传统推荐模型

1.1 关系图

1.2 协同过滤 (CF)

• 基本思想:人以类聚,物以群分

- 目标场景:
- 相似度计算方法:
 - o 杰拉德 (Jaccard) 相似度:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

。 余弦相似度: 计算用户向量i和j之间的夹角大小, 夹角越小, 相似度越大。

$$sim(i,j) = cos(i,j) = rac{i \cdot j}{||i||\cdot||j||}$$

- 较为常用,但存在局限性:
- 评分不规范, 如有的用户天生喜欢打高分/低分

```
from sklearn.metrics.pairwise import cosine_simlarity
i = [1, 0, 0, 0]
j = [1, 0.5, 0.5, 0]
cosine_similarity([i,j])
```

。 皮尔逊相关系数: 对于用户评分偏置的情况,可以考虑使用Pearson相关系数

$$\mathrm{sim}(i,j) = \frac{\sum_{\mathrm{p} \in P} (R_{\mathrm{i},\mathrm{p}} - \bar{R}_{\mathrm{i}}) (R_{\mathrm{j},\mathrm{p}} - \bar{R}_{\mathrm{j}})}{\sqrt{\sum_{\mathrm{p} \in P} (R_{\mathrm{i},\mathrm{p}} - \bar{R}_{\mathrm{i}})^2} \sqrt{\sum_{\mathrm{p} \in P} (R_{\mathrm{j},\mathrm{p}} - \bar{R}_{\mathrm{j}})^2}}$$

$$R_i = [R_{i1} \ R_{i2} \dots \ R_{iN}]$$
, $R_j = [R_{j1} \ R_{j2} \dots \ R_{jN}]$

from scipy.stats import pearsonr

$$i = [1, 0, 0, 0]$$

 $j = [1, 0.5, 0.5, 0]$
pearsonr(i,j)

。 其他

- 欧式距离
- 曼哈顿距离
- 马氏距离
- o 欧式距离 vs 余弦相似度
 - 欧式距离体现数值上的绝对差异,余弦距离体现方向上的相对差异
 - 欧式距离强调绝对数值,余弦相似强调夹角
 - 例子:

场景	选择
统计两部剧用户观看行为,用户A观看向量(0,1)用户B观看向量(1,0)。分析两用户对不同视频的喜好。(此时余弦距离很大,而欧式距离很小)	选择 余弦 距离
分析用户活跃度。以登录次数和平均观看时长为特征。用户A(1,10)用户B(1,100)。(此时余弦距离会很近,但是欧式距离很远)	选择 欧氏 距离

• 基于User的协同过滤 (UserCF) : 计算用户之间的相似度

○ 步骤一: 计算Alice和其他用户相似度

	物品1	物品2	物品3	物品4	物品5
Alice	5	3	4	4	?
用户1	3	1	2	3	3
用户2	4	3	4	3	5
用户3	3	3	1	5	4
用户4	1	5	5	2	1

用户向量Alice, user1, user2, user3, user4

(1) 余弦相似性:
$$sim(Alice, user1) = cos(Alice, user1) = \frac{15+3+8+12}{\sqrt{25+9+16+16}*\sqrt{9+1+4+9}} = 0.975$$

(2) Pearson相关系数 Alice_ave = 4 user1_ace =2.25

$$sim(Alice, user1) = 0.852$$

from sklearn.metrics.pairwise import cosine_similarity
users = np.array([[5, 3, 4, 4],[3, 1, 2, 3],[4, 3, 4, 3],[3, 3, 1, 5],[1, 5,
5, 2]])
cosine_similarity(users)
np.corrcoef(users)

。 步骤二: 预测得分

■ 方式一:加权平均 用户u对于商品p的评分:

$$R_{u,p} = rac{\sum_{s \in S} w_{u,s} R_{s,p}}{\sum_{s \in S} w_{u,s}}$$

 $w_{u,s}$ 表示用户u和s之间的相似度 (部分用户喜欢打高分,有的喜欢打低分,容易不客观)

