

## Packaged Cooling with Electric Heat Rooftop Units

Precedent<sup>™</sup> TSC060-120 50 Hz





## Introduction



Precedent<sup>™</sup> ... The same Trane quality... with added flexibility. Precedent is a flexible line of packaged units that covers a wide variety of applications.

ReliaTel™ microprocessor controls provide superior flexibility for the simplest to the most sophisticated applications. In addition to controls, Precedent offers many other outstanding features and option choices.

With its sleek compact cabinet, rounded corners and beveled top, it may just be the most aesthetically pleasing packaged unit on the planet. And, of course, Precedent carries the Trane reputation for excellence, quality and reliability. It's hard to stop a Trane.

From simple applications, to the most complex, Precedent has the solution.



## **Contents**

| 2  |
|----|
| 4  |
| 9  |
| 10 |
| 12 |
| 13 |
| 14 |
| 33 |
| 34 |
| 38 |
| 36 |
| 44 |
| 45 |
|    |





#### **Unit Cabinet**

The compact cabinet with rounded corners takes up less room and is less costly to ship. The beveled and ribbed top is not only aesthetically pleasing, it is designed to prevent water from pooling.

#### **Single Point Power**

A single electrical connection powers the unit.



#### Compressors

Precedent<sup>™</sup> contains the best compressor technology available to achieve the highest possible performance. Our compressor line includes Trane built reciprocating and scrolls.

#### **Easy Access Panels**

Easy access panels reduce the number of possible water entry points.

### **Low Ambient Cooling**

All Precedent units have cooling capabilities down to 0°F as standard.

#### **Easy Access Panels**

Remove two screws for access to the standardized internal components and wiring.

#### Easy-Adjust Idler Arm

With the Easy-Adjust Idler Arm, the belt and sheaves can be quickly adjusted without moving the mounted fan motor. The result is a major savings in time and money.



#### **Colored And Numbered Wiring**

You save time and money tracing wires and diagnosing the unit.

#### **Convertible Units**

- The units ship in a downflow configuration. They can be easily converted to horizontal by simply moving two panels.
- Units come complete with horizontal duct flanges so the contractor doesn't have to field fabricate them. These duct flanges are a time and cost saver.



#### **Unit Base**

For added water integrity, Precedent has a raised 29 mm (1 1/8") lip around the unit's downflow supply and return to prevent water from blowing into the ductwork.



**Patented Condenser Coil** 

Precedent boasts a patented 1+1+1 Hybrid coil, permanently gapped for easy of cleaning.



#### **Sloped Drain Pans**

Every Precedent unit has a noncorrosive, removable, double-sloped drain pan that's easy to clean and reversible to allow installation of drain trap on either side of the unit.

#### Through the Base Condensate

Every unit includes provisions for through the base condensate drain connections. This allows the drain to be connected through the roof curb instead of a roof penetration.

#### Foil-Faced Insulation

All panels in the Evaporator section of the unit have cleanable foil-faced insulation. All edges are either captured or sealed to ensure no fibers get into the airstream.



#### Standardized Components

 Components are placed in the same location on all Precedent<sup>™</sup> units.
 Familiarize yourself with one Precedent and you are familiar with every Precedent.



## Easy Access Low Voltage Terminal Board

Precedent's Low Voltage Terminal Board is external to the electrical control cabinet. It is extremely easy to locate and attach the thermostat wire. This is another cost and time saving installation feature.



### **Low Voltage Connections**

The wiring of the low voltage connections to the unit and the zone sensors is as simple as 1-1, 2-2, and 3-3. This simplified system makes it easy for the installer to wire

#### Single-Side Service

Single-side service is standard on all Precedent units.

#### Flexible Applications

- Only two roof curbs for the 5-10 ton Precedent line. . .simplifies curb selection.
- ReliaTel microprocessor controls to meet either the simple or the more complex application.
- Airflow is outstanding. The Precedent can replace an older machine with old ductwork and, in many cases, improve comfort through better air distribution.
- Belt drive standard or oversized supply fan motors meet a wide airflow range.
- Precedent offers ultimate flexibility.
   Options and components are not prepackaged at the factory. Units are built to order in our standard "shortest in the industry" ship cycle time.





#### Micro Controls

Several years ago, Trane was the first to introduce microprocessor controls into the Light Commercial Market. That design, along with immeasurable experience, has provided the technology for Trane's secondgeneration ReliaTel™ microprocessor controls.

#### ReliaTel™ Micro:

- Provides unit control for heating, cooling, and ventilating by utilizing input from sensors that measure outdoor and indoor temperature.
- Improves quality and reliability through the use of time-tested microprocessor controls and logic.
- Prevents the unit from short cycling, considerably improving compressor life.
- Ensures that the compressor will run for a specific amount of time, which allows oil to return for better lubrication, enhancing the reliability of the compressor.
- Reduces the number of components required to operate the unit, thereby reducing possibilities for component failure.

- Eliminates the need for field-installed components with its built-in antishort-cycle timer, time delay relay and minimum "on" time controls.
   These controls are factory tested to assure proper operation.
- Requires no special tools to run the Precedent unit through its paces during testing. Simply place a jumper between Test 1 and Test 2 terminals on the Low Voltage Terminal Board and the unit will walk through its operational steps. The unit automatically returns control to the zone sensor after stepping through the test mode a single time, even if the jumper is left on the unit.
- As long as the unit has power and the LED is lit, the Micro is operational. The light indicates that the Micro is functioning properly.
- Features expanded diagnostic capabilities when used with Trane's Integrated Comfort ™ Systems.
- As an energy benefit, softens electrical "spikes" by staging on fans, compressors and heaters.
- The Intelligent Fallback or Adaptive Control is a benefit to the building occupant. If a component goes astray, the unit will continue to operate at predetermined temperature set points.
- Intelligent Anticipation is a standard feature of the Micro. Functioning constantly, the Micro and zone sensors work together in harmony, to provide tight comfort control.



### Factory-installed Options

#### **Hinged Access Doors**

These doors permit easy access to the filter, fan/heat, and compressor/control sections. They reduce the potential roof damage from screws or sharp access door corners.

#### **Economizer**

Equipped with either dry bulb, reference or comparative enthalpy sensing, this feature provides free cooling as the outdoor temperature and/or humidity decreases. Economizers, correctly installed, offer a valuable energy savings. Factory-installed economizers save time and ensure proper installation.

#### **Phase Monitor**

Phase monitor shall provide 100% protection for motors and compressors against problems caused by phase loss, phase imbalance, and phase reversal. Phase monitor is equipped with an LED that provides an ON or FAULT indicator.

#### Clogged Filter/Fan Fail Switches

These sensors allow a zone sensor service light or Integrated Comfort System to indicate a dirty filter or a fan that's not working. The field installation charges for these valuable feedback devices often eliminate them from consideration. Factory installation can make such features a good investment.

## Comm-3/4 Trane Communication Interface

Available factory or field-installed. This module when applied with ReliaTel™ easily interfaces with Trane's Integrated Comfort™ System.



## The following options round-out the complete line of Precedent<sup>™</sup> options:

- 0 50% Manual or Motorized
   Outside Air
- Hail Protection Quality Coil Guards
- Electric Heaters (available as field installed accessories)
- Discharge Air Sensor
- Wide array of Zone Sensors and Thermostats
- Factory built Roof Curb

#### One of Our Finest Assets:

Trane Sales Representatives are a Support group that can assist you with:

- Product
- Application
- Service
- Training
- Special Applications
- Specifications
- Computer Programs and much more

Precedent has the features and benefits that make it first class in the light commercial rooftop market. Designed with input from field contractors and engineers, its airflow performance is outstanding.

Precedent...The same Trane quality...with added flexibility.



#### **Quality And Reliability Testing**

- All Precedent<sup>™</sup> designs were rigorously rain tested at the factory to ensure water integrity.
- Actual shipping tests were performed to determine packaging requirements.
   Units were test shipped around the country to determine the best packaging.
- Factory shake and drop tests were used as part of the package design process to help assure that the unit arrives at the job site in top condition.
- Rigging tests include lifting a unit into the air and letting it drop one foot, assuring that the lifting lugs and rails hold up under stress.

- We perform a 100% coil leak test at the factory. The evaporator and condenser coils are leak tested at 1375 kPa (200 psig) and pressure tested to 3100 kPa (450 psig).
- All parts are inspected at the point of final assembly. Sub-standard parts are identified and rejected immediately.
- Every unit receives a 100% unit run test before leaving the production line to make sure it lives up to rigorous Trane requirements.

We test designs at our factory not on our customers!

### VariTrac™

#### VariTrac

When Trane's changeover VAV System for light commercial applications is coupled with Precedent, it provides the latest in technological advances for comfort management systems and can allow thermostat control in every zone served by VariTrac.





# Application Considerations

Application of this product should be within the cataloged airflow and cooling considerations.

#### **Low Ambient Cooling**

The Precedent<sup>™</sup> line features, with ReliaTel<sup>™</sup> microprocessor controls, low ambient cooling down to 18°C (0°F). Contact your local Trane Representative for more assistance with low ambient cooling applications.

#### **Barometric Relief**

This product line offers an optional barometric relief damper. for use in conjunction with economizer option. This accessory consists of gravity dampers which open with increased pressure. As the building air pressure increases, the pressure in the unit return air section also increases, opening the dampers and relieving the conditioned space.

NOTE: THE EFFECTIVENESS OF BAROMETRIC RELIEF DAMPER DURING ECONOMIZING OPERATION IS SYSTEM RELATED.

PRESSURE DROP OF THE RETURN AIR SYSTEM SHOULD BE CONSIDERED TO CONTROL BUILDING PRESSURIZATION.

#### **Condensate Trap**

The evaporator is a draw-thru configuration. A trap must be field provided prior to start-up on the cooling cycle.

#### Clearance Requirements

The recommended clearances identified with unit dimensions should be maintained to assure adequate service maximum capacity and peak operating efficiency. Actual clearances which appear inadequate should be reviewed with the local Trane sales personnel.

#### **Unit Pitch**

These units have reversible sloped condensate drain pans. Units must be installed level, any unit slope must be toward the side of unit where condensate drain is connected.



## Selection Procedure - SI Units

#### **Cooling Capacity**

#### Step 1

Calculate the building's total and sensible cooling loads at design conditions. Use the Trane calculation methods or any other standard accepted method.

Factors used in unit selection:

Α

Total Cooling Load: 16.7 kW

В

Sensible Cooling Load: 11.7 kW

С

Airflow: 3400 m<sup>3</sup>/h

D

Electrical Characteristics: 380-415/50/3

Ε

Summer Design Conditions: Entering Evaporator Coil: 27 DB, 19 WB Outdoor

Ambient: 35

F

External Static Pressure: 110 Pa

#### Step 2

Table PD-1 shows that a TSC060AD has a gross cooling capacity of 17.8 kW and 14.4 kW sensible capacity at 3400 m³/h and 35 DB outdoor ambient with 27 DB, 19 WB air entering the evaporator.

## To Find Capacity at Intermediate Conditions Not in the Table

When the design conditions are between two numbers that are in the capacity table, interpolation is required to approximate the capacity. Note: Extrapolation outside of the table conditions is not recommended.

#### Step 3

In order to select the correct unit which meets the building's requirements, the fan motor heat must be deducted from the gross cooling capacity. The amount of heat that the fan motor generates is dependent on the effort by the motor -cfm and static pressure. To determine the total unit static pressure:

External Static (duct system)

| ·                                            | 110 Pa |
|----------------------------------------------|--------|
| Standard Filter 1 in. from Table PD-21       | 37 Pa  |
| Economizer                                   | 5 Pa   |
| (100% Return Air)<br>Table PD-21             | from   |
| Electric Heater Size 7.5 kW from Table PD-21 | 17 Pa  |
| Total Static Pressure                        | 169 Pa |

**Note:** The Evaporator Fan Performance Table PD-6 has deducted the pressure drop for a 25 mm filter already in the unit (see note below Table PD-6). Therefore, the actual total static pressure is 169-17 (from Table PD-21) = 152 Pa.

With 3400 m $^3$ /h and 152 Pa Table PD-6 shows .67 kW for this unit. Note below the table gives a formula to calculate Fan Motor Heat, Fan Motor Heat (kw) = 1.144 x (Fan kW) + 0.132 = 1.144 x 0.67 + 0.132 = 0.90 kW

Now subtract the fan motor heat from the gross cooling capacity of the unit: Net Total Cooling Capacity = 17.8 kW - 0.9 = 16.9 kW.

Net Sensible Cooling Capacity = 14.4 kW - 0.9 = 13.5 kW.

#### Step 4

If the performance will not meet the required load of the building's total or sensible cooling load, try a selection at the next higher size unit.

#### **Heating Capacity**

#### Step 1

Calculate the building heating load using the Trane calculation form or other standard accepted method.

#### Step 2

Size the system heating capacity to match the calculated building heating load. The following are building heating requirements:

#### Α

Total heating load of 5 kW

### В

2000 cfm

#### С

380 volt/3 phase Power Supply

The electric heat accessory capacities are listed in Table PD-23. From the table, the smallest heater will deliver 7.5 kW at 380 V. Referring to Table ED-2, the electric heater selection is BAYHTRR412A.

#### **Air Delivery Selection**

External static pressure drop through the air distribution system has been calculated to be 110 Pa. From Table PD-21 static pressure drop through the economizer is 5 Pa and the 7.5 kW heater is 17 Pa (110 + 5 + 17). Enter Table PD-6 for a TSC060AD at 3400 m³/h and 132 Pa static pressure. The standard motor will give the desired airflow at a rated kW of 0.64.

### Accessory Selection

Select accessories needed to accommodate the application.



## Selection **Procedure - IP Units**

#### **Cooling Capacity**

#### Step 1

Calculate the building's total and sensible cooling loads at design conditions. Use the Trane calculation methods or any other standard accepted method.

Factors used in unit selection:

Α

Total Cooling Load: 59 MBh

Sensible Cooling Load: 40 MBh

Airflow: 2000 cfm

D

Electrical Characteristics: 380-415/50/3

Ε

Summer Design Conditions: Entering Evaporator Coil: 80 DB, 67 WB Outdoor Ambient: 95

External Static Pressure: 0.45 in. wg

#### Step 2

Table PD-1a shows that a TSC060AD has a gross cooling capacity of 62.0 MBh and 46.4 MBh sensible capacity at 2000 cfm and 95 DB outdoor ambient with 80 DB, 67 WB air entering the evaporator.

#### To Find Capacity at Intermediate **Conditions Not in the Table**

When the design conditions are between two numbers that are in the capacity table, interpolation is required to approximate the capacity. Note: Extrapolation outside of the table conditions is not recommended.

#### Step 3

In order to select the correct unit which meets the building's requirements, the fan motor heat must be deducted from the gross cooling capacity. The amount of heat that the fan motor generates is dependent on the effort by the motor cfm and static pressure. To determine the total unit static pressure:

External Static (duct system)

Electric Heater Size 26 MBh

|                                            | 0.45 wg |
|--------------------------------------------|---------|
| Standard Filter 1 in.<br>from Table PD-21a | 0.15 wg |
| Economizer                                 | 0.02 wg |
| (100% Return Air)<br>Table PD-21a          | from    |

from Table PD-21a **Total Static Pressure** 0.69 wg

Note: The Evaporator Fan Performance Table PD-6a has deducted the pressure drop for a 1 in. filter already in the unit (see note below Table PD-6a). Therefore, the actual total static pressure is 0.69 -0.15 (from Table PD-21a) = 0.50 wg.

With 2000 cfm and 0.50 wg. Table PD-6a shows .83 bhp for this unit. Note below the table gives a formula to calculate Fan Motor Heat, Fan Motor Heat (MBh) = 2.915 x (Fan BHP) + 0.451  $= 2.915 \times 0.83 + 0.451 = 2.87 MBh$ 

Now subtract the fan motor heat from the gross cooling capacity of the unit: **Net Total Cooling Capacity** = 62 MBh - 2.87 = 59.1 MBh.

Net Sensible Cooling Capacity = 46.4 MBh - 2.87 = 43.5 MBh.

#### Step 5

If the performance will not meet the required load of the building's total or sensible cooling load, try a selection at the next higher size unit.

#### **Heating Capacity**

#### Step 1

Calculate the building heating load using the Trane calculation form or other standard accepted method.

#### Step 2

Size the system heating capacity to match the calculated building heating load. The following are building heating requirements:

Total heating load of 15 MBH

2000 cfm

0.07 wg

380 volt/3 phase Power Supply

The electric heat accessory capacities are listed in Table PD-23a. From the table, the smallest heater will deliver 26 MBh at 380 volts. Referring to Table ED-2, the electric heater accessory selection is BAYHTRR412A.

#### Air Delivery Selection

External static pressure drop through the air distribution system has been calculated to be 0.45 inches of water. From Table PD-21a static pressure drop through the economizer is 0.02 and the 26 kW heater is 0.07 inches of water (0.45 + 0.02 + 0.07). Enter Table PD-6a for a TSC060AD at 2000 cfm and 0.54 static pressure. The standard motor will give the desired airflow at a rated bhp of about 1.01.

#### **Accessory Selection**

Select accessories needed to accommodate the application.



## Model Number **Description**

0 11 12,13 14 15 16 17 18 19 20 21

Digit 1 - Unit Function

T = DX Cooling

Digit 2 - Efficiency

S = Standard Efficiency

Digit 3 - Airflow

C = Convertible

#### Digits 4,5,6 - Nominal Gross Cooling Capacity (MBh)

|     |   | <u>kVV</u> | <u>Ic</u> | n  |
|-----|---|------------|-----------|----|
| 060 | = | 17.6       | !         | 5  |
| 072 | = | 21.1       | (         | 6  |
| 090 | = | 26.4       | 7         | .5 |
| 102 | = | 29.9       | 8         | .5 |
| 120 | = | 35.1       | 1         | 0  |

#### Digit 7 - Major Design Sequence

A = First

Digit 8 - Unit Voltage

D = 380-415/50/3

Digit 9 - Unit Controls

R = ReliaTel™ Microprocessor

Digit 10 - Heating Capacity

0 = No Electric Heat

Digit 11 - Minor Design Sequence

A = First Sequence

Digits 12, 13 - Service Sequence

\*\* = Factory Assigned

Digit 14 - Fresh Air Selection

0 = No Fresh Air

A = Manual Outside Air Damper 0-50%

B = Motorized Outside Air Damper 0-50%

C = Economizer, Dry Bulb 0-100% without Barometric Relief

D = Economizer, Dry Bulb 0-100% with Barometric Relief

Economizer, Reference Enthalpy 0-100% without Barometric Relief

= Economizer, Reference Enthalpy 0-100% with Barometric Relief

G = Economizer, Comparative Enthalpy 0-100% without Barometric Relief

H = Economizer, Comparative Enthalpy 0-100% with Barometric Relief

Digit 15 - Supply Fan/Drive Type/Motor

0 = Standard Drive

1 = Oversized Motor

Digit 16 - Hinged Service Access/Filters

0 = Standard Panels/Standard Filters

A = Hinged Access Panels/Standard Filters

B = Standard Panels/

50 mm (2") Pleated Filters C = Hinged Access Panels/

50 mm (2") Pleated Filters

Digit 17 - Condenser Coil Protection

0 = Standard Coil

1 = Standard Coil with Hail Guard

2 = Epoxy Coated Condenser Coil

3 = Epoxy Coated Condenser Coil with Hail Guard

Digit 18 - Through the Base Provisions

0 = No Through the Base Provisions

Digit 19 - Disconnect/Circuit Breaker/Phase Monitor (3 phase only)

0 = No Disconnect or Circuit Breaker

3 = Phase Monitor Only (No Disconnect, No Circuit Breaker)

Digit 20 - Convenience Outlet

0 = No Convenience Outlet

Digit 21 - Communications Options

0 = No Communications Interface

1 = Comm-3/4 Communications Interface

2 = Comm-5 Communications Interface

Digit 22 - Refrigeration System Option

0 = Standard Refrigeration System

Digit 23 - Refrigeration Controls

0 = No Refrigeration Control

Digit 24 - Smoke Detector

0 = No Smoke Detector

Digit 25 - Monitoring Controls 0 = No Monitoring Control

1 = Clogged Filter Switch

2 = Fan Failure Switch

3 = Discharge Air Sensing Tube

4 = Clogged Filter Switch and Fan Fail Switch

5 = Clogged Filter Switch and Discharge Air Sensing Tube

6 = Fan Fail Switch and Discharge Air Sensing Tube

7 = Clogged Filter and Fan Fail Switches and Discharge Air Sensing Tube



## **General Data**

Table GD - 1 — General Data

|                                           | Convertible Units     |
|-------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                                           | TSC060AD              | TSC072AD              | TSC090AD              | TSC102AD              | TSC120AD              |
| Cooling Performance 1                     |                       |                       |                       |                       |                       |
| Gross Capacity - kW (MBh)                 | 18.2 (62.0)           | 23.2 (79.0)           | 26.7 (91.0)           | 31.1 (106.0)          | 34.9 (119.0)          |
| COP (EER) <sup>2</sup>                    | 2.99 (10.2)           | 3.08 (10.5)           | 3.02 (10.3)           | 3.02 (10.3)           | 2.99 (10.2)           |
| Nominal Airflow - m <sup>3</sup> /h (cfm) | 3400 (2000)           | 4080 (2400)           | 5100 (3000)           | 5780 (3400)           | 6800 (4000)           |
| Rated Airflow - m <sup>3</sup> /h (cfm)   | 3400 (2000)           | 3570 (2100)           | 4460 (2625)           | 5100 (3000)           | 5950 (3500)           |
| Net Capacity - kW (MBh)                   | 17.3 (59.0)           | 22.0 (75.0)           | 25.2 (86.0)           | 29.9 (102.0)          | 33.1 (113.0)          |
| System Power - kW                         | 5.78                  | 7.14                  | 8.35                  | 9.90                  | 11.08                 |
| Compressor                                |                       |                       |                       |                       |                       |
| Number-Type                               | 1-Climatuff Scroll    | 1-Trane 3-D Scroll    | 1-Trane 3-D Scroll    | 2-Climatuff Scroll    | 2-Climatuff Scroll    |
| Outdoor Sound Rating - dB <sup>3</sup>    | 80                    | 85                    | 85                    | 83                    | 79                    |
| Outdoor Coil -Type                        | Lanced                | Lanced                | Lanced                | Lanced                | Lanced                |
| Tube Size - in. OD                        | 0.3125                | 0.3125                | 0.3125                | 0.3125                | 0.3125                |
| Face Area - m² (sq ft)                    | 1.02 (10.96)          | 1.29 (13.88)          | 1.29 (13.88)          | 1.75 (18.89)          | 2.41 (25.92)          |
| Rows / FPI                                | 3 / 17                | 2 / 17                | 2 / 17                | 2 / 17                | 2 / 17                |
| Indoor Coil - Type                        | Lanced                | Lanced                | Lanced                | Lanced                | Lanced                |
| Tube Size OD - in.                        | 0.3125                | 0.3125                | 0.3125                | 0.3125                | 0.3125                |
| Face Area - m² (sq ft)                    | 0.62 (6.68)           | 0.92 (9.89)           | 0.92 (9.89)           | 1.15 (12.36)          | 1.15 (12.36)          |
| Rows / FPI                                | 3 / 16                | 2 / 16                | 3 / 16                | 3 / 16                | 4 / 16                |
| Refrigerant Control                       | Short Orifice         |
| Drain Connection No. / Size - in.         | 1 / 0.75 NPT          |
| Outdoor Fan -Type                         | Propeller             | Propeller             | Propeller             | Propeller             | Propeller             |
| No. Used / Diameter - in.                 | 1 / 22                | 1 / 26                | 1 / 26                | 1 / 26                | 1 / 26                |
| DriveType / No. Speeds                    | Direct / 1            |
| CFM                                       | 2900                  | 5100                  | 5200                  | 5500                  | 5800                  |
| No. Motors / kW (HP)                      | 1 / 0.30 (0.40)       | 1 / .56 (0.75)        | 1 / .56 (0.75)        | 1 / .56 (0.75)        | 1 / .56 (0.75)        |
| Motor RPM                                 | 950                   | 950                   | 950                   | 950                   | 950                   |
| Belt Drive Indoor Fan -Type               | FC Centrifugal        |
| No. Used                                  | 1                     | 1                     | 1                     | 1                     | 1                     |
| Fan Diameter x Width - mm (in.)           | 280 X 280 (11 x 11)   | 305 X 305 (12 x 12)   | 305 X 305 (12 x 12)   | 381 X 381 (15 x 15)   | 381 X 381 (15 x 15)   |
| Drvie Type / No. Speeds                   | Belt / Variable Speed |
| No. Motors                                | 1                     | 1                     | 1                     | 1                     | 1                     |
| Standard Motor Power - kW (HP)            | 1.1 (1.5)             | 1.1 (1.5)             | 1.5 (2.0)             | 1.5 (2.0)             | 2.2 (3.0)             |
| Oversized Motor Power - kW (HP)           | -                     | 1.5 (2.0)             | 2.2 (3.0)             | 2.2 (3.0)             | -                     |
| Motor RPM - Standard / Oversized          | 1450 / -              | 1450 / 1450           | 1450 / 2850           | 1450 / 2850           | 2850 / -              |
| Motor Frame Size                          | 56                    | 56                    | 56                    | 56                    | 56                    |
| Filters - Type Furnished                  | Throwaway             | Throwaway             | Throwaway             | Throwaway             | Throwaway             |
| (No.) Size Reccommended - mm              | (2) 508 X 762 X 25    | (4) 406 X 635 X 50    | (4) 406 X 635 X 50    | (4) 508 X 635 X 50    | (4) 508 X 635 X 50    |
| (No.) Size Reccommended - in.             | (2) 20 X 30 X 1       | (4) 16 X 25 X 2       | (4) 16 X 25 X 2       | (4) 20 X 25 X 2       | (4) 20 X 25 X 2       |
| Refrigerant Charge - kg (lbs) of R-22 4   | 3.7 (8.2)             | 3.7 (8.2)             | 4.5 (10.0)            | Circuit 1 - 3.8 (8.3) | Circuit 1 - 3.4 (7.5) |
|                                           |                       |                       |                       | Circuit 2 - 2.0 (4.4) | Circuit 2 - 3.3 (7.3) |

Cooling Performance is rated at 35.0 C (95 F) ambient, 26.7 C (80 F) entering dry bulb, 19.4 C (67 F) entering wet bulb. Gross capacity does not include the effect of fan motor heat. Net capacity includes the effect of fan motor heat. Units are suitable for operation to ± 20 % of nominal airflow.
 EER are rated at ARI conditions.
 Outdoor Sound rating shown is tested in accordance with ARI Standard 270. For more information refer to Performance Data Table "Sound Power Level".
 Refrigerant charge is an approximate value. For a more precise value, see unit nameplate and service literature.



