1) i)
$$\int \frac{x}{\sqrt[3]{(x^2+4)^4}} dx = \lim_{M \to +\infty} \int_{2}^{M} \frac{x}{\sqrt[3]{(x^2+4)^4}} dx = \boxed{3}$$

Nohamo infatti che
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{$

Quind

$$\lim_{M \to +\infty} \left[-\frac{3}{2} \frac{1}{3 | H^2 + 4} + \frac{3}{4} \right] = \frac{3}{4}.$$

ii)
$$\int \frac{\operatorname{ard}_{9} \times dx}{1+x^{2}} dx = \lim_{N \to +\infty} \int \frac{\operatorname{curd}_{9} \times dx}{1+x^{2}} dx = \left[\frac{3\pi^{2}}{32}\right].$$

Notramo infaticae + 17 > 1

$$\int \frac{\operatorname{arcto} \times dx}{1+x^2} dx = \left[\frac{\operatorname{artg}^2 \times}{2}\right]_1^h = \frac{\operatorname{artp}^2 H}{2} - \frac{\operatorname{artp}^2 1}{32}$$

$$= \frac{\operatorname{arcto}^2 H}{2} - \frac{\operatorname{T}^2}{32}.$$

Quindi

$$\lim_{N \to +\infty} \left[\frac{\arctan^2 h}{2} - \frac{\pi^2}{32} \right] = \frac{\pi^2}{8} - \frac{\pi^2}{32} = \frac{3\pi^2}{32}.$$

iii)
$$\int_{Y} \frac{1}{\sqrt{x(4x+1)}} dx = \lim_{M \to +\infty} \int_{Y} \frac{1}{\sqrt{x(4x+1)}} = \left[\frac{\pi}{4}\right].$$

Ossavamo due HM 2 14

$$\int \frac{1}{\sqrt{x}(4x+1)} dx = \left[\text{arctg}(2\sqrt{x}) \right]^{N} = \text{arctg}(2\sqrt{N}) - \text{arctg} 1$$

Quindi

$$\lim_{h \to +\infty} \left[\operatorname{ardp} \left(2\sqrt{h} \right) - \operatorname{ardp} 1 \right] = \frac{1}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$

2) i)
$$\int \log (1+3\sqrt{x}) dx$$
: Osservamo che $f(x) = \log (1+3\sqrt{x})$ m $J_{0,1}$]

 $= \lim_{x \to \infty} \int \log (1+3\sqrt{x}) dx$: $\lim_{x \to \infty} \int \log (1+3\sqrt{x}) dx$ m $J_{0,1}$]

Inolbre $\frac{\log(1+\sqrt[3]{x})}{\lg x} \sim \frac{\sqrt[3]{x}}{x} = \frac{1}{x^{3/3}} \text{ per } x \to 0^{+}.$

Poide \$\int_{\frac{7}{28}} dx < +00, per il certaino del confronto assintohas

anche l'integrale di partenza è contergute.

ii) $\int \frac{x}{\sqrt{x^2-2}} \, dx : Osternémo che <math>f(x) = \frac{x}{\sqrt{x^2-2}\sqrt{3}x+1} = \frac{x}{\sqrt{x^2-2}\sqrt{3}x+1}$

ben deficita ou [3, +0 [, continua e

positiva. Quindi l'unico punto da indagare à come f ni comporta quando x > +00, Op f(x) ~ *1 per x > +00.

Porché l'integrale & 1/1 dx è dirergente, anche l'integrale di parteura è dirergente pu il cuterio del confronto assitotico.

3) i) $\int \frac{1-e^{-x^2}}{[x(x+1)]^d} dx$: oss. due $f(x) = \frac{1-e^{-x^2}}{[x(x+1)]^d} > 0$ m $J_0, +\infty[$;

inoltre è continua. Notismo cue:

per $X \rightarrow +\infty$, $f(x) \sim \frac{1}{x^{2d}}$ (nota: $e^{-x^{2}} \rightarrow 0$). Poice 1 1 x2d dx <+00 de 2d>1, orand d>2, puil cuterio del confronto assistatico. If (x) dx < +00 se e odo se d> 2; $pax \times > 0^+$, $f(x) = \frac{1 - 1 + x^2 + dx^3}{x^{\alpha}(x+1)^{\alpha}} \sim \frac{1}{x^{\alpha-2}}$ (insta: $(x+1)^{\alpha} > 1$) Poidie \$ \frac{1}{\sqrt{2}} dx <+00 +0 d-2 < 1, 0500 d <3, peil antono del confordo assistabilio f(x)dx <+00 + 0 <3.

