Ejercicios (II)

Autómatas y Matemáticas Discretas

2016-2017

1. ¿Cuál es el lenguaje, sobre el alfabeto {0, 1}, aceptado por el siguiente autómata?

Figura 1: AFD

- 2. Soluciona las siguientes preguntas:
 - a) Determinar el lenguaje reconocido por el autómata $M=(Q,X,\delta,q_0,F)$ con $Q=\{q_0,q_1,q_2,q_3\}, X=\{0,1\},$ $F=\{q_3\}$ y

δ	0	1
q_0	q_1	q_2
q_1	q_1	q_3
q_2	q_2	q_3
q_3	q_2	q_3

- b) Si $L \subseteq X^*$ es el lenguaje reconocido por el autómata anterior, encontrar el AFD que reconoce el lenguaje complementario, \overline{L} , de L. (Nota: $\overline{L} = X^* L$).
- 3. Consideramos el AFND $M = (X, Q, \delta, q_0, F)$ con $X = \{a, b\}, Q = \{q_0, q_1, q_2\}, F = \{q_2\}$ y

δ	a	b
q_0	$\{q_1\}$	Ø
q_1	$\{q_1, q_2\}$	Ø
q_2	Ø	$\{q_2\}$

Encontrar un AFD equivalente. ¿Qué lenguaje reconocen?

4. Encontrar una expresión regular que describa el lenguaje reconocido por el autómata de la figura

Figura 2: AFD

5. Dado el λ -AFND de la figura, calcúlense los siguientes valores:

Figura 3: λ -AFND

- $\delta^*(1,ab)$
- $\delta^*(2,b)$
- $\delta^*(1,abb)$
- $\delta^*(2,ba)$

6. Encuéntrese una expresión regular equivalente al autómata de la figura.

Figura 4: AFND

- 7. Consideramos el lenguaje $L=\{a^{2n}b^{2m+1}\mid n,m\geq 0\}$
 - a) Encuéntrese una expresión regular que lo describa.
 - b) Transfórmese la expresión regular del ejercicio anterior en un λ -AFND equivalente.
- 8. Consideremos el AFND $A=(\{q_1,q_2,q_3\},q_1,\delta,\{q_3\})$ con δ dado por:

δ	a	b
q_1	Ø	$\{q_1, q_2\}$
q_2	Ø	$\{q_3\}$
q_3	$\{q_1, q_2, q_3\}$	Ø

- a) Hállese un AFD equivalente
- b) Encuéntrese una expresión regular equivalente
- 9. Calcúlese el AFD mínimo que reconoce el lenguaje dado por $(c^*b+ab^*a)^*(b^*c^*)$

10. Consideramos el λ -AFND de la figura:

Figura 5: λ -AFND

- a) Encontrar una expresión regular equivalente
- b) Calcular un AFD equivalente y minimizarlo

11. Minimizar el siguiente autómata

Figura 6: AFD

12. Resolver las siguientes cuestiones:

- a) Encontrar el AFD mínimo que reconoce el lenguaje complementario de $(a^*b + b(ab)^*)^*$.
- b) Comprobar, usando $\delta^*,$ si bba es aceptada por el autómata anterior.

13. Resolver las siguientes cuestiones:

- a) Dada la expresión regular $(0+1^*)^*(10)^*$ encontrar, en orden:
 - Un λ -AFND equivalente.
 - Un AFND equivalente
 - Un AFD equivalente
 - El AFD mínimo equivalente

b) Dado el AFD de la figura, escribir y resolver el sistema de ecuaciones asociado.

Figura 7: DFA

- 14. Resolver las siguientes cuestiones:
 - a) Consideramos el autómata $M = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}, \{a, b\}, \delta, q_0, \{q_5\})$, con función de transición:

δ	a	b
q_0	q_1	q_2
q_1	q_3	q_6
q_2	q_2	q_4
q_3	q_3	q_3
q_4	q_5	q_3
q_5	q_3	q_5
q_6	q_5	q_6

escribir y resolver el sistema de ecuaciones asociado. Simplificando, si es necesario, comprobar que la expresión regular obtenida es equivalente a $(ab^* + ba^*)^*bab$.

- b) Considerar la expresión regular $(ab + bab)^*aab^*$. Encontrar el AFD mínimo equivalente.
- 15. Resolver las siguientes cuestiones:
 - a) Obtener un AFD equivalente al de la figura. A continuación, plantear y resolver el sistema de ecuaciones asociado.

Figura 8: NFA with λ -moves

- b) Consideramos el lenguaje de las palabras sobre $\{a,b\}$ en el que cualquier a se encuentra entre dos b's (por ejemplo: bbabb, babab, bb,...). Escribir una expresión regular que lo describa y encontrar un AFD mínimo que lo reconozca.
- 16. Consideramos el lenguaje $L = \{w \in \{a,b\}^* \mid w \text{ tiene un número impar de } a\text{'s, un número par de } b\text{'s y termina en } b\}$. Obtener
 - $a)\;\;{\rm Un}\;{\rm aut\'omata}\;M\;{\rm que}\;{\rm reconozca}\;L.$
 - b) A partir de M, si es posible, un autómata que reconozca LL^R (L^R es el lenguaje de las palabras de L leídas de derecha a izquierda).
 - c) ¿Es $\{ww^R \mid w \in L\}$ un lenguaje regular?
 - d) Encontrar un AFD mínimo equivalente a M.

17. Resolver las siguientes cuestiones:

- *a*) Consideramos el lenguaje de las palabras sobre {a,b} que tiene longitud par y no tienen dos *a*'s seguidas. Encontrar un AFD mínimo que lo reconozca y escribir una expresión regular que lo describa.
- b) Consideramos el lenguaje $L=\{a^nb^m\mid n \text{ es par y m es impar o viceversa}\}$. ¿Es L un lenguaje regular? En caso afirmativo, escribir una expresión regular que lo describa.