

5G New Radio (NR): Physical Layer Overview and Performance IEEE Communication Theory Workshop - 2018

Amitabha Ghosh

Nokia Fellow and Head, Radio Interface Group

Nokia Bell Labs

May 15th, 2018

5G New Radio : Key Features

Feature	Benefit	Feature	Benefit
Usage of sub 6GHz and mmWave spectrum	10x100x more capacity	Advanced Channel Coding	Large data block support with low complecxity
UE agnostic Massive MIMO and beamforming	Higher Capacity and Coverage	Aggregation of LTE + 5G carriers	Higher data rate with smooth migration
Lean carrier design	Low power consumption, less interference	Integrated Access and Backhaul	Greater coverage @ mmWave with lower cost
Flexible frame structure	Low latency, high efficiency	Flexible connectivity, mobility and sessions	Optimized end-to-end for any services
Scalable OFDM based air-interface	Address diverse spectrum and services	Beamformed Control and Access Channels	Greater Coverage
Scalable numerology	Support of multiple bandwidths and spectrum	Higher Spectral Usage	Enhanced Efficiency

Potential 5G Bands in (Early) 5G Deployments

	600 MHz 700 MHz	LTE/5G LTE/5G	North America APAC, EMEA, LatAm	Full coverage with <1 GHz	Macro
Γ	3.3-3.4 3.4-3.6	LTE/5G LTE/5G	APAC, Africa, LatAm Global	Dense urban high data	ıÎ
	3.55-4.2 3.6-3.8	LTE/5G 5G	US Europe	rates at 3.5 – 4.5 GHz	small Cell
_	4.5	5G	Japan China		
	28 39	5G 5G	US, Korea Japan US	Hotspot 10 Gbps at 28/39 GHz	
	24.25-27.5	5G 5G	WRC-19 band WRC-19 band (Fra, UK)	Future mmwave	Ultra small Cell
	~40,~50,~70	5G	WRC-19 bands	options	

Most of the 3.5Ghz already awarded – Spectrum re arrangement to happen to support larger block

5G Coverage Footprint – Combination of Low and High Bands

Let's make 3.7-4.2 GHz available

- High bands for capacity
- Low band for IoT and Iow latency critical communication

5G mmwaves

1000x local capacity

20 Gbps / 1000 MHz

5G 3500 mMIMO LTE-AWS

10x capacity with LTE grid with massive MIMO

2 Gbps / 100 MHz

LTE700 5G600

loT and critical communication with full coverage

200 Mbps / 10 MHz

NOKIA

5G Enhances Spectral Utilization

- Wideband 5G carrier is more efficient than multicarrier LTE
- Faster load balancing
- Less common channel overhead
- No unnecessary guard bands between carriers. LTE uses 10% for guard bands.

5G Lean Carrier for Enhanced Efficiency

LTE

Very limited capability for base station power savings due to

= Primary synchronization

= Secondary synchronization

= Broadcast channel

= LTE cell reference signals

- Cell specific reference signal transmission 4x every millisecond
- Synchronization every 5 ms
- Broadcast every 10 ms

5G

- No cell specific reference signals
- Synchronization every 20 ms
- Broadcast every 20 ms

5G enables advanced base station power savings

continuous transmission of cell reference signals

Physical Channels & Physical Signals

PDSCH

DL shared channel

PBCH

Broadcast channel

PDCCH

DL control channel

DL Physical Signals

Demodulation Ref (DMRS)
Phase-tracking Ref (PT-RS)
Ch State Inf Ref (CSI-RS)
Primary Sync (PSS)
Secondary Sync (SSS)

User Equipment

GNodeB

PUSCH

UL shared channel

PUCCH

UL control channel

PRACH

Random access channel

UL Physical Signals

Demodulation Ref (DMRS) Phase-tracking Ref (PTRS) Sounding Ref (SRS)

Scalable NR Numerology

Flexible NR Framework

- NR provides flexible framework to support different services and QoS requirements
 - Scalable slot duration, minislot and slot aggregation
 - Self-contained slot structure
 - Traffic preemption for URLLC
 - Support for different numerologies for different services
- NR transmission is wellcontained in time and frequency
 - Future feature can be easily accommodated

Scalable NR Slot Duration

- One slot is comprised of 14 symbols
 - Slot length depends on SCS 1ms for 15 kHz SCS to 0.125ms for 120 kHz SCS
- Mini-slot (2,4, or 7 symbols) can be allocated for shorter transmissions
- Slots can also be aggregated for longer transmissions

