Matrix Computations Chapter 3: Least-squares Problems and QR Decomposition

Section 3.3 QR Decomposition

Jie Lu ShanghaiTech University

Thin QR Decomposition for Full Column-Rank Matrices

Theorem

Suppose $\mathbf{A} \in \mathbb{R}^{m \times n}$ has full column rank. Then, \mathbf{A} admits a decomposition

$$A = Q_1R_1$$
 (Thin QR Decomposition)

where $\mathbf{Q}_1 \in \mathbb{R}^{m \times n}$ is semi-orthogonal and $\mathbf{R}_1 \in \mathbb{R}^{n \times n}$ is nonsingular and upper triangular.

In addition, if we restrict $[\mathbf{R}_1]_{ii} > 0$ for all i = 1, ..., n, then $(\mathbf{Q}_1, \mathbf{R}_1)$ is unique.

Proof:

Since **A** has full column rank, $\mathbf{C} := \mathbf{A}^T \mathbf{A}$ is positive definite.

Hence, there exists a unique Cholesky decomposition $C = R_1^T R_1$ where R_1 is upper triangular with positive diagonal entries.

Let $\mathbf{Q}_1 = \mathbf{A} \mathbf{R}_1^{-1}$. It can be verified that $\mathbf{Q}_1^T \mathbf{Q}_1 = \mathbf{I}$ and $\mathbf{Q}_1 \mathbf{R}_1 = \mathbf{A}$.

Note: We don't find QR decomposition via Cholesky decomposition in practice

Gram-Schmidt Procedure

Aim: Given a basis $\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n\}$ of a subspace $\mathcal{S} \subset \mathbb{R}^m$, find an orthonormal basis $\{\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_n\}$ of \mathcal{S} , i.e.,

- 1. $\operatorname{span}\{a_1, a_2, \dots, a_n\} = \operatorname{span}\{q_1, q_2, \dots, q_n\}$
- 2. $[\mathbf{q}_1 \ \mathbf{q}_2 \ \cdots \ \mathbf{q}_n]$ is a semi-orthogonal matrix (an orthogonal matrix if m = n)

Idea: Let \mathbf{q}_1 be normalized \mathbf{a}_1 Each \mathbf{q}_{i+1} is obtained by removing $\mathbf{q}_1-,\ldots,\mathbf{q}_i-$ component from \mathbf{a}_{i+1} , $i=1,\ldots,n-1$ and then normalizing it

Note: Orthogonal projection of vector **a** onto vector **b** is given by

$$\frac{\langle a,b\rangle}{\langle b,b\rangle}b,$$

Gram-Schmidt Procedure (cont'd)

$$\begin{split} \tilde{\mathbf{q}}_1 = & \mathbf{a}_1 \\ \mathbf{q}_1 = \frac{\tilde{\mathbf{q}}_1}{\|\tilde{\mathbf{q}}_1\|_2} \\ \tilde{\mathbf{q}}_2 = & \mathbf{a}_2 - (\mathbf{q}_1^T \mathbf{a}_2) \mathbf{q}_1 \\ \mathbf{q}_2 = \frac{\tilde{\mathbf{q}}_2}{\|\tilde{\mathbf{q}}_2\|_2} \\ & \cdots \\ \tilde{\mathbf{q}}_i = & \mathbf{a}_i - (\mathbf{q}_1^T \mathbf{a}_i) \mathbf{q}_1 - (\mathbf{q}_2^T \mathbf{a}_i) \mathbf{q}_2 - \cdots - (\mathbf{q}_{i-1}^T \mathbf{a}_i) \mathbf{q}_{i-1} \\ \mathbf{q}_i = & \frac{\tilde{\mathbf{q}}_i}{\|\tilde{\mathbf{q}}_i\|_2} \\ & \cdots \\ \tilde{\mathbf{q}}_n = & \mathbf{a}_n - \sum_{i=1}^{n-1} (\mathbf{q}_i^T \mathbf{a}_n) \mathbf{q}_i \\ \mathbf{q}_n = & \frac{\tilde{\mathbf{q}}_n}{\|\tilde{\mathbf{q}}_n\|_2} \end{split}$$

