Tingguang LI (李珽光)

Email: tgli0809@gmail.com | Tel: (86) 15502015923 | Homepage: https://teaganli.github.io/

RESEARCH INTERESTS

Reinforcement Learning, Multi-Agent Reinforcement Learning, Robotics, Embodied AI, Robot Learning, Game AI, Deep Learning, Machine Learning

EDUCATION BACKGROUND

The Chinese University of Hong Kong

Hong Kong SAR, China

Ph.D. in Electronic Engineering

Aug. 2016 – Aug. 2020

• Advisor: Prof. Max Qing-Hu Meng

Awardee of Hong Kong PhD Fellowship Scheme (HKPFS)

Stanford University

Palo Alto, CA, US

Visiting Student Researcher at Stanford AI Lab (SAIL)

Feb. 2019 – Aug. 2019

• Advisor: Prof. Jeannette Bohg and Prof. Wenzhen Yuan

Nanjing University

Nanjing, China

B.Eng. in Control and System Engineering

Sep. 2012 – Jun. 2016

• GPA: 90.8/100 Ranking: 1/43 National Undergraduate Scholarship

WORKING EXPERIENCE

Tencent, Robotics X, Senior Researcher (T10)

Sept. 2020 – Present

- Focus on MultiModal Large Model, physically simulated RL and Sim2Real transfer
- Built neural network driven humanoid animation and deploy 1st case in game industry
- Built RL-based agile control for quadruped robots and deployed on real robots
- Developed a large-scale distributed training framework for single & multi-agent RL

Amazon, Robotics Strategy & AI Team, Applied Scientist Intern

Advisor: Onkar Dabeer and Taewan Kim

Seattle, WA, US, Jun. 2020 – Sept. 2020

• Internship on self-supervised reinforcement learning and embedding learning

Tencent, AI Lab, Research Intern

Jun 2018 - Mar 2019

• Internship on hierarchical reinforcement learning on robot in-hand manipulation

RESEARCH PROJECTS

Multi-Modal Large Language-Vision-Motion Model for Robots Mar. 2023 – Present

- Create a large model with language, vision and motion for navigation and manipulation
- Combine language (Llama), vision and pretrained motion priors (VQ-VAE)
- Robots can follow human instruction and navigate in indoor environments

Physically Simulated Locomotion Control (Dynamics)

Jan. 2021 – Mar. 2023

Dec. 2019-June 2021

- Applied RL to learn low-level control policies for quadruped robots and humanoid robots by imitating motions from animals. Our model can achieve animal-level agility, and robust locomotion behaviors on challenging terrains in reality [video]
- Applied multi-agent RL to learn Chase Tag Game where two robots act as chaser and evader respectively, and demonstrated a high-level intelligence in real world [project]
- Our work has been awarded as Tencent Technology Breakthrough Award (2022)

Network-driven Interactive Humanoid Control (Kinematics)

- Created agile and responsive humanoid character that can perform highly dynamic movements under user's control, using Mixture of Expert model (PFNN, MANN, NSM)
- We build a complete pipeline including Motion Capture data collection, data retargeting, distributed model training and runtime deployment in Unreal engine

TLeague: a Large-scale Distributed Training Framework for Multi-agent RL

- Developed a framework for large-scale RL training which can be deployed in Kubernates clusters which supports running thousands of environments in parallel
- The framework increases the training speed for ~100 times for RL training

Embedding Learning for Self-supervised Reinforcement Learning Jun.2020-Sep.2020

- Studied self-supervised exploration that learns policies without a reward function
- Proposed a task-agnostic embedding that can adapt to multiple downstream tasks
- Embedding can significantly speed up the training process for downstream tasks

Hierarchical Reinforcement Learning for Manipulation

Jun. 2018 – Aug. 2019

- Learning to solve a Rubik's Cube (<u>link</u>): a hierarchical control scheme with low-level model-free reinforcement learning policy to learn actions of manipulating a Rubik's cube, and a high-level cube solver to calculate a trajectory to solve a Rubik's cube
- Learn to manipulate objects to challenging poses (<u>link</u>): a hybrid hierarchical control framework combining low-level motion primitive torque controllers to keep stable contacts and high-level model-free reinforcement learning to select controllers

