CSCI 447 Homework 3

Isaac Boaz

May 11, 2024

Question 1

Having a very small quantum requires the PC to do a lot more work that isn't directly executing processes, whether that be

- Context switching between processes
- Decoding processes
- Scheduling processes

While a lower quantum may ensure more processes get a more fair distribution of time, it comes at the sacrifice of CPU efficiency.

Question 2

• If FCFS is used:	Process Order	P_1	P	2	P_3	Averag	ge		
	Arrival Time	0	0.	4	1.0				
	Execution Time	0	8	3	12				
	Turnaround Time	8	11	.6	12	10.53			
	D 0.1	D	D	D					
• If SJF is used:	Process Order	P_1	P_3	P_2	F	Average			
	Arrival Time	0	1	0.4	:				
	Execution Time	0	8	9					
	Turnaround Time	8	8	12.0	3	9.53			
		ъ		0	,	D	Б	D	
	with idle from 0 to 1	Process Order				P_1	P_3	P_2	Average
• If SJF is used: v		Arrival Time				0	1	0.4	
		Execution Time				1	9	10	
		Turnaround Time				9	9	13.6	10.53

Question 3

a. First-come, first-served could result in starvation if a process with a long execution time is placed at the front of the queue.

Eg: P_1 has an execution time of 100, and P_2 has an execution time of 1. If P_1 is placed at the front of the queue, P_2 will never be executed.

- b. Round robin most likely will not result in starvation, as each process is given a quantum of time to execute. However, if the quantum is too small, the CPU could spend more time context switching than executing processes.
- c. Shortest Job First could still result in starvation depending on the order that jobs arrive to the CPU, and the length of the jobs. If a long job arrives first, and a series of short jobs arrive after, the short jobs may never be executed.
- d. Priority scheduling could result in starvation if a process with a high priority is placed at the front of the queue, and never completes.

Question 4

a.
$$430 + 219 = 649$$

b.
$$400 + 1327 = 1727$$

c.
$$10 + 2300 = 2310$$

d.
$$112 + 1952 = 2064$$

e.
$$500 + 90 = 590$$