Report LAB04

Nicola Modugno

prof.ssa Serena Morigi

Abstract—Il presente elaborato confrontai motori di rendering Cycles ed Eevee di Blender, attraverso la realizzazione di una scena contenente un pozzo, un secchio metallico e un passerotto. L'obiettivo è analizzare come i due motori gestiscono illuminazione, materiali, riflessioni e rifrazioni, con particolare attenzione alla resa dell'acqua e del metallo. La scena è stata costruita utilizzando tecniche avanzate di shading e texturing, integrando mappe di rugosità, normal map e simulazioni fisiche. I risultati evidenziano le potenzialità fotorealistiche di Cycles, basato sul ray tracing, e l'efficienza in tempo reale di Eevee, utile per anteprime e ambienti interattivi.

1. Introduzione

In questo report vengono descritti i passaggi eseguiti durante il Laboratorio 4, che prevedeva la realizzazione di una scena contenente un gazebo, come illustrato nel materiale fornito, e un oggetto bonus a scelta. Come oggetto bonus è stata modellata una scala.

2. Realizzazione del banchetto

Il banchetto è stato modellato partendo da un cubo (Add → Mesh → Cube), scalato lungo gli assi X e Y per ottenere la forma base del banchetto. In Edit Mode, è stata selezionata la faccia superiore e abbassata lungo l'asse Z. Successivamente, sono stati effettuati due tagli orizzontali con lo strumento Loop Cut (Ctrl + R), per suddividere il banchetto in tre sezioni. Ciascuna delle facce superiori di ogni sezione è stata allungata di 0.1m attraverso lo strumento Extrude region. Successivamente, è stata aggiunta una nuova faccia di un'area inferiore rispetto a quella delle sezioni attraverso lo strumento Inset Faces le quali sono state estrusa di 0.1 verso il basso per creare un effetto di incasso. Infine, il cubo è stato rinominato "Banchetto" ed assegnato a una collection dedicata. Infine, il cubo è stato rinominato estato rinominato "Banchetto" e assegnato a una collection dedicata.

3. Realizzazione dei sacchi

Per modellare i sacchi presenti accanto al banchetto, si è partiti da un piano (Add → Mesh → Plane). In Object Mode, il piano è stato scalato lungo l'asse X di 0.2m. Successivamente, in Edit Mode, sono stati utilizzati gli strumenti Extrude e Scale per generare una forma approssimativa per il sacco. Infine, è stata rimossa la faccia superiore sempre in modalità Edit. Infine, sono stati applicati due Modifiers: Subdivision Surface e Solidify. I sacchi sono stati duplicati e aggiunti ad una collection dedicata.

4. Realizzazione delle arance

Le arance sono state modellate partendo da una UV Sphere (Add → Mesh → UV Sphere), scalata opportunamente. Dopo aver posizionato la prima arancia sul tavolo, sono state effettuate duplicazioni con Alt + D per creare dei Duplicate Linked. La realizzazione delle arance ha previsto, oltre alla loro modellazione anche, l'implementazione una simulazione fisica per rendere più realistica la scena. A ciascuna arancia è stato assegnato un sistema di fisica dinamica tramite il pannello Rigid Body Physics che è stato impostato su Active. Al banchetto, invece, è stato assegnato un Rigid Body di tipo Passive, così da interagire con gli oggetti attivi. In questo modo le arance, al momento della simulazione, cadono realisticamente sopra il tavolo e rimbalzano, per poi distribuirsi realisticamente sul su di esso.

5. Modellazione dei piatti

La realizzazione dei piatti è stata effettuata a partire da un piano. Successivamente, in Edit Mode, sono stati rimossi tre vertici per ottenere

un unico punto. Di questi, ne è stato estruso il profilo utilizzando la funzione Extrude (E) e Snap per ottenere il profilo del piatto con accurata precisione. Una volta ottenuta metà del profilo del piatto, è stata utilizzata la vita dall'alto (View Top, Numpad 7), e, attraverso lo strumento strumento Spin è stato generata una rotazione completa del profilo attorno all'asse Z, ottenendo, così, il piatto nella sua interezza. Il numero di steps e l'angolo è stato adeguato per ottenere una forma più realistica possibile e ,successivamente, sono stati rimossi i vertici doppi con Merge by Distance. Quindi, il piatto è stato smussato con il modificatore Subdivision Surface. Come ultimi passaggi sono stati aggiunti alcuni Geometry Nodes al piatto, adattandone i valori dei parametri rispetto alla scena. La topologia dei geometry nodes è descritta seguente modo:

- Il campo Geometry del nodo Group Input è stato collegato al campo Instance del nodo Instance on Points.
- Il campo Mesh del nodo Grid è stato collegato al campo Points del nodo Instance on Points.
- Il valore di output Instances del nodo Instance on Points è stato collegato al campo Geometry del nodo Group Output.
- Sono stati impostati i parametri Size X, Size Y, Vertices X,
 Vertices Y del nodo Grid.
- Sono stati impostati i parametri X, Y, Z dei campi Rotation e Scale del nodo Instance on Points.

Figure 1. Geometry nodes utilizzati.

Infine, l'oggetto piatto che include i suoi duplicati, è stato aggiunto alla collection. piatti.

6. Modellazione delle spezie

Le spezie sono state rappresentate mediante un piano (Add → Mesh → Plane), posizionato sull'incasso centrale del banchetto. Per creare una base più realistica è stato estruso il piano ed aggiunto un bevel creando un tronco di cono. Successivamente, è stata attivata la Sculpt mode, sono stati impostati i vari parametri del pennello ed è stata attivata l'opzione Dyntopo che aggiunge nuove geometrie alla mesh suddividendola ad ogni passaggio del pennello [1]. Anche in questo caso le spezie sono state assegnate ad una collection specifica.

7. Struttura del gazebo: pali, impalcature e tenda

La struttura portante del gazebo è composta da quattro pali verticali. Ognuno è stato realizzato partendo da un cubo, scalato verticalmente lungo Z che successivamente è stato duplicato attraverso l'operazione Duplicate Linked (ALT+D) e textttRepeat Last (SHIFT+R). Ciascun palo è stato duplicato ulteriormente, ruotato di 90° ed è stata

aggiustata la lungezza in Edit Mode mantenendo attiva la funzionalità Snap rispetto ai vertici. La tenda del gazebo è stata modellata a partire da un piano. Dopo averlo ruotato e duplicato, le due tende sono state estruse in Edit Mode per aggiungere manualmente le pieghe.

Realizzazione del terreno

Il terreno è stato aggiunto come un piano. Dopo averlo suddiviso, è stato applicato il modificatore Displace. Al piano è stata assegnata una nuova texture di tipo Clouds per fornire un disegno irregolare al Displace. Infine, è stato aggiunto il Modifier Smooth e spostati gli oggetti in una collection chiamata Gazebo.

Figure 2. Gazebo con sacchi, banchetto e scala.

Oggetto bonus: la scala

La scala è stata modellata partendo da un cubo, allungato lungo l'asse Z per formare un montante laterale. In Edit Mode, è stato applicato un bevel (Ctrl + B) per smussare gli spigoli. Poi, il montante è stato duplicato ne è stata scalata parte della geometria interna che successivamente è stata cancellandola per creare un effetto cavo.

Il secondo montante è stato ottenuto duplicando il primo e spostandolo lateralmente. I pioli della scala sono stati creati con cilindri, posizionati tra i due montanti. Dopo averli allineati, tutti gli elementi sono stati uniti (Ctrl + J) in un singolo oggetto. Infine, la scala è stata organizzata in una collection separata.