RISHABH DATTA

Email: rdatta@mit.edu • Website: ridatta.com • Linkedin: rishabh-datta

EDUCATION

Thesis: "Radiatively-cooled magnetic reconnection on the Z pulsed-power machine"	GPA: 5.0/5.0
Massachusetts Institute of Technology S.M. in Mechanical Engineering Thesis: "High-Energy-Density Shocks in Magnetized Hypersonic Plasma Flows"	2019-2022 <i>Cambridge, MA GPA: 5.0/5.0</i>
Georgia Institute of Technology B.S. in Mechanical Engineering (Highest Honors)	2015-2019 <i>GPA: 3.97/4.0</i>

RESEARCH EXPERIENCE

Research Assistant, Plasma Science & Fusion Center, MIT

Ph.D. in Mechanical Engineering; Major in Plasma Physics, Minor in Photonics

2020-Present

2022-Present

Cambridge, MA

Research Supervisor: Dr Jack D Hare

Massachusetts Institute of Technology

- Demonstrated first evidence of radiative collapse in a novel magnetic reconnection experiment
- Led the multi-institute MARZ collaboration (MIT, Sandia National Labs, Princeton, UMich, and others)
- Computational modeling (MHD, radiation transport, etc. in Python, Fortran) of high energy density plasmas
- Novel diagnostic development (machine learning with spectroscopy, tomography, shock-based imaging, etc.)
- Developed analysis and synthetic modeling software (visible/X-ray spectroscopy, interferometry, imaging, etc.)

Research Intern, Technical University Munich

2018

Research Supervisor: Dr Stefan Adami

• Developed Riemann solver(s) in C++ for compressible multiphase flow modeling

Research Assistant, Solar Fuels & Technologies Lab, Georgia Tech

2017-2018

Research Supervisor: Dr Peter Loutzenhiser

• Thermodynamic characterization of novel fuels for thermochemical concentrated solar reactors

AWARDS, GRANTS, AND HONORS

 Igor Alexeff Outstanding Student in Plasma Science Award (1 selected, international) ZNetUS Program Grant (\$50,000 to study compression in magnetized oblique shocks) 	2024 2024
• Wunsch Foundation Silent Hoist and Crane Outstanding Student Award (2 selected, department)	2023
• MIT College of Engineering Exponent Fellowship (1 selected, institution)	2023
• Finalist, Best Student Paper, IEEE Plasma Science Conference (5 selected, international)	2023
• Best Poster, MIT Machine Learning for Engineering Design Poster Expo.	2022
MIT MathWorks Fellowship	2022
• Keck Award in Thermal Sciences, MIT (1 selected, department)	2021
• GSC Conference Grant, MIT (1 selected, institute)	2021
Honorable Mention, MIT Mechanical Engineering Research Exhibition	2021
President's Undergraduate Research Award, Georgia Tech	2018
• Diversity, Equity and Inclusion Fellow, Georgia Tech	2018

Rishabh Datta (rdatta@mit.edu)

- Practical Research Experience Program Scholarship
- Dean's List

• Faculty Honors

2018 2018

2015, 2016, 2017, 2018

PUBLICATIONS

- [8] **Datta**, **R**., Crilly, A., Hansen, S., et al. (2024). Radiatively-cooled magnetic reconnection driven by pulsed power. Invited Paper. Phys. Plasmas. (In Review).
- [7] **Datta**, **R**., Crilly, A., Hansen, S., et al. (2024). Plasmoid formation and strong radiative cooling in a driven magnetic reconnection experiment. Phys. Rev. Lett. (In Review).
- [6] **Datta**, **R**., Crilly, A., Chittenden, J., et al. (2024). Simulations of radiatively cooled magnetic reconnection driven by pulsed-power. Journal Plasma Phys. (In Review).
- [5] **Datta**, R., Faez, A., Hare, J.D. (2023). Machine learning assisted analysis of visible spectroscopy in pulsed-power-driven plasmas. IEEE Transactions on Plasma Science. 10.1109/TPS.2024.3364975.
- [4] **Datta**, **R**., Angel, J., Greenly, J.B., et al. (2023). Plasma flows during the ablation stage of an over-massed pulsed-power-driven planar wire array. Phys. Plasmas 30, 092104.
- [3] **Datta, R.,** Russell, D. R., Tang, I., Clayson, T., et al. (2022). The structure of 3-D collisional magnetized bow shocks in pulsed-power-driven plasma flows. Journal Plasma Phys., 88(6), 905880604.
- [2] **Datta**, **R**., et al. (2022) Time-resolved velocity and ion sound speed measurements from simultaneous bow shock imaging and inductive probe measurements. Rev. Sci. Instrum., 93(10), 103530.
- [1] Bush, H. E., **Datta, R.**, & Loutzenhiser, P. G. (2019). Aluminum-doped strontium ferrites for a two-step solar thermochemical air separation cycle: Thermodynamic characterization and cycle analysis. Solar Energy, 188, 775-786.

