The Minkowski-Weyl Theorem

Nathan Chappell¹

¹Charles University Faculty of Mathematics and Physics

Defense of Bachelor's Thesis, 2019

Outline

- Theorem
 - Definitions and Statement
 - Proof of the theorem
 - Implementation
- Pointed and Full-Dimensional Polyhedra
 - Main Results
 - Basic Ideas for Proofs/Implementation

Outline

- Theorem
 - Definitions and Statement
 - Proof of the theorem
 - Implementation
- Pointed and Full-Dimensional Polyhedra
 - Main Results
 - Basic Ideas for Proofs/Implementation

V/H Polyhedra/Cones

Let
$$U \in \mathbb{R}^{d \times l}$$
, $V \in \mathbb{R}^{d \times m}$, $A \in \mathbb{R}^{m \times d}$

V-Cone:

$$\{U\mathbf{t} \mid \mathbf{t} \geq \mathbf{0}\} \equiv \mathsf{cone}(U)$$

V-Polytope:

$$\{V\lambda \mid \lambda \geq \mathbf{0}, \mathbf{1}^T\lambda = 1\} \equiv \operatorname{conv}(V)$$

V-Polyhedron:

$$\{U\mathbf{t} + V\lambda \mid \mathbf{t}, \lambda \geq \mathbf{0}, \mathbf{1}^T\lambda = 1\} \equiv \mathsf{cone}(U) + \mathsf{conv}(V)$$

H-Cone:

$$\{x \mid Ax \leq 0\}$$

H-Polyhedron:

$$\{x \mid Ax \leq b\}$$

Minkowski-Weyl Theorem

- General Statement:
 V-Polyhedra and H-Polyhedra are the same things
- For Cones:
 V-Cones and H-Cones are the same things

First, the proof is done for cones, then polyhedra are reduced to cones.

Minkowski-Weyl Theorem

- General Statement:
 V-Polyhedra and H-Polyhedra are the same things
- For Cones:
 V-Cones and H-Cones are the same things

First, the proof is done for cones, then polyhedra are reduced to cones.

Minkowski-Weyl Theorem

- General Statement:
 V-Polyhedra and H-Polyhedra are the same things
- For Cones:
 V-Cones and H-Cones are the same things

First, the proof is done for cones, then polyhedra are reduced to cones.

Outline

- Theorem
 - Definitions and Statement
 - Proof of the theorem
 - Implementation
- Pointed and Full-Dimensional Polyhedra
 - Main Results
 - Basic Ideas for Proofs/Implementation

Basic idea:

- rewrite V-Cone as a projection of an H-Cone
- show that a projection of an H-Cone is an H-Cone

Say we are given $\{U\mathbf{t} \mid \mathbf{t} \geq \mathbf{0}\}\dots$

First, the non-negativity constraint

Say we are given $\{Ut \mid t \geq 0\} \dots$

$$\bullet$$
 t \geq 0

$$\Leftrightarrow (0 - l) \begin{pmatrix} x \\ t \end{pmatrix} \leq 0$$

Say we are given $\{Ut \mid t \geq 0\} \dots$

•
$$t \ge 0$$
 $\Leftrightarrow (0 -l) \begin{pmatrix} x \\ t \end{pmatrix} \le 0$

Next, capture the points

Say we are given $\{Ut \mid t \geq 0\} \dots$

•
$$\mathbf{t} \geq \mathbf{0}$$
 \Leftrightarrow $(\mathbf{0} - I) \begin{pmatrix} \mathbf{x} \\ \mathbf{t} \end{pmatrix} \leq \mathbf{0}$

•
$$\mathbf{x} = U\mathbf{t}$$
 $\Leftrightarrow \begin{pmatrix} I & -U \\ -I & U \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{t} \end{pmatrix} \leq \mathbf{0}$

Say we are given $\{U\mathbf{t} \mid \mathbf{t} \geq \mathbf{0}\}\dots$

•
$$t \ge 0$$
 $\Leftrightarrow (0 -l) \begin{pmatrix} x \\ t \end{pmatrix} \le 0$

•
$$\mathbf{x} = U\mathbf{t}$$
 $\Leftrightarrow \begin{pmatrix} I & -U \\ -I & U \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{t} \end{pmatrix} \leq \mathbf{0}$

• Finally, project the combined constraints

Say we are given $\{U\mathbf{t} \mid \mathbf{t} \geq \mathbf{0}\}\dots$

•
$$\mathbf{x} = U\mathbf{t}$$
 $\Leftrightarrow \begin{pmatrix} I & -U \\ -I & U \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{t} \end{pmatrix} \leq \mathbf{0}$

$$\bullet \ \{U\mathbf{t} \mid \mathbf{t} \ge \mathbf{0}\} = \left\{ \mathbf{x} \mid \begin{pmatrix} \mathbf{0} & -I \\ I & -U \\ -I & U \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{t} \end{pmatrix} \le \mathbf{0} \right\}$$

Say we are given $\{U\mathbf{t} \mid \mathbf{t} \geq \mathbf{0}\}\dots$

$$\begin{array}{ll} \bullet \ \ t \geq \mathbf{0} & \Leftrightarrow \ \ (\mathbf{0} \ \ -I) \ \begin{pmatrix} \mathbf{x} \\ \mathbf{t} \end{pmatrix} \leq \mathbf{0} \\ \\ \bullet \ \ \mathbf{x} = U\mathbf{t} & \Leftrightarrow \ \begin{pmatrix} I & -U \\ -I & U \end{pmatrix} \ \begin{pmatrix} \mathbf{x} \\ \mathbf{t} \end{pmatrix} \leq \mathbf{0} \\ \\ \bullet \ \ \{U\mathbf{t} \mid \mathbf{t} \geq \mathbf{0}\} & = \ \left\{ \mathbf{x} \ \middle| \ \begin{pmatrix} \mathbf{0} \ \ -I \\ I \ \ -U \\ I \ \ I \end{pmatrix} \ \begin{pmatrix} \mathbf{x} \\ \mathbf{t} \end{pmatrix} \leq \mathbf{0} \right\} \\ \end{array}$$

The final expression is a projection of an H-Cone

Projecting an H-Cone

We project an H-Cone one coordinate at a time with Fourier-Motzkin Elimination

Observation:

$$(A \quad \mathbf{0}) \begin{pmatrix} \mathbf{x} \\ \mathbf{t} \end{pmatrix} \leq \mathbf{0} \Leftrightarrow A\mathbf{x} \leq \mathbf{0}$$

Therefore:

$$\left\{ x \;\middle|\; \begin{pmatrix} A & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{t} \end{pmatrix} \leq \mathbf{0} \right\} = \left\{ x \;\middle|\; Ax \leq \mathbf{0} \right\}$$

• So, projecting 0 columns is easy.

Projecting an H-Cone

We project an H-Cone one coordinate at a time with Fourier-Motzkin Elimination

Observation:

$$(A \quad \mathbf{0}) \begin{pmatrix} \mathbf{x} \\ \mathbf{t} \end{pmatrix} \leq \mathbf{0} \Leftrightarrow A\mathbf{x} \leq \mathbf{0}$$

Therefore:

$$\left\{ \boldsymbol{x} \;\middle|\; \begin{pmatrix} \boldsymbol{A} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{t} \end{pmatrix} \leq \boldsymbol{0} \right\} = \left\{ \boldsymbol{x} \;\middle|\; \boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{0} \right\}$$

So, projecting 0 columns is easy.

Projecting an H-Cone

We project an H-Cone one coordinate at a time with Fourier-Motzkin Elimination

Observation:

$$\begin{pmatrix} A & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{t} \end{pmatrix} \leq \mathbf{0} \Leftrightarrow A\mathbf{x} \leq \mathbf{0}$$

Therefore:

$$\left\{ \boldsymbol{x} \;\middle|\; \begin{pmatrix} \boldsymbol{A} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{t} \end{pmatrix} \leq \boldsymbol{0} \right\} = \left\{ \boldsymbol{x} \;\middle|\; \boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{0} \right\}$$

So, projecting 0 columns is easy.

