

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Student's Name: ISHAAN GUPTA Mobile No: 9179242114

Roll Number: B20292 Branch: MECHANICAL ENGINEERING

1 a.

	Prediction	Outcome
Label	81	27
True	27	201

Figure 1 KNN Confusion Matrix for K = 1

	Prediction	Outcome
Label	83	25
True	12	216

Figure 2 KNN Confusion Matrix for K = 3

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

	Prediction	Outcome
Label	82	26
True	9	219

Figure 3 KNN Confusion Matrix for K = 5

b.

Table 1 KNN Classification Accuracy for K = 1, 3 and 5

К	Classification Accuracy (in %)
1	83.928
3	88.988
5	89.583

Inferences:

- 1. The highest classification accuracy is obtained with K=5.
- 2. Increasing the value of K increases the prediction accuracy.
- 3. Increasing the value of K increases the prediction accuracy as if there will be more nearest neighbors then there will be more accuracy.
- 4. As the classification accuracy increases with the increase in value of K, the number of diagonal elements increase.
- 5. Increase in diagonal elements with increase in k is because more accuracy leads to more number of true values.
- 6. As the classification accuracy increases with the increase in value of K, the number of off-diagonal elements decrease.
- 7. Decrease in off-diagonal elements with increase in k is because more accuracy leads to less number of false values.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

2 a.

	Prediction	Outcome
Label	100	8
True	8	220

Figure 4 KNN Confusion Matrix for K = 1 post data normalization

	Prediction	o Outcome
Label	100	8
True	7	221

Figure 5 KNN Confusion Matrix for K = 3 post data normalization

	Prediction	Outcome
Label	101	7
True	4	224

Figure 6 KNN Confusion Matrix for K = 5 post data normalization

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

b.

Table 2 KNN Classification Accuracy for K = 1, 3 and 5 post data normalization

К	Classification Accuracy (in %)
1	95.238
3	95.535
5	96.726

Inferences:

- 1. Data normalization increases classification accuracy.
- 2. Data normalization increases classification accuracy because bias is present in data which gets removed by normalization and range of different features or attributes become even.
- 3. The highest classification accuracy is obtained with K=5.
- 4. Increasing the value of K increases the prediction accuracy.
- 5. Increasing the value of K increases the prediction accuracy as if there will be more nearest neighbors then there will be more accuracy.
- 6. As the classification accuracy increases with the increase in value of K, the number of diagonal elements increase.
- 7. Increase in diagonal elements with increase in k is because more accuracy leads to more number of true values.
- 8. As the classification accuracy increases with the increase in value of K, the number of off-diagonal elements decrease.
- 9. Decrease in off-diagonal elements with increase in k is because more accuracy leads to less number of false values.

3

	Prediction	Outcome
Label	96	12
True	2	226

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Figure 7 Confusion Matrix obtained from Bayes

Classifier

The classification accuracy obtained from Bayes Classifier is 95.833 %.

Table 3 Mean for class 0 and class 1

S. No.	Attribute Name	Me	ean
		Class 0	Class 1
1.	X_Maximum	286.3322	746.584
2.	Y_Maximum	1711478	1445964
3.	Pixels_Areas	7268.032	583.512
4.	X_Perimeter	355.6148	52.184
5.	Y_Perimeter	207.1555	43.112
6.	Sum_of_Luminosity	808615.7	61552.41
7.	Minimum_of_Luminosity	53.40283	94.804
8.	Maximum_of_Luminosity	135.8587	130.184
9.	Length_of_Conveyer	1382.516	1486.63
10.	Steel_Plate_Thickness	40.24735	100.434
11.	Edges_Index	0.126447	0.388864
12.	Empty_Index	0.449608	0.418643
13.	Square_Index	0.593253	0.510322
14.	Outside_X_Index	0.108173	0.019854
15.	Edges_X_Index	0.565851	0.625601
16.	Edges_Y_Index	0.524692	0.837443
17.	Outside_Global_Index	0.268551	0.611
18.	LogOfAreas	3.599567	2.264311
19.	Log_X_Index	2.048011	1.214075
20.	Log_Y_Index	1.825003	1.299494
21.	Orientation_Index	-0.32807	0.131946
22.	Luminosity_Index	-0.10907	-0.12263
23.	SigmoidOfAreas	0.91587	0.527024

