

VARIABLES ALEATORIAS

ALAN REYES-FIGUEROA APRENDIZAJE ESTADÍSTICO

(AULA 02) 10.ENERO.2024

Definición

Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de probabilidad. Una **variable aleatoria** (v.a.) es una función mesurable $X : \Omega \to \mathbb{R}$.

Aquí mesurable significa que si $X: (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$, entonces la preimagen de cualquier elemento en $\mathcal{B}(\mathbb{R})$ es un elemento de \mathcal{F} . Esto es, X^{-1} lleva conjuntos mesurables de \mathbb{R} (bajo la medida de Lebesgue μ), a conjuntos mesurables en \mathcal{F} (bajo la probabilidad \mathbb{P}).

A los elementos de $\mathcal{B}(\mathbb{R})$ se les llama los borelianos de \mathbb{R} .

Ejemplo

Elegimos al azar una persona de un grupo. De cada persona tenemos un registro de su edad, altura, peso, . . .

Mapeamos cada persona ω a $X(\omega) = (X_1(\omega), \dots, X_d(\omega))$, donde por ejemplo $X_1(\omega)$ representa su edad, $X_2(\omega)$ su altura, etc.

Si el grupo de personas corresponde a una base de datos, entonces X regresa los campos de interés de cada registro. Las variables X_1, \ldots, X_d son variables aleatorias.

En este ejemplo llamaremos a X como una variable aleatoria (en realidad X es un vector aleatorio).

Observaciones:

- una variable aleatoria determina una relación determinística.
- una variable aleatoria induce una función de probabilidad.

Definimos $\mathbb{P}_X(\cdot)$ como

$$\mathbb{P}_{X}(A) = P(\{\omega \in \Omega : X(\omega) \in A\}).$$

Escribimos $\mathbb{P}_X(\cdot)$ como $\mathbb{P}(\cdot)$.

Por ejemplo,
$$\mathbb{P}(X = x)$$
 denota $\mathbb{P}_X(X = x) = \mathbb{P}(\{\omega : X(\omega) = x\})$.

$$\mathbb{P}(X < a)$$
 denota $\mathbb{P}_X(X < a) = \mathbb{P}(\omega : X(\omega) < a)$.

Caso discreto:

Definición

Diremos que X es una variable aleatoria **discreta** si su contradominio $I = X(\Omega)$ es enumerable y $\mathbb{P}_X(i) = \mathbb{P}(X = i)$ existe para cada $i \in I$. (Comunmente se identifica el contradominio I con los naturales).

Definición

Al conjunto de probabilidades $\{\mathbb{P}_X(i)\}_{i\in I}$ le llamamos la **distribución** de X. (En general, a \mathbb{P}_X se le llama la **función de masa de probabilidad**).

Definición

Si $X \in \mathbb{R}$, llamamos a $F_X(x) = \mathbb{P}(X \le x)$ la **función de distribución** (acumulativa) de X.

Caso continuo:

Definición

Considere la función $F: \mathbb{R} \to \mathbb{R}$, dada por

$$F_X(t) = \mathbb{P}(X \leq t).$$

Diremos que X es una variable aleatoria **continua** si existe una función no-negativa $f_X: \mathbb{R} \to \mathbb{R}$, tal que

$$F_X(t) = \mathbb{P}(X \leq t) = \int_{-\infty}^t f_X(x) dx.$$

Definición

En ese caso, a la función f_X le llamamos la **densidad de probabilidad** de X.

Propiedades

Obs! La función de densidad f_X no tiene por qué ser continua.

Ya sea en el caso discreto o continuo,

Definición

Si $x \in \mathbb{R}$, llamamos a $F_X(x) = \mathbb{P}(X \le x)$ la **función de distribución** (acumulativa) de X.

En general, definimos la función de distribución para un vector aleatorio $X = (X_1, \dots, X_d)$ como

$$F_X(X_1,\ldots,X_d)=\mathbb{P}(X_1\leq X_1,\ldots,X_d\leq X_d),\ \ \forall (X_1,\ldots,X_d)\in\mathbb{R}^d.$$

En este caso, llamamos a F_X la **función de distribución conjunta** de X_1, \ldots, X_d .

