Simultaneous Conformal Prediction of Missing Outcomes with Propensity Score ε -Discretization

Edgar Dobriban

Department of Statistics and Data Science, the Wharton School, University of Pennsylvania

August 8, 2024

Collaborators

Yonghoon Lee

Eric Tchetgen Tchetgen

Table of Contents

Introduction and Overview

Our Methods

Illustrating Our Methods in a Stylized Problem A Stronger Guarantee

Empirical illustration

• Major developing area in statistics: distribution-free predictive inference (a.k.a. conformal prediction)

- Major developing area in statistics: distribution-free predictive inference (a.k.a. conformal prediction)
- Goal, given $(X_1, Y_1), \ldots, (X_n, Y_n)$, find a prediction set C such that for new X_{n+1} , $\mathbb{P}\{Y_{n+1} \in C(X_{n+1})\} \geq 1 \alpha$ under minimal assumptions

Figure: Towards DS

- Major developing area in statistics: distribution-free predictive inference (a.k.a. conformal prediction)
- Goal, given $(X_1, Y_1), \ldots, (X_n, Y_n)$, find a prediction set C such that for new X_{n+1} , $\mathbb{P}\{Y_{n+1} \in C(X_{n+1})\} \geq 1 \alpha$ under minimal assumptions

Figure: Towards DS

• Motivated by complex applications, e.g., where a machine learning model $\hat{\mu}$ is used to predict Y_{n+1} based on X_{n+1} (not known how to find distribution of $Y_{n+1} - \hat{\mu}(X_{n+1})$)

- It is known how to achieve this in many settings, due to extensive work by many, starting in the 90s (Vovk, Wasserman, J. Lei, R. J. Tibshirani, Barber, Candes, ...)
- Ideas date back to work on tolerance regions by Wilks, Wald, Tukey ... starting in the 1940s

Samuel S. Wilks

Abraham Wald

Vladimir Vovk

- Typical setting: exchangeable datapoints.
 - For a given nonconformity score $s: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, e.g., $s(x,y) := |y \hat{\mu}(x)|$, $s(X_1, Y_1), \ldots, s(X_{n+1}, Y_{n+1})$ are exchangeable (if $\hat{\mu}$ is pre-trained on an indep. dataset—i.e., in split conformal prediction)

- Typical setting: exchangeable datapoints.
 - For a given nonconformity score $s: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, e.g., $s(x,y) := |y \hat{\mu}(x)|$, $s(X_1, Y_1), \ldots, s(X_{n+1}, Y_{n+1})$ are exchangeable (if $\hat{\mu}$ is pre-trained on an indep. dataset—i.e., in split conformal prediction)
 - Hence, the rank of $s(X_{n+1}, Y_{n+1})$ is uniform over $1, \ldots, n+1$ (if no ties)

- Typical setting: exchangeable datapoints.
 - For a given nonconformity score $s: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, e.g., $s(x,y) := |y \hat{\mu}(x)|$, $s(X_1, Y_1), \ldots, s(X_{n+1}, Y_{n+1})$ are exchangeable (if $\hat{\mu}$ is pre-trained on an indep. dataset—i.e., in split conformal prediction)
 - Hence, the rank of $s(X_{n+1}, Y_{n+1})$ is uniform over $1, \ldots, n+1$ (if no ties)
 - So $x \mapsto C(x) = \{y : \text{rank}\{s(x,y) : s_1, \dots, s_n\} \le \lceil (1-\alpha)(n+1) \rceil \}$ satisfies $\mathbb{P}\{Y_{n+1} \in C(X_{n+1})\} \ge 1-\alpha$

- Typical setting: exchangeable datapoints.
 - For a given nonconformity score $s: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, e.g., $s(x,y) := |y \hat{\mu}(x)|$, $s(X_1, Y_1), \ldots, s(X_{n+1}, Y_{n+1})$ are exchangeable (if $\hat{\mu}$ is pre-trained on an indep. dataset—i.e., in split conformal prediction)
 - Hence, the rank of $s(X_{n+1}, Y_{n+1})$ is uniform over $1, \ldots, n+1$ (if no ties)
 - So $x \mapsto C(x) = \{y : \operatorname{rank}\{s(x,y) : s_1, \dots, s_n\} \le \lceil (1-\alpha)(n+1) \rceil \}$ satisfies $\mathbb{P}\{Y_{n+1} \in C(X_{n+1})\} \ge 1-\alpha$

- Typical setting: exchangeable datapoints.
 - For a given nonconformity score $s: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, e.g., $s(x,y) := |y \hat{\mu}(x)|$, $s(X_1, Y_1), \ldots, s(X_{n+1}, Y_{n+1})$ are exchangeable (if $\hat{\mu}$ is pre-trained on an indep. dataset—i.e., in split conformal prediction)
 - Hence, the rank of $s(X_{n+1}, Y_{n+1})$ is uniform over $1, \ldots, n+1$ (if no ties)
 - So $x \mapsto C(x) = \{y : \text{rank}\{s(x,y) : s_1, \dots, s_n\} \le \lceil (1-\alpha)(n+1) \rceil \}$ satisfies $\mathbb{P}\{Y_{n+1} \in C(X_{n+1})\} \ge 1-\alpha$

• However, there are scenarios that existing methods do not resolve, e.g., missing data

Our problem setting

• Given data

$$(X_1, A_1, Y_1A_1), \ldots, (X_n, A_n, Y_nA_n) \stackrel{\text{iid}}{\sim} P_X \times P_{A|X} \times P_{Y|X},$$

with outcomes missing at random (MAR). Thus,

$$A_i = 1 : Y_i$$
 is observed, $A_i = 0 : Y_i$ is unobserved.