■ 方式二:

$$P_{i,j} = \overline{R_i} + rac{\sum_{k=1}^n (S_{i,k}(R_{k,j} - \overline{R_k}))}{\sum_{k=1}^n S_{i,k}}$$

这里 $P_{i,j}$ 表示用户i对商品j的评分,S表示相似度,R同样表示评分

$$P_{Alice,$$
物ដេ5 $=\overline{R_{Alice}}+rac{\sum_{k=1}^{2}(S_{Alice,userk}(R_{userk,$ % এউচ $-\overline{R_{userk}}))}{\sum_{k=1}^{2}S_{Alice,userk}}$

=4.87

步骤三:基于用户评分进行推荐

设定阈值,超过阈值可以推荐给用户

UserCF的缺点:

数据稀疏性:商品多,用户之间买的重叠性比较低,导致难以找到一个用户的邻居(偏好相似用户)。即使找到了也准确性不高,所以UserCF不适用于正反馈获取困难的应用场景 (如酒店预订,大件商品购买的低频应用)

- 用户相似度矩阵维护难度大:
 - 互联网场景中用户数一般远大于无评书,维护用户相似度矩阵难度大
 - 基于用户协同过滤需要维护用户相似度矩阵以便快速找出Top n的相似用户,该矩阵的存储开销巨大,不适用于用户数据量大的情况使用

使用场景:

- 。 适用于用户少,物品多,时效性强的场合(如新闻推荐场景)
- 基于Item的协同过滤(ItemCF): 计算物品之间的相似度(电商早期使用)

	物品1	物品2	物品3	物品4	物品5
Alice	5	3	4	4	?
用户1	3	1	2	3	3
用户2	4	3	4	3	5
用户3	3	3	1	5	4
用户4	1	5	5	2	1

计算过程类似, 但是是计算列向量之间的相似度, 即商品向量之间的相似度

$$P_{Alice, \psi_{
m BL5}} = \overline{R_{\psi_{
m BL5}}} + rac{\sum_{k=1}^2 (S_{\psi_{
m BL5}, \psi_{
m BLk}} (R_{Alice, \psi_{
m BLk}} - \overline{R_{\psi_{
m BLk}}}))}{\sum_{k=1}^2 S_{\psi_{
m BLk}, \psi_{
m BL5}}} = rac{13}{4} + rac{0.97*(5-3.2) + 0.58*(4-3.4)}{0.97 + 0.58} = 4.6$$

ItemCF优点:

o Item-based的预测效果更好,余弦计算好物品相似度,在线预测性能更好 (物品增长速度较慢,较稳定,能在较长时间内维护较稳定的相似度)

ItemCF缺点:

- o 稀疏性
- 。 相似度维护难度大 (但相对UserCF可能较小)

适用场景:

- 。 兴趣变化较为稳定的应用。更接近个性化的推荐
- 用户数量远大于商品数目,用户兴趣固定持久,商品更新速度不是太快 (推荐艺术品、音乐、电影等)

• UserCF和ItemCF的优缺点对比

	UserCF	ItemCF
性能	适用于用户较少场合,如果用户很多,计算用户相似矩阵代价大	适用于物品数明显校友用户数的场合,如果物品很多,计算武平相似度矩阵代价也很大
领域	时效性强,用户个性化兴趣不太明显的领域(强调人与人之间的共性,周围人都在看)	长尾物品丰富,用户个性化 需求强烈的领域(强调个 性)
实 时 性	用户有新行为,不一定造成推荐结果的立即变换	用户有新行为,一定会导致 推荐结果实时变化
冷启动	在新用户对很少的物品产生行为以后,不能立即对他进行个性化推荐,因为用户相似度表每隔一段时间离线计算(需要更新相似用户,才能做出准确推荐)	新用户只要对一个物品产生 行为,就可以给他推荐和该 物品相关的其他物品
新物品	新物品上线一段时间,一旦有用户对物品产生行为, 就可以将新物品推荐给对它产生行为的用户兴趣相似 的其他用户	没有办法在不离线更新物品 相似度表的情况下,将新物 品推荐给新用户
推荐理由	难提供令用户信服的推荐解释	利用用户的历史行为给用户 做推荐解释,可以令用户比 较信服

