PEC3. Integración numérica y resolución de ecuaciones no-lineales

Juan José Rodríguez Aldavero Métodos Numéricos en Ingeniería

Resumen

En este documento, correspondiente a la tercera Prueba de Evaluación Continua de la asignatura Métodos Numéricos en Ingeniería, se aplicarán métodos numéricos para la resolución de ecuaciones no-lineales y de integrales.

1. Estudio de funciones no-lineales

En este ejercicio pretendemos estudiar el método iterativo del punto fijo para la resolución de ecuaciones no-lineales. Dada una ecuación, $x + \ln x = 0$ la cual tiene una raíz cerca del punto x = 0.5 se pide el estudio de tres secuencias iterativas $x_{n+1} = g(x_n)$ para tres g(x) dadas:

1.
$$x_{n+1} = -\ln(x_n)$$

2.
$$x_{n+1} = e^{-x_n}$$

3.
$$x_{n+1} = \frac{x_n + e^{-x_n}}{2}$$

Mirando la literatura, vemos que el **teorema del Punto Fijo** nos dice dado un punto x^0 tal que $x^0 = g(x^0)$, es decir, es solución de una ecuación no-lineal; y dado un intervalo $I = [x^0 - r, x^0 + r]$ que contiene al punto fijo, entonces el método iterativo

$$x_{n+1} = g(x_n)$$

converge a dicho punto fijo x^0 si $|g'(x)| < \alpha$ para cualquier $\alpha \le 1$ y para todo valor de $x \in I$. Aplicando este teorema resulta verdaderamente fácil ver qué secuencia iterativa se adapta más a la resolución de nuestra ecuación no-lineal. Lo primero de todo es estimar un valor para el intervalo de convergencia, I, el cual suponemos I = [0, 1].

Para la primera secuencia, $x_{n+1} = -\ln(x_n)$ vemos como no se satisface el teorema del punto fijo. En particular, ya que $|g_1'(x)| = \frac{1}{x}$ vemos como $\lim_{x\to 0} |g_1'(x)| = \infty$ por lo tanto esta secuencia no converge a la raíz de la ecuación. Lo comprobamos viendo los primeros términos de la secuencia de convergencia para $x_0 = 0.5$:

$$x_0 = 0.5 \rightarrow x_1 = 0.69314718 \rightarrow x_2 = 0.36651292 \rightarrow x_3 = 1.00372150 \rightarrow x_4 = -0.00371459 \rightarrow \nexists x_5 = 0.00372150 \rightarrow x_5 = 0.00371459 \rightarrow \exists x_5 = 0.00372150 \rightarrow x_5 = 0.00371459 \rightarrow \exists x_5 = 0.00372150 \rightarrow x_5 = 0.003$$

En particular, la secuencia no será convergente para ningún valor $x \in I = [0, 1]$.

Figura 1: Convergencia de la primera secuencia iterativa

En el gráfico podemos apreciar como la secuencia es divergente. Al contrario, la segunda secuencia sí será iterativa, debido a que $|g_2'(x)| = e^{-x}$ y está función queda dentro de la condición del teorema del punto fijo para todo $x \in I$. En particular, es monótonamente decreciente, con un valor máximo en $|g_2'(0)| = 1$. Vemos brevemente una secuencia de convergencia empezando en $x_0 = 0.5$ para ver su comportamiento:

$$x_0 = 0.5 \rightarrow x_1 = 0.60653065 \rightarrow x_2 = 0.54523921 \rightarrow x_3 = 0.57970309 \rightarrow x_4 = 0.56006462...$$

Figura 2: Convergencia de la segunda secuencia iterativa

Vemos como la secuencia es rápidamente convergente. Para la última secuencia, veremos como es convergente y además con mucha mayor rapidez que la anterior. Esto es porque la función $g_3(x)$ es muy plana, con un valor de la derivada muy próximo a cero. En particular, $|g_3'(x)| = \frac{1}{2}|1 - e^{-x}|$ función monótonamente creciente en el intervalo I con valor máximo $|g_3'(1)| = 0.31606027$. Gracias a esto, la secuencia convergerá con gran velocidad:

$$x_0 = 0.5 \rightarrow x_1 = 0.55326532 \rightarrow x_2 = 0.56416714 \rightarrow x_3 = 0.56650042...$$

Figura 3: Convergencia de la tercera secuencia iterativa

Vemos como en apenas tres iteraciones alcanzamos valores muy próximos a la raíz de la ecuación.

En vista de estos resultados, podemos concluir que cuanto más plana sea la función g(x) mayor será la velocidad de convergencia del método iterativo, siendo este divergente si la función es lo suficientemente vertical (con una derivada mayor a la unidad en algún punto del intervalo).