Gram-Schmidt Procedure (cont'd)

```
Algorithm: Gram-Schmidt input: a collection of linearly independent vectors \mathbf{a}_1, \ldots, \mathbf{a}_n \tilde{\mathbf{q}}_1 = \mathbf{a}_1, \ \mathbf{q}_1 = \tilde{\mathbf{q}}_1/\|\tilde{\mathbf{q}}_1\|_2 for i = 2, \ldots, n \tilde{\mathbf{q}}_i = \mathbf{a}_i - \sum_{j=1}^{i-1} (\mathbf{q}_j^T \mathbf{a}_i) \mathbf{q}_j \mathbf{q}_i = \tilde{\mathbf{q}}_i/\|\tilde{\mathbf{q}}_i\|_2 end output: \mathbf{q}_1, \ldots, \mathbf{q}_n
```

- Complexity: $O(mn^2)$
- $\operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_i\} = \operatorname{span}\{\mathbf{q}_1, \dots, \mathbf{q}_i\} = \operatorname{span}\{\tilde{\mathbf{q}}_1, \dots, \tilde{\mathbf{q}}_i\}$ for all $i = 1, \dots, n$

Thin QR Decomposition via Gram-Schmidt

From Gram-Schmidt,

$$\mathbf{a}_i = \sum_{j=1}^i r_{ji} \mathbf{q}_j, \quad i = 1, \dots, n$$

where

$$r_{ii} = \|\tilde{\mathbf{q}}_i\|_2, \quad r_{ji} = \mathbf{q}_i^T \mathbf{a}_i, \ j = 1, \dots, i-1$$

Equivalently,

$$\boldsymbol{\mathsf{A}} = \boldsymbol{\mathsf{Q}}_1 \boldsymbol{\mathsf{R}}_1$$

where

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}$$
 full column rank

$$\mathbf{Q}_1 = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \end{bmatrix}$$
 semi-orthogonal

$$\mathbf{R}_1$$
 is upper triangular with $[\mathbf{R}_1]_{ij} = r_{ij}$ for $i \leq j$

• \mathbf{R}_1 is nonsingular because $\det(\mathbf{R}) = \prod_{i=1}^n r_{ii} \neq 0$

General Gram-Schmidt Procedure

Extension to the case where $\mathbf{A} = \begin{bmatrix} a_1 & \dots & a_n \end{bmatrix}$ may not have full column rank **Observation** from Gram-Schmidt:

- If \mathbf{a}_i is linearly dependent of $\mathbf{a}_1, \dots, \mathbf{a}_{i-1}$, then $\tilde{\mathbf{q}}_i = 0$
- The number of nonzero $\tilde{\mathbf{q}}_i$'s is rank(A)

Idea: If $\tilde{\mathbf{q}}_j = 0$, skip to j+1 without computing \mathbf{q}_j All the \mathbf{q}_i 's form an orthonormal basis for $\mathcal{R}(\mathbf{A})$

```
Algorithm: General Gram-Schmidt input: a collection of possibly linearly dependent vectors \mathbf{a}_1,\dots,\mathbf{a}_n k=0 for i=1,\dots,n \tilde{\mathbf{q}}_i=\mathbf{a}_i-\sum_{j=1}^k(\mathbf{q}_j^T\mathbf{a}_i)\mathbf{q}_j if \tilde{\mathbf{q}}_i\neq 0 k\leftarrow k+1 \mathbf{q}_k=\tilde{\mathbf{q}}_i/\|\tilde{\mathbf{q}}_i\|_2 end \% \operatorname{span}\{\mathbf{a}_1,\dots,\mathbf{a}_i\}=\operatorname{span}\{\mathbf{q}_1\dots,\mathbf{q}_k\} end output: \mathbf{q}_1,\dots,\mathbf{q}_k \% k=\operatorname{rank}(A)
```

General Gram-Schmidt Procedure (cont'd)

Example: Let $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \in \mathbb{R}^{6 \times 5}$ Suppose $\mathbf{a}_1 \neq \mathbf{0}$; \mathbf{a}_2 is linearly independent from \mathbf{a}_1 ; \mathbf{a}_3 is linearly dependent of \mathbf{a}_1 and \mathbf{a}_2 ; \mathbf{a}_4 is linearly independent from \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 ; \mathbf{a}_5 is linearly dependent of \mathbf{a}_2 only

General Gram-Schmidt Procedure (cont'd)

