

(51) Internationale Patentklassifikation ⁶ : C07D 213/61, A01N 43/40		A1	(11) Internationale Veröffentlichungsnummer: WO 98/42671
			(43) Internationales Veröffentlichungsdatum: 1. Oktober 1998 (01.10.98)
(21) Internationales Aktenzeichen: PCT/EP98/01354		(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).	
(22) Internationales Anmeldedatum: 9. März 1998 (09.03.98)		(81) Bestimmungsstaaten: AL, AU, BG, BR, BY, CA, CN, CZ, GE, HU, ID, IL, JP, KR, KZ, LT, LV, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TR, UA, US, VN, eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Prioritätsdaten: 197 11 569.1 20. März 1997 (20.03.97) DE		(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AKTIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).	
(72) Erfinder; und		Veröffentlicht	
(75) Erfinder/Anmelder (nur für US): SCHÄFER, Peter [DE/DE]; Römerstrasse 1, D-67308 Ottersheim (DE). HAM-PRECHT, Gerhard [DE/DE]; Rote-Turm-Strasse 28, D-69469 Weinheim (DE). MENGES, Markus [DE/DE]; Jacob-Löhr-Strasse 18, D-64625 Bensheim (DE). MENKE, Olaf [DE/DE]; Lerchenweg 3, D-67317 Altleiningen (DE). RACK, Michael [DE/DE]; Sandwingert 67, D-69123 Heidelberg (DE). ZAGAR, Cyril [DE/DE]; Georg-Herwegh-Strasse 31, D-67061 Ludwigshafen (DE). WESTPHALEN, Karl-Otto [DE/DE]; Mausbergweg 58, D-67346 Speyer (DE). MISSLITZ, Ulf [DE/DE]; Mandelring 74, D-67433 Neustadt (DE). WALTER, Helmut [DE/DE]; Grünstadter Strasse 82, D-67283 Obrigheim (DE).		Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.	
(54) Title: SUBSTITUTED 2-BENZ(O)YLPYRIDINES, THEIR PREPARATION AND THEIR USE AS HERBICIDES			
(54) Bezeichnung: SUBSTITUIERTE 2-BENZ(O)YLPYRIDIN DERivate, DEREN HERSTELLUNG UND DEREN VERWENDUNG ALS HERBIZIDE			
(57) Abstract			
<p>Substituted 2-benz(o)ylpyridines of formula (I) and the salts thereof, wherein n = 0, 1; x = CO, CH₂, CH(C₁-C₄-alkyl), CH-OH, CH-CN, CH-halogen, C(halogen)₂, CH-CONH₂, CH-CO-O(C₁-C₄-alkyl), CH-O(C₁-C₄-alkyl), C(CN) (C₁-C₄-alkyl); R¹ = halogen, C₁-C₄-halogen alkane, C₁-C₄-alkylthio, C₁-C₄-alkyl sulfinyl, C₁-C₄-alkyl sulfonyl; R² = H, halogen; R³ = H, NO₂, OH, halogen, C₁-C₄-alkoxy; R⁴ = H, NO₂, OH, halogen, C₁-C₄-alkyl, C₁-C₄ halogen alkane, C₁-C₄-alkoxy; R⁵ = H, NO₂, CN, halogen, C₁-C₈-alkyl, C₃-C₈-alkenyl, C₃-C₈-alkinyl, C₃-C₈-cycloalkyl, C₁-C₈-halogen alkane, C₂-C₈-halogen alkenyl, C₂-C₈-halogen alkane, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₂-C₄-alkenyl-C₁-C₄-alkyl, C₂-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-alkylsulfinyl-C₁-C₄-alkyl, C₁-C₄-alkylsulfonyl-C₁-C₄-alkyl, cyano-C₁-C₈-alkyl, cyano-C₂-C₈-alkenyl, cyano-C₃-C₈-alkinyl, optionally substituted OH, SH, SO-H, -SO₂-H, COOH or NH-COOH, -SO₂Cl, -N(R⁹, R¹⁰), -NH-SO₂-(C₁-C₈-alkyl), -N[-SO₂-(C₁-C₈-alkyl)]₂, -N(C₁-C₈-alkyl) [-SO₂-(C₁-C₈-alkyl)], -SO₂-N(R⁹, R¹⁰), -O-CO-NH-R⁹, optionally substituted CHO, -O-CHO or -NH-CHO, NH-CO-NH-R⁹, -O-CS-NH₂, -OCS-N(C₁-C₈-alkyl)₂, -CO-N(R⁹, R¹⁰), -CS-N (R⁹, R¹⁰), -CO-NH-SO₂-(C₁-C₄-alkyl), -CO-N(C₁-C₄-alkyl), -SO₂-(C₁-C₄-alkyl), hydroxycarbonyl-C₁-C₈-alkyl, (C₁-C₈-alkoxy)carbonyl-C₁-C₆-alkyl, -CH₂-CH(halogen)-CO-N(R⁹, R¹⁰), -CH₂-CH(halogen)-CN, -CH₂-CH(halogen)-CO-(C₁-C₄-alkyl), optionally substituted -CH₂-CH(halogen)-COOH, -CH=C(halogen)-COOH or -CH=C(C₁-C₄-alkyl)-COOH, optionally substituted -CH=N-OH or -CH(-Y-R¹⁵, -Z-R¹⁵), (II) or (III); R⁹, R¹⁰ = H, C₁-C₈-alkyl, C₃-C₈-cycloalkyl, C₂-C₈-alkenyl, C₃-C₈-alkinyl, C₁-C₈-halogen alkane, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-alkylsulfinyl-C₁-C₄-alkyl, C₁-C₄-alkylsulfonyl-C₁-C₄-alkyl, cyano-C₁-C₈-alkyl, hydroxycarbonyl-C₁-C₄-alkyl, (C₁-C₄-alkoxy)carbonyl-C₁-C₄-alkyl, (C₃-C₆-cycloalkoxy)carbonyl-C₁-C₄-alkyl, (C₁-C₄-alkoxy)-(C₁-C₄)alkoxy-carbonyl-C₁-C₄-alkyl, C₁-C₆-alkoxy, optionally substituted tetramethylene, pentamethylene or ethylene oxyethylene chain; Y, Z = O, S; R¹⁵ = C₁-C₈-alkyl, C₁-C₈ halogen alkane, C₁-C₄-alkoxy-C₁-C₄-alkyl; R¹⁶-R²¹ = H, CN, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkoxy, COOH, (C₁-C₈-alkoxy)carbonyl, CONH₂, (C₁-C₈-alkyl)aminocarbonyl, di(C₁-C₈-alkyl)aminocarbonyl; R⁶ = H, NO₂, halogen, optionally substituted OH or COOH; R⁷ = H, NO₂, halogen, optionally substituted OH; excluding those compounds in (I) in wherein X = CH₂ and R⁵ = optionally substituted OH as well as R³, R⁷ = H or R¹ = halogen as well as R³, R⁴, R⁶, R⁷ = H. The invention further relates to the use of said substances as herbicides and for dessication/defoliation of plants.</p>			

(57) Zusammenfassung

Substituierte 2-Benz(o)ylpyridine der Formel (I) und deren Salze, wobei n = 0, 1; x = CO, CH₂, CH(C₁-C₄-Alkyl), CH-OH, CH-CN, CH-Halogen, C(Halogen)₂, CH-CONH₂, CH-CO-O(C₁-C₄-Alkyl), CH-O(C₁-C₄-Alkyl), C(CN) (C₁-C₄-Alkyl); R¹ = Halogen, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl; R² = H, Halogen; R³ = H, NO₂, OH, Halogen, C₁-C₄-Alkoxy; R⁴ = H, NO₂, OH, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy; R⁵ = H, NO₂, CN, Halogen, C₁-C₈-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C₃-C₈-Cycloalkyl, C₁-C₈-Halogenalkyl, C₂-C₈-Halogenalkenyl, C₂-C₈-Halogenalkinyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₂-C₄-Alkenyloxy-C₁-C₄-alkyl, C₂-C₄-Alkenyloxy-C₁-C₄-alkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl, C₁-C₄-Alkylsulfinyl-C₁-C₄-alkyl, Cyano-C₁-C₈-alkyl, Cyano-C₂-C₈-alkenyl, Cyano-C₃-C₈-alkinyl, gegebenenfalls substituiertes OH, SH, SO-H, -SO₂-H, COOH oder NH-COOH, -SO₂Cl, -N(R⁹, R¹⁰), -NH-SO₂-(C₁-C₈-Alkyl), -[SO₂-(C₁-C₈-Alkyl)]₂, -N(C₁-C₈-Alkyl) [-SO₂-(C₁-C₈-Alkyl)], -SO₂-N(R⁹, R¹⁰), -O-CO-NH-R⁹, geg. subst. CHO, -O-CHO oder -NH-CHO, -NH-CO-NH-R⁹, -O-CS-NH₂, -OCS-N(C₁-C₈-Alkyl)₂, -CO-N(R⁹, R¹⁰), -CS-N(R⁹, R¹⁰), -CO-NH-SO₂-(C₁-C₄-Alkyl), -CO-N(C₁-C₄-Alkyl)-SO₂-(C₁-C₄-Alkyl), Hydroxycarbonyl-C₁-C₈-alkyl, (C₁-C₈-Alkoxy)carbonyl-C₁-C₆-alkyl, -CH₂-CH(Halogen)-CO-N(R⁹, R¹⁰), -CH₂-CH(Halogen)-CN, -CH₂-CH(Halogen)-CO-(C₁-C₄-Alkyl), geg. subst. -CH₂-CH(Halogen)-COOH, -CH=C(Halogen)-COOH oder -CH=C(C₁-C₄-Alkyl)-COOH, geg. subst. -CH=N-OH oder -CH-(Y-R¹⁵, -Z-R¹⁵), (II) oder (III); R⁹, R¹⁰ = H, C₁-C₈-Alkyl, C₃-C₈-Cycloalkyl, C₂-C₈-Alkenyl, C₃-C₈-Alkinyl, C₁-C₈-Halogenalkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl, C₁-C₄-Alkylsulfinyl-C₁-C₄-alkyl, C₁-C₄-Alkylsulfonyl-C₁-C₄-alkyl, Cyano-C₁-C₈-alkyl, Hydroxycarbonyl-C₁-C₄-alkyl, (C₁-C₄-Alkoxy)carbonyl-C₁-C₄-alkyl, (C₃-C₆-Cycloalkoxy)carbonyl-C₁-C₄-alkyl, (C₁-C₄-Alkoxy)carbonyl-C₃-C₇-cycloalkyl, C₁-C₄-Alkoxy-(C₁-C₄-alkoxy)carbonyl-C₁-C₄-alkyl, C₁-C₆-Alkoxy, gegebenenfalls substituiertes Phenyl oder Phenyl-C₁-C₄-alkyl, oder R⁹ + R¹⁰ zusammen = gegebenenfalls substituierte Tetramethylen-, Pentamethylen- oder Ethylenoxyethylenkette; Y, Z = O, S; R¹⁵ = C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl; R¹⁶-R²¹ = H, CN, C₁-C₈-Alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₈-Alkoxy, C₁-C₄-Alkoxy-C₁-C₄-alkoxy, COOH, (C₁-C₈-Alkoxy)carbonyl, CONH₂, (C₁-C₈-Alkyl)aminocarbonyl, Di(C₁-C₈-Alkyl)aminocarbonyl; R⁶ = H, NO₂, Halogen, gegebenenfalls substituiertes OH oder COOH; R⁷ = H, NO₂, Halogen, gegebenenfalls substituiertes OH; ausgenommen diejenigen Verbindungen (I), bei denen X = CH₂ und R⁵ = geg. subst. OH sowie R³, R⁷ = H oder R¹ = Halogen sowie R³, R⁴, R⁶, R⁷ = H; Verwendung: als Herbizide; zur Desikkation/Defoliation von Pflanzen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

SUBSTITUIERTE 2-BENZ(O)YLPYRIDIN DERIVATE, DEREN HERSTELLUNG UND DEREN VERWENDUNG
ALS HERBIZIDE

Beschreibung

5

Die vorliegende Erfindung betrifft neue substituierte
2-Benz(o)ylpyridine der Formel I

15 in der die Variablen folgende Bedeutungen haben:

n 0 oder 1;

20 X Carbonyl, Methylen, CH(C₁-C₄-Alkyl), CH-OH, CH-CN, CH-Halogen,
C(Halogen)₂, CH-CONH₂, CH-CO-O(C₁-C₄-Alkyl), CH-O(C₁-C₄-Alkyl)
oder C(CN)(C₁-C₄-Alkyl);

25 R¹ Halogen, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylthio, C₁-C₄-Alkyl-
sulfinyl oder C₁-C₄-Alkylsulfonyl;

R² Wasserstoff oder Halogen;

R³ Wasserstoff, Nitro, Hydroxy, Halogen oder C₁-C₄-Alkoxy;

30 R⁴ Wasserstoff, Nitro, Hydroxy, Halogen, C₁-C₄-Alkyl,
C₁-C₄-Halogenalkyl oder C₁-C₄-Alkoxy;

35 R⁵ Wasserstoff, Nitro, Cyano, Halogen, C₁-C₈-Alkyl,
C₃-C₈-Alkenyl, C₃-C₈-Alkynyl, C₃-C₈-Cycloalkyl, C₁-C₈-Halogen-
alkyl, C₂-C₈-Halogenalkenyl, C₂-C₈-Halogenalkinyl,

40 C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₂-C₄-Alkenyloxy-C₁-C₄-alkyl,
C₂-C₄-Alkinyloxy-C₁-C₄-alkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl,
C₁-C₄-Alkylsulfinyl-C₁-C₄-alkyl, C₁-C₄-Alkylsulfonyl-C₁-C₄-
alkyl, Cyano-C₁-C₈-alkyl, Cyano-C₂-C₈-alkenyl, Cyano-C₃-C₈-
alkinyl, -OR⁸, -SR⁸, -SO-R⁸, -SO₂-R⁸, -SO₂Cl, -N(R⁹,R¹⁰),

45 -NH-SO₂-(C₁-C₈-Alkyl), -N[-SO₂-(C₁-C₈-Alkyl)]₂,
-N(C₁-C₈-Alkyl)[-SO₂-(C₁-C₈-Alkyl)], -SO₂-N(R⁹,R¹⁰),
-N(R¹¹)-CO-R¹², -NH-CO-OR⁸, -O-CO-NH-R⁹, -O-CO-R¹²,

-NH-CO-NH-R⁹, -O-CS-NH₂, -O-CS-N(C₁-C₈-Alkyl)₂, -CO-OR⁸,
-CO-N(R⁹,R¹⁰), -CS-N(R⁹,R¹⁰), -CO-NH-SO₂-(C₁-C₄-Alkyl),

-CO-N(C₁-C₄-Alkyl)-SO₂-(C₁-C₄-Alkyl), -CO-R¹², Hydroxy-
carbonyl-C₁-C₈-alkyl, (C₁-C₈-Alkoxy)carbonyl-C₁-C₆-alkyl,

2

- CH₂-CH(Halogen)-CO-OR⁸, -CH₂-CH(Halogen)-CO-N(R⁹, R¹⁰),
- CH₂-CH(Halogen)-CN, -CH₂-CH(Halogen)-CO-(C₁-C₄-Alkyl),
- CH=C(Halogen)-CO-OR⁸, -CH=C(C₁-C₄-Alkyl)-CO-OR⁸, -CH=N-OR¹³,
- C(R¹⁴)=N-OR¹³, -CH(-Y-R¹⁵, -Z-R¹⁵), -C(R¹⁴)(-Y-R¹⁵, -Z-R¹⁵),

5

oder

, wobei

10

R⁸ für Wasserstoff, C₁-C₈-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₈-Halogen-alkyl, Cyano-C₁-C₈-alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl, C₁-C₄-Alkylsulfinyl-C₁-C₄-alkyl, C₁-C₄-Alkylsulfonyl-C₁-C₄-alkyl, C₃-C₈-Alkenyl, C₅-C₈-Cyclo-alkenyl, C₃-C₈-Halogenalkenyl, C₃-C₈-Alkinyl, Hydroxy-carbonyl-C₁-C₄-alkyl, (C₁-C₈-Alkoxy)carbonyl-C₁-C₆-alkyl, (C₃-C₈-Alkenyloxy)carbonyl-C₁-C₆-alkyl, (C₃-C₈-Alkinyloxy)-carbonyl-C₁-C₆-alkyl, C₁-C₄-Alkoxy-(C₁-C₄-alkoxy)carbonyl-C₁-C₄-alkyl, (C₁-C₈-Halogenalkoxy)carbonyl-C₁-C₆-alkyl, (C₃-C₈-Cycloalkyloxy)carbonyl-C₁-C₆-alkyl, (C₁-C₄-Alkoxy)-carbonyl-(C₁-C₄-alkoxy)carbonyl-C₁-C₄-alkyl, (C₃-C₆-Alkenyloxy)carbonyl-(C₁-C₄-alkoxy)carbonyl-C₁-C₄-alkyl, (C₃-C₆-Alkinyloxy)carbonyl-(C₁-C₄-alkoxy)carbonyl-C₁-C₄-alkyl, Hydroxycarbonyl-(C₁-C₄-alkoxy)carbonyl-C₁-C₄-alkyl, Oxetan-3-yloxycarbonyl-C₁-C₄-alkyl, Phenoxy carbonyl-C₁-C₄-alkyl, Benzyl oder Benzyloxycarbonyl-C₁-C₄-alkyl, wobei die Phenylringe der 3 letztgenannten Reste jeweils unsubstituiert sein oder ein bis drei Substituenten tragen können, jeweils ausgewählt aus der Gruppe bestehend aus Nitro, Cyano, Hydroxy, Hydroxycarbonyl, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, (C₁-C₄-Alkoxy)carbonyl und (C₁-C₄-Alkoxy)carbonyl-C₁-C₄-alkoxy;

35

40

45

R⁹, R¹⁰ unabhängig voneinander für Wasserstoff, C₁-C₈-Alkyl,
 C₃-C₈-Cycloalkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C₁-C₈-Halogen-
 25 alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl,
 C₁-C₄-Alkylsulfinyl-C₁-C₄-alkyl, C₁-C₄-Alkylsulfonyl-C₁-C₄-
 alkyl, Cyano-C₁-C₈-alkyl, Hydroxycarbonyl-C₁-C₄-alkyl,
 (C₁-C₄-Alkoxy)carbonyl-C₁-C₄-alkyl, (C₃-C₇-Cycloalkyloxy)-
 carbonyl-C₁-C₄-alkyl, (C₁-C₄-Alkoxy)carbonyl-C₃-C₇-cycloalkyl,
 30 C₁-C₄-Alkoxy-(C₁-C₄-alkoxy)carbonyl-C₁-C₄-alkyl, C₁-C₆-Alkoxy,
 Phenyl oder Phenyl-C₁-C₄-alkyl, wobei die Phenylringe der
 letzten beiden Reste unsubstituiert sein oder ein bis drei
 Substituenten tragen können, jeweils ausgewählt aus der
 Gruppe bestehend aus Nitro, Cyano, Hydroxy, Halogen,
 35 C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy,
 (C₁-C₄-Alkoxy)carbonyl und (C₁-C₄-Alkoxy)carbonyl-C₁-C₄-
 alkoxy

oder R⁹ und R¹⁰ zusammen für eine Tetramethylen-, Pentamethylen-
 40 oder Ethylenoxyethylenkette, die jeweils eine Hydroxycarbonyl-
 gruppe oder einen (C₁-C₆-Alkoxy)carbonylrest tragen kann;

R¹¹ für Wasserstoff, C₁-C₈-Alkyl, C₃-C₈-Alkenyl oder
 C₃-C₈-Alkinyl;

R¹², R¹³ unabhängig voneinander für Wasserstoff, C₁-C₈-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C₁-C₈-Halogenalkyl, C₁-C₄-Alkoxy-
C₁-C₄-alkyl, (C₁-C₄-Alkoxy)carbonyl-C₁-C₄-alkyl, C₃-C₈-Cyclo-
alkyl, Phenyl oder Phenyl-C₁-C₄-alkyl, wobei die Phenylringe
5 der letzten beiden Reste unsubstituiert sein oder ein bis
drei Substituenten tragen können, jeweils ausgewählt aus der
Gruppe bestehend aus Nitro, Cyano, Hydroxy, Hydroxycarbonyl,
Halogen, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogen-
alkoxy, (C₁-C₄-Alkoxy)carbonyl und (C₁-C₄-Alkoxy)carbonyl-
10 C₁-C₄-alkoxy;

R¹⁴ für C₁-C₈-Alkyl;

Y, Z unabhängig voneinander für Sauerstoff oder Schwefel;
15

R¹⁵ für C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl oder C₁-C₄-Alkoxy-
C₁-C₄-alkyl;

R¹⁶-R²¹ unabhängig voneinander für Wasserstoff, Cyano, C₁-C₈-Alkyl,
20 C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₈-Alkoxy, C₁-C₄-Alkoxy-C₁-C₄-
alkoxy, Hydroxycarbonyl, (C₁-C₈-Alkoxy)carbonyl, Amino-
carbonyl, (C₁-C₈-Alkyl)aminocarbonyl oder Di(C₁-C₈-alkyl)-
aminocarbonyl;

25 R²²-R²⁵ unabhängig voneinander für Wasserstoff, C₁-C₈-Alkyl,
C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Alkenyl oder C₃-C₈-Alkinyl

und
30 R²⁶-R²⁸ unabhängig voneinander für Wasserstoff oder C₁-C₈-Alkyl
stehen;

R⁶ Wasserstoff, Nitro, Halogen, -OR²⁹ oder -CO-OR²⁹ und
R⁷ Wasserstoff, Nitro, Halogen oder -OR³⁰,
wobei
35 R²⁹ und R³⁰ jeweils für eine der Bedeutungen von R⁸ stehen,
sowie die landwirtschaftlich brauchbaren Salze der Ver-
bindungen I,
ausgenommen diejenigen Verbindungen I, bei denen X Methylen
40 bedeutet, und
- R⁵ für -OR⁸ sowie R³ und R⁷ beide für Wasserstoff stehen oder
- R¹ für Halogen sowie R³, R⁴, R⁶ und R⁷ alle gleichzeitig für
Wasserstoff
stehen.
45

Außerdem betrifft die Erfindung

- die Verwendung der Verbindungen I als Herbizide oder zur Desikkation/Defoliation von Pflanzen,
- herbizide Mittel und Mittel zur Desikkation und/oder
- 5 Defoliation von Pflanzen, welche die Verbindungen I als wirksame Substanzen enthalten,
- Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs und zur Desikkation und/oder Defoliation von Pflanzen mit den Verbindungen I sowie
- 10 - Verfahren zur Herstellung der Verbindungen I und von herbiziden Mitteln und Mitteln zur Desikkation und/oder Defoliation von Pflanzen unter Verwendung der Verbindungen I.

In der EP-A 047 972 wurden Phenoxyalkansäurederivate zur Erhöhung 15 der Kohlehydrat-Einlagerung in Pflanzen beschrieben, deren allgemeine Formel - bei geeigneter Wahl der Variablen - auch Verbindungen I mit $n = 0$, $X = \text{Methylen}$, $R^1 = \text{Halogen}$, Di- oder Tri-fluormethyl, $R^2 = \text{Fluor oder Chlor}$, R^3 , R^4 , R^6 und $R^7 = \text{Wasserstoff}$ und $R^5 = \text{Ethoxy}$, 2-Butoxy oder But-3-en-2-yloxy, jeweils 20 substituiert mit einem Hydroxycarbonyl-, bestimmten Ester-, Thioester- oder Säureamid-Rest, umfaßt.

Diejenigen 2-Benzylpyridine I mit $n = 0$, $X = \text{Methylen}$, $R^1 = \text{Halogen oder Trifluormethyl}$, R^3 , R^4 und $R^7 = \text{Wasserstoff}$, $R^5 = \text{Ethoxy}$, 2-Butoxy oder But-3-en-2-yloxy, das jeweils eine bestimmte Säureamidgruppe trägt, und $R^6 = \text{Wasserstoff oder Halogen}$ fallen unter die allgemeine Formel von in der DE-A 29 48 095 als 25 Herbizide und Fungizide gelehrt Verbindungen.

30 Aus der schweizer Patentschrift CH 642 075 ist eine Verbindung mit $n = 0$, $X = \text{Methylen}$, $R^1 = \text{Chlor}$, $R^2 = \text{Wasserstoff}$, R^3 , R^4 , R^6 und $R^7 = \text{Wasserstoff}$ und $R^5 = 2-(\text{Ethoxycarbonyl})\text{but-2-yloxy}$ bekannt, der eine pharmazeutische Wirkung zugeschrieben wird.

35 Benz(o)ylpyridine vom Typ der Verbindungen I fallen auch unter die allgemeinen Formeln von in der WO 92/22203, EP-A 078 536 und der EP-A 461 079 beschriebenen Herbiziden.

Aus T. Asami et al., Biosci. Biotech. Biochem. 57(2), 350/351 40 (1993) sind die beiden Benzylpyridine

mit $R^a = H$ (Nr. 20) oder OC_2H_5 (Nr. 21) als Photosynthesehemmer bekannt.

Schließlich werden in der WO 96/17829 bestimmte 3-Benzoylpyridine 5 als Herbizide gelehrt.

Da die herbiziden Eigenschaften der o.g. Herbizide bezüglich der Schadpflanzen nicht immer völlig befriedigen, lagen der vorliegenden Erfindung neue herbizid wirksame Verbindungen als Aufgabe zugrunde, mit denen sich unerwünschte Pflanzen besser als bisher gezielt bekämpfen lassen. Die Aufgabe erstreckte sich auch auf die Bereitstellung neuer desikkant/defoliant wirksamer Verbindungen.

15 Demgemäß wurden die vorliegenden substituierten 2-Benz(o)yl-pyridine der Formel I sowie deren herbizide Wirkung gefunden.

