ASSIGNMENT 2: Matteo Battilori, Samuel Di Marzo, Raimondo Iannone

1) Very Busy Expressions

	Dataflow problem
Domain	sets of expressions
Direction	$\begin{aligned} backward \\ in[b] &= f_b(out[b]) \\ out[b] &= \Omega \ in[succ[(b)] \end{aligned}$
Transfer function	$f_b(x) = Use_b U (x-Def_b)$
Meet operation	Λ
Boundary condition	in[exit]= ∅
Initial interior points	in[b] = μ

	iteration 1		
	in[b]	out[b]	
BB1	Ø	b-a	
BB2	b-a	b-a	
BB3	b-a, a-b	a-b	
BB4	a-b	Ø	
BB5	b-a	Ø	
BB6	Ø	a-b	
BB7	a-b	Ø	
BB8	Ø	Ø	

2) Dominator Analysis

	Dataflow problem		
Domain	sets of basic blocks		
Direction			
Transfer function	$f_b(x) = B \cup x$		
Meet operation	Λ		
Boundary condition	out[entry] = ∅		
Initial interior points	$out[b] = \mu$		

	iteration 1		
	in[b]	out[b]	
А	Ø	Α	
В	А	A, B	
С	А	A, C	
D	A, C	A, C, D	
Е	A, C	A, C, E	
F	A, C	A, C, F	
G	А	A, G	

3) Constant Propagation Analysis

	Dataflow problem		
Domain	sets of variables and constant values		
Direction			
Transfer function	$f_b(x) = Def_b U (x-Kill_b)$		
Meet operation	Λ		
Boundary condition	out[entry] = ∅		
Initial interior points	$out[b] = \mu$		

	iteration 1		iteration 2		iteration 3	
	in[b]	out[b]	in[b]	out[b]	in[b]	out[b]
1	Ø	Ø	X	x	x	x
2	Ø	k = 2	X	X	x	x
3	k = 2	k = 2	X	X	x	x
4	k = 2	k = 2, a = 4	Х	X	x	x
5	k = 2, a = 4	k = 2, a = 4, x = 5	x	x	x	x
6	k = 2	k = 2, a = 4	X	X	x	X
7	k = 2, a = 4	k = 2, a = 4, x = 8	X	X	x	X
8	k = 2, a = 4	k = 4, a = 4	X	X	x	X
9	k = 4, a = 4	k = 4, a = 4	a = 4	a = 4	a = 4	a = 4
10	k = 4, a = 4	k = 4, $a = 4$, $b = 2$	a = 4	a = 4, b = 2	a = 4	a = 4, b = 2
11	k = 4, a = 4, b = 2	k = 4, a = 4, b = 2, x = 8	a = 4, b = 2			
12	k = 4, a = 4, b = 2, x = 8	k = 4, $a = 4$, $b = 2$, x = 8, $y = 8$	a = 4, b = 2	a = 4, b = 2, y = 8	a = 4, b = 2	a = 4, b = 2, y = 8
13	k = 4, a = 4, b = 2, x = 8, y = 8	k = 5, a = 4, b = 2, x = 8, y = 8	a = 4, b = 2, y = 8	a = 4, b = 2, y = 8	a = 4, b = 2, y = 8	a = 4, b = 2, y = 8
14	k = 4, a = 4	k = 4, a = 4	a = 4	a = 4	a = 4	a = 4
15	Х	X	X	X	x	x