Homotecia

Eric Ransom Treviño

Octubre 2023

1. Homotecia

En este documento revisaremos una de las técnicas más utilizadas para resolver problemas de olimpiada, homotecia. La homotecia es una transformación geométrica de los puntos del plano a sí mismo, como la traslación, rotación, reflexión, etc. Se analizan las propiedades de esta transformación relacionándola con triángulos y círculos.

Definición 1.1 (Homotecia) — Sea O un punto y $c \neq 0$ una constante. Una homotecia es una función $f : \mathbb{R}^2 \to \mathbb{R}^2$ que preserva una relación directamente proporcional:

Para todo $P \in \mathbb{R}^2$, f(P) está en la recta OP y $Of(P) = OP \cdot c$.

Nota. Usaremos P' como la imagen de P bajo una homotecia f (es decir f(P) = P').

Al punto O se le conoce como **centro de homotecia** y a la constante c como **razón de homotecia**. La idea detrás de la homotecia es formalizar la definición de una transformación que preserve la "forma" del plano y que tan solo escale sus figuras respecto a un centro. Aunque homotecia transforma completamente el plano, su utilidad destaca cuando observamos figuras específicas del plano

Figura 1: Homotecia con centro en O y razón de $\frac{1}{2}$

1

Definición 1.2 (Figuras homotéticas) — Dos figuras \mathcal{A} y \mathcal{B} son homotéticas si existe una homotecia que mapea los puntos de \mathcal{A} a los puntos de \mathcal{B} .

Nota. Una figura es un conjunto de puntos en \mathbb{R}^2 .

Proposición 1.3

Dado que la homotecia preserva razones, las siguientes propiedades son invariantes:

- Puntos P y Q cumplen $PQ \parallel P'Q'$.
- Puntos colineales se mandan a puntos colineales.
- Rectas concurrentes se mandan a rectas concurrentes.
- Sea \mathcal{A} una figura, entonces \mathcal{A}' es semejante.
- Se preservan ángulos, $\angle PQR = \angle P'Q'R'$.
- Se preservan tangencias.

Notemos que las homotecias pueden tener una razón de homotecia negativa, esto se cumple cuando el centro de homotecia está entre P y P', en caso contrario, cuando la razón de homotecia es positiva, el centro no está entre P y P'.

Figura 2: Homotecia con centro en O y razón de $-\frac{4}{3}$

2. Homotecia en triángulos

Homotecia en triángulos nos permite principalmente demostrar de manera muy elegante varios resultados de concurrencias, ya que si dos triángulos son homotéticos, entonces puntos correspondientes son colineales con el centro de homotecia.

Teorema 2.1 (Homotecia en triángulos)

Si dos triángulos ABC y A'B'C' cumplen que $AB \parallel A'B'$, $BC \parallel B'C'$ y $CA \parallel C'A'$, entonces son homotéticos y las rectas AA', BB' y CC' concurren en el centro de homotecia.

Demostración. Como $AB \parallel A'B'$ y $AC \parallel A'C'$ se cumple que ∠BAC = ∠B'A'C', análogamente ∠ABC = ∠A'B'C', entonces el triángulo ABC es semejante al A'B'C' por criterio AA. Sea O la intersección de AA' y BB', por el teorema de Tales se tiene que $\frac{OA'}{OA} = \frac{A'B'}{AB}$, y como el triángulo ABC es semejante al A'B'C', se tiene que $\frac{A'B'}{AB} = \frac{A'C'}{AC}$, entonces C, C' y O son colineales por tales con las razones $\frac{OA'}{OA} = \frac{A'C'}{AC}$, además por tales $\frac{OA'}{OA} = \frac{OB'}{OB} = \frac{OC'}{OC}$ significando que O es centro de homotecia que manda $A \mapsto A'$, $B \mapsto B'$ y $C \mapsto C'$.

Es importante notar que para cualesquiera dos triángulos existe máximo un centro de homotecia, y solo existe si sus lados correspondientes son paralelos.

