

Central South University

Trio of Tomorrow Winds

Boyang Zhao, Guochen Xu, Xuanjing Li

2022年12月2日

1	Gei	neral	1 $_3$	Str	ings	5	4.6	Min25	16
	1.1	赛前必读	$1 \mid $		SAM	5	4.7	Powerful Number	
	1.2	Tricks	1	9.1	3.1.1 DAG 链剖分	$\begin{bmatrix} 5 \\ 6 \end{bmatrix}$	4.7		
		1.2.1 调试	1	2.0			_		
		1.2.2 结论	1	3.2	Suffix Array	6	4.9		
		1.2.3 字符串	1		3.2.1 倍增	6		0 Mod Mul	
		1.2.4 根号算法	1		3.2.2 SAIS	6		1 Pollard Rho	
		1.2.5 历史最大值	1	3.3	Palindrome Tree	7		2 万欧	
		1.2.6 线段树经典 $O(\log)$ update	1	3.4	Manacher	8		3 高斯整数	
		1.2.7 一些离线算法	1	3.5	Z-function	8		4 Simplex	
		1.2.8 Slope Trick	1	3.6	Min Rotation	8	4.15	5 Matrix-Tree 定理	
	1.3	.bashrc	1	3.7	Lyndon Word	8		4.15.1 无向图生成树个数	. 16
	1.4	.emacs	1		_			4.15.2 有向图外向树形图个数	. 16
	1.4	卡常	$\begin{bmatrix} 1 \\ 1 \end{bmatrix} 4$	l Ma	h	8	۲ (Ca	o mo ot mar	1.0
	1.0			4.1	Number Theory	8		cometry	16
	1.0	Random	1		4.1.1 Fast Eratosthenes	8	5.1	Geo2D	
	1.7	Hash	1		4.1.2 欧拉定理	9		5.1.1 Tricks	
	1.8	PBDS	2		4.1.3 GCD	9		5.1.2 Pt	
		1.8.1 Priority Queque	2		4.1.4 CRT	9		5.1.3 旋转平移流	
		1.8.2 Tree	2		4.1.5 Kummer 定理	9		5.1.4 直线与线段	
		1.8.3 HashTable	$2 \mid$		4.1.6 Lucas	9		5.1.5 Polygon	
	1.9	模拟退火	2		- / >	10		5.1.6 凸包	. 18
	1.10	开栈	2	4.2	Matrix			5.1.7 半平面交	. 18
2	Dad	to Structures		1.2	4.2.1 Determinant			5.1.8 Circles	. 18
4		ta Structures	2		4.2.2 Inverse			5.1.9 合并上凸壳	. 19
	2.1	Line Container	2					5.1.10 动态凸包	. 20
	2.2	Lichao	3		4.2.3 Char Poly			5.1.11 平面最近点对	. 22
	2.3	Scapegoat Tree	3		4.2.4 Minor				
	2.4	LCT	3	4.3	Burnside		6 Gr	-	22
	2.5	Top Tree	4		4.3.1 Burnside	12	6.1	Trees	. 22
	2.6	Tree Block	4		4.3.2 Pólya	12		6.1.1 树上路径交并	. 22
	2.7	Cartesian Tree	5	4.4	BM	12		6.1.2 直径可并性	. 22
	2.8	WBLT	5	4.5	LGV Lemma	12		6.1.3 动态直径 - 欧拉序	. 22

		6.1.4 虚树	22			7.1.7 Division	32
	6.2	Bipartite Graph	22			7.1.8 Primitive Root	32
		6.2.1 最大匹配	22			7.1.9 Fast Factorial	32
		6.2.2 最大权匹配	23			7.1.10 Compound and Inv	32
	6.3	Max Flow	23		7.2	Largrange	33
		6.3.1 HLPP	23			7.2.1 Formula	33
		6.3.2 Dinic	24			7.2.2 Interpolate Iota	33
	6.4	上下界网络流	24		7.3	Min-max 容斥	33
		6.4.1 无源汇有上下界可行流	24		7.4	FWT	33
		6.4.2 有源汇有上下界最大流	24			7.4.1 2-FWT	
		6.4.3 有源汇有上下界最小流	24			7.4.2 子集卷积	
	6.5	MCMF	24			7.4.3 k-FWT	
	6.6	BCC	25		7.5	Various FFT	
		6.6.1 e-BCC	25			7.5.1 General	
		6.6.2 v-BCC	25			7.5.2 FFT Complex	
	6.7	Two Sat	25			7.5.3 MTT	
	6.8	Dominator Tree	26			7.5.4 三模数	
	6.9	EulerWalk	26		7.6	Chirp Z-Transform	
	6.10	General Matching	26		7.7	Factorial Poly	
	6.11	最小割树	27		7.8	Stirling	
	6.12	K Shortest Path	27		7.9	Ferrers 棋盘	35
	6.13	DMST	28	8	Var	rious 3	36
					8.1	最长公共子序列	36
7	Cor	nbinatorial	28		8.2	模意义真分数还原	36
	7.1	Poly			8.3	杂	36
		7.1.1 DFT					
		7.1.2 Struct Poly	29	9		L	37
		7.1.3 Qoly - Relaxed Convolution \dots			9.1	NTT Primes	
		7.1.4 Poly EI			9.2	D and Omega	37
		7.1.5 DivAt	31				
		7.1.6 Shift	32				

General (1)

1.1 赛前必读

- 1. 提交前,再次检查数据范围。不但要注意最大范围,更要注意小数据、极端数据(例如 n=1)
- 2. 提交前,再次检查输入输出格式,是否有 spj,是否需要取模,模数是多 少。

1.2 Tricks

1.2.1 调试

在第一行加一下 #define _GLIBCXX_DEBUG 让 stl 检查越界之类的问题。

```
void dbg() { std::cerr << "\n"; }
template <class T, class... Ts>
void dbg(T &&a, Ts &&...b) {
   std::cerr << a << " ", dbg(b...);
}</pre>
```

1.2.2 结论

- 不存在长度为偶数的简单回路,则该图是仙人掌图(一条边最多属于 一个环)
- 2. 随机点集的凸包点数是 $O(\log n)$ 。
- 3. 判断边集是否是割集: 随便选一个生成树, 然后给每条非树边在 2⁶⁴ 范围内随机一个权值, 然后每条树边的权值等于跨越他的非树边权值的 xor, 对于每次询问, 不连通 iff 删掉的边权的集合线性相关。

1.2.3 字符串

1. 自动机类的,有时候会和虚树结合,需要注意

1.2.4 根号算法

根号分治,序列分块,值域分块,莫队,线段树上只 pushup 小点,块状链表,对操作序列分块,KD 树

1.2.5 历史最大值

信息为列向量 $(max, hmax)^T$,标记维护矩阵 $\begin{bmatrix} a & -\infty \\ b & c \end{bmatrix}$ 。

```
struct Tag {
  LL a = 0, b = NINF, c = 0;
  void apply(const Tag &r) {
    b = std::max(b + r.c, a + r.b);
    a += r.a, c += r.c;
```

```
}
};
```

1.2.6 线段树经典 $O(\log)$ update

楼房重建 设 Query(o, x) 表示节点 o 之前的最大值为 x 时的答案 维护 $val_o = \text{Query}(rs, \max_{ts})$ 。 然后 Query 的复杂度是 $O(\log n)$ 。

1.2.7 一些离线算法

一个比较重要的思想是把时间轴看作一维,例如线段树分治,对时间分块(操作序列分块)等。

整体二分 例如 K 大数查询: 一些可重集, 区间加一个元素 c, 求区间 并的第 k 大。

乍一看需要在整体二分中用二维数据结构来维护,但是你每次递归到两边前,先把 $k-=c_i$ 就可以了。

也就是说,你求解 [l,r] 之前,需要考虑 $(-\infty,l)$ 的贡献,但是并不一定要事先在数据结构上加减,可以直接把这个贡献存下来。

1.2.8 Slope Trick

分段函数,每段都是斜率是整数的一次函数,并且是凸的,可以维护最右边直线 L,再用数据结构维护分段点的可重集 S (每过一个分段点,斜率变化 1)。两个函数相加,可以表示为 $(L_1+L_2,S_1\cup S_2)$ 。 凸函数的 (min,+) 卷积,就是闵可夫斯基和。

1.3 .bashrc

```
alias c='q++ -Wall -Wextra -02 -std=c++17'
```

1.4 .emacs

1.5 卡常

```
#pragma GCC

    optimize("-Ofast","-funroll-all-loops","-ffast-math")
#pragma GCC optimize("-fno-math-errno")
```

```
#pragma GCC optimize("-funsafe-math-optimizations")
#pragma GCC optimize("-freciprocal-math")
#pragma GCC optimize("-fno-trapping-math")
#pragma GCC optimize("-ffinite-math-only")
#pragma GCC optimize("-fno-stack-protector")
#pragma GCC target ("avx2", "sse4.2", "fma")
// Fast IO
inline char qc() {
 const int L = 1 << 16;</pre>
  static char s[L], *p, *q;
  static auto i = std::cin.rdbuf();
  return p == q ? p = s, q = p + i->sgetn(p, L), p == q ? EOF
 int read() {
 int a, c;
  while ((a = qc()) < 40);
  if (a == '-') return -read();
  while ((c = qc()) >= 48) a = a * 10 + c - 480;
 return a - 48;
using A = __attribute((vector_size(16))) int;
// 16 是字节数, 这个代表 4 个 int, 里面这个数要是 2 的幂
struct Barrett {
 uint64_t m, im;
  Barrett() = default;
  Barrett(int n) : m(n), im(-1ULL / m) {}
 int rem(uint64_t n) {
   uint64_t x = \_uint128_t(n) * im >> 64, r = n - x * m;
    return m <= r ? r - m : r;
};
1.6 Random
```

```
std::mt19937_64 rng((std::random_device())());
LL rnd(LL l, LL r) {
  if (l > r) std::swap(l, r);
  return std::uniform_int_distribution<LL>(l, r)(rng);
}
```

1.7 Hash

```
模 2^{64}-1 哈希,比单哈(自然溢出或者 int 取模)慢(1.5-2 倍),比双哈 快。 struct H {
```

```
typedef uint64_t ULL;
 ULL x: H(ULL x = 0) : x(x)  {}
#define OP(0, A, B) H operator O(H o) { \
 ULL r = x; asm(A "addq %%rdx, %0\n adcq $0,%0"\
 : "+a"(r) : B); return r;}
  OP(+, , "d"(o.x)) OP(*, "mul %1\n", "r"(o.x) : "rdx")
  H operator-(H o) { return *this + ~o.x; }
 ULL get() const { return x + !~x; }
 bool operator==(H o) const { return get() == o.get(); }
 bool operator<(H o) const { return get() < o.get(); }</pre>
};
如果不给用 asm,可以写模 2^{61} - 1 哈希,好写,快于双哈
u64 modfma(const u64 &a, const u64 &b, const u64 &c) {
  u128 \text{ ret} = u128(a) * b + c;
 ret = (ret & md) + (ret >> 61);
 return ret >= md ? ret - md : ret;
}
uint64_t xorshift(uint64_t x) {
 x ^= x << 13;
 x ^= x >> 7;
 x ^= x << 17;
 return x;
uint64_t splitmix64(uint64_t x) {
 x += 0x9e3779b97f4a7c15:
 x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
 x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
 return x ^ (x >> 31);
```

1.8 PBDS

1.8.1 Priority Queque

```
/*
template<
    typename Value_Type,
    typename Cmp_Fn = std::less<Value_Type>,
    typename Tag = pairing_heap_tag,
    typename Allocator = std::allocator<char> >
class priority_queue;
*/
#include <ext/pb_ds/priority_queue.hpp>
using __gnu_pbds::priority_queue;
// q.erase(it);
```

```
// g.modifv(it, val);
// g.join(ohter); other will be cleared
1.8.2 Tree
find by order(k): 第k小,从0开始。
#include <ext/pb_ds/assoc_container.hpp>
using namespace ___gnu_pbds;
template <class T, class U = null_type, class Comp =

    std::less<T>>

using Tree =
 tree<T, U, Comp, rb_tree_tag,
 1.8.3 HashTable
#include <ext/pb_ds/assoc_container.hpp>
const int RANDOM =
std::chrono::high_resolution_clock::
now().time_since_epoch().count();
struct CHash {
 const uint64_t C = LL(4e18 * acos(0)) | 71;
 LL operator()(LL x) const { return __builtin_bswap64((x ^
 \hookrightarrow RANDOM) * C); }
using HashTable = __qnu_pbds::qp_hash_table<LL, int, CHash>;
       模拟退火
1.9
LL ans = 1e18;
while ((double)clock() / CLOCKS_PER_SEC < 0.98) {</pre>
 for (int i = 0; i < m; i++) {
   c[i] = rnq() & 1;
```

```
LL ans = 1e18;
while ((double)clock() / CLOCKS_PER_SEC < 0.98) {
    for (int i = 0; i < m; i++) {
        c[i] = rng() & 1;
    }
    LL now = cal();
    ans = std::min(ans, now);
    double t = 1e9, coef = 0.99;
    while (t > 0.1) {
        int i = rng() % m;
        c[i] ^= 1;
        LL x = cal();
        if (exp((now - x) / t) > randDouble()) {
            now = x;
            ans = std::min(ans, x);
        } else {
            c[i] ^= 1;
        }
        t *= coef;
```

```
}
```

1.10 开栈

```
int _size = 256 << 20;  // 256MB
char *p = (char *)malloc(_size) + _size;
__asm__("movl %0,%%esp\n" : : "r"(p));

// linux
#include <sys/resource.h>
void increase_stack_size() {
   const rlim_t ks = 64 * 1024 * 1024;
   struct rlimit rl;
   int res = getrlimit(RLIMIT_STACK, &rl);
   if (res == 0) {
      if (rl.rlim_cur < ks) {
        rl.rlim_cur = ks;
        res = setrlimit(RLIMIT_STACK, &rl);
    }
   }
}</pre>
```

Data Structures (2)

2.1 Line Container

```
struct Line {
 mutable LL k, m, p;
 bool operator<(const Line& 0) const { return k < 0.k; }</pre>
 bool operator<(LL x) const { return p < x; }</pre>
};
struct LineContainer : std::multiset<Line, std::less<>>> {
 // (for doubles, use INF = 1/.0, div(a,b) = a/b)
 static const LL INF = LLONG_MAX;
 LL div(LL a, LL b) { // floored division
   return a / b - ((a ^ b) < 0 && a % b);
 bool isect(iterator x, iterator y) {
   if (y == end()) return x -> p = INF, \theta;
   if (x->k == y->k)
     x->p = x->m > y->m ? INF : -INF;
     x->p = div(v->m - x->m, x->k - v->k);
    return x->p >= y->p;
```

```
void add(LL k, LL m) {
    auto z = insert(\{k, m, \theta\}), y = z++, x = y;
    while (isect(y, z)) z = erase(z);
    if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
    while ((y = x) != begin() \&\& (--x)->p >= y->p) isect(x,
    \hookrightarrow erase(y));
  LL query(LL x) {
    assert(!emptv());
    auto l = *lower_bound(x);
    return l.k * x + l.m;
 }
};
```

Lichao

```
struct Line {
 int k:
 LL b;
 LL f(int x) {
    return 1LL * k * x + b;
 }
} t[N << 2];</pre>
#define ls o << 1
#define rs o << 1 | 1
void ins(int o, int l, int r, Line x) {
 int m = l + r >> 1;
 bool lv = x.f(l) > t[o].f(l), mv = x.f(m) > t[o].f(m), rv =
  \hookrightarrow x.f(r) > t[o].f(r);
  if (mv) std::swap(x, t[o]);
  if (lv == rv || l == r) return:
  lv != mv ? ins(ls, l, m, x) : ins(rs, m + 1, r, x);
LL ask(int o, int l, int r, int x) {
  int m = l + r >> 1;
  if (x == m) return t[o].f(x);
  return std::max(t[o].f(x), x < m ? ask(ls, l, m, x) :
  \hookrightarrow ask(rs, m + 1, r, x));
}
```

Scapegoat Tree

```
#define ls ch[0]
#define rs ch[1]
struct Node {
 int ch[2], val, siz;
} t[N]:
void pushup(int o) {
 t[o].siz = t[t[o].ls].siz + t[t[o].rs].siz + 1;
```

```
}
bool bad(int o) {
 return t[o].siz * 0.73 < std::max(t[t[o].ls].siz,
 \hookrightarrow t[t[o].rs].siz);
int a[N], top, cnt;
void dfs(int x) {
 if (!x) return;
  dfs(t[x].ls), a[++top] = x, dfs(t[x].rs);
int build(int l, int r) {
 if (l > r) return 0;
 int m = l + r >> 1, o = a[m];
 t[o].ls = build(l, m - 1), t[o].rs = build(m + 1, r);
 pushup(o);
 return o:
void insert(int &root, int x) {
 int p = ++cnt, o;
  t[p] = \{\{0, 0\}, x, 1\};
 if (!root) {
   root = p; return;
  o = root, top = 0;
  for (;;) {
   a[++top] = o, t[o].siz++;
   int &v = t[o].ch[x > t[o].val];
   if (!v) {
      v = p; break;
   }
   o = v;
  for (int i = 1; i <= top; i++) {</pre>
    if (bad(a[i])) {
     int &o = i > 1 ? t[a[i - 1]].ch[a[i] == t[a[i - 1]].rs]
      top = 0, dfs(0), 0 = build(1, top);
      break;
2.4 LCT
struct LCT {
 int ch[N][2], fa[N];
 bool rev[N];
```

```
bool nrt(int o) { return fa[o] && (ch[fa[o]][0] == o ||
\hookrightarrow ch[fa[o]][1] == o); }
int dir(int o) { return ch[fa[o]][1] == o; }
```

```
void sch(int o, int d, int x) {
  ch[o][d] = x;
  if (x) fa[x] = 0:
void rotate(int o) {
  int k = dir(o), p = fa[o];
  fa[o] = fa[p];
  if (nrt(p)) ch[fa[o]][dir(p)] = o;
  sch(p, k, ch[o][!k]), sch(o, !k, p);
  pushup(p);
  pushup(o);
}
void push(int o) {
  if (nrt(o)) push(fa[o]);
  pushdown(o);
void splay(int o) {
  for (push(o); nrt(o); rotate(o)) {
   if (nrt(fa[o])) {
      rotate(dir(fa[o]) == dir(o) ? fa[o] : o);
   }
 }
  pushup(o);
void access(int o) {
  for (int x = 0, i = 0; i; i = fa[x = i]) {
    splay(i), ch[i][1] = x, pushup(i);
  splay(o);
void evert(int o) { access(o), reverse(o), pushdown(o); }
void expose(int x, int y) { evert(x), access(y); }
bool link(int x, int y) {
  if (x == y) return false;
  expose(x, v):
  if (fa[x]) return false;
  fa[x] = y;
  return true;
bool cut(int x, int y) {
  expose(x, y);
  if (fa[x] == y \&\& !ch[x][0] \&\& !ch[x][1] \&\& !ch[y][1]) {
    fa[x] = ch[y][0] = 0;
    pushup(y);
    return true:
  return false:
void pushup(int o) {}
```

```
void reverse(int o) {
    rev[o] ^= 1;
    std::swap(ch[o][0], ch[o][1]);
}
void pushdown(int o) {
    if (rev[o]) {
        if (ch[o][0]) reverse(ch[o][0]);
        if (ch[o][1]) reverse(ch[o][1]);
        rev[o] = false;
    }
}
} lct;
```

2.5 Top Tree

对于基于点的 Toptree, 和 LCT 差不多用就行了。

对于带边信息的 Toptree,按照下面的 link 函数来连边。link 时建立的储存边信息的 base cluster **永远不会**被 pushup 到。而修改边 (u,v) 的信息时,执行 u->evert(), v->access() 此时 u == v->ls, e == u->rs。

对于左右儿子是空的情况,需要格外小心!

