Abreviando e expandindo endereços IPv6:

O endereçamento IPv6 é composto por um número hexadecimal de 32 dígitos, segmentados em 8 quartetos de quatro dígitos (hexadecimais), cujo separador é o símbolo ":", conforme exemplo abaixo:

87b7:4bea:7e9b:a681:00df:0000:73c6:40f3

Dentro de um computador, esse número hexadecimal de 32 dígitos é convertido em um valor binário de 128 bits que serve para identificar um computador, dentro de uma rede de computadores.

Ambas as notações, binária e hexadecimal, são relativamente difíceis de serem interpretadas por um ser humano.

Para facilitar o manuseio de endereçamentos IPv6, bem como a configuração de equipamentos, é utilizada a notação abreviada do endereçamento IPv6 (hexadecimal), conforme descrito a seguir:

Abreviando endereços IPv6:

A abreviação de endereços IPv6 seguem duas regras básicas:

1. Dentro de cada quarteto, remova os 0s (0s no lado esquerdo do quarteto) até no máximo três posições à esquerda. (Nota: nesta etapa, um quarteto de 0000 irá se transformar no número 0.

Antes	FE00:0000:0000:0001:0000:0000:00056	
Depois	FE00:0:0:1:0:0:56	

- 2. Qualquer quarteto consecutivo de zeros, troque por uma sequência dupla de dois pontos (::).
 - A sequência dupla de dois pontos significa que dois ou mais quartetos s\u00e3o constitu\u00eddos por zeros.
 - b. Os "::" só pode ser utilizado uma vez no endereçamento e deve ser colocado de modo a obter a maior compactação possível. É preferível abreviar "0:0:0" do que "0:0".

Antes	FE00:0:0:1:0:0:56
Depois	FE00:0:0:1::56

Expandindo endereços IPv6 abreviados

Para expandir um endereço IPv6 de volta ao seu número completo não abreviado de 32 dígitos, basta aplicar o algoritmo ao contrário.

1. Em cada quarteto, adicione zeros à esquerda conforme necessário até que o quarteto tenha quatro dígitos hexadecimais.

Antes	FE00:0:0:1::56
Depois	FE00:0000:0000:0001::0056

2. Se houver dois pontos duplos (::), substituta os pontos duplos por quantos quartetos "0000" forem necessários até que a string tenha 8 quartetos, formatada corretamente pelo separador ":".

Antes	FE00:0000:0000:0001::0056
Depois	FE00:0000:0000:0001:0000:0000:0006

Endereços para teste:

Endereço completo	Endereço abreviado
A270:0000:0010:0100:1000:ABCD:0101:1010	A270:0:10:100:1000:ABCD:101:1010
30A0:ABCD:6527:7890:0ABC:B0B0:9999:9009	30A0:ABCD:6527:7890:ABC:B0B0:9999:9009
2222:3333:8888:5555:0000:0000:6060:0707	2222:3333:8888:5555::6060:707
2940:0000:0000:0000:0000:0000:0000	2940::
2FFF:0000:0000:0000:CCCC:0000:0000:000D	2FFF::CCCC:0:0:D
C4F2:000D:000B:0000:0000:0000:0000:0085	C4F2:D:B::85
4BCA:0000:0000:0000:AFBE:BEFF:FEEF:CAFE	4BCA::AFBE:BEFF:FEEF:CAFE
4BCA:0000:0000:0000:FACE:BAFF:FEBE:CAFE	4BCA::FACE:BAFF:FEBE:CAFE
0000:0000:8888:5555:0000:0000:6060:0707	::8888:5555:0:0:6060:707
4BCA:0800:0000:0040:CAFE:00FF:FE00:0001	4BCA:800:0:40:CAFE:FF:FE00:1

Fonte: ODOM, Wendell. **Cisco CCENT/CCNA**: icnd1 100-101. Indianapolis, In 46240: Cisco Press, 2013. 1111 p. (páginas 697 – 699)