# Exercise 06 for MA-INF 2201 Computer Vision WS19/20 25.11.2019

#### Submission on 30.11.2019

## 1. Theory Question

Prove the following property of k dimensional Gaussian distributions  $\operatorname{Norm}_{x}[\mu, \Sigma]$ :

$$\int \operatorname{Norm}_{x}[a, A] \operatorname{Norm}_{x}[b, B] dx = \operatorname{Norm}_{a}[b, A + B] \int \operatorname{Norm}_{x}[\Sigma_{*}(A^{-1}a + B^{-1}b), \Sigma_{*}] dx$$
where  $\Sigma_{*} = (A^{-1} + B^{-1})^{-1}$ .
(5 points)

## 2. Kalman Filtering

You need to implement the basic Kalman Filtering algorithm with fixed lag smoothing. You observe a set of 2D noisy observations  $(x_i, y_i)$  which are the coordinates of the 2D space. They are observed coordinated of a rotating object as shown in Figure 1.



Figure 1: Observations from location of a clockwise rotating object.

**State**: The state of the object should be the 4D vector  $(x, y, v_x, v_y)$  which denote the location and the velocity in each axis.

**Initial State**: You should consider the initial state of (0, 1, 0, 0).

**Time Evolution Equation:** What should be the time evolution equation?

**Measurement Equation:** What should be the measurement equation?

Code for reading observations is provided. You should write code for performing the filtering for different delays  $\tau=0$  and  $\tau=5$ . You may use numpy for matrix operations. At the end visualize the filtered output. Use the template kalman.py. (5 points)

#### 3. Background Subtraction using Gaussian Mixture Models

In this exercise we want to perform background subtraction for the provided image. The image comes with a rectangular bounding box that contains some color pixels of a person (foreground). For this task you are required to implement a Gaussian Mixture Model and the EM algorithm for training. Assume that all covariance matrices are diagonal.

- (a) Implement the function fit\_single\_gaussian which fits a single Gaussian to provided data.
   (1 point)
- (b) GMMs rely on a good initialization. One strategy is to start with a single Gaussian model, split it into two distributions (GMM with two mixtures) and train it using the EM algorithm. For a GMM with four mixtures, both of the previous distributions can be splitted again. Implement the *split* function that doubles the number of components in the current Gaussian mixture model. In particular, generate 2K components out of K components as follows:
  - Duplicate the weights  $\lambda_k$  so you have 2K weights. Divide by two to ensure  $\sum_k \lambda_k = 1$ .
  - For each mean  $\mu_k$ , generate two new means  $\mu_{k1} = \mu_k + \epsilon \cdot \sigma_k$  and  $\mu_{k2} = \mu_k \epsilon \cdot \sigma_k$ .
  - Duplicate the K diagonal covariance matrices so you have 2K diagonal covariance matrices.

(2 points)

- (c) Implement the EM algorithm to train the GMM. (5 points)
- (d) **Background Subtraction** Train a GMM with 8 components (start with a single Gaussian and do 3 component splits) for the background pixels. Using the thresholding approach from the lecture, set every pixel in the image to zero which is above a threshold  $\tau$ . Display the resulting image. (2 points)