GROUPS OF ORDER 4 AND 6

KEITH CONRAD

1. Introduction

Here are several groups of order 4:

$$\mathbf{Z}/(4), \ \mathbf{Z}/(2) \times \mathbf{Z}/(2), \ (\mathbf{Z}/(5))^{\times}, (\mathbf{Z}/(8))^{\times}, \ (\mathbf{Z}/(12))^{\times}.$$

Here are several groups of order 6:

$$\mathbf{Z}/(6), \ \mathbf{Z}/(2) \times \mathbf{Z}/(3), \ (\mathbf{Z}/(7))^{\times}, \ S_3, \ D_3, \ \mathrm{GL}_2(\mathbf{Z}/(2)).$$

The groups of order 4 exhibit two types of structure: cyclic $(\mathbf{Z}/(4) \text{ and } (\mathbf{Z}/(5))^{\times})$ or built out of two commuting¹ elements of order 2 $((1,0) \text{ and } (0,1) \text{ in } \mathbf{Z}/(2) \times \mathbf{Z}/(2)$, 3 and 5 in $(\mathbf{Z}/(8))^{\times}$, 5 and 7 in $(\mathbf{Z}/(12))^{\times}$). Among the groups of order 6, the abelian ones are cyclic and the nonabelian ones can each be interpreted as the group of all permutations of a set of size 3 (the set is $\{1,2,3\}$ for S_3 , the 3 vertices of an equilateral triangle for D_3 , and the mod 2 vectors $\binom{1}{0}$, $\binom{0}{1}$, and $\binom{1}{1}$ for $\mathrm{GL}_2(\mathbf{Z}/(2))$.

We will show that the examples above exhibit the general situation insofar as groups of order 4 and 6 are concerned: isomorphic to $\mathbf{Z}/(4)$ or $\mathbf{Z}/(2) \times \mathbf{Z}/(2)$ for order 4, and isomorphic to $\mathbf{Z}/(6)$ or S_3 for order 6. That means there are essentially only two types of 4-fold symmetries and essentially only two types of 6-fold symmetries.

2. Groups of Order 4

Theorem 2.1. Any group of order 4 is isomorphic to $\mathbb{Z}/(4)$ or $\mathbb{Z}/(2) \times \mathbb{Z}/(2)$.

Proof. Let G have order 4. Any element of G has order 1, 2, or 4. If G has an element of order 4 then G is cyclic, so $G \cong \mathbf{Z}/(4)$ since cyclic groups of the same order are isomorphic. (Explicitly, if $G = \langle g \rangle$ then an isomorphism $\mathbf{Z}/(4) \to G$ is $a \mod 4 \mapsto g^a$.)

Assume G is not cyclic. Then every nonidentity element of G has order 2, so $g^2 = e$ for every $g \in G$. Pick two nonidentity elements x and y in G, so $x^2 = e$, $y^2 = e$, and $(xy)^2 = e$. That implies $xy = (xy)^{-1} = y^{-1}x^{-1} = yx$, so x and y commute. This argument shows that any group in which all nonidentity elements have order 2 is abelian.

The roles of x and y in G resemble (1,0) and (0,1) in $\mathbf{Z}/(2) \times \mathbf{Z}/(2)$, suggesting the function $f \colon \mathbf{Z}/(2) \times \mathbf{Z}/(2) \to G$ where $f(a \mod 2, b \mod 2) = x^a y^b$. Explicitly, this function is

$$(2.1)$$
 $(0,0) \mapsto 1, (1,0) \mapsto x, (0,1) \mapsto y, (1,1) \mapsto xy.$

To see that f is a homomorphism, we compute

$$f(\overline{a},\overline{b})f(\overline{c},\overline{d}) = (x^ay^b)(x^cy^d) = x^a(y^bx^c)y^d = x^ax^cy^by^d = x^{a+c}y^{b+d} = f(\overline{a+c},\overline{b+d}).$$

The function f is a bijection by (2.1), so f is an isomorphism.

¹There is an infinite group generated by two elements of order 2 that do not commute.

3. Groups of Order 6

To describe groups of order 6, we begin with a lemma about elements of order 2.

Lemma 3.1. If a group has even order then it contains an element of order 2.

Proof. Call the group G. Let us pair together each $g \in G$ with its inverse g^{-1} . The set $\{g, g^{-1}\}$ has two elements unless $g = g^{-1}$, meaning $g^2 = e$. Therefore

$$|G| = 2|\{\text{pairs } \{g, g^{-1}\} : g \neq g^{-1}\}| + |\{g \in G : g = g^{-1}\}|.$$

The left side is even by hypothesis, and the first term on the right side is even from the factor of 2. Therefore $|\{g \in G : g^2 = e\}|$ is even. This count is positive, since g = e is one possibility where $g^2 = e$. Since this count is even, there must be at least one more g, so some $g \neq e$ in G satisfies $g^2 = e$, which implies g has order 2.

Theorem 3.2. A group of order 6 is isomorphic to $\mathbb{Z}/(6)$ or to S_3 .

Proof. Let |G| = 6 have order 6. By Lemma 3.1, G contains an element x of order 2. Case 1: G is abelian.

