Question	Answer	Marks	Guidance
5(a)	Attempt correct process for solving 3-term quadratic equation in \sqrt{x}	M1	Accept $8y^2 - 6y - 9 \rightarrow (2y - 3)(4y + 3)$, if $y = \sqrt{x}$ specified.
	Obtain at least $2\sqrt{x} - 3 = 0$ or equivalent		Ignore $4\sqrt{x} + 3 = 0$. SC B1 for $\sqrt{x} = \frac{3}{2}$ with no method shown for
			solving the 3-term quadratic.
	Conclude $x = \frac{9}{4}$ ignore $\frac{9}{16}$	A1	SC B1 if no method shown for solving the 3-term quadratic.
	Alternative Method for Q5(a)		
	$3\sqrt{x} = 4x - \frac{9}{2} \rightarrow 16x^2 - 45x + \frac{81}{4}$ o.e and attempt correct process to solve	М1	
	Obtain $x = \frac{9}{4}$ or $\frac{9}{16}$	A1	SC B1 if no method shown for solving the 3-term quadratic.
	$x = \frac{9}{4} \text{ ignore } \frac{9}{16}$	A1	SC B1 if no method shown for solving the 3-term quadratic.
		3	

rublished

Question	Answer	Marks	Guidance
5(b)	Integrate to obtain form $k_1 x^2 + k_2 x^{\frac{3}{2}} + k_3 x$ where $k_1 k_2 k_3 \neq 0$	М1	
	Obtain correct $2x^2 - 2x^{\frac{3}{2}} + x$ or equivalent	A1	Allow unsimplified.
	Substitute $x = 4$ and $y = 11$ to attempt value of c	M1	Dependent on at least 2 correct terms involving x.
	Obtain $y = 2x^2 - 2x^{\frac{3}{2}} + x - 9$	A1	Must be simplified. Allow 'f(x) = '. Allow y missing if y appears previously.
		4	