

Engineering Cyber-Physical Systems

GPIO/LED

GPIO Structure

Equivalent Circuit for Raspberry Pi GPIO pins

GPIO Library Documentation

Documentation for the GPIO Library

https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/

Importing the Library

import RPi.GPIO as GPIO

Pin Numbering

import RPi.GPIO as GPIO

Pin Numbering

GPIO Pin Numbering Scheme

- 1. Used in the GPIO.setmode() Method
 - GPIO.BOARD follows Header Numbering
 - GPIO.BCM follows the Broadcom Chip Numbering

BOARD <								
BCM	BCM 2 3 4 17 27 22 10 9 11 5 6 13	wPi 8 9 7 0 2 3 12 13 14 21 22 23	3.3V P SDA P SCL P4 GND P17 P27 P22 3.3V P10 P9 P11 GND ID SD P5 P6	RPI1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31	2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32	5V 5V GND P TX P RX P18 GND P23 P24 GND P25 P8 P// ID SC GND P12 GND	wPi 15 16 1 4 5 6 10 11	BCM 14 15 18 23 24 25 8 7
	19 26	24 25	P19 P26 GND	33 35 37 39	34 36 38 40	P16 P20 P21	27 28 29	16 20 21

Referencing WiringPi Numbering (more commonly used for applications written in C)

Pin Numbering

One or the other ...

GPIO.setmode(GPIO.BOARD)
GPIO.setmode(GPIO.BCM)

Input

Pin Input Setup

One Pin

Multiple Pins

```
GPIO.setup(11, GPIO.IN)

pin_list = [11,12]
GPIO.setup(pin_list, GPIO.IN)
```

Pin Input Read

```
pin_state = GPIO.input(11)
if pin_state == 1:
    print("Pin High")
else:
    print("Pin Low")
```

Output

Pin Output Setup

One Pin

Multiple Pins

```
GPIO.setup(channel, GPIO.OUT)

pin_list = [11,12]
GPIO.setup(pin_list, GPIO.OUT)
```


Pin Output Write

```
# State can be 0 / GPIO.LOW / False or 1 / GPIO.HIGH / True.
GPIO.output(11, 1)
```

PWM

Pin Output Setup

```
frequency_hz = 100
pwm_out = GPIO.PWM(12, frequency_hz)
```


Start/Stop PWM

0 >= duty cycle >= 1

pwm_out.start(1) pwm_out.stop(0)

Changing Duty Cycle

pwm_out.ChangeDutyCycle(0.5)

LED

Standard LED

Red Emitting Colour

Features:

- High intensity
 Standard T-1 3/4 diameter package
 General purpose leads
- Reliable and rugged

Package Dimensions:

Specification Table

Chip Material	Lens Colour	Source Colour	Part Number	
AlGaAs	Diffused	Red	MV5754A	

Notes:

- 1. Tolerance is ±0.25 mm (0.01*) unless otherwise noted
- 2. Protruded resin under flange is 1 mm (0.04") maximum
- 3. Lead spacing is measured where the leads emerge from the package

www.farnell.com www.newark.com

Standard LED

Red Emitting Colour

Absolute Maximum Ratings at T_a = 25°C

Parameter	Maximum	Unit	
Power Dissipation	80	mW	
Peak Forward Current (1/10 Duty Cycle, 0.1 ms Pulse Width)	100	mA	
Continuous Forward Current	20		
Derating Linear From 50°C	0.4	mA / °C	
Reverse Voltage	5	V	
Operating Temperature Range	-25°C to +80°C		
Storage Temperature Range	-40°C to +100°C		
Lead Soldering Temperature (4 mm (0.157) Inches from Body)	260°C for 5 s		

Electrical Optical Characteristics at T_a = 25°C

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Test Condition
Luminous Intensity	I _v		40		mod	I _f = 20 mA (Note 1)
Viewing Angle	20 _{1/2}		25		Deg	(Note 2)
Peak Emission Wavelength	λp		640		nm	I _f = 20 mA
Dominant Wavelength	λd		635		nm	I _f = 20 mA (Note 3)
Spectral Line Half-Width	Δλ		25		nm	I _f = 20 mA
Forward Voltage	V _f		2	2.5	V	I _f = 20 mA
Reverse Current	IR	-	-	100	μА	V _R = 5 V

Notes

- Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve
- 2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity
- The dominant wavelength (\(\lambda\d)\) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the colour of the device

Standard LED

Red Emitting Colour

Typical Characteristics

The part of the pa

www.element14.com www.farnell.com www.newark.com

