

(19)

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2002182122 A

(43) Date of publication of application: 26.06.02

(51) Int. Cl

G02B 21/26
G12B 5/00

(21) Application number: 2000378340

(71) Applicant: NIKON CORP

(22) Date of filing: 13.12.00

(72) Inventor: TOMIOKA KEN

(54) MICROSCOPE

COPYRIGHT: (C)2002,JPO

(57) Abstract

PROBLEM TO BE SOLVED: To provide a microscope which is improved in the operability of a stage and reduced in production cost.

SOLUTION: In this microscope having a stage which is movable in the XY direction for the observation optical axis, a rough-fine movement changeover switch 73 which changes the moving speed of the stage 140 is disposed coaxially with a turning handle 71 for X direction operation which moves the stage 140 in the X direction with electric control and a turning handle 72 for Y direction operation which moves the stage 140 in the Y direction with electric control. In addition, the turning handle 71 for X direction operation, the turning handle 72 for Y direction operation and the rough-fine adjustment changeover switch 73 constitute a stage handle unit 70 and the stage handle unit 70 is allowed to be attachable and detachable with respect to either of the left and right side surfaces of the microscope main body or the stage 140.

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2002-182122

(P2002-182122A)

(43)公開日 平成14年6月26日 (2002.6.26)

(51)Int.Cl.⁷

G 0 2 B 21/26
G 1 2 B 5/00

識別記号

F I

テマコード(参考)

G 0 2 B 21/26
G 1 2 B 5/00

2 F 0 7 8
T 2 H 0 5 2

審査請求 未請求 請求項の数 5 O L (全 8 頁)

(21)出願番号 特願2000-378340(P2000-378340)

(22)出願日 平成12年12月13日 (2000.12.13)

(71)出願人 000004112

株式会社ニコン

東京都千代田区丸の内3丁目2番3号

(72)発明者 富岡 研

東京都千代田区丸の内3丁目2番3号 株式会社ニコン内

(74)代理人 100091557

弁理士 木内 修

Fターム(参考) 2F078 CA06 CA08 CB12
2H052 AD19 AD20

(54)【発明の名称】顕微鏡

(57)【要約】

【課題】ステージの操作性を向上させるとともに、製造コストの低減を図った顕微鏡を提供する。

【解決手段】観察光軸に対してX Y方向へ移動可能なステージを備える顕微鏡において、ステージ140をX方向へ電気制御で移動させるX方向操作回転ハンドル71及びステージ140をY方向へ電気制御で移動させるY方向操作回転ハンドル72と同軸上にステージ140の移動速度を変える粗微動切換スイッチ73を配置した。また、X方向操作回転ハンドル71、Y方向操作回転ハンドル72及び粗微動切換スイッチ73をステージハンドルユニット70として構成し、このステージハンドルユニット70を顕微鏡本体又はステージ140の左右いずれの側面に対しても着脱できるようにした。

【特許請求の範囲】

【請求項1】観察光軸に対して直交するXY方向へ移動可能なステージを備える顕微鏡において、

前記ステージをX方向へ電気制御で移動させる第1の操作手段と、前記ステージをY方向へ電気制御で移動させる第2の操作手段と、前記ステージの移動速度を変える第3の操作手段とを備えていることを特徴とする顕微鏡。

【請求項2】前記第2の操作手段は前記第1の操作手段の回転軸と同軸上に配置された回転ハンドルであり、前記第3の操作手段は前記第1の操作手段及び前記第2の操作手段と同軸上又はそれらの近傍に配置された切換スイッチであることを特徴とする請求項1記載の顕微鏡。

【請求項3】前記回転ハンドル及び前記切換スイッチは、顕微鏡本体の側面又は前記ステージの側面に対して着脱可能な操作ユニットとして構成されていることを特徴とする請求項2記載の顕微鏡。

【請求項4】前記ステージを前記観察光軸に平行なZ方向へ電気制御で移動させる第4の操作手段を備え、この第4の操作手段は前記第1の操作手段、前記第2の操作手段及び前記第3の操作手段と同軸上又はそれらの近傍に配置されていることを特徴とする請求項1～3のいずれか1項記載の顕微鏡。

【請求項5】前記ステージの移動速度を対物レンズの倍率に応じて変化させる速度調節手段を備えていることを特徴とする請求項2又は4記載の顕微鏡。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】この発明は顕微鏡に関する。