Projecting an H-Cone

We project an H-Cone one coordinate at a time with Fourier-Motzkin Elimination

Observation:

$$\begin{pmatrix} A & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{t} \end{pmatrix} \leq \mathbf{0} \Leftrightarrow A\mathbf{x} \leq \mathbf{0}$$

Therefore:

$$\left\{ \mathbf{x} \;\middle|\; \begin{pmatrix} A & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{t} \end{pmatrix} \leq \mathbf{0} \right\} = \left\{ \mathbf{x} \;\middle|\; A\mathbf{x} \leq \mathbf{0} \right\}$$

So, projecting 0 columns is easy.

Fourier-Motzkin Elimination

Suppose we are projecting column k from $A\mathbf{x} \leq \mathbf{0}$.

- First, partition the rows as follows:
 - Z: rows with k-th column 0
 - P: rows with k-th column positive
 - N: rows with k-th column negative
- Create a new matrix A' with rows as follows:

$$\begin{cases} A_z & A_z \in Z \\ A_p^k A_n - A_n^k A_p & A_n \in N, A_p \in P \end{cases}$$

$$(\exists t) A(\mathbf{x} + t\mathbf{e}_k) \leq \mathbf{0} \Leftrightarrow A'\mathbf{x} \leq \mathbf{0}$$

Fourier-Motzkin Elimination

Suppose we are projecting column k from $A\mathbf{x} \leq \mathbf{0}$.

First, partition the rows as follows:

Z: rows with k-th column 0

P: rows with k-th column positive

N: rows with k-th column negative

Create a new matrix A' with rows as follows:

$$\begin{cases} A_z & A_z \in Z \\ A_p^k A_n - A_n^k A_p & A_n \in N, A_p \in P \end{cases}$$

$$(\exists t) A(\mathbf{x} + t\mathbf{e}_k) \leq \mathbf{0} \Leftrightarrow A'\mathbf{x} \leq \mathbf{0}$$

Fourier-Motzkin Elimination

Suppose we are projecting column k from $A\mathbf{x} \leq \mathbf{0}$.

First, partition the rows as follows:

Z: rows with k-th column 0

P: rows with k-th column positive

N: rows with k-th column negative

Create a new matrix A' with rows as follows:

$$\begin{cases} A_z & A_z \in Z \\ A_p^k A_n - A_n^k A_p & A_n \in N, A_p \in P \end{cases}$$

$$(\exists t) A(\mathbf{x} + t\mathbf{e}_k) \leq \mathbf{0} \Leftrightarrow A'\mathbf{x} \leq \mathbf{0}$$

Fourier-Motzkin Elimination

Suppose we are projecting column k from $A\mathbf{x} \leq \mathbf{0}$.

• First, partition the rows as follows:

Z: rows with k-th column 0

P: rows with k-th column positive

N: rows with k-th column negative

Create a new matrix A' with rows as follows:

$$\begin{cases} A_z & A_z \in Z \\ A_p^k A_n - A_n^k A_p & A_n \in N, A_p \in P \end{cases}$$

$$(\exists t) A(\mathbf{x} + t\mathbf{e}_k) \leq \mathbf{0} \Leftrightarrow A'\mathbf{x} \leq \mathbf{0}$$

Basic idea:

- rewrite V-Cone as a projection of intersection of an H-Cone with hyperplanes
- show that a intersection of a V-Cone with a hyperplane is a V-Cone
- projecting V-Cones is easy

Say we are given $\{x \mid Ax \leq 0\} \dots$

First, take up the slack

Say we are given $\{ \boldsymbol{x} \mid A\boldsymbol{x} \leq \boldsymbol{0} \} \dots$

•
$$Ax \leq 0$$

$$\Leftrightarrow \ \exists w \geq 0 \mid \textit{A}x + w = 0$$

Say we are given $\{x \mid Ax \leq 0\} \dots$

- $Ax \leq 0$ $\Leftrightarrow \exists w \geq 0 \mid Ax + w = 0$
- Next, capture the points

Say we are given $\{ \boldsymbol{x} \mid A\boldsymbol{x} \leq \boldsymbol{0} \} \dots$

•
$$Ax \le 0$$
 $\Leftrightarrow \exists w \ge 0 \mid Ax + w = 0$

•
$$A\mathbf{x} + \mathbf{w} = \mathbf{0} \Leftrightarrow \begin{pmatrix} \mathbf{x} \\ A\mathbf{x} \end{pmatrix} + \begin{pmatrix} \mathbf{0} \\ \mathbf{w} \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ \mathbf{0} \end{pmatrix}$$

Say we are given $\{x \mid Ax \leq 0\}\dots$

- $Ax \le 0$ $\Leftrightarrow \exists w \ge 0 \mid Ax + w = 0$
- $A\mathbf{x} + \mathbf{w} = \mathbf{0} \Leftrightarrow \begin{pmatrix} \mathbf{x} \\ A\mathbf{x} \end{pmatrix} + \begin{pmatrix} \mathbf{0} \\ \mathbf{w} \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ \mathbf{0} \end{pmatrix}$
- Finally, split the positive/negative contributions:

Say we are given $\{x \mid Ax \leq 0\}\dots$

•
$$Ax \leq 0$$
 $\Leftrightarrow \exists w \geq 0 \mid Ax + w = 0$

•
$$A\mathbf{x} + \mathbf{w} = \mathbf{0} \Leftrightarrow \begin{pmatrix} \mathbf{x} \\ A\mathbf{x} \end{pmatrix} + \begin{pmatrix} \mathbf{0} \\ \mathbf{w} \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ \mathbf{0} \end{pmatrix}$$

•
$$Ax \le 0$$
 \Leftrightarrow $\begin{pmatrix} x \\ 0 \end{pmatrix} \in cone \begin{pmatrix} I & -I & 0 \\ A & -A & I \end{pmatrix}$

Say we are given $\{x \mid Ax \leq 0\}\dots$

•
$$Ax < 0$$
 $\Leftrightarrow \exists w > 0 \mid Ax + w = 0$

•
$$A\mathbf{x} + \mathbf{w} = \mathbf{0} \Leftrightarrow \begin{pmatrix} \mathbf{x} \\ A\mathbf{x} \end{pmatrix} + \begin{pmatrix} \mathbf{0} \\ \mathbf{w} \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ \mathbf{0} \end{pmatrix}$$

•
$$Ax \le 0$$
 \Leftrightarrow $\begin{pmatrix} x \\ 0 \end{pmatrix} \in cone \begin{pmatrix} I & -I & 0 \\ A & -A & I \end{pmatrix}$

The final expression is a intersection of a V-Cone with some hyperplanes

Intersecting a V-Cone

We intersect a V-Cone one coordinate at a time with Dual-Fourier-Motzkin Elimination

We need to characterize elements of cone(*U*) with the *k*-th element 0.

Intersecting a V-Cone

We intersect a V-Cone one coordinate at a time with Dual-Fourier-Motzkin Elimination

 We need to characterize elements of cone(U) with the k-th element 0.

Intersecting a V-Cone

We intersect a V-Cone one coordinate at a time with Dual-Fourier-Motzkin Elimination

- We need to characterize elements of cone(U) with the k-th element 0.
- We use the following algebraic trick. . .