Our problem setting: Missing At Random

• **Goal**: Simultaneous inference on the missing outcomes $\{Y_i : A_i = 0\}$.

Our problem setting: Missing At Random

- **Goal**: Simultaneous inference on the missing outcomes $\{Y_i : A_i = 0\}$.
- Specifically, construct prediction sets $\{\widehat{C}(X_i): A_i = 0\}$ for $\{Y_i: A_i = 0\}$ with coverage guarantees

Inferential target

• With i.i.d./exchangeable data $(X_1, Y_1), \dots, (X_n, Y_n)$ and test input X_{n+1} , standard conformal prediction gives a prediction set $\widehat{C}_n(X_{n+1})$ with marginal coverage

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\right\}\geq 1-\alpha.$$

Inferential target

• With i.i.d./exchangeable data $(X_1, Y_1), \dots, (X_n, Y_n)$ and test input X_{n+1} , standard conformal prediction gives a prediction set $\widehat{C}_n(X_{n+1})$ with marginal coverage

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\right\}\geq 1-\alpha.$$

- Question: Under MAR:
 - In what sense can we do useful distribution-free inference for multiple unobserved outcomes?

Inferential target

• With i.i.d./exchangeable data $(X_1, Y_1), \dots, (X_n, Y_n)$ and test input X_{n+1} , standard conformal prediction gives a prediction set $\widehat{C}_n(X_{n+1})$ with marginal coverage

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\right\}\geq 1-\alpha.$$

- Question: Under MAR:
 - In what sense can we do useful distribution-free inference for multiple unobserved outcomes?
 - Is it possible to go beyond marginal coverage? E.g., have coverage conditional on the test inputs/feature observations with missing outcomes?

Overview of results

We consider coverage guarantees of the form

$$\mathbb{E}\left[\frac{1}{N^{(0)}}\sum_{i:A_i=0}\mathbb{1}\left\{Y_i\in\widehat{C}(X_i)\right\}\Big|X_{1:n},A_{1:n}\right]\geq 1-\alpha,\tag{1}$$

where $N^{(0)}$ is the number of unobserved labels, and 0/0 := 1.

• The proportion of covered missing outcomes is on average at least $1 - \alpha$, conditional on $X_{1:n}$ and the missingness pattern $A_{1:n}$.

Overview of results

We consider coverage guarantees of the form

$$\mathbb{E}\left[\frac{1}{N^{(0)}}\sum_{i:A_i=0}\mathbb{1}\left\{Y_i\in\widehat{C}(X_i)\right\}\Big|X_{1:n},A_{1:n}\right]\geq 1-\alpha,\tag{1}$$

where $N^{(0)}$ is the number of unobserved labels, and 0/0 := 1.

- The proportion of covered missing outcomes is on average at least 1α , conditional on $X_{1:n}$ and the missingness pattern $A_{1:n}$.
 - For discrete features X, we construct a procedure that achieves (1).

Overview of results

We consider coverage guarantees of the form

$$\mathbb{E}\left[\frac{1}{N^{(0)}}\sum_{i:A_i=0}\mathbb{1}\left\{Y_i\in\widehat{C}(X_i)\right\}\Big|X_{1:n},A_{1:n}\right]\geq 1-\alpha,\tag{1}$$

where $N^{(0)}$ is the number of unobserved labels, and 0/0 := 1.

- The proportion of covered missing outcomes is on average at least 1α , conditional on $X_{1:n}$ and the missingness pattern $A_{1:n}$.
 - For discrete features X, we construct a procedure that achieves (1).
 - For general features X, we prove an impossibility result for (1); and then relax it.

Overview of results - continued

• As a relaxation, we consider

$$\mathbb{E}\left[\frac{1}{N^{(0)}}\sum_{i:A_i=0}\mathbb{1}\left\{Y_i\in\widehat{C}(X_i)\right\}\middle|B_{1:n},A_{1:n}\right]\geq 1-\alpha,\tag{2}$$

where $B_i = B_i(X_i)$ is a discretization of X_i (defined soon).

Overview of results - continued

As a relaxation, we consider

$$\mathbb{E}\left[\frac{1}{N^{(0)}}\sum_{i:A_i=0}\mathbb{1}\left\{Y_i\in\widehat{C}(X_i)\right\}\middle|B_{1:n},A_{1:n}\right]\geq 1-\alpha,\tag{2}$$

where $B_i = B_i(X_i)$ is a discretization of X_i (defined soon).

• **Challenge:** Even though we have MAR $(Y \perp \!\!\! \perp A \mid X)$, this does not need to be preserved after discretization (may have $Y \not\perp \!\!\! \perp A \mid B$ for B = B(X)).

Overview of results - continued

As a relaxation, we consider

$$\mathbb{E}\left[\frac{1}{N^{(0)}}\sum_{i:A:=0}\mathbb{1}\left\{Y_{i}\in\widehat{C}(X_{i})\right\}\Big|B_{1:n},A_{1:n}\right]\geq 1-\alpha,\tag{2}$$

where $B_i = B_i(X_i)$ is a discretization of X_i (defined soon).

- **Challenge:** Even though we have MAR $(Y \perp \!\!\! \perp A \mid X)$, this does not need to be preserved after discretization (may have $Y \not\perp \!\!\! \perp A \mid B$ for B = B(X)).
- We introduce a carefully designed propensity score partitioning scheme, and show how it can be used to obtain (2) in a distribution-free sense (for any dist. of (X, Y)).

