

ANÁLISIS DE ALGORITMOS

Programación 3 Javier Miranda

Escuela de Ingeniería Informática Universidad de Las Palmas de Gran Canaria

Donald Knuth

¿ Cómo podemos medir la eficiencia de los algoritmos que hemos visto hasta ahora ?

BFS

DFS

Dijkstra

Kruskal

Prims

MergeSort

QuickSort

Knapsack 0/1 (greedy)

Knapsack 0/1 (programación dinámica)

Se denomina **ejemplar** de un problema a cada uno de los posibles casos que se pueden dar como datos iniciales del problema.

¿ Cómo podemos medir la eficiencia de los algoritmos que hemos visto hasta ahora ?

BFS

DFS

Dijkstra

Kruskal

Prims

MergeSort

QuickSort

Knapsack 0/1 (greedy)

Knapsack 0/1 (programación dinámica)

Estrategia empírica

Se denomina **ejemplar** de un problema a cada uno de los posibles casos que se pueden dar como datos iniciales del problema.

¿ Cómo podemos medir la eficiencia de los algoritmos que hemos visto hasta ahora ?

BFS

DFS

Dijkstra

Kruskal

Prims

MergeSort

QuickSort

Knapsack 0/1 (greedy)

Knapsack 0/1 (programación dinámica)

Se denomina **ejemplar** de un problema a cada uno de los posibles casos que se pueden dar como datos iniciales del problema.

¿ Qué significa este tipo de documentación ?

List

Operación	Time Complexity
Сору	O(n)
Append	O(1)
Рор	O(1)
Insert	O(n)
Remove	O(n)
Sort	O(n log n)

Dict

Operación	Time Complexity
Сору	O(n)
Set	O(1)
Get	O(1)
Delete	O(1)

Podemos analizar

Tiempo de ejecución (*Time Complexity*) Memoria consumida (*Space Complexity*)

Sea
$$f: N \to R^*$$
 una función cualquiera $y R^* = R^+ \cup \{0\}$

$$O(f(n)) = \left\{ t: N \to R^* \middle| \left\{ \exists c \in R^+ \right\} (\exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \right\}$$

O(f(n)) se lee del orden de f(n)

Sea
$$f: N \to R^*$$
 una función cualquiera $y R^* = R^+ \cup \{0\}$

$$O(f(n)) = \left\{ t: N \to R^* \middle| (\exists c \in R^+) (\exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \right\}$$

Es el conjunto de todas las funciones t(n) no negativas, ...

Sea
$$f: N \to R^*$$
 una función cualquiera $y R^* = R^+ \cup \{0\}$

$$O(f(n)) = \left\{ t: N \to R^* \middle| (\exists c \in R^+) \middle| \exists n_0 \in N) (\forall n \geq n_0) (t(n) \leq cf(n)) \right\}$$

 Es el conjunto de todas las funciones t(n) no negativas, acotadas superiormente por un múltiplo real positivo de f(n)

Sea
$$f: N \to R^*$$
 una función cualquiera $y_R^* = R^+ \cup \{0\}$

$$O(f(n)) = \left\{ t: N \to R^* \middle| (\exists c \in R^+) (\exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \right\}$$

 Es el conjunto de todas las funciones t(n) no negativas, acotadas superiormente por un múltiplo real positivo de f(n) para valores de n suficientemente grandes (es decir, a partir de un cierto umbral n₀ en adelante).

Sea
$$f: N \to R^*$$
 una función cualquiera $y R^* = R^+ \cup \{0\}$

$$O(f(n)) = \left\{ t: N \to R^* \middle| \left\{ \exists c \in R^+ \right\} (\exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \right\}$$

• Es el conjunto de todas las funciones t(n) no negativas, acotadas superiormente por un múltiplo real positivo de f(n) para valores de n suficientemente grandes (es decir, a partir de un cierto umbral n_0 en adelante).

$$t(n) \in O(f(n))$$

Sea
$$f: N \to R^*$$
 una función cualquiera $y R^* = R^+ \cup \{0\}$

$$O(f(n)) = \left\{ t: N \to R^* \middle| (\exists c \in R^+) (\exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \right\}$$

Ejemplo:
$$t(n) = 3n + 12$$

¿ Cual es la cota superior más cercana?

