CS215: Discrete Math (H)

2024 Fall Semester Written Assignment # 2

Due: Oct. 28th, 2024, please submit at the beginning of class

Q.1 Suppose that A, B and C are three finite sets. For each of the following, determine whether or not it is true. Explain your answers.

- (a) $(A B = A) \rightarrow (B \subset A)$
- (b) $(A \cap B \cap C) \subseteq (A \cup B)$
- (c) $\overline{(A-B)} \cap (B-A) = B$

Solution:

- (a) False. As an counterexample, let $A = \{1\}$, and $B = \{2\}$. Then A B = A, but B is not a subset of A.
- (b) True. $A \cap B \cap C \subseteq A \cap B \subseteq A \cup B$.
- (c) False. Let $A = B = \{1\}$. Then, $\overline{A B} \cap (B A) = U \cap \emptyset \neq B = \{1\}$.

Q.2 Prove or disprove the following.

- (1) For any three sets $A, B, C, C (A \cap B) = (C A) \cap (C B)$.
- (2) For any two sets $A, B, \mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$, where $\mathcal{P}(A)$ denotes the power set of the set A.
- (3) For any two sets $A, B, \mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$, where $\mathcal{P}(A)$ denotes the power set of the set A.
- (4) For a function $f: X \to Y$, $f(A \cap B) = f(A) \cap f(B)$, for any two sets $A, B \subseteq X$.

Solution:

(1) The statement is false. A counterexample is: $A = \{1\}$, $B = \{2\}$, $C = \{1, 2\}$. Then $C - (A \cap B) = \{1, 2\}$ but $(C - A) \cap (C - B) = \emptyset$.

- (2) The statement is true. We first prove that $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$. Take any subset $X \subseteq A \cap B$, then by definition of power set, $X \in \mathcal{P}(A \cap B)$. Also, $X \subseteq A$ and $X \subseteq B$, it follows that $X \in \mathcal{P}(A)$ and $X \in \mathcal{P}(B)$. Then we have $X \in \mathcal{P}(A) \cap \mathcal{P}(B)$. On the other hand, for $X \in \mathcal{P}(A) \cap \mathcal{P}(B)$, we have $X \subseteq A$ and $X \subseteq B$. This means that $X \subseteq A \cap B$. Thus, $X \in \mathcal{P}(A \cap B)$. The other part $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$ is proved.
- (3) The statement is false. A counterexample is: $A = \{1\}$, $B = \{2\}$. Then $\mathcal{P}(A) = \{\emptyset, \{1\}\}, \ \mathcal{P}(B) = \{\emptyset, \{2\}\}, \ \mathcal{P}(A) \cup \mathcal{P}(B) = \{\emptyset, \{1\}, \{2\}\}.$ However, $\mathcal{P}(A \cup B) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}.$
- (4) The statement is false. A counterexample is: $f(n) = n^2$. Consider $A = \{1\}$ and $B = \{-1\}$. Then $f(A) = \{1\}$ and $f(B) = \{1\}$. Thus, $f(A) \cap f(B) = \{1\}$. However, $A \cap B = \emptyset$ and hence $f(A \cap B) = \emptyset$.

Q.3 The *symmetric difference* of A and B, denoted by $A \oplus B$, is the set containing those elements in either A or B, but not in both A and B.

- (a) Determine whether the symmetric difference is associative; that is, if A, B and C are sets, does it follow that $A \oplus (B \oplus C) = (A \oplus B) \oplus C$?
- (b) Suppose that A, B and C are sets such that $A \oplus C = B \oplus C$. Must it be the case that A = B?

Solution:

- (a) Using membership table, one can show that each side consists of the elements that are in an odd number of the sets A, B and C. Thus, it follows.
- (b) Yes. We prove that for every element $x \in A$, we have $x \in B$ and vice versa.

First, for elements $x \in A$ and $x \notin C$, since $A \oplus C = B \oplus C$, we know that $x \in A \oplus C$ and thus $x \in B \oplus C$. Since $x \notin C$, we must have $x \in B$. For elements $x \in A$ and $x \in C$, we have $x \notin A \oplus C$. Thus, $x \notin B \oplus C$. Since $x \in C$, we must have $x \in B$.

The proof of the other way around is similar.

