MACS - Quantification des incertitudes pour la simulation

TD 10 - Année 2022-2023

1 Planification d'expériences

On s'intéresse au phénomène linéaire y(x) = ax + b, $x \in [0,1]$. Pour l'estimation des paramètres a et b, on peut effectuer des mesures aux points x_1, x_2, x_3 . Ces mesures sont bruitées, et notées $y^{\text{mes}}(x_n) = y(x_n) + \varepsilon_n$, $1 \le n \le 3$, où ε_n sont des variables aléatoires centrées indépendantes de mêmes lois de probabilité (on note σ_{mes}^2 leur variance).

- 1. Montrer que y(x) peut se mettre sous la forme $f(x)^T \beta$, où le vecteur de fonctions f et le vecteur β sont à expliciter.
- 2. En supposant que β et les ϵ_n sont indépendants, rappeler l'expression du meilleur estimateur de β (au sens des moindres carrés), que l'on nomme $\widehat{\beta}$.
 - 3. Calculer le vecteur moyenne et la matrice de covariance de $\hat{\beta}$.
- 4. Afin de réduire l'incertitude sur $\widehat{\beta}$, on cherche à minimiser le déterminant de sa matrice de covariance. Montrer que cela revient à maximiser la fonction co \widetilde{A} »t \mathcal{C} :

$$C(x_1, x_2, x_3) = (x_1 - x_2)^2 + (x_2 - x_3)^2 + (x_1 - x_3)^2.$$

- 5. Dans le cas où seulement deux mesures sont effectivement possibles, en déduire les positions x_1 et x_2 optimales vis à vis de ce critère sur le déterminant de la matrice de covariance.
- 6. Dans le cas où 3 mesures sont possibles, en déduire les positions optimales de x_1, x_2 et x_3 optimales vis à vis de ce critère sur le déterminant de la matrice de covariance.
- 7. Commenter l'efficacité d'un tel modèle s'il s'avère que y n'est plus linéaire mais parabolique.

2 Optimisation économico-fiabiliste du gonflement d'un ballon de baudruche

L'objectif de cet exercice est d'optimiser la valeur maximale de pression d'une pompe de gonflement de ballon de baudruche. Soit \mathcal{B} un ballon de baudruche sphérique, de rayons intérieur $r_i(t)$ et extérieur $r_e(t)$ et d'épaisseur $e(t) = r_e(t) - r_i(t)$. On note R_i , R_e les rayons interne et externe de ce ballon à l'état initial t = 0 et $E = R_e - R_i = e(0)$ l'épaisseur correspondante. On définit enfin P(t) la pression dans le ballon au cours de son gonflement. On suppose la pression nulle en dehors du ballon.

FIGURE 1 – Evolution de la pression adimensionnée en fonction de l'élongation

1. On suppose l'épaisseur du ballon très faible devant son rayon, $e(t) = r_e(t) - r_i(t) \ll r_i(t)$, $E = R_e - R_i \ll R_i$, et on pose $\lambda = \frac{r_i(t)}{R_i}$ l'élongation interne du ballon. On admet alors que la pression interne en fonction de l'élongation s'écrit :

$$P(t) = \frac{4C_0E}{R_i} \left(\frac{1}{\lambda} - \frac{1}{\lambda^7}\right),\tag{1}$$

où C_0 est une constante matériau. La courbe 1 représente l'évolution de la pression adimensionnée en fonction de l'élongation λ . Commenter l'évolution de la pression interne au cours du gonflement.

- 2. On considère maintenant deux ballons $\mathcal{B}^{(1)}$ et $\mathcal{B}^{(2)}$ initialement identiques (mêmes dimensions $R_i = R_i^{(1)} = R_i^{(2)}$, $E = E^{(1)} = E^{(2)}$ et mêmes matériaux $C_0 = C_0^{(1)} = C_0^{(2)}$). Le ballon $\mathcal{B}^{(2)}$ est davantage gonflé que le ballon $\mathcal{B}^{(1)}$, correspondant à des élongations $\lambda^{(2)} = 2.2 > \lambda^{(1)} = 1.2$. Lire sur la Figure 1 les pressions adimensionnées dans les deux ballons avant leur mise en communication. En déduire le sens du flux d'air d'un ballon dans l'autre.
- 3. Calculer la pression minimale $P^*(E, C_0)$ à imposer afin de permettre le gonflement d'un ballon d'une élongation λ d'environ 4, en fonction de l'épaisseur E, du rayon interne initial R_i , et des caractéristiques matériaux C_0 du ballon.
- 4. On considère maintenant le gonflement d'une série de ballons, dont les propriétés géométriques et les caractéristiques matériaux sont variables. Pour effectuer ces gonflements, on réfléchit à l'acquisition d'une pompe pouvant délivrer une pression maximale P^{\max} . Les constructeurs de ballon garantissent par ailleurs que l'épaisseur des ballons est comprise entre E_{\min} et $E_{\min} + \Delta E$, tandis que les propriétés de l'élastomère les constituant ont une caractéristique

