CS 107, Probability, Spring 2019 Lecture 20

Michael Poghosyan

AUA

11 March 2019

Content

- CDF and its Properties
- Discrete r.v.

LZ

Welcome back from the Spring Break $\ddot{-}$

Assume F(x) is the CDF of the r.v. X:

$$F(x) = F_X(x) = \mathbb{P}(X \le x), \qquad x \in \mathbb{R},$$

Assume F(x) is the CDF of the r.v. X:

$$F(x) = F_X(x) = \mathbb{P}(X \le x), \qquad x \in \mathbb{R},$$

Then:

Assume F(x) is the CDF of the r.v. X:

$$F(x) = F_X(x) = \mathbb{P}(X \le x), \qquad x \in \mathbb{R},$$

Then:

Properties of CDF

• $0 \le F(x) \le 1$, for any $x \in \mathbb{R}$;

Assume F(x) is the CDF of the r.v. X:

$$F(x) = F_X(x) = \mathbb{P}(X \le x), \qquad x \in \mathbb{R},$$

Then:

- $0 \le F(x) \le 1$, for any $x \in \mathbb{R}$;
- $F(-\infty) = 0$ and $F(+\infty) = 1$;

Assume F(x) is the CDF of the r.v. X:

$$F(x) = F_X(x) = \mathbb{P}(X \le x), \qquad x \in \mathbb{R},$$

Then:

- $0 \le F(x) \le 1$, for any $x \in \mathbb{R}$;
- $F(-\infty) = 0$ and $F(+\infty) = 1$;
- F is an increasing function, i.e., if $x_1 \le x_2$, then $F(x_1) \le F(x_2)$;

Assume F(x) is the CDF of the r.v. X:

$$F(x) = F_X(x) = \mathbb{P}(X \le x), \qquad x \in \mathbb{R},$$

Then:

- $0 \le F(x) \le 1$, for any $x \in \mathbb{R}$;
- $F(-\infty) = 0$ and $F(+\infty) = 1$;
- F is an increasing function, i.e., if $x_1 \le x_2$, then $F(x_1) \le F(x_2)$;
- F is right-continuous at every point, i.e. $F(x_0+) = F(x_0)$ at any $x_0 \in \mathbb{R}$

Assume F(x) is the CDF of the r.v. X:

$$F(x) = F_X(x) = \mathbb{P}(X \le x), \qquad x \in \mathbb{R},$$

Then:

Properties of CDF

- $0 \le F(x) \le 1$, for any $x \in \mathbb{R}$;
- $F(-\infty) = 0$ and $F(+\infty) = 1$;
- F is an increasing function, i.e., if $x_1 \le x_2$, then $F(x_1) \le F(x_2)$;
- F is right-continuous at every point, i.e. $F(x_0+) = F(x_0)$ at any $x_0 \in \mathbb{R}$

These four properties characterize completely CDFs!

Using CDFs to calculate Probabilities

Now we want to calculate Probabilities using the CDF.

Using CDFs to calculate Probabilities

Now we want to calculate Probabilities using the CDF. Assume X is a r.v., and F(x) is its CDF. Then:

Using CDFs to calculate Probabilities

Now we want to calculate Probabilities using the CDF. Assume X is a r.v., and F(x) is its CDF. Then:

Probabilities through CDF

- $\mathbb{P}(X = a) = F(a) F(a-);$
- $\mathbb{P}(a < X \leq b) = F(b) F(a);$
- $\mathbb{P}(a \le X \le b) = F(b) F(a-);$
- $\mathbb{P}(a \le X < b) = F(b-) F(a-);$
- $\mathbb{P}(a < X < b) = F(b-) F(a);$

Here we can have also $a = -\infty$ or/and $b = +\infty$

Problem: Is the following a CDF of some r.v. X? If yes, calculate $\mathbb{P}(X = 2)$, $\mathbb{P}(2 < X \le 3)$, $\mathbb{P}(X \le 5)$, $\mathbb{P}(X > 2)$:

