CSC 520, Spring 2020

Principles of Programming Languages

Michelle Strout

Today's Plan

- Impcore operational semantics
- How we know what code is supposed to do at runtime: valid derivations
- Wednesday, What do we know about valid derivations: metatheory

For Reference: Concrete Syntax for Impcore

Definitions and Expressions

```
def ::= (define f (x1 ... xn) exp)
       (val x exp)
      exp
      (use filename)
       (check-expect exp1 exp2)
variable-name
     (set x exp)
                     ;; compound forms
      (if exp1 exp2 exp3)
      (while exp1 exp2)
      (begin exp1 ... expn)
      (function-name exp1 ... expn)
```

For reference: AST definition for Impcore

• The abstract-syntax tree (AST)

 One kind of "application" for both user-defined and primitive functions.

For Reference: Impcore three environments

- Global variables ξ (or \xi)
- Functions φ (or \phi)
- Formal parameters ρ (or \rho)
- There are no local variables
 - Just like awk; if you need temps, use extra formal parameters
 - For HW2, you'll add local variables
- Function environment ϕ not shared with variables
 - just like Perl

Syntax and Environments determine behavior

Behavior is called evaluation

- Expression is evaluated in environment to produce value
- "The environment" has three parts: globals, formals, functions

Evaluation is

- Specified using inference rules (math)
- Implemented using interpreter (code)
- You know code. You will learn math.

Key ideas apply to any language

- Expressions
- Values
- Rules

Rules written using operational semantics

- Evaluation on an abstract machine
 - Concise, precise definition
 - Guide to build interpreter
 - Prove "evaluation deterministic" or "environments can be on a stack"
- Idea: "mathematical interpreter" is set of formal rules for interpretation

Syntax & environments determine meaning Combu

• Initial state of abstract machine:

$$\langle e, \xi, \phi, \rho \rangle$$

- State $\langle e, \xi, \phi, \rho \rangle$ is
 - e expression being evaluated
 - xi values of global variables
 - phi definitions of functions
 - rho values of formal parameters

• Three environments determine what is in scope

Meaning written as "Evaluation judgement"

We say

$$\langle e, \xi, \phi, \rho \rangle \Downarrow \langle v, \xi', \phi, \rho' \rangle$$

- (Big-step judgement form)
- Notes:
 - xi and xi' may differ
 - rho and rho' may differ
 - phi must equal phi
- Question: what do we know about globals? functions?

Impcore atomic form: Literal

• "Literal" generalizes "numeral"

LITERAL

$$\langle \text{LITERAL}(v), \xi, \phi, \rho \rangle \Downarrow \langle v, \xi, \phi, \rho \rangle$$

- Numeral converted to LITERAL(v) in parser
- Question: what is LITERAL(v)?

Impcore atomic form: Variable

FORMALVAR

$$\frac{x \in \text{dom } \rho}{\langle \text{VAR}(x), \xi, \phi, \rho \rangle \Downarrow \langle \rho(x), \xi, \phi, \rho \rangle}$$

GLOBALVAR
$$x \notin \text{dom } \rho \qquad x \in \text{dom } \xi$$

$$\overline{\langle \text{VAR}(x), \xi, \phi, \rho \rangle} \Downarrow \langle \xi(x), \xi, \phi, \rho \rangle$$

• Parameters hide global variables. Question: how do we know this?

Impcore compound form: Assignment

• In SET(x,e), e is any expression

FORMALASSIGN

$$\frac{x \in \text{dom } \rho \qquad \langle e, \xi, \phi, \rho \rangle \Downarrow \langle v, \xi', \phi, \rho' \rangle}{\langle \text{SET}(x, e), \xi, \phi, \rho \rangle \Downarrow \langle v, \xi', \phi, \rho' \{x \mapsto v \} \rangle}$$

GLOBALASSIGN

$$\frac{x \notin \text{dom } \rho \qquad x \in \text{dom } \xi \qquad \langle e, \xi, \phi, \rho \rangle \Downarrow \langle v, \xi', \phi, \rho' \rangle}{\langle \text{SET}(x, e), \xi, \phi, \rho \rangle \Downarrow \langle v, \xi' \{x \mapsto v\}, \phi, \rho' \rangle}$$

• Improve can assign only to existing variables, Question: how do we know that?

Semantics corresponds to code Computer Science

We compose rules to make proofs

Math	Code
Semantics	Interpreter
Evaluation judgment	Result of evaluation
Proof of judgment	Computation of result
Rule of semantics	Case in the interpreter

Interpreter succeeds if and only if a proof exists

(Homework: result is unique!)

