Language Model and Word Embeddings

Seoul National University
Saerom Park

drsaerompark@gmail.com

Lecture Overview

- Preprocessing
- word embeddings

Tokenization

- Typical preprocessing steps of text data
 - Tokenize text (from a long string to a list of token strings)

"He's spending 7 days in San Francisco."

"He "
"′s"
"spending"
" 7"
"days"
"in"
"San Francisco"
• **

66 -- 22

- For many datasets, this has already been done for you
- Splitting into tokens based on spaces and separating punctuation is good enough in English or French

Lemmatization

Lemmatize tokens

- Put into standard form

"He"
"', s "
"spending"
" 7"
"days"
"in"
"San Francisco"
• •

" he "		
" be "		
"spend"		
"NUMBER"		
"day"		
"in"		
"San Francisco"		
• **		

- The specific lemmatization will depend on the problem we want to solve
 - ✓ we can remove variations of words that are not relevant to the task at hand

vocabulary

word to unique ID

- First, construct dictionary (vocabulary)
- Maps lemmatized words to a unique ID (position of word in dictionary)
- Selection of vocabulary
 - Pick most frequent words
 - Ignore uninformative words from a user-defined short list √ ex. "the", "a", etc.
- All words not in the vocabulary will be mapped to a special "out-of-vocabulary" ID

vocabulary

Example

66	the"
66	cat"
"	and"
69	the"
"	dog "
66	play"
"	• **

Vocabulary

Word	W
"the"	1
"and"	2
"dog"	3
. ,,	4
" OOV "	5

1	
5	
2	
1	
3	
5	
4	

One-hot Encoding

- From its word ID, we get a basic representation of a word through the one-hot encoding of the ID
 - The one-hot vector of an ID is a vector filled with os, except for a 1 at the position associated with the ID

- A one-hot encoding makes no assumption about word similarity

```
√ 두 7H의 단이가 같으면 거리가 = 0

√ 두 7H의 단이가 서울 다르면 거리가 무조건 = 2
```

▶ 吐福

- Word similarity 章型 HEHUN 教
- one-hot representation has very high-dimension

Word Embeddings

- Learn a continuous representation of words
 - 즉 寸 단이의 representation 童 計台社 되라고 내가하다 計台社
 - र्नाभ व्यक्ति one-hot encoding en रित्रा मुई गर्

Word	W	C(w)
"the"	1	[0.6762, -0.9607, 0.3626, -0.2410, 0.6636]
" a "	2	[0.6859, -0.9266, 0.3777, -0.2140, 0.6711]
"have	3	[0.1656, -0.1530, 0.0310, -0.3321, -0.1342]
" be "	4	[0.1760, -0.1340, 0.0702, -0.2981, -0.1111]
"cat"	5	[0.5896, 0.9137, 0.0452, 0.7603, -0.6541]
"dog "	6	[0.5965, 0.9143, 0.0899, 0.7702, -0.6392]
"car"	7	[-0.0069, 0.7995, 0.6433, 0.2898, 0.6359]

How to do it?

- word embedding fone-hot encoding finput of 計版 NN의 weight matrix 計論計 ない 電影

Word Embeddings

