Алгоритмы численных методов. Самостоятельные работы

В. С. Верхотуров БСБО-05-20 РТУ МИРЭА

11 июля 2022 г.

Содержание

38	адание	2
1	Самостоятельная работа № 1. Решение нелинейных уравнений и систем линейных уравнений	4
	1.1 Задача 1	
	1.2 Задача 2	
	1.3 Задача 3	7
2	Самостоятельная работа № 2. Построение интерполяционных многочленов	10
3	Самостоятельная работа № 3. Вычисление определённых интегралов	12
1	Самостоятельная работа № 4. Решение обыкновенных дифференциальных уравнений	16

Задание

Самостоятельная работа № 1. Решение нелинейных уравнений и систем линейных уравнений

Задача 1

Дано уравнение $5x^2 + 2x - 6 = 0$.

- 1. Найти точное решение уравнения;
- 2. построить график левой части этого уравнения;
- 3. найти приближенное значение левого корня этого уравнения методом половинного деления с точностью $\varepsilon = 10^{-3}$;
- 4. найти приближенное значение правого корня методом простой итерании, $\varepsilon=10^{-6}$.

Задача 2

Дано уравнение $x^2 \exp(x) - 6 = 0$.

- 1. Построить график левой части уравнения;
- 2. найти приближенное решение методом простой итерации, $\varepsilon = 10^{-6}$.

Задача 3

Найти точное решение системы уравнений:

$$\begin{cases} 2x_1 + 6x_2 - x_3 = -12 + 6, \\ 5x_1 - x_2 + 2x_3 = 29 + 6, \\ -3x_1 - 4x_2 + x_3 = 5 + 6. \end{cases}$$

Самостоятельная работа № 2. Построение интерполяционных многочленов

1. Найти приближение функции, заданной в точках, многочленом, значения которого совпадают со значениями функции в указанных точках:

x	У
1	0 + 6
3	4 + 6
5	2 + 6
7	6 + 6
9	8 + 6

- 2. построить график полученного интерполяционного многочлена;
- 3. найти значение функции в точке x = 6.

Самостоятельная работа № 3. Вычисление определённых интегралов

1. Найти аналитическое выражение для неопределённого интеграла

$$\int \sin(\ln(6x)) dx;$$

- 2. построить графики найденного интеграла красным цветом и подынтегральной функции синим цветом;
- 3. вычислить приближенное значение этого интеграла:

$$\int_{2}^{6+2} \sin(\ln(6x)) dx;$$

4. вычислить приближенное значение интеграла

$$\int_{2}^{6+2} \exp(-x^2) \sin(6x) \, dx.$$

Самостоятельная работа № 4. Решение обыкновенных дифференциальных уравнений

1. Найти аналитическое решение задачи Коши:

$$y'(t) = \frac{1}{6}(t+y), \quad y(0) = 6;$$

- 2. построить график найденного решения на отрезке [0; 6];
- 3. найти численное решение задачи Коши:

$$y'(t) = \frac{1}{6}(t+y), \quad y(0) = 6;$$

4. найти численное решение задачи Коши

$$y'(t) = \sin(6y(t) + t^2), \quad y(0) = 6$$

в точках t = 1 и t = 2;

5. построить график найденного решения на отрезке [0; 5].

Самостоятельная работа № 1. Решение нелинейных уравнений и систем линейных уравнений

1.1 Задача 1

Дано уравнение $5x^2 + 2x - 6 = 0$.

Точное решение уравнения

$$D = b^{2} - 4ac = 2^{2} - 4 \times 5 \times (-6) = 4 + 120 = 124,$$

$$x = \frac{-b \pm \sqrt{D}}{2a},$$

$$\begin{cases} x_{1} = \frac{-2 + \sqrt{124}}{2 \times 5}, \\ x_{2} = \frac{-2 - \sqrt{124}}{2 \times 5}, \end{cases} \iff \begin{cases} x_{1} = -0.2 + 0.2\sqrt{31}, \\ x_{2} = -0.2 - 0.2\sqrt{31}. \end{cases}$$

График левой части уравнения

См. рис. 1 на стр. 4.

