Modelos Espacio-Temporales con Efectos de Transporte

Alfredo Alegría

Laboratorio de Modelación I, UTFSM Septiembre, 2022

Contaminación en el Asia Ecuatorial

Fig. 1. Profundidad Óptica del Aerosol promedio para septiembre de 2015.

Alfredo Alegría

Modelo matemático

Los campos aleatorios permiten modelar fenómenos caracterizados por su variabilidad e incertidumbre espacio-temporal. Formalmente, un campo aleatorio es una colección de variables aleatorias de la forma

$$\{Z(\mathbf{x},t): \mathbf{x} \in \mathcal{D}, t \in \mathcal{T}\},\$$

donde $\mathbf x$ y t denotan las coordenadas espaciales y temporales, respectivamente. Cuando $\mathrm{var}\left[Z(\mathbf x,t)\right]<\infty$, las funciones de media y covarianza están bien definidas:

- $\mu(\mathbf{x}, t) = E[Z(\mathbf{x}, t)].$
- $K(\mathbf{x}_1, t_1, \mathbf{x}_2, t_2) = \text{cov}[Z(\mathbf{x}_1, t_1), Z(\mathbf{x}_2, t_2)].$

Campo aleatorio con efecto de transporte

Considere $\mathcal{D} = \mathbb{S}^2$ y $\mathcal{T} = \mathbb{R}$. El campo aleatorio se dice que tiene efecto de transporte si se escribe en el siguiente formato:

$$Z(\mathbf{x},t) = Z_{\mathrm{s}}(\mathbf{R}^t \mathbf{x}),$$

donde $\{Z_s(\mathbf{x}): \mathbf{x} \in \mathbb{S}^2\}$ es un campo aleatorio puramente espacial y \mathbf{R} es una matriz de rotación aleatoria de orden 3×3 .

- 1. Sería interesante usar una versión más general de este modelo donde la matriz ${f R}$ puede variar en el espacio.
- 2. ¿Cómo queda la función de covarianza de Z en términos de la función de covarianza de $Z_{\rm s}$?

Ilustración

Fig. 2. Realización de un campo aleatorio con efecto de transporte.

Alfredo Alegría

Esquema del trabajo

El objetivo es analizar los datos de contaminación, en una escala global, para lo cual se requieren los siguientes pasos:

- Análisis exploratorio de los datos (gráficos adecuados; indicadores de posición, variabilidad y forma).
- 2. Plantear un modelo adecuado y posteriormente la estimación de los parámetros involucrados en la media y en la covarianza a través de algún método apropiado (e.g., máxima verosimilitud).
- 3. Predicciones es en el espacio y/o tiempo.

Bibliografía recomendada para profundizar en el tema:

- Ailliot, P., Baxevani, A., Cuzol, A., Monbet, V., & Raillard, N. (2011).
 Space-time models for moving fields with an application to significant wave height fields. Environmetrics, 22(3), 354-369.
- Crippa, P., Castruccio, S., Archer-Nicholls, S., Lebron, G. B., Kuwata, M., Thota, A., Sumin, S., Butt, E., Wiedinmyer, C. & Spracklen, D. V. (2016). Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Scientific Reports, 6, 37074.
- Alegría, A., & Porcu, E. (2017). The dimple problem related to space-time modeling under the Lagrangian framework. Journal of Multivariate Analysis, 162, 110-121.
- Salvaña, M. L. O., Lenzi, A., & Genton, M. G. (2022+). Spatiotemporal cross-covariance functions under the Lagrangian framework with multiple advections. Journal of the American Statistical Association (in press).

Alfredo Alegría

Gracias. ¿Preguntas?

