

Electronic Lab Notebook Wiki

Using a wiki system to record experimental work in the life sciences

Dr. Michael Podvinec

Biozentrum Research IT

Documenting Experiments

Using an electronic laboratory notebook

Documenting your research is part and parcel of the scientific method

Document your work, your observations both expected and unexpected, and your data.

- Laboratory Notebooks
- Drawings, paintings
- Numeric data in tables, books

Documenting your research is even more important today

Document your work, your observations both expected and unexpected, and your data.

- Electronic Laboratory Notebooks
- Digital images
- Numeric data in files, databases

The goal:

Reproducible Documentation

Formal requirements for scientific record keeping

Useful records should be:

- Legible (if handwritten)
- Well organized labeled, indexed, catalogued, etc.
- Accurate & complete include (1) original data and important study details (meta-data) and (2) successful & unsuccessful studies and activities
- Describe and date all alterations and changes to records
- Records should allow repetition of procedures and studies by yourself & others
- Are accessible to others (physically and/or electronically) both short and long term
- Are stored and backed-up properly and regularly for the short & long term (archiving)
- Are research diaries of the researcher's work & thoughts

Scientific Record Keeping Best Practices

Useful & good research records should include these details:

- What you did experimental protocol
- When you did it date
- **Why** you did it objective
- **How** you did it methods
- Who you are (the person creating the record)
- What project(s) this work was part of
- Who conceived of the study (if not yourself)
- Special materials & instruments utilized
- Source of materials & instruments
- Discussion of data results expected and unexpected
- Data handling and analyses
- Data interpretation by yourself (and others if pertinent)
- Next steps based on reported results

Tool Landscape

Where to store your data: Data management systems

LabKey

ELN

- Information about **experiments**
- Who did what when and why?
- What was the *outcome*?
- **Protocols**
- **Descriptions**
- Gel pictures, ...

- **Track samples and** materials
- Track provenance
- Traceability of processes
- Procedures and workflows
- Automation is relevant
- Strains
- Vectors, ...

- **Store and annotate large** datasets
- Provide programmatic access
- Make datasets searchable
- Analysis and visualization may be built-in
- Microscopy images
- Sequencing data, ...

What is an Electronic Lab Notebook (ELN)?

An ELN in molecular biology is:

- A replacement for the paper lab notebook, where you write up experiments.
- Provides a verifiable record that and how an experiment was conducted.
- Allows easy access to current and past experimental data

An ELN is not:

- A central repository for all biological data generated
- The tool responsible for uploading data into a result database
- A tool to manage lab activities or stocks (i.e. it is not a LIMS)
- A text mining tool

Benefits and Downsides of ELN (and LIMS) use

Benefits:

- Fulfil requirements for research documentation electronically
 - Scientific integrity/reproducible research requirements
 - Legal issues: Fraud investigations
 - IP requirements
- Makes information searchable and interconnected
- Integration point for people and for data over time and space
 - New people starting in the lab, picking up experiments
 - Several people in the lab working together
 - Can even be an exchange hub

Downsides:

- Software is often costly
 - geared towards pharma industry
 - (X00\$/user/year)
- Often rigid constraints on data entry
 - Users don't like it and don't use it
- Adapting commercial ELNs is costly
- Full IT integration of a lab towards LIMS is costly:
 - tablets, scanners, barcode readers, lab automation, ...
 - Lots of equipment updates needed
 - Disrupts work organization in the lab
 - Possibly suited for core facility-type activities

Benefits and Downsides of ELN (and LIMS) use

Benefits:

- Fulfil requirements for research documentation electronically
 - Scientific integrity/reproducible research requirements
 - Legal issues: Fraud investigations
 - IP requirements
- Makes information searchable and interconnected
- Integration point for people and for data over time and space
 - New people starting in the lab, picking

Downsides:

- Software is often costly
 - geared towards pharma industry
 - (X00\$/user/year)
- Often rigid constraints on data entry
 - Users don't like it and don't use it
- Adapting commercial ELNs is costly
- Full IT integration of a lab towards LIMS is costly:
 - tablets, scanners, barcode readers, lab automation, ...
 - Lots of equipment undates needed

Bottom line:

 An ELN solution must support the current way of working to be adopted at all.