Рис. 1: График функции

Приближенное значение левого корня методом половинного деления

Необходимо найти приближенное значение левого корня $5x^2+2x-6=0$ методом половинного деления с точностью $\varepsilon=10^{-3}$.

По графику на рис. 1 можно предположить, что значение левого корня находится на интервале [-1,5;-1]. f(-1,5)=2,25, f(-1)=-3. $f(x_0)f(x_1)=2,25\times(-3)=-6,75\leq0$, следовательно промежуток действительно содержит хотя бы один корень. Для первой итерации: $x_0=-1,5,\ x_1=-1$.

Функция нахождения x_2 :

$$x_2 = \frac{1}{2}(x_0 + x_1).$$

См. таблицу 1 на стр. 5.

	x_0	x_1	x_2	$f(x_0)$	$f(x_1)$	$f(x_2)$	$f(x_0)f(x_2)$	$f(x_1)f(x_2)$
_	-1,5	-1	-1,25	2,25	-3	-0,6875	-1,546875	2,0625
-	-1,5	-1,25	-1,375	2,25	-0,6875	0,7031	$1,\!581975$	-0,48338125
-	-1,25	-1,375	-1,3125	-0,6875	0,7031	-0,0117	0,00804375	6-0,00822627
-	$-1,\!375$	-1,3125	-1,3438	0,7031	-0,0117	0,3414	0,24003834	1-0,00399438
-	-1,3125	-1,3438	-1,3282	-0,0117	0,3414	0,1642	-0,00192114	0,056 057 88
-	-1,3125	-1,3282	-1,3204	-0,0117	0,1642	0,0765	-0,00089505	0,0125613
-	-1,3125	-1,3204	-1,3165	-0,0117	0,0765	0,0329	-0,00038493	0,00251685
-	-1,3125	-1,3165	-1,3145	-0,0117	0,0329	0,0106	-0,00012402	2 0,000 348 74
-	-1,3125	-1,3145	-1,3135	-0,0117	0,0106	-0,0006	0,00000702	2-0,00000636

Таблица 1: Результаты приближения методом половинного деления

Функции 1 электронной таблицы 2 1:

столбец A, кроме первой итерации =IF(G2<=0, A2, B2);

столбец В, кроме первой итерации =С2;

столбец C =ROUND((A3+B3)/2, 4);

столбец D =ROUND(POWER(A3, 2)*5+2*A3-6, 4);

столбец E =ROUND(POWER(B3, 2)*5+2*B3-6, 4);

столбец F =ROUND(POWER(C3, 2)*5+2*C3-6, 4);

столбец G =D3*F3;

столбец H =E3*F3.

Приближенным значением левого корня при $\varepsilon=10^{-3}$ является x_2 при 9 итерации, равная -1,3135.

Приближенное значение правого корня методом простой итерации

Необходимо найти приближенное значение правого корня методом простой итерации с точностью $\varepsilon=10^{-6}.$

По рис. 1 начальное приближение к правому корню $x_0 = 0$. Итерационная формула:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

¹ представлены формулы для строки 3

²Google Sheets

Нахождение производной f(x):

$$f(x) = 5x^2 + 2x - 6,$$

$$f'(x) = 10x + 2.$$

См. таблицу 2 на стр. 6.

x_k	$f(x_k)$	$f'(x_k)$	x_{k+1}
0	-6	2	3
3	45	32	1,59375
1,59375	9,887695313	17,9375	1,042519599
1,042519599	1,519274773	$12,\!42519599$	0,9202458924
0,9202458924	0,07475429702	$11{,}20245892$	0,9135728666
$0{,}9135728666$	0,00022264636	$11{,}13572867$	0,9135528727
0,9135528727	0,00000000200	$11{,}13552873$	0,9135528726
0,913 552 872 6	0	$11{,}13552873$	0,9135528726

Таблица 2: Результаты приближения методом простой итерации

 Φ ункции³ электронной таблицы⁴ 2:

столбец A, кроме первой итерации =D2;

столбец B = POWER(A3, 2)*5+2*A3-6;

столбец C =10*A3+2;

столбец D =A3-B3/C3.

