THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS

MATH2621 Higher Complex Analysis S2, 2018 Problem Sheet

Good solutions to these problems include reasons. A few problems may require extensions of ideas or definitions in the course; these may be explained in tutorials.

Revision exercises.

- 1. Show that $|e^z| = e^{\operatorname{Re}(z)}$ for all $z \in \mathbb{C}$.
- 2. Show that $|e^{i\theta} 1| = 2|\sin(\theta/2)|$ for all $\theta \in \mathbb{R}$
 - (a) using geometry;
 - (b) using the algebraic formula $e^{i\theta} 1 = e^{i\theta/2}(e^{i\theta/2} e^{-i\theta/2})$. Deduce that $|e^{i\theta} 1| \le |\theta|$ for all $\theta \in \mathbb{R}$.
- 3. Give a geometric explanation for the inequality

$$|w| \le |w + z| + |z|.$$

4. Suppose that $\alpha = \cos t + i \sin t$ where $0 < t < 2\pi$. Show that

$$\frac{1+\alpha}{1-\alpha} = i\cot\frac{t}{2}.$$

- 5. Suppose that $\alpha \neq 0$. Show that $\alpha + 1/\alpha$ is real if and only if α is real or $|\alpha| = 1$.
- 6. Expand (4+i)(5+3i) and hence show that

$$\frac{\pi}{4} = \arctan\frac{1}{4} + \arctan\frac{3}{5}.$$

- 7. By expanding $(1 + \sqrt{3}i)(1 + i)$, find $\cos(7\pi/12)$ and $\sin(7\pi/12)$ in surd form. Answer: $(1 \sqrt{3})/(2\sqrt{2})$ and $(1 + \sqrt{3})/(2\sqrt{2})$.
- 8. (a) Show that $|z_1 + z_2|^2 + |z_1 z_2|^2 = 2|z_1|^2 + 2|z_2|^2$ for all $z_1, z_2 \in \mathbb{C}$.
 - (b) Give a geometrical interpretation of this result.
- * 9. Show that the triangle in the complex plane whose vertices are z_1 , z_2 , z_3 is equilateral if and only if $z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$.
- 10. Explain both geometrically and algebraically why |z+w| = |z| + |w| if arg $z = \arg w$. Does the result extend to arbitrary finite sums of complex numbers?
- 11. Show that any root z of $z^4 + z + 3 = 0$ satisfies |z| > 1 and that any root z of $4z^4 + z + 1 = 0$ satisfies $|z| \le 1$.
- 12. Suppose that w is an nth root of unity and $w \neq 1$. Show that

$$1 + w + w^2 + \dots + w^{n-1} = 0;$$

hence or otherwise, factorise $1 + z + z^2 + z^3 + z^4 + z^5$ over $\mathbb C$ and over $\mathbb R$.

- 13. (a) Factorise $z^8 15z^4 16$ over \mathbb{C} and over \mathbb{R} .
 - (b) Find the real factorisation of $z^4 + 4$.

Answer: (b) $(z^2 + 2z + 2)(z^2 - 2z + 2)$

14. (a) Show that for $0 < \theta < 2\pi$:

$$\operatorname{Re}\left(\frac{1 - e^{i(n+1)\theta}}{1 - e^{i\theta}}\right) = \frac{1}{2} + \frac{\sin(n + \frac{1}{2})\theta}{2\sin\frac{\theta}{2}}.$$

(b) Show that for $0 < \theta < 2\pi$:

$$\operatorname{Im}\left(\frac{1-e^{i(n+1)\theta}}{1-e^{i\theta}}\right) = \frac{1}{2}\cot\frac{\theta}{2} - \frac{\cos(n+\frac{1}{2})\theta}{2\sin\frac{\theta}{2}}.$$

(c) Find $1 + \cos \theta + \cos 2\theta + \cdots + \cos n\theta$ and $\sin \theta + \sin 2\theta + \cdots + \sin n\theta$.

Sets.

- 15. Are the following sets open, closed, bounded, compact, connected, simply connected, regions or domains?
 - (a) The set $S_1 = \{z \in \mathbb{C} : |z| < 1\}$
 - (b) The set $S_2 = \{z \in \mathbb{C} : |z| \le 1\}$
 - (c) The set $S_3 = \{z = x + iy \in \mathbb{C} : xy = 1\}$
 - (d) The set $S_4 = \{z = x + iy \in \mathbb{C} : xy > 1\}$
 - (e) The set $S_5 = \{z = x + iy \in \mathbb{C} : x \ge 0, y > 0\}$
 - (f) The set $S_6 = \{z \in \mathbb{C} : |z+i| + |z-i| < 4\}$
 - (g) The set $S_7 = \{z \in \mathbb{C} : |z+i| + |z-i| = 4\}$
 - (h) The set $S_8 = \mathbb{C}$
 - (i) The set $S_9 = \emptyset$ (the empty set).
- 16. If a set S consists of a single point $\{p\}$, then is p an interior point, an exterior point, or a boundary? Is S open, closed, connected, compact, or a region?
- [†] 17. If an open set Ω is simply connected, is its complement connected? If the complement of a bounded open set Ω is connected, is the set simply connected? What if Ω is not bounded?

Answer: Not necessarily. Yes. Perhaps.

Functions.

- 18. Show that the composition of two polynomials is a polynomial, and the composition of two rational functions is a rational function.
- * 19. Suppose that f is a nonconstant rational function. What can you say about the range of f? Hint: Write f as p/q and try to solve $p(z)/q(z) = \lambda$; this is possible if and only if λ is in the range of f.
 - 20. The point 1+i is rotated anticlockwise about the origin through $\pi/6$. Find its image.

