Linear Programs

Initializing The Simplex Algorithm

Bashar Dudin

November 20, 2018

EPITA

Where We Stand, What We Face?

We now have an algorithm SIMPLEX (*Restricted*), which is conjectured to solve linear programs. For the time being we've shown that it terminates either by specifying that we have an unbounded linear program, or by returning a finite value *expected* to be the maximum we are looking for.

Uptill now, we've been working under the following two assumptions:

- Our linear program is *feasible*; meaning that it has at least one feasible solution
- The basic solution of the initial slack form is feasible.

Where We Stand, What We Face?

We now have an algorithm SIMPLEX (*Restricted*), which is conjectured to solve linear programs. For the time being we've shown that it terminates either by specifying that we have an unbounded linear program, or by returning a finite value *expected* to be the maximum we are looking for.

Uptill now, we've been working under the following two assumptions:

- Our linear program is *feasible*; meaning that it has at least one feasible solution
- The basic solution of the initial slack form is feasible.

During this lecture, we are going to build a function init_simplex taking in a linear program (A, b, c, v) and either returning back the fact it is **not** feasible or a linear program $(N, B, \underline{A}, \underline{b}, \underline{c}, v)$ in slack form having feasible basic solution.

Let *L* be the linear program, given in standard form:

maximize
$$z = v + \sum_{j=1}^{n} c_j x_j$$
 subject to

with

$$\forall i \in \{1, \dots, m\}, \quad \sum_{j=1}^{n} a_{ij} x_j \le b_i$$

 $\forall j \in N, \quad x_j \ge 0$

Let *L* be the linear program, given in standard form:

maximize
$$z = v + \sum_{j=1}^{n} c_{j} x_{j}$$
 subject to
$$\forall i \in \{1, \dots, m\}, \quad \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}$$
 with
$$\forall j \in N, \quad x_{i} \geq 0$$

Out of L we build the following auxiliary linear program L_m :

maximize
$$z=-x_0$$
 subject to
$$\forall i \in \{1,\dots,m\}, \quad \sum_{j=1}^n a_{ij}x_j-x_0 \leq b_i$$
 with
$$\forall j \in N \cup \{0\}, \quad x_j \geq 0$$

Proposition

L is feasible if, and only if, the optimal objective value of L_m is 0.

Proposition

L is feasible if, and only if, the optimal objective value of L_m is 0.

Proof: Notice first that the optimal objective value of L_m is 0. Therefore, if we show that 0 is an objective value of L_m it is necessarily the optimal one.

Proposition

L is feasible if, and only if, the optimal objective value of L_m is 0.

Proof: Notice first that the optimal objective value of L_m is 0. Therefore, if we show that 0 is an objective value of L_m it is necessarily the optimal one. If L is feasible then there is a tuple (t_1, \ldots, t_n) of non-negative real numbers satisfying all linear constraints of L. The tuple $(0, t_1, \ldots, t_n)$ does thus satisfy L_m and

0 is then an objective value of L_m , i.e. the optimal one.

Proposition

L is feasible if, and only if, the optimal objective value of L_m is 0.

Proof: Notice first that the optimal objective value of L_m is 0. Therefore, if we show that 0 is an objective value of L_m it is necessarily the optimal one. If L is feasible then there is a tuple (t_1,\ldots,t_n) of non-negative real numbers satisfying all linear constraints of L. The tuple $(0,t_1,\ldots,t_n)$ does thus satisfy L_m and

0 is then an objective value of L_m , i.e. the optimal one.

Conversely, if L_m has objective value 0 (thus optimal) it is of the form $(0, t_1, ..., t_n)$. Plugging this tuple in the linear constraints of L_m it implies $(t_1, ..., t_n)$ is a solution of L_m

Proposition

L is feasible if, and only if, the optimal objective value of L_m is 0.

The difference between L and L_m is that L_m is always feasible :

If b_{min} is the smallest negative b_i for $i \in B$, the tuple $(-b_{min}, 0, ..., 0)$ is a feasible solution of L_m .

Thus, temporarily admitting validity of the *restricted* simplex algorithm, if we're able to find a linear program equivalent to L_m which has feasible basic solution then we can decide on the feasibilty of L.

Consider the slack form of L_m

maximize
$$z=-x_0$$
 subject to
$$\forall\,i\quad x_{i+m}+\sum_{j=1}^n a_{ij}x_j-x_0=b_i$$
 with
$$\forall\,j\in N\cup B\cup\{0\},\quad x_j\geq 0$$

Consider the slack form of L_m

maximize
$$z=-x_0$$
 subject to
$$\forall\,i\quad x_{i+m}+\sum_{j=1}^n a_{ij}x_j-x_0=b_i$$
 with
$$\forall\,j\in N\cup B\cup\{0\},\quad x_j\geq 0$$

Basic solution of L_m is not feasible as soon as L is not, i.e. as soon as a b_i is negative.

