Hyper Supra 1.0

Supra Without Brakes

Automated EDA and Machine Learning Framework

Developer:

TC.Antony - Data Scientist.

- Manual Book

Purpose:

 Automated Exploratory Data Analysis (EDA) with business insights.

 Machine learning capabilities for classification, regression, and clustering.

Features:

- Automatic Summary Statistics: Provides quick insights into dataset structure.
- Visualization Tools: Includes histograms, scatterplots, and boxplots for data exploration.
- PCA for Dimensionality Reduction: Reduces feature space for better analysis.
- Outlier Detection: Identifies anomalies in the dataset.
- Correlation Insights: Highlights relationships between variables.
- Supervised Learning: Supports classification and regression tasks.
- Unsupervised Learning: Includes clustering algorithms like KMeans, DBSCAN, and Agglomerative Clustering.

- Cross-Validation and Model Evaluation: Ensures robust model performance.
- Feature Engineering and Preprocessing: Handles missing values, encoding, and scaling.
- Business Insights: Provides actionable conclusions for decision-making.
- Downloadable Reports and Datasets: Allows users to export results and cleaned datasets.

Instructions:

- Upload Dataset: Upload datasets in CSV, Excel, or JSON format.
- Dataset Analysis: Explore summary statistics, outliers, and missing values.
- EDA Process: Perform univariate, bivariate, and multivariate analysis.
- Preprocess: Handle missing values, encode categorical variables, and scale features.
- Machine Learning: Train and evaluate supervised and unsupervised models

Dependencies:

Streamlit, Pandas, NumPy, Scikit-learn, Seaborn, Matplotlib, XGBoost, LightGBM, Pandas Profiling.

Mind Map:

Step 1: Dataset Upload (CSV, EXCEL, JSON, PICKLE)

Automated EDA and Machine Learning Framework

Upload Your Dataset

Upload CSV, Excel, JSON, or Pickle files

Drag and drop files here
Limit 200MB per file • CSV, XLSX, JSON, PKL

Browse files

taxi_trip_pricing.csv 67.3KB

Step: 2 - Data Preview & Summary

Data Preview

	Trip_Distance_km	Time_of_Day	Day_of_Week	Passenger_Count	Traffic_Conditions	Weather	Base
0	19.35	Morning	Weekday	3	Low	Clear	
1	47.59	Afternoon	Weekday	1	High	Clear	
2	36.87	Evening	Weekend	1	High	Clear	
3	30.33	Evening	Weekday	4	Low	None	
4	None	Evening	Weekday	3	High	Clear	

Data Summary

	Trip_Distance_km	Passenger_Count	Base_Fare	Per_Km_Rate	Per_Minute_Rate	Trip_Duration_Minu
count	950	950	950	950	950	
mean	27.0705	2.4768	3.503	1.2333	0.2929	62.1
std	19.9053	1.1022	0.8702	0.4298	0.1156	32.1
min	1.23	1	2.01	0.5	0.1	Ē
25%	12.6325	1.25	2.73	0.86	0.19	35.8
50%	25.83	2	3.52	1.22	0.29	6:
75%	38.405	3	4.26	1.61	0.39	89.

Step 3: Dataset Analysis

Automated EDA and Machine Learning Framework

About Upload Dataset Dataset Analysis EDA Process Preprocess Machine Learning

Dataset Analysis for taxi_trip_pricing.csv

Dataset Preview Outliers Standard Deviation Multicollinearity Missing Values Preprocessing Preview

Dataset Preview

Total Rows: 1000

Total Columns: 11

Step 4: EDA (Exploratory Data Analysis)

Automated EDA and Machine Learning Framework

Numeric Columns: Trip_Distance_km, Passenger_Count,
Base_Fare, Per_Km_Rate, Per_Minute_Rate,
Trip_Duration_Minutes, Trip_Price

Categorical Columns: Time_of_Day, Day_of_Week,
Traffic_Conditions, Weather

Univariate Analysis Bivariate Analysis Multivariate Analysis Business Insights Download Report

1) Univariate Analysis

Select Column for Univariate Analysis

Trip_Distance_km

Step 5: Preprocessing

Learning Framework

About Upload Dataset Dataset Analysis EDA Process Preprocess Machine Learning

Preprocessing Tab

Encoding Recommendations Feature Scaling Recommendations

Encoding Recommendations

Columns recommended for Ordinal Encoding:

```
0: "Time_of_Day"
1: "Day_of_Week"
2: "Traffic_Conditions"
3: "Weather"
```

No columns recommended for nominal encoding.

Recommended columns for encoding:

Step 6: Supervised Learning (Regressor)

Automated EDA and Machine Learning Framework

Step 7: Algorithm Selection

PCA 2d Chart based on Algorithm (Target & Feature)

Data has more than 2 features. Reducing dimensions using PCA...

Polynomial, L1 & L2 (Hyperparameter Option)

Step 8: Scores for Regressor (Both Train & Test Date) with Chart

- 1) MSE (Mean Square Error)
- 2) MAE (Mean Absolute Error)
- 3) R2
- 4) Adjusted R2

Adjusted R² Score on Training Data: 0.8512

Adjusted R² Score on Test Data: 0.7729

najustea it score on rest bata, v. 1123

Training vs Test Accuracy (R² Score)

Training R² Score: 0.8534

Test R2 Score: 0.7805

The model may be overfitting, as the training accuracy is significantly higher than the test accuracy.

Training vs Test Accuracy (Adjusted R² Score)

Training Adjusted R² Score: 0.8512

Test Adjusted R² Score: 0.7729

The model may be overfitting, as the training accuracy is significantly higher than the test accuracy.

