2	energy and the long-term averaged energy, the method further comprises:	
3	determining whether a sum of the short-term averaged energy and a factor is greater	
4	than the long-term averaged energy; and	
5	determining that the current audio frame represents silence if the sum is less than the	
6	long-term averaged energy, without necessitating a determination of the peak-to-mean	
7	likelihood ratio.	
1	4. The method of claim 3, upon determining that the sum is greater than the	
2	long-term averaged energy and before determining the peak-to-mean likelihood ratio, the	
3	method further comprises:	
4	determining whether a difference between the long-term averaged energy and the	
5	short-term averaged energy is less than a predetermined threshold;	
6	determining that the current audio frame represents voice if the difference is greater	
7	than the predetermined threshold; and	
8	continuing by determining the peak-to-mean likelihood ratio if the difference is less	
9	than the predetermined threshold.	
1	5. The method of claim 2, wherein the determining of the short-term averaged	
2	energy comprises:	
3	determining an energy, in decibels, of the current audio frame;	
4	determining a short-term averaged energy for a prior audio frame; and	

The method of claim 2, wherein after determining the short-term averaged

003239.P010 App. No. 09/134,272

3.

1

-2-

- conducting a weighted average of the energy of the current audio frame and the short-
- 6 term averaged energy for the prior audio frame.

Sub
13 B

3

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

6. (Twice Amended) A method for enhancing voice activity detection

comprising:

determining a peak-to-mean likelihood ratio, the determining a peak-to-mean

4 likelihood ratio comprises

\calculating an averaged peak-to-mean ratio for the current audio frame,

determining a maximum averaged peak-to-mean ratio,

determining a minimum averaged peak-to-mean ratio,

determining a difference between the maximum averaged peak-to-mean ratio

and the averaged peak-to-mean ratio for the current audio frame,

determining a difference between the maximum averaged peak-to-mean ratio and the minimum averaged peak-to-mean ratio, and

conducting a ratio, a denominator of the ratio being the difference between the maximum averaged peak-to-mean ratio and the minimum averaged peak-to-mean ratio, the numerator being the difference between the maximum averaged peak-to-mean ratio and the averaged peak-to-mean ratio; and

comparing the peak-to-mean likelihood ratio to a selected threshold to determine

whether a current audio frame represents a voice signal.

8. (Amended) The communication module of claim 12, wherein the voice

activity detector, when executed, controls the processing unit to determine whether a sum of

the short-term averaged energy and a predetermined factor is greater than the long-term

4.

averaged energy, and to signal that the current audio frame represents silence if the sum is less than the long-term averaged energy.

- 1 9. The communication module of claim 8, wherein the voice activity detector,
 2 when executed, controls the processing unit to determine whether a difference between the
 3 long-term averaged energy and the short-term averaged energy is less than a predetermined
 4 threshold, and to signal that the current audio frame represents voice if the difference is
 5 greater than the predetermined threshold.
- 1 10. The communication module of claim 9, wherein the voice activity detector,
 2 when executed, controls the processing unit to determine the peak-to-mean likelihood ratio,
 3 and to compare the peak-to-mean likelihood ratio to a selected threshold to determine
 4 whether a current audio frame represents a voice signal.
- 1 11. The communication module of claim 10, wherein the voice activity detector,
 2 when executed, controls the processing unit to determine a peak-to-mean ratio by (i)
 3 sampling an analog signal a predetermined number of times to produce a plurality of sampled
 4 signals each having a sampled value, (ii) determining a maximum value of the plurality of
 5 sampled signals, and (iii) conducting a ratio between an absolute value of the maximum
 6 value and a summation of the sampled values for the plurality of sampled signals.

Cy:

12. (Amended) A communication module

a substrate;

a processing unit placed on the substrate; and

Pp 3

003239.P010 App. No. 09/134,272 1

6

9

11

12

1

2

3

4

5

a memory coupled to the processing unit, the memory to contain a voice activity detector which, when executed, controls the processing unit to determine an averaged peakto-mean ratio for the current audio frame by (i) monitoring a maximum averaged peak-tomean ratio and a minimum averaged peak-to-mean ratio, (ii) determining a first result being a 7 difference between the maximum averaged peak-to-mean ratio and the averaged peak-to-8 mean ratio for the current audio frame, (iii) determining a second result being a difference between the maximum averaged peak-to-mean ratio and the minimum averaged peak-to-10 mean ratio, and (iv) conducting a ratio between the first result and the second result to

- A machine readable medium having embodied thereon a (Amended) 13. computer program for processing by a machine, the computer program comprising: a first routine for determining a normalized peak-to-mean likelihood ratio; and a second routine for comparing the peak-to-mean likelihood ratio to a selected threshold to determine whether an audio frame being transmitted represents a voice signal.
- 14. The machine readable medium of claim 13, wherein the computer program 1
- 2 further comprising:
- 3 a third routine for determining a short-term averaged energy for the audio frame, the
- 4 third routine being executed before the first and second routines; and

produce the peak-to-mean likelihood ratio.

