COMP 4-1 (RC)

S.E. (Comp.) (Semester – IV) (RC) Examination, May/June 2013 DISCRETE MATHEMATICAL STRUCTURE

Duration : 3 Hours Total Marks : 100

Instructions: 1) Attempt any five questions, choosing at least one from each Module.

2) Assume suitable data if necessary.

	2) Assume suitable data if necessary.	
	Module – I	
1. a) Let A, B & C be three non-empty sets. Prove that	
	i) $(A - C) \cap (B - C) = (A \cap B) - C$	
	ii) $(A - B) \times C = (A \times C) - (B \times C)$	6
t	o) Let Z be the set of integers. Define a relation R on Z as follows. xRy if and only if 3 divides x-y. Show that R is an equivalence relation and also find its distinct	8
	equivalence classes.	
(Let f: A →B and g: B → C be two surjective functions. Show that g∘f: A →C is also surjective.	6
2. (Let X be an non-empty set. Define a relation ' \leq ' on P(X) as follows: for any A, B \in P(X), A \leq B if and only if A \subseteq B. Prove that P(X) is a poset.	6
vilally.	Draw Hasse diagram for the poset (S, \leq) where S = {2, 4, 5, 8, 10, 12, 16, 20, 22, 25} and a \leq b if and only if a b \forall a, b \in S. Also find minimal and maximal elements of S.	8
	c) Show that if any 20 people are selected, then we can choose a subset of 3, so that all three are born on the same day of the week.	6
	Inelaizoos al A. 3 notaulotios enti.	г.О.

7

7

6

6

5

5

Module - II

							-
in tha	Drow	group.	hea	(G .)	et	a)	3.
10 th	Prove	group.	pe a	(17, *)	rer	d)	o.

i)
$$a * b = a * c \Rightarrow b = c$$

ii)
$$b * a = c * a \Rightarrow b = c$$

where a, b and c ∈ G.

b) Prove that (G, *) is an Abelian group if and only if $(a*b)^2 = a^2*b^2$, where $a, b \in G$.

c) State and prove Lagrange's theorem for groups.

4. a) If (R, +, .) is a ring such that $a^2 = a \ \forall \ a \in R$, prove that

i)
$$a + a = 0 \quad \forall a \in R$$

ii)
$$a+b=0 \Rightarrow a=b$$

iii) R is a commutative ring

b) Show that $W = \{(x, y, z) : x - y + z = 0\}$ is a sub space of \mathbb{R}^a . Also find a basis for W.

c) Show that T : $\mathbb{R}^s \to \mathbb{R}^s$ defined as T $(x_1, x_2, x_3) = (x_1, +x_2, x_2, x_1 - x_3)$ is a linear transformation.

Module - III

5. a). Define a Boolean Algebra B. In a Boolean Algebra B, prove that :

$$\forall$$
 a, b \in B

ii)
$$(a+b)'=a'\cdot b'$$

$$\forall a, b \in B$$

b) Define functionally complete set of connectives. Show that $\{\downarrow\}$ is functionally complete.

c) Define conjunctive normal form. Express the following expression in the principal conjunctive normal form. ($\sim p \rightarrow r$) \wedge ($q \leftrightarrow p$) where p, q and r are propositions.

d) Using rules of inference, show that the premises E \to S, S \to H, A \to H and the conclusion E $_{\wedge}$ A is consistent.

6

5

5

6. a) State the principal of mathematical induction and use it to prove that

$$1^3 + 2^3 + 3^3 + ... + n^3 = \frac{n^2(n+1)^2}{4}$$

- b) A person invests Rs. 25,000/- @ 9% interest compounded annually. How much will be the total amount at the end of 17 years?
- c) Solve the recurrence relation $a_n 3a_{n-1} + 2a_{n-2} = 5$, $n \ge 2$, and $a_0 = 0$, $a_1 = 1$.

Module-IV

7. a) Define incidence matrix of an undirected graph. Represent the following graph by an incidence matrix.

- b) Define a bipartite graph and a complete graph. Is it possible to draw a bipartite graph which is also complete graph? Justify.
- Apply Dijkstra's algorithm to find the shortest path between a and h in the following weighted graph.

d) Is it possible to draw a graph with 7,7,7,7,6,6,5,5,5,4,4,3 degree sequence?
 Justify.

3

7

3

3

- 8. a) i) Give three different definition of a tree.
 - ii) Draw a tree having three vertices of degree 3, one vertex of degree two and five vertices of degree five.
 - b) Use Kruskal's algorithm to obtain a minimal spanning tree for the graph.

- c) i) State the values of m and n for which the complete bipartite graph $k_{m,n}$ is a tree.
- ii) Show that a full (regular) m-ary tree with 'c' internal vertices contain $n = m_{_{\parallel}} + 1$ vertices.
 - iii) A tree has two vertices of degree 2, one vertex of degree 3 and three vertices of degree 4. How many vertices of degree one does it have ?