Code: 13BS1001

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, March 2015 ENGINEERING MATHEMATICS – I

(Common to All Branches)

Time: 3 hours

Max Marks:70

PART -A

Answer all questions

 $[10 \times 1 = 10M]$

- 1 (a) Form the differential equation from $y = a\cos 2x$ by eliminating the arbitrary constant.
 - (b) Solve y dx + x dy = 0.
 - (c) Evaluate $\frac{1}{(D-1)}(e^x)$.
 - (d) Find the solution of $\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$.
 - (e) Evaluate $\nabla(r)$.
 - (f) Evaluate $\int_{0}^{2} \int_{0}^{x^{2}} dy dx$.
 - (g) If $x = r\cos$, $y = r\sin$ find $\frac{\partial(x, y)}{\partial(r, y)}$
 - (h) Evaluate $\int_{0}^{2} \int_{0}^{3} \int_{0}^{2} dz dy dx$.
 - (i) If $u = x^y$ then find u/x.
 - (j) State Gauss-Divergence theorem.

PART-B

Answer one question from each unit

[5x12 = 60 M]

UNIT-I

- 2 (a) Find the differential equation for the family of circles with centers on the x-axis.
 - (b) Solve the differential equation $\frac{dy}{dx} + 2 x y = 2 e^{-x^2}$

[6+6=12M]

(OR)

- 3 (a) Solve the differential equation $\frac{dy}{dx} + x \sin(2 y) = x^3 \cos^2(y)$.
 - (b) The rate at which bacteria multiply is proportional to the instantaneous number present. If original number doubles in 2 hours, in how many hours will it triple. [6+6=12M]

UNIT-II

4 (a) Solve the initial value problem $y^{11} - y^1 - 2y = 3e^{2x}$, y(0) = 0 and $y^1(0) = -2$.

(b) Solve $(D^2 + 4D + 4) y = e^{-2x} \cos(x)$.

[6+6=12M]

(OR)

5 (a) Solve (D^4-81) y = cos(3x).

(b) Solve $(2D^2 + D) y = x^2$.

[6+6=12M]

UNIT-III

6 Evaluate $\int_{0}^{1} \int_{x=y^2}^{x=y} dxdy$ by changing the order of the integration.

[12M]

(OR

- 7 (a) Find the volume bounded by the paraboloid $x^2 + y^2 = az$, the cylinder $x^2 + y^2 = 2ay$ and the plane z = 0
 - b) Find the area lying inside the cardioid $r = a (1+\cos)$ and outside the circle r = a. [6+6=12M]

UNIT-IV

- 8 (a) Expand $f(x,y) = x^2y + 3y$ in powers of (x-1) and (y+2) by using Taylor's series.
- (b) Find the area bounded by the circles $r = 2 \sin\theta$ and $r = 4 \sin\theta$.

[6+6=12M]

(OR)

9 Evaluate
$$\int_{y=1}^{e} \int_{x=1}^{\log} \int_{z=1}^{y} \int_{z=1}^{e^{x}} \log(z) dz dx dy$$

[12M]

UNIT-V

10 (a) What is the greatest directional derivate of $u = x^2 + yz^2$ at the point (1, -1, 3).

(b) If
$$\overline{F} = (x + y + 1) i + j - (x + y) k$$
, find $\nabla \cdot (\nabla \times \overline{F})$.

[6+6=12M]

(OR)

11 Apply Green's theorem to evaluate $\int_{c} (x y + y^{2}) dx + x^{2} dy$ where c is bounded by y = x and $y = x^{2}$.