التجربة الرابعة تعيين قيمة مقاومة مجهولة باستخدام القنطرة المترية

الهدف من التجربة:

- 1) تعيين قيمة مقاومة مجهولة
- 2) توصيل المقاومات على التوالي والتوازي

نظرية التجربة:

القنطرة المترية تعتبر التطوير لفكرة قنطرة هويتستون التي سبق دراستها وتتكون قنطرة هويتستون من أربعة مقاومات وهي (R1,R2,R3,R4) موصلة معاً كما في الشكل:

ثلاث من هذه المقاومات معلومة القيمة ولتكن (R1,R2,R4) وواحدة مجهولة ولتكن R3 حيث يمكن تعيين قيمتها باستخدام قيم الثلاث مقاومات الأخرى المعلومة (R1,R2,R4) .

في هذه الدائرة يحدث اتزان داخل الجلفانومتر عند عدم مرور تيار بداخله أي عند تساوي جهد النقطتين b,d . وهذا يعني أن فرق الجهد على الذراع ab يساوي فرق الجهد على الذراع ad وتبعاً لقانون أوم يكون:

$$I_1R_2 = I_2R_4 \dots (2)$$

وبقسمة المعادلتين (1), (2) نحصل على المعادلة:

$$\therefore \frac{R_1}{R_2} = \frac{R_3}{R_4} \Rightarrow (3)$$

وهذه المعادلة تتحقق فقط عند الاتزان. ويمكن عن طريق المعادلة (3) إيجاد قيمة المقاومة R_3 باستخدام قيمة الثلاث مقاومات الأخري (R_1,R_2,R_4) .

وهذه هي الفكرة الأساسية المستخدمة في تجربة القنطرة المترية ولكن في هذه الحالة نستخدم بدلاً من ρ سلك منتظم المقطع من مادة المقاومة النوعية لها ρ وطول هذا السلك 100 سم.

نعلم أن مقاومة جزء من هذا السلك طولها $_{A}$ هي $_{A}$ حيث $_{A}$ هي مساحة مقطع السلك . وحيث إننا استخدمنا سلك منتظم المقطع:

- A = constant
- $\therefore \rho = constant$
- $\therefore R \alpha L$ or $R = \gamma L$

حيث γ مقدار ثابت يعتمد على نوع مادة السلك وتساوي مقاومة وحدة الأطوال من السلك , أي مقاومة 1 سم من السلك . وبالتالى اذا استخدمنا دائرة كما في شكل γ :

حيث تتكون هذه الدائرة من أربعة مقاومات:

متغيرة معلومة القيمة, R_2 مجهولة (المراد تعيين قيمتها) , R_4 , R_3 عبارة عن سلك منتظم المقطع طوله R_1 سم .

: يمكن كتابتهم على هذا الشكل:

$$R_3 = \gamma L_1$$
$$R_4 = \gamma L_2$$

بتحريك الزالق على سلك القنطرة تتغير قيمة المقاومات R_4 , R_3 وبالتالي يمكن أن نحصل على اتزان داخل الجلفانومتر . وعند حدوث الاتزان يمكن تطبيق شروط قنطرة هويتستون (3)

$$\frac{R_1}{R_2} = \frac{R_3}{R_4} = \frac{\gamma L_1}{\gamma L_2} = \frac{L_1}{L_2}$$

$$\frac{R_1}{R_2} = \frac{L_1}{L_2} \rightarrow (4)$$

ويمكن عن طريق هذه المعادلة تعيين قيمة المقاومة R_2 المجهولة حيث القيم الثلاث الأخرى معلومة

$$\therefore R_2 = R_1 \frac{L_2}{L_1}$$

خطوات العمل:

- . R_2 صل الدائرة كما بالشكل رقم (2) واستخدم قيمة مناسبة لـ R_2
- 2) حاول الحصول على اتزان في الجلفانومتر بتحريك الزالق على سلك القنطرة حتى يثبت مؤشر الجلفانومتر على الصفر وعين قيمة كل من L_2 و L_1 .
 - دون قيم R_1 , L_2 , L_2 , L_3 , R_1 من العلاقة السابقة.
 - 4) كرر الخطوات (2), (3) لقيم مختلفة لـ R_1 وفي كل مرة نعين R_2 ونحسب المتوسط.

النتائج:

$R_1(\Omega)$	L ₁ (cm)	L ₂ (cm)	L ₁ /L ₂

التوصيل على التوالي:

1) نعتبر المقاومة السابقة التي تم تعيينها هي R_1 , نكرر الخطوات السابقة لتعيين المقاومة الثانية ونطلق عليها R_2 .

. $R_{resultant}$ على التوالي ونكرر نفس الخطوات السابقة لتعيين المقاومة الكلية R_2 , R_1

. $R_{resultant} = R_1 + R_2$ تحقق من (3

النتائج:

$R_{ m resultant} (\Omega)$	L ₁ (cm)	L ₂ (cm)	L_1/L_2

التوصيل على التوازي:

. $R_{resultant}$ على التوازي ونكرر نفس الخطوات السابقة لتعيين المقاومة R_2 , R_1 على التوازي ونكرر نفس

.
$$R_{resultant} = \frac{R_1 R_2}{R_1 + R_2}$$
 تحقق من (3

النتائج:

R _{resultant} (Ω)	L ₁ (cm)	L ₂ (cm)	L_1/L_2