Correctievoorschrift VWO

2018

tijdvak 1

scheikunde

Het correctievoorschrift bestaat uit:

- 1 Regels voor de beoordeling
- 2 Algemene regels
- 3 Vakspecifieke regels
- 4 Beoordelingsmodel
- 5 Aanleveren scores

1 Regels voor de beoordeling

Het werk van de kandidaten wordt beoordeeld met inachtneming van de artikelen 41 en 42 van het Eindexamenbesluit VO.

Voorts heeft het College voor Toetsen en Examens op grond van artikel 2 lid 2d van de Wet College voor toetsen en examens de Regeling beoordelingsnormen en bijbehorende scores centraal examen vastgesteld.

Voor de beoordeling zijn de volgende aspecten van de artikelen 36, 41, 41a en 42 van het Eindexamenbesluit VO van belang:

- 1 De directeur doet het gemaakte werk met een exemplaar van de opgaven, de beoordelingsnormen en het proces-verbaal van het examen toekomen aan de examinator. Deze kijkt het werk na en zendt het met zijn beoordeling aan de directeur. De examinator past de beoordelingsnormen en de regels voor het toekennen van scorepunten toe die zijn gegeven door het College voor Toetsen en Examens.
- 2 De directeur doet de van de examinator ontvangen stukken met een exemplaar van de opgaven, de beoordelingsnormen, het proces-verbaal en de regels voor het bepalen van de score onverwijld aan de directeur van de school van de gecommitteerde toekomen. Deze stelt het ter hand aan de gecommitteerde.

- De gecommitteerde beoordeelt het werk zo spoedig mogelijk en past de beoordelingsnormen en de regels voor het bepalen van de score toe die zijn gegeven door het College voor Toetsen en Examens.

 De gecommitteerde voegt bij het gecorrigeerde werk een verklaring betreffende de verrichte correctie. Deze verklaring wordt mede ondertekend door het bevoegd gezag van de gecommitteerde.
- 4 De examinator en de gecommitteerde stellen in onderling overleg het behaalde aantal scorepunten voor het centraal examen vast.
- Indien de examinator en de gecommitteerde daarbij niet tot overeenstemming komen, wordt het geschil voorgelegd aan het bevoegd gezag van de gecommitteerde. Dit bevoegd gezag kan hierover in overleg treden met het bevoegd gezag van de examinator. Indien het geschil niet kan worden beslecht, wordt hiervan melding gemaakt aan de inspectie. De inspectie kan een derde onafhankelijke corrector aanwijzen. De beoordeling van deze derde corrector komt in de plaats van de eerdere beoordelingen.

2 Algemene regels

Voor de beoordeling van het examenwerk zijn de volgende bepalingen uit de regeling van het College voor Toetsen en Examens van toepassing:

- 1 De examinator vermeldt op een lijst de namen en/of nummers van de kandidaten, het aan iedere kandidaat voor iedere vraag toegekende aantal scorepunten en het totaal aantal scorepunten van iedere kandidaat.
- Voor het antwoord op een vraag worden door de examinator en door de gecommitteerde scorepunten toegekend, in overeenstemming met correctievoorschrift. Scorepunten zijn de getallen 0, 1, 2, ..., n, waarbij n het maximaal te behalen aantal scorepunten voor een vraag is. Andere scorepunten die geen gehele getallen zijn, of een score minder dan 0 zijn niet geoorloofd.
- 3 Scorepunten worden toegekend met inachtneming van de volgende regels:
 - 3.1 indien een vraag volledig juist is beantwoord, wordt het maximaal te behalen aantal scorepunten toegekend;
 - 3.2 indien een vraag gedeeltelijk juist is beantwoord, wordt een deel van de te behalen scorepunten toegekend in overeenstemming met het beoordelingsmodel;
 - 3.3 indien een antwoord op een open vraag niet in het beoordelingsmodel voorkomt en dit antwoord op grond van aantoonbare, vakinhoudelijke argumenten als juist of gedeeltelijk juist aangemerkt kan worden, moeten scorepunten worden toegekend naar analogie of in de geest van het beoordelingsmodel;
 - 3.4 indien slechts één voorbeeld, reden, uitwerking, citaat of andersoortig antwoord gevraagd wordt, wordt uitsluitend het eerstgegeven antwoord beoordeeld;
 - 3.5 indien meer dan één voorbeeld, reden, uitwerking, citaat of andersoortig antwoord gevraagd wordt, worden uitsluitend de eerstgegeven antwoorden beoordeeld, tot maximaal het gevraagde aantal;
 - 3.6 indien in een antwoord een gevraagde verklaring of uitleg of afleiding of berekening ontbreekt dan wel foutief is, worden 0 scorepunten toegekend tenzij in het beoordelingsmodel anders is aangegeven;

