

Física Nivel medio Prueba 3

Lunes 11 de mayo de 2015 (tarde)

INUI	nero	ue c	UIIVU	Calui	ia de	ı aluı	ШО	

1 hora

Instrucciones para los alumnos

- Escriba su número de convocatoria en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas de dos de las opciones.
- · Escriba sus respuestas en las casillas provistas.
- En esta prueba es necesario usar una calculadora.
- Se necesita una copia sin anotaciones del cuadernillo de datos de física para esta prueba.
- La puntuación máxima para esta prueba de examen es [40 puntos].

Opción	Preguntas
Opción A — Visión y fenómenos ondulatorios	1 – 4
Opción B — Física cuántica y física nuclear	5 – 7
Opción C — Tecnología digital	8 – 10
Opción D — Relatividad y física de partículas	11 – 12
Opción E — Astrofísica	13 – 15
Opción F — Comunicaciones	16 – 18
Opción G — Ondas electromagnéticas	19 – 21

Opción A — Visión y fenómenos ondulatorios

- **1.** Esta pregunta trata de las células bastoncillos.
 - (a) Sobre los ejes, esquematice una gráfica que muestre la variación con la longitud de onda λ de la respuesta espectral R de las células bastoncillos del ojo humano.

[2]

(b) Hay flores que se ven con un rojo intenso durante el día y con un rojo apagado inmediatamente después de la puesta del sol. Explique, a partir de su gráfica esquemática de (a), esta observación.

[2]

[2]

(Opción A: continuación)

(i)

- **2.** Esta pregunta trata de las ondas estacionarias en un tubo.
 - (a) Se sumerge un tubo delgado en un recipiente con agua. Una longitud L del tubo asoma por encima de la superficie del agua.

Se hace sonar un diapasón sobre el tubo. Para ciertos valores de L, se forma una onda estacionaria en el tubo.

Explique cómo se forma una onda estacionaria en este tubo.

orm	orma u	forma una (forma una ond	forma una onda estaci	forma una onda estaciona	forma una onda estacionaria e	forma una onda estacionaria en el	forma una onda estacionaria en el tubo	forma una onda estacionaria en el tubo es c	forma una onda estacionaria en el tubo es de 33	forma una onda estacionaria en el tubo es de 33,0 cr	forma una onda estacionaria en el tubo es de 33,0 cm. E	forma una onda estacionaria en el tubo es de 33,0 cm. Estim	forma una onda estacionaria en el tubo es de 33,0 cm. Estime la	forma una onda estacionaria en el tubo es de 33,0 cm. Estime la velo	forma una onda estacionaria en el tubo es de 33,0 cm. Estime la velocida	forma una onda estacionaria en el tubo es de 33,0 cm. Estime la velocidad d	La frecuencia del diapasón es de 256 Hz. La menor longitud L para la cual se forma una onda estacionaria en el tubo es de 33,0 cm. Estime la velocidad del sonido en el tubo.

(Continuación: opción A, pregunta 2)

(b) En el diagrama se muestra una vista ampliada del tubo mostrado en (a). X, Y y Z son tres moléculas de aire en el tubo.

La longitud L es 33,0 cm.

(i)	Indique la dirección de oscilación de la molécula Y.	[1]
(ii)	Identifique la molécula que presenta mayor amplitud.	[1]

[2]

(Opción A: continuación)

3. Esta pregunta trata de la difracción y la resolución.

Sobre una rendija rectangular estrecha incide luz monocromática.

La luz se observa en una pantalla alejada de la rendija. La gráfica muestra la variación con el ángulo θ de la intensidad relativa para la luz con longitud de onda 7.0×10^{-7} m.

(a) Estime la anchura de la rendija.

(Continuación: opción A, pregunta 3)

4.

(k	0)	Sobre la gráfica, esquematice la variación de la intensidad relativa frente a θ cuando se reduce la longitud de onda de la luz.	[1]
(0	C)	Indique y explique, a partir de su esquema de (b), si resulta más fácil resolver dos objetos en luz azul o en luz roja.	[2]
Е	sta	pregunta trata de la polarización.	
(8	a)	Indique qué se entiende por luz polarizada.	[1]

(Continuación: opción A, pregunta 4)

(b) El diagrama muestra el rayo incidente, el rayo reflejado y el rayo refractado en una frontera horizontal aire—agua. El ángulo de incidencia es igual al ángulo de Brewster ϕ .