Table PD-1 — Gross Cooling Capacities (kW) - TSC060AD - (SI)

|         |        |      |      |      |      |      |      |      |      |      | -     | 4mbie | nt Tem | peratu | ıre (C | )      |      |      |      |      |      |      |      |      |      |
|---------|--------|------|------|------|------|------|------|------|------|------|-------|-------|--------|--------|--------|--------|------|------|------|------|------|------|------|------|------|
|         | Enter. |      |      | 3    | 0    |      |      |      |      | 3    | 5     |       |        |        |        | 4      | 0    |      |      |      |      | 45   | ;    |      |      |
|         | Dry    |      |      |      |      |      |      |      |      |      |       |       |        |        |        |        |      |      |      |      |      |      |      |      |      |
|         | Bulb   |      |      |      |      |      |      |      |      |      | Enter | ing W | et Bul | b Temp | oeratu | re (C) |      |      |      |      |      |      |      |      |      |
| m³/h    | Temp   | 1    | 6    | 1    | 9    | 2    | 22   | 10   | 3    | 1    | 9     | 2     | 2      | 1      | 6      | 1      | 9    | 2    | 2    | 16   |      | 19   | )    | 22   | !    |
| Airflow | (C)    | TGC  | SHC   | TGC   | SHC    | TGC    | SHC    | TGC    | SHC  | TGC  | SHC  | TGC  | SHC  | TGC  | SHC  | TGC  | SHC  |
|         | 24     | 16.2 | 13.9 | 18.5 | 11.3 | 19.9 | 8.3  | 15.0 | 13.3 | 17.4 | 11.3  | 19.3  | 8.0    | 13.9   | 12.7   | 16.1   | 10.7 | 18.4 | 7.5  | 12.7 | 12.1 | 14.7 | 9.5  | 17.3 | 7.0  |
| 2000    | 27     | 16.7 | 16.7 | 18.6 | 14.1 | 20.0 | 11.1 | 15.8 | 15.8 | 17.4 | 13.6  | 19.4  | 10.8   | 14.8   | 14.8   | 16.1   | 13.0 | 18.5 | 10.3 | 13.8 | 13.8 | 14.7 | 12.3 | 17.3 | 9.8  |
| 3060    | 30     | 18.1 | 18.1 | 18.7 | 16.9 | 20.2 | 13.6 | 17.2 | 17.2 | 17.7 | 16.5  | 19.5  | 13.5   | 16.2   | 16.2   | 16.5   | 15.9 | 18.5 | 13.1 | 15.1 | 15.1 | 15.1 | 15.1 | 17.3 | 12.6 |
|         | 33     | 19.3 | 19.3 | 19.2 | 19.2 | 20.3 | 16.2 | 18.5 | 18.5 | 18.5 | 18.5  | 19.6  | 16.1   | 17.6   | 17.6   | 17.6   | 17.6 | 18.7 | 15.9 | 16.6 | 16.6 | 16.6 | 16.6 | 17.5 | 15.4 |
|         | 24     | 16.7 | 14.8 | 18.8 | 11.8 | 20.1 | 8.6  | 15.5 | 14.2 | 17.8 | 11.3  | 19.5  | 8.3    | 14.2   | 13.5   | 16.5   | 11.4 | 18.7 | 7.7  | 13.1 | 12.9 | 15.0 | 10.8 | 17.6 | 7.2  |
| 2400    | 27     | 17.5 | 17.5 | 18.9 | 14.9 | 20.2 | 11.4 | 16.5 | 16.5 | 17.8 | 14.4  | 19.6  | 11.2   | 15.4   | 15.4   | 16.5   | 13.8 | 18.8 | 10.8 | 14.4 | 14.4 | 15.1 | 13.1 | 17.6 | 10.3 |
| 3400    | 30     | 18.8 | 18.8 | 19.1 | 17.9 | 20.4 | 14.1 | 17.9 | 17.9 | 18.2 | 17.6  | 19.7  | 14.1   | 16.9   | 16.9   | 17.0   | 17.0 | 18.8 | 13.8 | 15.8 | 15.8 | 15.8 | 15.8 | 17.7 | 13.4 |
|         | 33     | 19.8 | 19.8 | 19.8 | 19.8 | 20.6 | 16.8 | 19.2 | 19.2 | 19.2 | 19.2  | 19.9  | 16.9   | 18.3   | 18.3   | 18.3   | 18.3 | 19.0 | 16.8 | 17.4 | 17.4 | 17.4 | 17.4 | 17.9 | 16.4 |
|         | 24     | 17.1 | 15.6 | 19.1 | 12.3 | 20.2 | 8.8  | 15.9 | 15.0 | 18.1 | 11.8  | 19.7  | 8.5    | 14.6   | 14.3   | 16.8   | 11.2 | 18.9 | 7.9  | 13.4 | 13.4 | 15.3 | 11.4 | 17.8 | 7.5  |
| 3740    | 27     | 18.1 | 18.1 | 19.2 | 15.5 | 20.4 | 11.6 | 17.1 | 17.1 | 18.2 | 15.1  | 19.8  | 11.5   | 16.0   | 16.0   | 16.9   | 14.6 | 19.0 | 11.3 | 14.9 | 14.9 | 15.4 | 13.9 | 17.9 | 10.8 |
| 3740    | 30     | 19.3 | 19.3 | 19.5 | 18.7 | 20.6 | 14.5 | 18.5 | 18.5 | 18.6 | 18.6  | 20.0  | 14.6   | 17.6   | 17.6   | 17.6   | 17.6 | 19.1 | 14.4 | 16.5 | 16.5 | 16.5 | 16.5 | 17.9 | 14.1 |
|         | 33     | 20.2 | 20.2 | 20.2 | 20.2 | 20.8 | 17.4 | 19.6 | 19.6 | 19.6 | 19.6  | 20.2  | 17.6   | 18.9   | 18.9   | 18.9   | 18.9 | 19.3 | 17.6 | 18.0 | 18.0 | 18.0 | 18.0 | 18.3 | 17.4 |
|         | 24     | 17.4 | 16.4 | 19.3 | 12.6 | 20.3 | 9.1  | 16.2 | 15.8 | 18.4 | 12.2  | 19.8  | 8.8    | 14.9   | 14.9   | 17.1   | 11.7 | 19.0 | 8.1  | 13.9 | 13.9 | 15.5 | 12.1 | 18.0 | 7.7  |
| 4000    | 27     | 18.6 | 18.6 | 19.4 | 16.1 | 20.5 | 12.3 | 17.7 | 17.7 | 18.4 | 15.8  | 19.9  | 11.8   | 16.6   | 16.6   | 17.2   | 15.3 | 19.1 | 11.6 | 15.4 | 15.4 | 15.8 | 14.6 | 18.1 | 11.2 |
| 4080    | 30     | 19.7 | 19.7 | 19.7 | 19.4 | 20.7 | 14.9 | 19.0 | 19.0 | 19.0 | 19.0  | 20.1  | 15.0   | 18.1   | 18.1   | 18.1   | 18.1 | 19.3 | 15.0 | 17.1 | 17.1 | 17.1 | 17.1 | 18.2 | 14.7 |
|         | 33     | 20.5 | 20.5 | 20.5 | 20.5 | 20.9 | 17.9 | 20.0 | 20.0 | 20.0 | 20.0  | 20.4  | 18.2   | 19.3   | 19.3   | 19.3   | 19.3 | 19.5 | 18.3 | 18.4 | 18.4 | 18.4 | 18.4 | 18.6 | 18.2 |
|         |        |      |      |      |      |      |      |      |      |      |       |       |        |        |        |        |      |      |      |      |      |      |      |      |      |

Notes:

Table PD-1a — Gross Cooling Capacities (MBH) - TSC060AD - (IP)

|         |             |      |      |      |      |      |      |      |      |      | Δ           | mbie  | nt Tem | peratu | re (F) |         |      |      |      |      |      |      |      |      |      |
|---------|-------------|------|------|------|------|------|------|------|------|------|-------------|-------|--------|--------|--------|---------|------|------|------|------|------|------|------|------|------|
|         | Enter.      |      |      | 8    | 5    |      |      |      |      | 9    | 5           |       |        | •      |        | 10      | 05   |      |      |      |      | 11   | 5    |      |      |
|         | Dry<br>Bulb |      |      |      |      |      |      |      |      |      | Enter       | ing W | et Bul | b Tem  | oeratu | ıre (F) |      |      |      |      |      |      |      |      |      |
| CFM     | Temp        | 6    | 1    | 6    | 7    | 7    | '3   | 6    | 1    | 6    | <del></del> | 7     | 3      | 6      | 1      | 6       | 57   | 7    | 3    | 61   |      | 67   | ,    | 73   | 3    |
| Airflow | (F) ·       |      | SHC  | TGC  | SHC  | TGC  | SHC  | TGC  | SHC  | TGC  | SHC         | TGC   | SHC    | TGC    | SHC    | TGC     | SHC  | TGC  | SHC  | TGC  | SHC  | TGC  | SHC  | TGC  | SHC  |
|         | 75          | 56.1 | 47.1 | 64.4 | 37.0 | 68.8 | 25.1 | 51.6 | 44.7 | 60.6 | 36.7        | 66.9  | 23.9   | 47.0   | 42.4   | 55.6    | 34.5 | 64.0 | 22.6 | 42.4 | 40.1 | 50.2 | 30.3 | 60.0 | 20.8 |
| 4000    | 80          | 57.3 | 56.5 | 64.6 | 45.8 | 69.3 | 34.2 | 53.3 | 53.3 | 60.7 | 43.9        | 67.3  | 32.9   | 49.5   | 49.5   | 55.7    | 41.6 | 64.2 | 31.4 | 45.7 | 45.7 | 50.4 | 39.2 | 60.1 | 29.6 |
| 1800    | 85          | 61.3 | 61.3 | 64.9 | 54.5 | 69.7 | 42.0 | 57.7 | 57.7 | 61.0 | 52.9        | 67.6  | 41.4   | 53.9   | 53.9   | 56.3    | 50.7 | 64.4 | 40.3 | 50.0 | 50.0 | 51.2 | 48.3 | 60.2 | 38.4 |
|         | 90          | 65.0 | 65.0 | 65.8 | 63.3 | 70.4 | 49.7 | 62.1 | 62.1 | 62.4 | 62.2        | 68.0  | 49.7   | 58.5   | 58.5   | 58.5    | 58.5 | 64.6 | 48.8 | 54.4 | 54.4 | 54.4 | 54.4 | 60.3 | 47.2 |
|         | 75          | 57.5 | 49.8 | 65.4 | 38.5 | 69.3 | 25.5 | 53.0 | 47.5 | 61.8 | 38.7        | 67.5  | 24.4   | 48.3   | 45.1   | 56.9    | 36.6 | 64.7 | 23.0 | 43.7 | 42.8 | 51.3 | 34.2 | 60.9 | 21.4 |
| 2000    | 80          | 59.3 | 59.3 | 65.6 | 47.9 | 69.8 | 35.4 | 55.7 | 55.7 | 62.0 | 46.4        | 68.0  | 34.2   | 51.6   | 51.6   | 57.1    | 44.1 | 65.0 | 32.7 | 47.7 | 47.7 | 51.5 | 41.6 | 61.0 | 30.9 |
| 2000    | 85          | 63.6 | 63.6 | 66.0 | 57.3 | 70.5 | 43.1 | 60.3 | 60.3 | 62.5 | 56.2        | 68.3  | 43.0   | 56.4   | 56.4   | 58.0    | 54.1 | 65.2 | 42.1 | 52.2 | 52.2 | 52.8 | 51.7 | 61.2 | 40.6 |
|         | 90          | 66.9 | 66.9 | 67.2 | 66.5 | 71.1 | 51.4 | 64.4 | 64.4 | 64.4 | 64.4        | 68.9  | 51.8   | 61.0   | 61.0   | 61.0    | 61.0 | 65.6 | 51.3 | 57.1 | 57.1 | 57.1 | 57.1 | 61.5 | 50.1 |
|         | 75          | 58.8 | 52.5 | 66.1 | 39.8 | 69.6 | 25.9 | 54.3 | 50.2 | 62.8 | 38.1        | 67.9  | 24.9   | 49.4   | 47.8   | 58.0    | 38.6 | 65.3 | 23.4 | 44.8 | 44.8 | 52.2 | 36.2 | 61.6 | 21.7 |
| 2200    | 80          | 61.5 | 61.5 | 66.4 | 49.8 | 70.3 | 36.8 | 57.8 | 57.8 | 63.0 | 48.6        | 68.3  | 35.0   | 53.6   | 53.6   | 58.2    | 46.5 | 65.6 | 33.9 | 49.4 | 49.4 | 52.6 | 44.0 | 61.8 | 32.2 |
| 2200    | 85          | 65.4 | 65.4 | 67.0 | 59.8 | 71.0 | 44.6 | 62.4 | 62.4 | 63.7 | 59.2        | 69.0  | 44.3   | 58.7   | 58.7   | 59.4    | 57.4 | 66.0 | 43.8 | 54.3 | 54.3 | 54.3 | 54.3 | 62.0 | 42.5 |
|         | 90          | 68.4 | 68.4 | 68.4 | 68.4 | 71.7 | 52.8 | 66.1 | 66.1 | 66.1 | 66.1        | 69.6  | 53.6   | 63.1   | 63.1   | 63.0    | 63.0 | 66.4 | 53.6 | 59.3 | 59.3 | 59.3 | 59.3 | 62.4 | 52.7 |
|         | 75          | 60.0 | 55.1 | 66.6 | 40.8 | 70.0 | 26.4 | 55.5 | 52.8 | 63.6 | 39.6        | 68.3  | 25.3   | 50.6   | 50.4   | 59.0    | 37.4 | 65.7 | 24.0 | 46.2 | 46.2 | 53.1 | 38.2 | 62.2 | 22.1 |
| 2400    | 80          | 63.2 | 63.2 | 67.1 | 51.4 | 70.7 | 37.7 | 59.6 | 59.6 | 63.8 | 50.7        | 68.8  | 35.8   | 55.4   | 55.4   | 59.2    | 48.8 | 66.2 | 35.0 | 51.1 | 51.1 | 53.5 | 46.3 | 62.4 | 33.4 |
| 2400    | 85          | 66.7 | 66.7 | 67.8 | 62.0 | 71.5 | 45.3 | 64.1 | 64.1 | 64.8 | 61.9        | 69.5  | 45.5   | 60.5   | 60.5   | 60.8    | 60.6 | 66.6 | 45.2 | 56.3 | 56.3 | 56.2 | 56.2 | 62.7 | 44.3 |
|         | 90          | 69.5 | 69.5 | 69.5 | 69.5 | 72.1 | 54.1 | 67.4 | 67.4 | 67.4 | 67.4        | 70.2  | 55.3   | 64.6   | 64.6   | 64.5    | 64.5 | 67.1 | 55.7 | 61.1 | 61.1 | 61.0 | 61.0 | 63.2 | 55.1 |

<sup>1.</sup> All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.

2. TGC = Total Gross Capacity

3. SHC = Sensible Heat Capacity

<sup>1.</sup> All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.

2. TGC = Total Gross Capacity

3. SHC = Sensible Heat Capacity



Table PD-2 — Gross Cooling Capacities (kW) - TSC072AD - (SI)

|         |        |           |      |      |      |      |       |       |       |       | mbier   | nt Tem | peratu  | re (C)  |        |       |      |      |      |      |      |      |      |      |
|---------|--------|-----------|------|------|------|------|-------|-------|-------|-------|---------|--------|---------|---------|--------|-------|------|------|------|------|------|------|------|------|
|         | Enter. |           |      | 30   |      |      |       |       | 3     | 85    |         |        | •       | ` '     | 4      | 0     |      |      |      |      | 45   | 5    |      |      |
|         | Dry    |           |      |      |      |      |       |       |       | _     |         |        |         |         |        |       |      |      |      |      |      |      |      |      |
|         | Bulb   |           |      |      |      |      |       |       |       | Ente  | ering \ | Vet Bu | ılb Tem | perat   | ure (C | :)    |      |      |      |      |      |      |      |      |
| m³/h    | Temp   | 16        | •    | 19   | 2    | 2    | 16    | 6     | 1     | 9     | 2       | 2      | 1       | 6       | 1      | 9     | 2    | 22   | 16   | 6    | 19   | )    | 22   | 2    |
| Airflow | (C)    | TGC SHC   | TGC  | SHC  | TGC  | SHC  | TGC   | SHC   | TGC   | SHC   | TGC     | SHC    | TGC     | SHC     | TGC    | SHC   | TGC  | SHC  | TGC  | SHC  | TGC  | SHC  | TGC  | SHC  |
|         | 24     | 20.9 17.5 | 23.3 | 14.6 | 24.6 | 10.3 | 19.7  | 16.8  | 22.4  | 13.6  | 24.0    | 9.9    | 18.4    | 16.1    | 21.2   | 12.9  | 23.2 | 9.4  | 17.1 | 15.4 | 19.7 | 12.9 | 22.0 | 9.0  |
| 0070    | 27     | 21.6 21.2 | 23.4 | 17.4 | 24.8 | 13.5 | 20.4  | 20.4  | 22.5  | 17.0  | 24.1    | 13.3   | 19.4    | 19.4    | 21.2   | 16.4  | 23.3 | 12.8 | 18.2 | 18.2 | 19.8 | 15.7 | 22.1 | 12.3 |
| 3670    | 30     | 22.9 22.9 | 23.6 | 20.6 | 25.0 | 16.5 | 22.1  | 22.1  | 22.7  | 20.4  | 24.3    | 16.3   | 21.0    | 21.0    | 21.5   | 19.9  | 23.5 | 16.1 | 19.9 | 19.9 | 20.2 | 19.2 | 22.2 | 15.6 |
|         | 33     | 24.0 24.0 | 24.1 | 23.8 | 25.2 | 19.4 | 23.4  | 23.4  | 23.3  | 23.3  | 24.5    | 19.3   | 22.5    | 22.5    | 22.4   | 22.4  | 23.6 | 19.3 | 21.4 | 21.4 | 21.4 | 21.4 | 22.3 | 18.8 |
|         | 24     | 21.5 18.5 | 23.6 | 15.2 | 24.8 | 10.6 | 20.3  | 17.9  | 22.8  | 14.2  | 24.2    | 10.1   | 19.0    | 17.2    | 21.6   | 13.6  | 23.4 | 9.8  | 17.6 | 16.4 | 20.1 | 12.9 | 22.3 | 9.3  |
| 4000    | 27     | 22.3 22.3 | 23.8 | 18.1 | 25.1 | 14.5 | 21.3  | 21.3  | 22.9  | 17.9  | 24.3    | 13.6   | 20.2    | 20.2    | 21.6   | 17.3  | 23.6 | 13.4 | 19.0 | 19.0 | 20.2 | 16.6 | 22.4 | 12.8 |
| 4080    | 30     | 23.6 23.6 | 24.0 | 21.6 | 25.3 | 17.6 | 22.9  | 22.9  | 23.2  | 21.5  | 24.6    | 16.8   | 21.8    | 21.8    | 22.0   | 21.1  | 23.7 | 16.7 | 20.7 | 20.7 | 20.8 | 20.5 | 22.5 | 16.3 |
|         | 33     | 24.6 24.6 | 24.6 | 24.6 | 25.5 | 20.0 | 23.9  | 23.9  | 23.9  | 23.9  | 24.8    | 20.1   | 23.1    | 23.1    | 23.1   | 23.1  | 23.9 | 20.1 | 22.1 | 22.1 | 22.1 | 22.1 | 22.7 | 19.8 |
|         | 24     | 22.0 19.5 | 23.9 | 15.8 | 25.0 | 10.7 | 20.8  | 18.9  | 23.1  | 14.7  | 24.4    | 10.4   | 19.5    | 18.2    | 21.9   | 14.2  | 23.5 | 10.1 | 18.1 | 17.4 | 20.5 | 13.5 | 22.5 | 9.6  |
| 4400    | 27     | 22.9 22.9 | 24.0 | 18.7 | 25.3 | 13.9 | 22.1  | 22.1  | 23.2  | 18.6  | 24.5    | 13.9   | 20.9    | 20.9    | 22.0   | 18.2  | 23.7 | 13.6 | 19.7 | 19.7 | 20.6 | 17.6 | 22.6 | 13.3 |
| 4490    | 30     | 24.1 24.1 | 24.3 | 22.4 | 25.5 | 17.4 | 23.4  | 23.4  | 23.5  | 22.4  | 24.8    | 17.3   | 22.5    | 22.5    | 22.5   | 22.2  | 23.9 | 17.2 | 21.3 | 21.3 | 21.3 | 21.3 | 22.8 | 17.0 |
|         | 33     | 25.0 25.0 | 25.0 | 25.0 | 25.7 | 20.7 | 24.4  | 24.4  | 24.4  | 24.4  | 25.1    | 20.8   | 23.7    | 23.7    | 23.7   | 23.7  | 24.2 | 20.8 | 22.6 | 22.6 | 22.6 | 22.6 | 23.1 | 20.7 |
|         | 24     | 22.4 20.3 | 24.1 | 16.3 | 25.2 | 10.9 | 21.2  | 19.8  | 23.2  | 15.1  | 24.5    | 10.7   | 19.9    | 19.1    | 22.2   | 14.7  | 23.6 | 10.3 | 18.5 | 18.4 | 20.8 | 14.0 | 22.7 | 9.9  |
| 4000    | 27     | 23.4 23.4 | 24.3 | 19.3 | 25.5 | 14.5 | 22.6  | 22.6  | 23.4  | 19.2  | 24.7    | 14.7   | 21.5    | 21.5    | 22.3   | 19.0  | 23.8 | 14.0 | 20.3 | 20.3 | 20.9 | 18.4 | 22.8 | 13.7 |
| 4900    | 30     | 24.5 24.5 | 24.6 | 23.2 | 25.6 | 17.8 | 23.8  | 23.8  | 23.9  | 23.2  | 25.0    | 17.8   | 23.0    | 23.0    | 23.0   | 23.0  | 24.1 | 17.7 | 21.8 | 21.8 | 21.8 | 21.8 | 23.0 | 17.7 |
|         | 33     | 25.4 25.4 | 25.4 | 25.4 | 25.9 | 21.2 | 24.8  | 24.8  | 24.8  | 24.8  | 25.3    | 21.4   | 24.1    | 24.1    | 24.1   | 24.1  | 24.4 | 21.4 | 23.1 | 23.1 | 23.1 | 23.1 | 23.4 | 21.6 |
|         |        | 20.7 20.7 | 20.4 | 20.4 | 20.0 | 21.2 | 2-7.0 | 2-7.0 | 2 7.0 | 2-7.0 | 20.0    | 2      | 2-7.1   | <u></u> | 2-7.1  | 2-7.1 | ۲.٦  | ۲    | 20.1 | 20.1 | 20.1 | 20.1 | 20.7 |      |

Table PD-2a — Gross Cooling Capacities (MBH) - TSC072AD - (IP)

|         |        |           | og cupu   | 0.0.00    | -,   |      | - 1 /     |        |         |        |        |        |      |      |      |      |      |      |      |      |      |
|---------|--------|-----------|-----------|-----------|------|------|-----------|--------|---------|--------|--------|--------|------|------|------|------|------|------|------|------|------|
|         |        |           |           |           |      |      | A         | mbien  | nt Tem  | peratu | re (F) |        |      |      |      |      |      |      |      |      |      |
|         | Enter. |           | 85        |           |      |      | 95        |        |         |        |        | 10     | )5   |      |      |      |      | 11   | 5    |      |      |
|         | Dry    |           |           |           |      |      |           |        |         |        |        |        |      |      |      |      |      |      |      |      |      |
|         | Bulb   |           |           |           |      |      | Enter     | ing We | et Bull | Temp   | eratu  | re (F) |      |      |      |      |      |      |      |      |      |
| CFM     | Temp   | 61        | 67        | 73        | 61   |      | 67        | 7      | 3       | 6      | i1     | 6      | 7    | 7    | 3    | 61   |      | 67   | ,    | 73   |      |
| Airflow | (F)    | TGC SHC   | TGC SHC   | TGC SHC   | TGC  | SHC  | TGC SHC   | TGC    | SHC     | TGC    | SHC    | TGC    | SHC  | TGC  | SHC  | TGC  | SHC  | TGC  | SHC  | TGC  | SHC  |
|         | 75     | 72.2 59.1 | 80.6 47.1 | 85.1 31.0 | 67.5 | 56.5 | 77.7 44.1 | 82.7   | 29.6    | 62.6   | 53.9   | 73.0   | 41.8 | 79.9 | 28.0 | 57.4 | 51.2 | 67.5 | 39.2 | 75.5 | 26.0 |
|         | 80     | 73.8 70.7 | 81.0 56.1 | 85.8 42.2 | 69.4 | 68.2 | 77.9 55.0 | 83.4   | 40.7    | 65.0   | 65.0   | 73.1   | 52.6 | 80.4 | 39.0 | 60.6 | 60.6 | 67.6 | 50.0 | 75.8 | 36.8 |
| 2160    | 85     | 77.7 77.7 | 81.4 66.3 | 86.3 51.7 | 74.3 | 74.3 | 78.2 65.6 | 83.8   | 50.1    | 70.3   | 70.3   | 73.6   | 63.5 | 80.7 | 49.2 | 66.0 | 66.0 | 68.3 | 61.0 | 76.1 | 47.4 |
|         | 90     | 81.3 81.3 | 82.4 76.3 | 87.1 59.8 | 78.8 | 78.8 | 79.4 76.0 | 84.6   | 59.4    | 75.1   | 75.1   | 75.3   | 74.6 | 81.3 | 59.0 | 70.8 | 70.8 | 70.7 | 70.7 | 76.6 | 57.4 |
|         | 75     | 74.2 62.5 | 81.6 49.2 | 85.7 31.5 | 69.3 | 59.9 | 78.7 46.0 | 83.4   | 30.1    | 64.4   | 57.3   | 74.2   | 43.7 | 80.2 | 28.5 | 59.1 | 54.6 | 68.9 | 41.1 | 76.3 | 26.6 |
| 0.400   | 80     | 76.1 75.0 | 82.1 58.2 | 86.5 43.7 | 72.1 | 72.1 | 79.0 57.4 | 84.2   | 42.1    | 67.9   | 67.9   | 74.4   | 55.4 | 80.9 | 40.4 | 63.3 | 63.3 | 69.0 | 53.0 | 76.8 | 38.4 |
| 2400    | 85     | 80.0 80.0 | 82.6 69.1 | 86.8 52.8 | 77.1 | 77.1 | 79.5 68.7 | 84.7   | 51.6    | 73.1   | 73.1   | 75.3   | 67.3 | 81.4 | 50.7 | 68.7 | 68.7 | 70.1 | 65.0 | 77.2 | 49.4 |
|         | 90     | 83.3 83.3 | 83.8 79.7 | 87.1 61.5 | 80.7 | 80.7 | 80.9 79.4 | 85.5   | 61.5    | 77.5   | 77.5   | 77.5   | 77.5 | 82.1 | 61.1 | 73.3 | 73.3 | 73.3 | 73.3 | 77.8 | 60.2 |
|         | 75     | 75.8 65.6 | 82.3 50.7 | 86.2 32.0 | 71.0 | 63.2 | 79.4 49.8 | 84.0   | 30.7    | 66.0   | 60.6   | 75.4   | 45.6 | 80.7 | 29.0 | 60.6 | 57.8 | 70.0 | 42.9 | 77.0 | 27.2 |
|         | 80     | 78.1 78.1 | 82.9 60.1 | 87.2 44.1 | 74.6 | 74.6 | 79.8 59.4 | 84.7   | 44.3    | 70.3   | 70.3   | 75.6   | 58.1 | 81.2 | 41.3 | 65.7 | 65.7 | 70.1 | 55.7 | 77.6 | 39.8 |
| 2640    | 85     | 81.7 81.7 | 83.6 71.6 | 88.2 54.0 | 79.1 | 79.1 | 80.5 71.3 | 85.4   | 53.6    | 75.4   | 75.4   | 76.6   | 70.7 | 82.0 | 52.1 | 70.9 | 70.9 | 71.6 | 68.7 | 78.1 | 51.3 |
|         | 90     | 84.8 84.8 | 85.0 82.5 | 89.1 62.3 | 82.3 | 82.3 | 82.3 82.3 | 86.1   | 61.2    | 79.4   | 79.4   | 79.4   | 79.4 | 82.8 | 63.0 | 75.2 | 75.2 | 75.2 | 75.2 | 78.7 | 62.8 |
|         | 75     | 77.0 68.3 | 82.9 52.2 | 86.6 32.5 | 72.5 | 66.4 | 80.0 51.4 | 84.5   | 31.2    | 67.5   | 63.7   | 76.2   | 47.1 | 81.2 | 29.5 | 62.1 | 61.0 | 70.8 | 44.7 | 77.6 | 27.8 |
| 0000    | 80     | 79.6 79.6 | 83.7 61.8 | 87.6 44.7 | 76.6 | 76.6 | 80.6 61.3 | 85.4   | 44.0    | 72.4   | 72.4   | 76.5   | 60.5 | 81.8 | 42.1 | 67.7 | 67.7 | 71.1 | 58.2 | 78.1 | 40.9 |
| 2880    | 85     | 83.0 83.0 | 84.4 73.9 | 88.7 54.9 | 80.4 | 80.4 | 81.5 73.9 | 86.2   | 54.1    | 77.1   | 77.1   | 77.8   | 73.8 | 82.7 | 53.5 | 72.7 | 72.7 | 72.9 | 71.9 | 78.8 | 53.0 |
|         | 90     | 85.9 85.9 | 86.0 85.0 | 89.6 65.2 | 83.6 | 83.6 | 83.6 83.6 | 87.0   | 63.2    | 81.0   | 81.0   | 81.0   | 81.0 | 83.5 | 65.0 | 76.8 | 76.8 | 76.8 | 76.8 | 79.5 | 65.3 |

Notes:

1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.

2. TGC = Total Gross Capacity

3. SHC = Sensible Heat Capacity

<sup>1.</sup> All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.

