Organizačné poznámky

- Domáca úloha 2 bude zverejnená zajtra, dátum odovzdania 4.12. 22:00
 Informatici budú implementovať algoritmus, ktorý bude preberaný budúci týždeň na cvičeniach
- Nezabudnite na prvé stretnutie ohľadom journal clubu
 (najneskôr 22.11., osobne alebo online).

 Pred stretnutím oznámte čas a miesto do diskusie na Moodli
 Po stretnutí napíšte krátku správu v Moodli
 (kto sa zúčastnil, čo sa dohodlo, či sú nejaké problémy, stačí pár viet)

Komparatívna genomika

Tomáš Vinař 14.11.2024

Komparatívna genomika

- Štúdium evolúcie genómov
 - Mutácie jednotlivých báz DNA (táto prednáška)
 - Krátke inzercie a delécie
 - Väčšie udalosti: prestavby genómu, duplikácie
- Typy mutácií:
 - Neutrálne
 - Škodlivé (deleterious)
 - ⇒ Purifikačný výber (purifying selection)
 - Prospešné (advantageous)
 - ⇒ Pozitívny výber (positive selection)
- Na základe porovnávania genómov chceme nájsť oblasti s nezvyčajnou evolučnou históriou (zachovávanie dôležitých funkcií, vývoj nových funkcií)

Komparatívna genomika

 Zostavíme viacnásobné zarovnania genómov (zarovnané miesta by mali pochádzať z tej istej sekvencie spoločného predka)

 Metódy: Kombinujeme techniky na anotáciu (HMM) a pravdepodobnostné modely evolúcie

Príklad 1: Hľadanie funkčných oblastí sekvencií

Dôsledky purifikačného výberu:

- Funkčné časti sekvencie zostávajú zachované, menia sa pomalšie
- Nefunkčné sekvencie sa vyvíjajú rýchlejším tempom
- Príklad: gény kódujúce proteíny, porovnanie človek myš
 - kódujúce časti: 85% zhoda (zarovnanie na 98% dĺžky)
 - intróny: 69% zhoda (zarovnanie na 48% dĺžky)
- Úloha: Hľadáme nadmerne dobre zachované sekvencie
- Veľká časť bude zodpovedať známym funkčným elementom (kódujúce gény, regulačné regióny, a pod.)
- Zachované sekvencie ktoré sa neprekrývajú so známymi funkčnými elementami: zaujímavé objekty pre výskum

Opakovanie: hľadanie génov

Úlohou je nájsť polohu génov v genóme a ich exónovú štruktúru.

Vytvoríme skrytý Markovovský model (HMM), ktorý vie generovať sekvencie a ich anotácie podobné skutočným.

Pýtame sa, ktorá anotácia je najpravdepodobnejší pár k danej sekvencii.

Opakovanie: pravdepodobnostné modely evolúcie

Strom môžeme chápať ako jednoduchý generatívny model

- \bullet Pre hranu z Y do X dĺžky t možno pravdepodobnosť mutácie spočítať použitím evolučného modelu, napr. Jukes-Cantor: $\Pr(A \xrightarrow{t} C) = \tfrac{1}{4}(1 e^{-\frac{4}{3}\alpha t})$
- Pre celý strom $\Pr(G, H, C, E, O, A1, \dots, A4) = \Pr(A1) \cdot \Pr(A1 \xrightarrow{t_1} A2) \cdot \Pr(A1 \xrightarrow{t_2} A4) \cdot \Pr(A2 \xrightarrow{t_3} A3) \cdot \Pr(A2 \xrightarrow{t_4} C) \cdot \Pr(A3 \xrightarrow{t_5} G) \cdot \Pr(A3 \xrightarrow{t_6} H) \cdot \Pr(A4 \xrightarrow{t_7} E) \cdot \Pr(A4 \xrightarrow{t_8} O)$

PhastCons: detekcia dobre zachovaných sekvencií

Fylogenetické HMM: kombinácia HMM a fylogenetického stromu.

	TCGC	GACATATACGA	< _
$\mathbf{X} =$	TTGG	GGCATGTGGGT	
	AGCA	GACGTCCGCAA	

- Dva stavy: zachovaná sekv., neutrálna sekv.
- V každom stave generujeme celý stĺpec zarovnania
- Zachovaná sekvencia má kratšie hrany stromu, teda menšia divergencia sekvencií

Použitie fylogenetického HMM

- Model určuje rozdelenie pravdepodobnosti cez zarovnania a anotácie
 (tu: anotácia = označenie zachovaných sekvencií)
- Pre dané zarovnanie hľadáme najpravdepodobnejšiu anotáciu
- Kombinácia Viterbiho a Felsensteinovho algoritmu

Výsledky celogenómovej aplikácie PhastCons-u

Zarovnania genómov človeka, myši, sliepky, fugu

Fylogenetické HMM pre hľadanie génov

- Použijeme stavy z hľadača génov
- Pre každý stav máme evolučný model (maticu rýchlostí, dĺžky hrán)
- Trojperiodickosť frekvencií mutácií pomáha nájsť gény