Example: Let $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} \in \mathbb{R}^{6 \times 5}$ Suppose $\mathbf{a}_1 \neq \mathbf{0}$; \mathbf{a}_2 is linearly independent from \mathbf{a}_1 ; \mathbf{a}_3 is linearly dependent of \mathbf{a}_1 and \mathbf{a}_2 ; \mathbf{a}_4 is linearly independent from \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 ; \mathbf{a}_5 is linearly dependent of \mathbf{a}_2 only

General Gram-Schmidt Procedure (cont'd)

Using General Gram-Schmidt, $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $(\mathbf{A}) = k \le n$ can be decomposed as

$$\boldsymbol{\mathsf{A}} = \boldsymbol{\mathsf{Q}}_1 \boldsymbol{\mathsf{R}}_1$$

where

$$\mathbf{Q}_1 = \begin{bmatrix} \mathbf{q}_1 & \cdots & \mathbf{q}_k \end{bmatrix} \in \mathbb{R}^{m \times k}$$
 is semi-orthogonal

 $\mathbf{R}_1 \in \mathbb{R}^{k \times n}$ is in an upper staircase form, where each staircase corresponds to a column of \mathbf{A} that is independent from previous columns

 $\mathbf{R}_1 \in \mathbb{R}^{k \times n}$ is upper triangular¹

Applications:

- Obtain an orthonormal basis for $\mathcal{R}(\mathbf{A})$
- Check whether $\mathbf{b} \in \mathrm{span}\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}$ by applying general Gram-Schmidt to $\{\mathbf{a}_1,\ldots,\mathbf{a}_n,\mathbf{b}\}$
- The staircase pattern of R₁ indicates the dependence of each column of A on previous columns

¹From now on, we say a rectangular matrix is upper triangular if its (i, j)-entry is zero for all i > j

QR Decomposition

Theorem

Any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ admits a decomposition

A = QR (QR Decomposition)

where $\mathbf{Q} \in \mathbb{R}^{m \times m}$ is an orthogonal matrix and $\mathbf{R} \in \mathbb{R}^{m \times n}$ is an upper triangular matrix.

In addition, when m = n and \mathbf{A} has full rank, (\mathbf{Q}, \mathbf{R}) is unique if we restrict $r_{ii} > 0$ for all i.

Finding QR Decomposition via General Gram-Schmidt

- 1. Find any matrix $\tilde{\mathbf{A}}$ s.t. the matrix $\begin{bmatrix} \mathbf{A} & \tilde{\mathbf{A}} \end{bmatrix}$ has full row rank
 - We may simply let $\tilde{\mathbf{A}} = \mathbf{I}_m$
- 2. Applying General Gram-Schmidt gives

$$\begin{bmatrix} \mathbf{A} & \tilde{\mathbf{A}} \end{bmatrix} = \mathbf{Q}\bar{\mathbf{R}}, \quad \mathbf{Q} \in \mathbb{R}^{m \times m} \text{ orthogonal}$$

- 3. Write $\mathbf{Q} = \begin{bmatrix} \mathbf{Q}_1 & \mathbf{Q}_2 \end{bmatrix}$ where
 - $\mathbf{Q}_1 \in \mathbb{R}^{m \times k}$ with $k = \operatorname{rank}(\mathbf{A})$ provides an orthonormal basis for $\mathcal{R}(A)$
 - $\mathbf{Q}_2 \in \mathbb{R}^{m \times (m-k)}$ provides an orthonormal basis for $\mathcal{R}(\tilde{\mathbf{A}})$
- 4. Note that

$$\textbf{A} = \underbrace{\textbf{Q}_1}_{m \times k} \underbrace{\textbf{R}_1}_{k \times n} = \underbrace{\begin{bmatrix} \textbf{Q}_1 & \textbf{Q}_2 \end{bmatrix}}_{\textbf{Q}} \underbrace{\begin{bmatrix} \textbf{R}_1 \\ \textbf{0}_{(m-k) \times n} \end{bmatrix}}_{\textbf{R}}$$

Discussions

Thin QR Decomposition for general $\mathbf{A} \in \mathbb{R}^{m \times n}$, $m \ge n$:

$$\mathbf{A} = \tilde{\mathbf{Q}}_1 \underbrace{\begin{bmatrix} \mathbf{R}_1 \\ \mathbf{0}_{(n-k)\times n} \end{bmatrix}}_{\tilde{\mathbf{R}}_1}$$

where

 $ilde{\mathbf{Q}}_1 \in \mathbb{R}^{m imes n}$ is semi-orthogonal

 $ilde{\mathbf{R}}_1 \in \mathbb{R}^{n imes n}$ is upper triangular

When ${f A}$ has full column rank, then ${f ilde Q}_1={f Q}_1$ and ${f ilde R}_1={f R}_1$

