Contents

1	Abstract				
2	2.3 TinyML	4 6 12 14 15			
3	Related works in machine learning for printed circuits	16			
4	4.2 Binary Neural Networks	19 19 24 26			
5	1	27 31			
6	6.1 Positive-Negative Sum	32 32 34			
7	7.1 Single input per-cycle update	53 53 64			
8	8.1 Rationale	73 73 74 76			
9	Experimental setup 9.1 Data preparation	78 78 78 79 79 80			

10	Resu	ılts	81
	10.1	Model predictive performance	82
	10.2	Delay of combinatorial and sequential designs	82
	10.3	Comparative analysis: Cross-Layer Approximation For Printed Ma-	
		chine Learning Circuits [10]	83
	10.4	Further comparison with relevant literature	85
	10.5	Supplementary results	87
Bil	bliogr	aphy	100

1 Abstract

Printed electronics are an emerging technology that has the potential to enable pervasive computing in a great variety of consumer products, thanks to their sub-cent fabrication and flexible form factors. A lot of the envisioned applications they will support have to do with classifying the data gathered from printed sensors to derive a useful property about the object under measurement. Printed Machine Learning(ML) is deployed in order to perform these types of classifications from sensor data. Because printed electronics have far higher demands in area and power consumption compared to traditional electronics, these ML models must be executed in a very resource constrained environment. Thankfully the ease of manufacturing printed circuits using additive methods allows for hardware to be fully bespoke to the exact trained model it implements. This allows for resource requirements to shrink by many factors. This work evaluates the feasibility of deploying Binary Neural Network(BNN) architectures as printed classifiers, where BNNs are networks with weights and activations quantised to a single bit to reduce computational demands to the minimum, making them a good candidate architecture for the problem at hand.

2 Introduction

2.1 Introduction to ubiquitous computing

Technology in general and more specifically computation plays an ever increasing part in our lives and there are no signs of the trend slowing down any time soon. There still however exists a relatively rigid real world - computational domain gap, meaning most of of our interactions of the world around us don't involve any computation taking place. It is not hard to imagine countless examples where computational elements would add value to everyday activities such as grocery shopping or reduce required labour in production processes such as manufacturing if those elements had close to zero cost and greater embedability associated with them. Although almost everyone in developed countries carries and interacts with powerful computers everywhere they happen to be, the form of interaction cannot easily adapt to the surrounding context they are in. One cannot simply ask the bananas they got if they are ripe enough, call out to their keys to find where they left them, check with their shoes on how many more steps they got in them. Furthermore it is clear that uncountable processes are horribly unoptimised compared to what could be achieved if a continuous stream of detailed information from each of of it's constituents and access to fine grained control over the minutia of them was in place. Think for example a farm where every individual fruit on any tree has it's growth progress tracked. Essentially taking the ideas of the Internet-of-Things(IoT) and pushing them to their logical limit, ubiquitous computing is an aspirational ideal to a future where every product is a smart device, every observable anyone would reasonably care for is accessible. Self driving cars will be able to safely navigate without access to vision by querying the positions of nearby devices, since whatever is not a device directly at least has one or more attached

Printed electronics are positioned to play a major role in at the very least the early stages of such a transformation. Printing is currently the only manufacturing method that can provide sub-cent computational elements, and cost is the greatest bottleneck to how pervasive they can become. Additionally the non-toxicity is crucial to make adding them to fast moving consumer goods that are disposable at these scales. The flexibility also helps with embedding more easily. Even relatively "modest" compared to the complete vision applications that we can expect to come eventually, such as RFID tags replacing barcodes and enabling stores to track every individual item of stock or printed food quality sensors making best-before dates obsolete have great potential to disrupt a wide range of industries.

Machine learning can accelerate the process by many orders of magnitude compared to how long it would take for specialised people in multiple fields to design a com-

putational model to interpret and process the sensor data. In many cases the upfront engineering cost would be enough to stop the adoption of the paradigm altogether. If all it takes is for some sensor data to be collected and labeled that can easily be handled by any employee. We also depend on autoML being good enough for most of these small scale data applications, since otherwise we would just run into the same bottleneck with needing a data scientist for every little thing. Methods to lighten the resources demanded of the printed system that implements the model, such as quantization and binarization can clearly expand the scope of how complex the classification supported can be.

2.2 Intro to printed electronics

Printed electronics refers to very thin electronic devices and circuits that are produced by the application of inks with desired electric properties to various substrates. They can be manufactured in volume for a much lower cost compared to other electronics with methods common in the printing industry. This makes them particularly well-suited for applications where the benefits of electronic functionality alone do not outweigh the associated expenses. Additionally they can offer flexible form factors and the ability of large area coverage. Another benefit that may come from their spread is to lessen the impact of e-waste, since printed electronics can be much less toxic for the environment and more easily recyclable than the rest, or even biodegradable. They cannot compete with silicon electronics in performance due to the large resistance of conductive inks, the lack of support for high frequency and the high variability in manufacturing. While the ability to cover large areas is sometimes desirable, a lot of applications demand miniaturization that they cannot offer. Feature sizes in printed computational elements are six orders of magnitudes larger than conventional electronics. A variety of active and passive devices, including transistors, resistors, capacitors, sensors, harvesters and antennas can be implemented with them. They are thought to be an emerging market with considerable potential to broaden the role of computation in everyday living. They can help the pervasiveness of computation reach far deeper, and thus synergize well with other advances in the sector. A recent report by IDTechEx[1] forecasts the global market for printed flexible electronics, excluding OLEDs, to reach 12 billion dollars by 2033.

Figure 1: Comparison of subtractive electronics manufacturing to purely additive fabrication. The cost benefits of the much simpler additive procedure should be clear. Source: https://doi.org/10.1109/ISCAS.2017.8050614

Figure 2: Projection of printed electronics market size. Source: Precedence Research

2.2.1 Uses of printed electronics

The usage of printed electronics most people may be familiar with in their everyday lives is the membrane used to detect key presses in most non-mechanical keyboards, or perhaps windshield defrosters.

Other usages include:

- Sensors: flexible, biodegradable and stretchable sensing elements enable the efficient monitoring of many processes. A variety of properties of the world can be measured by printed sensors, including temperature, touch, strain, gasses, humidity, light levels and presence of certain chemicals. The flexibility and non-toxicity is especially relevant for medical monitoring, so biosensors have received a lot of attention, with some (for example ,printed seizure detecting patches) already commercially available.
- RFID: RFID (Radio Frequency Identification) is a wireless technology reader, enabling seamless object identification and tracking through unique identification codes stored in the tags. The goal of printed RFID is to replace current methods for identifying goods with smart labels. RFID tags are usually

passive and don't require a power supply. They can be cheaply made with any common printing method. They have been shown to operate on 5G and WLAN frequencies, and can even have sensor capabilities. Currently mostly used in ticket fares and anti-shoplifting.

- Energy harvesting: Printed batteries can only provide power to the functional parts of printed circuits for a limited time, and can take up a significant portion of the circuit's area. In order to enable greater autonomy to deployed printed electronics the ability to harvest energy from the environment is crucial. Printed harvesters can draw power from radio signals, vibrations and most commonly, light. Printed photoelectric/solar cells have also drawn a lot of interest outside the realm of harvesters for small circuits, since while their performance doesn't reach the levels of rigid silicon solar cells they can be deployed in a wider selection of spaces, including wearables.
- Lighting: LEDs have become the predominant light source, in place of the
 energy wasteful incadecent lamps and the environmental minefields of fluorescent lighting. OLEDs further increase the energy savings and produce
 softer and more uniform lighting. Printing seems like a promising solution
 for low cost manufacturing of OLEDs with competitive luminous efficiency
 and enable them to cover large areas. Paper thin light panels have been demonstrated that way.
- Displays: Displays are one of the more mature aspects of printed electronics, with large 4K printed OLED displays are commercially available. They enable flexible displays, that have many applications in consumer electronics and wearables and thus are a 5 billion dollar market. Even if the flexible display is not fully printed, printed electronics can offer it additional features. QLED displays may also one day be printed if printing accuracy keeps increasing.
- Wearables: Wearable electronic devices are already very popular, such as smart watches or hearing aids, or NFC rings. Printed electronics have much to offer to the space thanks to their flexibility. Conductive materials have been developed that can be printed on fabric and withstand washing with detergent, allowing electronics to be embedded in regular pieces of clothing. Printed sensors can be used for activity tracking, one of the most popular features of today's smartwatches, or health monitoring, with printed patches for seizure detection already on the market. One can also imagine they would be of interest to the fashion industry.

Figure 3: Printed NFC demontration. Source: PRINTED ELECTRONICS LTD

Figure 4: Printed circuit on the membrane of a common keyboard. Source: Paulo Maluf

2.3 TinyML

Edge computing enables applications where data processing is location sensitive. It provides greater security, privacy and availability guarantees to the end users. It is a fundamental component of the IoT market, that can reduce the dependence on cloud systems. The main bottleneck to it's adoption spread are the resource constraints it imposes.

To deal with the demand of running machine learning applications on the edge for intelligent devices, traditional architectures are too bloated to make the cut. Many models nowadays demand computing capabilities out of reach for even the most high-end consumer hardware, let alone low power devices. TinyML is the field of optimising machine learning architectures to run on ultra resource constrained systems, typically no more than a few milliwatts.

Multidisciplinary work is demanded for this undertaking, as both the ML algorithms, the software and the hardware that supports them must accommodate these constraints while not compromising the accuracy of the models to a significant degree. Roughly the constraints at play are energy efficiency, processing capacity, memory space and production and engineering costs. It should be emphasised that the concern is with the inference step of ML although enabling the training phase on edge hardware is also it's own niche endeavor.

Some approaches to the problem include:

- One of the most ubiquitous methods in the field is constrained neural architecture search (NAS). Neural architecture search examines a search space of different architectures for different hyperparameters. An algorithm tries to locate the best possible architecture to maximise model performance on the objective function. An evaluator examines the trade-offs between accuracy and efficiency on deployment, given declared constraints of memory, energy etc. It may consider one or many target models on a single or multiple platforms. Both the search space and the search algorithm are hardware-aware. It is a multi-objective optimisation problem that is usually implemented as a multi-stage single-objective optimisation problem. Running the search is very time consuming but results outperform most manually designed networks.
- An obvious approach to handling the memory constraint issue is using data compression techniques on the ML model. A key approach that has demonstrated 15-40x compression factors are Kronecker Products (KP). Large accuracy penalties may occur however, and a method called doped Kronecker product (DKP) leverages co-matrix adaptation to try and remedy those.

- Over-parameterization is the property of a neural network where redundant neurons do not improve the accuracy of results. This redundancy can often be removed with little or no accuracy loss. Network pruning removes parameters that don't impact accuracy by a large amount. A common case where this can easily be done is when parameters are either zero or sufficiently close to it. It can be applied at any granularity, from individual connections, neurons to entire layers. When a pruning procedure results in the neural network losing it's symmetrical structure it is referred to as unstructured pruning, otherwise it is structured pruning. Unstructured pruning results to sparse weight matrices that general processors do not execute efficiently. Retraining a network after pruning parameters that weren't contributing enough can allow it to reach higher accuracies than before. Even pruning a randomly initialised network without training it before or after can result to a decent accuracy.
- Knowledge distillation is a process of training a smaller, shallower student network to much the output logits of a larger, more capable teacher network that has been trained to satisfactory accuracy. More advanced variants include ensembles of small networks each trying to match the results of the congregated ensemble, or self-distillation in which shallower layers of a deep neural network try to learn to match the more complicated features of the deeper layers. If the size difference between the student and teacher networks is too large an intermediate size teacher assistant network gets the teacher's answers distilled into it and subsequently distills them to the student.
- Quantization is the process of reducing the numerical precision of values in the model. Networks are typically using 32 bit floating point numbers during training[2]. The most common quantization targets for those are either 8-bit or 4-bit integers. In many cases the network does not utilise this level of precision to it's full extend. Reducing the precision in these cases can relieve the computational burden associated with negligible accuracy sacrifices. Quantization-aware training is a process in which the full precision network is fine-tuned of retrained into the reduced form. It succeeded quantizing the network only after the training process is completed. When the method is pushed to the limit, precision is reduced down to 1 bit. Networks with a single bit of precision are called Binary Neural Networks(BNNs).

2.4 Printed machine learning

The most clearly desirable applications of computation to printed electronics in the domain of ubiquitous computing center around some form of classification or another. For every printed circuit that includes one or more sensors a system to interpret the outputs of that sensor to a useable format is required, barring trivial cases.

Creating hand-designed computational models for every combination of sensors and usecase they are included in and designing efficient hardware designs to support each one would take a monumental sum of man-hours. Machine learning provides a common medium to both create models for predicting and architectures to implement in circuits a vast array of these applications. There are clear incentives then to provide those mediums.

The difficulties in this undertaking all stem from the extreme resource constraints given from the feature sizes and energy demands of printed electronics. To overcome these barriers the entire process, from selecting the right general architectures to only keeping the absolutely necessary hardware elements at the resulting circuits must be optimised for this aim.

Beyond bringing the area of the circuit to a reasonable size, a big factor that prevents the usability of some implementations is that no printed battery can support their power draw. We can therefore not get them running inference in the wild. The power output of these batteries is a hard limit that must be reached or printed ML is purely theoretical. In this work the most permissive battery, from Molex, which can support circuits with up to 30mW of power, is targeted.

2.5 Thesis objective

The concept of this thesis is taking place in a ubiquitous computing scenario. I have insured that the entire process from dataset to netlist that can be passed to the printer requires no manual intervention. Anyone can pass their sensor data in one end and receive measurements for the model accuracy, circuit area and power requirements on the other, without special knowledge on any domain being required of them. This is specifically done utilising bespoke implementations of binary neural networks, in order to evaluate their efficacy in providing a backbone for this process.

