Semana 2 - Parte 1

CÁLCULO NUMÉRICO

Prof. Maria Clara Schuwartz Ferreira mclarascferreira@gmail.com

Conteúdo da Semana 2

- 1. Zeros reais de funções
- 2. Métodos iterativos
- 3. Método da bissecção
- 4. Método da posição falsa
- 5. Método do ponto fixo
- 6. Método de Newton-Raphson
- 7. Método das secantes
- 8. Comparação entre os métodos

Zeros reais de funções

• Definição do problema: Encontrar valores reais de x que satisfaçam f(x) = 0, isto é, encontrar os zeros da função (ou raízes da equação).

Este problema aparece em diversas aplicações e projetos de engenharia.

Zeros reais de funções

Métodos diretos

- Métodos analíticos
- Fornecem soluções exatas
- Porém, são aplicáveis a apenas alguns tipos de problemas envolvendo por exemplo, funções do 1º e 2º grau.

Métodos iterativos

- Geram sucessões de soluções aproximadas
- Aplicáveis a uma vasta gama de problemas, envolvendo função polinomiais de grau mais alto e funções transcendentais (não algébricas) como trigonométricas, exponenciais e logarítmicas.

Conteúdo da Semana 2

- 1. Zeros reais de funções
- 2. Métodos iterativos
- 3. Método da bissecção
- 4. Método da posição falsa
- 5. Método do ponto fixo
- 6. Método de Newton-Raphson
- 7. Método das secantes
- 8. Comparação entre os métodos

- Panorama
- Aproximação inicial: análise gráfica
- Aproximação inicial: análise teórica
- Refinamento

PANORAMA

- Um método iterativo consiste em uma sequência de instruções que são executadas passo a passo, algumas das quais são repetidas em ciclos.
- Ideia central: partir de uma aproximação inicial x_0 para a raiz e em seguida refinar essa aproximação por meio de um processo iterativo do tipo:

$$x_i = F(x_{i-1}), \qquad i = 1, \dots n$$

• F(x) é chamada função de iteração

- Em geral, tem-se então duas etapas:
- Fase I: Localizar ou Isolar uma raiz (Aproximação inicial)

Obtenção de um intervalo [a, b] que contém uma única raiz r por meio de:

- Análise gráfica da função e/ou
- Análise teórica da função.
- Fase II: Refinamento

A partir de um valor inicial x_o em [a,b], gerar uma sequência $\{x_o,x_1,\cdots,x_k,\cdots\}$ que seja convergente para r.

- Análise de gráficos para uma aproximação grosseira da raiz:
 - Esboçar o gráfico da função f e localizar as abcissas dos pontos onde a curva intercepta o eixo x.
 - A partir da equação f(x) = 0, obter a equação equivalente g(x) = h(x). Esboçar os gráficos destas funções e localizar os pontos onde as curvas se interceptam.
- As técnicas gráficas tem valor prático pouco limitado por não serem precisas, mas proporcionam uma aproximação inicial para os outros métodos numéricos.
- Além disso, conhecemos as propriedades das funções (para antecipar possíveis "armadilhas" dos métodos).

APROX. INICIAL: ANÁLISE GRÁFICA

• Exemplo 1: $f(x) = x^3 - 9x + 3$

$$r_1 \in [-4, -3]$$

$$r_2 \in [0,1]$$

$$r_3 \in [2,3]$$

• Exemplo 2: $f(x) = e^{-x} - x = 0$

$$x = e^{-x}$$

$$g(x) = e^{-x} \qquad \therefore r \in [0,1]$$

$$h(x) = x$$

• Teorema do valor intermediário (TVI) ou Teorema de Bolzano

Seja uma função **contínua** no intervalo [a,b]. Se f(a). f(b) < 0, então existe pelo menos um ponto x entre a e b que é zero de f.

