R para Ciência de Dados: Exploração e Visualização de Dados

Departamento de Estatística Instituto de Matemática e Estatística Universidade Federal da Bahia

Preparando o ambiente

Durante o curso

- Usaremos nas aulas: posit.cloud.
- Recomendamos instalar e usar R com versão pelo menos 4.1: cran.r-project.org.
- usaremos o framework tidyverse:
 - Instalação: install.packages("tidyverse")

Na sua casa

- IDE recomendadas: RStudio e VSCode.
 - Caso você queira usar o VSCode, instale a extensão da linguagem R: REditorSupport.
- Outras linguagens interessantes: python e julia.
 - python: linguagem interpretada de próposito geral, contemporânea do R, simples e fácil de aprender.
 - julia: linguagem interpretada para análise de dados, lançada em 2012, promete simplicidade e velocidade.

A linguagem R

A precursora da linguagem R: S.

- R é uma linguagem derivada do S.
- S foi desenvolvido em fortran por John Chambers em 1976 no Bell Labs.
- S foi desenvolvido para ser um ambiente de análise estatística.
- Filosofia do S: permitir que usuários possam analisar dados usando estatística com pouco conhecimento de programação.

História da linguagem R

- Em 1991, Ross Ihaka e Robert Gentleman criaram o R na Nova Zelândia.
- Em 1996, Ross e Robert liberam o R sob a licença "GNU General License", o que tornou o R um software livre.
- Em 1997, The Core Group é criado para melhorar e controlar o código fonte do R.

Motivos para usar R

- Constante melhoramento e atualização.
- Portabilidade (roda em praticamente todos os sistemas operacionais).
- Grande comunidade de desenvolvedores que adicionam novas capacidades ao R através de pacotes.
- Gráficos de maneira relativamente simples.
- Interatividade.
- Um grande comunidade de usuários (especialmente útil para resolução de problemas).

Onde estudar fora de aula?

Livros

- Nível cheguei agora aqui: zen do R.
- Nível Iniciante: R Tutorial na W3Schools.
- **Nível Iniciante:** Hands-On Programming with R.
- Nível Intermediário: R for Data Science.
- Nível Avançado: Advanced R.

Em pt-br

- Curso R: material.curso-r.com.
- ecoR: ecor.ib.usp.br.

O que você pode fazer quando estiver em apuros?

• consultar a documentação do R:

```
help(mean)
?mean
```

- Peça ajuda a um programador mais experiente.
- Consulte o pt.stackoverflow.com.
- Use ferramentas de busca como o google e duckduckgo.com.

```
log("G")
```

 Na ferramenta de busca, pesquise por Error in log("G"): non-numeric argument to mathematical function

Operações básicas

```
Soma
                                  Divisão
1 + 1
                                  3 / 2
## [1] 2
                                  ## [1] 1.5
Substração
                                  Potenciação
2 - 1
                                  2^3
## [1] 1
                                     [1] 8
                                  ##
Multiplicação
3 * 3
   [1] 9
##
```

Operações básicas Exercício

Qual o resultado das seguintes operações?

- 0.5.32 + 7.99
- **2** 5.55 10
- 3 3.33 * 5.12
- **4** 1 / 4.55
- **5** 5¹.23

Pacotes na linguagem R

- códigos criados pela comunidade
- disponibilizados principalmente na plataforma cran.r-project.org

instalação:

install.packages(pacman)

carregando pacotes

Pacotes precisam estar instalados

library(pacman)

Carregando pacotes com pacman

- Se os pacotes estão instalados: pacman carrega os pacotes
- Se os pacotes não estão instalados: pacman instala e depois carrega os pacotes
- Omite mensagens dos pacotes
- Pacote separados por vírgula

Funções na linguagem R

Função: é uma ação e tem os seguinte componentes na ordem:

- nome da função
- parênteses
- argumentos posicionais
- argumentos nomeados

```
nome da função parênteses argumentos posicionais argumentos nomeados parênteses nome_funcao ( valor1, valor2, nome1 = valor3, nome2 = valor4 )
```

example:

```
read_xlsx('dados/brutos/casas.xlsx', sheet=1)
```

Funções na linguagem R Exercício

- Obtenha ajuda para mean usando a função help.
- Calcule o logaritmo de 10 na base 3 usando a função log.
- Leia o conjunto de dados ENEM 2022 (cada pessoa tem sua cidade) usando a função read_xlsx do pacote readxl.

Os dados no R

- Tipo de dados: caracter (character), número real (double), número inteiro (integer), número complexo (complex) e lógico (logical).
- Estrutura de dados: atomic vector (a estrutura de dados mais básicA no R), matrix, array, list e data.frame (tibble no tidyverse).
- Estrutura de dados Homogênea: vector, matrix e array.
 - array é uma estrutura de dados multidimensional para armazenar sequências de matrizes (ou sequência de arrays). Para detalhes sobre array, consulte Arrays in R.
- Estrutura de dados Heterôgenea: list e data.frame (tibble no tidyverse).

Tipo de dados no R

```
Número inteiro

class(1L)

## [1] "integer"

Número real

class(1.2)

## [1] "numeric"

Número complexo

class(1 + 1i)
```

[1] "complex"

```
Número lógico ou valor booleano
class(TRUE)

## [1] "logical"
Caracter ou string
class("Gilberto")

## [1] "character"
```

Estrutura de dados homogênea

Vetor

- Agrupamento de valores de mesmo tipo em um único objeto.
- Criação de vetor:
 - c(...)
 - vector('<tipo de dados>', <comprimento do vetor>)
 - seq(from = a, to = b, by = c).

Vetor de caracteres

```
vetor_nomes <- c("Gilberto", "Sassi")
vetor_nomes

## [1] "Gilberto" "Sassi"

vetor_texto_vazio <- vector("character", 3)
vetor_texto_vazio

## [1] "" "" ""</pre>
```

Vetores

Vetor de números reais

```
vetor_numerico \leftarrow c(0.2, 1.35)
vetor_numerico
## [1] 0.20 1.35
vetor_vazio <- vector("double", 3)</pre>
vetor_vazio
## [1] 0 0 0
vetor_seq <- seq(from = 1, to = 3.5, by = 0.5)
vetor_seq
## [1] 1.0 1.5 2.0 2.5 3.0 3.5
```

Vetores

Vetor de números inteiros

```
vetor_inteiros <- c(1L, 2L)
vetor_inteiros

## [1] 1 2
vetor_inteiros_vazio <- vector("integer", 3)
vetor_inteiros_vazio</pre>
```

```
## [1] 0 0 0
```

Vetores

Vetor lógico

```
vetor_logico <- c(TRUE, FALSE)
vetor_logico
## [1] TRUE FALSE
vetor_logico_vazio <- vector("logical", 3)
vetor_logico_vazio</pre>
```

[1] FALSE FALSE FALSE

Estrutura de dados homogênea

Matriz

- Agrupamento de valores de mesmo tipo em um único objeto de dimensão 2.
- Criação de matriz:

```
matrix(..., nrow = <integer>, ncol = <integer>)
```

- cbind e rbind
- diag(<vector>)

Matriz de caracteres

```
matriz_texto <- matrix(c("a", "b", "c", "d"), nrow = 2)
matriz_texto</pre>
```

```
## [,1] [,2]
## [1,] "a" "c"
## [2,] "b" "d"
```

Matriz

Matriz de números reais

```
matriz_num_real <- diag(c(1.1, 2.3, 3.3))
matriz_num_real</pre>
```

```
## [,1] [,2] [,3]
## [1,] 1.1 0.0 0.0
## [2,] 0.0 2.3 0.0
## [3,] 0.0 0.0 3.3
```

Matriz

Matriz de inteiros

```
matriz_inteiros <- cbind(c(1L, 2L), c(3L, 4L), nrow = 2)
matriz_inteiros</pre>
```

```
## nrow
## [1,] 1 3 2
## [2,] 2 4 2
```

Matriz de valores lógicos

```
matriz_logica <- rbind(
  c(TRUE, FALSE),
  c(TRUE, TRUE)
)
matriz_logica</pre>
```

```
## [,1] [,2]
## [1,] TRUE FALSE
## [2,] TRUE TRUE
```

Matriz Exercício

Crie as seguintes matrizes e vetores:

Operações com vetores

Operações com vetores númericos (double, integer e complex).