(i)	Describa el estado de polarización del rayo reflejado.	[1]
(ii)	El ángulo de Brewster es de 53°. Calcule el ángulo de refracción <i>r</i> .	[1]

(Continuación: opción A, pregunta 4)

(iii) Se transmite la luz reflejada a través de un polarizador. El plano del polarizador forma un ángulo recto con el rayo reflejado.

El eje de transmisión del polarizador está inicialmente en horizontal. Se hace rotar el polarizador un ángulo θ en torno al rayo reflejado. Sobre los ejes, esquematice una gráfica que muestre la variación con θ de la intensidad transmitida I.

Fin de la opción A

[2]

Opción B — Física cuántica y física nuclear

5. Esta pregunta trata del efecto fotoeléctrico.

En un experimento fotoeléctrico, incide luz con longitud de onda de 450 nm sobre una superficie de sodio. La función de trabajo para el sodio es 2,4 eV.

) (i)	Calcule, en eV, la energía cinética máxima de los electrones emitidos.	[3]
(ii)	El número de electrones que abandona la superficie de sodio por segundo es 2×10^{15} . Calcule la corriente que abandona la superficie de sodio.	[2]
mo	reduce la longitud de onda de la luz que incide sobre la superficie de sodio sin odificar su intensidad. Explique por qué bajará el número de electrones emitidos sde el sodio.	[4]
mo	odificar su intensidad. Explique por qué bajará el número de electrones emitidos	[4]
mo	odificar su intensidad. Explique por qué bajará el número de electrones emitidos	[4]
mo	odificar su intensidad. Explique por qué bajará el número de electrones emitidos	[4]
mo	odificar su intensidad. Explique por qué bajará el número de electrones emitidos	[4]
mo	odificar su intensidad. Explique por qué bajará el número de electrones emitidos	[4]
mo	odificar su intensidad. Explique por qué bajará el número de electrones emitidos	[4]
mo	odificar su intensidad. Explique por qué bajará el número de electrones emitidos	[4]

(Opción B: continuación)

6. Esta pregunta trata del átomo de hidrógeno.

El diagrama muestra los tres menores niveles de energía de un átomo de hidrógeno.

(a) Se excita un electrón hasta el nivel de energía n=3. Sobre el diagrama, dibuje flechas que muestren las posibles transiciones electrónicas que pueden conducir a la emisión de un fotón.

[2]

(b) Demuestre que desde un átomo de hidrógeno puede emitirse un fotón con longitud de onda de 656 nm.

[2]

[3]

(Opción B: continuación)

Esta pregunta trata de la desintegración radiactiva.

7.

(a) Resuma cómo puede determinarse experimentalmente la s	semivida de X.

(b)	Una muestra pura de X tiene una masa de 1,8 kg. La semivida de X es de 9000 años.
	Determine la masa de X que quedará al cabo de 25 000 años.

Fin de la opción B

Opción C — Tecnología digital

8. Esta pregunta trata de las señales digitales. Para el número binario 11010, (a) (i) indique el bit menos significativo. [1] (ii) demuestre que el número decimal equivalente es 26. [1] Se hace una grabación de dos-canales (estéreo) a una frecuencia de muestreo de (b) 44,1 kHz, utilizando muestreo de 16 bit. La grabación pasa a almacenarse en un mini-CD como 210 MB (1 byte = 8 bits) de datos. Estime el tiempo de reproducción del mini-CD. [3]

(Opción C: continuación)

9. Esta pregunta trata de un dispositivo acoplado por carga (CCD).

Un sensor consistente en un dispositivo acoplado por carga (CCD) cuenta con $1,6\times10^7$ píxeles y está conectado a un telescopio portátil. El aumento del sistema es de $2,08\times10^{-3}$. El área del CCD es de $866\,\mathrm{mm}^2$.