Критерий окончания процесса $|x_7-x_6|=|0.9135528726-0.9135528727|=10^{-10}<\varepsilon=10^{-6}$ выполнен.

Приближенное значение правого корня равно 0,9135529 при $\varepsilon = 10^{-6}$.

1.2 Задача 2

Дано уравнение $x^2 \exp(x) - 6 = 0$. См. рис. 2 на стр. 7.

График левой части уравнения

Нахождение приближенного решения

Необходимо найти приближенное решение методом простой итерации при $\varepsilon=10^{-6}.$

По рис. 2 начальное приближение к корню $x_0 = 1$. Нахождение производной f(x):

$$f(x) = x^2 \exp(x) - 6,$$

 $f'(x) = 2x \exp(x) + x^2 \exp(x).$

См. таблицу 3 на стр. 7.

 $^{^{3}}$ представлены формулы для строки 3

⁴Google Sheets

Рис. 2: График функции

x_k	$f(x_k)$	$f'(x_k)$	x_{k+1}
1	-3,281718172	$8{,}154845485$	$1,\!402425549$
1,402425549	1,995125904	$19,\!39698023$	$1,\!299567997$
$1,\!299567997$	$0{,}1943141286$	$15{,}72719605$	$1,\!287212703$
1,287212703	$0,\!00247013608$	$15,\!32877669$	$1,\!287051559$
$1,\!287051559$	0,00000041415	$15{,}32363686$	$1,\!287051532$
$1,\!287051532$	0	$15,\!323636$	1,287051532

Таблица 3: Результаты приближения методом простой итерации

Функции 5 электронной таблицы 6 3:

столбец A, кроме первой итерации =D2;

столбец В = POWER(A3,2)*EXP(A3)-6;

столбец C = 2*A3*EXP(A3)+POWER(A3,2)*EXP(A3);

столбец $\mathbf D$ =A3-B3/C3.

Критерий окончания процесса $|x_5-x_4|=|1,287051559-1,287051532|=2,7\times 10^{-8}<\varepsilon=10^{-6}$ выполнен.

Приближенное значение корня равно 1,2870515 при $\varepsilon=10^{-6}.$

1.3 Задача 3

Дана система уравнений:

⁵представлены формулы для строки 3

⁶Google Sheets

$$\begin{cases} 2x_1 + 6x_2 - x_3 = -12 + 6 \\ 5x_1 - x_2 + 2x_3 = 29 + 6 \\ -3x_1 - 4x_2 + x_3 = 5 + 6 \end{cases} \iff \begin{cases} 2x_1 + 6x_2 - x_3 = -6 \\ 5x_1 - x_2 + 2x_3 = 35 \\ -3x_1 - 4x_2 + x_3 = 11 \end{cases}$$

Точное решение системы уравнений

Решение СЛАУ методом Гаусса. Прямой ход.

Расширенная матрица СЛАУ:

$$\begin{vmatrix} 2 & 6 & -1 & -6 \\ 5 & -1 & 2 & 35 \\ -3 & -4 & 1 & 11 \end{vmatrix}.$$

Преобразование матрицы:

Обратный ход:

$$\begin{split} x_3 &= \frac{2820}{145} = \frac{564}{29}, \\ x_2 &= \frac{160 - 11x_3}{-23} = \frac{160 - 11 \times \frac{564}{29}}{-23} = \frac{68}{29}, \\ x_1 &= \frac{11 + 4x_2 - x_3}{-3} = \frac{11 + 4 \times \frac{68}{29} - \frac{568}{29}}{-3} = -\frac{9}{29} \end{split}$$

Приближенное решение системы уравнений

Решение СЛАУ методом Зейделя.

$$\begin{cases} x_1 = 7 + \frac{1}{5}x_1 + \frac{1}{6}x_3, \\ x_2 = -1 - \frac{1}{3}x_1 + \frac{1}{6}x_3, \\ x_3 = 11 + 3x_1 + 4x_2. \end{cases}$$

Примем за начальное приближение:

$$\begin{cases} x_1^{\{0\}} = 0, \\ x_2^{\{0\}} = 0, \\ x_3^{\{0\}} = 0. \end{cases}$$

См. таблицу 4 на стр. 9.

