## MOTOR BRAKE DEVICE FOR ROBOT

Publication number: JP2000296492

**Publication date:** 

2000-10-24

Inventor: **Applicant:**  SHIMOGAMA SHIGERU; MUTO TAIDO MATSUSHITA ELECTRIC IND CO LTD

Classification:

- international:

H02P3/04; H02K7/106; H02P3/00; H02K7/10; (IPC1-7):

B25J19/00; H02K7/106

- european:

H02P3/04

Application number: JP19990107912 19990415 Priority number(s): JP19990107912 19990415

Also published as:



**閲 US6294887 (B1)** 

Report a data error here

### Abstract of JP2000296492

PROBLEM TO BE SOLVED: To reduce the weight and size by connecting a commercial power supply to an input side, connecting coils for an electromagnetic brake to an output side, arranging a rectifying device between one end of the input side and one end of the output side, and arranging a switchgear between the other end of the input side and the other end of the output side. SOLUTION: A motor brake power supply feed part 7 closes a motor brake releasing switch contact 7-a, or a switchgear as necessary and a power supply halfwave rectified using a diode 7b, or a rectifying device is fed to coils 4-to 4n (n is a number of coils present) of an electromagnetic brake for locking a motor shaft so that the lock of the motor shaft is released. The power supply formed by rectifying the commercial power supply by the rectifying device is used as the power source of the electromagnetic brake and the power supply is turned on/off via a motor brake releasing switch contact so that this device can save the space and be economical.



Data supplied from the esp@cenet database - Worldwide

### (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-296492 (P2000-296492A)

(43)公開日 平成12年10月24日(2000.10.24)

(51) Int.Cl.7

酸別記号

FΙ

テーマコート\*(参考)

B 2 5 J 19/00 H 0 2 K 7/106 B 2 5 J 19/00 H 0 2 K 7/106 C 3F060 5H607

審査請求 未請求 請求項の数5 OL (全 7 頁)

(21)出願番号

特願平11-107912

(22)出願日

平成11年4月15日(1999.4.15)

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 下釜 茂

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 武藤 泰道

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 100097445

弁理士 岩橋 文雄 (外2名)

Fターム(参考) 3F060 CB33

5H607 BB01 CC01 CC03 EE08 FF01

### (54) 【発明の名称】 ロボットのモータプレーキ装置

### (57) 【要約】

【課題】 モータ軸をロックする電磁ブレーキの解放電源部とモータ駆動表示灯電源部とが異電圧のため、独立した回路となっており、それぞれに絶縁トランス(主に降圧用)と全波整流用のダイオードブリッジと回路を同期してON/OFFするための接点とをそれぞれ別々に要し、軽量化、低価格化ができなかった。

【解決手段】 モータをロックする電磁ブレーキ解除回路と解除状態を示す表示灯回路を1つのつながった回路とし、かつ両回路のON/OFFを1ケのスイッチ接点で行うことで、省スペース、経済性、安全性を確保するモータブレーキ解除装置。

| --- 商用電源 41~4n--- 電歌プレーキの⊐イル 7··・モータプレーキ電源供給部 7a··・モータプレーキ解放用スイッチ接点 7b··- ダイオー・・



【特許請求の範囲】

【請求項1】 商用電源を入力側に接続し、出力側に電磁プレーキのコイルを接続し、該入力側の一端と出力側の一端の間に整流素子を配置するとともに該入力側の他端と出力側の他端の間に開閉素子を配置したモータブレーキ電源供給部を有するロボットのモータブレーキ装置。

1

【請求項2】 商用電源を入力側に接続し、出力側に電磁ブレーキのコイルを接続し、該入力側の一端と出力側の一端の間に第1の整流素子を配置するとともに該入力側の他端と出力側の他端の間に開閉素子を配置したモータブレーキ電源供給部を有し、該モータブレーキ電源供給部の出力側の一端に第1の抵抗の一端を接続し、該第1の抵抗の多端に第2の整流素子の一端を接続し、該第2の整流素子の多端に第2の抵抗の一端を接続し、該第2の抵抗の多端にモータブレーキ電源供給部の出力側の多端を接続し、該第2の抵抗と並列にコンデンサを接続し、該コンデンサの両端を表示灯部の入力に接続したロボットのモータブレーキ装置。

【請求項3】 第2の抵抗の多端とモータブレーキ電源 20 供給部の出力側の多端の間に第3の整流素子を設けた2 記載のロボットのモータブレーキ装置。

【請求項4】 コンデンサと並列に定電圧素子を接続し、該定電圧素子の電圧出力値をコンデンサの耐電圧以下でかつ表示灯部の駆動電圧以上に設定した請求項2または3記載のロボットのモータブレーキ装置。

【請求項5】 コンデンサの電荷を12×10EXP (-3) クーロン以下とした請求項2から4の何れかに記載のロボットのモータブレーキ装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、モータの駆動を制限するモータブレーキ装置に関する。

[0002]

【従来の技術】従来のモータの駆動を制限するモータブレーキ装置は、図6に示すようにモータ軸をロックする 電磁ブレーキのブレーキ解放用電源として、絶縁トランスを介して全波整流した電源を用いていた。

【0003】同様に、モータ駆動用表示装置の電源も絶縁トランスを介した電圧を全波整流し、コンデンサにて 40 定電圧電源を作り表示灯部に供給していた。

【0004】また、それらの2つの回路を同期してON /OFFするための接点も供給される電圧が異なるため 各々別々に必要であった。

【0005】この従来例を図6に示す。

【0006】単層の商用電源1を絶縁トランス2の入力側に接続し、該トランス2の相異なる異電圧交流をモータブレーキ電源供給部3と表示灯用電源供給部6へそれぞれ供給している。

