

(19) RÉPUBLIQUE FRANÇAISE
INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE
PARIS

(11) N° de publication :
(à n'utiliser que pour les
commandes de reproduction)

2 829 314

(21) N° d'enregistrement national : 01 11429

(51) Int Cl⁷ : H 02 N 2/06, H 02 M 3/335, F 02 D 41/20, 41/30,
F 02 M 51/06

(12) DEMANDE DE BREVET D'INVENTION A1

(22) Date de dépôt : 04.09.01.

(30) Priorité :

(43) Date de mise à la disposition du public de la
demande : 07.03.03 Bulletin 03/10.

(56) Liste des documents cités dans le rapport de
recherche préliminaire : Se reporter à la fin du
présent fascicule

(60) Références à d'autres documents nationaux
apparentés :

(71) Demandeur(s) : RENAULT Société anonyme — FR.

(72) Inventeur(s) : DAL ARNAUD.

(73) Titulaire(s) :

(74) Mandataire(s) : CABINET JP COLAS.

(54) DISPOSITIF DE COMMANDE D'UN ACTUATEUR PIEZO-ELECTRIQUE ET SON PROCEDE DE MISE EN OEUVE.

(57) L'invention concerne un dispositif de commande d'un actionneur piézoélectrique, piloté électroniquement à partir d'un calculateur de contrôle, comprenant un convertisseur élévateur de tension en courant continu alimenté par une source de tension continue, caractérisé en ce que le circuit de charge de l'actuateur est constitué par le convertisseur élévateur (E) de tension DC-DC, dont la haute tension est reliée à un circuit oscillant constitué de l'actuateur (P₁) et d'une inductance (L), et qui est composé d'un montage Push-Pull avec un transformateur à deux enroulements secondaires (L₃ et L₄) bobinés en sens inverse l'un de l'autre et au moins un enroulement primaire relié à la source de tension (B) par au moins un interrupteur.

FR 2 829 314 - A1

La présente invention concerne un dispositif de commande d'un actuateur piézo-électrique piloté électroniquement, et plus particulièrement d'un injecteur de carburant à étage piézo-électrique piloté par le calculateur d'injection électronique d'un moteur à combustion interne dans un véhicule automobile. Elle concerne également un procédé de mise en œuvre dudit dispositif.

Un tel injecteur de carburant comporte un étage en céramique piézo-électrique aux bornes de laquelle on fait varier la tension électrique pour modifier son épaisseur entre deux positions extrêmes correspondant à l'ouverture et à la fermeture de l'injecteur. Une céramique piézo-électrique d'injecteur est équivalente à une capacité dont la tension de chargement est élevée, supérieure à une centaine de volts.

Dans un véhicule automobile, la tension d'alimentation a pour valeur 12 ou 42 volts, ce qui implique premièrement d'augmenter cette tension et deuxièmement d'assurer la charge et la décharge de la céramique.

Il existe actuellement deux groupes de topologies de dispositif de commande pour injecteurs piézo-électriques. Un premier groupe concerne les topologies séparées en deux circuits, l'un étant un convertisseur-élévateur de tension en courant continu DC-DC alimenté par la basse tension de la batterie et l'autre étant une structure de chargement et de déchargement de la céramique. Une telle topologie est par exemple décrite dans la demande de brevet allemand publiée sous le No. DE 19827170, au nom de BOSCH.

Un deuxième groupe concerne les topologies regroupant dans un même circuit le convertisseur-élévateur de tension et la structure de chargement/déchargement, comme le décrit la demande de brevet américain publiée sous le No. US 5 986 360, au nom de SIEMENS. Une telle topologie permet d'utiliser des composants communs pour les deux fonctions, ce qui réduit le coût global du dispositif.

Le but de la présente invention est de proposer de nouvelles topologies assurant la charge des céramiques piézo-électriques, de façon sinusoïdale, afin de limiter les résonances mécaniques au sein du stack, englobant les

céramiques, de l'injecteur qui occasionnent des pertes en charge et des oscillations importantes.

