### **Photogrammetry & Robotics Lab**

# Projective 3-Point (P3P) Algorithm / Spatial Resection

**Cyrill Stachniss** 

# **5 Minute Preparation for Today**



https://www.ipb.uni-bonn.de/5min/

### **Camera Localization**

Given known 3D control points (X, Y, Z)



**Task:** estimate the pose of the camera

### **Camera Localization**

#### **Given:**

lacksquare 3D coordinates of object points  $\mathbf{X}_i$ 

#### **Observed:**

ullet 2D image coordinates  $old x_i$  of the object points

#### Wanted:

• Extrinsic parameters  $R, X_O$  of the calibrated camera

# **Reminder: Mapping Model**

Direct linear transform (DLT) maps any object point  ${\bf X}$  to the image point  ${\bf x}$ 

$$\mathbf{x} = \mathbf{K}R[I_3| - X_O]\mathbf{X}$$
 $= \mathbf{P}\mathbf{X}$ 
 $\mathbf{x}$ 
 $\mathbf{x}$ 

#### **Reminder: Camera Orientation**

$$\mathbf{x} = \mathsf{K}R[I_3| - \mathbf{X}_O]\mathbf{X} = \mathsf{P} \mathbf{X}$$

- Intrinsics (interior orientation)
  - Intrinsic parameters of the camera
  - Given through matrix K
- Extrinsics (exterior orientation)
  - Extrinsic parameters of the camera
  - ullet Given through  $oldsymbol{X}_O$  and R

## **Direct Linear Transform (DLT)**

Relation to DLT: Compute the 11 intrinsic and extrinsic parameters



# Projective 3-Point Algorithm (or Spatial Resection)

Given the intrinsic parameters, compute the 6 extrinisic parameters



## P3P/SR vs. DLT

- P3P/SR: Calibrated camera
  - 6 unknowns
  - We need at least 3 points
- DLT: Uncalibrated camera
  - 11 unknowns
  - We need at least 6 points
  - Assuming an affine camera (straight-line preserving projection)

# Orienting a calibrated camera by using ≥ 3 points

P3P/Spatial Resection (direct solution)

#### **Problem Formulation**

#### **Given:**

- 3D coordinates  $\mathbf{X}_i$  of  $I \geq 3$  object points
- Corresponding image coordinates  $\mathbf{x}_i$  recorded using a calibrated camera

#### Task:

- Estimate the 6 parameters  $X_O, R$
- Direct solution (no initial guess)

# **Different Approaches**

Different approaches: Grunert 1841,
 Killian 1955, Rohrberg 2009, ...

Here: direct solution by Grunert

2-step process

1. Estimate length of projection rays

2. Estimate the orientation



# **Direct Solution by Grunert**

2-Step process

#### **Estimate**

- 1. length of projection rays
- 2. orientation



# P3P/SR Model

 Coordinates of object points within the camera system are given by

$$s_i \, ^k \mathbf{x}_i^s = \mathsf{R}(\boldsymbol{X}_i - \boldsymbol{X}_O) \qquad \qquad i = 1, 2, 3$$

ray directions pointing to the object points



# P3P/SR Model

 Coordinates of object points within the camera system are given by

$$s_i^k \mathbf{x}_i^s = \mathsf{R}(\boldsymbol{X}_i - \boldsymbol{X}_O) \qquad i = 1, 2, 3$$

 From image coordinates, we obtain the directional vector of projection ray



# P3P/SR Model

 Coordinates of object points within the camera system are given by

$$s_i^k \mathbf{x}_i^s = \mathsf{R}(\boldsymbol{X}_i - \boldsymbol{X}_O) \qquad i = 1, 2, 3$$

From image coordinates, we obtain the directional vector of projection ray





Start with computing the angle between rays:

$$\cos \gamma = \frac{(X_1 - X_0) \cdot (X_2 - X_0)}{||X_1 - X_0|| \, ||X_2 - X_0||}$$



$$\alpha = \arccos\left({}^{k}\mathbf{x}_{2}^{s}, {}^{k}\mathbf{x}_{3}^{s}\right)$$

$$\beta = \arccos\left({}^{k}\mathbf{x}_{3}^{s}, {}^{k}\mathbf{x}_{1}^{s}\right)$$

$$\gamma = \arccos\left({}^{k}\mathbf{x}_{1}^{s}, {}^{k}\mathbf{x}_{2}^{s}\right)$$

