Chapter 12

Hamiltonian Mechanics

12.1 Free Rotation; Hamilton's Equations

- Hamilton's equations and the Hamiltonian.
 - Like Lagrange's formulation is slightly different than Newton's, so too is Hamilton's.
 - Hamilton's formulation is once again more general, and hence applicable for certain dissipative systems that can't be (easily??) treated with the other two methods.
 - It is also ubiquitous throughout physics.
 - We mainly consider **natural** systems, and natural-conservative systems at that.
 - Thus, we can write $L = L(q_1, \ldots, q_N; \dot{q}_1, \ldots, \dot{q}_N) = L(q, \dot{q}).$
 - Natural (system): The Lagrangian does not depend explicitly on time.
 - Forced (system): The Lagrangian does depend explicitly on time.
 - Recall that

11/13:

$$\dot{p}_{\alpha} = \frac{\partial L}{\partial q_{\alpha}} \qquad \qquad p_{\alpha} = \frac{\partial L}{\partial \dot{q}_{\alpha}}$$

where the $\alpha = 1, ..., N$ index generalized coordinates such as Cartesian coordinates or even Euler angles.

- We can also let $\dot{q}_{\alpha} = \dot{q}_{\alpha}(q,p)$, i.e., let \dot{q}_{α} be a function of q and p.
 - For example, for a particle in plane polar coordinates, our Lagrangian is

$$L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) - V(r,\theta)$$

- Thus,

$$p_r = m\dot{r}$$
 $p_\theta = mr^2\dot{\theta}$ $\dot{r} = \frac{p_r}{m}$ $\dot{\theta} = \frac{p_\theta}{mr^2}$

• Hamiltonian: The operator defined as follows. Given by

$$H(q,p) = \sum_{\beta=1}^{n} p_{\beta} \dot{q}_{\beta}(q,p) - L(q,\dot{q}(q,p))$$

• Thus.

$$\frac{\partial H}{\partial p_{\alpha}} = \dot{q}_{\alpha} + \sum_{\beta=1}^{n} p_{\beta} \frac{\partial \dot{q}_{\beta}}{\partial p_{\alpha}} - \sum_{\beta=1}^{n} \underbrace{\frac{\partial L}{\partial \dot{q}_{\beta}}}_{p_{\beta}} \frac{\partial \dot{q}_{\beta}}{\partial p_{\alpha}} = \dot{q}_{\alpha}$$

• Additionally,

$$\frac{\partial H}{\partial q_{\alpha}} = \underbrace{-\frac{\partial L}{\partial q_{\alpha}}}_{-\dot{p}_{\alpha}} + \sum_{\beta=1}^{n} p_{\beta} \frac{\partial \dot{q}_{\beta}}{\partial q_{\alpha}} - \sum_{\beta=1}^{n} \underbrace{\frac{\partial L}{\partial \dot{q}_{\beta}}}_{n_{\alpha}} \frac{\partial \dot{q}_{\beta}}{\partial q_{\alpha}} = -\dot{p}_{\alpha}$$

• Therefore, we get Hamilton's equations of motion:

$$\frac{\partial H}{\partial p_{\alpha}} = \dot{q}_{\alpha} \qquad \qquad \frac{\partial H}{\partial q_{\alpha}} = -\dot{p}_{\alpha}$$

12.2 Conservation of Energy; Ignorable Coordinates

11/15: • Recap.

- Hamiltonian as total energy.
- Ignorable coordinates.
- Examples.
- Logistics.
 - HW 6 due Friday.
 - HW 7 due at last class.
 - A little bit long (Hamiltonians + dynamical systems stuff from after break).
 - HW 8 (optional) due at exam.
 - Will be posted during Thanksgiving week.
 - A mixture of newer material and then some review questions from the second half of the quarter.
 - The final will focus on second-half stuff. However, it may use stuff from the beginning of the quarter. There will not be a specific rotating reference frames or scattering question, but we may have to use knowledge of Lagrangians, etc.
- Last time.
 - We constructed the Hamiltonian H(q, p).
- Note: A Hamiltonian is an example of something called a **Legendre transform**, though that's not important for this class.
- Example: Central conservative force in the plane.
 - Recall that the relevant Lagrangian is

$$L = \frac{1}{2}m\dot{r}^2 + \frac{1}{2}mr^2\dot{\theta}^2 - V(r)$$

- The expression for the generalized momentum yields the following two relations.

