## PROBLEMAS DE ELECTROQUÍMICA

- 1. Haga un diagrama de las siguientes celdas, de cada celda escriba la ecuación balanceada de la reacción que ocurre de manera espontánea y calcule el potencial de la celda. Señale la dirección del flujo de electrones, el ánodo y el cátodo. En cada caso suponga que el circuito se cierra con un alambre y con un puente salino.
- a. Una cinta de magnesio se introduce en una solución de Mg<sup>2+</sup> 1,00 M y una cinta de plata se introduce en una solución de Ag<sup>+</sup> 1,00 M.
- b. Una chapa de zinc se introduce en una solución de Zn<sup>2+</sup> 1,00 M y una chapa de estaño se introduce en una solución de Sn<sup>2+</sup> 1,00 M.
- 2. Considere la siguiente celda electroquímica representada por: Mg(s)/Mg<sup>2+</sup>(ac)//Fe<sup>3+</sup>(ac)/Fe(s)
- a. Escriba las hemirreacciones y la ecuación global de la celda.
- b. El potencial estándar de reducción del par Fe<sup>3+</sup>(ac)/Fe(s) es de -0,036 V a 25 ºC y el del par Mg<sup>2+</sup>(ac)/Mg(s) es de -2, 37 V a 25 ºC Determine el potencial estándar de la pila.
- 3. En condiciones estándar, ¿los iones Cr³+ oxidan al cobre metálico a iones Cu²+, o los iones Cu²+ oxidan al cromo metálico a Cr³+? Escriba la reacción espontánea y calcule el E<sup>0</sup><sub>celda</sub> de esta reacción.
- 4. Escriba la pila, en medio ácido y condiciones estándar, conformada por ion dicromato  $(Cr_2O_7^{2-})/ion Cr^{3+}$  y ion  $Fe^{3+}/ion Fe^{2+}$ .
- a. Escriba la ecuación de la reacción espontánea.
- b. Determine el potencial estándar de la pila.



- 5. El magnesio metálico no puede obtenerse por electrólisis del cloruro de magnesio acuoso, MgCl<sub>2</sub>(ac). ¿Por qué?
- 6. En la reacción global de electrólisis del NaCl en solución acuosa no aparece sodio. Indique las reacciones que se producen en el ánodo y en el cátodo.
- 7. El aluminio metálico se obtiene industrialmente por electrolisis del óxido de aluminio  $(Al_2O_3)$  fundido, utilizando electrodos de carbono.
- a. Dibuje un esquema de la célula electrolítica utilizada en la electrólisis del Al<sub>2</sub>O<sub>3</sub> fundido. Indique el signo del ánodo, el signo del cátodo y el flujo de electrones durante la electrolisis.
- b. Si la celda electrolítica se carga con 2 kg de  $Al_2O_3$  y se hace pasar una corriente eléctrica de 3,5.10 $^2$  A durante 3 horas, calcule los gramos de aluminio que quedan en la celda después del proceso de electrólisis.
- c. La tasa de producción de aluminio en g/h.
- 8. Calcule la masa de cobre metálico que se deposita en el cátodo durante el paso de 2,50 amperes de corriente a través de una solución de sulfato de cobre (II) por 50 minutos.
- 9. Determine qué volumen de oxígeno gaseoso (en CNPT) se produce por oxidación del agua en el ánodo en la electrólisis del sulfato de cobre (II) del ejercicio anterior.

