Дерево решений и случайный лес

Дерево решений — логический алгоритм классификации, решающий задачи классификации и регрессии. Представляет собой объединение логических условий в структуру дерева.

Содержание

- 1 Дерево решений
 - 1.1 Информативность ветвления
 - 1.2 Рекурсивный алгоритм построения бинарного дерева решений ID3
- 2 Редукция решающих деревьев
 - 2.1 Предредукция
 - 2.2 Постредукция
- 3 Алгоритмы построения деревьев решения
 - 3.1 Алгоритм CART (англ. Classification And Regression Trees)
 - 3.2 Алгоритм С4.5
- 4 Случайный лес
 - 5 Примеры кода
 - 5.1 Примеры на языке Python
 - 5.2 Пример на языке Scala
 - 5.3 Пример на языке Java
 - 5.4 Пример на языке R
 - 5.4.1 Деревья решений
 - 5.4.2 Случайный лес
- 6 См. также
- 7 Источники информации

Дерево решений

Определение:

Дерево решений (англ. decision tree, DT) — алгоритм классификации $a(x)=(V_{\text{внутр}},v_0,V_{\text{лист}},S_v,\beta_v)$, задающийся деревом (связным ациклическим графом), где:

- lacktriangledown $V=V_{ ext{внутр}}\cup V_{ ext{лист}}$ множество вершин , $v_0\in V$ корень дерева;
- ullet $S_v:D_v\overset{ au}{
 ightarrow} V_v$ функция перехода по значению предиката в множество детей вершины v;
- $oldsymbol{eta}_v: X o D_v$ предикат ветвления, $v \in V_{ ext{внутр}}$ и $|D_v| < \infty$;
- ullet Для листьев $v \in V_{ ext{nuct}}$ определена метка класса $y_v \in Y$.

Определение:

Бинарное дерево решений — частный случай дерева решений, для которого $D_v = \{0,1\}$.

```
function classify(x): v=v_0 if eta_v(x)=1 v:=R_v else
```

$$v := L_v$$
 return y_v

Информативность ветвления

Для того, чтобы оценивать качество разбиения объектов по предикату β , введем понятие *информационного выигрыша* разбиения. Сначала оценим распределение значений классов объектов внутри каждого множества из разбиения, введя понятие меры неопределенности распределения.

Классификация объекта $x \in X$ бинарным решающим деревом

Определение:

Частотная оценка вероятности класса y в вершине $v \in V_{\scriptscriptstyle exttt{BHVTD}}$:

$$p_y = P(y|x \in U) = rac{1}{|U|} \sum_{x_i \in U} [y_i = y]$$

Определение:

Мера неопределенности (англ. *impurity*) распределения p_u :

- минимальна, когда $p_y \in \{0,1\};$ максимальна, когда $p_y = \frac{1}{|Y|}$ для всех $y \in Y;$
- не зависит от перенумерации классов

$$\Phi(U)=\sum_{y\in Y}p_yL(p_y)=rac{1}{|U|}\sum_{x_i\in U}L(P(y_i|x_i\in U)) o min,$$
где $L(p)$ убывает и $L(1)=0$, например: $-log_2(p),1-p,1-p^2$

Примерами мер неопределенности распределения являются:

- lacktriangledown Энтропия: $\Phi(U) = -\sum_{i}^{N} p_i log_2 p_i$, определяется для каждого множества из разбиения, N количество возможных классов, и p_i — вероятность объекта принадлежать i-ому классу.
- lacktriangle Критерий Джини: $\Phi(\hat{U}) = \sum_{i!=j} p_i p_j = \sum_i p_i * (1-p_i)$, максимизацию этого критерия можно интерпретировать как максимизацию числа пар объектов одного класса, оказавшихся после разбиения в одном множестве.

Теперь определим суммарную неопределенность распределения в разбиении.

