Beschreibende Statistik

 Ω : Grundgesamtheit

 ω : Element der Grundgesamtheit

 $X: \Omega \rightarrow M: Merkmal$

 $X:(\omega)=x$: Ausprägung des Merkmals

Modalwert(e) x_{mod}		Am häufigsten auftretende Ausprägung
Mittelwert \overline{x}	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	
Median $x_{0.5}$	$x_{0.5} = \begin{cases} x_{\frac{n+1}{2}} & \text{, n ungerade} \\ \frac{1}{2} \left(x_{\frac{n}{2}} + x_{\frac{n}{2}+1} \right), \text{n gerade} \end{cases}$	Liegt in der Mitte der sortierten Daten x _i
Spannweite	$\max x_i - \min x_i$	Distanz zw. größtem und kleinstem Messwert
Stichprobenvarianz s^2	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$	Gemittelte Summe der quadratischen Abweichungen vom Mittelwert
	$=\frac{n}{n-1}\left(\sum_{i=1}^{n}x_i^2-n\bar{x}^2\right)$	
Stichproben- standardabweichung s	$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} = \sqrt{s^2}$	Streuungsmaß mit gleicher Einheit wie beobachete Daten x _i
p-Quantil x_p	$x_{p} = \begin{cases} x_{floor(np)+1}, & n \cdot p \notin \mathbb{N} \\ \frac{1}{2} (x_{np} + x_{np+1}), n \cdot p \in \mathbb{N} \end{cases}$	Teilt sortierte Daten im Verhältnis p : (1 - p)
Empirische Kovarianz s_{xy}	$S_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$	Für s _{xy} > 0 hat Punktewolke steigende, für s _{xy} < 0 fallende Tendenz
	$= \frac{1}{n-1} \left(\sum_{i=1}^{n} (x_i y_i) - n\bar{x}\bar{y} \right)$	
Empirischer Korrelationskoeffizient r	$r = \frac{s_{xy}}{s_x \cdot s_y}$	Näherungsweise linearer Zusammenhand zw. x und y falls $ r \approx 1$
Regressionsgerade	$y = mx + t$ mit $m = r \cdot \frac{s_y}{s_x}$ und $t = \bar{y} - m \cdot \bar{x}$	

Elementare Wahrscheinlichkeitsrechnung

 Ω : Ergebnisraum, Menge aller möglichen Ergebnisse eines Experiments

 $\omega \in \Omega$: Elementarereignis, Einzelnes Element von Ω

 $E \cup F$: Ereignis E oder Ereignis F treten ein (mindestens eins)

 $E \cap F$: Ereignis E und Ereignis F treten ein

 $E \cap F = \emptyset$: Paarweise disjunkte Ereignisse

$E \cap F = \emptyset$: Paar weise disjunkte Ereignisse		
De Morgan'sche Regeln	$ \frac{\overline{\bigcup_{i=1}^{n} E_{i}}}{\overline{\bigcap_{i=1}^{n} E_{i}}} = \overline{\bigcup_{i=1}^{n} \overline{E}_{i}} $ $ \overline{\bigcap_{i=1}^{n} E_{i}} = \overline{\bigcup_{i=1}^{n} \overline{E}_{i}} $	
Axiome von Kolmogorov	1. $0 \le P(E) \le 1$ 2. $P(\Omega) = 1$ 3. $P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=n}^{\infty} P(E_i)$, falls $E_i \cap E_j = \emptyset$ $f \ddot{u} r i \ne j$	
Folgen aus den Axiomen	$P(\overline{E}) = 1 - P(E)$ $P(E \cup F) = P(E) + P(F) - P(E \cap F)$	
Laplace Experiment	$P(E) = \frac{Anz \ der \ f\"{u}r \ E \ g\"{u}nstigen \ Ergebnisse}{Anz \ der \ m\"{o}glichen \ Ergebnisse}$ $= \frac{ E }{n}$	Zufallsexperiment mit n gleichwahrscheinlichen Elementarereignissen
Bedingte Wahrscheinlichkeit	$P(E F) = P_F(E) = \frac{ E }{ F } = \frac{P(E \cap F)}{P(F)}$	Die Wahrscheinlichkeit für das Eintreten von E, wenn F eingetreten ist.
Regeln für bedingte Wahrscheinlichkeit	Für $E, F \neq \emptyset$ 1. $P(E \cap F) = P(E F) \cdot P(F)$ 2. $P(E \cap F) = P(F E) \cdot P(E)$	
Satz der totalen Wahrscheinlichkeit	$\Omega = \bigcup_{i=1}^{n} E_i \text{ mit } E_i \cap E_j = \emptyset, dann \text{ gilt:}$ $P(F) = \sum_{i=1}^{n} P(F \cap E_i) = \sum_{i=1}^{n} P(F E_i) \cdot P(E_i)$	Alle E müssen disjunkt sein. Allgemein die Wahrscheinlichkeit, dass F Eintritt. Man nimmt nicht an, dass Ei eingetreten ist.
Vierfeldertafel	Spezial fall: $\Omega = E \cup \overline{E}$ $P(F) = P(F \cap E) + P(F \cap \overline{E})$ $P(\overline{F}) = P(\overline{F} \cap E) + P(\overline{F} \cap \overline{E})$	
Formel von Bayes	$P(E_k F) = \frac{P(F E_k) \cdot P(E_k)}{\sum_{i=1}^{n} P(F E_i) \cdot P(E_i)}$	Hilfreich, wenn man $ P(F E_i) \text{ kennt, nicht aber } \\ P(E_k F) $
Unabhängigkeit	Gilt, wenn $P(E F) = P(E) \ bzw. \ P(E \cap F) = P(E) \cdot P(F)$ Falls E, F unabhängig, gilt auch \overline{E} , F bzw. \overline{E} , \overline{F} unabh	