Imagine if you will the scenario of a coffee shop owner. They decide they would like the glasses they serve their coffee in to indicate the amount of sugar or other sweeteners used in the contained beverage. This would prevent people from grabbing the wrong coffee from the table because they all look indistinguishable. After searching on an online repository for what sensor would be of any use here, they order a few sample sheets of these printed sensors and a small gadget that clips on the sheet and records the measurements of the sensors. After dipping them on a dozen coffees with different mixtures of sweeteners inside, they plug the gadget to their computer and get a spreadsheet of sensor values for each dipping session. They simply append the label they decided each sweetener level corresponds to and pass the spreadsheet to the system. They decide that the reported accuracy and area are manageable order the resulting circuit to be printed on a batch of flexible patches they can stick to the inside of the glasses.

Various architectures have been evaluated for such a framework. This work adds Binary Neural Networks(BNNs) to the list of of approaches for printed ML inference. BNNs are networks quantised to the absolute limit of 1 bit. They are designed specifically to minimise compute resources as much as possible and thus are a prime candidate to bring ever more classifiers under the implementation threshold of printed electronics. The great bulk of this thesis is dedicated to examining efficient bespoke hardware implementations for BNNs to fit in the constraints of the technology.

3 Related works in machine learning for printed circuits

Since the printed computing technology reached the point where Machine Learning models could be supported for inference, work has been made in bringing them to fruition. Tahoori et al[3] demonstrates an analog two input neuron, and shows how it could be expanded to fully printed analog neural networks with MAC and activation operations. Douthwaite et al[4] Uses time domain encoding of signals, representing magnitude as pulse width and encoding weights with current mirrors. Accumulation is done by linearly charging a capacitor with the mirrored pulses. Gkoupidenis et al [5] mimick biologically inspired synaptic functions with electrolyte-gated transistors and show how they could be used for a single layer perceptron. Ozer et al [6] envision what an automatic process for creating bespoke processors for a variety of ML architectures in printed electronics could look like, but don't go beyond the vision stage. Bleier et al [7] present a printed microprocessor with an instruction set customised to the program at hand. Weller et al [8] leverage stochastic computing to reduce the requirements of mixed analog-digital neural networks but with heavy accuracy cost.

Mubarik et al [9] evaluate small machine learning architectures (decision trees, random forests and support vector machines) in digital, lookup table based and analog architectures in bespoke printed circuits. They also consider MLPs, but decide they are too costly to evaluate. The main results are about the decision trees(DTs), where they examine the demands of printed implementations for depths of 1 to 8, in both conventional and bespoke circuits. They show that bespoke circuits, that are uniquely suited to printed electronics due to low non-recurring engineering(NRE) and manufacturing costs, can be implemented with about two orders of magnitude lower requirements than circuits that can support a wider range of DTs and not just one. This thesis is directly inspired by this work in using bespoke design to lower the demands of model implementations and mainly applies their insights to the domain of BNNs.

Armeniakos et al [10] expand to more demanding SVMs and Multi Layer Perceptrons. In order to enable their implementation, they leverage approximate computing in two ways. First they notice that there is high variance in the area demands of a constant multiplier based on the coefficient it multiplies by. For example, multiplying by a power of two takes no hardware at all since it is a constant shift. They approximate weight coefficients of the MLPs and SVMs to take advantage of this observation. Secondly, they apply post-synthesis pruning at the gate level on the netlist of the designs. They target gates that have close to constant outputs and only

influence less significant bits of the results and replace them with the constant value they mostly output. Together these approximations result in area and power reductions of about a factor of 2 in most cases. This work is the direct inspiration of this thesis, where the weight coefficients are set in the training phase to be exclusively values that don't require multipliers to be implemented, as is the case in BNNs. The results achieved here are thus compared with the ones from this work as a baseline. This comparison is provided in the Results section.

In the follow up paper [11] they additionally apply neural minimization techniques such as quantization, pruning and weight clustering and combine them utilising genetic algorithms to reduce area requirements by up to 8x.

In [12], in addition to the aforementioned hardware-friendly coefficients and netlist pruning, voltage overscaling(VOS) is applied to further reduce the power demands of classifier circuits. A genetic algorithm is then applied to minimize area and maximise accuracy for a given power constraint. This enables many designs to be powered by printed batteries sacrificing less that 1% in accuracy.

Following up, [13] retrains MLPs with a scoring function that takes the hardware cost associated with multiplying with each weight's coefficient into account. Coefficients are sorted into clusters based on their hardware cost and retraining allows increasingly more expensive values to be used for weights until the accuracy threshold is met. Additionally the products are summed using approximate addition by discarding the least significant bits of products that contribute less to the MAC's result. Together these improvements lead to 6x area and power savings for 1% accuracy loss and 20x for 5%. Because often their networks use only powers of 2 as weights and thus no hardware is used to perform multiplication, this edge of using BNNs is not present here. However different neurons use different weights for the same input, leading in less intermediate sums being shareable across neurons. This is an edge BNNs can exploit, albeit paying a price in representational capabilities.

Balaskas et al in [14] extend the idea of hardware-friendly coefficients to the threshold values of comparators in decision trees. Beyond the threshold value the precision of the comparison can also be configured at a per-comparator basis in order increase efficiency. They deploy a genetic algorithm to find optimal configurations of hardware-friendly thresholds close to the original values and reduced comparison precisions without sacrificing more than 1% accuracy. As a result area and power are reduced 3-4x. This leads some of the smaller designs they examine to sub-cm² area and sub-mW power draw.

Iordanou et al [15] have an interesting approach in which they use graph-based genetic programming to search the space of boolean logic expressions for ones that

predict the class of tabular data with high accuracy and transpiling those logic gates into a netlist. The result is a sea of logic gates, unlike the structured circuits of other approaches. Needless to say this is removed from the paradigm of traditional ML architectures this work is placed in.

4 Background information - Prerequisites

4.1 Printed electronics technical details

4.1.1 Manufacturing methods for printed electronics

Printed electronics are manufactured using techniques from the graphic print industry. They are split into contact or R2R printing techniques that use a template and contactless that don't. Multiple printing steps are required for the multiple layers of the circuit. Contact printing techniques include:

- Gravure: In gravure, the printing cylinder gets engraved with the template and is partly submerged in ink during the process, with a blade discarding excess ink. This only leaves ink in the template parts, which is transfered to the substrate under pressure. Gravure can print in high resolution and speed compared to other methods, but the cost of engraving the cylinder makes it only useful for vary large batches.
- Offset: In offset printing the shape of the template is deposited on a cylinder with an ink accepting substance and the negative of the template is covered with ink repelling substances. That way only the shape of the template absorbs ink from an ink roller, and then gets transferred onto the substrate via an intermediate cylinder.
- Flexography: The template is embedded onto a flexible plate that is wrapped around a printing cylinder such that parts of the shape raised. Ink applied to this cylinder only gets transferred to a second cylinder, and then the substrate, if it is on the raised parts that correspond to the template. It can support both non-porous and porous substrates.
- Screen printing: A "screen" in this case is a close-knit fabric, such that ink can pass through only by applying pressure. A stensil of the template is placed on top of the screen and a blade pushes ink through the uncovered parts onto the substrate. Screen printing is the simplest technique of the bunch and can create thicker layers and print on curved surfaces. It suffers from lower resolution compared to other methods.
- Pad printing: Ink gets onto an engraving of the template. A soft pad is then pressed on it and transfers the ink with the desired shape to the substrate. It can print on surfaces of 3D objects.

Contactless techniques include:

• Inkjet: Ink is dropped onto the substrate from tiny spouts. Either there are

enough spouts to cover the width of the print or they can be moved around to do so. It does not require large equipment and different designs can be printed in high resolution without complications in changing templates, making it ideal for printing on demand. It's main drawback is it's printing speed. Continuous stream inkjet has a stream of ink be directed onto the substrate or to a trash bin depending on design information. It is can print larger batches than Drop-on-Demand inkjet, but with five times lower resolution. DoD controls whether ink will flow using a valve, so ink is not wasted. It is deployed at smaller scales than Continuous stream.

 Aerosol: The ink is atomised into a fine mist via compressed air or ultrasound, accelerated and sprayed onto the substrate. It can be used on curved surfaces and can provide even smaller feature sizes than inkjet, but is prohibitively slow.

Additionally methods like vacuum deposition, in which evaporated ink coats a surface in a vacuum, or dip pen nanolithography, in which an atomic force microscope applies the ink very precisely on the substrate, are sometimes considered included in the printed electronics umbrella, and although they can achieve smaller feature sizes they require specialised equipment and are not as cost friendly as the traditional printing methods and thus less relevant.

Figure 5: Dimatix DMP-2850 Materials Printer. Source: FUJIFILM

Figure 6: Long sheet of circuits printed on a Roll-to-Roll system. Source: PRINTED ELECTRONICS LTD

4.1.2 Materials for printed electronics

In order to implement functional circuits inks with conducting, semiconducting and dielectric properties are needed. They usually consist of nanoparticles of materials with these properties mixed with solvent to the desired viscosity and other additives to enable the printing process. Both organic and inorganic materials can be used.

- Conducting inks: The majority of materials for conducting inks are metal nanoparticles, the most common being silver. Although silver is in the category of precious metals silver ink is not awfully expensive, with pens of conductive silver ink going for less than 4 dollars. Other metals used are gold, aluminum and copper. Copper and aluminum inks suffer much worse ageing than silver ones. Organic inks are often based on carbon nanotubes or graphene. Cheaper polymers are also used, despite their inferior conductivity. The most popular is PEDOT:PSS. Ceramic materials are also used in conducting inks, mainly indium tin oxide(ITO), although it is an expensive material.
- Semiconducting inks: The most common inorganic materials used are silicon and germanium and of the organic ones most are again CNT or graphene based. Both p-type and n-type materials can be produced from those, although p-types have historically be much higher performing. (The opposite holds true for electrolyte gated transistors.)
- Dielectric inks: The dielectric layer needs to be thicker than the conducting and semiconducting layers in order for charge not to leak through it. Substrate materials, ceramic oxides and polymers can be used as the active ingredient.

4.1.3 EGFET

This work is built upon the Process Design Kit(PDK) for Electrolyte-Gated oxide Field Effect Transistors(EGFET)[16]. EGFET uses solid polymer electrolytes to gate the transistors in place of dielectrics. Specifically indium oxide is used for this purpose. They can be operated at up to 250 Hz at 1V.

The main advantage of EGFETs compared to organic transistors is that they can be driven at very low voltages, down to 0.6V. This is crucial for meeting the constraints imposed by the printed batteries available. The area they cover is however significantly larger(10-100x) that of organic transistors such as CNT-TFT[17]. As an example a single SR-latch based on EGFET takes up 7mm². Another difference of electrolyte-gated transistors with their organic counterparts is that in EGFET only n-type transistors are implementable, whereas in CNT only p-types are possible. Neither supports both so CMOS gates cannot be used in printed circuits.

4.2 Binary Neural Networks

BNN is the term for neural networks that have both activations and weights in 1 bit precision in all hidden layers. Input layers ought to have higher precision inputs so the network can receive sufficient information for classification to be possible, and output layers of classifiers have their activations compared to each other to decide on the predicted class, so they cannot be binarized. The most common domain for BNNs are Convolutional Neural Networks(CNNs). They were independently presented in 2016 by [18] and [19].

Beyond reducing the storage size required for the weights $32\times$ compared to a full precision 32-bit network of the same architecture, computation costs are significantly dropped too since the multiply-accumulate(MAC) operations can be carried out by XNOR and popcount operations. This can lead to up to a $58\times$ improvement in speed.

BNNs can therefore enable the implementation of neural networks in resource constrained environments. The trade-off is that both their representational capacity and corrigibility to training are inferior to higher precision networks, and so often they either cannot provide sufficient prediction accuracy or require a much higher count of neurons to achieve it, negating the previous gains. As a rule of thump 4 binarised neurons are needed to match up to a unquantised one.

During training, higher precision underlying weights are used to make learning more robust. In the forward propagation phase these more precise weights, W, and the activations from the previous layer I are binarized using the sign function:

$$sign(x) = \begin{cases} +1, & \text{if } x \ge 0 \\ -1, & \text{if } x < 0 \end{cases}$$

The binary operations (-1, 1, *) and $(0, 1, \odot)$ are isomorphic, so the multiplication of weights with activations is done using the XNOR operation when the binary values $\{-1, 1\}$ are encoded into the logic values $\{0, 1\}$ to be stored in a bit.

This mapping can be represented by the linear transformation $f(x) = \frac{x+1}{2}$, since f(-1) = 0 and f(1) = 1. The accumulation and subsequent binarization of the activation-weight products sign(I) * sign(W) can be calculated by performing a popcount operation, which returns the count of bits in a given collection that are 1, and comparing the result with a threshold to binarize it.

During backward propagation, an approximation of the activation function sign needs to be used since sign has a derivative of 0. The most common method is

known as straight-through estimation(STE). In STE the sign function is approximated by:

$$STEsign(x) = \begin{cases} +1, & \text{if } x \ge 1 \\ x, & \text{if } 1 \ge x \ge -1 \\ -1, & \text{if } x \le -1 \end{cases}$$

which has a derivative of:

$$\frac{dSTEsign}{dx} = \begin{cases} 1, & \text{if } 1 \ge x \ge -1\\ 0, & elsewhere \end{cases}$$

Updates are made to the underlying higher precision weights, and their binarizations are used for the forward pass.

4.3 Datasets

The datasets chosen to train models for and implement are the ones used by [9]. That way results for model accuracy and area / power requirements can be compared with other approaches in the literature. Like in those papers, categorical features were removed from the datasets, leaving only inputs from sensors, since they are all the actual printed system would have access to (this assumption may be circumvented, but this is beyond the current scope). Note that the feature selection may not be the same as the prior papers, since the pieces of data they kept were not documented. All of them were taken from the UCI machine learning repository[20].

A short description of the datasets:

- Arrythmia[21]: Diagnosis of cardiac arrhythmia from 12 lead ECG recordings.
- Cardiotocography[22]: Diagnosing problems in the heartrate of unborn infants.
- Pendigits[23]: Classification of written digit from a series of 8 pressure signals from touch sensors.
- Human activity recognition(HAR)[24]: Classification of the type of movement a person is making(standing, climbing stairs etc) using accelerometers from cellphones on their waists.
- Gas Identification[25]: Classification of gas presence using chemical sensors.
- Wine Quality(White wines)[26]: Estimating the percieved enjoyment of various white wines based on acidity and mineral traces.
- Wine Quality(Red wines)[26]: Equivelant to the above for red wines.