Angles are directly computable by observing the image points and known intrinsics.  $X_1$   $X_2$   $X_3$   $X_4$   $X_5$   $X_5$   $X_5$   $X_5$   $X_5$   $X_5$   $X_5$ 



### **Use the Law of Cosines**

In triangle  $X_0, X_1, X_2$ 

$$s_1^2 + s_2^2 - 2s_1s_2\cos\gamma = c^2$$
wanted known



#### **Use the Law of Cosines**

### Analogously in all three triangles

$$a^{2} = s_{2}^{2} + s_{3}^{2} - 2s_{2}s_{3}\cos\alpha$$

$$b^{2} = s_{1}^{2} + s_{3}^{2} - 2s_{1}s_{3}\cos\beta$$

$$c^{2} = s_{1}^{2} + s_{2}^{2} - 2s_{1}s_{2}\cos\gamma$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{2}$$

# **Compute Distances**

We start from:

$$a^2 = s_2^2 + s_3^2 - 2s_2s_3\cos\alpha$$

• Define: 
$$u = \frac{s_2}{s_1}$$
  $v = \frac{s_3}{s_1}$ 

Substitution leads to:

$$a^{2} = s_{1}^{2}(u^{2} + v^{2} - 2uv\cos\alpha)$$

• Rearrange to:  $s_1^2 = \frac{a^2}{u^2 + v^2 - 2uv\cos\alpha}$ 

## **Compute Distances**

Use the same definition

$$u = \frac{s_2}{s_1} \qquad v = \frac{s_3}{s_1}$$

• And perform the substitution again for:

$$b^{2} = s_{1}^{2} + s_{3}^{2} - 2s_{1}s_{3}\cos\beta$$
$$c^{2} = s_{1}^{2} + s_{2}^{2} - 2s_{1}s_{2}\cos\gamma$$

## **Compute Distances**

Analogously, we obtain

$$s_1^2 = \frac{a^2}{u^2 + v^2 - 2uv\cos\alpha}$$

$$= \frac{b^2}{1 + v^2 - 2v\cos\beta}$$

$$= \frac{c^2}{1 + u^2 - 2u\cos\gamma}$$

# Rearrange Again

Solve one equation for u put into the other

$$s_1^2=rac{a^2}{u^2+v^2-2uv\coslpha}$$
  $s_1^2=rac{b^2}{1+v^2-2v\coseta}$   $s_1^2=rac{c^2}{1+u^2-2u\cos\gamma}$ 

### Results in a fourth degree polynomial

$$A_4v^4 + A_3v^3 + A_2v^2 + A_1v + A_0 = 0$$

$$A_4v^4 + A_3v^3 + A_2v^2 + A_1v + A_0 = 0$$

$$A_4 = \left(\frac{a^2 - c^2}{b^2} - 1\right)^2 - \frac{4c^2}{b^2}\cos^2\alpha$$

$$A_4v^4 + A_3v^3 + A_2v^2 + A_1v + A_0 = 0$$

$$\begin{bmatrix}
A_2 \\
A_2
\end{bmatrix} = 2 \left[ \left( \frac{a^2 - c^2}{b^2} \right)^2 - 1 + 2 \left( \frac{a^2 - c^2}{b^2} \right)^2 \cos^2 \beta \right] 
+ 2 \left( \frac{b^2 - c^2}{b^2} \right) \cos^2 \alpha 
- 4 \left( \frac{a^2 + c^2}{b^2} \right) \cos \alpha \cos \beta \cos \gamma 
+ 2 \left( \frac{b^2 - a^2}{b^2} \right) \cos^2 \gamma \right]$$

$$A_4v^4 + A_3v^3 + A_2v^2 + A_1v + A_0 = 0$$

$$\begin{bmatrix}
A_1 \\
 \end{bmatrix} = 4 \left[ -\left(\frac{a^2 - c^2}{b^2}\right) \left(1 + \frac{a^2 - c^2}{b^2}\right) \cos \beta + \frac{2a^2}{b^2} \cos^2 \gamma \cos \beta - \left(1 - \left(\frac{a^2 + c^2}{b^2}\right)\right) \cos \alpha \cos \gamma \right]$$

