

Tissue Parameters

Recipe for liquids below 1 GHz:

Water 35-58% Sugar 40-60% Salt 0-6% Hydroxyethyl-cellulose <0.3% Preventol-D7 0.1-0.7%

Recipe for liquids above 1-3 GHz:

Water 52-75% DGBE 25-48% Salt <1.0%

SAR measurements were made within 24 hours of the measurement of liquid parameters. Relative permittivity and conductivity are within $\pm 5\%$ of the target.

850 MHz B	ody Liq	<u>wid</u>				
Date	Temp (°C)	Freq. (MHz)	Relative Permativity	Conductivity (S/m)	1.05	Conductivity Target Liquid
Dute	(0)	822	54.0274	0.9618	Conductivity (S/m)	Value
		823	54.0157	0.9631	3 1	5% Liquid Tolerance
		826	53.9653	0.9667	1. 1. 1. 0. 0.5	→ -5% Liquid
		833	53.8756	0.9753		Tolerance 2016/03/31
2016/03/31	22	834	53.8642	0.9766	0.9	
		840	53.7998	0.9852	0 8	820 840
		841	53.79	0.9868		Frequency (MHz)
		848	53.7325	0.9964		Permittivity
		849	53.7199	0.9976	59 -	—— Target
					57 -	Liquid Value → 5% Liquid
					jj 55 -	Tolerance
					Per	-5% Liquid Tolerance
					ive F	2016/03/31
					Relative Permittivity - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 2	
					≃ 82	20 840
						Frequency (MHz)

					_							
Date	Temp (°C)	Freq. (MHz)	Relative Permativity	Conductivity (S/m)		1.05			Cond	uctivity	─ Target	Lionio
Dute	(-)	820	53.8884	0.9503	Œ	0.95				++	Value	
		821	53.8688	0.9507	(S)	1 -			 		5% Liq Tolerar	juid nce
		826	53.8534	0.9559	ivity	0.05		4-7	4		-5% Li	auid
		832	53.8236	0.9622	luct	0.93					2016/0	
2016/04/04	22.1	833	53.8189	0.9631	Ouc	0.9						
		840	53.7995	0.9714]	8	320		840			
		841	53.7945	0.9726				F	requenc	y (MHz)		
		848	53.769	0.9806					Perm	ittivity		
		849	53.7657	0.9817	.	⁵⁹]					Target	
			221,7221	33, 32,	Relative Permittivity	57					Liquid V → 5% Liqu	√alue
					mitt	55 -					Tolerand	ce
					Per				4		-5% Liq Tolerand	uid
					iive	53					2016/04	
					e la	51 -	\		040			
						82	20		840 re que ncy			
								F	requency	(MHZ)		

Test Equipment

SAR1 Lab

Instrument description	Supplier / Manufacturer	Model	Serial No.	Calibration (date)	Calibration Due (date)
Robot	Staubli	TX90	F10/5D3NA1/ A/01	N/A	N/A
SAM Twin Phantom	SPEAG	SM 000 T01 DA	1592	N/A	N/A
Elliptical Phantom	SPEAG	QD OVA 001 BB	1092	N/A	N/A
Software	SPEAG	Dasy52.6.2.482	N/A	N/A	N/A
Device Holder	SPEAG	SD 000H01	N/A	N/A	N/A
Data Acquisition Electronics	SPEAG	DAE4	1233	2014/03/17	2017/03/17
Data Acquisition Electronics	SPEAG	DAE4	1375	2014/05/14	2017/05/14
SAR Probe	SPEAG	ES3DV3	3260	2014/03/19	2017/03/19