APROX. INICIAL: ANÁLISE TEÓRICA

- Sob as hipóteses do teorema anterior, se f'(x) existir e preservar o sinal em [a, b], então existe uma única raiz neste intervalo.
- Graficamente:

Se f(a)f(b) > 0 então pode existir ou não raízes no intervalo [a, b].

APROX. INICIAL: ANÁLISE TEÓRICA

Exemplo 1: Análise do sinal de f(x): $f(x) = x^3 - 9x + 3$

Como f é contínua, existe ao menos um zero de f(x) em cada um dos intervalos $I_1 = [-5, -3]$, $I_2 = [0,1]$, $I_3 = [2,3]$.

Além disso: $f'(x) = 3x^2 - 9$, que conserva o sinal em cada um dos intervalos, \Rightarrow cada raiz é única no intervalo.

- Com o estudo do gráfico e o estudo analítico, chegamos a resultados aproximados, mas ainda distantes do ideal...
- A fase de refinamento que veremos a seguir é o que diferencia os métodos.
- Importante notar que os métodos que vamos estudar nesta aula partem sempre de um intervalo de separação, isto é, intervalos que contem apenas uma raiz.

• Critério de parada

- O valor de x_i é raiz aproximada com precisão ε se:
- i) $|x_i r| < \varepsilon$
- $\mathrm{ii)} \mid f(x_i) \mid < \varepsilon$
- Nem sempre é possível ter as duas exigências satisfeitas:

Conteúdo da Semana 2

- 1. Zeros reais de funções
- 2. Métodos iterativos
- 3. Método da bissecção
- 4. Método da posição falsa
- 5. Método do ponto fixo
- 6. Método de Newton-Raphson
- 7. Método das secantes
- 8. Comparação entre os métodos

- O método
- Número de iterações
- Vantagens e desvantagens

O MÉTODO

- Considere f contínua no intervalo [a,b] e tal que f(a).f(b) < 0, supondo que este intervalo contenha apenas uma única raiz.
- O objetivo deste método é reduzir a amplitude do intervalo que contém a raiz o subdividindo sucessivas vezes pelo ponto médio.
- Critério de parada: O processo iterativo é finalizado quando se obtém um intervalo cujo tamanho é menor que uma precisão pré-estabelecida ε .
- Convergência: Se f é contínua em [a,b] e f(a). f(b) < 0, então o método da bisseção gera uma sequência que converge para um zero de f.

parada seja atendido:

 $|b_k - a_k| < \varepsilon$

O MÉTODO

Função de iteração:

$$x_{k+1}$$
: = $\frac{a_k + b_k}{2}$, $k = 0,1,2,\dots$

• Exemplo 1: $f(x) = x^3 - x - 1$, considerando $\varepsilon = 0.002$

	k	Intervalo		Ponto médio	Para novo intervalo		Critério de parada	
	K	$a_k^{}$	$b_k^{}$	x_{k+1}	$f(a_k)$	$f(x_{k+1})$	$ b_k - ak $	$ f(x_k) $
	0	1,000000	2,000000	1,500000	-1,000000	0,875000	_	_
	1	1,000000	1,500000	1,250000	-1,000000	-0,296875	0,500000	0,875000
	2	1,250000	1,500000	1,375000	-0,296875	0,224609	0,250000	0,296875
	3	1,250000	1,375000	1,312500	-0,296875	-0,051514	0,125000	0,224609
	4	1,312500	1,375000	1,343750	-0,051514	0,082611	0,062500	0,051514
	5	1,312500	1,343750	1,328125	-0,051514	0,014576	0,031250	0,082611
	6	1,312500	1,328125	1,320312	-0,051514	-0,018711	0,015625	0,014576
	7	1,320312	1,328125	1,324218	-0,018713	-0,002129	0,007813	0,018711
	8	1,324218	1,328125	1,326172	-0,002129	0,006208	0,003906	0,002129
	9	1,324218	1,326172	1,325195	-0,002129	0,002036	0,001953	0,006208

