Radiosity

Last lecture

- Radiosity equation
- Form factors
- Solution methods

Today

Two major problems

- Quality of approximationMeshing given shadows
- Compulational expense

 Quadratic to linear time using hierarchical techniques

CS348B Lecture 17

Pat Hanrahan, Spring 2000

First Radiosity Pictures ...

Parry Moon and Domina Spencer (MIT), Lighting Design, 1948
CS348B Lecture 17
Pat Hanrahan, Spring 2000

Accuracy

Reference Solution

Uniform Mesh

Table in room sequence from Cohen and Wallace

CS348B Lecture 17

Pat Hanrahan, Spring 2000

Artifacts

- A. Blocky shadows B. Missing features
- C. Mach bands
- D. Inappropriate shading discontinuities
- E. Unresolved discontinuities

CS348B Lecture 17

Error Image

Meshing Options

■ Element type

Regular or structured: quadrilaterals Irregular or unstructured: triangles

■ Element size

Resolution: h

■ Element order and continuity

Polynomial order: **p**

Degree of continuity across elements

■ Element goodness

Shape, e.g. aspect ratio

Placement, e.g. grading

CS348B Lecture 17

Pat Hanrahan, Spring 2000

Increasing Resolution

CS348B Lecture 17

Adaptive Meshing

CS348B Lecture 17

Irradiance Discontinuities

Lischinski, Tampieri, Greenberg

Figure 4: D0 discontinuity

Figure 5: D1 discontinuity

Figure 6: D2 discontinuity

CS348B Lecture 17

Pat Hanrahan, Spring 2000

Campbell et al. BSP Mesh

CS348B Lecture 17

Critical edges

CS348B Lecture 17

Pat Hanrahan, Spring 2000

h- vs. p-refinement Subdivide element vs. raise degree? Subdivide element vs. raise degree? Continuous, smooth functions Raise degree $O(h^p)$ convergence Discontinuous functions Subdivide at discontinuity Subdivide at discontinuity From Heckbert Pat Hanrahan, Spring 2000

Hierarchical Techniques

Problem: Form factor matrix has O(n2) entries Basic approach:

- 1. Numerical calculations subject to error. Only compute things to the required precision.
- 2. Small, far-away elements can be replaced by larger elements
- 3. These observations lead to a linear time algorithm

Motivated by solutions to the N-body problem

CS348B Lecture 17

Pat Hanrahan, Spring 2000

Disk Form Factor

$$F_{disk} = \sin^2 \mathbf{a}$$

$$= \frac{r^2}{r^2 + R^2}$$

$$= \left(\frac{r}{R}\right)^2 \left(1 - \left(\frac{r}{R}\right)^2 + \left(\frac{r}{R}\right)^4 - \cdots\right)$$

The five-times rule: A finite area Lambertian reflector may be modeled as a point light source when the distance to the receiving surface is five times greater than the size of the light source

CS348B Lecture 17

Basic Refinement Algorithm

```
Refine(Patch *p, Patch *q, float Feps, float Aeps)
     float Fpq = FormFactorEstimate(p,q);
     float Fqp = FormFactorEstimate(q,p);
     if( Fpq < Feps \&\& Fqp < Feps ) Link(p,q)
     else {
         if( Fpq > Fqp ) {
             if( Subdiv( q, Aeps ) ) {
                   Refine( p, q->ne, Feps, Aeps );
                   Refine( p, q->se, Feps, Aeps );
                   Refine( p, q->nw, Feps, Aeps );
                   Refine( p, q->sw, Feps, Aeps );
              else Link( p, q );
         }
         else ...
CS348B Lecture 17
                                                Pat Hanrahan, Spring 2000
```


Recursive Gather

```
Gather(Patch *p)
{
    Patch *q; float Fpq;

    if( p ) {
        p->Bg = 0;
        ForAllElements( q, p->interactions ) {
            Fpq = FormFactor( p, q );
            p->Bg += Fpq * p->Cd * q->B;
        }
        Refine( p->ne );
        Refine( p->se );
        Refine( p->sw );
        Refine( p->sw );
    }
}
CS348B Lecture 17
Pat Hanrahan, Spring 2000
```

Results

A Rapid Hierarchical Radiosity Algorithm

Figures 7

Figures 8

Figures 9

Figures 10

CS348B Lecture 17