根据实战经验, 开内存池对于 Toptree 几乎没有优化效果, 所以放心大胆直接 new。

```
#define ls ch[0]
#define rs ch[1]
#define ms ch[2]
#define R(x) static cast<RakeTree *>(x)
#define C(x) static cast<CompressTree *>(x)
#define G(x, y, z) (x ? x->y : z)
struct SplayTree {
 using Node = SplayTree;
 Node *ch[3] = \{\}, *fa = 0;
 bool nrt() const { return fa && (fa->ls == this || fa->rs ==

    this); }

 int dir() const { return fa->rs == this; }
 void sch(int d, Node *x) {
   ch[d] = x;
   if (x) x->fa = this:
 }
 void rotate() {
   Node *p = fa;
   int k = dir();
   fa = p -> fa;
   if (fa) fa->ch[fa->ms == p ? 2 : p->dir()] = this;
   p->sch(k, ch[!k]), sch(!k, p);
   p->pushup();
```

```
pushup();
  void pull() {
   if (nrt()) fa->pull();
   pushdown();
  void splay() {
    for (pull(); nrt(); rotate()) {
      if (fa->nrt()) {
        (dir() == fa->dir() ? fa : this)->rotate();
     }
   }
    pushup();
  virtual ~SplavTree() {}
  virtual void pushup() {}
  virtual void pushdown() {}
};
struct RakeTree : SplayTree {
  void pushup();
  void pushdown();
};
struct CompressTree : SplayTree {
  void access() {
    if (splay(), rs) {
      auto r = new RakeTree;
      r\rightarrow sch(0, ms), r\rightarrow sch(2, rs), r\rightarrow pushup();
      rs = 0, sch(2, r), pushup();
    for (; fa; rotate()) {
      fa->splav():
      auto m = fa, p = m->fa;
      p->splay(), m->pushdown();
      if (p->rs) {
        m->sch(2, p->rs), m->pushup();
      } else {
        if (!m->ls) {
          p->sch(2, m->rs);
        } else if (!m->rs) {
          p->sch(2, m->ls);
        } else {
          auto x = m->ls;
          x->fa = 0;
          while (x->pushdown(), x->rs) x = x->rs;
```

```
x \rightarrow splay(), p \rightarrow sch(2, x);
          x \rightarrow sch(1, m \rightarrow rs), x \rightarrow pushup();
        // delete m;
      p->sch(1, this), pushdown();
    pushup();
  void evert() { access(), reverse(), pushdown(); }
  bool rev = false:
  void reverse() {
    rev ^= 1, std::swap(ls, rs);
    // [WARNING] remember to reverse the information
  void pushdown() {
    if (rev) {
      if (ls) C(ls)->reverse();
      if (rs) C(rs)->reverse();
      rev = false;
   }
 }
  void pushup() {}
};
CompressTree *link(CompressTree *x, CompressTree *y, int len)
<> {
  x->access(), y->evert();
  auto e = new CompressTree; // e is the edge
  // record edge information here
  x - sch(1, y), y - sch(0, e);
  y->pushup(), x->pushup();
  return x;
        Tree Block
2.6
int siz[N], bot[N], bel[N], tot;
bool key[N];
int B; // sqrt(n) * 1.5
struct Block {
  int top, bot;
} b[N];
```

```
void build(int x) { // 0->1, build(0)
  static int q[N], r:
  auto add = [&](int d) {
   int o = tot++;
   b[o] = \{x, d\};
   for (int i = 1; i <= r; i++) {</pre>
     int u = q[i];
     bel[u] = o:
     if (key[u]) continue;
     for (int v : g[u]) q[++r] = v;
   }
 };
  int s = 0, c = 0;
  for (int y : q[x]) {
   build(v);
   s += siz[y];
   if (bot[v]) {
     C++;
     bot[x] = bot[y];
   }-
  }
  if (1 + s >= B || c > 1 || !x) {
   std::sort(q[x].begin(), q[x].end(),
             [](int i, int j) { return siz[i] < siz[j]; });
   siz[x] = 1:
   bot[x] = x;
   key[x] = true;
   s = c = r = 0;
   for (int y : q[x]) {
     if (c && bot[y] || siz[y] + s >= B) {
       add(c);
       s = c = r = 0;
     c |= bot[v];
     s += siz[y];
     q[++r] = y;
   add(c):
 } else {
   siz[x] = 1 + s;
 }
}
2.7 Cartesian Tree
笛卡尔树, 最小值为根, p \neq i 的父亲。
```

```
std::vector<int> p(n), s(n);
for (int i = 0, t = 0; i < n; i++) {</pre>
 int x = -1;
```

```
while (t && a[s[t - 1]] > a[i]) x = s[--t];
p[i] = t ? s[t - 1] : i;
s[t++] = i;
if (x != -1) p[x] = i;
```

2.8 WBLT

```
void rotate(int o, int k) {
 int x = t[o].ch[k];
  pushdown(x);
  t[o].ch[k] = t[x].ch[k];
  t[x].ch[k] = t[x].ch[!k];
  t[x].ch[!k] = t[o].ch[!k];
  t[o].ch[!k] = x;
 pushup(x);
void maintain(int o) {
 if (t[0].siz <= A + 1) return;
  pushdown(o);
 if (t[t[o].ls].siz * A < t[o].siz) {
   rotate(o, 1);
   // maintain(t[o].ls);
  if (t[t[o].rs].siz * A < t[o].siz) {
   rotate(o, 0);
   // maintain(t[o].rs);
 }-
}
```

用于维护区间的乱搞写法,把上面 maintain 的注释去掉。

```
void split(int o, int k) {
 if (t[t[0].ls].siz == k) return;
 pushdown(o);
 if (t[t[0].ls].siz > k) {
   split(t[o].ls, k);
   rotate(o, 0);
 } else {
   split(t[o].rs, k - t[t[o].ls].siz);
   rotate(o, 1);
 }
void split(int o, int k, int &x, int &y) {
 if (k <= 0) {
  x = 0, y = 0;
 } else if (k >= t[o].siz) {
  x = 0, y = 0;
 } else {
   split(o, k);
   x = t[o].ls, y = t[o].rs;
```

```
}
int merge(int o, int x, int v) {
 if (x && y) {
   t[o].ls = x, t[o].rs = y;
   pushup(o);
   maintain(o);
   return o;
 return x ? (maintain(x), x) : (maintain(y), y);
split(r1 = root, r, b, c);
split(r2 = b, l - 1, a, b);
b = merge(r2, a, b);
root = merge(r1, b, c);
```

Strings (3)

3.1 **SAM**

后缀树 反串建 SAM 后的 parent tree 相当于原串后缀树,后缀树可 以接受原串的所有子串。对于字典序 K 小子串问题, 可以用后缀树 + 二分 来做。

DAG SAM 的自动机部分是 DAG, 也可以接受原串的所有子串。上 面的问题使用该 DAG 求的话需要进行 DAG 链剖分才能 $O(\log)$ 询问。另 外, 自动机 +parent 树边合起来起来也是 DAG, 有些题可以在上面操作。

染色 暴力向上跳类似 access 区间染色, 树剖之后可以转换成珂朵莉树。 广义 SAM 暴力跳 (不经过重复点) 的复杂度是 $O(n\sqrt{n})$, 这个有时候很 好用, 但是还是要多想一下区间染色等等, 每个串经过的点相当于虚树, 也 可以考虑一下。

自底向上合并 可以在 parent 树上自底向上合并(启发式或者线段 树),还要注意到 len 是自底向上递减的,可能存在一些性质。后缀数组 h 从大到小合并也类似,这个可以用并查集维护。

```
constexpr int N(2e6 + 5);
std::array<int, 26> ch[N];
int len[N], fa[N], cnt;
// fa[0] = -1, cnt = 0, ch[0].fill(0)
```

```
int ins(int last, int x) {
 if (ch[last][x] && len[last] + 1 == len[ch[last][x]]) return
 \hookrightarrow ch[last][x]:
 int p = last, np = ++cnt, q;
 len[np] = len[p] + 1;
 ch[np].fill(0);
  for (; \sim p \&\& !ch[p][x]; p = fa[p]) ch[p][x] = np;
 if (p == -1) {
   fa[np] = 0;
 } else if (len[q = ch[p][x]] == len[p] + 1) {
   fa[np] = q;
 } else {
   int nq = p == last ? np : ++cnt;
   len[nq] = len[p] + 1;
   ch[nq].fill(0);
   ch[na] = ch[a]:
   for (; \sim p \&\& ch[p][x] == q; p = fa[p]) ch[p][x] = nq;
   fa[np] = nq;
   fa[nq] = fa[q];
   fa[q] = nq;
 }
 return np;
```

3.1.1 DAG 链剖分

预处理 注意 pos: 需要在 ins 的时候把 clone 节点的 pos 更新! dfs 序从 0 开始 (0 的 dfs 序是 0),同一条重链上的 pos 是连续的,ht 是 到重链底端的距离,从零开始。

```
int in[N], id[N], dfn, pos[N], ht[N];
void dag_hld() {
 std::vector<LL> f(cnt + 1, 1), g(cnt + 1, 1);
 std::vector<int> p(cnt + 1);
 std::iota(p.begin(), p.end(), 0);
 std::sort(p.begin(), p.end(), [&](int i, int j) { return
 \hookrightarrow len[i] < len[j]; });
 for (int i : p) {
   for (int j = 0; j < 26; j++) {
     if (ch[i][j]) f[ch[i][j]] += f[i];
   }
 }
 for (int i = cnt; i >= 0; i--) {
   int x = p[i];
   for (int j = 0; j < 26; j++) {
     if (ch[x][j]) q[x] += q[ch[x][j]];
   }
 std::function<void(int)> dfs = [&](int x) {
   in[x] = dfn++;
   id[in[x]] = x;
```

```
for (int i = 0; i < 26; i++) {</pre>
     int y = ch[x][i];
     if (y \&\& 2 * f[x] > f[y] \&\& 2 * q[y] > q[x]) {
        dfs(y);
        pos[x] = pos[y] - 1;
       ht[x] = ht[y] + 1;
     }
 };
 for (int i : p) if (!i || !in[i]) dfs(i);
定位 定位 S[l,r)。
int o = 0, match = 0;
while (l < r) {
 o = ch[o][s[l] - 'a'];
 if (!o) break;
 int k = std::min({ht[o] + 1, r - l, sa.lcp(l, pos[o])});
 // interval [in[o], in[o] + k)
 l += k;
 match += k;
 o = id[in[o] + k - 1];
```

3.2 Suffix Array

3.2.1 倍增

h 表示排名为 i 和排名 i-1 的后缀的 lcp 长度。 struct SuffixArray { std::vector<int> p, r, h; template <class T> SuffixArray(const T &s) : p(s.size()), r(s.size()), \hookrightarrow h(s.size() - 1) { int n = s.size(), m = 1; std::iota(p.begin(), p.end(), 0); std::sort(p.begin(), p.end(), [&](int i, int j) { return \hookrightarrow s[i] < s[j]; }); r[p[0]] = 0;for (int i = 1; i < n; i++) {</pre> r[p[i]] = s[p[i]] != s[p[i-1]] ? m++ : m - 1;std::vector<int> x(n), c(n); for (int k = 1; m < n; k <<= 1) {</pre> for (int i = 0; i < k; i++) x[t++] = n - k + i; for (int i : p) if (i >= k) x[t++] = i - k; for (int i = 0; i < m; i++) c[i] = 0;</pre>

3.2.2 SAIS

```
std::vector<int> suffixSort(const std::vector<int> &s, int k)
← {
#define IM(x) (t[x] && x && !t[x - 1])
 int n = s.size();
  std::vector<bool> t(n);
  std::vector<int> b(k), l(k), r(k), p(n, -1), p1;
 t.back() = true;
 for (int i = n - 2; i >= 0; i--) {
   t[i] = s[i] < s[i + 1] \mid | t[i + 1] \&\& s[i] == s[i + 1];
   if (IM(i + 1)) p1.push_back(i + 1);
  std::reverse(p1.begin(), p1.end());
 int n1 = p1.size();
 for (int i = 0; i < n; i++) b[s[i]]++;</pre>
 for (int i = 0, sum = 0; i < k; i++)
   sum += b[i], r[i] = sum, l[i] = sum - b[i];
  std::vector<int> s1(n1), a(n1);
 b = r;
  for (int i = n1 - 1; i >= 0; i--) p[--b[s[p1[i]]]] = p1[i];
 b = 1;
 for (int i = 0; i < n; i++)</pre>
   if (int j = p[i] - 1; j \ge 0 \&\& !t[j]) p[b[s[j]] ++] = j;
 b = r;
```

```
for (int i = n - 1; i >= 0; i--)
   if (int j = p[i] - 1; j >= 0 && t[j]) p[--b[s[j]]] = j;
 for (int i = 0, j = 0; i < n; i++)
   if (IM(p[i])) a[j++] = p[i];
 int ch = 0;
 for (int i = 0, pr = -1; i < n1; i++) {
   int pos = a[i], j = 0;
   for (;;) {
     if (pr == -1 || s[pos + j] != s[pr + j] || t[pos + j] !=
     \hookrightarrow t[pr + j]) {
       pr = pos, ch++;
       break;
     } else if (j && (IM(pos + j) || IM(pr + j)))
       break;
     j++;
   p[pos] = ch - 1;
 for (int i = 0; i < n1; i++) s1[i] = p[p1[i]];</pre>
 if (ch != n1) {
   a = suffixSort(s1, ch);
 } else {
   for (int i = 0; i < n1; i++) a[s1[i]] = i;
 }
 b = r;
 std::fill_n(p.begin(), n, -1);
 for (int i = n1 - 1; i >= 0; i--) p[--b[s[p1[a[i]]]]] =

    p1[a[i]];

 for (int i = 0; i < n; i++)</pre>
   if (int j = p[i] - 1; j \ge 0 \&\& !t[j]) p[l[s[j]] ++] = j;
 for (int i = n - 1; i >= 0; i--)
   if (int j = p[i] - 1; j >= 0 \&\& t[j]) p[--r[s[j]]] = j;
 return n:
#undef IM
struct SuffixArray {
 std::vector<int> p, r, h;
 SuffixArray(const std::string &s)
   : p(suffixSort({s.data(), s.data() + s.size() + 1}, 128)),
     r(s.size()), h(s.size() - 1) {
   p.erase(p.begin());
   int n = s.size();
   for (int i = 0; i < n; i++) r[p[i]] = i;</pre>
   for (int i = 0, k = 0; i < n; i++) {
     if (k) k--:
     if (!r[i]) continue;
```

3.3 Palindrome Tree

```
template <int N, int A>
struct PAM {
  std::array<int, A> ch[N];
 int fa[N], len[N], cnt;
 char s[N * 2];
 int l, r, pl, pr;
 // std::array<int, A> fch[N];
 // int diff[N], slink[N];
 // std::vector<std::arrav<int, 3>> rec;
  void init(int n) {
   fa[0] = fa[1] = cnt = 1, len[1] = -1;
   ch[0].fill(0), ch[1].fill(0);
   l = n + 1, r = n, s[l] = s[r] = -1;
   pl = pr = 0;
   // fch[0].fill(1), fch[1].fill(1);
   // rec.clear():
  template <int D>
  int ins(char *now, int p) {
    auto jmp = [&](int x) {
     // while (now[D * ~len[x]] != *now)
     // x = now[D * ~len[fa[x]]] == *now ? fa[x] :
     \hookrightarrow slink[x];
     // return now[D * ~len[x]] != *now ? fch[x][*now] : x;
     for (: now[D * \sim len[x]] != *now: x = fa[x]) :
     return x;
   };
    int x = *now;
   if (!ch[p = jmp(p)][x]) {
     // rec.back()[2] = p;
     int q = ++cnt;
     ch[q].fill(0);
     len[q] = len[p] + 2;
     fa[q] = ch[jmp(fa[p])][x];
```

```
ch[p][x] = a:
     // fch[a] = fch[fa[a]];
     // fch[q][now[D * -len[fa[q]]]] = fa[q];
     // diff[q] = len[q] - len[fa[q]];
     // slink[q] = diff[q] == diff[fa[q]] ? slink[fa[q]] :
     \hookrightarrow fa[q];
   return ch[p][x];
 void push_back(char x) {
   // rec.push_back({pl << 1 | 1, pr, -1});
   s[++r] = x, s[r + 1] = -1;
   pr = ins<1>(s + r, pr);
   if (len[pr] == r - l + 1) pl = pr;
 void push front(char x) {
   // rec.push_back({pl << 1, pr, -1});
   s[--1] = x, s[1 - 1] = -1;
   pl = ins<-1>(s + l, pl);
   if (len[pl] == r - l + 1) pr = pl;
 // void undo() { // require fch or slink jump
 // auto [u, v, p] = rec.back();
 // rec.pop back();
 // pl = u >> 1, pr = v;
 // int x;
 // if (u & 1) {
 // x = s[r], s[r--] = -1;
 // } else {
 // x = s[l], s[l++] = -1;
 // }
 // if (p != -1) {
 // ch[p][x] = 0, cnt--;
 // }
 // }
};
```

节点: 原串的 一个本质不同的回文子串; 长度 len[o]: 回文子串长度; 转移 边 ch[o][x]: 两边同时加字符 x; 失配边 fa[o]: 最长回文后缀,到根的路径是所有回文后缀。有两个根,奇根 1 和偶根 0,fa[0] = 1,len[1] = -1。

本质不同回文子串数:除根以外的点数;回文子串出现次数:失配树上对应 节点子树大小 siz[o];奇偶性:回文树边两端点 len 奇偶性相同,但失配树 边不是。

不超过一半的最长回文后缀对应节点 f[o]:

回文串的回文后 (前) 缀与其 Border ——对应。某个串的回文后 (前) 缀长 度可以拆分为 $O(\log n)$ 个等差数列。

设 v 为回文串 u 的最长回文严格前 (后) 缀,若 $2|v| \ge |u|$,那么 v 只会在 u 中恰好匹配两次,分别作为前缀和后缀。

用 slink[0] 来表示上一个等差数列的开头,一直跳 slink 最多会跳 log 次,可以将插入复杂度变为单次最坏 O(log n),在回溯操作时保证了复杂 度最坏 O(n log n)。

应用:区间本质不同字串数

```
for (int i = 1; i <= n; i++) {
  int x = pos[i];
  root[i] = root[i - 1];
  for (; x > 1; x = slink[x]) {
    int j = ask(1, 1, cnt, in[x], out[x]);
    if (j) {
      ins(root[i], 1, n, j - len[x] + 1, -1);
    }
    ins(root[i], 1, n, i - len[slink[x]] - diff[x] + 1, 1);
  }
  update(1, 1, cnt, in[pos[i]], i);
}
```

相等问题转化为回文问题 (1) 把一个串 S 分割成偶数段 s_1,s_2,\ldots,s_k ,且 $s_i=s_{k-i+1}$,求方案数,设 $S'=S_1S_nS_2S_{n-1}\ldots$ 问题转化为求 S' 偶回文划分的方案数;(2) 给定两个串 S 和 T,翻转 S 中最少的区间使得两串相等,设 $S'=S_1T_1S_2T_2\ldots$ 转化为 S' 的最少偶回文划分。

3.4 Manacher

```
std::vector<int> d1(n);
for (int i = 0, l = 0, r = -1; i < n; i++) {
  int k = (i > r) ? 1 : std::min(d1[l + r - i], r - i);
  while (0 <= i - k && i + k < n && s[i - k] == s[i + k]) {
     k++;
  }
  d1[i] = k--;
  if (i + k > r) {
     l = i - k;
     r = i + k;
}
```

3.5 Z-function

对于个长度为 n 的字符串 s。定义函数 z[i] 表示 s 和 s[i,n-1] (即以 s[i] 开头的后缀) 的最长公共前缀 (LCP) 的长度。z 被称为 s 的 Z 函数。特别地、z[0]=0。

```
vector<int> z_function(string s) {
  int n = (int)s.length();
  vector<int> z(n);
  for (int i = 1, l = 0, r = 0; i < n; ++i) {
    if (i <= r && z[i - l] < r - i + 1) {
        z[i] = z[i - l];
    } else {
        z[i] = max(0, r - i + 1);
        while (i + z[i] < n && s[z[i]] == s[i + z[i]]) ++z[i];
    }
    if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
    }
    return z;
}
```

3.6 Min Rotation

```
int minRotation(std::string s) {
  int a = 0, n = s.size();
  s += s;
  for (int b = 0; b < n; b++) {
    for (int k = 0; k < n; k++) {
      if (a + k == b || s[a + k] < s[b + k]) {
        b += std::max(0, k - 1);
        break;
    }
  if (s[a + k] > s[b + k]) {
      a = b;
  }
}
```

```
break;
}
}
return a; // (a, a + n)
}
```

3.7 Lyndon Word

一个字符串 s 是一个 Lyndon Word,当且仅当 s 是其所有后缀中最小的字符串。

Lyndon 分解: 把字符串 s 分成若干部分 $s = s_1 s_2 s_3 \cdots s_m$, 使得每个 s_i 都是 Lyndon Word, 且 $\forall 1 < i < m : s_i > s_{i+1}$, 这种划分存在且唯一。

```
// Decom s to [0,i_1),[i_1,i_2),\ldots,[i_k,n) for (int i = 0; i < n;) {
   int j = i, k = i + 1;
   while (k < n && s[j] <= s[k])
        j = s[j] != s[k++] ? i : j + 1;
   while (i <= j) res.push_back(i += k - j);
```

$\underline{\mathrm{Math}}(4)$

4.1 Number Theory

4.1.1 Fast Eratosthenes

```
std::vector<int> sieve(int n) { // 1e9->1.1s
 if (n < 2) return {};
 constexpr int S = 31623; // S*S >= n
 std::array<bool, S + 1> np{};
 std::vector<int> pr = {2};
  pr.reserve(int(n / log(n) * 1.1));
 std::vector<PII> cp:
 for (int i = 3; i <= S; i += 2)
   if (!np[i]) {
     cp.push_back(\{i, i * i / 2\});
     for (int j = i * i; j <= S; j += 2 * i) np[j] = 1;
 for (int l = 1, r = n + 1 >> 1; l <= r; l += S) {
    std::array<bool, S> b{};
   for (auto &[p, k] : cp)
     for (int i = k; i < S + l; k = i += p) b[i - l] = 1;
    for (int i = 0; i < S && i < r - l; i++)</pre>
```

```
if (!b[i]) pr.push_back((l + i) * 2 + 1);
}
return pr;
```

4.1.2 欧拉定理

$$a^b \equiv \begin{cases} a^b, & b < \varphi(m), \\ a^{(b \bmod \varphi(m)) + \varphi(m)}, & b \ge \varphi(m). \end{cases} \pmod{m}$$

4.1.3 GCD

```
LL exgcd(LL a, LL b, LL &x, LL &y) {
 if (!b) return x = 1, y = 0, a;
 LL g = exgcd(b, a \% b, y, x);
 y -= a / b * x;
 return q;
LL inv(LL a, LL p) {
 LL x, y;
 exqcd(a, p, x, y);
 return (x \% p + p) \% p;
u128 卡常版本
u128 ctz(u128 x) {
 if (u64(x) == 0) return __builtin_ctzll(u64(x >> 64)) + 64;
 return __builtin_ctzll(u64(x));
}
u128 gcd(u128 a, u128 b) {
 if (b == 0) return a;
 int shift = ctz(a | b);
 b >>= ctz(b);
  while (a) {
   a >>= ctz(a);
   if (a < b) std::swap(a, b);
   a -= b:
 return b << shift:
O(M) 预处理, O(1) 查询的快速 GCD (其实挺慢, 不一定比得过上面那
constexpr int N(5005), B(1000), M(B * B); // M 为值域
int a[N], b[N], n, ans;
std::bitset<M + 1> np;
int pr[M + 5], pn;
std::array<int, 3> vs[M + 5];
int gs[B + 5][B + 5];
```

```
void init() {
 vs[1].fill(1), np[1] = 1;
 for (int i = 2; i <= M; i++) {</pre>
   if (!np[i]) pr[++pn] = i, vs[i] = {1, 1, i};
   for (int j = 1; pr[j] * i <= M; j++) {</pre>
     np[i * pr[j]] = 1;
     auto &v = vs[i * pr[j]];
     v = {vs[i][0] * pr[j], vs[i][1], vs[i][2]};
     if (v[1] < v[0]) std::swap(v[1], v[0]);
     if (v[2] < v[1]) std::swap(v[2], v[1]);
     if (i % pr[j] == 0) break;
  for (int i = 1; i <= B; i++) {
   qs[0][i] = qs[i][0] = i;
   for (int i = 1; i <= B; i++) qs[i][i] = qs[i % i][i];
int qcd(int a, int b) {
 int q = 1:
 for (int i = 0, x; i < 3; i++) {
   x = vs[a][i] > B
       ? b % vs[a][i] ? 1 : vs[a][i]
       : qs[vs[a][i]][b % vs[a][i]];
   b /= x, q *= x;
 return q;
4.1.4 CRT
```

```
解同余方程 x \equiv a \pmod{m}, x \equiv b \pmod{n}。如果 |a| < m, |b| < n 则 0 \le x < \text{lcm}(m, n). Assumes mn < 2^{62}.
```

```
LL crt(LL a, LL m, LL b, LL n) {
   if (n > m) std::swap(a, b), std::swap(m, n);
   LL x, y, g = exgcd(m, n, x, y);
   assert((a - b) % g == 0); // else no solution
   x = (b - a) % n * x % n / g * m + a;
   return x < 0 ? x + m * n / g : x;
}
```

4.1.5 Kummer 定理

```
设 m,n 为正整数,p 为素数,则 \binom{n+m}{n} (质因数分解后)p 的幂次等于 m+n 在 p 进制下的进位次数。特别地, \binom{n+m}{n}\equiv 1\pmod 2 等价于 n & m=0。
```