• Como em cada passo, dividimos o intervalo por 2, temos:

•
$$1^{\frac{a}{2}}$$
 iteração ($n=1$): é $\frac{(b-a)}{2}$

•
$$2^{\underline{a}}$$
 iteração ($n=2$): é $\frac{(b-a)}{2^2}$

•
$$3^{\underline{a}}$$
 iteração ($n=3$): é $\frac{(b-a)}{2^3}$

•
$$n^{\frac{a}{2}}$$
 iteração: $\acute{b} \frac{(b-a)}{2^n}$

O número de iterações é dependente da tolerância considerada

• Tolerância = $\varepsilon \Rightarrow$ temos que achar o maior inteiro que satisfaz: $\frac{(b-a)}{2^n} \le \varepsilon$

$$\frac{b-a}{2^n} < \varepsilon \Rightarrow \ln\left(\frac{b-a}{2^n}\right) \le \ln \varepsilon \Rightarrow \ln(b-a) - \ln 2^n \le \ln \varepsilon \Rightarrow$$

$$\ln(b-a) - n \ln 2 \le \ln \varepsilon \Rightarrow n \ge \frac{\ln(b-a) - \ln \varepsilon}{\ln 2}$$

Vantagens:

- Facilidade de implementação;
- Estabilidade e convergência para a solução procurada;
- Desempenho regular e previsível.

Desvantagens:

- Lentidão do processo de convergência (requer o cálculo de f em um elevado número de iterações);
- Necessidade de conhecimento prévio da região na qual se encontra a raiz de interesse (o que nem sempre é possível);
- Não funciona se a raiz tangenciar o eixo x.

Conteúdo da Semana 2

- 1. Zeros reais de funções
- 2. Métodos iterativos
- 3. Método da bissecção
- 4. Método da posição falsa
- 5. Método do ponto fixo
- 6. Método de Newton-Raphson
- 7. Método das secantes
- 8. Comparação entre os métodos

- O método
- Vantagens e desvantagens

O MÉTODO

• Assim como o método da bisseção, também é um método de quebra (realizada na interseção com eixo x da reta definida pelos pontos (a, f(a)) e (b, f(b))).

• Para determinar a iteração x_{k+1} é tirada a média ponderada em vez da média aritmética:

$$x_{k+1} \coloneqq \frac{a_k |f(b_k)| + b_k |f(a_k)|}{|f(b_k)| + |f(a_k)|} \Rightarrow x_{k+1} \coloneqq \frac{a_k f(b_k) - b_k f(a_k)}{f(b_k) - f(a_k)}$$

• Exemplo 2: $f(x) = x^3 x - 1$, considerando $\varepsilon = 0.002$

k	Intervalo		Iteração	Para novo intervalo		Critério de parada	
κ	$a_k^{}$	b_k	x_{k+1}	$f(a_k)$	$f(x_{k+1})$	$ b_k - ak $	$ f(x_k) $
0	1,000000	2,000000	1,166667	-1,000000	-0,578704	_	_
1	1,166667	2,000000	1,253112	-0,578704	-0,285363	0,8333333	0,578704
2	1,253112	2,000000	1,293437	-0,285363	-0,129542	0,7468880	0,285363
3	1,293437	2,000000	1,311281	-0,129542	-0,056589	0,7065626	0,129542
4	1,311281	2,000000	1,318989	-0,056589	-0,024304	0,6887190	0,056588
5	1,318989	2,000000	1,322283	-0,024304	-0,010362	0,6810115	0,024304
6	1,322283	2,000000	1,323684	-0,010362	-0,004404	0,6777173	0,010362
7	1,323684	2,000000	1,324280	-0,004404	-0,001869	0,6763157	0,004404
8	1,324280	2,000000	1,324532	-0,001869	-0,0007930	0,6757205	0,001869

