

Classification

Prepared by Raymond Wong
The examples used in Decision Tree are borrowed from LW Chan's notes
Presented by Raymond Wong
raywong@cse

Classification

Suppose there is a person.

Race	Income	Child	Insurance
white	high	no	?

Classification

Race	Income	Child	Insurance			
black	high	no	yes			
white	high	yes	yes			
white	low	yes	yes			
white	low	yes	yes			
black	low	no	no			
black	low	no	no			
black	low	no	no			
white	low	no	no			
Training set						
						

Insurance

- According to the attributes of customers,
 - Determine which customers will buy an insurance policy

Marketing

- According to the attributes of customers,
 - Determine which customers will buy a product such as computers

Bank Loan

- According to the attributes of customers,
 - Determine which customers are "risky" customers or "safe" customers

Applications

Network

- According to the traffic patterns,
 - Determine whether the patterns are related to some "security attacks"

Software

- According to the experience of programmers,
 - Determine which programmers can fix some certain bugs

Same/Difference

- Classification
- Clustering

Classification Methods

- Decision Tree
- Bayesian Classifier
- Nearest Neighbor Classifier

Decision Trees

Iterative Dichotomiser

C4.5 Classification

CART _____ Classification And Regression Trees

Example 1

- Consider a random variable which has a uniform distribution over 32 outcomes
- To identify an outcome, we need a label that takes 32 different values.
- Thus, 5 bit strings suffice as labels

Entropy

- Entropy is used to measure how informative is a node.
- If we are given a probability distribution P = (p₁, p₂, ..., p_n) then the **Information** conveyed by this distribution, also called the **Entropy** of P, is:
 - $I(P) = -(p_1 \times log p_1 + p_2 \times log p_2 + ... + p_n \times log p_n)$
- All logarithms here are in base 2.

Entropy

- For example,
 - If P is (0.5, 0.5), then I(P) is 1.
 - If P is (0.67, 0.33), then I(P) is 0.92,
 - If P is (1, 0), then I(P) is 0.
- The entropy is a way to measure the amount of information.
- The smaller the entropy, the more informative we have.

Info(T) =
$$-\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2}$$

= 1

For attribute Race,

Info
$$(T_{black}) = -\frac{3}{4} \log \frac{3}{4} - \frac{1}{4} \log \frac{1}{4} = 0.8113$$

Info
$$(T_{white}) = -\frac{3}{4} \log \frac{3}{4} - \frac{1}{4} \log \frac{1}{4} = 0.8113$$

Info(Race, T) =
$$\frac{1}{2}$$
 x Info(T_{black}) + $\frac{1}{2}$ x Info(T_{white}) = 0.8113

Gain(Race, T) = Info(T) – Info(Race, T) =
$$1 - 0.8113 = 0.1887$$

For attribute Race,

$$Gain(Race, T) = 0.1887$$

Race	Income	Child	Insurance
black	high	no	yes
white	high	yes	yes
white	low	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no

Info(T) =
$$-\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2}$$

= 1

For attribute Income,

Info
$$(T_{high}) = -1 \log 1 - 0 \log 0 = 0$$

$$Info(T_{low}) = -1/3 log 1/3 - 2/3 log 2/3 = 0.9183$$

Info(Income, T) =
$$\frac{1}{4}$$
 x Info(T_{high}) + $\frac{3}{4}$ x Info(T_{low}) = 0.6887

