MATHEMATICS 1LS3 TEST 1

Day Class	E. Clements, M. Lovrić, O. Sanchez
Duration of Examination: 60 minutes	
McMaster University, 1 October 2014	
FIRST NAME	(please print):
FAMILY NAME	E (please print):
	Student No.

THIS TEST HAS 8 PAGES AND 7 QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE.

Total number of points is 40. Marks are indicated next to the problem number. Any non-graphing calculator is allowed.

USE PEN TO WRITE YOUR TEST. IF YOU USE A PENCIL YOUR TEST WILL NOT BE ACCEPTED FOR REMARKING (IF NEEDED).

You must show work to receive full credit.

Problem	Points	Mark
1	6	
2	6	
3	5	
4	6	
5	4	
6	6	
7	7	
TOTAL	40	

1. Multiple choice questions: circle ONE answer. No justification is needed.

(a)[3] Start with the graph of $y = \cos x$. Scale (expand) the graph horizontally by a factor of 3 and then shift right the graph you obtained by 6 units. Finally, expand this graph vertically by a factor of 4. The graph you obtained is

(A)
$$y = \frac{1}{4}\cos\left(\frac{x+2}{6}\right)$$
 (B) $y = \frac{1}{4}\cos\left(\frac{x-2}{6}\right)$ (C) $y = 4\cos\left(\frac{x+6}{3}\right)$

(B)
$$y = \frac{1}{4} \cos\left(\frac{x-2}{6}\right)$$

(C)
$$y = 4\cos\left(\frac{x+6}{3}\right)$$

(D)
$$y = 4\cos\left(\frac{x}{3} - 2\right)$$

(E)
$$y = 4\cos\left(\frac{x}{3} + 6\right)$$

(D)
$$y = 4\cos\left(\frac{x}{3} - 2\right)$$
 (E) $y = 4\cos\left(\frac{x}{3} + 6\right)$ (F) $y = 4\cos\left(\frac{x}{3} - \frac{2}{3}\right)$

(G)
$$y = \frac{1}{4}\cos\left(\frac{x+2}{3}\right)$$
 (H) $y = \frac{1}{4}\cos\left(\frac{x-6}{3}\right)$

$$(H) y = \frac{1}{4} \cos\left(\frac{x-6}{3}\right)$$

(b)[3] The maximum flying speed S (in metres per second) of tropical birds living in rain forests of Cook Islands (South Pacific Ocean) is related to their body mass M (in grams) by $S = 44.5 M^{-0.35}$. Which of the following statements is/are true?

- (I) S is decreasing as a function of M
- (II) If M triples, so does S
- (III) S is inversely proportional to $M^{0.35}$
- (A) none
- (B) I only
- (C) II only
- (D) III only

- (E) I and II
- (F) I and III
- (G) II and III
- (H) all three

Name:	
Student No.:	

2. Identify each statement as true or false, or yes or no (circle your choice). You do not need to justify your answer.

(a)[2] If $m_{t+1} = 0.8m_t$ and $m_0 = 1000$, then m_{10} is larger than 100.

TRUE FALSE

(b)[2] For the linear function y = 3x + 2, the ratio of change in output over change in input is constant.

TRUE FALSE

(c)[2] The label on the milk carton which you bought in Sydney, Australia, says "energy value of one cup of milk is 609 kJ." (Australians use kJ=kilo-Joules, whereas in North America we use calories.) Knowing that 1 calorie = 4.2 kJ, you calculated that that cup of milk contains more than 150 calories. Is your calculation correct?

YES NO

Name:	
Student No.:	

Questions 3-7: You must show work to receive full credit. 3. It has been determined that an average human body absorbs benzoylmethylecgonine (cocaine) according to $d(t) = 80e^{-0.71t}$, where d(t) is in milligrams and t is time in hours. (a)[1] Define the term: half-life of a drug. (Avoid long explanations; one sentence suffices.) (b)[2] Compute the half-life of benzoylmethylecgonine (to five decimal places).

4. (a)[1] What is the phase of the oscillation $f(t) = 3 - 2.4\cos(2t - 7)$?

(b)[2] What is the domain of the function $f(x) = 3\arcsin(2x - 5)$?

(c)[3] What is the range of the function $P(t) = 4.4 \left(\frac{\pi}{2} + \arctan \frac{t}{42}\right)$?

Name:	
Student No.:	

5. Based on the density of a soil sample taken from a forest floor, scientists can determine the depth it came from, by using the formula

$$d = -5\ln\left(\frac{0.7}{\rho} - 0.8\right)$$

In this formula, ρ is the density of a soil sample and d is the depth in metres (so d = 0 labels the surface, and d = 3 is 3 m below the surface).

(a)[1] In the above formula, d is a function of ρ . State (in one sentence) what question is answered by finding the inverse function of d.

(b)[3] Find a formula for the inverse function of d.

Name:	
Student No.:	

6. In Linear quadratic and tumour control probability modelling in external beam radiotherapy, S.F.C. O'Rourke, H. McAneney, T. Hillen. J. Math. Biol. (2009) 58:799–817, we read predicted clonogenic survival [27,85,96]. Such a model is in popular use and may be written in the form,

$$\ln \sigma = -n(\alpha d + \beta d^2) - \lambda T, \tag{12}$$

where T is the *overall* exposure time (i.e. the complete timescale of the treatment

In formula (12), σ is the survival rate of cancer cells; it is a function of the applied radiation dose d. Reading the paper, we learn that all parameters are positive.

(a)[3] Assume that $n=1, \ \alpha=1, \ \beta=1, \ \lambda=0.03$ and T=1. For these values, sketch the semi-log graph of $\sigma(d)$ for $d\geq 0$.

(b)[1] Recall that all parameters in (12) are positive. Explain why $\sigma(d) < 1$ when $d \ge 0$.

(c)[2] Given that $\lambda = 0.03$ and T = 1, find $\sigma(0)$ and interpret your answer.

Name:	
Student No.:	

- 7. Consider the dynamical system $M_{t+1} = 0.5M_t + 2.5$, where M_t represents the amount of drug (in mg) in a patient's body at time t (time t is measured in days). It is given that $M_0 = 8$ mg.
- (a)[2] Explain in words the dynamics described by this system.
- (b)[2] Find all equilibrium points of the system.
- (c)[2] Starting with $M_0 = 8$ mg, cobweb for three steps.

(d)[1] What does the cobwebbing in (c) suggest in terms of the amount of the drug in the patient's body?