The Tree Method

- 1. Write down each premise
- 2. Negate the conclusion
- 3. Look for a counterexample
 - a) If all leaves are blocked off: no counterexample exists
 - b) Else, if some leaf is not blocked off but all compound propositions are checked off: counterexamples exist
 - c) If there an unchecked compound proposition, expand it at every leaf below and check off the proposition
 - d) Close off every leaf whose path to the top contains a contradiction

Why negate the conclusion?

Suppose we don't negate the conclusion

If any leaf reveals a contradiction, then the argument is invalid.

If every leaf remains alive, then the argument is valid.

Would this be wrong?

This argument IS valid, but the root doesn't remain alive!

An Example

$$A \to (B \to C)$$

$$\neg C \to (\neg B \land D)$$

$$D \to A \lor \neg C$$

$$\therefore \neg A \to (D \to B)$$

$$\checkmark A → (B → C)$$

$$\checkmark \neg C → (\neg B \land D)$$

$$\checkmark D → A \lor \neg C$$

$$\checkmark \neg (\neg A → (D → B))$$

$$\checkmark \neg (A \lor (D → B))$$

$$\neg A$$

$$\neg (D → B)$$

Counterexample!

A: False

B: False

C: False

D: True

One Philosopher's Argument

- 1. If God exists, then God is omnipotent.
- 2. If God exists, then God is omniscient.
- 3. If God exists, then God is benevolent.
- 4. If God can prevent evil, then if God knows that evil exists then God is not benevolent if God does not prevent evil.
- 5. If God cannot prevent evil, then God is not omnipotent.
- 6. If God is omniscient, then God knows that evil exists if it does indeed exist.
- 7. Evil does not exist if God prevents it.
- 8. Evil exists.
- ∴ God does not exist

$$E \Rightarrow OP$$

$$E \Rightarrow ON$$

$$E \Rightarrow B$$

$$P \Rightarrow (K \Rightarrow (\neg Z \Rightarrow \neg B))$$

$$\neg P \Rightarrow \neg OP$$

$$ON \Rightarrow (X \Rightarrow K)$$

$$Z \Rightarrow \neg X$$

$$X$$

$$\therefore \neg E$$

Is this argument valid?

$$E \Rightarrow OP \qquad \checkmark$$

$$E \Rightarrow ON \qquad \checkmark$$

$$E \Rightarrow B \qquad \checkmark$$

$$P \Rightarrow (K \Rightarrow (\neg Z \Rightarrow \neg B)) \qquad \checkmark$$

$$\neg P \Rightarrow \neg OP \qquad \checkmark$$

$$ON \Rightarrow (X \Rightarrow K) \qquad \checkmark$$

$$Z \Rightarrow \neg X \qquad \checkmark$$

$$X \qquad \vdots \neg E$$

All paths blocked. Therefore, VALID!

Is an inference valid?

1. Use the rules of inference, starting with the premise and try to derive the conclusion.

2. Build a truth table.

3. Apply the tree method to search for counterexamples.

Scheme

Scheme is a child of the first functional language LISP

LISP = **LIS**t **P**rocessing

Our goal is not to learn Scheme, but rather to use its simplest, most basic features to construct recursive programs.

Scheme Identifiers

```
Numbers: Integers, rationals, ...

Boolean: #t, #f

Identifiers: any sequence of letters, digits, characters (+, %, $, ...)

but not including whitespace or ( ) [ ] { } " , ' ` ; # | \
and are not numbers
```

Examples of Identifiers:

```
Isthis1identifier?
pass/fail
a-b+c*2-3-4
```

We'll use identifiers to name variables and functions.

There are some special identifiers which we should not use as variable names.

Scheme Expressions

Two kinds of expressions:

ATOMS: constant (number, boolean value), variable e.g. 25, x, whome?, ...

LISTS: a structure made up of atoms and lists

e.g. (1 2 3), (1 a b me), (+ 3 5), ...

also (0 (1 2) (a (b) c) (d (e (f))))

which is a list of 4 elements, 3 of them lists

Evaluating Expressions

Every Scheme expression has a value.

When you enter an expression, the interpreter prints out its value, and gives an error if the expression does not have a value.

ATOMS: e.g. The value of a number is the number itself.

The value of #t is #t.

The value of any variable \times is whatever it was defined as.

To bind a numeric value to a variable, we enter

```
(define x 5)
(define y 17)
```

NOTE: We could also enter (define define 2) but not a good idea!

Evaluating List Expressions

Given a list:

The interpreter will:

1. Check if the first element is the name of a defined function. If not, the interpreter gives an error.

```
e.g. (1 \ 2 \ 3), (1 + 2)
```

- 2. Evaluate each of the remaining elements of the list. If any of the arguments is undefined, then return an error.
- 3. Apply the function f (as defined) to the values returned in Step 2.

Evaluating List Expressions

Examples:

```
(+ 1 3) returns 4, since + is a defined function.

(* 2 4) returns 8, since * is a defined function.

What is (+ (* 2 5) (* 3 4))?

= (+ 10 12)

= 22
```

Defining New Functions

How do we create a function that adds the squares of its two arguments? $f(x,y) = x^2 + y^2$

Define the function using the expression:

This binds the function name f to the function we desire.

Creating Lists

What expression returns the list (a b c)?

Answer: '(a b c) which is shorthand for (quote (a b c))

The function quote suppresses evaluation of its argument.

Manipulating Lists

How do we extract the first element from the list (a b c)?

Answer: (car '(a b c)) returns a

The function car returns the first element of a list.

The function cdr returns the rest of the list, (i.e., the list minus its first element).

```
(cdr '(a (b c) d)) returns ((b c) d)
```

Manipulating Lists

How do we add an element x to (a b c) to create (x a b c)?

Answer: (cons 'x '(abc)) returns (xabc).

The function *cons* inserts the first argument into the second argument which is a list.

Why these bizarre function names car, cdr, cons?

CAR, CDR, CONS

A list is stored in memory as a sequence of constructor boxes.

The left arrow points to the <u>car</u>.

The right arrow points to the <u>cdr</u>.

The arrows represent pointers.

The list (1 2 3) is stored as (cons 1 (cons 2 (cons 3 '())))

car: contents of the address part of register

cdr: contents of the decrement part of register

CAR, CDR, CONS

(1 (2 3) 4) is stored as (cons 1 (cons (cons 2 (cons 3 '())) (cons 4 '())))

Box-Pointer Diagrams

Box-Pointer Diagrams

This represents the expression (1 2 . 3)

If you see an unexpected "." in your output list, check carefully and you will find that the second argument to a cons expression was an atom and not a list!