CONTROL OF THE CONTRO

by

MICHAEL A. HARBER

A REPORT PRESENTED TO THE GRADUATE COMMITTEE OF THE DEPARTMENT OF CIVIL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING

UNIVERSITY OF FLORIDA

SUMMER 1988

To Susan, for her enduring support and patience.

Acce	ssion For	
NTIS	GRA&I	Y
DTIC	TAB	A
	nounced	Ħ
Jast 1	fication	per
1	11 30	
Ву		
Distr	ibution/	
1	lability	Codes
	Avail and	1/02
Dist	Special	1
	1	
	1	
H-1		
	1	Ţ

ABSTRACT

The primary purpose of this paper was to report on a survey conducted by the University of Florida for the Florida Department of Transportation (FDOT). The survey analyzed the productivity rates used by the FDOT to determine contract duration with respect to highway construction contracts. The survey also reported on some of the factors that affect productivity.

A questionnaire was sent to each FDOT Resident Engineer to survey the current productivity rates that are being achieved by contractors. The contractor productivity rates where then compared to the current productivity rates used by the FDOT, and recommended changes are offered.

Also included in this paper are discussions concerning the importance of productivity in the construction industry, and the importance of using productivity to estimate contract duration and construction costs.

TABLE OF CONTENTS

ABSTRAC'	T.		•		, ,		_										_		ii
						•	•	•	•	_	•	•		•			•	•	τī
LIST OF	FIG	URES	•	•	•	•		•					•					•	v
LIST OF	TAB	LES	•	•	•		•	•		•	•	•				•		•	vi
CHAPTER																			
1.	Intr	oduc	tio	n .	•	•			•					•	•		•	•	1
	A.	Back	gro	unc	1	•	•	•		•				•			•	•	1
:	В.	Obje	cti	ve		•									•	•	•	•	1
	c.	Hist	ory			•													2
!	D.	Decl	ine	0:	E	Pr	ođ	uc	ti	vi	ty								5
!	E.	Defi	nit	ioi	1	ο£	P	ro	đu	ct	iv	it	У						10
1	F.	Rela	ted	Pı	00	đu:	ct	iv	it	Y	Te	rm	15					•	12
2.	Usin	g Pr	odu	ct	l v	it	У												14
	A.	Meas	uri	ng	P	ro	đu	ct	iv	it	У								14
	В.	Esti	ma t	ine	3														18
	c.	Sche	dul	ine	3								•						21
3.	Univ	ersi	ty	Ο£	F	10	ri	da	S	ur	ve	У	Ο£	F	10	ri	đa		
	Depa	rtme	nt	Of	T	ra	ns	рo	rt	at	io	n							
	Prod	lucti	vit	y 1	Rai	te	s			•									24
	A.	Intr												•					24
	В.	The																	25
	c.	Prod													Th	ie.			
	- •	UF S				_				-			• •			- -			29
	D .	Anal						•	•	D.	-	. 1 +		•	٠	٠	•	•	31

	4.	Univ	ers:	lty (Of 1	Flo	ri	da	S	ur	ve	Y	Re	รน	1 t	3			
		Comp	pared	1 То	Ot	her	S	tu	di	es		•		•		•	•		96
		A.	Inti	oduo	cti	on	•		•				•		•			•	96
		в.	Sumr	nary	O£	Su	ırv	еy	's				•			•	•		96
	5.	Sumr	nary	And	Co	ncl	us	io	ns	,		•				•			124
		A.	Sum	nary		•			•	•	•		•	•			•	•	124
		в.	Cond	lus	lon	3	•	•	•	•	•	•	•	•		•		•	125
APE	PEND	ιx																	
	A.	Samp	ple (o£ UI	F S	urv	/e y	Ç	ue	st	:1c	nr	a i	re	;	•	•	•	127
REF	FERE	NCES	•				•		•	•		•	•	•	•		•	•	147
CHI	ים זמנ	4EMM	AT D	t nt t	200	an:	17												1 4 0

LIST OF FIGURES

<u>Figure</u>		
1.1	1986 Productivity Increases For Various	
	U.S. Industries	6
1.2	Project Participants	8
1.3	Reasons For Nonproductive Time In The	
	Construction Industry	9
3.1a	UF Survey Questionnaire Project General	
	Information Sheet	27
3.1b	UF Survey Questionnaire Field	
	Observation Work Activity Sheet	28
3.2	Project Factors Percent Effect On	
	Productivity	39
3.3	Work Activity Factors Percent Effect	
	On Productivity	Αſ

LIST OF TABLES

33

33

į

333

3

X

<u>Table</u>	•
3.1	Summary Of Productivity Rates
	University Of Florida Survey
3.2	Current FDOT Production Rates
3.3	UF Survey Clearing And Grubbing 41
3.4	UF Survey Excavation 45
3.5	UF Survey Stabilizing 49
3.6	UF Survey Base Construction
3.7	UF Survey Surface Treatment
3.8	UF Survey Concrete Pavement
3.9	UF Survey Milling Existing Pavement 62
3.10	UF Survey Plant Mix Surface Structural
	Course
3.11	UF Survey Storm Sewers 68
3.12	UF Survey Curb And Gutter
3.13	UF Survey Sidewalk
3.14	UF Survey Seed And Mulch
3.15	UF Survey Sod
3.16	UF Survey Guardrail
3.17	UF Survey Reflective Pavement Markers 87
3.18	UF Survey Breaking And Compacting
	Concrete
3.19	UF Survey Compression Seal Replacement 93
4.1	Combined Survey Summary
4.2	Recommended Productivity Rates For FDOT 120

CHAPTER 1

INTRODUCTION

A. Background.

20

H

Construction is the worlds largest and one of the most challenging industries. In the United States the construction industry is the largest industry in terms of dollar volume, number of persons employed, and contributions to the gross national product (GNP). The construction industry employees over 10% of the work force and contributes over 10% of the GNP. This 300 billion dollar-plus industry is highly fragmented and diversified with the contractors ranging from a few giants who employ thousands of people to the majority of contractors that employ less than 10 employees.1 Productivity plays an important role in the construction industry. An increase or decrease in productivity affects every aspect of our daily lives. Productivity contributes to our standard of living, the nation's economy, and sets the direction of our future.

B. Objective.

The objective of this report is two fold. First, productivity will be discussed in general terms with respect to the construction industry. Productivity

will be defined, and attention will be given towards the importance of using productivity to determine contract duration and estimating contract costs on construction contracts. The second objective of this report will be a case study which reports on a University of Florida Survey conducted for the Florida Department of Transportation (FDOT). The study surveyed the productivity rates used by the FDOT to determine contract duration with respect to highway construction contracts. An analysis of this data will be conducted, and recommendations will be provided to assist the FDOT with determining contract time on highway construction contracts.

C. History.

£

 \mathbf{x}

The analysis and concern of construction productivity in the late 20th century is nothing new. The survival of early civilizations depended on how effective it obtained and used its resources. From 4000 100 B. C. architecture and construction flourished. temples were built in Sumer, Great Pyramids were built in Egypt, and the Greek Pantheon was built in Greece. The construction of the pyramids were some of the greatest structures ever constructed. It is not known how the pyramids were constructed, but has been reported that 100,000 workers were used. it Ιt required planning, organizing, and controlling of

the manpower and available resources to build structures of this magnitude. The development of management skills and the technique of keeping a written record were essential for the construction of these early structures.

K

The management invented by the Sumerians and Egyptians, and refined by the Greeks was further developed by the Romans with the use of job descriptions and specifications. The job descriptions allowed for the division of labor which created experienced and more efficient laborers.

next major advancement in construction productivity came at the beginning of the industrial revolution with the invention of the mechanical clock. These clocks were used for time studies. Time studies west not new; however, without an accurate method for measuring time it was hard to compare and develop a time study that had any significance. Throughout the industrial revolution management techniques improved and time studies advanced. Some early pioneers in productivity measurement and improvement are Fredrich Taylor from the late 1800's, and Frank Gilbreth, who in 1909 published a book of bricklaying systems. Gilbreth pioneered the application of motion study to increase productivity in the construction industry. during this time period Henry Gantt made four major

contributions to scientific management which had a major affect on the construction industry. They are:

- The well known Gantt Bar chart,
- A task and bonus plan that guaranteed a daily wage for output less than standard,
- 3. A policy of instructing workers rather than driving them. This policy was presented in 1908 and was clearly ahead of its time. It was not until after World War I that management accepted that training of workers was their responsibility,
- 4. Introduction of the concept of industrial responsibility, with service as the ultimate goal rather than profit.2

In more recent times the development of the computer has enabled managers to schedule contracts and track productivity data more efficiently. The computer allows construction companies to integrate the estimating, scheduling, and cost control functions of their businesses. Often, and particularly in larger firms, the individuals assigned to these three tasks do not communicate with each other. This independence results in duplication of effort, lack of coordination, and a negative effect on overall productivity. The three functions are closely related and work most productively as a system. The computer has also made scheduling complicated projects easier with the

computer programs that are available to construction companies. Probably the most common use of the computer is for tracking cost control functions. These functions include: 4

- 1. Faster and easier accounting audits,
- More accurate information about job costs, equipment costs, cash flow, etc.,
- Accurate job-site and company operating information,
- Quicker and more economical preparation of required reports, W-2's,etc.,
- Efficient month-end, and year-end closing information.
- 6. Special reports and analysis on request.

 The computer provides the construction manager with up to date productivity data. This quick access to information allows the manager to make prompt decisions hopefully affecting productivity in a positive way.

D. Decline of Productivity.

N.

3

3

Most of the productivity studies in the early 20th century were conducted on construction activities; however, it seems that the results of the studies have been more successfully applied to the manufacturing industry. From 1909 to 1952, manufacturing productivity per man-hour increased 2.6 times faster than construction productivity.

productivity in the United States was 3.3 percent while other countries had double or more the annual rate of the U.S. increase. In the last 10 years the industrial productivity has dipped even lower and has maintained only a 2.7 percent annual increase. The increases in construction productivity is even lower. It has been increasing at a rate of less than 1.0 percent a year. The construction industry has been consistently rated the worst in terms of increased productivity.

In 1986 the U.S. Department of Commerce published a list of productivity increases for various industries (figure 1.1). This data shows just how low the construction productivity increases are compared to other industries.

70

INDUSTRY	PRODUCTIVITY INCREASE %
Agriculture	3.64
Construction	0.80
Government	1.64
Manufacturing	2.60
Mining	3.17
Public Utilities	5.40
Transportation	4.60

Figure 1.1 1986 Productivity Increases For Various
U.S. Industries. (Adrian, 1987)

There are numerous theories as to why construction productivity has lagged or failed to rise when compared to other industries. One theory suggest that the lack of increase in construction productivity is due to the increasing complexity of the construction industry.5 More complex and larger projects exist now than in the past. The projects have incorporated sophisticated technology in materials and equipment, but little attention has been given to installation procedures. The projects are increasing is size which is decreasing the expected productivity rates and increasing the project duration and construction costs. The cost of construction has risen at a rate approximately 50 percent higher than the inflation rate. The author continues to state that construction has progressed through the evolutionary stage of master builders to the point that the construction industry consists of specialists. A given project can be dependent on over 20 participants (figure 1.2). With this increased complexity it has been estimated that of some projects as little as 20 percent of the theoretical man-hours are used in actually putting work in place.6

Ŷ1

Another theory for the low productivity in the construction industry sites that excessive nonproductive time of 45 percent is found on a typical construction project.7 Every industry has nonproductive time, but it is felt that the uniqueness

Figure 1.2 Project Participants.

of the construction industry contributes to a higher percentage of nonproductive time than occurs in most industries. The construction industry is different than other industries; because each project is unique, it is geographically dispersed, and it occurs in a changing physical environment. This nonproductive time can be broken down into three broad categories. Approximately one-third of all nonproductive time can be traced to industry-related factors, another third to labor-related factors, and a final third to management factors.8 A detailed listing of these factors is contained in figure 1.3.

Industry-related factors	Labor-related factors	Management-related factors
Uniqueness of many projects	High percentage of labor cost	Poor cost systems and control
Locations at which projects are built	Variability of labor productivity	Poor project planning
Adverse weather and climate seasonality	Supply-demand characteristics of industry	Poor planning for measuring and predicting productivity
Dependence on the economy	Little potential for labor learning	
Small size of firms	Risk of worker accidents	
Lack of R & D	Union work rules	
Restrictive building		
codes	Low worker motivation	
Government labor and environmental laws		

Figure 1.3 Reasons For Nonproductive Time In

The Construction Industry

A third theory states that the three most prominent factors causing decreased productivity are:9

- 1. Excessive governmental regulations,
- 2. Inadequate investment,

2

3. Reduced research and development.

These are just a few of the theories that are used to explain and justify why the construction industry's productivity rate has not kept pace with other industries. All of the theories have merit, and there does not seem to be one simple solution to the problem.

E. <u>Definition of Productivity</u>.

How do you define productivity? What does productivity mean to your employees? At what level of productivity does your organization operate? What standards are used to measure productivity? Does your organization have have productivity goals to meet or a program to monitor productivity? How do your employees react to the productivity goals?

The answers to these questions vary depending on how well the organization is tuned into the importance of productivity and its measurement. Some employers simply can not answer the questions. A high level of productivity is important to any company's success and survival. There is no common widely shared industry definition of productivity, and there is no best way to measure the fluctuation of productivity.

There are many definitions used to define productivity. The term productivity is generally used to denote a relationship between output and the associated inputs used in the production process. The simplest definition of productivity is the ratio of outputs of goods or services to inputs of resources.10 The common expression of productivity is shown as follows:

PRODUCTIVITY = OUTPUT/INPUT

The ratio can be quantified in many different ways. A partial productivity ratio only quantifies one

input factor per output; for example, output per manhour. A complete ratio of productivity would include all the input factors required to produce the output. These input factors include items such as; labor, material, capital, energy, equipment and design. Because of the complexities involved with measuring and identifying representative factors, the use of partial productivity ratios is more common. It is therefore important when comparing productivity rates to specify which input and output factors will be measured. One must understand the productivity ratio's application and limitation.

In the construction industry the most common way to quantity productivity is to relate the output to the quantity of labor required to produce the output. The labor is usually measured in man-hours or dollars. An example of this partial productivity ratio would be tons/man-hour or cubic yards/man-hour.

Where the construction industry usually uses quantity of labor for measuring productivity, other industries use other factors in their definitions. One of the most broad and universal definitions is used by the United States Department of Commerce. They define productivity as dollars of output per man-hour of labor input. Using this definition the Department of Commerce reports annually on the United States productivity. When using the Department of Commerce's

definition to compare productivity over a period of several years it is necessary to adjust the numerator (dollars of output) for inflation and other factors that would affect the value of output. This adjustment will allow for the productivity ratios to be compared in constant dollars.

F. Related Productivity Terms.

2

There are many different but related terms that are used in conjunction with productivity. What do we mean by productivity in terms with performance, production, and efficiency?

Productivity is not the same as performance. A worker can work strenuously but have low productivity due to ineffective working methods. On the other hand, productivity can be high with low performance with the assistance of automated equipment. Performance is usually regarded as the product of the worker's ability and motivation. An employee's performance can rise or fall with an increase or decrease of motivation or ability.

Sometimes productivity is regarded synonymous with production. Production is the process of transforming inputs (labor, material, capital, energy, and equipment) into a good or service such as a road or building. Total production may increase by increasing an input factor; however, productivity can remain

constant or change if the ratio of output to input changes. An example of production increasing while productivity remains constant would be: 4 units per 2 man-hours, compared to 12 units per 6 man-hours. The input has increased, but the productivity has remained the same. It in important to specify the input and output to be measured when comparing productivities.

Efficiency simply the ratio of actual is productivity divided by the estimated productivity. The main efficiency use ο£ is in comparing productivities of different factors or of the same factors at different times. This ratio allows the project manager to compare the estimated productivity with the actual productivity.

CHAPTER 2

USING PRODUCTIVITY

A. Measuring Productivity.

8

2

Productivity standards provide the basis for comparing current productivity rates, and the estimation of the costs and duration of a proposed project. The main methods used in the construction industry to develop and measure productivity standards by using historical accounting data, or by are analyzing a work process and then developing a scientific standard.11 The accounting based standard is the most popular and usually the most reliable for contractors.

Historically Based Standard.

The accounting based standard is based on historical data that has been collected from past projects using the contractor's cost control system. The process for developing and collecting the data is relatively simple, and the historical measurements of productivity can be invaluable if used and stored correctly. Is easy to see that the more historical productivity data that is collected on an event, the more the contractor can rely of his estimate or schedule.

There are four potential weaknesses that characterize the use and collection of historical data.12 I feel that these weaknesses can be over come as long as the personnel utilizing the data are aware of how and under what conditions the data was collected.

X

The first potential weakness is that construction contractors never build the same project under the same working conditions using the same resources. A few of these changed conditions include weather, number of men, and quality of management. Continuous collection of data can average these conditions, and make the data reliable to predict future events.

A second criticism is that the historical data may not be current. It does take time to collect and process the data; however, the construction productivity has been relatively unchanged over the past ten years. This really should not be a major concern.

A third problem cited relates to the difficulty of obtaining accurate accounting data at the job site. For most jobs the foreman and superintendents tend to discount the need for accurate accounting data. It is therefore necessary to develop a reliable and mandatory job site accounting system.

The fourth problem with collecting and using historical production data is that the productivity

inefficiencies are included in the data. Accounting records do not differentiate between productive and nonproductive time. The records represent what has been done rather than the potential of what could be accomplished. This is not all that bad though, because if the contractor can not over come some of these inefficiencies they should remain part of the production rate; otherwise, the contractor's estimate will be to low which could result in financial loss.

Scientifically Based Standard.

As mentioned earlier the second method for measuring and setting productivity standards is by analyzing the work process and then developing a scientifically based standard. There are many techniques that are used to develop these standards. One process is the work study method.

A basic knowledge of probability statistics is very useful for the use of the work study method. Much of the data collected is subject to variability and cannot be determined to be correct with absolute certainty. The work study is divided into two parts, method study and work measurement.13 Method study is mainly concerned with the reduction of unnecessary work content and the ineffective time associated with it. Work measurement techniques provide a means for measuring times of work operations. The work study technique consists of randomly measuring and observing

a portion or sample of a work crew. After making the observations new ways are proposed to improve the productivity of the job.

88

The work study is actually very systematic. Each portion of a work task is investigated in detail to ensure that no factor affecting the efficiency of an operation is overlooked. The detailed study covers site layout, labor, equipment, tools, and materials handling procedures.14 The evaluation should begin from the overall or big-picture viewpoint and progressively focus of the smaller elements of the task. Unless the relevance of the small task is understood in the context as a whole, effort is often wasted on details that are not relevant.

The construction work is broken down into elements, both productive and nonproductive so that the observer is certain to record and time each element accurately. When conducting a work study the observer should remember that the contractor's needs are paramount. The work study design needs to be flexible enough for the observer to respond to the changing conditions of the job site. A work study procedure should adhere to the following basic steps:15

- 1. Select the work to be studied,
- 2. Record all relevant facts,
- 3. Examine the facts critically,
- 4. Develop the new method,

- 5. Install as standard practice,
- 6. Maintain by routine checks.

There are many other techniques that are used to develop scientifically based productivity standards. Some of these methods are work sampling, motion analysis, and time study.

B. Estimating.

X

() ()

Ş

The importance of accurate productivity information cannot be over looked. Whether you gather and calculate your own information or use one of the many published books that contain productivity rates. Knowing accurately the productivity rates of ones own resources is the key to good estimating, and good estimating is the key to success in the construction industry.16

The preparation of accurate estimates leads to the success or failure of the construction project that is being bid upon. An estimate to low will insure financial loss, and an estimate to high will price the construction company out of a job. Much time and money is spent to prepare a bid or estimate, and the accuracy of the bid or estimate is dependent on the accuracy of the productivity rates. There are many elements that are vital to an accurate estimate. The three most prominent elements are:

1. Determine the quantity of work and material,

- Identify the productivity rates to be used,
- 3. Calculate the unit cost of the resources.

Z

Of these three productivity is the element most subject to uncertainty. Given the wide variation in the productivity of the resources that are part of the construction production process, the forecasting or estimating of productivity rates is undoubtedly the leading risk factor in a construction estimate. The estimators get their information for productivity rates from numerous sources which include field experience, books, and historical records.