Определение:

Неопределенность распределения $P(y_i|x_i\in U_{eta(x_i)})$ после ветвления вершины v по предикату eta и разбиения $U=igcup_{k\in D_v} U_k$:

$$\Phi(U_0,\ldots,U_{D_v})=rac{1}{|U|}\sum_{k\in D_v}\sum_{x_i\in U_k}L(P(y_i|x_i\in U_k))=\sum_{k\in D_v}rac{|U_k|}{|U|}\Phi(U_k)$$

Информационный выигрыш от разбиения определяется как изменение неопределенности в системе.

Определение:

Информационный выигрыш от разбиения по предикату eta $Gain(eta,U)=\Phi(U)-\Phi(U_1,\ldots,U_{|D_v|})=\Phi(U)-\sum_{k\in D_v}rac{|U_k|}{|U|}\Phi(U_k) o max_{eta\in B}$

Рекурсивный алгоритм построения бинарного дерева решений ID3

Покажем идею построения дерева решения на частном случае бинарного дерева. Алгоритм ID3 (англ. Induction of Decision Tree) заключается в последовательном дроблении выборки на две части до тех пор, пока в каждой части не окажутся объекты только одного класса. Разделение производится по предикату β , который выбирается из множества элементарных предикатов. На практике в качестве элементарных предикатов чаще всего берут простые пороговые условия вида $\beta(x) = [f_i(x)>=d_i]$.

Проще всего записать этот алгоритм в виде рекурсивной процедуры ID3, которая строит дерево по заданной подвыборке U и возвращает его корневую вершину.

```
2:
3:
4:
      if forall\ u\in U\colon y_u=y, y\in Y
          // создать листовую вершину v с меткой класса y_v
          \mathsf{v} = createLeafVertex(y_v)
          return v
      // найти предикат с максимальным информационным выигрышом
      eta = rg \max_{eta \in B} \mathsf{Gain}(eta,\ U)
      // разбить выборку на две части U=U_0\cup U_1 по предикату eta
     U_0 := \{x \in U : eta(x) = 0\} \ U_1 := \{x \in U : eta(x) = 1\}
7:
8:
      if U_0=\emptyset || U_1=\emptyset
          // найти класс, в котором находится большинство объектов из {\it U}
          y_v = majorClass(U)
9:
          v = createLeafVertex(y_v)
          // создать внутреннюю вершину v
10:
11:
          \beta_v = \beta
          S_0 = ID3(U_0)
112:
          S_1 = ID3(U_1)
```

Редукция решающих деревьев

Суть редукции (англ. *pruning*) состоит в удалении поддеревьев, имеющих недостаточную статистическую надёжность. При этом дерево перестаёт безошибочно классифицировать обучающую выборку, зато качество классификации новых объектов, как правило, улучшается. Рассмотрим наиболее простые варианты редукции.

Предредукция

Предредукция (англ. pre-pruning) или критерий раннего останова досрочно прекращает дальнейшее ветвление в вершине дерева, если информативность $I(\beta,U)$ для всех возможных предикатов β не дотягивает до заданного порогового значения I_0 .

Для этого на шаге 8 алгоритма ID3 условие $U_0=\emptyset$ или $U_1=\emptyset$ заменяется условием $I(\beta,U)<=I_0$. Порог I_0 является управляющим параметром метода.

Предредукция считается не самым эффективным способом избежать переобучения, так как жадное ветвление попрежнему остаётся глобально неоптимальным. Более эффективной считается стратегия постредукции.

Постредукция

Постредукция (англ. *post-pruning*) просматривает все внутренние вершины дерева и заменяет отдельные вершины либо одной из дочерних вершин (при этом вторая дочерняя удаляется), либо терминальной вершиной. Процесс замен продолжается до тех пор, пока в дереве остаются вершины, удовлетворяющие критерию замены.

Критерием замены является сокращение числа ошибок на контрольной выборке, отобранной заранее, и не участвовавшей в обучении дерева. Стандартная рекомендация — оставлять в контроле около 30% объектов.