We assume this is the case.

Consider the slack form of L_m

maximize
$$z=-x_0$$
 subject to
$$\forall i \quad x_{i+m}+\sum_{j=1}^n a_{ij}x_j-x_0=b_i$$
 with
$$\forall j\in N\cup B\cup\{0\},\quad x_j\geq 0$$

Basic solution of L_m is not feasible as soon as L is not, i.e. as soon as a b_i is negative.

We assume this is the case.

Let b_{min} be the minimal b_i coefficient. We already know that $(-b_{min}, 0, ..., 0, \boldsymbol{b} - b_{min})$ is a feasible solution of L_m .

Consider the slack form of L_m

maximize
$$z=-x_0$$
 subject to
$$\forall i \quad x_{i+m}+\sum_{j=1}^n a_{ij}x_j-x_0=b_i$$
 with
$$\forall j\in N\cup B\cup\{0\},\quad x_j\geq 0$$

Basic solution of L_m is not feasible as soon as L is not, i.e. as soon as a b_i is negative. We assume this is the case. Let b_{min} be the minimal b_i coefficient. We already know that $(-b_{min}, 0, ..., 0, \boldsymbol{b} - b_{min})$ is a feasible solution of L_m .

Let's now use pivot with entering variable 0 and leaving one min. The **same** previous feasible solution of L_m is now the basic solution of the linear program we got after pivoting.

Consider the slack form of L_m

maximize
$$z=-x_0$$
 subject to
$$\forall i \quad x_{i+m} + \sum_{j=1}^n a_{ij}x_j - x_0 = b_i$$
 with
$$\forall j \in N \cup B \cup \{0\}, \quad x_j \ge 0$$

Basic solution of L_m is not feasible as soon as L is not, i.e. as soon as a b_i is negative. We assume this is the case.

Let b_{min} be the minimal b_i coefficient. We already know that $(-b_{min}, 0, ..., 0, \boldsymbol{b} - b_{min})$ is a feasible solution of L_m .

Let's now use pivot with entering variable 0 and leaving one min. The **same** previous feasible solution of L_m is now the basic solution of the linear program we got after pivoting.

We got an equivalent linear program to L_m having feasible basic solution!

Tableau of Auxiliary Linear Program

The tableau T_m of L_m is obtained out of the one for L (T) by adding column $(1,-1,...,-1)^T$ to tableau before column \boldsymbol{b}^T and putting old coefficients of first row to 0.

	x_1	• • •	x_n	x_{n+1}	x_{n+2}	• • •	x_{n+m}	x_0	
	0		0	0	0	• • •	0	1	0
n+1	a_{11}		a_{1n}	1	0		0	-1	b_1
n+2	a_{21}	• • •	a_{2n}	0	1	• • •	0	-1	b_2
:	:	٠.	÷	:	÷	٠.	:	÷	÷
n+m	a_{m1}	• • •	a_{mn}	0	• • •	• • •	1	-1	b_m

Testing Feasibility

```
c = T[0, :]
    def is feasible(N. B. T):
    """Testing feasibility of linear program.
                                                        T[0, :] = [0]*q
2
                                                        new_c = np.array([1] + [-1]*(p-1), dtype=float)
3
                                                        T = np.insert(T, -1, new_c, axis=1)
    Args:
                                                    17
      N, B (list[int]): lists of non-basic and
                                                        N.append(0)
                                                        # pivoting to be basic feasible
      basic variables.
      T (ndarray[float]): numpy array for
                                                        i_min = np.argmin(T[1: ,-1])
                                                        pivot(N, B, T, i_min, 0)
      tableau of linear program.
8
    Output:
                                                        V = \_simplex(N, B, T)
9
      (bool) True if program is feasible
                                                        return math.isclose(V[0], 0)
10
11
      False otherwise.
                                                        # Possibly slightly modifying the
12
                                                        # optimisation problem ...
    p, q = T.shape[0], T.shape[1]
13
```

Testing Feasibility

```
c = T[0, :]
    def is feasible(N. B. T):
    """Testing feasibility of linear program.
                                                       T[0, :] = [0]*q
2
                                                       new_c = np.array([1] + [-1]*(p-1), dtype=float)
3
                                                       T = np.insert(T, -1, new_c, axis=1)
    Args:
      N, B (list[int]): lists of non-basic and
                                                       N.append(0)
                                                       # pivoting to be basic feasible
     basic variables.
      T (ndarray[float]): numpy array for
                                                       i_min = np.argmin(T[1: ,-1])
                                                       pivot(N, B, T, i_min, 0)
      tableau of linear program.
    Output:
                                                       V = \_simplex(N, B, T)
9
     (bool) True if program is feasible
                                                       return math.isclose(V[0], 0)
10
     False otherwise.
                                                       # Possibly slightly modifying the
11
12
                                                       # optimisation problem ...
    p, q = T.shape[0], T.shape[1]
13
```

Not an equivalent LP to L there! Need to understand boundary effects.

