Computer Graphics

- Light TransportBRDFs & Shading -

Philipp Slusallek

Overview

Last time

- Radiance
- Light sources
- Rendering Equation & Formal Solutions

Today

- Bidirectional Reflectance Distribution Function (BRDF)
- Reflection models
- Projection onto spherical basis functions
- Shading

Next lecture

Varying (reflection) properties over object surface: texturing

Reflection Equation - Reflectance

Reflection equation

$$L_o(\underline{x},\underline{\omega}_o) = \int_{\Omega_i} f_r(\underline{\omega}_i,\underline{x},\underline{\omega}_o) L_i(\underline{x},\underline{\omega}_i) \cos \theta_i d\underline{\omega}_i$$

- BRDF
 - Ratio of reflected radiance to incident irradiance

$$f_r(\omega_o, x, \omega_i) = \frac{L_o(x, \omega_o)}{dE_i(x, \omega_i)}$$

Bidirectional Reflectance Distribution Function

- BRDF describes surface reflection for light incident from direction $(\theta_{o}, \varphi_{o})$ observed from direction $(\theta_{o}, \varphi_{o})$
- Bidirectional
 - Depends on two directions and position (6-D function)
- Distribution function
 - Can be infinite
- Unit [1/sr]

$$f_{r}(\underline{\omega}_{o}, \underline{x}, \underline{\omega}_{i}) = \frac{L_{o}(\underline{x}, \underline{\omega}_{o})}{dE_{i}(\underline{x}, \underline{\omega}_{i})}$$

$$= \frac{L_{o}(\underline{x}, \underline{\omega}_{o})}{L_{i}(\underline{x}, \underline{\omega}_{i})\cos\theta_{i} d\omega_{i}}$$

BRDF Properties

Helmholtz reciprocity principle

BRDF remains unchanged if incident and reflected directions are interchanged

$$f_r(\omega_o, \omega_i) = f_r(\omega_i, \omega_o)$$

Smooth surface: isotropic BRDF

- reflectivity independent of rotation around surface normal
- BRDF has only 3 instead of 4 directional degrees of freedom

$$f_r(\underline{x}, \theta_i, \theta_o, \varphi_o - \varphi_i)$$

BRDF Properties

Characteristics

- BRDF units [sr⁻⁻¹]
 - Not intuitive
- Range of values:
 - From 0 (absorption) to ∞ (reflection, δ -function)
- Energy conservation law
 - No self-emission
 - Possible absorption

$$\int_{\Omega} f_r(\underline{\omega}_o, \underline{x}, \underline{\omega}_i) \cos \theta_o d\omega_o \le 1 \quad \forall \theta, \varphi$$

- Reflection only at the point of entry $(x_i = x_o)$
 - No subsurface scattering

BRDF Measurement

- Gonio-Reflectometer
- BRDF measurement
 - point light source position (θ, φ)
 - light detector position (θ_o, φ_o)
- 4 directional degrees of freedom
- BRDF representation
 - m incident direction samples (θ, φ)
 - n outgoing direction samples (θ_o, φ_o)
 - m*n reflectance values (large!!!)

Stanford light gantry

Rendering from Measured BRDF

Linearity, superposition principle

- Complex illumination: integrating light distribution against BRDF
- Sampled BRDF: superimposed point light sources

Interpolation

- Look-up during rendering
- Sampled BRDF must be filtered

BRDF Modeling

- Fit parameterized BRDF model to measured data
- Continuous function
- No interpolation
- Fast evaluation

Representation in spherical harmonics basis

- Mathematically elegant filtering, illumination-BRDF integration
- Soon supported by graphics hardware ?

Reflectance

Reflectance may vary with

- Illumination angle
- Viewing angle
- Wavelength
- (Polarization, ...)

Variations due to

- Absorption
- Surface micro-geometry
- Index of refraction / dielectric constant
- Scattering

BRDF Modeling

- Phenomenological approach
 - Description of visual surface appearance
- Ideal specular reflection
 - Reflection law
 - Mirror
- Glossy reflection
 - Directional diffuse
 - Shiny surfaces
- Ideal diffuse reflection
 - Lambert's law
 - Matte surfaces

Reflection Geometry

Direction vectors (normalize):

N: surface normal

– <u>I</u>: vector to the light source

- \underline{V} : viewpoint direction vector

H: halfway vector

 $\underline{H} = (\underline{I} + \underline{V}) / |\underline{I} + \underline{V}|$

- R(I): reflection vector

 $\underline{R}(\underline{I}) = \underline{I} - 2(\underline{I \cdot N})\underline{N}$

Tangential surface: local plane

Ideal Specular Reflection

- Angle of reflectance equal to angle of incidence
- Reflected vector in a plane with incident ray and surface normal vector

$$\underline{\mathbf{R}} + (-\underline{\mathbf{I}}) = 2 \cos \theta \ \underline{\mathbf{N}} = -2(\underline{\mathbf{I}} \cdot \underline{\mathbf{N}}) \ \underline{\mathbf{N}}$$
$$\underline{\mathbf{R}}(\underline{\mathbf{I}}) = \underline{\mathbf{I}} - 2(\underline{\mathbf{I}} \cdot \underline{\mathbf{N}}) \ \underline{\mathbf{N}}$$

