## SACCDMM - Curs 08 Standardul JPEG 2000

## Subband coding: motivation

- Coding with block-wise transform introduces visible blocking artifacts, as bit-rate decreases.
- Can we, somehow, overlap adjacent blocks,
  - thereby smoothing block boundaries,
  - but without increasing the number of transform coefficients?
- Solution: subband transform.

### Subbands vs. block-wise transform

- Blockwise transforms are a special case of subband decompositions with:
  - Number of bands m = order of transform N
  - Length of impulse responses of analysis/synthesis filters
     ≤ m
- Filters used in subband coders are **not** in general orthogonal.
- Linear phase is desirable for images.

## Subbands vs. block-wise transform (cont.)



## Transformata Wavelet discreta (DWT - DiscreteWavelet Transform)

- calculul coeficientilor Wavelet pentru orice scala -> costisitor
- aplica DWT set de scale si pozitii
- - permite realizarea unei analiza mult mai eficiente şi mai corecte
- putem implementa DWT folosind filtrele
  - prin descompunerea in subbenzi folosind două canale
    - conţinutul de joasă frecvenţă defineşte "identitatea" semnalului.
    - conţinutul de frecvenţă înaltă aduce îmbunătăţiri în descrierea semnalului.
  - Ex. vocea umană
    - eliminăm frecvențele înalte, aceasta se va auzi diferit dar va fi inteligibilă
    - eliminăm frecvenţele joase, vocea este posibil să fie distorsionată.



- reprezentarea cu filtre a DWT
  - avem două componente:
    - Aproximările (A) sunt componente cu factor de scală mare, adică componente de frecvenţă joasă
    - Detalii (D) componente cu factor de scală mic, adică componente de frecvenţă înaltă

#### **DWT**

- semnal original trecut prin DWT (trecut prin două filtre complementare)
  - => 2 ori numarul de esantioane (două componente: A aproximări, D detalii)
  - trebuie facuta o subesantionare => la ieşirea bancului de filtre se obține aceeași cantitate de informație ca la intrare
- la reconstructie se aplica operatiunea inversa



#### **DWT** bidimensionala

- Aplicarea transformatei wavelet unidimensionale discrete de două ori:
  - pe linii
  - pe coloane





| 3 | 2<br>4 | 5<br>7 | 8  |  |  |
|---|--------|--------|----|--|--|
| 9 |        |        | 10 |  |  |









### **JPEG 2000**

- Noiembrie 1997 evaluare a 20 algoritmi
- alegerea transformatei Wavelet transformare de baza
- JPEG 2000 6 parti
  - partea 1 modul de baza
    - complexitate minima
    - acopera 80% din aplicatii
    - defineste un format de fisier
    - devine standard international in Decembrie 2000
  - partea 2-6
    - extensii de algoritm
    - extensii de format de fisier
    - diferite stadii de dezvoltare

## JPEG 2000 "parts"

- partea 2
  - imbunatatirea perfomantelor
  - complexitate mare
  - IPR (intellectual property rights)
- partea 3
  - Motion JPEG 2000 MJP2
- partea 4
  - testare
- partea 5
  - implementare software
    - implementare JAVA grup JJ2000 (format din Canon, EPFL, Ericsson)
    - implementare C Image Power, University of British Columbia
- partea 6
  - fisier complex aplicatii de scanare de documente, fax

### JPEG 2000 – de ce?

- nu numai pentru a imbunatati compresia
- o noua reprezentare a imaginii
- extinderea domeniului de aplicabilitate
- facilitati:
  - imbunatatirea eficientei codarii
  - compresie culfara pierderi
  - reprezentari la rezolutii multiple
  - sisteme de tip "embedded bit-stream"
    - decodare progresiva
    - scalabilitate SNR .....
  - impartirea in blocuri (tile component tiling)
  - codarea ROI
  - rezistenta la erori
  - accesul si prelucrarea aleatoare a sirului codat
  - fisier mai flexibil

