Devoir surveillé n°14

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

1 Par définition de l'espérance,

$$\mathbb{E}(X) = \sum_{k=1}^{n} k \mathbb{P}(X = k)$$

$$= \sum_{k=1}^{m-1} k \mathbb{P}(X = k) + \sum_{k=m}^{n} k \mathbb{P}(X = k)$$

$$\leq (m-1) \sum_{k=1}^{m-1} \mathbb{P}(X = k) + n \sum_{k=m}^{n} \mathbb{P}(X = k)$$

$$= (m-1) \mathbb{P}(X \leq m-1) + n \mathbb{P}(X \geq m)$$

$$\leq (m-1) + n \mathbb{P}(X \geq m)$$

2 Supposons $n \ge 2$ et donnons-nous $k \in [2, n]$. Comme ln est croissante sur [k-1, k],

$$\forall t \in [k-1,k], \ln(t) \le \ln(k)$$

Par croissance de l'intégrale,

$$\int_{k-1}^{k} \ln(t) \, dt \le \int_{k-1}^{k} \ln(k) = \ln(k)$$

Ainsi

$$\int_{1}^{n} \ln(t) dt \sum_{k=2}^{n} \int_{k-1}^{k} \ln(t) dt \le \sum_{k=2}^{n} \ln(k) = \sum_{k=1}^{n} \ln(k)$$

Comme une primitive de ln sur \mathbb{R}_+^* est $t \mapsto t \ln(t) - t$,

$$n\ln(n) - n + 1 \le \sum_{k=1}^{n} \ln(k)$$

Cette inégalité est encore vraie si n = 1. On peut encore écrire

$$n \ln(n) - n + 1 \le \ln(n!)$$

puis par croissance de l'exponentielle

$$\left(\frac{n}{e}\right)^n e \le n!$$

Or $e \ge 1$ donc

$$\left(\frac{n}{\varrho}\right)^n \le n!$$

3 Comme u est bornée, U_n est une partie non vide et bornée de \mathbb{R} . Elle admet donc une borne inférieur et une borne supérieure, ce qui justifie la définition de \underline{u}_n et \overline{u}_n .

Puisque $U_{n+1} \subset U_n$, $\inf(U_n) \le \inf(U_{n+1})$ et $\sup(U_n) \ge \sup(U_{n+1})$. Les suites \underline{u} et \overline{u} sont donc respectivement croissante et décroissante.

Enfin, u étant bornée, les suites \underline{u} et \overline{u} le sont également. Elles convergent d'après le théorème de convergence monotone.

1

4 Soit *v* une suite décroissante et plus grande que *u*. Fixons $n \in \mathbb{N}^*$. Alors

$$\forall k \geq n, u_k \leq v_k \leq v_n$$

Ainsi

$$\overline{u}_n = \sup_{k > n} u_k \le v_n$$

Donc $\overline{u} \leq v$: \overline{u} est donc la plus petite suite décroissante et plus grande que u. De même, soit v une suite croissante et plus petite que u. Fixons $n \in \mathbb{N}^*$. Alors

$$\forall k \geq n, u_k \geq v_k \geq v_n$$

Ainsi

$$\overline{u}_n = \inf_{k > n} u_k \ge v_n$$

Donc $v \leq \underline{u} : \underline{u}$ est donc la plus grande suite croissante et plus petite que u.

- 5 Fixons $n \in \mathbb{N}^*$. Alors pour tout entier $k \ge n$, $u_k \le v_k$ puis $\sup_{k \ge n} u_n \le \sup_{k \ge n} v_k$ ou encore $\overline{u}_n \le \overline{v}_n$. On en déduit que $\lim \overline{u} \le \lim \overline{v}$.
- **6** Remarquons que pour tout $n \in \mathbb{N}^*$, $\underline{u}_n \le u_n \le \overline{u}_n$.

Si \underline{u} et \overline{u} sont adjacentes, elles convergent vers la même limite. D'après le théorème d'encadrement, u converge également (vers cette même limite).

Supposons que u converge. On sait déjà que \overline{u} et \overline{u} sont respectivement croissante et décroissante. Notons ℓ la limite de u et donnons-nous $\varepsilon > 0$. Par définition de la limite, il existe $p \in \mathbb{N}^*$ tel que pour tout entier $n \ge p$, $\ell - \varepsilon \le u_n \le \ell + \varepsilon$. Si l'on se donne un entier $n \ge p$, alors pour tout entier $k \ge n$, on a encore $\ell - \varepsilon \le u_k \le \ell + \varepsilon$. Ainsi

$$\ell - \varepsilon \le \inf_{k \ge n} u_k \le \sup_{k \ge n} u_k \le \ell + \varepsilon$$

Finalement,

$$\forall n \geq p, \ \ell - \varepsilon \leq \underline{u}_n \leq \overline{u}_n \leq \ell + \varepsilon$$

Ceci montre que \underline{u} et \overline{u} convergent toutes deux vers ℓ . Elles sont donc adjacentes.

