Planarity

Problem: Let G be a graph. Can G be drawn in such a manner so that no two edges intersect?

Example 1. Any drawing of K_5 or $K_{3,3}$ have (at least) 2 edges which cross (Proof to come)

Definition 1. A graph G is said to be planer if it can be drawn in \mathbb{R}^2 so that no two edges cross. Such a drawing is called a <u>plane drawing</u>. The graph associated with a plane drawing is usually referred to as a plane graph.

Remark.

- 1. Any subgraph of a planer graph is planer.
- 2. Every plane graph is planar.

is a planer but not plane.

Our aim is to determine condition which ensures that a graph G is planar. Let G be a plane graph. Consider the set S obtained from \mathbb{R}^2 by deleting (the vertices and edges) of G. We observe that S is the disjoint union of finitely many subsets $F_1, F_2, \ldots F_l$ of \mathbb{R}^2 having the following two properties:

- 1. Any two points of F_i can be joined by a curve not crossing G.
- 2. Any curve in \mathbb{R}^2 which joins a point of F_i to one of F_j , $i \neq j$, must cross G

Definition 2. Let G be a plane graph. The sets $F_1, \ldots F_l$ described above are called the <u>faces</u> of G.

Example 2. Faces

Remark. One face is always unbounded, with the remaining faces all bounded.

Definition 3. Let F be a face of a plane graph G. The boundary of F consists of a finite # of vertices and edges of G

The length of a closed walk around the boundary of F is called the <u>degree of F</u>, usually denoted deg F

Example 2. (Cont.)

1. $\deg F_1 = \deg F_2 = 5$ for graph a)

2. deg $F_2 = 2$ the closed walk is $x \to y \to x$ for graph b)

3. $\deg F_1 = \deg F_2 = 3$ $\deg F_3 = 6$ for the graph below

Theorem 1. (Euler's Formula, 1780) Let G be a connected plane graph. If G has n nodes and f faces then

$$n - m + f = 2$$

proof of **Theorem 1** requires a couple of preliminarily lemmas.

Lemma 2. Let G be a plane graph. G contains a cycle if and only if the number of faces of $G \ge 2$.

Proof. \Rightarrow Let C be a cycle of G. Let x and y be in the interior and exterior of C, respectively, then any curve in \mathbb{R}^2 connecting x and y must cross C, have cross G

Choosing x, y not lying on G, we deduce x and y belong to different faces of G.

 \Leftarrow The absence of a cycle, G is a forest. On induction on the number of components of G shows G has only one (unbounded) face.

Lemma 3. Let e be an edge of a plane graph G.

- 1. If e is a bridge then it lies on boundary of exactly one face.
- 2. If e is not a bridge then it lies on the boundary of exactly two faces of G
- *Proof.* 1. Let H_1 and H_2 be the components of $G \setminus e$. The edge e lies in face F_1 of H_1 , as well as a face F_2 of H_2 . The intersetion $F_1 \cap F_2$ contains a unique face F_o of G. e lies on the boundary of F_o and is the unique face of G.

2. Let C be a cycle containing e. The edge e lies on the boundary of one face lying in the interior of C and one face lying in the exterior of C. Thus, e lies on the boundary of at least 2 faces of G.

The fact the faces are disjoint can be used to show that e lies on the boundary of at most 1 face lying in the interor of C, and one face lying in the exterior of C. Then e lies in the boundary of at most 2 faces.

Corollary. (Handshaking Lemma for Planar Graphs) If G is a plane graph of size m then

$$2m = \sum_{faces\ F} \deg F$$

Proof. Each edge e of G contributes 2 to the sum on the right:

If e is a bridge lying on the face F_o then it contributes 2 to deg F_o and 0 to the remaining deg F.

If e is not a bridge then it contributes 1 to the degree of two distinct faces of G, and 0 to the remaining.

Proof. Proof of Euler's Formula

We proved by induction on # of faces of G. In the case f=1. Lemma 2 asserts G is a forest, where G is a tree.

Thus, m = n - 1, and hence

$$n - m + f = n - (n - 1) + 1 = 2$$

Assume the result is true for connected plane graph H having f faces, and let G have f+1 faces, say $F_1, F_2, \ldots, F_l, F_{l+1}$. If n = |G|, m = e(G) then we are required to show

$$n - m + (f+1) = 2$$

Since $f + 1 \ge 2$, G contains a cycle C (**Lemma 2**). Fix an edge e lying on C. Since e is not a bridge of G. **Lemma 2** ensures that e lies on the boundary of 2 distince faces of G, say F_l and F_{l+1} .

