

Esteira de implementação Produtização

Todo o conteúdo deste documento está relacionado a direito autoral e é de circulação restrita, porquanto de propriedade exclusiva da Fundação Instituto Nacional de Telecomunicações (CNPJ 24.492.886/0001-04), protegido por força das disposições da Lei n.º 9.610/1998. A utilização deste material sem prévia e expressa autorização da proprietária constituirá infração à lei, com repercussões tanto na esfera civil quanto criminal.

Esteira de implementação

- Introdução à Implantação de Modelos de IA
 - Pipelines de Aprendizado de Máquina
 - Empacotamento do modelo
 - Escolhendo a Infraestrutura de Deploy
 - Utilização de APIs com modelos de IA
 - Gerenciamento de Recursos
 - Garantindo a reprodutibilidade de um modelo utilizando Container
 - Monitoramento e Logging de Modelos

Apesar de tudo que a IA, principalmente *Machine Learning*, se tornou nos anos recentes, pouca discussão é focada no chamado *Production Machine Learning*.

Trazer ML para produtos e aplicações! A área cobre <u>TUDO</u> o que vai além de simplesmente treinar um modelo de Aprendizado de Máquina.

É comum (muito comum) associar todos os conceitos de Aprendizado de Máquina no contexto acadêmico ou de pesquisa, onde tipicamente temos:

- 1. Dataset, geralmente já definido e organizado
- **2. Treinamento** e **avaliação** dos resultados *Resultado*: modelo que faz uma boa predição

Em Production Machine Learning somente o modelo não é suficiente.

Sobre "Produção", as aplicações serão:

- 1. Implementadas
- 2. Mantidas
- 3. Melhoradas

Há diferenças consideráveis entre <u>ML em ambiente **não** produção</u> e <u>ML em ambiente produção</u>. Vamos aos detalhes...

ML em ambiente não produção	ML em ambiente produção
Tipicamente, usa dataset estático	Dados reais, dinâmicos e com "shifting"
Objetivo: melhor acurácia sobre o dataset	Objetivo: prioridades . Latência, <i>fairness</i> , boa interpretabilidade, acurácia aceitável, custo
Ajuste e treinamento para atingir um resultado ótimo	Monitoramento contínuo, assessment e novos treinamentos
Interpretabilidade e fairness	Interpretabilidade e fairness, reforçado!
<u>Desafio:</u> encontrar o modelo com melhor acuraria	<u>Desafio:</u> encontrar o modelo com melhor acurácia considerando todos os requisitos de sistema para operar o modelo em produção

... considerando todos os requisitos de sistema para operar o modelo em produção:

- 1. Métodos de Pré-Processamento de dados
- 2. Setups para treinamento do modelo de forma paralelizada
- 3. Análise do modelo possível de repetição
- 4. Implementação do modelo de forma escalável

Ao final: atingir máximo desempenho ao custo mínimo.

- Monitoramento contínuo do desempenho do modelo, inserção de novos dados, novos treinamentos se necessário e novas implementações para manter ou melhorar o desempenho.

Pipelines de Aprendizado de Máquina

O modelo já está em produção...

...novos dados está disponíveis para treinamento.

validação dos dados > pré-processamento > treinamento > análise > implementação

Importante:

- Foco em novos modelos **vs** manter modelos existentes
- Se um modelo está em produção e em uso, um ML Pipeline é geralmente necessário.

Pipelines de Aprendizado de Máquina

Passos em um ML Pipeline

Pipelines de Aprendizado de Máquina

Passos em um ML Pipeline

"Data changes often"

- Mudanças graduais
 - Mudança nos dados ou mudanças no mundo que afetam os dados. Tendências, sazonalidade, importância relativa de uma *feature*.
- Mudanças repentinas
 - Problemas de coleta de dados e problemas de sistema (conexão, atualizações, etc)

Data shift vs Concept drift

Pipelines de Aprendizado de Máquina

Passos em um ML Pipeline

O processo de rotulagem: dados precisam ser rotulados!

