Física 2 - 2024

Instituto de Física Facultad de Ingeniería Universidad de la República

Junio 2024

Bienvenidos!

- Docente: Elisa Castro ecastro@fing.edu.uy
 Lunes de 1800 a 2000 virtual
 Jueves de 1200 a 1400 S. B21
- Docente: Facundo Gutiérrez fgutierrez@fing.edu.uy
 Martes de 1000 a 1200 S. 305
 Martes de 1200 a 1400 S. 305
- Docente: Matías Osorio Mirambell mosorio@fing.edu.uy
 Jueves de 1200 a 1400 S. B21
 Viernes de 1830 a 2030 virtual

Cronograma del curso

9	29/04/24 -	08/05/24	Período de 1º parciales	
10	09/05/24 -	10/05/24	GAS IDEAL Y TEORIA CINÉTICA	Análisis/Resolución del Parcial
11	13/05/24 -	17/05/24		5 DILATACIÓN TÉRMICA Y TERMOMETRÍA
12	20/05/24 -	24/05/24		6 PROCESOS EN GASES IDEALES
13	27/05/24 -		CALORIMETRÍA Y TRANFERENCIA DE CALOR	7 CALOR Y PRIMERA LEY. TRANSF. DE CALOR
14	03/06/24 -			7 CALOR Y PRIMERA LEY. TRANSF. DE CALOR
			SEGUNDA LEY. MÁQUINAS	
15	10/06/24 -	14/06/24		8 MÁQUINAS TÉRMICAS
16	17/06/24 -	21/06/24	ENTROPIA	8 MÁQUINAS TÉRMICAS
17	24/06/24 -	28/06/24	ENTROPIA	9 ENTROPIA
18	01/07/24 -	03/07/42	CONSULTA/REPASO	9 ENTROPIA
17	04/07/24 -	15/07/24	Período de 2º parciales	

USTED ESTÁ AQUÍ

Resumen

- A resolver: ¿Qué es la temperatura? $\checkmark \to$ Ley cero de la termodinámica.
- A resolver: ¿Qué es un gas ideal? $\checkmark \rightarrow$ Modelo: PV = nRT
- ullet A resolver: ¿Es posible mover un peso mediante un GI? \checkmark \to trabajo
- A resolver: ¿Qué es la energía interna de un GI y cómo varía? $\checkmark \to \mathsf{Primera}$ Ley de la Termodinámica
- A resolver: ¿Cómo calcular Q en procesos con sólidos/líquidos? $\checkmark \to$ calor específico y calor latente
- A resolver: ¿Es posible utilizar un ciclo termodinámico para obtener trabajo útil? $\checkmark \to \text{máq}$. térmica/refrig.
- A resolver: ¿Cuánto trabajo útil máximo podemos obtener a partir un ciclo termodinámico? ¿Qué nos restringe?

Termodinámica: motivación

• Energía \to concepto fundamental en ingeniería \to generación, almacenamiento, transporte...

Limitaciones de la Primera Ley

- Primera Ley nos da un balance de energía pero no nos dice si el proceso puede realizarse o no
- ullet Necesitamos más información o segunda ley de la termodinámica
- Entropía nace a partir de problemas de ingeniería $\to \uparrow$ eficiencia de motores + ciclos termodinámicos \to Watt, Joule, Carnot, Clapeyron

In 1783 he tested a strong horse and decided that it could raise a 150-pound weight nearly four feet in a second. He therefore defined a "horsepower" as 550 foot-pounds per second. This unit of power is still used, particularly for automobiles. However, the unit of power in the metric system is called 1 Watt, in honour of the Scottish engineer. One horsepower equals 746 Watt.

Procesos reversibles, internamente reversibles e irreversibles

- Sea un proceso termodinámico P que lleva un sistema de un estado A a A' y al ambiente de un estado B a uno B'.
- P es reversible si existe un proceso inverso P^{-1} tal que vuelve el sistema de A' a A, y al ambiente de B' a B.

- ¿Qué sucede en la realidad? Irreversibilidades (fricción, transferencias de calor) hacen que ese proceso P^{-1} no exista de manera global.
- Proceso internam. reversible: P es int. rev. si P^{-1} vuelve el sistema a A desde A' (pero el ambiente va a otro estado distinto del inicial).