SCHOLARSHIPS & AWARDS

Tencent TEG Technology Breakthrough Award	June. 2022
Tencent TEG Technology Breakthrough Award	June. 2020
Hong Kong Ph.D. Fellowship	Aug. 2016
Best Conference Paper Award Finalist of ROBIO 2017 (5/558)	Dec. 2017
ICRA 2017 Mobile Manipulation Challenge Finalists (5/93)	May 2017
Outstanding Student Award of CUHK (1%)	Oct. 2018
Best Undergraduate Thesis of Jiangsu Province (Top 1)	June 2016
National Undergraduate Scholarship (1%)	Oct. 2015
Outstanding Undergraduate Award of Nanjing University	May 2016
Outstanding Student of Nanjing University	April 2015

SELECTED PUBLICATIONS

- [1] Haojie Shi*, **Tingguang Li***, Qingxu Zhu, Jiapeng Sheng, Lei Han, Max Q.-H. Meng. An Efficient Model-Based Approach on Learning Agile Motor Skills without Reinforcement. Submitted to IEEE International Conference on Robotics and Automation (ICRA), 2024.
- [2] Chong Zhang, Jiapeng Sheng, **Tingguang Li**, et al. Learning Highly Dynamic Behaviors for Quadrupedal Robots. Submitted to IEEE International Conference on Robotics and Automation (ICRA), 2024.
- [3] Lei Han*, Qingxu Zhu*, Jiapeng Sheng*, Chong Zhang*, **Tingguang Li***, et al. Lifelike Agility and Play on Quadrupedal Robots using Reinforcement Learning and Generative Pre-trained Models. Submitted to Nature Machine Intelligence. [Project]
- [4] **Tingguang Li**, Yizheng Zhang, Chong Zhang, Qingxu Zhu, Jiapeng Sheng, Cheng Zhou, Lei Han. Learning Terrain-Adaptive Locomotion with Agile Behaviors by Imitating Animals. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023. [Paper][Video]
- [5] **Tingguang Li**, Danny Ho, Chenming Li, Delong Zhu, Chaoqun Wang, Max Q.-H. Meng. HouseExpo: A Large-scale 2D Indoor Layout Dataset for Learning-based Algorithms on Mobile Robots, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020. [Paper][Code][Video]
- [6] **Tingguang Li**, Krishnan Srinivasan, Max Q.-H. Meng, Wenzhen Yuan, Jeannette Bohg. Learning Hierarchical Control for Robust In-Hand Manipulation, IEEE International Conference on Robotics and Automation (ICRA), 2020. [Paper][Video]
- [7] **Tingguang Li**, Delong Zhu, Max Q.-H. Meng. A Hybrid 3DoF Pose Estimation Method Fusing Camera and Lidar Data, IEEE International Conference on Robotics and Biomimetics (ROBIO), 2017. (**Best Conference Paper Award Finalist**) [Paper] [Video]