Gain(Income, T) = Info(T) – Info(Income, T) =
$$1 - 0.6887 = 0.3113$$

For attribute Race,

For attribute Income,

Gain(Race, T) = 0.1887Gain(Income, T) = 0.3113 Child

no

yes

yes

yes

no

no

no

no

Insurance

yes

yes

yes

yes

no

no

no

no

Income

high

high

low

low

low

low

low

low

Race

black

white

white

white

black

black

black

white

8

white

low

no

no

Info
$$(T_{yes}) = -1 \log 1 - 0 \log 0 = 0$$

Info
$$(T_{no}) = -1/5 \log 1/5 - 4/5 \log 4/5 = 0.7219$$

Info(Child, T) =
$$3/8 \times Info(T_{ves}) + 5/8 \times Info(T_{no}) = 0.4512$$

Gain(Child, T) = Info(T) – Info(Child, T) =
$$1 - 0.4512 = 0.5488$$

For attribute Race,
$$Gain(Race, T) = 0.1887$$

For attribute Income,
$$Gain(Income, T) = 0.3113$$

	Race	Income	Child	Insurance
1	black	high	no	yes
2	white	high	yes	yes
3	white	low	yes	yes
4	white	low	yes	yes
5	black	low	no	no
6	black	low	no	no
7	black	low	no	no
8	white	low	no	no

For attribute Race,

Info(
$$T_{black}$$
) = - $\frac{1}{4} \log \frac{1}{4} - \frac{3}{4} \log \frac{3}{4} = 0.8113$

$$Info(T_{white}) = -0 \log 0 - 1 \log 1 = 0$$

Info(Race, T) =
$$4/5 \times Info(T_{black}) + 1/5 \times Info(T_{white}) = 0.6490$$

Gain(Race, T) = Info(T) - Info(Race, T) =
$$0.7219 - 0.6490 = 0.0729$$

For attribute Race,

$$Gain(Race, T) = 0.0729$$

For	attribute	Income

$$Info(T_{high}) = -1 log 1 - 0 log 0 = 0$$

Info
$$(T_{low}) = -0 \log 0 - 1 \log 1 = 0$$

Info(Income, T) =
$$1/5 \times Info(T_{high}) + 4/5 \times Info(T_{low}) = 0$$

Gain(Income, T) = Info(T) – Info(Income, T) =
$$0.7219 - 0 = 0.7219$$

For attribute Race,

$$Gain(Race, T) = 0.0729$$

For attribute Income,

Gain(Income, T)
$$=$$
 (0.7219)

Race Child Income **Insurance** black high no yes white high yes yes 3 white low yes yes white 4 low yes yes black low no no 6 black low no no black low no no 8 white low no no

$$Info(T_{high}) = -1 log 1 - 0 log 0 = 0$$

Info
$$(T_{low}) = -0 \log 0 - 1 \log 1 = 0$$

Info(Income, T) =
$$1/5 \times Info(T_{high}) + 4/5 \times Info(T_{low}) = 0$$

Gain(Income, T) = Info(T) – Info(Income, T) =
$$0.7219 - 0 = 0.7219$$

$$Gain(Race, T) = 0.0729$$

Gain(Income, T)
$$=$$
 (0.7219)

	Race	Income	Child	Insurance
	1100	211001110	O ma	21100101100
1	black	high	no	yes
2	white	high	yes	yes
3	white	low	yes	yes
4	white	low	yes	yes
5	black	low	no	no
6	black	low	no	no
7	black	low	no	no
8	white	low	no	no

Suppose there is a new person.

Race	Income	Child	Insurance
white	high	no	?

CSIT5210 18

	_	_	- · · · ·	_
	Race	Income	Child	Insurance
1	black	high	no	yes
2	white	high	yes	yes
3	white	low	yes	yes
4	white	low	yes	yes
5	black	low	no	no
6	black	low	no	no
7	black	low	no	no
8	white	low	no	no

CSIT5210 19

Decision Trees

- ID3
- **C4.5**
- CART

C4.5

- ID3
 - Impurity Measurement
 - Gain(A, T)Info(T) Info(A, T)
- **C4.5**
 - Impurity Measurement
 - Gain(A, T)= (Info(T) Info(A, T))/SplitInfo(A)
 - where SplitInfo(A) = $-\Sigma_{v \in A} p(v) \log p(v)$

