Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA"

CORSO DI LAUREA IN INFORMATICA

Creazione di una Data Pipeline per il trattamento dei dati con Apache Kafka e Apache Druid

Tesi di laurea

Relatore Prof. Ombretta Gaggi

Laureando
Marco Brugin

Matricola: 2010012

Sommario

Il presente documento descrive il lavoro svolto durante il periodo di stage, della durata di circa trecento ore, dal laureando Marco Brugin presso l'azienda Sync Lab s.r.L. Gli obbiettivi da raggiungere sono stati: in primo luogo è stata richiesta la comprensione dei vantaggi e degli overhead portati da una architettura Event Driven, in secondo luogo è stata richiesta la comprensione e implementazione di una data pipeline con il trattamento dei dati tramite Apache Kafka e Apache Druid ed infine la comprensione e la gestione gestione delle Time Series e dei Column-based Databases.

Il prototipo sviluppato presenterà una architettura distribuita, ad alta affidabilità, scalabile e resiliente, eseguibile tramite Docker Compose.

"Due cose sono infinite: l'universo e la stupidità umana, ma riguardo l'universo ho ancora dei dubbi."

— Albert Einstein

Ringraziamenti

Innanzitutto, vorrei esprimere la mia gratitudine alla Prof. Ombretta Gaggi, relatrice della mia tesi, e al mio tutor aziendale Andrea per il sostegno e il supporto fornitomi durante lo svolgimento dello stage.

Desidero inoltre ringraziare con affetto i miei genitori e la mia famiglia per il sostegno e per essermi stati vicini in ogni momento durante questi lunghi anni segnati pure da una pandemia mondiale.

 $In fine \ desidero \ ringrazio \ tutti \ coloro \ che \ con \ la \ loro \ partecipazione \ hanno \ reso \ unico \ e \ inimitabile \ questo \ percorso.$

Padova, 22 Settebre

Marco Brugin

Indice

1	Intr	oduzio	one	1
	1.1	Descri	zione dell'azienda	1
	1.2		li fondo del progetto	2
		1.2.1	Il ruolo dello stagista	2
	1.3	Il prog	getto di stage	3
		1.3.1	Descrizione del progetto	3
		1.3.2	Obiettivi formativi	3
		1.3.3	Risultati attesi e Obiettivi fissati	3
		1.3.4	Analisi preventiva dei rischi	4
		1.3.5	Obiettivi personali	5
2	Tec	nologie	e e strumenti utilizzati	7
	2.1	Lingua	aggi utilizzati	7
		2.1.1	YAML	7
		2.1.2	Python	8
	2.2	Tecno	logie utilizzate	8
		2.2.1	Metodologia di sviluppo e strumenti di gestione di progetto	8
		2.2.2	Ambiente di sviluppo	9
		2.2.3	Versioning	10
		2.2.4	Documentazione	12
		2.2.5	Vincoli implementativi	12
3	Cor	npone	nti di una Data Pipeline	14
	3.1		e Kafka	14
		3.1.1	Introduzione	14
		3.1.2	Casi d'uso	15
		3.1.3	Architettura e funzionamento	15
		3.1.4	Garanzie di funzionamento	16
		3.1.5	Politiche di retentions	17
	3.2	Apach	e Druid	17
	3.3		ning Data Pipelines	17
4	Il p	ercors	o di stage	19
5	Val	utazioi	ni e Conclusioni	21
	5.1		ungimento degli obiettivi	21
	5.2		lizzazione dei rischi	$\frac{1}{21}$
	5.3		nuti formativi acquisiti	$\overline{21}$
	5.4	Divari	o rispetto al percorso di studi	21

INDICE	vi
5.5 Valutazione personale	21
Acronimi e abbreviazioni	23
Glossario	24
Bibliografia	27

Elenco delle figure

1.1	Logo dell'aziedan Sync Lab s.r.L
2.1	Logo di YAML
	Logo di Python
2.3	Logo di ClickUp
2.4	Logo di Docker Compose
2.5	Logo di Git
2.6	Comandi di base di Git
2.7	Logo di GitHub
2.8	Logo di LaTeX
3.1	Logo di Apache Kafka
3.2	Architettura di Apache Kafka
3.3	Logo di Apache Druid

Elenco delle tabelle

Capitolo 1

Introduzione

1.1 Descrizione dell'azienda

Sync Lab s.r.L. è una azienda italiana attiva nell'abito Information and Communication Technology (ICT), specializzata nello sviluppo e consulenza IT dal 2002 con sedi a Milano, Roma, Napoli, Verona, Como, con più di 300 dipendenti. È una azienda orientata verso la Business Innovation, finalizzata alla creazione di soluzioni innovative che abbracciano i nuovi paradigmi della trasformazione digitale. Sync Lab possiede numerose certificazioni ISO LL-C per l'attestazione della qualità dei prodotti e servizi offerti. In particolare possiede le certificazioni ISO-9001 per la qualità dell'azienda, ISO-14001 per l'adozione quadro sistematico per l'integrazione delle pratiche a protezione dell'ambiente, ISO-27001 per la definizione di un Sistema Gestione Sicurezza Informazioni (SGSI), ISO-45001 per l'adozione di un Occupational Health and Safety (OH&S).

