Theoretical Machine Learning

Lectured by Zhihua Zhang

LATEXed by Chengxin Gong

February 28, 2024

Contents

1	<mark>简介</mark>	
2	统计决策理论	

1 简介

- 机器学习的主要任务: 生成、预测、决策. 生成: $X_1, \dots, X_n \sim F$, 推断分析 F, 无监督学习, GAN, GPT, \dots 预测: 数据对 $(X^{(1)}, Y^{(1)}), \dots, (X^{(n)}, Y^{(n)}), X^{(i)} \in \mathbb{R}^d$ 输入变量, $f: \mathcal{X} \to \mathcal{Y}, x \in \mathcal{X}, y \in \mathcal{Y}$, 归因, 有监督学习. 决策: 强化学习, Agent←action, state, reward \to 环境.
- 求解问题的途径: 参数/非参数, 频率 (MLE)/贝叶斯.
- 误差模型:有监督: $X = (X_1, \dots, X_d)^T \in \mathbb{R}^d$, 回归: $Y \in \mathbb{R}$; 分类: $Y \in \{0, 1\}(\{-1, 1\}, \{1, \dots, M\}, \{0, 1\}^M)$; X 随机, Random design(生成模型), $Y = g(X) + \epsilon \stackrel{\text{or}}{=} g(X, Z), Y^{(i)} = g(X^{(i)}, Z^{(i)})$; X 固定 X = x, Fixed design(判别模型), $Y^{(i)} = g(x^{(i)}, Z^{(i)})$. 无监督: X = g(Z)(因子模型: $X = AZ + \epsilon, Z \in \mathcal{N}(0, 1), \epsilon \sim \mathcal{N}(0, \Sigma)$).