Для реализации постредукции контрольная выборка X^k пропускается через построенное дерево. При этом в каждой внутренней вершине v запоминается подмножество $S_v \subseteq X_k$ попавших в неё контрольных объектов. Если $S_v = \emptyset$, то вершина v считается ненадёжной и заменяется терминальной по мажоритарному правилу: в качестве y_v берётся тот класс, объектов которого больше всего в обучающей подвыборке U, пришедшей в вершину

Затем для каждой внутренней вершины v вычисляется число ошибок, полученных при классификации выборки S_v следующими способами:

- r(v) классификация поддеревом, растущим из вершины v;
- $r_L(v)$ классификация поддеревом левой дочерней вершины L_v ;
- $r_R(v)$ классификация поддеревом правой дочерней вершины R_v ;
- ullet $r_c(v)$ отнесение всех объектов выборки S_v к классу $y\in Y$.

Эти величины сравниваются, и в зависимости от того, какая из них оказалась минимальной, принимается, соответственно, одно из четырёх решений:

- сохранить поддерево вершины v;
- lacktriangleright заменить поддерево вершины v поддеревом левой дочерней вершины L_v ;
- lacktriangleright заменить поддерево вершины v поддеревом правой дочерней вершины R_v ;
- lacktriangleright заменить поддерево v терминальной вершиной класса $y_v = rg \min_{v \in Y} r_c(v)$.

Алгоритмы построения деревьев решения

Недостатки рассмотренного алгоритма ID3:

- Применим только для дискретных значений признаков;
- Переобучение;
- На каждом шаге решение принимается по одному атрибуту.

Алгоритм CART (https://en.wikipedia.org/wiki/Predictive_analytics#Classification_and_regression_t rees .28CART.29) (англ. Classification And Regression Trees)

- В отличие от ID3 работает и с непрерывными значениями признаков: на каждом шаге построения дерева последовательно сравнивает все возможные разбиения для всех атрибутов и выбирает наилучший атрибут и наилучшее разбиение для него. Разбивает объекты на две части;
- Использует редукцию для избежания переобучения;
- Обрабатывает пропущенные или аномальные значения признаков.

Алгоритм C4.5 (https://en.wikipedia.org/wiki/C4.5 algorithm)

- Также работает и с непрерывными значениями признаков: на каждом шаге построения дерева выбирает правило разбиения по одному из признаков. Разбивает объекты на несколько частей по этому правилу, рекурсивно запускается из полученных подмножеств;
- Использует редукцию для избежания переобучения;
- Обрабатывает пропущенные или аномальные значения признаков.

Случайный лес

Случайный лес — один из примеров объединения классификаторов в ансамбль. Алгоритм построения случайного леса, состоящего из N деревьев на основе обучающей выборки X такой:

```
for (n: 1,...,N): 
 // сгенерировать выборку X_n с помощью бутстрэпа X_n = bootstrap(X) 
 // построить решающее дерево t_n по выборке X_n 
 t_n = ID3(X_n)
```

Итоговый классификатор — $a(x)=rac{1}{N}\sum_{i=1}^N t_i(x)$. Для задачи классификации мы выбираем решение по

большинству результатов, выданных классификаторами, а в задаче регрессии — по их среднему значению.

Таким образом, случайный лес — бэггинг над решающими деревьями, при обучении которых для каждого разбиения признаки выбираются из некоторого случайного подмножества признаков.

Примеры кода

Примеры на языке Python

- Для решения задач классификации и регрессии используют DecisionTreeClassifier (https://scikit-learn.org/stable/m odules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier), DecisionTreeRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionTreeRe gressor);
- B sklearn.ensemble также представлены методы классификации, основанные на ансамблях, в том числе: бэггинг (https://scikit-learn.org/stable/modules/ensemble.html#bagging) и случайный лес (https://scikit-learn.org/stable/modul es/ensemble.html#forest), которые были описаны выше.

Так, в этом примере создается бэггинг ансамбль из классификаторов **KNeighborsClassifier**, каждый из которых обучен на случайных подмножествах из 50% объектов из обучающей выборки, и 50% случайно выбранных признаков.

```
from sklearn.ensemble import BaggingClassifier
from sklearn.neighbors import KNeighborsClassifier
bagging = BaggingClassifier(KNeighborsClassifier(), max_samples=0.5, max_features=0.5)
```

Пример использования классификатора на случайном лесе: Полную версию кода можно найти здесь (https://scikit-lear n.org/stable/auto_examples/classification/plot_classifier_comparison.html#sphx-glr-download-auto-examples-classification-pl ot-classifier-comparison-py%7C)

Результат классификации показан на рисунке.

