- 1. (Jan-10.3) Let $F \subseteq E$ be finite fields where |F| = q and [E:F] = n.
 - (a) Show that every monic irreducible polynomial in F[x] of degree dividing n is the minimal polynomial over F of some element of E.
 - (b) Compute the product of all the monic irreducible polynomials in F[x] of degree dividing n.
 - (c) If |F|=2, find the number of monic irreducible polynomials of degree 10 in F[x].

Solution:

- a) If $\alpha \in E$ then $[F(\alpha):F]$ divides [E:F]=n. We also know the Frobenius map $\varphi:x\to x^q$ is an automorphism of E/F, so it is therefore a generator for the Galois group: the degree of the extension hence the order of the Galois group is n and σ is also order n (because $x^{q^{n-1}}-x$ only has q^{n-1} roots in E). In particular, we see that the intermediate fields between E and F are the fixed fields of powers of σ , and are thus the fields whose orders are q^k where k divides n. Then if p(x) is any monic irreducible polynomial over F of degree dividing n, the extension F[x]/p(x) is a field of $q^{\deg(p)}$ elements, hence is isomorphic to $F(\alpha)$ for $\alpha \in E$.
- **Note** This argument assumes the well-known fact that there is a unique finite field (up to isomorphism) of any prime-power order. This in fact follows from the argument in part (b), if one wishes to be especially pedantic.
- b) The product is $x^{q^n} x$. To see this observe that every element of E is a root of this polynomial, since $|E^{\times}| = q^n 1$ so by Lagrange every $x \in E^{\times}$ satisfies $x^{q^n 1} = 1$; multiplying by x adds 0 as a root. Since this polynomial is degree q^n , we have found all the roots. Now we observe that every monic irreducible in F[x] of degree dividing n must divide this polynomial (since by part (a) all of its roots lie in E), and conversely this polynomial can have no other type of irreducible factors over F (because it is separable, all its roots lie in E, and the minimal polynomial of every element of E has degree dividing n).
- c) The product of all of the irreducibles of degree dividing n is $x^{2^n} x$. By inclusion-exclusion (or Mobius inversion) the degree of the product of the irreducibles of exact degree 10 is $2^{10} 2^5 2^2 + 2^1 = 990$, and since each has degree 10, there are 99 of them.
- 2. (Jan-09.3): Suppose $f(x) = x^m + 1$ is irreducible over $\mathbb{F}_p[x]$ where p is an odd prime.
 - (a) Show that every root of f in a splitting field of f has multiplicative order 2m.
 - (b) Show that 2m divides $p^m 1$ but does not divide $p^n 1$ for any n with 0 < n < m.
 - (c) Show that $m \neq 4$.

Solution:

- a) If $\alpha^m + 1 = 0$ then $\alpha^{2m} 1 = 0$ so $\alpha^{2m} = 1$. Thus the order of any root divides 2m. It cannot be equal to m since then $\alpha^m 1 = 0$ whence 2 = 0 and the characteristic is not 2. It also cannot be less than m since then α would satisfy a polynomial of degree less than that of $x^m + 1$, and hence taking the polynomial gcd would give a nontrivial factor of $x^m + 1$.
- b) An irreducible polynomial of degree m over \mathbb{F}_p has splitting field \mathbb{F}_{p^m} . Since by part (a) every root of x^m+1 has multiplicative order 2m, we see that 2m must divide $\left|\mathbb{F}_{p^m}^{\times}\right|=p^m-1$. If 2m were to divide p^n-1 for 0< n< m, then since over \mathbb{F}_{p^m} the polynomial factors as $(x-\alpha)(x-\alpha^3)\cdots(x-\alpha^{2m-1})$ where α is any root (since if $\alpha^m=-1$ then $\alpha^{(2k+1)m}=-1$ for any integer k), we see that \mathbb{F}_{p^n} would contain an element of multiplicative order 2m hence contain a root of x^m+1 hence contain all roots of x^m+1 . But this would contradict the irreducibility of x^m+1 , since it would only generate an extension of degree n< m.
- c) Suppose m=4. Then if p=2k+1 we have $p^2-1=(2k+1)^2-1=8\cdot {k\choose 2}$, so p^2-1 is divisible by 2m=8, violating the condition of (b).

