

Bases de Données 2

Patricia Serrano Alvarado

MC Université de Nantes Laboratoire des Sciences du Numérique de

Nantes (LS2N)

https://pagespersowp.ls2n.fr/patriciaserrano/

Organisation

- 15h20 CM (11 créneaux)
- 13h20 TD (10 créneaux)
- 13h20 TP (10 créneaux)
- Contrôle de connaissances
 - 1 CC de 1h (coef 0,3)
 - 1 projet de TP en quadrinôme (coef 0,1)
 - 1 TP noté individuel (coef 0,1)
 - 1 examen 1h30 (coef 0,5)

Equipe pédagogique

- Patricia Serrano Alvarado (MC). CM, TD et TP
- Matthieu Perrin (MC). TD et TP
- <u>David Piscitelli</u> (vacataire, Lengow). TP
- Richard Dufour (PU). TP

Distribution des groupes

Responsables de TD

Responsable	Groupe	Créneau (en général)
Patricia	685 ; 685K ; 685L ; 689MIAGE-G ; 689S ; 689T	Lundi 11h
Matthieu	684 ; 684I ; 684J	Mardi 8h
Patricia	689MIAGE-I ; 688Q ; 688R	Mardi 9h30

Responsables de TP

Responsable	Groupe	Créneau
Matthieu	684I	Jeudi 9h30
Patricia	685L; 689T	Jeudi 11h
Patricia	684J	Jeudi 9h30
Richard	688Q	Jeudi 11h
David	685K	Jeudi 9h30
David	688R	Jeudi 11h

Outils utilisés

- Madoc
 - Tout le matériel est disponible et organisé par semaine
 - Dépôts de rendus
 - Forum des nouvelles
- MOOC Stanford
- Oracle au CIE pour les TP (sous linux)
- CIE à distance : documentation
- Mail, selon le sujet, au responsable de CM, TD ou TP
 - Respecter les règles de bon sens
 - Pas écrire les weekends
 - Vous présenter
 - Relire votre mail et corriger les fautes d'orthographe

Livres utilisés et disponibles à la BU

Déroulement

- 4 TP à faire et à rendre, en binôme/trinôme
- Premières quatre semaines
 - Concevoir un schéma de BD en bonne et due forme, en quadrinôme (par groupe de TP)
 - A rendre en semaine 5 (le vendredi)
- Par la suite
 - Appliquer les concepts vus en CM/TD/TP à votre projet : fonctions PL/SQL, triggers, vues, indexes
 - CC en semaine 9
 - Projet à rendre + démo en semaine 11
 - TP noté individuel en semaine 12

Votre projet de TD/TP

- Objectif: développer une base de données et y intégrer les aspects vus en cours et en TD
- Projet à faire en quadrinôme (par groupe de TP)
- 2 temps clés
 - 1 rapport sur votre schéma de BD (semaine 5)
 - 1 démonstration et rapport final (semaine 11)

Programme du cours

- Rappel cours BD1 (algèbre relationnelle, EA, modèle relationnel, SQL, etc.)
- 2. Formes normales et normalisation
- 3. Contrôle d'accès
- 4. PL/SQL
- 5. Triggers
- 6. Vues
- 7. Evaluation de requêtes
- 8. Stockage
- 9. Indexation
- 10. Transactions

Aujourd'hui, un rappel de BD 1

- Qu'est-ce qu'une base de données ?
- Modèle Entité-Association
- Modèle Relationnel
- Algèbre relationnelle
- Langage SQL2

Qu'est-ce qu'une BD?

- Représentation du monde réel
- Collection de données structurées reliées par des relations
- Interrogeable et modifiable par des langages de haut niveau
 - Schéma
 - Organisation et types des données
 - Données
 - Le contenu/instances du schéma

Modèle Entité-Association (EA)

- Notions de
 - Entité
 - Attribut
 - Clé
 - Domaine
 - Association (cardinalité, degré, rôle)
 - Etc.

Exemple de modélisation de BD

- Gérer les notes des étudiants par matière
- Entités
 - Etudiants (noetu, nom, prenom, diplome)
 - Matières (codemat, titre, resp)
- Association
 - Notes des étudiants (cc, exam) par matière

Exemple de modèle EA

Exemple de modèle EA en UML

Modèle relationnel

- Notions de
 - Relation
 - Attribut
 - Clé
 - Domaine
 - Tuple
 - Schéma
 - Cardinalité d'une table : card(R) ou | R |
 - Degré d'une table : δ(R)

Transformation EA vers Relationnel (plusieurs règles)

- Entité -> relation
- Association-> relation avec clés étrangères
- Si cardinalité d'association 1:1 ou 1:0..1 -> regrouper l'association avec l'entité d'origine en une seule relation

Etudiants

noetu: PK string

nom: string

prenom: string diplome: string

Notes

noetu: FK string

codemat: FK string

cc: real

exam: real

Matieres

codemat: PK string

titre: string resp: string

Exemple d'instances

Quels dégrées des tables ? Quelles cardinalités ?

