HOMEWORK 3

4) A OR (NOT (A) AND B) e' uguale a A XOR B

A B 0 0 0 1 1 0 1 1	4	DOT(A)	8 0/A	A OR (1AAB) 1 1 1
A B 0 0 4 1 0 4 1	A XOR	8	FALSE	

2) NOT (A) OR (NOT (A OR B)) = \overline{A}

000	1	AA18 O O O O O O O	AAC 0 0 0 0 0 1	1 0 0 0 0 1 1 0 1 Xvy	10101010	BV 1C 1 0 1 1 1 0 1 1	AA 7 000 1 0 1 1
			FALS	E			

PROPRIETA' DELL'AL	GEBRA BOOLEANA	
	AND form	OR form
· IDENTITY LAW	AA = A	0+A = A
· NULL LAW	0A=0	1+A = 1
· IDEMPOTENT LAW	AA=A	A+A = A
· INVERSE LAW	AÁ = O	N=Ä+A
· COMMUTATIVE LAW	AB=BA	A+B= B+A

(AB)C = A(BC)

· ASSOCIATIVE LAW

• DISTRIBUTIVE LAW A+BC = (A+B)(A+C) A(B+C) = AB+AC • ABSORPTION LAW A (A+B)=A A+B=A • DE MORGAN'S LAW $\overrightarrow{AB}=\overrightarrow{A+B}$ $\overrightarrow{A+B}=\overrightarrow{AB}$

(A+B)+C=A+(B+C)

A AND B

PARTE 2

