Introduction

For this example, we have information on the consumption of beer for 500 individuals. We have the following information

- Number of bottles of beer bought in 2002
- Was the individual a male or female
- The price of a bottle of beer in their closest convenience store
- The price of a bottle of Coke in their closest convenience store

Introduction

Goal: Studying what determines beer consumption

- Which variable is the dependent variable? Number of bottles of beer
- We write y_i number of bottles of beer fof individual i
- What are the explanatory variables? We have three explanatory variables:

```
x_{i1} = 1 male, x_{i1} = 0 female
```

 x_{i2} = price of a bottle of beer

x₁₃=price of a bottle of Coke

Before doing anything, we look at the data

proc means data=beer_cons;
run;

	The MEANS Procedure							
	N	Mean	Std Dev	Minimum	Maximum			
beer	500	247.6600000	100.1217715	11.0000000	366.0000000			
male	500	0.6180000	0.4863631	0	1.0000000			
price_b	500	1.5046474	0.2871817	1.0025000	1.9987000			
price_c	500	1.0027246	0.2886223	0.5067000	1.4989000			

To study the y_i variable, we can regress it on a constant, x_{i1} , x_{i2} , and x_{i3}

```
The SAS code is proc reg data=beer_cons; model beer = male price_b price_c / acov; title 'OLS for beer consumption'; test price_b=0, price_c=0; output out=resdat_ols residual=uhat_ols predicted=yhat_ols; run;
```

The output is

The REG Procedure
Dependent Variable: beer
Analysis of Variance

Source		DF	Sum of Squares	S	Mean quare	F Val	lue	Pr > F
Model Error		3 496	4771450 230710		90483 14212	3419	.35	<.0001
Correcte	d Total	499	5002160					
	Root MSE Dependent Coeff Var	Mean	21.567 247.660 8.708	00	R-Square Adj R-Sc		0.953	

Parameter Estimates

			Heteroscedasticity Consistent				
	Parameter	Standard			Standard		
Variable	Estimate	Error	t Value	Pr > t	Error	t Value	Pr > t
Intercept	197.12054	6.24628	31.56	<.0001	6.66570	29.57	<.0001
male	201.72346	1.99724	101.00	<.0001	2.47588	81.48	<.0001
price_b	-48.72603	3.37738	-14.43	<.0001	3.55793	-13.70	<.0001
price_c	-0.80795	3.35042	-0.24	0.8095	3.09636	-0.26	0.7942

And the robust variances and covariance are

OLS for beer consumption The REG Procedure Dependent Variable: beer

Consistent Covariance of Estimates

variable	Intercept	male	price_b	price_c
intercept	44.431522734	-4.428401737	-17.69338802	-12.78407524
male	-4.428401737	6.1299754557	-2.222414478	2.0269925151
price_b	-17.69338802	-2.222414478	12.658896575	0.6057958513
price_c	-12.78407524	2.0269925151	0.6057958513	9.5874227615

With the test price_b=0, price_c=0 statement, you get a non-heteroskedasticity robust F test

OLS for beer consumption

The REG Procedure Model: MODEL1

Test 1 Results for Dependent Variable beer							
Source DF Mean Square F Value Pr > F							
Numerator	2	48414	104.09	<.0001			
Denominator 496 465.14212							

And a heteroskedasticity robust Chi-square test

OLS for beer consumption

The REG Procedure Model: MODEL1 Dependent Variable: beer

	Test 1 Results using Heteroscedasticity Consistent Covariance Estimates					
DF	Chi-Square	Pr > ChiSq				
2	187.80	<.0001				

 Before doing any analysis/testing, we can check if there is something wrong with the regression model. We can look at the residuals. Is there something wrong with them? For example, is there a relationship between the explanatory variables and the dispersion of the residuals?

- There is more dispersion in the residuals for small values of the price_c
- There is more disperson for females than for males

Result: We can suspect that there is heteroskedasticity and that the variance of y_i depends on the sex of the individual and the price of a bottle of Coke

Testing for the presence of heteroskedasticity

- From the previous analysis, we think that the variance of the error term could vary with x_{i3} (price of a bottle of Coke) and x_{i1} (male)
- We do a formal test of heteroskedasticity
 - We run the following regression:

$$\hat{u}_i^2 = \alpha_0 + \alpha_1 x_{1,i} + \alpha_3 x_{3,i} + v_i$$

and we test

$$H_0 : \alpha_1 = \alpha_3 = 0$$

$$H_1$$
: $\alpha_1 \neq 0$ and/or $\alpha_3 \neq 0$

The SAS code is

```
data resdat_ols;
 set resdat_ols;
uhat2 = uhat_ols**2;
run;
proc reg data=resdat_ols;
 model uhat2 = male price_c;
 title 'Test for heteroskedasticity';
test male=0, price_c=0;
run;
```

Test for heteroskedasticity

The REG Procedure
Dependent Variable: uhat2

Analysis of Variance

			Sum	of	Me	an				
Source		DF	Squar	res	Squa	re	F V	alue	Pr	> F
Model		2	115411	724	577058	62	5	4.36	<.	0001
Error	4	497	5276183	317	10616	06				
Corrected To	tal 4	499	643030	041						
	Root N	MSE		1030.	34279	R-S	quare	е	0.17	95
	Depend	dent Me	an	461.	42098	Adj	R-S	q	0.17	62
	Coeff	Var		223.	29778					
		Parame	ter	Stan	dard					
Variable	е	Estim	nate	E	rror	t Va	lue	Pr	> t	I
Interce	pt 1	1560.36	736	179.9	4733	8	. 67	<	<.000	1
male	-	-959.24	578	94.9	8401	-10	.10	<	<.000	1
price_c	-	-504.75	723	160.0	5940	-3	.15	(0.001	7

