Chapter 9 Notes: Inner Product Spaces

Sai Nallani

6 December 2023

All vector spaces in this section are finite dimensional over \mathbb{C} . If V is finite dimensional over \mathbb{R} or \mathbb{Q} , the construction of inner product still works. But it doesn't work for finite dimensional vector spaces over finite fields.

Definition 0.1. Let V be a vector space. AN inner product on V is a bilinear map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ satisfying the following axioms:

- 1. $\langle \mathbf{u}, \mathbf{u} \rangle > 0$ for all nonzero $\mathbf{u} \in V$. (positive definiteness)
- 2. $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$ for all $\mathbf{u}, \mathbf{v} \in V$. (conjugate symmetry)
- 3. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ (linearity)
- 4. $\langle \alpha \mathbf{u}, \mathbf{v} \rangle = \alpha \langle \mathbf{u}, \mathbf{v} \rangle$. (homogeneity in the first argument)

Define an inner product on $V \cong \mathbb{C}^n$, with vectors $\mathbf{u} = (u_1, \dots, u_n)$, as

$$\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{i=1}^{n} u_i \overline{v_i}$$

Proof. 1. Assume $\mathbf{u} \neq \mathbf{0}$. Then WLOG, $u_1 \neq 0$. $\langle \mathbf{u}, \mathbf{u} \rangle = \sum_{i=1}^{n} (u_i \overline{u_i}) \geq u_1 \overline{u_1} > 0$.

- 2. Conjugate symmetry
- 3. Linearity and homogeneity

Example 0.2

Continuous functions $f:[-\pi,\pi]\to\mathbb{C}$ form an inner product space with inner product

$$\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx$$

§1 Orthonormal bases

Out of all spanning sets for an inner product space V, a basis is the nicest in many ways. Out of all bases, orthonormal bases are the nicest.

Definition 1.1. Let $B = \{e_1, \dots, e_n\}$ be a basis for a finite dimensional inner product space V. B is called an orthonormal basis if:

$$\langle e_i, e_j \rangle = \delta_{ij}$$

for all $1 \le i, j \le n$.

If $\mathbf{v} = a_1 e_1 + \dots + a_n e_n$,

$$\langle \mathbf{v}, e_j \rangle = \sum_{i=1}^n a_i \langle e_i, e_j \rangle = a_j$$

Fourier's formula: $\mathbf{v} = \langle \mathbf{v}, e_1 \rangle e_1 + \cdots + \langle \mathbf{v}, e_n \rangle e_n$.

From this we have Parseval's identity: $\langle \mathbf{v}, \mathbf{v} \rangle = \sum_{i=1}^{n} |\langle \mathbf{v}, e_i \rangle|^2$ Prove by substituting by Fourier's formula and stuff.

§2 Exercises

Problem 2.1. Prove the following properties for complex numbers z = a + bi

1.
$$\overline{\overline{z}} = \overline{\overline{a+bi}} = \overline{a-bi} = a - (-bi) = a+bi = z$$

2.
$$\overline{z+w} = \overline{a_z + b_z i + a_w + b_w i} = \overline{a_z + a_w + (b_z + b_w)i} = a_z + a_w - (b_z + b_w)i = a_z - b_z i + a_w - b_w i = \overline{z} + \overline{w}$$

3.
$$\overline{z \cdot w} = \overline{(a_z + b_z i)(a_w + b_w i)} = \overline{(a_z a_w - b_z b_w) + (a_z b_w + b_z a_w)i} = (a_z a_w - b_z b_w) - (a_z b_w + b_z a_w)i = (a_z - b_z i)(a_w - b_w i) = \overline{zw}$$

4.
$$|z| = |a + bi| = \sqrt{a^2 + b^2} = \sqrt{a^2 + (-b)^2} = |a - bi| = |\overline{z}|$$

5.
$$\overline{z^n} = \overline{r^n e^{ni\theta}} = r^n e^{ni(-\theta)} = (re^{i(-\theta)})^n = (\overline{z})^n$$

6. If f(z) = f(a+bi) = c+di, and we want $f(\overline{z}) = \overline{f(z)}$, we can consider functions f such that f(a-bi) = c-di if f(a+bi) = c+di. Instead of $f: \mathbb{C} \to \mathbb{C}$, let's consider $f: \mathbb{R}^2 \to \mathbb{R}^2$. Now, we want $\overline{f(x,y)} = \overline{(a,b)} = (a,-b) = f(x,-y)$. Define f as $\overline{f(x,y)} = \overline{(h(x),g(y))} = (h(x),-g(y)) = f(x,-y) = (h(x),g(-y))$. This means that odd functions g satisfy the functional equation. Therefore, just define accordingly for complex numbers.

Problem 2.2. Let \mathbb{F} be a finite field. Prove that there is no inner product on \mathbb{F}^n over \mathbb{F} .

For
$$n = 1$$
, $\langle 0, 1 \rangle = \overline{\langle 1, 0 \rangle} = 0 = \langle 1, 0 \rangle$

Problem 2.3. Let \mathbb{F} be an infinite field. Find three bases of \mathbb{F}^3 that are not orthonormal.

