

Claims:

1. A method for coating a surface of a web, which fibrous portion consist of papermaking fibres, with a coating powder comprising steps
5 of:
 - selecting raw materials of the coating powder comprising inorganic material and polymeric binder material, the polymeric binder material having a characteristic glass transition temperature T_g above which a rubbery state plateau exists, and a dynamic modulus, which consists
 - 10 of a measurable elastic component G' and a measurable loss component G'' ,
 - forming the coating powder from the raw materials,
 - allowing the web to move between electrodes, which are in different potentials,
- 15 - applying the coating powder on the surface of the web by utilizing the difference in the electric potential, and
 - finishing the coated surface of the web in a process step in which the process is arranged to achieve its maximum temperature, which exceeds the glass transition temperature T_g of the polymeric binder material,
- 20 **characterized** in that the polymeric binder material is selected in such a manner that when increasing the temperature above the glass transition temperature the ratio G''/G' is at the most equal to the ratio G''/G' in the glass transition temperature.
- 25 2. The method according to claim 1, **characterized** in that the ratio G''/G' is at the most 1 in the rubbery state plateau.
- 30 3. The method according to claim 1 or 2, **characterized** in that the ratio G''/G' is at the most 1 between the glass transition temperature and the maximum process temperature.
- 35 4. The method according to any preceding claim, **characterized** in that the elastic modulus is at least 1.0×10^5 Pa in a temperature range, which is below the maximum process temperature.

5. The method according to any preceding claim, **characterized** in that the loss factor in the rubbery state plateau is at the most 80 % of the value, which is reached in the glass transition temperature.
5. 6. The method according to claim 5, **characterized** in that the loss factor in the rubbery state plateau is at the most 50 % of the value, which is reached in the glass transition temperature.