- Operações básicas (operação, substração, multiplicação e divisão) realizada em cada elemento do vetor.
- Slicing: extrair parte de um vetor

Slicing

Selecionando todos os elementos entre o primeiro e o quinto.

```
letras <- c("a", "b", "c", "d", "e", "f", "g", "h", "i") letras[1:5]
```

```
## [1] "a" "b" "c" "d" "e"
```

Operações com vetores

Adição (vetores númericos)

```
vetor_1 <- 1:5
vetor_2 <- 6:10
vetor_1 - vetor_2</pre>
```

```
## [1] -5 -5 -5 -5 -5
```

Substração (vetores numéricos)

```
vetor_1 <- 1:5
vetor_2 <- 6:10
vetor_1 - vetor_2</pre>
```

```
## [1] -5 -5 -5 -5 -5
```

Operadores com vetores

Multiplicação (vetores numéricos)

```
vetor_1 <- 1:5
vetor_2 <- 6:10
vetor_1 * vetor_2</pre>
```

```
## [1] 6 14 24 36 50
```

Divisão (vetores numéricos)

```
vetor_1 <- 1:5
vetor_2 <- 6:10
vetor_1 / vetor_2</pre>
```

```
## [1] 0.1666667 0.2857143 0.3750000 0.4444444 0.5000000
```

Operações com vetores Exercício

Realize as seguintes operações envolvendo vetores:

$$(1 \ 2 \ 3) - (0,1 \ 0,05 \ 0,33)$$

$$(1 \ 2 \ 3) * (0,1 \ 0,05 \ 0,33)$$

 $(1 \ 2 \ 3) / (0,1 \ 0,05 \ 0,33)$

Operações com matrizes númericas (double, integer e complex).

- Operações básicas: adição, substração, multiplicação e divisão (realizadas em cada elemento das matrizes).
- Outras operações elementares:
 - Multiplicação de matrizes (vide multiplicação de matrizes): A %*% B
 - Inversão de matrizes (vide inversão de matrizes): solve(A)
 - Matriz transposta (vide matriz transposta): t(A)
 - Determinante (vide determinante de uma matriz): det(A)
 - Solução de sistema de equações lineares (vide sistema de equações lineares): solve(A, b)

Operadores com matrizes

Exemplo

Cada pessoa de uma equipe de quatro pessoas divide a administração de duas regiões (A e B) conforme as matrizes abaixo:

Postos de venda da região A

```
postos_regiao_a <- rbind(
  c(2, 4), # primeira linha
  c(1, 5) # segunda linha
)</pre>
```

Postos de venda da região B

```
postos_regiao_b <- cbind(
  c(23, 44), # primeira coluna
  c(19, 12) # segunda coluna
)</pre>
```

Soma de duas matrizes

Número total de postos de venda administrados por cada pessoa.

```
postos <- postos_regiao_a + postos_regiao_b
postos</pre>
```

```
## [,1] [,2]
## [1,] 25 23
## [2,] 45 17
```

Subtração de matrizes

Número de postos de venda da região A, conhecendo o total de número de postos e o número de postos de venda região B.

```
# postos de venda da região A
postos_regiao_a <- postos - postos_regiao_b
postos_regiao_a</pre>
```

```
## [,1] [,2]
## [1,] 2 4
## [2,] 1 5
```

Suponha que cada pessoa consiga vender um determinado número de produtos por posto de venda conforme a matriz abaixo.

```
produtos_pessoa <- rbind(
    c(4, 2),
    c(1, 3)
)</pre>
```

A quantidade de produtos vendidos por pessoa na região A é dado por:

```
vendas_regiao_a <- postos_regiao_a * produtos_pessoa
vendas_regiao_a</pre>
```

```
## [,1] [,2]
## [1,] 8 8
## [2,] 1 15
```

Imagine que temos o número de produtos vendidos por pessoa na região A e sabemos o número de postos de cada pessoa na equipe na região A. Então, podemos descobrir o número de produtos vendidos por um posto para cada pessoa.

```
vendas_regiao_a / postos_regiao_a
```

```
## [,1] [,2]
## [1,] 4 2
## [2,] 1 3
```

Outras operações importantes com matrizes

Código em R	Descrição da operação
A %o% B	produto diádico $A \cdot B^T$
crossprod(A, B)	$A \cdot B^T$
crossprod(A)	$A \cdot A^T$
diag(x)	retorna uma matrix diagonal com diagonal igual a x
diag(A)	retorna um vetor com a diagona de A
diag(k)	retorna uma matriz diagona de ordem k

Operações com matrizes Exercício

Realizei as seguinte operações envolvendo as matrizes:

Estrutura de dados heterogênea Lista

- Agrupamento de valores de tipos diversos e estrutura de dados.
- Criação de listas: list(...) e vector("list", <comprimento da lista>).

Lista Exercício

Crie uma lista, chamada informacoes_pessoais com os seguintes campos:

nome: seu nomeidade: sua idade

• informacao_profissional: uma lista com os seguintes campos:

escolaridade: escolaridade

 profissao: variável qualitativa com os valores possíveis: funcionário público, funcionário da iniciativa privada, estudante e desempregado

• matriz: inclua uma matriz de números reais de dimensão 2 × 2

Estrutura de dados heterogênea data frame (tibble)

- Agrupamento de dados em tabela, onde: cada coluna é uma variável; cada linha é uma observação. Usamos a tabela tidy:
 - Cada variável em uma única coluna
 - Cada unidade observacional em uma única linha
- Criação de tibble: tibble(...) e tribble(...).

tibble (data frame)

```
df <- tibble(
  nome = c("João", "Josué", "Joaquim", "José"),
  idade = c(20, 21, 23, 32)
)
glimpse(df)

## Rows: 4
## Columns: 2
## $ nome <chr> "João", "Josué", "Joaquim", "José"
## $ idade <dbl> 20, 21, 23, 32
```

Operações em data frame

Operações em um tibble

Algumas funções úteis depois de aprender a carregar os dados no R.

