Empirical analysis of the re-weighting trick in Bayesian quadrature

UNIVERSITÄT TÜBINGEN

• We want to obtain an numerical approximation of the integral:

$$F := \int f(\mathbf{x})p(\mathbf{x})d\mathbf{x} = \mathbb{E}_{x \sim p}(f(\mathbf{x}))$$

- Sampling from the integrand is expensive
- The integral is relatively low dimensional (certainly below 10)

Bayesian quadrature views numerical integration as a Bayesian inference task

We want to estimate a distribution on F using observations of the integrand

- We place a prior distribution over the integrand
- Conditions this prior on samples of the integrand to obtain a posterior distribution
- then computes the implied posterior distribution over F

A common choice for the prior distribution over the integrand is a Gaussian process

Definition (Gaussian process)

A stochastic process (a collection of random variables indexed by time or space), such that every finite collection of those random variables has a multivariate normal distribution

A GP is defined by its mean and covariance function

$$f \sim \mathcal{GP}(m(\mathbf{x}), C(\mathbf{x}, \mathbf{x'}))$$

We can condition the GP to data and obtain the posterior mean and covariance function

$$D = \{(\mathbf{x}_1, f(\mathbf{x}_1)), ..., (\mathbf{x}_N, f(\mathbf{x}_N))\}\$$

$$m_{\mathcal{D}}(\mathbf{x}) = C(\mathbf{x}, X_N)C(X_N, X_N)^{-1}\mathbf{f}$$

$$C_{\mathcal{D}}(\mathbf{x}, \mathbf{x'}) = C(\mathbf{x}, \mathbf{x'}) - C(\mathbf{x}, X_N)C(X_N, X_N)^{-1}C(X_N, \mathbf{x'})$$

- · We choose a suitable GP prior
- Condition this GP on observations of the integrand
- Integrate the GP instead of the true integrand
- · Obtain a distribution over the integral value

- Under a GP prior the posterior is (an infinite dimensional joint) Gaussian
- The Integral F is a linear projection (on the direction defined by p(x))
- The posterior distribution over the integral value is therefore also a Gaussian

$$F \sim \mathcal{N}(\mathbf{m}_F, \mathbf{v}_F)$$
 where
$$\mathbf{m}_F = \mathbb{E}_x(m_{\mathcal{D}}(\mathbf{x})) = \int_{\Omega} m_{\mathcal{D}}(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

$$\mathbf{v}_F = \mathbb{E}_{\mathbf{x}, \mathbf{x'}}(C_{\mathcal{D}}(\mathbf{x}, \mathbf{x'})) = \int_{\Omega} \int_{\Omega} C_{\mathcal{D}}(\mathbf{x}, \mathbf{x'}) p(\mathbf{x}) p(\mathbf{x}) d\mathbf{x} d\mathbf{x'}$$

- Under a GP prior the posterior is (an infinite dimensional joint) Gaussian
- The Integral F is a linear projection (on the direction defined by p(x))
- The posterior distribution over the integral value is therefore also a Gaussian

$$F \sim \mathcal{N}(\mathbf{m}_F, \mathbf{v}_F)$$
 where
$$\mathbf{m}_F = \mathbb{E}_x(m_{\mathcal{D}}(\mathbf{x})) = \int_{\Omega} m_{\mathcal{D}}(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

$$\mathbf{v}_F = \mathbb{E}_{\mathbf{x}, \mathbf{x'}}(C_{\mathcal{D}}(\mathbf{x}, \mathbf{x'})) = \int_{\Omega} \int_{\Omega} C_{\mathcal{D}}(\mathbf{x}, \mathbf{x'}) p(\mathbf{x}) p(\mathbf{x}) d\mathbf{x} d\mathbf{x'}$$

In some cases the above integrals can be calculated analytically!

What if we do not have an analytical solution?

Analytical Bayesian quadrature for arbitrary probability densities

We can rewrite the original integral by introducing a new probability density g

$$F = \int f(\mathbf{x})p(\mathbf{x})d\mathbf{x} = \int \frac{f(\mathbf{x})p(\mathbf{x})}{q(\mathbf{x})}q(\mathbf{x})d\mathbf{x} := \int g(\mathbf{x})q(\mathbf{x})d\mathbf{x},$$

- g can be any probability density as long as: $\forall x \in \Omega : p(x) \neq 0 \implies q(x) \neq 0$
- If we choose g to be the Gaussian or uniform density, we can again obtain analytical results!

The Re-weighting Trick in Bayesian Quadrature

Does re-weighting affect the performance of the BQ algorithm?

