M2177.0043 Introduction to Deep Learning

Lecture 3: Unconstrained optimization¹

Hyun Oh Song¹

¹Dept. of Computer Science and Engineering, Seoul National University

March 24, 2020

¹Many slides and figures adapted from Stephen Boyd

Last time

► Linear algebra review

Outline

Optimization overview

Descent methods

Mathematical optimization

minimize
$$f(x)$$
 (1)
subject to $h_i(x) \leq b_i, \ \forall i = 1, \dots, m$

- $ightharpoonup x = (x_1, \dots, x_n)$ is the *optimization variable* of the problem 1
- $f: \mathbb{R}^n \to \mathbb{R}$ is the objective function
- $h_i: \mathbb{R}^n \to \mathbb{R}$ is the constraint function
- x* is called the minimizer or solution of the problem 1, if it has the smallest objective value among all vectors that satisfy the constraints.

Global and local minimum

Definition 1 (Global minimum)

A real-valued function f defined on a domain $\mathcal X$ has a global minimum at x^* if $f(x^*) \leqslant f(x) \ \forall x \in \mathcal X$.

Definition 2 (Local minimum)

A real-valued function f defined on a domain $\mathcal X$ has a local minimum at x^* if $\exists \epsilon > 0$ such that $f(x^*) \leqslant f(x) \ \forall x \in \mathcal X$ within distance ϵ of x^* .

5

Example

$$\begin{array}{ll} \underset{x}{\text{minimize}} & 4-x^2 \\ \text{subject to} & -x\leqslant 0 \\ & x\leqslant 1 \\ & x^2\leqslant 2 \end{array}$$

Example

$$\label{eq:subject} \begin{array}{ll} \underset{x}{\text{minimize}} & 4-x^2\\ \text{subject to} & -x\leqslant 0\\ & x\leqslant 1\\ & x^2\leqslant 2 \end{array}$$

$$\label{eq:subject_to}$$

$$\text{minimizer } x^*=1,$$

Outline

Optimization overview

Descent methods

Unconstrained minimization

$$\underset{x}{\operatorname{minimize}}\,f(x)$$

- ightharpoonup f differentiable
- lacktriangle assume optimal value $p^* = \inf_x f(x)$ is attained
- produce sequence of points $x^{(k)} \in \text{dom} f, \ k = 0, 1, \dots$

$$f(x^{(k)}) \to p^*$$

Descent methods

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)} \quad \text{with } f(x^{(k+1)}) < f(x^{(k)})$$

- $ightharpoonup \Delta x$ is the step, or search direction
- ▶ *t* is the *step size*, or *step length*

General descent method.

given a starting point $x \in \text{dom} f$.

repeat

- 1. Determine a descent direction Δx
- 2. Line search. Choose a step size t > 0.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

Line search

exact line search

$$t = \operatorname*{argmin}_{t>0} f(x + t\Delta x)$$

▶ backtracking line search

Bisection line section method.

```
given a,b,\epsilon

Set A=a,B=b

repeat

if f'(\frac{A+B}{2})>0 then B=\frac{A+B}{2}

else A=\frac{A+B}{2}

end if

until |B-A|\leqslant \epsilon
```

Gradient descent method

general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \text{dom} f$.

repeat

- 1. $\Delta x := -\nabla f(x)$.
- 2. Line search. Choose a step size t > 0.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

- stopping criterion usually of the form $||\nabla f(x)||_2 \leqslant \epsilon$
- very simple, but often very slow; rarely used in practice
- for convergence analysis, take my graduate level machine learning

Why is the negative gradient the direction of steepest descent?

▶ Consider the rate of change of function f at point $\mathbf{x} \in \mathrm{dom} f$ along a unit vector \mathbf{v} pointing in an arbitrary direction. This is called the directional derivative of a function $D_{\mathbf{v}}f(\mathbf{x})$.

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{v}) - f(\mathbf{x})}{h}$$

- So the question "What is the direction of steepest descent of f at x?" can be translated to "For which v, is Dvf(x) minimized?
- Now, it can be proven that if f is differentiable at \mathbf{x} , the limit above evaluates to $D_{\mathbf{v}}f(\mathbf{x}) = \nabla_{\mathbf{x}}f(\mathbf{x})^{\mathsf{T}}\mathbf{v}$ (proof in slide 15)

Descent methods 13

Using the law of cosines / dot product, we know:

$$D_{\mathbf{v}}f(\mathbf{x}) = \|\nabla_{\mathbf{x}}f(\mathbf{x})\|\|\mathbf{v}\|\cos\theta = \|\nabla_{\mathbf{x}}f(\mathbf{x})\|\cos\theta$$

where θ is the angle between the vectors $\nabla_{\mathbf{x}} f(\mathbf{x})$ and \mathbf{v} . Now $\cos \theta$ achieves minimum value of -1 when $\theta = \pi$. The angle between $\nabla_{\mathbf{x}} f(\mathbf{x})$ and \mathbf{v} are actually pointing the opposite direction.

▶ That is: the minimum value of $D_{\mathbf{v}}f(\mathbf{x})$ is $\nabla_{\mathbf{x}}f(\mathbf{x})$ and is achieved when \mathbf{v} points in $-\nabla_{\mathbf{x}}f(\mathbf{x})$.