【0002】

【従来の技術】図5は従来の正立顕微鏡の概略構成図である。

【0003】この正立顕微鏡101は、ベース部110と、支柱部120と、片持ちアーム部130と、ステージ140と、鏡筒150とを備えている。

【0004】ベース部110はレンズ111、112、113と全反射ミラー114とを備えている。

【0005】全反射ミラー114は観察光軸Lに対して45°傾斜している。

【0006】ベース110の背面には透過照明系用ランプハウス115が設けられている。ランプハウス115にはハロゲンランプ等のランプ116とコレクタレンズ117とが収容されている。

【0007】ステージ140は直線ガイド機構(図示せず)によって支柱部120に沿って上下動可能に支持されている。ステージ140にはコンデンサレンズ145が取り付けられている。

【0008】片持ちアーム部130は、レンズ131、132と、ダイクロイックミラー133と、励起フィル

タ134と、吸収フィルタ135とを備えている。ダイクロイックミラー133は観察光軸Lに対して45°傾斜している。

【0009】片持ちアーム部130の背面には落射照明用ランプハウス135が設けられている。落射照明用ランプハウス135には水銀ランプ等のランプ136とコレクタレンズ137とが収容されている。

【0010】片持ちアーム部130の下部には対物レンズ160が取り付けられている。

10 【0011】接眼部151を有する鏡筒150は片持ちアーム部130の上部に取り付けられている。

【0012】鏡筒150には第2対物レンズ152及びプリズム153、154が設けられ、接眼部151内には接眼レンズ155が設けられている。

【0013】透過照明観察を行うとき、透過照明系用ランプハウス115のランプ116を点灯させる。このとき、落射照明系用ランプハウス135のランプ136を消灯させる。

20 【0014】透過照明系用ランプハウス115から出射された光はレンズ111、レンズ112、全反射ミラー114、レンズ113及びコンデンサレンズ145を経てステージ140上の観察標本142を下方から照射する。

【0015】この観察標本142を透過した光は対物レンズ160によって所定の大きさに拡大され、ダイクロイックミラー133、吸収フィルタ135を透過して第2対物レンズ152に導かれる。

【0016】観察標本142を透過した光は第2対物レンズ152を通過し、プリズム153、154を介して接眼部151へ導かれ、接眼部151で結像する。

【0017】結像した像は接眼レンズ155によって拡大され、検者眼Mで観察される。

【0018】落射蛍光照明観察を行うとき、落射照明系用ランプハウス135のランプ136を点灯させる。このとき、透過照明系用ランプハウス115のランプ116を消灯させる。

40 【0019】落射照明系用ランプハウス135内のランプ136から出射された光はレンズ131、レンズ132、励起フィルタ134を通過し、ダイクロイックミラー133によって反射されて観察光軸Lと同軸となり、対物レンズ160を経てステージ140上の観察標本142に上方から照射される。

【0020】観察標本142で発生した蛍光は対物レンズ160によって所定の大きさに拡大され、ダイクロイックミラー133、吸収フィルタ135、第2対物レンズ152に導かれる。

【0021】観察標本142で発生した蛍光は第2対物レンズ152を通過し、プリズム153、154を介して接眼部151へ導かれ、接眼部151で結像する。

50 【0022】結像した像は接眼レンズ155によって拡

大され、検者眼Mで観察される。

【0023】図6は従来のステージの斜視図である。

【0024】ステージ140は、ステージ上板143と、ステージ下板144と、X方向移動板141と、ステージハンドル170と、焦準ハンドル180とを備えている。

【0025】ステージ上板143は図示しないポールレースやアリガイドを介してステージ下板144に対してY方向へ移動可能に支持されている。

【0026】ステージ上板143にはポールレースやアリガイドを介してX方向移動板141がステージ上板143に対してX方向へ移動可能に支持されている。

【0027】X方向移動板141には標本押さえ板148がボルト(図示せず)によって固定されている。

【0028】ステージ上板143の側面にはステージハンドル170を支持する操作ハンドル固定板146が固定されている。

【0029】ステージハンドル170は、X方向移動板141をX方向へ移動させるためのX方向操作回転ハンドル171と、ステージ上板143をY方向へ移動させるためのY方向操作回転ハンドル172とを備えている。