Intersecting a V-Cone

We intersect a V-Cone one coordinate at a time with Dual-Fourier-Motzkin Elimination

- We need to characterize elements of cone(U) with the k-th element 0.
- Suppose that $\mathbf{x}_i, \mathbf{x}_j \in \text{cone}(U), x_j^k < 0 < x_i^k,$ $\sum_i x_i^k + \sum_j x_i^k = 0$, and let $1/\sigma := \sum_i x_i^k = -\sum_j x_i^k.$
- We can rewrite $\sum_{j} \mathbf{x}_{j} + \sum_{i} \mathbf{x}_{i} = \sigma \sum_{i,j} x_{i}^{k} \mathbf{x}_{j} x_{j}^{k} \mathbf{x}_{i}$
- Note that: $x_i^k \mathbf{x}_j x_j^k \mathbf{x}_i \in \text{cone}(U) \cap \{\mathbf{x} \mid x^k = 0\}$

Intersecting a V-Cone

We intersect a V-Cone one coordinate at a time with Dual-Fourier-Motzkin Elimination

- We need to characterize elements of cone(U) with the k-th element 0.
- Suppose that $\mathbf{x}_i, \mathbf{x}_j \in \text{cone}(U), x_j^k < 0 < x_i^k,$ $\sum_i x_i^k + \sum_j x_i^k = 0$, and let $1/\sigma := \sum_i x_i^k = -\sum_j x_i^k.$
- We can rewrite $\sum_{j} \mathbf{x}_{j} + \sum_{i} \mathbf{x}_{i} = \sigma \sum_{i,j} x_{i}^{k} \mathbf{x}_{j} x_{j}^{k} \mathbf{x}_{i}$
- Note that: $x_i^k \mathbf{x}_j x_j^k \mathbf{x}_i \in \text{cone}(U) \cap \{\mathbf{x} \mid x^k = 0\}$

Intersecting a V-Cone

We intersect a V-Cone one coordinate at a time with Dual-Fourier-Motzkin Elimination

- We need to characterize elements of cone(U) with the k-th element 0.
- Suppose that $\mathbf{x}_i, \mathbf{x}_j \in \text{cone}(U), x_j^k < 0 < x_i^k,$ $\sum_i x_i^k + \sum_j x_i^k = 0$, and let $1/\sigma := \sum_i x_i^k = -\sum_j x_i^k.$
- We can rewrite $\sum_{j} \mathbf{x}_{j} + \sum_{i} \mathbf{x}_{i} = \sigma \sum_{i,j} x_{i}^{k} \mathbf{x}_{j} x_{j}^{k} \mathbf{x}_{i}$
- Note that: $x_i^k \mathbf{x}_j x_j^k \mathbf{x}_i \in \text{cone}(U) \cap \{\mathbf{x} \mid x^k = 0\}$

Fourier-Motzkin Elimination

Suppose we are intersecting $\{x_k = 0\}$ with cone(*U*).

First, partition the columns as follows:

Z: columns with k-th row 0

P: columns with k-th row positive

N: columns with k-th row negative

Create a new matrix U' with columns as follows:

$$\begin{cases} \mathbf{x}_{z} & \mathbf{x}_{z} \in Z \\ \mathbf{x}_{p}^{k} \mathbf{x}_{n} - \mathbf{x}_{n}^{k} \mathbf{x}_{p} & \mathbf{x}_{n} \in N, \mathbf{x}_{p} \in P \end{cases}$$

$$\mathbf{y} \in \mathsf{cone}(U), y^k = 0 \Leftrightarrow \mathbf{y} \in \mathsf{cone}(U')$$

Fourier-Motzkin Elimination

Suppose we are intersecting $\{x_k = 0\}$ with cone(*U*).

First, partition the columns as follows:

Z: columns with k-th row 0

P: columns with k-th row positive

N: columns with k-th row negative

Create a new matrix U' with columns as follows:

$$\begin{cases}
\mathbf{x}_{z} & \mathbf{x}_{z} \in Z \\
\mathbf{x}_{p}^{k} \mathbf{x}_{n} - \mathbf{x}_{n}^{k} \mathbf{x}_{p} & \mathbf{x}_{n} \in N, \mathbf{x}_{p} \in P
\end{cases}$$

$$\mathbf{y} \in \mathsf{cone}(U), y^k = 0 \Leftrightarrow \mathbf{y} \in \mathsf{cone}(U')$$

Fourier-Motzkin Elimination

Suppose we are intersecting $\{x_k = 0\}$ with cone(*U*).

First, partition the columns as follows:

Z: columns with k-th row 0

P: columns with k-th row positive

N: columns with k-th row negative

Create a new matrix U' with columns as follows:

$$\begin{cases} \mathbf{x}_z & \mathbf{x}_z \in Z \\ \mathbf{x}_p^k \mathbf{x}_n - \mathbf{x}_n^k \mathbf{x}_p & \mathbf{x}_n \in N, \mathbf{x}_p \in P \end{cases}$$

$$\mathbf{y} \in \operatorname{cone}(U), y^k = 0 \Leftrightarrow \mathbf{y} \in \operatorname{cone}(U')$$

Fourier-Motzkin Elimination

Suppose we are intersecting $\{x_k = 0\}$ with cone(*U*).

First, partition the columns as follows:

Z: columns with k-th row 0

P: columns with k-th row positive

N: columns with k-th row negative

Create a new matrix U' with columns as follows:

$$\begin{cases} \mathbf{x}_z & \mathbf{x}_z \in Z \\ \mathbf{x}_p^k \mathbf{x}_n - \mathbf{x}_n^k \mathbf{x}_p & \mathbf{x}_n \in N, \mathbf{x}_p \in P \end{cases}$$

$$\mathbf{y} \in \mathsf{cone}(U), \mathbf{y}^k = \mathbf{0} \Leftrightarrow \mathbf{y} \in \mathsf{cone}(U')$$

 For H-Polyhedra, move constraints to column 0 and set that coordinate to 1

- For V-Polyhedra, use an intersection to enforce convex combinations
- cone(U) + conv(V) = $\Pi\left(cone\begin{pmatrix} \mathbf{0} & \mathbf{1} \\ U & V \end{pmatrix} \cap \left\{\begin{pmatrix} x_0 \\ \mathbf{x} \end{pmatrix} \mid x_0 = 1\right\}\right)$

 For H-Polyhedra, move constraints to column 0 and set that coordinate to 1

$$\begin{array}{l} \bullet \ \left\{ \mathbf{x} \mid A\mathbf{x} \leq \mathbf{b} \right\} = \\ \left\{ \begin{pmatrix} x_0 \\ \mathbf{x} \end{pmatrix} \ \middle| \ \left[-\mathbf{b} |A \right] \begin{pmatrix} x_0 \\ \mathbf{x} \end{pmatrix} \leq \mathbf{0} \right\} \cap \left\{ \begin{pmatrix} x_0 \\ \mathbf{x} \end{pmatrix} \ \middle| \ x_0 = 1 \right\} \end{array}$$

For V-Polyhedra, use an intersection to enforce convex combinations

•
$$cone(U) + conv(V) =$$

$$\Pi\left(cone\begin{pmatrix} \mathbf{0} & \mathbf{1} \\ U & V \end{pmatrix} \cap \left\{\begin{pmatrix} x_0 \\ \mathbf{x} \end{pmatrix} \mid x_0 = 1\right\}\right)$$

- For H-Polyhedra, move constraints to column 0 and set that coordinate to 1
- $\begin{array}{l} \bullet \ \left\{ \mathbf{x} \mid A\mathbf{x} \leq \mathbf{b} \right\} = \\ \left\{ \begin{pmatrix} x_0 \\ \mathbf{x} \end{pmatrix} \ \middle| \ \left[-\mathbf{b} |A \right] \begin{pmatrix} x_0 \\ \mathbf{x} \end{pmatrix} \leq \mathbf{0} \right\} \cap \left\{ \begin{pmatrix} x_0 \\ \mathbf{x} \end{pmatrix} \ \middle| \ x_0 = 1 \right\} \end{array}$
- For V-Polyhedra, use an intersection to enforce convex combinations

