<u>Epreuve finale 2023/2024 - Master TC - Dép. Informatique - Faculté FSEA - Université Oran1</u> Algorithmique Avancée et Complexité / Durée 01h40

Exercice 1 (11 pts)

- Q1) (3p) Dérouler le tri par tas sur T=[10, 20, 0, 30, -10, 40].
- Q2) (1p) Soit un algorithme Algo en $\theta(2^{n+7})$. Démontrer que Algo est aussi en $\theta(2^n)$.
- Q3) (3p) Résoudre l'équation récurrente $F_n = F_{n-1} + F_{n-2}$, $F_0 = 2$, $F_1 = 3$.
 - (1p) En considérant son comportement lorsque n est grand, montrer que $F_n > c \times \beta^n 1$, où c et β sont des constantes à définir.
- Q4) (3p) Soient 4 algorithmes (puissA, puissB, puissC, puissD) pour calculer 2ⁿ:
 - a. Formuler et résoudre l'équation récurrente de chacun des 4 algorithmes.
 - b. Lequel est le moins couteux ?

Algorithm puissA(n):	Algorithm puissB(n):
m = 1	if n=0 then
for i=1 to n do	return 1
m = 2*m	else
endfor	return puiss $B(n-1)$ + puiss $B(n-1)$
return m	endif
Algorithm puissC(n):	Algorithm puissD(n):
if n=0 then	return puissD2(2, n)
return 1	Algorithm puissD2(x, n):
else	if n=0 then return 1
return 2*puissC(n-1)	else if (n est pair) then return puiss $D2(x*x, n/2)$
endif	else return x*puissD2(x*x, (n-1)/2)
	endif

Exercice 2 (6 pts) Soit la structure AVL d'un arbre binaire de recherche A.

- Q1) (2p) Illustrer toutes les étapes pour supprimer la clé 5 et conserver la structure AVL?
- Q2) Soit A un arbre AVL ayant n sommets et de hauteur h.
 - a. (1.5p) Démontrer que $h + 1 \ge log_2(1 + n)$.
 - b. (1.5p) Soit u_h le nombre minimal de sommets dans l'arbre AVL A. Montrer que $u_h=u_{h-1}+u_{h-2}+a$, $u_0=b$, $u_1=c$, où a, b et c sont des constantes à déterminer.

En posant $u_h = F_h - 1$, en exploitant la solution de l'exercice 1, montrer que $h + 1 \le R \times log_2(2 + n)$, où R est une constante à déterminer.

c. (1p) Que peut-on déduire des deux questions précédentes (a. et b.)?

Exercice 3 (3 pts)

Soit une liste de n objets $E = [1 \dots n]$ de poids respectifs $P = [p_1, \dots, p_n]$. On veut déterminer un nombre m de boites, où chaque boite peut supporter un poids C (où $p_1 \le C, \dots, p_n \le C$). Nous voulons placer les n objets dans un minimum m de boites. Proposer un algorithme glouton pour résoudre ce problème, en déterminant le nombre minimal de boites m, et le placement de chaque objet.

Exemple: P=[9, 8, 7, 6, 5, 4, 3, 2]. C=11. Solution possible, 4 boites $\begin{bmatrix} 2 \\ 9 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 8 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 7 \end{bmatrix}$ $\begin{bmatrix} 5 \\ 6 \end{bmatrix}$.

+3 Q3)

 $F_h = F_{h-1} + F_{h-2}$ en ajoutant +1 dans les deux membres ci-haut

$$F_0 = 2, F_1 = 3$$

Cette dernière équation est une équation récurrente linéaire d'ordre 2 à coefficients constants. On peut donc appliquer le théorème 1. On obtient la solution :

$$F_h = c_1 \beta_1^h + c_2 \beta_2^h$$

où
$$\beta_1 = \frac{1+\sqrt{5}}{2} \simeq 1.62, c_1 = \frac{5+2\sqrt{5}}{5} \simeq 1.89,$$

 $\beta_2 = \frac{1-\sqrt{5}}{2} \simeq -0.62 \text{ et } c_2 = \frac{5-2\sqrt{5}}{5} \simeq 0.11.$

+1 On a $-1 \le \beta_2^h$, d'où $c_2\beta_2^h \ge -c_2 \ge -0.11 \ge -1$. On peut poser

$$c_1 \beta_1^h + c_2 \beta_2^h > c_1 \beta_1^h - 1$$

L'algorithme le plus performant est l'algorithme d).

a) Preuve On a toujours $n \leq 2^{h+1}-1$, car le nombre de noeuds est toujours inférieur au max qu'on pourrait placer dans cet arbre. Et donc $\log_2(1+n) \leq 1+h$. b)

Q2)

+1.5

+1.5 Soit u_h le nombre minimum de sommets d'un arbre AVL de hauteur h. Alors

 $u_h = u_{h-1} + u_{h-2} + 1$ car la diff des hauteur est 1 au min (sinon max...)

$$u_0 = 1, u_1 = 2$$

Posons $F_h = u_h + 1$. On a donc

 $F_h = F_{h-1} + F_{h-2}$ en ajoutant +1 dans les deux membres ci-haut

$$F_0 = 2, F_1 = 3$$

Cette dernière équation est une équation récurrente linéaire d'ordre 2 à coefficients constants. On peut donc appliquer le théorème 1. On obtient la solution :

$$F_h = c_1 \beta_1^h + c_2 \beta_2^h$$

où
$$\beta_1 = \frac{1+\sqrt{5}}{2} \simeq 1.62$$
, $c_1 = \frac{5+2\sqrt{5}}{5} \simeq 1.89$, $\beta_2 = \frac{1-\sqrt{5}}{2} \simeq -0.62$ et $c_2 = \frac{5-2\sqrt{5}}{5} \simeq 0.11$. Et donc

$$u_h = c_1 \beta_1^h + c_2 \beta_2^h - 1$$

On a $-1 \le \beta_2^h$, d'où $c_2\beta_2^h \ge -c_2 \ge -0.11 \ge -1$. On peut poser

$$c_1 \beta_1^h + c_2 \beta_2^h > c_1 \beta_1^h - 1$$

$$h < \frac{\log_2(n+2)}{\log_2 \beta_1} - \frac{\log_2 c_1}{\log_2 \beta_1} \le \frac{\log_2(n+2)}{\log_2 \beta_1} - 1.31 \cdots$$

$$h \le \frac{\log_2(n+2)}{\log_2 \beta_1} - 1$$

En considérant \leq et dominant $-\log_2 c_1$:

$$h+1 \le \frac{1}{\log_2 \beta_1} log_2(n+2)$$

c) Que peut-on déduire ?

Soit A un arbre AVL ayant n sommets et de hauteur h. Alors

$$\log_2(1+n) \le 1 + h \le \alpha \log_2(2+n)$$

Alfonithu MiEnlooite (P=[Pa,-,Pn],C) B[1.max])m) Input: P=[Pn, -, Pn] le poids des nobjets C= poids d'un sorte Ditput: B[1. max] { taille: taille de Bourne de la boite m: holan bu de Soite (in < max) m 4- 0