Attualmente Sync Lab lavora per più di 150 clienti diretti e finali, tra i più rilevanti ci sono nomi come: TIM, Trenitalia, PosteItaliane, UniCredit, ENI, ENEL, Vodafone, Fastweb.

Inoltre è un'azienda che si pone come obiettivo quello di essere un punto di riferimento per i propri clienti nella realizzazione di prodotti e soluzioni innovative per diversi settori di mercato, come: Sanità, Industria, Energia, Telco, Finanza e Trasporti & Logistica.

Lo spirito di Sync Lab è ampiamente rappresentato dal logo aziendale (Figura 1.1): un'onda che si propaga in modo circolare, che simboleggia la capacità di adattarsi e di evolversi in modo continuo.

Figura 1.1: Logo dell'aziedan Sync Lab s.r.L.

1.2 Idea di fondo del progetto

Oggigiorno la gestione e l'analisi di grandi moli di dati in tempo reale sta diventando fondamentale per le aziende che vogliono rimanere competitive sul mercato.

Per questo motivo è necessario utilizzare tecnologie e software che permettano di analizzare e archiviare i dati in tempo reale in modo efficiente e veloce.

D'altra parte è necessario anche che tali tecnologie siano in grado di scalare in modo verticale e orizzontale in base al carico di lavoro da sostenere, mantenendo sempre alte prestazioni e resilienza in caso di guasti.

Per questo motivo Sync Lab ha deciso d' investire in un progetto di ricerca e sviluppo che ha come obiettivo quello di creare una Data Pipeline in grado di garantire le caratteristiche sopra descritte.

L'azienda ha già a disposizione un sistema di raccolta dati in real time, basato su Apache Kafka, che permette di ricevere dati da diversi sistemi e applicazioni per poi inviarli ad un sistema di archiviazione.

Il progetto prevede l'inserimento di un sistema di Data Processing basato su Apache Druid, che permetta di effettuare operazioni sui dati grezzi ricevuti da Apache Kafka, in modo da rendere più efficienti le successive operazioni di estrazione.

Particolarmente importante dovrà essere la fase di processing dei dati, in quanto dovrà permettere di eseguire operazioni di aggregazione e trasformazione dei dati in modo efficiente e veloce riducendo al minimo i tempi di latenza e mantenendo alte prestazioni.

1.2.1 Il ruolo dello stagista

Lo stagista ha un ruolo fondamentale in tale tipologia di progetto, infatti è colui che porta uno spirito d'innovazione e consolida il valore aggiunto aziendale.

Le attività che costituiscono il percorso che lo stagista ha intrapreso sono state elencate all'interno di un *Piano di lavoro*, concordato con il tutor aziendale, che ha lo scopo di guidare lo stagista durante il periodo di stage, permettere al tutor aziendale di monitorare l'andamento delle attività delle attività svolte e di valutare il raggiungimento degli obiettivi.

Inoltre al termine del periodo di stage, sotto la supervisione del tutor aziendale è stata svolta una presentazione rivolta a tutti *Stakeholder* aziendali, mirata a mostrare i risultati ottenuti con le tecnologie utilizzate e mettere in risalto le potenzialità del prototipo sviluppato.

Il progetto in sè fa parte di una rivoluzione tecnologica messa in atto da Sync Lab nel campo del Data Processing e Data Analytics.

1.3 Il progetto di stage

1.3.1 Descrizione del progetto

Le attività descritte nel presente lavoro di stage illustrano la progettazione e lo sviluppo di un prototipo di una Data Pipeline eseguibile con Docker Compose, utilizzando Apache Druid come componente Online Analytical Processing (OLAP).

Il prototipo finale riceve i dati da un sistema di raccolta basato su Apache Kafka eseguendo il Data Processing con Apache Druid sui dati grezzi ricevuti.

