POLYOLEFIN RESIN COMPOSITION

Patent Number:

JP61272217

Publication date:

1986-12-02

Inventor(s):

MORITA HIDEYO; others: 02

Applicant(s)::

UBE IND LTD

Requested Patent:

☐ JP<u>61272217</u>

Application Number: JP19850116036 19850529

Priority Number(s):

IPC Classification:

C08F255/02

EC Classification:

Equivalents:

Abstract

PURPOSE: The titled composition, obtained by melt kneading a mixture prepared by adding a specific amount of a hydroxyalkyl (meth)acrylate to a polyolefin in the presence of an organic peroxide, capable of keeping the external appearance, etc., of the polyolefin and having improved adhesive properties, coating properties, etc. CONSTITUTION:A composition obtained by adding (B) 0.5-7pts.wt., preferably 1-5pts.wt. compound expressed by the formula (R is H or methyl; n is 1-22), e.g. 2-hydroxyethyl methacrylate, to (A) 100pts.wt. polyolefin, preferably crystalline polypropylene (PP), and melt kneading the resultant mixture in the presence of preferably 0.2-3.5pts.wt. organic peroxide, e.g., tert-butyl peroxybenzoate.

Data supplied from the esp@cenet database - I2

母公開特許公報(A) 昭61-272217

Mint Cl.

識別記号

庁内整理番号

→ ○ 公開 昭和61年(1986)12月2日

C 08 F 255/02

6681 - 4 J

審査請求 未請求 発明の数 1 (全5頁)

公発明の名称 ポリオレフィン樹脂組成物

到特 顧 昭60-116036

贸 昭60(1985)5月29日

79発明者 森田

成発 明 者 佐 野 豊

和警 伊 明 者 田 中 ⑪出 閱 人 字部興産株式会社

20代理 人 弁理士 羽 鳥 修

秀 世 堺市築港新町3丁1番地 宇部興産株式会社堺工場内 堺市築港新町3丁1番地 宇部興産株式会社堺工場内 堺市築港新町3丁1番地 宇部興産株式会社堺工場内 宇部市西本町1丁目12番32号

1. 発明の名称

ポリオレフィン樹脂組成物

2. 特許請求の義因

(1)ポリオレフィン100重量部に下記一般式 (1) で妻される化合物 0.5~7 重量部を添加し た複合物を、有機過酸化物の存在下で溶融複線し て得られる、接着性、堕装性の優れたポリオレフ ィン樹脂組成物。

(上式中、Rは水素原子又はメチル基、nは1~ 22 である。)

(2) ポリオレフィンが結晶性ポリプロピレンであ る特許請求の範囲第(1)項記載のポリオレフィン樹 雕組成物.

3. 発明の詳細な説明

〔産業上の利用分野〕

本見男は、ポリオレフィンの機械的・熱的物性、

比重、衰面の受傷性、外體等を保持し、且つ授着 性、重装性に優れたポリオレフィン樹脂組成物に 関する。

(従来の技術)

ポリプロピレン等のポリオレフィンは、非極性 樹脂であり、接着、塗装することが難しい。

その解決法として、例えば、ポリプロピレンの 成形品に、プラズマ処理、コロナ放電処理、フレ ーム処理、溶剤処理、酸処理等の表面処理を行い、 カルポニル基等の極性基を成形品表面に生成させ ることにより、接着性、堕装性を付与する方法が 知られている。

また、ポリプロピレンに、タルク、炭酸カルシ ウム等の無機フィラーや木粉等の充塡剤、又はE PR等の他の樹脂成分を成合する方法も知られて

(発明が解決しようとする問題点)

前記の裏面処理を行う方法は、高価な裏面処理 投債を要したり、廃棄物処理に罪があったり、成 形品の形状により均一な衰面処理ができない等の 問題点がある。

また、前記の充壌剤又は他の樹脂成分を復合す る方法は、収形品要価の受傷性が劣る、外観不良 が目立つ、比重が増大する、波動性が悪化する、 物性が低下する等の問題点がある。

