Class 13: RNA-Seq Analysis Mini-Project

Nicole Chang

5/17/23

Section 1. Differential Expression Analysis

Use DESeq2

library(DESeq2)

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

```
Loading required package: Biobase
Welcome to Bioconductor
    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
    rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
Load our data files
  metaFile <- "GSE37704_metadata.csv"</pre>
  countFile <- "GSE37704_featurecounts.csv"</pre>
Import metadata data
  colData = read.csv(metaFile, row.names=1)
  head(colData)
              condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
               hoxa1_kd
SRR493369
               hoxa1_kd
SRR493370
SRR493371
             hoxa1_kd
```

Import countdata

```
countData = read.csv(countFile, row.names=1)
head(countData)
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

Q1. Complete the code below to remove the troublesome first column from countData

```
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Q2. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
# to_keep <- rowSums(countData) > 0
# countData = countData[to_keep, ]
# head(countData)
```

or

```
to_remove <- rowSums(countData) == 0
countData = countData[!to_remove, ]
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Now we will setup DESeq

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)
```

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

Q3. Call the **summary()** function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

```
res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
summary(res)
```

out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 4349, 27%
LFC < 0 (down) : 4396, 28%
outliers [1] : 0, 0%
low counts [2] : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results</pre>

Now we will make a volcano plot

```
plot( res$log2FoldChange, -log(res$padj) )
```


Q4. Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ ((res$log2FoldChange > 2) | (res$log2FoldChange < -2) ) ] <- "red"
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log0")</pre>
```


Q5. Use the **mapIDs()** function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
 [1] "ACCNUM"
                    "ALIAS"
 [6] "ENTREZID"
                    "ENZYME"
[11] "GENETYPE"
                    "GO"
[16] "OMIM"
                    "ONTOLOGY"
[21] "PMID"
                    "PROSITE"
[26] "UNIPROT"
  res$symbol = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                       column="SYMBOL",
                      multiVals="first")
```

'select()' returned 1:many mapping between keys and columns

"ENSEMBL"

"EVIDENCE"

"ONTOLOGYALL" "PATH"

"GOALL"

"REFSEQ"

"ENSEMBLPROT"

"EVIDENCEALL"

"IPI"

"SYMBOL"

"ENSEMBLTRANS"

"GENENAME"

"MAP"

"PFAM"

"UCSCKG"

```
res$entrez = mapIds(org.Hs.eg.db,
                    keys=row.names(res),
                    keytype="ENSEMBL",
                    column="ENTREZID",
                    multiVals="first")
```

'select()' returned 1:many mapping between keys and columns

```
mapIds(org.Hs.eg.db,
res$name =
                    keys=row.names(res),
                    keytype="ENSEMBL",
                    column="GENENAME",
                    multiVals="first")
```

'select()' returned 1:many mapping between keys and columns

```
head(res, 10)
```

log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns

	baseMean	log2FoldChange	lfcSI	E stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<pre>> <numeric></numeric></pre>	<numeric></numeric>
ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.188076	-0.6927205	0.0548469	-12.630158	1.43990e-36
ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.979750	0.5428105	0.5215598	1.040744	2.97994e-01
ENSG00000188290	108.922128	2.0570638	0.1969053	3 10.446970	1.51282e-25
ENSG00000187608	350.716868	0.2573837	0.1027266	2.505522	1.22271e-02
ENSG00000188157	9128.439422	0.3899088	0.0467163	8.346304	7.04321e-17
ENSG00000237330	0.158192	0.7859552	4.0804729	0.192614	8.47261e-01
	padj	symbol	entrez		name
	<numeric></numeric>	<character> <cl< td=""><td>haracter></td><td>•</td><td><pre><character></character></pre></td></cl<></character>	haracter>	•	<pre><character></character></pre>
ENSG00000279457	6.86555e-01	NA	NA		NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alpl	ha motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like n	ucleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like	family me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstrin l	homology
ENSG00000187642	4.03379e-01	PERM1	84808	PPARGC1 and	ESRR ind
ENSG00000188290	1.30538e-24	HES4	57801	hes family 1	bHLH tran
ENSG00000187608	2.37452e-02	ISG15	9636	ISG15 ubiqu	itin like
ENSG00000188157	4.21963e-16	AGRN	375790	_	agrin
ENSG00000237330	NA	RNF223	401934	ring finger	protein
				_	

Q6. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file = "deseq_results.csv")
```

