## Университет ИТМО Физико-технический мегафакультет Физический факультет



| Группа Р3207                 | К работе допущен |
|------------------------------|------------------|
| Студент Садовой Г. В.        | Работа выполнена |
| Преподаватель Агабабаев В.А. | Отчет принят     |

# Рабочий протокол и отчет по лабораторной работе № 1.05

Исследование колебаний физического маятника

#### 1. Цели работы.

1. Изучение характеристик затухающих колебаний физического маятника.

#### 2. Задачи, решаемые при выполнении работы.

- 1. Измерение периода затухающих колебаний.
- 2. Определение зависимости амплитуды затухающих колебаний физического маятника от времени.
- 3. Определение зависимости периода колебаний от момента инерции физического маятника.
- 4. Определение преобладающего типа трения.
- 5. Определение экспериментальной и теоретической приведенных длин маятника при его разных конфигурациях.

#### 3. Объект исследования.

Период затухающих колебаний физического маятника.

#### 4. Метод экспериментального исследования.

- Измерение периода N числа колебаний маятника с разными положениями груза, параллельно отмечая время, когда амплитуда отклонения маятника от равновесного положения будет равна 25, 20, 15, 10 и 5.
- Построение графиков зависимостей амплитуды колебаний от времени и квадрата периода от момента инерции.
- Определение, какой тип трения играет главную роль в затухании колебаний: сухое трение или вязкое.
- Вычисление экспериментальной и теоретической приведенной длины маятника при разных его конфигурациях.
- Рабочие формулы и исходные данные.

#### 5. Рабочие формулы и исходные данные.

Зависимость логарифма отношения амплитуд от времени

$$ln\frac{A}{A_0} = -\beta t,$$

Зависимость амплитуды колебаний от ширины зоны застоя

$$A(t=nT) = A_0 - 4n\Delta\varphi_3.$$

Расстояния центров грузов от оси вращения

$$R = l_1 + (n-1)l_0 + b/2$$

Момент инерции грузов

$$I_{\rm rp} = m_{\rm rp} ({R_{\rm Bepx}}^2 + {R_{\rm HMX}}^2 + 2{R_{\rm 6ok}}^2).$$

Период колебаний маятника от момента инерции

$$T = 2\pi \sqrt{\frac{I}{mgl}}.$$

Приведенная длина маятника от момента инерции

$$l_{\rm np} = \frac{I}{ml} = \frac{I_0}{ml} + l.$$

#### 6. Измерительные приборы

Таблица 1. Характеристики средств измерения

| № п/п | Наименование                                 | Тип прибора       | Используемый<br>диапазон | Погрешность<br>прибора |
|-------|----------------------------------------------|-------------------|--------------------------|------------------------|
| 1     | Секундомер на смартфоне                      | Секундомер        | От 0 до 10 с             | 0,01 c                 |
| 2     | Шкала для измерения угла отклонения маятника | Линейная<br>шкала | От 0° до 60°             | 1°                     |

Таблица 5. Параметры установки

| Пар | раметры установки                 |                                |
|-----|-----------------------------------|--------------------------------|
| 1.  | Масса каретки                     | $(47.0\pm0.5)\ \Gamma$         |
| 2.  | Масса шайбы                       | $(220,0\pm0,5)\ \Gamma$        |
| 3.  | Масса грузов на крестовине        | $(408,0\pm0,5)$ r              |
| 4.  | Расстояние от оси до первой риски | $(57,0\pm0,5)$ mm              |
| 5.  | Расстояние между рисками          | $(25,0\pm0,2)\ { m mm}$        |
| 6.  | Диаметр ступицы                   | $(46.0 \pm 0.5) \ \mathrm{mm}$ |
| 7.  | Диаметр груза на крестовине       | $(40.0 \pm 0.5) \ \mathrm{mm}$ |
| 8.  | Высота груза на крестовине        | $(40.0 \pm 0.5) \ \mathrm{mm}$ |
| 9.  | Расстояние, проходимое грузом (h) | $(700,0\pm0,1)\ { m mm}$       |

#### 7. Схема установки (перечень схем, которые составляют Приложение 1).



Рис. 1. Стенд лаборатории механики (общий вид)

Общий вид экспериментальной установки изображен на Рис. 1. В состав установки входят:

Шкала

Груз

Рукоятка сцепления

Передняя крестовина

## 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1 Данные измерений времени N = 10 колебаний

| t <sub>1</sub> , c | 18.34 |
|--------------------|-------|
| t <sub>2</sub> , c | 18.51 |
| t <sub>3</sub> , c | 18.27 |
| $\bar{t}$ , $c$    | 18.37 |
| <i>T</i> , c       | 1.84  |

Таблица 2 Данные измерений амплитуды колебаний от времени

| Амплитуда отклонения<br>Время | 25°   | 20°   | 15°    | 10°    | 5°     |
|-------------------------------|-------|-------|--------|--------|--------|
| <i>t</i> <sub>1</sub> , c     | 51.42 | 98.01 | 158.57 | 235.51 | 333.91 |
| <i>t</i> <sub>2</sub> , c     | 51.23 | 95.04 | 149.99 | 235.21 | 328.38 |
| <i>t</i> <sub>3</sub> , c     | 47.57 | 95.16 | 162.17 | 235.13 | 330.95 |
| $\bar{t}$ , c                 | 50.07 | 96.07 | 156.91 | 235.28 | 331.08 |

| TI ( ) TI             |               | ~ ~               |                        | ~               |
|-----------------------|---------------|-------------------|------------------------|-----------------|
| Таблица 3 Данные изме | ทอบบบ ทอทบอสส | TOTAL AUTHOR WALL | nasility natroneginiay | horoplix annage |
| тиолини э диппон изме | репии периоби | колеоипии при     | υασποιλ πυλυλικτιαλλ   | υυκυσσιλ ζυνόυσ |
|                       |               |                   |                        |                 |