Классификация RandomForestClassifier. Кружочками изображены объекты обучающей выборки, крестиками тестовой выборки. Справа цветом выделены границы принятия решений, в правом нижнем углу — значение ассигасу.

Пример на языке Scala

SBT зависимость:

```
libraryDependencies += "com.github.haifengl" %% "smile-scala" % "1.5.2"
```

Пример классификации датасета и вычисления F1 меры^[1] используя smile.classification.cart^[2]:

```
import smile.classification._
import smile.data._
import smile.plot._
import smile.read
import smile.validation.FMeasure

val iris: AttributeDataset = read.table("iris.csv", delimiter = ",", response = Some((new NumericAttribute("class"), 2)))
val x: Array[Array[Double]] = iris.x()
val y: Array[Int] = iris.y().map(_toInt)
val dt: DecisionTree = cart(x, y, 1000)
val predictions: Array[Int] = x.map(dt.predict)
val flScore = new FMeasure().measure(predictions, y)
plot(x, y, dt)
```

Пример на языке Java

Пример классификации с применением weka.classifiers.trees.RandomForest $^{[3]}$

Maven зависимость:

```
<dependency>
  <groupId>nz.ac.waikato.cms.weka</groupId>
  <artifactId>weka-stable</artifactId>
  <version>3.8.0</version>
  </dependency>
```

```
import weka.classifiers.evaluation.Evaluation;
import weka.classifiers.trees.RandomForest;
```

```
// read dataset
var trainingDataSet = getDataSet(...);
var testingDataSet = getDataSet(...);
// create random forest classifier
var forest = new RandomForest();
forest.setMaxDepth(15);
forest.setNumFeatures(2);
forest.buildClassifier(trainingDataSet);
// evaluate the model on test dataset and print summary
var eval = new Evaluation(trainingDataSet);
```

```
eval.evaluateModel(forest, testingDataSet);
System.out.println(eval.toSummaryString());
```

Пример на языке R

Деревья решений

Для создания деревьев решений используется функция ctree() из пакета party.

```
# importing package
install.packages("party")

# reading data
rdata <- read.csv("input.csv", sep = ',', header = FALSE)

# evaluating model
output.tree <- ctree(target ~ x + y + z, data = rdata)

# plotting results
plot(output.tree)</pre>
```

Случайный лес

Для создания случайного леса необходимо импортировать пакет randomForest

```
# importing packages
install.packages("party")
install.packages("randomForest")

# reading data
rdata <- read.csv("input.csv", sep = ',', header = FALSE)

# creating the forest
output.forest <- randomForest(target ~ x + y + z, data = rdata)

# getting results
print(output.forest)</pre>
```

См. также

■ Виды ансамблей

Источники информации

- 1. Логические алгоритмы классификации (http://www.machinelearning.ru/wiki/images/3/3e/Voron-ML-Logic.pdf) Лекция К. В. Воронцова
- 2. Случайный лес (https://medium.com/open-machine-learning-course/open-machine-learning-course-topic-5-ensembles-of-algorithms-and-random-forest-8e05246cbba7) статья на Medium, Yury Kashnitskiy
- 3. Деревья решений (https://scikit-learn.org/stable/modules/tree.html) scikit-learn.org
- 4. Ансамбли классификаторов (https://scikit-learn.org/stable/modules/ensemble.html) scikit-learn.org.
- 5. F1 mepa (https://en.wikipedia.org/wiki/F1 score)
- 6. Smile, Decision Trees (https://haifengl.github.io/smile/classification.html#cart)
- 7. Weka, Random Forest (http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/RandomForest.html)

Источник — «http://neerc.ifmo.ru/wiki/index.php?title=Дерево решений и случайный лес&oldid=85012»

• Эта страница последний раз была отредактирована 4 сентября 2022 в 19:22.