Permit Number 90163

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No.	Source Name (2)	Air Contaminant Name (3)	Emission Rates		
(1)		7 iii Goritaininant Haine (6)	lbs/hour	TPY (4)	
	TDU Dryer (32 MMBtu/hr	РМ	0.24	1.04	
	Natural Gas fired)	PM ₁₀	0.24	1.04	
4		PM _{2.5}	0.24	1.04	
1		SO ₂	0.02	0.08	
		NO _x	3.14	13.74	
		СО	2.64	11.54	
		voc	0.17	0.76	
		HAP	0.06	0.26	
	TDU Steam Boiler (8 MMBtu/hr	РМ	0.06	0.26	
	Natural Gas fired)	PM ₁₀	0.06	0.26	
7		PM _{2.5}	0.06	0.26	
7		SO ₂	<0.01	0.02	
		NO _x	0.78	3.44	
		СО	0.66	2.89	
		voc	0.04	0.19	
		НАР	0.01	0.06	
	TDU Conveyor	РМ	<0.01	0.01	
8A		PM ₁₀	<0.01	<0.01	
		PM _{2.5}	<0.01	<0.01	
		HAP	<0.01	<0.01	
8B	TDU Transfer Points (Desorbed	РМ	0.03	0.06	
	Solids Bin)	PM ₁₀	0.02	0.03	
		PM _{2.5}	<0.01	<0.01	
		HAP	<0.01	<0.01	

CKD-T1	Truck CKD Offloading - Drop	РМ	0.01	0.09
	Point	PM ₁₀	<0.01	0.04
		PM _{2.5}	<0.01	<0.01
CKD-T2	Transfer Outdoor CKD to Partially	РМ	<0.01	0.04
	Enclosed CKD Stockpile - Drop	PM ₁₀	<0.01	0.02
	Point	PM _{2.5}	<0.01	<0.01
TM-T1	Truck Clay Offloading - Drop	РМ	0.08	0.35
	Point Point	PM ₁₀	0.04	0.17
		PM _{2.5}	<0.01	0.03

Emission Sources - Maximum Allowable Emission Rates

BH/Venturi	TDU Cooling Baghouse/Venturi	РМ	0.09	0.38
	Scrubber Scrubber	PM ₁₀	0.09	0.38
		PM _{2.5}	0.09	0.38
		VOC	0.20	0.37
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	<0.01	<0.01
		HNO ₃	<0.01	<0.01
		H ₃ PO ₄	<0.01	<0.01
		H ₂ O ₂	<0.01	<0.01
		H ₂ S	<0.01	<0.01
		HAP	0.20	0.37 (8)
		HF	<0.01	
		HCI	<0.01	
СТ	TDU Cooling Tower	РМ	0.10	0.44
	Tower	PM ₁₀	0.05	0.22
		PM _{2.5}	<0.01	<0.01
		VOC	0.06 (5)	0.25 (5)
		H ₂ S	<0.01	0.03
		HF	<0.01	0.04
		HCI	0.06	0.24
		NH ₃	0.06	0.25
		HNO ₃	0.05	0.22
		H ₃ PO ₄	<0.01	<0.01
		H ₂ O ₂	0.04	0.17
		H ₂ SO ₄	<0.01	<0.01
BOX-1	TDU Centrifuge Cake Rolloff 1	VOC	5.57	0.83
	Care Rolloll 1	НАР	1.99	0.02 (8)
		HF	<0.01	
		HCI	0.03	

		H₂S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	0.15	0.06
		HNO ₃	<0.01	<0.01
		H ₃ PO ₄	<0.01	<0.01
		H ₂ O ₂	<0.01	<0.01
BOX-1B	TDU Centrifuge Cake Rolloff 1B	voc	5.57	0.83
	Cake Notion 1B	НАР	1.99	0.02 (8)
		HF	<0.01	
		HCI	0.03	
		H₂S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	0.15	0.06
		HNO ₃	<0.01	<0.01
		H ₃ PO ₄	<0.01	<0.01
		H ₂ O ₂	<0.01	<0.01
BOX-1C	TDU Centrifuge Cake Rolloff 1C	voc	5.57	0.83
	Care Notion 10	НАР	1.99	0.02 (8)
		HF	<0.01	
		HCI	0.03	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	0.15	0.06
		HNO ₃	<0.01	<0.01
		H ₃ PO ₄	<0.01	<0.01
		H ₂ O ₂	<0.01	<0.01
BOX-2	TDU Gas Treatment Cake	voc	0.17	0.20
	Box	НАР	0.06	<0.01 (8)
		HF	<0.01	

