то можно ли утверждать, что ряд $\sum_{n=1}^{\infty} b_n$ также сходится?

Рассмотреть примеры

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \quad \text{M} \quad \sum_{n=1}^{\infty} \left[\frac{(-1)^n}{\sqrt{n}} + \frac{1}{n} \right].$$

2702. Пусть $\sum_{n=1}^{\infty} a_n$ — не абсолютно сходящийся ряд и

$$P_n = \sum_{i=1}^n \frac{|a_i| + a_i}{2}, \quad N_n = \sum_{i=1}^n \frac{|a_i| - a_i}{2}.$$

Доказать, что

$$\lim_{n\to\infty}\frac{N_n}{P_n}=1.$$

2703. Доказать, что сумма ряда

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^p}$$

для каждого p > 0 лежит между $\frac{1}{2}$ и 1.

2703.1. Сколько членов ряда следует взять, чтобы получить его сумму с точностью до $\varepsilon = 10^{-6}$, если:

a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n^2+1}}$$
; 6) $\sum_{n=1}^{\infty} \frac{\sin n^0}{\sqrt{n}}$.

2704. Доказать, что если члены ряда

$$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots$$

переставить так, чтобы группу p последовательных положительных членов сменяла группа q последовательных отрицательных членов, то сумма нового ряда будет

$$\ln 2 + \frac{1}{2} \ln \frac{p}{a}$$
.

2705. Доказать, что гармонический ряд

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$