. #7 attackment 09/950071

Europäisches Patentamt Eur pean Patent Office

Office uropé n des br vets

(1) Veröffentlichungsnummer:

0 387 527 Δ1

(2)

EUROPÄISCHE PATENTANMELDUNG

(1) Anmeldenummer: 90102685.6

2 Anmeldetag: 12.02.90

(5) Int. Cl.5: C12N 15/11, C12P 13/08, C12N 1/21, C07H 21/04, //(C12N1/21,1:15),(C12N1/21, C12R1:13)

Priorität: 14.03.89 DE 3908201

Veröffentlichungstag der Anmeldung:
19.09.90 Patentblatt 90/38

Benannte Vertragsstaaten: AT BE DE ES FR GB IT NL Anmelder: Degussa Aktiengesellschaft
Weissfrauenstrasse 9
D-6000 Frankfurt am Main 1(DE)

② Erfinder: Bachmann, Bernd, Dr. Meyerfeld 10a D-4806 Werther(DE)

Erfinder: Thierbach, Georg, Dr.

Gunststrasse 21 D-4800 Bielefeld(DE) Erfinder: Kalinowski, Jörn Drögestrasse 25

D-4800 Bielefeld(DE) Erfinder: Pühler, Alfred, Prof. Dr.

Am Waldschlösschen 2 D-4800 Bielefeld(DE)

(9) Verfahren zur fermentativen Herstellung von L-Lysin.

© Verfahren zur Herstellung von L-Lysin, bei dem man rekombinante DNA, die aus einem DNA-Fragment, das eine für die Produktion von Proteinen, die zu einer Aspartyl-β-semialdehyd-Dehydrogenase (asd) Aktivität bzw. zur Deregulation der Aspartat-Kinase (lysC) führen, kodierende genetische Sequenz ausweist, die von einem Mikroorganismus der Gattung Corynebacterium oder Brevibacterium stammt, und aus Vektor DNA besteht, in einen Mikroorganismus der Gattung Corynebacterium oder Brevibacterium inseriert, den so erhaltenen Transformanten in einem geeigneten Medium züchtet und das gebildete L-Lysin daraus abtrennt.

EP 0 387 527 A1

Verfahren zur ferm ntativen H rstellung v n L-Lysin

Die Erfindung betrifft ein Verfahren zur fermentativen Herstellung von L-Lysin.

Corynebacterium glutamicum und verwandte Gattungen wie z. B. Brevibacterium lactofermentum und Brevibacterium flavum sind als Aminosäuren bildende Mikroorganismen bekannt.

Um die Produktivität zu erhöhen, führt man künstliche Mutationen durch.

Beispiele für so erzeugte künstliche Mutanten sind z. B. Lysin produzierende Stämme von Corynebacterium glutamicum, die neben einer AEC-Resistenz (AEC = S-2-Aminoethylcystein) eine damit gekoppelte Homoserin-und Leucin-Auxotrophie (US-PS 3 708 395) zeigen oder sensitiv gegenüber Methionin sind (US-PS 3 871 960).

Neben dieser klassischen Methode wurden Vektorsysteme entwickelt, die die Transformation von Mikroorganismen der Gattungen Corynebacterium und Brevibacterium ermöglichen (DE-OS 3737719, DE-OS 3841453, Thierbach G., Schwarzer A., Pühler A, Appl. Microbiol. Biotechnol. 29 (1988) 356-362).

In der EP-A-0219 027 wird ein Verfahren zur Herstellung verschiedener Aminosäuren beschrieben, bei dem man mit rekombinanter DNA Mikroorganismen der Gattungen Corynebacterium und Brevibacterium transformiert und so die Ausscheidungsmenge von Aminosäuren erhöht.

Die rekombinante DNA enthält dabei ein für die Synthese von Aspartatsemialdehyd-Dehydrogenase oder Aspartataminotransferase kodierendes DNA-Fragment.

Aus der US-PS 4,346,170 ist die Klonierung einer die Lysinbildung kontrollierenden genetischen Information in E. coli bekannt, die aus einem Stamm derselben Gattung mit einer Resistenz gegen eine L-Lysin-analoge Verbindung wie z.B. AEC stammt.

Der Gegenstand der US-PS 4,560,654 liegt auf demselben Gebiet. In diesem Fall wird jedoch in einem Lysin-auxotrophen Stamm von Corynebacterium glutamicum eine genetische Information aus einem AEC-resistenten Stamm derselben Gattung kloniert mit der Folge, daß Lysin ausgeschieden wird.

Die Identität des kloniertenDNA-Fragments wird nicht offenbart.

Auch der EP-A-88166 ist nur zu entnehmen, daß ein Stamm von C.glutamicum Lysin ausscheidet, nachdem er durch Tranformation den Phänotyp der AEG-Resistenz erworben hat.

Das für diesen Zweck eingesetzte rekombinante Plasmid pAec5 enthält ein 3,9 kb Fragment chromosomaler DNA eingefügt an der BgIII-Schnittstelle des Vektors pCG 11.

Aufgabe der Erfindung ist, die Regulierbarkeit eines wichtigen Enzyms der Lysin-Biosynthese in ein m Mikroorganismus der Gattung Corynebacterium oder Brevibacterium so zu verändern, daß entweder eine Lysin-ausscheider resultiert oder die Rate der Lysin-Ausscheidung erhöht wird.

Die Erfindung betrifft ein Verfahren zur Herstellung von L-Lysin, das dadurch gekennzeichnet ist, daß man rekombinante DNA, die aus einem DNA-Fragment, das eine für die Produktion von Proteinen, die zu einer Aspartyl-ß-semialdehyd-Dehydrogenase (asd) Aktivität und/oder zur Deregulation der Aspartat-Kinase (lysC) führen, kodierende genetische Sequenz aufweist, die von einem Mikroorganismus der Gattung Corynebacterium oder Brevibacterium stammt, und aus Vektor DNA besteht, in einen gegebenenfalls Lysin-produzierenden Mikroorganismus der Gattung Corynebacterium oder Brevibacterium inseriert, den so erhaltenen Transformanten in einem geeigneten, an sich bekannten Medium züchtet und das gebildete L-Lysin daraus mit bekannten Methoden abtrennt.

Als Donorstämme können alle, bevorzugt L-Lysin produzierende Bakterien der Gattung Brevibacterium und Corynebacterium dienen, die die entsprechenden DNA-Sequenzen enthalten, insbesondere aber Corynebacterium glutamicum DM 58-1, das durch Mutagenese von Corynebacterium ATCC 13032 mit Ethylmethansulfonat entwickelt wurde und AEG-Resistenz zeigt.

Dieser Stamm ist unter der Nummer DSM 4697 hinterlegt, wo er als Wirtsbakterium für das Plasmid pDM6 dient. Dieses kann der Fachmann nach bekannten Verfahren abtrennen und so den Stamm DM58-1 erhalten. (FEMS Microbiology Review 32 (1986) 149-157)

Die chromosomale DNA wird aus dem Donor auf bekannte Weise extrahiert und mit Restriktionsendonucleasen behandelt.

