Álgebra Universal e Categorias

_____ 1° teste (17 de abril) ______ duração: 2 horas _____

1. Seja $\mathcal{A}=(A;f^{\mathcal{A}},2^{\mathcal{A}})$ a álgebra de tipo (1,0), onde $A=\{n\in\mathbb{N}_0:n\leq 10\}$, $2^{\mathcal{A}}=2$ e $f^{\mathcal{A}}:A\to A$ é a operação definida por

$$f^{\mathcal{A}}(x) = \begin{cases} x+2 & \text{se} \quad x \in \{0, 1, 2, \dots, 8\} \\ 1 & \text{se} \quad x = 9 \\ 0 & \text{se} \quad x = 10 \end{cases}$$

Determine $Sg^{\mathcal{A}}(\{3\})$ e $Sg^{\mathcal{A}}(\{4\})$. Indique todos os subuniversos de \mathcal{A} .

2. Seja $\mathcal{A} = (A; F)$ uma álgebra. Mostre que, para quaisquer conjuntos $X, Y, Z \subseteq A$,

$$Sg^{\mathcal{A}}(Sg^{\mathcal{A}}(X \cup Y) \cup Z) \subseteq Sg^{\mathcal{A}}((X \cup Y) \cup Z).$$

3. Sejam $\mathcal{A}=(A;F)$ e $\mathcal{B}=(B;G)$ álgebras do mesmo tipo, $\alpha:A\to B$ uma função e

$$S = \{(a, \alpha(a)) \mid a \in A\}.$$

Mostre que se S é um subuniverso de $\mathcal{A} \times \mathcal{B}$, então α é um homomorfismo de \mathcal{A} em \mathcal{B} .

4. Sejam $\mathcal{C}=(\mathbb{C};+^{\mathcal{C}})$ e $\mathcal{R}_4=(\mathbb{R}_4;+^{\mathcal{R}_4})$ as álgebras de tipo (2), onde $+^{\mathcal{C}}$ é a adição usual em \mathbb{C} e $+^{\mathcal{R}_4}$ é a adição usual em \mathbb{R}_4 . Para cada $k\in\mathbb{R}$, seja $\alpha_k:\mathbb{C}\to\mathbb{R}_4$ a aplicação definida por

$$\alpha_k(a+bi) = (a, b, -b, k^2 - 4).$$

- (a) Justifique que α_k é um homomorfismo de \mathcal{C} em \mathcal{R}_4 se e só se $k \in \{-2, 2\}$.
- (b) Considere k=2.
 - i. Diga, justificando, se α_2 é um monomorfismo e se é um epimorfismo.
 - ii. Justifique que $\mathcal{C} \cong \alpha_2(\mathcal{C})$ e que $\mathcal{C} \cong \mathcal{C}/\ker \alpha_2$.
- 5. Uma álgebra $\mathcal{G}=(G;\cdot,\ ^{-1},1_G)$ de tipo (2,1,0) diz-se um *grupo abeliano* se são satisfeitas as seguintes condições
 - (1) $\forall x, y, z \in G$, $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
 - (2) $\forall x, y \in G, x \cdot y = y \cdot x$.
 - (3) $\forall x \in G, x \cdot 1_G = x = 1_G \cdot x.$
 - (4) $\forall x \in G, \ x \cdot x^{-1} = 1_G = x^{-1} \cdot x.$

Dado um subuniverso S de um grupo abeliano $\mathcal{G}=(G;\cdot,\ ^{-1},1_G)$, seja θ_S a relação de equivalência em G definida por

$$x \theta_S y$$
 se e só se $x \cdot y^{-1} \in S$.

Mostre que, para qualquer subuniverso S de um grupo abeliano \mathcal{G} , θ_S é uma congruência em \mathcal{G} .

6. Seja $\mathcal{A}=(A;f^{\mathcal{A}},g^{\mathcal{A}})$ a álgebra de tipo (1,1) tal que $A=\{0,1,2,3\}$ e $f^{\mathcal{A}}$ e $g^{\mathcal{A}}$ são as operações definidas por

Sabendo que o reticulado de congruências de ${\mathcal A}$ pode ser representado por

onde $\theta_2 = \triangle_A \cup \{(1,2),(2,1)\}$ e $\theta_3 = \Theta(0,3)$.

- (a) Diga, justificando, se (θ_2,θ_3) é um par de congruências fator.
- (b) Indique as tabelas das operações da álgebra $\mathcal{A}/\theta_2=(A/\theta_2;f^{\mathcal{A}/\theta_2},g^{\mathcal{A}/\theta_2})$. Diga, justificando, se a álgebra \mathcal{A}/θ_2 é congruente-distributiva.
- (c) Diga, justificando, se é verdadeira ou falsa a seguinte afirmação: A álgebra \mathcal{A} não é subdiretamente irredutível e para quaisquer álgebras \mathcal{B} e \mathcal{C} tais que $\mathcal{A} \cong \mathcal{B} \times \mathcal{C}$, tem-se $\mathcal{A} \cong \mathcal{B}$ ou $\mathcal{A} \cong \mathcal{C}$.
- 7. Considere os operadores de classes de álgebras H, S e P. Mostre que HSPH = HSP. Conclua que, para para qualquer classe de álgebras \mathbf{K} , tem-se $V(\mathbf{K}) = V(H(\mathbf{K}))$.