2 统计决策理论

- Consider a state space Ω , data space \mathcal{D} , model $\mathcal{P} = \{p(\theta, x)\}$, action space \mathscr{A} . Loss function: $\mathcal{L} : \Omega \times \mathscr{A} \to [-\infty, +\infty]$, measurable, nonnegative. A measurable function $\delta : \mathcal{D} \to \mathscr{A}$ is called a nonrandomized decision rule. Risk function is defined as $\mathcal{R}(\theta, \delta) = \int \mathcal{L}(\theta, \delta(x)) dP_{\theta}(x) = \mathbb{E}_{\theta} \mathcal{L}(\theta, \delta(X))$. Randomized decision: for each X = x, $\delta(x)$ is a probability distribution: $[A|X = x] \sim \delta_x$. Risk function for $\delta : \mathcal{R}(\theta, \delta) = \mathbb{E}_{\theta} \mathcal{L}(\theta, A) = \mathbb{E}_{\theta} \mathbb{E}_{a} \mathcal{L}(\theta, A|X) = \iint \mathcal{L}(\theta, a) d\delta_x(a) dP_{\theta}(x)$.
- Example [参数估计]: $\theta \in \Omega, \mathscr{A} = \Omega, \mathcal{L}(\theta, a) = \|\theta a\|_2^2 \stackrel{\text{or}}{=} \|\theta a\|_p^p (p \ge 1) \stackrel{\text{or}}{=} \int \log \frac{P_{\theta}(x)}{P_a(x)} P_{\theta}(x) dm(x) (KL).$ $\mathcal{R} = \text{Var}(a) + \text{bias}^2(a).$ Bregmass loss: $\phi : \mathbb{R}^d \to \mathbb{R}$ describe any strictly convex differentiable function. Then $\mathcal{L}_{\phi}(\theta, a) = \phi(a) \phi(\theta) (\phi a)^T \nabla \phi(a).$
- Example [Testing]: $\mathscr{A} = \{0,1\}$ with action "0" associated with accepting $H_0: \theta \in \Omega_0$ and "1": $H_1: \theta \in \Omega_1$. δ_x is a Bernolli distribution. $\mathcal{L}(\theta,a) = I\{a=1,\theta \in \Omega_0\} + I\{a=0,\theta \in \Omega_1\}$. Risk $\mathcal{R}(\theta,\delta) = \mathbb{P}_{\theta}(A=1)1_{\theta \in \Omega_0} + \mathbb{P}_{\theta}(A=0)1_{\theta \in \Omega_1}$.
- A decision rule δ is called inadmissible if a competing rule δ^* such that $\mathcal{R}(\theta, \delta^*) \leq \mathcal{R}(\theta, \delta)$ for all $\theta \in \Omega$ and $\mathcal{R}(\theta, \delta^*) < \mathcal{R}(\theta, \delta)$ for at least one $\theta \in \Omega$. Otherwise, δ is admissible.
- The maximum risk $\bar{\mathcal{R}}(\delta) = \sup_{\theta \in \Omega} \mathcal{R}(\theta, \delta)$ and the Bayes risk $r(\Lambda, \delta) = \int \mathcal{R}(\theta, \delta) d\Lambda(\theta) = \int \mathcal{L}(\theta, \delta) d\mathbb{P}(x, \theta)$ ($\Lambda(\theta)$ is a prior). A decision rule that minimizes the Bayes risk is called a Bayes rule, that is, $\hat{\delta} : r(\Lambda, \hat{\delta}) = \inf_{\delta} r(\Lambda, \delta)$. Minimax rule $\delta^* : \sup_{\theta \in \Omega} \mathcal{R}(\theta, \delta^*) = \inf_{\delta} \sup_{\theta \in \Omega} \mathcal{R}(\theta, \delta)$.
- If risk functions for all decision rules are continuous in θ , if δ is Bayesian for Λ and has finite integrated risk $r(\Lambda, \delta) < \infty$, and if the support of Λ is the whole state space Ω , then δ is admissible.
- $p(\theta|x) = \frac{p_{\theta}(x)\lambda(\theta)}{\int p_{\theta}(x)\lambda(\theta)d\theta} := \frac{p_{\theta}(x)\lambda(\theta)}{m(x)}$. Define the posterior risk of δ : $r(\delta|X=x) = \int \mathcal{L}(\theta,\delta(x))d\mathbb{P}(\theta|x)$. The Bayes risk $r(\Lambda,\delta)$ satisfies that $r(\Lambda,\delta) = \int r(\delta|x)dM(x)$. Let $\hat{\delta}(x)$ be the value of δ that minimizes $r(\delta|x)$. Then $\hat{\delta}$ is the Bayes rule.
- Application to supervised learning. Case 1: Regression. $(X,Y) \in \mathcal{X} \times \mathcal{Y}, f: \mathcal{X} \to \mathcal{Y}, \mathscr{A} = \Omega = \mathcal{Y}, \mathcal{D} = \mathcal{X}, \delta = f, \mathcal{L}(Y, f(X)) = \|Y f(X)\|_p^p, p \geq 1$, risk $R_f = \iint \mathcal{L}(y, f(x)) d\mathbb{P}(x, y) = \mathbb{E}[\mathcal{L}(Y, f(X))] = \mathbb{E}[\mathbb{E}\mathcal{L}(Y, f(X))|X]$. When p = 2, $r(f|X = x) = \int \mathcal{L}(y, f(x)) d\mathbb{P}(y|x) = \int |y f(x)|^2 d\mathbb{P}(y|x)$. 回归函数 $g(x) := \int y d\mathbb{P}(y|x) \Rightarrow R_f = \mathbb{E}|Y f(X)|^2 = \mathbb{E}|Y g(X) + g(X) f(X)|^2 = \mathbb{E}|Y g(X)|^2 + \mathbb{E}|g(X) f(X)|^2 \geq \mathbb{E}|Y g(X)|^2$.
- Case 2: Pattern classification. $Y \in \{0,1\}, p_0 = P(Y=0), p_1 = \mathbb{P}(Y=1) = 1 p_0, \mathbb{E}[\mathcal{L}(Y, f(X))] = \mathbb{P}(Y \neq f(X)).$ The Bayesian rule (predictor) is given by $f(x) = 1\{\mathbb{P}(Y=1|X=x) \geq \frac{\mathcal{L}(1,0) \mathcal{L}(0,0)}{\mathcal{L}(0,1) \mathcal{L}(1,1)}\mathbb{P}(Y=0|X=x)\}.$ (Proof: $\mathbb{E}[\mathcal{L}(Y,f(X))|X=x] = \begin{cases} \mathbb{E}[\mathcal{L}(Y,0)|X=x] = \mathcal{L}(0,0)\mathbb{P}(Y=0|X=x) + \mathcal{L}(1,0)\mathbb{P}(Y=1|X=x) \\ \mathbb{E}[\mathcal{L}(Y,1)|X=x] = \mathcal{L}(0,1)\mathbb{P}(Y=0|X=x) + \mathcal{L}(1,1)\mathbb{P}(Y=1|X=x) \end{cases}, \quad \forall \text{ \mathbb{X} \mathbb
- 联系: $\mathbb{P}(Y = 1 | X = x) = \mathbb{E}(Y | X = x) := g(x)(\Box \Box), f(x) = 1\{g(x) \ge \frac{1}{2}\}.$ Then $0 \le \mathbb{P}(\hat{f}(X) \ne Y) \mathbb{P}(f(X) \ne Y) \le 2 \int_{\mathcal{X}} |\hat{g}(x) g(x)| \mu(\mathrm{d}x) \le 2(\int_{\mathcal{X}} |\hat{g}(x) g(x)|^2 \mu(\mathrm{d}x))^{\frac{1}{2}}.$