【0030】X方向操作回転ハンドル171とY方向操作回転ハンドル172とが同じ回転軸173の一端に設けられている。回転軸173の他端は操作ハンドル固定板146に回転可能に支持されている。

【0031】また、回転軸の他端にはX方向歯車174とY方向歯車175とが操作ハンドル固定板146を挟んで固定されている。

【0032】X方向歯車174はX方向移動板141のX方向ラック147と噛み合っている。

【0033】Y方向歯車175はステージ下板の側面に固定されたY方向ラック149と噛み合っている。

【0034】また、ステージ140にはギヤ181等を介してステージ140をZ方向へ移動させてピント合わせを行うための焦準ハンドル180が設けられている。

【0035】焦準ハンドル180は微動操作ハンドル182と粗動操作ハンドル183とを備えている。微動操作ハンドル182と粗動操作ハンドル183とは同じ回転軸184上に設けられている。

【0036】観察者は、まず粗動操作ハンドル183を操作してステージ140をZ軸方向(上下方向)へ移動させ、観察標本142の観察したい部分のピントを合わせる。

【0037】微動操作ハンドル182を操作してステージ140を微小距離ずつ移動させ、正確なピント合わせを行う。

【0038】次に、X方向操作回転ハンドル171を回転させて観察標本142を対物レンズ160の観察光軸L(図5参照)に対してX方向へ移動させる。

【0039】その後、Y方向操作回転ハンドル172を回転させて観察標本142を対物レンズ160の観察光軸Lに対してY方向へ移動させる。

【0040】以後、上記X方向操作回転ハンドル171及びY方向操作回転ハンドル172の操作を繰り返して行い、観察標本142の観察したい部分を観察光軸上に移動させる。

【0041】なお、X方向とY方向とZ方向とはそれぞれ直交する方向である(以下も同じ)。

【0042】

【発明が解決しようとする課題】しかし、この顕微鏡には次のような問題がある。

【0043】① 減速比を大きくするためには多くのギヤ等が必要となって余分なスペースとコストとがかかるため、X方向操作回転ハンドル171やY方向操作回転ハンドル172の減速比は大きくされない。そのため、X方向操作回転ハンドル171やY方向操作回転ハンドル172の回転角に対するX方向移動板141及びステージ上板143の移動量が大きくなり、例えば100倍等の高倍率の対物レンズを使用して観察を行うとき、観察したい部分を対物レンズ160の観察光軸L上に位置合わせする操作は難しい。

【0044】② ①の問題に対し、ステージ140をXY方向へ電気制御で移動させる構成としてジョイスティックを用いるものがあるが、ジョイスティックは、従来から用いられている操作回転ハンドルとは操作方法が大きく異なり、操作し難いものであった。

【0045】③ X方向操作回転ハンドル171やY方向操作回転ハンドル172は観察者の好みによって顕微鏡101の右側に取り付けられたり、左側に取り付けられたりするが、取付位置の異なる顕微鏡を作り分けなければならず、製造コストが高くなる。

【0046】この発明はこのような事情に鑑みてなされたもので、その課題はステージの操作性を向上させるとともに、製造コストの低減を図った顕微鏡を提供することである。

【0047】

【課題を解決するための手段】上記課題を解決するためには請求項1に記載の顕微鏡は、観察光軸に対して直交するXY方向へ移動可能なステージを備える顕微鏡において、前記ステージをX方向へ電気制御で移動させる第1の操作手段と、前記ステージをY方向へ電気制御で移動させる第2の操作手段と、前記ステージの移動速度を変える第3の操作手段とを備えていることを特徴とする。

【0048】例えば100倍等の高倍率の対物レンズを使用して観察を行うときであっても、第3の操作手段によって第1の操作手段や第2の操作手段の回転角に対するステージの移動量を小さくすることができる。また、ステージは電動制御されるので、操作手段とステージとを機械的に結合させる必要がない。

【0049】請求項2に記載の顕微鏡は、請求項1記載の顕微鏡において、前記第2の操作手段は前記第1の操作手段の回転軸と同軸上に配置された回転ハンドルであり、前記第3の操作手段は前記第1の操作手段及び前記第2の操作手段と同軸上又はそれらの近傍に配置された切換スイッチであることを特徴とする。