Pour cela, l'objet de l'invention est un dispositif de commande d'un actionneur piézo-électrique, piloté électroniquement à partir d'un calculateur de contrôle, comprenant un convertisseur-élévateur de tension en courant continu alimenté par une source de tension continue, caractérisé en ce que le circuit de charge de l'actuateur est constitué par le convertisseur-élévateur de tension DC-DC, dont la haute tension est reliée à un circuit oscillant constitué de l'actuateur et d'une inductance, et qui est composé d'un montage Push-Pull avec un transformateur à deux enroulements secondaires bobinés en sens inverse et au moins un enroulement primaire relié à la source de tension par au moins un interrupteur.

Selon une autre caractéristique de l'invention, le circuit de décharge de l'actuateur piézo-électrique, considéré comme une capacité, est constitué d'un interrupteur commandable reliant l'inductance de charge à la borne positive de la batterie par une diode de décharge, une diode de protection étant montée en parallèle sur la branche comprenant l'actuateur et son interrupteur, dans le sens contraire du courant de décharge, et destinée à la protection de l'actuateur, en évitant l'apparition d'une tension négative à ses bornes qui aurait pour conséquence de le détruire.

Selon une autre caractéristique de l'invention, le circuit de décharge est constitué d'une part d'une inductance de décharge reliant l'actuateur à un interrupteur commandable, connecté lui-même à la borne positive de la batterie par une diode, et d'autre part d'un interrupteur commandable reliant la borne de l'inductance de décharge, opposée à l'actuateur, à la masse.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description de plusieurs modes de réalisation d'un dispositif de commande d'un actionneur piézo-électrique, illustrée par les figures suivantes qui sont :

- les figures 1 et 2 : le schéma électronique d'un premier mode de réalisation d'un dispositif de commande selon l'invention, avec deux variantes du circuit de décharge ;

- la figure 3 : les variations temporelles de la tension de charge de l'actuateur piézo-électrique selon les signaux de commande des interrupteurs du premier mode de réalisation du dispositif ;
- 5 - les figures 4 et 5 : le schéma électronique d'un deuxième mode de réalisation d'un dispositif de commande selon l'invention, avec deux variantes du circuit de décharge ;
- la figure 6 : les variations temporelles de la tension de charge de l'actuateur piézo-électrique selon les signaux de commande des interrupteurs du deuxième mode de réalisation du dispositif ;
- 10 - les figures 7 et 8 : le schéma électronique d'un troisième mode de réalisation d'un dispositif de commande selon l'invention, avec deux variantes du circuit de décharge ;
- la figure 9 : les variations temporelles de la tension de charge de l'actuateur piézo-électrique selon les signaux de commande des interrupteurs du troisième mode de réalisation du dispositif.
- 15

Les éléments portant les mêmes références sur les différentes figures remplissent les mêmes fonctions en vue des mêmes résultats.

20 Comme le montre le schéma de la figure 1, le dispositif de commande d'un actuateur piézo-électrique P_i , selon l'invention comporte une source de tension continue B - une batterie électrique par exemple -, dont la borne négative (-) est reliée à la masse et dont la borne positive (+) est reliée à un circuit convertisseur-élévateur E de tension. Ledit circuit E sert de circuit de charge à l'actuateur grâce à sa sortie haute tension qui est reliée à un circuit oscillant constitué de la céramique piézo-électrique P_i et d'une inductance de charge L.

30 Comme un moteur thermique de véhicule automobile nécessite plusieurs injecteurs P_i , i entier variant de 1 à n, le schéma représente plusieurs céramiques piézo-électriques $P_1, \dots, P_i, \dots, P_n$ qui sont montées en parallèle et choisies successivement grâce à l'interrupteur T_i monté en série avec chacune d'elles. En fonction de l'injecteur piézo-électrique qui doit être ouvert pendant les intervalles d'activité pour assurer l'alimentation en carburant du cylindre correspondant du moteur, l'interrupteur T_i est commandé par un signal logique en provenance du calculateur d'injection, pour que la sortie haute tension du convertisseur-élévateur soit connectée précisément à cet injecteur.

Selon l'invention, le convertisseur-élévateur de tension DC-DC est composé d'un montage de type Push-Pull avec un transformateur à au moins trois enroulements couplés, selon différentes configurations des enroulements primaires du transformateur qui font l'objet des différentes figures de la 5 description.