In Fig. 8 and 9 representing covariance matrices for class 0 and class 1 respectively the column numbers and row numbers correspond to attribute with serial number as in Table 3.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	57593.63	-8.7E+07	-349304	-15539.5	-8064.2	-3.8E+07	4246.334	2211.845	2606.644	204.7402	26.17266	-9.75451	7.642827	-2.23	20.45434	28.00765	34.63566	-87.7296	-55.9715	-35.5257	32.66325	19.371	-33.4599
2	-8.7E+07	2.63E+12	-7.5E+08	-3.9E+07	-3E+07	-9.8E+10	4665084	8053965	-1.1E+07	-325686	-55558.1	14531.11	-93632.7	3191.985	6707.551	-38623.7	-133538	183163.6	137803.1	46364.04	-141236	-57051.4	95439.94
3	-349304	-7.5E+08	28362934	1395371	857469.9	3.37E+09	-130039	-4383.89	30347.18	-158.483	-476.937	368.7523	529.9781	228.2041	-931.5	-654.24	290.1563	2816.525	1451.628	1686.892	371.9959	-158.522	605.0511
4	-15539.5	-3.9E+07	1395371	74685.83	45819.84	1.67E+08	-6114.62	45.13686	2140.324	1.372203	-22.569	22.28837	32.94668	11.61067	-52.1513	-33.6519	22.92827	135.711	69.40658	86.51528	26.97984	-5.82787	28.83417
5	-8064.2	-3E+07	857469.9	45819.84	28599.26	1.03E+08	-3579.29	186.0079	1535.583	-4.61306	-12.425	13.37403	22.38895	6.618315	-32.587	-19.547	19.01129	79.72314	39.188	52.72424	20.9153	-2.33701	16.39452
6	-3.8E+07	-9.8E+10	3.37E+09	1.67E+08	1.03E+08	4.03E+11	-1.5E+07	10270.49	3727268	-38802	-53411.3	43540.79	69465.53	26038.01	-112302	-74739.6	44593.87	321540.3	162501.5	197432.1	54471.51	-14263.4	67039.14
7	4246.334	4665084	-130039	-6114.62	-3579.29	-1.5E+07	1435.624	454.1635	-143.801	-2.68864	4.151371	-2.06021	1.110997	-1.50741	4.217815	4.825914	3.304557	-23.0601	-13.287	-11.3109	2.997309	4.691634	-7.15036
8	2211.845	8053965	-4383.89	45.13686	186.0079	10270.49	454.1635	359.4764	-7.73533	-7.26988	1.958658	-0.34975	2.293221	-0.35618	-0.05244	1.563509	3.839511	-6.09022	-4.44702	-1.78535	3.952615	2.95132	-2.91046
9	2606.644	-1.1E+07	30347.18	2140.324	1535.583	3727268	-143.801	-7.73533	2489.102	40.58116	1.088053	0.403797	3.902723	-0.29132	-2.61843	0.068471	4.977984	1.110105	-0.94312	2.477846	5.153582	-0.47664	0.079518
10	204.7402	-325686	-158.483	1.372203	-4.61306	-38802	-2.68864	-7.26988	40.58116	6.67619	-0.02288	-0.01833	-0.00033	0.007042	0.015516	0.04225	0.075182	-0.05118	-0.04349	-0.01177	0.063571	-0.0548	0.016415
11	26.17266	-55558.1	-476.937	-22.569	-12.425	-53411.3	4.151371	1.958658	1.088053	-0.02288	0.031376	-0.0107	0.008443	-0.00652	0.016943	0.024762	0.025106	-0.08947	-0.05723	-0.04014	0.02475	0.017144	-0.03031
