In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits

In [2]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\ma

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2004-08-01 01:00:00	NaN	0.66	NaN	NaN	NaN	89.550003	118.900002	NaN	40.020000	39.
1	2004-08-01 01:00:00	2.66	0.54	2.99	6.08	0.18	51.799999	53.860001	3.28	51.689999	22.
2	2004-08-01 01:00:00	NaN	1.02	NaN	NaN	NaN	93.389999	138.600006	NaN	20.860001	49.
3	2004-08-01 01:00:00	NaN	0.53	NaN	NaN	NaN	87.290001	105.000000	NaN	36.730000	31.
4	2004-08-01 01:00:00	NaN	0.17	NaN	NaN	NaN	34.910000	35.349998	NaN	86.269997	54.
245491	2004-06-01 00:00:00	0.75	0.21	0.85	1.55	0.07	59.580002	64.389999	0.66	33.029999	30.
245492	2004-06-01 00:00:00	2.49	0.75	2.44	4.57	NaN	97.139999	146.899994	2.34	7.740000	37.
245493	2004-06-01 00:00:00	NaN	NaN	NaN	NaN	0.13	102.699997	132.600006	NaN	17.809999	22.
245494	2004-06-01 00:00:00	NaN	NaN	NaN	NaN	0.09	82.599998	102.599998	NaN	NaN	45.
245495	2004-06-01 00:00:00	3.01	0.67	2.78	5.12	0.20	92.550003	141.000000	2.60	11.460000	24.

245496 rows × 17 columns

```
In [3]:
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 245496 entries, 0 to 245495
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype				
0	date	245496 non-null	object				
1	BEN	65158 non-null	float64				
2	CO	226043 non-null	float64				
3	EBE	56781 non-null	float64				
4	MXY	39867 non-null	float64				
5	NMHC	107630 non-null	float64				
6	NO_2	243280 non-null	float64				
7	NOx	243283 non-null	float64				
8	OXY	39882 non-null	float64				
9	0_3	233811 non-null	float64				
10	PM10	234655 non-null	float64				
11	PM25	58145 non-null	float64				
12	PXY	39891 non-null	float64				
13	S0_2	243402 non-null	float64				
14	TCH	107650 non-null	float64				
15	TOL	64914 non-null	float64				
16	station	245496 non-null	int64				
dtype	object(1)						
memory usage: 31 8+ MR							

memory usage: 31.8+ MB

In [4]: b=a.fillna(value=106)

Out[4]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	
0	2004-08-01 01:00:00	106.00	0.66	106.00	106.00	106.00	89.550003	118.900002	106.00	40.(
1	2004-08-01 01:00:00	2.66	0.54	2.99	6.08	0.18	51.799999	53.860001	3.28	51.6
2	2004-08-01 01:00:00	106.00	1.02	106.00	106.00	106.00	93.389999	138.600006	106.00	20.{
3	2004-08-01 01:00:00	106.00	0.53	106.00	106.00	106.00	87.290001	105.000000	106.00	36.7
4	2004-08-01 01:00:00	106.00	0.17	106.00	106.00	106.00	34.910000	35.349998	106.00	86.2
245491	2004-06-01 00:00:00	0.75	0.21	0.85	1.55	0.07	59.580002	64.389999	0.66	33.(
245492	2004-06-01 00:00:00	2.49	0.75	2.44	4.57	106.00	97.139999	146.899994	2.34	7.7
245493	2004-06-01 00:00:00	106.00	106.00	106.00	106.00	0.13	102.699997	132.600006	106.00	17.{
245494	2004-06-01 00:00:00	106.00	106.00	106.00	106.00	0.09	82.599998	102.599998	106.00	106.(
245495	2004-06-01 00:00:00	3.01	0.67	2.78	5.12	0.20	92.550003	141.000000	2.60	11.₄

245496 rows × 17 columns