To estimate direct labor cost of a project an estimator can use productivity rates in the form of manhours per unit or dollars per unit. For example, for the direct labor cost of carpenters placing a form for concrete wall, the estimator might establish a historical productivity data file of 12 man-hours per 100 square feet of forms, or a unit cost of \$1.44 per square foot of form. These two types of productivity data can be changed from one to the other as long as the labor wage rate is known. To continue with the example, assume that through historical information it has been determined that it takes 12 hours of carpenter labor to place 100 square feet of form for a concrete wall. It is also known that the labor rate for a carpenter is \$12 per hour. Therefore:

Unit Cost = (12 hr)(\$12/hr)/(100 sf) = \$1.44/sf

Care should be taken when using any historical data for estimating. The man-hours per unit productivity rate is not as sensitive to change over time as unit cost data are. From 1970 to 1980 direct labor productivity was relatively constant and averaged less than a 1 percent annual increase. During this same time period, construction wage rates increased by as much as 15 percent in a single year.17 As can be seen, the estimator must know what the historical data is based on and how old the data is that is being relied upon.

X

X

If no historic data is available there are many references that can be utilized that publish productivity rates and costs for various items. These references normally give a national price per unit that must be modified for your particular geographic area. Some of the more popular references are:

- 1. R. S. Means Building Construction Cost Data,
- 2. Dodge Construction Pricing & Scheduling Manual,
- Richardson General Construction Estimating Standards,
- 4. F. R. Walker's The Building Estimator's Reference Book.

Productivity of construction resources to include labor and equipment is dependent of numerous factors, including weather, job location, and supervision. These are only a few of the factors that

the estimator has to deal with. It is the estimator's ability to identify the many factors that impact productivity that dictates the accuracy estimate. construction Clearly the estimator's understanding of productivity including its forecasting and measuring enhances a contractor's ability to improve his performance. When more standardized productivity information is available to the estimator less time and money is needed to prepare the estimate. More importantly though, the degree of accuracy of the estimate, and the estimator's confidence level goes up as more productivity information becomes available.

C. Scheduling.

₫

3

Much information can be found concerning the scheduling of construction projects; however, there is not much information that relates the importance of the relationship between productivity and scheduling. A project schedule has a great deal in common with the cost estimate, both are made before the start of the contract and both are based on historical productivity data. Most of the information relating productivity and estimating already stated in this report is equally applicable to scheduling and will not be repeated here.

A project schedule is made by dividing the project into work activities of project components. The task of breaking the contract into project activities

requires special attention, sense the resulting list of project activities dictates the overall project plan and schedule. There are many methods available that are used to combine the activities together to form a complete project schedule and determine the contract duration. Some of the more popular scheduling techniques are the Bar Chart, the Critical Path Method (CPM), and the Line of Balance (LOB).

汝

8

 \mathcal{L}

The scheduling techniques are different in many ways; however they all have one characteristic in common. They all use productivity rates to determine each activity duration. The productivity rates used must be in the form of a unit quantity per unit time. Productivity rates in the form of dollar per unit quantity cannot be used to determine activity durations.

Each activity duration is determined on the basis of the quantity of work, the crew to be assigned to the work, and the crew's productivity.18 The following is an example of determining activity duration for placing wall forms.

Quantity of work 8000 sf

Estimated productivity 10 mh/100 sf

Crew size 5 workers

Duration = (8000 sf)(10 mh)/(100 sf)(5 mh/hr)(8hr/day) = 20 Days Each activity productivity is dependent of the contractor's resources that he chooses to use to perform the activity. These resources include labor, equipment, material, and capital.19 The contractor must choose the best combination of these resources to maximize the activity productivity.

1

Like cost estimating, determining activity durations is subject to uncertainty and contains a degree of risk. It is important for the owner or the architect-engineering firm who decides the overall contract time to make this duration realistic and obtainable. Tight schedules foster low productivity as progress becomes more important than efficiency.

CHAPTER 3

UNIVERSITY OF FLORIDA SURVEY OF FLORIDA DEPARTMENT OF TRANSPORTATION PRODUCTIVITY RATES

A. Introduction.

The Florida Department of Transportation (FDOT) uses standard productivity rates to determine contract time for their highway construction contracts. These productivity rates are based on a study conducted by the FDOT in 1959. In today's contracting claimant the use of current and accurate productivity rates is paramount.

The determination of contract duration has gained added significance due to disputes between the contractors and the FDOT which has led to legal action in many cases.20 In some cases the contractor has alleged that the contract times established by the FDOT were unreasonable. Because of the age of the standard productivity rates and the heightened awareness brought about from the disputes by contractors, the FDOT wanted to update their productivity rates and review their method for determining contract time.

The FDOT contracted with the Civil Engineering

Department of the University of Florida to review the

FDOT procedures for setting contract time. Part of this review included updating the standard productivity rates used by the FDOT. This report will not discuss in detail how the standard productivity rates are used to predict contract time; however, this report will analyze the productivity survey that was sent to all the FDOT Resident Engineers, and compare these rates to other productivity rates being used by other state highway agencies and contractors.

The current FDOT procedure used to determine contract duration is based on standard productivity rates and the total quantity of work for specific work activities. The number of working days per activity is calculated by dividing the total work quantity by its corresponding productivity rate. The total contract duration is then determined by adding the number of working days allotted to each activity. Work days are then converted to calendar days by multiplying by a conversion factor of 1.43.

B. The UF Survey.

X

8

X

A survey questionnaire was prepared and sent to all FDOT Resident Engineers to collect productivity data on 17 of the standard productivity rates that the FDOT uses to determine contract time. A sample of the survey questionnaire is contained in the Project General Appendix A. A sample of

Information sheet and a Field Observation Work Activity sheet from the survey follows as figure 3.1a and 3.1b. Ralph Ellis, a research assistant at the University of Florida, designed the survey form and survey to the Resident Engineers. response to the survey was outstanding with only one Resident Engineer not responding. Each Resident Engineer was asked to select three projects and record the contractor productivity for the 17 work items included in the survey. Five separate measurements of total daily productivity were requested for each Not only were the engineers requested to activity. record daily productivity data, they also recorded factors that might affect the productivity of the work activity.

M

PROSSESS ARREST ARREST VARIABLE

Figure 3.1a shows the information that was recorded for each project observed, and figure 3.1b shows an example of the factors that were recorded for each work activity. The 17 work activities that were studied. They are:

Milling Existing Pavement Clearing & Grubbing Reflective Pavement Markers Base Construction Breaking & Compacting Concrete Sidewalk Compression Seal Replacement Concrete Pavement Surface Treatment Guardrail Excavation Plant Mix Surface Stabilizing Seed & Mulch Curb & Gutter Storm Sewers Sod

COLLEGE

OF

ENGINEERING

UNIVERSITY OF FLORIDA

GAINESVILLE, FLORIDA 32611 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for FLORIDA DEPARTMENT OF TRANSPORTATION

PROJECT GENERAL INFORMATION (Please, see instructions on reverse side.)

1.	PROJECT TITLE:	
2.	STATE PROJECT JOB NO.:	· · · · · · · · · · · · · · · · · · ·
3.	TOTAL CONTRACT PRICE OF THE JOB: \$	
4.	THIS PROJECT WOULD BE CATEGORIZED AS:	
	RECONSTRUCTION OF AN EXISTING ROAD CONSTRUCTION OF A NEW ROAD IMPROVEMENTS TO AN INTERSECTION SIGNALIZATION BRIDGE	
	OTHER	
_	THE DOOLEGE TO LOCATED IN	
5.	THIS PROJECT IS LOCATED IN	COUNTY.
 6. 	LOCAL CONDITIONS:	COUNTY.
	·	COUNTY.
	LOCAL CONDITIONS: RURAL URBAN	COUNTY.
6.	LOCAL CONDITIONS: RURAL URBAN LIMITED ACCESS ROAD (INTERSTATE)	COUNTY.
6.	LOCAL CONDITIONS: RURAL URBAN LIMITED ACCESS ROAD (INTERSTATE) TRAFFIC CONDITIONS: LIGHT MEDIUM	DATE:

N

COLLEGE

OF

ENGINEERING

WORK ACTIVITY: CLEARING and GRUBBING

UNIVERSITY OF FLORIDA

GAINESVILLE, FLORIDA 32611 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for FLORIDA DEPARTMENT OF TRANSPORTATION

FIELD OBSERVATIONS
(Please, see instructions on reverse side.)

1. STATE PROJECT JOB NO.: 2. TOTAL QUANTITY OF WORK IN THE JOB: _____ acres 3. OBSERVED PRODUCTION QUANTITIES: DATE: _____ QUANTITY: _____ acres NO. HOURS WORKED: ____ DATE: _____ QUANTITY: ____ acres NO. HOURS WORKED: ____ DATE: _____ QUANTITY: _____ acres NO. HOURS WORKED: ____ DATE: _____ QUANTITY: _____ acres NO. HOURS WORKED: _____ DATE: _____ QUANTITY: ____ acres NO. HOURS WORKED: ____ 4. TYPE OF CLEARING AND GRUBBING WORK: light : grass and scattered brush medium : brush and scattered trees heavy : heavy brush and large trees 5. FACTORS WHICH HAD AN EFFECT ON PRODUCTION: WEATHER (RAIN) TRAFFIC INSUFFICIENT MANPOWER OR EQUIPMENT UTILITY DELAYS PHASING OF WORK REQUIRED BY CONTRACT BURNING NOT ALLOWED OTHER _____

Figure 3.1b Sample, Work Activity Sheet

OTHER _____

The survey measured the daily productivity rate for each work activity. Since the FDOT does not know the contractor's capability of the resources that will be used to complete a contract, the measurements taken for the survey do not take into account the crew size or the number of hours worked by each crew. These two items are critical when trying to determine productivity rates; however, the FDOT must measure the daily productivity rate independent of these critical items.

M

C. Productivity Factors Used In The UF Survey.

My task was to analyze the questionnaires that were completed and returned to Ralph Ellis, and provide an average productivity rate for each work activity, and also determine the effect that the different productivity factors had on the work activities. The questionnaires were transferred to a Lotus 123 spreadsheet so they could be manipulated. There were 60 construction projects that were transferred to the spreadsheet.

For each project the engineer was required to determine three different conditions or group of factors that could affect the productivity of the entire project. See figure 3.1a. The first condition was the category of the construction. These categories are: reconstruction of an existing road; construction

of a new road; signalization; and bridge. The second condition was the local conditions of rural, urban, and limited access road (interstate). The third condition was traffic conditions of light, medium, and heavy.

S

Each work activity also had factors that could have an effect on productivity. These factors were weather, traffic, insufficient manpower or equipment, utility delays, and phasing of work required by the contract. See figure 3.1b. Some of the work activities had more factors depending on the nature of the work. These are not all of the factors that can effect productivity, but it was felt that these were the ones that could be easily identified by the Resident Engineers.

An average productivity rate was calculated for each work activity. Each data sample was then categorized by productivity factor, and then analyzed to determine the positive or negative effect that the productivity factor had when compared to the overall productivity rate for the work activity.

D. Analysis Of UF Survey Results.

M

As stated before, the participation in the survey by FDOT Resident Engineers was outstanding. A total of 60 construction projects ware surveyed, and a total of 1354 observations were measured. These observations are spread over the 17 major work activities.

A brief summary of the average productivity rates obtained in the survey for each work activity is contained in table 3.1. For comparison purposes the productivity rates that are currently being used by the FDOT are shown in table 3.2. Tables 3.3 through 3.19 contain the summary for each work activity, and are located immediately following this section. These tables also show the effect the factors had on productivity. Of all the data collected only one observation appears to be way out of line. This was the 69,672 SY/DAY observed for stabilizing. This value is 3.5 times greater than any other observation for this work activity and even 15 times higher than the recommended rate of 4,500 SY/DAY.

There were no real surprises in the results. The factors contained on the project general information sheet (figure 3.1a) effected the productivity rates as expected. The productivity rates associated with construction were higher than those associated with reconstruction. Likewise, the productivity rates

SUMMARY OF PRODUCTIVITY RATES UNIVERSITY OF FLORIDA SURVEY

Ţ

3

	WORK ACTIVITY	AVERAGE	NUMBER OF SAMPLES	DAILY HIGR	LOW DAILY
1.	CLEARING & GRUBBING	2.29 ACRES/DAY	106	11.19	0.018
2.	EXCAVATION	1,044 CY/DAY	122	12,451	7
3.	STABILIZING	4,636 SY/DAY	78	69,672	62
4.	BASE CONSTRUCTION	1,691 SY/DAY	160	10,923	14
5.	SURFACT TREATMENT	653 CY/DAY	22	2,239	35
6.	CONCRETE PAVEMENT	82 SY/DAY	15	136	8
7.	HILLING EXISTING PAVENENT	12,244 SY/DAY	95	32,028	444
8.	PLANT MIX SURFACE	720 TONS/DAY	. 198	2,863	6
9.	STORM SEVERS	68 LF/DAY	108	400	3
10.	CURB & GUTTER	335 LF/DAY	93	1,402	0
11.	SIDEWALK	130 SY/DAY	35	957	2
12.	SEED & MULCH	23,577 SY/DAY	58	118,287	1,300
13.	SOD	1,799 SY/DAY	139	16,536	6
14.	GUARDRAIL	365 LF/DAY	52	2,288	0
15.	REFLECTIVE PAVENENT MARKERS	626 EACH/DAY	57	2,215	36
16.	BREAKING & COMPACTING CONCRETE	90 SY/DAY	10	228	5
17.	COMPRESSION SEAL REPLACEMENT	141 LF/DAY	3	186	114

Table 3.1 Summary of Productivity Rates University of Florida Survey

FDOT PRODUCTION RATE FOR ESTIMATING

WORKING DAYS

<u>Q.</u>			
		FDOT PRODUCTION RATE FOR	R ESTIMATING .
		WORKING DAYS	
N.	ho.	Work Description	Number of Working Days
8	1.	Clearing and Grubbing. 000023 Ac./SF	1 to 10 Acres per day,
222	2.	Excavation (Regular, Lat. Ditch, Subsoil; Convert grading roadway to Cu. Yds. for this purpose). Shldr. grading (Resurfacing) at 1 mi/day	(See chart for No. Days)
% 88	3.	Stabilized Roadbed	5,000 Sq. Yds. per day (Not to exceed 10 days)
Q Q	4.	Bases (Sand-Clay; Limerock; Limerock Stabilized, Shell Stabilized; and Soil Cement Base)	(See chart for No. Days)
₫ 	5.	Surface Treatment	200 Cu. Yds. per day
» \	6.	Cement Concrete	5,000 Sq. Yds. per day
	7.	Milling Existing Pavement	4,000 Sq. Yds. per day (Max 20 days)
	8.	Plant mixed surfaces (in tons- for conversion see * below)	(See chart for No. Days)
Ä	9.	Storm Sewers (on Munic. Const.; includes pipe, inlets, manholes, etc.)	100 to 400 linear ft. per da
	10.	Curb and Gutter, Valley Gutter, etc.	300 to 700 linear ft. per da
	11.	Sidewalk	300 Sq. Yds. per day
	12.	Sprigging/Grassing 2420 S	15,000 Sq. Yds. per day (Not to exceed 15 days) (225,000)
X	13.	Guardrail (When a significant part of Contract)	1,500 linear ft. per day
(3)	14.	Breaking & Compacting Exist. Conc. Pav't (RE-SEAT CONCRETE PAVEMENT)	5,000 Sq. Yds. per day

15.	Uti	lity Delays	(Consider complexity and type Construction)			
16.	Com	pression Seal Replacement	30 ft. to 40 ft. per day (Use 40 ft. for 2,000 ft. +)			
17.	(Wh	lective Pavement Markers en a significant part of tract)	0 - 20,000/500 per day 20,001 - Up/1,000 per day			
18.	Bri	dges	(Use charts)			
19.	(No sub	ll Bridges and Drainage Structures extra time unless they comprise a stantial part of the work and would uire extra time)				
20.		eral Time: (Moving in preparatory commencing work, etc.)	(15 days Normal, 25 Days Resurfacing)			
21.	Pri	cial Acquisition Period allowed or to beginning charging of tract Time (Calendar Days)				
	a.	Resurfacing (not when primarily recycling)	1 - 20,000 Tons/30 days 20,001 - 60,000 Tons/60 days 60,001 - Over Tons/90 days			
	b.	Signalization (when primary work is signalization). Reconsider on jobs when "other work" exceeds 90 days, in which case the period may be shortened.	90 days			
	с.	Highway Lighting (when primary work is lighting). Reconsider on jobs when "other work" exceeds 120 days, in which case the period may be shortened.	120 days			

Highway Lighting Conversion (Mercury vapor to high pressure sodium)

 $\overline{\mathbf{x}}$

3.83

25.5

 $\overline{\mathbf{v}}$

90 days

ALTERNATION OF THE CONTRACT OF

W

8

XX

3

X

 \mathcal{E}

XX

Ŋ,

33 12

1

TO Y R

8

7

X

 \hat{X}

2

X

associated with reconstruction were higher than improvements to intersections and bridges. This same correlation could be made for the local conditions and traffic conditions.

The following figure 3.2 is the weighted average of the percent increase or decrease that the project factors had on productivity when compared to the overall average of the work activities. To obtain these percentages the percent difference from each work activity and each factor i.e. construction, reconstruction, rural, light, etc., was combined into a weighted average. Each work activity's average productivity rate was used as a baseline. A partial sample ο£ the equation used for the factor construction follows. In this equation the numbers are obtained from the first three work activities of Clearing and Grubbing, Excavation, and Stabilizing.

Project Category: Construction

[(31*38.19*)+(30*119.68)+(25*77.44)+...]/[31+30+25+...]

= 42.59 %

ğ

Z

**

By using the weighted average the percentages in figure 3.2 relate the factor's overall effect on productivity for the entire construction project.

PROJECT CATEGORY

Construction	42.59
Reconstruction	- 1 61 %

Intersection - 52.24

Bridge - 36.26

LOCAL CONDITION

Rural 1	8.	50
---------	----	----

Urban - 26.69

Limited (Interstate) 39.08

TRAFFIC CONDITION

3

Light	26.19
Medium	19.92
Heavy	- 15.70

Figure 3.2 Project Factors Percent Effect
On Productivity.

It should be noted that the percentages in figure 3.2 are independent on each other for project category, local condition, and traffic condition. There was no way to relate the data from one condition to another using Lotus 123. It is interesting to note the wide range of difference between some of the items such as, Construction (42.59%) and Intersection (-52.24%). That is a 90 % range or difference in productivity rates.

The same procedure for weighing the averages of the factors contained on the Field Observation Work

Activity sheet (figure 3.1b) was also computed. Figure 3.3 contain these results. Of the factors measured in this survey the factor of Utility Delays had the most detrimental effect of productivity, and as expected the productivity rates where no factors were detrimental had the highest productivity rates.

PRODUCTIVITY FACTOR

No Factor	16.98
Work Phasing Required By Contract	13.96
Weather	4.71
Insufficient Manpower Or Equipment	- 5.99
Other	- 18.61
Traffic	- 19.54
Utility	- 28.05

Figure 3.3 Work Activity Factors Percent Effect
On Productivity.

The range of daily productivity rates received for each observation by the Resident Engineers was very wide. In all cases where there were more than a few observations the standard deviation was very large. In some instances the standard deviation was larger than the average productivity rate for the work activity. The wide range of productivity rates and the large standard deviations show that the normal distribution curve is flat and is probably not shaped symmetrically.