Nach der Konstruktion der rekombinanten DNA durch Einführung des chromosomalen DNA-Fragments in einen Vektor rfolgt die Transformation des Mikroorganismus mit dem so gewonnenen Plasmid, erfindungsgemäß beispielsweise mit pCS2, dessen Restriktionskarte in Abb. 2 dargestellt ist, und das in dem Stamm Corynebacterium glutamicum DM2-1/pCS2 unter der Nummer DSM 5086 bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen nach dem Budapester Abkommen hinterlegt wurde.

Ein bevorzugtes Vektorsystem stellt pZ1 (hinterlegt in Corynebacterium glutamicum DM 274-2 unter der Nummer DSM 4241) dar oder auch pCV34, pCV36, pCVX4, pCVX10, pCVX15, pZ9 und pZ8-1 (DE-OS 3841 454.6) oder pCV35, pECM3, pECM1 (DE-OS 3841 453.8).

V rw ndbar sind ab r auch di aus der EP-A-93 611 bekannten zusammengesetzten Plasmid, s weit sie in Corynebakterien oder Brevibakterien selbst r plizieren, insbesondere pAJ 655, pAJ 611, pAJ 440, pAJ 1844 und pAJ 3148 aber auch pCG 11, pCE 54 (s. EP-A 0 233 581), ebenso pUL330 (Santamaria, R.I. et al., J. Bacteriology 162 (1985) 463-467).

Gegenstand der Anmeldung sind ebenso die rekombinante DNA enthaltenden Mikroorganismen der Gattungen Corynebacterium oder Brevibacterium und ihre Verwendung zur Herstellung von L-Lysin durch Fermentation

Das klonierte DNA-Fragment (s. Abb. 2) enthält nur einen Bruchteil des Aspartat-Kinase Gens (lysC) sowie das vollständige Gen der Aspartyl-ß-semialdehyd-Dehydrogenase (asd), wie aus der Sequenzanalyse erkennbar ist.

Der Bruchteil dieses Aspartat-Kinase Gens besitzt eine zur β-Untereinheit der Aspartat-Kinase II aus B.subtilis homologe DNA-Sequenz.

Alle Tranformanten, deren Plasmid diese Sequenz aufweist (pCS2, pCS21, pCS22, pCS23, pCS24, pCS26, pCS233), enthalten eine verglichen mit dem chromosomal codierten Enzym aus ATCC 13032 bezüglich der feed-back Inhibitoren L-Lysin und L-Threonin deutlich desensibilisierte Aspartatkinase und zeigen AEC-Resistenz.

Die aus Homologievergleichen gezogenen Schlüsse nach denen das Pst I - Xhol Genfragment aus DM58-1 nur ein Teil des lysC Gens (AK), aber das vollständige asd-Gen beherbergt, konnten durch Enzymmessungen eindeutig bestätigt werden.

Kein mit pCS2 oder einem pCS2-Derivat transformierter C.glutamicum ATCC13032 Stamm enthält überraschenderweise eine gegenüber dem Empfängerstamm erhöhte Aspartat-Kinase Aktivität (Tabelle 4, Spalte 3).

Demgegenüber ist in allen Transformanten, deren Plasmide das asd-Strukturgen enthalten, eine starke Überexpression der Aspartyl-β-semialdehyd-Dehydrogenase (ASA-DH) nachweisbar (Tabelle 4, Spalte 2, Abb. 3 und 4). Die Plasmide pCS23 und pCS23-Derivate führend erwartungsgemäß nicht zu einer Überexpression der ASA-DH.

Die bei Klonierung des erfindungsgemäßen DNA-Fragments mit Hilfe von pCS 2 und daraus abgeleiteten Derivaten eintretende starke Überexpression der ASA-DH gewährleistet eineeffiziente Umsetzung des Produkts der Aspartat-Kinase Reaktion, dem *B*-Aspartylphosphat, wodurch eine Beschleunigung der nicht mehr inhibierbaren Aspartat-Kinase Reaktion eintritt.

Aufgrund der hohen Labilität der ASA-DH schwanken die Faktoren der aus der spezifischen Aktivität kalkulierbaren Überexpression von 31 - 65.

Gegenüber dem Stand der Technik ergibt sich eine wesentliche Vereinfachung daraus, daß erstens nur ein Bruchteil des lysC Gens, der zu einer Deregulation der Aspartat-Kinase führt, isoliert werden muß, um eine Lysin-Ausscheidung zu bewirken oder zu verbessern, und zweitens aufgrund der Organisation von lysC und asd in einem Operon so dass, das asd-Gen ohne zusätzlichen exp. Aufwand aufgrund der mit dem mutierten lysC-Gen auftretenden AEC-Resistenz zusammen mit dem lysC-Gen isoliert werden kann. Umgekehrt kann mit Hilfe von asd-Mutanten das lysC + asd enthaltende DNA-Fragment isoliert werden und zwar unabhängig davon, ob lysC mutiert ist oder nicht.

1. Charakterisierung_des_Genspenders_DM58-1-und-Genempfängers-ATCC13032

1.1 Entwicklung und Phänotyp des Stammes DM58-1

Der Stamm DM58-1 wurde durch Mutagenese von Corynebacterium glutamicum Stamm ATCC13032 mit einer üblichen Konzentration an Ethylmethansulfonat entwickelt.

Die Selektion erfolgte durch Ausplattieren des so erhaltenen Mutantengemischs auf Minimal-Agar der Zusammensetzung 20 g Glucose; 10 g (NH₄)₂SO₄; 2,5 g Harnstoff; 1 g KH₂PO₄; 0,4 g MgSO₄ °7H₂O; 2 mg FeSO₄ °7H₂O; 1,5 mg MnSO₄ °H₂O; 300 µg Biotin; 900 µg Thiamin und 20 g Agar pro 1 Aquadest (pH 7,0), der eine geeignete Konzentration an 5-Aminoethyl-D,L-Cystein (AEG) enthielt. Ein auf diesem Medium teilungsfähiger von einem solchen Selektionsmedium Isolierter Klon, später als DM58-1 bezeichnet, trägt neben seiner AEC-Resistenz keine weiteren genetischen Marken.

1.2 Enzymgehalte an Aspartat-Kinase und Aspartyl-beta-semialdehyd Dehydrogenase in ATCC13032 und DM58-1

3

20

40

Die Stämme ATCC13032 und DM58-1 wurden unter direkt vergleichbaren Bedingungen in Standard I Bouillon (Merck Art. Nr. 7882) mit zusätzlichen 4 g/l Glucose und 1 mM MgCl₂ bei 30°C und 150 rpm bis zum Err ich n der früh stationären Phas kultivi rt und durch Zentrifugation vom Kulturmedium getr nnt. Man wäscht 3 Mal mit 100 mM Tris/HCl (pH 7,5); 1 mM DTT und suspendiert die Feuchtz Ilmasse in ein m Volumenteil des gleiche Puffers.