In conclusione, I f(x) dx < +00 (1/2 < d < 3).

ii) $\int_{0}^{+\infty} \frac{x + \operatorname{ard}_{p} \sqrt{x}}{|x + 1|^{q/2} x^{2d}} dx : os. \operatorname{che} f(x) = \frac{x + \operatorname{arit}_{p} \sqrt{x}}{|x + 1|^{q/2} x^{2d}} > 0 \text{ on } \operatorname{Jo}_{1} + \infty[,$

ede continues. Notramo de :

per X > +00 | f(X) N X (nota: archo 1x > 1). Poide

\[
\begin{align*}
\frac{1}{\chi^{2d-1}} \, d \times < +00 \, \text{ } \,

iii) $\int_{\infty} \frac{\operatorname{arctp} \sqrt{|\chi|}}{|\chi-1|^{3d}|\chi|^{d+1}} dx : Os. die <math>f(\chi) = \frac{\operatorname{arctp} \sqrt{|\chi|}}{|\chi-1|^{3d}|\chi|^{d+1}} > 0$ on $J-\infty, 0$ [;

moltre à continue. Notranio de :

per $x \to -\infty$, $f(x) \sim \sqrt{\frac{11}{2|x|^{4d+2}}}$. Poidie $\int_{-\infty}^{\infty} \frac{1}{|x|^{4d+2}} dx < +\infty$ se e notose 4d+1 > 1, ornia d > 0, per il cirterio del confronto anistorico $\int_{-\infty}^{\infty} f(x) dx < +\infty \Leftrightarrow 0$;

per $\times 70^{\circ}$, $f(x) = \frac{\sqrt{|x|} + o(\sqrt{|x|})}{|x|^{d+1}}$ $\sqrt{\frac{1}{|x|^{d+1}}}$ $\sqrt{\frac{1}{|x|^{$

In condusione, $\int_{-\infty}^{\infty} d(x)dx < +\infty \iff [0 < \alpha < \frac{1}{2}]$.

$$iv) \int_{0}^{\infty} \frac{1 - \cos \sqrt{x}}{\sqrt[4]{(x - x^{2})^{\alpha}}} dx = \int_{0}^{\infty} \frac{1 - \cos \sqrt{x}}{\sqrt[4]{(1 - x)}} dx$$

Pouismo $f(x) = \frac{1 - \cos(\sqrt{x})}{\sqrt{[x(1-x)]^{\alpha}}}$; $\tilde{\epsilon} > 0$ m $[0, \frac{1}{2}]$ ed $\tilde{\epsilon}$

continua. Notismo de

per
$$x \to 0^+$$
, $f(x) = \underbrace{1-1/(\sqrt{x})_2 + o(x)}_{X^{0/4}} \sim \underbrace{1}_{2 \times 0/4 - 1}$.

Poide $\int_{0}^{1/4} \underbrace{1/4 + o(x)_2 + o(x)}_{X^{0/4} - 1} dx < + o \Leftrightarrow \underbrace{1/4 - 1}_{4} < 1$, $o = 1/4$, $o = 1/4$.

Per il aiterio del confronto arritórico $\int_{0}^{1/4} f(x) dx < + o \Leftrightarrow \underbrace{1/4 - 1}_{4} < 1$.