1. CLEARING AND GRUBING (ACRES)

<u>00</u>

	PROJECT CATEGORY						
	ORIGINAL	RECONSTRUCTION	CONSTRUCTION	INTERSECTION	BRIDGE		
NUMBER OF SAMPLES	106	53	31	7	15		
TOTAL UNITS WORKED	242	136	98	2	1		
TOTAL HOURS WORKED	829	409	291	19	112		
AVERAGE HOURS WORKED/DAY	7.82	1.71	9.37	2.64	1.43		
HOURLY STAN. DEV.	2.83	2.78	1.42	0.79	2.68		
HOURLY VARIANCE	8.02	1.74	2.02	0.62	7.16		
AVERAGE UBITS WORKED/DAY	2.29	2.56	3.16	0.27	0.45		
DAILY QUANTITY STAN. DEV.	2.52	2.18	3.19	0.32	0.42		
DAILY QUARTITY VARIANCE	6.37	4.73	10.15	0.10	0.17		
DAILY HIGH	11.19	8.23	11.19	1.04	1.00		
DAILY LOW	0.018	0.100	0.13	0.02	0.02		
PERCENT DIFFERENCE FROM THE AVERAGE		12.02%	38.19%	-88.08%	-80.32%		

Table 3.3 UF Survey Clearing and Grubbing

1. cont. CLEARING AND GRUBING (ACRES)

(A)

	LOCAL CONDITIONS			TRAFFIC CONDITIONS			
	RURAL	URBAN	LINITED	LIGHT	MUIDAN	HEAVY	
TUMBER OF SAMPLES	50	42	14	10	41	48	
TOTAL UNITS WORKED	103	79	60	19	118	106	
TOTAL HOURS WORKED	439	255	135	87	407	336	
AVERAGE HOURS WORKED/DAY	1.71	6.07	9.64	8.70	8.47	6.99	
HOURLY STAM. DEV.	1.98	3.14	1.17	2.18	2.54	3.00	
HOURLY VARIANCE	3.91	9.85	1.37	4.76	6.46	8.97	
AVERAGE UNITS WORKED/DAY	2.06	1.19	4.29	1.89	2.46	2.20	
DAILY QUARTITY STAN. DEV.	2.17	2.86	1.45	1.60	2.01	3.07	
DAILY QUARTITY VARIANCE	4.72	8.20	2.10	2.57	4.02	9.44	
DAILY HIGH	\$.23	11.19	6.00	4.96	7.98	11.19	
DAILY LOW	0.13	0.02	0.50	0.19	0.13	0.02	
PERCENT DIFFERENCE FROM THE AVERAGE	-9.91%	-17.468	87.78%	-17.39%	7.50%	-3.87%	

Table 3.3 cont.

1. cont. CLEARING AND GRUBING (ACRES)

Ü

 $\frac{3}{2}$

3

F. 53

57

	TYPE			
	LT	MED	HAA	
NUMBER OF SAMPLES	30	35	23	
TOTAL UNITS WORKED	66	63	78	
TOTAL HOURS WORKED	214	366	200	
AVERAGE HOURS WORKED/DAY	7.13	10.46	8.70	
HOURLY STAN. DEV.	3.07	1.93	2.11	
HOURLY VARIANCE	9.77	3.32	4.65	
AVERAGE UNITS WORKED/DAY	1.79	1.81	3.39	
DAILY QUANTITY STAM. DEV.	2.94	1.81	2.45	
DAILY QUARTITY VARIANCE	8.95	3.38	6.27	
DAILY HIGH	11.19	7.98	8.23	
DAILT FOR	0.02	0.02	0.15	
PERCENT DIFFERENCE FROM THE ORIGINAL	-21.71%	-20.82%	48.41%	

Table 3.3 cont.

1. cont. CLEARING AND GRUBING (ACRES)

FACTORS WHICH HAD AM EFFECT ON PRODUCTION

	VBATHER	TRAFFIC	OR EQUIP	UTILITY DELAYS	WORK PHASING	BURNING	OTHER	NO FACTORS
NUMBER OF SAMPLES	24	19	7	18	24	. 17	25	36
TOTAL UNITS WORKED	54	12	18	15	80	63	43	82
TOTAL HOURS WORKED	163	71	48	121	164	109	198	312
AVERAGE HOURS WORKED/DAY	6.79	3.71	6.86	6.69	6.81	6.41	7.92	8.65
HOURLY STAN. DEV.	3.32	2.78	1.81	3.56	3.50	3.71	2.52	1.37
HOURLY VARIANCE	11.48	8.18	3.81	13.45	12.78	14.50	6.64	3.61
AVERAGE UNITS WORKED/DAY	2.26	0.61	2.32	0.86	3.35	3.68	1.71	2.27
DAILI QUANTITY STAN. DEV.	2.40	0.80	1.85	0.71	3.22	3.60	1.97	2.05
DAILY QUANTITY VARIANCE	6.02	0.67	4.01	0.54	10.80	13.74	4.05	4.31
DAILY HIGH	8.23	2.40	5.10	2.40	11.19	11.19	5.65	7.98
DAILY FOA	0.13	0.02	0.10	0.13	0.18	0.18	0.02	0.15
PERCENT DIFFERENCE FROM THE ORIGINAL	-1.20%	-73.191	1.34%	-62.49%	46.63%	60.84%	-25.32%	-0.81%

Table 3.3 cont.

2. EXCAVATION (CUBIC YARDS)

\$

8

D

X32

	PROJECT CATEGORY						
	ORIGINAL	RECONSTRUCTION	CONSTRUCTION	INTERSECTION	3R [0GZ		
NUMBER OF SAMPLES	122	71	30	16	\$		
TOTAL UNITS WORKED	127,308	49,509	68,173	2,618	5,408		
TOTAL HOURS WORKED	1,022	604	288	\$1	50		
AVERAGE HOURS WORKED/DAY	8.38	8.50	9.60	5.03	13.30		
HOURLY STAN. DEV.	3	2	1	3	3		
HOURLY VARIANCE	6	6	1	7	2		
AVERAGE UNITS WORKED/DAY	1,044	697	2,292	164	1,282		
DAILY QUANTITY STAM. DEV.	1,503	613	2,446	190	402		
DAILY QUANTITY VARIANCE	2,258,059	375,319	5,982,590	25,949	161,764		
DAILY HIGH	12,451	2,136	12,451	773	1,300		
DAILY LOW	7	12	178	7	732		
PERCENT DIFFERENCE FROM THE AVERAGE		-33.18%	119.68%	-84.32%	22.821		

Table 3.4 UF Survey Excavation

2. cont. EXCAVATION (CUBIC YARDS)

	Ľ	OCAL CONDIT	IONS	TRAFFIC CONDITIONS			
	RURAL	URBAN	LIMITED	LIGHT	HEDIUM	HEAVY	
NUMBER OF SAMPLES	60	52	10	10	. 48	54	
TOTAL UNITS WORKED	80,056	31,518	15,734	9,438	77,124	10,716	
TOTAL HOURS WORKED	519	404	100	60	453	510	
AVERAGE HOURS WORKED/DAY	8.64	7.76	10.00	5.95	9.43	7.97	
HOURLY STAN. DEV.	3	2	0	4	2	2	
HOURLY VARIANCE	1	6	0	12	4	6	
AVERAGE UNITS WORKED/DAY	1,334	606	1,573	944	1,607	637	
DAILY QUARTITY STAN. DEV.	1,957	713	391	365	2,106	675	
DAILY QUARTITY VARIANCE	3,828,475	507,996	152,999	749,043	4,435,981	455,391	
DAILY HIGH	12,451	2,856	2,136	2,114	12,451	2,856	
DAILY LOW	41	7	750	62	41	7	
PERCENT DIFFERENCE FROM THE AVERAGE	27.86%	-41.92%	50.78%	-9.56%	53.98%	-38.99%	

Table 3.4 cont.

1. cont. EXCAVATION (CUBIC YARD)

 \mathfrak{D}

Ď

65

■\$3 \$5\$ \$6\$ \$6\$ \$3\$.

31

 \mathcal{T}

	746	B OF EXCAVA	Tion	TYPE OF SOIL			
	REGULAR	LATTERAL DITCE	SUBSOIL	SAND	CLAY	ROCK	
NUMBER OF SAMPLES	30	5	15	107	- 28	5	
TOTAL UNITS WORKED	91,240	3,466	14,778	105,989	35,408	334	
TOTAL HOURS WORKED	713	58	131	\$75	226	32	
AVERAGE HOURS WORKED/DAY	7.98	11.50	3.70	3.18	8.69	6.40	
HOURLY STAN. DEV.	2.61	1.48	2.23	2.64	2.34	1.96	
HOURLY VARIANCE	6.30	2.20	4.99	5.38	5.46	3.34	
AVERAGE UNITS WORKED/DAY	1,014	693	985	391	1,362	137	
CAILY QUANTITY STAN. DEV.	1,654	214	1,112	1,572	904	153	
DAILY QUANTITY VARIANCE	2,134,157	45,608	1,236,918	2,471,219	317,574	23,432	
DAILY HIGH	12,451	1,095	3,800	12,451	3,300	458	
DAILY LOW	1	496	12	1	127	13	
PERCENT DIFFERENCE PROM THE ORIGINAL	-2.85%	-33.57%	-5.59%	-5.07%	30.51%	-82.11%	

Table 3.4 cont

1. cont. EXCAVATION (CUBIC YARD)

FACTORS WHICH HAD AN EFFECT ON PRODUCTION

	WEATHER	TRAFFIC	MANPOWER OR EQUIP	UTILITY DELAYS	YORK PHASING	STHER	90 Factors
NUMBER OF SAMPLES	34	51	25	33	33	27.00	13.00
TOTAL UNITS WORKED	32,314	23,983	28,695	24,158	49,041	22,811	14,071
TOTAL HOURS WORKED	294	403	221	290	256	214.50	119.50
AVERAGE HOURS WORKED/DAY	8.63	7.39	8.84	8.77	7.76	7.94	9.19
HOURLY STAN. DEV.	2.31	2.35	1.36	1.91	2.97	3.46	2.29
HOURLY VARIANCE	5.36	5.53	3.47	3.65	3.30	11.99	5.24
AVERAGE UNITS WORKED/DAY	950	470	1,148	132	1,486	845	1,082
DAILY QUANTITY STAN. DEV.	862	632	975	664	2,592	322	547
DAILY QUANTITY VARIANCE	743,492	398,850	949,701	441,213	6,716,104	675,614	299,556
DAILY HIGH	3,800	2,856	3,800	2,136	12,451	2,356	1,300
DYILL FOR	37	12	12	12	13	- 60	7
PERCENT DIFFERENCE PROM THE ORIGINAL	-8.92%	-54.93%	9.99	-29.85%	42.41\$	-19.04%	3.73%

Table 3.4 cont.

3. STABILIZING (SQUARE YARDS)

7

			PROJECT		
	ORIGINAL	RECONSTRUCTION	CONSTRUCTION	INTERSECTION	BRIDGE
BUMBER OF SAMPLES	73	42	25	· •	5
TOTAL UNITS WORKED	361,614	130,382	205,651	22,411	3,179
TOTAL HOURS WORKED	662	323	229	60	50
AVERAGE HOURS WORKED/DAY	8.48	7.69	9.14	10.00	10.00
HOURLY STAN. CEV.	2.14	2.13	1.95	0.00	0.00
HOURLY VARIANCE	4.57	4.74	3.80	0.00	0.30
AVERAGE UNITS WORKED/DAY	4,636	3,104	8,226	3,735	634
DAILY QUANTITY STAN. DEV.	8,481	3,707	13,448	972	0
DAILY QUANTITY VARIANCE	71,922,466	13,745,157	180,851,761	945,057	0
DAILY HIGH	69,672	14,700	69,672	5,100	634
DAILY LOW	62	62	533	2,256	634
PERCENT DIFFERENCE FROM THE AVERAGE		-33.04%	77.44%	-19.43%	-86.32%

Table 3.5 UF Survey Stabilizing

3. cont. STABILIZING (SQUARE YARDS)

 $\underline{\Sigma}$

8

Ø

3

8

	LOCAL CONDITIONS			TRAFFIC CONDITIONS			
	RURAL	URBAN	LINITED	LIGHT	MEDIUM	HEAVY	
NUMBER OF SAMPLES	12	35	3	6	31	41	
TOTAL UNITS WORKED	291,104	70,510		63,462	203,104	95,048	
TOTAL HOURS WORKED	375	287		52	286	324	
AVERAGE HOURS WORKED/DAY	8.92	7.97		8.67	9.23	7.39	
HOURLY STAN. DEV.	1.30	2.37		0.75	2.30	2.20	
HOURLY VARIANCE	3.24	5.64		0.56	3.39	4.32	
AVERAGE UNITS WORKED/DAY	6,931	1,959		10,577	5,552	2,318	
DAILY QUANTITY STAM. DEV.	10,862	2,208		3,759	12,418	2,203	
DAILY QUARTITY VARIANCE	117,979,953	4,875,312		14,133,468	154,204,287	4,854,276	
DAILY HIGH	69,672	7,466		14,700	69,672	7,466	
DAILY FOA	328	62		3,788	328	62	
PERCENT DIFFERENCE FROM THE AVERAGE	49.50%	-57.75%		128.15%	41.32%	-50.00%	

Table 3.5 cont.

3. cont. STABILIZING (SQUARE YARD)

E.S.

FACTORS WHICH HAD AN EFFECT ON PRODUCTION

	YEATHER	TRAFFIC	MANPOWER OR EQUIP	UTILITY DELAYS	WORK PHASING	OTHER	NO CACTORS
NUMBER OF SAMPLES	37	19	23	17	23	13	15
TOTAL UNITS WORKED	186,900	17,278	122,397	17,516	213,769	53,365	59,057
TOTAL HOURS WORKED	322	124	136	149	209	145	134
AVERAGE HOURS WORKED/DAY	3.70	6.53	9.30	3.74	3.39	3.03	0.93
HOURLY STAN. DEV.	1.42	2.66	1.47	1.43	1.48	1.54	1.24
HOURLY VARIANCE	2.02	7.09	2.16	2.33	4.20	5.39	5.30
AVERAGE UNITS WORKED/DAY	5,051	909	6,150	1,030	9,294	2,355	3,331
DAILY QUANTITY STAM. DEV.	11,560	1,023	15,490	532	14,208	2,590	1,154
DAILY QUANTITY VARIANCE	1.35+08	1.0E+06	2.45+08	2.36+05	2.05+08	6.7E+06	1.3E+06
DAILY HIGH	69,672	4,403	69,672	2,533	69,672	7,466	5,776
DAILY LOW	62	62	62	328	328	150	1,731
PERCENT DIFFERENCE FROM THE AVERAGE	8.96%	-80.39%	32.65%	-17.17%	100.48%	-36.05%	-15.08%

Table 3.5 cont.

i. BASE CONSTRUCTION (SQUARE YARDS)

		PROJECT CATORGY					
	ORIGINAL	RECONSTRUCTION	CONSTRUCTION	INTERSECTION	BRIDGE		
NUMBER OF SAMPLES	150	107	25	23	5		
TOTAL UNITS WORKED	270,535		47,705	16,739	5,120		
TOTAL HOURS WORKED	FORKED 1,450		242	193	45		
AVERAGE HOURS WORKED/DAY 9.06		9.07	9.66	8.37	9.00		
HOURLY STAN. DEV. 2.33		2.52	1.95	1.48	2.30		
HOURLY VARIANCE	HOURLY VARIANCE 5.41		3.79	2.20	4.00		
AVERAGE UNITS WORKED/DAY	1,691	1,878	1,908	728	1,024		
DAILY QUANTITY STAN. DEV.	1,646	1,705	1,725	917	0		
DAILY QUANTITY VARIANCE	2,708,719	2,907,990	2,375,740	341,458	9		
DAILY HIGH	10,923	10,923	6,400	2,900	1,024		
DAILY LOW	14	14	78	50	1,024		
PERCENT DIFFERENCE FROM THE AVERAGE		11.08%	12.86%	-56.96%	-39.44%		

Table 3.6 UF Survey Base Construction

4. conc. SASE CONSTRUCTION (SQUARE YARDS)

	LOCAL CONDITIONS			TRAFFIC CONDITIONS			
	RURAL	URBAN	LINITED	LIGHT	MUIDAM	YVABE	
NUMBER OF SAMPLES	38	12	0	18	55	77	
TOTAL UNITS WORKED	194,489	78,046		36,101	132,073	102,361	
TOTAL HOURS WORKED	347	604		180	547	523	
AVERAGE HOURS WORKED/DAY	9.52	8.38		10.00	3.35	3.09	
HOURLY STAN. DEV.	2.07	2.44		2.07	2.30	1.99	
HOURLY VARIANCE	4.29	5.94		4.23	5.30	3.95	
AVERAGE UNITS WORKED/DAY	2,210	1,056		2,006	2,032	1,329	
DAILY QUANTITY STAN. DBV.	1,729	1,278		1,724	1,687	1,510	
DAILY QUANTITY VARIANCE	2,289,615	1,633,079		2,971,399	2,346,136	2,279,248	
DAILY HIGH	10,923	6,400		6,422	10,923	6,400	
DAILY LOW	78	14		140	76	14	
PERCENT DIFFERENCE FROM THE AVERAGE	30.71%	-37.53%		18.62%	20.17%	-21.38%	

Table 3.6 cont.

4. cont. BASE CONSTRUCTION (SQUARE YARD)

80

88

8

X

}} }}

Š

TYPE OF MATERIAL

	S AND CLAY	LINE	SHELL Stabilized	SOIL CEMENT	ASPHALTIC BASE
NUMBER OF SAMPLES	5	93	0	0	52
TOTAL UNITS WORKED	16,808	150,746			31,425
TOTAL HOURS WORKED	44	841			471
AVERAGE HOURS WORKED/DAY	8.70	9.04			9.05
HOURLY STAN. DEV.	1.03	1.33			0.12
HOURLY VARIANCE	1.06	3.73			3.74
AVERAGE UNITS WORKED/DAY	3,362	1,621			1,566
DAILY QUANTITY STAN. DEV.	1,065	1,480			1,932
DAILY QUANTITY VARIANCE	1,135,128	2,139,808			3,731,255
DAILY HIGH	4,746	6,422			10,923
DYILL TOA	1,794	14			49
PERCENT DIFFERENCE FROM THE AVERAGE	98.81%	-4.13\$			-7.39\$

Table 3.6 cont.

4. cont. BASE CONSTRUCTION (SQUARE YARD)

FACTORS WHICH HAD AN EFFECT ON PRODUCTION

	FEATHER	TRAFFIC	NANPOWER OR EQUIP	UTILITY DELAYS	WORK PHASING	OTHER	NO FACTORS
NUMBER OF SAMPLES	64	67	20	14	28	32	34
TOTAL UNITS WORKED	124,832	86,202	34,026	16,552	28,089	40,353	73,841
TOTAL HOURS WORKED	599	562	192	117	242	266	325
AVERAGE HOURS WORKED/DAY	9.35	8.39	9.50	3.32	8.63	8.31	3.56
HOURLY STAN. DEV.	1.74	2.60	2.28	2.10	2.78	2.92	1.72
HOURLY VARIANCE	3.02	6.74	5.22	4.41	1.73	8.53	2.97
AVERAGE UNITS WORKED/DAY	1,951	1,287	1,701	1,182	1,003	1,277	2,172
DAILY QUANTITY STAN. DEV.	1,359	1,570	1,811	748	780	1,572	2,002
DAILY QUANTITY VARIABCE	1,846,224	2,465,126	3,279,141	560,232	608,906	2,470,685	4,007,832
DAILY HIGH	6,400	6,400	6,422	2,767	3,533	6,422	10,923
DAILY LOW	78	14	55	178	97	49	76
PERCENT DIFFERENCE FROM THE AVERAGE	15.36%	-23.91%	0.62%	-30.08%	-40.67%	-24.50%	28.45%

Table 3.6 cont.

**

X X

<u>X</u>

5. SURFACE TREATMENT (CUBIC YARD)

N.

23

		PROJECT CATEGORY						
	ORIGINAL	RECONSTRUCTION	CONSTRUCTION	INTERSECTION	BRIDGE			
BUNBER OF SAMPLES	22	22	G	0	0			
TOTAL UNITS WORKED	14,370	14,370						
TOTAL HOURS WORKED	181	181						
AVERAGE HOURS WORKED/DAY	8.23	8.23						
HOURLY STAN. DEV.	2.29	2.29						
HOURLY VARIANCE	5.25	5.25						
AVERAGE UNITS WORKED/DAY	653	653						
DAILY QUARTITY STAN. DEV.	634	634						
DAILY QUANTITY VARIANCE	401,375	401,375						
DAILY HIGH	2,239	2,239						
DAILY LOW	35	35						
PERCENT DIFFERENCE FROM THE AVERAGE		0.00%						

Table 3.7 UF Survey Surface Treatment

5. cont. SURFACE TREATMENT (CUBIC YARD)

	LO	CAL CONDITI	ONS	TRAFFIC CONDITIONS			
	RURAL	URBAN	LINITED	LIGHT	MEDIUM	HEAVY	
NUMBER OF SAMPLES	19	3	0	1	16	5	
TOTAL UNITS WORKED	14,023	347		35	10,185	4,150	
TOTAL HOURS WORKED	148	34		8	137	36	
AVERAGE HOURS WORKED/DAY	7.77	11.17		8.00	8.58	7.16	
HOURLY STAN. DEV.	1.99	1.39		0.00	2.58	0.57	
HOURLY VARIANCE	3.94	3.56		0.00	6.64	0.33	
AVERAGE UNITS WORKED/DAY	738	116		35	637	830	
DAILY QUANTITY STAB. DEV.	642	50		0	708	230	
DAILY QUANTITY VARIANCE	411,531	2,477		0	501,445	52,949	
DAILY HIGH	2,239	171		35	2,239	1,040	
DAILY LOW	35	50		35	50	496	
PERCENT DIFFERENCE PROM THE AVERAGE	12.99%	-82.29%		-94.57%	-2.55%	27.07%	

Table 3.7 cont.