Construst the subgraph $H = G \setminus e$. We note H is a connected plane graph of order n and size m-1. Furthermore, the number of faces of H is f, denoted each of the faces $F_1, f_2, \ldots F_{l-1}$ of G occur on faces of H. Since e does not appear in the boundary of any of these faces.

The remaining faces of H is obtained by joining F_l and F_{l+1} along the edge e.

$$\hat{F}_l = F_l \cup F_{l+1} \cup e$$

Since H has f faces, the inducation hypotheses allows in G to conclude that

$$2 = n - (m - 1) + f = n - m + (f + 1)$$

as required

Corollary. Let G be a connected planer graph. Each plane drawing of G has the same number of faces, namely 2 + m - n

Euler's formula can be used to obtain a necessary condition for a simple connected graph to be planar.

Definition 4. Let G be a graph, If G contains a cycle then the **girth** gr(G) is defined as the length of the smallest cycle in G. If G is a forest then we set $gr(G) = \infty$

Example 3. Girth

Remark. If G is simple then $gr(G) \geq 3$

Theorem 4. Let G be a connected simple planar graph. If G has order n and size m then

$$m \le \begin{cases} n-1 & \text{if } gr(G) = \infty\\ \frac{gr(G)}{gr(G)-2}(n-2) & \text{if } gr(G) \text{ is finite} \end{cases}$$
 (1)

Proof. If $gr(G) = \infty$ then G is a tree, hence m = n - 1. If gr(G) is finite then G has ≥ 2 faces. In this case, the boundary of each face of G contains a cycle, hence

$$\deg(F) \ge gr(G)$$

for each face F of G. Therfore, if f = # of faces of G then the handshaking lemma of planer graphs yields

$$2m = \sum_{\text{faces } F} \deg F \ge \sum gr(G) = gr(G)f$$

From Euler's formula, f = 2 + m - n, substitues f_i in the preceding yields

$$2m \ge gr(G)(2+m-n)$$

Solving for m yields the requied identity

Example 4.

1. Does there exist a simple connected planar graph G of order 12 and size 40?

Solution 1. Suppose such a graph G exists, Note that G cannot be a tree, hence gr(G) is finite. Thus, **Theorem 3** asserts

$$40 \ge \frac{gr(G)}{gr(G) - 2}(12 - 2)$$

Solving for gr(G)

$$gr(G) \le \frac{8}{3} < 3$$

This contradicts that $gr(G) \geq 3$ No such G exists.

2. Let G be a planar graph of size 14 and girth 5. What can one say about n = |G|

Solution 2. From Theorem 2

$$14 \le \frac{5}{5-2}(n-2)$$

solving f n yields $n \ge 52/5$ some n is an integer $n \ge 11$.

Theorem 4 are a number of interesting corollories

Corollary. K_5 and $K_{3,3}$ are non-planar

Proof. K_5 has order 5, size 10 and girth 3. Since

$$\frac{3}{3-2}(5-2) = 9 \le 10$$

Theorem 3 asserts K_5 is non-planar.

 $K_{3,3}$ has nodes 6, size 9 and girth 4.

$$\frac{4}{4-2}(6-2) = 8 \le 9$$

Theorem 3 asserts that $K_{3,3}$ is non-planar.

Exercise Show that Peterson is non-planar

Corollary. Let G be a simple connected planar graph.

- 1. if G has order $n \ge 3$ then e(G) < 3n 6
- 2. Furthermore, if G contains no triangles then $e(G) \leq 2n 4$

Proof. if G is a tree then $e(G) = n - 1 \le 3n - 6 \le 2n - 4$

Suppose G has finite girth $gr(G) \ge 3$. Observe the function $f(x) = \frac{x}{x-2}$ is decreasing on $[3,\infty](f'(x) = \frac{-2}{(x-2)^2})$ which proves 1.)

