

Mirror Material Properties Compiled for Preliminary Design of the Next Generation Space Telescope (30 to 294 Kelvin)

P.L. Luz and T. Rice Marshall Space Flight Center, Marshall Space Flight Center, Alabama

National Aeronautics and Space Administration

Marshall Space Flight Center

Available from: NASA Center for AeroSpace Information National Technical Information Service 800 Elkridge Landing Road 5285 Port Royal Road Linthicum Heights, MD 21090-2934 Springfield, VA 22161 (301) 621-0390 (703) 487-4650

TABLE OF CONTENTS

1.	INTRODUCTION	1
	1.1 Mirror Material Tasks	l I
2.	MIRROR MATERIAL PROPERTIES THAT ARE CITED	2
	2.1 Literature Survey Status	2
3.	MATERIAL SELECTION COMPARISON FACTORS	5
	3.1 Other Considerations	6
4.	CONCLUSION	7
RE	FERENCES	8
AP	PENDIX A—Beryllium I-70A (Material Properties)	11
ΑP	PENDIX B—Beryllium O-50 (Material Properties)	13
AP.	PENDIX C—Nickel, Pure (Material Properties)	14
ΑP	PENDIX D—Nickel, Electrodeposited (Material Properties)	18
ΑP	PENDIX E—CVD Silicon Carbide (Material Properties)	21
AP.	PENDIX F—Fused Silica Glass (Material Properties)	25
AP.	PENDIX G—Fused Quartz Glass (Material Properties)	28
AP.	PENDIX H—ULE 7971 (Material Properties)	31
ΑP	PENDIX I—Zerodur (Material Properties)	34

TECHNICAL MEMORANDUM

MIRROR MATERIAL PROPERTIES COMPILED FOR PRELIMINARY DESIGN OF THE NEXT GENERATION SPACE TELESCOPE (30 to 294 KELVIN)

1. INTRODUCTION

In February 1996, the Program Development Directorate at NASA Marshall Space Flight Center (MSFC) began studying the feasibility of a Next Generation Space Telescope (NGST) and developed the prephase A program for it. After finishing some initial studies and concepts development work on the NGST, Program Development handed this work to the Observatory Projects Office at NASA MSFC. NASA Goddard Space Flight Center (GSFC) was later given leadership of the NGST program. NASA GSFC then issued a Cooperative Agreement Notice in April 22, 1996, to solicit proposals from industry to join in feasibility assessments related to the development of an NGST. On August 19–21, 1996, "teams led by Lockheed Martin, TRW, and the GSFC concluded that an NGST was not only feasible and affordable, but that it could be made powerful using recent breakthroughs in space technologies." 4

1.1 Mirror Material Tasks

From April 1996 to June 1997, the Optical Telescope Assembly (OTA) materials team performed a number of tasks for the prephase A (Advanced Studies) design of the NGST, including (1) identifying viable mirror material candidates, (2) identifying valid comparison factors, (3) compiling an initial mirror material properties database, (4) trading and comparing the materials, and (5) identifying critical issues and concerns.

1.2 Scope of This Report

This NASA technical memorandum reports on the mirror material properties that were compiled from April 1996 to June 1997 for preliminary design of the NGST. This work was performed by the Preliminary Design Office and Materials & Processes Laboratory at NASA MSFC for the NGST OTA team which was led by John T. Humphreys, manager of the AXAF Telescope Office at NASA MSFC, in support of NASA GSFC.

2. MIRROR MATERIAL PROPERTIES THAT ARE CITED

Refer to appendices A through I for detailed mirror material properties.

2.1 Literature Survey

Several sources were consulted for mirror material property data—textbooks; Internet databases; Redstone Scientific Information Center (RSIC) databases, including NASA RECON, DTIC, and CPX WEB; and industrial suppliers of the mirror materials. Information from at least 6 industrial suppliers, 16 textbooks, 44 technical papers, and 130 abstracts were reviewed for mirror material property information.

2.2 Overview

Requirements from NASA GSFC, the lead center for the NGST study, specify a "scientific requirement for telescope temperatures in the range 40 to 60 K." Table 1 identifies the *lowest* temperature at which mirror material properties data was found during our survey of literature, the Internet, and industrial suppliers. Overall, the expected temperature range of the NGST is approximately 30 to 300 K.

	Optical		Lowest Temperature (K) at Which Data is Available							
Туре	Material	Abbrev.	Density	CTE	k	Ср	E	Poisson's	YTS	UTS
	Be Spherical Powder									
Metal	Beryllium I-70A	Be I-70A	10°	10°	10°	20°	10°	10° R	oom R	om
	Beryllium O-50	Be O-50	10°	5°	10°	20°			Room (Room
	Pure Nickel	Ni	Room	24	24°	20°	20°	Room F	oom F	oom
	Electrodeposited Nickel	EdNi	Room	Room	30°	3 0°	Room	Room 78	78	
Glass	Boro Silicate	Boro Si								
	Fused Silica Glass	SiO 2 (pc)	Room	Room	100°	150°	Room	Room		
	Fused Quartz, GE 214	SiO ₂ (c)	Room	Room	Room	Room	Room	Room R	oom	
	ULE 7971	ULE	Room	198°	223°	Room	73°	73°		
	Zerodur M	Zerodur	Room	75°	Room	Room	50°	Room		
Ceramic	CVD Silicon Carbide™	CVD SiC™	123°	133°	123°	123°	273°	Room 1	33°	
	Reaction-Bonded SiC	RB SiC								
Composite	Carbon/ Silicon Carbide	C/SiC	Room	4***	Room f	Rojom R	oom Ro	oom	Roo	m

Table 1. Lowest temperature at which material properties data is cited.

Unfortunately, low temperature properties for many of the mirror substrate materials were not found in the literature surveyed up to June 1997. The property information cited in literature was typically at room temperature. Refer to the appendices for detailed material properties for the mirror materials in table 1. The text below gives some general information about the mirror materials.

- Beryllium. Beryllium "has flown on some of the most ambitious spacecraft programs undertaken, from the Apollo landers to deep space probes like Voyager" and has been used as an optical substrate on many missions, including Voyager, the Relay Mirror Experiment, and AOA.⁶ Brush Wellman, the main supplier of beryllium, has the capability to produce near-net-shape beryllium optical substrates by hot isostatic pressing (HIP), cold isostatic pressing (CIP), and cold pressing of beryllium powders.⁷ Please refer to appendices A and B for Beryllium I-70A and Beryllium O-50 material properties.
- Pure Nickel. Nickel was recommended for the NGST study by the Optics Lab (EB52) at NASA MSFC. Cold-worked nickel is one of the most ductile materials available. It has an advantage over some other optical materials under consideration, in that it can be machined and joined easily. However, it also has some disadvantages, including a high-mass density, low-specific stiffness, and thermal deformation parameters that are not favorable until the material becomes very cold. There are many factors to consider when choosing a material, and these may influence the selection of a baseline mirror material as the project's life cycle proceeds.

Some forms of nickel that are available include, but are not limited to, Nickel 200 (commercially pure-wrought nickel), Nickel 201 (low-carbon grade), and Inco's DuranickelTM alloy (containing 4.4% Al and 0.6% Ti). One may also hear about electroless nickel. Do not confuse this with pure nickel because it is a coating. "Electroless nickel plating is a controlled autocatalytic reduction of nickel ions by a suitable reducing agent, such as sodium hypophosphite, on a catalytic surface such as iron or aluminum. The resulting deposit is not a pure nickel, but essentially an alloy of nickel and phosphorus (if the normally used hydrophosphite salt is utilized as a reducing agent)." ⁸ Refer to appendix C for pure nickel material properties.

• <u>Electrodeposited Nickel (EdNi)</u>. Beginning in October 1996, MSFC's Optics Lab (EB52) was working on an NGST mirror replication task in which their charter was to "produce high-quality subscale prototype normal incidence mirror elements for the NGST". For the replication, they used an aluminum mandrel, deposited a layer of electroless nickel on it, a layer of gold, and then the final electrolytic nickel mirror surface. They produced the electrolytic nickel in-house using the Barrett process and sulfamate nickel. However, since material properties for their nickel have not been determined yet through a material test program, some material property data for EdNi will be quoted as a representative sample.

EdNi "is a dense, essentially pure form of nickel. Because of the nature of the electrodeposition process, intricate contours can be readily and economically reproduced or covered with this form of nickel. EdNi can be deposited in thicknesses ranging from thin films to 1 inch or more. Mechanical properties of annealed EdNi are comparable to those of wrought Nickel 200. In the as-deposited form, the strength and hardness are higher than those of Nickel 200." Refer to appendix D for EdNi material properties.