• Exemplo 2: $f(x) = x + e^{x^5} - 5$

n	an	f(a _n)	b _n	$f(b_n)$	<i>X</i> n + 1	$f(x_{n+1})$	$arepsilon_{n+1}$
0	+0.000	-4.000	+1.300	+37.274	+0.126	-3.87	+3.87
1	+0.126	-3.874	+1.300	+37.274	+0.237	-3.76	+3.76
2	+0.237	-3.763	+1.300	+37.274	+0.334	-3.66	+3.66
3	+0.334	-3.662	+1.300	+37.274	+0.420	-3.57	+3.57
4	+0.420	-3.566	+1.300	+37.274	+0.497	-3.47	+3.47
5	+0.497	-3.472	+1.300	+37.274	+0.566	-3.37	+3.37
50	+1.065	-0.008	+1.300	+37.274	+1.065	-6.64×10^{-3}	$+6.64 \times 10^{-3}$
51	+1.065	-0.007	+1.300	+37.274	+1.065	-5.54×10^{-3}	$+5.54 \times 10^{-3}$
52	+1.065	-0.006	+1.300	+37.274	+1.065	-4.63×10^{-3}	$+4.63 \times 10^{-3}$

O método das bissecções sucessivas aplicado a este problema garante o mesmo erro máximo em 9 iterações!

⇒ Com métodos de localização de raízes não é simples fazer generalizações.

Vantagens:

- Facilidade de implementação;
- Em muitos casos tem um melhor desempenho quando comparado ao método da bisseção.

• Principal desvantagem:

• É unilateral, isto é, uma das extremidades tenderá a permanecer fixa, o que pode levar a convergência insatisfatória.

Parte 1 - Fim

CÁLCULO NUMÉRICO

Prof. Maria Clara Schuwartz Ferreira mclarascferreira@gmail.com

Semana 2 – Parte 2

CÁLCULO NUMÉRICO

Prof. Maria Clara Schuwartz Ferreira mclarascferreira@gmail.com

Conteúdo da Semana 2

- 1. Zeros reais de funções
- 2. Métodos iterativos
- 3. Método da bissecção
- 4. Método da posição falsa
- 5. Método do ponto fixo
- 6. Método de Newton-Raphson
- 7. Método das secantes
- 8. Comparação entre os métodos

- O método
- Convergência
- Vantagens e desvantagens

O MÉTODO

- Seja f uma função contínua em [a,b], intervalo que contém uma raiz r da equação f(x) = 0.
- O método do ponto fixo (MPF) ou Método da Iteração Linear (MIL) consiste em transformar f(x) = 0 em uma equação equivalente $x = \varphi(x)$, onde φ é uma função de iteração.
- A partir de uma aproximação inicial x_0 gerar uma sequência pelo processo iterativo dado por: $x_{k+1} = \varphi(x_k), k = 0, 1, 2 \cdots$

Problema de determinação de um zero de f(f(x) = 0)

Problema de determinação de um ponto fixo de $\varphi(\varphi(x) = x)$

Interpretação Geométrica

• Graficamente, uma raiz da equação f(x) = 0 é a abcissa do ponto de intersecção da reta y = x e da curva $y = \varphi(x)$

• Exemplo: $f(x) = x^2 + x - 6$

Determinar φ :

$$f(x) = 0 \qquad \longleftarrow x = \varphi(x)$$

Por exemplo:

$$x^2 + x - 6 = 0 \longrightarrow x = 6 - x^2 = \varphi(x)$$

Possíveis funções de iterações
$$\begin{cases} \varphi_1(x) = 6 - x^2 \\ \varphi_2(x) = \pm \sqrt{6 - x} \\ \varphi_3(x) = \frac{6}{x} - 1 \\ \varphi_4(x) = \frac{6}{x+1} \end{cases}$$