# 166 > 160200

## JPEG 2000 – Cum?

- DCT -> DWT
  - compactare energetica mai buna
  - decorelare
  - reprezentare imaginii la mai multe rezolutii
  - compresie cultara pierderi acelasi sir codat /
- codorul Huffman > codare aritmetica adaptiva (codorul MQ)
- planurile de biti sunt codate independent (blocurile de codare)
- introducerea sistemului de coordonate faciliteaza:
  - operatii de rotatii
  - inversare

## Paşii codării JPEG 2000:

- descompunerea imaginii din spatiul de reprezentare RGB într-un alt spatiu de reprezentare care realizeaza o decorelatie intre componenta de luminanta si cele de crominanta (ex. formatele) YUV, YC<sub>r</sub>C<sub>b</sub>, etc.)
- Componentele pentru reprezentarea imaginii sunt împărţite în blocuri de imagine elementare (tiling) - acest proces nu este obligatoriu
- se aplică transformata pe fiecare bloc elementar de imagine transformata folosită în standardul JPEG2000 este transformata
   Wavelet discretă 2D
- subbenzile de coeficienţi sunt cuantizate şi grupate în "blocuri de codare"
- planurile de biţi ale coeficienţilor dintr-un bloc de codare sunt codate entropic
- codarea poate fi implementată astfel încât să luăm în considerare ROI
- adăugarea elementelor de marcare suplimentare pentru reducerea erorilor la transmisie şi salvare
- obţinerea şirului codat JPEG 2000

## Aceşti paşi pot fi grupaţi în 3 etape mari:

- etapa de pre-procesare
- etapa de procesare de bază
- etapa de generare a şirului codat

## II. Arhitectura JPEG 2000

- pre-procesare
- transformata Wavelet
- cuantizorul uniform
- codorul aritmetic adaptiv nivelul 1 de codare
- organizarea sirului codat nivelul 2 de codare



## Pre-procesarea

- imagini (3) (RGB, YC<sub>r</sub>C<sub>b</sub>) ->  $(2^{14})$  (16384) componente
- valorile esantioanelor: intregi cu/fara semn esantion reprezentat cu/B
  - reprezentarea fara semn  $(0,2^B-1)$  sunt translatate simetric fata de zero (prin scaderea valorii  $2^{B-1}$ ) 128  $\Rightarrow$  [-128], 127
  - reprezentarea cu semn: (-2<sup>B-1</sup>, 2<sup>B-1</sup>-1) nu sunt translatate
- impartirea imaginii in zone drept. de dim. egale (exceptie marginile)
  - dimensiunea zonelor arbitrara (poate fi chiar toata imaginea)
  - fiecare zona este comprimata independent de celelalte (putand folosi un setul propriu de parametrii)
  - avantaj la codare cand memoria disponibila este redusa

## Pre-procesarea

- valoare esantion (fara semn)  $-2^{B-1}$  (simetrie fata de zero)
- esantioanele cu semn nu sunt "deplasate"
- transformarea spatiului de culoare
  - ICT irreversible color transform RGB YC<sub>b</sub>C<sub>r</sub> (loss) compresion)

$$\begin{pmatrix} Y \\ C_b \\ C_r \end{pmatrix} = \begin{pmatrix} 0.299 & 0.587 & 0.114 \\ -0.16875 & -0.33126 & 0.500 \\ 0.500 & -0.41869 & -0.08131 \end{pmatrix} \times \begin{pmatrix} R \\ G \\ B \end{pmatrix} = \begin{pmatrix} 1.0 & 0 & 1.402 \\ 1.0 & -0.34413 & 0.71414 \\ 1.0 & 1.772 & 0 \end{pmatrix} \times \begin{pmatrix} Y \\ C_b \\ C_r \end{pmatrix}$$

$$\begin{pmatrix} R \\ G \\ B \end{pmatrix} = \begin{pmatrix} 1.0 & 0 & 1.402 \\ 1.0 & -0.34413 & 0.71414 \\ 1.0 & 1.772 & 0 \end{pmatrix} \times \begin{pmatrix} Y \\ C_b \\ C_r \end{pmatrix}$$