One case per rule; multiple cases per form:

VAR find binding for variable, use value

SET rebind variable in formals or globals

IFX (recursively) evaluate condition, then t or f

WHILEX (recursively) evaluate condition, body

BEGIN (recursively) evaluate each Exp of body

APPLY look up function in functions

built-in PRIMITIVE — do by cases

USERDEF function — use arg values to build

formals env, recursively evaluate fun body

Implementing evaluation


```
Value eval(Exp e, Valenv \xi, Funenv \phi, Valenv \rho) {
  switch(e->alt) {
  case LITERAL: return e->u.literal;
  case VAR: ... /* look up in \rho and \xi */
  case SET: ... /* modify \rho or \xi */
  case IFX: ...
  case WHILEX: ...
  case BEGIN: ...
  case APPLY: ...
```

More detail


```
Value eval(Exp e, Valenv \xi, Funenv \phi, Valenv \rho) {
  switch(e->alt) {
  case LITERAL: return e->u.literal;
  case VAR: ... /* look up in \rho and \xi */
  case SET: ... /* modify \rho or \xi */
  case IFX: ...
  case WHILEX: ...
  case BEGIN: ...
  case APPLY: if (!isfunbound(e->u.apply.name, \phi))
                 runerror ("undefined function %n",
                           e->u.apply.name);
               f = fetchfun(e->u.apply.name, \phi);
               ... /* user fun or primitive */
```

Variable-form math: two rules

Computer Science

FORMALVAR

$$\frac{x \in \mathrm{dom}\,\rho}{\langle \mathrm{VAR}(x), \xi, \phi, \rho \rangle \Downarrow \langle \rho(x), \xi, \phi, \rho \rangle}$$

GLOBALVAR

$$\frac{x \notin \operatorname{dom} \rho \quad x \in \operatorname{dom} \xi}{\langle \operatorname{VAR}(x), \xi, \phi, \rho \rangle \Downarrow \langle \xi(x), \xi, \phi, \rho \rangle}$$

How do we tell them apart?

Variable-form code: three cases

Consult formals ρ then globals ξ :

```
case VAR:
  if (isvalbound(e->u.var, formals))
    return fetchval(e->u.var, formals);
  else if (isvalbound(e->u.var, globals))
    return fetchval(e->u.var, globals);
  else
    runerror("unbound var %n", e->u.var);
```

Why a third case?

When no proof, run-time error

Assignment-form math: two rules

FORMALASSIGN

$$\frac{x \in \text{dom}\,\rho \qquad \langle e, \xi, \phi, \rho \rangle \Downarrow \langle v, \xi', \phi, \rho' \rangle}{\langle \text{SET}(x, e), \xi, \phi, \rho \rangle \Downarrow \langle v, \xi', \phi, \rho' \{x \mapsto v \} \rangle}$$

GLOBAL ASSIGN

$$\frac{x \notin \mathrm{dom}\,\rho \qquad x \in \mathrm{dom}\,\xi \qquad \langle e, \xi, \phi, \rho \rangle \Downarrow \langle v, \xi', \phi, \rho' \rangle}{\langle \mathsf{SET}(x, e), \xi, \phi, \rho \rangle \Downarrow \langle v, \xi' \{x \mapsto v\}, \phi, \rho' \rangle}$$

Assignment-form code: three cases

```
case SET: {
  Value v = eval(e->u.set.exp, globals, functions,
                                formals);
  if (isvalbound(e->u.set.name, formals))
    bindval(e->u.set.name, v, formals);
  else if (isvalbound(e->u.set.name, globals))
    bindval(e->u.set.name, v, globals);
  else
    runerror ("set: unbound variable %n",
             e->u.set.name);
  return v;
```


Application math: user-defined function

APPLYUSER

$$\phi(f) = \text{USER}(\langle x_1, \dots, x_n \rangle, e)$$

$$x_1, \dots, x_n \text{ all distinct}$$

$$\langle e_1, \xi_0, \phi, \rho_0 \rangle \Downarrow \langle v_1, \xi_1, \phi, \rho_1 \rangle$$

$$\langle e_2, \xi_1, \phi, \rho_1 \rangle \Downarrow \langle v_2, \xi_2, \phi, \rho_2 \rangle$$

$$\vdots$$

$$\langle e_n, \xi_{n-1}, \phi, \rho_{n-1} \rangle \Downarrow \langle v_n, \xi_n, \phi, \rho_n \rangle$$

$$\langle e, \xi_n, \phi, \{x_1 \mapsto v_1, \dots, x_n \mapsto v_n\} \rangle \Downarrow \langle v, \xi', \phi, \rho' \rangle$$

$$\langle \text{APPLY}(f, e_1, \dots, e_n), \xi_0, \phi, \rho_0 \rangle \Downarrow \langle v, \xi', \phi, \rho_n \rangle$$

