CONTROL METHODS

Contents

Method#01 - Optimal control: Linear quadratic (LQ) trajectory-	
tracking problem	2
Method#02 - PID control: Tuning PID controller of the LTI, SISO	
system	4
Method#03 - H infinity control: LTI system	8
References	C

Method#01 - Optimal control: Linear quadratic (LQ) trajectory-tracking problem

Let's consider a linear time-variant 1st order dynamic system

$$\dot{x} = ax + u + \tilde{f},$$

$$y = x + du.$$
(1.01)

The tracking error for the dynamic system (1.01) in time t is

$$e(t) = y - z$$
, (1.02)

The control criterion is

$$J = \frac{1}{2} \cdot f \cdot \left((x(T) - z(T))^2 + \frac{1}{2} \cdot \int_0^T (q \cdot e^2 + r \cdot u^2) dt \right)$$
 (1.03)

The matrix differential **Riccati equation** and a solution of the solution of the linear vector differential equation are (see [1])

$$\dot{k} = m \cdot k - 2 \cdot l \cdot k - s,
\dot{g} = (k \cdot m - l) \cdot g + (k \cdot n - w) \cdot z + k \cdot \tilde{f}.$$
(1.04)

The boundary condition for the equations (1.04) is

$$k(T) = f,$$

$$g(T) = f \cdot z(T).$$

The matrices of equations (1.04) are

$$l = a - q \cdot d / (1 + q \cdot d^{2}),$$

$$m = 1 / (1 + q \cdot d^{2}),$$

$$n = q \cdot d / (1 + q \cdot d^{2}),$$

$$s = q - q^{2} \cdot d^{2} / (1 + q \cdot d^{2}),$$

$$w = q - q^{2} \cdot d^{2} / (1 + q \cdot d^{2}).$$

The **optimal control** of the dynamic system (1.01) with the quadratic criterion (1.03) is

$$u^* = \frac{(g + q \cdot d \cdot z - (k + q \cdot d) \cdot x)}{(r + q \cdot d^2)} . \tag{1.05}$$

Case study - Input data

$$T = 8.5 \quad (s)$$

$$a = -1, d = 1, \tilde{f} = 1,$$

$$f = 0.5, q = 50, r = 0.5$$

$$z(t) = 0.25 p^3 + 0.75 p^2 - 1.5 p - 2, p \in [-5, 3.5].$$

Case study - Simulation results

Figure 1.01 - Desired and current trajectories

Figure 1.02 - Tracking error

Method#02 - PID control: Tuning PID controller of the LTI, SISO system

Let's consider the following UAV stabilization system

Fig.2.01 - Functional block-diagram of the UAV stabilization system

Assumptions

Measurement noise & errors of the Gyro and Accelerometer aren't taking into account in the model: $W_{\rm gyro}(s)=1$, $W_{\rm accel}(s)=1$.

...

PID controller

$$\delta(t) = K_P e(t) + K_D \omega_z(t) + K_I \int_0^T e(t) dt , \qquad (2.01)$$

Actuator

$$W_{act} = \frac{1}{T_{act}s + 1},$$
 (2.02)

where $T_{act} = \frac{1}{K_{act}}$ is actuator time constant, $K_{act} = 20$.

UAV dynamics

$$W_{\delta}^{\omega_{z}} = \frac{K(T_{1}s+1)}{T_{2}^{2}s^{2} + 2\xi T_{2} + 1}, \ W_{\omega_{z}}^{\dot{\theta}} = \frac{1}{T_{1}s+1}, W_{\dot{\theta}}^{n_{y}} = \frac{V}{g}, \tag{2.03}$$

Where

$$K = 1$$
,
 $T_1 = 0.7 (s)$, $T_2 = 0.5 (s)$,
 $\xi = 0.3$.

1st step - Initial PID coefficients load into Workspace

```
Command Window

>> clear all, close all
>> uiopen('D:\! MATLAB\!GitHub\Control\!done\2_PID\C02_PID_tuning_SISO.slx',1)
>> Kp = 0.35; Kd = -0.65; Ki = 0.06;
fx
>> |
```

$2^{\rm nd}$ step - Main characteristics of step response

- Overshoot is calculated is 100%*[max(output value) - final value]/final value. Recommended value is 15...20%
- <u>Settling time</u> is the time it takes for the output signal to enter the error band)
- Rise time it depends on inertia characteristics of an UAV

Block Parameters: Check Step Response Characteristics (tuning PID controller)						
Check Step Response Characteristics						
Assert that the input signal satisfies bounds specified by step response characteristics.						
Bounds Assertion						
☑ Include step response bound in assertion						
Step time (seconds):	0					
Initial value:	0	Final value:	20]		
Rise time (seconds):	1	% Rise:	90]		
Settling time (seconds):	3	% Settling:	1]		
% Overshoot:	20	% Undershoot:	1			
☑ Enable zero-crossing detection						
Show Plot Show plot on block open Response Optimization						
②	OK	Cancel	Help Appl	у		

3td step - Response Optimization setting

4th step - Optimize

5th step - Analysis of the optimization results

Method#03 - H infinity control: LTI system

...coming soon...

References

[1] V.Bobronnikov & M.Trifonov. Solving of the some special control problems of launch vehicle at the initial flight part using the AKOR method. In *AIP Conference Proceedings*. Vol.2318, No. 1, p. 110003. AIP Publishing LLC. 2021.