Ph.D. Qualifying Exam Real Analysis September 5, 2009

Complete any **five** of the following **nine** problems. If you do more than five problems, only the top five will count towards your grade. You have three hours.

- 1. (a) State carefully and precisely the Fundamental Theorem of Calculus for the Lebesgue integral.
- (b) Give an example of a function which is of bounded variation on [0,1] but is not continuous on [0,1]. Can such a function be the indefinite integral of a Lebesgue integrable function? Give your reasons.
 - (c) Consider the function

$$f(x) = \begin{cases} x^{\alpha} \cos\left(\frac{1}{x}\right) & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}.$$

For which values of α is f absolutely continuous on [0,1]?

2. Let $(\Omega, \mathcal{A}) = (\mathcal{N}, \mathcal{P}(\mathcal{N}))$ be a measurable space. Here \mathcal{N} is the set of positive integers, and $\mathcal{P}(\mathcal{N})$ is the power set of \mathcal{N} . Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers with $\sum_{n=1}^{\infty} |a_n| < \infty$. Define a measure ν on $\mathcal{P}(\mathcal{N})$ by

$$\nu\left(A\right) = \sum_{n \in A} a_n$$

for each $A \in \mathcal{A}$.

that

- (a) Prove that ν is a signed measure.
- (b) Determine ν^+ , ν^- , and $|\nu|$.
- 3. (a) State and prove the Monotone Convergence Theorem.
 - (b) Let g be a nonnegative, measurable function on $(-\infty, \infty)$. Show

$$\lim_{n \to \infty} \int_{-\pi}^{n} \frac{n}{x^2 + n} g\left(x\right) dx = \int_{-\infty}^{\infty} g\left(x\right) dx.$$

- 4. (a) State carefully and precisely the Lebesgue Dominated Convergence Theorem.
- (b) Let $(\mathbb{R}, \mathcal{M}, \lambda)$ be the measure space on \mathbb{R} where \mathcal{M} represents the Borel sets on \mathbb{R} and λ is Lebesgue measure on \mathbb{R} . The Fourier transform of f is denoted by \widehat{f} and is defined by

$$\widehat{f}(t) = \int_{-\infty}^{\infty} e^{-itx} f(x) \ d\lambda(x)$$

for $t \in \mathbb{R}$ and $f \in L^{1}(\mathbb{R})$. (Note that $d\lambda(x) = dx$ since λ is Lebesgue measure.)

(i) Prove that \hat{f} is continuous on \mathbb{R} .

(ii) Prove that if $\int_{-\infty}^{\infty} |xf(x)| d\lambda(x) < \infty$, then \hat{f} is differentiable

on \mathbb{R} , and

$$\left(\widehat{f}\right)'(t) = \int_{-\infty}^{\infty} (-ix) e^{-itx} f(x) d\lambda(x)$$

for $t \in \mathbb{R}$.

5. (a) State the Radon-Nikodym Theorem.

(b) Let μ and ν be measures on the same σ -finite measurable space (Ω, \mathcal{A}) . Suppose that μ and ν satisfy the property that for any measurable set $A \in \mathcal{A}$, $\mu(A) = 0$ if $\nu(A) = 0$. Prove that for each $\epsilon > 0$, there is a $\delta > 0$ such that $\mu(A) < \epsilon$ for any measurable set A with $\nu(A) < \delta$.

6. (a) State the definition of a normed space.

(b) State the definition of a Banach space.

(c) Let C[0,1] be the space of continuous functions on the interval [0,1] . If $f \in C[0,1]$, define

$$||f||_p = \left(\int_0^1 |f(x)|^p dx\right)^{\frac{1}{p}}.$$

Show that C[0,1] equiped with the norm $\|\cdot\|_p$ for $1 \leq p < \infty$ is a normed space, but it is not a Banach space.

7. Let $r, s \in [1, \infty]$ and let $(\Omega, \mathcal{A}, \mu)$ be a measure space.

(a) Suppose $p \in [1, \infty]$ such that

$$\frac{1}{p} = \frac{1}{r} + \frac{1}{s}.$$

Show that if $f \in L^r(\Omega, \mathcal{A}, \mu)$ and $g \in L^s(\Omega, \mathcal{A}, \mu)$, then $fg \in L^p(\Omega, \mathcal{A}, \mu)$ and

$$||fg||_{p} \leq ||f||_{r} ||g||_{s}$$
.

(b) Now suppose $(\Omega, \mathcal{A}, \mu)$ is a finite measure space. Show that if $1 \leq s < r \leq \infty,$

$$L^{r}(\Omega, \mathcal{A}, \mu) \subseteq L^{s}(\Omega, \mathcal{A}, \mu)$$
.

(c) Show by example that the containment in (b) fails if $\Omega=(0,\infty)$ where μ is Lebesgue measure.

8. Let

$$f(x,y) = \begin{cases} \frac{xy}{(x^2+y^2)^2} & \text{if } x^2+y^2 > 0\\ 0 & \text{if } x=y=0 \end{cases}.$$

Is f integrable on \mathbb{R}^2 ? Why or why not?

- 9. (a) State the Hahn-Banach theorem.
 - (b) Let

$$\ell^1 = \left\{ x = (x_n)_{n \ge 1} : x_n \in \mathbb{C} \text{ for } n = 1, 2, ... \text{ and } \sum_{n=1}^{\infty} |x_n| < \infty \right\}$$

. Equip ℓ^1 with the norm

$$||x||_1 = \sum_{n=1}^{\infty} |x_n|.$$

Construct a bounded linear functional on some subspace M of ℓ^1 which has two (hence infinitely many) distinct norm-preserving extensions to ℓ^1 .

(c) In (b), if the Banach space ℓ^1 is replaced by the Hilbert space ℓ^2 ,

$$\ell^2 = \left\{ x = (x_n)_{n \ge 1} : x_n \in \mathbb{C} \text{ for } n = 1, 2, ... \text{ and } \sum_{n=1}^{\infty} |x_n|^2 < \infty \right\},$$

with the inner product

$$\langle x, y \rangle = \sum_{n=1}^{\infty} x_n \overline{y_n},$$

then the extension is unique. What is this extension? (You may need to modify M so that $M \subseteq \ell^2$.)