Answer: $\frac{1}{2}(\sqrt{3} - 1 + i(\sqrt{3} + 1))$

21. Find the image of (a) the line y = 2x + 5 and (b) the circle |z - 1| = 1 under the transformation w = (1 + i)z - 2.

Answer: (a) v = -3u - 16, (b) $|w + 1 - i| = \sqrt{2}$.

22. Find the image of the region $\{z \in \mathbb{C} : 0 < \text{Re}(z) < \pi/2, \text{Im}(z) > 0\}$ under the transformation w = iz + 2. Express your answer using set notation. Answer: $\{(w \in \mathbb{C} : \text{Re } w < 2, 0 < \text{Im } w < \pi/2\}$. 23. Find the image of the following regions under the mapping $w=z^{-1}$:

(a)
$$x + y = 4$$
,

(b)
$$|z-1|=1$$
,

(b)
$$|z-1| = 1$$
, (c) $|z-1| \le 1$, $z \ne 0$.

- 24. Find the image of
 - (a) the region $|z-1| \le 1$ under the mapping $w = \frac{z}{z+2}$,
 - (b) the line x + 2y = 2 under the mapping $w = \frac{1}{z + i}$.
- 25. Let f(z) = 1/(z-i). Find the image of $\{z \in \mathbb{C} : |z| < 1\}$ under f. Answer: The set $\{w \in \mathbb{C} : \operatorname{Im} w > 1/2\}.$

Fractional linear transformations.

- * 26. Suppose that $a, b, c, d \in \mathbb{C}$ and ad bc = 1. Let T be the fractional linear transformation $z \mapsto \frac{az+b}{cz+d}$
 - Show that if $a, b, c, d \in \mathbb{R}$, then T maps the upper half plane onto the upper half plane. Is the converse true?
 - Find conditions on a, b, c, d that ensure that T maps the unit disc $\{z \in A\}$ $\mathbb{C}:|z|<1$ onto itself.
 - (c) Show that if a = i, b = -i, c = 1 and d = i, then the corresponding fractional linear transformation maps the upper half plane onto the unit disc. Where does the first quadrant map to?
 - Use your answer to (c) to connect your answers to (a) and (b).

Estimating the size of functions.

27. Show that if |z| = R > 1, then

$$\left| \frac{z}{z^3 + 1} \right| \le \frac{R}{R^3 - 1} \,.$$

Show also that if |z| = r < 1, then

$$\left|\frac{z}{z^3+1}\right| \le \frac{r}{1-r^3} \,.$$

28. Show that if |z| = R > 1, then

$$\left|\frac{1}{z^4+1}\right| \le \frac{1}{R^4-1} \,.$$

Show also that if |z| = r < 1, then

$$\left|\frac{1}{z^4+1}\right| \le \frac{1}{1-r^4} \,.$$

29. Show that if z is real, then

$$\left|\frac{e^{iz}}{z^2+1}\right| \le \frac{1}{|z|^2+1} \,.$$

Is this still true when z is not real? Give two reasons for your answer.

30. Show that if |z| = R > 2 and Im(z) > 0, then

$$\left|\frac{e^{iz}}{z}\right| \le \frac{1}{R}.$$

Real and imaginary parts of functions.

- 31. Suppose that $f(z) = z^3 z + 1$. Write f(x) in the form u(x, y) + iv(x, y), where z = x + iy. Answer: $u(x, y) = x^3 - 3xy \cdot 2 - x + 1$ and $v(x, y) = 3x^2y - y \cdot 3 - y$.
- 32. Suppose that $f(z) = ze^{-z}$. Write f(x) in the form u(x,y) + iv(x,y), where z = x + iy, and in the form $u(r, \theta) + iv(r, \theta)$, where $z = re^{i\theta}$.
- 33. Suppose that $u(x,y) = x^2 + y^2$ and v(x,y) = x y. Can you write $u(x,y) + y^2$ iv(x,y) as a simple function of z? Or of z and \bar{z} ?

Graphical representation of complex functions.

- * 34. Suppose that $f(z) = az^2 + bz + c$, where $a, b, c \in \mathbb{C}$ and $a \neq 0$.
 - (a) Show that the image of a straight line ℓ in $\mathbb C$ under f either lies in a straight line or is a parabola.
 - (b) Show that the image of a straight line ℓ in $\mathbb C$ under f lies in a straight line if and only if ℓ passes through -b/2a.
 - 35. Suppose that $f(z) = e^z$. Show that the image of a straight line ℓ in $\mathbb C$ under f is a straight line if and only if ℓ is horizontal.

Limits and continuity.

36. Find the following limits, if they exist, or explain why they do not exist.

(a)
$$\lim_{z \to 0} \frac{e^z - 1}{z}$$
 (b) $\lim_{z \to 1+i} \frac{z^2 - z + 1 - i}{z^2 - 2z + 2}$

(d)
$$\lim_{z \to 0} e^{1/z}$$

(c)
$$\lim_{z \to 0} e^{1/z}$$
 (d) $\lim_{z \to 0} e^{1/z^4}$
†(e) $\lim_{(x,y) \to (0,0)} \frac{xy}{x^2 + y^2}$ †(f) $\lim_{(x,y) \to (0,0)} \frac{xy^2}{x^2 + y^4}$.

