Math 239 Spring 2014 Assignment 2 Solutions

1. {6 marks} Consider the following power series.

$$f(x) = \sum_{i=2}^{157} (-3)^{i-2} x^{2i} = x^4 - 3x^6 + 9x^8 - \dots - 3^{155} x^{314} \qquad g(x) = \sum_{i>3} f(x)^i.$$

(a) Express both f(x) and g(x) as rational functions, i.e. $\frac{p(x)}{q(x)}$ where p(x), q(x) are explicit polynomials (you should be able to write them out without resorting to sums). Simplify your expressions as much as possible.

Solution. We first factor out x^4 from f(x). Re-indexing gives us

$$f(x) = x^4 \sum_{i=0}^{155} (-3)^i x^{2i} = x^4 \sum_{i=0}^{155} (-3x^2)^i.$$

Using geometric series,

$$f(x) = x^4 \frac{1 - (-3x^2)^{156}}{1 - (-3x^2)} = \frac{x^4 - 3^{156}x^{316}}{1 + 3x^2}.$$

For g(x), we can factor out $f(x)^3$ first, and then use geometric series (this is possible since the constant term in f(x) is 0).

$$g(x) = f(x)^3 \sum_{i \ge 0} f(x)^i = \frac{f(x)^3}{1 - f(x)} = \frac{\left(\frac{x^4 - 3^{156}x^{316}}{1 + 3x^2}\right)^3}{1 - \frac{x^4 - 3^{156}x^{316}}{1 + 3x^2}} = \frac{\left(x^4 - 3^{156}x^{316}\right)^3}{(1 + 3x^2)^3 - (1 + 3x^2)^2(x^4 - 3^{156}x^{316})}.$$

(b) Does g(x) have an inverse? If so, determine a rational function for it. If not, explain why not.

Solution. We see that the constant term in f(x) is 0, and g(x) is equal to $f(x)^3$ multiplied by some series. So the constant term in g(x) is 0, therefore g(x) does not have an inverse.

2. {4 marks} Using mathematical induction on k, prove that for any integer $k \geq 1$,

$$(1-x)^{-k} = \sum_{n>0} \binom{n+k-1}{k-1} x^n.$$

Solution. When k = 1, $\binom{n+k-1}{k-1} = \binom{n}{0} = 1$. So $(1-x)^{-1} = \sum_{n \geq 0} x^n = \sum_{n \geq 0} \binom{n+1-1}{k-1} x^n$. So the base case holds.

Assume that for some positive integer m, $(1-x)^{-m} = \sum_{n\geq 0} {n+m-1 \choose m-1} x^n$.

We need to prove the equation for m+1. We see that

$$(1-x)^{-(m+1)} = (1-x)^{-m}(1-x)^{-1}.$$

By induction hypothesis, $[x^i](1-x)^{-m} = {i+m-1 \choose m-1}$. Also, we know that $[x^i](1-x)^{-1} = 1$. Using rules of multiplication of power series, we get

$$[x^n](1-x)^{-(m+1)} = \sum_{i=0}^n ([x^i](1-x)^{-m})([x^{n-i}](1-x)^{-1}) = \sum_{i=0}^n {i+m-1 \choose m-1} = {n+m \choose m}$$

where the final step uses an identity from class. Therefore,

$$(1-x)^{-(m+1)} = \sum_{n \ge 0} \binom{n+m}{m} x^n.$$

Therefore, by induction, the result holds.

3. {4 marks} Determine the value of the following coefficient.

$$[x^{26}](3+x^2)(1-2x^6)^{-31}(1+x^9)^{-41}.$$

Solution. We see that

$$[x^{26}](3+x^2)(1-2x^6)^{-31}(1+x^9)^{-41} = 3[x^{26}](1-2x^6)^{-31}(1+x^9)^{-41} + [x^{24}](1-2x^6)^{-31}(1+x^9)^{-41}.$$

Note that in the expansion of $(1-2x^6)^{-31}(1+x^9)^{-41}$, the exponents of x are integer combinations of 6's and 9's. Such exponents are multiples of 3, so the coefficient of x^{26} is 0. The required coefficient is then equal to the coefficient of x^{24} in $(1-2x^6)^{-31}(1+x^9)^{-41}$.

There are 2 ways to get x^{24} in this multiplication: $[x^{24}](1-2x^6)^{-31}[x^0](1+x^9)^{-41}$ and $[x^6](1-2x^6)^{-31}[x^{18}](1+x^9)^{-41}$. These correspond to the numbers $2^4\binom{4+31-1}{31-1}\cdot(-1)^0$ and $2^1\binom{1+31-1}{31-1}\cdot(-1)^2\binom{2+41-1}{41-1}$. So the required coefficient is $2^4\binom{34}{30}+2\binom{31}{30}\binom{42}{40}=795398$.

