1 Одновременное оценивание движения ВС и систематических ошибок. Алгоритмы параллельной фильтрации процессов, связанных через измерения

В настоящее время в системах УВД для определения параметров движения воздушных судов (координаты, скорости, ускорения и т.д.) используются алгоритмы линейного рекуррентного оценивания, близкие по используемой математической технике к фильтру Калмана. В качестве основного метода применяется алгоритм ІММ. Главная особенность состоит в том, что задача оценки параметров движения для всех ВС, нахоящихся в зоне наблюдения, решается независимо для каждого ВС. Это полностью соответствует представлению о том, что движение каждого ВС никак не зависит от движения других ВС. Также это удобно с точки зрения архитектуры программы, реализующей систему мультитраекторной обработки — данные, описывающие каждое ВС, можно легко выделить в отдельный объект, который можно создавать, удалять и использовать, например, для сравнения со вновь поступающими не привязанными к конкретному ВС измернеиями. С точки зрения математических алгоритмов, такое разделение также удобно, поскольку позволяет оставаться в рамках расчётов в пространстве достаточно низкой размерности (4—6 для фильтра Калмана, 15—30 для ІММ).

Наблюдение за движением ВС производится с помощью радиотехнических средств: как правило это система из нескольких радиолокаторов и система АЗН-В. Реальные измерительные средства, помимо случайных ошибок измерений, имеют систематические ошибки. Случайные ошибки измерения изначально предусмотрены архитектурой алгоритмов рекуррентного оценивания, как фильтра Калмана, так и ІММ. Систематические ошибки в случае не сложных вариантов их пространственной зависимости также легко могут быть включены в алгоритмы оценивания, но при их включении обнаруживается одно весьма существенное обстоятельство: систематические ошибки одного и того же измерительного средства присутствуют в уравнении наблюдения для разных воздушных судов. Так, в простом случае связи между неизвестными оцениваемыми состояниями и измерением РЛС возникает следующее линейное уравнение наблюдения:

$$z_{al}(t) = C^{\chi}(t)\chi_a(t) + C^{\varsigma}(t)\varsigma_l(t) + D(t)w_l(t).$$
(1.1)

Здесь t — момент времени; a — индекс, обозначающий номер воздушного судна (aircraft); l — индекс радиолокатора (locator); z_{al} — вектор измерения; χ_a — вектор параметров движения ВС; ς_l — вектор параметров, характеризущий состояние РЛС; $w_l(t)$ — текущая реализация случайной ошибки РЛС; $C^{\varsigma}(t)$, $C^{\varsigma}(t)$, D(t) — матрицы, характеризующие вклад каждого параметра на измерение.

Из вида этого уравнения ясно, что систематическая ошибка локатора l может быть оценена только совместно с параметрами движения BC a. Но этот радиолокатор наблюдает не только это движение, также верно и обратное — BC a наблюдается не только радиолокатором l. Фазовые переменные для разных движений оказываются «сцепленными» между собой через параметры систематических ошибок. Таким образом, система всех движений и всех систематических ошибок нуждается в совместном

оценивании.

Как будет показано далее, даже в простом случае неуправляемых движений, стандартные процедуры оптимального совместного оценивания — фильтр Калмана, оценка Гаусса—Маркова — приводят к соотношениям, в которых переменые, относящиеся к разным движениям и систематическим ошибкам, существенно связаны друг с другом. Это приводит к следующим неприятным последствиям:

- нет возможности задать в программе отдельные объекты для движений разных BC;
- затруднено создание и удаление движений;
- в вычислениях необходимо поддерживать большую матрицу ковариации ошибок оценивания, (в которую входят все кросс-ковариации для ошибок оценивания между различными ВС, между каждым ВС и каждым РЛС и т.д.) это выливается в большие вычислительные затраты.

От требования, чтобы параметры оценивались оптимально, можно отказаться. При этом появляется возможность устранить нежелательные эффекты, указанные выше. Но в таком случае необходимо тщательно проектировать алгоритм оценивания, для того чтобы получаемые оценки были близки к неизвестным истинным параметрам.

Целью исследования, излагаемого ниже, является создание алгоритма лёгкого для параллельной реализации по отдельным воздушным судам, при этом обладающим низким уровнем погрешности оценивания. Исследование логически продолжает исследование, изложенное в отчёте [1].

