Amit Dawadi

Graduate Student

Clark University, Worcester, MA 01610, USA

Email: ADawadi@clarku.edu

ORCID: https://orcid.org/0009-0000-2934-3451 Linkdin: https://www.linkedin.com/in/amit-dawadi/

Google Scholar: https://scholar.google.com/AmitDawadi Personal Webpage: https://physicshunter.wordpress.com

Printed on: June 22, 2025

Education

Ph.D. candidate in Physics

Clark University, MA

Expected: May 2026 Advisor: Arshad Kudrolli

Research Focus:

- My research explores the mechanics of soft materials (thin sheets, elastic filaments), focusing on how geometric constraints and external forces govern their deformation, self-organization, and resulting structural and dynamic properties.
- Self-propulsion of asymmetric ice blocks driven by buoyancy-induced convection during melting, with implications for iceberg dynamics in warm oceans.
- Adaptable granular metamaterials for energy absorption and impact mitigation.

M.Sc. in Physics 2020

Thesis: Study of Structural and Electronic Properties of Half Heusler Alloys CuCdX (X=Ge, As and Se).

Advisors: Manoj Kumar Yadav and Vinaya Kumar Jha

Research Interests

Emergent structures and dynamics in soft matter and complex systems shaped by geometry, interactions, and external driving far from equilibrium.

Publications and Preprints

- [1] A. Dawadi and A. Kudrolli. Memory in cyclically crumpled sheets. *Physical Review Research*, 6(4), November 2024.
- [2] A. Dawadi, A. Biswas, J. Chopin, and A. Kudrolli. Bundling architecture in elastic filaments with applied twist. *arXiv preprint*, arXiv:2501.04650, 2025. (Accepted in PRE)
- [3] M. Berhanu, A. Dawadi, M. Chaigne, J. Jovet, and A. Kudrolli. Self-propulsion of floating ice blocks caused by melting in water. arXiv preprint, arXiv:2412.16010, 2024.(Under Review)

Conference Presentations

- Architected granular materials for impact mitigation, A. Dawadi and A. Kudrolli, 21st Northeastern Granular Materials Workshop at Yale University, 2025
- Self-propulsion of floating ice blocks in saline water, A. Dawadi and A. Kudrolli, 103rd New England Complex Fluids Workshop at UMass Amherst, 2025
- Bundle architecture of twisted elastic filaments with migration, A. Dawadi, A. Biswas, J. Chopin, and A. Kudrolli, APS March Meeting, 2025
- \bullet Self-Propulsion of floating ice blocks in water, A. Dawadi and A. Kudrolli, 101^{st} New England Complex Fluids Workshop, Harvard, 2024
- Folding pathways to crumpling a sheet with cyclic wringing, A. Dawadi and A. Kudrolli, APS March Meeting, 2024
- Twisted structure of multifilament bundles and sheets, A. Biswas, A. Dawadi, and A. Kudrolli, APS March Meeting, 2024
- Self-propulsion of floating ice blocks by melting, M. Chaigne, J. Jovet, M. Berhanu, A. Dawadi, and A. Kudrolli, Rencontre du Non-Linéaire, 2024

Research Experience

Graduate Research Assistant, Complex Matter and Nonlinear Physics Lab, Clark University Jun 2023 – Present

 $May\ 2022-Dec\ 2022$

Advisor: Prof. Arshad Kudrolli

- Designed and developed an automated twisting system using stepper motors for cyclic twisting of cylindrical shells and filament bundles, with precise control over speed, direction, and cycle count. Integrated real-time image acquisition and torque sensing for dynamic mechanical response analysis.
- Developed a custom laser profilometer using a sheet laser and camera for high-resolution surface profiling.
- Integrated the laser profilometer into the twisting setup to enable in-situ surface scanning after each twist-untwist cycle, eliminating the need for remounting and reducing experimental error.
- Designed and performed experiments, and collected data to study the self-propulsion of ice blocks in water due to melting.
- Designed and fabricated 3D-printed experimental samples for shock-mitigating and energyabsorbing metamaterials with novel architectures. Developed customized mechanical testing setups and conducted experiments to evaluate their performance.
- Utilized 3D printing (Formlabs, Prusa) extensively to prototype and fabricate custom experimental components and fixtures.

Teaching Experience

Teaching Assistant – Oscillations, Waves and Optics Fall 2021

Clark University, MA

Teaching Assistant – Quantum Physics and Relativity Optics Clark University, MA Spring 2022 & Spring 2023

Supervised labs, graded reports and assignments, and occasionally taught classes when needed.

Current Research Projects

• Architected granular materials for impact mitigation: Investigating energy dissipation and structural response of designed granular lattice systems under dynamic loading for impact mitigation using experimental impact tests and modeling.

Selected Projects

• Estimating Atomic Mass via Brownian Motion – Final Project, Fluid Mechanics Course

Tracked microbead Brownian motion using confocal microscopy.

Extracted diffusion coefficients and estimated Avogadro's number.

Used Einstein's relation to infer atomic mass of hydrogen.

• Statistical Analysis of Facet Formation by Random Line Segmentation – Final Project, Advanced Computer Simulation Course

Studied the statistics of facet size, edges number/length/angle distributions resulting from random line intersections within a confined area using computational simulations.

Technical Skills

- Experimental: Optical imaging, X-ray tomography, laser profilometry, experimental design, force and torque measurements, shadowgraphy imaging, confocal microscopy image analysis, signal professing and analysis, particle tracking, Particle image velocimetry (PIV)
- Tools and Softwares:
 - **Programming:** C, Python, Java, MATLAB, LaTeX, Quantum Espresso, **Deep Learning**.
 - Designing: Inkscape, AutoCAD, Autodesk Fusion 360, Prusa Slicer, Meshmixer, Formlabs PreForm
 - Image analysis: ImageJ, Matlab
 - Operating systems: Windows, Ubuntu
- Analytical:
 - Mathematical and numerical methods: Linear algebra, Differential equations, FFT, least square and regression analysis, Runge-Kutta Methods, Monte Carlo simulations
 - Theoretical Foundations: Statistical mechanics, Fluid mechanics, Dimensional analysis, Elastoplasticity, Hyperelasticity, Non-linear dynamics, Density Functional Theory (DFT)

• Industry Tools: Prusa Mk3/Mk4 3D printing, Formlabs Form 3/Form 4 3D printing, Arduino, Oscilloscope, Function Generator, Operational Amplifier, Torque/Force sensor, Motor Controller Systems (operation, troubleshooting, and integration with custom experimental hardware for precise motion control)

Professional Recognitions and Outreach

- Winner, APS GSNP Image of the Month, Jan 2025
- APS Student Ambassador for Physics, 2025
- Outreach: Demonstrated physics at APS Squishy Science Sunday (2024, 2025), Cambridge Science Festival

Professional Memberships

- American Physical Society (APS)
- Association of Nepali Physicists in America
- Nepal Physical Society