SUBJECT REDUCTION FOR PURE TYPE SYSTEMS

ABSTRACT. Following [GN91] and [Bar91], we study the basics of pure type systems, which abstract many of the constructs found in the eight systems of the λ -cube. We start with a brief introduction to the systems of the λ -cube, discuss their expressive power, and introduce pure type systems as a unifying framework in which they can be studied. We then give a detailed proof of subject reduction for arbitrary pure type systems.

Introduction. Subject reduction is a crucial property of a type system that guarantees its 'computational consistency' by ensuring that reductions of a well-typed expression remains well-typed, and which supports the slogan that 'well-typed programs do not go wrong'. It is thus desirable that we can prove it uniformly across many different type systems, and this is the goal of the present note.

To this end, **TODO:** review λ -cube and the dependencies.

Definition 1. A pure type system is a tuple $\sigma := (\mathcal{C}, \mathcal{V}, \mathcal{S}, \mathcal{A}, \mathcal{R})$ consisting of a set \mathcal{C} of constants, a set \mathcal{V} of variables, a set $\mathcal{S} \subseteq \mathcal{C}$ of sorts, a set $\mathcal{A} \subseteq \mathcal{C}^2$ of axioms, and a set $\mathcal{R} \subseteq \mathcal{S}^3$ of rules.

Notation 2. Throughout, let σ be denote an arbitrary pure type system.

TODO: link this with the λ -cube by interpreting λ_{\rightarrow} as a PTS.

Definition 3. The collection of σ -pseudoterms is defined by $T := \mathcal{V} \mid \mathcal{C} \mid (TT) \mid (\lambda \mathcal{V}:T.T) \mid (\Pi \mathcal{V}:T.T)$. Pairs $(A, B) \in T^2$ are called σ -assignments, written A:B, and a finite sequence thereof is called a σ -pseudocontext.

Definition 4. The β-reduction relation is the least relation on σ-terms satisfying the following for all σ-terms A, A', A'': the principal reduction rule $(\lambda x: A.A')A'' \to_{\beta} A'[A''/x]$, and the congruence rules $AA' \succ AA''$, $A' \rightarrow A'' \rightarrow A$

Notation 5. We write $\twoheadrightarrow_{\beta}$ for the reflexive and transitive closure of \rightarrow_{β} , and $=_{\beta}$ for the equivalence relation generated by $\twoheadrightarrow_{\beta}$. A σ -term of the form $(\lambda x : A.A')A''$ is called a β -redex.

Definition 6. Let Γ be a σ -pseudocontext and let M, N be σ -pseudoterms. We say that Γ proves M:N, and write $\Gamma \vdash M:N$, if there is a finite well-founded tree \mathcal{D} , called a *derivation*, such that the following hold.

- 1. Vertices of \mathcal{D} are of the form $\Delta \vdash A:B$, where A and B are σ -pseudoterms and Δ is a σ -pseudocontext.
- 2. The root of \mathcal{D} is $\Gamma \vdash M : N$ and the leaves of \mathcal{D} are instances of $\vdash c : c'$, where $(c, c') \in \mathcal{A}$.
- 3. Each interior vertex of \mathcal{D} is a conclusion of an *inference rule*, whose successors are exactly the premises.

The inference rules of σ are as follows. Below, $s \in \mathcal{S}$, $x \in \mathcal{V} \setminus \text{dom } \Gamma$, $(s_1, s_2, s_3) \in \mathcal{R}$, and $C =_{\beta} C'$.

$$\frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A} \text{ Init} \quad \frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash B : C} \text{ Weak} \quad \frac{\Gamma \vdash B : C}{\Gamma \vdash B : C} \text{ Conv} \quad \frac{\Gamma \vdash B_1 : s_1 \quad \Gamma, x : B_1 \vdash B_2 : s_2}{\Gamma \vdash (\Pi x : B_1 . B_2) : s_3} \text{ Π-rule} \\ \frac{\Gamma \vdash B_1 : s_1 \quad \Gamma, x : B_1 \vdash B_2 : s_2 \quad \Gamma, x : B_1 \vdash C : B_2}{\Gamma \vdash (\lambda x : B_1 . C) : (\Pi x : B_1 . B_2)} \quad \lambda \text{-rule} \quad \frac{\Gamma \vdash B_1 : (\Pi x : C_1 . C_2) \quad \Gamma \vdash B_2 : C_1}{\Gamma \vdash B_1 B_2 : C_2 [B_2/x]} \text{ App}$$

Definition 7. If $\Gamma \vdash A:B$, then Γ is a σ -context and A,B are σ -terms.

