TEC-101

B. Tech. (First Semester) Mid Semester EXAMINATION, 2016

(All Branches)

BASIC ELECTRONICS ENGINEERING

Time: Two Hours]

[Maximum Marks : 60

- Note: (i) This question paper contains three questions with alternative choice.
 - (ii) All questions are compulsory.
 - (iii) Each question carries four Parts (a), (b),(c) and (d). Attempt either Parts (a) and(b) or (c) and (d) of each question.
 - (iv) Each Part carries ten marks. Total marks assigned to each question are twenty.
- 1. (a) What do you mean by a logic gate? Realize OR, AND and NOT logic gates using.
 - (i) NAND gates only
 - (ii) NOR gates only
 - (b) Using the laws of Boolean algebra, show that:
 - (i) (A' + B)(A + B) = B
 - (ii) (A(A+B)=A
 - (iii) ((AB)' + A' + AB)' = 0

[3] Or TEC-101

Or

- (c) Write short notes on the following:
 - (i) Base of a number system
 - (ii) Postulates of Boolean algebra
 - (iii) EX-NOR gate
- (d) Perform the following operations:
 - (i) $(23)_{10} (30)_{10}$ in binary using 1's complement
 - (ii) $(15)_{10} (10)_{10}$ in binary using 2's complement
 - (iii) $(89)_{10} + (67)_{10}$ using BCD addition
- 2. (a) Differentiate between insulators, metals and semiconductors with examples. What do you mean by an extrinsic semiconductor?
 - (b) Perform the following number system conversions:
 - (i) $(65)_8 = (?)_{16}$
 - (ii) $(AC.7D)_{16} = (?)_{10}$
 - (iii) $(35.2)_{10} = (?)_2$
 - (iv) $(85)_{10} = (?)_8$

C-28

(v) $(11100.11)_2 = (?)_{10}$

- (c) Explain the drift current density and diffusion current density for semiconductors with relevant mathematical expressions and necessary diagrams.
- (d) A pure Ge semiconductor with 4.42×10^{22} atoms/cm³ is doped with donor impurity to the extent of 1 impurity atom in 10^8 Ge atoms. Find the conductivity due to majority and minority charge carriers. Given that intrinsic carrier concentration n_i is 2.5×10^{13} /cm³, mobility of electrons is $3800 \text{ cm}^2/\text{V-s}$ and mobility of holes is $1800 \text{ cm}^2/\text{V-s}$.
- (a) Discuss the formation of the depletion layer and barrier potential in P-N junction diode.
 Also explain the effect of temperature on characteristics of diode.
 - (b) (i) The forward current through a Silicon diode is 10 mA at room temperature (27°C). The corresponding forward voltage is 0.75 Volt. Calculate the reverse saturation current I₀.
 - (ii) Find the dynamic resistance for a Germanium diode having a forward bias of 200 mV and reserve saturation current of 1 μA at room temperature.

P. T. O.

Or

- (c) Discuss ON/OFF operation of P-N junction diode. What do you mean by 'reverse recovery time'?
- (d) In the following circuit, determine the value of current I and voltage V₀.

- If (i) $V_i = 5$ V and diode is ideal.
 - (ii) $V_i = 5$ V and the diode is of Silicon. Given Si (ON) = 0.7 V
 - (iii) $V_i = 0.1 \text{ V}$ and the diode is of Silicon.
- (iv) Diode is ideal and input voltage source $V_i = 5$ V is connected with reversed polarity.