Descrição
Mostra as primeiras linhas de um tibble
Mostra as últimas linhas de um tibble
Impressão de informações básicas dos dados
Adiciona uma nova observação

```
head(df, n = 2)
## # A tibble: 2 x 2
## nome idade
## <chr> <dbl>
## 1 João 20
## 2 Josué 21
df <- add_case(df, nome = "Josefina", idade = 31)</pre>
```

tail(df, n = 2)

##

A tibble: 2 x 2 ## nome idade ## <chr> <dbl>

1 José 32 ## 2 Josefina 31

data frame Exercício

Realize as seguintes operações no dataset iris (disponível no R):

- imprima um resumo sobre o dataset iris
- pegue as 5 primeiras linhas de iris
- pegue as 5 últimas linhas de iris
- adicione Fulano de 30 anos ao tibble df para obter o seguinte dataset:

idade
20
21
23
32
31
30

Operações com listas

Concatenação de listas

```
lista 1 <- list("a", "b")
lista 2 <- list(1, 2)
lista final <- c(lista 1, lista 2)</pre>
lista final
   [[1]]
##
   [1] "a"
##
##
   [[2]]
##
## [1] "b"
##
    [[3]]
##
   [1] 1
##
##
##
    [[4]]
    [1] 2
##
```

Operações com listas

Slicing a lista

lista_final[1:2]

lista\$elemento_2

[1] "docente"

```
##
    [[1]]
    [1] "a"
##
##
    [[2]]
##
    [1] "b"
##
Acessando elemento pela ordem
# Acessando o segundo elemento da lista d.
lista_final[[2]]
## [1] "b"
Acessando elemento usando $
```

lista <- list(elemento_1 = 1, elemento_2 = "docente")</pre>

Operações com listas

Slicing uma lista com ["nome"]

```
## $elemento_3
## $elemento_3[[1]]
## [1] "olá"
```

Obtendo os nomes dos elementos em um lista

```
## [1] "" "elemento_1" "elemento_2" "elemento_3"
```

Listas Exercício

Recupe e imprima as seguintes informações da lista informacoes_pessoais:

- os três primeiros campos de informacoes_pessoais
- os nomes dos campos de informacoes_pessoais
- campo nome de informacoes_pessoais
- o terceiro campo de informacoes_pessoais

Valores especiais em R

Valor	Descrição	O que é	Função para identificar
NA	Not Available	Valor faltante.	is.na()
NaN	Not a Number	Resultado do cálculo indefinido.	is.nan()
Inf	Infinito	Valor que excede o valor máximo que sua máquina aguenta.	is.inf()
NULL	Nulo	Valor indefinido de expressões e funções (diferente de NaN e NA)	is.null()

Parênteses 1: guia de estilo no R

O nome de um objeto precisa ter um *significado*. O nome deve indicar e deixar claro o que este objeto é ou faz.

- Use a convenção do R:
 - Use apenas letras minúsculas, números e underscore (comece sempre com letras minúsculas).
 - Nomes de objetos precisam ser substantivos e precisam descrever o que este objeto é ou faz (seja conciso, direto e significativo).
 - Evite ao máximo os nomes que já são usados (buit-in) do R.Por exemplo: c.
 - Coloque espaço depois da vírgula.
 - Não coloque espaço antes nem depois de parênteses. Exceção: Coloque um espaço () antes e depois de if, for ou while, e coloque um espaço depois de ().
 - Coloque espaço entre operadores básicos: +, -, *, == e outros.
 Exceção: ^.

Para mais detalhes, consulte: guia de estilo do tidyverse.

Parênteses 2: estrutura de diretórios

Mantenha uma estrutura (organização) consistente de diretórios em seus projetos.

- Sugestão de estrutura:
 - dados: diretório para armazenar seus conjuntos de dados.
 - brutos: dados brutos.
 - processados: dados processados.
 - scripts: código fonte do seu projeto.
 - figuras: figuras criadas no seu projeto.
 - output: outros arquivos que não são figuras.
 - legado: arquivos da versão anterior do projeto.
 - notas: notas de reuniões e afins.
 - relatorio (ou artigos): documento final de seu projeto.
 - documentos: livros, artigos e qualquer coisa que são referências em seu projeto.

Para mais detalhes, consulte esse guia do curso-r: diretórios e .Rproj.

Leitura de arquivos no formato x1sx ou x1s

- Pacote: readxl do tidyverse (instale com o comando install.packages('readxl'))
- Parêmetros das funções read_xls (para ler arquivos .xls) e read_xlsx (para ler arquivos .xlsx):
 - path: caminho até o arquivo.
 - sheet: especifica a planilha do arquivo que será lida.
 - range: especifica uma área de uma planilha para leitura. Por exemplo: B3:E15
 - col_names: Argumento lógico com valor padrão igual a TRUE. Indica se a primeira linha tem o nome das variáveis.

Para mais detalhes, consulte a documentação oficial do *tidyverse*: documentação de read_x1.

Leitura de arquivos no formato xlsx ou xls

```
library(tidyverse)
library(readxl)
dados_iris <- read_xlsx("dados/brutos/iris.xlsx")</pre>
glimpse(dados_iris)
##
   Rows: 150
   Columns: 5
##
   $ comprimento sepala <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0,
##
   $ largura sepala
                        <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4,
##
   $ comprimento_petala <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5,
##
   $ largura_petala
                         <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2,
##
   $ especies
##
                         <chr> "setosa", "setosa", "setosa", "setosa",
```

As formatações dos arquivos csv

csv: comma separated values (valores separados por coluna).

O separador (caracter usado para separar colunas) varia em diferentes sistemas de medidas.

- No sistema métrico:
 - As casas decimais são separadas por ,
 - O agrupamento de milhar é marcada por .
 - As colunas dos arquivos de texto são separadas por ;
- No sistema imperial inglês (UK e USA):
 - As casas decimais são separadas por .
 - O agrupamento de milhar é marcada por ,
 - As colunas dos arquivos de texto são separadas por ,

Preste atenção em como o seus dados estão armazenados!

Leitura de arquivos no formato csv

- Pacote: readr do tidyverse (instale com o comando install.packages('readr')).
- Parêmetros das funções read_csv (sistema imperial inglês) e read_csv2 (sistema métrico):
 - path: caminho até o arquivo.

Para mais detalhes, consulte a documentação oficial do *tidyverse*: documentação de read_r.

Leitura de arquivos no formato csv

##

##

##

##

Rows: 32

Columns: 11

\$ carburadores

dados_mtcarros <- read_csv2("dados/brutos/mtcarros.csv")</pre> glimpse(dados_mtcarros)

```
$ milhas por galao <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1,
                       <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8,
##
   $ cilindros
##
   $ cilindrada
                       <dbl> 160.0, 160.0, 108.0, 258.0, 360.0,
##
   $ cavalos forca
                       <dbl> 110, 110, 93, 110, 175, 105, 245, 6
##
   $ eixo
                       <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76,
##
   $ peso
                       <dbl> 2.620, 2.875, 2.320, 3.215, 3.440,
##
   $ velocidade
                       <dbl> 16.46, 17.02, 18.61, 19.44, 17.02,
##
   $ forma
                       <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0,
                       <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
##
   $ transmissao
                       <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3,
##
   $ marchas
```

<dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3,

Leitura de arquivos no formato ods

- Pacote: readODS (instale com o comando install.packages('readODS')).
- Parêmetros das funções read_ods:
- path: caminho até o arquivo.
 - sheet: especifica a planilha do arquivo que será lida.
 - range: especifica uma área de uma planilha para leitura. Por exemplo: B3:E15.
 - col_names: Argumento lógico com valor padrão igual a TRUE. Indica se a primeira linha tem o nome das variáveis.

Para mais detalhes, consulte a documentação do *readODS*: documentação de readODS.

Leitura de arquivos no formato ods

```
dados_dentes <- read_ods("dados/brutos/crescimento_dentes.ods")
glimpse(dados_dentes)
## Rows: 60</pre>
```

Carregando dados no R Exercício

- Leia os dados do ENEM de sua cidade no formato .xlsx (coloque o arquivo na pasta dados/brutos).
- Leia os dados do ENEM de sua cidade no formato .csv (coloque o arquivo na pasta dados/brutos).
- Leia o arquivo crescimento_dentes.ods (o arquivo já está na pasta dados/brutos).