4.1.6 Lucas

```
struct BinP {
 int p, a, m; // p^a <= 2e7
 std::vector<int> fac, ifac;
 int delta:
 using ULL = uint64_t;
 using u128 =  uint128 t;
 ULL im, ip;
  BinP(int _p, int _q) : p(_p), q(_q), m(1) {
   assert(_q > 0);
    while (_q--) m *= p;
    im = ULL(-1) / m + 1;
   ip = ULL(-1) / p + 1;
    fac.resize(m);
   ifac.resize(m);
    fac[0] = fac[1] = 1:
    for (int i = 2; i < m; i++) {</pre>
     fac[i] = i \% p ? mod(1 L L * fac[i - 1] * i) : fac[i - 1];
   ifac[m - 1] = fpow(fac[m - 1], m / p * (p - 1) - 1);
    for (int i = m - 1; i; i--) {
     ifac[i - 1] = i % p ? mod(1LL * ifac[i] * i) : ifac[i];
   delta = p == 2 \&\& q >= 3 ? 1 : m - 1;
 LL mod(ULL n) {
   LL r = n - ULL((u128(n) * im) >> 64) * m;
   return r < 0 ? r + m : r;
 int fpow(int a, LL k) {
   int r = 1;
   for (; k; k >>= 1, a = mod(1LL * a * a)) {
     if (k & 1) r = mod(1LL * r * a);
   return r;
 LL div_p(ULL n) {
   ULL x = (u128(n) * ip) >> 64;
   LL r = n - x * p;
   return r < 0 ? x - 1 : x;
  std::pair<LL, int> quo_p(ULL n) {
   ULL x = (v128(n) * ip) >> 64;
   LL r = n - x * p;
   if (r < 0) r += m, x--;
    return {LL(x), r};
```

```
}
 LL lucas(LL n, LL m) {
   int res = 1;
    while (n) {
      int n0, m0;
      std::tie(n, n0) = quo_p(n);
      std::tie(m, m0) = quo_p(m);
      if (n0 < m0) return 0;
      res = mod(1LL * res * fac[n0]);
      res = mod(1LL * res * ifac[m0]);
      res = mod(1LL * res * ifac[n0 - m0]);
   return res;
 LL bin(LL n, LL m) {
   if (n < m || n < 0 || m < 0) return 0;
   if (q == 1) return lucas(n, m);
   LL r = n - m;
   int e0 = 0, eq = 0, i = 0;
   int res = 1;
    while (n) {
      res = mod(1LL * res * fac[mod(n)]);
      res = mod(1LL * res * ifac[mod(m)]);
      res = mod(1LL * res * ifac[mod(r)]);
      n = div p(n), m = div p(m), r = div p(r);
      int eps = n - m - r;
      e0 += eps;
      if (e0 >= q) return 0;
      if (++i >= q) eq += eps;
    res = mod(1LL * res * fpow(delta, eq));
   res = mod(1LL * res * fpow(p, e0));
    return res;
};
struct BinA {
 int mod: // <= 1e7</pre>
 std::vector<int> m;
  std::vector<LL> ims;
  std::vector<BinP> cs;
  BinA(LL x) : mod(x) {
   assert(1 <= x):
   for (int i = 2; i * i <= x; i++) {
      if (x % i == 0) {
       int i = 0. k = 1:
        while (x \% i == 0) x /= i, j++, k *= i;
        m.push_back(k);
```

```
cs.emplace back(i, i);
   }
    if (x != 1) {
      m.push_back(x);
      cs.emplace_back(x, 1);
    LL m0 = 1;
    for (int i = 0; i < m.size(); i++) {</pre>
      LL m1 = m[i];
      if (m0 < m1) std::swap(m0, m1);</pre>
      ims.push_back(inv(m0, m1));
      m0 *= m1:
   }
  LL bin(LL n, LL k) {
    if (mod == 1) return 0;
    LL r0 = 0, m0 = 1;
    for (int i = 0; i < m.size(); i++) {</pre>
      LL r1 = cs[i].bin(n, k), m1 = m[i], im = ims[i];
      if (m0 < m1) std::swap(r0, r1), std::swap(m0, m1);</pre>
      LL x = (r1 - r0) * im % m1;
      r0 += x * m0;
      m0 *= m1;
      if (r0 < 0) r0 += m0;
    return r0;
 }
};
```

4.1.7 O(1) 逆元

```
// online
template <int P>
struct Inv {
 static constexpr int B = 1024, M = B * B, N = M + 1;
 int l[N], r[N], y[N], inv[M * 2];
 Inv() {
   inv[1] = 1:
   for (int i = 2; i < M * 2; i++) {
     inv[i] = LL(P - P / i) * inv[P % i] % P;
   y[0] = 1;
   for (int i = 1; i < B; i++) {
     for (int j = i; j < B; j++) {</pre>
       int k = i * M / j;
       if (!y[k]) y[k] = j;
     }
   1[0] = 1;
```

```
for (int i = 1; i <= M; i++) l[i] = v[i] ?: l[i - 1];</pre>
    for (int i = M - 1; ~i; i--) r[i] = v[i] ?: r[i + 1];
    for (int i = 0; i <= M; i++) y[i] = std::min(l[i], r[i]);</pre>
 int operator()(int x) {
   if (x < M * 2) return inv[x];
   int k = 1 L L * x * M / P, j = 1 L L * y[k] * x % P;
   return LL(j < M * 2 ? inv[j] : P - inv[P - j]) * y[k] % P;</pre>
};
// offline
std::vector<int> inv(const std::vector<int> &a) {
 int n = a.size();
  std::vector<int> b(n + 1);
 b[n] = 1;
  for (int i = n; i; i--) b[i - 1] = 1 LL * b[i] * a[i - 1] %
  for (int i = 0, o = fpow(b[0]); i < n; i++) {
   b[i] = 1LL * o * b[i + 1] % P;
    o = 1LL * o * a[i] % P;
 }
 b.pop_back();
 return b;
```

4.2 Matrix

4.2.1 Determinant

4.2.2 Inverse

```
using M = std::vector<std::vector<int>>;
M inv(M a) {
#define REP(i, a, b) for (int i(a); i < (b); i++)
 int n = a.size();
 std::vector<int> p(n, -1), q(n, -1);
 REP(k, 0, n) {
   REP(i, k, n) if (p[k] == -1) REP(j, k, n) if (a[i][j]) {
     p[k] = i, q[k] = j; break;
   if (p[k] == -1) return {};
   std::swap(a[k], a[p[k]]);
   REP(i, 0, n) std::swap(a[i][k], a[i][q[k]]);
   if (!a[k][k]) return {};
   a[k][k] = fpow(a[k][k]);
   REP(i, 0, n) if (i != k) a[k][i] = 1LL * a[k][i] * a[k][k]
   REP(i, 0, n) if (i != k) REP(j, 0, n) if (j != k)
     a[i][j] = (a[i][j] + 1LL * (P - a[i][k]) * a[k][j]) % P;
   REP(i, 0, n)
     if (i != k) a[i][k] = 1LL * (P - a[i][k]) * a[k][k] % P;
 }
 for (int k = n - 1; k >= 0; k--) {
   std::swap(a[k], a[q[k]]);
   REP(i, 0, n) std::swap(a[i][k], a[i][p[k]]);
 }
 return a;
```

4.2.3 Char Poly

```
std::vector<Z> charPoly(std::vector<std::vector<Z>> a) {
 int n = a.size();
 for (int i = 0; i < n - 2; i++) {
   for (int i = j + 1; i < n; i++) {
     if (!a[i][j]) continue;
     std::swap(a[i], a[i + 1]);
     for (int k = 0; k < n; k++)</pre>
       std::swap(a[k][i], a[k][j + 1]);
     break:
   if (a[j + 1][j]) {
     auto inv = a[j + 1][j].inv();
     for (int i = j + 2; i < n; i++) {
       auto c = a[i][i] * inv:
       for (int k = 0; k < n; k++) a[i][k] -= a[i + 1][k] *
       for (int k = 0; k < n; k++) a[k][j + 1] += a[k][i] *</pre>
```

```
}
}
std::vector<std::vector<Z>> h(n + 1);
h[0] = \{1\};
for (int i = 0; i < n; i++) {</pre>
  Z prod = 1:
  h[i + 1].resize(h[i].size() + 1);
  for (int j = 0; j < h[i].size(); j++) {</pre>
    h[i + 1][j + 1] = h[i][j];
    h[i + 1][j] -= h[i][j] * a[i][i];
  for (int j = 0; j < i; j++) {</pre>
    prod *= a[i - j][i - j - 1];
    auto c = a[i - j - 1][i] * prod;
    for (int k = 0; k < h[i - i - 1].size(); k++)
      h[i + 1][k] = h[i - j - 1][k] * c;
}
return h[n];
```

4.2.4 Minor

```
求余子式 M_{i,j} (将第 i 行第 j 列划掉后的行列式), O(n^3)
M cal(M &a) {
 int n = a.size();
 assert(n && a[0].size() == n);
 M b(n, V(n * 2));
 for (int i = 0; i < n; i++) {
   std::copy(a[i].begin(), a[i].end(), b[i].begin());
   b[i][i + n] = 1;
  int cnt = 0, sqn = 1;
  for (int i = 0, t = 0; i < n && t < n; i++, t++) {
   for (int j = i + 1; j < n; j++) {
     while (b[j][t]) {
       int v = b[i][t] / b[i][t];
       if (v) for (int k = t; k < n * 2; k++) b[i][k] =</pre>
       \hookrightarrow (b[i][k] + LL(P - v) * b[j][k]) % P;
        b[i].swap(b[j]), sqn *= -1;
     }
   if (!b[i][t]) {
     i--;
     if (++cnt >= 2) return M(n, V(n));
 }
```

```
if (!cnt) {
  inc(sqn, P);
  for (int i = n - 1; i >= 0; i--) {
    sgn = 1LL * sgn * b[i][i] % P;
    for (int j = i + 1; j < n; j++) {</pre>
      int v = P - b[i][j];
      for (int k = n; k < n * 2; k++)
        b[i][k] = (b[i][k] + 1LL * v * b[i][k]) % P;
    int v = fpow(b[i][i]);
    for (int k = n; k < n * 2; k++)</pre>
      b[i][k] = 1LL * b[i][k] * v % P;
  M r(n, V(n));
  for (int i = 0; i < n; i++) {
    for (int i = 0; i < n; i++) {
      r[i][j] = 1LL * sqn * b[i][j + n] % P;
  }
  return r;
}
auto gauss = [&](M &a, V &p) {
  int r = -1:
  for (int i = 0, t = 0; i < n && t < n; i++, t++) {
    for (int i = i + 1; i < n; i++) {
      while (a[j][t]) {
        int v = a[i][t] / a[j][t];
        if (v) for (int k = t; k < n; k++) a[i][k] =</pre>
        \hookrightarrow (a[i][k] + LL(P - v) * a[j][k]) % P;
        a[i].swap(a[j]);
    if (!a[i][t]) i--, r = t;
  p[r] = 1;
  for (int i = n - 2, k; i >= 0; i--) {
    k = i < r ? i : i + 1;
    p[k] = 0;
    for (int j = k + 1; j < n; j++)
      p[k] = (p[k] + 1LL * p[j] * a[i][j]) % P;
    p[k] = LL(P - p[k]) * fpow(a[i][k]) % P;
  }
  return r;
};
M c(n, V(n)):
for (int i = 0; i < n; i++)</pre>
  for (int j = 0; j < n; j++)
```

```
c[i][j] = a[j][i];

V p(n), q(n);
int u = gauss(c, p), v = gauss(b, q);

a.erase(a.begin() + u);
for (auto &i : a) i.erase(i.begin() + v);

int res = det(a);
if (u + v & 1) res = P - res;

M r(n, V(n));
for (int i = 0; i < n; i++)
   for (int j = 0; j < n; j++)
    r[i][j] = 1LL * p[j] * q[i] % P * res % P;
return r;</pre>
```

4.3 Burnside

4.3.1 Burnside

设 A 和 B 为有限集合, X 为一些从 A 到 B 的映射组成的集合。G 是 A 上的置换群, 且 X 中的映射在 G 中的置换作用下封闭。X/G 表示 G 作用在 X 上产生的所有等价类的集合(若 X 中的两个映射经过 G 中的置换作用后相等,则它们在同一等价类中),则

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

其中 |S| 表示集合 S 中元素的个数,且

$$X^{g} = \{x | x \in X, q(x) = x\}$$

4.3.2 Pólya

在与 Burnside 引理相同的前置条件下, 若 X 为 ** 所有 ** 从 A 到 B 的 映射, 内容修改为

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |B|^{c(g)}$$

其中 c(q) 表示置换 q 能拆分成的不相交的循环置换的数量。

4.4 BM

对于 $n \ge k$, $\sum_{i=0}^k q_i a_{n-i} = 0$, 其中 $q_0 \ne 0$ 。数列 a_n 的生成函数为 A(x)。

上式左边看作卷积, 右边看作生成函数 P(x) 的 $n \ge k$ 时的系数。

$$Q(x)A(x) = P(x)$$

$$A(x) = \frac{P(x)}{Q(x)}$$

P(x) 为 k-1 次多项式, Q(x) 为 k 次多项式。

```
// usage: q = bm(a), p=(q*a).pre(b.size()-1), divAt(p,q,n);
using Polv = std::vector<int>;
Poly bm(Poly a) {
 Poly p = \{1\}, q = \{1\};
  int 1 = 0:
  for (int r = 1; r <= a.size(); r++) {</pre>
   int d = 0:
   for (int j = 0; j <= l; j++)</pre>
     d = (d + 1LL * a[r - 1 - j] * p[j]) % P;
    q.insert(q.begin(), 0);
    if (!d) continue;
    Polv t = p:
    if (q.size() > t.size()) t.resize(q.size());
    for (int i = 0; i < q.size(); i++)</pre>
      t[i] = (t[i] - 1LL * d * a[i]) % P;
    if (2 * l <= r - 1) {
      q = p;
      int od = fpow(d);
      for (int &x : q) x = 1LL * x * od % P;
     1 = r - 1:
   p.swap(t);
  assert((int)p.size() == l + 1);
  for (auto \&x : p) if (x < 0) x += P:
  return p;
int divAt(Polv p, Polv q, LL n) {
  for (; n; n >>= 1) {
   Polv r(a):
    for (int i = 1; i < r.size(); i += 2) r[i] = P - r[i];</pre>
   Polv u = p * r, v = a * r;
    p.clear():
    for (int i = n & 1; i < u.size(); i += 2)</pre>
   \hookrightarrow p.push_back(u[i]);
    for (int i = 0; i < q.size(); i++) q[i] = v[i * 2];</pre>
  return 1LL * p[0] * fpow(q[0]) % P:
```

4.5 LGV Lemma

设 G(V,E) 是一个 DAG,起点集 $A=\{a_1,\ldots,a_n\}\subseteq V$,终点集 $B=\{b_1,\ldots,b_n\}\subseteq V$ 。

记 ω_e 表示有向边 e 的边权, ω_e 属于某个**交换环**。

对于有向路径 P, 定义 $\omega(P)$ 表示路径上边权的乘积, 即

$$\omega(P) = \prod_{e \in P} \omega_e$$

对于任意两点 a, b, 记 e(a, b) 表示从 a 到 b 的所有路径的权值之和,即

$$e(a,b) = \sum_{P:a \to b} \omega(P)$$

特別地,若 $\omega_e=1$,e(a,b) 表示从 a 到 b 的路径数。 记矩阵

$$M = \begin{pmatrix} e(a_1, b_1) & e(a_1, b_2) & \cdots & e(a_1, b_n) \\ e(a_2, b_1) & e(a_2, b_2) & \cdots & e(a_2, b_n) \\ \vdots & \vdots & \ddots & \vdots \\ e(a_n, b_1) & e(a_n, b_2) & \cdots & e(a_n, b_n) \end{pmatrix}$$

定义从 A 到 B 的 n 元不相交路径组表示 G 中的 n 条有向路径 (P_1, \ldots, P_n) 满足:

- 1. 存在 $\{1, 2, ..., n\}$ 的排列 σ 使得对于 i = 1, 2, ..., n, 路径 P_i 是从 a_i 到 b_{σ_i} 的有向路径。
- 2. 对于任意 $i \neq j$, 路径 P_i, P_i 没有公共点。

记 $\sigma(P)$ 表示 1 中的排列 σ 。

Lindström-Gessel-Viennot lemma

$$\det(M) = \sum_{(P_1, P_2, \dots, P_n): A \to B} \operatorname{sgn}(\sigma(P)) \prod_{i=1}^n \omega(P_i)$$

其中

$$\operatorname{sgn}(\sigma(P)) = (-1)^{\pi(\sigma(P))}$$

特別地,若 $\sigma(P)$ 只可能是 $\{1,2,\ldots,n\}$,令 $\omega_e=1$,此时 $\det(M)$ 等于 A 到 B 的不相交路径数。

4.6 Min25

约定

- P 表示全体质数集合。
- p_i 表示第 i 个质数、特别地、p₀ = 1。
- lpf_i 表示 *i* 的最小质因子。

计算数论函数 f(n) 的前缀和,要求 $f(p_i)$ 可以快速计算(如低阶多项式等),且对于合数 n, f(n) 可以写成形如 $f(n) = A(\mathrm{lpf}_n^e) B\left(\frac{n}{\mathrm{lpf}_n^e}\right)$ 的式子,其中 $A(p^e)$ 可以快速求值或预处理。

当 f(n) 是积性函数时, $A(p^e) = f(p^e), B(n) = f(n)$ 。

f(n) 可以不是积性函数,而且 Part 2 部分的 cal 函数不需要记忆化,可以通过增加参数来增加功能。典型的例子是 $f(\sum p^c) = [\sum c \mod 2 = 0 \& 2 \max\{c\} \leq \sum c]$,通过增加参数 sum, max 表示已经考虑过的质数(前 i-1 个质数)的指数和与最大值。

```
constexpr int N(2e5 + 5);
int np[N], pr[N], pn;
Z sum[N][2], pw[N][45];
void sieve(int n) {
  pn = 0;
  for (int i = 2; i <= n; i++) {
   if (!np[i]) {
      np[i] = i;
      pr[++pn] = i:
      sum[pn][0] = sum[pn - 1][0] + i;
      sum[pn][1] = sum[pn - 1][1] + 1LL * i * i;
      pw[pn][0] = 1;
      for (int j = 1; j < 40; j++) {</pre>
        pw[pn][j] = pw[pn][j - 1] * i;
    for (int j = 1; j <= pn && pr[j] * i <= n; j++) {
      np[i * pr[j]] = pr[j];
      if (i % pr[j] == 0) break;
 }
}
LL n, val[N]:
int m, vn, id1[N], id2[N];
int &gid(LL x) \{ return x <= m \} id1[x] : id2[n / x]; \}
Z q1[N], q2[N];
Z f1(int n) { // 2 + ... + n}
  return 1LL * n * (n + 1) / 2 - 1;
Z f2(int n) { // 2^2 + ... + n^2}
  return Z(n) * (n + 1) * (2 * n + 1) / 6 - 1;
Z f(int i, int k) \{ // f(p_i^k) \}
  return pw[i][k] * (pw[i][k] - 1);
Z cal(LL x, LL i) {
 if (x <= 1 || pr[i] > x) return 0;
  int k = qid(x):
  Z ans = (q2[k] - q1[k]) - (sum[i - 1][1] - sum[i - 1][0]);
  for (int j = i; j <= pn && 1LL * pr[j] * pr[j] <= x; j++) {</pre>
   for (LL k = 1, s = pr[i]; s * pr[i] <= x; k++, s *= pr[i])</pre>
      ans += f(j, k + 1) + f(j, k) * cal(x / s, j + 1);
 }
  return ans:
void solve() {
  std::cin >> n;
```

```
m = sart(n);
  sieve(m);
  vn = 0;
  for (LL l = 1, r; l <= n; l = r + 1) {
   LL x = n / l;
   r = n / x;
   val[++vn] = x;
   qid(x) = vn;
   q1[vn] = f1(x \% P);
   q2[vn] = f2(x \% P);
  for (int i = 1; i <= pn; i++) {</pre>
   LL t = 1LL * pr[i] * pr[i];
   for (int j = 1; val[j] >= t; j++) {
     LL x = val[j] / pr[i];
     int k = qid(x):
     q1[i] -= (q1[k] - sum[i - 1][0]) * pr[i];
     q2[j] -= (q2[k] - sum[i - 1][1]) * pr[i] * pr[i];
 std::cout << cal(n, 1) + 1 << "\n";
如果只算素数个数,用下面的代码,还有卡常版本
constexpr int N(1e6 + 5);
LL f1[N], f2[N], x0, w1, w2, dd;
double inv[N]:
LL cal(LL n) {
 int lim = sart(n):
 for (int i = 1; i <= lim; i++)</pre>
   f1[i] = i - 1, f2[i] = n / i - 1, inv[i] = 1.0 / i;
 for (int p = 2; p <= lim; p++)</pre>
   if (f1[p] != f1[p - 1]) {
     x0 = f1[p - 1], w1 = \lim / p, w2 = std::min(OLL + lim,
     \hookrightarrow (n / p / p)),
     dd = n / p;
      for (int i = 1; i <= lim / p; i++) f2[i] += x0 - f2[i *
     for (int i = lim / p + 1; i <= w2; i++)</pre>
        f2[i] += x0 - f1[(int)(inv[i] * dd + 1e-7)];
     for (int i = lim; i >= 1LL * p * p; i--)
       f1[i] += x0 - f1[(int)(inv[p] * i + 1e-7)];
   }
 return f2[1];
LL cal(LL n) {
 if (n <= 1) return 0:
 if (n == 2) return 1:
 int v = sqrtl(n), s = v + 1 >> 1, pc = 0;
```

```
std::vector<int> a(s), b(s);
std::vector<LL> c(s);
std::vector<bool> vis(v + 1);
for (int i = 1; i < s; ++i) a[i] = i;</pre>
for (int i = 0; i < s; ++i) b[i] = 2 * i + 1;
for (int i = 0; i < s; ++i) c[i] = (n / (2 * i + 1) - 1) /
for (int p = 3; p <= v; p += 2)
  if (!vis[p]) {
   int q = p * p;
    if (LL(q) * q > n) break;
    vis[p] = true;
    for (int i = q; i <= v; i += 2 * p) vis[i] = true;</pre>
    int ns = 0;
    for (int k = 0; k < s; ++k) {
      int i = b[k];
      if (vis[i]) continue;
      LL d = LL(i) * p;
      c[ns] = c[k] - (d <= v ? c[a[d >> 1] - pc] : a[n / d -
      \hookrightarrow 1 >> 1]) + pc;
      b[ns++] = i;
    for (int i = v - 1 >> 1, j = ((v / p) - 1) | 1; <math>j >= p;
    \hookrightarrow j -= 2) {
     int c = a[i >> 1] - pc;
      for (int e = (j * p) >> 1; i >= e; --i) a[i] -= c;
    }
    ++pc;
 }-
c[0] += LL(s + 2 * (pc - 1)) * (s - 1) / 2;
for (int k = 1; k < s; ++k) c[0] -= c[k];</pre>
for (int l = 1; l < s; ++l) {</pre>
  int q = b[l];
  LL m = n / a:
  int e = a[m / q - 1 >> 1] - pc;
  if (e < l + 1) break:
  LL t = 0;
  for (int k = l + 1; k <= e; ++k) t += a[m / b[k] - 1 >>
  \hookrightarrow 1];
  c[0] += t - LL(e - l) * (pc + l - 1);
return c[0] + 1;
```

4.7 Powerful Number

```
void dfs(LL x, Z o, int k) {
  ans += o * calc(n / x);
```

```
if(k <= plen && x > n / p[k] / p[k]) return;
for(int s = k; s <= plen; s++) {
   if(s > 1 && x > n / p[s] / p[s]) break;
   LL y = (LL)p[s] * p[s];
   Z sum(p[s]);
   for(int j = 2; x * y <= n; j++, y *= p[s]) {
      sum *= p[s];
   Z u(y); u *= inv[j];
   u -= sum, sum += u;
   dfs(x * y, o * u, s + 1);
   }
}</pre>
```