【0007】モータプレーキ電源供給部3では必要に応 50

2

じてモータブレーキ解放用スイッチ接点3-aを閉じて 単相交流をブリッジダイオード3-bで全波整流し、モータ軸をロックする電磁ブレーキのコイル4<sub>1</sub>~4n (nは存在する個数)へ電圧供給することでモータ軸の ロックを解除する。

【0008】このモータブレーキが解除されたことをオペレータに示すために表示灯部5が設けられていた。

【0009】表示灯用電源供給部6ではモータブレーキ解放用スイッチ接点3-aと同期してON/OFFするスイッチ接点6-aを設けており、このスイッチ接点6-aが閉じた時、単相交流をブリッジダイオード6-bにより全波整流し、かつコンデンサ6-cにより平滑し定電圧を作りこの電源を表示灯部5へ供給することで表示灯部5を点灯させる。

【0010】この点灯によりオペレータはモータブレー キが解除されモータが駆動状態であることを認識できる ようにしていた。

[0011]

【発明が解決しようとする課題】このように従来例では、モータブレーキ電源供給部3と表示灯用電源供給部6が異電圧を供給されるため、それぞれが独立した回路となっており、それぞれに絶縁トランス(主に降圧用)と全波整流用のブリッジダイオードと回路を同期してON/OFFするためのスイッチ接点とをそれぞれ別々に要し、軽量化、コンパクト化ができなかった。

【0012】加えて、前記回路を同期してON/OFF するスイッチ接点の接点不良発生時に片方の接点が動作できない場合はモータの駆動状態と該状態を示す表示灯部の整合性がとれずオペレータにとって危険な状態が発30 生する可能性があった。

【0013】本発明では、前記問題点に鑑み、軽量化、コンパクト化および整合性のとれたモータブレーキ装置を提供するものである。

[0014]

【課題を解決するための手段】上記課題を解決するために請求項1記載の本発明は、商用電源を入力側に接続し、出力側に電磁プレーキのコイルを接続し、該入力側の一端と出力側の一端の間に整流素子を配置するとともに該入力側の他端と出力側の他端の間に開閉素子を配置したモータブレーキ電源供給部を有するロボットのモータブレーキ装置である。

【0015】請求項2記載の本発明は、商用電源を入力側に接続し、出力側に電磁プレーキのコイルを接続し、該入力側の一端と出力側の一端の間に第1の整流素子を配置するとともに該入力側の他端と出力側の他端の間に開閉素子を配置したモータブレーキ電源供給部を有し、該モータブレーキ電源供給部の出力側の一端に第1の抵抗の一端を接続し、該第1の抵抗の多端に第2の整流素子の一端を接続し、該第2の整流素子の多端に第2の抵抗を接続し、該第2の抵抗の多端に前記モータブレーキ

.3

電源供給部の出力側の多端を接続し、該第2の抵抗と並列にコンデンサを接続し、該コンデンサの両端を表示灯部の入力に接続したロボットのモータブレーキ装置である。

【0016】請求項3記載の本発明は、第2の抵抗の多端とモータプレーキ電源供給部の出力側の多端の間に第3の整流素子を設けた2記載のロボットのモータプレーキ装置である。

【0017】請求項4記載の本発明は、コンデンサと並列に定電圧素子を接続し、該定電圧素子の電圧出力値をコンデンサの耐電圧以下でかつ表示灯部の駆動電圧以上に設定した請求項2または3記載のロボットのモータブレーキ装置である。

【0018】請求項5記載の本発明は、コンデンサの電荷を $12\times10EXP$ (-3)クーロン以下とした請求項2から4の何れかに記載のロボットのモータブレーキ装置である。

[0.019]

【発明の実施の形態】上記構成により、請求項1記載の本発明では、商用電源を整流素子により整流した電源を 20 電磁プレーキの電源とし、その電源はモータブレーキ解放用スイッチ接点を介してON/OFFされるので従来例と比して省スペースでありかつ経済的である。

【0020】請求項2記載の本発明では、モータブレーキ電源供給部の出力側の一端に第1の抵抗の一端を接続し、該第1の抵抗の多端に第2の整流素子の一端を接続し、該第2の整流素子の多端に第2の抵抗を接続し、該第2の抵抗の多端に前記モータブレーキ電源供給部の出力側の多端を接続し、該第2の抵抗と並列にコンデンサを接続し、該コンデンサの両端を表示灯部の入力に接続したことにより、表示灯部に分圧電圧を提供できるのでモータブレーキ電源供給部から電源を共用できるので単一電源ですみ、従来のような絶縁トランスやブリッジダイオードを削減でき、省スペースでありかつ経済的である。

【0021】また、モータブレーキ電源供給部のスイッチ接点で電磁ブレーキと表示灯部を同期してON/OFFできるので従来のモータブレーキ電源供給部回路あるいは表示灯用電源供給部のいずれかのスイッチ接点の接点不良発生時の不整合を無くすことができ、モータブレーキ解放状態とその状態を表示する状態とが常時一致するのでオペレータの安全性を向上することができる。

【0022】請求項3記載の本発明では、第2の抵抗の 多端とモータブレーキ電源供給部の出力側の多端の間に 第3の整流素子を設けたので、電磁ブレーキのコイル逆 起電力作用によるスパイクノイズから表示灯用電源供給 部や表示灯部を保護する事ができる。