NR frame/subframe structure

NOKIA

Initial Access

SS Burst Example

→ Time

Overview of NR eMBB coding schemes

LDPC

- Data channel
 - BG1 and BG2
 - Quasi-cyclic (QC)
 - Covers a wide range of coding rates and block sizes
 - Full IR-HARQ support
- Benefits
 - High throughput (parallel decoding in hardware)
 - Good performance

Polar codes

- Control channel
 - DL: CRC-distributed polar codes
 - UL: CRC-aided and PC polar codes
- Benefits
 - Best performed short codes
 - Low algorithmic complexity
 - No error floor

What is "Massive MIMO"

Massive MIMO is the extension of traditional MIMO technology to antenna arrays having a large number (>>8) of controllable antennas

Transmission signals from the antennas are **adaptable** by the physical layer via gain or phase control

Not limited to a particular implementation or TX/RX strategy

Enhance Coverage:

High Gain Adaptive Beamforming

→ Path Loss Limited (>6GHz)

Enhance Capacity:

High Order Spatial Multiplexing

→ Interference-limited (<6GHz)

MIMO in 3GPP

Release 8	Release 9	Release 10	Release 11
4x4MIMO4x2MIMO8RX uplinkUplink CRAN	• 8TX TM8	• 8TX TM9	Downlink CoMP (TM10)

Release 12	Release 13	Release 14	Release 15+
Downlink eCoMPNew 4TX codebook	Massive MIMO 16TX	Massive MIMO 32TX	• 5G / NR Massive MIMO 32TX+

Massive MIMO: Why Now?

Capacity Requirements	Coverage Requirements	Technology Capability	3GPP Spec Support
Most Macro Networks will become congested	Below 6GHz: desire to deploy LTE/NR on site grids sized for lower carrier frequencies	Active Antennas are becoming technically and commercially feasible	3GPP supports Massive MIMO in Rel-13/14 for LTE and Rel-15 for NR/5G
Spectrum < 3GHz and base sites will run out of capacity by 2020	Above 6GHz: Large Bandwidths but poor path loss conditions	Massive MIMO requires Active Antenna technology	3GPP-New-Radio will be a "beam-based" air interface

17

Massive MIMO at Higher Carrier Frequencies (>>6 GHz)

Poor path loss conditions

Large number of antennas needed to overcome poor path loss

Obtaining channel knowledge per element is difficult

Cost & power consumption

Full digital solutions require transceiver units behind all elements

Wide bandwidths: A/D and D/A converters are very power hungry

Antenna array implementation

Smaller form factors

Distributed PA solutions

→ Hybrid arrays
Beamforming at RF
with baseband
digital Precoding

Beam based air interface

Single sector-wide beam may not provide adequate coverage

- → Beamform all channels!
- → Support analog and hybrid arrays

NR-MIMO in the 3GPP New Radio

Main Drivers of NR-MIMO Development

Deployment

- Support frequencies both below and above 6GHz
- Support both FDD and TDD

Scalable, Flexible Implementation

qNB:

- support full digital array architectures (<6GHz)
- hybrid/analog architectures (>6GHz),
- arbitrary TXRU configurations
- arbitrary array sizes

UE:

- support traditional UE antenna configurations
- higher numbers of antennas
- UEs operating above 6GHz (hybrid/analog architectures)

Purpose

- Enhance capacity (interferencelimited deployments)
- Enhance coverage (coveragechallenged deployments)

Massive MIMO in 3GPP New Radio – Beam-based air-interface

Beamformed Control Channels

Beam Scanning

Beam Management

Key features for beam-based Al

- Scalable and Flexible CSI Acquisition Framework
- High performing CSI Acquisition Codebooks
- Improved UL framework

Downlink MIMO Framework: Beam Management

- Initial gNB Beam Acquisition
- SSB or CSI-RS

- gNB Beam Refinement
- E.g., CSI-RS

 UE Beam Refinement

DL-MIMO Operation – Sub-6GHz

Single CSI-RS

- CSI-RS may or may not be beamformed
- Leverage codebook feedback
- Analogous to LTE Class A
- Process:
 - gNB transmit CSI-RS
 - UE computes RI/PMI/CQI
- Maximum of 32 ports in the CSI-RS (codebooks are defined for up to 32 ports)
- Typically intended for arrays having 32 TXRUs or less with no beam selection (no CRI)