Problem: Is the following a CDF of some r.v. X? If yes, calculate $\mathbb{P}(X = 2)$, $\mathbb{P}(2 < X \le 3)$, $\mathbb{P}(X \le 5)$, $\mathbb{P}(X > 2)$:

Figure: CDF of some r.v. X

PrbIm: Is the following a CDF of some r.v. X? If yes, calculate $\mathbb{P}(X=1)$, $\mathbb{P}(0 < X \le 3)$, $\mathbb{P}(X \le 1)$, $\mathbb{P}(X > 0)$, $\mathbb{P}(X < -3)$:

PrbIm: Is the following a CDF of some r.v. X? If yes, calculate $\mathbb{P}(X=1)$, $\mathbb{P}(0 < X \leq 3)$, $\mathbb{P}(X \leq 1)$, $\mathbb{P}(X>0)$, $\mathbb{P}(X<-3)$:

Figure: CDF of some r.v. X

PrbIm: Is the following a CDF of some r.v. X? If yes, calculate $\mathbb{P}(X=1)$, $\mathbb{P}(0 < X \le 3)$, $\mathbb{P}(X \le 1)$, $\mathbb{P}(X > 0)$, $\mathbb{P}(X < -3)$:

PrbIm: Is the following a CDF of some r.v. X? If yes, calculate $\mathbb{P}(X=1)$, $\mathbb{P}(0 < X \leq 3)$, $\mathbb{P}(X \leq 1)$, $\mathbb{P}(X > 0)$, $\mathbb{P}(X < -3)$:

Figure: CDF of some r.v. X

Problem: For the r.v. X given through its CDF below, which values are more probable:

Problem: For the r.v. X given through its CDF below, which values are more probable:

Figure: CDF of some r.v. X

Problem: Is the following a CDF of some r.v. X? If yes, calculate $\mathbb{P}(X = 1)$, $\mathbb{P}(0 < X \le 3)$, $\mathbb{P}(X \le 1)$, $\mathbb{P}(X > 0)$:

Problem: Is the following a CDF of some r.v. X? If yes, calculate $\mathbb{P}(X = 1)$, $\mathbb{P}(0 < X \le 3)$, $\mathbb{P}(X \le 1)$, $\mathbb{P}(X > 0)$:

Figure: CDF of some r.v. X

Problem: Below you can find graphs of 2 CDFs: Red is for r.v. X, and Black is for Y. Which one is larger: $\mathbb{P}(2 < X < 4)$ or $\mathbb{P}(2 < Y < 4)$?

Problem: Below you can find graphs of 2 CDFs: Red is for r.v. X, and Black is for Y. Which one is larger: $\mathbb{P}(2 < X < 4)$ or $\mathbb{P}(2 < Y < 4)$?

Discrete R.V.s

In our course, we will consider 2 types of r.v.: **Discrete** and **Continuous**.

¹Right Hand Side

In our course, we will consider 2 types of r.v.: **Discrete** and **Continuous**. Assume X is a r.v. defined on Ω , i.e., $X : \Omega \to \mathbb{R}$.

¹Right Hand Side

In our course, we will consider 2 types of r.v.: **Discrete** and **Continuous**. Assume X is a r.v. defined on Ω , i.e., $X : \Omega \to \mathbb{R}$.

Discrete Random Variable

We say that the r.v. X is **Discrete**, if the Range of X,

 $Range(X) = \{X(\omega) : \omega \in \Omega\} = The set of all possible values of X$

is finite or countably infinite.

¹Right Hand Side

In our course, we will consider 2 types of r.v.: **Discrete** and **Continuous**. Assume X is a r.v. defined on Ω , i.e., $X : \Omega \to \mathbb{R}$.

Discrete Random Variable

We say that the r.v. X is **Discrete**, if the Range of X,

 $Range(X) = \{X(\omega) : \omega \in \Omega\} = \text{The set of all possible values of } X$

is finite or countably infinite.

So if X is Discrete, then the Range of X can be written as

$$Range(X) = \{x_1, x_2, x_3, ...\},\$$

where the set on the RHS¹ can be also finite.

¹Right Hand Side

Examples:

• Let *X* be the number of Heads when tossing 5 coins. What is the range of *X*? Is *X* discrete?