Info(T) =
$$-\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2}$$

= 1

For attribute Race,

Info
$$(T_{black}) = -\frac{3}{4} \log \frac{3}{4} - \frac{1}{4} \log \frac{1}{4} = 0.8113$$

Info
$$(T_{white}) = -\frac{3}{4} \log \frac{3}{4} - \frac{1}{4} \log \frac{1}{4} = 0.8113$$

Info(Race, T) =
$$\frac{1}{2}$$
 x Info(T_{black}) + $\frac{1}{2}$ x Info(T_{white}) = 0.8113

$$SplitInfo(Race) = -\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2} = 1$$

Gain(Race, T) =
$$(Info(T) - Info(Race, T))/SplitInfo(Race) = (1 - 0.8113)/1 = 0.1887$$

For attribute Race,

$$Gain(Race, T) = 0.1887$$

Race	Income	Child	Insurance
black	high	no	yes
white	high	yes	yes
white	low	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no

Info(T) =
$$-\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2}$$

= 1

For attribute Income,

Info
$$(T_{high}) = -1 \log 1 - 0 \log 0 = 0$$

Info
$$(T_{low}) = -1/3 \log 1/3 - 2/3 \log 2/3 = 0.9183$$

Info(Income, T) =
$$\frac{1}{4}$$
 x Info(T_{high}) + $\frac{3}{4}$ x Info(T_{low}) = 0.6887

SplitInfo(Income) =
$$-2/8 \log 2/8 - 6/8 \log 6/8 = 0.8113$$

Gain(Income, T)= (Info(T)–Info(Income, T))/SplitInfo(Income) =
$$(1-0.6887)/0.8113$$

= 0.3837

For attribute Race,

$$Gain(Race, T) = 0.1887$$

For attribute Income,

$$Gain(Income, T) = 0.3837$$

For attribute Child,

$$Gain(Child, T) = ?$$

Race	Income	Child	Insurance
black	high	no	yes
white	high	yes	yes
white	low	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no

Decision Trees

- ID3
- **C4.5**
- CART

Impurity Measurement

• Gini $I(P) = 1 - \sum_{j} p_{j}^{2}$

Info(T) =
$$1 - (\frac{1}{2})^2 - (\frac{1}{2})^2$$

= $\frac{1}{2}$

For attribute Race,

Info
$$(T_{black}) = 1 - (\frac{3}{4})^2 - (\frac{1}{4})^2 = 0.375$$

Info
$$(T_{white}) = 1 - (\frac{3}{4})^2 - (\frac{1}{4})^2 = 0.375$$

Info(Race, T) =
$$\frac{1}{2}$$
 x Info(T_{black}) + $\frac{1}{2}$ x Info(T_{white}) = 0.375

Gain(Race, T) = Info(T) – Info(Race, T) =
$$\frac{1}{2}$$
 – 0.375 = 0.125

For attribute Race,

$$Gain(Race, T) = 0.125$$

Race	Income	Child	Insurance
black	high	no	yes
white	high	yes	yes
white	low	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no

Info(T) =
$$1 - (\frac{1}{2})^2 - (\frac{1}{2})^2$$

= $\frac{1}{2}$

For attribute Income,

Info
$$(T_{high}) = 1 - 1^2 - 0^2 = 0$$

Info
$$(T_{low}) = 1 - (1/3)^2 - (2/3)^2 = 0.444$$

Info(Income, T) =
$$1/4 \times Info(T_{high}) + 3/4 \times Info(T_{low}) = 0.333$$

Gain(Income, T) = Info(T) – Info(Race, T) =
$$\frac{1}{2}$$
 – 0.333 = 0.167

For attribute Race,

$$Gain(Race, T) = 0.125$$

For attribute Income,

$$Gain(Race, T) = 0.167$$

For attribute Child,

$$Gain(Child, T) = ?$$

Race	Income	Child	Insurance
black	high	no	yes
white	high	yes	yes
white	low	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no