The datasets use inputs from sensors that at least approximately correspond to ones that have been demonstrated possible to manufacture by printing. The complete system including both sensors, classifier and power supply could thus somewhat realistically be physically implemented, and not be very far from an actual usecase of the technology.

Sensor	Dataset
Electrocardiography sensor on paper[27]	Arrythmia
Electrocardiography sensor on paper[27]	Cardio
Printed movement sensor	Human activity recognition
Printed gas sensor[28]	Gas identification
Printed piezoelectric sensor[29]	Pendigits
Printed pH sensor[30], Inkjet mineral sensor[31]	Wine Quality(White)
Printed pH sensor[30], Inkjet mineral sensor[31]	Wine Quality(Red)

5 Proposed framework

Figure 7: Proposed framework

As outlined in the ubiquitous computing section, the deliverable of this thesis is meant to be a framework that allows a labeled set of sensor data to produce a fully functional printed circuit that implements a classifier for this dataset. Due to lack of access to equipment the actual printing is not viable in this context and the scope will be restricted to the dataset to netlist part of the process.

The classifier architecture will in particular be a Binary Neural Network(BNN), explained in the preliminaries. It may not necessarily be the most suitable architecture in every case, but it was created with the purpose to reduce resource consumption, which is the core concern. It was thus chosen as the niche I will be carving here.

The rough sequence of processes performing that transformation comprises of the following:

- 1. Hyperparameter search: In order for a hands-off training process to be applicable to a vast space of possible sensor datasets for which printed classifiers may be desired a single generic configuration of training hyperparameters wont cut it. So a search must be performed to find a set suitable to the data distribution at hand.
- Model training: After a useable hyperparameter configuration is found a model is trained under them and evaluated. If the test split accuracy is sufficient for the user's needs the rest of the process may take place. The weights and network architecture of the final model are passed to be processed.
- 3. Parameter optimization: Some pieces of information derived from the weights and dataset can be used to help the design avoid unnecessary computations. For an extreme but applied example, if a neuron never changes it's output based on its input activations it can be flagged to be replaced with a static constant assignment.
- 4. Parameter encoding: The weights, measures of the network architecture and derived assisting information are either used to produce verilog code that performs the computations they imply or formatted such that they can be read and parsed by the control mechanisms of verilog.
- 5. Design instantiation: A template for the type of design that ought to be produced gets the snippets of custom functionality and/or the formatted parameters needed to derive that functionality using generate blocks imported into it. The result is a design that is bespoke to the exact trained model under question.
- 6. Verification: A behavioural simulation of the design is performed to confirm that classifier accuracy is satisfactorily preserved.
- 7. Synthesis: An optimised netlist is produced from the HDL specification. A farther gate level simulation is performed to guarantee functionality.
- 8. Metric estimation: Area and power estimates are taken from the synthesis

and simulation tools using information from the printed components PDK. If these demands seem to be supported by the budget of the usecase the user may place a printing order.

Parts of the wider procedure out of scope of this framework are:

- Printed sensor availability
- Access to printed sensor data for labeling
- Examination of other promising architectures
- Design of masks for placement of printed components
- Inclusion of sensor, ADC and output indicator resource consumption in reported estimates.

Additionally, the framework provides a way to quickly test, evaluate and compare Verilog implementations of models. Once the template design has been written no manual steps are necessary from the designer to apply it to each model of interest, verify its functionality and receive feedback on how the new approach compares to previous ones. This aspect of the framework enabled experimentation in searching for efficient BNN implementations to proceed in a pace that would not be achievable if these steps were not automated.

The rest of the thesis will almost entirely deal with the design of efficient bespoke BNN classifier hardware. This includes parts 3 and 5 of the process listed above. The rest, although time consuming to implement, have no parts of interest to report on and will be summarised in the experimental setup section.

The points that I think are helpful to be impressed upfront in order for my following talk of HDL implementations to be comprehensible are:

- Over the course of working on the presented designs 6 models that correspond to 6 of the 7 datasets shown above are consistently used to test and compare results. The one dataset of the 7 that didn't make the cut was Arrhythmia, because the learned strategy of the model wasn't acceptable.
- All of these networks have one hidden layer that takes 4 bit inputs that are received from the ADCs connected to the respective sensors and one output layer that receives 1 bit binary inputs from the previous layer and produces a score for how likely each class is. An argmax module is also included in all of the following implementations to provide the index of the predicted class and is also included in the area/power estimates.
- All these networks have exactly 40 hidden neurons in the first layer. This is not reflective of an actual limitation of the framework. A first batch of models that were used to evaluate the designs and were meant to be replaced at some

point ended up staying until the end. Initially they were kept out of inertia and past some point replacing them would require re-evaluating every type of design implementation with every new model in order for result comparisons to be informative, which would take a substantial usage of synthesis time and would halt further progress for a while.

- During synthesis a practically unlimited timing budget is allowed so timing optimizations do not take place and trade off against more important to the project goals.
- The power draw estimate is done with a gate level simulation of the synthesised circuit evaluating 1000 samples of the dataset to reproduce a realistic usage environment. The clock frequency is set to the critical timing frequency of the circuit reported by the synthesis tool.

5.1 Symbol glossary

- N = the number of input features,
- M = the number of hidden neurons (in our case it is always 40),
- C = the number of output neurons/ number of classes
- S be the number of samples in the dataset,
- x_i be the ith input feature,
- x_i be the *i*-th input feature,
- D^i be the *i*-th sample of the dataset,
- D^i_j be the value the j-th input feature takes on the i-th sample of the dataset, h_i be the i-th hidden neuron, also used to denote it's output value before binarization,
- s_i be the i-th hidden neuron's output after binarization, so $s_i=h_i\geq 0,$
- y_i be the i-th output neuron, also used to denote it's output value,
- W1 = the weight matrix of the first layer,
- W2 = the weight matrix of the second layer,

Rows represent neurons and columns represent input activations, so $W1_{i,j}$ is the weight of the first layer that corresponds to the connection between the input feature x_i and the neuron h_i .

6 Fully combinatorial fully connected implementations

Two initial approaches for implementing the fully connected BNNs in a fully combinatorial single-cycle datapath are compared. Only the first layer differs between them, the second layer stays unchanged.

6.1 Positive-Negative Sum

Figure 8: Implementation with positive and negative sums split

For each neuron in the first layer two sums are calculated. Σ_i^+ is the sum of the input features for which the connection with the i-th hidden neuron has a positive weight, whereas Σ_i^- the sum of those that have a negative weight associated. The two sums are then compared and if the positive sum is greater than or equal to the negative the output of the neuron is 1, otherwise 0.

$$\Sigma_i^+ = \sum_{j=0}^{N-1} x_j [W1_{i,j} > 0]$$

$$\Sigma_i^- = \sum_{j=0}^{N-1} x_j [W1_{i,j} < 0]$$

$$h_i = \Sigma_i^+ \ge \Sigma_i^-$$

Sample code snippet:

The reasoning behind splitting the sums is that keeping the operations to only using unsigned positive numbers and only using addition and not subtraction means simpler operations are required, and that may lead to a smaller footprint.

For each neuron of the output layer it's value is calculated by summing the output of hidden neurons. The binary output of the hidden neuron s_j is added as-is to the sum of the output neuron y_i in the case that the weight of their connection $W2_{i,j}$ is positive and it's binary inverse is added to the sum if $W2_{i,j}$ is negative. This is equivalent to the sum of the xnor between the output vector of the hidden layer and the weight vector of the output neuron.

$$y_i = \sum_{j=0}^{M-1} \begin{cases} s_j, & \text{if } W2_{i,j} > 0 \\ \neg s_j, & \text{if } W2_{i,j} < 0 \end{cases}$$

Code sample:

6.2 Signed sum

Figure 9: Implementation a single sum per neuron

In this version a single sum is calculated for each neuron. If the connection between input feature x_j and hidden neuron h_i has weight $W1_{i,j}=1$ it is added to the sum, otherwise it is subtracted from it. Basically adding the feature multiplied by either 1 or -1 is hard-coded as the resulting addition or subtraction correspondingly. The result is then compared to zero to give the binarized output of the neuron. Since the result is a signed number, this just means taking the sign bit.

$$h_i = \sum_{j=0}^{N-1} \begin{cases} +x_j, & \text{if } W1_{i,j} > 0 \\ -x_j, & \text{if } W1_{i,j} < 0 \end{cases}$$

Code sample:

The second layer's implementation is not changed from how it is described above.

6.2.1 Results and analysis

Table 2: Comparison of single signed sum to double unsigned sums approaches

a	bnnpar rea(cm²)	bnnparsign area(cm²)	area change	bnnpar power(mW)	bnnparsign power(mW)	power change
Har	29.4	24.52	-16.6%	92.1	78.8	-14.4%
cardio	46.71	33.27	-28.8%	145.3	106.2	-26.9%
gasId	269.76	175.09	-35.1%	767.7	499.1	-35.0%
pendigits	42.95	33.38	-22.3%	136.8	108.9	-20.4%
winered	27.82	22.45	-19.3%	90.7	74.6	-17.8%
winewhite	26.01	20.47	-21.3%	84.6	68	-19.6%

Figure 10: Comparison of single signed sum to double unsigned sums approaches

My prior expectation was that splitting the features into two sums to avoid subtractions would lead to better results than keeping all the operations for a neuron to a single expression by the reasoning summarised previously. In fact it turns out that using a single sum has area and power requirements 20-30% lower than using two.

My explanation for this is that keeping terms in separate expressions prevents the compiler from effectively locating and reducing shared subexpressions during synthesis. For example, if a neuron's expression contains $+x_5+x_6-x_7$ and a different neuron contains $-x_5+x_6+x_7$ then the result of x_5-x_7 can be used for both neurons, but if x_5 and x_7 are not in the same expression, as they would not be in the positive-negative sum implementation, this arithmetic optimization is not used by the compiler. Additionally the two sums need comparators to produce the binarized output of the neuron, whereas in the case the signed sum this corresponds to the sign bit of the sum which means no additional hardware.

6.2.2 Minimum range bit-width reduction

Figure 11: Pre-activation values for a hidden neuron for each sample of the dataset and comparison of the default and minimum bitrange that supports all values.

The reasoning goes that if the bitwidth that is demanded for the total sum of the features is reduced, the bitwidth that partial sums it depends on require lower on the adder graph is also reduced. As a consequence, adders need to accommodate less bits and less logic ought to be implemented for them.

At least in theory, the minimal circuit to implement the calculations of the sums of the first layer with reduced widths for the results should be strictly equal or smaller than the one with full widths. This is because given a circuit that implements the full width calculations, the reduced width results can be taken by selecting the bitrange of that width from the least significant bits of the full width result. This is simple wire selection and does not require any additional hardware, therefore reducing neuron widths can never require additional logic.

So far in the first layer the bitwidth of the total sum h_i of the neuron is set to be large enough to fit any value that may come up as the result of M additions and subtractions of 4-bit unsigned numbers. The assumption is that this range is significantly wider than the range of values the neuron actually takes during evaluation of typical samples. This would mean the bitwidth can be lowered without errors due

to overflows or underflows coming up in actual use of the design, and this lowering would improve performance.

To test this the total sum of each neuron h_i is calculated for each sample in the dataset. I get the minimum and maximum of these values. Since all values for the total sum to take are contained in the range between those two, the arithmetic operations need not accommodate any range larger than that. Let H_j^i be the value of h_i when evaluating the i-th sample of the dataset, and wh_i be the bitwidth of the i-th hidden neuron.

$$\begin{split} h_{imax} &= \max_{j=0}^{S-1} H_j^i \\ h_{imin} &= \min_{j=0}^{S-1} H_j^i \\ wh_i &= \lceil \log_2(\max(h_{imax}, |h_{imin}| - 1)) \rceil + 1 \end{split}$$

6.2.2.1 Results and analysis

Table 3: Results of restricting neuron bitwidths

	bnnparsign area(cm²)	bnnparw area(cm²)	area change	bnnparsign power(mW)	bnnparw power power(mW) change
Har	24.52	24.25	-1.1%	78.8	77.6 -1.5%
cardio	33.27	33.21	-0.2%	106.2	105.4 -0.8%
gasId	175.09	171.37	-2.1%	499.1	486.9 -2.4%
pendigits	33.38	33.97	+1.8%	108.9	109.6 +0.6%
winered	22.45	21.87	-2.6%	74.6	72.3 -3.1%
winewhit	e 20.47	20.36	-0.5%	68	66.7 -1.9%

Figure 12: Results of restricting neuron bitwidths

The results are negligible, in the 1-3% range, and in the case of pendigits they even deteriorate a bit. This deterioration should not be possible in theory if the synthesised circuits are optimal implementations of their description. This is at least evidence that the negligible results on the other datasets can be better if I can get them into a form the compiler can work better with, though I still think the main problem is with the approach itself. It seems that the truncation goes against best practices and blocks the datapath extraction process for some neurons, so certain optimizations do not get applied to them and some would be common resources do not get shared. I have not found a method to work around this limitation at this point.

6.2.3 Naively reducing bitwidths of intermediate results

6.2.3.1 Rationale Given the eventual goal of applying approximate computation techniques to the adder graph of the designs a problem, mentioned previously, comes up. If the approximation, whatever it may be, gets applied separately to each neuron's sum, almost certainly blocks the datapath extraction process from performing arithmetic optimizations such as reducing and sharing common subexpressions across neurons. The result is M separate approximate adder trees. Even given that the logic reduction gained from approximate additions for each adder tree is more than enough to offset the lost benefit of intermediate result sharing, that may be an unnecessary concession.

To estimate how large the negative effect of an approximation technique not taking cross-neuron sharing into consideration could be, I reduce the bitwidths of intermediate results of the sum of each neuron. Even though this would reasonably help for a single neuron, I expect it will cause resource sharing to break. Given how large the negative effect is I can check if this is a problem than ought to be fixed before approximation can confidently be applied.