Etudiants				
<u>noetu</u>	nom	prenom	diplôme	
27845E	Dupont	Isabelle	L3 info	
34561C	Legarec	Marc	L3 info	
45678D	Martin	Robert	L3 info	
64289C	Dupont	Letitia	L3 miage	
23456E	Le Blanc	Michel	L3 miage	
98076E	Robert	Christine	L3 miage	

Notes			
<u>noetu</u>	<u>codemat</u>	СС	exam
27845E	X6I0050	15	12
27845E	X6I0010	10	11
27845E	X6I0030	11	13,5
34561C	X6I0050	10,2	11
34561C	X6I0010	10	13
34561C	X6I0030	12	10
45678D	X6I0050	10	8
45678D	X6I0030	5	5
64289C	X6IM020	15	10
64289C	X6IM010	12,5	10
64289C	X6I0050	13,1	12
23456E	X6IM010	7	2
23456E	X6I0080	14	13,8
98076E	X6IM020	12	12,8

Matieres				
<u>codemat</u>	titre	resp		
X6I0050	BD2	E512		
X6I0010	Prog	E860		
X6I0030	RO	E100		
X6IM020	IHM	E350		
X6IM010	Gestion	E670		
X6I0080	Fichier	E900		
X6I0040	Réseaux	E150		

Algèbre relationnelle

- Opérations de base unaires
 - \circ Projection π (restriction sur les attributs)
 - \circ Sélection σ (restriction sur les tuples selon un prédicat de sélection)
- Opérations de base ensemblistes
 - Union U (regroupement)
 - o différence (réduction)
 - produit cartésien x (combinaison)
- Opérations dérivées
 - Intersection n
 - o complément ¬
 - Jointures
 - o naturelle ⋈
 - o semi-jointure ⋉
 - interne ⋈_Q
 - o externe ·⋈·a
 - auto-jointure
- Opérations de mathématiques SUM, COUNT, AVG

Cours de Stanford sur l'algèbre relationnelle

Equivalences algébriques

Commutativité et associativité de la jointure

$$E_1 \bowtie E_2 = E_2 \bowtie E_1,$$

 $(E_1 \bowtie E_2) \bowtie E_3 = E_1 \bowtie (E_2 \bowtie E_3).$

Cascade de projections

$$\pi_{A_1,...,A_n}(\pi_{B_1,...,B_m}(E)) = \pi_{A_1,...,A_n}(E)$$

Cascade de sélections

$$\sigma_{F_1}(\sigma_{F_2}(E)) = \sigma_{F_1 \wedge F_2}(E)$$

Commutation sélection et projection

Si F ne porte que sur $A_1, ..., A_n$,

$$\pi_{A_1,\ldots,A_n}(\sigma_F(E)) = \sigma_F(\pi_{A_1,\ldots,A_n}(E))$$

Si F porte aussi sur $B_1, ..., B_m$,

$$\pi_{A_1,...,A_n}(\sigma_F(E)) = \pi_{A_1,...,A_n}(\sigma_F(\pi_{A_1,...,A_n,B_1,...,B_m}(E)))$$

SQL: trois langages

- DDL (langage de définition de données)
 - Création de tables
 - Contraintes d'intégrité
 - De valeurs
 - O D'unicité de clé
 - Référentielle (clé étrangère)
- DCL (langage de contrôle de données)
 - Contrôle d'accès
- DML (langage de manipulation de données)
 - Requêtes (insert, select, update, delete)

Création d'une table (DDL)

```
CREATE TABLE notes(
   noe varchar2(6) REFERENCES Etudiants (noetu),
   codemat varchar2(6) REFERENCES Matieres,
   noteex NUMBER(2,1),
   notecc NUMBER(2,1),
   CONSTRAINT notes_PK PRIMARY KEY(noe,codemat)
);
```

Cont.

- O ALTER TABLE Notes ADD CONSTRAINT CHECK (noteex>=0 and noteex<21);</pre>
- INSERT INTO Notes VALUES ('99628C', 'MIAS215',12,15.5);
- O INSERT INTO Notes (noe, codemat, noteex) VALUES ('28936E', 'MIAS216', 12);
- O UPDATE Notes SET (notecc=10)
 WHERE noe = '28936E' AND codemat='MIAS216';

Contrôle d'accès (DCL)

- O CREATE ROLE ROLE ENSEIGNANT;
- CREATE ROLE ROLE ETU;
- GRANT SELECT ON Notes TO ROLE_ETU;
- GRANT SELECT ON Matieres TO ROLE_ETU;
- GRANT SELECT, UPDATE ON Notes TO ROLE ENSEIGNANT WITH GRANT OPTION;

Manipulation des données (DML)

```
SELECT *
FROM notes NATURAL JOIN matieres;
SELECT *
FROM etudiants e JOIN notes n ON
e.noetu=n.noe;
SELECT *
FROM matières m LEFT OUTER JOIN notes n
ON m.codemat=n.codemat;
```

Questions?