Multiple CSI-RS

- Combines beam selection with codebook feedback (multiple beamformed CSI-RS with CRI feedback)
- Analogous to LTE Class B
- Process:
 - gNB transmits one or more CSI-RS, each in different "directions"
 - UE computes CRI/PMI/CQI
- Supports arrays having arbitrary number of TXRUs
- Max 32 ports per CSI-RS

SRS-Based

- Intended for exploiting TDD reciprocity
- Similar to SRS-based operation in LTE
- Supports arrays having an arbitrary number of TXRUs.
- Process:
 - UE transmits SRS
 - Base computes TX weights

DL-MIMO Operation – Above 6GHz

Single Panel Array

- Combination of RF Beamforming and digital precoding at baseband
- RF Beamforming is typically 1RF BF weight vector per polarization: a single "Cross-Pol Beam"
- 2 TXRUs, Single User MIMO only
- Baseband Precoding Options:
 - None (rank 2 all the time)
 - CSI-RS based (RI/PMI/CQI)
 - SRS-based (RI/CQI)

SU-MIMO • 2 TXRUs at gNB • 1 UE at a time • 1 ≤ Rank ≤ 2

Multi-Panel Array

- Combination of RF beamforming and digital precoding at baseband
- RF Beamforming is typically 1RF BF weight vector per polarization per panel:
- One "Cross-Pol Beam" per sub-panel
- Number of TXRUs = 2 x # of panels
- Baseband Precoding Options:
 - CSI-RS based (RI/PMI/CQI)
 - SRS-based (RI/CQI)
- SU- and MU-MIMO (typically one UE per Cross-Pol Beam)

CSI Framework: major components

Report Settings

Resource Settings

Trigger States

What CSI to report and when to report it

- Quantities to report:
 CSI-related or L1-RSRP-related
- <u>Time-domain behavior</u>: Aperiodic, semi-persistent, periodic
- <u>Frequency-domain granularity</u>: Reporting band, wideband, subband
- <u>Time-domain restrictions</u> for channel and interference measurements
- Codebook configuration parameters
 Type I
 Type II

What signals to use to compute CSI

- A Resource Setting configures S>1
 CSI Resource Sets
- Each CSI Resource Set consists of:
 - ** <u>CSI-RS Resources</u> (Either NZP CSI-RS or CSI-IM)
 - ** SS/PBCH Block Resources
 (used for L1-RSRP computation)
- <u>Time-domain behavior</u>: aperiodic, periodic, semi-persistent
 ** Periodicity and slot offset
- Note: # of CSI-RS Resource Sets is limited to S=1 if CSI Resource Setting is periodic or semipersistent.

Associates

What CSI to report and when to report it with

What signals to use to compute the CSI

- Links Report Settings with Resource Settings
- Contains list of associated CSI-ReportConfig

Summary: UL MIMO

- Two transmit schemes are supported for NR uplink MIMO
 - Codebook based transmission
 - Up to 4Tx codebooks are defined for both DFT-S-OFDM and CP-OFDM
 - Non-codebook based transmission
 - UE Tx/Rx reciprocity based scheme to enable UE assisted precoder selection
- Diversity schemes are not explicitly supported in NR specification
 - No diversity based transmission schemes are specified in Rel-15 NR
 - UE can still use "transparent" diversity transmission scheme.
 - UE may use 1Tx port procedure for specification-transparent diversity Tx schemes

Downlink Massive MIMO: NR vs LTE: 16 and 32 TXRUs, Full Buffer Traffic

LTE:

- Rel-13 Codebook
 - 16 Ports and 32 Ports, Maximum Rank = 8
 - (32 ports=Rel-13 extension CB approved in Rel-14)
- Rel-14 codebook
 - 16 Ports and 32 Ports, Maximum Rank = 2

NR:

- NR Codebook Type I
 - 16 Ports and 32 Ports, Maximum Rank = 8
- NR Codebook Type II
 - 16 Ports and 32 Ports, Maximum Rank = 2

Gain of NR over LTE: 16 Ports - Full Buffer, 2GHz, DL

- Gain of NR over LTE is roughly 19-35% in Mean SE, 14%-30% in cell edge (Full Buffer)
- Gains in bursty traffic will be higher

5G vs. 4G Capacity per Cell at 2GHz - 16x4 MIMO

LTE 2GHz 750m ISD 16x4 eNB=(1,8,2)

- In Full Buffer, NR Codebooks show significant gains over LTE Codebooks
 - Mean UE throughput: 26%
 - Cell edge: 25%

NR 2GHz 750m ISD 16x4 gNB = (1,8,2)

* Includes 20% improvement due to lean carrier in NR

Uplink Performance: 32 Rx – Full Buffer, 2GHz

 Cell Edge Performance of UL degrades significantly as ISD is increased from 200m to 750m.