SELECTED TALKS AND PRESENTATIONS

• APS Division of Plasma Physics Meeting, Denver, CO. Invited talk.	2023
• Z Fundamental Science Workshop (Virtual). <i>Invited plenary</i> .	2023
• Dense Z Pinch Conference, Ann Arbor, MI. Contributed talk.	2023
• International Magnetic Reconnection Workshop, Japan. Contributed talk.	2023
• International Conference on Plasma Science, Santa Fe, NM. Contributed talk.	2023
• MIT PSFC-NSF Meeting, Cambridge, MA. Invited talk.	2023
• MIT Machine Learning for Engineering Design Expo, Cambridge, MA. Contributed Poster.	2022
• APS Division of Plasma Physics Meeting, Spokane, WA. Contributed talk.	2022
• High Temp. Plasma Diagnostics, Rochester, NY. Contributed poster.	2022
• APS Division of Plasma Physics Meeting, Pittsburgh, PA. Contributed poster.	2023
• MIT-Imperial College Meeting. <i>Invited Talk</i> .	2021
• MIT Graduate Association of Mechanical Engineers Lunch Seminar.	2021

TEACHING AND MENTORSHIP

• Teaching Assistant, 2.005 Thermofluids Engineering, MIT

2024

Prepared teaching materials and lectures for 75 junior/senior undergraduate students

• Teaching Assistant, MechE Advanced Fluid Mechanics Qualifying Exam, MIT	2022
• The Professor's Toolkit Teaching Course, MIT, Cambridge, MA	2024
Teaching Days Course, MIT, Cambridge, MA	2024
Graduate Student Coach, MIT, Cambridge, MA	2021-2022

• Undergraduate researcher (UROP) Advisor

2022-Present

- Closely mentored 6 undergraduate students on research projects I proposed as part of my research.
- 1. Emily Neill (Spring 2023-Present): Measuring the adiabatic index in high energy density plasmas
- 2. Osahon Odiase (Spring Summer 2023): Construction and testing of a 1kA pulsed-power device
- 3. Dylan Robinson (Spring 2023): Mach-Zehnder interferometry measurements in planar wire arrays
- 4. Jane Atkinson (January 2023): Construction and testing of a 1kA pulsed-power device
- 5. Jose Arevalo (Spring Fall 2023): Design and modeling of a 1kA pulsed-power device
- 6. Emily Wong (Fall 2022): Three-dimensional MHD modeling of planar wire arrays

LEADERSHIP & ACTIVITIES

 MIT GSC Sustainability, Committee Chair MIT Sustainability Fund, Chair Peer Mentor MIT Graduate Association of Mechanical Engineers Housing and Community Affairs, MIT Graduate Student Council Graduate Student Coach, MIT 	2020-2022 2020-2022 2022-2023 2020-2022 2021
 Diversity and Inclusion Fellow, Georgia Tech Executive Board Member, Georgia Tech Mental Health Student Coalition Chair, Council of Grad Life, Georgia Tech Diversity & Inclusion Chair, Student Center Programs Council, Georgia Tech Committee Chair, Georgia Tech Student Government Association 	2018 2017 2017-2019 2016-2017 2015-2017

OTHER PROJECTS & PROFESSIONAL EXPERIENCE

Optics and Photonics

- Tomographic reconstruction using Mach-Zehnder interferometry measurements

 Developed simultaneous algebraic reconstruction tomography software in Python.
- Surface Plasmon Polaritons on Anisotropic Interfaces

 Analytical and FDTD computational modeling in Lumerical of SPP generation.
- Photonic band gaps in periodic double-negative multilayer structures

 Modeled (FEM, COMSOL) photonic band gaps in multilayer crystals with negative index materials.
- Optical Modeling of Tunable Optical Plasma Metamaterials
 Designed tunable plasma metamaterials using geometric ray tracing and Fourier optics.

Optimization and Machine Learning

• Optimization of pulsed-power-driven loads

Optimizing load geometry (using gradient-free optimization) based on electrostatic simulations.

Rishabh Datta (rdatta@mit.edu)

• Multi-objective optimization of linkage mechanisms Designed linkage mechanisms using genetic optimization algorithms (NSGA-II, SMS-EMOA, etc.)	2022
• Using Deep Generative models for topological design of truss structures Developed generative adversarial networks (GANs) and Variational Auto-Encoders (VAEs) in TensorFlow for generating novel diverse topologies of truss structures.	2023
Computational Modeling and Design	
• Engineering Intern, Emrgy Distributed Hydropower Solutions Performed CFD simulations, numerical finite-difference modeling, and electrical systems modeling of hydrokinetic devices using Simscale, MATLAB, Python, and VBA.	2019
• Design of a 10 kA micro-second pulsed power device Designed (in Simulink) and manufactured a table-top pulsed power device.	2023
• A finite-element Biot-Savart solver for electrostatic modeling of loads Developed a numerical tool in MATLAB & Python to model the electrostatic magnetic field distribute pulsed-power-driven loads.	2022 tion in
• Thermochemical energy storage for concentrated solar power plants Thermodynamic modeling for a 1.5 MW solar plant with a primary air cycle and a secondary Rankine cycle, and storage modeling using a MnO ₂ /Mn ₂ O ₃ continuous flow systems.	2018-2019

Rishabh Datta (rdatta@mit.edu)