Problem 2.4. Let V be an n-dimensional inner product space and assume that $S = \{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is a set of orthonormal vectors.

S is a linearly independent set. Assume $\mathbf{v} = a_1 w_1 + \cdots + a_k w_k = \mathbf{0}$. Take the inner-product on both sides to get:

$$\langle \mathbf{v}, a_1 w_1 \rangle + \langle \mathbf{v}, a_2 w_2 \rangle + \dots + \langle \mathbf{v}, a_k w_k \rangle = \langle \mathbf{v}, \mathbf{0} \rangle = 0$$

$$\overline{a_1}\langle \mathbf{v}, w_1 \rangle + \cdots + \overline{a_k}\langle \mathbf{v}, w_k \rangle = \overline{a_1}a_1 + \cdots + \overline{a_k}a_k = 0$$

Since for non-zero complex numbers z, $z\overline{z} > 0$, all of $\overline{a_i}a_i > 0$ and $\sum_i \overline{a_i}a_i > 0$ if $a_i \neq 0$. Since we have a contradiction, $a_i = 0$. Therefore S is a linearly independent set of vectors.

If k = n, we still have S a linearly independent set of vectors. Let B be a basis for V. Since B is a basis, it is a maximally linearly independent and minimally spanning set with size n. Since all maximally linearly independent sets have the same size, S is also maximally linearly independent, which implies that it is a basis.

Problem 2.5. The norm on V is defined by $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.

Because $\langle \mathbf{v}, \mathbf{v} \rangle > 0$ for non-zero \mathbf{v} , we have $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} > 0$. Since $\langle \mathbf{0}, \mathbf{0} \rangle = 0$, $\|\mathbf{0}\| = 0$. $\|(1/\|\mathbf{v}\|)\mathbf{v}\|^2 = \langle (1/\|\mathbf{v}\|)\mathbf{v}, (1/\|\mathbf{v}\|)\mathbf{v} \rangle = (1/\|\mathbf{v}\|^2)\langle \mathbf{v}, \mathbf{v} \rangle = (1/\|\mathbf{v}\|^2)\|\mathbf{v}\|^2 = 1$. Finally, due to the linearity of the inner product we have $\|\alpha\mathbf{v}\| = \sqrt{\langle \alpha\mathbf{v}, \alpha\mathbf{v} \rangle} = \sqrt{\alpha^2\langle \mathbf{v}, \mathbf{v} \rangle} = |\alpha|\|\mathbf{v}\|$.

Problem 2.6. Apply the Gram-Schmidt process to turn $\{(1,1,0),(0,1,1)\}$ into an orthogonal basis for \mathbb{R}^3 .

We calculate $e_1 = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0)$ and $e_2 = (-\frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{3})$. Now, we must find another vector $e_3 = (a, b, c)$ such that $\langle e_1, e_3 \rangle = \langle e_2, e_3 \rangle = 0$. Setting up a systems of equations and solving, we get $e_3 = (-b, b, -b)$. Since we want $\langle e_3, e_3 \rangle = 1$, we set $3b^2 = 1$. We have $b = \pm \frac{\sqrt{3}}{3}$.

Problem 2.7. Let C = AB. Consider the rows of a $n \times m$ matrix A to be $A = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ with each $\mathbf{v}_i \in \mathbb{F}^m$ and the columns of a $m \times k$ matrix B to be $B = (\mathbf{u}_1, \dots, \mathbf{u}_k)$ with each $\mathbf{u}_i \in \mathbb{F}^m$. Show that $C(i,j) = \langle \mathbf{v}_i, \mathbf{u}_j \rangle$ if $\mathbb{F} = \mathbb{R}$ and $C(i,j) = \langle \mathbf{v}_i, \overline{\mathbf{u}_j} \rangle$ if $\mathbb{F} = \mathbb{C}$.

By the definition of matrix multiplication,

$$c_{ij} = \sum_{\ell=1}^{m} a_{i\ell} b_{\ell j}$$

We can see that $\mathbf{v}_i = (a_{i1}, \dots, a_{im})$ and $\mathbf{u}_j = (b_{1j}, \dots, b_{mj})$. If $\mathbb{F} = \mathbb{R}$, we have $\langle \mathbf{v}_i, \mathbf{u}_j \rangle = a_{i1}b_{1j} + \dots + a_{im}b_{mj} = c_{ij}$ If $\mathbb{F} = \mathbb{C}$, we have $\langle \mathbf{v}_i, \overline{\mathbf{u}_j} \rangle = \sum_{k=1}^m a_{ik}b_{kj} = c_{ij}$

Problem 2.8. Check that $e_1, e_2, e_1 + e_2$ forms a frame for \mathbb{R}^2 .

We need to find bounds A and B such that

$$A(a^{2} + b^{2}) \le a^{2} + b^{2} + (a+b)^{2} \le B(a^{2} + b^{2})$$
$$A \le 2 + \frac{2ab}{a^{2} + b^{2}} \le B$$

The minimum value of $\frac{2ab}{a^2+b^2}$ is -1 and the maximum value is 1. This means that A=1 and B=3 satisfy the bounds, showing that this is a frame.