従って、本発男の目的は、ポリオレフィンの機 被的・無的物性、比重、麦面の受傷性、外観等を 保持し、且つ接着性、整装性に優れたポリオレフ ィン樹脂組成物を提供することにある。

(問題点を解決するための手段)

本発明者等は、種々研究を重ねた結果、ポリオ レフィンに特定のモノマーを特定量添加した複合 物を、有機過酸化物の存在下に溶融浸練すること によって、上記目的の達成されたポリオレフィン 樹脂組成物が得られることを知見し、本発明に剪

即ち、本発男は、ポリオレフィン100重量部 に下記一般式 (1) で衰される化合物 0.5~7重 量部を添加した混合物を、有機過酸化物の存在下 で溶酸浸練して得られる、投着性、強装性の優れ

リレート、2ーヒドロキシ・エチル・アクリレー ト、ヒドロキシ・プロピル・メククリレート等が

挙げられる。 この前記一般式(1)で衰される化合物の活加 量は、前記ポリオレフィン100重量部に対し、 0.5~7 重量部、好ましくは1~5 重量部である。 この化合物の添加量が 0.5 重量部より少ないと、 **松加効果が充分でなく、また1直量部より多いと、** 成形品表面の外観が悪化する。

また、本発明のポリオレフノン樹脂組成物に用 いられる有遺過酸化物としては、特に制限はなく、 コストや要求される性能に応じて通宜選択され、 例えば、エーブチル・バーオキシ・ベンゾエート、 ジクミル・パーオキサイド、2.5―ジメニル― 2. 5一ジ(リーブチル・パーオキシ)へキサン 等が挙げられる。

この有機過酸化物の添加量は、前記ポリオレフ ィン1 0 0 重量部に対し、 0, 2 ~ 3, 5 重量部程度 が退当である。

而して、本発明のポリオレフィン樹脂組成物は、

たポリオレフィン樹脂組成物である。

《上式中、 R は永嘉原子又はメチル基、 n は l ~ 22である。)

以下に本発明のポリオレフィン樹脂組成物につ いて群選する。

本発明のポリオレフィン樹脂組成物における好 ましいポリオレフィンとしては、結晶性のプロピ レン・ホモ・ポリマー及びエチレン含量 0.5~2 O 重量%且つMPL(メルトフローインデックス) 0.1~30 g/10min のエチレン・プロピレン ・ブロック・コポリマー等の結晶性ポリプロピレ ンの他、線状低密度ポリエチレン、高密度ポリエ チレン等が挙げられ、上記のエチレン・プロピレ ン・ブロック・コポリマーが特に好ましい。

また、本発明のポリオレフィン樹窟組成物に用 いられる前記一般式(1)で妻される好ましい化 合物としては、2―ヒドロキシ・エチル・メタク

次のようにして得られる。

先ず、前記ポリオレフィンに、前記一般式(1) で衰される化合物及び前記有機過酸化物を前記 割合にて添加し、ヘンシェルミキサー、タンブラ 一等の混合機にて混合する。

次いで、この混合物を、単軸押出級、2段2軸 押出機等にて溶験復棲し、本発明のポリオレフィ ン樹脂組成物を得る。

上記信職機雑は、ポリオレフィンの種類によっ て異なるが、樹脂温度を170~250℃として 行うのが好ましい。

上記宿職提練により、ポリオレフィンは、前記 一般式(1)で表される化合物でグラフト変性さ

上記の知くして得られる本発明のポリオレフィ ン樹脂組成物は、連常、ペレット化しておいてか ら広形材料として用いられる。また、本発明のポ リオレフィン樹脂組成物は、ポリオレフィンのグ ラフト実性量が 0.2~3重量%のものが行ましい。 南、本発明のポリオレフィン州陽組成物には、

ボリオレフィンに前配一股式(I) で衰される化 台物を添加する際に、添加剤として、例えばイル ガノックス 1010 (Irganox 1010)、BHT等の酸 化防止剤、ステアリン酸セルシウム等を添加する ことができる。

