Universidad de San Carlos de Guatemala

Facultad de Ingeniería

Escuela de Ciencias y Sistemas

Arquitectura de Computadores y Ensambladores 2

Ing. Gabriel Alejandro Díaz López

Smart Connected Design Framework Pomodoro Portátil Grupo 9

Nombre	Carnet
Rodrigo Alejandro Hernández de León	201900042
Ana Belén Contreras Orozco	201901604
Daniel Reginaldo Dubón Rodríguez	201901772
Allen Giankarlo Román Vásquez	202004745
Andrea María Cabrera Rosito	202010918

Infraestructura del Producto

Lista de Materiales

Hardware

- Modulo inalámbrico Wifi
- Display 7 segmentos
- o Pulsador
- o Termoencogible
- Cables
- o Jumpers
- o Protoboars
- o Potenciómetro
- o Bocina
- o Carcasa en forma de tomate
- o Fuente de poder
- Arduino

Software

- o Aplicación de ingreso para datos de usuario
- o Pantalla para ajustar el tiempo
- o Pantalla donde se muestren las graficas
- Pantalla donde se muestren los resultados

Dibujo del Prototipo

Para la estructura frontal del prototipo se tiene:

PROTOTIPO DEL PROYECTO

Donde el dispositivo Pomodoro será:

Y se utilizará para verificar si el usuario está sentado:

Sensores

• Sensor pulsador, botón

Tamaño	Lectura sensor	Instalación	Rango de medición	Unidad de medida
12 x 12 x 7,3 mm	Contacto	Dentro del cojín donde se estará sentado el usuario	0~1	digital

• Proveedores:

- https://www.electronicadiy.com/products/pulsador-boton-12x12mm? pos=1& sid=a3af6074e& ss=r
- o https://laelectronica.com.gt/pulsador-na-rojo
- Imágenes:

- Precio:
 - o Q 2.00

Alternativa:

• Sensor de Fuerza: FSR402

Tamaño	Lectura sensor	Instalación	Rango de medición	Unidad de medida
18.29 x 70 x 0.46 mm	Fuerza	Dentro del cojín donde se estará sentado el usuario	0.2 ~ 20	Newtons (N)

- Proveedores:
 - https://www.electronicadiy.com/products/sensor-de-fuerzafsr402?_pos=1&_sid=22a6feb11&_ss=r
- Imágenes:

- Precio:
 - o Q 89.00

Conectividad

Tamaño del Objeto

Para el cojín se tendrá un tamaño de: 30cm x 30 xm x 10cm.

El pomodoro tendrá un tamaño de: 25cm x 16 cm x 7 cm.

Entorno del Objeto

Dentro de los lugares donde se va a utilizar el objeto se tiene pensado en:

- HOGAR
- CENTRO EDUCATIVO
 - Estudiante

Se sienta en la silla	Se levanta de la silla	
Activa el Pomodoro.	Inicia sus minutos de descanso	
Inicia sus ciclos de 25 o n minutos	Activa las penalizaciones si no se sienta	
configurados.	de nuevo a su lugar de trabajo	
Activa Penalizaciones si no descansa.	Termina todo el proceso de Pomodoro	
S1 S2		
Ha cumplido con el n % de su disciplina en el Pomodoro		

Consumo de energía

El producto quiere llegar a una dependencia energética de entre 3V y 5V de consumo para su funcionamiento, consumiendo directamente de un cargador con entrada USB tipo B.

Conclusión

Se utilizará el **protocolo de comunicación WiFi** para conectar con aplicaciones (API) y dispositivos como un Smartphone, Tablet o computadora (PWA).

Se utilizara la siguiente conexión para el proceso de comunicación del producto con los diferentes dispositivos:

```
Donde se enviará a la API:

Loop (1 segundo ){

Sensor

Arduino Mega(Memoria-> registros limitados)

Módulo WiFi
}

API:

Serial.get(InfoArduino){

EnviarBD(InfoArduino);

EnviarPWA(InfoArduino);
}
```

Programa en el celu:

Programa en el cel <- conexión WiFi del modulo WiFi

Teléfono celular (Miles de registros del ciclo de Pomodoro)

Base de Datos:

Persistencia de los datos obtenidos por Arduino y las configuraciones establecidas en el dispositivo y en el producto donde lo llevará a una tabla que será descrita en el apartado de Analítica.

