1

MATEMÁTICA DISCRETA I

PRIMER CONTROL (Soluciones)

Apellidos_______Nombre_____nº mat._____

Ejercicio 1 (4 puntos)

En el conjunto Z se define la relación a R b con $a, b \in Z$ sí y sólo si $a^2 = b^2$. Averigua si se trata de una relación de equivalencia en Z y, de ser cierto, encuentra la clase de equivalencia del elemento 5, es decir [5].

Solución: $[5] = \{-5, 5\}.$

Ejercicio 2 (10 puntos)

Sea D_{72} el conjunto de todos los divisores de 72, y | la relación de divisibilidad a|b sí y sólo si "a divide a b".

- a) Dibuja el diagrama de Hasse del conjunto ordenado $(D_{72}, |)$.
- b) Sea B = {9, 12, 36}, encuentra cotas superiores, inferiores, supremo, ínfimo, maximales, minimales, máximo y mínimo, si existen, de B.
- c) Encuentra, si existe, el complementario de 9 y el de 18 en $(D_{72}, |)$.
- d) Razona si (D₇₂,|) es un Álgebra de Boole.

Solución:

a) $n=72=2^3.3^2$ card $D_{72}=12$

- b) Cotas superiores = $\{36, 72\}$, Supremo = 36, Cotas inferiores = $\{3, 1\}$, Ínfimo = 36, Maximales = $\{36\}$, Mínimo = 36, Mínimales = $\{9, 12\}$, Mínimo no 36.
- c) el complementario de 9 es 8 y el complementario de 18 no ∃.
- d) (D_{72}) no es un Álgebra de Boole porque tiene 12 elementos, su cardinal no es potencia de 2.

Ejercicio 3 (10 puntos)

- a) Define, mediante la tabla de verdad, una función booleana que detecte los números primos del conjunto $N_{I5} = \{n \in \mathbb{N} \text{ tal que } n \leq 15\}$.
- b) Obtén una expresión booleana en forma de "mínima suma de productos", utilizando el método de Quine–McCluskey, para la función booleana cuyo conjunto de verdad es

Solución:

a)

n	x y z t w	f(x, y, z, t)				
0	0000	0				
1	0001	0				
2	0010	1				
3	0011	1				
4	0100	0				
5	0101	1				
6	0110	0				
7	0111	1				
8	1000	0				
9	1001	0				
10	1010	0				
11	1011	1				
12	1100	0				
13	1101	1				
14	1110	0				
15	1111	0				

b)

1111	111-
1110	<u>1–11</u>
1011	1–10
1010	-110
1001	101-
0110	10-1
1000	10-0
0010	-010
0001	100-
0000	-001
	0-10
	-000
	00-0
	000-

	1111	1110	1011	1010	1001	0110	1000	0010	0001	0000
1-1-	√	√	√	√						
10		1		1		√		√		
10			7	V	1		1			
-0-0				√			1	√		7
-00-					1		√		√	7

10---0-0

-00-

$$f(x, y, z, t, w) = x z + y'z' + z t'$$

Ejercicio 4 (8 puntos)

En Universilandia, a los estudiantes que copian un examen se les condena a 133 años de cárcel, y a los estudiantes que copian una práctica se les condena a 84 años. En el caso de que se les encuentre culpables de más de una copia se les condena a 133 años. En la cárcel de Universilandia hay 15 guardias y un número indeterminado de estudiantes condenados por copiar. Se sabe que el número total de años de condena de estos últimos es de 3605 años. ¿Cuántos estudiantes hay presos?

Solución:

Probamos que existen x, y tales que 133x + 84y = 3605 aplicando el A. de Euclides,

$$133 = 84.1 + 49$$

 $84 = 49.1 + 35 \Rightarrow 7 = mcd (133,84) | 3605$
 $49 = 35.1 + 14$
 $35 = 14.2 + 7$

$$7 = 35 - 14.2 = 35 - 2(49 - 35) = -2.49 + 3.35 = -2.49 + 3(84 - 49) = 3.84 - 5.49$$
$$= 3.84 - 5(133 - 84) = -5.133 + 8.84 \implies 3605 = -2575.133 + 4120.84$$

$$\begin{cases} x = -2575 + 12t \ge 0 \\ y = 4120 - 19t \ge 0 \end{cases} \Rightarrow 214,5 \dots = \frac{2575}{12} \le t \le \frac{4120}{19} = 216,8 \dots \Rightarrow t = 215 \ o \ 216$$

$$\begin{cases} x = 5 \\ y = 35 \end{cases} \quad o \quad \begin{cases} x = 17 \\ y = 16 \end{cases}$$
 Hay presos 40 o 33 estudiantes.

Ejercicio 5 (8 puntos)

- a) Calcula razonadamente $\Phi(3500)$ donde Φ es la función de Euler.
- b) Calcula el resultado de las siguientes operaciones en Z_{289} : [20]· [3]²⁷²² + [26]⁻¹

Solución:

a)
$$n = 3500 = 2^2$$
. 5^3 . 7 y como mcd $(2, 5) = mcd (2, 7) = mcd (5, 7) = 1$ entonces $\Phi(3500) = \Phi(2^2, 5^3, 7) = \Phi(2^2) \Phi(5^3) \Phi(7) = (2^2 - 2) (5^3 - 5^2) 6 = 1200$.

b) Como mcd
$$(3, 289) = 1$$
, entonces $3^{\Phi(289)} \equiv 1 \mod 289$
 $\Phi(289) = \Phi(17^2) = 17^2 - 17 = 272 \Rightarrow 3^{\Phi(289)} = 3^{272} \equiv 1 \mod 289 \Rightarrow$
 $3^{2722} = (3^{272})^{10} 3^2 \equiv 9 \mod 289$

Como mcd (26, 289) = 1, existe $x = 26^{-1} \mod 289$.

Por tanto, existen x, y tales que 26x - 289y = 1 Aplicando el A. de Euclides,

$$289 = 26.11 + 3$$

 $26 = 3.8 + 2$ \Rightarrow
 $3 = 2.1 + 1$
 $1 = 3 - 2 = 3 - (26 - 8.3) = -26 + 9.3 = -26 + 9(289 - 26.11) = 9.289 - 100.26$
 $\Rightarrow x \equiv -100 \mod 289 \Rightarrow [20] \cdot [3]^{2722} + [26]^{-1} = [20] \cdot [9] + [-100] = [80] \text{ en } Z_{289}$