▼ EDA 수행 및 머신러닝 학습모델 만들기 기본 익히기

- 타이타닉 생존자 데이터 feature들간의 특성 파악하기
- 타이타닉 생존자 예측 학습모델 만들기
- 데이터 셋: 타이타닉 데이터셋 (출처: Kaggle.com)

import numpy as np import pandas as pd

train = pd.read_csv('./titanic_clean.csv')

▼ 기초 통계 분석 및 EDA: 타이타닉 데이터셋 탐색하기

train.head()

₽		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
	0	1	0	3.0	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7
	1	2	1	1.0	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71
	2	3	1	3.0	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7
	3	4	1	1.0	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53
	4	5	0	3.0	Allen, Mr. William Henry	male	35.0	0	0	373450	8

#Pclass 정수로 type 변환 train['Pclass'] =train['Pclass'].astype(int)

train['Age'] = train['Age'].astype(int)

train.columns

• Passengerld: 승객 아이디

• Survived: 생존 여부, 1: 생존, 0: 사망

Pclass: 등급Name: 성함Sex: 성별

• Age: 나이

• SibSp: 형제, 자매, 배우자 수

Parch: 부모, 자식 수Ticket: 티켓번호Fare: 요금(운임)

• Embarked: 탑승 항구

• Cabin: 좌석번호

train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	Passenger Id	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	891 non-null	int64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	891 non-null	object
11	Embarked	891 non-null	object
12	Sex_num	891 non-null	int64
13	Embarked_num	891 non-null	int64
14	E_C	891 non-null	int64
15	E_Q	891 non-null	int64
16	E_S	891 non-null	int64
dtvp	es: float64(1)	, int64(11), obi	ect(5)

dtypes: float64(1), int64(11), object(5)

memory usage: 118.5+ KB

	Passengerld	Survived	Pclass	Age	SibSp	Parch	
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.00
mean	446.000000	0.383838	2.303030	29.544332	0.523008	0.381594	32.20
std	257.353842	0.486592	0.833418	13.013778	1.102743	0.806057	49.69
min	1.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.00
25%	223.500000	0.000000	2.000000	22.000000	0.000000	0.000000	7.91
50%	446.000000	0.000000	3.000000	29.000000	0.000000	0.000000	14.45
75%	668.500000	1.000000	3.000000	35.000000	1.000000	0.000000	31.00
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.32

▼ 시각화 하여 살펴보기

import matplotlib.pyplot as plt
import seaborn as sns

df_eda = train.loc[:,'PassengerId':'Embarked']

데이터 프레임간의 correlation(상관관계)를 살펴봄. df_eda.corr()['PassengerId':'Fare']

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Far€
PassengerId	1.000000	-0.005007	-0.025124	0.033741	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.334241	-0.067809	-0.035322	0.081629	0.257307
Pclass	-0.025124	-0.334241	1.000000	-0.334923	0.082875	0.021693	-0.547980
Age	0.033741	-0.067809	-0.334923	1.000000	-0.232743	-0.176744	0.093856
SibSp	-0.057527	-0.035322	0.082875	-0.232743	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.021693	-0.176744	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.547980	0.093856	0.159651	0.216225	1.000000

DataFrame의 corr() 메소드와 Seaborn의 heatmap() 메소드를 이용 fig = plt.figure(figsize=(10,10)) sns.heatmap(df_eda.corr(), annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7fd41bda1ed0>

fig = plt.figure(figsize=(4, 6))
sns.heatmap(df_eda.corr()[['Survived']], annot=True)

▼ 각 feature와 생존(Survived)과의 관계 시각화

-14 - -1 - - 1 · · · · · -

df_eda['Pclass'].value_counts()

3 4851 2152 191

Name: Pclass, dtype: int64

Seaborn의 countplot() 및 histplot()을 사용하여 각 컬럼과 생존과의 관계를 시sns.histplot(x='Pclass', data=df_eda, hue='Survived', palette='RdBu',bins=3)

sns.histplot(x='Sex', data=df_eda, hue='Survived', palette='RdBu',bins=2)

<AxesSubplot:xlabel='Sex', ylabel='Count'>

sns.histplot(x='Age', data=df_eda, hue='Survived', palette='RdBu',bins=10, kd

<matplotlib.axes._subplots.AxesSubplot at 0x7fd411bdae50>

sns.histplot(x='Fare', data=df_eda, hue='Survived', palette='RdBu', bins=8, k

AttributeError: 'Rectangle' object has no property 'camp'


```
df_eda['Embarked'].value_counts()
```

```
S 646
C 168
Q 77
Name: Embarked, dtype: int64
```

sns.histplot(x='Embarked', data=df_eda, hue='Survived', palette='RdBu', bins=

<matplotlib.axes._subplots.AxesSubplot at 0x7fd4134a3a10>

df_eda.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	Passenger I d	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int32
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	891 non-null	int32
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	891 non-null	object
11	Embarked	891 non-null	object
d+,,,,	oo: floot64/1	\ in+20(2) in+	GA(A) object

dtypes: float64(1), int32(2), int64(4), object(5)

memory usage: 76.7+ KB

sns.jointplot(x='Age', y='Pclass', data=df_eda, hue='Survived', xlim=(0,100),

<seaborn.axisgrid.JointGrid at 0x1f7b9f25a60>

sns.jointplot(x='Parch', y='Age', data=df_eda, hue='Survived', ylim=(0,100))