- 3.7 indien in het beoordelingsmodel verschillende mogelijkheden zijn opgenomen, gescheiden door het teken /, gelden deze mogelijkheden als verschillende formuleringen van hetzelfde antwoord of onderdeel van dat antwoord;
- 3.8 indien in het beoordelingsmodel een gedeelte van het antwoord tussen haakjes staat, behoeft dit gedeelte niet in het antwoord van de kandidaat voor te komen;
- 3.9 indien een kandidaat op grond van een algemeen geldende woordbetekenis, zoals bijvoorbeeld vermeld in een woordenboek, een antwoord geeft dat vakinhoudelijk onjuist is, worden aan dat antwoord geen scorepunten toegekend, of tenminste niet de scorepunten die met de vakinhoudelijke onjuistheid gemoeid zijn.
- 4 Het juiste antwoord op een meerkeuzevraag is de hoofdletter die behoort bij de juiste keuzemogelijkheid. Voor een juist antwoord op een meerkeuzevraag wordt het in het beoordelingsmodel vermelde aantal scorepunten toegekend. Voor elk ander antwoord worden geen scorepunten toegekend. Indien meer dan één antwoord gegeven is, worden eveneens geen scorepunten toegekend.
- 5 Een fout mag in de uitwerking van een vraag maar één keer worden aangerekend, tenzij daardoor de vraag aanzienlijk vereenvoudigd wordt en/of tenzij in het beoordelingsmodel anders is vermeld.
- 6 Een zelfde fout in de beantwoording van verschillende vragen moet steeds opnieuw worden aangerekend, tenzij in het beoordelingsmodel anders is vermeld.
- Indien de examinator of de gecommitteerde meent dat in een examen of in het beoordelingsmodel bij dat examen een fout of onvolkomenheid zit, beoordeelt hij het werk van de kandidaten alsof examen en beoordelingsmodel juist zijn. Hij kan de fout of onvolkomenheid mededelen aan het College voor Toetsen en Examens. Het is niet toegestaan zelfstandig af te wijken van het beoordelingsmodel. Met een eventuele fout wordt bij de definitieve normering van het examen rekening gehouden.
- 8 Scorepunten worden toegekend op grond van het door de kandidaat gegeven antwoord op iedere vraag. Er worden geen scorepunten vooraf gegeven.
- 9 Het cijfer voor het centraal examen wordt als volgt verkregen. Eerste en tweede corrector stellen de score voor iedere kandidaat vast. Deze score wordt meegedeeld aan de directeur. De directeur stelt het cijfer voor het centraal examen vast op basis van de regels voor omzetting van score naar cijfer.
- NB1 T.a.v. de status van het correctievoorschrift:

 Het College voor Toetsen en Examens heeft de correctievoorschriften bij regeling vastgesteld. Het correctievoorschrift is een zogeheten algemeen verbindend voorschrift en valt onder wet- en regelgeving die van overheidswege wordt verstrekt. De corrector mag dus niet afwijken van het correctievoorschrift.
- NB2 T.a.v. het verkeer tussen examinator en gecommitteerde (eerste en tweede corrector):
 Het aangeven van de onvolkomenheden op het werk en/of het noteren van de
 behaalde scores bij de vraag is toegestaan, maar niet verplicht. Evenmin is er een
 standaardformulier voorgeschreven voor de vermelding van de scores van de
 kandidaten. Het vermelden van het schoolexamencijfer is toegestaan, maar niet
 verplicht. Binnen de ruimte die de regelgeving biedt, kunnen scholen afzonderlijk
 of in gezamenlijk overleg keuzes maken.

NB3 T.a.v. aanvullingen op het correctievoorschrift:

Er zijn twee redenen voor een aanvulling op het correctievoorschrift: verduidelijking en een fout.

Verduidelijking

Het correctievoorschrift is vóór de afname opgesteld. Na de afname blijkt pas welke antwoorden kandidaten geven. Vragen en reacties die via het Examenloket bij de Toets- en Examenlijn binnenkomen, kunnen duidelijk maken dat het correctievoorschrift niet voldoende recht doet aan door kandidaten gegeven antwoorden. Een aanvulling op het correctievoorschrift kan dan alsnog duidelijkheid bieden. *Een fout*

Als het College voor Toetsen en Examens vaststelt dat een centraal examen een fout bevat, kan het besluiten tot een aanvulling op het correctievoorschrift.

Een aanvulling op het correctievoorschrift wordt door middel van een mailing vanuit Examenblad.nl bekendgemaakt. Een aanvulling op het correctievoorschrift wordt zo spoedig mogelijk verstuurd aan de examensecretarissen.

Soms komt een onvolkomenheid pas geruime tijd na de afname aan het licht. In die gevallen vermeldt de aanvulling:

- Als het werk al naar de tweede corrector is gezonden, past de tweede corrector deze aanvulling op het correctievoorschrift toe. en/of
- Als de aanvulling niet is verwerkt in de naar Cito gezonden Wolf-scores, voert
 Cito dezelfde wijziging door die de correctoren op de verzamelstaat doorvoeren.