Q.4 For each set defined below, determine whether the set is countable or uncountable. Explain your answers. Recall that $\mathbb N$ is the set of natural numbers and $\mathbb R$ denotes the set of real numbers.

- (a) The set of all subsets of students in CS201
- (b) $\{(a,b)|a, b \in \mathbb{N}\}$
- (c) $\{(a,b)|a\in\mathbb{N},\ b\in\mathbb{R}\}$

Solution:

- (a) Countable. The number of students in CS201 is finite, so the size of its power set is also finite. All finite sets are countable.
- (b) Countable. The set is the same as $\mathbb{N} \times \mathbb{N}$. We now show a bijections between \mathbb{Z}^+ and the set:

$$(0,0), (0,1), (1,0), (1,1), (1,2), \dots$$

(c) Uncountable. Since $\mathbb R$ is uncountable, any sequence that includes an element from $\mathbb R$ must also be uncountable.

Q.5 Give an example of two uncountable sets A and B such that the difference A-B is

- (a) finite,
- (b) countably infinite,
- (c) uncountable.

Solution: In each case, let A be the set of real numbers.

(a) Let B be the set of real numbers as well, then $A - B = \emptyset$, which is finite.

- (b) Let B be the set of real numbers that are not positive integers, then $A B = \mathbf{Z}^+$, which is countably infinite.
- (c) Let B be the set of positive real numbers. Then A B is the set of negative real numbers, which is uncountable.

Q.6 Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ if and only if $A \subseteq B$.

Solution: For the "if" part, given $A \subseteq B$, we want to show that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, i.e., if $C \subseteq A$, then $C \subseteq B$. Since $A \subseteq B$, $A \subseteq C$ directly follows.

For the "only if" part, given that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, we want to show that $A \subseteq B$. Suppose that $a \in A$. Then $\{a\} \in \mathcal{P}(A)$. Since $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, it follows that $\{a\} \in \mathcal{P}(B)$, which means that $\{a\} \subseteq B$. This implies that $a \in B$, and completes the proof.

Q.7 For each set A, the identity function $1_A : A \to A$ is defined by $1_A(x) = x$ for all x in A. Let $f : A \to B$ and $g : B \to A$ be the functions such that $g \circ f = 1_A$. Show that f is one-to-one and g is onto.

Solution: First, let's show that f is one-to-one. Let x, y be two elements of A such that f(x) = f(y). Then $x = 1_A(x) = g(f(x)) = 1_A(y) = y$.

Next, let's show that g is onto. Let x be any element of A. Then f(x) is an element of B such that $g(f(x)) = 1_A(x) = x$, this means for any element in A, f(x) is its preimage in the set B.

Q.8 Suppose that two functions $g: A \to B$ and $f: B \to C$ and $f \circ g$ denotes the *composition* function.

- (a) If $f \circ g$ is one-to-one and g is one-to-one, must f be one-to-one? Explain your answer.
- (b) If $f \circ g$ is one-to-one and f is one-to-one, must g be one-to-one? Explain your answer.
- (c) If $f \circ g$ is one-to-one, must g be one-to-one? Explain your answer.

- (d) If $f \circ g$ is onto, must f be onto? Explain your answer.
- (e) If $f \circ q$ is onto, must q be onto? Explain your answer.

Solution:

- (a) No. We prove this by giving a counterexample. Let $A = \{1, 2\}, B =$ $\{a,b,c\}$, and C=A. Define the function g by g(1)=a and g(2)=b, and define the function f by f(a) = 1, and f(b) = f(c) = 2. Then it is easily verified that $f \circ g$ is one-to-one and g is one-to-one. But f is not one-to-one.
- (b) Yes. For any two elements $x, y \in A$ with $x \neq y$, assume to the contrary that g(x) = g(y). On one hand, since $f \circ g$ is one-to-one, we have $f \circ g(x) \neq f \circ g(y)$. One the other hand, $f \circ g(x) = f(g(x)) = f(g(y)) = f(g(y)) = f(g(y))$ $f \circ g(y)$. This leads to a contradiction. Thus, $g(x) \neq g(y)$, which means that q must be one-to-one.
- (c) Yes. Similar to (b), the condition that f is one-to-one is in fact not used.
- (d) Yes. Since $f \circ q$ is onto, we know that $f \circ q(A) = C$, which means that f(g(A)) = C. Note that g(A) is a subset of B, thus, f(B) must also be C. This means that f is also onto.