- 3. (Jan-13.2): Let k be a field. We say a polynomial $f(x) \in k[x]$ is "consecutive-root" if it has two roots x_0, x_1 (not necessarily in k) such that $x_1 x_0 = 1$.
 - (a) Show that there is no irreducible consecutive-root polynomial in $\mathbb{Q}[x]$.
 - (b) Let p be a prime. Show that $x^p x 1$ is consecutive-root and irreducible in $\mathbb{F}_p[x]$.
 - (c) Characterize all irreducible monic consecutive-root polynomials in $\mathbb{F}_p[x]$ of degree $\leq p$.

Note Compare to Jan-92.3.

- **Solution:** Suppose f(x) is consecutive-root. By hypothesis, f(x) and f(x+1) have a common root (namely, x_1), so their gcd has positive degree. If f is irreducible, then this forces the gcd to be equal to f, but since f(x) and f(x+1) have the same degree, we see f(x) = f(x+1). Conversely, if f(x) = f(x+1), then f is clearly consecutive-root.
- a) From the above observation we see immediately that there are no irreducible consecutive-root polynomials in $\mathbb{Q}[x]$, since it is not possible for f(x) to equal f(x+1), as the second-highest-degree terms are not equal.
- b) For $x^p x 1$ we see that f(x) = f(x+1), since $(x+1)^p (x+1) 1 = (x^p+1) (x+1) 1 = x^p x 1$ in characteristic p. Hence f is consecutive-root. To see it is irreducible, observe that the Galois action of $\mathbb{F}_p[x]/(x^p-x-1)$ over \mathbb{F}_p in this extension of finite fields is Frobenius, the pth power, but since $x \mapsto x^p = x+1$ is the same as addition by 1. But now the Galois action is transitive on the roots, so the polynomial is irreducible. (Alternatively, if q(x) is a divisor of $x^p x 1$, and α is any root, then the sum of the roots of q(x) is $\deg(q)\alpha + r$ where $r \in \mathbb{F}_p$; since this term is also in \mathbb{F}_p we see that α would necessarily be in \mathbb{F}_p but it is easy to see that f has no roots in \mathbb{F}_p .)
- c) From the criterion at the beginning, we see that $f(x) = f(x+1) = \cdots = f(x+p-1)$, and so we see $f(0) = f(1) = \cdots = f(p-1) = a$. Hence f(x) a is identically zero on \mathbb{F}_p , so it is divisible by $x(x-1)\cdots(x-(p-1))$, which by standard finite field facts is x^p-x . Hence since f has degree $\leq p$ and is monic, we necessarily have $f(x) a = x^p x$, so $f(x) = x^p x + a$ for some $a \in \mathbb{F}_p$. We see that, by the same argument in part (b), this polynomial is irreducible as long as $a \neq 0$.
- **Remark** These extensions are called Artin-Schreier extensions, and they characterize all (cyclic) degree-p Galois extensions of \mathbb{F}_p .
- 4. (Jan-89.3) Prove that x^9-2 is an irreducible factor of $x^{27}-1$ over \mathbb{F}_7 .
 - **Solution:** We have $(x^9-2)(x^{18}+2x^9+4)=x^{27}-8$ (over \mathbb{Z} , even). For the irreducibility, let E be the splitting field of x^9-2 over \mathbb{F}_7 . Each root has multiplicative order 27 in E, since none of them has order 9 (as $\alpha^9=2$, not 1, for any root α of x^9-2). Therefore, if $d=[E:\mathbb{F}_7]$, then it must be the case that $|E^\times|=7^d-1$ is divisible by 27. Reducing mod 9 gives $(-2)^d=-1$ mod 9, so $d\equiv 3$ mod 6. We also see that d=3 does not work since $7^3-1=342$ is not divisible by 27, so it must be true that $d\geq 9$. However, obviously d=9 does work because every root of x^9-2 lives in an extension of degree at most 9: thus we see that the splitting field of x^9-2 over \mathbb{F}_7 is degree 9, hence the polynomial is irreducible.