<seaborn.axisgrid.JointGrid at 0x1f7ba0458b0>

plt.figure(figsize=(15,10)) #sns보다 위쪽라인에 있어야 함. plt.xticks(rotation=90) sns.countplot(x='Age', data=df_eda, hue='Survived', palette='RdBu') plt.show()

df_eda['Embarked'].value_counts()

S 646 C 168

Q 77

Name: Embarked, dtype: int64

sns.countplot(x='Survived', data=df_eda, hue='Pclass', hue_order=[1, 2, 3])

sns.countplot(x='Survived', data=df_eda, hue='Embarked', hue_order=['S', 'C',

<AxesSubplot:xlabel='Survived', ylabel='count'>

▼ 전처리: 학습 데이터(feature)와 정답 데이터(label) 구분

Survived

- 1. feature(X) 와 label(y) 정의하기
- 2. feature, label을 정의했으면, 적절한 비율로 train / validation set 나누기

train.head()

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
0	1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38	1	0	PC 17599	71.
2	3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/02. 3101282	7.
3	4	1	1	Futrelle, Mrs. Jacques	female	35	1	0	113803	53.

feature(X)의 항목 list feature = ['Pclass', 'Sex_num', 'Age', 'Fare', 'E_C', 'E_Q', 'E_S'] X = train[feature]

Hanry

label(y)의 항목 label = 'Survived' y = train[label] y

> 0 0 1 1 2 1

Name: Survived, Length: 891, dtype: int64

train.head()

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
0	1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38	1	0	PC 17599	71.
2	3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/02. 3101282	7.
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803	53.
4	5	0	3	Allen, Mr. William Henry	male	35	0	0	373450	8.

▼ train / validation 세트 나누기

 $from \ sklearn.model_selection \ import \ train_test_split$

from sklearn.model_selection import train_test_split

- test_size: validation set에 할당할 비율 (20% -> 0.2)
- shuffle: 셔플 옵션 (기본 True)
- random_state: 랜덤 시드값

return받는 데이터의 순서 꼭 지키기, random_state=10, shuffle=True와 False인 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, ran

테스트 네이터 shape 확인 X_test.shape, y_test.shape

((223, 7), (223,))

▼ 학습하기

stochastic gradient descent (SGD) : 확률적 경사 하강법 SGDClassifier scikit-learn 문서

from sklearn.linear_model import SGDClassifier

모델 학습을 위한 모듈 import from sklearn.linear_model import SGDClassifier

모델 객체 생성,SGD(Stochastic Gradient Descent) model_sgd = SGDClassifier(random_state=0) model_sgd

SGDClassifier(random_state=0)

모델 학습 model_sgd.fit(X_train, y_train)

SGDClassifier(random_state=0)

▼ 예측하기

• 학습 모델이 없으면 예측도 없음

```
# 테스트 데이터를 넣어서 예측결과 확인
pred = model_sgd.predict(X_test)
pred
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,
      0, 0, 0], dtype=int64)
y_test
  590
      0
  131
      \cap
  628
  195
      1
  230
      1
  12
      0
  203
      0
  84
      1
  886
      ()
  759
  Name: Survived, Length: 223, dtype: int64
# 실제값과 예측값을 맞춘 평균 비율
(pred == y_test).mean()
  0.6681614349775785
```

▼ 성능 평가하기

from sklearn.metrics import classification_report
Predict를 수행하고 classification_report() 결과 출력하기
print(classification_report(y_test, pred))

precision recall f1-score support

0 1	0.67 0.58	0.97 0.09	0.79 0.16	147 76
accuracy			0.67	223
macro avg	0.63	0.53	0.48	223
weighted avg	0.64	0.67	0.58	223

▼ SGD 모델 계수로 상관성 파악하기

- ▼ [문제해결] 결정트리 학습모델 만들기, 예측하기, 성능평가
 - SGD 모델과 성능을 비교해 보세요.

from sklearn.metrics import accuracy_score

dt_clf = DecisionTreeClassifier()
dt_clf.fit(X_train, y_train)
y_pred = dt_clf.predict(X_test)

print('예측 정확도: %.2f' % accuracy_score(y_test, y_pred))

예측 정확도: 0.79

Predict를 수행하고 classification_report() 결과 출력하기 print(classification_report(y_test, y_pred))

	precision	recall	f1-score	suppor t
0	0.83 0.71	0.86 0.67	0.85 0.69	147 76
accuracy macro avg weighted avg	0.77 0.79	0.76 0.79	0.79 0.77 0.79	223 223 223