Функции 7 электронной таблицы 8 4:

 $^{^{7}}$ представлены формулы для строки 3

⁸Google Sheets

$x_1^{\{m\}}$	$x_{2}^{\{m\}}$	$x_3^{\{m\}}$
0	0	0
7	-3,333333333	$18,\!66666667$
$-1{,}133333333$	$2,\!488888889$	17,55555556
$0,\!4755555556$	1,767407407	$19{,}4962963$
-0,445037037	$2,\!397728395$	$19{,}25580247$
$-0,\!2227753086$	$2,\!283558848$	$19,\!46590947$
$-0,\!3296520165$	$2,\!35420225$	$19,\!42785295$
$-0,\!3003007298$	$2,\!338075735$	$19,\!45140075$
-0,312945153	$2,\!346215176$	$19,\!44602524$
$-0,\!3091670628$	$2,\!344059895$	$19,\!44873839$
$-0,\!3106833778$	$2,\!345017525$	$19,\!44801997$
$-0,\!3102044811$	$2,\!344738155$	$19,\!44833917$
-0,310388039	$2,\!344852542$	$19,\!44824605$
$\underbrace{-0,\!3103279122}_{}$	$2,\!344816979$	19,448 284 18

Таблица 4: Результаты приближения методом Зейделя

столбец A, кроме первой итерации =7+B2/5-C2*2/5; столбец B, кроме первой итерации =-1-A3/3+C2/6; столбец C, кроме первой итерации =11+3*A3+4*B3.

$$\begin{split} \left| x_1^{\{13\}} - x_1^{\{12\}} \right| &< 10^{-4}, \\ \left| x_2^{\{13\}} - x_2^{\{12\}} \right| &< 10^{-4}, \\ \left| x_3^{\{13\}} - x_3^{\{12\}} \right| &< 10^{-4}. \end{split}$$

При
$$\varepsilon=10^{-4}$$
:
$$\begin{cases} x_1=0.31032,\\ x_2=2.34481,\\ x_3=19.44828. \end{cases}$$

2 Самостоятельная работа № 2. Построение интерполяционных многочленов

Приближение функции

Необходимо найти приближение функции, заданной в точках, многочленом, значения которого совпадают со значениями функции в указанных точках:

\overline{x}	y
1	6
3	10
5	8
7	12
9	14

См. таблицу 5 на стр. 10.

\overline{x}	y	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
1 3 5 7 9	6 10 8 12 14	$\begin{array}{c} 4 \\ -2 \\ 4 \\ 2 \end{array}$	$ \begin{array}{r} -6 \\ 6 \\ -2 \end{array} $	12 -8	-20

Таблица 5: Расчёт разностей табличной функции

Узлы интерполяции равноотстоящие, т.к. h=3-1=5-3=7-5=9-7=2=const.

Первая интерполяционная формула Ньютона:

$$P_n(x) = y_0 + \frac{\Delta y_0}{1!h}(x - x_0) + \frac{\Delta^2 y_0}{2!h^2}(x - x_0)(x - x_1) + \dots + \frac{\Delta^n y_0}{n!h^n}(x - x_0)(x - x_1) \dots (x - x_{n-1}).$$

$$P_n(x) = 6 + \frac{4}{1!2}(x-1) + \frac{-6}{2!2^2}(x-1)(x-3) +$$

$$+ \frac{12}{3!2^3}(x-1)(x-3)(x-5) +$$

$$+ \frac{-20}{4!2^4}(x-1)(x-3)(x-5)(x-7) =$$

$$= \frac{-5x^4 + 104x^3 - 718x^2 + 1912x - 717}{96} =$$

$$= -\frac{5}{96}x^4 + \frac{13}{12}x^3 - \frac{359}{48}x^2 + \frac{239}{12}x - \frac{239}{32}.$$

Построение графика

См. рис. 3 на стр. 11.