(e) No. A counterexample is the same as that in (a).

Q.9 Derive the formula for $\sum_{k=1}^{n} k^2$. Solution: First we note that $k^3 - (k-1)^3 = 3k^2 - 3k + 1$. Then we sum this equation for all values of k from 1 to n. On the left, because of telescoping, we have just n^3 ; on the right we have

$$3\sum_{k=1}^{n} k^2 - 3\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = 3\sum_{k=1}^{n} k^2 - \frac{3n(n+1)}{2} + n.$$

Equating the two sides and solving for $\sum_{k=1}^{n} k^2$, we obtain

$$\sum_{k=1}^{n} k^{2} = \frac{1}{3} \left(n^{3} + \frac{3n(n+1)}{2} - n \right)$$

$$= \frac{n}{3} \left(\frac{2n^{2} + 3n + 3 - 2}{2} \right)$$

$$= \frac{n}{3} \left(\frac{2n^{2} + 3n + 1}{2} \right)$$

$$= \frac{n(n+1)(2n+1)}{6}$$

Q.10 Derive the formula for $\sum_{k=1}^{n} k^3$. Solution: Again, we use "telescoping" to derive this formula. Since $k^4 - (k-1)^4 = k^4 - (k^4 - 4k^3 + 6k^2 - 4k + 1) = 4k^3 - 6k^2 + 4k - 1$, we have

$$\sum_{k=1}^{n} [k^4 - (k-1)^4] = 4 \sum_{k=1}^{n} k^3 - 6 \sum_{k=1}^{n} k^2 + 4 \sum_{k=1}^{n} k - \sum_{k=1}^{n} 1$$

$$= 4 \sum_{k=1}^{n} k^3 - 6n(n+1)(2n+1)/6 + 4n(n+1)/2 - n$$

$$= 4 \sum_{k=1}^{n} k^3 - n(n+1)(2n+1) + 2n(n+1) - n$$

$$= n^4.$$

Thus, it then follows that

$$4\sum_{k=1}^{n} k^{3} = n^{4} + n(n+1)(2n+1) - 2n(n+1) + n$$
$$= n^{2}(n+1)^{2}.$$

Then we get the formula $\sum_{k=1}^{n} k^3 = n^2(n+1)^2/4$.

Q.11 Find a formula for $\sum_{k=0}^{m} \lfloor \sqrt{k} \rfloor$, when m is a positive integer. Solution:

By the definition of the floor function, there are 2n+1 n's in the summation. Let $n=\lfloor \sqrt{m}\rfloor-1$. Then

$$\sum_{k=0}^{m} \lfloor \sqrt{k} \rfloor$$

$$= \sum_{i=1}^{n} (2i^{2} + i) + (n+1)(m - (n+1)^{2} + 1)$$

$$= 2\sum_{i=1}^{n} i^{2} + \sum_{i=1}^{n} i + (n+1)(m - (n+1)^{2} + 1)$$

$$= \frac{n(n+1)(2n+1)}{3} + \frac{n(n+1)}{2} + (n+1)(m - (n+1)^{2} + 1)$$

Q.12 Show that if A, B, C and D are sets with |A| = |B| and |C| = |D|, then $|A \times C| = |B \times D|$.

Solution: We are given bijections f from A to B and g from C to D. Then the function from $A \times C$ to $B \times D$ that sends (a, c) to (f(a), g(c)) is a bijection. Thus, we have $|A \times C| = |B \times D|$.

Q.13 Show that if A and B are sets with the same cardinality, then $|A| \leq |B|$ and $|B| \leq |A|$.

Solution: If A and B have the same cardinality, then we have a one-to-one correspondence $f: A \to B$. The function f meets the requirement of the definition that $|A| \leq |B|$, and f^{-1} meets the requirement of the definition that $|B| \leq |A|$.

Q.14 Suppose that A is a countable set. Show that the set B is also countable if there is an onto function from A to B.