RCT – reversible color transform RGB (lossless and lossy coding)

$$Y = \left\lfloor \frac{R + 2G + B}{4} \right\rfloor, \quad U = R - G,$$
 $V = B - G,$ 

$$Y = \left\lfloor \frac{R + 2G + B}{4} \right\rfloor, \quad U = R - G,$$
 $V = R - G$ 
 $C = Y - \left\lfloor \frac{U + V}{4} \right\rfloor, \quad R = U + G, \quad B = V + G.$ 

- Dacă pentru standardul JPEG se proceda la o operaţie de subeşantionare a componentelor de crominanţă C<sub>r</sub>, C<sub>b</sub> acest lucru nu este recomandabil pentru JPEG2000.
- Practic în JPEG2000 se realizează un prim pas al DWT pe componentele de grominanță.
  - Componentele LH, HL şi HH se elimină şi practic se obţine o subeşantionare cu 2 atât în plan vertical cât şi în plan orizontal.

### Transformata Wavelet Discreta (DWT)

- DCT pe blocuri -> DWT pe fiecare "tile" (sau pe intreaga imagine)
- caracteristici:
  - reprezentarea multi-rezolutie
  - eliminarea artefactelor (efect blocking) la comp. mare
  - folosirea filtrelor DWT intregi -> putem implementa:
    - codarea cu pierderi
    - codarea fara pierderi

#### 1D –DWT

 succesiune de perechi de filtre FTJ, FTS + subesantionare cu 2



- perechea FTS, FTJ analiza bancurilor de filtre
- FTJ pastreaza frecventele joase (imagine incetosata)
- FTS pastreaza frecventele inalte (contururi, texturi, detalii etc.)

### 1D-DWT multiplu

- primul pas DWT secventa low-pass este inca corelata
- se aplica DWT pe secventa low-pass dyadic
- DWT pe secventa high-pass nu aduce castig!
- JPEG 2000 (part 1) descompunerea dyadic
- JPEG 2000 (part 2) + descompunerea pe secventa highpass

#### DWT - 2D

- 1D DWT pe randuri (h<sub>0</sub>, h<sub>1</sub>)
- 1D DWT pe coloane (h<sub>0</sub>, h<sub>1</sub>)
- dupa 1 pas 2D DWT -> 4 subbenzi
  - subbanda LL
  - subbanda HL (H pe orizontala; L verticala)
  - subbanda LH (L orizontala; H verticala)
  - subbanda HH
- subbenzile AC adauga 128 pentru vizualizare mai buna

### Exemplu 2D –DWT

bancuri de filtre DWT





#### Implementarea DWT

- buffer pentru intreaga imagine
- impartirea imaginii in blocuri (tiles) reduce necesarul de memorie
- folosirea schemei de lift-are lifting scheme
  - reducerea cantitatii de memorie
  - reducerea complexitatii de calcul
  - rapididate de calcul
  - adoptata in JPEG 2000

#### Schema de lift-are

- impartirea semnalului de intrare
  - secvente de esantioane pare d<sub>i</sub><sup>0</sup>
  - secvente de esantioane impare s<sub>i</sub><sup>0</sup>
- alternarea pasilor:
  - predictie
  - updatare

## Schema de lift-are pentru filtru (5,3)

- predictia fiecare esantion par se exprima
- update fiecare esantion impar se exprima
- suficient un singur pas





