Universal Existential Paths

by Sven Nilsen, 2017

An existential path^[1] is a total function^[2] that determines the truth value of whether there exists some input to a function that returns some output:

$$\therefore \exists f := \langle (x') = \exists x \{ f(x) = x' \}$$

$$x' = f(x)$$

$$:$$
 $f: X \to X$

This can be generalized using domain constraint notation^[3]:

$$\exists f\{T_x\} := \backslash (x') = \exists x : T_x \{ f(x) = x' \}$$

In domain constraint notation you can create the universal `f{}`[3], so one can also create a universal existential path:

$$\exists f\{\} := \backslash (T_x) = \backslash (x') = \exists x : T_x \{ f(x) = x' \}$$

All universal existential paths are reducible to normal existential paths using `true₁`:

$$\therefore$$
 $\exists f\{[true_1] true\} \iff \exists f\{true_1\} \iff \exists f\}$

$$\because$$
 true₁ := \(_) = true

A sub-existential path is when you pass any other function than `true₁` to a universal existential path:

$$\therefore (\exists f\{\})([g(c)] \text{ true}) \iff \exists f\{[g(c)] \text{ true}\} \iff \exists f\{g(c)\}$$

$$\therefore$$
 $\exists f\{g(c)\}: B \rightarrow bool$

$$: f: A \rightarrow B$$

$$:$$
 g: C \rightarrow A \rightarrow bool

When one passes a function of more than one argument to a universal existential path, one creates a higher order existential path:

$$\exists f\{g\} : C \rightarrow B \rightarrow bool$$

Name	Notation	Туре
Sub-existential path	$\exists f\{g(c)\}$	B → bool
Higher order existential path	∃f{g}	$C \rightarrow B \rightarrow bool$
Universal existential path	∃f{}	$T_C \rightarrow B \rightarrow bool$

References:

[1] "Existential Paths" Sven Nilsen, 2017

 $\underline{https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/existential-paths.pdf}$

[2] "Partial function" Wikipedia

https://en.wikipedia.org/wiki/Partial_function

[3] "Domain Constraint Notation" Sven Nilsen, 2017

https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/domain-constraint-notation.pdf