VHDL Design Labs

By Ibrahim Mezzah

https://github.com/mezzahB

Tools

Xilinx Vivado

Nexys 4 DDR Board

https://www.amd.com/en/products/software/adaptivesocs-and-fpgas/vivado.html https://reference.digilentinc.com/ medi a/nexys4-ddr:nexys4ddr_rm.pdf

FPGA Based Design Flow

Simulation

Testbench

Design 0

Adder 1 bit

Without Carry_in

A	В	S	Carry_out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

A	В	Carry_in	S	Carry_out
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

Design 0Adder 1 bit

Simulation

Design 0Adder *n* bit

Design 1

Seven Segment Display (One digit)

Design 1

Seven Segment Display (One digit)


```
with BCD_IN select
SSEG <= "0000001" when "0000",
        "1001111" when "0001",
        "0010010" when "0010",
        "0000110" when "0011",
        "1001100" when "0100",
        "0100100" when "0101",
        "0100000" when "0110",
        "0001111" when "0111",
        "0000000" when "1000",
                                 -- 8
        "0000100" when "1001",
        "0001000" when "1010",
                                 -- A
        "1100000" when "1011",
                                 -- C
        "0110001" when "1100",
        "1000010" when "1101",
                                 -- d
        "0110000" when "1110",
                                 -- E
        "0111000" when "1111",
        "1111111" when others; -- turn off all LEDs
```

Design 1

Seven Segment Display (One digit)

Design 1 implementation

Design 2

Seven Segment Display (One selected digit)

Design 2Seven Segment Display (One selected digit)

Design 2

Seven Segment Display (One selected digit)

Design 2 implementation

Design 3

Seven Segment Display (Date display)

Four digit scanning display controller timing diagram.

Display example:

16.03.2016

Design 3

Seven Segment Display (Date display)

Proposed internal architecture

Design 3

Seven Segment Display (Date display)

Design 3 implementation

Design 4

Universal Asynchronous Receiver Transmitter (UART)

Transmission part

Design 4

Universal Asynchronous Receiver Transmitter (UART)

Transmission part

Shift register functioning

Design 4

Universal Asynchronous Receiver Transmitter (UART)

Transmission part

Design 4Universal Asynchronous Receiver Transmitter (UART)

Design 4

Universal Asynchronous Receiver Transmitter (UART)

Transmission part

Simulation

Design 5

Universal Asynchronous Receiver Transmitter (UART)

Design 5

Universal Asynchronous Receiver Transmitter (UART)

7 hits of data	(count of 4 hits)	8 bits including parity		
7 bits of data	(count of 1 bits)	even	odd	
0000000	0	0000000 0	00000001	
1010001	3	1010001 1	1010001 0	
1101001	4	1101001 0	1101001 1	
1111111	7	11111111 1	11111110	

Design 5

Universal Asynchronous Receiver Transmitter (UART)

Design 5

Universal Asynchronous Receiver Transmitter (UART)

Simulation