23 重组DNA技术

王强

December 2, 2016

南京大学生命科学学院

Outline

- 23.1 基因工程的相关技术
- 23.2 基因工程主要的工具酶
- 23.3 基因克隆的质粒载体
- 23.4 重组DNA的基本步骤
- 23.5 基因工程的应用及其成果简介
- 23.6 遗传工程的风险和伦理学问题

- 重组DNA技术, 也称基因工程或遗传工程.
- 基因工程是指将特定的基因 (即外源基因), 通过载体或 其它手段送入受体细胞, 使它们在受体细胞中与受体细 胞的基因进行重组, 并能增殖表达, 这样的一种遗传学 操作.
- 基因工程的目的: 通过与优良性状相关的基因的重组, 获得具有高度应用价值的新物种或新产品.

基因工程的优点

- 克服物种间的屏障;
- 有目的, 有计划, 有选择地加工制造各种生物制品;
- 遗传育种, 医学等研究和开发.

Figure 1. 重组DNA技术

23.1 基因工程的相关技术

1. DNA的变性与复性

- DNA变性: 较高温度解链成单链.
- DNA复性: 变性的DNA逐渐冷却, 分离的两条单链 → 双链的DNA.
 - ▶ 短链容易精确复性,长链复性较难.
- 杂交分子: 碱基序列大部分互补, 可以复性.
 - ▶ DNA与RNA之间, 也一样.

- 2. 分子探针寻找特定基因
- 3. Southern印迹和Northern印迹
 - ► Southern印迹可以检测特定的DNA序列.
 - ▶ Northern印迹可以检测特定基因的表达情况.

Figure 2. Southern印迹

4. 原位杂交

可以检测特定细胞中某一基因的表达情况.

Figure 3. KNAT1的表达(原位杂交)

Figure 4. 荧光原位杂交

5. 聚合酶链反应

- 1. PCR技术的基本原理. PCR反应过程:
 - ▶ 双链DNA变性 (90-95°C) 成为单链DNA;
 - ▶ 引物复性 (37-60°C) 同单链DNA互补序列结合;
 - ▶ DNA聚合酶催化 (70-75°C) 使引物延伸.

Figure 5. PCR原理

- 2. Taq DNA聚合酶
- 3. 寡核苷酸引物
- 4. PCR技术的应用

Figure 6. PCR仪

Figure 7. PCR程序设定

23.2 基因工程主要的工具酶

23.2.1 限制性内切核酸酶

- 1. 限制性内切酶的作用
 - ► 识别DNA中特定核苷酸序列, 使每条链的一个磷酸二酯 键断开.
- 2. 限制性内切酶的类型
 - ▶∣型
 - ► II型 → 基因工程
 - ▶ |||型
- 3. 限制性内切酶的命名
 - ▶ 根据来源命名.
 - ▶ 如 EcoRI → 大肠杆菌 (E. coli), R株系, 第一种.

- 4. 限制性内切酶的识别序列
 - ▶ 能识别的特定核苷酸序列
 - ▶ 4-8个碱基对组成, 且碱基互补对称
 - ▶ 只写单链的核苷酸序列
- 5. 限制性内切酶的切割位点
 - II型酶切割位点在识别序列区内

6. 切割片段的末端

- ▶ 粘性末端: 两条链末端交错对称.
 - 5′粘性末端
 - 3′粘性末端
- ▶ 平头末端: 两条链末端平齐.

Figure 8. 粘性末端

23.2.2 DNA连接酶

催化 -PO4 和 -OH 形成磷酸二酯键

- 1. E. coli DNA连接酶
 - ▶ 大肠杆菌基因组编码;
 - ▶ 连接具互补粘性末端的DNA片段.
- 2. T4 DNA连接酶
 - ► T4噬菌体DNA编码;
 - ▶ 既连接具互补粘性末端的DNA片段, 也能连接平头末端.

23.2.3 反转录酶

- 从反转录病毒中制备得到的.
- 该酶能以具有 3'—OH 的DNA或RNA为引物, 以mRNA为模板从 $5' \rightarrow 3'$ 聚合生成cDNA.

23.3 基因克隆的质粒载体

基因载体, 运送外源DNA片段进入受体细胞.

三个条件:

- 有插入位点
- 能在受体细胞内复制
- 有筛选标记基因

质粒

- 1. 存在于细菌, 蓝藻, 绿藻, 真菌等.
- 2. 染色体外裸露环状双链DNA分子, 小的不足1500bp, 大的100kb以上.
- 3. 宿主细胞内能自主复制. 松弛型和严紧型复制质粒. 选用分子小和松弛型复制的质粒.