Die so suspendierten Zellen wurden in einer Kugelmühle (B. Braun Melsungen - MSK-Homogenisator, IMA-Disintegrator S) durch Verrühren mit einer geeigneten Menge an Glasperlen aufgeschlossen. Das Zellhomogenat wurde mittels Glasfilternutsche von den Glasperlen getrennt und 30 Minuten bei 30000 x g klarzentrifugiert.

Nach 15stündiger Dialyse in Enzym-stabilisierendem Puffer wurden die Enzymaktivitäten in folgenden Testgemischen bestimmt:

Aspartat-Kinase Test: 100 mM Tris/HCl (pH 7,5), 1 mM DTT, 400 mM (NH₄)₂SO₄, 20 mM MgCl₂, 400 mM NH₂OH $^{\circ}$ HCl, 300 mM L-Aspartat, 40 mM ATP und verschiedene Mengen Enzympräparation.

Durch Zugabe von 750 μ I einer Lösung aus 10 % Fe Cl₃ 6H₂O; 3,3 % TCA; 0,7 N HCl zu 500 μ I des Enzymtestgemisches wird die Enzymreaktion nach 30 minütiger Inkubation bei 37°C gestoppt. Aus der mittels Eichkurvenverfahren photometrisch ($\Delta E_{540~nm}$) bestimmten Aspartyl-beta-Hydroxamat Konzentration wird die in μ Mol/mg min (U/mg) angegebenen Enzymaktivität kalkuliert. Die zugehörigen Proteinkonzentrationen wurden nach der Methode von Lowry et al. (Lowry et al. J. Biol. Chem. 193, 265 (1951)) oder Bradford (Bradford Anal. Biochem. 72, 248 (1976)) durchgeführt. Der Aspartyl- β -semialdehyd Dehydrogenase Test enthält 120 mM Diethanolamin (pH 9,0); 40 mM Na AsO₄; 1 mM NADP 5 mM L-Threonin; 1,3 mM Aspartyl-beta-semialdehyd und verschiedene Mengen Enzympräparation in einem Gesamtvolumen von 1 ml. Die in μ Mol/mg min (U/mg) angegebene Aktivitat wird über die photometrisch ($\Delta E_{540~nm}$) bestimmte NADPH Synthesegeschwindigkeit berechnet.

Tabelle 1 enthält die spezifischen Enzymaktivitäten beider Enzyme in Rohextrakten identisch gezogener und aufgearbeiteter Zellen von C. glutamicum ATCC13032 und DM58-1. Neben vergleichbaren Gehalten an Aspartat-Kinase beider Stamme enthält die AEG resistente Mutante DM58-1 im Vergleich zum Wildtyp ca. 5fach erhöhte Aspartyl-β-semialdehyd Dehydrogenase Aktivität.

1.3 In vitro Hemmbarkeit der Aspartat-Kinase aus C. glutamicum ATCC13032 und DM58-1

Tabelle 1 zeigt, das die bereits von K. Nakayama et al. (K. Nakayama et al. Agr. Biol. Chem. 30, 611 (1966)) angedeutete und von S.N. Kara-Murza et al. (S.N. Kara-Murza Prikladnaya Biokhimiya; Mikrobiologia 14, 345 (1978)) genauer untersuchte Hemmbarkeit des C. glutamicum Wildtyp-Enzyms durch uns reproduziert werden konnte. Dem gegenübergestellt ist der deutlich differente Charakter des Enzyms der AEC resistenten Mutante DM58-1, deren Aspartat-Kinase nicht mehr konzertiert durch L-Lysin + L-Threonin hemmbar ist. Durch die am Enzym aus ATCC13032 Lysin-analog wirkenden Substanzen S-Aminoethyl-D,L-Cystein (AEC) wird das Enzym der Mutanten ebenfalls nur noch gering beeinflußt.

40

10

45

50

Tabell 1

(AK) und Aspartyl-β-semi	Enzymgehalt und Eigenschaften von Aspartat-Kinase (AK) und Aspartyl-β-semialdehyd Dehydrogenase (ASA-DH) aus C. glutamicum ATCC13032 und DM58-1)								
Stamm	ATCC13032	DM58-1							
AK (U/mg)	0,016	0,011							
ASA-DH (U/mg)	0,06	0,33							
Hemmstoff-Kombinationen	AK-Hemmung (%)								
10 mM L-Lys	89	12							
1 mM									
10 mM L-Lys	95	2							
10 mM L-Thr									
100 mM L-Lys	99	_21							
10 mM L-Thr	1								
10 mM AEC	12	0							
1 mM L-Thr									
10 mM AEC	41	0							
10 mM L-Thr									
100 mM AEC	95	7							
10 mM L-Thr									
Abkürzungen: AEC S-(Aminoethyl)-D,L-Cystein									

2. Klonierung eine DNA-Fragments von C. glutamicum Stamm DM58-1, das für eine feed-back resistente Aspartat-Kinase kodiert.

2.1 Klonierung

10

15

20

25

30

35

40

Gesamt-DNA wurde aus C. glutamicum Stamm DM58-1, wie bei Chater et al. (Chater et al. Curr. Topics
Microb. Immunol. 96, 69 (1982)) beschrieben, isoliert und partiell mit dem Restriktionsenzym Pstl verdaut.
Der vektor pZ1 (Abb. 1), der in der Deutschen Patentanmeldung 3737729.9 beschrieben ist, wurde mit Pstl linearisiert und durch Behandlung mit alkalischer Phosphatase dephosphoryliert. Vektor-DNA und DM58-1
DNA wurden gemischt und mit T4 DNA-Ligase, wie bei Maniatis et al. (Maniatis, T et al. Molecular Cloning, A Laboratory Manual, Cold Spring Harbour Laboratory 1982) beschrieben, behandelt.

Die Transformation von C. glutamicum ATCC13032 mit dem Ligationsgemisch erfolgte, wie bei Thierbach et

al. (Thierbach G. et al. Applied Microbiology and Biotechnology 29, 356 (1988)) beschrieben.

Abbildung 1: Restriktionskart des Plasmids pZ1.

Der dick gezeichnet Strich stellt den pHM1519-Anteil, und der dünn gezeichnete Strich stellt den pACYC177-Anteil von pZ1 dar. Ap^R: Ampicillin-Resistenzgen; Km^R: Kanamycin-Resistenzgen.