Figure 2 -

matériau comprise entre C_{\min} et $C_{\min} + \Delta C$. En supposant que l'épaisseur du ballon, E, ainsi que la constante matériau, C_0 , sont uniformément distribués sur leurs domaines de définition, calculer la probabilité que $P^*(E, C_0)$ soit inférieure à P^{\max} , $\mathbb{P}(P^*(E, C_0) \leq P^{\max})$.

5. On évalue le gain, G, relatif au gonflement de la série de ballons, en fonction du gain relatif à la vente des ballons, C_v , et des dépenses relatives à l'achat et l'entretien de la pompe, par la formule suivante :

$$G(P^{\max}) = C_v \left\{ \mathbb{P}(P^*(E, C_0) \leq P^{\max}) \right\} + C_a \left\{ P^{\max} \right\}.$$

Commenter qualitativement le caractère croissant ou décroissant, positif ou négatif, de ces deux fonctions C_v et C_a , en fonction de P^{\max} .

- 6. L'évolution de G est représentée sur la Figure 2, dans le cas où C_v est linéaire en $|\mathbb{P}(P^*(E,C_0) \leq P^{\max})|$, c'est à dire dans le cas où il existe α tel que $C_v = |\alpha \times \mathbb{P}(P^*(E,C_0) \leq P^{\max})|$. évaluer numériquement (par lecture de graphique) la pression P^{\max} permettant de maximiser le gain G, ainsi que la valeur de α (on admettra que $\mathbb{P}(P^*(E,C_0) \leq P^{\max}) = 1$ quand P^{\max} attend sa valeur maximale).
- 7. En déduire le pourcentage moyen de ballons gonflés correspondant à la configuration de gain maximal.

3 Optimisation technico-économique de la fiabilité

On suppose disposer d'une méthode (supposée précise) d'évaluation de la probabilité de ruine, notée P_r , d'un système physique (éolienne, pont, plateforme pétrolière...), potentiellement sollicité par une ou plusieurs sources aléatoires.

Le coût total C_T de conception du système se décompose souvent en deux termes. Le coût initial, noté $C_i(P_r)$, comprend l'ensemble des coûts liés directement au système et à son fonctionnement. De manière empirique, une loi logarithmique est souvent observée :

$$C_i(P_r) = C_0 - C_1 \ln (P_r).$$

Par ailleurs, le coût attendu de la ruine, noté $C_r(P_r)$, est égal au coût de ruine C_R , qui dépend des coûts induits par la ruine, pondéré par la probabilité de ruine de la structure :

$$C_T(P_r) = C_i(P_r) + C_r(P_r), \quad C_r(P_r) = C_R \times P_r.$$

- 1. Attribuer les coûts suivants au coût initial C_i ou au coût de ruine C_R en le justifiant :
- coûts liés aux pertes de vies humaines,
- coûts de conception,
- coûts liés aux pertes de production,
- coûts de construction,
- coûts liés à l'inspection,
- coûts liés à la maintenance,
- coûts liés aux dommages sur l'environnement,
- coûts liés à une dégradation de réputation ou d'image,
- coûts d'exploitation.
- 2. Indiquer le caractère croissant ou décroissant des coûts C_i et C_r en fonction de P_r . Cette évolution est-elle intuitive ou contre-intuitive selon vous? Pourquoi?
- 3. A coefficients C_0 , C_1 et C_R fixés, calculer la probabilité de ruine permettant de minimiser le coût total du système.
- 4. En notant P_{seuil} une probabilité de ruine maximale autorisée et C_{seuil} un coût total maximal, deux visions pour l'optimisation de ce système sous contrainte fiabiliste sous souvent introduites :
 - minimiser C_T sous contrainte $P_r(C_T) \leq P_{\text{seuil}}$,
 - minimiser P_r sous contrainte $C_T(P_r) \leq C_{\text{seuil}}$.

Commenter les avantages et les désavantages de ces deux approches, ainsi que les différences auxquelles elles pourraient conduire.