For 2.) note the hypothesis implies $gr(G) \geq 4$ when

$$e(G) \le \frac{gr(G)}{gr(G) - 2}(n - 2) \le \frac{4}{4 - 2} = 2n - 4$$

$$\frac{gr(G)}{gr(G) - 2} \le \frac{3}{3 - 2} = 3$$

Thus, from Theorem 3,

$$e(G) \le \frac{gr(G)}{gr(G) - 2}(n - 2) \le 3(n - 2) = 3n - 6$$

Remark. The preceding two results are often used as tools for non-planarity, they are weakter then the full theorem 4.

Corollary. Every simple planar graph G contains a vertex of degree at most 5 (i.e $\delta(G) \leq 5$)

Proof. WLOG G can eb assumed to be connected and has at least 7 vertices. If each vertex has degree ≥ 2 , the handshaking lemma would imply

$$2m = \Sigma \deg v \ge 6n, m = e(G), n = |G|$$

hence $m \geq 3n$

On the other hand, G is planar, so the preceding corollary yields $m \leq 3n-6$. Corollary with the above inequality, we get

$$3n < m < 3n - 6$$

Example 5. K_n is non-planar of $n \geq 7$. Each vertex of K_n has degree $n-1 \geq 6$

Example 6. The condition of theorem 4 (as well as it corollories) is only necessary for planarity, not sufficient. For example, the following graph G is non-planar, as it contains a copy of $K_{3,3}$

On the other hand, |G| = 8, e(G) = 12 and gr(G) = 4

$$\frac{4}{4-2}(8-2) = 12$$

Remark. Euler's formula can be extended to disconnected plane graphs using induction on the # of components. If G is a planar graph of order n size m with f faces and k components then

$$n - m + f = k + 1$$

There are also analogue for Theorem 3 and its corollories.

We have already observed that Theorem 3 and its corollories present many necessary conditions for a graph to be planar.

Definition 5. Let G and H be graphs. H is said to be a <u>subdivion</u> of G if the formal graph can be constructed from the latter by introduction a finite # of new vertices along existing edges.

Example 7.

c.) Each cycle graph C_n is a subdivision of C_1 . C_n can be obtained from C_1 by the addition of n-1 new vertices on the single edge of C_1

requires the addition of an extra edge to the latter

Remark.

- 1. The process of subdivion only introduces new vertices of degree 2
- 2. Note that if H is a subdivion of G then H has the same shape as G.

Definition 6. Two graphs G and H are said to be homeomorphism if they are both subdivision of a common graph.

Example 8.

- 1. If $n, m \ge 1$ then C_n is homeomorphism to C_m as both are subdivion of C_1 .
- 2. If $n, m \geq 2$ then P_n and P_m are homoeomorphism as both are subdivion of P_2

Remark.

- 1. G and H are homeomorphic if the latter can be obtained from the former by a finite sequence of following 2 operations:
 - (a) addition of new vertex along an existing edge.
 - (b) filling in of an existing verted of degree 2.

2. homeomorphic graphs have the same shape.

Theorem 5. (Kuratowski, 1930) A graph is planar if and only if it contains no subgraph homeomorphic to K_5 or $K_{3,3}$.

Example 9. The graph

an alternate characterization of non-planar graphs can be obtained using the notion of contradictions.

Definition 7. Let G and H be graphs. G is said to be <u>contractible to H</u> if H can be obtained from G by successivily contracting a finite number of edges.

Theorem 6. A graph G is planar if and only if it contains no subgraph which is contractible to K_5 or $K_{3,3}$.

Example 10. Peterson graph is contractible to K_5 .

Thus peterson is non-planar.

We have observed that K_5 and $K_{3,3}$ are non-planar. What happens if we consult other surface?

Example 11. Torous (Donut)

Definition 8. A non-planar graph G is said to be <u>toroidal</u> if it can be drawn on the torus so as no two edges cross.

Example 12. 1. K_5 is torodial

2. $K_{3,3}$ is torodial

Question: Is there analogous of Euler's Formula for the toros?

Theorem 7. Let G be a simple connected torodial graph of order n, size m and f faces, Then

$$n - m + f = 0$$

Furthermore,

$$m \le \frac{gr(G)}{gr(G) - 2}n$$

The proof of Theorem 7 is esentially the same as that of Theorem 1 (and to corollary Theorem 2). Furthermore, it is also analogus of Kuratowski - there are a finite # of graphs where subdivision cannot appear in torodial graphs.