Dans le mode de réalisation de la figure 1, le convertisseur-élévateur de tension DC-DC du circuit de charge est constitué d'un transformateur à quatre enroulements bobinés autour d'un même noyau, dont les deux enroulements 10 primaires L_1 , respectivement L_2 , reliés chacun à la masse par un interrupteur commandable S_{w1} , respectivement S_{w2} , sont montés en parallèle et bobinés en sens inverse l'un de l'autre, comme le montrent les étoiles sur le schéma. Chaque interrupteur S_{w1} , respectivement S_{w2} , est monté en parallèle avec une diode D_1 , respectivement D_2 , montée dans le sens inverse du courant de 15 charge pour protéger l'interrupteur d'une surtension à l'ouverture. Les enroulements secondaires L_3 , respectivement L_4 , montés en parallèle et bobinés en sens inverse l'un de l'autre, sont eux-aussi reliés à la masse chacun par une diode D_3 , respectivement D_4 , montée dans le sens passant du courant de charge.

20

Les deux interrupteurs S_{w1} et S_{w2} peuvent être par exemple des transistors MOS, ou bien des bipolaires à grilles isolées - IGBT – avec diode intégrée en parallèle pour réduire le nombre de composants. Dans le cas de transistors MOS ou IGBT, les diodes D_1 et D_2 sont les diodes intrinsèques des 25 interrupteurs S_{w1} et S_{w2} respectivement.

Le fonctionnement du dispositif de commande en phase de charge de l'actuateur piézo-électrique P_i est le suivant, comme le montre la figure 3. Le signal de commande pilote, entre l'instant t_0 et l'instant suivant t_1 , l'ouverture de 30 l'interrupteur S_{w2} et la fermeture de l'interrupteur S_{w1} de telle sorte que la tension v_1 aux bornes de l'enroulement L_1 est égale à la tension $+E$ de la batterie. Grâce au rapport de transformation m du transformateur et en raison du bobinage inverse des enroulements L_1 et L_4 comme l'indiquent les étoiles sur le schéma, la tension périodique aux bornes de l'enroulement primaire L_1 , 35 crée une tension v_4 aux bornes de l'enroulement secondaire L_4 , entre les instants t_0 et t_1 , qui met la diode D_4 en conduction et qui est constante et égale à $+mE$.

- Puis entre les instants t_1 et t_2 suivants, le signal de commande pilote l'ouverture de l'interrupteur S_{w1} et la fermeture de l'interrupteur S_{w2} de telle sorte que la tension v_2 aux bornes de l'enroulement primaire L_2 est égale à $-E$ et la tension v_3 aux bornes de l'enroulement secondaire L_3 est égale à $-mE$, ce qui
- 5 met la diode D_3 en conduction. A partir de l'instant t_3 , l'ouverture et la fermeture des interrupteurs est à nouveau inversée. Ainsi, l'actuateur est chargé à travers l'inductance L en mode oscillant, sous la tension de charge v_p égale à $+mE$.

Dans le mode de réalisation de la figure 4, le convertisseur-élévateur de

10 tension DC-DC du circuit de charge est constitué d'un transformateur à trois enroulements bobinés autour d'un même noyau, un enroulement primaire L_5 et deux enroulements secondaires L_3 et L_4 , bobinés en sens inverse comme le montrent les étoiles sur le schéma, identiques à ceux de la figure 1. Une première borne de l'enroulement primaire L_5 est reliée au point de jonction J_1 de

15 deux interrupteurs S_{w5} et S_{w6} montés en série entre les bornes de la batterie B, et la seconde borne de l'enroulement primaire L_5 est reliée au point de jonction J_2 de deux interrupteurs S_{w7} et S_{w8} montés en série aux bornes de la batterie B. Une diode de roue libre référencée D_5 à D_8 respectivement, est montée en parallèle sur chacun des quatre interrupteurs S_{w5} à S_{w8} pour les protéger des

20 surtensions à l'ouverture, dans le sens contraire au courant de charge de l'actuateur. Le transformateur comprend deux enroulements secondaires L_3 et L_4 , identiques à ceux décrits à propos du premier mode de réalisation, dans la figure 1.