Dit laatste gebeurt alleen als de aanvulling luidt dat voor een vraag alle scorepunten moeten worden toegekend.

Als een onvolkomenheid op een dusdanig laat tijdstip geconstateerd wordt dat een aanvulling op het correctievoorschrift ook voor de tweede corrector te laat komt, houdt het College voor Toetsen en Examens bij de vaststelling van de N-term rekening met de onvolkomenheid.

3 Vakspecifieke regels

- 1 Een afwijking in de uitkomst van een berekening door acceptabel tussentijds afronden wordt de kandidaat niet aangerekend.
- 2 Per vraag wordt één scorepunt afgetrokken van het aantal dat volgens het beoordelingsmodel moet worden toegekend als in een gevraagde berekening één of meer van de onderstaande fouten zijn gemaakt:
 - als de uitkomst meer dan één significant cijfer meer of minder bevat dan op grond van de nauwkeurigheid van de vermelde gegevens verantwoord is, tenzij in de vraag is vermeld hoeveel significante cijfers de uitkomst dient te bevatten;
 - als één of meer rekenfouten zijn gemaakt;
 - als de eenheid van de uitkomst niet of verkeerd is vermeld, tenzij gezien de vraagstelling het weergeven van de eenheid overbodig is. In zo'n geval staat in het beoordelingsmodel de eenheid tussen haakjes.
- 3 Per vraag wordt één scorepunt afgetrokken van het aantal dat volgens het beoordelingsmodel moet worden toegekend als in een gevraagde reactievergelijking één of meer van de onderstaande fouten zijn gemaakt:
 - als tribune-ionen zijn genoteerd;
 - als de coëfficiënten niet zijn weergegeven in zo klein mogelijke gehele getallen;
- 4 Als in een vraag niet naar toestandsaanduidingen wordt gevraagd, mogen fouten in toestandsaanduidingen niet in rekening worden gebracht.

4 Beoordelingsmodel

Vraag

Antwoord

Scores

1

1

1

1

1

De PEF-fles

1 maximumscore 2

Een juist antwoord kan als volgt zijn geformuleerd: In moleculen glucose zijn zes C atomen aanwezig. In moleculen HMF en van alle andere stoffen in het schema zijn ook zes C atomen aanwezig. (Bij de omzettingen worden dus geen C atomen afgesplitst waardoor in de omzettingen geen CO₂ kan vrijkomen.)

- notie dat in moleculen glucose zes C atomen aanwezig zijn
- notie dat in moleculen HMF en van alle andere stoffen in het schema ook zes C atomen aanwezig zijn (en conclusie dat geen C atomen worden afgesplitst)

2 maximumscore 3

Een juist antwoord kan als volgt zijn weergegeven:

Ethanol uit glucose:
$$\frac{2 \times 46,1}{180} \times 10^2 = 51,2(\%)$$

HMF uit glucose:
$$\frac{126}{180} \times 10^2 = 70,0(\%)$$

- gebruik van de juiste molaire massa's van HMF en glucose
- berekening van de atoomeconomie van de vergisting: de molaire massa van ethanol vermenigvuldigen met 2 en delen door de molaire massa van glucose en vermenigvuldigen met 10²(%)
 berekening van de stoomeconomie van de verming van HME: de
- berekening van de atoomeconomie van de vorming van HMF: de molaire massa van HMF delen door de molaire massa van glucose en vermenigvuldigen met 10²(%)

Opmerkingen

- Fouten in de significantie hier niet aanrekenen.
- Wanneer de omrekeningen naar percentages zijn weggelaten, dit niet aanrekenen.

3 maximumscore 3

Een juist antwoord kan als volgt zijn weergegeven:

of

- de monomeereenheden van ethaan-1,2-diol en FDCA juist en juiste afwisseling van twee monomeereenheden van FDCA en twee monomeereenheden van ethaan-1,2-diol
- juiste weergave van de esterbindingen 1
- begin en einde van het fragment weergegeven met ~ O of met - O of met • O

of

de monomeereenheden van ethaan-1,2-diol en FDCA juist en juiste afwisseling van twee monomeereenheden van FDCA en twee monomeereenheden van ethaan-1,2-diol
 juiste weergave van de esterbindingen
 begin en einde van het fragment weergegeven

Opmerking

Wanneer geheel of gedeeltelijk gebruik is gemaakt van juiste schematische structuurformules, dit niet aanrekenen.

met ~CH₂ of -CH₂ of •CH₂ respectievelijk met O~ of O- of O•

1

4 maximumscore 1

nummer 3

Opmerking

Wanneer als antwoord 'nummer 1' is genoemd, dit goed rekenen.