F-value on joint test: 54.36, Associated p-value<.0001 Reject null of homoskedasticity

Could also do LM

N*unadusted R-square = 0.1795*500 = 89.75

Chi-square, 2 degrees of freedom.005=10.597

Reject null of homoskedasticity

- We see that the variance of the residuals is affected by the dummy variable male. The effect is statistically significant at the 1% significance level since the p-value is below 1%
- We see that the variance of the residuals is affected by the price of a bottle of Coke. The effect is statistically significant at the 1% significance level since the p-value is below 1%

FGLS estimation instead of OLS

- Instead of simply using robust standard errors, we can treat the heteroskedasticity in the estimation. We do FGLS instead of OLS
- Earlier we saw that the variance depends on the gender and the price of a bottle of Coke.

• To make sure $\hat{\sigma}_1^2$ is positive we use the exponential:

$$Var[u_i] = \exp(\gamma_0 + \gamma_1 x_{1,i} + \gamma_3 x_{3,i})$$

We estimate

$$\ln(\hat{u}_i^2) = \gamma_0 + \gamma_1 x_{1,i} + \gamma_3 x_{3,i} + e_i$$

The predicted variance will be

$$\hat{\sigma}_i^2 = \exp(\hat{\gamma}_0 + \hat{\gamma}_1 x_{1,i} + \hat{\gamma}_3 x_{3,i})$$

SAS code to do FGLS with this functional form is

```
data resdat ols;
 set resdat ols;
 log res 2 = log(uhat ols**2);
run;
proc reg data=resdat ols;
 model log res 2 = male price c;
 title 'Estimation and prediation of variance';
 output out=res var predicted=log h hat;
run;
data res var;
 set res var;
 h hat = exp(log_h_hat);
 one over h = 1/h hat;
run;
proc reg data=res var;
 model beer = male price b price c;
 weight one over h;
 title 'FGLS for beer consumption (using weight)';
```

Estimation and prediation of variance The REG Procedure Dependent Variable: log_res_2 Analysis of Variance

			Sum of		Mean
Source	DF	Squares	Square	F Value	e Pr > F
Model	2	835.62789	417.81395	77.23	<.0001
Error	497	2688.93801	5.41034	l	
Corrected Tota	1 499	3524.56590			
R	oot MSE	2	2.32601 R-	-Square	0.2371
D	ependent	Mean (4.03019 Ad	ij R-Sq	0.2340
C	oeff Var	5	7.71476		

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	7.35871	0.40623	18.11	<.0001
male	1	-2.50243	0.21443	-11.67	<.0001
price_c	1	-1.77718	0.36134	-4.92	<.0001

FGLS for beer consumption (using weight)

The REG Procedure

Dependent Variable: beer

Weight: one_over_h Analysis of Variance

		Sum of	Mean	n	
Source	DF	Squares	Square	e F Value	Pr > F
Model	3	35808	1193	6 3000.66	<.0001
Error	496	1972.97750	3.9777	8	
Corrected Tot	al 499	37781			
	Root MSE	1	.99444	R-Square	0.9478
	Dependent 1	Mean 313	.83350	Adj R-Sq	0.9475
	Coeff Var	0	.63551		

Parameter Estimates

	Parameter	Standard		
Variable	Estimate	Error	t Value	Pr > t
Intercept	199.20201	4.05389	49.14	<.0001
male	202.14563	2.21808	91.14	<.0001
price_b	-50.35661	1.73218	-29.07	<.0001
price_c	-0.77552	1.82380	-0.43	0.6709

More analysis: Looking at the final output from the FGLS procedure

- Ceteris paribus, a male will buy 202 more bottles of beer than a female. This is statistically significant at the 1% level.
- Ceteris paribus, if the price of a bottle of beer goes up by \$1, a consumer will reduce their annual consumption of beer by 50 bottles
- Variations in the price of a bottle of Coke does not have a statistically significant impact on the consumption of beer at the 10% level

The FGLS can also be performed manually

```
data res_var;
  set res_var;
  beer_star = beer / sqrt(h_hat);
  one_star = 1 / sqrt(h_hat);
  male_star = male / sqrt(h_hat);
  price_b_star = price_b / sqrt(h_hat);
  price_c_star = price_c / sqrt(h_hat);
run;

proc reg data=res_var;
  model beer_star = one_star male_star price_b_star price_c_star /noint;
  title 'FGLS for beer consumption (using star)';
run;
```

FGLS for beer consumption (using star)

The REG Procedure
Dependent Variable: beer_star

Parameter Estimates

	Parameter	7	Standard		
Variable	Estimate		Error	t Value	Pr > t
one_star	199.20201		4.05389	49.14	<.0001
male_star	202.14563		2.21808	91.14	<.0001
price_b_star	-50.35661		1.73218	-29.07	<.0001
price_c_star	-0.77552		1.82380	-0.43	0.6709

As expected, we get the same estimated values and standard errors.

Why not combine the best of both worlds (FGLS + hetero-robust standard errors and statistics):

```
proc reg data=res_var;
  model beer = male price_b price_c / acov;
  weight one_over_h;
  title 'FGLS for beer consumption (using weight)';
run;
```