$$p_r = \frac{\partial L}{\partial \dot{r}} = m\dot{r}$$

$$p_\theta = \frac{\partial L}{\partial \dot{\theta}} = mr^2\dot{\theta}$$

$$\dot{r} = \frac{p_r}{m}$$

$$\dot{\theta} = \frac{p_\theta}{mr^2}$$

- Substituting the above into the definition of the Hamiltonian, we obtain

$$H = (p_r \dot{r} + p_\theta \dot{\theta}) - \left[\frac{1}{2} m \dot{r}^2 + \frac{1}{2} m r^2 \dot{\theta}^2 - V(r) \right] = \frac{p_r^2}{2m} + \frac{p_\theta^2}{2mr^2} + V(r)$$

- Observe that this is the kinetic plus potential energy! This is a recurring theme.
- Using Hamilton's equations, we obtain

$$\begin{split} \dot{r} &= \frac{\partial H}{\partial p_r} = \frac{p_r}{m} \\ \dot{\theta} &= \frac{\partial H}{\partial p_\theta} = \frac{p_\theta}{mr^2} \\ -\dot{p}_r &= \frac{\partial H}{\partial r} = -\frac{p_\theta^2}{mr^3} + \frac{\mathrm{d}V}{\mathrm{d}r} \\ -\dot{p}_\theta &= \frac{\partial H}{\partial \theta} = 0 \end{split}$$

- The first two equations provide relations we already knew.
- The last equation implies that $J = p_{\theta}$ is constant, as we'd expect for a central conservative force!
- The third equation can be arranged into the following form, which (when integrated) yields the radial energy equation.

$$\dot{p}_r = m\ddot{r} = \frac{J^2}{mr^3} - \frac{\mathrm{d}V}{\mathrm{d}r}$$

- The Hamiltonian as total energy.
 - Let's see why this is the general case.
 - We have that

$$T = \frac{1}{2} \sum_{\alpha=1}^{n} m_{\alpha} \dot{\vec{r}_{\alpha}}^{2} = \frac{1}{2} \sum_{\alpha=1}^{n} m_{\alpha} (\dot{x}_{\alpha}^{2} + \dot{y}_{\alpha}^{2} + \dot{z}_{\alpha}^{2})$$

- Notice that

$$\sum_{\alpha=1}^{n} \frac{\partial T}{\partial \dot{q}_{\alpha}} \dot{q}_{\alpha} = 2T$$

- Here, we're summing over all generalized coordinates.
- This is true for generalized coordinates for natural systems (T is independent of t).
 - A proof can be found on Kibble and Berkshire (2004, pp. 232–33).
- It follows that

$$H = \sum_{\beta=1}^{n} p_{\beta} \dot{q}_{\beta} - L = \sum_{\beta=1}^{n} \frac{\partial T}{\partial \dot{q}_{\beta}} \dot{q}_{\beta} - L = 2T - (T - V) = T + V = E$$

• In general, for H(q, p, t), we have

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{\partial H}{\partial t} + \sum_{\alpha=1}^{n} \frac{\partial H}{\partial q_{\alpha}} \dot{q}_{\alpha} + \sum_{\alpha=1}^{n} \frac{\partial H}{\partial p_{\alpha}} \dot{p}_{\alpha} = \frac{\partial H}{\partial t} + \sum_{\alpha=1}^{n} \left(\frac{\partial H}{\partial q_{\alpha}} \frac{\partial H}{\partial p_{\alpha}} - \frac{\partial H}{\partial p_{\alpha}} \frac{\partial H}{\partial q_{\alpha}} \right) = \frac{\partial H}{\partial t}$$

- The substitutions from the second to the third equality above follow from Hamilton's equations.
- Special case of the above: Natural, conservative systems.
 - -H(q, p, t) = H(q, p), so $\partial H/\partial t = 0$.
 - It follows that in such a system, dH/dt = 0, hence H = T + V = E is constant.