Lemma 8 (Substitution Lemma; [GN91, Lemma 17]). Let Γ and $\Gamma_1, y: A, \Gamma_2$ be σ -contexts and let A, M, N, P be σ -terms. If $\Gamma_1, y: A, \Gamma_2 \vdash M: N$ and $\Gamma \vdash P: A$, then $(\Gamma_1, \Gamma_2)[P/y] \vdash M[P/y]: N[P/y]$.

Date: April 22, 2025.

Extended abstracted for the final project for Comp527: Logic and Computation taught by Professor Brigitte Pientka. Link to presentation: TODO

Lemma 9 (Stripping Lemma; [GN91, Lemma 19]). Let Γ be a σ -context and let M, N, P be σ -terms.

- 1. If $\Gamma \vdash c: P$ where $c \in \mathcal{C}$, then $P =_{\beta} c'$ and $(c, c') \in \mathcal{A}$ for some $c' \in \mathcal{C}$.
- 2. If $\Gamma \vdash x:P$ where $x \in \mathcal{V}$, then $P =_{\beta} Q$ for some σ -term Q such that $(x:Q) \in \Gamma$.
- 3. If $\Gamma \vdash (\Pi x: M.N): P$, then $\Gamma \vdash M: s_1, \Gamma, x: M \vdash N: s_2$, and $P =_{\beta} s_3$ for some $(s_1, s_2, s_3) \in \mathcal{R}$.
- 4. If $\Gamma \vdash (\lambda x: M.N): P$, then $\Gamma \vdash M: s_1, \Gamma, x: M \vdash Q: s_2, \Gamma, x: M \vdash N: Q, \Gamma \vdash P: s_3, and <math>P =_{\beta} \Pi x: M.Q$ for some $(s_1, s_2, s_3) \in \mathcal{R}$ and σ -term Q.
- 5. If $\Gamma \vdash M \ N : P$, then $\Gamma \vdash M : (\Pi x : A : B)$, $\Gamma \vdash N : A$, and $P =_{\beta} B[N/x]$ for some σ -terms A and B.

Theorem 10 (Subject Reduction; [GN91, Lemma 22]). Let Γ, Γ' be σ -contexts and let M, M', N be σ -terms.

- 1. If $\Gamma \vdash M : N$ and $M \twoheadrightarrow_{\beta} M'$, then $\Gamma \vdash M' : N$.
- 2. If $\Gamma \vdash M : N$ and $\Gamma \twoheadrightarrow_{\beta} \Gamma'$, then $\Gamma' \vdash M : N$.

Proof. We proceed by simultaneous induction on the derivation $\mathcal{D}: \Gamma \vdash M:N$ when $M \to_{\beta} M'$ and $\Gamma \to_{\beta} \Gamma'$; the general case follows by iteration. We first prove (1), and split into cases with similar proofs.