L'obiettivo dello stage oltre a essere quello di sviluppare un prototipo funzionante, che soddisfi quanto richiesto, è anche quello di studiare e analizzare le funzionalità offerte dalle tecnologie utilizzate, in modo da poterne evidenziare i punti di forza e le differenze con le tecnologie tradizionali, utilizzate per il medesimo scopo.

1.3.2 Obiettivi formativi

In generale lo stage ha come obiettivo quello di far acquisire allo stagista concetti fondamentali riguardanti il contesto del prototipo sviluppato come:

- * Container technology;
- * Apache Kafka e le Event Driven Architecture, design pattern publisher/subscriber;
- * Column Based Database e la relazione/confronto con i classici Database relazionali;
- * Middleware, Data Pipeline, le architetture distribuite, scalabili e resilienti.

1.3.3 Risultati attesi e Obiettivi fissati

I risultati attesi e gli obiettivi fissati per lo stage sono riportati nella Tabella 1.1, con rispettivo identificativo, importanza e breve descrizione.

L'identificativo (riportato in breve con "ID") è la sigla che identifica ogni requisito e rispetta la seguente notazione [Importanza][Identificativo].

L'importanza è indicata dalla sigla ${\bf O}$ oppure ${\bf F}$ ad indicare rispettivamente un obiettivo obbligatorio oppure facoltativo; mentre l'identificativo è un numero incrementale che segnala in modo univoco l'obiettivo o il risultato in esame.

Tabella 1.1: Tabella degli obiettivi

ID	Importanza	Descrizione		
O1	Obbligatorio	comprensione e definizione di una piccola Data Pipeline che		
		preveda il trattamento dei dati tramite Apache Kafka e Apa-		
		che Druid		
O2	Obbligatorio	comprensione dei vantaggi e degli overhead che le Event		
		Driven Architecture portano con sé		
O3	Obbligatorio	comprensione del pattern publisher/subscriber		
04	Obbligatorio	set-up di un cluster Apache Kafka in ambiente incapsulato in		
		container		
O5	Obbligatorio	gestione delle Time Series e dei Column-based Databases		
O6	Obbligatorio	comprensione delle differenze tra i database relazionali classici		
		e i Column-based Databases		
O7	Obbligatorio	comprensione dell'impiego e utilità dei Middleware		
F1	Facoltativo	produzione di documentazione e un pacchetto di configurazio-		
		ne dell'ambiente di sviluppo e esecuzione della Data Pipeline		
F2	Facoltativo	produzione di documentazione che riporti le differenze di		
		performance tra Apache Druid e altri database relazionali		
		classici per alcune operazioni OLAP		
F3	Facoltativo	realizzazione di una presentazione che illustri l'architettura		
		sviluppata a personale di settore o Stakeholder		

1.3.4 Analisi preventiva dei rischi

Durante la fase di analisi iniziale del progetto di stage, sono stati individuati i seguenti rischi, cui si è cercato di porre rimedio con le azioni di mitigazione indicate.

1. **Inesperienza tecnologica**: il progetto prevede l'utilizzo di tecnologie con cui lo stagista non ha mai avuto a che fare.

Rischio: Medio.

Soluzione: Per mitigare tale rischio, è stato previsto un periodo di ambientamento e formazione sulle tecnologie coinvolte, in modo da poter affrontare il progetto con maggiore consapevolezza.

2. Scelte errate nella progettazione dell'architettura: il progetto prevede la progettazione di un'architettura complessa, con molte componenti, di natura differente che interagiscono tra di loro.

Rischio: Alto.

Soluzione: Per mitigare tale rischio, è stato previsto un periodo di analisi e progettazione dell'architettura, con il supporto del tutor aziendale, in modo da poter ovviare tale rischio.

3. Prestazioni insufficienti delle macchine a disposizione: il progetto prevede l'impiego di tecnologie che richiedono un elevato dispendio di risorse. Tale fattore se non tenuto in considerazione potrebbe portare a risultati penalizzanti.

Rischio: Alto.

Soluzione: Per mitigare tale rischio, è stato previsto una configurazione di tali macchine in modo da poter sfruttare al meglio le risorse a disposizione.

1.3.5 Obiettivi personali

Nonostante la realizzazione del progetto sia l'obiettivo principale, il percorso di stage offre anche la possibilità di raggiungere una serie di obiettivi personali come:

- * imparare a utilizzare nuove tecnologie e strumenti legati ad architetture distribuite:
- * comprendere i fattori da tenere in considerazione nella progettazione di un'architettura distribuita;
- * comprendere i vantaggi e come suddividere il lavoro tra i componenti, in modo da poter lavorare in parallelo;
- * imparare a lavorare in un team, condividendo le conoscenze e le esperienze;
- * confrontarsi con persone del settore, per capire come si lavora in un'azienda.