Ferner wurden herbizide Mittel gefunden, die die Verbindungen I enthalten und eine sehr gute herbizide Wirkung besitzen. Außerdem 20 wurden Verfahren zur Herstellung dieser Mittel und Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs mit den Verbindungen I gefunden.

Des weiteren wurde gefunden, daß die Verbindungen I auch zur 25 Desikkation/Defoliation von Pflanzenteilen geeignet sind, wofür Kulturpflanzen wie Baumwolle, Kartoffel, Raps, Sonnenblume, Sojabohne oder Ackerbohnen, insbesondere Baumwolle, in Betracht kommen. Diesbezüglich wurden Mittel zur Desikkation und/oder Defoliation von Pflanzen, Verfahren zur Herstellung dieser Mittel- 30 und Verfahren zur Desikkation und/oder Defoliation von Pflanzen mit den Verbindungen I gefunden.

Die Verbindungen der Formel I können je nach Substitutionsmuster ein oder mehrere Chiralitätszentren enthalten und liegen dann 35 als Enantiomeren- oder Diastereomerengemische vor. Auch E-/Z-Iso- mère sind möglich, sofern mindestens ein Substituent mit Doppel- bindung vorhanden ist. Gegenstand der Erfindung sind sowohl die reinen Enantiomeren oder Diastereomeren als auch deren Gemische.

40 Unter landwirtschaftlich brauchbaren Salzen sind vor allem die Salze von I mit denjenigen Kationen sowie Säureadditionssalze von I mit solchen Säuren zu verstehen, welche die herbizide oder desikkante/defoliante Wirkung von I nicht negativ beeinträchtigen.

45

So kommen als Kationen insbesondere die Ionen der Alkalimetalle, vorzugsweise Natrium und Kalium, der Erdalkalimetalle, vorzugsweise Calcium, Magnesium und Barium, und der Übergangsmetalle, vorzugsweise Mangan, Kupfer, Zink und Eisen, sowie das Ammonium-
 5 ion, das einen C₁-C₄-Alkyl-, Phenyl- oder Benzylsubstituenten und gewünschtenfalls zusätzlich ein bis drei weitere C₁-C₄-Alkylreste tragen kann, vorzugsweise Diisopropylammonium, Tetramethylammonium, Tetrabutylammonium, Trimethylbenzylammonium, des weiteren Phosphoniumionen, vorzugsweise Tri-(C₁-C₄-alkyl)-
 10 phosphonium, Sulfoniumionen, vorzugsweise Tri-(C₁-C₄-alkyl)-sulfonium, sowie Sulfoxoniumionen, vorzugsweise Tri-(C₁-C₄-alkyl)-sulfoxonium.

Anionen von brauchbaren Säureadditionssalzen sind in erster Linie
 15 Fluorid, Chlorid, Bromid, Hydrogensulfat, Sulfat, Dihydrogenphosphat, Hydrogenphosphat, Phosphat, Nitrat, Hydrogencarbonat, Carbonat, Hexafluorosilikat, Hexafluorophosphat, Benzoat, Oxalat, Dodecylbenzolsulfonat, sowie die Anionen von C₁-C₄-Alkansäuren, vorzugsweise Formiat, Acetat, Propionat und Butyrat.

20 Die für die Substituenten R¹, R³, R⁴, R⁵ und R⁸ bis R³⁰ oder als Reste an Phenylringen genannten organischen Molekülteile stellen Sammelbegriffe für individuelle Aufzählungen der einzelnen Gruppenmitglieder dar. Sämtliche Kohlenstoffketten, also alle
 25 Alkyl-, Halogenalkyl-, Cyanoalkyl-, Oxetanyloxycarbonylalkyl-, Hydroxycarbonylalkyl-, Phenylalkyl-, Phenoxy carbonylalkyl-, Benzyloxycarbonylalkyl-, Alkoxy-, Halogenalkoxy-, Alkylthio-, Alkylsulfinyl-, Alkylsulfonyl-, Alkenyl-, Halogenalkenyl-, Cyanoalkenyl-, Alkenyloxy-, Alkinyl-, Halogenalkinyl-, Cyanoalkinyl-
 30 und Alkinyloxy-Teile können geradkettig oder verzweigt sein. Halogenierte Substituenten tragen vorzugsweise ein bis fünf gleiche oder verschiedene Halogenatome.

Die Bedeutung Halogen steht jeweils für Fluor, Brom, Chlor oder
 35 Iod, insbesondere für Fluor oder Chlor.

Ferner stehen beispielsweise:

- C₁-C₄-Alkyl für: CH₃, C₂H₅, CH₂-C₂H₅, CH(CH₃)₂, n-C₄H₉,
 40 CH(CH₃)-C₂H₅, CH₂-CH(CH₃)₂ oder C(CH₃)₃, insbesondere für CH₃ oder C₂H₅;
- C₁-C₄-Halogenalkyl für: einen C₁-C₄-Alkylrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor,
 45 Brom und/oder Iod substituiert ist, also z.B. CH₂F, CHF₂, CF₃, CH₂Cl, CH(C₁)₂, C(C₁)₃, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 2-Fluorethyl, 2-Chlorethyl, 2-Bromethyl,

2-Iodethyl, $\text{CH}_2\text{-CHF}_2$, $\text{CH}_2\text{-CF}_3$, 2-Chlor-2-fluoreethyl,
 2-Chlor-2,2-difluoreethyl, 2,2-Dichlor-2-fluoreethyl,
 2,2,2-Trichlorethyl, C_2F_5 , 2-Fluorpropyl, 3-Fluorpropyl,
 2,2-Difluorpropyl, 2,3-Difluorpropyl, 2-Chlorpropyl, 3-Chlor-
 5 propyl, 2,3-Dichlorpropyl, 2-Brompropyl, 3-Brompropyl,
 3,3,3-Trifluorpropyl, 3,3,3-Trichlorpropyl, $\text{CH}_2\text{-C}_2\text{F}_5$,
 $\text{CF}_2\text{-C}_2\text{F}_5$, 1-(Fluormethyl)-2-fluoreethyl, 1-(Chlor-
 methyl)-2-chlorethyl, 1-(Brommethyl)-2-bromethyl, 4-Fluor-
 10 butyl, 4-Chlorbutyl, 4-Brombutyl oder Nonafluorbutyl, ins-
 besondere für CH_2F , CHF_2 , CF_3 , CH_2Cl , 2-Fluoreethyl, 2-Chlor-
 ethyl oder $\text{CH}_2\text{-CF}_3$;

- $\text{C}_1\text{-C}_8$ -Alkyl für: $\text{C}_1\text{-C}_4$ -Alkyl wie vorstehend genannt, oder
 z.B. n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl,
 15 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1,1-Dimethyl-
 propyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl,
 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Di-
 methylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Di-
 methylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl,
 20 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-
 methylpropyl oder 1-Ethyl-2-methylpropyl, insbesondere für
 CH_3 , C_2H_5 , $\text{CH}_2\text{-C}_2\text{H}_5$, $\text{CH}(\text{CH}_3)_2$, n-Butyl, $\text{C}(\text{CH}_3)_3$, n-Pentyl oder
 n-Hexyl;

25 - $\text{C}_1\text{-C}_8$ -Halogenalkyl für: einen $\text{C}_1\text{-C}_8$ -Alkylrest wie vorstehend
 genannt, der partiell oder vollständig durch Fluor, Chlor,
 Brom und/oder Iod substituiert ist, also z.B. einen der unter
 $\text{C}_1\text{-C}_4$ -Halogenalkyl genannten Reste oder für 5-Fluor-1-pentyl,
 5-Chlor-1-pentyl, 5-Brom-1-pentyl, 5-Iod-1-pentyl, 5,5,5-Tri-
 30 chlor-1-pentyl, Undecafluorpentyl, 6-Fluor-1-hexyl, 6-Chlor-
 1-hexyl, 6-Brom-1-hexyl, 6-Iod-1-hexyl, 6,6,6-Trichlor-
 1-hexyl oder Dodecafluorhexyl, insbesondere für CH_2F , CHF_2 ,
 CF_3 , CH_2Cl , 2-Fluoreethyl, 2-Chlorethyl oder $\text{CH}_2\text{-CF}_3$;

35 - Cyano- $\text{C}_1\text{-C}_8$ -alkyl für: z.B. CH_2CN , 1-Cyanoeth-1-yl, 2-Cyano-
 eth-1-yl, 1-Cyanoprop-1-yl, 2-Cyanoprop-1-yl, 3-Cyanoprop-
 1-yl, 1-Cyanoprop-2-yl, 2-Cyanoprop-2-yl, 1-Cyanobut-1-yl,
 2-Cyanobut-1-yl, 3-Cyanobut-1-yl, 4-Cyanobut-1-yl, 1-Cyano-
 but-2-yl, 2-Cyanobut-2-yl, 3-Cyanobut-2-yl, 4-Cyanobut-2-yl,
 40 1-Cyano-2-methyl-prop-3-yl, 2-Cyano-2-methyl-prop-3-yl,
 3-Cyano-2-methyl-prop-3-yl, 2-(CH_2CN)-prop-2-yl oder 2-Cyano-
 hex-6-yl, insbesondere für CH_2CN oder 2-Cyanoethyl;

- Oxetan-3-yloxycarbonyl- $\text{C}_1\text{-C}_4$ -alkyl für: z.B. Oxetan-3-yloxy-
 45 carbonylmethyl, 2-(Oxetan-3-yloxycarbonyl)ethyl, 2-(Oxetan-
 3-yloxycarbonyl)prop-1-yl, 3-(Oxetan-3-yloxycarbonyl)prop-
 1-yl, 2-(Oxetan-3-yloxycarbonyl)but-1-yl, 3-(Oxetan-3-yloxy-

carbonyl)but-1-yl, 4-(Oxetan-3-yloxy carbonyl)but-1-yl,
1-(Oxetan-3-yloxy carbonyl)but-2-yl, 3-(Oxetan-3-yloxy-
carbonyl)but-2-yl, 4-(Oxetan-3-yloxy carbonyl)but-2-yl,
1-(Oxetan-3-yloxy carbonylmethyl)-eth-1-yl, 1-(Oxetan-3-yloxy-
5 carbonylmethyl)-1-(methyl)-eth-1-yl oder 1-(Oxetan-3-yloxy-
carbonylmethyl)-prop-1-yl, insbesondere für Oxetan-3-yloxy-
carbonylmethyl oder 2-(Oxetan-3-yloxy carbonyl)ethyl;

10 - Hydroxycarbonyl-C₁-C₄-alkyl für: CH₂COOH, CH(CH₃)COOH,
2-(COOH)ethyl, 1-(COOH)prop-1-yl, 2-(COOH)prop-1-yl,
3-(COOH)prop-1-yl, 1-(COOH)but-1-yl, 2-(COOH)but-1-yl,
3-(COOH)but-1-yl, 4-(COOH)but-1-yl, 1-(COOH)but-2-yl,
2-(COOH)but-2-yl, 3-(COOH)but-2-yl, 4-(COOH)but-2-yl,
1-(CH₂COOH)eth-1-yl, 1-(CH₂COOH)-1-(CH₃)-eth-1-yl oder
15 1-(CH₂COOH)-prop-1-yl, insbesondere für CH₂COOH oder
2-(COOH)ethyl;

20 - Hydroxycarbonyl-C₁-C₈-alkyl für: Hydroxycarbonyl-C₁-C₄-alkyl
wie vorstehend genannt, sowie z.B. 5-(COOH)pent-1-yl oder
6-(COOH)hex-1-yl;

25 - Phenyl-C₁-C₄-alkyl für: Benzyl, 1-Phenylethyl, 2-Phenylethyl,
1-Phenylprop-1-yl, 2-Phenylprop-1-yl, 3-Phenylprop-1-yl,
1-Phenylbut-1-yl, 2-Phenylbut-1-yl, 3-Phenylbut-1-yl,
4-Phenylbut-1-yl, 1-Phenylbut-2-yl, 2-Phenylbut-2-yl,
3-Phenylbut-2-yl, 4-Phenylbut-2-yl, 1-(Phenylmethyl)-
eth-1-yl, 1-(Phenylmethyl)-1-(methyl)-eth-1-yl oder
1-(Phenylmethyl)-prop-1-yl, insbesondere für Benzyl oder
2-Phenylethyl;

30 - Phenoxy carbonyl-C₁-C₄-alkyl für: Phenoxy carbonyl-methyl,
1-(Phenoxy carbonyl)ethyl, 2-(Phenoxy carbonyl)ethyl,
1-(Phenoxy carbonyl)prop-1-yl, 2-(Phenoxy carbonyl)prop-1-yl,
3-(Phenoxy carbonyl)prop-1-yl, 1-(Phenoxy carbonyl)but-1-yl,
2-(Phenoxy carbonyl)but-1-yl, 3-(Phenoxy carbonyl)but-1-yl,
35 4-(Phenoxy carbonyl)but-1-yl, 1-(Phenoxy carbonyl)but-2-yl,
2-(Phenoxy carbonyl)but-2-yl, 3-(Phenoxy carbonyl)but-2-yl,
4-(Phenoxy carbonyl)but-2-yl, 1-(Phenoxy carbonyl-methyl)-
eth-1-yl, 1-(Phenoxy carbonyl-methyl)-1-(methyl)-eth-1-yl
40 oder 1-(Phenoxy carbonyl-methyl)-prop-1-yl, insbesondere
für Phenoxy carbonyl-methyl oder 2-(Phenoxy carbonyl)ethyl;

45 - Benzyloxycarbonyl-C₁-C₄-alkyl für: Benzyloxycarbonyl-methyl,
1-(Benzyloxycarbonyl)ethyl, 2-(Benzyloxycarbonyl)ethyl,
1-(Benzyloxycarbonyl)prop-1-yl, 2-(Benzyloxycarbonyl)-
prop-1-yl, 3-(Benzyloxycarbonyl)prop-1-yl, 1-(Benzyloxy-
carbonyl)but-1-yl, 2-(Benzyloxycarbonyl)but-1-yl, 3-(Benzyl-

oxycarbonyl)but-1-yl, 4-(Benzylloxycarbonyl)but-1-yl,
 1-(Benzylloxycarbonyl)but-2-yl, 2-(Benzylloxycarbonyl)but-2-yl,
 3-(Benzylloxycarbonyl)but-2-yl, 4-(Benzylloxycarbonyl)but-2-yl,
 1-(Benzylloxycarbonyl-methyl)-eth-1-yl, 1-(Benzylloxycarbonyl-
 5 methyl)-1-(methyl)-eth-1-yl oder 1-(Benzylloxycarbonyl-
 methyl)-prop-1-yl, insbesondere für Benzylloxycarbonyl-methyl
 oder 2-(Benzylloxycarbonyl)ethyl;

- C₁-C₄-Alkoxy für: OCH₃, OC₂H₅, n-Propoxy, OCH(CH₃)₂, n-Butoxy,
 10 1-Methylpropoxy, OCH₂-CH(CH₃)₂ oder OC(CH₃)₃, insbesondere für
 OCH₃ oder OC₂H₅;
- C₁-C₆-Alkoxy für: einen C₁-C₄-Alkoxy-Rest wie vorstehend
 15 genannt, oder z.B. n-Pentoxy, 1-Methylbutoxy, 2-Methylbutoxy,
 3-Methylbutoxy, 2,2-Dimethylpropoxy, 1-Ethylpropoxy, n-Hex-
 oxy, 1,1-Dimethylpropoxy, 1,2-Dimethylpropoxy, 1-Methyl-
 pentoxy, 2-Methylpentoxy, 3-Methylpentoxy, 4-Methylpentoxy,
 1,1-Dimethylbutoxy, 1,2-Dimethylbutoxy, 1,3-Dimethylbutoxy,
 2,2-Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3-Dimethylbutoxy,
 20 1-Ethylbutoxy, 2-Ethylbutoxy, 1,1,2-Trimethylpropoxy,
 1,2,2-Trimethylpropoxy, 1-Ethyl-1-methylpropoxy oder 1-Ethyl-
 2-methylpropoxy, insbesondere für OCH₃, OC₂H₅, OCH₂-C₂H₅,
 OCH(CH₃)₂, n-Butoxy, OC(CH₃)₃, n-Pentoxy oder n-Hexaoxy;
- C₁-C₈-Alkoxy für: einen C₁-C₆-Alkoxy-Rest wie vorstehend ge-
 25 nannt, oder z.B. O(n-C₇H₁₅) oder O(n-C₈H₁₇), insbesondere für
 C₁-C₆-Alkoxy;
- C₁-C₄-Halogenalkoxy für: einen C₁-C₄-Alkoxyrest wie vorstehend
 30 genannt, der partiell oder vollständig durch Fluor, Chlor,
 Brom und/oder Iod substituiert ist, also z.B. OCH₂F, OCHF₂,
 OCF₃, OCH₂Cl, OCH(Cl)₂, OC(Cl)₃, Chlorfluormethoxy, Dichlor-
 fluormethoxy, Chlordifluormethoxy, 2-Fluorethoxy, 2-Chlor-
 ethoxy, 2-Bromethoxy, 2-Iodethoxy, OCH₂-CHF₂, OCH₂-CF₃,
 35 2-Chlor-2-fluorethoxy, 2-Chlor-2,2-difluorethoxy, 2,2-Di-
 chlor-2-fluorethoxy, 2,2,2-Trichlorethoxy, OC₂F₅, 2-Fluorprop-
 oxy, 3-Fluorpropoxy, 2,2-Difluorpropoxy, 2,3-Difluorpropoxy,
 2-Chlorpropoxy, 3-Chlorpropoxy, 2,3-Dichlorpropoxy, 2-Brom-
 propoxy, 3-Brompropoxy, 3,3,3-Trifluorpropoxy, 3,3,3-Tri-
 40 chlorpropoxy, OCH₂-C₂F₅, OCF₂-C₂F₅, 1-(Fluormethyl)-2-fluor-
 ethoxy, 1-(Chlormethyl)-2-chlorethoxy, 1-(Brommethyl)-2-brom-
 ethoxy, 4-Fluorbutoxy, 4-Chlorbutoxy, 4-Brombutoxy oder
 n-C₄F₉, insbesondere für 2-Chlorethoxy oder OCH₂-CF₃;

- (C_1 - C_4 -Alkoxy)carbonyl für: $CO-OCH_3$, $CO-OC_2H_5$, $CO-OCH_2-C_2H_5$, $CO-OCH(CH_3)_2$, n-Butoxycarbonyl, $CO-OCH(CH_3)-C_2H_5$, $CO-OCH_2-CH(CH_3)_2$ oder $CO-OC(CH_3)_3$, insbesondere für $CO-OCH_3$ oder $CO-OC_2H_5$;
- 5 - (C_1 - C_6 -Alkoxy)carbonyl für: einen (C_1 - C_4 -Alkoxy)carbonyl-Rest wie vorstehend genannt, oder z.B. (n-Pentoxy)carbonyl, 1-Methylbutoxycarbonyl, 2-Methylbutoxycarbonyl, 3-Methylbutoxycarbonyl, 2,2-Dimethylpropoxycarbonyl, 1-Ethylpropoxycarbonyl, (n-Hexoxy)carbonyl, 1,1-Dimethylpropoxycarbonyl, 1,2-Dimethylpropoxycarbonyl, 1-Methylpentoxycarbonyl, 2-Methylpentoxycarbonyl, 3-Methylpentoxycarbonyl, 4-Methylpentoxycarbonyl, 1,1-Dimethylbutoxycarbonyl, 1,2-Dimethylbutoxycarbonyl, 1,3-Dimethylbutoxycarbonyl, 2,2-Dimethylbutoxycarbonyl, 2,3-Dimethylbutoxycarbonyl, 3,3-Dimethylbutoxycarbonyl, 1-Ethylbutoxycarbonyl, 2-Ethylbutoxycarbonyl, 1,1,2-Trimethylpropoxycarbonyl, 1,2,2-Trimethylpropoxycarbonyl, 1-Ethyl-1-methylpropoxycarbonyl oder 1-Ethyl-2-methylpropoxycarbonyl, insbesondere für $COOCH_3$, $COOC_2H_5$, n-Propoxycarbonyl, $COOCH(CH_3)_2$, n-Butoxycarbonyl, $COOC(CH_3)_3$, n-Pentoxy carbonyl oder n-Hexoxycarbonyl;
- 10 - (C_1 - C_8 -Alkoxy)carbonyl für: einen (C_1 - C_6 -Alkoxy)carbonyl-Rest wie vorstehend genannt, oder z.B. $CO-O(n-C_7H_{15})$ oder $CO-O(n-C_8H_{17})$, insbesondere für (C_1 - C_6 -Alkoxy)carbonyl;
- 15 - C_1 - C_4 -Alkylthio für: SCH_3 , SC_2H_5 , $SCH_2-C_2H_5$, $SCH(CH_3)_2$, n-Butylthio, $SCH(CH_3)-C_2H_5$, $SCH_2-CH(CH_3)_2$ oder $SC(CH_3)_3$, insbesondere für SCH_3 oder SC_2H_5 ;
- 20 - C_1 - C_4 -Alkoxy- C_1 - C_4 -alkyl für: durch C_1 - C_4 -Alkoxy wie vorstehend genannt substituiertes C_1 - C_4 -Alkyl, also z.B. für CH_2-OCH_3 , $CH_2-OC_2H_5$, $CH_2-OCH_2-C_2H_5$, $CH_2-OCH(CH_3)_2$, n-Butoxymethyl, (1-Methylpropoxy)methyl, (2-Methylpropoxy)methyl, $CH_2-OC(CH_3)_2$, 2-(Methoxy)ethyl, 2-(Ethoxy)ethyl, 2-(n-Propoxy)ethyl, 2-(1-Methylethoxy)ethyl, 2-(n-Butoxy)ethyl, 2-(1-Methylpropoxy)ethyl, 2-(2-Methylpropoxy)ethyl, 2-(1,1-Dimethylethoxy)ethyl, 2-(Methoxy)propyl, 2-(Ethoxy)propyl, 2-(n-Propoxy)propyl, 2-(1-Methylpropoxy)propyl, 2-(n-Butoxy)propyl, 2-(1-Methylethoxy)propyl, 2-(Methoxy)butyl, 2-(Ethoxy)butyl, 2-(n-Propoxy)butyl, 2-(1-Methylethoxy)butyl, 2-(n-Butoxy)butyl, 2-(1-Methylpropoxy)butyl, 2-(2-Methylpropoxy)butyl,
- 25 -
- 30 -
- 35 -
- 40 -
- 45 -

2-(1,1-Dimethylethoxy)butyl, 3-(Methoxy)butyl, 3-(Ethoxy)-butyl, 3-(n-Propoxy)butyl, 3-(1-Methylethoxy)butyl,
 3-(n-Butoxy)butyl, 3-(1-Methylpropoxy)butyl, 3-(2-Methylpropoxy)butyl, 3-(1,1-Dimethylethoxy)butyl, 4-(Methoxy)butyl,
 4-(Ethoxy)butyl, 4-(n-Propoxy)butyl, 4-(1-Methylethoxy)butyl,
 4-(n-Butoxy)butyl, 4-(1-Methylpropoxy)butyl, 4-(2-Methylpropoxy)butyl oder 4-(1,1-Dimethylethoxy)butyl, insbesondere
 für $\text{CH}_2\text{-OCH}_3$ oder 2-Methoxyethyl;

10 - $\text{C}_1\text{-C}_4\text{-Alkoxy-C}_1\text{-C}_4\text{-alkoxy}$ für: durch $\text{C}_1\text{-C}_4\text{-Alkoxy}$ wie vorstehend genannt substituiertes $\text{C}_1\text{-C}_4\text{-Alkoxy}$, also z.B. für $\text{OCH}_2\text{-OCH}_3$, $\text{OCH}_2\text{-OC}_2\text{H}_5$, $\text{OCH}_2\text{-OCH}_2\text{-C}_2\text{H}_5$, $\text{OCH}_2\text{-OCH}(\text{CH}_3)_2$, n-Butoxy-methoxy, (1-Methylpropoxy)methoxy, (2-Methylpropoxy)methoxy, $\text{OCH}_2\text{-OC}(\text{CH}_3)_3$, 2-(Methoxy)ethoxy, 2-(Ethoxy)ethoxy, 2-(n-Propoxy)ethoxy, 2-(1-Methylethoxy)ethoxy, 2-(n-Butoxy)ethoxy, 2-(1-Methylpropoxy)ethoxy, 2-(2-Methylpropoxy)ethoxy, 2-(1,1-Dimethylethoxy)ethoxy, 2-(Methoxy)propoxy, 2-(Ethoxy)propoxy, 2-(n-Propoxy)propoxy, 2-(1-Methylethoxy)propoxy, 2-(n-Butoxy)propoxy, 2-(1-Methylpropoxy)propoxy, 2-(2-Methylpropoxy)propoxy, 2-(1,1-Dimethyl-ethoxy)propoxy, 3-(Methoxy)-propoxy, 3-(Ethoxy)propoxy, 3-(n-Propoxy)propoxy, 3-(1-Methylethoxy)propoxy, 3-(n-Butoxy)propoxy, 3-(1-Methylpropoxy)propoxy, 3-(2-Methylpropoxy)propoxy, 3-(1,1-Dimethylethoxy)propoxy,
 25 2-(Methoxy)butoxy, 2-(Ethoxy)butoxy, 2-(n-Propoxy)butoxy, 2-(1-Methylethoxy)butoxy, 2-(n-Butoxy)butoxy, 2-(1-Methylpropoxy)butoxy, 2-(2-Methylpropoxy)butoxy, 2-(1,1-Dimethyl-ethoxy)butoxy, 3-(Methoxy)butoxy, 3-(Ethoxy)butoxy, 3-(n-Propoxy)butoxy, 3-(1-Methylethoxy)butoxy,
 30 3-(n-Butoxy)butoxy, 3-(1-Methylpropoxy)butoxy, 3-(2-Methylpropoxy)butoxy, 3-(1,1-Dimethylethoxy)butoxy, 4-(Methoxy)-butoxy, 4-(Ethoxy)butoxy, 4-(n-Propoxy)butoxy, 4-(1-Methylethoxy)butoxy, 4-(n-Butoxy)butoxy, 4-(1-Methylpropoxy)-butoxy, 4-(2-Methylpropoxy)butoxy oder 4-(1,1-Dimethyl-ethoxy)butoxy, insbesondere für $\text{OCH}_2\text{-OCH}_3$ oder 2-Methoxyethoxy;
 - $(\text{C}_1\text{-C}_4\text{-Alkoxy})\text{carbonyl-C}_1\text{-C}_4\text{-alkyl}$ für: durch $(\text{C}_1\text{-C}_4\text{-Alkoxy})\text{-carbonyl}$ wie vorstehend genannt substituiertes $\text{C}_1\text{-C}_4\text{-Alkyl}$, also z.B. für $\text{CH}_2\text{COOCH}_3$, $\text{CH}_2\text{COOC}_2\text{H}_5$, $\text{CH}(\text{CH}_3)\text{COOCH}_3$ oder 2-(COOCH₃)ethyl;
 - $(\text{C}_1\text{-C}_8\text{-Alkoxy})\text{carbonyl-C}_1\text{-C}_6\text{-alkyl}$ für: durch $(\text{C}_1\text{-C}_8\text{-Alkoxy})\text{-carbonyl}$ wie vorstehend genannt substituiertes $\text{C}_1\text{-C}_6\text{-Alkyl}$, also z.B. für $\text{CH}_2\text{COOCH}_3$, $\text{CH}_2\text{COOC}_2\text{H}_5$, $\text{CH}(\text{CH}_3)\text{COOCH}_3$, $\text{CH}(\text{CH}_3)\text{COOC}_2\text{H}_5$, $\text{C}(\text{CH}_3)_2\text{COOCH}_3$ oder $\text{C}(\text{CH}_3)_2\text{COOC}_2\text{H}_5$;

