BWL: Asset Pricing am Karlsruher Institut für Technologie

Maximilian Heß

Juli 2017

Inhaltsverzeichnis

1	BW	BWL: Asset Pricing			
	1.1	Stochastischer Diskontfaktor (SDF)			
		1.1.1 Berechnung des SDF in einer Ökonomie mit zwei Zuständen			
		1.1.2 Risikoneutrale Wahrscheinlichkeiten			
	1.2	Fama-French-Dreifaktorenmodell			
	1.3	Appendix A: Formelsammlung			
		1.3.1 Grundlagen			
		1.3.2 Risikoneutrale Wahrscheinlichkeiten			
		1.3.3 Fama-French			

Inhaltsverzeichnis

1 BWL: Asset Pricing

Zusammenfassung der Vorlesung "Asset Pricing" aus dem Sommersemester 2017. 1

1.1 Stochastischer Diskontfaktor (SDF)

1.1.1 Berechnung des SDF in einer Ökonomie mit zwei Zuständen

Gleichsetzen von Formel 1.1 und Formel 1.2 zum Berechnen von m_u und m_d .

1.1.2 Risikoneutrale Wahrscheinlichkeiten

• Beinhalten eine Risikoadjustierung

1.2 Fama-French-Dreifaktorenmodell

- Erweitert CAPM um zwei weitere Faktoren, um die Rendite eines Papiers mit der Marktrendite zu erklären
- high (Buch-Marktwert-Verhältnis) minus low (HML)
 - Renditedifferenz zwischen Value- und Growthaktien
 - Renditedifferenz zwischen Aktien mit hohem und niedrigem Buchwert-zu-Marktwert-Verhältnis
 - Interpretation

Hoch: Asset-lastige Industrie

Niedrig: Hohes Wachstumspotential

• small (Marktkapitalisierung) minus big (SMB)

- Renditedifferenz zwischen kleinen und großen Aktien
- Renditedifferenz von Aktien mit geringem und hohem Marktwert des Eigenkapitals
- Interpretation

Hoch: Junge Unternehmen; Nischenmarkt

Niedrig:

1.3 Appendix A: Formelsammlung

1.3.1 Grundlagen

$$\mathbb{E}[m] = \pi_u \cdot m_u + \pi_d \cdot m_d = \frac{1}{R^f} \tag{1.1}$$

$$p = \mathbb{E}[mx] = \pi_u \cdot m_u \cdot x_u + \pi_d \cdot m_d \cdot x_d = \mathbb{E}[m] \cdot \mathbb{E}[x] + cov(m, x) = \frac{\mathbb{E}[x]}{R^f} + cov(m, x)$$
(1.2)

$$cov(m, x) = \mathbb{E}[mx] - \mathbb{E}[m] \cdot \mathbb{E}[x]$$
 (1.3)

$$m_{t_1,t_2} = \beta^{t_2-t_1} \cdot \frac{u'(c_{t_2})}{u'(c_{t_1})} \tag{1.4}$$

$$R_{t_1,t_2}^f = \frac{1}{\mathbb{E}[m_{t_1,t_2}]} = \frac{1}{\beta^{t_2-t_1}} \cdot \mathbb{E}\left[\frac{u'(c_{t_2})}{u'(c_{t_1})}\right]^{-1} = \frac{1}{\beta^{t_2-t_1}} \cdot \mathbb{E}\left[\left(\frac{c_{t_2}}{c_{t_1}}\right)^{-\gamma}\right]^{-1}$$
(1.5)

1.3.2 Risikoneutrale Wahrscheinlichkeiten

$$\pi_u^* = \frac{m_u}{\mathbb{E}[m]} \cdot \pi_u = \frac{m_u}{m_u \cdot \pi_u + m_d + \pi_u} \cdot \pi_u \tag{1.6}$$

$$\pi_d^* = 1 - \pi_u^* \tag{1.7}$$

$$p^* = \frac{\mathbb{E}^x[x]}{R^f} = \frac{\pi_u^* \cdot x_u + \pi_d^* \cdot x_d}{R^f}$$

$$\tag{1.8}$$

1.3.3 Fama-French

 $\lambda_M,\,\lambda_{SMB}$ und λ_{HML} bezeichnen individuelle Marktrisokoprämien.

$$r = R^f + \beta_M \cdot \lambda_M + \beta_{SMB} \cdot \lambda_{SMB} + \beta_{HML} \cdot \lambda_{HML}$$
 (1.9)

 $^{^{1} \}verb|https://derivate.fbv.kit.edu/942.php|$