【0023】この挿入した整流素子は電磁プレーキコイルのラインに対してフライホィールダイオード(ダンパダイオード)等の機能はしないので電磁プレーキのプレ

ーキが動作する所要時間には何ら関与しなく、安全動作 を保てる。

【0024】請求項4記載の本発明では、コンデンサと並列に定電圧素子を接続し、該定電圧素子の電圧出力値をコンデンサの耐電圧以下でかつ表示灯部の駆動電圧以上に設定したことにより、メンテナンス等で表示灯部を交換する際に接続コネクタを解放したまま通電したり、また、通電中に接続コネクタにつながるハーネスが断線した場合でも定電圧素子の出力電圧値となりコンデンサの耐電圧値以下の電圧値に押さえることができるので、コンデンサの破壊を防ぎ、表示灯用電源供給部の機能を維持し続けられる。

【0025】請求項5記載の本発明では、コンデンサの電荷をQ=C・V <  $12\times10$ EXP(-3) クーロン以下となるように該コンデンサの静電容量 C を  $470\mu$ F(マイクロファラッド)以下としたので、モータをロックしている電磁プレーキのON/OFF動作と表示灯部の点灯/消灯動作とが同一、あるいは一致しているとオペレータが認知あるいは許容できる遅延時間差である0.5秒以下にできる。

【0026】(実施の形態1)以下、本発明の実施の形態を図1、図2、図3、図4、図5を用いて説明する。

図1に本発明の一実施の形態における単相半波整流回路を電源とするロボットのモータブレーキ装置を示す。

【0027】モータブレーキ電源供給部7では必要に応じて開閉素子であるモータブレーキ解放用スイッチ接点7-aを閉じて、整流素子であるダイオード7-bにより半波整流した電源をモータ軸をロックする電磁プレーキのコイル41~4n(n は存在する個数)へ供給することでモータ軸のロックを解除する。

【0028】次に、図2に本発明の一実施の形態における表示灯部を備えたロボットのモータブレーキ装置の図を示す

【0029】必要に応じてモータブレーキ解放用スイッチ接点7-aを閉じて、ダイオード7-bにより半波整流した電源ラインへ図2のように並列にモータ駆動表示装置回路を形成するものである。

【0030】ダイオード7-bのカソード側を正極とし電磁プレーキコイル $41\sim4$  n と並列に第1の抵抗8と第2の整流素子であるダイオード9と第2の抵抗10とを挿入する。

【0031】抵抗8と抵抗10と表示灯部5の内部抵抗5-aとにより表示灯部5に必要な定電圧となるように半波整流電源を分圧し、その分圧電圧をコンデンサ11により定電圧とし表示灯部5に供給する。

【0032】ダイオード9により半波整流された電源ラインへの定電圧化回路の影響を阻止している。

【0033】この事により、モータブレーキ解放用スイッチ接点7-aが閉じた時に同期して表示灯部5が点灯 することができる。

【0034】すなわち、モータブレーキ解放用スイッチ接点7-aのみの開閉でモータブレーキの電磁ブレーキコイル $4_1$ ~ $4_1$ と表示灯部 $5_1$ の電源供給動作を制御できてかつ、ブレーキコイル $4_1$ ~ $4_1$ 0のN/OFF状態と表示灯部 $5_1$ 0のN/OFF状態は常時、一致させる事ができる。

【0035】次に、図3に電磁ブレーキ電源遮断時の電磁ブレーキのコイルによる(逆起電力)スパイクノイズから表示灯部を保護する実施の形態例について説明する。

【0036】モータブレーキ解放用スイッチ接点7-aが閉じた状態から開いた状態になった時、電磁ブレーキのコイル41~4nによる逆起電力が半波整流した電源ラインのグランド側に発生する。

【0037】この負電圧値は半波電圧の波高値の2倍以上の負電圧である。

【0038】この負電圧が繰り返し印加されると定電圧 用のコンデンサ11や表示灯部5のLED表示部5-b が破壊される。

【0039】一般に、その負電圧を吸収するためにダイ 20 オードのカソード側をモータブレーキ電源供給部の正極 側へかつ、ダイオードのアノード側をグランド側へ言い 換えれば、ダイオードを電磁ブレーキコイル41~4 n と並列に接続して、フライホィールダイオード(ダンパ ダイオード)を機能させて負電圧(サージ電圧)を吸収 することが考えられるが、この場合、電磁ブレーキコイル41~4 n が励磁状態OFFとなるまでに数百ミリ秒 の時間を要するために緊急にモータを停止させたい時に は大問題となり、またモータに組み込まれた機構部が重 カ方向に移動する機構のものである場合、機構部が該数 30 百ミリ秒間、自由落下してしまうという問題がある。

【0040】そこで、本発明の他の実施の形態例では図3に示す通り、第3の整流素子であるダイオード13を、ダイオード13のアノード側を表示灯部5に電源供給しているラインのグランド側に又、ダイオード13のカソード側が半波整流した電源ラインのグランド側に接続することにより、電源遮断時に電磁ブレーキコイル41~4nの逆起電力作用により半波整流した電源ラインのグランド側に発生する負電圧(サージ電圧)から定電圧用のコンデンサ11や表示灯部5のLED表示部5-bを保護することができる。

【0041】次に、図4を用いて本発明の他の実施の形態例における定電圧部に定電圧用コンデンサの耐電圧値以下でかつ表示部に必要な電圧値以上の範囲の電圧値をツェナ電圧値とするツェナダイオードを定電圧電源ラインのコンデンサの正極側にツェナダイオードのカソード側をかつ該コンデンサの負極側にツェナダイオードのアノード側をそれぞれ接続したロボットのモータブレーキ装置について説明する。