A has full column rank if and only if $[\mathbf{R}_1]_{ii} \neq 0$ for all i

Discussions (cont'd)

Since $\mathbf{Q} = \begin{bmatrix} \mathbf{Q}_1 & \mathbf{Q}_2 \end{bmatrix} \in \mathbb{R}^{m \times m}$ is orthogonal,

- $\mathcal{R}(\mathbf{Q}_1)$ and $\mathcal{R}(\mathbf{Q}_2)$ are orthogonal
- $\mathcal{R}(\mathbf{Q}_1)$ and $\mathcal{R}(\mathbf{Q}_2)$ spans \mathbb{R}^m

Therefore, $\mathcal{R}(\mathbf{Q}_1)$ and $\mathcal{R}(\mathbf{Q}_2)$ are orthogonal complements of each other, i.e.,

$$\mathcal{R}(\mathbf{Q}_1)^{\perp} = \mathcal{R}(\mathbf{Q}_2)$$

It follows that

$$\mathcal{R}(\mathbf{A}) = \mathcal{R}(\mathbf{Q}_1), \quad \mathcal{R}(\mathbf{A})^{\perp} = \mathcal{R}(\mathbf{Q}_2)$$

- The columns of \mathbf{Q}_1 form an orthonormal basis for $\mathcal{R}(\mathbf{A})$
- The columns of \mathbf{Q}_2 form an orthonormal basis for $\mathcal{R}(\mathbf{A})^{\perp} = \mathcal{N}(\mathbf{A}^{T})$

LS via QR

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, rank $(\mathbf{A}) = k$

$$\mathbf{A} = \begin{bmatrix} \mathbf{Q}_1 & \mathbf{Q}_2 \\ \mathbf{w} \times k & \end{bmatrix} \begin{bmatrix} \mathbf{R}_1 \\ \mathbf{0}_{(m-k) \times n} \end{bmatrix}$$

Using the QR decomposition,

$$\begin{split} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 &= \|\mathbf{Q}^T \mathbf{A} \mathbf{x} - \mathbf{Q}^T \mathbf{y}\|_2^2 & \text{because orthogonal } Q \text{ preserves norm} \\ &= \left\| \begin{bmatrix} \mathbf{Q}_1^T \\ \mathbf{Q}_2^T \end{bmatrix} \begin{bmatrix} \mathbf{Q}_1 & \mathbf{Q}_2 \end{bmatrix} \begin{bmatrix} \mathbf{R}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{x} - \begin{bmatrix} \mathbf{Q}_1^T \\ \mathbf{Q}_2^T \end{bmatrix} \mathbf{y} \right\|_2^2 \\ &= \left\| \begin{bmatrix} \mathbf{Q}_1^T \mathbf{Q}_1 & \mathbf{Q}_1^T \mathbf{Q}_2 \\ \mathbf{Q}_2^T \mathbf{Q}_1 & \mathbf{Q}_2^T \mathbf{Q}_2 \end{bmatrix} \begin{bmatrix} \mathbf{R}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{x} - \begin{bmatrix} \mathbf{Q}_1^T \mathbf{y} \\ \mathbf{Q}_2^T \mathbf{y} \end{bmatrix} \right\|_2^2 \\ &= \left\| \begin{bmatrix} \mathbf{R}_1 \mathbf{x} \\ \mathbf{0} \end{bmatrix} - \begin{bmatrix} \mathbf{Q}_1^T \mathbf{y} \\ \mathbf{Q}_2^T \mathbf{y} \end{bmatrix} \right\|_2^2 = \|\mathbf{R}_1 \mathbf{x} - \mathbf{Q}_1^T \mathbf{y}\|_2^2 + \|\mathbf{Q}_2^T \mathbf{y}\|_2^2 \end{split}$$

LS via QR (cont'd)

$$\|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2} = \|\mathbf{R}_{1}\mathbf{x} - \mathbf{Q}_{1}^{T}\mathbf{y}\|_{2}^{2} + \|\mathbf{Q}_{2}^{T}\mathbf{y}\|_{2}^{2}$$