1.1 Описание задачи наблюдения за ВС

Считаем, что каждое воздушное судно подчиняется независимому, но одному и тому же по структуре уравнению движения. Так движение BC номер i имеет описание

$$d\chi_i(t) = f(t, \chi_i(t), u_i(t))dt + dv_i(t),$$

где χ_i — вектор параметров движения BC; f — функция, задающая скорости движения; $u_i(t)$ — функция управления, специфичная для BC i; dv_i — приращение случайного возмущения для непрерывного варианта динамики. В силу того, что наблюдение за BC ведётся «в большом масштабе», вектор χ_i может содержать не очень большое число параметров, а функция f может быть выбрана достаточно простой. Измерения при помощи РЛС производятся в дискретные моменты времени, поэтому дальше удобно иметь дело с дискретизированным вариантом системы. При этом разумно ограничиться динамикой, близкой к линейной

$$\chi_i(t_k) = A_i(t_k, \chi_i(t_{k-1}), u_i(t_k))\chi_i(t_{k-1}) + B_i(t_k)v_i(t_k).$$
(1.2)

Здесь v_i — случайное возмущение; B_i — матричная функция, формирующая влияние случайного возмущения на движение; A_i — матрица, формирующая вид движения системы, зависящая от текущего значения управления $u(t_k)$. Моменты времени t_k принадлежат некоторому дискретному множеству \mathcal{T} и, на самом деле, определяются по ходу развития движения, т.е. не являются заданными заранее.

В программе мультирадарной обработки для метода IMM уравнения движения использываются именно в виде (1.2). Далее, будем рассматривать более простую линейную динамику без управления

$$\chi_i(t_k) = A_i(\mathcal{T}_k)\chi_i(t_{k-1}) + B_i(t_k)v_i(t_k).$$
(1.3)

Здесь $\mathcal{T}_k = \{t_l \in \sqcup : t_l \leqslant t_k\}$ — множество моментов времени до текущего включительно.

В качестве основного варианта при моделировании будем выбирать прямолинейное равномерное движение на плоскости

$$\chi_i(t_k) = \begin{bmatrix} x_i(t_k) \\ v_i(t_k) \end{bmatrix}, \quad x_i(t_k), v_i(t_k) \in \mathbb{R}^2, \quad A_i(\mathcal{T}_k) = \begin{bmatrix} I_{2 \times 2} & (t_k - t_{k-1})I_{2 \times 2} \end{bmatrix}, \quad (1.4)$$

где x_i , v_i обозначают векторы координат и скорости на плоскости \mathbb{R}^2 .

Формирование наблюдений z_{ij} будем описывать следующим уравнением наблюдения, несколько более сложным, чем уравнение (1.1):

$$z_{ij}(t) = C^{\chi}(t_k)\chi_i(t_k) + C_j^{\varsigma}(t_k, \chi_i(t_k))\varsigma_j(t_k) + D_j(t_k, \chi_i(t_k))w_j(t_k).$$
 (1.5)

Матрицы C_j^{ς} , D_j для всех имеющих смысл случаев зависят от положения ВС, поэтому явно указывается зависимость от χ_i . В качестве параметров ς_j могут выступать постоянная систематическая ошибка по дальности и азимуту, коэффициент линейной зависимости для систематической ошибки по дальности и т.д. Матрица C_j^{ς} описывает влияние этих неизвестных параметров на измерения.

Для параметров ς_j , характеризующих систематические ошибки РЛС, также введём динамику

$$\varsigma_j(t_k) = A_j^{\varsigma}(t_k)\varsigma_j(t_{k-1}) + B_j^{\varsigma}(t_k)v_j^{\varsigma}(t_k). \tag{1.6}$$

Матрица B_i^ς характеризует дрейф систематических ошибок со временем. Для моделирования будем принимать:

$$\varsigma_j = \begin{bmatrix} \Delta_j^r \\ \Delta_j^{\alpha} \end{bmatrix}, \qquad A_j^{\varsigma}(t_k) \equiv I_{2\times 2}, \qquad B_i^{\varsigma}(t_k) \equiv 0_{2\times 2}.$$
(1.7)

Здесь $\Delta_j^r, \Delta_j^\alpha \in \mathbb{R}$ — значения постоянных систематических ошибок по дальности и азимуту, соответственно. Подробно понятия систематических ошибок по дальности и азимуту введены в отчёте ???.