More genrally, one can conceive a donut with g holes. Thus it is the 'same' thing as a sphere with g handles.

The number of holes (or handles) is called the genus of the surface.

Definition 9. A graph G is said to have genus g if G can be drawn on a surface of genus g with no edges crossing, but no drawing on a surface of genus g-1 exists. (i.e planar = genus g, torodial = genus g)

Theorem 8. Let G be a connected graph of genus g, order n, size m, and face f. Then

$$n - m + f = 2 - 2g$$

Furthermore, if G is simple of finite girth then

$$m \le \frac{gr(G)}{gr(G) - 2}(n + 2g - 2)$$

Corollary. Let G be a connected simple graph of genus g, order $n \geq 3$ and size m then,

$$m \le 3(n+2g-2)$$

$$m \le 2(n+2g-2)$$
 if no triangle present

Corollary. Let G be a connected simple graph of order $n \geq 4$ and size m. Then the genus g satisfies

$$g \ge \lceil \frac{m-3n}{6} + 1 \rceil$$

[x] = least integer greater than or equal to x

Proof. Solving the inequality $m \leq 3(n+2g-2)$ for g yields

$$\frac{m-3n}{6}+1 \le g$$

The result follows by nothing g is an integer

Definition 10. Let G be a graph. The <u>crossing number</u> cr(G) is the minimum # of crossing that can occur when G is drawn in the plane.

Example 13.

Theorem 9. The genus of the graph G is $\leq cr(G)$

Proof. Drawing the graph on the sphere. Suppose we have a crossing

Distribution of a handle allows a bridge with one edge can go under and the second edge go over, Then removing the crossing. Then the addition of cr(G) handles resusts in a surface of genus g on which G can be drawn with no edge crossing.

Dual Graphs

Definition 11. Let G be a planar graph. The <u>geometric dual</u> G^* of G is the graph constructed as follows:

- 1. denote each face of G, choose a point v^* . The v^* forms the vertex set $V(G^*)$
- 2. For each edge e of G, join the vertices v^* and w^* in the adjacent face by a curve e^* that crosses e and no other edge of G. The collection of e^* from the edge set $E(G^*)$

Example 14. Platonic Graphs

Graphs	Geometric Dual	
tetrahedron	tetrahedron	self-dual
cube	octahedron	
octahedron	cube	
dodecahedron	icosahedron	
icosahedron	dodecahedron	

Remark.

1. The contrustion of G^* depends on the plane drawing of G. For example, the grphs G in example 13 (i) and (ii) are isomorphic, but their geometric duals are not. One has vertex of degree 5 but the other has no such vertex.

G G^* vertices faces edges edge

vertex degree face degree

handshaking for vertices handshaking for faces bridges loops

deletion of edge contraction of edge

2. G^* is planar and connected.

Lemma 9. Let G be a connected planar graph of order n, size m, and face f. If G^* is a geometric dual then the nodes n^* size m^* and number of faces f^* satisfies

$$n^* = f, m^* = m, f^* = f$$

Proof. By construction, $n^* = f$ and $m^* = m$. Since both G and G^* are connected plane graphs

$$n - m + f = 2 = n^* - m^* + f^*$$

we get $f^* = n$

Theorem 10. Let G be a connected planar graph. Then G^{**} is isomorphic to G.

Proof. Observe each face of G^* contains at least one vertex of G. The fact $n = f^*$ ensure that there is exactly one in each face. Thus, one use V(G) as the vertex set of G^{**} . Doing so, E(G) can be used as the edge set of G^{**} , where $G^{**} = G$ as required.

The following table shows some of the relations between a plane graph G and its dual. The last is a special case of a more general result.

Theorem 11. Let G be a connected planar graph and G^* a geometric dual of G, A subset of

E(G) forms a cycle of G if and only if the corresponding subset of $E(G^*)$ is a cutset of G^* .

Remark. If e is an edge of G then there is a unique edge e^* of G^* which crosses a

Proof. (Sketch) \Rightarrow Each cycle C of G partitions $V(G^*)$:

 $V(G^*) = S_1 \cup S_2$ where S_1 (or S_2) is the set of vertices lying inside (respectively outside) C.