Classification Methods

- Decision Tree
- Bayesian Classifier
- Nearest Neighbor Classifier

Bayesian Classifier

- Naïve Bayes Classifier
- Bayesian Belief Networks

Naïve Bayes Classifier

- Statistical Classifiers
- Probabilities
- Conditional probabilities

Naïve Bayes Classifier

- Conditional Probability
 - A: a random variable
 - B: a random variable

$$P(A \mid B) = \frac{P(AB)}{P(B)}$$

Naïve Bayes Classifier

- Bayes Rule
 - A: a random variable
 - B: a random variable

$$P(A \mid B) = \frac{P(B|A) P(A)}{P(B)}$$

Race	Income	Child	Insurance
black	high	no	yes
white	high	yes	yes
white	low	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no

- Independent Assumption
 - Each attribute are independent
 - e.g.,P(X, Y, Z | A) = P(X | A) x P(Y | A) x P(Z | A)

Suppose there is a new person.					
	Race	Income	Chi	ild	Insurance
	white	high	no)	?

Naive Raves las

For attribute Race,

$$P(Race = black | Yes) = \frac{1}{4}$$

$$P(Race = white | Yes) = \frac{3}{4}$$

$$P(Race = black | No) = \frac{3}{4}$$

$$P(Race = white | No) = \frac{1}{4}$$

For attribute Income,

$$P(Income = high | Yes) = \frac{1}{2}$$

$$P(Income = low | Yes) = \frac{1}{2}$$

$$P(Income = high | No) = 0$$

$$P(Income = low | No) = 1$$

For attribute Child,

$$P(Child = yes | Yes) = \frac{3}{4}$$

$$P(Child = no \mid Yes) = \frac{1}{4}$$

$$P(Child = yes | No) = 0$$

$$P(Child = no | No) = 1$$

CSIT5210

$P(Yes) = \frac{1}{2}$

$$P(No) = \frac{1}{2}$$

Naïve Bayes Classifier

Race	Income	Child	Insurance
black	high	no	yes
white	high	yes	yes
white	low	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no

P(Race = white, Income = high, Child = no| Yes)

- = P(Race = white | Yes) x P(Income = high | Yes) x P(Child = no | Yes)
 - $= \frac{3}{4} \times \frac{1}{2} \times \frac{1}{4}$
 - = 0.09375

P(Race = white, Income = high, Child = no| No)

- = P(Race = white | No) x P(Income = high | No)
 - x P(Child = no | No)
- $= \frac{1}{4} \times 0 \times 1$

$$= 0$$

Suppos	se there is	a new pers	son.	
	Race	Income	Child	Insurance
	white	high	no	?
		211/6	2 K	AVAC

Insuranc

For attribute Race,

$$P(Race = black | Yes) = \frac{1}{4}$$

$$P(Race = white | Yes) = \frac{3}{4}$$

$$P(Race = black | No) = \frac{3}{4}$$

$$P(Race = white | No) = \frac{1}{4}$$

For attribute Income,

$$P(Income = high | Yes) = \frac{1}{2}$$

$$P(Income = low | Yes) = \frac{1}{2}$$

$$P(Income = high | No) = 0$$

$$P(Income = low | No) = 1$$

For attribute Child,

$$P(Child = yes | Yes) = \frac{3}{4}$$

$$P(Child = no \mid Yes) = \frac{1}{4}$$

$$P(Child = yes | No) = 0$$

$$P(Child = no | No) = 1$$

P(Child = no | No) = 1**CSIT5210**

e :	= Yes	u	

$$P(Yes) = \frac{1}{2}$$

$$P(No) = \frac{1}{2}$$

	Naïve	Bayes	Classifie	
--	-------	-------	-----------	--

Race	Income	Child	Insurance
black	high	no	yes
white	high	yes	yes
white	low	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no