Figure 13: The intermediate sums of the sequential calculation of hidden neuron 28 for all of the Har dataset and the bit range needed to support each step

6.2.3.2 Implementation The cumulative sum along the input features multiplied by the weight of their connection with the neuron i is calculated for each hidden neuron and for each sample of the dataset. The maximum and minimum values over all samples at each step of the cumulative sum for a given neuron is then calculated. In a similar fashion to the method described above for reducing the bitwidth of the total result of the neuron's operations, the operations are written sequentially with the result of each having it's bitwidth set based on the range of values for the equivalent step of the sum for all of the dataset.

Let $h_{i,j}$ denote the result of the pre-activation value of the i-th hidden neuron only taking into account the input features x_0 to x_j , or equivalently the value of h_i if x_{i+1} to x_{N-1} are masked to zero.

$$\begin{split} h_{i,j} &= \sum_{k=0}^{j} x_{k} W 1_{i,k} \\ hmax_{i,j} &= \max_{l=0}^{S-1} \sum_{k=0}^{j} D_{k}^{l} W 1_{i,k} \\ hmin_{i,j} &= \min_{l=0}^{S-1} \sum_{k=0}^{j} D_{k}^{l} W 1_{i,k} \\ wh_{i,j} &= \lceil \log_{2}(\max(hmax_{i,j},|hmin_{i,j}|-1)) \rceil + 1 \end{split}$$

Sometimes due to the order of additions and subtractions the width needed at a later step is less than the one of an earlier step. This is because every sample for which there would be an overflow in the earlier step with the smaller width would at some following feature underflow back in the range it supports. This has been taken into account. If a width of a subsequent operation's result is smaller, the bitwidth of the previous addition/subtraction is simply set to that smaller value.

$$wh'_{i,j} = \min_{k=j}^{N-1} wh_{i,j}$$

Consecutive operations that have the same result bitwidth are grouped together and expressed in verilog as a single sum. I have not confirmed if this does in fact affect the result of synthesis at all but it seems to conform closer to the recommendations of the best practices guide.

6.2.3.3 Results and analysis

Table 4: Results of shrinking intermediate results naively

	bnnparw area(cm²)	bnnparstepw area(cm²)	area change	bnnparw power(mW)	bnnparstepw power(mW)	power change
Har	24.25	23.16	-4.5%	77.6	73.7	-5.0%
cardio	33.21	39.29	+18.3%	105.4	125.5	+19.1%
gasId	171.37	326.98	+90.8%	486.9	935.2	+92.1%
pendigits	33.97	37.09	+9.2%	109.6	120.3	+9.8%
winered	21.87	22.78	+4.2%	72.3	75.3	+4.1%
winewhit	e 20.36	20	-1.8%	66.7	65.8	-1.3%

Figure 14: Results of shrinking intermediate results naively

The results were positive for two of the models with the smallest count of input fea-

tures N, which means that this method performed better than the initial expectation. However, the optimization loss from losing shared operations shows clear scaling with the number N of input features. With more elements to sum, more common subexpressions to optimise ought to come up, so this is keeping with expectations.

At the network with the largest N, the one belonging to gasId, which has 128 sensor features, it has gotten bad enough to almost double the area and power requirements. This shows that the issue is indeed considerable when there is more than a handful of inputs, and ways to work around it shall be searched for.

6.2.4 Preemptive arithmetic optimization

Figure 15: Implementation of a binary weight layer with a preconfigured order of additions.

6.2.4.1 Rationale Based on the results from above I attempt to get the arithmetic expression that the design computes after synthesis, with the intent of fitting later approximation techniques to it rather than having the approximations dictate the graph of operations and forego these advantages.

Design compiler provides an "resource and datapath extraction" report, which quoting the user guide "analyzes the arithmetic contents of the design and provides feedback so you can improve the RTL code as needed". In this report the arithmetic operations that are performed post-optimization by each datapath block are described in the block's resource section. From this an addition / subtraction graph from input elements to layer outputs could be reconstructed with relatively straightforward parsing.

Unfortunately, the report does not provide a mapping between the symbols it uses for input and output variables of the datapath blocks and the corresponding wires in the original design. Due to this the reconstructed adder graph cannot be used to implement the network's layers before the inputs and outputs are otherwise labeled.

Conceivably a method that unfolds all intermediate steps of the calculation into full explicit sums of input variables for each output variable could be used to achieve this labeling. After all intermediate variables / nodes of the adder graph are eliminated (for example, x = a + b; $y_1 = c + x$; $y_2 = d - x$; would be expanded to $y_1 = c + a + b$; $y_2 = d - a - b$;) the addition and subtraction operations can be mapped to a matrix with binary $\{-1, 1\}$ weights. A permutation matrix that turns the original weight matrix of the layer into this reconstructed matrix is then searched for, and the permutations are assigned as the labels of the input and output elements of the adder graph.

Another path around this problem comes from the inclusion of references to the operator or operators in the original verilog design that is implemented by a given arithmetic operation mentioned in a datapath block's report. These references only point to the line of the verilog file the operator apears in, so to narrow it down with certainty the HDL file must beformated in a way that only a single arithmetic operator occurs per line. Then the variables named as operants in the report can be matched to the variables associated with the operator in the line or lines pointed to.

Some early attempts in this direction are made but it becomes clear that a process that involves the network to be implemented in an HDL, synthesized, reverse engineered from the synthesised result, implemented in HDL in a different way and re-synthesised would require considerably more complex orchestration than first impressions imply. Even if it panned out without any issues the speed with which modifications to the designs could be tried out would be slowed down to a degree I was not comfortable with.

As an alternative I search the literature for algorithms or heuristics that would perform an equivalent arithmetic optimization to the one Design Compiler provides. It does not appear too hopeful that a de facto standard method for such cases exists and perhaps even is the one used under the compiler's hood, so the operations found are exactly or close to the same.

Var	Туре	Data Class	Width	
l1	PI	Unsigned	4	
12	PI	Unsigned	4	
13	PI	Unsigned	4	
14	PI	Unsigned	4	
15	PI	Unsigned	4	
16	PI	Unsigned	4	
17	PI	Unsigned	4	
18	PI	Unsigned	4	
19	PI	Unsigned	4	
I10	PI	Unsigned	4	
l11	PI	Unsigned	4	
l12	PI	Unsigned	8	
I13	PI	Unsigned	7	
114	PI	Unsigned	8	
T1540	IFO	Unsigned	5	I5 + I6 (winered_bnn1_bnnpar.v:44winered_bnn1_bnnpar.v:48winered_bnn1_bnnpar.v
T1848	IFO	Unsigned	6	I4 + T1540 (winered_bnn1_bnnpar.v:80winered_bnn1_bnnpar.v:99winered_bnn1_bnn
T1994	IFO	Unsigned	5	I11 + I8 (winered_bnn1_bnnpar.v:48winered_bnn1_bnnpar.v:51winered_bnn1_bnnpar
T1567	IFO	Unsigned	5	I10 + I7 (winered_bnn1_bnnpar.v:40winered_bnn1_bnnpar.v:44winered_bnn1_bnnpar.v:48wine
T1548	IFO	Unsigned	6	I9 + T1567 (winered_bnn1_bnnpar.v:40winered_bnn1_bnnpar.v:44winered_bnn1_bnn
T2045	IFO	Unsigned	7	T1994 + T1548 (winered_bnn1_bnnpar.v:48winered_bnn1_bnnpar.v:75winered_bnn1
T2042	IFO	Unsigned	8	I3 + T1848 + T2045 (winered_bnn1_bnnpar.v:99)
T158	IFO	Unsigned	5	I1 + I2 (winered_bnn1_bnnpar.v:39winered_bnn1_bnnpar.v:91winered_bnn1_bnnpar.v
T1388	IFO	Unsigned	5	I2 + I4 (winered_bnn1_bnnpar.v:43winered_bnn1_bnnpar.v:47winered_bnn1_bnnpar.v
T1690	IFO	Unsigned	6	I3 + T1388 (winered_bnn1_bnnpar.v:64winered_bnn1_bnnpar.v:83winered_bnn1_bnn
T1932	IFO	Unsigned	7	T1540 + T1690 (winered_bnn1_bnnpar.v:179winered_bnn1_bnnpar.v:183)
T1928	IFO	Unsigned	8	T1548 + T1932 (winered_bnn1_bnnpar.v:183)
T1954	IFO	Unsigned	6	I1 + T1994 (winered_bnn1_bnnpar.v:63winered_bnn1_bnnpar.v:184)
T1333	IFO	Unsigned	6	I8 + T1388 (winered_bnn1_bnnpar.v:43)
T1609	IFO	Unsigned	7	I11 + T1548 (winered_bnn1_bnnpar.v:40winered_bnn1_bnnpar.v:44winered_bnn1_bn
T98	IFO	Unsigned	5	I1 + I3 (winered_bnn1_bnnpar.v:44winered_bnn1_bnnpar.v:52winered_bnn1_bnnpar.v
T1950	IFO	Unsigned	6	T98 + T1540 (winered_bnn1_bnnpar.v:44winered_bnn1_bnnpar.v:135)
T1948	IFO	Unsigned	8	T1609 + T1950 (winered_bnn1_bnnpar.v:44)
T1946	IFO	Unsigned	8	18 + T1950 (winered_bnn1_bnnpar.v:135)
T1595	IFO	Unsigned	8	T1388 + T1609 (winered_bnn1_bnnpar.v:136)
T1944	IFO	Unsigned	6	T1388 + T1540 (winered_bnn1_bnnpar.v:68winered_bnn1_bnnpar.v:75)
T2040	IFO	Unsigned	8	T1944 + T2045 (winered_bnn1_bnnpar.v:75)
T1714	IFO	Unsigned	7	18 + T1548 (winered_bnn1_bnnpar.v:67winered_bnn1_bnnpar.v:107winered_bnn1_bn
T1704	IFO	Unsigned	8	T98 + T1714 (winered_bnn1_bnnpar.v:67)
T1940	IFO	Unsigned	8	I11 + T1944 (winered_bnn1_bnnpar.v:68)
T407F	lico.	11:	r	ld : IAO /do-und band band band band band band band ba

Figure 16: An example of a datapath block's extraction report. An intermediate value that is reused multiple times is highlighted.

6.2.4.2 Implementation A formulation of the problem is the following: Given a list of expressions of the general form $y_i=x_0+x_1-x_2-\ldots+x_n$ in which operants can be shared between the expressions find the minimum number of additions or

subtractions that need to be performed to evaluate all expressions.

The problem turns out considerable less well-studied than initially expected. While the deceptively simple description suggests a straightforward way to answer it, it is NP-Complete difficult, more specifically in the MaxSNP family of optimization problems. As a direct result only approximate solutions are attempted. [32] searches for exact solutions by leveraging SAT solvers, but only manages to get this to work for very small matrix sizes up to 8 x 8. Not much is else found on the exact scenario above, but a close-enough problem having to do with factoring similar lists of expressions of the form $y_i = x_0 \oplus x_1 \oplus ... \oplus x_n$ using the minimum possible XOR operations is actively worked on thanks to some applications in the field of cryptographic accelerators. Both belong to the shortest linear program family of problems.

I choose to try utilising Paar's factoring algorithm [33] first. It is older than most heuristics that have been applied to the XOR factoring problem, but has the advantage of not exploiting term cancellation. Thanks to the property $x \oplus x = 0$ some optimal solutions to the XOR problem include two subexpressions containing the same term x being combined by XOR to produce a desired expression that does not include x. Heuristics developed after Paar's take advantage of this feature, and while there is a parallel between it and the term cancellation of opposites in our scenario (x - x = 0 or x + -x = 0) I have not managed to find the adjustments needed to apply their insights to the new domain. Thus I give precedence to the more straightforward method, that directly translates to using addition in place of parity.

6.2.4.3 Paar's algorithm It is essentially a greedy algorithm that picks the two elements that are common in the largest number of expressions each time and adds the result of their XOR to the list of elements.

Let N be the number of inputs, M be the count of expressions to evaluate, x_i be the i-th input, y_i the i-th expression and $A \in M \times N$ be the binary matrix we aim to factor. The value of $A_{i,j}$ is set to 1 if the term x_j is included in the XOR expression y_i and 0 otherwise.

For example if N=4 the expression $y_i=x_0\oplus x_2$ corresponds to the row $A_i=[1010].$

The following steps are repeatedly applied:

- 1. Find the two columns $A_{:,i}$ and $A_{:,j}$ that have the bitwise AND with the largest weight. This corresponds to the columns with the largest dot product, so they can quickly be calculated by $i,j=\arg\max_{k>l}(A^TA)_{k,l}$. This corresponds to finding the operation between two inputs or intermediate results that occurs the most times across all expressions.
- 2. Append the resulting product column $A_{:,N} = A_{:,i} \wedge A_{:,j}$ to A. Increase N by one to reflect the new width of the matrix. Intuitively this translates to including $x_i \oplus x_j$ as a new intermediate result x_N to be used in farther operations.
- 3. Set $A'_{:,i} = A_{:,i} \land \neg A_{:,j}$ and $A'_{:,j} = A_{:,j} \land \neg A_{:,i}$. Thusly the dependence of expressions to x_i and x_j is removed when it is now covered by the inclusion of $x_i \oplus x_j$ in them.

In the end only one element in each row has value 1, and the index j of the column the only 1 of the i-th row occurs in tells as the input or intermediate result the i-th expression equals, $y_i = x_j$.

Paar's algorithm can work for a group of expressions that consist only of addition, but the expressions we have to work with include both additions and subtractions. To reconcile this issue the negative of each input element is treated as a separate input element that is added where the original would be subtracted. Given the original weight matrix W with $W_{i,j} \in -1, 1$ denoting whether element x_j is added or subtracted from the expression y_i , we construct the matrix A we pass as the initial state to the algorithm by first turning all the -1 elements to 0 and then appending the inverse of the matrix to itself, or $A = \max(0, [W, -W])$.

