Cardio Good Fitness Case Study - Descriptive Statistics

The market research team at AdRight is assigned the task to identify the profile of the typical customer for each treadmill product offered by CardioGood Fitness. The market research team decides to investigate whether there are differences across the product lines with respect to customer characteristics. The team decides to collect data on individuals who purchased a treadmill at a CardioGoodFitness retail store during the prior three months. The data are stored in the CardioGoodFitness.csv file.

The team identifies the following customer variables to study:

- product purchased, TM195, TM498, or TM798;
- gender;
- age, in years;
- education, in years;
- relationship status, single or partnered;
- annual household income;
- average number of times the customer plans to use the treadmill each week;
- average number of miles the customer expects to walk/run each week;
- and self-rated fitness on an 1-to-5 scale, where 1 is poor shape and 5 is excellent shape.

Perform descriptive analytics to create a customer profile for each CardioGood Fitness treadmill product line.

```
# Load the necessary packages
In [1]:
         import numpy as np
         import pandas as pd
In [9]:
         # Load the Cardio Dataset
         mydata = pd.read csv('C:\\Users\\hp\\Downloads\\CardioGoodFitness.csv')
         mydata.head()
In [7]:
Out[7]:
            Product Age Gender Education MaritalStatus Usage Fitness Income
             TM195
         0
                      18
                           Male
                                        14
                                                            3
                                                                        29562
                                                                                112
                                                  Single
             TM195
                      19
                           Male
                                        15
                                                  Single
                                                            2
                                                                    3
                                                                        31836
                                                                                 75
             TM195
                                                                    3
                                                                        30699
                                                                                 66
                     19
                         Female
                                        14
                                               Partnered
             TM195
                      19
                                                                        32973
                                                                                 85
                           Male
                                        12
                                                  Single
                                                                    2
             TM195
                      20
                           Male
                                        13
                                               Partnered
                                                            4
                                                                        35247
                                                                                 47
         mydata.describe(include="all")
In [8]:
```

ut[8]:		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Mile
	count	180	180.000000	180	180.000000	180	180.000000	180.000000	180.000000	180.00000

unique	3	NaN	2	NaN	2	NaN	NaN	NaN	Na
top	TM195	NaN	Male	NaN	Partnered	NaN	NaN	NaN	Na
freq	80	NaN	104	NaN	107	NaN	NaN	NaN	Na
mean	NaN	28.788889	NaN	15.572222	NaN	3.455556	3.311111	53719.577778	103.19444
std	NaN	6.943498	NaN	1.617055	NaN	1.084797	0.958869	16506.684226	51.86360
min	NaN	18.000000	NaN	12.000000	NaN	2.000000	1.000000	29562.000000	21.00000
25%	NaN	24.000000	NaN	14.000000	NaN	3.000000	3.000000	44058.750000	66.00000
50%	NaN	26.000000	NaN	16.000000	NaN	3.000000	3.000000	50596.500000	94.00000
75%	NaN	33.000000	NaN	16.000000	NaN	4.000000	4.000000	58668.000000	114.75000
max	NaN	50.000000	NaN	21.000000	NaN	7.000000	5.000000	104581.000000	360.00000

```
In [7]: mydata.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):
Product
                180 non-null object
                180 non-null int64
Age
               180 non-null object
Gender
Education
               180 non-null int64
MaritalStatus 180 non-null object
                180 non-null int64
Usage
Fitness
               180 non-null int64
Income
               180 non-null int64
                180 non-null int64
Miles
```

dtypes: int64(6), object(3) memory usage: 12.7+ KB

```
In [14]: import matplotlib.pyplot as plt
         %matplotlib inline
         mydata.hist(figsize=(20,30))
```

```
array([[<matplotlib.axes. subplots.AxesSubplot object at 0x11501bac8>,
Out[14]:
                 <matplotlib.axes. subplots.AxesSubplot object at 0x1151e5b70>],
                [<matplotlib.axes. subplots.AxesSubplot object at 0x1156e1080>,
                <matplotlib.axes. subplots.AxesSubplot object at 0x11580a0f0>],
                [<matplotlib.axes. subplots.AxesSubplot object at 0x11585efd0>,
                <matplotlib.axes. subplots.AxesSubplot object at 0x11587e048>]], dtype=object)
```


sns.boxplot(x="Gender", y="Age", data=mydata)

