DIGITAL CIRCUITS

Week-5, Lecture-1 Boolean Algebra

Sneh Saurabh 29th August, 2018

Digital Circuits: Announcements/Revision

Decimal Number System: Base/Radix 10

■ In decimal system {0, 1, 2, ..., 9} digits are used

- A number is represented in general by a series of coefficients
- The position of the coefficients determines the power of 10 that the coefficient must be multiplied

```
\begin{array}{l} \geqslant a_4 a_3 a_2 a_1 a_0. \, a_{-1} a_{-2} \\ = a_4 \times 10^4 + a_3 \times 10^3 + a_2 \times 10^2 + a_1 \times 10^1 + a_0 \times 10^0 + a_{-1} \times 10^{-1} + a_{-2} \times 10^{-2} \\ \geqslant \text{Example: } 72451.29 \\ = 7 \times 10^4 + 2 \times 10^3 + 4 \times 10^2 + 5 \times 10^1 + 1 \times 10^0 + 2 \times 10^{-1} + 9 \times 10^{-2} \end{array}
```

- The decimal number system is said to be of *base* or *radix 10*
 - \triangleright Because it uses 10 digits $\{0, 1, 2, ..., 9\}$ and coefficients are multiplied by power of 10

Binary system or Base-2 system or Radix-2 system

■ In binary system {0, 1} digits are used

■ The position of the coefficients determines the power of 2 that the coefficient must be multiplied

```
a_{3}a_{2}a_{1}a_{0}. a_{-1}a_{-2}
= a_{3} \times 2^{3} + a_{2} \times 2^{2} + a_{1} \times 2^{1} + a_{0} \times 2^{0} + a_{-1} \times 2^{-1} + a_{-2} \times 2^{-2}
 \Rightarrow \text{Example: } (1101.11)_{2}
= (1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2})_{10}
= (8 + 4 + 1 + 0.5 + 0.25)_{10} = (13.75)_{10}
```

Base-r or Radix-r system

- In base-r system $\{0, 1, 2, ..., (r-1)\}$ digits are used. Beyond $9, \{A, B, C, ...\}$ symbols are used
- Example, digits for various base system:
 - \triangleright *Base* -4: {0, 1, 2, 3}
 - \triangleright *Base* 5: {0, 1, 2, 3, 4}
 - \triangleright Base -8 (Octal): $\{0, 1, 2, 3, 4, 5, 6, 7\}$
 - \triangleright Base 16 (Hexadecimal): {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
- The position of the coefficients determines the power of r that the coefficient must be multiplied
 - $\triangleright (a_4 a_3 a_2 a_1 a_0. a_{-1} a_{-2})_r$

$$= a_4 \times r^4 + a_3 \times r^3 + a_2 \times r^2 + a_1 \times r^1 + a_0 \times r^0 + a_{-1} \times r^{-1} + a_{-2} \times r^{-2}$$

> Example: (213.2)₈

$$= (2 \times 8^2 + 1 \times 8^1 + 3 \times 8^0 + 2 \times 8^{-1})_{10} = (128 + 8 + 3 + 2 \times 0.125)_{10} = (139.25)_{10}$$

Hexadecimal to decimal

Problem:

Convert the number $(FA)_{16}$ to decimal.

Solution:

$$(FA)_{16} = (15 \times 16^1 + 10 \times 16^0)_{10} = (250)_{10}$$

Conversion of a decimal number to base-r

- If a decimal number contains both the integer portion and the fraction part, then both these parts are treated differently
- Conversion of integer is done and conversion of fraction is done, and both results are combined

Integer part

Divide the number and all successive quotients by r and accumulate the remainders.

