# Physics Notes for Class 12 chapter CHAPTER 3 CURRENT ELECTRICITY

#### **Transient Current**

An electric current which vary for a small finite time, while growing from zero to maximum or decaying from maximum to zero, is called a transient current.

#### **Growth of Current in an Inductor**

Growth of current in an inductor at any instant of time t is given by

$$I = I_o(1 - e^{-Rt/L})$$

where,  $I_o$  = maximum current, L = self inductance of the inductor and R = resistance of the circuit.

Here R / L =  $\tau$ , is called time constant of a L – R circuit.

Time constant of a L-R circuit is the time in which current in the circuit grows to 63.2% of the maximum value of current.

Decay of current in an inductor at any time t is given by

$$I = I_o e^{-Rt \, / \, L}$$

Time constant of a L-R circuit is the time in which current decays to 36.8% of the maximum value of current.

# **Charging and Discharging of a Capacitor**

The instantaneous charge on a capacitor on charging at any instant of time t is given by

$$q = q_o(1 - e^{-t/RC})$$

where  $RC = \tau$ , is called time constant of a R - C circuit.

The instantaneous charge on a capacitor in discharging at any instant of time t is given by  $q = q_o e^{-t/RC}$ 

Time constant of a R-C circuit is the time in which charge in the capacitor grows to 63.8% or decay to 36.8% of the maximum charge on capacitor.

#### **Alternating Current**

An electric current whose magnitude changes continuously with time and changes its direction periodically, is called an alternating current.

The instantaneous value of alternating current at any instant of time t is given by

 $I = I_0 \sin \omega t$ 

where, 10 = peak value of alternating current.

The variation of alternating current with time is shown in graph given below



Mean or average value of alternating current for first half cycle

$$I_{\rm m} = 2I_{\rm o} / \pi = 0.637 I_{\rm o}$$

Mean or average value of alternating current for next half cycle

$$I'_{m} = -2I_{o} / \pi = -0.637 I_{o}$$

Mean or average value of alternating current for one complete cycle = O.

Root mean square value of alternating current

$$I_v = I_{rms} = I_o \: / \: \sqrt{2} = 0.707 \: I_o$$

Where,  $I_o$  = peak value of alternating current.

Root mean square value of alternating voltage

$$V_{rms} = V_o / \sqrt{2} = 0.707 I_o = 0.707 V_o$$

#### Reactance

The opposition offered by an inductor or by a capacitor in the path of flow of alternating current is called reactance.

Reactance is of two types

(i) **Inductive Reactance** (X<sub>L</sub>) Inductive reactance is the resistance offered by an inductor.

Inductive reactance ( $X_L$ ) =  $L\omega$  =  $L2\pi f$  =  $L2\pi / T$ 

Its unit is ohm.  $X_L \propto f$ 

For direct current,  $X_L = 0$  (f = 0)



(ii) Capacitive Reactance (X<sub>c</sub>) Capacitive reactance is the resistance offered by an inductor

Capacitive reactance,

$$X_c = 1 / C\omega = 1 / C2\pi f = T / C 2\pi$$

Its unit is ohm  $X_c \propto 1 / f$ 

For direct current,  $X_c = \infty$  (f = 0)



# **Impedance**

The opposition offered by an AC circuit containing more than one out of three components L, C and R, is called impedance (Z) of the circuit.

Impedance of an AC circuit,  $Z = \sqrt{R^2 + (X_L - X_C)^2}$ 

Its SI unit is ohm.

## Power in an AC Circuit

The power is defined as the rate at which work is being in the circuit.

The average power in an AC circuit,

$$P_{av} = V_{rms} i_{rms} \cos \theta$$

$$= V / \sqrt{2} i / \sqrt{2} \cos \theta = Vi / \sqrt{2} \cos \theta$$

where,  $\cos \theta = \text{Resistance}(R) / \text{Impedance}(Z)$  is called the power factor 0f AC circuit.

## **Current and Potential Relations**

Here, we will discuss current and potential relations for different AC circuits.

# (i) Pure Resistive Circuit (R circuit)





- (a) Alternating emf,  $E = E_0 \sin \omega t$
- (b) Alternating current,  $I = I_o \sin \omega t$
- (c) Alternating emf and alternating current both are in the same phase.
- (d) Average power decay,  $(P) = E_v \cdot I_v$
- (e) Power factor,  $\cos \theta = 1$

# (ii) Pure Inductive Circuit (L Circuit)





- (a) Alternating emf,  $E = E_0 \sin \omega t$
- (b) Alternating current,  $I = I_0 \sin(\omega t \pi/2)$
- (c) Alternating current lags behind alternating emf by  $\pi / 2$ .
- (d) Inductive reactance,  $X_L = L\omega = L2\pi f$
- (e) Average power decay, (P) = 0
- (f) Power factor,  $\cos \theta = \cos 90^{\circ} = 0$

## (iii) Pure Capacitive Circuit



- (a) Alternating emf,  $E = E_0 \sin \omega t$
- (b) Alternating current,  $I = I_o \sin(\omega t + \pi/2)$
- (c) Alternating current lags behind alternating emf by  $\pi$  / 2.
- (d) Inductive reactance,  $X_L = C\omega = C2\pi f$
- (e) Average power decay, (P) = 0
- (f) Power factor,  $\cos \theta = \cos 90^{\circ} = 0$

