11 de julio de 2012 FBD TEST (50 PUNTOS) M1	DNI:
NOMBRE:	

MARCA CON UN CÍRCULO TODAS LAS RESPUESTAS QUE CREAS CORRECTAS. LAS RESPUESTAS INCORRECTAS RESTAN UNA CORRECTA. LAS RESPUESTAS NO ELEGIDAS NO PENALIZAN.

- Los problemas detectados en los sistemas de ficheros antes de la llegada de las técnicas de bases de datos se pueden resumir en
 - a) redundancia de datos
 - seguridad insuficiente b)
 - los programas dependen de los datos c)
 - los programas dependen de datos que no usan d)
- La tecnología magnética aplicada al almacenamiento masivo de datos se aplica a
 - salvo a las tarjetas perforadas, a todos
 - b) discos duros y flexibles
 - CD, DVD y Blu Ray c)
 - discos duros, discos flexibles y discos flash d)
- Un índice denso
 - es un índice con muchos datos
 - requiere que el fichero de datos esté ordenado por un campo clave
 - c) estructuran los registros en forma de árbol
 - d) no pueden ser multinivel
- La organización secuencial ordenada
 - es la peor para obtener un listado ordenado por el campo clave.
 - b) es la mejor para obtener un listado ordenado por cualquier campo.
 - obliga a una reorganización del fichero cada vez que quiero insertar un registro intermedio. c)
 - optimiza el espacio d)
- Si tengo dos tablas definidas como

A(a,b) CP(a) CAj(b) -> B VNN(a) B(c,d) CP(c) CAj(d) -> A VNN(d)

- a)
- B.d no puede cricave ajem perque la clave primaria a la que apunta se llama "a", A.a. se tra REnT (RADA) por foren un GIA GO cin gonne (1,N). b)
- tenemos 2 relaciones 1:N con restricción de existencia independientes: Card(A,r)=(0,N), Card(B,r)=(1,1) y Card(A,s)=(1,1), Card(B,s)=(0,N).
- Un modelo de datos es
 - todo aquello que se pueda consultar con una orden select.
 - b) una base de datos ejemplo para todas las demás.
 - una teoría de especificación describiendo como una base de datos se estructura y se usa. c)
 - un esquema de base datos como, por ejemplo, el de TiendaOnLine.
- Según este esquema E-R
 - los usuarios solo pueden pedir N artículos, donde N es un valor indeterminado entre 0 y 1.
 - b) los usuarios pueden pedir todos los artículos existentes, si quieren.
 - los usuarios siempre tienen email, dni, nombre y apellidos. c)
 - d) todos los usuarios deben haber pedido algo.

- select T1.a,T1.b,T2.c from T1, T2 where T1.b=T2.b, en álgebra relacional, podría ser
 - la concatenación natural.
 - el producto cartesiano. b)
 - c) la unión.
 - la división.

QBE es una implementación de

- a) cálculo relacional de tuplas
- cálculo relacional de dominios b)
- c) álgebra relacional

10) Una consulta en álgebra relacional que sea parecida a "dame TODOS los vendedores de la provincia de Alicante"

- a) no se puede hacer porque precisa hacer la cuenta de filas que hay en la tabla, y el álgebra relacional está muy limitado para contar, ordenar, etc.
- b) no necesita el operador DIVISIÓN
- c) necesita el operador DIVISIÓN.

11) Un defecto de normalización en una base de datos relacional puede provocar anomalías

- a) al borrar la información de una tupla, ya que se pueden estar borrando tuplas de otras tablas involuntariamente
- b) al insertar información en una tabla, porque los datos insertados no se corresponderán con la realidad
- c) al modificar la información de una tabla, ya que un cambio simple de un dato podría afectar a varias tuplas.

12) Si en una tabla no hay dependencias funcionales entre sus atributos

- a) habrá tantas claves candidatas como columnas tenga la tabla
- b) esa tabla solo tiene una clave candidata
- c) eso nunca ocurrirá en modelo relacional: toda tabla tiene al menos una dependencia funcional

13) La normalización

- a) se utiliza actualmente más como un criterio de calidad en el diseño
- b) no es necesaria aunque sí recomendable
- c) es el mejor método para diseñar las bases de datos

14) De la arquitectura cliente-servidor

- a) es una nueva arquitectura de SGBD basada en otros esquemas
- b) es un esquema más de la arquitectura de un SGBD
- c) es una organización distribuida donde el SGBD, si lo hay, haría el papel de servidor

15) Según este esquema E-R

- a) los usuarios pueden tener varias localidades de residencia, la principal y la de veraneo, por ejemplo.
- b) los usuarios se identifican por su DNI.
- c) los usuarios siempre viven en al menos una localidad.
- d) las localidades pueden NO tener habitantes.

16) El trabajar con un SGBD que siga el Modelo Relacional fielmente nos garantiza

- a) que en las tablas no hay tuplas duplicadas.
- b) la posibilidad de utilizar columnas multivaluadas.
- c) que no hay redundancia de información.

USUARIO email nombre 1..1 apellidos 1..1 dni 1..1 teléfono calle calle2 codpos nacido

17) Si como producto de la adaptación del concepto de relación matemática al modelo relacional decimos que la relación tiene intensión y extensión, la segunda se define como

- a) el conjunto de n-tuplas, donde cada tupla es un conjunto de pares (nombreAtributo: valor)
- b) un conjunto de dominios no necesariamente disjuntos
- c) un conjunto de nombres de atributos distintos, cada uno de ellos asociado a su dominio correspondiente

18) Una clave ajena en el modelo relacional

- a) indica una asociación entre objetos.
- b) es un tipo de clave candidata.
- c) nunca podrá estar formada por todos los atributos de una relación.

19) Al hablar de claves en el Modelo Relacional

- a) una clave candidata de una relación siempre debe ser también clave ajena.
- b) una clave ajena de una relación R puede ser también la clave primaria de R.
- c) una clave ajena de una relación R debe coincidir en el número de columnas con el de la clave primaria de R.

20) En cuanto a las distintas notaciones del E-R

- a) no es cierto, solo hay una única notación.
- b) unas sirven para el esquema conceptual, otras para el lógico y otras para el físico.
- c) nos referimos al nombre que le daremos al esquema de base de datos.
- d) nos da igual, podremos obtener un esquema equivalente en cada una de ellas.