On a également montré que dans ce cas, $\lim u = \lim u = \lim \overline{u}$.

7 Par définition de la division euclidienne

$$m = qn + r = (q-1)n + (n+r)$$

Par définition de la sous-additivité :

$$u_m = u_{(q-1)n+(n+r)} \le u_{(q-1)n} + u_{n+r}$$

Or on montre aisément par récurrence que pour tout $k \in \mathbb{N}^*$, $u_{kn} \le k \le u_n$. Donc

$$u_m \le (q-1)u_n + u_{n+r}$$

Ainsi

$$\frac{u_m}{m} \le \frac{q-1}{m}u_n + \frac{u_{n+r}}{m} = \frac{(q-1)n}{m} \cdot \frac{u_n}{n} + \frac{u_{n+r}}{m}$$

On a vu précédemment que (q-1)n = m-n-r. De plus, par définition du reste d'une division euclidienne, $0 \le r \le n-1$ donc $n \le n+r \le 2n-1$. Ainsi

$$u_{n+r} \le \max\{u_n, u_{n+1}, \dots, u_{2n-1}\}$$

Finalement,

$$\frac{u_m}{m} \le \frac{m-n-r}{m} \cdot \frac{u_n}{n} + \frac{\max\{u_n, u_{n+1}, \dots, u_{2n-1}\}}{m}$$

8 La suite u étant positive, la suite $\left(\frac{u_m}{m}\right)_{m\in\mathbb{N}^*}$ est minorée par 0.

De plus, en prenant n = 1 dans la question précédente, on a r = 0 et

$$\forall m \ge 2, \frac{u_n}{m} \le \frac{m-1}{m}u_1 + \frac{u_1}{m} = u_1$$

La suite $\left(\frac{u_m}{m}\right)_{m\in\mathbb{N}^*}$ est donc également majorée.

Reprenons à nouveau la question précédente avec $n \in \mathbb{N}^*$ quelconque.

$$\forall m \geq 2n, \ \frac{u_m}{m} \leq \frac{m-n-r}{m} \cdot \frac{u_n}{n} + \frac{\max\{u_n, u_{n+1}, \dots, u_{2n-1}\}}{m} \leq \frac{u_n}{n} + \frac{M_n}{m}$$

en posant $M_n = \max\{u_n, u_{n+1}, \dots, u_{2n-1}\}$. La suite $\left(\frac{u_n}{n} + \frac{M_n}{m}\right)_{m \in \mathbb{N}^*}$ converge évidemment vers $\frac{u_n}{n}$ donc d'après la question 6

$$\overline{\lim_{m \to +\infty}} \frac{u_n}{n} + \frac{M_n}{m} = \lim_{m \to +\infty} \frac{u_n}{n} + \frac{M_n}{m} = \frac{u_n}{n}$$

Mais d'après la question 5 (encore valide si une suite est plus grande qu'une autre à partir d'un certain rang),

$$\overline{\lim}_{m \to +\infty} \frac{u_m}{m} \le \overline{\lim}_{m \to +\infty} \frac{u_n}{n} + \frac{M_n}{m} = \frac{u_n}{n}$$

9 Posons $\ell = \overline{\lim}_{m \to +\infty} \frac{u_m}{m}$. Ainsi $\ell \le \frac{u_n}{n}$ pour tout $n \in \mathbb{N}^*$. On montre alors comme dans la question **5** que $\ell \le \underline{\lim}_{n \to +\infty} \frac{u_n}{n}$. Finalement,

$$\overline{\lim}_{n \to +\infty} \frac{u_n}{n} \le \underline{\lim}_{n \to +\infty} \frac{u_n}{n}$$

mais l'inégalité inverse est aussi trivialement vraie. Ainsi

$$\overline{\lim}_{n \to +\infty} \frac{u_n}{n} = \underline{\lim}_{n \to +\infty} \frac{u_n}{n}$$

D'après la question 6, la suite $\left(\frac{u_n}{n}\right)_{n\in\mathbb{N}^*}$ converge.