Assumption

We assume is_feasible(N, B, T) returns ${\tt True}.$

Assumption

We assume $is_feasible(N, B, T)$ returns True.

Under the previous assumption $is_feasible$ transforms L_m into an equivalent linear program P which has feasible basic solution with objective value 0.

Assumption

We assume is_feasible(N, B, T) returns True.

• Replace the objective value of P with the original one of L.

Assumption

We assume is_feasible(N, B, T) returns True.

- Replace the objective value of *P* with the original one of *L*.
- Make of it a proper LP *Q* in slack form by replacing possible basic variables of the objective value with their expressions in terms of non-basic variables of *P*.

Assumption

We assume is_feasible(N, B, T) returns True.

- Replace the objective value of *P* with the original one of *L*.
- Make of it a proper LP *Q* in slack form by replacing possible basic variables of the objective value with their expressions in terms of non-basic variables of *P*.
- Ensure x_0 is no more a basic variable Q by pivoting with leaving variable 0 and entering one any variable having non-zero coefficient.

Assumption

We assume is_feasible(N, B, T) returns True.

- Replace the objective value of *P* with the original one of *L*.
- Make of it a proper LP *Q* in slack form by replacing possible basic variables of the objective value with their expressions in terms of non-basic variables of *P*.
- Ensure x_0 is no more a basic variable Q by pivoting with leaving variable 0 and entering one any variable having non-zero coefficient.

Fact

Putting x_0 to 0 in Q gives back an equivalent LP to L having feasible basic solution.

The is_feasible function

```
def is feasible(N. B. T):
                                                         new_c = np.array([1] + [-1]*(p-1), dtype=float)
    """Testing feasibility of linear program.
                                                         T = np.insert(T, -1, new_c, axis=1)
2
                                                    20
                                                         N.append(0)
3
                                                    21
    Args:
                                                         # pivoting to be basic feasible
      N, B (list[int]): lists of non-basic and
                                                         i_min = np.argmin(T[1: ,-1])
5
      basic variables.
                                                         pivot(N, B, T, i_min, 0)
      T (ndarray[float]): numpy array for
                                                         V = \_simplex(N, B, T)
      tableau of linear program.
                                                         if 0 in B:
8
                                                    26
9
    Output:
                                                           1, e = B.index(0), 0
                                                           while T[1, e] == 0 \text{ or } e == 1:
10
      (bool) True if program is feasible
                                                    28
     False otherwise.
                                                             e += 1
11
                                                    29
    Boundary effect:
                                                           pivot(N, B, T, 1, e)
                                                    30
                                                         for i in B:
      Transforms T into an equivalent LP having
13
      basic feasible solution if T is feasible.
                                                           c -= c[i]*T[B.index(i), :]
14
    11 11 11
                                                         T[0, :] = c
15
    p, q = T.shape[0], T.shape[1]
                                                         return math.isclose(V[0], 0)
16
                                                         # Possibly slightly modifying the
    c = T[0, :]
                                                    35
    T[0, :] = [0]*q
                                                         # optimisation problem ...
18
                                                    36
```

We are now able to

• know whether a linear program is feasible or not using is_feasible

We are now able to

- know whether a linear program is feasible or not using is_feasible
- if it is feasible we can build up an equivalent linear program which has feasible basic solution using boundary effect of is_feasible

We are now able to

- know whether a linear program is feasible or not using is_feasible
- if it is feasible we can build up an equivalent linear program which has feasible basic solution using boundary effect of is_feasible
- once we get a linear program having feasible basic solution we can check whether our linear program is unbounded or has a *hopefully* optimal finite solution using the *restricted*_simplex.

We are now able to

- know whether a linear program is feasible or not using is_feasible
- if it is feasible we can build up an equivalent linear program which has feasible basic solution using boundary effect of is_feasible
- once we get a linear program having feasible basic solution we can check whether our linear program is unbounded or has a *hopefully* optimal finite solution using the *restricted*_simplex.

We are left with showing validity of restricted _simplex!

We call simplex the algorithm globally going through all previous steps.