• Chemical Vapor Deposition (CVD) Silicon Carbide[™] (SiC). CVD SiC[™] is a free-standing, monolithic single-phase cubic material with high purity, no porosity, superior chemical resistance, thermal conductivity, stiffness, and polishability. It is a result of Morton International's bulk CVD process. ¹² Other vendors and forms of SiC—like reaction bonded SiC, hot pressed SiC, and sintered SiC—are available. CVD SiC[™] only represents one possible candidate out of many.

- Fabrication: "CVD SiC™ parts up to 60 inches (1.5 m) in diameter and 1 inch (25 mm) thick are available."¹³ Engineers in NASA MSFC's cost group are currently checking on the cost of enlarging these facilities for NGST. Refer to appendix E for CVD SiC™ material properties.
- <u>Silicon Dioxide Glass (Fused Silica & Fused Quartz)</u>. Fused silica is the common name for the polycrystalline form of silicon dioxide, a common glass material. Silicon dioxide is also known as quartz, but quartz should not be confused with fused silica because its structure is crystalline and its material properties (thermal conductivity at least) are orthotropic. ¹⁴ Refer to appendices F and G for fused silica and fused quartz material properties.
- <u>ULE 7971</u>, ULETM is Corning Incorporated's Code 7971 Ultra Low Expansion titanium silicate glass. ¹⁵ The Hubble Space Telescope's 2.4-m diameter primary mirror blank was made from lightweighted ULE.
 - Fabrication: From a *single boule*, solid shapes up to 1.4 m in diameter by 15 cm thick can be fabricated. In addition, Corning's *flowout process* can be used to produce sizes up to 2.8 m in diameter; and a *hex sealing* process can be used to manufacture sizes up to 10 m in diameter. Hex seal technology was used to produce the 8.3-m ULE mirror blank for the Subaru Telescope which will be located atop Mauna Kea, Hawaii. In 1995, Corning completed the first 8.1-m ULE mirror blank for the Gemini 8-M Telescopes Project which will construct twin telescopes on Mauna Kea and on Cerra Pachon, Chile. Refer to appendix H for ULE 7971 material properties.
- Zerodur. Zerodur is a glass ceramics material that Schott Glass Technologies, Inc., has developed for optical, optoelectronic, and precision engineering applications. ¹⁷ It is an inorganic, nonporous material which has a crystalline phase and a glassy phase. Zerodur mirror substrates have been built for various telescopes, including NASA's Advanced X-Ray Astrophysics Facility (AXAF) telescope, the ESO New Technology Telescope, and several telescopes for the Max-Planck-Institute for Astronomy in Heidelberg. Fabrication of parts up to 8.2 m in diameter is possible. ¹⁸ Refer to appendix I for Zerodur material properties.

3. MATERIAL SELECTION COMPARISON FACTORS

Many factors should be considered when trying to determine a suitable material for the mirror substrate of a space-based telescope. An effort was undertaken to identify many of the comparison factors, or figures of merit, which are pertinent to the selection of a telescope's mirror material. Table 2 lists these comparison factors, their definitions, and metric units. The table is loosely divided into seven categorical groupings of comparison factors: (1) structural figures of merit, (2) life cycle factors, (3) material homogeneity and stability, (4) thermal deformations, (5) optical scatter measurements, (6) reflectance, and (7) cost.

Table 2. Telescope mirror materials: some factors to consider.

Parameter	Definition	Units	Critieria
Specific Stiffness	E/rho	MJ/kg	High is Good
Specific Strength	YTS/rho	kJ/kg	High is Good
Microyield Strength (Temporal Stability Due to Creep)	Stress Producing 1% Creep in 100,000 Hours	МРа	High is Good
Fracture Toughness	K1c		
Anisotropy (Property homogeneity)	Ratio of Directional Mat'l Properties	Dimensionless	Near 1 is Good
Hysteresis Due to Thermal Cycling	Optical Figure Change	Waves r.m.s.	Low is Good
Steady State Thermal Distortion	CTE/k	cm/Megawatt	Near 0 is Good
Transient Thermal Distortion	(CTE-rho-Cp)/k	μ sec/cm ² -K	Near 0 is Good
Surface Figure -Peak-to-Valley Deformation Curvature Tilt	Δ (Deformed- Undeformed Shape	mm (Microns) Micro-Radians	Low is Good Near 0 is Good
Surface Microroughness	Departure of Surface From Plane	Angstroms r.m.s.	Low is Good
Optical Scatter	Scatter From Reflecting Surface	Angstroms r.m.s.	Low is Good
Reflectance (Normal Incidence)	R=[(n λ -1) ² + λ k ²]/ [(n λ +1) ² + λ k ²]	percent (%)	High is Good
Cost	Price/Diameter	\$/cm	Low is Good

- Stress and Deformations. The structural figures of merit, specific stiffness and specific strength, are good indications of how different materials can be compared in terms of stress and deformation due to structural loads. Structural loads which must be considered are quasi-static, random vibration and acoustic loads (from launch), thermal, crew-induced loads (if any, on orbit), and shock from transportation and separation events.
- Thermal. Thermal loads and their impact on thermal deformations and figure changes have always been an important consideration for space-based telescopes. Thermal loads for mirrors can be characterized as bulk temperature excursions, axial (through the thickness) gradients, and diametrical (across-the-span) gradients.

3.1 Other Considerations

Studies must consider many other factors as their telescope projects mature. Two of the most important questions concern material availability (their technology readiness level) and ease of fabrication to the telescope's desired size and precision. These factors have been difficult to quantify for the NGST study. As of June 1997, engineers in the NASA's cost group have been attempting to get quotes from private industry optical firms to estimate the cost of producing facilities large enough to handle the NGST optics.

Packaging considerations also lead to some very important questions, such as; will the design fit within a launch vehicle? Will there be any deployment mechanisms? There are also programmatic considerations such as budget, mass, and volumetric constraints; service life; and repair and maintenance.

4. CONCLUSION

This NASA technical memorandum reports on the mirror material properties that were compiled from April 1996 to June 1997, for preliminary design of the NGST. Detailed material properties are included in the appendix.

The careful and systematic selection of a mirror material for a space-based telescope is a difficult task because of the many interactions that exist due to structural, thermal, optical, and configuration considerations during the telescope's design. Mirror material selection is very important because it will also affect the selection of materials for the telescope's reaction structure, mirror support, and metering structure. The combination of mirror material and metering structure materials is critical in determining the total system performance. A strain-free and thermally insensitive mirror has little benefit if the metering structure is sensitive to thermal loads. But if the mirrors and metering structure are the same material, or are otherwise athermalized, then temperature soaks can be compensated.

REFERENCES

- 1. Nein, M.; and Dickerson, T.: "Next Generation Space Telescope: Potential Concepts," NASA Marshall Space Flight Center, Program Development Directorate, March 8, 1996.
- 2. Harwood, W.: "NASA Considers Options to Extend, Replace Hubble," *Space News* April 29–May 5, 1996.
- 3. Soliciting Proposals to Join in Feasibility Assessments Related to Development of a Next Generation Space Telescope," NASA Cooperative Agreement Notice (CAN), CAN–52911/361, NASA Goddard Space Flight Center, April 22, 1996.
- 4. Stockman, H.S.; and The NGST Study Team: "The Next Generation Space Telescope: Visiting a Time When Galaxies Were Young," The Association of Universities for Research in Astronomy, Inc., p. v, 1997.
- 5. Stockman, H.S.; and The NGST Study Team: "The Next Generation Space Telescope: Visiting a Time When Galaxies Were Young," The Association of Universities for Research in Astronomy, Inc., p. 71, 1997.
- 6. Hardesty, R.; and Decker, T.: "The Design and Producibility of Precision Beryllium Structures for Spacecraft Applications," *SPIE Journal*, Vol. 2543, p. 125, 1995.
- 7. Brush Wellman: Beryllium/Mining Division, 14710 W. Portage River South Rd., Elmore, Ohio 43416, Telephone (419) 862–4205.
- 8. Downloaded on August 2, 1996 from http://www.metalogic.be/: METALogic N.V., a spin-off company of K.U. Leuven Dept. MTM Kapeldreef 60–3001 HEVERLEE–Belgium, telephone +32–16–298.330, fax +32–16–298.319, e-mail: webmaster@METALogic.be.
- 9. Redmon, J.: "NGST Mirror Replication Task: One Year Plan," *Working Group Chart*, NASA/MSFC, October 1996.
- 10. Engelhaupt, D.: "Working Group Discussion at NASA/MSFC," University of Alabama in Huntsville, November 18, 1996.
- 11. Anonymous: "Material Properties Manual," Rockwell International: Rocketdyne Div., Materials Engineering & Tech., Vol. IIA, 4th Ed., January 31, 1987.
- 12. Morton Advanced Materials: 185 New Boston Street, Woburn, MA 01801-6203. telephone (617) 933–9243, toll free sales (800) 552–2283, fax (617) 933–5142, WWW=http://www.mortoncvd.com/