Ako veľmi pomôžu zarovnania zlepšiť presnosť

	Exóny		Gény	
Program	sn	sp	sn	sp
AUGUSTUS (1 genóm)	52%	63%	24%	17%
NSCAN (zarovnanie)	68%	82%	35%	37%

Guigo et al 2006, evaluácia na 1% l'udského genómu

Genetický kód

```
Ala / A GCT, GCC, GCA, GCG
                                     Leu / L
                                              TTA, TTG, CTT, CTC, CTA, CTG
Arg / R CGT, CGC, CGA, CGG, AGA, AGG Lys / K
                                              AAA, AAG
Asn / N AAT, AAC
                                      Met / M
                                              ATG
Asp / D GAT, GAC
                                      Phe / F
                                              TTT, TTC
Cys / C TGT, TGC
                                     Pro / P
                                              CCT, CCC, CCA, CCG
Gln / Q CAA, CAG
                                     Ser / S
                                              TCT, TCC, TCA, TCG, AGT, AGC
Glu / E GAA, GAG
                                      Thr / T
                                              ACT, ACC, ACA, ACG
Gly / G GGT, GGC, GGA, GGG
                                      Trp / W
                                              TGG
His / H CAT, CAC
                                      Tyr / Y
                                              TAT, TAC
Ile / I
        ATT, ATC, ATA
                                      Val / V
                                              GTT, GTC, GTA, GTG
START
        ATG
                                      STOP
                                              TAA, TGA, TAG
```

Príklad 2: Hľadanie génov pod vplyvom pozitívneho výberu

- Pozitívny výber = proces, ktorým sa v genóme ustália
 prospešné mutácie
- Neobvykle vysoké množstvo mutácií, ktoré by mohli súvisieť so zmenou funkcie
- V rámci génov, ktoré kódujú proteíny:
 - Synonymné mutácie nemenia zakódovanú aminokyselinu napr. ACA (Thr) ⇒ ACT (Thr)
 - Nesynonymné mutácie menia zakódovanú aminokyselinu napr. ACA (Thr)

 AAA (Lys)
- Vytvoríme pravdepodobnostný model evolúcie, ktorý bude rozlišovať synonymné a nesynonymné mutácie ⇒ identifikácia sekvencií s neobvykle vysokým podielom nesynonymných mutácií

Od Jukes-Cantorovho modelu ku všeobecnejším modelom mutácií

- Jukes-Cantor predpokladá, že každá mutácia rovnako pravdepodobná
- ullet Všeobecnenší model: zavedieme μ_{xy} rýchlosť substitúcie z bázy x na bázu y
- Matica rýchlostí (substitution rate matrix)

$$\begin{pmatrix} -\mu_A & \mu_{AC} & \mu_{AG} & \mu_{AT} \\ \mu_{CA} & -\mu_C & \mu_{CG} & \mu_{CT} \\ \mu_{GA} & \mu_{GC} & -\mu_G & \mu_{GT} \\ \mu_{TA} & \mu_{TC} & \mu_{TG} & -\mu_T \end{pmatrix}$$

Pre daný čas t, môžeme vypočítať pravdepodobnosť každej substitúcie z bázy x na bázu y (transition probabilities): $\Pr(x \stackrel{t}{\to} y)$

Znižovanie počtu parametrov — HKY matica

Hasegawa, Kishino a Yano

$$\begin{pmatrix} -\mu_A & \pi_C & \kappa \pi_G & \pi_T \\ \pi_A & -\mu_C & \pi_G & \kappa \pi_T \\ \kappa \pi_A & \pi_C & -\mu_G & \kappa \pi_T \\ \pi_A & \kappa \pi_C & \pi_G & -\mu_T \end{pmatrix} \qquad \mu_{x,y} = \begin{cases} \kappa \pi_y & \text{ak } x \Leftrightarrow y \text{ je transícia} \\ \pi_y & \text{ak } x \Leftrightarrow y \text{ je transverzia} \end{cases}$$

- ekvilibrium: frekvencie $\pi_A, \pi_C, \pi_G, \pi_T$
- ullet rozlišujeme **tranzície** $C\Leftrightarrow T, A\Leftrightarrow G$ a **transverzie** $\{C,T\}\Leftrightarrow \{A,G\}$ tranzície sú κ krát častejšie (typicky $\kappa\approx 2$)
- Máme iba štyri parametre: $\pi_A, \pi_C, \pi_G, \kappa$ (π_T sa dopočíta do 1)

Substitučný model pre kodóny

Namiesto jednotlivých báz uvažujeme trojice

Rýchosť zmeny z kodónu i na kodón j:

$$\mu_{i,j} = \begin{cases} 0, & \text{ak sa } i,j \text{ líšia na} > 1 \text{ pozíciách,} \\ \kappa \pi_j, & \text{synonymné tranzície,} \\ \pi_j, & \text{synonymné transverzie,} \\ \omega \kappa \pi_j, & \text{nesynonymné tranzície,} \\ \omega \pi_j, & \text{nesynonymné transverzie.} \end{cases}$$

