I. Déterminer complètement un triangle à partir d'au moins 3 informations

Dans toute cette partie on considère un triangle ABC. Pour abréger, on utilise les notations suivantes : $\alpha = BC$, b = AC, c = AB, $\alpha = \widehat{BAC}$, $\beta = \widehat{ABC}$, $\gamma = \widehat{ACB}$

Théorème. Loi des cosinus, ou formule d'Al-Kashi

Dans un triangle *ABC* on a par exemple :

$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$

Par symétrie, les lettres peuvent être permutées :

$$b^2 = a^2 + c^2 - 2ac \cos \beta$$

 $c^2 = a^2 + b^2 - 2ab\cos\gamma$

Théorème. Somme des angles. Dans un triangle *ABC* on a : $\alpha + \beta + \gamma = \pi$ rad.

Idée générale. Pour déterminer complètement un triangle à partir de 3 informations, on utilise ces trois théorèmes.

Méthode. Si on connait par exemple b,c et α : Pour trouver a on obtient a^2 par la loi des cosinus et on applique $\sqrt{\ldots}$. Pour trouver β on isole $\sin \beta$ dans $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$ puis on applique $\sin^{-1} \ldots$. Pour trouver γ on résout $\alpha + \beta + \gamma = \pi$

Exemple A.1. Soit un triangle ABC tel que AB=8 cm, AC=4 cm et $\widehat{BAC}=\frac{\pi}{3}$ rad. Déterminer BC.

$$c = 8$$
; $b = 4$; $\alpha = \frac{\pi}{3}$. On cherche $a = BC$. $a = \sqrt{b^2 + c^2 - 2bc\cos(\alpha)} \approx 6{,}93$. Donc $BC \approx 6{,}93$ cm.

Exemple A.2. Soit un triangle DEF tel que DE = 8, EF = 10 et $\widehat{DEF} = \frac{\pi}{5}$ rad. Déterminer la longueur DF.

B. A partir de la longueur de deux côtés et d'un autre angle

Méthode. Si on connait par exemple b,c et β : On isole $\sin \gamma$ dans $\frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$ puis on applique \sin^{-1} in pour trouver γ . On utilise $\alpha + \beta + \gamma = \pi$ pour trouver α puis on résout α dans $\frac{b}{\sin \beta} = \frac{a}{\sin \alpha}$. (Ou la loi des cosinus)

Exemple B.1. Soit un triangle ABC tel que AB=5 cm, AC=7 cm et $\widehat{ABC}=\frac{\pi}{4}$. Déterminer BC.

$$c=5$$
; $b=7$; $\beta=\frac{\pi}{4}$. On cherche $\alpha=BC$.

Par la loi des sinus, $\frac{b}{\sin\beta} = \frac{c}{\sin\gamma} \operatorname{donc} \frac{7}{\frac{\sqrt{2}}{2}} = \frac{5}{\sin\gamma} \operatorname{donc} \sin\gamma = \frac{5}{7} \frac{\sqrt{2}}{2} \operatorname{donc} \gamma \approx \sin^{-1} \left(\frac{5}{7} \frac{\sqrt{2}}{2}\right) \approx 0,529 \, \mathrm{rad}$

Donc $\alpha = \pi - \beta - \gamma \approx 1,826$. Par la loi des sinus $a = \frac{b}{\sin \beta} \sin \alpha \approx 7,50$. Donc $BC \approx 7,50$ cm

Exemple B.2.

C. A partir des longueurs des 3 côtés

Méthode. Pour trouver un angle α du triangle, on utilise la loi des cosinus, on isole $\cos \alpha$ puis on applique \cos^{-1}

Exemple C.1. Soit un triangle ABC tel que AB = 3, BC = 4 et AC = 6. Déterminer l'angle \widehat{BAC} .

$$c=3$$
; $a=4$; $b=6$. On cherche $\alpha=\widehat{BAC}$.

Par la loi des cosinus
$$\frac{a^2-b^2-c^2}{-2bc}=\cos(\alpha)$$
. Donc $\alpha=\cos^{-1}\left(\frac{a^2-b^2-c^2}{-2bc}\right)\approx$

Exemple C.2.

