Capstone Project Report

Amazon Product Review Analysis Prime Pantry Data

Under Guidance Of Dr. Amit Kumar

Presented By:

Sania Inamdar • Subhranil Mondal • Tejaswini Dhangar • Yash Singh

Problem Statement

Customer Retention and Sentiment Forecasting

Customer retention strategy through feedback analysis (Customer classification & clustering as an outcome of analyzing the review text). Trend & seasonality analysis to predict how frequently a particular category of customer would shop in the future.

Data Source

- Amazon Prime Pantry data consist of information of Prime members and non-Prime members in selected areas to buy non perishable food items and household supplies in everyday package sizes.
- The data we have to download was 5-core and metadata from the Base dataset
 (https://jmcauley.ucsd.edu/data/amazon/).
 These two file contains reviews and rating related columns.
- After that we are merging the two dataset to get our final dataset to work on.

Description of the treatment on the data

- Price column is most important column, but we can see that in price column null values are present & it is in string format. So we cleaned the price column, filling the null values & convert the datatype into float.
- Correcting the date column & change the date format from 06 13, 2015 to 2015-06-13.
- We are merging the review & summary column as review_text because review and summary contents are similar.

Preprocessing Analysis

Description of the Dataset

After merging the 5 Core & Metadata on 'asin'

COLUMNS	DESCRIPTION
OVERALL	Rating given to product
VERIFIED	User is verified or not
REVIEWTIME/DATE	Date of the review
REVIEWERID	Id of the user
ASIN	Product ID
REVIEWER NAME	Name of the reviewer
REVIEWER TEXT	Review text of reviewer
SUMMARY TEXT	Summary of review text
UNIXREVIEWTIME	Time of the review
VOTE	Helpful votes of the review
IMAGE	Images that users post after they have received the product
STYLE	A dictionary of the product metadata, e.g., "format" is "hardcover"
CATEGORY	List of categories the product belongs to
TECH1	The first technical detail table of the product
DESCRIPTION	Description of the product
FIT	
TITLE	Name of the product
ALSO BUY	Also buy product
TECH2	The second technical detail table of the product
BRAND	Brand name
FEATURE	Bullet-point format features of the product
RANK	Sales rank information
ALSO VIEW	Also view products
DETAILS	Product Details
MAIN CATEGORY	URL
SIMILAR ITEMS	Similar product table
DATE	Date of review
PRICE	Price in US dollars (at time of crawl)
IMAGEURL	URL of the product image
IMAGEURLHIGHRES	URL of the high resolution product image

After Preprocessing size of dataset (137769, 17)

COLUMNS	DESCRIPTION
OVERALL	Rating given to product
VERIFIED	User is verified or not
REVIEWTIME/DATE	Date of the review
REVIEWERID	Id of the user
ASIN	Product ID
REVIEWER NAME	Name of the reviewer
REVIEWER TEXT	Review text of reviewer
SUMMARY TEXT	Summary of review text
UNIXREVIEWTIME	Time of the review
DESCRIPTION	Description of the product
TITLE	Name of the product
ALSO BUY	Also buy product
BRAND	Brand name
FEATURE	Bullet-point format features of the product
RANK	Sales rank information
ALSO VIEW	Also view products
PRICE	Price in US dollars (at time of crawl)

Exploratory Data Analysis

ebruary

March

April

May

August

October

July

Exploratory Data Analysis (Contd.)

rating by each category

Percentage of verified and non-verified customers

Text Preprocessing & Sentiment Analysis

Text Cleaning Sentiment Text Processing We are removing non-word characters, Then we are going for the We are using **TextBlob** to lemmatization to reduce the calculate polarity of each white spaces, digits, punctuations, stop reviews And based on words from the review text column. variability in the words. And we are converting the lists into strings polarity we are calculating and storing the preprocessed data the sentiments of the into clean text column. reviews And saved the data in csy format for further use.

- Text Blob is a Python library for processing textual data. It provides a simple API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more.
- Polarity score lesser than or equal to zero is termed 'Negative', Score greater than or equal to 0.5 is termed 'Positive', and score ranging between 0 to 0.5 is termed 'Neutral'.

EDA on Sentiment Analysis

EDA on Sentiment Analysis (Contd.)

Classification Analysis

Objective: To build best supervised ML model to predict the sentiments of unseen reviews.

Classification Models

Models used for Classification

Model Summary

Vectorization Techniques Used:

- 1. **Bag Of Words:** Bag of words counts the occurrence of each words but doesn't preserve the order of the sentence.
- 2. **Count-Vectoriser:** It is used to transform a given text into a vector on the basis of the frequency (count) of each word that occurs in the entire text. But it will consider the order of the words.
- 3. **TF-IDF:** Term Frequency Inverse Document Frequency of records. It can be defined as the calculation of how relevant a word in a series or corpus is to a text. The meaning increases proportionally to the number of times in the text a word appears but is compensated by the word frequency in the corpus (data-set).

 We can observe that in Logistic Regression by Bag Of Word method we are getting highest Accuracy & F1 score.