$$A_0 = \left(1 + \frac{a^2 - c^2}{b^2}\right)^2 - \frac{4a^2}{b^2}\cos^2\gamma$$

$$A_4v^4 + A_3v^3 + A_2v^2 + A_1v + A_0 = 0$$

Solve for v to get  $s_1, s_2, s_3$  through:

$$s_1^2 = \frac{b^2}{1 + v^2 - 2v \cos \beta}$$

$$s_3 = v \ s_1$$

$$a^2 = s_2^2 + s_3^2 - 2s_2s_3\cos\alpha \Rightarrow s_2 = \cdots$$

Problem: up to 4 possible solutions!

$$\{s_1, s_2, s_3\}_{1...4}$$

## **Example for Multiple Solutions**

- Assume a=b=c and  $\alpha=\beta=\gamma$
- Tilting the triangle  $(X_1, X_2, X_3)$  has no effect on (a, b, c) and  $(\alpha, \beta, \gamma)$



# **Four Solutions**



# How to Eliminate This Ambiguity?

- Known approximate solution (e.g., from GPS) or
- Use 4<sup>th</sup> points to confirm identify the correct solution



Unique solution for

$$s_1, s_2, s_3$$

### 2. Orientation of the Camera

#### Given:

Distances and direction vectors to the control points

#### Task:

Estimate 6 extrinsic parameters



### 2. Orientation of the Camera

1. Compute 3D coordinates of the control points in the camera system

$$^{k}\boldsymbol{X}_{i}=s_{i}\ ^{k}\mathbf{x}_{i}^{s}\qquad i=1,2,3$$

That's what we just discussed!



### 2. Orientation of the Camera

1. Compute 3D coordinates of the control points in the camera system

$$^{k}\boldsymbol{X}_{i}=s_{i}\ ^{k}\mathbf{x}_{i}^{s}\qquad i=1,2,3$$

2. Compute coordinate transformation for



object

# P3P/SR in a Nutshell



#### **Critical Surfaces**

### "Critical cylinder"

- If the projection center lies on a cylinder defined by the control points
- Small changes in angles lead to large changes in coordinates
- Instable solution



# **Outlier Handling with RANSAC**

Use **direct solution** to find correct solution among set of corrupted points

Assume I≥3 points



- 1. Select 3 points randomly
- 2. Estimate parameters of SR/P3P
- 3. Count the number of other points that support current hypotheses
- 4. Select best solution
- Can deal with large numbers of outliers in data

#### **More Recent Solutions**

- Further solutions gave been proposed after Grunert's solutions of 1841
- New methods still have ambiguities when using 3 control points only
- 4<sup>th</sup> point needed for disambiguation
- Faster to compute
- Numerically more stable
- Partially less complex

## Recent Approaches

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE VOL 25 NO. 8. ALIGHIST 2000

#### Complete Solution Classification for the Perspective-Three-Point Problem

Xiao-Shan Gao, Member, IEEE, Xiao-Rong Hou, Jianliang Tang, and Hang-Fei Cheng

Abstract—In this paper, we use the head approaches to be well. Perforance for head proposed to see that approaches to be approached to the paper of the paper of

Index Terms—Perspective-Three-Point problem, pose determination, analytical solutions, solution classification, geometric criteria

X.-S. Gao and J. Tang are with the Institute of System Science, AMSS nondegenerate branches for the P3P problem. But a

The Perspective—Point (PnP) problem is originated from Camera calibration [1], [2], [3], [4], Also known as pose estimation, it is to determine the position and orientation PP equation system. Hung et al. [8] presented an algorithm the camera with respect to a seeme object from a correspondent points. It concerns many important fields such as dent points. It concerns many important fields such as creative in the camera frame. In 1991, Haralick et al. [9] computer animation [5], computer vision [3], automation [5], computer vision [3], automatic computer vision and points [1], and model-based machine vision system [7] etc. Fischler and Bolles [2] summarized the problem as follows: [1] and model-based machine vision system [7] etc. Fischler and Bolles [2] summarized the Core the relative spatial Locations of a central points. The relative computation. Deleteration for the  $\Gamma^{2}$  problem as follows: a clade the Center of Perspective ( $C_{\gamma}$ ), detail the control points, and the summarized the problem is a followed to the experimental points and based that the problem is a followed to the problem to a follow of the summarized that the problem is a followed to the problem in the problem is a followed to the problem in the problem is a followed to the problem in the problem in the problem is a followed to the problem in the problem in the problem is a followed to the problem in the problem in the problem is a followed to the problem in the problem in the problem is a followed to the problem in the problem in the problem is a followed to the problem in the problem in the problem is a followed to the problem in the problem in the problem is a followed to the problem in the problem in the problem in the problem in the problem is a followed to the problem in the problem is a followed to the problem in the problem equation with Sylvester resultant and proposed a linear

counterparts.