また、本発男のポリオレフィン樹脂組成物には、 使用目的に応じ、未変性のポリオレフィン等の他 のポリマーを過度プレンドすることもできる。上 記憶のポリマーのプレンド量は 9 0 重量光以下と することが好ましい。

本発明のポリオレフィン樹脂組成物は、例えば、 自動車部品、電気製品、建材、包装資材等の成形 材料として好適に用いられる。

以下に本発明の実施例を示し、本発明を更に詳 しく説明する。

実施例1

パウダー状の結晶性のエチレン・プロピレン・ プロック・コポリマー(エチレン含量 = 6 重量 %、 MFI = 0.35 g / 10mim) 100重量部に、2 —ヒドロキシ・エチル・メタクリレート3重量部、

ど差がないものであった。

麦 1

項 目	单位	MPP-1	PP-1
引强降伏点独皮	It / ol	250	260
曲げ弾性率	Kg/d	11.000	12.000
アイゾット衝撃強度	Xg · ce/ce	9.5	8.5
热变形温度	τ	112	114
表面硬皮	3 ± 1	78	80
比重		J.90	0.90

註1)ロックウェル R-スケール

上記MPP-1 (本発明の樹脂組成物)及び上 記PP-1 (比較材料)について、次の通り、成 形性、成形品の外数及び受傷性、塗装性、並びに 接着性を調べた。

成形性、成形品の外質及び景価性

MPP-1及びPP-1を用い、長さ350mm ×幅120mm×厚さ3mmの成形品をそれぞれ射出 成形した。この時の成形性及び得られた成形品の

t ープチル・パーオキシ・ベンプェート 1.5 重量 第、酸化防止剤としてイルがノックス 1010 (Irs saox 1010) 0.1 重量節及び B H T 0.1 重量節を加え、更にステアリン酸カルシウム 0.0 2 重量部を加え、ヘンシェルミキサーにて均一に混合後、動物押出機(中谷機械特製 N V C、 樹脂温度 = 2 1 0 で)にて溶験浸練し、グラフト変性されたエチレン・プロピレン・プロック・コポリマーのペレット(以下MPP-1 という:本発明の樹脂組成物)を得た。

このMPP-1のグラフト変性量は1.1重量外 であり、MF!は50g/10min であった。

また、このMPP-1について、下記表1の項目標に示す程々の物性をASTH法に従って測定した。また、比較として、エチレン含量=6重量%且つMFI=50g/10minのエチレン・プロピレン・プロック・コポリマー(以下PP―1という)の物性も同様に測定した。それらの結果を下記表1にまとめて示す。下記表1に示す結果から明らかな過り、物性的にはMPP-1はPP―1と殆

外観は、MPP-1とPP-1に差がなく、何れ も良好であった。また、これらの成形品について 鉛筆及び百円硬貨にて受傷性を比較したが、両者 に有意差はなかった。

<u> 建装性</u>

MPP-1及びPP-1の成形品表面に、プラネットPP-2 (オリジン電気調製、一液型塗料)をフォードカップ (#4) で14秒に調整後、スプレーガンにて設厚16μに塗装した。乾燥は80で30分間行った。

・ 生装性の評価は、マルチ・クロス・カッターに て生贄に100の基盤目を作り、セロテープによ る別難テストで行った。その結果は次の通りであった。

(結 果)

MPP-1製成形品(本発明品)の場合は、基盤目が全く別離せず、塗装性良好であったのに対し、PP-1製成形品(比較品)の場合は、100の基盤目の内10目が別離し、塗装性不良であった。

接着技

MPP-1及びPP-1を用い、厚さ3.2mm×幅25mmのシートをそれぞれ作成しては缺に供した。参着体としては厚さ5.8mm×幅25mmのABS製シートを用いた。また、接着剤としては、生まがインm製)、の合成が一番のでは、生まがインm製)、の合成が近に、カー250ででは、イエル・ウレタンm製シートを用いた。MPP-1製シートとABS製シートを開び下に、MPP-1製シートとABS製シートを開び下により行った。また、それらのシートの接着性の消失で下記に示した。