Entropía

• De Carnot: $|Q_H|/T_H = |Q_L|/T_L$:

$$\frac{|Q_H|}{T_H} - \frac{|Q_L|}{T_L} = 0 \rightarrow \text{ciclo reverible}$$

Desigualdad de Clausius:

$$\oint \frac{\delta Q}{T} \le 0$$

 Entropía: la desigualdad de Clausius conduce a esta propiedad (que es función de estado):

$$S_2 - S_1 = \int_1^2 \frac{\delta Q}{T}, \ [S] = \mathsf{J} \mathsf{K}^{-1}$$

De lo anterior:

$$\delta Q = TdS \rightarrow Q = \int \delta Q = \int TdS$$

Entropía y diagrama T-S

Recordemos que:

$$W = -\int P(V)dV$$
$$\delta Q = TdS \to Q = \int \delta Q = \int TdS$$

- Al igual que el trabajo es el área bajo la curva del diagrama P-V, el calor es el área bajo la curva del diagrama T-S.
- Ciclo reversible:

Ciclo Rankine ideal

 Modelo sencillo que permite analizar la generación de potencia en una planta de vapor.

Segunda Ley de la Termodinámica

• En cualquier proceso termodinámico que pasa de un estado de equilibrio a otro, la variación de entropía del sistema más el ambiente (entropía del universo) o es nula o es positiva, pero nunca negativa.

$$\Delta S_U = \Delta S_{\text{sistema}} + \Delta S_{\text{ambiente}} \ge 0$$

- ¿Qué significa que aumente la entropía?
- Significa que las irreversibilidades presentes en el sistema (fricción, intercambios de calor a ΔT finito, mezclas, magnetizaciones, etc.) hacen que no podemos aprovechar toda la energía teórica de manera útil \rightarrow trabajo reversible.
- Lo anterior es el concepto de irreversibilidad de un proceso.

Ejercicio 1 - continúa del P7

Física 2 – Segundo parcial 29 de noviembre de 2019

Problema 3 (15 puntos)

Se tienen 2 moles de gas ideal poliatómico a temperatura $T_g=45^{\circ}C$. El contenedor del gas está compuesto por paredes rígidas: tres adiabáticas y una diatérmica. Colocamos al gas en contacto térmico con un bloque de hielo de masa m=20g y temperatura inicial $T_H=-25^{\circ}C$, como se muestra en la figura. Si el bloque de hielo solo puede intercambiar calor con el gas:

- a) ¿A qué temperatura se alcanza el equilibrio térmico?
- b) Determine el calor intercambiado durante el proceso.
- c) Halle la variación de entropía en el universo para todo el proceso.

Nota: el calor específico del hielo es 2200J/kgK y el del agua es 4190J/kgK. El calor de fusión es 333kJ/kg

Figura 3: Problema 3

Ejercicio 2 - continúa del P7

Ejercicio 2 (30 puntos)

Un cilindro cerrado por un pistón, que contiene n moles de un gas ideal diatómico, se coloca en un ambiente a presión atmosférica P_0 . El pistón tiene una masa $m_p=6$ kg y una sección A=60 cm², considere el espesor despreciable. Este se encuentra unido a un resorte ideal de longitud natural nula y constante k=2 kN/m, como se observa en la figura. El pistón puede moverse entre dos pares de topes que se encuentran a una altura L=0,2 m y a una altura 2L=0,4 m. Inicialmente el gas se encuentra a una presión $P_1=400$ kPa y a una temperatura $T_1=1900$ K. El pistón y todas las paredes del cilindro son adiabáticas excepto por su base diaterma que se pone en contacto con una reserva térmica conformada por una gran cantidad de hielo a 0 °C. El proceso finaliza cuando el gas llega a una temperatura de 27 °C, momento en el cual se separa la reserva térmica del cilindro. El intercambio de calor entre el gas y la reserva térmica ocurre muy lentamente de forma que el proceso puede considerarse cuasiestático.

- a) Realice el diagrama P-V del proceso, incluyendo los valores de presión y volumen para los estados relevantes y las isotermas inicial y final.
 - b) Calcule el calor intercambiado por el gas y el trabajo realizado sobre el gas durante el proceso.
 - c) Halle la masa de hielo derretida durante el proceso.
 - d) Determine la variación de entropía del universo para el proceso.

Física 2 – Segundo parcial 29 de Noviembre de 2021

Próxima clase...