- 13. Anonymous: "CVD Silicon Carbide™," Material specification SC–001, Morton Advanced Materials, Woburn, MA, October 1996.
- 14. Incropera and DeWitt: Fundamentals of Heat and Mass Transfer, Third Ed., Appendix A, p. A8, 1990.
- 15. Corning Incorporated: Advanced Materials Business, HP–CP–08, Corning, NY 14831, telephone (607) 974–7440, WWW=http://www.corning.com.
- 16. Anonymous: "Zero Expansion Glass ULETM" brochure, Corning Incorporated, Corning, NY 14831, March 1996.
- 17. Schott Glass Technologies, Inc.: 400 York Avenue, Duryea, PA 18642, (717) 457–7485.
- 18. Anonymous: "Zerodur—Precision From Glass Ceramics," Product brochure 10041, Schott Glass Technologies, Inc., Duryea, PA, October 1991.
- 19. Anonymous: "Metallic Materials and Elements for Aerospace Vehicle Structures," MIL-HDBK-5F, Department of Defense, pp. 1–8 to 1–9, November 1990.

APPENDIX A

Beryllium I-70A Material Properties

In October 1997, the authors intended for appendices A and B to contain material properties for Beryllium I-70 and Beryllium O-50. However, after a review of our sources for these properties, we realized that the major contributing source was export controlled.

After discussions with our management and export control officers, we decided in March 1998 to remove the table of beryllium material properties. Instead, we will list the sources of the properties for your reference.

Beryllium sources that are NOT export controlled.

Contained CTE vs. temperature data for Beryllium O-50

Swenson, "HIP beryllium: Thermal expansivity from 4 to 300 K and heat capacity from 1 to 108 K," Journal of Applied Physics, 70(6), Sept. 1991.

Contained Poisson's ratio and Elastic Modulus vs. temperature data for Beryllium I-70

J. Focht and D. Caldwell, "Beryllium Materials Characterization Report," Report No. K89-72U(R), Kaman Science Corp., Colorado Springs, CO, Aug. 4, 1989.

The major source which DOES contain Export Controlled Information.

D.H. Killpatrick, "Report on the Properties of Beryllium," prepared by RDA Logicon for MODIL, Oak Ridge National Laboratory, Purchase Order 90X-SE860V, May 1990.

"WARNING—This document contains technical data whose export (including transmission to non-resident aliens) is restricted by the Arms Export Controls Act (22 USC 2751 et seq) or the Export Administration Act of 1979, as amended (50 USC 2401 et seq).

Violations of these export laws are subject to criminal penalties."

A Supplier of Beryllium.

Brush Wellman, Beryllium/Mining Division, 14710 W. Portage River S. Rd., Elmore, Ohio 43416, (419) 862-4205. http://www.brushwellman.com/www/homepage.html

APPENDIX B

Beryllium O-50 Material Properties

In October 1997, the authors intended for appendices A and B to contain material properties for Beryllium I-70 and Beryllium O-50. However, after a review of our sources for these properties, we realized that the major contributing source was export controlled.

After discussions with our management and export control officers, we decided in March 1998 to remove the table of beryllium material properties. Instead, we will list the sources of the properties for your reference.

Beryllium sources that are NOT export controlled.

Contained CTE vs. temperature data for Beryllium O-50

Swenson, "HIP beryllium: Thermal expansivity from 4 to 300 K and heat capacity from 1 to 108K," Journal of Applied Physics, 70(6), Sept. 1991.

Contained Poisson's ratio and Elastic Modulus vs. temperature data for Beryllium I-70 J. Focht and D. Caldwell, "Beryllium Materials Characterization Report," Report No. K89-72U(R), Kaman Science Corp., Colorado Springs, CO, Aug. 4, 1989.

The major source which DOES contain Export Controlled Information.

D.H. Killpatrick, "Report on the Properties of Beryllium," prepared by RDA Logicon for MODIL, Oak Ridge National Laboratory, Purchase Order 90X-SE860V, May 1990.

"WARNING—This document contains technical data whose export (including transmission to non-resident aliens) is restricted by the Arms Export Controls Act (22 USC 2751 et seq) or the Export Administration Act of 1979, as amended (50 USC 2401 et seq).

Violations of these export laws are subject to criminal penalties."

A Supplier of Beryllium.

Brush Wellman, Beryllium/Mining Division, 14710 W. Portage River S. Rd., Elmore, Ohio 43416, (419) 862-4205. http://www.brushwellman.com/www/homepage.html

APPENDIX C

Pure Nickel Material Properties

This appendix contains material properties for pure nickel.

<u>Properties</u>. Listed in the following charts are mass density, thermal properties (specific heat, thermal conductivity), and mechanical properties (CTE, modulus of elasticity, Poisson's ratio, and material strength). When available, properties are given over the temperature range of interest for the NGST, from 30 to 294 K.

Average CTE values. To assist structural analysts, we calculated average CTE values for the different materials, where possible, for a temperature drop from room temperature down to the NGST's operating temperature range. We numerically integrated the CTE curve to get thermal strain and then divided by the change in temperature to get an average CTE from 294 to 30 K. If available, these average CTE values are shown below the CTE plots for the various mirror materials.

<u>Caution</u>. The listed material strengths are often denoted as being average, typical values. When a telescope project matures, we advise that A-Basis properties be used instead. A-Basis values represent the value at which at least 99 percent of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95 percent.¹⁹

<u>Special notations by the data</u>. If a text notation appears next to a value, *calc*, indicates that the value was calculated from other data in the table, *int*, means that the value was linearly interpolated, and *assume* indicates that the density was assumed to be relatively constant versus temperature. All other values represent data that was measured in a laboratory.

Material: **Pure Nickel**

SUPPLIER:

Thomas Register of American Manufacturers listed 33 "Nickel: Pure" suppliers, downloaded 11-15-96 from WWW at http://www.thomasregister.com:8000/index.html

BASIS (as defined in "Metallic Materials and Elements for Aerospace Vehicle Structures", MIL-HDBK-5G, Department of Defense, November 1994, pp 1-8 to 1-9.):

S-Basis properties = the minimum value specified by the governing industry specification or federal or military standards for the material.

A-Basis properties = at least 99% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

B-Basis properties = at least 90% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

Typical properties = <u>average values</u> with no statistical assurance associated with them.

MATERIAL PROPERTIES: 15-Nov-96

Dire	ction =		-				i					
1	Basis =	Typical	Typical	Typical	Typical.	Typical.		Typical	Typical	Typical		
	Type =		Ultimate	Yield	Electic	Paissanta	Minneriald		-	•		-
Tempe	rature	Density	Strength	Strength	Elastic <u>Modulus</u>	Poisson's <u>Ratio</u>	Microyield Strength	CTE	Thermal Conductivity	Specific <u>Heat</u>	Radiative Absorptivity	Radiative Emmissivity
1		rho	UTS	YTS	E	mu	_ _		k	Ср	alpha	epsilon
(C)	(°K)	(kg/m^3)	(MPa)	(MPa)	(GPa)	(—)		(per · K)	(W/m-K)	(J/kg-K)		
-253 C	20 ° k	II I			214.2					5.2		
-249 C		Assumed 8913	ł					8.64E-6	860	10.5		
-240 C		Assumed 8913			214.2			8.79E-6	657.6	16.7		
-224 C	49 H	1			214.2			int. 9.17E-6		62.8		
-212 C		Assumed 8913						9.46E-6	257.2	105		
-184 C		Assumed 8913						1.01E-5	173.1	209		
-173 C		Assumed 8913						int. 1.03E-5	164	230		
-156 C	117 °F	II I						1.05E-5	138.5			
-143 C	130 °F	i I						1.08E-5				
-129 C		Assumed 8913			206.8			1.10E-5		335		
-73 C		Assumed 8913						1.12E-5	108.9	387		
-45 C	228 K	19	i				ŀ	1.15E-5	1			
-33 C	240 K	13			197			int. 1.19E-5		418		
21 °C	294 °K	II II	689.5	344.7	197	0.287L, 0.281T		1.35 E- 5	88.96	460		
1455 C	1728 k							 				

FABRICATION:

Maximum = parts up to TBD diameter and TBD thick. Minimum = somewhere in the ballpark of TBD.

REFERENCES:

• CTE (except 294K), k (except 100K), E.

• rho, CTE at 294K, YTS, UTS.