Answer: (a) 1; (b) 1 - i/2;

- (c) the limit does not exist, because we get different limits as we approach (0,0) along the x axis from the left and from the right;
- (d) the limit does not exist, because we get different limits as we approach
- (0,0) along different rays (x,y)=(at,bt) as $t\to 0$;
- (e) as for (d);
- (f) the limit does not exist, because we get different limits as we approach
- (0,0) along different curves $(x,y)=(at^2,bt)$ as $t\to 0$;
- 37. Use the definition of a limit in each of the following.
 - (a) Show that $\lim_{z\to\infty} f(z) = \lim_{z\to 0} f(1/z)$.
 - (b) Suppose that $\lim_{z\to z_0} g(z)$ exists and is finite. Show that $\lim_{z\to z_0} f(z)$ exists if and only if $\lim_{z\to z_0} f(z) + g(z)$ exists.
 - (c) Show that $\lim_{z\to z_0} f(az+b) = \lim_{w\to az_0+b} f(w)$.
- 38. Prove from the definition that |z| and Re(z) are continuous.
- 39. For each of the following functions, state where the function is continuous, and justify your answer:

(a)
$$f_1(z) = \frac{z^2 + i}{z^2 + 1}$$
; (b) $f_2(z) = \frac{z^k}{\overline{z}}$; (c) $f_3(z) = (z - i) \operatorname{Log}(z^2 + 1)$.

(in (b), k is a positive integer.) Is it possible to extend their definition to a larger domain, maintaining continuity.

Answer: (a) $z \neq \pm i$; (b) $z \neq 0$; if $k \geq 2$, then f_2 can be extended continuously by setting $f_2(0) = 0$; (c) $z \neq iy$, where $y \leq -1$ or $y \geq 1$; f_3 can be extended continuously by setting $f_3(i) = 0$.

Differentiation.

- 40. Show from the definition, and then using the Cauchy Riemann equations, that $f_1(z) = \text{Im}(z)$ and $f_2(x+iy) = 3x + 4iy$ are nowhere differentiable.
- 41. Where are the following functions differentiable? Where are they analytic?
 - (a) $f_1(z) = z|z|^2$;
 - (b) $f_2(x+iy) = x^2 + iy^2$;
 - (c) $f_3(x+iy) = (xy^2+5) + i(y-x^2y-3);$
 - (d) $f_4(x+iy) = (3xy^2 + 6x^2 4x + 3) + i(3y^2 3x^2y + 2y + 15);$
 - (e) $f_5(z) = e^z(z \bar{z})^2$;
 - (f) $f_6(x+iy) = |x| + i|y|$.

Answer: (a) f_1 is differentiable at 0;

- (b) f_2 is differentiable on the line x = y;
- (c) f_3 is differentiable on the circle $x^2 + y^2 = 1$;
- (d) f_4 is differentiable on the circle $(x+2)^2 + (y-1)^2 = 1$;
- (e) f_5 is differentiable on the x axis, that is, y = 0;
- (f) f_6 is differentiable when xy > 0;

 f_1 to f_5 are differentiable on sets that are not open, so are not analytic, while f_6 is analytic when xy > 0.

* 42. Suppose that

$$f(z) = \begin{cases} e^{-z^{-4}} & \text{when } z \neq 0\\ 0 & \text{when } z = 0. \end{cases}$$

Show that the Cauchy–Riemann equations hold in \mathbb{C} . Is f entire?

Hint: You do not need to compute the partial derivatives, except at 0.

Answer: f is analytic in $\mathbb{C} \setminus \{0\}$, as there it is made up of differentiable functions, and so the Cauchy–Riemann equations hold in $\mathbb{C} \setminus \{0\}$. At 0,

$$\partial u/\partial x = \partial u/\partial y = \partial v/\partial x = \partial v/\partial y = 0;$$

hence the Cauchy–Riemann equations also hold at 0. However, f is not continuous at 0, and hence not differentiable at 0.

- 43. Show that real-valued entire functions are constant.
- 44. Show that if f and $g = \bar{f}$ are both differentiable in a domain, then f is constant on that domain.
- 45. Suppose that f is analytic in Ω , and f' is continuous; let $g(z) = \overline{f(\overline{z})}$. Is g analytic? Where?

Answer: f satisfies the Cauchy–Riemann equations in Ω , and so g satisfies the Cauchy–Riemann equations in $\bar{\Omega}$. The partial derivatives are continuous, and $\bar{\Omega}$ is open, and so g is analytic in $\bar{\Omega}$

46. Suppose that $a \in \mathbb{R}$. Use the polar form of the Cauchy–Riemann equations to find where the function $f(z) = |z|^a e^{ia \operatorname{Arg}(z)}$ is differentiable.

Connections with multivariable calculus † .

- 47. Suppose that a linear transformation L of \mathbb{R}^2 preserves angles between lines passing through the origin. Show that L is the composition of a scalar multiplication and a rotation, and possibly a reflection.
- 48. A subset S of \mathbb{C} is said to be *arcwise connected* if, given any two points p and q of S, there exists a continuous curve $\gamma:[0,1]\to S$ such that $\gamma(0)=p$ and $\gamma(1)=q$. Show that if an open set is arcwise connected, then the continuous curve γ may be taken to be polygonal.
- 49. In the area of mathematics called General Topology, a set S is said to be connected if we cannot find two open sets Ω_1 and Ω_2 such that $\Omega_1 \cap \Omega_2 = \emptyset$, $\Omega_1 \neq \emptyset$, $\Omega_2 \neq \emptyset$ and $(\Omega_1 \cap S) \cup (\Omega_2 \cap S) = S$. Show that an open set Ω is connected in this sense if and only if it is arcwise connected. What can you say about regions?

Harmonic functions.