Sea
$$f: N \to R^*$$
 una función cualquiera $y R^* = R^+ \cup \{0\}$
 $O(f(n)) = \{t: N \to R^* | (\exists c \in R^+) (\exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \}$

 $n_0 \rightarrow$

Ejemplo:
$$t(n) = 3n + 12$$

... eligiendo $f(n) = n$
 $c = 4$

Por tanto $t(n) \in O(n)$

1 /	
3n+12	4n
15	4
18	8
21	12
***	***
***	* * *
42	40
45	44
48	48
51	52
	15 18 21 42 45 48

t(*n*)

4*f(n)

Sea
$$f: N \to R^*$$
 una función cualquiera $y R^* = R^+ \cup \{0\}$

$$O(f(n)) = \left\{ t: N \to R^* \middle| (\exists c \in R^+) (\exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \right\}$$

Ejemplo:
$$t(n) = 3n + 12$$

... eligiendo $f(n) = n$
 $c = 4$

Por tanto $t(n) \in O(n)$

En general, dado un polinomio con coeficiente de mayor grado positivo, en análisis asintótico nos quedamos con el <u>término de mayor exponente</u>:

$$t(n) = a_m n^m + ... + a_1 n + a_0$$
 $t(n) \in O(n^m)$ si $a_m > 0$

Sea
$$f: N \to R^*$$
 una función cualquiera $y R^* = R^+ \cup \{0\}$

$$O(f(n)) = \left\{ t: N \to R^* \middle| (\exists c \in R^+) (\exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \right\}$$

$$t(n) \in O(f(n))$$

Sea
$$f: N \to R^*$$
 una función cualquiera $y R^* = R^+ \cup \{0\}$

$$O(f(n)) = \left\{ t: N \to R^* \middle| \left\{ \exists c \in R^+ \right\} (\exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \right\}$$

Exponencial Cúbico Cuadrático Lineal Logarítmico

Análisis Asintótico de un algoritmo

- → 1. Definir N
 - 2. Casos de estudio
 - 3. Aplicar las reglas generales de análisis asintótico

1) ¿ Cómo definimos N?

- 1. → Definir N
- Casos de estudio
- 3. Reglas de análisis

```
def Fib(n) {
    if (n < 2)
        return n
    else
        return Fib(n-2) + Fib(n-1)
}</pre>
```

a) Algoritmos numéricos

```
# Traverse through all array elements
for i in range(len(A)):

# Find the minimum element in remaining
# unsorted array
min_idx = i
for j in range(i+1, len(A)):
    if A[min_idx] > A[j]:
        min_idx = j

# Swap the found minimum element with
# the first element
A[i], A[min_idx] = A[min_idx], A[i]
```

b) Algoritmos que recorren estructuras de datos

1) ¿ Cómo definimos N?

- 1. \rightarrow Definir N
- 2. Casos de estudio
- 3. Reglas de análisis

Definición formal: Número de bits necesarios para

codificar el ejemplar

```
def Fib(n) {
    if (n < 2)
        return n
    else
        return Fib(n-2) + Fib(n-1)
}</pre>
```

Traverse through all array elements
for i in range(len(A)):

 # Find the minimum element in remaining
 # unsorted array
 min_idx = i
 for j in range(i+1, len(A)):
 if A[min_idx] > A[j]:
 min_idx = j

Swap the found minimum element with
 # the first element
 A[i], A[min_idx] = A[min_idx], A[i]

a) Algoritmos numéricos

Valor máximo

b) Algoritmos que recorren estructuras de datos

Número de elementos

2) Casos de estudio

- Definir N
- 2. → Casos de estudio
- 3. Reglas de análisis

Si el algoritmo tiene distinto comportamiento para ejemplares del **mismo tamaño** analizamos:

- El mejor caso
- El peor caso
- El caso promedio

... pero también puede interesarnos analizar un determinado tipo de operación.

Ejemplo: En algoritmos de ordenación:

- Comparaciones
- Intercambios

3) Reglas Generales para el Análisis Asintótico

- El Orden de una operación elemental es 1 (por definición)
- El Orden de una <u>secuencia</u> de operaciones se calcula aplicando la <u>regla de la suma</u>

Para cualesquiera dos funciones $f y g : N \to R^*$ $O(f(n) + g(n)) = O(\max\{f(n), g(n)\})$

Ejemplo: Intercambio

```
def swap (my_list, pos1, pos2):
O(1) → tmp = my_list[pos1]

O(1) → my_list[pos1] = my_list[pos2]
O(1) → my_list[pos2] = tmp
O(1) → return
```


Python List

Operación	Time Complexity
Сору	O(n)
Append	O(1)
Get Item	O(1)
Set Item	O(1)

 \rightarrow

3) Reglas Generales para el Análisis Asintótico

- El Orden de una operación elemental es 1 (por definición)
- El Orden de una <u>secuencia</u> de operaciones se calcula aplicando la <u>regla de la suma</u>

Para cualesquiera dos funciones
$$f y g : N \to R^*$$

 $O(f(n) + g(n)) = O(\max\{f(n), g(n)\})$

- El Orden de una sentencia <u>condicional</u> es igual al máximo del Orden de cada alternativa
- El Orden de un <u>bucle</u> es igual al número de iteraciones multiplicado por el Orden de cada iteración
- El Orden de una <u>llamada</u> a un subprograma es igual al Orden del subprograma llamado

