Мат Статистика и теория вероятности

Дронов С.В

6 февраля 2020 г.

1 Случайные события

Множество всех элементарных исходов – Ω

Событие - подмножетво Ω

A – событие, $w \in A \Rightarrow w$ исход благоприятный для A

Если $w \leftarrow A$ реализовался, w исход благоприятный для A, то событие проихошло

 Ω – достоверное

А,В – события $\Rightarrow A \cup B$ – объединенные события, происходящие если происходит хотябы одно их событий A или B

AB – пересечение событий происходит если происходят как ${\sf A}$ так и ${\sf B}$

 $AB = 0 \Rightarrow \mathsf{A}$ и B несовместны

A#B - разность событий, происходит если A происходит, а B не происходит

 \overline{A} - событие, когда A не происходит

2 Классическая вероятность

 Ω - конечное множество

Все $\omega \in \Omega$ равновозможны

Все $A \in \Omega$ - события

|A| -число элементов ${\sf A}$

 $P(A) = rac{|A|}{|\Omega|}$ – вероятность события А

Свойства:

1)
$$P(\Omega) = 1, p(0) = 0, \forall 0 \le P(A) \le 1$$

$$2)AB = 0 \Rightarrow P(A \cup B) = P(A) + P(B)$$

$$3)A \in B \Rightarrow p(A) \leq P(B)$$

3 Геометрическая вероятность

 $\Omega\in R^n$ - множество ограниченное и измеримое Все $\omega\in\Omega$ -равновозможны События — измеримые подножества Ω $P(A)=\frac{\mu(A)}{\mu(\Omega)}$ μ - мера Свойства 1-3 выполнены

4 Статистическая вероятность

Пусть n - раз ставится независимые эксперименты по наблюдению события A

 $k_n(A)$ событие проихошло

 $\mu_n(A) = rac{k_n(A)}{n}$ - относительная частота А

 $P(A) = \lim_{n o inf} \mu_n(A)$ - вероятностное событие от А

Свойства 1-3 выполнены

5 Аксиомотическое определение вероятности

 Ω - произвольное множество

f - система подмножеств Ω , объявляемых событиями отображение $p:f\to R^+$ - вероятность, если верно:

 $p1) P(\Omega) = 1$

 $(p2) A, B \in f \quad AB = 0 \Rightarrow P(A \cup B) = P(A) + P(B)$

p3) $\{A_n, n \in N\} \in f$, $i \neq j \Rightarrow A_i A_j = 0$ $P(\bigcup_{n \in N} A_n) = \sum_{n=1} P(A_N)$

6 Простейшие следствия аксиом

- 1) P(0) = 0
- 2) $P(\overline{A}) + P(A) = 1$
- 3) $A \in B \Rightarrow P(A) \leq P(B)$
- 4) $A \in B \Rightarrow P(B \# A) = P(B) P(A)$
- 5) $P(A \cup B) = P(A) + P(B) P(AB)$ формула сложения вероятностей

7 Аксиома непрерывности вероятности

p4)
$$\forall B_n, n \in N \in f : \forall n \quad B_n \in B_{n+1} \quad P(\cup_{n \in N} B_n) = \lim_{n \to int} P(B_n)$$

Теорема

Пусть выполнена p2, тогда $p3 \Leftrightarrow p4$

p5)
$$\forall C_n, n \in N \ inf \quad \forall n \quad C_{n_1} \in C_n \quad \Rightarrow P(\cap_n C_n) = \lim_{n \to inf} P(C_n)$$