DesignPH Training

EcoGerman Projetos Sustentáveis LTDA.

Palestrante: Eng. Civil, Empresário, *Luiz Alberto Bezerra*, Gerente de Projetos, Meio ambiente e Energias Renováveis pela *Gesellschaft Internationale Zusammenarbeit (GIZ)*, Alemanha e Especialista em Edificações Passivas pelo *Passivhaus Institut (PHI)*, *Darmstadt*, Alemanha.

Programação do Curso

- Conceitos da Construção Passiva
- Conceitos do PHPP
- DesignPH

Construções Passiva (PH)

- Consumo mínimo de energia
- Conforto térmico imbatível
- Qualidade superior do ar interno
- Flexível e disponível para todos interessados
- Controle de Humidade
- Acessível e direto
- Software PHPP

Conceito de PH (PassivHaus Institut)

• Baseia-se em levantar construções que têm alto isolamento térmico, controle rigoroso de infiltrações, e máxima qualidade do ar interior, além de aproveitar a energia do sol para um clima melhor, reduzindo o consumo de energia por volta 70% se comparado a uma construção convencional. Os idealizadores desse conceito foram os professores Bo Adamsom, da universidade de Lund (Suécia) e o Wolfgang Feist, do instituto de construção e Meio Ambiente (Alemanha).

Definição da PH, independente do Clima (ISO 7730)

 Uma PH é um edifício no qual o conforto térmico pode ser garantido pelo pós-aquecimento ou pós-resfriamento do fluxo de ar fresco necessário para uma boa qualidade do ar interior sem recirculação adicional.

História da Construção Passiva

- O primeiro edifício construído com a norma da Passivhaus está localizado em Darmstadt, na Alemanha, e foi finalizado em 1990.
- Em setembro de 1996, a Passivhaus-Institut foi fundada em Darmstadt, a fim de promover e controlar padrões pré-estabelecidos.
- Estima-se que milhares de casas foram construídas com o padrão Passivhaus, muitos deles na Alemanha e na Áustria.

Definição dos Tipos de Energia

Energia Primária

- É toda forma de energia que encontramos na natureza antes de ser convertida ou transformada.
- Energia Secundária
 - É a energia gasta para transformar ou converter a energia primária, isso normalmente está associado com perdas energéticas.
- Energia Final
 - É a energia total que chega no consumidor final (Q), somado com as perdas energéticas no processo de transformação.

Critérios Básicos da PH

Demanda para Aquecimento = < 15 KWh /(m²a) Ou Carga de Aquecimento = < 10 W/m²	Demanda para Resfriamento = < 15 KWh/(m²a) Ou Carga de Resfriamento = < 10 W/m²
Demanda de Energia Primária = < 120 KWh/(m²a) Ou Demanda de Energia Renovável = < 60 KWh/(m²a)	Tesão do Ar (Door Blow Test) N50 = < 0,6 ac/h

Demais Critérios Adotados

•	Desumidificação	Necessária Necessária
---	-----------------	-----------------------

$$Q_T = 0.3 \text{ W/(m}^2\text{aK)}$$

$$U \leq 0,15 \, W/(m^2K)$$

$$U_W \le o,80 \text{ W/(m}^2\text{K)}$$

$$\geq 25^{\circ}$$
C $\leq 10\%$

Informação complementar

- Demanda de Resfriamento: É o Resfriamento anual gerado para que em condições climáticas normais se obtenha uma temperatura agradável nos ambientes internos
- Carga de Resfriamento: É o resfriamento gerado para a climatização adequada no o dia mais quente do ano. Esse valor é importante para a escolha correta do sistema de climatização adequado.

Ajuste de todos os Parâmetros no Processo Construtivo

Isolamento Térmico

Exemplos de Isolamento térmico em Alvenaria

 Coeficiente de isolamento térmico para alvenaria:
 U ≤ 0,15 W/(m²K)

Exemplos de Isolamento térmico em Alvenaria

- Todo material deve ter seu coeficiente de vazão térmica testado em laboratório.
 - Isopor
 - Lã de vidro, etc.