- Let *X* be the number of Heads when tossing 5 coins. What is the range of *X*? Is *X* discrete?
- Let *Y* be the number of children in the randomly chosen Armenian family,

- Let *X* be the number of Heads when tossing 5 coins. What is the range of *X*? Is *X* discrete?
- Let Y be the number of children in the randomly chosen Armenian family, so if Ω is the set of all Armenian families, $\omega \in \Omega$ is a family, and $Y(\omega)$ is the number of children in the family ω .

- Let *X* be the number of Heads when tossing 5 coins. What is the range of *X*? Is *X* discrete?
- Let Y be the number of children in the randomly chosen Armenian family, so if Ω is the set of all Armenian families, $\omega \in \Omega$ is a family, and $Y(\omega)$ is the number of children in the family ω .
- Let Z be the number of car accidents today in Yerevan;

- Let *X* be the number of Heads when tossing 5 coins. What is the range of *X*? Is *X* discrete?
- Let Y be the number of children in the randomly chosen Armenian family, so if Ω is the set of all Armenian families, $\omega \in \Omega$ is a family, and $Y(\omega)$ is the number of children in the family ω .
- Let Z be the number of car accidents today in Yerevan;
- Let *U* be the number of page clicks/search queries in Google;

- Let *X* be the number of Heads when tossing 5 coins. What is the range of *X*? Is *X* discrete?
- Let Y be the number of children in the randomly chosen Armenian family, so if Ω is the set of all Armenian families, $\omega \in \Omega$ is a family, and $Y(\omega)$ is the number of children in the family ω .
- Let Z be the number of car accidents today in Yerevan;
- Let U be the number of page clicks/search queries in Google; let V be the number of grammatical errors in my lecture slides, ...

Discrete Random Variables

Examples:

- Let *X* be the number of Heads when tossing 5 coins. What is the range of *X*? Is *X* discrete?
- Let Y be the number of children in the randomly chosen Armenian family, so if Ω is the set of all Armenian families, $\omega \in \Omega$ is a family, and $Y(\omega)$ is the number of children in the family ω .
- Let Z be the number of car accidents today in Yerevan;
- Let U be the number of page clicks/search queries in Google; let V be the number of grammatical errors in my lecture slides, ...
- Can you give some more?

Discrete Random Variables

Examples:

- Let *X* be the number of Heads when tossing 5 coins. What is the range of *X*? Is *X* discrete?
- Let Y be the number of children in the randomly chosen Armenian family, so if Ω is the set of all Armenian families, $\omega \in \Omega$ is a family, and $Y(\omega)$ is the number of children in the family ω .
- Let Z be the number of car accidents today in Yerevan;
- Let U be the number of page clicks/search queries in Google; let V be the number of grammatical errors in my lecture slides, ...
- Can you give some more?
- If Ω is Discrete, then X will be Discrete;

Discrete Random Variables

Examples:

- Let *X* be the number of Heads when tossing 5 coins. What is the range of *X*? Is *X* discrete?
- Let Y be the number of children in the randomly chosen Armenian family, so if Ω is the set of all Armenian families, $\omega \in \Omega$ is a family, and $Y(\omega)$ is the number of children in the family ω .
- Let Z be the number of car accidents today in Yerevan;
- Let U be the number of page clicks/search queries in Google; let V be the number of grammatical errors in my lecture slides, ...
- Can you give some more?
- If Ω is Discrete, then X will be Discrete;
- If Ω is not Discrete, then X CAN BE Discrete: Example: for the Darts game, let X show the points you will get

Now, assume X is a discrete r.v. with the Range (finite or countably infinite)

$$Range(X) = \{x_1, x_2, x_3, ...\}.$$

Now, assume X is a discrete r.v. with the Range (finite or countably infinite)

$$Range(X) = \{x_1, x_2, x_3, ...\}.$$

Then the function $p(x) = \mathbb{P}(X = x)$, $x \in \mathbb{R}$ is called the Probability Mass Function (PMF) of X.