•
$$cone(U) + conv(V) =$$

$$\Pi\left(cone\begin{pmatrix} \mathbf{0} & \mathbf{1} \\ U & V \end{pmatrix} \cap \left\{\begin{pmatrix} x_0 \\ \mathbf{x} \end{pmatrix} \mid x_0 = 1\right\}\right)$$

- For H-Polyhedra, move constraints to column 0 and set that coordinate to 1
- $\begin{array}{l} \bullet \ \left\{ \mathbf{x} \mid A\mathbf{x} \leq \mathbf{b} \right\} = \\ \left\{ \begin{pmatrix} x_0 \\ \mathbf{x} \end{pmatrix} \ \middle| \ \left[-\mathbf{b} |A \right] \begin{pmatrix} x_0 \\ \mathbf{x} \end{pmatrix} \leq \mathbf{0} \right\} \cap \left\{ \begin{pmatrix} x_0 \\ \mathbf{x} \end{pmatrix} \ \middle| \ x_0 = 1 \right\} \end{array}$
- For V-Polyhedra, use an intersection to enforce convex combinations
- cone(U) + conv(V) = $\Pi\left(cone\begin{pmatrix} \mathbf{0} & \mathbf{1} \\ U & V \end{pmatrix} \cap \left\{\begin{pmatrix} x_0 \\ \mathbf{x} \end{pmatrix} \mid x_0 = 1\right\}\right)$

$$\mathsf{cone}(\mathit{U}) + \mathsf{conv}(\mathit{V}) = \Pi\left(\mathsf{cone}\begin{pmatrix}\mathbf{0} & \mathbf{1}\\ \mathit{U} & \mathit{V}\end{pmatrix} \cap \left\{\begin{pmatrix}x_0\\ \mathbf{x}\end{pmatrix} \;\middle|\; x_0 = 1\right\}\right)$$

- This intersection is a slight complication, but handled in essentially the same way as before. The basic idea:
- Denote $\sigma_i = \sum_i x_i^0$, $\sigma_j = \sum_j x_j^0$
- If $\sigma_i + \sigma_j = 1$, then $-\frac{\sigma_i}{\sigma_i} = 1 \frac{1}{\sigma_i}$
- Then $\sum_{i} \mathbf{x}_{i} = \frac{\sum_{i} \mathbf{x}_{i}}{\sigma_{i}} + \left(1 \frac{1}{\sigma_{i}}\right) \sum_{i} \mathbf{x}_{i} = \frac{1}{\sigma_{i}} \sum_{i} \mathbf{x}_{i} \frac{\sigma_{j}}{\sigma_{i}} \sum_{i} \mathbf{x}_{i}$
- We can rewrite $\sum_{j} \mathbf{x}_{j} + \sum_{i} \mathbf{x}_{i} = \frac{1}{\sigma_{i}} \sum_{i} \mathbf{x}_{i} + \frac{1}{\sigma_{i}} \sum_{i,j} x_{i}^{0} \mathbf{x}_{j} x_{j}^{0} \mathbf{x}_{i}$
- The left term is in $conv \begin{pmatrix} 1 \\ V \end{pmatrix}$, while the right term is in the cone but has 0 in 0-th coordinate.

$$\underline{\mathsf{cone}(U) + \mathsf{conv}(V) = \Pi\left(\mathsf{cone}\begin{pmatrix}\mathbf{0} & \mathbf{1} \\ U & V\end{pmatrix} \cap \left\{\begin{pmatrix}x_0 \\ \mathbf{x}\end{pmatrix} \mid x_0 = 1\right\}\right)}$$

- This intersection is a slight complication, but handled in essentially the same way as before. The basic idea:
- Denote $\sigma_i = \sum_i x_i^0$, $\sigma_j = \sum_j x_j^0$
- If $\sigma_i + \sigma_j = 1$, then $-\frac{\sigma_j}{\sigma_i} = 1 \frac{1}{\sigma_i}$
- Then $\sum_{i} \mathbf{x}_{i} = \frac{\sum_{i} \mathbf{x}_{i}}{\sigma_{i}} + \left(1 \frac{1}{\sigma_{i}}\right) \sum_{i} \mathbf{x}_{i} = \frac{1}{\sigma_{i}} \sum_{i} \mathbf{x}_{i} \frac{\sigma_{i}}{\sigma_{i}} \sum_{i} \mathbf{x}_{i}$
- We can rewrite $\sum_{j} \mathbf{x}_{j} + \sum_{i} \mathbf{x}_{i} = \frac{1}{\sigma_{i}} \sum_{i} \mathbf{x}_{i} + \frac{1}{\sigma_{i}} \sum_{i,j} x_{i}^{0} \mathbf{x}_{j} x_{j}^{0} \mathbf{x}_{i}$
- The left term is in $conv \begin{pmatrix} 1 \\ V \end{pmatrix}$, while the right term is in the cone but has 0 in 0-th coordinate.

$$\underline{\mathsf{cone}(\mathit{U}) + \mathsf{conv}(\mathit{V}) = \Pi\left(\mathsf{cone}\begin{pmatrix}\mathbf{0} & \mathbf{1} \\ \mathit{U} & \mathit{V}\end{pmatrix} \cap \left\{\begin{pmatrix}x_0 \\ \mathbf{x}\end{pmatrix} \mid x_0 = 1\right\}\right)}$$

- This intersection is a slight complication, but handled in essentially the same way as before. The basic idea:
- Denote $\sigma_i = \sum_i x_i^0$, $\sigma_j = \sum_j x_j^0$
- If $\sigma_i + \sigma_j = 1$, then $-\frac{\sigma_i}{\sigma_i} = 1 \frac{1}{\sigma_i}$
- Then $\sum_{i} \mathbf{x}_{i} = \frac{\sum_{i} \mathbf{x}_{i}}{\sigma_{i}} + \left(1 \frac{1}{\sigma_{i}}\right) \sum_{i} \mathbf{x}_{i} = \frac{1}{\sigma_{i}} \sum_{i} \mathbf{x}_{i} \frac{\sigma_{i}}{\sigma_{i}} \sum_{i} \mathbf{x}_{i}$
- We can rewrite $\sum_{j} \mathbf{x}_{j} + \sum_{i} \mathbf{x}_{i} = \frac{1}{\sigma_{i}} \sum_{i} \mathbf{x}_{i} + \frac{1}{\sigma_{i}} \sum_{i,j} x_{i}^{0} \mathbf{x}_{j} x_{j}^{0} \mathbf{x}_{i}$
- The left term is in $conv \begin{pmatrix} 1 \\ V \end{pmatrix}$, while the right term is in the cone but has 0 in 0-th coordinate.

$$cone(U) + conv(V) = \Pi\left(cone\left(\begin{matrix} \mathbf{0} & \mathbf{1} \\ U & V \end{matrix}\right) \cap \left\{\left(\begin{matrix} x_0 \\ \mathbf{x} \end{matrix}\right) \mid x_0 = 1\right\}\right)$$

- This intersection is a slight complication, but handled in essentially the same way as before. The basic idea:
- Denote $\sigma_i = \sum_i x_i^0$, $\sigma_j = \sum_j x_j^0$
- If $\sigma_i + \sigma_j = 1$, then $-\frac{\sigma_i}{\sigma_i} = 1 \frac{1}{\sigma_i}$
- Then $\sum_{i} \mathbf{x}_{i} = \frac{\sum_{i} \mathbf{x}_{i}}{\sigma_{i}} + \left(1 \frac{1}{\sigma_{i}}\right) \sum_{i} \mathbf{x}_{i} = \frac{1}{\sigma_{i}} \sum_{i} \mathbf{x}_{i} \frac{\sigma_{j}}{\sigma_{i}} \sum_{i} \mathbf{x}_{i}$
- We can rewrite $\sum_{j} \mathbf{x}_{j} + \sum_{i} \mathbf{x}_{i} = \frac{1}{\sigma_{i}} \sum_{i} \mathbf{x}_{i} + \frac{1}{\sigma_{i}} \sum_{i,j} x_{i}^{0} \mathbf{x}_{j} x_{j}^{0} \mathbf{x}_{i}$
- The left term is in $conv \begin{pmatrix} 1 \\ V \end{pmatrix}$, while the right term is in the cone but has 0 in 0-th coordinate.