质粒载体pBR322

- 1. 有复制起始点,能在受体细胞内复制;
- 2. 有2种筛选标记基因;
- 3. 有允许外源DNA插入的位点;
- 4. 有高的拷贝数.

Figure 9. pBR322图谱

23.4 重组DNA的基本步骤

23.4.1 获得目的基因

- 1. 限制性内切酶酶切产生待克隆的DNA片段
- 2. 人工合成DNA
- 3. 反转录酶酶促合成法
 - ► cDNA
- 4. PCR扩增特定的基因片段

23.4.2 DNA分子的体外重组

酶切和连接.

23.4.3 引入宿主细胞和筛选鉴定

- 1. 重组DNA引入宿主细胞
 - ▶ 原核生物细胞是很好的受体细胞
 - 容易摄取外界的DNA
 - 增殖快
 - 基因组简单
 - 便于培养和基因操作
 - ▶ 大肠杆菌, 蓝藻, 农杆菌等
- 2. 重组体克隆的筛选与鉴定

Figure 10. 蓝白斑筛选

Figure 11. 转基因植物筛选

23.5 基因工程的应用及其成果简介

- 1. 生产新型疫苗
- 2. 生产人胰岛素
- 3. 生产人生长激素
- 4. 生产干扰素

5. 动植物基因工程

■ 转基因动物

- 1. 模式动物
 - 模式动物可用来揭示生物学困难领域中的许多奥妙,像 人脑,免疫系统和胚胎发育等.
 - 在试验遗传病的新疗法中, 模式动物也很有用.
 - 癌鼠, 转基因猴.

Figure 12. 转生长素小鼠

(b) 马丁・沙尔菲

(c) 钱永健

Figure 13. 2008年诺贝尔化学奖, 绿色荧光蛋白(GFP)

Figure 14. GFP and dsRed

Figure 15. YFP

Figure 16. 转GFP裸鼠

■ 转基因动物

- 2. 生物反应器动物
 - 生物反应器动物: 利用其乳腺分泌药用蛋白质来制药的 转基因动物.
 - 羊 β -乳球蛋白启动子, α -抗胰蛋白酶.
- 3. 供体动物
 - 英国科学家在1992年12月成功培育出转基因猪,其心脏带有人类的成分;猪心脏来代替人心脏用于移植手术.

■ 转基因植物

- 1. 抗虫植物
 - 苏云金杆菌, 毒蛋白.
- 2. 抗除草剂植物
 - 草甘磷是一种广谱除草剂. 它的靶位点在叶绿体中的 EPSP合成酶. 由于阻断芳香族氨基酸的合成, 植物最终 会死亡.
- 3. 改良药用植物
 - 日本科学家用重组DNA技术提高了镇静药莨莞碱合成的效率.
- 4. 生产疫苗的植物
 - 土豆生产疫苗.

6. 基因诊断和基因治疗

- ▶ 1990年, 首例应用基因治疗, 治愈一名四岁女孩的腺苷脱氨酶缺乏症. 采用逆转录病毒转移腺苷脱氨酶基因.
- ▶ 基因治疗基因: 单基因疾病基因
 - 导致腺苷脱氨酶缺乏症,镰刀形贫血病等; 肿瘤抑制物 基因和肿瘤形成基因等.
- ▶ 腺病毒, 脂质体和单疱疹病毒等
 - 囊性纤维化病, 帕金森氏病, 爱滋病和癌症.

REPORTS

Chemical Synthesis of Poliovirus cDNA: Generation of Infectious Virus in the Absence of Natural Template

Jeronimo Cello, Aniko

Full-length policyirus complementar bling oligonucleotides of plus and m virus cDNA was transcribed by RNA p and replicated in a cell-free extrac infectious poliovirus. Experiments in 1 and CD155 receptor-specific antibo transgenic mice confirmed that the s genic characteristics of poliovirus. synthesize an infectious agent by in by following instructions from a wri

Generating a synthetic genome by whole genome assembly: ϕ X174 bacteriophage from synthetic oligonucleotides

Hamilton O. Smith, Clyde A. Hutchison III⁴, Cynthia Pfannkoch, and J. Craig Venter⁴