- Ideal: continuar con práctico 8
- Dudas: recuerden el uso del foro
- Próxima clase: vamos a seguir trabajando con temas vinculados a la segunda ley de la termodinámica.

Cronograma del curso

	29/04/24 -		Período de 1º parciales	
10	09/05/24 -	10/05/24	GAS IDEAL Y TEORIA CINÉTICA	Análisis/Resolución del Parcial
11	13/05/24 -	17/05/24		5 DILATACIÓN TÉRMICA Y TERMOMETRÍA
12	20/05/24 -	24/05/24		6 PROCESOS EN GASES IDEALES
13	27/05/24 -			7 CALOR Y PRIMERA LEY. TRANSF. DE CALOR
14	03/06/24 -			7 CALOR Y PRIMERA LEY. TRANSF. DE CALOR
			SEGUNDA LEY. MÁQUINAS	
15	10/06/24 -	14/06/24		8 MÁQUINAS TÉRMICAS
16	17/06/24 -	21/06/24	ENTROPIA	8 MÁQUINAS TÉRMICAS
17	24/06/24 -	28/06/24	ENTROPIA	9 ENTROPIA
18	01/07/24 -	03/07/42	CONSULTA/REPASO	9 ENTROPIA
17	04/07/24 -	15/07/24	Período de 2º parciales	

USTED ESTÁ AQUÍ

Resumen

- A resolver: ¿Qué es la temperatura? $\checkmark \to$ Ley cero de la termodinámica.
- A resolver: ¿Qué es un gas ideal? $\checkmark \rightarrow$ Modelo: PV = nRT
- ullet A resolver: ¿Es posible mover un peso mediante un GI? \checkmark \to trabajo
- A resolver: ¿Qué es la energía interna de un GI y cómo varía? $\checkmark \to \mathsf{Primera}$ Ley de la Termodinámica
- A resolver: ¿Cómo calcular Q en procesos con sólidos/líquidos? $\checkmark \to$ calor específico y calor latente
- A resolver: ¿Es posible utilizar un ciclo termodinámico para obtener trabajo útil? $\checkmark \to \text{máq}$. térmica/refrig.
- A resolver: ¿Cuánto trabajo útil máximo podemos obtener a partir un ciclo termodinámico? ¿Qué nos restringe? \checkmark Segunda Ley de la Termodinámica

Ejercicio 3

Ejercicio 2 (30 puntos)

Un dispositivo trabaja con dos moles de un gas ideal monoatómico, mediante el ciclo mostrado en la Figura. Dicho ciclo está compuesto por dos procesos isotermos, un proceso isócoro y un proceso isóbaro, y los intercambios de calor se realizan con dos reservas térmicas de temperatura T_a y T_b , tales que $T_a > T_b$.

Se sabe que en el estado 1 el volumen es de 50 litros y la temperatura es de 300 K. También se conoce que la relación de volúmenes $V_4/V_3=8$; y que durante el proceso isóbaro, el gas libera 50 kJ de calor.

- a) Determine la temperatura, presión y volumen en cada uno de los estados del ciclo. Explique si se está trabajando con una máquina térmica o una bomba de calor.
- b) Determine la eficiencia del ciclo.
- c) Se seleccionan dos reservas térmicas de temperaturas $T_a=1800~{\rm K}$ y $T_b=250~{\rm K}$. Calcule la variación de entropía del universo en un ciclo, para dicho caso.
- d) Se quieren variar las temperaturas de las reservas $(T_a \ y \ T_b)$, de manera obtener la menor variación de entropía posible. Calcule cuánto deben valer (en función de las temperaturas del problema), y halle la variación de entropía del universo para dicho caso.

Ejercicio 4

Física 2 – Examen

27 de Julio de 2018

Problema 3

Un cubo de paredes adiabáticas de lado 1 m está dividido en partes iguales por una pared adiabática móvil muy fina la cual está conectada a un resorte de constante elástica $k=2\times 10^4\,\mathrm{N/m}$ y longitud natural 0,5 m, como se muestra en la figura. Ambos lados contienen 10 moles de gas ideal diatómico. Se sabe que la presión inicial del lado B es $10^5\,\mathrm{Pa}$.

Desde una reserva térmica a 1200 K se transfiere una cantidad de calor Q_A al lado A. Se observa que la pared móvil se desplazó 10 cm hacia la derecha.