Propiedades

Propiedades de \mathbb{P}_X y f_X :

Propiedad	X discreta	X continua
no-negativa	$\mathbb{P}_{X}(A) \geq o$	$f_X(x) \geq 0$
suma total	$\sum_{x}\mathbb{P}_{X}(x)=1$	$\int_{\mathbb{R}} f_X(x) dx = 1$
relación entre f_X y F_X	$\mathbb{P}(X=X)=F_X(X)-F_X(X^-)$	$f_X(x)=\frac{d}{dx}F_X(x)$
relación entre f_X y F_X	$F_X(x) = \sum_{t \leq x} \mathbb{P}(X = t)$	$F_X(x) = \int_{-\infty}^x f_X(t) dt$

Propiedades

Propiedades de F_X :

Propiedad	X discreta	X continua
limitada	$0 \le F_X(x) \le 1$	$0 \le F_X(x) \le 1$
monotonía	F _X no-decreciente	
límite inferior	$F_X(t)=$ O, $orall t< \min_{x\in I(\Omega)}$ $F_X(t)=$ 1, $orall t\geq \max_{x\in I(\Omega)}$	$\lim_{x\to-\infty}F_X(x)=0$
límite superior	$F_X(t)=$ 1, $orall t\geq max_{x\in I(\Omega)}$	$\lim_{x\to+\infty}F_X(x)=1$

Además, F_X tiene la propiedad de semi-continuidad inferior: F_X es continua por la derecha, con límites por la izquierda.

- distribución Uniforme *U*[*a*..*b*],
- distribución Bernoulli Ber(p),
- distribución Binomial Binom(n, p),
- distribución Geométrica Geom(p),
- distribución Poisson $Poisson(\lambda)$,
- distribución Rademacher Rad(p),
- distribución Binomial Negativa NB(r, p),
- distribución Hipergeométrica Hypergeometric(N, K, n).

1. Distribución Uniforme

$$X \sim U[a..b] \Leftrightarrow \mathbb{P}(X = k) = \frac{1}{b-a+1}$$
, para $k = a, a+1, \ldots, b$.

- Esta distribución depende de dos parámetros (de localización): a y b.
- El caso a = b, con $\mathbb{P}(X = a = b) = 1$ se llama una v.a. degenerada.

2. Distribución Bernoulli

$$X \sim Ber(p) \Leftrightarrow \mathbb{P}(X = 1) = p, \ \mathbb{P}(X = 0) = 1 - p, \ \text{para } 0 \leq p \leq 1.$$

- La distribución es simétrica si, y sólo si, p = 1/2.
- $\mathbb{E}(X) = p$, Var(X) = p(1-p).

La distribución Bernoulli tiene una hermana gemela: la distribución de Rademacher.

$$X \sim Rad(p) \Leftrightarrow \mathbb{P}(X = 1) = p, \ \mathbb{P}(X = -1) = 1 - p, \ \text{para o} \leq p \leq 1.$$

Preguntas:

- ¿Cuál es la media y varianza de la distribución Rad(p).
- Sean X, Y v.a., con X ~ Ber(p) y Y ~ Rad(p). Escribir X en términos de Y, y Y en términos de X.

La distribución de Bernoulli es importante para escribir situaciones donde se cuenta la ocurrencia de eventos. La variable $X \sim Ber(p)$ cuenta o indica la ocurrencia del evento de interés.

3. Distribución Binomial

$$\overline{X \sim Binom(n,p) \iff \mathbb{P}}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \text{ para } k=0,1,\ldots,n.$$

Interpretación: Si $\{X_i\}_{i=1}$ son v.a. *i.i.d.* con $X_i \sim Ber(p)$, entonces

$$X = \sum_{i=1}^{n} X_i \sim Binom(n, p).$$

- La distribución es simétrica si, y sólo si, p = 1/2.
- $\mathbb{E}(X) = np$, Var(X) = np(1-p).

4. Distribución Geométrica

$$X \sim Geom(n,p) \Leftrightarrow \mathbb{P}(X=k) = p(1-p)^{k-1}$$
, para $k = 1, 2, 3, \dots$

Interpretación: Si $\{X_i\}_{i=1}$ son v.a. *i.i.d.* con $X_i \sim Ber(p)$, entonces $X = \text{el momento del primer éxito en } \{X_i\} \sim Geom(p)$.

- La probabilidad va decayendo en forma geométrica con k.
- $\mathbb{E}(X) = \frac{1}{p}$.

5. Distribución Poisson

$$X \sim Poisson(\lambda) \Leftrightarrow \mathbb{P}(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}, \text{ para } k = 0, 1, 2, \dots$$

En este caso,

 $\mathbb{P}(X = k)$ = probabilidad de que el evento de interés ocurra k veces.

- Cuenta el número de llegadas de un proceso con tiempos exponenciales $Exp(\lambda)$.
- E(X) = λ. Representa el número esperado de veces que ocurra el fenómeno durante un intervalo dado.

- distribución Uniforme *U*[*a*..*b*],
- distribución Normal $\mathcal{N}(\mu, \sigma^2)$,
- distribución Lognormal $\mathcal{LN}(\mu, \sigma^2)$,
- distribución Exponencial $Exp(\lambda)$,
- distribución Erlang $Erlang(n, \lambda)$,
- distribución Gamma $\Gamma(\alpha, \beta)$,
- distribución Beta $Beta(\alpha, \beta)$,
- distribución Weibull,
- distribución Pareto,
- distribuciones de valores extremos.