- Ignorable coordinate: A coordinate q_{α} that does not appear in H.
 - Thus, for an ignorable coordinate,

$$-\dot{p}_{\alpha} = \frac{\partial H}{\partial q_{\alpha}} = 0$$

- so p_{α} is constant.
- Generally, p_{α} is in H.
- Example: Central force in plane? Recall the Hamiltonian from the first example above and note that θ is ignorable because $\dot{p}_{\theta} = 0$.
 - Thus, we recover the radial energy equation.
 - Hamilton's equations for this system:

$$\dot{r} = \frac{p_r}{m} \qquad -\dot{p}_r = \frac{\partial H}{\partial r} = \frac{\mathrm{d}U}{\mathrm{d}r}$$

where U(r) is the effective potential energy.

- Thus, the r coordinate behaves just like a single particle that sees the potential energy function U(r).
- The remaining Hamilton's equations tell us that

$$\dot{p}_{\theta} = 0 \qquad \qquad \dot{\theta} = \frac{p_{\theta}}{mr^2}$$

- Example: Symmetric top.
 - -2/3 of our Euler angles are ignorable, so we can write an effective potential energy function for the third.
 - Our slightly complicated expression for the Lagrangian here is

$$L = \underbrace{\frac{1}{2}I_1\dot{\theta}^2\sin^2\theta + \frac{1}{2}I_1\dot{\theta}^2 + \frac{1}{2}I_3(\dot{\psi} + \dot{\phi}\cos\theta)^2}_{T} - MgR\cos\theta$$

- Thus,

$$p_{\phi} = \frac{\partial L}{\partial \dot{\phi}} = I_1 \dot{\phi} \sin^2 \theta + I_3 (\dot{\psi} + \dot{\phi} \cos \theta) \cos \theta$$
$$p_{\theta} = I_1 \dot{\theta}$$
$$p_{\psi} = I_3 (\dot{\psi} + \dot{\phi} \cos \theta)$$

- It follows that

$$\dot{\phi} = \frac{p_{\phi} - p_{\psi} \cos \theta}{I_1 \sin^2 \theta}$$

$$\dot{\phi} = \frac{p_{\theta}}{I_1}$$

$$\dot{\psi} = \frac{p_{\psi}}{I_3} - \frac{p_{\phi} - p_{\psi} \cos \theta}{I_1 \sin^2 \theta} \cos \theta$$

- Thus,

$$H = T + V$$

where T is given in the Lagrangian above.

- It follows that

$$H = \frac{(p_{\phi} - p_{\psi}\cos\theta)^2}{2I_1\sin^2\theta} + \frac{p_{\theta}^2}{2I_1} + \frac{p_{\psi}^2}{2I_3} + MgR\cos\theta$$

- Since ϕ, ψ don't appear, they're ignorable. Thus, p_{ϕ}, p_{ψ} are constants.
- Consequently, we can rewrite this Hamiltonian in the simpler form

$$H = \frac{p_{\theta}^2}{2I_1} + U(\theta)$$

where

$$U(\theta) = MgR\cos\theta + \frac{(p_{\phi} - p_{\psi}\cos\theta)^2}{2I_1\sin^2\theta} + \frac{p_{\psi}^2}{2I_3}$$

- $U(\theta)$ is pretty complicated, but once we fix p_{ϕ}, p_{ψ} , it can be thought of as an effective potential energy function in θ .
- We can now evaluate Hamilton's equations.

$$-\dot{p}_{\theta} = -I_1 \ddot{\theta} = \frac{\partial H}{\partial \theta} = \frac{\mathrm{d}U}{\mathrm{d}\theta}$$

