计算机视觉 Computer Vision

周琬婷 wanting.zhou@bupt.edu.cn

扫一扫二维码,加入群聊

Fitting (Least squares & RANSAC)

Machine Vision Technology												
Semantic information						Metric 3D information						
Pixels	Segments	Images	Videos		Camera		Multi-view Geometry					
Convolutions Edges & Fitting Local features Texture	Segmentation Clustering	Recognition Detection	Motion Tracking		Camera Model	Camera Calibration	Epipolar Geometry	SFM				
10	4	4	2		2	2	2	2				

Fitting

- We've learned how to detect edges.
 Now what?
- We would like to form a higher-level, more compact representation of the features in the image by grouping multiple features according to a simple model

Fitting

• Choose a parametric model to represent a set of features

simple model: lines

simple model: circles

complicated model: car

Source: K. Grauman

Fitting: Issues

Case study: Line detection

- **Noise** in the measured feature locations
- Extraneous data: clutter (outliers), multiple lines
- Missing data: occlusions

Fitting: Overview

- If we know which points belong to the line, how do we find the "optimal" line parameters?
 - Least squares
- What if there are outliers?
 - Robust fitting, RANSAC
- What if there are many lines?
 - Voting methods: RANSAC, Hough transform
- What if we're not even sure it's a line?
 - Model selection

Least squares line fitting

Data: $(x_1, y_1), ..., (x_n, y_n)$

Line equation: $y_i = m x_i + b$

Find (m, b) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \qquad X = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \qquad B = \begin{bmatrix} m \\ b \end{bmatrix}$$

$$B = \begin{bmatrix} m \\ b \end{bmatrix}$$

$$E = ||Y - XB||^{2} = (Y - XB)^{T} (Y - XB) = Y^{T} Y - 2(XB)^{T} Y + (XB)^{T} (XB)$$

$$\frac{dE}{dB} = 2X^T XB - 2X^T Y = 0$$

 $X^T XB = X^T Y$

Normal equations: least squares solution to

$$XB=Y$$

Problem with "vertical" least squares

Data: $(x_1, y_1), ..., (x_n, y_n)$

Line equation: $y_i = mx_i + b$

Find (m, b) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

- Not rotation-invariant
- Fails completely for vertical lines

Distance between point (x_i, y_i) and line ax+by=d $(a^2+b^2=1)$ $|ax_i+by_i-d|$

Distance between point (x_i, y_i) and line ax+by=d $(a^2+b^2=1)$ $|ax_i+by_i-d|$

Find (a, b, d) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

Distance between point (x_i, y_i) and line $ax+by=d(a^2+b^2=1)$ $|ax_i + by_i - d|$

Find (a, b, d) to minimize the sum of squared perpendicular

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

$$\frac{\partial E}{\partial d} = \sum_{i=1}^{n} -2(ax_i + by_i - d) = 0$$

$$\frac{\partial E}{\partial d} = \sum_{i=1}^{n} -2(ax_i + by_i - d) = 0 \qquad d = \frac{a}{n} \sum_{i=1}^{n} x_i + \frac{b}{n} \sum_{i=1}^{n} y_i = a\overline{x} + b\overline{y}$$

ax+by=d

$$\frac{\partial E}{\partial d} = \sum_{i=1}^{n} -2(ax_i + by_i - d) = 0 \qquad d = -\sum_{i=1}^{n} x_i + -\sum_{i=1}^{n} y_i = ax + by$$

$$E = \sum_{i=1}^{n} (a(x_i - \bar{x}) + b(y_i - \bar{y}))^2 = \begin{bmatrix} x_1 - \bar{x} & y_1 - \bar{y} \\ \vdots & \vdots \\ x_n - \bar{x} & y_n - \bar{y} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}^2 = (UN)^T (UN)$$

$$\frac{dE}{dN} = 2(U^T U)N = 0$$

Solution to $(U^TU)N = 0$, subject to $||N||^2 = 1$: eigenvector of U^TU associated with the smallest eigenvalue (least squares solution to homogeneous linear system UN = 0)

$$U = \begin{bmatrix} x_1 - \overline{x} & y_1 - \overline{y} \\ \vdots & \vdots \\ x_n - \overline{x} & y_n - \overline{y} \end{bmatrix} \quad U^T U = \begin{bmatrix} \sum_{i=1}^n (x_i - \overline{x})^2 & \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) \\ \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) & \sum_{i=1}^n (y_i - \overline{y})^2 \end{bmatrix}$$

second moment matrix

$$U = \begin{bmatrix} x_1 - \overline{x} & y_1 - \overline{y} \\ \vdots & \vdots \\ x_n - \overline{x} & y_n - \overline{y} \end{bmatrix} \quad U^T U = \begin{bmatrix} \sum_{i=1}^n (x_i - \overline{x})^2 & \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) \\ \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) & \sum_{i=1}^n (y_i - \overline{y})^2 \end{bmatrix}$$