- Hydroxycarbonyl-(C₁-C₄-alkoxy)carbonyl-C₁-C₄-alkyl für: (C₁-C₄-Alkoxy)carbonyl-C₁-C₄-alkyl wie vorstehend genannt, das eine Hydroxycarbonylgruppe trägt, also z.B. für CH₂-COOCH₂-COOH, CH(CH₃)-COOCH₂-COOH, CH₂-COOCH(CH₃)-COOH oder CH(CH₃)-COOCH(CH₃)-COOH;
- C₁-C₄-Alkoxy-(C₁-C₄-alkoxy)carbonyl-C₁-C₄-alkyl für: (C₁-C₄-Alkoxy)carbonyl-C₁-C₄-alkyl wie vorstehend genannt, das eine C₁-C₄-Alkoxygruppe wie OCH₃, OC₂H₅, OCH₂-C₂H₅, OCH(CH₃)₂, n-Butoxy, OCH(CH₃)-C₂H₅, OCH₂-CH(CH₃)₂ und OC(CH₃)₃ trägt, also z.B. für CH₂-COOCH₂-OCH₃, CH₂-COOCH₂-OC₂H₅, CH₂-COOCH₂-OCH(CH₃)₂, CH₂-COOCH₂-OC(CH₃)₃, CH₂-COOCH₂-CH₂-OCH₃, CH₂-COOCH₂-CH₂-OC₂H₅, CH(CH₃)-COOCH₂-CH₂-OCH₃ oder CH(CH₃)-COOCH₂-CH₂-OC₂H₅, insbesondere für CH₂-COOCH₂-CH₂-OCH₃, CH₂-COOCH₂-CH₂-OC₂H₅, CH(CH₃)-COOCH₂-CH₂-OCH₃ oder CH(CH₃)-COOCH₂-CH₂-OC₂H₅;
- (C₁-C₄-Alkoxy)carbonyl-(C₁-C₄-alkoxy)carbonyl-C₁-C₄-alkyl für: (C₁-C₄-Alkoxy)carbonyl-C₁-C₄-alkyl wie vorstehend genannt, das eine (C₁-C₄-Alkoxy)carbonylgruppe wie COOCH₃, COOC₂H₅, COOCH₂-C₂H₅, COOCH(CH₃)₂, COOCH₂-(n-C₃H₇), OCH(CH₃)-C₂H₅, OCH₂-CH(CH₃)₂ und OC(CH₃)₃ trägt, also z.B. für CH₂-COOCH₂-COOCH₃, CH₂-COOCH₂-COOC₂H₅, CH₂-COOCH₂-COOCH(CH₃)₂, CH₂-COOCH₂-COOC(CH₃)₃, CH₂-COOCH₂-COOCH₃, CH₂-COOCH₂-COOC₂H₅, CH(CH₃)-COOCH₂-COOCH₃, CH(CH₃)-COOCH₂-COOC₂H₅, CH₂-COOCH(CH₃)-COOCH₃, CH₂-COOCH(CH₃)-COOC₂H₅, CH(CH₃)-COOCH(CH₃)-COOCH₃ oder CH(CH₃)-COOCH(CH₃)-COOC₂H₅, insbesondere für CH₂-COOCH₂-COOCH₃, CH₂-COOCH₂-COOC₂H₅, CH(CH₃)-COOCH₂-COOCH₃, CH(CH₃)-COOCH₂-COOC₂H₅, CH₂-COOCH(CH₃)-COOCH₃, CH₂-COOCH(CH₃)-COOC₂H₅, CH(CH₃)-COOCH(CH₃)-COOCH₃ oder CH(CH₃)-COOCH(CH₃)-COOC₂H₅;
- (C₁-C₈-Halogenalkoxy)carbonyl-C₁-C₆-alkyl für: durch (C₁-C₈-Halogenalkoxy)carbonyl wie COOCH₂F, COOCHF₂, COOCF₃, COOCH₂Cl, COOCH(Cl)₂, COOC(Cl)₃, COOCHFCl, COOCF(Cl)₂, COOCF₂Cl, COOCF₂Br, COOCHF-CH₃, COOCH₂-CH₂F, COOCH₂-CH₂Cl, COOCH₂-CH₂Br, COOCH₂-CH₂I, COOCH₂-CH₂F, COOCH₂-CF₃, COOCH₂-CHFCl, COOCH₂-CF₂Cl, COOCH₂-CF(Cl)₂, COOCH₂-C(Cl)₃, COOC₂F₅, 2-Fluorpropoxycarbonyl, 3-Fluorpropoxycarbonyl, 2-Chlorpropoxycarbonyl, 3-Chlorpropoxycarbonyl, 2-Brompropoxycarbonyl, 3-Brompropoxycarbonyl, 2,2-Difluorpropoxycarbonyl, 2,3-Difluorpropoxycarbonyl, 2,3-Dichlorpropoxycarbonyl, COOCH₂CH₂-CF₃, COOCH₂CH₂-C(Cl)₃, COOCH₂-C₂F₅, COOCF₂-C₂F₅, 1-(CH₂F)-2-fluorethoxycarbonyl, 1-(OCH₂Cl)-2-chlorethoxycarbonyl, 1-(OCH₂Br)-2-bromethoxycarbonyl, 4-Fluorbutoxycarbonyl, 4-Chlorbutoxycarbonyl, 4-Brombutoxycarbonyl, COOCF₂CF₂-C₂F₅, 5-Fluorpentoxycarbonyl, 5-Chlorpentoxycarbonyl, 5-Brompent-

oxycarbonyl, 5-Iodpentoxycarbonyl, 5,5,5-Trichlorpentoxycarbonyl, COOCF₂-(n-C₄F₉), 6-Fluorhexoxycarbonyl, 6-Chlorhexoxycarbonyl, 6-Bromhexoxycarbonyl, 6-Iodhexoxycarbonyl, 6,6,6-Trichlorhexoxycarbonyl und COOCF₂-(n-C₅F₁₁) substituierte C₁-C₆-Alkyl, also z.B. für CH₂-COOCH₂-CF₃, CH(CH₃)-COOCH₂-CF₃, CH₂-COOCH₂-C(Cl)₃ oder CH(CH₃)-COOCH₂-C(Cl)₃;

- (C₁-C₄-Alkoxy) carbonyl-C₁-C₄-alkoxy für: durch
- 10 (C₁-C₄-Alkoxy) carbonyl wie vorstehend genannt substituiertes C₁-C₄-Alkoxy, also z.B. für OCH₂COOCH₃, OCH₂COOC₂H₅, OCH₂COOCH₂-C₂H₅, OCH₂COOCH(CH₃)₂, OCH₂COOCH₂CH₂-C₂H₅, OCH₂COOCH(CH₃)-C₂H₅, OCH₂COOCH₂-CH(CH₃)₂, OCH₂COOC(CH₃)₃, OCH(CH₃)COOCH₃, OCH(CH₃)COOC₂H₅, OCH₂CH₂COOCH₃, OCH₂CH₂COOC₂H₅, OCH₂CH₂COOCH₂-C₂H₅, OCH₂CH₂COOCH(CH₃)₂, OCH₂CH₂COOCH₂CH₂-C₂H₅, 15 2-[COOCH(CH₃)-C₂H₅]ethoxy, 2-[COOCH₂-CH(CH₃)₂]ethoxy, OCH₂CH₂COOC(CH₃)₃, 2-(COOCH₃)propoxy, 2-(COOC₂H₅)propoxy, 2-(COOCH₂-C₂H₅)propoxy, 2-[COOCH(CH₃)₂]propoxy, 20 2-(COOCH₂CH₂-C₂H₅)propoxy, 2-[COOCH(CH₃)-C₂H₅]propoxy, 3-(COOCH₃)propoxy, 3-(COOC₂H₅)propoxy, 3-(COOCH₂-C₂H₅)propoxy, 3-[COOCH(CH₃)₂]propoxy, 3-[COOCH(CH₃)-C₂H₅]propoxy, 3-[COOC(CH₃)₃]propoxy, 2-(COOCH₃)butoxy, 2-(COOC₂H₅)butoxy, 25 2-(COOCH₂-C₂H₅)butoxy, 2-[COOCH(CH₃)₂]butoxy, 2-(COOCH₂CH₂-C₂H₅)butoxy, 2-[COOCH(CH₃)-C₂H₅]butoxy, 2-[COOCH₂-CH(CH₃)₂]butoxy, 2-[COOC(CH₃)₃]butoxy, 3-(COOCH₃)butoxy, 3-(COOC₂H₅)butoxy, 3-(COOCH₂-C₂H₅)butoxy, 3-[COOCH(CH₃)₂]butoxy, 3-(COOCH₂CH₂-C₂H₅)butoxy, 30 3-[COOCH(CH₃)-C₂H₅]butoxy, 3-[COOCH₂-CH(CH₃)₂]butoxy, 3-[COOC(CH₃)₃]butoxy, 4-(COOCH₃)butoxy, 4-(COOC₂H₅)butoxy, 4-(COOCH₂-C₂H₅)butoxy, 4-[COOCH(CH₃)₂]butoxy, 4-[COOCH₂-CH(CH₃)₂]butoxy oder 4-[1,1-COOC(CH₃)₃]butoxy, insbesondere für OCH₂-COOCH₃, OCH₂-COOC₂H₅, OCH₂-COOCH₂-C₂H₅, 35 OCH₂-COOCH(CH₃)₂, OCH₂-COOCH₂-CH₂-C₂H₅, OCH₂-COOCH(CH₃)-C₂H₅, OCH₂-COOCH₂-CH(CH₃)₂, OCH₂-COOCH₂-CH₂CH₂-C₂H₅, OCH(CH₃)-COOCH₃, OCH(CH₃)-COOC₂H₅, OCH(CH₃)-COOCH₂-C₂H₅, OCH(CH₃)-COOCH₂-CH₂-C₂H₅, OCH(CH₃)-COOCH(CH₃)-C₂H₅, 40 OCH(CH₃)-COOCH₂-CH(CH₃)₂, OCH(CH₃)-COOC(CH₃)₃ oder OCH(CH₃)-COOCH₂-CH₂CH₂-C₂H₅;
- C₁-C₄-Alkylthio-C₁-C₄-alkyl für: durch C₁-C₄-Alkylthio wie vorstehend genannt substituiertes C₁-C₄-Alkyl, also z.B. für CH₂-SCH₃, CH₂-SC₂H₅, n-Propylthiomethyl, CH₂-SCH(CH₃)₂, n-Butylthiomethyl, (1-Methyl-propylthio)methyl, (2-Methyl-propylthio)methyl, CH₂-SC(CH₃)₃, 2-Methylthioethyl, 2-Ethyl-

thioethyl, 2-(n-Propylthio)ethyl, 2-(1-Methylethylthio)ethyl,
 2-(n-Butylthio)ethyl, 2-(1-Methyl-propylthio)ethyl,
 2-(2-Methylpropylthio)ethyl, 2-(1,1-Dimethylethylthio)ethyl,
 2-(Methylthio)propyl, 3-(Methylthio)propyl, 2-(Ethyl-
 5 thio)propyl, 3-(Ethylthio)propyl, 3-(Propylthio)propyl,
 3-(Butylthio)propyl, 4-(Methylthio)butyl, 4-(Ethylthio)butyl,
 4-(n-Propylthio)butyl oder 4-(n-Butylthio)butyl, insbesondere
 für 2-(Methylthio)ethyl;

10 - C₁-C₄-Alkylsulfinyl für: SO-CH₃, SOC₂H₅, SO-CH₂-C₂H₅,
 SO-CH(CH₃)₂, n-Butylsulfinyl, 1-Methylpropylsulfinyl,
 2-Methylpropylsulfinyl oder SO-C(CH₃)₃, insbesondere für
 SO-CH₃ oder SO-C₂H₅;

15 - C₁-C₄-Alkylsulfinyl-C₁-C₄-alkyl für: durch C₁-C₄-Alkylsulfinyl
 wie vorstehend genannt, vorzugsweise SO-CH₃, substituiertes
 C₁-C₄-Alkyl, also beispielsweise für CH₂-SO-CH₃ oder 2-Methyl-
 sulfinylethyl;

20 - C₁-C₄-Alkylsulfonyl für: SO₂-CH₃, SO₂-C₂H₅, SO₂-CH₂-C₂H₅,
 SO₂-CH(CH₃)₂, n-Butylsulfonyl, 1-Methylpropylsulfonyl,
 SO₂-CH₂-CH(CH₃)₂ oder SO₂-C(CH₃)₃, insbesondere für SO₂-CH₃
 oder SO₂-C₂H₅;

25 - C₁-C₄-Alkylsulfonyl-C₁-C₄-alkyl für: durch C₁-C₄-Alkylsulfonyl
 wie vorstehend genannt, vorzugsweise SO₂-CH₃, substituiertes
 C₁-C₄-Alkyl, also beispielsweise für CH₂-SO₂-CH₃ oder
 2-Methylsulfonylethyl;

30 - (C₁-C₈-Alkyl)aminocarbonyl für: z.B. CO-NH-CH₃, CO-NH-C₂H₅,
 CO-NH-CH₂-C₂H₅, CO-NH-CH(CH₃)₂, CO-NH-CH₂CH₂-C₂H₅,
 CO-NH-CH(CH₃)C₂H₅, CO-NH-CH₂-CH(CH₃)₂, CO-NH-C(CH₃)₃, n-Pentyl-
 aminocarbonyl, 1-Methylbutylaminocarbonyl, 2-Methylbutyl-
 aminocarbonyl, 3-Methylbutylaminocarbonyl, 2,2-Dimethyl-
 35 propylaminocarbonyl, 1-Ethylpropylaminocarbonyl, n-Hexyl-
 aminocarbonyl, 1,1-Dimethylpropylaminocarbonyl, 1,2-Dimethyl-
 propylaminocarbonyl, 1-Methylpentylaminocarbonyl, 2-Methyl-
 pentylaminocarbonyl, 3-Methylpentylaminocarbonyl, 4-Methyl-
 pentylaminocarbonyl, 1,1-Dimethylbutylaminocarbonyl, 1,2-Di-
 40 methylbutylaminocarbonyl, 1,3-Dimethylbutylaminocarbonyl,
 2,2-Dimethylbutylaminocarbonyl, 2,3-Dimethylbutylamino-
 carbonyl, 3,3-Dimethylbutylaminocarbonyl, 1-Ethylbutylamino-
 carbonyl, 2-Ethylbutylaminocarbonyl, 1,1,2-Trimethylpropyl-
 aminocarbonyl, 1,2,2-Trimethylpropylaminocarbonyl, 1-Ethyl-1-
 45 methylpropylaminocarbonyl oder 1-Ethyl-2-methylpropylamino-
 carbonyl, insbesondere für CO-NH-CH₃, CO-NH-C₂H₅, n-Propyl-
 aminocarbonyl, CO-NH-CH(CH₃)₂, n-Butylaminocarbonyl,

16

CO-NH-C(CH₃)₃, n-Pentylaminocarbonyl oder n-Hexylamino-carbonyl;

- Di(C₁-C₈-alkyl)aminocarbonyl für: z.B. CO-N(CH₃)₂, CO-N(C₂H₅)₂,
 5 CO-N(CH₂-C₂H₅)₂, CO-N[CH(CH₃)₂]₂, CO-N(n-C₄H₉)₂,
 CO-N[CH(CH₃)-C₂H₅]₂, CO-N[CH₂-CH(CH₃)₂]₂, CO-N[C(CH₃)₃]₂,
 CO-N(CH₃)-C₂H₅, CO-N(CH₃)-CH₂-C₂H₅, CO-N(CH₃)-CH(CH₃)₂,
 CO-N(CH₃)-(n-C₄H₉), CO-N(CH₃)-CH(CH₃)-C₂H₅,
 CO-N(CH₃)-CH₂-CH(CH₃)₂, CO-N(CH₃)-C(CH₃)₃, CO-N(C₂H₅)-CH₂-C₂H₅,
 10 CO-N(C₂H₅)-CH(CH₃)₂, CO-N(C₂H₅)-(n-C₄H₉),
 CO-N(C₂H₅)-CH(CH₃)-C₂H₅, CO-N(C₂H₅)-CH₂-CH(CH₃)₂,
 CO-N(C₂H₅)-C(CH₃)₃, N-[CH(CH₃)₂]-N-propylaminocarbonyl, N-Bu-
 tyl-N-propylaminocarbonyl, N-[1-Methylpropyl]-N-propylamino-
 carbonyl, N-[2-Methylpropyl]-N-propylaminocarbonyl,
 15 N-[C(CH₃)₃]-N-propylaminocarbonyl, N-Butyl-N-[1-methyl-
 ethyl]aminocarbonyl, N-[CH(CH₃)₂]-N-[1-methylpropyl]amino-
 carbonyl, N-[CH(CH₃)₂]-N-[2-methylpropyl]aminocarbonyl,
 N-[C(CH₃)₃]-N-[CH(CH₃)₂]aminocarbonyl, N-Butyl-N-[1-methyl-
 propyl]aminocarbonyl, N-Butyl-N-[2-methylpropyl]amino-
 20 carbonyl, N-Butyl-N-[C(CH₃)₃]aminocarbonyl, N-[1-Methyl-
 propyl]-N-[2-methylpropyl]aminocarbonyl,
 N-[C(CH₃)₃]-N-[1-methylpropyl]aminocarbonyl oder
 N-[C(CH₃)₃]-N-[2-methylpropyl]aminocarbonyl, insbesondere für
 CO-N(CH₃)₂ oder CO-N(C₂H₅)₂;
- 25 C₃-C₈-Alkenyl für: z.B. Prop-2-en-1-yl, n-Buten-4-yl,
 1-Methyl-prop-2-en-1-yl, 2-Methyl-prop-2-en-1-yl, 2-Buten-
 1-yl, n-Penten-3-yl, n-Penten-4-yl, 1-Methyl-but-2-en-1-yl,
 2-Methyl-but-2-en-1-yl, 3-Methyl-but-2-en-1-yl, 1-Methyl-
 30 but-3-en-1-yl, 2-Methyl-but-3-en-1-yl, 3-Methyl-but-3-en-
 1-yl, 1,1-Dimethyl-prop-2-en-1-yl, 1,2-Dimethyl-prop-2-en-
 1-yl, 1-Ethyl-prop-2-en-1-yl, n-Hex-3-en-1-yl, n-Hex-4-en-
 1-yl, n-Hex-5-en-1-yl, 1-Methyl-pent-3-en-1-yl, 2-Methyl-
 pent-3-en-1-yl, 3-Methyl-pent-3-en-1-yl, 4-Methyl-pent-3-
 35 en-1-yl, 1-Methyl-pent-4-en-1-yl, 2-Methyl-pent-4-en-1-yl,
 3-Methyl-pent-4-en-1-yl, 4-Methyl-pent-4-en-1-yl, 1,1-Di-
 methyl-but-2-en-1-yl, 1,1-Dimethyl-but-3-en-1-yl, 1,2-Di-
 methyl-but-2-en-1-yl, 1,2-Dimethyl-but-3-en-1-yl, 1,3-Di-
 methyl-but-2-en-1-yl, 1,3-Dimethyl-but-3-en-1-yl, 2,2-Di-
 40 methyl-but-3-en-1-yl, 2,3-Dimethyl-but-2-en-1-yl, 2,3-Di-
 methyl-but-3-en-1-yl, 3,3-Dimethyl-but-2-en-1-yl, 1-Ethyl-
 but-2-en-1-yl, 1-Ethyl-but-3-en-1-yl, 2-Ethyl-but-2-en-1-yl,
 2-Ethyl-but-3-en-1-yl, 1,1,2-Trimethyl-prop-2-en-1-yl,
 1-Ethyl-1-methyl-prop-2-en-1-yl, 1-Ethyl-2-methyl-prop-2-
 45 en-1-yl, n-Hept-2-en-1-yl, n-Hept-3-en-1-yl, n-Oct-2-en-1-yl

oder n-Oct-3-en-1-yl, insbesondere für Prop-2-en-1-yl oder n-Buten-4-yl;

- C₃-C₈-Halogenalkenyl für: C₃-C₆-Alkenyl wie vorstehend genannt, das partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. 2-Chlorallyl, 3-Chlorallyl, 2,3-Dichlorallyl, 3,3-Dichlorallyl, 2,3,3-Trichlorallyl, 2,3-Dichlorbut-2-enyl, 2-Bromallyl, 3-Bromallyl, 2,3-Dibromallyl, 3,3-Dibromallyl, 2,3,3-Tribromallyl oder 2,3-Dibrombut-2-enyl, insbesondere für 2-Chlorallyl oder 3,3-Dichlorallyl;
- C₂-C₈-Halogenalkenyl für: 1-Chlorvinyl, 2-Chlorvinyl, 1,2-Dichlorvinyl, 1,2,2-Trichlorvinyl oder einen der vorstehend genannten C₃-C₈-Halogenalkenyl-Reste;
- Cyano-C₂-C₈-alkenyl für: z.B. 2-Cyanovinyl, 3-Cyanoallyl, 4-Cyano-but-2-enyl, 4-Cyano-but-3-enyl oder 5-Cyano-pent-4-enyl, vorzugsweise 3-Cyanoallyl oder 4-Cyano-but-2-enyl, insbesondere für 3-Cyanoallyl;
- C₂-C₄-Alkenyloxy-C₁-C₄-alkyl für: durch C₂-C₄-Alkenyloxy wie Vinyloxy, Prop-2-enyloxy, But-1-en-3-yloxy, But-1-en-4-yloxy, n-But-2-enyloxy, n-But-3-enyloxy, 1-Methyl-prop-2-enyloxy oder 2-Methyl-prop-2-enyloxy - vorzugsweise Allyloxy, 2-Methylprop-2-en-1-yloxy, But-1-en-3-yloxy, But-1-en-4-yloxy oder But-2-en-1-yloxy - substituiertes C₁-C₄-Alkyl, also beispielsweise für Vinyloxymethyl, Allyloxymethyl, 2-(Allyloxy)ethyl oder But-1-en-4-yloxymethyl;
- (C₃-C₆-Alkenyloxy) carbonyl-(C₁-C₄-alkoxy) carbonyl-C₁-C₄-alkyl für: (C₁-C₄-Alkoxy) carbonyl-C₁-C₄-alkyl wie vorstehend genannt, das eine (C₃-C₆-Alkenyloxy) carbonylgruppe wie Prop-1-en-1-yl-O-CO, Prop-2-en-1-yl-O-CO, 1-Methylethenyl-O-CO, n-Buten-1-yl-O-CO, n-Buten-2-yl-O-CO, n-Buten-3-yl-O-CO, 1-Methyl-prop-1-en-1-yl-O-CO, 2-Methyl-prop-1-en-1-yl-O-CO, 1-Methyl-prop-2-en-1-yl-O-CO, 2-Methyl-prop-2-en-1-yl-O-CO, n-Penten-1-yl-O-CO, n-Penten-2-yl-O-CO, n-Penten-3-yl-O-CO, n-Penten-4-yl-O-CO, 1-Methyl-but-1-en-1-yl-O-CO, 2-Methyl-but-1-en-1-yl-O-CO, 3-Methyl-but-1-en-1-yl-O-CO, 1-Methyl-but-2-en-1-yl-O-CO, 2-Methyl-but-2-en-1-yl-O-CO, 3-Methyl-but-2-en-1-yl-O-CO, 1-Methyl-but-3-en-1-yl-O-CO, 2-Methyl-but-3-en-1-yl-O-CO, 3-Methyl-but-3-en-1-yl-O-CO, 1,1-Dimethyl-prop-2-en-1-yl-O-CO, 1,2-Dimethyl-prop-1-en-1-yl-O-CO, 1,2-Dimethyl-prop-2-en-1-yl-O-CO, 1-Ethyl-prop-1-en-2-yl-O-CO, 1-Ethyl-prop-2-en-1-yl-O-CO, n-Hex-1-en-1-yl-O-CO, n-Hex-2-en-1-yl-O-CO, n-Hex-3-en-1-yl-

