Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления»

Кафедра «Автоматизированные системы обработки информации и управления»

Отчет

по лабораторной работе № 3

по курсу «Технологии машинного обучения»

«Обработка пропусков в данных, кодирование категориальных признаков, масштабирование

данных.»	
	ИСПОЛНИТЕЛЬ:
	Тарасов Владислав
	Группа ИУ5-64Б
	""2020 г.
	ПРЕПОДАВАТЕЛЬ:
	Гапанюк Ю.Е.
	""2020 г.

Задание

- 1. Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.)
- 2. Для выбранного датасета (датасетов) на основе материалов лекции решить следующие задачи:
 - обработку пропусков в данных;
 - кодирование категориальных признаков;
 - масштабирование данных.

Дата-сет

In [17]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import sklearn.impute
from sklearn.preprocessing import LabelEncoder, MinMaxScaler, StandardScaler

data = pd.read_csv("../data/games.csv")
data.head()
```

Out[17]:

	Name	Platform	Year_of_Release	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales
0	Wii Sports	Wii	2006.0	Sports	Nintendo	41.36	28.96	3.77
1	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81
2	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.68	12.76	3.79
3	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	15.61	10.93	3.28
4	Pokemon Red/Pokemon Blue	GB	1996.0	Role- Playing	Nintendo	11.27	8.89	10.22

Посмотрим на типы колонок

```
In [4]:
```

data.dtypes

Out[4]:

Name object Platform object Year of Release float64 Genre object Publisher object NA Sales float64 EU_Sales float64 JP Sales float64 Other Sales float64 Global_Sales float64 float64 Critic Score Critic_Count float64 User_Score object User_Count float64 Developer object Rating object dtype: object

In [16]:

data.shape

Out[16]:

(16719, 16)

Обработка пропусков в данных

In [17]:

```
data.isnull().sum()
```

Out[17]:

Name 2 0 Platform Year_of_Release 269 2 Genre 54 Publisher NA Sales 0 EU Sales 0 JP Sales 0 Other_Sales 0 Global Sales 0 Critic_Score 8582 Critic_Count 8582 User Score 6704 User_Count 9129 Developer 6623 Rating 6769 dtype: int64

In [21]:

sns.distplot(data["Critic_Score"]);

In [52]:

```
sns.distplot(data["Critic_Score"].fillna(0));
```

```
Out[52]:
```

```
0
          76.0
1
          0.0
2
          82.0
3
          80.0
           0.0
16714
           0.0
16715
           0.0
16716
           0.0
16717
           0.0
16718
           0.0
```

Name: Critic_Score, Length: 16719, dtype: float64

In [59]:

sns.distplot(data["Critic_Score"].dropna());

In [56]:

sns.distplot(data["Critic_Score"].fillna(data["Critic_Score"].mean()))

Out[56]:

<matplotlib.axes._subplots.AxesSubplot at 0x11fbb8c90>


```
In [12]:
```

```
mediana = sklearn.impute.SimpleImputer(strategy="median")
median_rating = mediana.fit_transform(data[["Critic_Score"]])
sns.distplot(median_rating);
```


In [5]:

```
sns.distplot(data["Critic_Score"].fillna(70.0))
```

Out[5]:

<matplotlib.axes. subplots.AxesSubplot at 0x121cd9e50>

In [13]:

```
data["Critic_Score"] = median_rating
data["Critic_Score"].isnull().sum()
```

Out[13]:

0

Как видим, у колонки Rating больше нет пропущенных значений

Кодирование категориальных признаков

```
In [15]:
categories = data["Genre"].dropna().astype(str)
categories.value counts()
Out[15]:
Action
                3370
Sports
                2348
Misc
                1750
Role-Playing
                1500
Shooter
                1323
Adventure
                1303
Racing
                1249
Platform
                888
                 874
Simulation
Fighting
                 849
                 683
Strategy
Puzzle
                 580
Name: Genre, dtype: int64
In [18]:
le = LabelEncoder()
category_le = le.fit_transform(categories)
print(np.unique(category_le))
le.inverse_transform(np.unique(category_le))
[ 0 1 2 3 4 5 6 7 8 9 10 11]
Out[18]:
array(['Action', 'Adventure', 'Fighting', 'Misc', 'Platform', 'Puzzl
       'Racing', 'Role-Playing', 'Shooter', 'Simulation', 'Sports',
```

In [19]:

data.head()

Out[19]:

	Name	Platform	Year_of_Release	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales
0	Wii Sports	Wii	2006.0	Sports	Nintendo	41.36	28.96	3.77
1	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81
2	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.68	12.76	3.79
3	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	15.61	10.93	3.28
4	Pokemon Red/Pokemon Blue	GB	1996.0	Role- Playing	Nintendo	11.27	8.89	10.22

Масштабирование данных

'Strategy'], dtype=object)

In [20]:

```
sns.distplot(data[["Critic_Score"]]);
```


In [21]:

```
mm = MinMaxScaler()
sns.distplot(mm.fit_transform(data[["Critic_Score"]]));
```


На основе Z-оценки

In [22]:

```
ss = StandardScaler()
sns.distplot(ss.fit_transform(data[["Critic_Score"]]));
```