Capitolo 2

Tecnologie e strumenti utilizzati

Per il raggiungimento degli obiettivi del progetto di stage sono state utilizzate diverse tecnologie e strumenti. In questa sezione verranno riepilogate con una breve descrizione del loro utilizzo.

2.1 Linguaggi utilizzati

2.1.1 YAML

YAML, acronimo di YAML Ain't Markup Language, è un linguaggio di Markup, noto per la sua leggibilità e la sua chiarezza espressiva.

La prima idea attorno al linguaggio YAML nasce attorno agli anni '90 quando Clark C. Evans, software developer, lo propone come alternativa a XML.

Nel 2001 Evans pubblica la prima specifica del linguaggio, che va a definire i principi fondamentali del linguaggio.

Negli anni YAML ha acquisito sempre più popolarità e interesse di utilizzo, in quanto ha offerto una configurazione semplice e leggibile per strumenti si DEVOPS, orchestrazione, automazione e molto altro (Figura 2.1).

La storia di YAML è strettamente legata alla esigenza di semplificare la rappresentazione di dati complessi, in un formato più comprensibile a un essere umano e a macchine.

Figura 2.1: Logo di YAML

2.1.2 Python

Python è un linguaggio di programmazione ad alto livello, orientato agli oggetti, che si distingue per la sua sintassi chiara e intuitiva (Figura 2.2).

Creato da Guido van Rossum e rilasciato per la prima volta nel 1991, è cresciuto fino a diventare uno dei linguaggi più utilizzati al mondo.

Data la sua semplicità e la sua versatilità, Python è utilizzato in diversi ambiti dallo sviluppo web, alla Data Analytics, allo sviluppo di applicazione desktop e mobile, fino ad arrivare all'automazione e all'intelligenza artificiale.

Figura 2.2: Logo di Python

2.2 Tecnologie utilizzate

2.2.1 Metodologia di sviluppo e strumenti di gestione di progetto

Perseguendo la metodologia utilizzata da Sync Lab, il progetto di stage è stato sviluppato seguendo un approccio agile, simil Scrum insieme a un modello incrementale. Come risultato di tutto ciò, il carico di lavoro pianificato, suddiviso in task, è stato distribuito in più incrementi successivi, chiamati sprint.

Come prima operazione sono state definite le attività da svolgere e inserite all'interno del Product Backlog e in seguito sono state pianificate all'interno di ogni sprint.

L'adozione di tale metodologia di sviluppo, la si ritiene una scelta vincente, in quanto ha permesso di avere un'idea chiara delle attività da svolgere e ha reso possibile una stima accurata dei tempi di sviluppo. Inoltre ha permesso quanto prima di ottenere parti del prototipo funzionanti, che hanno consentito di avere un feedback immediato sul lavoro svolto da parte del tutor aziendale.

Per quanto riguarda il modello incrementale, il maggiore vantaggio ottenuto è stato la metodologia di sviluppo: le componenti con maggiore priorità sono state sviluppate per prime, perchè hanno fornito la base su cui sviluppare le componenti successive. Ciò significa che le funzionalità essenziali del prototipo sono state disponibili sin da subito e sono state migliorate e ampliate con il progredire dello sviluppo del progetto.

ClickUp

ClickUp (Figura 2.3) è lo strumento di project management utilizzato per la gestione del progetto di stage.

È una piattaforma cloud che offre strumenti e funzionalità per la gestione di attività in modo efficente.

Presenta una interfaccia intuitiva e semplice da utilizzare, che permette di gestire le attività in modo semplice e veloce.

Offre la possibilità di creare board personalizzate, in cui inserire le attività da svolgere, e di creare task personalizzati, permette di dare priorità alle attività, di assegnarle a un membro del team e d'impostare una data di scadenza.

Figura 2.3: Logo di ClickUp

2.2.2 Ambiente di sviluppo

Durante tutto lo sviluppo del progetto di stage ho fatto uso del sistema operativo **Ubuntu 22.04**. Tale scelta è stata dettata dal fatto che il progetto prevede la realizzazione di un ambiente incapsulato in container, che verrà eseguito tramite Docker che sfrutta le funzionalità del kernel Linux.

L'utilizzo di un ambiente di questo tipologia rappresenta una svolta nell'approccio allo sviluppo e alla distribuzione del software, consentendo di risolvere sfide tradizionali legate alla compatibilità, alla portabilità e all'isolamento delle applicazioni.

