Komentarz do wykładów 20. lutego 2024, 27. lutego 2024.

Przestrzeń probabilistyczna

Niech $\Omega \neq \emptyset$. Zbiór Ω nazywamy przestrzenią zdarzeń (elementarnych). Intuicyjnie jest to zbiór możliwych wyników.

Drugim elementem konstrukcji jest rodzina zbiorów $\mathcal{F} \subset 2^{\Omega}$. Elementy tej rodziny nazywamy zdarzeniami. Rodzina zdarzeń spełnia następujące warunki:

- 1. $\Omega \in \mathcal{F}$,
- 2. $A \in \mathcal{F} \Longrightarrow A^C = (\Omega \setminus A) \in \mathcal{F}$,
- 3. $A_i \in \mathcal{F}, (i = 1, 2, ...) \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}.$

Rodzinę zbiorów spełniającą powyższe warunki nazywamy σ -ciałem zbiorów (zdarzeń). W skrócie: zbiór Ω jest zdarzeniem, dopełnienie zdarzenia jest zdarzeniem, suma skończonej lub przeliczalnej rodziny zdarzeń jest zdarzeniem. Chodzi o to, aby elementarne operacje mnogościowe na zdarzeniach nie dawały w wyniku nie-zdarzeń.

Ostatnim elementem jest funkcja $P: \mathcal{F} \to [0,1]$ nazywana prawdopodobieństwem lub gęstością taka, że

- 1. $P(\Omega) = 1$.
- 2. Jeżeli $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F} \text{ oraz } A_i \cap A_j = \emptyset \text{ dla } i \neq j, \text{ to } P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P\left(A_i\right).$

Definicja 1. Przestrzenią probabilistyczną nazywamy obiekt (Ω, \mathcal{F}, P) , gdzie Ω jest przestrzenią zdarzeń elementarnych, \mathcal{F} – σ -ciałem zdarzeń, natomiast P jest prawdopodobieństwem.

Zmienna losowa

Rozważamy zbiory otwarte na prostej rzeczywistej. Przez operację elementarną rozumiemy sumę, przekrój i dopełnienie mnogościowe.

Definicja 2. σ -ciałem borelowskim \mathcal{B} nazywamy klasę zbiorów otrzymanych ze zbiorów otwartych za pomocą przeliczalnej liczby operacji elementarnych. Jeżeli $B \in \mathcal{B}$ to mówimy, że zbiorem borelowskim.

Definicja 3. Niech będzie dana funkcja $X: \Omega \to \mathbb{R}$. X nazywamy zmienną losową jedynie wtedy $gdy \ \forall B \in \mathcal{B} \ X^{-1}(B) \in \mathcal{F}$.

 $X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\}$. Słownie: przeciwobraz zbioru borelowskiego jest zdarzeniem.

Ciągłe i dyskretne zmienne losowe

Dyskretną zmienną losową nazywamy ciąg wartości (skończony lub przeliczalny) $\{x_i\}$ oraz ciąg prawdopodobieństw $\{p_i\}$. Ten drugi powinien spełniać warunki: $p_i \geqslant 0$ oraz $\sum_{i \in I} p_i = 1$. σ -ciałem zdarzeń jest najczęściej 2^I .

Przykłady: I

- 1. Rzuť kostką. Tutaj $\Omega=\{1,2,\ldots,6\},\,\mathcal{F}=2^\Omega \text{ oraz } p_i=1/6,\,\mathrm{dla}\,\,i=1,2,\ldots,6.$
- 2. Rzut kostką z rozróżnieniem parzyste-nieparzyste. Teraz $\Omega = \{1, 2, ..., 6\}$, rodziną zdarzeń jest $\mathcal{F} = \{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\}, p_1 = P(\{1, 3, 5\}) = 1/2, p_1 = P(\{2, 4, 6\}) = 1/2.$
- 3. Schemat Bernoulliego. Przeprowadzamy n prób, ppb a sukcesu w każdej próbie jest liczba p taka, że 0 . O próbach zakładamy, że są niezależne. Na razie nie wprowadzamy formalnej definicji niezależności, zakładamy, że każda z prób jest przeprowadzana w tych samych warunkach, bez znajomości poprzednich wyników. Innymi słowy: wraz z kolejną próbą świat rozpoczyna się od nowa.

Wartością zmiennej losowej X jest liczba sukcesów w n próbach. Stąd $\Omega = \{0, 1, ..., n\}$, $p_k = P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$. Zwrot: zmienna losowa X podlega rozkładowi Bernoulliego z parametrami n, p, zapisujemy krótko: $X \sim B(n, p)$.

4. Rozkład Poissona. Zliczanie zdarzeń w ustalonej jednostce czasu. Parametr rozkładu to rzeczywista, dodatnia liczba λ . $\Omega = \{0, 1, 2, \ldots\}, \ p_k = P(X = k) = \mathrm{e}^{-\lambda} \frac{\lambda^k}{k!}$. Oznaczenie: $X \sim \mathrm{Poisson}(\lambda)$.