Kombinatorik				
Ermittlung der Mächtigkeit von Ereignissen				
Allgemeines Zählprinzip	Anzahl der Möglichkeiten, für ein k-stufiges Zufallsexperiment mit n_i Varianten im i-ten Schritt: $n_1 \cdot n_2 \dots n_k$		Baum, der je nach Ebene unterschiedlich viele Kinder haben kann	
Anzahl der Permutationen einer n-elementigen Menge	n-maliges Ziehen ohne Zurückleger der Reihenfolge - für n unterscheidbare Elem $n! = n \cdot (n-1)$. - für k Klassen mit je n_i nicht unterscheidbaren Elemento $n!$ $n!$ $n_1! \cdot n_2! \cdot \cdot$	nente: · 2 · 1 en:		
k-maliges ziehen aus einer n-elementigen Menge	ohne Zurücklegen $k \leq n$ mit Zurücklegen $k > n$ möglich	mit Beachtung der Reihenfolge $\frac{n!}{(n-k)!}$ n^k	ohne Beachtung der Reihenfolge $\binom{n}{k} = \frac{n!}{(n-k)!k!}$ $\binom{n+k-1}{k}$	

Zufallsvariablen

Abbildung $X: \Omega \to \mathbb{R}$, $\omega \to X(\omega) = x$, heißt Zufallsvariable

x: Realisation der ZV X

Diskrete ZV: $X(\Omega) = \{x_1, x_2, ..., x_n\} (n \in \mathbb{N})$

Stetige ZV: $X(\Omega) \subseteq \mathbb{R}$

Eindimensionale ZV: $X: \Omega \to \mathbb{R}$ Mehrdimensionale ZV: $X: \Omega \to \mathbb{R}^p$

Verteilungsfunktion

$$x \in \mathbb{R}, F: \mathbb{R} \to [0, 1]$$

$$F(x) = P(X \le x)$$

Eigenschaften:

- $0 \le F(x) \le 1$
- $\lim_{x \to -\infty} F(x) = 0, \lim_{x \to \infty} F(x) = 1$
- rechtsseitig stetig, also: $\lim_{x \to b+} F(x) = F(b)$
- monoton wachsend
- P(X > x) = 1 F(x)
- $P(a < X \le b) = F(b) F(a)$

Diskrete Zufallsvariablen

Wahrscheinlichkeitsverteilung:

$$p(x) = \begin{cases} P(X = x_i), falls \ x = x_i \in X(\Omega) \\ 0, \quad sonst \end{cases}$$

<u>Eigenschaften Wahrscheinlichkeitsvertei</u>lung:

- $0 \le p(x) \le 1$
- $\sum_{i=1}^n p(x_i) = 1$

Es gilt:

- $F(x) = P(X \le x) = \sum_{x_i \le x} p(x_i)$
- F(x) ist eine rechtsseitig stetige Treppenfunktion mit Sprüngen bei den Realisationen xi