Рассмотрим общий фазовый вектор

$$\xi(t) = \begin{bmatrix} \chi_1(t) \\ \chi_2(t) \\ \vdots \\ \chi_n(t) \\ \zeta_1(t) \\ \zeta_2(t) \\ \vdots \\ \zeta_m(t) \end{bmatrix} . \tag{1.8}$$

3десь n и m — количества наблюдаемых BC и наблюдающих радиолокаторов. Урав-

нения (1.3), (1.6) можно переписать как

$$\xi(t_{k}) = A(\mathcal{T}_{k})\xi(t_{k-1}) + B(t_{k})v(t_{k}) =$$

$$= \begin{bmatrix} A_{1}(\mathcal{T}_{k}) & & & & & & \\ & \ddots & & & & & \\ & & A_{n}(\mathcal{T}_{k}) & & & & \\ & & & A_{1}^{\varsigma}(t_{k}) & & & \\ & & & & \ddots & \\ & & & & & A_{m}^{\varsigma}(t_{k}) \end{bmatrix} \begin{bmatrix} \chi_{1}(t_{k-1}) \\ \vdots \\ \chi_{n}(t_{k-1}) \\ \zeta_{1}(t_{k-1}) \\ \vdots \\ \zeta_{m}(t_{k-1}) \end{bmatrix} + \\ + \begin{bmatrix} B_{1}(t_{k}) & & & & & \\ & & \ddots & & \\ & & & B_{n}(t_{k}) & & \\ & & & & \ddots & \\ & & & & B_{1}^{\varsigma}(t_{k}) & & \\ & & & & \ddots & \\ & & & & B_{m}^{\varsigma}(t_{k}) \end{bmatrix} \begin{bmatrix} v_{1}(t_{k}) \\ \vdots \\ v_{n}(t_{k}) \\ \vdots \\ v_{m}^{\varsigma}(t_{k}) \end{bmatrix}, \quad (1.9)$$

где матрицы A и B представляют собой блочно-диагональные матрицы, объединяющие все A_i, A_i^ς и B_i, B_i^ς .

Каждый момент времени $t_k \in \mathcal{T}$ свяжем с некоторым измерением $z_{ij}(t_k)$ положения ВС с номером i при помощи радиолокатора j. Одновременное наблюдение одного ВС несколькими радиолокаторами (как и одновременное наблюдение одним радиолокатором нескольких самолётов) будем считать пренебрежимо редким событием и не будем вводить его в модель наблюдения. Запишем уравнение наблюдения в том виде, как оно должно применяться ко всему большому фазовому вектору.

$$z(t_{k}) = z_{ij}(t_{k}) = C(t_{k}, \xi(t_{k}))\xi(t_{k}) + D(t_{k}, \xi(t_{k}))w(t_{k}),$$

$$i \qquad n+j$$

$$C(t_{k}, \xi(t_{k})) = \begin{pmatrix} 0 & \cdots & 0 & C^{\chi}(t_{k}) & 0 & \cdots & 0 & C^{\zeta}_{j}(t_{k}, \chi_{i}(t_{k})) & 0 & \cdots & 0 \end{pmatrix},$$

$$D(t_{k}, \xi(t_{k})) = D_{j}(t_{k}, \chi_{i}(t_{k})), \qquad w(t_{k}) = w_{j}(t_{k}).$$

$$(1.10)$$

Как указывалось выше, для моделирования будем применять предположение постоянных систематических ошибок по дальности и азимуту. При этом будем использовать линеаризованную модель воздействия таких ошибок на измерения. Соответствующие матрицы $C^{\chi}(t_k)$, $C^{\varsigma}(t_k,\chi_i(t_k))$, $D(t_k,\chi_i(t_k))$ имеют вид:

$$C^{\chi}(t_k) \equiv I_{2\times 2} \,, \qquad C^{\varsigma}_j(t_k, \chi_i(t_k)) = \left[\frac{1}{\|x_i(t_k) - x_j^{\mathsf{R}}\|} (x_i(t_k) - x_j^{\mathsf{R}}) \quad \Omega_{2\times 2}(x_i(t_k) - x_j^{\mathsf{R}}) \right] \,,$$

$$D(t_k, \chi_i(t_k)) = C^{\varsigma}_j(t_k, \chi_i(t_k)) \,, \qquad \Omega^{\frac{\pi}{2}}_{2\times 2} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \,.$$

Здесь x_j^R — координаты точки стояния радиолокатора j; $\Omega_{2\times 2}^{\frac{\pi}{2}}$ — матрица поворота на угол $\frac{\pi}{2}$ против часовой стрелки на плоскости \mathbb{R}^2 с учётом северо-восточной системы координат. Случайные ошибки

$$w_j^{\varsigma}(t_k) = \begin{bmatrix} w_j^r(t_k) \\ w_j^{\alpha}(t_k) \end{bmatrix}$$

разделяются на случайные ошибки, действующие по дальности и азимуту.

