Силы, действующие на сплошную среду, тензор напряжений

Верещагин Антон Сергеевич канд. физ.-мат. наук, старший преподаватель

Кафедра аэрофизики и газовой динамики ФФ НГУ

6 октября 2018 г.

Аннотация

Объемные и массовые силы

Определение

Силы, действующие на каждый элемент объема $d\omega$ независимо от того, существуют ли рядом с объемом $d\omega$ другие частицы или нет, называются объемными. Если такие силы отнесены к единице массы, то они называются массовыми.

Объемные и массовые силы

Определение

Силы, действующие на каждый элемент объема $d\omega$ независимо от того, существуют ли рядом с объемом $d\omega$ другие частицы или нет, называются объемными. Если такие силы отнесены к единице массы, то они называются массовыми.

Пример

Объемная сила, действующая на частицу среды в поле силы тяжести, определяется соотношением

$$d\vec{F} = \rho \vec{g} d\omega,$$

где ρ – плотность жидкой частицы, \vec{g} – вектор ускорения свободного падения.

Поверхностные силы

Выделенный объем сплошной среды ω , с фиксированной точкой \vec{x} внутри него и элементарной площадкой dS с единичной нормалью \vec{n}

Определение

Напряжением поверхностной силы \vec{f} называется величина силы, отнесенная к элементарной площадке dS с единичной нормалью \vec{n} , возникающая в результате взаимодействия частей среды с разных сторон от элементарной площадки в малой окрестности точки \vec{x}

Поверхностные силы

Выделенный объем сплошной среды ω , с фиксированной точкой \vec{x} внутри него и элементарной площадкой dS с единичной нормалью \vec{n}

Замечания

- Поверхностная сила существует в каждой точке среды (как на поверхности, так и на границе).
- Поверхностная сила является функцией точки среды \vec{x} и ориентации площадки \vec{n} :

$$\vec{f} = \vec{f}(\vec{x}, \vec{n}).$$

• Считаем, что \vec{n} — вектор внешней единичной нормали.

Поверхностные силы

Выделенный объем сплошной среды ω , с фиксированной точкой \vec{x} внутри него и элементарной площадкой dS с единичной нормалью \vec{n}

Замечания

• Для определения суммарной силы, действующей на объем ω , ограниченного поверхностью S, необходимо проинтегрировать $\vec{f}(\vec{x}, \vec{n}(\vec{x}))$ по этой поверхности:

$$\vec{F} = \int_{S} \vec{f}(\vec{x}, \vec{n}(\vec{x})) dS.$$

Принцип равенства действий и противодействий

Иллюстрация равенства напряжения на противоположных направлениях

Если рассмотреть напряжения, возникающие в точке \vec{x} на площадке с единичной нормалью \vec{n} и ей противоположной, то в следствие принципа равенства действия и противодействия

$$\vec{f}(\vec{x},\vec{n}) = -\vec{f}(\vec{x},-\vec{n}).$$

Разложение напряжения

Разложение напряжения на нормальную и тангенциальную составляющие

Напряжение в точке \vec{x} , возникающее на площадке dS с единичной нормалью \vec{n} , можно представить в виде суммы нормальной \vec{f}_n и тангенциальной составляющих \vec{f}_{τ} :

$$\vec{f} = \vec{f}_n + \vec{f}_\tau.$$

В этом случае \vec{f}_n называется нормальным растяжением или нормальным давлением. \vec{f}_{τ} называют косым напряжением или силой трения.