ISyE 3044 — Practice Problems for Exam #2

1. Consider the following 10 pseudo-random numbers (read from left to right):

 $0.98 \quad 0.51 \quad 0.66 \quad 0.97 \quad 0.31 \quad 0.08 \quad 0.27 \quad 0.42 \quad 0.16 \quad 0.68$

- (a) Use the first two numbers to generate two observations from the N(0,1) distribution.
- (b) Use the observations from part (a) to generate two observations from the normal distribution with mean 1 and variance 4.
- (c) Use all 10 numbers to generate an observation from the N(0,1) distribution.
- (d) Use as many numbers as you need to generate an observation from the Poisson($\lambda = 1$) distribution.
- (e) Use as many numbers as you need to generate an observation from the geometric (p = 0.9) distribution.
- 2. The random variable X has density function $f(x) = |x|, -1 \le x \le 1$.
 - (a) Find the mean of X.
 - (b) Apply the inverse-transform method to derive formula(s) for generating realizations of X.
 - (c) Use the random number 0.75 to generate a realization of X.
- 3. Ten independent replications of a simulation of a bank (each run for 3 hours) gave the following estimates for the mean utilization of a teller:

Replication	1	2	3	4	5	6	7	8	9	10
Utilization	0.74	0.83	0.65	0.91	0.88	0.93	0.79	0.80	0.68	0.77

Compute a 95% confidence interval for the mean teller utilization.

- 4. The scope of a simulation project was the estimation of the mean time, say μ , it takes to produce an item. We used 10 independent replications and the central limit theorem to compute the following 95% confidence interval for μ : (4.8, 12.4).
 - (a) What is the estimate of μ ?
 - (b) What is the relative error of this estimate?
 - (c) Is the following statement correct? Yes No "The interval (4.8, 12.4) contains the true mean with probability 0.95."
 - (d) Compute a 90% confidence interval for μ .

- (e) We wish to obtain a point estimate of μ such that $\Pr\{|\bar{\mu}_k \mu| \le 2\} \ge 0.95$. Compute an estimate of the additional number of replications that need to be made.
- 5. Consider the following 20 random numbers (read from left to right, and then down).

Conduct a chi-square test with four intervals for the hypothesis H_0 : The numbers are U(0,1). Use type I error $\alpha = 0.10$.

6. We are told that the following observations

$$0.201 \quad 1.075 \quad 0.656 \quad 2.282 \quad 0.992$$

are from the Weibull density

$$f(x) = 2\lambda^2 x e^{-(\lambda x)^2}, \quad x > 0.$$

- (a) Compute the m.l.e. of λ .
- (b) Use the Kolmogorov-Smirnov test to assess the goodness-of-fit of this distribution. Use type I error $\alpha=0.05$ and use the test statistic for the case where all parameters are known.
- (c) Alternatively, assume that the above five observations are from the gamma distribution with shape parameter equal to 2. Use the method of moments to compute an estimate for the scale parameter.
- 7. The following five observations are observed repair times for an airplane engine: 3.6, 23.3, 31.5, 17.9, 4.0.

The following questions can be answered independently of each other.

- (a) Assume that the data come from the gamma distribution with *mean* equal to 10. Use the method of moments to estimate the shape and scale parameters. [Hint: Write $E(X^2)$ as a function of E(X) and λ .]
- (b) Use the Kolmogorov-Smirnov test with type I error 0.10 to assess the hypothesis "the data come from the gamma distribution with shape parameter equal to 2 and scale parameter equal to 0.2".
- 8. Study the following Examples from BCN&N (the first number indicates the chapter): 7.6, 7.7, 8.9, 8.10, 8.13, 9.12, 9.13, 9.14, 9.18, 11.9, 11.10, 11.12, 11.13, 11.15.

Critical Values c_α for Adjusted K-S Statistics

		α				
Case	Adjusted Test Statistic	0.15	0.10	0.05	0.025	0.01
All parameters	$\left(\sqrt{n} + 0.12 + \frac{0.11}{\sqrt{n}}\right) D_n$	1.138	1.224	1.358	1.480	1.628
known	• /					
$\operatorname{Nor}(\bar{X}_n, S_n^2)$	$\left(\sqrt{n} - 0.01 + \frac{0.85}{\sqrt{n}}\right) D_n$	0.775	0.819	0.895	0.995	1.035
$\text{Expo}(1/\bar{X}_n)$	$\left(D_n - \frac{0.2}{\sqrt{n}}\right) \left(\sqrt{n} - 0.01 + \frac{0.85}{\sqrt{n}}\right)$	0.926	0.990	1.094	1.190	1.308

Solutions

1. (a)
$$Z_1 = \sqrt{-2\ln(0.98)}\cos[2\pi(0.51)] = -0.2$$
 and $Z_2 = \sqrt{-2\ln(0.98)}\sin[2\pi(0.51)] = -0.01$.

(b)
$$X_1 = 1 + 2Z_1 = 0.6$$
 and $X_2 = 1 + 2Z_2 = 0.98$

(c)
$$Z = \frac{\sum_{i=1}^{10} U_i - 10/2}{\sqrt{10/12}} = 0.044.$$

(b)
$$X_1 = 1 + 2Z_1 = 0.6$$
 and $X_2 = 1 + 2Z_2 = 0.98$.
(c) $Z = \frac{\sum_{i=1}^{10} U_i - 10/2}{\sqrt{10/12}} = 0.044$.
(d) $N = \min\{k \ge 1 : \prod_{i=1}^{k+1} U_i < e^{-1} = 0.368\} = 2$.
(e) $X = \left\lceil \frac{\ln(1 - 0.98)}{\ln(1 - 0.9)} \right\rceil = 2$.