<u>K</u>

5. cont. SURFACE TREATMENT (CUBIC YARDS)

 χ

Š

Ħ

X

7

FACTORS WHICH HAD AN EFFECT ON PRODUCTION

	VBATHER	TRAFFIC	MANPOVER	UTILITY	WORK	OTHER	УО
			OR EQUIP	DELAYS	PHASING		FACTORS
NUMBER OF SAMPLES	9	13	0	0	0	0	4
TOTAL UNITS WORKED	8,264	6,308					382
TOTAL HOURS WORKED	83	100					42
AVERAGE HOURS WORKED/DAY	9.22	7.66					10.38
HOURLY STAN. DEV.	1.69	2.39					2.13
HOURLY VARIANCE	2.84	5.73					4.55
AVERAGE UNITS WORKED/DAY	918	485					36
DAILY QUANTITY STAN. DEV.	831	327					55
DAILY QUANTITY VARIANCE	690,807	106,897					2,363
DAILY HIGH	2,239	1,040					171
DAILY LOW	105	105					35
PERCENT DIFFERENCE FROM THE AVERAGE	40.57%	-25.72%					-85.36%

Table 3.7 cont.

6. CONCRETE PAVEMENT (SQUARE YARD)

ß

DDO	1008	CATEGORY	
PRU	1 5 1 7	TATELLINE	

	ORIGINAL	RECONSTRUCTION	CONSTRUCTION	INTERSECTION	BRIDGE
NUMBER OF SAMPLES	15	5	0	0	10
TOTAL UNITS WORKED	1,226	323			903
TOTAL HOURS WORKED	155	55			100
AVERAGE HOURS WORKED/DAY	10.33	11.00			10.00
HOURLY STAN. DEV.	0.51	0.32			0.00
HOURLY VARIANCS	0.26	0.10			0.00
AVERAGE UNITS WORKED/DAY	82	85			90
DAILY QUANTITY STAN. DEV.	44	12			51
DAILY QUANTITY VARIANCE	1,394	139			2,550
DAILY HIGH	136	83			136
DAILY FOA	8	47			3
PERCENT DIFFERENCE FROM THE AVERAGE		-21.03%			10.51%

Table 3.8 UF Survey Concrete Pavement

6. cont. CONCRETE PAVEMENT (SQUARE YARD)

 Ω

XX

3

	roc	CAL CONDITI	ONS	TRAFFIC COND		ITIONS	
	RURAL	URBAN	LIMITED	LIGHT	HEDIUM	YVABH	
NUMBER OF SAMPLES	10	5	0	0	5	10	
TOTAL UNITS WORKED	546	680			323	903	
TOTAL HOURS WORKED	105	50			55	190	
AVERAGE HOURS WORKED/DAY	10.50	10.00			11.00	10.00	
HOURLY STAN. DEV.	0.55	0.00			0.32	0.00	
HOURLY VARIANCE	0.30	0.00			0.10	3.08	
AVERAGE UNITS WORKED/DAY	55	136			65	30	
DAILY QUANTITY STAN. DEV.	25	0			12	51	
DAILY QUANTITY VARIANCE	631	0			139	2,550	
DAILY HIGH	96	136			83	136	
DAILY FOR	8	136		-	47	8	
PERCENT DIFFERENCE FROM THE AVERAGE	-33.224	66.44\$			-21.03%	10.51%	

Table 3.8 cont.

6. cont. CONCRETE PAVEMENT (SQUARE YARD)

Y

	THIKNESS		FACTORS WHICH HAD AN EFFECT ON PRODUCTION						
	7*	3*	VEATHER	TRAFFIC	NAMPOWER OR EQUIP			OTHER	NO FACTORS
NUMBER OF SAMPLES	5	5	5	ð)	ĵ	9	ĝ	10
TOTAL UNITS WORKED	680	323	223						1,003
TOTAL HOURS WORKED	50	55	50						105
AVERAGE HOURS WORKED/DAY	10.00	11.00	10.00						10.50
HOURLY STAN. DEV.	ĵ	0	0						1.55
HOURLY VARIANCE	0	0	0						0.30
AVERAGE UNITS WORKED/DAY	136	65	45						100.
DAILY QUANTITY STAN. DEV.	0	12	30						37
DAILY QUARTITY VARIANCE	ð	139	924						1,347
DAILY HIGH	136	83	96		•				136
DAILY LOW	136	47	8						47
PERCENT DIFFERENCE FROM THE AVERAGE	66.44%	-21.03%	*****						22.71%

LILLELLE PRESERVE BUTCHES FROMMER REGISTER

Table 3.8 cont.

8

7

XXX

Z.

		PROJECT CATEGORY						
	CRIGINAL	RECONSTRUCTION	CONSTRUCTION	INTERSECTION	BRIDGE			
NUMBER OF SAMPLES	95	94	1	0	Ĵ			
TOTAL UNITS WORKED	1,163,188	1,160,914	2,274					
TOTAL HOURS WORKED	344	938	6					
AVERAGE HOURS WORKED/DAY	9.94	9.98	6.00					
HOURLY STAN. DEV.	2.45	2.43	0.00					
HOURLY VARIANCE	6.01	5.91	0.00					
AVERAGE UNITS WORKED/DAY	12,244	12,350	2,274					
DAILY QUARTITY STAN. DEV.	1,461	7,429	0					
DAILY QUANTITY VARIANCE	55,669,694	55,193,201	0					
DAILY HIGH	32,028	32,028	2,274					
DAILY LOW	444	444	2,274					
PERCENT DIFFERENCE FROM THE AVERAGE		0.87%	-81.43%					

Table 3.9 UF Survey Milling Existing Pavement

7. cont. MILLING EXISTING PAVEMENT (SQUARE TARD)

Ş

7.

;; ;;

8

\$

33.20 (A.A)

	ı	OCAL CONDITIONS TRAFFIC C			RAFFIC CONDIT	CONDITIONS	
	RURAL	URBAN	LIHITED	LIGHT	HUICEN	HEAVY	
NUMBER OF SAMPLES	48	32	15	14	32	43	
TOTAL UNITS WORKED	712,797	287,580	162,311	284,281	338,371	490,536	
TOTAL HOURS WORKED	450	333	162	134	305	50 6	
AVERAGE HOURS WORKED/DAY	9.37	10.39	10.80	9.54	3.52	10.33	
HOURLY STAN. DEV.	2.72	1.93	2.07	3.34	2.28	2.18	
HOURLY VARIANCE	7.38	3.71	4.29	11.16	5.21	1.75	
AVERAGE UNITS WORKED/DAY	14,850	8,987	10,854	20,306	12,137	10,011	
DAILY QUANTITY STAN. DEV.	8,108	4,847	6,765	8,159	7,680	5,130	
DAILY QUANTITY VARIANCE	65,744,864	23,497,076	45,769,004	66,567,983	58,978,593	26,331,634	
DAILY HIGH	32,028	20,533	26,422	32,028	29,376	26,422	
DAILY LOW	444	2,351	3,833	5,488	444	2,274	
PERCENT DIFFERENCE FROM THE AVERAGE	21.28%	-26.60%	-11.35%	65.84%	-0.88%	-18.24%	

Table 3.9 cont.

7. cont. HILLING BXISTING PAVENENT (SQUARE YARD)

X:

*

FACTORS WHICH HAD AN EFFECT ON PRODUCTION

	VEATHER	TRAFFIC	NAMPOWER	UTILITY DELAYS	WORK PHASING	GTHER	NO FACTORS
NUMBER OF SAMPLES	24		10	0	25	10	16
TOTAL UNITS WORKED	330,551	41° .0	127,049		319,634	126,388	233,374
TOTAL HOURS WORKED	218	452	108		255	113	166
AVERAGE HOURS WORKED/DAY	3.06	10.05	10.75		10.18	11.30	10.34
HOURLY STAN. DEV.	2.39	2.30	2.04		2.29	1.27	2.30
HOURLY VARIANCE	5.74	5.29	4.16		5.26	1.61	3.43
AVERAGE UNITS WORKED/DAY	13,773	9,296	12,705		12,785	12,639	14,586
DAILY QUANTITY STAN. DEV.	7,315	5,553	6,826		6,112	5,333	10,183
DAILY QUANTITY VARIANCE	53,514,924	30,839,438	46,591,527	:	37,361,131	28,437,705	103,692,588
DAILY HIGH	32,028	26,422	26,400		26,422	20,533	30,500
DAILY LOW	2,586	2,274	4,444		5,472	1,444	444
PERCENT DIFFERENCE FROM THE AVERAGE	12.49%	-24.08%	3.76		4.42\$	3.22%	19.13%

Table 3.9 cont.

8. PLANT MIX SURFACE STRUCTURAL COURSE (TONS)

 \aleph

Potoceau Resident Resident Property

14

		PROJECT CATEGORY						
	ORIGINAL	RECONSTRUCTION	CONSTRUCTION	INTERSECTION	BRIDGE			
NUMBER OF SAMPLES	198	147	27	15	9			
TOTAL UNITS WORKED	142,651	122,404	16,815	1,826	1,606			
TOTAL HOURS WORKED	1,932	1,493	255	93	93			
AVERAGE HOURS WORKED/DAY	9.76	10.16	9.43	6.17	10.28			
HOURLY STAN. DEV.	2.63	2.25	2.81	3,59	0,53			
HOURLY VARIANCE	6.94	5.06	7.88	12.86	0.28			
AVERAGE UNITS WORKED/DAY	720	833	623	122	178			
DAILY QUANTITY STAN. DEV.	565	533	639	111	70			
DAILY QUANTITY VARIANCE	319,112	284,427	407,938	12,366	4,839			
DAILY HIGH	2,863	2,359	2,863	356	274			
DAILY LOW	6	6	114	10	8.4			
PERCENT DIFFERENCE FROM THE AVERAGE		15.58%	-13.56%	-83.10%	-75.243			

Table 3.10 UF Survey Plant Mix Structural Course

8. cont. PLANT HIX SURFACE STRUCTURAL COURSE (TONS)

	LOCAL CONDITIONS			TRAFFIC COMDITIONS		
	RURAL	URBAN	LINITED	LIGHT	MEDIUM	HEAVY
NUMBER OF SAMPLES	111	72	15	20	81	97
TOTAL UNITS WORKED	94,874	31,423	16,354	23,780	66,561	52,310
TOTAL HOURS WORKED	1,098	666	169	233	800	899
AVERAGE HOURS WORKED/DAY	9.89	9.24	11.25	11.64	9.88	9.27
HOURLY STAN. DEV.	2.67	2.57	1.88	1.60	2.64	2.61
HOURLY VARIANCE	7.13	6.59	3.53	2.55	6.97	6.84
AVERAGE UNITS WORKED/DAY	855	436	1,090	1,189	822	539
DAILY QUANTITY STAN. DEV.	616	387	157	761	562	426
DAILY QUANTITY VARIANCE	379,794	149,961	24,638	579,724	316,178	181,167
DAILY HIGH	2,363	1,638	1,247	2,359	2,863	1,594
DAILY LOW	6	17	582	119	14	6
PERCENT DIFFERENCE PROM THE AVERAGE	18.64%	-39.42\$	51.33%	65.03%	14.061	-25.151

Table 3.10 cont.

8. cont. PLANT MIX SURFACE STRUCTURAL COURSE (TON)

FACTORS WHICH HAD AN EFFECT ON PRODUCTION

	REATRER	TRAFFIC	MAMPOWER OR EQUIP	UTILITY DELAYS	WORK PHASING	OTHER	NO PACTORS
BUNBER OF SAMPLES	74	95	18	0	34	34	40
TOTAL UNITS WORKED	55,278	58,474	16,781		15,318	21,578	33,390
TOTAL HOURS WORKED	728	929	182		334	335	387
AVERAGE HOURS WORKED/DAY	9.84	9.78	10.11		9.81	9.84	9.68
HOURLY STAN. DEV.	3	2.68	2.26		2.33	2.15	3.05
HOURLY VARIANCE	6	7.16	5.10		5.41	4.64	9.32
AVERAGE UNITS WORKED/DAY	747	616	932		451	635	835
DAILY QUANTITY STAN. DEV	559	466	634		433	575	665
DAILY QUANTITY VARIANCE	312,539	217,601	402,389		187,499	330,499	441,731
DAILY HIGH	2,104	2,104	2,104		1,602	2,863	2,359
DAILY LOW	6	14	133		14	14	10
PERCENT DIFFERENCE FROM THE AVERAGE	3.68%	-14.57%	29.40%		-37.47%	-11.91\$	15.86%

Table 3.10 cont.

9. STORM SEVERS (LINEAR FEET)

XX.

X

			PROJECT C.	PROJECT CATEGORY		
0	RIGINAL	RECONSTRUCTION	CONSTRUCTION	INTERSECTION	BRIDGE	
NUMBER OF SAMPLES	108	62	20	18	10	
TOTAL UNITS WORKED	7,346	3,853	1,660	1,169	664	
TOTAL HOURS WORKED	848	488	179	108	74	
AVERAGE HOURS WORKED/DAY	7.85	7.86	8.93	6.75	7.40	
HOURLY STAN. DEV.	2.25	2.28	1.83	2.22	1.76	
HOURLY VARIANCE	5.04	5.21	3.36	4.94	3.09	
AVERAGE UNITS WORKED/DAY	68	62	83	73	66	
DAILY QUANTITY STAN. DEV	57	46	31	98	54	
DAILY QUANTITY VARIANCE	3,204	2,083	1,371	9,554	2,957	
DAILT HIGH	400	168	174	400	160	
DAILY FOA	3	4	16	3	12	
PERCENT DIFFERENCE		-8.64%	22.03%	7.423	-2.37%	

Table 3.11 UF Survey Storm Sewers

FROM THE AVERAGE

9. cont. STORM SEWERS (LINEAR PRET)

	LOCAL CONDITIONS			TRAFFIC CONDITIONS		
	RURAL	URBAN	LINITED	LIGHT	HUIDAH	HEYAA
NUMBER OF SAMPLES	40	68	0	11	34	63
TOTAL UNITS WORKED	2,305	5,041		394	3,138	3,314
TOTAL HOURS WORKED	310	538		36	267	436
AVERAGE HOURS WORKED/DAY	7.75	7.91		1.77	7.84	7.37
HOURLY STAN. DEV.	2.51	2.07		3.31	1.79	2.24
HOURLY VARIANCE	6.33	4.28		10.97	3.19	5.01
AVERAGE UNITS WORKED/DAY	58	74		36	92	61
DAILY QUANTITY STAN. DEV.	38	64		27	67	49
DAILY QUANTITY VARIANCE	1,425	4,150		715	4,474	2,398
DAILY HIGH	174	400		73	400	174
DAILY LOW	4	3		4	16	3
PERCENT DIFFERENCE FROM THE AVERAGE	-15.29%	. 9,00%		-47.40%	35.70%	-10.99%

Table 3.11 cont.

3. cont. STORM SEWERS (LIHEAR FEET)

. 30

8

3.8

300

	AVERA Depth		RETEMATIC (N1)			
	0 70 5	5.1 70 9	15 TO 18	24 TO 42		
NUMBER OF SAMPLES	67	41	52	56		
TOTAL UNITS WORKED	4,221	3,125	3,891	3,455		
TOTAL HOURS WORKED	523	328	107	749		
AVERAGE HOURS WORKED/DAY	7.80	7.94	7.83	13.38		
HOURLY STAN. DEV.	2.30	2.14	2.45	2.25		
HOURLY VARIANCE	5.31	4.60	5.02	5.08		
AVERAGE UNITS WORKED/DAY	63	76	75	62		
DAILY QUANTITY STAM. DEV.	63	43	62	50		
DAILY QUANTITY VARIANCE	3,970	1,344	3,865	2,507		
DAILY HIGH	400	174	400	168		
DAILY LOW	3	12	1	3		
PERCENT DIFFERENCE FROM THE AVERAGE	-7.38\$	12.06%	10.02%	-9.30%		

Table 3.11 cont.

9. cont. STORM SEWERS (LINEAR FEET)

FACTORS WHICH HAD AN EFFECT ON PRODUCTION

	RENTASV	TRAFFIC	MANPOWER OR EQUIP	UTILITY DELAYS	WORK PHASING	OTHER	HO FACTORS
NUMBER OF SAMPLES	38	37	27	34	1	24	17
TOTAL UNITS WORKED	2,265	2,604	1,361	2,510	582	1,587	1,687
TOTAL HOURS WORKED	273	294	229	262	49	175	152
AVERAGE HOURS WORKED/DAY	7.17	7.68	8.48	7.69	6.93	7.29	8.94
HOURLY STAN. DEV.	2.24	1.91	1.76	2.75	2.68	1.99	2.01
HOURLY VARIANCE	5.00	3.65	3.08	7.59	7.17	3.96	4.29
AVERAGE UNITS WORKED/DAY	60	70	50	74	83	ċ 6	39
DAILY QUARTITY STAN. DEV.	46	74	40	44	20	9.8	45
DAILY QUANTITY VARIANCE	2,110	5,499	1,594	1,905	198	7,613	1,396
DAILY HIGH	174	400	174	174	108	400	166
DYIFI FOA	3	6	8	9	44	3	4
PERCENT DIFFERENCE FROM THE AVERAGE	-12.36%	3.48%	-25.89%	8.54%	22.24%	-2.781	45.86%

Table 3.11 cont.

(3.3)

10. CURB AND GUTTER (LINEAR FEET)

 \mathbb{Z}

777

XX

7

	CRIGINAL	RECONSTRUCTION	CONSTRUCTION	INTERSECTION	BRIDGE
NUMBER OF SAMPLES	93	50	20	13	5
TOTAL UNITS WORKED	31,110	17,482	3,468	3,499	1,661
TOTAL HOURS WORKED	750	383	198	131	38
AVERAGE HOURS WORKED/DAY	3.06	7.66	9.90	7.28	7.50
HOURLY STAN. DEV.	2.07	1.92	1.81	1.16	3.01
HOURLY VARIANCE	4.30	3.68	3.27	1.34	3.04
AVERAGE UNITS WORKED/DAY	335	350	423	194	332
DAILY QUANTITY STAN. DEV	344	367	397	149	185
DAILY QUANTITY VARIANCE	118,012	134,773	157,287	22,089	34,051
DAILT HIGH	1,402	1,302	1,402	710	521
DAILY FOA	0	18	34	0	70
PERCENT DIFFERENCE FROM THE AVERAGE		4.52\$	26.57%	-41.89%	-0.69%

Table 3.12 UF Survey Curb and Gutter

10. cont. CURB AND GUTTER (LINEAR PEET)

Ø

1

7

¥\$\$.

13

200 888 38x

	LOCAL CONDITIONS			TRAFFIC CONDITIONS		
	RURAL	URBAN	CINITEO	LIGHT	HUIDAH	YVASH
NUMBER OF SAMPLES	28	65	0	0	36	57
TOTAL UNITS WORKED	12,410	18,701			15,277	15,833
TOTAL HOURS WORKED	246	718			298	566
AVERAGE HOURS WORKED/DAY	8.79	11.05			8.28	11.68
HOURLY STAN. DEV.	2.26	13.80			2.49	14.68
HOURLY VARIANCE	5.12	190.36			6.19	215.60
AVERAGE UNITS WORKED/DAY	443	288			424	273
DAILY QUANTITY STAN. DEV.	361	325			362	318
DAILY QUANTITY VARIANCE	130,563	105,324			131,339	101,244
DAILY HIGH	1,402	1,302			1,402	1,302
DAILY LOW	0	18			18	0
PERCENT DIFFERENCE FROM THE AVERAGE	32.49%	14.00%			26.86%	-16.96%

Table 3.12 cont.