0-CO, n-Hex-4-en-1-yl-O-CO, n-Hex-5-en-1-yl-O-CO, 1-Methyl-pent-1-en-1-yl-O-CO, 2-Methyl-pent-1-en-1-yl-O-CO, 3-Methyl-pent-1-en-1-yl-O-CO, 4-Methyl-pent-1-en-1-yl-O-CO, 1-Methyl-pent-2-en-1-yl-O-CO, 2-Methyl-pent-2-en-1-yl-O-CO, 3-Methyl-pent-2-en-1-yl-O-CO, 4-Methyl-pent-2-en-1-yl-O-CO, 1-Methyl-pent-3-en-1-yl-O-CO, 2-Methyl-pent-3-en-1-yl-O-CO, 3-Methyl-pent-3-en-1-yl-O-CO, 4-Methyl-pent-3-en-1-yl-O-CO, 1-Methyl-pent-4-en-1-yl-O-CO, 2-Methyl-pent-4-en-1-yl-O-CO, 3-Methyl-pent-4-en-1-yl-O-CO, 4-Methyl-pent-4-en-1-yl-O-CO, 1,1-Dimethyl-but-2-en-1-yl-O-CO, 1,1-Dimethyl-but-3-en-1-yl-O-CO, 1,2-Dimethyl-but-1-en-1-yl-O-CO, 1,2-Dimethyl-but-2-en-1-yl-O-CO, 1,2-Dimethyl-but-3-en-1-yl-O-CO, 1,3-Dimethyl-but-1-en-1-yl-O-CO, 1,3-Dimethyl-but-2-en-1-yl-O-CO, 1,3-Dimethyl-but-3-en-1-yl-O-CO, 2,2-Dimethyl-but-3-en-1-yl-O-CO, 2,3-Dimethyl-but-1-en-1-yl-O-CO, 2,3-Dimethyl-but-2-en-1-yl-O-CO, 2,3-Dimethyl-but-3-en-1-yl-O-CO, 3,3-Dimethyl-but-1-en-1-yl-O-CO, 3,3-Dimethyl-but-2-en-1-yl-O-CO, 1-Ethyl-but-1-en-1-yl-O-CO, 1-Ethyl-but-2-en-1-yl-O-CO, 1-Ethyl-but-3-en-1-yl-O-CO, 2-Ethyl-but-1-en-1-yl-O-CO, 2-Ethyl-but-2-en-1-yl-O-CO, 2-Ethyl-but-3-en-1-yl-O-CO, 1,1,2-Tri-methyl-prop-2-en-1-yl-O-CO, 1-Ethyl-1-methyl-prop-2-en-1-yl-O-CO, 1-Ethyl-2-methyl-prop-1-en-1-yl-O-CO und 1-Ethyl-2-methyl-prop-2-en-1-yl-O-CO trägt, also z.B. für $\text{CH}_2\text{-COOCH}_2\text{-COOCH}_2\text{-CH=CH}_2$, $\text{CH}_2\text{-COOCH}(\text{CH}_3)\text{-COOCH}_2\text{-CH=CH}_2$, $\text{CH}(\text{CH}_3)\text{-COOCH}(\text{CH}_3)\text{-COOCH}_2\text{-CH=CH}_2$ oder $\text{CH}(\text{CH}_3)\text{-COOCH}(\text{CH}_3)\text{-COOCH}_2\text{-CH=CH}_2$;
 - (C₃-C₈-Alkenyloxy)carbonyl-C₁-C₆-alkyl für: C₁-C₆-Alkyl, das einen (C₃-C₆-Alkenyloxy)carbonyl-Rest - wie vorstehend genannt - oder z.B. n-Hept-2-en-1-yl-O-CO, n-Hept-3-en-1-yl-O-CO, n-Oct-2-en-1-yl-O-CO oder n-Oct-3-en-1-yl-O-CO trägt, also beispielsweise für Allyloxycarbonylmethyl, 2-(Allyloxycarbonyl)ethyl oder But-1-en-4-yloxycarbonyl-methyl;
 - C₃-C₈-Alkinyl für: z.B. Propargyl, n-But-1-in-3-yl, n-But-1-in-4-yl, n-But-2-in-1-yl, n-Pent-1-in-3-yl, n-Pent-1-in-4-yl, n-Pent-1-in-5-yl, n-Pent-2-in-1-yl, n-Pent-2-in-4-yl, n-Pent-2-in-5-yl, 3-Methyl-but-1-in-3-yl, 3-Methyl-but-1-in-4-yl, n-Hex-1-in-3-yl, n-Hex-1-in-4-yl, n-Hex-1-in-5-yl, n-Hex-1-in-6-yl, n-Hex-2-in-1-yl, n-Hex-2-in-4-yl, n-Hex-2-in-5-yl, n-Hex-2-in-6-yl, n-Hex-3-in-1-yl, n-Hex-3-in-2-yl, 3-Methyl-pent-1-in-3-yl, 3-Methyl-pent-1-in-4-yl, 3-Methyl-pent-1-in-5-yl, 4-Methyl-pent-2-in-4-yl oder 4-Methyl-pent-2-in-5-yl, insbesondere für Propargyl;

- C_2 - C_8 -Halogenalkinyl für: Ethinyl oder C_3 - C_6 -Alkinyl wie vorstehend genannt, das partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. für 1,1-Difluorprop-2-in-1-yl, 4-Fluorbut-2-in-1-yl, 4-Chlorbut-2-in-1-yl, 1,1-Difluorbut-2-in-1-yl, 5-Fluorpent-3-in-1-yl oder 6-Fluorhex-4-in-1-yl;
- Cyano- C_3 - C_8 -alkinyl für: z.B. 1-Cyanopropargyl, 3-Cyanopropargyl, 4-Cyanobut-2-in-1-yl, 5-Cyanopent-3-in-1-yl oder 6-Cyanohehex-4-in-1-yl;
- C_2 - C_4 -Alkinylloxy- C_1 - C_4 -alkyl für: durch C_2 - C_4 -Alkinylloxy wie Ethinylloxy, Propargyloxy, n-But-1-in-3-yloxy, n-But-1-in-4-yloxy und n-But-2-in-1-yloxy, substituiertes C_1 - C_4 -Alkyl, also beispielsweise für CH_2 - $OC\equiv CH$, CH_2 - OCH_2 - $C\equiv CH$ oder 2-(Propargyloxy)ethyl;
- (C_3 - C_6 -Alkinylloxy)carbonyl-(C_1 - C_4 -alkoxy)carbonyl- C_1 - C_4 -alkyl für: (C_1 - C_4 -Alkoxy)carbonyl- C_1 - C_4 -alkyl wie vorstehend genannt, das eine (C_3 - C_6 -Alkinylloxy)carbonylgruppe wie Propargyl-O-CO, Prop-2-in-1-yl-O-CO, n-But-1-in-1-yl-O-CO, n-But-1-in-3-yl-O-CO, n-But-1-in-4-yl-O-CO, n-But-2-in-1-yl-O-CO, n-Pent-1-in-1-yl-O-CO, n-Pent-1-in-3-yl-O-CO, n-Pent-1-in-4-yl-O-CO, n-Pent-1-in-5-yl-O-CO, n-Pent-2-in-1-yl-O-CO, n-Pent-2-in-4-yl-O-CO, n-Pent-2-in-5-yl-O-CO, 3-Methylbut-1-in-3-yl-O-CO, 3-Methylbut-1-in-4-yl-O-CO, n-Hex-1-in-1-yl-O-CO, n-Hex-1-in-3-yl-O-CO, n-Hex-1-in-4-yl-O-CO, n-Hex-1-in-5-yl-O-CO, n-Hex-1-in-6-yl-O-CO, n-Hex-2-in-1-yl-O-CO, n-Hex-2-in-4-yl-O-CO, n-Hex-2-in-5-yl-O-CO, n-Hex-2-in-6-yl-O-CO, n-Hex-3-in-1-yl-O-CO, n-Hex-3-in-2-yl-O-CO, 3-Methylpent-1-in-1-yl-O-CO, 3-Methylpent-1-in-3-yl-O-CO, 3-Methylpent-1-in-4-yl-O-CO, 3-Methylpent-1-in-5-yl-O-CO, 4-Methylpent-1-in-1-yl-O-CO, 4-Methylpent-2-in-4-yl-O-CO und 4-Methylpent-2-in-5-yl-O-CO trägt, also z.B. für CH_2 - $COOCH_2$ - $COOCH_2$ - $C\equiv CH$, CH_2 - $COOCH(CH_3)$ - $COOCH_2$ - $C\equiv CH$, $CH(CH_3)$ - $COOCH_2$ - $COOCH_2$ - $C\equiv CH$ oder $CH(CH_3)$ - $COOCH(CH_3)$ - $COOCH_2$ - $C\equiv CH$;
- (C_3 - C_8 -Alkinylloxy)carbonyl- C_1 - C_6 -alkyl für: C_1 - C_6 -Alkyl, das vorzugsweise einen (C_3 - C_6 -Alkinylloxy)carbonyl-Rest wie vorstehend genannt, insbesondere CO-OCH₂-C≡CH, But-1-in-3-yl-O-CO, But-1-in-4-yl-O-CO oder But-2-in-1-yl-O-CO, trägt, also beispielsweise für CH_2 -CO-OCH₂-C≡CH oder 2-(Propargyloxycarbonyl)ethyl;

- C_3 - C_8 -Cycloalkyl für: Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder Cyclooctyl, insbesondere für Cyclopentyl oder Cyclohexyl;
- 5 - $(C_3$ - C_7 -Cycloalkyloxy)carbonyl- C_1 - C_4 -alkyl für: z.B. Cyclopropyloxycarbonylmethyl, Cyclobutyloxycarbonylmethyl, Cyclopentyloxycarbonylmethyl, Cyclohexyloxycarbonylmethyl, Cycloheptyloxycarbonylmethyl, 1-(Cyclopropyloxycarbonyl)ethyl, 1-(Cyclobutyloxycarbonyl)ethyl, 1-(Cyclopentyloxy- carbonyl)ethyl, 1-(Cyclohexyloxycarbonyl)ethyl, 1-(Cycloheptyloxycarbonyl)ethyl, 2-(Cyclopropyloxycarbonyl)ethyl, 2-(Cyclo- 10 heptyloxycarbonyl)ethyl, 2-(Cyclohexyloxycarbonyl)ethyl, 2-(Cycloheptyloxycarbonyl)ethyl, 3-(Cyclopropyloxycarbonyl)propyl, 3-(Cyclobutyloxycarbonyl)propyl, 3-(Cyclopentyloxy- carbonyl)propyl, 3-(Cyclohexyloxycarbonyl)propyl, 3-(Cycloheptyloxycarbonyl)propyl, 4-(Cyclopropyloxycarbonyl)butyl, 4-(Cyclobutyloxycarbonyl)butyl, 4-(Cyclopentyloxy- carbonyl)butyl, 4-(Cyclohexyloxycarbonyl)butyl oder 15 4-(Cycloheptyloxycarbonyl)butyl, insbesondere für Cyclopentyloxycarbonyl-methyl, Cyclohexyloxycarbonyl-methyl oder 2-(Cyclopentyloxy- carbonyl)ethyl;
- 20 - $(C_3$ - C_8 -Cycloalkyloxy)carbonyl- C_1 - C_6 -alkyl für: z.B. Cyclopropyloxycarbonylmethyl, Cyclobutyloxycarbonylmethyl, Cyclopentyloxycarbonylmethyl, Cyclohexyloxycarbonylmethyl, Cycloheptyloxycarbonylmethyl, Cyclooctyloxycarbonylmethyl, 1-(Cyclopropyloxycarbonyl)ethyl, 1-(Cyclobutyloxycarbonyl)ethyl, 1-(Cyclopentyloxy- carbonyl)ethyl, 1-(Cycloheptyloxycarbonyl)ethyl, 1-(Cyclooctyloxy- carbonyl)ethyl, 2-(Cyclopropyloxycarbonyl)ethyl, 2-(Cyclo- 25 heptyloxycarbonyl)ethyl, 2-(Cyclohexyloxycarbonyl)ethyl, 2-(Cycloheptyloxycarbonyl)ethyl, 2-(Cyclooctyloxycarbonyl)ethyl, 3-(Cyclopropyloxy- carbonyl)propyl, 3-(Cyclobutyloxycarbonyl)propyl, 3-(Cyclopentyloxy- carbonyl)propyl, 3-(Cycloheptyloxycarbonyl)propyl, 3-(Cyclooctyloxycarbonyl)propyl, 4-(Cyclopropyloxycarbonyl)butyl, 4-(Cyclobutyloxycarbonyl)butyl, 4-(Cyclopentyloxy- carbonyl)butyl, 4-(Cycloheptyloxycarbonyl)butyl oder 30 4-(Cyclooctyloxycarbonyl)butyl, 5-(Cyclopropyloxycarbonyl)pentyl, 5-(Cyclobutyloxycarbonyl)pentyl, 5-(Cyclopentyloxy- carbonyl)pentyl, 5-(Cycloheptyloxycarbonyl)pentyl, 5-(Cycloheptyloxycarbonyl)pentyl, 5-(Cyclooctyloxycarbonyl)pentyl, 6-(Cyclopropyloxycarbonyl)hexyl, 6-(Cyclobutyloxycarbonyl)hexyl, 6-(Cyclopentyloxy- carbonyl)hexyl, 6-(Cycloheptyloxycarbonyl)hexyl oder 35 6-(Cyclooctyloxycarbonyl)hexyl;
- 35 - $(C_3$ - C_8 -Cycloalkyloxy)carbonyl- C_1 - C_6 -alkyl für: z.B. Cyclopropyloxycarbonylmethyl, Cyclobutyloxycarbonylmethyl, Cyclopentyloxycarbonylmethyl, Cyclohexyloxycarbonylmethyl, Cycloheptyloxycarbonylmethyl, Cyclooctyloxycarbonylmethyl, 1-(Cyclopropyloxycarbonyl)ethyl, 1-(Cyclobutyloxycarbonyl)ethyl, 1-(Cyclopentyloxy- carbonyl)ethyl, 1-(Cycloheptyloxycarbonyl)ethyl, 1-(Cyclooctyloxy- carbonyl)ethyl, 2-(Cyclopropyloxycarbonyl)ethyl, 2-(Cyclo- 40 heptyloxycarbonyl)ethyl, 2-(Cyclohexyloxycarbonyl)ethyl, 2-(Cycloheptyloxycarbonyl)ethyl, 2-(Cyclooctyloxycarbonyl)ethyl, 3-(Cyclopropyloxy- carbonyl)propyl, 3-(Cyclobutyloxycarbonyl)propyl, 3-(Cyclopentyloxy- carbonyl)propyl, 3-(Cycloheptyloxycarbonyl)propyl, 3-(Cyclooctyloxycarbonyl)propyl, 4-(Cyclopropyloxycarbonyl)butyl, 4-(Cyclobutyloxycarbonyl)butyl, 4-(Cyclopentyloxy- carbonyl)butyl, 4-(Cycloheptyloxycarbonyl)butyl oder 45 4-(Cyclooctyloxycarbonyl)butyl, 5-(Cyclopropyloxycarbonyl)pentyl, 5-(Cyclobutyloxycarbonyl)pentyl, 5-(Cyclopentyloxy- carbonyl)pentyl, 5-(Cycloheptyloxycarbonyl)pentyl, 5-(Cycloheptyloxycarbonyl)pentyl, 5-(Cyclooctyloxycarbonyl)pentyl, 6-(Cyclopropyloxycarbonyl)hexyl, 6-(Cyclobutyloxycarbonyl)hexyl, 6-(Cyclopentyloxy- carbonyl)hexyl, 6-(Cycloheptyloxycarbonyl)hexyl oder 6-(Cyclooctyloxycarbonyl)hexyl;

6 - (Cyclooctyloxycarbonyl)hexyl, insbesondere für Cyclopentyloxycarbonyl-methyl, Cyclohexyloxycarbonyl-methyl oder 2-(Cyclopentyloxycarbonyl)ethyl;

5 - C_5 - C_8 -Cycloalkenyl für: Cyclopent-1-enyl, Cyclopent-2-enyl, Cyclopent-3-enyl, Cyclohex-1-enyl, Cyclohex-2-enyl, Cyclohex-3-enyl, Cyclohept-1-enyl, Cyclohept-2-enyl, Cyclohept-3-enyl, Cyclohept-4-enyl, Cyclooct-1-enyl, Cyclooct-2-enyl, Cyclooct-3-enyl oder Cyclooct-4-enyl, insbesondere für Cyclopent-1-enyl, Cyclopent-2-enyl, Cyclohex-1-enyl oder Cyclohex-2-enyl;

10 - $(C_1$ - C_4 -Alkoxy)carbonyl- C_3 - C_7 -cycloalkyl für: z.B. Methoxycarbonylcyclopentyl, Ethoxycarbonylcyclopentyl, Methoxycarbonylcyclohexyl oder Ethoxycarbonylcyclohexyl.

15 Im Hinblick auf die Verwendung der substituierten 2-Benz(o)yl-pyridine I als Herbizide und/oder als desikkant/defoliant wirkende Verbindungen haben die Variablen vorzugsweise folgende Bedeutungen, und zwar jeweils für sich allein oder in Kombination:

n Null;

25 X Carbonyl oder Methylen, insbesondere Methylen;

R¹ C_1 - C_4 -Halogenalkyl, insbesondere Trifluormethyl;

R² Halogen, insbesondere Chlor;

30 R³ Halogen, insbesondere Chlor;

R⁴ Halogen, insbesondere Chlor;

35 R⁵ -OR⁸, -CO-OR⁸, -CO-N(R⁹,R¹⁰) oder -CH=N-OR¹³, insbesondere -OR⁸;

R⁶ Wasserstoff oder Halogen, insbesondere Wasserstoff;

40 R⁷ Wasserstoff oder Halogen, insbesondere Wasserstoff;

R⁸ Wasserstoff, C_1 - C_8 -Alkyl, C_3 - C_8 -Alkenyl, C_3 - C_8 -Alkinyl, Hydroxycarbonyl- C_1 - C_4 -alkyl, $(C_1$ - C_8 -Alkoxy)carbonyl- C_1 - C_6 -alkyl, $(C_3$ - C_8 -Alkenyloxy)carbonyl- C_1 - C_6 -alkyl, $(C_3$ - C_8 -Alkinyl-oxy)carbonyl- C_1 - C_6 -alkyl, C_1 - C_4 -Alkoxy-(C_1 - C_4 -alkoxy)carbonyl- C_1 - C_4 -alkyl, $(C_1$ - C_4 -Alkoxy)carbonyl-(C_1 - C_4 -alkoxy)carbonyl- C_1 - C_4 -alkyl,

22

5

10

15

20

25

insbesondere Wasserstoff, C₁-C₈-Alkyl, C₃-C₈-Alkenyl,
 C₃-C₈-Alkiny, (C₁-C₈-Alkoxy)carbonyl-C₁-C₆-alkyl,
 -CH(R²²)-CO-N(R⁹, R¹⁰), -CH(R²²)-CO-CO-OR²³ oder

30

R⁹, R¹⁰ Wasserstoff, C₁-C₈-Alkyl oder (C₁-C₄-Alkoxy)carbonyl-C₁-C₄-alkyl, insbesondere C₁-C₈-Alkyl;

35

R¹³ Wasserstoff, C₁-C₈-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkiny oder
 (C₁-C₄-Alkoxy)carbonyl-C₁-C₄-alkyl, insbesondere C₁-C₈-Alkyl;

R²² Wasserstoff, C₁-C₈-Alkyl, C₃-C₈-Alkenyl oder C₃-C₈-Alkiny, insbesondere C₁-C₈-Alkyl;

40

R²³ Wasserstoff, C₁-C₈-Alkyl, C₃-C₈-Alkenyl oder C₃-C₈-Alkiny, insbesondere C₁-C₈-Alkyl;

R²⁵ Wasserstoff, C₁-C₈-Alkyl, C₃-C₈-Alkenyl oder C₃-C₈-Alkiny, insbesondere C₁-C₈-Alkyl.

45

23

Die substituierten 2-Benz(o)ylpyridine der Formel I sind auf verschiedene Weise erhältlich, beispielsweise nach einem der folgenden Verfahren:

5 Verfahren A)

Umsetzung von substituierten Pyridinen der Formel II mit Benzyl-nitrilen der Formel III in Gegenwart einer Base {vgl. z.B.

R.J. Wolters et al., J. Pharmaceut. Sciences 64, 2013 (1975);

Z.-T. Huang et al., *Synth. Commun.* **23**, 591 (1993);

10 H. Yamanaka und S. Ohba, *Heterocycles* **31**, 895 (1990).

Üblicherweise arbeitet man in einem inerten Lösungs- oder Verdünnungsmittel, insbesondere einem dipolär aprotischen Lösungsmittel, z.B. in N,N-Dimethylformamid, N-Methyl-pyrrolidon oder in einem Ether wie Diethylether, 1,2-Diethoxyethan, Tetrahydrofuran und Dioxan.

Als Basen kommen z.B. die Alkalimetallhydride, -amide, -carbonate und -hydrogencarbonate, ferner Stickstoffbasen wie Triethylamin, Pyridin und 4-Dimethylaminopyridin, in Betracht. Außerdem können auch die Alkalimetallsalze von sperrigen Alkoholen wie Kalium-tert.-butylat verwendet werden.

Die Reaktionstemperatur liegt normalerweise bei 0 bis 150°C.

Üblicherweise werden die Reaktionspartner in etwa stöchiometrischen Mengen eingesetzt, jedoch kann ein Überschuß einer der Komponenten, z.B. im Hinblick auf einen möglichst vollständigen Umsatz der anderen Komponente, vorteilhaft sein.

40 Die substituierten Pyridine II und Benzylnitrile III sind entweder bekannt und z.T. sogar kommerziell erhältlich, oder sind nach an sich bekannten Methoden leicht herstellbar. Zur Herstellung von Benzylnitrile aus Benzylhalogeniden sei z.B. auf V.G. Telang und C.J. Smith, J. Pharm. Sci. 59, 1521 (1970) verwiesen.

Verfahren B;

Partielle Hydrolyse von Verbindungen I mit $X = \text{CH}(\text{CN})$, z.B. in konz. Schwefelsäure {vgl. z.B. R.J. Wolters et al., J. Pharm. Sci. 64, 2013 (1975)}, zu subst. 2-Benz(o)ylpyridinen I mit $X = \text{CH-CONH}_2$, deren Alkoholyse {vgl. auch hierzu z.B. R.J. Wolters et al.} zu 2-Benz(o)ylpyridinen I mit $X = \text{CH-CO-O}(\text{C}_1\text{-C}_4\text{-Alkyl})$ führt:

25 Die Hydrolyse mit konz. Schwefelsäure wird üblicherweise bei 0 bis 50°C, vorzugsweise bei Raumtemperatur, vorgenommen.

30 Die anschließende Alkoholyse erfolgt bevorzugt in überschüssigem Alkohol HO(C₁-C₄-Alkyl) als Lösungsmittel, jedoch können auch andere inerte Lösungs-/Verdünnungsmittel verwendet werden. Die Alkoholyse wird durch Mineralsäuren wie Chlorwasserstoff katalysiert.

35 Normalerweise arbeitet man bei 0 bis 150°C, vorzugsweise bei der Siedetemperatur des Alkohols HO(C₁-C₄-Alkyl).

Verfahren C;

Hydrolyse von 2-Benz(o)ylpyridinen der Formel I, bei denen X für CH-CN, CH-CONH₂ oder CH-CO-O(C₁-C₄-Alkyl) steht, in Gegenwart einer wäßrigen Säure:

5

I {X = CH-CN, CH-CONH₂,
CH-CO-O(C₁-C₄-Alkyl)}

15

20

I {X = CH₂}

Als Säuren können z.B. Mineralsäure, Bromwasserstoffsäure und Schwefelsäure oder organische Säuren wie Trifluoressigsäure verwendet werden.

Als Lösungsmittel dient vorzugsweise Wasser, dem zum Zwecke der besseren Lösung der Edukte gewünschtenfalls ein inertes Cosolvans, z.B. Essigsäure oder Dimethylsulfoxid, zugesetzt

30 wird.

Üblicherweise arbeitet man bei Temperaturen von 0 bis 150°C, vorzugsweise bei der Siedetemperatur des Lösungsmittels.

35 Die als Zwischenprodukte entstehenden Carbonsäuren können in der Regel nicht isoliert werden und decarboxylieren unter den angegebenen Reaktionsbedingungen meist spontan.

40

45

Verfahren D)

Oxidation von 2-Benz(o)ylpyridinen der Formel I {X = CH-CN} mit (Luft)sauerstoff in Gegenwart einer Base {vgl. z.B.

M.S. Kharasch und G. Sosnovsky, *Tetrahedron* 3, 97 (1958);

5 H.G. Aurich, *Tetrahedron Lett.* 12, 657 (1964);

S.S. Kulp, Org. Prep. and Proced. 2, 137 (1970);

A. Donetti et al., Synthesis 1980, 1009;

J.F. Wolfe et al., J. Het. Chem. 24, 1061 (1987);

H. Yamanaka und S. Ohba, *Heterocycles* 31, 895 (1990).

10

Als Base kommen z.B. die Alkalimetallhydride, -amide, -carbonate und -hydrogencarbonate, ferner Stickstoffbasen wie Triethylamin, Pyridin und 4-Dimethylaminopyridin, in Betracht. Außerdem können auch die Alkalimetallsalze von sperrigen Alkoholen wie Kalium-tert.-butylat verwendet werden.

25 Als Lösungsmittel eignen sich sowohl protische, z.B. Alkohole wie Methanol und Ethanol, als auch dipolar aprotische Solventien, z.B. Dimethylsulfoxid oder Ether wie Tetrahydrofuran und Dioxan.