12	-9.75451	14531.11	368.7523	22.28837	13.37403	43540.79	-2.06021	-0.34975	0.403797	-0.01833	-0.0107	0.015879	0.003162	0.005884	-0.01716	-0.0149	-0.00155	0.055166	0.035188	0.034454	-0.00062	-0.00447	0.016978
13	7.642827	-93632.7	529.9781	32.94668	22.38895	69465.53	1.110997	2.293221	3.902723	-0.00033	0.008443	0.003162	0.064938	-0.00461	-0.03679	0.001585	0.070142	-0.00203	-0.02424	0.024275	0.072524	0.016203	-0.01346
14	-2.23	3191.985	228.2041	11.61067	6.618315	26038.01	-1.50741	-0.35618	-0.29132	0.007042	-0.00652	0.005884	-0.00461	0.005192	-0.00269	-0.00789	-0.00877	0.031563	0.022657	0.015489	-0.00932	-0.00391	0.008422
15	20.45434	6707.551	-931.5	-52.1513	-32.587	-112302	4.217815	-0.05244	-2.61843	0.015516	0.016943	-0.01716	-0.03679	-0.00269	0.057628	0.026556	-0.03545	-0.10388	-0.04368	-0.07203	-0.04027	0.003847	-0.02687
16	28.00765	-38623.7	-654.24	-33.6519	-19.547	-74739.6	4.825914	1.563509	0.068471	0.04225	0.024762	-0.0149	0.001585	-0.00789	0.026556	0.032364	0.021446	-0.10811	-0.06675	-0.05279	0.020181	0.015404	-0.0335
17	34.63566	-133538	290.1563	22.92827	19.01129	44593.87	3.304557	3.839511	4.977984	0.075182	0.025106	-0.00155	0.070142	-0.00877	-0.03545	0.021446	0.193582	-0.04818	-0.06551	0.016604	0.127894	0.028636	-0.02973
18	-87.7296	183163.6	2816.525	135.711	79.72314	321540.3	-23.0601	-6.09022	1.110105	-0.05118	-0.08947	0.055166	-0.00203	0.031563	-0.10388	-0.10811	-0.04818	0.497087	0.28442	0.253712	-0.04511	-0.06685	0.147085
19	-55.9715	137803.1	1451.628	69.40658	39.188	162501.5	-13.287	-4.44702	-0.94312	-0.04349	-0.05723	0.035188	-0.02424	0.022657	-0.04368	-0.06675	-0.06551	0.28442	0.178677	0.134332	-0.06428	-0.04457	0.088635
20	-35.5257	46364.04	1686.892	86.51528	52.72424	197432.1	-11.3109	-1.78535	2.477846	-0.01177	-0.04014	0.034454	0.024275	0.015489	-0.07203	-0.05279	0.016604	0.253712	0.134332	0.146629	0.018411	-0.02479	0.070343
21	32.66325	-141236	371.9959	26.97984	20.9153	54471.51	2.997309	3.952615	5.153582	0.063571	0.02475	-0.00062	0.072524	-0.00932	-0.04027	0.020181	0.127894	-0.04511	-0.06428	0.018411	0.122956	0.029404	-0.02825
22	19.371	-57051.4	-158.522	-5.82787	-2.33701	-14263.4	4.691634	2.95132	-0.47664	-0.0548	0.017144	-0.00447	0.016203	-0.00391	0.003847	0.015404	0.028636	-0.06685	-0.04457	-0.02479	0.029404	0.025836	-0.02768
23	-33.4599	95439.94	605.0511	28.83417	16.39452	67039.14	-7.15036	-2.91046	0.079518	0.016415	-0.03031	0.016978	-0.01346	0.008422	-0.02687	-0.0335	-0.02973	0.147085	0.088635	0.070343	-0.02825	-0.02768	0.053956