Salvando dados no R

Salvar no formato .csv (sistema métrico)

write_csv2 é parte do pacote readr.

```
write_csv2(dados_dentes, file = "dados/processados/nome.csv")
```

Salvar no formato .xlsx

write_xlsx é parte do pacote writexl.

```
write_xlsx(dados_dentes, path = "dados/processados/nome.xlsx")
```

Salvar no formato ods

write_ods é parte do pacote readODS.

```
write_ods(dados_toothgrowth, path = "dados/processados/nome.ods")
```

Salvando dados no R Exercício

- Salve o objeto milhas do pacote dados como milhas.ods na pasta output do seu projeto.
- 2 Salve o objeto diamante do pacote dados como diamante.csv na pasta output do seu projeto.
- Salve o objeto velho_fiel do pacote dados como velho_fiel.xlsx na pasta output do seu projeto.

O operador pipe

O operador pipe

O valor resultante da expressão do lado esquerdo vira primeiro argumento da função do lado direito.

Principal vantagem: simplifica a leitura e a documentação de funções compostas.

Executar

é exatamente a mesma coisa que executar

$$x \mid > f(y)$$

```
log(sqrt(sum(x<sup>2</sup>)))
```

é exatamente a mesma coisa que executar

```
x^2 > sum() > sqrt() > log()
```

|>

Fazendo um bolo

Exemplo adaptado de 6.1 O operador pipe.

Para cozinhar o bolo precisamos usar as seguintes funções:

- acrescente(lugar, algo)
- misture(algo)
- asse(algo)

Fazendo um bolo

```
    Passo 1:

acrescente(
  "tigela vazia",
  "farinha"
  Passo2:
acrescente(
  acrescente(
    "tigela vazia",
    "farinha"
  "ovos"
```

```
• Passo3:
acrescente(
  acrescente(
    acrescente(
      "tigela vazia",
      "farinha"
    "ovos"
  "leite"
```

```
• Passo4:
acrescente(
  acrescente(
    acrescente(
      acrescente(
        "tigela vazia",
        "farinha"
      "ovos"
    "leite"
  "fermento"
```

```
• Passo 5:
misture(
  acrescente(
    acrescente(
      acrescente(
        acrescente(
          "tigela vazia",
          "farinha"
        "ovos"
      "leite"
    "fermento"
```

```
• Passo 6:
asse(
  misture(
    acrescente(
      acrescente(
        acrescente(
          acrescente(
            "tigela vazia",
            "farinha"
          "ovos"
        "leite"
      "fermento"
```

Usando o operador |>.

asse()

```
acrescente("tigela vazia", "farinha") |>
  acrescente("ovos") |>
  acrescente("leite") |>
  acrescente("fermento") |>
  misture() |>
```


Estatística Descritiva no R Gráficos e Tabelas

Alguns conceitos básicos

- População: todos os elementos ou indivíduos alvo do estudo.
- Amostra: parte da população.
- Parâmetro: característica numérica da população. Usamos letras gregas para denotar parâmetros populacionais.
- Estatística: função ou cálculo da amostra
- Estimativa: característica numérica da amostra, obtida da estatística computada na amostra. Em geral, usamos uma estimativa para estimar o parâmetro populacional.
- Variável: característica mensurável comum a todos os elementos da população.
 - Usamos letras maiúsculas do alfabeto latino para representar uma variável.
 - Usamos letras minúsculas do alfabeto latino para representar o valor observado da variável em um elemento da amostra.

Exemplo:

- População: todos os eleitores nas eleições gerais de 2022.
- Amostra: 3.500 pessoas abordadas pelo datafolha.
- Variável: candidato a presidente de cada pessoa.
- Parâmetro: porcentagem de pessoas que escolhem Lula como presidente entre todos os eleitores.
- Estatística: porcentagem de pessoas que escolhem o lula
- Estimativa: porcentagem de pessoas que escolhem Lula como presidente entre todos os eleitores da amostra de 3.500 pessoas entrevistas pelo datafolha.

Classificação de variáveis

Figura 1: Classficação de variáveis.

Tabela de frequências Variável qualitativa

A primeira coisa que fazemos é contar!

X	frequência	frequência relativa	porcentagem
B_1	n_1	f_1	$100 \cdot f_1\%$
B_2	n_2	f_2	$100 \cdot f_2\%$
•	:	:	:
B_k	n _k	f_k	$100 \cdot f_k\%$
Total	n	1	100%

Em que n é o tamanho da amostra.

Tabela de frequências Variável qualitativa

- Pacote: tabyl, adorn_totals e adorn_pct_formatting do janitor (instale com o comando install.packages('janitor')).
- tabyl: cria a tabela de distribuição de frequências e tem os seguintes parâmetros:
 - dat: data frame ou vetor com os valores da variável que desejamos tabular.
 - var1: nome da primeira variável.
 - var2: nome da segunda variável (opcional).
- adorn_totals: adiciona uma linha com os totais de cada coluna
- adorn_pct_formatting: acrescenta o sinal de porcentagem e tem o seguinte parâmetro:
 - digits: o número de casas decimais depois da vírgula
- rename (do pacote dplyr) muda os nomes das colunas para português no seguinte formato:
 - "novo nome" = "velho nome"

Para mais detalhes, consulte a documentação oficial do *janitor*: documentação de tabyl.

Tabela de frequências Variável qualitativa

```
tab <- tabyl(dados_iris, especies) |>
  adorn_totals() |>
  adorn_pct_formatting(digits = 2) |>
  rename(
    "Espécies" = especies,
    "Frequência" = n,
    "Porcentagem" = percent
)
tab
```

```
Espécies Frequência Porcentagem
##
                     50
                            33.33%
##
        setosa
                     50
                            33.33%
##
    versicolor
                   50
                            33.33%
##
     virginica
##
         Total
                    150
                            100.00%
```

Tabela de frequências Variável qualitativa Exercício

Para o conjunto de dados ENEM 2022 (cada pessoa tem sua cidade) , construa a tabela de frequências para as seguintes variáveis:

- tp_sexo: gênero que a pessoa se identifica (segundo classificação usada pelo IBGE)
- tp_cor_raca: raça (segundo classificação usada pelo IBGE)

Tabela de frequências Variável quantitativa discreta

Muito semelhante a tabela de frequências para variáveis qualitativas.

X	frequência	frequência relativa	porcentagem
<i>x</i> ₁	n_1	f_1	$100 \cdot f_1\%$
x_2	n_2	f_2	$100 \cdot f_2\%$
:	:	:	÷
X_k	n_k	f_k	$100 \cdot f_k\%$
x_k Total	n	1	100%

Em que n é o tamanho da amostra e $\{x_1, \ldots, x_k\}$ são os números que são valores únicos de X na amostra.

Tabela de frequências Variável quantitativa discreta

```
tab <- tabyl(dados_mtcarros, carburadores) |>
adorn_totals() |>
adorn_pct_formatting(digits = 2) |>
rename(
    "Carburadores" = carburadores,
    "Frequência" = n,
    "Porcentagem" = percent
)
tab
```

##	Carburadores	Frequência	Porcentagem
##	1	7	21.88%
##	2	10	31.25%
##	3	3	9.38%
##	4	10	31.25%
##	6	1	3.12%
##	8	1	3.12%
##	Total	32	100.00%

Tabela de frequências Variável quantitativa discreta Exercício

Para os dados do ENEM 2022 (cada pessoa tem sua cidade), construa a tabela de frequências para a variável q005: número de pessoas que moram na casa da(o) candidata(o).