Institute for Biological Energy Alternatives, 1901 Rese. Contributed by J. Craig Venter, November 3, 2003

ened the time required for accurate assembly ments of DNA from synthetic oligonucleotid methodology, we have established condition day) assembly of the complete infectious genor nucleotides under stringent annealing conditiassembly of ligation products into full-length merase cycling assembly, a nonexponential rea terminal oliponucleotide can be extended only

had a lower infectivity than natural DNA, indica near a sover interesting than a sover in the source of the

doX174 (5,386 bp) from a single pool of their Complete Chemical Synthesis, Assembly, purification of pooled oligonucleotides to red with molecules of incorrect chain length, (i) ii and Cloning of a Mycoplasma

full-length molecule. We observed a discrete Daniel G. Gibson, Gwynedd A. Benders, Cynthia Andrews-Pfannkoch, Evgeniya A. Denisova, assemblies upon gel analysis of the polymerar Holly Baden-Tillson, Jayshree Zaveri, Timothy B. Stockwell, Anushka Brownley, David W. Thomas, product, without any PCR amplification. PCR Mikkel A. Algire, Chuck Merryman, Lei Young, Vladimir N. Noskov, John I. Glass, J. Craig Venter, product, without any PCR empendement of Milker R. Augite, Shock many then used to obtain larger amounts of pure full: Clyde A. Hutchison III, Hamilton O. Smith*

were recovered after electroporation into E named M. genitalium JCVI-1.0, contains all the genes of wild-type M. genitalium G37 except quence analysis of several infectious isolates v. MG408, which was disrupted by an antibiotic marker to block pathogenicity and to allow for of these synthetic genomes. One such isolar selection. To identify the genome as synthetic, we inserted "watermarks" at intergenic sites known intended sequence. We promote to assemble selection. To identify the genome as synthetic, we inserted "watermarks" at intergenic sites known mirroreu sequerice. We propose to assemble joining separately assembled 5- to 6-kb segmi to tolerate transposon insertions. Overlapping "cassettes" of 5 to 7 kilobases (kb), assembled from ments would be required for a minimal cellule Chemically synthesized oligonucleotides, were joined by in vitro recombination to produce intermediate assemblies of approximately 24 kb. 72 kb ("1/8 genome"), and 144 kb ("1/4 genome"), which were all cloned as bacterial artificial chromosomes in Escherichia coli. Most of these intermediate clones were sequenced, and clones of all four 1/4 genomes with the correct sequence were identified. The complete synthetic genome was assembled by transformationassociated recombination cloning in the yeast Soccharomyces cerevisige, then isolated and sequenced. A clone with the correct sequence was identified. The methods described here will be generally useful for constructing large DNA molecules from chemically synthesized pieces and also from combinations of natural and synthetic DNA segments.

genome, we needed to establish convenient and reliable methods for the assembly and cloning of much larger synthetic DNA molecules.

RESEARCH ARTICLE

Strategy for synthesis and assembly. The native 580.076-bp M. ornitalism genome sequence (Mycoplasma genitalium G37 ATCC 33530 penomic sequence: accession no. L43967) (3) was partitioned into 101 cassettes of approximately 5 to 7 kb in length (Fig. 1) that were individually synthesized, verified by sequencing, and then joined together in stages. In general cassette boundaries were placed between genes so that each cassette contained one or several complete genes. This will simplify the future deletion or manipulation of the genes in individual cassettes. Most cassettes overlapped their adjacent neighbors by 80 bp; however, some segments overlapped by as much as 360 bp. Cassette 101 overlapped cassette 1, thus completing the circle.

Short "watermark" sequences were inserted in cassettes 14, 29, 39, 55 and 61. Watermarks are inserted or substituted sequences used to identify or encode information into DNA. This information can be either in noncoding or coding sequences (10-12). Most commonly, watermarking has been used to encrypt information within coding sequences without altering the amino acid sequences (10, 11). We opted to insert watermark sequences at

Figure 17. 全合成基因组

23.6 遗传工程的风险和伦理学问题

1. 对人的影响

- ▶ 超级细菌
- ▶ 对宗教. 习俗和生活方式的影响.

2. 对环境的影响

- ▶ 转基因的逃逸
- ▶ 超级细菌
- ▶ 超级杂草
- ▶ 对生物多样性的影响

3. 严格的释放规定

▶ 生物安全实验室规则

罗马教廷公布"新七宗罪"

- 滥用药物
- 有道德争议的科学实验
- 环境污染
- 制造贫困
- 社会不平等和不公义
- 基因改造
- 大肆聚敛财富