| Положение боковых грузов | t <sub>1</sub> , c | $t_2$ , c | $t_3$ , c | $\bar{t}$ , c | <i>T</i> , c |
|--------------------------|--------------------|-----------|-----------|---------------|--------------|
| 1 риска                  | 16.15              | 16.34     | 16.51     | 16.33         | 1.63         |
| 2 риски                  | 17.18              | 17.20     | 17.19     | 17.19         | 1.72         |
| 3 риска                  | 18.84              | 18.89     | 18.81     | 18.85         | 1.88         |
| 4 риски                  | 20.10              | 20.08     | 19.53     | 19.90         | 1.99         |
| 5 рисок                  | 21.24              | 21.23     | 21.18     | 21.22         | 2.12         |
| 6 рисок                  | 22.69              | 22.89     | 22.58     | 22.72         | 2.27         |

## 9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Найдем максимальную амплитуду и период:

$$A_0 = (l_1 + 6l_0) \sin 30^\circ \approx 103.5 \text{ MM}$$

Таблииа 4

| $arphi_{ m otk}$ | t, c   | А, мм | $\ln \frac{A}{A_0}$ |
|------------------|--------|-------|---------------------|
| 30°              | 0.00   | 103.5 | 0.000               |
| 25°              | 50.07  | 87.5  | -0.168              |
| 20°              | 96.07  | 70.8  | -0.380              |
| 15°              | 156.91 | 53.6  | -0.658              |
| 10°              | 235.28 | 35.9  | -1.059              |
| 5°               | 331.08 | 18.0  | -1.749              |

По МНК найдем коэффициенты  $\beta$  и  $\Delta \phi_3$  в формулах:

$$\ln\frac{A}{A_0} = -\beta t$$

$$A(t = nT) = A_0 - 4n\Delta\phi_3 = A_0 - 4\frac{t}{T}\Delta\phi_3 = A_0 - t\frac{4}{1.84}\Delta\phi_3$$

Зависимость между амплитудой и течением времени лучше аппроксимируется экспонентой, значит в наших колебаниях преобладает вязкое трение.

Таблица 5

| $\beta$ , c <sup>-1</sup>                                                 | $\Delta \phi_{\scriptscriptstyle 3}$ , м |  |  |  |
|---------------------------------------------------------------------------|------------------------------------------|--|--|--|
| 0.005                                                                     | 0.119                                    |  |  |  |
| $\tau = 1$                                                                | 1<br>≈ 191c                              |  |  |  |
| $\tau = \frac{\pi}{\beta} \approx \frac{191c}{0.0052389666} \approx 191c$ |                                          |  |  |  |

#### Таблииа 6

| Риски                                      | 1     | 2     | 3     | 4     | 5     | 6     |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|
| $R_{ m Bepx}$ , мм                         |       | 77    |       |       |       |       |
| R <sub>ниж</sub> , мм                      |       |       | 20    | 02    |       |       |
| R <sub>бок</sub> , мм                      | 77    | 102   | 127   | 152   | 177   | 202   |
| $I_{\rm rp}$ , кг · м <sup>2</sup>         | 0.024 | 0.028 | 0.030 | 0.036 | 0.042 | 0.050 |
| <i>I</i> , кг · м <sup>2</sup>             | 0.032 | 0.036 | 0.038 | 0.044 | 0.050 | 0.058 |
| $I_{\rm пр. \ эксп}$ , кг · м <sup>2</sup> | 0.660 | 0.735 | 0.878 | 0.984 | 1.168 | 1.280 |
| $I_{\rm пр. \ Teop}$ , кг · м <sup>2</sup> | 0.762 | 0.857 | 0.905 | 1.048 | 1.190 | 1.381 |

С помощью МНК найдем 
$$ml$$
 и  $l_{\rm Teop}$ : 
$$ml = \frac{4\pi^2}{g} \frac{\sum (l_i - \bar{l})^2}{\sum (l_i - \bar{l})(T_i - \bar{T})^2} = 0.042~{\rm kf\cdot m}$$
 
$$l_{\rm Teop} = \frac{ml}{4m_{\rm rp}} = 0.026$$

# 10. Графики.

График 1: Зависимость  $A(t=nT)=A_0-4n\Delta\phi_3$ 



График 2: Зависимость  $\ln \frac{A}{A_0} = -\beta t$ 





График 3: Зависимость  $T^2=rac{4\pi^2 I}{mgl}$ 

#### 11. Окончательные результаты

Преобладающий вид трения: вязкий

| Риски                                       | 1     | 2     | 3     | 4     | 5     | 6     |
|---------------------------------------------|-------|-------|-------|-------|-------|-------|
| $I_{\rm пр.~эксп}$ , кг $\cdot$ м $^2$      | 0.660 | 0.735 | 0.878 | 0.984 | 1.168 | 1.280 |
| $I_{\text{пр. теор}}$ , кг · м <sup>2</sup> | 0.762 | 0.857 | 0.905 | 1.048 | 1.190 | 1.381 |

#### 12. Вывод

В рамках выполнения данной лабораторной работы я изучил колебания физического маятника и на практике определил преобладающий тип трения в данной системе. В процессе анализа данных мы также вычислили приведенную длину маятника для каждой позиции боковых грузов, применив метод наименьших квадратов, и сравнили полученные значения с результатами, рассчитанными на основе теоретических формул. Для данной лабораторной установки было установлено, что основным типом трения является вязкое трение, с коэффициентом затухания  $\beta = 0.005$  с^(-1) и временем затухания  $\tau = 191$  с