Un container consente d'incapsulare un'applicazione, insieme a tutte le sue dipendenze e configurazioni, all'interno di un'unità standardizzata.

Tale approccio offre un ambiente isolato e autosufficiente in cui l'applicazione può essere eseguita in modo coerente, indipendentemente dall'ambiente in cui viene distribuita. Inoltre un'applicazione contenuta in un container può essere eseguita su qualsiasi host o ambiente che supporti la tecnologia di containerizzazione, indipendentemente dal sistema operativo sottostante. Tutto ciò consente di eliminare il problema delle differenze tra ambienti di sviluppo, test e produzione, semplificando il processo di distribuzione.

Docker Compose

Docker Compose (Figura 2.4) è uno strumento che permette di definire e gestire applicazioni Docker multi-container.

Utilizza il linguaggio YAML per configurare i servizi dell'applicazione e fornisce un'interfaccia da riga di comando per la gestione dei container.

Docker Compose permette di definire ed avviare più container Docker in modo coordinato, risolvendo la sfida dell'orchestrazione dei container.

Mentre Docker permette di definire singoli container, Docker Compose estende queste funzionalità permettendo agli sviluppatori di definire in modo dichiarativo, oltre ai servizi contenuti in ogni applicazione, anche le relazioni tra i container e le configurazioni di rete, volumi e variabili d'ambiente.

Figura 2.4: Logo di Docker Compose

2.2.3 Versioning

Git

Git è un sistema di controllo versione distribuito, utilizzato per il tracciamento delle modifiche ai file di un progetto.

Creato da Linus Torvalds nel 2005, GIT è stato pensato per la gestione del codice sorgente del kernel Linux, ma è stato adottato per progetti di ogni genere, di piccole e grandi dimensioni (Figura 2.5).

Figura 2.5: Logo di Git

È uno dei sistemi di controllo di versione più utilizzati al mondo, grazie alla sua velocità, alla sua efficienza e alla sua flessibilità.

Come tutti i sistema di controllo di versione si basa sul concetto di repository, ovvero un archivio contenente i file e tutti i metadati relativi alle modifiche effettuate.

In **Git** un file può trovarsi in tre stati diversi: *committed* (versionati), *modified* (modificati) e *staqed* (pronti per essere versionati).

Ogni nuovo modifica, se versionata all'interno del repository viene identificata da un *commit*, avente un identificativo univoco di 40 caratteri. *Modified* significa che il file è stato modificato ma non è ancora stato versionato, mentre *staged* significa che il file è stato modificato e preparato per essere inserito nel prossimo *commit*.

Quanto detto illustra le operazioni essenziali che possono essere effettuate con **Git** (Figura 2.6). Essenzialmente un workflow di base con **Git** prevede:

- Clonare un repository, se già esistente;
- Modificare i file all'interno della working directory;
- **Stage** dei file, ovvero prepararli per il prossimo *commit*, aggiungendoli alla *staging area* con il comando *git add*;
- **Commit** dei file, ovvero versionarli, con il comando *git commit*, i file così come son salvati nella *staging area* vengono versionati all'interno del repository;
- **Push** delle modifiche sul repository remoto.

Figura 2.6: Comandi di base di Git

GitHub

Per quanto riguarda il servizio di hosting che ha ospita il repository remoto è stato utilizzato **GitHub**, andando a condividere i contenuti tra il mio account e quello del tutor aziendale (Figura 2.7).

Figura 2.7: Logo di GitHub

GitHub è una piattaforma di hosting per progetti software, che utilizza **Git** come sistema di controllo di versione e contiene tutti i file e i metadati relativi alle modifiche validate lungo le fasi del progetto.

2.2.4 Documentazione

Per quanto riguarda la redazione della documentazione, Sync Lab non ha uno standard prefissato e mi ha permesso di scegliere quale software utilizzare per la produzione dei documenti. La scelta è ricaduta su **LaTeX**, un linguaggio di markup per la preparazione di testi.

LaTeX

LaTex è un sistema di composizione tipografica ampiamente utilizzato per la creazione di documenti di alta qualità. A differenza dei tradizionali editor di testo, LaTeX si basa su comandi di formattazione e struttura, consentendo agli utenti di concentrarsi sul contenuto del documento anziché sul suo aspetto visivo.

È stato sviluppato da Leslie Lamport negli anni '80 come estensione di TeX, un linguaggio e motore di composizione sviluppati da Donald Knuth (Figura 2.8).

