Preparing Data for Machine Learning

UNDERSTANDING THE NEED FOR DATA PREPARATION

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Need for data preparation in machine learning

Insufficient data

Excessive or overly complex data

Non-representative data, missing data, outliers

Oversampling and undersampling

Overfitting and underfitting models

Prerequisites and Course Outline

Prerequisites

Basic Python programming

Basic understanding of the machine learning workflow

Built and trained simple machine learning models

Prerequisites

Python Fundamentals

Understanding Machine Learning

Building Your First scikit-learn Solution

Course Outline

Need for data preparation

Data cleaning and transformation

Continuous and categorical Data

Understanding feature selection

Implementing feature selection

The Need for Data Preparation

Machine Learning

Find patterns

Make intelligent decisions

Types of Machine Learning Problems

Classification

Regression

Clustering

Dimensionality Reduction

Types of Machine Learning Problems

Classification

Regression

Clustering

Dimensionality Reduction

Whales: Fish or Mammals?

Mammals

Members of the infraorder Cetacea

Fish

Look like fish, swim like fish, move with fish

Garbage In, Garbage Out
If data fed into an ML model is of
poor quality, the model will be of
poor quality

Problems with Data

Insufficient data

Too much data

Non-representative data

Missing data

Duplicate data

Outliers

Machine Learning

Emails on a server

Spam or Ham?

Trash or Inbox

Machine Learning

Images represented as pixels

Identify edges, colors, shapes

A photo of a little girl

Problems with Data

Insufficient data

Too much data

Non-representative data

Missing data

Duplicate data

Outliers

Insufficient Data

Models trained with insufficient data perform poorly in prediction

Paradoxically leads to either

- Overfitting: Read too much for too little data
- Underfitting: Build overly simplistic model from available data

Insufficient Data

Common struggle for projects in the real world

Relevant data may not be available

Collection process difficult and timeconsuming

Insufficient Data

No great solution for insufficient data Simply need to find more data sources

Dealing with Small Datasets

Model complexity

Transfer learning

Data augmentation

Synthetic data

Dealing with Small Datasets

Model complexity

Transfer learning

Data augmentation

Synthetic data

Model Complexity

Simpler model with fewer model parameters

Less susceptible to overfitting

e.g. Naive Bayes classifier, logistic regression

Use ensemble techniques

Ensemble Learning

Machine learning technique in which several learners are combined to obtain a better performance than any of the learners individually.

Ensemble Learning

Dealing with Small Datasets

Model complexity

Transfer learning

Data augmentation

Synthetic data

The practice of re-using a trained neural network that solves a problem similar to yours, usually leaving the network architecture unchanged and re-using some or all of the model weights.

Transferred knowledge is especially useful when the new dataset is small and not sufficient to train a model from scratch

Dealing with Small Datasets

Model complexity

Transfer learning

Data augmentation

Synthetic data

Data Augmentation

Increase the number of training samples

Perturbed images are a form of data augmentation

Scaling, rotation, affine transforms

Makes CNN training more robust

Dealing with Small Datasets

Model complexity

Transfer learning

Data augmentation

Synthetic data

Synthetic Data

Artificially generate samples which mimic real world data

Oversampling of existing data points

Can introduce bias in existing data

Problems with Data

Insufficient data

Too much data

Non-representative data

Missing data

Duplicate data

Outliers

Too Much Data

Data might be excessive in two ways

- Curse of dimensionality: Too many columns
- Outdated historical data: Too many rows

Concept Drift

The relationship between features (X-variables) and labels (Y-variables) changes over time; ML models fail to keep up, and consequently their performance suffers

Outdated Historical Data

If not eliminated, leads to concept drift

Outdated historical data is a serious issue in specific applications

Financial trading

Usually requires human expert to judge which rows to leave out

Curse of Dimensionality

Two specific problems arise when too much data is available

- Deciding which data is actually relevant
- Aggregating very low-level data into useful features

Curse of Dimensionality

Easier problems to solve

- Feature selection: Deciding which data is actually relevant
- Feature engineering: Aggregating very low-level data into useful features
- Dimensionality Reduction: Reduce complexity without losing information

Concept Hierarchy

A mapping that combines very low-level features (e.g. latitudes and longitudes) into more general, usable features (e.g. zip codes)

Problems with Data

Insufficient data

Too much data

Non-representative data

Missing data

Duplicate data

Outliers

Non-representative Data

Data is inaccurate, small errors have significant impact

Account for data cleaning and processing time

Non-representative Data

Data not representative of the real world i.e. biased

Leads to biased models that perform poorly in practice

Mitigate using oversampling and undersampling

Problems with Data

Insufficient data

Too much data

Non-representative data

Missing data

Duplicate data

Outliers

Cleaning Data

Data cleaning procedures can help significantly mitigate effect of

- Missing data
- Outliers

Problems with Data

Insufficient data

Too much data

Non-representative data

Missing data

Duplicate data

Outliers

Duplicate Data

If data can flagged as duplicate, problem relatively easy to solve

- Simply de-duplicate

Can be hard to identify in some applications

- Real-time streaming

Missing Values and Outliers

Data Cleaning and Preparation

Missing Data Outlier Data

Data Cleaning and Preparation

Missing Data Deletion Imputation

Deletion a.k.a. Listwise Deletion

Delete an entire record (row) if a single value (column) is missing. Simple but can lead to bias.