The study of the PnP problem mainly consists of two aspects.

In bestigh of the PnP problem mainly consists of two aspects.

In besign first and stable algorithms that can be used to find all or some of the solutions of the PnP problem.

Cave a classification for the solutions of the PnP problem, i.e., give the conditions under which the problem has one, two, three or four solutions.

There are many sensulis for the first problem and the second contraction possibility can produce 24 possible cameratizing the configurations consistent with a single perspective change (and problem) and the second contraction of the three control points combined with the contraction of the transport of points combined with the problem. There are many results for me tenst protonem and me second problem is still open. The aim of this paper is to give a complete and effective solution to the above two problems. The problem is the smallest subset of courtepies that yields a finite number of solutions. In 1981, Fischler and the problems is the smallest subset of courtepies that yields a finite number of solutions. In 1981, Fischler and problems of the small paper under the assumption of the small paper under the assumption of the problems of

tion method to find the main solution branch and some

Gao 2003

Complete Solution Classification for the Perspective-Three-Point **Problem** 

#### A Novel Parametrization of the Perspective-Three-Point Problem for a Direct Computation of Absolute Camera Position and Orientation

Davide Scaramuzza Autonomous Systems Lab. ETH Zurich

#### Abstract

The Perspective-Three-Point (P3P) problem aims at determining the position and orientation of the camera in the world reference frame from three 2D-3D point correspondences. This problem is known to provide up to four solu-tions that can then be disambiguated using a fourth point. All existing solutions attempt to first solve for the position of the points in the camera reference frame, and then com-pute the position and orientation of the camera in the world frame, which alignes the two point sets. In contrast, in this paper we propose a novel closed-form solution to the P3P problem, which computes the aligning transformation directly in a single stage, without the intermediate derivation of the points in the camera frame. This is made possible by introducing intermediate camera and world refer-ence frames, and expressing their relative position and orientation using only two parameters. The projection of a world point into the parametrized camera pose then leads to two conditions and finally a quartic equation for finding up to four solutions for the parameter pair. A subsequent backsubstitution directly leads to the corresponding camera poses with respect to the world reference frame. We show that the proposed algorithm offers accuracy and precision comparable to a popular, standard, state-of-the-art approach but at much lower computational cost (15 times faster). Furthermore, it provides improved numerical sta-bility and is less affected by degenerate configurations of the selected world points. The superior computational efficiency is particularly suitable for any RANSAC-outlier-rejection step, which is always recommended before apply-ing PnP or non-linear optimization of the final solution.

The Perspective-n-Point (PnP) problem is originated from camera calibration [1, 10, 17, 28]. Also known as pose estimation, it aims at retrieving the position and orin corresponding 3D points. This problem has found many applications in computer animation [30], computer vision [16], augmented reality, automation, image analysis, automated cartography [10], photogrammetry [1, 24], robotics [35], and model-based machine vision systems [34]. In 1981, Fischler and Bolles [10] summarized the problem as follows: Given the relative spatial locations of n control points, and given the angle to every pair of control points P. from an additional point called the center of perspective C, find the lengths of the line segments joining C to each of the control points. The next step then consists of retrieving the orientation and translation of the camera with respect to the object reference frame.

The Direct Linear Transformation was first developed by photogrammetrists [31] as a solution to the PnP problem— when the 3D points are in a general configuration—and then introduced in the computer vision community [7, 16]. When the points are coplanar, the homography transformation can be exploited [16] instead.

In this paper, we address the particular case of PnP for This problem is also known as Perspective-Three-Point (P3P) problem. The P3P is the smallest subset of con trol points that yields a finite number of solutions. When the intrinsic camera parameters are known and we have  $n \ge 4$ points, the solution is generally unique.

