

Aufgaben zur Algebra 1

Besprechungstermin: Do. 9. Jänner 2025

Aufgabe 1

Bestimmen Sie das Minimalpolynom von $\sqrt{2} + \sqrt{3}$ über \mathbb{Q} , den Körpergrad $\left[\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}\right]$ sowie eine Basis des \mathbb{Q} -Vektorraums $\mathbb{Q}(\sqrt{2} + \sqrt{3})$.

Aufgabe 2

Sei k ein Körper und $q \in k[x]$ ein Polynom. Zeigen Sie:

- (i) Es gibt eine Körpererweiterung $k\subseteq K,$ so dass q in K[x] in Linearfaktoren zerfällt.
- (ii) Falls $ggT(q, \partial(q)) = 1$ in k[x] gilt, so hat q in K (wie in (i)) keine doppelte Nullstelle (d.h. alle Linearfaktoren sind verschieden).

Aufgabe 3

- (i) Sei p eine Primzahl, $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$, $n = p^r$ für ein $r \in \mathbb{N}$, und $q = x^n x \in \mathbb{F}_p[x]$. Zeigen Sie, dass $\operatorname{ggT}(q, \partial(q)) = 1$ in $\mathbb{F}_p[x]$ gilt.
- (ii) Zeigen Sie, dass für jede Primzahl p und jedes $r \in \mathbb{N}$ ein Körper mit genau p^r Elementen existiert.

Aufgabe 4

Seien $m,n\in\mathbb{N}$ teilerfremde Zahlen, für die man sowohl ein gleichseitiges m-Eck als auch ein gleichseitiges n-Eck mit Zirkel und Lineal aus 0,1 konstruieren kann. Zeigen Sie, dass man dann auch ein gleichseitiges mn-Eck mit Zirkel und Lineal aus 0,1 konstruieren kann.