Proposición 2.2

Sean ABC y A'B'C' dos triángulos homotéticos. Los puntos P y P' son homotéticos si y solo si P es el punto en el triángulo ABC semejante a P' en el triángulo A'B'C'.

La proposición 1.5 es bastante fácil de probar, pero es muy útil y puede pasar desapercibido al intentar demostrar problemas de olimpiada. Un resultado muy difícil de probar sin tener en mente homotecia podría ser que el punto X(125) del triángulo ABC y el punto X(125) del triángulo A'B'C' concurren con las rectas AA', BB' y CC' (el punto X(i) corresponde a un centro del triángulo registrado en la Enciclopedia de Centros del Triángulo).

Ejemplo 2.3

Sea I el incentro y G el gravicentro de un triángulo ABC. Sean M, N y L los puntos medios de BC, CA y AB, respectivamente. Demuestra que G, I y el incentro del triángulo MNL son colineales.

Demostración. Notemos que $MN \parallel AB, NL \parallel BC$ y $LM \parallel CA$ por puntos medios, por el teorema 1.4 los triángulos ABC y MNL son homotéticos, y es hecho conocido que las rectas AM, BN y CL concurren en G. Llamemos J al incentro del triángulo MNL. Por la proposición 1.5, el incentro del triángulo ABC y el incentro del triángulo MNL son puntos homotéticos en la homotecia que manda el triángulo ABC al triángulo MNL, entonces IJ pasa por el centro de homotecia G. \square

3. Homotecia en círculos

Notemos que cualesquiera dos círculos son semejantes una infinidad de veces, ya que un círculo tiene infinitos ejes de simetría, esto nos lleva a preguntarnos, cómo se ven los centros de homotecia de cualesquiera dos círculos, y qué propiedades tienen.

Teorema 3.1 (Homotecia en círculos)

Para cualesquiera dos círculos Γ_1 y Γ_2 existen dos centros de homotecia que mapean los puntos de Γ_1 a los puntos de Γ_2 .

Demostración. Sean r_1 y O_1 el radio y circuncentro de Γ_1 , y r_2 y O_2 el radio y circuncentro de Γ_2 . Sea X el punto en el segmento O_1O_2 tal que $\frac{O_1X}{XO_2}=\frac{r_1}{r_2}$, entonces X cumple que es centro de homotecia porque preserva la razón de escala de las dos circunferencias, de manera similar, sea Y el

punto en la recta O_1O_2 tal que $\frac{O_1Y}{YO_2}=-\frac{r_1}{r_2}$, entonces Y cumple que es centro de homotecia porque preserva la razón de escala de las dos circunferencias.

Si dos circunferencias son tangentes, entonces uno de sus centros de homotecia es el punto de tangencia. Que el problema presente circunferencias tangentes es un buen indicador de que se puede atacar con homotecia, ya que se puede trabajar con rectas paralelas como se muestra en la figura 3.

Figura 3: Como O es centro de homotecia de las dos cricunferencias, AB es paralela a A'B'

Ejemplo 3.2

Sea Γ un círculo y Γ_1 y Γ_2 dos circunferencias de mismo radio internamente tangentes a Γ en puntos A y B, respectivamente. Sea X un punto arbitrario en Γ y sean C y D las intersecciones de XA con Γ_1 y XB con Γ_2 , respectivamente. Demuestra que AB es paralela a CD.

Demostración. Sean r, r_1 y r_2 los radios de Γ, Γ_1 y Γ_2 , respectivamente. Notemos que A es centro de homotecia de Γ_1 y Γ , entonces $\frac{AC}{AX} = \frac{r_1}{r}$, y análogamente B es el centro de homotecia de Γ_2 y Γ , entonces $\frac{BD}{BX} = \frac{r_2}{r}$. De esta forma terminamos el problema por el teorema de tales, como $r_1 = r_2$, se tiene que $\frac{AC}{AX} = \frac{BD}{BX}$ que implica $AB \parallel CD$.

