CS5340: Uncertainty Modeling in AI

Tutorial 1: Solutions

Released: Jan. 20, 2023

Problem 1. (Two Numbers Game)

Consider the following game involving two teams:

Team 1:

- 1. Pick 2 different numbers between 0 and 10, inclusive.
- 2. Write each number on a piece of paper each.
- 3. Turn the papers face down.

Team 2: Objective is to pick the larger number.

- 1. Pick one of the pieces of paper.
- 2. Have a peek at the number.
- 3. Decides to keep the number or switch.

Problem 1.a. Can Team 2 win more than 50% of the time? If so, what should their strategy be?

Solution: Yes, Team 2 can win more than 50% of the time. They key thing to note is that Team 1 is forced to select 2 different numbers.

Team 2's strategy should be:

- Pick a number $z \in [0, 10)$ at random
- \bullet Take a peek at one of the numbers, and we call that number x
- if $x \leq z$ switch, otherwise stick with x.

Why does this strategy work? For the full explanation, please see the tutorial slides.

Problem 1.b. How can Team 1 minimize the win percentage of Team 2?

Solution: Team 1 can minimize the win percentage of Team 2 by selecting two numbers that are next to one another (if Team 2 is following the strategy above). For example, 2 and 3. Try to reason out why this strategy works.

Problem 2. (Legal Reasoning)

(Source: Kevin Murphy, Machine Learning, Chapter 2. Original Source: Peter Lee)

Suppose a crime has been committed and blood is found at a scene. The blood type is present in only 1% of the population. The prosecutor claims: "There is a 1% chance that the defendant would have the crime blood type if he were innocent. Thus, there is a 99% chance that he is guilty!" Is the prosecutor correct? If not, what is wrong with this argument?

 Hint : Let the event 'person has blood of this type' and event B be the event 'person is innocent'.

Solution: The mistake is assuming that the posterior is equal to the likelihood. More precisely, let the event A be the event 'person has blood of this type' and event B be the event 'person is innocent'. The prosecutor has quoted p(A|B) when what we want is p(B|A). In general $p(A|B) \neq p(B|A)$ This is known as the **prosecutor's fallacy**.

Problem 3. (Conjugate Distributions)

Problem 3.a. (Beta-Binomial) Show that the Beta distribution is conjugate to the Binomial distribution. Suppose we have $x \sim \text{Bin}(n, \pi), \pi \sim \text{Beta}(\alpha, \beta)$, then

$$p(x|n,\pi) = \binom{n}{x} \pi^x (1-\pi)^{n-x} \tag{1}$$

$$p(\pi|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} \pi^{\alpha-1} (1-\pi)^{\beta-1}$$
 (2)

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)} = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt$$
 (3)

Solution:

Posterior:
$$p(\pi|x,n) = \frac{p(x|n,\pi)p(\pi|\alpha,\beta)}{\int p(x|n,t)p(t|\alpha,\beta)dt}$$
 (4)

$$= \frac{\binom{n}{x} \pi^{x} (1-\pi)^{n-x} \pi^{\alpha-1} (1-\pi)^{\beta-1} / B(\alpha,\beta)}{\int_{t=0}^{t=1} \binom{n}{x} t^{x} (1-t)^{n-x} t^{\alpha-1} (1-t)^{\beta-1} / B(\alpha,\beta)) dt}$$
 (5)

$$= \frac{\pi^{\alpha+x-1}(1-\pi)^{\beta+n-x-1}}{B(\alpha+x,\beta+n-x)} \text{ which is Beta}(\alpha+x,\beta+n-x).$$
 (6)

Problem 3.b. (Normal with unknown mean, Challenge) Show that the (univariate) Normal distribution is conjugate to the (univariate) Normal distribution with unknown mean, but known variance. Let the known variance be σ^2 and denote the observed data $\{x_1, \ldots, x_n\}$ as \mathcal{X} . The prior and likelihood distributions are given by

$$p(\mu) = \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\left\{-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right\}$$
 (7)

$$p(\mathcal{X}|\mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x_i - \mu)^2}{2\sigma^2}\right\}$$
(8)

Solution: From Bayes rule, we have

$$p(\mu|\mathcal{X}) \propto p(\mathcal{X}|\mu)p(\mu)$$
 (9)

Substituting Eqs. (7) and (8) in Eq. (9) and dropping the terms constant w.r.t. μ we get

$$p(\mu|\mathcal{X}) \propto \exp\left\{-\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\sigma^2}\right\} \cdot \exp\left\{-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right\}$$
 (10)

$$p(\mu|\mathcal{X}) \propto \exp\left\{-\left[\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\sigma^2} + \frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right]\right\}$$
 (11)

$$p(\mu|\mathcal{X}) \propto \exp\left\{-\left[\sum_{i=1}^{n} \frac{x_i^2 - 2x_i\mu + \mu^2}{2\sigma^2} + \frac{\mu^2 - 2\mu\mu_0 + \mu_0^2}{2\sigma_0^2}\right]\right\}$$
(12)