Cryogenic Material Data Handbook, AFML-TDR-64-280. (Information copied for me by ED25/Henry Lee) Rich Edwards, "Typical Mechanical Properties of Electroformed Nickel", Electroformed Nickel, Inc., Huntsville, AL, 205-461-1998,

• k at 100K.

• Cp

· Poisson's ratio

TPRC Series Data, 1 page graph on specific heat of nickel, given to me by ED65 / Bill Till,

For Ni 200: Anon., "Material Properties Manual", Rockwell International: Rocketdyne Div., Materials Engineering & Tech., Vol IIA, 4th Ed., 1-31-87.

CTE of PURE NICKEL

The CTE is a calculated value, derived by taking the derivative of the measured thermal strain plot with respect to temperature.

Pure Nickel CTE vs. Temperature

Likewise, the test specimen's thermal strain from point T1 to point T2 can be calculated by integrating the CTE curve. This strain can then be divided by the change in temperature (T1–T2) to get an *average* CTE that can be used by analysts to simply their thermal strain calculations for other structural configurations.

For a bulk temperature drop from 294 °K to 60 °K, the average CTE=11.23 E-6 per °K; and from 294 °K to 30 °K, the average CTE=11.01 E-6 per °K.

Material: Pure Nickel

SUPPLIER:

Thomas Register of American Manufacturers listed 33 "Nickel: Pure" suppliers, downloaded 11-15-96 from WWW at http://www.thomasregister.com:8000/index.html

BASIS (as defined in "Metallic Materials and Elements for Aerospace Vehicle Structures", MIL-HDBK-5G, Department of Defense, November 1994, pp 1-8 to 1-9.):

S-Basis properties = the minimum value specified by the governing industry specification or federal or military standards for the material.

A-Basis properties = at least 99% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

B-Basis properties = at least 90% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

Typical properties = average values with no statistical assurance associated with them.

FIGURES OF MERIT: 15-No	v-96
-------------------------	------

Direction	=					
Basis	=]	Typical	Typical	Typical		
		Strength	Strength	Deflection	Thermal	Thermal
Туре	=	Driven	Driven	Driven	Deform.	Deform.
· ·		Specific	Specific	Specific	Steady-state	Transient
Temperature		<u>Strength</u>	<u>Strength</u>	Stiffness	<u>Distortion</u>	Distortion
	ı	UTS /rho	YTS / rho	E/rho	CTE/k	CTE-rho-Cp/k
(°C) (°k)	(kJ/kg)	(kJ/kg)	(MJ/kg)	(cm/MW)	E-6(sec/cm^2-K)
	°K			·		
	°K				1.00	0.09
	°K			24.0	1.34	0.20
	°K					
	∘K				3.68	- · · · ·
	°K				5.83	
-173 °C 100					6.25	
-156 °C 117	- 11				7.58	
-143 °C 130	- 11				ļ	:
-129 °C 144				23.2	1	
-73 °C 200	- 11				10.28	35.48
-45 °C 228	- 11				11.08	
-33 °C 240	- 11					
21 °C 294	- 11	77.4	38.7	22.1	15.18	62.22
1455 °C 1728	°K				L	
		^	^	^	^	۸
		high	high	high	near zero	near zero
		is good	is good	is good	is good	is good

APPENDIX D

Electrodeposited Nickel Material Properties

This appendix contains material properties for electrodeposited nickel.

<u>Properties</u>. Listed in the following charts are mass density, thermal properties (specific heat, thermal conductivity), and mechanical properties (CTE, modulus of elasticity, Poisson's ratio, and material strength). When available, properties are given over the temperature range of interest for the NGST, from 30 to 294 K.

Average CTE values. To assist structural analysts, we calculated average CTE values for the different materials, where possible, for a temperature drop from room temperature down to the NGST's operating temperature range. We numerically integrated the CTE curve to get thermal strain and then divided by the change in temperature to get an average CTE from 294 to 30 K. If available, these average CTE values are shown below the CTE plots for the various mirror materials.

<u>Caution</u>. The listed material strengths are often denoted as being average, typical values. When a telescope project matures, we advise that A-Basis properties be used instead. A-Basis values represent the value at which at least 99 percent of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95 percent.¹⁹

<u>Special notations by the data</u>. If a text notation appears next to a value, *calc*, indicates that the value was calculated from other data in the table, *int*, means that the value was linearly interpolated, and *assume* indicates that the density was assumed to be relatively constant versus temperature. All other values represent data that was measured in a laboratory.

MATERIAL PROPERTIES: Structural & Thermal.

NASA MSFC. PD21 / Paul L. Luz

Material: <u>Electrodeposited Nickel (EdNi)</u>

SUPPLIER: N/A

BASIS (as defined in "Metallic Materials and Elements for Aerospace Vehicle Structures", MIL-HDBK-5G, Department of Defense, November 1994, pp 1-8 to 1-9.):

S-Basis properties = the minimum value specified by the governing industry specification or federal or military standards for the material.

A-Basis properties = at least 99% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

B-Basis properties = at least 90% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

<u>Typical</u> properties = <u>average values</u> with no statistical assurance associated with them.

MATERIAL PI	ROPERTIES	:	22-Nov-96									
Direction =												
Basis =	Typical	Exp. Min.	Exp. Min.	Typical	Typical		Typical	Typical	Typical			Exp. Min. as-deposited
Type =		As-Deposited Ultimate	As-Deposited Yield	Elastic	Poisson's	Microyleld	CTE	Thermal Conductivity	Specific <u>Heat</u>	Radiative Absorptivity	Radiative Emmissivity	Compressive Strength
Temperature	Density rho	Strength UTS	<u>Strength</u> YTS	<u>Modulus</u> F	Ratio mu	<u>Strength</u>	215	k	Ср	alpha	epsilon	
(C) (K)	(kg/m^3)	(MPa)	(MPa)	(GPa)	()		(per ·K)	(W/m-K)	(J/kg-K)	<u>-</u>		(MPa)
243 C 30 K			***************************************					605	30			
-228 C 45 K	l							380	40			
-213 C 60 K]]							295	55			
-195 C 78 K		855	483					200	75			459
-173 C 100 K		814	476					170	90			452
-151 C 122 K		772	469					145	105			448
-129 C 144 °K	1	738	455			'		130	120			441 434
-107 C 166 K	II 1	717	448					120	130			428
-84 C 189 K	II I	690	441					110	140 150			421
-62 C 211 K	11	669	434					100	160			417
-40 C 233 K	N P	655	428					90	170			410
-18 C 255 K	16 1	641	421				İ	85 05				403
5 C 278 K	41 1	634	414					85	175			a
22 °C 295 °K	8854	614	414	180	0.264		1.47E-5	83.04	180			400
1435 C 1708 K												
												L

FABRICATION:

Maximum = parts up to <u>TBD</u> diameter and <u>TBD</u> thick. Minimum = somewhere in the ballpark of <u>TBD</u>.

REFERENCES:

- At NASA/MSFC, EB52 produces electrolytic nickel with the Barrett process from sulfate nickel (11-22-96).
- Anon., "Material Properties Manual", Rockwell International: Rocketdyne Div., Materials Engineering & Tech., Vol IIA, 4th Ed., 1-31-87.

Material: <u>Electrodeposited Nickel (EdNi)</u>

SUPPLIER:

N/A

BASIS (as defined in "Metallic Materials and Elements for Aerospace Vehicle Structures", MIL-HDBK-5G, Department of Defense, November 1994, pp 1-8 to 1-9.):

S-Basis properties = the minimum value specified by the governing industry specification or federal or military standards for the material.

A-Basis properties = at least 99% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

B-Basis properties = at least 90% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

Typical properties = <u>average values</u> with no statistical assurance associated with them.

FIGURES	OF MERIT:	22-Nov-96

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22-1104-30			
Direction =					
Basis =	Exp. Min.	Exp. Min.	Typical.		
	Strength	Strength	Deflection	Thermal	Thermal
Type =	Driven	Driven	Driven	Deform.	Deform.
	Specific	Specific	Specific	Steady-state	Transient
Temperature	<u>Strength</u>	<u>Strength</u>	Stiffness	<u>Distortion</u>	Distortion
	UTS/rho	YTS/rho	E/rho	CTE/k	CTE-rho-Cp/k
(°C) (°K)	(kJ/kg)	(kJ/kg)	(MJ/kg)	(cm/MW)	E-6(sec/cm^2-K)
-243 °C 30 K					
-228 C 45 K					
-213 C 60 K					
-195 C 78 K					
-173 C 100 K					
-151 °C 122 K					
-129 C 144 K					
-107 C 166 K			ļ		
-84 C 189 K					
-62 C 211 K					
-40 C 233 K					
-18 C 255 K					
5 C 278 K					
22 C 295 K	69.3	46.8	20.3	17.70	28.21
1435 C 1708 K					
	^	۸	^	۸	٨
	high	high	high	near zero	near zero
	is good	is good	is good	is good	is good

APPENDIX E

CVD Silicon Carbide™ Material Properties

This appendix contains material properties for CVD Silicon Carbide™.