Descent methods 14

Prove $D_{\mathbf{v}}f(\mathbf{x}) = \nabla_{\mathbf{x}}f(\mathbf{x})^{\mathsf{T}}\mathbf{v}$ if f is differentiable

We'll prove in two variable case but it's easy to generalize for n variables. Let $\mathbf{v}=(a,b),\ g(t)=f(x_0+ta,y_0+tb)=f(x,y).$

$$g'(t) = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} = \frac{\partial f}{\partial x} a + \frac{\partial f}{\partial y} b$$
$$g'(0) = \frac{\partial f(x_0, y_0)}{\partial x} a + \frac{\partial f(x_0, y_0)}{\partial y} b = \nabla f(x_0, y_0)^{\mathsf{T}} \mathbf{v}$$

Also, g'(0) is identical to the directional derivative of f at point (x_0, y_0) along direction ${\bf v}$ because,

$$g'(t) = \lim_{h \to 0} \frac{g(t+h) - g(t)}{h}, \qquad g'(0) = \lim_{h \to 0} \frac{g(h) - g(0)}{h}$$
$$g'(0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h} = D_{\mathbf{v}} f(x_0, y_0)$$

$$\therefore D_{\mathbf{v}}f(x_0, y_0) = \nabla f(x_0, y_0)^{\mathsf{T}} \mathbf{v}$$

Quadratic problem in \mathbb{R}^2

$$f(x) = \frac{1}{2}(x_1^2 + \gamma x_2^2) \qquad (\gamma > 0)$$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

$$x_1^{(k)} = \gamma \left(\frac{\gamma-1}{\gamma+1}\right)^k, \qquad x_2^{(k)} = \left(-\frac{\gamma-1}{\gamma+1}\right)^k \qquad \text{(why?)}$$

 \blacktriangleright what is the solution? very slow if $\gamma\gg 1$ or $\gamma\ll 1$

• example for $\gamma = 10$:

 \blacktriangleright How many steps does it take to converge if $\gamma=1?$

Newton step I

$$\Delta x_{\mathsf{nt}} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

interpretations

lacktriangledown $x+\Delta x_{
m nt}$ minimizes second order approximation

$$\widehat{f}(x+v) = f(x) + \nabla f(x)^{\mathsf{T}} v + \frac{1}{2} v^{\mathsf{T}} \nabla^2 f(x) v$$

Newton step II

Newton step III

 $ightharpoonup x + \Delta x_{
m nt}$ solves linearized optimality condition. Find the direction where the gradient evaluated at x+v is zero.

$$\nabla f(x+v)=0$$

$$\nabla \widehat{f}(x+v)=\nabla f(x)+\nabla^2 f(x)v=0 \qquad \text{linearized approximation } \widehat{f}$$

Descent methods

Newton's method

given a starting point $x \in \text{dom} f$.

repeat

- 1. Compute the Newton step $\Delta x_{\mathsf{nt}} := -\nabla^2 f(x)^{-1} \nabla f(x)$.
- 2. Line search. Choose a step size t > 0.
- 3. Update. $x := x + t\Delta x_{nt}$.

until stopping criterion is satisfied.

affine invariant, i.e., independent of linear change of coordinates

Outline

Optimization overview

Descent methods

Coordinate descent

Coordinate descent

► Gradient descent method updates **all** variables simultaneously with gradient

- Coordinate descent
 - update one variable at a time
 - may or may not use the gradient; sometimes analytically solvable in one variable

Coordinate descent

```
 \begin{aligned} & \textbf{given a starting point } x^{(0)} \in \text{dom} f, k := 0. \\ & \textbf{repeat} \\ & 1. \ x_1^{(k)} := \operatorname{argmin}_{x_1} f(x_1, x_2^{(k-1)}, \dots, x_n^{(k-1)}). \\ & 2. \ x_2^{(k)} := \operatorname{argmin}_{x_2} f(x_1^{(k)}, x_2, \dots, x_n^{(k-1)}). \\ & & \vdots \\ & n. \ x_n^{(k)} := \operatorname{argmin}_{x_n} f(x_1^{(k)}, x_2^{(k)}, \dots, x_n). \\ & k := k+1 \\ & \textbf{until stopping criterion is satisfied.} \end{aligned}
```


Example: coordinate descent on convex function

Show that coordinate descent fails for the function g. Verify that the algorithm terminates after one step at the point $(x_2^{(0)},x_2^{(0)})$, while $\inf_x g(x)=-\infty$. (To see this, set x=(-t,-t) and let $t\to\infty$, we see that $g(x)=-0.2t\to-\infty$)

$$g(x) = |x_1 - x_2| + 0.1(x_1 + x_2)$$

Example: coordinate descent on convex function

Show that coordinate descent fails for the function g. Verify that the algorithm terminates after one step at the point $(x_2^{(0)},x_2^{(0)})$, while $\inf_x g(x)=-\infty$. (To see this, set x=(-t,-t) and let $t\to\infty$, we see that $g(x)=-0.2t\to-\infty$)

$$g(x) = |x_1 - x_2| + 0.1(x_1 + x_2)$$

solution

First minimize over x_1 with x_2 fixed as $x_2^{(0)}$. w.l.o.g, assume $x_1 > x_2$, $f(x_1) = 1.1x_1 - 0.9x_2^{(0)}$. Optimal $x_1 = x_2^{(0)}$. We arrive at $(x_2^{(0)}, x_2^{(0)})$. We now optimize over x_2 but it is optimal by symmetry, so x is unchanged. We're now at a fixed point of the coordinate-descent algorithm. Even though f is convex, coordinate descent does not guarantee global minima.