Model	Technique	Accuracy	F1-Score
	BOW	0.93873	0.938424
Logistic Regression	CV	0.929226	0.928783
	TFIDF	0.921322	0.921278
	BOW	0.751382	0.736585
Multinomial NB	CV	0.794637	0.789675
	TFIDF	0.765251	0.746678
	BOW	0.86912	0.866888
Decision Tree Classifier	CV	0.873097	0.87125
	TFIDF	0.865677	0.863494
	BOW	0.720274	0.678415
KNN Classifier	CV	0.677844	0.618092
	TFIDF	0.661914	0.641593

Tf-Idf Vectorization method with Cross Validation

• Cross-validation is a technique in which we train our model using the subset of the data-set and then evaluate using the complementary subset of the data-set.

From the visuals we can say that the Logistic
 Regression model gets the higher F1 score
 (91.8%) among all the models.

Hyperparameter Tuning

According to model evaluation Logistic Regression gives us better accuracy & F1 score compared to others.

- Considering L1,L2 penalties and logarithmically spaced C values.
- We are applying Grid search cv on this.

Train Accuracy	: 0.982397	439627582	.2	
Test Accuracy	: 0.951265	638638347	3	
f1-Score Test	: 0.951287	100884490	6	
Classification	Report :			
	precision	recall	f1-score	support
Negative	0.96	0.95	0.95	8067
Neutral	0.93	0.93	0.93	13737
Positive	0.97	0.97	0.97	19440
accuracy			0.95	41244
macro avg	0.95	0.95	0.95	41244
weighted avg	0.95	0.95	0.95	41244
Confusion Matr	ix :			
[[7636 420	11]			
[310 12790	637]			
[22 610 1	1880811			

	Accuracy	F1 Score
Model		
Logistic Regression With TFIDF(Before HP Tuning)	0.921322	0.921278
Logistic Regression With TFIDF(After HP Tuning)	0.951266	0.951287

Prediction on Random Data

After hyper parameter tuning as our model getting 95% accuracy. So here we are testing our model on random data.

Predicting the random data on best model:

Clustering Algorithms

Clustering Analysis

To construct groups or clusters while ensuring that the observations are as similar as possible with sentiments.

K Means Clustering

Feature Selection:

- Rating
- Price
- Polarity

Elbow method: To find the optimal value for k

Clustering Evaluation

• Getting Optimum Clusters By **K-Means**

By 3D plotting now we can Interpret the clusters properly.

From 2D plotting we can't interpret properly.

Result of Clustering

Cluster '0'='Positive' Cluster '1'='Neutral' Cluster '2'='Negative'

- The clusters 0 represents products with positive review and having maximum sales.
- The cluster 1 represents products with neutral reviews.
- Cluster 2 represents products with negative reviews having lesser sales compare to other two clusters.
- So, we need to focus on products belonging to cluster 2 such as Tapatio, Ancient Harvest. So we can increase the quality of those products.

Time Series Analysis

Objectives: Through Time Series Analysis we are going to predict/forecast the future sentiment of the customers shopping on Amazon Prime Pantry.

Time Series Analysis(Contd.)

Data Understanding:

Split overall sentiments into 3 different column Positive, Neutral, Negative.

Analysis	Negative	Neutral	Positive	total
Date				
2006-06-30	0	3	0	3
2006-09-30	0	2	0	2
2006-12-31	0	3	0	3
2007-03-31	0	0	1	1
2007-06-30	0	0	0	0

Plot of Sentiments:

Decomposition Plots

Time Series Analysis(Contd.)

Stationarity Check

We have done stationarity check through Augmented Dickey Fuller test.

ACF

Autocorrelation function (ACF) is a measurement of how related the actual value is to the previous values including trend and seasonality.

PACF

Partial Autocorrelation function (PACF), unlike the ACF, finds the correlation between the residual values in the series, therefore it is only the partial function.

```
def checkStationarity(data):
    pvalue = adfuller(data)[1]
    if pvalue < 0.05:
        ret = "Data is Stationary. Proceed to model building"
    else:
        ret = "Data is not Stationary. Make it stationary"
    return(ret)

# checking for stationarity of the positive sentiment data checkStationarity(Positive)

'Data is Stationary. Proceed to model building'</pre>
```

PACF PLOT (p)

ACF PLOT(q)

Time Series Models

ARIMA is a [p,d,q] model, p takes values upto previous p periods, q takes residuals upto q lags and d degree of difference done on data.