Das Transformationsgemisch wurde auf RCG/E-Agar mit 300 μg/ml Kanamycin ausplattiert und die Agarplatten eine Woche bei 30°C inkubiert. Anschließend wurden die Agarplatten auf MM-Agar (Katsumata R. et al. J. Bact. 159, 306 (1984)) mit 50 mM AEG und 50 mM L-Threonin übergestampelt und einen Tag bei 30°C bebrütet. Eine Kolonie, die auf diesem Agar wachsen konnte wurde auf MM-Agar, der zusätzlich AEG, L-Threonin und 10 μg/ml Kanamycin enthielt, ausgestrichen, um Einzelkolonien zu erhalten. Plasmid DNA wurde aus einem derartigen Klon isoliert, als pCS2 bezeichnet und zur Transformation von C. glutamicum ATCC13032 verwendet. 59 von 62 überprüften Kanamycin-resistenten Transformanten erwiesen sich als resistent gegenüber der Hemmung durch 50 mM AEC und 50 mM L-Threonin. Das Plasmid pCS2 wurde weiterhin durch Restriktionskartierung charakterisiert. Es enthält eine ca. 9.9 kb lange Insertion in der Pstl-Schnittstelle des vektors pZ1, der eine Länge von 6,9 kb hat. Die Restriktionskarte von pCS2 ist in Abbildung 2 dargestellt.

Abbildung 2: Restriktionskarte des Plasmids pCS2 in linearisierter Form.

55

45

Der obere Teil der Figur gibt die Position der verschiedenen Restriktionsschnittstellen wieder. Im unteren Teil der Figur sind verschiedene Regionen von Plasmid pCS2 dargestellt. Die Insertionen von DM58-1 DNA ist als offener Balken dargestellt. Das Ampicillin-Resistenzgen von pZ1 ist schwarz hervorgehoben, das Kanamycin-Resistenzgen ist durch Punktierung gekennzeichnet. Die übrigen pZ1-Anteile von pCS2 sind durch Schraffur hervorgehoben. Abkürzungen: BamHI, B; BcII, C; Sall, S; Sca, A: Smal, M; Xhol, X.

2.2 Charakterisierung der Aspartat-Kinase-Aktivität

Aspartat-Kinase-Aktivität wurde in Stamm ATCC13032/pCS2, als positive Kontrolle in Stamm DM58-1 und als negative Kontrolle in Stamm ATCC13032 gemessen. Die Stämme wurden in Standard I Bouillon, das mit 4 g/l Glucose, 10 µg/ml Kanamycin und 1 mM MgCl₂ supplementiert war, kultiviert. Kulturbedingungen, Zellernte, Zellaufschluß und Bestimmung der Aspartat-Kinase wurden, wie unter 1.2 beschrieben, durchgeführt. Die Effektoren L-Lys, L-Thr und AEC werden jeweils als Stammlösungen in 100 mM Tris/HCl Puffer mit einem pH von 7,5 zugegeben.

Aspartat-Kinase-Gehalt und Hemmbarkeit des Enzyms aus ATCC13032/pCS2 sind in Tabelle 4 dargestellt. Obwohl der Stamm keine erhöhte spezifische Aktivität zeigte, konnte eine deutliche Desensibilisierung gegenüber den genannten Hemmstoffen nachgewiesen werden, deren Ausmaß den Grad der Deregulation des Enzyms aus dem Genspender DM58-1 allerdings nicht erreicht (partielle Deregulation).

2.3 Bestimmung der L-Lysin-Ausscheidung

Die Fähigkeit, Lysin auszuscheiden, wurde in Stamm ATCC13032/pCS2 und als negative Kontrolle in Stamm ATCC13032/pZ1 bestimmt. Nach Zusatz von 10 μg/ml Kanamycin wurde die Kultur, wie unten beschrieben, durchgeführt. Das Ergebnis des Versuches ist in Tabelle 2 zusammengefaßt.

Tabelle 2

	Ausscheidung von L-Lysin durch verso Stämme.	chiedene C. glutamicum
45	C. glutarnicum Stamm	Konzentration an ausgeschiedenem L-Lysin*HCI (g/l)
	ATCC13032/pZ1	0,0
0	ATCC13032/pCS2 (= DM 2-1/pCS2)	7,1

Ein 100 ml Erlenmeyerkolben mit Schikanen wird dabei mit 10 ml des folgenden Kulturmediums befüllt: 12 g/l Ammoniumsulfat, 240 g/l Melasse, 60 ml/l Sojamehlhydrolysat und 10 g/l CaCO₃. Nach Animpfen werden die Kulturen 72 Stunden bei 30_oC und 300 rpm inkubi rt. Die Lysin-Bestimmung erfolgte im zentrifugiertan Überstand mit Hilfe von Aminosäureanalysatoren.

10

20

35

3. Deletionskartierung des DNA-Fragments v n pCS2, das für eine feed-back r sistente Aspartat-Kinase kodiert.

Durch vollständige oder partiell Verdauung von pCS2 mit verschiedenen Restriktionsenzymen und anschließender Behandlung mit T4 DNA-Ligase bei niedriger DNA Konzentration wurden verschiedene Deletionsderivate konstruiert. Die Herstellung der verschiedenen Deletionsderivate ist in Tabelle 3 zusammengefaßt und die Position der Deletionen in den verschiedenen Derivaten in Abbildung 3 dargestellt. In Abbildung 3 ist ebenfalls das Resistenzverhalten der von C. glutamicum ATCC13032 abgeleiteten Stamme gegenüber AEC eingetragen. Auf diese Weise konnte die AEC-Resistenz vermittelnde DNA-Region auf ein ca. 1,5 Kb langes DNA Fragment eingegrenzt werden, welches in Plasmid pCS233 durch die Pstl-Klonierschnittstelle und eine EcoRI-Schnittstelle begrenzt wird.

Die Aspartat-Kinase-Aktivität und die Hemmbarkeit der Enzymaktivität durch Mischungen von Lysin bzw. AEC und Threonin wurde in den konstruierten Klonen bestimmt. Anzucht, Aufschluß und Aktivitätsbestimmung wurden, wie oben beschrieben, durchgeführt. Außerdem wurde die Fahigkeit der verschiedenen Klone untersucht, L-Lysin auszuscheiden. Hierfür wurde ein Agarplatten-Diffusionstest mit einem L-Lysin-auxotrophen Indikationsstamm von C. glutamicum verwendet. Aus Tabelle 4 ist zu entnehmen, daß sämtliche AEC resistenten Stämme eine partiell deregulierte Aspartat-Kinase-Aktivität besitzen und in der Lage sind, L-Lysin auszuscheiden.

