Droite d'ajustement affine

On a représenté sur le graphique ci-après l'évolution de la pression d'un gaz en fonction de sa température. Les points semblent tous proches d'une droite. On souhaite la tracer et obtenir son équation.

A. Traitement par la calculatrice

Saisie de la série double (T, P)

TI Premium CE					CASIO Graph	90+E	Numworks					
Appuye Sélectio Appuye Saisir le Saisir le	onner E er sur la s valeu	DIT pui touche irs de T	is 1:Edi e Entre dans L	r	Appuyer sur la touche Sélectionner l'onglet S Appuyer sur la touche Saisir les valeurs de T List 1.	TAT 2 EXE Idans	Dans le menu Principal, sélectionne REGRESSIONS. Puis l'onglet Données. Saisir les valeurs de T dans X1. Saisir les valeurs de P dans Y1.					
10 20 50 80 100	2300 2385 2470 2720 2720 2975 3140	L3		LS	Saisir les valeurs de P dans List 2. List 1 List 2 List 3 List 4 SUB 50 2720 5 80 2975 6 100 3140	t a List u	Données XI 0 10 20 50 80 100 100 100 100 100 100 100 100 100	71 2300 2305 2470 2729 2975 3140	State X2			

Équation de la droite de régression linéaire

Avec deux chiffres significatifs, on peut écrire $P = 8.4 \, T + 2.3 \times 10^3$. Cette équation permet d'évaluer des valeurs de pression (en hPa) ou de température (en °C). Par exemple, le zéro absolu est défini comme la température où la pression est nulle. Si P = 0 hPa, alors $T = -2.7 \times 10^2$ °C.

B. Traitement par un tableur (Excel ou Calc)

Les données sont saisies dans le tableur et la représentation graphique effectuée.

Excel	Calc					
Faire un clic droit sur un des points représentés puis cliquer sur Ajouter une courbe de tendance	Faire un clic droit sur un des points représentés puis cliquer sur Insérer une courbe de tendance.					
Choisir ensuite sur Linéaire sur le panneau de droite et sur Afficher l'équation sur le graphique.	Choisir ensuite sur Linéaire et sur Afficher l'équation.					

Avec deux chiffres significatifs, on peut écrire $P=8.4~T+2.3\times10^3$ (avec P en hPa et T en °C). Cette équation permet d'évaluer des valeurs de pression ou de température. Par exemple, le zéro absolu est défini comme la température où la pression est nulle. Si P=0 hPa alors $T=-2.7\times10^2$ °C.

EXERCICE D'APPLICATION

Le tableau ci-après fournit l'évolution de la surface de la banquise (en millions de km²) entre 1990 et 2006.

Année	1990	1991	1992	1993	1994	1995	1997	1999	2000	2001	2003	2004	2006
Surface de la banquise	4,50	5,02	4,46	4,78	4,44	5,25	4,28	4,19	4,49	4,07	4,29	4,03	4,00

- a. Donner une équation de la droite de tendance des données.
- b. Proposer une estimation de la surface de la banquise en 2010.