As raízes da equação são −3 e 2

Consideremos $x_0 = 1.5$ e a função de iteração: $\varphi_1(x) = 6 - x^2$

$$x_{k+1} = \varphi(x_k)$$

$$\begin{cases} x_1 = \varphi(x_0) = 6 - (1.5)^2 = 3.75 \\ x_2 = \varphi(x_1) = 6 - (3.75)^2 = -8.0625 \\ x_3 = \varphi(x_2) = 6 - (-8.0625)^2 = -59.003906 \end{cases}$$

 $\{x_k\}$ não está convergindo para r=2

• Consideremos a função de iteração $\varphi_2(x) = \sqrt{6-x}$, com $x_0 = 1.5$

$$x_{k+1} = \varphi(x_k)$$

$$\begin{cases} x_1 = \varphi(x_0) = \sqrt{6 - 1.5} = 2.12132 \\ x_2 = \varphi(x_1) = \sqrt{6 - 2.12132} = 1.96944 \\ x_3 = \varphi(x_2) = \sqrt{6 - 1.96944} = 2.00763 \\ x_4 = \varphi(x_3) = \sqrt{6 - 2.00763} = 1.99809 \\ x_5 = \varphi(x_4) = \sqrt{6 - 1.99809} = 2.00048 \\ \vdots$$

 $\{x_k\}$ está convergindo para r=2

Método do ponto fixo

CONVERGÊNCIA

Convergência monotônica

 $0 < \varphi'(x) < 1$

Convergência oscilante $-1 < \varphi'(x) < 0$

Divergência monotônica

 $\varphi'(x) > 1$

Divergência oscilante

 $\varphi'(x) < -1$

Teorema

Seja r uma raiz da equação f(x)=0, isolada em um intervalo I centrado em r e seja φ uma função para esta equação. Se:

- 1. $\varphi \in \varphi'$ forem contínuas em I
- 2. $|\varphi'(x)| \leq M < 1, \forall x \in I$
- 3. $x_0 \in I$

Então a sequência $\{x_k\}$ gerada por $x_{k+1} = \varphi(x_k)$, k = 0,1,... converge para r.

Demonstração: Feita em duas partes:

(i)
$$x_k \in I$$
, $\forall k$

(ii)
$$\lim_{k \to \infty} x_k = r$$

CONVERGÊNCIA

(i)
$$x_k \in I, \ \forall k$$

Demonstração por indução:

- $x_0 \in I$.
- Demonstraremos que se $x_k \in I$ então $x_{k+1} \in I$.

$$f(r) = 0 \Leftrightarrow r = \varphi(r)$$

Além disso, por definição temos $x_{k+1} = \varphi(x_k)$

$$\Rightarrow x_{k+1} - r = \varphi(x_k) - \varphi(r)$$

Aplicando o TVM, se $x_k \in I$, existe c_k entre x_k e r tal que:

$$\varphi'(c_k)(x_k - r) = \varphi(x_k) - \varphi(r)$$

$$\Rightarrow |x_{k+1} - r| = |\varphi'(c_k)(x_k - r)| = |\varphi'(c_k)| \cdot |x_k - r| < |x_k - r|$$

Como $x_k \in I$, e I está centrado em r, temos que $x_{k+1} \in I$.

Teorema do Valor Médio

f é contínua no intervalo [a,b]. \Rightarrow $\exists c \in (a,b)$ tal que f é diferenciável no intervalo (a,b). \Rightarrow $f'(c) = \frac{f(b) - f(a)}{b-a}$

CONVERGÊNCIA

(ii)
$$\lim_{k\to\infty} x_k = r$$

$$|x_1 - r| = \underbrace{|\varphi'(c_0)|}_{\leq M} |x_0 - r| \leq M |x_0 - r|$$

$$|x_2 - r| = \underbrace{|\phi'(c_1)|}_{\leq M} |x_1 - r| \leq M |x_1 - r| \leq M^2 |x_0 - r|$$

