GROUP THEORY

Manish Kumar, notes by Ramdas Singh

Third Semester

List of Symbols

Placeholder

Contents

Chapter 1

INTRODUCTION TO GROUP THEORY

1.1 Set Theory

July 22nd.

We begin with some basic assumptions to introduce set theory. The symbol \in is used to denote membership in a set. A statement using this in set theory may be stated as $x \in y$, which can be either true or false. Once we have developed this language to discuss sets, we can introduce some axioms.

Axiom 1.1. There exists a set with no elements, the *empty set* \emptyset .

Formally, the above axiom is $\exists x (\forall y (y \notin x))$.

Axiom 1.2. Two sets are equal if they have the same elements.

From the above two axioms, we can infer a unique empty set. A notion of subsets may also be declared.

Definition 1.3. We say the set A is a *subset* of the set B, denoted $A \subseteq B$, if every element of A is also an element of B.

We also have a bunch of similarity axioms stated below.

Axiom 1.4 (Similarity axioms). We have the following:

- 1. If x, y are sets, then $\{x, y\} \Rightarrow \{x, \{x, y\}\}$ (not an ordered pair).
- 2. If A is a set, then $\bigcup A = \{x \mid \exists y \in A, x \in y\}$ is a set.
- 3. There exists a power set for every set; given a set A, there exists a set P(A) such that for all $B \subseteq A, B \in P(A)$. Formally, $\forall A \exists P(A) (\forall B \subseteq A, B \in P(A))$.
- 4. The infinite axiom: Formally, $\exists I (\emptyset \in I \land \forall y \in I(P(y) \in I)).$
- 5. If A and B are sets, then $A \times B = \{(x,y) \mid x \in A, y \in B\}$ is a set.

Before discussing the last axiom, we define a relation on sets.

Definition 1.5. A relation R on a set A is a subset $R \subseteq A \times A$. If $(x, y) \in R$, we write xRy.

Axiom 1.6 (The axiom of choice). Let A be a collection of non-empty and disjoint sets. Then there exists a set C consisting of exactly one element from each set in A.

Definition 1.7. A relation R on a set A is said to be:

- reflexive if $xRx\forall x \in A$,
- symmetric if $xRy \Rightarrow yRx$,
- transitive if $xRy \wedge yRz \Rightarrow xRz$,
- antisymmetric if $xRy \wedge yRx \Rightarrow x = y$.

Definition 1.8. A partial order on a set A is a reflexive, transitive, and antisymmetric relation on A.

Some examples of partially ordered sets include (R, \leq) , $(P(\mathbb{R}), \subseteq)$.

Definition 1.9. A total order R on a set A is a partial order such that for all $x, y \in A$, either xRy or yRx.

Again, (R, \leq) is a totally ordered set, but not $(P(\mathbb{R}), \subseteq)$.

Definition 1.10. A total order \leq on a set A is said to be a *well-order* if given any non-empty subset $B \subseteq A$, there exists $x \in B$ such that for all $y \in B$, $x \leq y$.

The below theorem may be derived from the above definitions and axioms.

Theorem 1.11 (The well-ordering principle). Every set can be well-ordered.

We may note that the well-ordering principle and the axiom of choice are equivalent.

Definition 1.12. A *chain* in partially ordered set A, with relation \prec , is a subset of A which is totally ordered with respect to \prec .

Definition 1.13. Let $C \subseteq A$ be a subset in a partially ordered set (A, \prec) . An element $x \in A$ is an *upper bound* of C if for all $y \in C$, $y \prec x$.

Definition 1.14. An element $x \in A$ is a *maximal element* of a partially ordered set (A, \prec) if for all $y \in A$, $x \prec y \Rightarrow x = y$.

Lemma 1.15 (Zorn's lemma). Let A be a set and let \prec be a partial order on A such that every chain in A has an upper bound. Then A has a maximal element.

Theorem 1.16. The following are equialent:

- 1. The axiom of choice,
- 2. The well-ordering principle,
- 3. Zorn's lemma.

Proof. We begin with 2. implies 3.; let A be a non-empty set. Consider

$$C = \{ (B, \leq) \mid B \subseteq A \text{ and } \leq \text{ is a well-order on } B \}.$$
 (1.1)

We note that \mathcal{C} is non-empty since if we pick $B = \{x\}$ for some $x \in A$, then $x \leq x$ and $(B, \leq) \in \mathcal{C}$. Let $(B, \leq), (C, \leq') \in \mathcal{C}$. We say $(B, \leq) \preceq (C, \leq')$ if there exists $y \in C$ such that

$$B = \{x \in C \mid x \leq' y\} \ (= I(c, y)) \text{ and } \leq \leq '|_B, \text{ or } (B, \leq) = (C, \leq')$$
 (1.2)

Note that \leq is a partial order on \mathcal{C} and is clearly reflexive.