Shared Equipment

Instrument description	Supplier / Manufacturer	Model	Serial No.	Calibration (date)	Calibration Due (date)
1900 MHz Dipole	SPEAG	D1900V2	5d135	2014/04/07	2017/04/07
Network Analyzer	Agilent	E5071B	MY42404685	2015/04/11	2017/04/11
835 MHz Dipole	SPEAG	D835V2	4d113	2014/07/04	2016/07/04
1750 MHz Dipole	SPEAG	D1750V2	1045	2014/03/17	2017/03/17
Directional coupler	Werlatone	C6529	11249	N/A	N/A
RF Amplifier	Vectawave	VTL5400	N/A	N/A	N/A
Dielectric Measurement Kit	SPEAG	DAK-3.5	1023	2014/04/08	2016/04/08
Synthesized CW Generator	Agilent	8371213	US37101255	N/A	N/A
Signal Generator	R&S	SMA 100	100438	2015/07/10	2016/07/10
Power Sensor	Agilent	E9300A	MY41400484	2015/10/17	2016/10/17
Power Sensor	Agilent	E9300A	MY41400492	2015/10/17	2016/10/17
20 dB Attenuator	Huber & Suhner	N/A	N/A	N/A	N/A
3 dB Attenuator	Huber & Suhner	N/A	N/A	N/A	N/A
3 dB Attenuator	Huber & Suhner	N/A	N/A	N/A	N/A
Power Meter	Agilent	E4419B	MY45101996	2015/09/22	2017/09/22
Network Analyzer	Agilent	FieldFox N9923A	MY51491621	2015/10/05	2016/10/05
Radio Communications Tester	Rohde & Schwarz	CMU 200	110759	2015/07	2017/07
900 MHz Body Tissue Simulant	SPEAG	MSL 900	100818-1	2016/03/31 – 2016/04/05	N/A
1750 MHz Body Tissue Simulant	SPEAG	MSL 1750	100824-2	2016/03/31 – 2016/04/05	N/A
1900 MHz Body Tissue Simulant	SPEAG	MSL 1900	110615-4	2016/03/31 – 2016/04/05	N/A
1900 MHz Body Tissue Simulant	SPEAG	MSL 1900	100824-3	2016/03/31 – 2016/04/05	N/A

Equipment Calibration/Performance Documents:

Attached: SAR Probe ES3DV3 Calibration Report 835 MHz Dipole Calibration Report 1900 MHz Dipole Calibration Report 1750 MHz Dipole Calibration Report

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Cetecom USA

Certificate No: ES3-3260_Mar14

S

C

S

CALIBRATION CERTIFICATE

ES3DV3 - SN:3260 Object

Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date: March 19, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013, Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Name Function Calibrated by: Claudio Leubler Laboratory Technician Katja Pokovic Technical Manager Approved by:

Issued: March 20, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Page 1 of 12

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizie svizzere di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013.
- Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 3 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sangar Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

ES3DV3 - SN:3260 March 19, 2014

Probe ES3DV3

SN:3260

Manufactured: January 25, 2010 Calibrated: March 19, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3260_Mar14

Page 3 of 12

March 19, 2014

ES3DV3- SN:3260

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3260

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.30	1.37	1.18	± 10.1 %
DCP (mV) ^B	104.8	102.1	104.2	