Príklad: $\mu_{AAC,GGC}=0,$ $\mu_{CTA,CTT}=\pi_{CTT},$ $\mu_{CTA,CCA}=\omega\kappa\pi_{CCA}$

Parametre: Frekvencie kodónov π_j , ω , κ

neutrálna evolúcia $\omega=1$, pozitívny výber $\omega>1$, purifikačný výber $\omega<1$

Aplikácia kodónového substitučného modelu

- Na základe celých genómov môžeme odhadnúť základné parametre modelu π_*, κ
- ullet Pre dané ω a t vieme spočítať vierohodnosť

$$L(\omega, t) = \Pr(C, K \mid \omega, t)$$

ullet Sledujeme, ako sa mení $L(\omega) = \max_t L(\omega,t)$ pre rôzne hodnoty ω

Test pomerov vierohodností (Likelihood-ratio test)

- $L(\omega)$ môže byť najväčšie pre $\omega>1$, ale môže to byť spôsobené len štatistickou varianciou v dátach \Rightarrow potrebujeme štatistický test
- Spočítame vierohodnosť $L_A = \max_{\omega < 1} L(\omega)$
- Spočítame vierohodnosť $L_B = \max_{\omega} L(\omega)$ (bez obmedzenia ω)
- ullet Vždy platí $L_B \geq L_A$
- Ak skutočné $\omega < 1$, $L_A \approx L_B$ (nulová hypotéza) nás zaujímajú prípady $L_B >> L_A$ \Rightarrow gén pod vplyvom pozitívneho výberu (alt. hypotéza)

Za predpokladu, že $\omega < 1$, platí $2 \log(L_B/L_A) pprox \chi_1^2$

 \Rightarrow možno priradiť P-hodnotu nulovej hypotéze $\omega < 1$

Hľadanie génov pod vplyvom pozitívneho výberu: Zhrnutie

- Nájdeme zarovnanie toho istého génu z dvoch organizmov (na úrovni kodónov)
- Odhadneme základné parametre kodónového modelu na základe porovnania celých genómov
- ullet Parameter ω modeluje selekciu
- Spočítame vierohodnosť $L_A = \max_{\omega < 1} L(\omega)$ a vierohodnosť $L_B = \max_{\omega} L(\omega)$
- Na základe štatistiky $2\log(L_B/L_A)$ priradíme P-hodnotu nulovej hypotéze $\omega < 1$
- Gény s malou P-hodnotou sú pod vplyvom pozitívneho výberu

"Jednoducho" rozšíriteľné na porovnanie viacerých organizmov

$$\Pr(A, H, C, M \mid \omega, t_H, t_C, t_M) =$$

$$\pi_A \cdot \Pr(A \stackrel{t_H}{\to} H) \cdot \Pr(A \stackrel{t_C}{\to} C) \cdot \Pr(A \stackrel{t_M}{\to} M)$$

Zbavíme sa ancestrálnych sekvencií:

$$\Pr(H, C, M \mid \omega, t_H, t_C, t_M) = \sum_{A} \Pr(A, H, C, M \mid \omega, t_H, t_C, t_M)$$

Vierohodnosť ω :

$$L(\omega) = \max_{t_H, t_C, t_M} \Pr(H, C, M \mid \omega, t_H, t_C, t_M)$$

- Existuje program PAML, ktorý takúto vierohodnosť počíta
- ullet K dispozícii zložitejšie modely, napr. s meniacim sa ω v rámci génu

Funkčné kategórie obohatené o gény s pozitívnym výberom

Defense: cellular defense response, antigen processing and presentation, response to virus, response to bacterium

Immunity: adaptive immune response, adaptive immune response somatic recomb, lymphocyte mediated immunity, immunoglobulin mediated immune response, B cell mediated immunity, innate immune response, complement activation alternative pathway, regulation of immune system process, positive regulation of immune response, humoral immune response, complement activation classical pathway, humoral immune response circulating immunoglob, complement activation, activation of plasma proteins mute inflam resp, akute inflammatory response, response to wounding

Sensory perception: sensory perception of taste, G-protein coupled receptor protein signaling pathway, neurological process, sensory perception of chemical stimulus, sensory perception of smell

Viacej genómov pomáha vylepšiť účinnosť testov

Pozitívny výber v duplikovaných génoch

Zhrnutie

Prirodzený výber má významnú úlohu v evolúcii

Purifikačný výber:

- Zachované regióny majú s veľkou pravdepodobnosťou nejakú funkciu
- Pri hľadaní génov berieme do úvahy aj typické mutácie kodónov

Pozitívny výber:

- Pozitívny výber v génoch sa prejavuje veľkým pomerom nesynonymných zmien (evolúcia na proteínovej úrovni)
- Zduplikované gény sú častejšie pod vplyvom pozitívneho výberu
- Poľovačka pokračuje: hľadáme gény spôsobujúce charakteristické črty človeka
- Metódy: evolučné modely, fylogenetické HMM, test pomerov vierohodností