

Mestrado Integrado em Engenharia Informática, 3º ano

Unidade Curricular de Bases de Dados

Aula 4

António Abelha

Departamento de Informática

Escola de Engenharia

- A álgebra relacional é uma linguagem teórica com operações sobre uma ou mais relações para definir uma nova relação, sem alterar as relações iniciais.
- Ambos os operandos e os resultados são relações, assim a saída de uma operação pode tornar-se a entrada para outra operação. Isso permite que expressões possam ser aninhadas.
- Esta propriedade é chamada de fecho, as relações estão fechadas sob a álgebra, assim como as operações numéricas estão fechados sob as operações aritméticas.

- Há muitas variações das operações que estão incluídos na álgebra relacional. Codd originalmente propôs oito operações.
- As cinco operações fundamentais em álgebra relacional, Seleção, Projeção, Produto cartesiano, União, e Diferença. Além destas temos também a Junção, operações de Interseção e Divisão que podem ser expressas em termos das cinco operações básicas.

- Há muitas variações das operações que estão incluídos na álgebra relacional. Codd originalmente propôs oito operações.
- As cinco operações fundamentais em álgebra relacional, Seleção, Projeção, Produto cartesiano, União, e Diferença. Além destas temos também a Junção, operações de Interseção e Divisão que podem ser expressas em termos das cinco operações básicas.

Operações unárias

 A operação de selecção funciona numa única relação R e define uma relação que contém apenas as tuplos de R que satisfazem a condição (predicate).

$$\Pi_{a_1,\,\ldots,\,a_n}\!(R)$$

 A operação de projecção funciona numa única relação R e define um relação que contém um subconjunto vertical de R, extrai os valores dos atributos especificados eliminando duplicados.

Operações unárias (exemplos)

Listar os funcionários com um salário maior do que 10.000.

$$O_{\text{salary} > 10000}$$
 (Staff)

A relação de entrada é Staff e o predicado é salary > 10000. A operação Seleção define uma relação contendo apenas os tuplos **Staff** com um salário superior a 10.000. Para predicados complexos podemos utilizar os operadores lógicos ^ (AND), v (OR) e ~ (NOT).

staffNo	fName	IName	position	sex	DOB	salary	branchNo
SL21	John	White	Manager	M	1-Oct-45	30000	B005
SG37	Ann	Beech	Assistant	F	10-Nov-60	12000	B003
SG14	David	Ford	Supervisor	M	24-Mar-58	18000	B003
SG5	Susan	Brand	Manager	F	3-Jun-40	24000	B003

Operações unárias (exemplos)

Listar os salários para todos os funcionários, mostrando apenas o staffNo, fName, IName, e salary.

П staffNo, fName, IName, salário (Staff)

Neste exemplo, a operação de projecção define uma relação que contém apenas os seguintes atributos da relação Staff: staffNo, fName, IName, e salary, na ordem especificada.

staffNo	fName	IName	salary
SL21	John	White	30000
SG37	Ann	Beech	12000
SG14	David	Ford	18000
SA9	Mary	Howe	9000
SG5	Susan	Brand	24000
SL41	Julie	Lee	9000

Operações Conjuntos

(c) Cartesian product

Operações Conjuntos

(g) Natural join

(h) Semijoin

(i) Left Outer join

(j) Division (shaded area)

Example of division

União

A união de duas relações R e S define uma relação que contém todas os tuplos de R, ou S, ou ambos os R e S, os tuplos duplicados são eliminados. R e S devem ser compatíveis para a união.

Listar todas as cidades em que há uma filial ou um imóvel para alugar.

$$\Pi_{\text{city}}$$
 (Branch) U Π_{city} (PropertyForRent)

London Aberdeen Glasgow Bristol

Diferença

R - S

A operação diferença define uma relação que consiste nos tuplos que são da relação R, mas não estão S. R e S devem ser compatíveis para a união.

Listar todas as cidades onde há uma filial, mas sem propriedades para alugar.

$$\Pi_{\text{city}}$$
 (Branch) $-\Pi_{\text{city}}$ (PropertyForRent)

city Bristol

Interseção

A operação interseção define uma relação que consiste no conjunto de todos os tuplos que estão em ambos os R e S. R e S devem ser compatíveis para a união.

Listar todas as cidades onde há uma filial e pelo menos um imóvel para alugar.

$$\Pi_{\text{city}}$$
 (Branch) Π_{city} (PropertyForRent)

$$R \cap S = R - (R - S)$$

produto cartesiano

A operação produto cartesiano define uma relação que é a concatenação de cada tuplo de R relacionada com cada tuplo da relação S.

Listar os nomes e comentários de todos os clientes que visualizaram um imóvel para alugar.

