Implementing Molecular Hydrophobicity Potential Measurment for the Analysis of Dynamic Biomolecular Interactions

Peleg Bar Sapir¹ Under supervision of Prof. Maria Andrea Mroginski²

> ¹Freie Universität Berlin ²Techniche Universität Berlin

February 16, 2018

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Molecular Hydrophobicity Potential

Potential

Force Constants

Surface

Solvent accesible surface Evenly distributed points

Integration

Outline

Introduction

Hydrophobicity and log P

Molecular Hydrophobicity Potential

Potential

General form

Force Constants

Distance function

Surface

Solvent accesible surface

Evenly distributed points

Integration

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log F

Molecular Hydrophobicity

Potential

General form Force Constants

Distance function

Surface

Solvent accesible surface

tegration

$$\mathsf{MHP}\left(\mathbf{x}'\right) = \sum_{i=1}^{k} \left[f_i \cdot D\left(\mathbf{x} - \mathbf{x}'_i\right) \right]$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P

Molecular

Potential

General form

orce Constants istance function

Surface

venly distributed points

Summing over all atoms

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F

Molecular Hydrophobi

Potential

General form

istance function

Surface

Solvent accesible surface Evenly distributed points

4 D > 4 P > 4 E > 4 E > 9 Q P

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introductio

Molocular

Hydrophol Potential

nemiai

General form

istance function

Surface

Solvent accesible surface Evenly distributed points

4 D > 4 P > 4 E > 4 E > E 990

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log F

lolecular

Potential

General form

Force Constant:

Distance function

Surface

Solvent accesible surface Evenly distributed points

Integration

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and loc

lolecular lydrophobicity otential

Potential General form

Force Constants

urface Solvent accesible surfa

venly distributed points tegration

Carbon atom contribution to hydrophobicity¹

Type	Description	f_i value
	Carbon in:	
1	$\mathrm{CH_{3}R}$	-1.5603
3	CHR_3	-0.6681
7	CH_2X_2	-1.0305
13	RCX_3	0.7894
17	$=CR_2$	0.0383
24	RCHR	-0.3251
25	RCRR	0.1492
26	RCXR	0.1539

¹Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

Force Constants - Hydrogen

Hydrogen atom contribution to hydrophobicity²

Type	Description	f_i value
	Hydrogen attached to:	
46	$\overline{\mathrm{C_{sp^3}}$, no X in $lpha$	0.7341
47	$ m C_{sp}^2$	0.6301
50	X	-0.1036
52	$\mathrm{C}_{\mathrm{sp}^3}$, 1 X in $lpha$	0.6666
54	C_{sp^3} , 3 X in $lpha$	0.6338

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P

lolecular lydrophobicity otential

eneral form

Force Constants
Distance function

Surface

venly distributed points

²Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

Force Constants - Oxygen

Oxygen atom contribution to hydrophobicity³

Type	Description	f_i value
	Oxygen in:	
56	Alcohol	-0.3567
57	Phenol, enol, carboxyl OH	-0.0127
58	Ketone	-0.0233
61	Nitro, N-oxides	1.0520
62	O-	-0.7941

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

lolecular ydrophobicity otential

otential

Force Constants

istance function

olvent accesible surface venly distributed points

³Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

Force Constants - Various

Various atom contribution to hydrophobicity4

Type	Description	f_i value
66	Primary amine	-0.5427
67	Secondary amine	-0.3168
81	F attached to $\mathrm{C}_{\mathrm{sp^3}}$	0.4797
106	S in R-SH (thiol)	1.0520
119	$P \text{ in } PR_3 \text{ (phosphine)}$	-0.7941

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

olecular drophobicity otential

Potential General form

Force Constants

Surface

venly distributed points

⁴Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

Audry form

Exponential decay form

$$D\left(x\right) = \frac{1}{1+x}$$

$$D\left(x\right) = e^{-\alpha x}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P

olecular odrophobicity

otential

orce Constants

Distance function

Solvent accesible surface

Evenly distributed poir Integration

Solvent accesible surface

The surface around a molecule accesible to solvent molecules Molecular Hydrophobicity Potential

Pelg Bar Sapir

troduction

Hydrophobicity and log F

Potential

General form
Force Constants
Distance function

Solvent accesible surface

venly distributed pointegration

Solvent accesible surface

 The surface around a molecule accesible to solvent molecules

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

olecular drophobicity

otential

General form Force Constants

Surface

Solvent accesible surface Evenly distributed points Integration

Hydrophobicity Potential

otential General form

General form Force Constants

urface

Solvent accesible surface

Evenly distributed point

 The surface around a molecule accesible to solvent molecules

For water molecules usually $r=1.4~\c|\mbox{\AA}\c|$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P

Molecular Hydrophobicity

Potential

General form
Force Constant

Distance iuni Jurface

Solvent accesible surface

Evenly distributed point: ntegration

Take all atoms with their vdW-radii

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Molecular

Hydrophobicity Potential

Potential General form Force Constants Distance function

Solvent accesible surface

venly distributed points

1. Take all atoms with their vdW-radii

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Molecular Hydrophobicity

Potential

General form
Force Constants

face

Solvent accesible surface Evenly distributed points

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

olecular ydrophobicity otential

stential General form Force Constants

Surface Solvent accesible surface

evenly distributed points

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$

Surface

Solvent accesible surface Evenly distributed points

Molecular

Hydrophobicity Potential

Pelg Bar Sapir

Evenly distributed point ntegration

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{
 m vrhw} + R_{
 m probe}$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

olecular ydrophobicity

tential eneral form orce Constants

Distance function

Solvent accesible surface

evenly distributed points

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with

$$R^i = R^i_{\text{vdw}} + R_{\text{probe}}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F