- Rotulagem direta
 - Um dataset pode ser continuamente criado
- Rotulagem humana
 - Avaliadores examinam os dados e determinam os rótulos. A qualidade pode ser afetada!
 - Especialização ou expertise

Pipelines de Aprendizado de Máquina

Passos em um ML Pipeline

Processo de validação dos dados

- Validar grande quantidade de dados
- Manutenção da "saúde" dos pipes de ML em produção
- Entender o dado e problemas relacionados a ele

Uma ferramentas muito útil: TFDV – Tensor Flow Data Validation

Pipelines de Aprendizado de Máquina

Passos em um ML Pipeline

Na etapa de Data Processing em ML, a engenharia de dados e seleção de feature são essenciais, especialmente para treinamento do modelo.

Importante: o pré-processamento feito durante o treinamento precisa ser feito durante a inferência do modelo. São operações:

- 1. Manipulação e limpeza de dados
- 2. Normalização
- 3. Codificação
- 4. Redução de dimensionalidade

5. Transformações em Imagem

Pipelines de Aprendizado de Máquina

Passos em um ML Pipeline

Na etapa de Data Processing em ML, a engenharia de dados e seleção de *feature* são essenciais, especialmente para treinamento do modelo.

Texto: uma classe de dados com uma quantidade grande de transformações para pré-processamento

- De forma geral, dados de texto devem ser convertidos em dados numéricos <u>Se dados categóricos</u>, técnicas como **one-hot encoding**.

<u>Se muitas categorias</u> ou cada valor de texto é único, um **vocabulário com índice e frequência** pode ser usado Se textos em NLP, técnicas como *embedding space*, *stemming and lemmatization*, TF-IDF e n-grams

Pipelines de Aprendizado de Máquina

Passos em um ML Pipeline

Na etapa de Data Processing em ML, a engenharia de dados e seleção de *feature* são essenciais, especialmente para treinamento do modelo.

Imagens: Similar ao texto, com transformações importantes

Rotações, inversões, redução ou aumento de escala, redimensionamento, corte de uma área específica, borramentos, detecções de borda, ou outras distorções fotométricas.

Pipelines de Aprendizado de Máquina

Passos em um ML Pipeline

Na etapa de Data Processing em ML, a engenharia de dados e seleção de feature são essenciais, especialmente para treinamento do modelo.

Em *Feature Selection*, o processo é feito para melhorar a qualidade do dado. Como? Determinando quais *features* do dado são relevantes para o aprendizado do modelo. Aumentar a qualidade do dataset!

São comuns: correlação, Wrapper Method, Embedded Method (regularização), tokenization...

Pipelines de Aprendizado de Máquina

TRAIN

Empacotamento do modelo

Um modelo antes de ir para produção precisa ser exportado. Diferentes formatos de exportação impactam diretamente na **velocidade de inferência**, compatibilidade com **infraestrutura** e uso de hardware especializado, como **GPU** ou **TPU**.

São modelos comuns:

- ONNX Open Neural Network Exchange (PyTorch, TensorFlow e Scikit-Learn)
- TorchScript (PyTorch)
- TensorRT (Otimizada para GPUs NVIDIA)

Empacotamento do modelo

ONNX

- Interoperabilidade entre frameworks. Ampla compatibilidade.
- Suporta aceleração e Compatível com hardware especializado

TorchScript

- Facilita inferência em dispositivos embarcados (mobile, IoT)
- Melhor desempenho que a inferência padrão do PyTorch

Tensor RT

- Reduz latência e otimiza o desempenho para execução com GPU Nvidia

Escolhendo a Infraestrutura de Deploy

On-Premise vs Cloud

A infraestrutura utilizada para implementação do modelo em produção envolve os recursos computacionais e a arquitetura usada para disponibilizar o modelo para consumo, por exemplo, usando API.

Para implementação *On-Premise*, ou Local, o modelo roda em servidores locais

- Data center privados
- Máquinas dentro da empresa

Escolhendo a Infraestrutura de Deploy

On-Premise vs Cloud

Vantagens *On-Premise*

- Controle total sobre hardware e segurança. São gerenciados e mantidos na empresa.
- Menor custo recorrente após a compra do hardware
- Baixa latência. Útil para aplicações em tempo real.
- Personalização, como ajuste fino de GPU, TPU, Rede, etc.