P(Race = white, Income = high, Child = no| Yes)

$$= 0.09375$$

$$= \frac{1}{4} \times 0 \times 1$$

$$= 0$$

35

Suppos	se there is	a new pers	son.		
	Race	Income	Chi	ld	Insurance
	white	high	no)	?
		aive	7	K	<u>aves</u>

Insurance = Yes

For attribute Race,

$$P(Race = black | Yes) = \frac{1}{4}$$

$$P(Race = white | Yes) = \frac{3}{4}$$

$$P(Race = black | No) = \frac{3}{4}$$

$$P(Race = white | No) = \frac{1}{4}$$

For attribute Income,

$$P(Income = high | Yes) = \frac{1}{2}$$

$$P(Income = low | Yes) = \frac{1}{2}$$

$$P(Income = high | No) = 0$$

$$P(Income = low | No) = 1$$

For attribute Child,

$$P(Child = yes | Yes) = \frac{3}{4}$$

$$P(Child = no \mid Yes) = \frac{1}{4}$$

$$P(Child = yes | No) = 0$$

$$P(Child = no | No) = 1$$

$$P(Yes) = \frac{1}{2}$$

$$P(No) = \frac{1}{2}$$

Naïve	Bayes	Clas	ssifier
	,		

Race	Income	Child	Insurance
black	high	no	yes
white	high	yes	yes
white	low	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no

$$x P(Child = no | No)$$

$$= \frac{1}{4} \times 0 \times 1$$

$$= 0$$

Suppos	se there is	son.		
	Race	Income	Child	Insurance
	white	high	no	?
		aive	2 R	AVES

For attribute Race,

$$P(Race = black | Yes) = \frac{1}{4}$$

$$P(Race = white | Yes) = \frac{3}{4}$$

$$P(Race = black | No) = \frac{3}{4}$$

$$P(Race = white | No) = \frac{1}{4}$$

For attribute Income,

$$P(Income = high | Yes) = \frac{1}{2}$$

$$P(Income = low | Yes) = \frac{1}{2}$$

$$P(Income = high | No) = 0$$

$$P(Income = low | No) = 1$$

For attribute Child,

$$P(Child = yes | Yes) = \frac{3}{4}$$

$$P(Child = no \mid Yes) = \frac{1}{4}$$

$$P(Child = yes | No) = 0$$

$$P(Child = no | No) = 1$$

CSIT5210

Insurance = Yes $P(Yes) = \frac{1}{2}$ $P(No) = \frac{1}{2}$

Naïve Bayes Classifier

Child Race Income **Insurance** black high no yes high white yes yes low yes yes white low yes yes black low no no black low no no black low no no white low no no

Suppos	se there is	a new pers	son.	
	Race	Income	Child	Insurance
	white	high	no	?
		aive	5 B	AVES

Insurar

For attribute Race,

$$P(Race = black | Yes) = \frac{1}{4}$$

$$P(Race = white | Yes) = \frac{3}{4}$$

$$P(Race = black | No) = \frac{3}{4}$$

$$P(Race = white | No) = \frac{1}{4}$$

For attribute Income,

$$P(Income = high | Yes) = \frac{1}{2}$$

$$P(Income = low | Yes) = \frac{1}{2}$$

$$P(Income = high | No) = 0$$

$$P(Income = low | No) = 1$$

For attribute Child,

$$P(Child = yes | Yes) = \frac{3}{4}$$

$$P(Child = no | Yes) = \frac{1}{4}$$

$$P(Child = yes | No) = 0$$

$$P(Child = no | No) = 1$$

urance	
?	
ice = Y	
nce = Y	'es
P	(Yes) = ½
P($(No) = \frac{1}{2}$
	-
Naïve	Bayes Classifier

Race	Income	Child	Insurance
black	high	no	yes
white	high	yes	yes
white	low	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no

P(Race = white, Income = high, Child = no| Yes) = 0.09375

P(Race = white, Income = high, Child = no| No)

