Zero-Jitter Task Chains via Algebraic Rings

Enrico Bini, Paolo Pazzaglia, Martina Maggio

IEEE Transactions on Computers, 2023

WaP @RTSS 2023, December 5th 2023 Taipei, Taiwan

Model of a LET task τ_i

- A LET *task* τ_i is composed by *periodic jobs* (curvy arrows)
 - in LET, we only care of the read and write instants

$$\begin{aligned} \theta_i^{\rm r} \\ \theta_i^{\rm w} \\ \mathrm{rd}_i(j) &= j \, T_i + \theta_i^{\rm r} \\ \mathrm{wr}_i(j) &= j \, T_i + \theta_i^{\rm w} \end{aligned}$$

read phasing of τ_i , relative to the period T_i write phasing of τ_i , relative to the period T_i read instant of job j of τ_i write instant of job j of τ_i

Chain of LET tasks

- each task reads data written by the previous one
- data is on shared memory
 - * au_1 may over-write data before au_2 reads (if $T_1 < T_2$)
 - * τ_2 may read again the same data (if $T_2 < T_1$)

Chain of LET tasks

- each task reads data written by the previous one
- data is on shared memory
 - * au_1 may over-write data before au_2 reads (if $T_1 < T_2$)
 - \star au_2 may read again the same data (if $T_2 < T_1$)

•	Chains of jobs have variable
	read-to-write delay

(j_1, j_2)	$rd_1(j_1)$	$wr_2(j_2)$	$wr_2(j_2) - rd_1(j_1)$
(0,2)	4	30	26
(1, 4)	20	50	30
(2,5)	36	60	24
(3,7)	52	80	28
(4, 9)	68	100	32

• The source of variability is $rd_2(j_2) - wr_1(j_1)$. In the example: $3, 7, 1, 5, 9, 3, 7, \ldots$

ullet rd $_2(j_2)-\mathsf{wr}_1(j_1) < T_2$, always. Let's zoom in . . .

ullet ... and align the read instants of consecutive au_2 jobs.

• A repetitive requence...mmhhh...better to visualize over the (algebraic) ring $\mathbb{Z}/T_2\mathbb{Z}$.

• By inverting over the ring $\mathbb{Z}/T_2\mathbb{Z}$, max/min delay is found **without** unrolling the schedule.

• Exploited to eliminate the jitter of a 2-tasks chain.

