Introducción a la Lógica y la Computación - Estructuras de orden Práctico 4: Poset Reticulados - Retículos.

Recuerden que utilizamos el término *reticulado* para referirnos simultáneamente al poset y a la estructura algebraica. Para resolver los ejercicios deberán tener en cuenta los siguientes diagramas de Hasse.

- (1) Considere el reticulado L_2 . Encuentre $v \vee x$, $s \vee v$ y $u \vee v$.
- (2) En el reticulado L_1 , muestre todas las formas posibles de escribir los elementos 1, b y c como supremo de dos elementos. Por ejemplo, una manera sería $1 = d \lor c$. Considerar las formas no triviales, es decir, descartamos por ejemplo $1 = 1 \lor b$.
- (3) (a) Defina una función f biyectiva del reticulado L_3 en el reticulado L_4 que preserve el orden, es decir, tal que $x \leq y \Longrightarrow f(x) \leq' f(y)$.
 - (b) Compruebe que no se cumple $x \leq y \iff f(x) \leq' f(y)$. La función f es un ejemplo que muestra que preservación del orden no implica isomorfismo.
 - (c) Pruebe también que f no preserva supremo ni ínfimo.
- (4) Revise en el teórico qué condiciones se deben cumplir para que:
 - (a) un subconjunto $S \subseteq L$ sea subreticulo del retículo L
 - (b) un reticulo cualquiera M se incruste en el retículo L Luego responda: Para qué valores n se tiene que D_n se incrusta en L_1 ?
- (5) Decida, y fundamente, cuáles de los reticulados L_1, L_2, L_3 y L_4 son complementados.
- (6) ¿Tiene todo reticulado finito primer y último elemento?
- (7) Supongamos que un poset tiene la siguiente propiedad: para todo subconjunto S de P se tiene que $\sup(S)$ existe (en particular existe $\sup(P)$ y $\sup(\emptyset)$). Demostrar que $\inf(S)$ existe para cualquier S.