30 Die Reaktion wird üblicherweise bei Temperaturen zwischen 0 und 50°C durchgeführt, vorzugsweise bei Raumtemperatur. Der Reaktionsverlauf kann gewünschtenfalls mit einem Phasentransferkatalysator wie Triethylbenzylammoniumchlorid beschleunigt werden.

35

Verfahren E,

Reduktion von 2-Benz(o)ylpyridinen I {X = CO} mit komplexen Hydriden wie NaBH₄ und LiAlH₄ oder mittels katalytischer Hydrierung in Gegenwart eines Übergangsmetallkatalysators, z.B. Raney-
 40 Nickel oder Platin/Kohle, auf an sich bekannte Weise {vgl. z.B. C. Vaccher et al., J. Het. Chem. 26, 811-815 (1989); G.R. Newkome et al., J. Org. Chem. 49, 2961-2971 (1984); A. Garcia et al., Tetrahedron Lett. 34, 1797-1798 (1993); M. Takeshita et al., Heterocycles 35, 879-884 (1993);
 45 M. Takemoto et al., Chem. Pharm. Bull. 42, 802-805 (1994)}:

Die Verfahrensprodukte I mit X = CH-OH können anschließend in
 10 Gegenwart einer Base mit Alkylhalogeniden X-(C₁-C₄-Alkyl), wobei
 X für Chlor, Brom oder Iod steht, alkyliert werden {vgl. z.B.
 D.E. Beattie et al., J. Med. Chem. 20, 714-718 (1977);
 J. Crosby et al., Tetrahedron Lett. 30, 3849-3852 (1989);
 S. Jriuchijima et al., J. Am. Chem. Soc. 96, 4280 (1974);
 15 S. Sakuraba et al., Tetrahedron: Asymmetry 4, 1457-1460 (1993);
 Ya.G. Bal'on et al., Ukr. Khim. Zh. (Russ. Ed.) 57, 191-195
 (1991)}:

Als Basen kommen z.B. die Alkalimetallhydroxide wie Natriumhydroxid, die Alkalimetallhydride wie Natriumhydrid, die
 30 Alkalimetallamide wie Natriumamid oder die Alkalimetallsalze von Alkoholen wie Kalium-tert.-butylat in Betracht.

In der Regel arbeitet man in einem inerten Lösungs-/Verdünnungsmittel, wobei sowohl dipolar aprotische Solventien, z.B. N,N-Dimethylformamid, Dimethylsulfoxid oder Ether wie
 35 Diethylether, Tetrahydrofuran und 1,4-Dioxan, als auch protische Solventien, z.B. Alkohole wie tert.-Butanol, in Betracht kommen.

Die Reaktionsführung erfolgt normalerweise bei einer Reaktionstemperatur von 0 bis 150°C, vorzugsweise bei 20 bis
 40 100°C.

Verfahren E,

Nukleophile Benzoylierung von Halogenpyridinen der Formel IV mit Benzaldehyden V in Gegenwart einer Base und eines Katalysators (vgl. z.B. H. Stetter, Angew. Chem. 88, 695 (1976);

5 A. Miyashita et al., Chem. Pharm. Bull. 38, 1147-1152 (1990);
 A. Miyashita et al., ibid 40, 43-48 und 2627-2631 (1992);
 A. Miyashita et al., ibid 42, 2017-2022 (1994);

Als Basen können beispielsweise die Alkalimetallhydride wie Natriumhydrid oder die Alkalimetallamide wie Natriumamid verwendet werden.

20 Als Lösungsmittel eignen sich z.B. dipolar aprotische Solventien, z.B. N,N-Dimethylformamid, Dimethylsulfoxid oder cyclische Ether wie Tetrahydrofuran und 1,4-Dioxan.

25 Als Katalysator dienen insbesondere (substituierte) (Benz)-imidazoliumsalze und (substituierte) (Benz)thiazoliumsalze, z.B. 1,3-Dimethylimidazoliumchlorid, 1,3-Dimethylimidazoliumbromid, 1,3-Dimethylimidazoliumiodid, 1,3-Benzimidazoliumchlorid, 1,3-Benzimidazoliumbromid und 1,3-Dimethylbenzimidazoliumiodid.

30 Die Menge des Katalysators kann bis zu 50 %, vorzugsweise 5 bis 20 %, bezogen auf die molare Menge des eingesetzten Halogenpyridins, betragen.

35 Die Reaktion wird üblicherweise bei Temperaturen von 0 bis 150°C durchgeführt, vorzugsweise bei Temperaturen von 20 bis 100°C.

40

45

Verfahren G;

Umsetzung von Halogenpyridinen IV mit Benzylmagnesiumhalogeniden VI oder Benzylzinkhalogeniden VII, gegebenenfalls in Gegenwart eines Übergangsmetallkatalysators {vgl. z.B.

5 E. Negishi et al., J. Org. Chem. 42, 1821 (1977) und
M. Kumada et al., Tetrahedron Lett. 21, 845 (1980)}:

Die Verbindungen VI und VII können leicht aus den entsprechenden Benzylhalogeniden und Magnesium oder Zink hergestellt werden, beispielsweise nach M. Gaudemar, Bull. Soc. Chim. Fr., 1962, S. 974.

20 Als Katalysatoren eignen sich insbesondere Nickel-Katalysatoren, z.B. $\text{Ni}[\text{P}(\text{Phenyl})_3]_4$ oder $\text{Ni}[\text{P}(\text{Phenyl})_3]_2\text{Cl}_2$, und Palladium-Katalysatoren, z.B. $\text{Pd}[\text{P}(\text{Phenyl})_3]_4$,
25 $\text{Pd}[\text{P}(\text{Phenyl})_3]_2\text{Cl}_2$, $\text{Pd}[1,2\text{-Bis-(diphenylphosphino)-ethan}]\text{Cl}_2$,
 $\text{Pd}[1,4\text{-Bis-(diphenylphosphino)-butan}]\text{Cl}_2$ oder
 $\text{Pd}[1,1'\text{-Bis-(diphenylphosphino)-ferrocen}]\text{Cl}_2$.

30 Die Reaktionsführung erfolgt in der Regel in einem inerten organischen Lösungsmittel, z.B. in einem Ether wie Diethyl-ether und Tetrahydrofuran.

Normalerweise arbeitet man bei 0 bis 150°C, vorzugsweise bei 20 bis 100°C.

35 Verfahren H;

Oxidation von substituierten 2-Benz(o)ylpyridinen der Formel I, bei denen n Null bedeutet, auf an sich bekannte Weise {vgl. z.B. A. Albini und S. Pietra, Heterocyclic N-Oxides, CRC-Press Inc., Boca Raton, USA 1991;}

40 H.S. Mosher et al., Org. Synth. Coll. Vol. IV, 1963, S. 828;
E.C. Taylor et al., Org. Synth. Coll. Vol. IV, 1963, S. 704;
T.W. Bell et al., Org. Synth. 69, 226 (1990)}:

Unter den zur Oxidation des Pyridinrings üblichen Oxidationsmitteln sei beispielhaft auf Peressigsäure, Pertrifluoressigsäure, Perbenzoësäure, m-Chlorperbenzoësäure, Monopermaleinsäure, Magnesiummonoperphthalat, Natriumperborat, Oxone® (enthält Peroxidisulfat), Perwolframsäure und Wasserstoffperoxid verwiesen.

5 Geeignete Lösungsmittel sind z.B. Wasser, Schwefelsäure, Carbonsäuren wie Essigsäure und Trifluoressigsäure sowie 10 halogenierte Kohlenwasserstoffe wie Dichlormethan und Chloroform.

Normalerweise gelingt die Oxidation bei Temperaturen von 0°C bis Siedetemperatur des Reaktionsgemisches.

15 Das Oxidationsmittel wird normalerweise in mindestens äquimolaren Mengen, bezogen auf die Ausgangsverbindung, eingesetzt. In Einzelfällen kann auch ein großer Überschuß an Oxidationsmittel Vorteile bieten.

20 Sofern nicht anders angegeben, werden alle vorstehend beschriebenen Verfahren zweckmäßigerweise bei Atmosphärendruck oder unter dem Eigendruck des jeweiligen Reaktionsgemisches vorgenommen.

25 Die Aufarbeitung der Reaktionsgemische erfolgt in der Regel auf an sich bekannte Weise. Sofern nicht bei den vorstehend beschriebenen Verfahren etwas anderes angegeben ist, erhält man die Wertprodukte z.B. nach Verdünnen der Reaktionslösung mit Wasser durch Filtration, Kristallisation oder Lösungsmittlextraktion, oder 30 durch Entfernen des Lösungsmittels, Verteilen des Rückstandes in einem Gemisch aus Wasser und einem geeigneten organischen Lösungsmittel und Aufarbeiten der organischen Phase auf das Produkt hin.

35 Die substituierten 2-Benz(o)ylpyridine I können bei der Herstellung als Isomerengemische anfallen, die jedoch gewünschtenfalls nach den hierfür üblichen Methoden wie Kristallisation oder Chromatographie, auch an einem optisch aktiven Adsorbat, in die weitgehend reinen Isomeren getrennt werden können. Reine optisch 40 aktive Isomere lassen sich vorteilhaft aus entsprechenden optisch aktiven Ausgangsprodukten herstellen.

Landwirtschaftlich brauchbare Salze der Verbindungen I können durch Reaktion mit einer Base des entsprechenden Kations, vorzugsweise einem Alkalimetallhydroxid oder -hydrid, oder durch Reaktion mit einer Säure des entsprechenden Anions, vorzugsweise der

Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure oder Salpetersäure, gebildet werden.

Salze von I, deren Metallion kein Alkalimetallion ist, können 5 auch durch Umsalzen des entsprechenden Alkalimetallsalzes in üblicher Weise hergestellt werden, ebenso Ammonium-, Phosphonium-, Sulfonium- und Sulfoxoniumsalze mittels Ammoniak, Phosphonium-, Sulfonium- oder Sulfoxoniumhydroxiden.

10 Die Verbindungen I und deren landwirtschaftlich brauchbaren Salze eignen sich - sowohl als Isomerengemische als auch in Form der reinen Isomeren - als Herbizide. Die I enthaltenden herbiziden Mittel bekämpfen Pflanzenwuchs auf Nichtkulturflächen sehr gut, besonders bei hohen Aufwandmengen. In Kulturen wie Weizen, Reis, 15 Mais, Soja und Baumwolle wirken sie gegen Unkräuter und Schadgräser, ohne die Kulturpflanzen nennenswert zu schädigen. Dieser Effekt tritt vor allem bei niedrigen Aufwandmengen auf.

Unter Berücksichtigung der Vielseitigkeit der Applikations- 20 methoden können die Verbindungen I bzw. sie enthaltenden herbiziden Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen:
Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus 25 officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), 30 Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot 35 esculenta, Medicago sativa, Musa spec., Nicotiana tabacum (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, 40 Ricinus communis, Saccharum officinarum, Secale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera und Zea mays.
45 Darüber hinaus können die Verbindungen I auch in Kulturen, die durch Züchtung einschließlich gentechnischer Methoden gegen die Wirkung von Herbiziden tolerant sind, verwendet werden.

Des weiteren eignen sich die substituierten 2-Benz(o)ylpyridine I auch zur Desikkation und/oder Defoliation von Pflanzen.

Als Desikkantien eignen sie sich insbesondere zur Austrocknung 5 der oberirdischen Teile von Kulturpflanzen wie Kartoffel, Raps, Sonnenblume und Sojabohne. Damit wird ein vollständig mechanisches Beernten dieser wichtigen Kulturpflanzen ermöglicht.

Von wirtschaftlichem Interesse ist ferner die Ernteerleichterung, 10 die durch das zeitlich konzentrierte Abfallen oder Vermindern der Haftfestigkeit am Baum bei Zitrusfrüchten, Oliven oder bei anderen Arten und Sorten von Kern-, Stein- und Schalenobst ermöglicht wird. Derselbe Mechanismus, das heißt die Förderung der Ausbildung von Trenngewebe zwischen Frucht- oder Blatt- und 15 Sproßteil der Pflanzen ist auch für ein gut kontrollierbares Entblättern von Nutzpflanzen, insbesondere Baumwolle, wesentlich.

Außerdem führt die Verkürzung des Zeitintervalls, in dem die einzelnen Baumwollpflanzen reif werden, zu einer erhöhten Faser- 20 qualität nach der Ernte.

Die Verbindungen I bzw. die sie enthaltenden Mittel können beispielsweise in Form von direkt versprühbaren wässrigen Lösungen, Pulvern, Suspensionen, auch hochprozentigen wässrigen, öligen 25 oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die 30 feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Als inerte Hilfsstoffe kommen im wesentlichen in Betracht: Mineralölfraktionen von mittlerem bis hohem Siedepunkt wie Kerosin und Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Paraffine, Tetrahydronaphthalin, alkylierte Naphthaline und deren Derivate, alkylierte Benzole und deren Derivate, Alkohole wie Methanol, Ethanol, Propanol, Butanol 40 und Cyclohexanol, Ketone wie Cyclohexanon, stark polare Lösungsmittel, z.B. Amine wie N-Methylpyrrolidon und Wasser.

Wässrige Anwendungsformen können aus Emulsionskonzentraten, Suspensionen, Pasten, netzbaren Pulvern oder wasserdispersierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die substituierten 2-Benz(o)ylpyridine I als solche oder in einem Öl

oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfonierte Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenyl-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylen- oder Polyoxypropylenalkylether, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Kiesel säuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit und Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel wie Ammoniumsulfat, Ammoniumphosphat und Ammoniumnitrat, Harnstoffe und pflanzliche Produkte wie Getreidemehl, Baumrinde-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

Die Konzentrationen der Wirkstoffe I in den anwendungsfertigen Zubereitungen können in weiten Bereichen variiert werden. Im allgemeinen enthalten die Formulierungen etwa 0,001 bis 98 Gew.-%, vorzugsweise 0,01 bis 95 Gew.-%, mindestens eines Wirkstoffs I. Die Wirkstoffe werden dabei in einer Reinheit von 90 % bis 100 %, vorzugsweise 95 % bis 100 % (nach NMR-Spektrum) eingesetzt.

Die folgenden Formulierungsbeispiele verdeutlichen die Herstellung solcher Zubereitungen:

I. 20 Gewichtsteile der Verbindung Nr. 2 werden in einer
5 Mischung gelöst, die aus 80 Gewichtsteilen alkyliertem
Benzol, 10 Gewichtsteilen des Anlagerungsproduktes von 8
bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid,
10 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure
und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol
Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Ausgießen und
feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser
erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des
Wirkstoffs enthält.

15 II. 20 Gewichtsteile der Verbindung Nr. 108 werden in einer
Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon,
30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von
20 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.

25 III. 20 Gewichtsteile des Wirkstoffs Nr. 118 werden in einer
Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon,
65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt
210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl
30 besteht. Durch Eingießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.

IV. 20 Gewichtsteile des Wirkstoffs Nr. 460 werden mit
35 3 Gewichtsteilen des Natriumsalzes der Diisobutyl-naphthalin- α -sulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut
40 vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs enthält.

V. 3 Gewichtsteile des Wirkstoffs Nr. 369 werden mit
45 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.-% des Wirkstoffs enthält.

VI. 20 Gewichtsteile des Wirkstoffs Nr. 470 werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkohol-polyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-
5 Kondensates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

VII. 1 Gewichtsteil der Verbindung Nr. 490 wird in einer 10 Mischung gelöst, die aus 70 Gewichtsteilen Cyclohexanon, 20 Gewichtsteilen ethoxyliertem Isooctylphenol und 10 Gewichtsteilen ethoxyliertem Rizinusöl besteht. Anschließend kann die Mischung mit Wasser auf die gewünschte Wirkstoffkonzentration verdünnt werden.
15 Man erhält ein stabiles Emulsionskonzentrat.

VIII. 1 Gewichtsteil der Verbindung Nr. 491 wird in einer Mischung gelöst, die aus 80 Gewichtsteilen Cyclohexan und 20 Gewichtsteilen Wettol® EM 31 (= nichtionischer Emulgator auf der Basis von ethoxyliertem Rizinusöl; BASF AG) besteht. Danach kann mit Wasser auf die gewünschte Wirkstoffkonzentration verdünnt werden. Man erhält ein stabiles Emulsionskonzentrat.

25 Die Applikation der Wirkstoffe I bzw. der herbiziden Mittel kann im Vorauflauf- oder im Nachlaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden,
30 daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

35 Die Aufwandmengen an Wirkstoff I betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,001 bis 3,0, vorzugsweise 0,01 bis 1,0 kg/ha aktive Substanz (a.S.).

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung 40 synergistischer Effekte können die substituierten 2-Benz(o)yl-pyridine I mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner 1,2,4-Thiadiazole, 1,3,4-Thiadiazole, Amide, Aminophosphorsäure 45 und deren Derivate, Aminotriazole, Anilide, Aryloxy-/Heteroaryl-oxyalkansäuren und deren Derivate, Benzoesäure und deren Derivate, Benzothiadiazinone, 2-(Hetaryl/Aroyl)-1,3-cyclohexan-

dione, Heteroaryl-Aryl-Ketone, Benzylisoxazolidinone, meta-CF₃-Phenyldeivate, Carbamate, Chinolincarbonsäure und deren Derivate, Chloracetanilide, Cyclohexan-1,3-dionederivate, Diazine, Dichlorpropionsäure und deren Derivate, Dihydrobenzofurane, 5 Dihydrofuran-3-one, Dinitroaniline, Dinitrophenole, Diphenyl-ether, Dipyridyle, Halogencarbonsäuren und deren Derivate, Harnstoffe, 3-Phenyluracile, Imidazole, Imidazolinone, N-Phenyl-3,4,5,6-tetrahydphthalimide, Oxadiazole, Oxirane, Phenole, Aryloxy- und Heteroaryloxyphenoxypropionsäureester, Phenyl-10 essigsäure und deren Derivate, 2-Phenylpropionsäure und deren Derivate, Pyrazole, Phenylpyrazole, Pyridazine, Pyridincarbon-säure und deren Derivate, Pyrimidylether, Sulfonamide, Sulfonylharnstoffe, Triazine, Triazinone, Triazolinone, Triazolcarbox-amide und Uracile in Betracht.

15

Außerdem kann es von Nutzen sein, die Verbindungen I allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt, gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder 20 phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

25 Herstellungsbeispiele

Beispiel 1: 3-Chlor-2-[1-(4-chlorphenyl)-1-cyanomethyl]-5-trifluormethylpyridin (Verfahren A)

30 1,65 g einer 80%igen Suspension von Natriumhydrid in Mineralöl wurden zur Entfernung des Mineralöls mit 30 ml wasserfreiem N,N-Dimethylformamid gewaschen. Zu dem erhaltenen Natriumhydrid gab man 25 ml N,N-Dimethylformamid, wonach innerhalb von 20 Minuten eine Lösung von 7,6 g 4-Chlorbenzylcyanid in 25 ml 35 N,N-Dimethylformamid zugetropft wurde. Dabei entstand unter Gasentwicklung eine rote Suspension, die noch 15 Minuten gerührt wurde. Anschließend tropfte man innerhalb von 20 Minuten unter exothermer Reaktion 10,8 g 2,3-Dichlor-5-trifluormethylpyridin in das Reaktionsgemisch. Nach beendeter Zugabe wurde noch 20 Minuten 40 nachgerührt und die Reaktionsmischung dann in 2 l Wasser eingerrührt. Aus der wässrigen Phase extrahierte man das Produkt mit dreimal 200 ml tert.-Butyl-methylether. Die vereinigten organischen Phasen wurden schließlich über Magnesiumsulfat getrocknet und dann eingeengt. Die Reinigung des Rohproduktes erfolgte 45 mittels Chromatographie an Kieselgel (Laufmittel: Cyclohexan/Essigsäureethylester = 4:1). Ausbeute: 6,9 g (42 %) eines farblosen Öls;

¹H-NMR (270 MHz; in CDCl₃): δ [ppm] = 5,78 (s,1H), 7,36 (d,2H), 7,45 (d,2H), 7,98 (s,1H), 8,84 (s,1H).

5 Beispiel 2: 3-Chlor-2-[1-(2,3-dichlorphenyl)-1-cyanomethyl]-5-trifluormethylpyridin (Verfahren A)

Analog zu Beispiel 1 erhielt man aus 1,65 g Natriumhydrid-suspension, 9,3 g 2,3-Dichlorbenzylcyanid und 10,8 g 2,3-Dichlor-5-trifluormethylpyridin 10,0 g eines farblosen Öls.

10 Ausbeute: 55 %;

¹H-NMR (400 MHz; in CDCl₃): δ [ppm] = 6,20 (s,1H), 7,30 (t,1H), 7,50-7,56 (m,2H), 8,03 (s,1H), 8,78 (s,1H).

15 Beispiel 3: 2-[1-Carbamoyl-1-(4-chlorphenyl)-methyl]-3-chlor-5-trifluormethylpyridin (Verfahren B)

20 6,0 g 3-Chlor-2-[1-(4-chlorphenyl)-1-cyanomethyl]-5-trifluormethylpyridin (hergestellt nach Beispiel 1) wurden in 30 ml 96%iger Schwefelsäure 16 Stunden bei 23°C gerührt. Danach rührte man die Reaktionsmischung vorsichtig in 200 ml Eiswasser ein, wobei das Produkt auskristallisierte. Der Feststoff wurde abgetrennt, nacheinander mit Wasser und n-Hexan gewaschen und dann getrocknet. Ausbeute: 5,5 g (87 %) farbloser Kristalle; Smp.: 135-136°C.

25

Beispiel 4: 3-Chlor-2-[1-(4-chlorphenyl)-1-methoxycarbonylmethyl]-5-trifluormethylpyridin (Verfahren B)

30 In eine Lösung von 3,0 g 2-[1-Carbamoyl-1-(4-chlorphenyl)-methyl]-3-chlor-5-trifluormethylpyridin (hergestellt nach Beispiel 3) in 100 ml wasserfreiem Methanol wurde 5 Stunden Chlorwasserstoff-Gas eingeleitet. Anschließend rührte man noch 16 Stunden, wobei überschüssiger Chlorwasserstoff durch Einleiten von Stickstoff entfernt wurde. Nach Abtrennen des Methanols 35 reinigte man das Rohprodukt mittels Chromatographie an Kieselgel (Laufmittel: Cyclohexan/tert.-Butyl-methylether = 50:1). Ausbeute: 1,3 g (42 %) farbloser Kristalle; Smp.: 103-104°C.

40 Beispiel 5: 3-Chlor-2-(4-chlorbenzyl)-5-trifluormethylpyridin (Verfahren C)

45 4,3 g 3-Chlor-2-[1-(4-chlorphenyl)-1-cyanomethyl]-5-trifluormethylpyridin (hergestellt nach Beispiel 1) wurden 3 Stunden in 50 ml 47%iger wässriger Bromwasserstoff-Lösung auf Rückfluß-temperatur erhitzt und dann noch 68 Stunden bei 23°C gerührt. Anschließend gab man den Ansatz in 500 ml Eiswasser. Nach weiteren 30 Minuten Rühren wurde der entstandene Feststoffanteil

abgetrennt, mit Wasser gewaschen und schließlich getrocknet. Ausbeute: 3,0 g (75 %) farbloser Kristalle; Smp.: 54-56°C).

Beispiel 6: 3-Chlor-2-(2,3-dichlorbenzyl)-5-trifluormethylpyridin
5 (Verfahren C)

Analog Beispiel 5 erhielt man aus 7,9 g 3-Chlor-2-[1-(2,3-dichlorphenyl)-1-cyanomethyl]-5-trifluormethylpyridin (hergestellt nach Beispiel 2) 6,3 g eines farblosen Öls. Ausbeute: 86 %;

10 $^1\text{H-NMR}$ (270 MHz; in CDCl_3): δ [ppm] = 4,50 (s,2H), 7,02 (d,1H), 7,15 (t,1H), 7,40 (d,1H), 7,93 (s,1H), 8,67 (s,1H).

Beispiel 7: 3-Chlor-2-(4-chlorbenzoyl)-5-trifluormethylpyridin

15 3,0 g einer 80%igen Suspension von Natriumhydrid in Mineralöl wurden zur Entfernung des Mineralöls mit wasserfreiem Dioxan gewaschen. Zu dem erhaltenen Natriumhydrid gab man erst 100 ml Dioxan und dann unter Stickstoff-Atmosphäre nacheinander 21,6 g 2,3-Dichlor-5-trifluormethylpyridin, 14,1 g p-Chlorbenzaldehyd

20 und 2,24 g 1,3-Dimethylimidazoliumiodid. Dieses Reaktionsgemisch wurde eine Stunde bei 50°C und 65 Stunden bei 23°C gerührt. Zur Aufarbeitung verdünnte man mit 200 ml Wasser, wonach auf die Hälfte des Volumens eingeengt wurde. Anschließend extrahierte man das Produkt mit dreimal 50 ml Methylenchlorid. Die ver-

25 einigten organischen Phasen wurden mit 50 ml Wasser gewaschen, über Natriumsulfat getrocknet und schließlich eingeengt. Die Reinigung des Rohproduktes erfolgte mittels Vakuumdestillation. Ausbeute: 22,4 g (70 %) einer gelben Flüssigkeit;

Siedebereich: 126-139°C/0,65 mbar; Reinheit: 95 %;

30 $^1\text{H-NMR}$ (270 MHz; in CDCl_3): δ [ppm] = 7,48 (d,2H), 7,79 (d,2H), 8,12 (s,1H), 8,83 (s,1H).

Beispiel 8: 3-Chlor-2-(4-chlorbenzoyl)-5-trifluormethylpyridin
35 (Verfahren D)

Zu einer Lösung von 2,0 g 3-Chlor-2-[1-(4-chlorphenyl)-1-cyano-methyl]-5-trifluormethylpyridin (hergestellt nach Beispiel 1) in 20 ml Dimethylsulfoxid wurde eine Lösung von 2,0 g Kaliumcarbonat in 3 ml Wasser gegeben, wonach man unter Luftzutritt drei Tage 40 bei 23°C rührte. Zur Aufarbeitung wurde die Reaktionsmischung in 200 ml Wasser gegossen. Danach extrahierte man das Wertprodukt mit dreimal 80 ml tert.-Butyl-methylether. Die vereinigten organischen Phasen wurden zweimal mit je 50 ml Wasser gewaschen, über Natriumsulfat getrocknet und schließlich eingeengt.