10 Soit $\omega \in \bigcap_{k=1}^n \{X_k < x\}$. Alors pour tout $k \in [1, n]$, $X_k(\omega) < x$ donc $Y_n(\omega) = \frac{1}{n} \sum_{k=1}^n X_k(\omega) < \frac{nx}{n} = x$. Ainsi

$$\bigcap_{k=1}^{n} \{ \mathbf{X}_k < x \} \subset \{ \mathbf{Y}_n < x \}$$

On en déduit que

$$\mathbb{P}\left(\bigcap_{k=1}^{n} \{X_k < x\}\right) \le \mathbb{P}(Y_n < x)$$

Mais comme X_1, \dots, X_n sont mutuellement indépendantes,

$$\prod_{k=1}^{n} \mathbb{P}(X_k < x) \le \mathbb{P}(Y_n < x)$$

Comme les X_k ont tous la même loi,

$$\forall k \in [1, n], \ \mathbb{P}(X_k < x) = \mathbb{P}(X_1 < x) = 1$$

Finalement, $\mathbb{P}(Y_n < x) \ge 1$ et donc $\mathbb{P}(Y_n < x) = 1$. Soit $\omega \in \bigcap_{k=1}^n \{X_k \ge x\}$. Alors pour tout $k \in [1, n]$, $X_k(\omega) \ge x$ donc $Y_n(\omega) = \frac{1}{n} \sum_{k=1}^n X_k(\omega) \ge \frac{nx}{n} = x$. Ainsi

$$\bigcap_{k=1}^{n} \{ X_k \ge x \} \subset \{ Y_n \ge x \}$$

On en déduit que

$$\mathbb{P}\left(\bigcap_{k=1}^n \{X_k \geq x\}\right) \leq \mathbb{P}(Y_n \geq x)$$

Mais comme X_1, \dots, X_n sont mutuellement indépendantes,

$$\prod_{k=1}^{n} \mathbb{P}(X_k \ge x) \le \mathbb{P}(Y_n \ge x)$$

Comme les X_k ont tous la même loi,

$$\forall k \in [1, n], \ \mathbb{P}(X_k < x) = \mathbb{P}(X_1 < x) > 0$$

Finalement, $\mathbb{P}(Y_n < x) > 0$.

11 Soit $\omega \in \left(\{ \mathbf{Y}_m \geq x \} \cap \left\{ \frac{1}{n} \sum_{k=m+1}^{m+n} \mathbf{X}_k \geq x \right\} \right)$. Alors

$$\frac{1}{m} \sum_{k=1}^{m} X_k(\omega) \ge x \qquad \text{et} \qquad \frac{1}{n} \sum_{k=m+1}^{m+n} X_k(\omega) \ge x$$

donc

$$\sum_{k=1}^{m} X_k(\omega) \ge mx \qquad \text{et} \qquad \sum_{k=m+1}^{m+n} X_k(\omega) \ge nx$$

puis

$$\sum_{k=1}^{m+n} X_k(\omega) \ge mx + nx = (m+n)x$$

et enfin

$$\frac{1}{m+n} \sum_{k=1}^{m+n} X_k(\omega) \ge x$$

ou encore

$$Y_{m+n}(\omega) \ge x$$

Ainsi $\omega \in \{Y_{m+n} \ge x\}$. On en déduit que

$$\left(\{ \mathbf{Y}_m \ge x \} \cap \left\{ \frac{1}{n} \sum_{k=m+1}^{m+n} \mathbf{X}_k \ge x \right\} \right) \subset \{ \mathbf{Y}_{m+n} \ge x \}$$

puis

$$\mathbb{P}\left(\{\mathbf{Y}_m \geq x\} \cap \left\{\frac{1}{n} \sum_{k=m+1}^{m+n} \mathbf{X}_k \geq x\right\}\right) \leq \mathbb{P}(\mathbf{Y}_{m+n}) \geq x$$

D'après le lemme des coalitions, Y_m et $\frac{1}{n} \sum_{k=m+1}^{m+n} X_k$ sont indépendantes donc

$$\mathbb{P}\left(\left\{\mathbf{Y}_{m} \geq x\right\} \cap \left\{\frac{1}{n} \sum_{k=m+1}^{m+n} \mathbf{X}_{k} \geq x\right\}\right) = \mathbb{P}(\mathbf{Y}_{m} \geq x) \mathbb{P}\left(\frac{1}{n} \sum_{k=m+1}^{m+n} \mathbf{X}_{k} \geq x\right)$$