共同缺点

不能彻底解决数据稀疏性的问题

泛化能力弱: 热门商品具有很强的头部效应,容易和大量物品产生相似,而尾部物品由于特征向量系数,很少被推荐(为有效解决头部效应,矩阵分解技术被提出)

无法利用更多信息,如用户和物品本身的特征

1.3 MF矩阵分解 -- SVD、LFM、RSVD、SVD++ (Matrix Factorization)

• 针对问题:

协同过滤处理稀疏矩阵的能力较弱 协同过滤中,相似度矩阵维护难度大

• 解决思路:

													音乐A	音乐B	音乐C
	音乐A	音乐B	音乐C			小清新	重口味	优雅	伤感	五月天	1	小清新	0.9	0.5	0
张三	0.68	1.58	0.28	1	张三	0.6	0.8	0.1	0.1	0.7	1	重口味	0.1	0.6	0.6
	0.00		-	=	李四	0.1	0	0.9	0.1	0.2	×	优雅	0.2	0.1	0.1
李四	0.31	0.43	0.47	1	王五	0.5	0.7	0.9	0.9	0	1	伤感	0.4	0.9	0.2
王五	1.06	1.57	0.73								J 3x4	五月天	0	1	0

- .
- 。 隐含特征是不可解释的,需要模型自己学习
- k的大小决定隐向量表达能力强弱,k越大表达能力越强,用户兴趣和物品分类具体
- 。 通过用户矩阵和物品矩阵预测评分计算公式:

$$Preference(n,i) = r_{ui} = \sum_{f=1}^{F} p_{u,k} q_{k,i}$$
 (対应向量内积)

• MF方式

。 特征值分解

■ 特征值,特征向量: $Av = \lambda v$

v是特征向量, λ 是特征向量

■ 特征值分解: $A = Q \sum Q^{-1}$

Q代表矩阵A的特征向量构成的矩阵

∑是对角阵,对角线的元素是特征值

○ 奇异值分解 (SVD):

• 定义: $A = U \sum V^T$

其中 A是实矩阵, $UU^T=I,VV^T=I$

∑是对角矩阵,对角线元素非负且降序排列

■ 计算步骤

A是一个m*n的实矩阵

- 1. 构造n阶实对称矩阵 $W = A^T A$
- 2. 计算W的特征值与特征向量

求解特征方程
$$(W-\lambda I)x=0$$
 得到 特征值 λ_i ,并将特征值由大到小排列
$$\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n \geqslant 0$$
 将特征值 λ_i $(i=1,2,\cdots,n)$ 代入特征方程求得对应的特征向量。

3. 求得n阶正交矩阵V

将特征向量单位化,得到单位特征向量 v_1, v_2, \cdots, v_n ,构成 n 阶正交矩阵 V:

$$V = \left[\begin{array}{cccc} v_1 & v_2 & \cdots & v_n \end{array} \right]$$

4. 求得m*n对角矩阵

计算 A 的奇异值

$$\sigma_i = \sqrt{\lambda_i}, \quad i = 1, 2, \cdots, n$$

构造 $m \times n$ 矩形对角矩阵 Σ , 主对角线元素是奇异值, 其余元素是零,

$$\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \cdots, \sigma_n)$$

- 5. 求得m阶正交矩阵U (求得上述)
 - 求U1

对
$$A$$
 的前 r 个正奇异值,令
$$u_j = \frac{1}{\sigma_j} A v_j, \quad j = 1, 2, \cdots, r$$

得到

$$U_1 = [\begin{array}{cccc} u_1 & u_2 & \cdots & u_r \end{array}]$$

求 A^{T} 的零空间的一组标准正交基 $\{u_{r+1}, u_{r+2}, \cdots, u_{m}\}$, 令

$$U_2 = [\begin{array}{cccc} u_{r+1} & u_{r+2} & \cdots & u_m \end{array}]$$

- 得到U=[U1, U2]
- 缺点:

传统SVD分解会要求原始矩阵是稠密的,所以我们需要对缺失进行填补,空间复杂度非常高,基本无法解决大规模稀疏矩阵的矩阵分解问题

- Basic SVD (LFM, Funk SVD)
 - 将矩阵分解问题转化为**最优化问题**,通过梯度下降进行优化
 - 预测函数:

$$ext{Preference}(u,i) = r_{ui} = p_u^T q_i = \sum_{f=1}^F p_{u,k} q_{k,i}$$

■ 损失函数(误差平方和):

式子2便于优化

$$ext{SSE} = \sum_{u,i} e_{ui}^2 = \sum_{u,i} \left(r_{ui} - \sum_{k=1}^K p_{u,k} q_{k,i} \right)^2$$

$$ext{SSE} = rac{1}{2} \sum_{u,i} e_{ui}^2 = rac{1}{2} \sum_{u,i} \left(r_{ui} - \sum_{k=1}^K p_{uk} q_{ki}
ight)^2$$

- 步骤:
 - 1. 首先先初始化这两个矩阵
 - 2. 把用户评分矩阵里面已经评过分的那些样本当做训练集的label,把对应的用户和物品的隐向量当做features,这样就会得到(features, label)相当于训练集
 - 3. 通过两个隐向量乘积得到预测值pred
 - 4. 根据label和pred计算损失
 - 5. 然后反向传播, 通过梯度下降的方式, 更新两个隐向量的值
 - 6. 未评过分的那些样本当做测试集,通过两个隐向量就可以得到测试集的label值
 - 7. 这样就填充完了矩阵,下一步就可以进行推荐了
- o RSVD

在Basic SVD基础上,加入正则化参数(惩罚项)

预测函数:

$$ext{Preference}(u,i) = r_{ui} = p_u^T q_i = \sum_{f=1}^F p_{u,k} q_{k,i}$$

目标函数:

$$SSE = \frac{1}{2} \sum_{u,i} e_{ui}^2 + \frac{1}{2} \lambda \sum_{u} |p_u|^2 + \frac{1}{2} \lambda \sum_{i} |q_i|^2$$
$$= \frac{1}{2} \sum_{u,i} e_{ui}^2 + \frac{1}{2} \lambda \sum_{u} \sum_{k=0}^{K} p_{u,k}^2 + \frac{1}{2} \lambda \sum_{i} \sum_{k=0}^{K} q_{k,i}^2$$

○ 改进 (LFM):

Netflix提出另外一种LFM, 在原有基础上加偏置项, 消除用户和物品打分的偏差

原因:不同用户打分体系不同,不同物品衡量标准有区别,导致评分偏差

目标函数:

$$\begin{split} & \text{SSE} = \frac{1}{2} \sum_{u,i} e_{ui}^2 + \frac{1}{2} \lambda \sum_{u} |\boldsymbol{p}_{u}|^2 + \frac{1}{2} \lambda \sum_{i} |\boldsymbol{q}_{i}|^2 + \frac{1}{2} \lambda \sum_{u} \boldsymbol{b}_{u}^2 + \frac{1}{2} \lambda \sum_{u} \boldsymbol{b}_{i}^2 \\ & = \frac{1}{2} \sum_{u,i} \left(\boldsymbol{r}_{ui} - \boldsymbol{\mu} - \boldsymbol{b}_{u} - \boldsymbol{b}_{i} - \sum_{k=1}^{K} \boldsymbol{p}_{uk} \boldsymbol{q}_{ki} \right)^2 + \frac{1}{2} \lambda \sum_{u} |\boldsymbol{p}_{u}|^2 + \frac{1}{2} \lambda \sum_{i} |\boldsymbol{q}_{i}|^2 + \frac{1}{2} \lambda \sum_{u} \boldsymbol{b}_{u}^2 + \frac{1}{2} \lambda \sum_{u} \boldsymbol{b}_{i}^2 \end{split}$$