•

$$|x_{k}-r| = \underbrace{|\varphi'(c_{k-1})|}_{\leq M} |x_{k-1}-r| \leq M |x_{k-1}-r| \leq \dots \leq M^{k} |x_{0}-r|$$

$$\lim_{k\to\infty} |x_k - r| \le \lim_{k\to\infty} M^k |x_0 - r| = 0$$

$$\lim_{k\to\infty} |x_k - r| = 0 \implies \lim_{k\to\infty} x_k = r.$$

CONVERGÊNCIA

• Voltando ao exemplo: $f(x) = x^2 + x - 6$

$$\boldsymbol{\varphi}(x) = 6 - x^2$$

$$\varphi'(x) = 2x$$

 $\varphi(x)$ e $\varphi'(x)$ são contínuas para todos os reais.

$$|\varphi'(x)| < 1 \leftrightarrow |2x| < 1 \leftrightarrow -\frac{1}{2} < x < \frac{1}{2}$$

- Não existe um intervalo I centrado em x=2, tal que $|\varphi'(x)| < 1$
- ⇒ condição de convergência não foi satisfeita!

• Analisando condições de convergência: $f(x) = x^2 + x - 6$

$$\boldsymbol{\varphi}(x) = \sqrt{6 - x}$$

$$\varphi'(x) = \frac{-1}{2\sqrt{6-x}}$$

 $\varphi(x)$ é continua em $S = \{x \in R | x \le 6\}$

 $\varphi'(x)$ é continua em $S = \{x \in R | x < 6\}$

$$|\varphi'(x)| < 1 \leftrightarrow \left|\frac{1}{2\sqrt{6-x}}\right| < 1 \leftrightarrow x < \frac{23}{4} = 5.75$$

 \Rightarrow Condições de convergência satisfeitas para $x_0 < 5.75$

• Ordem de convergência

Seja $\{x_k\}$ uma sequência que converge para r e seja $e_k=x_k-r$ o erro na iteração k.

Se existir um número $p \ge 1$ e uma constante C > 0, tais que

$$\lim_{k\to\infty}\frac{|e_{k+1}|}{|e_k|^p}=C$$

então p é chamada de ordem de convergência desse método.

Do limite acima podemos escrever:

$$|e_{k+1}| \approx C |e_k|^p \text{ para } k \to \infty$$

A ordem de convergência mede a velocidade com que as iterações aproximam-se da solução exata.

- O método do ponto fixo tem convergência apenas linear.
- Conforme foi demonstrado, temos que:

$$x_{k+1} - r = \varphi'(c_k)(x_k - r)$$

$$\lim_{k\to\infty}\frac{x_{k+1}-r}{x_k-r}=\lim_{k\to\infty}\varphi'(c_k)=\varphi'(\lim_{k\to\infty}(c_k))=\varphi'(r)$$

$$\lim_{k\to\infty} \frac{e_{k+1}}{e_k} = \varphi'(r) = C \quad \text{e} \quad |C| < 1$$

 \Rightarrow Para grandes valores de k o erro em qualquer iteração é proporcional ao erro na iteração anterior, sendo $\varphi'(r)$ o fator de proporcionalidade.

- O método do ponto fixo determina as condições para a definição da função $\varphi(x)$, mas não apresenta a função propriamente dita.
- Ou seja, diferente dos métodos apresentados anteriormente, a convergência não é garantida.
- Como poderíamos definir $\varphi(x)$ de forma que as condições apresentadas fossem sempre satisfeitas?

Conteúdo da Semana 2

- 1. Zeros reais de funções
- 2. Métodos iterativos
- 3. Método da bissecção
- 4. Método da posição falsa
- 5. Método do ponto fixo
- 6. Método de Newton-Raphson
- 7. Método das secantes
- 8. Comparação entre os métodos

- O método
- Convergência
- Vantagens e desvantagens

Método de Newton Raphson:

Escolher para a função de iteração a função $\varphi(x)$ tal que $\varphi'(r) = 0$.

