# **Exercises for Lecture 2 Object concepts**

#### **Question 1**

Study the following diagram and answer the questions below it.



- a. Is A a generalization or a specialization of B?
- b. Which operations in B are overridden in A?
- c. Which operations in B are overloaded in A?
- d. As far as we can tell from the diagram, what instance variables does an object of class A contain?

### **Question 2**

Study the following UML operation declaration and answer the questions that follow it.

- + computeSum(x : int, y: int) : int
  - a. What is the selector of this operation?
  - b. What are the names of the arguments of this operation?
  - c. What is the return type of this operation?
  - d. What is the visibility of this operation?

# **Question 3**

Study the following UML diagram.



Which of the following statements are true? (There may be more than one true statement.)

- a. A is a superclass of B
- b. A is a specialization of B
- c. A contains only one attribute which is c.
- d. B contains three attributes: a, b and c.
- e. The operation e() in B is overridden in class A.

- f. The operation d(x:int) in B is overloaded in class A.
- g. Class A contains at least three attributes: a, b and c.
- h. The operation d(x:int) in B is overridden in class A.
- i. The operation e() in B is overloaded in class A.
- j. Attributes a and b are inherited by class A.

Study the following diagram and answer the questions below it.



- a. Is A a subclass or a superclass of B?
- b. Which operations in B are overridden in A?
- c. Which operations in B are overloaded in A?
- d. Is variable c visible in objects of class A?

# **Question 5**

Explain, with examples, what is meant by the term *object* in software engineering? Suppose *A* and *B* are objects and that the following line of code occurs in the definition of the class *A*:

B.msg();

This line of code instructs one object to send a message to another one. State what the message is and which objects send and receive it.

## **Question 6**

Define what is meant by the term *object* in software engineering. Suppose *A* and *B* are objects and that the following line of code occurs in the definition of the class *B*:

A.msg();

This line of code instructs one object to send a message to another one. Write down

- (a) the message that is sent,
- (b) the object that sends the message and
- (c) the object that receives the message.

Suppose there exists an object called myClock of type Clock and this object understands the following two messages:

readTime(s : String): Time
readTime(f : File): Time

- a. Do these two messages have the same signature?
- b. Do these two messages have the same selector?
- c. Is this an example of "method overloading" or "method overriding"?
- d. What is the return type of the first message?
- e. What is the argument of the second message?

#### **Question 8**

Grady Booch defined an object to be a "thing that has behaviour, state and identity". Explain what the terms *thing*, *behaviour*, *state* and *identity* mean in this context.

#### **Question 9**

The following UML class diagram shows three classes. Use inheritance to refactor the three classes so that each attribute is defined in exactly one place. Represent the refactored structure using a UML class diagram.

| Parrot                                      |  |
|---------------------------------------------|--|
| name<br>age<br>weight<br>length<br>wingSpan |  |

| Horse                                                                       |
|-----------------------------------------------------------------------------|
| name<br>age<br>weight<br>length<br>height<br>foreLegLength<br>hindLegLength |
|                                                                             |

| Elephant                                                                         |
|----------------------------------------------------------------------------------|
| name age weight length height foreLegLength hindLegLength trunkLength tuskLength |

- a. Explain the difference between an object's *private* and *public interface*. (2 marks)
- b. The following UML class diagram describes a class called Time. Study the diagram and answer the questions that follow it.

-hour: Integer
-minute: Integer

+getHour(): Integer
+getMinute(): Integer
+setHour(newHour: Integer)
+setMinute(newMinute: Integer)

- i. How many private attributes does the Time class have? (1 mark)
- ii. How many public attributes does the Time class have? (1 mark)
- iii. What is the selector of the setMinute operation? (1 mark)
- iv. What is the visibility of the getMinute operation? (1 mark)
- v. What is the signature of the setHour operation? (1 mark)
- c. Study the following UML class diagram and answer the questions that follow it.



- i. How many attributes does a Manager object have (assuming the diagram shows all of them)? (1 mark)
- ii. In the Manager class, is the getNetSalary operation *overloaded* or *overridden*? (1 mark)
  - iii. Is Manager a subclass or a superclass of Employee? (1 mark)

Define each of the following terms as used in the context of object-oriented software engineering and give an example of each.