# (iv) **R – C Circuit**





 $E=E_o\;sin\;\omega t$ 

$$I = E_o / 2 \sin(\omega t - \varphi)$$

$$Z = \sqrt{R^2 + (1/\omega C)^2}$$

$$\tan \varphi = -1 / \omega C / R$$

Current leading the voltage by  $\phi$ 

$$V^2 = V^2_{\ R} = V^2_{\ C}$$

# (v) L – C Circuit





$$E = E_0 \sin \omega t, \quad I = \frac{E}{2} \sin (\omega t - \phi)$$

$$Z = X_L - X_C \quad \text{and} \quad \tan \phi = \frac{X_L - X_C}{0}$$

- For  $X_L > X_C$ ,  $\phi = \frac{\pi}{2}$  and for  $X_L < X_C$ ,  $\phi = -\frac{\pi}{2}$
- If  $X_L = X_C$  at  $\omega = \frac{1}{\sqrt{LC}}$ , Z = 0

# (vi) L - C - R Circuit



- (a) Alternating emf,  $E = E_o \sin \Omega t$
- (b) Alternating current,  $I=I_{\rm o}\,sin\,(\Omega t\pm\theta)$
- (c) Alternating current lags leads behind alternating emf by  $\boldsymbol{\omega}.$

(d) Resultant voltage,  $V = \sqrt{V_R^2 + (V_L - V_C)^2}$ 

(e) Impedance,  $Z = \sqrt{R^2 + (X_L - X_C)^2}$ 

(f) Power factor,  $\cos \theta = R / Z = R / \sqrt{\sqrt{R^2 + (X_L - X_C)^2}}$ 

(g) Average power decay, (P)=  $E_V I_V \cos \theta$ 

### **Resonance in AC Circuit**

The condition in which current is maximum or impedance is minimum in an AC circuit, is called resonance.

# (i) Series Resonance Circuit





In this circuit components L, C and R are connected in series.

At resonance =  $X_L = X_C$ 

Resonance frequency  $f = 1 / 2\pi \sqrt{LC}$ 

A series resonance circuit is also known as acception circuit.

# (ii) Parallel Resonance Circuit





In this circuit L and C are connected in parallel with each other.

At resonance,  $X_L = X_C$ 

Impedance (Z) of the circuit is maximum.

Current in the circuit is minimum.

#### **Wattless Current**

Average power is given by

$$P_{av} = E_{rms} = I_{rms} \cos \theta$$

Here the  $I_{rms}$  cos  $\varphi$  contributes for power dissipation. Therefore, it is called wattless current.

## **AC** Generator or Dynamo

It is a device which converts mechanical energy into alternating current energy.

Its working is based on electromagnetic induction.

The induced emf produced by the AC generator is given by

$$e = NBA\omega \sin \omega t = e_o = \sin \omega t$$

There are four main parts of an AC generator



- (i) **Armature** It is rectangular coil of insulated copper wire having a large number of turns.
- (ii) Field Magnets These are two pole pieces of a strong electromagnet.
- (iii) **Slip Rings** These are two hollow metallic rings.
- (iv) **Brushes** These are two flexible metals or carbon rods, which remains slightly in contact with slip rings .

**Note** An DC generator or dynamo contains split rings or commutator inspite of slip rings.

www.ncerthelp.com (Visit for all ncert solutions in text and videos, CBSE syllabus, note and many more)

#### **DC Motor**

It is a device which converts electrical energy into mechanical energy.

Its working is based on the fact that when a current carrying coil is placed in uniform magnetic field a torque acts on it.



Torque acting on a current carrying coil placed in uniform magnetic field

 $\tau = NBIA \sin \theta$ 

When armature coil rotates a back emf is produced in the coil.

Efficiency of a motor,

 $\eta = Back \ emf / Applied \ emf = E / V$ 

#### **Transformer**

It is a device which can change a low voltage of high current into a high voltage of low current and vice-versa.

Its working is based on mutual induction.

There are two types of transformers.

(i) **Step-up Transformers** It converts a low voltage of high current into a high voltage of low current.



In this transformer,

$$N_s > N_P$$
,  $E_s > E_P$ 

and  $I_P > I_S$ 

(ii) Step-down Transformer It converts a high voltage of low current into a low voltage of high current.

In this transformer,

$$N_P > N_S$$
,  $E_P > E_S$  and  $I_P < I_S$ 

## **Transformation Ratio**

Transformation ratio,

$$K = N_S / N_P = E_S / E_P = I_P / I_S$$

For step-up transformer, K > 1

For step-down transformer, K < 1

# **Energy Losses in a Transformer**

The main energy losses in a transformer are given below

- 1. Iron loss
- 2. Copper loss
- 3. Flux loss
- 4. Hysteresis loss
- 5. Humming loss

## **Important Points**

- Transformer does not operate on direct current. It operates only on alternating voltages at input as well as at output.
- Transformer does not amplify power as vacuum tube.
- Transformer, a device based on mutual induction converts magnetic energy into electrical energy.
- Efficiency,  $\eta$  = Output power / Input power

Generally efficiency ranges from 70% to 90%.

- A choke coil is a pure inductor. Average power consumed per cycle is zero in a choke coil.
- A DC motor connects DC energy from a battery into mechanical energy of rotation.
- An AC dynamo/generator produces are energy from mechanical energy of rotation of a coil.
- An induction coil generates high voltages of the order of 1OS V from a battery.

It is based on the phenomenon of mutual induction.