2. TGC = Total Gross Capacity

3. SHC = Sensible Heat Capacity



Table PD-3 — Gross Cooling Capacities (kW) - TSC090AD - (SI)

|         |        |      |      |      |      |      |      |      |      |      | Α     | mbie  | nt Tem | peratu | re (C) | )      |      |      |      |      |      |      |      |      |      |
|---------|--------|------|------|------|------|------|------|------|------|------|-------|-------|--------|--------|--------|--------|------|------|------|------|------|------|------|------|------|
|         | Enter. |      |      | 3    | 0    |      |      |      |      | 3    | 5     |       |        |        |        | 4      | 0    |      |      |      |      | 45   | j    |      |      |
|         | Dry    |      |      |      |      |      |      |      |      |      | _     |       |        |        |        |        |      |      |      |      |      |      |      |      |      |
|         | Bulb   |      |      |      |      |      |      |      |      |      | Enter | ing W | et Bul | b Temp | peratu | re (C) |      |      |      |      |      |      |      |      |      |
| m³/h    | Temp   | 1    | 6    | 1    | 9    | 2    | 22   | 16   | 6    | 1    | 9     | 2     | 2      | 1      | 6      | 1      | 9    | 2    | 2    | 16   | 5    | 19   | )    | 22   |      |
| Airflow | (C)    | TGC  | SHC   | TGC   | SHC    | TGC    | SHC    | TGC    | SHC  | TGC  | SHC  | TGC  | SHC  | TGC  | SHC  | TGC  | SHC  |
|         | 24     | 24.5 | 21.6 | 26.9 | 17.1 | 28.1 | 12.0 | 22.7 | 20.6 | 25.8 | 16.3  | 27.7  | 11.5   | 20.8   | 19.6   | 24.1   | 15.4 | 26.8 | 11.0 | 19.0 | 18.7 | 22.0 | 14.8 | 25.6 | 10.3 |
| 4500    | 27     | 25.4 | 25.4 | 27.1 | 21.1 | 28.5 | 15.9 | 24.1 | 24.1 | 25.9 | 20.8  | 27.8  | 15.9   | 22.5   | 22.5   | 24.3   | 20.0 | 27.0 | 15.5 | 20.9 | 20.9 | 22.2 | 19.0 | 25.7 | 14.8 |
| 4590    | 30     | 27.0 | 27.0 | 27.4 | 25.3 | 28.7 | 19.5 | 26.0 | 26.0 | 26.4 | 25.3  | 28.1  | 19.7   | 24.8   | 24.8   | 25.0   | 24.8 | 27.1 | 19.6 | 23.2 | 23.2 | 23.1 | 23.1 | 25.8 | 19.2 |
|         | 33     | 28.1 | 28.1 | 28.1 | 28.1 | 29.0 | 23.3 | 27.5 | 27.5 | 27.5 | 27.5  | 28.4  | 23.6   | 26.5   | 26.5   | 26.5   | 26.5 | 27.4 | 23.9 | 25.3 | 25.3 | 25.3 | 25.3 | 26.1 | 23.6 |
|         | 24     | 25.1 | 23.0 | 27.2 | 18.1 | 28.4 | 12.4 | 23.4 | 22.1 | 26.2 | 17.1  | 27.8  | 11.9   | 21.4   | 21.1   | 24.6   | 16.8 | 27.1 | 11.3 | 19.7 | 19.7 | 22.5 | 15.3 | 25.9 | 10.7 |
| 5100    | 27     | 26.3 | 26.3 | 27.4 | 22.0 | 28.6 | 16.3 | 25.1 | 25.1 | 26.4 | 22.0  | 28.0  | 16.2   | 23.6   | 23.6   | 24.9   | 21.4 | 27.2 | 16.0 | 21.9 | 21.9 | 22.8 | 20.4 | 26.0 | 15.6 |
| 5100    | 30     | 27.6 | 27.6 | 27.8 | 26.4 | 29.0 | 20.2 | 26.8 | 26.8 | 27.0 | 26.8  | 28.3  | 20.4   | 25.7   | 25.7   | 25.7   | 25.7 | 27.4 | 20.6 | 24.3 | 24.3 | 24.3 | 24.3 | 26.2 | 20.4 |
|         | 33     | 28.6 | 28.6 | 28.6 | 28.6 | 29.3 | 24.1 | 28.1 | 28.1 | 28.1 | 28.1  | 28.7  | 24.6   | 27.3   | 27.3   | 27.3   | 27.3 | 27.8 | 25.0 | 26.2 | 26.2 | 26.2 | 26.2 | 26.6 | 25.1 |
|         | 24     | 25.6 | 24.2 | 27.4 | 18.4 | 28.4 | 12.5 | 24.0 | 23.5 | 26.5 | 18.3  | 28.0  | 12.2   | 22.0   | 22.0   | 25.1   | 17.1 | 27.3 | 11.7 | 20.4 | 20.4 | 22.9 | 16.2 | 26.2 | 11.1 |
| 5610    | 27     | 26.9 | 26.9 | 27.7 | 22.8 | 28.8 | 16.5 | 25.9 | 25.9 | 26.8 | 23.0  | 28.3  | 16.7   | 24.5   | 24.5   | 25.4   | 22.7 | 27.4 | 16.5 | 22.8 | 22.8 | 23.5 | 21.8 | 26.3 | 16.3 |
| 0010    | 30     | 28.0 | 28.0 | 28.1 | 27.3 | 29.1 | 20.6 | 27.4 | 27.4 | 27.4 | 27.4  | 28.7  | 21.2   | 26.5   | 26.5   | 26.4   | 26.4 | 27.7 | 21.4 | 25.2 | 25.2 | 25.2 | 25.2 | 26.5 | 21.4 |
|         | 33     | 28.9 | 28.9 | 28.9 | 28.9 | 29.5 | 24.7 | 28.5 | 28.5 | 28.5 | 28.5  | 29.1  | 25.6   | 27.8   | 27.8   | 27.8   | 27.8 | 28.1 | 26.0 | 26.8 | 26.8 | 26.8 | 26.8 | 27.0 | 26.3 |
|         | 24     | 26.1 | 25.4 | 27.6 | 18.5 | 28.5 | 12.7 | 24.5 | 24.5 | 26.7 | 19.1  | 28.1  | 12.5   | 22.8   | 22.8   | 25.4   | 18.0 | 27.4 | 12.0 | 21.1 | 21.1 | 23.4 | 17.0 | 26.3 | 11.4 |
| 6100    | 27     | 27.3 | 27.3 | 27.9 | 23.4 | 28.9 | 16.8 | 26.5 | 26.5 | 27.1 | 23.9  | 28.5  | 17.1   | 25.3   | 25.3   | 25.8   | 23.8 | 27.7 | 17.0 | 23.6 | 23.6 | 24.1 | 23.1 | 26.5 | 16.9 |
| 6120    | 30     | 28.3 | 28.3 | 28.4 | 28.1 | 29.2 | 21.0 | 27.8 | 27.8 | 27.8 | 27.8  | 28.8  | 21.8   | 27.0   | 27.0   | 27.0   | 27.0 | 27.9 | 22.1 | 25.8 | 25.8 | 25.8 | 25.8 | 26.8 | 22.3 |
|         | 33     | 29.1 | 29.1 | 29.1 | 29.1 | 29.6 | 25.2 | 28.8 | 28.8 | 28.8 | 28.8  | 29.3  | 26.4   | 28.2   | 28.2   | 28.2   | 28.2 | 28.4 | 26.9 | 27.3 | 27.3 | 27.3 | 27.3 | 27.4 | 27.4 |

1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.

Table PD-3a — Gross Cooling Capacities (MBH) - TSC090AD - (IP)

96.2 96.2 96.9 88.9 100.2 63.1

98.7 98.7 98.7 101.3 75.7

|         | Enter. |      |      | 8    | 5    |       |      |      |      | 9    | 5    |        |         |                    |        | 10      | )5   |      |      |      |      | 11!  | 5    |      |      |
|---------|--------|------|------|------|------|-------|------|------|------|------|------|--------|---------|--------------------|--------|---------|------|------|------|------|------|------|------|------|------|
|         | Dry    |      |      |      |      |       |      |      |      |      |      |        |         |                    |        |         |      |      |      |      |      |      |      |      |      |
|         | Bulb   |      |      |      |      |       |      |      |      |      | Ente | ring W | let Bul | b Tem <sub>l</sub> | peratu | ıre (F) |      |      |      |      |      |      |      |      |      |
| CFM     | Temp   | 6    | 1    | 6    | 7    | 7     | 3    | 6′   | 1    | 6    | i7   | 7      | '3      | 6                  | 1      | 6       | 7    | 7    | 3    | 61   |      | 67   | 1    | 73   | 3    |
| Airflow | (F)    | TGC  | SHC  | TGC  | SHC  | TGC   | SHC  | TGC  | SHC  | TGC  | SHC  | TGC    | SHC     | TGC                | SHC    | TGC     | SHC  | TGC  | SHC  | TGC  | SHC  | TGC  | SHC  | TGC  | SHC  |
|         | 75     | 84.4 | 72.7 | 92.7 | 55.2 | 96.6  | 35.6 | 77.7 | 69.1 | 89.4 | 52.6 | 95.2   | 34.0    | 70.4               | 65.4   | 83.4    | 50.6 | 92.5 | 32.0 | 63.7 | 61.9 | 75.3 | 46.9 | 88.2 | 29.8 |
| 2700    | 80     | 86.5 | 86.5 | 93.3 | 67.5 | 97.8  | 48.9 | 81.2 | 81.2 | 89.6 | 66.8 | 96.2   | 48.4    | 75.1               | 75.1   | 83.8    | 64.0 | 93.1 | 46.6 | 69.4 | 69.4 | 75.8 | 60.3 | 88.5 | 44.1 |
| 2700    | 85     | 91.5 | 91.5 | 94.2 | 80.6 | 98.9  | 59.9 | 87.7 | 87.7 | 90.6 | 80.8 | 97.2   | 60.5    | 82.5               | 82.5   | 85.1    | 78.8 | 93.5 | 59.5 | 76.4 | 76.4 | 77.7 | 75.2 | 88.8 | 58.1 |
|         | 90     | 95.1 | 95.1 | 95.7 | 93.2 | 100.0 | 71.0 | 92.6 | 92.6 | 92.5 | 92.5 | 97.5   | 71.8    | 88.7               | 88.7   | 88.7    | 88.7 | 94.3 | 72.6 | 83.7 | 83.7 | 83.6 | 83.6 | 89.5 | 71.8 |
|         | 75     | 86.5 | 77.3 | 93.5 | 56.9 | 97.1  | 36.1 | 80.0 | 73.9 | 90.6 | 56.4 | 95.8   | 34.6    | 72.6               | 70.1   | 85.2    | 52.3 | 93.2 | 32.7 | 65.6 | 65.6 | 76.9 | 49.9 | 89.1 | 30.5 |
| 3000    | 80     | 89.4 | 89.4 | 94.3 | 70.0 | 98.3  | 52.8 | 84.9 | 84.9 | 91.0 | 70.2 | 96.9   | 49.4    | 78.8               | 78.8   | 85.6    | 68.2 | 93.9 | 48.9 | 72.7 | 72.7 | 77.8 | 64.5 | 89.6 | 46.3 |
| 3000    | 85     | 93.6 | 93.6 | 95.4 | 83.8 | 99.4  | 61.1 | 90.6 | 90.6 | 92.2 | 85.2 | 98.0   | 62.3    | 86.1               | 86.1   | 87.3    | 84.2 | 94.5 | 61.9 | 80.1 | 80.1 | 80.1 | 80.1 | 90.0 | 61.2 |
|         | 90     | 96.8 | 96.8 | 97.0 | 96.7 | 100.5 | 72.8 | 94.8 | 94.8 | 94.8 | 94.8 | 99.0   | 75.4    | 91.5               | 91.5   | 91.4    | 91.4 | 95.4 | 75.8 | 87.0 | 87.0 | 87.0 | 87.0 | 90.9 | 75.9 |
|         | 75     | 88.1 | 81.3 | 94.3 | 59.1 | 97.5  | 36.7 | 82.1 | 78.5 | 91.4 | 58.6 | 96.2   | 35.2    | 74.1               | 74.1   | 86.4    | 54.8 | 93.7 | 33.4 | 68.1 | 68.1 | 78.5 | 51.2 | 89.8 | 31.2 |
| 3300    | 80     | 91.4 | 91.4 | 95.1 | 72.1 | 98.7  | 50.2 | 87.6 | 87.6 | 92.1 | 73.3 | 97.4   | 50.3    | 82.2               | 82.2   | 87.1    | 72.0 | 94.5 | 49.7 | 75.6 | 75.6 | 79.7 | 68.7 | 90.4 | 48.3 |
| 3300    | 85     | 95.1 | 95.1 | 96.2 | 86.6 | 99.8  | 62.1 | 92.7 | 92.7 | 93.6 | 89.0 | 98.5   |         |                    |        | 89.2    |      | 95.2 |      | 83.5 | 83.5 | 83.5 | 83.5 | 90.9 | 63.9 |
|         | 90     | 97.9 | 97.9 | 97.9 | 97.9 | 101.0 | 74.3 | 96.4 | 96.4 | 96.3 | 96.3 | 99.7   | 77.5    | 93.5               | 93.5   | 93.5    | 93.5 | 96.3 | 78.6 | 89.4 | 89.4 | 89.4 | 89.4 | 92.1 | 79.5 |
|         | 75     | 89.5 | 85.0 | 95.1 | 60.6 | 97.8  | 37.2 | 84.0 | 83.1 | 92.2 | 60.7 | 96.6   | 35.7    | 76.7               | 76.7   | 87.5    | 57.3 | 94.1 | 34.0 | 70.4 | 70.4 | 80.0 | 53.8 | 90.4 | 31.9 |

92.9 92.9 95.6 74.0 99.0 50.8 89.7 89.7 93.0 76.0 97.8 51.0 84.8 84.8 88.3 75.6 95.2 50.9

94.2 94.2 94.7 92.3 99.0 65.1

97.5 97.5 97.5 97.5 100.1 79.4

Ambient Temperature (F)

90.7 90.7 90.7 95.8 65.8

94.9 94.9 94.9 97.0 81.1

78.1 78.1 81.6 72.8 90.9 49.5

86.0 86.0 86.0 91.7 66.3

93.0 82.7

91.2 91.2 91.2 91.2

NOTES:

3600

1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.

2. TGC = Total Gross Capacity

3. SHC = Sensible Heat Capacity

85

90

<sup>2.</sup> TGC = Total Gross Capacity3. SHC = Sensible Heat Capacity



Table PD-4 — Gross Cooling Capacities (kW) - TSC102AD - (SI)

|         |             |          |        |        |      |      |      |      |      |      | Ambie | nt Tem          | peratu | re (C) | )      |      |      |      |      |      |      |      |      |      |
|---------|-------------|----------|--------|--------|------|------|------|------|------|------|-------|-----------------|--------|--------|--------|------|------|------|------|------|------|------|------|------|
|         | Enter.      |          |        | 30     |      |      |      |      | 3    | 35   |       |                 |        | - (-,  |        | -0   |      |      |      |      | 45   | 5    |      |      |
|         | Dry<br>Bulb |          |        |        |      |      |      |      |      | Ente | ing W | <i>l</i> et Bul | b Temp | oeratu | re (C) |      |      |      |      |      |      |      |      |      |
| m³/h    | Temp        | 16       |        | 19     | 2    | 2    | 10   | 6    | 1    | 9    | 2     | 22              | 1      | 6      | 1      | 9    | 2    | 22   | 16   | 3    | 19   | )    | 22   | ·    |
| Airflow | (C) ·       | TGC SH   | C TGC  | SHC    | TGC  | SHC  | TGC  | SHC  | TGC  | SHC  | TGC   | SHC             | TGC    | SHC    | TGC    | SHC  | TGC  | SHC  | TGC  | SHC  | TGC  | SHC  | TGC  | SHC  |
|         | 24          | 28.0 24. | 3 31.5 | 19.5   | 33.4 | 14.1 | 26.0 | 23.3 | 30.0 | 18.7 | 32.5  | 13.5            | 23.9   | 22.2   | 27.8   | 17.7 | 31.3 | 12.9 | 21.6 | 21.6 | 25.4 | 17.3 | 29.7 | 12.2 |
| F000    | 27          | 29.0 28. | 4 31.6 | 24.3   | 33.6 | 18.7 | 27.4 | 27.1 | 30.1 | 23.6 | 32.7  | 18.5            | 25.6   | 25.6   | 28.0   | 22.7 | 31.4 | 17.8 | 23.9 | 23.9 | 25.6 | 21.6 | 29.8 | 17.1 |
| 5200    | 30          | 31.0 31. | 0 31.9 | 29.0   | 33.9 | 23.0 | 29.7 | 29.7 | 30.5 | 28.6 | 32.9  | 22.8            | 28.1   | 28.1   | 28.1   | 28.1 | 31.5 | 22.5 | 26.3 | 26.3 | 26.5 | 25.7 | 29.9 | 22.0 |
|         | 33          | 32.6 32. | 6 32.7 | 32.1   | 34.1 | 27.3 | 31.6 | 31.6 | 31.6 | 31.4 | 33.2  | 27.3            | 30.4   | 30.4   | 30.3   | 30.3 | 31.8 | 27.2 | 28.9 | 28.9 | 28.8 | 28.8 | 30.2 | 26.8 |
|         | 24          | 28.8 25. | 8 31.9 | 20.4   | 33.6 | 14.4 | 26.8 | 24.8 | 30.5 | 19.6 | 32.8  | 13.9            | 24.2   | 24.2   | 28.5   | 18.7 | 31.6 | 13.4 | 22.5 | 22.5 | 26.0 | 17.6 | 30.1 | 12.6 |
| F700    | 27          | 30.1 29. | 8 32.1 | 25.4   | 34.0 | 19.2 | 28.6 | 28.6 | 30.7 | 25.0 | 32.9  | 19.1            | 26.8   | 26.8   | 28.8   | 24.2 | 31.7 | 18.6 | 25.0 | 25.0 | 26.3 | 23.1 | 30.2 | 17.9 |
| 5780    | 30          | 32.0 32. | 0 32.5 | 30.5   | 34.2 | 23.7 | 30.9 | 30.9 | 30.9 | 30.9 | 33.2  | 23.7            | 29.4   | 29.4   | 29.4   | 29.4 | 31.9 | 23.6 | 27.6 | 27.6 | 27.7 | 27.2 | 30.3 | 23.2 |
|         | 33          | 33.4 33. | 4 33.4 | 33.2   | 34.5 | 28.1 | 32.6 | 32.6 | 32.5 | 32.5 | 33.6  | 28.5            | 31.4   | 31.4   | 31.4   | 31.4 | 32.3 | 28.5 | 30.0 | 30.0 | 30.0 | 30.0 | 30.8 | 28.3 |
|         | 24          | 29.5 27. | 3 32.2 | 21.1   | 33.8 | 14.7 | 27.6 | 26.3 | 31.0 | 20.5 | 33.0  | 14.4            | 25.1   | 25.1   | 29.1   | 19.6 | 31.8 | 13.8 | 23.5 | 22.9 | 26.5 | 18.5 | 30.4 | 12.9 |
| 0000    | 27          | 31.0 31. | 0 32.5 | 26.5   | 34.2 | 19.7 | 29.7 | 29.7 | 31.2 | 26.3 | 33.3  | 19.5            | 27.9   | 27.9   | 29.4   | 25.6 | 32.0 | 19.2 | 26.0 | 26.0 | 27.0 | 24.5 | 30.5 | 18.7 |
| 6360    | 30          | 32.7 32. | 7 33.0 | 31.7   | 34.6 | 24.5 | 31.7 | 31.7 | 31.7 | 31.7 | 33.6  | 24.6            | 30.4   | 30.4   | 30.5   | 29.9 | 32.3 | 24.5 | 28.8 | 28.8 | 28.8 | 28.6 | 30.7 | 24.3 |
|         | 33          | 34.0 34. | 0 34.0 | 34.0   | 34.8 | 28.9 | 33.2 | 33.2 | 33.2 | 33.2 | 33.9  | 29.5            | 32.1   | 32.1   | 32.1   | 32.1 | 32.7 | 29.7 | 30.9 | 30.9 | 30.9 | 30.9 | 31.3 | 29.7 |
|         | 24          | 30.1 28. | 7 32.5 | 21.7   | 33.9 | 15.1 | 27.9 | 27.9 | 31.3 | 21.4 | 33.1  | 14.7            | 26.0   | 26.0   | 29.3   | 20.4 | 32.2 | 14.2 | 24.2 | 23.9 | 27.0 | 19.4 | 30.6 | 13.3 |
| CO 40   | 27          | 31.7 31. | 7 32.8 | 3 27.4 | 34.4 | 20.0 | 30.5 | 30.5 | 31.6 | 27.4 | 33.4  | 20.0            | 28.8   | 28.8   | 29.8   | 26.9 | 32.3 | 19.7 | 26.9 | 26.9 | 27.6 | 25.9 | 30.7 | 19.4 |
| 6940    | 30          | 33.2 33. | 2 33.2 | 33.2   | 34.8 | 25.0 | 32.3 | 32.3 | 32.4 | 31.7 | 33.7  | 25.2            | 31.2   | 31.2   | 31.2   | 30.9 | 32.6 | 25.4 | 29.7 | 29.7 | 29.7 | 29.7 | 31.0 | 25.3 |
|         | 33          | 34.4 34. | 4 34.4 | 34.4   | 35.2 | 30.0 | 33.7 | 33.7 | 33.7 | 33.7 | 34.2  | 30.4            | 32.9   | 32.9   | 32.9   | 32.9 | 33.1 | 30.8 | 31.5 | 31.5 | 31.5 | 31.5 | 31.4 | 31.4 |

Notes:

Table PD-4a — Gross Cooling Capacities (MBH) - TSC102AD - (IP)

| IUDIC I L |        | 0,000 000   | Jiiiig Gapa | onico (mbi | .,    |       | <i>(,, ,</i> |            |      |         |        |            |         |      |            |         |       |            |
|-----------|--------|-------------|-------------|------------|-------|-------|--------------|------------|------|---------|--------|------------|---------|------|------------|---------|-------|------------|
|           |        |             |             |            |       |       |              | Ambient 7  | Tem  | peratu  | re (F) |            |         |      |            |         |       |            |
|           | Enter. |             | 85          |            |       |       | 95           |            |      |         |        | 105        |         |      |            | 11!     | 5     |            |
|           | Dry    |             |             |            |       |       |              |            |      |         |        |            |         |      |            |         |       |            |
|           | Bulb   |             |             |            |       |       | Ente         | ring Wet I | Bulb | Temp    | eratu  | re (F)     |         |      |            |         |       |            |
| CFM       | Temp   | 61          | 67          | 73         | 61    |       | 67           | 73         |      | 61      |        | 67         | 73      | 3    | 61         | 67      | ,     | 73         |
| Airflow   | (F)    | TGC SHC     | TGC SHC     | TGC SHC    | TGC   | SHC   | TGC SHC      | TGC SH     | HC   | TGC     | SHC    | TGC SHO    | TGC :   | SHC  | TGC SHO    | TGC     | SHC   | TGC SHC    |
|           | 75     | 96.7 81.9   | 109.1 63.4  | 115.0 42.2 | 89.1  | 78.1  | 104.0 60.7   | 112.1 40   | ).4  | 81.2    | 74.1   | 96.3 59.2  | 107.9   | 38.3 | 73.7 70.3  | 87.0    | 55.2  | 102.4 35.8 |
| 0000      | 80     | 98.2 98.2   | 109.4 78.3  | 116.1 58.1 | 92.7  | 90.8  | 104.2 76.3   | 113.0 56   | 5.2  | 85.7    | 85.2   | 96.6 72.9  | 108.5   | 53.9 | 79.3 79.3  | 87.4    | 68.8  | 102.7 51.3 |
| 3060      | 85     | 105.0 105.0 | 110.2 93.1  | 117.3 70.8 | 100.0 | 100.0 | 105.0 91.8   | 113.6 70   | ).4  | 93.6    | 93.6   | 98.0 88.8  | 108.9   | 68.7 | 86.8 86.8  | 89.2    | 84.7  | 103.1 66.7 |
|           | 90     | 110.4 110.4 | 111.6 107.4 | 118.0 84.0 | 106.5 | 106.5 | 106.4 106.4  | 114.4 83   | 3.5  | 101.41  | 101.4  | 101.7 99.6 | 109.6   | 83.1 | 94.8 94.8  | 94.9    | 94.6  | 103.5 81.6 |
|           | 75     | 99.3 87.0   | 110.2 65.9  | 115.6 42.9 | 91.8  | 83.2  | 105.8 63.7   | 112.9 41   | .1   | 83.6    | 79.1   | 98.7 60.6  | 108.8   | 39.0 | 75.2 75.2  | 89.0    | 58.6  | 103.4 36.5 |
| 0400      | 80     | 102.5 100.4 | 110.9 81.6  | 116.9 59.2 | 96.7  | 95.9  | 106.0 80.4   | 113.8 58   | 3.8  | 89.7    | 89.7   | 99.0 77.4  | 109.6   | 56.1 | 82.9 82.9  | 89.7    | 73.3  | 103.9 53.5 |
| 3400      | 85     | 108.4 108.4 | 111.9 97.4  | 118.2 72.7 | 104.1 | 104.1 | 107.2 97.0   | 114.6 72   | 2.7  | 98.2    | 98.2   | 100.8 94.9 | 110.1   | 71.5 | 91.0 91.0  | 91.0    | 91.0  | 104.2 70.0 |
|           | 90     | 113.2 113.2 | 113.1 113.1 | 119.5 86.5 | 109.7 | 109.7 | 109.9 107.6  | 115.6 86   | 6.6  | 105.11  | 105.1  | 105.1 104. | 111.0   | 86.9 | 99.4 99.4  | 99.2    | 99.2  | 105.1 86.0 |
|           | 75     | 101.6 91.8  | 111.3 67.8  | 116.2 43.6 | 94.3  | 88.2  | 107.1 66.5   | 113.5 41   | .8   | 84.7    | 84.7   | 100.4 63.0 | 109.5   | 39.6 | 78.4 76.4  | 90.9    | 59.0  | 104.2 37.1 |
| 0740      | 80     | 105.4 104.4 | 112.1 84.5  | 117.6 60.0 | 100.3 | 100.3 | 107.4 84.0   | 114.7 59   | .4   | 93.4    | 93.4   | 100.9 81.6 | 110.0   | 57.9 | 86.1 86.1  | 91.7    | 77.7  | 104.8 55.6 |
| 3740      | 85     | 111.0 111.0 | 113.3 101.2 | 118.9 74.2 | 107.0 | 107.0 | 108.9 101.7  | 116.0 74   | 1.8  | 101.81  | 101.8  | 101.8 101. | 3 111.2 | 73.8 | 94.9 94.9  | 94.9    | 94.9  | 105.3 72.9 |
|           | 90     | 115.2 115.2 | 115.2 115.2 | 120.3 88.6 | 112.1 | 112.1 | 112.1 111.1  | 116.5 89   | 9.3  | 107.8 1 | 107.8  | 107.7 107. | 7 112.1 | 90.2 | 102.6 102. | 6 102.6 | 102.6 | 106.4 90.0 |
|           | 75     | 103.5 96.3  | 112.1 69.5  | 116.6 43.8 | 94.9  | 94.9  | 107.9 68.7   | 114.0 42   | 2.5  | 87.5    | 87.5   | 101.8 65.6 | 110.0   | 40.3 | 80.7 79.5  | 92.4    | 61.7  | 104.8 37.8 |
| 4000      | 80     | 107.9 107.9 | 113.0 87.1  | 118.1 60.8 | 103.1 | 103.1 | 108.6 87.3   | 115.3 60   | ).3  | 96.8    | 96.8   | 102.5 85.6 | 110.7   | 59.5 | 89.1 89.1  | 93.7    | 82.0  | 105.4 57.5 |
| 4080      | 85     | 112.9 112.9 | 114.4 104.5 | 119.5 75.5 | 109.3 | 109.3 | 110.4 105.7  | 116.7 76   | 5.5  | 104.5 1 | 104.5  | 104.5 104. | 5 111.9 | 76.7 | 98.2 98.2  | 98.6    | 96.7  | 106.2 75.5 |
|           | 90     | 116.7 116.7 | 116.7 116.7 | 120.9 90.6 | 113.9 | 113.9 | 113.8 113.8  | 117.9 92   | 2.9  | 109.91  | 109.9  | 109.8 109. | 3 113.0 | 93.2 | 104.9 104. | 9 104.9 | 104.9 | 107.5 93.5 |

<sup>1.</sup> All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.

2. TGC = Total Gross Capacity

3. SHC = Sensible Heat Capacity

Notes:

1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.