The P3P problem was first investigated in 1841 by Grunert [14] and in 1903 by Finsterwalder [8], who noticed that for a calibrated camera there can be up to four solu-tions, which can then be disambiguated using a fourth point. In the literature, there exist many solutions to this prob lem, which can be classified into iterative, non-iterative, linear, and non-linear ones. In 1991, Haralick et al. [15] re-viewed the major direct solutions up to 1991, including the six algorithms given by Grunert (1841) [14]. Finsterwalder (1903)—as summarized by Finsterwalder and Scheufele in [8]—, Merritt (1949) [25], Fischler and Bolles (1981) [10], Hung et al. (1985) [20], Linnainmaa et al. (1988) [23] and Grafarend et al. (1989) [13], respectively. They also

#### Kneip 2011

A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation

## Recent Approaches

Contents lists available at ScienceDirect A P3P problem solver representing all parameters as a

ARTICLE INFO

We propose a novel strategy for the Perspective-Three-Point [F3P] problem that determines the position and orientation of a calibrated current from three known point pairs of 2D-3D correspondences. Starting from three similarity transformation equations that relate the global and the carrars—instent confedinces, our method treats all the extrinsic carriers parameters as a linear combination of known vectors with unknown coefficients. By refusing the number of unknown and using a Corbone Tasis, the problem is correctly confedenced to the confedence of the confedenc

In Introduction

Estimation for the position and orientation of a calibrated camera using the n correspondences of contral points between a 20 image and the 20 world is referred to as the Prospective—Principal Control of the Contro

in P4P and P5P: when the ratio of outliers among all correspondence is p, the possibility  $(1-p)^2$  that all pairs in use are correct is higher than  $(1-p)^2$ , and  $(1-p)^2$ . As p increases, this advantage becomes more prominent. The P3P problem has long attracted research interest, and numerically p in the P3P problem has long attracted research interest, and numerically p in the P3P problem has long attracted research interest.

In 87 y process mas iong attractors relearn interest, and numer-ous solvers have been proposed. Realty all classical solvers are based on the law of cosines and adopt a two-stage method [6,71,118.22]. First, these solvers estimate the distances between the camera cen-ter and the 3D points. The distances are obtained as solutions of a quadratic equation derived from the law of cosines: a single triplet quadratic equation derived from the law of cosines: a single triple provides at most four feasible solutions [9,31]. except for some spe-cial cases [30]. Second, by aligning the triangles described in the global and local coordinate system; the solvert determine the posi-tion and orientation of the camera. The registration process is very sensitive to the distances estimated from the quadratic equations incorrect distances cause significant errors. Thus, the dissical solvers

directly computes the position and orientation of the camera without the above-mentioned alignment. They formulated a solution based on geometric consideration and derived a quadratic equation with respect to an angle. The numerical stability of their method is significantly higher than that of the above-mentioned dissist almentods. Moreover, the processing time of their method is shorter because it models that they contain the content of the content o

#### Banno 2018

representing all combination

#### Lambda Twist: An Accurate Fast Robust Perspective Three Point (P3P) Solver.

Mikael Persson<sup>1[0000-0002-5931-9396]</sup> and Klas Nordberg<sup>1</sup> \*

Computer Vision Laboratory, Linköping University, Sweden

Abstract. We present Lambda Twist; a novel P3P solver which is accurate, fast and robust. Current state-of-the-art P3P solvers find all roots to a quartic and discard geometrically invalid and duplicate solutions in a post-processing step. Instead of solving a quartic, the proposed P3P solver exploits the underlying elliptic equations which can be solved by a fast and numerically accurate diagonalization This diagonalization requires a single real root of a cubic which is then used to find the, up to four, P3P solutions. Unlike the direct quartic solvers our method never computes geometrically invalid or duplicate solutions.

Extensive evaluation on synthetic data shows that the new solver has better nu merical accuracy and is faster compared to the state-of-the-art P3P implementa tions. Implementation and benchmark are available on github.