<u>Properties</u>. Listed in the following charts are mass density, thermal properties (specific heat, thermal conductivity), and mechanical properties (CTE, modulus of elasticity, Poisson's ratio, and material strength). When available, properties are given over the temperature range of interest for the NGST, from 30 to 294 K.

Average CTE values. To assist structural analysts, we calculated average CTE values for the different materials, where possible, for a temperature drop from room temperature down to the NGST's operating temperature range. We numerically integrated the CTE curve to get thermal strain and then divided by the change in temperature to get an average CTE from 294 to 30 K. If available, these average CTE values are shown below the CTE plots for the various mirror materials.

<u>Caution</u>. The listed material strengths are often denoted as being average, typical values. When a telescope project matures, we advise that A-Basis properties be used instead. A-Basis values represent the value at which at least 99 percent of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95 percent.¹⁹

<u>Special notations by the data</u>. If a text notation appears next to a value, *calc*, indicates that the value was calculated from other data in the table, *int*, means that the value was linearly interpolated, and *assume* indicates that the density was assumed to be relatively constant versus temperature. All other values represent data that was measured in a laboratory.

Morton International WWW = http://www.mortoncvd.com/

Material: CVD Silicon Carbide™

SUPPLIER: Morton Advanced Materials 185 New Boston Street

tel: (617) 933-9243

contact = Lee Burns at (617) 937-9102

Woburn, MA 01801-6203 fax: (617) 933-5142

BASIS (as defined in "Metallic Materials and Elements for Aerospace Vehicle Structures", MIL-HDBK-5G, Department of Defense, November 1994, pp 1-8 to 1-9.);

S-Basis properties = the minimum value specified by the governing industry specification or federal or military standards for the material.

A-Basis properties = at least 99% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

B-Basis properties = at least 90% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

Typical properties = average values with no statistical assurance associated with them.

MATERIAL PROPERTIES: 1-Jul-97

Direction =											
Basis =	Typical		Typical	Typical	Typical		Typical	Typical	Typical		
			4-point flexural	4-point							
Type =			strength	flexure							
		Ultimate	Yield	Elastic	Poisson's	Microyield		Thermal	Specific	Radiative	Radiative
Temperature	<u>Density</u>	Strength	Strength	Modulus	Ratio	Strength	CTE	Conductivity	<u>Heat</u>	<u>Absorptivity</u>	Emmissivity
	rho	UTS	YTS	E	mu			k	Ср	alpha	epsilon
(°C) (°K)	(kg/m^3)	(MPa)	(MPa)	(GPa)	(—)		(per °K)	(W/m-K)	(J/kg-K)		
-273 °C 0 °K											
-150 °C 123 °K	calc. 3202							360	146		
-140 °C 133 °K	int. 3206		460				4.00E-7	396	175		
-100 °C 173 °K	calc. 3223		465				8.00E-7	485	301		
0 °C 273 °K	calc. 3223		470	460			1.90E-6	333	574		
21 °C 294 °K	3210		470	461	0.21		2.20E-6	300	640		
100 ℃ 373 °K	calc. 3329						2.90E-6	272	817		
200 °C 473 °K	calc. 3180		480	457			3.70E-6	221	952		
300 °C 573 °K	calc. 3226						4.10E-6	192	1044		
400 °C 673 °K	calc. 3192						4.40E-6	157	1093		
500 °C 773 °K			500	450			4.60E-6	137	1134		
700 °C 973 °K			515	440			4.90E-6	110	1189		
1000 °C 1273 °K	calc. 3282		540	435			5.00E-6	78	1251		
1200 ℃ 1473 °K	calc. 3243		555	422			5.10E-6	63	1295		
1500 ℃ 1773 °K			575	415				48	1355		

FABRICATION: Maximum = parts up to 60" (1.5m) diameter and 1" (25mm) thick.

Minimum = somewhere in the ballpark of 1-2 mm (dependent on diameter of substrate, curvature, surface finish, etc.).

REFERENCES:

- (1) Anon., "CVD Silicon Carbide^{IM"}, Material specification SC-001, Morton Advanced Materials, Woburn, MA, October 1996.
- (2) Anon., "CVD Silicon Carbide^{TM"}, CVD Materials Technical Bulletin #996, Revision 1, Morton Advanced Materials, Woburn, MA, September 1996.
- (3) http://www.nashville.net/~ceramics/morton/cvdsic.html, August 8, 1996. Verified existing properties and was able to add more properties at different temperatures.
- (4) Cp, k, CTE, E, Strength from measurements at Morton Advanced Materials, University of Dayton Research Institute, Thermophysical Properties Research Laboratory at Purdue University, and a number of other commercial and university laboratories (see ref 2, page 2).

CTE of CVD™ SILICON CARBIDE

The CTE is a calculated value, derived by taking the derivative of the measured thermal strain plot with respect to temperature.

Likewise, the test specimen's thermal strain from point T1 to point T2 can be calculated by integrating the CTE curve. This strain can then be divided by the change in temperature (T1–T2) to get an *average* CTE that can be used by analysts to simply their thermal strain calculations for other structural configurations.

The average CTE for CVD Silicon Carbide™ during the NGST temperature drop from 294 °K to 30 °K could not be calculated because we have data from a CTE curve that only goes down to 133 °K.

Material FIGURES OF MERIT: Structural & Thermal.

NASA MSFC. PD21 / Paul L. Luz

Material: CVD Silicon Carbide ™

SUPPLIER: Morton Advanced Materials

tel: (617) 933-9243 185 New Boston Street contact = Lee Burns at (617) 937-9102

Woburn, MA 01801-6203 fax: (617) 933-5142 Morton International WWW = http://www.mortoncvd.com/

BASIS (as defined in "Metallic Materials and Elements for Aerospace Vehicle Structures", MIL-HDBK-5G, Department of Defense, November 1994, pp 1-8 to 1-9.):

S-Basis properties = the minimum value specified by the governing industry specification or federal or military standards for the material.

A-Basis properties = at least 99% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

B-Basis properties = at least 90% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

Typical properties = average values with no statistical assurance associated with them.

FIGURES OF MERIT: 1-Jul-97

Dire	ction =					
[Basis =		Typical	Typical.		
		Strength	Strength	Deflection	Thermal	Thermal
	Type =	Driven	Driven	Driven	Deform.	Deform.
1		Specific	Specific	Specific	Steady-state	Transient
Tempe	rature	Strength	Strength	<u>Stiffness</u>	Distortion	<u>Distortion</u>
1		UTS/rho	YTS/rho	E/rho	CTE/k	CTE-rho-Cp/k
(°C)	(°K)	(kJ/kg)	(kJ/kg)	(MJ/kg)	(cm/MW)	E-6(sec/cm^2-K)
-273 °C	0 °K					
-150 °C	123 °K					
-140 °C	133 °K		143.5		0.10	0.06
-100 °C	173 °K		144.3		0.16	0.16
0 °C	273 ºK		145.8	142.7	0.57	1.06
21 °C	294 °K		146.4	143.6		1.51
100 °C	373 °K				1.07	2.90
200 °C	473 °K		150.9	143.7	1.67	5.07
300 °C	573 °K				2.14	7.19
400 °C	673 °K				2.80	9.78
500 °C	773 °K				3.36	
700 °C	973 °K				4.45	
1000 °C	1273 °K		164.6	132.6	6.41	26.32
1200 °C	1473 °K		171.1	130.1	8.10	34.00
1500 °C	1773 °K					
		^	۸	۸	۸	۸
		high	high	high	near zero	near zero
		is good	is good	is good	is good	is good

APPENDIX F

Fused Silica Glass Material Properties

This appendix contains material properties for fused silica glass.

<u>Properties</u>. Listed in the following charts are mass density, thermal properties (specific heat, thermal conductivity), and mechanical properties (CTE, modulus of elasticity, Poisson's ratio, and material strength). When available, properties are given over the temperature range of interest for the NGST, from 30 to 294 K.

Average CTE values. To assist structural analysts, we calculated average CTE values for the different materials, where possible, for a temperature drop from room temperature down to the NGST's operating temperature range. We numerically integrated the CTE curve to get thermal strain and then divided by the change in temperature to get an average CTE from 294 to 30 K. If available, these average CTE values are shown below the CTE plots for the various mirror materials.