Modulation	Calibration	Parameters
------------	-------------	------------

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [±] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	211.8	±3.3 %
		Y	0.0	0.0	1.0		195.7	
		Z	0.0	0.0	1.0		208.8	
10011- CAB	UMTS-FDD (WCDMA)	X	3.31	67.4	18.8	2.91	127.8	±0.7 %
		Y	3.40	67.4	18.7		134.6	
		Z	3.34	67.6	18.8	Q- 3	145.4	
10021- DAB	GSM-FDD (TDMA, GMSK)	х	30.39	99.4	28.9	9.39	135.6	±1.9 %
2000		Y	28.56	99.7	28.9	1	131.2	
00.000		Z	29.91	99.6	28.7	Lane.	119.9	10.020
10024- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	×	44.86	99.9	26.3	6.56	123.6	±1,4 %
		Y	44.01	99.9	25.9		126.4	
		Z	42.79	99.7	26.1	1 1	147.0	
10027- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	х	53.01	99.7	24.7	4.80	130.0	±1.7 %
1000		Y	50.58	99.6	24.5		137.2	
	Lancard Control of the Control of th	Z	52.82	99.6	24.4	Towns and	123.5	2700083
10028- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	Х	59.40	99.6	23.5	3.55	137.7	±1.7 %
		Y	59.13	99.9	23.3	(s	140.0	
		Z	56.71	99.7	23.4		126.5	
10081- CAB	CDMA2000 (1xRTT, RC3)	Х	4.12	67.1	19.1	3.97	149.5	±0.7 %
		Y	4.00	66.0	18.4		131.8	
	I to the second	Z	4.09	67.0	19.1		146.9	88,000
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	6.60	68.2	20.1	5.67	144.1	±1.2 %
		Y	6.35	67.0	19.4		125.9	
		Z	6.59	68.2	20.1		141.7	
10103- CAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	12.38	77.7	26.5	9.29	127.9	±3.0 %
		Y	12.64	78.8	27.1		136.2	
second !	Laurence de la company de la c	Z	12.27	78.1	26.9		122.6	110000
10108- CAB	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	6.50	67.8	20.0	5.80	142.8	±1.2 %
		Y	6.34	66.9	19.5		128.4	
		Z	6.47	67.7	20.0		140.9	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	×	11.69	76.9	26.3	9,28	122.6	±3.3 %
		Y	11.83	77.7	26.7		130.6	
	In the second se	2	13.11	80.6	28.1	Section 5	149.4	22000000
10154- CAB	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	×	6.18	67.2	19.7	5.75	139.6	±1.4 %
	0	Y	6.25	67.2	19.7		146.4	
		Z	6.11	67.0	19.6		138,3	

March 19, 2014 ES3DV3-SN:3260

10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	х	5.19	67.1	19.8	5.73	143.7	±1.2 %
		Y	5.26	67.3	19.9		149.8	
		Z	5.20	67.2	19.9		143.3	et concessor
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	х	13.41	86.4	30.9	9.21	138.5	±3.3 %
2200000	N-SWIT	Y	10.53	80.4	28.2		121.8	
		Z	12.56	85.1	30.3		139.8	
10175- CAB	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	5.20	67.1	19.9	5.72	139.5	±1.2 %
01.10		Υ	5.10	66.5	19.5		130.7	
		Z	5.14	66.9	19.8		139.8	L IUSSE
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	6.44	67.5	19.9	5.81	136.9	±1.2 %
-		Y	6.34	66.9	19.5		127.4	
		Z	6.44	67.6	19.9		140.9	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	Х	4.64	66.9	18.3	3.76	131.9	±0.7 %
		Y	4.81	67.4	18.5		143.6	
		Z	4.68	67.1	18.4		135.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 6 and 7).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.</sup>

ES3DV3-SN:3260 March 19, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3260

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^c	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.47	6.47	6.47	0.80	1.12	± 12.0 %
835	41.5	0.90	6.25	6.25	6.25	0.31	1.77	± 12.0 %
900	41.5	0.97	6.19	6.19	6.19	0.57	1.31	± 12.0 %
1750	40.1	1.37	5.49	5.49	5.49	0.41	1.64	± 12.0 %
1900	40.0	1.40	5.47	5.47	5.47	0.80	1.16	± 12.0 %
1950	40.0	1.40	5.28	5.28	5.28	0.65	1.32	± 12.0 %
2300	39.5	1.67	4.88	4.88	4.88	0.80	1.30	± 12.0 %
2450	39.2	1.80	4.56	4.56	4.56	0.80	1.24	± 12.0 %
2550	39.1	1.91	4.41	4.41	4.41	0.71	1.36	± 12.0 %

⁰ Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

*At frequencies below 3 GHz, the validity of tissue parameters (s and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

