Introducción a la Lógica y la Computación — Estructuras de orden Práctico 6: Teorema de Birkhoff para reticulados distributivos finitos.

- 1. Para cada uno de los reticulados diagramados:
 - a) Dibuje el diagrama de Hasse del poset de elementos irreducibles.
 - b) Dibuje en cada caso el diagrama de Hasse de $\mathcal{D}(Irr(L))$.
 - c) Utilice el Teorema de Birkhoff para determinar si es distributivo o no.

- 2. a) Determine $Irr(D_{300})$.
 - b) Describa de la manera aritmética cuáles son los elementos irreducibles de D_n .
 - c) ¿Qué forma tiene los posets $Irr(D_n)$ en general?
- 3. Determine cuándo D_n es isomorfo a algún $\mathcal{P}(X)$. En tal caso, dé un X adecuado y describa explícitamente el isomorfismo.
- 4. Dé todos los reticulados distributivos con exactamente 3 elementos irreducibles.
- 5. Sean (L, \leq_L) y (M, \leq_M) posets. Considere el conjunto $L \times M$ con \leq definida así:

$$(x_1, y_1) \leq (x_2, y_2) \sin x_1 \leq_L x_2 y y_1 \leq_M y_2.$$

- a) Sea \mathbf{n} la cadena de n elementos. Dé los diagramas de Hasse de :
 - 1) **2** × **4**

- 2) $\mathcal{P}(\{a,b\}) \times \mathbf{2}$.
- 3) $2 \times (2 \times 2)$.
- b) Pruebe que si L y M son reticulados entonces $L \times M$ también lo es. Dé explícitamente las operaciones

$$(x_1, y_1) \wedge (x_2, y_2)$$
 $(x_1, y_1) \vee (x_2, y_2)$

- c) Defina el producto $B_0 \times B_1$ de las álgebras de Boole B_0 y B_1 y pruebe que es un álgebra de Boole.
- d) Pruebe que si L y M son distributivos, entonces $L \times M$ también lo es.