

SEGON CONTROL DE TEORIA

Programació Lineal i Entera, curs 2013-14 2on curs Grau en Estadística UB-UPC

NOM ALUMNE:

	Temps estimat	Punts		Puntua	ció	Material d'ajut.	
Test	15min	2 pt	C:	I:		Cap.	
Exercici 1	75min	a) 1.6pt				Amb transparències de teoria i calculadora.	
		b) 1.6pt					
		c) 1.6pt					
		d) 1.6pt				curcuradora:	
		e) 1.6pt					
Total	90min	10 pt				PROHIBIT L'ÚS DE MÒBILS DURANT LA PROVA	

TEST (2 punts / 15min / sense apunts)

- Encercleu a cada possible resposta a), b) i c) si és certa (Si) o falsa (No).
- Resposta correcta +1pt, incorrecta -0.4pts., en blanc 0.pts.

TEST 1. El signe de les variables duals associades al següent problema primal

$$\text{(P)} \begin{cases} \max & -x_1 & -3x_2 \\ \text{s.a.:} & x_1 & -x_2 & = 2 \\ & 2x_1 & +x_2 & \leq 3 \\ & -x_1 & \geq 4 \end{cases}$$

- a) Si / No És : λ_1 lliure, $\lambda_2 \ge 0$, $\lambda_3 \le 0$. SÍ
- **b)** Si / No És : λ_1 lliure, $\lambda_2 \le 0$, $\lambda_3 \ge 0$. NO
- c) Si / No És : $\lambda_1 \ge 0$, λ_2 lliure, $\lambda_3 \le 0$. NO

TEST 2. Que la solució bàsica òptima d'un problema de (P) sigui degenerada dual, implica que:

- a) Si / No Alguna variable dual és zero. NO
- b) Si / No Alguna variable bàsica és zero. NO
- c) Si / No El cost reduït d'alguna v.n.b. és zero. SÍ

TEST 3. En un joc finit de suma zero, el teorema minimax:

- a) Si / No Assegura que el problema del jugador 1 satisfà que $z_P^* \equiv z_D^*$. SÍ
- Si / No Indica que és possible que per algun dels dos jugadors no existeixi estratègia òptima.
 NO
- c) Si / No Indica que el jugador 1 sempre tindrà un guany net positiu. NO

TEST 4. Si introduim la modificació $c_i \leftarrow c_i + \phi_{c_i}$ amb $\phi_{c_i} \in \Phi_{c_i} = [\phi_{c_i}^{min}, \phi_{c_i}^{max}]$

- a) Si / No El valor de les variables dual pot canviar. SÍ
- b) Si / No El valor de la funció objectiu pot canviar. SÍ
- c) Si / No El valor de les variables òptimes pot canviar. NO

TEST 5. No superar la passa màxima dual $\theta_D^* = \min_{j \in \mathcal{N}, d_{r_{N_j}} < 0} \left\{ \frac{-r_j}{d_{r_{N_j}}} \right\}$ permet assegurar:

- a) Si / No La conservació de la factibilitat primal. NO
- b) Si / No La conservació de la factibilitat dual. SÍ
- c) Si / No El caràcter de descens de la direcció de moviment. NO

SEGON CONTROL DE TEORIA

Programació Lineal i Entera, curs 2013-14 2on curs Grau en Estadística UB-UPC

NOM ALUMNE:

EXERCICI 1. (8 punts / 75min / amb transparències de teoria i calculadora)

Considereu el següent problema de programació lineal i la seva representació gràfica:

a) (1.6 punts) Sense fer cap càlcul, indiqueu quina és la solució òptima del problema dual de (P) justificant la vostra resposta fent servir només el teorema feble de dualitat i els seus corol·laris.

Considereu a partir d'ara una funció objectiu del problema (P) igual a $c' = \begin{bmatrix} 1 & 1 \end{bmatrix}$

b) (1.6 punts) Formuleu el problema dual i representeu gràficament la seva regió factible:

Problema Dual	Regió factible:		
	λ_2		
	+ 2		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

- c) (1.6 punts) Trobeu gràficament la solució òptima dual λ^* i comproveu que coincideix amb el valor de la solució dual que proporciona el corol·lari del teorema fort de dualitat.
- d) (1.6 punts) Obtingueu la solució òptima del problema (P) realitzant una iteració del simplex dual a partir de la base $\mathcal{B}^6 = \{3,4\}$. Identifiqueu la iteració realitzada sobre el poliedre dual, és a dir, indiqueu al gràfic de l'apartat b) els vectors λ corresponents a \mathcal{B}^6 i a la base òptima \mathcal{B}^* .
- e) (1.6 punts) Calculeu l'interval de valors de b_2 , $[b_2^{\min}, b_2^{\max}]$ que conserva l'optimalitat del problema primal. $\Phi_{b_2} = [\phi_{b_2}^{\min}, \phi_{b_2}^{\max}]$. Trobeu gràficament la solució del problema dual quan $\tilde{b}_2 := b_2 + \phi_{b_2}^{\min}$. Quina característica especial té el problema dual quan es formula per aquest nou valor \tilde{b}_2 ?

Programació Lineal i Entera, curs 2013-14 20n curs Grau en Estadística UB-UPC

NOM ALUMNE:

SOLUCIÓ EXERCICI 1.