Section 2. Pathway Analysis

First we need to do our one time install of these required bioconductor packages:

```
# Run in your R console (i.e. not your Rmarkdown doc!)
# BiocManager::install( c("pathview", "gage", "gageData") )
```

Load the packages and setup the KEGG data-sets we need.

```
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

library(gage)

```
library(gageData)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
          "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
             "1066"
 [1] "10"
                      "10720" "10941" "151531" "1548"
                                                          "1549"
                                                                   "1551"
 [9] "1553"
             "1576"
                      "1577"
                               "1806"
                                        "1807"
                                                          "221223" "2990"
                                                 "1890"
[17] "3251"
             "3614"
                      "3615"
                               "3704"
                                        "51733" "54490"
                                                          "54575"
                                                                   "54576"
             "54578" "54579" "54600" "54657"
[25] "54577"
                                                 "54658"
                                                          "54659"
                                                                   "54963"
                                                                   "7365"
[33] "574537" "64816" "7083"
                               "7084"
                                        "7172"
                                                 "7363"
                                                          "7364"
```

```
"79799"
[41] "7366"
               "7367"
                         "7371"
                                  "7372"
                                            "7378"
                                                      "7498"
                                                                         "83549"
[49] "8824"
               "8833"
                         "9"
                                  "978"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                          "10606"
                                             "10622"
                                                       "10623"
                                                                 "107"
                                                                           "10714"
                                   "10621"
  [9] "108"
                "10846"
                          "109"
                                    "111"
                                             "11128"
                                                       "11164"
                                                                 "112"
                                                                           "113"
 [17] "114"
                "115"
                          "122481" "122622" "124583" "132"
                                                                 "158"
                                                                           "159"
                                                       "204"
                                                                 "205"
 [25] "1633"
                "171568" "1716"
                                    "196883" "203"
                                                                           "221823"
 [33] "2272"
                "22978"
                          "23649"
                                    "246721"
                                             "25885"
                                                       "2618"
                                                                 "26289"
                                                                           "270"
 [41] "271"
                "27115"
                          "272"
                                    "2766"
                                             "2977"
                                                       "2982"
                                                                 "2983"
                                                                           "2984"
 [49] "2986"
                "2987"
                          "29922"
                                    "3000"
                                             "30833"
                                                       "30834"
                                                                 "318"
                                                                           "3251"
 [57] "353"
                "3614"
                          "3615"
                                    "3704"
                                             "377841"
                                                       "471"
                                                                 "4830"
                                                                           "4831"
 [65] "4832"
                "4833"
                          "4860"
                                    "4881"
                                             "4882"
                                                       "4907"
                                                                 "50484"
                                                                           "50940"
 [73] "51082"
                "51251"
                          "51292"
                                   "5136"
                                             "5137"
                                                       "5138"
                                                                 "5139"
                                                                           "5140"
                "5142"
                          "5143"
                                    "5144"
                                             "5145"
                                                       "5146"
                                                                 "5147"
                                                                           "5148"
 [81] "5141"
 [89] "5149"
                "5150"
                          "5151"
                                    "5152"
                                             "5153"
                                                       "5158"
                                                                 "5167"
                                                                           "5169"
 [97] "51728"
                "5198"
                          "5236"
                                   "5313"
                                             "5315"
                                                       "53343"
                                                                 "54107"
                                                                           "5422"
[105] "5424"
                "5425"
                          "5426"
                                    "5427"
                                             "5430"
                                                       "5431"
                                                                 "5432"
                                                                           "5433"
[113] "5434"
                "5435"
                          "5436"
                                    "5437"
                                             "5438"
                                                       "5439"
                                                                 "5440"
                                                                           "5441"
[121] "5471"
                "548644" "55276"
                                    "5557"
                                             "5558"
                                                       "55703"
                                                                 "55811"
                                                                           "55821"
[129] "5631"
                "5634"
                          "56655"
                                   "56953"
                                             "56985"
                                                       "57804"
                                                                 "58497"
                                                                           "6240"
[137] "6241"
                "64425"
                          "646625" "654364"
                                             "661"
                                                       "7498"
                                                                 "8382"
                                                                           "84172"
[145] "84265"
                "84284"
                          "84618"
                                    "8622"
                                             "8654"
                                                       "87178"
                                                                 "8833"
                                                                           "9060"
[153] "9061"
                "93034"
                          "953"
                                    "9533"
                                             "954"
                                                       "955"
                                                                 "956"
                                                                           "957"
[161] "9583"
                "9615"
  foldchanges = res$log2FoldChange
  names(foldchanges) = res$entrez
  head(foldchanges)
     1266
               54855
                                    51232
                                                2034
                                                           2317
                           1465
-2.422719
           3.201955 -2.313738 -2.059631 -1.888019 -1.649792
# Get the results
  keggres = gage(foldchanges, gsets=kegg.sets.hs)
Now lets look at the object returned from gage().
  attributes(keggres)
```

\$names

