Université Mohamed Khider, Biskra

Faculté des Sc. Exactes et Sc. de la Nature et la Vie

Département de Mathématiques

Master 1: 2020/2021

Corrigé de l'Interrogation 1 (modèle linéaire)

1 .]	Le	\mathbf{but}	d'anal	$_{ m lyse}$	en co	mposai	$_{ m tes}$	principa	ales	$(\mathbf{ACP}$) est	l'étude:
--------------	----	----------------	--------	--------------	-------	--------	-------------	----------	------	-----------------	-------	----------

- a) Proximité des individus √
- c) Corrélations entre les individus $\sqrt{\ }$
- b) Liaisons entre les variables

2. En ACP, la matrice des variances-covariances (V) est:

- a) celle des variables $\sqrt{}$
- b) celle des individus
- c) des individus et les variables

3. La somme des valeurs propres (λ_i) de la matrice V

- a) la somme des variances des variables $\sqrt{}$
- **b)** L'inertie totale $\sqrt{}$

4. Les vecteurs propres (orthonormés) de la matrice V

- a) forme une base de l'espace des individus (notés u_i , i = 1,...,p) $\sqrt{}$
- b) forme une base de l'espace des variables

5. L'espace des variables

- a) \mathbb{R}^p ; b) $\mathbb{R}^n \sqrt{}$
- **6**. Le premier plan principal est:
 - a) $E_1 \times E_2$; b) $E_1 + E_2$; c) $\mathbf{E}_1 \oplus \mathbf{E}_2 \sqrt{}$

7. L'inertie par rapport au deuxième axe principal, vaut:

a) λ_2 ; b) $\lambda_1 \sqrt{}$

8. L'inertie par rapport au premier plan principal, vaut:

- a) $\max(\lambda_1, \lambda_2)$; b) $\lambda_1 + \lambda_2$; \sqrt{c} $(\lambda_1 + \lambda_2) / \sum \lambda_i$ (aucune) "je n'ai pas dit expliquée pour dire $\lambda_1 + \lambda_2$ "
- 9. L'inertie expliquée par rapport au premier axe principal, vaut:
 - a) λ_1 ; \sqrt{b} λ_2 ; $\lambda_1 + \lambda_2$

10. La coordonnée de l'individu e_i sur le premier axe principal, vaut:

a)
$$\langle e_i, u_1 \rangle$$
; $\sqrt{\ b}$ d $(e_i, \mathbf{Proj}_{u_1} e_i)$; c) d $(e_i, \mathbf{Proj}_{u_2} e_i)$

11. La qualité de représentation des individus e_i sur le premier plan principal, s'exprime en termes de:

- a) d'inerties; b) \cos^2 ; \sqrt{c} Proj_{u₁} e_i
- 12. Les composantes principales (\mathbf{c}_k) :
 - a) normées; b) indépendantes; c) non-corrélées $\sqrt{}$

1

- 13. La qualité de représentation des variables X_i , s'exprime en termes de:
 - a) des corrélations entre les X_i ; \sqrt{b} des corrélations entre les \mathbf{c}_k
- 14. Soit θ_{ik} l'angle entre X_j et \mathbf{c}_k . Alors:

a)
$$\sum_{i=1}^{p} \cos^2 \theta_{ik} = 1$$
; \sqrt{b} $\sum_{j=1}^{n} \cos^2 \theta_{ik} = 1$; c) $\sum_{k=1}^{p} \cos^2 \theta_{ik} = 1$

- **15.** $\cos^2 \theta_{j1} + \cos^2 \theta_{j2} = 1$, **implique que:**
 - a) l'individu e_i est bien représenté sur le premier plan principal
 - b) La variable X_j est bien représentée sur le premier plan principal $\sqrt{}$
 - c) La variable X_j est fortement corrélée avec $\{\mathbf{c}_1,\mathbf{c}_2\}$ $\sqrt{}$
- 16. $\cos \theta_{jk}$ est égale:

a)
$$\langle X_j, e_k \rangle$$
; b) $\langle X_j, u_k \rangle$; **c)** $\langle X_j, \mathbf{c}_k \rangle$ $\sqrt{}$

17. Supposons que les valeurs propres de V sont $\lambda_1=2,\,\lambda_2=1,\,\lambda_3=0.$

Que conclut-on? l'enertie expliquée par le troisième axe principal est nulle. Donc les individus sont parfaitement représentés sur le premier plan principal.