【0042】コンデンサ11の耐電圧値は省スペースと 50

6

経済性の観点から表示灯部5に必要な電圧値より若干、 高めの値に設定される。

【0043】表示灯部5は市販のユニットであり、接続コネクタ14で表示灯用電源供給部15と接続される。 【0044】ここで、メンテナンス等で表示灯部5を交換する際に接続コネクタ14の接続を解放したまま通電したり、何らかの要因で通電中に接続コネクタ14につながるハーネスが断線した場合は抵抗5-aが切り離された状態となってしまい、半波整流電源電圧を抵抗8と抵抗10のみで分圧することになり、抵抗10の分圧電圧値が表示灯部5が正常に接続されている時よりもはるかに高い電圧値となってしまう。

【0045】結果、コンデンサ11の耐電圧値を越えるのでコンデンサが破壊されてしまう。 ツェナ電圧値としてコンデンサ11の耐電圧値以下でかつ表示灯部5の必要電圧値以上の電圧値を有する定電圧素子であるツェナダイオード16を図4に示すようにコンデンサ11と並列に接続することでコンデンサ11の耐電圧値以下のツェナ電圧値に押さえることができコンデンサの破壊を防ぎ、表示灯用電源供給部15はその機能を安定して維持することができる。

【0046】次に、本発明の他の実施の形態例について 図4、図5を用いて説明する。

【0047】モータブレーキ解放スイッチ接点7-aが 閉じた状態から、開いた時、表示灯用電源供給部15に おいてコンデンサ11に蓄積されている電荷 Q=C・ V(Q:電荷(クーロン)、C:静電容量(ファラッド)、V:両端の電圧(ボルト)) が抵抗10と抵抗 5-aにより放電される。

【0048】この放電のために、モータをロックしている電磁プレーキのON/OFF動作と表示灯部5の点灯/消灯動作との間には時間差が生じる。電荷 Q=C・Vについて、表示灯部5の必要入力電圧値により「V」は一定で変更できない。

【0049】従って、コンデンサ11の静電容量によって遅延時間が決まってしまう。

【0050】図5は「V」が24ポルトー定でのコンデンサ11の静電容量変化による遅延時間を示すものである。

【0051】モータをロックしている電磁ブレーキのON/OFF動作と表示灯部5の点灯/消灯動作とが同一、あるいは一致しているとオペレータが認知あるいは許容できる遅延時間差は0.5秒以内である。

【0052】又、コンデンサはリップルが少ない方が望ましいのでコンデンサ11の静電容量は大きい方がよい

【0053】そこで、本発明ではコンデンサ11の静電 容量 C を  $470\mu$ F (マイクロファラッド) とした。

【0054】即ち、定電圧部に使用する定電圧用コンデ

ンサの電荷を12×10EXP (-3) (クーロン) 以下とすればよい。

[0055]

【発明の効果】以上の説明から明らかなように、上記構 成により、請求項1記載の本発明では、商用電源を整流 素子により整流した電源を電磁ブレーキの電源として、 その電源はモータブレーキ解放用スイッチ接点を介して ON/OFFされるので従来例と比して省スペースであ りかつ経済的である。請求項2記載の本発明では、モー タプレーキ電源供給部の出力側の一端に第1の抵抗の一 端を接続し、該第1の抵抗の多端に第2の整流素子の一 端を接続し、該第2の整流素子の多端に第2の抵抗を接 続し、該第2の抵抗の多端に前記モータブレーキ電源供 給部の出力側の多端を接続し、該第2の抵抗と並列にコ ンデンサを接続し、該コンデンサの両端を表示灯部の入 力に接続したことにより、表示灯部に分圧電圧を提供で きるのでモータブレーキ電源供給部から電源を共用でき るので単一電源ですみ、従来のような絶縁トランスやブ リッジダイオードを削減でき、省スペースでありかつ経 済的である。

【0056】また、モータブレーキ電源供給部のスイッチ接点で電磁ブレーキと表示灯部を同期してON/OFFできるので従来のモータブレーキ電源供給部回路あるいは表示灯用電源供給部のいずれかのスイッチ接点の接点不良発生時の不整合を無くすことができ、モータブレーキ解放状態とその状態を表示する状態とが常時一致するのでオペレータの安全性を向上することができる。

【0057】請求項3記載の本発明では、第2の抵抗の多端とモータブレーキ電源供給部の出力側の多端の間に第3の整流素子を設けたので、電磁ブレーキ電源遮断時の電磁ブレーキのコイル逆起電力作用によるスパイクノイズから表示灯用電源供給部や表示灯部を保護する事ができる。

【0058】この挿入した整流素子は電磁プレーキコイルのラインに対してフライホィールダイオード(ダンパダイオード)等の機能はしないので電磁プレーキのプレーキが動作する所要時間には何ら関与しなく、安全動作を保てる。

【0059】請求項4記載の本発明では、コンデンサと 並列に定電圧素子を接続し、該定電圧素子の電圧出力値 40 8

をコンデンサの耐電圧以下でかつ表示灯部の駆動電圧以上に設定したことにより、メンテナンス等で表示灯部を交換する際に接続コネクタを解放したまま通電したり、また、通電中に接続コネクタにつながるハーネスが断線した場合でも定電圧素子の出力電圧値となりコンデンサの耐電圧値以下の電圧値に押さえることができるので、コンデンサの破壊を防ぎ、表示灯用電源供給部の機能を維持し続けられる。