【0050】回転ハンドルを操作して観察したい部分に位置合わせをしているとき、回転ハンドルから手を離すことなく切換スイッチを操作することができる。

【0051】請求項3に記載の顕微鏡は、請求項2記載の顕微鏡において、前記回転ハンドル及び前記切換スイッチは、顕微鏡本体の側面又は前記ステージの側面に対して着脱可能な操作ユニットとして構成されていることを特徴とする。

【0052】例えば顕微鏡本体やステージの左右側面に予めインターフェースを設け、これらのインターフェースを介して操作ユニットを接続することができる。

【0053】請求項4に記載の顕微鏡は、請求項1～3のいずれか1項記載の顕微鏡において、前記ステージを前記観察光軸に平行なZ方向へ電気制御で移動させる第4の操作手段を備え、この第4の操作手段は前記第1の操作手段、前記第2の操作手段及び前記第3の操作手段と同軸上又はそれらの近傍に配置されていることを特徴とする。

【0054】第1の操作手段、第2の操作手段及び第3の操作手段を操作して観察したい部分に位置合わせをしているとき、これらの操作手段から手を離すことなく第4の操作手段を操作することができる。

【0055】請求項5に記載の顕微鏡は、請求項2又は4記載の顕微鏡において、前記ステージの移動速度を対物レンズの倍率に応じて変化させる速度調節手段を備えていることを特徴とする。

【0056】高倍率の対物レンズを使用して観察を行うとき、速度調節手段によって対物レンズの倍率に応じてステージの移動速度を変化させる。

【0057】

【発明の実施の形態】以下、この発明の実施の形態を図面に基づいて説明する。

【0058】図1は第1実施形態に係るステージの斜視図であり、従来例と同一部分には同一符号を付してその説明を省略する。

【0059】ステージ1は、ステージ上板43と、ステージ下板44と、X方向移動板141と、ステージハンドルユニット（操作ユニット）70と、焦準ハンドル180とを備えている。

【0060】ステージ上板43は図示しないボールレースやアリガイドを介してステージ下板44に対してY方向へ移動可能に支持されている。

【0061】ステージ上板43の側面にはY方向ラック49が固定されている。Y方向ラック49にはステージ

上板43をY方向へ移動させるためのY方向駆動用モータ90の回転軸91に固定されたY方向歯車92が噛み合っている。

【0062】ステージ上板43にはボールレースやアリガイドを介してX方向移動板141がステージ上板43に対してX方向へ移動可能に支持されている。

【0063】X方向移動板141に固定されたX方向ラック147にはX方向移動板141をX方向へ移動させるためのX方向駆動用モータ95の回転軸96に固定されたX方向歯車97が噛み合っている。

【0064】粗微動切換スイッチ73はX方向駆動用モータ90及びY方向駆動用モータ95の回転速度を切り換える。

【0065】図2はステージハンドルユニットの縦断面図、図3はステージハンドルユニットのブロック構成図である。

【0066】ステージハンドルユニット（操作ユニット）70は、X方向移動板141をX方向へ移動させるためのX方向操作回転ハンドル（第1の操作手段）71と、ステージ上板43をY方向へ移動させるためのY方向操作回転ハンドル（第2の操作手段）72と、粗微動切換スイッチ（第3の操作手段）73と、操作ハンドルユニット部74とを備えている。

【0067】X方向操作回転ハンドル71はX方向回転軸71aの一端に固定されている。X方向回転軸71aの他端には円盤状のX方向エンコーダ75が固定されている。X方向エンコーダ75の回転角はX方向センサ76で検知される。

【0068】例えば、X方向エンコーダ75としては規則的に孔をあけたエンコーダディスクが、X方向センサ76としてギャップ型センサが用いられている。ギャップ型センサはエンコーダディスクの孔を透過した光を光電変換してパルス信号を出力する。

【0069】Y方向操作回転ハンドル72はY方向回転軸72aの一端に固定されている。Y方向回転軸72aの他端には円盤状のY方向エンコーダ77が固定されている。Y方向エンコーダ77の回転角はY方向センサ78で検知される。

