

$$\cdot B x = \lambda x$$

$$le \notin U = Jin(x)$$

$$dv = Cos(x)dx$$

$$\cdot \partial \beta \cdot \partial y = 0 = \frac{1}{\sqrt{2}} q - \frac{1}{\sqrt{2}} c$$

from 3
$$0 = a-c$$
 t

$$a = 0$$

from Old b+d=0
$$2d^2 = 1$$

$$\Leftrightarrow b = -d$$

$$d^2 = \frac{1}{\sqrt{2}}$$

$$A = \pm \sqrt{2}$$
 $A = \pm \sqrt{2}$

or $(0, -\frac{1}{\sqrt{2}})$
 $(0, -\frac{1}{\sqrt{2}})$

4) if
$$\theta \neq k\pi$$
, $ke\chi$
 $\exists cos\theta \neq 1$, $cos\theta \neq -1$
 $\exists sin \theta \neq 0$

$$det (A-\lambda I) = 0$$

$$det (A-\lambda I$$

6).
$$Q^TQ = I$$

• $Q^T = Q^{-1}$

$$(Q^m)^{-1} = (Q^m)^T$$

$$= (QQ - - Q)^T = (Q^T)^m$$

$$\frac{1}{\alpha + \beta} = (re(\alpha) + im(\alpha) + re(\beta) + im(\beta))$$

$$= (re(\alpha + \beta) + im(\alpha + \beta))$$

$$= re(\alpha + \beta) - im(\alpha + \beta)$$

$$= [re(\alpha) - im(\alpha)] + [re(\beta) - im(\beta)]$$

$$= \alpha + \beta$$

$$\frac{1}{\alpha + \beta} = (re(\alpha) + im(\alpha)) + (re(\beta) + im(\beta))$$

$$= re(\alpha\beta) + im(\alpha\beta) + im(\alpha\beta) + im(\alpha\beta)$$

$$= -2 im(\alpha\beta)$$
Claim:
$$\frac{1}{\alpha + \beta} = (re(\alpha) + im(\alpha)) + (re(\beta) + im(\alpha\beta))$$

$$= (re(\alpha\beta) - re(\alpha\beta) + 2im(\alpha\beta))$$

$$= (re(\alpha\beta) - re(\alpha\beta)$$

$$= (re(\alpha) - im(\alpha)) (re(\beta) - im(\beta\beta))$$

$$= re(\alpha\beta) - re(\alpha\beta) - 2im(\alpha\beta)$$

$$= re(\alpha\beta) - re(\alpha\beta) - 2im(\alpha\beta)$$

$$= re(\alpha\beta) - re(\alpha\beta) - 2im(\alpha\beta)$$

$$\frac{AB}{AB} = \left(\sum_{|c|=1}^{n} a_{i}k \, b_{i}k \right)$$

$$= \left(\sum_{|c|=1}^{n} a_{i}'k \, b_{i}k \right)$$

$$= \sum_{|c|=1}^{n} a_{i}'k \, b_{i}k = \overline{AB}$$

$$= \sum_{|c|=1}^{n} a_{i}'k \, b_{i}k = \overline{AB}$$

5)
$$g(X = \lambda \times b) g(X = 1)$$

4) $g(X = 1) \times 11$

6) $g(X = 1) \times 11$

6) $g(X = 1) \times 11$

7) $g(X = 1) \times 11$

8) $g(X = 1) \times 11$

9) $g(X = 1) \times 11$

10) $g(X = 1) \times 11$

11) $g(X = 1) \times 11$

12) $g(X = 1) \times 11$

13) $g(X = 1) \times 11$

14) $g(X = 1) \times 11$

15) $g(X = 1) \times 11$

16) $g(X = 1) \times 11$

17) $g(X = 1) \times 11$

17) $g(X = 1) \times 11$

18) $g(X = 1) \times 11$

18) $g(X = 1) \times 11$

19) $g(X = 1) \times 11$

10) $g(X = 1) \times 11$

11) $g(X = 1) \times 11$

12) $g(X = 1) \times 11$

13) $g(X = 1) \times 11$

14) $g(X = 1) \times 11$

15) $g(X = 1) \times 11$

16) $g(X = 1) \times 11$

17) $g(X = 1) \times 11$

18) $g(X = 1) \times 11$

19) $g(X = 1) \times 11$

10) $g(X = 1) \times 11$

11) $g(X = 1) \times 11$

12) $g(X = 1) \times 11$

13) $g(X = 1) \times 11$

14) $g(X = 1) \times 11$

15) $g(X = 1) \times 11$

16) $g(X = 1) \times 11$

17) $g(X = 1) \times 11$

17) $g(X = 1) \times 11$

18) $g(X = 1) \times 11$

19) $g(X = 1) \times 11$

10) $g(X = 1) \times 11$

11) $g(X = 1) \times 11$

12) $g(X = 1) \times 11$

13) $g(X = 1) \times 11$

14) $g(X = 1) \times 11$

15) $g(X = 1) \times 11$

16) $g(X = 1) \times 11$

17) $g(X = 1) \times 11$

17) $g(X = 1) \times$