Ciągłą zmienną losową nazywamy pewien podzbiór $A \subset \mathbb{R}$ wraz z funkcją gęstości f(x) taką, że f(x) > 0 (dla $x \in A$) oraz $\int_A f(x) \, dx = 1$. Funkcja gęstości jest odpowiednikiem ppb. Mówimy jednak raczej o ppb zdarzeń a nie o ppb konkretnej wartości.

Przykłady: II

5. Rozkład jednostajny. Losujemy liczbę rzeczywistą z przedziału [0,1]. Każda z liczb jest tak samo prawdopodobna. Zmienna losowa X to wylosowana liczba. Tutaj: $\Omega = [0,1]$, rodzina zdarzeń \mathcal{F} to zbiory borelowskie zawarte w przedziale [0,1], funkcja gęstości to f(x) = 1 dla $x \in [0,1]$. Dla przykładu"

$$P(0.5 < X < 0.75) = P(0.5 < X \le 0.75) = \int_{0.5}^{0.75} f(x) dx = \frac{1}{4}; \ P(X = 0.5) = 0.$$

Oznaczenie: $X \sim U[0, 1]$.

- 6. Rozkład normalny. Funkcja gęstości to $f(x)=\frac{1}{\sqrt{2\pi}\,\sigma}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ dla $x\in\mathbb{R}$. Oznaczenie: $X\sim N(\mu,\sigma^2)$.
- 7. Rozkład wykładniczy. Gęstość $f(x) = \lambda \exp(-\lambda x)$ dla x > 0. Parametr λ jest dodatnią liczbą rzeczywistą. Oznaczenie: $X \sim \text{Exp}(\lambda)$.

Charakterystyki zmiennej losowej

Definicja 4. Wartością oczekiwaną zmiennej losowej X nazywamy liczbę $EX = E(X) = \sum_i x_i p_i$ w wypadku dyskretnym lub $E(X) = \int_{\mathbb{R}} x f(x) \, dx$ w wypadku ciągłym.

^askrót ppb oznaczać będzie prawdopodobieństwo (singularis) natomiast ppbsy prawdopodobieństwa (pluralis).

Definicja 5. Wariancją zmiennej losowej X nazywamy liczbę $VX = V(X) = \sum_i (x_i - EX)^2 p_i$ w wypadku dyskretnym lub $V(X) = \int_{\mathbb{D}} (x - EX)^2 f(x) \, dx$ w wypadku ciągłym.

Definicja 6. Momentem zwykłym rzędu k zmiennej losowej X nazywamy liczbę $m_k = E(X^k)$ czyli $\sum_i x_i^k p_i \; lub \int_{\mathbb{R}} x^k \; f(x) \, dx$.

Definicja 7. Momentem centralnym rzędu k zmiennej losowej X nazywamy liczbę $\mu_k = E((X - EX)^k)$ czyli $\sum_i (x_i - EX)^k p_i \ lub \int_{\mathbb{R}} (x - EX)^k f(x) dx$.

Definicja 8. Dystrybuantą zmiennej losowej X nazywamy funkcję $F(t) = F_X(t) = P(X \le t)$.

Twierdzenie 9. Zakładamy, że zmienna losowa X ma wartość oczekiwaną EX. Wówczas wariancję można obliczyć wzorem

$$V(V) = E(X^2) - (EX)^2.$$

Dowód.
$$V(X) = \sum_{i} (x_i - EX)^2 p_i = \sum_{i} x_i^2 p_i - 2 \cdot EX \sum_{i} x_i p_i + (EX)^2 \cdot \sum_{i} p_i$$
.

Uwzględniając fakty: $\sum_i x_i p_i = EX$ oraz $\sum_i p_i = 1$ otrzymujemy tezę twierdzenia.

Dowód w wypadku ciągłym podany będzie w trakcie wykładu.

Przykłady: III

Dwuwymiarowy rozkład normalny. $(X,Y) \sim N\left(\begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}, \begin{bmatrix} \sigma_X^2 & \rho\sigma_X\sigma_Y \\ \rho\sigma_X\sigma_Y & \sigma_Y^2 \end{bmatrix}\right)$. Gęstość zmiennej (X,Y) to

$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_x)^2}{\sigma_X^2} + \frac{(y-\mu_y)^2}{\sigma_Y^2} - \frac{2\rho(x-\mu_x)(y-\mu_y)}{\sigma_X\sigma_Y} \right] \right).$$

Przykłady c.d.

Przykłady: IV

8. Załóżmy, że zmienna X ma rozkład jednostajny na przedziale [-1,1] to znaczy gęstość ma postać $f(x) = \frac{1}{2}$ dla $x \in [-1,1]$. Jaki rozkład mają zmienne Y = |X| oraz $Z = X^2$?

Najpierw objaśnienie: rozkład zmiennej losowej znamy wtedy gdy potrafimy podać wzór dystrybuanty lub gęstości.

Zmienna losowa Y. $F_Y(t) = P(Y < t) = P(|X| < t) = P(-t < X < t)$. Wartości t są z przedziału [0,1]. Stąd $F_Y(t) = P(X < t) - P(X < -t) = F_X(t) - F_X(-t)$.

Wartość
$$F_X(s)$$
 to $\int_{-1}^{s} f(x) dx = \int_{-1}^{s} \frac{1}{2} dx = \frac{s+1}{2}$

Witold Karczewski