```
In [5]:
```

In [6]: c=b.head(11)

Out[6]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	0_3
0	2004-08-01 01:00:00	106.00	0.66	106.00	106.00	106.00	89.550003	118.900002	106.00	40.020000
1	2004-08-01 01:00:00	2.66	0.54	2.99	6.08	0.18	51.799999	53.860001	3.28	51.689999
2	2004-08-01 01:00:00	106.00	1.02	106.00	106.00	106.00	93.389999	138.600006	106.00	20.860001
3	2004-08-01 01:00:00	106.00	0.53	106.00	106.00	106.00	87.290001	105.000000	106.00	36.730000
4	2004-08-01 01:00:00	106.00	0.17	106.00	106.00	106.00	34.910000	35.349998	106.00	86.269997
5	2004-08-01 01:00:00	3.24	0.63	5.55	9.72	0.06	103.800003	144.800003	5.04	32.480000
6	2004-08-01 01:00:00	106.00	0.43	106.00	106.00	0.17	54.270000	64.279999	106.00	66.589996
7	2004-08-01 01:00:00	1.41	0.47	2.35	106.00	0.02	71.730003	87.519997	106.00	53.270000
8	2004-08-01 01:00:00	106.00	1.28	106.00	106.00	106.00	147.699997	202.500000	106.00	10.280000
9	2004-08-01 01:00:00	106.00	0.43	106.00	106.00	0.27	54.290001	68.099998	106.00	66.709999
10	2004-08-01 01:00:00	106.00	0.60	106.00	106.00	106.00	73.410004	87.059998	106.00	40.480000

In [7]: d=c[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3']]

Out[7]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3
0	106.00	0.66	106.00	106.00	106.00	89.550003	118.900002	106.00	40.020000
1	2.66	0.54	2.99	6.08	0.18	51.799999	53.860001	3.28	51.689999
2	106.00	1.02	106.00	106.00	106.00	93.389999	138.600006	106.00	20.860001
3	106.00	0.53	106.00	106.00	106.00	87.290001	105.000000	106.00	36.730000
4	106.00	0.17	106.00	106.00	106.00	34.910000	35.349998	106.00	86.269997
5	3.24	0.63	5.55	9.72	0.06	103.800003	144.800003	5.04	32.480000
6	106.00	0.43	106.00	106.00	0.17	54.270000	64.279999	106.00	66.589996
7	1.41	0.47	2.35	106.00	0.02	71.730003	87.519997	106.00	53.270000
8	106.00	1.28	106.00	106.00	106.00	147.699997	202.500000	106.00	10.280000
9	106.00	0.43	106.00	106.00	0.27	54.290001	68.099998	106.00	66.709999
10	106.00	0.60	106.00	106.00	106.00	73.410004	87.059998	106.00	40.480000

In [8]:

Out[8]: <AxesSubplot:>


