UNIVERSIDADE NOVE DE JULHO - UNINOVE PROGRAMA DE PÓS GRADUAÇÃO EM INFORMÁTICA E GESTÃO DO CONHECIMENTO - PPGIGC

CHARLES FERREIRA GOBBER

ÚLTIMOS LEVELINGS COM BASE EM FUNÇÕES DE ENERGIA APLICADOS A DETECÇÃO DE OBJETOS

São Paulo 2017

CHARLES FERREIRA GOBBER

ÚLTIMOS LEVELINGS COM BASE EM FUNÇÕES DE ENERGIA APLICADOS A DETECÇÃO DE OBJETOS

Exame de Qualificação apresentado a Universidade Nove de Julho - UNINOVE, como parte dos requisitos para a obtenção do título de Mestre em Informática e Gestão do Conhecimento.

Prof. Orientador: Dr. Wonder Alexandre Luz Alves

Bla bla bla

Palavras-chave: Últimos levelings, Funções de energia, Mumford-Shah, Árvores de componentes, Árvore de formas.

Bla bla bla

 $\mathbf{Keywords} :$ Ultimate levelings, Energy functions, Mumford-Shah, Component tree, Tree of shapes.

Sumário

Li	sta d	le Figu	ıras		6
\mathbf{Li}	sta d	le Abr	eviatura	5	7
\mathbf{Li}	sta d	le Sím	bolos		8
1	Exe	mplo	de capítı	ılo	9
	1.1	Exem	plo de seç	ão	9
		1.1.1	Exemple	o de subseção	9
			1.1.1.1	Exemplo de subsubseção	9
$\mathbf{R}_{\mathbf{c}}$	eferê	ncias l	Bibliográ	ficas	11

Lista	DE	FIGURAS

1.1 U	Jma imagem.																														10)
-------	-------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	---

LISTA DE ABREVIATURAS

MM	Morfologia matemática
CC	Componente conexo
EE	Elemento estruturante
MS	Mumford-Shah
poset	Acrônimo para a expressão em inglês partially ordered set
	(em português: conjunto parcialmente ordenado)
pixel	Acrônimo para a expressão em inglês picture element
	(em português: elemento da imagem)

Conceitos básicos

- \mathbb{Z} Conjunto dos números inteiros
- \mathbb{N} Conjunto dos números naturais
- \mathbb{R}^+ Conjunto dos números reais positivos

IMAGENS

- f Váriavel que representa uma imagem
- ${\mathcal D}$ Conjunto que representa o domínio da imagem
- $\mathbb K$ Conjunto que representa o contradomínio da imagem

Capítulo 1

Exemplo de capítulo

Resumo do capítulo

As seções e subseções são configuradas de acordo com a norma ABNT adotada pela Uninove (tamanho da fonte, espaçamento...). As numerações de página estão alinhadas a direita no header.

1.1 Exemplo de seção

1.1.1 Exemplo de subseção

Alguns comandos matemáticos também estão disponíveis, pode-se criar definições, proposições e provas:

Definição 1.1 (Média aritmética). Para uma amostra $X = \{x_1, x_2, \dots, x_n\}$ de observações, onde n é o número de observações, se define a média aritmética da seguinte forma:

$$\mu(X) = \frac{1}{n} \sum_{x \in X} x \tag{1.1}$$

Proposição 1.1. Se k é uma constante então multiplicar a média de uma amostra X é o mesmo de multiplicar cada elemento de X por k, isto é, $k \times \mu(X) = \frac{1}{n} \sum_{x \in X} x \times k$.

Prova: Desenvolve-se a igualdade:

$$k \times \mu(X) = \frac{1}{n} \sum_{x \in X} xk$$

$$\iff \frac{(x_1 k, x_2 k, \dots, x_n k)}{n}$$

$$\iff \frac{nk \times (x_1, x_2, \dots, x_n)}{n}$$

$$\iff k \times \frac{(x_1, x_2, \dots, x_n)}{n}$$

$$\iff k \times \mu(X)$$

$$(1.2)$$

Assim, concluí-se que $k \times \mu(X) = \frac{1}{n} \sum_{x \in X} x \times k$. \square

1.1.1.1 Exemplo de subsubseção

Figuras também estão configuradas pela norma ABNT, a legenda é centralizada e a fonte da figura é recuada a esquerda:

Figura 1.1: Uma imagem.

Fonte : Alves, Hashimoto e Marcotegui (2017) (Adaptado pelo autor)

As citações podem ser feitas de duas formas: \citeonline\{chave da citação\} = Lipschutz (1971) e \cite\{chave da citação\} = (LIPSCHUTZ, 1971). Note que, nas referências bibliográficas o título está em negrito, de acordo com a norma ABNT 6023, para este efeito é necessário incluir a entrada no arquivo bibtex (refs.bib).

REFERÊNCIAS BIBLIOGRÁFICAS

ALVES, W. A.; HASHIMOTO, R. F.; MARCOTEGUI, B. Ultimate levelings. Computer Vision and Image Understanding, 2017. ISSN 1077-3142. Citado na pág. 10.

LIPSCHUTZ, S. Topologia geral. [S.l.]: MCGraw-Hill do Brasil, 1971. Citado na pág. 10.