Conclusion: \mathbf{x}_{LS} is a least-squares solution to $\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2$ if and only if it is a least-squares solution to $\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{b}_1 - \mathbf{R}_1\mathbf{x}\|_2^2$ where $\mathbf{b}_1 = \mathbf{Q}_1^T\mathbf{y}$

Suppose **A** has full column rank, i.e., k = n

Then, R_1 is nonsingular and the unique least-squares solution is

$$\mathbf{x}_{\mathsf{LS}} = \mathbf{R}_1^{-1} \mathbf{b}_1$$

We may solve the triangular system $\mathbf{R}_1\mathbf{x} = \mathbf{b}_1$ by backward substitution In this case, the optimal residual $\|\mathbf{A}\mathbf{x}_{\mathsf{LS}} - \mathbf{y}\|_2$ is

$$\|\mathbf{Q}_2^T\mathbf{y}\|_2 = \|\mathbf{Q}_2\mathbf{Q}_2^T\mathbf{y}\|_2$$

Note that $\mathbf{Q}_2\mathbf{Q}_2^T\mathbf{y} \in \mathcal{R}(\mathbf{Q}_2) = \mathcal{R}(\mathbf{Q}_1)^{\perp} = \mathcal{R}(\mathbf{A})^{\perp}$ $\mathbf{Q}_2\mathbf{Q}_2^T\mathbf{y}$ is the component of \mathbf{y} orthogonal to $\mathcal{R}(\mathbf{A})$

Numerical Error Issue of Gram-Schmidt

Gram-Schmidt is numerically unstable due to propagation of numerical errors

Example: Given

$$\mathbf{a}_1 = \begin{bmatrix} 1 & \epsilon & 0 & 0 \end{bmatrix}^T$$
, $\mathbf{a}_2 = \begin{bmatrix} 1 & 0 & \epsilon & 0 \end{bmatrix}^T$, $\mathbf{a}_3 = \begin{bmatrix} 1 & 0 & 0 & \epsilon \end{bmatrix}^T$ with tiny ϵ so that the approximation $1 + \epsilon^2 \approx 1$ can be made

Applying Gram-Schmidt with the above approximation yields

•
$$\mathbf{q}_1 = \frac{\mathbf{a}_1}{\|\mathbf{a}_1\|_2} = \begin{bmatrix} 1 & \epsilon & 0 & 0 \end{bmatrix}^T$$

•
$$\tilde{\mathbf{q}}_2 = \mathbf{a}_2 - \mathbf{q}_1^T \mathbf{a}_2 \mathbf{q}_1 = \begin{bmatrix} 0 & -\epsilon & \epsilon & 0 \end{bmatrix}^T$$

$$\mathbf{q}_2 = \frac{\tilde{\mathbf{q}}_2}{\|\tilde{\mathbf{q}}_2\|_2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & -1 & 1 & 0 \end{bmatrix}^T$$

•
$$\tilde{\mathbf{q}}_3 = \mathbf{a}_3 - \mathbf{q}_1^T \mathbf{a}_3 \mathbf{q}_1 - \mathbf{q}_2^T \mathbf{a}_3 \mathbf{q}_2 = \begin{bmatrix} 0 & -\epsilon & 0 & \epsilon \end{bmatrix}^T \mathbf{q}_3 = \frac{\tilde{\mathbf{q}}_3}{\|\tilde{\mathbf{q}}_3\|_2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & -1 & 0 & 1 \end{bmatrix}^T$$

Orthogonality is lost!

Modified Gram-Schmidt

Instead of computing $\tilde{\mathbf{q}}_i = \mathbf{a}_i - (\mathbf{q}_1^T \mathbf{a}_i) \mathbf{q}_1 - (\mathbf{q}_2^T \mathbf{a}_i) \mathbf{q}_2 - \dots - (\mathbf{q}_{i-1}^T \mathbf{a}_i) \mathbf{q}_{i-1}$ in Gram-Schmidt (full column rank case), compute

$$\begin{split} \tilde{\mathbf{q}}_{i}^{(1)} = & \mathbf{a}_{i} - (\mathbf{q}_{1}^{T} \mathbf{a}_{i}) \mathbf{q}_{1} \\ \tilde{\mathbf{q}}_{i}^{(2)} = & \tilde{\mathbf{q}}_{i}^{(1)} - (\mathbf{q}_{2}^{T} \tilde{\mathbf{q}}_{i}^{(1)}) \mathbf{q}_{2} \\ \vdots \\ \tilde{\mathbf{q}}_{i}^{(j)} = & \tilde{\mathbf{q}}_{i}^{(j-1)} - (\mathbf{q}_{j}^{T} \tilde{\mathbf{q}}_{i}^{(j-1)}) \mathbf{q}_{j} \\ \vdots \\ \tilde{\mathbf{q}}_{i} = & \tilde{\mathbf{q}}_{i}^{(i-1)} = & \tilde{\mathbf{q}}_{i}^{(i-2)} - (\mathbf{q}_{i-1}^{T} \tilde{\mathbf{q}}_{i}^{(i-2)}) \mathbf{q}_{i-1} \end{split}$$

