A new generation of PDFs with deep learning models

Operator implementation in TensorFlow

Jesus Urtasun Elizari, University of Milan Cambridge, June 2019

Outline

- 1. Introduction. General structure of a process.
- 2. Structure of n3fit. Motivation for operator implementation.
- 3. Operator implementation in TensorFlow.
- 4. Results & Conclusions.

General structure of a process

Deep Inelastic Scattering

Convolute the partonic $\hat{\sigma}_{ij}$ with the PDF \longrightarrow Observable σ .

$$\sigma^{DIS} = \int_0^\infty dx \ f_\alpha(x) * \hat{\sigma}_{ij}(\mu_F, \mu_R(\alpha_s)) \ . \tag{1}$$

In our language \longrightarrow vector of observables from a grid of x_i :

$$y_N^{DIS} = \sum_{i,\alpha} f_{\alpha}(x_i) F K_{Ni\alpha} . \tag{2}$$

General structure of a process

Hadronic (Example: Drell-Yan)

Convolute the partonic $\hat{\sigma}_{ij}$ with the PDF \longrightarrow Observable σ .

$$\sigma^{DY} = \int_0^\infty dx_1 \ dx_2 \ f_{\alpha}(x_1) * f_{\beta}(x_2) * \hat{\sigma}_{ij}(\mu_F, \mu_R(\alpha_s)) \ . \tag{3}$$

In our language \longrightarrow vector of observables from a grid of x_i :

$$y_N^{DY} = \sum_{i,j,\alpha,\beta} f_{\alpha}(x_i) f_{\beta}(x_j) F K_{Nij\alpha\beta} . \tag{4}$$

Note: We will use DY to refer hadronic events

General structure of the model

General structure of n3fit

Operator implementation

i) General structure of observable layers

- 1. Build model to compute y_{pred} from x_{grid}
- 2. Compute χ^2 loss by comparing with data $\chi^2 = \sum_{i=1}^N y_i^{pred} y_i^{data}$
- 3. Compute gradient $\nabla \chi^2$ and update values of PDF \longrightarrow Fit

Operator implementation

ii) TF computation of the gradient

1. Computing gradient of the χ^2 with respect to all parameters of the network.

$$\nabla \chi^2 \longrightarrow \frac{\partial \chi^2}{\partial x_i}$$

2. TF requires the gradient with respect to any operation in the model.

$$\frac{\partial \chi^2}{\partial x_i} = \frac{\partial \chi^2}{\partial \mathbf{O} \mathbf{p}} \frac{\partial \mathbf{O} \mathbf{p}}{\partial f_{\mu\nu}} \dots \frac{\partial f_{\mu\nu}}{\partial x_i}$$
 (5)

3. TF does not know the structure of **Op**. Compute manually the gradient $\frac{\partial \mathbf{Op}}{\partial f_{\mu\nu}}$ and implement it in the TF framework.

Operator implementation

- iii) Manual computation of the gradient
 - 1. From the expression of the output:

$$\mathbf{Op} \equiv y_{N} = \sum_{i,j,\alpha,\beta} f_{\alpha}(x_{i}) f_{\beta}(x_{j}) F K_{Nij\alpha\beta}$$

2. Gradient of the output with respect of the PDFs:

$$\frac{\partial y_{N}}{\partial f_{\mu\nu}} = \frac{\partial}{\partial f_{\mu\nu}} \sum_{i,j,\alpha,\beta} f_{i\alpha} f_{j\beta} F K_{Nij\alpha\beta}
= \sum_{i,j,\alpha,\beta} (\delta_{\mu i} \delta_{\nu\alpha} f_{\beta j} + \delta_{\mu j} \delta_{\nu\beta} f_{\alpha i}) F K_{Nij\alpha\beta}
= \sum_{j,\beta} f_{j\beta} F K_{N\mu j\nu\beta} + \sum_{i,\alpha} f_{i\alpha} F K_{Ni\mu\alpha\nu}$$
(6)

Through technical details

- i) Generating libraries
 - 1. Build .cc files computing the convolution and the gradient.
 - Compile them to build .so libraries. g++ -std=c++11 -shared My_Convolution_.cc -o My_Convolution_.so \$TF_FLAGS
 - 3. load the libraries in DIS/DY layers of n3fit with load_op_library() function of TensorFlow.

Through technical details

- ii) Writing the convolution in c++
 - 1. Input PDF: $f_{i\alpha}$ and FK table: $FK_{Nij\alpha\beta}$
 - 2. Basis flavors: $basis = \{(1,2), (3,4), ..., (3,1)\}$

3. Compute convolution $y_N^{DY} = \sum_{i,j,\alpha,\beta} f_{i\alpha} f_{j\beta} F K_{Nijc} \delta_{\alpha\beta}^c$

Through technical details

- iii) Writing the observable layer
 - A DY class written in TF would need at least 3 operations
 - 1. Generate luminosity tensor $\mathcal{L}_{ij\alpha\beta} = f_{i\alpha} * f_{j\beta}$
 - 2. Apply mask to eliminate the non-active flavors
 - 3. Perform the convolution $y_N^{DY} = \sum_{i,j,\alpha,\beta} \mathcal{L}_{ij\alpha\beta} F K_{Nijc} \delta_{\alpha\beta}^c$

```
class DY_mask(Observable):
    def call(self, pdf):
        # Generate Luminosity tensor
        tensor_luminosity = self,tensor_product(pdf, pdf, axes = 0)
        # Permute luminosity tensor for doing the convolution
        permuted_luminosity tensor for doing the convolution
        permuted_luminosity self, permuted_dimensions(tensor_luminosity, (3,1,2,0))
        # Eliminate the non-active flavours by applying the mask[
        masked_luminosity = self,boolean_mask(permuted_luminosity, self,basis, axis = 0)
        # Compute the actual convolution
        result = self,tensor_product(self.fktable, masked_luminosity, axes = 3)
        return result
```

Custom DY class just calls the MyConvolutionDY.cc

Results

Checking computation

DIS only:

	TensorFlow Custom		Ratio	
	1.9207904	1.9207904	1.0000000	
Convolution	2.4611666	2.4611664	0.9999999	
	1.3516952	1.3516952	1.0000000	
Gradient	1.8794115	1.8794115	1.0000000	
	1.505316	1.505316	1.0000000	
	2.866085	2.866085	1.0000000	

Results

Checking computation

DY-like only:

	TensorFlow	Custom	Ratio	
	8.142365	8.142366	1.0000001	
Convolution	8.947762	8.947762	1.0000000	
	7.4513326	7.4513316	0.9999999	
Gradient	18.525095	18.525095	1.0000000	
	19.182995	19.182993	0.9999999	
	19.551006	19.551004	0.9999999	

Results

Checking memory

Global:

	TensorFlow	Custom Convolution	Diff
Virtual	22.3 GB	19.7 GB	2.6 GB
RES	16.7 GB	14.1 GB	2.6 GB

DY-like only:

	TensorFlow	Custom Convolution	Diff
Virtual	17.7 GB	13.8 GB	3.9 GB
RES	12.1 GB	8.39 GB	3.2 GB

Conclusions & Next steps

- 1. Custom convolution takes 3 GB less of memory than TensorFlow.
- 2. Take full control on the computation of the observables.
- 3. Load FK tables in GPU: new possibilities.

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006.