TD1 – Cartesian and monoidal categories

Samuel Mimram

samuel.mimram@cea.fr

22 September 2014

1 Categories and functors

- 1. Recall the definition of category and provide some examples (e.g. Set, Top, Vect, Grp).
- 2. Recall the definition of a functor and provide some examples.
- 3. Define the category **Cat** of categories and functors.

2 Cartesian categories

Suppose given a category C. A cartesian product of two objects A and B is given by an object $A \times B$ together with two morphisms

$$\pi_1: A \times B \to A$$
 and $\pi_2: A \times B \to B$

such that for every object C and morphisms $f:C\to A$ and $g:C\to B$, there exists a unique morphism $h:C\to A\times B$ making the diagram

commute. We also recall that a terminal object in a category is an object 1 such that for every object A there exists a unique morphism $f_A: A \to 1$. A category is cartesian when it has finite products, i.e. has a terminal object and every pair of objects admits a product.

- 1. Suppose that (E, \leq) is a poset. We associate to it category whose objects are elements of E and such that there exists a unique morphism between object a and b iff $a \leq b$. What is a terminal object and a product in this category?
- 2. Show that the category **Set** of sets and functions is cartesian.
- 3. Show that two terminal objects in a category are necessarily isomorphic.
- 4. Similarly, show that the cartesian product of two objects is defined up to isomorphism.
- 5. How could you show previous question using question 3.?
- 6. Show that for every object A of a cartesian category, the objects $1 \times A$, A and $A \times 1$ are isomorphic.

- 7. Show that for every objects A and B, $A \times B$ and $B \times A$ are isomorphic.
- 8. Show that for every objects A, B and C, $(A \times B) \times C$ and $A \times (B \times C)$ are isomorphic.
- 9. The notion of *coproduct* is dual to the notion of product. Show that **Set** has all coproducts and an initial object.
- 10. Show that the category **Rel** of sets and relations is cartesian.
- 11. We write **Vect** for the category of k-vector spaces (where k is a fixed field) and linear functions. Show that this category is cartesian. Given a basis for A and B, describe a basis for $A \times B$.
- 12. Show that the category **Cat** is cartesian.
- 13. Given a cartesian category \mathcal{C} , show that the cartesian product induces a functor $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$.
- 14. Given a category \mathcal{C} , we write \mathcal{C}^{op} for the category obtained from \mathcal{C} by reversing the arrows. Show that $\operatorname{Hom}_{\mathcal{C}}(-,-)$ induces a functor $\mathcal{C}^{op} \times \mathcal{C} \to \mathbf{Set}$.

3 (Co)monoids in cartesian categories

- 1. Generalize the definition of *monoid* to any cartesian category (a monoid in **Set** should be a monoid in the usual sense). When is a monoid commutative?
- 2. Generalize the notion of morphism of monoid.
- 3. A comonoid in \mathcal{C} is a monoid in \mathcal{C}^{op} . Make explicit the notion of comonoid.
- 4. Show that in a cartesian category every object is a comonoid.
- 5. Given a category C, shown that the category of commutative comonoids and morphisms of comonoids in C is cartesian.