Bandits

Chen-Yu Wei

Contextual Bandits and Non-Contextual Bandits

Policy: $\pi(a)$

Multi-Armed Bandits

Multi-Armed Bandits

Given: action set $\mathcal{A} = \{1, ..., A\}$

For time t = 1, 2, ..., T:

Learner chooses an arm $a_t \in \mathcal{A}$

Learner observes $r_t = R(a_t) + w_t$

Assumption: R(a) is the (hidden) ground-truth reward function

 w_t is a zero-mean noise

Goal: maximize the total reward $\sum_{t=1}^{T} R(a_t)$ (or $\sum_{t=1}^{T} r_t$)

How to Evaluate an Algorithm's Performance?

- "My algorithm obtains 0.3T total reward within T rounds"
 - Is my algorithm good or bad?
- Benchmarking the problem

Regret :=
$$\max_{\pi} \sum_{t=1}^{T} R(\pi) - \sum_{t=1}^{T} R(a_t) = \max_{a} TR(a) - \sum_{t=1}^{T} R(a_t)$$

The total reward of the best policy

In MAB

- "My algorithm ensures Regret $\leq 5T^{\frac{3}{4}}$ "
- Regret = o(T) \Rightarrow the algorithm is as good as the optimal policy asymptotically

The Exploration and Exploitation Trade-off in MAB

- To perform as well as the best policy (i.e., best arm) asymptotically, the learner has to pull the best arm most of the time
 - ⇒ need to exploit

- To identify the best arm, the learner has to try every arm sufficiently many times
 - ⇒ need to explore

A Simple Strategy: Explore-then-Exploit

Explore-then-exploit (Parameter: T_0)

In the first T_0 rounds, sample each arm T_0/A times. (Explore)

Compute the **empirical mean** $\hat{R}(a)$ for each arm a

In the remaining $T - T_0$ rounds, draw $\hat{a} = \operatorname{argmax}_a \hat{R}(a)$ (Exploit)

What is the *right* amount of exploration (T_0) ?

Quantifying the Estimation Error

In the exploration phase, we obtain $N = T_0/A$ i.i.d. samples of each arm.

Key Question:

Explore-then-Exploit Regret Bound Analysis

Quantifying the Error: Concentration Inequality

Theorem. Hoeffding's Inequality

Let $X_1, ..., X_N$ be independent σ -sub-Gaussian random variables.

Then with probability at least $1 - \delta$,

$$\left| \frac{1}{N} \sum_{i=1}^{N} X_i - \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[X_i] \right| \le \sigma \sqrt{\frac{2 \log(2/\delta)}{N}} .$$

A random variable is called σ -sub-Gaussian if $\mathbb{E}\left[e^{\lambda(X-\mathbb{E}[X])}\right] \leq e^{\lambda^2\sigma^2/2} \quad \forall \lambda \in \mathbb{R}$.

Fact 1. $\mathcal{N}(\mu, \sigma)$ is σ -sub-Gaussian.

Fact 2. A random variable $\in [a, b]$ is (b - a)-sub-Gaussian.

Intuition: tail probability $\Pr\{X - \mathbb{E}[X] \ge z\}$ bounded by that of Gaussians

Regret Bound of Explore-then-Exploit

Theorem. Regret Bound of Explore-then-Exploit

Suppose that $R(a) \in [0,1]$ and w_t is 1-sub-Gaussian.

Then with probability at least $1 - A\delta$, Explore-then-Exploit ensures

Regret
$$\leq T_0 + 2(T - T_0) \sqrt{\frac{2A \log(2/\delta)}{T_0}}$$
.

ϵ -Greedy

Mixing exploration and exploitation in time

ϵ -Greedy (Parameter: ϵ)

In the first A rounds, draw each arm once.

In the remaining rounds t > A,

Draw

$$a_t = \begin{cases} \text{uniform}(\mathcal{A}) & \text{with prob. } \epsilon \\ \text{argmax}_a \, \hat{R}_t(a) & \text{with prob. } 1 - \epsilon \end{cases}$$

where $\widehat{R}_t(a) = \frac{\sum_{S=1}^{t-1} \mathbb{I}\{a_S = a\} r_S}{\sum_{S=1}^{t-1} \mathbb{I}\{a_S = a\}}$ is the empirical mean of arm a using samples up to time t-1.

Regret Bound of ϵ -Greedy

Theorem. Regret Bound of ϵ -Greedy

With proper choice of ϵ , the expected regret of ϵ -Greedy is bounded by

$$\mathbb{E}[\text{Regret}] \leq \tilde{O}(A^{1/3} T^{2/3}).$$

Can We Do Better?

In explore-then-exploit and ϵ -greedy, every arm receives the same amount of exploration.