Desvantagem *On-Premise*

- Alto custo inicial para aquisição dos dispositivos
- Escalabilidade limitada
- Manutenção complexa e requer mão de obra especializada

Escolhendo a Infraestrutura de Deploy

On-Premise vs Cloud

Mesmo com a implementação local, o acesso ao modelo para inferência se dá por meio de API. <u>Exemplo:</u>

- 1. Um servidor com processamento adequado à aplicação (CPU ou GPU)
- 2. Modelo hospedado com TensorFlow Serving ou Triton Inference Server
- 3. API criada com ferramentas como *FastAPI* ou *Flask*
- 4. Monitoramento com Promethus e Grafana.

Todos os dispositivos da empresa que necessitam de inferência acessam o modelo via API interna.

Escolhendo a Infraestrutura de Deploy

On-Premise vs Cloud

A infraestrutura utilizada para implementação do modelo em produção envolve os recursos computacionais e a arquitetura usada para disponibilizar o modelo para consumo, por exemplo, usando API.

Para implementação *Cloud*, o modelo é hospedado (implementado) em um provedor de serviço de nuvem, como AWS, Google Cloud, Azure, etc). Pela definição do modelo *Cloud*, não há outra alternativa.

Escolhendo a Infraestrutura de Deploy

On-Premise vs Cloud

Vantagens Cloud

- Alta escalabilidade, sob demanda. Recursos dinâmicos.
- Menor complexidade de manutenção. Não há a necessidade de um time especializado na empresa. O provedor gerencia a infra
- Disponibilidade global com fácil acesso a partir de qualquer lugar

Desvantagem Cloud

- Custo recorrente. O uso pelos serviços de computação e tráfego é pago
- Latência variável com dependência com a localização do usuário
- Segurança e privacidade como um ponto de atenção

Escolhendo a Infraestrutura de Deploy

On-Premise vs Cloud

A implementação do modelo na nuvem, pode assumir algumas formas:

- 1. Máquinas virtuais (IaaS) Compute Engine, AWS EC2, Azure VMs...
 - Similar ao On-Premise.
- 2. Servidores de Inferência (Paas) Google AI Platform, AWS Sagemaker, Azure ML
- 3. Serverless AI (FaaS) Google Cloud Run, AWS Lambda, Azure Functions
 - Código executado sob demanda sem gerenciamento de servidores

Escolhendo a Infraestrutura de Deploy

On-Premise vs Cloud

Em projetos reais, a necessidade de cada empresa/projeto define a abordagem.

Projetos com inferência sensíveis são executadas localmente.

Projetos com inferências escaláveis são executadas na nuvem.

Escolhendo a Infraestrutura de Deploy

A decisão: CPU, GPU ou TPU?

Aceleração de Hardware é o termo utilizado para se referir ao uso de hardware de computação especialmente feito para executar um conjunto de funções, como aceleração de I/O ou aceleração de cálculos matemáticos com ponto flutuante.

Um GPU ou TPU são desenvolvidos para acelerar operações matemáticas matriciais.

Uso destes hardwares define o **treinamento** e a **inferência** de um modelo muito mais rápido quando executado em um CPU de propósito geral.

Utilização de APIs com modelos de IA

APIs são utilizadas para disponibilizar um modelo de IA para consumo externo (ao ambiente local). São úteis para que diferentes sistemas interajam com o modelo.

No contexto da IA, uma API é usada para expor o modelo treinado para que outros sistemas possam utilizar (inferência) em tempo real.

Utilização de APIs com modelos de IA

APIs são utilizadas para disponibilizar um modelo de IA para consumo externo (ao ambiente local). São úteis para que diferentes sistemas interajam com o modelo.

No contexto da IA, uma API é usada para expor o modelo treinado para que outros sistemas possam utilizar (inferência) em tempo real.

