Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$

△=289>0

-10

∆=0

 $f_{1,2}=8,8$

Casel: $\Delta > 0$ $f_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} \text{ computes the } f - \text{intercepts of multiplicity 1.}$

Given a quadratic $r(f) = a f^2 + b f + c$ compute its discriminant \triangle :

$$T_{1,2} = \frac{1}{2a}$$
 computes the T-intercepts of multiplicity 1.
 $r(0) = c$ computes the single r-intercept.
Example 1.

r(f) = $2 f^2 + f - 36$ compute its discriminant \triangle :

$$f_{1,2} = -\frac{9}{2}$$
, 4
$$r(0) = -36 \quad r-intercept.$$

Case2: $\triangle=0$ $f_{1,2}=\frac{-b\pm\sqrt{b^2-4\,ac}}{2a}=\frac{-b\pm0}{2a}=\frac{-b}{2a} \text{ single } f\text{-intercept of multiplicity 2.}$ Example 2.

-100

f-intercept 2

f-intercept 1

 $r(f) = -3 f^2 + 48 f - 192$ compute its discriminant \triangle :

 $r(f)=9~f^2-180~f+1000$ compute its discriminant \triangle : $\triangle=-3600<0$ r(0)=1000~r-intercept.

-10