```
[1] "greater" "less" "stats"
```

Look at the first few down (less) pathways:

```
head(keggres$less)
```

		p.geomean	${\tt stat.mean}$	p.val
hsa04110	Cell cycle	8.995727e-06	-4.378644	8.995727e-06
hsa03030	DNA replication	9.424076e-05	-3.951803	9.424076e-05
hsa03013	RNA transport	1.375901e-03	-3.028500	1.375901e-03
hsa03440	Homologous recombination	3.066756e-03	-2.852899	3.066756e-03
hsa04114	Oocyte meiosis	3.784520e-03	-2.698128	3.784520e-03
hsa00010	Glycolysis / Gluconeogenesis	8.961413e-03	-2.405398	8.961413e-03
		q.val s	set.size	exp1
hsa04110	Cell cycle	0.001448312	121 8	.995727e-06
hsa03030	DNA replication	0.007586381	36 9	.424076e-05
hsa03013	RNA transport	0.073840037	144 1	.375901e-03
hsa03440	Homologous recombination	0.121861535	28 3	.066756e-03
hsa04114	Oocyte meiosis	0.121861535	102 3	.784520e-03
hsa00010	Glycolysis / Gluconeogenesis	0.212222694	53 8	.961413e-03

Now, let's try out the **pathview()** function from the **pathview package** to make a pathway plot with our RNA-Seq expression results shown in color.

```
pathview(gene.data=foldchanges, pathway.id="hsa04110")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nicolechang/Desktop/BIMM 143/class13

Info: Writing image file hsa04110.pathview.png


```
A different PDF based output of the same data
```

```
pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
'select()' returned 1:1 mapping between keys and columns
Warning: reconcile groups sharing member nodes!
     [,1] [,2]
[1,] "9" "300"
[2,] "9" "306"
Info: Working in directory /Users/nicolechang/Desktop/BIMM 143/class13
Info: Writing image file hsa04110.pathview.pdf
We'll use these KEGG pathway IDs for pathview plotting
  keggrespathways <- rownames(keggres$greater)[1:5]</pre>
  # Extract the 8 character long IDs part of each string
  keggresids = substr(keggrespathways, start=1, stop=8)
  keggresids
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
Lets pass these IDs in keggresids to the pathview() function to draw plots for all the top
5 pathways.
  pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/nicolechang/Desktop/BIMM 143/class13
Info: Writing image file hsa04640.pathview.png
```

```
'select()' returned 1:1 mapping between keys and columns
```

Info: Working in directory /Users/nicolechang/Desktop/BIMM 143/class13

Info: Writing image file hsa04630.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nicolechang/Desktop/BIMM 143/class13

Info: Writing image file hsa00140.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nicolechang/Desktop/BIMM 143/class13

Info: Writing image file hsa04142.pathview.png

Info: some node width is different from others, and hence adjusted!

