CYCLE (3) (1)(3)(4)



- NOTES: 1. WE is High for Read Cycle.
  2. Device is continuously selected,  $\overline{CS} = V_{IL}$ .
  3. Address Valid prior to or coincident with  $\overline{CS}$  transition Low.
  4.  $\overline{OE} = V_{IL}$ .

#### • WRITE CYCLE(1)



#### ● WRITE CYCLE (2)(5)



- NOTES: 1. A write occurs during the overlap  $(t_{WP})$  of a low  $\overline{\text{CS}}$  and a low  $\overline{\text{WE}}$ .

  2.  $t_{WR}$  is measured from the earlier of  $\overline{\text{CS}}$  or  $\overline{\text{WE}}$  going high to the end of write cycle.
  - 3. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
  - 4. If the CS low transition occurs simultaneously with the WE low transitions or after the WE transition, output remain in a high impedance state.

  - 5. OE is continuously low. (OE = V<sub>IL</sub>)
    6. D<sub>out</sub> is the same phase of write data of this write cycle.
    7. D<sub>out</sub> is the read data of next address.
    8. If CS is Low during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.

#### **BLOW VCC DATA RETENTION CHARACTERISTICS** (Ta=0 to +70°C)

This characteristics are guaranteed only for L-version.

| Item                                 | Item Symbol Test Conditions |                                                                                                                                               |       |   | max | Unit |
|--------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|---|-----|------|
| Vcc for Data Retention               | VDA                         | $\overline{CS} \ge V_{CC} - 0.2V$ , $V_{} \ge V_{CC} - 0.2V$ or $V_{} \le 0.2V$                                                               | 2.0   | _ | _   | v    |
| Data Retention Current               | Iccon*1                     | $V_{CC} = 3.0 \text{ V}, \overline{\text{CS}} \ge 2.8 \text{ V}, V_{IH} \ge 2.8 \text{ V} \text{ or } \text{OV} \le V_{IN} \le 0.2 \text{ V}$ |       | - | 30  | μA   |
| Chip Deselect to Data Retention Time | tcox                        | 6 8 4 4                                                                                                                                       | 0     | _ |     | ns   |
| Operation Recovery Time              | 1 a                         | See Retention Waveform                                                                                                                        | Inc*2 | _ |     | ns   |

Notes) #1. 10µA max at Ta=0°C to +40°C, VIL min = -0.3V

\* 2. tac = Read Cycle Time.

#### ●Low Vcc Data Retention Waveform



# This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.