For transitivity, if we take $B \leq C$ and $C \leq D$, then B = C or B = I(C, y) for some $y \in C$, and C = D or C = I(D, z) for some $z \in D$. If equality holds in either case, then clearly $B \leq D$. If B = I(C, y) and C = I(D, z). Clearly, B = I(D, y).

Now let $T = (\{(B_i, \leq_i) \mid i \in I\})$ be a chain in \mathcal{C} . Let $B = \bigcup_{i \in I} B_i$, and $\leq = \bigcup_{i \in I} \leq_i$. Note that this makes sense since if $x \in B_i$ and $y \in B_j$ with $B_i \leq B_j$, then $x, y \in B_j$. So, we assign $x \leq y$ if $x \leq_j y$. Now let $C \subseteq B$ be non-empty. Also let $x \in C$; then $x \in B_i$ for some $i \in I$. Let $w = \min(B_i \cap C)$. We claim that $w = \min C$. For $y \in C$, if $y \in B_i$ then $w \leq y$. If $y \notin B_i$ then $y \in B_j \in T$. Since T is a chain, either $B_i \leq B_j$ or $B_j \leq B_i$; the latter is not possible since $y \notin B_i$. Thus, $B_i = I(B_j, z)$, for some $z \in B_j$, and for any $x \in B_i$, $w \leq x \leq y$.

So $(B, \leq) \in \mathcal{C}$ and it is an upper bound of T; to realize it is an upper bound, we show that $B_i \leq B$ for all valid i. If $B_i = B$, we are done. Otherwise, let $x = \min(B \setminus B_i)$. Then $B_i = I(B, x)$, and $B_i \leq B$. Thus, by Zorn's lemma, \mathcal{C} has a maximal element—cal it (M, \leq) .

We now claim that M = A. If $M \subsetneq A$, then let $a \in A \setminus M$. If we let $\hat{M} = (M \cup \{a\}, \leq')$ where $x \leq' a$ for all $x \in M$, then $M = I(\hat{M}, a)$ but this is a contradiction to the fact that (M, \leq) is a maximal element. Thus, A = M.

Next comes 1. implies 3. Let X be a partially ordered set such that every chain has an upper bound. Suppose X has no maximal element; we will utilise the axiom of choice to arise at a contradiction. For every chain T in X, there exists a strict upper bound c_T . Define a function f sending chains T in X to X as $f(T) = c_T \notin T$. Such a function f exists by the axiom of choice. A subset $A \subseteq X$ is called a conforming subset if A is well-ordered, with respect to order on X, and for all $x \in A$, f(I(A, x)) = x. We claim that if A and B are conforming subsets of X, then A = B or one is the initial segment of the other. For now, let us take this claim to be true. We shall prove it later.

If $f(\emptyset) = x$ then $A = \{x\}$. Note that A is conforming. But $I(A, x) = \emptyset \implies f(I(A, x)) = x$. Let U be the union of all conforming subsets of X. Then U is conforming since if $x \in U$ then $x \in B$ for some B conforming and x = f(I(B, x)) = f(I(U, x)). Let f(U) = w. Define a new set $\tilde{U} = U \sqcup \{w\}$, which is well-ordered and conforming. Then $U = I(\tilde{U}, w)$, which is a contradiction.

Coming back to the claim, suppose $x \in A \setminus B$. We wish to show that B = I(A,x) for some $x \in A$. Let $x = \min(A \setminus B)$. We claim that this x works. $I(A,x) \subseteq B$ holds since if $y \in A$ and y < x then $y \in B$, or else $x \neq \min(A \setminus B)$. Suppose, now, that the equality does not hold. Take $y = \min(B \setminus I(A,x))$ and $z = \min(A \setminus I(B,y))$. We claim that I(A,z) = I(B,y). Take $v \in I(A,z)$; then v < z implies $v \in I(B,y)$ since $z = \min(A \setminus I(B,y))$. Taking $u \in I(B,y)$, we have $u \in I(A,x) \implies u < x$ since $y = \min(B \setminus I(A,x))$. If $z \leq u$, then $z \in I(A,x) \subseteq B \implies z \in I(B,y)$ contrading the fact that $z = \min(A \setminus I(B,y))$. Thus, z > u and $y \in I(A,z)$. Finally, z = f(I(A,z)) = f(I(B,y)) = y implies z = x = y. But this a contradiction since $x \in A \setminus B$ and $y \in B$.