From this process a list L of successive indices such that $L_n = (i, j) \iff x_n = x_i + x_j$ is acquired, and the additions implied by them are hardcoded in the verilog

description of the designs.

6.2.4.4 Extension to support subtractions I try a slight modification to the original procedure so it can be compatible with expressions including subtractions. The way I described previously to use negative inputs with Paar's strategy often has to unnecessarily repeat calculations. For a minimal example, the expressions $y_0 = x_0 - x_1 + x_2, y_1 = x_0 + x_1 - x_2$ would result in 4 operations ($x_3 = x_0 + -x_1, y_0 = x_3 + x_2, x_4 = x_0 + x_1, y_1 = x_4 + -x_2$), instead of the 3 needed ($x_3 = x_1 - x_2, y_0 = x_0 + x_3, y_1 = x_0 - x_3$). This can be avoided by taking the ability to subtract instead of only add intermediate results into account.

In summary this works by using $\{-1,0,1\}$ for the elements of the matrix A, where $A_{i,j}=-1$ when the expression for y_i contains the negative of the value x_j . Instead of counting the number of (1,1) pairs of elements for columns as before, the count of pairs of elements that are either (1,1) or (-1,-1) corresponds to the number of times the sum of the values is used, and the count of pairs of elements that are either (1,-1) or (-1,1) corresponds to the number of times the difference of the values is used. As before the operation that occurs in the most expressions is chosen as the next operation to be implemented.

Finding these two counts for all pairs of columns can still be done with a matrix multiplication like before so the new approach is not much slower.

6.2.4.5 Results and analysis

Table 5: Effect of preemptive arithmetic optimization with Paar's heuristic

	bnnparsign area(cm²)	bnnpaar area(cm²)	area change	bnnparsign power(mW)	bnnpaar power power(mW) change
Har	24.52	17.42	-29.0%	78.8	57.2 -27.4%
cardio	33.27	38.74	+16.4%	106.2	124.1 +16.9%
gasId	175.09	281.55	+60.8%	499.1	807.6 +61.8%
pendigits	33.38	35.43	+6.1%	108.9	114.6 +5.2%
winered	22.45	18.55	-17.4%	74.6	62.6 -16.1%
winewhite	e 20.47	18.01	-12.0%	68	59.8 -12.1%

Table 6: Comparison of the modified Paar heuristic to the original

	bnnpaar area(cm²)	bnnpaarter area(cm²)	area change	bnnpaar power(mW)	bnnpaarter power(mW)	power change
Har	17.42	18.73	+7.5%	57.2	60.8	+6.3%
cardio	38.74	35.97	-7.2%	124.1	116	-6.5%
gasId	281.55	261.38	-7.2%	807.6	759.7	-5.9%
pendigits	35.43	32.22	-9.1%	114.6	107.3	-6.4%
winered	18.55	17.47	-5.8%	62.6	59.6	-4.8%
winewhit	e 18.01	16.65	-7.6%	59.8	55.9	-6.5%

Figure 17: Effect of preemptive arithmetic optimization with Paar's heuristic

Figure 18: Comparison of the modified Paar heuristic to the original

I expected that either:

- 1. The results of hardwiring the order of operations for calculating the preactivation result of the neurons using Paar's heuristic would be considerably
 worse than the result of letting Design Compiler use the results of it's own
 optimization heuristics, since they ought to have implemented the best
 known ones. In this case trying an alternative to preemptively optimise
 the operations beforehand is most likely wasted effort because finding
 a competitive heuristic would be harder than parsing the results of their
 solution.
- 2. The results would have a negligible difference, because the heuristics used are related and / or the quality of results that can be expected by current methods for reasonable compute budgets hits a certain ceiling for the various approaches. In this case applying approximation techniques to the estimated arithmetic operation graph can go ahead.

The results show that although it is not consistant across the networks, there is an improvement of 20-30% to the area and power estimates of the smallest ones. This causes suspicion, since if such an old and common algorithm performed better for some cases of the problem they would reasonably have simply used it already. I initially look for ways the original designs could be obstructing datapath extraction more than they should, but nothing jumps out to me.

There seems to be a scaling in effect where the size of the weight matrix or the number of total operations are inversely correlated with how well Paar's algorithm performs compared to the compiler's unknown solution. I hypothesise that they chose the methods they did for arithmetic optimization giving more weight to the performance on heavier workloads, where the savings are more important, or alternatively the trade-offs these methods consider apply better to heavier loads. This leaves some wiggle room for improvement in the sizes of the examined networks.

Unfortunately, the issue I am trying to address has to do with performance losses from disrupting compiler's arithmetic optimizations scaling with model size, and the relative performance of the alternative heuristic scales inversely with that size. This means that the attempted fix cannot apply to the cases that need it most, so the underlying problem remains unresolved.

The ternary take on Paar's heuristic outperforms the original by a relatively consistant ratio with exception of the Har model's network. This gives me some hope that applying more advanced heuristics used in Shortest Linear Programs modefied for this particular usecase would raise the network size threshold for which results can be improved.

7 Sequential evaluation of layer neurons

7.1 Single input per-cycle update

7.1.1 Rationale

The classifications considered here are mostly not time critical and do not require high throughput. Evaluating the quality of a wine every second or multiple times per second does not offer any more value than doing it every few minutes. Since time is the less precious resource for our purposes it can be traded for lowering area and power demands.

A way to approach this trade-off is by extending evaluation of neurons' values to multiple clock cycles so that the adder graphs needed to perform all of the numerical operations can be replaced with simpler adder circuits that get reused between cycles. This requires the inclusion of memory elements to hold intermediate results of calculations between cycles.

I first try to make all neurons sequentially evaluate their pre-activation values by updating their held value on new inputs on successive clock cycles until they have included all of their input values into their total. This means that each layer will take as many cycles to calculate it's outputs as the number of input features it has. Layers get evaluated successively, so the entire inference will take a cycle count equal to the sum of all the inputs and hidden features of the network.

7.1.2 Implementation

Figure 19: The first layer of a sequentially evaluated BNN

7.1.2.1 First layer In the first layer each neuron is implemented by an accumulator that holds a running total of the weighted sum of the input features seem thus far and an adder-subtractor that given the weight bit of the connection between the neuron and the input feature currently updated on as a control either adds of subtracts the newly presented feature with the previous value of the accumulator to get next value of the accumulator. In each cycle a new input element is selected for all neurons of the layer and they either add it or subtract it from their running totals.

The weights of the layer are stored in a memory. A counter is used to select the current feature from a multiplexer and the column of the weight matrix from the weight memory that will provide the control signals to the adder-subtractors. When the value of the counter reaches the final value that indexes an input feature, N-1, a flag is set that stops the counter and the accumulators of the current layer from updating their held values and signals the next layer to start it's own process. A reset signal is used to bring these memory elements back to their zeroed initial values when inference of the next set of inputs is desired. A reset is required to happen before each inference starts.

Let k be the number of cycles since the start of the inference / the current value of the counter. $h_{i,k}$ be the value of the accumulator of the i-th neuron on the k-th cycle, or after updating on the first k input elements. Clearly $h_{i,0}=0$ and $h_{i,N-1}$ would be equal to h_i . x_k is the input element selected on the k-th cycle and $h'_{i,k}$ is the output of the adder-subtractor of the i-th neuron at the end of the k-th cycle.

$$h_{i,k+1} = h'_{i,k} = h_{i,k} + x_k = \sum_{j=0}^{k} x_j$$

Because the output of the add-subtract unit when the last input of the layer is selected is equal to the pre-activation value of the neuron, this value does not have to be stored in the accumulator to be used. Instead the sign bit that determines the binarized output of the neuron for the next layer can be taken directly from the adder-subtractor's output. This way the first layer can be evaluated in N-1 cycles instead of N, as long as the selected input of the first layer stays at the last (N-1-th) position for the duration of the second layer's evaluation.

An alternative implementation where the weight matrix was stored in shifting registers instead of a constant array indexed by the counter was tested. The memory elements are very expensive in this technology so this version ended up underperforming the previous by a large margin due to the required registers.

Figure 20: The second layer of a sequentially evaluated BNN

7.1.2.2 Second layer The second layer starts after receiving an enable signal from the first layers halting flag. Because of the linear transformation described in the start in this layer instead of subtracting one from the running total when the weighted current input would be -1 instead 0 is added to the running total, so it remains unchanged. It could be implemented similar to how the first layer is implemented if the adder-subtractors are exchanged with XNOR gates, by storing the weights of the layer in a memory and calculating the XNOR of the weight column $W2_{:,k}$ with the output bit of the previous layer s_k to add to the running totals on the k+1-th cycle.

Instead, each neuron gets it's own multiplexer over input features, where the k-th data line of the i-th neuron's multiplexer is set to be s_k if the weight $W2_{i,k}$ of the connection between the hidden feature s_k and the neuron y_i is 1, and $\neg s_k$ in the case it is -1. This is equivalent to hardcoding the result of the XNOR operation for that particular neuron as the data line of the multiplexer.

In each cycle the neuron receives a single bit and adds it to the value in its accumulator. It can therefore be implemented via a counter with this bit as an enable signal.

The main goal of this approach is to remove the need for storing theweights of the layer and the decoder to select them, not the negligible XNOR gates that would be used. These multiplexers share their input data lines with a lot of the other multiplexers, so the hardware cost of their implementation is considerably cheaper than C separate ones.

7.1.3 Results and analysis

Table 7: The first attempt at a sequential implementation compared to the combinatorial one

	bnnparw area(cm²)	bnnseq area(cm²)	area change	bnnparw power(mW)	bnnseq power power(mW) change
Har	24.25	29.55	+21.9%	77.6	132.7 +71.0%
cardio	33.21	31.47	-5.2%	105.4	143.1 +35.8%
gasId	171.37	47.67	-72.2%	486.9	216.8 -55.5%
pendigits	33.97	34.71	+2.2%	109.6	139 +26.8%
winered	21.87	29.57	+35.2%	72.3	131.7 +82.2%
winewhite	e 20.36	29.75	+46.1%	66.7	128.6 +92.8%

Figure 21: The first attempt at a sequential implementation compared to the combinatorial one

The cost of the adder graph in the fully parallel designs scales superlinearly with the count of input elements of the layer, at a faster rate than multiplexers and decoders used in these sequential designs, and the number of required registers scales about logarithmically. It is expected then, that the advantage of a sequential to a parallel design would also scale to the number of input features N.

The expense of the sequential elements is also pronounced in this technology, and since as mentioned before it doesn't increase by much due to additional inputs, a clear disadvantage is given to the smaller networks, exaggerating the scaling effect.

Most of the networks under examination are small enough to be in the range that is disadvantaged by the change, with the smallest ending up 50% larger. Only the largest model's network, with 128 input features, is clearly gaining anything from this trade-off, as the sequential design takes up 70% less area.

Perhaps the upfront cost can be lessened, which would be bring littler networks into the range that benefits from this sequential design area wise. Even if the way to achieve this ends up diminishing the scaling benefits described above, it can be applied only to models with N lower than a threshold, so it would not be an issue.

7.1.4 Removing the weight array

Figure 22: The first layer of a sequential design with the required subtractions hard-coded

The process used in the second layer in the previous part, where each neuron gets its own multiplexer over normal and inverted input hidden features in order to have no need of a weight memory, is here applied to the inputs of the first layer as well.

For a hidden neuron h_i the j-th data line in its multiplexer will be denoted $x_{i,j}$. The data lines of the multiplexer will be 5 bit signed integers, so they can represent the values of the 4 bit input features as well as their negatives. Similarly to how a data line in the second layer described above would be set to either s_k or $\neg s_k$, the data lines in the first layer are set as such:

$$x_{i,j} = \begin{cases} x_j, & \text{if } W1_{i,j} = 1 \\ -x_j, & \text{if } W1_{i,j} = -1 \end{cases}$$

The adder-subtractors and the weight array with the decoders that selected the control signals from them are removed. Since the input is taken already negated when appropriate, only an adder is needed for the accumulator.

Although some up-front costs are gone, the extra machinery to negate each input feature and for the custom multiplexers makes each input more expensive. The largest network, gasId, is as such almost doubled in required area, but this change

was aimed for the smaller networks. It manages up to 8% improvement there, which is nowhere near enough to break even with the parallel version.

7.1.5 Register width reduction

The number of bits the register of the accumulator of each neuron can be reduced to the minimum required to support the range of values it encounter in the dataset. This is exactly the same bitwidth reduction as the one described for the parallel design. Each bit shaved off an accumulator's range removes a flip-flop.

Because the registers take up a significant chunk of the resources, the improvement is more pronounced than in the fully parallel equivalent, freeing up around 10% of the area and power across the board.

7.1.6 Accumulator saturation

Figure 23: Value of a neuron's accumulator over the course of the evaluation, with and without saturation of the results

Since removing flip-flops by reducing the bitwidth of the registers appears to help alleviate the up-front cost of changing to sequential evaluation for smaller networks, expending some extra combinatorial logic to lead to further shortening can be justified. The method to do that approached here is by saturating the results of the addition between the previous running total stored in the register and the new input feature to stay in the bounds of a smaller range.

The result h_i that is found for the neuron i at the end of the layer's evaluation does

not need to be the actual weighted sum of the input features it is supposed to represent. Since binarization of the result occurs before it is passed to the next layer, an approximate result does not lead to an error in the neuron's output s_i as long as it still has the same sign as the original.

If at some cycle during the layer's evaluation the absolute value of the running total becomes sufficiently large, it becomes unlikely that the remaining features will add up to be even larger in the opposite direction without overshooting the difference by some distance. This means we can saturate the intermediate results to a range $[-2^r, 2^r - 1]$ without much risk the final aggregate having the wrong sign.

