PH108: Electricity & Magnetism: Tutorial 2

1. Check the divergence theorem for the function

$$\vec{v} = r^2 \cos \theta \ \hat{r} + r^2 \cos \phi \ \hat{\theta} - r^2 \cos \theta \sin \phi \ \hat{\phi}$$

using the volume of one octant of a sphere of radius R.

- 2. Compute the unit normal vector \hat{n} to the ellipsoidal surfaces defined by constant values of $\Phi(x,y,z) = V\left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right)$. What is \hat{n} when a = b = c?
- 3. Express the following derivatives in terms of linear combinations of the unit vectors of the spherical polar co-ordinate, \hat{r} , $\hat{\theta}$, $\hat{\phi}$:

$$\frac{\partial \hat{r}}{\partial \theta}, \quad \frac{\partial \hat{r}}{\partial \phi}, \quad \frac{\partial \hat{\theta}}{\partial \theta}, \quad \frac{\partial \hat{\theta}}{\partial \phi}, \quad \frac{\partial \hat{\phi}}{\partial \phi}$$

4. Calculate the curl and divergence of the following vector functions. If the curl turns out to be zero, construct a scalar function ϕ of which the vector field is the gradient:

(a)
$$F_x = x + y$$
; $F_y = -x + y$; $F_z = -2z$

(b)
$$G_x = 2y$$
 ; $G_y = 2x + 3z$; $G_z = 3y$

(c)
$$H_x = x^2 - z^2$$
; $H_y = 2$; $H_z = 2xz$

- 5. The gradient operator ∇ behaves like a vector in "some sense". For example, divergence of a curl $(\nabla . \nabla \times \vec{A} = 0)$ for any \vec{A} , may suggest that it is just like $\vec{A}.\vec{B} \times \vec{C}$ being zero if any two vectors are equal. Prove that $\nabla \times \nabla \times \vec{F} = \nabla(\nabla . \vec{F}) \nabla^2 \vec{F}$. To what extent does this look like the well known expansion of $\vec{A} \times \vec{B} \times \vec{C}$?
- 6. As a more involved example, show that the operator $\mathbf{L} = i\vec{r} \times \nabla$ where $(i = \sqrt{-1})$ satisfies $\mathbf{L} \times \mathbf{L} f = i\mathbf{L} f$ where f is an arbitrary test function. (Notice that the cross product of an operator with itself does not necessarily vanish, can you see why?)