Solution: If $A = \emptyset$, then the only way for the conditions to be met are that $B = \emptyset$ as well, and we are done. So assume that A is nonempty. Let f be the given onto function from A to B, and let $g: \mathbf{Z}^+ \to A$ be an onto function that establishes the countability of A. If A is finite rather than countably infinite, say of cardinality of k, then the function g can be simply defined so that $g(1), g(2), \ldots, g(k)$ will list the elements of A, and g(n) = g(1) for n > k. We need to find an onto function from \mathbf{Z}^+ to B. The function $f \circ g$ does the trick, because the composition of two onto functions is onto.

Q.15 Show that the set $\mathbf{Z}^+ \times \mathbf{Z}^+$ is countable by showing that the polynomial function $f: \mathbf{Z}^+ \times \mathbf{Z}^+ \to \mathbf{Z}^+$ with f(m,n) = (m+n-2)(m+n-1)/2 + m is one-to-one and onto.

Solution: It is clear from the formula that the range of values the function takes on for a fixed value of m+n, say m+n=x, is (x-2)(x-1)/2+1 through (x-2)(x-1)/2+(x-1), because m can assume the values $1,2,3,\ldots,(x-1)$ under these conditions, and the first term in the formula is a fixed positive integer when m+n is fixed. To show that this function is one-to-one and onto, we merely need to show that the range of values for x+1 picks up precisely where the range of values for x left off, i.e., that f(x-1,1)+1=f(1,x). We have $f(x-1,1)+1=(x-2)(x-1)/2+(x-1)+1=(x^2-x+2)/2=(x-1)x/2+1=f(1,x)$.

Q.16 By the Schröder-Bernstein theorem, prove that (0,1) and [0,1] have the same cardinality.

Solution: By the Schröder-Bernstein theorem, it suffices to find one-to-one functions $f:(0,1)\to [0,1]$ and $g:[0,1]\to (0,1)$. Let f(x)=x and g(x)=(x+1)/3. It is then straightforward to prove that f and g are both one-to-one.

Q.17 Suppose that f(x), g(x) and h(x) are functions such that f(x) is $\Theta(g(x))$ and g(x) is $\Theta(h(x))$. Show that f(x) is $\Theta(h(x))$.

Solution: The definition of "f(x) is $\Theta(g(x))$ " is that f(x) if both O(g(x)) and $\Omega(g(x))$. This means that there are positive constants C_1, k_1, C_2 , and k_2 such that $|f(x)| \leq C_2|g(x)|$ for all $x > k_2$ and $|f(x)| \geq C_1|g(x)|$ for all $x > k_1$. Similarly, we have that there are positive constants C_1', k_1', C_2' , and k_2' such that $|g(x)| \leq C_2'|h(x)|$ for all $x > k_2'$ and $|g(x)| \geq C_1'|h(x)|$ for all $x > k_1'$. We can combine these inequalities to obtain $|f(x)| \leq C_2C_2'|h(x)|$ for all $x > \max(k_2, k_2')$ and $|f(x)| \geq C_1C_1'|h(x)|$ for all $x > \max(k_1, k_1')$. This means that f(x) is $\Theta(h(x))$.

Q.18 If $f_1(x)$ and $f_1(x)$ are functions from the set of positive integers to the set of positive real numbers and $f_1(x)$ and $f_2(x)$ are both $\Theta(g(x))$, is $(f_1 - f_2)(x)$ also $\Theta(g(x))$? Either prove that it is or give a counter example. **Solution:** This is false. Let $f_1 = 2x^2 + 3x$, $f_2 = 2x^2 + 2x$ and $g(x) = x^2$.

Q.19 Show that if $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, where a_0, a_1, \dots, a_{n-1} , and a_n are real numbers and $a_n \neq 0$, then f(x) is $\Theta(x^n)$.

Solution:

We need to show inequalities in both ways. First, we show that $|f(x)| \le Cx^n$ for all $x \ge 1$ in the following. Noting that $x^i \le x^n$ for such values of x whenever i < n. We have the following inequalities, where M is the largest of the absolute values of the coefficients and C = (n+1)M:

$$|f(x)| = |a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0|$$

$$\leq |a_n| x^n + |a_{n-1}| x^{n-1} + \dots + |a_1| x + |a_0|$$

$$\leq |a_n| x^n + |a_{n-1}| x^n + \dots + |a_1| x^n + |a_0| x^n$$

$$\leq M x^n + M x^n + \dots + M x^n$$

$$= C x^n.$$

For the other direction, let k be chosen larger than 1 and larger than $2nm/|a_n|$, where m is the largest of the absolute values of the a_i 's for i < n. Then each a_{n-i}/x^i will be smaller than $|a_n|/2n$ in absolute value for all x > k.

