lab17

Zijing

2022-11-27

library(skimr) vax <- read.csv("covid19vaccinesbyzipcode_test.csv")</pre> head(vax) ## as_of_date zip_code_tabulation_area local_health_jurisdiction county ## 1 2021-01-05 92240 Riverside Riverside ## 2 2021-01-05 91302 Los Angeles Los Angeles ## 3 2021-01-05 93420 San Luis Obispo San Luis Obispo ## 4 2021-01-05 91901 San Diego San Diego ## 5 2021-01-05 94110 San Francisco San Francisco ## 6 2021-01-05 91902 San Diego San Diego ## vaccine_equity_metric_quartile vem_source ## 1 1 Healthy Places Index Score ## 2 4 Healthy Places Index Score ## 3 3 Healthy Places Index Score ## 4 3 Healthy Places Index Score ## 5 4 Healthy Places Index Score ## 6 4 Healthy Places Index Score ## age12_plus_population age5_plus_population tot_population ## 1 29270.5 33093 35278 ## 2 23163.9 25899 26712 ## 3 26694.9 29253 30740 ## 4 15549.8 16905 18162 ## 5 64350.7 68320 72380 ## 6 16620.7 18026 18896 ## persons_fully_vaccinated persons_partially_vaccinated ## 1 NANA ## 2 15 614 ## 3 NANA ## 4 NA NA ## 5 17 1268 ## 6 15 397 ## percent_of_population_fully_vaccinated ## 1 NA0.000562 ## 2 ## 3 NA## 4 NA ## 5 0.000235 ## 0.000794 percent_of_population_partially_vaccinated ## 1 NA

0.022986

2

```
## 3
                                              NA
## 4
                                              NΑ
## 5
                                        0.017519
                                        0.021010
## 6
##
     percent_of_population_with_1_plus_dose booster_recip_count
## 1
## 2
                                    0.023548
                                                               NA
## 3
                                          NΑ
                                                               NA
## 4
                                                               NA
## 5
                                    0.017754
                                                               NA
## 6
                                    0.021804
                                                               NA
##
     bivalent_dose_recip_count eligible_recipient_count
## 1
                             NA
## 2
                                                       15
                             NA
## 3
                             NA
                                                        4
## 4
                             NA
                                                        8
## 5
                                                       17
                             NA
## 6
                             NA
                                                       15
                                                                    redacted
## 1 Information redacted in accordance with CA state privacy requirements
## 2 Information redacted in accordance with CA state privacy requirements
## 3 Information redacted in accordance with CA state privacy requirements
## 4 Information redacted in accordance with CA state privacy requirements
## 5 Information redacted in accordance with CA state privacy requirements
## 6 Information redacted in accordance with CA state privacy requirements
```

Q1. What column details the total number of people fully vaccinated?

persons_fully_vaccinated

Q2. What column details the Zip code tabulation area?

zip_code_tabulation_area

Q3. What is the earliest date in this dataset?

2021 - 01 - 05

Q4. What is the latest date in this dataset?

2022-11-22 skimr::skim(vax)

Table 1: Data summary

Name vax

Table 1: Data summary

Number of rows	174636
Number of columns	18
Column type frequency:	 5
numeric	13
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
as_of_date	0	1	10	10	0	99	0
$local_health_jurisdiction$	0	1	0	15	495	62	0
county	0	1	0	15	495	59	0
vem_source	0	1	15	26	0	3	0
redacted	0	1	2	69	0	2	0

Variable type: numeric

skim_variable	n_missir	gomplete_	_r rate an	sd	p0	p25	p50	p75	p100	hist
zip_code_tabulation_area	0	1.00	93665.1	11817.39	90001	92257.7	593658.5	095380.5	6097635.0)
vaccine_equity_metric_qua	art &l@ 13	0.95	2.44	1.11	1	1.00	2.00	3.00	4.0	
age12_plus_population	0	1.00	18895.0	418993.8	8 0	1346.95	13685.1	031756.1	288556.7	7
age5_plus_population	0	1.00	20875.2	421105.98	8 0	1460.50	15364.0	034877.0	0101902	.0
tot_population	8514	0.95	23372.7	722628.5	1 12	2126.00	18714.0	B8168. 0	0111165	.0
persons_fully_vaccinated	14921	0.91	13466.3	414722.40	6 11	883.00	8024.00	22529.0	087186.0)
persons_partially_vaccinat	ed4921	0.91	1707.50	1998.80	11	167.00	1194.00	2547.00	39204.0)
percent_of_population_ful	ly <u>18</u> 665cin	ated 0.89	0.55	0.25	0	0.39	0.59	0.73	1.0	
percent_of_population_pa	rt 18116 5_va	ccin 20t84	0.08	0.09	0	0.05	0.06	0.08	1.0	
percent_of_population_wi	th <u>19562</u> plu	$s_d ds = 89$	0.61	0.25	0	0.46	0.65	0.79	1.0	
booster_recip_count	70421	0.60	5655.17	6867.49	11	280.00	2575.00	9421.00	58304.0)
bivalent_dose_recip_count	156958	0.10	1646.02	2161.84	11	109.00	719.00	2443.00	18109.0)
eligible_recipient_count	0	1.00	12309.1	914555.83	3 0	466.00	5810.00	21140.0	086696.0)