- 5 a fourth routine for determining a long-term averaged energy for the audio frame, the
- 6 fourth routine being executed before the first and second routines.

•		
1	15.	The machine readable medium of claim 14, wherein the computer program
2	further compr	ising:
3	a fifth	routine for determining whether a sum of the short-term averaged energy and a
4	predetermined	I factor is greater than the long-term averaged energy, the fifth routine being
5	executed befo	re the first and second routines; and
6	a sixth	routine for determining whether a difference between the long-term averaged
7	energy and the	e short-term averaged energy is less than a predetermined threshold, the sixth
8	routine being	executed after determining that the sum is greater than the long-term averaged
9	energy and be	fore execution of the first and second routines.

- 1 16. The machine readable medium of claim 15, wherein the fifth routine 2 determining that the current audio frame represents silence if the sum is less than the long-
- 3 term averaged energy.
- 1 17. The machine readable medium of claim 15, wherein the sixth routine 2 determining that the current audio frame represents voice if the difference is greater than the 3 predetermined threshold.
- 1 18. (Amended) A voice activity detector comprising:
- 2 circuitry to determine a short-term averaged energy for an audio frame;
- 3 circuitry to determine a long term averaged energy for the audio frame;
- 4 circuitry to determine whether the short-term averaged energy is greater than the
- 5 long-term averaged energy by a predetermined factor;

003239.P010 App. No. 09/134,272

		\'
	6	circuitry to determine whether a difference between the long-term averaged energy
	7	and the short-term averaged energy is less than a predetermined threshold when the short-
•	8	term averaged energy is greater than the long-term averaged energy by the predetermined
6	9	factor;
	10	circuitry to determine a normalized peak-to-mean likelihood ratio when the difference
	11	between the long-term averaged energy and the short-term averaged energy is less than the
	12	predetermined threshold; and
	13	circuitry to comparing the peak-to-mean likelihood ratio to a selected threshold and to
	14	determine that the audio frame represents a voice signal when the peak-to-mean likelihood
	15	ratio is greater than a selected threshold.
	1	20. (New) A method for enhancing voice activity detection comprising:
	2	determining a peak-to-mean likelihood ratio including (i) a denominator having a
_	3	value substantially equal to a difference between a maximum averaged peak-to-mean ratio
	4	and a minimum averaged peak-to-mean ratio and (ii) a numerator having a value
4	5	substantially equal to a difference between the maximum averaged peak-to-mean ratio and
	6	the averaged peak-to-mean ratio; and
	7	comparing the peak-to-mean likelihood ratio to a selected threshold to determine
	8	whether a current audio frame represents a voice signal.
	1	21. (New) The method of claim 20, wherein prior to determining the peak-to-
	2	mean likelihood ratio, the method further comprises:
	3	determining a short-term averaged energy for the current audio frame; and
	4	determining a long-term averaged energy for the current audio frame.

003239.P010 App. No. 09/134,272

Sub	1	22. (New) The method of claim 21, wherein after determining the short-term
E1	2	averaged energy and the long-term averaged energy, the method further comprises:
	3	determining whether a sum of the short-term averaged energy and a factor is greater
	4	than the long-term averaged energy; and
	5	determining that the current audio frame represents silence if the sum is less than the
	6	long-term averaged energy, without necessitating a determination of the peak-to-mean
	7	likelihood ratio.
NAC		23. (New) The method of claim 22, upon determining that the sum is greater than
	2	the long-term averaged energy and before determining the peak-to-mean likelihood ratio, the
Ţ	3	method further comprises:
	4	determining whether a difference between the long-term averaged energy and the
	5	short-term averaged energy is less than a predetermined threshold;
	6	determining that the current audio frame represents voice if the difference is greater
	7	than the predetermined threshold; and
	8	continuing by determining the peak-to-mean likelihood ratio if the difference is less
	9	than the predetermined threshold.

24. (New) The method of claim 21, wherein the determining of the short-term averaged energy comprises.

determining an energy, in decibels, of the current audio frame;

determining a short-term averaged energy for a prior audio frame; and

003239.P010 App. No. 09/134,272

3

-8-

Es

conducting a weighted average of the energy of the current audio frame and the short-

6 term averaged energy for the prior audio frame.

003239.P010 App. No. 09/134,272 -9-