Teillösungen zum 5. Aufgabenblatt vom Donnerstag, den 12. November 2009 zur Vorlesung

MafI I: Logik & Diskrete Mathematik (Autor: Maike Esmann)

1. Relationen und Funktionen (4 Punkte)

In der folgenden Tabelle sind 15 Relationen $R \subseteq A \times A$ dargestellt, die sich durch Kombination von 5 definierenden Aussageformen und 3 Zahlbereichen für A ergeben (\mathbb{N} – die natürlichen Zahlen mit 0, \mathbb{Q} – die rationalen Zahlen und \mathbb{R}^+ – die positiven reellen Zahlen ohne Null). Man untersuche welche dieser Relationen Funktionen sind und wenn ja, ob sie injektiv, surjektiv oder bijektiv sind. Dazu können folgende Symbole benutzt werden:

- b falls die Relation eine bijektive Funktion von A auf A ist
- i falls die Relation eine injektive Funktion von A in A, aber nicht bijektiv ist
- s falls die Relation eine surjektive Funktion von A auf A, aber nicht bijektiv ist
- f falls die Relation eine Funktion von A in A, aber weder injektiv noch surjektiv ist
- \times falls die Relation keine Funktion von A in A ist

definierende Aussageform	$A=\mathbb{N}$	$A = \mathbb{Q}$	$A = \mathbb{R}^+$
$\{(x,y)\in A\times A \frac{y}{x+1}=3\}$	i	×	i
$\{(x,y) \in A \times A \frac{x}{y+1} = 3\}$	×	×	×
$\{(x,y) \in A \times A x^2 - y - 2 = 0\}$	×	f	×
$\{(x,y) \in A \times A x - y^2 + 2 = 0\}$	×	×	i
$\{(x,y) \in A \times A x^2 - y^2 = 0\}$	b	×	b

2. Injektive Funktionen I (2 Punkte)

Es sei $f: A \to B$ eine Abbildung mit der folgenden Eigenschaft: Für beliebige $S, T \subseteq A$ gilt $f(S \cap T) = f(S) \cap f(T)$. Zeigen Sie, dass f injektiv ist.

3. **Injektive Funktionen II** (2 Punkte)

Beweisen Sie den folgenden Satz: Eine Abbildung $f \colon A \to B$ ist genau dann injektiv, wenn eine Funktion $h \colon B \to A$ existiert, für die $h \circ f = \mathsf{id}_A$ gilt.

Lösung:

Sei $f: A \to B$ injektiv ,dann gilt für alle $a_1, a_2 \in A$: $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$.

Also ist das Urbild für jedes Element $b \in B$ entweder leer oder einelementig. Jedem b = f(a) lässt sich somit ein eindeutiges Element $a \in A$ zuordnen.

Wir fixieren ein beliebiges $a_0 \in A$ und definieren folgende Funktion $h: B \to A$:

$$h(b) = \begin{cases} a, & \text{wenn } b = f(a), \\ a_0, & \text{wenn } f^{-1}(b) = \emptyset \end{cases}$$

Dann gilt für alle $a \in A$

$$h \circ f(a) = h(f(a)) = a,$$

also $h \circ f = id_A$.

Sei $h \circ f = id_A$, d.h. h(f(a)) = a für alle $a \in A$.

Angenommen $f(a_1) = f(a_2)$ für $a_1, a_2 \in A$.

Dann ist $h(f(a_1)) = h(f(a_2))$ also auch $a_1 = a_2$.

Also ist f injektiv.

4. **Injektiv-Surjektiv** (4 Punkte)

Sei $f: A \to B$ eine beliebige Funktion.

Wir definieren eine neue Funktion $g: \mathcal{P}(B) \to \mathcal{P}(A)$. Für $N \subseteq B$ sei $g(N) = f^{-1}(N)$. Beweisen Sie, dass f surjektiv ist genau dann, wenn g injektiv ist.

Lösung:

" \Rightarrow " Beweis durch Kontraposition (g nicht injektiv $\Rightarrow f$ nicht surjektiv) Sei also g nicht injektiv.

Dann gilt: $\exists N_1, N_2 \subseteq B$ mit $N_1 \neq N_2$ und $g(N_1) = g(N_2)$

Nach Definition von g ist dann $f^{-1}(N_1) = f^{-1}(N_2)$.

Die Mengen N_1 und N_2 sind verschieden, o.B.d.A. nehmen wir an: $\exists b_2 \in N_2 \setminus N_1$. Aber für dieses Element gilt $b_2 \notin f(A)$. Denn hätte b_2 ein nichtleeres Urbild mit einem Element a, so wäre a auch im Urbild eines $b_1 \in N_1$. Das geht aber nicht, denn f ist eine Funktion und f(a) besteht aus genau einem Element.

Also ist f nicht surjektiv.

" \Leftarrow " Beweis durch Kontraposition (f nicht surjektiv
 $\Rightarrow g$ nicht injektiv)

Sei f nicht surjektiv, das heißt: $\exists b_0 \in B : b_0 \notin f(A)$.

Aber dann ist $g(B) = g(B \setminus \{b_0\}) = A$ und $B \neq B \setminus \{b_0\}$.

Damit ist g nicht injektiv.

5. **Bijektion** (4 Punkte)

Zeigen sie, dass die Funktion $f:(0,1)\to\mathbb{R}$ gegeben durch f(x)=(1/2-x)/(x(1-x)) eine Bijektion ist.

Tipp: Dies erfordert ein bisschen Schulmathematik! Die Injektivität von f folgt z.B. aus der Tatsache, dass die Funktion streng monoton fallend ist. Zeigen Sie dies!

Lösung:

Um zu zeigen, dass die Funktion f eine Bijektion ist, müssen wir sowohl die Injektivität als auch die Surjektivität zeigen.

(i) f ist injektiv:

Wir zeigen , dass f im offenen Intervall (0,1) streng monoton fallend ist, d.h. für alle x < y aus dem Intervall (0,1) folgt f(x) > f(y).

Sei also x < y und damit 2x + y < x + 2y. Daraus folgt -x - y/2 > -y - x/2. Wir addieren anschließend auf beiden Seiten 1/2 + xy:

$$1/2 - x - y/2 + xy > 1/2 - y - x/2 + xy$$

Die beiden Seiten der Ungleichung schreiben wir jeweils als Produkt und multiplizieren links mit y und rechts mit x. Das ergibt:

$$(1/2 - x)(1 - y)y > (1/2 - y)(1 - x)x$$

und schließlich

$$(1/2-x)/(x(1-x)) > (1/2-y)/(y(1-y))$$

Also ist f injektiv.

(ii) f ist surjektiv.

Da f im Intervall (0,1) stetig ist, $\lim_{x\to 1} f(x) = -\infty$ und $\lim_{x\to -1} f(x) = \infty$ gilt, nimmt f jeden Wert in $\mathbb R$ an.

Die Funktion f ist somit surjektiv.

6. **0–1–Sequenzen** (4 Punkte)

- (a) Zeigen Sie, dass die Menge aller endlichen 0-1-Sequenzen abzählbar unendlich ist.
- (b) Zeigen Sie, dass die Menge aller unendlichen 0–1–Sequenzen gleichmächtig mit $\mathcal{P}(\mathbb{N})$ ist, also überabzählbar unendlich ist.