13. cont. CURB AND GUTTER (LINEAR FEET)

Ø

FACTORS WHICH HAD AN EFFECT ON PRODUCTION

	VEATHER	TRAFFIC	MANPOWER OR EQUIP	UTILITY DELAYS	40RK PRASING	other	NO PACTURS
SUMBER OF SAMPLES	24	22	10	10	2	23	34
TOTAL UNITS WORKER	6,138	2,297	1,300	3,249	1,358	4,755	15,349
TOTAL HOURS WORKED	208	147	33	36	71	120	239
AVERAGE HOURS WORKED/DAY	3.65	5.68	3.25	Úà. ť	3.31	5.20	3.50
HOURLY STAN. DEV.	1.91	1.93	0.78	1.92	0.93	9.71	2.11
HOURLY VARIANCE	3.63	3.74	0.61	3.69	3.37	J.50	4.47
AVERAGE UNITS FORKED/DAY	258	104	130	325	170	266	198
DAILY QUANTITY STAN. DEV.	133	71	93	225	135	245	447
DAILY QUANTITY VARIANCE	33,346	5,057	8,678	50,511	13,098	59,356	200,240
DAILY HIGH	788	290	304	788	402	891	1,402
DYIFA FOA	34	18	54	42	34	47	Ĵ
PERCENT DIFFERENCE PROM THE AVERAGE	-22.30%	68.78%	-46.19%	-2.87%	-49.26%	-29.53%	48.94%

Table 3.12 cont.

11. SIDEWALK (SQUARE YARD)

K

3

1

200	1048	A S B B B B B B B B
281	.1 8.1 T	CATRGORY

	GRIGINAL	RZCONSTRUCTION	CONSTRUCTION	INTERSECTION	BRIDGE
NUMBER OF SAMPLES	35	26	5	4)
TOTAL UNITS WORKED	1,542	3,329	1,016	197	
TOTAL HOURS WORKED	403	317	50	36	
AVERAGE HOURS WORKED/DAY	11.50	12.19	10.00	3.38	
HOURLY STAN. DEV.	8.37	9.60	ð.00	0.39	
HOURLY VARIANCE	70.07	32.23	0.00	0.30	
AVERAGE UNITS WORKED/DAY	130	128	203	49	
DAILY QUANTITY STAN. DEV.	. 161	180	40	29	
DAILY QUANTITY VARIANCE	25,985	32,505	1,613	348	
DAILY HIGH	357	957	257	91	
DAILY LOW	2	2	142	21	
PERCENT DIFFERENCE FROM THE AVERAGE		-1.34%	56.57%	-61.97%	

Table 3.13 UF Survey Sidewalk

11. cont. SIDEWALK (SQUARE YARD)

185 885 88°

\$

	LOCAL CONDITIONS			TRAFFIC CONDITIONS		
	RURAL	URBAN	LIMITED	TRDIL	HUIDAK	YVASE
NUMBER OF SAMPLES	5	30	ũ	J	\$	13
TOTAL UNITS WORKED	1,016	3,526			254	4,238
TOTAL HOURS WORKED	50	353			39	364
AVERAGE HOURS WORKED/DAY	10.00	11.75			6.42	12.55
HOURLY STAM. DEV.	0.00	9.02			1.88	3.80
HOURLY VARIANCE	0.00	81.31			3.53	17.33
AVERAGE UNITS WORKED/DAY	203	118			42	148
DAILY QUANTITY STAN. DEV.	40	170			19	171
CAILY QUANTITY VARIANCE	1,613	28,399			371	29,375
DAILY HIGH	257	957			75	957
DAILY LOW	142	2			21	2
PERCENT DIFFERENCE FROM THE AVERAGE	56.57%	-9.43%			-67.38%	13.944

Table 3.13 cont.

31. cont. SIDEWALK (SQUARE YARD)

E

\(\frac{1}{2}\)

FACTORS WHICH HAD AN EFFECT ON PRODUCTION

	TEATHER	TRAFFIC	HANPOWER OR EQUIP	UTILITY DELAYS	WORK PHASING	OTHER	SO FACTORS
NUMBER OF SAMPLES	10	14	0	7	1	15	1
TOTAL UNITS WORKED	2,608	784		1,159	59 0	330	550
TOTAL HOURS WORKED	92	101		70	174	214	27
AVERAGE HOURS WORKED/DAY	9.20	7.18		3.93	24.79	14.23	3.13
HOURLY STAN. DEV.	0.38	1.45		0.17	10.94	11.32	J.39
HOURLY VARIANCE	0.36	2.09		0.03	119.70	128.23	0.83
AVERAGE UNITS WORKED/DAY	261	56		166	84	?5	140
DAILY QUANTITY STAN. DEV.	247	40		70	32	42	23
DAILY QUANTITY VARIANCE	61,080	1,610		4,370	1,037	1,739	1,538
DAILY HIGH	957	166		257	144	166	180
DAILY LOA	54	ĵ		19	46	j	75
PERCENT DIFFERENCE FROM THE AVERAGE	100.95%	-56.85%		27.62%	-35.01%	-42.45%	7.87%

Table 3.13 cont.

12. SEED AND MULCH (EQUARE YARD)

		PROJECT CATEGORY					
	CRICINAL	RECONSTRUCTION	CONSTRUCTION	INTERSECTION	28 I DG 2		
NUMBER OF SAMPLES	58	39	14	1	4		
TOTAL UNITS WORKED	1,367,493	790,624	547,400	3,929	19,540		
TOTAL HOURS WORKED	447	272	145	5	25		
AVERAGE HOURS WORKED/DAY	7.71	5.98	10.32	5.00	6.38		
HOURLY STAN. DEV.	3.17	2.60	3.53	0.00	1.73		
ROURLY VARIANCE	13.04	5.73	12.49	0.30	2.17		
AVERAGE UNITS WORKED/DAY	23,577	20,272	39,100	9,329	4,385		
DAILY QUANTITY STAN. DEV.	23,070	17,494	31,066)	3,191		
DAILY QUANTITY VARIANCE	532,243,645	306,026,169	965,082,889	3	10,180,707		
CALLY HIGH	118,287	77,198	118,287	9,329	10,370		
SYITA TOR	1,000	1,000	3,006	9,929	2,420		
PERCENT DIFFERENCE FROM THE AVERAGE		-14.02%	65.84%	-57.89%	-79.28%		

Table 3.14 UF Survey Seed and Mulch

12. cont. SEED AND MULCH (SQUARE YARD)

	LCCAL CONDITIONS			TRAFFIC COMDITIONS			
	RURAL	URBAN	LINITED	LIGHT	HEDIUM	HEAVY	
NUMBER OF SAMPLES	44	14	0	7	29	22	
TOTAL UNITS WORKED	1,275,136	92,357		186,967	316,364	264,162	
TOTAL HOURS WORKED	356	92		49	245	153	
AVERAGE HOURS WORKED/DAY	3.09	6.54		7.00	3.46	6.35	
HOURLY STAN. DEV.	2.05	5.16		2.84	1.84	4.24	
HOURLY VARIANCE	4.19	25.62		8.07	3.37	13.90	
AVERAGE UNITS WORKED/DAY	28,980	6,597		26,710	31,599	12,007	
DAILY QUANTITY STAN. DEV.	23,835	6,277		20,041	24,415	15,366	
SAILY QUANTITY VARIANCE	568,122,548	39,398,934		401,653,136	596,083,473	267,840,286	
DAILY HIGH	118,287	25,121		53,240	118,287	77,198	
DYITA FOA	1,819	1,000		1,819	2,420	1,000	
PERCENT DIFFERENCE FROM THE AVERAGE	22.923.	-72.02%		13.28%	34.02%	-49.07%	

Table 3.14 cont.

11. cont. CRED AND HULCH (SQUARE YARD)

× 3

FACTORS WHICH HAD AN EFFECT ON EPODUCTION

	VEATHER	TRAFFIC	MANPOWER OR EQUIP	UTILITY DELAYS	WORK PHASING	OTHER	NO FACTORS
NUMBER OF SAMPLES	21	20	j	9	::		: 1
TOTAL UNITS WORKED	450,553	324,199			447,327	251,006	304,757
TOTAL HOURS WORKED	133	123			196	31	115
AVERAGE HOURS WORKED/DAY	6.31	6.39			5.36	12.36	7.13
HOURLY STAN. DEV.	2.58	3.05			2.98	3.77	1.13
HOURLY VARIANCE	5.68	9.30			4.36	.4.13	2.00
AVERAGE UNITS WORKED/DAY	21,455	16,210			24,385	35,858	13,047
DAILY QUANTITY STAN. DEV.	21,120	19,506			20,544	39,300	15,379
DAILY QUANTITY VARIANCE	4.468+08	3.34E+08			4.228+08	1.53E+09	2.636+08
DAILY HIGH	77,198	77,198			58,401	118,287	66,317
DAILY LOW	1,000	1,300			1,000	3,006	1,564
PERCENT DIFFERENCE FROM THE AVERAGE	-9.00%	-31.25%			5.55	52.09%	-19.21%

Table 3.14 cont.

11. SOD (SQUARE YARD)

X

X Y

XXX

**

7.7.5

	PROJECT CATEGORY							
	RIGINAL	RECONSTRUCTION	CONSTRUCTION	INTERSECTION	BRIDGE			
NUMBER OF SAMPLES	139	108	21	4	ż			
TOTAL UNITS WORKED	250,010	169,330	66,256	4,213	10,156			
TOTAL HOURS WORKED	1,176	360	232	28	57			
AVERAGE HOURS WORKED/DAY	8.46	7.96	11.02	7.00	3.50			
HOURLY STAN. DEV.	3.06	2.01	5.51	1.73	1.12			
GURLY VARIANCE	9.34	4.03	30.31	2.00	1.15			
AVERAGE UNITS WORKED/DAY	1,799	1,558	3,155	1,355	1,633			
DAILY QUANTITY STAN. DEV.	2,159	1,348	4,379	255	570			
CAILY QUANTITY VARIANCE	4,660,558	1,316,688	19,179,139	64,816	324,450			
DAILY HIGH	16,536	9,007	16,536	1,404	2,200			
DAILY LOW	6	\$	356	716	800			
PERCENT DIFFERENCE FROM THE AVERAGE		-12.80%	75.414	-41.374	-5.891			

Table 3.15 UF Survey Sod

13. cont. SOD (SQUARE YARD)

	LOCA	L CONDITION	S	TRAFFIC CONDITIONS			
	RURAL	MARSU	CEMITED	LIGHT	HEDIUM	YVASH	
NUMBER OF SAMPLES	31	48	3	.7	65	57	
TOTAL UNITS WORKED	196,594	53,416		34,610	145,612	69,788	
TOTAL HOURS WORKED	757	419		147	534	496	
AVERAGE HOURS WORKED/DAY	8.32	8.73		3.65	8.21	\$.69	
HOURLY STAN. DEV.	1.89	4.46		2.30	1.85	4.12	
HOURLY VARIANCE	3.56	19.92		5 29	3.41	16.99	
AVERAGE UNITS WORKED/DAY	2,160	1,113		2,036	2,240	1,224	
DAILY QUANTITY STAN. DEV.	2,523	841		2,051	2,771	986	
DAILY QUANTITY VARIANCE	6,366,513	707,949		4,208,537	7,678,723	784,688	
DAILY HIGH	16,536	1,000		3,007	16,536	4,000	
DAILY LOW	6	98		_ 418	6	175	
PERCENT DIFFERENCE FROM THE AVERAGE	20.11%	-38.13\$		13.19%	24.55%	-31.93%	

Table 3.15 cont.

13. cont. SOD (SQUARE YARD)

FACTORS WHICH HAD AN EFFECT ON PRODUCTION

	FEATHER	TRAFFIC	MANPOWER OR EQUIP	UTILITY DELAYS	WORK PHASING	OTHER	NO FACTORS
JUNEER OF SAMPLES	56	44	15	5	13	20	48
TOTAL UNITS WORKED	103,249	51,642	17,915	2,250	52,031	24,990	108,531
TOTAL HOURS WORKED	152	315	125	33	126	202	416
AVERAGE HOURS WORKED/DAY	8.06	7.15	8.30	7.60	5.61	10.08	3.66
HOURLY STAN. DEV.	2.04	2.20	1.26	0.20	2.61	5.98	1.39
HOURLY VARIANCE	4.14	4.82	1.59	0.64	5.33	35.31	3.35
AVERAGE UNITS WORKED/DAY	1,844	1,174	1,194	450	2,738	1,250	2,261
DAILY QUANTITY STAN. DEV.	2,800	1,003	853	161	4,542	785	1,746
DAILY QUARTITY VARIANCE	7,841,851	1,005,885	121,660	26,000	20,633,044	616,364	3,347,169
DAILY HIGH	16,536	3,822	3,185	700	16,536	2,679	3,007
DAILY LOW	175	99	200	200	130	6	98
PERCENT DIFFERENCE FROM THE AVERAGE	2.51%	-34.75%	-33,60%	-74.981	52.25%	-30.53%	25.71%

Table 3.15 cont.

14. GUARDRAIL (LIMBAR FEET)

Ç.

		PROJECT CATEGORY						
	ORIGINAL	RECONSTRUCTION	CONSTRUCTION	INTERSECTION	BRIDGE			
HUMBER OF SAMPLES	52	40	6	ŷ	ō			
TOTAL UNITS WORKED	13,970	15,301	2,126		1,543			
TOTAL HOURS WORKED	397	301	62		24			
AVERAGE HOURS WORKED/DAY	1.63	7.53	10.33		5.57			
HOURLY STAN. DEV.	2.44	2.30	0.75		2.35			
HOURLY VARIANCE	5.93	5.31	0.56		4.22			
AVERAGE UNITS WORKED/DAY	365	383	354		257			
DAILY QUANTITY STAN. DEV.	486	526	397		150			
DAILY QUANTITY VARIANCE	235,886	277,030	157,977		15,693			
DAILY HIGH	2,288	2,288	1,175		410			
DAILY LOW	0	0	38		50			
PERCENT DIFFERENCE		4.864	-2.87%		-29.53%			

Table 3.16 UF Survey Guardrail

FROM THE AVERAGE

14. cont. GUARDRAIL (LINEAR FEET)

Ž.

×

Ņ.

×

N.

	LOCAL CONDITIONS			TRAFFIC CONDITIONS			
	RURAL	URBAN	CETIKID	LIGHT	HEDIUM	YVASE	
HUMBER OF SAMPLES	35	17	0	4	22	25	
TOTAL UNITS WORKED	14,378	4,592		3,200	6,894	8,376	
TOTAL HOURS WORKED	278	119		34	169	195	
AVERAGE HOURS WORKED/DAY	7.94	7.00		3.38	7.66	7.50	
HOURLY STAN. DEV.	2.16	2.32		2.04	2.52	2.40	
HOURLY VARIANCE	4.65	7.97		4.17	6.33	5.17	
AVERAGE UNITS WORKED/DAY	411	270		800	313	341	
DAILY QUANTITY STAN. DEV.	574	174		693	436	453	
DAILY QUANTITY VARIANCE	329,263	30,321		480,938	189,957	205,121	
DAILY HIGH	2,288	600		1,700	1,932	2,288	
DAILY LOW	31	0		125	31	0	
PERCENT DIFFERENCE FROM THE AVERAGE	12.61%	-25.95%		119.30%	-14.114	-6.428	

Table 3.16 cont.

14. cont. GUARDRAIL (LINEAR PERT)

FACTORS WHICH HAD AN EFFECT ON PRODUCTION

	Veather	TRAFFIC	MANPOWER OR SQUIP	UTILITY	VORK PHASING	OTHER GO FACTOR	ls
SUMBER OF SAMPLES	11	18	12	3	;	j :	. 5
TOTAL UNITS WORKED	5,838	3,325	1,425	1,900	1,525	11,33	2
TOTAL HOURS WORKED	38	131	30	64	ةذ	21	.2
AVERAGE HOURS WORKED/DAY	8.00	7.23	6.63	3.00	9.00	3.1	.3
HOURLY STAM. DEV.	2.66	2.61	2.34	3.12	0.71	2.2	, 5
TOURLY VARIANCE	7.09	6.81	8.63	3.75	0.50	5.1	;
AVERAGE UNITS WORKED/DAY	531	185	119	238	381	43	: \$
SAILY QUANTITY STAN. DEV.	618	137	73	172	130	53	:6
DAILY QUANTITY VARIANCE	381,591	18,794	6,211	29,648	16,392	255,90	19
DAILY HIGH	2,288	575	325	575	575	1,93	12
DAILY LOW	63	50	38	63	250		0
PERCENT DIFFERENCE FROM THE AVERAGE	45.49%	-49.36%	-67.45%	-34.90%	4.51%	19.4	17%

Table 3.16 cont.

15. REFLECTIVE PAVEMENT MARKERS (EACH)

X

		PROJECT CATEGORY							
	ORIGINAL	RECONSTRUCTION	CONSTRUCTION	INTERSECTION	BRIDGE				
HUMBER OF SAMPLES	57	46	3	2	ì				
TOTAL UNITS WORKED	35,708	29,312	5,737	593	66				
TOTAL HOURS WORKED	354	289	50	13	2				
AVERAGE HOURS WORKED/DAY	6.20	6.27	6.25	6.50	2.00				
HOURLY STAN. DEV.	3.11	3.25	2.28	1.50	0.00				
HOURLY VARIANCE	9.65	10.56	5.19	2.25	0.00				
AVERAGE UNITS WORKED/DAY	626	637	717	297	66				
DAILY QUANTITY STAN. DEV.	522	539	441	102	0				
DAILY QUANTITY VARIANCE	272,800	290,588	194,881	10,302	0				
DAILY HIGH	2,215	2,215	1,300	398	66				
DAILY LOW	36	36	149	195	66				
PERCENT DIFFERENCE FROM THE AVERAGE		1.72	14.47%	-52.67%	-89,46%				

Table 3.17 Reflective Pavement Markers

15. cont. REPLECTIVE PAVEMENT MARKERS (EACH)

 Σ

Ś

	LOCAL CONDITIONS			PRAFFIC CONDITIONS			
	RURAL	URBAN	DZTIHIJ	LIGHT	KUIGBK	YVKSE	
NUMBER OF SAMPLES	34	19	4	j	25	:3	
TOTAL UNITS WORKED	24,324	3,317	2,057	1,467	17,282	16,359	
TOTAL HOURS WORKED	227	30	47	12	164	178	
AVERAGE HOURS WORKED/DAY	6.68	4.21	11.63	4.00	6.56	8.12	
HOURLY STAN. DEV.	2.73	2.23	0.41	2.16	2.61	3.46	
MOURLY VARIANCE	7.47	4.38	0.17	4.67	6.33	11.33	
AVERAGE UNITS WORKED/DAY	730	464	517	489	531	535	
DAILY QUANTITY STAN. DEV.	537	489	270	412	502	\$42	
DAILY QUANTITY VARIANCE	288,313	239,024	72,731	169,309	252,335	133,784	
DAILY HIGH	2,029	2,215	957	1,033	1,800	2,215	
DAILY LOW	36	56	223	36	38	56	
PERCENT DIFFERENCE FROM THE AVERAGE	16.55%	-25.92%	-17.51%	-21.94%	10.35%	-6.65%	

STATES AND THE SECOND AND THE SECOND AND SECOND ASSESSMENT OF SECOND ASS

Table 3.17 cont.

15. CONT. REPLECTIVE PAVENENT MARKERS (EACH)

8

X

FACTORS WHICH HAD AN EFFECT ON PRODUCTION

	Veather	TRAFFIC	NAMPOWER OR EQUIP	UTILITY DELAYS	WORK PHASING	RARTO	NO FACTORS
NUMBER OF SAMPLES	14	28	0	0	5	Ĵ	24
TOTAL UNITS WORKED	7,691	16,272			848		16,461
TOTAL HOURS WORKED	101	164			14		153
AVERAGE HOURS WORKED/DAY	7.18	5.86			2.30		6.56
HOURLY STAN. DEV.	3.78	3.62			0.75		2.55
HOURLY VARIANCE	14.27	13.09			0.56		6.49
AVERAGE UNITS WORKED/DAY	549	581			170		686
DAILY QUANTITY STAM. DEV.	503	582			88		480
DAILT QUANTITY VARIANCE	253,440	338,852			7,311		230,514
DAILY HIGH	2,029	2,215			300		1,800
DAILY LOW	56	36			56		88
PERCENT DIFFERENCE FROM THE AVERAGE	-12.31%	-7.23%			-72.93%		9.48%

Table 3.17 cont.