LaTeX semplifica notevolmente la creazione di documenti complessi, grazie alla sua capacità di gestire automaticamente numerazione delle sezioni, citazioni bibliografiche, tabelle dei contenuti e molte altre funzionalità tipografiche avanzate. L'ecosistema che LaTeX offre una vasta gamma di pacchetti e stili predefiniti che consentono di creare documenti sofisticati e professionali. Per quanto riguarda la scelta dell'editor da utilizzare l'azienda non ha dato vincoli rilevanti, quindi la scelta è ricaduta su TexLive, un distribuzione LaTeX per sistemi operativi Linux e su Texworks come editor di testo.

Figura 2.8: Logo di LaTeX

2.2.5 Vincoli implementativi

Per quanto riguarda l'implementazione del prototipo richiesto dall'azienda, non sono stati dati particolari vincoli implementativi, se non che il prodotto finale debba essere eseguibile con Docker Compose e che metta in evidenza l'architettura richiesta.

Capitolo 3

Componenti di una Data Pipeline

3.1 Apache Kafka

3.1.1 Introduzione

Apache Kafka è una piattaforma open source, da Jay Kreps, Neha Narkhede e Jun Rao presso LinkedIn e successivamente donata alla Apache Software Foundation nel 2011. (Figura 3.1).

Apache Kafka nasce con la necessità di LinkedIn di gestire grandi quantità di dati in tempo reale.

Già nel 2007 Jay Kreps e il suo team si resero conto che le soluzioni allora attuali, basate su database tradizionali, non erano in grado di gestire un carico di lavoro crescente e la complessità del formato dei dati generati da LinkedIn.

Dunque per affrontare tale sfida, nel 2010 LinkedIn iniziò a utilizzare **Apache Kafka** per gestire i dati di log generati dai vari servizi.

Tale adozione ha dimostrato nel tempo che **Apache Kafka** è in grado di gestire carichi di lavoro molto elevati, di scalare facilmente e di garantire un elevato livello di affidabilità nella consegna di messaggi.

Kafka è scritto in Java e Scala e rilasciata sotto licenza Apache 2.0. La versione attuale è la 3.5.1 rilasciata il 21 luglio 2023.

Kafka nasce originariamente come message broker e permette di gestire uno streaming di eventi in tempo reale.

In particolare fornisce funzionalità per:

- * pubblicare e sottoscrivere flussi di eventi, importandoli ed esportandoli da altri sistemi:
- * archiviare tali flussi in modo affidabile e duraturo;
- * elabora flussi di eventi in real time o in modo retrospettivo.

Figura 3.1: Logo di Apache Kafka

3.1.2 Casi d'uso

Apache Kafka viene ampliamente utilizzato in tutti quelli scenari in cui è richiesto la gestione affidabile di grandi quantità di dati in tempo reale.

I principali campi di utilizzo di Apache Kafka sono:

- * messagistica: Apache Kafka viene particolarmente utilizzato come message broker, in applicazioni di messaggistica per disaccoppiare la produzione del messaggio dall'elaborazione dello stesso, Kafka rispetto ai tradizionali message broker offre velocità e fault tolerance;
- * elaborazione del flusso dati: è possibile anche utilizzare Kafka come componente principale per creare Data Pipeline in cui i dati grezzi, provenienti da diverse sorgenti Kafka vengono aggregati, trasformati fino a ottenere un dato elaborato:
- * monitoraggio e analisi: Kafka può essere utilizzato per raccogliere dati di monitoraggio provenienti da applicazioni, sistemi di controllo o siti web;
- * archiviazione dei dati: Apache Kafka può essere utilizzato come sistema di archiviazione dei dati a lungo termine, permettendo così analisi storiche e ripristino di sistemi in caso di guasti;

3.1.3 Architettura e funzionamento

Apache Kafka nasce come sistema distribuito che opera su nodi (Figure 3.2), i quali comunicano tramite protocollo o tramite protocollo Transmission Control Protocol (TCP) ad alte prestazioni.Data la sua natura distribuita implementa funzionalità di fault tolerance con possibilità di rimpiazzo dei nodi che hanno avuto un malfunzionamento. Kafka può essere distribuito e utilizzato in vari modi tra cui virtual machine e container, on-promise, o servizi cloud.

In generale Apache Kafka e costituito da due componenti essenziali: server e client.

server

Kafka viene eseguito come un cluster di uno o più server, che rivestono diversi ruoli. Alcuni svolgono la funzione di Kafka Broker: ricevono i messaggi dai produttori, li archiviano e inviano i messaggi ai rispettivi consumatori, al momento della sottoscrizione.