Now we have for all x > k,

$$|f(x)| = |a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0|$$

$$= x^n \left| a_n + \frac{a_{n-1}}{x} + \dots + \frac{a_1}{x^{n-1}} + \frac{a_0}{x^n} \right|$$

$$\geq x^n |a_n/2|.$$

Q.20 Prove that for any a > 1, $\Theta(\log_a n) = \Theta(\log_2 n)$.

Solution: We must show that there exist constants C_1, C_2 and n_0 such that $\log_a n \leq C_1 \log_2 n$ and $\log_2 n \leq C_2 \log_a n$ for all $n \geq n_0$. By the change of bases formula we have

$$\log_a n = \frac{\log_2 n}{\log_2 a}.$$

Now, let $C_1 = \frac{1}{\log_2 a}$, $C_2 = \log_2 a$, and $n_0 = 1$.

Q.21 The conventional algorithm for evaluating a polynomial $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ at x = c can be expressed in pseudocode by where the final value

```
Algorithm 1 polynomial (c, a_0, a_1, \ldots, a_n): real numbers)
```

```
power := 1
y := a_0
for i := 1 \text{ to } n \text{ do}
power := power * c
y := y + a_i * power
end for
return y \{ y = a_n c^n + a_{n-1} c^{n-1} + \dots + a_1 c + a_0 \}
```

of y is the value of the polynomial at x = c. Exactly how many multiplications and additions are used to evaluate a polynomial of degree n at x = c? (Do not count additions used to increment the loop variable).

Solution: 2n multiplications and n additions.

Q.22 There is a more efficient algorithm (in terms of the number of multiplications and additions used) for evaluating polynomials than the conventional algorithm described in the previous exercise. It is called **Horner's method**. This pseudocode shows how to use this method to find the value of $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ at x = c.

Algorithm 2 Horner $(c, a_0, a_1, \ldots, a_n)$: real numbers)

```
y := a_n

for i := 1 to n do

y := y * c + a_{n-i}

end for

return y \{ y = a_n c^n + a_{n-1} c^{n-1} + \dots + a_1 c + a_0 \}
```

Exactly how many multiplications and additions are used by this algorithm to evaluate a polynomial of degree n at x = c? (Do not count additions used to increment the loop variable.)

Solution:

n multiplications and n additions.

Q.23

- (1) Show that $(\log n)^{\log \log n} = O(\log(n^n))$, where the base of the logarithm is 2.
- (2) Order the following function by asymptotic growth rates. That is, list them as $f_1(n), f_2(n), \ldots, f_9(n)$, such that $f_i(n) = O(f_{i+1}(n))$ for all i. You don't have to explain your answer.

 n^2 , $\log n$, $n \log n$, $n^{\log n}$, $(\log n)^n$, $(\log n)^{\log n}$, $(\log \log n)^{\log n}$, $(\log n)^{\log \log n}$, $3^{n/2}$.

Solution:

(1) Let $n = 2^{2^k}$, then we need to show:

$$(\log 2^{2^k})^{\log \log 2^{2^k}} = O(2^{2^k} \log(2^{2^k})).$$

We then have $(2^k)^k = O(2^{2^k}2^k)$, and further $2^{2k} = O(2^{2^k+k})$, which is obviously true since $2^{2k} \le 2^{2^k+k}$ for all $k \ge 0$.

(2)

$$\log n$$
, $(\log n)^{\log \log n}$, $n \log n$, n^2 , $(\log \log n)^{\log n}$, $(\log n)^{\log n}$, $n^{\log n}$, $3^{n/2}$, $(\log n)^n$.

Q.24 Aliens from another world come to the Earth and tell us that the 3SAT problem is solvable in $O(n^8)$ time. Which of the following statements follow as a consequence?

A. All NP-Complete problems are solvable in polynomial time.

- B. All NP-Complete problems are solvable in $O(n^8)$ time.
- C. All problems in NP, even those that are not NP-Complete, are solvable in polynomial time.
- D. No NP-Complete problem can be solved *faster* than in $O(n^8)$ in the worst case.

E. P = NP.

Solution: A. C. E.