

System of Units, Conversion Factors, and General Constants

Table B.1 | International system of units*

Quantity	Unit	Symbol	Dimension
Length	meter	m	
Mass	kilogram	kg	
Time	second	s or sec	
Temperature	kelvin	K	
Current	ampere	A	
Frequency	hertz	Hz	1/s
Force	newton	N	kg-m/s ²
Pressure	pascal	Pa	N/m^2
Energy	joule	J	N-m
Power	watt	W	J/s
Electric charge	coulomb	C	A-s
Potential	volt	V	J/C
Conductance	siemens	S	A/V
Resistance	ohm	Ω	V/A
Capacitance	farad	F	C/V
Magnetic flux	weber	Wb	V-s
Magnetic flux density	tesla	T	Wb/m ²
Inductance	henry	H	Wb/A

^{*}The centimeter is the common unit of length and the electron-volt is the common unit of energy (see Appendix D) used in the study of semiconductors. However, the joule and in some cases the meter should be used in most formulas.

Table B.2 | Conversion factors

	Prefixes		
$1 \text{ Å (angstrom)} = 10^{-8} \text{ cm} = 10^{-10} \text{ m}$	10^{-15}	femto-	= f
$1 \mu \text{m} (\text{micrometer}) = 10^{-4} \text{cm}$	10^{-12}	pico-	= p
$1 \text{ mil} = 10^{-3} \text{ in.} = 25.4 \ \mu\text{m}$	10^{-9}	nano-	= n
2.54 cm = 1 in.	10^{-6}	micro-	$=\mu$
$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$	10^{-3}	milli-	= m
$1 J = 10^7 \text{ erg}$	10^{+3}	kilo-	= k
	10^{+6}	mega-	= M
	10^{+9}	giga-	= G
	10^{+12}	tera	= T

Table B.3 | Physical constants

Avogadro's number	$N_A = 6.02 \times 10^{+23}$
	atoms per gram
	molecular weight
Boltzmann's constant	$k = 1.38 \times 10^{-23} \text{J/K}$
	$= 8.62 \times 10^{-5} \mathrm{eV/K}$
Electronic charge	$e = 1.60 \times 10^{-19} \mathrm{C}$
(magnitude)	
Free electron rest mass	$m_0 = 9.11 \times 10^{-31} \mathrm{kg}$
Permeability of free space	$\mu_0=4\pi imes 10^{-7} ext{H/m}$
Permittivity of free space	$\epsilon_0 = 8.85 \times 10^{-14} \mathrm{F/cm}$
	$= 8.85 \times 10^{-12} \mathrm{F/m}$
Planck's constant	$h = 6.625 \times 10^{-34} \text{J-s}$
	$= 4.135 \times 10^{-15} \mathrm{eV}$ -s
	$\frac{h}{2\pi} = \hbar = 1.054 \times 10^{-34} \text{J-s}$
	2π
Proton rest mass	$M = 1.67 \times 10^{-27} \mathrm{kg}$
Speed of light in vacuum	$c = 2.998 \times 10^{10} \mathrm{cm/s}$
-	kT
Thermal voltage ($T = 300 \text{ K}$)	$V_t = \frac{kT}{e} = 0.0259 \text{ V}$
	kT = 0.0259 eV

Table B.4 | Silicon, gallium arsenide, and germanium properties (T = 300 K)

Property	Si	GaAs	Ge
Atoms (cm ⁻³)	5.0×10^{22}	4.42×10^{22}	4.42×10^{22}
Atomic weight	28.09	144.63	72.60
Crystal structure	Diamond	Zincblende	Diamond
Density (g/cm ³)	2.33	5.32	5.33
Lattice constant (Å)	5.43	5.65	5.65
Melting point (°C)	1415	1238	937
Dielectric constant	11.7	13.1	16.0
Bandgap energy (eV)	1.12	1.42	0.66
Electron affinity, χ (V)	4.01	4.07	4.13
Effective density of states in conduction band, N_c (cm ⁻³)	2.8×10^{19}	4.7×10^{17}	1.04×10^{19}
Effective density of states in valence band, N_v (cm ⁻³)	1.04×10^{19}	7.0×10^{18}	6.0×10^{18}
Intrinsic carrier concentration (cm ⁻³)	1.5×10^{10}	1.8×10^{6}	2.4×10^{13}
Mobility (cm²/V-s)			
Electron, μ_n	1350	8500	3900
Hole, μ_p	480	400	1900
Effective mass $\left(\frac{m^*}{m_0}\right)$			
Electrons	$m_I^* = 0.98$	0.067	1.64
	$m_t^* = 0.19$		0.082
Holes	$m_{lh}^* = 0.16$	0.082	0.044
	$m_{hh}^* = 0.49$	0.45	0.28
Density of states effective mass			
Electrons $\frac{m_{dn}^*}{m_o}$	1.08	0.067	0.55
Holes $\frac{m_{dp}^*}{m_o}$	0.56	0.48	0.37
Conductivity effective mass			
Electrons $\frac{m_{cn}^*}{m_o}$	0.26	0.067	0.12
Holes $\frac{\left(m_{cp}^{*}\right)}{\left(m_{o}\right)}$	0.37	0.34	0.21

Table B.5 | Other semiconductor parameters

Material	$E_g(\mathrm{eV})$	a (Å)	ϵ_r	χ	\overline{n}
Aluminum arsenide	2.16	5.66	12.0	3.5	2.97
Gallium phosphide	2.26	5.45	10	4.3	3.37
Aluminum phosphide	2.43	5.46	9.8		3.0
Indium phosphide	1.35	5.87	12.1	4.35	3.37

Table B.6 | Properties of SiO_2 and Si_3N_4 (T = 300 K)

Property	SiO_2	Si ₃ N ₄	
Crystal structure	[Amorphous for most integrated circuit applications]		
Atomic or molecular density (cm ⁻³)	2.2×10^{22}	1.48×10^{22}	
Density (g/cm ³)	2.2	3.4	
Energy gap	$\approx 9 \text{ eV}$	4.7 eV	
Dielectric constant	3.9	7.5	
Melting point (°C)	≈1700	≈1900	