- Modelo treinado **implementado de forma centralizada**, acessado remotamente
- Modelo treinado **implementado em instâncias distribuídas** do seu modelo nos dispositivos próximos ao usuários final (mobile, *edge*, sistema embarcado)

Utilização de APIs com modelos de IA

Utilização de APIs com modelos de IA

Model Servers

Usuários do modelo necessitam fazer solicitações. Algumas ferramentas:

- Flask
- Django
- FastAPI
- TorchServer (PyTorch)
- TensorFlow Serving (TensorFlow)
- Kserve (Kubernetes)

Utilização de APIs com modelos de IA

Model Serving

As formas de um "servir" a um modelo treinado e implementado são: batch ou real-time

Em aplicações onde atrasos são toleráveis, um modelo pode ser usado para fornecer predições em "lote". Aplicações:

- Recomendação de produtos
- Análise de sentimento
- Previsão de demanda

Utilização de APIs com modelos de IA

Model Serving

As formas de um "servir" a um modelo treinado e implementado são: batch ou real-time

Em aplicações onde atrasos não são toleráveis, a solução é mais desafiadora.

Aplicar um modelo em tempo real implica em "espera" pelo cliente. Altos volumes de requisição e recursos de computação limitados agravam o cenário.

- Target marketing
- Bidding for ads
- Food delivery times
- Autonomous driving systems

Gerenciamento de Recursos

Os recursos requeridos para rodar seu modelo irá determinar quanto vai custar para colocar e manter seu modelo em produção.

Três áreas de interesse neste tópico:

- 1. Redução de dimensionalidade
- 2. Quantização de parâmetros de modelos e poda de modelos
- 3. Destilação de conhecimento para capturar conhecimento contido em *large models*

Gerenciamento de Recursos

Redução de Dimensionalidade

Hoje, armazenar dados se tornou mais rápido, fácil e a custo menor. Resultado: os *datasets* armazenados são, geralmente, com alta dimensão. <u>Lembre-se que dimensão está relacionado com a quantidade de *features* nos <u>dados.</u></u>

O acontece em uma rede treinada com um dataset que contém muitas features que são irrelevantes?

- Do ponto de vista dos pesos (parâmetros)
- E a consequência prática na utilização dos recursos

Gerenciamento de Recursos

Redução de Dimensionalidade

Dados coletados em sistema de métricas de um veículo, com 50 sensores.

- Um dado 50-dimensional, de alta dimensão

Imagens 50x50 pixels

- Um dado que envolve 2500 dimensões se grayscale, ou 7500 se RGB.

Aprendizado de Máquina é excelente para análise de alta dimensão! Muito superior à capacidade humana. # Aumentar a dimensionalidade demanda mais recursos: mais dimensões, mais poder computacional e mais dados para treinamento são necessários.

Gerenciamento de Recursos

Redução de Dimensionalidade

A pergunta de milhões: Quantas features são ideais para um problema de ML?

A resposta: não existe!

O valor ótimo depende de vários fatores, como volume de dados de treinamento, variabilidade do dado, modelo específico que está sendo usado.

Essencialmente 1: dados suficientes, com as melhores *features*, variedade suficiente nos valores destas *features*, e <u>informação preditiva suficiente nestas *features*.</u>

Essencialmente 2: maximizar o desempenho do modelo enquanto o simplifica o máximo possível

Gerenciamento de Recursos

Redução de Dimensionalidade

As abordagens possíveis são:

- 1. Seleção de *feature* manual
- 2. Algoritmo de seleção de *feature*
- 3. Algoritmo de redução de dimensionalidade
 - 1. O principal é o PCA Principal Component Analysis

Não são mutuamente exclusivas!

Gerenciamento de Recursos

Quantização e Poda

Objetivo: criar modelos que sejam os mais eficientes e acurados possível visando atingir o melhor desempenho ao menor custo.

Quantização significa ter uma representação equivalente funcional do modelo, usando parâmetros e cálculos com uma precisão menor.

- Redução da precisão, significa utilizar menos bits. **Aumenta** velocidade de execução e eficiência, mas **reduz** acurácia geral do modelo.
- De floating point para inteiro, principalmente relacionado aos parâmetros do modelo!

Gerenciamento de Recursos

Quantização e Poda

Objetivo: criar modelos que sejam os mais eficientes e acurados possível visando atingir o melhor desempenho ao menor custo.

A quantização pode ser feita durante o treinamento (quantization-aware)

A quantização pode ser feita no pós treinamento (post-training quantization).