- Evaluating the derivative of $U(\theta)$ would be very nasty, but we can learn some thing without evaluating it.
- We get the conservation law

$$\frac{p_{\theta}^2}{2I_1} + U(\theta) = E$$

- Thus, fixing $U(\theta)$, we get a parabola in p_{θ} with minimum at θ_0 and we get a wiggling motion between θ_{\min} and θ_{\max} . At $U = E_{\min}$, $\theta = \theta_0$ and we have steady precession.
- The precession rate

$$\dot{\phi} = \frac{p_{\phi} - p_{\psi} \cos \theta}{I_1 \sin^2 \theta}$$

- Then $\dot{\theta} = 0$, $\cos \theta = p_{\phi}/p_{\psi}$. If $\arccos(p_{\phi}/p_{\psi}) < \theta_{\min}$ or $> \theta_{\max}$.
- So the thing is rotating on its own, and alternating back and forth see picture
- In the case $\theta_{\min} < \arccos(p_{\phi}/p_{\psi}) < \theta_{\max}$, we get loop de loops. Importantly, $\dot{\phi}$ changes sign.
- If $\arccos(p_{\phi}/p_{\psi}) = \theta_{\min}$, we get cusps corresponding to $\dot{\phi} = 0$.

12.3 Symmetries and Conservation Laws

11/17: • Recap.

- Conservation laws as symmetries of the Hamiltonian.
- Review.
 - The Hamiltonian is given by $H = \sum_{\beta=1}^{n} p_{\beta} \dot{q}_{\beta} L(p,q)$. This is true in general.
 - If we have a natural, conservative system, then H = T + V = E.
 - Once the Hamiltonian is constructed, we can get Hamilton's equations $-\dot{p}_{\alpha} = \partial H/\partial q_{\alpha}$ and $\dot{q}_{\alpha} = \frac{\partial H}{\partial p_{\alpha}}$.
- Today:
 - Something formulated mathematically by Emmy NOether in 1918. We will come up with conservation laws based on symmetries of the Hamiltonian.

- We will see how functions can be thought of as operators, and when those operators don't change the Hamiltonian, there is a conserved quantity within the function.
- We'll see how different functions like H(q, p), J(q, p), etc. can be thought of as generators of transformations.
- As mentioned, if H is unchanged by the transformation generated by a function G, then G is a conserved quantity.
- But what is a **symmetry**?
- Symmetry: Something that is unchanged by a particular operation.
- Transformation (generated by a function G(q, p, t)):

$$\delta q_{\alpha} = \frac{\partial G}{\partial p_{\alpha}} \delta \lambda \qquad \qquad \delta p_{\alpha} = -\frac{\partial G}{\partial q_{\alpha}} \delta \lambda$$

where $\delta\lambda$ is an infinitesimal (with correct units).

- Examples.
 - 1. $G = p_1$.
 - Induces $\delta q_1 = \delta \lambda$ and $\delta p_1 = 0$.
 - 2. G = H.
 - $\delta q_{\alpha} = \dot{q}_{\alpha} \delta \lambda, \, \delta p_{\alpha} = \dot{p}_{\alpha} \delta \lambda.$
 - Take $\delta \lambda = \delta t$.
 - Thus, the Hamiltonian is the function that evolves the system forward in time.
 - Essentially, applying the Hamiltonian to a system does the same thing as waiting for the system to evolve for a little bit.
 - The Hamiltonian is the **time evolution operator**.
 - 3. $G = J_z = xp_y yp_x$.
 - $-\delta x = -y \,\delta \lambda, \, \delta p_x = -p_y \,\delta \lambda, \, \delta y = x \,\delta \lambda, \, \delta p_\lambda = p_x \,\delta \lambda.$
 - Taking $\delta \lambda = \delta \theta$, J generates infinitesimal rotation.
 - Indeed, we are mapping $\vec{r} \mapsto \vec{r} + r \,\delta\theta \,\,\hat{\theta} = \vec{r} r \sin\theta \,\hat{x} \,\delta\theta + r \cos\theta \,\hat{y} \,\delta\theta$.
 - Equivalently,

$$(x,y) \mapsto (x - y \,\delta\theta \,, y + x \,\delta\theta)$$
 $(p_x, p_y) \mapsto (p_x - p_y \,\delta\theta \,, p_y + p_x \,\delta\theta)$

