TD RD5 - AFC

Exercice 1

Dans la DVS de $(X=D_I^{-1}F,Q=D_J^{-1},D=D_I)$ des profils lignes, nous avons trouvé :

- la matrice d'inertie $X^T D X Q = F^T D_I^{-1} F D_I^{-1}$,
- les vecteurs propres V_L vérifiant $X^TDXQV_L = F^TD_I^{-1}FD_J^{-1}V_L = V_L\Sigma^2$, avec $V_L^TD_J^{-1}V_L = I_r$
- et $F_L = XQV_L = D_I^{-1}FD_J^{-1}V_L$.
- 1. Retrouver par symétrie pour le triplet $(X=D_J^{-1}F^T,Q=D_I^{-1},D=D_J)$ des profils colonnes les résultats V^C et F^C : $\Gamma=$ le Λ b be values profile.
 - la matrice d'inertie $X^TDXQ = (D_5^{-1}F)^TD_5$. $D_5^{-1}FD_5^{-1} = F^TD_5^{-1}D_5^{-1}FD_5^{-1}$ les vecteurs propres V^C vérifiant $X^TDXQV^C = (D_5^{-1}F)^TD_5$ $(D_5^{-1}F)^TD_5^{-1}V^C$ avec $V^C = I_F$

 - et $F^C = XQV^C = \mathcal{D}_{\overline{\zeta}}$ 'F $\mathcal{D}_{\overline{\zeta}}$ 'V'
- 2. On pose $X = D_I^{-1/2} F D_J^{-1/2}$.
 - (a) Montrer que $X = \left(\frac{n_{ij}}{\sqrt{n_i n_{ij}}}\right)$

$$X = D^{2} + D^{2} + D^{2} = \left(\frac{1}{1 + 1} \right)^{\frac{1}{2}} = \frac{1}{1 + 1} = \frac{1}{1 + 1}$$

(b) Réaliser la DVS simple de X. On note V, U et Σ les matrices de cette DVS.

$$\begin{array}{c} X^{\mathsf{T}}X = D_{\mathsf{J}}^{-1/2} \mathsf{F}^{\mathsf{T}}D_{\mathsf{I}}^{-1/2} \;,\; D_{\mathsf{I}}^{-1/2} \mathsf{F}D_{\mathsf{J}}^{-1/2} = D_{\mathsf{J}}^{-1/2} \mathsf{F}^{\mathsf{T}}D_{\mathsf{I}}^{-1/2} \mathsf{F}D_{\mathsf{J}}^{-1/2} \\ \\ X^{\mathsf{T}}X \; \mathsf{V} = \mathsf{V} \; \mathsf{\Sigma}^{\; 2} \quad -o \quad \mathsf{Axes} \quad \mathsf{ful} \mathsf{oriels} \quad \mathsf{ET} \quad \mathsf{V}^{\mathsf{T}}\mathsf{V} = \mathsf{I}_{\mathsf{L}} \; \; (\mathsf{an} \; \mathsf{norm\'e} \;) \;. \\ \\ \mathsf{\Sigma}^{\; 2} = \mathsf{diag} \left(\mathsf{d}_{\mathsf{i}} \right) \end{array}$$

(c) Montrer que l'on retrouve les mêmes valeurs propres que dans les DVS des profils lignes et colonnes.

$$D_{5}^{-1/2} \vdash D_{5}^{-1} \vdash D_{5}^{-1/2} \lor = \lor Z'^{2} = > \vdash D_{5}^{-1} \vdash D_{5}^{-1} \lor = D_{5}^{-1/2} \lor Z'^{2}$$

(d) Montrer que $V_L = D_I^{1/2} V$.

Hontrer que
$$V_L = D_J^{-1}V$$
.