- [8] **Tingguang Li,** Weitai Xi, Meng Fang, Jia Xu, Max Q.-H. Meng. Learning to Solve a Rubik's Cube Using a Dexterous Hand, IEEE International Conference on Robotics and Biomimetics (ROBIO), 2019. [Paper][Code][Video]
- [9] Delong Zhu*, **Tingguang Li***, Danny Ho*, Chaoqun Wang, Max Q.-H. Meng. Deep Reinforcement Learning Supervised Autonomous Exploration in Office Environments, IEEE International Conference on Robotics and Automation (ICRA), 2018. (* indicates equal contribution.) [Paper][Video]
- [10] Delong Zhu, **Tingguang Li**, Danny Ho, Tong Zhou, and Max Q.-H. Meng. A Novel OCR-RCNN for Elevator Button Recognition, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018. [Paper][Code][Video]
- [11] **Tingguang Li**, Jin Pan, Delong Zhu, Max Q.-H. Meng. Learning to Interrupt: A Hierarchical Deep Reinforcement Learning Framework for Efficient Exploration, IEEE International Conference on Robotics and Biomimetics (ROBIO), 2018. [Paper]
- [12] Jiankun Wang, **Tingguang Li**, Baopu Li, Max Q.-H. Meng. GMR-RRT*: Sampling-based Humanlike Path Planning Using Gaussian Mixture Regression, IEEE Transactions on Intelligent Vehicles, 2022.
- [13] Zhaoting Li, **Tingguang Li**, Jiankun Wang, Max Q.-H. Meng. Learning Robot Exploration Strategy with 4D Point-Clouds-like Information as Observations, IEEE Robotics and Automation Letters (RAL), 2021. [Paper]
- [14] Delong Zhu, Zhe Min, Tong Zhou, **Tingguang Li**, Max Q.-H. Meng. An Autonomous Eye-in-hand Robotic System for Elevator Button Operation Based on Deep Recognition Network, IEEE Transactions on Instrumentation & Measurement (TIM), 2020. [Paper]
- [15] Danny Ho, **Tingguang** Li, Max Q.-H. Meng. Bone Drilling Breakthrough Detection via Energy-based Signal, International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018. [Paper]
- [16] Jiankun Wang, Jianbang Liu, Baopu Li, **Tingguang Li**, Wenzheng Chi, Max Q.-Meng. Learning-based Fast Path Planning in Complex Environments, IEEE International Conference on Robotics and Biomimetics (ROBIO), 2021. [Paper]
- [17] Jin Pan, Xiaochun Mai, Chaoqun Wang, Zhe Min, Jiankun Wang, Hu Cheng, **Tingguang Li**, Erli Lyu, Li Liu, Max Q.-H. Meng. A Searching Space Constrained Partial to Full Registration Approach with Applications in Airport Trolley Deployment Robot, IEEE Sensor Journal, 2020. [Paper]
- [18] Tang, Yingtian, Jiangtao Liu, Cheng Zhou, **Tingguang Li**. Online Motion Style Transfer for Interactive Character Control. arXiv preprint arXiv:2203.16393 (2022).
- [19] Wang, Weiqiang, Xuefei Zhe, Huan Chen, Di Kang, **Tingguang Li**, Ruizhi Chen, and Linchao Bao. "NEURAL MARIONETTE: A Transformer-based Multi-action Human Motion Synthesis System." arXiv preprint arXiv:2209.13204 (2022).

BOOK CHAPTER

[1] **Tingguang Li**, "Learning hierarchical control for robust in-hand manipulation", *Tactile Sensing, Skill Learning and Robotic Dexterous Manipulation*, edited by Qiang Li, Shan Luo, Zhaopeng Chen, Chenguang Yang, Jianwei Zhang, Elsevier, 2022.

PATENTS

- [1] 一种基于室内四旋翼飞行器的激光雷达三维成像方法, CN105334518B
- [2] 一种应用于游戏人物动作智能生成的多风格学习技术, 2020110635CN-HK
- [3] 一种基于神经网络动作生成的变帧率技术, 2020110631CN-HK
- [4] 动作数据的生成方法、装置、电子设备及存储介质, 2020110633CN
- [5] 用于神经网络模型的矩阵向量运算方法、设备及存储介质, 2020110644CN
- [6] 一种应用于游戏人物躲掩体动作智能生成的技术, 2020110634CN-HK
- [7] 一种基于实例正则化的游戏人物动作多风格学习技术, 2021050340CN
- [8] 一种基于线性插值的游戏人物动作多风格生成技术, 2021050341CN
- [9] 一种多精度动作生成模型压缩技术, 2021110269CN
- [10] 一种基于轨迹线感知的四足机器人复杂地形动作生成, 2021110608CN
- [11] 一种利用强化学习算法为 UE4 中带有物理仿真的角色计算控制策略的方案, 2021090357CN
- [12] 一种基于动作捕捉数据为包含脊柱关节的机械狗的轨迹规划方法, 2021060026CN
- [13] 一种基于多帧率同步预测的变帧率动作生成方法, 2021120145CN

- [14] 一种基于时序卷积网络的多风格动作在线生成方法,2021120267CN
- [15] 一种通过历史动作矫正来解决四足机器人强化学习 s2r 的方法, 2021120517CN
- [16] 一种规范四足动物动捕数据起止落脚点的方法, 2022010181CN
- [17] 一种基于膨胀体检测的四足机器人运动数据自动修正方法, 2023050094CN