Definition: Mean Squared Error (MSE) measures the average squared difference between actual and

MSE Visualization

Step 9: Cross Validation with hyperparameter option

Cross-Validation Shape of dataset: (1000, 11) Select Cross-Validation Method K-Fold Select the number of folds: 2 10 Cross-Validation Accuracy (K-Fold): 0.8219 ± 0.0306 Train Accuracy: 0.8361 Model Fit Status: Generalizing Well

Recommendation

Recommendation

- K-Fold: Suitable for general cases with balanced datasets.
- Stratified K-Fold: Best for imbalanced classification problems.
- Holdout: Quick but less reliable for small datasets.
- Leave-One-Out: Best for very small datasets but computationally expensive.
- Leave-P-Out: Rarely used due to computational cost.

Cross-Validation Best Practices

	Method	Best for Classifier	Best for Regressor
0	K-Fold	Yes	Yes
1	Stratified K-Fold	Yes	No
2	Holdout (80/20 Split)	No	Yes
3	Leave-One-Out	Yes	Yes
4	Leave-P-Out	No	No

Step 10: Supervised Learning (Classification)

:

Class Distribution Status

Dataset Balance Status: Unbalanced Class Distribution: 8.0 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

:

Suggested Binary Classification Algorithms:

- Logistic Regression
- SVM Classifier

Select feature columns

Select Algorithm

Logistic Regression

Training Time: 0.03 seconds

Training Time: 0.02 seconds

Select data for visualization:

- Train Data
- Test Data

PCA Chart for Classification

Score for Train & Test Data

Score

Train Metrics

Accuracy: 0.6985

Precision: 0.4524

Recall: 0.4972

F1 Score: 0.4190

Test Metrics

Accuracy: 0.7257

Precision: 0.3649

Recall: 0.4961

F1 Score: 0.4205

Model Fit Status

Status: Good Fit: Model generalizes well to new data.

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

Classification Report (Test Data)

	precision	recall	f1-score	support
0	0.7299	0.9922	0.8411	128.0000
1	0.0000	0.0000	0.0000	47.0000
accuracy	0.7257	0.7257	0.7257	0.7257
macro avg	0.3649	0.4961	0.4205	175.0000
weighted avg	0.5339	0.7257	0.6152	175.0000

Confusion Matrix (Test Data)

True Positive (TP): 0 - Predicted 1 and Actual 1

True Negative (TN): 127 - Predicted 0 and Actual 0

False Positive (FP): 1 - Predicted 1 but Actual 0

False Negative (FN): 47 - Predicted 0 but Actual 1

True Positive: The test correctly predicts a positive outcome when the actual outcome is positive.

True Negative: The test correctly predicts a negative outcome when the actual outcome is negative.

False Positive: The test incorrectly predicts a positive outcome when the actual outcome is negative.

False Negative: The test incorrectly predicts a negative outcome when the actual outcome is positive.

Can Fix Threshold Option

Diagonal line (Random Classifier): The line represents the performance of a random classifier. A good
classifier should have its ROC curve above this line.

AUC (Area Under the Curve): AUC quantifies the overall ability of the model to discriminate between positive and negative cases.

- An AUC of 0.5 means the model is no better than random guessing.
- · An AUC of 1.0 indicates a perfect model.

Adjust Threshold for Classification

0.50

0.00

1.00

Adjusted Metrics at Threshold 0.5:

Accuracy: 0.7257

Precision: 0.3649

Recall: 0.4961

F1 Score: 0.4205

Cross Validation for Classification (Stratified K-Fold)

Reduce Bias - Hyperparameter Option Select value for unique classes

To get more Accuracy and prevent Overfit or Underfit

Class 1 will have 75% of the samples, and Class 2 will have 25%.

Applying Stratified K-Fold with 75% Class 1 and 25% Class 2.

Cross-Validation Accuracy (Stratified K-Fold): 0.7221 ± 0.0094

Train Accuracy: 0.7187

Model Fit Status: Generalizing Well

Download Train and Test Dataset

About Upload Dataset Dataset Analysis EDA Process Preprocess Machine Learning

Supervised Learning Score Possibility Download Train and Test Datasets with Results Future Prediction Unsup

Download Train and Test Datasets with Results

Download Train Dataset with Results 🖘

Download Train Dataset with Results (CSV)

Download Test Dataset with Results

Download Test Dataset with Results (CSV)

Step 11: Future Prediction

About Upload Dataset Dataset Analysis EDA Process Preprocess Machine Learning

Supervised Learning Score Possibility Download Train and Test Datasets with Results Future Prediction Unsup

Future Prediction

Please input values for the following features to make a prediction:

Enter value for Trip_Distance_km:

12

Enter value for Time_of_Day:

1

Enter value for Day_of_Week:

2

Enter value for Passenger_Count:

4

2			
Enter value for Passenger_Cou	nt:		
4			
Enter value for Traffic_Condition	ons:		
2			
Enter value for Weather:			
3			
Enter value for Base_Fare:			
12			
Make Prediction			

Prediction Result: 36.4206042870544

Step 12: Unsupervised Learning

K-Means Algorithm (Use Clusters based on Elbow Points)

3

Silhouette Score: 0.38

3

KMeans Clusters

Cluster 0: 467 points

Cluster 1: 513 points

Cluster 2: 20 points

This is not actual Cluster its Just Example to Show

Hierarchical Clustering (Dendrogram)

Dendrogram Method: Find Optimal Number of Clusters

This is not Actual Clustering Point Chart for only Understanding

Thank You

Developer:

TC Antony - [Data Scientist]