Conversion of a decimal number to binary

Problem:

Convert the decimal number 153 into binary (r = 2)

Answer:

$$(153)_{10} = (10011001)_2$$

Integer	Remainder	
153		
76	1	
38	0	
19	0	
9	1	
4	1	
2	0	
1	0	
0	1	

Conversion of a decimal number to Octal/Hexadecimal

Problem:

Convert the decimal number 153 into octal (r = 8)

Answer:

$$(153)_{10} = (231)_8$$

Integer	Remainder	
153		
19	1	
2	3	
0	2	

Problem:

Convert the decimal number 153 into hexadecimal (r = 16)

Answer:

$$(153)_{10} = (99)_{16}$$

Unsigned number representation

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Conversion of binary to Octal/Hexadecimal

Problem:

Convert the binary number $(10011001)_2$ into octal (r = 8)

- Form a group of three bits starting from right.
- Replace each group with corresponding octal digit
- Add extra zeroes on the left of MSB to make the number of digits as multiple of three

$$(010 \quad 011 \quad 001)_2$$

$$= (2 3 1)_8$$

Problem:

Convert the binary number $(10011001)_2$ into hexadecimal (r = 16)

- Form a group of **four** bits starting from right.
- Replace each group with corresponding hexadecimal digit
- Add extra zeroes on the left of MSB to make the number of digits as multiple of four

$$(1001 \quad 1001)_2$$

$$= (9 9)_{16}$$

Conversion of fraction in decimal to base-r

Fraction part.

Multiply the fractional part by r and accumulate the integer portion

Problem:

Convert the decimal number $(0.6875)_{10}$ into binary (r = 2)

Answer:

$$(0.6875)_{10} = (0.1011)_2$$

Problem:

Convert the decimal number $(153.6875)_{10}$ into binary (r = 2)

	Integer		Fraction
0.6875×2	1		0.375
0.375×2	0		0.75
0.75×2	1		0.5
0.5×2	1		0

Answer:

 $(153.6875)_{10} = (10011001.1011)_2$

Addition of unsigned numbers: 2 bits

 Addition of binary numbers is similar to decimal numbers, except that individual digits can take only 0 and 1

		Carry	Sum
X	У	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

A circuit which implements the addition of only two bits is known as *Half Adder (HA)*

Addition of unsigned numbers: Multiple bits

- Each pair is added, similar to two-bits
- At bit position i, carry-in from bit position (i-1) can come

Generated carries
$$\longrightarrow$$
 1 1 1 0

$$X = x_4 x_3 x_2 x_1 x_0 \qquad 0 1 1 1 1 \qquad (15)_{10}$$

$$+ Y = y_4 y_3 y_2 y_1 y_0 \qquad + 0 1 0 1 0 \qquad + (10)_{10}$$

$$S = s_4 s_3 s_2 s_1 s_0 \qquad 1 1 0 0 1 \qquad (25)_{10}$$

- For each bit position i, the addition involves bits x_i and y_i and carry-in c_i {except for the first bit}
- For each bit position sum s_i and carry for the next stage c_{i+1} are computed

Addition of unsigned numbers: Full Adder

c_i	x_i	y_i	c_{i+1}	s_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

$$s_{i} = c_{i}'x_{i}'y_{i} + c_{i}'x_{i}y_{i}' + c_{i}x_{i}'y_{i}' + c_{i}x_{i}y_{i}$$

$$= c_{i}'(x_{i}'y_{i} + x_{i}y_{i}') + c_{i}(x_{i}'y_{i}' + x_{i}y_{i})$$

$$= c_{i}'(x_{i} \oplus y_{i}) + c_{i}(x_{i} \oplus y_{i})'$$

$$= x_{i} \oplus y_{i} \oplus c_{i}$$

N-bit adder

- To add two unsigned numbers, circuit is designed similar to what is done in hand-calculation
- Least Significant Bit (LSB) is on the right and Most Significant Bit (MSB) is on the left
- Bits are added starting from right using Full Adders
- Carry bits propagate from right to left

Signed Number Representation in Binary

- Positive numbers are represented by positional number system (as explained)
- Negative numbers can be represented in three ways:
 - 1. Sign-and-magnitude
 - 2. 1's complement
 - 3. 2's complement
- Sign is represented by the leftmost bit