25 Le fonctionnement de ce circuit de charge est le suivant, en fonction de la commande des quatre interrupteurs. Entre les instants t_0 et t_1 , le signal de commande pilote la fermeture des deux interrupteurs S_{w5} et S_{w8} , dont le premier S_{w5} est relié d'un côté à la borne (+) de la batterie B et de l'autre côté au point de jonction J_1 , et dont le second S_{w8} est relié d'un côté au point de jonction J_2 et de l'autre à la borne (-) de la batterie B. Pendant cet intervalle de temps, le signal pilote l'ouverture des deux autres interrupteurs S_{w6} et S_{w7} . Ainsi entre les

30 instants t_0 et t_1 , l'enroulement primaire L_5 est relié directement aux deux bornes de sortie de la batterie et la tension v_5 à ses bornes est égale à $+E$, de sorte que la tension v_4 aux bornes de l'enroulement secondaire L_4 est constante et

35 égale à mE . Entre les instants t_1 et t_2 suivants, l'ouverture et la fermeture des interrupteurs est inversée de sorte que la tension v_5 aux bornes de l'enroulement primaire L_5 est égale à $-E$, et la tension v_4 aux bornes de

l'enroulement secondaire L_4 est constante et égale à $-mE$, comme le montre le signal de la figure 6. Ainsi, la tension de charge v_p de l'actuateur en mode oscillant est constante et égale à mE .

5 La figure 7 représente un troisième mode de réalisation d'un dispositif de commande, dont le convertisseur de tension du circuit de charge diffère des précédents par le montage de l'enroulement primaire du transformateur. Une première borne de l'enroulement primaire L_9 est reliée au point de jonction J_3 de deux interrupteurs S_{w9} et S_{w10} montés en série entre les bornes de la batterie B, 10 et la seconde borne de l'enroulement primaire L_9 est reliée au point de jonction J_4 de deux capacités C_1 et C_2 identiques, montées en série entre les bornes de la batterie B. Une diode de roue libre, servant de protection contre les surtensions, référencée D_9 et D_{10} respectivement, est montée en parallèle sur chacun des deux interrupteurs S_{w9} et S_{w10} , dans le sens contraire au courant de 15 charge de l'actuateur. Le transformateur comprend deux enroulements secondaires L_3 et L_4 identiques à ceux décrits à propos du premier mode de réalisation, dans la figure 1.

Le fonctionnement de ce circuit de charge est le suivant, en fonction de 20 la commande des deux interrupteurs S_{w9} et S_{w10} . Entre les instants t_0 et t_1 , le signal de commande pilote la fermeture de l'interrupteur S_{w9} , qui est relié d'un côté à la borne (+) de la batterie B et de l'autre côté au point de jonction J_3 . Pendant cet intervalle de temps, le signal pilote l'ouverture de l'autre interrupteur S_{w10} . Ainsi entre les instants t_0 et t_1 , l'enroulement primaire L_9 est 25 relié d'un côté directement à la borne (+) de sortie de la batterie et de l'autre côté à la capacité C_1 , chargée à une tension égale à $+E/2$, de sorte que la tension v_9 aux bornes de l'enroulement est égale à $+E/2$.

Entre les instants suivants t_1 et t_2 , le signal de commande pilote la 30 fermeture de l'interrupteur S_{w10} , qui est relié d'un côté à la borne (-) de la batterie B et de l'autre côté au point de jonction J_3 . Pendant cet intervalle de temps, le signal pilote l'ouverture de l'autre interrupteur S_{w9} . Ainsi entre les instants t_1 et t_2 , l'enroulement primaire L_9 est relié d'un côté directement à la 35 borne (-) de sortie de la batterie et de l'autre côté à la capacité C_2 chargée à une tension égale à $+E/2$, de sorte que la tension v_9 aux bornes de l'enroulement est égale à $-E/2$, comme le montre le signal de la figure 9. La

tension de charge v_p aux bornes des enroulements secondaires L_3 et L_4 successivement est alors constante et égale à $mE/2$.

5 L'injection de carburant a lieu ensuite dès que l'actuateur piézo-électrique a une tension comprise entre 100 et 250 volts, selon le type d'injecteur.