- a) S'observa que el problema primal és il·limitat. Llavors, pel corol·lari i del teorema feble de dualitat el dual serà infactible.
- b) Problema dual corresponent a $c = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ i representació gràfica:

$$\widetilde{\Lambda}^* = \left\{ \lambda \in \mathbb{R}^2 \middle| \lambda = \begin{bmatrix} 0 \\ \lambda_2 \end{bmatrix}, \lambda_2 \leq \frac{1}{2} \right\}$$

Gràficament s'obté $\lambda^* = \begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix}$. D'acord amb el corol·lari del Teorema fort de dualitat $\lambda^{*'} = c_B' B^{-1}$ on c_B' and B^{-1} corresponen a la base òptima primal $\mathcal{B}^5 = \{2,3\}$:

$$\lambda^{*'} = c_B' B^{-1} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1/2 \\ 1 & -1/2 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} \end{bmatrix}$$

d) Simplex dual a partir de $\mathcal{B} = \{3,4\}$:

$$(P) \begin{cases} \min & x_1 + x_2 \\ \text{s.a.:} & -x_1 + x_2 + x_3 = 2 \\ -x_1 + 2x_2 - x_4 = 2 \\ x_1, & x_2 - x_3, & x_4 \ge 0 \end{cases}$$

$$\mathcal{B} = \{3,4\}, B = B^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, x_B = \begin{bmatrix} 2 \\ -2 \end{bmatrix}, \mathcal{N} = \{1,2\}, r = c_N = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \lambda = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, z = 0$$

- **1a iteració:** $\mathcal{B} = \{3,4\}$, $\mathcal{N} = \{1,2\}$
 - Selecció de la v.b de sortida $p: x_B = \begin{bmatrix} 2 \\ -2 \end{bmatrix} \not\ge 0 \Rightarrow p = 2, B(2) = 4, x_4 \text{ v.b.s.}$
 - (D) il·limitat?: $d'_{r_N} = \beta_2 A_N = \begin{bmatrix} 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -2 \end{bmatrix} \not\geq 0$
 - v.n.b. d'entrada: $\theta_D^* = \min_{j \in \mathcal{N}, d_{r_{N_j}} < 0} \left\{ \frac{-r_j}{d_{r_{N_s}}} \right\} = -\frac{r_2}{d_{r_{N_s}}} = \frac{1}{2} \Longrightarrow q = 2$
 - Canvi de base i actualitzacions:
 - Act. variables duals i f.o.:

$$r_{N} \coloneqq r_{N} + \theta_{D}^{*} d_{r_{N}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ 0 \end{bmatrix}, \ r_{B(p)} = r_{4} \coloneqq \theta_{D}^{*} = \frac{1}{2}$$
$$\lambda \coloneqq \lambda - \theta_{D}^{*} \beta_{p}' = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix}, \ z \coloneqq z - \theta_{D}^{*} x_{B(p)} = 0 - \frac{1}{2} (-2) = 1$$

Act. variables primals:

$$d_B = -B^{-1}A_2 = \begin{bmatrix} -1\\2 \end{bmatrix}, \ \theta^* = -\frac{x_{B(2)}}{d_{B(2)}} = -\frac{-2}{2} = 1.$$

SEGON CONTROL DE TEORIA

Programació Lineal i Entera, curs 2013-14 20n curs Grau en Estadística UB-UPC

NOM ALUMNE:

$$\begin{aligned} x_B &\coloneqq x_B + \theta^* d_B = \begin{bmatrix} 2 \\ -2 \end{bmatrix} + 1 \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, x_q = x_2 \coloneqq \theta^* = 1 \\ \circ \quad \mathcal{B} \leftarrow \{3,2\} \,, \mathcal{N} \leftarrow \{1,4\} \end{aligned}$$

• **2a iteració:** $\mathcal{B} = \{3,2\}, \mathcal{N} = \{1,4\}$

$$\circ \quad x_B = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \ge 0 \implies \text{optim.}$$

e) Condicions de conservació de la factibilitat primal:

$$x_{B}(\phi_{b_{2}}) = B^{-1} \begin{bmatrix} 2 \\ 2 + \phi_{b_{2}} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 2 + \phi_{b_{2}} \end{bmatrix} = \begin{bmatrix} 1 & -1/2 \\ 0 & 1/2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 + \phi_{b_{2}} \end{bmatrix} = \begin{bmatrix} 2 - 1 - \frac{\phi_{b_{2}}}{2} \\ 1 + \frac{\phi_{b_{2}}}{2} \end{bmatrix} \ge 0 \Rightarrow$$

$$\Rightarrow \begin{cases} \phi_{b_{2}} \le 2 \\ \phi_{b_{2}} \ge -2 \end{cases} \Rightarrow \Phi_{b_{2}} = [\phi_{b_{2}}^{\min}, \phi_{b_{2}}^{\max}] = [-2, 2]$$

Si fem $\tilde{b}_2 := b_2 + \phi_{b_2}^{\min} = 2 - 2 = 0$ el problema dual té òptims alternatius, i la solució òptima dual ve definit pel conjunt $\tilde{\Lambda}^* = \left\{\lambda \in \mathbb{R}^2 \middle| \lambda = \begin{bmatrix} 0 \\ \lambda_2 \end{bmatrix}, \lambda_2 \leq \frac{1}{2} \right\}$.