1. Distribución Uniforme

$$X \sim U[a..b] \Leftrightarrow f_X(t) = \frac{1}{b-a} \mathbf{1}_{[a,b]}(t).$$

Obs. Aquí la función $\mathbf{1}_{[a,b]}$ es una función indicadora o función característica, que indica cuál es el soporte de la distribución.

Recordemos que para cualquier subconjunto $A\subseteq\mathbb{R}$

$$\mathbf{1}_{A}(t) = \begin{cases} 1, & t \in A; \\ 0, & t \notin A. \end{cases}$$

Preguntas: ¿Cuál es la función de distribución F_X ? ¿ $\mathbb{E}(X)$, Var(X)?

2. Distribución Exponencial Dado un parámetro $\lambda >$ 0, la distribución exponencial tiene densidad

$$f_X(t) = \lambda e^{-\lambda t} \mathbf{1}_{[0,\infty)}(t), \quad F_X(t) = (1 - e^{-\lambda t}) \mathbf{1}_{[0,\infty)}(t).$$

- $\mathbb{E}(X) = \frac{1}{\lambda}$ y $Var(X) = \frac{1}{\lambda^2}$.
- En ocasiones, se parametriza en términos de su valor esperado $\theta = \frac{1}{\lambda}$:

$$f_X(t) = \frac{1}{\theta} e^{-t/\theta} \mathbf{1}_{[0,\infty)}(t).$$

3. Distribución Normal Dados dos parámetros $\mu \in \mathbb{R}$, $\sigma >$ 0, la distribución normal tiene densidad

$$f_{\mathsf{X}}(t) = rac{\mathsf{1}}{(2\pi\sigma^2)^{1/2}} \exp\Big(-rac{(\mathsf{X}-\mu)^2}{2\sigma^2}\Big)\, \mathsf{1}_{\mathbb{R}}(t).$$

- $\mathbb{E}(X) = \mu$ y $Var(X) = \sigma^2$.
- La distribución es simétrica alrededor de μ .
- X no tiene una función de distribución elemental

$$F_X(x) = \int_{-\infty}^x f_X(t) dt.$$

Propiedades

- 1. Si $X \sim \mathcal{N}(\mu, \sigma^2)$, se tiene que $Z = \frac{X \mu}{\sigma} \sim \mathcal{N}(1)$.
- 2. Si $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ y $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$, y X_1, X_2 son independientes, entonces

$$X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

- 3. Si X $\sim \mathcal{N}(\mu, \sigma^2)$, se tiene que $-X \sim \mathcal{N}(-\mu, \sigma^2)$.
- 4. En general, si $X \sim \mathcal{N}(\mu, \sigma^2)$, y $a, b \in \mathbb{R}$, entonces Y = aX + b es normal, con

$$Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2).$$

Teoremas importantes

Teorema (Desigualdad de Markov)

Si X es una v.a. no-negativa, a > o, entonces

$$\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}.$$

Teorema (Desigualdad de Tchebyshev)

Si X es una v.a. con $\mathbb{E}(X)$ y Var(X) finitas, a > o, entonces

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge a) \le \frac{Var(X)}{a}.$$

Teoremas importantes

Teorema (Ley débil de los números grandes)

Sean X_1, X_2, \ldots, X_n variables aleatorias i.i.d., con $\mathbb{E}(X_i) < \infty$. Entonces, para todo $\epsilon > 0$

$$\lim_{n\to\infty}\mathbb{P}\Big(\Big|\frac{X_1+X_2+\ldots+X_n}{n}-\mathbb{E}(X)\Big|>\epsilon\Big)=0.$$

Interpretación:

Se repite el experimento n veces, con resultados X_i . $\mathbb{E}(X) = \mathbb{P}(A)$, entonces $\frac{X_1 + X_2 + \ldots + X_n}{n}$ es el porcentaje de veces que ocurrió A.

La ley débil dice que el porcentaje de veces que A ocurrió en n repiticiones se aproxima a $\mathbb{E}(X)$.

Teoremas importantes

Teorema (Teorema Central de Límite)

Sean X_1, X_2, \ldots, X_n variables aleatorias i.i.d., con $\mathbb{E}(X_i) = \mu$, $Var(X_i) = \sigma^2$ finitas. Entonces

$$\lim_{n\to\infty}\mathbb{P}\Big(\frac{\mathsf{S}_n/n-\mu}{\sigma/\sqrt{n}}\leq x\Big)=\int_{-\infty}^x\frac{1}{\sqrt{2\pi}}e^{-t^2/2}\,dt.$$

Consecuencias:

$$rac{\mathsf{S}_n}{\mathsf{n}} \sim \mathcal{N}(\mu, rac{\sigma^2}{\mathsf{n}}),$$

o equivalentemente

$$X_1 + \ldots + X_n = S_n \sim \mathcal{N}(n\mu, n\sigma^2).$$