Для всех случайных ошибок считаем справедливыми свойства

$$\mathbb{E}\{v_i(t_k)\} = \mathbb{E}\{v_i^{\varsigma}(t_k)\} = \mathbb{E}\{w_i(t_k)\} = \mathbb{E}\{w_i(t_k)\} = 0, \qquad (1.11)$$

$$\mathbb{C}\mathbf{ov}\{v_{i_1}(t_k), v_{i_2}(t_l)\} = \delta_{kl}\delta_{i_1i_2}V, \qquad \mathbb{C}\mathbf{ov}\{w_{j_1}(t_k), w_{j_2}(t_l)\} = \delta_{kl}\delta_{j_1j_2}W_{j_1}, \qquad (1.12)$$

где δ_{pq} — символ Кронекера; V — постоянная матрица дисперсии случайных возмущений уравнений движения; W_j — постоянная матрица дисперсии случайных ошибок наблюдения для радиолокатора j.

Для моделирования будем применять W_i вида:

$$W_j = \begin{bmatrix} \sigma_r^2 & 0\\ 0 & \sigma_\alpha^2 \end{bmatrix}, \tag{1.13}$$

где $\sigma_r, \, \sigma_\alpha$ — заданные среднеквадратичные отклонения для случайных ошибок наблюдения по дальности и азимуту, соответственно.

1.2 Уравнения оптимальной фильтрации

1.2.1 Полная система

Фильтр для фазового вектора.

Этап предсказания:

$$\bar{x}_t = A_x \hat{x}_{t-1}$$
$$\bar{P}_{x,t} = A_x \hat{P}_{x,t-1} A_x^T + B_x B_x^T$$

Этап коррекции:

$$\hat{x}_t = \bar{x}_t + K_x \Lambda (z_t - C_x \bar{x}_t - C_s \bar{s}_t)$$

$$\hat{P}_{x,t} = \bar{P}_{x,t} - K_x \Lambda K_x^T$$

$$K_x = \bar{P}_{x,t} C_x^T + \bar{P}_{xs,t} C_s^T$$

Фильтр для систематической ошибки.

Этап предсказания:

$$\bar{s}_t = A_s \hat{s}_{t-1}$$
$$\bar{P}_{s,t} = A_s \hat{P}_{s,t-1} A_s^T + B_s B_s^T$$

Этап коррекции:

$$\hat{s}_t = \bar{s}_t + K_s \Lambda (z_t - C_x \bar{x}_t - C_s \bar{s}_t)$$

$$\hat{P}_{s,t} = \bar{P}_{s,t} - K_s \Lambda K_s^T$$

$$K_s = \bar{P}_{s,t} C_s^T + \bar{P}_{rs,t}^T C_r^T$$

Обновление блока кросс-ковариации:

$$\bar{P}_{xs,t} = A_x \hat{P}_{xs,t-1} A_s^T$$
$$\hat{P}_{xs,t} = \bar{P}_{xs,t} - K_x \Lambda K_s^T$$

В данном случае для обоих фильтров используется одна матрица Л:

$$\Lambda = C_{x}\bar{P}_{x,t}C_{x}^{T} + C_{s}\bar{P}_{s,t}C_{s}^{T} + C_{x}\bar{P}_{xs,t}C_{s}^{T} + C_{s}\bar{P}_{xs,t}^{T}C_{x}^{T} + DD^{T}$$

Уравнение наблюдения:

$$z_t = C_r x_t + C_s s_t + Dw$$

1.3 Упрощеные алгоритмы оценивания по Henk Blom

В статье [2] рассматривается точно такая же задача одновременного оценивания движения многих ВС и определения систематических ошибок. Приводятся варианты упрощения алгоритма фильтрации Калмана, показавшие хорошую работу на практике.

1.3.1 Фильтр Калмана для фазового вектора, Макро фильтр для систематической ошибки

Фильтр для фазового вектора.