SARIMA or Seasonal ARIMA, is an extension of ARIMA that explicitly supports univariate time series data with a seasonal component. All things remain same as ARIMA model but new seasonality elements are added.

	ive s	sent	•		Q values for ased on low		ral s	enti	•		Q values for sed on low	1	tive	sen	•		Q values for pased on low
	p	9	P	Q	AIC		p	q	P	Q	AIC		p	q	P	Q	AIC
32	1	2	0	2	221.144916	14	0	2	0	2	158.042808	67	2	2	0	3	143.863235
35	1	2	1	2	222.556143	17	0	2	1	2	158.376535	43	1	2	0	3	143.938955
14	0	2	0	2	227.318174	32	1	2	0	2	159.790948	47	1	2	1	3	144.981551
17	0	2	1	2	228.425169	35	1	2	1	2	161.815118	71	2	2	1	3	145.694613
26	1	1	0	2	239.514289	26	1	1	0	2	176.791824	23	0	2	1	3	147.789784

Sentiments Forecasting

- 1. From the plot we can say that the positive sentiments of customers will decrease till 2020 and after that it will increase, as per shopping habits of people.
- 2. From the plot we can say that the neutral sentiments of customers will gradually decrease ,as per shopping habits of people.
- 3. From the plot we can say that the negative sentiments of customers will decrease till 2020 and after that it will slightly increase, as per shopping habits of people.

Conclusion

Customer we should focus on

	reviewerID	reviewerName	Analysis	Count_shopping	<pre>freq_time</pre>
8842	A35Q0RBM3YNQNF	M. Hill	Neutral	168	6 days 14:34:17.142857142
9907	ANDVNCX6JU4XW	SHERRY MCCAUGHTRY	Positive	124	0 days 08:19:21.290322580
765	A13J2PGKNMJG1K	LegoGirl	Neutral	118	11 days 11:35:35.593220338
9752	AMMNGUJK4HQJ5	Misty	Neutral	116	12 days 06:12:24.827586206
0362	A26K3T6L5NYO7L	PennyPincher	Neutral	111	10 days 00:25:56.756756756
0066	A25DP3DWUXSS48	KT	Neutral	93	11 days 22:27:05.806451612
7185	A2YKWYC3WQJX5J	ShannonOnTheLakes	Neutral	79	44 days 09:43:17.468354430
9271	AKPG8VQBS0MWR	Old Coast Customer	Neutral	78	10 days 15:23:04.615384615
0943	A3EF7PUYTF057Z	Gary R. Jordan	Positive	73	20 days 18:04:55.890410958
1764	A1JN63QBBNGB78	Elle S	Neutral	72	17 days 02:20:00
2756	A1BT9J2I6DC246	Debbie	Positive	72	14 days 19:40:00
6368	A92ZKEZI137M1	Lisa M. Rainer	Negative	67	4 days 05:22:23.283582089
1115	A3F9UAX22LLZWK	K K Schwartz	Positive	67	16 days 02:51:56.417910447
4668	A2O421DTA8J0RW	Dogs & amp; Horses	Neutral	65	19 days 05:32:18.461538461
0501	A276RHM6BBPDTY	Ddee	Positive	64	20 days 06:45:00
2430	A1AB6D301MOTM0	Lynn G.	Neutral	63	7 days 10:17:08.571428571
2317	AXK37UZY8UPYP	Que Sera Sera	Positive	62	13 days 00:23:13.548387096
7833	A1W511P7B2QSQE	MariamG	Neutral	62	10 days 08:07:44.516129032
5417	A2R1HUYHXV7H18	Bugs	Neutral	61	41 days 21:14:45.245901639
2987	A2H9H3BVFNS3Y0	Leah D	Positive	61	10 days 22:01:58.032786885

Customer would likely to Churn out

	reviewerID	reviewerName	Analysis	Count_shopping	freq_time
		revzewername	Allazyszs		Treq_came
0	A0526222H977CBZM4DK7	JAIME SCARPITTA	Negative	1	192 days
19987	A3AE8HSBCSLYX4	sly	Negative	1	35 days
6968	A1SU2TR45U1VB4	Chelsie Luchini	Neutral	1	74 days
19988	A3AE8HSBCSLYX4	sly	Neutral	1	35 days
6962	A1STPMGQSC12NS	valeri	Positive	1	226 days
19991	A3AEAMF75QS4WB	Amazon Customer	Neutral	1	199 days
19993	A3AECY1VS8T6V5	Y. Pope	Negative	1	814 days
20002	A3AG3ZHG78N4M5	Pat	Negative	1	683 days
20006	A3AGK4J9PHB6XE	Sbuxgirl36	Neutral	1	316 days
6952	A1SSOLFAUR915J	Crystal	Neutral	1	474 days

Conclusion(Contd.)

Business Insights

- We will recommend our classification model to predict the sentiments of the reviews related to prime pantry products.
- We will recommend our clustering model to identify in which cluster the new customers will fall based on their shopping habits.
- The positive sentiments of customers will decrease till 2020 and after that it will increase. So we can suggest the products from various brands that got moderate to low rating, try to improve the quality of the products so that the positive reviews remain constant or increase gradually.
- The neutral sentiments of customers will gradually decrease. So we may say that the neutral reviews will move towards either positive or negative reviews. So we can suggest the products from the brands that got the neutral reviews more, upgrade the quality or sales so that it will move towards positive reviews more.
- The negative sentiments of customers will decrease till 2020 and after that it will slightly increase. So we will recommend to increase the advertisements, simultaneously improve the quality of product and sales so that more people will buy those products & give more number of reviews.

Thank You