- 50. Show that the function $u(x,y) = x^4 6x^2y^2 + y^4$ is harmonic and find a harmonic conjugate v. Express f = u + iv as a function of z. Answer: $v(x,y) = 4x^3y - 4xy^3 + C$, where C is a constant; $f(z) = z^4 + iC$.
- 51. Find all real a, b, c such that $u(x, y) = x^3 + ax^2y + bxy^2 + cy^3$ is harmonic on \mathbb{R}^2 . For all such a, b, c determine v(x, y) such that f = u + iv is entire and write f as a function of z only.

 Answer: $a = -3c, b = -3, v(x, y) = cx^3 + 3x^2y 3cxy^2 y^3, f(z) = (1+ic)z^3$.

52. Suppose u, v are harmonic and satisfy the Cauchy-Riemann equations in \mathbb{R}^2 .

53. Using the result of the previous question to guess f, or otherwise, show that the following are harmonic and find analytic functions f of which they are the real parts:

Show that f = u + iv satisfies $f'(x) = u_x(x,0) - iu_y(x,0)$ for real x.

- (a) $x x^3 + 3xy^2$,
- (b) $\cos x \cosh y$,
- (c) $\frac{x}{x^2 + y^2}$, where $(x, y) \neq (0, 0)$,
- *(d) $\frac{x(x^2+y^2+1)}{(x^2+y^2)^2+2(x^2-y^2)+1}$, where $(x,y) \neq \pm (0,1)$,

(e) y

Answer: (a) $z - z^3$; (b) $\cos(z)$; (c) 1/z; (d) $\frac{z}{z^2 + 1}$; (e) iz.

- 54. Suppose that v is a harmonic conjugate of u. Show that -u is a harmonic conjugate of v.
- * 55. Suppose that u is a harmonic function in an open set Ω , and define the function g on Ω by $g(z) = u_x(x,y) iu_y(x,y)$, where z = x + iy. Show that g is holomorphic in Ω . If $f \in H(\Omega)$ and f' = g, what can you say about f and u?

Power series.

56. Find the centre and radius of convergence of the following power series; if possible, identify the sum:

(a)
$$\sum_{n=0}^{\infty} (z-2)^n$$
 (b) $\sum_{n=0}^{\infty} \frac{1}{3^n} (z-2)^n$

(c)
$$\sum_{n=0}^{\infty} \frac{1}{n!} (z-2)^n$$
 (d)
$$\sum_{n=0}^{\infty} \frac{1}{3^n \, n!} (z-2)^n$$

(e)
$$\sum_{n=0}^{\infty} n(z-2)^n$$
 (f) $\sum_{n=0}^{\infty} n^2(z-2)^n$

(g)
$$\sum_{n=1}^{\infty} \frac{1}{n} (z-2)^n$$
 (h)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} (z-2)^n.$$

Exponential and related functions.

- 57. (a) Show that $|\sin z|^2 = \sin^2 x + \sinh^2 y$ and $|\cos z|^2 |\sin z|^2 = \cos 2x$. (b) Show that $|\cos z|^2 + |\sin z|^2 \ge 1$. When does equality hold?
- 58. Find all $z \in \mathbb{C}$ such that
 (a) $e^z = -2$, (b) $\cos z = 2$, (c) $\cosh z = -5$, (d) $\exp(z^2) = 1$.
 Answer: (c) $\pm \ln(5 + 2\sqrt{6}) + (2k+1)\pi i$, where $k \in \mathbb{Z}$.
- 59. Find the image of $\{z \in \mathbb{C} : 0 < \text{Re}(z) < \pi/2, \text{ Im } z > 0\}$ under the mappings (a) $w = \cos z$, (b) $w = \cos^2 z$, (c) $w = \cos^{1/2} z$. (Use the principal branch of the square root.)
- 60. Find the image of the region $\{z \in \mathbb{C} : 0 \leq \text{Re}(z) \leq 1/2, -\pi \leq \text{Im}(z) \leq \pi\}$ under the mapping $w = e^z$.
- 61. Find the maximum value of $|e^{-z^2}|$ for $|z| \ge 5$ and $0 \le \arg z \le \pi/8$. Answer: $\exp(-25/\sqrt{2})$
- 62. Find all solutions $z \in \mathbb{C}$ of (a) $\cosh z = -1$ (b) $\sin z = 3$ (c) $\sinh z = 2i$.
- 63. Solve (a) $\sinh z \cosh z = 2i$, (b) $\cos z + \sin z = i$. Answer: (a) $-\ln(2) + (2k + \frac{1}{2})\pi i$.
- 64. Where is the function $f(z) = (z^2 + 4)^{-1} \operatorname{Log}(z + 2i)$ analytic? Answer: f is analytic on the complement of the set $\{2i\} \cup \{x - 2i : x \leq 0\}$.
- 65. Find all values of (a) i^i , and (b) $\sin^{-1} 10$. Which are the principal values? Answer: (b) $(2k + \frac{1}{2})\pi \pm i \log(10 + 3\sqrt{11}); \frac{1}{2}\pi i \log(10 + 3\sqrt{11}).$
- 66. Find the principal value of $\left[\left(\frac{1+\sqrt{3}i}{2}\right)^{-3}\right]^{1-i}$.
- 67. Evaluate $\lim_{z\to 0} (\cos z)^{1/z^2}$. (Use the principal branch of the power.) Answer: $e^{-1/2}$, by l'Hôpital's rule.
- 68. Write $z = re^{i\theta}$. Find $Re(z^i)$, $Im(z^i)$, $|z^i|$ in terms of r and θ . (Use the principal value of z^i .)

69. Define $f(z) = z \operatorname{Log}(z)$ when $z \neq 0$, and f(0) = 0. Is f continuous or differentiable at 0?

Answer: It is continuous but not differentiable.