Teorema 3.3 (Teorema de Monge)

Sean Γ_1, Γ_2 y Γ_3 tres circunferencias no concentricas. Sean X, Y y Z los centros de homotecia con razón positiva de Γ_1 y Γ_2 , Γ_1 y Γ_3 y Γ_2 y Γ_3 , respectivamente. Entonces X, Y y Z son colineales.

Demostración. Aplicando el teorema de Menelao en el triángulo O_1, O_2 y O_3 donde O_i es el centro de Γ_i , con los puntos X, Y y Z, se tiene que $\frac{O_1X}{XO_2} \cdot \frac{O_2Z}{ZO_3} \cdot \frac{O_3Y}{YO_1} = -1$ si y solo si X, Y y Z son colineales, pero esto se cumple por las razones de homotecia, entonces sí son colineales.

Si los tres centros de homotecia con razón positiva son colineales, ¿qué me puedes decir sobre los centros de homotecia con razón negativa? ¿Si considero dos con razón negativa y uno con razón positiva también son colineales?

4. Problemas

4.1. Nivel I

Problema 4.1. Demuestra que las tres medianas de un triánqulo concurren.

Problema 4.2. Sea ABC un triángulo y ω su incírculo. Sea D la intersección de la bisectriz de $\angle BAC$ con BC y sea l la recta tangente a ω que pasa por D y no es el lado BC. Prueba que l es tangente al excírculo.

Problema 4.3. Sea ABC un triángulo y P y Q puntos sobre los lados AB y AC, respectivamente, tales que PQ es paralela a BC. Sea D el punto de intersección de BQ con CP. Sea E un punto sobre PQ, sea F la intersección de ED con BC y G la intersección de AE con BC. Demuestra que el punto medio de BC es también el punto medio de FG.

Problema 4.4 (Circunferencia de los 9 puntos). Demuestra que el ortocentro y el gravicentro de un triángulo ABC son los centros de homotecia del circuncírculo y de la circunferencia de los 9 puntos de ABC.

Problema 4.5 (Recta de Euler). Demuestra que el gravicentro, circuncentro, ortocentro y el centro de la circunferencia de los 9 puntos de un triángulo ABC están en una recta.

Problema 4.6. Sean ω_1 y ω_2 dos circunferencias tangentes en T con ω_2 en el interior de ω_1 . Se tiene A y B puntos en ω_1 tales que AB es tangente a ω_2 en el punto K. Prueba que TK corta a ω_1 en el punto medio del arco AB.

Problema 4.7. Sea ABCD un tetraedro, y sean G_A , G_B , G_C y G_D los gravicentros de los triángulos BCD, CDA, DAB y ABC, respectivamente. Demuestra que AG_A , BG_B , CG_C y DG_D concurren.

Problema 4.8. Sea ABC un triángulo y ω su incírculo. Sea D el punto de tangencia de este respecto a la recta BC. Prueba que el punto diametralmente opuesto a D en ω , A y el punto de tangencia del excírculo son colineales.

Problema 4.9. En un triángulo ABC, demuestra que el punto de tangencia del A-excírculo con BC, el incentro y el punto medio de la altura desde A con colineales.

Problema 4.10. Sea I el incentro de un triángulo ABC y D el punto de tangencia de su incírculo con BC. Sea M el punto medio de BC y N el punto medio de AD. Demuestra que I, N y M son colineales.

Problema 4.11. Sea ABC un triángulo y sea D el punto de tangencia del incírculo con BC. Prueba que D, el excentro con respecto a A y el punto medio de la altura con respecto a A son colineales.

4.2. Nivel II

Problema 4.12. Sea ABCD un trapecio con $AB \parallel CD$. Sea P el punto de intersección de AC con BD. Sean M y N los puntos medios de los segmentos AC y BD, respectivamente. Sea Q la intersección de DM y CN, y sea R la intersección de DA con CB. Prueba que P,Q y R son colineales.