... Maybe, for those arms that look worse, the amount of exploration on them can be reduced?

Solution: Refine the amount of exploration for each arm based on the current mean estimation.

(Has to do this carefully to avoid under-exploration)

Boltzmann Exploration

Boltzmann Exploration (Parameter: λ_t)

In each round, sample a_t according to

$$p_t(a) \propto \exp(\lambda_t \, \hat{R}_t(a))$$

where $\hat{R}_t(a)$ is the empirical mean of arm a using samples up to time t-1.

Cesa-Bianchi, Gentile, Lugosi, Neu. **Boltzmann Exploration Done Right**, 2017. Bian and Jun. **Maillard Sampling: Boltzmann Exploration Done Optimally**. 2021.

Another adaptive exploration $p_t(a) = \frac{1}{\gamma - \lambda_t \hat{R}_t(a)}$ will work! (later in the course)

Another Idea: "Optimism in the Face of Uncertainty"

In words:

Act according to the **best plausible world**.

Image source: UC Berkeley AI course slide, lecture 11.

Another Idea: "Optimism in the Face of Uncertainty"

In words:

Act according to the best plausible world.

At time t, suppose that arm a has been drawn for $N_t(a)$ times, with empirical mean $\hat{R}_t(a)$.

What can we say about the true mean R(a)?

$$\left| R(a) - \hat{R}_t(a) \right| \le \sqrt{\frac{2 \log(2/\delta)}{N_t(a)}} \quad \text{w.p.} \ge 1 - \delta$$

What's the most optimistic mean estimation for arm a?

$$\hat{R}_t(a) + \sqrt{\frac{2\log(2/\delta)}{N_t(a)}}$$

UCB

UCB (Parameter: δ)

In the first *A* rounds, draw each arm once.

For the remaining rounds: in round t, draw

$$a_t = \operatorname{argmax}_a \ \widehat{R}_t(a) + \sqrt{\frac{2\log(2/\delta)}{N_t(a)}}$$

where $\hat{R}_t(a)$ is the empirical mean of arm a using samples up to time t-1. $N_t(a)$ is the number of samples of arm a up to time t-1.

P Auer, N Cesa-Bianchi, P Fischer. Finite-time analysis of the multiarmed bandit problem, 2002.

Regret Bound of UCB

Theorem. Regret Bound of UCB

With probability at least $1 - AT\delta$,

Regret
$$\leq O\left(\sqrt{AT\log(1/\delta)}\right) = \tilde{O}(\sqrt{AT})$$
.

UCB Regret Bound Analysis

Comparison

	Regret Bound	Exploration
Explore-then-Exploit ϵ -Greedy	$A^{1/3} T^{2/3}$	Non-adaptive
Boltzmann Exploration		Adaptive
UCB Thompson Sampling	\sqrt{AT}	Adaptive

Bayesian Setting for MAB

Assumptions:

- At the beginning, the environment draws a parameter θ from some prior distribution $\theta \sim P_{\rm prior}$
- In every round, the reward vector $\mathbf{r_t} = (r_t(1), ..., r_t(A))$ is generated from $\mathbf{r_t} \sim P_{\theta}$

E.g., Gaussian Case

- At the beginning, $\theta(a) \sim \mathcal{N}(0,1)$ for all $a \in \{1, ..., A\}$.
- In every round, the reward of arm a is generated by $r_t(a) \sim \mathcal{N}(\theta(a), 1)$.

For the learner, P_{prior} is known; θ is unknown; P_{θ} is known for any θ .

Thompson Sampling

William Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples, 1933.

In words:

Randomly pick an arm according to the probability you believe it is the optimal arm.

At time t, after seeing $\mathcal{H}_t = (a_1, r_1(a_1), a_2, r_2(a_2), \dots, a_{t-1}, r_{t-1}(a_{t-1}))$, the learner has a **posterior distribution** for θ :

$$P(\theta|\mathcal{H}_t) = \frac{P(\mathcal{H}_t, \theta)}{P(\mathcal{H}_t)} = \frac{P_{\theta}(\mathcal{H}_t)P_{\text{prior}}(\theta)}{P(\mathcal{H}_t)} \propto P_{\theta}(\mathcal{H}_t)P_{\text{prior}}(\theta)$$

In math:

Sample a_t according to $p_t(a) = \int_{\theta} P(\theta | \mathcal{H}_t) \mathbb{I}\{a^*(\theta) = a\} = \mathbb{E}_{\theta \sim P(\cdot | \mathcal{H}_t)}[\mathbb{I}\{a^*(\theta) = a\}]$

Thompson Sampling in the Gaussian Case

TS, UCB, and BE