- How much does another function F change under the transformation induced by G?
 - So we applied G, and our coordinates and momenta all changed a bit. F depends on these coordinates and momenta, so how did it change?
 - What we find out is that

$$\delta F = \sum_{\alpha=1}^{n} \left(\frac{\partial F}{\partial q_{\alpha}} \, \delta q_{\alpha} + \frac{\partial F}{\partial p_{\alpha}} \, \delta p_{\alpha} \right) = \sum_{\alpha=1}^{n} \left(\frac{\partial F}{\partial q_{\alpha}} \, \frac{\partial G}{\partial p_{\alpha}} - \frac{\partial F}{\partial p_{\alpha}} \, \frac{\partial G}{\partial q_{\alpha}} \right) \delta \lambda$$

• We now define a **Poisson bracket** [F,G] which encapsulates this change. Let

$$[F,G] = \sum_{\alpha=1}^{n} \left(\frac{\partial F}{\partial q_{\alpha}} \frac{\partial G}{\partial p_{\alpha}} - \frac{\partial F}{\partial p_{\alpha}} \frac{\partial G}{\partial q_{\alpha}} \right)$$

• Therefore, to answer our original question,

$$\delta F = [F, G] \delta \lambda$$

is the transformation (change) in F, as generated by G.

 \bullet Example: Transformations generated by H (the time translation) are

$$\frac{\mathrm{d}F}{\mathrm{d}t} = \frac{\partial F}{\partial t} + \sum_{\alpha=1}^{n} \left(\frac{\partial F}{\partial q_{\alpha}} \dot{q}_{\alpha} + \frac{\partial F}{\partial p_{\alpha}} \dot{p}_{\alpha} \right) = \frac{\partial F}{\partial t} + \sum_{\alpha=1}^{n} \left(\frac{\partial F}{\partial q_{\alpha}} \frac{\partial H}{\partial p_{\alpha}} - \frac{\partial F}{\partial p_{\alpha}} \frac{\partial H}{\partial q_{\alpha}} \right) = \frac{\partial F}{\partial t} + [F, H]$$

- Example: Suppose that F = F(q, p, t) is the total momentum of the system, the total angular momentum, the total energy (Poisson bracket of this is zer), etc.
- Important note.
 - Poisson brackets are **antisymmetric**, i.e., [G, F] = -[F, G].
 - Thus, in particular, if [G, F] = 0, then [F, G] = 0.
 - Takeaway: If F is unchanged under the transformation generated by G, then G is unchanged under the transformation generated by F.
- Now, let's suppose that we have some function G such that its corresponding transformation does not change H. Essentially, we applied G, our q_{α} , p_{α} 's changed, but H did not.
 - We can choose G to be time-independent.
 - In other words, G does not change H, so [H, G] = 0 in

$$\delta H = [H, G] \, \delta \lambda = 0$$

Moreover,

$$\frac{\mathrm{d}G}{\mathrm{d}t} = [G, H] = 0$$

- Thus, G is a conserved quantity.
- Takeaway: Any function that does not change the Hamiltonian is constant in time in the system.
- Given this, we'll now spend the rest of class on Galilean transformations relativistically and see what this gives us in terms of conserved quantities.
- Review: Galilean transformations and the relativity principle.
 - Given an isolated system of N particles, we want to find a function G that produces the transformation that corresponds to a particular relativity principle. Then that function will be a conserved quantity.
- Relativity principles.
 - 1. There is no preferred t=0.
 - What is the function that corresponds to translation in time? We've discussed that it's H.
 - Thus, we want to show that H is invariant under translation in time.
 - H, itself, actually generates time translations.
 - We already know from its antisymmetry that

$$[H,H]=0$$

- Thus, unless the Hamiltonian explicitly depends on time,

$$\frac{\mathrm{d}H}{\mathrm{d}t} = [H, H] = 0$$

and hence energy is conserved.

