NIPT 第四问:基于可解释机器学习的个体化检测与复检策略

项目: NIPT 的时点选择与胎儿的异常判定

September 5, 2025

1 目标

在男胎样本上,利用可解释的概率模型给出首检孕周 t_1 与 (可选) 复检孕周 t_2 的最优策略,使

$$J = \underbrace{\mathrm{risk}(T_{\mathrm{res}})}_{\text{孕用风险}} + \lambda \left(1 - P_{\mathrm{succ}}\right) + c_1 + \mathbf{1}\{\mathbf{2} \, \mathbf{\&}\} \, c_r + \kappa \, \mathbb{E}[T_{\mathrm{res}} - t_{\mathrm{min}}]$$

最小。这里 $risk(t) \in \{1, 2, 3\}$ 分别对应 $t \le 12, 13 \le t \le 27, t \ge 28$ 周。

2 命中率模型 $P_{hit}(t \mid x)$

用可解释模型 (GAM/EBM/LightGBM(单调约束)) 预测在孕周 t 达到阈值 (如 $Y \ge 4\%$) 的概率。设特征 x = (GA, BMI, Age, Height, Weight),标签 $y = 1\{Y \ge 0.04\}$ 。

单调约束 为符合生理先验,要求 P_{hit} 对GA单调不减:

$$\frac{\partial}{\partial GA} P_{\text{hit}}(t \mid x) \ge 0.$$

实际实现中在LightGBM 里对 GA 特征施加正单调约束; GAM/EBM 则靠样条/分段函数与等概率校准实现近似单调。

概率校准 先得原始分数 s(x), 再用单调的校准函数 $g(\cdot)$ (如保序回归) 得到

$$\hat{P}_{hit}(x) = g(s(x)),$$

以提升概率可解释性。

3 策略优化

3.1 单次检测

在网格 $t \in [t_{\min}, t_{\max}]$ 上求

$$J_1(t) = \operatorname{risk}(t) + \lambda \left(1 - \hat{P}_{hit}(t \mid \tilde{x})\right) + c_1 + \kappa \left(t - t_{min}\right),$$

取最小点 t_1^* 。 \tilde{x} 为分组情景 (如BMI组中位数)。

3.2 一次复检

设 $t_2=t_1+\Delta$, $\Delta\in\mathcal{D}$ (如 $\{1,1.5,2,3\}$ 周)。一次成功概率 $P_1=\hat{P}(t_1)$;二次命中概率 $P_2'=\alpha\hat{P}(t_2)+(1-\alpha)\hat{P}(t_1)$ ($\alpha\in[0,1]$ 控制独立性)。成功概率 $P_{\text{succ}}=P_1+(1-P_1)P_2'$,期望结果孕周 $\mathbb{E}[T_{\text{res}}]=P_1t_1+(1-P_1)t_2$ 。目标

$$J_2(t_1, \Delta) = c_1 + (1 - P_1)c_r + \mathbb{E}[\operatorname{risk}(T_{\text{res}})] + \lambda (1 - P_{\text{succ}}) + \kappa (\mathbb{E}[T_{\text{res}}] - t_{\text{min}}).$$

在网格 (t_1, Δ) 上暴力搜索最优值。

4 解释性

输出特征贡献曲线 (GAM/EBM 形状函数)、LightGBM 的单调 PDP、或 SHAP (如可用)。 并提供策略表 (各 BMI 组的 $t_1^{t_2}$ 、成功率与置信带)。

5 实现

附带的 nipt_q4_ml_policy.py 脚本实现上述流程,默认:

- 模型优先 LightGBM(单调) → EBM → GAM(样条 GLM);
- 校准优先 Isotonic → Platt → 无;
- 输出策略表与可视化 (热力图、曲线)。