Suppose all nonidentity elements have order 2. Choose y other than x and e, so $y^2 = e$. Since G is abelian, $\{e, x, y, xy\}$ is a subgroup of G, but this violates Lagrange's theorem since 4 doesn't divide 6. Therefore some element of G has order 3 or 6.

If G has an element of order 6 then G is cyclic and $G \cong \mathbb{Z}/(6)$. If some $z \in G$ has order 3 then xz has order 6 since $(xz)^6 = e$, $(xz)^2 = x^2z^2 = z^2 \neq e$, and $(xz)^3 = x^3z^3 = x \neq e$. Thus again G is cyclic, so $G \cong \mathbb{Z}/(6)$.

Case 2: G is nonabelian.

Step 1: G has an element of order 2 and an element of order 3.

No element has order 6, so orders of elements are 1, 2, or 3. If every nonidentity element had order 2, G would be abelian (see pf. of Theorem 2.1), so G has an element of order 3.

Step 2: Make G look like S_3 .

By Step 1, in G there are elements x of order 2 and y of order 3. Let $H = \langle x \rangle = \{e, x\}$, so H has 3 left cosets. Since $y \notin H$ and $y^2 \notin H$, the left cosets of H are H, yH, and y^2H .

For each $g \in G$, let $\ell_g \colon \{H, yH, y^2H\} \to \{H, yH, y^2H\}$ by $\ell_g(cH) = gcH$ for left cosets cH. Each ℓ_g is a permutation since it has inverse $\ell_{g^{-1}}$. Labeling H, yH, and y^2H as 1,2,3, the permutations of $\{H, yH, y^2H\}$ are placed inside S_3 , and thus we can view ℓ_g in S_3 .²

The function $G \to S_3$ where $g \mapsto \ell_g$ is a homomorphism, because multiplication in G goes over to composition of permutations: $\ell_g \circ \ell_{g'} = \ell_{gg'}$ since for any left coset cH

$$(\ell_g \circ \ell_{g'})(cH) = g(g'cH) = gg'cH = (gg')cH = \ell_{gg'}(cH).$$

The homomorphism $G \to S_3$ by $g \mapsto \ell_g$ is between finite groups of equal size, so to prove it's an isomorphism it suffices to show it's injective or surjective. We'll prove it's surjective.

The permutation ℓ_y cyclically permutes H, yH, and y^2H : H to yH, yH to y^2H , and y^2H to $y^3H = H$, so the image of $G \to S_3$ contains a 3-cycle. Let's check ℓ_x transposes yH and y^2H . Since $x \in H$, $\ell_x(H) = xH = H$. Since ℓ_x is a permutation, if $\ell_x(yH) \neq y^2H$ then $\ell_x(yH) = yH$, so xyH = yH: $\{xy, xyx\} = \{y, yx\}$. Thus xy is y or yx. If xy = y then x = e (false) and if xy = yx then x and y commute, so xy has order 6 (false: G is nonabelian). Thus $\ell_x(yH) = y^2H$ and $\ell_x(y^2H) = yH$: ℓ_x is a transposition in S_3 . The image of $G \to S_3$ is a subgroup of S_3 containing a transposition and element of order 3, so it has order 6 by Lagrange. Thus $G \cong S_3$.

²The specific way we view ℓ_g in S_3 depends on the way we label the left cosets of H as 1, 2, and 3.

The fact that, up to isomorphism, there are two groups of order 4 and two groups of order 6, goes back to Cayley's 1854 paper on groups [1], which was the first work on abstract groups; previously groups had been considered only as groups of permutations. Almost 25 years later, Cayley wrote in [2] "The general problem is to find all the groups of a given order n," and then proceeded to claim there are three groups of order 6: see Figure 1. From Cayley's examples it appears he thought $\mathbf{Z}/(6)$ and $\mathbf{Z}/(2) \times \mathbf{Z}/(3)$ are not isomorphic, which confused form with structure.

The general problem is to find all the groups of a given order n; thus if n=2, the only group is 1, α ($\alpha^2=1$); n=3, the only group is 1, α , α^2 ($\alpha^3=1$); n=4, the groups are 1, α , α^2 , α^3 ($\alpha^4=1$), and 1, α , β , $\alpha\beta$ ($\alpha^2=1$, $\beta^2=1$, $\alpha\beta=\beta\alpha$);* n=6, there are three groups, a group 1, α , α^2 , α^3 , α^4 , α^5

*If n = 5, the only group is 1, a, a^2 , a^3 , a^4 ($a^5 = 1$). W. E. S.

 $(\alpha^6 = 1)$; and two groups 1, β , β^2 , α , $\alpha\beta$, $\alpha\beta^2$ ($\alpha^2 = 1$. $\beta^3 = 1$), viz: in the first of these $\alpha\beta = \beta\alpha$; while in the other of them (that mentioned above) we have $\alpha\beta = \beta^2\alpha$, $\alpha\beta^2 = \beta\alpha$.

FIGURE 1. Cayley's error in [2]: three groups of order 6.

References

- [1] A. Cayley, "On the Theory of Groups, as Depending on the Symbolic Equation $\theta^n = 1$," pp. 123–130 of The Collected Papers of Arthur Cayley, Vol. II, Cambridge Univ. Press, 1889.
- [2] A. Cayley "Desiderata and Suggestions," Amer. J. Mathematics 1 (1878), pp. 50-52.