Definition 1.17. A relation R on a set A is said to be an *equivalence relation* if it is reflexive, symmetric, and transitive. Let $x \in A$. Then $[x] = \{yRx \mid y \in A\} \subseteq A$ is called the *equivalence class* of x.

We note that $\bigcup_{x \in A} [x] = A$ and for $x, y \in A$, either $[x] \cap [y] = \emptyset$ or [x] = [y]. Thus, we get a partition of A into equivalence classes.

Let I be an indexing set, and let A_i be sets for all $i \in I$. Then the existence of $X_{i \in I} A_i = \{f : I \to A_i \mid f(i) \in A_i \text{ for all } i \in I\}$ is another way of stating the axiom of choice.

Theorem 1.18 (The principle of induction). Let S(n) be statements about the naturals $n \in \mathbb{N}$. Suppose S(1) holds and for all $k \in \mathbb{N}$, $S(k) \Rightarrow S(k+1)$. Then S(n) holds true for all $n \in \mathbb{N}$.

Let I be a well-ordered set and let S(i) be statements for all $i \in I$. Suppose that if S(j) holds for all j < i, then S(i) holds. Then S(i) holds for all $i \in I$. This is the *principle of transfinite induction*, which is also equivalent to the axiom of choice. We now properly introduce the theory of groups.

1.2 Groups

We first define a group.

Definition 1.19. A group is a triple (G, \cdot, e) where G is a set, $\cdot : G \times G \to G$ is a binary operation on G, and $e \in G$ is an element of G satisfying the following axioms:

- The property of associativity: For $a, b, c \in G$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- The property of the *identity element*: For all $a \in G$, $a \cdot e = e \cdot a = a$. e is referred to as the identity element.
- The existence and property of the *inverse element*: For all $a \in G$, there exists $b \in G$ such that $a \cdot b = b \cdot a = e$.

In addition, (G, \cdot, e) is also termed an abelian group if for all $a, b \in G$, $a \cdot b = b \cdot a$, that is, commutativity holds.

Some examples include $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, $(\mathbb{C}, +)$. The set (\mathbb{Q}, \cdot) is not a group since 0 does not have an inverse. However, (\mathbb{Q}^*, \cdot) is a group, where $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$. All these groups are also abelian. An example of a non-abelian group is S_n , the set of all bijections from $\{1, 2, \ldots, n\}$ to itself, under the binary operation of composition of functions. Another non-abelian group is $(GL_n(\mathbb{R}), \cdot)$, for $n \geq 2$, the set of all invertible real $n \times n$ matrices.

1.2.1 Some Basic Properties

July 24th.

From the axioms, arise basic properties related to groups.

Proposition 1.20. Let (G, \cdot, e) be a group.

- 1. Let $a \in G$ be such that $a \cdot b = b$ for all $b \in G$. Then a = e; the identity element is unique.
- 2. Each element $a \in G$ has a unique inverse. Thus, the inverse of a is then termed a^{-1} .
- 3. $(a^{-1})^{-1} = a \text{ holds for all } a \in G.$
- 4. For all $a, b \in G$, $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$.
- 5. Let $a \in G$ be such that $a \cdot b = b$ for some $b \in G$. Then a = e.

Proof. 1. Choose b to be e. Then $a \cdot e = e$ by hypothesis, and $a \cdot e = a$ by the property of the identity element. Thus, a = e.

- 2. Let $a \in G$ and $b \in G$ be such that $a \cdot b = b \cdot a = e$. Let $c \in G$ be also such that $c \cdot a = e$. Thus, $(c \cdot a) \cdot b = e \cdot b \Rightarrow c \cdot (a \cdot b) = e \cdot b \Rightarrow c \cdot e = b \Rightarrow c = b$.
- 3. Easy to see since $a^{-1} \cdot a = a \cdot a^{-1} = e$ which just means that the inverse of a^{-1} is a.
- 4. Also easy since $(a \cdot b) \cdot (b^{-1} \cdot a^{-1}) = (b^{-1} \cdot a^{-1}) \cdot (a \cdot b) = e$.
- 5. Finally, right multiplying b^{-1} leads to $a = a \cdot b \cdot b^{-1} = b \cdot b^{-1} = e$.

Index

abelian group, 4partial order, 2antisymmetric, 2 power set, 1 principle of induction, 3associativity, 4 axiom of choice, 2principle of transfinite induction, 3reflexive, 2 chain, 2 relation, 1 conforming subset, 3 subset, 1 empty set, 1 ${\bf symmetric},\,2$ equivalence class, 3 equivalence relation, 3total order, 2transitive, 2 group, 4 upper bound, 2 identity element, 4infinite axiom, 1well-order, 2 inverse element, 4 well-ordering principle, 2Zorn's lemma, 2 maximal element, 2