5 maximumscore 3

Een juist antwoord kan als volgt zijn weergegeven:

- voor de pijl uitsluitend O₂ en de structuurformule van MMF
- na de pijl uitsluitend de structuurformules van FDCA en methanol 1
- bij juiste formules voor en na de pijl juiste coëfficiënten

1

Indien de volgende vergelijking is gegeven:

$$3 O_2 + 2 C_7 H_8 O_3 \rightarrow 2 C_6 H_4 O_5 + 2 CH_4 O$$

Opmerkingen

- Wanneer geheel of gedeeltelijk gebruik is gemaakt van juiste schematische structuurformules, dit niet aanrekenen.
- Wanneer O_2 is weergegeven met een structuurformule of een onjuiste structuurformule, dit niet aanrekenen.
- Wanneer in vraag 3 onderstaande fout is gemaakt in de structuurformule van de monomeereenheid van FDCA

en in vraag 5 dezelfde fout is gemaakt in de structuurformules van MMF en/of FDCA, dit hier niet aanrekenen.

6 maximumscore 2

Een juist antwoord kan als volgt zijn geformuleerd, per uitgangspunt enkele voorbeeldantwoorden:

Op basis van uitgangspunt 1:

- Als reacties 1+2 worden opgeteld is te zien dat alleen H₂O als bijproduct ontstaat. Bij reacties 1+3 komt ook nog CO₂ vrij. CO₂ is een afvalstof (die bijdraagt aan het versterkte broeikaseffect).
- In het oude proces komt CO₂ vrij. CO₂ is een afvalstof (die bijdraagt aan het versterkte broeikaseffect).
- In reactie 2 komt methanol vrij. Dit is geen afvalstof omdat dit kan worden gebruikt in reactie 1 / kan worden verkocht / kan dienen als brandstof.
- Het rendement van het proces van Avantium is hoger. Dat betekent dat er (meer product en) minder afval wordt geproduceerd.

Op basis van uitgangspunt 2:

- In het oude proces komt CO₂ vrij. Het C atoom van methanol wordt dus niet in het product opgenomen.
- Bij reacties 1+3 komt meer water vrij. De atoomeconomie van reacties
 1+2 is dus beter dan die van 1+3.
- Bij reacties 1 en 2 komt alleen H₂O vrij, terwijl bij 1 en 3 ook nog CO₂ vrijkomt. De atoomeconomie van reacties 1+2 is dus beter dan van reacties 1+3.
- Bij reacties 1+3 is meer zuurstof nodig dan bij reacties 1+2. De atoomeconomie van reacties 1+2 is dus beter dan van reacties 1+3.
- Uit de totaalvergelijkingen van de reacties valt op te maken dat bij reacties 1+2 minder grondstof nodig is:

1

- een juist argument op basis van uitgangspunt 1
- een juist argument op basis van uitgangspunt 2

Opmerking

Wanneer als argument op basis van uitgangspunt l is geantwoord dat bij reacties l+3 meer water (als afval) vrijkomt, dit als argument goed rekenen.

7 maximumscore 2

Een juist antwoord kan als volgt zijn geformuleerd:

Bij de vorming van biomassa is kort geleden (tijdens de fotosynthese) CO₂ vastgelegd. Als PEF wordt verbrand, komt deze CO₂ weer vrij (waardoor de verbranding van PEF geen bijdrage levert aan het versterkte broeikaseffect). PET is geheel geproduceerd op basis van aardolie. Als PET wordt verbrand, komt CO₂ vrij die lang geleden is vastgelegd.

- notie dat bij de verbranding van PEF CO₂ vrijkomt die kort geleden is vastgelegd
- notie dat bij verbranding van PET CO₂ vrijkomt die lang geleden is vastgelegd

Opmerking

Wanneer het volgende antwoord is gegeven: 'De CO_2 -uitstoot van PEF is (uiteindelijk) afkomstig uit de korte koolstofkringloop en de CO_2 -uitstoot van PET niet', dit goed rekenen.

8 maximumscore 3

Een voorbeeld van een juiste berekening is:

$$4,4 - \left(\frac{10^6}{192} \times 10 \times \frac{44,0}{10^6}\right) = 2,1 \text{ (ton)}$$

- berekening van het aantal mol PET-eenheden per ton PET: 10⁶ (g ton⁻¹) delen door de molaire massa van de repeterende eenheid van PET
- berekening van het aantal ton CO₂ dat vrijkomt bij de verbranding van 1 ton PET: het aantal mol PET-eenheden vermenigvuldigen met 10 en met de molaire massa van CO₂ en delen door 10⁶ (ton g⁻¹)
- berekening van het aantal ton CO₂ dat bij het productieproces en het transport van 1 ton PET vrijkomt: 4,4 (ton) verminderen met het aantal ton CO₂ dat per ton PET bij de verbranding vrijkomt

1

1

1

1

Zijde verven

9 maximumscore 4

Een juist antwoord kan als volgt zijn weergegeven:

of

in de structuur de afwisseling van Gly en Ala aangegeven door de ontbrekende H atomen en CH₃ groepen juist weer te geven
 alle aan de N atomen ontbrekende H atomen en alle ontbrekende dubbelgebonden O atomen weergegeven
 de oriëntatie van de NH en CO groepen juist weergegeven
 1

1

• tenminste twee waterstofbruggen juist aangegeven

Opmerkingen

- Wanneer CH_3 groepen 'naar binnen toe' zijn weergegeven, dit niet aanrekenen.
- Wanneer, behalve juiste waterstofbruggen, ook onjuiste waterstofbruggen zijn weergegeven, de vierde deelscore niet toekennen.