2. TGC = Total Gross Capacity

3. SHC = Sensible Heat Capacity



Table PD-5 — Gross Cooling Capacities (kW) - TSC120AD - (SI)

|         |        |      |      |      |      |      |      |      |      |      | -     | Ambie | nt Tem  | peratu | ıre (C | )      |      |      |      |      |      |      |      |      |      |
|---------|--------|------|------|------|------|------|------|------|------|------|-------|-------|---------|--------|--------|--------|------|------|------|------|------|------|------|------|------|
|         | Enter. |      |      | 3    | 0    |      |      |      |      | 3    | 5     |       |         |        |        | 4      | .0   |      |      |      |      | 45   | 5    |      |      |
|         | Dry    |      |      |      |      |      |      |      |      |      |       |       |         |        |        |        |      |      |      |      |      |      |      |      |      |
|         | Bulb   |      |      |      |      |      |      |      |      |      | Enter | ing W | et Bull | Temp   | eratu  | re (C) |      |      |      |      |      |      |      |      |      |
| m³/h    | Temp   | 10   | 6    | 1    | 9    | 2    | 22   | 16   | 6    | 1    | 9     | 2     | 2       | 1      | 6      | 1      | 9    | 2    | 2    | 16   | i    | 19   | )    | 22   | 2    |
| Airflow | (C)    | TGC  | SHC   | TGC   | SHC     | TGC    | SHC    | TGC    | SHC  | TGC  | SHC  | TGC  | SHC  | TGC  | SHC  | TGC  | SHC  |
|         | 24     | 31.9 | 28.6 | 35.3 | 22.8 | 37.2 | 15.9 | 29.6 | 27.4 | 33.6 | 21.7  | 36.5  | 15.4    | 27.1   | 26.2   | 31.0   | 20.5 | 35.2 | 14.8 | 24.6 | 24.6 | 28.4 | 19.9 | 33.2 | 14.0 |
| 6120    | 27     | 33.4 | 33.4 | 35.5 | 28.2 | 37.7 | 21.4 | 31.6 | 31.6 | 33.9 | 27.8  | 36.7  | 21.4    | 29.5   | 29.5   | 31.3   | 26.6 | 35.3 | 20.7 | 27.5 | 27.5 | 28.9 | 25.5 | 33.3 | 19.9 |
| 0120    | 30     | 35.5 | 35.5 | 36.0 | 33.8 | 38.1 | 26.5 | 34.2 | 34.2 | 34.5 | 33.8  | 37.0  | 26.7    | 32.3   | 32.3   | 32.2   | 32.2 | 35.5 | 26.6 | 30.4 | 30.4 | 30.4 | 30.4 | 33.4 | 25.9 |
|         | 33     | 37.1 | 37.1 | 37.1 | 37.1 | 38.5 | 31.6 | 36.2 | 36.2 | 36.2 | 36.2  | 37.3  | 31.9    | 34.8   | 34.8   | 34.8   | 34.8 | 35.9 | 32.3 | 33.2 | 33.2 | 33.2 | 33.2 | 34.0 | 31.8 |
|         | 24     | 32.7 | 30.4 | 35.7 | 23.8 | 37.5 | 16.3 | 30.5 | 29.3 | 34.2 | 22.8  | 36.8  | 15.9    | 27.8   | 27.8   | 31.9   | 21.8 | 35.5 | 15.3 | 25.7 | 25.7 | 29.0 | 21.2 | 33.7 | 14.5 |
| 6800    | 27     | 34.5 | 34.5 | 36.0 | 29.5 | 38.0 | 21.9 | 32.9 | 32.9 | 34.5 | 29.4  | 37.0  | 22.0    | 30.9   | 30.9   | 32.3   | 28.5 | 35.7 | 21.7 | 28.7 | 28.7 | 29.7 | 27.4 | 33.8 | 21.0 |
| 0000    | 30     | 36.3 | 36.3 | 36.6 | 35.4 | 38.4 | 27.4 | 35.3 | 35.3 | 35.3 | 35.3  | 37.3  | 27.6    | 33.7   | 33.7   | 33.7   | 33.7 | 35.9 | 27.8 | 31.8 | 31.8 | 31.7 | 31.7 | 34.0 | 27.5 |
|         | 33     | 37.9 | 37.9 | 37.8 | 37.8 | 38.9 | 32.8 | 37.0 | 37.0 | 37.0 | 37.0  | 37.8  | 33.3    | 35.9   | 35.9   | 35.9   | 35.9 | 36.5 | 33.9 | 34.4 | 34.4 | 34.4 | 34.4 | 34.7 | 33.8 |
|         | 24     | 33.5 | 32.2 | 36.0 | 24.7 | 37.8 | 16.9 | 31.1 | 31.1 | 34.7 | 23.9  | 37.0  | 16.3    | 28.9   | 28.9   | 32.4   | 22.9 | 35.8 | 15.7 | 26.6 | 26.6 | 29.6 | 22.5 | 34.1 | 14.9 |
| 7480    | 27     | 35.3 | 35.3 | 36.4 | 30.6 | 38.2 | 22.4 | 34.0 | 34.0 | 35.0 | 30.8  | 37.4  | 22.7    | 32.0   | 32.0   | 33.0   | 30.2 | 36.0 | 22.5 | 29.9 | 29.9 | 30.5 | 29.1 | 34.2 | 22.0 |
| 7400    | 30     | 37.0 | 37.0 | 37.0 | 37.0 | 38.7 | 28.1 | 36.1 | 36.1 | 36.1 | 36.1  | 37.9  | 28.9    | 34.7   | 34.7   | 34.7   | 34.7 | 36.4 | 29.1 | 32.9 | 32.9 | 32.9 | 32.9 | 34.5 | 29.0 |
|         | 33     | 38.4 | 38.4 | 38.3 | 38.3 | 39.2 | 33.7 | 37.7 | 37.7 | 37.7 | 37.7  | 38.4  | 34.9    | 36.7   | 36.7   | 36.7   | 36.7 | 37.0 | 35.4 | 35.3 | 35.3 | 35.3 | 35.3 | 35.3 | 35.3 |
|         | 24     | 33.9 | 33.9 | 36.3 | 24.9 | 37.9 | 17.3 | 32.0 | 32.0 | 35.0 | 25.6  | 37.5  | 16.1    | 29.8   | 29.8   | 32.8   | 23.9 | 36.1 | 16.2 | 27.5 | 27.5 | 29.8 | 23.6 | 34.4 | 15.3 |
| 8160    | 27     | 35.9 | 35.9 | 36.7 | 31.7 | 38.5 | 22.8 | 34.8 | 34.8 | 35.5 | 32.2  | 37.7  | 23.2    | 32.9   | 32.9   | 33.6   | 31.9 | 36.3 | 23.2 | 30.6 | 30.6 | 30.6 | 30.6 | 34.5 | 23.0 |
| 0100    | 30     | 37.5 | 37.5 | 37.5 | 37.5 | 38.9 | 28.8 | 36.7 | 36.7 | 36.7 | 36.7  | 38.1  | 29.8    | 35.5   | 35.5   | 35.5   | 35.5 | 36.7 | 30.2 | 33.7 | 33.7 | 33.7 | 33.7 | 34.9 | 30.5 |
|         | 33     | 38.8 | 38.8 | 38.7 | 38.7 | 39.5 | 34.6 | 38.4 | 38.4 | 38.2 | 38.2  | 38.7  | 36.1    | 37.3   | 37.3   | 37.3   | 37.3 | 37.4 | 36.7 | 36.0 | 36.0 | 36.0 | 36.0 | 36.0 | 36.0 |

- 1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.

  2. TGC = Total Gross Capacity

  3. SHC = Sensible Heat Capacity

Table PD-5a — Gross Cooling Capacities (MBH) - TSC120AD - (IP)

|         |        |             | gp          | 01000  11121 | .,    |       | - 1 /       |              |          |                  |               |             |             |             |
|---------|--------|-------------|-------------|--------------|-------|-------|-------------|--------------|----------|------------------|---------------|-------------|-------------|-------------|
|         |        |             |             |              |       |       | A           | Ambient Tem  | perature | e (F)            |               |             |             |             |
|         | Enter. |             | 85          |              |       |       | 95          |              |          | 105              |               |             | 115         |             |
|         | Dry    |             |             |              |       |       |             |              |          |                  |               |             |             |             |
|         | Bulb   |             |             |              |       |       | Enter       | ing Wet Bull | b Temper | rature (F)       |               |             |             |             |
| CFM     | Temp   | 61          | 67          | 73           | 61    |       | 67          | 73           | 61       | 67               | 73            | 61          | 67          | 73          |
| Airflow | (F)    | TGC SHC     | TGC SHC     | TGC SHC      | TGC   | SHC   | TGC SHC     | TGC SHC      | TGC S    | SHC TGC SHC      | TGC SHC       | TGC SHC     | TGC SHC     | TGC SHC     |
|         | 75     | 109.9 96.4  | 122.1 73.8  | 128.5 47.6   | 101.2 | 92.1  | 116.7 70.3  | 125.9 45.7   | 91.8 8   | 7.5 107.7 67.7   | 121.6 43.4    | 82.1 82.1   | 97.2 63.2   | 115.0 40.9  |
| 2000    | 80     | 113.5 113.5 | 122.6 90.4  | 129.9 65.7   | 106.6 | 106.6 | 117.1 89.2  | 127.2 65.0   | 99.0 9   | 9.0 108.4 85.4   | 122.2 62.4    | 91.0 91.0   | 98.2 81.0   | 115.2 59.7  |
| 3600    | 85     | 120.2 120.2 | 123.8 108.0 | 131.3 80.9   | 115.2 | 115.2 | 118.5 107.9 | 127.8 81.5   | 108.1 10 | 08.1 110.5 104.9 | 122.6 80.6    | 100.3 100.3 | 100.3 100.3 | 115.4 78.4  |
|         | 90     | 125.4 125.4 | 125.4 125.4 | 132.7 96.3   | 121.8 | 121.8 | 121.8 121.8 | 128.7 97.3   | 116.4 11 | 16.4 116.4 116.4 | 1 123.6 98.2  | 109.2 109.2 | 109.2 109.2 | 116.4 97.0  |
|         | 75     | 112.7 102.4 | 123.1 75.6  | 129.3 48.4   | 104.2 | 98.3  | 118.5 73.6  | 126.9 46.6   | 93.7 9   | 3.7 109.9 70.9   | 122.7 44.3    | 85.6 85.6   | 99.3 67.2   | 116.5 41.9  |
| 4000    | 80     | 117.3 117.3 | 124.1 94.1  | 130.8 66.9   | 111.1 | 111.1 | 119.0 94.0  | 128.2 66.8   | 103.5 10 | 03.5 110.8 90.8  | 123.5 65.3    | 95.2 95.2   | 100.8 86.6  | 116.8 62.5  |
| 4000    | 85     | 123.2 123.2 | 125.6 112.8 | 132.3 82.9   | 119.0 | 119.0 | 120.8 114.1 | 129.5 84.5   | 112.5 11 | 12.5 112.5 112.  | 5 124.1 84.2  | 104.9 104.9 | 104.8 104.8 | 117.1 83.0  |
|         | 90     | 127.9 127.9 | 127.9 127.9 | 133.8 99.2   | 124.9 | 124.9 | 124.9 124.9 | 130.8 102.4  | 120.2 12 | 20.2 120.2 120.2 | 2 125.3 103.1 | 113.9 113.9 | 113.8 113.8 | 118.4 102.9 |
|         | 75     | 115.1 108.2 | 124.5 77.5  | 130.0 49.2   | 107.0 | 104.4 | 119.8 77.6  | 127.6 47.4   | 97.3 9   | 7.3 111.7 73.2   | 123.6 45.2    | 88.7 88.7   | 101.1 71.1  | 117.6 42.7  |
| 4400    | 80     | 120.1 120.1 | 125.3 97.3  | 131.6 67.9   | 114.9 | 114.9 | 120.6 98.4  | 129.0 68.2   | 107.3 10 | 07.3 112.9 96.1  | 124.5 68.1    | 98.9 98.9   | 103.1 92.0  | 118.0 65.1  |
| 4400    | 85     | 125.5 125.5 | 127.0 116.9 | 133.1 84.7   | 121.9 | 121.9 | 122.8 119.6 | 130.5 87.0   | 116.4 1  | 16.4 116.3 116.3 | 3 125.3 88.0  | 108.7 108.7 | 108.7 108.7 | 118.4 87.0  |
|         | 90     | 130.0 130.0 | 129.7 129.7 | 134.7 101.8  | 127.3 | 127.3 | 127.2 127.2 | 131.9 105.9  | 123.0 12 | 23.0 123.0 123.0 | 126.7 107.5   | 117.2 117.2 | 117.2 117.2 | 120.2 108.4 |
|         | 75     | 117.1 113.2 | 125.5 81.7  | 130.6 50.0   | 108.8 | 108.8 | 120.8 80.6  | 128.3 48.2   | 100.5 10 | 00.5 113.2 76.3  | 124.3 46.1    | 91.6 91.6   | 102.7 72.1  | 118.5 43.6  |
| 4000    | 80     | 122.3 122.3 | 126.5 100.7 | 132.2 68.9   | 117.8 | 117.8 | 122.0 102.4 | 129.8 69.5   | 110.5 11 | 10.5 114.9 101.3 | 3 125.7 69.3  | 102.2 102.2 | 105.2 97.3  | 119.0 67.7  |
| 4800    | 85     | 127.2 127.2 | 128.4 121.1 | 133.8 86.3   | 124.1 | 124.1 | 124.1 124.1 | 131.2 89.2   | 119.0 1  | 19.0 119.0 119.0 | 126.5 90.9    | 112.0 112.0 | 112.0 112.0 | 119.7 90.9  |
|         | 90     | 131.3 131.3 | 131.5 131.5 | 135.4 104.2  | 129.3 | 129.3 | 129.0 129.0 | 132.8 108.9  | 125.2 12 | 25.2 125.2 125.2 | 2 127.8 111.4 | 119.8 119.8 | 119.8 119.8 | 121.7 113.3 |

- Notes:

  1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.

  2. TGC = Total Gross Capacity

  3. SHC = Sensible Heat Capacity



Table PD-6 — Belt Drive Evaporator Fan Performance - TSC060AD - Downflow Configuration (SI)

|      |     | External S |     |      |     |      |      |      |      |      |      | Pascals) |      |         |        |         |       |        |      |      |
|------|-----|------------|-----|------|-----|------|------|------|------|------|------|----------|------|---------|--------|---------|-------|--------|------|------|
|      | 2   | 5          | 5   | 0    | 7   | 5    | 10   | 00   | 12   | 25   | 15   | 50       | 17   | 75      | 20     | 00      | 22    | 5      | 25   | 0    |
| m³/h | RPM | kW         | RPM | kW   | RPM | kW   | RPM  | kW   | RPM  | kW   | RPM  | kW       | RPM  | kW      | RPM    | kW      | RPM   | kW     | RPM  | kW   |
|      |     |            |     |      |     |      |      |      |      |      |      |          |      | 1.12 No | m kW S | tandard | Motor | & Driv | е    |      |
| 2720 | -   | -          | 703 | 0.27 | 757 | 0.31 | 806  | 0.35 | 854  | 0.39 | 899  | 0.43     | 944  | 0.49    | 985    | 0.54    | 1023  | 0.59   | 1060 | 0.64 |
| 3060 | 706 | 0.32       | 760 | 0.35 | 815 | 0.40 | 861  | 0.45 | 904  | 0.49 | 947  | 0.54     | 988  | 0.58    | 1028   | 0.64    | 1067  | 0.70   | 1104 | 0.76 |
| 3400 | 773 | 0.43       | 821 | 0.46 | 873 | 0.51 | 918  | 0.57 | 958  | 0.62 | 998  | 0.67     | 1036 | 0.71    | 1073   | 0.76    | 1111  | 0.82   | 1147 | 0.89 |
| 3740 | 840 | 0.56       | 885 | 0.60 | 930 | 0.65 | 977  | 0.71 | 1016 | 0.77 | 1053 | 0.82     | 1089 | 0.88    | 1124   | 0.93    | 1158  | 0.98   | 1191 | 1.03 |
| 4080 | 909 | 0.71       | 950 | 0.76 | 990 | 0.80 | 1034 | 0.87 | 1074 | 0.93 | 1110 | 1.00     | 1143 | 1.06    | 1177   | 1.12    | 1209  | 1.17   | 1241 | 1.23 |

|      |      |            |          | Externa | I Static P | ressure  | (Pascals) |      |      |      |
|------|------|------------|----------|---------|------------|----------|-----------|------|------|------|
|      | 27   | <b>7</b> 5 | 30       | 00      | 32         | 25       | 3!        | 50   | 37   | 75   |
| CFM  | RPM  | kW         | RPM      | kW      | RPM        | kW       | RPM       | kW   | RPM  | kW   |
|      |      | 1.12       | Nom kV   | V Stand | ard Moto   | or & Dri | ve        |      |      |      |
| 2720 | 1093 | 0.69       | 1126     | 0.74    | 1160       | 0.79     | 1190      | 0.84 | 1222 | 0.90 |
| 3060 | 1138 | 0.82       | 1171     | 0.87    | 1203       | 0.93     | 1232      | 0.98 | 1262 | 1.04 |
| 3400 | 1182 | 0.96       | 1215     | 1.02    | 1246       | 1.09     | 1276      | 1.15 | 1306 | 1.21 |
| 3740 | 1226 | 1.10       | 1258     | 1.17    | 1290       | 1.25     |           | -    | -    | -    |
| 4080 | 1272 | 1.29       | <u> </u> | -       | -          | -        | -         | -    | -    | -    |
|      |      |            |          |         |            |          |           |      |      |      |

1.12 Nom kW Standard Motor & Hi Static Drive

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.12 kW - Fan Motor Heat (kW) = 1.144 x Fan kW + 0.132

Factory Supplied Motors, In Commercial Equipment, Are Tested To Operate Reliably And Continuously At All
Cataloged Conditions. Using The Full Horsepower Range
Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-6a — Belt Drive Evaporator Fan Performance -TSC060AD - Downflow Configuration (IP)

|      |                                            |      |     |      |     |      |      | Extern | al Static | Pressure | (Inches | of Wate | r)       |         |          |       |      |      |      |      |
|------|--------------------------------------------|------|-----|------|-----|------|------|--------|-----------|----------|---------|---------|----------|---------|----------|-------|------|------|------|------|
|      | .1                                         | 0    | .2  | 20   | .3  | 30   | .4   | 10     | .5        | 0        | .6      | 60      | .7       | 70      | 3.       | 30    | .9   | 0    | 1.0  | )0   |
| CFM  | RPM                                        | BHP  | RPM | BHP  | RPM | BHP  | RPM  | BHP    | RPM       | BHP      | RPM     | BHP     | RPM      | BHP     | RPM      | BHP   | RPM  | BHP  | RPM  | BHP  |
|      | 1-1/2 HP Standard Motor & Low Static Drive |      |     |      |     |      |      |        |           |          |         | 1-1/    | 2 HP Sta | ndard N | /lotor & | Drive |      |      |      |      |
| 1600 | -                                          | -    | 703 | 0.36 | 757 | 0.41 | 806  | 0.47   | 854       | 0.52     | 899     | 0.58    | 944      | 0.65    | 985      | 0.73  | 1023 | 0.79 | 1060 | 0.86 |
| 1800 | 706                                        | 0.42 | 760 | 0.47 | 815 | 0.54 | 861  | 0.60   | 904       | 0.66     | 947     | 0.72    | 988      | 0.78    | 1028     | 0.86  | 1067 | 0.94 | 1104 | 1.02 |
| 2000 | 773                                        | 0.57 | 821 | 0.62 | 873 | 0.69 | 918  | 0.76   | 958       | 0.83     | 998     | 0.90    | 1036     | 0.96    | 1073     | 1.02  | 1111 | 1.10 | 1147 | 1.19 |
| 2200 | 840                                        | 0.75 | 885 | 0.80 | 930 | 0.87 | 977  | 0.95   | 1016      | 1.03     | 1053    | 1.10    | 1089     | 1.17    | 1124     | 1.24  | 1158 | 1.31 | 1191 | 1.39 |
| 2400 | 909                                        | 0.96 | 950 | 1.02 | 990 | 1.08 | 1034 | 1.16   | 1074      | 1.25     | 1110    | 1.34    | 1143     | 1.419   | 1177     | 1.50  | 1209 | 1.57 | 1241 | 1.65 |

|      |      |      | Exte | ernal Sta | tic Press | ure (Inc | hes of W | ater) |      |      | -  |
|------|------|------|------|-----------|-----------|----------|----------|-------|------|------|----|
|      | 1.1  | 10   | 1.3  | 20        | 1.3       | 30       | 1.4      | 40    | 1.   | 50   |    |
| CFM  | RPM  | BHP  | RPM  | BHP       | RPM       | BHP      | RPM      | BHP   | RPM  | BHP  |    |
|      |      |      | 1-1/ | 2 HP St   | andard N  | lotor &  | Drive    |       |      |      | _  |
| 1600 | 1093 | 0.92 | 1126 | 0.99      | 1160      | 1.06     | 1190     | 1.13  | 1222 | 1.20 |    |
| 1800 | 1138 | 1.10 | 1171 | 1.17      | 1203      | 1.25     | 1232     | 1.32  | 1262 | 1.39 | ٠, |
| 2000 | 1182 | 1.28 | 1215 | 1.37      | 1246      | 1.46     | 1276     | 1.54  | 1306 | 1.62 | *  |
| 2200 | 1226 | 1.48 | 1258 | 1.57      | 1290      | 1.67     | -        | -     | -    | -    |    |
| 2400 | 1272 | 1.73 | -    | -         | -         | -        | -        | -     | -    | -    |    |

\_ 1-1/2 HP Standard Motor & Hi Static Drive

Data Includes Pressure Drop Due To Wet Coils And Filters. 1 1/2 HP - Fan Motor Heat (MBH) = 2.915 x Fan BHP + 0.451

Factory Supplied Motors, In Commercial Equipment, Are Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.



Table PD-7 - Belt Drive Evaporator Fan Performance-TSC060AD - Horizontal Configuration - (SI)

|      |      |       |         |           |         |          |      | Externa | I Static P | ressure | (Pascals) |       |         |        |          |         |          |         |      |      |
|------|------|-------|---------|-----------|---------|----------|------|---------|------------|---------|-----------|-------|---------|--------|----------|---------|----------|---------|------|------|
|      | 2    | 5     | 5       | 0         | 7       | 5        | 10   | 00      | 12         | 25      | 15        | 50    | 17      | 75     | 20       | 00      | 22       | 5       | 25   | 0    |
| m³/h | RPM  | kW    | RPM     | kW        | RPM     | kW       | RPM  | kW      | RPM        | kW      | RPM       | kW    | RPM     | kW     | RPM      | kW      | RPM      | kW      | RPM  | kW   |
|      | 1.12 | Nom k | W Std M | lotor & I | ow Stat | ic Drive |      |         |            |         | 1.12      | Nom k | W Stand | ard Mo | tor & Dr | ive     |          |         |      |      |
| 2720 | 707  | 0.26  | 774     | 0.31      | 837     | 0.37     | 898  | 0.43    | 953        | 0.48    | 1001      | 0.54  | 1045    | 0.59   | 1087     | 0.65    | 1129     | 0.71    | 1168 | 0.77 |
| 3060 | 778  | 0.36  | 840     | 0.41      | 897     | 0.48     | 953  | 0.54    | 1008       | 0.60    | 1058      | 0.67  | 1102    | 0.73   | 1143     | 0.79    | 1181     | 0.85    | 1219 | 0.92 |
| 3400 | 850  | 0.48  | 908     | 0.54      | 961     | 0.60     | 1012 | 0.67    | 1062       | 0.74    | 1111      | 0.81  | 1157    | 0.88   | 1198     | 0.95    | 1237     | 1.02    | 1274 | 1.09 |
| 3740 | 923  | 0.63  | 978     | 0.69      | 1028    | 0.76     | 1075 | 0.83    | 1120       | 0.91    | 1166      | 0.99  | 1211    | 1.06   | 1254     | 1.14    | 1294     | 1.22    | 1330 | 1.29 |
| 4080 | 997  | 0.80  | 1049    | 0.87      | 1096    | 0.94     | 1140 | 1.02    | 1183       | 1.10    | 1223      | 1.18  | _1266   | 1.27   | -        | -       | -        | -       | -    | -    |
|      |      |       |         |           |         |          |      |         |            |         |           |       | 7       |        |          |         |          |         |      |      |
|      |      |       |         |           |         |          |      |         |            |         |           | 1     | .12 Nom | kW Sta | ndard N  | lotor & | Hi Stati | c Drive |      |      |

|      |        |            |          | External  | Static P | ressure | (Pascals) |      |      |      |
|------|--------|------------|----------|-----------|----------|---------|-----------|------|------|------|
|      | 27     | <b>'</b> 5 | 30       | 00        | 32       | 25      | 35        | 50   | 3    | 75   |
| CFM  | RPM    | kW         | RPM      | kW        | RPM      | kW      | RPM       | kW   | RPM  | kW   |
| 1.12 | Nom kV | V Stand    | ard Moto | or & Driv | re       |         |           |      |      |      |
| 2720 | 1206   | 0.83       | 1241     | 0.89      | 1275     | 0.96    | 1306      | 1.02 | 1338 | 1.09 |
| 3060 | 1256   | 0.99       | 1291     | 1.05      | 1326     | 1.12    | 1359      | 1.19 | 1390 | 1.26 |
| 3400 | 1309   | 1.16       | 1343     | 1.24      | 1376     | 1.31    | -         | -    | -    | -    |
| 3740 | -      | -          | -        | -         | -        | -       | -         | -    | -    | -    |
| 4080 | -      | -          | -        | -         | -        | -       | -         | -    | -    | -    |

← 1.12 Nom kW Standard Motor & Hi Static Drive

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.12 kW - Fan Motor Heat (kW) = 1.144 x Fan kW + 0.132

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Net Route In National Times Tripping Or Property Metal. Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-7a - Belt Drive Evaporator Fan Performance-TSC060AD - Horizontal Configuration - (IP)

|      |      |         |            |         |      |      |                                           | External | Static P | ressure | (Inches o | of Water | )        |         |       |      |      |      |      |      |
|------|------|---------|------------|---------|------|------|-------------------------------------------|----------|----------|---------|-----------|----------|----------|---------|-------|------|------|------|------|------|
|      | 0.   | 10      | 0.         | 20      | 0.3  | 30   | 0.4                                       | 40       | 0.       | 50      | 0.        | 60       | 0.       | 70      | 0.    | 80   | 0.9  | 90   | 1.0  | 00   |
| CFM  | RPM  | BHP     | RPM        | BHP     | RPM  | BHP  | RPM                                       | BHP      | RPM      | BHP     | RPM       | BHP      | RPM      | BHP     | RPM   | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 1-1/ | 2 HP St | andard I   | Motor & |      |      |                                           |          |          |         |           |          |          |         |       |      |      |      |      |      |
|      |      | Low     | / Static I | Orive   |      |      |                                           |          |          |         | 1-1/      | 2 HP St  | andard N | lotor & | Drive |      |      |      |      |      |
| 1600 | 707  | 0.35    | 774        | 0.42    | 837  | 0.50 | 898                                       | 0.57     | 953      | 0.65    | 1001      | 0.72     | 1045     | 0.80    | 1087  | 0.87 | 1129 | 0.95 | 1168 | 1.03 |
| 1800 | 778  | 0.48    | 840        | 0.56    | 897  | 0.64 | 953                                       | 0.72     | 1008     | 0.81    | 1058      | 0.89     | 1102     | 0.98    | 1143  | 1.06 | 1181 | 1.15 | 1219 | 1.23 |
| 2000 | 850  | 0.65    | 908        | 0.73    | 961  | 0.81 | 1012                                      | 0.90     | 1062     | 1.00    | 1111      | 1.09     | 1157     | 1.19    | 1198  | 1.28 | 1237 | 1.37 | 1274 | 1.47 |
| 2200 | 923  | 0.84    | 978        | 0.93    | 1028 | 1.02 | 1075                                      | 1.12     | 1120     | 1.22    | 1166      | 1.32     | 1211     | 1.43    | 1254  | 1.53 | 1294 | 1.63 | 1330 | 1.74 |
| 2400 | 997  | 1.07    | 1049       | 1.17    | 1096 | 1.27 | 1140                                      | 1.37     | 1183     | 1.48    | 1223      | 1.59     | 1266     | 1.70    |       | -    | -    | -    | -    | -    |
|      |      |         |            |         |      |      | 1-1/2 HP Standard Motor & Hi Static Drive |          |          |         |           |          |          |         |       |      |      |      |      |      |

|      |      |          | Exte     | rnal Sta  | tic Press | ure (Incl | nes of Wa | ater)   |           |          |
|------|------|----------|----------|-----------|-----------|-----------|-----------|---------|-----------|----------|
|      | 1.1  | 10       | 1.3      | 20        | 1.        | 30        | 1.4       | 40      | 1.9       | 50       |
| CFM  | RPM  | BHP      | RPM      | BHP       | RPM       | BHP       | RPM       | BHP     | RPM       | BHP      |
|      | 1/2  | HP Stand | dard Mot | or & Driv | /e        | 1-1/2 HF  | Standar   | d Motor | & Hi Stat | ic Drive |
| 1600 | 1206 | 1.12     | 1241     | 1.20      | 1275      | 1.28      | 1306      | 1.37    | 1338      | 1.46     |
| 1800 | 1256 | 1.32     | 1291     | 1.41      | 1326      | 1.50      | 1359      | 1.60    | 1390      | 1.69     |
| 2000 | 1309 | 1.56     | 1343     | 1.66      | 1376      | 1.76      | -         | -       | -         | -        |
| 2200 | -    | -        | -        | -         | -         | -         | -         | -       | -         | -        |
| 2400 | -    | -        | -        | -         | -         | -         | -         | -       | -         | -        |

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters.

1 1/2 HP - Fan Motor Heat (MBH) = 2.915 x Fan BHP + 0.451

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.