(ii) Un alumno utiliza el telescopio para observar un objeto lejano. Determine la menor distancia entre dos puntos del objeto que pueden ser resueltos.	menor distancia entre dos puntos del objeto que pueden ser resueltos.	(1)	Calcule la longitud del lado de un pixel del CCD.	L
	menor distancia entre dos puntos del objeto que pueden ser resueltos.			
	menor distancia entre dos puntos del objeto que pueden ser resueltos.			
	menor distancia entre dos puntos del objeto que pueden ser resueltos.			
	menor distancia entre dos puntos del objeto que pueden ser resueltos.			
	Explique cómo la luz incidente en un CCD hace que se acumule carga en un píxel.	(ii)		[
	Explique cómo la luz incidente en un CCD hace que se acumule carga en un píxel.			
	Explique cómo la luz incidente en un CCD hace que se acumule carga en un píxel.			
	Explique cómo la luz incidente en un CCD hace que se acumule carga en un píxel.			
	Explique cómo la luz incidente en un CCD hace que se acumule carga en un píxel.			
Explique cómo la luz incidente en un CCD hace que se acumule carga en un píxel.			ique cómo la luz incidente en un CCD hace que se acumule carga en un píxel.	

(Continuación: opción C, pregunta 9)

(c)	Se sustituye este CCD por otro con mayor rendimiento cuántico. Sugiera dos implicaciones que tendrá esta variación en el rendimiento cuántico para la observación de objetos lejanos.	[2]

(Opción C: continuación)

- **10.** Esta pregunta trata de un amplificador operacional (AO) ideal.
 - (a) Indique **dos** propiedades de un amplificador operacional (AO) ideal. [2]

(b) El diagrama muestra un AO conectado como amplificador inversor. El voltaje de entrada es $V_{\rm entrada}$ y el voltaje de salida es $V_{\rm salida}$.

Demuestre que la ganancia del amplificador es $\frac{V_{\text{salida}}}{V_{\text{entrada}}} = -\frac{R_2}{R_1}$. [3]

	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		 •	•	•	 •	•	•	•	 •	•
																																												-									
					 																																							-									
																																												-								 -	
																																												-									

(Continuación: opción C, pregunta 10)

(0)	y la resistencia R_2 es de $600 \mathrm{k}\Omega$. Indique y explique el valor del voltaje de salida V_{salida} cuando el voltaje de entrada V_{entrada} es 1,7 V.	[2]

Fin de la opción C

Opción D — Relatividad y física de partículas

11. Esta pregunta trata de la cinemática relativista.

Una nave espacial parte de la Tierra y viaja hacia un planeta. La nave espacial se desplaza a una rapidez 0,60c respecto a la Tierra. El planeta se encuentra a una distancia de 12 años luz para el observador sobre la Tierra.

(a) Determine el tiempo, en años, que tardará la nave espacial en alcanzar el planeta según

i)	el observador en la Tierra.	[1]
ii)	el observador en la nave espacial.	[2]

(Continuación: opción D, pregunta 11)

(b) La nave espacial pasa junto a una estación espacial que está en reposo respecto a la Tierra. La longitud propia de la estación espacial es de 310 m.

(i)	Indique qué se entiende por longitud propia.	[1]
(ii)	Calcule la longitud de la estación espacial según el observador en la nave espacial.	[2]

[4]

(Continuación: opción D, pregunta 11)

(c) F y B son dos luces parpadeantes que se encuentran en los extremos de la estación espacial, tal como se muestra. Cuando la nave espacial se aproxima a la estación espacial de (b), F y B se encienden. Las luces se activan simultáneamente según el observador en la estación espacial, que está a medio camino entre las luces.

Indique y explique qué luz, F $\bf o$ B, se enciende primero según el observador en la **nave** espacial.

(Opción D: continuación)

(a)

12. Esta pregunta trata de las partículas y las interacciones.

(i)	Indique qué se entiende por una antipartícula.	[1]
/::\	Algunos portígulos con idénticos a que entinertígulos. Discute ei el neutrón y el	
(ii)	Algunas partículas son idénticas a sus antipartículas. Discuta si el neutrón y el antineutrón son idénticos.	[2]
(11)		[2]
		[2]
(11)		[2]

(Continuación: opción D, pregunta 12)

(b) Este diagrama de Feynman representa la desintegración $K^- \to \pi^+ + \pi^- + \pi^-$.

Las partículas X e Y son partículas de intercambio.