【0060】請求項5記載の本発明では、コンデンサの 電荷をQ=C・V < 12×10EXP(-3)クーロン以下となるように該コンデンサの静電容量 C を 470μF(マイクロファラッド)以下としたので、モータをロックしている電磁プレーキのON/OFF動作と表示灯部の点灯/消灯動作とが同一、あるいは一致しているとオペレータが認知あるいは許容できる遅延時間差である0.5秒以下にできる。

【図面の簡単な説明】

- 【図1】本発明の一実施の形態例を示す回路図
- 【図2】本発明の他の実施の形態例を示す回路図
- 【図3】本発明の他の実施の形態例を示す回路図
- 【図4】本発明の他の実施の形態例を示す回路図
- 【図5】電磁ブレーキ解除装置とモータモータ駆動表示 装置との遅延時間を表す図
- 【図6】従来のモータブレーキ装置の回路図 【符号の説明】
- 1 商用電源
- 41~4 n 電磁プレーキのコイル
- 5 表示灯部
- 7 モータブレーキ電源供給部
- 7-a モータプレーキ解放用スイッチ接点
  - 7-b ダイオード
  - 8 抵抗
- 9 ダイオード
- 10 抵抗
- 11 コンデンサ
- 12 ダイオード
- 13 ダイオード
- 15 表示灯用電源供給部
- 16 ツェナダイオード

【図1】



【図5】



【図2】

5…表示灯部 8,IO…抵抗 9…ダイオード ロ…コンデンサ



【図3】



[図4]

### 15 -- 表示灯用電源供給部 16---ツェナーダイオード



[図6]



【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第2部門第3区分

【発行日】平成13年10月30日(2001.10.30)

【公開番号】特開2000-296492 (P2000-296492A)

【公開日】平成12年10月24日(2000.10.24)

【年通号数】公開特許公報12-2965

【出願番号】特願平11-107912

【国際特許分類第7版】

B25J 19/00

H02K 7/106

[FI]

B25J 19/00 C

H02K 7/106

### 【手続補正書】

【提出日】平成13年2月23日(2001.2.2 3)-

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】 明細書

【発明の名称】 ロボットのモータブレーキ装置

【特許請求の範囲】

【請求項1】 商用電源を入力側に接続し、出力側に電磁ブレーキのコイルを接続し、該入力側の一端と出力側の一端の間に整流素子を配置するとともに該入力側の他端と出力側の他端の間に開閉素子を配置したモータブレーキ電源供給部を有するロボットのモータブレーキ装置。

【請求項2】 商用電源を入力側に接続し、出力側に電磁プレーキのコイルを接続し、該入力側の一端と出力側の一端の間に第1の整流素子を配置するとともに該入力側の他端と出力側の他端の間に開閉素子を配置したモータブレーキ電源供給部を有し、該モータブレーキ電源供給部の出力側の一端に第1の抵抗の一端を接続し、該第1の抵抗の他端に第2の整流素子の一端を接続し、該第2の抵抗の他端にモータブレーキ電源供給部の出力側の他端を接続し、該第2の抵抗と並列にコンデンサを接続し、該コンデンサの両端を表示灯部の入力に接続したロボットのモータブレーキ装置。

【請求項3】 第2の抵抗の他端とモータブレーキ電源 10 供給部の出力側の他端の間に第3の整流素子を設けた<u>請</u> 求項2記載のロボットのモータブレーキ装置。

【請求項4】 コンデンサと並列に定電圧素子を接続し、該定電圧素子の電圧出力値をコンデンサの耐電圧以下でかつ表示灯部の駆動電圧以上に設定した請求項2ま

たは3記載のロボットのモータプレーキ装置。

【請求項5】 コンデンサの電荷を12×10EXP (-3) クーロン以下とした請求項2から4の何れかに 記載のロボットのモータブレーキ装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、モータの駆動を制限するモータブレーキ装置に関する。

[0002]

【従来の技術】従来のモータの駆動を制限するモータブレーキ装置は、図6に示すようにモータ軸をロックする 電磁ブレーキのブレーキ解放用電源として、絶縁トランスを介して全波整流した電源を用いていた。

【0003】同様に、モータ駆動用表示装置の電源も絶縁トランスを介した電圧を全波整流し、コンデンサにて定電圧電源を作り表示灯部に供給していた。

【0004】また、それらの2つの回路を同期しTON/OFFするための接点も供給される電圧が異なるため 各々別々に必要であった。 2

【0005】この従来例を図6に示す。

【0006】単<u>相</u>の商用電源1を絶縁トランス2の入力側に接続し、該トランス2の相異なる異電圧交流をモータブレーキ電源供給部3と表示灯用電源供給部6へそれぞれ供給している。

【0007】モータブレーキ電源供給部3では必要に応じてモータブレーキ解放用スイッチ接点3aを閉じて単相交流をブリッジダイオード3bで全波整流し、モータ軸をロックする電磁ブレーキのコイル41~4n(nは存在する個数)へ電圧供給することでモータ軸のロックを解除する。

【0008】このモータブレーキが解除されたことをオペレータに示すために表示灯部5が設けられていた。

【0009】表示灯用電源供給部6ではモータブレーキ解放用スイッチ接点3aと同期してON/OFFするス

イッチ接点<u>6a</u>を設けており、このスイッチ接点<u>6a</u>が 閉じた時、単相交流をブリッジダイオード 6 b により全 波整流し、かつコンデンサ6cにより平滑し定電圧を作 りこの電源を表示灯部5へ供給することで表示灯部5を 点灯させる。