Figure 8: Covariance matrix for class 0

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

П	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	258038	1.48E+08	-19263.8	261.3593	-1901.45	-2032754	-1183.65	-1180.02	12247.36	-2832.32	3.389629	-2.46295	11.63035	1.207025	8.391756	-4.13275	-10.084	-15.4643	1.16597	-18.5757	-23.3566	-10.1654	-14.8971
2	1.48E+08	3.3E+12	5.07E+08	29140900	9302068	5.3E+10	3586455	600089.5	1305441	-3.4E+07	36534.77	-16500.8	-26651.4	18243.76	54437.89	-29077.1	-74054.5	74366.27	89905.85	-28476.2	-116645	-13913.8	-2798.65
3	-19263.8	5.07E+08	5121724	201881.2	135506.6	5.33E+08	-15218.1	2762.653	-29026.5	2315.248	-37.4526	31.83585	-107.658	69.85872	-87.9306	-125.617	30.57832	692.874	377.5828	342.99	17.39376	-31.1396	225.095
4	261.3593	29140900	201881.2	10847.83	5755.106	21161000	-541.645	203.95	-2125.82	185.3148	-0.37207	3.604206	-7.99808	4.80709	-4.17462	-10.055	-3.31706	37.99874	24.90501	16.14324	-5.72256	-1.01823	15.11528
5	-1901.45	9302068	135506.6	5755.106	5008.472	14025224	-538.583	-23.2411	-1229.69	313.8431	-1.34556	2.599497	-6.41278	1.403408	-8.18555	-2.71112	6.355279	28.17901	10.66834	19.74748	9.913426	-1.49543	12.26622
6	2032754	5.3E+10	5.33E+08	21161000	14025224	5.56E+10	1443015	397726.8	3291478	147379.8	-3554.68	3415.541	-11365.9	7414.94	-8940.02	-13523.9	2549.558	71815.02	39675.69	35077.39	888.0399	-2320.96	23386.72
7	-1183.65	-3586455	-15218.1	-541.645	-538.583	-1443015	775.0757	358.481	-1115.3	-263.239	1.258554	0.764607	0.299348	-0.15777	0.237079	-1.2047	-2.83291	-4.85539	-1.1122	-3.18433	-2.80378	3.944022	-1.90637
8	-1180.02	600089.5	2762.653	203.95	-23.2411	397726.8	358.481	454.2025	-543.781	-252.573	0.648911	-0.03367	-0.62677	0.158121	0.834313	-1.42068	-2.36215	-0.87899	1.218323	-2.11138	-3.40665	2.914106	-0.70993
9	12247.36	-1305441	-29026.5	-2125.82	-1229.69	-3291478	-1115.3	-543.781	24015.18	1507.221	-0.81282	-4.70557	5.134416	-1.03976	7.174554	3.787893	0.736543	-10.2283	-4.39458	-9.4854	-4.35897	-5.69474	-7.36396
10	-2832.32	-3.4E+07	2315.248	185.3148	313.8431	147379.8	-263.239	-252.573	1507.221	4839.485	-1.68357	0.499004	-1.08981	-0.12363	-2.54892	2.177936	5.52187	2.463037	-1.66097	4.562957	7.272558	-2.02021	1.797769
11	3.389629	36534.77	-37.4526	-0.37207	-1.34556	-3554.68	1.258554	0.648911	-0.81282	-1.68357	0.091525	-0.00062	0.00719	0.000291	0.005738	-0.00563	-0.01802	-0.00683	0.00622	-0.01327	-0.02537	0.006027	-0.00073
12	-2.46295	-16500.8	31.83585	3.604206	2.599497	3415.541	0.764607	-0.03367	-4.70557	0.499004	-0.00062	0.019259	-0.0041	0.001013	-0.01277	-0.01049	-0.00788	0.021506	0.018034	0.018909	-0.00275	0.002688	0.021312
13	11.63035	-26651.4	-107.658	-7.99808	-6.41278	-11365.9	0.299348	-0.62677	5.134416	-1.08981	0.00719	-0.0041	0.079217	-0.00354	0.021606	0.015921	-0.01164	-0.05042	-0.02188	-0.0313	-0.01668	-0.00112	-0.0267
