We claim:

A modified pneumolysin polypeptide having attenuated hemolytic activity wherein said modified pneumolysin polypeptide is obtained by:

- randomly mutating a nucleic acid molecule a) encoding for wild-type pneumolysin to produce mutated nucleic acid molecules encoding modified pneumolysin polypeptides and expressing the mutated nucleic acid molecules in host cells;
- assaying the modilfied polypeptide expressed b) by the host cells\for hemolytic activity;
- identifying the modified pneumolysin c) polypeptides having\substantially similar molecular weight as hative wild-type pneumolysin and which are refoldable.

15

20

Ŋ

E A

45

A modified properly-refolded pneumolysin polypeptide having attenuated hemolytic activity comprising an amino acid sequence of type 14 pneumolysin wherein at least one amino \acid in the region comprising amino acid residues 1 to 257 is substituted and wherein at least one of said amino acid substitutions results in attenuation of the hemolytic activity of the modified pneumolysin polypeptide.

- The modified pneumolysin polypeptide of claim 2, 3. wherein the hemolytic activity is less than 25% compared to wild-type pneumolysin.
- A modified pneumolysin polypeptide according to claim 4. 3, comprising at least one amino acid substitution in SEQ ID NO.3 the amino acid sequence of Formula Inat residue positions 61, 148, or 195 or the combination of substitutions at residue positions 33, 46, 83, 239 and 257, said Formula 1 comprising

130

(Formula I)

	Met 1	Ala	Asn	Lys	Ala 5	Val	Asn	Asp	Phe	Ile 10	Leu	Ala
5	Met	Asn	Tyr 15	Asp	Lys	Lys	Lys	Leu 20	Leu	Thr	His	Gln
	Gly 25	Glu	Ser	Ile	Glu	Asn 30	Arg	Phe	Ile	Lys	Glu 35	Gly
10				Pro 40					45			
	Lys	Lys 50	Arg	Ser	Leu	Ser	Thr 55	Asn	Thr	Ser	Asp	Ile 60
	Ser	Val	Thr	Ala	Thr 65	Asn	Asp	Ser	Arg	Leu 70	Tyr	Pro
15	Gly	Ala	Leu 75	Leu	Val	Val	Asp	Glu 80	Thr	Leu	Leu	Glu
	85			Thr		90					95	
20				Ser 100					105			
		110					115					Asn 120
				Arg	125					130		
25	_	_	135	Gln				140				
	145		_	Met		150					155	
30				Gln 160					165			
		170					175					Phe 180
				His	185					190		
35			195					200				Val
	205					210					215	Asp
40				220					225			Ile
	Ser	Ala 230	Glu	Arg	Pro	Leu	Val 235	Tyr	Ile	Ser	Ser	Val 240
		_	_		245					250		Thr
45	Thr	Ser	Lys 255	Ser	Asp	Glu	Val	Glu 260	Ala	Ala	Phe	Glu
	Ala 265	Leu	Ile	Lys	Gly	Val 270	Lys	Val	Ala	Pro	Gln 275	Thr

The modified pneumolysin according to claim 4, wherein a single amino acid substitution is made and the substituted amino acid is selected from the group consisting of proline or hydroxyproline for position 61; lysine, arginine or histidine for position 148 and leucine, glycine, alanine, isoleucine or valine for position 195.

6. The modified pneumolysin according to claim 3, wherein the substituted amino acids are selected from

409640_1

BB

the group consisting of serine, threonine, asparagine, glutamine, tyrosine or cycline for positions 33, 46 and 83; lysine, arginine or histidine for position 239 and leucine, glycine, alanine, isoleucine or valine for position 255.

Modified pneumolysin polypeptide pNVJ1.

g/.

Modified pneumolysin polypeptide pNVJ20/

9/.

Modified pneumolysin polypeptide pNVJ22.

10/.

Modified pneumolysin polypeptide pNVJ45.

10

Modified pneumolysin polypeptide pNVJ56.

___12/.

Modified pneumolysin polypeptide pNV103.

B 1/3.

Modified pneumolysin polypeptide pNV207 $_{ullet}$

14.

Modified pneumolysin polypeptide pNV111.

Modified pneumolysin polypeptide pNV211.

15

A recombinant nucleic acid molecule encoding a modified type 14 pneumolysin polypeptide wherein at least one amino acid in the region comprising amino acid residues 1 to 257 is substituted and wherein at least one of said amino acid substitutions results in attenuation of the hemolytic activity of the modified pneumolysin polypeptide.

20

17. The recombinant nucleic acid molecule according to claim 16 comprising the following pneumolysin nucleic acid sequence:

25

ATGGCAAATA AAGCAGTAAA TGACTTTATA CTAGCTATGA ATTACGATAA AAAGAAACTC TTGACCCATC AGGGAGAAAG 40

	100
_	· 85 -

$\mathcal{O}_{\mathcal{I}}$			- (•			
,		TATTGAAAAT	CGTTTCATCA	AAGAGGGTAA	TCAGCTACCC		120
		GATGAGTTTG		AAGAAAGAAG			160
		CGACAAATAC	AAGTGATATT	TCTGTAACAG	CTACCAACGA		200
		CAGTCGCCTC		CACTTCTCGT			240
	5	ACCTTGTTAG	AGAATAATCC		GCGGTCGATC		280
	•		GACTTATAGT		CTGGTTTGGC		320
				AAGTGGAAGA	TCCCAGCAAT		360
			GCGGAGCGGT		TTGGCTAAGT		400
		GGCATCAAGA	TTATGGTCAG	GTCAATAATG	TCCCAGCTAG		440
	10			CGGCTCACAG			480
	10			TGACTTTGAA			520
				AACTCTGTCC			560
				ATTTTAAGCA			600
		ACAGTCAGCG		TAAAAATCCA			640
	15	TTCAAGATAC		GAGGATTTAA			680
[]	13		GAGCGTCCTT				720
		CCTTATGGGC	GCCAAGTCTA	TCTCAAGTTG			760
				GCTGCTTTTG			800
				CTCAGACAGA			840
	20			GAAGGCGGTT			880
ij.	20		TTCGGGTGdC				920
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			GAGGACTTGA		CAGTCGCTTT		960
			ATCCAGGCTT		TATACAACTT		1000
2 25		CTTTTTTACG	1		TTCAAAATAG	٦	1040
Live Hall	25		GTTGAGACTA	1	TTACAGAAAC		1080
	23		TGCTGGATCA	1	TATGTTGCCC		1120
		AATATTATAT		•	ATGATCATCA		1160
			GTCTTGACTC	1	GGACAGAAAT		1200
00			TAACGGCTCA	1	AGTATTCCTT		1240
- Sar Car	30		TGTTCGTAAT	1	AAATTAGAGA		1280
	50		CTTGCTTGGG		TACGGTTTAT		1320
			ATTTGCCACT	1	CGGACGATTT		1360
				TATCCGCAGG			1400
\bigcap		GGTAGAAAAT	/ a m . ~	IP UO:1)			1413
\mathcal{O}		00111011111111	~	1			
	35	and w	herein said	nucleic ac	id sequence	comprises	one
		or mo	re of the n	ucleotide)s	ubstitution	s selected	from
			roup consis				
		J	<u>- </u>		3 10C \M ===	3 m 202 \C.	
		A-50-	>G, G-54→T	T-181→C,	A-196→T and	1 1-302 -7 €;	
			,	\ <i>\</i> /			
				L 1500 17		. C .	
	40	A-122	\rightarrow G, A-514 \rightarrow	F, 11-1583→A	and A-764	G;	
				,			
					I m 442 v	. 7	
		A-187	\rightarrow T, T-380 \rightarrow	A, A-382→C	and 1-443-	•A;	
					m 717 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ad N_770→C	•
		T-98-	→ С, Т-137→($C, T-248\rightarrow C,$	$T - /I / \rightarrow A$ ar	10 A-//U-7G	7

 $T-134\rightarrow C$, $A-305\rightarrow G$, $A-566\rightarrow G$ and $T-583\rightarrow G$;

T-583→G;

5

15

T-583→A;

 $T-443\rightarrow A;$

and

10 T-181→C.

- 18. The recombinant nucleic acid molecule of claim 16 as contained in a vector such as a plasmid, cosmid, bacteriophage or yeast artificial chromosome.
- 19. A microorganism comprising the nucleic acid molecule of claim 16.
- 20. The microorganism according to claim 19, wherein the microorganism is selected from the group consisting of bacteria, yeast, mammalian or insect cells.
- 21. The microorganism according to claim 20, wherein the microorganism is E. coli.
 - 22. The modified pneumolysin polypeptide of claim 1, wherein the polypeptide is conjugated to a polysaccharide which elicits antibodies cross-reactive with a bacterial polysaccharide.
 - 23. The modified pneumolysin conjugate of claim 22, wherein the polysaccharide is from a bacteria selected from the group consisting of a Haemophilus influenzae type b; meningococcal group A, B or C; group B streptococcus types Ia, Ib, II, III, V or

VNII and pneumococcal.

- 24. A vaccine comprising at least one pneumolysin polypeptide of claim 1 and a pharmaceutically acceptable carrier.
- 25. The vaccine according to claim 24, wherein the polypeptide is conjugated to a polysaccharide which elicits antibodies cross-reactive with a bacterial polysaccharide.
 - 26. The vaccine according to claim 25, wherein the polysaccharide is derived from a bacteria selected from the group consisting of Haemophilus influenzae type b; meningococcus group A, B, or C; group A streptococcus or group B streptococcus serotypes Ia, Ib, II, III, V, or VIII; or one or more of serotypes 1-23 of S. pneumoniae.
 - 27. A method for killing bacteria comprising contacting said bacteria with antibodies to an immunogenic molecule comprising the modified pneumolysin according to claim 1 in the presence of complement.
- 28. The method according to claim 27, wherein the immunogenic molecule is a polysaccharide-polypeptide conjugate wherein the polysaccharide is a bacterial capsular polysaccharide.
 - 29. A method for immunization of mammals comprising administering the vaccine of claim 24 to said mammals.
 - 30. A method for obtaining modified pneumolysin polypeptides having reduced hemolytic activity and

10

5

15

25

5

10

15

being suitable for eliciting an immunogenetic response which is cross-reactive with wild-type pneumolysin comprising the steps of:

- a) randomly mutating a nucleic acid molecule encoding for wild-type pneumolysin to produce mutated nucleic acid molecules encoding modified pneumolysin polypeptides and expressing the mutated nucleic acid molecules in host cells;
- b) assaying the modified polypeptide expressed by the host cells for hemolytic activity;
- c) identifying the modified pneumolysin polypeptides raving substantially similar molecular weight as native wild-type pneumolysin and which are refoldable.

& all

add