Take the case where k is the last cycle the value of the accumulator gets saturated to -2^r . In order for an error in the output to occur because the sign of the accumulated value in the end flips to positive when it would not if the full range of values was supported, the weighted sum of the remaining features that will be added in the next cycles must be larger than 2^r , but smaller than the true running total.

$$2^r \le \sum_{j=k}^{N-1} \le \sum_{j=0}^{k-1}$$

The smallest value of r is found for each neuron such as this case or its equivalent in the opposite direction do not occur for any samples in the dataset. The bitwidth of the accumulator of that neuron is then set to r+1 and the results of the addition of a feature are saturated to that range using the DW_addsub_dx module from designware, if and only if r+1 is smaller than the width the neuron was previously reduced to that fit it's entire range of values. In the case that width is the same as r+1, saturating the values is not allowing the flip-flops of the accumulator to decrease and there is no benefit to incur the extra logic of implementing saturation for this neuron.

Figure 24: Implementation of saturation on the first layer of a sequential design.

7.1.7 Results and analysis

Table 8: Effect of the mentioned improvements to the sequential design

	bnnseq area(cm²)	bnndsat area(cm²)	area change	bnnseq power(mW)	bnndsat power(mW)	power change
Har	29.55	24.02	-18.7%	132.7	109.2	-17.7%
cardio	31.47	24.77	-21.3%	143.1	118.7	-17.1%
gasId	47.67	81.05	+70.0%	216.8	318.9	+47.1%
pendigits	34.71	29.79	-14.2%	139	121.6	-12.5%
winered	29.57	23.02	-22.2%	131.7	104.5	-20.7%
winewhit	e 29.75	22.43	-24.6%	128.6	98.5	-23.4%

Figure 25: Effect of the mentioned improvements to the sequential design

After these improvements, 4 out of the 6 networks demand less area in the sequential design than in the parallel one. But the impovement is not substancial enough to justify evaluation taking up many more cycles, and the power is still not competitive with the parallel designs. This tells me that this version of sequential designs is not salvageable. A different process of splitting the workload among cycles must be constructed from the ground up.

7.2 Single adder tree sequential evaluation

7.2.1 Rationale

Since the previous attempt where all neurons update in parallel on a single input feature each cycle did not pan out, the clear next candidate is an arrangement where a single neuron of the layer updates on all input features in parallel in a given clock cycle. This means that a single adder tree will calculate the total value of a neuron h_i by summing up the weighted features in a single cycle, and perform the same for a different neuron of the same layer in the next cycle.

This way the adder graph that encompasses the calculations required for the entire layer in the fully parallel version gets reduced to the adder tree a single neuron's inference demands. This can more than make up for the encoding of weighting the features appropriately before their accumulation than must now be done since the operations are not simply hard-coded into the circuit.

7.2.2 Implementation

Figure 26: A single-adder sequential BNN implementation

The multiplexing that was described in the previous sequential design is rearranged here in the sense that the M multiplexers with N data lines each turn into N multiplexers of M elements. Instead of a multiplexer belonging to a certain neuron and selecting the weighted feature that neuron should increment by this moment, now a multiplexer corresponds to a specific input feature and selects which "weighting"

of that feature the currently examined neuron needs. It is analogous to having the axis flipped.

Let's call the value selected to represent the j-th input feature on the i-th cycle of the layer's evaluation $x_{i,j}$. The way it is derived from the original input x_j is as stated before:

$$x_{i,j} = \begin{cases} x_j, & \text{if } W1_{i,j} = 1\\ -x_j, & \text{if } W1_{i,j} = -1 \end{cases}$$

The functional difference is that the counter is indexing on the value i instead of j. Like before the negation only happens once per input.

The selected weighted inputs are then parsed by a generic N input adder tree that provides the sign of their sum, on the i-th cycle $s_i = sign(\sum_{j=0}^{N-1} x_{i,j})$. Only the sign bit needs to be stored to be available to following calculations by the next layer, the pre-activation value h_i can be safely discarded. A 1-bit register is thus indexed by the counter to store the current neuron's output. This process takes as many cycles to evaluate a layer as count of its neurons, so M clock cycles for the first layer.

A close to identical system as the previous approach detects when the last neuron of the layer has finished operations and passes the torch to the next layer to start. The next layer conditionally inverts the input features it receives before passing them to multiplexers' data lines on the logic the first layer negates them.

On the second and final layer results do not need to be stored at all. Because the output of neurons is calculated one at a time, the argmax operation can be embedded in this process. Two registers are used, one holding the largest output of a neuron seen so far y_{max} and the other the index of the aforementioned neuron in the layer, which is taken from the value of the cycle counter of the layer.

If the result of the popcount operation on the current weighted inputs on the i-th cycle of the second layer's activity y_i is greater than the previous best y_{max} , the new result is stored as the new best so far and the index is overwritten by the cycle count i. Beyond saving a lot of flip-flops the overhead of the additional argmax module that had to be activated after the second layer is removed.

The second layer takes as many cycles as classes to be examined for prediction. The full inference therefore takes up M+C clock cycles. Again a reset signal must be given between successive inferences.

7.2.3 Results and analysis

Table 9: Comparison of single adder tree sequential designs with equivalent combinatorial designs.

	bnnparw area(cm²)	bnnrolx area(cm²)	area change	bnnparw power(mW)	bnnrolx power power(mW) change
Har	24.25	9.14	-62.3%	77.6	39 -49.7%
cardio	33.21	11.1	-66.6%	105.4	45.5 -56.8%
gasId	171.37	42.12	-75.4%	486.9	142.4 -70.8%
pendigits	33.97	10.69	-68.5%	109.6	43.5 -60.3%
winered	21.87	8.85	-59.5%	72.3	38.9 -46.2%
winewhit	te 20.36	8.65	-57.5%	66.7	37.5 -43.8%

Figure 27: Comparison of single adder tree sequential designs with equivalent combinatorial designs.

A large improvement on the previous sequential design method, using a single adder tree gets us 60 - 75% smaller footprints than the fully parallel circuits. Given the delay of the inference has been multiplied by a factor between one and two orders of magnitude this trade-off is kind of underwhelming. Like before an upfront cost in multiplexers / weight storage has to be paid upfront, and since the sizes of the networks are on the small side the scaling savings of reusing logic accross neurons do not deliver in full. The constraint reminds me of Amdaul's law, where instead of the speedup achievable by providing N parallel cores being limited by the ratio of the computation that is sequential, the resource savings are constrained by the ratio of hardware that can be shared between the N parallel cores.

Combinations of sequential approaches on the two layers where also tested to confirm that it was an improvement for both of them.

7.2.4 Deconstructing input negation

Figure 28: Multiplexers replaced by lookup tables for weights and correction terms/biases.

Negating each input involves a 4 bit increment-by-1 circuit per feature. Although it does not sound very alarming it is still an expense that scales with the input count N. The negation operation can be deconstructed into inverting the input and adding 1 to the result. If instead of providing the negative of the input as the result of multiplying by the appropriate weight to the multiplexer the inverse of all the bits of the input are provided, entire section simplifies into a 1-bit look up table indexed by the cycle counter whose output gets XOR'ed with all the bits of the input feature. This saves some logic.

In order to not risk errors from this approximation a correction term b_i needs to be added to the sum, equal to the number of 1s that were not added to negate in this cycle, or the count of elements of the weight row that belongs to the currently computed hidden neuron that are -1.

$$b_i = \sum_{j \in W1_i} [j = -1]$$

$$h_i = \sum_{i=0}^{N-1} x_j \oplus \neg bin(W1_{i,j}) + b_i$$

7.2.5 Shifting registers for timekeeping

Figure 29: Replacement of cycle counter by shifting registers for the hidden activations.

Instead of having a decoder from the cycle counter's current value i select the register to which the binary post-activation output s_i of the neuron that was computed will be saved, it is simpler to use a shifting register. Each cycle the previously held values are shifted one position to the right and the result of the current evaluation is saved to the left-most position of the register. After N cycles pass the right-most position of the register contains the result of the first neuron's evaluation that has been shifted N-1 positions and all outputs are in their proper place. The flag that halts the operation of the first layer is then set and the results are frozen in place to be used by the next layer.

The inclusion of a shifting register where the values set on initialisation are discarded provides and opportunity to shed the cycle counter altogether. When the reset signal brings the registers to their pre-set values we assign the left-most bit to be 1 and all the rest to 0. The position of the most significant 1 in the register is shifted once to the right every cycle. By utilising a simple one-hot equivalent of a priority encoder a M bit signal of a one hot representation of the current cycle count is produced.

This one hot signal can be used to detect when the final neuron is evaluated and layer transition flag ought to be set, and can select the weight row for the at the moment computed from the lookup table without requiring a decoder from the cycle counter. This lets the counter to be retired, without requiring extra state keeping elements to preserve its functionality.

7.2.6 Tristate weight memory

Figure 30: Implementing the one-hot indexed weight memory using an open bus per input feature

Every input feature gets the current weight bit from an open bus to which a tristate buffer for each entry in the feature's column in the weight matrix is connected. Each buffer corresponds to a single element of the weight matrix W1. The tri-buffer that holds the value of $W1_{i,j}$ has its output connected to the same open bus as the other buffers that hold a weight in $W1_{:,j}$ and activates by the i-th bit of the one-hot select signal from above.

The goal of this is to avoid the nested OR gates that are used to reduce the selected value of the column into one bit in the standard look up table implementation.

7.2.7 Results and analysis

Table 10: Comparison of the final sequential designs to the final combinatorial designs

	bnnparw area(cm²)	bnnrospine area(cm²)	area change	bnnparw power(mW)	bnnrospine power(mW)	power change
Har	24.25	7.82	-67.8%	77.6	31.7	-59.1%
cardio	33.21	9.3	-72.0%	105.4	36	-65.8%
gasId	171.37	37.31	-78.2%	486.9	124.4	-74.5%
pendigits	33.97	9.08	-73.3%	109.6	35.1	-68.0%
winered	21.87	7.61	-65.2%	72.3	30.9	-57.3%
winewhit	e 20.36	7.49	-63.2%	66.7	30.9	-53.7%

Figure 31: Comparison of the final sequential designs to the final combinatorial designs

These changes give a 10-20% decrease in area and power requirements compared

to the initial single adder tree implementation. With the use of tristate buffers the power saving goes up to ~35% but at a very harsh area penalty of 10-30% compared to the first design. I think the explanation for this is that more tristate buffers are required than OR gates since logical simplifications cannot be made on them, but the considerable switching power consumption from the intermediate nets that connect nested OR gates is removed. This trade-off allows to optimise for whichever of area and power is the largest bottleneck to the desired application.

Most importantly for our purposes, none of the models could be powered by a 30mW Molex battery using a conventional LUT for the weights. After implementing the LUT using tristate buffers, 5 out of the 6 can be powered by it. Although not coming cheaply in terms of area, the power savings were critical for overcoming this barrier.

All in all compared to the fully parallel designs requirements are reduced $3-5\times$. This opens up the space of implementable applications. The relative savings would get considerably better for larger networks given the scaling observed.

Figure 32: Actual size comparison of the estimated area of the printed designs for the pendigits dataset's model. Parallel on left, sequential on right.

8 Ternary weight networks

8.1 Rationale

Ternary Neural Networks (**TNNs**) use weights and activations in the range of {-1, 0, 1} instead of the {-1, 1} of BNNs. This enables much greater representational ability, and thus higher accuracies are achievable. When computed with CPUs or GPUs the inclusion of the 0 makes the bit-level operations that make BNNs so compute friendly not applicable, since the activations and weights now take up two bits and their MAC operations are not reducible to XNORs and popcounts. With hardware dedicated to running TNNs implemented in FPGAs or ASICs more optimizations can be made, but the efficiency is still sub-par compared to binary networks.

In our case the designs are fully bespoke to a single model/set of weights. This enables the isomorphism between ternary weight networks and sparse binary weight networks to be exploited, since connections removed from the sparse network can be omitted from the design upfront, something that is not doable in the case that all models of a certain architecture must be supported.

For the single-cycle / fully combinatorial designs this translates to fewer arithmetic operations to build components for. The model accuracy and the resulting circuit's area / power demands are both improved in this way by switching to ternary weights, pretty good deal.

Only the weights but not the activations will be ternarized in this implementation. The additional model ability achieved by using ternary activations for the hidden layer on top of the weights was not significant enough to justify the suspected cost of implementing 2-bit arithmetic in the subsequent layer.

8.2 Fully combinatorial implementation

Figure 33: Sparce combinatorial single signed sum implementation.

After training the same datasets with the same parameter counts using ternary instead of binary weights the equivalent weight matrices $W1 \in \{-1,0,1\}^{M,N}$ and $W2 \in \{-1,0,1\}^{C,M}$ are used to define the desired operations similarly to the binary counterparts:

$$h_i = \sum_{j=0}^{N-1} \begin{cases} +x_j, & \text{if } W1_{i,j} > 0 \\ -x_j, & \text{if } W1_{i,j} < 0 \end{cases}$$

$$y_i = \sum_{j=0}^{M-1} \begin{cases} s_j, & \text{if } W2_{i,j} > 0 \\ \neg s_j, & \text{if } W2_{i,j} < 0 \end{cases}$$

In the first layer for connections that have weights of 0 neither addition nor subtraction is actualised for the feature in the neuron's specified expression. It is simply ignored since it always contributes 0 to the sum.

Some neurons turn out to have all their non-zero weights have the same sign, either all being 1 or all -1. In such a case since the input features are all positive the sign of the multiply-accumulate result for this neuron will always be the same.

So the outputs of these neurons are hardcoded into constants to avoid unnecessary overhead.

In the second layer, as well, connections with weights equal to zero get neither the hidden feature they connect to nor it's inverse included in the related output neuron's popcount. The required logic is thus reduced in both layers by each connection severed.

Remember the linear transformation used to go from sums weight-activation products of $\{-1,1\}$ to popcounts of XNORs that now encode the values that would be -1 as 0. To achieve $-1 \to 0$ and $1 \to 1$ $f(x) = \frac{(x+1)}{2}$ is that linear transformation. When applied to an array $v \in \{-1,1\}^M$ binary values the sum is:

$$\sum_{i=0}^{M-1} f(v_i) = \sum_{i=0}^{M-1} (v_i+1)/2 = \frac{1}{2} \sum_{i=0}^{M-1} v_i + 1 = \frac{1}{2} \sum_{i=0}^{M-1} v_i + \frac{M}{2}$$

In the last layer, that in this case is the second one, so far the number of inputs of all output neurons was the same, thus the factor $\frac{M}{2}$ could be omitted when comparing outputs between the neurons and the XNOR/popcount results can be used directly for the argmax calculations.

