Lista 5. Proces Poissona

5.1 Teoria - dodatek

Definicja Niech N_t będzie procesem Poissona z parametrem $\lambda > 0$. Kompensowanym procesem Poissona nazywamy proces $\widetilde{N}_t = N_t - \lambda t$.

5.2 Zadania na laboratoria

Zadanie 1 Zaimplementuj generowanie próby trajektorii procesu Poissona na odcinku [0, T] opierając się na znajomości rozkładu jego czasów oczekiwania.

- 1. Narysuj jego trajektorie.
- 2. Napisz algorytm obliczający wartości N_t , zweryfikuj, czy ma poprawny rozkład.

Zadanie 2 Zaimplementuj funkcję generującą trajektorie kompensowanego procesu Poissona.

5.2.1 Metody generowania

Metoda 1 Zaimplementujemy metodę generowania czasów oczekiwania na kolejny skok. Oznaczenia:

- ightharpoonup I liczba skoków N(t) na [0,T],
- $ightharpoonup S_1, \ldots, S_I$ momenty skoków,
- ightharpoonup t suma czasów oczekiwania T_i .
- 1. Podstaw I = 0, t = 0.
- 2. Generuj U z rozkładu U(0,1).
- 3. Wstaw $t=t-\frac{1}{\lambda}\log U$. Jeśli t>T, to koniec, w przeciwnym przypadku przejdź do 4.
- 4. Wstaw $I = I + 1, S_I = t$.
- 5. Wróć do 2.

Metoda 2 Druga metoda generowania procesu Poissona polega na generowaniu momentów skoku.

- 1. Generuj $n \sim \text{Poisson}(\lambda T)$.
- 2. Jeśli n = 0, to koniec (brak skoków).
- 3. Generuj U_1, \ldots, U_n i.i.d., $U_i \sim U(0, T)$.
- 4. Sortuj (U_1, \ldots, U_n) aby otrzymać $(U_{1:n}, U_{2:n}, \ldots, U_{n:n})$.
- 5. Wstaw $S_i = U_{i:n}$ (statystyki pozycyjne), i = 1, ..., n.

5.3 Zadanie dodatkowe

Alternatywne metody generowania zmiennych poissonowskich.

Twierdzenie Jeśli U_i są niezależnymi zmiennymi losowymi o rozkładzie U(0,1), to zmienna losowa $X = \max\{n : \prod_{j=1}^n U_j > e^{-\lambda}\}$ ma rozkład Poissona z parametrem λ .

Pseudokod do generowania zmiennych losowych z rozkładu Poissona dla niewielkich $\lambda > 0$.

- 1. Ustaw n = 1, a = 1.
- 2. Wygeneruj $U \sim U(0,1)$ i ustaw a = a * U.
- 3. Jeśli $a \ge e^{-\lambda}$, ustaw n = n + 1 i wróć do 2.
- 4. W przeciwnym wypadku zwróć X = n 1.

Powyższy pseudokod z oczywistych względów nie działa szybko dla dużych $\lambda>0$. W takim wypadku stosujemy następujący algorytm.

- 1. Ustaw $m = floor((7/8)\lambda)$.
- 2. Generuj $Y \sim \text{Gamma}(m, 1)$.
- 3. Jeśli $Y \leq \lambda$, to generuj za pomocą poprzedniego algorytmu Z z rozkładu Poissona z parametrem λY i ustaw X = m + Z.
- 4. W przeciwnym wypadku generuj X z rozkładu dwumianowego $\text{Bin}(m-1,\lambda/Y)$.

Zadanie dodatkowe Za pomoca jednej z poznanych metod zaimplementuj generator liczb losowych z rozkładu Poissona.