10 Sur les figures 1, 4 et 7, représentant trois modes de réalisation du dispositif de commande, le circuit de décharge de l'actuateur piézo-électrique, considéré comme une capacité, est constitué d'un interrupteur de décharge T_d commandable reliant l'inductance de charge L à la borne positive (+) de la batterie B par une diode de décharge D_d . Une diode D_p montée en parallèle sur la branche comprenant l'actuateur P_i et son interrupteur T_i , dans le sens contraire du courant de décharge, est destinée à la protection de l'actuateur P_i ,
15 en évitant l'apparition d'une tension négative à ses bornes qui aurait pour conséquence de le détruire.

20 Lors de la décharge, le signal de commande pilote les différents interrupteurs du circuit de charge à l'ouverture, et ferme l'interrupteur de décharge T_d , qui est toujours ouvert pendant la phase de charge de l'actuateur. L'actuateur se décharge à travers l'inductance L et la diode D_d montée dans le sens passant du courant de décharge.

25 Une variante de réalisation du circuit de décharge de l'actuateur est représentée sur les figures 2, 5 et 8. Afin de pouvoir charger à nouveau l'actuateur piézo-électrique, il est nécessaire que le courant de décharge dans l'inductance L de charge soit nul, ce qui peut n'être pas toujours le cas dans le montage précédent. Pour cela, le circuit de décharge est constitué d'une part 30 d'une inductance L_d de décharge reliant l'actuateur P_i à un interrupteur de décharge T_d commandable, connecté lui-même à la borne (+) de la batterie B par une diode de décharge D_d , et d'autre part d'un interrupteur supplémentaire de décharge T_c commandable reliant la borne de l'inductance L_d , opposée à l'actuateur, à la masse. Comme dans la première variante, une diode D_p montée en parallèle sur la branche comprenant l'actuateur P_i et son interrupteur T_i , dans le sens contraire du courant de décharge, est destinée à la protection de l'actuateur P_i , en évitant l'apparition d'une tension négative à ses bornes qui aurait pour conséquence de le détruire.
35

En phase de charge, l'interrupteur T_c est ouvert, par contre, en phase de décharge de l'actuateur, cet interrupteur T_c est fermé puis ouvert. Pendant sa fermeture, de l'énergie provenant de l'actuateur P_i est accumulée dans l'inductance de décharge L_d , et à son ouverture, elle est transférée vers la 5 batterie B à travers l'interrupteur T_d et la diode D_d de décharge.

Comme pour la charge de l'actuateur, sa décharge peut s'effectuer en plusieurs paliers successifs qui permettent de contrôler la tension et de réduire la taille des composants, chaque palier correspondant à l'ouverture de 10 l'interrupteur supplémentaire de décharge T_c .

Le dispositif selon l'invention présente l'avantage d'être constitué d'un nombre très limité de composants, avec un transformateur de taille réduite grâce au cycle magnétique symétrique, ce qui réduit à la fois son coût global et 15 son encombrement. Un autre avantage intéressant est lié au chargement de l'actuateur sous des tensions réglables, avec possibilité de contrôler les pentes de chargement et de déchargement, en jouant sur les temps de fermeture et d'ouverture des interrupteurs S_{wi} du circuit primaire du transformateur et de l'interrupteur supplémentaire de décharge T_c . De plus, ce dispositif de 20 commande est relativement simple, avec une séquence de charge et de décharge directes.