16. BREAKING AND COMPACTING CONCRETE (SQUARE YARD)

		PROJECT CATEGORY			18.A		
	ORIGINAL	RECONSTRUCTION	CONSTRUCTION	INTERSECTION	BRIDGE		
NUMBER OF SAMPLES	10	5	5	ũ	3		
TOTAL UNITS WORKED	902	616	286				
TOTAL HOURS WORKED	86	36	50				
AVERAGE HOURS WORKED/DAY	8.60	7.20	10.00				
HOURLY STAN. DEV.	1.30	1.60	0.00				
HOURLY VARIANCE	3.24	2.56	0.00				
AVERAGE UNITS WORKED/DAY	90	123	57				
DAILY QUANTITY STAN. DEV.	83	91	58				
DAILY QUANTITY VARIANCE	6,861	8,234	3,317				
DAILY HIGH	228	228	167				
DAILY LOW	5	17	5				
PERCENT DIFFERENCE FROM THE AVERAGE		36.55%	-36.55%				

Table 3.18 UF Survey Breaking and Compacting Concrete

15. cont. BREAKING AND COMPACTING CONCRETE (SQUARE YARD)

	LOCAL CONDITIONS			TRAFFIC CONDITIONS			
	RURAL	URBAN	LINITED	LIGHT	HUIDEH	PEAVY	
HUMBER OF SAMPLES	5	5	0	j)	:;	
TOTAL UNITS WORKED	286	616				302	
TOTAL HOURS WORKED	50	36				36	
AVERAGE HOURS WORKED/DAY	10.00	7.20				3.50	
HOURLY STAN. DEV.	0.00	1.60				1.30	
HOURLY VARIANCE	0.00	2.56				3.24	
AVERAGE UNITS WORKED/DAY	57	123				30	
DAILY QUANTITY STAM. DEV.	58	91				83	
DAILY QUANTITY VARIANCE	3,317	8,234				6,861	
DAILY HIGH	167	228				228	
DAILY LOW	5	17		•		5	
PERCENT DIFFERENCE FROM THE AVERAGE	-36.55%	36.55%				0.001	

Table 3.18 cont.

15. cont. EREAKING AND COMPACTING CONCRETE (SQUARE YARD)

FACTORS WHICH HAD AN EFFECT ON PRODUCTION

	VEATHER	SIASKE	MANPOWER OR EQUIP			SZETO	HO FACTORS
MUNBER OF SAMPLES	ů	5	3	5	3	9	ĵ
TOTAL UNITS WORKED		\$16		236			
TOTAL HOURS WORKED		36		50			
AVERAGE HOURS WORKED/DAY		7.20		10.00			
HOURLY STAN. DEV.		1.60		0.00			
HOURLY VARIANCE		2.56		0.00			
AVERAGE UNITS WORKED/DAY		123		57			
DAILY QUARTITY STAN. DEV.		91		58			
DAILY QUANTITY VARIANCE		8,234		3,317			
DAILY HIGH		228		167			
DAILY LOW		17		\$	•		
PERCENT DIFFERENCE FROM THE AVERAGE		36.55%		-36.55%			

Table 3.18 cont.

THE PROPERTY OF THE PROPERTY O

Ø,

17. COMPRESSION SEAL REPLACEMENT (LINEAR PEET)

		PROJECT CATEGORY			
	ORIGINAL	RECONSTRUCTION	CONSTRUCTION	INTERSECTION	BRIDGE
NUMBER OF SAMPLES	3	1	2	3	9
TOTAL UNITS WORKED	424	136	238		
TOTAL HOURS WORKED	26	6	20		
AVERAGE HOURS WORKED/DAY	8.67	6.00	10.00		
HOURLY STAN. DEV.	1.89	0.00	0.00		
HOURLY VARIANCE	3.56	0.00	0.00		
AVERAGE UNITS WORKED/DAY	141	186	119		
DAILY QUANTITY STAN. DEV.	32	0	5		
DAILY QUANTITY VARIANCE	1,014	Û	25		
DAILY HIGH	186	186	124		
DAILY LOW	114	186	114 .		
PERCENT DIFFERENCE FROM THE AVERAGE		31.60%	-15.80%		

Table 3.19 UF Survey Compression Seal Replacement

17. cont. COMPRESSION SEAL REPLACEMENT (LINEAR FEET)

型

	LOCAL CONDITIONS		TRAFFIC CONDITIONS			
	RURAL	URSAN	CINITEO	CIGHT	KOTOSK	HEAVY
NUMBER OF SAMPLES	2	1	0	J	2	3
TOTAL UNITS WORKED	238	136				124
TOTAL HOURS WORKED	20	6				25
AVERAGE HOURS WORKED/DAY	10.00	5,00				8,67
HOURLY STAN. DEV.	0.00	0.00				1.39
HOURLY VARIANCE	0.00	0.00				3.56
AVERAGE UNITS WORKED/DAY	119	136				141
DAILY QUANTITY STAN. DEV.	5	ð				32
DAILY QUANTITY VARIANCE	25	ĵ				1,014
DAILY HIGH	124	136				186
DAILY FOA	114	186				114
	-15.80%	31.60%				0.00%

Table 3.19 cont.

17. cont. COMPRESSION SEAL REPLACEMENT (LINEAR FEET)

PACTORS WHICH HAD AN EFFECT ON PRODUCTION

	TEATHER	TRAFFIC	HANPOWER		WORK Prasing	OTHER	NO FACTORS
NUMBER OF SAMPLES	2	1	٥	0	ì	9	ĵ
TOTAL UNITS WORKED	238	186					
TOTAL HOURS WORKED	20	ó					
AVERAGE HOURS WORKED/DAY	10.00	6.00					
HOURLY STAM. DRV.	0.00	0.00					
HOURLY VARIANCE	0.00	0.00					
AVERAGE UNITS WORKED/DAY	119	196					
DAILY QUANTITY STAN. DEV.	5	0					
DAILY QUANTITY VARIANCE	25	0					
DAILY HIGH	124	186					
DAILY COA	114	186			٠		
PERCENT DIFFERENCE PRON THE AVERAGE	-15.80%	31.60%					

Table 3.19 cont.

CHAPTER 4

UNIVERSITY OF FLORIDA SURVEY RESULTS COMPARED TO OTHER STUDIES

A. Introduction.

Two additional surveys were conducted to acquire as much data as possible concerning highway construction productivity rates. The first survey initiated by UF was an investigation of productivity rates used by the other state highway agencies. A sent to the 50 state DOT's with 37 responding and providing information concerning methods for estimating contract time and the associated productivity rates. The second survey entailed contacting private contractors that specialize in highway construction and contract with FDOT. Discussions were conducted with four contractors to obtain their productivity rates. These two surveys were conducted and coordinated by Ralph Ellis.

B. Summary Of Surveys.

The combined survey summary is tabulated in table 4.1. The summary includes the results from the data that was received from all three surveys (UF Productivity, UF State DOT, and UF Contractor). There

are additional work activities included in this table that are not included in the UF survey, because of the variety of information received. The summary shows the data collected by source and the recommended production rate to use on FDOT construction projects. The tables and recommendations were taken from the "Final Report, Establishing Contract Durations Based On Production Rates For FDOT Construction Projects", authored by Dr. Zohar Herbsman, and Mr. Ralph Ellis, dated June 27, 1988.

 $\overline{\Omega}$

Technological management (Library Contract)

The three surveys provided a broad base to obtain the required information to make a knowledgeable recommendation to the FDOT concerning the standard productivity rates they use to determine contract duration. Based on the information obtained from the surveys four additional standard work activities are recommended.21 The recommendations are to add Highway Lighting, Fence and Signalization as additional work activities, and divide Excavation into two activities. The activities are excavation by using scrapers and excavation by using trucks. Table 4.2 contains the recommended new rates to be used by FDOT.22

Work Item Move-In

<u>Description</u>

Mobilization in Preparation for Commencing Work

Source	Production Rate (days) Comments
FDOT	15 - 25	15 - normal; 25 - normal
UF 1979 Report	7	
Arkansas DOT	5	
Maryland DOT	10	
Michigan DOT	10	
Minnesota DOT	8	
New Jersey DOT	10	
Oklahoma DOT	20 -20	
Wyoming DOT	5 - 10	
Contractor A	15	
Contractor B	15	
Contractor C	15	
Contractor D	4	

FDOT 15 days UF Survey 7 days Data Summary State DOT's Mean 10 Contractor Mean 12

Investigator's Comments: Unless the project is unique, two weeks appears to be adequate time for mobilization.

Indicated Production Rate: 15 days

Table 4.1 Combined Survey Summary

98

Work Item
Clear and Grub

Ø

<u>Description</u>
Clearing and Removal of Grass,
Brush and Trees

Source	Production Rate(acres	s/day) Comments
FDOT	1 - 10	not to exceed 20 days; grading time will govern after 20 days
UF Survey	2.3	
Arkansas DOT	1.25 - 2.5	10, laarge jobs
Lousiana DOT	1.5	
Michigan DOT	2	
New Jersey DOT	4 - 10	4 - construction and reconstruction 10 - widening and resurfacing
North Carolina DOT	1/4 - 10	1 - 10, major projects; 1 - 8, grading + paving projects 1/4 - 1, small rural - urban projects
Wisconsin DOT	2.5	
Colorado DOT	3.0	
Contractor A	5	
Contractor B	2.0	0.3 for heavy; 6.0 for light
Contractor C	.75 - 5	.75 for urban; 5.0 for interstate
Contractor D	2.5	
EDOT 1-10	<u>l</u>	Summary State DOT's Meen 3.3

FDOT 1 - 10 UF Survey 2.3 Data Summary

State DOT's

Mean 3.3

Contractor

Mean 3.1

Investigator's Comments: rate for light clearing on large, open access projects is up to 10 acres day.

rate on heavy clearing or on small urban jobs may be only 1 acre day.

Indicated Production Rate: 3.0 acres/day for medium clearing under average conditions

Work Item
Excavation

4

Description

General Excavation (cut to fill) Scrapper Operation

Source	Production Rate(acres/d	day) Comments
FDOT	use curves	1,800, small jobs 0 - 10,000 cy 27.500. large jobs over 100.000 cy
UF Survey	1,044	
UF 1979 Report	2,000 - 5,000	3,000, for 3,500 ft haul 4,000 for 2,000 ft haul
Lousiana DOT	1,000 - 3,000	1,000, urban 3.000, rural
Michigan DOT	800 - 12,000	800 + embankment; 12,000 freeway 1,000, bridge: 5,000, reconstruction
Minnesota DOT	2,000 - 10,000	9,000, scrapper; 5,500, truck
New Jersey DOT	500 - 2,000	500, reconstruction; 2,000 construction
North Carolina DOT	100 - 8,000	300, small jobs; 4,000, grading + paving job 7.000, major project
North Dakota DOT	1,200 - 12,800	1,200, 0 - 20,000 cy; 6,400, 100,000 - 250,000 cy; 9.600, 500,000 - 1,000.000 cy; 12,800 over 1 million cy
Oklahoma DOT	3,000 - 10,000	3.000, 0 - 200.000 cy; 5,000, 500.000 - 600,000 cy; 6.000. over 700.000 cy; 10.000. extra laarge jobs
Wisconsin DOT	300 - 5,000	
Wyoming DOT	500 - 10,000	rock excavation 2,000 - 3,000 cy/day; solid rock excavation 500 cy/day
Pennsylvania DOT	2,500	based on 3,000' - 4,000' haul for less than 2,000' haul use 4,500 cy/day
Colorado DOT	2,300	
Contractor A	10,000	
Contractor B	1,400 - 11,000	depends on number of units and haul distance
Contractor C	3.500	for balance cut + fill, grading time controls, 5.000 sy/day
Contractor D	4,000	maximum production on large jobs 11,000 cy/day

FDOT 1,800 - 32,500 UF Survey 1,044 Data Summary

State DOT's Mean 1,300 - 4,300 - 8,100 Contractor Mean 5,900

Investigator's Comments:

low ave.

high

Indicated Production Rate:

1,400 - 5,600 - 11,200 cy/day

Table 4.1 cont.

100

Work Item
Truck Haul

Description

Excavation which requires
Truck Hauling (over 1 mile hauls)

Source	Production Rate (cy/day	c) Comments
Minnesota DOT	5,500	
Colorado DOT	2,300	
Contractor A	6,000	
Contractor B	900 - 7,000	depends on number of units
Contractor C	2,400	
Contractor D	2,700	
111111111111111111111111111111111111111		
	_	

FDOT UF Survey

THE PERSONAL MANAGEMENT OF THE PROPERTY OF THE PERSONS SECTIONS SECTIONS

X

Ä

33

<u>}</u>

Data Summary

State DOT's Mean 3,900 Contractor Mean 3,800

Investigator's Comments: separate item for truck haul excavation should be added

low ave. high

Indicated Production Rate: 900 - 3,000 - 7,500

Table 4.1 cont.

101

Work Item
Base Course

Description

Base Construction, Sand-Clay, Lime Rock, Lime Rock Stabilized, Shell Stabilized and Soil Cement

Source	Production Rate(sy/day	Comments
FDOT	use curves	1,000, 0 - 10,000 sy 4.500, over 10.000 sy
UF Survey	1,690	
UF 1979 Report	800 - 2,000	800 - 12" base; 1,200 - 8" base 2,000 - 6" base
Arkansas DOT	1,800 - 3,000	1,800, small project 12" base 3,000, large project 12" base
Lousiana DOT	3000 - 4,500	3,000 - 4.500 - non stabilized
North Carolina DOT	600 - 1,400	sand asphalt
Oklahoma DOT	500 - 2,000	0 - 30,000 sy, use 500 sy/day; 30,000 - 60,,000 sy, use 1,000 60.000 - 150.000 sy, use 1.500; 150.000 +, use 2,000
Wisconsin DOT	4,000	
Wyoming DOT	2,000 - 12,800	
Colorado DOT	2,000	for small jobs reduce to 1,000 sy/day
Contractor A	1,800	
Contractor B	900 - 1,800	1,800 - for single lift; 900 - for double lift
Contractor C	1,200 - 2,500	2,500 - single lift; 1,200 - double llift
Contractor D	5,200	5,200 - for single lift; 2,600 - for double llift

FDOT 4,500 UF Survey 1,690 **Data Summary**

State DOT's Mean 1,450 - 2,800 - 4,150 Contractor Mean 2,800 for single lift

Investigator's Comments: rate is dependent upon the number of lifts required

Indicated Production Rate: 1,800 sy/day for single lift; 900 sy/day for double lift

Table 4.1 cont.

Work Item
Stabilized Road Bed

X

6

۱<u>٠</u>

Ŋ

<u>Description</u> General Stabilization

Source	Production Rate (sy/day)	Comments
FDOT	5,000	not to exceed 10 days
UF Survey	4,636	
UF 1979 Report	1,000	
Arkansas DOT		5 days - small project; 600 tons/day - large project
Louisiana DOT	8,000	
Contractor A	2,000	
Contractor B	3,500	
Contractor C	2,500	
		

FDOT 5,000 UF Survey 4,636 Data Summary

State DOT's Mean 3,000 Contractor Mean 2,700

Investigator's Comments:

Indicated Production Rate: 4,500 sy/day

Table 4.1 cont.

Work Item

y,

Surface Treatment

Description

Aggregate with Asphalt Treatment

Source	Production Rate (cy/da	y) Comments
FDOT	200	
UF Survey	401 -653	
Contractor A		not a current procedure
Contractor B	200	
Contractor C		not a current procedure
Contractor D		not a current procedure

FDOT 200 UF Survey 401 453 Data Summary

State DOT's Mean Contractor Mean 200

Investigator's Comments: this activity is apparently not common

Indicated Production Rate: 400 cy/day

Table 4.1 cont.

Work Item
Concrete Pavement

S

<u>Description</u>

Cement Concrete Pavement

State DOT's Mean 965 - 2045 - 4900

Contractor Mean 1,000 - 2,000 - 4,500

Source	Production Rate(sy/day)	Comments
FDOT	5,000	
UF Survey	81	3 samples for a total of 15 days
UF 1979 Report	6,800 - 9,600	6.800 - 9" pavement; 7,800 - 6" pavement 9.600 - 6" pavement
Lousiana DOT	2,000	
Michigan DOT	4,000	add 5 days for cure time
Minnesota DOT	2,000 - 10,000	2,000 non-standard width; 10.000 standard width
New Jersey DOT	225 - 2,500	225 - intersection: 750 - widening; 1.000 - reconstruction: 2.500 - construction
North Carolina DOT	1000 - 5,000	1,000 - 1,500 tapors; 3.000 - 5,000 all projects
Oklahoma DOT	400 - 2,000	400 - municipal; 800 - 1,000 rural; 2,000 - large 4 lane
Wisconsin DOT	1,200 - 5,000	1,200 - urban; 5,000 - rural
Colorado DOT	4,500	for very large jobs, up to 10.000 sy day
Contractor A	1,000 - 5,000	1,000 - for widening; 5,000 - for large production jobs
Contractor B	2,000 - 4,000	2,000 - is average; 4,000 - for large jobs with central plant

Investigator's Comments:

FDOT 5,000

UF Survey 81

Indicated Production Rate: 2.000 sy/day for average jobs.

for jobs exceeding 25,000 sy total, use rate of 4,000 sy day

Data Summary

Table 4.1 cont.

Work Item
Mill Existing Pavement

X

<u>Description</u>
Milling of Existing Pavement

Source	Production Rate(sy/da	y) Comments
FDOT	4,000	20 days maximum
UF Survey	12,244	
Lousiana DOT	5,000 - 10,000	
Minnesota DOT	6,000 - 15,000	6,000 - urban reconstruction 15,000 - large project
New Jersey DOT	1,000 - 25,000	25,000- reconstruction, widening, resurtacing 1.000 - intersection
Colorado DOT	6,000	
Contractor A	10,000	
Contractor C	7,000	
Contractor D	6,000	

FDOT 4,000 UF Survey 12,244 Data Summary

State DOT's Mean 4.500 - 4,500 - 16,700

Contractor Mean 7,700

Investigator's Comments: one milling unit produces an average of 6,000 sy day

Indicated Production Rate: 6,000 sy/day for average jobs

Table 4.1 cont.

Work Item Plant Mix

 $\hat{\Delta}$

Ž

X

Description Asphaltic Concrete Courses

Source	Production Rate (tons/day)	Comments
FDOT	use curves	approx. 1,000 tons day
UF Survey	887 -720	
UF 1979 Report	1,000	
Arkansas DOT	600	5 days small project 600 tons/day large project
Louisiana DOT	500-1,000	500-800, overlay; 1,000 large project
Minnesota DOT	1,500-7,400	2,400 - base course; 2,000 - binder 2,000 - wearing course >1"; 1,500 - wearing course <1"
New Jersey DOT		50 - intersection; 750 - reconstruction 1.000 - construction, widening, resurfacing
North Carolina DOT	200-1,500	200-500 small version project; 200-600 small rural widening project 300-1,000 grading/paving project; 800-1600 major projects
North Dakota DOT	600-2,000	Size of Job Not Bit. Recycled Bit. 0-20,000 tons 800 tons/day 500 tons/day 20,000-40,000 1,200 900 40,000-80,000 1,800 1,350 80,000+ 2,000 1,500
Oklahoma DOT	250-1,000	Size of Job 250 0-15,000 500 15.000-30.000 750 30.000-75,000 1.000 75,000+
Wisconsin DOT	500 -1,000	500 - urban 1,000-rurai
Wyoming DOT	1,500 - 2,000	
Colorado DOT	500 F	For large projects up to 1,000 tons day
Contractor A	900 - 1,000	,500 for large interstate jobs
Contractor B	400 - 600	
Contractor C	450 1	200 for large interstate jobs
Contractor D	450	

FDOT 1.000 UF Survey 857- 720 Data Summary

State DOT's Contractor

Mean 640 - 822 - 1,550 Mean 590

Investigator's Comments:

Indicated Production Rate: 500 ton/day for everage projects up to 1200 tons/day for large

interstate jobs.

Table 4.1 cont.

Work Item
Sewer Pipe

8

Z

12

Description

Concrete Drainage Pipes

Source	Production Rate(LF/day)	Comments
FDOT	100 - 400	for municipal project: includes pipe, inlets, manholes, etc.
UF Survey	68	
Lousiana DOT	200	pipe less than 36"
Michigan DOT	400 - 120	120(0 - 14ft up to 60"), 80(0 - 14ft over 60") 60(14ft plus), 40(jacked in place)
Minnesota DOT	150 - 300	150 pipe greater than 30"; 300 pipe less than 24"
New Jersey DOT	50 - 200	50 - widening + intersection; 100 - reconstruction; 200 - construction
North Carolina DOT	50 - 300	100 - 300 major project; 100 - 200 small rural + widening projects: 50 - 200 small urban project
Wisconsin DOT	100	
Wyoming DOT	200	
Pennsylvania DOT	60 - 150	84" pipe use 60 LF/ day; 24" pipe use 150 LF day
Contractor A	100 - 110	
Contractor B	100	
Contractor C	100	60 LF day for urban jobs
		
<u> </u>		

FDOT 100 - 400 UF Survey 68 Data Summary

State DOT's Mean 73 - 157 - 214 Contractor Mean 102

Investigator's Comments:

Indicated Production Rate: 100 LF/day

Table 4.1 cont.