4.8 Mod Log

```
int modLog(int a, int b, int p) { // Assume: 0 < a, b < p
 if (b == 1 || p == 1) return 0;
 int d = std::qcd(a, p);
 if (d != 1) {
   if (b % d) return -1;
   int ans = modLog(a, 1LL * b / d * inv(a / d, p) % p, p);
   return ~ans ? ans + 1 : ans;
 HashTable::Map mp;
 int t = sart(p) + 1, pw = 1;
 for (int i = 0; i < t; i++, pw = 1LL * pw * a % p) {
   mp[1LL * pw * b % p] = i:
 for (int i = 1, a = pw; i <= t; i++, pw = 1LL * pw * a % p)</pre>
 auto it = mp.find(pw);
   if (it != mp.end()) return i * t - it->second;
 }
 return -1;
```

4.9 Mod Sqrt

```
// Jacobi symbol (a/m)
// m > 0, m: odd
int jacobi(LL a, LL m) {
  int s = 1;
  if (a < 0) a = a % m + m;
  while (m > 1) {
   if (!(a %= m)) return 0;
  int r = _builtin_ctzll(a);
```

```
if (r \& 1 \&\& m + 2 \& 4) s = -s:
   if ((a >>= r) & m & 2) s = -s;
   std::swap(a, m);
 return s;
// sgrt(a) (mod p)
// p: prime, p < 2^31, -p^2 \le a \le P^2
// (b + sqrt(b^2 - a))^((p+1)/2) in F_p(sqrt(b^2 - a))
std::vector<LL> modSgrt(LL a, LL p) {
 static std::mt19937 rnd(1024);
 if (p == 2) return {a & 1};
 int j = jacobi(a, p);
 if (j == 0) return {0};
 if (i == -1) return {}:
 LL b, d;
  for (;;) {
   b = rnd() \% p, d = (b * b - a) \% p;
   if (d < 0) d += p;
   if (jacobi(d, p) == -1) break;
  LL x = b, y = 1, z = 1, w = 0, t;
  for (LL k = p + 1 >> 1; k; k >>= 1) {
   if (k & 1) {
     t = (z * x + d * (w * v % p)) % p;
     w = (z * y + w * x) % p, z = t;
   t = (x * x + d * (y * y % p)) % p;
   v = (2 * x * v) % p, x = t;
  if (z 
 return {p - z, z};
```

4.10 Mod Mul

The following algorithm computes $a\times b \bmod c$ for $0\le a,b\le c<7.268\cdot 10^{18}\colon ^1$ ULL modMul(ULL a, ULL b, ULL c) { LL r = a * b - c * ULL(1.L / c * a * b); return r + c * (r < 0) - c * (r >= (LL)c); }

4.11 Pollard Rho

```
LL fpow(LL x, LL k, LL p) {
 LL r = 1;
 for (; k; k >>= 1, x = modMul(x, x, p)) {
   if (k & 1) r = modMul(r, x, p);
 return r;
bool isPrime(LL n) {
 if (n < 2 | | n % 6 % 4 != 1) return (n | 1) == 3;
 LL s = __builtin_ctzll(n - 1), d = n >> s;
 // int: {2, 7, 61}
 for (LL a: {2, 325, 9375, 28178, 450775, 9780504,
 LL p = fpow(a \% n, d, n), i = s;
   while (p != 1 && p != n - 1 && a % n && i--) {
     p = modMul(p, p, n);
   }
   if (p != n - 1 && i != s) return false;
 return true;
LL rho(LL n) {
 auto f = [\&](LL x)  { return modMul(x, x, n) + 1; };
 LL p = 2. a:
 for (LL i = 1, x = 0, y = 0, t = 30; t++ \% 40 || std::gcd(p,
 \rightarrow n) == 1; x = f(x), y = f(f(y))) {
   if (x == v) x = ++i, v = f(x);
   q = modMul(p, x < y ? y - x : x - y, n);
   if (a) p = a;
 return std::qcd(p, n);
std::vector<LL> factor(LL n) {
 if (n == 1) return {}:
 if (isPrime(n)) return {n};
 LL x = rho(n);
 auto l = factor(x), r = factor(n / x);
 l.insert(l.end(), r.begin(), r.end());
 return l;
```

4.12 万欧

$$F(P, R, Q, N, X, Y) = \prod_{i=0}^{N} \left(Y^{f(i) - f(i-1)} X \right)$$

¹this number equals $r \cdot 2^{64}$, where $r = (\sqrt{177} - 7)/16 \approx 0.394$ is the positive solution to the equation $8x^2 + 7x = 4$.

```
其中 f(i) = \lfloor \frac{Pi + R}{Q} \rfloor, f(-1) = 0。 X, Y \in  华群 (S, \times)。
```

S 即半群 (S, \times) 的结构体,这里假定它是幺半群(否则可以加一个幺元进 去),则 S()代表幺元。

要注意: 是从 0 开始的。

```
LL div(LL p, LL i, LL r, LL q) {
 return (p * i + r) / g: // int128 may be in need
S cal(LL p, LL r, LL q, LL n, const S &x, const S &y) {
 if (n < 0) return S();</pre>
 if (r >= q) {
   return fpow(y, r / q) * cal(p, r % q, q, n, x, y);
 if (p >= q) {
    return x * cal(p % q, p % q + r, q, n - 1, fpow(y, p / q)
   \hookrightarrow * x, v);
 if (p == 0) {
   return fpow(x, n + 1);
 LL m = div(p, n, r, q);
 return cal(q, q - r + p - 1, p, m - 1, y, x) * fpow(x, n + 1)
 \hookrightarrow - (!m ? 0 : div(q, m, p - r - 1, p)));
```

4.13 高斯整数

高斯质数,对于任意一个数字 c 能否表达成 $c^2 = a^2 + b^2$ 的形式实际上可 以写成高斯整数的形式 $c^2 = (a + bi)(a - bi)$, 那么我们可以对每一个质 数单独分解。

根据高斯质数的规律,质数分为三种: 2,4k+1,4k+3型。本质上只有 4k+1 型会对答案有翻倍的贡献,设 k_i 为 4k+1 型的质数相应的指数 则在一个二维平面上的合法解即为: $4\prod_{i}(k_{i}+1)$ 。

如何分解 4k+1 型的质数 p, 可以考虑找到 $k^2 \equiv -1 \pmod{p}$ 的任意一 个 k, 则 $k^2 + 1 = (k+i)(k-i)$, 所以 p|(k+i)(k-i), 我们直接取 gcd(p, k+i) 即可得到分解中任意一解、再用 p 除即可得到另一解。

考虑找到 k, 我们可以随机一个 $t \neq 0 \pmod{p}$, 再今 $k = t^{\frac{p-1}{4}} \mod{p}$, 据二次剩余理论, $k^2 \equiv \pm 1 \pmod{p}$, 且取值为 -1 的概率为 $\frac{1}{5}$, 随便找 几个数试一下即可。

```
using i128 = __int128_t;
i128 absl(const i128 &u) { return u < 0 ? -u : u; }
i128 div(const i128 &a, const i128 &n) {
 i128 \text{ now} = (a \% n + n) \% n;
 return (a - now) / n;
struct G {
 i128 r, i;
```

```
G() {}
  G(i128 _r, i128 _i) : r(_r), i(_i) {}
  friend G operator+(const G &a, const G &b) {
   return {a.r + b.r, a.i + b.i};
  friend G operator-(const G &a, const G &b) {
   return {a.r - b.r, a.i - b.i};
  friend G operator*(const G &a, const G &b) {
   return {a.r * b.r - a.i * b.i. a.i * b.r + b.i * a.r}:
  friend G operator*(const G &a, const i128 &b) {
   return {a.r * b, a.i * b};
  friend G operator/(const G &a, const i128 &b) {
    return {a.r / b, a.i / b}:
  friend bool operator == (const G &a, const G &b) {
    return a.r == b.r && a.i == b.i:
  friend G operator/(const G &a, const G &b) {
   i128 len = b.r * b.r + b.i * b.i;
   G c = a * G(b.r, -b.i);
    return \{div(2 * c.r + len, len * 2),
            div(2 * c.i + len, len * 2);
  friend G operator%(const G &a, const G &b) {
   G u = a / b;
   return a - (u * b);
};
G norm(const G &u) {
  if (u.r == 0) return G(u.i < 0 ? -u.i : u.i, 0);</pre>
  switch ((u.r < 0) << 1 | (u.i < 0)) {
   case 0: return G(u.r. u.i); break;
    case 1: return G(-u.i, u.r); break;
    case 2: return G(u.i, -u.r); break;
   case 3: return G(-u.r, -u.i);break;
  return G();
G qcd(G a, G b) {
 if (b.r == 0 && b.i == 0) return a;
 return qcd(b, a % b);
G Gpow(G a, i128 k) {
 G ans(1, 0);
 for (; k; k >>= 1, a = a * a) {
   if (k & 1) ans = ans * a;
```

```
return ans:
G GaussPrime(LL p) {
 if (p % 4 == 1) {
   LL t = 1;
   while (pow_mod(t, p >> 1, p) != p - 1) t++;
   return gcd(G(p, \theta), G(pow_mod(t, p >> 2, p), 1));
 } else if (n == 2)
    return G{1, 1}:
    return G{p, 0};
vector<G> solveComposite(LL n) { // 求高斯整数
 // vector<PII> {(p i, c i)} 质因数分解
  auto prm = Factorization::work(n);
  vector<G> v{{1, 0}};
 LL coef = 1;
  for (auto u : prm) {
   LL p = u.first, k = u.second << 1;
   if (p % 4 != 1) {
     for (int i = 0; i < (k >> 1); i++) coef *= p;
   } else {
     G a = GaussPrime(p);
     G b = G(p, 0) / a:
     G q = Gpow(a, k);
     auto tmp = v:
     v.resize((k + 1) * tmp.size());
     int l = 0;
     for (int i = 0; i <= k; i++) {</pre>
       for (const auto &e : tmp) v[l++] = e * q;
       q = q / a * b;
   }
  for (auto &u : v) u = norm(u) * coef;
 return v:
4.14 Simplex
using D = double;
using LD = long double:
using F = __float128;
```

```
constexpr int N(50);
constexpr F EPS(1e-16);
int sqn(D x) \{ return x < -EPS ? -1 : (x > EPS ? 1 : 0); \}
struct Simplex {
```

```
F a[N][N], ans[N];
int id[N];
int work(int n, int m) {
  auto pivot = [&](int l, int e) {
    std::swap(id[n + l], id[e]);
    F d = -a[l][e];
    a[l][e] = -1;
    for (int i = 0; i <= n; i++) a[l][i] /= d;</pre>
    for (int i = 0; i <= m; i++) {</pre>
      if (i != l && sgn(a[i][e])) {
        d = a[i][e], a[i][e] = 0;
        for (int j = 0; j <= n; j++) {</pre>
          a[i][i] += d * a[l][i];
        }
  };
  a[0][0] = 0;
  for (int i = 1; i <= m; i++) {</pre>
    for (int j = 1; j <= n; j++) {</pre>
      a[i][j] = -a[i][j];
  for (int i = 1; i <= n + m; i++) id[i] = i;
  for (;;) {
    int l = 1, e = 0;
    for (int i = 1; i <= m; i++) {
      if (a[i][0] < a[l][0]) l = i;</pre>
    if (sqn(a[1][0]) >= 0) break;
    for (int j = 1; j <= n; j++) {</pre>
      if (sqn(a[l][j]) > 0 && (!e || id[j] > id[e])) {
        e = j;
      }
    if (!e) return 0:
    pivot(l, e);
  }
  for (;;) {
    int l = 0, e = 1;
    F min = 1e9;
    for (int j = 1; j <= n; j++) {</pre>
      if (a[0][j] > a[0][e]) e = j;
    if (sqn(a[0][e]) <= 0) {</pre>
      for (int i = 1; i <= n; i++) ans[i] = 0;</pre>
      for (int i = 1; i <= m; i++) ans[id[i + n]] = a[i][0];</pre>
      return 2;
```

```
}
      for (int i = 1; i <= m; i++) {
        if (sqn(a[i][e]) < 0) {
          F t = -a[i][0] / a[i][e];
          if (sqn(t - min) < 0 ||
              sgn(t - min) == 0 \&\& (!l || id[i] > id[l])) {
            min = t, l = i;
        }
      }
      if (!l) return 1;
      pivot(l, e);
 }
} s;
void solve() {
  int n, m, t;
  std::cin >> n >> m >> t;
  // ANS = \max\{\sum c_i x_i\}
  for (int i = 1; i <= n; i++) {</pre>
   Dx;
    std::cin >> x:
    s.a[0][i] = x;
  // limits: \sum a_{i,j}x_j \leq b_i
  for (int i = 1; i <= m; i++) {</pre>
   D x:
    for (int j = 1; j <= n; j++) {</pre>
      std::cin >> x;
      s.a[i][j] = x;
    std::cin >> x;
    s.a[i][0] = x;
 }
  int r = s.work(n, m);
  if (!r) {
    std::cout << "Infeasible\n";</pre>
 } else if (r == 1) {
    std::cout << "Unbounded\n";</pre>
    std::cout << (D)s.a[0][0] << "\n";
    if (t) {
      for (int i = 1; i <= n; i++) {
        std::cout << (D)s.ans[i] << " \n"[i == n];
     }
```

```
}
```

4.15 Matrix-Tree 定理

4.15.1 无向图生成树个数

```
a[x][x]++, a[y][y]++, a[x][y]--, a[y][x]--; // 随便划掉第 i 行第 i 列,求行列式 A 的 n-1 个非零特征值,则 t(G)=\frac{1}{n}\lambda_1\lambda_2\cdots\lambda_{n-1}
```

4.15.2 有向图外向树形图个数

```
a[i][j]--, a[j][j]++;
// 随便划掉第 r 行第 r 列, 求行列式, 得到以 r 为根的答案
```

Geometry(5)

5.1 Geo2D

5.1.1 Tricks

有一堆互不相交的凸多边形,建立它们之间的树关系 拆成上下凸壳,在每个多边形最左边的点画一条竖直线,用 set 维护这条线 与多边形的交点,找到当前最左点的前驱,如果它是下凸壳,则为它的父亲, 否则是它的兄弟。用扫描线,在 set 中加入和删除多边形的边,比较函数中 求边与当前扫描线的交点纵坐标,由于交点相对位置不变,因此可以这样维护。

5.1.2 Pt

```
using D = double;
using LD = long double;
using T = D;
constexpr T EPS(1e-10);
const T PI = acosl(-1.L);
int sgn(T x) { return (x > EPS) - (x < -EPS); }
int cmp(T x, T y) { return sgn(x - y); }
struct Pt {
  T x, y;
  void read() {
   int a, b;
   cin >> a >> b, x = a, y = b;
```

```
}
 void print() { cout << x << " " << y << "\n"; }</pre>
 explicit Pt(T x = 0, T y = 0) : x(x), y(y) {}
 Pt operator+(const Pt &r) const { return Pt(x + r.x, y +
 \hookrightarrow r.y); }
 Pt operator-(const Pt &r) const { return Pt(x - r.x, y -
 Pt operator*(T r) const { return Pt(x * r, y * r); }
 Pt operator/(T r) const { return Pt(x / r, y / r); }
 bool operator<(const Pt &r) const { return x < r.x || x ==</pre>
 \hookrightarrow r.x && y < r.y; }
 bool operator == (const Pt &r) const { return !cmp(x, r.x) &&
 \hookrightarrow !cmp(y, r.y); }
 T operator^(const Pt &r) const { return x * r.x + v * r.v; }
 T operator*(const Pt &r) const { return x * r.y - y * r.x; }
 T cross(Pt a, Pt b) const { return (a - *this) * (b -
 T len2() const { return x * x + y * y; }
 T len() const { return sqrt(len2()); }
 Pt rotate(T r) const {
   return Pt(x * cos(r) - y * sin(r), x * sin(r) + y *
   \hookrightarrow cos(r));
 Pt unit() const { return *this / len(); }
 Pt perp() const { return Pt(-y, x); }
 Pt norm() const { return perp().unit(); }
 Pt proj(Pt a, Pt b) const {
   Pt d = b - a:
   return a + d * ((d ^ (*this - a)) / d.len2());
 Pt refl(Pt a, Pt b) const { return proj(a, b) * 2 - *this; }
 bool onSeq(Pt a, Pt b) const {
   return !sqn(cross(a, b)) && sqn((*this - a) ^ (*this - b))
   int side(Pt a, Pt b) const { return sqn(a.cross(b, *this));
 int pos() const { return y > 0 || y == 0 && x > 0; }
};
bool argcmp(Pt a, Pt b) {
 return a.pos() != b.pos() ? a.pos() : a * b > EPS;
```

```
}
```

5.1.3 旋转平移流

对点 r 执行将向量 $\mathbf{P_0P_1}$ 变换到 $\mathbf{Q_0Q_1}$ 的线性变换。

5.1.4 直线与线段

```
int checkLL(Pt a, Pt b, Pt c, Pt d) { // 0, 1, -1(INF)
  return sqn((b - a) * (d - c)) ? 1 : a.side(c, d) ? 0 : -1;
Pt getLL(Pt a, Pt b, Pt c, Pt d) {
  T p = c.cross(b, d), q = c.cross(d, a);
  return (a * p + b * q) / (p + q);
vector<Pt> getSS(Pt a, Pt b, Pt c, Pt d) { // 0, 1, 2(INF,

    return the segment endpoint)

  Toa = c.cross(d, a), ob = c.cross(d, b), oc = a.cross(b, b)
  \leftrightarrow c), od = a.cross(b, d);
  if (sqn(oa) * sqn(ob) < 0 \&\& sqn(oc) * sqn(od) < 0) {
    return {(a * ob - b * oa) / (ob - oa)};
  vector<Pt> r:
  if (a.onSeg(c, d)) r.push_back(a);
  if (b.onSeg(c, d)) r.push_back(b);
  if (c.onSeq(a, b)) r.push_back(c);
  if (d.onSeg(a, b)) r.push_back(d);
  return r;
T distPL(Pt p, Pt a, Pt b) { return fabs(p.cross(a, b)) / (b -
\hookrightarrow a).len(); }
T distPS(Pt p, Pt a, Pt b) {
  if (a == b) return (a - p).len();
  T d = (b - a).len2(), t = min(d, max(0.0, (b - a) ^ (p - a)))
  \hookrightarrow a))):
  return ((p - a) * d - (b - a) * t).len() / d;
T distSS(Pt a, Pt b, Pt c, Pt d) {
  return getSS(a, b, c, d).empty() ? min({
      distPS(a, c, d), distPS(b, c, d), distPS(c, a, b),
      \hookrightarrow distPS(d, a, b)
    }) : 0.0;
}
```

5.1.5 Polygon

```
using Poly = std::vector<Pt>;
// polygon area: O(n)
T area(const Poly &p) {
 if (p.empty()) return 0;
 T a = p.back() * p[0];
 for (int i = 1; i < p.size(); i++)</pre>
   a += p[i - 1] * p[i];
 return a / 2;
// point inside polygon: 0(n)
int inPoly(Pt a, const Poly &p, int strict = 1) {
 int t = 0, n = p.size();
 for (int i = 0; i < n; ++i) {</pre>
   Pt q = p[(i + 1) \% n];
   if (a.onSeg(p[i], g)) return !strict;
   t ^= ((a.v < p[i].v) - (a.v < g.v)) * a.cross(p[i], g) >
 }
 return t;
// axes of polygon: O(n)
vector<pair<Pt, Pt>> polygonAxes(Poly a) {
 int n = a.size(), m = 3 * n;
 a.push_back(a[0]), a.push_back(a[1]);
 vector<pair<T, T>> s(n * 2);
 for (int i = 1, j = 0; i \le n; ++i, j += 2)
   s[j] = \{(a[i] - a[i - 1]).len2(), 0\},
   s[j + 1] = \{a[i].cross(a[i - 1], a[i + 1]),
                (a[i + 1] - a[i]) ^ (a[i - 1] - a[i]);
  s.insert(s.end(), s.begin(), s.begin() + n);
 vector<int> f(m), res;
 for (int r = 0, p = 0, i = 0; i < m; i++) {
   f[i] = r > i ? min(r - i, f[p * 2 - i]) : 1;
   while (i >= f[i] \&\& i + f[i] < m \&\& s[i - f[i]] == s[i +
   \hookrightarrow f[i]]) ++f[i]:
   if (i + f[i] > r) r = i + f[i], p = i;
   if (f[i] > n) res.push_back(i);
 auto get = [&](int i) {
   int x = (i + 1) / 2;
   return i & 1 ? a[x] : (a[x] + a[x + 1]) / 2;
 };
 vector<pair<Pt, Pt>> axe;
 for (auto i : res) axe.emplace_back(get(i), get(i - n));
 return axe:
```