<u>Caution</u>. The listed material strengths are often denoted as being average, typical values. When a telescope project matures, we advise that A-Basis properties be used instead. A-Basis values represent the value at which at least 99 percent of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95 percent.¹⁹

<u>Special notations by the data</u>. If a text notation appears next to a value, *calc*, indicates that the value was calculated from other data in the table, *int*, means that the value was linearly interpolated, and *assume* indicates that the density was assumed to be relatively constant versus temperature. All other values represent data that was measured in a laboratory.

Material: <u>Fused Silica—Silicon Dioxide, Polycrystalline.</u>

SUPPLIER:

N/A

BASIS (as defined in "Metallic Materials and Elements for Aerospace Vehicle Structures", MIL-HDBK-5G, Department of Defense, November 1994, pp 1-8 to 1-9.):

S-Basis properties = the minimum value specified by the governing industry specification or federal or military standards for the material.

A-Basis properties = at least 99% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

B-Basis properties = at least 90% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

<u>Typical</u> properties = <u>average values</u> with no statistical assurance associated with them.

MATERIAL PROPERTIES:	MA	TERIA	I PROF	PERTIES
----------------------	----	-------	--------	---------

1-Jun-92

Direction =											
Basis =	Typical			Typical	Typical		Typical	Typical	Typical		
Type =	<i>Density</i> rho	Ultimate <i>Strength</i> UTS	Yield <i>Strength</i> YTS	Elastic <i>Modulus</i> E	Poisson's <i>Ratio</i> mu	Microyield <u>Strength</u>	CIE	Thermal <i>Conductivity</i> k	Specific <i>Heat</i> Cp	Radiative <i>Absorptivity</i> alpha	Radiative Emmissivity epsilon
(°C) (°K)	(kg/m^3)	(MPa)	(MPa)	(GPa)	(—)		(per ⁻K)	(W/m-K)	(J/kg-K)	агрпа	epsilon
-273 °C 0 °K -223 °C 50 °K -173 °C 100 K -123 °C 150 °K -73 °C 200 °K -23 °C 250 °K 0 °C 273 °K 21 °C 294 °K 27 °C 300 °K	2200			72	0.244		5.50 E -7	0.69 1.14 1.38	418.655 544.252 661.475 745		

FABRICATION:

Maximum = parts up to <u>TBD</u> diameter and <u>TBD</u> thick. Minimum = somewhere in the ballpark of <u>TBD</u>.

REFERENCES:

- rho, CTE, Cp, E, Poisson'r ratio, Y.S. Tououkian, "Thermophysical Properties of High Temperature Solids".
- k
 Incropera and DeWitt, Fundamentals of heat and Mass Transfer, Third Edition, 1990, Appendix A, p A8.
- Doubled-checked 294K props. Dibble, M.A. (ed.), "material Selection", Machine Design: 1992 Basics of Design Engineering Reference Volume, Vol. 64, No. 12, June 1992, p 969.

Material: Fused Silica—Silicon Dioxide, Polycrystalline.

SUPPLIER: N/A/

BASIS (as defined in "Metallic Materials and Elements for Aerospace Vehicle Structures", MIL-HDBK-5G, Department of Defense, November 1994, pp 1-8 to 1-9.):

S-Basis properties = the minimum value specified by the governing industry specification or federal or military standards for the material.

A-Basis properties = at least 99% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

B-Basis properties = at least 90% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

Typical properties = average values with no statistical assurance associated with them.

	FIGURE	S OF	MERIT:	1-Jun-92			•
ı	Direc	ction =					
ı	E	Basis =			Typical		
1			Strength	Strength	Deflection	Thermal	Thermal
-	-	Type =	Driven	Driven	Driven	Deform.	Deform.
1		´' [Specific	Specific	Specific	Steady-State	Transient
- 1	Temper	ature	Strenath	Strenath	Stiffness	Distortion	Distortion
	,		UTS/rho	YTS/rho	E/rho	CTE/k	CTE-rho-Cp/k
	(°C)	(°K)	(kJ/kg)	(kJ/kg)	(MJ/kg)	(cm/MW)	E-6(sec/cm^2-K)
	-273 °C	0 %Κ		-			
	-223 °C	50 °K					
	-173 °C	100 °K					
1	-123 °C	150 °K					
1	-73 °C	200 °K					
	-23 °C	250 °K					
	0 °C	273 °K					
	21 °C	294 °K			32.7	39.86	65.32
	27 °C	300 °K					
		0 ºK					
		0 ºK					
		0 ºK					
		0 ºK					
		0 ºK					
		0 ºK		^	^	<u> </u>	^
			high	high	high	near zero	near zero
			is good	is good	is good	is good	is good

APPENDIX G

Fused Quartz Glass Material Properties

This appendix contains material properties for fused quartz glass.

<u>Properties</u>. Listed in the following charts are mass density, thermal properties (specific heat, thermal conductivity), and mechanical properties (CTE, modulus of elasticity, Poisson's ratio, and material strength). When available, properties are given over the temperature range of interest for the NGST, from 30 to 294 K.

Average CTE values. To assist structural analysts, we calculated average CTE values for the different materials, where possible, for a temperature drop from room temperature down to the NGST's operating temperature range. We numerically integrated the CTE curve to get thermal strain and then divided by the change in temperature to get an average CTE from 294 to 30 K. If available, these average CTE values are shown below the CTE plots for the various mirror materials.

<u>Caution</u>. The listed material strengths are often denoted as being average, typical values. When a telescope project matures, we advise that A-Basis properties be used instead. A-Basis values represent the value at which at least 99 percent of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95 percent. ¹⁹

<u>Special notations by the data</u>. If a text notation appears next to a value, *calc*, indicates that the value was calculated from other data in the table, *int*, means that the value was linearly interpolated, and *assume* indicates that the density was assumed to be relatively constant versus temperature. All other values represent data that was measured in a laboratory.

MATERIAL PROPERTIES: Structural & Thermal.

NASA MSFC. PD21 / Paul L. Luz

Material: Fused Quartz, GE Type 214 — Silicon Dioxide, Crystalline Silica (From Sand or Rock).

SUPPLIER:

General Electric

tel = ?

General Electric Quartz WWW = http://www.ge.com/quartz/catalog.htm

GE Willoughby Quartz Plant Willoughby, OH

fax = ?

Fused Quartz WWW = http://www.users.fast.net/~wa3key/gedata.html

e-mail = quartz@lighting.ge.com

BASIS (as defined in "Metallic Materials and Elements for Aerospace Vehicle Structures", MIL-HDBK-5G, Department of Defense, November 1994, pp 1-8 to 1-9.):

S-Basis properties = the minimum value specified by the governing industry specification or federal or military standards for the material.

A-Basis properties = at least 99% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

B-Basis properties = at least 90% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

<u>Typical</u> properties = <u>average values</u> with no statistical assurance associated with them.

MATERIAL PROPERTIES:

7-May-97

Direction =												
Basis =	Typical		Typical	Typical	Typical		Typical	Typical	Typical			Typical
			Design Tensile									Design
Type =			Strength					.				
		Ultimate	Yield	Elastic	Poisson's	Microyield	CTE	Thermal	Specific	Radiative Absorptivity	Radiative Emmissivity	Compressive Strength
Temperature	<u>Density</u> rho	<u>Strength</u> UTS	<u>Strength</u> YTS	Modulus E	Ratio mu	Strength	<u>CTE</u>	Conductivity k	<u>Heat</u> Cp	alpha	epsilon	Strength
(·C) (°K)	(kg/m^3)	(MPa)	(MPa)	(GPa)	(—)		(per K)	(W/m-K)	(J/kg-K)	-		MPa
-273 °C 0 °K		•	•									
-150 °C 123 °K								ļ				
-140 C 133 K												
-100 °C 173 °K 0 °C 273 °K												
21 °C 294 °K	2200		48.3	72.4	0.17		5.50E-7	1.4	670			1100
100 °C 373 °K			40.0	72.4	0.17		0.002 .					
200 C 473 K												Ĭ
300 C 573 °K												
400 °C 673 °K												
600 °C 873 °K												
800 C 1073 K 1000 C 1273 K												
1200 °C 1273 °K												1
1500 °C 1773 °K												1

FABRICATION:

Maximum = parts up to $\overline{18D}$ diameter and $\overline{18D}$ thick. Minimum = somewhere in the ballpark of $\overline{18D}$

REFERENCES:

• 294K props http://www.users.fast.net/~wa3key/gedata.html (Downloaded 5-7-97. Web page revision = August 6, 1996).

NASA MSFC. PD21 / Paul L. Luz

Material: Fused Quartz, GE Type 214—Silicon Dioxide, Crystalline Silica (From Sand or Rock).