Altri invece assolvono il compito di **Kafka Connect**: importano ed esportano i dati sotto forma di flussi di eventi, permettendo così d'interagire con altri sistemi esistenti.

client

I client sono un insieme di librerie che consentono di scrivere applicazioni distribuite e microservizi che permettono d'interagire con il sistema di messaggistica di **Apache Kafka**, leggendo, scrivendo ed elaborando flussi di messaggi in parallelo, su larga scala e con fault tolerance anche in caso di problemi di rete o guasti della macchina. In generale la scelta del client da utilizzare dipende dal linguaggio di programmazione che si vuole utilizzare per sviluppare l'applicazione.

La struttura dei messaggi

I messaggi inviati all'interno di **Apache Kafka** sono composti da una chiave, un valore e un timestamp.

Oltre a tali informazioni a ogni messaggio viene associato un topic o argomento che permette di eseguire operazioni di organizzazione e filtraggio dei messaggi.

Un messaggio, una volta inviato a un consumatore non viene eliminato dal topic ma viene mantenuto per un periodo di tempo configurabile attraverso un timeout (di default 7 giorni).

I topic dei rispettivi messaggi vengono partizionati su più nodi per consentire a più consumatori di leggere gli stessi messaggi e permettendo ai client di leggere e scrivere messaggi da/a molti message broker.

Quando un nuovo messaggio viene emesso, quest'ultimo si aggiunge alla rispettiva partizione relativa al topic e viene assegnato un numero di offset che identifica il messaggio all'interno della partizione.

Grazie a tale meccanismo **Apache Kafka** garantisce che i messaggi vengano letti nell'ordine in cui sono stati scritti.

Zookeeper

Figura 3.2: Architettura di Apache Kafka

3.1.4 Garanzie di funzionamento

In **Kafka** esistono produttori e consumatori che producono e sottoscrivono eventi. Gli uni, essendo in un ambiente distribuito, sono indipendenti l'uno dall'altro.

Apache Kafka in tale contesto può fornire una delle seguenti garanzie sulla consegna e ricezione dei messaggi:

- * at most once: i messaggi vengono consegnati al consumatore al più una volta. In questo caso, i messaggi possono essere persi, ma non duplicati;
- * at least once: i messaggi vengono consegnati al consumatore almeno una volta, i messaggi possono essere duplicati, ma non persi;
- * exactly once: i messaggi vengono consegnati al consumatore esattamente una volta. In questo caso, i messaggi non vengono né persi né duplicati, è la garanzia più costosa ma maggiormente richiesta.

3.1.5 Politiche di retentions

3.2 Apache Druid

Figura 3.3: Logo di Apache Druid

3.3 Streaming Data Pipelines

Capitolo 4

Il percorso di stage

Capitolo 5

Valutazioni e Conclusioni

- 5.1 Raggiungimento degli obiettivi
- 5.2 Attualizzazione dei rischi
- 5.3 Contenuti formativi acquisiti
- 5.4 Divario rispetto al percorso di studi
- 5.5 Valutazione personale

Acronimi e abbreviazioni

```
ICT Information and Communication Technology. 1, 25
OH&S Occupational Health and Safety. 1, 25
OLAP Online Analytical Processing. 3, 4, 25
SGSI Sistema Gestione Sicurezza Informazioni. 1, 25
TCP Transmission Control Protocol. 15, 26
```

Glossario

- agile Il termine agile si riferisce a un insieme di metodi di sviluppo software che si basano su un approccio iterativo e incrementale. L'obiettivo principale dei metodi agili è quello di fornire risultati di alta qualità in modo rapido ed efficiente, consentendo ai team di adattarsi ai cambiamenti delle specifiche o dei requisiti durante il processo di sviluppo.. 8
- **Apache Software Foundation** La Apache Software Foundation è un'organizzazione non profit che supporta lo sviluppo di progetti open source. 14
- **board** La board è una bacheca virtuale che permette di visualizzare le attività da svolgere, quelle in corso e quelle completate. 9
- **Business Innovation** La Business Innovation è un processo che permette d' introdurre nuovi metodi, idee, prodotti e servizi per migliorare l'efficienza, la produttività e la competitività di un'organizzazione. 1
- container il container è un'unità software standard che raggruppa il codice e tutte le sue dipendenze in modo da poter essere eseguito in modo affidabile e veloce in qualsiasi ambiente. $9,\,15$
- **Data Analytics** Il Data Analytics (analisi dati) è il processo di esaminare i dati per trarne conclusioni sull'informazione che contengono. 2, 8
- Data Pipeline Una Data Pipeline è un insieme di operazioni che permettono di trasformare e analizzare i dati in modo da renderli pronti per l'archiviazione. 2–4, 15
- Data Processing Il Data Processing (elaborazione dati) si riferisce alla manipolazione, trasformazione e analisi di dati grezzi al fine di ottenere informazioni significative e approfondite. Comprende una serie di passaggi che permettono di convertire dati non strutturati in forme più utili e che facilitano la loro elaborazione. 2, 3
- **Docker** Docker è un progetto open-source che automatizza il deployment di applicazioni all'interno di container software. 9
- fault tolerance La fault tolerance è la capacità di un sistema di continuare a operare anche in caso di malfunzionamenti. 15, 16