- If \mathcal{D} ends with Init, then there is no redex in M. If \mathcal{D} ends with Conv, then there are derivations $\mathcal{D}_1: \Gamma \vdash M: N'$ and $\mathcal{D}_2: \Gamma \vdash N': s$ for some $s \in \mathcal{S}$ and some σ -term N' such that $N' =_{\beta} N$. By IH₁, we have $\Gamma \vdash M': N'$, on which Conv with \mathcal{D}_2 gives $\Gamma \vdash M': N$. The case when \mathcal{D} ends with Weak is similar.
- If \mathcal{D} ends with Π -RULE, say with $M = \Pi x : B_1.B_2$, then the Stripping Lemma furnish some $(s_1, s_2, s_3) \in \mathcal{R}$ and derivations $\mathcal{D}_1 : \Gamma \vdash B_1 : s_1$ and $\mathcal{D}_2 : \Gamma, x : B_1 \vdash B_1 : s_2$ such that $N =_{\beta} s_3$. By definition of \rightarrow_{β} , two cases occur: if there is a σ -term B_1' such that $B_1 \rightarrow_{\beta} B_1'$, then by IH₁ on \mathcal{D}_1 , we have $\mathcal{D}_1' : \Gamma \vdash B_1' : s_1$. Moreover, IH₂ on \mathcal{D}_2 gives $\mathcal{D}_2' : \Gamma, x : B_1' \vdash B_2 : s_2$, so applying Π -RULE on \mathcal{D}_1' and \mathcal{D}_2' gives $\Gamma \vdash (\Pi x : B_1'.B_2) : s_3$, on which Conv gives $\Gamma \vdash (\Pi x : B_1'.B_2) : N$. The second case when $B_2 \rightarrow_{\beta} B_2'$ for some σ -term B_2' is the same (in fact, easier). The case when \mathcal{D} ends with λ -RULE is similar (and again has two subcases).
- If \mathcal{D} ends with APP, say with $M=B_1\,B_2$, then reductions within either B_1 or B_2 are trivial. Thus, we can take $x\in\mathcal{V}\setminus \mathrm{dom}\,\Gamma$ such that $B_1=\lambda x\colon A_1.A_2$, and assume $M=(\lambda x\colon A_1.A_2)B_2\to_{\beta}A_2[B_2/x]$. The Stripping Lemma then furnish σ -terms C_1 and C_2 such that $N=_{\beta}C_2[B_2/x]$ and derivations $\mathcal{D}_1:\Gamma\vdash(\lambda x\colon A_1.A_2)\colon(\Pi x\colon C_1.C_2)$ and $\mathcal{D}_2:\Gamma\vdash B_2\colon C_1$. Again, the Stripping Lemma applied to \mathcal{D}_1 then furnish $(s_1,s_2,s_3)\in\mathcal{R}$, a σ -term C_2' such that $\Pi x\colon C_1.C_2=_{\beta}\Pi x\colon A_1.C_2'$, and derivations $\mathcal{E}_1:\Gamma\vdash A_1\colon s_1,\mathcal{E}_2:\Gamma,x\colon A_1\vdash C_2'\colon s_2$, and $\mathcal{E}_3:\Gamma,x\colon A_1\vdash A_2\colon C_2'$. Observe that $A_1=_{\beta}C_1$, so Conv on \mathcal{D}_2 and \mathcal{E}_1 gives $\mathcal{D}_0:\Gamma\vdash B_2\colon A_1$, and using the Substitution Lemma with $(\mathcal{D}_0,\mathcal{E}_2)$ and $(\mathcal{D}_0,\mathcal{E}_3)$ give $\mathcal{E}_2'\colon\Gamma\vdash C_2'[B_2/x]\colon s_2$ and $\mathcal{E}_3'\colon\Gamma\vdash A_2[B_2/x]\colon C_2'[B_2/x]$; note that $\Gamma[B_2/x]=\Gamma$ since $x\not\in\mathrm{dom}\,\Gamma$. Finally, since $C_2=_{\beta}C_2'$ and $N=_{\beta}C_2[B_2/x]$, applying Conv on \mathcal{E}_2' and \mathcal{E}_3' gives $\Gamma\vdash A_2[B_2/x]\colon N$.

For (2), if the last rule of \mathcal{D} is either APP, CONV, Π -RULE, or λ -RULE, then we are done by IH₂; indeed, Γ is unchanged for APP and CONV, and in Π -RULE and λ -RULE, reductions take place within Γ . Suppose that the last rule of \mathcal{D} is INIT or WEAK, so with the notation of Definition 6, $\Gamma = \Gamma_0, x:A$ for some σ -term A and $x \in \mathcal{V}$. If the reduction occurs within Γ_0 , then we are done by IH₂. Otherwise, $A \to_{\beta} A'$ for some σ -term A.

- If \mathcal{D} ends with Init, then $\Gamma_0 \vdash A:s$. Applying IH₁, we have $\Gamma_0 \vdash A':s$, and hence $\Gamma_0, x:A' \vdash x:A'$ from Init. Since $A \to_\beta A'$, we see that $A =_\beta A'$, so $\Gamma_0, x:A' \vdash x:A$ by Conv., as desired.
- If \mathcal{D} ends with WEAK, then there are derivations $\mathcal{D}_1: \Gamma_0 \vdash A:s$ and $\mathcal{D}_2: \Gamma_0 \vdash B:C$. Applying IH₁, we obtain a derivation $\mathcal{D}'_1: \Gamma_0 \vdash A':s$, and applying WEAK on \mathcal{D}'_1 and \mathcal{D}_2 gives $\Gamma_0, x:A' \vdash B:C$.

References

[GN91] H. Geuvers and M. Nederhof, Modular proof of strong normalization for the calculus of constructions, Journal of Functional Programming 1 (1991), no. 2, 155-189.

[Bar91] H. Barendregt, Introduction to Generalized Type Systems, Journal of Functional Programming 1 (1991), no. 2, 125-154.