- a) Determine las presiones y volúmenes finales.
- b) Determine el trabajo realizado sobre el gas A y el gas B.
- c) Determine la cantidad de calor Q_A transferido.
- d) Determine el cambio de entropía:
 - i) en el lado A del sistema.

Procedimiento típico de resolución

- 1) Leer cuidadosamente la letra. ¿Qué necesito hallar? ¿Qué variables conocemos (datos/hipótesis)?
- 2) En una tabla prolija, escribir todos los datos del problema, por estado y por variable.
- 3) Definir la mayor cantidad de estados posibles (determinar el resto de variables termodinámicas).
- 4) Buscar las condiciones de finalización del/los proceso/s termodinámicos (iP final?). iC on qué tipo de procesos se está trabajando? Establecer los vínculos entre las variables de los estados inicial y final.
 - 5 Calcular trabajo (W)
 - 5 Calcular ΔU
 - $6~Q \rightarrow \text{Primera Ley de la Termodinámica (balance energía} + \text{conservación masa)}$
 - 7 $S \rightarrow Segunda Ley de la Termodinámica (balance entropía + conservación masa)$

Calorimetría

- Calorimetría = medición de calor.
- Experimento común: poner diferentes objetos que se encuentran a distintas temperaturas iniciales en un recipiente adiabático.
- En general, en sólidos/líquidos: $W\approx 0 \to \Delta U\approx Q \to$ podemos hallar el calor intercambiado.
- Si el calorímetro es adiabático: Q=0
- Primera Ley: $\Delta U = Q + W = 0 = \Delta U_A + \Delta U_B + \cdots + \Delta U_N$
- $\Delta U = mc\Delta T$:

$$m_A c_A \Delta T_A + m_B c_B \Delta T_B + \dots + m_N c_N \Delta T_N = 0$$

Primera Ley de la Termodinámica

- ¿Cómo se puede variar U en un GI? 1) mediante Q; 2) mediante W; 3) $1+2 \rightarrow$ proceso termodinámico
- Para un sistema cerrado:

$$\Delta E = \Delta K + \Delta E_{pot} + \Delta U = Q - \int P(V)dV \rightarrow \Delta E = Q + W$$

- \bullet ΔU es una función de estado: no depende de la trayectoria termodinámica del sistema
- ullet Q y W sí dependen de la trayectoria.
- W en general es sencillo de calcular al igual que $\Delta U \to \mathrm{ila}\ 1\mathrm{ra}$. ley nos da información sobre el calor transferido durante el proceso!

Calor

- El calor (Q, [Q] = J) es la transferencia de energía debido a la diferencia de temperatura (¡no confundir con temperatura!)
- Otras unidades: 1 cal = 4,186 J; 1 BTU = 1055 J
- Proceso adiabático: Q=0
- Mecanismos de transmisión de calor: conducción, convección, radiación
- Calor específico: $c=Q/(m\Delta T) \to {\sf caracteriza}$ una sustancia. Dependen de T y P. Nos brinda información de qué cantidad de energía en forma de Q es necesario entregar para variar la temperatura de un kilogramo de sustancia.

Energía interna de un Gl

- La energía interna de un GI es la suma de las energías cinéticas de todas sus partículas constituyentes, más la suma de todas las energías potenciales de interacción entre ellas.
- Es lo que modificamos cuando se transfiere energía por las fronteras del sistema (sistema cerrado).
- Depende del tipo de gas (monoatómico, diatómico, poliatómico) y la temperatura a la que se encuentra:

$$U_{\mathrm{mono}} = \frac{3}{2}nRT, \quad U_{\mathrm{di}} = \frac{5}{2}nRT, \quad U_{\mathrm{poli}} = \frac{6}{2}nRT$$

• Principio de equipartición de la energía: "cada grado de libertad del sistema (traslación, rotación, vibración) aporta (1/2)kT por molécula a la energía interna del sistema"

Trabajo sobre un Gl

• Se sabe que:

$$W_{\mathsf{sobre\ gas}} = -\int_{V_1}^{V_2} P_{\mathsf{gas}}(V) dV, \ [W] = J$$

- El valor absoluto trabajo es el área bajo la curva del diagrama P-V
- ¡El signo del trabajo depende de la trayectoria!

• ¿Qué estamos modificando del GI cuando le hacemos un trabajo?