Exemplos de Isolamento térmico em Esquadrias

 Coeficiente de isolamento térmico para esquadrias: UW≤ o,8o W/(m²K)

Sistema de Ventilação Artificial

- O sistema de ventilação reaproveita / transmite parte significativa da temperatura do ar a ser expelido para o ar fresco a ser inserido no edifício.
- Esta é uma das características mais importantes do Passivhaus. Este sistema possibilita uma economia significativa de energia, pois reduz o volume de ar a ser aquecido ou refrigerado.
- Mantém o padrão de qualidade do ar na edificação, controlando também a umidade, evitando assim a formação de mofo.
- η ≥ 75%

Exemplos de Sistema de Ventilação

Sobrecarga Térmica

- Nos Trópicos o resfriamento da construção só é possível com ajuda de um sist. de refrigeração.
- Com a construção passiva a necessidade de refrigeração diminui consideravelmente.

Avaliação de todos os tipos de Projeto

Componentes do Balanço Energético

Demanda de Resfriamento ou Calor:
 Qv + Qt – (Qi + Qs)

O que é o PHPP?

Passive House Planning Package

- Ferramenta de Design e otimização
- Cálculo do balanço Energético dentro do formato do Excel
- Ferramenta internacional de verificação para Construções Passivas (PH) e Reformas EnerPHit (Reformar que visam minimizar consumo energético, sem atingir os parâmetros da Construção passiva).

Resultados do PHPP

- Aquecimento
 - Demanda Anual de aquecimento [kWh/(m²a)]
 - Carga de aquecimento máxima [W/m²]
- Resfriamento (Conforto de Verão)
 - Frequência de superaquecimento [%] (Resfriamento Passivo)
 - Demanda Anual de Resfriamento [kWh/(m²a)] (Resfriamento ativo)
 - Carga Máxima de resfriamento [W/m²]
 - Frequência de Umidade excessivamente alta [%]
- Demanda de Energia Primária (Para todos os serviços da construção
 - PER: Demanda anual de Energia Renovável Primaria [kWh/(m²a)]
 - PE: Demanda de energia Primária [kWh/(m²a)]
 - Estimativa anual dos ganhos de energia renovável [kWh/(m²a)]

DesignPH e o PHPP

- Design PH é uma ferramenta executada juntamente com SketchUp.
- Simplifica e acelera a otimização dos dados para o PHPP.
- Utilizado para projetos complexos e simples.
- www.designph.org

Princípios do PHPP

- Condições da Região (redondezas)
- Componentes da Construção
- Janelas e Sombreamento
- Ventilação
- Ventilação durante o Verão (resfriamento Passivo)
- Demanda de aquecimento/resfriamento e Carga de aquecimento/resfriamento
- Geradores de calor e energia primária

Trabalhando com o PHPP

- 1º Passo
 - Dados Básicos: Endereço, tipo da construção, informações sobre o clima.
 - Áreas
 - U-values (Valor de transmissão térmica ISO 6946 / DIN 4108-4)
 - Especificação das Janelas
 - Sombreamento
 - Ventilação
- Essa é a parte que mais consome tempo, porém já trará resultados como: Demanda de aquecimento.

Trabalhando com PHPP

2º Passo

 Consiste no Input das informações de proteção solar e ventilação para que seja calculado a frequência de superaquecimento, demanda e carga de resfriamento.

Trabalhando com PHPP

- 3º Passo consiste no Input das informações abaixo, para que seja calculado o consumo de energia
 - Demanda Água quente
 - Perdas ou ganhos de calor
 - Perdas pela tubulação
 - Sistema de Aquecimento
 - Sistema de resfriamento
 - Equipamentos auxiliares de eletricidade e geração fotovoltaica
- Para prédios não residenciais outras informações são solicitadas, mas não é escopo desse curso.

Planilhas de Componentes (PHPP)

- Entradas de Dados
 - Propriedades de eficiência de componentes de construção definido pelo Usuário.
- Curso completo do PHPP ensinamos o conceito de todas as entradas dos dados.