【0010】この点灯によりオペレータはモータブレー キが解除されモータが駆動状態であることを認識できる ようにしていた。

#### [0011]

【発明が解決しようとする課題】このように従来例で は、モータブレーキ電源供給部3と表示灯用電源供給部 6が異電圧を供給されるため、それぞれが独立した回路 となっており、それぞれに絶縁トランス(主に降圧用) と全波整流用のブリッジダイオードと回路を同期してO N/OFFするためのスイッチ接点とをそれぞれ別々に 要し、軽量化、コンパクト化ができなかった。

【0012】加えて、前記回路を同期して〇N/〇FF するスイッチ接点の接点不良発生時に片方の接点が動作 できない場合はモータの駆動状態と該状態を示す表示灯 部の整合性がとれずオペレータにとって危険な状態が発 生する可能性があった。

【0013】本発明では、前記問題点に鑑み、軽量化、 コンパクト化および整合性のとれたモータブレーキ装置 を提供するものである。

#### [0014]

【課題を解決するための手段】上記課題を解決するため に請求項1記載の本発明は、商用電源を入力側に接続 し、出力側に電磁ブレーキのコイルを接続し、該入力側 の一端と出力側の一端の間に整流素子を配置するととも に該入力側の他端と出力側の他端の間に開閉素子を配置 30 したモータブレーキ電源供給部を有するロボットのモー タブレーキ装置である。

【0015】請求項2記載の本発明は、商用電源を入力 側に接続し、出力側に電磁プレーキのコイルを接続し、 該入力側の一端と出力側の一端の間に第1の整流素子を 配置するとともに該入力側の他端と出力側の他端の間に 開閉素子を配置したモータブレーキ電源供給部を有し、 該モータブレーキ電源供給部の出力側の一端に第1の抵 抗の一端を接続し、該第1の抵抗の他端に第2の整流素 子の一端を接続し、該第2の整流素子の他端に第2の抵 抗を接続し、該第2の抵抗の他端に前記モータブレーキ 電源供給部の出力側の<u>他</u>端を接続し、該第2の抵抗と並 列にコンデンサを接続し、該コンデンサの両端を表示灯 部の入力に接続したロボットのモータブレーキ装置であ る。

【0016】請求項3記載の本発明は、第2の抵抗の他 端とモータプレーキ電源供給部の出力側の他端の間に第 3の整流素子を設けた<u>請求項</u>2記載のロポットのモータ ブレーキ装置である。

【0017】請求項4記載の本発明は、コンデンサと並 50

列に定電圧素子を接続し、該定電圧素子の電圧出力値を コンデンサの耐電圧以下でかつ表示灯部の駆動電圧以上 に設定した請求項2または3記載のロボットのモータブ レーキ装置である。

【0018】請求項5記載の本発明は、コンデンサの電 荷を12×10EXP (-3) クーロン以下とした請求 項2から4の何れかに記載のロポットのモータブレーキ 装置である。

### [0019]

【発明の実施の形態】上記構成により、請求項1記載の 本発明では、商用電源を整流素子により整流した電源を 電磁プレーキの電源とし、その電源はモータブレーキ解 放用スイッチ接点を介してON/OFFされるので従来 例と比して省スペースでありかつ経済的である。

【0020】請求項2記載の本発明では、モータブレー キ電源供給部の出力側の一端に第1の抵抗の一端を接続 し、該第1の抵抗の他端に第2の整流素子の一端を接続 し、該第2の整流素子の他端に第2の抵抗を接続し、該 第2の抵抗の他端に前記モータブレーキ電源供給部の出 力側の他端を接続し、該第2の抵抗と並列にコンデンサ を接続し、該コンデンサの両端を表示灯部の入力に接続 したことにより、表示灯部に分圧電圧を提供できるので モータブレーキ電源供給部から電源を共用できるので単 一電源ですみ、従来のような絶縁トランスやブリッジダ イオードを削減でき、省スペースでありかつ経済的であ る。

【0021】また、モータブレーキ電源供給部のスイッ チ接点で電磁ブレーキと表示灯部を同期してON/OF Fできるので従来のモータブレーキ電源供給部回路ある いは表示灯用電源供給部のいずれかのスイッチ接点の接 点不良発生時の不整合を無くすことができ、モータブレ 一キ解放状態とその状態を表示する状態とが常時一致す るのでオペレータの安全性を向上することができる。

【0022】請求項3記載の本発明では、第2の抵抗の 他端とモータブレーキ電源供給部の出力側の<u>他</u>端の間に 第3の整流素子を設けたので、電磁ブレーキのコイル逆 起電力作用によるスパイクノイズから表示灯用電源供給 部や表示灯部を保護する事ができる。

【0023】この挿入した整流素子は電磁プレーキコイ ルのラインに対してフライホィールダイオード(ダンパ ダイオード) 等の機能はしないので電磁プレーキのブレ ーキが動作する所要時間には何ら関与しなく、安全動作 を保てる。

【0024】請求項4記載の本発明では、コンデンサと 並列に定電圧素子を接続し、該定電圧素子の電圧出力値 をコンデンサの耐電圧以下でかつ表示灯部の駆動電圧以 上に設定したことにより、メンテナンス等で表示灯部を 交換する際に接続コネクタを解放したまま通電したり、 また、通館中に接続コネクタにつながるハーネスが断線 した場合でも定電圧素子の出力電圧値となりコンデンサ

5

の耐電圧値以下の電圧値に押さえることができるので、 コンデンサの破壊を防ぎ、表示灯用電源供給部の機能を 維持し続けられる。

【0025】請求項5記載の本発明では、コンデンサの電荷をQ=C・V < 12×10EXP(-3)クーロン以下となるように該コンデンサの静電容量 C を 470μF(マイクロファラッド)以下としたので、モータをロックしている電磁ブレーキのON/OFF動作と表示灯部の点灯/消灯動作とが同一、あるいは一致しているとオペレータが認知あるいは許容できる遅延時間差である0.5秒以下にできる。