Remark Using an analysis like the above, one can show that the full factorization of $x^{27} - 1$ into irreducibles over \mathbb{F}_7 is $(x-1)(x-2)(x-4)(x^3-2)(x^3-4)(x^9-2)(x^9-4)$.

- 5. (Aug-08.3): Let $E \subseteq \mathbb{C}$ be the splitting field of $x^3 2$ over \mathbb{Q} .
 - (a) Show that $[E:\mathbb{Q}]=6$.
 - (b) If $\alpha \in E$ and $\alpha^5 \in \mathbb{Q}$ show that $\alpha \in \mathbb{Q}$.
 - (c) Show that there exists $\beta \in E$ with $\beta^2 \in \mathbb{Q}$ but $\beta \notin \mathbb{Q}$.

Solution:

- a) Clearly, $E = \mathbb{Q}(\sqrt[3]{2}, \zeta_3)$ where ζ_3 is a nonreal cube root of unity. $x^3 2$ is irreducible over \mathbb{Q} by Eisenstein's criterion or the fact that it has no roots, so $[\mathbb{Q}[\sqrt[3]{2}]:\mathbb{Q}] = 3$. Similarly, $[\mathbb{Q}(\zeta_3):\mathbb{Q}] = 2$ since $x^2 + x + 1$ has no roots. Then $[E:\mathbb{Q}] \leq 6$ since $[EF:\mathbb{Q}] \leq [E:\mathbb{Q}] \cdot [F:\mathbb{Q}]$ but it is also divisible by 2 and 3, hence must be 6.
- b) First observe that $x^5 \alpha^5 \in \mathbb{Q}[x]$ cannot be irreducible, since otherwise $\mathbb{Q}[\alpha]$ would have degree 5 over \mathbb{Q} so it must have a linear or quadratic factor. If it has a quadratic factor, the constant term must be $\alpha^2 \zeta_5^d$ for some d: then $\alpha \zeta_5^{-2d} = \alpha^5 (\alpha^2 \zeta_5^d)^{-2}$ is in \mathbb{Q} , but this is one of the roots of $x^5 \alpha^5$. Thus, $x^5 \alpha^5$ has a linear factor over \mathbb{Q} , so $\alpha \zeta_5^d \in \mathbb{Q}$ for some $0 \le d \le 4$. If $d \ne 0$ then $\mathbb{Q}[\alpha] = \mathbb{Q}[\zeta_5]$ has degree 4 over \mathbb{Q} , which is impossible since $\mathbb{Q}[\alpha]$ is a subfield of E. We conclude $\alpha \in \mathbb{Q}$.
- Remark The result of (b) has very little to do with the field E chosen here: the argument given above actually shows that $\alpha^p \in \mathbb{Q}$ and $\alpha \in E$ implies $\alpha \in \mathbb{Q}$ for any prime p such that neither p nor p-1 divides $[E:\mathbb{Q}]$. To see this, consider the minimal polynomial of α over \mathbb{Q} : by hypothesis it must divide $x^p \alpha^p$, so its constant term is some product of Galois conjugates of α hence is of the form $\alpha^d \cdot \zeta_p^r$ for some d and r. If d < p then d is invertible mod p: then for a, b with ad bp = 1, we have $(\alpha^d \zeta_p^r)^a \cdot (\alpha^p)^{-b} = \alpha \cdot \zeta_p^{ra}$ is in \mathbb{Q} . Hence $[\mathbb{Q}[\alpha]:\mathbb{Q}]$ is either 1 or p-1 (depending on whether ra is divisible by p or not). Otherwise, if d = p, we see $x^p \alpha^p$ is irreducible over \mathbb{Q} , so $[\mathbb{Q}[\alpha]:\mathbb{Q}] = p$. Thus, since $\alpha \in E$, we require one of p-1 or p to divide $[E:\mathbb{Q}]$.
- c) $\beta = \sqrt{-3}$ is in E, since $\sqrt{-3} = 1 + 2\zeta_3$, and $\zeta_3 \in E$.
- 6. (Aug-96.3): Let $f(x) = x^6 + 3 \in \mathbb{Q}[x]$, let α be a root of f over \mathbb{C} , and set $E = \mathbb{Q}[\alpha]$.
 - (a) Show that E contains a primitive 6th root of unity.
 - (b) Show that E is Galois over \mathbb{Q} .
 - (c) Find the number of intermediate fields F with $\mathbb{Q} \subset F \subset E$ with $[F : \mathbb{Q}] = 3$.