(e)
$$X = \left\lceil \frac{\ln(1 - 0.98)}{\ln(1 - 0.9)} \right\rceil = 2$$

- 2. (a) E(X) = 0 by symmetry.
 - (b) We have

$$F(x) = \begin{cases} \int_{-1}^{x} (-t) dt = 1/2 - x^2/2 & \text{if } -1 \le x < 0 \\ F(0) + \int_{0}^{x} t dt = 1/2 + x^2/2 & \text{if } 0 \le x \le 1. \end{cases}$$

Solving F(X) = U for X we get

$$X = \begin{cases} -\sqrt{1 - 2U} & \text{if } 0 \le U < 1/2\\ \sqrt{2U - 1} & \text{if } 1/2 \le U \le 1. \end{cases}$$

(c)
$$X = \sqrt{2(0.75) - 1} = \sqrt{2}/2 = 0.707$$
.

- 3. $\bar{X}_{10} = 0.798$, $S_{10} = 0.09$, and $t_{9,0.025} = 2.26$. The confidence interval is $0.798 \pm 2.26 \frac{0.09}{\sqrt{10}} =$ (0.734, 0.862).
- 4. (a) $\bar{\mu}_{10} = 8.6$, the midpoint of the interval.
 - (b) The estimate of the relative error is

$$\frac{\text{halfwidth}}{\text{sample mean}} = 0.44.$$

- (c) No.
- (d) We have

halwidth =
$$3.8 = 2.26 \frac{S_{10}}{\sqrt{10}} \Longrightarrow S_{10} = 5.31$$
.

The 90% confidence interval is

$$8.6 \pm 1.83 \frac{5.31}{\sqrt{10}} = (5.31, 11.67).$$

(e) We will use the standard normal quantile. Solving the inequality

$$z_{0.025} \frac{S_{10}}{\sqrt{k}} \le 2$$

for k, we have $k \ge (1.96 \times 5.31/2)^2 = 27.08$. Hence we should make about 18 more replications.

5. We have the following table

interval i	[0, 0.25)	[0.25, 0.50)	[0.50, 0.75)	[0.75, 1)
$\overline{O_i}$	6	4	3	7
$\overline{E_i}$	5	5	5	5

The test statistic is

$$\chi_0^2 = \frac{(6-5)^2}{5} + \frac{(4-5)^2}{5} + \frac{(3-5)^2}{5} + \frac{(7-5)^2}{5} = \frac{10}{5} = 2.$$

Since $\chi_0^2 \le \chi_{3,0.10}^2 = 6.25$, we fail to reject H_0 .

6. (a)
$$\hat{\lambda} = \left[(1/5) \sum_{i=1}^{5} X_i^2 \right]^{-1/2} = 0.8.$$

(b) Using $\hat{F}(x) = 1 - e^{-(0.8x)^2}$ we compute the test statistic

$$D_5 = \max \left\{ \max_{1 \le i \le 5} \left[\frac{i}{5} - \hat{F}(X_{(i)}) \right], \max_{1 \le i \le 5} \left[\hat{F}(X_{(i)}) - \frac{i-1}{5} \right] \right\} = 0.277.$$

The adjusted test statistic is

$$\left(\sqrt{5} + 0.12 + \frac{0.11}{\sqrt{5}}\right) D_5 = 0.666.$$

Since this value is less than the critical value $c_{0.05} = 1.358$, we fail to reject H_0 . (In the absence of a table for the Weibull distribution, we used the adjusted test statistic for the case where all parameters are known.)

- (c) We have $\bar{X}_5=1.04$. Solving $\bar{X}_5=2/\lambda$ we get $\hat{\lambda}=2/1.04=1.92$.
- 7. (a) The first two noncentral moments are $\bar{X}_5=16.06$ and $(1/5)\sum_{i=1}^5 X_i^2=376.9$. Solving the equations

$$\frac{\alpha}{\lambda} = 16.06$$
 and $\frac{\alpha}{\lambda^2} + \left(\frac{\alpha}{\lambda}\right)^2 = 376.9$,

we get the method of moment estimates: $\tilde{\alpha}=2.17$ and $\tilde{\lambda}=0.135$.

(b) First sort the observations from smallest to largest: $X_{(1)} \le \cdots \le X_{(5)}$. Using $\hat{F}(x) = 1 - (1 + 0.2x)e^{-0.2x}$ we compute the test statistic

$$D_5 = \max \left\{ \max_{1 \le i \le 5} \left[\frac{i}{5} - \hat{F}(X_{(i)}) \right], \max_{1 \le i \le 5} \left[\hat{F}(X_{(i)}) - \frac{i-1}{5} \right] \right\} = \max\{0.209, 0.472\} = 0.472.$$

The adjusted test statistic is

$$\left(\sqrt{5} + 0.12 + \frac{0.11}{\sqrt{5}}\right) D_5 = 1.135.$$

Since this value is less than the critical value $c_{0.10} = 1.224$, we fail to reject H_0 .