

Forecasting Platelet Blood Bag Demand to Reduce Inventory Wastage at the Stanford Blood Center

Stanford Data Science for Social Good Emily Guthrie, Qian Zhao, Chelsea King

Platelets are valuable resources

Clot formation

- Needed in emergency situations
 - Trauma
 - Surgery
 - Active bleeding
- 3-day shelf life

There are difficulties with platelet inventory

Over-collect

- 1. Guarantees platelets available
- 2. Expensive costs \$1 million annually
- 3. Donors spend 2 hrs donating
- 4. Donors can only donate 24x/year

- 1. Some patients may go without platelet therapy
- 2. Ensures no wasted products

Daily platelet usage patterns are highly variable

Guan and colleagues (2017) tried to solve this issue

- Reduced wastage from 10.5% to 3%
- Avoided shortages
- Model not implemented because inventory managers don't trust it

Project trajectory

Predict 4 day platelet demand

Build trust in models Implement ordering strategy

No waste

Our task

Blood center's eventual goal

Our datasets include 2 years of data

In-patient records	315,000 adult hospital records
Blood test results	8 million blood tests
Transfusions	100,000 blood transfusions
Surgery	106,000 surgeries

Meet Em

Monday

Em receives a blood test and their results show abnormal platelet count

BLOOD TEST

Em receives a platelet

blood transfusion

Tuesday

TRANSFUSION

Em needs immediate cardiac surgery

SURGERY

Wednesday

recover from surgery
INPATIENT

Em is assigned a bed in

the hospital so they can

INPATIENT RECORDS

Thursday

Child patients

Child patients

Adult inpatients

Child patients

Adult inpatients

Surgery patients

Child patients

Adult inpatients

Surgery patients

Random arrivals

Model out-performs using weekday-weekend average

Visualize model predictions

Generate summaries and reports

Conclusion

Communicate with community partners

Design interpretable algorithms

Create automated pipeline to process data, fit model and make predictions

Enable users to interact with the software

Thank you!