- 回到 Case 2. $f(x) = 1\{\frac{p(x|y=1)}{p(x|y=0)} \ge \frac{p_0(\mathcal{L}(0,1)-\mathcal{L}(0,0))}{p_1(\mathcal{L}(1,0)-\mathcal{L}(1,1))}\}$, 这与似然比检验 (LRT) 相同: Likelihood $L(X) := \frac{p(X|Y=1)}{p(X|Y=0)}$, 形式为 $f(x) = 1\{L(x) \ge \eta\}$.
- Confusion table:

$$egin{array}{|c|c|c|c|c|} \hline Y=0 & Y=1 \\ \hline \hat{Y}=0 & {
m true\ negative} & {
m false\ negative} \\ \hline \hat{Y}=1 & {
m false\ positive} & {
m true\ positive} \\ \hline \end{array}$$

Ture Positive Rate: TPR = $\mathbb{P}(\hat{Y} = 1|Y = 1)$; False Negative Rate: FNR = 1 - TPR, type II error; False Positive Rate: FPR = $\mathbb{P}(\hat{Y} = 1|Y = 0)$, type I error; True Negative Rate: TNR = 1 - FPR. Precision: $\mathbb{P}(Y = 1|\hat{Y} = 1) = \frac{p_1 \text{TPR}}{p_0 \text{FPR} + p_1 \text{TPR}}$. F_1 -score: F_1 is the harmonic mean of precision and recall, which can be written as $F_1 = \frac{2\text{TPR}}{1 + \text{TPR} + \frac{p_0}{p_1} \text{FPR}}$.