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x1a199ac5c0>


```
In [21]: pd.crosstab(mydata['Product'], mydata['Gender'])
```

Out[21]: Gender Female Male

Product

TM195	40	40
TM498	29	31
TM798	7	33

In [22]: pd.crosstab(mydata['Product'], mydata['MaritalStatus'])

Out[22]: MaritalStatus Partnered Single

Product

TM195	48	32
TM498	36	24
TM798	23	17

In [24]: sns.countplot(x="Product", hue="Gender", data=mydata)

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x1a19c83390>

Out[41]:				Age	Ed	ucation		Fitness		Income		M
		MaritalStatus	Partnered	Single	Partnered	Single	Partnered	Single	Partnered	Single	Partnered	Sir
	Product	Gender										
	TM195	Female	27	13	27	13	27	13	27	13	27	
		Male	21	19	21	19	21	19	21	19	21	
	TM498	Female	15	14	15	14	15	14	15	14	15	
		Male	21	10	21	10	21	10	21	10	21	
	TM798	Female	4	3	4	3	4	3	4	3	4	
		Male	19	14	19	14	19	14	19	14	19	

Out[42]:		MaritalStatus	Partnered	Single
	Product	Gender		
	TM195	Female	46153.777778	45742.384615
		Male	50028.000000	43265.842105
	TM498	Female	49724.800000	48920.357143
		Male	49378.285714	47071.800000
	TM798	Female	84972.250000	58516.000000
		Male	81431.368421	68216.428571

Out[43]:		MaritalStatus	Partnered	Single	
	Product	Gender			
	TM195	Female	74.925926	78.846154	

	Male	80.190476	99.526316
TM498	Female	94.000000	80.214286
	Male	87.238095	91.100000
TM798	Female	215.000000	133.333333
	Male	176.315789	147.571429

In [44]: sns.pairplot(mydata)

Out[44]: <seaborn.axisgrid.PairGrid at 0x1a19ed4898>

In [45]: mydata['Age'].std()

Out[45]: 6.9434981353997953

In [46]: mydata['Age'].mean()

```
In [50]: sns.distplot(mydata['Age'])
```

Out[50]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1b1bffd0>


```
In [58]: mydata.hist(by='Gender',column = 'Age')
```



```
In [59]: mydata.hist(by='Gender',column = 'Income')
Out[59]: array([<matplotlib.axes._subplots.AxesSubplot object at 0x1a1bba48d0>,
```


In [60]: mydata.hist(by='Gender',column = 'Miles')

In [67]: corr = mydata.corr()
corr

```
Age Education
                                        Income
                                                  Miles
                          Usage
                                 Fitness
                 0.280496 \quad 0.015064 \quad 0.061105 \quad 0.513414 \quad 0.036618
    Age 1.000000
Education 0.280496
                1.000000 0.395155 0.410581 0.625827 0.307284
                 0.395155 1.000000 0.668606 0.519537 0.759130
  Usage 0.015064
                 Fitness 0.061105
 Income 0.513414
                 Miles 0.036618
                0.307284 0.759130 0.785702 0.543473 1.000000
```

```
In [66]: sns.heatmap(corr, annot=True)
```

Out[66]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1cb58a20>


```
In [96]: # Simple Linear Regression

#Load function from sklearn
from sklearn import linear_model

# Create linear regression object
regr = linear_model.LinearRegression()

y = mydata['Miles']
x = mydata[['Usage','Fitness']]

# Train the model using the training sets
regr.fit(x,y)

Out[96]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
```

```
_____
```

```
In [97]: regr.coef_
Out[97]: array([ 20.21486334, 27.20649954])
```

```
In [98]: regr.intercept_
```

Out[98]: -56.742881784648617

Out[67]:

```
In []: # MilesPredicted = -56.74 + 20.21*Usage + 27.20*Fitness
```