### 6. Tutorium – Logik

Besprochen in der Woche vom 05.12.2022.

#### Aufgabe 1

Seien  $\sigma_1 = \{+,0\}$  und  $\sigma_2 = \{\subseteq,\emptyset\}$  zwei Signaturen, wobei  $\emptyset$  und 0 Konstantensymbole sind,  $\subseteq$  ein zweistelliges Relationssymbol ist und + ein zweistelliges Funktionssymbol ist.

- (i) Geben Sie eine  $\sigma_1$ -Struktur  $\mathcal{A}$  an, welche die natürlichen Zahlen mit der Addition und dem neutralen Element der Addition<sup>1</sup> darstellt.
- (ii) Geben Sie eine  $\sigma_1$ -Struktur  $\mathcal{B}$  an, welche die natürlichen Zahlen mit der Multiplikation und dem neutralen Element der Multiplikation darstellt.
- (iii) Geben Sie eine  $\sigma_2$ -Struktur  $\mathcal{D}$  an, welche die Teilmengenrelation auf  $\mathcal{P}(\mathbb{N})$  darstellt.
- (iv) Geben Sie eine  $\sigma_2$ -Struktur  $\mathcal{E}$  an, welche die Kleiner-Gleich Relation über  $\mathbb{N}$  darstellt.
- (v) Bonusfrage: Geben Sie eine Formel  $\varphi \in FO[\sigma_1]$  an, sodass  $\varphi(\mathcal{B})$  genau die Primzahlen enthält.

#### Aufgabe 2

Sei  $\sigma = \{E\}$  eine Signatur mit dem zweistelligen Relationssymbol E. Ungerichtete Graphen werden als  $\sigma$ -Strukturen aufgefasst, wobei E als die Kantenrelation interpretiert wird.

Betrachten Sie die folgenden Graphen:



Geben Sie für jeden der Graphen an ob sie die folgenden Formeln erfüllen.

- (i)  $\varphi_1 = \exists x \forall y E(x, y)$
- (ii)  $\varphi_2 = \exists x \exists y (x \neq y \land \neg E(x, y))$
- (iii)  $\varphi_3 = \forall x (\exists y (E(x,y) \land \exists z (y \neq z \land E(x,z))))$

Sei  $\mathcal{G}$  die  $\sigma$ -Struktur zu einem ungerichteten Graphen G. Finden Sie Formeln, sodass die folgenden Aussagen erfüllt sind.

- (iv)  $\mathcal{G} \models \varphi_4$  genau dann, wenn G genau zwei Knoten enthält, sodass jeder Knoten der nicht einer dieser beiden Knoten ist, ein Nachbar von einem dieser beiden Knoten ist.
- (v)  $\varphi_5 \in FO[\sigma]$  mit  $\mathcal{G}_1 \not\models \varphi_5$ ,  $\mathcal{G}_2 \models \varphi_5$  und  $\mathcal{G}_3 \not\models \varphi_5$ .

<sup>&</sup>lt;sup>1</sup>Das neutrale Element e einer Operation \* ist das Element für das x\*e=e\*x=x für alle x aus der Grundmenge gilt.

# Aufgabe 3

Sei  $\sigma = \{R, f\}$  eine Signatur mit einem zweistelligen Relationssymbol R und einem einstelligen Funktionssymbol f. Geben Sie für die folgenden Formeln in  $FO[\sigma]$  die Menge der freien Variablen an. Geben Sie außerdem an, welche Variablen durch welche Quantoren gebunden werden.

(i) 
$$\varphi_1 := (\forall x \exists y \ R(x,y) \land \neg x \neq y) \lor \neg \exists z \forall y (R(y,z) \leftrightarrow \forall y \ y = y)$$

(ii) 
$$\varphi_2 := \exists x \forall x \ f(x) = x$$

## Aufgabe 4

Sei  $\sigma$  die Signatur aus Aufgabe 2 und seien

$$\psi_1(x) = \exists y \exists z (E(x,y) \land E(y,z) \land E(z,x)), \ \psi_2(x) = \forall y (x \neq y \rightarrow E(x,y)) \ \text{und} \ \psi_3(x,y) = \neg E(x,y).$$

Ermitteln Sie  $\psi_i(\mathcal{G}_j)$  für alle  $i, j \in [3]$ .

**Anmerkung:**  $\varphi(\mathcal{A}) = \{(a_1, \dots, a_k) \in A^k \mid \mathcal{A} \models \varphi[a_1, \dots, a_k]\}$  für  $\varphi(x_1, \dots, x_k)$ , wobei A das Universum von  $\mathcal{A}$  ist.