【0070】Y方向エンコーダ77としてエンコーダディスクが、Y方向センサ78としてギャップ型センサが用いられている。

【0071】X方向回転軸71aとY方向回転軸72aとは同軸上にある。X方向回転軸71aはY方向回転軸72aの内側に配置されている。

【0072】粗微動切換スイッチ73はX方向回転軸71a及びY方向回転軸72aと同軸上に設けられている。

【0073】粗微動切換スイッチ73はX方向操作回転ハンドル71及びY方向操作回転ハンドル72に対するX方向駆動用モータ90及びY方向駆動用モータ95の

回転速度を切り換えるためのスイッチである。回転速度は粗動モードと微動モードとを備えている。

【0074】なお、粗微動切換スイッチ73をX方向回転軸71a及びY方向回転軸72aと同軸上に配置せず、X方向回転軸71a及びY方向回転軸72aの近傍又はユニットケース79の前面や底面等に配置するようにしてよい。

【0075】X方向エンコーダ75、X方向センサ76、Y方向エンコーダ77、Y方向センサ78、処理回路5及びモータ駆動回路94、99がユニットケース79に収容されている。

【0076】処理回路5としては、例えば4ビットの1チップマイクロコンピュータを用いる。

【0077】処理回路5は、X方向センサ76及びY方向センサ78から出力されたパルス信号をカウントすることによってX方向エンコーダ75及びY方向エンコーダ77の回転角を検知してモータ駆動回路94、99に駆動信号5a、5bを出力する。

【0078】この駆動信号5a、5bによってX方向駆動用モータ95及びY方向駆動用モータ90を駆動し、X方向移動板141及びステージ上板43を所定量移動させる。

【0079】更に、X方向駆動用モータ95及びY方向駆動用モータ90の回転位置はX方向センサ76及びY方向センサ78で検出される。この検出信号76a、78aは処理回路5にフィードバックされ、処理回路5によってX方向駆動用モータ95及びY方向駆動用モータ90がX方向操作回転ハンドル71及びY方向操作回転ハンドル72の回転角に対応した量だけ回転するようにモータ駆動回路94、99が制御される。

【0080】また、処理回路5は、粗微動切換スイッチ73からの粗微動切換信号73aに基いてモータ駆動回路94、99を制御し、X方向駆動用モータ95及びY方向駆動用モータ90の回転速度を切り換える。

【0081】処理回路5は、例えば微動モードに切り換えられたとき、発光ダイオード等からなる微動モード表示ランプ6を点灯させて微動モード状態にあることを可視表示する。

【0082】観察を行うとき、観察者は、まず粗動操作ハンドル183を操作してステージをZ軸方向（上下方向）へ移動させ、観察標本142の観察したい部分のピントを合わせる。

【0083】更に、微動操作ハンドル182を操作してステージを微小距離だけ移動させ、正確なピント合わせを行う。

【0084】その後、X方向操作回転ハンドル71とY方向操作回転ハンドル72とを用いてXY方向の位置合わせを行う。

【0085】すなわち、X方向操作回転ハンドル71を回転させてX方向移動板141をX方向へ移動させる。

また、Y方向操作回転ハンドル72を回転させてステージ上板43をY方向へ移動させる。

【0086】このとき、観察標本142は対物レンズ160の観察光軸Lに対してX方向操作回転ハンドル71及びY方向操作回転ハンドル72の回転角に対応した距離だけX方向及びY方向へ移動する。

【0087】次に、微細な位置合わせや高倍率の対物レンズを用いるときのステージの操作方法を説明する。

【0088】このとき、粗微動切換スイッチ73を押し、X方向駆動用モータ95及びY方向駆動用モータ90を微動モードにする。

【0089】そのため、X方向操作回転ハンドル71及びY方向操作回転ハンドル72の回転に対してX方向移動板141及びステージ上板43がゆっくりと移動する。

【0090】この実施形態によれば、微細な位置合わせや高倍率の対物レンズを用いる観察を行うとき、X方向移動板141及びステージ上板43をゆっくりと移動させることができるので、容易に観察標本142の位置合わせすることができ、ステージの操作性が向上する。

【0091】また、観察中に接眼部から目を離すことなく粗微動切換スイッチ73を押してステージの移動速度を変えることができ、効率良く観察作業を行うことができる。

【0092】なお、対物レンズ160の倍率に対するX方向駆動用モータ95及びY方向駆動用モータ90の適切な回転速度の関係を予め処理回路5に記憶させておき、処理回路5に入力される対物レンズの倍率情報に基づいてモータ駆動回路94、99を制御してモータ95、90の回転速度を変えるようにすれば、ステージの操作性が一層向上する。このとき、処理回路5とモータ駆動回路94、99とで速度調節手段が構成される。

