- **1.** Let *A* be the set of students who live within one mile of school and let *B* be the set of students who walk to classes. Describe the students in each of these sets.
 - a) $A \cap B$

b) $A \cup B$

c) A-B

- d) B-A
- **3.** Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{0, 3, 6\}$. Find
 - a) $A \cup B$.

b) $A \cap B$.

c) A - B.

- d) B-A.
- **15.** Prove the second De Morgan law in Table 1 by showing that if A and B are sets, then $\overline{A \cup B} = \overline{A} \cap \overline{B}$
 - a) by showing each side is a subset of the other side.
 - **b**) using a membership table.
- **17.** Show that if \underline{A} and \underline{B} are sets in a universe \underline{U} then $\underline{A} \subseteq \underline{B}$ if and only if $\overline{A} \cup \underline{B} = \underline{U}$.
- **21.** Show that if A and B are sets, then
 - a) $A B = A \cap \overline{B}$.
 - **b)** $(A \cap B) \cup (A \cap \overline{B}) = A$.
- **25.** Prove the first distributive law from Table 1 by showing that if A, B, and C are sets, then $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- **41.** Show that $A \oplus B = (A \cup B) (A \cap B)$.