4) $\int_{0}^{\infty} \frac{e^{x}-1-\alpha \sin x}{x^{2}} dx$: Pouramo $f(x)=\frac{e^{x}-1-\alpha \sin x}{x^{2}}$, due è continua m $J_{0},1J$. Studiamo il suo comportamento per

$$X \to 0^{+}$$
: also $f(x) = \frac{1}{1 + x + \frac{x^{2}}{2} + o(x^{2})} - 1 - dx + d(x^{2})}{x^{2}}$

$$= (1 - d)x + \frac{x^{2}}{2} + o(x^{2})$$

$$= \frac{1 - d}{x^{2}} + o(x^{2})$$

Prinche allera de $f(x) \sim 1$ se $d \neq 1$ poidie $\int \frac{1}{x} dx = +\infty$, l'integrale $\int f(x)dx$ rubi è contergente pui $d \neq 1$ per il miterio del componto arintotico. Quindi l'integrale dato nimelta contergente f(x) = 1 e può errere mitero come mitegrale di Diemann (definito pui finadici limitate mi J(0,1)). Si ordeni che $f(x) = \frac{e^{x}-1-\sin x}{x^{2}}$ può errere definito mi [0,1] pomendo $f(0) = \lim_{x \to 0+} f(x) = \frac{y}{2}$.

5) $\int_{0}^{1} \frac{\log (1 + x \sin x) - 2 + 2 \cos x}{7x^{2} (1 - e^{x^{2} \sqrt{x}})} dx$: poidle peu $x = x - \frac{x^{3}}{3!} + o(x^{3})$ puxo $\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + o(x^{4})$ " $\log (1 + x) = x - \frac{x^{2}}{3!} + o(x^{2})$

in ha
$$log(1+x_{1}eux) = log(1+x^{2}-\frac{x^{4}}{6}+o(x^{4}))$$

$$= x^{2}-\frac{x^{4}}{6}-\frac{1}{2}x^{4}+o(x^{4})$$

$$= x^{2}-\frac{2}{3}x^{4}+o(x^{4})$$
per $x \neq 0$,

$$\log (1 + x \sec x) - 2 + 2 \cos x = x^{2} - \frac{2}{3} x^{4} + o(x^{4}) - x + 2 - x^{4} + \frac{x^{4}}{12} + o(x^{4})$$

$$= -\frac{7}{12} x^{4} + o(x^{4}).$$

D'alka parte, poidie ex = 1+x+o(x) per x >0, n'othère

$$7x^{2}(1-e^{x^{2}\sqrt{x}}) = 7x^{2}(1-x^{2}\sqrt{x}+o(x^{2}\sqrt{x}))$$

$$= -7x^{4}\sqrt{x}+o(x^{4}\sqrt{x}).$$

Quindi, là funtionie integranda $\xi(x) = \frac{\log(1 + x \sin x) - 2 + 2 \omega x}{7x^2(1 - e^{x^2 \sqrt{x}})}$ voi comparts, pu $x \to 0^+$, come $\frac{1}{2} \frac{1}{2} \frac{1}{2$

$$\frac{-\frac{1}{12}x^{4} + o(x^{4})}{-7x^{4}\sqrt{x} + o(x^{4}\sqrt{x})} + osca \frac{1+o(1)}{12\sqrt{x} + o(\sqrt{x})}.$$

Inoldre $e^{\times} > 1$ $\forall \times > 0$, dernque f \in continue on $J_0, 1J$. Infine parlie $\int \frac{1}{\sqrt{x}} dx < t \infty$, per il cuterio del confronto anutoha posisimo concludera che $\int f(x) dx \in contergente$.

6)
$$\int_{0}^{\infty} \frac{\cos x}{x^2 + x + 3} dx$$
: Notiamo due $|f(x)| = \frac{|\cos x|}{x^2 + x + 3}$ è una finnione

Continue, positiva ou [0, too [; notiono de $\frac{1}{\sqrt{2}+x+3}$] $\frac{1}{\sqrt{2}+x+3}$ $\frac{1}{\sqrt{2}+x+3}$ $\frac{1}{\sqrt{2}+x+3}$ $\frac{1}{\sqrt{2}+x+3}$ $\frac{1}{\sqrt{2}+x+3}$ Porche | pu $x > +\infty$, $\frac{1}{\sqrt{2}+x+3}$ $\frac{1}{\sqrt{2}}$ e $\frac{1}{\sqrt{2}+x+3}$ $\frac{1}{\sqrt{2}}$ $\frac{1$