10 maximumscore 2

Voorbeelden van juiste redenen (twee van de volgende):

- De β -platen hebben een groot contact-oppervlak.
- De β -platen hebben een grote massa / zijn grote moleculen.
- De onderlinge afstand tussen de β -platen is klein.
- De ketens zijn compact gestapeld / passen precies op elkaar / hebben een regelmatige opbouw.

per juiste reden 1

11 maximumscore 2

Een juist antwoord kan als volgt zijn geformuleerd:

In figuur 1.2 is te zien dat op één β -plaat de CH_3 groepen / de restgroepen van Ala telkens naar boven steken. De CH_3 restgroepen nemen meer ruimte in (tussen de β -platen) dan de H atomen / dan de restgroepen van Gly. De twee verschillende tussenafstanden tussen de β -platen ontstaan doordat de β -platen zo zijn gestapeld dat de CH_3 groepen van opeenvolgende β -platen telkens naar elkaar wijzen (en de H atomen ook telkens naar elkaar wijzen).

- de CH₃ groepen / de restgroepen van Ala meer ruimte innemen (tussen de β-platen) dan de H atomen / dan de restgroepen van Gly
- notie dat de β-platen zo zijn gestapeld dat de CH₃ groepen van opeenvolgende β-platen telkens naar elkaar wijzen (en de H atomen ook telkens naar elkaar wijzen)

1

1

1

0

Indien een antwoord is gegeven als:

'In figuur 1.1 is te zien dat de platen zijn gestapeld als , waar de afstand tussen de platen klein is. Als de platen zijn gestapeld als , is de afstand tussen de platen groter.'

Indien een antwoord is gegeven als: 'Als de platen zijn gestapeld als , zitten de platen telkens dicht bij elkaar en dan weer verder weg.'

12 maximumscore 3

Een juist antwoord kan als volgt zijn geformuleerd:

$$R^{\overline{N}} = \overline{N}_{R} \qquad R^{\overline{N}} = \underline{N}^{R}$$

$$R - \overline{N} = \overline{N} - R R - \overline{N} = \underline{N} - R$$

Er is geen vrije draaibaarheid rond de N=N binding. / De N=N binding is star (en aan elk N atoom zijn twee ongelijke groepen gebonden waardoor van azoverbindingen *cis*- en *trans*-vormen voorkomen).

- een *cis* en een *trans*-vorm weergegeven van een deeltje R-N=N-R
- de stikstofatomen voldoen aan de oktetregel
- er is geen vrije draaibaarheid rond de N=N binding / de N=N binding is star

Opmerking

Wanneer bij de groep(en) R ook niet-bindende elektronenparen zijn weergegeven, dit niet aanrekenen.

13 maximumscore 2

Een juist antwoord kan als volgt zijn geformuleerd: Een hoge waarde van K_v geeft aan dat de kleurstof beter oplost in octaan-1-ol dan in water. D6 is meer hydrofoob doordat in het molecuul geen (negatief) geladen groepen / SO_3^- groepen aanwezig zijn.

- notie dat een hoge waarde van K_v aangeeft dat de kleurstof beter oplost in octaan-1-ol dan in water
- notie dat D6 meer hydrofoob is doordat in het molecuul geen (negatief) geladen groepen / SO₃ groepen aanwezig zijn

Opmerking

Wanneer het volgende antwoord is gegeven: 'Een hoge waarde van K_v geeft aan dat de kleurstof beter oplost in octaan-1-ol dan in water. D6 is meer hydrofoob doordat in het molecuul minder OH groepen aanwezig zijn / doordat het molecuul minder waterstofbruggen kan vormen.', dit goed rekenen.

1

1

1

14 maximumscore 2

Een juist antwoord kan als volgt zijn geformuleerd:

Stof D5. Van de cocons wordt alleen de fibroïne gebruikt. Omdat fibroïne hydrofoob is, is de meest hydrofobe kleurstof het meest geschikt. Uit de tabel blijkt dat D5 de hoogste waarde van K_v heeft / het meest hydrofoob is.

- notie dat het gehalte in de fibroïne-vezels van belang is en dat fibroïne hydrofoob is
- consequente conclusie 1

Opmerking

Wanneer een onjuist antwoord op vraag 14 het consequente gevolg is van een onjuist antwoord op vraag 13, dit niet aanrekenen.