Temos que escolher de maneira que f(x) = 0 seja equivalente a $\varphi(x) = x$

Partindo da forma geral:
$$\varphi(x) = x + a(x)f(x)$$
, $a(x) \neq 0, \forall x \in I$

$$\varphi'(x) = 1 + a(x)f'(x) + a'(x).f(x) \Rightarrow \varphi'(r) = 1 + a(r)f'(r) \Rightarrow a(r) = -\frac{1}{f'(r)}$$

Então:
$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$

O que nos leva ao seguinte processo iterativo:

$$x_{k+1} = \varphi(x_k) = x_k - \frac{f(x_k)}{f'(x_k)}$$

O MÉTODO

• Interpretação geométrica:

Dado o ponto $(x_k, f(x_k))$, x_{k+1} é a interseção da reta tangente à curva neste ponto, com o eixo x. De fato:

• Pode ocorrer divergência:

Anulamento da derivada

Mudança de concavidade

CONVERGÊNCIA

- Se r uma raiz da equação f(x) = 0 tal que $f'(r) \neq 0$, então existe $\delta > 0$ tal que o método de Newton-Raphson converge para r sempre que $x_0 \in [r \delta, r + \delta]$.
- \Rightarrow O método de Newton sempre converge, desde que se escolha x_0 suficientemente próximo da raiz r.
- A ordem de convergência do método de Newton é quadrática

$$x_{k+1} = \varphi(x_k) = x_k - \frac{f(x_k)}{f'(x_k)} e \varphi(r) = r$$
 $\Rightarrow x_{k+1} - r = \varphi(x_k) - \varphi(r)$

Desenvolvendo $\varphi(x_k)$ em série de Taylor em torno de r temos:

$$e_{k+1} = \varphi(r) + (x_k - r)\varphi'(r) + \frac{(x_k - r)^2}{2!}\varphi''(r) + \dots - \varphi(r)$$

$$e_{k+1} = \frac{(e_k)^2}{2}\varphi''(r) \qquad \Rightarrow \qquad \lim \frac{e_{k+1}}{(e_k)^2} = \frac{\varphi''(r)}{2} \le C$$

• Exemplo: Dada $f(x) = x^3 - 9x + 3$, encontrar a raiz utilizando $x_0 = 0.5$ como aproximação inicial. Execute o método até que $|x_{k+1} - x_k| < 10^{-2}$.

$$f'(x) = 3x^2 - 9$$

Temos que
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^3 - 9x_k + 3}{3x_k^2 - 9}$$

Assim:
$$x_1 = 0.5 - \frac{0.5^3 - 9.0.5 + 3}{3.0.5^2 - 9} = 0.3333 \cdots$$

Analogamente, $x_2 = 0.3376 \cdots$.

$$f(x_2) \cong 1,834.10^{-5} \cong 0$$

Solução: $r \approx 0.3376$

- O Método de Newton-Raphson tem convergência muito boa (quadrática).
- Entretanto, apresenta as seguintes desvantagens:
 - Exige o cálculo f' a cada iteração
 - Possíveis problemas:
 - Convergência lenta se $f'(x_k)$ for muito grande
 - Pode ocorrer overflow se $f'(x_k)$ for muito próximo de zero

Conteúdo da Semana 2

- 1. Zeros reais de funções
- 2. Métodos iterativos
- 3. Método da bissecção
- 4. Método da posição falsa
- 5. Método do ponto fixo
- 6. Método de Newton-Raphson
- 7. Método das secantes
- 8. Comparação entre os métodos

- O método
- Convergência
- Vantagens e desvantagens

O MÉTODO

- Um grande inconveniente do método de Newton-Raphson é a necessidade da obtenção de f'(x) e o cálculo de seu valor numérico a cada iteração
- Alternativa: Substituir o cálculo da derivada f'(xk) pelo quociente das diferenças

$$f'(xk) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

onde x_{k-1} e x_k são duas aproximações para a raiz

$$x_{k+1} = x_k - \frac{f(x_k)}{\frac{f(x_k) - f(x_{k-1})}{x_k - x_k}} \quad \Rightarrow \quad x_{k+1} = \frac{x_{k-1} f(x_k) - x_k f(x_{k-1})}{f(x_k) - f(x_{k-1})}$$

O MÉTODO

• Interpretação geométrica

Repete-se o processo até que o valor de *x* atenda às *condições de parada*.