- 2. There is no preferred origin of space.
 - If we think that this is true, H should be invariant under spatial translation.

- Which operator generates a spatial translation? Translations of the whole system are generated by the total linear momentum operator P.
- Thus, in other words (for a general translation in the x-direction), $G = P_x = \sum_{\alpha=1}^{N} p_{x\alpha}$.
- Thus, if we differentiate with respect to P, we get

$$\delta x_{\alpha} = \delta x$$
 $\delta p_{x\alpha} = 0$

that is, all other components are zero.

- So, for H to be invariant, we need

$$[H, P_x] \, \delta x = 0 = \sum_{\alpha=1}^{N} \frac{\partial H}{\partial x_{\alpha}} \, \delta x$$

- This requirement is fulfilled if H only depends on relative coordinates (i.e., depends only on combinations like $x_{\alpha} x_{\beta}$) because our difference goes like $x_{\alpha} + \delta x (x_{\beta} + \delta x) = x_{\alpha} x_{\beta}$
- Note that this applies to any direction!
- Translational invariance means that we have a conserved linear momentum of the system.
- We need the Poisson bracket to be 0, which is equivalent to requiring that $\partial \vec{P} / \partial \alpha = 0$, i.e., that the total linear momentum is conserved.
- 3. Isotropy of space.
 - H is invariant under rotations.
 - The generators of rotations are the following if, WLOG, we take our rotations to be about the z-axis:

$$J_z = \sum_{i=1}^{N} (x_i p_{y_i} - y_i p_{x_i})$$

- More generally, we can write any infinitesimal rotation as

$$\delta \vec{r}_{\alpha} = \hat{n} \times \vec{r}_{\alpha} \, \delta \phi \qquad \qquad \delta \vec{p}_{\alpha} = \hat{n} \times \vec{p}_{\alpha} \, \delta \phi$$

- Note that \vec{n} is the axis of rotation.
- Generator: $\hat{n} \cdot \vec{J}$.
- Requires H only be a function of scalar products of $\vec{r}_{\alpha} \cdot \vec{p}_{\alpha}$ (e.g., $\vec{r}_{\alpha} \cdot \vec{r}_{\beta}$, etc.).
- By the same logic,

$$\frac{\mathrm{d}\vec{J}}{\mathrm{d}t} = 0$$

so the angular momentum is conserved.

- 4. Boosts in velocity; the dynamics are the same in any inertial reference frame.
 - We should be able to change to a frame that's moving at a constant velocity with respect to our own and have all the laws of physics stay the same.
 - Under a boost in velocity, the Hamiltonian will change! If you go into a particle's rest frame, the KE will disappear. But Hamilton's equations, importantly, are not changing.
 - We want the EOMs to be invariant under a boost (say in x), i.e., we want

$$\delta x_{\alpha} = t \, \delta v \qquad \qquad \delta p_{\alpha} = m_{\alpha} \, \delta v$$

- Thus, the generator for this transformation is

$$G_x = \sum_{\alpha=1}^{N} (p_{x\alpha}t - m_{\alpha}x_{\alpha}) = P_xt - MX$$

where X is the x-coordinate of the CM.

- Thus, in general,

$$\vec{G} = \vec{P}t - M\vec{R}$$

- \blacksquare In general, H will change and the EOMs won't.
- It can be proven that

$$\frac{\mathrm{d}\vec{G}}{\mathrm{d}t} = 0$$

- This yields the following conservation law.

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\vec{P}t - M\vec{R} \right) = 0$$

- This equation tells us that the total momentum equals the total mass times the CM mass times velocity; essentially,

$$\vec{P} - M \frac{\mathrm{d}\vec{R}}{\mathrm{d}t} = 0$$