Fenolproductie

15 maximumscore 2

Een juist antwoord kan als volgt zijn weergegeven:

$$\begin{array}{c} OH \\ O \\ + H_3C - CH = CH_2 + O_2 \\ \end{array} + H_3C - \overset{\circ}{C} - CH_3$$

- voor de pijl uitsluitend de structuurformules van benzeen en propeen en de formule van zuurstof
- na de pijl uitsluitend de structuurformules van fenol en propanon en de atoombalans juist

Indien het volgende antwoord is gegeven

$$2 \bigcirc + O_2 \longrightarrow 2 \bigcirc$$

Indien in een overigens juist antwoord H₂SO₄ voor en na de pijl is genoteerd

Opmerkingen

- Wanneer geheel of gedeeltelijk gebruik is gemaakt van juiste schematische structuurformules, dit niet aanrekenen.
- Wanneer O_2 is weergegeven met een structuurformule of een onjuiste structuurformule, dit niet aanrekenen.
- Wanneer in een overigens juist antwoord H_2SO_4 boven de pijl is genoteerd, dit niet aanrekenen.

1

1

1

1

16 maximumscore 1

Voorbeelden van een juiste verklaring zijn:

- De reacties die leiden tot nevenproducten hebben mogelijk een hoge activeringsenergie. (Als de activeringsenergie hoog is, is een hogere temperatuur nodig om de reactie te laten verlopen.)
- De nevenproducten worden mogelijk in een evenwicht gevormd dat bij lage temperatuur aan de exotherme kant ligt / dat bij hoge temperatuur naar de endotherme kant verschuift.
- De reacties die leiden tot nevenproducten zijn mogelijk endotherm.
- Bij hoge temperatuur kunnen de reactieproducten ontleden / met elkaar reageren.
- Bij hoge temperatuur verlopen reacties sneller, die anders te langzaam zijn om een product van enig belang te kunnen produceren.

17 maximumscore 2

Voorbeelden van juiste redenen zijn (twee van de volgende):

- Het toegevoegde propanon zorgt voor koeling / neemt warmte op.
- Door het toevoegen van propanon wordt het reactiemengsel verdund (waardoor het mengsel minder opwarmt).
- Door het toevoegen van propanon daalt de reactiesnelheid (waardoor per tijdseenheid minder warmte ontstaat).
- De reactie in R3 is mogelijk een evenwicht. Door propanon toe te voegen verschuift het evenwicht naar links. Dit is de endotherme reactie, waardoor warmte wordt opgenomen.

per juiste reden 1

Opmerking

Wanneer de volgende reden is gegeven: 'Door het toevoegen van propanon wordt het massapercentage van het explosiegevaarlijke CHP verlaagd.', deze reden goed rekenen.

18 maximumscore 3

Een voorbeeld van een juiste berekening is:

$$\frac{1,0\cdot10^6\times\frac{82,5}{10^2}}{152}\times\left(1,50-1,00\right)\times\frac{58,1}{10^6}=0,16\text{ (ton)}$$

• berekening van het aantal mol CHP per ton mengsel bij de instroom in R3: 1,0 (ton) vermenigvuldigen met 10⁶ (g ton⁻¹) vermenigvuldigen met 82,5(%) en delen door 10²(%) en delen door 152 (g mol⁻¹)

1

- notie dat een halve mol propanon per mol CHP aan de instroom van R3 moet worden toegevoegd (omdat in R3 1 mol propanon wordt gevormd per mol fenol)
- berekening van de massa toegevoegde propanon: het aantal mol CHP vermenigvuldigen met het berekende aantal mol propanon per mol CHP dat moet worden toegevoegd en vermenigvuldigen met 58,1 (g mol⁻¹) en de uitkomst delen door 10⁶ (g ton⁻¹)

1

1

1

1

1

1

19 maximumscore 3

Voorbeelden van juiste antwoorden zijn:

$$-\frac{\frac{1\times 2,4\times 7,3}{252\cdot 10^3}\times 152}{1}\times 10^2 = 1,1(\%).$$
 Het bepaalde massapercentage is lager dan 2%, dus er is geen explosiegevaar.

$$-\frac{\frac{2}{152} \times 252 \cdot 10^{3}}{100 \times 2,4} = 14(^{\circ}\text{C}). \text{ Deze temperatuurstijging is hoger dan}$$
 gemeten, dus er is geen explosiegevaar.