(接着方法)

ウレタン系接着剤を用いる場合は主剤と硬化剤を100対10の割合、また合成ゴム系接着剤を用いる場合は主剤と硬化剤を100対3の割合で、スプレーガンにてMPP-1製シート及びPP-1製シートにそれぞれ約150g/mlの量を生布

ヒドロキシ・エチル・メタクリレート 5 重量部、 t ープチル・パーオキシ・ペンゾエート 2.5 重量 部、酸化防止剤としてイルガノックス 1010 (Irs anox 1010) 0.1 重量部及びBHT 0.1 重量部を加 え、更にステアリン酸カルシウム 0.0 2 重量部を 加え、タンブラーにて均一に混合後、2 段 2 軸押 出機 (神戸製鋼鉄所製 2 FCM、樹脂温度 = 2 2 0 で)にて溶験浸練し、グラフト変性されたエチ レン・プロピレン・ブロック・コポリマーのペレ ット (以下MPP-2という:本発明の樹脂組成 物)を得た。

このMPP-2のグラフト変性量は1.9度量分であり、MFIは40g/10min であった。

また、このMPP-2の物性は、エチレン含量 = 8 重量%且つMFI = 4 0 g / 10 min のエチレ ン・プロピレン・ブロック・コポリマーの物性と はば同様であった。

また、このMPP-2について、実施例1と同様の方法で整装性及び接着性を調べたところ、次に示す結果が得られた。

後、ABS裏シートをそれぞれ貼りつける。

(接着強度測定法)

上記榜着方法によりABS製シートを貼りつけたMPP-1製シート及びPP-1製シートを1週間放置後、180割開試験を温度を0℃にて行う。尚、制障時の引張試験速度は20cm/mlnである。

(結果)

MPP-製シート(本発明品)の180・制蔵 強度は、ウレタン系接着剤を用いた場合で8.4 kg /2.5cm、合成ゴム系接着剤を用いた場合で5.6 kg/2.5cmであり、何れの場合も接着剤の凝集破 壊が生じた。一方、PP-1製シート(比較品) の180・制雕強度は、両接着剤の場合とも、0 kg/2.5cmであった。

実施例 2

ペレット状の結晶性のエチレン・プロピレン・ プロック・コポリマー(エチレン含量 - 8 重量 %、 MFI = 0.8 g / 10 min) 1 0 0 重量部に、2 —

(結 果)

盛装性: 基盤目が全く到離せず、塗装性良好であった。

接着性: 180 N離強度は、ウレタン系接着剤を用いた場合で8.4 kg/2.5cm 、合成ゴム系接着剤を用いた場合で5.9 kg/2.5cm であり、何れの場合も接着剤の最後破壊が生じた。

比較例1

実施例 1 において、 2 ――ヒドロキシ・エチル・メタクリレート 0.3 重量部及び t ――ブチル・パーオキシ・ベンゾエート 0.15 重量部を使用した以外は実施例 1 と同様にしてグラフト変性されたエチレン・プロピレン・ブロック・コポリマーのベレット(以下MPP-3 という)を得た。

このMPP-3のグラフト変性量は 3.06重量 %であった。

このMPP-3について、実施例1と同様の方 住で検着性を調べたところ、次に示す結果が得ら nt.

(結 集)

180 * 制度独皮は、カレタン系接着剤を用いた場合で 0.3 kg/2.5cm 、合成ゴム系接着剤を用いた場合で 1.2 kg/2.5cm であり、何れの場合もMPP-3 製シートと接着剤との間で界面破壊を生じており、接着強皮は不充分であった。

(発男の効果)

本発明のポリオレフィン樹脂組成物は、ポリオレフィンの機械的・熱的物性、比重、表面の受傷性、外観等を保持し、且つ接着性、塗装性に優れたものである。

特許出職人

字部舞崖株式会社

代理人弁理士

XX 8