#### Cuantizarea

- Se foloseşte o cuantizare uniformă pentru fiecare bandă de coeficienţi DWT.
- Această etapă induce pierderi în imaginea reconstruită.
- Fiecare coeficient  $a_b(u,v)$  al subbenzii b este cuantizat la valoarea  $q_b(u,v)$  conform formulei:

$$q_{b}(u,v) = semn \left[ a_{b}(u,v) \right] \cdot \left[ \frac{\left| a_{b}(u,v) \right|}{\Delta b} \right]$$

unde Db, reprezintă factorul de cuantizare pentru subbanda b

### Codarea entropica

- fiecare subbanda este codata separat
- fiecare subbanda este impartita in blocuri de codare
- fiecare bloc de codare este codat independent
- dimensiunea blocului de codare:
  - intreg, putere a lui 2
  - numarul maxim de coeficienti dintr-un bloc <=4096</li>
  - nivelul blocurilor de codare nu poate fi mai mic de 4





#### Avantaje ale codarii independente

- accesul aleator la imagine
- implementarea pe arhitecturi paralele
- functionalitati de prelucrare a imaginii
- rezistenta la erori
- eficienta controlului ratei de bit
- flexibilitate maxima pentru aranjarea ordinii de aparitie

## Codarea pe plane de biti

- coeficienti
  - nesemnificativi bitul este zero
  - semnificativi bitul este 1 – incepe codarea coeficientului



#### Codarea aritmetica si MQ

- codeaza o intreaga secventa de simboluri
- cuvantul de cod prin impartirea recursiva a (0,1) dupa probabilitati
- codare adaptiva

### Etapele codarii pe planuri de biti

- fiecare plan de biti este codat independent folosind 3 etape (subbitplanes) cu "intreruperea" sirului codat dupa fiecare etapa
- avantaje:
  - pentru optimizarea afisarii imaginilor la diferite rezolutii
  - minimizarea distorsiunilor care pot aparea in sirul codat
- pasul I "significance propagation"
  - codarea coeficientilor care au probabilitatea sa devina semnificativi
- pasul II "refinement"
  - imbunatatirea codarii coeficientilor semnificativi
- pasul III "cleanup"
  - codarea restului coeficientilor din plan care nu vor deveni (semnificativi)

#### Exemplu de codare



## Organizarea sirului codat in JPEG2000

- de ce?
  - acces aleator la imagine
  - ROI
  - scalabilitate
- impartirea imaginii

  - canale de culoare (componente) 46 (1 / VUV regiuni de frances :
  - regiuni de frecventa (subbenzi ale DWT)
  - regiuni spatiu-frecventa (blocurile de codare)

#### Alte structuri de date utilizate

- precinct colectie de blocuri de codare (aproximativ uniforme) din toate subbenzile cu acelasi nivel de descompunere DWT
- Fiecare precinct este împărţit în blocuri elementare de codare
- pachete este un segment continuu din sirul codat care contine un numar din nivelele de codare pe planuri de biti pentru fiecare bloc de codare din precinct
- pachetele din fiecare precinct la toate rezolutiile sunt grupate in layer-e

## Exemplu de structuri "precinct" si blocuri de codare



## Ordinea de aparitie a pachetelor din sirul codat

- progression order
- pentru o componenta "tile" 4 componente pentru identificarea pachetului:

  - rezolutia
  - nivelul (layer)
  - pozitia (precinct)
- pachetele pentru o componenta specifica sunt generate prin scanarea precinct-ului intr-o ordine bine stabilita

## Algoritmi de citire ordonata

- Layer-resolution-component-position LRCP
  - aplicatii de BD de imagini /
- Resolution-Layer-Component-Position RLCP
  - aplicatii client-server clientii acceseaza imagini la diferite rezolutii
- Resolution-Position-Component-Layer RPCL
  - aplicatii unde este necesara accesarea imaginilor la diferite rez. si poz.
- Position-Component-Resolution-Layer PCRL
  - imbunatatirea calitatii imaginii pentru o pozitie specifica
- Component-Position-Resolution-Layer CPRL
  - obtinerea celei mai bune calitati a unei imagini pentru o pozitie particulara