2. Integral numérica

La forma general de una integral numérica de una función f(x) sobre un intervalo [a,b] es una suma ponderada de los valores de la función sobre (N+1) puntos denominada cuadratura. El objetivo de un algoritmo de integración numérica es diseñar una cuadratura cuyo resultado sea lo más parecido posible al resultado analítico (si es que este existe) de la función a integrar. Existen tres reglas básicas para hallar esta cuadratura, de menor a mayor precisión:

■ Regla de punto medio: tomamos la cuadratura entre los puntos x_k y x_{k+1} como el área del cuadrilátero que subtienden ambos puntos respecto de su punto medio:

$$\int_{x_k}^{x_{k+1}} f(x)dx \cong h f_{mk}, \quad h = x_{k+1} - x_k, \quad f_{mk} = f\left(\frac{x_k + x_{k+1}}{2}\right)$$

■ Regla trapezoidal: tomamos la cuadratura entre los puntos x_k y x_{k+1} como el área del trapezoide que subtienden ambos puntos:

$$\int_{x_{k}}^{x_{k+1}} f(x)dx \cong \frac{h}{2} (f_{k} + f_{k+1}), \quad h = x_{k+1} - x_{k}, \quad f_{k} = f(x_{k})$$

■ Regla de Simpson: tomamos la cuadratura entre los puntos x_{k-1} , x_k y x_{k+1} como el área bajo el polinomio de interpolación de segundo orden que subtienden los tres puntos:

$$\int_{x_{k-1}}^{x_{k+1}} f(x)dx \cong \frac{h}{3} \left(f_{k-1} + 4f_k + f_{k+1} \right), \quad h = \frac{x_{k+1} - x_{k-1}}{2}$$

El único resultado no-trivial es la regla de Simpson, y su derivación viene dada en la bibliografía de la asignatura. Elaboramos un breve algoritmo iterativo para calcular la integral numérica de la función $f(x) = e^x$ entre los puntos x(1) = 1,00 y x(N) = 1,30 para el método trapezoidal y el método de Simpson.

Comenzamos calculando el valor analítico exacto de la integral, que es

$$\int_{1,00}^{1,30} e^x dx = e^{1,30} - e^{1,00} = 0,95101483$$

5

En comparativa, lo calculamos para el método trapezoidal. Mediante un sencillo método en Matlab, podemos calcular el área bajo los trapecios que subtienden los puntos $(x(1),y(1))\dots(x(N),y(N))$ cuyo resultado es

$$I_{trp} = 0.95121300$$

Figura 4: Integral por el método del trapecio

A su vez, podemos calcular el valor para el método de Simpson como

$$I_{simp} = 0.95101466$$

Figura 5: Integral por el método de Simpson

A primera vista ambos gráficos son idénticos, esto es porque la interpolación lineal del método del trapecio y la interpolación por splines cúbicos del método de Simpson son muy parecidas para estos puntos experimentales, con desviaciones del orden de 10^{-3} unidades.

Figura 6: Separación entre ambos métodos de integración en órdenes de 10^{-3}

Y a su vez, la separación entre la interpolación por el método de Simpson y la función analítica es del orden de 10^{-6} lo que implica su resultado más exacto en la integración.

Figura 7: Separación entre la interpolación cúbica y la función analítica del orden de 10^{-6}

De estos resultados, podemos esperar que los distintos métodos de integración numérica dependan diréctamente de la bondad de los métodos de interpolación en función de los puntos experimentales. En este caso, ambos métodos funcionan correctamente porque la función e^x es monónotamente creciente y los puntos test capturan el comportamiento de toda la función. Sin embargo, si fuera una función más compleja y no dispusieramos de suficientes puntos de integración, o estos estuvieran situados de tal forma que no se pudiera capturar el comportamiento

de la función, podríamos esperar un mal comportamiento de los métodos de interpolación y, por ende, de los valores de integración numéricos.

En definitiva, los resultados son:

	Método del trapecio	Método de Simpson	Función analítica
Valor de la integral	0,95121300	0,95101466	0,95101483
Error	$2,0837\dot{1}0^{-4}$	$1,7875 \cdot 10^{-5}$	0

3. Estudio de la convergencia de métodos iterativos para funciones no-lineales

En este ejercicio estudiamos los métodos iterativos de Newton, de la secante y de Newton modificado. En particular, hallaremos sus órdenes de convergencia para su aplicación sobre un conjunto de funciones test, que son:

1.
$$f_1(x) = 1 - 2x + 2x^2 - 2x^3 + x^4$$

2.
$$f_2(x) = e^x - x^2 + \sqrt{x^2 + 2 + \cos x}$$

3.
$$f_3(x) = x^2 e^{2x} + e^{2x} + 2x^3 e^x + 2e^x x + x^4 + x^2$$

4.
$$f_4(x) = x^2 - x - \cos x$$

Podemos definir el orden de convergencia, de forma poco rigurosa, como la razón de aumento de dígitos correctos para cada iteración del método. Así, por ejemplo si un método iterativo tiene orden de convergencia p=2, entonces cabe esperar que el número de dígitos correctos se duplique para cada una de las iteraciones. A partir de la bibliografía, vemos como podemos aproximar el orden de convergencia de un método iterativo a partir de las últimas iteraciones de la solución que queden por debajo de una tolerancia dada como:

$$\tilde{p} = \frac{\log \frac{|x_{k-1} - x_k|}{|x_{k-2} - x_k|}}{\log \frac{|x_{k-2} - x_k|}{|x_{k-3} - x_k|}}$$

donde x_k es la iteración k-ésima del método.

