WHAT IS CLAIMED IS:

1. A method for treating bladder disease in a subject, said method comprising:

administering to a subject a pharmaceutical composition comprising a therapeutic amount of a compound selected from the group consisting of: (1) a compound having the formula

wherein Q is a group of the formula

R and R^1 are each independently C_1 - C_4 -alkyl, R_1 is thienyl, phenyl, cyclopentyl or cyclohexyl and X is a physiologically acceptable anion; (2) a compound having the formula

wherein X^- is a physiologically acceptable ion; (3) a compound having the formula

wherein X is a physiologically acceptable ion; (4) a compound having the formula

$$S$$
 OH
 CO
 CO
 A

wherein R_1 is 2-thienyl or cyclopentyl, and A is 3α -(6,7-dehydro)-tropanyl methobromide, 3β -tropanyl methobromide, or 3α -(N-isopropyl)-nortropanyl methobromide; (5) a compound having the formula

wherein R is an optionally halo- or hydroxyl-substituted C_{1-4} alkyl group, R^1 is a C_{1-4} alkyl group, or R and R^1 together form a C_{4-6} alkylene group; X is a physiologically acceptable anion, and R_1 is H, OH, CH_2OH , C_{1-4} alkyl or C_{1-4} alkoxy; (6) a compound having the formula

$$\begin{array}{c|c}
 & X \\
 & X \\
 & C \\
 & C \\
 & C \\
 & C
\end{array}$$

wherein R is an optionally halo- or hydroxy-substituted C_{1-4} -alkyl group, R^1 is a C_{1-4} -alkyl group, or R and R^1 together form a C_{4-6} - alkylene group, X is a physiologically acceptable anion and R_1 is H, OH, CH_3 , CH_2OH , C_{1-4} -alkyl, or C_{1-4} -alkoxy; (7) a compound having the formula

$$\begin{array}{c|c} & & & \\ & & & \\ & & \\ S & & \\ & &$$

(8) a compound having the formula

$$(H_3C)_2HC$$
 CH_3 O CH_2OH CH_3

and (9) a compound having the formula

wherein X^{-} is a physiologically acceptable anion.

2. The method according to claim 1, wherein the compound has the formula

wherein Q is a group of the formula

R and R^1 are each independently C_{1^-4} -alkyl, R_1 is thienyl, phenyl, cyclopentyl or cyclohexyl, and X^- is a physiologically acceptable anion.

- 3. The method according to claim 2, wherein R is CH_3 , C_2H_5 , n- C_3H_7 , or i- C_3H_7 and R^1 is CH_3 .
 - 4. The method according to claim 3, wherein R_1 is thienyl.
- 5. The method according to claim 2, wherein X is Br or CH₃SO₃.
- 6. The method according to claim 1, wherein the compound has the formula

wherein X is a physiologically acceptable ion.

7. The method according to claim 1, wherein the compound has the formula

wherein X is a physiologically acceptable ion.

8. The method according to claim 1, wherein the compound has the formula

 R_1 is 2-thienyl or cyclopentyl, and A is 3α -(6,7-dehydro)-tropanyl methobromide, 3β -tropanyl methobromide, or 3α -(N-isopropyl)-nortropanyl methobromide.

- 9. The method according to claim 8, wherein R_1 is 2-thienyl and A is 3α -(6,7-dehydro)-tropanyl methobromide.
- 10. The method according to claim 8, wherein R_1 is 2-thienyl and A is 3β -tropanyl methobromide.

- 11. The method according to claim 8, wherein R_1 is cyclopentyl and A is 3α -(N-isopropyl)-nortropanyl methobromide.
- 12. The method according to claim 1, wherein the compound has the formula

$$\begin{array}{c}
O \\
Ph \\
Ph \\
R_1
\end{array}$$

$$\begin{array}{c}
O \\
R - N^+ - R^1
\end{array}$$

$$\begin{array}{c}
O \\
X
\end{array}$$

wherein R is an optionally halo- or hydroxyl-substituted C_{1-4} alkyl group, R^1 is a C_{1-4} alkyl group, or R and R^1 together form a C $_{4-6}$ alkylene group; X is a physiologically acceptable anion, and R_1 is H, OH, CH₃, CH₂OH, C_{1-4} alkyl or C_{1-4} alkoxy.

- 13. The method according to claim 12, wherein X is bromide.
- 14. The method according to claim 12, wherein R₁ is OH, CH₃, or CH₂OH.
- 15. The method according to claim 12, wherein R is methyl and R¹ is methyl, ethyl, n-propyl or i-propyl.
- 16. The method according to claim 1, wherein the compound has the formula

wherein R is an optionally halo- or hydroxy-substituted C_{1-4} -alkyl group, R^1 is a C_{1-4} -alkyl group, or R and R^1 together form a C_{4-6} - alkylene group, X is a physiologically acceptable anion and R_1 is H, OH, CH₂OH, C_{1-4} -alkyl, or C_{1-4} -alkoxy.

- 17. The method according to claim 16, wherein X is bromide.
- 18. The method according to claim 16, wherein R₁ is OH, CH₃, or CH₂OH.
- 19. The method according to claim 16, wherein R is methyl and R¹ is methyl, ethyl, n-propyl or i-propyl.
- 20. The method according to claim 1, wherein the compound has the formula

21. The method according to claim 1, wherein the compound has the formula

$$\begin{array}{c|c} \text{CH}_3\text{C})_2\text{HC} & \text{CH}_3 \\ \hline \\ \text{O} & \text{CH}_2\text{OH} \\ \hline \\ \text{C} & \text{CH} \\ \hline \end{array}$$

22. The method according to claim 1, wherein the compound has the formula

wherein X is a physiologically acceptable anion.

23. The method according to claim 22, wherein X is a bromide.