Problema 4.13. Sea ABC un triángulo y H su ortocentro. Sean O_A , O_B y O_C los circuncentros de BHC, CHA y AHB, respectivamente. Prueba que AO_A , BO_B y CO_C concurren.

Problema 4.14 (OMM, 2015). Sea I el incentro de un triángulo acutángulo ABC. La recta AI corta por segunda vez al circuncírculo del triángulo BIC en E. Sean D el pie de la altura desde A sobre BC y J la reflexión de I con respecto a BC. Muestra que los puntos D, J y E son colineales.

Problema 4.15 (Recta de Nagel). Demuestra que el incentro, el gravicentro, el incentro del triángulo medial y el punto de Nagel de un triángulo ABC son colineales.

Problema 4.16. En el triángulo ABC sean P,Q y R los puntos de tangencia del incírculo en los lados AB, BC y AC, respectivamente. Sean L, M y N los pies de las alturas del triángulo PQR en PQ, QR y PR, respectivamente.

- Demuestre que las rectas AN, BL y CM se cortan en el mismo punto.
- Demuestre que este punto común está en la recta que pasa por el ortocentro y el circuncentro del triángulo PQR.

Problema 4.17. Sea Γ una circunferencia y AB una cuerda en ella. Sean Ω_1 y Ω_2 dos circunferencias tangentes internamente a Γ , tangentes entre ellas en I y tangentes a la cuerda AB. Sea C la intersección de la tangente común a Ω_1 y Ω_2 con Γ , de tal manera que I y C estén del mismo lado respecto a la recta AB. Demuestra que I es el incentro del triángulo ABC.

Problema 4.18 (EGMO 2016 P4). Dos circunferencias ω_1 y ω_2 del mismo radio se intersecan en dos puntos distintos X_1 y X_2 . Se considera una circunferencia ω tangente exteriormente a ω_1 en un punto T_1 , y tangente interiormente a ω_2 en un punto T_2 . Demostrar que las rectas X_1T_1 y X_2T_2 se intersecan en un punto que pertenece a ω .

Problema 4.19. Sea ABC un triángulo y Γ su circuncírculo. La circunferencia Ω es tangente internamente a Γ y también tangente a las rectas AB y AC en los puntos D y E, respectivamente. Prueba que el incentro de ABC esta sobre DE. NOTA: a la circunferencia Ω se le conoce como circunferencia mixtilinear del triángulo ABC opuesta a A.

Problema 4.20 (IMO 1983 P2). Sea A uno de los dos puntos distintos de intersección de dos circunferencias C_1 y C_2 con centros O_1 y O_2 respectivamente. Una de las tangentes comunes a estas circunferencias tocan a C_1 en P_1 y a C_2 en P_2 , mientras que la otra tangente común toca a C_1 en Q_1 y a C_2 en Q_2 . Sea M_1 el punto medio de P_1Q_1 y M_2 el punto medio de P_2Q_2 . Prueba que $\angle O_1AO_2 = \angle M_1AM_2$.

Problema 4.21. Dos circunferencias Γ_1 y Γ_2 se intersectan en los puntos A y B. Considérese una circunferencia Γ contenida en Γ_1 y Γ_2 que es tangente a ambas en D y E, respectivamente. Sea C una de las intersecciones de la recta AB con Γ , F la intersección de la línea EC con Γ_2 y G la intersección de la línea DC con Γ_1 . Sean H e I los puntos de intersección de la línea ED con Γ_1 y Γ_2 , respectivamente. Demuestre que F, G, H e I están en una misma circunferencia.

Problema 4.22. Sea Sea $\triangle ABC$ un triángulo, I su incentro, y $\triangle DEF$ el triángulo de contacto del incírculo. Prueba que DI, EF y la mediana desde A son concurrentes.

