We maintain an array "lastupdate" which records the last time (the number of iteration) each component of β is updated. Suppose at time t_c we visit a component of β , say β_i , we compare the current number of iteration with the value of lastupdate, which we will denote by t_l . If there is a difference, we will check the value of β_i . There are three possibilities.

- 1. If $\beta_i = 0$, we do not need to do anything.
- 2. Otherwise, assume for now that during all the updates we missed, β_i doesn't change sign. Then we can approximate all the updates we missed (do not include the update we want to do in current time t_c) by an integral:

$$\pm \sum_{j=t_l}^{t_c} \frac{\lambda}{\sqrt{\lambda^2 (j - t_l + 1) + H_{t_l}}}$$

$$= \pm \lambda \frac{1}{\lambda^2} \int_{\lambda^2}^{(t_c - t_l + 1)\lambda^2} \frac{dx}{\sqrt{x + H}}$$

$$= \pm \frac{2}{\lambda} (\sqrt{(t_c - t_l + 1)\lambda^2 + H} - \sqrt{\lambda^2 + H})$$
(1)

Where $H_t = \sum_{i=1}^{t} g_i^2$.

There is a special case where we only missed less than 2 update, in this case the integral is not a good approximation. We will update β_i in a normal way.

3. If during the updates we missed, β_i changes sign. That means that lasso "thinks" this component should not take a big value. Therefore we will take assert that $\beta_i = 0$.

However in practice we will not be able to differentiate second and third case. We will compute eq (1) and compare it with β_i .

To summarize the above in a pseudocode

Input: $t_l, t_c, \beta_i, \lambda, H_{t_l}$ Return: $\beta_i, H_{t_c}, t_l = t_c - 1$ If $\beta_i = 0$ or $t_c - t_l <= 1$, return $\beta_i, H_{t_c} = H_{t_l}$

Else if $t_c - t_l - 1 \le 2$, use normal lasso update procedure to update β_i and H_{t_l} and return β_i , H_{t_l}

Else

Compute $\Delta = eq(1)$

If $|\beta_i| > |\Delta|$, return $\beta_i = sgn(\beta_i)(|\beta_i| - |\Delta|)$, $H_{t_i} = H_{t_c} + (t_c - t_l - 1)\lambda^2$.

Else return $\beta_i = 0$, $H_{t_l} = H_{t_c}$