Modelo de Gas Ideal (GI)

- El Gl es un modelo que permite bajo ciertas hipótesis (baja densidad) describir el comportamiento de un gas en función de variables macroscópicas.
- Ecuación de estado \rightarrow se llega experimentalmente:

$$PV = NkT, \ k = 1.38 \times 10^{-23} \,\mathrm{J}\,\mathrm{K}^{-1}$$

• Número de moles: $n=N/N_A,\ N_A=6.02\times 10^{23}\ \mathrm{molec\ mol}^{-1}$

$$PV = kN_AT, \ kN_A = R = 8.3145 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1} \to PV = nRT$$

• Número de moles: $n=m/\overline{M}$

$$PV = \frac{m}{\overline{M}}RT \to P\overline{M} = \rho RT$$

Escalas Celsius, Farenheit y Kelvin (SI)

- **Celsius**: toma los puntos de fusión (0 °C) y ebullición del agua (100 °C) como referencias, y divide entre 100 (grado) dicho rango.
- Farenheit: toma los puntos de fusión (32°F) y ebullición 212°F del agua como referencias, y divide entre 180 (grado F) dicho rango.
- Kelvin: escala que no depende de las propied. de un material específico.

Escalas Celsius, Farenheit y Kelvin (SI)

- **Celsius**: toma los puntos de fusión (0 °C) y ebullición del agua (100 °C) como referencias, y divide entre 100 (grado) dicho rango.
- Farenheit: toma los puntos de fusión (32°F) y ebullición 212°F del agua como referencias, y divide entre 180 (grado F) dicho rango.

$$T({}^{\circ}F) = (9/5)T({}^{\circ}C) + 32$$

• Kelvin: escala que no depende de las propied. de un material específico.

$$T(K) = T(^{\circ}C) + 273,15$$

Ley cero de la termodinámica

- Si A y B están cada uno en equilibrio térmico con un tercer sistema C, entonces A y B están en equilibrio térmico ($T_A = T_B$)
- **Temperatura (T):** Existe una cantidad escalar (T), que es una propiedad de los sist. termod. en equilibrio. Dos sistemas están en equilibrio térmico sí y solo sí tienen la misma temperatura.
- ¿Quién puede ser el cuerpo C? Un termómetro.
- Un termómetro es un sistema termodinámico que varía cierta propiedad termométrica con la temperatura (por ej.: dilatación).
- ¿En qué medimos T? \to escalas de T \to "Buscamos una sustancia que varía alguna propiedad con T y medimos esa propiedad al variar T" \to observamos puntos notables

Anexo: Recordando matemática...

- $\bullet \sin(-x) = -\sin(x)$
- $\bullet \sin(x + \pi/2) = \cos(x)$
- $\sin(\alpha) + \sin(\beta) = 2\sin((\alpha + \beta)/2)\cos((\alpha \beta)/2)$
- $\cos(\alpha) + \cos(\beta) = 2\cos((\alpha + \beta)/2)\cos((\alpha \beta)/2)$

$$\sin^{2}(x) = \frac{1}{2}(1 - \cos(2\alpha))$$

$$\cos^{2}(x) = \frac{1}{2}(1 + \cos(2\alpha))$$

 $\sin^2(x) + \cos^2(x) = 1$

Anexo: SI - Unidades derivadas

Anexo: SI - Prefijos

Prefiks	Symbol	Multiplying factor	
yotta	Y	1 000 000 000 000 000 000 000 000 = 1024	
zetta	Z	1 000 000 000 000 000 000 000 = 1021	
exa	E	1 000 000 000 000 000 000 = 1018	
peta	Р	1 000 000 000 000 000 = 1015	
tera	Т	1 000 000 000 000 = 1012	
giga	G	1 000 000 000 = 10 ⁹	
mega	М	1 000 000 = 106	
kilo	k	1 000 = 10 ³	
hecto	h	100 = 10 ²	
deka	da	10 = 10 ¹	
deci	d	0,1 = 10-1	
centi	С	0,01 = 10-2	
milli	m	0,001 = 10 ⁻³	
mikro	μ	0,000 001 = 10 ⁻⁶	
nano	n	0,000 000 001 = 10 ⁻⁹	
piko	р	0,000 000 000 001 = 10-12	
femto	f	0,000 000 000 000 001 = 10-15	
atto	a	0,000 000 000 000 000 001 = 10-18	
zepto	z	0,000 000 000 000 000 001 = 10-21	
yocto	У	0,000 000 000 000 000 000 000 001 = 10-24	