A final coalgebra for the k-regular and k-automatic sequences

Joost Winter, Helle Hvid Hansen, Clemens Kupke, Jan Rutten

Centrum Wiskunde & Informatica Radboud Universiteit Nijmegen University of Strathclyde

September 21, 2013

Introduction

- k-automatic and k-regular sequences: classes defined by Allouche/Shallit
- ▶ A sequence $\sigma \in \mathbb{Z}^{\omega}$ is *k*-automatic if generated by a deterministic automaton with output in $\{0, \ldots, k-1\}$...
- ... where $\sigma(n)$ is output after reading n in base k.

Introduction

- ► *k*-automatic and *k*-regular sequences: classes defined by Allouche/Shallit
- A sequence $\sigma \in \mathbb{Z}^{\omega}$ is k-automatic if generated by a deterministic automaton with output in $\{0,\ldots,k-1\}$...
- ▶ ... where $\sigma(n)$ is output after reading n in base k.
- ▶ *k*-regular sequences generalize this:

$$\frac{k\text{-regular}}{k\text{-automatic}} = \frac{\text{weighted automata}}{\text{deterministic automata}}$$

► This talk: connecting *k*-regular sequences to (abstract) coalgebra and (concrete) behavioural differential equations.

k-regular sequences: a definition (for k = 2)

We call a sequence (or stream) σ 2-regular when there is a finite family of sequences

$$\Sigma = (\sigma_i) \quad i \leq n \in \mathbb{N}$$

with $\sigma_0 = \sigma$, s.t. for all $i \leq n$ the sequences **even** (σ_i) and **odd** (σ_i) are linear combinations of sequences from Σ .

Here even and odd are defined by

$$even(\tau)(n) = \tau(2n)$$

and

$$\operatorname{odd}(\tau)(n) = \tau(2n+1)$$

Derivative and **zip**

We will reason with the stream derivative from the coinductive stream calculus. Definition:

$$\sigma'(n) = \sigma(n+1)$$

We can define streams and operators coinductively by giving the first element and the derivative, e.g.

$$zip(\sigma, \tau)(0) = \sigma(0)$$

 $zip(\sigma, \tau)' = zip(\tau, \sigma')$

gives

$$zip(\sigma, \tau)(2k) = \sigma(k)$$

 $zip(\sigma, \tau)(2k+1) = \tau(k)$

and thus

$$zip(even(\sigma), odd(\sigma)) = \sigma$$

Systems of **zip**-equations

k-regular sequences can be seen as solutions to finite systems of equations.

$$\tau_1 = \mathbf{zip}(\tau_1^e, \tau_1^o)$$
 \vdots
 $\tau_n = \mathbf{zip}(\tau_n^e, \tau_n^o)$

Example: the sequence of numbers whose base 3 representation does not contain the digit '2'

$$0, 1, 3, 4, 9, 10, 12, 13, 27, 28, 30, 31, \dots$$

is a solution to

$$\sigma = \mathbf{zip}(3\sigma, 3\sigma + \mathbf{ones})$$

$$\mathbf{ones} = \mathbf{zip}(\mathbf{ones}, \mathbf{ones})$$
 (with $\mathbf{ones}(0) = 1$, $\sigma(0) = 0$)

Automata as coalgebras

- ▶ Automaton (with output in S, input in A) is coalgebra for the functor $S \times -^A$.
- Semantics [-] given by unique morphism into final automaton:

Fact: $[x](w) = o(x_w)$

Streams are an instance of this

If |A|=1, note that $S^{A^*}\cong S^{\mathbb{N}}$ and we get

$$(o, \delta) \downarrow \qquad \qquad \downarrow (O, \Delta)$$

$$S \times X \longrightarrow S \times (S^{\mathbb{N}})$$

$$O(\sigma) = \sigma(0)$$
$$\Delta(\sigma) = \sigma'$$

Main result (for case k = 2)

Theorem

A sequence σ is 2-regular if and only if it is the unique solution to a system of stream differential equations

$$o(x) = k$$
 $x' = zip(x_e, x_o)$

for a finite set X, where $k \in \mathbb{Z}$, and for each $x \in X$, x_e and x_o are given as a linear combination of elements from X.

(also found by Endrullis/Moss/Silva)

Main result (for case k = 2)

Theorem

A sequence σ is 2-regular if and only if it is the unique solution to a system of stream differential equations

$$o(x) = k$$
 $x' = zip(x_e, x_o)$

for a finite set X, where $k \in \mathbb{Z}$, and for each $x \in X$, x_e and x_o are given as a linear combination of elements from X.

(also found by Endrullis/Moss/Silva)

Idea: transform flat systems into guarded systems.

or: move from standard base k numeration to bijective base k numeration

Construct a system of stream differential equations from the earlier system:

$$\begin{array}{rcl} \sigma' & = & \text{zip}(3\sigma + \text{ones}, 3\sigma') \\ \sigma'' & = & \text{zip}(3\sigma', 3\sigma' + \text{ones}') \\ \text{ones}' & = & \text{zip}(\text{ones}', \text{ones}) \\ \text{ones}'' & = & \text{zip}(\text{ones}', \text{ones}') \end{array}$$

or

$$w' = zip(3w + y, 3x)$$

$$x' = zip(3x, 3x + z)$$

$$y' = zip(y, z)$$

$$z' = zip(z, z)$$

Add output values to specification and you're done!

A final coalgebra diagram

Semantics can be given by the following diagram (initiality + finality):

with

$$\delta(\sigma)(1) = \operatorname{even}(\sigma')$$

 $\delta(\sigma)(2) = \operatorname{odd}(\sigma')$

An isomorphism of final coalgebras

Can be proven using the bijective base k numeration between \mathbb{N} and $(A_k)^*$.

Gives correspondence with weighted automata (over any semiring S).

Application: divide and conquer recurrences

On the Online Encyclopedia of Integer Sequences, some formats for divide and conquer recurrences are given. E.g.

$$a(2n) = Ca(n) + Ca(n-1) + P(n)$$

 $a(2n+1) = 2Ca(n) + Q(n)$

where P and Q are expressible by a rational g.f.

Application: divide and conquer recurrences

On the Online Encyclopedia of Integer Sequences, some formats for divide and conquer recurrences are given. E.g.

$$a(2n) = Ca(n) + Ca(n-1) + P(n)$$

 $a(2n+1) = 2Ca(n) + Q(n)$

where P and Q are expressible by a rational g.f.

Q (asked on oeis.org/somedcgf.html): 'An open question would be whether all sequences here discussed are 2-regular.'

A: if you replace the condition 'expressible by a rational g.f.' by '2-regular' yes (includes all their examples), otherwise no.

Generalizations, conclusions and future work

- ▶ Everything told here about 2 works for any $k \ge 2$.
- ▶ We established a correspondence between rational power series in k (noncomm.) variables and k-regular sequences over arbitrary semirings.
- ...allowing us to translate back and forth between recurrences and systems of stream differential equations.

Generalizations, conclusions and future work

- ▶ Everything told here about 2 works for any $k \ge 2$.
- ▶ We established a correspondence between rational power series in k (noncomm.) variables and k-regular sequences over arbitrary semirings.
- ...allowing us to translate back and forth between recurrences and systems of stream differential equations.
- ▶ Future work: how about *k*-algebraic sequences?
- . . . further investigate the connections with recurrences.