4.3. Nivel III

Problema 4.23 (OMM 2014 P3). Sean Γ_1 una circunferencia y P un punto fuera de Γ_1 . Las tangentes desde P a Γ_1 tocan a la circunferencia en los puntos A y B. Considera M el punto medio del segmento PA y Γ_2 la circunferencia que pasa por los puntos P, A y B. La recta BM interseca de nuevo a Γ_2 en el punto C, la recta CA interseca de nuevo a Γ_1 en el punto D, el segmento DB interseca de nuevo a Γ_2 en el punto E y la recta PE interseca a Γ_1 en el punto F (con E entre P y F). Muestra que las rectas AF, BP y CE concurren.

Problema 4.24 (IMO 1999 P5). Dos circunferencias Γ_1 y Γ_2 están dentro de un círculo Γ , y son tangentes a esta circunferencia en puntos distintos M y N, respectivamente. Γ_1 pasa por el centro de Γ_2 . La línea que pasa por los puntos de intersección de Γ_1 y Γ_2 intersecta a Γ en A y B. Las líneas MA y MB intersectan a Γ_1 en C y D, respectivamente. Prueba que CD es tangente a Γ_2 .

Problema 4.25 (OMM 2016 P6). Sean ABCD un cuadrilátero inscrito en una circunferencia, ℓ_1 la recta paralela a BC que pasa por A y ℓ_2 la recta paralela a AD que pasa por B. La recta DC corta a ℓ_1 y ℓ_2 en los puntos E y F, respectivamente. La recta perpendicular a ℓ_1 que pasa por A corta a BC en P y la recta perpendicular a ℓ_2 por B corta a AD en Q. Sean Γ_1 y Γ_2 las circunferencias que pasan por los vértices de los triángulos ADE y BFC, respectivamente. Demuestra que Γ_1 y Γ_2 son tangentes si y solo si DP es perpendicular a CQ.

Problema 4.26. Sea Γ el A-excírculo de un triángulo ABC y sea E el punto de tangencia de Γ con BC. Sea P la intersección de las tangentes externas en común de Γ y el circuncírculo de ABC y sea F el punto en el segmento BC tal que $\angle BAF = \angle CAE$. Demuestra que P, A y F son colineales.

Problema 4.27 (Sharygin 2013 P19). Sea ABC un triángulo con bisectriz AL (con L en BC). Los puntos O_1 y O_2 son los circuncentros de ABL y ACL, respectivamente. Los puntos B_1 y C_1 son las proyecciones de C y B a las bisectrices de los ángulos $\angle B$ y $\angle C$, respectivamente. El incírculo de $\triangle ABC$ toca a AC y AB en B_0 y C_0 y las bisectrices de los angulos en $\angle C$ y $\angle B$ cortan a la mediatriz de AL en los puntos P y Q, respectivamente. Demuestra que las cinco lineas $PC_0, QB_0, O_1C_1, O_2B_1$ y BC concurren.

Problema 4.28 (RMM 2021 P1). Sean T_1, T_2, T_3, T_4 puntos colineales distintos tal que T_2 está entre T_1 y T_3 , y T_3 está entre T_2 y T_4 . Sea ω_1 el círculo que pasa por T_1 y T_4 ; sea ω_2 el círculo que pasa por T_2 y es tangente internamente a ω_1 en T_1 ; sea ω_3 el círculo que pasa por T_3 y es tangente externamente a ω_2 en T_2 ; y sea ω_4 el círculo que pasa por T_4 y es tangente externamente a ω_3 en T_3 . Una línea interseca a ω_1 en P y W, a ω_2 en Q y R, a ω_3 en S y T, y a ω_4 en U y V, el orden de estos puntos a lo largo de la recta es P, Q, R, S, T, U, V, W. Demuestra que PQ + TU = RS + VW.