5.1.6 凸旬

```
// point inside convex hull: O(log n)
int inHull(Pt p, const Poly &h, int strict = 1) {
 if (h.empty()) return 0;
 int a = 1, b = h.size() - 1, c, r = !strict;
 if (b < 2) return r && p.onSeg(h[0], h[b]);</pre>
 if (h[b].side(h[0], h[a]) > 0) swap(a, b);
 if (p.side(h[0], h[a]) >= r || p.side(h[0], h[b]) <= -r)

    return 0;

 while (abs(a - b) > 1) c = (a + b) >> 1, (p.side(h[0], h[c])
 \leftrightarrow > 0 ? b : a) = c;
 return p.side(h[a], h[b]) < r;</pre>
// convex hull: O(n log n)
Polv convexHull(Polv p) {
 if (p.size() <= 1) return p;</pre>
 sort(p.begin(), p.end());
 Poly h(p.size() + 1);
 int s = 0, t = 0, i = 2;
 for (; i--; s = --t, reverse(p.begin(), p.end()))
   for (auto a : p) {
     while (t >= s + 2 \&\& h[t - 2].cross(h[t - 1], a) <= 0)
     h[t++] = a;
 return {h.begin(), h.begin() + t - (t == 2 && h[0] ==
 \hookrightarrow h[1]);
// mincowsky sum: O(n + m)
Poly mincowskySum(Poly a, Poly b) {
 int n = a.size(), m = b.size();
 Poly s(n + m);
 Pt a0 = a[0], b0 = b[0];
 for (int i = 0; i < n; i++)</pre>
   a[i] = i + 1 < n ? a[i + 1] - a[i] : a0 - a[i];
 for (int i = 0: i < m: i++)
   b[i] = i + 1 < m ? b[i + 1] - b[i] : b0 - b[i]
 s[0] = a0 + b0;
 for (int i = 0, j = 0, k = 1; k < n + m; k++) {
   if (j >= m || i < n && a[i] * b[j] > 0) {
     s[k] = a[i++];
   } else {
     s[k] = b[j++];
   s[k] = s[k] + s[k - 1];
 }
 return s;
```

```
}
// 凸多边形关于某一方向的极点
// 复杂度 O(log n)
// 参考资料: https://codeforces.com/blog/entry/48868
template <class F>
int extreme(const Poly &p, const F &dir) {
 auto check = [&](int i) {
   return dir(p[i]) * (p[(i + 1) % p.size()] - p[i]) >= 0;
  auto dir0 = dir(p[0]);
  auto c\theta = check(\theta);
  if (!c0 && check(p.size() - 1)) return 0;
  auto cmp = [&](const Pt &v) {
   int i = &v - p.data();
   if (!i) return 1:
   auto c = check(i);
   auto t = dir0 * (v - p[0]):
   if (i == 1 && c == c0 && !t) return 1;
   return c ^ (c == c0 && t <= 0);
 return std::partition_point(p.begin(), p.end(), cmp) -

    p.begin();

// 过凸多边形外一点求凸多边形的切线,返回切点下标,必须保证点在多边形外
// 复杂度 O(log n)
PII getTgHP(const Poly &p, const Pt &a) {
 int i = extreme(p, [&](const Pt &v) { return v - a; });
 int j = extreme(p, [&](const Pt &v) { return a - v; });
 return {i, j};
// 求平行于给定直线的凸多边形的切线, 返回切点下标
// 复杂度 O(log n)
PII getTqHL(const Poly &p, const Pt &v) {
 int i = extreme(p, [&](...) { return v; });
 int j = extreme(p, [&](...) { return -v; });
 return {i, j};
}
5.1.7 半平面交
一般都是 double, 以下代码未经大量测试, 抄的 jiangly。
struct Line {
 Pt p, v;
 bool operator<(const Line &r) const {</pre>
   int k = v.pos() - r.v.pos();
   return k < 0 | | k == 0 && v * r.v > 0;
```

```
};
Pt getLL(Line a, Line b) {
 return getLL(a.p, a.p + a.v, b.p, b.p + b.v);
int side(Pt p, Line l) {
 return sqn(l.v * (p - l.p));
std::vector<Pt> hp(std::vector<Line> a) {
 if (a.empty()) return {};
  std::sort(a.begin(), a.end());
 int n = a.size(), l, r;
  std::vector<Pt> p(n);
  std::vector<Line> a(n);
  q[l = r = 0] = a[0];
  for (int i = 1; i < n; i++) {
    while (l < r \&\& side(p[r - 1], a[i]) <= 0) r--;
    while (l < r && side(p[l], a[i]) <= 0) l++;</pre>
    if (!sqn(a[i].v * q[r].v)) {
     if (sqn(a[i].v ^ q[r].v) > 0) {
        if (side(a[i].p, q[r]) > 0) {
          assert(l == r);
          q[r] = a[i];
        continue;
     }
      return {};
   }
    q[++r] = a[i];
    if (l < r) p[r - 1] = getLL(q[r], q[r - 1]);</pre>
  while (l < r \&\& side(p[r - 1], q[l]) <= 0) r--;
 if (r - l <= 1) return {};</pre>
  p[r] = getLL(g[r], g[l]);
 return {p.begin() + l, p.begin() + r + 1};
5.1.8 Circles
 Pt u = c - a, v = b - a;
  double k = u * v * 2;

    sinA
```

```
double getRadius(Pt a, Pt b, Pt c) {
 return u.len() * v.len() * (b - c).len() / abs(k); // a = 2r
Pt getCenter(Pt a, Pt b, Pt c) {
 Pt u = c - a, v = b - a;
 double k = u * v * 2;
 return a + (u * v.len2() - v * u.len2()).perp() / k;
```

```
struct Circle : Pt {
 Tr;
 Circle() {}
 Circle(T x, T y, T r) : Pt(x, y), r(r) {}
 Circle(Pt o, T r) : Pt(o), r(r) {}
 Circle(Pt a, Pt b, Pt c) : Pt(getCenter(a, b, c)),

    r(getRadius(a, b, c)) {}
 Circle(vector<Pt> p) {
   int n = p.size();
   assert(n);
   shuffle(p.begin(), p.end(), mt19937(233));
   Pt o = p[0];
   r = 0;
   for (int i = 0; i < n; i++) {
     if (cmp((o - p[i]).len(), r) <= 0) continue;</pre>
     o = p[i], r = 0;
     for (int j = 0; j < i; j++) {
       if (cmp((o - p[j]).len(), r) <= 0) continue;</pre>
       o = (p[i] + p[j]) / 2;
       r = (o - p[i]).len();
       for (int k = 0; k < j; k++) {
         if (cmp((o - p[k]).len(), r) \ll \theta) continue;
         o = getCenter(p[i], p[j], p[k]);
         r = (o - p[i]).len();
       }
   }
   x = o.x, y = o.y;
 // 圆的反演。平面任意一点 P, 反演点 Q 满足 Q 在射线 OP 上且
 \hookrightarrow |OP| \cdot |OQ| = r^2.
 // 设圆上任意一点 A, 则 \triangle AOP \sim \triangle QOA。
 Pt invP(Pt p) \frac{1}{2} // d1d2 = r^2
   Pt v = n - *this:
   return *this + v * (r * r / v.len2());
 Circle invC(Circle c) { // o is not on C
   Pt v = c - *this;
   Tz = r * r / (v.len2() - c.r * c.r);
   return {*this + v * z, z * c.r};
 pair<Pt, Pt> invCL(Circle c) { // o must be on C,

    unverified

   Pt v = c - *this, p = *this + v * (r * r / (2 * c.r * ) )
   \hookrightarrow c.r));
   return {p, p + v.perp()};
 Circle invL(Pt a, Pt b) { // o is not on L
```

```
Pt p = proi(a, b), v = p - *this;
   T r2 = r * r / 2;
   return {*this + v * (r2 / v.len2()), r2 / v.len()};
};
vector<Pt> getCL(Circle c, Pt a, Pt b) {
 Pt k = c.proj(a, b);
 T d = distPL(c, a, b):
 if (cmp(c.r, d) < 0) return {};</pre>
 Pt x = (b - a).unit() * sqrt(fmax(0, c.r * c.r - d * d));
 return \{k - x, k + x\};
// get tangent numbers
// checkInter: checkTqCC % 4 != 0
// corner case: a == b
int checkTgCC(Circle a, Circle b) {
 T d = (a - b).len();
 int u = cmp(d, a.r + b.r);
 return v \ge 0 ? v + 3 : cmp(d, abs(a.r - b.r)) + 1;
vector<Pt> getCC(Circle a, Circle b) {
 if (!(checkTqCC(a, b) & 3)) return {};
 Pt v = b - a;
 T d2 = v.len2(), k = (a.r * a.r - b.r * b.r + d2) / (2 *
 \leftrightarrow d2), x = a.r * a.r / d2 - k * k;
 Pt o = a + v * k, z = v.perp() * sqrt(fmax(0, x));
 return {0 - z, 0 + z};
vector<Pt> getTqCP(Circle c, Pt p) {
 Pt v = p - c;
 T r2 = c.r * c.r, d2 = v.len2();
 if (cmp(r2, d2) > 0) return {};
 T x = r2 / d2, y = x * (1 - x);
 Pt o = c + v * x, z = v.perp() * sqrt(fmax(0, y));
 return {0 - z, 0 + z}:
vector<pair<Pt, Pt>> getTqCC(Circle a, Circle b, int k = 1) {
Pt v = b - a:
 T dr = a.r - b.r * k, d2 = v.len2(), h2 = d2 - dr * dr;
 if (sqn(d2) == 0 \mid \mid sqn(h2) < 0) return \{\};
  vector<pair<Pt, Pt>> res;
  for (int t : {-1, 1}) {
   Pt z = (v * dr + v.perp() * sqrt(fmax(0, h2)) * t) / d2;
   res.push back(\{a + z * a.r. b + z * (b.r * k)\});
  if (sgn(h2) == 0) res.pop back();
  return res;
```

```
T getAreaCT(Pt p, Pt q, T r) { // Area OP -> OQ in circle r,
auto arg = [](Pt p, Pt g) { return atan2(p * g, p ^ g); };
 T r2 = r * r / 2;
 Pt d = q - p;
 T = (d \cdot p) / d.len2(), b = (p.len2() - r * r) / d.len2(),
 \hookrightarrow det = a * a - b;
 if (sqn(det) <= 0) return arg(p, q) * r2;</pre>
 T s = fmax(0, -a - sqrt(fmax(0, det))), t = fmin(1, -a +
 \hookrightarrow sgrt(fmax(0, det)));
 if (t < 0 \mid | 1 \le s) return arg(p, q) * r2;
 Pt u = p + d * s, v = p + d * t;
 return arg(p, u) * r2 + u * v / 2 + arg(v, q) * r2;
T getAreaCP(Circle c, Polv p) {
 if (p.size() <= 1) return 0;
 T ans = qetAreaCT(p.back() - c, p[0] - c, c.r);
 for (int i = 0; i + 1 < p.size(); i++) {</pre>
    ans += getAreaCT(p[i] - c, p[i + 1] - c, c.r);
 }
 return ans:
T getAreaCC(Circle a, Circle b) {
 Pt v = b - a;
 LD d2 = (LD)v.x * v.x + (LD)v.v * v.v. d = sart(d2), r1 =
 \hookrightarrow a.r * a.r, r2 = b.r * b.r;
 if (cmp(d, a.r + b.r) >= 0) return 0;
 if (cmp(b.r, d + a.r) >= 0) return PI * r1;
 if (cmp(a.r, d + b.r) >= 0) return PI * r2;
 LD a1 = 2 * acos((d2 + r1 - r2) / (2 * d * a.r));
 LD a2 = 2 * acos((d2 + r2 - r1) / (2 * d * b.r));
 return ((a1 - sin(a1)) * r1 + (a2 - sin(a2)) * r2) / 2;
```

5.1.9 合并上凸壳

```
// 用区间 [x, y) 表示 a 的点,用 [x, x] 表示 b 的点,合并凸包。
// 每次考虑加入点 bi,找 a 上的两个切线。
// 注意,这个是上凸壳
struct Interval {
    int l, r;
    int len() const { return r - l; }
};
std::vector<Interval> merge(const Poly &a, const Poly &b) {
    std::vector<Interval> s(b.size() * 2 + 5);
    int n = a.size(), m = b.size(), t = 0;
    for (int i = 0, j = 0; i < n || j < m; j++) {
        if (j == m) {
```

```
s[t++] = \{i, n\};
    break;
 }
 int pos = std::lower_bound(a.begin() + i, a.begin() + n,
 \hookrightarrow b[j]) - a.begin();
 if (i < pos) {
   s[t++] = {i, pos};
   i = pos:
 auto getLast = [&](Interval p) {
    return p.l == p.r ? b[p.r] : a[p.r - 1];
 };
 Pt p = b[i]:
  while (t > 1 \mid | t == 1 \&\& s[0].r - s[0].l > 1) {
    if (t > 1 \&\& sqn(qetLast(s[t - 2]).cross((s[t - 1].len()
    \leftrightarrow ? a : b)[s[t - 1].l] ,p)) >= 0) {
      t--;
      continue;
    if (s[t - 1].len()) {
      int l = s[t - 1].l, r = s[t - 1].r;
      while (r - l > 1) {
       int m = l + r >> 1;
        (sqn(a[m - 1].cross(a[m], p)) >= 0 ? r : l) = m;
     }
      s[t - 1].r = r;
    break;
 if (t && i < n && sgn(qetLast(s[t - 1]).cross(b[i], a[i]))
 s[t++] = {j, j};
 int l = i, r = n;
 while (r - l > 1) {
   int m = l + r >> 1;
    (sqn(b[i].cross(a[m - 1], a[m])) >= 0 ? l : r) = m;
 }
 i = 1;
s.resize(t);
return s:
```

5.1.10 动态凸包

wxw 写的动态凸包

```
只能加,就是求切线。
struct UpperHull {
 Pt val[N], l[N], r[N];
 ll sum[N];
 int lc[N], rc[N], key[N];
 int root, tot;
  int newNode(Pt x) {
   ++tot;
   lc[tot] = rc[tot] = 0;
   key[tot] = rng();
   l[tot] = r[tot] = val[tot] = x;
   sum[tot] = 0;
   return tot;
  void update(int u) {
   sum[u] = sum[lc[u]] + sum[rc[u]];
   if (lc[u]) {
     sum[u] += cross(val[u], r[lc[u]]);
     l[u] = l[lc[u]];
   } else
     l[u] = val[u];
   if (rc[u]) {
     sum[u] += cross(l[rc[u]], val[u]);
     r[u] = r[rc[u]];
   } else
     r[u] = val[u];
 int merge(int u, int v) {
   if (!u || !v) return u | v;
   if (key[u] > key[v]) {
     rc[u] = merge(rc[u], v);
     update(u);
     return u:
   } else {
     lc[v] = merge(u, lc[v]);
     update(v);
     return v;
 }
 void split(int u, Pt x, int &l, int &r) {
   if (!u) {
```

```
l = r = 0;
    return;
  }
  if (val[u] < x) {</pre>
   l = u;
    split(rc[u], x, rc[l], r);
    update(l);
  } else {
    r = u;
    split(lc[u], x, l, lc[r]);
    update(r);
  }
}
Pt res;
void findl(int u, Pt x, Pt y) {
 if (!u) return;
  if (lc[u]) {
    if (cross(val[u] - r[lc[u]], x - r[lc[u]]) >= 0) {
      res = val[u];
      findl(lc[u], x, y);
    } else {
      findl(rc[u], x, val[u]);
    }
  } else {
    if (y.x != INF \&\& cross(val[u] - y, x - y) >= 0) {
      res = val[u];
      return;
    findl(rc[u], x, val[u]);
  }
}
void findr(int u, Pt x, Pt y) {
  if (!u) return;
  if (rc[u]) {
    if (cross(val[u] - x, l[rc[u]] - x) >= 0) {
      res = val[u];
      findr(rc[u], x, y);
    } else {
      findr(lc[u], x, val[u]);
  } else {
    if (y.x != INF \&\& cross(val[u] - x, y - x) >= 0) {
      res = val[u];
      return;
    findr(lc[u], x, val[u]);
```

```
}
int st[100], top:
void insert(Pt x, int op = 0) {
  int a, b;
  split(root, x, a, b);
  if (b && l[b] == x) {
    root = merge(a, b);
    return:
  if (a && b && cross(x - r[a], l[b] - r[a]) >= 0) {
    root = merge(a, b);
    return:
  int now = newNode(x);
  res = Pt(INF);
  findl(a, x, Pt(INF));
  if (res.x != INF) {
    int c, d;
    split(a, res, c, d);
    if (op) st[++top] = d;
    a = c;
  res = Pt(INF);
  findr(b, x, Pt(INF));
  if (res.x != INF) {
    int c, d;
    split(b, res + Pt(0, 1), c, d);
    if (op) st[++top] = c;
    b = d;
  root = merge(merge(a, now), b);
  if (op) st[++top] = -now;
void roolback() {
  while (top) {
    if (st[top] < 0) {
      int a, b, c;
      split(root, val[-st[top]], a, b);
      split(b, val[-st[top]] + Pt(0, 1), b, c);
      root = merge(a, c);
    } else {
      int a, b;
      split(root, val[st[top]], a, b);
      root = merge(merge(a, st[top]), b);
    --top;
  }
```

```
}
 ll getarea() {
   if (!root) return 0;
   return abs(sum[root] + cross(l[root], r[root]));
 void ini() { root = tot = top = 0; }
} H1, H2;
带删除
能加能删, O(n \log^2 n), 可以求两个凸包的桥 (O(\log n) 合并两不相交凸
没办法实时维护面积。
struct Pt {
 LL x, v:
 bool operator<(const Pt &r) const {</pre>
   return x < r.x | | x == r.x && y < r.y;
 // ...
};
#define ls o << 1
#define rs o << 1 | 1
struct UpperHull {
 struct Node {
   int l, r, bl, br;
 };
  int n, s;
  std::vector<Pt> ps;
  std::vector<Node> t;
  std::vector<int> in, id;
  UpperHull(const std::vector<Pt> &a)
   : n(a.size()), s(1 << std::__lg(n * 2 - 1)),
     ps(a), t(s * 2, \{-1, -1, -1, -1\}), in(n), id(n) {
    std::vector<std::pair<Pt, int>> pi(n);
    for (int i = 0; i < n; i++) {</pre>
     pi[i] = {ps[i], i};
    std::sort(pi.begin(), pi.end());
    for (int i = 0; i < n; i++) {</pre>
     ps[i] = pi[i].first;
     in[pi[i].second] = i;
     id[i] = pi[i].second;
```

```
}
  for (int i = 0; i < n; i++) {
    t[i + s] = \{i, i + 1, i, i\};
  for (int i = s - 1; i; i--) {
    pushup(i);
}
bool ok(int o) { return t[o].r != -1; }
bool wk(int &o) {
  if (!ok(ls)) return o = rs, true;
  if (!ok(rs)) return o = ls, true;
  return false;
void pushup(int o) {
  if (!ok(ls) && !ok(rs)) {
    t[o].r = -1;
 } else if (!ok(ls)) {
    t[o] = t[rs];
  } else if (!ok(rs)) {
    t[o] = t[ls];
 } else {
    int p = ls, q = rs;
    LL x = ps[t[a].l].x;
    while (p < s || q < s) {
      while (p < s \&\& wk(p));
      while (q < s \&\& wk(q));
      if (p >= s && q >= s) break;
      int a = t[p].bl, b = t[p].br, c = t[q].bl, d =
      \hookrightarrow t[q].br;
      if (a != b && ps[a].cross(ps[b], ps[c]) > 0) {
      } else if (c != d && ps[b].cross(ps[c], ps[d]) > 0) {
        a = a << 1 | 1:
      } else if (a == b) {
        g <<= 1;
      } else if (c == d) {
        p = p << 1 | 1;
      } else {
        LLL c1 = ps[a].cross(ps[b], ps[c]), c2 =
        \hookrightarrow ps[b].cross(ps[a], ps[d]);
        if (c1 + c2 == 0 || c1 * ps[d].x + c2 * ps[c].x <
        \hookrightarrow (c1 + c2) * x) {
          p = p << 1 | 1:
        } else {
          q <<= 1;
```

```
t[o] = {t[ls].l, t[rs].r, t[p].l, t[q].l};
 }
  void up(int i) {
    while (i > 1) pushup(i >>= 1);
  void add(int i) {
   i = in[i];
   t[i + s] = \{i, i + 1, i, i\};
   up(i + s);
  void del(int i) {
   i = in[i];
   t[i + s] = \{-1, -1, -1, -1\};
   up(i + s);
  std::vector<int> res;
  void dfs(int o, int l, int r) {
   if (!ok(o) || l >= r) return;
   while (o < s && wk(o)) ;</pre>
   if (0 >= s) {
      res.push back({t[o].l});
      return;
    if (r <= t[0].bl + 1) return dfs(ls, l, r);</pre>
   if (t[o].br <= l) return dfs(rs, l, r);</pre>
   dfs(ls, l, t[o].bl + 1);
   dfs(rs, t[o].br, r);
  std::vector<int> get() {
   res.clear():
   dfs(1, 0, n);
    for (int &i : res) i = id[i];
    return res;
 }
};
```

5.1.11 平面最近点对

```
double closestPair(vector<Pt> p) {
  if (p.size() <= 1) return 0;
  sort(p.begin(), p.end(), [&](Pt i, Pt j) {
    return i.y < j.y;
  });
  set<Pt> s;
  double ans = 1e18;
```

```
int j = 0;
for (Pt x : p) {
   Pt d {ans, 0};
   while (cmp(p[j].y, x.y - ans) < 0) s.erase(p[j++]);
   auto l = s.lower_bound(x - d), r = s.upper_bound(x + d);
   for (; l != r; l++) ans = min(ans, (*l - x).len());
    s.insert(x);
}
return ans;
}</pre>
```

$\underline{\text{Graphs}}(6)$

6.1 Trees

6.1.1 树上路径交并

两个树上路径求交有个固定算法:路径 A 的两个端点和路径 B 的两个端点 两两求 LCA,然后取四个中深度最大的那两个点,它们之间就是交路径。当 这两个点相同,并且深度小于两个路径之一时,则说明不存在交。

【ZJOI2019 语言】当若干路径的交不为空时,将路径端点按 DFS 序排序,相邻、首尾点相连,此时他们的并上的每条边会恰好被经过 2 次。

6.1.2 直径可并性

当边权非负时,树上点集 $A \cup B$ 直径的两个端点一定是 A, B 各自直径的端点之二。

6.1.3 动态直径 - 欧拉序

```
D(a,b) = d(a) + d(b) - 2d(LCA(a,b))
```

LCA 可以用欧拉序转换为 RMQ 问题, 然后问题就变成维护 $\max_{x < z < y} a_x + a_y - 2a_z$, 可以用线段树维护。

修改比较简单时,可以使用简化欧拉序,减小常数。即 euler[in[x] - 1] = fa[x],此时相当于维护两个序列 a[in[x]] = d[x],b[in[x] - 1] = d[fa[x]], $\max_{x \le z < y} a_x + a_y - 2b_z$,同样用线段树维护。

6.1.4 虚树

| 对于两次排序的简易写法, a_i 在虚树上的父亲为 $lca(a_i, a_{i-1})$,有时候比较方便。下面为排序加栈的写法

```
while (t > 1 && in[s[t - 1]] >= in[p]) pop();
  if (s[t] != p) g[p].push_back(s[t]), s[t] = p;
}
s[++t] = x;
}
while (t > 1) pop();
```

6.2 Bipartite Graph

6.2.1 最大匹配

最小点覆盖 = 最大匹配,去掉最小点覆盖剩下的点是最大独立集。 偏序集最长反链:拆点二分图的最大独立集 I,左右部均属于 I 的点。

```
struct Bipartite {
 std::vector<int> d, q, l, r;
 int match;
  Bipartite(int n, int m, const std::vector<PII> &e)
      : d(n + 1), q(e.size()), l(n, -1), r(m, -1), match(0) {
    std::vector<int> a, p, q(n);
    for (auto &[x, y] : e) d[x]++;
    for (int i = 1; i <= n; i++) d[i] += d[i - 1];</pre>
    for (auto &[x, y] : e) g[--d[x]] = y;
    for (;;) {
     a.assign(n, -1), p.assign(n, -1);
     for (int i = 0; i < n; i++)</pre>
       if (l[i] == -1) q[t++] = a[i] = p[i] = i;
      bool found = false;
      for (int i = 0; i < t; i++) {
        int x = q[i];
        if (~l[a[x]]) continue;
        for (int j = d[x]; j < d[x + 1]; j++) {
          int y = q[j];
          if (r[y] == -1) {
            while (\sim y) r[y] = x, std::swap(l[x], y), x = p[x];
            found = true, match++;
            break:
          }
          if (p[r[y]] == -1)
            q[t++] = y = r[y], p[y] = x, a[y] = a[x];
     if (!found) break;
 }
```

std::vector<int> minCover() {

```
int n = l.size(), m = r.size();
    std::vector<bool> vl(n, true), vr(m);
    for (int i : r) if (~i) vl[i] = false;
    std::vector<int> q, res;
    for (int i = 0; i < n; i++) if (vl[i]) q.push_back(i);</pre>
    while (!q.empty()) {
      int x = q.back(); q.pop_back();
      vl[x] = true;
      for (int i = d[x]; i < d[x + 1]; i++) {
       int y = q[i];
        if (!vr[y] && ~r[y]) vr[y] = true, q.push_back(r[y]);
    for (int i = 0; i < n; i++) if (!vl[i]) res.push_back(i);</pre>
    for (int i = 0; i < m; i++) if (vr[i]) res.push_back(i +</pre>
    assert(res.size() == match);
    return res;
 }
};
```

