PDCA

The Plan-do-check-act cycle is a four-step model used for carrying out change

- The PDCA cycle mainly aims to establish a continuous model for the continuous improvement of processes by identifying the problems
- PDCA is a model that is useful for any learning process and improvement

Features

- A simple and effective approach for solving problems
 - Helpful for implementing Total
 Quality Management or Six Sigma
- Used in companies of all sizes to improve and optimize management
 - The iterative approach allows control and analysis
- It encompasses much of the same framework as strategic management

Benefits

- 1 Greater efficiency and effectiveness
 - Useful for testing improvement measures on a small scale

2

- Makes the decision-making by managers easier
 - Improves project risk management

4

Can be helpful in all situations

How to build PCA?

Consider a manufacturing industry who want to produce a new product, then PDCA can be used as:

FMEA-Failure Mode and Effects Analysis

FMEA

FMEA documents current knowledge and actions about the risks or failures to bring continuous improvement in their workplace

- Failure Mode and Effects Analysis (FMEA) is a structured approach that is used to discover potential failures that may exist within the design of a product or process
- Failure modes are one of the ways in which a process can fail
- Effects are one of the ways that these failures can lead to many wastes, defects, or harmful outcomes for the customer
- So, Failure Mode and Effects Analysis is designed mainly to identify, prioritize and limit these failure modes

FMEA

Features

- It provides a structured approach for evaluating, tracking, and updating the design
 - A systematic, proactive method for evaluating a process
- Tool for improving both product and process design

It is a qualitative and systematic tool

Most effective low-risk techniques for predicting problems

Benefits

- The higher capability of Verification and Validation of changes
 - Helps to find the possible causes of failures
- Improved Design for Manufacturing and Assembly (DFM/A)

Lower cost solutions

Helps to document and identify wherein a process lies

FMEA

How to build PCA?

Example

	2
dentify the causes of failure	Determine Servility
3	4
Examine the causes	Failure detection

	occurrenc e (1-10)	detection (1-10)	e Number (RPN)
5	2	4	40
5	8	9	360
3	9	7	189
	3	5 2 5 8 3 9	(1-10) 5 2 4 5 8 9

