Data Science k-means algorithm

Estimating discrete latent factors

Stéphane Marchand-Maillet

Department of Computer Science

Master en Sciences Informatiques - Autumn semester

Table of contents

Motivation

Clustering

Hierarchical clustering *k*-means

Coordinate descent

k-means optimization

k-means algorithm Properties

. Toperties

k-means ++

What is the lecture about?

- \star Understand the geometrical and statistical properties of the given data
- Analyze the data and develop tools for this analysis
- Here, we specifically address the (unsupervised) approach of data clustering
- * Understand the assumptions made in the design of these tools
- ★ Work out the theory (in depth)

Reading: [2] (chap 9) and [6] (chap 21)

Note: Clustering is similar to (unsupervised) Classification, Density estimation and dual to Outlier detection

Introduction

- * Data does not generally arise from a simple Gaussian process (i.e, variations of a mean prototype)
- * The distribution of data generally shows non-uniformity with region of higher density.
- * Clustering is a unsupervised method that aims at discovering consistent groups of data, corresponding to peaks of data density
- * An often-used synonym for clustering (e.g in Signal Processing) is Vector Quantization (VQ) as "multi-dimensional quantization"

Clustering methods

There exists a large number of clustering methods, including:

- * Hierarchical Agglomerative Clustering
- * k-means [4], Lloyd's algorithm
- ⋆ Spectral clustering
- ⋆ Community detection
- * High-dimensional clustering
- * (see also) Self-Organizing Maps, Neural Gas

Research on clustering has been active since at least 50 years ([3] and a zillion other surveys on the topic \rightarrow find your own best)

Hierarchical Agglomerative Clustering

Iterative process:

- 1. Initialization: each data is a cluster
- 2. Find the closest pair of clusters
- 3. Merge these two clusters
- 4. Iterate from 2. until end
- ⇒ Data dendrogram

Closest pair of clusters (set distance):

- ⋆ Distance between centers
- ⋆ Max distance
- * Min distance
- ⇒ number of clusters unknown a priori

<u>Note</u>: Source: wikipedia / Iris data on UCI ML data repository

k-means strategy

- * The k-means clustering algorithm postulates a (Euclidean) metric (normed) space over the data
- * It seeks an unsupervised assignment of the data onto the clusters
- * It is a hard-assignment algorithm: the assignment is binary: each datum is assigned to one and only one cluster

Model

Given data $\mathcal{X} = \{x_i\}_{i \in \llbracket N \rrbracket} \subset \Omega \subseteq \mathbb{R}^D$, given $K \in \mathbb{N}^*$, define:

- * (latent) binary assignment variables: $Z = \{z_{ik}\}$ with $z_{ik} \in \{\text{false, true}\} \equiv \{0,1\} \text{ for all } i \text{ and } k$
- \star cluster representatives: $\pmb{M} = \{\pmb{\mu}_k\}_{k \in \llbracket K
 rbracket}$ with $\pmb{\mu}_k \in \mathbb{R}^D$ for all k
- * Parameters: $\theta = [M, Z]$

k-means loss

k-means seeks the following assignment:

$$\hat{\pmb{\theta}} = [\hat{\pmb{M}}, \hat{\pmb{Z}}] = \mathop{\mathsf{argmin}}_{\pmb{\theta} = [\pmb{M}, \pmb{Z}]} \mathcal{L}(\pmb{\theta}, \mathcal{X})$$

with loss function:

$$\mathcal{L}(\boldsymbol{\theta}, \mathcal{X}) = \sum_{i=1}^{N} \sum_{k=1}^{K} z_{ik} \|\mathbf{x}_i - \boldsymbol{\mu}_k\|_2^2$$

Since the assignment is binary, the exact optimization is NP-Hard ⇒ we seek an approximation by coordinate descent

Reminder: Coordinate descent algorithm

This is an alternative minimization algorithm: Given $\mathbf{f}: \mathbb{R}^D \mapsto \mathbb{R}$, we seek

$$oldsymbol{x}^* = \arg\min_{oldsymbol{x} \in \mathbb{R}^D} oldsymbol{f}(oldsymbol{x})$$

We define $f_d: \mathbb{R}^D \times \mathbb{R} \to \mathbb{R}$ with $d \in \llbracket D \rrbracket$ where

$$\mathbf{f}_d(\mathbf{x}, \mathbf{y}) = f([\mathbf{x}(1), \cdots, \mathbf{x}(d-1), \mathbf{y}, \mathbf{x}(d+1), \cdots, \mathbf{x}(D)]^{\mathsf{T}})$$

and alternatively seek the minimum:

$$\mathbf{x}^{(t+1)}(d) = \underset{\mathbf{y}}{\operatorname{argmin}} \mathbf{f}_d(\mathbf{x}^{(t)}, \mathbf{y})$$

Coordinate descent

Application to k-means

We alternate the optimization of Z and M

 $\mathcal{L}_{\mathbf{M}}(\mathbf{Z}) = \mathcal{L}(\boldsymbol{\theta}, \mathcal{X})|_{\mathbf{M} = \mathbf{M}}$

and

$$\mathcal{L}_{\mathbf{Z}}(\mathbf{M}) = \mathcal{L}(\boldsymbol{\theta}, \mathcal{X})|_{\mathbf{Z} = \mathbf{Z}}$$

We have:

$$\frac{\partial \mathcal{L}_{\mathbf{Z}}}{\partial \boldsymbol{\mu}_{k}} = -2 \sum_{i=1}^{N} z_{ik} (\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k})$$

