1. Consider the following Turing Machine.

State	Input	Write	Move	Next
q_0	Ш	Ш	L	q_a
q_0	0	0	\mathbf{R}	q_0
q_0	1	1	R	q_1
q_1	Ш	Ш	L	q_f
q_1	0	0	\mathbf{R}	q_1
q_1	1	1	\mathbf{R}	q_0

Determine what happens when the Turing Machine is run with the following inputs initially on the tape.

- (a) 0001
- (b) 0111
- (c) 0110
- (d) 0101010001
- (e) 00000000000000111
- (f) 00
- (g)

- (a) Fail
- (b) Fail
- (c) Accept
- (d) Accept
- (e) Fail
- (f) Accept
- (g) Accept
- 2. Give the state table for a Turing Machine that appends a parity bit to a tape with a string of consecutive 0's and 1's.

Solution:					
	State	Input	Write	Move	Next
	q_0	Ш	0	L	q_a
	q_0	0	0	R	q_0
	q_0	1	1	R	q_1
	q_1	\sqcup	1	L	q_f
	q_1	0	0	R	q_1
	q_1	1	1	R	q_0

3. Construct a Turing Machine to compute the sequence $0 \sqcup 1 \sqcup 0 \sqcup 1 \sqcup 0 \sqcup \ldots$, that is, 0 blank 1 blank 0 blank, etc [1]. Give the state table for a Turing Machine that appends a parity bit to a tape with a string of consecutive 0's and 1's.

Solution:					
St	ate	Input	Write	Move	Next
	q_0	Ш	0	R	q_1
	q_0	0	0	R	q_f
	q_0	1	1	R	q_f
	q_1	\sqcup	Ш	R	q_2
(q_1	0	0	\mathbf{R}	q_f
	q_1	1	1	R	q_f
(q_2	Ц	1	R	q_3
(q_2	0	0	R	q_f
	q_2	1	1	R	q_f
	q_3	\sqcup	Ш	R	q_0
(q_3	0	0	\mathbf{R}	q_f
	q_3	1	1	\mathbf{R}	q_f

4. Give the state table for a Turing Machine that multiplies a string of consecutive 0's and 1's by 2. The machine should treat the initial contents of the tape as a natural number written in binary form, with the least significant bit at the end. That is, if the contents of the tape are 01101, then the right-most 1 represents the number 1, the middle 1 represents the number 4 and the left-most 1 represents the number 8. Then the number on the tape is 8 + 4 + 1 = 13.

Solution:					
	State	Input	Write	Move	Next
	$\overline{q_0}$	Ш	0	R	q_a
	q_0	0	0	\mathbf{R}	q_0
	q_0	1	1	R	q_0

5. Give the state table for a Turing Machine that multiplies a string of consecutive 0's and 1's by 2. The machine should treat the initial contents of the tape as a natural number written in binary form, with the most significant bit at the end. That is, if the contents of the tape are 01101, then the right-most 1 represents the number 16, the middle 1 represents the number 4 and the left-most 1 represents the number 2. Then the number of the tape is 2 + 4 + 16 = 22.

Solution:						
	State	Input	Write	Move	Next	
	q_0	Ц	Ш	L	q_1	
	q_0	0	0	R	q_0	
	q_0	1	1	R	q_0	
	q_1		Ш	R	q_4	
	q_1	0 1		R R	q_2	
	q_1				q_3	
	q_2		0	L D	q_0	
	$q_2 \ q_2$	0 1	0 1	R R	$q_f \ q_f$	
			1	L		
	$q_3 \ q_3$	0	0	R	$q_0 \ q_f$	
	q_3	1	1	R	q_f	
	q_4	Ш	0	R	q_a	
	q_4	0	0	R	q_f	
	q_4	1	1	\mathbf{R}	q_f	

6. Give the state table for a Turing Machine that adds 1 to a string of consecutive 0's and 1's, where the least significant digit is on the right of the input.

Solution:

State	Input	Write	Move	Next
q_0		Ш	L	q_1
q_0	0	0	\mathbf{R}	q_0
q_0	1	1	\mathbf{R}	q_0
$\overline{q_1}$	Ш	1	L	q_a
q_1	0	1	${ m L}$	q_a
q_1	1	0	L	q_1

7. Give the state table for a Turing Machine that subtracts 1 to a string of consecutive 0's and 1's, where the least significant digit is on the right of the input.

Solution:

State	Input	Write	Move	Next
q_0	Ш	Ш	L	q_1
q_0	0	0	\mathbf{R}	q_0
q_0	1	1	R	q_0
$\overline{q_1}$	Ш	Ш	L	q_a
q_1	0	1	${ m L}$	q_1
q_1	1	0	L	q_a

- 8. List all words of length at most three in Σ^* where Σ is:
 - (a) $\{0,1\}$
 - (b) $\{a, b, c\}$
 - (c) {}

- $(a) \ \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111\}$
- (b) $\{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, abc, acb, bac, bca, cab, cba\}$
- (c) $\{\epsilon\}$
- 9. Design a Turing machine to recognise the language $\{0^n1^n \mid n \geq 0\}$.

Solution:

State	Input	Write	Move	Next
q_0	Ш	Ц	R	q_a
q_0	0	\sqcup	R	q_1
q_0	1	1	\mathbf{R}	q_f
$\overline{q_1}$	Ш	Ш	L	q_2
q_1	0	0	\mathbf{R}	q_1
q_1	1	1	R	q_1
$\overline{q_2}$	Ш	Ш	L	q_f
q_2	0	0	\mathbf{R}	q_f
q_2	1	Ц	L	q_3
q_3	Ш	Ш	R	q_0
q_3	0	0	${ m L}$	q_3
q_3	1	1	L	q_3

10. Design a Turing machine to recognise the language $\{ww^R \mid w \in \{0,1\}^*\}$ where w^R is w reversed. For example, when w = 101011 then $w^R = 110101$.

State	Input	Write	Move	Next
q_0	Ш	Ш	R	q_a
q_0	0	\sqcup	R	q_1
q_0	1	\sqcup	R	q_3
q_1	Ш	Ш	L	q_2
q_1	0	0	R	q_1
q_1	1	1	R	q_1
q_2	Ш	Ш	L	q_f
q_2	0	\sqcup	L	q_5
q_2	1	1	L	q_f
q_3	Ш	Ш	L	q_4
q_3	0	0	\mathbf{R}	q_3
q_3	1	1	R	q_3
q_4	Ш	Ш	L	q_f
q_4	0	0	L	q_f
q_4	1	\sqcup	L	q_5
q_5	Ш	Ш	R	q_0
q_5	0	0	${ m L}$	q_5
q_5	1	1	${ m L}$	q_5

11. Design a Turing machine to recognise the language $\{a^ib^jc^k\mid i,j,k\in\mathbb{N}_0\}$

State	Input	Write	Move	Next
q_0	Ц	Ц	R	q_a
q_0	a	a	\mathbf{R}	q_0
q_0	b	b	\mathbf{R}	q_1
q_0	c	c	R	q_2
q_0	Ш	\sqcup	\mathbf{R}	q_a
q_0	a	a	\mathbf{R}	q_f
q_0	b	b	\mathbf{R}	q_1
q_0	c	c	R	q_2
q_0	Ш	\sqcup	\mathbf{R}	q_a
q_0	a	a	\mathbf{R}	q_f
q_0	b	b	\mathbf{R}	q_f
q_0	c	c	\mathbf{R}	q_2

References

[1] A. M. Turing. On computable numbers, with an application to the entscheidungsproblem. *Proceedings of the London Mathematical Society*, s2-42(1):230–265, 1937.