Simpler math: function of two parameters of the parameters of two parameters of the science of two parameters of two par

APPLYUSER

$$\phi(f) = \text{USER}(\langle x_1, x_2 \rangle, e)$$

$$x_1, x_2 \text{ distinct}$$

$$\langle e_1, \xi_0, \phi, \rho_0 \rangle \Downarrow \langle v_1, \xi_1, \phi, \rho_1 \rangle$$

$$\langle e_2, \xi_1, \phi, \rho_1 \rangle \Downarrow \langle v_2, \xi_2, \phi, \rho_2 \rangle$$

$$\langle e, \xi_2, \phi, \{x_1 \mapsto v_1, x_2 \mapsto v_2\} \rangle \Downarrow \langle v, \xi', \phi, \rho' \rangle$$

$$\langle \text{APPLY}(f, e_1, e_2, \xi_0, \phi, \rho_0) \Downarrow \langle v, \xi', \phi, \rho_2 \rangle$$

- What order are actual parameters evaluated?
- What if formal param names are duplicated?
- What var changes in f can be seen by caller?

Evaluating function application

The math demands these steps:

Find function in old environment

```
f = fetchfun(e->u.apply.name, functions);
```

• Using old ρ , evaluate actuals

N.B. actuals evaluated in current environment

Make a new environment: bind formals to actuals

```
new_formals = mkValenv(f.u.userdef.formals, vs);
```

Evaluate body in new environment

Using Operation Semantics

Valid derivations

- "How do I know what this program should evaluate to?"
- Code example

```
(define and (p q)
    (if p q 0))

(define digit? (n)
    (and (<= 0 n) (< n 10)))</pre>
```

Questions:

- In body of digit?, what expressions are evaluated in what order?
- For the and function application, template is (f e1 e2). Matches?
- Result of (digit? 7)?

Simpler math: function of two parameters

APPLYUSER

$$\phi(f) = \mathsf{USER}(\langle x_1, x_2 \rangle, e)$$

$$x_1, x_2 \text{ distinct}$$

$$\langle e_1, \xi_0, \phi, \rho_0 \rangle \Downarrow \langle v_1, \xi_1, \phi, \rho_1 \rangle$$

$$\langle e_2, \xi_1, \phi, \rho_1 \rangle \Downarrow \langle v_2, \xi_2, \phi, \rho_2 \rangle$$

$$\langle e, \xi_2, \phi, \{x_1 \mapsto v_1, x_2 \mapsto v_2\} \rangle \Downarrow \langle v, \xi', \phi, \rho' \rangle$$

$$\langle \mathsf{APPLY}(f, e_1, e_2, \xi_0, \phi, \rho_0) \Downarrow \langle v, \xi', \phi, \rho_2 \rangle$$

Exercise: Which judgements are valid?

Which of these judgments correctly describes what code does at run time?

-
$$\langle$$
 (+ 2 2), ξ , ϕ , ρ \rangle \Downarrow \langle 99, ξ , ϕ , ρ \rangle

-
$$\langle$$
 (+ 2 2), ξ , ϕ , ρ $\rangle $\Downarrow \langle 0, \xi \{x \mapsto 10\}, \phi, \rho \rangle$$

-
$$\langle$$
 (+ 2 2), ξ , ϕ , ρ $\rangle $\Downarrow \langle 4, \xi, \phi, \rho \rangle$$

-
$$\langle$$
 (while 1 0), $\xi, \phi, \rho \rangle \Downarrow \langle 77, \xi, \phi, \rho \rangle$

-
$$\langle$$
 (begin (set n (+ n 1)) 17), $\xi, \phi, \rho \rangle \Downarrow \langle 17, \xi, \phi, \rho \rangle$

To know for sure, we need a proof.

Judgement is valid when "derivable"

- Special kind of proof: derivation
 - It's a data structure (derivation tree)
 - Made inductively, by composing rules
 - Valid derivation matches rules (by substitution)
 - Spacelike representation of timelike behavior (think flip-book animation)
- A form of "syntactic proof"

Recursive evaluation for inductive proof

Root of derivation at the bottom (surprise!)