- 70. Define functions f and g by f(z) = Log(iz) and $g(z) = z^{-1} \text{Log}(z+1)$.
 - (a) Where are f and g analytic?
 - (b) Find a branch of $\log(iz)$ which is analytic in the region $\{z : \operatorname{Im}(z) > 0\}$. Answer: (a) f is analytic except when z = iy, where $y \ge 0$; while g is analytic except when z = 0 or z = x, where $x \le -1$. (b) $i\pi/2 + \operatorname{Log}(z)$.
- * 71. In this question, all square roots are the principal branch.
 - (a) Where is $\sqrt{z+1}$ analytic?
 - (b) Show that $\sqrt{z+1}\sqrt{z-1} = -\sqrt{z^2-1}$ when $\operatorname{Re} z < -1$.
 - (c) Show that $\sqrt{z^2-1}$ is analytic when Re z<-1.
 - (d) Show that $\sqrt{z+1}\sqrt{z-1}$ is analytic on the complement of [-1,1].
- * 72. Where is $Log(z + z^{-1} 2)$ analytic?

Answer: On the complement of the set $\{z : |z| = 1\} \cup (-\infty, 0]$.

Contour integrals.

73. (a) Evaluate

$$\int_{\gamma} z \operatorname{Im}(z^2) \, dz,$$

where γ is the unit circle traversed once, anticlockwise.

(b) Evaluate

$$\int_{\gamma} e^{|z|^2} \operatorname{Re}(z) \, dz,$$

where γ is the line segment from 0 to 1+i.

Answer: (a) $-\pi$ (b) $(1+i)(e^2-1)/4$.

- 74. Evaluate $\int_{\gamma} \bar{z} dz$, where γ is
 - (a) the straight line from -1 + 2i to 3 + 5i
 - (b) the upper semicircle of unit radius from -1 to 1.

Answer: (a) $\frac{29}{2} - 11i$ (b) $-i\pi$.

- 75. (a) Find $\int_{\gamma} (e^z + z) dz$, where $\gamma(t) = 1 + i\pi t$ for $0 \le t \le 1$.
 - (b) Show that $\int_{\gamma} \operatorname{Log} z \, dz = -2i$, where $\gamma(t) = e^{i\pi t}$ for $-\frac{1}{2} \le t \le \frac{1}{2}$.
- 76. Show that $\int_{\gamma} \sec^2 z \, dz = 2i \tanh 1$, for every contour γ in the domain of sec that starts at -i and ends at i.
- 77. Let γ be any contour from 1-i to 1+i. Evaluate the following integrals:

(a)
$$\int_{\gamma} 4z^3 dz$$
; (b) $\int_{\gamma} \cos z dz$; (c) $\int_{\gamma} \sin 2z dz$.

78. Let γ be the semi-circle from 2i to -2i that passes through -2. Find

$$\int_{\gamma} z^{-1} dz$$

(a) from the definition; (b) by using a suitable branch of log as a primitive. Answer: πi .

Cauchy's integral formula.

79. Evaluate the following integrals using the Cauchy Integral Formula:

(a)
$$\int_{|z|=2} \frac{e^z dz}{z-1}$$
; (b) $\int_{|z|=4} \frac{e^{2iz} dz}{(3z-1)^2}$; (c) $\int_{|z|=2} \frac{(z^2+1) dz}{(z-3)(z^2-1)}$.

(All contours are traversed once anti-clockwise.)

Answer: (a) $2\pi e i$ (b) $-4\pi e^{2i/3}/9$ (c) $-\pi i/2$.

80. Find

$$\int_{\gamma} \frac{\sin \pi z}{(z-1)^n} \, dz,$$

where $n \in \mathbb{Z}$ and γ is a simple closed anticlockwise contour around 1. Answer: 0, unless $n = 2, 4, 6, 8, \ldots$; in this case, $(-1)^{n/2} \pi^{n-1} / (n-1)!$.

81. Let γ be the unit circle $\{e^{i\theta}: -\pi \leq \theta \leq \pi\}$. Use the Cauchy integral formula to find

$$\int_{\gamma} e^z \, z^n \, dz,$$

where $n \in \mathbb{Z}$. Hence evaluate the corresponding real integrals.

82. Define the semicircular arc γ_R by $\gamma_R(t) = Re^{it}$, where $0 \le t \le \pi$ and R > 1 is a real constant. Let γ be the join of γ_R and the line segment from -R to R. (a) Show that, if $z \in \text{Range}(\gamma_R)$, then

$$\left| \frac{e^{iz}}{z^2 + 1} \right| \le \frac{1}{R^2 - 1}.$$

(b) Deduce that

$$\left| \int_{\gamma_R} \frac{e^{iz} dz}{(z^2 + 1)} \right| \le \frac{\pi R}{R^2 - 1}.$$

(c) Evaluate

$$\int_{\gamma} \frac{e^{iz} \, dz}{(z^2 + 1)}.$$

(d) Hence find

$$\int_0^\infty \frac{\cos x \, dx}{(x^2 + 1)}.$$

83. Let f(z) be an entire function that satisfies the inequality $|f(z)| \le 1 + |z|$ for all $z \in \mathbb{C}$. Show that f(z) = az + b for fixed complex numbers a and b. Hint: Apply the generalized Cauchy integral formula on an arbitrarily large circle to show that $f^{(n)}(0) = 0$ when $n \ge 2$.

* 84. By integrating $f(z) = e^{-z^2}$ round the boundary of the rectangle with corners at a, a + ib, -a + ib and -a, where b > 0, show that

$$\int_{-\infty}^{\infty} e^{-x^2} \cos 2bx \, dx = e^{-b^2} \int_{-\infty}^{\infty} e^{-x^2} \, dx.$$

The right hand side is $e^{-b^2}\sqrt{\pi}$.