CONVERGÊNCIA

- A ordem de convergência do método das secantes é $p=\frac{1+\sqrt{5}}{2}\cong 1,618$
- A ordem de convergência do método da secante não é quadrática como a do método de Newton, mas também não é apenas linear.
- Apesar da ordem de convergência do método das secantes ser inferior à do método de Newton, este método fornece uma alternativa viável, desde que requer somente um cálculo da função f por passo, enquanto que dois cálculos $(f(x_k) \ e \ f'(x_k))$ são necessários para o método de Newton.

• Exemplo: Determinar a raiz positiva da equação $\sqrt{x} - 5e^{-x} = 0$ pelo método das secantes, com erro relativo inferior a 10^{-2} .

próximo ao ponto x= 1.4

$$x_0 = 1.4 \rightarrow f(x_0) = -0.052$$

 $x_1 = 1.5 \rightarrow f(x_1) = 0.110$
 $x_{k+1} = \frac{x_{k-1}f(x_k) - x_kf(x_{k-1})}{f(x_k) - f(x_{k-1})} \Rightarrow x_2 = 1.432$

Erro relativo:
$$\frac{|x_2 - x_1|}{|x_2|} \cong 0.047$$

$$x_2 = 1.432 \rightarrow f(x2) = 0.002$$

Analogamente temos $x_3 = 1,431$

Erro relativo:
$$\frac{|x_3 - x_2|}{|x_3|} \cong 0,0007 < 10^{-2}$$

- Método tem desempenho elevado, com rapidez na convergência;
- Cálculos mais convenientes que do método de Newton;
- No método da secante há a substituição dos valores em sequência: o novo valor x_{i+1} substitui x_i e o valor de x_i substitui x_{i-1} . Isto é, a função não necessariamente fica confinada no intervalo inicial [a,b], o que pode levar à divergência.

Conteúdo da Semana 2

- 1. Zeros reais de funções
- 2. Métodos iterativos
- 3. Método da bissecção
- 4. Método da posição falsa
- 5. Método do ponto fixo
- 6. Método de Newton-Raphson
- 7. Método das secantes
- 8. Comparação entre os métodos

Comparação entre os métodos

Garantia de convergência

• Bisseção e Posição Falsa

Convergência garantida, desde que:

- função seja contínua em I,
- f'(x) mantenha sinal em I
- f(a).f(b) < 0
- Métodos de ponto fixo

Convergência garantida, desde que (além das condições anteriores):

- φ e φ' sejam contínuas em I,
- $|\varphi'(x)| \le k < 1, \forall x \in I$
- $x_0 \in I$

Comparação entre os métodos

- Facilidade de implementação
- Esforço computacional com base no:
 - Número total de iterações
 - Custo operacional envolvido em cada iteração: tempo de processamento, memória utilizada, número e complexidade de operações efetuadas
- O método de Newton é uma boa opção, desde que seja fácil verificar as condições de convergência e o cálculo de f'(x) não seja muito elaborado. Caso contrário, seria mais apropriado utilizar o método das secantes (converge mais rapidamente que os demais). No entanto, se for difícil avaliar as condições de convergência, poderíamos utilizar um dos métodos de quebra.

Parte 2 - Fim

CÁLCULO NUMÉRICO

Prof. Maria Clara Schuwartz Ferreira mclarascferreira@gmail.com