Molecular Hydrophobicity Potential

General form
Force Constants

Distance function

Solvent accesible surface

venly distributed points

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$
- 3. Delete all points that are "burried" in other extended spheres (i.e. $\Delta(p^i, c^j) \leq R^j + R_{\text{probe}}$)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F

olecular ydrophobicity otential

General form
Force Constants

Surface Solvent accesible surface

venly distributed points

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$
- 3. Delete all points that are "burried" in other extended spheres (i.e. $\Delta\left(p^i,c^j\right)\leq R^j+R_{\text{probe}}$)
- The remaining surface is the solvent-accesible surface of the molecule

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P

Molecular Hydrophobicity Potential

General form
Force Constants
Distance function

Solvent accesible surface

Evenly distributed points ntegration

How to distribute N points on a surface of a sphere?

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log

Molecular Hydrophobicity

Potential

General form Force Constants

Distance funct

OULIACE

Solvent accesible surface

Evenly distributed points Integration

Molecular

Hydrophobicity

How to distribute N points on a surface of a sphere?

$$\varphi_i = i \cdot \frac{2\pi}{N}$$
$$\theta_j = j \cdot \frac{\pi}{N}$$

How to distribute N points on a surface of a sphere?

$$\varphi_i = i \cdot \frac{2\pi}{N}$$
$$\theta_j = j \cdot \frac{\pi}{N}$$

$$\theta_j = j \cdot \frac{\pi}{N}$$

How to distribute N points on a surface of a sphere?

 $\varphi_i = i \cdot \frac{2\pi}{N}$ $\theta_j = j \cdot \frac{\pi}{N}$

Points are not evenly distributed How to distribute N points on a surface of a sphere?

- $\varphi_i = i \cdot \frac{2\pi}{N}$ $\theta_j = j \cdot \frac{\pi}{N}$

- Points are not evenly distributed
- Several points overlap at poles

Solution: Vogel's method

In 2 dimensions:

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log F

Molecular Hydrophobicity

Potential

General form Force Constant

ristance tunc Irface

Solvent accesible sur

Evenly distributed points

integration

Solution: Vogel's method

In 2 dimensions:

▶ Distances: $r_i = \sqrt{\frac{i}{N}}$

• Angle: $\theta_i = \varphi i$ (φ is the golden ratio!)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Evenly distributed points

Solution: Vogel's method

In 2 dimensions:

▶ Distances:
$$r_i = \sqrt{\frac{i}{N}}$$

• Angle: $\theta_i = \varphi i$ (φ is the golden ratio!)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log F

Molecular

Hydrophobicity

Potential

General form Force Constants

istance function

istance function

Solvent accesible surface

Evenly distributed points

Solution: Vogel's method

In 2 dimensions:

- ▶ Distances: $r_i = \sqrt{\frac{i}{N}}$
- Angle: $\theta_i = \varphi i$ (φ is the golden ratio!)

In 3 dimensions (cylindrical coordinates):

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log F

Molecular Hydrophobicity

Potential

General form Force Constants

Distance function

Solvent accesible surface

Evenly distributed points

itegration

In 2 dimensions:

▶ Distances:
$$r_i = \sqrt{\frac{i}{N}}$$

• Angle:
$$\theta_i = \varphi i$$

(φ is the golden ratio!)

In 3 dimensions (cylindrical coordinates):

▶ Distances:
$$z_i = \left(1 - \frac{1}{N}\right) \left(1 - \frac{2i}{N-1}\right)$$

Angles:

$$\theta_i = \varphi i, \ \rho_i = \sqrt{1 - z_i^2}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Molecular Hydrophobicity

Potential

Force Constants

istance function

Solvent accesible surface Evenly distributed points

tegration

Solution: Vogel's method

In 2 dimensions:

- ▶ Distances: $r_i = \sqrt{\frac{i}{N}}$
- Angle: $\theta_i = \varphi i$ (φ is the golden ratio!)

In 3 dimensions (cylindrical coordinates):

- ▶ Distances: $z_i = \left(1 \frac{1}{N}\right) \left(1 \frac{2i}{N-1}\right)$
- Angles: $\theta_i = \varphi i, \ \rho_i = \sqrt{1-z_i^2}$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F

Molecular Hydrophobicity

otential

eneral form orce Constants

istance function

Solvent accesible surface Evenly distributed points

Evenly distributed points Integration

Integration

Each atom's total surface area:

$$V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log I

Molecular Hydrophobicity

Potential

General form Force Constants

listance function

olvent accesible sur

Integration

Each atom's total surface area:

 $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$

▶ The surface is represented by *N* points

► Each atom's total surface area:

 $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$

lacktriangle The surface is represented by N points

▶ Meaning: each point has $V_j^a = \frac{4\pi}{N} \left(R_{\text{vdW}}^i + R_{\text{probe}} \right)^2$

► Each atom's total surface area:

$$V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

- lacktriangle The surface is represented by N points
- ▶ Meaning: each point has $V_j^a = \frac{4\pi}{N} \left(R_{\text{vdW}}^i + R_{\text{probe}} \right)^2$
- ▶ In addition, each point has: MHP_j^a

Each atom's total surface area: $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$

▶ The surface is represented by N points

In addition, each point has: MHP^a_i

Therefore, each atom has a total MHP of:

▶ Meaning: each point has $V_j^a = \frac{4\pi}{N} \left(R_{\text{vdW}}^i + R_{\text{probe}} \right)^2$

$$\mathsf{MHP}^a = \frac{4\pi}{N} \sum_{j=0}^M \mathsf{MHP}^a_j$$