暨南大学考试试卷

教师填写	20_24 20_25_ 学年度第二_学期	课程类别 必修[√ 选修[]		
	课程名称: <u>运筹学</u>	考试方式 开卷[]闭卷[√]		
	考试时间:	试卷类别(A、B) [] 共 <u>6</u> 页		
考生填写	学院专业			
	姓名学号内招[]外招[]			

题 号	1	$\vec{-}$	111	四	五.	六	总 分
得 分							
评阅人							

一、选择题(每题 5 分, 共 30 分)

- 1. 关于 Q-线性收敛的定义,以下说法正确的是()
- A. 存在常数 $0<\alpha<1$ 和正整数 N,使得当 $k\geq N$ 时, $\frac{|x_{k+1}-x^*|}{|x_{\nu}-x^*|}\leq\alpha$ 。
- B. 存在常数 $0 < \alpha < 1$,使得 $\lim_{k \to \infty} \frac{|x_{k+1} x^*|}{|x_k x^*|} = \alpha$ 。
- C. 存在常数 $\alpha>1$ 和正整数 N,使得当 $k\geq N$ 时, $\frac{|x_{k+1}-x^*|}{|x_k-x^*|}\leq \alpha$ 。
- D. 存在常数 $\alpha > 1$,使得 $\lim_{k \to \infty} \frac{|x_{k+1} x^*|}{|x_k x^*|} = \alpha$ 。
- 2. 下列关于 R-线性收敛的定义,表述正确的是()
- A. 存在非负序列 $\{t_k\}$ 和常数 $0<\alpha<1$, 满足 $\limsup_{k\to\infty} \frac{t_{k+1}}{t_k}\leq \alpha$,
- 且 $|x_k x^*| \le t_k$ 对任意 k 成立。
- B. 存在非负序列 $\{t_k\}$ 和常数 $\alpha > 1$, 满足 $\limsup_{k \to \infty} \frac{t_{k+1}}{t_k} \le \alpha$,
- 且 $|x_k x^*| \ge t_k$ 对任意 k 成立。
- C. 存在非负序列 $\{t_k\}$ 且 $\{t_k\}$ R-线性收敛于 0, 使得 $|x_k-x^*| \le t_k$ 对任意 k 成立。
- D. 存在非负序列 $\{t_k\}$ 收敛于常数 c>0 ,使得 $|x_k-x^*| \le t_k$ 对任意 k 成立。

址

我

江

3. 设向量函数 $f: \mathbb{R}^n \to \mathbb{R}^m$,其在点 $x \in \mathbb{R}^n$ 处的 Jacobian 矩阵 $\nabla f(x)$ 是()	ı
A. 一个 $n \times m$ 的矩阵,其 (i,j) 元素为 $\frac{\partial f_j(x)}{\partial x_i}$	
B. 一个 $m \times n$ 的矩阵,其 (i,j) 元素为 $\frac{\partial f_i(x)}{\partial x_j}$	
C. 一个 n 维向量,其第 i 个元素为 $\frac{\partial f(x)}{\partial x_i}$	
D. 一个 m 维向量,其第 i 个元素为 $\frac{\partial f_i(x)}{\partial x}$	採
4. 以下关于范数性质的表述,错误的是() A. 对于向量 $x \in R^n$, $ x \ge 0$,且 $ x = 0$ 当且仅当 $x = 0$ B. 对于向量 $x \in R^n$ 和实数 α , $ \alpha x = \alpha x $ C. 对于向量 $x, y \in R^n$, $ x + y \le x + y $ D. 对于向量 $x, y \in R^n$, $ x - y \ge x - y $ 不成立	
5. 关于适当函数的性质,下列说法错误的是() A. 适当函数的定义域非空 B. 适当函数的值域不包含 $-\infty$ C. 适当函数在可行域内处处有限 D. 若函数 $f(x)$ 为适当函数,且 x_0 是定义域内一点,则 $f(x_0) < +\infty$	
6. 闭函数的定义是() A. 函数的图像是闭集的函数 B. 函数在定义域内的每个点都连续的函数 C. 函数的上图是闭集的函数 D. 函数的下图是闭集的函数	វ៉
二、填空题 (每题 5 分, 共 20 分)	
1. 最优线搜索步长计算设目标函数为 $f(x) = \frac{1}{2}x^THx + g^Tx + c$, 其中 $H = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$, 当前	
点梯度为 $g = \nabla f(x_k) = \begin{bmatrix} -4 \\ 2 \end{bmatrix}$, 沿方向 $d = -g$ 进行精确线搜索,则最优步长 $t_k =$	
0	
2. 下降方向判断设当前点 x_k 处的梯度为 $\nabla f(x_k) = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$, 搜索方向为 $d_k = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$, 则 d_k	
是否为下降方向?(填 "是"或 "否")。	銭