| Semirreacción producida en el<br>electrodo                                                                   | Potencial estándar        | Comportamiento de la<br>especie o del electrodo                                                                                                        |
|--------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| F, + 2e ↔ 2F                                                                                                 | reducción, E° (V)<br>2,87 | especie o del electrodo                                                                                                                                |
| Co <sup>2</sup> ' + 1e ↔ Co <sup>2</sup> '                                                                   |                           | 20 Y EN EL                                                                                                                                             |
| H <sub>2</sub> O <sub>2</sub> + 2H' + 2e ↔ 2H <sub>2</sub> O                                                 | 1,82                      |                                                                                                                                                        |
| MnO <sub>4</sub> + 4H + 3e ↔ MnO <sub>2</sub> + 2H <sub>2</sub> O                                            | 1,68                      |                                                                                                                                                        |
| Ce <sup>4+</sup> + 1e ↔ Ce <sup>3+</sup>                                                                     |                           | - ÷                                                                                                                                                    |
| MnO <sub>4</sub> " + 8H" + 5e ↔ Mn <sup>2</sup> " + 4H <sub>2</sub> O                                        | 1,61                      | ~                                                                                                                                                      |
|                                                                                                              | 1,49                      | ± _                                                                                                                                                    |
| ClO <sub>4</sub> + 8H + 8e ↔ Cl + 4H <sub>2</sub> O                                                          | 1,37                      | NO OO                                                                                                                                                  |
| Cl <sub>2</sub> + 2e ↔ 2Cl'                                                                                  | 1,36                      | — CO                                                                                                                                                   |
| Cr <sub>2</sub> O <sub>7</sub> <sup>2·</sup> + 14H <sup>*</sup> + 6e ↔ 2Cr <sup>3·</sup> + 7H <sub>2</sub> O | 1,33                      | - REA                                                                                                                                                  |
| Au³' + 3e ↔ Au                                                                                               | 1,31                      | ₹ 8                                                                                                                                                    |
| O <sub>2</sub> + 4H° + 4e ↔ 2H <sub>2</sub> O                                                                | 1,23                      | FRENTE AL ELECTRODO DE HIDRÓGENO, PRODUCEN LA REACCIÓN<br>PROCESO SE REDUCEN (SEMIRREACCIÓN DE REDUCCIÓN: CÁTODO                                       |
| MnO <sub>2</sub> + 4H* + 2e ↔ Mn <sup>2*</sup> + 2H <sub>2</sub> O                                           | 1,21                      |                                                                                                                                                        |
| 2IO <sub>3</sub> + 12H +10e ↔ I <sub>2</sub> + 6H <sub>2</sub> O                                             | 1,19                      |                                                                                                                                                        |
| O <sub>3</sub> " + 6H" + 6e ↔ Γ + 3H <sub>2</sub> O                                                          | 1,08                      |                                                                                                                                                        |
| Br <sub>211</sub> + 2e ↔ 28r'                                                                                | 1,06                      |                                                                                                                                                        |
| NO <sub>3</sub> ' + 4H' + 3e ↔ NO + 2H <sub>2</sub> O                                                        | 0,96                      |                                                                                                                                                        |
| 2Hg <sup>2+</sup> + 2e ↔ Hg <sub>2</sub> <sup>2+</sup>                                                       | 0,90                      |                                                                                                                                                        |
| ClO' + H <sub>2</sub> O + 2e ↔ Cl' + 2OH'                                                                    | 0,90                      | N S                                                                                                                                                    |
| Hg <sup>2+</sup> + 2e ↔ Hg                                                                                   | 0,85                      | 20 20                                                                                                                                                  |
| Ag" + e ↔ Ag                                                                                                 | 0,80                      | SPECIES OXIDANTES FRENTE AL ELECTRODO DE HIDRÓGENO. PRODUCEN LA REACCIÓN H₁ ↔ 2H² + 2n y en el proceso se reducen (semirreacción de reducción: cátodo) |
| Hg <sub>2</sub> <sup>2*</sup> + 2e ↔ 2Hg                                                                     | 0,80                      |                                                                                                                                                        |
| $NO_3 + 2H' + 1e \leftrightarrow NO_2 + H_2O$                                                                | 0,78                      |                                                                                                                                                        |
| Fe <sup>2+</sup> + 1e ↔ Fe <sup>2+</sup>                                                                     | 0,77                      |                                                                                                                                                        |
| $O_2 + 2H' + 2e \leftrightarrow H_2O_2$                                                                      | 0,68                      |                                                                                                                                                        |
| $MnO_4$ + 1e $\leftrightarrow$ $MnO_4$                                                                       | 0,56                      |                                                                                                                                                        |
| l <sub>2</sub> + 2e ↔ 2f                                                                                     | 0,53                      | DA                                                                                                                                                     |
| Cu" + 1e ↔ Cu                                                                                                | 0,52                      | ő                                                                                                                                                      |
| Cu²+ 2e ↔ Cu                                                                                                 | 0,34                      | 9                                                                                                                                                      |
| Cu <sup>2</sup> " + 1e ↔ Cu"                                                                                 | 0,16                      |                                                                                                                                                        |
| Sn <sup>4</sup> ' + 2e ↔ Sn <sup>2</sup> '                                                                   | 0,15                      |                                                                                                                                                        |
| 2H° + 2e ↔ H₂                                                                                                | 0,00                      | Efectrado referencia hidrágeno Potencia<br>0,00V tornado arbitrariamente                                                                               |
| Fe <sup>2+</sup> + 3e ↔ Fe                                                                                   | -0,04                     |                                                                                                                                                        |
| Pb²* + 2e ↔ Pb                                                                                               | -0,13                     | SPECIES REDUCTORAS FRENTE AL ELECTRODO DE HIDRÓGENO. PRODUCEN LA REACCIÓN DE 2H" +2e  OXIDAN (SEMIRREACCIÓN DE OXIDACIÓN, ÁNODO)                       |
| Sn²' + 2e ↔ Sn                                                                                               | -0,14                     |                                                                                                                                                        |
| Ni²⁺ + 2e ↔ Ni                                                                                               | -0,23                     |                                                                                                                                                        |
| Co²' + 2e ↔ Co                                                                                               | -0,28                     |                                                                                                                                                        |
| Cd <sup>2*</sup> + 2e ↔ Cd                                                                                   | -0,40                     |                                                                                                                                                        |
| Cr <sup>2</sup> ' + 1e ↔ Cr <sup>2</sup> '                                                                   | -0,41                     |                                                                                                                                                        |
| Fe <sup>2+</sup> + 2e ↔ Fe                                                                                   | -0,44                     |                                                                                                                                                        |
| Cr³" + 3e ↔ Cr                                                                                               | -0,74                     | 1 E                                                                                                                                                    |
| Zn²' + 2e ↔ Zn                                                                                               | -0,76                     | ON ON                                                                                                                                                  |
| Mn²° + 2e ↔ Mn                                                                                               | -1,03                     | DE SEN                                                                                                                                                 |
| Al*" + 3e ↔ Al                                                                                               | -1,67                     | - S N 23                                                                                                                                               |
| Ce³' + 3e ↔ Ce                                                                                               | -2,33                     | ESPECIES REDUCTORA<br>PRODUCEN LA REACCI<br>OXIDAN (SEMIRI                                                                                             |
| Mg <sup>21</sup> + 2e ↔ Mg                                                                                   | -2,37                     |                                                                                                                                                        |
| Na" + 1e ↔ Na                                                                                                | -2,71                     |                                                                                                                                                        |
| Ca <sup>2</sup> ′ + 2e ↔ Ca                                                                                  | -2,76                     |                                                                                                                                                        |
| Ba²' + 2e ↔ Ba                                                                                               | -2,90                     |                                                                                                                                                        |
| K' + 1e ↔ K<br>U' + 1e ↔ U                                                                                   | -2,92<br>-3,04            |                                                                                                                                                        |

PODER OXIDANTE

PODER REDUCTOR