D. A partir de la longueur d'un côté et de deux angles

Méthode. Si on connaît par exemple α , β et α , alors on utilise $\alpha + \beta + \gamma = \pi$ pour trouver γ .

On résout $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$ pour trouver b et on résout $\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma}$ pour trouver c.

Exemple D.1. Soit un triangle ABC tel que AB = 10, $\widehat{ABC} = \frac{\pi}{3}$ et $\widehat{BAC} = \frac{\pi}{4}$. Déterminer BC et AC.

$$c=10$$
 ; $\beta=\frac{\pi}{3}$; $\alpha=\frac{\pi}{4}$. On cherche α et β . On a $\alpha+\beta+\gamma=\pi$. Donc $\gamma=\pi-\alpha-\beta=\frac{5\pi}{12}\approx 1{,}309$

Par la loi des sinus, $a=\frac{c}{\sin\gamma}\sin(\alpha)\approx 7{,}32$ et $b=\frac{c}{\sin\gamma}\sin(\beta)\approx 8{,}97$. Donc $BC\approx 7{,}32$ cm et $AC\approx 8{,}97$ cm

Exemple D.2.

II. Calculer le produit scalaire de deux vecteurs à partir de leur longueur et de l'angle entre eux.

Rappel. Produit scalaire (définition algébrique).

$$\vec{u} \cdot \vec{v} = xx' + yy'$$

Rappel. (1ère identité remarquable).

$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\vec{u} \cdot \vec{v}$$

Rappel. (2ème identité remarquable).

$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\vec{u} \cdot \vec{v}$$

Propriété. Formulation vectorielle de la loi des cosinus.

$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\|\vec{u}\|\|\vec{v}\|\cos(\widehat{\vec{u}}; \widehat{\vec{v}})$$

Les deux lignes précédentes entraînent la conséquence suivante :

Propriété. Produit scalaire (définition géométrique).

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos(\widehat{\vec{u};\vec{v}})$$

Si
$$\vec{u} = \overrightarrow{AB}$$
 et $\vec{v} = \overrightarrow{AC}$, alors :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC})$$

Exemple 1. Soit deux vecteurs \overrightarrow{AB} et \overrightarrow{AC} tels que AB = 2 et AC = 3 et $\widehat{BAC} = 30^\circ$. Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$

Exemple 2.

III. Projeter un vecteur dans une direction donnée

Propriété (Interprétation géom.) $\overrightarrow{AB} \cdot \overrightarrow{AC} = \pm AB \times AH$ où H est le projeté orthogonal de C sur la droite (AB).

Le signe est + si \overrightarrow{AH} est de même sens que \overrightarrow{AB} , et - sinon. La propriété découle du fait que $AH = \pm AC \times \cos(\widehat{BAC})$

Ici $\vec{u} = \overrightarrow{AB}$ et \overrightarrow{AH} sont dans le même sens, donc

Ici $\vec{u} = \overrightarrow{AB}$ et \overrightarrow{AH} sont dans des sens opposés, donc

Methode. Pour calculer la composante d'un vecteur \vec{v} dans une direction \vec{u} , on calcule $\vec{v} \cdot \left(\frac{\vec{u}}{\|\vec{u}\|}\right)$

Quand le vecteur \vec{u} est déjà de norme 1, on calcule $\vec{v} \cdot \vec{u}$.

Exemple 1. Une piste de ski est représentée par une droite qui descend vers la droite avec une pente de 45°. Un skieur de 70 kg, subit son poids comme une force \vec{F} d'environ 700 N vers le bas, donc $\vec{F} = \begin{pmatrix} 0 \\ -700 \end{pmatrix}$.

Calculer la composante du poids du skieur, le long de la pente descendante.

On cherche un vecteur directeur \vec{u} de la pente descendante.

$$\vec{u} = \begin{pmatrix} \cos(-45^\circ) \\ \sin(-45^\circ) \end{pmatrix}$$
 convient, et sa norme est 1 puisque pour tout x , $\cos^2 x + \sin^2 x = 1$.

La composante de \vec{F} dans la direction \vec{u} est donc $\vec{F} \cdot \vec{u} = -700 \sin(-45^\circ) = +700 \frac{\sqrt{2}}{2} \approx 500 \, N$.

Exemple 2.