Activités Mentales

24 Août 2023

On considère le tableau ci-dessous récapitulant le nombres de personnes appartenant au groupe A, au groupe B, aux deux groupes ou à aucun des deux.

	Α	\overline{A}	Total
В	18	2	20
\overline{B}	162	18	180
Total	180	20	200

- A l'évènement 'la personne tirée appartient au groupe A'.
- B l'évènement 'la personne tirée appartient au groupe B'.
- **1** Que signifie $\mathbb{P}(\overline{B} \cap A)$. La calculer.
- **2** Que signifie $\mathbb{P}_A(B \cap A)$? La calculer.

On considère le tableau ci-dessous récapitulant le nombres de personnes appartenant au groupe A, au groupe B, aux deux groupes ou à aucun des deux.

	Α	\overline{A}	Total
В	108	252	360
\overline{B}	162	378	540
Total	270	630	900

- A l'évènement 'la personne tirée appartient au groupe A'.
- B l'évènement 'la personne tirée appartient au groupe B'.
- ① Que signifie $\mathbb{P}(\overline{A} \cap B)$. La calculer.
- **2** Que signifie $\mathbb{P}_B(B \cap A)$? La calculer.

On considère le tableau ci-dessous récapitulant le nombres de personnes appartenant au groupe A, au groupe B, aux deux groupes ou à aucun des deux.

	Α	\overline{A}	Total
В	90	90	180
\overline{B}	360	360	720
Total	450	450	900

- A l'évènement 'la personne tirée appartient au groupe A'.
- B l'évènement 'la personne tirée appartient au groupe B'.
- ① Que signifie $\mathbb{P}(\overline{A} \cap \overline{B})$? La calculer.
- **2** Que signifie $\mathbb{P}_{\overline{A}}(\overline{A} \cap B)$. La calculer.

On considère le tableau ci-dessous récapitulant le nombres de personnes appartenant au groupe A, au groupe B, aux deux groupes ou à aucun des deux.

	Α	\overline{A}	Total
В	33	297	330
\overline{B}	77	693	770
Total	110	990	1100

- A l'évènement 'la personne tirée appartient au groupe A'.
- B l'évènement 'la personne tirée appartient au groupe B'.
- ① Que signifie $\mathbb{P}(\overline{A})$? La calculer.
- **2** Que signifie $\mathbb{P}_{\overline{B}}(\overline{B} \cap A)$. La calculer.

On considère le tableau ci-dessous récapitulant le nombres de personnes appartenant au groupe A, au groupe B, aux deux groupes ou à aucun des deux.

	Α	\overline{A}	Total
В	576	864	1440
\overline{B}	144	216	360
Total	720	1080	1800

- A l'évènement 'la personne tirée appartient au groupe A'.
- B l'évènement 'la personne tirée appartient au groupe B'.
- ① Que signifie $\mathbb{P}(\overline{A} \cap B)$. La calculer.
- **2** Que signifie $\mathbb{P}_B(B \cap A)$? La calculer.

 $\mathbb{P}(\overline{B}\cap A)$ signifie que l'on cherche la probabilité d'avoir tiré une personne n'appartenant pas à B mais appartenant à A.

$$\mathbb{P}(\overline{B} \cap A) = \frac{162}{200} = \frac{81}{100}$$

 $\mathbb{P}_A(B\cap A)$ signifie que l'on cherche la probabilité d'avoir tiré une personne appartenant à B et A parmi les personnes appartenant à A.

$$\mathbb{P}_A(B \cap A) = \frac{18}{180} = \frac{1}{10}$$

Activités Mentales

 $\mathbb{P}(\overline{A}\cap B)$ signifie que l'on cherche la probabilité d'avoir tiré une personne n'appartenant pas à A mais appartenant à B.

$$\mathbb{P}(\overline{A} \cap B) = \frac{252}{900} = \frac{7}{25}$$

 $\mathbb{P}_B(B\cap A)$ signifie que l'on cherche la probabilité d'avoir tiré une personne appartenant à B et A parmi les personnes appartenant à B.

$$\mathbb{P}_B(B \cap A) = \frac{108}{360} = \frac{3}{10}$$

 $\mathbb{P}(\overline{A}\cap \overline{B})$ signifie que l'on cherche la probabilité d'avoir tiré une personne n'appartenant à aucun des deux groupes. On a

$$\mathbb{P}(\overline{A} \cap \overline{B}) = \frac{360}{900} = \frac{2}{5}$$

 $\mathbb{P}_{\overline{A}}(\overline{A}\cap B)$ signifie que l'on cherche la probabilité d'avoir tiré une personne n'appartenant pas à A mais appartenant à B parmi les personnes n'appartenant pas à A.

$$\mathbb{P}_{\overline{A}}(\overline{A} \cap B) = \frac{90}{450} = \frac{1}{5}$$

 $\mathbb{P}(\overline{A})$ signifie que l'on cherche la probabilité d'avoir tiré une personne n'appartenant pas à A.

$$\mathbb{P}(\overline{A}) = \frac{990}{1100} = \frac{9}{10}$$

 $\mathbb{P}_{\overline{B}}(\overline{B} \cap A)$ signifie que l'on cherche la probabilité d'avoir tiré une personne n'appartenant pas à B mais appartenant à A parmi les personnes n'appartenant pas à B.

$$\mathbb{P}_{\overline{B}}(\overline{B} \cap A) = \frac{77}{770} = \frac{1}{10}$$

 $\mathbb{P}(\overline{A}\cap B)$ signifie que l'on cherche la probabilité d'avoir tiré une personne n'appartenant pas à A mais appartenant à B.

$$\mathbb{P}(\overline{A} \cap B) = \frac{864}{1800} = \frac{12}{25}$$

 $\mathbb{P}_B(B\cap A)$ signifie que l'on cherche la probabilité d'avoir tiré une personne appartenant à B et A parmi les personnes appartenant à B.

$$\mathbb{P}_B(B \cap A) = \frac{576}{1440} = \frac{2}{5}$$