Stetige Zufallsvariablen

Wahrscheinlichkeitsdichte:

$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Eigenschaften Wahrscheinlichkeitsdichte:

- $f(x) \ge 0$
 $\int_{-\infty}^{\infty} f(x) \, dx = 1$

Es gilt:

- $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$ und F'(x) =
- F(x) ist stetig und $P(a < X \le b) = P(a \le X \le b)$ $(b) = P(a \le X < b) = P(a < X < b) = F(b) - b$ F(a)

Wahrscheinlichkeitsdichte ist die Wahrscheinlichkeit, dass ein Zufallsexperiment ein Ergebnis in einem bestimmten Bereich liefert

Erwartungswert	$E[X] = \mu$	Der Erwartungswert ist der
	Für diskrete ZV: $E[X] = \sum_{i=1}^{n} x_i \cdot p(x_i)$	Schwerpunkt der Verteilung einer Zufallsvariable
	t=1	
	Für stetige ZV: ∞	
	$E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$	
	Sei g(X) eine Funktion der ZV X, dann gilt:	
	Für diskrete ZV:	
	$E[g(X)] = \sum_{i=1}^{n} g(x_i) \cdot p(x_i)$	
	Für stetige ZV:	
	$E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f(x) dx$	
	Eigenschaften des Erwartungswerts:	
	- $E[b] = b$ - $E[aX + b] = aE[X] + b$ - $E[X_1 + \dots + X_n] = \sum_{i=1}^n E[X_i]$	
Varianz	$\sigma^2 = Var[X] = E[(X - \mu)^2]$	Die Varianz ist ein
	Standardabweichung:	quadratisches Streuungsmaß einer ZV X
	$\sigma = \sqrt{V[X]}$	a transferrence and a second
	<u>Verschiebungssatz</u> :	
	$Var[X] = E[X^2] - (E[X])^2$	
	Eigenschaften der Varianz:	
	- $Var[b] = 0$ - $Var[aX + b] = a^{2}Var[X]$ - $Var[X_{1} + \dots + X_{n}] = \sum_{i=1}^{n} \sum_{j=1}^{n} Cov[X_{i}, X_{j}]$	
	$- Var[X_1 + X_2] = Var[X_1] + Var[X_2] + 2Cov[X_1, X_2]$	
	- Falls X _i , X _j paarweise unabhängig:	
	$Var[X_1 + \dots + X_n] = \sum_{i=1}^n Var[X_i]$	
Kovarianz	Cov[X,Y] = E[(X - E[X]) (Y - E[Y])]	Die Kovarianz beschreibt
	Wenn X, Y stochastisch unabhängig $\Rightarrow Cov[X,Y] = 0$	die Abhängigkeit zweier ZV X und Y. Je stärker diese
	Verschiebungssatz: $Cov[V, V] = F[VV] - F[V] \cdot F[V]$	korrelieren, desto größer die Kovarianz.
	$Cov[X,Y] = E[XY] - E[X] \cdot E[Y]$ Eigenschaften der Kovarianz:	die Kovarianz.
	- Cov[X,Y] = Cov[Y,X]	
	- Cov[X, X] = Var[X] $- Cov[aX, Y] = aCov[X, Y]$	