Now, since the output neurons are treated as sparse binary ones, they no longer have the same input count and therefore the constant term $\frac{M}{2}$ is no longer the same for the whole layer. The issue can also be described as elements with value 0 included in the vector v contributing $f(0) = \frac{1}{2}$ each to the sum after the linear transfomation, which is not reflected by ignoring them completely as done here.

In order to fix this issue a correction term equal to $\frac{z_i}{2}$ ought to be added to the result the XNOR/popcount computation gives, where z_i denotes the number of elements in the weight row of the *i*-th output neuron $W2_i$. This term can be large compared to the value of the popcount when a neuron is sparse enough, so instead we can

add $\frac{z_i - \min\limits_{j=0}^{M-1} z_j}{2}$ as a smaller correction term, so the neuron with the least severed connections gets nothing added to it's popcount and the rest get theirs based on how many extra zeroed weights they contain compared to it.

In the design this is done by shifthing the result of the popcount once to the left and adding the count of zeroes over the minimum as is to it, giving us $2y_i + (z_i - \min_{j=0}^{M-1} z_j)$. The results of the neurons can now be compared correctly.

If we were dealing with a layer that was using XNOR and popcount that was not the

final one the correction term $\lceil \frac{z_i - \min\limits_{j=0}^{M-1} z_j}{2} \rceil$ would instead be used as the threshold for binarization of the neuron's output instead of 0.

8.3 Results and analysis

Table 11: Performance of the ternary weight combinatorial implementation compared to the binary combinatorial

	bnnparw area(cm²)	tnnparsign area(cm²)	area change	bnnparw power(mW)	tnnparsign power(mW)	power change
Har	24.25	13.4	-44.7%	77.6	42.7	-45.0%
cardio	33.21	19.21	-42.2%	105.4	62.4	-40.8%
gasId	171.37	101.65	-40.7%	486.9	297.1	-39.0%
pendigits	33.97	29.43	-13.4%	109.6	95.8	-12.6%
winered	21.87	11.78	-46.1%	72.3	40	-44.7%
winewhit	e 20.36	9.53	-53.2%	66.7	32.8	-50.8%

Figure 34: Performance of the ternary weight combinatorial implementation compared to the binary combinatorial

Thanks to the removal of terms from the arithmetic operations that define the design of the layers the area and power requirements were almost halved compared to the fully combinatorial designs of the binary models that were trained on the same datasets as the ternary ones. The accuracy was also improved across the board while at it.

Unfortunately applying bitwidth reduction or pre-synthesis arithmetic optimization underperformed the original TNN circuits, even for datasets whose binary network implementations where improved by these methods. There is nothing to note on the implementation of these since no change needs to be made to accommodate TNNs. I am not sure what to make of this yet.

The attempts at sequential designs for ternary weight networks do not perform to a satisfactory level so they won't be expanded on.

9 Experimental setup

9.1 Data preparation

The files that comprise the 7 datasets described in the preliminaries where procured from the UCI repository. Afterwards using the descriptions of what each feature of the tabular dataset represents categorical features that could not correspond to a sensor's output are descarded. Additionally features that are constant or near constant (for example only 3 samples in the whole dataset have a different value for this feature from the rest) are removed since they could not provide useful information.

For each feature the range of values is then normalised in the [0,1] range so the features use similar scales. These values are then quantised in 4 bit precision by the formula $\lfloor x*(16-\epsilon) \rfloor$, taking integer values in the range [0,15]. This way the data is treated during training as if seen from a 4-bit ADC interpreting a sensor's analog output, like it is supposed to be under inference conditions.

The labels for each sample are enumerated so they take the range [0, C-1], which will later help with making the selection of the predicted class's index by the argmax module simpler. All of the datasets are finally converted into a standard format, that of a CSV file with one sample per row and feature per column and labels as the last column.

9.2 Training

The datasets are split randomly with a predetermined seed into a 70-30 split of training and test data.

All the training splits of the datasets are passed from a grid hyperparameter search using 5 fold cross validation provided by scikit learn to find the best performing configuration set. This selected hyperparameter configuration is then used to train the final model. Ten training runs are performed with the previous training split getting further divided into a smaller training split and a validation split. The model originating from the training run of the ten that achieves the highest validation accuracy is chosen as the result of the whole training process. The accuracy achieved by this model on the test split is reported as the accuracy of the learned classifier.

The actual model was initially implemented using the Larq framework for quantised models and afterwards switched to using the similar Qkeras framework after it was empirically found to achieve higher performing classifiers.

Interestingly the models that were trained under the Larq framework benefited from

the inclusion of a batch normalisation layer whereas models trained with the Qkeras framework had their performance hindered by it. I have not yet found a convincing explanation for this difference. I will note here that not using a batch normalisation layer after the hidden layer is what allows the threshold that the output of the first layer's neurons are compared to in order to produce their binarized output to be always zero. So this discrepancy was another point for the preference of Qkeras over Larq.

9.3 Parameter optimization and encoding

The models resulting from the above process are stored in a predetermined location that is accessible by the script that uses the weight matrices and architecture details obtained by the saved model plus as well as the original dataset in order to compute some derivative information, such as the minimum required bitwidth of neurons or the order of operations given by preemptive optimization. These auxiliary results are then passed to the script that encodes them as well as the raw weight matrices into a form that can be used as part of template verilog file.

This can take the form of writing out bespoke verilog instructions to implement the calculations necessary that are specific to the model. More commonly this information is formatted as parameters that can be imported into the verilog template and determine the actualised primitives and submodules that get instantiated and their connections via conditionals in generate blocks.

Both styles are equally able to describe the desired actualised design and either style can be used for any occasion the other can. In practice generating verilog instructions was found to be more convenient for the simpler fully parallel designs, and parameterised modules were more easy to work with for the rest of the cases.

9.4 Design instantiation and functional verification

The formatted custom functionality in either form described above is embedded into a template verilog module via the use of the icarus verilog tool as a verilog preprocessor. The result is a verilog module that describes a custom implementation of the specific model that was used as input. This is fully standalone and the stored model or derived parameters are not needed from this point forward.

After the custom module is instantiated it is used to simulate evaluation of 1000 samples from the dataset it is associated with. The reason that only 1000 samples are used instead of the full dataset is simply to speed up the process, since the requirements for exact execution are not so strict in our case that it is necessary to be

fearful of a potential error that does not materialise once in 1000 samples. Even if execution of the design does not precisely match the functionality of the original model in some edge cases as long as the classification accuracy is not measurably affected we are in the clear.

The results of the simulation are compared to those of evaluating the trained model in it's native framework for these same samples, and if everything matches up the process can continue. Note that a case where the design is found to not match the model's results is not expected to occur during hypothetical execution of the process by an actual user, the main goal of this simulation is for debugging purposes during development of the design template.

9.5 Synthesis and requirement evaluation

The custom design is synthesised using Design Compiler. The compilation is set to prioritise area efficiency and effectively no time constraint is given in order for timing optimizations not to interfere. The area estimation is taken from the compiler at this stage.

The netlist that was generated then goes under a gate-level simulation using Chronologic of the same 1000 dataset samples as the previous functional simulation to give realistic usage data for the estimation of the required power.

10 Results

Graphs and tables are presented here that show the area and power requirements for the various versions of hardware implementation for the 6 datasets and their trained models. Comparisons for the effect of the various design decisions outlined above that are not already displayed are also made.

The designs will be referred to by nicknames in the following graphs and tables. Here is which explanation of each design corresponds to each nickname:

Design nickname	Link to relevant description
bnnpar	Positive negative sum
bnnparsign	Signed sum
bnnparw	Minimum range bit width reduction
bnnparstepw	Naively reducing bitwidths of intermediate results
bnnpaar	Preemptive arithmetic optimization
bnnpaarter	Extension to support subtractions
bnnseq	Sequential evaluation
bnndirect	Removing the weight array
bnndw	Register width reduction
bnndsat	Accumulator saturation
bnnrolx	Single adder tree sequential evaluation
bnnrolin	Deconstructing input negation
bnnrospine	Shifting registers for timekeeping
bnnrobus	Tristate weight memory
tnnparsign	Ternary weight networks

For comparison with the results of other works *tnnparsign* has been selected as the representative of parallel designs and *bnnrospine* as the final sequential design. Although it does not hit the power requirements of the Molex 30mW battery like *bnnrobus* does using tristate buffers, it has a better balance between area and power and thus is a better representative.

10.1 Model predictive performance

Table 13: Comparison of test split accuracies between the binary neural network models(BNN), ternary models(TNN), equivalent full precision networks and the multilayer perceptron classifiers evaluated in [10](MLPC).

Dataset	full precision	BNN	TNN	MLPC
cardio	92	88	90	88
gasId	90	81	88	-
Har	74	51	52	-
pendigits	99	87	92	94
redwine	60	54	58	56
whitewine	57	51	50	54

As shown in the table above the binary and ternary networks achieve classification accuracies competitive with the ones by higher precision networks that have been implemented in printed electronics. This shows that the quality of their prediction should be acceptable for the applications they support. It should be noted that the number of neurons used by the BNNs and TNNs is about 10x the count of neurons of the higher precision networks in the comparison.

10.2 Delay of combinatorial and sequential designs

Table 14: Comparison of single cycle delay and total inference time between combinatorial and sequential implementations.

dataset	combinatorial delay(ms)	sequential delay(ms)	sequential cycles	total sequential delay(ms)
cardio	142	147	43	6321
gasId	260	181	46	8326
Har	165	135	46	6210
pendigits	309	147	50	7350
winered	160	138	46	6348
winewhite	143	129	47	6063

As seen in the table above parallel designs can function at 3 to 7 Hz, whereas sequen-

tial designs can only run inference every 6 seconds or more. For certain applications such as wine quality estimation and gas identification this is quick enough to get the job done, but for example written digit identification has much faster changing inputs and this delay is not acceptable. So whether the delay sacrifice to enable area and power savings is worth it depends a lot on the specifics of the usecase.

10.3 Comparative analysis: Cross-Layer Approximation For Printed Machine Learning Circuits [10]

The area and power demands of the final parallel and sequential designs are compared to the results achieved in [10], described in the Related works section at the start, which is considered the starting point for this work.

The edge in metrics is split across the datasets for the fully parallel designs. Some models perform better in one and some in the other. On average it I will call it a tie.

Table 15: Comparison of final parallel designs with the results from [10]

are	mlpc ea(cm²)	tnnparsign area(cm²)	area change	mlpc power(mW)	tnnparsign power(mW)	power change
cardio	17	19.21	+13.0%	54	62.4	+15.6%
pendigits	46	29.43	-36.0%	153	95.8	-37.4%
winered	8	11.78	+47.2%	27	40	+48.1%
winewhite	13	9.53	-26.7%	42	32.8	-21.9%

Figure 35: Comparison of final parallel designs with the results from [10]

Sequential designs take a clear lead in area and power, in the case of pendigits showing a 5x improvement. Unfortunately the time required to perform all the cycles of sequential inference makes the circuit too slow to be useable in cases such as pendigits, so this improvement has fallen to Goodhart's law.

Table 16: Comparison of final sequential designs with the results from [10]

	mlpc area(cm²)	bnnrospine area(cm²)	area change	mlpc power(mW)	bnnrospine power(mW)	power change
cardio	17	9.3	-45.3%	54	36	-33.3%
pendigits	s 46	9.08	-80.3%	153	35.1	-77.1%
winered	8	7.61	-4.9%	27	30.9	+14.4%
winewhi	te 13	7.49	-42.4%	42	30.9	-26.4%

Figure 36: Comparison of final sequential designs with the results from [10]

10.4 Further comparison with relevant literature

Here both the parallel and sequential designs are compared to further relevant works on printed networks that were described in Related works. This includes both the initial bespoke networks from [9] and improvements made to the results of [10] that were compared to in greater detail above. This gives a sense of where this work is placed compared to the current state of the art.

As it appears even with taking two orders of magnitude longer to compute the products of this work are not competitive with the state of the art results for the same datasets, in the case of redwine even being outdone by almost a factor of 10.

Table 17: Area comparison of the final parallel and sequential designs to the SOTA in printed MLPs. baseline is [9], mlpc is [10], crossax is [12] and retrain is [13].

	baseline	mlpc	crossax	retrain	tnnparsign	bnnrospine
cardio	33.4	17	17	6.1	19.2	9.3
winered	17.6	8	8	1.1	11.8	7.6
winewhite	31.2	13	13.6	6.5	9.5	7.5

Table 18: Power comparison of the final parallel and sequential designs to the SOTA in printed MLPs. baseline is [9], mlpc is [10], crossax is [12] and retrain is [13].

	baseline	mlpc	crossax	retrain	tnnparsign	bnnrospine
cardio	124.2	54	48.9	20.8	62.4	36
winered	73.5	27	18.8	3.9	40	30.9
winewhite	126.4	42	43.2	21.3	32.8	30.9

Figure 37: Area comparison to prior work

Figure 38: Power comparison to prior work

10.5 Supplementary results

10.5.1 Combinatorial designs area comparisons

Table 19: Comparison of area requirements between the discussed fully parallel designs.

	Har	cardio	gasId	pendigits	winered	winewhite
bnnpaar	17.42	38.74	281.55	35.43	18.55	18.01
bnnparw	24.25	33.21	171.37	33.97	21.87	20.36
bnnpar	29.4	46.71	269.76	42.95	27.82	26.01
bnnparsign	24.52	33.27	175.09	33.38	22.45	20.47
tnnparsign	13.4	19.21	101.65	29.43	11.78	9.53
bnnparstepw	23.16	39.29	326.98	37.09	22.78	20
bnnparce	24.99	34.84	181.82	35.74	20.76	20.48
bnnpaarter	18.73	35.97	261.38	32.22	17.47	16.65

10.5.2 Combinatorial designs power comparisons

Table 20: Comparison of power requirements between the discussed fully parallel designs.