Suppose there is a new person. Race Income Child Ins	=)46875				
white high no	P(Race = white,	Income	e = high,	Child =	= no)	
For attribute Race,	$P(No \mid Race = w)$ $= \frac{1}{P(Race = white, w)}$	Ó				
$P(Race = black Yes) = \frac{1}{4}$	$P(Yes) = \frac{1}{2}$	black	low	no	no	
P(Race = white Yes) = $\frac{3}{4}$ P(Race = black No) = $\frac{3}{4}$	$P(No) = \frac{1}{2}$	black	low	no	no	
$P(Race = black No) = \frac{74}{4}$ $P(Race = white No) = \frac{1}{4}$		black	low	no	no	
For attribute Income,	Naïve Bayes Classifier	white	low	no	no	
P(Income = high Yes) = $\frac{1}{2}$ P(Income = low Yes) = $\frac{1}{2}$ P(Income = high No) = $\frac{1}{2}$ P(Income = high No) = 0 P(Income = high No) = 0 P(Income = low No) = 1 P(Race = white, Income = high, Child = no No) P(Income = low No) = 1 P(No Race = white, Income = high, Child = no)						
FOR ATTRIBUTE (DIID)	Race = white, Incor				•	
P(Child = yes Yes) = $\frac{3}{4}$ = $\frac{1}{4}$ P(Child = no Yes) = $\frac{1}{4}$	P(Race = white, 0 x 0	Income	<u>- </u>		, , ,	
P(Cniid = no No) = 1	Race = white, Incor 0	me = hi	gh, Child	l = no)	_	
$CSIT5210 = {P(}$	Race = white, Incor	me = hi	gh, Child	l = no)	- 40	

 $P(Race = white | No) = \frac{1}{4}$

	P(Yes Race = white, Income = high, Child = no) 0.046875						
_	P(Race = white, Income = high, Child = no)						
	P(No Race = white, Income = high, Child = no)						
	P(Race = white, Income = high, Child = no)						
	$P(Yes) = \frac{1}{2}$	black	low	no	no		

1 (1 101 0 0 1 1 1 1 1 0 0)				
$P(Yes) = \frac{1}{2}$	black	low	no	no
$P(No) = \frac{1}{2}$	black	low	no	no
, ,	black	low	no	no
Naïve Bayes Classifier	white	low	no	no

For attribute Income,

For attribute Child,

Since P(Yes | Race = white, Income = high, Child = no) > P(No | Race = white, Income = high, Child = no).

we predict the following new person will buy an insurance.

Race	Income	Child	Insurance
white	high	no	?

Bayesian Classifier

- Naïve Bayes Classifier
- Bayesian Belief Networks

Bayesian Belief Network

- Naïve Bayes Classifier
 - Independent Assumption
- Bayesian Belief Network
 - Do not have independent assumption

Some attributes are dependent on other attributes.

e.g., doing exercises may reduce the probability of suffering from Heart Disease

Let X, Y, Z be three random variables.

X is said to be **conditionally independent** of Y given Z if the following holds. $P(X \mid Y, Z) = P(X \mid Z)$

Lemma:

If X is conditionally independent of Y given Z, $P(X, Y \mid Z) = P(X \mid Z) \times P(Y \mid Z)$?

Let X, Y, Z be three random variables.

X is said to be **conditionally independent** of Y given Z if the following holds.

$$P(X \mid Y, Z) = P(X \mid Z)$$

Yes/No	Healthy/ Unhealthy	Yes/No	High/Low	Yes/No	Yes/No
Exercise	Diet	Heartburn	Blood Pressure	Chest Pain	Heart Disease
Yes	Healthy	No	High	Yes	No
No	Unhealthy	Yes	Low	Yes	No
No	Healthy	Yes	High	No	Yes

Exercise	Diet	Heartburn	Blood Pressure	Chest Pain	Heart Disease
?	?	?	?	?	?
Exercise	Diet	Heartburn	Blood Pressure	Chest Pain	Heart Disease
?	?	?	High	?	?
Exercise	Diet	Heartburn	Blood Pressure	Chest Pain	Heart Disease
Yes	Healthy	?	High	?	?