 $(\Pi_{\text{clientNo, fName, IName}}$ (Client)) X $(\Pi_{\text{clientNo, propertyNo, comment}}$ (Viewing))

client.clientNo	fName	IName	Viewing.clientNo	propertyNo	comment
CR76	John	Kay	CR56	PA14	too small
CR76	John	Kay	CR76	PG4	too remote
CR76	John	Kay	CR56	PG4	
CR76	John	Kay	CR62	PA14	no dining room
CR76	John	Kay	CR56	PG36	
CR56	Aline	Stewart	CR56	PA14	too small
CR56	Aline	Stewart	CR76	PG4	too remote
CR56	Aline	Stewart	CR56	PG4	
CR56	Aline	Stewart	CR62	PA14	no dining room
CR56	Aline	Stewart	CR56	PG36	
CR74	Mike	Ritchie	CR56	PA14	too small
CR74	Mike	Ritchie	CR76	PG4	too remote
CR74	Mike	Ritchie	CR56	PG4	
CR74	Mike	Ritchie	CR62	PA14	no dining room
CR74	Mike	Ritchie	CR56	PG36	
CR62	Mary	Tregear	CR56	PA14	too small
CR62	Mary	Tregear	CR76	PG4	too remote
CR62	Mary	Tregear	CR56	PG4	
CR62	Mary	Tregear	CR62	PA14	no dining room
CR62	Mary	Tregear	CR56	PG36	

A relação contém informações a mais. Por exemplo, o primeiro tuplo contém diferentes valores *clientNo*. Para obter o resultado pretendido, precisamos realizar uma seleção nesta relação para extrair os tuplos onde **Client.clientNo** = **Viewing.clientNo**.

$$\sigma_{\text{Client.clientNo}} = Viewing.clientNo} ((\Pi_{\text{clientNo}, fName, IName}) (Client)) X (\Pi_{\text{clientNo}, propertyNo, comment})$$

client.clientNo	fName	IName	Viewing.clientNo	propertyNo	comment
CR76	John	Kay	CR76	PG4	too remote
CR56	Aline	Stewart	CR56	PA14	too small
CR56	Aline	Stewart	CR56	PG4	
CR56	Aline	Stewart	CR56	PG36	
CR62	Mary	Tregear	CR62	PA14	no dining room

Decomposição de operações complexas

```
\begin{split} & \text{TempViewing(clientNo, propertyNo, comment)} \leftarrow \Pi_{\text{clientNo, propertyNo, comment}}(\text{Viewing}) \\ & \text{TempClient(clientNo, fName, IName)} \leftarrow \Pi_{\text{clientNo, fName, IName}}(\text{Client}) \\ & \text{Comment(clientNo, fName, IName, vclientNo, propertyNo, comment)} \leftarrow \\ & \text{TempClient} \times \text{TempViewing} \\ & \text{Result} \leftarrow \sigma_{\text{clientNo}} = \text{vclientNo}}(\text{Comment}) \end{split}
```

OU

A mudança de nome fornece um novo nome S para a expressão de E, e, opcionalmente, os nomes dos atributos como a1, a2,..., an.

Operador de JOIN (junção)

Existem várias formas de junção, cada uma com diferenças subtis, algumas mais úteis do que outras:

- Theta join
- Equijoin (uma forma particular de Theta join)
- Natural join
- Outer join
- Semijoin.

Theta join (θ-join)

 $R\bowtie_F S$

O operação Theta join de define uma relação que contém os tuplos que satisfazem o predicado F a partir do produto cartesiano de R e S. O predicado F é da forma R.ai teta S.bi onde teta pode ser um dos operadores de comparação $(<, \le, >, \ge, =, \ne)$.

$$R \bowtie_F S = \sigma_F(R \times S)$$

Equijoin

Listar os nomes e comentários de todos os clientes que visualizaram um imóvel para alugar.

$$(\Pi_{\text{clientNo, fName, IName}}(\text{Client})) \bowtie_{\text{Client.clientNo} = \text{Viewing.clientNo}} (\Pi_{\text{clientNo, propertyNo, comment}}(\text{Viewing}))$$

Result ← TempClient ⋈ TempClient, clientNo = TempViewing, clientNo TempViewing

Natural join

O Natural join é um Equijoin de duas relações R e S sobre todos os atributos comuns. Uma ocorrência comum de cada atributo é eliminada do resultado.

$$(\Pi_{\text{clientNo, fName, IName}}(\text{Client}))\bowtie(\Pi_{\text{clientNo, propertyNo, comment}}(\text{Viewing}))$$

Result ← TempClient ⋈ TempViewing

clientNo	fName	IName	propertyNo	comment
CR76	John	Kay	PG4	too remote
CR56	Aline	Stewart	PA14	too small
CR56	Aline	Stewart	PG4	
CR56	Aline	Stewart	PG36	
CR62	Mary	Tregear	PA14	no dining room

Outer join

(left) Outer Join é uma junção em que os tuplos de R que não tem correspondência nos atributos comuns de S, são incluídos no resultado. Os valores em falta na segunda relação são apresentados a nulo.