3.考虑目标函数 $f(x,y)=x^2+3xy+2y^2$,该函数满足 L=____的梯度 Lipschitz 条件。使用梯度下降法 $x_{k+1}=x_k-t\nabla f(x_k)$,则具有收敛性保证的步长上界 $t_{\max}=$ ____。

4.对于目标函数 $f(x,y) = x^2 + 2xy + 3y^2$,若 (x^*,y^*) 是局部极小点且 f 在 (x^*,y^*) 处可微,则一阶必要条件为 _____。

三、问答题(共 6 题,任选 5 题作答,每题 10 分)

1. 考虑线性规划问题:

$$\min 3 x_1 + 2x_2$$

$$s. t. x_1 + x_2 \ge 3$$

$$2x_1 + x_2 \ge 4$$

$$x_1, x_2 \ge 0$$

- (1) 将该问题转化为标准型;
- (2) 用单纯形法进行求解。

왨

江

採

2. 给定原问题:

$$\min f(x,y) = \frac{1}{2}x^2 + y^2$$

$$s.t. \quad x + 2y \le 4$$

$$3x - y = 1$$

- (1) 写出拉格朗日函数 $L(x,y;\lambda,\mu)$,
- (2) 消去原始变量(x,y), 推导对偶函数 $g(\lambda,\mu)$;
- (3) 写出对偶优化问题(包括目标函数和约束条件)。

摋

킥

殺

- 3. 设向量函数 $f(x)=\frac{1}{2}x^TAx+b^Tx+c$,其中 $x\in R^n$, $A\in R^{n\times n}$ 为对称矩阵, $b\in R^n$, $c\in R$ 。
- (1) 计算f(x) 的 Hessian 矩阵 $\nabla^2 f(x)$;
- (2) 证明: 当 A 为半正定矩阵时, f(x)是凸函数;

- 4. 设函数 $f: \mathbb{R}^n \to \mathbb{R}$ 的梯度 ∇f 满足 Lipschitz 连续条件
- (1) 证明: 对任意x,y, 有

$$f(y) \le f(x) + \nabla f(x)^T (y-x) + \frac{L}{2} |y-x|^2$$

(2) 若 f 是凸函数,证明:对任意x,y,有

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

摋

江

级

- 5. 设矩阵 $X \in R^{m \times n}$,函数 $f(X) = \operatorname{tr}(X^T A X)$,其中 $A \in R^{m \times m}$ 为对称矩阵, $\operatorname{tr}(\cdot)$ 表示矩阵的迹。
- (1) 计算 f(X)对 X 的导数 $\frac{\partial f}{\partial X}$;
- (3) 若 $A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$, $X = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}$, 写出导数矩阵的具体表达式。

摋

圢

殺

- 6. (1) 求函数 $f(x) = \frac{1}{2}x^2 (x \in R)$ 的共轭函数 $f^*(y)$;
- (2) 求函数 $f(x) = |x|_1$ $(x \in \mathbb{R}^n)$ 的共轭函数 $f^*(y)$ 。

线

卜

摋