Progresses in data analysis an ABM

31/03/20

Data Analysis

► The Taxi Time distributions for different companies are different.

Company	Avarage Taxi Time
AFR	433 s
EZY	460 s
FDX	548 s

Data Analysis

Is taxi time dependant on the company or only on the hour of take off and landing?

▶ We sampled Air France flights (48,3% of total flights) based on the time distribution of movements for other companies, i.e. Easy Jet (6,52%) and FedEx (2,25%).

Results

► The different movement's time distribution don't explain the variation in taxi time.

Company	Avarage Taxi Time
AFR	433 s
AFR-EZY	429 s
EZY	460 s
AFR-FDX	432 s
FDX	548 s

20000	8 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					
_	_			$\overline{}$		
	0	500	1000	1500		

histogram of AFR

ABM Model: LIFO vs FIFO policy

We asked ourselves about how different policies in the outgoing traffic could change the waiting time at the runway. We experimented the first-in-first-out and last-in-first-out policies to see how the waiting time distribution changed.

ABM Model: LIFO vs FIFO policy

We see a peak in correspondance to the waiting time = 60 because in the simulation, when the plane arrives at the runway, it has a certain probability to have to stop and wait 60 seconds for another plane to land.