		HCI	<0.01	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	<0.01	0.02
		HNO ₃	<0.01	<0.01
			<0.01	<0.01
		H ₃ PO ₄		
CHAKED	TDU Chakar Day	H ₂ O ₂	<0.01	<0.01
SHAKER	TDU Shaker Box	VOC	0.22	0.07
		HAP	0.08	<0.01 (8)
		HF	<0.01	
		HCI	<0.01	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	<0.01	<0.01
		HNO₃	<0.01	<0.01
		H ₃ PO ₄	<0.01	<0.01
		H ₂ O ₂	<0.01	<0.01
DUTOTE	Tote Tank	voc	<0.01	<0.01
		HAP	<0.01	<0.01 (8)
		HF	<0.01	
		HCI	<0.01	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH₃	<0.01	<0.01
		HNO ₃	<0.01	<0.01
		H ₃ PO ₄	<0.01	<0.01
		H ₂ O ₂	<0.01	<0.01

BIN-FUG	Feed Bin Fugitives (5)	voc	6.71	4.28
	(5)	НАР	2.40	0.09 (8)
		HF	<0.01	
		HCI	0.03	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	0.18	0.33
		HNO ₃	<0.01	0.01
		H ₃ PO ₄	<0.01	<0.01
		H ₂ O ₂	<0.01	0.02
FXBIN-FUG	Fixed Bin Fugitives	voc	4.58	3.07
		НАР	1.64	0.06 (8)
		HF	<0.01	
		HCI	0.02	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	0.13	0.24
		HNO ₃	<0.01	<0.01
		H ₃ PO ₄	<0.01	<0.01
		H ₂ O ₂	<0.01	0.01
CARBFLT1	Carbon Adsorption System 1	voc	<0.01	0.07
	System 1	НАР	<0.01	0.07 (8)
		HF	<0.01	
		HCI	<0.01	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	<0.01	<0.01
		HNO ₃	<0.01	<0.01
		H ₃ PO ₄	<0.01	<0.01

		H ₂ O ₂	<0.01	<0.01
CARBFLT2	Carbon Adsorption System 2	voc	<0.01	0.06
	System 2	НАР	<0.01	0.06 (8)
		HF	<0.01	
		HCI	<0.01	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	<0.01	<0.01
		HNO ₃	<0.01	<0.01
		H ₃ PO ₄	<0.01	<0.01
		H ₂ O ₂	<0.01	<0.01
CARBFLT3	Carbon Adsorption System 3	voc	7.02	0.13
	System 5	НАР	7.02	0.13 (8)
		HF	<0.01	
		HCI	3.23	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	0.33	<0.01
		HNO ₃	0.44	0.16
		H ₃ PO ₄	<0.01	<0.01
		H ₂ O ₂	<0.01	<0.01
FUG-TDU	TDU Piping Fugitives (5)	voc	0.16	0.70
100 100	r agilives (e)	НАР	0.03	0.14 (8)
		HF	<0.01	
		HCI	<0.01	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	0.02	0.42
		HNO ₃	<0.01	0.01

		H ₃ PO ₄	<0.01	<0.01
		H ₂ O ₂	<0.01	0.17
FUG-DU	DU Piping Fugitives (5)	VOC	0.06	0.25
	rugilives (5)	HAP	0.02	0.09 (8)
		HF	<0.01	
		HCI	<0.01	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	<0.01	0.15
		HNO ₃	<0.01	<0.01
		H ₃ PO ₄	<0.01	<0.01
		H ₂ O ₂	<0.01	0.06
PROD-LOAD	Reclaimed Oil Product Loadout	VOC	0.36	0.06
	Product Loadout	HAP	0.36	0.06 (8)
		HF	<0.01	
		HCI	<0.01	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH₃	0.05	0.03
		HNO ₃	<0.01	<0.01
		H ₃ PO ₄	<0.01	<0.01
		H ₂ O ₂	0.02	0.01
PROD-LOAD2	Distillate Product Loadout	voc	1.56	0.57
	Loadout	HAP	<0.01	<0.01
UG-2	Cement Kiln Dust Stock Pile	PM	0.02	0.09
	JUGK I IIG	PM ₁₀	0.01	0.05
		PM _{2.5}	<0.01	<0.01
FUG-1	Stabilization Building 2	PM	0.04	0.21
	Process Fugitives (5)	PM ₁₀	0.04	0.21

		PM _{2.5}	<0.01	<0.01
		VOC	2.46	(6)
		НАР	2.46	(7) (8)
		HF	<0.01	
		HCI	0.21	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	0.18	0.14
		HNO ₃	0.14	0.05
		H ₃ PO ₄	<0.01	<0.01
		H ₂ O ₂	<0.01	<0.01
H1	Stabilization Building 2	РМ	2.14	4.50
	Baghouse	PM ₁₀	2.14	4.50
		PM _{2.5}	2.14	4.50
		VOC	46.76	(6)
		НАР	46.78	(7) (8)
		HF	<0.01	
		HCI	3.98	
		H₂S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	3.43	2.75
		HNO ₃	2.69	0.96
		H ₃ PO ₄	0.01	0.02
		H ₂ O ₂	0.18	0.14
H2	Stabilization Building 3	РМ	2.14	4.50
	Baghouse	PM ₁₀	2.14	4.50
		PM _{2.5}	2.14	4.50
		voc	37.30	(6)
		НАР	37.32	(7) (8)