Both S_1 and S_2 are non-empty, since G has faces lying in the interior and exterior of C, Furthermore, any two vertices of S_1 (or S_2) is a connected by a path in G^* lying inside (respoutside) of C. On the other hand, any path connected a vertec of S_1 with a verted of S_2 must cross C. Hence, certain edge of G^* corresponding to one of C. Thus the set C^* of edges G^* corresponding to ones of C for a disconnecting set, the fact that end edges of C^* join one vertex of S_1 to one of S_2 ensure C^* is a cutset.

 \Leftarrow Suppost X^* is a cutset of G^* , say

$$G^* \setminus X^* = G_1^* \cup G_2^*$$

WLOG, assume G_2^* contains the unbounded vertex of G^* . If F denotes the of the faces of G correspong to the vertex of G^* then F is bounded, As the boundary of F must contain a cycle C. If X denotes the edges of G corresponding to X^* , we see $C \subseteq X$. If the was proper, C^* would be a proper subset of X^* which disconnects, contradicting the fact X^* is a cutset, Thus X = C, a cycle.

Corollary. Let G be a connected planar graph. A set of edges of G forms a cutset if and only if the corresponding edges of G^* forms a cycle.

Proof. By duality, applying the preceding Theorem to the case G^* , we get that $G^{**} = G$ since G is connected

Theorem 12. Let G be a connected planar graph G is bipartite if and only if G^* is eulerian. Proof.

$$G \text{ bipartite } \Leftrightarrow \begin{cases} \text{all cycles of } G \text{ have even length} \\ \text{all cutsets of } G^* \text{ have even size (corollary to theorem 6)} \\ G^* \text{ is a disjoint union of cycles} \\ G^* \text{ is eulerian} \end{cases}$$

$$(2)$$

Theorem 13. Let G be a connected planar graph. If G is 3-edge connected then G^* is simple (of order ≥ 3)

Definition 12. Let G be a graph. A graph G^* is said to be an <u>abstract dual</u> of G if there exists a one-one correspondence between the edge of G and the of G^* with the property that a subset of E(G) forms a cycle \leftrightarrow correspong subset of $E(G^*)$ forms a cutset

Example 15. If G is plane then its geometric dual G^* is an abstract dual (Theorem 11)

Theorem 14. If G^* is an abstract dual of G then G is an abstract dual of G^* . Abstract duals provide another characterization of planar graphs.

Theorem 15. A graph G is planar if and only if G has an abstract dual.

Proof. Suppose G has a abstract dual G^* . If $e \in E(G)$ has correspoing edge e^* then $G^* \setminus e^*$ is an abstract dual of $G \setminus e$. It follows that every subgraph of G has an abstract dual.

If G' is obtain from G by adding (resp deleting) a vertex of degree 2 along on existing edge then the graph $(G')^*$ obtained from G^* by the addition (resp deleting) of a multiple edge is an abstract dual of G'

As a result, if G admits an abstract dual and G' is homoeomorphic to G then G' admits an abstract dual.

We next observe that neither K_5 or $K_{3,3}$ admit abstract duals. One has $\lambda(K_{3,3})=3$ and $gr(K_{3,3})=4$. So if $K_{3,3}^*$ existed then $gr(K_{3,3})=3$ and $\lambda(K_{3,3}^*)=4$, The former ocndition ensure $K_{3,3}^*$ is simple, which the latter condition ensure $\delta(K_{3,3}^* \geq 4)$. Thus, $|K_{3,3}^*| \geq 5$ and so

$$e(K_{3,3}^*) = \frac{1}{2} \Sigma \deg v \ge \frac{1}{2} (5 \times 4) = 10$$

$$\leftrightarrow e(K_{3,3}^*) = e(K_{3,3}) = 9$$

For K_5 one has $\lambda(K_5) = 4$ and $gr(K_5) = 3$. So if K_5^* existed then $gr(K_5^*) = 4$ and $\lambda(K_5^* = 3)$. The former condition ensure that K_5^* is simple, while the latter ensure that $\delta(K_5^*) \geq 3$.

$$e(K_5^*) = e(K_5) = 10$$

The face $\delta(K_5^*) \ge 3$ follows $|K_5^*| \le 6$

Suppose G ensures an abstract dual in light of the preceding discussion, G contains no subgraph homoeomorphic to K_5 or $K_{3,3}$, so Kuratowski ensure G is planar.