Est-ce que leurs normes sont égaux (car ils sont déja adinéaires)

$$V_{L}^{T} D_{S}^{A} V_{L} = I_{r}$$
 et $V^{T}V = I_{r}$

$$\left(\mathcal{D}_{5}^{4/2} V \right)^{T} \mathcal{D}_{5}^{-1} \left(\mathcal{D}_{5}^{4/2} V \right) = V^{T} \left(\mathcal{D}_{5}^{1/2} \mathcal{D}_{5}^{-1} \mathcal{D}_{5}^{5} \right) V = V^{T} V = I_{r}$$

(e) En déduire que $F_L = LD_J^{-1/2}V$.

$$F_{L} = D_{\overline{z}}' F D_{\overline{z}}' V_{L} = D_{\overline{z}}' F D_{\overline{z}}' D_{\overline{z}}' V_{Z} V = L D_{\overline{z}}^{-1/2} V$$

(f) En déduire que $F^C = D_J^{-1/2}V$. Σ | Symétrie des colonnes = profil Gigne de $X^TU=U\Sigma^2$

$$XX^{T}U = U\Sigma^{L} \longrightarrow X^{T}X X^{T}U = X^{T}U \Sigma^{L}$$

$$F_{c} = \times G R_{c} = D^{2}, L_{D^{-1}} R_{c} = D^{2}, L_{D^{-1}} R_{c} = D^{2}, L_{D^{-1}} R_{D^{-1}} R_{D^{-$$

$$= D_{2_{1/3}}^{2} \overline{D_{-1_{3}}^{2}} \underbrace{+_{1} D_{-1_{3}}^{2} \underbrace{+_{1}$$

Exercice 2

On considère le tableau de contingence

$$N = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \stackrel{A}{\overset{C}{\longrightarrow}} \stackrel{A}{\overset{C}{\longrightarrow}} \stackrel{A}{\longrightarrow} \stackrel{A}{\longrightarrow} \stackrel{C}{\longrightarrow} \stackrel{$$

On appellera A, B, C, D les modalités ligne et X, Y, Z celles colonne.

- 1. Calcul des fréquences et profils

(a) Calculer le tableau des fréquences relatives,
$$F$$
, et les fréquences marginales F_I et F_J .

$$F = \begin{pmatrix} 1/6 & 0 & 0 \\ 1/6 & 0 & 1/6 \\ 0 & 0 & 1/6 \end{pmatrix}, \quad F_I = \begin{pmatrix} 1/6 \\ 2/6 \\ 1/6 \end{pmatrix}, \quad F_J = \begin{pmatrix} 3/6 \\ 1/6 \\ 2/6 \\ 1/6 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/6 \\ 1/3 \end{pmatrix}$$

(b) les profils ligne L et colonne C.

$$\frac{\text{ligne}}{\text{5 ligne}} = \frac{\begin{pmatrix} 1 & 0 & 0 \\ 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 1 \end{pmatrix}}{L = \begin{pmatrix} 1/3 & 0 & 0 \\ 1/2 & 1/2 & 0 \\ 1/3 & 0 & 1/2 \\ 0 & 0 & 1/2 \end{pmatrix}}, \quad C^T = \begin{pmatrix} 1/3 & 0 & 0 \\ 1/3 & 1 & 0 \\ 1/3 & 0 & 1/2 \\ 0 & 0 & 1/2 \end{pmatrix}$$

2. Calculer les distances entre les modalités A, B, C et D de la première variable. Les résultats seront représentés sous forme d'un tableau.

$$d_{\chi^{2}}^{2}(A,D) = \frac{(0-1)^{2} + (0-0)^{2} + (1-0)^{2}}{\sqrt{1/2}} + \frac{(1-0)^{2}}{\sqrt{1/2}} = \frac{1}{2} + \frac{3}{2} = 5.$$

$$d_{\chi^{2}}^{2}(B,D) = 2(0-\frac{1}{2})^{2} + 6(0-\frac{1}{2})^{2} + 3(1-0)^{2} = \frac{1}{2} + \frac{3}{2} + \frac{3}{2} = 5.$$

d^2	В	С	D
A	2	5/4	ر ا
В		9/4	ካ
С			5/4

$$X = \begin{pmatrix} 1/\sqrt{3} & 0 & \mathbf{0} \\ 1/\sqrt{6} & 1/\sqrt{2} & \mathbf{0} \\ 1/\sqrt{6} & 0 & 1/2 \\ 0 & 0 & 1/\sqrt{2} \end{pmatrix} \quad \underbrace{X^T X}_{X} = \begin{pmatrix} 2/3 & 1/\sqrt{12} & 1/\sqrt{24} \\ 1/\sqrt{24} & 1/2 & \mathbf{0} \\ 1/\sqrt{24} & \mathbf{0} & 3/4 \end{pmatrix}$$