Work Item
Curb and Gutter

<u>Description</u>

Concrete Curb and Gutter Section Including Apparent Structures

Source	Production Rate(LF day	Comments
FDOT	300 - 700	
UF Survey	335	
UF 1979 Survey	1,000	
Michigan DOT	2,500	add 5 days cure time
Minnesota DOT	2.000	
New Jersey DOT	200 - 500	200 - intersection; 300 - resurface; 400 - widening; 400 - reconstruction; 500 - construction
North Carolina DOT	100 - 1.000	500 - 1,000 major project; 100 - 500 grading + paving project 100 - 300 small urban rural project
Wisconsin DOT	500	
Wyoming DOT	500	
Contractor A	300 - 1,000	300 for hand formed; 1,000 for machine formed
Contractor B	360	200 possible for straight runs but inlet and openings reduce rate
Contractor C	1.200	400 for hand formed jobs

FDOT 300 - 700 UF Survey 335 Data Summary

State DCT's Mean 1067

Contractor Mean 350 - 725 - 1,100

Investigator's Comments: The number of inlets and openings will effect the production rate

Indicated Production Rate: 300 - 1,000 LF/day

Table 4.1 cont.

Work Item Sidewalk <u>Description</u>
Cement Concrete Sidewalk

Source	Production Rate(sy/day	Comments
FDOT	500	
UF Survey	130	
Michigan DOT	75 - 225	75 - patching; 225 - construction
Minnesota DOT	275	
New Jersey DOT	100 - 225	
Wisconsin DOT	500	100 - intersection; 150 - resurface; 175 - widening; 225 - construction
Wyoming DOT	100	
Contractor A	200	
Contractor B	300	
Contractor C	300 - 700	

FDOT 500 UF Survey 130 Data Summary

State DOT's Mean 238 Contractor Mean 333

Investigator's Comments:

Indicated Production Rate: 300 sy/day

Table 4.1 cont.

Work Item Seeding

Description
Blown Seed Mulch

Source	Production Rate(sy/day)	Comments
FDOT	15,000	
UF Survey	23.577	
Michigan DOT	48,400	75 - patching; 225 - construction
Minnesota DOT	48,400	
New Jersey DOT	10.000	
North Carolina DOT	5.000 - 15,000	5,000 - 15,000 major projects; 5,000 - 10,000 small rural or urban projects
Wisconsin DOT	20.000	
Wyoming DOT	21,500	
Pennsylvania DOT	14,500	
Contractor A	1.500 - 12.000	12.000 for flat area: 1,500 for slopes
Contractor B	1.300 - 15.000	15,000 for flat area: 1,500 for slopes
Contractor C	10.000	
Contractor D	60.000	
		

FDOT 15.000 UF Survey 23577 Data Summary

State DOT's Mean 24,700 Contractor Mean 24,250

Investigator's Comments:

Indicated Production Rate: 23,500 sy/day

Table 4.1 cont.

Work Item
Soding

 \mathcal{Y}

13

X

8

<u>Description</u>
Placement of Grass Sod

Source	Production Rate(sy/d	ay) Comments
UF Survey	1,800	
Michigan DOT	2,500	
Minnesota DOT	2,500	
Wyoming DOT	500 - 1,000	
Contractor C	1,000	
Contractor D	1,750	
· 		

FDOT UF Survey 1,800 Data Summary

State DOT's Mean 1,438 Contractor Mean 1,375

Investigator's Comments:

Indicated Production Rate: 1,500 sy

Talbe 4.1 cont.

1.12

Work Item Guardrail

<u>Description</u>
Installation of Guardrail Section

Source	Production Rate(LF day	Comments
FDOT	1500	when significant part of project
UF Survey	364	
Lousiana DOT	500 - 1.000	
Maryland DOT	1,000	
Michigan DOT	750	
Minnesota DOT	750	
North Carolina DOT	50 - 1,500	500 - 000, small urban project; 100 - 500, small rural widening project, 500 - 1,500 major paving projects; 300 - 500 grading paving project
Colorado DOT	700	

FDOT 1500 UF Survey 364 Data Summary

State DOT's Mean 738 Contractor Mean

Investigator's Comments:

Indicated Production Rate: 300 - 1,500 LF day depending on quantity involved

Table 4.1 cont.

Work Item Breaking and Compacting Existing Concrete Pavement

Description Reseating Existing Pavement

Contractor Mean 12,500

Source	Production Rate(sy/day)	Comments
FDOT	5,000	
UF Survey	85	
Contractor D	10,000 - 15,000	
		
•		
		<u></u>
		· · · · · · · · · · · · · · · · · · ·
		
FDOT 5,000	Data Summary	State DOT's Mean

Investigator's Comments: UF survey sample may have been too small to make a resonable estimate

Indicated Production Rate: 5,000 sy/day

Table 4.1 cont.

UF Survey 85

Work Item Compression Seal Replacement

<u>Description</u> Replacement of Compression Seal

Source	Production Rate(ft.day)	Comments
FDOT	30 - 30	use 40 for zero LF or more
UF Survey	141	
FDOT 30 UF Survey 141	Data Sum	nary State DOT's Mean Contractor Mean

Investigator's Comments:

Indicated Production Rate: 100 LF/day

Table 4.1 cont.

Work Item
Reflective Pavement
Markers

<u>Description</u> Installation of Reflective Markers

Source	Production Rate	Comments
FDOT	500 - 1,000	500 (0-20,000 ea0 1.000 (20,000 + ea)
UF Survey	626	
Lousiana DOT	1,000 - 2,000	1,000 - Traffic Present 2.000 - No Traffic
	<u> </u>	

FDOT 500 - 1,000 UF Survey 626 Data Summary

State DOT's Mean 1,500 Contractor Mean

Investigator's Comments:

Indicated Production Rate: 500 - 1,000 per day depending on traffic and quantity involved

Table 4.1 cont.

Work Item
Signalization

<u>Description</u> Installation of Intersection Signalization Equipment

Contractor

Mean

Source	Production Rate	Comn	nents	
Minnesota DOT	15 days/intersection	does not include delivery tim	e	
New Jersey DOT	10 days/intersection	does not include delivery tim	e	
				····
				
				
				
FDOT	Data Si	ımmary	State DOT's	Mean 125

Investigator's Comments: procurement time should be figured separately

Indicated Production Rate: 15 days per intersection

Table 4.1 cont.

UF Survey

Work Item Fence

Description Installation Chain-Link Fencing

Source	Production Rate(ly/day	() Comments
Lousiana DOT	500 - 1,000	
Michigan DOT	500 - 1,200	500 woven wire, 1200 chain link
Minnesota DOT	2,000 - 4,000	2,000 woven wire, 1200 chain link
New Jersey DOT	400	chainlink
North Carolina DOT	300 - 2.000	1,000 - 2,000 - major project; 500 - 1,000 - grading/ paving project; 300 - 500 - small rural urban project
Wisconsin DOT	500	woven wire + chain link
Wyoming DOT	70 - 2.000	2.000 - ??/w fence, 640 - span force, 70 - 100 - screen fence, 1.00 - 1.500 - filter fabric

FDOT UF Survey Data Summary

State DOT's Mean 1065 Contractor

Investigator's Comments:

Indicated Production Rate: 1,200 LF/day on large quantity major projects 500 LF/day on small urban or rural projects

Tab; e 4.1 cont.

Work Item Lighting

8

8

<u>Description</u> Installation of Highway Lighting

Source	Production Rate	Comments
Michigan DOT	6 standards/day	
New Jersey DOT	4 standards/day	
		
· · · · · · · · · · · · · · · · · · ·	1	
	i	
	1	

FDCT UF Survey Data Summary

State DOT's Mean 5 standards day Contractor Mean

Investigator's Comments: procurement time should be figured separately

Indicated Production Rate: 5 standards/day

Table 4.1 cont.

Guidelines for Estimating Production Rates

1.	General Time (Hove in, time prior to commencing work)	15 days	Normally
2.	Clearing and Grubbing	3/4 acre/day 3 acre/day 10 acre/day	Small quantity jobs Medium clearing, average quantity Light clearing, large quantity
3.	Excavation (Regular, Scrapper)	1400 cy/day 5600 cy/day 11200 cy/day	Small quantity jobs under 100,000 cy Medium quantity jobs 100,000 - 300,000 cy Large quantity jobs over 300,000 cy
4.	Excavation (Truck Haul)	900 cy/day 3800 cy/day 7500 cy/day	Small quantity jobs under 100,000 cy Medium quantity jobs 100,000 - 300,000 cy Large quantity jobs over 300,000 cy
5.	Stabilized Roadbed	4500 sy/day	Norma 1
6.	Bases Sand-Clay, Limerock, Limerock stabilized, Shell stabilized and Soil Cement bases	900 sy/day 1800 sy/day	Double lift installations Single lift installations

Table 4.2 Recommended Productivity Rates For FDOT

7.	Surface Treatment	400 cy/day	Normal
8.	Cement Concrete (Concrete Pavement)	2000 sy/day 4000 sy/day	Average quantity jobs Large quantity jobs over 25,000 cy
9.	Hilling Existing Pavement	6000 sy/day	Average jobs (Note: This rate is achieved with one machine. If job quantities justify, more than one machine may be appropriate.)
10.	Plant Mixed Surfaces	500 Tn/day Up to 1200 Tn/day	Average jobs Large quantity, Interstate jobs
11.	Storm Sewers	60 LF/day 100 LF/day 150 LF/day	Large pipe, urban jobs (84 in) Average Small pipe (24 in)
12.	Curb and Gutter	300 LF/day 1000 LF/day	Small quantity jobs, frequent openings and inlets Large quantity jobs, long straight runs
13.	<u>Sidewalk</u>	300 sy/day	Average jobs, depending on quantity and width

14.	Seed Mulch	23500 sy/day	Average jobs, flat surfaces
15.	Grass Sod	1500 sy/day	Average jobs, flat surfaces
16.	<u>Guardrails</u>		Small quantity jobs Large quantity jobs
17.	Compression Seal Replacement	100 LF/day	Norma l
18.	Breaking and Compacting Existing Concrete Pavement	5000 sy/day	Normal .
19.	Reflective Pavement Markers	500 Ea/day 1000 Ea/day '	Small quantity, heavy traffic Large quantity, normal traffic
20.	Signalization	15 days/inter- section	Normal (Procurement time not included.)

Table 4.2 cont.

21.	Highway Lighting	5 standards/ day	Normal (Procurement time not included.)
22.	<u>Fence</u>	500 LF/day 1200 LF/day	Small quantity, urban jobs Large quantity jobs
23.	<u>Bridges</u>	Use FDOT Table: work days requ	s and Charts for estimating ired for bridges.
24.	Utility Operations	Refer to Utili	ty agreements.

25. Procurement of Consult industry sources for confirmations of Critical Items current delivery times.

Table 4.2 cont.

CHAPTER 5

SUMMARY AND CONCLUSIONS

A. Summary.

Input, can be modified any number of ways to provide a meaningful relationship between the effort put into a task and the gains received from the effort. In the construction industry the most common way to measure productivity is unit output per man-hour; however, due to the uniqueness of the FDOT requirements for using productivity rates to determine contract duration, a productivity rate of unit output per day was used in the report. This daily productivity rate is independent of the contractor's crew size and the number of hours the contractor works per day.

Accurate measurement of productivity rates have become possible as a result of technological advances. Earlier in history it was not necessary, nor was it possible to precisely measure productivity. However, due to our increasingly complexity of the construction industry and the growing number of court actions, it has become imperative to measure productivity accurately. An accurate measurement of productivity gives the owner or contractor the confidence and

ability to plan, organize, and control the manpower and resources available. Without an accurate measurement of productivity the owner or contractor could easily flounder in their attempt to control the construction contract.

The FDOT recognized the importance of knowing the the productivity rates they use to determine the contract duration on highway construction contracts. Three surveys were completed by UF to provide the FDOT an updated and hopefully accurate representation of the actual productivity rates that are being achieved in the field by contractors. This report covers the survey that measured the actual productivity rates being achieved by the highway construction contractors here in Florida. This survey was sent to all FDOT Resident Engineers so they could measure the construction site productivity of 17 of the major work activities that are used to determine contract duration.

B. Conclusion.

An essential part of every highway construction project is the section which specifies the contract time allowed for the project.23 For the FDOT selection of the correct standard productivity rate for each work activity is the key to an acceptable estimate of contract time. The standard productivity rates for

highway construction presented in this report should assist the FDOT in estimating a more predictable project contract duration (see table 4.2).

There are many factors in the survey that were measured to determine their overall affect on productivity. When using the standard productivity rates the FDOT Estimating Engineer must use his own engineering judgement, and modify the productivity rates to account for any factors that could inhibit the progress of the highway construction contractor. The engineer's knowledge of the factors that affect highway construction productivity can have a direct impact on the length of time given a contractor to complete a project.

APPENDIX A

UNIVERSITY OF FLORIDA SURVEY QUESTIONNAIRE

COLLEGE

OF

UNIVERSITY OF FLORIDA

ENGINEERING

GAINESVILLE, FLORIDA 32611 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT
for
FLORIDA DEPARTMENT OF TRANSPORTATION

GENERAL INSTRUCTIONS

- 1. Select at least three projects. Try to pick different types of jobs such as new construction vs. reconstruction. Also, try to select jobs with different locations such as urban vs rural.
- 2. The information required consist of one page of general information about the project and one survey page for each different work activity. (Additional forms have been enclosed for the EXCAVATION category because it may be that a single project will involve more than one type of excavation.)
- 3. Field engineers should record contractor production quantities for all of the work items which are included in the project.
- 4. Return the forms as soon as they are completed to:

UNIVERSITY OF FLORIDA
DEPARTMENT OF CIVIL ENGINEERING
346 WEIL HALL
GAINESVILLE, FLORIDA 32611
ATTN: RALPH P. ELLIS, JR.

IF YOU HAVE ANY QUESTIONS OR NEED ANY ADDITIONAL INFORMATION PLEASE, TELEPHONE:

RALPH D. ELLIS, JR. (904) 392-1085 OR 622-1085 SUNCOM

COLLEGE

ENGINEERING

UNIVERSITY OF FLORIDA

GAINESVILLE, FLORIDA 32611 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for FLORIDA DEPARTMENT OF TRANSPORTATION

PROJECT GENERAL INFORMATION (Please, see instructions on reverse side.)

1.	PROJECT TITLE:	
2.	STATE PROJECT JOB NO.:	·
3.	TOTAL CONTRACT PRICE OF THE JOB: \$	
	RECONSTRUCTION OF AN EXISTING ROAD CONSTRUCTION OF A NEW ROAD IMPROVEMENTS TO AN INTERSECTION SIGNALIZATION BRIDGE	
	OTHER	
5.	THIS PROJECT IS LOCATED IN C	COUNTY.
	·	COUNTY.
	·	COUNTY.
6.	LOCAL CONDITIONS: RURAL URBAN	COUNTY.
6.	LOCAL CONDITIONS: RURAL URBAN LIMITED ACCESS ROAD (INTERSTATE)	COUNTY.

COLLEGE OF ENGINEERING

UNIVERSITY OF FLORIDA

GAINESVILLE, FLORIDA 32611 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for FLORIDA DEPARTMENT OF TRANSPORTATION

FIELD OBSERVATIONS
(Please, see instructions on reverse side.)

WORK ACTIVITY: CLEARING and GRUBBING 1. STATE PROJECT JOB NO.: 2. TOTAL QUANTITY OF WORK IN THE JOB: ____ acres 3. OBSERVED PRODUCTION QUANTITIES: DATE: _____ QUANTITY: _____ acres NO. HOURS WORKED: _____ DATE: _____ QUANTITY: ____ acres NO. HOURS WORKED: ____ DATE: _____ QUANTITY: _____ acres NO. HOURS WORKED: ____ DATE: _____ QUANTITY: _____ acres NO. HOURS WORKED: _____ DATE: _____ QUANTITY: _____ acres NO. HOURS WORKED: ____ 4. TYPE OF CLEARING AND GRUBBING WORK: light : grass and scattered brush medium : brush and scattered trees ___ heavy : heavy brush and large trees 5. FACTORS WHICH HAD AN EFFECT ON PRODUCTION: WEATHER (RAIN) _ TRAFFIC INSUFFICIENT MANPOWER OR EQUIPMENT UTILITY DELAYS PHASING OF WORK REQUIRED BY CONTRACT BURNING NOT ALLOWED OTHER _____

OTHER ____

B

COLLEGE

OF

ENGINEERING

UNIVERSITY OF FLORIDA

GAINESVILLE, FLORIDA 32611 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for

FLORIDA DEPARTMENT OF TRANSPORTATION

FIELD OBSERVATIONS

(Please, see instructions on reverse side.)

WORK ACTIVITY: EXCAVATION

1.	STATE PROJECT JOB NO.:			
2.	TOTAL QUANTITY OF WORK IN THE JOB:		Cu.	Yds.
3.	OBSERVED PRODUCTION QUANTITIES:			
	DATE: QUANTITY:	Cu.Yds.	NO. HOURS W	ORKED:
	DATE: QUANTITY:	Cu.Yds.	NO. HOURS W	IORKED:
	DATE: QUANTITY:	Cu.Yds.	NO. HOURS W	IORKED:
	DATE: QUANTITY:	Cu.Yds.	NO. HOURS W	IORKED:
	DATE: QUANTITY:	Cu.Yds.	NO. HOURS W	IORKED:
4.	TYPE OF EXCAVATION WORK:	. 		
	REGULAR			
	LATTERAL DITCH			
	SUBSOIL			
5.	TYPE OF MATERIAL			
	SAND			
	CLAY			
	ROCK			
6.	FACTORS WHICH HAD AN EFFECT ON PRO	DUCTION:		
	WEATHER (RAIN)			
	TRAFFIC			
	INSUFFICIENT MANPOWER OR EQU	I PMENT		
	UTILITY DELAYS			
	PHASING OF WORK REQUIRED BY	CONTRACT		
	OTHER			_
	OTHER			_
7.	FDOT PROJECT ENGINEER		nΔ	TE.

P

8

3

COLLEGE

OF

ENGINEERING

UNIVERSITY OF FLORIDA

GAINESVILLE, FLORIDA 32611 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for FLORIDA DEPARTMENT OF TRANSPORTATION

FIELD OBSERVATIONS
(Please, see instructions on reverse side.)

WORK ACTIVITY: STABILIZING 1. STATE PROJECT JOB NO.: 2. TOTAL QUANTITY OF WORK IN THE JOB: Sq. Yds. 3. OBSERVED PRODUCTION QUANTITIES: DATE: _____ QUANTITY: ____ Sq.Yds. NO. HOURS WORKED: ____ DATE: _____ QUANTITY: ____ Sq.Yds. NO. HOURS WORKED: ____ QUANTITY: _____ Sq.Yds. NO. HOURS WORKED: ____ DATE: ____ DATE: _____ QUANTITY: ____ Sq.Yds. NO. HOURS WORKED: ____ DATE: _____ QUANTITY: ____ Sq.Yds. NO. HOURS WORKED: ____ 4. FACTORS WHICH HAD AN EFFECT ON PRODUCTION: WEATHER (RAIN) TRAFFIC INSUFFICIENT MANPOWER OR EQUIPMENT UTILITY DELAYS PHASING OF WORK REQUIRED BY CONTRACT OTHER ____ OTHER 5. FDOT PROJECT ENGINEER DATE:

COLLEGE

OF

ENGINEERING

WORK ACTIVITY: BASE CONSTRUCTION

UNIVERSITY OF FLORIDA

GAINESVILLE, FLORIDA 32611 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for FLORIDA DEPARTMENT OF TRANSPORTATION

FIELD OBSERVATIONS

(Please, see instructions on reverse side.)

						_	
•	TY OF WORK IN THE	_				Sq. Yo	is.
OBSERVED PRO	DUCTION QUANTITIE	ES:					
DATE:	QUANTITY:		Sq.Yds.	NO.	HOURS	WORKED:	
DATE:	QUANTITY:	_	Sq. Yds.	NO.	HOURS	WORKED:	
DATE:	QUANTITY:		Sq.Yds.	NO.	HOURS	WORKED:	
DATE:	QUANTITY:		Sq.Yds.	NO.	HOURS	WORKED:	
DATE:	QUANTITY:		Sq.Yds.	NO.	HOURS	WORKED:	
SHELL SOIL ASPHA							
WEATHE	C ICIENT MANPOWER (
PHASIN	G OF WORK REQUIRE				.=.		