6.2.2 最大权匹配

```
costs 表示匹配数为 0,1,2,\ldots 时的最大权值之和, l 表示 x->y, r 表示
v->x
template <class T>
struct MaxAssignment {
  static const T INF = std::numeric_limits<T>::max();
 std::vector<T> costs:
  std::vector<int> l, r;
  MaxAssignment(int n, int m, std::vector<std::vector<T>> a)
   : costs(n + 1), l(n, -1), r(m, -1) {
   assert(0 <= n && n <= m);
   assert(int(a.size()) == n);
    for (int i = 0; i < n; i++) {
     assert(int(a[i].size()) == m);
      for (auto x : a[i]) assert(x >= 0);
    std::vector<T> u(n, INF), v(m);
    std::vector<int> f(m);
    for (int cur = 0; cur < n; cur++) {</pre>
      std::vector<int> vx(n), vy(m), p(n, -1), q;
      std::vector<T> d(m, INF);
      auto update = [&](int x) {
        for (int y = 0; y < m; y++)
```

```
if (\text{smin}(d[v], u[x] + v[v] - a[x][v])) f[v] = x;
  };
  for (int x = 0; x < n; x++)
    if (l[x] == -1) q.push_back(x), vx[x] = 1, update(x);
  int ex, ey, ql = 0;
  for (;;) {
    while (ql < q.size()) {</pre>
      int x = q[ql++];
      for (int y = 0; y < m; y++) {
        if (a[x][y] == u[x] + v[y] && !vy[y]) {
          if (r[y] == -1) {
            ex = x, ey = y; goto found;
          q.push_back(r[y]), p[r[y]] = x;
          vy[y] = vx[r[y]] = 1, update(r[y]);
      }
    }
    T w = INF;
    for (int y = 0; y < m; y++)
      if (!vy[y]) smin(w, d[y]);
    for (int x = 0; x < n; x++)
      if (vx[x]) u[x] -= w:
    for (int y = 0; y < m; y++)
      vy[y] ? v[y] += w : d[y] -= w;
    for (int y = 0; y < m; y++) {
      if (!vy[y] && d[y] == 0) {
        if (r[y] == -1) {
          ex = f[y], ey = y; qoto found;
        q.push_back(r[y]), p[r[y]] = f[y];
        vy[y] = vx[r[y]] = 1, update(r[y]);
    }
  }
  found:
  costs[cur + 1] = costs[cur];
  for (int x = ex, y = ey, ty; x != -1; x = p[x], y = ty)
  costs[cur + 1] += a[x][y];
    if (l[x] != -1) costs[cur + 1] -= a[x][l[x]];
    ty = l[x], l[x] = y, r[y] = x;
}
```

6.3 Max Flow

6.3.1 HLPP

```
template <class T>
struct MaxFlow {
 std::vector<std::tuple<int, int, T, T>> es;
 void add(int x, int y, T z, T r = 0) {
   es.push_back(\{x, y, z, r\});
 }
 struct Edge {
   int v, r; T w;
 };
 T flow(int n, int s, int t) {
    std::vector<Edge> e(es.size() * 2);
    std::vector<int> a(n + 1), h(n), c(2 * n);
    std::vector<std::vector<int>> hs(2 * n);
    std::vector<T> ec(n);
   // bool leftOfMinCut(int x) { return h[x] >= n; }
    for (auto &[x, y, z, r] : es) a[x]++, a[y]++;
    for (int i = 1; i <= n; i++) a[i] += a[i - 1];</pre>
    for (auto &[x, y, z, r] : es) {
     e[--a[x]] = \{y, --a[y], z\}, e[a[y]] = \{x, a[x], r\};
    auto up = [&](int i, T f) {
     int v = e[i].v, j = e[i].r;
     if (!ec[v] && f) hs[h[v]].push_back(v);
     e[i].w -= f, e[j].w += f;
     ec[v] += f, ec[e[i].v] -= f;
   };
    auto cur = a;
   h[s] = n, ec[t] = 1, c[0] = n - 1;
    for (int i = a[s]; i < a[s + 1]; i++) up(i, e[i].w);</pre>
    int k = 0;
    for (;;) {
      while (hs[k].empty()) if (!k--) return -ec[s];
     int x = hs[k].back();
     hs[k].pop_back();
     while (ec[x] > 0) {
       int &o = cur[x];
       if (0 >= a[x + 1]) {
          h[x] = 1e9;
          for (int i = a[x]; i < a[x + 1]; i++)</pre>
```

}

};

6.3.2 Dinic

```
template <class T>
struct Dinic {
 struct Edge {
   int v, next;
   Tw;
 } e[M];
 int s, t, head[N], cur[N], tot, q[N], d[N], l, r;
 Dinic() { memset(head, -1, sizeof head); }
 void add(int x, int y, T z) {
   e[tot] = \{y, head[x], z\}, head[x] = tot++;
   e[tot] = \{x, head[y], (T)0\}, head[y] = tot++;
 T dfs(int x, T flow) {
   if (x == t || !flow) return flow;
   T used = 0;
   for (int &i = cur[x]; ~i; i = e[i].next) {
     int y = e[i].v;
     if (!e[i].w || d[y] != d[x] - 1) continue;
     T f = dfs(y, std::min(flow - used, e[i].w));
     used += f, e[i].w -= f, e[i ^ 1].w += f;
     if (flow == used) return flow;
   if (!used) d[x] = -1;
   return used;
 T flow(int s_, int t_, T lim =

    std::numeric_limits<T>().max()) {
   s = s_{-}, t = t_{-};
   T ans = 0;
   while (ans < lim) {</pre>
     memset(d, -1, sizeof d);
```

```
a[l = r = 0] = t:
     d[t] = 0;
     while (l <= r) {
       int x = q[l++];
       for (int i = head[x]; ~i; i = e[i].next) {
         int y = e[i].v;
         if (e[i ^ 1].w && d[y] == -1) {
           d[y] = d[x] + 1;
           q[++r] = y;
     if (d[s] == -1) break;
     memcpy(cur, head, sizeof head);
     ans += dfs(s, lim - ans);
   return ans;
};
使用 dinic 通过加强版的方法:
   1. Scaling, 按 Cap 从大到小加边, limit 倍增。
   2. 两轮,第一轮不加反向边,第二轮加反向边
for(int tp:{0,1})for(int p=1e9,i=0;;p/=20){
```

6.4 上下界网络流

for(;i<m&&d[i].w>=p;++i)

ans+=dinic();if(!p)break;

if(tp)v[d[i].v]+=i*2+1;

6.4.1 无源汇有上下界可行流

else ins(d[i].u,d[i].v,d[i].w);

```
n=read(),m=read();tot=1;s=0,t=n+1;
int sum=0;REP(i,1,m){
   int x=read(),y=read(),b=read(),c=read();
   add(x,y,c-b);upp[i]=c;fl[y]+=b;fl[x]-=b;
}
REP(i,1,n)if(fl[i])if(fl[i]>0)add(s,i,fl[i]);
else add(i,t,-fl[i]),sum-=fl[i];
int ans=0;while(bfs()){
   REP(i,0,t)cur[i]=head[i];
   ans+=dfs(s,inf);
}
if(ans==sum){
   puts("YES");
   REP(i,1,m)printf("%d\n",upp[i]-e[i<<1].w);
}else puts("NO");</pre>
```

6.4.2 有源汇有上下界最大流

```
int S,T;
n=read(),m=read(),S=read(),T=read();tot=1;
int sum=0;REP(i,1,m){
   int x=read(),y=read(),b=read(),c=read();
   add(x,y,c-b);fl[y]+=b;fl[x]-=b;
}
add(T,S,inf);
REP(i,1,n)if(fl[i])if(fl[i]>0)add(0,i,fl[i]);
else add(i,n+1,-fl[i]),sum==fl[i];
s=0,t=n+1;
if(dinic()==sum){
   s=S,t=T,printf("%d\n",dinic());
}else puts("please go home to sleep");
```

6.4.3 有源汇有上下界最小流

```
int S,T;
n=read(),m=read(),S=read(),T=read();tot=1;
int sum=0;REP(i,1,m){
   int x=read(),y=read(),b=read(),c=read();
   add(x,y,c-b);fl[y]+=b;fl[x]-=b;
}
REP(i,1,n)if(fl[i])if(fl[i]>0)add(0,i,fl[i]);
else add(i,n+1,-fl[i]),sum-=fl[i];
s=0,t=n+1;sum-=dinic();add(T,S,inf);sum-=dinic();
if(!sum)printf("%d\n",e[tot].w);
else puts("please go home to sleep");
```

6.5 MCMF

```
费用关于流量是凸函数: 斜率递增的直线。
如果边权很小,可以跑最大流进行增广

template <class T, class C>
struct MCMF {
    struct Edge {
        int v;
        T w; C c;
    };
    std::vector<Edge> e;
    std::vector<std::vector<int>> g;
    MCMF(int n) : e(), g(n) {}

int add(int x, int y, T z, C c) {
    int m = e.size();
```

e.push_back({y, z, c});

```
e.push_back(\{x, 0, -c\});
  g[x].push_back(m), g[y].push_back(m ^ 1);
 return m:
std::pair<T, C> flow(int s, int t, T lim =

    std::numeric_limits<T>::max()) {

 int n = q.size();
  assert(0 <= s && s < n);
  assert(0 <= t && t < n);
  assert(s != t);
  std::vector<C> dual(n), d;
  std::vector<int> p(n), vis;
  auto dual ref = [&]() -> bool {
    std::priority_queue<std::pair<C, int>> q;
    d.assign(n, std::numeric_limits<C>::max());
    vis.assign(n, ⊕);
    d[s] = 0, q.push(\{0, s\});
    while (!q.empty()) {
      int x = q.top().second;
      q.pop();
      if (vis[x]) continue;
      vis[x] = 1;
      if (x == t) break:
      for (int i : q[x]) {
       int y = e[i].v;
        if (vis[y] || !e[i].w) continue;
        C c = e[i].c - dual[y] + dual[x];
        if (d[y] - d[x] > c) {
          d[y] = d[x] + c;
          q.push({-d[y], y});
          p[y] = i;
       }
      }
    if (!vis[t]) return false;
    for (int i = 0; i < n; i++) {</pre>
      if (vis[i]) dual[i] -= d[t] - d[i];
    }
    return true;
 };
 T flow = 0;
 C cost = 0:
  while (flow < lim && dual ref()) {</pre>
   T f = lim - flow;
    for (int x = t; x != s; x = e[p[x] ^ 1].v) {
      smin(f, e[p[x]].w);
```

```
for (int x = t; x != s; x = e[p[x] ^ 1].v) {
       e[p[x]].w -= f, e[p[x] ^ 1].w += f;
     flow += f, cost -= f * dual[s];
   return {flow, cost};
};
6.6 BCC
6.6.1 e-BCC
考虑了重边的问题
void gen(int x) {
 bcc++;
 do -{
   bel[s[t]] = bcc;
 } while (s[t--] != x);
void dfs(int x, int p) {
 in[x] = low[x] = ++dfn, s[++t] = x;
 for (int i = head[x]; ~i; i = e[i].next) {
   int y = e[i].v;
   if (!in[y]) {
     dfs(y, i);
     smin(low[x], low[y]);
     if (low[y] > in[x]) qen(y);
   } else if (i ^ p ^ 1) {
     smin(low[x], in[y]);
 if (p == -1) \operatorname{gen}(x);
6.6.2 v-BCC
(广义) 圆方树。h 表示圆方树、要注意是有根的、还要注意一个圆点可能有
多个方儿子。
std::vector<int> g[N], h[N * 2];
int in[N], low[N], dfn, bcc;
void dfs(int x) {
 low[x] = in[x] = ++dfn, h[0].push_back(x);
 for (int y : q[x]) {
   if (!in[y]) {
     int k = h[0].size();
     dfs(v):
     smin(low[x], low[y]);
```

```
h[x].push_back(++bcc + n);
        h[bcc + n].assign(h[0].begin() + k, h[0].end());
       h[0].resize(k);
   } else {
     smin(low[x], in[y]);
   }
 }
需要得到点双中的边, 此时需要考虑重边的问题。
if (in edge == e) continue;
if (in[y]) {
 smin(low[x], in[y]);
 if (in[y] < in[x]) st.push_back(e);</pre>
} else {
 int si = st.size();
  dfs(y, e);
  smin(low[x], low[v]);
  if (low[y] == in[x]) {
    st.push_back(e);
   // f(vi(st.begin() + si, st.end()));
    st.resize(si);
 } else if (low[y] < in[x]) {</pre>
    st.push back(e):
 } else {
   // e is bridge
        Two Sat
6.7
struct TwoSat {
 int n, cur;
  std::vector<std::vector<int>> q;
  std::vector<int> val, up, in, s;
  int addVar() { return q.resize(q.size() + 2), n++; }
 TwoSat(int n = 0)
     : n(n), cur(0), q(n * 2), val(n, -1), up(n * 2), in(n * 2)
     \leftrightarrow 2), s() {}
  void add(int x, int y) { // x || y
   x = std::max(2 * x, -1 - 2 * x);
    y = std::max(2 * y, -1 - 2 * y);
    q[x ^1].push_back(y);
```

 $q[y ^1].push_back(x);$

if (low[y] >= in[x]) {

```
void atMostOne(const std::vector<int> &a) {
    if (a.size() <= 1) return;</pre>
    int x = \sim a[0]:
    for (int i = 2, v; i < a.size(); i++, x = ~v)
      add(x, \sim a[i]), add(x, v = addVar()), add(\sim a[i], v);
    add(x, \sim a[1]);
  void set(int x) { add(x, x); }
  int dfs(int i) {
    int low = up[i] = ++cur, x;
    s.push_back(i);
    for (int j : g[i])
      if (!in[j]) smin(low, up[j] ?: dfs(j));
    cur++;
    if (low == up[i]) {
      do {
        x = s.back(), s.pop_back();
        in[x] = cur;
        if (val[x >> 1] == -1) val[x >> 1] = x & 1 ^ 1;
      } while (x != i);
    return up[i] = low;
  bool solve() {
    for (int i = 0; i < n * 2; i++)
     if (!in[i]) dfs(i);
    for (int i = 0; i < n; i++)
      if (in[i << 1] == in[i << 1 | 1]) return false;</pre>
    return true;
};
```

6.8 Dominator Tree

- tarjan(s) 求以 s 为起点的支配树。
- fa 支配树上父亲,满足 fa[x] < x, fa[1] = 0。
- dom 支配树上儿子。

注意上面的东西都是以 dfs 序来标号的,所以要求原图中 x 的支配点,应该写 id[fa[in[x]]]。

时间复杂度 $O(n \log n)$, 其中 log 是并查集。

```
std::vector<int> g[N], h[N], dom[N];
int in[N], id[N], dfn, par[N], f[N], val[N], sem[N], fa[N];
void add(int x, int y) {
   g[x].push_back(y);
```

```
h[v].push back(x):
void dfs(int x) {
 in[x] = ++dfn, id[in[x]] = x;
  for (int y : q[x]) {
   if (in[y]) continue;
   dfs(y);
   par[in[y]] = in[x];
int find(int x) {
 if (x == f[x]) return x;
 int y = find(f[x]);
 if (sem[val[f[x]]] < sem[val[x]]) val[x] = val[f[x]];</pre>
 return f[x] = y;
void tarjan(int s) {
 dfs(s):
  for (int i = 1; i <= dfn; i++) {</pre>
   f[i] = sem[i] = val[i] = i;
  for (int y = dfn; y > 1; y--) {
   int x = par[y];
   for (int v : h[id[y]]) {
     int z = in[v];
     if (!z) continue:
     find(z);
      smin(sem[y], sem[val[z]]);
    dom[sem[y]].push_back(y);
   f[y] = x;
   for (int v : dom[x]) {
     find(v);
     fa[v] = sem[val[v]] < x ? val[v] : x;
   dom[x].clear();
  for (int i = 2; i <= dfn; i++) {</pre>
   if (fa[i] != sem[i]) fa[i] = fa[fa[i]];
   dom[fa[i]].push_back(i);
  fa[1] = 0;
```

6.9 EulerWalk

欧拉路径判定(是否存在):

有向图欧拉路径: 图中恰好存在 1 个点出度比入度多 1 (这个点即为起点 S), 1 个点入度比出度多 1 (这个点即为终点 T), 其余节点出度 = 入度。

```
有向图欧拉回路: 所有点的入度 = 出度 (起点 S 和终点 T 可以为任意点)。
无向图欧拉路径: 图中恰好存在 2 个点的度数是奇数,其余节点的度数为偶数,这两个度数为奇数的点即为欧拉路径的起点 S 和终点 T。
无向图欧拉回路: 所有点的度数都是偶数 (起点 S 和终点 T 可以为任意点)。
```

```
std::vector<PII> q[N]; // (to, edge_id)
int n, m;
std::vector<int> eulerWalk(int src = 0) {
 std::vector<int> d(n), cur(n), v(m), r, s = {src};
 d[src]++; // to allow Euler paths , not just cycles
  while (!s.empty()) {
    int x = s.back(), &i = cur[x];
   if (i == q[x].size()) {
     r.push_back(x);
     s.pop_back();
     continue;
   }
    auto [y, e] = q[x][i++];
    if (!v[e]) {
     d[x]--, d[y]++;
     v[e] = 1;
     s.push_back(y);
```

字典序最小: 将 g 从小到大排序即可。

6.10 General Matching

if (r.size() != m + 1) return {};

return {r.rbegin(), r.rend()};

for (int x : d) if ($x < \theta$) return {};

```
x = find(fa[ans[x]]);
      return x;
   };
    auto blossom = [&](int x, int y, int p) {
      while (find(x) != p) {
        fa[x] = y, y = ans[x];
        if (!vis[y]) vis[y] = 1, q.push_back(y);
        f[x] = f[y] = p, x = fa[y];
     }
   };
    auto augment = [&](int x) {
      std::iota(f.begin(), f.end(), 0);
      std::fill(vis.begin(), vis.end(), -1);
      q = \{x\}, vis[x] = 1, dep[x] = 0;
      for (int i = 0; i < q.size(); i++) {</pre>
       int x = q[i];
        for (int y : q[x]) {
         if (vis[y] == -1) {
            vis[y] = 0, fa[y] = x, dep[y] = dep[x] + 1;
            if (ans[y] == -1) {
              for (int t; x != -1; y = t, x = y == -1 ? -1 :
              \hookrightarrow fa[y])
               t = ans[x], ans[y] = x, ans[x] = y;
            vis[ans[y]] = 1, dep[ans[y]] = dep[x] + 2;
            q.push_back(ans[y]);
         } else if (vis[y] == 1 && find(y) != find(x)) {
            int p = lca(x, y);
            blossom(x, y, p), blossom(y, x, p);
         }
        }
     }
    for (int i = 0; i < n; i++) {
      if (ans[i] != -1) continue;
      for (int j : q[i]) {
        if (ans[i] == -1) {
         ans[i] = j, ans[j] = i;
         break;
       }
      }
    for (int u = 0; u < n; ++u)
      if (ans[u] == -1) augment(u);
    return ans:
 }
};
```

6.11 最小割树

图上面两点间的最小割等于树上两点间路径边权的最小值

```
Graph<int> q(n);
while (m--) {
 int x, y, z;
 std::cin >> x >> y >> z;
 q.add(x, y, z, true); // double_edged
}
std::vector<int> f(n);
f[0] = -1;
for (int i = 1; i < n; i++) {</pre>
 // 退流
  for (int j = 0; j < q.e.size(); j += 2) {</pre>
   q.e[j].w = q.e[j ^ 1].w = q.e[j].w + q.e[j ^ 1].w >> 1;
  int k = q.flow(i, f[i]);
 /* edge (i, f[i], k) */
  for (int j = i + 1; j < n; j++) {</pre>
   // 注意: 判断 j 和 i 联通, 板子里 bfs 是从 t 向 s 跑的, 所以判 -1
   if (q.d[j] == -1 && f[i] == f[j]) {
     f[j] = i;
 }
}
```

6.12 K Shortest Path

```
using T = LL;
struct Edge {
   int x, y; T z;
};
struct Heap {
   struct Node {
    int ls, rs, h, v;
    T w;
   } t[N * 40];
   int cnt;
   int newNode(int v, T w) {
      t[++cnt] = {0, 0, 1, v, w};
      return cnt;
}
int merge(int x, int y) {
   if (!x) return y;
   if (!y) return x;
```

```
if (t[x].w > t[y].w) std::swap(x, y);
    t[++cnt] = t[x], x = cnt;
    t[x].rs = merge(t[x].rs, y);
    if (t[t[x].ls].h < t[t[x].rs].h) std::swap(t[x].ls,
   \hookrightarrow t[x].rs);
   t[x].h = t[t[x].rs].h + 1;
    return x;
 }
} h;
std::vector<T> kShortestPath(int n, int k, int s, int t, const

    std::vector<Edge> &e) {

 int m = e.size();
 std::vector<int> deg(n + 1), g(m);
  for (auto &[x, y, z] : e) deg[y]++;
  for (int i = 1; i <= n; i++) deg[i] += deg[i - 1];</pre>
  for (int i = 0; i < m; i++) q[--deq[e[i].y]] = i;</pre>
  std::vector<T> d(n, -1);
  std::vector<int> fa(n, -1), p;
  using Q = std::pair<T, int>;
  std::priority_queue<Q, std::vector<Q>, std::greater<Q>> q;
  p.reserve(n);
  d[t] = 0, a.push({0, t});
  std::vector<bool> vis(n);
  while (!q.empty()) {
    int x = q.top().second;
    q.pop();
    if (vis[x]) continue;
    vis[x] = true;
    p.push_back(x);
    for (int i = deq[x]; i < deq[x + 1]; i++) {
      auto &[y, _, z] = e[g[i]];
     if (d[y] == -1 || d[y] > d[x] + z) {
        d[y] = d[x] + z, fa[y] = g[i];
        q.push(\{d[y], y\});
 }
 if (d[s] == -1) std::vector<T>(k, -1);
  std::vector<int> heap(n);
 h.cnt = 0:
 for (int i = 0; i < m; i++) {
   auto &[x, y, z] = e[i];
   if (d[x] != -1 \&\& d[y] != -1 \&\& fa[x] != i) {
```

```
heap[x] = h.merge(heap[x], h.newNode(v, d[v] + z -
    \hookrightarrow d[x]));
 }
}
for (int x : p) {
 if (x != t) heap[x] = h.merqe(heap[x], heap[e[fa[x]].y]);
if (heap[s]) q.push({d[s] + h.t[heap[s]].w, heap[s]});
std::vector<T> res = {d[s]}:
for (int i = 1; i < k && !q.empty(); i++) {</pre>
  auto [w, o] = q.top();
 q.pop();
 res.push back(w):
 int j = h.t[o].v;
 if (heap[j]) g.push({w + h.t[heap[j]].w, heap[j]});
  for (auto s : {h.t[o].ls, h.t[o].rs}) {
    if (s) q.push({w + h.t[s].w - h.t[o].w, s});
 }
}
res.resize(k, -1);
return res;
```