Рис. 3: График полученного интерполяционного многочлена

Значение в точке

Найти значение в точке x = 6.

$$P_n(6) = -\frac{5}{96} \times 6^4 + \frac{13}{12} \times 6^3 - \frac{359}{48} \times 6^2 + \frac{239}{12} \times 6 - \frac{239}{32} =$$

$$= -\frac{135}{2} + 234 - \frac{1077}{4} + \frac{239}{2} - \frac{239}{32} = \frac{297}{32}.$$

3 Самостоятельная работа № 3. Вычисление определённых интегралов

Аналитическое выражение

Найти аналитическое выражение для неопределённого интеграла

$$\int \sin(\ln(6x)) \, dx.$$

$$\int \sin(\ln(6x)) \, dx = [u = 6x, \quad du = 6dx] = \frac{1}{6} \int \sin(\ln(u)) \, du =$$

$$= \left[v = \ln(u), \quad dv = \frac{1}{u} \, du\right] = \frac{1}{6} \int \exp(v) \sin(v) \, dv =$$

$$= \frac{1}{6} \left(\frac{1}{2} \exp(v)((\sin(v) - \cos(v))\right) + C =$$

$$= \frac{1}{12} u(\sin(\ln(u)) - \cos(\ln(u))) + C =$$

$$= \frac{1}{2} x(\sin(\ln(6x)) - \cos(\ln(6x))) + C.$$

Графики интеграла и подынтегральной функции

Построить графики найденного интеграла — красным цветом и подынтегральной функции — синим цветом.

См. рис. 4 на стр. 12.

Рис. 4: Графики интеграла, подынтегральной функции

Приближенное значение интеграла

Вычислить приближенное значение интеграла:

$$\int_{2}^{8} \sin(\ln(6x)) \, dx.$$

Формула Симпсона:

$$\int_{a}^{b} f(x) dx = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right).$$

$$f(2) = \sin(\ln(6 \times 2)) = 0.611,$$

$$f\left(\frac{2+8}{2}\right) = \sin(\ln(6 \times 5)) = -0.257,$$

$$f(8) = \sin(\ln(6 \times 8)) = -0.667.$$

$$\int_{2}^{8} \sin(\ln(6x)) dx = \frac{8-2}{6}(0.611 + 4(-0.257) - 0.667) = -1.083.$$

Ошибка аппроксимации:

$$E = -\frac{1}{90} \left(\frac{b-a}{2} \right)^5 \max(f^{(4)}(\xi)), \quad \text{где } \xi \in [a;b].$$

$$\begin{split} f'(x) &= \frac{\cos(\ln(6) + \ln(x))}{x}, \\ f''(x) &= -\frac{\sin(\ln(6) + \ln(x)) + \cos(\ln(6) + \ln(x))}{x^2}, \\ f'''(x) &= \frac{\cos(\ln(6) + \ln(x)) + 3\sin(\ln(6) + \ln(x))}{x^3}, \\ f^{(4)}(x) &= -\frac{10\sin(\ln(6) + \ln(x))}{x^4}. \end{split}$$

Нахождение $\max(f^{(4)}(x))$ на отрезке x = [a; b]:

$$\begin{split} f^{(5)}(x) &= \frac{40 \sin(\ln(6) + \ln(x)) - 10 \cos(\ln(6) + \ln(x))}{x^5} \\ &\frac{40 \sin(\ln(6x)) - 10 \cos(\ln(6x))}{x^5} = 0, \\ &\begin{cases} x_1 \approx 0.213, \\ x_2 \approx 4.927. \end{cases} \\ f^{(4)}(0.213) \approx -1.1798 \times 10^7, \\ f^{(4)}(4.927) \approx 0.0041, \\ f^{(4)}(2) \approx -0.38156, \\ f^{(4)}(8) \approx 0.0016. \end{cases} \\ &\max(f^{(4)}(\xi)) = f^{(4)}(4.927) \approx 0.0041. \end{cases} \\ E &= -\frac{1}{90} \left(\frac{8-2}{2}\right)^5 \times 0.0041 \approx -0.01107. \end{cases}$$

