

Accelerazione di algoritmi di Stereo Matching su GPU per sistemi SLAM

I sistemi ORB - SLAM

- 🔹 Caratteristiche principali 🔸
- Campi di utilizzo
- Analisi della funzione di Stereo Matching

Utilizza algoritmo **ORB** (Oriented FAST and Rotated BRIEF)

STEREO MATCHING

1. Rilevamento di caratteristiche visive

- · Caratteristiche principali 🤙
- Campi di utilizzo
- Analisi della funzione di Stereo Matching

2. Mappatura

- Caratteristiche principali
- Campi di utilizzo
- Analisi della funzione di Stereo Matching

3. Localizzazione e riconoscimento dei loop

- Caratteristiche principali
- Campi di utilizzo
- Analisi della funzione di Stereo Matching

- Caratteristiche principali
- Campi di utilizzo
- Analisi della funzione di Stereo Matching

Sistemi ORB – SLAM – Stereo Matching

Acquisizione delle immagini

1 Corrispondenza dei pixel

2 Disparità

Ricostruzione 3D

Sistemi ORB – SLAM - Stereo Matching

- Caratteristiche principali
- Campi di utilizzo
- Analisi della funzione di
 Stereo Matching

CORRISPONDENZA DEI PIXEL

Sistemi ORB - SILAIMI - Stereo Matching

- Caratteristiche principali
- Campi di utilizzo
- Analisi della funzione di
 Stereo Matching

DISPARITÀ

Lavoro svolto per l'accelerazione dell'algoritmo

- Motivazioni accelerazione dell'algoritmo
- Procedimento
- Risultati

Corrispondenza dei pixel

- Motivazioni accelerazione dell'algoritmo
- Procedimento
- Risultati

$$ATE = rac{1}{N} \sum_{i=1}^{N} \| \underline{T_{est}(i)} - \underline{T_{true}(i)} \|$$

ATE = Absolute Trajectory Error

- Motivazioni accelerazione dell'algoritmo
- Procedimento
- Risultati

DATASET - 04

Radius multiplier	1.0	2.0	4.0	8.0	16.0
Translation error	0.47	0.46	0.46	0.47	0.47
Rotational error	0.07	0.08	0.09	0.07	0.07
ATE (m)	0.73	0.77	0.75	0.78	(0.71)
RPE (m)	0.017	0.017	0.017	0.017	0.017
RPE (deg)	0.031	0.032	0.031	0.030	0.030
ORB Extraction (ms)	9.1419	8 9207	8.9707	9 0029	8.9305
Stereo Matching (ms	3.0216	3.391	3.962	4.8351	6.345
ORB Extraction (σ)	61.54	57.737	58.214	58.98	58.148
Stereo Matching (σ)	0.54303	0.63088	0.68821	0.74869	0.6854

DATASET - 07

Radius multiplier	1.0	2.0	4.0	8.0	16.0
Translation error	0.48	0.44	0.47	0.46	0.47
Rotational error	0.24	0.23	0.25	0.26	0.26
ATE (m)	0.52	0.49	0.5	0.54	0.46
RPE (m)	0.014	0.013	0.014	0.014	0.014
RPE (deg)	0.04	0.039	0.041	0.040	0.040
ORB Extraction (ms)	6.305	6.3717	6.356	6.280	6.679
Stereo Matching (ms)	3.087	3.573	4.072	4.896	6.679
ORB Extraction (σ)	29.31	28.58	29.45	28.65	29.87
Stereo Matching (σ)	0.535	0.526	0.642	0.689	0.688

- Motivazioni accelerazione dell'algoritmo
- Procedimento

• Risultati

 Motivazioni accelerazione dell'algoritmo

Analisi funzione stereo matching

Procedimento

CICLO FOR

CICLO FOR

 Motivazioni accelerazione dell'algoritmo

Parallelizzazione della funzione usando CUDA

Procedimento

Risultati

- Motivazioni accelerazione dell'algoritmo
- Procedimento
- Risultati

Parallelizzazione della funzione usando CUDA 2

KERNEL CUDA - 1

- Motivazioni accelerazione dell'algoritmo
- Procedimento
- Risultati

Parallelizzazione della funzione usando CUDA (2)

KERNEL CUDA - 2

Problemi da gestire

- Motivazioni accelerazione dell'algoritmo
- Procedimento

Risultati

ORBmatcher::DescriptorDistance

RISCRITTURA DI FUNZIONI SPECIFICHE

```
// Funzione che calcola la distanza tra 2 vettori
_device__ int DescriptorDistance(const unsigned char *a, const unsigned char* b){
   int dist=0;

   const int32_t* a_int = reinterpret_cast<const int32_t*>(a);
   const int32_t* b_int = reinterpret_cast<const int32_t*>(b);

   for(int i=0; i<8; i++) {
      unsigned int v = a_int[i] ^ b_int[i];
      v = v - ((v >> 1) & 0x55555555);
      v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
      dist += (((v + (v >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24;
   }

   return dist;
}
```

TRASFORMAZIONE DI STRUTTURE DATI

 Motivazioni accelerazione dell'algoritmo Parallelizzazione della funzione usando CUDA

Procedimento

Risultati

ADATTAMENTO DEL PROGRAMMA AL PARADIGMA PARALLELO

- Motivazioni accelerazione dell'algoritmo
- Procedimento
- Risultati

DEVICE - LAPTOP

- Motivazioni accelerazione dell'algoritmo
- Procedimento
- Risultati

DEVICE - BOARD

Conclusioni

- Aumento delle prestazioni temporali del sistema
- Aumento delle precisione del sistema
- Apertura verso possibili esperimenti sfruttando la diminuzione dei tempi di calcolo

Grazie per l'attenzione