Solution:

- a) If $\alpha^6 = -3$, then $\alpha^3 = \pm \sqrt{-3}$, so (in either case) $\sqrt{-3} \in E$. Then $\frac{1}{2} + \frac{\sqrt{-3}}{2} \in E$, and this is a primitive sixth root of unity.
- b) The other roots of f are $\alpha \zeta_6^k$ where $k=1,\dots,5$ and $\zeta_6=e^{i\pi/3}$ is a primitive sixth root of unity. Since α and ζ_6 are both in E we see that E is the splitting field of f(x), hence it is Galois.
- c) The Galois group has order 6 so the question is whether it is abelian or not. Complex conjugation and multiplication by -1 are both elements of the Galois group (since $\bar{\alpha}^6 + 3 = (-\alpha)^6 + 3 = 0$) and have order 2, so the Galois group must be nonabelian, hence S_3 . Then the extensions of degree 3 correspond to subgroup of index 3 = order 2 in S_3 , of which there are 3 (generated by the 3 transpositions).
- c-alt) If the extension E/\mathbb{Q} were abelian then by the Kronecker-Weber theorem E would be contained in some cyclotomic extension of \mathbb{Q} . By adjoining additional roots of unity we then see that $(-3)^{1/6}$ hence $3^{1/6}$ hence $3^{1/3}$ would also be contained in a cyclotomic extension. But because $x^3 3$ has Galois group S_3 , not A_3 (complex conjugation is an element of order 2, or because its discriminant is not a square), we see that $3^{1/3}$ is not contained in any cyclotomic extension (since cyclotomic extensions are abelian, and S_3 is not).

- 7. (Aug-09.3): Let F be a field and $f(x) \in F[x]$ irreducible with splitting field E. Choose $\alpha \in E$ with $f(\alpha) = 0$ and a positive integer n and let $g(x) \in F[x]$ irreducible with $g(\alpha^n) = 0$.
 - (a) Show that deg(g) divides deg(f) and $deg(f)/deg(g) \le n$.
 - (b) If $\deg(f)/\deg(g) = n$ and the characteristic of F does not divide n, show E contains a primitive nth root of unity.

Solution:

- a) Let $E' = F[\alpha^n]$. By the assumptions, g(x) is the minimal polynomial of α^n , so $[E':F] = \deg(g)$ and $[E:F] = \deg(f)$. Then $\deg(g) \cdot [E':E] = \deg(f)$ and $[E':E] \leq n$ since α satisfies the polynomial $x^n \alpha^n \in E'[x]$.
- b) If equality holds, the polynomial $x^n \alpha^n$ must be irreducible over E'. Now since E is Galois over F (it is a splitting field), it is also Galois over any intermediate extension hence in particular it is Galois over E'. Therefore, E is the splitting field of $x^n \alpha^n$ over E', and so since the polynomial is separable (its derivative is nx^{n-1} which is relatively prime to $x^n \alpha^n$ by the assumption on the characteristic) all of its roots lie in E. In particular, since its roots are $\alpha \cdot \zeta_n^k$ for $0 \le k \le n-1$ where ζ_n is a primitive nth root of unity, E contains α and $\alpha \zeta_n$ hence contains ζ_n .