14	1.207025	18243.76	69.85872	4.80709	1.403408	7414.94	-0.15777	0.158121	-1.03976	-0.12363	0.000291	0.001013	-0.00354	0.003074	0.001958	-0.00599	-0.00579	0.013667	0.012988	0.001498	-0.00946	-0.00021	0.004932
15	8.391756	54437.89	-87.9306	-4.17462	-8.18555	-8940.02	0.237079	0.834313	7.174554	-2.54892	0.005738	-0.01277	0.021606	0.001958	0.064792	-0.01361	-0.06601	-0.06026	0.012815	-0.08285	-0.10144	0.003667	-0.04222
16	-4.13275	-29077.1	-125.617	-10.055	-2.71112	-13523.9	-1.2047	-1.42068	3.787893	2.177936	-0.00563	-0.01049	0.015921	-0.00599	-0.01361	0.048401	0.0655	-0.02696	-0.05737	0.021954	0.086042	-0.00926	-0.01539
17	-10.084	-74054.5	30.57832	-3.31706	6.355279	2549.558	-2.83291	-2.36215	0.736543	5.52187	-0.01802	-0.00788	-0.01164	-0.00579	-0.06601	0.0655	0.226632	0.042312	-0.07504	0.110481	0.230654	-0.01825	0.020579
18	-15.4643	74366.27	692.874	37.99874	28.17901	71815.02	-4.85539	-0.87899	-10.2283	2.463037	-0.00683	0.021506	-0.05042	0.013667	-0.06026	-0.02696	0.042312	0.26084	0.114388	0.16375	0.06232	-0.01878	0.140272
19	1.16597	89905.85	377.5828	24.90501	10.66834	39675.69	-1.1122	1.218323	-4.39458	-1.66097	0.00622	0.018034	-0.02188	0.012988	0.012815	-0.05737	-0.07504	0.114388	0.116207	0.013321	-0.10368	0.000739	0.060811
20	-18.5757	-28476.2	342.99	16.14324	19.74748	35077.39	-3.18433	-2.11138	-9.4854	4.562957	-0.01327	0.018909	-0.0313	0.001498	-0.08285	0.021954	0.110481	0.16375	0.013321	0.16536	0.162916	-0.01752	0.09646
21	-23.3566	-116645	17.39376	-5.72256	9.913426	888.0399	-2.80378	-3.40665	-4.35897	7.272558	-0.02537	-0.00275	-0.01668	-0.00946	-0.10144	0.086042	0.230654	0.06232	-0.10368	0.162916	0.302038	-0.0214	0.038612
22	-10.1654	-13913.8	-31.1396	-1.01823	-1.49543	-2320.96	3.944022	2.914106	-5.69474	-2.02021	0.006027	0.002688	-0.00112	-0.00021	0.003667	-0.00926	-0.01825	-0.01878	0.000739	-0.01752	-0.0214	0.026011	-0.0085
23	-14.8971	-2798.65	225.095	15.11528	12.26622	23386.72	-1.90637	-0.70993	-7.36396	1.797769	-0.00073	0.021312	-0.0267	0.004932	-0.04222	-0.01539	0.020579	0.140272	0.060811	0.09646	0.038612	-0.0085	0.09779

Figure 9: Covariance matrix for class 1

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Inferences:

- 1. The accuracy of Bayes Classifier is 95.833 %. and state reason why it is lesser / greater than previous classification approaches.
- 2. Infer from covariance matrix the nature of values along the diagonal. State the reason.
- 3. Infer from off-diagonal elements the covariance between attributes. Write 2 pair of attributes with maximum and 2 pair of attributes with minimum covariance.

4

Table 4 Comparison between classifiers based upon classification accuracy

S. No.	Classifier	Accuracy (in %)
1.	KNN	89.583
2.	KNN on normalized data	96.726
3.	Bayes	95.833

Inferences:

- 1. The classifier with highest accuracy is KNN on normalized data and lowest accuracy is KNN.
- 2. The classifiers in ascending order of classification accuracy= KNN < Bayes < KNN on normalized data .