4. $\{4 \text{ marks}\}\ \text{Let } \{a_n\}_{n\geq 0}$ be a sequence whose corresponding power series $A(x)=\sum_{i\geq 0}a_ix^i$ satisfies

$$A(x) = \frac{-6 - 34x}{1 + 2x - 3x^2}.$$

Determine a recurrence relation that $\{a_n\}$ satisfies, with sufficient initial conditions to uniquely specify $\{a_n\}$. Use this recurrence relation to find a_4 .

Solution. We see that

$$(1+2x-3x^2)A(x) = -6-34x.$$

So

$$-6 - 34x = (1 + 2x - 3x^{2})(a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + \cdots)$$
$$= a_{0} + (a_{1} + 2a_{0})x + \sum_{n \ge 2} (a_{n} + 2a_{n-1} - 3a_{n-2})x^{n}$$

By comparing the coefficients, we see that $a_0 = -6$; $a_1 + 2a_0 = -34$, so $a_1 = -22$; and $a_n + 2a_{n-1} - 3a_{n-2} = 0$ for $n \ge 2$. These are the initial conditions and the recurrence that $\{a_n\}$ satisfies. To get a_4 , we apply the recurrence relation.

$$a_2 = -2a_1 + 3a_0 = 26$$

 $a_3 = -2a_2 + 3a_1 = -118$
 $a_4 = -2a_3 + 3a_2 = 314$

- 5. Let $n \in \mathbb{N}$. For a permutation $\sigma : [n] \to [n]$, we use the notation $(\sigma(1)\sigma(2)\cdots\sigma(n))$ to describe the mapping. A pair of integers (i,j) is called an *inversion* of σ if i < j and $\sigma(i) > \sigma(j)$. For example, the permutation (32415) on [5] has 4 inversions: (1,2), (1,4), (2,4), (3,4). Define the weight function w on a permutation σ to be the number of inversions in σ . Let S_n be the set of all permutations of [n].
 - (a) $\{2 \text{ marks}\}\$ Determine the generating series for S_1, S_2, S_3 with respect to w. (No work required.)

Solution. $S_1 = \{(1)\}$, which has 0 inversions. So $\Phi_{S_1}(x) = 1$.

For S_2 , (12) has no inversions, but (21) has one inversion. So $\Phi_{S_2}(x) = 1 + x$.

For S_3 , (123) has no inversions, (132), (213) have one inversion, (231), (312) have two inversions, and (321) has three inversions. So $\Phi_{S_3}(x) = 1 + 2x + 2x^2 + x^3$.

(b) $\{4 \text{ marks}\}\$ Prove that for $n \geq 2$,

$$\Phi_{S_n}(x) = (1 + x + \dots + x^{n-1})\Phi_{S_{n-1}}(x).$$

You may use the following (non-standard) notation: If σ is a permutation of [n], denote σ' to be the permutation of [n-1] obtained from σ by removing the element n. For example, if $\sigma=(31524)$, then $\sigma'=(3124)$.

Solution. We split S_n into n sets according to the location of the element n in the permutation. For i = 1, ..., n, let T_i be the set of all permutations $\sigma \in S_n$ where $\sigma(i) = n$. Then

$$S_n = T_1 \cup T_2 \cup \cdots \cup T_n$$
.

For each T_i , we can form a bijection between T_i and S_{n-1} as follows: $f: T_i \to S_{n-1}$ where $f(\sigma) = \sigma'$. We now compare the number of inversions between σ and σ' . Each inversion in σ' is still an inversion of σ . However, there are additional inversions introduced by n in σ . Since n is the largest possible element in σ , it creates an inversion with any element after it. Since $\sigma(i) = n$, there are n - i additional inversions, namely $(i, i+1), (i, i+2), \ldots, (i, n)$. Therefore, $w(\sigma) = w(\sigma') + (n-i)$. Since we have a bijection between T_i and S_{n-1} , we can say that

$$\Phi_{T_i}(x) = x^{n-i} \Phi_{S_{n-1}}.$$

Using the sum lemma, we get

$$\Phi_{S_n}(x) = \sum_{i=1}^n \Phi_{T_i}(x) = \sum_{i=1}^n x^{n-i} \Phi_{S_{n-1}}(x) = (1 + x + x^2 + \dots + x^{n-1}) \Phi_{S_{n-1}}(x).$$

(c) $\{2 \text{ marks}\}\$ Prove that the number of permutations of [n] with k inversions is

$$[x^k] \frac{\prod_{i=1}^n (1-x^i)}{(1-x)^n}.$$

Solution. We see that $\Phi_{S_1}(x) = 1$ from part (a), so this is satisfied for n = 1. Using induction, we see that

$$\Phi_{S_n}(x) = (1 + x + \dots + x^{n-1})\Phi_{S_{n-1}}(x) \text{ by part (b)}$$

$$= \frac{1 - x^n}{1 - x}\Phi_{S_{n-1}}(x)$$

$$= \frac{1 - x^n}{1 - x}\frac{\prod_{i=1}^{n-1}(1 - x^i)}{(1 - x)^{n-1}} \text{ by ind hyp}$$

$$= \frac{\prod_{i=1}^{n}(1 - x^i)}{(1 - x)^n}$$