Tabela de frequências Variável quantitativa contínua

X: variável quantitativa contínua

Tabela 6: Tabela de frequências para a variável quantitativa contínua.

Х	Frequência	Frequência relativa	Porcentagem
$[l_0, l_1)$ $[l_1, l_2)$	n ₁ n ₂	$f_1 = \frac{n_1}{n_1 + \dots + n_k}$ $f_2 = \frac{n_2}{n_1 + \dots + n_k}$	$p_1 = f_1 \cdot 100$ $p_2 = f_2 \cdot 100$
$\vdots \\ [I_{k-1}, I_k]$: n _k	$f_k = \frac{\vdots}{n_1 + \dots + n_k}$	$p_k = f_k \cdot 100$

- menor valor de $X = I_0 \le I_1 \le \cdots \le I_{k-1} \le I_k = \text{maior valor de } X$
- n_i é número de valores de X entre l_{i-1} e l_i
- I₀, I₁,..., I_k quebram o suporte da variável X (breakpoints).
 I₀, I₁,..., I_k são escolhidos de acordo com a teoria por trás da análise de dados

Recomendações:

- use l_0, l_1, \dots, l_k igualmente espaçados
- e use a regra de Sturges para determinar o valor de k:
 - $k = 1 + \log 2(n)$ onde n é tamanho da amostra
 - Se $1 + \log 2(n)$ onde n e tanianno da amostra • Se $1 + \log 2(n)$ não é um número inteiro, usamos $k = \lceil 1 + \log 2(n) \rceil$.

Tabela de frequências Variável quantitativa contínua

Primeiro agrupamos os valores em faixas usando a regra de Sturges.

```
k <- ceiling(1 + log(nrow(dados_iris)))
dados_iris2 <- mutate(
  dados_iris,
  comprimento_sepala_int = cut(
    comprimento_sepala,
    breaks = k,
    include.lowest = TRUE,
    right = FALSE
  )
)</pre>
```

Tabela de frequências Variável quantitativa contínua

Agora podemos contar a frequência de cada intervalo.

```
tabyl(dados_iris2, comprimento_sepala_int) |>
  adorn_totals() |>
  adorn_pct_formatting(digits = 2) |>
  rename(
    "Comprimento de sépala" = comprimento_sepala_int,
    "Frequência absoluta" = n,
    "Porcentagem" = percent
)
```

##	Comprimento de sepala	Frequencia a	absoluta	Porcentagem	
##	[4.3,4.81)		16	10.67%	
##	[4.81,5.33)		30	20.00%	
##	[5.33,5.84)		34	22.67%	
##	[5.84,6.36)		28	18.67%	
##	[6.36,6.87)		25	16.67%	
##	[6.87,7.39)		10	6.67%	
##	[7.39,7.9]		7	4.67%	
##	Total		150	100.00%	

Tabela de frequência Variável quantitativa contínua Exercício

Para o conjunto de dados do ENEM (cada pessoa tem sua cidade), construa as seguintes tabelas de frequências:

- nu_nota_mt (nota da prova em matemática): l_0, l_1, \ldots, l_k são igualmente espaços com $l_k l_{k-1} = 100$
- nu_nota_cn (nota da prova de ciências humanas): use a regra de Sturges

Gráficos no R

- Pacote: ggplot2
- Permite gráficos personalizados com uma sintaxe simples e rápida, e iterativa por camadas.
- Começamos com um camada com os dados ggplot(dados), e vamos adicionando as camadas de anotações, e sumários estatísticos.
- Usa a gramática de gráficos proposta por Leland Wilkinson: Grammar of Graphics.
- Ideia desta gramática: delinear os atributos estéticos das figuras geométricas (incluindo transformações nos dados e mudança no sistema de coordenadas).

Para mais detalhes, você pode consultar ggplot2: elegant graphics for data analysis e documentação do ggplot2

Gráficos no R

Estrutura básica de ggplot2

```
ggplot(data = <data possible tibble>) +
     <Geom functions>(mapping = aes(<MAPPINGS>)) +
     <outras camadas>
```

Você pode usar diversos temas e extensões que a comunidade cria e criou para melhorar a aparência e facilitar a construção de ggplot2.

Lista com extensões do ggplot2: extensões do ggplot2.

Indicação de extensões:

- Temas adicionais para o pacote ggplot2: ggthemes.
- Gráfico de matriz de correlação: ggcorrplot.
- Gráfico quantil-quantil: qqplotr.

Gráficos no R

Gráfico de barras no ggplot2

- função: geom_bar(). Para porcentagem: geom_bar(x = <variável no eixo x>, y = ..prop.. * 100).
- Argumentos adicionais:
 - fill: mudar a cor do preenchimento das figuras geométricas.
 - color: mudar a cor da figura geométrica.
- Rótulos dos eixos
 - Mudar os rótulos: labs(x = <rótulo do eixo x>, y = <rótulo do eixo y>).
 - Trocar o eixo-x pelo eixo-y: coord_flip().

Gráfico de barras Variável qualitativa

Gráfico de barras para a variável qualitativa especies do conjunto de dados iris.xlsx.

```
ggplot(dados_iris) +
  geom_bar(mapping = aes(especies), fill = "blue") +
  labs(x = "Espécies", y = "Frequência") +
  theme_minimal()
```


Gráfico de barras Variável qualitativa Exercício

Para o conjunto de dados ENEM 2022 (cada pessoa tem sua cidade), construa o gráfico de barras para as seguintes variáveis:

- tp_sexo: gênero que a pessoa se identifica (segundo classificação do IBGE)
- tp_cor_raca: raça autodeclarada (segundo classificação do IBGE)

Tabela de frequências Variável quantitativa discreta

De maneira similar, podemos contar quantas vezes cada valor de uma variável quantitativa discreta foi amostrado.

X	frequência	frequência relativa	porcentagem
<i>x</i> ₁	n_1	f_1	100 · f ₁ %
<i>x</i> ₂	n_2	f_2	$100 \cdot f_2\%$
<i>X</i> ₃	n_3	f_3	$100 \cdot f_3\%$
:	:	:	:
x_k	n_k	f_k	$100 \cdot f_k\%$
Total	n	1	100%

Em que n é o tamanho da amostra.

Tabela de frequências Variável quantitativa discreta

Vamos construir a tabela de distribuição de frequências para a variável quantitativa discreta carburadores do conjunto de dados mtcarros.

```
tab <- tabyl(dados_mtcarros, carburadores) |>
  adorn_totals() |>
  adorn_pct_formatting(digits = 2) |>
  rename(
    "Número de carburadores" = carburadores,
    "Frequência (absoluta)" = n,
    "Porcentagem" = percent
)
tab
```

##	Númoro	d۵	carburadores	Eroguôncia	(absoluta)	Porcontagom
##	Numero	ue		rrequencia	(absoluta)	21.88%
##			1		1	21.00%
##			2		10	31.25%
##			3		3	9.38%
##			4		10	31.25%
##			6		1	3.12%
##			8		1	3.12%
##			Total		32	100.00%

Gráfico de barras Variável quantitativa discreta

Gráfico de barras para a variável quantitativa discreta carburadores do conjunto de dados mtcarros.csv.