Gerenciamento de Recursos

Quantização e Poda

Post-training

Technique	Benefits
Dynamic range quantization	4x smaller, 2x—3x speedup
Full integer quantization	4x smaller, 3x+ speedup
Float16 quantization	2x smaller, GPU acceleration

Model	Top-1 accuracy (original)		Top-1 accuracy (quantization-aware training)
Mobilenet-v1-1-224	0.709	0.657	0.70
Mobilenet-v2-1-224	0.719	0.637	0.709
Inception_v3	0.78	0.772	0.775
Resnet_v2_101	0.770	0.768	N/A

Model	Latency (original) (ms)	Latency (post-training quantized) (ms)	Latency (quantization-aware training) (ms)
Mobilenet-v1-1-224	124	112	64
Mobilenet-v2-1-224	89	98	54
Inception_v3	1130	845	543
Resnet_v2_101	3973	2868	N/A

Model	Size (original) (MB)	Size (optimized) (MB)
Mobilenet-v1-1-224	16.9	4.3
Mobilenet-v2-1-224	14	3.6
Inception_v3	95.7	23.9
Resnet_v2_101	178.3	44.9

Gerenciamento de Recursos

Quantização e Poda

O processo de poda de um modelo vista aumentar sua eficiência retirando partes que não contribuem substancialmente com os resultados.

Biologicamente, nosso cérebro poda conexões redundantes ou irrelevantes constantemente. A quantidade de conexões neuronais e neurônios que temos hoje é drasticamente menor do que quando nascemos.

Objetivo 1: menos parâmetros com menos conexões. Inferência mais rápida.

Objetivo 2: modelos mais complexos são mais passíveis de overfitting

Diferenças entre os ambientes: Desenvolvimento x Produção

Desenvolvimento	Produção		
Treinamento e teste em notebooks	Modelos servindo aplicações reais		
Dados estáticos e/ou limitados	Dados dinâmicos e fluxo contínuo		
Experimentação sem preocupação com latência e escalabilidade	Escalabilidade, latência, disponibilidade e segurança!		
Diferença nos ambientes (versão das bibliotecas, hardware, etc)			
Monitoramento para detectar problemas em tempo real			

Garantindo a reprodutibilidade de um modelo utilizando Container

Um modelo construído, treinado e testado, quando implementado, encontra diferentes hardwares e softwares. A padronização da implementação é difícil de ser garantida.

O modelo pode ser salvo e implementado utilizado um *container image* nos dispositivos *edge*, mesmo que com diferentes configurações.

Algumas vantagens:

- Compartilhamento de SO
- Não há diferenças, do ponto de vista da aplicação, estar em uma VM ou Container
- O framework Docker é largamente utilizado.

Garantindo a reprodutibilidade de um modelo utilizando Container

Garantindo a reprodutibilidade de um modelo utilizando Container

A utilização de container evita problemas com compatibilidade e facilita a implementação em servidores e em ambiente cloud.

Os passos comuns para utilização do Docker em uma inferência pode ser sumarizado como:

- 1. Criar um Dockerfile com definições do ambiente (python version, bibliotecas, diretórios, API)
- 2. Construir uma imagem Docker
- 3. Rodar o container e fazer inferências

Garantindo a reprodutibilidade de um modelo utilizando Container

Assim como já visto alguns slides atrás, a implementação pode ser local ou na nuvem.

Para cenários local, a implementação do container pode ser feita através da ferramenta *Docker Compose*, geralmente distribuída junto à solução *Docker Desktop*.

Em cenários nuvem, a implementação do container pode ser feita em Google Cloud Run ou AWS Lambda, também citados para inferência PaaS.

Monitoramento e Logging de Modelos

Por que monitorar um modelo de IA?

- 1. Ao longo do uso, o desempenho do modelo pode se deteriorar devido a dinâmica dos dados
- 2. Novos padrões nos dados tornam o modelo obsoleto
- 3. Falhas no sistema podem levar à indisponibilidade da API
- 4. O tempo de inferência pode aumentar, impactando a experiência do usuário

O monitoramento contínuo é necessário para modelos em produção. Detecção de mudanças no desempenho garante a correta execução dos modelos ao longo do tempo.

