

طراحی سیستمهای دیجیتال برنامهپذیر نیمسال دوم 1398–1397 قالب آماده جهت تحویل تمرین و تکالیف

تمرین اول طراحی سیستمهای دیجیتال برنامهپذیر دکتر صاحبالزمانی

طراحی سیستمهای دیجیتال برنامهپذیر نیمسال دوم 1398-1397

شماره دانشجویی	نام و نام خانوادگی	
9071.72	زهرا يوسفى	
تمرین سری ۱		

پرسشهای تحلیل و طراحی مدار

(1

الف)

ASIC	FPGA	
1510000000	210000000	1000
1550000000	1050000000	5000
1600000000	2100000000	10000

ب)

$$1.5 * 10 ^ 9 + 10^4 x < 210 * 10^3 x \rightarrow x > 7500$$

(٢

PLA مخفف عبارت Programmable Logic Array است که از دو سطح گیتهای AND و OR برنامه پذیر ساخته شده است. در مقابل آن PAL قرار دارد که مخفف عبارت Programmable Array Logic بوده و مشابه PAL از دو OR سطح گیتهای AND آن برنامه پذیر است و گیتهای AND آن برنامه پذیر است و گیتهای آن ثابت هستند. در نتیجه در حالت کلی PLA برنامه پذیر تر است و درنتیجه تعداد توابع جبری بیشتری را می توان با استفاده از آن پیاده سازی کرد.

ساخت و طراحی PAL نسبت به PLA راحت تر است و در نتیجه هزینه کمتری نیز دارد.

PLA نسبت به PAL انعطافپذیر بوده و برنامههای متفاوتی میتوان روی آن پیادهسازی کرد اما در حالت کلی سرعت آن نسبت به PAL کمتر است که این موضوع ناشی از ثابت بودن سطح گیتهای OR است.

طراحی سیستمهای دیجیتال برنامهپذیر نیمسال دوم 1398–1397

(٣

 $s_{0} = \left(\bar{a}_{0} \ AND \ \bar{b}_{0} \ AND \ cin\right) OR \ (\bar{a}_{0} \ AND \ b_{0} \ AND \ \bar{c}\bar{\imath}\bar{n}) OR \ (a_{0} \ AND \ \bar{b}_{0} \ AND \ \bar{c}\bar{\imath}\bar{n})$ $carry = (a_{0} \ AND \ \bar{b}_{0} \ AND \ cin) \ OR \ (\bar{a}_{0} \ AND \ b_{1} \ AND \ cin) \ OR \ (a_{0} \ AND \ b_{0})$ $s_{1} = \left(\bar{a}_{1} \ AND \ \bar{b}_{1} \ AND \ carry\right) OR \ (\bar{a}_{1} \ AND \ b_{1} \ AND \ \bar{c}\bar{a}\bar{r}\bar{r}\bar{y}) OR \ (a_{1} \ AND \ \bar{b}_{1} \ AND \ \bar{c}\bar{a}\bar{r}\bar{r}\bar{y})$ $cout = (a_{1} \ AND \ \bar{b}_{1} \ AND \ carry) \ OR \ (\bar{a}_{1} \ AND \ b_{1} \ AND \ carry) \ OR \ (a_{1} \ AND \ b_{1})$

طراحی سیستمهای دیجیتال برنامهپذیر نیمسال دوم 1398–1397

(۴

این مدار یک مقایسه کننده است.