Question Number	Answer	Mark
18(a)	Use of appropriate trigonometry $v_x = 32 \text{ m s}^{-1} \text{ and } v_y = 15 \text{ m s}^{-1}$ $\underline{\text{Example of calculation}}_{v_x = 35 \text{ m s}^{-1} \times \cos 25^\circ = 31.7 \text{ m s}^{-1}}_{v_y = 35 \text{ m s}^{-1} \times \sin 25^\circ = 14.8 \text{ m s}^{-1}}$ (1)	2

18(b)			
	Use of $s = u_x t$ to find time taken to travel 100 m horizontally	(1)	
	Use of $s = u_y t + \frac{1}{2} a t^2$ with $a = -g$ to find distance fallen in time t Accept other correct SUVAT methods	(1)	
	Distance fallen = 2.1 m	(1)	
	Conclusion consistent with comparison of student's values, e.g. 2.1 m < 3.0 m so rider lands on other side of river	(1)	
	Or		
	Use of correct SUVAT method with $a = -g$ to find time to descend by 3 m.	(1)	
	Use of $s = u_x t$ to find horizontal distance travelled in time t .	(1)	
	Distance travelled = 102 m	(1)	
	Conclusion consistent with comparison of student's values	(1)	
	Or		
	Use of $s = u_x t$ to find time taken to travel 100 m horizontally	(1)	
	Use of correct SUVAT method with $a = -g$ to find time to descend by 3 m.	(1)	
	Time = 3.21 s	(1)	
	Conclusion consistent with comparison of student's values, e.g. $3.15 \text{ s} < 3.21 \text{ s}$ so rider lands on other side of river		
		(1)	4
	Example of calculation		
	time taken to travel $100 \text{ m} = 100 \text{ m} \div 31.7 \text{ m s}^{-1} = 3.15 \text{ s}$ vertical displacent = $14.8 \times 3.15 - 0.5 \times 9.81 \times 3.15^2 = -2.12 \text{ m}$		
	2.1 m $<$ 3.0 m, so rider lands on other side of river		