SUPPLIER:

General Electric GE Willoughby Quartz Plant

Willoughby, OH

tel = ? toll-free sales = (800) 438-2100 fax = ? General Electric Quartz WWW = http://www.ge.com/quartz/catalog.htm Fused Quartz WWW = http://www.users.fast.net/~wa3key/gedata.html

e-mail = quartz@lighting.ge.com

BASIS (as defined in "Metallic Materials and Elements for Aerospace Vehicle Structures", MIL-HDBK-5G, Department of Defense, November 1994, pp 1-8 to 1-9.):

S-Basis properties = the minimum value specified by the governing industry specification or federal or military standards for the material.

A-Basis properties = at least 99% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

B-Basis properties = at least 90% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

Typical properties = average values with no statistical assurance associated with them.

FIGURES OF MERIT: 7-May-97

	Dire	ction =					
ſ		Basis =	-	Typical	Typical		
1			Strength	Strength	Deflection	Thermal	Thermal
١		Type =	Driven	Driven	Driven	Deform.	Deform.
1			Specific	Specific	Specific	Steady-state	Transient
١	Tempe	rature	Strength	Strength	Stiffness	Distortion	Distortion
1			UTS/rho	YTS/rho	E/rho	CTE/k	CTE-rho-Cp/k
L	(°C)	(°K)	(kJ/kg)	(kJ/kg)	(MJ/kg)	(cm/MW)	E-6(sec/cm^2-K)
1	-273 °C	0 ºK					
1	-150 °C	123 ºK					
ı	-140 °C	133 °K					
1	-100 °C	173 °K					
ı	0 °C	273 °K					
ı	21 °C	294 °K		22.0	32.9	39.29	57.91
١	100 °C	373 °K					
1	200 °C	473 °K					
ı	300 °C	573 °K					
ı	400 °C	673 °K					
ı	600 °C	873 °K					
1	800 °C	1073 °K					
1	1000 °C	1273 °K					
1	1200 °C	1473 °K					
ŀ	1500 °C	1773 °K	W. P.				
I			^	^	۸	۸	^
1			high	hìgh	high	near zero	near zero
L			is good	is good	is good	is good	is good

APPENDIX H

ULE 7971 Material Properties

This appendix contains material properties for ULE 7971.

<u>Properties</u>. Listed in the following charts are mass density, thermal properties (specific heat, thermal conductivity), and mechanical properties (CTE, modulus of elasticity, Poisson's ratio, and material strength). When available, properties are given over the temperature range of interest for the NGST, from 30 to 294 K.

Average CTE values. To assist structural analysts, we calculated average CTE values for the different materials, where possible, for a temperature drop from room temperature down to the NGST's operating temperature range. We numerically integrated the CTE curve to get thermal strain and then divided by the change in temperature to get an average CTE from 294 to 30 K. If available, these average CTE values are shown below the CTE plots for the various mirror materials.

<u>Caution</u>. The listed material strengths are often denoted as being average, typical values. When a telescope project matures, we advise that A-Basis properties be used instead. A-Basis values represent the value at which at least 99 percent of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95 percent.¹⁹

<u>Special notations by the data</u>. If a text notation appears next to a value, *calc*. indicates that the value was calculated from other data in the table, *int*. means that the value was linearly interpolated, and *assume* indicates that the density was assumed to be relatively constant versus temperature. All other values represent data that was measured in a laboratory.

Material: ULE™—Corning's Code 7971 Ultra Low Expansion Titanium Silicate Glass

SUPPLIER:

Corning Incorporated Advanced Materials Business

HP-CP-08

Corning, NY 14831

Sales = (607) 974-7440. Customer service = (607) 974-7597.

Fax = (607) 974-7210.

WWW = http://www.corning.com/

BASIS (as defined in "Metallic Materials and Elements for Aerospace Vehicle Structures", MIL-HDBK-5G, Department of Defense, November 1994, pp 1-8 to 1-9.):

S-Basis properties = the minimum value specified by the governing industry specification or federal or military standards for the material.

A-Basis properties = at least 99% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

B-Basis properties = at least 90% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

Typical properties = average values with no statistical assurance associated with them.

MATERIAL	PROPERTIES:	5-Jul-96

Dire	ction =										•	
E	Basis =	Typical		Typical	Typical	Typical		Typical	Typical	Typical		
	Type =						į					
Tempe	rature	<i>Density</i> rho	Ultimate <u>Strength</u> UTS	Yield <i>Strength</i> YTS	Elastic <u>Modulus</u> E	Poisson's <i>Ratio</i> mu	Microyield <i>Strength</i>	CTE	Thermal <i>Conductivity</i> k	Specific <i>Heat</i> Cp	Radiative <u>Absorptivity</u>	Radiative Emmissivity
(⁻ C)	(∃K)	(kg/m^3)	(MPa)	(MPa)	(GPa)	(—)		(per ºK)	(W/m-K)	(J/kg-K)	alpha	epsilon
-243 °C	30 °K									<u>`</u>		
-228 C	45 K											
-213 C	60 K											
-200 °C	73 K				64	0.158						
-173 °C -150 °C	100 K 123 K											
-100 C	173 K											
-75 C	198 K		•					-2.70E-7				
-60 C	213 K	İ				İ		-2.70E-7	1			
-50 °C	223 K				66			-1.80E-7	1.3			
-25 °C	248 K							-1.00E-7	1.5			
0 °C	273 °K	i						-3.00E-8				
21 °C	294 °K											
25 C	298 K	2210	49.8		67.6	0.17		2.00E-8	1.31	767		
1000 C	1273 K					J						

FABRICATION:

Maximum = monolithic solids up to 10 m diameter and TBD thick.

Minimum = somewhere in the ballpark of a few centimeters diameter and TBD thick.

REFERENCES:

• Anonymous, "Zero Expansion Glass ULE^{IM"}, Corning Incorporated, Corning, NY 14831, dated March 1996.

Material FIGURES OF MERIT: Structural & Thermal.

NASA MSFC. PD21 / Paul L. Luz

Material: <u>ULE™ - Corning's Code 7971 Ultra Low Expansion Titanium Silicate Glass.</u>

SUPPLIER:

Corning Incorporated

Advanced Materials Business

HP-CP-08

Corning, NY 14831

Sales = (607) 974-7440.

Customer service = (607) 974-7597.

Fax = (607) 974-7210.

WWW = http://www.corning.com/

BASIS (as defined in "Metallic Materials and Elements for Aerospace Vehicle Structures", MIL-HDBK-5G, Department of Defense, November 1994, pp 1-8 to 1-9.):

S-Basis properties = the minimum value specified by the governing industry specification or federal or military standards for the material.

A-Basis properties = at least 99% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

B-Basis properties = at least 90% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

Typical properties = average values with no statistical assurance associated with them.

FIGURES OF MERIT:

5-J	ıl-96
-----	-------

Direction =					
Basis =		Typical	Typical		
	Strength	Strength	Deflection	Thermal	Thermal
Type =	Driven	Driven	Driven	Deform.	Deform.
	Specific	Specific	Specific	Steady-state	Transient
Temperature	<u>Strength</u>	<u>Strength</u>	<u>Stiffness</u>	<u>Distortion</u>	<u>Distortion</u>
	UTS/rho	YTS/rho	E/rho	CTE/k	CTE-rho-Cp/k
(°C) (°K)	(kJ/kg)	(kJ/kg)	(MJ / kg)	(cm/MW)	E-6(sec/cm^2-K)
-243 °C 30 °K					
-228 C 45 K					
-213 °C 60 °K	H				
-200 °C 73 °K	li .				
-173 C 100 K					
-150 °C 123 °K					
-100 C 173 K	ii				
-75 C 198 K	H				
-60 °C 213 °K	B				
-50 C 223 K	E!			-13.85	
-25 C 248 K	ii				
0 C 273 K	ll l				
21 C 294 K	II				
25 C 298 K			30.6	1.53	2.59
1000 C 1273 K				L	
	^	^	۸	^	^
	high	high	high	near zero	near zero
	is good	is good	is good	is good	is good

APPENDIX I

Zerodur Material Properties

This appendix contains material properties for Zerodur.

<u>Properties</u>. Listed in the following charts are mass density, thermal properties (specific heat, thermal conductivity), and mechanical properties (CTE, modulus of elasticity, Poisson's ratio, and material strength). When available, properties are given over the temperature range of interest for the NGST, from 30 to 294 K.

Average CTE values. To assist structural analysts, we calculated average CTE values for the different materials, where possible, for a temperature drop from room temperature down to the NGST's operating temperature range. We numerically integrated the CTE curve to get thermal strain and then divided by the change in temperature to get an average CTE from 294 to 30 K. If available, these average CTE values are shown below the CTE plots for the various mirror materials.

