2.2.1 a)
$$\mathbb{R}^{2\times 1}$$
 $\Rightarrow \mathbb{R} \times \mathbb{R}^{2\times 1}$ $\times \mathbb$

=> Kein VR

Gegenbsp: $\alpha_1 = 1$ $\alpha_2 = 1$

 $\binom{\circ}{\circ} \neq \binom{\wedge}{\wedge}$

2.2.1 a)
$$R^{2\times 1}$$
 *: $R \times R^{2\times 1} \to R^{2\times 1}$

** $\binom{a_1}{a_2} \mapsto \binom{x_1 a_1}{a_2}$

** $\binom{a_1}{a_2} \mapsto \binom{x_1 a_1}{a_2} \mapsto \binom{x_1 a_1}{a_2} \mapsto \binom{x_1 a_1}{a_2 + b_2} \mapsto \binom{x_1 a_1}{a_2} \mapsto \binom{x_1 a_1$

LINAG (14

2.21. Vc,deR VxeR^{2xd}: (c.d) *x = c * (d * x)

(c.d) * (
$$\frac{n_1}{n_2}$$
) = ($\frac{c \cdot ol \cdot on}{n_2}$) = c * ($\frac{d \cdot on}{n_2}$) = c * ($\frac{d \cdot on}{n_2}$) \(
\text{VxeR}^{2xd}: 1 * x = x

1 * ($\frac{on}{n_2}$) = ($\frac{1}{n_2}$) = ($\frac{on}{n_2}$) \(
\text{Exin VR}

b) * R * R R R A = R \(
\text{N} \) = ($\frac{on}{n_2}$) \(
\text{VxeR} \) = ($\frac{on}{n_2}$) \(
\text{VxeR} \) = ($\frac{on}{n_2}$) \(
\text{VxeR} \) = ($\frac{on}{n_2}$) \(
\text{Vxy} \) = (\frac{on}