Table of Contents

Our Methods

Illustrating Our Methods in a Stylized Problem

A Stronger Guarantee

First case: Discrete features

• Discrete features naturally form groups of outcomes $\{Y_i: X_i = x\}$, $x \in \mathcal{X}$.

First case: Discrete features

• Discrete features naturally form groups of outcomes $\{Y_i: X_i = x\}$, $x \in \mathcal{X}$.

• Within each group, the outcomes are exchangeable conditional on $X_i = x$.

Procedure for discrete features: Naive approach

• Direct method: run split conformal prediction separately for each x.

Procedure for discrete features: Naive approach

• Direct method: run split conformal prediction separately for each x.

• This method attains $\mathbb{E}\left[\frac{1}{N^{(0)}}\sum_{i:A_i=0}\mathbb{1}\left\{Y_i\in\widehat{C}(X_i)\right\}\Big|X_{1:n},A_{1:n}\right]\geq 1-\alpha.$

Procedure for discrete features: Naive approach

• Direct method: run split conformal prediction separately for each x.

- This method attains $\mathbb{E}\left[\frac{1}{N^{(0)}}\sum_{i:A_i=0}\mathbb{1}\left\{Y_i\in\widehat{C}(X_i)\right\}\Big|X_{1:n},A_{1:n}\right]\geq 1-\alpha.$
- However, it can produce infinite-width prediction sets in small groups with $\geq \alpha$ missingness.

• Alternative method: simultaneous inference across multiple feature values.

- Alternative method: simultaneous inference across multiple feature values.
- Let
 - 1. Nonconformity score $s: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, and $S_i = s(X_i, Y_i)$ if $A_i = 1$
 - 2. Distinct X values observed: X'_1, \dots, X'_M
 - 3. Indices of datapoints with features equal to X'_k : $I_k = \{i \in [n] : X_i = X'_k\}$,
 - 4. Indices partitioned according to unobserved and observed outcomes, resp.: $I_{k}^{0} = \{i \in [n] : X_{i} = X'_{k}, A_{i} = 0\}, I_{k}^{1} = \{i \in [n] : X_{i} = X'_{k}, A_{i} = 1\}.$
 - 5. Sample sizes $N_k = |I_k|, N_k^0 = |I_k^0|$

- Alternative method: simultaneous inference across multiple feature values.
- Let
 - 1. Nonconformity score $s: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, and $S_i = s(X_i, Y_i)$ if $A_i = 1$
 - 2. Distinct X values observed: X'_1, \dots, X'_M
 - 3. Indices of datapoints with features equal to X'_k : $I_k = \{i \in [n] : X_i = X'_k\}$,
 - 4. Indices partitioned according to unobserved and observed outcomes, resp.: $I_{\nu}^{0} = \{i \in [n] : X_{i} = X'_{\nu}, A_{i} = 0\}, I_{\nu}^{1} = \{i \in [n] : X_{i} = X'_{\nu}, A_{i} = 1\}.$
 - 5. Sample sizes $N_k = |I_k|$, $N_0^0 = |I_0^0|$
- Our prediction set:

$$\widehat{C}(x) = \left\{ y \in \mathcal{Y} : s(x, y) \le Q_{1-\alpha} \left(\sum_{k=1}^{M} \sum_{i \in I_k^1} \frac{N_k^0}{N_k N^{(0)}} \delta_{S_i} + \sum_{k=1}^{M} \frac{(N_k^0)^2}{N_k N^{(0)}} \delta_{+\infty} \right) \right\}.$$
(3)

- Alternative method: simultaneous inference across multiple feature values.
- Let
 - 1. Nonconformity score $s: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, and $S_i = s(X_i, Y_i)$ if $A_i = 1$
 - 2. Distinct X values observed: X'_1, \dots, X'_M
 - 3. Indices of datapoints with features equal to X'_k : $I_k = \{i \in [n] : X_i = X'_k\}$,
 - 4. Indices partitioned according to unobserved and observed outcomes, resp.: $I_{k}^{0} = \{i \in [n] : X_{i} = X'_{k}, A_{i} = 0\}, I_{k}^{1} = \{i \in [n] : X_{i} = X'_{k}, A_{i} = 1\}.$
 - 5. Sample sizes $N_k = |I_k|$, $N_k^0 = |I_k^0|$
- Our prediction set:

$$\widehat{C}(x) = \left\{ y \in \mathcal{Y} : s(x,y) \le Q_{1-\alpha} \left(\sum_{k=1}^{M} \sum_{i \in I_k^1} \frac{N_k^0}{N_k N^{(0)}} \delta_{S_i} + \sum_{k=1}^{M} \frac{(N_k^0)^2}{N_k N^{(0)}} \delta_{+\infty} \right) \right\}.$$
(3)

- Idea: symmetry of data distribution; see also SymmPI (D. & Yu, 2023)
- Provides uniform-width prediction sets for all x values.

Procedure for discrete features: guarantee

Theorem 1

The prediction set (3) satisfies feature- and missingness-conditional coverage

$$\mathbb{E}\left[\frac{1}{N^{(0)}}\sum_{i:A_{i:n}}\mathbb{1}\left\{Y_{i}\in\widehat{C}(X_{i})\right\}\Big|X_{1:n},A_{1:n}\right]\geq 1-\alpha.$$

Discrete features: improvement via partitioning

• If missingness proportion is high, this can still be conservative.

