Randomized min-cut algorithm

Consider the randomized min-cut algorithm discussed in class. We have seen that its probability of success is at least $\frac{1}{\binom{n}{2}}$, where n is the number of its vertices.

- Describe how to implement the algorithm when the graph is represented by adjacency lists, and analyze its running time. In particular, a contraction step can be done in O(n) time.
- A weighted graph has a weight w(e) on each edge e, which is a positive real number. The min-cut in this case is meant to be min-weighted cut, where the sum of the weights in the cut edges is minimum. Describe how to extend the $\frac{1}{\binom{n}{n}}$ [hint: define the weighted degree of a node]
- Show that running the algorithm multiple times independently at random, and taking the minimum among the min-cuts thus produced, the probability of success can be made at least 1 − 1/nc for a constant c > 0 (hence, with high probability).

SOLUTION