Detailed Simulation Parameters: 28GHz

Access Point Parameters:

- AP512: cross-pol array with 512 physical antenna elements (16,16,2), 256 elements per polarization
- Physical antenna elements: 5dBi max gain per physical element, Half wavelength spacing between rows and columns, elements have 3dB beamwidth of 90 degrees.
- Max EIRP = 54dBm and 60dBm (assuming polarizations are not coherently combined), Noise figure of 5dB
- Single TXRU per polarization → 2TXRUs: SU-MIMO with open-loop rank 2 per UE on DL and UL

UE:

- UE32: Dual panel cross-pol array, 2 panels oriented back-to-back with best-panel selection at UE. Each panel is (4,4,2) with 32 physical elements per panel, 16 physical elements per polarization per panel, TX power fed to active panel element = 23dBm
- Physical elements in antenna array panel: 5dBi max gain per physical element, half wavelength spacing between rows and columns, elements have 3dB beamwidth of 90 degrees.
- Max EIRP = 40dBm in all cases (assuming all antenna elements can be coherently combined), Noise figure of 9dB
- Single TXRU per polarization → 2 TXRUs: SU-MIMO with open-loop rank 2 per UE on DL and UL

NOKIA

Downlink (800MHz): Mean & Cell Edge Throughput (Non Ideal RX)

© Nokia 2017 Mean UE Throughput

54dBm

EIRP

60dBm

EIRP

Cell Edge Throughput

Antenna Array Comparisons - AP Antenna Aperture Constant vs. Frequency

5dBi ant element gain, 7dBm AP Pout per element, 1dBm UE Pout per element, shown to scale

Max EIRP ≈ 36.1 dBm 52% area relative to 28GHz

39 GHz, 32 elements, (4x4x2) 73 GHz, 32 elements, (4x4x2)

Max EIRP ≈ 36.1 dBm 15% area relative to 28GHz

System Simulation Results for the Suburban Micro Environment (Heavy Foliage)

Constant Antenna Aperture for 28 GHz, 39 GHz and 73 GHz

5G – LTE Dual Connectivity and Application Performance

- 5G (=NR) gives lowest latency for the packets = best application performance
- 5G + LTE aggregation increases latency and degrades performance
- Conclusions: use 5G for user plane without LTE aggregation as long as 5G is available

Radio assumptions on average

- 5G: 400 Mbps and 3 ms
- LTE: 100 Mbps and 30 ms

3GPP Release 16 outlook – RAN1 led items

On-going High Priority Medium Priority Need unclear NR-based V2X below 6.4 GHz Non-orthogonal multiple access MIMO enhancements Air-to-ground **URLLC** enhancements MBMS for 5G / EN-DC Flexible duplex Non-terrestrial networks eV2X evaluation methodology **Dual Connectivity optimization Full Duplex** High speed UE Unlicensed spectrum **Spectrum Efficiency** Location enhancements* **Enhancements** Dynamic TDD 5G Above 52.6 GHz NR based IoT UE categories Initial access enhancements UE power saving & Wake-up

5G mmWave Integrated Access and Backhaul (IAB)

Problem Statement

New radio would likely require **dense deployments right from the initial phases** to get sufficient coverage @ mmWave frequencies

Economically not feasible to provide fiber connectivity to each site until the new radio deployments become mature.

Self-backhauling is enabling multi-hop networks with shared access-backhaul resources.

Key disruption

Self-backhaul using same antenna arrays to dynamically switch between access and backhaul with optimized scheduling and dynamic TDD enabling deployment cost reduction and improving system performance

Topics

Topology management for single-hop/multi-hop and redundant connectivity

Route selection and optimization

Dynamic resource allocation between the backhaul and access links

Physical layer solutions to support wireless backhaul links with high spectral efficiency

3GPP Study Item

In Progress complete by Dec 2018

Reduce deployment cost by 10x Improve Coverage by 2x

Base station without direct fiber connection

3GPP Standardization on 5G vs available spectrum?