* 85. By integrating $f(z) = (1+z^2)^{-1}$ around the perimeter of the rectangle with corners at 0, a, a + ib and ib and letting $a \to \infty$, where 0 < b < 1, show that

$$\int_0^\infty \frac{1 - b^2 + x^2}{(1 - b^2 + x^2)^2 + 4b^2 x^2} \, dx = \frac{\pi}{2} \,,$$

and

$$\int_0^\infty \frac{x}{(1-b^2+x^2)^2+4b^2x^2} dx = \frac{1}{4b} \operatorname{Log} \frac{1+b}{1-b}.$$

* 86. Apply Cauchy's theorem to the function $f(z) = e^{-z^2}$ and the sector of the circle |z| = R bounded by a section of the real axis and the linear segment making an angle $\pi/4$ with the real axis. Show that the integral over the circular boundary tends to zero as $R \to \infty$ and prove that

$$\int_0^\infty \cos(x^2) \, dx = \int_0^\infty \sin(x^2) \, dx = \frac{1}{2} \sqrt{\frac{\pi}{2}}.$$

Note: These so-called *Fresnel Integrals* are used in diffraction problems.

Taylor series, Laurent series, and residues.

87. Expand each of the following functions in a Taylor series about the given point

$$z_0$$
 and determine the radius of convergence: (a) $f(z) = e^{-z}$, $z_0 = 1$; (b) $f(z) = (z+2)e^{3z}$, $z_0 = 0$; (c) $f(z) = \frac{1}{z^2 - 5z + 4}$, $z_0 = 2$.

88. Show that
$$\frac{1}{1+z+z^2} = \sum_{n=0}^{\infty} (z^{3n} - z^{3n+1})$$
 in the disc $|z| < 1$.

- 89. Without finding the series, state the radius of convergence of the Taylor series for the function f given by $f(z) = \frac{\cos z}{z(z+1)}$ about the point z=1+i.
- 90. Find the Taylor series for $f(z) = (1+z)^{1/2}$ in powers of z in the disc |z| < 1. Use the branch of the square root that is equal to +1 when z=0.

Answer: $\sum_{n=0}^{\infty} c_n z^n$, where $c_0 = 1$, $c_1 = \frac{1}{2}$ and $c_n = \frac{(-1)^{n+1}}{2^n} (2n-3)!!$ when n > 1. Here, for instance, $9!! = 9 \times 7 \times 5 \times 3 \times 1$.

* 91. Show that $\tan^{-1} w = \frac{1}{2i} \log \frac{1+iw}{1-iw}$ (as multi-valued functions). Define

$$pv \tan^{-1} w = \frac{1}{2i} \operatorname{Log} \frac{1+iw}{1-iw}.$$

Find all points w where pv $\tan^{-1} w$ is differentiable, and show that, when |w| < 1,

$$\operatorname{pv} \tan^{-1} w = w - \frac{w^3}{3} + \frac{w^5}{5} - \cdots$$

Answer: The function pv \tan^{-1} is differentiable in $\mathbb{C} \setminus \{it : t \in \mathbb{R}, |t| \geq 1\}$.

* 92. Define the function f by $f(z) = \frac{z}{2} + \frac{z}{(e^z - 1)}$ for $z \neq 0$ and f(0) = 1. Show that f has a Maclaurin series of the form $a_0 + a_2 z^2 + a_4 z^4 + \dots$, and find a_0 , a_2 and a_4 .

Note: The numbers B_{2n} such that $a_{2n} = (-1)^{n+1}B_{2n}/n!$ are known as the Bernoulli numbers.

93. Find two distinct Laurent expansions for $\frac{1}{z^2(1-z)}$ in powers of z and state the region of convergence of each expansion.

Answer: $\sum_{n=-2}^{\infty} z^n$ when 0 < |z| < 1, and $\sum_{n=-\infty}^{-3} (-1)z^n$ when |z| > 1.

94. Define $f(z) = \frac{2z-4}{z^2-4z+3}$. Find the Laurent series for f(z) that converges when |z-1| > 2.

Answer: $\sum_{n=-\infty}^{-1} c_n (z-1)^n$, where $c_{-1} = 2$ and $c_n = 2^{-n-1}$ when $n \le -2$.

- 95. Define $f(z) = (z-2i)^{-1} (z+i)^{-1}$. Find the Laurent series for f with centre 1 that converges at 3.
- 96. Define $f(z) = \csc z$. Find the Laurent series for f up to terms in z^3 about z = 0 that is valid at $\frac{1}{2}$, and state the region of convergence. Answer: $z^{-1} + \frac{1}{6}z + \frac{7}{360}z^3 + \dots$
- 97. Define the function f by $f(z) = \frac{3}{(z-2)(z+1)}$. Find all Laurent expansions of f in powers of z-1 and state the region of convergence of each expansion.
- 98. Find the Laurent expansion of $\frac{1}{(z-1)(z-2)^2}$ that holds when 0 < |z-1| < 1.
- 99. Show that the function $f(z) = \csc(1/z)$ does not have a Laurent series about 0 that converges to f in $B^{\circ}(0,r)$ for any r > 0.
- 100. Suppose that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$, and the series converge when |z| < 2. By integrating $f(z) g(z^{-1}) z^{-1}$ around the unit circle, show that

$$\sum_{n=0}^{\infty} a_n b_n = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) g(e^{-i\theta}) d\theta.$$

Deduce that

$$\sum_{n=0}^{\infty} a_n \bar{b}_n = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \, \bar{g}(e^{i\theta}) \, d\theta.$$

What if the series are Laurent series that converge when $\frac{1}{2} < |z| < 2$?

