

J.R. Esteban

ANÁLISIS MATEMÁTICO

GRADO EN CC. MATEMÁTICAS, GRUPO 721, 2018-2019

Ejercicios 8 a 14

- 8. Sea X un espacio vectorial normado.
- A. Demostrar que si X es un espacio de Banach, entonces toda serie absolutamente convergente es convergente.
- B. Sea $\{x_n\}_n$ una sucesión de CAUCHY en X. Demostrar que existe una sucesión $\{n_j\}_j \subset \mathbb{N}$, estrictamente creciente y tal que

$$\sum_{j=1}^{\infty} \|x_{n_{j+1}} - x_{n_j}\| \le \sum_{j=1}^{\infty} \frac{1}{2^j}.$$

- C. Demostrar que es convergente toda sucesión de CAUCHY que tiene una subsucesión convergente.
- D. Demostrar que X es un espacio de Banach cuando toda serie absolutamente convergente es convergente.
 - 9. A.
 - 1. Demostrar que todos los $a, b \in \mathbb{R}$ positivos satisfacen

$$\frac{a+b}{1+a+b} < \frac{a}{1+a} + \frac{b}{1+b}$$

2. Demostrar que todos los $a, b \in \mathbb{R}$ cumplen

$$\frac{|a+b|}{1+|a+b|} < \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}.$$

S. B. Considérese el espacio vectorial S formado por todas las sucesiones $X = \{x_n\}_n$ de números reales. Demostrar que

$$d(X,Y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}$$

es una métrica en ${\mathcal S}$.

10. Sea $(E, \|\cdot\|)$ un espacio vectorial normado y sea

$$C = \overline{B(0;1)} = \{ x \in E : ||x|| \le 1 \}$$

la bola unidad cerrada de E.

A. Demostrar que para todos los r, s > 0 se verifica

$$r C = \{ x \in E : ||x|| \le r \},\$$

 $r C + s C = (r + s) C.$

- B. Demostrar que las dos identidades anteriores también son válidas para la bola unidad abierta de ${\cal E}$.
- 11. Considérese el espacio vectorial ℓ^2 formado por todas las sucesiones $X=\{x_n\}_{\!\scriptscriptstyle n}$ de números reales para las que

$$\left\|X\right\|_2^2 = \sum_{n=0}^{\infty} x_n^2$$

es convergente.

- 1. Demostrar que esta norma procede de un producto escalar $\langle \cdot, \cdot \rangle$ en ℓ^2 .
- 2. Sea, para cada $j \in \mathbb{N}$, la sucesión $\mathbf{e}_j = \{e_{j,n}\}_n$ definida por

$$e_{j,n} = \left\{ egin{array}{ll} 1 \,, & n = j \,, \\ 0 \,, & n
eq j \,. \end{array} \right.$$

Considérese el conjunto $A=\left\{\mathbf{e}_j: j\in\mathbb{N}\right\}$. Demostrar que A es un subconjunto cerrado y acotado de ℓ^2 .

3. Calcular cada

$$\left\|\mathbf{e}_i - \mathbf{e}_j\right\|_2$$

Demostrar que A no es compacto.

- 12. Sean (X,d) un espacio métrico y A u subconjunto de X. Considérense el cierre \overline{A} de A y el conjunto de puntos de acumulación de A, que denotamos por A'. Demostrar:

 1. A' es cerrado en (X,d).

 - 2. Si $A \subset B$, entonces $A' \subset B'$.
 - 3. $(A \cup B)' = A' \cup B'$.
 - 4. $(\overline{A})' = A'$.
 - 5. \overline{A} es cerrado en (X, d).
 - 6. \overline{A} es el menor conjunto cerrado que contiene a A.

13. Dados un espacio métrico (X,d), un subconjunto A de X y un punto $c \in X$, decimos que c es un punto interior de A cuando existe algún abierto G tal que $x \in G \subset A$.

Coleccionamos todos los puntos interiores de A en el conjunto que denotamos Int A. Obsérvese que, con esta definición, un conjunto A es abierto si y sólo si coincide con Int A.

A. Demostrar las siguientes identidades:

- 1. Int $A = X \setminus \overline{X \setminus A}$.
- 2. Int $(X \setminus A) = X \setminus \overline{A}$.
- 3. Int $(\operatorname{Int} A) = \operatorname{Int} A$.
 - B. Denotando por ∂A la frontera de A,
- 1. Int (∂A) es vacío si A es abierto o si A es cerrado.
- 2. Dar un ejemplo de un A y un X para los que Int $(\partial A) = X$.
- 3. Si Int $A = \text{Int } B = \emptyset$ y A es cerrado entonces Int $(A \cup B) = \emptyset$.
- 4. Dar un ejemplo en el que $\operatorname{Int} A=\operatorname{Int} B=\emptyset$, pero $\operatorname{Int} (A\cup B)=X$.
- 5. $\partial A = \overline{A} \cap \overline{X \setminus A}$ y $\partial A = \partial (X \setminus A)$.
- 6. Si $\overline{A} \cap \overline{B} = \emptyset$ entonces $\partial (A \cup B) = \partial A \cup \partial B$.
- 14. Considérense $(\mathbb{R},|\cdot|)$ y también $(\mathbb{R},\overline{d})$, donde

$$d(x,y) = \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} \right|$$

Comprobar que esta función d(x,y) define una métrica en \mathbb{R} .

1. Representar gráficamente la función

$$f(x) = \frac{x}{1+|x|} \,.$$

Demostrar que f es biyectiva, continua y con inversa continua entre estos dos espacios métricos. En particular, concluir que toda sucesión es simultáneamente convergente en ellos.

2. Estudiar si la sucesión $\{n\}_n$ es de Cauchy o convergente en $(\mathbb{R}\,,d\,)$. ¿Es completo este espacio métrico?

