Comparing the Classical and Nonclassical Symmetries of Nonlinear Partial Differential Equations

William Helman and Daniel Sinderson

Southern Oregon University

2023

Table of Contents

Introduction

Project Goal What is a Symmetry? What is a Differential Equation? Background on our Equations

Results

Classical Symmetries Nonclassical Symmetries

Conclusion

Discussion Open Questions Next Steps

Introduction

Our research objective for this project was to calculate the classical and nonclassical symmetry groups for the reduced Gibbons-Tsarev equation and the Born-Infeld equation and compare them.

Definition

A symmetry is a transformation that leaves an object invariant.

Definition

A symmetry is a transformation that leaves an object invariant.

Definition

A symmetry is a change that doesn't change anything.

Let's see this in action using the simple linear equation x - y = 0.

Example (A Non-Example)

- For our first transformation, let's define new variables $\bar{x} = x + 1$ and $\bar{y} = y$.
- Now we rewrite our equation using these new variables.

$$ar x - ar y = 0$$
 by definition $x+1-y=0$ by substitution $y=x+1$ by rewriting in slope-intercept form

► This is transformation is not a symmetry:

$$x - y + 1 \neq x - y$$

A Transformation that is a Symmetry

Example (2)

- Let's define some new variables again $\bar{x} = x + 1$ and $\bar{y} = y + 1$.
- Now we rewrite our equation using these new variables.

$$\begin{array}{c} \bar{x}-\bar{y}=0 & \text{by definition} \\ (x+1)-(y+1)=0 & \text{by substitution} \\ (x-y)+(1-1)=0 & \text{by algebra} \\ x-y=0 & \text{by algebra} \\ y=x & \text{by rewriting in slope-intercept form} \end{array}$$

► This transformation is a symmetry:

$$x - y = x - y$$

The graphs of our three equations.

Who cares?

Symmetries help us understand and solve equations that we wouldn't normally be able to.

Who cares?

- Symmetries help us understand and solve equations that we wouldn't normally be able to.
- Symmetries encode physically meaningful aspects of equations, like conservation laws in physics.

Who cares?

- Symmetries help us understand and solve equations that we wouldn't normally be able to.
- Symmetries encode physically meaningful aspects of equations, like conservation laws in physics.
- ► They're cool.

What is a Differential Equation?

Definition

▶ A differential equation is an equation that contains both an unknown function and information about how that function relates to its rates of change.

What is a Differential Equation?

Definition

- ▶ A differential equation is an equation that contains both an unknown function and information about how that function relates to its rates of change.
- ▶ Differential equations show up everywhere we model something using information about how that thing changes over time. This includes everything from population dynamics to the motion of the planets.

What is a Differential Equation?

As an example, we'll use the equation for a spring.

$$m\ddot{x} + \gamma \dot{x} + \kappa x = 0$$

Here m is the mass, \ddot{x} is the acceleration, γ is the damping constant (friction), \dot{x} is the velocity, κ is the spring constant, and x is the position.

The History of the Born-Infeld and the reduced Gibbons-Tsarev Equations

The Classical Symmetries of the Born-Infeld and the reduced Gibbons-Tsarev Equations

The Nonclassical Symmetries of the Born-Infeld and the reduced Gibbons-Tsarev Equations

Future Work: Does Integrability Imply Equivalence of Classical and Nonclassical Symmetries?

Future Work: Does Equivalence of Classical and Nonclassical Symmetries Imply Integrability?