Приближенное значение интеграла

Вычислить приближенное значение интеграла:

$$\int_{2}^{8} \exp(-x^2) \sin(6x) \, dx.$$

Метод трапеций:

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta}{2} (f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{N-1}) + f(x_N).$$

Разобьём интеграл на N=6 равных промежутков. $\Delta x=\frac{b-a}{N}=\frac{8-2}{6}$. См. таблицу 6 на стр. 15.

$$\int_{2}^{8} \exp(-x^{2}) \sin(6x) dx \approx \frac{1}{2} (-0.0098) = -0.0049.$$

Анализ ошибки:

$$E = -\frac{(b-a)^3}{12N^2} \max(f''(\xi)),$$
 где $\xi \in [a;b].$

\overline{i}	x_i	y_i
0	2	-0,0098
1	3	$-9,27 \times 10^{-5} \approx 0$
2	4	$-1,02 \times 10^{-7} \approx 0$
3	5	$-1,37 \times 10^{-11} \approx 0$
4	6	$-2.3 \times 10^{-16} \approx 0$
5	7	$-4,81 \times 10^{-22} \approx 0$
6	8	$-1,23 \times 10^{-28} \approx 0$

Таблица 6: Результат приближения значения интеграла

$$f''(x) = -38\exp(-x^2)\sin(6x) + 4x^2\exp(-x^2)\sin(6x) - 24x\exp(-x^2)\cos(6x) =$$

$$= 4\exp(-x^2)\left(\sin(6x)x^2 - 6\cos(6x)x - \frac{19\sin(6x)}{2}\right).$$

Нахождение $\max(f''(x))$, где $x \in [2; 8]$:

$$f'''(x) = 228x \exp(-x^2) \sin(6x) - 252 \exp(-x^2) \cos(6x) - 8x^3 \exp(-x^2) \sin(6x) + 72x^2 \exp(-x^2) \cos(6x) =$$

$$= -8 \exp(-x^2) \left(\sin(6x)x^3 - 9\cos(6x)x^2 - \frac{57\sin(6x)x}{2} + \frac{63\cos(6x)}{2} \right).$$

При f'''(x) = 0:

$$\begin{cases} x_1 \approx 0.228, \\ x_2 \approx 3.507. \end{cases}$$

$$f''(0.228) \approx -36.186,$$

$$f''(3.507) \approx 0.00026,$$

$$f''(2) \approx -0.5257,$$

$$f''(8) \approx -71.48 \times 10^{-28}.$$

$$\max(f''(x)) = 0.00026.$$

$$E = -\frac{(8-2)^3}{12 \times 1^2} \times 0.00026 = -0.00468.$$

$$\int_{2}^{8} \exp(-x^2) \sin(6x) dx \approx \frac{1}{2}(-0.0098) = -0.0049 \pm 0.00468.$$

4 Самостоятельная работа № 4. Решение обыкновенных дифференциальных уравнений

Аналитическое решение задачи Коши

Найти аналитическое решение задачи Коши:

$$y'(t) = \frac{1}{6}(t+y), \quad y(0) = 6.$$
$$-\frac{y}{6} + y' = \frac{t}{6}.$$

Замена на y = uv, y' = u'v + uv':

$$-\frac{uv}{6} + uv' + u'v = \frac{t}{6},$$
$$u\left(-\frac{v}{6} + v'\right) + u'v = \frac{t}{6},$$
$$\begin{cases} u\left(-\frac{v}{6} + v'\right) = 0,\\ u'v = \frac{t}{6}. \end{cases}$$