Complexity: $O(mn^2)$

Modified Gram-Schmidt (cont'd)

Example (revisit): Given

$$\mathbf{a}_1 = \begin{bmatrix} 1 & \epsilon & 0 & 0 \end{bmatrix}^T, \mathbf{a}_2 = \begin{bmatrix} 1 & 0 & \epsilon & 0 \end{bmatrix}^T, \mathbf{a}_3 = \begin{bmatrix} 1 & 0 & 0 & \epsilon \end{bmatrix}^T \text{ with tiny } \epsilon \text{ so that the approximation } 1 + \epsilon^2 \approx 1 \text{ can be made}$$

Applying modified Gram-Schmidt with the above approximation yields

•
$$\tilde{\mathbf{q}}_1 = \begin{bmatrix} 1 & \epsilon & 0 & 0 \end{bmatrix}^T$$

 $\mathbf{q}_1 = \begin{bmatrix} 1 & \epsilon & 0 & 0 \end{bmatrix}^T$

•
$$\tilde{\mathbf{q}}_2 = \mathbf{a}_2 - \mathbf{q}_1^T \mathbf{a}_2 \mathbf{q}_1 = \begin{bmatrix} 0 & -\epsilon & \epsilon & 0 \end{bmatrix}^T$$

 $\mathbf{q}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & -1 & 1 & 0 \end{bmatrix}^T$

•
$$\tilde{\mathbf{q}}_{3}^{(1)} = \mathbf{a}_{3} - \mathbf{q}_{1}^{T} \mathbf{a}_{3} \mathbf{q}_{1} = \begin{bmatrix} 0 & -\epsilon & 0 & \epsilon \end{bmatrix}^{T}$$

$$\tilde{\mathbf{q}}_{3} = \tilde{\mathbf{q}}_{3}^{(2)} = \tilde{\mathbf{q}}_{3}^{(1)} - \mathbf{q}_{2}^{T} \tilde{\mathbf{q}}_{3}^{(1)} \mathbf{q}_{2} = \begin{bmatrix} 0 & -\frac{\epsilon}{2} & -\frac{\epsilon}{2} & \epsilon \end{bmatrix}^{T}$$

$$\mathbf{q}_{3} = \frac{1}{\sqrt{6}} \begin{bmatrix} 0 & -1 & -1 & 2 \end{bmatrix}^{T}$$

Orthogonality is preserved approximately

We may also compute QR using reflection and rotation approaches

Reflection Matrices

A matrix $\mathbf{H} \in \mathbb{R}^{m \times m}$ is called a reflection matrix if

$$\mathbf{H} = \mathbf{I} - 2\mathbf{P}$$
,

where **P** is an orthogonal projector (symmetric and idempotent)

Interpretation: Let $P^{\perp} = I - P$ be the orthogonal complement projector

$$x = Px + P^{\perp}x$$
, $Hx = -Px + P^{\perp}x$

The vector $\mathbf{H}\mathbf{x}$ is a reflected version of \mathbf{x} , with $\mathcal{R}(\mathbf{P}^{\perp})$ being the "mirror"

A reflection matrix is orthogonal:

$$H^{T}H = (I - 2P)(I - 2P) = I - 4P + 4P^{2} = I - 4P + 4P = I$$

Householder Reflections

Problem: Given $\mathbf{x} \in \mathbb{R}^m$, find an orthogonal $\mathbf{H} \in \mathbb{R}^{m \times m}$ such that

$$\mathbf{H}\mathbf{x} = egin{bmatrix} eta \ \mathbf{0} \end{bmatrix} = eta \mathbf{e}_1, \qquad ext{for some } eta \in \mathbb{R}$$