- berekening van de vrijkomende energie, bijvoorbeeld in joule per gram reactiemengsel: 1 (g) vermenigvuldigen met 2,4 (J g⁻¹ K⁻¹) en met 7,3 (K)
- berekening van het aantal mol CHP: de vrijgekomen energie delen door 252·10³ (J mol⁻¹)
- berekening van het massapercentage CHP en consequente conclusie: het aantal mol CHP vermenigvuldigen met 152 (g mol⁻¹) en delen door 1 (g) (eventueel impliciet) en vermenigvuldigen met 10²(%) en consequente conclusie

of

- berekening van het aantal mol CHP dat maximaal aanwezig mag zijn, bijvoorbeeld per 100 gram reactiemengsel: 2 (g) delen door 152 (g mol⁻¹)
- berekening van de energie die vrijkomt: het aantal mol CHP vermenigvuldigen met 252·10³ (J mol⁻¹)
- berekening van de maximaal toegestane temperatuurstijging en consequente conclusie: de vrijgekomen energie delen door 100 (g) en door 2,4 (J g⁻¹ K⁻¹) en consequente conclusie

Opmerking

De significantie in deze vraag niet beoordelen.

20 maximumscore 2

Een juist antwoord kan als volgt zijn geformuleerd:

Uit het blokschema blijkt dat zwavelzuur wordt gescheiden van cumeen, fenol en propanon. De temperatuur moet dus hoger zijn dan 182 °C, want dat is hoger dan de kookpunten van cumeen, fenol en propanon. De temperatuur moet lager zijn dan 330 °C / het kookpunt van zwavelzuur.

•	notie dat zwavelzuur wordt afgescheiden in S2	1
•	noemen van de relevante kookpunten	1
Inc	lien juiste waardes zijn gegeven zonder uitleg	1

Opmerking

Wanneer in een overigens juiste redenering de waardes 183 °C en 329 °C als grenzen zijn vermeld, dit niet aanrekenen.

21 maximumscore 4

Een juist antwoord kan als volgt zijn weergegeven:

- uit het antwoord moet blijken dat propaan-2-ol ontstaat bij de additie van waterstof aan propanon
- een reactor R4 weergegeven aansluitend op de uitstroom van propanon uit S4 en instroom van waterstof van buiten in R4 en uitstroom van het reactieproduct uit R4 naar R5

1

1

1

1

- een reactor R5 weergegeven met uitstroom van water en propeen naar een scheidingsruimte (S5) en uitstroom uit S5 van water naar buiten en een stroom van propeen uit S5 naar R1
- uit het antwoord moet blijken dat geen propeen van buiten hoeft te worden aangevoerd en dat geen propeen wordt afgevoerd naar buiten

Opmerkingen

- Wanneer behalve de instroom van propeen in R1 uit S5 ook nog een instroom van buiten is weergegeven dit niet aanrekenen, mits elders in het blokschema een (gedeeltelijke) uitstroom van propanon is aangegeven.
- Wanneer in het antwoord bij vraag 15 de structuurformule van propanal is gegeven en in vraag 21 bij de uitstroom van R4 naar R5 propaan-1-ol is aangegeven, dit hier niet aanrekenen.

Fotonenboer

22 maximumscore 4

linker halfcel: $VO^{2^+} + H_2O \rightarrow VO_2^+ + 2 H^+ + e^$ rechter halfcel: $V^{3^+} + e^- \rightarrow V^{2^+}$

- in de vergelijking van de linker halfcel VO²⁺ en H₂O links van de pijl en VO₂⁺ rechts van de pijl
- in de vergelijking van de linker halfcel H⁺/ H₃O⁺ rechts van de pijl en H balans juist
- in de vergelijking van de rechter halfcel V³⁺ links van de pijl en V²⁺ rechts van de pijl
- in beide vergelijkingen elektronen aan de juiste kant van de pijl en ladingsbalans juist

Indien het volgende antwoord is gegeven:

linker halfcel:
$$VO^{2+} + 2 H^{+} + 2 e^{-} \rightarrow V^{2+} + H_{2}O$$

rechter halfcel: $V^{3+} + 2 H_{2}O \rightarrow VO_{2}^{+} + 4 H^{+} + 2 e^{-}$

Opmerking

Wanneer vergelijkingen zijn gegeven, die gelden voor de stroomlevering, hiervoor maximaal 3 scorepunten toekennen.

1

1

1

1

23 maximumscore 2

Een juist antwoord kan als volgt zijn geformuleerd:

Tijdens het opladen verandert de totale lading van de positieve ionen in de linker halfcel van 2+ naar 3+. In de rechter halfcel verandert de lading van 3+ naar 2+. Omdat beide oplossingen neutraal moeten blijven, moeten positieve ionen van de linker naar de rechter halfcel worden getransporteerd. Omdat alleen H⁺ ionen het membraan kunnen passeren, zullen deze van links naar rechts bewegen.

•	notie dat elektroneutraliteit moet gelden	1
•	consequente conclusie	1

Indien een antwoord is gegeven als: 'In de linker halfcel ontstaan H⁺ ionen, dus de H⁺ ionen bewegen van links naar rechts.'

1

Opmerkingen

- Wanneer een antwoord is gegeven als: 'Tijdens het opladen bewegen de elektronen van links naar rechts, dus de H⁺ ionen bewegen van links naar rechts.', dit goed rekenen.
- Wanneer een onjuist antwoord op vraag 23 het consequente gevolg is van een onjuist antwoord op vraag 22, dit niet aanrekenen.