The Re-weighting Trick in Bayesian Quadrature

Drawbacks of re-weighting

The GP has a harder time to capture the re-weighted integrand

This results in a less accurate estimation of the integral

- BQ transforms the integration problem into a regression problem on the integrand and an often analytical integration problem on the regression model
- The re-weighting trick enables us to use BQ to integrate w.r.t. arbitrary probability densities p
- Depending on the choice of probability density q and its parameters, reweighting might significantly affect the performance of BQ

Choosing a Suitable q for the Re-weighting Trick

Minimizing performance drop when re-weighting

Can we somehow choose a density q that minimizes the negative effects of re-weighting?

We are limited in the kind of function q can be

- q has to have mass at every position p has mass
- We must have an analytical solution for the combination of kernel and q
- → q is therefore usually the Gaussian or uniform density
- → The only thing we can freely choose are its parameters

Ideally we would like to make the BQ estimate of the re-weighted integral as similar as
possible to the BQ estimate of the non-re-weighted integral

 This is intractable since we usually do not know the distribution over the integral in the none re-weighted case!

Low distortion of the integrand

- → Similarity of f and g
- → Transfer of relevant properties from f to g

Scores Assessing the Re-weighting Trick

EBERHARD KARLS VIVERSITAT UBINGEN

Basic approaches

Suitability of the re-weighted integrand

→ We want the re-weighted integrand to be easy to capture for the GP independent of its similarity to the original integrand

We try to determine parameters for q that maximize the similarity of f and g

$$\arg\max_{\boldsymbol{\theta}} \operatorname{similarity}(f(\mathbf{x}) \frac{p(\mathbf{x})}{q(\mathbf{x}; \boldsymbol{\theta})}, f(\mathbf{x}))$$

Since evaluating the integrand f is expensive we maximize the similarity of p and q instead

$$\arg\max_{\boldsymbol{\theta}} \text{similarity}(q(\mathbf{x}; \boldsymbol{\theta}), p(\mathbf{x}))$$

But how do we measure similarity?

$$\arg\min_{\boldsymbol{\theta}} \mathrm{KL}(q(\mathbf{x};\boldsymbol{\theta})||p(\mathbf{x})) \quad \text{where} \quad KL(p(\mathbf{x})||q(\boldsymbol{(x)})) = \int p(\mathbf{x}) \log(\frac{p(\mathbf{x})}{q(\mathbf{x})}) d\mathbf{x}$$

- We assume $f \sim \mathcal{GP}(m_f, k_f)$
- Re-weighting now implies a non stationary process $\ g \sim \mathcal{GP}(m_g, k_g)$
- We now construct a score that tries to measure the change in (non)-stationarity of f when re-weighting as:

$$\bar{s}_g(\delta) = \iint_{\Omega \times \Omega} s_g(\mathbf{x}, \mathbf{x'} | \delta) p(\mathbf{x}) p(\mathbf{x'}) d\mathbf{x} d\mathbf{x'}$$

$$\text{where} \qquad s_g(\mathbf{x},\mathbf{x'}|\delta) = \left|1 - \frac{p(\mathbf{x}+\delta)p(\mathbf{x'}+\delta)}{q(\mathbf{x}+\delta)q(\mathbf{x'}+\delta)} \frac{q(\mathbf{x})q(\mathbf{x'})}{p(\mathbf{x})p(\mathbf{x'})}\right|$$

- We want to measure how suitable the re-weighted integrand is for our GP
- We can construct a score that relies on the evidence of the model
 → We asses how probable is to observe the re-weighted integrand under the GP
- When we consider n samples (x, y) from g the logarithm of the evidence is given by

$$\log(p(\mathbf{y}|X)) = -\frac{1}{2}\mathbf{y}^{T}C(X,X)^{-1}\mathbf{y} - \frac{1}{2}\log(|C(X,X)|) - \frac{n}{2}\log(2\pi)$$

Since we sample from g the evidence requires us to evaluate f

Scores Assessing the Re-weighting Trick

Summary

We have constructed three scores that aim to choose suitable parameters for the density q

Low distortion of the integrand

- KL divergence score
 - \rightarrow similarity of p and q
- · Shift score
 - \rightarrow small change in stationarity

Suitability of the re-weighted integrand

- Evidence score
 - → How probable is the re-weighted integrand under the GP

How good are the scores that we have constructed?