Again, dropping the terms constant w.r.t. μ

$$p(\mu|\mathcal{X}) \propto \exp\left\{-\left[\frac{n\mu^2 - 2n\bar{x}\mu}{2\sigma^2} + \frac{\mu^2 - 2\mu\mu_0}{2\sigma_0^2}\right]\right\}$$
 (13)

$$p(\mu|\mathcal{X}) \propto \exp\left\{-\left[\frac{2\mu^2(n\sigma_0^2 + \sigma^2) - 4\mu(n\bar{x}\sigma_0^2 + \mu_0\sigma^2)}{4\sigma^2\sigma_0^2}\right]\right\}$$
 (14)

Dividing numerator and denominator by $2(n\sigma_0^2 + \sigma^2)$

$$p(\mu|\mathcal{X}) \propto \exp\left\{ -\left[\frac{\mu^2 - 2\mu \frac{(n\bar{x}\sigma_0^2 + \mu_0\sigma^2)}{(n\sigma_0^2 + \sigma^2)}}{\frac{2\sigma^2\sigma_0^2}{(n\sigma_0^2 + \sigma^2)}} \right] \right\}$$
(15)

Adding and subtracting $\left(\frac{(n\bar{x}\sigma_0^2+\mu_0\sigma^2)}{(n\sigma_0^2+\sigma^2)}\right)^2$ to complete the square

$$p(\mu|\mathcal{X}) \propto \exp \left\{ -\frac{1}{2} \left[\frac{\mu^2 - 2\mu \frac{(n\bar{x}\sigma_0^2 + \mu_0\sigma^2)}{(n\sigma_0^2 + \sigma^2)} + \left(\frac{(n\bar{x}\sigma_0^2 + \mu_0\sigma^2)}{(n\sigma_0^2 + \sigma^2)} \right)^2 - \left(\frac{(n\bar{x}\sigma_0^2 + \mu_0\sigma^2)}{(n\sigma_0^2 + \sigma^2)} \right)^2}{\frac{\sigma^2 \sigma_0^2}{(n\sigma_0^2 + \sigma^2)}} \right] \right\}$$
(16)

Again, dropping the terms constant w.r.t. μ

$$p(\mu|\mathcal{X}) \propto \exp\left\{-\frac{1}{2} \left[\frac{\left(\mu - \frac{(n\bar{x}\sigma_0^2 + \mu_0\sigma^2)}{(n\sigma_0^2 + \sigma^2)}\right)^2}{\frac{\sigma^2\sigma_0^2}{(n\sigma_0^2 + \sigma^2)}} \right] \right\}$$

$$(17)$$

From Eq. (17) it can be seen that the posterior distribution has the form of a Normal distribution with updated parameters $\left(\frac{(n\bar{x}\sigma_0^2 + \mu_0\sigma^2)}{(n\sigma_0^2 + \sigma^2)}, \frac{\sigma^2\sigma_0^2}{(n\sigma_0^2 + \sigma^2)}\right)$. These particular forms don't give us much insight so it is useful to transform them into an appropriate form; for this and an alternative derivation, see Murphy's Conjugate Bayesian analysis of the Gaussian distribution (available in our Extra Readings).

Problem 4. (Variance of a Sum)

(Source: Kevin Murphy, Machine Learning, Chapter 2.)

We learnt that the expectation of a sum is equal to the sum of the expectations. In this exercise, we consider the variance:

$$\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Show that the variance of a sum of two random variables is:

$$\mathbb{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y] + 2\mathrm{Cov}[X,Y]$$

where Cov[X, Y] is the covariance of X and Y,

$$Cov[X, Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Extra: What happens to the variance sum formula above when the random variables X and Y are independent?

Solution:

$$V[X+Y] = \mathbb{E}[(X+Y)^2] - (\mathbb{E}[X+Y])^2 \tag{18}$$

$$= \mathbb{E}[X^2 + Y^2 + 2XY] - (\mathbb{E}[X] + \mathbb{E}[Y])^2$$
 (19)

$$= \mathbb{E}[X^2] + \mathbb{E}[Y^2] + 2\mathbb{E}[XY] - \mathbb{E}[X]^2 - \mathbb{E}[Y]^2 - 2\mathbb{E}[X]\mathbb{E}[Y]$$
 (20)

$$= \mathbb{V}[X] + \mathbb{V}[Y] + 2\operatorname{Cov}[X, Y] \tag{21}$$