MAE 143B Equation Sheet

P1.10 Galileo's Inclined Plane Problem

- h, fall height (ft)
- d, horizontal travel distance (in)*,
- l, length of inclined plane (ft),
- y, vertical distance*.

MATLAB commands:

$Fitting\ linear\ model$	f = fit(d, h, 'poly1').
Fitting quadratic model	f = fit(d, h, 'poly2'),
	for $h = lsin(\theta)$.
Estimating y :	
Conservation of energy	$\frac{1}{2}mv_x^2 = mgh,$
	$\Rightarrow v_x = \sqrt{2gh}$.
Vertical motion	$y = \frac{1}{2}gt^2,$
	$\Rightarrow t = \sqrt{2y/g}$.
Horizontal motion	$d = v_x t$,
	$d = \sqrt{2gh}\sqrt{2y/g},$
	$\Rightarrow d^2/4 = uh$.

P2.10 Elevator Problem

* units converted to feet.

Wheels	$J_1\dot{\omega} + b_1\omega = \tau + (f_1 - f_2)r,$
	$J_2\dot{\omega} + b_2\omega = \tau + (f_4 - f_3)r.$
Forces from J_1	$f_1 + m_1 \dot{v_1} = m_1 g + f_3.$
Forces from J_2	$f_2 + m_2 \dot{v_2} = m_2 g + f_4.$
Angular velocity	$v_1 = r\omega, v_2 = -r\omega.$

$$(J_1 + J_2 + r^2(m_1 + m_2))\dot{\omega} + (b_1 + b_2)\omega = \tau + gr(m_1 - m_2)$$
(1)

ODE solution:

$$v_1(t) = \tilde{v_1}(1 - e^{\lambda t}) + v_1(0)e^{\lambda t},$$
 (2)

Furthermore:

$$\bar{v_1} = v_1(t)_{t \to \infty}, TC = -\frac{1}{\lambda}.$$

Steady state error	$e_{SS} = \bar{v_1} - v_{SS} = \bar{v_1} - \tilde{v_1}$.
Open loop	$\lambda_{OL} = -\frac{a}{L}$
1 1	$\bar{v_1} = \frac{r}{h} [\tau + gr(m_1 - m_2)],$
	$TC_{OL} = -\frac{1}{\lambda_{OL}}$.
Closed loop	$\tau(t) = K(\bar{v_1} - v_1(t)) \ controller$
	$\lambda_{CL} = -\frac{(b+Kr)}{a}$
	$\tilde{v}_1 = \frac{r}{b+Kr} [\tilde{K}\bar{v}_1 + gr(m_1 - m_2)],$
	$TC_{OL} = -\frac{1}{\lambda_{OL}},$ $K = \frac{a-5b}{5r}.$
	$K = \frac{a-5b}{5r}$.
	**

3.8 Frequency Response

Input	$u(t) = A\cos\omega t + \phi,$
Response	$y_{ss}(t) = A G(j\omega) cos(\omega t + \phi + \angle G(j\omega)).$
Phase angle	$\angle G(j\omega) = \arctan\left(\frac{\Im G(j\omega)}{\Re G(j\omega)}\right),$
	$\angle G(j\omega) = \angle N\{G(j\omega)\} - \angle D\{G(j\omega)\}.$

For a LTI system without poles on the imaginary axis, i.e., $G_0(s) = 0$.

4.4 Feedback with Disturbances

$Closed ext{-}loop\ system$	For inputs
y = G(u+w),	$y = H\bar{y} - Hv + Dw,$
$u = K\tilde{e},$	$u = Q\bar{y} - Qv - Hw.$
$\tilde{e} = \tilde{y} - (y + v).$	with measurement noise v.
Tracking error	$e = \bar{y} - y = S\bar{y} + Hv - Dw.$
Sensitivity	i.e., from $\bar{v_1}$ to e
	$S = \frac{1}{1 + GK}$
Asymptotic tracking	if S has a zero at $s = 0$.
Disturbance	i.e., from w to e
	$D = GS = \frac{G}{1 + GK}$
Asymptotic	if D has a zero at $s = 0$, or
disturbance rejection	if controller K has pole at
	the origin, i.e., $s = j\omega$ (in
	frequency domain).
Н	i.e., from $\bar{v_1}$ to v_1
	$H = GKS = \frac{GK}{1+GK}$.
\overline{Q}	$H = GKS = \frac{GK}{1+GK}.$ $Q = GS = \frac{K}{1+GK}.$

Laplace Transforms

$$\overline{L[f](s)} = \int_0^\infty e^{-sx} f(x) dx$$

$$f(t) = t^n, n \ge 0 \qquad F(s) = \frac{n!}{s^{n+1}}, s > 0$$

$$f(t) = e^{at}, a \ constant \qquad F(s) = \frac{1}{s-a}, s > a$$

$$f(t) = \sin bt, b \ constant \qquad F(s) = \frac{b}{s^2+b^2}, s > 0$$

$$f(t) = \cos bt, b \ constant \qquad F(s) = \frac{s}{s^2+b^2}, s > 0$$

$$f(t) = t^{-1/2} \qquad F(s) = \frac{\pi}{s^{1/2}}, s > 0$$

$$f(t) = \delta(t-a) \qquad F(s) = e^{-as}$$

$$f' \qquad L[f'] = sL[f] - f(0)$$

$$f'' \qquad L[f''] = s^2 L[f] - sf(0) - f'(0)$$

$$L[e^{at} f(t)] \qquad L[f](s-a)$$

$$L[f](s-a) \qquad L[f]e^{-as}$$

6.1 Second-Order Systems

Characteristic	$s^2 + 2\zeta\omega_n s + \omega_n^2, \omega_n > 0.$
equation	
$Inverse\ Laplace$	$\mathcal{L}^{-1} = \left\{ \frac{k}{s + \zeta \omega_n - j\omega_d} + \frac{k^*}{s + \zeta \omega_n + j\omega_d} \right\}$ $= 2 k e^{-\zeta \omega_n t} \cos(w_d t + \angle k)$
Transform	
Parameters	$\omega_d = \omega_n \sqrt{1 - \zeta^2}, 0 < \zeta < 1.$
	$\phi_d = \arcsin \zeta = \arctan \left(\frac{\zeta \omega_n}{\omega_d}\right).$
$Step\ response$	$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}, \omega_n > 0.$
	$y(t) = L^{-1} \left\{ \frac{G(s)}{s} \right\},$
	$=1-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin(\omega_d t+$
	$\pi/2-\phi_d$

where ζ is the damping ratio and ω_n is the natural frequency.