6.13 DMST

```
template <class W>
struct DMST {
 struct Node {
   int ls, rs, x, y;
   W w, a;
 };
 std::vector<int> h;
 std::vector<Node> t;
 void apply(int o, W x) { if (o) t[o].w -= x, t[o].a += x; }
 void pushdown(int o) {
   apply(t[o].ls, t[o].a), apply(t[o].rs, t[o].a);
   t[o].a = 0;
 }
 int merge(int x, int y) {
   if (!x || !y) return x | y;
   if (t[y].w < t[x].w) std::swap(x, y);</pre>
   pushdown(x);
   t[x].rs = merge(t[x].rs, y);
   std::swap(t[x].ls, t[x].rs);
   return x;
```

```
void pop(int x) {
 int &o = h[x]:
 pushdown(o), o = merge(t[o].ls, t[o].rs);
DMST(int n, int m = \theta) : h(n), t(1) { t.reserve(m + 1); }
void add(int x, int y, W z) {
 t.push_back(\{0, 0, x, y, z, W(0)\});
 h[y] = merge(h[y], t.size() - 1);
template <class T = W>
std::pair<T, std::vector<int>> solve(int r) {
 T ans = 0:
 int n = h.size();
 std::vector<int> p(n);
 std::vector<PII> c;
 Dsu a(n):
 RDsu b(n);
 for (int i = 0, x, y, z, k; i < n; i++) {
   if (i == r) continue;
   for (x = i::) {
     if (!h[x]) return {0, {}};
      p[x] = h[x];
      ans += t[p[x]].w;
      apply(p[x], t[p[x]].w);
      if (a.merge(x, b.find(t[p[x]].x))) break;
      y = b.find(t[p[x]].x), k = b.time();
      while (b.merge(x, y)) {
       h[z = b.find(x)] = merge(h[x], h[y]);
       x = z, y = b.find(t[p[y]].x);
      c.emplace back(p[x], k);
      while (h[x] \&\& b.same(t[h[x]].x, x)) pop(x);
   }
 for (auto it = c.rbegin(); it != c.rend(); it++) {
   int u = b.find(t[it->first].y);
   b.undo(it->second);
   int v = b.find(t[p[u]].y);
   p[v] = std::exchange(p[u], it->first);
 for (int i = 0; i < n; i++) p[i] = i == r ? -1 :
 \hookrightarrow t[p[i]].x;
 return {ans, p}:
```

};

Combinatorial (7)

7.1 Poly

7.1.1 DFT

```
constexpr u32 P(998244353), G(3), L(1 << 19);</pre>
int fpow(int x, int k = P - 2) {
 int r = 1:
 for (; k; k >>= 1, x = 1LL * x * x % P)
   if (k & 1) r = 1LL * r * x % P;
 return r;
void inc(int &x, int y) { if ((x += y) >= P) x -= P; }
int madd(int x) { return x >= P ? x - P : x; }
int msub(int x) \{ return x < 0 ? x + P : x; \}
int cmul(u32 x, u64 y, u64 iy) { return madd(x * y - (iy * x
u32 w[L][2];
int fac[L], ifac[L], inv[L], _ = [] {
 w[L / 2][0] = 1;
 for (int i = L / 2 + 1, x = fpow(G, (P - 1) / L); i < L;
 w[i][0] = cmul(x, w[i - 1][0], w[i - 1][1]);
   w[i][1] = (u64(w[i][0]) << 32) / P;
 for (int i = L / 2 - 1; i >= 0; i--)
   w[i][0] = w[i \ll 1][0], w[i][1] = w[i \ll 1][1];
 fac[0] = 1;
  for (int i = 1; i < L; i++) fac[i] = 1LL * fac[i - 1] * i %</pre>
 → P;
 ifac[L - 1] = fpow(fac[L - 1]);
 for (int i = L - 1; i; i--) {
   ifac[i - 1] = 1LL * ifac[i] * i % P;
   inv[i] = 1LL * ifac[i] * fac[i - 1] % P:
 }
 return 0;
}();
void dft(int *a, int n) {
 for (int k = n >> 1; k; k >>= 1) {
   for (int i = 0; i < n; i += k << 1) {
     for (int j = 0; j < k; j++) {</pre>
```

```
int &x = a[i + i], v = a[i + i + k]:
        a[i + j + k] = cmul(x - y + P, w[k + j][0], w[k +
        \hookrightarrow j][1]);
        inc(x, y);
    }
 }
void idft(int *a, int n) {
  for (int k = 1; k < n; k <<= 1) {
    for (int i = 0; i < n; i += k << 1) {</pre>
      for (int j = 0; j < k; j++) {
        int &x = a[i + j], y = cmul(a[i + j + k], w[k + j][0],
        \hookrightarrow w[k + i][1]);
        a[i + j + k] = msub(x - y);
        inc(x, v):
   }
  u64 x = P - (P - 1) / n, ix = (x << 32) / P;
  for (int i = 0; i < n; i++) a[i] = cmul(a[i], x, ix);</pre>
  std::reverse(a + 1, a + n);
void dftD(int *a, int n) {
  std::copv n(a, n, a + n);
  idft(a + n, n);
  for (int i = 0; i < n; i++) a[n + i] = cmul(a[n + i], w[n +</pre>
  \hookrightarrow i][0], w[n + i][1]);
  dft(a + n, n);
}
int norm(int n) { return 1 << std::__lq(n * 2 - 1); }</pre>
```

7.1.2 Struct Poly

```
dft(p.resize(n));
  idft(p ^= \&a == \&b ? p : (dft((q = b).resize(n)), q));
friend Poly operator*(const Poly &a, const Poly &b) {
 if (a.empty() || b.empty()) return {};
  int len = a.size() + b.size() - 1;
  if (a.size() < 16 || b.size() < 16) {</pre>
   Polv c(len);
    for (int i = 0; i < a.size(); i++)</pre>
      for (int j = 0; j < b.size(); j++)</pre>
        c[i + j] = (c[i + j] + 1LL * a[i] * b[j]) % P;
    return c;
 }
  return conv(a, b, norm(len)).pre(len);
Poly mulT(Poly b) { return T * b.rev() >> b.size() - 1; }
Poly deriv() const {
 if (empty()) return {};
 Poly r(size() - 1);
  for (int i = 1; i < size(); i++) r[i - 1] = 1LL * i * T[i]</pre>
 return r:
Polv inteq() const {
  if (empty()) return {};
 Poly r(size() + 1);
  for (int i = 0; i < size(); i++) r[i + 1] = 1LL * ::inv[i</pre>

→ + 1] * T[i] % P;

 return r;
Poly inv(int m) const {
 Poly x = \{fpow(T[0])\};
 for (int k = 1; k < m; k *= 2)
   x.append(-((conv(pre(k * 2), x, k * 2) >> k) *
    \rightarrow x).pre(k));
  return x.resize(m);
Poly log(int m) const { return (deriv() *

    inv(m)).integ().resize(m); }

Poly exp(int m) const {
 Poly x = \{1\};
 for (int k = 1; k < m; k *= 2)
    x.append((x * (pre(k * 2) - x.log(k * 2) >> k)).pre(k));
 return x.resize(m):
Poly sqrt(int m) const {
 Poly x = \{1\}, y = \{1\};
  for (int k = 1; k < m; k *= 2) {
```

```
x.append(((pre(k * 2) - x * x >> k) * v).pre(k) * (P + 1)
    \hookrightarrow >> 1));
    if (k * 2 < m)
      y.append(-((conv(x.pre(k * 2), y, k * 2) >> k) *
      \hookrightarrow y).pre(k));
  return x.resize(m);
Polv powexp(LL k, int m) const {
  if (!k) return Poly{1}.resize(m);
  int z = 0;
  while (z < size() && !T[z]) z++;</pre>
  if (z == size() || z >= (m + k - 1) / k) return Poly(m);
  int r = m - z * k:
  return (((T \gg z).\log(r) * (k \% P)).\exp(r) * fpow(T[z], k
  \hookrightarrow % (P - 1)) << z * k).resize(m);
Poly operator-() const {
  Poly r(T);
  for (auto &x : r) if (x) x = P - x;
  return r;
Poly & operator += (const Poly &r) {
  if (r.size() > size()) resize(r.size());
  for (int i = 0; i < r.size(); i++) inc(T[i], r[i]);</pre>
  return T:
Poly &operator -= (const Poly &r) {
  if (r.size() > size()) resize(r.size());
  for (int i = 0; i < r.size(); i++) inc(T[i], P - r[i]);</pre>
  return T:
Poly &operator^=(const Poly &r) {
  assert(r.size() == size());
  for (int i = 0; i < size(); i++) T[i] = 1LL * T[i] * r[i]</pre>
  return T:
Polv & operator *= (int r) {
  for (int &x : T) x = 1LL * x * r % P;
  return T;
Poly operator+(const Poly &r) const { return Poly(T) += r; }
Poly operator-(const Poly &r) const { return Poly(T) -= r; }
Poly operator^(const Poly &r) const { return Poly(T) ^= r; }
Poly operator*(int r) const { return Poly(T) *= r; }
Poly & operator <<= (int k) { return insert(begin(), k, 0), T;
→ }
Polv operator<<(int r) const { return Polv(T) <<= r; }
```

7.1.3 Qoly - RelaxedConvolution

```
using Fn = std::function<int(int)>;
struct 0 {
  0() = default;
  Q(Fn &&fn) : f(std::forward<Fn>(fn)) {}
  Fn f;
  Poly c;
  virtual void await(int n) {
    while (c.size() < n) c.push_back(f(c.size()));</pre>
  int at(int k) { return c[k]; }
  std::vector<Poly> d; // [0, 2^k) dft
  Poly &get(int k) {
    if (k >= d.size()) d.resize(k + 1);
    auto &p = d[k];
    if (p.empty()) dft(p = take(0, 1 << k));
    return p;
  Poly take(int l, int r) {
    await(r):
    return {c.begin() + l, c.begin() + r};
};
struct FixQ : Q {
  FixQ(const Poly &p) { c = p; }
  void await(int n) override {
    if (c.size() < n) c.resize(n);</pre>
};
struct RC : 0 {
  Q *a, *b;
  int m;
  RC(Q *a, Q *b) : a(a), b(b), m(0) {}
  void await(int n) override {
    constexpr int M(32);
    a->await(n), b->await(n);
    for (; m < n; m++) {
      if (!m) {
        c.push_back((u64)a->at(\theta) * b->at(\theta) % P);
```

```
continue:
      int k = m \& -m, l = m - k, r = m + k, t = std::__lq(k);
      if (c.size() < r) c.resize(r);</pre>
      c[m] = (c[m] + (u64)a -> at(0) * b -> at(m) + (u64)a -> at(m)
      \rightarrow * b->at(0)) % P;
      if (m == k) {
        Poly p = a - sqet(t);
        idft(p ^= b->get(t));
        for (int i = m; i < r; i++)</pre>
          inc(c[i], p[i - m]), inc(c[i], P - c[i - m]);
      } else if (k < M) {
        for (int i = m; i < r; i++)</pre>
          for (int j = l; j < m; j++)</pre>
            c[i] = ((u64)a - > at(i) * b - > at(i - i) +
                     (u64)b->at(i) * a->at(i - i) + c[i]) % P:
      } else {
        k *= 2, t++;
        Poly x(b\rightarrow take(l, m)), z(a\rightarrow take(l, m));
        Poly &y(a->qet(t)), &w(b->qet(t));
        dft(x.resize(k)), dft(z.resize(k));
        for (int i = 0; i < k; i++)</pre>
          x[i] = ((u64)x[i] * y[i] + (u64)z[i] * w[i]) % P;
        idft(x):
        for (int i = m; i < r; i++) inc(c[i], x[i - l]);</pre>
 }
};
struct Qoly {
  Q *q;
  Qoly(Q *q = new Q) : q(q) {}
  Qoly(const Poly &p) : q(new FixQ(p)) {}
  Qoly(Fn &&f) : q(new Q{std::forward<Fn>(f)}) {}
  void set(Qoly &&r) { q->f = std::move(r.q->f); }
  int at(int k) const { return q->await(k + 1), q->at(k); }
  int operator[](int k) const { return at(k); }
  friend Qoly operator*(Qoly a, Qoly b) { return {new RC{a.q,
  \hookrightarrow b.q}}; }
  Qoly operator*(int x) {
    return {[=, *this](int i) { return 1LL * at(i) * x % P;
    → }};
  Qoly operator+(Qoly b) {
    return {[=, *this](int i) { return madd(at(i) + b[i]); }};
  Qoly operator-(Qoly b) {
    return {[=, *this](int i) { return msub(at(i) - b[i]); }};
```

```
Qoly replace(const Poly &p) {
 return {[=, *this](int i) { return i < p.size() ? p[i] :</pre>
 \hookrightarrow at(i); }};
Qoly deriv() {
 return {[=, *this](int i) { return LL(i + 1) * at(i + 1) %
 → P; }};
Ooly inteq(int c = 0) {
  return {[=, *this](int i) { return i ? 1LL * at(i - 1) *
 Oolv operator>>(int k) {
  return {[=, *this](int i) { return at(i + k); }};
Qoly operator<<(int k) {</pre>
 return {[=, *this](int i) { return i >= k ? at(i - k) : θ;
Qoly log(int c = 0) { return (deriv() * inv()).integ(c); }
Qoly exp() {
 Qoly q;
  return q.set((g * deriv()).inteq(1)), q;
Oolv inv() {
 // (f0+f1)q=1, q=(1-f1q)/f0
  Qoly q, h = q * operator>>(1);
  q.q->f = [=, *this, k = 0](int i) mutable {
   return i ? h[i - 1] * LL(P - k) % P : k = fpow(at(0));
 };
  return q;
Qoly sgrt() {
 // q0^2+q1^2+2q0q1=f, q1 = (f-f0-q1^2)/(2q0)
  Qoly g, g1 = g >> 1, h = g1 * g1;
  q.q->f = [=, *this, k = 0](int i) mutable {
   if (!i) {
      auto v = modSgrt(at(0), P);
      assert(!v.empty());
      k = fpow(2 * v[0]);
      return v[0];
    return LL(at(i) + (i >= 2 ? P - h[i - 2] : 0)) * k % P;
 };
  return g;
Ooly harmo(bool p, bool inv) { // inv is not verified
```

```
// \sum \{k \ge 1\} [s ? (-1)^{k-1} : 1] F(x^k)/k
   return {[=, *this, t = Poly()](int i) mutable {
     if (!i) return 0:
     if (!(i & i - 1)) {
       t.resize(i * 2);
       for (int j = 1; j < i; j++) {
         u64 x = inv ? P - t[j] : at(j);
         for (int k = (i + j - 1) / j; j * k < i * 2; k++)
           t[j * k] = (t[j * k] + (p && ~k & 1 ? P - x : x) *
           }
     return inc(t[i], at(i)), t[i];
   }};
 }
 Qoly mset() { return harmo(0, 0).exp(); }
  Qoly pset() { return harmo(1, 0).exp(); }
 Qoly imset() { return log().harmo(0, 1); }
 Qoly ipset() { return log().harmo(1, 1); }
};
```

7.1.4 Poly EI

```
struct SegTree {
 int n, s;
 std::vector<Poly> p;
 SegTree(Poly a): n(a.size()), s(norm(n)), p(s * 2) {
   for (int i = 0: i < s: i++)
     p[i + s] = Poly(\{1, i < n \&\& a[i] ? P - a[i] : 0\});
   for (int i = s - 1; i; i--) {
     int l = i * 2, r = l + 1, k = p[l].size() - 1 << 1;
     dft(p[l].resize(k)), dft(p[r].resize(k));
     idft(p[i] = p[l] ^ p[r]);
     p[i].push_back((p[i][0] - 1 + P) % P);
     p[i][0] = 1;
   }-
 Poly eval(Poly f) {
   int m = f.size();
   if (m == 1) return Poly(n, f[0]);
   Poly q = f.rev() * p[1].inv(m);
   q.resize(m);
   if (m > s) {
     q >>= m - s;
   } else {
     q <<= s - m;
   for (int k = s, o = 1; k > 1; k >>= 1) {
     for (int i = 0; i < s; i += k, 0++) {
```

```
if (i >= n) continue:
        int *a = &q[i], *l = p[o * 2].data(), *r = p[o * 2]
        \hookrightarrow 1].data():
        dft(a, k);
        Poly x(k), y(k);
        for (int j = 0; j < k; j++) {
          x[j] = 1LL * a[j] * r[j] % P;
          y[j] = 1LL * a[j] * l[j] % P;
        idft(x), idft(y);
        std::copy(x.begin() + k / 2, x.end(), a);
        std::copy(y.begin() + k / 2, y.end(), a + k / 2);
     }
   }
    return q.pre(n);
  Poly interpolate(Poly b) {
    assert(b.size() == n);
    Poly g = eval(Poly(p[1]).resize(n + 1).rev().deriv());
    for (int i = 0; i < n; i++) q[i] = 1LL * fpow(q[i]) * b[i]</pre>
   q.resize(s);
    for (int k = 1, h = s >> 1; k < s; k <<= 1, h >>= 1)
      for (int i = 0, 0 = h; i < s; i += k << 1, 0++) {</pre>
        if (i >= n) continue;
        int *a = &q[i];
        Poly x(k * 2), y(k * 2);
        for (int j = 0; j < k; j++) x[j] = a[j], y[j] = q[i +
        \hookrightarrow j + k];
        dft(x), dft(y);
        for (int j = 0; j < k * 2; j++)
          a[i] = (1LL * x[i] * p[o * 2 + 1][i] + 1LL * y[i] *
          \hookrightarrow p[o * 2][j]) % P;
        idft(a, k * 2);
    return q.pre(n).rev();
 }
};
7.1.5 DivAt
 int len = std::max(f.size(), g.size()), n = norm(len);
  std::vector<int> rw(n);
  for (int i = n / 2, x = fpow(G, P - 1 - P / (n * 4)); i; i

→ >>= 1)
```

```
int divAt(Poly f, Poly q, int64_t k) { // 5e5, 1e18, 2s
   rw[i] = x = 1LL * x * x % P;
  rw[0] = 1;
  for (int i = 3; i < n; i++)</pre>
```

```
if (i & i - 1) rw[i] = 1LL * rw[i & i - 1] * rw[i & -i] %
 for (int &i : rw) i = (i & 1 ? i + P : i) >> 1;
  dft(f.resize(n * 2)), dft(q.resize(n * 2));
 for (;;) {
   for (int i = 0; i < n * 2; i++) f[i] = 1LL * f[i] * q[i ^
   if (k & 1) {
     for (int i = 0; i < n; i++)</pre>
       f[i] = LL(f[i * 2] - f[i * 2 + 1] + P) * rw[i] % P;
   } else {
     for (int i = 0; i < n; i++) {</pre>
       f[i] = f[i * 2] + f[i * 2 + 1];
       f[i] = (f[i] \& 1 ? f[i] >= P ? f[i] - P : f[i] + P :
       }
   for (int i = 0; i < n; i++) q[i] = 1LL * q[i * 2] * q[i *
   if ((k >>= 1) < n) break;
   dftD(f.data(), n), dftD(g.data(), n);
 idft(f.resize(n)), idft(q.resize(n)), q = q.inv(n);
 int ans = 0;
 for (int i = 0; i \le k; i++) ans = (ans + 1LL * f[i] * q[k -
 return ans:
Poly invRange(Poly q, int64_t l, int64_t r) {
 assert(l <= r);
 assert(r - l + 1 \le 5e5);
 int len = std::max<int>(q.size(), r - l + 1), m = 1 <<</pre>
 \hookrightarrow std::__lg(len * 2 - 1);
 std::function<Poly(Poly&, int64_t)> cal = [&](Poly &a,

    int64 t n) → Polv {

   if (n == 0) {
     Polv res(len):
     int c = 0;
     for (int i = 0; i < m; i++) inc(c, a[i]);</pre>
     res.back() = 1LL * m * fpow(c) % P;
     return res;
   dftD(a.data(), m);
   Polv b(m * 2):
   for (int i = 0; i < m; i++) b[i] = 1LL * a[i * 2] * a[i *
   auto c = cal(b, n >> 1);
```

```
std::fill(b.begin(), b.end(), 0);
   for (int i = 0, 0 = n & 1 ^ 1; i < len; i++) b[i * 2 ^ 0]</pre>
   dft(b);
   for (int i = 0; i < m * 2; i++) b[i] = 1LL * b[i] * a[i ^</pre>

→ 1] % P;

   idft(b):
   return Poly(b.begin() + len, b.begin() + len * 2);
 };
 q.resize(m * 2);
 dft(q.data(), m);
 q = cal(q, r);
 return Poly(q.end() - (r - l + 1), q.end());
int divAt2(Poly f, Poly q, int64_t n) {
 q = invRange(q, n - ((int)f.size() - 1), n);
 q = f * q;
 return q[f.size() - 1];
```

7.1.6 Shift

```
// input : Poly A(x), output : A(x + b)
Poly shift(Poly a, int b) {
 if (!b) return a;
 int n = a.size();
 for (int i = 0; i < n; i++) a[i] = 1LL * a[i] * fac[i] % P;</pre>
  std::reverse(a.begin(), a.end());
 Polv p(n):
 for (int i = 0; i < n; i++) p[i] = 1LL * fpow(b, i) *</pre>
 \hookrightarrow ifac[i] % P;
 a = a * p;
 a.resize(n);
  std::reverse(a.begin(), a.end());
  for (int i = 0; i < n; i++) a[i] = 1LL * a[i] * ifac[i] % P;</pre>
  return a;
// input : f(0), f(1), ..., f(n - 1) (Point Value)
// output : f(t), f(t + 1), ..., f(t + m - 1)
// (if m is default, m = n)
Poly PtShift(const Poly &f, LL t, int m = -1) {
 if (m == -1) m = f.size();
 int k = f.size() - 1;
 t %= P;
 if (t <= k) {
   Poly r(m);
   int p = 0;
    for (int i = t; i <= k && p < m; i++) r[p++] = f[i];</pre>
   if (k + 1 < t + m) {
```

```
auto g = PtShift(f, k + 1, m - p);
    for (int i = k + 1; i < t + m; i++) {</pre>
      r[p++] = a[i - k - 1];
  return r;
if (t + m > P) {
  auto p = PtShift(f, t, P - t);
  auto g = PtShift(f, 0, m - p.size());
 p.insert(p.end(), q.begin(), q.end());
  return p;
Poly d(k + 1), h(m + k), r(m);
for (int i = 0; i <= k; i++) {
 d[i] = 1LL * ifac[i] * ifac[k - i] % P * f[i] % P;
 if (k - i & 1 && d[i]) d[i] = P - d[i];
for (int i = 0; i < m + k; i++) h[i] = fpow(t - k + i);
d = d * h;
int cur = t:
for (int i = 1; i <= k; i++) cur = cur * (t - i) % P;
for (int i = 0; i < m; i++) {</pre>
 r[i] = 1LL * cur * d[k + i] % P:
 cur = (t + i + 1) * h[i] % P * cur % P;
return r;
```

7.1.7 Division

7.1.8 Primitive Root

7.1.9 Fast Factorial

```
//O(\sqrt{P}\log P)
int factorial(int n) {
 if (n <= 1) return 1:
 LL v = 1;
  while(v * v < n) v <<= 1;
  int iv = fpow(v % P);
  Poly q = \{1, mod(v + 1)\};
  for (int d = 1; d != v; d <<= 1) {</pre>
   Poly a = PtShift(q, 1LL * d * iv % P);
    Poly b = PtShift(g, (d * v + v) * iv % P);
    Poly c = PtShift(q, (d * v + d + v) * iv % P);
    for (int i = 0; i <= d; i++) {
      q[i] = 1LL * q[i] * a[i] % P;
     b[i] = 1LL * b[i] * c[i] % P:
    q.insert(q.end(), b.begin(), b.end() - 1);
 int r = 1;
 LL i = 0;
  while (i + v \le n) r = 1 L L * r * q[i / v] % P, i += v;
  while (i < n) r = 1LL * r * ++i % P;</pre>
  return r:
```