- ICT ICT, Information and Communication Technology è un termine generico che indica tutte le tecnologie che riguardano la trasmissione, la ricezione e l'elaborazione di informazioni sotto forma di segnali elettronici o elettromagnetici. 23
- message broker Il message broker o intermediario di messaggi, che permette d' inviare e ricevere messaggi da più sorgenti verso più destinazioni. Un message broker facilita lo scambio dei messaggi tra le componenti di un sistema distribuito, consentendo di comunicare in modo asincrono e disaccoppiato. 14–16
- metadati I metadati sono dati che descrivono altri dati. Sono utilizzati per descrivere le caratteristiche dei dati e per facilitarne la ricerca e l'organizzazione. 10, 11
- Middleware Il Middleware è un software che si interpone tra un sistema operativo e le applicazioni che vengono eseguite al di sopra. Il suo scopo è quello di facilitare lo sviluppo di applicazioni e di nascondere la complessità del sistema operativo sottostante. 3, 4
- modello incrementale Il modello incrementale è un modello di sviluppo software che prevede la consegna di funzionalità in maniera incrementale, cioè il prodotto finale viene sviluppato attraverso una serie di rilasci parziali. 8
- OH&S L'Occupational Health and Safety è un sistema di gestione che permette di gestire in modo strutturato la salute e sicurezza dei lavoratori. 23
- OLAP L'Online Analytical Processing è un insieme di metodi finalizzato a effettuare analisi rapide e approfondite su grandi volumi di dati, provenienti da uno o piu sorgenti, per prendere decisioni a riguardo. 23
- **on-promise** On-promise è un modello di distribuzione software in cui l'applicazione viene ospitata sul server del cliente. 15
- **open source** Il termine open source si riferisce a un software il cui codice sorgente è reso disponibile al pubblico, in modo che chiunque possa studiarlo, modificare, distribuire e migliorare il software. 14
- **Product Backlog** Il Product Backlog è un elenco ordinato di requisiti che rappresentano le funzionalità del prodotto finale. 8
- **repository** Un repository è un ambiente di archiviazione centralizzato in cui vengono conservati e gestiti i dati. 10, 11
- ${\bf Scrum}\,$ Scrum è un framework agile per la gestione del ciclo di sviluppo del software.
- SGSI Lo SGSI è un sistema di gestione che permette di gestire in modo strutturato la sicurezza delle informazioni aziendali. 23
- sprint Lo sprint è un periodo di tempo breve, della durata di una o due settimane, in cui viene sviluppata una funzionalità del prodotto finale. 8
- streaming di eventi È una pratica di acquisizione dei dati in tempo reale da fonti di eventi come database, flussi di eventi; memorizzando tutto ciò per un recupero futuro di tali informazioni, reagendo a flussi di eventi in tempo reale. 14

task Il task è un'attività che deve essere svolta. 9

TCP Il Transmission Control Protocol è uno dei principali protocolli di comunicazione della suite di protocolli Internet (TCP/IP). Si tratta di un protocollo di trasporto affidabile orientato alla connessione utilizzato per fornire comunicazioni dati affidabili e ordinate tra dispositivi in una rete, come ad esempio tra computer su Internet.. 23

 $\begin{tabular}{l} \bf topic \ \`e \ un \ can ale \ di \ comunicazione \ che \ permette \ di \ categorizzare \ i \ messaggi. \\ \hline 16 \end{tabular}$

virtual machine La virtual machine è un ambiente computazionale autonomo e isolato che opera come una macchina fisica separata, ma è ospitato all'interno di un sistema operativo o di un altro ambiente hardware. 15

working directory La working directory è la directory di lavoro corrente. 10

Bibliografia

Riferimenti bibliografici

James P. Womack, Daniel T. Jones. Lean Thinking, Second Editon. Simon & Schuster, Inc., 2010.

Siti web consultati

Manifesto Agile. URL: http://agilemanifesto.org/iso/it/.