- i. method selector
- ii. method signature
- iii. member visibility
- iv. public interface
- v. inheritance

[2 marks each]

#### **Question 12**

- a. Suppose the following method has been defined in UML:
- calcX(y : int) : float

Write down the *signature*, the *selector*, the *return type*, the *visibility* and the *parameter* of the calcX method. [5 marks]

b. Consider the following UML diagram and answer the questions that follow it.



- i. Is Employee a superclass or a subclass of Manager? [1 mark]
- ii. Which one of the following statements is true:
  - 1. The Employee class's getNetSalary() method is overridden in the Manager class
  - 2. The Manager class's getNetSalary() method is overridden in the Employee class.
  - 3. The Employee class's getNetSalary() method is overloaded in the Manager class.
  - 4. The Manager class's getNetSalary() method is overloded in the Employee class.

[2 marks]

c. Does inheritance increase or decrease coupling? Explain your answer. [2 marks]

Which **ONE** of the following is a benefit of keeping instance variables private?

- A. It makes code more reusable.
- B. It makes the interface of a class less dependent on its implementation.
- C. It makes code run faster.
- D. It means you have to write less code.

#### **Question 14**

Study the following Java method definition and answer the questions that follow it.

```
public int multiply(int x, int y) {
    return x*y;
}
```

- a) What is the selector of this method?
- b) What is the return type of this method?
- c) What are the arguments of this method and what are their types?
- d) What is the signature of this method?
- e) What is the visibility of this method?

#### **Question 15**

Study the diagram below and answer the questions that follow it.



- a) What kind of UML diagram is this?
- b) What is the superclass of Parrot?
- c) What are the subclasses of Quadruped?
- d) What attributes does a Horse object possess?
- e) According to the diagram, is a Parrot a Quadruped?

Which of the following statements are true? (At least one of the statements is true.)

- A. A module's public interface is a superset of its private interface.
- B. A module's public interface is a subset of its private interface.
- C. The interface of a module encapsulates the module and hides implementational details that users don't need to know about.
- D. A module encapsulates its interface and exposes only those parts of its functionality that users need to be aware of.

## **Question 17**

Study the following diagram and answer the question below it.



Which of the following statements are true about this diagram? (At least one of the statements is true.)

- A. Triangle is a subclass of Shape and Triangle's display method overrides the display method in Shape.
- B. Square is a superclass of Shape and Square's display attribute overloads the display attribute in Shape.
- C. Circle is a subclass of Shape and Circle's display method overloads the display method in Shape.
- D. A variable whose type is Shape can be used to refer to a Circle.

Study the following diagram and answer the question below it.



Which of the following statements are true about this diagram? (At least one of the statements is true.)

- A. Employee is a subclass of Manager, Employee's getNetSalary method overloads Manager's getNetSalary method and Employee inherits the stockOptions attribute from Manager.
- B. Manager is a subclass of Employee, Manager's getNetSalary method overrides the getNetSalary method defined in Employee and the Manager class inherits the department attribute.
- C. Employee is a superclass of Manager, Manager inherits the stockOptions attribute from Employee and Employee's getNetSalary method overrides Manager's getNetSalary method.
- D. Manager is a subclass of Employee, Manager's getNetSalary attribute overloads Employee's getNetSalary attribute and Manager inherits the grossSalary method from Employee.

## **Question 19**

An object has been defined to be "a thing that has behavior, state and identity" (Booch, 1991). In this definition, explain what is meant by the terms *thing*, *behavior*, *state* and *identity*.

Which of the following statements are true? (At least one of the statements is true.)

- A. If we want to send the message msg() from object a to object b, then we write a.msg() in the definition of the class of object b.
- B. If *p* is a variable that refers to an object of class *x*, then *p* may refer to any object from any subclass of *x*.
- C. If a method in a class has the same signature as a method defined in that class' superclass, then this is an example of method overriding.
- D. If *A* is a subclass of *B*, then private instance variables defined in *B* are visible inside *A*.