Diskrete Verteilungen		
P(X=x): Wahrscheinlichkeit E[X]: Erwartungswert F(x): Verteilungsfunktion Var[X]: Varianz		
Bernoulliverteilung	P(X = 1) = p, P(X = 0) = 1 - p E[X] = p	Indikatorvariable mit den Werten 1 bei Erfolg und 0 bei Misserfolg
Binomialverteilung	$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}, \ k \in \{0, 1,, n\}$ $E[x] = np$ $Var[X] = np(1 - p)$ $dbinom(k, n, p) = P(X = k)$ $pbinom(k, n, p) = F(k)$ $q\text{-Quantil: } qbinom(q, n, p)$ $k \ binomial verteil te \ Zufall szahlen: rbinom(k, n, p)$	Anzahl der Erfolge bei n-maligem Ziehen mit Zurücklegen
Hypergeometrische Verteilung	$P(X = k) = \frac{\binom{M}{k} \cdot \binom{N}{n-k}}{\binom{M+N}{n}}, k \in \{0,1, \dots, \min\{n, M\}\}$ $E[X] = n \cdot \frac{M}{M+N}$ $Var[X] = n \cdot \frac{M}{M+N} \left(1 - \frac{M}{M+N}\right) \frac{M+N-n}{M+N-1}$ $dhyper(k, M, N, n) = P(X = k)$ $phyper(k, M, N, n) = F(k)$	Anzahl der Erfolge beim n- maligen Ziehen ohne Zurücklegen aus einer Menge mit M Elementen, die Erfolg bedeuten und N Elementen, die Misserfolg bedeuten
Poisson-Verteilung	$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, k \in \{0, 1, \dots\} mit \sum_{k=0}^{\infty} P(X = k) = 1$ $E[X] = \lambda$ $Var[X] = \lambda$ $dpois(k, \lambda) = P(X = k)$ $ppois(k, \lambda) = F(k)$	"Verteilung der seltenen Ereignisse". Häufigkeit punktförmiger Ereignisse in einem Kontinuum. Die durchschnittlich zu erwartende Anzahl der Erfolge λ pro Maßeinheit (i.a. Zeiteinheit) sei bekannt.
Gleichverteilung	$P(X = x_k) = \frac{1}{n}$ $E[X] = \frac{1}{n} \sum_{k=1}^{n} x_k = \bar{x}$ $Var[x] = \frac{1}{n} \sum_{k=1}^{n} x_k^2 - \bar{x}^2$ $sample(1: N, n): n \ Zuf \ all \ szahlen \ zw \ 1 \ und \ N$	Alle Werte $\{x_1, \dots, x_n\}$ einer ZV X sind gleichwahrscheinlich.

Stetige Verteilunge	en	
f(x): Dichte F(x): Verteilungsfunktion	E[X]=μ : Erwartungswert Var[X] : Varianz	$oldsymbol{\sigma}$: Standardabweichung= $\sqrt{Var[X]}$
Stetige Gleichverteilung	$f(x) = \frac{1}{b-a} f \ddot{u} r x \in [a,b]$ $E[X] = \frac{a+b}{2}$ $Var[X] = \frac{(b-a)^2}{12}$ $dunif(x,a,b) = f(x)$ $punif(x,a,b) = F(x)$ $runif(n): n Zufallszahlen zw 0 und 1$	Zufallszahlen aus einem Intervall [a,b]
Normalverteilung	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)}$ $E[X] = \mu$ $Var[X] = \sigma^2$ $dnorm(x, \mu, \sigma) = f(x)$ $pnorm(x, \mu, \sigma) = F(x)$ $qnorm(q, \mu, \sigma)$: q-Quantil	Beschreibt viele reale Situationen, insbesondere Grenzverteilung unabhängiger Summen
Standardnormal- verteilung		
Exponentialverteilung	$f(x) = \lambda e^{-\lambda x} (x \ge 0)$ $F(x) = 1 - e^{-\lambda x}$ $E[X] = \frac{1}{\lambda}$ $Var[X] = \frac{1}{\lambda^2}$ $dexp(x, \lambda) = f(x)$ $pexp(x, \lambda) = F(x)$	Modellierung von Lebensdauern, Wartezeiten. Sei $Y_t \sim P_{\lambda t}$ im Intervall [0,t] von t Zeiteinheiten, dann beschreibt die Exponentialverteilung die Wartezeit X bis zum Eintreten eines Ereignisses
Chiquadrat-Verteilung	E[X] = n $Var[X] = 2n$ $dchisq(x, n) = f(x)$ $pchisq(x, n) = F(x)$	Z_1, \dots, Z_n seien unabhängige, standardnormalverteilte ZV => $X = Z_1^2 + \dots + Z_n^2$ hat Chiquadratverteilung mit n Freiheitsgraden. Summen unabhängiger, standardnormalverteiler ZV
t-Verteilung	$E[Y] = 0 \text{ für } n > 1$ $Var[Y] = \frac{n}{n-2} \text{ für } n > 2$ $dt(y,n) = f(y)$ $pt(y,n) = F(y)$	$Z{\sim}N_{0,1}$ und $X{\sim}x_n^2 \Rightarrow Y = \frac{Z}{\frac{X}{\sqrt{n}}}$ ist t-verteilt mit n Freiheitsgraden Schätz- und Testverfahren bei unbekannter Varianz.