Solve Equations

You are given a straight line, $a \cdot x + b \cdot y = c$. Find the point closest to the origin that also satisfies the following properties:

- 1. \boldsymbol{x} and \boldsymbol{y} are integers.
- 2. \boldsymbol{x} is *greater than* zero.

If more than one solution exists satisfying 1 and 2, then choose the point in which x is minimal.

Given q queries consisting of a_i , b_i , and c_i , find and print the point satisfying the above conditions for each respective query. Each point must be printed on a new line as two space-separated integers denoting the point's respective x_i and y_i values.

Note: It is guaranteed that there will always be integral points on the line.

Input Format

The first line contains an integer, q, denoting the number of queries.

Each line i of the q subsequent lines contains three space-separated integers describing the respective values of a_i , b_i , and c_i for the query.

Constraints

- $1 < q < 10^5$
- $1 \le a \le 10^8$
- $1 \le b \le 10^8$
- $1 \le c \le 10^8$

Output Format

For each query, print 2 space-separated integers on a new line denoting the respective values of x_i and y_i for the point satisfying the i^{th} query.

Sample Input

1 231

Sample Output

2 -1

Explanation

Given the line $2 \cdot x + 3 \cdot y = 1$, the point (2, -1) is on the line and satisfies the conditions specified above. Thus, we print the coordinate as two space-separated integers on a new line.