

Universidade Federal da Bahia Escola Politécnica Departamento de Engenharia Elétrica

Disciplina: Processamento Digital de Sinais (ENGC63)

Professor: Antônio C. L. Fernandes Jr.

Data de Entrega: 06/12/2019

Avaliação III: Implementação de Filtros Digitais

Observações importantes:

- 1. Cada estudante ou grupo de no máximo 2 estudantes deve escolher um projeto;
- 2. O projeto deverá ser apresentado em papel (equações, detalhamento do projeto, gráficos etc), arquivo (com programa fonte) e arquivos de fala (quando for o caso);
- 3. É permitido que um mesmo projeto seja escolhido por mais de um estudante ou grupo de estudantes.

Projetos

- 1º Projeto: Projete, a partir de um filtro passa-baixas Butterworth de sexta ordem, um filtro discreto passa-baixas com frequência de corte (-3dB) igual $\omega_c = 2\pi/3$, usando o **método da invariância da resposta impulsiva**. Faça a implementação sob forma direta e sob forma em cascata. Represente os coeficientes em ponto flutuante (ex.: 0,00423578 = 0,423578 × 10⁻²) e vá diminuindo o número de casas decimais após a vírgula nas formas direta e em cascata para verificar a sensibilidade à quantização de parâmetros. Trace a curva do módulo da resposta em freqência em dB para os casos de precisão infinita e precisão finita. Em seguida, para a representação em forma direta, escolha duas das transformações em frequência a seguir ($Z^{-1} = -z^{-1}$; $Z^{-1} = z^2$ ou $Z^{-1} = -z^{-2}$) e trace a curva do módulo em dB da resposta em frequência resultante.
- 2º Projeto: Projete, a partir de um filtro passa-baixas Butterworth de sexta ordem, um filtro discreto passa-baixas com frequência de corte (-3dB) igual $ω_c = 2\pi/3$, usando o **método de transformação bilinear**. Faça a implementação sob forma direta e sob forma em cascata. Represente os coeficientes em ponto flutuante (ex.: 0,00423578 = 0,423578 × 10⁻²) e vá diminuindo o número de casas decimais após a vírgula nas formas direta e em cascata para verificar a sensibilidade à quantização de parâmetros. Trace a curva do módulo da resposta em freqência em dB para os casos de precisão infinita e precisão finita. Em seguida, para a representação em forma direta, escolha duas das transformações em frequência a seguir ($Z^{-1} = -z^{-1}$; $Z^{-1} = z^2$ ou $Z^{-1} = -z^{-2}$) e trace a curva do módulo em dB da resposta em frequência resultante.
- 3º Projeto: Projete um filtro FIR passa-baixas, de fase linear, pelo **método da janela**. Deseja-se uma freuência de corte (-6dB) igual a $\omega_c = \pi/2$, uma atenuação mínima na banda rejeitada maior ou igual a 50dB e uma região de transição $\Delta\omega < 0$, 1π . Empregue janela de Kaiser. Implemente o filtro nas formas direta e em cascata. Represente os coeficientes em ponto flutuante (ex.: 0, 00423578 = 0, 423578 ×10⁻²) e vá diminuindo o número de casas decimais após a vírgula nas formas direta e em cascata para verificar a sensibilidade à quantização de parâmetros. Trace a curva do módulo da resposta em freqência em dB e da fase da resposta em frequência para os casos de precisão infinita e precisão finita. Em seguida, para a representação em forma direta, escolha duas das transformações em frequência a seguir ($Z^{-1} = -z^{-1}$; $Z^{-1} = z^2$ ou $Z^{-1} = -z^{-2}$) e trace a curva do módulo em dB e da fase da da resposta em frequência resultante.

- 4º Projeto: Projete um filtro FIR passa-baixas, de fase linear, pelo **método da janela**, de modo a assegurar uma resposta em freqência com módulo igual a $|\omega|/(\pi/2)$ para $|\omega| \le (\pi/2)$ e $2 |\omega|/(\pi/2)$ para $(\pi/2) \le |\omega| \le \pi$ (formato triangular, com ganho 1 em $|\omega|/(\pi/2)$ e ganho 0 em $\omega = 0$ e $|\omega| = \pi$). Trace a resposta em frequência e faça comparações entre o uso da janela Retangular e da janela de Hamming (note que, neste caso, a resposta em freqência ideal não apresenta descontinuidade) e discuta o resultado. Varie também o comprimento N da janela e procure um valor que resulte uma boa aproximação da característica triangular solicitada. Implemente o filtro nas formas direta e em cascata. Represente os coeficientes em ponto flutuante (ex.: 0,00423578 = 0,423578 × 10⁻²) e vá diminuindo o número de casas decimais após a vírgula nas formas direta e em cascata para verificar a sensibilidade à quantização de parâmetros. Trace a curva do módulo da resposta em freqência em dB e da fase da resposta em frequência para os casos de precisão infinita e precisão finita. Em seguida, refaça os filtros com as 3 transformações em frequência a seguir ($Z^{-1} = -z^{-1}$; $Z^{-1} = z^2$ e $Z^{-1} = -z^{-2}$) e trace a curva do módulo em dB e da fase da da resposta em frequência resultante.
- 5º Projeto: Projete um filtro FIR de fase linear pelo **método da amostragem em frequência**. Considere N=41 e $H(k)=1e^{-j(2\pi k/20)}$ para $6 \le k \le 14$ (e o valor conjugado para $26 \le k \le 34$). Repita para N=81 e $H(k)=1e^{-j(2\pi k/40)}$ para $12 \le k \le 28$ (e o valor conjugado para $52 \le k \le 68$). Represente os coeficientes em ponto flutuante (ex.: 0,00423578 = 0,423578 ×10⁻²) e vá diminuindo o número de casas decimais após a vírgula nas formas direta e em cascata para verificar a sensibilidade à quantização de parâmetros. Trace a curva do módulo da resposta em freqência em dB para os casos de precisão infinita e precisão finita. Em seguida, para a representação em forma direta, escolha duas das transformações em frequência a seguir ($Z^{-1}=-z^{-1}$; $Z^{-1}=z^2$ ou $Z^{-1}=-z^{-2}$) e trace a curva do módulo em dB da resposta em frequência resultante.