Table PD-8 — Belt Drive Evaporator Fan Performance -TSC072AD - Downflow Configuration (SI)

| <u> </u> |      |       |         |          |          |          |       | E    | xternal | Static Pr | essure (F | Pascals) |         |        |          |      |     |      |      |      |
|----------|------|-------|---------|----------|----------|----------|-------|------|---------|-----------|-----------|----------|---------|--------|----------|------|-----|------|------|------|
|          | 2    | 5     | 5       | 0        | 7        | 5        | 10    | 00   | 1:      | 25        | 15        | 50       | 17      | 75     | 20       | 00   | 22  | .5   | 25   | 50   |
| m³/h     | RPM  | kW    | RPM     | kW       | RPM      | kW       | RPM   | kW   | RPM     | kW        | RPM       | kW       | RPM     | kW     | RPM      | kW   | RPM | kW   | RPM  | kW   |
|          | 1.12 | Nom k | W Stand | lard Mot | or & Lov | v Static | Drive |      |         |           | 1.12      | Nom k    | W Stand | ard Mo | tor & Dr | ive  |     |      |      |      |
| 3260     | -    | -     | -       | -        | 573      | 0.25     | 630   | 0.30 | _680    | 0.36      | 726       | 0.41     | 769     | 0.47   | 811      | 0.52 | 851 | 0.58 | 889  | 0.65 |
| 3670     | -    | -     | 548     | 0.26     | 602      | 0.31     | 656   | 0.37 | 706     | 0.43      | 751       | 0.49     | 792     | 0.55   | 832      | 0.61 | 871 | 0.67 | 908  | 0.74 |
| 4080     | -    | -     | 584     | 0.33     | 635      | 0.38     | 682   | 0.45 | 732     | 0.51      | 777       | 0.58     | 818     | 0.64   | 856      | 0.71 | 893 | 0.77 | 930  | 0.84 |
| 4490     | 569  | 0.35  | 621     | 0.42     | 670      | 0.47     | 715   | 0.54 | 758     | 0.60      | 802       | 0.68     | 845     | 0.75   | 883      | 0.82 | 919 | 0.89 | 953  | 0.96 |
| 4890     | 612  | 0.45  | 660     | 0.51     | 706      | 0.58     | 749   | 0.64 | 789     | 0.71      | 830       | 0.79     | 870     | 0.87   | 909      | 0.95 | 945 | 1.02 | 979_ | 1.10 |

1.12 Nom kW Standard Motor / & Hi Static Drive

|      |      |       |         | Externa | I Static P | ressure | (Pascals)   |          |          |      |
|------|------|-------|---------|---------|------------|---------|-------------|----------|----------|------|
|      | 27   | 75    | 30      | 00      | 32         | 25      | 35          | 50       | 37       | 75   |
| CFM  | RPM  | kW    | RPM     | kW      | RPM        | kW      | RPM         | kW       | RPM      | kW   |
|      | 1.12 | Nom k | W Std M | lotor   |            | 1.12    | Nom kV      | V Stand  | ard Moto | or   |
|      |      |       | & Drive |         |            |         | & H         | i Static | Drive    |      |
| 3260 | 925  | 0.71  | 960     | 0.77    | 994        | 0.83    | 1026        | 0.89     | 1057     | 0.95 |
| 3670 | 944  | 0.81  | 978     | 0.87    | 1010       | 0.94    | 1043        | 1.01     | 1073     | 1.08 |
| 4080 | 964  | 0.91  | 998     | 0.99    | 1030       | 1.06    | 1063        | 1.14     | 1092     | 1.21 |
| 4490 | 986  | 1.04  | 1019    | 1.11    | 1051       | 1.19    | 1082        | 1.27     | 1112     | 1.35 |
| 4890 | 1011 | 1.18  | 1043    | 1.26    | 1073       | 1.34    | 1103        | 1.42     | 1133     | 1.51 |
|      |      |       |         |         | 1.50       | Nom k   | W Over-9    | Sized M  | otor     |      |
|      |      |       |         |         |            | & H     | li Static I | Orive    |          |      |

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.12 kW - Fan Motor Heat (kW) = 1.144 x Fan kW + 0.132 1.50 kW - Fan Motor Heat (kW) = 1.178 x Fan kW + 0.464 Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-8a — Belt Drive Evaporator Fan Performance -TSC072AD - Downflow Configuration (IP)

|      |      |          |        |         |         |            |     | Externa | al Static | Pressure | (Inches | of Wate | r)       |         |          |       |     |      |     |      |
|------|------|----------|--------|---------|---------|------------|-----|---------|-----------|----------|---------|---------|----------|---------|----------|-------|-----|------|-----|------|
|      | .1   | 0        | .2     | 20      | .3      | 30         | .4  | 10      | .5        | 0        | .6      | 60      | .7       | 70      | 3.       | 80    | .9  | 0    | 1.0 | )0   |
| CFM  | RPM  | BHP      | RPM    | BHP     | RPM     | BHP        | RPM | BHP     | RPM       | BHP      | RPM     | BHP     | RPM      | BHP     | RPM      | BHP   | RPM | BHP  | RPM | BHP  |
|      | 1-1/ | /2 HP St | andard | Motor & | Low Sta | atic Drive | •   |         |           |          |         | 1-1/    | 2 HP Sta | ndard N | /lotor & | Drive |     |      |     |      |
| 1920 | -    | -        | -      | -       | 573     | 0.34       | 630 | 0.41    | 680       | 0.48     | 726     | 0.55    | 769      | 0.62    | 811      | 0.70  | 851 | 0.78 | 889 | 0.87 |
| 2160 | -    | -        | 548    | 0.35    | 602     | 0.42       | 656 | 0.50    | 706       | 0.58     | 751     | 0.65    | 792      | 0.73    | 832      | 0.81  | 871 | 0.90 | 908 | 0.99 |
| 2400 | -    | -        | 584    | 0.45    | 635     | 0.52       | 682 | 0.60    | 732       | 0.69     | 777     | 0.77    | 818      | 0.86    | 856      | 0.95  | 893 | 1.04 | 930 | 1.13 |
| 2640 | 569  | 0.47     | 621    | 0.56    | 670     | 0.64       | 715 | 0.72    | 758       | 0.81     | 802     | 0.91    | 845      | 1.01    | 883      | 1.10  | 919 | 1.20 | 953 | 1.29 |
| 2880 | 612  | 0.60     | 660    | 0.69    | 706     | 0.78       | 749 | 0.86    | 789       | 0.96     | 830     | 1.06    | 870      | 1.16    | 909      | 1.27  | 945 | 1.37 | 979 | 1.48 |
|      |      |          |        |         |         |            |     |         |           |          |         |         |          |         |          |       |     |      | 7   |      |

1-1/2 HP Standard Motor & Hi Static Drive

|      |      |         | Exte     | rnal Sta | tic Press | ure (Inch | nes of Wa | ater)   |            |      |
|------|------|---------|----------|----------|-----------|-----------|-----------|---------|------------|------|
|      | 1.1  | 10      | 1.3      | 20       | 1.3       | 30        | 1.4       | 40      | 1.         | 50   |
| CFM  | RPM  | BHP     | RPM      | BHP      | RPM       | BHP       | RPM       | BHP     | RPM        | BHP  |
|      | 1-1/ | 2 HP St | andard N | /ltr     |           |           |           |         |            |      |
|      |      | & Dri   | ve       |          |           |           |           |         |            |      |
| 1920 | 925  | 0.95    | 960      | 1.03     | 994       | 1.11      | 1026      | 1.19    | 1057       | 1.27 |
| 2160 | 944  | 1.08    | 978      | 1.17     | 1010      | 1.26      | 1043      | 1.36    | 1073       | 1.44 |
| 2400 | 964  | 1.22    | 998      | 1.32     | 1030      | 1.42      | 1063      | 1.53    | 1092       | 1.63 |
| 2640 | 986  | 1.39    | 1019     | 1.49     | 1051      | 1.60      | 1082      | 1.71    | 1112       | 1.81 |
| 2880 | 1011 | 1.58    | 1043     | 1.69     | 1073      | 1.79      | 1103      | 1.90    | 1133       | 2.02 |
|      |      |         |          |          | 2 HI      | P Over-S  | ized Mtr  | & Hi St | atic Drive | е    |

← 1-1/2 HP Standard Motor & Hi Static Drive

Notes

Data Includes Pressure Drop Due To Wet Coils And Filters. 1 1/2 HP - Fan Motor Heat (MBH) = 2.915 x Fan BHP + 0.451 2 HP - Fan Motor Heat (MBH) = 3.000 x Fan BHP + 0.500

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.



Table PD-9 — Belt Drive Evaporator Fan Performance -TSC072AD - Horizontal Configuration (SI)

|      |      |       |         |          |          |          |           | E    | External | Static Pr | essure (F | Pascals) |         |        |          |      |       |           |        |      |
|------|------|-------|---------|----------|----------|----------|-----------|------|----------|-----------|-----------|----------|---------|--------|----------|------|-------|-----------|--------|------|
|      | 2    | 5     | 5       | 0        | 7        | 5        | 10        | 00   | 1:       | 25        | 15        | 50       | 17      | 75     | 20       | 00   | 22    | 5         | 25     | 0    |
| m³/h | RPM  | kW    | RPM     | kW       | RPM      | kW       | RPM       | kW   | RPM      | kW        | RPM       | kW       | RPM     | kW     | RPM      | kW   | RPM   | kW        | RPM    | kW   |
|      | 1.12 | Nom k | W Stand | lard Mot | or & Lov | v Static | Drive     |      |          |           | 1.12      | Nom k    | W Stand | ard Mo | tor & Dr | ive  |       |           |        |      |
| 3260 | -    | -     | 565     | 0.23     | 627      | 0.29     | 679       | 0.34 | 726      | 0.39      | 771       | 0.45     | 814     | 0.51   | 857      | 0.57 | 899   | 0.63      | 939    | 0.70 |
| 3670 | 566  | 0.26  | 609     | 0.31     | 663      | 0.36     | 716       | 0.42 | 762      | 0.48      | 804       | 0.54     | 843     | 0.60   | 883      | 0.67 | 922   | 0.74      | 960    | 0.81 |
| 4080 | 619  | 0.35  | 660     | 0.40     | 701      | 0.45     | 751       | 0.51 | 798      | 0.59      | 839       | 0.65     | 877     | 0.71   | 914      | 0.78 | 950   | 0.85      | 984    | 0.93 |
| 4490 | 672  | 0.45  | 710     | 0.51     | 745      | 0.56     | 788       | 0.62 | 833      | 0.69      | 875       | 0.77     | 914     | 0.85   | 949      | 0.91 | 984   | 0.98      | 1016   | 1.06 |
| 4890 | 726  | 0.58  | 762     | 0.64     | 795      | 0.70     | 828       | 0.76 | 869      | 0.82      | 911       | 0.91     | 950     | 0.99   | 986      | 1.07 | 1019  | 1.14      | 1051   | 1.22 |
|      |      |       | 1.12    | Nom k    | N Stand  | ard Mot  | or & Driv | /e   |          |           |           |          |         |        |          | 1.12 | Nom k | W Stan    | dard M | otor |
|      |      |       |         |          |          |          |           |      |          |           |           |          |         |        |          |      | & F   | li Statio | Drive  |      |

|      |      |      |      | Externa | I Static P | ressure | (Pascals) |           |       |      |
|------|------|------|------|---------|------------|---------|-----------|-----------|-------|------|
|      | 27   | 75   | 30   | 00      | 32         | 25      | 35        | 50        | 37    | 75   |
| CFM  | RPM  | kW   | RPM  | kW      | RPM        | kW      | RPM       | kW        | RPM   | kW   |
|      |      |      | 1.12 | Nom k   | W Stand    | ard Mot | or & Hi S | Static Dr | ive   |      |
| 3260 | 978  | 0.76 | 1015 | 0.83    | 1051       | 0.90    | 1086      | 0.97      | 1118  | 1.04 |
| 3670 | 996  | 0.87 | 1034 |         |            | 1.02    | 1103      | 1.09      | 1136  | 1.17 |
| 4080 | 1020 | 1.00 | 1055 | 1.08    | 1089       | 1.16    | 1122      | 1.23      | 1154  | 1.31 |
| 4490 | 1049 | 1.14 | 1081 | 1.23    | 1113       | 1.31    | 1144      | 1.40      | 1176  | 1.48 |
| 4890 | 1081 | 1.30 | 1112 | 1.38    | 1141       | 1.47    | 1170      | 1.57      | 1199  | 1.66 |
|      |      |      | 1.50 | Nom k   | W Over-S   | Sized M | otor & Hi | Static I  | Orive |      |

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.12 kW - Fan Motor Heat (kW) = 1.144 x Fan kW + 0.132 1.50 kW - Fan Motor Heat (kW) = 1.178 x Fan kW + 0.464

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-9a — Belt Drive Evaporator Fan Performance -TSC072AD - Horizontal Configuration (IP)

|      |      |         |          |          |           |            |     | Extern | al Static | Pressure | (Inches | of Wate  | r)       |          |         |        |          |          |      |      |
|------|------|---------|----------|----------|-----------|------------|-----|--------|-----------|----------|---------|----------|----------|----------|---------|--------|----------|----------|------|------|
|      | .1   | 0       | .2       | 20       | .3        | 30         | .4  | 10     | .5        | 50       | .6      | 60       | .7       | 0        | 3.      | 30     | .9       | 0        | 1.0  | 00   |
| CFM  | RPM  | BHP     | RPM      | BHP      | RPM       | BHP        | RPM | BHP    | RPM       | BHP      | RPM     | BHP      | RPM      | BHP      | RPM     | BHP    | RPM      | BHP      | RPM  | BHP  |
|      | 1-1/ | 2 HP St | andard I | Vlotor & | Low Sta   | atic Drive | )   |        |           |          | 1-1/    | 2 HP Sta | andard N | /lotor & | Drive   |        |          |          |      |      |
| 1920 | -    | -       | 565      | 0.31     | 627       | 0.39       | 679 | 0.45   | 726       | 0.52     | 771     | 0.60     | 814      | 0.69     | 857     | 0.77   | 899      | 0.85     | 939  | 0.93 |
| 2160 | 566  | 0.35    | 609      | 0.41     | 663       | 0.48       | 716 | 0.57   | 762       | 0.64     | 804     | 0.72     | 843      | 0.80     | 883     | 0.90   | 922      | 0.99     | 960  | 1.08 |
| 2400 | 619  | 0.47    | 660      | 0.54     | 701       | 0.60       | 751 | 0.69   | 798       | 0.78     | 839     | 0.87     | 877      | 0.95     | 914     | 1.04   | 950      | 1.14     | 984  | 1.24 |
| 2640 | 672  | 0.61    | 710      | 0.68     | 745       | 0.76       | 788 | 0.83   | 833       | 0.93     | 875     | 1.04     | 914      | 1.13     | 949     | 1.22   | 984      | 1.31     | 1016 | 1.42 |
| 2880 | 726  | 0.77    | 762      | 0.86     | 795       | 0.94       | 828 | 1.02   | 869       | 1.11     | 911     | 1.21     | 950      | 1.33     | 986     | 1.44   | 1019     | 1.53     | 1051 | 1.63 |
|      |      | 1-1/    | 2 HP Sta | ndard N  | lotor & [ | Orive      |     |        |           |          |         |          |          | 1-1/     | 2 HP St | d Moto | r & Hi S | Static D | rive |      |

|      |      |      | Exte     | rnal Sta | tic Press | ure (Inch | nes of Wa | ater)  |       |      |
|------|------|------|----------|----------|-----------|-----------|-----------|--------|-------|------|
|      | 1.1  | 10   | 1.       | 20       | 1.3       | 30        | 1.4       | 40     | 1.    | 50   |
| CFM  | RPM  | BHP  | RPM      | BHP      | RPM       | BHP       | RPM       | BHP    | RPM   | BHP  |
|      |      | 1-1/ | 2 HP Sta | ndard N  | lotor & F | li Static | Drive     |        |       |      |
| 1920 | 978  | 1.02 | 1015     | 1.11     | 1051      | 1.20      | 1086      | 1.30   | 1118  | 1.39 |
| 2160 | 996  | 1.17 | 1034     | 1.27     | 1069      | 1.36      | 1103      | 1.46   | 1136  | 1.56 |
| 2400 | 1020 | 1.35 | 1055     | 1.45     | 1089      | 1.55      | 1122      | 1.66   | 1154  | 1.76 |
| 2640 | 1049 | 1.53 | 1081     | 1.65     | 1113      | 1.76      | 1144      | 1.87   | 1176  | 1.98 |
| 2880 | 1081 | 1.74 | 1112     | 1.86     | 1141      | 1.97      | 1170      | 2.10   | 1199  | 2.22 |
|      |      |      |          | 2 HP     | Over-Siz  | ed Moto   | or & High | Static | Drive |      |

Data Includes Pressure Drop Due To Wet Coils And Filters. 1 1/2 HP - Fan Motor Heat (MBH) =  $2.915 \times Fan$  BHP +  $0.451 \times Fa$ 2 HP - Fan Motor Heat (MBH) = 3.000 x Fan BHP + 0.500

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.



Table PD-10 — Belt Drive Evaporator Fan Performance -TSC090AD - Downflow Configuration (SI)

|      |                                               |      |     |      |     |      |     | E    | External | Static Pr | essure (F | Pascals) |        |            |          |         |      |      |      |      |
|------|-----------------------------------------------|------|-----|------|-----|------|-----|------|----------|-----------|-----------|----------|--------|------------|----------|---------|------|------|------|------|
|      | 2                                             | 5    | 5   | 0    | 7   | 5    | 10  | 00   | 12       | 25        | 15        | 50       | 17     | <b>7</b> 5 | 20       | 00      | 22   | 5    | 25   | 0    |
| m³/h | RPM                                           | kW   | RPM | kW   | RPM | kW   | RPM | kW   | RPM      | kW        | RPM       | kW       | RPM    | kW         | RPM      | kW      | RPM  | kW   | RPM  | kW   |
|      | 1.50 Nom kW Standard Motor & Low Static Drive |      |     |      |     |      |     |      |          |           |           | 1.50     | Nom kV | V Stand    | lard Mot | or & Dr | ive  |      |      |      |
| 4080 | -                                             | -    | -   | -    | -   | -    | 701 | 0.47 | 750      | 0.54      | 794       | 0.60     | 834    | 0.67       | 873      | 0.73    | 909  | 0.80 | 945  | 0.87 |
| 4590 | -                                             | -    | -   |      | 699 | 0.53 | 743 | 0.59 | 787      | 0.66      | 830       | 0.74     | 871    | 0.82       | 908      | 0.89    | 943  | 0.96 | 977  | 1.04 |
| 5100 | -                                             | -    | 703 | 0.61 | 747 | 0.68 | 789 | 0.74 | 827      | 0.82      | 867       | 0.90     | 906    | 0.98       | 944      | 1.06    | 980  | 1.15 | 1013 | 1.23 |
| 5610 | 713                                           | 0.69 | 755 | 0.77 | 797 | 0.85 | 836 | 0.92 | 873      | 1.00      | 908       | 1.08     | 944    | 1.17       | 980      | 1.26    | 1016 | 1.35 | 1050 | 1.45 |
| 6120 | 771                                           | 0.88 | 809 | 0.96 | 848 | 1.06 | 885 | 1.14 | 921      | 1.22      | 954       | 1.30     | 986    | 1.39       | 1019     | 1.49    | 1052 | 1.58 | 1085 | 1.69 |

1.50 Nom kW Standard Motor A Hi Static Drive

|      |      |        |         | Externa | Static P | ressure   | (Pascals) |          |          |      |
|------|------|--------|---------|---------|----------|-----------|-----------|----------|----------|------|
|      | 27   | '5     | 30      | 00      | 32       | 25        | 35        | 50       | 37       | 75   |
| CFM  | RPM  | kW     | RPM     | kW      | RPM      | kW        | RPM       | kW       | RPM      | kW   |
|      | 1.50 | Nom k  | W Std M | lotor   |          | 1.50      | Nom kV    | V Stand  | ard Moto | or   |
|      |      | & Driv | е       |         |          |           | & H       | i Static | Drive    |      |
| 4080 | 980  | 0.95   | 1013    | 1.02    | 1046     | 1.10      | 1076      | 1.17     | 1106     | 1.25 |
| 4590 | 1010 | 1.11   | 1043    | 1.19    | 1074     | 1.27      | 1105      | 1.36     | 1134     | 1.44 |
| 5100 | 1045 | 1.31   | 1076    | 1.39    | 1105     | 1.47      | 1134      | 1.56     | 1163     | 1.65 |
| 5610 | 1081 | 1.54   | 1111    | 1.63    | 1141     | 1.72      | 1168      | 1.80     | 1197     | 1.90 |
| 6120 | 1116 | 1.79   | 1148    | 1.89    | 1177     | 1.99      | 1204      | 2.08     | 1232     | 2.18 |
|      |      |        |         | 2.24    | Nom kV   | V Over-   | Sized Mo  | tor      |          |      |
|      |      |        |         |         | & Hi Sta | atic Driv | re        |          |          |      |

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.50 kW - Fan Motor Heat (kW) = 1.178 x Fan kW + 0.464 2.24 kW - Fan Motor Heat (kW) = 1.138 x Fan kW + 0.139

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-10a — Belt Drive Evaporator Fan Performance -TSC090AD - Downflow Configuration (IP)

|      |                                        |      |     |      |     |      |     | Extern | al Static | Pressure | (Inches | of Wate  | r)       |           |      |      |      |      |      |      |
|------|----------------------------------------|------|-----|------|-----|------|-----|--------|-----------|----------|---------|----------|----------|-----------|------|------|------|------|------|------|
|      | .1                                     | 0    | .2  | 20   | .3  | 30   | .4  | Ю      | .5        | 50       | .6      | 60       | .7       | 70        | 3.   | 30   | .9   | 0    | 1.0  | 00   |
| CFM  | RPM                                    | BHP  | RPM | BHP  | RPM | BHP  | RPM | BHP    | RPM       | BHP      | RPM     | BHP      | RPM      | BHP       | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 2 HP Standard Motor & Low Static Drive |      |     |      |     |      |     |        |           |          | 2 H     | P Standa | ard Moto | or & Driv | /e   |      |      |      |      |      |
| 2400 | -                                      | -    | -   | -    | -   | -    | 701 | 0.63   | 750       | 0.72     | 794     | 0.81     | 834      | 0.90      | 873  | 0.98 | 909  | 1.08 | 945  | 1.17 |
| 2700 | -                                      | -    | -   | -    | 699 | 0.70 | 743 | 0.79   | 787       | 0.89     | 830     | 0.99     | 871      | 1.09      | 908  | 1.19 | 943  | 1.29 | 977  | 1.39 |
| 3000 | -                                      | -    | 703 | 0.81 | 747 | 0.91 | 789 | 0.99   | 827       | 1.10     | 867     | 1.20     | 906      | 1.31      | 944  | 1.43 | 980  | 1.54 | 1013 | 1.65 |
| 3300 | 713                                    | 0.93 | 755 | 1.03 | 797 | 1.15 | 836 | 1.24   | 873       | 1.34     | 908     | 1.45     | 944      | 1.57      | 980  | 1.69 | 1016 | 1.82 | 1050 | 1.94 |
| 3600 | 771                                    | 1.19 | 809 | 1.29 | 848 | 1.42 | 885 | 1.53   | 921       | 1.63     | 954     | 1.74     | 986      | 1.87      | 1019 | 1.99 | 1052 | 2.13 | 1085 | 2.26 |

2 HP Standard Motor 7 & Hi Static Drive

|      |      |          | Exte    | rnal Sta | tic Press | ure (Inch | nes of Wa   | ater)   |            |      |
|------|------|----------|---------|----------|-----------|-----------|-------------|---------|------------|------|
|      | 1.1  | 10       | 1.3     | 20       | 1.3       | 30        | 1.4         | 40      | 1.         | 50   |
| CFM  | RPM  | BHP      | RPM     | BHP      | RPM       | BHP       | RPM         | BHP     | RPM        | BHP  |
|      | 2 HI | P Standa | ard Mtr |          |           | 2 HF      | Standa      | rd Moto | r &        |      |
|      |      | & Drive  |         |          |           | Н         | li Static I | Orive   |            |      |
| 2400 | 980  | 1.27     | 1013    | 1.37     | 1046      | 1.47      | 1076        | 1.57    | 1106       | 1.68 |
| 2700 | 1010 | 1.49     | 1043    | 1.60     | 1074      | 1.71      | 1105        | 1.82    | 1134       | 1.93 |
| 3000 | 1045 | 1.76     | 1076    | 1.87     | 1105      | 1.98      | 1134        | 2.09    | 1163       | 2.21 |
| 3300 | 1081 | 2.06     | 1111    | 2.18     | 1141      | 2.30      | 1168        | 2.42    | 1197       | 2.55 |
| 3600 | 1116 | 2.39     | 1148    | 2.53     | 1177      | 2.66      | 1204        | 2.79    | 1232       | 2.93 |
|      |      |          |         |          | 3 HF      | Over-S    | ized Mtr    | & Hi St | atic Drive | •    |

Data Includes Pressure Drop Due To Wet Coils And Filters. 2 HP - Fan Motor Heat (MBH) = 3.000 x Fan BHP + 0.500 3 HP - Fan Motor Heat (MBH) = 2.900 x Fan BHP + 0.475

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.



Table PD-11 — Belt Drive Evaporator Fan Performance -TSC090AD - Horizontal Configuration (SI)

|      |                                    |         |          |          |         |      |     | E    | External | Static Pr | essure (F | Pascals) |          |        |          |      |      |         |          |       |
|------|------------------------------------|---------|----------|----------|---------|------|-----|------|----------|-----------|-----------|----------|----------|--------|----------|------|------|---------|----------|-------|
|      | 2                                  | 5       | 5        | 0        | 7       | 5    | 10  | 00   | 12       | 25        | 15        | 50       | 17       | 75     | 20       | 00   | 22   | 5       | 25       | 0     |
| m³/h | RPM                                | kW      | RPM      | kW       | RPM     | kW   | RPM | kW   | RPM      | kW        | RPM       | kW       | RPM      | kW     | RPM      | kW   | RPM  | kW      | RPM      | kW    |
| 1.50 | Nom kV                             | V Std M | otor & L | ow Stati | c Drive |      |     |      |          |           | 1.50      | Nom k    | W Stand  | ard Mo | tor & Dr | ive  |      |         |          |       |
| 4080 | -                                  | -       | 673      | 0.42     | 718     | 0.47 | 769 | 0.54 | 814      | 0.61      | 855       | 0.67     | 893      | 0.73   | 929      | 0.81 | 965  | 0.88    | 999      | 0.96  |
| 4590 | 702                                | 0.51    | 738      | 0.56     | 773     | 0.62 | 817 | 0.68 | 862      | 0.76      | 904       | 0.85     | 941      | 0.92   | 975      | 0.98 | 1009 | 1.06    | 1041     | 1.14  |
| 5100 | 771                                | 0.68    | 805      | 0.74     | 837     | 0.81 | 870 | 0.87 | 912      | 0.94      | 951       | 1.03     | 989      | 1.12   | 1025     | 1.21 | 1056 | 1.28    | 1088     | 1.36  |
| 5610 | 842                                | 0.89    | 873      | 0.96     | 903     | 1.03 | 930 | 1.10 | 963      | 1.17      | 1000      | 1.25     | 1037     | 1.34   | 1073     | 1.45 | 1106 | 1.55    | 1136     | 1.63  |
| 6120 | 913                                | 1.14    | 942      | 1.22     | 970     | 1.30 | 996 | 1.37 | 1021     | 1.45      | 1052      | 1.52     | 1086     | 1.61   | 1121     | 1.71 | 1153 | 1.82    | 1184     | 1.93  |
|      | 1.50 Nom kW Standard Motor & Drive |         |          |          |         |      |     |      |          |           | 1.50      | Nom k    | W Stand  | ard Mo | tor &    |      | 2.24 | Nom     | kW OS    |       |
|      |                                    |         |          |          |         |      |     |      |          |           |           | Hi       | Static D | rive   |          |      | Mo   | tor & H | i Static | Drive |

|      |                                                                                                     |      |        | Externa  | I Static P | ressure  | (Pascals)  |      |      |      |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------------|------|--------|----------|------------|----------|------------|------|------|------|--|--|--|--|--|
|      | 27                                                                                                  | 75   | 30     | 00       | 32         | 25       | 35         | 50   | 37   | 75   |  |  |  |  |  |
| CFM  | RPM                                                                                                 | kW   | RPM    | kW       | RPM        | kW       | RPM        | kW   | RPM  | kW   |  |  |  |  |  |
|      | 1.50 Nom kW Standard Motor & Hi Static Drive 1080 1035 1.04 1070 1.12 1104 1.19 1137 1.27 1168 1.35 |      |        |          |            |          |            |      |      |      |  |  |  |  |  |
| 4080 | 4080 1035 1.04 1070 1.12 1104 1.19 1137 1.27 1168 1.35                                              |      |        |          |            |          |            |      |      |      |  |  |  |  |  |
| 4590 | 1073                                                                                                | 1.22 | 1104   | 1.31     | 1136       | 1.40     | 1167       | 1.48 | 1198 | 1.57 |  |  |  |  |  |
| 5100 | 1117                                                                                                | 1.44 | 1146   | 1.53     | 1176       | 1.62     | 1205       | 1.72 | 1233 | 1.82 |  |  |  |  |  |
| 5610 | 1165                                                                                                | 1.72 | 1194   | 1.80     | 1220       | 1.88     | 1248       | 1.98 | 1275 | 2.08 |  |  |  |  |  |
| 6120 | 1215                                                                                                | 2.04 | 1242   | 2.13     | 1269       | 2.22     | 1295       | 2.31 | 1319 | 2.40 |  |  |  |  |  |
|      |                                                                                                     | 2.24 | Nom kV | V Over-9 | Sized Mo   | tor & Hi | i Static D | rive |      |      |  |  |  |  |  |

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.50 kW - Fan Motor Heat (kW) = 1.178 x Fan kW + 0.464 2.24 kW - Fan Motor Heat (kW) = 1.138 x Fan kW + 0.139 Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-11a — Belt Drive Evaporator Fan Performance -TSC090AD - Horizontal Configuration (IP)

|      |     |          |           |          |          |        |       | Extern | al Static | Pressure | (Inches  | of Wate | r)       |      |       |      |      |      |      |      |
|------|-----|----------|-----------|----------|----------|--------|-------|--------|-----------|----------|----------|---------|----------|------|-------|------|------|------|------|------|
|      | .1  | 0        | .2        | 20       | .3       | 30     | .4    | 10     | .5        | 0        | .6       | 60      | .7       | 0    | 3.    | 80   | .9   | 0    | 1.0  | )0   |
| CFM  | RPM | BHP      | RPM       | BHP      | RPM      | BHP    | RPM   | BHP    | RPM       | BHP      | RPM      | BHP     | RPM      | BHP  | RPM   | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 2 H | P Std M  | lotor & L | ow Stat  | ic Drive |        |       |        |           | 2 HI     | P Standa | rd Moto | r & Driv | /e   |       |      |      |      |      |      |
| 2400 | -   | -        | 673       | 0.56     | 718      | 0.63   | 769   | 0.72   | 814       | 0.82     | 855      | 0.90    | 893      | 0.98 | 929   | 1.08 | 965  | 1.18 | 999  | 1.29 |
| 2700 | 702 | 0.68     | 738       | 0.76     | 773      | 0.83   | 817   | 0.92   | 862       | 1.02     | 904      | 1.13    | 941      | 1.23 | 975   | 1.32 | 1009 | 1.42 | 1041 | 1.52 |
| 3000 | 771 | 0.91     | 805       | 1.00     | 837      | 1.08   | 870   | 1.17   | 912       | 1.26     | 951      | 1.38    | 989      | 1.51 | 1025  | 1.62 | 1056 | 1.72 | 1088 | 1.82 |
| 3300 | 842 | 1.19     | 873       | 1.29     | 903      | 1.38   | 930   | 1.47   | 963       | 1.57     | 1000     | 1.68    | 1037     | 1.80 | 1073  | 1.94 | 1106 | 2.08 | 1136 | 2.19 |
| 3600 | 913 | 1.53     | 942       | 1.63     | 970      | 1.74   | 996   | 1.84   | 1021      | 1.94     | 1052     | 2.04    | 1086     | 2.16 | 1121  | 2.29 | 1153 | 2.44 | 1184 | 2.59 |
|      | 2 H | P Standa | 2 HI      | P Std Mo | otor & H | Static | Drive |        |           | <u> </u> |          |         |          |      |       |      |      |      |      |      |
|      |     |          |           |          |          |        |       |        |           |          |          |         |          | _    | LID O | 0:   |      |      |      |      |

3 HP Over-Sized Motor & Hi Static Drive

|      |                                                                                                                                                                                                                                                                                                   |      | Exte | ernal Sta | atic Press | ure (Ind | hes of W  | ater) |      |      |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-----------|------------|----------|-----------|-------|------|------|--|--|--|--|--|
|      | 1.1                                                                                                                                                                                                                                                                                               | 10   | 1.:  | 20        | 1.3        | 30       | 1.4       | 40    | 1.9  | 50   |  |  |  |  |  |
| CFM  | RPM                                                                                                                                                                                                                                                                                               | RPM  | BHP  |           |            |          |           |       |      |      |  |  |  |  |  |
|      | 2 HP Standard Motor & Hi Static Drive                                                                                                                                                                                                                                                             |      |      |           |            |          |           |       |      |      |  |  |  |  |  |
| 2400 | 2 HP Standard Motor & Hi Static Drive           0         1035         1.39         1070         1.50         1104         1.60         1137         1.70         1           0         1073         1.64         1104         1.76         1136         1.87         1167         1.99         1 |      |      |           |            |          |           |       |      |      |  |  |  |  |  |
| 2700 | 1073                                                                                                                                                                                                                                                                                              | 1198 | 2.11 |           |            |          |           |       |      |      |  |  |  |  |  |
| 3000 | 1117                                                                                                                                                                                                                                                                                              | 2.31 | 1233 | 2.44      |            |          |           |       |      |      |  |  |  |  |  |
| 3300 | 1165                                                                                                                                                                                                                                                                                              | 2.30 | 1194 | 2.41      | 1220       | 2.52     | 1248      | 2.66  | 1275 | 2.79 |  |  |  |  |  |
| 3600 | 1215                                                                                                                                                                                                                                                                                              | 2.73 | 1242 | 2.86      | 1269       | 2.98     | 1295      | 3.10  | 1319 | 3.22 |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                                                                   |      | 3 H  | P Over-S  | ized Mot   | tor & Hi | gh Static | Drive |      |      |  |  |  |  |  |

Notes

Data Includes Pressure Drop Due To Wet Coils And Filters. 2 HP - Fan Motor Heat (MBH) =  $3.000 \times \text{Fan BHP} + 0.500$ 3 HP - Fan Motor Heat (MBH) =  $2.900 \times \text{Fan BHP} + 0.475$  Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.



