Systems of Linear Equations

Michael Brodskiy

Professor: Lynn Knight

January 27, 2021

• Linear Equation:

- 1. One Unknowns: 3x = 5
- 2. Two Unknowns: ax + by = 5
- 3. Three Unknowns: ax + by + cz = 5
- 4. *n* Unknowns: $a_0 + a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0$

• Solution Set:

- 1. With two unknowns, given $a \neq 0$ and $b \neq 0$: $S = \{(x, y) | ax + by = c\}$
- 2. Empty Set: a = 0, b = 0, $c \neq 0$
- 3. Whole xy plane: a = 0, b = 0, c = 0

• Systems of Linear Equations:

- 1. Example of a system: $\begin{aligned}
 x 2y &= 7 & (E_1) \\
 3x + y &= 7 & (E_2)
 \end{aligned}$
- 2. Solved with elimination or back substitution
- 3. For the given example: $S = \{(3, -2)\}$

• Operations on Equations:

- 1. Two Equations are Interchanged
- 2. Multiply and Equation by a non-zero Constant
- 3. A Constant Multiple of one Equation can be Added to Another

• Types of Solutions:

- 1. Consistent System One Unique (!) Solution
- 2. Inconsistent System No Solutions (ø)

- 3. Dependent System Infinitely Many Solutions
- Example: 3x + y = 7 (E_1) 2y = 14 - 6x (E_2)
 - 1. Dependent System Set Up A Parameter
 - 2. Let x=t, then y=7-3t. This means the set is $S=\{(t,7-3t)\,|\,t\in\mathbb{R}\}$
- Systems of Linear Equations with 3 Unknowns
 - 1. $a_1x_1 + a_2x_2 + a_3x_3 = d$ (plane)
 - 2. Types of Solutions:
 - (a) Ordered Triple (Point) Consistent
 - (b) Empty Set (ø) Inconsistent
 - (c) Same Plane Dependent
 - (d) Line of Intersection Consistent

$$5x + 4y - 2z = 9$$
 (E_1)

3. Example: 5x + 5y + z = 16 (E_2) 5x + 4y - z = 10 (E_3)

$$E_1 - E_2 \Longrightarrow -y - 3z = -7 (E_4)$$

$$E_1 - E_3 \Longrightarrow z = 1$$

$$E_4(y, 1) \Longrightarrow y = 4$$

$$E_1(x, 4, 1) \Longrightarrow 5x + 16 - 2 = 9$$

$$5x = -5 \Longrightarrow x = -1$$

$$S = \{(-1, 4, 1)\}$$