20

25

30

Tabelle 3

Plasmid	Konstruktion	AEC ^{R/S} -Phänoty
pCS21	hergestellt nach Verdauung von pCS2 mit BamHl	R
pCS22	hergestellt nach Verdauung von pCS2 mit BamHl und Bcll	R
pCS23	hergestellt nach partieller Verdauung von pCS2 mit Sall	R
pCS24	hergestellt nach partieller Verdauung von pCS2 mit Xhol	R
pCS26	hergestellt nach Verdauung von pCS2 mit Scal	R
pCS231	hergestellt nach partieller Verdauung von pCS23 mit Pstl	S
pCS232	hergestellt nach partieller Verdauung von pCS23 mit Dral	S
pCS233	hergestellt nach partieller Verdauung von pCS23 mit EcoRl	R

35

Abbildung 3: Deletionskarte des Plasmids pCS2

45

50

Der obere Teil der Figur zeigt die von pCS2 abgeleiteten Derivate der untere Teil zeigt die von pCS23 abgeleiteten Derivate. Das Ampicillin Resistenzgen von pZ1 ist schwarz hervorgerufen; das Kanamycin Resistenzgen ist gepunktet dargestellt: die übrigen pZ1 Anteile von pCS2 sind durch Schraffur gekennzeichnet. Die Insertion von DM58-1 DNA ist als offener Balken dargestellt. Die Deletionen sind als Strich gekennzeichnet. Abkürzungen: BamHI, B; BcII C; DraI, D; EcoRI, E; SaII, S; ScaI, A; SmaI, M; XhoI X:

2	dikrobiologis c	che und bio	chemische Ch	narakterisierung	rekombinanter	krobiologische und biochemische Charakterisierung rekombinanter C. glutamicum Stämme	Stämme	
Stamm	ASA-DH (U/mg)	AK (U/mg)	AK	Restaktivität (%	AK Restaktivität (%) in Anwesenheit von	it von	AECR	Lysin-Ausscheidung
			10mM Lys 1mM Thr	10mM Lys 10mM Thr	100mM Lys 10mM Thr	100mM AEC 10mM Thr		
ATCC13032 (pZ1)	90'0	0,016	6	3	က	7	,	•
ATCC13032 (pCS2)	3,9	0,013	55	55	78	56	+	+
ATCC13032 (pCS21)	n.b.	0,016	46	20	24	n.b.	+	+
ATCC13032 pCS22	n.b.	0,015	9	4	23	n.b.	+	+
ATCC13032 (pCS23)	0,03	0,014	51	22	90	20	+	+
ATCC13032 (pCS24)	2,07	0.011	65	65	40	62	+	+
ATCC13032 (pCS26)	1,88	0,015	25	88	33	09	+	+
ATCC13032 (pCS231)	090'0	0,013	1	14	4	01		•
ATCC13032 (pCS232)	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	٠	n.b.
ATCC13032 (pCS233)	n.b.	0,011	99	62	36	22	+	n.b.
DM58-1 (pZ1)	0,330	600'0	88	100	79	93	+	+

Abkürzungen: ASA-DH: Aspartyl-ß-semialdehyd Dehydrogenase

AK: Aspartat-Kinase

n.b.: nicht bestimmt

4. Sequenzierung eines DNA Fragments von Plasmid pCS24, welches den Phänotyp AEC-Resistenz vermittelt.

4.1 Sequenziermethode

Die Nukleotidsequenz des 2.1 Kb Pstl-Xhol-DNA-Fragments wurde nach der Methode von Maxam und Gilbert (Maxam, A.M. et al., Proc. Natl. Acad. Sci. USA 74, 560-564 (1977)) mit den Modifikationen von Arnold und Pühler (Arnold, W. et al., Gene, 70,171 ff (1988)) bestimmt. Die Subklonierung zur Sequenzierung ging dabei vom Plasmid pCS24 aus (Abb. 4). Dieses wurde nach E. coli MM 294 (Merelson, M. et al., Nature 217, 1110-1114 (1968)) transformiert und entsprechende Fragmente in die Sequenziervektoren pSVB21, 25 und 26 (Arnold, W. et al., Gene, 70,171 ff (1988)) kloniert. Im E. coli-Stamm JM83 (Messing, J. Recombinant DNA Technical Bulletin NIH Publication No. 79-99 2. 43-48 (1979)) konnte Insertionsinaktivierung mittels XGal-Test (5-Bromo-4-chloro-indolyl-β-D-galactopyranosid) nachgewiesen werden.

Die Sequenzierstrategie ist in Abb. 4 wiedergegeben. Die Nukleotidsequenz wurde von beiden DNA-Strängen mit überlappenden Klonen ermittelt.

4.2 DNA-Sequenz des 2.1 Kb Pst I- Xho I - DNA Fragments

Das sequenzierte DNA-Stück ist 2112 bp lang. Es trägt Restriktionsschnittstellen für die Enzyme Bglll, Dral, EcoRl, Hindlll, Nael, Pstl, Sall und Xhol, mit denen auch die Subklone hergestellt wurden (Abb. 5). Die Nukleotidsequenz wurde mit dem Sequenzanalyse-Programmpaket ANALYSEQ (Staden, R. et al., Nucl. Acids Res. 14, 217-232 (1986)) bearbeitet.

•

35

30

20

40

50

45

Abb. 4 Deletionsanalyse und Sequenzierstrategie des chr mosomalen Fragments des Plasmids pCS2.

35

40

45

5

Deletionsanalyse: die Plasmide pCS23 und pCS24 vermittelm ebenso wie der Klom pCS2 AEC-Resistenz und Lysin-Produktion. Die schraffierten Balken stellen . den Vektoranteil der Plasmide dar.

Sequenzierstrategie: das 2.1 kb PstI-XhoI-Fragment des Plasmids pCS24 wurde mit den eingezeichneten Restriktionsschnittstellen subkloniert. Die Pfeile geben jeweils den sequenzierten Bereich und die Leserichtung en. Eingezeichnet sind die Restriktionsschnittstellen der Enzyme DraI (D), EcoRI (E), BglII (G), HindIII (H), Nacl (N), PstI (P), Sall (S) und Xhol (X). Darunter sind die 2 offenen Leseraster gezeigt, die für die Untereinheiten der Aspartatkinase und für Aspartat-eta-Semialdehyd-Dehydrogenase codieren (s. Text).

Es finden sich 2 lange offene Leseraster (ORF) auf dem sequenzierten DNA-Stück. Beide sind von der 50

Pstl-Schnittstelle zur Xhol-Schnittstelle hin angeordnet. Es befindet sich nur ein kleiner Bereich von 26 bp zwischen beiden. Vor dem 2. ORF befindet sich eine Ribosomenbindungsstelle (RBS) (806-809 AGGA gefolgt von dem Startcoon ATG). Ebenso wurde innerhalb des 1. ORF's ine RBS lokalisiert (AGGA, 268-271 mit Startcodon GTG).

Der ORF1 hat eine Länge von 264 Aminosäuren (AS), gerechnet von der Pstl-Stelle und von 172 AS (entsprechend 18.6 k Dals) von der internen RBS aus. ORF2 ist 342 AS (36,1 K Dals) lang. Direkt hinter dem ORF2 befindet sich eine mögliche Transkriptionsterminationsstruktur, eine sog nannte Haarnadelschleife, gefolgt von mehreren Thyminresten (1864-1900). Diese Anordnung ist charakteristisch für p-unabhängige Terminationssignale in E. coli und anderen Bakterienspezies (Ahyda et al. Ann. Rev.