【0093】また、顕微鏡本体やステージ140の両側面に操作ハンドルユニット部74と接続可能なインターフェースを設ければ、ステージハンドルユニット70を観察者の好みに応じて顕微鏡本体やステージ140の左右いずれの側面にも取り付けることができる。

【0094】更に、ステージハンドルユニット70を赤外線発光ダイオードを用いた送信部とし、顕微鏡本体をPINフォトダイオードを用いた受信部として離れた位置からステージの操作を行うこともできる。

【0095】図4は第2実施形態に係るステージハンドルユニットの縦断面図であり、第1実施形態と同一部分には同一符号を付してその説明を省略する。

【0096】この実施形態は、X方向操作回転ハンドル71、Y方向操作回転ハンドル72及び粗微動切換スイッチ73と同軸上に、ステージ140をZ方向へ移動させてピント合わせを行うための焦準ハンドル（第4の操作手段）80が配置されている点で第1実施形態と異なる。

【0097】Z方向回転軸80aはY方向回転軸72aの外側に配置されている。

【0098】Z方向回転軸80aの一端にZ方向操作回転ハンドル80が固定されている。

【0099】Z方向回転軸80aの他端には円盤状のZ方向エンコーダ81が固定されている。Z方向エンコーダ81の回転角はZ方向センサ82で検知される。

【0100】このZ方向エンコーダ81には規則的に孔をあけたエンコーダディスクが、Z方向センサ82としてギャップ型センサが用いられている。

【0101】なお、粗微動切換スイッチ73をX方向回転軸71a及びY方向回転軸72aと同軸上に配置せず、ユニットケース89の前面や底面等に配置するようにしてもよい。

【0102】X方向エンコーダ75、X方向センサ76、Y方向エンコーダ77、Y方向センサ78、Z方向エンコーダ81、Z方向センサ82等がユニットケース89に収容されている。

【0103】この実施形態によれば、第1実施形態と同様の効果を奏するとともに、粗微動切換スイッチ73をハンドル71、72だけでなくハンドル80に対しても用いることができるので、ハンドル71、72、80を粗動用と微動用に分ける必要がなく、製造コストを低減できるとともに、観察中に接眼部から目を離すことなくハンドル71、72、80を操作してステージ140を移動させて迅速に位置合わせをすることができ、操作性が一層向上する。

【0104】

【発明の効果】以上に説明したように請求項1記載の発明の顕微鏡によれば、容易に観察標本の位置合わせすることができ、ステージの操作性が向上する。また、顕微鏡本体にインタフェースを設けることで取付位置の異なる顕微鏡を作り分ける必要がなくなり、製造コストの低減を図ることができる。

【0105】請求項2記載の発明の顕微鏡によれば、観察中に接眼部から目を離すことなくステージをX-Y方向

へ移動できるとともに、ステージの移動速度を変えて効率良く観察作業を行うことができ、ステージの操作性が向上する。

【0106】請求項3記載の発明の顕微鏡によれば、回転ハンドル及び切換スイッチを備える操作ユニットを観察者の好みによって顕微鏡本体やステージの左右いずれの側面にも自由に取り付けることができる。

【0107】請求項4記載の発明の顕微鏡によれば、観察中に接眼部から目を離すことなくステージをX-Y-Z方向へ移動して効率良く観察作業を行うことができ、操作性が一層向上する。

【0108】請求項5記載の発明の顕微鏡によれば、迅速に位置合わせをすることができ、操作性が一層向上する。

【図面の簡単な説明】

【図1】図1は第1実施形態に係るステージの斜視図である。

【図2】図2はステージハンドルユニットの縦断面図である。

【図3】図3はステージハンドルユニットのブロック構成図である。

【図4】図4は第2実施形態に係るステージハンドルユニットの縦断面図である。

【図5】図5は従来の正立顕微鏡の概略構成図である。

【図6】図6は従来のステージの斜視図である。

【符号の説明】

5 処理回路

70 ステージハンドルユニット（操作ユニット）

71 X方向操作回転ハンドル（第1の操作手段）

72 Y方向操作回転ハンドル（第2の操作手段）

73 粗微動切換スイッチ（第3の操作手段）

80 焦準ハンドル（第4の操作手段）

94, 99 モータ駆動回路

140 ステージ

160 対物ハンドル

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