Listwise Deletion

Most common method in practice

Can reduce sample size significantly

If values are not missing at random, can introduce significant bias

Imputation

Fill in missing column values, rather than deleting records with missing values. Missing values are inferred from known data.

Imputation

Methods range from very simple to very complex

Simplest method: Use column average

Can interpolate from nearby values

Can even build model to predict missing values

Multivariate Imputation

Univariate imputation: Rely only on known values in same feature

Multivariate imputation: Use all known data to infer missing data

- Construct regression models from other columns to predict this column
- Iterative repeat for all columns

Hot-deck Imputation

Sort records based on any criteria

For each missing value, use immediately prior available value

"Last Observation Carried Forward"

For time series, equivalent to assuming no change since last measurement

Mean Substitution

For each missing value, substitute mean of all available values

Has effect of weakening correlations between columns

Can be problematic when bivariate analysis required

Regression

Fit model to predict missing column based on other column values

Tends to strengthen correlations

Regression and mean substitution have complementary strengths

Data Cleaning and Preparation

Outlier

A data point that differs significantly from other data points in the same data set.

Outliers

Outliers

Identifying Outliers

Distance from mean

Distance from fitted line

Identifying Outliers

Distance from mean

Distance from fitted line

Mean as Headline

The mean, or average, is the one number that best represents all of these data points

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Variation Is Important Too

"Do the numbers jump around?"

Range = $X_{max} - X_{min}$

The range ignores the mean, and is swayed by outliers - that's where variance comes in

Variance as Asterisk

Variance is the second-most important number to summarize this set of data points

Mean and Variance

Mean and variance succinctly summarize a set of numbers

$$\frac{1}{x} = \frac{x_1 + x_2 + ... + x_n}{n}$$
 Variance = $\frac{\sum (x_i - \overline{x})^2}{n-1}$

Variance and Standard Deviation

Standard deviation is the square root of variance

Variance =
$$\frac{\sum (x_i - \overline{x})^2}{n-1}$$
 Std Dev =
$$\sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$$

Points that lie more than 3 standard deviations from the mean are often considered outliers

Points that lie more than 3 standard deviations from the mean are often considered outliers

Identifying Outliers

Distance from mean

Distance from fitted line

Outliers might also be data points that do not fit into the same relationship as the rest of the data

Outliers might also be data points that do not fit into the same relationship as the rest of the data

Coping with Outliers

Always start by scrutinizing outliers If erroneous observation

- Drop if all attributes of that point are erroneous
- Set to mean if only one attribute is erroneous

Coping with Outliers

If genuine, legitimate outlier

- Leave as-is if model not distorted
- Cap/Floor if model is distorted
 - Need to first standardize data
 - Cap positive outliers to +3
 - Floor negative outliers to -3

Oversampling and Undersampling

From Sample to Population

All the data out there in the universe

Sample

A subset - hopefully representative - of the population

From Sample to Population

Population

Representative Sample

Biased Sample

When Unbiased Samples Make It Hard

A study seeks to measure health effect of a certain chemical

Exposure to chemical is random and extremely rare

For a meaningful test, an unbiased sample would need to be huge

Could we focus on the few exposed instances? (Case studies)

When Unbiased Samples Make It Hard

Image classifier looking for photos with Hawaiian Crow

One of the rarest birds on earth, looks a lot like the Common Crow

When Unbiased Samples Make It Hard

Training corpus has millions of images with the Common Crow

Only a dozen images with the Hawaiian Crow

Could we re-use images of the Hawaiian Crow?

Oversampling and Undersampling are techniques that intentionally add bias to the data in order to make it balanced

Balancing Datasets

Oversampling of uncommon x or y values

Undersampling of common x or y values

Forcibly Balanced Datasets

Oversampling and undersampling tend to

- Reduce accuracy
- Increase precision and recall

Related techniques include

- Case studies
- Stratified sampling

Overfitting and Underfitting

Challenge: Fit the "best" curve through these points

Good Fit?

A curve has a "good fit" if the distances of points from the curve are small

We could draw a pretty complex curve

We can even make it pass through every single point

But given a new set of points, this curve might perform quite poorly

The original points were "training data", the new points are "test data"

Overfitting

Great performance in training, poor performance in real usage

A simple straight line performs worse in training, but better with test data

Overfitting

Model has memorized the training data
Low training error
Does not work well in the real world
High test error

Underfitting

Model unable to capture relationships in data

Performs poorly on the training data

Model too "simple" to be useful

Preventing Overfitting

Regularization - Penalize complex models

Cross-validation - Distinct training and validation phases

Dropout (NNs only) - Intentionally turn off some neurons during training

Summary

Need for data preparation in machine learning

Insufficient data

Excessive or overly complex data

Non-representative data, missing data, outliers

Oversampling and undersampling

Overfitting and underfitting models