Biochem. 47, 967-996 (1978)). Der hier vorliegende Terminator hat eine Stabilität von mehr als -40 kcal/mol bei 30°C.

Ein möglicher Promoter für ORF2 wurde innerhalb des ORF1 ermittelt (409-437), TTGACA-17 bp-TATTCT). Die -35-R_gion und der Abstand zur -10-Region entsprechen genau dem E. coli-Consensus-Promotor (Hawley, D.K. et al., Nucl. Acids Res. 11, 2237-2255 (1983)), die -10-Region ist der E. coli-Consensus-region (TATAAT) sehr ähnlich.

10	Abb.5 DNA-Seq	uenz und al	geleitete	Aminosaur	sequenzen	das 2.1 kl	PstI-Xho	oI-Fragment	
	AlaValAlaLe	uAlaAlaAlaI	LeuAsnAlaA	spValCysGlv	ulleTyrSer/	LspValAspG)	LyValTyrTh	TALAASPPTO	ArelleV
	CICCAGTICCGIT	GCAGCTGCTT	TIGAACGCTG.	ATCTCTCTCA	CATTTACTCG	ACGTTGACG	STGTGTATAC	CGCTGACCCG	SOCATOR
	PstI 10	20	30	40	50	60	70	80	90
15									
-	ProAsmAlaGl:								
	TTCCTAATGCACA	GAAGCTGGAAJ	MGCTCAGCT	icgaagaaati	GCTGGAAGTT	CICCICIIC	CTCCAAGAT	TTTGGTGGTG	CCCACTC
	100	110	120	130	140	150	160	170	180
20	GluTyTAlaAT TTGAATACGCTCG								
	190	200	210	220	230	240	250	NaeI	***
25	IleProValCl								
	GluAlaAlaLy	sValPheArg	AlaLouAlaA	spAlaGluIle	eAsnIleAsp:	etValLeuG	lnAsnValTy	r:Se:ValGlu	AspGlyT
	GCGAGGCTGCGAA					ATSSTTCTSC.	AGAACGTCT	LTTCTGTAGAA	GACGGCA
	370	380	390	400	410	420 Ps	EI 430	440	450
30	77	- Ph - Th Co - 1	D	6344-	- 43 - W - - 63 - 1				
	ThrAspileTh: CCACCGACATCAC								
	460	470	480	490		III 510 H		530	540
	ValLeuTy:As	pAspGlnVal(- 	erLeuValGl;	yAlaGlyKeti	LysSetHisP:	roGlyValT:	nrAlaGluPhe	MerGluA
35	ATGTGCTTTACGA		SCCAAAGTCT	cccrccrccc	TGCTGGCATG	LAGTETCACC	CACCTCTIAC	CGCAGAGTTC	atccaac
-	550	560	570	580	590	600	610	620	630

LeuargaspValasnValasnileGluLeuIleSerThrSerGluIleArgIleSerValLeuIleArgGluaspAspLeuaspAlaa CTCTGCGCCGATGTCAACGTGAACTCGAATTGATTTCCACGTCTGAGATTCGTATTTCCGTGCTGATCCGTGAAGATGATCTGGATGCTG 640 650 660 670 680 690 700 710 720

AlaArgAlaLauHisGluGlnFheGlnLauGlyGlyGluAspGluAlaValValTyTAlaGlyThrGlyArgOG
CTGCACGTCCATTCCATGACCAGTTCCAGCTGGGCGCGCGAGACCGAAGCCGTCGTTATGCAGGCACCGGACGCTAAAGTTTTAAAGGAG
730 740 750 760 770 780 790 800 Dral****

HetthrThrileAlaValValGlyAlaProAlaArgSerAlaArgLeuCysAlaProPheTrplysSerAlaTleSerGl
TAGTTTTACAATGACCACCATCGCAGTTGTTGGTGCACCGCCACGTCGGCCAGGTTATGCGCACCCTTTTGGAAGAGCGCAATTTCCCA
820--> 830 840 850 860 870 880 890 900

LeuThrLeuPheValSerLeuLeuProThrSerAlaGlyArgLysIleGluPheArgGlyThrGluIleGluValGluAsplleThrGl GCTGACACTGTTCGTTTCTTTGGTCCCCACGTCCGCAGGCCGTAAGATTGAATTCGTGGCACGGAAATCGAGGTAGAAGACATTACTCA 910 920 930 940 950 EcoRI 960 970 980 990

AlaThrGluGluSerLeuLysAspIleAspValAlaLeuPheSerAlaClyGlyThrAlaSerLysGlnTyrAlaFroLeuPheAlaAl
GGCAACCGAGGAGTCCCTCAAGGACATCGACGTTGCGTTGTTGTCCGGTGGAGGCACCGGTTCCAAGCAGTACGTTCGATGGTGGGGGCACCGGTTCCAAGCAGTACGTTCGATGGTGGGGGCACCGGTTCCAAGCAGTACGGTTCCACTGTTCGGTGGC
1000 1010 1020 1030 1040 1050 1060 1070 Pati