Table PD-12 — Belt Drive Evaporator Fan Performance -TSC102AD - Downflow Configuration (SI)

|      |      |       |         |          |          |          |       | E    | External | Static Pr | essure (F | Pascals) |      |       |        |         |          |      |     |      |
|------|------|-------|---------|----------|----------|----------|-------|------|----------|-----------|-----------|----------|------|-------|--------|---------|----------|------|-----|------|
|      | 2    | 5     | 5       | 0        | 7        | 5        | 10    | 00   | 12       | 25        | 15        | 50       | 17   | 75    | 20     | 00      | 22       | 5    | 25  | 0    |
| m³/h | RPM  | kW    | RPM     | kW       | RPM      | kW       | RPM   | kW   | RPM      | kW        | RPM       | kW       | RPM  | kW    | RPM    | kW      | RPM      | kW   | RPM | kW   |
|      | 1.50 | Nom k | W Stand | lard Mot | or & Lov | v Static | Drive |      |          |           |           |          | 1.50 | Nom k | W Stan | dard Mo | otor & D | rive |     |      |
| 4620 |      |       |         |          |          |          |       |      |          |           |           | 0.62     | 733  | 0.71  | 769    | 0.81    | 802      | 0.90 | 833 | 1.00 |
| 5200 | -    | -     | -       | -        | 611      | 0.48     | 650   | 0.55 | 688      | 0.64      | 725       | 0.73     | 761  | 0.83  | 796    | 0.93    | 828      | 1.03 | 861 | 1.13 |
| 5780 | -    | -     | 612     | 0.51     | 651      | 0.59     | 689   | 0.68 | 724      | 0.76      | 759       | 0.86     | 792  | 0.96  | 825    | 1.07    | 856      | 1.18 | 887 | 1.28 |
| 6350 | 622  | 0.56  | 659     | 0.64     | 693      | 0.72     | 729   | 0.82 | 764      | 0.92      | 795       | 1.01     | 826  | 1.11  | 857    | 1.22    | 887      | 1.34 | 916 | 1.46 |
| 6930 | 671  | 0.71  | 706     | 0.80     | 738      | 0.89     | 770   | 0.98 | 804      | 1.09      | 834       | 1.19     | 864  | 1.30  | 892    | 1.40    | 920      | 1.52 | 948 | 1.64 |

1.50 Nom kW Standard Motor & Hi Static Drive

|      |      |       |         |          |      |      |      | Е     | xternal S | Static Pr  | essure (F | Pascals) |            |       |      |      |      |      |      |      |
|------|------|-------|---------|----------|------|------|------|-------|-----------|------------|-----------|----------|------------|-------|------|------|------|------|------|------|
|      | 27   | 5     | 30      | 00       | 32   | 25   | 35   | 50    | 37        | 75         | 40        | 00       | 42         | 25    | 45   | 50   | 47   | 5    | 50   | 0    |
| m³/h | RPM  | kW    | RPM     | kW       | RPM  | kW   | RPM  | kW    | RPM       | kW         | RPM       | kW       | RPM        | kW    | RPM  | kW   | RPM  | kW   | RPM  | kW   |
|      | 1.50 | Nom k | W Std M | tr & Dri | ve   |      | 1.50 | Nom k | W Std M   | tr & Hi \$ | Static Dr |          |            |       |      |      |      |      |      |      |
| 4620 | 863  | 1.11  | 892     | 1.21     | 920  | 1.33 | 946  | 1.44  | 973       | 1.55       | 999       | 1.67     | 1025       | 1.79  | 1050 | 1.90 | 1073 | 2.02 | 1098 | 2.14 |
| 5200 | 891  | 1.24  | 919     | 1.35     | 946  | 1.46 | 973  | 1.58  | 999       | 1.71       | 1024      | 1.83     | 1048       | 1.96  | 1072 | 2.09 | 1096 | 2.22 | 1119 | 2.34 |
| 5780 | 917  | 1.40  | 946     | 1.51     | 974  | 1.63 | 1001 | 1.75  | 1026      | 1.88       | 1051      | 2.01     | 1074       | 2.14  | 1099 | 2.27 | 1121 | 2.41 | 1143 | 2.55 |
| 6350 | 945  | 1.58  | 974     | 1.70     | 1001 | 1.82 | 1028 | 1.95  | 1054      | 2.08       | 1079      | 2.20     | 1103       | 2.34  | 1126 | 2.48 | 1148 | 2.62 | 1170 | 2.76 |
| 6930 | 976  | 1.78  | 1002    | 1.91     | 1029 | 2.04 | 1055 | 2.17  | 1081      | 2.30       | 1105      | 2.43     | 1130       | 2.58  | 1154 | 2.72 | 1176 | 2.85 | 1199 | 3.01 |
|      |      |       |         |          |      |      |      | 2.24  | Nom kV    | V Over-S   | Sized Mo  | tor & Hi | gh Station | Drive |      |      |      |      |      |      |

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.50 kW - Fan Motor Heat (kW) = 1.178 x Fan kW + 0.464 2.24 kW - Fan Motor Heat (kW) = 1.138 x Fan kW + 0.139 Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-12a — Belt Drive Evaporator Fan Performance -TSC102AD - Downflow Configuration (IP)

|      |     |      |          |          |          |          |       | Externa | al Static | Pressure | (Inches | of Wate | r)     |            |           |      |     |      |      |      |
|------|-----|------|----------|----------|----------|----------|-------|---------|-----------|----------|---------|---------|--------|------------|-----------|------|-----|------|------|------|
|      | .1  | 0    | .2       | 20       | .3       | 30       | .4    | 10      | .5        | 50       | .6      | 60      | .7     | <b>'</b> 0 | 3.        | 30   | .9  | 0    | 1.0  | )0   |
| CFM  | RPM | BHP  | RPM      | BHP      | RPM      | BHP      | RPM   | BHP     | RPM       | BHP      | RPM     | BHP     | RPM    | BHP        | RPM       | BHP  | RPM | BHP  | RPM  | BHP  |
|      |     | 2 HI | P Standa | ard Moto | or & Low | Static I | Orive |         |           |          |         | 2 HF    | Standa | rd Moto    | or & Driv | re   |     |      |      |      |
| 2720 |     |      |          |          |          |          |       |         |           |          | 695     | 0.84    | 733    | 0.95       | 769       | 1.08 | 802 | 1.21 | 833  | 1.34 |
| 3060 | -   | -    | -        | -        | 611      | 0.64     | 650   | 0.74    | 688       | 0.85     | 725     | 0.98    | 761    | 1.11       | 796       | 1.25 | 828 | 1.38 | 861  | 1.52 |
| 3400 | -   | -    | 612      | 0.68     | 651      | 0.79     | 689   | 0.91    | 724       | 1.02     | 759     | 1.15    | 792    | 1.29       | 825       | 1.43 | 856 | 1.58 | 887  | 1.72 |
| 3740 | 622 | 0.76 | 659      | 0.86     | 693      | 0.97     | 729   | 1.10    | 764       | 1.23     | 795     | 1.35    | 826    | 1.49       | 857       | 1.64 | 887 | 1.79 | 916  | 1.96 |
| 4080 | 671 | 0.96 | 706      | 1.08     | 738      | 1.19     | 770   | 1.32    | 804       | 1.46     | 834     | 1.60    | 864    | 1.74       | 892       | 1.88 | 920 | 2.04 | 948_ | 2.20 |
|      |     |      |          |          |          |          |       |         |           |          |         |         |        |            |           |      |     |      |      | ,    |

2 HP Standard Motor & ' Hi Static Drive

|      |                                                                                                   |      |        |          |         |      |      | Extern | al Static | Pressure | (Inches   | of Wate | r)   |      |      |      |      |      |      |      |
|------|---------------------------------------------------------------------------------------------------|------|--------|----------|---------|------|------|--------|-----------|----------|-----------|---------|------|------|------|------|------|------|------|------|
|      | 1.1                                                                                               | 10   | 1.     | 20       | 1.3     | 30   | 1.4  | 40     | 1.5       | 50       | 1.0       | 60      | 1.   | 70   | 1.   | 80   | 1.9  | 90   | 2.0  | )0   |
| CFM  | RPM                                                                                               | BHP  | RPM    | BHP      | RPM     | BHP  | RPM  | BHP    | RPM       | BHP      | RPM       | BHP     | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |                                                                                                   | 2 HF | Standa | rd Mtr 8 | k Drive |      |      | 2 HF   | Std Mo    | tor & Hi | Static D  | rive    |      |      |      |      |      |      |      |      |
| 2720 |                                                                                                   |      |        |          |         |      | 946  | 1.93   | 973       | 2.08     | 999       | 2.24    | 1025 | 2.39 | 1050 | 2.55 | 1073 | 2.71 | 1098 | 2.88 |
| 3060 | 863 1.48 892 1.63 920 1.7<br>891 1.66 919 1.81 946 1.9                                            |      |        |          |         | 1.96 | 973  | 2.12   | 999       | 2.29     | 1024      | 2.46    | 1048 | 2.63 | 1072 | 2.80 | 1096 | 2.98 | 1119 | 3.14 |
| 3400 | 891     1.66     919     1.81     946     1.9       917     1.87     946     2.03     974     2.1 |      |        |          |         |      | 1001 | 2.34   | 1026      | 2.52     | 1051      | 2.69    | 1074 | 2.86 | 1099 | 3.05 | 1121 | 3.23 | 1143 | 3.41 |
| 3740 | 945                                                                                               | 2.11 | 974    | 2.28     | 1001    | 2.44 | 1028 | 2.61   | 1054      | 2.78     | 1079      | 2.96    | 1103 | 3.14 | 1126 | 3.32 | 1148 | 3.51 | 1170 | 3.71 |
| 4080 | 976                                                                                               | 2.38 | 1002   | 2.56     | 1029    | 2.73 | 1055 | 2.91   | 1081      | 3.09     | 1105      | 3.26    | 1130 | 3.45 | 1154 | 3.65 | 1176 | 3.83 | 1199 | 4.03 |
|      |                                                                                                   |      |        |          |         |      |      | 3 F    | IP Over-S | ized Mo  | otor & Di | ive     |      |      |      |      |      |      |      |      |

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 2 HP - Fan Motor Heat (MBH) =  $3.000 \times$  Fan BHP +  $0.500 \times$  Fan Motor Heat (MBH) =  $2.900 \times$  Fan BHP +  $0.475 \times$ 

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.



Table PD-13 — Belt Drive Evaporator Fan Performance -TSC102AD - Horizontal Configuration (SI)

|      |      |       |          |           |          |       |     | E    | External | Static Pr | essure (F | Pascals) |            |         |         |         |          |         |           |      |
|------|------|-------|----------|-----------|----------|-------|-----|------|----------|-----------|-----------|----------|------------|---------|---------|---------|----------|---------|-----------|------|
|      | 2    | 5     | 5        | 0         | 7        | 5     | 10  | 00   | 12       | 25        | 15        | 50       | 17         | 75      | 20      | 00      | 22       | :5      | 25        | 0    |
| m³/h | RPM  | kW    | RPM      | kW        | RPM      | kW    | RPM | kW   | RPM      | kW        | RPM       | kW       | RPM        | kW      | RPM     | kW      | RPM      | kW      | RPM       | kW   |
|      | 1.50 | Nom k | W Std IV | ltr & Lov | v Static | Drive |     |      |          |           |           | 1.50     | Nom kV     | V Stand | ard Mot | or & Dr | ive      |         |           |      |
| 4620 | -    | -     | -        | -         | 646      | 0.50  | 689 | 0.58 | 734      | 0.67      | 781       | 0.77     | 826        | 0.88    | 865     | 0.98    | 898      | 1.07    | 928       | 1.16 |
| 5200 | 616  |       |          |           |          |       | 735 | 0.73 | 773      | 0.82      | 812       | 0.92     | 855        | 1.03    | 897     | 1.15    | 934      | 1.27    | 969       | 1.38 |
| 5780 | 675  | 0.68  | 711      | 0.75      | 743      | 0.82  | 781 | 0.91 | 819      | 1.01      | 853       | 1.11     | 886        | 1.21    | 925     | 1.34    | 964      | 1.47    | 1000      | 1.60 |
| 6350 | 735  | 0.89  | 770      | 0.97      | 799      | 1.04  | 830 | 1.12 | 865      | 1.23      | 899       | 1.34     | 930        | 1.45    | _960    | 1.56    | 994      | 1.68    | 1028      | 1.82 |
| 6930 |      |       |          |           |          |       |     | 913  | 1.48     | 945       | 1.60      | 977      | 1.72/      | 1006    | 1.84    | 1034    | 1.96     | 1061    | 2.08      |      |
|      |      |       |          |           |          |       |     |      |          |           | 1.        | .50 Nom  | kW Std     | Mtr ′   |         | 2.24    | l Nom l  | kW Ove  | r-Sized   |      |
|      |      |       |          |           |          |       |     |      |          |           | 8         | k High Տ | tatic Driv | /e      |         | Mo      | tor & Hi | igh Sta | tic Drive | •    |

|      |      |            |      |      |      |       |         |         | External | Static Pr | essure (F | Pascals)  |         |        |          |      |      |      |      |      |
|------|------|------------|------|------|------|-------|---------|---------|----------|-----------|-----------|-----------|---------|--------|----------|------|------|------|------|------|
|      | 27   | <b>7</b> 5 | 30   | 00   | 32   | 25    | 35      | 50      | 37       | 75        | 40        | 00        | 42      | 25     | 45       | 50   | 47   | 5    | 50   | 0    |
| m³/h | RPM  | kW         | RPM  | kW   | RPM  | kW    | RPM     | kW      | RPM      | kW        | RPM       | kW        | RPM     | kW     | RPM      | kW   | RPM  | kW   | RPM  | kW   |
|      |      |            |      |      | 1.50 | Nom k | W Stand | ard Mot | or & Hig | h Static  | Drive     |           |         |        |          |      |      |      |      |      |
| 4620 | 956  | 1.25       | 982  | 1.33 | 1008 | 1.42  | 1033    | 1.51    | 1056     | 1.60      | 1079      | 1.69      | 1102    | 1.78   | 1125     | 1.87 | 1146 | 1.95 | 1168 | 2.04 |
| 5200 | 999  | 1.49       | 1026 | 1.58 | 1052 | 1.68  | 1078    | 1.78    | 1101     | 1.88      | 1124      | 1.98      | 1146    | 2.08   | 1168     | 2.18 | 1188 | 2.27 | 1209 | 2.37 |
| 5780 | 1034 | 1.73       | 1067 | 1.86 | 1094 | 1.97  | 1120    | 2.08    | 1145     | 2.20      | 1168      | 2.31      | 1191    | 2.42   | 1213     | 2.53 | 1234 | 2.63 | 1254 | 2.74 |
| 6350 | 1063 | 1.96       | 1098 | 2.11 | 1129 | 2.26  | 1158    | 2.40    | 1185     | 2.53      | 1210      | 2.66      | 1234    | 2.78   | 1256     | 2.90 | 1278 | 3.03 | 1299 | 3.15 |
| 6930 | 1093 | 2.23       | 1125 | 2.38 | 1157 | 2.53  | 1188    | 2.70    | 1218     | 2.86      | 1245      | 3.01      | 1273    | 3.16   | 1297     | 3.31 | -    | -    | -    | -    |
|      |      |            |      |      |      |       |         |         |          | 2.24 No   | m kW O    | ver-Sized | Motor a | & High | Static D | rive |      |      |      |      |

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.50 kW - Fan Motor Heat (kW) = 1.178 x Fan kW + 0.464 2.24 kW - Fan Motor Heat (kW) = 1.138 x Fan kW + 0.139 Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-13a — Belt Drive Evaporator Fan Performance -TSC102AD - Horizontal Configuration (IP)

|      |     |         |           |          |       |      |     | Externa | al Static | Pressure | (Inches | of Water | -)        |      |      |          |         |         |      |      |
|------|-----|---------|-----------|----------|-------|------|-----|---------|-----------|----------|---------|----------|-----------|------|------|----------|---------|---------|------|------|
|      | .1  | 0       | .2        | 20       | .3    | 30   | .4  | 10      | .5        | 50       | .6      | 60       | .7        | 0    | 3.   | 30       | .9      | 0       | 1.0  | )0   |
| CFM  | RPM | BHP     | RPM       | BHP      | RPM   | BHP  | RPM | BHP     | RPM       | BHP      | RPM     | BHP      | RPM       | BHP  | RPM  | BHP      | RPM     | BHP     | RPM  | BHP  |
|      | 2 H | P Std M | ltr & Lov | v Static | Drive |      |     |         |           | 2 HI     | Standa  | rd Moto  | r & Drive | ,    |      |          |         |         |      |      |
| 2720 | -   | -       | -         | -        | 646   | 0.67 | 689 | 0.78    | 734       | 0.90     | 781     | 1.04     | 826       | 1.18 | 865  | 1.31     | 898     | 1.44    | 928  | 1.56 |
| 3060 | 616 | 0.69    | 654       | 0.77     | 693   | 0.86 | 735 | 0.98    | 773       | 1.10     | 812     | 1.23     | 855       | 1.39 | 897  | 1.55     | 934     | 1.70    | 969  | 1.85 |
| 3400 | 675 | 0.92    | 711       | 1.01     | 743   | 1.10 | 781 | 1.22    | 819       | 1.36     | 853     | 1.49     | 886       | 1.62 | 925  | 1.79     | 964     | 1.97    | 1000 | 2.14 |
| 3740 | 735 | 1.20    | 770       | 1.30     | 799   | 1.40 | 830 | 1.51    | 865       | 1.65     | 899     | 1.79     | 930       | 1.94 | 960  | 2.09     | 994     | 2.26    | 1028 | 2.44 |
| 4080 | 796 | 1.53    | 828       | 1.65     | 857   | 1.76 | 883 | 1.86    | 913       | 1.99     | 945     | 2.15     | 977       | 2.30 | 1006 | 2.47     | 1034    | 2.63    | 1061 | 2.79 |
|      |     |         |           |          |       |      |     |         |           |          |         |          | <b>^</b>  |      | 3 H  | P Over-S | Sized M | tr & Dr | ive  |      |
|      |     |         |           |          |       |      |     |         |           |          |         | 2 HP Std | l Motor   | &    |      |          |         |         |      |      |

|      |      |      |        |         |          |          |      | Externa | al Static | Pressure | (Inches  | of Wate | r)   |      |      |      |      |      |      |      |
|------|------|------|--------|---------|----------|----------|------|---------|-----------|----------|----------|---------|------|------|------|------|------|------|------|------|
|      | 1.1  | 10   | 1.     | 20      | 1.3      | 30       | 1.   | 40      | 1.        | 50       | 1.       | 60      | 1.   | 70   | 1.3  | 80   | 1.9  | 90   | 2.0  | )0   |
| CFM  | RPM  | BHP  | RPM    | BHP     | RPM      | BHP      | RPM  | BHP     | RPM       | BHP      | RPM      | BHP     | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |      | 2 HF | Standa | rd Moto | r & High | Static D |      | 3 H     | P Over-S  | Sized M  | otor & [ | Drive   |      |      |      |      |      |      |      |      |
| 2720 |      |      |        |         |          |          |      |         |           |          |          |         |      |      |      | 1168 | 2.74 |      |      |      |
| 3060 | 999  | 1.99 | 1026   | 2.12    | 1052     | 2.26     | 1078 | 2.39    | 1101      | 2.52     | 1124     | 2.66    | 1146 | 2.79 | 1168 | 2.92 | 1188 | 3.05 | 1209 | 3.18 |
| 3400 | 1034 | 2.32 | 1067   | 2.49    | 1094     | 2.64     | 1120 | 2.79    | 1145      | 2.94     | 1168     | 3.09    | 1191 | 3.24 | 1213 | 3.39 | 1234 | 3.53 | 1254 | 3.68 |
| 3740 | 1063 | 2.63 | 1098   | 2.84    | 1129     | 3.03     | 1158 | 3.21    | 1185      | 3.39     | 1210     | 3.56    | 1234 | 3.73 | 1256 | 3.89 | 1278 | 4.06 | 1299 | 4.23 |
| 4080 | 1093 | 2.99 | 1125   | 3.19    | 1157     | 3.40     | 1188 | 3.62    | 1218      | 3.83     | 1245     | 4.03    | 1273 | 4.24 | 1297 | 4.44 | -    | -    | -    | -    |
|      |      |      |        |         |          |          |      | 3 HF    | Over-Si   | zed Mot  | or & Dri | ve      |      |      |      |      |      |      |      |      |

Notes

Data Includes Pressure Drop Due To Wet Coils And Filters. 2 HP - Fan Motor Heat (MBH) =  $3.000 \times \text{Fan BHP} + 0.500$  3 HP - Fan Motor Heat (MBH) =  $2.900 \times \text{Fan BHP} + 0.475$ 

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

**Hi Static Drive** 



Table PD-14 — Belt Drive Evaporator Fan Performance -TSC120AD - Downflow Configuration (SI)

|      |     |      |      |       |         |          |          | - 1  | External | Static Pr | essure (F | Pascals) |          |      |     |      |      |      |      |      |
|------|-----|------|------|-------|---------|----------|----------|------|----------|-----------|-----------|----------|----------|------|-----|------|------|------|------|------|
|      | 2   | 5    | 5    | 0     | 7       | 5        | 10       | 00   | 12       | 25        | 15        | 50       | 17       | 75   | 20  | 00   | 22   | 5    | 25   | 0    |
| m³/h | RPM | kW   | RPM  | kW    | RPM     | kW       | RPM      | kW   | RPM      | kW        | RPM       | kW       | RPM      | kW   | RPM | kW   | RPM  | kW   | RPM  | kW   |
|      |     |      | 2.24 | Nom k | W Stand | ard Mote | or & Lov |      | 2.24     | Nom k     | W Stand   | dard Mo  | otor & D | rive |     |      |      |      |      |      |
| 5440 | -   | -    | -    | -     | -       | -        | -        | -    | 718      | 0.72      | 754       | 0.82     | 789      | 0.93 | 822 | 1.03 | 856  | 1.14 | 887  | 1.25 |
| 6120 | -   | -    | -    | -     | -       | -        | 731      | 0.81 | 764      | 0.90      | 797       | 0.99     | 829      | 1.10 | 860 | 1.22 | 892  | 1.34 | 922  | 1.46 |
| 6800 | -   | -    | 715  | 0.81  | 747     | 0.90     | 782      | 1.01 | 814      | 1.11      | 844       | 1.21     | 874      | 1.32 | 903 | 1.44 | 932  | 1.56 | 960  | 1.69 |
| 7480 | 741 | 0.95 | 773  | 1.04  | 803     | 1.14     | 834      | 1.24 | 864      | 1.36      | 894       | 1.48     | 922      | 1.59 | 948 | 1.70 | 975  | 1.82 | 1001 | 1.95 |
| 8160 | 803 | 1.21 | 833  | 1.31  | 861     | 1.42     | 887      | 1.52 | 916      | 1.64      | 945       | 1.77     | 972      | 1.90 | 997 | 2.02 | 1022 | 2.14 | 1046 | 2.27 |

|      |                                    | External Static Pressure (Pascals) |      |      |      |      |      |      |        |         |          |          |            |       |      |      |      |      |      |      |
|------|------------------------------------|------------------------------------|------|------|------|------|------|------|--------|---------|----------|----------|------------|-------|------|------|------|------|------|------|
|      | 27                                 | 75                                 | 30   | 00   | 32   | 25   | 35   | 50   | 37     | 75      | 40       | 00       | 42         | 25    | 45   | 50   | 47   | 5    | 50   | 0    |
| m³/h | RPM                                | kW                                 | RPM  | kW   | RPM  | kW   | RPM  | kW   | RPM    | kW      | RPM      | kW       | RPM        | kW    | RPM  | kW   | RPM  | kW   | RPM  | kW   |
|      | 2.24 Nom kW Standard Motor & Drive |                                    |      |      |      |      |      |      |        |         |          |          |            |       |      |      |      |      |      |      |
| 5440 | 917                                | 1.36                               | 945  | 1.47 | 973  | 1.60 | 999  | 1.72 | 1024   | 1.84    | 1048     | 1.97     | 1072       | 2.10  | 1095 | 2.23 | 1117 | 2.37 | 1140 | 3.36 |
| 6120 | 951                                | 1.57                               | 979  | 1.69 | 1007 | 1.82 | 1033 | 1.94 | 1059   | 2.07    | 1082     | 2.20     | 1107       | 2.34  | 1130 | 2.49 | 1152 | 2.63 | 1173 | 3.71 |
| 6800 | 988                                | 1.82                               | 1015 | 1.95 | 1042 | 2.08 | 1068 | 2.21 | 1093   | 2.35    | 1117     | 2.48     | 1142       | 2.63  | 1164 | 2.76 | 1187 | 2.91 | 1209 | 4.11 |
| 7480 | 1028                               | 2.09                               | 1053 | 2.23 | 1078 | 2.38 | 1103 | 2.52 | 1128   | 2.66    | 1152     | 2.81     | 1176       | 2.95  | 1198 | 3.10 | 1221 | 3.25 | -    | -    |
| 8160 | 1071                               | 2.41                               | 1095 | 2.55 | 1119 | 2.70 | 1142 | 2.86 | 1166   | 3.02    | 1189     | 3.17     | 1212       | 3.33  | -    | -    | -    | -    | -    | -    |
|      |                                    |                                    |      |      |      |      |      | 2.24 | Nom kV | V Stand | ard Moto | or & Hig | h Static I | Drive |      |      |      |      |      |      |

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 2.24 kW - Fan Motor Heat (kW) = 1.138 x Fan kW + 0.139