- after_stat(prop) retorna a frequência relativa ou proporção de um valor (ou categoria) de uma variável.
- after_stat(count) retorna a frequência absoluta de um valor (ou categoria) de uma variável.

```
ggplot(dados_mtcarros) +
  geom_bar(
    mapping = aes(carburadores, after_stat(100 * prop)),
    fill = "#002f81"
) +
  labs(x = "Número de carburadores", y = "Porcentagem") +
  theme_minimal()
```


Gráfico de barras Variável quantitativa discreta Exercício

- Para a variável q005 do conjunto de dados ENEM 2022 (cada pessoa tem sua cidade), construa o gráfico de barras onde o eixo y é a frequência absoluta.
- Para a variável q005 do conjunto de dados ENEM 2022 (cada pessoa tem sua cidade), construa o gráfico de barras onde o eixo y é a frequência relativa.
- Para a variável q005 do conjunto de dados ENEM 2022 (cada pessoa tem sua cidade), construa o gráfico de barras onde o eixo y é a porcentagem.

Histograma

Para variávieis quantitativas contínuas, geralmente não construímos gráficos de barras, e sim uma figura geométrica chamada de *histograma*.

- O histograma é um gráfico de barras contíguas em que a área de cada barra é igual à frequência relativa.
- Cada faixa de valor $[l_{i-1}, l_i)$, i = 1, ..., n, será representada por um barra com área f_i , i = 1, ..., n.
- Como cada barra terá área igual a f_i e base $l_i l_{i-1}$, e a altura de cada barra será $\frac{f_i}{l_i l_{i-1}}$.
- $\frac{f_i}{I_i I_{i-1}}$ é denominada de densidade de frequência.
- Podemos usar os seguintes parâmetros (obrigatório o uso de apenas um deles):
 - bins: número de intervalos no histograma (usando, por exemplo, a regra de Sturges)
 - binwidth: tamanho (ou largura) dos intervalos
 - breaks: os limites de cada intervalo

Histograma

Figura 2: Representação de uma única barra de um histograma.

Denside de frequência

Histograma

```
ggplot(dados_iris) +
  geom_histogram(
   aes(x = comprimento_sepala, y = after_stat(density)),
  bins = k,
  fill = "#002f81"
) +
  theme_minimal() +
  labs(
   x = "Comprimento de Sépala",
   y = "Densidade de Frequência"
)
```


Histograma Exercício

- Para a variável nu_nota_mt do conjunto de dados ENEM 2022 (cada pessoa tem sua cidade), construa o histograma onde os intervalos tem o mesmo tamanho igual a 100.
- Para a variável nu_nota_cn do conjunto de dados ENEM 2022 (cada pessoa tem sua cidade), construa o histograma usando a regra de Sturge.

Medidas resumo

Medidas resumo Variável quantitativa

A ideia é encontrar um ou alguns valores que sintetizem todos os valores.

Medidas de posição (tendência central)

A ideia é encontrar um valor que representa bem todos os valores.

- Média: $\overline{x} = \frac{x_1 + \cdots + x_n}{x_n}$.
- Mediana: valor que divide a sequência ordenada de valores em duas partes iguais.

Medidas de dispersão

A ideia é medir a homogeneidade dos valores.

- Variância: $s^2 = \frac{(x_1 \overline{X})^2 + \dots + (x_n \overline{X})^2}{n-1}$.
- **Desvio padrão:** $s = \sqrt{s^2}$ (mesma unidade dos dados).
- Coeficiente de variação $cv = \frac{s}{x} \cdot 100\%$ (adimensional, ou seja, "sem unidade").

Medidas resumo: exemplo

Podemos usar a função summarise do pacote dplyr (incluso no pacote tidyverse).

```
dados_iris |>
summarise(
  media = mean(comprimento_sepala),
  mediana = median(comprimento_sepala),
  dp = sd(comprimento_sepala),
  cv = dp / media
)
```

```
## # A tibble: 1 x 4
## media mediana dp cv
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 1 5.84 5.8 0.828 0.142
```

Medidas resumo: exemplo

Podemos usar a função group_by para calcular medidas resumo por categorias de uma variável qualitativa.

```
tabela <- dados_iris |>
  group_by(especies) |>
  summarise(
   media = mean(comprimento_sepala),
   mediana = median(comprimento_sepala),
   dp = sd(comprimento_sepala),
   cv = dp / media
)
tabela
```

```
##
   # A tibble: 3 \times 5
##
     especies media mediana
                              dp
                                    CV
##
     <chr> <dbl> <dbl> <dbl> <dbl>
##
   1 setosa 5.01
                        5 0.352 0.0704
   2 versicolor 5.94
                        5.9 0.516 0.0870
##
   3 virginica 6.59 6.5 0.636 0.0965
##
```

Medidas de resumo Exercício

- Calcule média, mediana, o desvio padrão e coeficiente de variação para a variável nu_nota_mt do conjunto de dados ENEM 2022 (cada pessoa tem sua cidade) por gênero (tp_sexo).
- Calcule média, mediana, o desvio padrão e coeficiente de variação para a variável nu_nota_cn do conjunto de dados ENEM 2022 (cada pessoa tem sua cidade) por gênero (tp_sexo).
- Calcule média, mediana, o desvio padrão e coeficiente de variação para a variável nu_nota_mt do conjunto de dados ENEM 2022 (cada pessoa tem sua cidade) por raça (tp_cor_raca).
- Calcule média, mediana, o desvio padrão e coeficiente de variação para a variável nu_nota_cn do conjunto de dados ENEM 2022 (cada pessoa tem sua cidade) por raça (tp_cor_raca).

Quantis

Ideia

q(p) é um valor que satisfaz;

- $100 \cdot p\%$ das observações é no máximo q(p)
- $100 \cdot (1-p)\%$ das observações é no mínimo q(1-p)

Alguns quantis especiais

- Primeiro quartil: $q_1 = q(0, 25)$
- Primeiro quartil: $q_2 = q(0,5)$
- Primeiro quartil: $q_3 = q(0,75)$

Quantis

```
dados_iris |>
  group_by(especies) |>
  summarise(
    q1 = quantile(comprimento_sepala, 0.25),
    q2 = quantile(comprimento_sepala, 0.5),
    q3 = quantile(comprimento_sepala, 0.75),
    frequencia = n()
)
```

n() calcula a frequência de cada valor de uma variável qualitativa.

Quantis Exercício

- Calcule o primeiro quartil, segundo quartil e o terceiro quartil para a variável nu_nota_mt do conjunto de dados ENEM 2022 (cada pessoa tem sua cidade) por gênero (tp_sexo). Inclua uma coluna com a frequência da variável tp_sexo.
- Calcule o primeiro quartil, segundo quartil e o terceiro quartil para a variável nu_nota_cn do conjunto de dados ENEM 2022 (cada pessoa tem sua cidade) por gênero (tp_sexo). Inclua uma coluna com a frequência da variável tp_sexo.
- Calcule o primeiro quartil, segundo quartil e o terceiro quartil para a variável nu_nota_mt do conjunto de dados ENEM 2022 (cada pessoa tem sua cidade) por raça (tp_cor_raca). Inclua uma coluna com a frequência da variável tp_cor_raca.
- Calcule o primeiro quartil, segundo quartil e o terceiro quartil para a variável nu_nota_cn do conjunto de dados ENEM 2022 (cada pessoa tem sua cidade) por raça (tp_cor_raca). Inclua uma coluna com a frequência da variável tp_cor_raca.