13

40

45

50

	AlaGlyAlaThr	ValValAspA	snSerSe r A]	aTrpArgLvs	:AspAspGluV	al Proteuti	aVal SavCli	·ValkenDue	Fa.m4 1
	IOCUOCOCOUCI	GTIGTGGATA	ACTOTTCTCC	TTGGCGCAAG	CACCACCAGG	TCCACTAAT	CGTCTCTCAC	GTGAACCCT	TOCCION
5	1090	1100	1110	1120	1130	1140	1150	1160	1170
	AspSerLeuVal	LysGlyIleI	leAlaAsnPr	oAsnCysThr	ThrHetAlaAl	laMerProVa	lleulysPro	LeuHisAsp	AlaAlaG1
	OBYLICCCIONIC	WOOGCEVT TW	TIPCCAVCCC	TANCIGCACC	ACCATGGCTGG	GATGCCAGT	GCTGAAGCCA	CTTCACCAT	SCCCCTCG
	1180	1190	1200 .	1210	1220	1230	1240	1250	1260
10	LeuVallysLeu	HisValSerS	erTyrClnAl	aValSerGly	SerGlyl eusl	-C1-V-1-C1	Th=141 .		
	TCTTGTAAACCTT	CACGITICCI	CTTACCAGGC	TGTTTCCGGT	TCTGGTCTTGG	AGGTGTGGA	AACCTTGGCA	TARCTUATE	MIANIAVA
	Hindli	I 1280	1290	1300	1310	1320	1330	1340	Pati
15	GlyAspHisAsm	ValGluPheV	alHisAspCl	yGlmAlaAla	AspAlaAzgCy	'sArgThrLe	uCysPheThr	AsnArgLeu(Slnarzal
15	TGGAGACCACAAC	PITOVOITCO.	TCCWICKICC	VCVCCCICCI	CACGEGEGATG	TCGGACCTI.	ATGTTTCACC	AATCGCTTAG	CHACCTCC
	1360	1370	1380	1390	1400	1410	1420	1430	1440
	AlalleAlaGly,	AsmLeuValA	spAspGlyTh	rPheGluThr	AspGluGluGl	nLysLeuAr	gAsnGluSer	ArgLvsIlel	LeuGlvLe
			VIOVERPROPERT	CTICCAMACC	GAÍGAAGAGCA	GAÁGCTGCG	CAACGAATCC	CGCAAGATT	TCGGTCT
20	1450	1460	1470	1480	1490	1500	1510	1520	1530
	ProAspLeuLys'	ValSerGlyT	hrCysValAr	gValProVal	PheThrGlyHi	sThrLeuTh:	rIleHisAla	GluPheAspl	LvsAlaIl
	CCCAGACCTCAACO	are revoced		COTOCCOCTT	TICACCGGCCA	CACGCTGAC	CATTCACGCC	GAATTCGAC	LÁGGCAAT
	1340	1550	1560	1570	1580	1590	1600	EcoRI	1620
25	75 11			_					
	ThrValAspGlm/	AlaGinGlui	LeLeuGlyAl	aAlaSerGly	ValLysLeuVa	lAspValPr	ThrProLeu	AlaAlaAla(lylleAs
	CACCGTGGACCAGG	JUUCAUUAUA.	resterio	COLITICACOC	GTCAAGCTTGT	CCACGTCCC	aaccccacti	CCYCCICCC	GCATTCA
	1630	1640 Bg	1111020	1660	HindIII 3	alI	1690	1700	1710
	GluSerLeuVal(GlyArgIleA	gGlnAspSe	rThrValAsp.	AspAsnArgGl	yLeuValLe	uValValSer	GlyAspAsni	LeuArgly
30	onwitch (-CULCATIC	PILAGOAGIC	CACTGTCGAC	GAIAACCGCGG	TCIGGTICI	CGTCGTATCT	GGCGACAAC	TCCCCAA
•	1720	1730	1740	Sall	1760	1770	1780	1790	1800
	AshAlaAlaLeu	LsnThrIleG	LnIleAlaGl	uLeuLeuVal	Lys				
	GAATGCTGCGCTAA	MCACCATCCA	AGATCGCTGA	GCTGCTGGTT.	aagtaaaaacc	CCCCATTAA	MACTCCGCT	TGAGTGCTAC	ACTITIAN
35	1810	1820	1830	1840	1850	1860	1870	1880	1890
	GCGGGGTTTTAATC	TTTGAGGGG	GATCGGGGT	CGAGCTTGTG.	AAGTGGAATTC	TECACAAGT	CTAAGTTC	TTTAGCAGG	GAAACAC
	1900	1910	1920	1930		1950	1960	1970	1980
40	TGCTGATAGCCCTA	GCGATAAAGA	LACATGAAAA:	TGCAACGGAG	CTAGCGGCCGA	AGCTTTAGC	GATGTCATT	TTTCAGTGGA	AAAACTG
••	1990	2000	2010	2020	2030 H	indIII	2050	2060	2070
	GCTCTACCGACGCG 2080	TIGATAGIGI 209 0	GCATCCATC 2100	DAGCTCGAG XboI					•
45	Die Aminosaures angegeben. Die Die Namen der z eingetragen. Ri (>) und die T	Nummerieru ur Sequenz bosomenbin	ing uncerhi ierung ber dunesstell	elb des DN/ outsten Klo len sind do	N-Stranges l onierschnit: urch Sterne	bezieht si Estellen s (*). Star	ch auf di	e DNA-Sequ	enz.
50									

4.3 Analyse der Aminosäuresequenz

Die von ORF1 und ORF2 translatierten Aminosäuresequenzen wurden mit den bekannten Sequenzen der Aspartat-Kinasen (AK) I (Cassan, M. et al., J. Biol. Chem. 261, 1052-1057 (1986)) von E. coli und der AK II von B. subtilis (Chen, N.-Y. et al., J. Biol. Chem. 262, 8737-2255 (1987)) bzw. den AS-Sequenzen der Aspartatsemialdehyd-Dehydrogenasen (ASA-DH) von E. coli (Haziza, C. et al., Embo J, 1, 379-384 (1982))

und Streptococcus mutans (Cardineau, G.A. et al., J. Biol. Chem. 262, 7, 3344-3353 (1987)) verglichen. Dazu wurden die Programme MALIGN (Sobel, E. et al., Nucl. Acids Res. 14, 363-374 (1986)) und DIAGON (Staden, R. et al. Nucl. Acid Res. 14, 217-232 (1986)) benutzt. Es zeigten sich signifikante Übereinstimmungen zwischen ORF1 und den AK-Sequenzen einerseits und ORF2 und der ASA-DH-Sequenz von S. mutans andererseits. Zur E. coli ASA-DH zeigten sich nur schwache Homologien, vornehmlich allerdings im Bereich des aktiven Zentrums (Haziza, C. et al., Embo J. 1, 379-384 (1982)).

Aus den Computeranalysen ergibt sich folgendes:

- ORF1 entspricht dem C. Terminus der Aspartat-Kinase, d.h. es fehlen etwa 160 AS vom N-Terminus sowie die komplette Promotorregion.
- ORF2 entspricht der Aspartatsemialdehyd-Dehydrogenase.

Die Homologie des ORF1 mit der B. subtilis-AK II ist für den Fachmann augenfällig. Die AK II besteht aus überlappenden Untereinheiten (Chen, N.-Y, et al., J. Biol. Chem 262, 8787-8798 (1987)). Dabei entspricht die β -Untereinheit dem C-Terminus der α -Untereinheit. Da die im \overline{O} RF1 gefundene RBS in ihrer Position genau mit der RBS dieser AK übereinstimmt, kann im Analogieschluß gefolgert werden, daß hier die klonierte β -Untereinheit der AK von C. glutamicum vorlegt.

5. Expressionsexperimente

20

5.1 Komplementation asd- und lysC-negativer Stämme von E. coli.

Die Identität des ORF2 mit dem asd-Gen konnte durch Komplementation des asd-negativen E. coli-Stammes RASA 6 (Richaud, F. et al., C.R. Acad. Sc. Paris, 293, 507-512 (1981)) durch die Plasmide pCS2 und pCS24 belegt werden. pCS23, bei dem etwa 50 Aminosäuren vom C-Terminus der ASA-DH fehlen, komplementiert nicht. Keines dieser Plasmide war in der Lage, den AKI-III negativen E. coli Gif 106 M1 (Boy, E. et al., Biochemie 61, 1151-1160 (1979)) zu komplementieren.

