Exponent Rules Review Worksheet

NOTE: Anything to the zero power equals 1!

Product Rule: When multiplying monomials that have the same base, add the exponents.

$$x^m \cdot x^n = x^{m+n}$$

Example 1: $x \cdot x^3 \cdot x^4 = x^{1+3+4} = x^8$ Example 2: $(2x^2y)(-3x^3y^4) = 2 \cdot (-3) \cdot x^2 \cdot x^3 \cdot y \cdot y^4 = -6x^5y^5$

Power Rule: When raising monomials to powers, multiply the exponents.

$$\left(x^{m}\right)^{n}=x^{m\cdot n}$$

Example 4:
$$(2x^3yz^2)^3 = 2^3 x^{3 \cdot 3} y^3 z^{2 \cdot 3} = 8x^9y^3z^6$$

Quotient Rule: When dividing monomials that have the same base, subtract the exponents.

$$\frac{x^m}{x^n} = x^{m-n}$$

Example 5:
$$\frac{x^3}{x^{-2}} = x^{3-(-2)} = x^5$$

Example 6:
$$\frac{5^6}{5^2} = 5^{6-2} = 5^2$$

Example 5:
$$\frac{x^3}{x^{-2}} = x^{3-(-2)} = x^5$$
 Example 6: $\frac{5^6}{5^2} = 5^{6-2} = 5^4$ Example 7: $\frac{36m^3n^5}{-9mn^4} = \frac{36}{-9} \cdot \frac{m^3}{m} \cdot \frac{n^5}{n^4} = -4m^2n$

Simplify each of the following. Copy the problem. Work on your own paper.

1)
$$a \cdot a^2 \cdot a^3$$

2)
$$(2a^2b)(4ab^2)$$

3)
$$(6x^2)(-3x^5)$$

4)
$$b^3 \cdot b^4 \cdot b^7 \cdot b$$

3)
$$(6x^2)(-3x^5)$$
 4) $b^3 \cdot b^4 \cdot b^7 \cdot b$ 5) $(3x^3)(3x^4)(-3x^2)$

6)
$$(2x^2y^3)^2$$

7)
$$(5x^2y^4)^3$$

7)
$$(5x^2y^4)^3$$
 8) $(6x^4y^6)^3$ 9) $(4x^3y^3)^3$ 10) $(7xy)^2$

9)
$$(4x^3y^3)^3$$

10)
$$(7xy)^2$$

11)
$$\frac{x^3}{x}$$

12)
$$\frac{18c^3}{-3c^2}$$

13)
$$\frac{9a^3b^5}{-3ab^2}$$

13)
$$\frac{9a^3b^5}{-3ab^2}$$
 14) $\frac{-48c^2d^4}{-8cd}$ 15) $\frac{22y^6z^8}{2yz^{-7}}$

$$15) \quad \frac{22y^6z^8}{2yz^{-7}}$$

16)
$$x^2 \cdot x^7$$

17)
$$(x^2)^7$$

18)
$$\left(-2x^4\right)^5$$

18)
$$\left(-2x^4\right)^5$$
 19) $2x^3 + 7x^3$

21)
$$8x^0$$

$$22) -3^4$$

23)
$$(-3)^4$$

24)
$$6x^0y^8 - (2y^2)^4$$

23)
$$(-3)^4$$
 24) $6x^0y^8 - (2y^2)^4$ 25) $(x+2y)(x-2y)$

26)
$$\frac{2x^3}{-8x^4}$$

27)
$$\frac{xy^7}{x^3y^4}$$

28)
$$6x^5 \cdot 3x^5 \cdot x^0$$
 29) $(3st^{12})^3$

29)
$$(3st^{12})^3$$

$$30) \left(\frac{3m^2n^7}{m}\right)^5$$

Exponent Rules Review Worksheet

NOTE: Anything to the zero power equals 1!

Product Rule: When multiplying monomials that have the same base, add the exponents.

$$x^m \cdot x^n = x^{m+n}$$

Example 1: $x \cdot x^3 \cdot x^4 = x^{1+3+4} = x^8$ Example 2: $(2x^2y)(-3x^3y^4) = 2 \cdot (-3) \cdot x^2 \cdot x^3 \cdot y \cdot y^4 = -6x^5y^5$

Power Rule: When raising monomials to powers, multiply the exponents.

$$\left(x^{m}\right)^{n}=x^{m\cdot n}$$

Example 4:
$$(2x^3yz^2)^3 = 2^3 x^{3 \cdot 3} y^3 z^{2 \cdot 3} = 8x^9y^3z^6$$

Quotient Rule: When dividing monomials that have the same base, subtract the exponents.

$$\frac{x^m}{x^n} = x^{m-n}$$

Example 5:
$$\frac{x^3}{x^{-2}} = x^{3-(-2)} = x^5$$

Example 6:
$$\frac{5^6}{5^2} = 5^{6-2} = 5^2$$

Example 5:
$$\frac{x^3}{x^{-2}} = x^{3-(-2)} = x^5$$
 Example 6: $\frac{5^6}{5^2} = 5^{6-2} = 5^4$ Example 7: $\frac{36m^3n^5}{-9mn^4} = \frac{36}{-9} \cdot \frac{m^3}{m} \cdot \frac{n^5}{n^4} = -4m^2n$

Simplify each of the following. Copy the problem. Work on your own paper.

1)
$$a \cdot a^2 \cdot a^3$$

2)
$$(2a^2b)(4ab^2)$$

3)
$$(6x^2)(-3x^5)$$

4)
$$b^3 \cdot b^4 \cdot b^7 \cdot b$$

3)
$$(6x^2)(-3x^5)$$
 4) $b^3 \cdot b^4 \cdot b^7 \cdot b$ 5) $(3x^3)(3x^4)(-3x^2)$

6)
$$(2x^2y^3)^2$$

7)
$$(5x^2y^4)^3$$

7)
$$(5x^2y^4)^3$$
 8) $(6x^4y^6)^3$ 9) $(4x^3y^3)^3$ 10) $(7xy)^2$

9)
$$(4x^3y^3)^3$$

10)
$$(7xy)^2$$

11)
$$\frac{x^3}{x}$$

12)
$$\frac{18c^3}{-3c^2}$$

13)
$$\frac{9a^3b^5}{-3ab^2}$$

13)
$$\frac{9a^3b^5}{-3ab^2}$$
 14) $\frac{-48c^2d^4}{-8cd}$ 15) $\frac{22y^6z^8}{2yz^{-7}}$

$$15) \quad \frac{22y^6z^8}{2yz^{-7}}$$

16)
$$x^2 \cdot x^7$$

17)
$$(x^2)^7$$

18)
$$\left(-2x^4\right)^5$$

18)
$$\left(-2x^4\right)^5$$
 19) $2x^3 + 7x^3$

21)
$$8x^0$$

$$22) -3^4$$

23)
$$(-3)^4$$

24)
$$6x^0y^8 - (2y^2)^4$$

23)
$$(-3)^4$$
 24) $6x^0y^8 - (2y^2)^4$ 25) $(x+2y)(x-2y)$

26)
$$\frac{2x^3}{-8x^4}$$

27)
$$\frac{xy^7}{x^3y^4}$$

28)
$$6x^5 \cdot 3x^5 \cdot x^0$$
 29) $(3st^{12})^3$

29)
$$(3st^{12})^3$$

$$30) \left(\frac{3m^2n^7}{m}\right)^5$$