$$\underline{\mathsf{cone}(\mathit{U}) + \mathsf{conv}(\mathit{V}) = \Pi\left(\mathsf{cone}\begin{pmatrix}\mathbf{0} & \mathbf{1} \\ \mathit{U} & \mathit{V}\end{pmatrix} \cap \left\{\begin{pmatrix}x_0 \\ \mathbf{x}\end{pmatrix} \mid x_0 = 1\right\}\right)}$$

- This intersection is a slight complication, but handled in essentially the same way as before. The basic idea:
- Denote $\sigma_i = \sum_i x_i^0$, $\sigma_j = \sum_j x_j^0$
- If $\sigma_i + \sigma_j = 1$, then $-\frac{\sigma_j}{\sigma_i} = 1 \frac{1}{\sigma_i}$
- Then $\sum_i \mathbf{x}_i = \frac{\sum_i \mathbf{x}_i}{\sigma_i} + \left(1 \frac{1}{\sigma_i}\right) \sum_i \mathbf{x}_i = \frac{1}{\sigma_i} \sum_i \mathbf{x}_i \frac{\sigma_j}{\sigma_i} \sum_i \mathbf{x}_i$
- We can rewrite $\sum_{j} \mathbf{x}_{j} + \sum_{i} \mathbf{x}_{i} = \frac{1}{\sigma_{i}} \sum_{i} \mathbf{x}_{i} + \frac{1}{\sigma_{i}} \sum_{i,j} x_{i}^{0} \mathbf{x}_{j} x_{j}^{0} \mathbf{x}_{i}$
- The left term is in $conv \begin{pmatrix} 1 \\ V \end{pmatrix}$, while the right term is in the cone but has 0 in 0-th coordinate.

$$cone(U) + conv(V) = \Pi\left(cone\left(\begin{matrix} \mathbf{0} & \mathbf{1} \\ U & V \end{matrix}\right) \cap \left\{\left(\begin{matrix} x_0 \\ \mathbf{x} \end{matrix}\right) \mid x_0 = 1\right\}\right)$$

- This intersection is a slight complication, but handled in essentially the same way as before. The basic idea:
- Denote $\sigma_i = \sum_i x_i^0$, $\sigma_j = \sum_j x_j^0$
- If $\sigma_i + \sigma_j = 1$, then $-\frac{\sigma_j}{\sigma_i} = 1 \frac{1}{\sigma_i}$
- Then $\sum_{i} \mathbf{x}_{i} = \frac{\sum_{i} \mathbf{x}_{i}}{\sigma_{i}} + \left(1 \frac{1}{\sigma_{i}}\right) \sum_{i} \mathbf{x}_{i} = \frac{1}{\sigma_{i}} \sum_{i} \mathbf{x}_{i} \frac{\sigma_{j}}{\sigma_{i}} \sum_{i} \mathbf{x}_{i}$
- We can rewrite $\sum_{j} \mathbf{x}_{j} + \sum_{i} \mathbf{x}_{i} = \frac{1}{\sigma_{i}} \sum_{i} \mathbf{x}_{i} + \frac{1}{\sigma_{i}} \sum_{i,j} x_{i}^{0} \mathbf{x}_{j} x_{j}^{0} \mathbf{x}_{i}$
- The left term is in conv $\binom{1}{V}$, while the right term is in the cone but has 0 in 0-th coordinate.

Outline

- Theorem
 - Definitions and Statement
 - Proof of the theorem
 - Implementation
- Pointed and Full-Dimensional Polyhedra
 - Main Results
 - Basic Ideas for Proofs/Implementation

Files and Includes

file	includes
linear_algebra.h	<c++ library="" standard=""></c++>
fourier_motzkin.h	linear_algebra.h
polyhedra.h	fourier_motzkin.h
main.cpp	polyhedra.h
test_functions.h	linear_alebra.h
test.cpp	test_functions.h, polyhedra.h

Callgraph

23

24

25

26

Matrix fourier_motzkin(Matrix,k)

```
const auto z_end = partition(M.begin(), M.end(),
    [k](const Vector &v) { return v[k] == 0; });
const auto p_end = partition(z_end, M.end(),
    [k](const Vector &v) { return v[k] > 0; });
```

Partition M into logical sets Z, P, N that satisfy the following:

set	range	property
Z	[M.begin(),z_end)	$it \in Z \Leftrightarrow (*it)[k] = 0$
Р	[z_end, p_end)	$it \in P \Leftrightarrow (*it)[k] > 0$
Ν	[p_end, M.end())	$it \in N \Leftrightarrow (*it)[k] < 0$

Matrix fourier_motzkin(Matrix,k)

This function creates the sets which correspond to:

$$\left\{B_i^k B_j - B_j^k B_i \mid i \in P, j \in N\right\}, \quad \left\{Y_k^i Y^j - Y_k^j Y^i \mid i \in P, j \in N\right\}$$

Outline

- Theorem
 - Definitions and Statement
 - Proof of the theorem
 - Implementation
- Pointed and Full-Dimensional Polyhedra
 - Main Results
 - Basic Ideas for Proofs/Implementation

- These are essentially non-degeneracy constraints.
 - Pointed Polyhedra have at least one vertex
 - Full dimensional polyhedra contain an affine independent set
- Pointed V-Polyhedra and Full-Dimensional H-Polyhedra have "essentially unique" sets of generators
- These "essentially unique" sets make it easy to test for equivalence
- The characterizations are similar to "linear independence"

- These "essentially unique" sets are "minimal"
- A set V is called minimal for cone(V) if

$$(\forall \mathbf{v} \in V) \ \mathsf{cone}(V \setminus \{\mathbf{v}) \subset \mathsf{cone}(V)$$

• A set A is called *minimal* for $\{x \mid Ax \leq 0\}$ if

$$(\forall A_i \in A) \ \{\mathbf{x} \mid A \setminus \{A_i\} \ \mathbf{x} \leq \mathbf{0}\} \supset \{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{0}\}$$

The definitions are similar for general polyhedra

- These "essentially unique" sets are "minimal"
- A set V is called minimal for cone(V) if

$$(\forall \mathbf{v} \in V) \operatorname{cone}(V \setminus \{\mathbf{v}) \subset \operatorname{cone}(V)$$

• A set A is called *minimal* for $\{x \mid Ax \leq 0\}$ if

$$(\forall A_i \in A) \ \{\mathbf{x} \mid A \setminus \{A_i\} \ \mathbf{x} \leq \mathbf{0}\} \supset \{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{0}\}$$

The definitions are similar for general polyhedra

- These "essentially unique" sets are "minimal"
- A set V is called minimal for cone(V) if

$$(\forall \mathbf{v} \in V) \operatorname{cone}(V \setminus \{\mathbf{v}) \subset \operatorname{cone}(V)$$

• A set A is called *minimal* for $\{x \mid Ax \leq 0\}$ if

$$(\forall A_i \in A) \ \{ \boldsymbol{x} \mid A \setminus \{A_i\} \ \boldsymbol{x} \leq \boldsymbol{0} \} \supset \{ \boldsymbol{x} \mid A\boldsymbol{x} \leq \boldsymbol{0} \}$$

The definitions are similar for general polyhedra

- These "essentially unique" sets are "minimal"
- A set V is called minimal for cone(V) if

$$(\forall \mathbf{v} \in V) \operatorname{cone}(V \setminus \{\mathbf{v}) \subset \operatorname{cone}(V)$$