101. Find the residues of each of the following functions at each of their singularities:

(a)
$$\frac{e^z}{z^2+1}$$
; (b) $\frac{\sinh z}{(z-i)^3}$; (c) $\frac{z^2-3z+1}{(z^2-1)(z-1)}$; (d) $\frac{e^z}{\cosh z}$; (e) $\tan z$.

Answer: (a) z = i, $-ie^{i}/2$; z = -i, $ie^{-i}/2$; (b) z = i, $(i \sin 1)/2$. (c) z = -1, $\frac{5}{4}$; z = 1, $-\frac{1}{4}$; (d) $z = \frac{i\pi}{2} + k\pi i$, 1; (e) $z = \frac{\pi}{2} + k\pi$, -1. 102. Locate and classify the singularities of the following functions:

(a)
$$\frac{1}{z^2 \sin z}$$
; (b) $\frac{z(z-\pi)^2}{\sin^2 z}$; (c) $\exp(z+\frac{1}{z})$.

Evaluate the residues at each singularity of these functions (leave your answer to (iii) as a series).

Answer: (a) z=0: pole of order 3, residue 1/6 and $z=k\pi,\ k\neq 0$: simple poles, residue $(-1)^k(k\pi)^{-2}$ (b) z=0, simple pole, residue $\pi^2,\ z=\pi,$ removable singularity, residue 0, and $z=k\pi,\ k\neq 0$ or 1, double poles, residue $(3k^2-4k+1)\pi^2$. (c) z=0: essential singularity, residue $\sum_{k=0}^{\infty}1/(k!\,(k+1)!)$.

- 103. Find $\int_{\Gamma} \frac{\cos z}{z^2(z^2+1)} dz$ (a) when Γ is the circle |z|=2 and (b) when I is the circle $|z-\frac{1}{2}i|=1$, both described once anticlockwise.
- 104. Find $\int_{\Gamma} \frac{z^3 + 5}{z(z-1)^3} dz$ when Γ is the circle |z| = 2 described once anticlockwise. Answer: $2\pi i$

105. Show that
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)} = \frac{\pi}{ab(a+b)}$$
 when $a, b > 0$.

106. Use complex analysis methods to show that

(a)
$$\int_0^{2\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} d\theta = \frac{\pi}{6}$$
; (b) $\int_0^{2\pi} \frac{\sin^2 \theta}{5 + 3\cos \theta} d\theta = \frac{2\pi}{9}$.

107. Find
$$I_1 = \int_0^{2\pi} \frac{\cos 6\theta \, d\theta}{5 + 4\sin \theta}$$
 and $I_2 = \int_0^{2\pi} \frac{\sin 6\theta \, d\theta}{5 + 4\sin \theta}$, by first computing $I_1 + iI_2$.

108. Evaluate
$$\int_{|z|=1} \frac{z^2 dz}{2z+1}$$
 and hence prove that $\int_0^{\pi} \frac{(2\cos 2\theta + \cos 3\theta) d\theta}{5+4\cos \theta} = \frac{\pi}{8}$.

* 109. Suppose that p and q are positive integers and p > q + 1. By integrating round the boundary of the domain $\{z \in \mathbb{C} : |z| < R, \ 0 < \arg(z) < \frac{2\pi}{p}\}$, show that

$$\int_0^\infty \frac{x^q}{x^p + 1} dx = \frac{\pi}{p} \operatorname{cosec} \frac{\pi(q+1)}{p}.$$

* 110. By evaluating suitable contour integrals, and taking suitable limits, show that:

(a)
$$\int_{-\infty}^{\infty} \frac{\ln(x^2 + 1)}{x^2 + 1} dx = \pi \ln 4;$$
 (b)
$$\int_{-\infty}^{\infty} \frac{\sin x}{x(x^2 + 1)} dx = \pi (1 - e^{-1});$$
 (c)
$$\int_{0}^{\infty} \frac{x^{3/4}}{x^2 + x + 1} dx = \pi \frac{2}{\sqrt{3}}.$$

Theory of functions*.

111. Let f be an entire function, and take $a, b \in \mathbb{C}$. For $R > \max\{|a|, |b|\}$, estimate

$$\int_{|z|=R} \frac{f(z) dz}{(z-a)(z-b)}.$$

Assuming also that f is bounded, let $R \to \infty$ and show that f is constant.

112. Suppose that f is an entire function, and that there is a (nonempty) open ball $B(w_0, r)$ such that $w \notin \text{Range}(f)$ for all $w \in B(w_0, r)$. Show that f is constant.

Hint: Consider the function $1/(f(z) - w_0)$.

- 113. Suppose that f is a holomorphic function on $\mathbb{C} \setminus \{z_1, \ldots, z_M\}$, that f has a pole of order N_m at z_m , where $1 \leq m \leq M$, and that $\lim_{z \to \infty} f(z) = 0$.
 - (a) Explain why f has a Laurent series of the form

$$f(z) = \sum_{n=-N}^{\infty} c_{m,n} (z - z_m)^n$$

in a punctured ball $B^{\circ}(z_m, r_m)$ for some sufficiently small positive r_m . What is the largest possible value for r_m ?