Medida de dispersão: distância entre q_3 e q_1

Diferença de quartis: $dq = q_3 - q_1$

Assimetria à direita ou positiva:

- frequências diminuem à direita no histograma
- q_2 perto q_1 : $q_2 q_1 < q_3 q_2$

Assimetria à esquerda ou negativa: frequências diminuem à esquerda no histograma

- frequências diminuem à direita no histograma
- q_2 perto q_3 : $q_2 q_1 > q_3 q_2$

Assimetria


```
ggplot(dados_iris) +
  geom_boxplot(aes(x = "", y = comprimento_sepala)) +
  labs(x = "", y = "Comprimento de Sépala") +
  theme_minimal()
```

8			
0			
7			
Comprimento de Separa		<u> </u>	
Compris			
-			
5			

Gráficos lado a lado com patchwork

- patchwork permite que colocar gráficos lado a lado com
 - +: figuras ao lado
 - \: figuras embaixo
- Para mais detahes, visite a documentação do patchwork

```
sepala <- ggplot(dados_iris) +
  geom_boxplot(aes(x = "", y = comprimento_sepala)) +
  labs(x = "", y = "Comprimento de Sépala") +
  ylim(c(0, 10)) +
  theme_minimal()

petala <- ggplot(dados_iris) +
  geom_boxplot(aes(x = "", y = comprimento_petala)) +
  labs(x = "", y = "Comprimento de Pétala") +
  ylim(c(0, 10)) +
  theme_minimal()

sepala + petala</pre>
```


Diagrama de caixa Exercício

Para o conjunto de dados ENEM 2022 (cada pessoa tem sua cidade), construa o diagrama de caixa para as variáveis nu_nota_mt e nu_nota_cn e os coloque lado a lado usando o pacote patchwork.

Associação entre duas variáveis

Gráficos Duas variáveis

Ideia: estudar a associação entre duas variáveis quantitativas.

Gráfico de dispersão

```
ggplot(dados_iris) +
  geom_point(aes(comprimento_petala, comprimento_sepala)) +
  labs(
    x = "Comprimento de pétala",
    y = "Comprimento de sépala"
  ) +
  theme_minimal()
```


Gráfico de dispersão Exercício

Para o conjunto de dados ENEM 2022 (cada pessoa tem sua cidade), construa o gráfico de dispersão entre as variáveis nu_nota_mt e nu nota cn.

Inclua o argumento nomeado alpha = 0.1 na função geom_point para incluir opacidade no gráfico de dispersão. Isso ajuda quando temos amostra de tamanho médio e grande.

Associação entre duas variáveis qualitativas

Ideia

Sejam X e Y duas variáveis qualitativas com os seguintes valores possíveis:

- $X: A_1, \cdots, A_r$
- $Y: B_1, \cdots, B_s$

Desejamos estudar a associação entre X e Y.

Associação entre X e Y

Suponha que A_i tenha porcentagem $100 \cdot f_i \cdot \%$. Então, X e Y são:

- não associados: se ao conhecermos o valor de Y para um elemento da população, **continuamos** com a porcentagem $100 \cdot f_i\%$ deste elemento ter valor de X igual a A_i
- associados: se ao conhecermos o valor de Y para um elemento da população, alteramos a porcentagem 100 · fi% deste elemento ter valor de X igual a A_i

Associação entre duas variáveis qualitativas Gráfico de barras

Vamos checar a associação entre fundacao_tipo e geral_condicao.

Associação entre duas variáveis qualitativas Gráfico de barras

Podemos agrupar as barras por grupos para analisar a associação entre duas variáveis qualitativas.

Associação entre duas variáveis qualitativas Gráfico de barras Exercício

- Verifique se existe associação entre as variáveis q006 e tp_cor_raca do conjunto de dados ENEM 2022 (cada pessoa tem sua cidade) usando gráfico de gráficos usando o position=fill.
- Verifique se existe associação entre as variáveis q006 e tp_sexo do conjunto de dados ENEM 2022 (cada pessoa tem sua cidade) usando gráfico de gráficos usando o position=dodge.

Comparação de medianas usando Diagrama de caixa

Podemos comparar medianas de diferentes grupos usando o diagrama de caixa.

```
ggplot(dados_iris) +
  geom_boxplot(aes(x = especies, y = comprimento_sepala)) +
  labs(x = "Espécies", y = "Comprimento de Sépala") +
  theme_minimal()
```


Comparação de medianas usando Diagrama de caixa Exercício

- Para o conjunto de dados ENEM 2022 (cada pessoa tem sua cidade), compare a variável nu_nota_mt por raça (tp_cor_raca).
- Para o conjunto de dados ENEM 2022 (cada pessoa tem sua cidade), compare a variável nu_nota_cn por raça (tp_cor_raca).
- Coloque os dois gráficos acima lado a lado usando o pacote patchwork.

Tabelas usando o pacote gt

Salvando tabelas com o pacote gt

Vamos usar o pacote gt para customizar a apresentação de uma tabela.

A ideia do pacote gt é melhorar apresentação por camadas.

	The P	arts	of	a gt Ta	able	
TABLE HEADER						
STUB HEAD	STUBHEAD LABEL	C	ANNER CO OLUMN LABEL	COLUMN LABEL	COLUMN	COLUMN LABELS
STUB	ROW GROUP LABEL ROW LABEL ROW LABEL SUMMARY LABEL	Sun	Cell Cell nmary Cell	Cell Cell Summary Cell	Cell Cell Summary Cell	TABLE BODY
		TABLE FOOTER				

Para mais detalhes, visite documentação do pacote gt

Salvando tabelas com o pacote gt

Vamos usar um exemplo para ensinar como usar o pacote gt.

```
tab <- dados_iris |>
  group_by(especies) |>
  summarise(
  m_petala = mean(comprimento_petala),
  dp_petala = sd(comprimento_petala),
  q1_petala = quantile(comprimento_petala, probs = 0.25),
  q2_petala = quantile(comprimento_petala, probs = 0.5),
  q3_petala = quantile(comprimento_petala, probs = 0.75),
  cv_petala = dp_petala / m_petala
)
tab
```

A tibble: 3 x 7
especies m_petala dp_petala q1_petala q2_petala q3_petala cv_petala
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> </db>

1.4

4

5.1

1.5

4.35

5.55

1.58

4.6

5.88

11.9

11.0

9.94

0.174

0.552

4.26 0.470

1.46

5.55

1 setosa

2 versicolor

3 virginica

Salvando tabelas com o pacote gt

Cabeçalho da tabela: legenda e sub-legenda da tabela.

- tab_header: permite incluir legenda (title) e sub-legenda na tabela (subtitle)
- gtsave: permite salvar objeto gtnos formatos .html, .tex e .docx.
- md: permite formatação usando a sintaxe markdown.
 - Para mais detalhes sobre markdown, consulte cheatsheet do markdown

```
gt_tab <- gt(tab) |>
  tab_header(
    title = md("**Comprimento de pétala**"),
    subtitle = md("_Algumas estatísticas descritivas_")
)
gtsave(gt_tab, "output/tabela.html")
gtsave(gt_tab, "output/tabela.tex")
gtsave(gt_tab, "output/tabela.docx")
```

Salvando tabelas com o pacote gt Exercício

- Calcule a média, o desvio padrão, o primeiro quartil, o segundo quartil e o terceiro quartil para a variável nu_nota_mt por raça (tp_cor_raca) do conjunto de dados ENEM 2022 (cada pessoa tem sua cidade) e salve o resultado em objeto tab.
- 2 Crie um objeto gt com nome gt_tab a partir da tabela em tab.
- 3 Inclua uma legenda com o texto "Nota em matemática por raça" e sublegenda "Edição 2021" com a função tab_header.

