Separable Variable Method (1+x)dy-ydx=0

(1+x) dy = y dx	$\frac{dy}{dx} = f(x) \cdot g(y)$
$\frac{1}{y}\frac{dy}{dy} = \frac{1}{(1+x)}dx$	dx 1 0 0
y (1+x)	Check
Taking "[" on both sides	(1+x)dy = ydx
S U	dy y
$\int \frac{1}{y} dy = \int \frac{1}{1+x} dx$	
U y S J 1+X	$\frac{d}{dx} \xrightarrow{(1+x)} = \xrightarrow{y} \xrightarrow{A} A$ $1 = \frac{y}{(1+x)}$
ln lyl = ln 1+x +lnC	7 = (1+ X)
	g Rule

Taking Antilog on both sides

Initial Value Problems [I.V.P]

$$\frac{dy}{dx} = -x$$

$$\frac{y(4) - -3}{4} = \frac{\text{I.v.P}}{4}$$

$$\frac{y^{2} = x^{2} + 2C}{y^{2} = x^{2} + 2C} \qquad \frac{7C^{2} + y^{2} = 2(12.5)}{y^{2} + y^{2} = 2(12.5)}$$

$$\chi^{2} + y^{2} = 2C$$

$$2C^{2} + y^{2} = 2S$$

$$2C^{2} + y^{2} = 2S$$

$$2C^{2} + y^{2} = 5^{2}$$

$$2C^{2} + y^{2} = 5^{2}$$

Put Given
$$[I.V.P]$$
 $\chi^2 + y^2 = 5^2$ $(4)^2 + (-3)^2 = 2C$

$$\frac{(-3)^2 = 2C}{25 = 2C}$$
Circle

MUHAMMAD SALMAN SALEEM

Mon Tue Wed Thu Fri Sat Sun

Date:____

Separable Variable Method

$\frac{dy}{dx} = y^2 - 4$	Partial Fraction Decomposition
dx -	
$\int \frac{dy}{(x^2+1)} = \int I \cdot dx$	$\frac{1}{(y+2)(y-2)} = \frac{A}{y+2} + \frac{B}{y-2}$
$J(y^24)$ J	(y+2)(y-2) $y+2$ $y-2$
$\int_{y^2-y}^{1} dy = \int_{1}^{1} dx$	1 = A(y-2) + B(y+2)
	As (y+2=0) So (y=-2) → Put
$\int \frac{1}{(y+2)(y-2)} dy = \int 1.dx$	1= A(-2-2) + 0
J (717) (7)	1 = - 4A
$\int \left(\frac{-1}{4(y+2)} + \frac{1}{4(y-2)} \right) dy = \int 1 \cdot dx$	$A = -\frac{1}{4}$
$\int \left(\frac{4(y+2)}{y(y-2)} \right)^{-2} J$	As $(y-2=0)$ So $(y=2) \rightarrow Put$
$\int \left(\frac{-1}{4(\gamma+2)}\right) dy + \int \left(\frac{1}{4(\gamma-2)}\right) dy = \int 1 dx$	1 = A(2-2) + B(2+2)
$\int \left(\frac{4(y+z)}{y} \right) \int \left(\frac{4(y-z)}{y} \right) \int \int \int \frac{4(y-z)}{y} \int \frac{dy}{y} dy$	1 = 4B
$-\frac{1}{4}\int \frac{1}{4x^2} dy + \frac{1}{4}\int \frac{1}{4x^2} dy = \int 1 dx$	B = 1/4
	Put values of A & B
(In(y+2)) +- (In(y-2)) = x+c	
Applying log Property	$\frac{1}{(y+2)(y-2)} = -\frac{1}{4(y+2)} + \frac{1}{4(y-2)}$
0 0 7 0	
$\ln y-2 ^{\frac{1}{4}} = x+c$	

ln | y-2 | '4 = x+c

Taking Antilog on both sides

$$\left(\frac{y-2}{y+2}\right)^{\frac{1}{4}} = e^{x} \cdot e^{\zeta}$$

$$\left(\frac{y-2}{y+2}\right)^{\gamma_{4}} = c.e^{x}$$

- HERO