

Praktikum Ingenieurmäßige Software-Entwicklung

Palladio Component Model (PCM)

Prof. Dr. R. H. Reussner (reussner@ipd.uka.de)
Lehrstuhl Software-Entwurf und –Qualität
Institut für Programmstrukturen und Datenorganisation (IPD)
Fakultät für Informatik, Universität Karlsruhe (TH)

1. Introduction

- a. Roles, Process Model, Example
- b. Solver (Simulation, Analytical Model)

2. Component Developer

- a. Repository
- b. Component, Interface, Data Types
- c. SEFF

3. Stochastical Expressions

- a. Constants, PMF, PDF, Parameter Characterisation
- b. Parametric Dependencies

Lecture 1

Lecture 2

- 4. Software Architect
 - a) System (Composed Structure)
 - b) QoS Annotations on System Interfaces
- 5. System Deployer
 - a) Resource Types, Resource Environment
 - b) Allocation
- 6. Domain Expert
 - a. Usage Model
 - b. Parameter Characterisations
- 7. Solver, Result Interpretation
- 8. Comprehensive Case Study
- 9. Outlook

Lecture 4

1. Introduction

- a. Roles, Process Model, Example
- b. Solver (Simulation, Analytical Model)

2. Component Developer

- a. Repository
- b. Component, Interface, Data Types
- c. SEFF

3. Stochastical Expressions

- a. Constants, PMF, PDF, Parameter Characterisation
- b. Parametric Dependencies

Lecture 1

Lecture 2

Palladio Component Model

- Developed at Uni Oldenburg,
 Uni Karlsruhe since 2003
- Domain-specific
 Modelling Language
- Targeted at
 - Performance Prediction
 for Component-based Software Architectures
 - Business Information Systems
- Extensive Metamodel in EMF/Ecore
- Named after famous Renaissance Architect

CBSE Development Process

[Cheeseman2000, Koziolek2006a]

Developer Roles

Repository

Component Developer

Service Effect Specification

Component Developer

System

Software Architect

Resource Environment

System Deployer

Usage Model

Domain Expert

Model Solver

Model Solver

PCMSolver

- Only Single User
- Fast (~2-5 seconds)
- Analytical Method, High Precision
- Stochastic Process Algebra based
- Traverses the architecture once
- Directly convolutes specified probability functions

SimuBench

- Single + Multiple User
- Slow (~30-600 sec.)
- Process-based
 Simulation
- Queueing Network based (G/G/n)
- Traverses the architecture repeatedly
- Draws samples from probability functions, adds them up

Example

- Blog-System ⊕
- Switch to Eclipse!

1. Introduction

- a. Roles, Process Model, Example
- b. Solver (Simulation, Analytical Model)

2. Component Developer

- a. Repository
- b. Component, Interface, Data Types
- c. SEFF

3. Stochastical Expressions

- a. Constants, PMF, PDF, Parameter Characterisation
- b. Parametric Dependencies

Lecture 1

Lecture 2

Tasks

- Specifies Component & Interfaces
- Specifies Data Types
- Builds Composite Components
- Creates Service Effect Specifications
- Stores Modelling & Implementation Artefacts in Repositories
- Implements Components
- Tests Components
- Maintains Components

Component Developer

Example Repository

Example Repository

Interfaces

Quality of Service Enhanced Interface

Protocol Enhanced Interface

Signature List Based Interface

PCM Interfaces

- QoS (=Performance, Reliability)
 - Service Effect Specification (Lecture 2)
- Protocol (=Valid Call Sequences)
 - Finite State Machine (Not shown here)
- Signature
 - Corba IDL:
 - Return Type
 - Name
 - Parameter List
 - Exception List

PCM Component Types

Provided Component Type

- Only Provided Interfaces mandatory
- May contain required services, not mandatory
- Specified during early development, refined later
- Situation: certain functionality needed, but additionally required services unknown
- QoS Annotations

Complete Component Type

- Provided and Required Interfaces mandatory
- Dependencies between Provided and Required Interfaces not fixed
- Situation: Needed functionallity known, component environment also fixed

Basic Component

- Provided/Required Interfaces mandatory
- One option to implement a Complete Type
- Service Effect Specification for Dependencies between Provided and Required Interfaces
- May be composed to Composed Components

Composite Component

- During development composed from any component types
- Finally composed from Basic Components and/or other Composite Components
- Likely not used in the experiment, but may occur in exercises

Data Types

- Primitive Datatype
 - INT, CHAR, BOOL, DOUBLE, LONG, ...
- Collection Datatype
 - Contains an inner primitive datatype
 - ARRAY, SET, LIST, TREE, HASHMAP, ...
- Composite Datatype (Struct)
 - Contains inner primitive and/or collection and/or composite datatypes
 - ADDRESS, CUSTOMER, PERSON, ...

Hands on Example

Switch to PCMBench

1. Introduction

- a. Roles, Process Model, Example
- b. Solver (Simulation, Analytical Model)

2. Component Developer

- a. Repository
- b. Component, Interface, Data Types
- c. SEFF

3. StoEx

- a. Constants, PMF, PDF, Parameter Characterisation
- b. Parametric Dependencies

Lecture 1

Lecture 2

Lessons Learned Today

- Person Role Task
- Component Developer, Software Architect,
 System Deployer, Domain Expert
- PCMSolver vs. SimuBench
- PCM Repository (Component Developer)
 - Components(Provided, Complete, Basic, Composite)
 - Interfaces(Signature, Protocol, SEFF)
 - Data Types
 (Primitive, Collection, Composite)