Towards Verified Time Balancing of Security Protocols

Donovan Crichton

January 2019

Motivation

- ASD manually verifies vendor code with containing cryptographic processes.
- ► Formal Methods: A mathematically based approach to the specification and verification of software.
- ► Can we reduce some of the resources ASD spends on manual verification by replacing with automatic verification?
- Can we also further research into secure communications protocols?
- A case study.

Formally Verifying a Time Balanced Security Protocol

- Attackers can gain information from message timing.
- Can we model a time-invariant protocol?
- ► A naive approach considers all operations have the same running time.
- Can we ensure that assumptions on this model hold for the implementation?

The ZRTP Protocol

- Initially started with ZRTP.
- ▶ ZRTP is complex and makes many decisions.
- ➤ Simplified version that contains just enough detail to allow us to attempt to prove some interesting things!

The Simplified Protocol

- Commit messages that contain SHA-256 hashes
- ▶ Diffie-Hellman key exchange contains modulo arithmetic.
- ▶ How can we formally guarantee the timing of operations?
- Lets cover some background before diving in!

Approach

- We can use the notion of propositions as types.
- Functional programming languages that support dependent types can act as theorem provers under a higher order constructive logic.
- We can model this protocol in such a language, Idris.
- We can express proofs about properties of the protocol.

Quick Background 1 - Currying

All functions treated as taking a single argument.

$$f: \mathbb{N} \to (\mathbb{N} \to \mathbb{N})$$
$$f = +$$

Applying an argument to a multi argument function returns the rest of the function! (Arrow associates to the right)

$$f(2): \mathbb{N} \to \mathbb{N}$$
$$f(2) = 2+$$

Finally all arguments are applied.

$$f(2,3): \mathbb{N}$$

 $f(2,3) = 2 + 3 = 5$

Quick Background 2 - Idris Syntax and Values as Types

Building a vector type in Idris:

```
data Vec : Nat -> Type -> Type where
Nil : Vec 0 a
(::) : (x : a) -> Vec n a -> Vec (n + 1) a
```

We can parameterise types over values to capture invariants in the model.

```
append : Vec n a \rightarrow Vec m a \rightarrow Vec (n + m) a append Nil ys = ys append (x :: xs) ys = x :: append xs ys
```

Quick Background 3 - Propositions as Types

Under the assumptions of referential transparency and totality.

Logic Term	Logic Symbol	Idris Symbol	Idris Type
Implication	$p\Rightarrowq$	p -> q	Function
Conjunction	p ∧ q	(p, q)	Pair / Tuple
Disjunction	p∨q	Either p q	Tagged Union
Negation	¬ p	p -> Void	Void Type
IFF/Eq	$p \equiv q, p \iff q$	(p -> q, q -> p)	Pair Arrows
Universal	∀ x. P x	p -> Type	П Туре
Existential	∃ х. Р х	(x ** P x)	Σ Туре
		p = q	Type Equality

Correctness by construction

- ► The protocol implementations can be quite complex, possibly giving rise to equally complex proof obligations.
- We'd like to reduce this burden somehow!
- ▶ We can design a language that is just big enough to compute what we like, but restrictive enough to capture the invariants we care about.

Building a type of Prg n

Statement	Continuation	Result	Description
Halt	-	Prg 1	Terminate
AssC	Prg k	$Prg\;(k+1)$	Asn constant.
AssV	Prg k	$Prg\;(k+1)$	Asn variable.
UnOp	Prg k	$Prg\;(k+1)$	Asn result of unary op.
BinOP	Prg k	$Prg\;(k+1)$	Asn result of binary op.
Do	Prg k	Prg (m * n + k)	Run Prg m, n times.
Cond	Prg k	Prg(n+k)	Branch on Prg n.
Skip	Prg k	$Prg\;(k+1)$	Do Nothing.

Conditionals require both branches to be Prg n. Ensuring That all branches of the program are correct by construction.

What about more expressive time parameters?

Elaboration and Compilation of a Correct Core

- The small, correct core language can be elaborated to a more full-featured language.
- The size of the core language makes the burden of proofs much lighter.
- The compiler can map the core language expressions down to something more "real world" (e.g C, assembler).

Contributions

- Formal description of a simplified protocol.
- ▶ Prg: A small language parameterised over computational time
- Some small proofs of Prg correctness.

Further Work

- ▶ Implement the simplified protocol in Prg.
- ► Modulo arithmetic cases.
- ▶ Relax some of the (many) assumptions.
- Investigate elaboration and compilation with regard to invariants.