3.1. Método de Newton

El método de Newton está basado en la secuencia iterativa

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Lo repetimos para el método de Newton modificado, en particular para mejorar los órdenes de convergencia de las funciones f_1 y f_3 con las condiciones del primer apartado. Si la secuencia converge a un cero simple, es decir un punto donde $f'(\alpha) \neq 0$ entonces el orden de convergencia debe ser igual a 2.

Hacemos una tabla con el valor inicial, la solución final alcanzada, las últimas tres iteraciones, el número de iteraciones empleadas así como el orden de convergencia aproximado para las cuatro funciones test del ejercicio:

	$f_1(x)$	$f_2(x)$
x_0	-5.3	-7.6
x_1	-3.83339468629961599432931507181	-4.32197499062925416524194588419
x_2	2.7250871058973045180096050899	-2.18408470637579688045093462279
x_3	-1.88029324034746059268741191772	-1.59400328404723978792389971204
α	0.9999999373652403988899095566	-1.52997270516778405280433617008
k_{max}	33	7
\tilde{p}	1.98374242035126546745971154451	4.85513098147184773978324301424

	$f_3(x)$	$f_4(x)$
x_0	1.7	2.1
x_1	1.36073525596585187535936256609	1.40723577088979823201952967793
x_2	1.0346037527268563405158374735	1.26077874674521450693021051848
x_3	0.72060065130177552994439338363	1.25119506912068545467775493307
α	-0.56720821997579073947548522483	1.25115183522076489630592277535
k_{max}	1000	6
\tilde{p}	1.74256940135472571107300154836	16.8898652504432753573837544536

Vemos como el cero de la función f_1 parecer ser simple, mientras que no podemos decir nada del resto de funciones. También vemos como para las funciones f_2 y f_4 obtenemos la raíz en muy pocas iteraciones, a diferencia de f_1 y sobretodo f_3 . En particular, se ha puesto un límite máximo de iteraciones $k_{max}=1000$ para este método por lo que podemos considerar que α_3 no ha alcanzado la tolerancia deseada.

Figura 8: Ejemplo del método de Newton para la función $f_1(x)$

Figura 9: Ejemplo de la gráfica 3 para diferentes escalas. El método de Newton es tan lento porque $f'(x) \to 0$ cuando $x \to \alpha$ (es decir, el cero es como mínimo doble)

3.2. Método de la secante

Hacemos el mismo procedimiento para el método de la secante, cuya secuencia es:

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Para este método, si uno de los ceros es simple entonces el orden de convergencia ha de ser similar a $p=\frac{1+\sqrt{5}}{2}\approx 1{,}618.$

	$f_1(x)$	$f_2(x)$
x_0	-3.1	3.3
x_1	-2.3	5.7
x_2	-1.55226945336562915933598105767	4.75503235878313823548069194658
x_3	-1.19349226476959713316716715781	4.22137288718905345774601300946
x_4	-0.796617150666684148418994482199	3.56700418140512542919395855279
α	1.00000000848653991525338824431	-1.52997270516778383075973124505
k_{max}	46	17
\tilde{p}	1.2786624786094082928400439414	1.22189463012288657139947645192

	$f_3(x)$	$f_4(x)$
x_0	-2.3	-5.6
x_1	4.2	-4.7
x_2	3.77633552759668722487162995094	-1.84870533580214591040657978738
x_3	3.53116551262316491488491010386	-1.10566030701700723781755186792
x_4	3.22237394949994548909444347373	-0.724189049767417825087534311024
α	-0.567143285277469377803072347888	-0.550009349927261581569837289862
k_{max}	54	9
\tilde{p}	1.20286122053420929667311156663	2.29593263069412367727295531949

Vemos como obtenemos unos órdenes de convergencia inferiores a los del método de Newton. Sin embargo, conseguimos rebajar significativamente el número de iteraciones para la convergencia de $f_3(x)$.

3.3. Método de Newton modificado

Repetimos el procedimiento para el método de Newton modificado, cuya secuencia es:

$$x_{n+1} = x_n - m \frac{f(x_n)}{f'(x_n)}$$

el cual nos permite obtener convergencias cuadráticas para ceros de multiplicidad m.

	$f_1(x)$	$f_3(x)$
m	2	2
x_0	-5.3	1.7
x_1	-2.36678937259923216629431408364	1.02147051193170357308304119215
x_2	-0.841309484500819104724200769851	0.394361328941610078668844607819
x_3	0.12420343646883311161666085809	-0.198709277612621637576495459143
α	1.000000000008257483585794034298	-0.567176219907826850707976973354
k_{max}	7	1000
\tilde{p}	2.13634419672885655927530024201	1.74780004879607830936549817125

Vemos como los órdenes de convergencia aumentan sensiblemente para ambos casos. Hemos dicho anteriormente que el cero de f_3 parece ser doble, luego este método debería darnos una convergencia cuadrática.