Q5. How many numeric columns are in this dataset?

13

Q6. Note that there are "missing values" in the dataset. How many NA values there in the persons_fully_vaccinated column?

14921

Q7. What percent of persons_fully_vaccinated values are missing (to 2 significant figures)?

8.54

Q8. [Optional]: Why might this data be missing?

Missing data from some zip code areas.

```
library(lubridate)

## Loading required package: timechange

##

## Attaching package: 'lubridate'

## The following objects are masked from 'package:base':

##

## date, intersect, setdiff, union

today()

## [1] "2022-11-26"

vax$as_of_date <- ymd(vax$as_of_date)

today() - vax$as_of_date[1]

## Time difference of 690 days

vax$as_of_date[nrow(vax)] - vax$as_of_date[1]

## Time difference of 686 days</pre>
```

Q9. How many days have passed since the last update of the dataset?

4 days

Q10. How many unique dates are in the dataset (i.e. how many different dates are detailed)?

```
99 unique dates

library(zipcodeR)

geocode_zip('92037')

## # A tibble: 1 x 3

## zipcode lat lng

## <chr> <dbl> <dbl> <dbl>
## 1 92037 32.8 -117.
```

```
zip_distance('92037','92109')
##
     zipcode_a zipcode_b distance
         92037
                   92109
## 1
                             2.33
reverse_zipcode(c('92037', "92109"))
## # A tibble: 2 x 24
     zipcode zipcode_~1 major~2 post_~3 common_c~4 county state
                                                                   lat
                                                                         lng timez~5
##
             <chr>
                        <chr>
                                            <blook> <chr> <chr> <dbl> <dbl> <chr>
                                <chr>
## 1 92037
             Standard
                        La Jol~ La Jol~ <raw 20 B> San D~ CA
                                                                  32.8 -117. Pacific
## 2 92109
             Standard
                        San Di~ San Di~ <raw 21 B> San D~ CA
                                                                  32.8 -117. Pacific
## # ... with 14 more variables: radius_in_miles <dbl>, area_code_list <blob>,
       population <int>, population_density <dbl>, land_area_in_sqmi <dbl>,
      water_area_in_sqmi <dbl>, housing_units <int>,
       occupied_housing_units <int>, median_home_value <int>,
## #
      median_household_income <int>, bounds_west <dbl>, bounds_east <dbl>,
       bounds_north <dbl>, bounds_south <dbl>, and abbreviated variable names
       1: zipcode_type, 2: major_city, 3: post_office_city, ...
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
sd <- filter(vax, county == "San Diego")</pre>
nrow(sd)
## [1] 10593
```

Q11. How many distinct zip codes are listed for San Diego County?

```
length(unique(sd$zip_code_tabulation_area))
## [1] 107
```

Q12. What San Diego County Zip code area has the largest 12 + Population in this dataset?

```
zip <- which.max(sd$age12_plus_population)
sd$zip_code_tabulation_area[zip]
## [1] 92154</pre>
```

Q13. What is the overall average "Percent of Population Fully Vaccinated" value for all San Diego "County" as of "2022-11-15"?

```
sd_221115 <- filter(sd, as_of_date == "2022-11-15")
mean(sd_221115$percent_of_population_fully_vaccinated, na.rm = TRUE)
## [1] 0.7369099</pre>
```

Average percentage is 73.7%

Q14. Using either ggplot or base R graphics make a summary figure that shows the distribution of Percent of Population Fully Vaccinated values as of "2022-11-15"?

```
library(ggplot2)
ggplot(sd_221115, aes(percent_of_population_fully_vaccinated))+
    geom_histogram()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 8 rows containing non-finite values (`stat_bin()`).

ucsd <- filter(sd, zip_code_tabulation_area=="92037")
ucsd[1,]\$age5_plus_population</pre>

[1] 36144

Q15