Produzir um relatório com o estado das propriedade visitadas.

 $(\Pi_{\text{propertyNo, street, city}}(\text{PropertyForRent})) \supset \forall \text{ Viewing}$

PA14 16 Holhead Aberdeen CR56 24-May-0 PA14 16 Holhead Aberdeen CR62 14-May-0	
PL94 6 Argyll St London null null PG4 6 Lawrence St Glasgow CR76 20-Apr-04 PG4 6 Lawrence St Glasgow CR56 26-May-04 PG36 2 Manor Rd Glasgow CR56 28-Apr-04 PG21 18 Dale Rd Glasgow null null PG16 5 Novar Dr Glasgow null null	null too remote

Semijoin

$$\mathbf{R} \triangleright_{F} \mathbf{S}$$

A operação Semijoin define uma relação que contém os tuplos de R que participam na junção de R com S.

$$R \triangleright_F S = \prod_A (R \bowtie_F S)$$

Listar os detalhes completos de todos os funcionários que trabalham na filial de Glasgow.

staffNo	fName	IName	position	sex	DOB	salary	branchNo
SG37 SG14			Assistant Supervisor		10-Nov-60 24- Mar-58		B003 B003
SG5	Susan	Brand	Manager	F	3-Jun-40	24000	B003

Operador divisão

R÷S

A operação Divisão define uma relação sobre o atributos C, que consiste no conjunto de tuplos de R que correspondem a combinação de cada tuplo em S.

$$T_1 \leftarrow \Pi_C(R)$$

$$T_2 \leftarrow \Pi_C((T_1 \times S) - R)$$

$$T \leftarrow T_1 - T_2$$

Identificar todos os clientes que visualizaram todos os imóveis com três quartos.

Operador divisão

$$(\Pi_{\text{clientNo, propertyNo}}(\text{Viewing})) \div (\Pi_{\text{propertyNo}}(\sigma_{\text{rooms}=3}(\text{PropertyForRent})))$$

 $\Pi_{clientNo,propertyNo}(Viewing)$

clientNo	propertyNo
CR56	PA14
CR76	PG4
CR56	PG4
CR62	PA14
CR56	PG36

 $\Pi_{propertyNo}(\sigma_{rooms=3}(PropertyForRent))$

propertyNo	
PG4 PG36	

RESULT

clientNo

CR56

Operações de Agregação e Agrupamento

Operações de Agregação

Aplica-se a lista de funções de agregação, AL, para a relação R definindo uma relação sobre a lista agregada. AL contém um ou mais pares (<aggregate_function>,<atributo>).

Operações de Agregação e Agrupamento

As principais funções de agregação são:

- COUNT retorna o número de valores do atributo associado.
- SUM devolve a soma dos valores do atributo associado.
- AVG devolve a média dos valores do atributo associado.
- MIN retorna o menor valor no atributo associado.
- MAX retorna o maior valor no atributo associado.

Operações de Agregação

a) Quantas propriedades para alugar custam mais de 350 por mês?

$$\rho_R$$
(myCount) $\Im_{COUNT \text{ propertyNo}}(\sigma_{rent > 350} (PropertyForRent))$

b) Encontre o mínimo, máximo e média dos salários dos funcionários.

myCount
5
(a)

myMin	myMax	myAverage					
9000	30000	17000					
(b)							

 ρ_{R} (myMin, myMax, myAverage) \Im _{MIN salary, MAX salary, AVERAGE salary} (Staff)

Operações de Agrupamento

Agrupa os tuplos da relação R agrupando os atributos GA, em seguida, aplica-se a lista das funções de agregação AL para definir uma nova relação. AL contém um ou mais GASAL(R) (<aggregate_function>, <atributo>) pares. A relação resultante contém os atributos de agrupamento, GA, e os resultados de cada um das funções de agregação.

Encontre o número de funcionários que trabalham em cada filial e a soma de seus salários.

$$\rho_{R}$$
(branchNo, myCount, mySum) $_{\text{branchNo}}$ $\mathfrak{I}_{\text{COUNT staffNo, SUM salary}}$ (Staff)

branchNo	myCount	mySum
B003	3	54000
B005	2	39000
B007	1	9000

- Ullman J.D. Principles of Database and Knowledge-base Systems Volume I. Rockville, MD: Computer Science Press, 1988.
- Molina H.G., Ullman J.D., Widom J. Database Systems The Complete Book Prentice Hall, 2nd Edition, 2008.
- Connolly, T., Begg, C., Database Systems, A Practical Approach to Design, Implementation, and Management, Addison-Wesley, 4a Edição, 2004