*Aphs/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

March 19, 2014 ES3DV3-SN:3260

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3260

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.22	6.22	6.22	0.34	1.88	± 12.0 %
835	55.2	0.97	6.14	6.14	6.14	0.37	1.79	± 12.0 %
900	55.0	1.05	6.02	6.02	6.02	0.56	1.38	± 12.0 %
1750	53.4	1.49	4.90	4.90	4.90	0.56	1.48	± 12.0 %
1900	53.3	1.52	4.69	4.69	4.69	0.60	1.45	± 12.0 %
1950	53.3	1.52	4.81	4.81	4.81	0.54	1.58	± 12.0 %
2300	52.9	1.81	4.42	4.42	4.42	0.80	1.22	± 12.0 %
2450	52.7	1.95	4.26	4.26	4.26	0.68	1.12	± 12.0 %
2550	52.6	2.09	4.15	4.15	4.15	0.80	1.01	± 12.0 %

Certificate No: ES3-3260_Mar14 Page 7 of 12

EFrequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (s and e) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and e) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

AphaDepth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

March 19, 2014 ES3DV3-SN:3260

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

e Z

e Z

Tot

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Tot

ES3DV3-SN:3260 March 19, 2014

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3260_Mar14

Page 10 of 12

ES3DV3- SN:3260 March 19, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3260

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-79.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3260_Mar14 Page 12 of 12

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Cetecom USA Certificate No: D835V2-4d113_Apr14

CALIBRATION CERTIFICATE Object D835V2 - SN: 4d113 QA CAL-05.v9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz Calibration date: April 07, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB57480704 09-Oct-13 (No. 217-01827) Oct-14 Power sensor HP 8481A US37292783 09-Oct-13 (No. 217-01827) Oct-14 Power sensor HP 8481A MY41092317 09-Oct-13 (No. 217-01828) Oct-14 Reference 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01918) Apr-15 Type-N mismatch combination SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 Reference Probe ES3DV3 SN: 3205 30-Dec-13 (No. ES3-3205_Dec13) Dec-14 DAE4 SN:601 25-Apr-13 (No. DAE4-601_Apr13) Apr-14 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-16 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-13) In house check: Oct-14 Name Function Calibrated by: Leif Klysner Laboratory Technician Katja Pokovic Technical Manager Approved by: Issued: April 9, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d113_Apr14 Page 1 of 8

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Hardbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the I quid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAF as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the stancard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d113_Apr14

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY5	V52.8.7
Advanced Extrapolation	
Modular Flat Phantom	
15 mm	with Spacer
dx, dy, dz = 5 mm	
835 MHz ± 1 MHz	
	Advanced Extrapolation Modular Flat Phantom 15 mm dx, dy, dz = 5 mm

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.6 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.10 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	1845
SAR measured	250 mW input power	1.51 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.89 W/kg ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mha/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.30 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.11 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.9 Ω - 4.0 jΩ	
Return Loss	- 27.8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.1 Ω - 7.1 jΩ	
Return Loss	- 21.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction) 1.394 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 26, 2010

DASY5 Validation Report for Head TSL

Date: 07.04.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d113

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94 \text{ S/m}$; $\epsilon_r = 41.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.22, 6.22, 6.22); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.792 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.54 W/kg

SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.51 W/kgMaximum value of SAR (measured) = 2.76 W/kg

0 dB = 2.76 W/kg = 4.41 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 07.04.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d113

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.02$ S/m; $\varepsilon_r = 53.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.09, 6.09, 6.09); Calibrated: 30.12.2013;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.505 V/m, Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

CALIBRATION	CERTIFICATE		o: D1900V2-5d135_Apr14
Object	D1900V2 - SN: 5	d135	I CHENTER I SECTION
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kts abo	ove 700 MHz
Calibration date:	April 09, 2014		
The measurements and the unce	ertainties with confidence p	ional standards, which realize the physical un robability are given on the following pages ar ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB3*480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
ower sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	
	SN: 5047.2 / 06327	AR A LANGE AND AND ADDRESS.	Apr-15
ype-N mismatch combination		03-Apr-14 (No. 217-01921)	Apr-15 Apr-15
Reference Probe ES3DV3	SN: 3205	03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13)	
Reference Probe ES3DV3	SN: 3205 SN: 601		Apr-15
Reference Probe ES3DV3 DAE4	C T C C C C C C C C C C C C C C C C C C	30-Dec-13 (No. ES3-3205_Dec13)	Apr-15 Dec-14
Reference Probe ES3DV3 DAE4 Secondary Standards	SN: 601	30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13)	Apr-15 Dec-14 Apr-14
Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	SN: 601	30-Dec-13 (No. ES3-3205_Dec13- 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house)	Apr-15 Dec-14 Apr-14 Scheduled Check
Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	SN: 601 ID # 100005	30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13)	Apr-15 Dec-14 Apr-14 Scheduled Check In house check: Oct-16
Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 601 ID # 100005 US37390585 S4206	30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Apr-15 Dec-14 Apr-14 Scheduled Check In house check: Oct-16 In house check: Oct-14
Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: Approved by:	SN: 601 ID # 100005 US37390585 S4206 Name	30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Apr-15 Dec-14 Apr-14 Scheduled Check In house check: Oct-16 In house check: Oct-14

