A MINOR PROJECT ON

ABANDONED OBJECT DETECTION USING EDGE DETECTION

PRESENTED BY:
HARSH AGARWAL
169103032

UNDER THE GUIDANCE OF DR. VIJAYPAL SINGH DHAKA

DEPARTMENT OF COMPUTER AND COMMUNICATION ENGINEERING SCHOOL OF COMPUTING AND INFORMATION TECHNOLOGY MANIPAL UNIVERSITY JAIPUR
JAIPUR, RAJASTHAN

Contents

7. Conclusion

8. Bibliography

1.	Introduction	3
2.	Motivation	4
3.	Statement of Problem	5
4.	Work Done	6
5.	Results	1
6.	Further Works	15

16

17

Introduction

- As crime rate is increasing day by day, video surveillance has become a need. It helps security monitor the day to day events.
- Incidents of bomb blasts by terrorists at busy public places are among the prime concerns to security agencies across the globe.
- All of these places are well equipped with CCTV's and are not able to make the best use of them.

Motivation

- We hear about bomb attacks which are held all over the country, which is a huge amount of loss in terms of both property and life.
- It becomes a crucial task to have safety all over public places as to cause maximum destruction the bomb is placed in Public places.
- To stop this incidences, i was motivated to help us detect an unwanted placed object and providing an alarm to the Security.

Statement of Problem

- Presently cameras are being used only for storing recordings with imprinted time and date.
- The existing device is not proactive and is not efficient to alarm the security personnel who can immediately check the incident
- A system is being presented which is smart enough to detect an abandoned object and mark it on the screen.

Work Done

- 1. We are processing the live feed of the CCTV camera with image processing.
- 2. If a person is releasing off some piece of luggage the camera will catch the activity.
- 3. This frames are been detected and been image processed by Edge detection. The processing is done by the OpenCV.
- 4. If the bag is untouched for a some period of time the analyser decides and further gives an alarm to the authority.

First Solution:

- OpenCV is an open source computer idea and machine learning software public library.
- The library has more than 2500 elevated algorithms.
- These algorithms can be used to perceive and distinguish faces, identify objects, organise human actions in videos, track moving objects, follow eye activities, recognise scenery etc.

Steps:

- 1. The input video is divided into frames.
- 2. The first frame is converted to Grey from RGB.
- 3. The video is converted to Grey from RGB.
- 4. Frame difference of first frame and the video is taken.
- 5. Canny Edge Detection is applied.
- 6. A timer is started in case of a detection.
- 7. If the abandoned object is not moved for a specified time then it is displayed on the screen.

Second Solution:

- YOLOv3 is used in this project.
- The YOLO model is trained on the COCO dataset.
- The COCO dataset consists of 80 labels, including, but not limited to:People, Bicycle, Cars, bench, animals, suitcase etc.

Steps:

- 1. Our system divides the input image into an $S \times S$ grid
- 2. Each grid cell predicts B bounding boxes and confidence scores for those boxes
- 3. Each bounding box consists of 5 predictions: x, y, w, h, and confidence.
- 4. Each grid cell also predicts C conditional class probabilities
- 5. These predictions are encoded as an $S \times S \times (B * 5 + C)$ tensor.

Result

First Solution:

Scenario 1: this is the reference frame with only the permanent objects.

Scenario 2 : objects are being detected and bounding boxes are being made around them.

Scenario 3 : object has not been moved and therefore a message to check object is being displayed.

Second Solution:

Scenario 1 : this is the reference frame with only the permanent objects.

Scenario 2:Objects are being detected and being classified into different classes .

Scenario 3 : object has not been moved and therefore a message to check object is being displayed.

Further works

- Further improve the detection algorithm.
- Implement a suspicious object detection.
- Improve the system by checking if the objects are attended or not and then classifying it as abandoned object.

Conclusion

- * This system introduces a framework to discover the abandoned objects in the public areas such as railway stations, shopping malls.
- The YOLO Detection were carried out on COCO dataset.
- * This system detects and classifies object into different classes and also detects abandoned.
- *This system becomes very helpful to the guards monitoring the public places as they get alerted before any dangerous circumstances occur.

Bibliography

- · Bhondave, Aniket, et al. "Suspicious Object Detection Using Back-Tracing Technique." *International Journal of Advanced Research in Computer and Communication Engineering* 5.1 (2016): 406-408.
- Lin, Kevin, et al. "Abandoned object detection via temporal consistency modeling and back-tracing verification for visual surveillance." *IEEE Transactions on Information Forensics and Security* 10.7 (2015): 1359-1370.
- Gupta, Pritee, Yashpal Singh, and Manoj Gupt. "Moving Object Detecti on Using Frame Difference, Background Subtraction and SOBS for Video Surveillance Application." pp151-156 (2014).
- Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings
 of the IEEE conference on computer vision and pattern recognition. 2016.
- Adrian Rosebrock, (2018), "YOLO object detection with OpenCV", https://www.pyimagesearch.com/2018/11/12/yolo-object-detection-with-opency/, (March 25,2019).
- Harrison, (2015), "Morphological Transformations OpenCV Python Tutorial", https://pythonprogramming.net/morphological-transformation-python-opencv-tutorial/, (Feb 20,2019).
- Utkarsh Sinha, (2018), "Why OpenCV?", http://aishack.in/tutorials/opency/, (Feb 20,2019).