(1)	Explique que se entiende por una particula de intercambio.	[2]

٠.			٠	 ٠	٠	-		٠	٠		 ٠	٠		•	٠	 	٠		٠	٠.	٠	 ٠	-	 ٠	 ٠	٠	 	٠	٠	٠		٠	
																 							-				 						
																 							-				 						

(ii)	Identifique X.	[1]

	—

(iv) Calcule la variación en extrañeza en la desintegración del K^- . [1]

(Continuación: opción D, pregunta 12)

			16	el.	pi	Ó	n																			 •		е	•	•																			
										_	_																													_	_	_	_			_			_
•	•	 •	•		•	•	•	٠	•		٠	٠		•	٠	•		•		•	•	٠					٠					٠				•	•	•	•		٠	٠	٠	•			•	٠	

Fin de la opción D

Opción E — Astrofísica

13. Esta pregunta trata de las estrellas.

El diagrama de Hertzsprung–Russell (HR) muestra la posición del Sol y de tres estrellas rotuladas como A, B y C.

(2)	Indique el tipo estelar de A. B v C.	13.
(a)	IIIUIUUE EI IIUU ESIEMI UE A. D.V.C.	1.0

A:	
B:	
C:	

(Continuación: opción E, pregunta 13)

(b)	Dete	ermine el cociente	radio de B radio de A			[2]
(c)	Elb	rillo aparente de C	es 3,8×10 ⁻¹⁰ W m ⁻²	. La luminosidad (del Sol es 3,9×10 ²⁶ W.	
	(i)	Indique qué se e	ntiende por brillo ap	parente y luminosio	dad.	[2]
		Brillo aparente:				
		Luminosidad:				
	(ii)	Determine la dis	tancia entre C y la 1	Γierra.		[2]

(Continuación: opción E, pregunta 13)

(d) La gráfica muestra la variación con la longitud de onda λ de la intensidad I de la radiación emitida por 1,0 m² de la superficie del Sol. Se ha ajustado la curva de la gráfica para que la intensidad máxima sea 1.

Sobre la cuadrícula, dibuje una gráfica análoga para la estrella C. Su curva ha de tener una intensidad máxima de 1.

[2]

(Opción E: continuación)

14. Esta pregunta trata de las estrellas binarias eclipsantes.

Las dos circunferencias del diagrama representen las órbitas de dos estrellas en un sistema estelar binario. Se muestra la posición de la estrella exterior.

(a) Sobre el diagrama, dibuje un punto para indicar la posición de la segunda estrella. Rotúlelo como S.

[1]

(b) Indique **una** condición que debe satisfacerse para que este sistema pueda clasificarse como sistema estelar binario eclipsante.

[1]

(Continuación: opción E, pregunta 14)

(c) Las dos estrellas tienen igual radio pero diferente brillo aparente. El período de revolución de las dos estrellas es de 10 años. Sobre los ejes, esquematice una gráfica que muestre la variación con el tiempo t del brillo aparente combinado b de las dos estrellas.

[2]

15. Esta pregunta trata del universo en expansión.

Desde 1929 se cree que el universo se expande.

(a) Indique qué se entiende por la expansión del universo.

[1]

- (b) El desplazamiento al rojo de la luz procedente de galaxias lejanas proporciona evidencia del universo en expansión.
 - (i) Indique **otro** elemento de evidencia en respaldo de un universo en expansión. [1]

(Continuación: opción E, pregunta 15)

(11)	Bang para el universo.	[3

Fin de la opción E

Opción F — Comunicaciones

16. Esta pregunta trata de la modulación de amplitud (AM).

(a)	Describa que se entiende por modulación de amplitud (AM).	[2]
1		

(b) Una onda portadora tiene una frecuencia de 540 kHz. Se modula en amplitud por una onda de señal de frecuencia 4,0 kHz.

(i)	Indique el ancho de banda de la onda portadora modulada.	[1]

(ii) Sobre los ejes, esquematice el espectro de potencia de la onda portadora modulada. [2]

(Continuación: opción F, pregunta 16)

(c) El diagrama de bloques muestra un receptor de radio AM.

Identifique los bloques marcados como X e Y.

	_		_	_			
•	-	-	-	-			

[2]

17. Esta pregunta trata de las señales digitales.

X:

Y:

(a) Se hace una grabación de dos-canales (estéreo) a una frecuencia de muestreo de 44,1 kHz, utilizando muestreo de 16 bits en cada canal.