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-14a — Belt Drive Evaporator Fan Performance -TSC120AD - Downflow Configuration (IP)

|      |                                        | External Static Pressure ( |     |      |     |      |     |      |     |      |     |      | r)       |         |         |      |      |      |      |      |
|------|----------------------------------------|----------------------------|-----|------|-----|------|-----|------|-----|------|-----|------|----------|---------|---------|------|------|------|------|------|
|      | .1                                     | 0                          | .2  | 20   | .3  | 80   | .4  | 10   | .5. | 50   | .6  | 60   | .7       | 70      | 3.      | 80   | .9   | 0    | 1.0  | 00   |
| CFM  | RPM                                    | BHP                        | RPM | BHP  | RPM | BHP  | RPM | BHP  | RPM | BHP  | RPM | BHP  | RPM      | BHP     | RPM     | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 3 HP Standard Motor & Low Static Drive |                            |     |      |     |      |     |      |     |      |     | 3 H  | P Standa | ard Mot | or & Dr | ive  |      |      |      |      |
| 3200 | -                                      | -                          | -   | -    | -   | -    | -   | -    | 718 | 0.97 | 754 | 1.10 | 789      | 1.25    | 822     | 1.38 | 856  | 1.53 | 887  | 1.67 |
| 3600 | -                                      | -                          | -   | -    | -   | -    | 731 | 1.08 | 764 | 1.20 | 797 | 1.33 | 829      | 1.48    | 860     | 1.63 | 892  | 1.79 | 922  | 1.95 |
| 4000 | -                                      | -                          | 715 | 1.09 | 747 | 1.21 | 782 | 1.35 | 814 | 1.49 | 844 | 1.63 | 874      | 1.77    | 903     | 1.93 | 932  | 2.09 | 960  | 2.27 |
| 4400 | 741                                    | 1.27                       | 773 | 1.40 | 803 | 1.53 | 834 | 1.67 | 864 | 1.82 | 894 | 1.98 | 922      | 2.13    | 948     | 2.28 | 975  | 2.44 | 1001 | 2.62 |
| 4800 | 803                                    | 1.62                       | 833 | 1.76 | 861 | 1.90 | 887 | 2.04 | 916 | 2.20 | 945 | 2.38 | 972      | 2.55    | 997     | 2.71 | 1022 | 2.87 | 1046 | 3.04 |

|      |                             |                                  |      |      |      |      |      | Extern | al Static | Pressure | (Inches | of Wate | r)   |      |      |      |      |      |      |      |
|------|-----------------------------|----------------------------------|------|------|------|------|------|--------|-----------|----------|---------|---------|------|------|------|------|------|------|------|------|
|      | 1.1                         | 10                               | 1.3  | 20   | 1.3  | 30   | 1.4  | 40     | 1.        | 50       | 1.0     | 60      | 1.   | 70   | 1.3  | 30   | 1.9  | 90   | 2.0  | )0   |
| CFM  | RPM                         | BHP                              | RPM  | BHP  | RPM  | BHP  | RPM  | BHP    | RPM       | BHP      | RPM     | BHP     | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 3 HP Standard Motor & Drive |                                  |      |      |      |      |      |        |           |          |         |         |      |      |      |      |      |      |      |      |
| 3200 | 917                         | 1.82                             | 945  | 1.97 | 973  | 2.14 | 999  | 2.30   | 1024      | 2.47     | 1048    | 2.65    | 1072 | 2.82 | 1095 | 3.00 | 1117 | 3.17 | 1140 | 3.36 |
| 3600 | 951                         | 2.11                             | 979  | 2.27 | 1007 | 2.43 | 1033 | 2.60   | 1059      | 2.78     | 1082    | 2.95    | 1107 | 3.14 | 1130 | 3.33 | 1152 | 3.52 | 1173 | 3.71 |
| 4000 | 988                         | 2.44                             | 1015 | 2.62 | 1042 | 2.79 | 1068 | 2.97   | 1093      | 3.15     | 1117    | 3.33    | 1142 | 3.52 | 1164 | 3.70 | 1187 | 3.91 | 1209 | 4.11 |
| 4400 | 1028                        | 2.81                             | 1053 | 3.00 | 1078 | 3.19 | 1103 | 3.38   | 1128      | 3.57     | 1152    | 3.77    | 1176 | 3.96 | 1198 | 4.15 | 1221 | 4.36 | -    | -    |
| 4800 | 1071                        | 3.23                             | 1095 | 3.42 | 1119 | 3.62 | 1142 | 3.83   | 1166      | 4.04     | 1189    | 4.25    | 1212 | 4.46 | -    | -    | -    | -    | -    | -    |
|      |                             | 3 HP Standard Motor & High Stati |      |      |      |      |      |        |           |          |         |         | rive |      |      |      |      |      |      |      |

Notes:
Data Includes Pressure Drop Due To Wet Coils And Filters.
3 HP - Fan Motor Heat (MBH) = 2.900 x Fan BHP + 0.475

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.



Table PD-15 — Belt Drive Evaporator Fan Performance -TSC120AD - Horizontal Configuration (SI)

|      |                                               |      |     |      |      |      |      | E    | xternal | Static Pr | essure (F | Pascals) |         |        |          |          |         |      |      |      |
|------|-----------------------------------------------|------|-----|------|------|------|------|------|---------|-----------|-----------|----------|---------|--------|----------|----------|---------|------|------|------|
|      | 2                                             | 5    | 5   | 50   | 7    | 5    | 10   | 00   | 12      | 25        | 15        | 50       | 17      | 75     | 20       | 00       | 22      | 5    | 25   | 0    |
| m³/h | RPM                                           | kW   | RPM | kW   | RPM  | kW   | RPM  | kW   | RPM     | kW        | RPM       | kW       | RPM     | kW     | RPM      | kW       | RPM     | kW   | RPM  | kW   |
|      | 2.24 Nom kW Standard Motor & Low Static Drive |      |     |      |      |      |      |      | 2.24    | Nom kV    | V Stand   | ard Mot  | or & Dr | ive    |          |          |         |      |      |      |
| 5440 | -                                             | -    | 691 | 0.67 | 730  | 0.75 | 771  | 0.84 | 807     | 0.94      | 844       | 1.04     | 886     | 1.16   | 926      | 1.28     | 965     | 1.41 | 1000 | 1.53 |
| 6120 | 729                                           | 0.84 | 761 | 0.91 | 792  | 0.99 | 829  | 1.08 | 865     | 1.19      | 898       | 1.30     | 930     | 1.41   | 965      | 1.53     | 1002    | 1.67 | 1038 | 1.81 |
| 6800 | 802                                           | 1.13 | 833 | 1.22 | 860  | 1.29 | 890  | 1.38 | 923     | 1.50      | 956       | 1.62     | 986     | 1.73   | 1015     | 1.85     | 1044    | 1.98 | 1077 | 2.12 |
| 7480 | 876                                           | 1.49 | 905 | 1.58 | 931  | 1.67 | 955  | 1.75 | 983     | 1.86      | 1014      | 1.99     | 1045    | 2.12   | 1072     | 2.25     | 1098    | 2.37 | 1125 | 2.51 |
| 8160 | 950                                           | 1.91 | 977 | 2.02 | 1002 | 2.11 | 1025 | 2.20 | 1048    | 2.30      | 1074      | 2.42     | 1102    | 2.56   | 1131     | 2.71     | 1156    | 2.84 | 1181 | 2.98 |
|      |                                               |      |     |      |      |      |      |      |         |           | 2.24      | Nom k    | W Stand | ard Mo | tor & Hi | gh Stati | c Drive |      |      |      |

|      |      |            |         |          |      |      |        | E        | External | Static Pr | essure (F | Pascals) |      |      |      |      |      |      |      |      |
|------|------|------------|---------|----------|------|------|--------|----------|----------|-----------|-----------|----------|------|------|------|------|------|------|------|------|
|      | 27   | <b>'</b> 5 | 30      | 00       | 32   | 25   | 35     | 50       | 37       | 75        | 40        | 00       | 42   | 25   | 45   | 50   | 47   | 5    | 50   | 0    |
| m³/h | RPM  | kW         | RPM     | kW       | RPM  | kW   | RPM    | kW       | RPM      | kW        | RPM       | kW       | RPM  | kW   | RPM  | kW   | RPM  | kW   | RPM  | kW   |
|      | 2.24 | Nom k      | W Std M | tr & Dri | ve   |      |        |          |          |           |           |          |      |      |      |      |      |      |      |      |
| 5440 | 1029 | 1.64       | 1057    | 1.75     | 1084 | 1.86 | 1108   | 1.96     | 1132     | 2.06      | 1155      | 2.17     | 1177 | 2.27 | 1198 | 2.37 | 1219 | 2.48 | 1239 | 3.46 |
| 6120 | 1072 | 1.95       | 1106    | 2.10     | 1134 | 2.22 | 1160   | 2.35     | 1185     | 2.47      | 1209      | 2.59     | 1231 | 2.70 | 1252 | 2.82 | 1274 | 2.94 | 1295 | 4.10 |
| 6800 | 1111 | 2.28       | 1143    | 2.43     | 1174 | 2.58 | 1204   | 2.74     | 1232     | 2.90      | 1260      | 3.05     | 1283 | 3.18 | 1306 | 3.32 | -    | -    | -    | -    |
| 7480 | 1152 | 2.65       | 1182    | 2.81     | 1211 | 2.97 | 1241   | 3.14     | 1270     | 3.31      | -         | -        | -    | -    | -    | -    | -    | -    | -    | -    |
| 8160 | 1205 | 3.12       | 1229    | 3.27     | -    | -    | -      | -        | -        | -         | -         | -        | -    | -    | -    | -    | -    | -    | -    | -    |
|      |      |            |         |          |      | 2.24 | Nom kW | / Standa | ard Moto | r & High  | Static D  | )rive    |      |      |      |      |      |      |      |      |

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 2.24 kW - Fan Motor Heat (kW) = 1.138 x Fan kW + 0.139 Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-15a — Belt Drive Evaporator Fan Performance -TSC120AD - Horizontal Configuration (IP)

|      |                                        |      |     |      |      |      |      | Extern | al Static | Pressure | e (Inches | of Wate | er)     |           |          |         |      |      |      |      |
|------|----------------------------------------|------|-----|------|------|------|------|--------|-----------|----------|-----------|---------|---------|-----------|----------|---------|------|------|------|------|
|      | .1                                     | 0    | .2  | 20   | .3   | 30   | .4   | ŀO     | .5        | 0        | .6        | 0       | .7      | 0         | 3.       | 0       | .9   | 0    | 1.0  | 00   |
| CFM  | RPM                                    | BHP  | RPM | BHP  | RPM  | BHP  | RPM  | BHP    | RPM       | BHP      | RPM       | BHP     | RPM     | BHP       | RPM      | BHP     | RPM  | BHP  | RPM  | BHP  |
|      | 3 HP Standard Motor & Low Static Drive |      |     |      |      |      |      |        |           |          | 3 HF      | Standa  | rd Moto | or & Driv | е        |         |      |      |      |      |
| 3200 | -                                      | -    | 691 | 0.89 | 730  | 1.00 | 771  | 1.13   | 807       | 1.26     | 844       | 1.39    | 886     | 1.55      | 926      | 1.72    | 965  | 1.89 | 1000 | 2.06 |
| 3600 | 729                                    | 1.13 | 761 | 1.22 | 792  | 1.32 | 829  | 1.45   | 865       | 1.60     | 898       | 1.74    | 930     | 1.89      | 965      | 2.06    | 1002 | 2.24 | 1038 | 2.43 |
| 4000 | 802                                    | 1.52 | 833 | 1.63 | 860  | 1.73 | 890  | 1.86   | 923       | 2.01     | 956       | 2.17    | 986     | 2.32      | 1015     | 2.48    | 1044 | 2.65 | 1077 | 2.85 |
| 4400 | 876                                    | 1.99 | 905 | 2.12 | 931  | 2.24 | 955  | 2.35   | 983       | 2.49     | 1014      | 2.66    | 1045    | 2.84      | 1072     | 3.01    | 1098 | 3.18 | 1125 | 3.36 |
| 4800 | 950                                    | 2.56 | 977 | 2.70 | 1002 | 2.84 | 1025 | 2.96   | 1048      | 3.08     | 1074      | 3.24    | 1102    | 3.43      | 1131     | 3.63    | 1156 | 3.81 | 1181 | 4.00 |
|      |                                        |      |     |      |      |      |      |        |           |          | 3 HI      | Stand   | ard Mot | or & Hi   | gh Stati | c Drive |      |      |      |      |

|      |                                                        |      |      |      |      |      |      | Externa | al Static | Pressure | (Inches  | of Wate  | r)    |      |      |      |      |      |      |      |
|------|--------------------------------------------------------|------|------|------|------|------|------|---------|-----------|----------|----------|----------|-------|------|------|------|------|------|------|------|
|      | 1.1                                                    | 10   | 1.3  | 20   | 1.3  | 30   | 1.4  | 40      | 1.        | 50       | 1.0      | 60       | 1.    | 70   | 1.3  | 80   | 1.9  | 90   | 2.0  | )0   |
| CFM  | RPM                                                    | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP     | RPM       | BHP      | RPM      | BHP      | RPM   | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | <b>3 HP Std Mtr &amp; Drive</b><br>1029 2.20 1057 2.35 |      |      |      |      |      |      |         |           |          |          |          |       |      |      |      |      |      |      |      |
| 3200 | 1029                                                   | 2.20 | 1057 | 2.35 | 1084 | 2.49 | 1108 | 2.63    | 1132      | 2.77     | 1155     | 2.91     | 1177  | 3.05 | 1198 | 3.18 | 1219 | 3.32 | 1239 | 3.46 |
| 3600 | 1072                                                   | 2.62 | 1106 | 2.81 | 1134 | 2.98 | 1160 | 3.15    | 1185      | 3.31     | 1209     | 3.47     | 1231  | 3.63 | 1252 | 3.78 | 1274 | 3.94 | 1295 | 4.10 |
| 4000 | 1111                                                   | 3.05 | 1143 | 3.26 | 1174 | 3.47 | 1204 | 3.68    | 1232      | 3.88     | 1260     | 4.09     | 1283  | 4.27 | 1306 | 4.46 | -    | -    | -    | -    |
| 4400 | 1152                                                   | 3.55 | 1182 | 3.76 | 1211 | 3.99 | 1241 | 4.21    | 1270      | 4.44     | -        | -        | -     | -    | -    | -    | -    | -    | -    | -    |
| 4800 | 1205                                                   | 4.19 | 1229 | 4.39 | -    | -    | -    | -       | -         | -        | -        | -        | -     | -    | -    | -    | -    | -    | -    | -    |
|      |                                                        |      |      |      |      |      |      | 3 HF    | Standa    | rd Moto  | r & Hiah | Static D | )rive |      |      |      |      |      |      |      |

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 3 HP - Fan Motor Heat (MBH) =  $2.900 \times Fan BHP + 0.475$ 

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.



Table PD-16 — Standard Motor & Sheave/Fan Speed (RPM)

| Unit      | 6 Turns | 5 Turns | 4 Turns | 3 Turns | 2 Turns | 1 Turns |        |
|-----------|---------|---------|---------|---------|---------|---------|--------|
| Model No. | Open    | Open    | Open    | Open    | Open    | Open    | Closed |
| TSC060AD  | N/A     | 898     | 967     | 1036    | 1105    | 1174    | 1243   |
| TSC072AD  | N/A     | 698     | 751     | 806     | 859     | 913     | 967    |
| TSC090AD  | N/A     | 752     | 806     | 860     | 914     | 968     | 1020   |
| TSC102AD  | N/A     | 688     | 737     | 786     | 835     | 885     | 934    |
| TSC120AD  | N/A     | 782     | 838     | 894     | 950     | 1006    | 1062   |

Factory set at 3 turns open

Table PD-17 — Standard Motor & Low Static Drive Accessory Sheave/Fan Speed (RPM)

| Unit      | 6 Turns | 5 Turns | 4 Turns | 3 Turns | 2 Turns | 1 Turns |        |
|-----------|---------|---------|---------|---------|---------|---------|--------|
| Model No. | Open    | Open    | Open    | Open    | Open    | Open    | Closed |
| TSC060AD  | N/A     | 691     | 760     | 829     | 898     | 967     | 1036   |
| TSC072AD  | N/A     | 537     | 590     | 644     | 698     | 752     | 806    |
| TSC090AD  | N/A     | 671     | 714     | 757     | 800     | 843     | 886    |
| TSC102AD  | N/A     | 629     | 664     | 701     | 737     | 773     | 811    |
| TSC120AD  | N/A     | 717     | 754     | 799     | 844     | 885     | 922    |

Factory set at 3 turns open

Table PD-18 — Standard Motor & High Static Drive Accessory Sheave/Fan Speed (RPM)

| Unit      | 6 Turns | 5 Turns | 4 Turns | 3 Turns | 2 Turns | 1 Turns |        |
|-----------|---------|---------|---------|---------|---------|---------|--------|
| Model No. | Open    | Open    | Open    | Open    | Open    | Open    | Closed |
| TSC060AD  | N/A     | 1243    | 1311    | 1379    | 1450    | 1515    | 1588   |
| TSC072AD  | N/A     | 967     | 1021    | 1075    | 1128    | 1183    | 1235   |
| TSC090AD  | 1020    | 1073    | 1127    | 1181    | 1235    | 1289    | N/A    |
| TSC102AD  | 936     | 981     | 1032    | 1083    | 1134    | 1182    | N/A    |
| TSC120AD  | 1062    | 1118    | 1174    | 1229    | 1285    | 1341    | N/A    |

Factory set at 3 turns open

Table PD-19 — Oversized Motor & Drive Sheave/Fan Speed (RPM)

|           |         |         |         |         | •       |         |        |
|-----------|---------|---------|---------|---------|---------|---------|--------|
| Unit      | 6 Turns | 5 Turns | 4 Turns | 3 Turns | 2 Turns | 1 Turns | -      |
| Model No. | Open    | Open    | Open    | Open    | Open    | Open    | Closed |
| TSC072AD  | N/A     | 967     | 1021    | 1075    | 1128    | 1183    | 1235   |
| TSC090AD  | 1112    | 1182    | 1252    | 1322    | 1392    | 1460    | N/A    |
| TSC102AD  | N/A     | 971     | 1041    | 1111    | 1181    | 1251    | 1321   |
| TSC120AD  | N/A     | N/A     | N/A     | N/A     | N/A     | N/A     | N/A    |

Factory set at 3 turns open

Table PD-20 — Sound Power Level - dB (ref. 10<sup>-12</sup> Watts)

|           |    |     |     | 1.0       | ,           |      |      |      |         |
|-----------|----|-----|-----|-----------|-------------|------|------|------|---------|
| Unit      |    |     |     | Octave Ce | nter Freque | ncy  |      |      | Overall |
| Model No. | 63 | 125 | 250 | 500       | 1000        | 2000 | 4000 | 8000 | dBA     |
| TSC060AD  | 84 | 91  | 79  | 77        | 74          | 71   | 68   | 63   | 80      |
| TSC072AD  | 83 | 90  | 86  | 82        | 79          | 75   | 70   | 63   | 85      |
| TSC090AD  | 83 | 90  | 86  | 83        | 80          | 75   | 71   | 64   | 85      |
| TSC102AD  | 83 | 89  | 84  | 81        | 77          | 72   | 69   | 62   | 83      |
| TSC120AD  | 83 | 86  | 80  | 77        | 73          | 69   | 66   | 60   | 79      |

Note:

Tests follow ARI 270-95



Table PD-21 - Static Pressure Drops Through Accessories - (Pascals)

|           |         |                      |                 |         | Econo<br>OA/RA D |         |         | Electric Heater<br>Accessory (kW) | 3     |    |  |
|-----------|---------|----------------------|-----------------|---------|------------------|---------|---------|-----------------------------------|-------|----|--|
| Unit      | Airflow | Standard             | Pleated Filters | 100% OA | 100% RA          | 100% OA | 100% RA |                                   |       |    |  |
| Model No. | (m³/h)  | Filters <sup>1</sup> | (50 mm)         | Dov     | vnflow           | Horiz   | ontal   | 9                                 | 13-27 | 40 |  |
| TSC060AD  | 2720    | 25                   | 37              | 30      | 11               | 30      | 4       | 11                                | 13    | -  |  |
|           | 3400    | 37                   | 55              | 46      | 17               | 46      | 6       | 17                                | 21    | -  |  |
|           | 4080    | 55                   | 72              | 64      | 26               | 64      | 9       | 25                                | 30    | -  |  |
| TSC072AD  | 3260    | 10                   | 17              | 25      | 2                | 15      | 5       | -                                 | 5     | -  |  |
|           | 4080    | 15                   | 22              | 27      | 5                | 20      | 5       | -                                 | 8     | -  |  |
|           | 4890    | 22                   | 30              | 33      | 10               | 25      | 10      | -                                 | 13    | -  |  |
| TSC090AD  | 4080    | 15                   | 22              | 27      | 5                | 20      | 5       | -                                 | 8     | -  |  |
|           | 5100    | 25                   | 32              | 35      | 12               | 30      | 12      | -                                 | 16    | -  |  |
|           | 6120    | 35                   | 45              | 52      | 17               | 62      | 20      | -                                 | 25    | -  |  |
| TSC102AD  | 4620    | 12                   | 20              | 31      | 7                | 22      | 10      | -                                 | 6     | -  |  |
|           | 5780    | 20                   | 27              | 47      | 15               | 45      | 15      | -                                 | 10    | -  |  |
|           | 6930    | 30                   | 40              | 75      | 17               | 77      | 22      | -                                 | 15    | -  |  |
| TSC120AD  | 5440    | 17                   | 25              | 42      | 12               | 35      | 12      | -                                 | 9     | 10 |  |
|           | 6800    | 27                   | 37              | 65      | 17               | 75      | 20      | -                                 | 14    | 17 |  |
|           | 8160    | 40                   | 50              | 85      | 22               | 87      | 25      | -                                 | 20    | 26 |  |

Table PD-21a — Static Pressure Drops Through Accessories - (Inches of Water Column)

|           |         |                      |                 |         | Econo<br>OA/RA [ | Electric Heater<br>Accessory (kW) <sup>3</sup> |         |       |       |       |
|-----------|---------|----------------------|-----------------|---------|------------------|------------------------------------------------|---------|-------|-------|-------|
| Unit      | Airflow | Standard             | Pleated Filters | 100% OA | 100% RA          | 100% OA                                        | 100% RA | •     |       |       |
| Model No. | (CFM)   | Filters <sup>1</sup> | (2 inch)        | Dov     | nflow            | Horiz                                          | ontal   | 9     | 13-27 | 40    |
| TSC060AD  | 1600    | 0.10                 | 0.15            | 0.12    | 0.04             | 0.12                                           | 0.01    | 0.045 | 0.053 | -     |
|           | 2000    | 0.15                 | 0.22            | 0.18    | 0.07             | 0.18                                           | 0.02    | 0.070 | 0.083 | -     |
|           | 2400    | 0.22                 | 0.29            | 0.26    | 0.10             | 0.26                                           | 0.04    | 0.100 | 0.120 | -     |
| TSC072AD  | 1920    | 0.04                 | 0.07            | 0.10    | 0.01             | 0.06                                           | 0.02    | -     | 0.021 | -     |
|           | 2400    | 0.06                 | 0.09            | 0.11    | 0.02             | 0.08                                           | 0.02    | -     | 0.034 | -     |
|           | 2880    | 0.09                 | 0.12            | 0.13    | 0.04             | 0.10                                           | 0.04    | -     | 0.052 | -     |
| TSC090AD  | 2400    | 0.06                 | 0.09            | 0.11    | 0.02             | 0.08                                           | 0.02    | -     | 0.034 | -     |
|           | 3000    | 0.10                 | 0.13            | 0.14    | 0.05             | 0.12                                           | 0.05    | -     | 0.063 | -     |
|           | 3600    | 0.14                 | 0.18            | 0.21    | 0.07             | 0.25                                           | 0.08    | -     | 0.102 | -     |
| TSC102AD  | 2720    | 0.05                 | 0.08            | 0.12    | 0.03             | 0.09                                           | 0.04    | -     | 0.026 | -     |
|           | 3400    | 0.08                 | 0.11            | 0.19    | 0.06             | 0.18                                           | 0.06    | -     | 0.041 | -     |
|           | 4080    | 0.12                 | 0.16            | 0.30    | 0.07             | 0.31                                           | 0.09    | -     | 0.059 | -     |
| TSC120AD  | 3200    | 0.07                 | 0.10            | 0.17    | 0.05             | 0.14                                           | 0.05    | -     | 0.036 | 0.042 |
|           | 4000    | 0.11                 | 0.15            | 0.26    | 0.07             | 0.30                                           | 0.08    | -     | 0.056 | 0.070 |
|           | 4800    | 0.16                 | 0.20            | 0.34    | 0.09             | 0.35                                           | 0.10    | -     | 0.081 | 0.106 |

Table PD-22 - Electric Heater Voltage Correction Factors (Apply to Auxiliary Electric Heat Capacity)

| puoity  |              |            |
|---------|--------------|------------|
| Nominal | Distribution | Capacity   |
| Voltage | Voltage      | Multipiler |
|         | 380          | 0.84       |
| 415     | 400          | 0.93       |
|         | 415          | 1.00       |

<sup>1.</sup> Tested with standard filters. The TSC060AD has 25 mm (1 inch) standard filters. The TSC072AD - 120AD has 50 mm (2 inch) standard filters. The difference in pressure drop should be considered when utilizing optional 50 mm (2 inch) pleated filters.

2. OA = Outside Air and RA = Return Air

3. Nominal kW ratings at 415 V

Notes:

1. Tested with standard filters. The TSC060AD has 25 mm (1 inch) standard filters. The TSC072AD - 120AD has 50 mm (2 inch) standard filters. The difference in pressure drop should be considered when utilizing optional 50 mm (2 inch) pleated filters.

2. OA = Outside Air and RA = Return Air

3. Nominal kW ratings at 415 V



Table PD-23 — Auxiliary Electric Heat Capacity (SI)

|           | . ,          | T . 12                   |            | 0. 4         | 0. 0        |
|-----------|--------------|--------------------------|------------|--------------|-------------|
|           |              | <u>Total<sup>2</sup></u> |            | Stage 1      | Stage 2     |
| Unit      | Unit         |                          |            |              |             |
| Model No. | Voltage      | KW                       | No. Stages | KW           | KW          |
|           |              | 7.5 / 9.0                | 2          | 3.75 / 4.5   | 3.75 / 4.5  |
| TSC060AD  | 380-415/50/3 | 10.9 / 13.0              | 2          | 5.45 / 6.5   | 5.45 / 6.5  |
|           |              | 14.4 / 17.2              | 2          | 8.95 / 10.7  | 5.45 / 6.5  |
|           |              | 11.3 / 13.5              | 1          | 11.3 / 13.5  |             |
| TSC072AD  | 380-415/50/3 | 16.9 / 20.2              | 2          | 11.3 / 13.5  | 5.6 / 6.7   |
|           |              | 22.6 / 26.9              | 2          | 11.3 / 13.5  | 11.3 / 13.5 |
|           |              | 11.3 / 13.5              | 1          | 11.3 / 13.5  |             |
| TSC090AD  | 380-415/50/3 | 16.9 / 20.2              | 2          | 11.3 / 13.5  | 5.6 / 6.7   |
|           |              | 22.6 / 26.9              | 2          | 11.3 / 13.5  | 11.3 / 13.5 |
| TSC102AD  | 380-415/50/3 | 16.9 / 20.2              | 2          | 11.3 / 13.6  | 5.6 / 6.7   |
|           |              | 22.6 / 26.9              | 2          | 11.3 / 13.7  | 11.3 / 13.5 |
|           |              | 16.9 / 20.2              | 2          | 11.3 / 13.8  | 5.6 / 6.7   |
| TSC120AD  | 380-415/50/3 | 22.6 / 26.9              | 2          | 11.3 / 13.9  | 11.3 / 13.5 |
|           |              | 33.9 / 40.4              | 2          | 11.3 / 13.10 | 22.5 / 26.9 |

Table PD-23A — Auxiliary Electric Heat Capacity (IP)

|           |              | <u>Total<sup>2</sup></u> |            | Stage 1 | Stage 2 |
|-----------|--------------|--------------------------|------------|---------|---------|
| Unit      | Unit         |                          |            |         |         |
| Model No. | Voltage      | MBH                      | No. Stages | MBH     | MBH     |
|           |              | 26 / 31                  | 2          | 13 / 16 | 13 / 16 |
| TSC060AD  | 380-415/50/3 | 38 / 45                  | 2          | 19 / 23 | 19 / 23 |
|           |              | 50 / 59                  | 2          | 31 / 37 | 19 / 23 |
|           |              | 39 / 47                  | 1          | 39 / 47 |         |
| TSC072AD  | 380-415/50/3 | 58 / 69                  | 2          | 39 / 47 | 20 / 23 |
|           |              | 78 / 92                  | 2          | 39 / 47 | 39 / 47 |
|           |              | 39 / 47                  | 1          | 39 / 47 |         |
| TSC090AD  | 380-415/50/3 | 58 / 69                  | 2          | 39 / 47 | 20 / 23 |
|           |              | 78 / 92                  | 2          | 39 / 47 | 39 / 47 |
| TSC102AD  | 380-415/50/3 | 58 / 69                  | 2          | 39 / 47 | 20 / 23 |
|           |              | 78 / 92                  | 2          | 39 / 47 | 39 / 47 |
|           |              | 58 / 69                  | 2          | 39 / 47 | 20 / 23 |
| TSC120AD  | 380-415/50/3 | 78 / 92                  | 2          | 39 / 47 | 39 / 47 |
|           |              | 116 / 138                | 2          | 39 / 47 | 77 / 92 |

Notes:

1. Does not include indoor fan power or heat
2. Heaters are rated at 380V / 415V. For other than rated voltage, CAP=(Voltage/Rated Voltage)² x Rated Cap.