o SVD++

改进方向: 用户历史记录会对新评分产生影响(即物品间存在某些联系), 交给模型学习

首先先把ItemCF的预测算法改成一个可以学习的模型, 就行LFM那样, 怎么改? ItemCF的预测算法公式如下:

$$\hat{r}_{ui} = rac{1}{\sqrt{|N(u)|}} \sum_{j \in N(u)} w_{ij}$$

还记得ItemCF吗?这个式子是预测用户u对于物品i的打分,N(u)表示用户u打过分的历史物品, w_{ij} 表示物品ij的相似度,当然这里的这个相似度不再是ItemCF那样,通过向量计算的,而是想向LFM那样,让模型自己学出这个参数来,那么相应的就可以通过优化的思想嘛:

$$SSE = \sum_{(u,i) \in ext{Train}} \left(r_{ui} - \sum_{j \in N(u)} w_{ij} r_{uj}
ight)^2 + \lambda w_{ij}^2$$

但是呢,这么模型有个问题,就是w比较稠密,存储需要很大的空间,因为如果有n个物品,那么模型的参数就是 n^2 ,参数一多,就容易造成过拟合。 所以Koren提出应该对w矩阵进行分解,将参数降到了2*n*F:

$$\hat{r}_{ui} = \frac{1}{\sqrt{|N(u)|}} \sum_{j \in N(u)} x_i^T y_j = \frac{1}{\sqrt{|N(u)|}} x_i^T \sum_{j \in N(u)} y_j$$

相当于用 $x_i^T y_j$ 代替了 w_{ij} ,这里的 x_i,y_j 是两个F维的向量。 **有沒有发现在这里,就出现了点FM的改进身影了**。这里其实就是又对物品i和某个用户u买过的历史物品又学习一波隐向量,这次是F维,为了衡量出物品i和历史物品j之间的相似性来。这时候,参数的数量降了下来,并同时也考虑进来了用户的历史物品记录。 所以这个和之前的LFM相加就得到了:

$$\hat{r}_{ui} = \mu + b_u + b_i + p_u^T \cdot q_i + \frac{1}{\sqrt{|N(u)|}} x_i^T \sum_{j \in N(u)} y_j$$

前面的是我们之前分析的LFM模型,而后面的这个是考虑进了用户购买的历史物品。但是这样感觉参数太多了,所以Koren提出令x=q,因为既然同是商品i,就没有必要学习两个隐向量了嘛,所以得到了该模型的最终预测方式:

$$\hat{r}_{ui} = \mu + b_u + b_i + q_i^T \left(p_u + rac{1}{\sqrt{|N(u)|}} \sum_{j \in N(u)} y_j
ight)$$

这一个就是SVD++模型了。 有了预测函数, 然后也知道真实值, 就可以由损失函数对各个参数求偏导, 和上面的一样了, 这里直接给 出导数了, 不推了:

$$\begin{split} e_{ui} &= r_{ui} - \hat{r}_{ui}, \\ b_{u} &\leftarrow b_{u} + \gamma \cdot (e_{ui} - \lambda \cdot b_{u}), \\ b_{i} &\leftarrow b_{i} + \gamma \cdot (e_{ui} - \lambda \cdot b_{i}), \\ p_{u} &\leftarrow p_{u} + \gamma \cdot (e_{ui} \cdot q_{i} - \lambda \cdot p_{u}), \\ q_{i} &\leftarrow q_{i} + \gamma \cdot (e_{ui} \cdot (p_{u} + \frac{1}{\sqrt{\|R_{u}\|}} \sum_{j \in R_{u}} y_{j}) - \lambda \cdot q_{i}) \\ y_{j} &\leftarrow y_{j} + \gamma (e_{ui} \cdot \frac{1}{\sqrt{\|R_{u}\|}} \cdot q_{i} - \lambda \cdot q_{i}), \end{split}$$