Now, assume X is a discrete r.v. with the Range (finite or countably infinite)

$$Range(X) = \{x_1, x_2, x_3, ...\}.$$

Then the function $p(x) = \mathbb{P}(X = x)$, $x \in \mathbb{R}$ is called the Probability Mass Function (PMF) of X.

In fact, PMF is non-zero only at points $x = x_k$, and we denote $p_k = \mathbb{P}(X = x_k)$, k = 1, 2, 3, ...

Now, assume X is a discrete r.v. with the Range (finite or countably infinite)

$$Range(X) = \{x_1, x_2, x_3, ...\}.$$

Then the function $p(x) = \mathbb{P}(X = x)$, $x \in \mathbb{R}$ is called the Probability Mass Function (PMF) of X.

In fact, PMF is non-zero only at points $x = x_k$, and we denote $p_k = \mathbb{P}(X = x_k)$, k = 1, 2, 3, ... And in this case we write PMF in the table form:

Values of
$$X \parallel x_1 \mid x_2 \mid x_3 \mid \dots$$

$$\mathbb{P}(X = x) \parallel p_1 \mid p_2 \mid p_3 \mid \dots$$

Now, assume X is a discrete r.v. with the Range (finite or countably infinite)

Range(X) =
$$\{x_1, x_2, x_3, ...\}$$
.

Then the function $p(x) = \mathbb{P}(X = x)$, $x \in \mathbb{R}$ is called the Probability Mass Function (PMF) of X.

In fact, PMF is non-zero only at points $x = x_k$, and we denote $p_k = \mathbb{P}(X = x_k)$, k = 1, 2, 3, ... And in this case we write PMF in the table form:

Values of
$$X \parallel x_1 \mid x_2 \mid x_3 \mid \dots$$

$$\mathbb{P}(X = x) \parallel p_1 \mid p_2 \mid p_3 \mid \dots$$

We will usually write PMF in the table form.

Clearly, if X is a discrete r.v. with the PMF (in the table form):

Values of X				
$\mathbb{P}(X=x)$	p_1	<i>p</i> ₂	<i>p</i> ₃	

Clearly, if X is a discrete r.v. with the PMF (in the table form):

Values of
$$X \parallel x_1 \mid x_2 \mid x_3 \mid \dots$$

$$\mathbb{P}(X = x) \parallel p_1 \mid p_2 \mid p_3 \mid \dots$$

•
$$p_k \ge 0$$
, $k = 1, 2, 3, ...$

Clearly, if X is a discrete r.v. with the PMF (in the table form):

Values of X				
$\mathbb{P}(X=x)$	p_1	p_2	<i>p</i> ₃	

- $p_k \ge 0$, k = 1, 2, 3, ...
- $\sum_k p_k =$

Clearly, if X is a discrete r.v. with the PMF (in the table form):

Values of X				
$\mathbb{P}(X=x)$	p_1	p_2	<i>p</i> ₃	

- $p_k \ge 0$, k = 1, 2, 3, ...
- $\sum_k p_k = 1$

Clearly, if X is a discrete r.v. with the PMF (in the table form):

Values of
$$X \parallel x_1 \mid x_2 \mid x_3 \mid \dots$$

$$\mathbb{P}(X = x) \parallel p_1 \mid p_2 \mid p_3 \mid \dots$$

then

- $p_k \ge 0$, k = 1, 2, 3, ...
- $\sum_k p_k = 1$

Question: What is the difference between Discrete Probability Models and Discrete r.v.s?

Recall that, given a r.v. X, our aim was to be able to calculate the Probabilities of the type

$$\mathbb{P}(X \in A), \qquad A \subset \mathbb{R}.$$

Recall that, given a r.v. X, our aim was to be able to calculate the Probabilities of the type

$$\mathbb{P}(X \in A), \qquad A \subset \mathbb{R}.$$

Now, in the case we have the PMF of X,

Values of
$$X \mid x_1 \mid x_2 \mid x_3 \mid \dots$$

$$\mathbb{P}(X = x) \mid p_1 \mid p_2 \mid p_3 \mid \dots$$

we can calculate

$$\mathbb{P}(X \in A) =$$

Recall that, given a r.v. X, our aim was to be able to calculate the Probabilities of the type