4. Valeurs propres et inertie

(a) Pourquoi une valeur propre sera 1? Calculer les deux autres valeurs propres. Que représentent-elles?

$$del (X^TX - \lambda I_3) = \begin{pmatrix} 2/3 - \lambda & 1/512 & 1/524 \\ 1/512 & 1/2 - \lambda & 0 \\ 1/524 & 0 & 3/4 - \lambda \end{pmatrix} = 1/24 \times \left(\frac{1}{2} - \lambda\right) + 1/512 + 1/524 = 1/24 \times \left(\frac{1}{2} - \lambda\right) + 1/512 + 1/524 = 1/24 \times \left(\frac{1}{2} - \lambda\right) + 1/512 + 1/524 = 1/24 \times \left(\frac{1}{2} - \lambda\right) + 1/512 + 1/524 = 1/24 \times \left(\frac{1}{2} - \lambda\right) + 1/512 + 1/524 = 1/24 \times \left(\frac{1}{2} - \lambda\right) + 1/512 + 1/524 = 1/24 \times \left(\frac{1}{2} - \lambda\right) + 1/512 + 1/524 = 1/24 \times \left(\frac{1}{2} - \lambda\right) + 1/512 + 1/524 = 1/24 \times \left(\frac{1}{2} - \lambda\right) + 1/512 + 1/524 = 1/24 \times \left(\frac{1}{2} - \lambda\right) + 1/512 + 1/524 = 1/24 \times \left(\frac{1}{2} - \lambda\right) + 1/512 + 1/524 = 1/24 \times \left(\frac{1}{2} - \lambda\right) + 1/512 + 1/524 = 1/24 \times \left(\frac{1}{2} - \lambda\right) + 1/512 + 1/524 = 1/24 \times \left(\frac{1}{2} - \lambda\right) + 1/512 + 1/524 = 1/24 \times \left(\frac{1}{2} - \lambda\right) + 1/512 + 1/524 = 1/24 \times \left(\frac{1}{2} - \lambda\right) + 1/512 + 1/524 = 1/24 \times \left(\frac{1}{2} - \lambda\right) + 1/512 + 1/524 = 1/24 \times \left(\frac{1}{2} - \lambda\right) + 1/512 + 1/24 \times \left(\frac{1}{2} - \lambda\right) + 1/24 \times \left(\frac{1$$

(b) Quel est l'inertie totale du nuage? En déduire la statistique du χ^2 .

$$\underline{T}_{\tau} = \lambda_1 + \lambda_2 = \frac{11}{12} \qquad \qquad D_{\gamma}^2 = n \, \underline{T}_{\tau} = \frac{11}{2} \qquad \qquad \gamma = 6.$$

(c) En déduire les % d'inertie projetée sur les différents axes.

$$C_1 = \frac{9/3}{11/12} = \frac{8}{11}$$

$$C_2 = \frac{1}{4} \times \frac{12}{11} = \frac{3}{11}$$

5. Vecteurs propres et composantes principales

(a) Calculer les vecteurs propres normés pour la norme usuelle de X^TX . On donne $v_2 = (\sqrt{6/15}, -\sqrt{8/15}, -\sqrt{1/15})$

(b) En déduire les composantes principales
$$F_L$$
. On donne $F_L^2 \approx (0.89, -0.45, 0.22, -0.45)$

$$F_L^4 = L D_5^{-1/2} V_L = \overline{KO} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

$$F_C^4 = D_5^{-1/2} V_L A_2 = \overline{A_2} \begin{pmatrix} 2 & 0 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_3}$$

$$= \overline{A_1} \begin{pmatrix} 2 & 0 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_4} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5}$$

$$= \overline{A_1} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \overline{A_5} = \overline{A_5} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0$$

(c) En déduire les composantes principales colonnes F^C . On donne $F_C^2 \approx (0.45, -0.89, -0.22)$

(d) Représenter les profils ligne et colonne dans le premier plan factoriel en distinguant ligne et colonne par des couleurs différentes.