(1)	Determine la velocidad de transferencia de datos (<i>bitrate</i>) durante la grabación.	[1]

(ii) Determine la duración de **una** muestra. [2]

																											•				
			•																					 	•	•			•	•	

(La opción F continúa en la página siguiente)

Véase al dorso

(Continuación: opción F, pregunta 17)

(b)	Explique un cambio en el proceso que serviría para mejorar la calidad de la transmisión.	[2]
(c)	Se digitaliza la muestra. Se utiliza multiplexación por división de tiempo para enviar esta señal digital a un transmisor de radio. Describa qué se entiende por multiplexación por división de tiempo.	[2]

(Opción F: continuación)

18. Esta pregunta trata de las transmisiones por fibra óptica.

	Explique, en relación con el ángulo crítico, qué se entiende por reflexión interna total.	[3]
(b)	En una fibra óptica, el índice de refraccíon del núcleo es 1,62. El índice de refraccíon	
	para el revestimiento es 1,50. Determine el ángulo crítico para la frontera entre el núcleo y el revestimiento.	[2]
	para el revestimiento es 1,50. Determine el ángulo crítico para la frontera entre el	[2]
	para el revestimiento es 1,50. Determine el ángulo crítico para la frontera entre el	[2]
	para el revestimiento es 1,50. Determine el ángulo crítico para la frontera entre el	[2]
	para el revestimiento es 1,50. Determine el ángulo crítico para la frontera entre el	[2]
	para el revestimiento es 1,50. Determine el ángulo crítico para la frontera entre el núcleo y el revestimiento.	[2]
(c)	para el revestimiento es 1,50. Determine el ángulo crítico para la frontera entre el	[2]
(c)	para el revestimiento es 1,50. Determine el ángulo crítico para la frontera entre el núcleo y el revestimiento. Indique un efecto de la dispersión sobre un pulso que se ha desplazado a lo largo de	
(c)	para el revestimiento es 1,50. Determine el ángulo crítico para la frontera entre el núcleo y el revestimiento. Indique un efecto de la dispersión sobre un pulso que se ha desplazado a lo largo de	

Fin de la opción F

Opción G — Ondas electromagnéticas

19.	Esta pregunta trata o	le las ondas	electromagnéticas y	/ los láseres.
-----	-----------------------	--------------	---------------------	----------------

(a)	Resuma la naturaleza de las ondas electromagnéticas.	[3]
(b)	Distinga entre absorción y dispersión de la radiación electromagnética.	[2]
,		
(c)	Indique una aplicación de la tecnología láser.	[1]
(-)		

(Opción G: continuación)

20. Esta pregunta trata de una lente convergente (convexa) delgada.

En el diagrama se muestra un objeto situado delante de una lente convergente delgada.

Los puntos focales de la lente aparecen marcados con la letra F.

(a) (i) A partir del diagrama, determine la potencia de la lente. [2]

(ii) Sobre el diagrama, construya líneas que muestren cómo la lente forma la imagen del objeto.

(La opción G continúa en la página siguiente)

[3]

(Continuación: opción G, pregunta 20)

	Indique y explique si la imagen es una imagen real o una imagen virtual.	
tele torr	us utiliza un telescopio astronómico para observar una torre de comunicaciones. La altura de la torre es de 82 m y la distancia entre Argus y la e es de 4,0 km. La imagen formada por el telescopio tiene un diámetro angular de d'rad y se forma en el infinito.	
(i)	Determine el aumento angular del telescopio.	

(Opción G: continuación)

21. Esta pregunta trata de un experimento de doble rendija.

Sobre dos rendijas rectangulares estrechas incide luz monocromática coherente. El diagrama muestra las franjas producidas sobre una pantalla que se encuentra a cierta distancia de las rendijas. M es el centro de la franja brillante central y P es el centro de la tercera franja brillante.

(no a escala)

(a)	Explique por qué se produce un patrón de interferencia sobre la pantalla.	[2]
(b)	Se separan las dos rendijas 2,2 mm y la distancia entre las rendijas y la pantalla	
	es 1,8 m. La longitud de onda de la luz es de 650 nm. Calcule la distancia MP.	[2]

Fin de la opción G

