7SENG010W Data Structures & Algorithms Week 1 Tutorial Exercises Solutions

These exercises cover: Abstract Data Types (ADTs), Big-O Complexity, Timing an Algorithm

Exercise 1 Solution

See the TubeStation and Testing class code for a sample solution.

Exercise 2 Solution

Complete the table for the quadratic growth rate running time equation $T(N) = 2N^2 + 3N + 4$. This gives an idea why when calculating the Big-O for a T(N) that only the value of the *dominant term*, i.e. N^2 , determines its corder of complexity.

	$T(N) = 2N^2 + 3N + 4$							
Values of N	2N ²	3N	4	T(N)				
1000	2,000,000	3,000	4	2,003,004				
2000	8,000,000	6,000	4	8,006,004				
4000	32,000,000	12,000	4	32,012,004				
8,000	128,000,000	24,000	4	128,024,004				
16,000	512,000,000	48,000	4	512,048,004				

Note that when N = 16,000 that the percentage of T(16000) accounted for by the $2N^2$ term is (512,000,000 / 512,048,004) * 100 = 99.99%.

So this illustrates why when calculating the Big-O for an algorithm's T(N), it ignores all but the "dominant term" in the T(N) function.

Exercise 3 Solution

Completed the B-g-O values table.

Big-O	Values of N							
	20	50	100	1000	100,000			
O(1)	1	1	1	1	1			
O(N)	20	50	100	1000	100,000			
O(N ²)	400	2500	10,000	1,000,000	10,000,000,000			
O(N³)	8000	125,000	1,000,000	1,000,000,000	1×10¹⁵			
O(log ₂ (N))	5 (4.3219280948874)	6	7	10	17			
O(N log ₂ (N))	100	300	700	10,000	1,700,000			
O(2 ^N)	1048576	1.125899907×10	1.2676506×10³º	1.071508607×10 ³⁰¹	Largest N = 1342: 2 ¹³⁴² = 9.599623077×10 ⁴⁰³			
O(N!)	2.432902008×10 ¹⁸	3.04140932×10 ⁶⁴	9.332621544×10 ¹⁵⁷	Largest N = 212: 212! = 4.733702183×10 ⁴⁰²	Too big!			

Note that when we deal with order of complexity expressions that involve $log_2(N)$ the result is very rarely a whole number, so the standard practice is to take the smallest whole number that is greater than the fractional value, this is called the "ceiling" in maths e.g. ceiling(4.3219280948874) = 5.

The comparison given for the rough age of the Universe as approximately 13.5 billion years, & in seconds that is: $(13.5 \times 10^9) \times (365 \times 24 \times 3600) = 4.25736 \times 10^{17}$.)

Again for comparison if for a particular algorithm it has an order of complexity of O(2^N), then if the algorithm was applied to 59 data items, i.e. N = 59 then its expected "execution time" in time units would be:

 $O(2^{N})$: $2^{59} = 5.764607523 \times 10^{17}$

which is longer than the age of the Universe!

Exercise 4 Solution

See the linear searching program class code for a sample solution.

On my laptop with a quite good intel i7 processor it too well into the 10s of millions to get even close to a second.