7.1.10 Compound and Inv

```
// useless algorithm
/*
```

```
* Description: F(G(x))
* Time: O(n sqrt n log n + n ^ 2)
*/
Poly compound(Poly f, Poly q) {
 int n = f.size(), k = norm(2 * n - 1), m = sqrt(n) + 1;
 std::vector<Poly> p(m + 1);
 Poly q(k), h(k), t;
 q[0] = 1, p[0] = q;
 auto fd = [&](auto &f) { dft(f.resize(k)); };
 auto bd = [&](auto &f) { idft(f), f.resize(n); };
 fd(q);
 for (int i = 1; i <= m; ++i) {</pre>
   fd(p[i] = p[i - 1]), bd(p[i] ^= q);
 fd(q = p[m]);
 for (int i = 0; i < m; i++, t.clear(), bd(q)) {</pre>
   for (int j = 0; j < m \&\& j < n - i * m; j++)
     t += p[j] * f[i * m + j];
   fd(t), fd(q);
   for (int j = 0; j < k; ++j) {
     h[j] = (h[j] + 1LL * t[j] * q[j]) % P;
     q[j] = 1LL * q[j] * q[j] % P;
   }
 }
 return bd(h), h;
* Description: get F(x) for F(G(x)) = x
* Time: O(n sqrt n log n + n ^ 2)
*/
Poly compoundInv(Poly q) {
 int n = q.size(), k = norm(2 * n - 1), m = sqrt(n) + 1;
 auto fd = [&](auto &f) { dft(f.resize(k)); };
 auto bd = [&](auto &f) { idft(f), f.resize(n); };
 std::vector<Poly> p(m + 1);
 Poly q(k), f(n);
 q[0] = 1, p[0] = q, fd(q = (q >> 1).inv(n));
 for (int i = 1; i \le m; ++i) fd(p[i] = p[i - 1]), bd(p[i] ^=
 \hookrightarrow q);
 fd(q = p[m]);
 for (int i = 0, t = 1; i < m; i++) {
   for (int j = 1; j <= m && t < n; j++, t++) {
     for (int r = 0; r < t; ++r)</pre>
       f[t] = (f[t] + 1LL * p[j][r] * q[t - 1 - r]) % P;
     f[t] = 1LL * f[t] * inv[t] % P;
   if (i + 1 < m) fd(q), bd(q ^= q);
 }
 return f;
```

}

7.2 Largrange

7.2.1 Formula

$$f(x) = \sum_{i=1}^{n} y_i \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}$$

7.2.2 Interpolate Iota

7.3 Min-max 容斥

$$\operatorname{kmax}_{i \in S} x_i = \sum_{T \subseteq S} (-1)^{|T|-k} {|T|-1 \choose k-1} \min_{j \in T} x_j$$

7.4 FWT

7.4.1 2-FWT

Xor

$$H_{i,p \text{ xor } q} = H_{i,p} H_{i,q}$$
 容易构造出 $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ 或 $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ 。
其中 $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ 有特殊含义 $H_{i,j} = (-1)^{\text{popent}(i \text{ and } j)}$,使用该矩阵,
$$H^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$
。

注意到 $H^{-1} = \frac{1}{2}H$,那么 $H_{2k}^{-1} = \frac{1}{2^k}H_{2k}$,所以对于异或卷积,逆变换相当于正变换后每一项除以 n,与傅里叶变换类似。

7.4.2 子集卷积

$$c_n = \sum_{p,q} [p \text{ or } q = n][p \text{ and } q = 0]a_p b_q$$

将限制条件转化为 [p or q = n][popent(p) + popent(q) = popent(n)]。 利用占位多项式

$$A_n(x) = a_n x^{\text{popent}(n)}$$

$$B_n(x) = b_n x^{\text{popent}(n)}$$

$$C_n(x) = \sum_{p \text{ or } q=n} A_p(x) B_q(x)$$

$$c_n = [x^{\text{popent}(n)}] C_n(x)$$

也可以交换两个维度, 定义两个向量的或卷积为

$$(\mathbf{A} \operatorname{or} \mathbf{B})_n = \sum_{p \operatorname{or} q = n} a_p b_q$$

lilil

$$\mathbf{A}_n = ([\operatorname{popent}(0) = n]a_0, [\operatorname{popent}(1) = n]a_1, \dots)$$

 $\mathbf{B}_n = ([\operatorname{popent}(0) = n]b_0, [\operatorname{popent}(1) = n]b_1, \dots)$
 $\mathbf{C}_n = \mathbf{A}_n \text{ or } \mathbf{B}_n$

7.4.3 k-FWT

 \mathbf{Xor}

设 $i=i_{k-1}\dots i_1i_0, j=j_{k-1}\dots j_1j_0$ 其中 $i_l,j_l\in[0,m)$,定义 m 进制下 xor 运算为

$$(i \operatorname{xor} j)_l = (i_l + j_l) \operatorname{mod} m$$

发现这个就是循环卷积

对于 ω_m 不存在的情形,需要扩域:

分圆多项式

$$\Phi_n(x) = \prod_{i=0}^{n-1} (x - \omega_n^i)^{[i \perp n]}$$

易证

$$\prod_{d\mid n} \Phi_d(x) = x^n - 1$$

莫比乌斯反演可得

$$\Phi_n(x) = \prod_{d \mid n} (x^d - 1)^{\mu(n/d)}$$

定理:

1. 分圆多项式在 Q 上不可约。

2. 在模 $\Phi_n(x)$ 意义下, x 的阶恰好为 k。

所以可以用 x 代替 ω_m , 运算在模 $\Phi_m(x)$ 意义下进行。 如果 $\Phi_m(x)$ 比较简单, 可以直接模 $\Phi_m(x)$, 否则, 由于 $\Phi_m(x) \mid (x^m-1)$ 所以可以先在模 $x^m - 1$ 意义下运算,即做长度为 m 的循环卷积,最后再

模 $\Phi_m(x)$ 。 暴力取模的代码

```
for (int i = n; i >= m; i--) if (q[i]) {
 int t = 1LL * q[i] * fpow(f[m]) % P;
 for (int j = m; j >= 0; j--)
   q[i - j] = (q[i - j] - 1LL * f[j] * t) % P;
}
```

Various FFT

7.5.1 General

$$P(x) = A(x) + iB(x)$$

$$P^{2}(x) = A^{2}(x) - B^{2}(x) + i2A(x)B(x)$$

$$A(x)B(x) = \frac{1}{2}\operatorname{Imag} P^{2}(x)$$

$$P(x) = A(x) + iB(x)$$

$$\overline{P}(x) = A(x) - iB(x)$$

$$A(x) = \frac{P(x) + \overline{P}(x)}{2}$$

$$B(x) = \frac{P(x) - \overline{P}(x)}{2i}$$

$$\overline{P}(\omega^{k}) = \overline{P(\omega^{-k})}$$

7.5.2 FFT Complex

```
namespace FFT {
const long double PI = acosl(-1.L);
struct C {
 double x, y;
 C(double x = 0, double y = 0) : x(x), y(y) {}
 C operator!() const { return C(x, -y); }
};
inline C operator*(C a, C b) { return C(a.x * b.x - a.y * b.y,
\rightarrow a.v * b.x + b.v * a.x); }
inline C operator+(C a, C b) { return C(a.x + b.x, a.y + b.y);
inline C operator-(C a, C b) { return C(a.x - b.x, a.y - b.y);
constexpr int L(1 << 20);</pre>
int r[L << 1], _ = [] {
```

```
for (int i = 0; i < L / 2; i++) w[i + L / 2] = C(cosl(2.L *
\hookrightarrow PI * i / L), sinl(2.L * PI * i / L));
  for (int i = L / 2 - 1; i; i--) w[i] = w[i << 1];
  for (int i = 1; i <= L; i <<= 1) {
   for (int j = 0; j < i; j++) {
      r[i + j] = r[i + j >> 1] | (i >> 1) * (j & 1);
 return 0:
}();
*/
C w[L];
void dft(C *a, int n) {
  for (static int k = (w[1].x = 1, 2); k < n; k <<= 1) {
   for (int i = 0; i < k; i++) {</pre>
      w[i + k] = i \& 1 ? C(cosl(PI * i / k), sinl(PI * i / k))
      \hookrightarrow : w[i + k >> 1]:
  for (int k = n >> 1; k; k >>= 1) {
   for (int i = 0; i < n; i += k << 1) {
      for (int j = 0; j < k; j++) {</pre>
        C \& x = a[i + j], y = a[i + j + k];
        a[i + j + k] = (x - y) * w[k + j], x = x + y;
 }
void idft(C *a, int n) {
  for (int k = 1; k < n; k <<= 1) {</pre>
   for (int i = 0; i < n; i += k << 1) {
      for (int j = 0; j < k; j++) {
        C \& x = a[i + j], y = a[i + j + k] * w[k + j];
        a[i + i + k] = x - v, x = x + v;
  for (int i = 0; i < n; i++) a[i].x /= n, a[i].y /= n;</pre>
  std::reverse(a + 1, a + n);
7.5.3 MTT
Poly conv(const Poly &a, const Poly &b, int n) { // wrong
\hookrightarrow when n = 1
 using namespace FFT;
```

```
assert((n \& n - 1) == 0);
std::vector<C> f(n), g(n), p(n), q(n);
```

```
for (int i = 0; i < a.size(); i++) {</pre>
  f[i] = C(a[i] >> 15, a[i] & 0x7fff);
}
for (int i = 0; i < b.size(); i++) {</pre>
  q[i] = C(b[i] >> 15, b[i] \& 0x7fff);
dft(f.data(), n), dft(q.data(), n);
C h1(0.5, 0), h2(0, -0.5);
for (int k = 1, i = 0, j; k < n; k <<= 1) {
  for (; i < k * 2; i++) {
    auto z = !f[j = i ^ k - 1];
    p[i] = h1 * q[i] * (f[i] + z);
    q[i] = h2 * q[i] * (f[i] - z);
 }
idft(p.data(), n), idft(q.data(), n);
Polv r(n):
for (int i = 0; i < n; i++) {</pre>
  LL x, y, z, w;
  x = p[i].x + 0.5;
  y = p[i].y + 0.5;
  z = q[i].x + 0.5;
  w = a[i].v + 0.5;
  r[i] = ((x \% P << 30) + ((y + z) \% P << 15) + w) \% P;
return r;
```

7.5.4 三模数

```
constexpr int P1(998244353), P2(1004535809), P3(469762049);
Tp<P1, 3> tp1;
Tp<P2, 3> tp2;
Tp<P3, 3> tp3;
constexpr LL P12(1LL * P1 * P2);
constexpr int Inv1(tp2.fpow(P1)), Inv2(tp3.fpow(P12 % P3));
int get(int a, int b, int c) {
 LL x = LL(b - a + P2) * Inv1 % P2 * P1 + a;
 return (LL(c - x % P3 + P3) * Inv2 % P3 * (P12 % P) % P + x)
```

Chirp Z-Transform

给定一个 n 项多项式 P(x) 以及 c, m,请计算 $P(c^0), P(c^1), \ldots, P(c^{m-1})$ 。 所有答案都对 998244353 取模。

```
关键公式:
                   ij = \binom{i+j}{2} - \binom{i}{2} - \binom{j}{2}
Poly f(n + m - 1, 1), ipc(std::max(n, m), 1), g(n);
for (int i = 2, x = 1; i < n + m - 1; i++) {
 x = 1LL * x * c % P:
 f[i] = 1LL * f[i - 1] * x % P;
for (int i = 2, u = fpow(c), x(1); i < ipc.size(); i++) {</pre>
 x = 1LL * x * u % P;
 ipc[i] = 1LL * ipc[i - 1] * x % P;
for (int i = 0; i < n; i++) {</pre>
  std::cin >> q[i];
q ^= ipc.pre(n);
std::reverse(g.begin(), g.end());
f = conv(f, g, norm(n + m - 1)) >> (n - 1);
f ^= ipc.pre(m);
for (int i = 0; i < m; i++) {</pre>
 std::cout << f[i] << " \n"[i + 1 == m];
```

7.7 Factorial Poly

```
namespace FP {
Poly toFp(Poly a) { // Factorial Polynomial
 int n = a.size();
 Poly p(n);
 std::iota(p.begin(), p.end(), 0);
 Poly b = PolyEI::SegTree(p).multiEval(a);
 for (int i = 0; i < n; i++) p[i] = i & 1 ? P - ifac[i] :</pre>
  for (int i = 0; i < n; i++) b[i] = 1LL * b[i] * ifac[i] % P;</pre>
 p = p * b;
 p.resize(n);
 return p;
Poly toOp(Poly a) {
 int m = a.size();
 Poly q = a * Poly(ifac, ifac + m);
 a.resize(m);
  for (int i = 0; i < m; i++) {</pre>
   q[i] = 1LL * q[i] * (m - i & 1 ? ifac[m - i - 1] : P -
   \hookrightarrow ifac[m - i - 1]) % P;
 }
 Poly p(m);
 std::iota(p.begin(), p.end(), 0);
 PolyEI::SegTree t(p);
 int n = norm(m);
```

```
a.resize(n);
  for (int k = 1, h = n >> 1; k < n; k <<= 1, h >>= 1)
    for (int i = 0, o = h; i < n; i += k << 1, o++) {
      if (i >= m) continue;
      int *a = &q[i], *b = &q[i + k];
      int const *l = t.p[o << 1].data(), *r = t.p[o << 1 |</pre>
      \hookrightarrow 1].data();
      Poly foo(k << 1), bar(k << 1);
      for (int j = 0; j < k; j++) foo[j] = a[j];</pre>
      for (int j = 0; j < k; j++) bar[j] = b[j];</pre>
      dft(foo), dft(bar);
      for (int j = 0; j < k << 1; j++)
        foo[j] = (1LL * foo[j] * r[j] + 1LL * bar[j] * l[j]) %
      idft(foo);
      std::copv(foo.begin(), foo.end(), a);
  q.resize(m);
  std::reverse(q.begin(), q.end());
  return a:
Poly fpMul(Poly a, Poly b) {
  int n = a.size() + b.size() - 1;
  Poly p(ifac, ifac + n);
  a = a * p, a.resize(n);
  b = b * p, b.resize(n);
  for (int i = 0; i < n; i++) a[i] = 1LL * a[i] * b[i] % P *

    fac[i] % P:

  for (int i = 1; i < n; i += 2) p[i] = P - p[i];
 a = a * p;
 a.resize(n);
  return a;
} // namespace FP
```

7.8 Stirling

```
namespace Stirling {
Poly getS1(int n) {
   if (n == 0) return {1};
   Poly p = getS1(n / 2);
   p = p * shift(p, p.size() - 1);
   if (n & 1) p = (p << 1) + p * (n - 1);
   return p;
}
Poly getS2(int n) {
   Poly a(n + 1), b(n + 1);
   for (int i = 0; i <= n; i++) {
      a[i] = i & 1 ? P - ifac[i] : ifac[i];
      b[i] = 1LL * fpow(i, n) * ifac[i] % P;</pre>
```

```
a = a * b;
  a.resize(n + 1):
  return a;
Poly getS1(int n, int k) { // S1(i, k), i = 0...n
  Poly p(n + 1);
  for (int i = 1; i <= n; i++) {</pre>
    p[i] = inv[i];
  p = power(p, k);
  for (int i = 0; i <= n; i++) {</pre>
    p[i] = 1LL * p[i] * fac[i] % P * ifac[k] % P;
  return p;
Poly getS2(int n, int k) { // S2(i, k), i = 0...n
  if (n < k) return Poly(n + 1);</pre>
  std::function<Poly(int)> cal = [&](int n) -> Poly {
    if (n == 0) return {1};
    Poly p = cal(n / 2);
    p = p * shift(p, (P + 1 - (int)p.size()) % P);
    if (n \& 1) p = (p << 1) - p * n;
    return p:
 };
  Polv p = cal(k);
  std::reverse(p.begin(), p.end());
  p.resize(n - k + 1);
  return inverse(p) << k;</pre>
} // namespace Stirling
```

7.9 Ferrers 棋盘

对于 Ferrers 棋盘 $S = F(a_1, a_2, \dots, a_n)$ $(a_1 \le a_2 \le \dots \le a_n)$,

$$\sum_{k=0}^{n} r_k(S) x^{\frac{n-k}{2}} = \prod_{k=1}^{n} (x + a_k - k + 1)$$

 $r_k(S)$ 是指放 k 个车相互攻击不到的方案数。

$\underline{\text{Various}}(8)$

8.1 最长公共子序列

```
constexpr int N(70005), B(63);
int tot;
struct Bitset {
  uint64_t a[N / B + 1];
  void set(int p) { a[p / B] |= 1ULL << p % B; }</pre>
  int count() {
   int s = 0;
    for (int i = 0; i < tot; i++)</pre>
      s += __builtin_popcountll(a[i]);
   return s;
  void run(const Bitset &o) {
   uint64_t c = 1;
   for (int i = 0; i < tot; ++i) {</pre>
      auto x = a[i], v = x | o.a[i]:
      x += x + c + (\sim y \& (1ULL << B) - 1);
      a[i] = x \& v, c = x >> B;
 }
} dp, f[N];
void solve() {
  int n, m;
  std::cin >> n >> m;
  for (int i = 0, x; i < n; ++i) {
   std::cin >> x;
    f[x].set(i);
```

```
}
tot = (n - 1) / 63 + 1;
for (int i = 0, x; i < m; ++i) {
   std::cin >> x, dp.run(f[x]);
}
std::cout << dp.count() << "\n";
}</pre>
```

8.2 模意义真分数还原

$$q \equiv \frac{x}{a} \pmod{p}, \ |a| \leq m$$
 PII approx(int p, int q, int m) { int x = q, y = p, a = 1, b = 0; while (x > m) { std::swap(x, y); std::swap(a, b); a -= x / y * b, x %= y; } return {x, a}; }

8.3 杂

$$\ln(1 - x^{V}) = -\sum_{i \ge 1} \frac{x^{Vi}}{i}$$

$$x^{\overline{n}} = \sum_{i} S_{1}(n, i)x^{i}$$

$$\begin{cases} x \equiv a_{1} \pmod{m_{1}} \\ x \equiv a_{2} \pmod{m_{2}} \\ \dots \\ x \equiv a_{n} \pmod{m_{n}} \end{cases}$$

$$m_{i} 为不同的质数。设 M =$$

 m_i 为不同的质数。设 $M=\prod\limits_{i=1}^n m_i,\ t_i imes rac{M}{m_i}\equiv 1\ (\mathrm{mod}\ m_i),$ 则 $x\equiv \sum\limits_{i=1}^n a_it_irac{M}{m_i}$ 。

V - E + F = 2, $S = n + \frac{s}{2} - 1$. (n 为内部, s 为边上)

用途: 对于相邻的不相等的值, 在中间画一条线 (最外也画), 连通块个数 = 1+E-V+ 内部框个数.

注意全都是不含矩形边界上的。

 π^{-1} 最小时 π 最小, π 最大等价于 π^{-1} 最大?

五边形数 GF: $\frac{x(2x+1)}{(1-x)^3}$

五边形数: $\frac{3n^2-n}{2}$, 广义含非正, 逆为分拆数 GF (注意系数正负和 n 取值 奇偶性相同)

贝尔数 (划分集合方案数) EGF: $\exp(e^x - 1)$, $B_n = \sum_{i=0}^n S_2(n, i)$, 伯努

利数 EGF: $\frac{x}{e^x - 1}$

$$S_1(i,m) \; ext{EGF:} \; rac{(\sum\limits_{i \geq 0} rac{x^i}{i})^m}{m!}, \; S_2(i,m) \; ext{EGF:} \; rac{(e^x-1)^m}{m!}$$

多项式牛顿迭代: 如果已知 $G(F(x)) \equiv 0 \pmod{x^{2n}}, \ G(F_*(x)) \equiv 0 \pmod{x^n}, \ \mathrm{Mpt} \ F(x) \equiv F_*(x) - \frac{G(F_*(x))}{G'(F_*(x))} \pmod{x^{2n}}$ 。求导时孤立的多项式视为常数。

$$\int_0^1 t^a (1-t)^b dt = \frac{a!b!}{(a+b+1)!}, \quad \sum_{i=0}^{n-1} i^{\underline{k}} = \frac{n^{\underline{k+1}}}{k+1}$$

Appendix(9)

9.1 NTT Primes

p	r	k	g	p	r	k	20	d	r	k	0.6
3	1	\vdash	2	23068673	11	21	3	6597069766657	3	41	2
5	1	2	2	104857601	25	22	3	39582418599937	6	42	5
17		4	က	167772161	25	25	3	79164837199873	6	43	2
26	က	2	5	469762049	2	26	3	263882790666241	15	44	7
193	က	9	ಬ	1004535809	479	21	3	1231453023109120	35	45	3
257	1	8	3	2013265921	15	27	31	1337006139375620	19	46	3
7681	15	6	17	2281701377	17	27	3	3799912185593860	27	47	5
12289	က	12	11	3221225473	3	30	25	4222124650659840	15	48	19
40961	5	13	3	75161927681	35	31	3	7881299347898370	7	20	9
65537	1	16	3	77309411329	6	33	2	31525197391593500	2	52	3
786433	3	18	10	206158430209	3	36	22	180143985094820000	5	55	9
5767169	11	19	3	2061584302081	15	37	7	1945555039024050000	27	99	5
7340033	7	20	3	2748779069441	2	39	3	4179340454199820000	29	22	3

9.2 D and Omega

$\max\{d(n)\}$	4	12	32	64	128	240	448	892	1344	2304	4032	6720	10752	17280	26880	41472	64512	103680	161280
$\max\{\omega(n)\}$	2	3	4	v	9	7	8	8	6	10	10	11	12	12	13	13	14	15	16
n 后第一个质数	$10^1 + 1$	$10^2 + 1$	$10^3 + 13$	$10^4 + 7$	$10^5 + 3$	$10^6 + 3$	$10^7 + 19$	$10^8 + 7$	$10^9 + 7$	$10^{10} + 19$	$10^{11} + 3$	$10^{12} + 39$	$10^{13} + 37$	$10^{14} + 31$	$10^{15} + 37$	$10^{16} + 61$	$10^{17} + 3$	$10^{18} + 3$	$10^{19} + 51$
n 前第一个质数	$10^1 - 3$	$10^2 - 3$	$10^3 - 3$	$10^4 - 27$	$10^5 - 9$	$10^6 - 17$	$10^{7} - 9$	$10^8 - 11$	$10^9 - 63$	$10^{10} - 33$	$10^{11} - 23$	$10^{12} - 11$	$10^{13} - 29$	$10^{14} - 27$	$10^{15} - 11$	$10^{16} - 63$	$10^{17} - 3$	$10^{18} - 11$	$10^{19} - 39$
u	10^{1}	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}	10^{9}	10^{10}	10^{11}	10^{12}	10^{13}	10^{14}	10^{15}	10^{16}	10^{17}	10^{18}	10^{19}