- If missingness proportion is high, this can still be conservative.
- Idea: Partition datapoints. For each partition, use \widehat{C} on all datapoints with observed labels to predict outcomes missing in that partition.

- If missingness proportion is high, this can still be conservative.
- Idea: Partition datapoints. For each partition, use \widehat{C} on all datapoints with observed labels to predict outcomes missing in that partition.
- Since guarantee is feature- and missingness-conditional, this is still valid!

- If missingness proportion is high, this can still be conservative.
- Idea: Partition datapoints. For each partition, use \widehat{C} on all datapoints with observed labels to predict outcomes missing in that partition.
- Since guarantee is feature- and missingness-conditional, this is still valid!
- Previous methods are at two endpoints: partition is all singletons ("naive method") vs whole set ("our method").

- If missingness proportion is high, this can still be conservative.
- Idea: Partition datapoints. For each partition, use \widehat{C} on all datapoints with observed labels to predict outcomes missing in that partition.
- Since guarantee is feature- and missingness-conditional, this is still valid!
- Previous methods are at two endpoints: partition is all singletons ("naive method") vs whole set ("our method").
- Why practically useful? Partition can depend on $X_{1:n}$, $A_{1:n}$; can aim to ensure small missingness per group.

Procedure for general feature distributions

- If the propensity score $x \mapsto p_{A|X}(x) = \mathbb{P}\{A = 1 \mid X = x\}$ is known, ε -discretize it
- Let ε be a predefined discretization level, and $z_k = (1+\varepsilon)^k/[1+(1+\varepsilon)^k]$ for all integers k

Procedure for general feature distributions

- If the propensity score $x \mapsto p_{A|X}(x) = \mathbb{P}\{A = 1 \mid X = x\}$ is known, ε -discretize it
- Let ε be a predefined discretization level, and $z_k = (1+\varepsilon)^k/[1+(1+\varepsilon)^k]$ for all integers k
- Partition the feature space into $D_k = \{x : p_{A|X}(x) \in [z_k, z_{k+1})\}, \mathcal{B} = \{D_k : k \in \mathbb{Z}\}.$

Procedure for general feature distributions

- If the propensity score $x \mapsto p_{A|X}(x) = \mathbb{P}\{A = 1 \mid X = x\}$ is known, ε -discretize it
- Let ε be a predefined discretization level, and $z_k = (1+\varepsilon)^k/[1+(1+\varepsilon)^k]$ for all integers k
- Partition the feature space into $D_k = \{x : p_{A|X}(x) \in [z_k, z_{k+1})\}, \mathcal{B} = \{D_k : k \in \mathbb{Z}\}.$

• Show approximate within-partition exchangeability of the scores, enabling inference.

- Show approximate within-partition exchangeability of the scores, enabling inference.
- Propensity score discretization-based conformal prediction (pro-CP): Procedure (4) applied to the discretized data $(B_i, A_i, A_i Y_i)_{i \in [n]}$, i.e.,

$$\widehat{C}^{\text{pro-CP}}(x) = \left\{ y \in \mathcal{Y}, :, s(x, y) \leq Q_{1-\alpha} \left(\sum_{k=1}^{M} \sum_{i \in I_k^{\mathcal{B}, 1}} \frac{N_k^{\mathcal{B}, 0}}{N^{(0)} N_k^{\mathcal{B}}} \cdot \delta_{S_i} + \frac{1}{N^{(0)}} \sum_{k=1}^{M} \frac{(N_k^{\mathcal{B}, 0})^2}{N_k^{\mathcal{B}}} \cdot \delta_{+\infty} \right) \right\}. \tag{4}$$

- Show approximate within-partition exchangeability of the scores, enabling inference.
- Propensity score discretization-based conformal prediction (pro-CP): Procedure (4) applied to the discretized data $(B_i, A_i, A_i Y_i)_{i \in [n]}$, i.e.,

$$\widehat{C}^{\text{pro-CP}}(x) = \left\{ y \in \mathcal{Y}, :, s(x, y) \leq Q_{1-\alpha} \left(\sum_{k=1}^{M} \sum_{i \in I_k^{\mathcal{B}, 1}} \frac{N_k^{\mathcal{B}, 0}}{N^{(0)} N_k^{\mathcal{B}}} \cdot \delta_{S_i} + \frac{1}{N^{(0)}} \sum_{k=1}^{M} \frac{(N_k^{\mathcal{B}, 0})^2}{N_k^{\mathcal{B}}} \cdot \delta_{+\infty} \right) \right\}. \tag{4}$$

Theorem 2

Suppose $0 < p_{A|X}(X) < 1$ almost surely. Then $\widehat{C}^{\text{pro-CP}}$ from (4) satisfies *propensity score* discretized feature- and missingness-conditional coverage:

$$\mathbb{E}\left[\frac{1}{N^{(0)}}\sum_{i:A_i=0}\mathbb{1}\left\{Y_i\in\widehat{C}^{\mathsf{pro-CP}}(X_i)\right\}\,\middle|\,B_{1:n},A_{1:n}\right]\geq 1-\alpha-\varepsilon.$$

- Show approximate within-partition exchangeability of the scores, enabling inference.
- Propensity score discretization-based conformal prediction (pro-CP): Procedure (4) applied to the discretized data $(B_i, A_i, A_i, Y_i)_{i \in [n]}$, i.e.,

$$\widehat{C}^{\text{pro-CP}}(x) = \left\{ y \in \mathcal{Y}, :, s(x, y) \leq Q_{1-\alpha} \left(\sum_{k=1}^{M} \sum_{i \in I_k^{\mathcal{B}, 1}} \frac{N_k^{\mathcal{B}, 0}}{N^{(0)} N_k^{\mathcal{B}}} \cdot \delta_{S_i} + \frac{1}{N^{(0)}} \sum_{k=1}^{M} \frac{(N_k^{\mathcal{B}, 0})^2}{N_k^{\mathcal{B}}} \cdot \delta_{+\infty} \right) \right\}. \tag{4}$$

