

openHPI Course: Digital Identities – Who am I on the Internet?

Password Length and its Importance

Prof. Dr. Christoph Meinel

Hasso Plattner Institute University of Potsdam, Germany

Password Length

Password length has a great influence on the strength/security of a password and the efficiency of possible password attacks.

Reminder: Notes on generating secure passwords:

- Upper and lower case letters
- Different character classes (letters, numbers, special characters (\$% &:; -_? §! ...))
- At least 12 characters long
- Not from the dictionary
- Cannot be derived from the user context
- No reuse

What are the reasons for these indications?

Brute Force Attacks (1/2)

Brute force attacks are the simplest and most straight forward attacks to crack a password

- **Idea**: Systematic testing of all possible character combinations for selected character classes at a given length
- With sufficient time resources Brute Force always leads to the goal, so to find a password
- Calculation formula for the number of all password candidates:

Number_of_password_candidates = (range_of_characters)^{Password length}

Brute Force Attacks (2/2)

Idea: Systematic testing of all possible character combinations for selected character classes at a given length.

Number_of_password_candidates = (range_of_characters)^{Password_length}

Expected value for the average number of attempts to find a password:

Average_number_of_attempts = Number_of_password_candidates/2

To protect against brute force attacks, the number of password candidates must be as large as possible.

Example: Password consists of lower case letters ...

- abcdefghijklmnopqrstuvwxyz: 26 possible characters
 ...and numbers.
- 0123456789: 10 possible characters

Number of possible characters in each position: 26 + 10 = 36

Password length = 1

36 = 36

≙ < 0,001 sec*

^{*} Time required to generate all possible password candidates, when 100 billion passwords can be generated per second.

Example: Password consists of lower case letters ...

- abcdefghijklmnopqrstuvwxyz: 26 possible characters
 ...and numbers.
- 0123456789: 10 possible characters

Number of possible characters in each position: 26 + 10 = 36

Password length = 2

36 * 36 = 1.296

≙ < 0,001 sec*

^{*} Time required to generate all possible password candidates, when 100 billion passwords can be generated per second.

Example: Password consists of lower case letters ...

- abcdefghijklmnopgrstuvwxyz: 26 possible characters ...and numbers.
- 0123456789: 10 possible characters

Number of possible characters in each position: 26 + 10 = 36

Password length = 3

36 * 36 * 36

= 46.656

≤ < 0,001 sec*
</p>

^{*} Time required to generate all possible password candidates, when 100 billion passwords can be generated per second.

Example: Password consists of lower case letters ...

- abcdefghijklmnopqrstuvwxyz: 26 possible characters
 ...and numbers.
- 0123456789: 10 possible characters

Number of possible characters in each position: 26 + 10 = 36

Password length = 4

36 * 36 * 36 * 36

= 1.679.616

* Time required to generate all possible password candidates, when 100 billion passwords can be generated per second.

≤ < 0,001 sec*
</p>

Example: Password consists of lower case letters ...

- abcdefghijklmnopqrstuvwxyz: 26 possible characters
 ...and numbers.
- 0123456789: 10 possible characters

Number of possible characters in each position: 26 + 10 = 36

Password length = 5

36 * 36 * 36 * 36 * 36

= 60.466.176

* Time required to generate all possible password candidates, when 100 billion passwords can be generated per second.

≙ < 0,001 sec*

Example: Password consists of lower case letters ...

- abcdefghijklmnopqrstuvwxyz: 26 possible characters
 ...and numbers.
- 0123456789: 10 possible characters

Number of possible characters in each position: 26 + 10 = 36

Password length = 6

* Time required to generate all possible password candidates, when 100 billion passwords can be generated per second.

* 36 * 36 * 36 * 36

≙ ~ 0,022 sec*

= 2.176.782.336

Example: Password consists of lower case letters ...

- abcdefghijklmnopqrstuvwxyz: 26 possible characters
 ...and numbers.
- 0123456789: 10 possible characters

Number of possible characters in each position: 26 + 10 = 36

Password length = 7

36 * 36 * 36 * 36 * 36 * 36

= 78.364.164.096

* Time required to generate all possible password candidates, when 100 billion passwords can be generated per second.

Example: Password consists of lower case letters ...

- abcdefghijklmnopqrstuvwxyz: 26 possible characters
 ...and numbers.
- 0123456789: 10 possible characters

Number of possible characters in each position: 26 + 10 = 36

Password length = 8

36 * 36 * 36 * 36 * 36 * 36 * 36

* Time required to generate all possible password candidates, when 100 billion passwords can be generated per second.

= 2.821.109.907.456

Example: Password consists of lower case letters ...

- abcdefghijklmnopqrstuvwxyz: 26 possible characters...and numbers.
- 0123456789: 10 possible characters

Number of possible characters in each position: 26 + 10 = 36

Password length = 9

36 * 36 * 36 * 36 * 36 * 36 * 36 * 36

= 101.559.956.668.416

* Time required to generate all possible password candidates, when 100 billion passwords can be generated per second.

≙ ~ 16,927 min*

Example: Password consists of lower case letters ...

- abcdefghijklmnopqrstuvwxyz: 26 possible characters
 ...and numbers.
- 0123456789: 10 possible characters

Number of possible characters in each position: 26 + 10 = 36

Password length = 10

^{*} Time required to generate all possible password candidates, when 100 billion passwords can be generated per second.

≙ ~ 10,156 h*

Brute Force Attacks on Password Hashes

- Brute force attacks are often performed against password hashes
 - possible password candidates are hashed
 - generated password hash is compared with the target hash
 - if they match, the password candidate is the password you are looking for
- The speed of brute force attacks depends on the calculation speed of the hash function used
 - MD5 hashes can be calculated much faster than SHA-512 Hashes

Password length until	Figures [0-9]	Numbers + lower case letters [0-9a-z].	Alphanumeric [0-9a-zA-Z].	Alphanumeric + Special characters 0-9a-zA-Z\$% &:;? §!]
5	< 1 sec	< 1 sec	< 1 sec	< 1 sec
6	< 1 sec	< 1 sec	< 1 sec	~ 7,43 sec
7	< 1 sec	< 1 sec	~ 35,79 sec	~ 11,76 min
8	< 1 sec	~ 29,02 sec	~ 36,99 min	~ 18,62 hours
9	< 1 sec	~ 17,41 min	~ 1,59 days	~ 2,43 months
10	< 1 sec	~ 10,45 hours	~ 3,25 months	~ 19,24 years
11	~ 1 sec	~ 2,24 weeks	~ 16,82 years	~ 18.28 c.
12	~ 11 sec	~ 1.55 years	~ 10.43 century	almost eternal
13	~ 1.85 min	~ 55,79 years	almost eternal	almost eternal
14	~ 18.5 min	~ 20.08 century	almost eternal	almost eternal
15	~ 3.09 hours	almost eternal	almost eternal	almost eternal
20	~ 35.33 years	almost eternal	almost eternal	almost eternal

Time needed to create all possible password candidates when 100 billion passwords can be generated per second