Markov Decision Process Basic

BY YANSONG LI
University of Illinois Chicago
Email: yli340@uic.edu

1 Markov Decision Process

1.1 State Space Form

Definition 1. (State Space Form, with Controller)

$$x_{t+1} = f(x_t, u_t)$$

Consider a state space system with perturbation

$$x_{t+1} = f(x_t, u_t, w_t),$$

where $w_t \sim P$.

Problem 1. Prove that the system

$$x_{t+1} = f(x_t, u_t, w_t)$$

is equivalent to

$$x_{t+1} \sim D(x_t, u_t).$$

1.2 Markov Decision Process

Definition 2. An infinite-horizon Markov Decision Process is a tuple $(S, A, r, \gamma, \mathbb{P})$, where S is the state space, A is the action space, $r: S \times A \to [0, 1], \ \gamma \in (0, 1)$ is the discount factor and \mathbb{P} : $S \times A \to \Delta(S)$ is the transition kernel (model, dynamics).

Definition 3. (Stochastic and Stationary Policy) $\pi: S \to \Delta(A)$.

- 1. $\pi: S \to A$, deterministic policy.
- 2. $\pi: S \times T \to \Delta(A)$, nonstationary policy.

Definition 4. (State Value Function) $V^{\pi}: S \rightarrow [0, 1]$, defined as

$$V^{\pi}(s) \triangleq \mathbb{E}_{s_{h+1} \sim \mathbb{P}(s_h, a_h), a_h \sim \pi_h(s_h)} \left(\sum_{h=1}^{\infty} \gamma^h r(s_h, a_h) | s_1 = s \right).$$

 $\pi = (\pi_1, \pi_2, \dots,)$

Definition 5. (State-Action Value Function) $Q^{\pi}: S \times A \rightarrow [0, 1]$

$$Q^{\pi}(s, a) \triangleq r(s, a) + \gamma \mathbb{E}_{s' \sim \mathbb{P}(s, a)}(V^{\pi}(s')).$$

Definition 6. (Optimal Policy)

The optimal policy π^* ,

$$\pi^* = \underset{\pi}{\operatorname{argmax}} V^{\pi}(s_1).$$

Problem 2. Prove that an infinite horizon MDP with a stationary policy π is a markov process. (Hint: prove $s' \sim \mathbb{P}(s, \pi(s))$ is markovian.

Problem 3. Prove that for an infinite horizon MDP with discount factor $\gamma \in (0, 1)$, the optimal policy is stationary and deterministic, i.e., $\pi^* = (\pi^*, \pi^*, \pi^*, \dots, \pi^*)$ or $\pi^*: S \to \Delta(A)$.

2 Value Iteration

$$\{Q_1, Q_2, \dots, Q_\infty\}$$
. Goal: $Q_\infty = Q^*$, $Q^*(s, a) \triangleq r(s, a) + \gamma \mathbb{E}_{s' \sim \mathbb{P}(s, a)}(V^{\pi^*}(s'))$.

$$Q_{k+1}(s, a) \leftarrow r(s, a) + \gamma \max_{a' \in A} (\mathbb{E}_{s' \sim \mathbb{P}(s, a)}(Q_k(s', a')))$$

$$\pi^{\star}(s) = \underset{a \in A}{\operatorname{argmax}} Q_{\infty}(s, a)$$

Definition 7. (Bellman Optimality Operator) $\mathcal{T}^*: \mathcal{Q} \to \mathcal{Q}$ defined as

$$Q_{k+1} \triangleq \mathcal{T}^{\star} Q_k$$

$$Q_{k+1}(s, a) \leftarrow r(s, a) + \gamma \max_{a' \in A} (\mathbb{E}_{s' \sim \mathbb{P}(s, a)}(Q_k(s', a')))$$

for all $(s, a) \in S \times A$.

Theorem 8. Q_{∞} is the fixed point of \mathcal{T}^{\star} , i.e.,

$$Q_{\infty} = \mathcal{T}^{\star} Q_{\infty} \tag{1}$$

Problem 4. State and prove the Banach space fixed point theorem.

Problem 5. Prove Theorem 8 using Banach space fixed point theorem. (Hint: Prove that the \mathcal{T}^* in equation (1)).