Математика для Data Science. Линейная алгебра. Условия задач

Содержание

Комплексные числа	7
Задача 1	
Задача 2	
Собственные векторы	2
Задача 1	
Задача 2	
Задача 3	
Задача 4	
Задача 5 (дополнительная)	
Низкоранговое приближение матрицы	٠
Задача 3	
Задача 4	
Задача 5	
Сингулярное разложение – SVD	3
Задача 1	
Задача 2	
Задача З	
Remarks 4	

Замечание. Вот этим цветом отмечены ссылки на страницы внутри этого файла.

Комплексные числа

Задача 1

Неформально. Рассмотрим конкретное комплексное число z_1 . Мы смотрим на все комплексные числа как на векторы из \mathbb{R}^2 . Будем доказывать, что умножение на z_1 делает следующее:

- ullet растягивает все векторы в $|z_1|$ раз
- \bullet и поворачивает все векторы на угол $\arg(z)$ против часовой стрелки.

Ясно, что утверждение выше это то же самое, что теорема с предыдущего шага (только по-другому сформулированная).

А теперь формально.

- 1. Дано фиксированное комплексное число $z_1=a+bi$. Мы рассматриваем отображение $m_{z_1}:\mathbb{C}\to\mathbb{C}$, которое отправляет каждое число z в произведение $z_1\cdot z$. Вспомним, что \mathbb{C} можно воспринимать как \mathbb{R}^2 . Поэтому и наше отображение можно воспринимать как $m_{z_1}:\mathbb{R}^2\to\mathbb{R}^2$. Вычислите, куда это отображение отправляет произвольное комплексное число $z=c+di=(c,d)\in\mathbb{R}^2$. Докажите, что отображение m_{z_1} из \mathbb{R}^2 в \mathbb{R}^2 является линейным и выпишите его матрицу в терминах a и b.
- 2. Выразите a и b через r:=|z| и $\alpha:=\arg(z)$. Выпишите матрицу отображения m_{z_1} в терминах r и α .
- 3. Докажите теорему с предыдущего шага.

Задача 2

- 1. Найдите число z^k , зная модуль и аргумент z.
- 2. Найдите какое-нибудь число z, такое что $z^6 = -100$.
- 3. Докажите, что у любого ненулевого комплексного числа есть обратное. То есть для любого ненулевого $z \in \mathbb{C}$ найдётся число z^{-1} , такое что $z \cdot z^{-1} = 1$.

В целом, мы доказали, что $\mathbb C$ это *поле*. То есть, в $\mathbb C$ есть 0 и 1, а также в $\mathbb C$ можно складывать, вычитать, умножать и делить.

Собственные векторы

Задача 1

Докажите, что если \vec{v} это собственный вектор A, то и $c\vec{v}$ это собственный вектор A, где c – любое ненулевое число.

Задача 2

Найдите собственные числа и собственные векторы матрицы $B = \begin{pmatrix} 2 & 8 \\ 3 & 4 \end{pmatrix}$.

Задача 3

- 1. Докажите, что у матрицы $\begin{pmatrix} 1 & -10 \\ 10 & 1 \end{pmatrix}$ нет собственных чисел и собственных векторов (над $\mathbb R$)
- 2. Докажите, что при $0 < \alpha < \pi$ у матрицы $\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$ нет собственных чисел и собственных векторов (над \mathbb{R}). Что это значит геометрически?

Задача 4

Докажите, что каждому собственному числу соответствует хотя бы один собственный вектор. То есть если для числа λ выполнено $\det(A - \lambda E) = 0$, то найдётся \vec{v} , такой что $A\vec{v} = \lambda \vec{v}$

Задача 5 (дополнительная)

Пусть $\vec{v}_1, \dots, \vec{v}_k$ это собственные векторы с различными собственными числами $\lambda_1, \dots, \lambda_k$. Докажите, что $\vec{v}_1, \dots, \vec{v}_k$ линейно независимы.

Низкоранговое приближение матрицы

Задача 3

Давайте поймём, как взаимодействует ранг и операция умножения матриц. Во всех задачах ниже размеры матриц считайте любыми (но такими, что умножение определено).