• A set A is called *minimal* for $\{x \mid Ax \leq 0\}$ if

$$(\forall A_i \in A) \ \{ \boldsymbol{x} \mid A \setminus \{A_i\} \ \boldsymbol{x} \leq \boldsymbol{0} \} \supset \{ \boldsymbol{x} \mid A\boldsymbol{x} \leq \boldsymbol{0} \}$$

• The definitions are similar for general polyhedra

$$AV' \leq \mathbf{0}$$
 $\Rightarrow \operatorname{cone}(V') \subseteq \{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{0}\}\$
 $V \subseteq V'$ $\Rightarrow \operatorname{cone}(V) \subseteq \operatorname{cone}(V')$
 $\operatorname{cone}(V') = \{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{0}\} \Rightarrow AV' \leq \mathbf{0}$
 $\operatorname{cone}(V') = \operatorname{cone}(V)$ $\stackrel{?}{\Rightarrow} V \subset V'$

- The last item would create an equivalence
 - Must relax "⊆" (vectors vs rays)
 - Requires notion of "essentially unique" representation

$$\begin{array}{ll} AV' \leq \mathbf{0} & \Rightarrow \mathsf{cone}(V') \subseteq \{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{0}\} \\ V \subseteq V' & \Rightarrow \mathsf{cone}(V) \subseteq \mathsf{cone}(V') \\ \mathsf{cone}(V') = \{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{0}\} \Rightarrow AV' \leq \mathbf{0} \\ \mathsf{cone}(V') = \mathsf{cone}(V) & \stackrel{?}{\Rightarrow} V \subseteq V' \end{array}$$

- The last item would create an equivalence
 - Must relax "⊆" (vectors vs rays)
 - Requires notion of "essentially unique" representation

$$\begin{array}{ll} AV' \leq \mathbf{0} & \Rightarrow \mathsf{cone}(V') \subseteq \{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{0}\} \\ V \subseteq V' & \Rightarrow \mathsf{cone}(V) \subseteq \mathsf{cone}(V') \\ \mathsf{cone}(V') = \{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{0}\} \Rightarrow AV' \leq \mathbf{0} \\ \mathsf{cone}(V') = \mathsf{cone}(V) & \stackrel{?}{\Rightarrow} V \subseteq V' \end{array}$$

- The last item would create an equivalence
 - Must relax "⊆" (vectors vs rays)
 - Requires notion of "essentially unique" representation

$$\begin{array}{ll} AV' \leq \mathbf{0} & \Rightarrow \mathsf{cone}(V') \subseteq \{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{0}\} \\ V \subseteq V' & \Rightarrow \mathsf{cone}(V) \subseteq \mathsf{cone}(V') \\ \mathsf{cone}(V') = \{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{0}\} \Rightarrow AV' \leq \mathbf{0} \\ \mathsf{cone}(V') = \mathsf{cone}(V) & \stackrel{?}{\Rightarrow} V \subseteq V' \end{array}$$

- The last item would create an equivalence
 - Must relax "⊆" (vectors vs rays)
 - Requires notion of "essentially unique" representation

Pointed V-Cones

- The following statements are equivalent.
 - one(V) is pointed.
 - $2 t \geq 0, [Vt = 0 \Rightarrow t = 0]$
- A set V is called *minimal* for cone(V) if: $(\forall \mathbf{v} \in V)$ cone($V \setminus \{\mathbf{v}\}) \subset \text{cone}(V)$
- Suppose that cone(V) is pointed. Then the following two statements are equivalent:
 - V is minimal
 - 2 $t \ge 0$, $v = Ve_i$, $[v = Vt \Rightarrow t = e_i]$

Pointed V-Cones

- The following statements are equivalent.
 - one(V) is pointed.
 - 2 $t \ge 0$, $[Vt = 0 \Rightarrow t = 0]$
- A set V is called minimal for cone(V) if:

$$(\forall \mathbf{v} \in V) \operatorname{cone}(V \setminus \{\mathbf{v}\}) \subset \operatorname{cone}(V)$$

- Suppose that cone(V) is pointed. Then the following two statements are equivalent:
 - V is minima
 - 2 $t \ge 0$, $v = Ve_i$, $[v = Vt \Rightarrow t = e_i]$

Pointed V-Cones

- The following statements are equivalent.
 - one(V) is pointed.
 - **2** $t \ge 0$, $Vt = 0 \Rightarrow t = 0$
- A set V is called minimal for cone(V) if:

$$(\forall \mathbf{v} \in V) \operatorname{cone}(V \setminus \{\mathbf{v}\}) \subset \operatorname{cone}(V)$$

- Suppose that cone(V) is pointed. Then the following two statements are equivalent:
 - V is minimal
 - 2 $t \ge 0$, $v = Ve_i$, $[v = Vt \Rightarrow t = e_i]$

Full-Dimensional H-Cones

- All definitions are nearly identical, but we use the Farkas' lemma to consider the "dual cone"
- Farkas Lemma: Let $U \in \mathbb{R}^{d \times n}$. Precisely one of the following is true:

$$(\exists \mathbf{t} \ge \mathbf{0}) : \mathbf{x} = U\mathbf{t}$$

$$(\exists \mathbf{y}) : U^T \mathbf{y} \le 0, \ \langle \mathbf{x}, \mathbf{y} \rangle > 0$$

- i.e. a point is contained in a cone or can be separated from it with a hyperplane
- The Farkas Lemma can be used to prove the following:

$$\{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{0}\} = \{\mathbf{x} \mid A'\mathbf{x} \leq \mathbf{0}\} \Leftrightarrow \operatorname{cone}(A^T) = \operatorname{cone}(A'^T)$$

 $(cone(A^T)$ is what I call the "dual cone")

Full-Dimensional H-Cones

- All definitions are nearly identical, but we use the Farkas' lemma to consider the "dual cone"
- Farkas Lemma: Let $U \in \mathbb{R}^{d \times n}$. Precisely one of the following is true:

$$(\exists \mathbf{t} \geq \mathbf{0}) : \mathbf{x} = U\mathbf{t}$$

$$(\exists \mathbf{y}) : U^T \mathbf{y} \leq 0, \ \langle \mathbf{x}, \mathbf{y} \rangle > 0$$

- i.e. a point is contained in a cone or can be separated from it with a hyperplane
- The Farkas Lemma can be used to prove the following:

$$\{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{0}\} = \{\mathbf{x} \mid A'\mathbf{x} \leq \mathbf{0}\} \Leftrightarrow \operatorname{cone}(A^T) = \operatorname{cone}(A'^T)$$

ロ ト 4 個 ト 4 差 ト 4 差 ト 多 9 9 0 0

Full-Dimensional H-Cones

- All definitions are nearly identical, but we use the Farkas' lemma to consider the "dual cone"
- Farkas Lemma: Let $U \in \mathbb{R}^{d \times n}$. Precisely one of the following is true:

$$(\exists \mathbf{t} \geq \mathbf{0}) : \mathbf{x} = U\mathbf{t}$$

$$(\exists \mathbf{y}) : U^T \mathbf{y} \leq 0, \ \langle \mathbf{x}, \mathbf{y} \rangle > 0$$

- i.e. a point is contained in a cone or can be separated from it with a hyperplane
- The Farkas Lemma can be used to prove the following:

$$\{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{0}\} = \{\mathbf{x} \mid A'\mathbf{x} \leq \mathbf{0}\} \Leftrightarrow \operatorname{cone}(A^T) = \operatorname{cone}(A'^T)$$