Theorem 2

Suppose $0 < p_{A|X}(X) < 1$ almost surely. Then \widehat{C}^{pro-CP} from (4) satisfies propensity score discretized feature- and missingness-conditional coverage:

$$\mathbb{E}\left[\frac{1}{N^{(0)}}\sum_{i:A_i=0}\mathbb{1}\left\{Y_i\in\widehat{C}^{\mathsf{pro-CP}}(X_i)\right\}\,\middle|\,B_{1:n},A_{1:n}\right]\geq 1-\alpha-\varepsilon.$$

• The error from discretization is bounded by ε , for any n and # of missing outcomes.

Pro-CP with estimated propensity score

• If the propensity score is unknown, we may run pro-CP with an estimator $\hat{p}_{A|X}$ of $p_{A|X}$.

Pro-CP with estimated propensity score

• If the propensity score is unknown, we may run pro-CP with an estimator $\hat{p}_{A|X}$ of $p_{A|X}$.

Theorem 3

Suppose $0 < p_{A|X}(X) < 1$ and $0 < \hat{p}_{A|X}(X) < 1$ almost surely. Then pro-CP run with $\hat{p}_{A|X}$ satisfies

$$\mathbb{E}\left[\frac{1}{N^{(0)}}\sum_{i:A_i=0}\mathbb{1}\left\{Y_i\in\widehat{C}^{\mathsf{pro-CP}}(X_i)\right\}\Big|\,B_{1:n},A_{1:n}\right]\geq 1-\alpha-(\varepsilon+\delta_{\widehat{\rho}_{A|X}}+\varepsilon\delta_{\widehat{\rho}_{A|X}}),$$

where

$$\delta_{\hat{
ho}_{A|X}} = \mathrm{e}^{2\|\log f_{
ho,\hat{
ho}}\|_{\infty}} - 1, \qquad f_{
ho,\hat{
ho}}(x) = rac{p_{A|X}(x)/(1-p_{A|X}(x))}{\hat{
ho}_{A|X}(x)/(1-\hat{
ho}_{A|X}(x))}.$$

Pro-CP with estimated propensity score

• If the propensity score is unknown, we may run pro-CP with an estimator $\hat{p}_{A|X}$ of $p_{A|X}$.

Theorem 3

Suppose $0 < p_{A|X}(X) < 1$ and $0 < \hat{p}_{A|X}(X) < 1$ almost surely. Then pro-CP run with $\hat{p}_{A|X}$ satisfies

$$\mathbb{E}\left[\frac{1}{N^{(0)}}\sum_{i:A_i=0}\mathbb{1}\left\{Y_i\in\widehat{C}^{\mathsf{pro-CP}}(X_i)\right\}\Big|\,B_{1:n},A_{1:n}\right]\geq 1-\alpha-(\varepsilon+\delta_{\hat{p}_{A|X}}+\varepsilon\delta_{\hat{p}_{A|X}}),$$

where

$$\delta_{\hat{\rho}_{A|X}} = e^{2\|\log f_{\rho,\hat{\rho}}\|_{\infty}} - 1, \qquad f_{\rho,\hat{\rho}}(x) = \frac{p_{A|X}(x)/(1 - p_{A|X}(x))}{\hat{p}_{A|X}(x)/(1 - \hat{p}_{A|X}(x))}.$$

• The error from estimation does not grow with the number of missing outcomes.

New result underlying pro-CP guarantee

• Balancing property of the propensity score [Rosenbaum and Rubin (1983)]: the missingness is independent of the outcome conditional on the propensity: $A \perp \!\!\! \perp Y \mid p_{A|X}$.

New result underlying pro-CP guarantee

- Balancing property of the propensity score [Rosenbaum and Rubin (1983)]: the missingness is independent of the outcome conditional on the propensity: $A \perp \!\!\! \perp Y \mid p_{A\mid X}$.
- We show approximate version: dist. of s(X,Y) close for A=0,1 given small range of $p_{A|X}$

Lemma (Bounded prop. score implies closeness of cond. distrib. for obs. and missing)

Suppose that $(X,Y,A) \sim P_X \times P_{Y|X} \times \text{Bernoulli}(p_{A|X})$ on $\mathcal{X} \times \mathcal{Y} \times \{0,1\}$, and that for a set $B \subset \mathcal{X}$ and $t \in (0,1)$, $\varepsilon \geq 0$,

$$t \leq \frac{p_{A|X}(x)}{1 - p_{A|X}(x)} \leq t(1 + \varepsilon), \text{ for all } x \in B.$$

Let $s: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ be any measurable function and let S = s(X, Y). Then $d_{TV}(P_{S|A=1,X \in B}, P_{S|A=0,X \in B}) \leq \varepsilon$.