- (b) Define $f_m(z) = \sum_{n=-N_m}^{-1} c_{m,n} (z-z_m)^n$. Explain why $f-f_m$ is holomorphic in $B^{\circ}(z_m, r_m)$.
- (c) Explain why $f (f_1 + \cdots + f_M)$ is entire and vanishes at infinity.
- (d) Explain why $f = f_1 + \cdots + f_M$.
- (e) Find a formula for the coefficient $c_{m,n}$ similar to the formula for the residue of a function at a pole of order N.
- (f) Can you find a holomorphic function F on $\mathbb{C} \setminus \{z_1, \ldots, z_M\}$ such that F' = f? What if the domain of F is allowed to be smaller?
- 114. Suppose that f is holomorphic in an annulus $A(R) = \{z \in \mathbb{C} : |z| > R\}$, and define g(z) = f(1/z).
 - (a) Show that g has an isolated singularity at 0.
 - (b) Show that the singularity of g at 0 is a pole if and only if given R' > R, there are constants C and N such that $|f(z)| \le C |z|^N$ for all $z \in A(R')$.
 - (c) Show that if $|f(z)| \leq C |z|^N$ for all $z \in A(R)$, then there is a polynomial p such that f p is bounded in A(R).

Counting roots of equations.

- 115. How many roots of $z^4 8z + 10 = 0$ lie in the annulus 1 < |z| < 3? How many of these lie in the first quadrant? Answer: Four; one.
- 116. How many roots of $z^9 2z^6 + z^2 8z 2 = 0$ lie inside the unit circle? Answer: One.
- 117. Let $n \in \mathbb{Z}^+$. Show that $e^z 4z^n + 1 = 0$ has n roots inside the unit circle.
- 118. How many roots has $2z^4 3z^3 + 3z^2 z + 1 = 0$ in each quadrant? Answer: One in each.
- 119. How many roots of $z^5 + z^4 + 2z^3 8z 1 = 0$ also satisfy Re z > 0. Answer: One.
- 120. Find the number of solutions of $z^7 2z 5 = 0$ that satisfy Re z < 0. Answer: Four.

More on integrals.

* 121. For a complex number z such that Re(z) > 1, consider the improper integral

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt.$$

- (a) Show that the improper integral converges.
- (b) Assuming that it is legitimate to exchange the order of differentiation and integration, show that Γ is holomorphic in $\{z \in \mathbb{C} : \text{Re}(z) > 1\}$.

(c) Show that, if Re(z) > 1, then

$$\Gamma(z+1) = z \Gamma(z).$$

(d) Use induction and the formula

$$\Gamma(z-1) = \frac{\Gamma(z)}{z-1}$$

to define $\Gamma(z)$ in $\{z \in \mathbb{C} : \operatorname{Re}(z) > -N\}$, where N is a nonnegative integer. Where are the singularities of Γ ? What kind of singularities are they?

122. Find the integral $\int_0^\infty \frac{x^q}{x^p+1} dx$, where $p, q \in \mathbb{R}^+$ and p > q+1, without using complex methods.

Fourier and Laplace transforms.

123. Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1 - |x|/2 & \text{if } |x| \le 2\\ 0 & \text{otherwise.} \end{cases}$$

Calculate the Fourier transform of f, and show that $f, \hat{f} \in \mathcal{M}(\mathbb{R})$. Hence, using the inversion formula, show that

$$\int_{-\infty}^{\infty} \frac{\sin^2(\xi)}{\xi^2} \, d\xi = 2\pi.$$

124. Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1 & \text{if } |x| \le 1\\ 0 & \text{otherwise.} \end{cases}$$

Calculate the Fourier transform of f. Assuming that the inversion formula holds for f and \widehat{f} , compute

$$\int_{-\infty}^{\infty} \frac{\sin(\xi)}{\xi} \, d\xi.$$

125. Compute the Laplace transforms of each of the following functions, stating the domain of the transform:

(a)
$$f(t) = e^{-at}$$
 (b) $f(t) = \cos(\omega t)$ (c) $f(t) = t(t^2 - 1)$,

where $a \in \mathbb{C}$ and $\omega \in \mathbb{R}$.

126. Find the functions whose Laplace transforms are given by

(a)
$$\frac{1}{z(z+1)}$$
 (b) $\frac{z+1}{z^2(z-1)}$ (c) $\frac{1}{z^4+1}$ (d) $\frac{1}{(z^2+1)^2}$.

127. Use the Laplace transform to solve the differential equation

$$\frac{d^2u}{dt^2} + 4\frac{du}{dt} + 3u = e^{-2t},$$

where $u:[0,\infty)\to\mathbb{R}$ satisfies the initial conditions u(0)=0 and $\frac{du}{dt}(0)=0$.

128. Use the Laplace transform to find the solutions $u, v : [0, \infty) \to \mathbb{R}$ to the integral equations

$$u(t) = e^{-t} + \int_0^t (t - s) e^{s - t} u(s) ds.$$

and

$$v(t) = e^{-t} + \int_0^t (t-s)^2 v(s) ds.$$

Conformal mappings.

* 129. Suppose that $u \in \mathbb{R} \setminus \{0\}$ and $v \in \mathbb{R}$. Show that as y varies between 0 and $\pi/2$, the expression

$$\frac{u^2}{\cos^2 y} - \frac{v^2}{\sin^2 y} - 1$$

is increasing and changes sign, hence by the Intermediate Value Theorem there exists y for which it is 0. Now consider the mapping $w = \cosh(z)$. Show that the region $\{z \in \mathbb{C} : \operatorname{Re}(z) > 0, \ 0 < \operatorname{Im}(z) < \pi\}$ is mapped bijectively and conformally onto $\mathbb{C} \setminus ((-\infty, -1] \cup [1, \infty))$. Find a formula for the inverse function.

* 130. Show that a bijective conformal mapping defined on the whole complex plane \mathbb{C} is affine, and that a bijective conformal mapping defined on $\mathbb{C} \setminus \{p\}$, where $p \in \mathbb{C}$, is a fractional linear transformation.