Diagrama de conectividad:

Analítica

• Cálculos aplicados en el Dashboard

Magnitud Física	Cálculo o Fórmula Aplicada
Tiempo de Penalización por	A través del sensor de variable discreta.
no sentarse a tiempo (s)	
Tiempo de Penalización por	A través del sensor de variable discreta.
no pararse a tiempo (s)	
Validación que el Usuario	A través del sensor de variable discreta.
esté sentado a lo largo del	
tiempo	
Validación que el Usuario	A través del sensor de variable discreta.
esté parado en el tiempo de	
descanso	

Librerías Utilizadas

Librería Utilizada	Descripción
ESP8266WiFi	La librería WiFi para ESP8266 ha sido
	desarrollada basándose en el SDK de
	ESP8266, usando nombres
	convencionales y la filosofía de
	funcionalidades generales de la librería
	WiFi de Arduino.
TM1637	El TM1637 es un driver para display de
	LED de 7 segmentos y teclado, muy
	popular por ser muy barato y muy sencillo
	de usar, tanto a nivel electrónico como a
	nivel de software.

Métodos aplicados en la API

Método	Descripción
getData	Obtiene los datos de la columna
	seleccionada.
getAllData	Obtiene todos los datos.
createData	Crea el dato de cierto usuario.
Push Data	Ingresa dato del momento de cierto
	usuario.
getUser	Obtiene los datos de cierto usuario.
getDate	Obtiene los datos de cierta fecha
	selecionada.

Análisis Descriptivo

- ¿Quién está utilizando el pomodoro ahora?
- En promedio. ¿Cuánto tiempo pasar el usuario concentrado?
- ¿Cuánto tiempo el usuario cumple de pomodoro?
- Tiempo promedio que el usuario pasa fuera de su silla

Análisis de Diagnóstico

- ¿Cuál es el mejor rango de tiempo para permanecer sentado?
- ¿Cuál es el mejor rango de tiempo para tomar un descanso?
- ¿Cuánto tiempo pasa sentado fuera del tiempo establecido?
- ¿Sobre pasa el tiempo de descanso?

Conocimiento

Se obtiene conocimiento por medio de las siguientes funcionalidades:

- Smart App -> Porcentaje de cumplimiento de disciplina aplicada al Pomodoro.
- Smart App -> Penalizaciones aplicadas y como evitarlas.

Cómo obtiene el conocimiento:

 ¿Cuánto tiempo se mantuvo en estado de sentado en cada uno de los 4 pomodoros?

SELECT COUNT(DISTINCT TIEMPO, ESTADO)

FROM METRICAS

WHERE MINUTE(TIEMPO) = 0 TO 25

WHERE ESTADO = 1

 ¿Cuánto tiempo se mantuvo fuera de lugar en cada uno de los tiempos de descanso?

SELECT COUNT(DISTINCT TIEMPO, ESTADO)

FROM METRICAS

WHERE MINUTE(TIEMPO) = 0 TO 25

WHERE ESTADO = 0

Smart Apps

Diseño de Dashboard

Estos diseños serán capaz de ser soportados por cualquier tipo de dispositivo móvil.

• **Identificación:** Se le pedirá al usuario que ingrese su nombre y apellido esto con el fin de identificar quien esta haciendo uso del dispositivo.

• Configuración del tiempo de cada sesión de concentración: Acá el usuario podrá modificar el tiempo que durara la sesión de concentración, esto aplicara para las 4 sesiones.

 Configuración de tiempo entre descansos: Este permitirá configurar el tiempo entre descansos, esto aplicará para los 3 descansos que posee el ciclo del pomodoro.

Interfaz de Gráficas

Las gráficas son muy importantes para poder interpretar de una mejor manera la información obtenida a través del tiempo en los diferentes pomodoros, la aplicación contará con las siguientes gráficas:

- Penalización por no sentarse a tiempo a lo largo del tiempo: esta gráfica acumulará los segundos que el usuario no se sentó a tiempo para el siguiente pomodoro después de un descanso.
- Penalización por no pararse a tiempo a lo largo del tiempo: esta gráfica acumulará los segundos que el usuario no se paró a tiempo para tomar su descanso y siguió sentado.
- Validación de que el usuario esté sentado a lo largo del tiempo: esta gráfica mostrará el tiempo que estuvo sentado a lo largo del tiempo el usuario en el tiempo de pomodoro, entonces mostrará para interpretar el porcentaje que cumplió el usuario.
- Validación de que el usuario no esté sentado en el tiempo de descanso: esta gráfica mostrará el tiempo que estuvo parado a lo largo del tiempo el usuario en el tiempo de descanso entonces mostrará para interpreta el porcentaje que cumplió el usuario.
- Gráfica de barras en donde se muestre los porcentajes de cumplimiento de los 4 pomodoros, mostrando sus respectivas penalizaciones: la gráfica de barras mostrará el cumplimiento del usuario a través de los cuatro pomodoros, así como mostrando sus penalizaciones si es que las tuvo, para poder interpretar el porcentaje de cumplimiento del usuario.

• Gráfica del total de pomodoros unificando los resultados de su cumplimiento y sus respectivas penalizaciones: esta gráfica muestra el record del usuario a través de todas sus sesiones de pomodoros así se podrá ver el desempeño general del usuario.