6. Retrouver les résultats avec R. On pourra utiliser la commande ${\tt CA}$ de ${\tt FactoMineR}$ sur le tableau N ou reprendre les calculs pas à pas..

Exercice 3 Êtes-vous sympathique?

Pour le savoir, répondre aux questions suivantes puis en faire une synthèse.

qu'est-ce qu'être sympathique?

(JM Lasgouttes Paris I)

Les données

Il s'agit d'une recherche sur la représentation sociale. Les personnes interrogées appartenaient à 8 catégories professionnelles différentes : paysan (PAYS), ouvrier (OUVR), vendeur (VEND), commerçant (COMM), employé (EMPL), technicien (TECH), universitaire (UNIV), profession libérale (LIBE).

Elles avaient à choisir les 3 qualités les plus appropriées à une personne sympathique, parmi une liste de 9: sérieuse (seri), généreuse (gene), gaie (gai), honnête (honn), intelligente (intl), serviable (serv), courageuse (cour), compréhensive (comp), discrète (disc).

Le tableau suivant indique, pour chaque groupe professionnel, le nombre de fois où chaque qualité a été associée à la représentation d'une personne sympathique.

	seri	gene	gai	honn	intl	serv	cour	comp	disc	total .	
PAYS	20	9	9	27	10	16	20	4	8	اما ج ₁₂₃	
OUVR	42	10	22	51	18	28	38	12	22	243 🕶 🖏	
VEND	11	2	5	14	8	7	5	8	6	66	
COMM	8	9	12	23	14	16	14	12	12	120 . 2	- 77
EMPL	19	10	16	52	32	25	22	25	30	120 231) ÷ 3	, – ,
TECH	10	5	12	23	20	13	11	13	10	117	
UNIV	2	8	7	6	15	6	6	9	4	63	
LIBE	8	42	23	24	46	22	22	34	16	237	
TOTAL	120	95	106	220	163	133	138	117	108	1200	

1200 ÷ 3 = 400

Question 1 Combien de personnes ont été interrogées pour cette enquête? Quelle est la proportion des employés pour qui être honnête rend sympathique. Quelle est la proportion d'employés parmi les gens qui pensent qu'être honnête rend sympathique ?52

Question 2 Commentez l'assertion « il est beaucoup plus courant pour un ouvrier que pour un paysan de penser qu'une personne sérieuse est sympathique ». On se restreindra à une seule interprétation.

2 Analyse de correspondances

L'analyse des correspondances du tableau de contingence produit les valeurs propres ci-dessous :

[1] 0.098 0.022 0.005 0.003 0.001 0.001 0.000

On fournit ci-dessous, pour les profils lignes et les profils colonnes, les poids des modalités (en %) et, sur les 3 premiers axes, les coordonnées des modalités, leurs contributions aux axes (en %) et la qualité de leur représentation

