mL std added	Excitation Emission			Average	Unknown added (mL)		Data for gra	ıph	Nathan Gillispie					
0.00	350.0	450.0	23.7				0.00	22.0						
			23.2	23.5		3.2	0.30	27.5						
0.30			27.4				0.50	48.4						
			27.6	27.5		3	0.75	71.3						
0.50			49.0				1.05	72.7						
			47.8	48.4		3	1.30	82.8						
0.75			69.5											
			73.0	71.3		3								
1.05			71.2											
			74.1	72.7		3								
1.30			83.0											
			82.5	82.8		3		_						
To find how much unknow	wn was in th	e original v	ve			۸ h	savation .	. ומש שמעם	مامامما					
must extrapolate backwards with the linear fit eqn				Absorption over mL added										
to the y intercept for the	line.				100.0									
у	0.000				_			y = 5.	0688E+01	lx + 2.1	L142E+	+01		
m	50.69				80.0				$R^2 = 9.2$	255E-0	01			
b	21.14				-						••			
eqn	x=(y-b)/m				-									
X	-0.417			noi:	60.0									
				orpt	-									
To determine concentration of the original unknown			abso	40.0										
we must divide x by the mL of unknown added to			<u>×</u>											
each vial and multiply by	ppm of stan	dard		Realtive absorption			•							
				<u>«</u>	20.0									
initial amount (mL)	0.417				0.0	_								
unknown volume (mL)	3.000			-0.40	-0.20 0.00	0.20	0.40	0.60	0.80	1.00	1.20	1.40		
ppm of standard	10.000				-20.0									
•	0.417mL*10ppm/3.00mL				amount of std added (mL)									
ppm of unknown	1.390													