30 5.2 Bestimmung der spezifischen Aspartat-Kinase (AK) und Aspartyl-β-semialdehyd-Dehydrogenase (ASA-DH) in Transformanten von ATCC13032 mit verschiedenen pCS2 Deletionsderivaten.

Die unter 4.3 aus Homologievergleichen gefolgerten Analogieschlüsse, nach denen das Pstl-Xhol Genfragment aus DM58-1 nur ein Teil des lysC Gens (AK), aber das vollständige asd-Gen beherbergt, konnten durch Enzymmessungen eindeutig bestätigt werden.

Kein mit pCS2 oder einem pCS2 Derivat transformierter C. glutamicum ATCC13032 Stamm enthält eine gegenüber dem Empfängerstamm erhöhte Aspartat-Kinase Aktivität (Tabelle 4, Spalte 3).

Demgegenüber war in allen Transformanten, deren Plasmide das asd-Strukturgen enthielten, eine starke Überexpression der ASA-DH nachweisbar (Tabelle 4, Spałte 2, Abbildung 3 und 4). Die Plasmide pCS23 und pCS23-Derivate führten erwartungsgemäß nicht zu einer Überexpression der ASA-DH. Aufgrund der hohen Labilität der ASA-DH schwanken die Faktoren der aus der spezifischen Aktivität kalkulierbaren Überexpression von 31 - 65.

45 6. Enzymeigenschaften und L-Lysin Ausscheidung

Die für ATCC13032 pCS2 nachgewiesene L-Lysin Ausscheidung von 7,1 g/l in 72 Stunden (Tabelle 2) läßt sich damit auf zwei gentechnisch realisierte Veränderungen zurückführen.

- a) Klonierung der Regulationsuntereinheit der Aspartat-Kinase aus DM58-1 ohne Erhöhung des zellulären Enzymgehaltes.
- b) Klonierung der Aspartyl-β-semialdehyd-Dehydrogenase aus DM58-1, die zur 31-65fachen Erhöhung des zellulären Enzymgehalts führt.

65 Ansprüche

1. Verfahren zur Herstellung von L-Lysin, dadurch gekennzeichnet, daß man rekombinante DNA, die aus einem DNA-Fragment, das eine für die Produktion von Proteinen, die zu einer Aspartyl-ß-semialdehyd-

Dehydrogenase (asd) Aktivität und/oder zur Deregulation derAspartat-Kinase (lysC) führen, kodierende genetisch Sequenz aufweist, die von einem Mikroorganismus der Gattung Corynebacterium oder Brevibacterium stammt, und aus Vektor DNA b steht, in einen Mikroorganismus der Gattung Corynebacterium oder Brevibacterium inseriert, denso erhaltenen Transformanten in einem geeigneten Medium züchtet und das gebildete L-Lysin daraus abtrennt.

- 2. Verfahren gemäß Anspruch 1,
- dadurch gekennzeichnet, daß die rekombinante DNA aus einem in einem Mikroorganismus der Gattung Corynebacterium oder Brevibacterium replizierbaren Plasmid besteht.
 - 3. Verfahren gemäß Anspruch 2,
- dadurch gekennzeichnet, daß der in dem Plasmid enthaltende Vektor in einem Mikroorganismus der Gattung Corynebacterium oder Brevibacterium replizierbar ist und aus der Gruppe pZ1, pCV34, pCV36, pCVX4, pCVX10, pCVX15, pZ9, pZ8-1, pCV35, pECM1, pECM3 ausgewählt wird.
- 4. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die rekombinante DNA aus dem Plasmid pCS2 besteht, enthalten in Corynebacterium glutamicum DSM 5086.
 - 5. Verfahren gemäß Anspruch 4,
- dadurch gekennzeichnet, daß die rekombinante DNA aus den aus dem Plasmid pCS2 abgeleiteten Derivaten pCS21, pCS22, pCS24, pCS26 besteht.
 - 6. Verfahren gemäß Anspruch 4,
- dadurch gekennzeichnet, daß die rekombinante DNA aus den aus dem Plasmid pCS2 abgeleiteten Derivaten pCS23 oder pCS233 besteht.
 - 7. Mikroorganismus der Gattung Corynebacterium oder Brevibacterium, enthaltend eine rekombinante DNA, die aus einem DNA-Fragment, das eine für die Produktion von Proteinen, die zu einer Aspartyl-ß-semialdehyd-Dehydrogenase (asd) Aktivität und/oder zur Dergulation derAspartat-Kinase (lysC) führen, kodierende genetische Sequenz aufweist, die von einem Mikroorganismus der Gattung Corynebacterium oder Brevibacterium stammt, und aus Vektor DNA besteht.
 - 8. DNA-Fragment, enthaltend eine genetische Sequenz, die für die Produktion von Proteinen, die zu einer Aspartyl-β-semialdehyd-Dehydrogenase (asd) Aktivität und/oder zur Deregulation der Aspartat-Kinase (lysC) führen, in einem Mikroorganismus der Gattung Corynebacterium oder Brevibacterium kodiert, mit einer Länge von 9,9 kb, wie in Abb. 2 dargestellt.
 - 9. DNA-Fragment gemäß Anspruch 8, im wesentlichen bestehend aus einer genetischen Sequenz, mit der Länge von 2,1 kb, begrenzt durch eine Pst I- und eine Xho I-Schnittstelle, gekennzeichnet durch die in Abb. 5 wiedergegebenen Aminosäuresequenzen.

3

16

35

40

45

50

EUROPÄISCHER RECHERCHENBERICHT

	EINSCHLÄG	IGE DOKUMENTE		EP 90102685.6
Kategorie	Kennzeichnung des Dokumen der maßg	ts mit Angabe, soweil erforderlich, eblichen Teile	Betriff Anspru	
D,X	EP - A2 - 0 2: (KYOWA HAKKO I LTD.) * Patentans	KOGYO CO.,	1,7	,8 C 12 N 15/11 C 12 P 13/08 C 12 N 1/21 C 07 H 21/04 //(C 12 N 1/21
A	EP - A1 - 0 19 (KYOWA HAKKO F LTD.) * Patentans 11 *		1,7	
D,A	EP - A2 - 0 08 (KYOWA HAKKO H LTD.) Patentans 12 *		1	
				RECHERCHIERTE SACHGEBIETE (Int. CI.)
				C 12 N C 12 P C 07 H
			·	
		•		
Der v	orliegende Recherchenbericht wur Recherchenort	Abschlußdatum der Reche		Prúter
X : von Y : von and A : tech		Abschlußdatum der Rechei 12-06-1990 OKUMENTEN E: abetrachtei bindung mit einer D: aen Kategon L: a	niteres Patento nach dem Anme n der Anmeldu naus andern Gru	Prüfer WOLF Okument, das jedoch erst am ode idedatum veröffentlicht worden is na angeführtes Dokument noen angeführtes Dokument ichen Patentfamilie, überein-