Exercise	Diet	Heartburn	Blood Pressure	Chest Pain	Heart Disease
?	?	?	?	?	?

 $P(HD = Yes) = \sum_{x \in \{Yes, No\}} \sum_{y \in \{Healthy, Unhealthy\}} P(HD = Yes | E = x, D = y) \times P(E = x, D = y)$ $= \sum_{x \in \{Yes, No\}} \sum_{y \in \{Healthy, Unhealthy\}} P(HD = Yes | E = x, D = y) \times P(E = x) \times P(D = y)$ $= 0.25 \times 0.7 \times 0.25 + 0.45 \times 0.7 \times 0.75 + 0.55 \times 0.3 \times 0.25$ $+ 0.75 \times 0.3 \times 0.75$ = 0.49 P(HD = No) = 1 - P(HD = Yes) = 1 - 0.49

= 0.51

Exercise	Diet	Heartburn	Blood Pressure	Chest Pain	Heart Disease
?	?	?	High	?	?

$$P(BP = High) = \sum_{x \in \{Yes, No\}} P(BP = High|HD=x) \times P(HD = x)$$

$$= 0.85x0.49 + 0.2x0.51$$

$$= 0.5185$$

$$P(HD = Yes|BP = High) = \frac{P(BP = High|HD=Yes) \times P(HD = Yes)}{P(BP = High)}$$

$$= \frac{0.85 \times 0.49}{0.5185}$$

$$= 0.8033$$

$$P(HD = No|BP = High) = 1 - P(HD = Yes|BP = High)$$

$$= 1 - 0.8033$$

= 0.1967

Exercise	Diet	Heartburn	Blood Pressure	Chest Pain	Heart Disease
Yes	Healthy	?	High	?	?

$$P(HD = Yes \mid BP = High, D = Healthy, E = Yes)$$

$$= \frac{P(BP = High \mid HD = Yes, D = Healthy, E = Yes)}{P(BP = High \mid D = Healthy, E = Yes)} \times P(HD = Yes \mid D = Healthy, E = Yes)$$

$$= \frac{P(BP = High|HD = Yes) P(HD = Yes|D = Healthy, E = Yes)}{P(BP = High|HD = Yes) P(HD = Yes|D = Healthy, E = Yes)}$$

$$\sum_{x \in \{Yes, No\}} P(BP=High|HD=x) P(HD=x|D=Healthy, E=Yes)$$

$$0.85 \times 0.25 + 0.2 \times 0.75$$

= 0.5862

$$P(HD = No \mid BP = High, D = Healthy, E = Yes)$$

$$= 1-0.5862$$

$$= 0.4138$$

Classification Methods

- Decision Tree
- Bayesian Classifier
- Nearest Neighbor Classifier

Nearest Neighbor Classifier

Computer	History
100	40
90	45
20	95

Nearest Neighbor Classifier

Computer	History	Buy Book?
100	40	No (-)
90	45	Yes (+)
20	95	Yes (+)
•••	•••	

Computer

Nearest Neighbor Classifier:

Step 1: Find the nearest neighbor

Step 2: Use the "label" of this neighbor

N	eal	rest	N	ei	

Computer	History	Buy Book?
100	40	No (-)
90	45	Yes (+)
20	95	Yes (+)
•••	•••	

Computer

Suppose there is a new person

Computer	History	Buy Book?
95	35	?

k-Nearest Neighbor Classifier:

Step 1: Find k nearest neighbors

Step 2: Use the majority of the labels of

the neighbors

	roct.		
IV	rest		1
_		_	

Computer	History	Buy Book?
100	40	No (-)
90	45	Yes (+)
20	95	Yes (+)
	•••	

Computer

Suppose there is a new person

Computer	History	Buy Book?
95	35	?