Notes:

1. Does not include indoor fan power or heat
2. Heaters are rated at 380 / 415V. For other than rated voltage, CAP=(Voltage/Rated Voltage)² x Rated Cap.



Table PD-24 — Air Temperature Rise Across Electric Heaters (Degrees C)

| kW          |              |        | 3400 m <sup>3</sup> /h | 4100 m³/h   | 5100 m³/h   | 5800 m³/h   | 6800 m³/h   |
|-------------|--------------|--------|------------------------|-------------|-------------|-------------|-------------|
| 380V / 415V | Voltage      | Stages | TSC060AD               | TSC072AD    | TSC090AD    | TSC102AD    | TSC120AD    |
| 07.5 / 09.0 | 380-415/50/3 | 2      | 6.6 / 7.9              |             |             |             |             |
| 10.9 / 13.0 | 380-415/50/3 | 2      | 9.6 / 11.4             |             |             |             |             |
| 11.3 / 13.5 | 380-415/50/3 | 1      |                        | 8.3 / 9.9   | 6.6 / 7.9   | <del></del> |             |
| 14.4 / 17.2 | 380-415/50/3 | 2      | 12.6 / 15.1            |             |             |             |             |
| 16.9 / 20.2 | 380-415/50/3 | 2      |                        | 12.4 / 14.8 | 9.9 / 11.8  | 8.7 / 10.4  | 7.4 / 8.9   |
| 22.6 / 26.9 | 380-415/50/3 | 2      |                        | 16.5 / 19.7 | 13.2 / 15.7 | 11.7 / 13.9 | 9.9 / 11.8  |
| 33.8 / 40.4 | 380-415/50/3 | 2      |                        |             |             |             | 14.8 / 17.7 |

For minimum design airflow, see performance table for each unit. To calculate temp rise at differrent airflow, use following formula: Temp. Rise (C°) across Elect Htr =  $(kW \times 2985)/(m^3/h)$ 

Table PD-24A — Air Temperature Rise Across Electric Heaters (Degrees F)

| kW          |              |        | 2000 CFM    | 2400 CFM    | 3000 CFM    | 3400 CFM    | 4000 CFM    |
|-------------|--------------|--------|-------------|-------------|-------------|-------------|-------------|
| 380V / 415V | Voltage      | Stages | TSC060AD    | TSC072AD    | TSC090AD    | TSC102AD    | TSC120AD    |
| 07.5 / 09.0 | 380-415/50/3 | 2      | 11.9 / 14.2 |             |             |             |             |
| 10.9 / 13.0 | 380-415/50/3 | 2      | 17.2 / 20.5 |             |             |             |             |
| 11.3 / 13.5 | 380-415/50/3 | 1      |             | 14.9 / 17.8 | 11.9 / 14.2 |             |             |
| 14.4 / 17.2 | 380-415/50/3 | 2      | 22.8 / 27.2 |             |             |             |             |
| 16.9 / 20.2 | 380-415/50/3 | 2      |             | 22.3 / 26.6 | 17.8 / 21.3 | 15.7 / 18.8 | 13.4 / 16.0 |
| 22.6 / 26.9 | 380-415/50/3 | 2      |             | 29.8 / 35.4 | 23.8 / 28.3 | 21.0 / 25.0 | 17.9 / 21.3 |
| 33.8 / 40.4 | 380-415/50/3 | 2      |             |             |             |             | 26.7 / 31.9 |

For minimum design airflow, see performance table for each unit. To calculate temp rise at differrent airflow, use following formula: Temp. Rise (F°) across Elect Htr = (kW x 3414)/(1.08 x CFM)



### **Zone Controls**

#### **Zone Sensors**

Zone Sensors are the building occupant's comfort control devices for Precedent™ units with the ReliaTel control. The zone sensor offering operates with the Reliatel microprocessor

**Manual Changeover** — Heat, Cool or Off System Switch. Fan Auto or Off Switch.

One temperature setpoint lever.



**Manual/Automatic Changeover** —Auto, Heat, Cool or Off System Switch. Fan

Auto or Off Switch. Two temperature setpoint levers. Optional Status Indication LED lights, System On, Heat, Cool, or Service.



**Remote Sensor** — Sensor(s) available for all zone sensors to provide

remote sensing capabilities.



Non-programmable manual auto changeover with digital LCD Display — Auto, heat, cool or off mode selection button. Auto or off fan bottom. Status indication LCD indicators — System on, heat, cool, or service.



**Programmable Night Setback** — Auto or manual changeover with seven-day programming. Keyboard selection of Heat, Cool, Fan, Auto, or On.

All programmable sensors have



System On, Heat, Cool, Service LED/ indicators as standard. Night Setback Sensors have one (1) Occupied, one (1) Unoccuped, and two (2) Override programs per day.

Integrated Comfort<sup>™</sup> System — Sensor(s) available with optional

temperature adjustment and override buttons to provide central control through a Trane Integrated Comfort™

system.



#### **Conventional Thermostats**

**Conventional Thermostats** are the building occupant's comfort control devises when a generic thermostat is desired.

Manual
Changeover —
One Heat, One
Cool Thermostat.
Heat, Cool or Off
System Switch.
Fan Auto or On
Switch. Set Point
Dial. Adjustable
Heat Anticipator.



**Automatic Changeover** — One Heat, Two Cool Thermostat. Off, Auto System Switch. Auto/On Fan Switch.



Programmable Electronic Night Setback Thermostat — Heating setback and cooling setup with 7-day, programming capability. Available in two-stage heating/cooling or one-stage heating/cooling versions with automatic changeover.





## **Electrical Data**

Table ED-1 — Unit Wiring

|           |               | Standard Inde | oor Fan Motor                | Oversized Ir | ndoor Fan Motor              |
|-----------|---------------|---------------|------------------------------|--------------|------------------------------|
|           | Unit          | Minimum       | Maximum Fuse                 | Minimum      | Maximum Fuse                 |
| Unit      | Operating     | Circuit       | Size Or Maximum              | Circuit      | Size Or Maximum              |
| Model No. | Voltage Range | Ampacitiy     | Circuit Breaker <sup>1</sup> | Ampacitiy    | Circuit Breaker <sup>1</sup> |
| TSC060AD  | 342-456       | 17.7          | 25                           | 17.7         | 25                           |
| TSC072AD  | 342-456       | 23.2          | 35                           | 24.2         | 35                           |
| TSC090AD  | 342-456       | 24.8          | 35                           | 26.5         | 35                           |
| TSC102AD  | 342-456       | 26.8          | 35                           | 28.5         | 35                           |
| TSC120AD  | 342-456       | 31.2          | 40                           | 31.2         | 40                           |

Table ED-2 — Unit Wiring With Electric Heat Single Point Connection — 380-415 Volts

|           |             |             |                   |         | Standard I  | ndoor Fan Motor              | Oversized Ind | oor Fan Motor                |
|-----------|-------------|-------------|-------------------|---------|-------------|------------------------------|---------------|------------------------------|
|           |             |             |                   |         | Minimum     | Maximum Fuse                 | Minimum       | Maximum Fuse                 |
| Unit      | Heater      | He          | ater <sup>2</sup> | Control | Circuit     | Size Or Maximum              | Circuit       | Size Or Maximum              |
| Model No. | Model No.   | kW Rating   | MBH               | Stages  | Ampacitiy   | Circuit Breaker <sup>1</sup> | Ampacitiy     | Circuit Breaker <sup>1</sup> |
| TSC060AD  | BAYHTRR412A | 7.5 / 9.0   | 26 / 31           | 2       | 19.8 / 21.0 | 25 / 25                      | 19.8 / 21.0   | 25 / 25                      |
|           | BAYHTRR418A | 10.9 / 13.0 | 38 / 45           | 2       | 26.1 / 28.0 | 30 / 30                      | 26.1 / 28.0   | 30 / 30                      |
|           | BAYHTRR423A | 14.4 / 17.2 | 50 / 59           | 2       | 32.8 / 35.3 | 35 / 40                      | 32.8 / 35.3   | 35 / 40                      |
| TSC072AD  | BAYHTRS418A | 11.3 / 13.5 | 39 / 47           | 1       | 26.9 / 28.9 | 35 / 35                      | 28.1 / 30.1   | 35 / 35                      |
|           | BAYHTRS427A | 16.9 / 20.2 | 58 / 69           | 2       | 37.5 / 40.5 | 40 / 45                      | 38.8 / 41.8   | 40 / 45                      |
|           | BAYHTRS436A | 22.6 / 26.9 | 78 / 92           | 2       | 48.3 / 52.1 | 50 / 60                      | 49.5 / 53.4   | 50 / 60                      |
| TSC090AD  | BAYHTRS418A | 11.3 / 13.5 | 39 / 47           | 1       | 28.1 / 30.1 | 35 / 35                      | 30.3 / 32.3   | 35 / 35                      |
|           | BAYHTRS427A | 16.9 / 20.2 | 58 / 69           | 2       | 38.8 / 41.8 | 40 / 45                      | 40.9 / 43.9   | 45 / 45                      |
|           | BAYHTRS436A | 22.6 / 26.9 | 78 / 92           | 2       | 49.5 / 53.4 | 50 / 60                      | 51.6 / 55.5   | 60 / 60                      |
| TSC102AD  | BAYHTRT427A | 16.9 / 20.2 | 58 / 69           | 2       | 38.8 / 41.8 | 40 / 45                      | 40.9 / 43.9   | 45 / 45                      |
|           | BAYHTRT436A | 22.6 / 26.9 | 78 / 92           | 2       | 49.5 / 53.4 | 50 / 60                      | 51.6 / 55.5   | 60 / 60                      |
| TSC120AD  | BAYHTRT427A | 16.9 / 20.2 | 58 / 69           | 2       | 40.9 / 43.9 | 45 / 45                      | 40.9 / 43.9   | 45 / 45                      |
|           | BAYHTRT436A | 22.6 / 26.9 | 78 / 92           | 2       | 51.6 / 55.5 | 60 / 60                      | 51.6 / 55.5   | 60 / 60                      |
|           | BAYHTRT454A | 33.8 / 40.4 | 116 / 138         | 2       | 73.1 / 79.0 | 80 / 80                      | 73.1 / 79.0   | 80 / 80                      |

Table ED-3 — Electrical Characteristics - Evaporator Fan Motor - 50 Hz

|           |     | Sta     | ndard Evapo | rator Fan I | Motor |      | Oversized Evaporator Fan Motor |         |       |     |     |      |  |
|-----------|-----|---------|-------------|-------------|-------|------|--------------------------------|---------|-------|-----|-----|------|--|
| Unit      |     |         |             |             | An    | nps  |                                |         |       |     | Am  | ps   |  |
| Model No. | No. | Volts   | Phase       | HP          | FLA   | LRA  | No.                            | Volts   | Phase | HP  | FLA | LRA  |  |
| TSC060AD  | 1   | 380-415 | 3           | 1.5         | 4.3   | 25.3 | -                              | -       | -     | -   | -   | -    |  |
| TSC072AD  | 1   | 380-415 | 3           | 1.5         | 4.3   | 25.3 | 1                              | 380-415 | 3     | 2.0 | 5.3 | 36.4 |  |
| TSC090AD  | 1   | 380-415 | 3           | 2.0         | 5.3   | 36.4 | 1                              | 380-415 | 3     | 3.0 | 7.0 | 57.0 |  |
| TSC102AD  | 1   | 380-415 | 3           | 2.0         | 5.3   | 36.4 | 1                              | 380-415 | 3     | 3.0 | 7.0 | 57.0 |  |
| TSC120AD  | 1   | 380-415 | 3           | 3.0         | 7.0   | 57.0 | -                              | -       | -     | -   | -   | -    |  |

Table ED-4 — Electrical Characteristics - Compressor Motor and Condenser Motor - 50 Hz

|           |     |         | Co    | mpressor M | Condenser Fan Motor |                  |           |     |       |      |     |     |
|-----------|-----|---------|-------|------------|---------------------|------------------|-----------|-----|-------|------|-----|-----|
| Unit      |     |         |       |            |                     | А                | mps       |     |       |      | Am  | ps  |
| Model No. | No. | Volts   | Phase | HP1        | RPM                 | RLA <sup>1</sup> | LRA1      | No. | Phase | HP   | FLA | LRA |
| TSC060AD  | 1   | 380-415 | 3     | 5.7        | 2875                | 9.5              | 74.00     | 1   | 1     | 0.40 | 1.9 | 2.8 |
| TSC072AD  | 1   | 380-415 | 3     | 7.5        | 2875                | 12.7             | 95.00     | 1   | 1     | 0.75 | 2.8 | 7.1 |
| TSC090AD  | 1   | 380-415 | 3     | 8.3        | 2875                | 13.20            | 100.00    | 1   | 1     | 0.75 | 2.8 | 7.1 |
| TSC102AD  | 2   | 380-415 | 3     | 6.0/3.8    | 2875                | 9.3/6.9          | 74.0/48.0 | 1   | 1     | 0.75 | 2.8 | 7.1 |
| TSC120AD  | 2   | 380-415 | 3     | 6.0/4.8    | 2875                | 9.9/8.5          | 74.0/61.8 | 1   | 1     | 0.75 | 2.8 | 7.1 |

Note:

Notes:

1. All units to be installed under local codes

Notes:

1. All units to be installed under local codes
2. kW and MBH shown for 380V / 415V

<sup>1.</sup> Comp1/Comp2



## **Jobsite Connections**



### Zone Sensors — Typical Number Of Wires

| A — Manual Changeover 4                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------|
| Manual/Auto Changeover 5                                                                                                  |
| Manual/Auto Changeover with                                                                                               |
| Status Indication LED's 10                                                                                                |
| Programmable Night Setback with                                                                                           |
| Status Indication LED's 7                                                                                                 |
| Thermostats — Typical Number of Wires<br>A — 3 wires, 24-volts, Cooling Only<br>4 wires, 24-volts, with Electric Heat     |
| <ul> <li>B — 3 Power Wires + 1 Ground Wire (three phase)</li> <li>2 Power Wires + 1 Ground Wire (single phase)</li> </ul> |

For specific wiring information, see the installation instructions.

All wiring except power wires is low voltage.

All customer supplied wiring to be copper and must conform to NEC or CEC and local electrical codes. Wiring shown dotted is to be furnished and installed by the customer.



# Dimensional Data

**TSC060** 

All dimensions are in inches/millimeters.

TSC060





**TSC060** 

All dimensions are in inches/millimeters.

TSC060 - Downflow Airflow Supply/Return



TSC060 — Horizontal Airflow Supply/Return





TSC060 — Unit Clearance and Roof Opening



**TSC060** 

All dimensions are in inches/millimeters.

TSC060 - Roof Curb







TSC072-120

All dimensions are in inches/millimeters.





TSC102-120

TSC072-090



TSC072-120

All dimensions are in inches/millimeters.

TSC072-120 — Downflow Airflow Supply and Return



TSC072-120 — Horizontal Airflow Supply and Return



TSC072-120 — Unit Clearance and Roof Opening





TSC072-120

All dimensions are in inches/millimeters.



TSC072-120 — Roof Curb



TSC072-120 — Downflow Duct Connections — Field Fabricated



## Dimensional TSC060 Data Options

### TSC060 Options/Accessories







TSC060 — Economizer , Manual or Motorized Fresh Air Damper

TSC060 — Barometric Relief Damper Hood



TSC060 — Swing Diameter for Hinged Doors Option



### **Dimensional TSC072-120 Data**

### **Options/Accessories**

All dimensions are in inches/millimeters.



TSC072-120 — Economizer and Barometric Relief Damper Hoods



TSC072-120 - Swing Diameter for Hinged Door(s) Option



### Weights

Table W-1 - Maximum Unit and Corner Weights and Center of Gravity Dimensions (SI)

|           | Maximum Weights <sup>(2)</sup> (kg) |                    | -   | Corner Weights <sup>(1)</sup> (kg) |    |     |        | Center of Gravity (mm) |  |
|-----------|-------------------------------------|--------------------|-----|------------------------------------|----|-----|--------|------------------------|--|
| Unit      |                                     |                    |     |                                    |    |     |        |                        |  |
| Model No. | Shipping <sup>(2)</sup>             | Net <sup>(2)</sup> | Α   | В                                  | С  | D   | Length | Width                  |  |
| TSC060AD  | 270                                 | 235                | 75  | 56                                 | 48 | 56  | 790    | 480                    |  |
| TSC072AD  | 373                                 | 326                | 107 | 83                                 | 58 | 78  | 970    | 560                    |  |
| TSC090AD  | 436                                 | 389                | 131 | 101                                | 67 | 89  | 970    | 530                    |  |
| TSC102AD  | 453                                 | 405                | 133 | 106                                | 72 | 94  | 990    | 560                    |  |
| TSC120AD  | 493                                 | 445                | 147 | 115                                | 81 | 104 | 990    | 560                    |  |

(1) Corner weights are given for information only. All models must be supported continuously by a curb or equivalent frame support. (2) Weights are approximate.

Table W-1a - Maximum Unit and Comer Weights and Center of Gravity Dimensions (IP)

| iable 11 to maximum offic and content to grave of Gravey Dimensions in / |                         |     |     |                                     |     |     |                        |       |
|--------------------------------------------------------------------------|-------------------------|-----|-----|-------------------------------------|-----|-----|------------------------|-------|
|                                                                          | Maximum Weights (lbs)   |     |     | Corner Weights <sup>(1)</sup> (lbs) |     |     | Center of Gravity (in) |       |
| Unit                                                                     |                         |     |     |                                     |     |     |                        |       |
| Model No.                                                                | Shipping <sup>(2)</sup> | Net | Α   | В                                   | С   | D   | Length                 | Width |
| TSC060AD                                                                 | 595                     | 518 | 165 | 124                                 | 105 | 124 | 31                     | 19    |
| TSC072AD                                                                 | 823                     | 718 | 235 | 182                                 | 128 | 173 | 38                     | 22    |
| TSC090AD                                                                 | 962                     | 857 | 289 | 222                                 | 148 | 197 | 38                     | 21    |
| TSC102AD                                                                 | 998                     | 893 | 294 | 233                                 | 159 | 207 | 39                     | 22    |
| TSC120AD                                                                 | 1087                    | 982 | 323 | 253                                 | 178 | 229 | 39                     | 22    |

#### Notes:

(1) Corner weights are given for information only. All models must be supported continuously by a curb or equivalent frame support. (2) Weights are approximate.



Table W-2 - Accessory Net Weights(1) (kg)

| Net Weights <sup>(2)</sup> |                        |  |  |
|----------------------------|------------------------|--|--|
| TSC060                     | TSC072-120             |  |  |
| 12                         | 16                     |  |  |
| 3                          | 5                      |  |  |
| 9                          | 14                     |  |  |
| 7                          | 12                     |  |  |
| 32                         | 52                     |  |  |
| 2                          | 4                      |  |  |
| 5                          | 9                      |  |  |
| 5                          | 5                      |  |  |
| 7                          | 14                     |  |  |
|                            | TSC060 12 3 9 7 32 2 5 |  |  |

Notes:
(1) Weights for options not listed are < 3 kg.
(2) Net weight should be added to unit weight when ordering factory-installed accessories.
(3) Some accessories not available on all units.

Table W-2a - Accessory Net Weights(1) (2) (lbs)

|                              | Net Weights <sup>(2)</sup> |            |  |  |
|------------------------------|----------------------------|------------|--|--|
| Accessory <sup>(3)</sup>     | TSC060                     | TSC072-120 |  |  |
| Economizer                   | 26                         | 36         |  |  |
| Barometric Relief            | 7                          | 10         |  |  |
| Motorized Outside Air Damper | 20                         | 30         |  |  |
| Manual Outside Air Damper    | 16                         | 26         |  |  |
| Roof Curb                    | 70                         | 115        |  |  |
| Oversized Motor              | 5                          | 8          |  |  |
| Coil Guards                  | 12                         | 20         |  |  |
| Hinged Doors                 | 10                         | 12         |  |  |
| Electric Heaters             | 15                         | 30         |  |  |

#### Notes:

(1) Weights for options not listed are < 5 lbs.

2) Net weight should be added to unit weight when ordering factory-installed accessories.

(3) Some accessories not available on all units.



## Mechanical Specifications

#### General

The units shall be convertible airflow. The operating range shall be between 46°C and -18°C (115°F and 0°F) in cooling as standard from the factory for all units. All units shall be factory assembled, internally wired, fully charged with R-22, and 100 percent run tested to check cooling operation, fan and blower rotation, and control sequence before leaving the factory. Wiring internal to the unit shall be colored and numbered for simplified identification.

#### Casing

Unit casing shall be constructed of zinc coated, heavy gauge, galvanized steel. Exterior surfaces shall be cleaned. phosphatized, and finished with a weather-resistant baked enamel finish. Cabinet construction shall allow for all maintenance on one side of the unit. Service panels shall have lifting handles and be removed and reinstalled by removing only a single fastener while providing a water and air tight seal. All exposed vertical panels and top covers in the indoor air section shall be insulated with a cleanable foil-faced, fire-retardent permanent, odorless glass fiber material. The base of the unit shall be insulated with 13 mm, 16 kg (1/2 inch, 1 pound) density foil-faced, closed-cell material. All insulation edges shall be either captured or sealed. The unit's base pan shall have no penetrations within the perimeter of the curb other than the raised 29 mm (11/8 inch high downflow supply/return openings to provide an added water integrity precaution, if the condensate drain backs up. The base of the unit shall have provisions for forklift and crane lifting, with forklift capabilities on three sides of the unit.

#### **Unit Top**

The top cover shall be one piece construction or where seams exist, it shall be double-hemmed and gasket-sealed. The ribbed top adds extra strength and prevents water from pooling on unit top.

#### **Filters**

One inch, throwaway filters shall be standard on all 5 ton units. The filter rack can be converted to two inch capability. 50 mm (2 inch) filters shall be factory supplied on all 6-10 ton units. Optional 50 mm (2 inch) pleated filters shall be available.

#### Compressors

All units shall have direct-drive, hermetic, scroll type compressors with centrifugal type oil pumps. Motor shall be suction gas-cooled and shall have a voltage utilization range of plus or minus 10 percent of unit nameplate voltage. Internal overloads shall be provided with the scroll compressors. Low and high pressure switches shall be standard.

#### **Refrigerant Circuits**

Service pressure ports, and refrigerant line filter driers are factory-installed as standard. An area shall be provided for replacement suction line driers.

#### **Evaporator and Condenser Coils**

Internally finned, 8 mm (5/16") copper tubes mechanically bonded to a configured aluminum plate fin shall be standard. Coils shall be leak tested at the factory to ensure the pressure integrity. The evaporator coil and condenser coil shall be leak tested to 1375 kPa (200 psig) and pressure tested to 3100 kPa (450 psig). The condenser coil shall have a patent pending 1 + 1 + 1 hybrid coil designed with slight gaps for ease of cleaning. A removeable, reversible, double-sloped condensate drain pan with provision for through the base condensate drain is standard.

#### **Outdoor Fans**

The outdoor fan shall be direct-drive, statically and dynamically balanced, draw-through in the vertical discharge position. The fan motor shall be permanently lubricated and shall have built-in thermal overload protection.

#### Indoor Fan

All units shall have belt drive motors. Units with belt drive motors shall have an adjustable idler-arm assembly for quick-adjustment to fan belts and motor sheaves. All motors shall be thermally protected. Oversized motors shall be available for high static operations.

#### Controls

Unit shall be completely factory-wired with necessary controls and contactor pressure lugs or terminal block for power wiring. Units shall have single point power connection as standard. Unit shall provide an external location for mounting a fused disconnect device.

Microprocessor controls provide for all 24 volt control functions. The resident control algorithms shall make all heating, cooling, and/or ventilating decisions in response to electronic signals from sensors measuring indoor and outdoor temperatures. The control algorithm maintains accurate temperature control, minimizes drift from set point, and provides better building comfort. A centralized Microprocessor shall provide anti-short cycle timing and time delay between compressors to provide a higher level of machine protection.



### Mechanical Specifications

### **Accessories/Options**

#### **Electric Heaters**

Field-installed electric heat modules shall be available for installation within basic unit. Electric heater elements shall be constructed of heavy-duty nickel chromium elements internally delta connected for 200 volt, wye connected for 380-415 volt. Staging shall be achieved through the unitary control processor (UCP). Each heater package shall have automatically reset high limit control operating through heating element contactors. All heaters shall be individually fused from the factory, where required. Power assemblies shall provide single-point connection.

#### **Roof Curb**

The roof curb shall be designed to mate with the unit's downflow supply and return and provide support and a water tight installation when installed properly. The roof curb design shall allow field-fabricated rectangular supply/return ductwork to be connected directly to the curb. Curb shall be shipped knocked down for field assembly and shall include wood nailer strips.

#### **Economizer**

This accessory shall be either field or factory-installed and shall be available with or without barometric relief. The assembly includes fully modulating 0-100 percent motor and dampers, minimum position setting, preset linkage, wiring harness with plug, spring return actuator and fixed dry bulb control. The barometric relief shall provide a pressure operated damper that shall be gravity closing and shall prohibit entrance of outside air during the equipment "off" cycle. Optional solid state or differential enthalpy control shall be available for either factory or field installation. The factory-installed economizer arrives in the shipping position and shall be moved to the operating position by the installing contractor.

#### **Phase Monitor**

Phase monitor shall provide 100% protection for motors and compressors against problems caused by phase loss, phase imbalance, and phase reversal. Phase monitor is equipped with an LED that provides an ON or FAULT indicator.

#### **Remote Potentiometer**

The minimum position setting of the economizer shall be adjusted with this accessory.

#### Manual Outside Air Damper

Factory or field-installed rain hood and screen shall provide up to 50 percent outside air.

#### **Motorized Outside Air Dampers**

Factory or field-installed manually set outdoor air dampers shall provide up to 50 percent outside air. Once set, outdoor air dampers shall open to set position when indoor fan starts. The damper shall close to the full closed position when indoor fan shuts down.

#### **Discharge Air Sensing**

This factory of field-installed option provides true discharge air sensing in heating models. This sensor is a status indicator readable through Tracer™ or Tracker™.

#### **Oversized Motors**

Factory or field-installed oversized motors shall be available for high static applications.

#### Clogged Filter/Fan Failure Switch

A dedicated differential pressure switch is available, factory-installed, to achieve active fan failure indication and/or clogged filter indication. These indications will be registered with either a zone sensor with status indication lights or an Integrated Comfort™ System.

#### **High Pressure Cutout**

Standard on all units.

#### **Hinged Access Doors**

Sheet metal hinges are available factoryinstalled on the Filter/Evaporator, Supply Fan/Heat, and the Compressor/Control Access Doors.

#### **Black Epoxy Coated Condenser Coil**

The coil provides corrosion protection to condenser coils for seacoast application. The protection is a factory-applied thermoset vinyl coating, bonded to normal aluminum fin stock. The uniform thickness of the bonded vinyl layer exhibits excellent corrosion protection.



# Mechanical Specifications

### **Control Options**

### Comm-3/4 Trane Communication Interface

This factory or field-installed option shall be provided to interface microprocessor controlled units with the Trane Integrated Comfort™ systems.

### Comm-5 LonTalk Communication Interface

This factory or field-installed option shall be provided to allow the unit to communicate as a Trane Comm-5 device or directly with generic LonTalk Network Building Automation System Controls.

#### **Zone Sensor**

This field-installed control shall be provided to interface with the Micro equipped units and shall be available in either manual, automatic programmable with night setback, with system malfunction lights, or remote sensor options.

#### **Thermostats**

Two stage heating and cooling operation or one stage heating and cooling shall be available, for field installation, in either manual or automatic changeover.

Automatic programmable electronic with night set back shall also be available.

#### **Differential Pressure Switches**

These factory or field-installed sensors allow individual fan failure and dirty filter indication for microprocessor controlled units. The fan failure switch will disable all unit functions and "flash" the Service LED on the zone sensor. The dirty filter switch will light the Service LED on the zone sensor and will allow continued unit operation.

#### **Reference Enthalpy Control**

Replaces the dry bulb control with a wet bulb changeover controller which has a fully adjustable set point. Enthalpy control offers a higher level of comfort control, along with energy savings potential, than the standard dry bulb control. This is due to the additional wet bulb sensing capability. This option shall be available for microprocessor controlled units. It can be field-installed, or factory-installed with the factory-installed economizer.

#### **Differential Enthalpy Control**

Replaces the standard dry bulb control with two enthalpy sensors that compare total heat content of the indoor air and outdoor air to determine the most efficient air source. This control option offers the highest level of comfort control, plus energy efficiency, available. This option shall be available for microprocessor controlled units. It can be field-installed, or factory-installed with the factory-installed economizer.

#### **Low Ambient Cooling**

All microprocessor units shall have cooling capabilities down to 18°C (0°F) as standard.



### Trane A business of American Standard Companies www.trane.com

For more information, contact your local district office or e-mail us at comfort@trane.com

| RT-PRC016-EN                           |
|----------------------------------------|
| PL-UN-000-RT-PRC016-EN-02-04           |
| PL-UN-000-RT-PRC016-EN-12-03           |
| 03-03 Webb/Mason 02-04 Electronic Only |
|                                        |

Trane has a policy of continuous product and product data improvement and reserves the right to change design and specifications without notice