45 Die Reinigung des erhaltenen schwarzen Öls erfolgte mittels Kugelrohrdestillation unter Vakuum. Ausbeute: 1,2 g (62 %) eines hellgelben Öls; Siedebereich: 110-120°C (0,3 mbar);

¹H-NMR siehe Bsp. 7.

Beispiel 9: 3-Chlor-2-(4-chlorbenzoyl)-5-trifluormethylpyridin
(Verfahren A+D)

5

16,5 g einer 80%igen Suspension von Natriumhydrid in Mineralöl wurden zur Entfernung des Mineralöls mit wasserfreiem N,N-Dimethylformamid gewaschen. Danach versetzte man das Natriumhydrid mit 100 ml N,N-Dimethylformamid und danach tropfenweise mit einer

10 Lösung von 37,9 g 4-Chlorbenzylcyanid in 100 ml N,N-Dimethylformamid (exotherm). Nach beendeter Zugabe wurde noch 15 Minuten gerührt. Anschließend tropfte man 54,0 g 2,3-Dichlor-5-trifluormethylpyridin in die Reaktionsmischung, die sich dabei stark erwärmte und durch externe Kühlung auf etwa 50°C gehalten wurde.

15 Nach beendeter Zugabe rührte man noch 20 Stunden bei 23°C. Danach wurde 4 Tage lang (über Blaugel getrocknete) Luft durch die Mischung geleitet. Zur Aufarbeitung goß man das Reaktionsgemisch in 600 ml Eiswasser. Danach extrahierte man das Wertprodukt mit dreimal 200 ml tert.-Butyl-methylether. Die vereinigten organi-

20 schen Phasen wurden zweimal mit je 100 ml Wasser gewaschen, über Natriumsulfat getrocknet und schließlich eingeengt. Die Reinigung des Rohproduktes erfolgte mittels Chromatographie an Kieselgel (Laufmittel: Cyclohexan/tert.-Butyl-methylether = 9:1). Ausbeute: 50,1 g (62 %) eines hellgelben Öls; Reinheit (GC): 94,6 %;

25 ¹H-NMR siehe Bsp. 7.

Beispiel 10: 3-Chlor-2-[1-(4-chlorphenyl)-1-hydroxymethyl]-5-trifluormethylpyridin (Verfahren E)

30 Zu einer Lösung von 6,0 g 3-Chlor-2-(4-chlorbenzoyl)-5-trifluormethylpyridin in 10 ml wasserfreiem Ethanol wurden unter Eiskühlung portionsweise 0,36 g Natriumborhydrid gegeben. Nach 20 Stunden Rühren bei 23°C tropfte man vorsichtig 50 ml 10%ige Salzsäure in die Reaktionsmischung. Anschließend wurde das

35 Ethanol abgedampft. Danach extrahierte man das Produkt mit dreimal 30 ml tert.-Butyl-methylether. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und dann eingeengt. Die Reinigung des Rohproduktes erfolgte mittels Chromatographie an Kieselgel (Laufmittel: Cyclohexan/tert.-Butyl-methylether =

40 9:1). Ausbeute: 3,6 g (60 %) eines farblosen Öls;
¹H-NMR (270 MHz; in CDCl₃): δ [ppm] = 5,02 (d, 1H), 6,02 (d, 1H), 7,33-7,41 (m, 4H), 7,91 (s, 1H), 8,81 (s, 1H).

Beispiel 11: 3-Chlor-2-[1-(4-chlorphenyl)-1-methoxymethyl]-5-trifluormethylpyridin (Verfahren E)

0,2 g einer 80%igen Suspension von Natriumhydrid in Mineralöl wurden zur Entfernung des Mineralöls mit wasserfreiem N,N-Dimethylformamid gewaschen. Zunächst versetzte man das Natriumhydrid mit 50 ml N,N-Dimethylformamid und danach tropfenweise mit einer Lösung von 2,1 g 3-Chlor-2-[1-(4-chlorphenyl)-1-hydroxymethyl]-5-trifluormethylpyridin in 10 ml N,N-Dimethylformamid. Anschließend wurde noch 15 Minuten nachgerührt. Nach Zutropfen von 1,1 g Methyliodid rührte man weitere 20 Stunden bei 23°C. Danach wurde die Reaktionsmischung in 200 ml Eiswasser gegossen. Aus der wässrigen Phase extrahierte man das Produkt mit dreimal 70 ml tert.-Butyl-methylether. Die vereinigten organischen Phasen wurden zweimal mit je 50 ml Wasser gewaschen, über Natriumsulfat getrocknet und schließlich eingeengt. Die Reinigung des Rohproduktes erfolgte mittels Chromatographie an Kieselgel (Laufmittel: Cyclohexan/tert.-Butyl-methylether = 100:1). Ausbeute: 1,1 g (50 %) eines farblosen Öls.

20 $^1\text{H-NMR}$ (270 MHz; in CDCl_3): δ [ppm] = 3,44 (s,3H), 5,83 (s,1H), 7,33 (d,2H), 7,48 (d,2H), 7,90 (s,1H), 8,85 (s,1H).

Beispiel 12: 3-Chlor-2-(4-chlorbenzoyl)-5-trifluormethylpyridin (Verfahren F)

Zu einer Suspension von 3,0 g Natriumhydrid (80 gew.-%ige Suspension in Mineralöl) in 100 ml wasserfreiem Dioxan wurden nacheinander unter Röhren 21,6 g 2,3-Dichlor-5-trifluormethylpyridin, 14,1 g 4-Chlorbenzaldehyd und 2,24 g 1,3-Dimethylimidazoliumiodid gegeben. Anschließend rührte man (unter Stickstoff-Atmosphäre) 11 Stunden bei 50°C und dann 60 Stunden bei 22°C. Nach Verdünnen der Reaktionsmischung mit 200 ml Wasser wurde das Dioxan bei reduziertem Druck weitgehend abdestilliert. Aus dem Rückstand extrahierte man das Produkt mit dreimal 100 ml Methylenchlorid. Die vereinigten organischen Phasen wurden mit 50 ml Wasser gewaschen, über Natriumsulfat getrocknet und schließlich eingeengt. Destillation des Rückstandes bei 0,65 mbar (Siedebereich: 126-139°C) ergab 22,4 g eines farblosen Öls. Ausbeute: 70 % (Reinheit: ca. 95 %); $^1\text{H-NMR}$ siehe Bsp. 7.

40

45

Beispiel 13: 3-Chlor-2-[1-(2,3-dichlor-4-methoxyphenyl)-1-cyano-methyl]-5-trifluormethylpyridin (Verfahren A)

Vorstufe: 2,3-Dichlor-4-methoxybenzylbromid

5

55,0 g 2,3-Dichloranisol wurden in 155 ml Eisessig bei 30°C gelöst und mit 9,6 g Paraformaldehyd versetzt. Danach gab man 65 ml einer 30 gew.-%igen Lösung von HBr in Eisessig zu, wonach 5 Stunden bei 90°C gerührt wurde. Anschließend ließ man die Reaktions-

10 mischung abkühlen und goß sie dann in 800 ml Eiswasser. Das kristallisierte Rohprodukt wurde abgetrennt, mit Wasser gewaschen und aus n-Hexan umkristallisiert. Ausbeute: 21 g (78 %) weißer Kristalle; Smp.: 101-102°C.

15 Vorstufe: 2,3-Dichlor-4-methoxybenzylcyanid

Zu einer Suspension von 15 g wasserfreiem Natriumcyanid in 250 ml wasserfreiem Dimethylsulfoxid wurde unter Rühren eine Lösung von 68 g 2,3-Dichlor-4-methoxybenzylbromid in 220 ml Dimethylsulfoxid 20 getropft. Anschließend erhitzte man 5 Stunden unter Stickstoffatmosphäre auf Rückflußtemperatur. Die erkaltete Reaktionsmischung wurde in 1,5 l Eiswasser gegossen, wonach man das entstandene feste Produkt abtrennte, mit Wasser wusch und durch Verrühren mit Petrolether (bei 40-60°C) reinigte. Ausbeute: 51 g 25 (94 %) weißer Kristalle; Smp.: 118-119°C.

Analog zu Beispiel 1 erhielt man unter Verwendung von 38,9 g 2,3-Dichlor-5-trifluormethylpyridin, 38,9 g 2,3-Dichlor-4-methoxybenzylnitril, 5,95 g einer 80 gew.-%igen Natriumhydrid-30 Suspension in Mineralöl und 220 ml Dimethylformamid 39,2 g weißer Kristalle. Ausbeute: 55 %; Smp.: 174-176°C.

Beispiel 14: 3-Chlor-2-[2,3-dichlor-4-hydroxybenzyl]-5-trifluormethylpyridin (Verfahren C)

35

Analog zu Beispiel 5 erhielt man aus 38 g 3-Chlor-2-[1-(2,3-dichlor-4-methoxyphenyl)-1-cyanomethyl]-5-trifluormethylpyridin 20 g Wertprodukt (weiße Kristalle). Ausbeute: 60 %; Smp.: 159-161°C.

40

Beispiel 15: 2-[2,3-Dichlor-4-([3-chlor-5-trifluormethylpyridin-2-yl]-methyl)-phenoxy]-essigsäuremethylester

2,0 g 3-Chlor-2-(2,3-dichlor-4-hydroxybenzyl)-5-trifluormethyl-45 pyridin, 1,5 g wasserfreies Kaliumcarbonat und 1,0 g Bromessigsäuremethylester wurden in 60 ml wasserfreiem Dimethylformamid 16 Stunden bei 23°C gerührt. Danach goß man die Reaktionsmischung

in 400 ml Eisswasser. Das entstandene feste Produkt wurde abgetrennt, mit Wasser gewaschen und durch Verrühren in n-Hexan gereinigt. Ausbeute: 2,4 g (100 %; weiße Kristalle); Smp.: 110-111°C.

5

In den folgenden Tabellen 1 und 2 sind neben den vorstehend beschriebenen Verbindungen noch weitere substituierte 2-Benz(o)yl-pyridine I aufgeführt, die ebenfalls nach einem der beschriebenen Verfahren hergestellt wurden oder herstellbar sind:

10

Tabelle 1

	Nr.	-R ⁸	Fp./ ¹ H-NMR (in CDCl ₃) [ppm]
20	1	-H	
25	2	-CH ₃	88°C
30	3	-C ₂ H ₅	
35	4	-CH ₂ -C ₂ H ₅	
40	5	-CH(CH ₃) ₂	
45	6	-CH ₂ -CH ₂ -C ₂ H ₅	
	7	-CH ₂ -CH(CH ₃) ₂	
	8	-CH(CH ₃)-C ₂ H ₅	
	9	-C(CH ₃) ₃	
	10	-CH ₂ .CH ₂ -CH ₂ -C ₂ H ₅	
	11	Cyclopropyl	
	12	Cyclobutyl	
	13	Cyclopentyl	
	14	Cyclohexyl	
	15	-CF ₃	
	16	-CHF ₂	
	17	-CH ₂ -CN	
	18	-CH ₂ -CH ₂ -CN	
	19	-CH ₂ -CH ₂ -CH ₂ -CN	
	20	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CN	
	21	-CH ₂ -OCH ₃	
	22	-CH ₂ -OC ₂ H ₅	
	23	-CH ₂ -OCH ₂ -C ₂ H ₅	
	24	-CH ₂ -OCH(CH ₃) ₂	

Nr.	-R ⁸	Fp./ ¹ H-NMR (in CDCl ₃) [ppm]
25	-CH ₂ -OCH ₂ -CH ₂ -C ₂ H ₅	
5 26	-CH ₂ -OCH(CH ₃)-C ₂ H ₅	
27	-CH ₂ -OCH ₂ -CH(CH ₃) ₂	
28	-CH ₂ -OC(CH ₃) ₃	
29	-CH ₂ -OCH ₂ -CH ₂ -CH ₂ -C ₂ H ₅	
10 30	-CH ₂ -SCH ₃	
31	-CH ₂ -SC ₂ H ₅	
32	-CH ₂ -SCH ₂ -C ₂ H ₅	
33	-CH ₂ -SCH(CH ₃) ₂	
34	-CH ₂ -SCH ₂ -CH ₂ -C ₂ H ₅	
15 35	-CH ₂ -SCH ₂ -CH(CH ₃) ₂	
36	-CH ₂ -SCH(CH ₃)-C ₂ H ₅	
37	-CH ₂ -SC(CH ₃) ₃	
38	-CH ₂ -SCH ₂ -CH ₂ -CH ₂ -C ₂ H ₅	
39	-CH ₂ -SO-CH ₃	
20 40	-CH ₂ -SO-C ₂ H ₅	
41	-CH ₂ -SO-CH ₂ -C ₂ H ₅	
42	-CH ₂ -SO-CH(CH ₃) ₂	
43	-CH ₂ -SO-CH ₂ -CH ₂ -C ₂ H ₅	
25 44	-CH ₂ -SO-CH ₂ -CH(CH ₃) ₂	
45	-CH ₂ -SO-CH(CH ₃)-C ₂ H ₅	
46	-CH ₂ -SO-C(CH ₃) ₃	
47	-CH ₂ -SO-CH ₂ -CH ₂ -CH ₂ -C ₂ H ₅	
48	-CH ₂ -SO ₂ -CH ₃	
30 49	-CH ₂ -SO ₂ -C ₂ H ₅	
50	-CH ₂ -SO ₂ -CH ₂ -C ₂ H ₅	
51	-CH ₂ -SO ₂ -CH(CH ₃) ₂	
52	-CH ₂ -SO ₂ -CH ₂ -CH ₂ -C ₂ H ₅	
35 53	-CH ₂ -SO ₂ -CH ₂ -CH(CH ₃) ₂	
54	-CH ₂ -SO ₂ -CH(CH ₃)-C ₂ H ₅	
55	-CH ₂ -SO ₂ -C(CH ₃) ₃	
56	-CH ₂ -SO ₂ -CH ₂ -CH ₂ -CH ₂ -C ₂ H ₅	
57	-CH ₂ -CH = CH ₂	88°C
40 58	-CH(CH ₃)-CH = CH ₂	
59	-CH ₂ -C(CH ₃) = CH ₂	
60	-CH ₂ -CH = CH-CH ₃	
61	-CH ₂ -CH = C(CH ₃) ₂	
45 62	-CH ₂ -CH ₂ -CH = CH ₂	
63	-CH ₂ -CH ₂ -CH = CH-CH ₃	
64	-CH ₂ -CH ₂ -C(CH ₃) = CH ₂	

Nr.	-R ⁸	Fp./ ¹ H-NMR (in CDCl ₃) [ppm]
65	-CH ₂ -CH ₂ -C=C(CH ₃) ₂	
5 66	Cyclopent-2-en-1-yl	
67	Cyclohex-2-en-1-yl	
68	-CH ₂ -CH=CHCl	
69	-CH ₂ -C(Cl)=CH ₂	
10 70	-CH ₂ -CH=CCl ₂	
71	-CH ₂ -C(Cl)=CHCl	
72	-CH ₂ -C(Cl)=CCl ₂	
73	-CH ₂ -C≡CH	91°C
74	-CH(CH ₃)-C≡CH	
15 75	-CH ₂ -C≡C-CH ₃	
76	Benzyl	
77	o-Chlorbenzyl	
78	m-Chlorbenzyl	
20 79	p-Chlorbenzyl	
80	o-Methylbenzyl	
81	m-Methylbenzyl	
82	p-Methylbenzyl	
25 83	o-(OCH ₃)benzyl	
84	m-(OCH ₃)benzyl	
85	p-(OCH ₃)benzyl	
86	o-(OCF ₃)benzyl	
25 87	m-(OCF ₃)benzyl	
88	p-(OCF ₃)benzyl	
30 89	$ \begin{array}{c} \text{OCH}_2-\text{CO}-\text{OCH}_3 \\ \\ \text{---} \text{CH}_2-\text{---} \text{C}_6\text{H}_4-\text{---} \\ \\ \text{---} \end{array} $	
35 90	$ \begin{array}{c} \text{OCH}_2-\text{CO}-\text{OCH}_3 \\ \\ \text{---} \text{CH}_2-\text{---} \text{C}_6\text{H}_4-\text{---} \\ \\ \text{---} \end{array} $	
40 91	$ \begin{array}{c} \text{---} \text{CH}_2-\text{---} \text{C}_6\text{H}_4-\text{---} \text{OCH}_2-\text{CO}-\text{OCH}_3 \\ \\ \text{---} \end{array} $	
45 92	$ \begin{array}{c} \text{OCH}_2-\text{CO}-\text{OC}_2\text{H}_5 \\ \\ \text{---} \text{CH}_2-\text{---} \text{C}_6\text{H}_4-\text{---} \\ \\ \text{---} \end{array} $	

Nr.	-R ⁸	Fp./ ¹ H-NMR (in CDCl ₃) [ppm]
5 93		
10 94		
15 95	o-Nitrophenyl	
96	m-Nitrophenyl	
97	p-Nitrophenyl	
15 98	o-Cyanophenyl	
99	m-Cyanophenyl	
100	p-Cyanophenyl	
20 101		
25 102		
30 103		
35 104		
40 105		
40 106		
40 107	-CH ₂ -CO-OH	
40 108	-CH ₂ -CO-OCH ₃	111°C
40 109	-CH ₂ -CO-OC ₂ H ₅	
45 110	-CH ₂ -CO-OCH ₂ -C ₂ H ₅	
111	-CH ₂ -CO-OCH(CH ₃) ₂	
112	-CH ₂ -CO-OCH ₂ -CH ₂ -C ₂ H ₅	
113	-CH ₂ -CO-OCH ₂ -CH(CH ₃) ₂	

Nr.	-R ⁸	Fp./ ¹ H-NMR (in CDCl ₃) [ppm]
114	-CH ₂ -CO-OCH(CH ₃)-C ₂ H ₅	
5 115	-CH ₂ -CO-OC(CH ₃) ₃	
116	-CH ₂ -CO-OCH ₂ -CH ₂ -CH ₂ -C ₂ H ₅	
117	-CH(CH ₃)-CO-OH	
118	-CH(CH ₃)-CO-OCH ₃	01
10 119	-CH(CH ₃)-CO-OC ₂ H ₅	
120	-CH(CH ₃)-CO-OCH ₂ -C ₂ H ₅	
121	-CH(CH ₃)-CO-OCH(CH ₃) ₂	
122	-CH(CH ₃)-CO-OCH ₂ -CH ₂ -C ₂ H ₅	
123	-CH(CH ₃)-CO-OCH ₂ -CH(CH ₃) ₂	
15 124	-CH(CH ₃)-CO-OCH(CH ₃)-C ₂ H ₅	
125	-CH(CH ₃)-CO-OC(CH ₃) ₃	
126	-CH(CH ₃)-CO-OCH ₂ -CH ₂ -CH ₂ -C ₂ H ₅	
127	-CH ₂ -CO-OCH ₂ -CH=CH ₂	
128	-CH ₂ -CO-OCH(CH ₃)-CH=CH ₂	
20 129	-CH ₂ -CO-OCH ₂ -C(CH ₃)=CH ₂	
130	-CH ₂ -CO-OCH ₂ -CH=CH-CH ₃	
131	-CH ₂ -CO-OCH ₂ -CH=C(CH ₃) ₂	
132	-CH ₂ -CO-OCH ₂ -CH ₂ -CH=C(CH ₃) ₂	
25 133	-CH(CH ₃)-CO-OCH ₂ -CH=CH ₂	
134	-CH(CH ₃)-CO-OCH(CH ₃)-CH=CH ₂	
135	-CH(CH ₃)-CO-OCH ₂ -C(CH ₃)=CH ₂	
136	-CH(CH ₃)-CO-OCH ₂ -CH=CH-CH ₃	
30 137	-CH(CH ₃)-CO-OCH ₂ -CH=C(CH ₃) ₂	
138	-CH(CH ₃)-CO-OCH ₂ -CH ₂ -CH=C(CH ₃) ₂	
139	-CH ₂ -CO-OCH ₂ -C≡CH	
140	-CH ₂ -CO-OCH(CH ₃)-C≡CH	
141	-CH ₂ -CO-OCH ₂ -C≡C-CH ₃	
35 142	-CH(CH ₃)-CO-OCH ₂ -C≡CH	
143	-CH(CH ₃)-CO-OCH(CH ₃)-C≡CH	
144	-CH(CH ₃)-CO-OCH ₂ -C≡C-CH ₃	
145	-CH ₂ -CO-OCH ₂ -CH ₂ -OCH ₃	
146	-CH ₂ -CO-OCH ₂ -CH ₂ -OC ₂ H ₅	
40 147	-CH ₂ -CO-OCH ₂ -CH ₂ -OCH ₂ -C ₂ H ₅	
148	-CH ₂ -CO-OCH ₂ -CH ₂ -OCH(CH ₃) ₂	
149	-CH(CH ₃)-CO-OCH ₂ -CH ₂ -OCH ₃	
150	-CH(CH ₃)-CO-OCH ₂ -CH ₂ -OC ₂ H ₅	
45 151	-CH(CH ₃)-CO-OCH ₂ -CH ₂ -OCH ₂ -C ₂ H ₅	
152	-CH(CH ₃)-CO-OCH ₂ -CH ₂ -OCH(CH ₃) ₂	
153	-CH ₂ -CO-OCH ₂ -CF ₃	

Nr.	-R ⁸	Fp./ ¹ H-NMR (in CDCl ₃) [ppm]
154	-CH(CH ₃)-CO-OCH ₂ -CF ₃	
5 155	-CH ₂ -CO-O-cyclopropyl	
156	-CH ₂ -CO-O-cyclobutyl	
157	-CH ₂ -CO-O-cyclopentyl	
158	-CH ₂ -CO-O-cyclohexyl	
10 159	-CH(CH ₃)-CO-O-cyclopropyl	
160	-CH(CH ₃)-CO-O-cyclobutyl	
161	-CH(CH ₃)-CO-O-cyclopentyl	
162	-CH(CH ₃)-CO-O-cyclohexyl	
163	-CH ₂ -CO-OCH ₂ -CO-OCH ₃	
15 164	-CH ₂ -CO-OCH ₂ -CO-OC ₂ H ₅	
165	-CH ₂ -CO-OCH(CH ₃)-CO-OCH ₃	
166	-CH ₂ -CO-OCH(CH ₃)-CO-OC ₂ H ₅	
167	-CH(CH ₃)-CO-OCH ₂ -CO-OCH ₃	
168	-CH(CH ₃)-CO-OCH ₂ -CO-OC ₂ H ₅	
20 169	-CH(CH ₃)-CO-OCH(CH ₃)-CO-OCH ₃	
170	-CH(CH ₃)-CO-OCH(CH ₃)-CO-OC ₂ H ₅	
171	-CH ₂ -CO-OCH ₂ -CO-OCH ₂ -CH = CH ₂	
172	-CH ₂ -CO-OCH(CH ₃)-CO-OCH ₂ -CH = CH ₂	
25 173	-CH(CH ₃)-CO-OCH ₂ -CO-OCH ₂ -CH = CH ₂	
174	-CH(CH ₃)-CO-OCH(CH ₃)-CO-OCH ₂ -CH = CH ₂	
175	-CH ₂ -CO-OCH ₂ -CO-OCH ₂ -C ≡ CH	
176	-CH ₂ -CO-OCH ₂ -CO-OCH(CH ₃)-C ≡ CH	
30 177	-CH ₂ -CO-OCH(CH ₃)-CO-OCH ₂ -C ≡ CH	
178	-CH ₂ -CO-OCH(CH ₃)-CO-OCH(CH ₃)-C ≡ CH	
179	-CH(CH ₃)-CO-OCH ₂ -CO-OCH ₂ -C ≡ CH	
180	-CH(CH ₃)-CO-OCH ₂ -CO-OCH(CH ₃)-C ≡ CH	
181	-CH(CH ₃)-CO-OCH(CH ₃)-CO-OCH ₂ -C ≡ CH	
35 182	-CH(CH ₃)-CO-OCH(CH ₃)-CO-OCH(CH ₃)-C ≡ CH	
183	-CH ₂ -CO-OCH ₂ -COOH	
184	-CH(CH ₃)-CO-OCH ₂ -COOH	
185	-CH ₂ -CO-OCH(CH ₃)-COOH	
40 186	-CH(CH ₃)-CO-OCH(CH ₃)-COOH	
187	-CH ₂ -CO-O-(oxetan-3-yl)	
188	-CH(CH ₃)-CO-O-(oxetan-3-yl)	
189	-CH ₂ -CO-O-phenyl	
190	-CH(CH ₃)-CO-O-phenyl	
45 191	-CH ₂ -CO-O-(o-chlorphenyl)	
192	-CH ₂ -CO-O-(m-chlorphenyl)	
193	-CH ₂ -CO-O-(p-chlorphenyl)	

Nr.	-R ⁸	Fp./ ¹ H-NMR (in CDCl ₃) [ppm]
194	-CH(CH ₃)-CO-O-(o-chlorphenyl)	
5 195	-CH(CH ₃)-CO-O-(m-chlorphenyl)	
196	-CH(CH ₃)-CO-O-(p-chlorphenyl)	
197	-CH ₂ -CO-O-(o-methylphenyl)	
198	-CH ₂ -CO-O-(m-methylphenyl)	
10 199	-CH ₂ -CO-O-(p-methylphenyl)	
200	-CH(CH ₃)-CO-O-(o-methylphenyl)	
201	-CH(CH ₃)-CO-O-(m-methylphenyl)	
202	-CH(CH ₃)-CO-O-(p-methylphenyl)	
15 203		
20 204		
25 205		
206		
30 207		
35 208		
40 209		
45 210		

