

Sistema de Gestão de Energia Elétrica Inteligente

Grupo 3:

- Arthur Felipe Nascimento
- Jannderson Oliveira da Silva
- Luis Felipe Ferreira Silva
- Phablo Tavares Paixão
- Thiago Vicente de Aquino

O Problema: Compreensão do Consumo Elétrico

- Usuários têm dificuldade para entender o consumo de energia elétrica.
- A falta de clareza impede decisões eficazes para economizar energia.
- O sistema proposto fornece insights claros e práticos sobre o uso da eletricidade.
- Contas de energia são complexas e não detalham o consumo por aparelho.
- Sem dados precisos, é difícil identificar desperdícios e economizar.

Objetivos da Solução

Cálculo e Visualização
Calcular e visualizar o consumo de energia por aparelho, oferecendo uma visão detalhada do uso.
Simulação de Cenários
Simular cenários de economia com base nos hábitos do usuário, permitindo planejar reduções de custo.
Estatísticas Multiplataforma
Visualizar estatísticas de consumo via interface gráfica multiplataforma, acessível em diversos dispositivos.
Relatórios Comparativos
Gerar relatórios com comparação semanal de consumo, facilitando o acompanhamento do progresso.
Integração com Assistentes

Integrar com assistentes pessoais para controle de dispositivos, proporcionando automação e conveniência.

Requisitos Funcionais

RF01: Cálculo de Consumo

Calcular o consumo de energia de cada aparelho com base na potência e tempo de uso.

RF02: Simulação de Cenários

Simular diferentes cenários de economia com base nos hábitos do usuário.

RF03: Interface Gráfica

Fornecer uma interface gráfica multiplataforma para visualização de estatísticas e consumo.

Estes requisitos garantem que o sistema ofereça funcionalidades essenciais para o monitoramento e a gestão eficiente do consumo de energia. A capacidade de simular cenários e a interface intuitiva são cruciais para capacitar os usuários a tomar decisões informadas.

Requisitos Funcionais (Continuação)

RF04: Geração de Relatórios

Gerar relatórios diários com comparação semanal de consumo, permitindo uma análise aprofundada das tendências de uso.

RF05: Integração com Assistentes Pessoais

Integrar-se com assistentes pessoais para controle de dispositivos inteligentes, oferecendo uma experiência de usuário fluida e automatizada.

A geração de relatórios detalhados e a integração com assistentes pessoais são funcionalidades que elevam a conveniência e a eficácia do sistema. Elas permitem que os usuários não apenas monitorem, mas também controlem ativamente seu consumo de energia de forma inteligente.

Requisitos Não Funcionais

RNF01: Compatibilidade

Interface compatível com Windows, macOS e Linux, garantindo ampla acessibilidade.

RNF02: Atualização de Dados

Atualização dos dados em tempo real ou em intervalos regulares para informações precisas.

RNF03: Acessibilidade

Interface deve seguir boas práticas de acessibilidade, tornando-a inclusiva para todos os usuários.

RNF04: Tempo de Resposta

Resposta a comandos em até 500 milissegundos, garantindo uma experiência ágil e responsiva.

Made with **GAMMA**

Requisitos Não Funcionais (Continuação)

RNF05: Disponibilidade

Disponibilidade mínima de 99% ao mês, assegurando que o sistema esteja sempre acessível quando necessário.

RNF06: Segurança da Integração

Integração com APIs de assistentes pessoais deve ser segura, protegendo os dados do usuário e a privacidade.

RNF07: Suporte a Eventos IoT

Suporte a eventos via protocolo MQTT para loT, permitindo a comunicação eficiente com dispositivos inteligentes.

Esses requisitos não funcionais são fundamentais para a robustez, segurança e confiabilidade do sistema. Eles garantem que a solução não apenas funcione como esperado, mas também ofereça uma experiência segura e ininterrupta aos usuários.

Regras de Negócio

RN01: Cálculo de Consumo

Cálculo de consumo com base na fórmula (W × h)/1000, garantindo precisão nos dados.

RN03: Sugestões de Economia

O sistema deve sugerir reduções com maior impacto financeiro, priorizando a economia do usuário.

RN05: Comandos por Voz

Comandos por voz devem refletir no painel de consumo, proporcionando feedback imediato.

RN02: Simulações Inteligentes

Simulações devem considerar hábitos de uso e perfis diários para recomendações personalizadas.

RN04: Interface Compreensível

A interface deve apresentar informações compreensíveis a usuários leigos, facilitando a adoção.

RN06: Histórico de Comandos

Histórico de comandos por voz deve ser armazenado para análise e personalização futuras.

Modelo Arquitetural: Microsserviços

O sistema adotará uma arquitetura de microsserviços, proporcionando modularidade, escalabilidade e resiliência. Cada microserviço será um independente, facilitando o desenvolvimento, a manutenção e a implantação.

Módulos Principais:

- Frontend
- Api Gateway
- Backend

- Banco de dados
- Sensores/Dispositivos

Tecnologias e Deploy

Para a persistência de dados, utilizaremos PostgreSQL para dados estruturados, garantindo integridade e consistência, e MongoDB para histórico de consumo e logs, ideal para dados não estruturados e de alta volume.

Tecnologia de Persistência:

- PostgreSQL para dados estruturados
- MongoDB para histórico de consumo e logs

Backend:

- NodeJS e Django Rest Framework
- Chart.js para dashboards e gráficos

Local do Deploy:

- Backend: AWS ou Azure
- Frontend: Vercel, Netlify
- Banco de dados: AWS RDS + MongoDB Atlas

Frontend:

- TailwindCSS
- Vue
- Figma (Design)

A escolha dessas tecnologias e plataformas de deploy visa garantir alta disponibilidade, escalabilidade e segurança para o sistema, proporcionando uma infraestrutura robusta e confiável.

Fim

Obrigado