4.1 Direct Products

7) -

4.2 The Fundamental Theorem of Finitely Generated Abelian Groups

1)

G	# of abelian
	groups
100	4
576	22
1155	1
42875	10
2704	10

2)

G	invariant factors
270	$2 \cdot 3^3 \cdot 5; 2 \cdot 3^2 \cdot 5, 3; 2 \cdot 3 \cdot 5, 3, 3$
9801	$3^{4} \cdot 11^{2}; 3^{4} \cdot 11, 11; 3^{3} \cdot 11^{2}, 3; 3^{3} \cdot 11, 3 \cdot 11; 3^{2} \cdot 11^{2}, 3^{2}; 3^{2} \cdot 11^{2}, 3, 3; 3^{2} \cdot 11, 3^{2} \cdot 11; 3^{2} \cdot 11, 3 \cdot 11, 3; 3 \cdot 11^{2}, 3, 3, 3; 3 \cdot 11, 3 \cdot 11, 3, 3$
320	$2^{6} \cdot 5; 2^{5} \cdot 5, 2; 2^{4} \cdot 5, 2^{2}; 2^{4} \cdot 5, 2, 2;$ $2^{3} \cdot 5, 2^{3}; 2^{3} \cdot 5, 2^{2}, 2; 2^{3} \cdot 5, 2, 2, 2; 2^{2} \cdot 5, 2^{2}, 2^{2};$ $2^{2} \cdot 5, 2^{2}, 2, 2; 2^{2} \cdot 5, 2, 2, 2, 2; 2 \cdot 5, 2, 2, 2, 2, 2$

3) (Given in same order as the invariant factors).

G	elementary divisors
270	(2,5,27);(2,3,5,9);(2,3,5)
9801	$(81,121); (11,11,81); (3,27,121); (3,11,11,27); \\ (9,9,121); (3,3,9,121); (9,9,11,11); (3,3,9,11,11); \\ (3,3,3,3,121); (3,3,3,3,11,11)$
320	(5,64); (2,5,32); (4,5,16); (2,2,5,16) (5,8,8); (2,4,5,8); (2,2,2,5,8); (4,4,4,5); (2,2,4,4,5); (2,2,2,2,4,5); (2,2,2,2,2,2,5)

- **4a)** The only pair of isomorphic groups is $\mathbb{Z}_9 \times \mathbb{Z}_4$ and $\mathbb{Z}_4 \times \mathbb{Z}_9$.
- **4b)** The only pair of isomorphic groups is $\{2^2, 2 \cdot 3^2\}$ and $\{2^2 \cdot 3^2, 2\}$.

4.4 Recognizing Direct Products

5) If $n \geq 5$, then the commutator subgroup S'_n of S_n is A_n .

Proof: Let $(a \ b \ c)$ be any 3-cycle in S_n , then $(a \ b \ c) = (a \ c)(c \ b)(a \ c)(c \ b) = (a \ c)^{-1}(c \ b)^{-1}(a \ c)(c \ b)$, and thus is a commutator in S_n . Since A_n is generated by the 3-cycles in S_n , we have that $A_n \subseteq S'_n$. Conversely, because $[S_n : A_n] = 2$, we have that S_n/A_n is cyclic and hence abelian, showing that $S'_n \subseteq A_n$ and thus $S'_n = A_n$.

7) Fix a prime p and a non-abelian group P with order p^3 , then P' = Z(P).

Proof: Since P is a p-group, we have that $Z(P) \neq \{e\}$, and since P is non-abelian, $|Z(P)| \neq p^3$. We also have that $|Z(P)| \neq p^2$, else |P/Z(P)| would have order p and thus be cyclic, additionally implying that P is abelian, a contradiction. Thus, it must be the case that |Z(P)| = p, which implies $|P/Z(P)| = p^2$, showing that P/Z(P) is abelian. Since $P/\{e\} \cong P$ is non-abelian, we have that Z(P) is the smallest normal subgroup of P whose quotient is abelian, thus proving that Z(P) = P'.

10) If G is a finite abelian group, then $G \cong S_1 \times \cdots \times S_n$, where each S_i is some Sylow subgroup.

Proof: Since G covered by the S_i , we have that $G = S_1 S_2 \cdots S_n$. Additionally, G is abelian, so each S_i is normal, and since $S_i \cap S_j = \{e\}$ for $i \neq j$, we have that $S_1 S_2 \cdots S_n \cong S_1 \times S_2 \times \cdots \times S_n$.