Keywords: P3P · PnP · Visual Odometry · Camera Geometry

#### 1 Introduction

Pose estimation from projective observations of known model points, also known as the Perspective n-point Problem (PnP), is extensively used in geometric computer vision systems. In particular, finding the camera pose (orientation and position) from observations of n 3D points in relation to a world coordinate system is often the first step in visual odometry and augmented reality systems[12,7]. It is also an important part in structure from motion and reconstruction of unordered images [1]. The minimal PnP case with a finite number of solutions requires three (n=3) observations in a nonde generate configuration and is known as the P3P problem (Figure 1).

We are concerned with the latency and accuracy critical scenarios of odometry on low power hardware and AR/VR. Since both latency and localization errors independently not only break immersion, but also cause nausea, accurate solutions and minimal latency are crucial. As an example application, vision based localization for AR/VR places a few markers/beacons on a target, which are then found using a high speed camera. Ideally we would then solve the pose directly on chip without sending the full image stream elsewhere, mandating minimal cost. Further, because the markers are placed on a small area and the camera is of relatively low resolution, the markers are close to each other, meaning numerical issues due to near degenerate cases are common and the algorithm must be robust. The experiments will show that we have made substantial progress on both speed and accuracy compared to state-of-the-art

#### Persson 2019

A P3P problem solver Lambda Twist: An Accurate Fast Robust Perspective parameters as a linear Three Point (P3P) Solver.

NAKANO: SIMPLE DIRECT SOLUTION TO P3P PROBLEM

#### A Simple Direct Solution to the Perspective-Three-Point Problem

g-nakano@cg.ip.nec.com

Central Research Labs Kawasaki, Japan

#### Abstract

This paper proposes a new direct solution to the perspective-three-point (P3P) prob lem based on an algebraic approach. The proposed method represents the rotation ma-trix as a function of distances from the camera center to three 3D points, then, finds the distances by utilizing the orthogonal constraints of the rotation matrix. The formulation can be simply written because it relies only on some simple concepts of linear algebra. According to synthetic data evaluations, the proposed method gives the secondbest performance against the state-of-the-art methods on both numerical accuracy and computational efficiency. In particular, the proposed method is the fastest among the quartic-equation based solvers. Moreover, the experimental results imply that the P3P problem still has an arguable issue on numerical stability regarding a point distribution

#### 1 Introduction

The perspective-three-point (P3P) problem, also known as the absolute camera pose estima tion problem, is one of the most classical and fundamental problems in computer vision that determines the pose of a calibrated camera, i.e. the rotation and the translation, from three pairs of 3D point and its projection on the image plane. Since Grunert [1] gave the first solution in 1841, the P3P problem has been widely investigated [5, 5, 5] and extended to mo complex camera pose estimation problems, e.g. for least squares case with n points (the PnF as focal length or lens distortion (the P3.5P [ ] P4P[ ] B. P5P [ ] PnPf [ ] and

Classical methods for the P3P problem [8, 8] consist of two steps: first, find the distances between the camera center and the given three 3D points; then, estimate the camera pose by solving an alignment problem of two triangles. The first step formulates a quartic equation with respect to one of the three distances by eliminating the other two based on the law of cosines. After finding the roots of the quartic equation, the second step solves the alignment problem, which is a rigid transformation between two triangles, by using a 4 × 4 eigenvalue decomposition or  $3 \times 3$  singular value decomposition. Due to operations of the matrix decomposition, the numerical accuracy of the final solution becomes low despite its time-consuming processing.

© 2019. The copyright of this document resides with its authors It may be distributed unchanged freely in print or electronic forms

#### Nakano 2019

A Simple Direct Solution to the Perspective-Three-Point Problem

# Orienting a calibrated camera by using > 3 control points

# **Spatial Resection Iterative Solution**

### **Overview: Iterative Solution**

- Over determined system with I>3
- No direct solution but iterative LS
- Main steps
  - Build the system of observation equations
  - Measure image points  $x_i, i = 1, \dots I$
  - Estimate initial solution  $R, oldsymbol{X}_o 
    ightarrow oldsymbol{x}^{(0)}$
  - Adjustment
    - Linearizing
    - **Estimate extrinsic parameter**  $\widehat{x}$
    - Iterate until convergence

# Summary

- P3P estimates the position and heading of a calibrated camera given control points
- Required ≥3 control points
- Direct solution
  - Fast
  - Suited for outlier detection with RANSAC
- Statistically optimal solution using iterative least squares
  - Uses all available points
  - Assumes no outliers
  - Allows for accuracy assessments