Monitoramento e Logging de Modelos

Tipos de Monitoramento de Modelos

- 1. Monitoramento de Desempenho
- 2. Monitoramento de Qualidade do Modelo
- 3. Monitoramento de Negócio

O que se pode analisar, de antemão, a partir dos tipos de monitoramento de modelos? Qual dos três tipos é o mais importante?

Monitoramento e *Logging* de Modelos

Monitoramento de Desempenho

Latência ou velocidade de inferência: tempo para processar uma solicitação

Uso de CPU/GPU/RAM: monitorar recursos computacionais utilizados

Taxa de operações: Apesar de fixo para o seu modelo construído é uma métrica importante

Taxa de Erros: identificar e quantizar falhas no sistema, como falhas de requisição

definição: FLOPS - Floating-Point Operations Per Second

É usada para determinar o desempenho de um computador ou quantidade de operações que um modelo realiza!

Monitoramento e *Logging* de Modelos

Monitoramento de Desempenho

Nvidia T4	

65 TFLOPS

GeForce RTX 4090 Até 191 TFLOPS

Model	size (pixels)	mAP ^{val} 50-95	Speed CPU ONNX (ms)	Speed T4 TensorRT10 (ms)	params (M)	FLOPs (B)
YOLO11n	640	39.5	56.1 ± 0.8	1.5 ± 0.0	2.6	6.5
YOLO11s	640	47.0	90.0 ± 1.2	2.5 ± 0.0	9.4	21.5
YOLO11m	640	51.5	183.2 ± 2.0	4.7 ± 0.1	20.1	68.0
YOLO11I	640	53.4	238.6 ± 1.4	6.2 ± 0.1	25.3	86.9
YOLO11x	640	54.7	462.8 ± 6.7	11.3 ± 0.2	56.9	194.9

Monitoramento e *Logging* de Modelos

Monitoramento de Qualidade

Estas métricas estão alinhadas com o que foi visto no material "Modelos com Imagens".

Acurácia / Precisão / Recall: monitoramento contínuo e identificação de quedas no desempenho Distribuição de dados de Entrada vs Treinamento: este monitoramento indica *Drift* relacionado ao dado Distribuição das previsões: apesar do dado de entrada não ter sofrido *Drift*, as inferências podem sofrer, indicando um *drift* do modelo

Monitoramento e *Logging* de Modelos

Monitoramento de Qualidade

Ferramenta: Drift – Evidently AI

Monitoramento e Logging de Modelos

Monitoramento de Negócio

Estas métricas não estão relacionadas "diretamente" com o modelo ou a implementação do mesmo. É uma análise de negócio, suportada pelo modelo.

Impacto nas métricas de negócio

- houve aumento de vendas devido a recomendações personalizadas?
- houve diminuição de atendimentos no call center, devido ao sistema de reconhecimento embarcado?
- houve...

Monitoramento e Logging de Modelos

Os logs detalhados de uma execução podem ser gerados/coletados utilizando algumas ferramentas específicas.

A ideia é acompanhar os dados de desempenho durante a execução em produção.

As métricas são coletadas em tempo real.

Prometheus + Grafana

São ferramentas open-source usadas para coletar, armazenar e consultar métricas em *endpoints HTTP*. Estas métricas são apresentadas em dashboards interativos (personalizados).

As métricas comuns: latência, uso de GPU, tempo de inferência

Visualizações: gráficos interativos

Atualização do modelo em produção

Caso o modelo tenha se degradado, no desempenho, novos dados mais recentes podem ser utilizados para um novo processo de treinamento. Uma nova versão do modelo é obtida e então utilizada em produção.

- 1. Monitoramento
- 2. Coleta de novos dados
- 3. Treinamento
- 4. Teste do novo modelo
- 5. Implantação

A etapa de implantação pode ser feita como um teste A/B, comparando os dois modelos em produção

inatel

inateloficial

ascominatel

inatel.tecnologias

company/inatel

Inatel

Inatel - Instituto Nacional de Telecomunicações Campus em Santa Rita do Sapucaí - MG - Brasil Av. João de Camargo, 510 - Centro - 37540-000 +55 (35) 3471 9200 Escritório em São Paulo - SP - Brasil WTC Tower, 18° andar - Conjunto 1811/1812 Av. das Nações Unidas, 12.551 - Brooklin Novo - 04578-903 +55 (11) 3043 6015