Áreas tratadas termicamente em Prédios Residenciais (PHPP) -Envelopamento Térmico

Áreas tratadas termicamente em Prédios Residenciais (PHPP)

- Áreas 100 % levadas em consideração
 - Áreas de vivência, onde passamos a maior parte do tempo
 - Banheiros
 - Quartos auxiliares (dispensas, quartos de máquina) que estejam dentro da habitação
 - Áreas de circulação que estejam dentro do prédio

Áreas tratadas termicamente em Prédios Residenciais (PHPP)

- Áreas 60% levadas em consideração
 - Áreas fora da moradia, como porões
 - Áreas de acesso ou circulação fora da moradia ou no porão

Áreas tratadas termicamente em Prédios Residenciais (PHPP)

- Áreas que não são levadas em consideração
 - Escadas com mais de 3 degraus
 - Elevadores
 - Pilares internos
 - Vazios sobre quarto com pé direito duplo
 - Áreas fora do envelope térmico.

Detalhe de Conexão térmica para Residências

- Cálculo e detalhamento de pontes térmicas
 - Beiral
 - Cume
 - Laje de Primeiro Andar

Detalhe de Conexão térmica para Residências

- Cálculo e detalhamento de pontes térmicas
 - Parede Interna com Parede Externa
 - Parede interna com telhado
 - Canto de parede externa
 - Parede interna com teto de porão

Detalhe de Conexão térmica para Residências

 Cálculo e detalhamento de pontes térmicas na instalação das esquadrias.

Passive Houses Classes

- Como Obter a certificação?
 - Desenvolvimento do projeto
 - Estudo do projeto com PHPP
 - Resultados e ajustes
 - Construção do Projeto
 - Resultados da Construção
 - Obtenção do Certificado de Construção Passiva.

Muito baixa demanda de aquecimento ou resfriamento

Reformas

Construção com Eficiência energética moderada

+ Generation of renewable energy and high energy efficiency

Baixa demanda para aquecimento e resfriamento

O Futuro

Para os próximos anos, o
 PHI se baseia em um cenário
 onde o suprimento de
 energia será apenas feito
 por energias renováveis.

Energias Renováveis disponíveis

- Energia Renováveis
 - Eólica
 - Solar
 - Hidrelétrica / energia da maré
 - Biomassa
 - Termo-solar

Todos os recursos disponíveis são levado em conta pelo PHPP

Novas Classes de Construção Passiva

- Classic: Casa Passiva tradicional sem geração de energia renovável.
- Plus: Gera 25 50% da demanda através de energia renovável.
- Premium: Gera 50 75%
 da demanda de energia.

FOTO DAS CASAS CERTIFICADAS PH PLUS

First PH Plus single family house July 2015, in Ötigheim (Germany)

PER demand: 28 kWh/(m²_{TFA}a)

PER generation: 76 kWh/(m²_{projected}a)

through photovoltaic

First PH Plus Multi-family dwelling
"Vögelebich!" (16 units, left building)
August 2015, in Innsbruck (Austria)

Photovoltaic

- + Solar thermal
- + Ground water heat pump

Primeira casa com a certificação PREMIUM

The first Passive House Premium project!

Dwelling and office building House of Energy 2013, in Kaufbeuren (Germany)

250m² Photovoltaic

Iniciando o Sketch UP

• Simple Template – meter

Barras de Ferramenta

- Views
- DesignPH toolbar
- designPH windowtools
- Dynamic Components
- Large tool set
- Layers
- Measurements
- Standard
- Section
- Styles

Modelos e Unidades Padrão

 Nessa função você pode escolher qual unidade irá utilizar no projeto.

Modelos e Unidades Padrão

 Mais uma opção de como escolher as unidades de medida a serem utilizadas.

Interface do Usuário

Funções Básicas do SketchUp

Sistema de Coordenadas

Funções Básicas do SketchUp

Sistema de Coordenadas

Sistema de Coordenadas

 Com essa função, é possível rotacionar os eixos.