REVENDICATIONS

1. Dispositif de commande d'un actionneur piézo-électrique, piloté électroniquement à partir d'un calculateur de contrôle, comprenant un convertisseur-élévateur de tension en courant continu alimenté par une source de tension continue, caractérisé en ce que le circuit de charge de l'actuateur est constitué par le convertisseur-élévateur (E) de tension DC-DC, dont la haute tension est reliée à un circuit oscillant constitué de l'actuateur (P_i) et d'une inductance (L), et qui est composé d'un montage de type Push-Pull avec un transformateur à deux enroulements secondaires (L_3 et L_4) bobinés en sens inverse l'un de l'autre et au moins un enroulement primaire relié à la source de tension (B) par au moins un interrupteur.
2. Dispositif de commande selon la revendication 1, caractérisé en ce que le convertisseur-élévateur de tension en courant continu (E) est constitué d'un transformateur à quatre enroulements bobinés autour d'un même noyau, dont les deux enroulements primaires (L_1 , L_2), reliés chacun à la masse par un interrupteur commandable (S_{w1} , S_{w2}), sont montés en parallèle et bobinés en sens inverse l'un de l'autre, chaque interrupteur (S_{w1} , S_{w2}) étant monté en parallèle avec une diode de roue libre (D_1 , D_2) montée dans le sens inverse du courant de charge et dont les enroulements secondaires (L_3 , L_4), montés en parallèle et bobinés en sens inverse l'un de l'autre, sont eux-aussi reliés à la masse chacun par une diode (D_3 , D_4) montée dans le sens passant du courant de charge.
3. Dispositif de commande selon la revendication 1, caractérisé en ce que le convertisseur-élévateur (E) de tension DC-DC du circuit de charge est constitué d'un transformateur à trois enroulements, un enroulement primaire (L_5) et deux enroulements secondaires (L_3 et L_4), bobinés en sens inverse et reliés à la masse chacun par une diode (D_3 , D_4) montée dans le sens passant du courant de charge, une première borne de l'enroulement primaire (L_5) étant reliée au point de jonction (J_1) de deux interrupteurs (S_{w5} et S_{w6}) montés en série entre les bornes de la batterie (B), et la seconde borne de l'enroulement primaire (L_5) étant reliée au point de jonction (J_2) de deux interrupteurs (S_{w7} et S_{w8}) montés en série aux bornes de la batterie (B), avec une diode de roue libre (D_5 à D_8) montée en parallèle sur chacun des quatre interrupteurs (S_{w5} à S_{w8}), dans le sens contraire au courant de charge de l'actuateur.

4. Dispositif de commande selon la revendication 1, caractérisé en ce que le convertisseur-élévateur (E) de tension DC-DC du circuit de charge est constitué d'un transformateur à trois enroulements, un enroulement primaire (L_9) et deux enroulements secondaires (L_3 et L_4), bobinés en sens inverse et reliés à la masse chacun par une diode, une première borne de l'enroulement primaire (L_9) étant reliée au point de jonction (J_3) de deux interrupteurs (S_{w9} et S_{w10}) montés en série entre les bornes de la batterie (B), et la seconde borne de l'enroulement primaire (L_9) étant reliée au point de jonction (J_4) de deux capacités (C_1 et C_2) identiques, montées en série entre les bornes de la batterie, une diode de roue libre (D_9 et D_{10}) étant montée en parallèle sur chacun des deux interrupteurs (S_{w9} et S_{w10}), dans le sens contraire au courant de charge de l'actuateur.

5. Dispositif de commande selon l'une des revendications 1 à 4, caractérisé en ce que le circuit de décharge de l'actuateur piézo-électrique, considéré comme une capacité, est constitué d'un interrupteur de décharge (T_d) commandable reliant l'inductance de charge (L) à la borne positive (+) de la batterie (B) par une diode de décharge (D_d), une diode de protection (D_p) étant montée en parallèle sur la branche comprenant l'actuateur (P_i) et son interrupteur (T_i), dans le sens contraire du courant de décharge, et destinée à la protection de l'actuateur (P_i).

6. Dispositif de commande selon l'une des revendications 1 à 4, caractérisé en ce que le circuit de décharge est constitué d'une part d'une inductance de décharge (L_d) reliant l'actuateur (P_i) à un interrupteur de décharge (T_d) commandable, connecté lui-même à la borne positive (+) de la batterie (B) par une diode de décharge (D_d), et d'autre part d'un interrupteur supplémentaire de décharge (T_c) commandable reliant la borne de l'inductance (L_d), opposée à l'actuateur, à la masse pendant la phase de charge de l'actuateur, une diode de protection (D_p) étant montée en parallèle sur la branche comprenant l'actuateur (P_i) et son interrupteur (T_i), dans le sens contraire du courant de décharge, et destinée à la protection de l'actuateur (P_i).

7. Procédé de mise en œuvre du dispositif de commande selon l'une des revendications 1 à 6, caractérisé en ce que, en phase de charge de l'actuateur piézo-électrique (P_i), les interrupteurs sont commandés afin que la tension aux bornes d'un seul enroulement primaire du transformateur, créée

par l'énergie provenant de la source de tension (B), est périodique provoquant une tension aux bornes du circuit oscillant constitué par l'actuateur (P_i) et l'inductance de charge (L) qui est constante et égale au produit de la tension (E) de la source (B) par le rapport (m) du transformateur.