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nicolechang/Desktop/BIMM 143/class13

Info: Writing image file hsa04330.pathview.png

hsa04640 pathway:

hsa04630 pathway:

hsa00140 pathway:

hsa04142 pathway:

hsa04330 pathway:

Q7. Can you do the same procedure as above to plot the pathview figures for the top 5 down-regulated pathways?

```
keggrespathways_down <- rownames(keggres$less)[1:5]
keggresids_down = substr(keggrespathways_down, start=1, stop=8)
keggresids_down</pre>
```

[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"

```
pathview(gene.data=foldchanges, pathway.id=keggresids_down, species="hsa")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nicolechang/Desktop/BIMM 143/class13

Info: Writing image file hsa04110.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nicolechang/Desktop/BIMM 143/class13

Info: Writing image file hsa03030.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nicolechang/Desktop/BIMM 143/class13

Info: Writing image file hsa03013.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nicolechang/Desktop/BIMM 143/class13

Info: Writing image file hsa03440.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nicolechang/Desktop/BIMM 143/class13

Info: Writing image file hsa04114.pathview.png

hsa04110 pathway:

hsa03030 pathway:

hsa03013 pathway:

hsa03440 pathway:

hsa04114 pathway:

Section 3. Gene Ontology (GO)

We can also do a similar procedure with gene ontology. Let's focus on BP (a.k.a Biological Process) here.

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)
lapply(gobpres, head)
```

\$greater

Ψ610001				
			stat.mean	-
GD:0007156	homophilic cell adhesion	8.519724e-05	3.824205	8.519724e-05
GD:0002009	morphogenesis of an epithelium	1.396681e-04	3.653886	1.396681e-04
GO:0048729	tissue morphogenesis	1.432451e-04	3.643242	1.432451e-04
GD:0007610	behavior	2.195494e-04	3.530241	2.195494e-04
GO:0060562	epithelial tube morphogenesis	5.932837e-04	3.261376	5.932837e-04
GO:0035295	tube development	5.953254e-04	3.253665	5.953254e-04
		q.val se	t.size	exp1
GO:0007156	homophilic cell adhesion	0.1951953	113 8.5	19724e-05
GD:0002009	morphogenesis of an epithelium	0.1951953	339 1.39	96681e-04
GO:0048729	tissue morphogenesis	0.1951953	424 1.43	32451e-04
GD:0007610	behavior	0.2243795	427 2.19	95494e-04
GO:0060562	epithelial tube morphogenesis	0.3711390	257 5.93	32837e-04
	tube development	0.3711390	391 5.9	53254e-04
	-			
\$less				
		p.geomean	stat.mean	p.val
GO:0048285	organelle fission	1.536227e-15		_
	=	4.286961e-15		
GD:0007067		4.286961e-15		
GD:0000087	M phase of mitotic cell cycle	1.169934e-14	-7.797496	1.169934e-14
	-	2.028624e-11		
	mitotic prometaphase	1.729553e-10		
	1		set.size	
GO:0048285	organelle fission	5.841698e-12		.536227e-15
	_	5.841698e-12		.286961e-15
GD:0007067		5.841698e-12		.286961e-15
	M phase of mitotic cell cycle			.169934e-14
	chromosome segregation	1.658603e-08		.028624e-11
	mitotic prometaphase	1.178402e-07		.729553e-10
45.0000200	mission promosaphase	111101020 01	01 1	.,200000
\$stats				
φεσασε		stat.mean	exp1	
GD:0007156	homophilic cell adhesion	3.824205 3.8	-	
	morphogenesis of an epithelium			
	tissue morphogenesis	3.643242 3.0		
GD:0007610		3.530241 3.		
	epithelial tube morphogenesis	3.261376 3.3		
	tube development	3.253665 3.3		
GU.0030295	cape deserobment	J. 200000 J.	20000	

Section 4. Reactome Analysis

First, Using R, output the list of significant genes at the 0.05 level as a plain text file:

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo
```

Q8. What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

The Cell Cycle, Mitotic pathway has the most significant "Entities p-value". Some of the significant pathways are the same and some are different from the previous KEGG results. The factors that could cause differences between the two methods is that the Reactome Analysis looks at under expression while KEGG looks at under expression and over expression.