Comme les X_k sont indépendantes, on a en termes de fonctions génératrices :

$$G_{\sum_{k=m+1}^{m+n} X_k} = \prod_{k=m+1}^{m+n} G_{X_k}$$

Mais comme les X_k suivent la même loi, elles ont même fonction génératrice. Ainsi

$$G_{\sum_{k=m+1}^{m+n} X_k} = \prod_{k=1}^n G_{X_k} = G_{\sum_{k=1}^n X_k}$$

Par conséquent, $\sum_{k=m+1}^{m+n} \mathbf{X}_k$ et $\sum_{k=1}^n \mathbf{X}_k$ ont la même loi. On en déduit que

$$\mathbb{P}\left(\sum_{k=m+1}^{m+n} X_k \ge nx\right) = \mathbb{P}\left(\sum_{k=1}^{n} X_k \ge nx\right)$$

et donc

$$\mathbb{P}\left(\frac{1}{n}\sum_{k=m+1}^{m+n}X_k \ge x\right) = \mathbb{P}\left(\frac{1}{n}\sum_{k=1}^{n}X_k \ge x\right) = \mathbb{P}(Y_n \ge x)$$

Finalement

$$\mathbb{P}(Y_m \ge x)\mathbb{P}(Y_n \ge x) \le \mathbb{P}(Y_{m+n} \ge x)$$

12 Soit $x \in \mathbb{R}$

Si $\mathbb{P}(X_1 \ge x) = 0$, alors $\mathbb{P}(X_1 < x) = 1$. D'après la question $\mathbf{10}$, $\mathbb{P}(Y_n < x) = 1$ pour tout $n \in \mathbb{N}^*$ et donc $\mathbb{P}(Y_n \ge x) = 0$ pour tout $n \in \mathbb{N}^*$. Ainsi $\left(\mathbb{P}(Y_n \ge x)^{\frac{1}{n}}\right)_{n \in \mathbb{N}^*}$ converge vers 0.

Si $\mathbb{P}(X_1 \ge x) > 0$, alors $\mathbb{P}(Y_n \ge x) > 0$ pour tout $n \in \mathbb{N}^*$ toujours d'après la question **10**. On peut alors poser $u_n = -\ln \mathbb{P}(Y_n \ge x)$. La suite (u_n) est alors positive puisqu'une probabilité est inférieure ou égale à 1. D'après la question précédente permet alors d'affirmer que $u_{m+n} \le u_m + u_n$ pour tout $(m,n) \in (\mathbb{N}^*)^2$. La question **9** montre que la suite $\left(\frac{u_n}{n}\right)$ converge vers un réel ℓ . Il en découle de $\left(\mathbb{P}(Y_n \ge x)^{\frac{1}{n}}\right)$ converge vers $e^{-\ell}$.

13 Le résultat est clair lorsque s = 1. Supposons-le vrai pour un certain $s \in \mathbb{N}^*$. Donnons-nous alors une liste a de jetons donnant s+1 piles. Soit $z=a_j$ une jeton de la pile s+1. A un moment précédent, on a donc mis un jeton $z'=a_i$ sur la pile s tel que i < j et $a_i > a_j$. Considérons la liste a' consistant en la liste a privée des éléments de la pile s+1. En appliquant le processus de l'énoncé à a', on va donc aboutir aux mêmes s piles qu'avec la liste a. En appliquant l'hypothèse de récurrence, il existe une suite b' vérifiant:

- b' est décroissante et de longueur s;
- pour tout $i \in [1, s]$, le jeton b'_i est dans la pile i;
- $b'_s = z'$.

On construit alors b en posant $b_i = b'_i$ pour $i \in [1, s]$ et $b_{s+1} = z$.

- b' est décroissante de longueur s et $b_{s+1} = z = a_i < a_i = b_s$ donc b est décroissante de longueur s + 1.
- Pour tout $i \in [1, s]$, $b_i = b_i'$ est bien dans la pile i et b_{s+1} est bien dans la pile s + 1.
- $b_{s+1} = z$.

Le résultat est donc établi par récurrence.

14 Notons à nouveau s le nombre de piles obtenu à l'aide du processus décrit dans la question précédente. Si $s \ge q+1$, on extrait de a une liste décroissante de longueur s comme dans la question précédente. En prenant les q+1 premiers termes de cette liste, on obtient une liste extraite de a décroissante et de longueur q+1.

Si $s \le q$, une des piles contient au moins p+1 éléments, sinon le nombre de jetons serait inférieur ou égal à pq. Les éléments de cette pile (du bas vers le haut) forment une suite extraite de a croissante et de longeur supérieure ou égale à p+1. En extrayant les p+1 premiers termes de cette suite extraite, on obtient une suite extraite de a croissante et de longueur p+1.