Certificate No: D1900V2-5d135_Apr14

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d etaionnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as lar as not given on page 1.

DASY5	V52.8.7
Advanced Extrapolation	
Modular Flat Phantom	
10 mm	with Spacer
dx, dy, dz = 5 mm	
1900 MHz ± 1 MHz	
	Advanced Extrapolation Modular Flat Phantom 10 mm dx, dy, dz = 5 mm

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.85 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

SHOUNDERS AND THE REPORT OF THE STATE OF THE	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.4 ± 6 %	1.52 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		-

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.34 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d135_Apr14

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.6 Ω + 7.1 jΩ
Return Loss	- 22.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.6 \Omega + 7.4 j\Omega$
Return Loss	- 22.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1 204 ns
Electrical Delay (one direction)	1.204115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 14, 2010

DASY5 Validation Report for Head TSL

Date: 09.04.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d135

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.36 \text{ S/m}$; $\epsilon_r = 39.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.06, 5.06, 5.06); Calibrated: 30.12.2013;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.920 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 9.85 W/kg; SAR(10 g) = 5.14 W/kg

Maximum value of SAR (measured) = 12.5 W/kg

0 dB = 12.5 W/kg = 10.97 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 09.04.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d135

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.52 \text{ S/m}$; $\epsilon_r = 52.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.522 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.34 W/kg

Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

OALIDDATION OFFICIOA

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Cetecom USA

Calibration procedure(s)

Certificate No: D1750V2-1045_Nov12

Accreditation No.: SCS 108

Object	D1750V2 - SN: 1045	

QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: November 08, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37232783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Name Function Signature
Calibrated by: Israe E-Naouq Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: November 8, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1750V2-1045_Nov12

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Sevice (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the stancard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1045_Nov12

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and caculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.89 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	35.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51,9 ± 6 %	1.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.3 W/kg ± 16.5 % (k=2)

Certificate No: D1750V2-1045_Nov12 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.0 Ω + 1.9 jΩ	
Return Loss	- 33.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω + 2.2 jΩ	
Return Loss	- 27.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.222 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semrigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	February 19, 2010	

Certificate No: D1750V2-1045_Nov12 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 08.11.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1045

Communication System: CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.34$ mho/m; $\varepsilon_r = 39.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.22, 5.22, 5.22); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.105 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 15.7 W/kg

SAR(1 g) = 8.89 W/kg; SAR(10 g) = 4.76 W/kg

Maximum value of SAR (measured) = 10.8 W/kg

0 dB = 10.8 W/kg = 10.33 dBW/kg

Impedance Measurement Plot for Head TSL

Page 6 of 8

Certificate No: D1750V2-1045_Nov12

DASY5 Validation Report for Body TSL

Date: 08.11.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1045

Communication System: CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.48$ mho/m; $\varepsilon_r = 51.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.85, 4.85, 4.85); Calibrated 30.12.2011;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.105 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.1 W/kg

SAR(1 g) = 9.41 W/kg; SAR(10 g) = 5.07 W/kg

Maximum value of SAR (measured) = 11.8 W/kg

0 dB = 11.8 W/kg = 10.72 dBW/kg

Impedance Measurement Plot for Body TSL