Mirror BRDF

• Dirac Delta function $\delta(x)$

- $-\delta(x)$: zero everywhere except at x=0
- Unit integral iff integration domain contains zero (zero otherwise)

$$f_{r,m}(\omega_o, x, \omega_i) = \rho_s(\theta_i) \cdot \frac{\delta(\cos\theta_i - \cos\theta_o)}{\cos\theta_i} \cdot \delta(\varphi_i - \varphi_o \pm \pi)$$

$$L_o(x, \omega_o) = \int_{\Omega_+} f_{r,m}(\omega_o, x, \omega_i) L_i(\theta_i, \varphi_i) \cos \theta_i \ d\underline{\omega}_i = \rho_s(\theta_i) L_i(\theta_o, \varphi_o \pm \pi)$$

• Specular reflectance ho_{s}

- Ratio of reflected radiance in specular direction and incoming radiance
- Dimensionless quantity between 0 and 1

$$\rho_s(\theta_i) = \frac{\Phi_o(\theta_o)}{\Phi_i(\theta_i)}$$

Diffuse Reflection

- Light equally likely to be reflected in any output direction (independent of input direction)
- Constant BRDF

$$\begin{split} f_{r,d}(\underline{\omega}_o,\underline{x},\underline{\omega}_i) &= k_d = \text{const} \\ L_o(\underline{x},\underline{\omega}_o) &= \int\limits_{\Omega} k_d L_i(\underline{x},\underline{\omega}_i) \cos\theta_i \ d\underline{\omega}_i = k_d \int\limits_{\Omega} L_i(\underline{x},\underline{\omega}_i) \cos\theta_i \ d\underline{\omega}_i = k_d E \\ &- \text{ k_d: diffuse coefficient, material property [1/sr]} \end{split}$$

Lambertian Diffuse Reflection

- Radiosity $B = \int_{\Omega} L_o(\underline{x}, \underline{\omega}_o) \cos \theta_o \ d\underline{\omega}_o = L_o \int_{\Omega} \cos \theta_o \ d\underline{\omega}_o = \pi \ L_o$
- Diffuse Reflectance

$$\rho_d = \frac{B}{E} = \pi k_d$$

Lambert's Cosine Law

$$B = \rho_d E = \rho_d E_i \cos \theta_i$$

For each light source

$$- L_{r,d} = k_d L_i \cos \theta_i = k_d L_i (\underline{I} \cdot \underline{N})$$

Lambertian Objects

Self-Luminous spherical Lambertian Light Source $\Phi_0 \propto L_0 \cdot d\Omega$

Eye-light illuminated Spherical Lambertian Reflector

$$\Phi_1 \propto L_0 \cdot \cos \varphi \cdot d\Omega$$

Lambertian Objects II

The Sun

- Absorption in photosphere
- Path length through photosphere longer from the Sun's rim

The Moon

- Surface covered with fine dust
- Dust on TV visible best from slanted viewing angle

⇒ Neither the Sun nor the Moon are Lambertian

"Diffuse" Reflection

- Theoretical explanation
 - Multiple scattering
- Experimental realization
 - Pressed magnesium oxide powder
 - Almost never valid at high angles of incidence

Paint manufacturers attempt to create ideal diffuse paints

Glossy Reflection

Glossy Reflection

- Due to surface roughness
- Empirical models
 - Phong
 - Blinn-Phong
- Physical models
 - Blinn
 - Cook & Torrance

Phong Reflection Model

Cosine power lobe

$$f_r(\boldsymbol{\omega}_o, x, \boldsymbol{\omega}_i) = k_s (\underline{R}(\underline{I}) \cdot \underline{V})^{k_e}$$

$$- L_{r,s} = L_i k_s \cos^{ke} \theta_{RV}$$

Phong Exponent k_e

$$f_r(\boldsymbol{\omega}_o, x, \boldsymbol{\omega}_i) = k_s (\underline{R}(\underline{I}) \cdot \underline{V})^{k_e}$$

Determines size of highlight

Blinn-Phong Reflection Model

Blinn-Phong reflection model

$$f_r(\boldsymbol{\omega}_o, x, \boldsymbol{\omega}_i) = k_s (H \cdot N)^{k_e}$$

- $L_{r,s} = L_i k_s \cos^{ke} \theta_{HN}$
- $-\theta_{RV} \Rightarrow \theta_{HN}$
- Light source, viewer far away
- I, R constant: H constant θ_{HN} less expensive to compute

Phong Illumination Model

Extended light sources: l point light sources

$$L_{r} = k_{a}L_{i,a} + k_{d}\sum_{l}L_{l}(I_{l} \cdot N) + k_{s}\sum_{l}L_{l}(R(I_{l}) \cdot V)^{k_{e}}$$
 (Phong)
$$L_{r} = k_{a}L_{i,a} + k_{d}\sum_{l}L_{l}(I_{l} \cdot N) + k_{s}\sum_{l}L_{l}(H_{l} \cdot N)^{k_{e}}$$
 (Blinn)

- Color of specular reflection equal to light source
- Heuristic model
 - Contradicts physics
 - Purely local illumination
 - Only direct light from the light sources
 - No further reflection on other surfaces
 - Constant ambient term
- Often: light sources & viewer assumed to be far away