【0026】(実施の形態1)以下、本発明の実施の形態を図1、図2、図3、図4、図5を用いて説明する。

【0028】次に、図2に本発明の一実施の形態における表示灯部を備えたロボットのモータブレーキ装置の図を示す。

【0029】必要に応じてモータブレーキ解放用スイッチ接点<u>7a</u>を閉じて、ダイオード<u>7b</u>により半波整流した電源ラインへ図2のように並列にモータ駆動表示装置回路を形成するものである。

【0030】ダイオード7bのカソード側を正極とし電磁ブレーキコイル41~4nと並列に第1の抵抗8と第2の整流素子であるダイオード9と第2の抵抗10とを挿入する。

【0031】抵抗8と抵抗10と表示灯部5の内部抵抗 5aとにより表示灯部5に必要な定電圧となるように半 波整流電源を分圧し、その分圧電圧をコンデンサ11に より定電圧とし表示灯部5に供給する。

【0032】ダイオード9により半波整流された電源ラインへの定電圧化回路の影響を阻止している。

【0033】この事により、モータブレーキ解放用スイッチ接点<u>7a</u>が閉じた時に同期して表示灯部5が点灯することができる。

【0034】すなわち、モータブレーキ解放用スイッチ接点7aのみの開閉でモータブレーキの電磁ブレーキコイル41~4nと表示灯部5の電源供給動作を制御できてかつ、ブレーキコイル41~4nのON/OFF状態と表示灯部5のON/OFF状態は常時、一致させる事ができる。

【0035】次に、図3に電磁ブレーキ電源遮断時の電磁ブレーキのコイルによる(逆起電力)スパイクノイズから表示灯部を保護する実施の形態例について説明す

6

る。

【0036】モータブレーキ解放用スイッチ接点7aが 閉じた状態から開いた状態になった時、電磁ブレーキの コイル41~4nによる逆起電力が半波整流した電源ラ インのグランド側に発生する。

【0037】この負電圧値は半波電圧の波高値の2倍以上の負電圧である。

【0038】この負電圧が繰り返し印加されると定電圧 用のコンデンサ11や表示灯部5のLED表示部<u>5b</u>が 破壊される。

【0039】一般に、その負電圧を吸収するためにダイオードのカソード側をモータブレーキ電源供給部の正極側へかつ、ダイオードのアノード側をグランド側へ言い換えれば、ダイオードを電磁ブレーキコイル $41\sim4$  n と並列に接続して、フライホィールダイオード(ダンパダイオード)を機能させて負電圧(サージ電圧)を吸収することが考えられるが、この場合、電磁ブレーキコイル $41\sim4$  nが励磁状態OFFとなるまでに数百ミリ秒の時間を要するために緊急にモータを停止させたい時には大問題となり、またモータに組み込まれた機構部が該数百ミリ秒間、自由落下してしまうという問題がある。

【0040】そこで、本発明の他の実施の形態例では図3に示す通り、第3の整流素子であるダイオード13を、ダイオード13のアノード側を表示灯部5に電源供給しているラインのグランド側に又、ダイオード13のカソード側が半波整流した電源ラインのグランド側に接続することにより、電源遮断時に電磁プレーキコイル41~4nの逆起電力作用により半波整流した電源ラインのグランド側に発生する負電圧(サージ電圧)から定電圧用のコンデンサ11や表示灯部5のLED表示部5-bを保護することができる。

【0041】次に、図4を用いて本発明の他の実施の形態例における定電圧部に定電圧用コンデンサの耐電圧値以下でかつ表示部に必要な電圧値以上の範囲の電圧値をツェナ電圧値とするツェナダイオードを定電圧電源ラインのコンデンサの正極側にツェナダイオードのカソード側をかつ該コンデンサの負極側にツェナダイオードのアノード側をそれぞれ接続したロボットのモータブレーキ装置について説明する。

【0042】コンデンサ11の耐電圧値は省スペースと 経済性の観点から表示灯部5に必要な電圧値より若干、 高めの値に設定される。

【0043】表示灯部5は市販のユニットであり、接続コネクタ14で表示灯用電源供給部15と接続される。 【0044】ここで、メンテナンス等で表示灯部5を交換する際に接続コネクタ14の接続を解放したまま通電

したり、何らかの要因で通電中に接続コネクタ14につ ながるハーネスが断線した場合は抵抗5-aが切り離さ れた状態となってしまい、半波整流電源電圧を抵抗8と

抵抗10のみで分圧することになり、抵抗10の分圧電 圧値が表示灯部5が正常に接続されている時よりもはる かに高い電圧値となってしまう。

【0045】結果、コンデンサ11の耐電圧値を越えるのでコンデンサが破壊されてしまう。 ツェナ電圧値としてコンデンサ11の耐電圧値以下でかつ表示灯部5の必要電圧値以上の電圧値を有する定電圧素子であるツェナダイオード16を図4に示すようにコンデンサ11と並列に接続することでコンデンサ11の耐電圧値以下のツェナ電圧値に押さえることができコンデンサの破壊を 10 防ぎ、表示灯用電源供給部15はその機能を安定して維持することができる。

【0046】次に、本発明の他の実施の形態例について 図4、図5を用いて説明する。

【0047】モータブレーキ解放スイッチ接点7-aが 閉じた状態から、開いた時、表示灯用電源供給部15に おいてコンデンサ11に蓄積されている電荷 Q=C・ V(Q:電荷(クーロン)、C:静電容量(ファラッド):、V:両端の電圧(ボルト)) が抵抗10と抵抗 5-aにより放電される。