Build

- Start on the left, go up
- Cross the evaluation judgment relation down arrow
- Finish on the right, go down
- First let's see a movie

Evaluating $(10+1) \times (10-1)$

Computer Science

 $\langle (\star (+101) (-101)), \xi, \phi, \rho \rangle \Downarrow (30, 2, 0)$

Evaluating $(10+1) \times (10-1)$

 $\langle (+101), \xi, \phi, \rho \rangle \downarrow \downarrow$

 $\langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \phi \rangle$

Evaluating $(10+1) \times (10-1)$

⟨10,...⟩ ₩ ⟨100,...⟩ ⟨1,...⟩ ₩ ⟨11,...⟩ ⟨1.0,...⟩ ₩ ⟨10,...⟩ ₩ ⟨10,...⟩ ₩ ⟨10,...⟩

 $\langle (+101), \xi, \phi, \rho \rangle \downarrow$

 $\langle (\star (+101) (-101)), \xi, \phi, \rho \rangle \Downarrow \langle (-101), \xi, \phi, \rho \rangle \rangle$

Evaluating $(10+1) \times (10-1)$

⟨10,...⟩ ↓ ⟨10,...⟩ ⟨1,...⟩ ⟨1,...⟩

 $\langle (+101), \xi, \phi, \rho \rangle \Downarrow \langle [1], \ell, \phi, \rho \rangle$

 $\langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \rangle \downarrow \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \rangle \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \rangle \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \rho \rangle \rangle \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \phi, \rho \rangle \rangle \langle (* (+ 10 1) (- 10 1)), \xi, \phi, \phi \rangle \rangle \langle (*$

Evaluating $(10+1) \times (10-1)$

Computer Science

```
\frac{\overline{\langle 10, \ldots \rangle \Downarrow \langle 10, \ldots \rangle}}{\langle (+10\ 1), \xi, \phi, \rho \rangle \Downarrow}
\langle (*\ (+10\ 1)\ (-10\ 1)), \xi, \phi, \rho \rangle \Downarrow
```

Evaluating $(10+1) \times (10-1)$

```
\frac{\overline{\langle 10, \ldots \rangle \Downarrow \langle 10, \ldots \rangle}}{\langle (+10\ 1), \xi, \phi, \rho \rangle \Downarrow} \\
\overline{\langle (+10\ 1), \xi, \phi, \rho \rangle \Downarrow} \\
\overline{\langle (+10\ 1), \xi, \phi, \rho \rangle \Downarrow}
```

Evaluating $(10+1) \times (10-1)$

Evaluating $(10+1) \times (10-1)$

```
\frac{\overline{\langle 10, \ldots \rangle \Downarrow \langle 10, \ldots \rangle}}{\langle (+10\ 1), \xi, \phi, \rho \rangle \Downarrow \langle 11, \xi, \phi, \rho \rangle} 

\langle (*\ (+10\ 1), \xi, \phi, \rho) \Downarrow \langle 11, \xi, \phi, \rho \rangle \qquad (*\ (+10\ 1), \xi, \phi, \rho) \Downarrow
```

Evaluating $(10+1) \times (10-1)$


```
\frac{\overline{\langle 10, \ldots \rangle \Downarrow \langle 10, \ldots \rangle}}{\langle (+101), \xi, \phi, \rho \rangle \Downarrow \langle 11, \xi, \phi, \rho \rangle} \\
 = \langle (+101), \xi, \phi, \rho \rangle \Downarrow \langle 11, \xi, \phi, \rho \rangle \\
 = \langle (+101), \xi, \phi, \rho \rangle \Downarrow
```

Evaluating $(10+1) \times (10-1)$

Evaluating $(10+1) \times (10-1)$

Evaluating $(10+1) \times (10-1)$

```
\frac{\overline{\langle 10, \ldots \rangle \Downarrow \langle 10, \ldots \rangle}}{\langle (+10\ 1), \xi, \phi, \rho \rangle \Downarrow \langle 11, \xi, \phi, \rho \rangle} \frac{\overline{\langle 10, \ldots \rangle \Downarrow \langle 10, \ldots \rangle}}{\langle (-10\ 1), \xi, \phi, \rho \rangle \Downarrow} \\
 = \langle (*\ (+10\ 1)\ (-10\ 1)), \xi, \phi, \rho \rangle \Downarrow
```

Algorithm for building derivations

Want to solve

$$\langle e, \xi, \phi, \rho \rangle \Downarrow ?$$

What rule can I use to prove it?

- Syntactic form of e narrows to a few choices (usually 1 or 2)
- 2. Look for form in conclusion
- 3. Now check premises
- When premise is evaluation judgment, build sub-derivation recursively

Derivation is written \mathcal{D}

Exercise: Evaluate (digit? 7) ATHE UNIVERSITY Computer Science

i

(and (<= 0 n) (< n 10)),
$$\xi$$
, ϕ , $\{n \mapsto 7\}$) \Downarrow ?