Нахождение v. При u=0:

$$-\frac{v}{6} + v' = 0,$$

$$v' = \frac{v}{6},$$

$$\frac{dv}{v} = \frac{1}{6}dt,$$

$$\int \frac{dv}{v} = \frac{1}{6} \int dt,$$

$$\ln(v) = \frac{t}{6},$$

$$v = \exp\left(\frac{t}{6}\right).$$

Нахождение u:

$$u'v = \frac{t}{6},$$

$$u' \exp\left(\frac{t}{6}\right) = \frac{t}{6},$$

$$u' = \frac{t \exp\left(-\frac{t}{6}\right)}{6},$$

$$u = \int \frac{t \exp\left(-\frac{t}{6}\right)}{6} dt = \frac{1}{6} \int t \exp\left(-\frac{1}{6}\right) dt.$$

Формула интегрирования по частям:

$$\int U \, dV = UV - \int V \, dU.$$

$$U = t, \quad dV = \exp\left(-\frac{t}{6}\right) dt,$$

$$dU = dt, \quad V = -6 \exp\left(-\frac{t}{6}\right),$$

$$\int t \exp\left(-\frac{t}{6}\right) dt = -6t \exp\left(-\frac{t}{6}\right) - \int -6 \exp\left(-\frac{t}{6}\right) dt =$$

$$= -6t \exp\left(-\frac{t}{6}\right) + \int 6 \exp\left(-\frac{t}{6}\right) dt = -6t \exp\left(-\frac{t}{6}\right) - 36 \exp\left(-\frac{t}{6}\right) + C.$$

$$u = \frac{1}{6} \int t \exp\left(-\frac{t}{6}\right) dt = \frac{1}{6}(-6x - 36) \exp\left(-\frac{t}{6}\right),$$

$$y = uv = \left(C + (-6t - 36)\frac{\exp\left(-\frac{t}{6}\right)}{6}\right) \exp\left(\frac{t}{6}\right) = C \exp\left(\frac{t}{6}\right) - t - 6.$$
 При $y(0) = 6$:
$$6 = C \exp(0) - 0 - 6,$$

$$C = 12,$$

$$y = 12 \exp\left(\frac{t}{6}\right) - t - 6.$$

График найденного решения

Построить график найденного решения на отрезке [0; 6]. См. рис. 5 на стр. 17.

Рис. 5: График найденного решения

Численное решение задачи Коши

Найти численное решение задачи Коши:

$$y'(t) = \frac{1}{6}(t+y), \quad y(0) = 6.$$

Метод Эйлера:

$$y_{n+1} = y_n + hf(t_n, y_n).$$

Пусть $h = 1, t \in [0; 6].$

$$f(t,y) = \frac{1}{6}(t+y),$$

$$y_{n+1} = y_n + \frac{1}{6}(t_n + y_n),$$

$$t_0 = 0, \quad y_0 = 6.$$

См. таблицу 7 на стр. 18.

n	t_n	y_n
0	0	6
1	1	7
2	2	8,333
3	3	10,055
4	4	$12,\!231$
5	5	14,936
6	6	$18,\!259$

Таблица 7: Результат численного решения

Численное решение задачи Коши

Найти численное решение задачи Коши:

$$y'(t) = \sin(6y(t) + t^2), \quad y(0) = 6$$

в точках t = 1 и t = 2.

Метод Эйлера:

$$y_{n+1} = y_n + h f(t_n, y_n).$$

Пусть $h = 1, t \in [0; 5].$

$$f(t,y) = \sin(6y + t^{2}),$$

$$y_{n+1} = y_{n} + \sin(6y + t^{2}),$$

$$t_{0} = 0, \quad y_{0} = 6.$$

См. таблицу 8 на стр. 19.

$$y(1) = 5,008, \quad y(2) = 4,648.$$

n	t_n	y_n
0	0	6
1	1	5,008
2	2	4,648
3	3	5,103
4	4	6,043
5	5	6,955

Таблица 8: Результат численного решения

График найденного решения

Построить график найденного решения на отрезке [0; 5]. См. рис. 6 на стр. 19.

Рис. 6: График найденного решения