- Camera
 - Vistas Básicas

- Perspectivas e Projeções em paralelo →
- Barra de ferramenta Styles
 - 1 Raio-X
 - 2 Modelo wireframe com bordas traseiras tracejadas
 - 3 Sombreado com textura
 - 4 Monocromático

- Navegação
 - Pela barra de ferramentas
 - Mais Importantes
 - 1 órbita
 - Zoom
 - Zoom de Janela
 - Panorama

- Com Mouse
 - Zoom Rolando o botão do meio
 - Orbita Pressionando e segurando o botão do meio

Função: Selecionar

- Para selecionar um elemento, basta dar um click sob o elemento desejado.
- Para selecionar mais objetos, clique no objeto, pressione e segure o CTRL e selecione o outro objeto.

- Função Selecionar
 - Seleção de elementos conectados
 - Os elementos ligados diretamente são selecionados por duplo clique sobre a superfície ou bordas

- Colar no Lugar
 - Copiar um elemento: CTRL +C
 ou Menu → Editar → Copiar
 - Colar no lugar: Menu → Edit →
 Colar no lugar (paste in place)
- Essa função serve para colarmos o objeto no mesmo lugar onde o outro foi gerado.

- Criando Grupos
 - Inicialmente, selecione os objetos:
 - Clica com o botão direto em cima dos objetos, e clica em CRIAR GRUPO (Make Group)
 - Edit → Criar grupo (Make group)

- Nomeando Grupo
 - Triplo clique na Imagem → Informações do Grupo

- Criando componentes:
 - Triplo clique em algum elemento, clicar com o botão direto → Criar componente

- Diferença entre Grupos e Componentes:
 - Durante uma certa modificação de um grupo, apenas a cópia do grupo será modificada.

 Durante a modificação de um componente, tanto a original quanto a cópia serão modificas.

Textura:

 Para pintura é necessário dar um duplo click na imagem para pintar.

- Ferramentas para desenho:
 - 1 Linha: Colocar o comprimento pelo teclado
 - 2 Arco: Entrada do ponto inicial e final (com mouse) → Entrada do tamanho do Raio (teclado)
 - 3 Retângulo: Entrada dos lados pelo teclado, separados por ";"
 - 4 Círculo: Entrada do tamanho e raio
 - 5 Polígono: Entrado do número de lados e o raio.

- Ferramenta de Edição
 - 1 Mover: Mover, esticar, copiar e organizar objetos selecionadas. Mover elementos copiados com o botão Ctrl pressionado.
 - 2 Rotacionar: Girar, esticar, copiar e arranjar objetos selecionadas. Gire os elementos copiados com o botão Ctrl pressionado.
 - 3- Escala: Estica as objetos selecionadas. Para aumentar a partir do ponto médio, pressione o botão Ctrl. Fator de escala por entrada de valor.
 - 4- Empurre e puxe: Empurre e puxe faces dos objetos para esculpir modelos 3d. Entrada de valor pelo teclado. Copie na superfície com o botão Ctrl pressionado.
 - 5 Follow me: Siga o caminho com a face selecionada.
 - 6 Offset: Offset (deslocamento) selecionado em um plano. Distância por entrada de valor.

Seleções

- 1 Plano de corte: clique na superfície do modelo com a ferramenta ativada.
- 2- Exibir planos de seção: ativar / desativar visibilidade de planos de seções.
- 3 Exibir cortes de seção: ativar / desativar exibição de seção.

 Medir a distância: medir a distância entre dois pontos. O comprimento é mostrado na ferramenta de medição.

- Desenhar a laje de piso (Radier).
- Criar o volume da edificação.
- Mudar o volume (quando necessário)
- Inserir as Janelas
- Adicionar o porão (caso exista no projeto)
- Executar análise automática
- Verificar as propriedades das faces
- Seção cortada
- Restaurar Materiais

Desenhar a laje de piso

Desenhar a superfície (6,0 x 12,0 m) com a ferramenta de retângulo, ou a ferramenta de linha.

Criando o Volume da Edificação

Expandir a superfície (6,0 m de altura) com a ferramenta de puxar/empurrar.

