CS225 Switching Theory

S. Tripathy IIT Patna

Previous Class

Minimization/ Simplification of Switching Functions
K-map (SOP)

Announcement: Assignment 2 will be uploaded today

(Deadline: 17th Feb.)

This Class

Minimization/ Simplification of Switching Functions

K-map

Quine-McCluskey (Tabular) Minimization

Minimization using K-map

Minimal expression: covers all the 1 cells with the smallest number of cubes such that each cube is as large as possible

- A cube contained in a larger cube must never be selected
- If there is more than one way of covering the map with a minimal number of cubes, select the cover with larger cubes
- A cube contained in any combination of other cubes already selected in the cover is redundant by virtue of the consensus theorem

Rules for minimization:

- 1. First, cover those 1 cells by cubes that cannot be combined with other 1 cells; continue to 1 cells that have a single adjacent 1 cell (thus can form cubes of only two cells)
- 2. Next, combine 1 cells that yield cubes of four cells, but are not part of any cube of eight cells, and so on
- 3. Minimal expression: collection of cubes that are as large and as few in number as possible, such that each 1 cell is covered by at least one cube

Don't-care Combinations

Don't-care combination ϕ : combination for which the value of the function is not specified. Either

- · input combinations may be invalid
- precise output value is of no importance

Since each don't-care can be specified as either 0 or 1, a function with k don't-cares corresponds to a class of 2^k distinct functions. Our aim is to choose the function with the minimal representation

- Assign 1 to some don't-cares and 0 to others in order to increase the size of the selected cubes whenever possible
- No cube containing only don't-care cells may be formed, since it is not required that the function equal 1 for these combinations

Code Converter

Example: code converter from BCD to excess-3 code

• Combinations 10 through 15 are don't-cares

Decimal		BCD :	Inputs	Excess-3 Outputs				
Decimal	w	×	у	z	f ₄	f ₃	f ₂	f ₁
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0

$$f_1 = \sum (0,2,4,6,8) + \sum_{\phi} (10,11,12,13,14,15)$$

$$f_2 = \sum (0,3,4,7,8) + \sum_{\phi} (10,11,12,13,14,15)$$

$$f_3 = \sum (1,2,3,4,9) + \sum_{\phi} (10,11,12,13,14,15)$$

$$f_4 = \sum (5,6,7,8,9) + \sum_{\phi} (10,11,12,13,14,15)$$

Code Converter (Contd.)

yz wx	00	01	11	10
00	1	1	φ	1
01			φ	
11			φ	φ
10	1	1	φ	ϕ

 f_3 Map

yz wx	00	01	11	10
00		1	φ	
01	1		φ	1
11	1		φ	ф
10	1		φ	φ

 f_2 Map

yz wx	00	01	11	10
00	1	1	φ	1
01			φ	
11	1	1	φ	φ
10			φ	ϕ

 f_4 Map

yz wx	00	01	11	10
00			φ	1
01		1	ϕ	1
11		1	φ	φ
10		1	φ	φ

$$f_1 = z'$$
 $f_2 = y'z' + yz$
 $f_3 = x'y + x'z + xy'z'$ $f_4 = w + xy + xz$

$$f_2 = y'z' + yz$$

 $f_4 = w + xy + xz$

Logic Network for Code Converter

Two-level AND-OR realization:

Five-variable Map

General five-variable map:

vwx vz	000	001	011	010	110	111	101	100
00	0	4	12	8	24	28	20	16
01	1	5	13	9	25	29	21	17
11	3	7	15	11	27	31	23	19
10	2	6	14	10	26	30	22	18

Example: Minimize $f(v, w, x, y, z) = \sum (1, 2, 6, 7, 9, 13, 14, 15, 17, 22, 23, 25, 29, 30, 31)$

vwx yz	000	001	011	010	110	111	101	100
00								
01	1		1	1	1	1		1
11		1	1			1	1	
10	1	1	1			1	1	

f(v,w,x,y,z) = x'y'z + wxz + xy + v'w'yz'

Minimal Functions and Their Properties

Implicants: function f covers function g with the same input variables if f has a 1 in every row of the truth table in which g has a 1

- If f covers g and g covers f, then f and g are equivalent
- Let h be a product of literals. If f covers h, then h is said to imply f or h is said to be an implicant of f, denoted as h -> f

Example: If f = wx + yz and h = wxy', then f covers h and h implies f

Prime implicant p of function f: product term covered by f such that the deletion of any literal from p results in a new product not covered by f

• p is a prime implicant if and only if p implies f, but does not imply any product with fewer literals which in turn also implies f

Example: x'y is a prime implicant of f = x'y + xz + y'z' since it is covered by f and neither x' nor y alone implies f

Theorem: Every irredundant sum-of-products equivalent to f is a union of prime implicants of f

Procedure for finding the minimal function via K-maps (layman terms)

- 1. Convert truth table to K-map
- 2. Group adjacent ones: In doing so include the largest number of adjacent ones (Prime Implicants)
- 3. Create new groups to cover all ones in the map: create a new group only to include at least one cell (of value 1) that is not covered by any other group (Essential Prime Impliants)
- 4. Select the groups that result in the minimal sum of products (we will formalize this because its not straightforward)

Y	_			
CD A	B 00	01	11	10
00	1	0	0	1
01	0	1	0	1
11	1	1	0	0
10	1	1	0	1

Reading the reduced K-map

$$Y = \overline{A}C + \overline{A}BD + A\overline{B}\overline{C} + \overline{B}\overline{D}$$

 $\sum m(2,3,6,7)$ $\sum m(5,7)$ $\sum m(8,9)$ $\sum m(0,2,8,10)$

Some more Definitions

• Implicant: A product term that has non-empty intersection with on-set F and does not intersect with off-set R.

 Prime Implicant: An implicant that is not covered by another implicant.

• Essential Prime Implicant: A prime implicant with at least one element that is not covered by one or more prime implicants