24 maximumscore 3

Een voorbeeld van een juiste berekening is:

$$\frac{\left(\frac{100 \times 3,6 \cdot 10^{6} \times \frac{10^{2}}{67}}{1,35 \cdot 10^{5}} \times 1\right)}{1,7} \times 10^{-3} = 2,3 \text{ (m}^{3})$$

• berekening van de hoeveelheid chemische energie in de VRFB: 100 (kWh) vermenigvuldigen met $3.6 \cdot 10^6 \text{ (J kWh}^{-1})$ en met 10^2(\%) en delen door 67 (%)

1

1

1

1

- omrekening van de chemische energie naar het aantal mol vanadiumionen: de hoeveelheid chemische energie delen door 1,35·10⁵ (J mol⁻¹) en vermenigvuldigen met 1 (eventueel impliciet)
- berekening van het totale volume vloeistof: het aantal mol vanadiumionen delen door 1,7 (mol L⁻¹) en vermenigvuldigen met 10⁻³ (m³ L⁻¹)

Opmerking

Wanneer een onjuist antwoord op vraag 24 het consequente gevolg is van een onjuist antwoord op vraag 22, dit niet aanrekenen.

25 maximumscore 3

$$2 \text{ VO}_2^+ + 6 \text{ H}_2\text{O} \rightarrow \text{ V}_2\text{O}_5.3\text{H}_2\text{O} \text{ (s)} + 2 \text{ H}_3\text{O}^+ \text{ of}$$

- $2 \text{ VO}_{2}^{+} + 4 \text{ H}_{2}\text{O} \rightarrow \text{ V}_{2}\text{O}_{5}.3\text{H}_{2}\text{O (s)} + 2 \text{ H}^{+}$
- links van de pijl uitsluitend VO₂⁺ en H₂O
 rechts van de pijl uitsluitend V₂O₅.3H₂O en H₃O⁺/H⁺
- bij juiste formules voor en na de pijl juiste coëfficiënten

26 maximumscore 2

Een juist antwoord kan als volgt zijn geformuleerd:

Bij een hogere concentratie vanadiumionen zijn er per seconde meer (effectieve) botsingen (op het oppervlak van de elektroden). Hierdoor worden (per seconde) meer elektronen opgenomen/afgestaan (waardoor de maximale stroomsterkte toeneemt).

- notie dat het aantal (effectieve) botsingen per seconde toeneemt (als de concentratie vanadiumionen toeneemt)
- notie dat (per seconde) meer elektronen worden opgenomen/afgestaan (waardoor de maximale stroomsterkte toeneemt)

27 maximumscore 2

Opmerking

De rij 'de tanks vergroten' niet beoordelen.

	veroorzaakt een toename van de		
Aanpassing VRFB	opslag-capaciteit (J)	stroomsterkte (C s ⁻¹)	
de concentratie vanadiumionen verhogen	X	X	
meerdere elektrochemische cellen aansluiten op dezelfde tanks		X	
de tanks vergroten			
membranen gebruiken die de ionenstroom beter doorlaten		X	
poreuze elektrodes gebruiken voor een groter contactoppervlak		X	

indien drie rijen juist ingevuld	2
indien twee rijen juist ingevuld	1
in alle andere gevallen	0

Opmerking

Wanneer in de tabel bijvoorbeeld mintekens zijn opgenomen in plaats van lege plekken, dit niet aanrekenen.

Toelichting op het vervallen van de rij 'de tanks vergroten': Het is mogelijk dat een kandidaat de aanpassing 'de tanks vergroten' verkeerd interpreteert. Wanneer de interpretatie is 'alleen het volume van de tanks neemt toe, maar niet het volume van de vloeistof', zou de kandidaat onnodig een scorepunt missen.

5 Aanleveren scores

Verwerk de scores van de alfabetisch eerste vijf kandidaten per examinator in de applicatie Wolf. Accordeer deze gegevens voor Cito uiterlijk op 29 mei. Meteen aansluitend op deze datum start Cito met de analyse van de examens.

Ook na 29 mei kunt u nog tot en met 12 juni gegevens voor Cito accorderen. Deze gegevens worden niet meer meegenomen in hierboven genoemde analyses, maar worden wel meegenomen bij het genereren van de groepsrapportage.

Na accordering voor Cito kunt u in de webbased versie van Wolf de gegevens nog wijzigen om ze vervolgens vrij te geven voor het overleg met de externe corrector. Deze optie is relevant als u Wolf ook gebruikt voor uitwisseling van de gegevens met de externe corrector.

tweede tijdvak

Ook in het tweede tijdvak wordt de normering mede gebaseerd op door kandidaten behaalde scores. Wissel te zijner tijd ook voor al uw tweede-tijdvak-kandidaten de scores uit met Cito via Wolf. Dit geldt **niet** voor de aangewezen vakken.