Problema 4.29 (IMO SL 2014 G4). Consideremos Γ un círculo fijo con tres puntos A, B y C fijos en ella. Fijemos un número real $\lambda \in (0,1)$. Para un punto variable en $P \notin \{A,B,C\}$ en Γ , sea M un punto en el segmento CP tal que $CM = \lambda \cdot CP$. Sea Q el segundo punto de intersección de los circuncírculos de los triángulos AMP y BMC. Demuestra que mientras P varía, el punto Q yace en un círculo fijo.

Problema 4.30 (IMO SL 2021 G5). Sea ABCD un cuadrilátero cíclico tal que sus lados tienen longitudes distintas por parejas. Sea O el circuncentro de ABCD. Las bisectrices internas de los ángulos $\angle ABC$ y $\angle ADC$ intersecan a AC en B_1 y D_1 , respectivamente. Sea O_B el centro del círculo que pasa por B y es tangente a AC en D_1 . Similarmente, sea O_D el centro del círculo que pasa por D y es tangente a AC en B_1 . Supón que $BD_1 \parallel DB_1$. Demuestra que O está en la recta O_BO_D .

Problema 4.31 (IMO SL 2020 G5). Sea ABCD un cuadrilátero cíclico cuyos lados no hay dos paralelos. Sean K, L, M y N puntos en los lados AB, BC, CD y DA, respectivamente, tal que KLMN es un rombo con KL \parallel AC y LM \parallel BD. Sean $\omega_1, \omega_2, \omega_3$ y ω_4 los incírculos de los triángulos ANK, BKL, CLM y DMN, respectivamente. Demuestra que las tangentes internas comunes de ω_1 y ω_3 y las tangentes internas comunes de ω_2 y ω_4 concurren.

Problema 4.32 (IMO SL 2008 G7). Sea ABCD un cuadrilátero convexo con $BA \neq BC$. Sean ω_1 y ω_2 los incírculos de los triángulos ABC y ADC, respectivamente. Supón que existe un círculo tangente al rayo BA más allá de A, al rayo BC más allá de C, y también a las rectas AD y CD. Demuestra que las tangentes externas en común de ω_1 y ω_2 se intersecan en ω .

4.4. Nivel Enfermo

Problema 4.33 (IMO SL 2017 G7). Un cuadrilátero convexo ABCD tiene un círculo inscrito con centro I. Sean I_a , I_b , I_c e I_d los incentros de los triángulos DAB, ABC, BCD y CDA, respectivamente. Supón que las tangentes externas en común de los circuncírculos de AI_bI_d y CI_bI_d se intersecan en X, y las tangentes externas en común de los circuncírculos de BI_aI_c y DI_aI_c se intersecan en Y. Demuestra que $\angle XIY = 90^\circ$.

Eric Ransom 5 Bibliografía

Problema 4.34 (IMO SL 2007 G8). Sea P un punto en el lado AB de un cuadrilátero convexo ABCD. Sea ω el incírculo del triángulo CDP, y sea I su incentro. Supongamos que ω es tangente a los incírculos de los triángulos APD y BCP en los puntos K y L, respectivamente. Las lineas AC y BD se intersectan en E, y las lineas AK y BL se cortan en F. Prueba que E, I y F son colineales.

Problema 4.35 (IMO SL 2015 G7). Sea ABCD un cuadrilátero convexo, y sean P,Q,R y S puntos en los lados AB, BC, CD y DA, respectivamente. Los segmentos PR y QS se intersecan en O. Supón que cada uno de los cuadriláteros APOS, BQOP, CROQ y DSOR tienen un incírculo. Demuestra que las rectas AC, PQ y RS concurren o son paralelas.

5. Bibliografía

- I) Sánchez, M. (19 de octubre de 2018). Homotecia.
- II) Garza, E. (6 de marzo de 2021). Entrenamientos OMMNL Homotecia.
- II) Zabarovska, S. (s.f.). The Return of Homothety in Mathematical Contests. https://eldorado.tu-dortmund.de/bitstream/2003/31745/1/195.pdf