Projet Macs205

J. Toucheboeuf, R. Brutti, A. Gourrin, B. Cohen, H. René-Bazin

Groupe 2

March 17, 2021

Equation différentielle étudiée

Equation de Fitzhugh-Nagumo : Ecriture sous forme de problème de Cauchy :

$$v'(t) = v(t) - \frac{v(t)^{3}}{3} - w(t) + I_{ext}(t)$$

$$w'(t) = \frac{v(t) + a - bw(t)}{\tau}$$

$$= \begin{pmatrix} v(t) - \frac{v(t)^{3}}{3} - w(t) + I_{ext}(t) \\ \frac{v(t) - \frac{v(t)^{3}}{3} - w(t) + I_{ext}(t)}{\tau} \end{pmatrix}$$

$$= f(t, y(t))$$

- *l*_{ext} valeur envoyée par le nerf optique.
- Constantes du problème : $a=0.95,\ b=0.4,\ \tau=11.$

Etude théorique autour d'un point d'équilibre 1/2

On se place en t_0 tel que : $v'(t_0) = w'(t_0) = 0$. On obtient :

$$\begin{cases} w_0 = \frac{v_0 + a}{b} \\ w_0 = v_0 - \frac{v_0^3}{3} + I \end{cases}$$
 (1)

Linéarisation avec un développement de Taylor au voisinage de (v_0, w_0) écrit sous forme matricielle :

$$x'(t) = \begin{pmatrix} v'(t) \\ w'(t) \end{pmatrix} = \begin{pmatrix} 1 - v_0^2 & -1 \\ \frac{1}{\tau} & -\frac{b}{\tau} \end{pmatrix} \begin{pmatrix} v(t) - v_0 \\ w(t) - w_0 \end{pmatrix} = Jx(t)$$
 (2)

solution explicite après diagonalisation de J:

$$x(t) = \begin{pmatrix} v - v_0 \\ w - w_0 \end{pmatrix} = Pexp(\begin{pmatrix} \lambda_0(I_{ext}) & 0 \\ 0 & \lambda_1(I_{ext}) \end{pmatrix})P^{-1}x_0$$
 (3)

Etude des valeurs propres autour d'un point d'équilibre

Figure: Partie réelle des valeurs propres de J en fonction I_{ext}

Méthodes numériques utilisées

- f est C^1 (sa jacobienne est la matrice de l'équation (3)), on a une méthode d'ordre 2.
- f est localement lipschitzienne autour d'un point d'équilibre.
- Euler explicite : on a $\phi(t, y, h) = f(t, y)$.
 - méthode consistante (thm 4.3.7)
- Runge-Kutta pour q = 2 et q = 4.
 - q = 1: identique à Euler explicite
 - q=2: méthode de Heun implémentée
 - ullet q=4: coefficients de Simpson, méthode d'ordre 4
 - toutes ces méthodes sont donc consistantes
- Conclusion :
 - ullet la résolution numérique donne les constantes de stabilité S
 - Euler explicite converge
 - Runge-Kutta converge

résolution numérique Runge-Kutta q = 4 (1 seul neurone)

• Portrait de phase (v(t), w(t))

• Remarque : les courbes obtenues pour Euler, et Runge-Kutta q=2 sont sensiblement identiques.

résolution numérique méthode d'Euler 2 neurones

Figure: $I_{ext} = 0.59$

Figure: $I_{ext} = 0.6$

NB : les tracés pour RUnge-Kutta sont dans le notebook

Comparaison des performances méthodes numériques

méthodes

méthodes

calcul