Nr.	-R ⁸	Fp./ ¹ H-NMR (in CDCl ₃) [ppm]
5	211 — CH ₂ —CO—O— —OCH ₂ —CO—OCH ₃	
10	212 — CH(CH ₃)—CO—O—	
15	213 — CH(CH ₃)—CO—O—	
20	214 — CH(CH ₃)—CO—O— —OCH ₂ —CO—OCH ₃	
25	215 — CH ₂ —CO—O—	
30	216 — CH ₂ —CO—O—	
35	217 — CH ₂ —CO—O— —OCH(CH ₃)—CO—OCH ₃	
40	218 — CH(CH ₃)—CO—O—	
45	219 — CH(CH ₃)—CO—O—	
221	-CH ₂ -CO-O-(o-nitrophenyl)	
222	-CH ₂ -CO-O-(m-nitrophenyl)	
223	-CH ₂ -CO-O-(p-nitrophenyl)	
224	-CH(CH ₃)-CO-O-(o-nitrophenyl)	
225	-CH(CH ₃)-CO-O-(m-nitrophenyl)	
226	-CH(CH ₃)-CO-O-(p-nitrophenyl)	

Nr.	-R ⁸	Fp./ ¹ H-NMR (in CDCl ₃) [ppm]
227	-CH ₂ -CO-O-(o-cyanophenyl)	
5 228	-CH ₂ -CO-O-(m-cyanophenyl)	
229	-CH ₂ -CO-O-(p-cyanophenyl)	
230	-CH(CH ₃)-CO-O-(o-cyanophenyl)	
10 231	-CH(CH ₃)-CO-O-(m-cyanophenyl)	
232	-CH(CH ₃)-CO-O-(p-cyanophenyl)	
15 233		
234		
20 235		
25 236		
30 237		
238		
35 239	-CH ₂ -CO-OCH ₂ -phenyl	
240	-CH(CH ₃)-CO-OCH ₂ -phenyl	
241	-CH ₂ -CO-OCH ₂ -(o-chlorophenyl)	
242	-CH ₂ -CO-OCH ₂ -(m-chlorophenyl)	
243	-CH ₂ -CO-OCH ₂ -(p-chlorophenyl)	
40 244	-CH(CH ₃)-CO-OCH ₂ -(o-chlorophenyl)	
245	-CH(CH ₃)-CO-OCH ₂ -(m-chlorophenyl)	
246	-CH(CH ₃)-CO-OCH ₂ -(p-chlorophenyl)	
247	-CH ₂ -CO-OCH ₂ -(o-methylphenyl)	
248	-CH ₂ -CO-OCH ₂ -(m-methylphenyl)	
45 249	-CH ₂ -CO-OCH ₂ -(p-methylphenyl)	
250	-CH(CH ₃)-CO-OCH ₂ -(o-methylphenyl)	
251	-CH(CH ₃)-CO-OCH ₂ -(m-methylphenyl)	

Nr.	-R ⁸	Fp./ ¹ H-NMR (in CDCl ₃) [ppm]
252	-CH(CH ₃)-CO-OCH ₂ -(p-methylphenyl)	
5 253		
10 254		
15 255		
20 256		
25 257		
30 258		
35 259		
40 260		
45 261		
262		

Nr.	-R ⁸	Fp./ ¹ H-NMR (in CDCl ₃) [ppm]
5		
263	CH(CH ₃)—CO—OCH ₂ —	
10		
264	CH(CH ₃)—CO—OCH ₂ — —OCH ₂ —CO—OCH ₃	
15		
265	OCH(CH ₃)—CO—OCH ₃ —CH ₂ —CO—OCH ₂ —	
20		
266	OCH(CH ₃)—CO—OCH ₃ —CH ₂ —CO—OCH ₂ —	
25		
267	OCH(CH ₃)—CO—OCH ₂ — —OCH(CH ₃)—CO—OCH ₃	
30		
268	OCH(CH ₃)—CO—OCH ₃ —CH(CH ₃)—CO—OCH ₂ —	
35		
269	OCH(CH ₃)—CO—OCH ₃ —CH(CH ₃)—CO—OCH ₂ —	
40		
270	OCH(CH ₃)—CO—OCH ₂ — —OCH(CH ₃)—CO—OCH ₃	
45		
271	-CH ₂ -CO-OCH ₂ -(o-nitrophenyl)	
272	-CH ₂ -CO-OCH ₂ -(m-nitrophenyl)	
273	-CH ₂ -CO-OCH ₂ -(p-nitrophenyl)	
274	-CH(CH ₃)-CO-OCH ₂ -(o-nitrophenyl)	
275	-CH(CH ₃)-CO-OCH ₂ -(m-nitrophenyl)	
276	-CH(CH ₃)-CO-OCH ₂ -(p-nitrophenyl)	
277	-CH ₂ -CO-OCH ₂ -(o-cyanophenyl)	
278	-CH ₂ -CO-OCH ₂ -(m-cyanophenyl)	
279	-CH ₂ -CO-OCH ₂ -(p-cyanophenyl)	
280	-CH(CH ₃)-CO-OCH ₂ -(o-cyanophenyl)	
281	-CH(CH ₃)-CO-OCH ₂ -(m-cyanophenyl)	
282	-CH(CH ₃)-CO-OCH ₂ -(p-cyanophenyl)	

Nr.	$-R^8$	Fp./ 1H -NMR (in $CDCl_3$) [ppm]
5 283		
10 284		
15 285		
20 286		
25 287		
30 288		
35 289		
40 290		
45 291		
45 292		
45 293		
45 294		

Nr.	-R ⁸	Fp./ ¹ H-NMR (in CDCl ₃) [ppm]
295	-CH ₂ -CO-NH ₂	
5 296	-CH(CH ₃)-CO-NH ₂	
297	-CH ₂ -CO-NH(CH ₃)	
298	-CH(CH ₃)-CO-NH(CH ₃)	
299	-CH ₂ -CO-N(CH ₃) ₂	
10 300	-CH(CH ₃)-CO-N(CH ₃) ₂	
301	-CH ₂ -CO-N(CH ₃)-CH ₂ -CO-OCH ₃	
302	-CH ₂ -CO-N(CH ₃)-CH ₂ -CO-OC ₂ H ₅	
303	-CH ₂ -CO-N(CH ₃)-CH(CH ₃)-CO-OCH ₃	
304	-CH ₂ -CO-N(CH ₃)-CH(CH ₃)-CO-OC ₂ H ₅	
15 305	-CH(CH ₃)-CO-N(CH ₃)-CH ₂ -CO-OCH ₃	
306	-CH(CH ₃)-CO-N(CH ₃)-CH ₂ -CO-OC ₂ H ₅	
307	-CH(CH ₃)-CO-N(CH ₃)-CH(CH ₃)-CO-OCH ₃	
308	-CH(CH ₃)-CO-N(CH ₃)-CH(CH ₃)-CO-OC ₂ H ₅	
309	-CH ₂ -CO-N(CH ₃)-phenyl	
20 310	-CH(CH ₃)-CO-N(CH ₃)-phenyl	
311	-CH ₂ -CO-NH-phenyl	
312	-CH(CH ₃)-CO-NH-phenyl	
313	-CH ₂ -CO-N(CH ₃)-CH ₂ -phenyl	
25 314	-CH(CH ₃)-CO-N(CH ₃)-CH ₂ -phenyl	
315	-CH ₂ -CO-NH-CH ₂ -phenyl	
316	-CH(CH ₃)-CO-NH-CH ₂ -phenyl	
317	-CH ₂ -CO-(pyrrolidin-1-yl)	
318	-CH(CH ₃)-CO-(pyrrolidin-1-yl)	
30 319	-CH ₂ -CO-(piperidin-1-yl)	
320	-CH(CH ₃)-CO-(piperidin-1-yl)	
321	-CH ₂ -CO-(morpholin-4-yl)	
322	-CH(CH ₃)-CO-(morpholin-4-yl)	
35 323		
40 324		
45 325		

Nr.	-R ⁸	Fp./ ¹ H-NMR (in CDCl ₃) [ppm]
5		
326		
327	-CH ₂ -CO-H	
328	-CH ₂ -CO-CH ₃	
10	329 -CH(CH ₃)-CO-H	
330	-CH(CH ₃)-CO-CH ₃	
331	-CH ₂ -CH=N-OH	
332	-CH(CH ₃)-CH=N-OH	
15	333 -CH ₂ -C(CH ₃)=N-OH	
334	-CH(CH ₃)-C(CH ₃)=N-OH	
335	-CH ₂ -CH=N-OCH ₃	
336	-CH(CH ₃)-CH=N-OCH ₃	
337	-CH ₂ -C(CH ₃)=N-OCH ₃	
20	338 -CH(CH ₃)-C(CH ₃)=N-OCH ₃	
339	-CH ₂ -CH=N-OCH ₂ -CH=CH ₂	
340	-CH(CH ₃)-CH=N-OCH ₂ -CH=CH ₂	
341	-CH ₂ -C(CH ₃)=N-OCH ₂ -CH=CH ₂	
25	342 -CH(CH ₃)-C(CH ₃)=N-OCH ₂ -CH=CH ₂	
343	-CH ₂ -CH=N-OCH ₂ -CO-OCH ₃	
344	-CH ₂ -CH=N-OCH ₂ -CO-OC ₂ H ₅	
345	-CH(CH ₃)-CH=N-OCH ₂ -CO-OCH ₃	
346	-CH(CH ₃)-CH=N-OCH ₂ -CO-OC ₂ H ₅	
30	347 -CH ₂ -C(CH ₃)=N-OCH ₂ -CO-OCH ₃	
348	-CH ₂ -C(CH ₃)=N-OCH ₂ -CO-OC ₂ H ₅	
349	-CH(CH ₃)-C(CH ₃)=N-OCH ₂ -CO-OCH ₃	
350	-CH(CH ₃)-C(CH ₃)=N-OCH ₂ -CO-OC ₂ H ₅	
351	-CH ₂ -CH=N-OCH(CH ₃)-CO-OCH ₃	
352	-CH ₂ -CH=N-OCH(CH ₃)-CO-OC ₂ H ₅	
353	-CH(CH ₃)-CH=N-OCH(CH ₃)-CO-OCH ₃	
354	-CH(CH ₃)-CH=N-OCH(CH ₃)-CO-OC ₂ H ₅	
355	-CH ₂ -C(CH ₃)=N-OCH(CH ₃)-CO-OCH ₃	
40	356 -CH ₂ -C(CH ₃)=N-OCH(CH ₃)-CO-OC ₂ H ₅	
357	-CH(CH ₃)-C(CH ₃)=N-OCH(CH ₃)-CO-OCH ₃	
358	-CH(CH ₃)-C(CH ₃)=N-OCH(CH ₃)-CO-OC ₂ H ₅	
359	-CH ₂ -CO-CO-OCH ₃	
360	-CH ₂ -CO-CO-OC ₂ H ₅	
45	361 -CH ₂ -CO-CO-OCH ₂ -C ₂ H ₅	
362	-CH ₂ -CO-CO-OCH(CH ₃) ₂	

Nr.	-R ⁸	Fp./ ¹ H-NMR (in CDCl ₃) [ppm]
363	-CH ₂ -CO-CO-OCH ₂ -CH ₂ -C ₂ H ₅	
5 364	-CH ₂ -CO-CO-OCH ₂ -CH(CH ₃) ₂	
365	-CH ₂ -CO-CO-OCH(CH ₃)-C ₂ H ₅	
366	-CH ₂ -CO-CO-OC(CH ₃) ₃	
367	-CH(CH ₃)-CO-CO-OCH ₃	
10 368	-CH(CH ₃)-CO-CO-OC ₂ H ₅	
369	$ \begin{array}{c} \text{N} \text{---} \text{OCH}_3 \\ \parallel \\ \text{---} \text{CH}_2 \text{---} \text{C} \text{---} \text{CO} \text{---} \text{OCH}_3 \end{array} $	113°C
15 370	$ \begin{array}{c} \text{N} \text{---} \text{OCH}_3 \\ \parallel \\ \text{---} \text{CH}_2 \text{---} \text{C} \text{---} \text{CO} \text{---} \text{OC}_2\text{H}_5 \end{array} $	
371	$ \begin{array}{c} \text{N} \text{---} \text{OC}_2\text{H}_5 \\ \parallel \\ \text{---} \text{CH}_2 \text{---} \text{C} \text{---} \text{CO} \text{---} \text{OCH}_3 \end{array} $	
20 372	$ \begin{array}{c} \text{N} \text{---} \text{OC}_2\text{H}_5 \\ \parallel \\ \text{---} \text{CH}_2 \text{---} \text{C} \text{---} \text{CO} \text{---} \text{OC}_2\text{H}_5 \end{array} $	
25 373	$ \begin{array}{c} \text{N} \text{---} \text{OCH}_2 \text{---} \text{CH}=\text{CH}_2 \\ \parallel \\ \text{---} \text{CH}_2 \text{---} \text{C} \text{---} \text{CO} \text{---} \text{OCH}_3 \end{array} $	
30 374	$ \begin{array}{c} \text{N} \text{---} \text{OCH}_2 \text{---} \text{CH}=\text{CH}_2 \\ \parallel \\ \text{---} \text{CH}_2 \text{---} \text{C} \text{---} \text{CO} \text{---} \text{OC}_2\text{H}_5 \end{array} $	
375	$ \begin{array}{c} \text{N} \text{---} \text{OCH}_2 \text{---} \text{phenyl} \\ \parallel \\ \text{---} \text{CH}_2 \text{---} \text{C} \text{---} \text{CO} \text{---} \text{OCH}_3 \end{array} $	
35 376	$ \begin{array}{c} \text{N} \text{---} \text{OCH}_2 \text{---} \text{phenyl} \\ \parallel \\ \text{---} \text{CH}_2 \text{---} \text{C} \text{---} \text{CO} \text{---} \text{OC}_2\text{H}_5 \end{array} $	
40 377	$ \begin{array}{c} \text{N} \text{---} \text{OCH}_3 \\ \parallel \\ \text{---} \text{CH}(\text{CH}_3) \text{---} \text{C} \text{---} \text{CO} \text{---} \text{OCH}_3 \end{array} $	
378	$ \begin{array}{c} \text{N} \text{---} \text{OC}_2\text{H}_5 \\ \parallel \\ \text{---} \text{CH}(\text{CH}_3) \text{---} \text{C} \text{---} \text{CO} \text{---} \text{OCH}_3 \end{array} $	
45 379	$ \begin{array}{c} \text{N} \text{---} \text{OCH}_3 \\ \parallel \\ \text{---} \text{CH}(\text{CH}_3) \text{---} \text{C} \text{---} \text{CO} \text{---} \text{OC}_2\text{H}_5 \end{array} $	

Nr.	-R ⁸	Fp./ ¹ H-NMR (in CDCl ₃) [ppm]
5 380	$ \begin{array}{c} \text{N} \text{---} \text{OC}_2\text{H}_5 \\ \\ \text{---} \text{CH}(\text{CH}_3) \text{---} \text{C} \text{---} \text{CO} \text{---} \text{OC}_2\text{H}_5 \end{array} $	
10 381	$ \begin{array}{c} \text{N} \text{---} \text{OCH}_2 \text{---} \text{CH}=\text{CH}_2 \\ \\ \text{---} \text{CH}(\text{CH}_3) \text{---} \text{C} \text{---} \text{CO} \text{---} \text{OCH}_3 \end{array} $	
15 382	$ \begin{array}{c} \text{N} \text{---} \text{OCH}_2 \text{---} \text{CH}=\text{CH}_2 \\ \\ \text{---} \text{CH}(\text{CH}_3) \text{---} \text{C} \text{---} \text{CO} \text{---} \text{OC}_2\text{H}_5 \end{array} $	
20 383	$ \begin{array}{c} \text{N} \text{---} \text{OCH}_2 \text{---} \text{phenyl} \\ \\ \text{---} \text{CH}(\text{CH}_3) \text{---} \text{C} \text{---} \text{CO} \text{---} \text{OCH}_3 \end{array} $	
25 384	$ \begin{array}{c} \text{N} \text{---} \text{OCH}_2 \text{---} \text{phenyl} \\ \\ \text{---} \text{CH}(\text{CH}_3) \text{---} \text{C} \text{---} \text{CO} \text{---} \text{OC}_2\text{H}_5 \end{array} $	
30 385	$ \begin{array}{c} \text{---} \text{CH}_2 \text{---} \text{CO} \text{---} \text{N} \begin{array}{c} \diagup \text{OCH}_3 \\ \diagdown \text{CH}_2 \text{---} \text{CO} \text{---} \text{OCH}_3 \end{array} \end{array} $	
35 386	$ \begin{array}{c} \text{---} \text{CH}_2 \text{---} \text{CO} \text{---} \text{N} \begin{array}{c} \diagup \text{OCH}_3 \\ \diagdown \text{CH}_2 \text{---} \text{CO} \text{---} \text{OC}_2\text{H}_5 \end{array} \end{array} $	
40 387	$ \begin{array}{c} \text{---} \text{CH}_2 \text{---} \text{CO} \text{---} \text{N} \begin{array}{c} \diagup \text{OCH}_3 \\ \diagdown \text{CH}(\text{CH}_3) \text{---} \text{CO} \text{---} \text{OCH}_3 \end{array} \end{array} $	
45 388	$ \begin{array}{c} \text{---} \text{CH}_2 \text{---} \text{CO} \text{---} \text{N} \begin{array}{c} \diagup \text{OCH}_3 \\ \diagdown \text{CH}(\text{CH}_3) \text{---} \text{CO} \text{---} \text{OC}_2\text{H}_5 \end{array} \end{array} $	
389	$ \begin{array}{c} \text{---} \text{CH}(\text{CH}_3) \text{---} \text{CO} \text{---} \text{N} \begin{array}{c} \diagup \text{OCH}_3 \\ \diagdown \text{CH}_2 \text{---} \text{CO} \text{---} \text{OCH}_3 \end{array} \end{array} $	
390	$ \begin{array}{c} \text{---} \text{CH}(\text{CH}_3) \text{---} \text{CO} \text{---} \text{N} \begin{array}{c} \diagup \text{OCH}_3 \\ \diagdown \text{CH}_2 \text{---} \text{CO} \text{---} \text{OC}_2\text{H}_5 \end{array} \end{array} $	
391	$ \begin{array}{c} \text{---} \text{CH}(\text{CH}_3) \text{---} \text{CO} \text{---} \text{N} \begin{array}{c} \diagup \text{OCH}_3 \\ \diagdown \text{CH}(\text{CH}_3) \text{---} \text{CO} \text{---} \text{OCH}_3 \end{array} \end{array} $	
392	$ \begin{array}{c} \text{---} \text{CH}(\text{CH}_3) \text{---} \text{CO} \text{---} \text{N} \begin{array}{c} \diagup \text{OCH}_3 \\ \diagdown \text{CH}(\text{CH}_3) \text{---} \text{CO} \text{---} \text{OC}_2\text{H}_5 \end{array} \end{array} $	

Nr.	-R ⁸	Fp./ ¹ H-NMR (in CDCl ₃) [ppm]
5 393		
10 394		
15 395		
20 396		
25 397		
30 398		
35 399		
40 400		
45 401		
402		
403		

Nr.	$-R^8$	Fp./ ¹ H-NMR (in CDCl ₃) [ppm]
5 404		
10 405		
15 406		
20 407		
25 408		
30 419		
35 410		

Nr.	-R ⁸	Fp./ ¹ H-NMR (in CDCl ₃) [ppm]
5 411		
10 412		
15		

Tabelle 2

Nr.	X	R ³	R ⁴	R ⁵	R ⁶	R ⁷	Fp. [°C]
25 451	CH ₂	H	H	Cl	H	H	56
452	C=O	H	H	Cl	H	H	Öl
453	CH-OH	H	H	Cl	H	H	Öl
30 454	CH-OCH ₃	H	H	Cl	H	H	Öl
455	CH-CN	H	H	Cl	H	H	Öl
456	CH-CO-NH ₂	H	H	Cl	H	H	136
457	CH-CO-OCH ₃	H	H	Cl	H	H	104
35 458	CH ₂	Cl	Cl	H	H	H	Öl
459	CH-CN	Cl	Cl	H	H	H	Öl
460	C=O	H	Br	OCH ₃	H	H	72
461	C=O	H	H	OCH ₂ -C≡CH	H	H	70
462	C=O	H	H	OCH(CH ₃)-CO-OCH ₃	H	H	89
40 463	CH ₂	H	CF ₃	H	H	H	Öl
464	CH ₂	H	Cl	Cl	H	H	Öl
465	CH ₂	Cl	H	Cl	H	H	Öl
466	CH ₂	Cl	H	H	H	H	Öl
467	CH ₂	H	Cl	H	H	H	Öl
45 468	CH ₂	F	H	H	H	Cl	Öl
469	CH ₂	H	H	H	H	H	Öl

Nr.	X	R ³	R ⁴	R ⁵	R ⁶	R ⁷	Fp. [°C]
5	470 CH ₂	H	H	NO ₂	H	H	74
	471 CH ₂	H	H	NH ₂	H	H	73
	472 CH-CN	H	Cl	OCH ₃	H	H	100
	473 C=O	H	Cl	OCH ₃	H	H	83
	474 CH-OH	H	Cl	OCH(CH ₃) ₂	H	H	65
10	475 C=O	H	Cl	OCH(CH ₃)-C≡CH	H	H	95
	476 CH-CN	H	H	CN	H	H	Öl
	477 CH-CN	F	H	H	H	Cl	106
	478 C=O	H	Cl	H	H	H	Öl
	479 CH-CN	H	Cl	H	H	H	74
15	480 CH-CN	Cl	H	H	H	H	60
	481 CH-CN	O-CH ₃	H	H	H	H	58
	482 CH-CN	H	H	CH ₃	H	H	74
	483 CH-CN	Cl	H	Cl	H	H	85
	484 CH-CN	H	Cl	Cl	H	H	Öl
20	485 CH-CN	NO ₂	H	H	H	H	94
	486 CH-CN	H	H	H	H	H	72
	487 CH-CN	H	H	NO ₂	H	H	112
	488 CH-CN	H	CF ₃	H	H	H	Öl
	489 CH-CN	Cl	Cl	OCH ₃	H	H	176
25	490 C=O	Cl	Cl	OCH(CH ₃)-CO-OCH ₃	H	H	Öl
	491 CH ₂	H	H	CH ₃	H	H	40
	492 CH ₂	H	OH	H	H	H	83
	493 CH ₂	H	OCH ₃	H	H	H	Öl
	494 CH ₂	H	H	COOH	H	H	-176
30	495 CH ₂	H	H	CO-OCH(CH ₃) ₂	H	H	74
	496 CH ₂	H	H	N(SO ₂ -CH ₃) ₂	H	H	Öl
	497 CH-Cl	Cl	Cl	OCH ₃	H	H	134
	498 CH-Br	Cl	Cl	OCH ₃	H	H	105
	499 CH-CH ₃	Cl	Cl	OCH ₃	H	H	107
35	500 CH ₂	Cl	H	NH-CO-CH ₃	OH	H	191
	501 CH ₂	H	H	H	COOH	H	125
	502 CH ₂	H	H	H	CO-OC ₂ H ₅	H	41
	503 CH ₂	H	H	NO ₂	COOH	H	264
	504 CH ₂	H	H	NO ₂	CO-OC ₂ H ₅	H	Öl
40	505 CH ₂	H	NO ₂	H	CO-OC ₂ H ₅	H	89
	506 CH ₂	H	H	NO ₂	OH	H	145
	507 CH ₂	NO ₂	H	H	OCH ₃	H	73
	508 CH ₂	H	OCH ₃	NO ₂	H	H	Öl
	509 CH ₂	NO ₂	H	NO ₂	OCH ₃	H	140
45	510 CH ₂	H	H	H	OCH ₃	NO ₂	101

Anwendungsbeispiele (herbizide Wirksamkeit)

Die herbizide Wirkung der substituierten 2-Benz(o)ylpyridine I ließ sich durch die folgenden Gewächshausversuche zeigen:

5

Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit etwa 3,0 % Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.

10 Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern, und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen 15 waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.

Zum Zweck der Nachauflaufbehandlung wurden die Testpflanzen je 20 nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm angezogen und erst dann mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Testpflanzen wurden dafür entweder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie wurden erst als Keimpflanzen getrennt angezogen und einige 25 Tage vor der Behandlung in die Versuchsgefäße verpflanzt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 0,125, 0,0625, 0,0078 oder 0,0039 kg/ha a.S. (aktive Substanz).

Die Pflanzen wurden artenspezifisch bei Temperaturen von 10 - 25°C 30 bzw. 20 - 35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

35 Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.

40 Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

	Lateinischer Name	Deutscher Name	Englischer Name
45	Glycine max	Sojabohnen	soybeans
	Abutilon theophrasti	Chinesischer Hanf	velvet leaf

Lateinischer Name	Deutscher Name	Englischer Name
Solanum nigrum	Schwarzer Nachtschatten	black nightshade
Polygonum persicaria	Flohknöterich	ladysthumb
Veronica spec.	Ehrenpreisarten	speedwell

5

Bei Aufwandmengen von 7,8 und 3,9 g/ha a.S. zeigten die Verbindungen Nr. 118 und 369 im Nachauflaufverfahren sehr gute 10 herbizide Wirkung gegen *Abutilon theophrasti*, *Solanum nigrum*, *Polygonum persicaria* und *Veronica spec.*.

Die Verbindung Nr. 460 zeigte bei Aufwandmengen von 0,125 und 0,0625 kg/ha a.S. im Nachauflaufverfahren eine sehr gute 15 selektive herbizide Wirkung gegen *Abutilon theophrasti*, *Solanum nigrum* und *Veronica spec.* in der Kultur Soja, die selbst nur wenig geschädigt wurde.