- 1. Докажите, что ранг произведения двух матриц меньше или равен ранга каждой из них: $\operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B))$.
- 2. Докажите, что ранг произведения любого числа матриц меньше или равен ранга каждой из них: $\operatorname{rank}(A_1 \cdot A_2 \cdot \dots \cdot A_r) \leq \min(\operatorname{rank}(A_1), \operatorname{rank}(A_2), \dots, \operatorname{rank}(A_r)).$
- 3. Приведите пример матриц A и B, для которых ранг произведения меньше ранга каждого из сомножителей: $\operatorname{rank}(AB) < \min(\operatorname{rank}(A), \operatorname{rank}(B))$.

Задача 4

Пусть дана матрица W размера n на m и ранга не больше 1. Тогда можно найти такие матрицы U и M, что $W = U^T M$. При этом U это матрица размера 1 на n, и M это матрица размера 1 на m. То есть U^T это столбец, а M это строка.

Рассмотрим два случая:

- 1. $\operatorname{rank} W = 0$. Тогда W это нулевая матрица и U^T это нулевой столбец высоты n и M это нулевая строка длины m.
- 2. $\operatorname{rank} W = 1$. Тогда стобцы матрицы W попарно линейно зависимы, а значит, матрица имеет вид $(\vec{u}, \lambda_2 \vec{u}_1, \dots, \lambda_n \vec{u}_1)$. То есть $W = \vec{u}_1(1, \lambda_2, \dots, \lambda_n)$ искомое представление в виде произведения столбца на строку.

Задача 5

Пусть дана матрица W размера n на m и ранга не больше k. Тогда можно найти такие матрицы U и M, что $W = U^T M$. При этом U это матрица размера k на n, и M это матрица размера k на m.

Сингулярное разложение – SVD

Задача 1

Пусть A_1 и A_2 – обратимые матрицы.

- 1. Докажите, что $\operatorname{rank}(A_1B) = \operatorname{rank}(B)$ для любой B, если произведение A_1B определено.
- 2. Докажите, что $\operatorname{rank}(BA_2) = \operatorname{rank}(B)$ для любой B, если произведение BA_2 определено.

Как мы знаем, все ортогональные матрицы обратимы. В SVD нас будет интересовать случай, когда A_1 и A_2 это ортогональные матрицы.

Задача 2

Давайте докажем, что умножение матрицы на ортогональную матрицу не меняет её норму Фробениуса. Пусть X — произвольная матрица размера m на n. Пусть L и R — ортогональные матрицы размера m на m и n на n соответственно.

1. Докажите, что $||LX||_F^2 = ||X||_F^2$

2. Докажите, что $||XR||_F^2 = ||X||_F^2$

Эта задача позволит нам исключить из вычислений ортогональные матрицы U и V^T , сконцентрировавшись на понятной матрице Σ .

Задача 3

Дана диагональная матрица Σ с $\sigma_1 \geq \ \sigma_2 \geq \sigma_3 \geq \cdots \geq 0$:

$$\Sigma = \begin{pmatrix} \sigma_1 & & & & \\ & \sigma_2 & & & \\ & & \ddots & & \\ & & & \ddots & & \end{pmatrix}$$

Мы ищем P такую что $||\Sigma - P||_F^2$ минимально, при ограничении $\mathrm{rank}(P) \leq k$. Докажите, что минимальное значение достигается при $P = \Sigma_k$ (матрицу Σ_k мы определили ранее на Степике). Тем самым лучшее приближение матрицы $A = U\Sigma V^T$ это матрица $B = UPV^T = U\Sigma_k V^T =: A_k$.

Это завершает доказательство теоремы.

Задача 4

Давайте подумаем, какую часть информации мы потеряли, заменив A на A_k . Наблюдения, которые понадобятся для решения этой задачи:

- $||A||_F^2 = ||U\Sigma V^T||_F^2 = ||\Sigma||_F^2$, так как умножение на ортогональные матрицы сохраняет норму (пятая
- $||\Sigma||_F^2 = \sigma_1^2 + \sigma_2^2 + \dots$ Всего элементов на диагонали $\min(n,m)$, обозначим $l := \min(n,m)$. Тогда $||\Sigma||_F^2 = \sigma_1^2 + \sigma_2^2 + \dots$
- Тем самым $||A||_F^2 = \sum_{i=1}^l \sigma_i^2$.
- 1) Докажите, что $||A_k||_F^2 = \sum_{i=1}^k \sigma_i^2$.
- 2) Докажите, что $||A-A_k||_F^2=\sum\limits_{i=k+1}^l\sigma_i^2.$ То есть $||A||_F^2=||A-A_k||_F^2+||A_k||_F^2.$