Ejemplo: Último Máximo

```
procedimiento UltimoMaximo (v, n, max, p)
\max \leftarrow v[1]; p \leftarrow 1; i \leftarrow 2 ----- O(1)
mientras i ≤ n hacer
 si max ≤ v[i] entonces -----
    max ← v[i] ←----- O(1)
    p \leftarrow i \leftarrow O(1)
 fin si
 i ← i+1
fin mientras
retornar
```

Ejemplo: Último Máximo

```
procedimiento UltimoMaximo (v, n, max, p)
\max \leftarrow v[1]; p \leftarrow 1; i \leftarrow 2
                                         O(1)
mientras i ≤ n hacer -----
                                         O(n)
 si max ≤ v[i] entonces -----
    max \leftarrow v[i]
    p \leftarrow i
 fin si
 i ← i+1 ←-----
                                         O(1)
fin mientras
retornar
```

Ejemplo: Último Máximo

```
procedimiento UltimoMaximo (v, n, max, p)
\max \leftarrow v[1]; p \leftarrow 1; i \leftarrow 2
                                            O(1)
mientras i ≤ n hacer -----
                                            O(n)
 si max ≤ v[i] entonces
     max \leftarrow v[i]
     p \leftarrow i
 fin si
 i ← i+1
fin mientras
retornar ------
                                            O(1)
```

```
procedimiento ProductoNúmeroMatrizCuadrada (A, n, k)
para i desde 1 hasta n-1 hacer
  A[i, i] \leftarrow A[i, i] k
  para j desde i+1 hasta n hacer ←
                                                          O(n)
                                                          O(1)
      A[i, j] \leftarrow A[i, j]^*k
      A[j, i] \leftarrow A[j, i] k \leftarrow
                                                          O(1)
  fin para
fin para
A[n, n] \leftarrow A[n, n]*k
retornar
```

```
procedimiento ProductoNúmeroMatrizCuadrada (A, n, k)
para i desde 1 hasta n-1 hacer
  A[i, i] \leftarrow A[i, i] *k \leftarrow
                                                                     O(1)
  para j desde i+1 hasta n hacer ←
       A[i, j] \leftarrow A[i, j] k
       A[j, i] \leftarrow A[j, i] k
  fin para
fin para
A[n, n] \leftarrow A[n, n]*k
retornar
```

```
procedimiento ProductoNúmeroMatrizCuadrada (A, n, k)
para i desde 1 hasta n-1 hacer ←
                                                                O(n^2)
  A[i, i] \leftarrow A[i, i] k
                                                               O(n)
  para j desde i+1 hasta n hacer ←
       A[i, j] \leftarrow A[i, j] k
       A[j, i] \leftarrow A[j, i] k
  fin para
fin para
A[n, n] \leftarrow A[n, n]*k
retornar
```

```
procedimiento ProductoNúmeroMatrizCuadrada (A, n, k)
para i desde 1 hasta n-1 hacer ←
                                                                   O(n^2)
  A[i, i] \leftarrow A[i, i] k
  para j desde i+1 hasta n hacer
       A[i, j] \leftarrow A[i, j] k
       A[j, i] \leftarrow A[j, i] k
  fin para
fin para
                                                                   O(1)
A[n, n] \leftarrow A[n, n]*k
retornar
                                                                   O(1)
```

 $\in O(n^2)$

- Definir N
- 2. Casos de estudio
- 3. -> Reglas de análisis

¿ Podemos simplificar un poco más? Si

- No es necesario calcular el Orden de todas las operaciones.
- Es suficiente con determinar cuál es la operación elemental que se ejecuta el mayor número de veces (**operación crítica**)

Identificamos la **operación crítica** de nuestro algoritmo y calculamos su coste de ejecución

Análisis Asintótico Abreviado

Último máximo: Análisis Abreviado

```
procedimiento UltimoMaximo (v, n, max, p)
max \leftarrow v[1]; p \leftarrow 1; i \leftarrow 2
mientras i ≤ n hacer ←
                                                         O(n)
¦ si max ≤ v[i] entonces ; ←
                                         Operación
                                         crítica
      max ← v[i]
       p \leftarrow i
  fin si
  i ← i+1
fin mientras
retornar
```

∈ O (N)

Producto de Matrices: A. Abreviado

```
procedimiento ProductoMatricesCuadradas (A, B, C, n)
para i desde 1 hasta n hacer ←
                                                           O(n^3)
  para j desde 1 hasta n hacer ←
                                                           O(n^2)
      C[i, j] \leftarrow 0
      para k desde 1 hasta n hacer
                                                           O(n)
            C[i, j] \leftarrow C[i, j] + A[i, k] B[k, j] + 
                                                    Operación
      fin para
                                                    crítica
  fin para
fin para
retornar
```

¿ Cómo analizamos algoritmos recursivos ?