【0048】この放電のために、モータをロックしている電磁プレーキのON/OFF動作と表示灯部5の点灯/消灯動作との間には時間差が生じる。電荷 Q=C・Vについて、表示灯部5の必要入力電圧値により「V」は一定で変更できない。

【0049】従って、コンデンサ11の静電容量によって遅延時間が決まってしまう。

【0050】図5は「V」が24ボルト一定でのコンデンサ11の静電容量変化による遅延時間を示すものである。

【0051】モータをロックしている電磁ブレーキのON/OFF動作と表示灯部5の点灯/消灯動作とが同一、あるいは一致しているとオペレータが認知あるいは許容できる遅延時間差は0.5秒以内である。

【0052】又、コンデンサはリップルが少ない方が望ましいのでコンデンサ11の静電容量は大きい方がよい。

【0053】そこで、本発明ではコンデンサ110静電 容量 C を  $470\mu$ F (マイクロファラッド) とした。

【0054】即ち、定電圧部に使用する定電圧用コンデンサの電荷を12×10EXP(-3)(クーロン)以下とすればよい。

[0055]

【発明の効果】以上の説明から明らかなように、上記構成により、請求項1記載の本発明では、商用電源を整流素子により整流した電源を電磁プレーキの電源として、その電源はモータプレーキ解放用スイッチ接点を介してON/OFFされるので従来例と比して省スペースでありかつ経済的である。請求項2記載の本発明では、モー 50

8

タブレーキ電源供給部の出力側の一端に第1の抵抗の一端を接続し、該第1の抵抗の他端に第2の整流素子の一端を接続し、該第2の整流素子の他端に第2の抵抗を接続し、該第2の抵抗の他端に前記モータブレーキ電源供給部の出力側の他端を接続し、該第2の抵抗と並列にコンデンサを接続し、該コンデンサの両端を表示灯部の入力に接続したことにより、表示灯部に分圧電圧を提供できるのでモータブレーキ電源供給部から電源を共用できるので単一電源ですみ、従来のような絶縁トランスやブリッジダイオードを削減でき、省スペースでありかつ経済的である。

【0056】また、モータブレーキ電源供給部のスイッチ接点で電磁ブレーキと表示灯部を同期してON/OFFできるので従来のモータブレーキ電源供給部回路あるいは表示灯用電源供給部のいずれかのスイッチ接点の接点不良発生時の不整合を無くすことができ、モータブレーキ解放状態とその状態を表示する状態とが常時一致するのでオペレータの安全性を向上することができる。

【0057】請求項3記載の本発明では、第2の抵抗の 他端とモータブレーキ電源供給部の出力側の他端の間に 第3の整流素子を設けたので、電磁ブレーキ電源遮断時 の電磁ブレーキのコイル逆起電力作用によるスパイクノ イズから表示灯用電源供給部や表示灯部を保護する事が できる。

【0058】この挿入した整流素子は電磁ブレーキコイルのラインに対してフライホィールダイオード(ダンパダイオード)等の機能はしないので電磁ブレーキのブレーキが動作する所要時間には何ら関与しなく、安全動作を保てる。

【0059】請求項4記載の本発明では、コンデンサと並列に定電圧素子を接続し、該定電圧素子の電圧出力値をコンデンサの耐電圧以下でかつ表示灯部の駆動電圧以上に設定したことにより、メンテナンス等で表示灯部を交換する際に接続コネクタを解放したまま通電したり、また、通電中に接続コネクタにつながるハーネスが断線した場合でも定電圧素子の出力電圧値となりコンデンサの耐電圧値以下の電圧値に押さえることができるので、コンデンサの破壊を防ぎ、表示灯用電源供給部の機能を維持し続けられる。

【0060】請求項5記載の本発明では、表示灯部の必要入力電圧値である24ポルトのもとでコンデンサの電荷をQ=C・V < 12×10EXP(-3)クーロン以下となるように該コンデンサの静電容量 C を  $470\mu$ F(マイクロファラッド)以下としたので、モータをロックしている電磁プレーキのON/OFF動作と表示灯部の点灯/消灯動作とが同一、あるいは一致しているとオペレータが認知あるいは許容できる遅延時間差である0.5秒以下にできる。

【図面の簡単な説明】

【図1】本発明の一実施の形態例を示す回路図

(5)

| g                             |    |       | 10               |
|-------------------------------|----|-------|------------------|
| 【図2】本発明の他の実施の形態例を示す回路図        |    | 7 — a | モータブレーキ解放用スイッチ接点 |
| 【図3】本発明の他の実施の形態例を示す回路図        |    | 7 - b | ダイオード            |
| 【図4】本発明の他の実施の形態例を示す回路図        |    | 8     | 抵抗               |
| 【図5】電磁ブレーキ解除装置とモータモータ駆動表示     |    | 9     | ダイオード            |
| 装置との遅延時間を表す図                  |    | 1 0   | 抵抗               |
| 【図6】従来のモータブレーキ装置の回路図          |    | 1 1   | コンデンサ            |
| 【符号の説明】                       |    | 1 2   | ダイオード            |
| 1 商用電源                        |    | 1 3   | ダイオード            |
| 4 <sub>1</sub> ~4n 電磁プレーキのコイル |    | 1 5   | 表示灯用電源供給部        |
| 5 表示灯部                        | 10 | 1 6   | ツェナダイオード         |
| 7 モータプレーキ電源供給部                |    |       |                  |