 \Rightarrow the optimal representation M for a given assignment Z is reached at:

$$\frac{\partial \mathcal{L}_{\mathbf{Z}}}{\partial \boldsymbol{\mu}_{k}} = 0 \qquad \Rightarrow \qquad \boldsymbol{\mu}_{k} = \frac{\sum_{i=1}^{N} z_{ik} \boldsymbol{x}_{i}}{\sum_{i=1}^{N} z_{ik}}$$

Hence, cluster representatives are their centers of mass

Updating the assignment

Given a set of cluster representatives M, to minimize $\mathcal{L}_M(Z)$ Recall:

$$\mathcal{L}_{\boldsymbol{M}}(\boldsymbol{Z}) = \left[\sum_{i=1}^{N} \sum_{k=1}^{K} z_{ik} \|\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k}\|_{2}^{2} \right]_{\boldsymbol{M} = \boldsymbol{M}}$$

It is a sum of positive members \rightarrow we assign:

$$z_{ik} = 1$$
 only when $k = \underset{m}{\operatorname{argmin}} \| \mathbf{x}_i - \boldsymbol{\mu}_m \|_2^2$

 $(z_{ik} = 0 \text{ otherwise})$

Hence, $\mathcal{L}_{M}(Z)$ is minimum when every data is assigned to its nearest cluster representative

k-means algorithm

Given data $\mathcal{X} = \{x_i\}_{i \in \llbracket N \rrbracket}$ with $x_i \in \mathbb{R}^D$ and given $K \in \mathbb{N}^*$

- 1. Initialize cluster representatives $M^{(0)}$
- 2. Given cluster representatives $M^{(t)}$, assignment $Z^{(t)}$ associates each data to its nearest cluster representative
- 3. Given assignment $Z^{(t)}$, new cluster representatives $M^{(t+1)}$ are centers of mass of data assigned to the clusters
- 4. Repeat from step 2 until convergence

Convergence is attained when centers of mass do not move much, or when the assignment is stable

Note: Step 2 is similar to an Expectation step, and step 3 is similar to a Maximization step, considering hard-assignment (ref EM algorithm)

Properties

- * Since it performs alternate minimization of convex functions, it guarantees to decrease the loss at every iteration
- * Since there is a large (combinatorial) but finite number of assignment, the number of iterations is (large but) finite
- * Step 2 is equivalent to building the discrete Voronoi diagram of \mathcal{X} with centers M as seeds
- * Step 2 is similar to an Expectation step, and step 3 is similar to a Maximization step, considering hard-assignment (ref EM algorithm)
- → The (quality of the) result varies upon initialization
- → Randomization can be useful if computation is fast otherwise, use heuristic for better initialization

k-means ++

Since the exact optimization (optimal assignment) is NP-Hard, the k-means algorithm reaches a local optimum

The quality of the result depends on the initialization \rightarrow various strategies

k-means ++

The principle is to maximally spread the initial cluster representatives $M^{(0)}$ over the data [1]

This initialization is known to (i) produce better quality clusters (ii) speed up the convergence of k-means

- 1. Select the first cluster representative μ_1^0 randomly among the data ${\mathcal X}$
- 2. For all non selected x_i , compute $\Delta_i = \|x_i \mu_m^0\|_2^2$ the distance x_i and its nearest representative μ_m^0 among the k already selected representatives
- 3. Sample the next representative μ_{k+1}^0 from $\mathcal X$ with probability proportional to distribution Δ
- 4. Repeat from step 2 until K representatives are chosen

Note: this initialization strategy is used by several Data Science packages (MATLAB TM , Python $^{\textcircled{C}}$ SciKit Learn, R, ...)

k-means ++

K=3

Data sampling

Reading order: Random, FFT, k-means ++, HubHSP [5]

Data Science: k-means CStéphane Marchand-Maillet DS06 - 19

Summary

- * Clustering is part of the unsupervised family of data modeling techniques
- ★ k-means is one of the most popular such techniques
- * k-means performs a hard assignment
- * Sound optimization criterion (loss) but NP-Hard
- → the *k*-means algorithm seeks an approximate solution by coordinate descent (alternate minimization)
 - * Since the loss is not convex, the technique is sensitive to initialization
 - * *k*-means ++ is a prior heuristic for initialization that is efficient in practice
 - * Clustering can be constrained (with MUST-LINK and CANNOT-LINK constraints)

Example questions [mostly require formal – mathematical – answers]

- ⋆ Describe formally clustering
- In what sense is it an unsupervised technique?
- ★ Explain why k-means is intrinsically linked to the Euclidean metric?
- * Why do we say that *k*-means considers a Gaussian model for the clusters?
- ★ Is the k-means algorithm exact?
- * What are the principles to initialize k-means?
- * What is the coordinate descent algorithm?

② It is strongly advised to develop the algebra contained in this chapter

References I

- [1] David Arthur and Sergei Vassilvitskii. K-means++: The advantages of careful seeding. In *Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms*, SODA '07, pages 1027–1035, USA, 2007. Society for Industrial and Applied Mathematics.
- [2] Christopher M. Bishop. *Pattern Recognition and Machine Learning (Information Science and Statistics)*. Springer-Verlag, Berlin, Heidelberg, 2006. (available online).
- [3] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Comput. Surv., 31(3):264–323, September 1999.
- [4] J. MacQueen. Some methods for classification and analysis of multivariate observations. In *Proc. Fifth Berkeley Sympos. Math. Statist. and Probability* (*Berkeley, Calif., 1965/66*), pages Vol. I: Statistics, pp. 281–297. Univ. California Press, Berkeley, Calif., 1967.
- [5] Stephane Marchand-Maillet and Edgar Chávez. HubHSP graph: effective data sampling for pivot-based representation strategies. In 15th International Conference on Similarity Search and Applications, 2022.
- [6] Kevin P. Murphy. Probabilistic Machine Learning: an Introduction. MIT Press, 2022. (available online).