5

8. Procédé de mise en œuvre du dispositif de commande selon la revendication 5, caractérisé en ce que, en phase de décharge de l'actuateur piézo-électrique (P_i), le signal de commande pilote les différents interrupteurs du circuit de charge à l'ouverture, et ferme l'interrupteur de décharge (T_d), qui est toujours ouvert en phase de charge de l'actuateur, de sorte que l'actuateur se décharge à travers l'inductance de charge (L) et la diode de décharge (D_d) montée dans le sens passant du courant de décharge.

9. Procédé de mise en œuvre du dispositif de commande selon la
15 revendication 6, caractérisé en ce que, l'interrupteur supplémentaire de décharge (T_c) étant ouvert en phase de charge, il est par contre, en phase de décharge de l'actuateur, fermé pour que de l'énergie provenant de l'actuateur soit accumulée dans l'inductance de décharge (L_d), puis ouvert pour que cette énergie soit transférée vers la batterie (B) à travers l'interrupteur (T_d) et la diode
20 (D_d) de décharge.

1/6

FIG_1FIG_2

2/6

FIG_3

3/6

FIG_4FIG_5

2829314

4/6

FIG-6

5/6
FIG-7

FIG-8

6/6

FIG_9

2829314

N° d'enregistrement
national
RAPPORT DE RECHERCHE
PRÉLIMINAIRE
établi sur la base des dernières revendications
déposées avant le commencement de la rechercheFA 606067
FR 0111429

DOCUMENTS CONSIDÉRÉS COMME PERTINENTS		Revendication(s) concernée(s)	Classement attribué à l'invention par l'INPI
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes		DOMAINES TECHNIQUES RECHERCHÉS (Int.CL.7)
A	US 4 705 003 A (SAKAKIBARA YASUYUKI ET AL) 10 novembre 1987 (1987-11-10) * colonne 4, ligne 8 - ligne 45; figure 4 * ---	1,2,6,7, 9	H02N2/06 H02M3/335 F02D41/20 F02D41/30 F02M51/06
A	EP 1 067 608 A (RENAULT) 10 janvier 2001 (2001-01-10) * alinéa '0015! - alinéa '0050!; figures 2-6,10 *	1,5,7,8	
A	EP 0 191 482 A (HITACHI METALS LTD) 20 août 1986 (1986-08-20) * page 14, ligne 18 - page 17, ligne 13; figures 12,14,15 *	1-4,7	
A	US 6 137 698 A (YUKAWA TADASHI ET AL) 24 octobre 2000 (2000-10-24) * colonne 1, ligne 20 - colonne 2, ligne 46; figure 1 * * colonne 14, ligne 7 - ligne 52; figures 8,9 *	1,2,4,7	HO1L F02D H02M
1		Date d'achèvement de la recherche	Examinateur
		30 mai 2002	Köpf, C
CATÉGORIE DES DOCUMENTS CITÉS		T : théorie ou principe à la base de l'invention E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a été publié qu'à cette date de dépôt ou qu'à une date postérieure. D : cité dans la demande L : cité pour d'autres raisons & : membre de la même famille, document correspondant	
X : particulièrement pertinent à lui seul Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie A : arrière-plan technologique O : divulgation non-écrite P : document intercalaire			

2829314

**ANNEXE AU RAPPORT DE RECHERCHE PRÉLIMINAIRE
RELATIF A LA DEMANDE DE BREVET FRANÇAIS NO. FR 0111429 FA 606067**

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.

Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 30-05-2002.
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets,
ni de l'Administration française

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
US 4705003	A	10-11-1987	JP JP	62053183 A 61098165 A	07-03-1987 16-05-1986
EP 1067608	A	10-01-2001	FR EP	2796219 A1 1067608 A1	12-01-2001 10-01-2001
EP 0191482	A	20-08-1986	DE EP JP JP JP US	3672847 D1 0191482 A2 1623364 C 2050710 B 62089478 A 4811187 A	30-08-1990 20-08-1986 25-10-1991 05-11-1990 23-04-1987 07-03-1989
US 6137698	A	24-10-2000	JP	11113254 A	23-04-1999