Mudando o Volume da Edificação

Mudando o Volume da Edificação

7,000m

Desenhar superfície (3,40m x 7,00 m) com a ferramenta de retângulo ou de linha.

Mudando o Volume da Edificação

Mudando o Volume da Edificação

Expandir a superfície (3,45 m de altura) com a ferramenta de puxar/empurrar.

Mudando o Volume da Edificação

Inserindo Esquadrias

- Inserindo Esquadrias
 - Delimitar onde serão as esquadrias utilizando a ferramenta de retângulo ou linha;

- Inserindo Esquadrias
 - Após selecionado a ferramenta de inserção de janela, clicar nas delimitações das esquadrias.

- Adicionando Porão
 - Desenhar a superfície

Desenhar superfície (6,00m x 12,0 m) com a ferramenta de retângulo ou de linha.

- Adicionando Porão
 - Desenhar a superfície

- Adicionando Porão
 - Adicionar Volume

- Cortes e Vistas
 - o: Planos de seção
 - 1: Display dos planos de seção
 - 2: Cortes dos planos
- Adicionando o Porão:
 - Deletar o piso / parede para transformar a construção em um volume único

- Adicionando Porão
 - Adicionar Volume.
 - Seção 1

É possível adicionar várias seções de corte. → "o"

 Agrupamento do "Envelope Térmico" (Thermal Envelope)

Indicando a coordenada "Norte"

Adicionando Sombreamento

Adicionando Sombreamento

Adicionando Sombreamento

Executar Análises Automáticas

- Executar Análises Automáticas
 - Os resultados mais importantes são mostrados conforme abaixo:

TEMPORARY DEMO LICENSE Climate: PHPP-Standard Qh -- kWh/m²yr TFA --- m² (CHECK TFA CALC!) FHLF Inf

- Executar Análises Automáticas
 - A ferramenta ao lado é responsável pelas propriedades a serem avaliadas;

Restaurando as Superfícies

- Áreas de solo tratadas
- Definir clima
- Ajustar os valores de U (padrão definido pelo usuário)
- Pontes térmicas

Menu do Design PH

Balanço de Calor (Heat Balance)	Áreas	Editor do Valor de U
 Demanda Anual de Calor / refrigeração Perdas de calor por transmissão Perda de calor por ventilação Ganhos de calor Solar Ganho de Calor interno 	 Resumo das áreas Áreas de piso tratado Superfícies opacas Janelas Sombreamento Pontes térmicas Superfícies não térmicas 	 Editor do valor de U Montagens

♀ ■ ■ 15 www 10 www

•	Menu	do	Design	PH
		J . J		

Montagens	Componentes	Clima
 Padrão Definição do usuário Valores de U calculados pelo usuário Componentes certificados 	 Vidros (definidos pelo usuário) Frames das Janelas (definido pelo usuário) Vidros (componentes certificados) Frames das esquadrias (componentes certificados) 	 Clima selecionado Dados de clima da biblioteca

1ª Casa Passiva Certificada do Brasil

- Liaplan ULTRA o8
 - Dimensões 25 x 25 x 36,5 cm
 - U value: 0,21 W / m2 K

WWW.liaplan.de

Neopor o32

Dimensões: 1,20 x 3.20 m

• U value: 0,032 W / m K

WWW.liaplan.de

Neopor®

- Janelas (Duplo Vidro) INTERNORM
 - Direção Norte: 0,75 x 0,75 m
 - Direção Sul e Leste: 1,25 x 1,25 m
 - U value (Armação): 1,5 W/(M²k)
 - U value (Vidros): 1,04 W/(m²K)

- Porta de Entrada INTERNORM
 - Área: 3,00 x 1,15 m
 - U value (Armação): o,8
 W/(M²k)

Contatos / Sugestões / Reclamações

- E-mail: <u>luiz.bezerra@ecogerman.com</u>
- Telefone: 84 99171 0062
- www.ecogerman.com (em breve)

MUITO OBRIGADO PELA ATENÇÃO