Householder reflection: Let $\mathbf{v} \in \mathbb{R}^m$, $\mathbf{v} \neq \mathbf{0}$, and let

$$\mathbf{H} = \mathbf{I} - \frac{2}{\|\mathbf{v}\|_2^2} \mathbf{v} \mathbf{v}^T,$$

which is a reflection matrix with $\mathbf{P} = \mathbf{v}\mathbf{v}^T/\|\mathbf{v}\|_2^2$

Householder Reflections (cont'd)

$$\mathbf{H}\mathbf{x} = \left(\mathbf{I} - \frac{2}{\|\mathbf{v}\|_2^2} \mathbf{v} \mathbf{v}^T\right) \mathbf{x} = \mathbf{x} - \frac{2\mathbf{v}^T \mathbf{x}}{\mathbf{v}^T \mathbf{v}} \mathbf{v}$$

We want $\mathbf{H}\mathbf{x}$ to be a multiple of \mathbf{e}_1 . Hence, we require $\mathbf{v} \in \operatorname{span}\{\mathbf{x}, \mathbf{e}_1\}$ Let $\mathbf{v} = \mathbf{x} + \alpha \mathbf{e}_1$. Then,

$$\mathbf{v}^T \mathbf{x} = \mathbf{x}^T \mathbf{x} + \alpha x_1, \quad \mathbf{v}^T \mathbf{v} = \mathbf{x}^T \mathbf{x} + 2\alpha x_1 + \alpha^2$$

It follows that

$$\mathbf{H}\mathbf{x} = \frac{\alpha^2 - \mathbf{x}^T \mathbf{x}}{\mathbf{x}^T \mathbf{x} + 2\alpha x_1 + \alpha^2} \mathbf{x} - 2\alpha \frac{\mathbf{v}^T \mathbf{x}}{\mathbf{v}^T \mathbf{v}} \mathbf{e}_1$$

The coefficient of x has to be zero, so that $\alpha^2 = ||\mathbf{x}||_2^2$. Therefore,

$$\mathbf{v} = \mathbf{x} \mp \|\mathbf{x}\|_2 \mathbf{e}_1 \implies \mathbf{H}\mathbf{x} = \pm \|\mathbf{x}\|_2 \mathbf{e}_1$$

The sign in the expression of \mathbf{v} may be determined to be the one that maximizes $\|\mathbf{v}\|_2$ for the sake of numerical stability.

Householder QR

1. Let $\mathbf{H}_1 \in \mathbb{R}^{m \times m}$ be the Householder reflection w.r.t. \mathbf{a}_1 . Transform \mathbf{A} as

$$\mathbf{A}^{(1)} = \mathbf{H}_1 \mathbf{A} = \begin{bmatrix} \times & \times & \dots & \times \\ 0 & \times & \dots & \times \\ \vdots & \vdots & & \vdots \\ 0 & \times & \dots & \times \end{bmatrix}$$

2. Let $\tilde{\mathbf{H}}_2 \in \mathbb{R}^{(m-1)\times (m-1)}$ be the Householder reflection w.r.t. $\mathbf{A}^{(1)}(2:m,2)$ (marked red above). Transform $\mathbf{A}^{(1)}$ as

$$\mathbf{A}^{(2)} = \underbrace{\begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{H}}_2 \end{bmatrix}}_{=\mathbf{H}_2} \mathbf{A}^{(1)} = \begin{bmatrix} \times & \times & \dots \times \\ \mathbf{0} & \tilde{\mathbf{H}}_2 \mathbf{A}^{(1)} (2:m, 2:n) \end{bmatrix} = \begin{bmatrix} \times & \times & \times & \dots \times \\ 0 & \times & \times & \dots \times \\ \vdots & \vdots & \ddots & \ddots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \times & \dots & \times \end{bmatrix}$$

3. By repeating this, A is transformed to R

Householder QR (cont'd)

WLOG, assume $m \ge n$

$$\mathbf{A}^{(0)}=\mathbf{A}$$
 for $k=1,\ldots,n-1$ $\mathbf{A}^{(k)}=\mathbf{H}_k\mathbf{A}^{(k-1)}$, where

$$\mathbf{H}_k = \begin{bmatrix} \mathbf{I}_{k-1} & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{H}}_k \end{bmatrix}$$

 $\tilde{\mathbf{H}}_k$ is the Householder reflection of $\mathbf{A}^{(k-1)}(k:\mathit{m},k)$ end