Related ideas in the literature

- Sub-classification based on propensity score [Rosenbaum and Rubin (1984)]: can reduce bias in causal effect estimation by partitioning based on estimated propensity
- Similar principle, but does not specify partitioning scheme, and for a different goal (bias reduction); w/o any technical overlap

Table of Contents

Introduction and Overview

Our Methods

Illustrating Our Methods in a Stylized Problem

A Stronger Guarantee

Empirical illustration

Application to simultaneous inference on ITEs

Consider a potential outcomes model

$$(X_i, T_i, Y_i(0), Y_i(1))_{1 \le i \le n} \stackrel{\text{iid}}{\sim} P_X \times P_{T|X} \times P_{Y(1)|X} \times P_{Y(0)|X},$$

where we observe $(X_i, T_i, T_i Y_i(1) + (1 - T_i) Y_i(0))_{1 \le i \le n}$.

Application to simultaneous inference on ITEs

• Consider a potential outcomes model

$$(X_i, T_i, Y_i(0), Y_i(1))_{1 \leq i \leq n} \stackrel{\text{iid}}{\sim} P_X \times P_{T|X} \times P_{Y(1)|X} \times P_{Y(0)|X},$$

where we observe $(X_i, T_i, T_i Y_i(1) + (1 - T_i) Y_i(0))_{1 \le i \le n}$.

• Applying pro-CP, we can construct $\widehat{C}^{\text{counterfactual}}$ such that

$$\mathbb{E}\left[\frac{1}{N^{(0)}}\sum_{i:\,T_i=0}\mathbb{1}\left\{Y_i(1)\in\widehat{C}^{\mathsf{counterfactual}}(X_i)\right\}\ \middle|\ B_{1:n},\,T_{1:n}\right]\geq 1-\alpha.$$

Application to simultaneous inference on ITEs

• Consider a potential outcomes model

$$(X_i, T_i, Y_i(0), Y_i(1))_{1 \le i \le n} \stackrel{\text{iid}}{\sim} P_X \times P_{T|X} \times P_{Y(1)|X} \times P_{Y(0)|X},$$

where we observe $(X_i, T_i, T_i Y_i(1) + (1 - T_i) Y_i(0))_{1 \le i \le n}$.

• Applying pro-CP, we can construct $\widehat{C}^{ ext{counterfactual}}$ such that

$$\mathbb{E}\left[\frac{1}{N^{(0)}}\sum_{i:\,T_i=0}\mathbb{1}\left\{Y_i(1)\in\widehat{C}^{\mathsf{counterfactual}}(X_i)\right\}\ \middle|\ B_{1:n},\,T_{1:n}\right]\geq 1-\alpha.$$

• By letting $\widehat{C}_i^{\mathsf{ITE}} = \{y - Y_i(0) : y \in \widehat{C}^{\mathsf{counterfactual}}(X_i)\}$, we obtain prediction sets for individual treatment effects

$$\mathbb{E}\left[\frac{1}{N^{(0)}}\sum_{i\in I_{T=0}}\mathbb{1}\left\{\left(Y_{i}(1)-Y_{i}(0)\right)\in\widehat{C}_{i}^{\mathsf{ITE}}\right\}\ \middle|\ B_{1:n},\,T_{1:n}\right]\geq 1-\alpha.$$

Table of Contents

Introduction and Overview

Our Methods

Illustrating Our Methods in a Stylized Problem

A Stronger Guarantee

Empirical illustration

• Can we achieve a stronger guarantee beyond bounding the *mean coverage*?

- Can we achieve a stronger guarantee beyond bounding the mean coverage?
- Possible goal: PAC-type guarantee of the form

$$\mathbb{P}\left\{rac{1}{\mathcal{N}^{(0)}}\sum_{i:A_i=0}\mathbb{1}\left\{Y_i\in\widehat{C}^{\mathsf{pro-CP}}(X_i)
ight\}\geq 1-lpha
ight\}\geq 1-\delta.$$

- Can we achieve a stronger guarantee beyond bounding the mean coverage?
- Possible goal: PAC-type guarantee of the form

$$\mathbb{P}\left\{\frac{1}{N^{(0)}}\sum_{i:A_i=0}\mathbb{1}\left\{Y_i\in\widehat{C}^{\mathsf{pro-CP}}(X_i)\right\}\geq 1-\alpha\right\}\geq 1-\delta.$$

• Turns out to be hard to achieve in the distribution-free sense

- Can we achieve a stronger guarantee beyond bounding the *mean coverage*?
- Possible goal: PAC-type guarantee of the form

$$\mathbb{P}\left\{\frac{1}{N^{(0)}}\sum_{i:A_i=0}\mathbb{1}\left\{Y_i\in\widehat{C}^{\mathsf{pro-CP}}(X_i)\right\}\geq 1-\alpha\right\}\geq 1-\delta.$$

- Turns out to be hard to achieve in the distribution-free sense
- As a surrogate target, we consider bounding the squared coverage

$$\mathbb{E}\left[\left(\frac{1}{N^{(0)}}\sum_{i:A_i=0}\mathbb{1}\left\{Y_i\notin\widehat{C}^{\mathsf{pro-CP}}(X_i)\right\}\right)^2\right]\leq \alpha^2.$$

- Can we achieve a stronger guarantee beyond bounding the mean coverage?
- Possible goal: PAC-type guarantee of the form

$$\mathbb{P}\left\{\frac{1}{N^{(0)}}\sum_{i:A_i=0}\mathbb{1}\left\{Y_i\in\widehat{C}^{\mathsf{pro-CP}}(X_i)\right\}\geq 1-\alpha\right\}\geq 1-\delta.$$

- Turns out to be hard to achieve in the distribution-free sense
- As a surrogate target, we consider bounding the squared coverage

$$\mathbb{E}\left[\left(\frac{1}{N^{(0)}}\sum_{i:A_i=0}\mathbb{1}\left\{Y_i\notin\widehat{C}^{\mathsf{pro-CP}}(X_i)\right\}\right)^2\right]\leq \alpha^2.$$

(motivated by Lee et. al. (2023): Hierarchical CP)

Interpretation of the squared-coverage guarantee

• Let $\hat{m} = \frac{1}{N^{(0)}} \sum_{i:A_i=0} \mathbb{1} \left\{ Y_i \in \widehat{C}^{\mathsf{pro-CP}}(X_i) \right\}$ denote the *miscoverage proportion*.