		HF	<0.01	
		HCI	2.22	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	2.51	2.30
		HNO ₃	2.26	0.80
		H ₃ PO ₄	<0.01	0.01
		H ₂ O ₂	0.15	0.12
ВН7	Stabilization Building 3	РМ	2.14	4.50
	Baghouse	PM ₁₀	2.14	4.50
		PM _{2.5}	2.14	4.50
		voc	37.30	(6)
		HAP	37.32	(7) (8)
		HF	<0.01	
		HCI	2.22	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	2.51	2.30
		HNO₃	2.26	0.80
		H ₃ PO ₄	<0.01	0.01
		H ₂ O ₂	0.15	0.12
FUG-3	Stabilization Building 3	PM	<0.01	0.01
	Process Fugitives	PM ₁₀	<0.01	0.01
	(5)	PM _{2.5}	<0.01	<0.01
		VOC	3.93	(6)
		HAP	3.93	(7) (8)
		HF	<0.01	
		HCI	0.23	
		H ₂ S	<0.01	<0.01

1 <0.01
0.24
0.08
1 <0.01
0.01
6.13
3.65 (8)
5.49
5.49
5.49
0.05
1 0.01
1 <0.01
1 <0.01
1 <0.01
1 <0.01
1 <0.01
1 <0.01
1 <0.01

Emission Sources - Maximum Allowable Emission Rates

ТО	Thermal Oxidizer - Routine (15	PM	0.11	0.49
	MMBtu/hr)	PM ₁₀	0.11	0.49
		PM _{2.5}	0.11	0.49
		SO ₂	16.80	38.63
		NO _x	20.63	35.34
		со	1.24	5.41
		voc	2.21	2.05
		HAP	0.76	0.34 (8) (10)
		Total As (9)	3.95	
		HF	15.61	
		HCI	34.57 (10)	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	0.03	<0.01
		HBr	19.04	34.76
		Total Iodine	18.20	33.43
		NH ₃	0.18	0.66
		HNO ₃	10.63	32.42
		H ₃ PO ₄	2.80	8.77
		H ₂ O ₂	0.10	0.31
Landfill	Landfill Emissions	VOC	0.32	1.41
		НАР	0.17	0.73 (8)
		HF	<0.01	
		HCI	<0.01	
		H ₂ S	<0.01	<0.01
	H ₂ SO ₄	<0.01	<0.01	
		NH ₃	<0.01	0.03
		HNO₃	<0.01	0.02
		H ₃ PO ₄	<0.01	<0.01
		H ₂ O ₂	<0.01	<0.01

TDU-TP1	Receiving Bins –	PM	<0.01	0.02
	Drop Point	PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
		НАР	<0.01	0.02
TDU-TP2	Fixed Bins – Drop Point	РМ	<0.01	0.02
	Politi	PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
		HAP	<0.01	0.02
TDU-TP3	TDU Dryer – Drop Point	РМ	<0.01	0.02
	Font	PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
		НАР	<0.01	0.02
LANDFILLTP	Landfill – Drop Point	РМ	<0.01	<0.01
	7 Onit	PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
		НАР	<0.01	<0.01

Maintenance, Startup, and Shutdown (MSS)

TANK-MSS	Tank MSS	VOC	3.95	0.15
WWTANK-MSS	Wastewater Tank MSS	VOC	0.43	0.01
		HAP	0.43	0.01 (8)
		HF	<0.01	
		HCI	<0.01	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	0.31	<0.01
		HNO ₃	<0.01	<0.01
		H ₃ PO ₄	<0.01	<0.01
		H_2O_2	<0.01	<0.01
CARB-VNTMSS	Carbon Vent MSS	VOC	1.89	0.03
		HAP	1.89	0.03 (8)
	HF <0.01	<0.01		
		HCI	0.02	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	0.01	<0.01
		HNO ₃	<0.01	<0.01
		H ₃ PO ₄	<0.01	<0.01
		H_2O_2	<0.01	<0.01
EQUIP-MSS	Equipment Purging and Opening	PM	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
		VOC	3.27	0.04
		HAP	0.44	0.01 (8)
		HF	<0.01	
		HCI	<0.01	