#### Performantele diferitilor algoritmi JPEG 2000

#### parametrii:

- eficienta codarii
- viteza
- complexitatea implementarii

#### compresia cu pierderi:

- dimensiunea componentei tile"
- dimensiunea blocului de codare
- filtre DWT
- nivelelor de descompunere DWT
- optiuni de codare entropica
- efectul ciclurilor multiple de codare

#### compresia fara pierderi:

- transformari de culoare reversibile
- optiuni ale codorului fara pierderi
- optiuni de codare entropica

#### Imbunatatiri ale standardului JPEG 2000

- definirea ROI
- scalabilitatea spatiala si dupa RSZ
- imunitate la erori
- posibilitatea de protejare IPR



- se pot defini diferite zone din imagine
- importanta mai mare sau mai mica a zonelor
- principiu:
  - translatarea coeficientilor din ROI
  - se codeaza mai intai planurile de biti MSB
  - apoi se codeaza planurile BG



#### Scalabilitatea

#### dupa RSZ

- pentru aplicatii unde este utila accesul la imagini cu multiple nivele de calitate
- aceeasi rezolutie spatiala la RSZ diferiti

#### spatiala

- aplicatii unde avem nevoie de imagini la rezolutii multiple dar la aceeasi calitate
- codare imagine de rezolutie mica + transmitere versiune de rezolutie superioara pentru imbunatatirea primei versiuni

#### Imunitate la zgomot

- pentru aplicatii pe sisteme mobile si Internet
- doua nivele de imunitate la zgomot:
  - la nivelul codorului entropic
    - folosirea blocurilor de codare
    - folosirea terminatoarelor in procesul de codare aritmetica
  - la nivelul blocului de formare a sirului de biti
    - folosirea pachetelor scurte
    - folosirea marker-lor de resincronizare

#### Comparatie JPEG <-> JPEG 2000

|                    |              |           |            |           | eto b   | ſσ |
|--------------------|--------------|-----------|------------|-----------|---------|----|
| Imagina            | Tin          | Rezoluție | Observatii |           | RSZ(dB) | (W |
| Imagine            | Tip          | Rezoluţie | Observații | Compresie | KSZ(GB) |    |
| Barb.bmp           | 8biţi/pixel  | 512×512   | - /        |           | -       |    |
| Barb_1_27_2000.jpc | 8biţi/pixel  | 512×512   | 1:27       | JPEG2000  | 29.22   |    |
| Barb_1_4_2000.jpc  | 8biţi/pixel  | 512×512   | 1:4        | JPEG2000  | 38.55   |    |
| Barb_1_27.jpg      | 8biţi/pixel  | 512×512   | 1:27       | JPEG      | 23.28   |    |
| Barb_1_4.jpg       | 8biţi/pixel  | 512×512   | 1:4        | JPEG      | 36.68   |    |
| Bogdan.bmp         | 24biţi/pixel | 256×256   | -          |           | -       |    |
| Bogdan_41_2000.jpc | 24biţi/pixel | 256×256   | 1:41       | JPEG2000  | 26.62   |    |
| Bogdan_7_2000.jpc  | 24biţi/pixel | 256×256   | 1:7        | JPEG2000  | 27.67   |    |
| Bogdan_41.jpg      | 24biţi/pixel | 256×256   | 1:41       | JPEG      | 23.05   |    |
| Bogdan_7.jpg       | 24biţi/pixel | 256×256   | 1:7        | JPEG      | 34.8*   |    |

#### JPEG <-> JPEG 2000



barb.bmp



barb\_1\_27\_2000.jpe



barb\_1\_27.jpg/



bogdan.bmp



bogdan\_1\_41\_2000.jpc



bogdan\_1\_41.jpg

## Comparaţie între schema de compresie bazată pe DCT şi cea bazată pe wavelet