Full-Dimensional H-Cones

- All definitions are nearly identical, but we use the Farkas' lemma to consider the "dual cone"
- Farkas Lemma: Let $U \in \mathbb{R}^{d \times n}$. Precisely one of the following is true:

$$(\exists \mathbf{t} \geq \mathbf{0}) : \mathbf{x} = U\mathbf{t}$$

$$(\exists \mathbf{y}) : U^T \mathbf{y} \leq 0, \ \langle \mathbf{x}, \mathbf{y} \rangle > 0$$

- i.e. a point is contained in a cone or can be separated from it with a hyperplane
- The Farkas Lemma can be used to prove the following:

$$\{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{0}\} = \{\mathbf{x} \mid A'\mathbf{x} \leq \mathbf{0}\} \Leftrightarrow \operatorname{cone}(A^T) = \operatorname{cone}(A'^T)$$

 $(cone(A^T)$ is what I call the "dual cone")

Cones and Polyhedra

- General Polyhedra are decomposed into a "characteristic-cone" and polytope
- Suppose that $P = \{\mathbf{x} \mid A\mathbf{x} \le b\} = \operatorname{cone}(U) + \operatorname{conv}(V)$. Then the following three statements are equivalent:
 - \bigcirc Ar < 0
 - ($\forall \mathbf{x} \in P$)($\forall \alpha > 0$) $\mathbf{x} + \alpha \mathbf{r} \in P$
- Note that (2) in the proof above is independent of *A* and *U*.

Cones and Polyhedra

- General Polyhedra are decomposed into a "characteristic-cone" and polytope
- Suppose that $P = \{\mathbf{x} \mid A\mathbf{x} \leq b\} = \operatorname{cone}(U) + \operatorname{conv}(V)$. Then the following three statements are equivalent:
 - $\mathbf{0}$ $Ar \leq \mathbf{0}$
 - $(\forall \mathbf{x} \in P)(\forall \alpha > 0) \mathbf{x} + \alpha \mathbf{r} \in P$
 - \circ **r** \in cone(U)
- Note that (2) in the proof above is independent of A and U.

Cones and Polyhedra

- General Polyhedra are decomposed into a "characteristic-cone" and polytope
- Suppose that $P = \{\mathbf{x} \mid A\mathbf{x} \leq b\} = \operatorname{cone}(U) + \operatorname{conv}(V)$. Then the following three statements are equivalent:
 - \bigcirc Ar \leq 0
 - $(\forall \mathbf{x} \in P)(\forall \alpha > 0) \mathbf{x} + \alpha \mathbf{r} \in P$
 - $\mathbf{0}$ $\mathbf{r} \in \text{cone}(U)$
- Note that (2) in the proof above is independent of A and U.

- In P = cone(U) + conv(V) we need U to be minimal as for V-Cones
- Minimality for the set conv(V) a polytope is given by the vertex set
- Complication: a vertex of conv(V) may not be a vertex of P

- In P = cone(U) + conv(V) we need U to be minimal as for V-Cones
- Minimality for the set conv(V) a polytope is given by the vertex set
- Complication: a vertex of conv(V) may not be a vertex of P

- In P = cone(U) + conv(V) we need U to be minimal as for V-Cones
- Minimality for the set conv(V) a polytope is given by the vertex set
- Complication: a vertex of conv(V) may not be a vertex of P

- If **v** is a vertex of cone(U) + conv(V), then $[\mathbf{v} = U\mathbf{t} + V\lambda] \Rightarrow \mathbf{t} = \mathbf{0}$ (I call **v** here *U-free*)
- If v is a vertex of cone(U) + conv(V), then v is a vertex of conv(V)
- Let P = cone(U) + cone(V). Then the following are equivalent
 - \bigcirc (U, V) is minimal for P
 - \bigcirc U is minimal for cone(U), V is the vertex set of P
 - U is minimal for cone(U), V is the vertex set of conv(V), and V is U-free

- If **v** is a vertex of cone(U) + conv(V), then $[\mathbf{v} = U\mathbf{t} + V\lambda] \Rightarrow \mathbf{t} = \mathbf{0}$ (I call **v** here *U-free*)
- If v is a vertex of cone(U) + conv(V), then v is a vertex of conv(V)
- Let P = cone(U) + cone(V). Then the following are equivalent
 - \bigcirc (U, V) is minimal for P
 - ② U is minimal for cone(U), V is the vertex set of P
 - 0 U is minimal for cone(U), V is the vertex set of conv(V), and V is U-free

- If **v** is a vertex of cone(U) + conv(V), then $[\mathbf{v} = U\mathbf{t} + V\lambda] \Rightarrow \mathbf{t} = \mathbf{0}$ (I call **v** here *U-free*)
- If v is a vertex of cone(U) + conv(V), then v is a vertex of conv(V)
- Let P = cone(U) + cone(V). Then the following are equivalent
 - \bigcirc (U, V) is minimal for P
 - 2 U is minimal for cone(U), V is the vertex set of P
 - 0 *U* is minimal for cone(U), *V* is the vertex set of conv(V), and *V* is *U*-free

$$(\exists \mathbf{t} \geq \mathbf{0})\mathbf{t}^{\mathsf{T}} A = \mathbf{y}, \ \mathbf{t}^{\mathsf{T}} \mathbf{b} \leq c \Leftrightarrow \begin{cases} (\forall \mathbf{x}) A \mathbf{x} \leq \mathbf{0} \Rightarrow \mathbf{y}^{\mathsf{T}} \mathbf{x} \leq \mathbf{0} \text{ and} \\ (\forall \mathbf{x}) A \mathbf{x} \leq \mathbf{b} \Rightarrow \mathbf{y}^{\mathsf{T}} \mathbf{x} \leq c \end{cases}$$

- Basically, a constraint is valid for a polyhedron if and only if it is a non-negative combination of rows of constraints (plus some change)
- If $P = \{ \mathbf{x} \mid A\mathbf{x} \leq \mathbf{b} \}$ is full dimensional, and $\mathbf{y}^T A = \mathbf{0}$ with $\mathbf{y} \geq \mathbf{0}$, then either $\mathbf{y} = \mathbf{0}$ or $\mathbf{y}^T \mathbf{b} > \mathbf{0}$.
- $\mathbf{y}^T A = \mathbf{0}$, $\mathbf{y}^T \mathbf{b} > \mathbf{0}$ occurs when two of the bounding hyperplanes are parallel

$$(\exists \mathbf{t} \geq \mathbf{0})\mathbf{t}^T A = \mathbf{y}, \ \mathbf{t}^T \mathbf{b} \leq c \Leftrightarrow \begin{cases} (\forall \mathbf{x}) A \mathbf{x} \leq \mathbf{0} \Rightarrow \mathbf{y}^T \mathbf{x} \leq 0 \ \text{and} \\ (\forall \mathbf{x}) A \mathbf{x} \leq \mathbf{b} \Rightarrow \mathbf{y}^T \mathbf{x} \leq c \end{cases}$$

- Basically, a constraint is valid for a polyhedron if and only if it is a non-negative combination of rows of constraints (plus some change)
- If $P = \{ \mathbf{x} \mid A\mathbf{x} \leq \mathbf{b} \}$ is full dimensional, and $\mathbf{y}^T A = \mathbf{0}$ with $\mathbf{y} \geq \mathbf{0}$, then either $\mathbf{y} = \mathbf{0}$ or $\mathbf{y}^T \mathbf{b} > \mathbf{0}$.
- $\mathbf{y}^T A = \mathbf{0}$, $\mathbf{y}^T \mathbf{b} > \mathbf{0}$ occurs when two of the bounding hyperplanes are parallel

$$(\exists \mathbf{t} \geq \mathbf{0})\mathbf{t}^T A = \mathbf{y}, \ \mathbf{t}^T \mathbf{b} \leq c \Leftrightarrow \begin{cases} (\forall \mathbf{x}) A \mathbf{x} \leq \mathbf{0} \Rightarrow \mathbf{y}^T \mathbf{x} \leq 0 \ \text{and} \\ (\forall \mathbf{x}) A \mathbf{x} \leq \mathbf{b} \Rightarrow \mathbf{y}^T \mathbf{x} \leq c \end{cases}$$