H ₂ S <0.01 <0.01				
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	0.05	0.02
		HNO ₃	<0.01	<0.01
		H ₃ PO ₄	<0.01	<0.01
		H ₂ O ₂	0.02	<0.01
TPAINT-MSS	TDX Sitewide Painting	PM	0.49	0.05
	anung	PM ₁₀	0.49	0.05
		PM _{2.5}	0.49	0.05
		VOC	16.65	1.66
		НАР	0.40	0.04
UPAINT-MSS	USET Sitewide	PM	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
		voc	18.77	0.19
		НАР	0.80	<0.01
TBLAST-MSS	TDX Sitewide	PM	1.43	0.01
	Abrasive Blasting	PM ₁₀	0.17	<0.01
		PM _{2.5}	0.03	<0.01
UBLAST-MSS	USET Sitewide	PM	2.86	0.01
	Abrasive Blasting	PM ₁₀	0.34	<0.01
		PM _{2.5}	0.05	<0.01

Emission Sources - Maximum Allowable Emission Rates

TO-SRTMSS	Thermal Oxidizer Startup	PM	0.06	<0.01
	Startup	PM ₁₀	0.06	<0.01
		PM _{2.5}	0.06	<0.01
		SO ₂	<0.01	<0.01
		NO _x	0.45	<0.01
		со	3.09	0.06
		voc	0.04	<0.01
		НАР	0.01	<0.01
TO-VNTMSS	Thermal Oxidizer - MSS	voc	0.80	<0.01
	IVISS	НАР	0.80	<0.01
		HF	<0.01	
		HCI	4.04	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	0.04	<0.01
		HNO ₃	0.63	<0.01
		H ₃ PO ₄	0.03	<0.01
		H ₂ O ₂	<0.01	<0.01
DWELL-MSS	Frac Tank - Deepwell	VOC	2.39	0.01
	Maintenance	НАР	2.39	0.01 (8)
		HF	<0.01	
		HCI	<0.01	
		H ₂ S	<0.01	<0.01
		H ₂ SO ₄	<0.01	<0.01
		NH ₃	0.01	<0.01
		HNO ₃	<0.01	<0.01
		H ₃ PO ₄	<0.01	<0.01
		H ₂ O ₂	<0.01	<0.01
FLTCHG-MSS	Baghouse Filter	PM	0.17	<0.01

(4)				PM ₁₀	0.08	<0.01
(1) (2)				fic equipment designation or emissi paMes, use area name or fugitive s		olot plan. <0.01
	VOC -	volatile o	rganic compounds a	s defined in Title 30 Texas Adminis	rative Code § 101.1	10.01
			les of nitrogen	HAP	<0.01	<0.01
Wa	SO ₂ - ashout -	total part	Washout iculate matter, suspe	nde6 in the atmosphere, including I	73.71 PM ₁₀ and PM _{2.5} , as repi	esented
	PM ₁₀ -	total part	iculate matter equal i	to or less than 10 microns in diamet	er, including PM _{2.5} , as	represented
	1 1012.5	particula	te matter equal to or	less than 2.5 microns in diameter	20.71	2.43 (6)
	CO - HAP -	carbon n hazardoi	nonoxide us air pollutant as list	HF ed in § 112(b) of the Federal Clean	0.06 Air Act or Title 40 Code	e of Federal
	_		- D CO C C		0.12	
	H₂S -	hydrogei	s Part 63, Subpart C 1 sulfide (delisted HA HAP)	Þ) [℃] '	0.12	
	73	arserie (11/11/	H ₂ S	<0.01	<0.01
		sulfuric a				
		ammonia		H ₂ SO ₄	<0.01	<0.01
	H ₃ PO ₄ - phosphoric acid		NH ₃	2.03	0.77	
	H ₂ O ₂ -	hydrogei	n peroxide		2.00	
			n chloride (HAP)	HNO₃	1.53	0.16
			n fluoride (HAP)			0.10
(4)	Compliance	e with ann	ual emission limits (to	orsprogram year) is based on a 12-mon	ta o oli ng period.	ı≲0.01\
(5)	Emission ra	ile is an e	sumate and is enforc	eable through compliance with the	applicable special conc	and and
	permit appi	ication re	presentations.	H_2O_2	0.21	0.02
(6)	The annual	VOC em	issions from this sour	ce are included in the Stabilization	Buildings Annual VOC	Emission Cap of

6.13 tpy.

(7) The annual H₂S, HF, and HCl emissions from this source are included in the Stabilization Buildings Annual HAP cap

- (8) Emission limit applies to the sum of total HAP emissions (including but not limited to HF and HCl).
- (9) Total Arsenic includes elemental arsenic and arsenic compounds.
- (10) Hourly HCl Emissions from EPN: TO represents maximum emissions from scrubber mode and non-scrubber mode operations.

Date:	January 17 th , 2024
Date:	January 17", 2024

⁽⁷⁾ The annual H₂S, HF, and HCI emissions from this source are included in the Stabilization Buildings Annual HAP cap of 3.65 tpy.