- We implemented the three scores in Python and evaluate their performance on different test integrals
 - → we use EmuKit with GPy for the implementation of BQ
- We use the introduced scores to optimize the parameters of q
- asses the performs of BQ on the integrals re-weighted with the recommended densities

EBERHARD KARLS UNIVERSITÄT TUBINGEN

On 20 integrals with different Fourier integrands and Gaussian density p

On 20 integrals with different Fourier integrands and Gaussian mixture density p

On 20 integrals with different Gaussian peak integrands and Gaussian mixture density p

On 20 integrals with different continuous integrands and Gaussian mixture density p

The evaluation of the scores was relatively limited

- → All test integrands used Gaussian mixture densities (Scores would work for arbitrary p)
- → Only looked at 1D integrals
- → Only GPs with RBF kernel
- → Results are only as accurate as the metrics we used to evaluate them (especially the uncertainty quantification should be treated with caution)

- Depending on the choice of probability density q and its parameters, reweighting might significantly affect the performance of BQ
- All three proposed scores seem to perform reasonably well for the test integrands
- The evidence score gives better results in special cases, but often performs similar to the other two scores
- KL divergence score and shift score perform relatively similar, but KL divergence score seems more robust and easier to optimize

- Instead of assessing the similarity between p and q, we try to assess how much we 'change' the integrand under the re-weighing trick
- We construct a measure of (non)-stationarity as:

$$s(\mathbf{x}, \mathbf{x'}|\delta) := \left| \frac{C(\mathbf{x}, \mathbf{x'}) - C(\mathbf{x} + \delta, \mathbf{x'} + \delta)}{C(\mathbf{x}, \mathbf{x'})} \right|$$

 If we assume that f is a draw from a stationary GP the re-weighting trick implies a non-stationary process g and we get:

Definition (Stationarity)

A stochastic process $\{\eta(x)\}_{x\in\Omega}$ is said to be stationary when its distribution is unchanged by an index shift, that is $\{\eta(x)\}_{x\in\Omega}=\{\eta(x+\delta)\}_{x+\delta\in\Omega}$ for arbitrary δ . This implies that all its statistics obey this property as well.

$$s_g(\mathbf{x}, \mathbf{x'}|\delta) = \left|1 - \frac{p(\mathbf{x} + \delta)p(\mathbf{x'} + \delta)}{q(\mathbf{x} + \delta)q(\mathbf{x'} + \delta)} \frac{q(\mathbf{x})q(\mathbf{x'})}{p(\mathbf{x})p(\mathbf{x'})}\right| \quad \text{resp.} \quad \overline{s}_g(\delta) = \iint_{\Omega \times \Omega} s_g(\mathbf{x}, \mathbf{x'}|\delta)p(\mathbf{x})p(\mathbf{x'})d\mathbf{x}d\mathbf{x'}$$

- Instead of assessing the difference between p and g directly, we try to assess how much we 'change' the integrand under the re-weighing trick
- We assume that f is a draw from a stationary GP

$$f(\mathbf{x}) \sim \mathcal{GP}(m_f, C_f)$$

The re-weighting trick now implies a nonstationary process:

$$g(\mathbf{x}) := f(\mathbf{x}) \frac{p(\mathbf{x})}{q(\mathbf{x})} \sim \mathcal{GP}(m_g, C_g)$$
$$C_g(\mathbf{x}, \mathbf{x'}) = \frac{p(\mathbf{x})p(\mathbf{x'})}{q(\mathbf{x})q(\mathbf{x'})} C_f(\mathbf{x}, \mathbf{x'})$$

• We construct a measure of (non)-stationarity as:
$$s(\mathbf{x},\mathbf{x'}|\delta) := \left|\frac{C(\mathbf{x},\mathbf{x'}) - C(\mathbf{x}+\delta,\mathbf{x'}+\delta)}{C(\mathbf{x},\mathbf{x'})}\right|$$
• For C_g we get:

$$s_g(\mathbf{x}, \mathbf{x'} | \delta) = \left| 1 - \frac{p(\mathbf{x} + \delta)p(\mathbf{x'} + \delta)}{q(\mathbf{x} + \delta)q(\mathbf{x'} + \delta)} \frac{q(\mathbf{x})q(\mathbf{x'})}{p(\mathbf{x})p(\mathbf{x'})} \right|$$
 resp.

$$\overline{s}_g(\delta) = \iint_{\Omega \times \Omega} s_g(\mathbf{x}, \mathbf{x'} | \delta) p(\mathbf{x}) p(\mathbf{x'}) d\mathbf{x} d\mathbf{x'}$$

How do we measure the performance of BQ on the re-weighted integrals?

Accuracy of the mean estimate

→ absolute value of the relative difference between the posterior mean estimate and the true integral value

$$s_{rmc}(F) = \left| \frac{F - \mathbf{m}_F}{F} \right|$$

Calibration of the distribution

→ expected logarithmic density ratio

$$s_{UQ}(F) = \mathbb{E}\left(\log \frac{p(F_{GP}|\mathcal{D})}{p(F_{GP}|\mathcal{D} = F)}\right)$$
$$= \frac{1}{2}\left(\frac{(F - \mathbf{m}_F)^2}{\mathbf{v}_F} - 1\right)$$

1

Base Slide?

UNIVERSITÄT TÜBINGEN

Keep this subtitle?

1