Section 2: Integer & Floating Point Numbers

- Representation of integers: unsigned and signed
- Unsigned and signed integers in C
- Arithmetic and shifting
- Sign extension
- Background: fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

Unsigned Integers

- Unsigned values are just what you expect
 - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + b_52^5 + ... + b_12^1 + b_02^0$
 - Useful formula: $1+2+4+8+...+2^{N-1}=2^{N}-1$
- You add/subtract them using the normal "carry/borrow" rules, just in binary

$$\begin{array}{ccc}
63 & 00111111 \\
+ & 8 & + \underline{00001000} \\
71 & 01000111
\end{array}$$

Signed Integers

Let's do the natural thing for the positives

- They correspond to the unsigned integers of the same value
 - Example (8 bits): 0x00 = 0, 0x01 = 1, ..., 0x7F = 127

But, we need to let about half of them be negative

- Use the high order bit to indicate negative: call it the "sign bit"
 - Call this a "sign-and-magnitude" representation
- Examples (8 bits):
 - $0x00 = 00000000_2$ is non-negative, because the sign bit is 0
 - $0x7F = 011111111_2$ is non-negative
 - $0x85 = 10000101_2$ is negative
 - $0x80 = 10000000_2$ is negative...

Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - Sign-and-magnitude: 10000001₂
 Use the MSB for + or -, and the other bits to give magnitude

Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - Sign-and-magnitude: 10000001₂
 Use the MSB for + or -, and the other bits to give magnitude (Unfortunate side effect: there are two representations of 0!)

Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - Sign-and-magnitude: 10000001₂
 Use the MSB for + or -, and the other bits to give magnitude (Unfortunate side effect: there are two representations of 0!)
 - Another problem: math is cumbersome

Two's Complement Negatives

How should we represent -1 in binary?

- Rather than a sign bit, let MSB have same value, but negative weight
 - W-bit word: Bits 0, 1, ..., W-2 add 2⁰, 2¹, ..., 2^{W-2} to value of integer when set, but bit W-1 adds -2^{W-1} when set
 - e.g. unsigned 1010_2 : $1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 10_{10}$ 2's comp. 1010_2 : $-1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = -6_{10}$
- So -1 represented as 1111₂; all
 negative integers still have MSB = 1
- Advantages of two's complement: only one zero, simple arithmetic
- To get negative representation of any integer, take bitwise complement and then add one!

$$\sim x + 1 = -x$$

Two's Complement Arithmetic

- The same addition procedure works for both unsigned and two's complement integers
 - Simplifies hardware: only one adder needed
 - Algorithm: simple addition, discard the highest carry bit
 - Called "modular" addition: result is sum modulo 2^W

Examples:

4	0100	4	0100	- 4	1100
+ 3	+ 0011	– 3	+ 1101	+ 3	+ 0011
= 7	= 0111	= 1	1 0001	- 1	1111
		drop carry	= 0001		

Two's Complement

Why does it work?

- Put another way: given the bit representation of a positive integer, we want the negative bit representation to always sum to 0 (ignoring the carry-out bit) when added to the positive representation
- This turns out to be the bitwise complement plus one
 - What should the 8-bit representation of -1 be?

```
00000001
+???????? (we want whichever bit string gives the right result)
```

Two's Complement

Why does it work?

- Put another way: given the bit representation of a positive integer, we want the negative bit representation to always sum to 0 (ignoring the carry-out bit) when added to the positive representation
- This turns out to be the bitwise complement plus one
 - What should the 8-bit representation of -1 be?

```
+1111111 (we want whichever bit string gives the right result)
```

Two's Complement

Why does it work?

- Put another way: given the bit representation of a positive integer, we want the negative bit representation to always sum to 0 (ignoring the carry-out bit) when added to the positive representation
- This turns out to be the bitwise complement plus one
 - What should the 8-bit representation of -1 be?

```
+1111111 (we want whichever bit string gives the right result)
```

```
00000010 00000011 +11111110 +11111101 100000000
```

Unsigned & Signed Numeric Values

Χ	Unsigned	Signed
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	- 6
1011	11	- 5
1100	12	-4
1101	13	- 3
1110	14	-2
1111	15	-1

- Both signed and unsigned integers have limits
 - If you compute a number that is too big, you wrap: 6 + 4 = ? 15U + 2U = ?
 - If you compute a number that is too small,
 you wrap: -7 3 = ? OU 2U = ?
- The CPU may be capable of "throwing an exception" for overflow on signed values
 - But it won't for unsigned
- C and Java just cruise along silently when overflow occurs...

Visualizations

Same W bits interpreted as signed vs. unsigned:

Two's complement (signed) addition: x and y are W bits wide

Values To Remember

Unsigned Values

- UMin = 0
 - **•** 000...0
- UMax =

$$2^{w} - 1$$

• 111...1

Two's Complement Values

- TMin = -2^{w-1}
 - **•** 100...0
- **■** TMax =

$$2^{w-1}-1$$

- **•** 011...1
- Negative 1
 - 111...1 OxFFFFFFF (32 bits)

Values for W = 16

	Decimal	Hex	Binary	
UMax	65535	FF FF	11111111 11111111	
TMax	32767	7F FF	01111111 11111111	
TMin	-32768	80 00	10000000 000000000	
-1	-1	FF FF	11111111 11111111	
0	0	00 00	00000000 00000000	