- Basically, a constraint is valid for a polyhedron if and only if it is a non-negative combination of rows of constraints (plus some change)
- If $P = \{ \mathbf{x} \mid A\mathbf{x} \leq \mathbf{b} \}$ is full dimensional, and $\mathbf{y}^T A = \mathbf{0}$ with $\mathbf{y} \geq \mathbf{0}$, then either $\mathbf{y} = \mathbf{0}$ or $\mathbf{y}^T \mathbf{b} > \mathbf{0}$.
- $\mathbf{y}^T A = \mathbf{0}$, $\mathbf{y}^T \mathbf{b} > \mathbf{0}$ occurs when two of the bounding hyperplanes are parallel

$$(\exists \mathbf{t} \geq \mathbf{0})\mathbf{t}^{\mathsf{T}} A = \mathbf{y}, \, \mathbf{t}^{\mathsf{T}} \mathbf{b} \leq \mathbf{c} \Leftrightarrow \begin{cases} (\forall \mathbf{x}) A \mathbf{x} \leq \mathbf{0} \Rightarrow \mathbf{y}^{\mathsf{T}} \mathbf{x} \leq \mathbf{0} \text{ and } \\ (\forall \mathbf{x}) A \mathbf{x} \leq \mathbf{b} \Rightarrow \mathbf{y}^{\mathsf{T}} \mathbf{x} \leq \mathbf{c} \end{cases}$$

- Basically, a constraint is valid for a polyhedron if and only if it is a non-negative combination of rows of constraints (plus some change)
- If $P = \{ \mathbf{x} \mid A\mathbf{x} \leq \mathbf{b} \}$ is full dimensional, and $\mathbf{y}^T A = \mathbf{0}$ with $\mathbf{y} \geq \mathbf{0}$, then either $\mathbf{y} = \mathbf{0}$ or $\mathbf{y}^T \mathbf{b} > \mathbf{0}$.
- $\mathbf{y}^T A = \mathbf{0}$, $\mathbf{y}^T \mathbf{b} > \mathbf{0}$ occurs when two of the bounding hyperplanes are parallel

Dual Homogenization Cone

- For H-Polyhedra switching to the dual setting is slightly more complicated
- The following two statement are equivalent:

- If $\{x \mid Ax \leq b\}$ is minimal and full-dimensional, then either
 - one $\begin{pmatrix} -\mathbf{b}^T & -1 \\ A^T & \mathbf{0} \end{pmatrix}$ is minimal and pointed, or
 - \bigcirc cone $\begin{pmatrix} -\mathbf{b}^T \\ A^T \end{pmatrix}$ is minimal and pointed, and

$$\operatorname{cone}\begin{pmatrix} -\mathbf{b}^T \\ A^T \end{pmatrix} = \operatorname{cone}\begin{pmatrix} -\mathbf{b}^T & -1 \\ A^T & \mathbf{0} \end{pmatrix}$$

Dual Homogenization Cone

- For H-Polyhedra switching to the dual setting is slightly more complicated
- The following two statement are equivalent:

- If $\{x \mid Ax \leq b\}$ is minimal and full-dimensional, then either
 - \bigcirc cone $\begin{pmatrix} -\mathbf{b}^T & -1 \\ A^T & \mathbf{0} \end{pmatrix}$ is minimal and pointed, or
 - \bigcirc cone $\begin{pmatrix} -\mathbf{b}^T \\ A^T \end{pmatrix}$ is minimal and pointed, and

$$\operatorname{cone}\begin{pmatrix} -\mathbf{b}^T \\ A^T \end{pmatrix} = \operatorname{cone}\begin{pmatrix} -\mathbf{b}^T & -1 \\ A^T & \mathbf{0} \end{pmatrix}$$

Dual Homogenization Cone

- For H-Polyhedra switching to the dual setting is slightly more complicated
- The following two statement are equivalent:

$$cone \begin{pmatrix} -\mathbf{b}^T & -1 \\ A^T & \mathbf{0} \end{pmatrix} = cone \begin{pmatrix} -\mathbf{b}^{\prime T} & -1 \\ A^{\prime T} & \mathbf{0} \end{pmatrix}$$

- If $\{x \mid Ax \leq b\}$ is minimal and full-dimensional, then either
 - cone $\begin{pmatrix} -\mathbf{b}^T & -1 \\ A^T & \mathbf{0} \end{pmatrix}$ is minimal and pointed, or
 - 2 cone $\binom{-\mathbf{b}^T}{A^T}$ is minimal and pointed, and

$$\operatorname{cone}\begin{pmatrix} -\mathbf{b}^T \\ A^T \end{pmatrix} = \operatorname{cone}\begin{pmatrix} -\mathbf{b}^T & -1 \\ A^T & \mathbf{0} \end{pmatrix}$$

Pointed H-Polyhedra and Full-Dimensional V-Polyhedra

 t is a non-negative vector, V ≠ Ø, and abbreviate linear-independent as LI. V̄ denotes {v - v' | v, v' ∈ V}.

	Pointed	Full-Dimensional
cone(<i>U</i>)	U t = 0 \Rightarrow t = 0	d LI vectors in U
cone(U) + conv(V)	U t = 0 \Rightarrow t = 0	<i>d</i> LI vectors in $U \cup \bar{V}$
$\{\mathbf{x} \mid A\mathbf{x} \leq 0\}$	d LI row vectors in A	$\mathbf{t}^T A = 0 \Rightarrow \mathbf{t} = 0$
$\{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{b}\}$	d LI row vectors in A	$\mathbf{t}^T A = 0 \Rightarrow \mathbf{t}^T \mathbf{b} > 0$

Outline

- Theorem
 - Definitions and Statement
 - Proof of the theorem
 - Implementation
- Pointed and Full-Dimensional Polyhedra
 - Main Results
 - Basic Ideas for Proofs/Implementation

Not much to see here

- The proofs are more tedious than enlightening
- The implementation is straightforward

- A V-Polyhedron could easily be represented as an H-Polyhedron with an infinite number of constraints
- The Minkowski-Weyl Theorem tells us that a finite number are enough (an "obvious" fact)
- The Farkas Lemma is a nice combinatorial result that encapsulates this fact
- Pointed and Full-Dimensional polyhedra are "non-degenerate" in some sense that have even better properties for determining their representations

- A V-Polyhedron could easily be represented as an H-Polyhedron with an infinite number of constraints
- The Minkowski-Weyl Theorem tells us that a finite number are enough (an "obvious" fact)
- The Farkas Lemma is a nice combinatorial result that encapsulates this fact
- Pointed and Full-Dimensional polyhedra are "non-degenerate" in some sense that have even better properties for determining their representations

- A V-Polyhedron could easily be represented as an H-Polyhedron with an infinite number of constraints
- The Minkowski-Weyl Theorem tells us that a finite number are enough (an "obvious" fact)
- The Farkas Lemma is a nice combinatorial result that encapsulates this fact
- Pointed and Full-Dimensional polyhedra are "non-degenerate" in some sense that have even better properties for determining their representations

- A V-Polyhedron could easily be represented as an H-Polyhedron with an infinite number of constraints
- The Minkowski-Weyl Theorem tells us that a finite number are enough (an "obvious" fact)
- The Farkas Lemma is a nice combinatorial result that encapsulates this fact
- Pointed and Full-Dimensional polyhedra are "non-degenerate" in some sense that have even better properties for determining their representations

Further Considerations

- Better algorithms (Dual-Description)
- Other interpretations...
 - ...Systems of logical deduction
 - ...Systems where "lift and drop" creates a dual representation
- Are there any useful implications for "polyhedra complexes" or "chains"?