20

Anwendungsbeispiele (desikkant/defoliante Wirksamkeit)

25

Als Testpflanzen dienten junge, 4-blättrige (ohne Keimblätter) Baumwollpflanzen, die unter Gewächshausbedingungen angezogen wurden (rel. Luftfeuchtigkeit 50 bis 70 %; Tag-/Nachttemperatur 27/20°C).

30

Die jungen Baumwollpflanzen wurden tropfnaß mit wässrigen Aufbereitungen der Wirkstoffe (unter Zusatz von 0,15 Gew.-% des Fettalkoholalkoxylats Plurafac® LF 700¹⁾, bezogen auf die Spritzbrühe) blattbehandelt. Die ausgebrachte Wassermenge betrug umgerechnet 1000 l/ha. Nach 13 Tagen wurde die Anzahl der abgeworfenen Blätter und der Grad der Entblätterung in % bestimmt.

35

Bei den unbehandelten Kontrollpflanzen trat kein Blattfall auf.

40

45

¹⁾ ein schaumarmes, nichtionisches Tensid der BASF AG

Patentansprüche

1. Substituierte 2-Benz(o)ylpyridine der allgemeinen Formel I

5

10

in der die Variablen folgende Bedeutungen haben:

n = 0 oder 1;

15

x = Carbonyl, Methylen, CH(C₁-C₄-Alkyl), CH-OH, CH-CN, CH-Halogen, C(Halogen)₂, CH-CONH₂, CH-CO-O(C₁-C₄-Alkyl), CH-O(C₁-C₄-Alkyl) oder C(CN)(C₁-C₄-Alkyl);

20

R¹ = Halogen, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl oder C₁-C₄-Alkylsulfonyl;R² = Wasserstoff oder Halogen;

25

R³ = Wasserstoff, Nitro, Hydroxy, Halogen oder C₁-C₄-Alkoxy;R⁴ = Wasserstoff, Nitro, Hydroxy, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder C₁-C₄-Alkoxy;

30

R⁵ = Wasserstoff, Nitro, Cyano, Halogen, C₁-C₈-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C₃-C₈-Cycloalkyl, C₁-C₈-Halogenalkyl, C₂-C₈-Halogenalkenyl, C₂-C₈-Halogenalkinyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₂-C₄-Alkenyloxy-C₁-C₄-alkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl, C₁-C₄-Alkylsulfinyl-C₁-C₄-alkyl,

35

C₁-C₄-Alkylsulfonyl-C₁-C₄-alkyl, Cyano-C₁-C₈-alkyl, Cyano-C₂-C₈-alkenyl, Cyano-C₃-C₈-alkinyl, -OR⁸,-SR⁸, -SO-R⁸, -SO₂-R⁸, -SO₂Cl, -N(R⁹, R¹⁰), -NH-SO₂-(C₁-C₈-Alkyl), -N[-SO₂-(C₁-C₈-Alkyl)]₂,

40

-N(C₁-C₈-Alkyl)[-SO₂-(C₁-C₈-Alkyl)], -SO₂-N(R⁹, R¹⁰), -N(R¹¹)-CO-R¹², -NH-CO-OR⁸, -O-CO-NH-R⁹, -O-CO-R¹²,-NH-CO-NH-R⁹, -O-CS-NH₂, -O-CS-N(C₁-C₈-Alkyl)₂, -CO-OR⁸,-CO-N(R⁹, R¹⁰), -CS-N(R⁹, R¹⁰), -CO-NH-SO₂-(C₁-C₄-Alkyl), -CO-N(C₁-C₄-Alkyl)-SO₂-(C₁-C₄-Alkyl), -CO-R¹², Hydroxy-

45

carbonyl-C₁-C₈-alkyl, (C₁-C₈-Alkoxy)carbonyl-C₁-C₆-alkyl,

65

-CH₂-CH(Halogen)-CO-OR⁸, -CH₂-CH(Halogen)-CO-N(R⁹, R¹⁰),
 -CH₂-CH(Halogen)-CN, -CH₂-CH(Halogen)-CO-(C₁-C₄-Alkyl),
 -CH=C(Halogen)-CO-OR⁸, -CH=C(C₁-C₄-Alkyl)-CO-OR⁸,
 -CH=N-OR¹³, -C(R¹⁴)=N-OR¹³, -CH(-Y-R¹⁵, -Z-R¹⁵),
 -C(R¹⁴)(-Y-R¹⁵, -Z-R¹⁵),

5

5

10

15

20

R^9, R^{10} unabhängig voneinander für Wasserstoff, C_1 - C_8 -Alkyl, C_3 - C_8 -Cycloalkyl, C_3 - C_8 -Alkenyl, C_3 - C_8 -Alkinyl, C_1 - C_8 -Halogenalkyl, C_1 - C_4 -Alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -Alkyl-thio- C_1 - C_4 -alkyl, C_1 - C_4 -Alkylsulfinyl- C_1 - C_4 -alkyl, C_1 - C_4 -Alkylsulfonyl- C_1 - C_4 -alkyl, Cyano- C_1 - C_8 -alkyl, Hydroxycarbonyl- C_1 - C_4 -alkyl, (C_1 - C_4 -Alkoxy)carbonyl- C_1 - C_4 -alkyl, (C_3 - C_7 -Cycloalkyloxy)carbonyl- C_1 - C_4 -alkyl, (C_1 - C_4 -Alkoxy)carbonyl- C_3 - C_7 -cycloalkyl, C_1 - C_4 -Alkoxy-(C_1 - C_4 -alkoxy)carbonyl- C_1 - C_4 -alkyl, C_1 - C_6 -Alkoxy, Phenyl oder Phenyl- C_1 - C_4 -alkyl, wobei die Phenylringe der letzten beiden Reste unsubstituiert sein oder ein bis drei Substituenten tragen können, jeweils ausgewählt aus der Gruppe bestehend aus Nitro, Cyano, Hydroxy, Halogen, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, (C_1 - C_4 -Alkoxy)carbonyl und (C_1 - C_4 -Alkoxy)carbonyl- C_1 - C_4 -alkoxy

R¹², R¹³ unabhängig voneinander für Wasserstoff, C₁-C₈-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C₁-C₈-Halogenalkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, (C₁-C₄-Alkoxy)carbonyl-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl, Phenyl oder Phenyl-C₁-C₄-alkyl, wobei die Phenylringe der letzten beiden Reste unsubstituiert sein oder ein bis drei Substituenten tragen können, jeweils ausgewählt aus der Gruppe bestehend aus Nitro, Cyano, Hydroxy, Hydroxycarbonyl, Halogen, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, (C₁-C₄-Alkoxy)carbonyl und (C₁-C₄-Alkoxy)carbonyl-C₁-C₄-alkoxy;

R¹⁴ für C₁-C₈-Alkyl;

Y, Z unabhängig voneinander für Sauerstoff oder Schwefel;

R¹⁵ für C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl oder C₁-C₄-Alkoxy-C₁-C₄-alkyl;

R¹⁶-R²¹ unabhängig voneinander für Wasserstoff, Cyano, C₁-C₈-Alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₈-Alkoxy, C₁-C₄-Alkoxy-C₁-C₄-alkoxy, Hydroxycarbonyl, (C₁-C₈-Alkoxy)carbonyl, Aminocarbonyl, (C₁-C₈-Alkyl)-aminocarbonyl oder Di(C₁-C₈-alkyl)aminocarbonyl;

R²²-R²⁵ unabhängig voneinander für Wasserstoff, C₁-C₈-Alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Alkenyl oder C₃-C₈-Alkinyl

und

R²⁶-R²⁸ unabhängig voneinander für Wasserstoff oder C₁-C₈-Alkyl stehen;

R⁶ Wasserstoff, Nitro, Halogen, -OR²⁹ oder -CO-OR²⁹ und

R⁷ Wasserstoff, Nitro, Halogen oder -OR³⁰,

wobei R²⁹ und R³⁰ jeweils für eine der Bedeutungen von R⁸ stehen,

sowie die landwirtschaftlich brauchbaren Salze der Verbindungen I,

ausgenommen diejenigen Verbindungen I, bei denen X Methylen bedeutet, und

- R⁵ für -OR⁸ sowie R³ und R⁷ beide für Wasserstoff stehen oder

- R¹ für Halogen sowie R³, R⁴, R⁶ und R⁷ alle gleichzeitig für Wasserstoff

stehen.

2. Substituierte 2-Benz(o)ylpyridine der Formel I nach Anspruch 1, wobei die Variablen folgende Bedeutungen haben:

n Null;

5

x Carbonyl oder Methylen;

R¹ C₁-C₄-Halogenalkyl;

10 R², R³, R⁴ unabhängig voneinander Halogen;

R⁵ -OR⁸, -CO-OR⁸, -CO-N(R⁹, R¹⁰) oder -CH=N-OR¹³;

R⁶, R⁷ Wasserstoff oder Halogen;

15

R⁸ Wasserstoff, C₁-C₈-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, Hydroxycarbonyl-C₁-C₄-alkyl, (C₁-C₈-Alkoxy)carbonyl-C₁-C₆-alkyl, (C₃-C₈-Alkenyloxy)carbonyl-C₁-C₆-alkyl, (C₃-C₈-Alkinyloxy)carbonyl-C₁-C₆-alkyl, C₁-C₄-Alkoxy-(C₁-C₄-alkoxy)carbonyl-C₁-C₄-alkyl, (C₁-C₄-Alkoxy)-carbonyl-(C₁-C₄-alkoxy)carbonyl-C₁-C₄-alkyl,

20

25

30

35

40

45

R⁹, R¹⁰ unabhängig voneinander Wasserstoff, C₁-C₈-Alkyl oder (C₁-C₄-Alkoxy)carbonyl-C₁-C₄-alkyl;

R¹³ Wasserstoff, C₁-C₈-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl
oder (C₁-C₄-Alkoxy)carbonyl-C₁-C₄-alkyl;

R²², R²³, R²⁵ unabhängig voneinander Wasserstoff, C₁-C₈-Alkyl,
5 C₃-C₈-Alkenyl oder C₃-C₈-Alkinyl.

3. Verwendung der substituierten 2-Benz(o)ylpyridine der
Formel I und der landwirtschaftlich brauchbaren Salze von I,
gemäß Anspruch 1, als Herbizide oder zur Desikkation und/oder
10 Defoliation von Pflanzen.

4. Herbizides Mittel, enthaltend eine herbizid wirksame Menge
mindestens eines substituierten 2-Benz(o)ylpyridins der
Formel I oder eines landwirtschaftlich brauchbaren Salzes von
15 I, gemäß Anspruch 1, und mindestens einen inerten flüssigen
und/oder festen Trägerstoff sowie gewünschtenfalls mindestens
einen oberflächenaktiven Stoff.

20 5. Mittel zur Desikkation und/oder Defoliation von Pflanzen,
enthaltend eine desikkant und/oder defoliant wirksame Menge
mindestens eines substituierten 2-Benz(o)ylpyridins der
Formel I oder eines landwirtschaftlich brauchbaren Salzes von
I, gemäß Anspruch 1, und mindestens einen inerten flüssigen
und/oder festen Trägerstoff sowie gewünschtenfalls mindestens
25 einen oberflächenaktiven Stoff.

30 6. Verfahren zur Herstellung von herbizid wirksamen Mitteln,
dadurch gekennzeichnet, daß man eine herbizid wirksame Menge
mindestens eines substituierten 2-Benz(o)ylpyridins der
Formel I oder eines landwirtschaftlich brauchbaren Salzes von
I, gemäß Anspruch 1, und mindestens einen inerten flüssigen
und/oder festen Trägerstoff sowie gewünschtenfalls mindestens
35 einen oberflächenaktiven Stoff mischt.

40 7. Verfahren zur Herstellung von desikkant und/oder defoliant
wirksamen Mitteln, dadurch gekennzeichnet, daß man eine
desikkant und/oder defoliant wirksame Menge mindestens eines
substituierten 2-Benz(o)ylpyridins der Formel I oder eines
landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch
45 1, und mindestens einen inerten flüssigen und/oder festen
Trägerstoff sowie gewünschtenfalls mindestens einen ober-
flächenaktiven Stoff mischt.

8. Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines substituierten 2-Benz(o)ylpyridins der Formel I oder eines landwirtschaftlich brauchbaren Salzes

5 von I, gemäß Anspruch 1, auf Pflanzen, deren Lebensraum oder auf Saatgut einwirken läßt.

9. Verfahren zur Desikkation und/oder Defoliation von Pflanzen, dadurch gekennzeichnet, daß man eine desikkant und/oder

10 defoliant wirksame Menge mindestens eines substituierten 2-Benz(o)ylpyridins der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, auf Pflanzen einwirken läßt.

15 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man Baumwolle behandelt.

11. Verfahren zur Herstellung von substituierten 2-Benz(o)ylpyridinen der Formel I gemäß Anspruch 1, bei denen X für 20 Methylen oder CH-CN steht, dadurch gekennzeichnet, daß man substituierte Pyridine der Formel II

25

II

30

III

35

umsetzt und das Verfahrensprodukt I mit X = CH-CN gewünschtenfalls mittels wässriger Säure verseift und decarboxyliert.

40

45

INTERNATIONAL SEARCH REPORT

Inte PC	Application No 98/01354
------------	----------------------------

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C07D213/61 A01N43/40

According to International Patent Classification(IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 3 225 054 A (CUSIC J.W. & SAUSE H.W.) 21 December 1965 see column 3, line 9 - line 10 ---	1
X	KENNY M.T. ET AL.: "Antipicornavirus activity of some diarylmethanes and aralkylaminopyridines" ANTIVIRAL RESEARCH, vol. 7, no. 2, 1987, pages 87-97, XP002070894 see compounds 1-10 and 12-15 see page 90; table 1 ---	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

8 July 1998

Date of mailing of the international search report

27/07/1998

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Hartrampf, G

INTERNATIONAL SEARCH REPORT

onial Application No

/EP 98/01354

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	SLEEVY M.C. ET AL.: "Optical isomers of rocastine and close analogs: synthesis and H1 antihistaminic activity of its enantiomers and their structural relationship to the classical antihistamines" JOURNAL OF MEDICINAL CHEMISTRY, vol. 34, no. 4 April 1991, pages 1314-1328, XP002070895 see scheme VI, compound 26 see page 1315 ---	1
X	KONDO Y. ET AL.: "Preparation and reactions of 2-pyridyltellurium derivatives" JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 1, no. 15, 1996, pages 1781-1782, XP002070896 see compound 9, page 1781 ---	1
X	WO 96 33168 A (KUMIAI CHEMICAL INDUSTRY CO., LTD. & IHARA CHEMICAL INDUSTRY CO., LTD.) 24 October 1996 see page 49; examples VII-7, VII-8; table 33 see compounds of the formulas IV, XXX, XXXI, XXXIII, XXXIV, XXXVIII, XXXIX, XL, XLI, XLIV, XLV, XLVII, XLIX, L, LIII auf den pages 51, 69, 72, 74-79 and 81 see page 50; examples VIII-6, VIII-7; table 34 see compounds of the formulas VI, LI, LII on the pages 57 and 80 ---	1
P, X	EP 0 778 264 A (F. HOFFMANN-LA ROCHE AG) 11 June 1997 see page 33, line 45 - line 49; example 42 ---	1
Y	DE 29 48 095 A (HOECHST AG) 19 June 1981 cited in the application see claims 1, 3, 4 ---	1-11
Y	EP 0 303 415 A (SUNTORY LIMITED & SHIONOGI SEIYAKU KABUSHIKI KAISHA) 15 February 1989 see claims 1, 8 ---	1-11
Y	EP 0 461 079 A (SANDOZ LTD. ET AL.) 11 December 1991 cited in the application see claims 1, 7, 8 ---	1-11
		-/-

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 98/01354

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 047 972 A (HOECHST AKTIENGESELLSCHAFT) 24 March 1982 cited in the application see compounds of the formula 1 see claim 1 ---	1-11
A	CH 642 075 A (SIEGFRIED AKTIENGESELLSCHAFT) 30 March 1984 cited in the application see claims 1,2,5-7; example 4 -----	1-11

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No.

EP 98/01354

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 3225054	A 21-12-1965	NONE		
WO 9633168	A 24-10-1996	AU 5280098 A		19-03-1998
		AU 685025 B		08-01-1998
		AU 5346796 A		07-11-1996
		BR 9606328 A		18-11-1997
		CA 2193387 A		24-10-1996
		CN 1150797 A		28-05-1997
		CZ 9700155 A		16-04-1997
		EP 0766666 A		09-04-1997
		HU 9700159 A		28-01-1998
		JP 9003038 A		07-01-1997
		US 5728699 A		17-03-1998
EP 0778264	A 11-06-1997	CA 2190699 A		09-06-1997
		CN 1158844 A		10-09-1997
		JP 9221458 A		26-08-1997
DE 2948095	A 19-06-1981	NONE		
EP 303415	A 15-02-1989	JP 1175967 A		12-07-1989
		JP 2553122 B		13-11-1996
		JP 1042466 A		14-02-1989
		JP 2507461 B		12-06-1996
		JP 1042464 A		14-02-1989
		JP 2063807 C		24-06-1996
		JP 7096543 B		18-10-1995
		JP 1110648 A		27-04-1989
		JP 2566991 B		25-12-1996
		AT 114644 T		15-12-1994
		AU 616676 B		07-11-1991
		AU 2046988 A		16-02-1989
		CA 1257598 A		18-07-1989
		DE 3852235 D		12-01-1995
		DE 3852235 T		06-04-1995
		ES 2068830 T		01-05-1995
		GR 3015185 T		31-05-1995
		KR 9610789 B		08-08-1996
		US 4976773 A		11-12-1990
		US 5205855 A		27-04-1993

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/CH 98/01354

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 461079	A 11-12-1991	AT 155466	T	15-08-1997
		AU 649448	B	26-05-1994
		AU 7820491	A	12-12-1991
		BG 61245	B	31-03-1997
		CA 2043976	A	08-12-1991
		CN 1057837	A, B	15-01-1992
		CS 9101737	A	15-01-1992
		DE 69126825	D	21-08-1997
		DE 69126825	T	19-02-1998
		DK 461079	T	09-02-1998
		EG 19649	A	30-09-1995
		ES 2107447	T	01-12-1997
		HR 930488	A	30-04-1996
		HU 212435	B	28-06-1996
		IL 98378	A	27-11-1995
		JP 4235967	A	25-08-1992
		PT 97890	A	31-03-1992
		SG 43838	A	14-11-1997
		SI 9111017	A	30-06-1997
		SK 278746	B	04-02-1998
		RU 2040522	C	25-07-1995
		TR 25270	A	01-01-1993
		US 5506192	A	09-04-1996
		US 5561101	A	01-10-1996
		US 5627137	A	06-05-1997
		US 5627138	A	06-05-1997
		PL 170729	B	31-01-1997
EP 47972	A 24-03-1982	DE 3034845	A	06-05-1982
		AU 547196	B	10-10-1985
		AU 7524781	A	25-03-1982
		BR 8105902	A	08-06-1982
		CA 1169262	A	19-06-1984
		OA 6899	A	30-04-1983
		US 4564381	A	14-01-1986
		ZA 8106386	A	29-09-1982
CH 642075	A 30-03-1984	NONE		

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

EP 98/01354

A. Klassifizierung des Anmeldungsgegenstandes
IPK 6 C07D213/61 A01N43/40

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 6 C07D

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^o	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 3 225 054 A (CUSIC J.W. & SAUSE H.W.) 21. Dezember 1965 siehe Spalte 3, Zeile 9 - Zeile 10 ---	1
X	KENNY M.T. ET AL.: "Antipicornavirus activity of some diarylmethanes and aralkylaminopyridines" ANTIVIRAL RESEARCH, Bd. 7, Nr. 2, 1987, Seiten 87-97, XP002070894 siehe Compounds 1-10 und 12-15 siehe Seite 90; Tabelle 1 ---	1

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

^o Besondere Kategorien von angegebenen Veröffentlichungen

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch das das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

8.Juli 1998

27/07/1998

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Hartrampf, G

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 98/01354

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	SLEEV M.C. ET AL.: "Optical isomers of rocastine and close analogs: synthesis and H1 antihistaminic activity of its enantiomers and their structural relationship to the classical antihistamines" JOURNAL OF MEDICINAL CHEMISTRY, Bd. 34, Nr. 4, April 1991, Seiten 1314-1328, XP002070895 siehe Scheme VI, Verbindung 26 siehe Seite 1315 ---	1
X	KONDO Y. ET AL.: "Preparation and reactions of 2-pyridyltellurium derivatives" JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 1, Nr. 15, 1996, Seiten 1781-1782, XP002070896 siehe Verbindung 9, Seite 1781 ---	1
X	WO 96 33168 A (KUMIAI CHEMICAL INDUSTRY CO., LTD. & IHARA CHEMICAL INDUSTRY CO., LTD.) 24. Oktober 1996 siehe Seite 49; Beispiele VII-7, VII-8; Tabelle 33 siehe Verbindungen der Formeln IV, XXX, XXXI, XXXII, XXXIV, XXXVIII, XXXIX, XL, XLI, XLIV, XLV, XLVII, XLIX, L, LIII auf den Seiten 51, 69, 72, 74-79 und 81 siehe Seite 50; Beispiele VIII-6, VIII-7; Tabelle 34 siehe Verbindungen der Formeln VI, LI, LII auf den Seiten 57 und 80 ---	1
P, X	EP 0 778 264 A (F. HOFFMANN-LA ROCHE AG) 11. Juni 1997 siehe Seite 33, Zeile 45 - Zeile 49; Beispiel 42 ---	1
Y	DE 29 48 095 A (HOECHST AG) 19. Juni 1981 in der Anmeldung erwähnt siehe Ansprüche 1, 3, 4 ---	1-11
Y	EP 0 303 415 A (SUNTORY LIMITED & SHIONOGI SEIYAKU KABUSHIKI KAISHA) 15. Februar 1989 siehe Ansprüche 1, 8 ---	1-11
Y	EP 0 461 079 A (SANDOZ LTD. ET AL.) 11. Dezember 1991 in der Anmeldung erwähnt siehe Ansprüche 1, 7, 8 ---	1-11
		-/-

INTERNATIONALER RECHERCHENBERICHT

onales Aktenzeichen

/EP 98/01354

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	EP 0 047 972 A (HOECHST AKTIENGESELLSCHAFT) 24. März 1982 in der Anmeldung erwähnt siehe Verbindungen der Formel I siehe Anspruch 1 ---	1-11
A	CH 642 075 A (SIEGFRIED AKTIENGESELLSCHAFT) 30. März 1984 in der Anmeldung erwähnt siehe Ansprüche 1,2,5-7; Beispiel 4 -----	1-11

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die,

en Patentfamilie gehören

Internationales Aktenzeichen

PCT 98/01354

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 3225054	A	21-12-1965	KEINE		
WO 9633168	A	24-10-1996	AU	5280098 A	19-03-1998
			AU	685025 B	08-01-1998
			AU	5346796 A	07-11-1996
			BR	9606328 A	18-11-1997
			CA	2193387 A	24-10-1996
			CN	1150797 A	28-05-1997
			CZ	9700155 A	16-04-1997
			EP	0766666 A	09-04-1997
			HU	9700159 A	28-01-1998
			JP	9003038 A	07-01-1997
			US	5728699 A	17-03-1998
EP 0778264	A	11-06-1997	CA	2190699 A	09-06-1997
			CN	1158844 A	10-09-1997
			JP	9221458 A	26-08-1997
DE 2948095	A	19-06-1981	KEINE		
EP 303415	A	15-02-1989	JP	1175967 A	12-07-1989
			JP	2553122 B	13-11-1996
			JP	1042466 A	14-02-1989
			JP	2507461 B	12-06-1996
			JP	1042464 A	14-02-1989
			JP	2063807 C	24-06-1996
			JP	7096543 B	18-10-1995
			JP	1110648 A	27-04-1989
			JP	2566991 B	25-12-1996
			AT	114644 T	15-12-1994
			AU	616676 B	07-11-1991
			AU	2046988 A	16-02-1989
			CA	1257598 A	18-07-1989
			DE	3852235 D	12-01-1995
			DE	3852235 T	06-04-1995
			ES	2068830 T	01-05-1995
			GR	3015185 T	31-05-1995
			KR	9610789 B	08-08-1996
			US	4976773 A	11-12-1990
			US	5205855 A	27-04-1993

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

nationales Aktenzeichen

EP 98/01354

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 461079	A 11-12-1991	AT	155466 T	15-08-1997
		AU	649448 B	26-05-1994
		AU	7820491 A	12-12-1991
		BG	61245 B	31-03-1997
		CA	2043976 A	08-12-1991
		CN	1057837 A, B	15-01-1992
		CS	9101737 A	15-01-1992
		DE	69126825 D	21-08-1997
		DE	69126825 T	19-02-1998
		DK	461079 T	09-02-1998
		EG	19649 A	30-09-1995
		ES	2107447 T	01-12-1997
		HR	930488 A	30-04-1996
		HU	212435 B	28-06-1996
		IL	98378 A	27-11-1995
		JP	4235967 A	25-08-1992
		PT	97890 A	31-03-1992
		SG	43838 A	14-11-1997
		SI	9111017 A	30-06-1997
		SK	278746 B	04-02-1998
		RU	2040522 C	25-07-1995
		TR	25270 A	01-01-1993
		US	5506192 A	09-04-1996
		US	5561101 A	01-10-1996
		US	5627137 A	06-05-1997
		US	5627138 A	06-05-1997
		PL	170729 B	31-01-1997
EP 47972	A 24-03-1982	DE	3034845 A	06-05-1982
		AU	547196 B	10-10-1985
		AU	7524781 A	25-03-1982
		BR	8105902 A	08-06-1982
		CA	1169262 A	19-06-1984
		OA	6899 A	30-04-1983
		US	4564381 A	14-01-1986
		ZA	8106386 A	29-09-1982
CH 642075	A 30-03-1984	KEINE		