 $E = \begin{bmatrix} \begin{vmatrix} x_1 - \bar{x} & y_1 - \bar{y} \\ \vdots & \vdots \\ x_n - \bar{x} & y_n - \bar{y} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \end{bmatrix}^{-1}$ $= (UN)^T (UN)$

Least squares as likelihood maximization

 Generative model: line points are sampled independently and corrupted by Gaussian noise in the direction perpendicular to the line

Least squares as likelihood maximization

 Generative model: line points are sampled independently and corrupted by Gaussian noise in the direction perpendicular to the line

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix} + \varepsilon \begin{pmatrix} a \\ b \end{pmatrix}$$

Likelihood of points given line parameters (a, b, d):

$$P(x_1, y_1, ..., x_n, y_n \mid a, b, d) = \prod_{i=1}^n P(x_i, y_i \mid a, b, d) \propto \prod_{i=1}^n \exp\left(-\frac{(ax_i + by_i - d)^2}{2\sigma^2}\right)$$

Log-likelihodd:
$$x_1, y_1, ..., x_n, y_n \mid a, b, d) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (ax_i + by_i - d)^2$$
Source: S. Lazebnik

Least squares: Robustness to noise

Least squares fit to the red points:

Least squares: Robustness to noise

Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers

Robust estimators

• General approach: find model parameters θ that minimize

$$\sum_{i} \rho(r_i(x_i, \theta); \sigma)$$

 $r_i(x_i, \theta)$ – residual of ith point w.r.t. model parameters θ ρ – robust function with scale parameter σ

The robust function ρ behaves like squared distance for small values of the residual u but saturates for larger values of u

Choosing the scale: Just right

The effect of the outlier is minimized

Choosing the scale: Too small

The error value is almost the same for every point and the fit is very poor

Choosing the scale: Too large

Behaves much the same as least squares

Robust estimation: Details

- Robust fitting is a nonlinear optimization problem that must be solved iteratively
- Least squares solution can be used for initialization
- Adaptive choice of scale: approx. 1.5 times median residual (F&P, Sec. 15.5.1)

RANSAC

- Robust fitting can deal with a few outliers what if we have very many?
- Random sample consensus (RANSAC):
 Very general framework for model fitting in the presence of outliers
- Outline
 - Choose a small subset of points uniformly at random
 - Fit a model to that subset
 - Find all remaining points that are "close" to the model and reject the rest as outliers
 - Do this many times and choose the best model

M. A. Fischler, R. C. Bolles. <u>Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography</u>. Comm. of the ACM, Vol 24, pp 381-395, 1981.

Least-squares fit

 Randomly select minimal subset of points

- Randomly select minimal subset of points
- 2. Hypothesize a model

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesize-andverify loop

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesize-andverify loop

Uncontaminated sample

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesize-andverify loop

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesize-andverify loop

RANSAC for line fitting

Repeat **N** times:

- Draw s points uniformly at random
- Fit line to these *s* points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
- If there are d or more inliers, accept the line and refit using all inliers

Choosing the parameters

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold *t*
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

Choosing the parameters

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

$$\left(1 - \left(1 - e\right)^s\right)^W = 1 - p$$

$$N = \log(1-p)/\log(1-(1-e)^{s})$$

		proportion of outliers e										
S	5%	10%	20%	25%	30%	40%	50%					
2	2	3	5	6	7	11	17					
3	3	4	7	9	11	19	35					
4	3	5	9	13	17	34	72					
5	4	6	12	17	26	57	146					
6	4	7	16	24	37	97	293					
7	4	8	20	33	54	163	588					
8	5	9	26	44	78	272	1177					

Choosing the parameters

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold *t*
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Consensus set size d
 - Should match expected inlier ratio

Adaptively determining the number of samples

- Inlier ratio e is often unknown a priori, so pick worst case, e.g. 50%, and adapt if more inliers are found, e.g. 80% would yield e=0.2
- Adaptive procedure:
 - *N*=∞, *sample_count* =0
 - While N >sample_count
 - Choose a sample and count the number of inliers
 - Set e = 1 (number of inliers)/(total number of points)
 - Recompute N from e:

$$N = \log(1-p)/\log(1-(1-e)^s)$$

Increment the sample_count by 1

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Lots of parameters to tune
- Doesn't work well for low inlier ratios (too many iterations, or can fail completely)
- Can't always get a good initialization of the model based on the minimum number of samples

$$\begin{bmatrix} x_a \\ y_a \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x_b \\ y_b \\ 1 \end{bmatrix}$$