```
ggplot(ucsd) +
aes(as_of_date,
    percent_of_population_fully_vaccinated) +
geom_point() +
geom_line(group=1) +
ylim(c(0,1)) +
labs(x="Date", y="Percent Vaccinated",title="Vaccination Rate for La Jolla CA 92037")
```

Vaccination Rate for La Jolla CA 92037

comp_mean <- mean(vax.36\$percent_of_population_fully_vaccinated, na.rm = TRUE)
comp_mean</pre>

[1] 0.7172851

Q16

Vaccination Rate for La Jolla CA 92037

Q17. What is the 6 number summary (Min, 1st Qu., Median, Mean, 3rd Qu., and Max) of the "Percent of Population Fully Vaccinated" values for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2022-11-15"?

skimr::skim(vax.36)

Table 4: Data summary

vax.36
411
18
4
1
13

Table 4: Data summary

Group variables	Group variables	None
-----------------	-----------------	------

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
local_health_jurisdiction	0	1	4	15	0	37	0
county	0	1	4	15	0	36	0
vem_source	0	1	26	26	0	1	0
redacted	0	1	2	2	0	1	0

Variable type: Date

skim_variable	n_missing	$complete_rate$	min	max	median	n_unique
as_of_date	0	1	2022-11-15	2022-11-15	2022-11-15	1

Variable type: numeric

skim_variable n_	_missingomplete	matean	sd	p0	p25	p50	p75	p100	hist
zip_code_tabulation_area	0 1	92862.1	01716.60	90001.	0091761.	5092646. 0	094517.	0096003.0	00
vaccine_equity_metric_quart	tile0 1	2.35	1.11	1.00	1.00	2.00	3.00	4.00	
age12_plus_population	0 1	46847.4	012057.3	32 31650.	937693.	5 5 43985.4	lФ3931.	5@8556.7	0
$age5_plus_population$	0 1	52012.3	2 13620.1	19 6181.	0041612.	5048573.0) Б 9167.	50101902	.00
$tot_population$	0 1	55640.9	114745.1	19 8007.	0044393.	052212.0	062910.	00111165	.00
persons_fully_vaccinated	0 1	39837.2	281739.8	3017422.	031926.	5 3 7064.0	045033.	5087151.0	00
persons_partially_vaccinated	0 1	4077.70	0.2620.74	1733.0	0.2813.0	0.3542.00	4666.0	0.39160.0	00
percent_of_population_fully_	_v@ccinated 1	0.72	0.11	0.38	0.64	0.72	0.79	1.00	
percent_of_population_parti	all@_vaccinat&d	0.07	0.05	0.04	0.06	0.06	0.08	0.98	
percent_of_population_with	$_10$ plus_dose	0.79	0.11	0.44	0.71	0.79	0.86	1.00	
booster_recip_count	0 1	22817.3	37 812.12	28603.0	0 17134.	5021640.0	027265.	5056744 .0	00
bivalent_dose_recip_count	0 1	5618.65	2952.70	1375.0	0.3418.5	0 4941.00	7269.5	0.16829.0	00
eligible_recipient_count	0 1	39609.3	3111653.3	817321.	0031819.	5 3 6758.0	044903.	5% 6696.0	00

 $\label{eq:min-3.78501e-01} \mbox{Min 3.78501e-01, 1st Qu. 6.396185e-01, Median 7.15524e-01, Mean 7.172851e-01, 3rd Qu. 7.879820e-01, and Max <math display="inline">1.00000e+00$

Q18

```
ggplot(vax.36, aes(percent_of_population_fully_vaccinated))+
  geom_histogram()+
  xlim(0,1)
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

^{##} Warning: Removed 2 rows containing missing values (`geom_bar()`).

Q19. Is the 92109 and 92040 ZIP code areas above or below the average value you calculated for all these above?

Q20. Finally make a time course plot of vaccination progress for all areas in the full dataset with a age5_plus_population > 36144.

Both areas are below the average calculated above.

```
vax.36.all <- filter(vax, age5_plus_population > 36144)

ggplot(vax.36.all) +
  aes(as_of_date,
```

```
percent_of_population_fully_vaccinated,
    group=zip_code_tabulation_area) +
geom_line(alpha=0.2, color="blue") +
ylim(0.00,1.00) +
labs(x="Date", y="Percent Vaccinated",
    title="Vaccination Rate across California",
    subtitle="Only areas with a population above 36k are shown") +
geom_hline(yintercept = comp_mean, linetype="dashed")
```

Warning: Removed 184 rows containing missing values (`geom_line()`).

Vaccination Rate across California

Only areas with a population above 36k are shown