The above procedure results in

$$\mathbf{A}^{(n-1)} = \mathbf{H}_{n-1} \cdots \mathbf{H}_2 \mathbf{H}_1 \mathbf{A}, \quad \mathbf{A}^{(n-1)}$$
 is upper triangular

- QR decomposition is obtained by letting $\mathbf{R} = \mathbf{A}^{(n-1)}$ and $\mathbf{Q} = (\mathbf{H}_{n-1} \cdots \mathbf{H}_2 \mathbf{H}_1)^T$
- A widely used method for QR decomposition

Householder QR (cont'd)

$$\begin{aligned} \mathbf{A}^{(0)} &= \mathbf{A} \\ \text{for } k = 1, \dots, n-1 \\ \mathbf{A}^{(k)} &= \mathbf{H}_k \mathbf{A}^{(k-1)}, \text{ where} \end{aligned}$$

$$\mathbf{H}_k = \begin{bmatrix} \mathbf{I}_{k-1} & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{H}}_k \end{bmatrix}$$

 $\tilde{\mathbf{H}}_k$ is the Householder reflection of $\mathbf{A}^{(k-1)}(k:m,k)$

Complexity (for $m \ge n$):

end

- $O(n^2(m-n/3))$ for **R** only
 - A direct implementation of the above pseudo-code does not lead to this complexity–Need to exploit the structures of H_k in the implementations
- $O(m^2n mn^2 + n^3/3)$ if **Q** is also wanted
- See Section 5.2.2 of textbook

Givens Rotations

Example: Let

$$\mathbf{J} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}$$

where $c = \cos(\theta)$, $s = \sin(\theta)$ for some θ

$$\mathbf{y} = \mathbf{J}\mathbf{x} \Longleftrightarrow \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} cx_1 + sx_2 \\ -sx_1 + cx_2 \end{bmatrix}$$

Observe that

- J is orthogonal
- $y_2 = 0$ if $\theta = \tan^{-1}(x_2/x_1)$, or if

$$c = \frac{x_1}{\sqrt{x_1^2 + x_2^2}}, \quad s = \frac{x_2}{\sqrt{x_1^2 + x_2^2}}$$

Givens Rotations (cont'd)

Givens rotations:

$$\mathbf{J}(i,k,\theta) = \begin{bmatrix} i & k \\ \downarrow & \downarrow \\ & c & s \\ & & \mathbf{I} \\ & -s & c \end{bmatrix} \leftarrow i$$

where $c = \cos(\theta)$, $s = \sin(\theta)$

- $\mathbf{J}(i, k, \theta)$ is orthogonal
 - Let $\mathbf{y} = \mathbf{J}(i, k, \theta)\mathbf{x}$. Then,

$$y_j = \begin{cases} cx_i + sx_k, & j = i \\ -sx_i + cx_k, & j = k \\ x_j, & j \neq i, k \end{cases}$$

• y_k is forced to zero if we choose $\theta = \tan^{-1}(x_k/x_i)$

Givens QR

Example: Consider a 4×3 matrix.

where $\mathbf{B} \xrightarrow{\mathbf{J}} \mathbf{C}$ means $\mathbf{C} = \mathbf{J}\mathbf{B}$; $\mathbf{J}_{i,k} = \mathbf{J}(i,k,\theta)$, with θ chosen to zero out the (k,i)th entry of the matrix transformed by $\mathbf{J}_{i,k}$

Givens QR (cont'd)

Givens QR $(m \ge n)$: Perform a sequence of Givens rotations to annihilate the lower triangular parts of **A**

$$\underbrace{(\mathbf{J}_{n,m}\ldots\mathbf{J}_{n,n+2}\mathbf{J}_{n,n+1})\ldots(\mathbf{J}_{2m}\ldots\mathbf{J}_{24}\mathbf{J}_{23})(\mathbf{J}_{1m}\ldots\mathbf{J}_{13}\mathbf{J}_{12})}_{=\mathbf{Q}^T}\mathbf{A}=\mathbf{R}$$

where R is upper triangular and Q is orthogonal

- Complexity (for $m \ge n$): $O(n^2(m-n/3))$ for **R** only (see Section 5.2.5 of textbook)
- Not as efficient as Householder QR for general (and dense) A's
 - The flop count for Householder QR is $2n^2(m n/3)$
 - The flop count for Givens QR is $3n^2(m n/3)$
- Givens QR can be faster than Householder QR if A has certain sparse structures and we exploit them