	Har	cardio	gasId	pendigits	winered	winewhite
bnnpaar	57.2	124.1	807.6	114.6	62.6	59.8
bnnparw	77.6	105.4	486.9	109.6	72.3	66.7
bnnpar	92.1	145.3	767.7	136.8	90.7	84.6
bnnparsign	78.8	106.2	499.1	108.9	74.6	68

	Har	cardio	gasId	pendigits	winered	winewhite
tnnparsign	42.7	62.4	297.1	95.8	40	32.8
bnnparstepw	73.7	125.5	935.2	120.3	75.3	65.8
bnnparce	79	110.5	516.1	115.5	67.7	65.8
bnnpaarter	60.8	116	759.7	107.3	59.6	55.9

10.5.3 Sequential designs area comparisons

Table 21: Comparison of area requirements between the discussed sequential designs.

	Har	cardio	gasId	pendigits	winered	winewhite
bnndsat	24.02	24.77	81.05	29.79	23.02	22.43
bnndirect	27.63	30.5	88.62	32.93	27.11	27.31
bnnrobus	9.97	12.44	55.39	11.93	9.66	9.56
bnnrolx	9.14	11.1	42.12	10.69	8.85	8.65
bnnrospine	7.82	9.3	37.31	9.08	7.61	7.49
bnndw	25.39	26.26	81.87	29.9	24.51	23.98
bnnrolin	8.29	10.85	38.54	10.37	8.04	8
bnnseq	29.55	31.47	47.67	34.71	29.57	29.75

10.5.4 Sequential designs power comparisons

Table 22: Comparison of power requirements between the discussed sequential designs.

	Har	cardio	gasId	pendigits	winered	winewhite
bnndsat	109.2	118.7	318.9	121.6	104.5	98.5
bnndirect	128.8	150.8	364.5	135.7	125.7	122.6
bnnrobus	26.1	29.4	97.9	29.7	25.7	25.2
bnnrolx	39	45.5	142.4	43.5	38.9	37.5
bnnrospine	31.7	36	124.4	35.1	30.9	30.9
bnndw	116.4	124.9	325.6	123.1	112.1	106.2
bnnrolin	36.3	45.6	131.3	42.6	35.7	34.9
bnnseq	132.7	143.1	216.8	139	131.7	128.6

10.5.5 Additional table comparisons

Table 23: Effect of using a custom multiplexer per neuron in the first layer

	bnnseq area(cm²)	bnndirect area(cm²)	area change	bnnseq power(mW)	bnndirect power(mW)	power change
Har	29.55	27.63	-6.5%	132.7	128.8	-2.9%
cardio	31.47	30.5	-3.1%	143.1	150.8	+5.4%
gasId	47.67	88.62	+85.9%	216.8	364.5	+68.1%
pendigits	34.71	32.93	-5.1%	139	135.7	-2.4%
winered	29.57	27.11	-8.3%	131.7	125.7	-4.6%
winewhit	e 29.75	27.31	-8.2%	128.6	122.6	-4.7%

Table 24: Effect of reducing the width of the first layer's registers

	bnndirect area(cm²)	bnndw area(cm²)	area change	bnndirect power(mW)	bnndw power power(mW)change
Har	27.63	25.39	-8.1%	128.8	116.4 -9.6%
cardio	30.5	26.26	-13.9%	150.8	124.9 -17.2%
gasId	88.62	81.87	-7.6%	364.5	325.6 -10.7%
pendigits	32.93	29.9	-9.2%	135.7	123.1 -9.3%
winered	27.11	24.51	-9.6%	125.7	112.1 -10.8%
winewhite	27.31	23.98	-12.2%	122.6	106.2 -13.4%

Table 25: Effect of applying saturation to the first layer's registers

	bnndw area(cm²)	bnndsat area(cm²)	area change	bnndw power(mW)	bnndsat power(mW)	power change
Har	25.39	24.02	-5.4%	116.4	109.2	-6.2%
cardio	26.26	24.77	-5.7%	124.9	118.7	-5.0%
gasId	81.87	81.05	-1.0%	325.6	318.9	-2.1%
pendigits	s 29.9	29.79	-0.4%	123.1	121.6	-1.2%
winered	24.51	23.02	-6.1%	112.1	104.5	-6.8%

arc	bnndw ea(cm²)	bnndsat area(cm²)		bnndw power(mW) po	bnndsat wer(mW)	1
winewhite	23.98	22.43	-6.5%	106.2	98.5	-7.3%

Table 26: Effect of deconstructing negation

	bnnrolx area(cm²)	bnnrolin area(cm²)	area change	bnnrolx power(mW)	bnnrolin power(mW)	power change
Har	9.14	8.29	-9.3%	39	36.3	-6.9%
cardio	11.1	10.85	-2.3%	45.5	45.6	+0.2%
gasId	42.12	38.54	-8.5%	142.4	131.3	-7.8%
pendigits	10.69	10.37	-3.0%	43.5	42.6	-2.1%
winered	8.85	8.04	-9.2%	38.9	35.7	-8.2%
winewhit	e 8.65	8	-7.5%	37.5	34.9	-6.9%

Table 27: Effect of replacing the cycle counter with shifting registers

	bnnrolin area(cm²)	bnnrospine area(cm²)	area change	bnnrolin power(mW)	bnnrospine power(mW)	power change
Har	8.29	7.82	-5.7%	36.3	31.7	-12.7%
cardio	10.85	9.3	-14.3%	45.6	36	-21.1%
gasId	38.54	37.31	-3.2%	131.3	124.4	-5.3%
pendigits	10.37	9.08	-12.4%	42.6	35.1	-17.6%
winered	8.04	7.61	-5.3%	35.7	30.9	-13.4%
winewhit	te 8	7.49	-6.4%	34.9	30.9	-11.5%

Table 28: Effect of using tristate buffers for the weight memory

	bnnrospine area(cm²)	bnnrobus area(cm²)	area change	bnnrospine power(mW)	bnnrobus power power(mW) change
Har	7.82	9.97	+27.5%	31.7	26.1 -17.7%
cardio	9.3	12.44	+33.8%	36	29.4 -18.3%
gasId	37.31	55.39	+48.5%	124.4	97.9 -21.3%
pendigits	s 9.08	11.93	+31.4%	35.1	29.7 -15.4%
winered	7.61	9.66	+26.9%	30.9	25.7 -16.8%
winewhi	te 7.49	9.56	+27.6%	30.9	25.2 -18.4%

10.5.6 Additional graph comparisons

The following graphs show the area and power measurements of the models reified via the second design normalised on the equivalent metrics from the first design type.

Figure 39: Effect of using a custom multiplexer per neuron in the first layer

Figure 40: Effect of reducing the width of the first layer's registers

Figure 41: Effect of applying saturation to the first layer's registers

Figure 42: Effect of deconstructing negation

Figure 43: Effect of replacing the cycle counter with shifting registers

Figure 44: Effect of using tristate buffers for the weight memory

Bibliography

- [1] IDTechEx, Flexible & printed electronics 2023-2033: Forecasts, technologies, markets. 2023.
- [2] V. Sze, Y. Chen, T. Yang, and J. Emer, "Efficient processing of deep neural networks: A tutorial and survey," *Proceedings of the IEEE*, vol. 105, pp. 2295–2329, 2017.
- [3] D. Weller, M. Hefenbrock, M. Tahoori, J. Aghassi-Hagmann, and M. Beigl, "Programmable neuromorphic circuit based on printed electrolyte-gated transistors," in 2020 25th asia and south pacific design automation conference (asp-dac), 2020, pp. 446–451.
- [4] M. Douthwaite, F. García-Redondo, P. Georgiou, and S. Das, "A time-domain current-mode mac engine for analogue neural networks in flexible electronics," in 2019 ieee biomedical circuits and systems conference (biocas), IEEE, 2019, pp. 1–4.
- [5] H. Ling, D. Koutsouras, S. Kazemzadeh, Y. van de Burgt, F. Yan, and P. Gkoupidenis, "Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing," *Applied Physics Reviews*, vol. 7, no. 1, p. 011307, 2020.
- [6] E. Ozer *et al.*, "Bespoke machine learning processor development framework on flexible substrates," in *2019 ieee international conference on flexible and printable sensors and systems (fleps)*, IEEE, 2019, pp. 1–3.
- [7] N. Bleier, M. Mubarik, F. Rasheed, J. Aghassi-Hagmann, M. Tahoori, and R. Kumar, "Printed microprocessors," in 2020 acm/ieee 47th annual international symposium on computer architecture (isca), IEEE, 2020, pp. 213–226.
- [8] D. Weller *et al.*, "Printed stochastic computing neural networks," in *Design, automation test in europe conference exhibition (date)*, 2021, pp. 914–919.
- [9] M. Mubarik *et al.*, "Printed machine learning classifiers," in *Annu. Int. Symp. Microarchitecture (micro)*, 2020, pp. 73–87.
- [10] G. Armeniakos, G. Zervakis, D. Soudris, M. Tahoori, and J. Henkel, "Crosslayer approximation for printed machine learning circuits," in *Design, automation test in europe conference exhibition (date)*, 2022. Available: https://arxiv.org/abs/2203.05915
- [11] A. Kokkinis, G. Zervakis, K. Siozios, M. B. Tahoori, and J. Henkel, "Hardware-aware automated neural minimization for printed multilayer perceptrons," in 2023

- *design, automation & test in europe conference & exhibition (date)*, IEEE, 2023, pp. 1–2.
- [12] G. Armeniakos, G. Zervakis, D. Soudris, M. B. Tahoori, and J. Henkel, "Model-to-circuit cross-approximation for printed machine learning classifiers," *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 2023.
- [13] G. Armeniakos, G. Zervakis, D. Soudris, M. B. Tahoori, and J. Henkel, "Codesign of approximate multilayer perceptron for ultra-resource constrained printed circuits," *IEEE Transactions on Computers*, 2023.
- [14] K. Balaskas, G. Zervakis, K. Siozios, M. B. Tahoori, and J. Henkel, "Approximate decision trees for machine learning classification on tiny printed circuits," in *2022 23rd international symposium on quality electronic design (isqed)*, IEEE, 2022, pp. 1–6.
- [15] K. Iordanou *et al.*, "Tiny classifier circuits: Evolving accelerators for tabular data." 2023. Available: http://arxiv.org/abs/2303.00031
- [16] G. Cadilha Marques, D. Weller, A. T. Erozan, X. Feng, M. Tahoori, and J. Aghassi-Hagmann, "Progress report on 'from printed electrolyte-gated metal-oxide devices to circuits'," *Advanced Materials*, vol. 31, no. 26, p. 1806483, 2019.
- [17] L. Shao, T.-C. Huang, T. Lei, Z. Bao, R. Beausoleil, and K.-T. Cheng, "Compact modeling of carbon nanotube thin film transistors for flexible circuit design," in *2018 design, automation & test in europe conference & exhibition (date)*, IEEE, 2018, pp. 491–496.
- [18] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, "Binarized neural networks: Training deep neural networks with weights and activations constrained to+1 or-1," *arXiv preprint arXiv:1602.02830*, 2016.
- [19] M. Kim and P. Smaragdis, "Bitwise neural networks," arXiv preprint arXiv:1601.06071, 2016.
- [20] D. Dua and C. Graff, "UCI machine learning repository." http://archive.ics.uc i.edu/ml, 2017.
- [21] H. A. Guvenir, B. Acar, G. Demiroz, and A. Cekin, "A supervised machine learning algorithm for arrhythmia analysis," in *Computers in cardiology 1997*, IEEE, 1997, pp. 433–436.
- [22] D. Ayres-de Campos, J. Bernardes, A. Garrido, J. Marques-de Sa, and L. Pereira-Leite, "Sisporto 2.0: A program for automated analysis of car-

- diotocograms," *Journal of Maternal-Fetal Medicine*, vol. 9, no. 5, pp. 311–318, 2000.
- [23] F. Alimoglu and E. Alpaydin, "Methods of combining multiple classifiers based on different representations for pen-based handwritten digit recognition," in *Proceedings of the fifth turkish artificial intelligence and artificial neural networks symposium (tainn 96)*, Citeseer, 1996.
- [24] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. Reyes-Ortiz, "A public domain dataset for human activity recognition using smartphones," in *Esann*, 2013.
- [25] S. Feng *et al.*, "Review on smart gas sensing technology," *Sensors*, vol. 19, no. 17, p. 3760, 2019.
- [26] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, "Modeling wine preferences by data mining from physicochemical properties," *Decision Support Systems*, vol. 47, no. 4, pp. 547–553, 2009.
- [27] E. Bihar, T. Roberts, M. Saadaoui, T. Hervé, J. B. De Graaf, and G. G. Malliaras, "Inkjet-printed pedot:PSS electrodes on paper for electrocardiography," *Advanced Healthcare Materials*, vol. 6, no. 6, 2017.
- [28] J. Dai et al., "Printed gas sensors," Chemical Society Reviews, vol. 49, no. 6, pp. 1756–1789, 2020.
- [29] S. Tuukkanen and S. Rajala, "A survey of printable piezoelectric sensors," in 2015 ieee sensors, IEEE, 2015, pp. 1–4.
- [30] M. Jose *et al.*, "Printed pH sensors for textile-based wearables: A conceptual and experimental study on materials, deposition technology, and sensing principles," *Advanced Engineering Materials*, vol. 24, no. 5, 2022.
- [31] M. Jelbuldina, H. Younes, I. Saadat, L. Tizani, S. Sofela, and A. Al Ghaferi, "Fabrication and design of cnts inkjet-printed based micro fet sensor for sodium chloride scale detection in oil field," *Sensors and Actuators A: Physical*, vol. 263, pp. 349–356, 2017.
- [32] S. Ma and P. Ampadu, "Optimal sat-based minimum adder synthesis of linear transformations," in *2019 ieee 62nd international midwest symposium on circuits and systems (mwscas)*, IEEE, 2019, pp. 335–338.
- [33] C. Paar, "Optimized arithmetic for reed-solomon encoders," in *Proceedings of ieee international symposium on information theory*, IEEE, 1997, p. 250.