<u>Caution</u>. The listed material strengths are often denoted as being average, typical values. When a telescope project matures, we advise that A-Basis properties be used instead. A-Basis values represent the value at which at least 99 percent of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95 percent.¹⁹

<u>Special notations by the data</u>. If a text notation appears next to a value, *calc*, indicates that the value was calculated from other data in the table, *int*, means that the value was linearly interpolated, and *assume* indicates that the density was assumed to be relatively constant versus temperature. All other values represent data that was measured in a laboratory.

NASA MSFC. PD21 / Paul L. Luz

Material: Glass Ceramics Zerodur

SUPPLIER:

Schott Glass Technologies, Inc.

400 York Avenue Durvea, PA 18642 Contact = Bob Chamberlain (717) 457-7485 Ext. 305

(717) 457-6960

BASIS (as defined in "Metallic Materials and Elements for Aerospace Vehicle Structures", MIL-HDBK-5G, Department of Defense, November 1994, pp 1-8 to 1-9.):

S-Basis properties = the minimum value specified by the governing industry specification or federal or military standards for the material.

A-Basis properties = at least 99% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

B-Basis properties = at least 90% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

Typical properties = average values with no statistical assurance associated with them.

MATERIAL PROPERTIES: 30-Jun-97

Direc	ction =											
Е	Basis =	Typical			Typical	Typical		Typical	Typical	Typical		
-	Type =		Ultimate	Yield	Elastic	Poisson's	Microyield		Thermal	Specific	Radiative	Radiative
Temper	rature	<u>Density</u>	<u>Strength</u>	Strength	<u>Modulus</u>	<u>Ratio</u>	Strength	CTE	Conductivity	<u>Hea</u> t	<u>Absorptivity</u>	<u>Emmissivity</u>
		rho	UTS	YTS	E	mu		(per K)	k	Ср	alpha	epsilon
(· C)	(ºK)	(kg/m^3)	(MPa)	(MPa)	(GPa)	(—)			(W/m-K)	(J/kg-K)		
-243 °C	30 °K	assumed 2530						about - 6.7E-7	0.2	about 50		
-228 °C	45 °K							int 5.8E-7	0.4	about 100		
-213 C	60 °K							int 4.9E-7	0.6			
-198 °C	75 ³K							about - 4.0E-7	0.7			
-173 °C	100 °K							about - 2.0E-7	0.9			
-123 °C	150 °K				88.3			int 1.4E-7				
-103 °C	170 °K				88.65			int 1.2E-7				
-83 C	190 K				89			about - 1.0E-7		about 500		
-63 °C	210 °K				89.3			about - 1.0E-7				
-43 °C	230 K				89.6			int 9.8E-8				
-23 °C	250 [∂] K				89.85			int 9.5E-8				
-3 · C	270 K				90			int 9.3E-8				
0 °C	273 K				90.05			int 9.3E-8				
21 °C	294 °K	2530			90.3	0.243		-9.0E-8	1.46	800		
600 °C	873 K								I			

FABRICATION:

Maximum = parts up to 8.2 m diameter and <u>TBD</u> thick. Minimum = somewhere in the ballpark of <u>TBD</u>.

REFERENCES:

· Anon., "Zerodur - Precision from glass ceramics", Product brochure 10041, Schott Glass Technologies, Inc., Duryea, PA, date 10-91?

CTE of Glass Ceramics Zerodur

The CTE is a calculated value, derived by taking the derivative of the measured thermal strain plot with respect to temperature.

Likewise, the test specimen's thermal strain from point T1 to point T2 can be calculated by integrating the CTE curve. This strain can then be divided by the change in temperature (T1–T2) to get an *average* CTE that can be used by analysts to simply their thermal strain calculations for other structural configurations.

For NGST's temperature drop from 294 °K to 30 °K, the average CTE=0.208 E-6 per °K.

NASA MSFC. PD21 / Paul L. Luz

Material: Glass Ceramics Zerodur

SUPPLIER: Schott Glass Technologies, Inc.

400 York Avenue

Duryea, PA 18642

Contact = Bob Chamberlain (717) 457-7485 Ext. 305

(717) 457-6960

BASIS (as defined in "Metallic Materials and Elements for Aerospace Vehicle Structures", MIL-HDBK-5G, Department of Defense, November 1994, pp 1-8 to 1-9.):

S-Basis properties = the minimum value specified by the governing industry specification or federal or military standards for the material.

A-Basis properties = at least 99% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

B-Basis properties = at least 90% of the population of values is expected to equal or exceed the material property allowable, with a statistical confidence of 95%.

Typical properties = average values with no statistical assurance associated with them.

FIGURES OF MERIT:	30-Jun-97
Direction -	-

Dire	ction =					
Basis =			0	Typical		
		Strength	Strength	Deflection	Thermal	Thermal
1	Type =		Driven	Driven	Deform.	Deform.
	i '' 1		Specific	Specific	Steady-state	Transient
Tempe	Temperature		<u>Strength</u>	<u>Stiffness</u>	<u>Distortion</u>	<u>Distortion</u>
1			YTS/rho	E/rho	CTE/k	CTE-rho-Cp/k
(°C)	(°K)	(kJ/kg)	(kJ/kg)	(MJ/kg)	(cm/MW)	E-6(sec/cm^2-K)
-243 °C	30 ∘K				-335.00	-42.38
-228 C	45 K				-145.00	
-213 °C	60 K	ŠI.			-81.67	
-198 °C	75 K				-57.14	
-173 °C	100 K	II:			-22.22	
-123 C	150 °K					
-103 °C	170 K	1				
-83 °C	190 K	R				
-63 C	210 K	ll .				
-43 C	230 K	II .				
-23 C	250 K	K				
-3 C	270 K					
0 C	273 K	U		05.7		10.40
21 C	294 K	ia .		35.7	-6.16	-12.48
600 C	873 K			^		^
1				high	near zero	near zero
		high is good	high is good	is good	is good	is good
		is good	is you	is you	is good	13 good

APPROVAL

MIRROR MATERIAL PROPERTIES COMPILED FOR PRELIMINARY DESIGN OF THE NEXT GENERATION TELESCOPE (30 TO 294 KELVIN)

P.L. Luz and T. Rice

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

A. ROTH

DIRECTOR, PROGRAM DEVELOPMENT DIRECTORATE

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operation and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

		_ 			
1. AGENCY USE ONLY (Leave Blank)	2. REPORT DATE May 1998	4.	TYPE AND DATES COVERED Technical Memorandum		
4. TITLE AND SUBTITLE		5.	FUNDING NUMBERS		
Mirror Material Properties Next Generation Space Te					
6. AUTHORS					
P.L. Luz and T. Rice					
7. PERFORMING ORGANIZATION NAME	ES(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER		
George C. Marshall Space	e Flight Center				
Marshall Space Flight Center, Alabama 35812			M-869		
9. SPONSORING/MONITORING AGENC	Y NAME(S) AND ADDRESS(ES)	10.	SPONSORING/MONITORING AGENCY REPORT NUMBER		
National Aeronautics and	Space Administration	}			
Washington, DC 20546–0001			ASA/TM-1998-208181		
11. SUPPLEMENTARY NOTES		 			
Prepared by Preliminary Design Office, Program Development Directorate					
12a. DISTRIBUTION/AVAILABILITY STA	TEMENT	128	b. DISTRIBUTION CODE		
Unclassified-Unlimited					
Subject category 23					
Nonstandard Distribution					
This technical memorandum reports on the mirror material properties that were compiled by NASA Marshall Space Flight Center (MSFC) from April 1996 to June 1997 for preliminary design of the Next Generation Space Telescope (NGST) study. The NGST study began in February 1996, when the Program Development Directorate at NASA MSFC studied the feasibility of the NGST and developed the prephase A program for it. After finishing some initial studies and concepts development work on the NGST, MFSC's Program Development Directorate handed this work to the Observatory Projects Office at MSFC and then to NASA Goddard Space Flight Center (GSFC). This technical memorandum was written by MSFC's Preliminary Design Office and Materials and Processes Laboratory for the NGST Optical Telescope Assembly (OTA) team, in support of NASA GSFC. It contains material properties for 9 mirror substrate materials, using information from at least 6 industrial suppliers, 16 textbooks, 44 technical papers, and 130 technical abstracts.					
14. SUBJECT TERMS	15. NUMBER OF PAGES 44				
mirror materials, optical materials, mirror substrates, mirror material selectic structural design, thermal design, telescopes, optics.			16. PRICE CODE		
structural design, thermal des	sign, telescopes, opties.		A03		
17. SECURITY CLASSIFICATION 1. OF REPORT	8. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICAT OF ABSTRACT	ION 20. LIMITATION OF ABSTRACT		

Unclassified

Unclassified

Unclassified