Interpretation of the squared-coverage guarantee

- Let $\hat{m} = \frac{1}{N^{(0)}} \sum_{i:A_i=0} \mathbb{1}\left\{Y_i \in \widehat{C}^{\mathsf{pro-CP}}(X_i)\right\}$ denote the *miscoverage proportion*.
- Conditional on (discretized) features, pro-CP attains $\mathbb{E}\left[\hat{m}\right] \leq \alpha$.

Interpretation of the squared-coverage guarantee

- Let $\hat{m} = \frac{1}{N^{(0)}} \sum_{i:A_i=0} \mathbb{1}\left\{Y_i \in \widehat{C}^{\mathsf{pro-CP}}(X_i)\right\}$ denote the *miscoverage proportion*.
- Conditional on (discretized) features, pro-CP attains $\mathbb{E}\left[\hat{m}\right] \leq \alpha$.
- The squared-coverage guarantee is $\mathbb{E}\left[\hat{m}^2\right] \leq \alpha^2$, and provides a stronger control over \hat{m} being close to unity, preventing e.g., $\hat{m} = 0$ w.p. 1α and 1 w.p. α .

Pro-CP2 procedure

- Define
 - 1. For all $i \in [n]$, $\bar{S}_i = S_i$ if $A_i = 1$ and $\bar{S}_i = +\infty$ if $A_i = 0$.
 - 2. Pairwise minima: $\bar{S}_{ij} := \min{\{\bar{S}_i, \bar{S}_j\}}$ for all i, j.

Pro-CP2 procedure

- Define
 - 1. For all $i \in [n]$, $\bar{S}_i = S_i$ if $A_i = 1$ and $\bar{S}_i = +\infty$ if $A_i = 0$.
 - 2. Pairwise minima: $\bar{S}_{ij} := \min{\{\bar{S}_i, \bar{S}_i\}}$ for all i, j.
- Pro-CP2 prediction set:

$$\begin{split} \widehat{C}^{\text{pro-CP2}}(x) &= \left\{ y \in \mathcal{Y} : s(x,y) \leq Q_{1-\alpha^2} \left(\sum_{k=1}^{M} \sum_{i \in I_k^{\mathcal{B}}} \frac{1}{(N^{(0)})^2} \cdot \frac{N_k^{\mathcal{B},0}}{N_k^{\mathcal{B}}} \cdot \delta_{\bar{S}_i} \right. \right. \\ &+ \sum_{k=1}^{M} \sum_{\substack{i,j \in I_k^{\mathcal{B}}\\i \neq i}} \frac{N_k^{\mathcal{B},0}(N_k^{\mathcal{B},0} - 1)}{(N^{(0)})^2 N_k^{\mathcal{B}}(N_k^{\mathcal{B}} - 1)} \delta_{\bar{S}_{ij}} + \sum_{1 \leq k \neq k' \leq M} \sum_{i \in I_k^{\mathcal{B}}} \sum_{j \in I_{k'}^{\mathcal{B}}} \frac{N_k^{\mathcal{B},0}N_{k'}^{\mathcal{B},0}}{(N^{(0)})^2 N_k^{\mathcal{B}}N_{k'}^{\mathcal{B}}} \delta_{\bar{S}_{ij}} \right) \right\}. \end{split}$$

Pro-CP2 procedure

- Define
 - 1. For all $i \in [n]$, $\bar{S}_i = S_i$ if $A_i = 1$ and $\bar{S}_i = +\infty$ if $A_i = 0$.
 - 2. Pairwise minima: $\bar{S}_{ii} := \min{\{\bar{S}_i, \bar{S}_i\}}$ for all i, j.
- Pro-CP2 prediction set:

$$\begin{split} \widehat{C}^{\text{pro-CP2}}(x) &= \left\{ y \in \mathcal{Y} : s(x,y) \leq Q_{1-\alpha^2} \left(\sum_{k=1}^{M} \sum_{i \in I_k^{\mathcal{B}}} \frac{1}{(N^{(0)})^2} \cdot \frac{N_k^{\mathcal{B},0}}{N_k^{\mathcal{B}}} \cdot \delta_{\bar{S}_i} \right. \right. \\ &+ \sum_{k=1}^{M} \sum_{\substack{i,j \in I_k^{\mathcal{B}} \\ i \neq i}} \frac{N_k^{\mathcal{B},0}(N_k^{\mathcal{B},0} - 1)}{(N^{(0)})^2 N_k^{\mathcal{B}}(N_k^{\mathcal{B}} - 1)} \delta_{\bar{S}_{ij}} + \sum_{1 \leq k \neq k' \leq M} \sum_{\substack{i \in I_k^{\mathcal{B}} \\ i \neq i}} \frac{N_k^{\mathcal{B},0} N_{k'}^{\mathcal{B},0}}{(N^{(0)})^2 N_k^{\mathcal{B}} N_{k'}^{\mathcal{B}}} \delta_{\bar{S}_{ij}} \right) \right\}. \end{split}$$

