ENM 3600: Introduction to Data-driven Modeling

Lecture #4: Probability and Statistics primer

Recap: Continuous random variables

- A continuous random variable is one which takes an infinite number of possible values. Continuous random variables are usually measurements. Examples include height, weight, the amount of sugar in an orange, the time required to run a mile.
- A continuous random variable is not defined at specific values. Instead, it is defined over an *interval* of values, and is represented by the *area under a curve* (in advanced mathematics, this is known as an *integral*). The probability of observing any single value is equal to 0, since the number of values which may be assumed by the random variable is infinite.

Probability density functions

$$\Pr[a \leq X \leq b] = \int_a^b f_X(x) \, dx.$$

$$F_X(x) = \int_{-\infty}^x f_X(u)\,du,$$

and (if f_X is continuous at x)

$$f_X(x)=rac{d}{dx}F_X(x).$$

Intuitively, one can think of $f_X(x) dx$ as being the probability of X falling within the infinitesimal interval [x, x + dx].

70

Recap: Univariate Gaussian distribution

I	
Notation	$\mathcal{N}(\mu,\sigma^2)$
Parameters	$\mu \in \mathbb{R}$ = mean (location)
	$\sigma^2>0$ = variance (squared scale)
Support	$x\in \mathbb{R}$
PDF	$rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$
CDF	$rac{1}{2}\left[1+ ext{erf}igg(rac{x-\mu}{\sigma\sqrt{2}}igg) ight]$
Quantile	$\mu + \sigma\sqrt{2}\operatorname{erf}^{-1}(2F-1)$
Mean	μ
Median	μ
Mode	μ
Variance	σ^2
Skewness	0
Ex. kurtosis	0
Entropy	$rac{1}{2}\log(2\pi e\sigma^2)$
MGF	$\exp(\mu t + \sigma^2 t^2/2)$
CF	$\exp(i\mu t - \sigma^2 t^2/2)$
Fisher information	$egin{aligned} \mathcal{I}(\mu,\sigma) &= egin{pmatrix} 1/\sigma^2 & 0 \ 0 & 2/\sigma^2 \end{pmatrix} \mathcal{I}(\mu,\sigma^2) &= egin{pmatrix} 1/\sigma^2 & 0 \ 0 & 1/(2\sigma^4) \end{pmatrix} \ D_{ ext{KL}}(\mathcal{N}_0 \ \mathcal{N}_1) &= rac{1}{2} \{ (\sigma_0/\sigma_1)^2 + rac{(\mu_1 - \mu_0)^2}{\sigma_1^2} - 1 + 2\lnrac{\sigma_1}{\sigma_0} \} \end{aligned}$
Kullback- Leibler divergence	$D_{ ext{KL}}(\mathcal{N}_0 \ \mathcal{N}_1) = rac{1}{2} \{ (\sigma_0/\sigma_1)^2 + rac{(\mu_1 - \mu_0)^2}{\sigma_1^2} - 1 + 2 \ln rac{\sigma_1}{\sigma_0} \}$

Recap: Uniform distribution

Notation	$\mathcal{U}(a,b)$ or $\mathrm{unif}(a,b)$
Parameters	$-\infty < a < b < \infty$
Support	$x \in [a,b]$
PDF	$\left\{egin{array}{ll} rac{1}{b-a} & ext{for } x \in [a,b] \ 0 & ext{otherwise} \end{array} ight.$
CDF	$\left\{egin{array}{ll} 0 & ext{for } x < a \ rac{x-a}{b-a} & ext{for } x \in [a,b) \ 1 & ext{for } x \geq b \end{array} ight.$
Mean	$rac{1}{2}(a+b)$
Median	$\frac{1}{2}(a+b)$
Mode	any value in (a,b)
Variance	$\frac{1}{12}(b-a)^2$
Skewness	0
Ex. kurtosis	$-\frac{6}{5}$
Entropy	$\ln(b-a)$
MGF	$\left\{egin{array}{ll} rac{\mathrm{e}^{tb}-\mathrm{e}^{ta}}{t(b-a)} & ext{for } t eq 0 \ 1 & ext{for } t=0 \end{array} ight.$
CF	$\left\{egin{array}{ll} rac{\mathrm{e}^{itb}-\mathrm{e}^{ita}}{it(b-a)} & ext{for } t eq 0 \ 1 & ext{for } t=0 \end{array} ight.$

Correlation and linear dependence

The multivariate Gaussian

$$p(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{D}{2}} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$$

Notation	$\mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$
Parameters	$\mu \in \mathbb{R}^k$ — location
	$\Sigma \in \mathbf{R}^{k \times k}$ — covariance (positive semi-
	definite matrix)
Support	$x \in \mu + \operatorname{span}(\Sigma) \subseteq \mathbf{R}^k$
PDF	$\det(2\pi\mathbf{\Sigma})^{-\frac{1}{2}}\;e^{-\frac{1}{2}(\mathbf{x}-oldsymbol{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu})},$
	exists only when Σ is positive-definite
Mean	μ
Mode	μ
Variance	Σ

Marginals and conditionals of a Gaussian

$$p(\boldsymbol{x}, \boldsymbol{y}) = \mathcal{N}\left(\begin{bmatrix}\boldsymbol{\mu}_{x}\\\boldsymbol{\mu}_{y}\end{bmatrix}, \begin{bmatrix}\boldsymbol{\Sigma}_{xx} & \boldsymbol{\Sigma}_{xy}\\\boldsymbol{\Sigma}_{yx} & \boldsymbol{\Sigma}_{yy}\end{bmatrix}\right) \xrightarrow[-2.5]{5.0}$$

Marginal distribution

$$p(\boldsymbol{x}) = \int p(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y} = \mathcal{N}(\boldsymbol{x} | \boldsymbol{\mu}_x, \boldsymbol{\Sigma}_{xx})$$

Conditional distribution
$$p(oldsymbol{x} \mid oldsymbol{y}) = \mathcal{N}ig(oldsymbol{\mu}_{x\mid y}, oldsymbol{\Sigma}_{x\mid y})$$
 $oldsymbol{\mu}_{x\mid y} = oldsymbol{\mu}_{x} + oldsymbol{\Sigma}_{xy} oldsymbol{\Sigma}_{yy}^{-1} (oldsymbol{y} - oldsymbol{\mu}_{y})$ $oldsymbol{\Sigma}_{x\mid y} = oldsymbol{\Sigma}_{xx} - oldsymbol{\Sigma}_{xy} oldsymbol{\Sigma}_{yy}^{-1} oldsymbol{\Sigma}_{yx}$.

These are unique properties that make the Gaussian distribution very simple and attractive to compute with! It is essentially our main building block for computing under uncertainty.

Transformations

