Cambios de Base

Para demostrar los siguientes cambios de la base decimal a las demás se usara como ejemplo el número decimal 1234.

Decimal a Binario

Por divisiones sucesivas: Se divide la cantidad decimal entre 2, hasta que el cociente sea cero y luego se toman todos los restos desde el más reciente (MSB) hasta el menos reciente (LSB).

Número 1234 en binario: 10011010010₂

Decimal a Hexadecimal

Se divide la cantidad decimal entre 16 hasta que el cociente sea cero y luego se toman todos los restos desde el más reciente hasta el menos reciente.

Número 1234 en Hexadecimal: 4D2₁₆

Decimal a Octal

Se divide la cantidad decimal entre 8 hasta que el cociente sea cero y luego se toman todos los restos desde el más reciente hasta el menos reciente.

Número 1234 en Octal: 23228

Leyenda:

LSB = Less Significant Bit MSB = Most Significant Bit Para demostrar los siguientes cambios de la base binaria a las demás se usara como ejemplo el número binario 10011010010₂.

Binario a Decimal

Por cada bit cuyo valor sea 1, se suma una potencia base 2 elevada a la posición en la que se encuentre dicho bit. En un número binario se enumeran los bits de derecha a izquierda comenzando en cero.

1	0	0	1	1	0	1	0	0	1	0
1×2^{10}	0×2^9	0×2^8	1×2^7	1×2^6	0×2^5	1×2^4	0×2^3	0×2^2	1×2^1	0×2^{0}
1024	0	0	128	64	0	16	0	0	2	0

El número es: 1024 + 128 + 64 + 16 + 2 = 1234.

Binario a Hexadecimal

Se divide en número binario de derecha a izquierda en bloques de 4 bits y luego se convierte cada bloque a su equivalente hexadecimal según la tabla:

Binario	Hexadecimal			
0 0 0 0	0	_		
0 0 0 1	1			
0 0 1 0	2			
0 0 1 1	3			
0 1 0 0	4			
0 1 0 1	5			
0 1 1 0	6			
0 1 1 1	7	0 1 0 0	1 1 0 1	0 0 1 0
1 0 0 0	8	4	D	2
1 0 0 1	9	4	Ь	2
1 0 1 0	Α			
1 0 1 1	В			
1 1 0 0	С			
1 1 0 1	D			
1 1 1 0	E			
1 1 1 1	F			

El número es 4D2₁₆.

Binario a Octal

Se divide en número binario de derecha a izquierda en bloques de 3 bits y luego se convierte cada bloque a su equivalente octal según la tabla:

El número es: 23228.

Para demostrar los siguientes cambios de la base hexadecimal a las demás se usara como ejemplo el número hexadecimal **4D2**₁₆.

Hexadecimal a Decimal

En el sistema hexadecimal, cada dígito tiene asociado un peso equivalente a una potencia de 16, entonces se multiplica el valor decimal del dígito correspondiente por el respectivo peso y se realiza la suma de los productos.

4	D	2
4×16^2	13 × 16 ¹	2×16^{0}
1024	208	2

El número es 1024 + 208 + 2 = 1234.

Hexadecimal a Binario

Cada dígito hexadecimal se convierte directamente en su equivalente en la tabla anteriormente dada.

4	D	2
0100	1101	0010

Hexadecimal a Octal

Se lleva el número a binario y luego se aplica el proceso ya visto para pasar el número de binario a octal.

Para demostrar los siguientes cambios de la base octal a las demás se usara como ejemplo el número octal 2322₈.

Octal a Decimal

En el sistema octal, cada dígito tiene asociado un peso equivalente a una potencia de 8, entonces se multiplica el valor del dígito correspondiente por el respectivo peso y se realiza la suma de los productos.

2	3	2	2	
2×8^3	3×8^2	2×8^{1}	2×8^{0}	
1024	192	16	2	

El número es 1024 + 192 + 16 + 2 = 1234.

Octal a Binario

Cada dígito octal se convierte a su equivalente binario directamente mediante la tabla anteriormente dada.

2	3	2	2
010	011	010	010

El número es 10011010010₂.

Octal a Hexadecimal

Se lleva el número a su equivalente en binario y luego se aplica el proceso ya visto para convertir el número binario en hexadecimal.

Ejercicios

1. Convertir los siguientes números decimales a las bases binaria, hexadecimal y octal.

1.1.	2
1.2.	8
1.3.	10

1.7. 256 1.8. 2156 1.9. 5124

2. Convertir los siguientes números binarios a las bases decimal, hexadecimal y octal.

2.1.	10
2.2.	100
2.3.	1000

2.7. 111001102.8. 10000000002.9. 101110111000

3. Convertir los siguientes números hexadecimales a las bases decimal, binaria y octal.

3.7. 78B9 3.8. D431 3.9. 9FBF1

4. Convertir los siguientes números octales a las bases decimal, binaria y hexadecimal.

4.7. 7561 4.8. 7777 4.9. 10000

5. Reescribir las siguientes expresiones matemáticas de forma algorítmica.

5.1.
$$\frac{x}{y+z}$$
5.2. $\frac{x+y}{3(x-z)}$
5.3. $\frac{5}{3}(a+b+4c)$

5.4.
$$-\frac{40a + \frac{2}{5}b}{7c - d}$$

5.6.
$$(x-y)^3$$

5.7.
$$a(3b+5c)^{-2}$$

- 6. ¿Cuántos bits hay en 25MB mas 2KB?
- 7. Si una canción en formato .mp3 ocupa 4MB de memoria ¿Cuántas canciones se pueden almacenar en 1GB si todas ocupan lo mismo?
- 8. Si la velocidad de conexión a Internet en su casa es de 1024Mbps ¿Cuál es la velocidad en MBps?

```
Recuerde que:
8 bits
                            1 Byte
2<sup>10</sup> Bytes
2<sup>20</sup> Bytes
                            1024 Bytes
                                                        1 KByte
                                                                      (KiloByte)
                    → → → → →
                            1024 KBytes
                                                        1 MByte
                                                                      (MegaByte)
2<sup>30</sup> Bytes
                            1024 MBytes
                                                        1 GByte
                                                                      (GigaByte)
2<sup>40</sup> Bytes
                            1024 GBytes
                                                        1 TByte
                                                                      (TeraByte)
2<sup>50</sup> Bytes
                            1024 TBytes
                                                        1 PByte
                                                                      (PetaByte)
2<sup>60</sup> Bytes
                            1024 PBytes
                                                        1 EByte
                                                                      (ExaBite)
2<sup>70</sup> Bytes
                            1024 EBytes
                                                 \rightarrow
                                                        1 ZByte
                                                                      (ZettaByte)
2<sup>80</sup> Bytes
                            1024 ZBytes
                                                        1 YByte
                                                                      (YottaByte)
```