- Optimization: maximize TPR subject to FPR $\leq \alpha, \alpha \in [0,1]$. Randomized rule: Q return 1 with probability Q(x) and 0 with probability 1 Q(x). Maximize $\mathbb{E}[Q(x)|Y = 1]$ subject to $\mathbb{E}[Q(x)|Y = 0] \leq \alpha$. Suppose the likelihood functions p(x|y) are continuous. Then the optimal predictor is a deterministic LRT (N-P lemma). (Proof: Let η be the threshold for an LRT such that the predictor $Q_{\eta}(x) = 1\{\alpha(x) \geq \eta\}$ has FPR $= \alpha$. Such an LRT exists because likelihood are continuous. Let β denote the TPR of Q_{η} . Prove that Q_{η} is optimal for risk minimization problem corresponding to the loss functions $\mathcal{L}(0,1) = \eta \frac{p_1}{p_0}, \mathcal{L}(1,0) = 1, \mathcal{L}(1,1) = \mathcal{L}(0,0) = 0$ since $\frac{p_0(\mathcal{L}(0,1)-\mathcal{L}(0,0))}{p_1(\mathcal{L}(1,0)-\mathcal{L}(1,1))} = \frac{p_0\mathcal{L}(0,1)}{p_1\mathcal{L}(1,0)} = \eta$. Under these loss functions, the risk of Bayes predictor for Q is $\mathcal{R}_Q = p_0 \text{FPR}(Q)\mathcal{L}(0,1) + p_1(1-\text{TPR}(Q))\mathcal{L}(1,0) = p_1\eta\text{FPR}(Q) + p_1(1-\text{TPR}(Q))$. Now let Q be any other rule with $\text{FPR}(Q) \leq \alpha, \mathcal{R}_{Q_{\eta}} = p_1\eta\alpha + p_1(1-\beta) \leq p_1\eta\text{FPR}(Q) + p_1(1-\text{TPR}(Q)) \leq p_1\eta\alpha + p_1(1-\text{TPR}(Q)) \Rightarrow \text{TPR}(Q) \leq \beta$
- ROC (Receiver operating character) curve: y-axis is TPR and x-axis is FPR. Proposition: (1) The points (0,0) and (1,1) are on the ROC curve; (2) The ROC must lie above the main diagnal; (3) The ROC curve is concave. (Proof: (2): Fix $\alpha \in (0,1)$ and consider a randomized rate TPR = FPR = α , $Q(x) \equiv \alpha$; (3): Consider two rules (FPR(η_1), TPR(η_1)) and (FPR(η_2), TPR(η_2)). If we flip a biased coin and use the first rule with probability t and use the second rule with probability 1 t. Then this yields a randomized rule with (FPR, TPR) = $(tFPR(\eta_1) + (1 t)FPR(\eta_2), tTPR(\eta_1) + (1 t)FPR(\eta_2))$. Fixing FPR $\leq tFPR(\eta_1) + (1 t)FPR(\eta_2)$, TPR $\geq tTPR(\eta_1) + (1 t)TPR(\eta_2)$.
- Markov Decision Processes (MDPs): Five elements: decision epoches, states, actions, transition probabilities and rewards. (1) Decision epoches: Let T denote the set of decision epoches, discrete: {1,2,···, N}; continuous: [0, N]; N < / = ∞: finite or infinite. (2) State and action sets: decision epoch t ∈ T, the system occupies a state S_t ∈ S, the decision maker a ∈ A. (3) Reward and transition probabilities: t, in state s, choose action a, (i) the decision maker receives a reward r_t(s, a), (ii) the system state at the next decision epoch is determined by the probability distribion p_t(·|s_t, a).
- Decision rules: Prescribe a procedure for action selection in each state at a specified decision epoch. Four cases: (1) Markovian and Deterministic: $\delta_t : \mathcal{S} \to \mathcal{A}$; (2) M and Randomized: $\delta_t : \mathcal{S} \to \Delta(\mathcal{A})(q_{\delta_t(s)}(a))$; (3) History-dependent and D: $h_t = (s_1, a_1, \dots, s_{t-1}, a_{t-1}, s_t) = (h_{t-1}, a_{t-1}, s_t), \mathcal{H}_1 = \mathcal{S}, \mathcal{H}_2 = \mathcal{S} \times \mathcal{A} \times \mathcal{S}, \dots, \delta_t : \mathcal{H}_t \to \mathcal{A}$; (4) HR: $\delta_t : \mathcal{H}_t \times \Delta(\mathcal{A})$. A policy $\pi = (\delta_1, \delta_2, \dots, \delta_{N-1})$ is stationary if $\delta_1 = \delta_2 = \dots = \delta$ for $t \in T$.
- Let $\pi = (\delta_1, \dots, \delta_{N-1})$ in HR and $R_t := r_t(X_t, Y_t)$ denote the random reward, $R_N := r_N(X_N)$, $R := (R_1, \dots, R_N)$. The expected total reward $U_N^{\pi}(s) := \mathbb{E}^{\pi} \{ \sum_{t=1}^{N-1} r_t(X_t, Y_t) + r_N(X_N) | X_1 = s \}$. Assume $|r_t(s, a)| \leq M < \infty$ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$.