COLLEGE OF ENGINEERING

UNIVERSITY OF FLORIDA

GAINESVILLE, FLORIDA 32611 AREA CODE 304 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for FLORIDA DEPARTMENT OF TRANSPORTATION

FIELD OBSERVATIONS
(Please, see instructions on reverse side.)

WORK ACTIVITY: SURFACE TREATMENT 1. STATE PROJECT JOB NO.: 2. TOTAL QUANTITY OF WORK IN THE JOB: _____ Cu. Yds. 3. OBSERVED PRODUCTION QUANTITIES: DATE: _____ QUANTITY: ____ Cu.Yds. NO. HOURS WORKED: ____ DATE: _____QUANTITY: ____Cu.Yds. NO. HOURS WORKED: DATE: ____ QUANTITY: ___ Cu.Yds. NO. HOURS WORKED: ____ DATE: _____ QUANTITY: ____ Cu.Yds. NO. HOURS WORKED: ____ DATE: QUANTITY: Cu.Yds. NO. HOURS WORKED: 4. FACTORS WHICH HAD AN EFFECT ON PRODUCTION: _ WEATHER (RAIN) TRAFFIC __ INSUFFICIENT MANPOWER OR EQUIPMENT UTILITY DELAYS PHASING OF WORK REQUIRED BY CONTRACT OTHER OTHER 5. FDOT PROJECT ENGINEER _____ DATE: ____

COLLEGE

OF

ENGINEERING

UNIVERSITY OF FLORIDA

GAINESVILLE, FLORIDA 32611 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for FLORIDA DEPARTMENT OF TRANSPORTATION

FIELD OBSERVATIONS
(Please, see instructions on reverse side.)

, 317	HE PROJECT J	OB NO.:			 	•	
TOT	TAL QUANTITY	OF WORK IN THE JOB				Sq. Yds.	
085	SERVED PRODUC	TION QUANTITIES:					
DA1	TE:	QUANTITY:	Sq.Yds.	NO.	HOURS	WORKED:	
		QUANTITY:					
DAT	TE:	QUANTITY:	Sq.Yds.	NO.	HOURS	WORKED:	
		QUANTITY:					
		QUANTITY:					
		E PAVEMENT:					
		E PAVEMENT:					·
FAC	CTORS WHICH H	AD AN EFFECT ON PR					·
FAC		AD AN EFFECT ON PR					·
FAC	CTORS WHICH H WEATHER (TRAFFIC	AD AN EFFECT ON PR	DDUCTION:				
FAC	CTORS WHICH H WEATHER (TRAFFIC	AD AN EFFECT ON PROPERTY OF EQUIPMENT MANPOWER OR EQUIPMENT	DDUCTION:				
FAC	CTORS WHICH H WEATHER (TRAFFIC INSUFFICI UTILITY D	AD AN EFFECT ON PROPERTY OF EQUIPMENT MANPOWER OR EQUIPMENT	DOUCTION:				
FAC	CTORS WHICH H WEATHER (TRAFFIC INSUFFICI UTILITY D PHASING O	AD AN EFFECT ON PRI RAIN) ENT MANPOWER OR EQ ELAYS	DDUCTION: UI PMENT CONTRACT				

N.

COLLEGE

OF

ENGINEERING

UNIVERSITY OF FLORIDA

GAINESVILLE, FLORIDA 32611 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for FLORIDA DEPARTMENT OF TRANSPORTATION

(Please, see instructions on reverse side.)

WORK ACTIVITY: MILLING EXISTING PAVEMENT 1. STATE PROJECT JOB NO.: 2. TOTAL QUANTITY OF WORK IN THE JOB: ______ Sq. Yds. 3. OBSERVED PRODUCTION QUANTITIES: DATE: _____ QUANTITY: ____ Sq.Yds. NO. HOURS WORKED: ____ DATE: _____ QUANTITY: ____ Sq.Yds. NO. HOURS WORKED: ____ DATE: _____ QUANTITY: _____ Sq.Yds. NO. HOURS WORKED: ____ DATE: _____ QUANTITY: ____ Sq.Yds. NO. HOURS WORKED: ____ DATE: _____ QUANTITY: ____ Sq.Yds. NO. HOURS WORKED: 4. FACTORS WHICH HAD AN EFFECT ON PRODUCTION: WEATHER (RAIN) TRAFFIC ___ INSUFFICIENT MANPOWER OR EQUIPMENT UTILITY DELAYS PHASING OF WORK REQUIRED BY CONTRACT OTHER _____ OTHER 5. FDOT PROJECT ENGINEER DATE:

COLLEGE

UNIVERSITY OF FLORIDA

Engineering

GAINESVILLE, FLORIDA 32611 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for FLORIDA DEPARTMENT OF TRANSPORTATION

FIELD OBSERVATIONS
(Please, see instructions on reverse side.)

WORK ACTIVITY: PLANT MIX SURFACE (STRUCTURAL COURSE)

1.	STATE PROJECT JOB NO.:		. <u> </u>					
2.	TOTAL QUANTITY OF WORK IN THE JOB:			Tons				
3.	OBSERVED PRODUCTION QUANTITIES							
	DATE: QUANTITY:	_		S WORKED:				
	DATE: QUANTITY:	_ Tons	NO. HOUR	S WORKED:				
	DATE: QUANTITY:	_ Tons	NO. HOUR	S WORKED:				
	DATE: QUANTITY:	Tons	NO. HOUR	S WORKED:				
	DATE: QUANTITY:	Tons	NO. HOUR	S WORKED:				
4.	FACTORS WHICH HAD AN EFFECT ON PRODUCTION WEATHER (RAIN)	CTION:						
	TRAFFIC							
	INSUFFICIENT MANPOWER OR EQUIPMENT UTILITY DELAYS							
	PHASING OF WORK REQUIRED BY COM							
	OTHER							
5.	FOOT PROJECT ENGINEER			_ DATE:				

20

COLLEGE

CONTRACTOR CONTRACTOR CONTRACTOR DESCRIPTION OF A CONTRACTOR CONTR

OF

ENGINEERING

WORK ACTIVITY: STORM SEWERS

UNIVERSITY OF FLORIDA

GAINESVILLE, FLORIDA 32611 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for FLORIDA DEPARTMENT OF TRANSPORTATION

	1.	STATE PROJECT JOB NO.:		
	2.	TOTAL QUANTITY OF WORK IN THE JOB:	L.F.	
	3.	OBSERVED PRODUCTION QUANTITIES:		
DATE:		QUANTITY:L.F. AVE.DEPTH:Ft. AVE.DIA.	:In.	HRS. WORKED:
DATE:		QUANTITY:L.F. AVE.DEPTH:Ft. AVE.DIA.	:In.	HRS. WORKED:
DATE:		QUANTITY: L.F. AVE.DEPTH: Ft. AVE.DIA.	:In.	HRS. WORKED:
DATE:		QUANTITY:L.F. AVE.DEPTH:Ft. AVE.DIA.	:In.	HRS. WORKED:
DATE:		QUANTITY: L.F. AVE.DEPTH:Ft. AVE.DIA.	:In.	HRS. WORKED:
	4.	FACTORS WHICH HAD AN EFFECT ON PRODUCTION: WEATHER (RAIN) TRAFFIC INSUFFICIENT MANPOWER OR EQUIPMENT UTILITY DELAYS PHASING OF WORK REQUIRED BY CONTRACT OTHER OTHER		
	5.	FDOT PROJECT ENGINEER	DATE:	

OF

ENGINEERING

WORK ACTIVITY: CURB and GUTTER

UNIVERSITY OF FLORIDA

GAINESVILLE, FLORIDA 32611 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for FLORIDA DEPARTMENT OF TRANSPORTATION

FIELD OBSERVATIONS
(Please, see instructions on reverse side.)

TOTAL QUANTI	TY OF WORK IN THE JOB:				L.F.	
OBSERVED PRO	DUCTION QUANTITIES:					
DATE:	QUANTITY:	L.F.	NO.	HOURS	WORKED:	
DATE:	QUANTITY:	L.F.	NO.	HOURS	WORKED:	_
DATE:	QUANTITY:	L.F.	NO.	HOURS	WORKED:	
DATE:	QUANTITY:	L.F.	NO.	HOURS	WORKED:	
DATE:	QUANTITY:	1 F.	NΩ	HOURS	WORKED:	
UATE:		 :	110.			
FACTORS WHICE WEATHE TRAFFI	H HAD AN EFFECT ON PRO R (RAIN)	DUCTION:	110.			
FACTORS WHICE WEATHE TRAFFI INSUFF	H HAD AN EFFECT ON PRO R (RAIN) C ICIENT MANPOWER OR EQU	DUCTION:	110.			
FACTORS WHICE WEATHE TRAFFI INSUFF UTILIT	H HAD AN EFFECT ON PRO R (RAIN)	DUCTION:				

OF

ENGINEERING

UNIVERSITY OF FLORIDA

GAINESVILLE, FLORIDA 32611 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for FLORIDA DEPARTMENT OF TRANSPORTATION

WORK	CACTIVITY: SIDEN	ALK				
1.	STATE PROJECT JOB	NO.:	- ,,			
2.	TOTAL QUANTITY OF	WORK IN THE JOB:	.			Sq. Yds.
3.	OBSERVED PRODUCTI	ON QUANTITIES:				
	DATE:	QUANTITY:	_Sq.Yds.	NO.	HOURS	WORKED:
	DATE:	QUANTITY:	Sq.Yds.	NO.	HOURS	WORKED:
	DATE:	QUANTITY:	Sq.Yds.	NO.	HOURS	WORKED:
	DATE:	QUANTITY:	Sq.Yds.	NO.	HOURS	WORKED:
	DATE:	QUANTITY:	Sq.Yds.	NO.	HOURS	WORKED:
4		AN EFFECT ON PRODUC	CTION:			
	WEATHER (RA	IN)				
	TRAFFIC					
		T MANPOWER OR EQUIPM	4ENT			
	UTILITY DEL					
		WORK REQUIRED BY COM				
	OTHER					
	OTHER					
5.	FDOT PROJECT ENGI	NEER			DA1	TF •

OF

ENGINEERING

UNIVERSITY OF FLORIDA

GAINESVILLE, FLORIDA 32611 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for FLORIDA DEPARTMENT OF TRANSPORTATION

TOTAL QUANTI	OTAL QUANTITY OF WORK IN THE JOB:					
OBSERVED PRO	DOUCTION QUANTITIES:					
DATE:	QUANTITY:	Sq.Yds.	NO.	HOURS	WORKED:	
DATE:	QUANTITY:	Sq. Yds.	NO.	HOURS	WORKED:	
DATE:	QUANTITY:	Sq.Yds.	NO.	HOURS	WORKED:	
DATE:	QUANTITY:	Sa. Yds.	NO.	HOURS	WORKED:	
DATE:FACTORS WHICE	QUANTITY:	Sq.Yds.				
FACTORS WHICH	QUANTITY: CH HAD AN EFFECT ON PRO ER (RAIN) IC FICIENT MANPOWER OR EQU TY DELAYS NG OF WORK REQUIRED BY	Sq.Yds. DUCTION: IIPMENT CONTRACT	NO.	HOURS		

OF

ENGINEERING

UNIVERSITY OF FLORIDA

GAINESVILLE, FLORIDA 32611 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for FLORIDA DEPARTMENT OF TRANSPORTATION

	TOTAL QUANTITY OF W	ORK IN THE JOB: _				Sq. Yds.
		_				, - 1
	DATE:QI	JANTITY:	Sq.Yds.	NO.	HOURS	WORKED:
	DATE: QI	UANTITY:	Sq.Yds.	NQ.	HOURS	WORKED:
	DATE: QI	JANTITY:	Sq.Yds.	NO.	HOURS	WORKED:
	DATE: QI	JANTITY:		NO.	HOURS	WORKED:
	DATE.		• • • •			
١.	DATE: QUE FACTORS WHICH HAD A		Sq.Yds. JCTION:	NU.	HOURS	WORKED:
1.	·	N EFFECT ON PRODU) MANPOWER OR EQUIP S	MENT		HOURS	WORKED:

OF

ENGINEERING

University of Florida

GAINESVILLE, FLORIDA 32511 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for FLORIDA DEPARTMENT OF TRANSPORTATION

	TOTAL QUANTITY O	F WORK IN THE JOB:			L.F.
3.	OBSERVED PRODUCT	TON QUANTITIES:			-
	DATE:	QUANTITY:	L.F.	NO. HOU	RS WORKED:
	DATE:	QUANTITY:	L.F.	NO. HOU	RS WORKED:
	DATE:	QUANTITY:	L.F.	NO. HOU	RS WORKED:
	DATE:	QUANTITY:	L.F.	NO. HOU	RS WORKED:
	DATE:	QUANTITY:	L.F.	NO. HOU	RS WORKED:
4.	FACTORS WHICH HA	D AN EFFECT ON PRO	DUCTION:		•
	WEATHER (R	AIN)			
	7046610				
	TRAFFIC				
		NT MANPOWER OR EQU	II PMENT		
	INSUFFICIE UTILITY DE	LAYS			
	INSUFFICIE UTILITY DE				
	INSUFFICIE UTILITY DE	LAYS	CONTRACT		

P

COLLEGE

OF

ENGINEERING

WORK ACTIVITY: REFLECTIVE PAVEMENT MARKERS

UNIVERSITY OF FLORIDA

GAINESVILLE, FLORIDA 32611 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for FLORIDA DEPARTMENT OF TRANSPORTATION

FIELD OBSERVATIONS
(Please, see instructions on reverse side.)

1. STATE PROJECT JOB NO.: 2. TOTAL QUANTITY OF WORK IN THE JOB: Each. 3. OBSERVED PRODUCTION QUANTITIES DATE: _____ QUANTITY: _____ Each NO. HOURS WORKED: ____ DATE: _____ QUANTITY: _____ Each NO. HOURS WORKED: _____ DATE: _____ QUANTITY: ____ Each NO. HOURS WORKED: _____ DATE: _____ QUANTITY: _____ Each NO. HOURS WORKED: ____ DATE: _____ QUANTITY: ____ Each NO. HOURS WORKED: ____ 4. FACTORS WHICH HAD AN EFFECT ON PRODUCTION: WEATHER (RAIN) TRAFFIC INSUFFICIENT MANPOWER OR EQUIPMENT UTILITY DELAYS PHASING OF WORK REQUIRED BY CONTRACT OTHER OTHER _________ 5. FDOT PROJECT ENGINEER _____ DATE: ____

UNIVERSITY OF FLORIDA

OF ENGINEERING

GAINESVILLE, FLORIDA 32611 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for FLORIDA DEPARTMENT OF TRANSPORTATION

FIELD OBSERVATIONS
(Please, see instructions on reverse side.)

WORK ACTIVITY: BREAKING AND COMPACTING EXISTING CONCRETE

1.	STATE PROJECT JOB NO.:						
2.	TOTAL QUANTITY OF WORK IN T	HE JOB:				Sq. Yds.	•
3.	OBSERVED PRODUCTION QUANTIT	TES:					
	DATE: QUANTITY:		_Sq.Yds.	NO. H	IOURS	WORKED:	
	DATE: QUANTITY:		_ Sq.Yds.	NO. H	OURS	WORKED:	
	DATE: QUANTITY:		_ Sq.Yds.	NO. H	OURS	WORKED:	
	DATE: QUANTITY:		Sq.Yds.	NO. H	OURS	WORKED:	
	DATE: QUANTITY:		_Sq.Yds.	NO. H	OURS	WORKED:	
4.	FACTORS WHICH HAD AN EFFECT	ON PRODUC	CTION:				
	WEATHER (RAIN)		•				
	TRAFFIC			•			
	INSUFFICIENT MANPOWER	OR EQUIPM	1ENT				
	UTILITY DELAYS						
	PHASING OF WORK REQUI	RED BY COM	NTRACT				
	OTHER						
	OTHER						
5.	FDOT PROJECT ENGINEER				DA1	ΓF•	

COLLEGE OF ENGINEERING

University of Florida

GAINESVILLE, FLORIDA 32611 AREA CODE 904 PHONE 392-0933

DEPARTMENT OF CIVIL ENGINEERING

SPECIAL RESEARCH PROJECT for FLORIDA DEPARTMENT OF TRANSPORTATION

	TOTAL QUANTITY OF WORK IN THE JOB	L.F.
	OBSERVED PRODUCTION QUANTITIES:	
	DATE: QUANTITY:	L.F. NO. HOURS WORKED:
	DATE: QUANTITY:	L.F. NO. HOURS WORKED:
	DATE: QUANTITY:	L.F. NO. HOURS WORKED:
	DATE: QUANTITY:	L.F. NO. HOURS WORKED:
	DATE: QUANTITY:	L.F. NO. HOURS WORKED:
•	FACTORS WHICH HAD AN EFFECT ON PRO	DUCTION:
	WEATHER (RAIN)	
	TRAFFIC	
	INSUFFICIENT MANPOWER OR EQU	II PMENT
	UTILITY DELAYS	•
	PHASING OF WORK REQUIRED BY	CONTRACT
	OTHER	
	OTHER	

REFERENCES

- Choromokos, James, Jr., and Keith E. McKee,
 "Construction Productivity Improvement", <u>Journal Of The Construction Division</u>, ASCE, Vol. 107,
 No. 1, March 1981, p. 35.
- 2. Drewin, F. J., <u>Construction Productivity</u>, Elsevier Science Publishing Co., Inc, 1982, p. 24.
- 3. Adrian, James J., Construction Productivity
 Improvement, Elsevier Science Publishing Co., Inc.
 1987, p. 79.
- 4. Adrian, James J., <u>Construction Accounting</u>, Reston Publishing Company, Inc., 1979, p. 207.
- Tucker, Richard L., "Management of Construction Productivity", <u>Journal Of Management In</u> <u>Engineering</u>, ASCE, Vol. 2, No. 3, July 1986, p. 148.
- 6. Tucker, op. cit., p. 148.
- 7. Adrian, 1987, <u>op. cit.</u>, p. 3
- 8. op. cit., p. 4.
- 9. Drewin, op. cit., p. 2.
- 10. Liou, Fwu-Shiun, and John D. Borcherding, "Work Sampling Can Predict Unit Rate Productivity", Journal Of Construction Engineering and Management, ASCE, Vol. 112, No. 1, March 1986, p. 92.
- 11. Adrian, 1987, op. cit., p. 101.
- 12. op. cit. p. 102.
- 13. Drewin, op. cit., p. 47.
- 14. Parker, Henry W., and Clarkson H. Oglesby, <u>Methods</u>
 <u>Improvement For Construction Managers</u>, McGraw Hill,
 Inc., 1972, p. 64.
- 15. Drewin, op. cit., p. 58.

- 16. Derr, Fredrick, Class Speaker, ECI 6155, President Wendle, Kent and Company, Inc., May 17, 1988.
- 17. Adrian, 1987, op. cit., p. 100.
- 18. op. cit., p. 217.
- 19. Adrian, James J., Quantitative Methods In Construction Management, American Elsevier Publishing Co., Inc., 1973, p. 157.
- 20. Herbsman, Zohar J., and Ralph D. Ellis, Jr., "Establishing Contract Duration Based On Production Rates For FDOT Construction Projects", Department of Civil Engineering, University of Florida, June 27, 1988.
- 21. <u>Ibid</u>.
- 22. Ibid.
- 23. Hancher, Donn E., and James E. Rowings, "Setting Highway Construction Contract Duration", <u>Journal Of The Construction Division</u>, ASCE, Vol. 107, No. CO2, June 1981.

SUPPLEMENTARY BIBLIOGRAPHY

Arditi, David, "Construction Productivity Improvement", Journal Of Construction Engineering And Management, ASCE, Vol. 111, No. 1, March 1985, pp. 1-14.

Beeston, Derek T., <u>Statistical Methods For Building Price Data</u>, E. & F. N. Sopn Ltd., 1983.

Clough, Richard H., Construction Contracting, John Wiley and Sons, Inc., 1986.

Herbsman, Zohar J., William W. Coons, Luis L. Blazquez, Peter E. Deckerson, and Gregory P. Rivers, "Study Of Scheduling Techniques For FDOT Construction Projects", Department of Civil Engineering, University of Florida, October 1986.

"Measuring Productivity In Construction", Report A-1, The Business Roundtable, 1982.

Rumble, J. Douglas, Zohar J. Herbsman, Jose' D. Mitrani, Gary Dounson, "Research and Development of Productivity Rates for the Cost Estimating System (CES), Department of Civil Engineering, University of Florida, December 1979.