Этап предсказания:

$$\bar{x}_t = A_x \hat{x}_{t-1}$$

$$\bar{P}_{x,t} = A_x \hat{P}_{x,t-1} A_x^T + B_x B_x^T$$

Этап коррекции:

$$\hat{x}_t = \bar{x}_t + K_x \Lambda_x (z_t - C_x \bar{x}_t - C_s \bar{s}_t)$$
$$\hat{P}_{x,t} = \bar{P}_{x,t} - K_x \Lambda_x K_x^T$$

Аппроксимация:

$$K_x = \bar{P}_{x,t} C_x^T$$
$$\Lambda_x = C_x \bar{P}_{x,t} C_x^T + DD^T$$

Фильтр для систематической ошибки.

Этап предсказания:

$$\bar{s}_t = A_s \hat{s}_{t-1}$$
$$\bar{P}_{s,t} = A_s \hat{P}_{s,t-1} A_s^T + B_s B_s^T$$

Этап коррекции:

$$\hat{s}_t = \bar{s}_t + K_s \Lambda_s (z_t - C_x \bar{x}_t - C_s \bar{s}_t)$$
$$\hat{P}_{s,t} = \bar{P}_{s,t} - K_s \Lambda_s K_s^T$$

В вычислении матриц K_s и Λ_s используются аппроксимация члена $C_x \bar{P}_{xs,t}$:

$$K_s = \bar{P}_{s,t}C_s^T + H^T$$

$$\Lambda = C_x \bar{P}_{x,t}C_x^T + C_s \bar{P}_{s,t}C_s^T + HC_s^T + C_s H^T + DD^T$$

 Γ де H:

$$F_{x} = \sum_{i=1}^{M} (D_{i}D_{i}^{T})^{-1}$$

$$F_{s} = \sum_{i=1}^{M} (D_{i}D_{i}^{T})^{-1}C_{s,i}$$

$$H = -(F_{x}^{T}F_{x})^{-1}F_{x}^{T}F_{s}\bar{P}_{s,t}$$

Где M - количество радиолокаторов.

Уравнение наблюдения:

$$z_t = C_x x_t + C_s s_t + Dw$$

1.3.2 Разделённые фильтры для фазового вектора и для систематической ошибки

Фильтр для фазового вектора.

Этап предсказания:

$$\bar{x}_t = A_x \hat{x}_{t-1}$$
$$\bar{P}_{x,t} = A_x \hat{P}_{x,t-1} A_x^T + B_x B_x^T$$

Этап коррекции:

$$\hat{x}_t = \bar{x}_t + K_x \Lambda_x (z_t - C_x \bar{x}_t - C_s \bar{s}_t)$$
$$\hat{P}_{x,t} = \bar{P}_{x,t} - K_x \Lambda_x K_x^T$$

Аппроксимация:

$$K_x = \bar{P}_{x,t} C_x^T$$

$$\Lambda_x = C_x \bar{P}_{x,t} C_x^T + DD^T$$

Фильтр для систематической ошибки.

Этап предсказания:

$$\bar{s}_t = A_s \hat{s}_{t-1}$$
$$\bar{P}_{s,t} = A_s \hat{P}_{s,t-1} A_s^T + B_s B_s^T$$

Этап коррекции:

$$\hat{s}_t = \bar{s}_t + K_s \Lambda_s (z_t - C_x \bar{x}_t - C_s \bar{s}_t)$$

$$\hat{P}_{s,t} = \bar{P}_{s,t} - K_s \Lambda_s K_s^T$$

Аппроксимация:

$$K_s = \bar{P}_{s,t} C_s^T$$
$$\Lambda_s = C_s \bar{P}_{s,t} C_s^T + DD^T$$

Уравнение наблюдения:

$$z_t = C_x x_t + C_s s_t + Dw$$

Литература

- [1] Бедин, . ., Денисов, . ., Иванов, . ., Федотов, . ., В., . ., А., . ., and В., . ., "Одновременное определение координат движущегося ВС и коррекция систематических ошибок РЛС при помощи фильтра Калмана," Tech. rep., ИММ УрО РАН, 2015.
- [2] Blom, H. A. P. and Van Doorn, B. A., "Systematic Error Estimation in Multisensor Fusion Systems," *Proceedings of SPIE The International Society for Optical Engineering*, Vol. 1954, Oct. 1993, pp. 450–461.