• Similar intuition as before; but use invariance to find probability of $\mathbb{1}\left\{\min\{S_{i^*},S_{j^*}\}\leq q_{1-\alpha^2}(\tilde{S}_1,\ldots,\tilde{S}_M)\right\}, \text{ where } i^*.j^* \text{ are random data indices with } A=0.$

Squared coverage error control of Pro-CP2

Theorem 4

If $0 < p_{A|X}(X) < 1$ almost surely, then $\widehat{C}^{\mathsf{pro-CP2}}$ satisfies

$$\mathbb{E}\left[\left(\frac{1}{N^{(0)}}\sum_{i:A_i=0}\mathbb{1}\left\{Y_i\notin\widehat{C}^{\mathsf{pro-CP2}}(X_i)\right\}\right)^2\,\middle|\,B_{1:n},A_{1:n}\right]\leq\alpha^2+2\varepsilon.$$

Table of Contents

Introduction and Overview

Our Methods

Illustrating Our Methods in a Stylized Problem A Stronger Guarantee

Empirical illustration

Weighted conformal (Tibshirani et al., 2019) vs pro-CP: marginal vs conditional coverage

1. $X \sim \text{Unif}[0, 10], Y \mid X \sim N(X, (3+X)^2), A \mid X \sim \text{Bernoulli}(p_{A|X}(X))$

- 1. $X \sim \text{Unif}[0, 10], Y \mid X \sim N(X, (3 + X)^2), A \mid X \sim \text{Bernoulli}(p_{A|X}(X))$
- 2. (1): $p_{A|X}(x) = 0.9 0.02x$, (2): $p_{A|X}(x) = 0.8 0.1(1 + 0.1x) \sin 3x$

- 1. $X \sim \text{Unif}[0, 10], Y \mid X \sim N(X, (3+X)^2), A \mid X \sim \text{Bernoulli}(p_{A|X}(X))$
- 2. (1): $p_{A|X}(x) = 0.9 0.02x$, (2): $p_{A|X}(x) = 0.8 0.1(1 + 0.1x) \sin 3x$
- 3. Fit OLS with $n_{\text{train}} = 500$, $s(x, y) = |y \hat{\mu}(x)|$

- 1. $X \sim \text{Unif}[0, 10], Y \mid X \sim N(X, (3+X)^2), A \mid X \sim \text{Bernoulli}(p_{A|X}(X))$
- 2. (1): $p_{A|X}(x) = 0.9 0.02x$, (2): $p_{A|X}(x) = 0.8 0.1(1 + 0.1x) \sin 3x$
- 3. Fit OLS with $n_{\text{train}} = 500$, $s(x, y) = |y \hat{\mu}(x)|$
- 4. 500 trials, n=500, Pro-CP $\varepsilon=0.1$, $\alpha=0.2$, partition of size 10;

- 1. $X \sim \text{Unif}[0, 10], Y \mid X \sim N(X, (3+X)^2), A \mid X \sim \text{Bernoulli}(p_{A|X}(X))$
- 2. (1): $p_{A|X}(x) = 0.9 0.02x$, (2): $p_{A|X}(x) = 0.8 0.1(1 + 0.1x) \sin 3x$
- 3. Fit OLS with $n_{\text{train}} = 500$, $s(x, y) = |y \hat{\mu}(x)|$
- 4. 500 trials, n=500, Pro-CP $\varepsilon=0.1$, $\alpha=0.2$, partition of size 10;
- 5. Given $X_{1:n}$, $A_{1:n}$, 100x gen $(X_i', Y_i')_{1 \le i \le n} \mid B_i \sim P_{X|B} \times P_{Y|X}$, n = 500

- 1. $X \sim \text{Unif}[0, 10], Y \mid X \sim N(X, (3+X)^2), A \mid X \sim \text{Bernoulli}(p_{A|X}(X))$
- 2. (1): $p_{A|X}(x) = 0.9 0.02x$, (2): $p_{A|X}(x) = 0.8 0.1(1 + 0.1x) \sin 3x$
- 3. Fit OLS with $n_{\text{train}} = 500$, $s(x, y) = |y \hat{\mu}(x)|$
- 4. 500 trials, n=500, Pro-CP $\varepsilon=0.1$, $\alpha=0.2$, partition of size 10;
- 5. Given $X_{1:n}$, $A_{1:n}$, 100x gen $(X_i', Y_i')_{1 \le i \le n} \mid B_i \sim P_{X|B} \times P_{Y|X}$, n = 500

pro-CP vs pro-CP2: controlling mean vs squared miscoverage

• Same setting as Simulation 1, but evaluate marginal coverage & estimate propensity score with kernel regression on training data

Illustration on diabetes dataset (Efron et al., 2004)

- X: ten features (age, bmi, LDL/HDL, ...) of patients (sample sizes: train: 142; calibration+test: 300)
- A: missingness generated from a known logistic model
- Y: a measure of disease progression one year after baseline

Illustration on diabetes dataset (Efron et al., 2004): II

Illustration on JOBS II dataset (Imai et al., 2010)

- X: job seekers: $n_{\text{train}} = 379$, n = 500; with 14 demographic features
- A: job skills workshop (to evaluate our methods, simulate via logistic model; estimate via RF)
- Y(0), Y(1): pre- and post-treatment depression measure

Discussion

- Introduced Pro-CP, a method for simultaneous prediction of multiple missing outcomes, and provided coverage guarantees
- Pro-CP2: stronger squared error miscoverage error control
- What applications might this have an impact on? Where could it be used?
- Preprint: arxiv.org/abs/2403.04613. Code: github.com/yhoon31/pro-CP
- Thanks!