$$\mathbb{P}(X \in A), \quad A \subset \mathbb{R}.$$

Now, in the case we have the PMF of X,

Values of
$$X \mid x_1 \mid x_2 \mid x_3 \mid \dots$$

$$\mathbb{P}(X=x) \mid p_1 \mid p_2 \mid p_3 \mid \dots$$

we can calculate

$$\mathbb{P}(X \in A) = \sum_{x_k \in A} p_k.$$

Recall that, given a r.v. X, our aim was to be able to calculate the Probabilities of the type

$$\mathbb{P}(X \in A), \quad A \subset \mathbb{R}.$$

Now, in the case we have the PMF of X,

Values of
$$X$$
 $\begin{vmatrix} x_1 & x_2 & x_3 & \dots \\ P(X=x) & p_1 & p_2 & p_3 & \dots \end{vmatrix}$

we can calculate

$$\mathbb{P}(X \in A) = \sum_{x_k \in A} p_k.$$

For example,

$$\mathbb{P}(a \le X \le b) = \sum_{a \le x_k \le b} p_k.$$

PMF and CDF for a Discrete r.v.

In particular, if the Discrete r.v. X is given by its PMF

Values of
$$X \parallel x_1 \mid x_2 \mid x_3 \mid \dots$$

$$\mathbb{P}(X = x) \parallel p_1 \mid p_2 \mid p_3 \mid \dots$$

and if F(x) is the CDF of X, then:

$$F(x) =$$

PMF and CDF for a Discrete r.v.

In particular, if the Discrete r.v. X is given by its PMF

Values of
$$X \mid x_1 \mid x_2 \mid x_3 \mid \dots$$

$$\mathbb{P}(X = x) \mid p_1 \mid p_2 \mid p_3 \mid \dots$$

and if F(x) is the CDF of X, then:

$$F(x) = \mathbb{P}(X \le x) =$$

PMF and CDF for a Discrete r.v.

In particular, if the Discrete r.v. X is given by its PMF

Values of
$$X \parallel x_1 \mid x_2 \mid x_3 \mid \dots$$

$$\mathbb{P}(X = x) \parallel p_1 \mid p_2 \mid p_3 \mid \dots$$

and if F(x) is the CDF of X, then:

$$F(x) = \mathbb{P}(X \le x) = \sum_{x_k \le x} p_k.$$

Let X is the number of heads shown when tossing a fair coin 4 times. Then X is a r.v. with the PMF:

Values of X			
$\mathbb{P}(X=x)$			

Let X is the number of heads shown when tossing a fair coin 4 times. Then X is a r.v. with the PMF:

$$\begin{array}{c|cccc} \mathsf{Values} \ \mathsf{of} \ X & & & \\ \hline \mathbb{P}(X = x) & & & \\ \end{array}$$

Now,

• Calculate $\mathbb{P}(X=2)$;

Let X is the number of heads shown when tossing a fair coin 4 times. Then X is a r.v. with the PMF:

$$\begin{array}{c|cccc} \text{Values of } X & & & & \\ \hline \mathbb{P}(X=x) & & & & \\ \end{array}$$

Now,

- Calculate $\mathbb{P}(X=2)$;
- Calculate $\mathbb{P}(X \leq 2.5)$;

Let X is the number of heads shown when tossing a fair coin 4 times. Then X is a r.v. with the PMF:

Values of
$$X$$
 $\mathbb{P}(X=x)$

Now,

- Calculate $\mathbb{P}(X=2)$;
- Calculate $\mathbb{P}(X \leq 2.5)$;
- Graph the PMF of X;

Let X is the number of heads shown when tossing a fair coin 4 times. Then X is a r.v. with the PMF:

Values of
$$X$$
 $\mathbb{P}(X=x)$

Now,

- Calculate $\mathbb{P}(X=2)$;
- Calculate $\mathbb{P}(X \leq 2.5)$;
- Graph the PMF of X;
- Graph the CDF of X.