Salvando tabelas com o pacote gt

• tab_source: inclusão de _fonte de dados_dentes

```
gt_tab <- gt_tab |>
  tab_source_note(
    source_note = md("**Fonte:** Elboração própria.")
  )
gt_tab
```

Comprimento de pétala

Algumas estatísticas descritivas

m_petala	dp_petala	q1_petala	q2_petala	q3_petala	cv_petala
1.462 4.260	0.1736640 0.4699110	1.4 4.0	1.50 4.35	1.575 4.600	11.878522 11.030774 9.940466
	1.462	1.462 0.1736640 4.260 0.4699110	1.462 0.1736640 1.4 4.260 0.4699110 4.0	1.462 0.1736640 1.4 1.50 4.260 0.4699110 4.0 4.35	1.462 0.1736640 1.4 1.50 1.575 4.260 0.4699110 4.0 4.35 4.600

Fonte: Elboração própria.

Salvando tabelas com o pacote gt Exercício

Inclua fonte de dados usando a função tab_source_note como texto "Fonte: elaboração própria." no objeto gt_tab.

Rótulo (legenda) para grupo de linhas

tab_row_group: permite colocar um *rótulo* para um grupo de linhas.

```
gt_tab <- gt_tab |>
  tab_row_group(
   rows = c(1, 3),
   label = md("_Espécies principais_")
)
gt_tab
```

Algumas estatísticas descritivas al netala

d2 netala d3 netala

4.600

4.35

cv netala

11.030774

copecies	···_petala	ap_petala	qperaia	qperaia	qo_petala	cv_petala
Espécies p	rincipais					
setosa virginica	1.462 5.552	0.1736640 0.5518947	1.4 5.1	1.50 5.55	1.575 5.875	11.878522 9.940466

4.0

Fonte: Elboração própria.

m netala

4.260

dn netala

0.4699110

ecnecies

versicolor

Rótulo (legenda) para grupo de linhas Exercício

Inclua um *rótulo* para as linhas pardas e pretas com o texto "negras" no objeto gt_tab.

Rótulo (legenda) para grupo de colunas

tab_spanner: permite rótulo para grupo de colunas.

```
gt_tab <- gt_tab |>
 tab_spanner(
    columns = c(
      q1_petala,
      q2_petala,
      q3_petala
   label = "Quantis"
  ) |>
 tab_spanner(
    columns = c(dp_petala, cv_petala),
    label = "Dispersão"
gt_tab
```

Quantis

Algumas estatísticas descritivas

 Algumas estatisticas descritivas
Dispersão

_	
Dispersão	

Espécies p	rincipais					
especies	m_petala	dp_petala	cv_petala	q1_petala	q2_petala	q3_petala

Espécies prir	ncipais					
setosa	1.462	0.1736640	11.878522	1.4	1.50	1.575
virginica	5.552	0.5518947	9.940466	5.1	5.55	5.875

setosa	1.462	0.1736640	11.878522	1.4	1.50	1.575
virginica	5.552	0.5518947	9.940466	5.1	5.55	5.875
versicolor	4.260	0.4699110	11.030774	4.0	4.35	4.600

versicolor	4.260	0.4699110	11.030774	4.0	4.35	4.600
virginica	5.552	0.5518947	9.940466	5.1	5.55	5.875
setosa	1.462	0.1736640	11.878522	1.4	1.50	1.5/5

Rótulo (legenda) para grupo de colunas Exercício

Inclua um *rótulo* pra as colunas do primeiro quartil, segundo quartil e terceiro quartil com o texto "Quartis" no objeto gt_tab.

Movendo as colunas na tabela

- cols_move_to_start: move uma ou mais colunas para o início da tabela.
- cols_move_to_end: move uma ou mais colunas para o fim da tabela.
- cols_move: move uma ou mais colunas para depois um determinada coluna.

```
gt tab <- gt tab |>
  cols move to start(
    columns = c(especies, dp petala, cv petala)
  ) |>
  cols move to end(
    columns = m petala
  ) |>
  cols move(
    after = cv petala,
    columns = c(q1 petala, q2 petala, q3 petala)
gt_tab
```

Algumas estatísticas descritivas

especies dp_petala cv_petala q1_petala q2_petala q3_petala m_petala		Disp	ersão		Quantis		
	especies	dp_petala	cv_petala	q1_petala	q2_petala	q3_petala	m_petala

Espécies p	principais					
setosa	0.1736640	11.878522	1.4	1.50	1.575	1.462
virginica	0.5518947	9.940466	5.1	5.55	5.875	5.552

setosa	0.1736640	11.878522	1.4	1.50	1.575	1.462
virginica	0.5518947	9.940466	5.1	5.55	5.875	5.552
versicolor	0.4699110	11.030774	4.0	4.35	4.600	4.260

Movendo as colunas na tabela Exercício

Deixe as colunas de gt_tab na seguinte ordem: raça, média, primeiro quartil, segundo quartil, terceiro quartil e desvio padrão usando as funções cols_move_to_start, cols_move e cols_move_to_end.

Atualizando as colunas

cols_label: permite atualizar os rótulos das colunas.

```
gt_tab <- gt_tab |>
  cols_label(
    especies = md("**Espécies**"),
    dp_petala = "Desvio padrão",
    cv_petala = "Coeficiente de variação",
    q1_petala = md("*Q1*"),
    q2_petala = md("*Q2*"),
    q3_petala = md("*Q3*"),
    m_petala = "Média"
)
gt_tab
```

Algumas estatísticas descritivas

	Disper		Quant			
Espécies	Desvio padrão	CV	Q1	Q2	Q3	Média
Espécies p	rincipais					
setosa	0.1736640	11.878522	1.4	1.50	1.575	1.462
virginica	0.5518947	9.940466	5.1	5.55	5.875	5.552
versicolor	0.4699110	11.030774	4.0	4.35	4.600	4.260

Atualizando as colunas Exercício

Para o objeto gt_tab, garante que as colunas tenham os seguintes nomes: Raça, Média, Desvio padrão, Primeiro quartil, Segundo quartil e Terceiro quartil.

Formatação de valores

fmt_number: formatação de valores numéricos de uma ou mais colunas.

```
gt_tab <- gt_tab |>
  fmt_number(
    columns = c(
      dp_petala, q1_petala, q2_petala,
      q3 petala, m petala
    decimals = 2,
    dec mark = ",",
    sep mark = "."
  ) |>
  fmt number(
    columns = cv petala,
    decimals = 2,
    dec mark = ",",
    sep_mark = ".",
    patter = "\{x\} \ \ ""
gt_tab
```

Algumas estatísticas descritivas

	Dispersão					
Espécies	Desvio padrão	CV	Q1	Q2	Q3	Média
Espécies p	rincipais					
setosa	0, 17	11,88	1,40	1,50	1,58	1,46
virginica	0,55	9,94	5, 10	5,55	5,88	5,55
versicolor	0,47	11,03	4,00	4, 35	4,60	4, 26

Formatação de valores Exercício

No objeto ${\tt gt_tab}$, para as colunas numéricas coloque "," para o separador de casa decimal e "." para o agrupador de milhar.