 Its additional capabilities can then lead to new ways of working together. /pe

e lab

Choosing an ELN for your research: Considerations

Usage / Business Model

- Each researcher on their own? Per-group? Per institute/department? Fully open?
- Academic/Open Source vs. Commercial
- Costs: Licenses, Implementation/Customization/Introduction Effort, Operation & Maintenance
- Commercial world: (Pharma) Industry requirements major driver of features and costs

Operation

- Server run on-premise versus cloud-based offerings
 - Legal concerns: data protection laws
 - Keeping core Intellectual Property local
 - Due diligence and approval regarding cloud usage necessary
- Commitment to keep system running for 10+ years

More information

- Choosing an ELN: https://www.nature.com/articles/d41586-018-05895-3
- Collection of ELNs and LIMS: https://www.limswiki.org/ or https://eln-finder.ulb.tu-darmstadt.de/

ELN Wiki Features

Using a Wiki is a simple step into digital record-keeping

Wikis are a knowledge-gathering tool

After: Ackoff, R. L., "From Data to Wisdom", Journal of Applied Systems Analysis, Volume 16, 1989 p 3-9.

of wiki

Collaborative platform for documentation

- For working groups
- For cross-functional projects
- For process documentation (HR, IT)
- For research documentation

Wikis in Enterprises and University

Essential advantages

- Simple editing, fast and intuitive handling
- Focus on collaborative documentation
- Focus on content rather than presentation
- Extensive capabilities to interlink, connect via keywords, search
- Version history and author tracking

Enterprise requirements

- Security and access control (unlike Wikipedia)
- Aggregated user access control (groups and roles)
- Granular access control
- Safe operation and support
- Possibility to extend functionality when needed

ELN Wiki: Browser-based access to research data

Advantage of a wiki:

Very flexible and adaptable

Downside of a wiki:

Very flexible and adaptable

Accessible from everywhere

Requires Unibas login

Flexible and simple to use

- "Paper-on-glass"
- Simple, concurrent editing
- Possibility for templates

Private research group/project space

- Open space: Everyone within group has access
- Version history ensures traceability and audit trail
- Common areas: allow information exchange

ELN Wiki at Biozentrum++

Using Confluence as a Wiki-based ELN

- Started 2013 with a single lab (Jenal group) as prototype.
- Today: 36 ELN Wiki spaces for groups and core facilities:
 - 22 active, 7 documentation/collaboration spaces, 1 retired, 6 no longer used.
 - Expanded to: **DBM** (35), **Swiss TPH** (8), **Physics** (2) research groups
- Commercial software: Atlassian Confluence
- Hosted on-premise by IT Services, not cloud-based.
- Data security:
 - Full edit history (regular users can't delete)
 - All data stored locally and backed up (disaster recovery)
 - Not suitable for patient information/sensitive information

ELN Wiki Space Design

Example ELNwiki start page

Example ELNwiki experiment page

Opening one member's lab book

Linking experiment description and results

Illustrative images (Screenshots, gel pictures, set-up of experimental apparatuses):

Upload / display in-line

- Protocols, vendor instructions, papers: Upload / display in-line
- Samples, materials:
 - Permanent link to a LIMS system (e.g. Labcollector, PyRAT, Labkey)

Raw Data:

- Store in SDMS
- Store on a centrally managed, shared drive (and provide location information)
- Store in gitlab (for source code)

ELN Wiki experience at Biozentrum++

"Power features"

- Data is organized by experiment, not constrained by linear page sequence
- Organize content by labels
- **TODO-lists:** TODO in minutes or for experiments
- Space homepage can become internal information hub
- Blog posts: Record and transmit information in the lab
- Optional page- and space-watching (email notifications on updates)

"Pro features"

- Collect lists of similar items (computers, plasmids, protocols) by using the {page properties} and {page properties report} macros
- Excerpts

Summary

Useful, lightweight tool for life sciences & beyond(?)

Clear statement of intent from PI is crucial for good adoption

Key features

- User-friendly, simple
- Central availability of information
- Search, access from everywhere

"Working with ELNwiki: Not faster, but better"