par les axes f	actoriels (en % aussi).	Cours over	ر کوی			Lanki	bution			~ 2
frequence marginal	leprelario	Axis3 / Composition of the contract of the con	accles			ا هی ریا			C	ر دهی ر
Poids	Axis1 Axis2	Axis3	•	Axis1 A	xis2 A	xis3		Axis1	Axis2	
PAYS 10.2	PAYS -0.303 -0.213	-0.034	/ PAYS	9.6	21.4	2.5	PAYS	63.5	31.5	
OUVR 20.2	OUVR -0.357 -0.111	0.018	OUVR	26.3	11.6	1.3	OUVR	89.6	8.7	
VEND 5.5	1	0.189	VEND	2.1		40.3	VEND	35.9	14.1	
COMM 10.0		-0.105	COMM	0.0		22.6	COMM	1.0	9.9	
EMPL 19.2		-0.056	EMPL	0.7	40.8		EMPL	6.6	83.3	
TECH 9.8	1	0.075	TECH	0.0		11.4	TECH	0.6	58.4	
UNIV 5.3		0.092	UNIV	11.4	0.0	9.1	UNIV	90.4	0.0	
LIBE 19.8	LIBE 0.498 -0.114	-0.006	LIBE	49.9	11.8	0.2	LIBE	94.4	5.0	
			1							
%/0					110	7		0/0		
°/a Poids	Comp1 Comp2	Comp3		Axis1 A				Axis1	Axis2	
	Comp1 Comp2 seri -0.509 -0.148		seri		xis2 Az		seri	10	Axis2	
Poids		0.133	seri gene	26.4	xis2 Az	xis3		Axis1		
Poids seri 10.0	seri -0.509 -0.148	0.133 -0.063	1	26.4	10.0 3	xis3 36.2	seri	Axis1 85.7	7.2	
Poids seri 10.0 gene 7.9	seri -0.509 -0.148 gene 0.589 -0.306	0.133 -0.063 0.036	gene	26.4	10.0 3 34.0	xis3 36.2 6.6	seri gene	Axis1 85.7 77.0	7.2 20.7	
Poids seri 10.0 gene 7.9 gai 8.8	seri -0.509 -0.148 gene 0.589 -0.306 gai 0.076 -0.040	0.133 -0.063 0.036 -0.039	gene gai	26.4 28.0 0.5	10.0 3 34.0 0.7 7.8	xis3 36.2 6.6 2.3	seri gene gai	Axis1 85.7 77.0 25.4	7.2 20.7 7.1	
Poids seri 10.0 gene 7.9 gai 8.8 honn 18.3	seri -0.509 -0.148 gene 0.589 -0.306 gai 0.076 -0.040 honn -0.244 0.096	0.133 -0.063 0.036 -0.039 0.070	gene gai honn	26.4 28.0 0.5 11.1	10.0 3 34.0 0.7 7.8	xis3 36.2 6.6 2.3 5.7	seri gene gai honn	Axis1 85.7 77.0 25.4 82.6	7.2 20.7 7.1 12.9	
Poids seri 10.0 gene 7.9 gai 8.8 honn 18.3 intl 13.6	seri -0.509 -0.148 gene 0.589 -0.306 gai 0.076 -0.040 honn -0.244 0.096 intl 0.341 0.085	0.133 -0.063 0.036 -0.039 0.070 -0.046	gene gai honn intl	26.4 28.0 0.5 11.1 16.1 0.8	10.0 3 34.0 0.7 7.8 4.5 1	xis3 36.2 6.6 2.3 5.7	seri gene gai honn intl	Axis1 85.7 77.0 25.4 82.6 87.0	7.2 20.7 7.1 12.9 5.4	
Poids seri 10.0 gene 7.9 gai 8.8 honn 18.3 intl 13.6 serv 11.1	seri -0.509 -0.148 gene 0.589 -0.306 gai 0.076 -0.040 honn -0.244 0.096 intl 0.341 0.085 serv -0.085 -0.009 cour -0.181 -0.168 comp 0.352 0.158	0.133 -0.063 0.036 -0.039 0.070 -0.046 -0.056	gene gai honn intl serv	26.4 28.0 0.5 11.1 16.1 0.8 3.8 12.4	10.0 3 34.0 0.7 7.8 4.5 1 0.0 14.9 11.3	xis3 36.2 6.6 2.3 5.7 13.8 4.9	seri gene gai honn intl serv	Axis1 85.7 77.0 25.4 82.6 87.0 51.6	7.2 20.7 7.1 12.9 5.4 0.6	

Le diagramme ci-dessous est la projection jointe des points-lignes et des points-colonnes sur le premier plan factoriel. $\wedge \mathcal{F}_{\mathcal{L}}$

Question 3 Pourquoi y a-t-il 7 valeurs propres? min(n,p)-1 = min (8,3)-1 = 8-1=7

Question 4 Quelles sont les modalités qui définissent le premier axe factoriel? Et le deuxième? On précisera sur quel(s) critère(s) on se fonde.

Question 5 Quelles sont les modalités (lignes et colonnes) qui sont particulièrement mal représentées par le premier

plan factoriel? FI+F2

Lonc gai et conn

Question 6 Que peut-on déduire du fait que OUVR et PAYS sont proches sur le graphique? Même question pour VEND et honn. 1) Ils ont des profils l'une personne très proches. 2) de physiot des vendeurs répond souvent

Axe 2: - + pays empl.
gene disc