```
In [9]:
 Out[9]: <seaborn.axisgrid.PairGrid at 0x2192516a160>
In [10]: x=d[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY']]
In [11]: from sklearn.model_selection import train_test_split
In [12]: | from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
Out[12]: LinearRegression()
In [13]:
         -0.0008645494699663914
```

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [14]:
Out[14]:
                  Co-efficient
             BEN
                    0.000833
             CO
                    -0.012756
             EBE
                    -0.000813
            MXY
                    -0.000835
           NMHC
                    -0.000017
            NO_2
                    0.000374
            NOx
                    0.999834
            OXY
                    0.000790
In [15]: prediction=lr.predict(x_test)
Out[15]: <matplotlib.collections.PathCollection at 0x2192dbc92b0>
           140
           120
           100
            80
            60
            40
                           60
                                   80
                                            100
                                                    120
                                                             140
                  40
In [16]:
          0.9999999916628053
In [17]:
In [18]: rr=Ridge(alpha=10)
Out[18]: Ridge(alpha=10)
In [19]:
Out[19]: 0.9993279789663293
In [20]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[20]: Lasso(alpha=10)
```

```
In [21]:
Out[21]: 0.9999734689666656
In [22]: a1=b.head(4000)
Out[22]:
                                   CO
                                               MXY
                      date
                             BEN
                                         EBE
                                                     NMHC
                                                                NO_2
                                                                            NOx
                                                                                   OXY
                                                                                             0_:
                2004-08-01
                           106.00 0.66 106.00
                                             106.00 106.00
                                                             89.550003
                                                                      118.900002 106.00 40.020000
                  01:00:00
                2004-08-01
                             2.66 0.54
                                         2.99
                                                6.08
                                                       0.18
                                                             51.799999
                                                                       53.860001
                                                                                   3.28 51.689999
                  01:00:00
                2004-08-01
                           106.00 1.02 106.00 106.00 106.00
                                                                      138.600006 106.00 20.86000°
                                                             93.389999
                  01:00:00
                2004-08-01
                           106.00 0.53
                                      106.00
                                              106.00
                                                    106.00
                                                             87.290001
                                                                       105.000000
                                                                                 106.00
                                                                                        36.730000
                   01:00:00
                2004-08-01
                                                                       35.349998
                           106.00 0.17 106.00 106.00 106.00
                                                             34.910000
                                                                                106.00
                                                                                        86.269997
                  01:00:00
                2004-08-07
           3995
                           106.00 0.75 106.00 106.00 106.00 114.900002 189.300003 106.00 12.330000
                  00:00:00
                2004-08-07
           3996
                           8.710000
                  00:00:00
                2004-08-07
           3997
                           106.00 0.65 106.00 106.00
                                                       0.65 130.199997 156.500000 106.00
                                                                                         7.600000
                  00:00:00
                2004-08-07
           3998
                           106.00 0.82 106.00 106.00 106.00 125.400002 207.199997 106.00
                                                                                         9.000000
                   00:00:00
                2004-08-07
           3999
                           106.00 0.74 106.00 106.00 106.00 104.800003 121.599998 106.00 18.430000
                  00:00:00
          4000 rows × 17 columns
          e=a1[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
In [23]:
          f=e.iloc[:,0:14]
In [24]:
In [25]:
In [26]: logr=LogisticRegression(max_iter=10000)
Out[26]: LogisticRegression(max_iter=10000)
In [27]: from sklearn.model_selection import train_test_split
```

```
In [29]: prediction=logr.predict(i)
         [28079004]
In [30]: ___
Out[30]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
               28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
               28079017, 28079018, 28079019, 28079021, 28079022, 28079023,
               28079024, 28079025, 28079026, 28079027, 28079035, 28079036,
               28079038, 28079039, 28079040, 28079099], dtype=int64)
In [31]:
Out[31]: 2.793068192100045e-39
In [32]: -
Out[32]: 5.075635610824596e-186
In [33]:
Out[33]: 0.6116666666666667
In [34]: from sklearn.linear_model import ElasticNet
        en=ElasticNet()
Out[34]: ElasticNet()
In [35]:
         [ 0.00000000e+00 -0.00000000e+00 4.45095914e-04 -0.00000000e+00
          -7.95362564e-04 3.16610023e-02 9.79393568e-01 -0.00000000e+00]
In [36]:
         -0.4250071227973251
In [37]: | prediction=en.predict(x_test)
         0.9999745139676599
In [38]: from sklearn.ensemble import RandomForestClassifier
        rfc=RandomForestClassifier()
         Out[38]: RandomForestClassifier()
In [39]:
        parameters={'max_depth':[1,2,3,4,5],
         'min_samples_leaf':[5,10,15,20,25],
          'n_estimators':[10,20,30,40,50]
```

```
In [40]: from sklearn.model selection import GridSearchCV
         grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="acc
Out[40]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 3, 4, 5],
                                    'min_samples_leaf': [5, 10, 15, 20, 25],
                                    'n_estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
In [41]:
Out[41]: 0.6492857142857142
In [42]:
In [43]: from sklearn.tree import plot_tree
         plt.figure(figsize=(80,50))
Out[43]: [Text(2028.1153846153845, 2491.5, 'X[0] <= -0.435\ngini = 0.964\nsamples = 17
         64\nvalue = [117, 102, 127, 102, 115, 128, 102, 104, 77, 90, 87\n84, 80, 87,
         95, 88, 107, 92, 94, 82, 115, 96\n101, 109, 109, 100, 101, 109]'),
          Text(965.7692307692307, 2038.5, 'X[3] <= -0.699\ngini = 0.873\nsamples = 49
         9\nvalue = [0, 0, 0, 101, 0, 128, 0, 0, 0, 87, 0, 0\n0, 0, 0, 102, 0, 94,
         80, 0, 0, 101, 0, 0, 0 \setminus n0, 109]'),
          Text(472.15384615384613, 1585.5, 'X[3] <= -2.184 \setminus gini = 0.798 \setminus gini = 30
         9\nvalue = [0, 0, 0, 101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 94, 80,
         0, 0, 101, 0, 0, 0, 0\n109]'),
          Text(257.53846153846155, 1132.5, 'X[12] \leftarrow -0.07 \cdot gini = 0.613 \cdot gini = 10
         7\nvalue = [0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 80, 58, 0,
         0, 0, 0, 0, 0, 0, 11]'),
          Text(171.69230769230768, 679.5, 'X[0] \leftarrow -1.597 \text{ ngini} = 0.372 \text{ nsamples} = 71
         nvalue = [0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 80, 0, 0, 0,
         0, 0, 0, 0, 0, 11]'),
          Text(85.84615384615384, 226.5, 'gini = 0.185\nsamples = 61\nvalue = [0, 0,
         0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 80, 0, 0, 0, 0, 0, 0, 0, 0,
         2]'),
          Text(257.53846153846155, 226.5, 'gini = 0.459\nsamples = 10\nvalue = [0, 0,
```

From this observation I had observe that the LINEAR REFRESSION highest accuracy of 0.999999916628053

```
In [ ]:
```