Übungen zum Ferienkurs Theoretische Mechanik

Lagrange und Hamilton Mechanik

Übungen, die mit einem Stern ★ markiert sind, werden als besonders wichtig erachtet.

2.1 3D Fadenpendel \star

Betrachten Sie ein Fadenpendel der Länge d, das in drei Raumrichtungen unter Einfluss der Schwerkraft frei schwingen kann. Die Masse des Pendelkörpers sei m, die Masse des Fadens zu vernachlässigen.

- (a) Stellen Sie die Lagrangefunktion in Kugelkoordinaten auf.
- (b) Ermitteln Sie die Symmetrien des Systems und die entsprechenden Erhaltungsgrößen.
- (c) Stellen Sie die Bewegungsgleichungen auf.

2.2 Teilchen im Kreiskegel*

Eine Punktmasse m rollt reibungsfrei auf der Innenseite eines Kreiskegels unter dem Einfluss der Schwerkraft.

- (a) Geben Sie explizit die Zwangsbedingungen an.
- (b) Geben Sie die Lagrangefunktion an und stellen Sie die Bewegungsgleichung auf.

2.3 Punktmasse auf rotierendem Ring

Eine Punktmasse m kann sich reibungsfrei auf einem horizontalen Ring mit Radius r bewegen. Auf einem identischen horizontalen Ring, der sich oberhalb des ersten Ringes mit der Höhendifferenz h befindet, bewege sich eine weitere Punktmasse M mit einer (durch einen äußeren Zwang vorgegebenen) konstanten Winkelgeschwindigkeit ω . Zwischen den beiden Massen wirke eine durhc ein Potential V(d) definierte Kraft (d sei der Betrag des Abstandsvektors \mathbf{d} der beiden rotierenden Massen). Geben Sie die (explit zeitabhängige!) Lagrangefunktion für die Punktmasse m an.

2.4 Rutschendes Seil*

Ein homogenes Seil der Länge L liegt zur Hälfte auf einem Tisch, die andere Hälfte hängt über der Tischkante. Zum Zeitpunkt t=0 wird das Seil losgelassen und beginnt reibungsfrei hinunterzurutschen. Die lineare Massendichte sei μ .

- (a) Bestimmen Sie die Lagrangefunktion.
- (b) Stellen Sie die Bewegungsgleichung auf und integrieren Sie diese.

2.5 Perle auf Draht

Eine Perle gleite reibungsfrei und ohne äußere Kräfte auf einem Stab, der sich in der xy-Ebene mit konstanter Winkelgeschwindigkeit ω um den Ursprung dreht. Stellen Sie die Bewegungsgleichung mit Hilfe der Lagrange-Gleichungen erster Art auf. Lösen Sie die Bewegungsgleichung. Führen Sie die Rechnungen in Zylinderkoordinaten durch. Wie lautet die Zwangskraft? Welche Bedeutung hat sie? Ist die Energie erhalten?