CHAPTER 13

Lecture No. 13

13.1 Subspace of \mathbb{R}^n

A subspace of \mathbb{R}^n is any set H in \mathbb{R}^n that has three properties:

- 1. The zero vector is in H.
- 2. For each \mathbf{u} and \mathbf{v} in H, the sum $\mathbf{u} + \mathbf{v}$ is in H.
- 3. For each \mathbf{u} in H and each scalar c, the vector $c\mathbf{u}$ is in H.

Example: If \mathbf{v}_1 and \mathbf{v}_2 are in \mathbb{R}^n and $H = Span\{\mathbf{v}_1, \mathbf{v}_2\}$, then H is a subspace of \mathbb{R}^n .

Figure 13.1: Subspace spanned by two vectors

Example: A line L not through the origin is not a subspace, because it does not contain the origin, as required. L is not closed under addition or scalar multiplication.

Figure 13.2: Line not passing through origin

Figure 13.3: A line passing through origin is span of a nonzero vector

Example: For $\mathbf{v}_1, ..., \mathbf{v}_p$ in \mathbb{R}^n , the set of all linear combinations of $\mathbf{v}_1, ..., \mathbf{v}_p$ is a subspace of \mathbb{R}^n . The verification of this statement is similar to the argument given in previous Example.

Remark: We shall now refer to $Span\{\mathbf{v}_1,...,\mathbf{v}_p\}$ as the subspace spanned (or generated) by $\mathbf{v}_1,...,\mathbf{v}_p$.

Remark: Note that \mathbb{R}^n is a subspace of itself because it has the three properties required for a subspace. Another special subspace is the set consisting of only the zero vector in \mathbb{R}^n . This set, called the zero subspace, also satisfies the conditions for a subspace.

13.2 Column Space and Null Space of a Matrix

Column Space: The column space of a matrix A is the set Col A of all linear combinations of the columns of A.

Remark: If $A = [\mathbf{v}_1 \quad \dots \quad \mathbf{v}_n]$, with the columns in \mathbb{R}^m , then Col A is the same as $Span\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$.

The column space of an $m \times n$ matrix is a subspace of \mathbb{R}^m .

Note that $Col\ A$ equals \mathbb{R}^m only when the columns of A span \mathbb{R}^m . Otherwise, $Col\ A$ is only part of \mathbb{R}^m .

Example: Let
$$A = \begin{bmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 3 \\ 3 \\ -4 \end{bmatrix}$. Determine whether \mathbf{b} is

in the column space of A.

Solution: Let the columns of A be denoted by $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 then we have to check whether the system

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{b}$$

is consistent or inconsistent.

The augmented matrix of the above system and echelon form is

$$\begin{bmatrix} 1 & -3 & -4 & 3 \\ -4 & 6 & -2 & 3 \\ -3 & 7 & 6 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & -4 & 3 \\ 0 & -6 & -18 & 15 \\ 0 & -2 & -6 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & -4 & 3 \\ 0 & -6 & -18 & 15 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

which shows that \mathbf{b} is in the columns space of the given matrix.

Null Space: The null space of a matrix A is the set Nul A of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Remark: When A has n columns, the solutions of $A\mathbf{x} = \mathbf{0}$ belong to \mathbb{R}^n , and the null space of A is a subset of \mathbb{R}^n .

In fact, Nul A has the properties of a subspace of \mathbb{R}^n .

Theorem: The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions of a system $A\mathbf{x} = \mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

Example: Let
$$A = \begin{bmatrix} 1 & -1 & 5 \\ 2 & 0 & 7 \\ -3 & -5 & -3 \end{bmatrix}$$
 and $\mathbf{u} = \begin{bmatrix} -7 \\ 3 \\ 2 \end{bmatrix}$. Is \mathbf{u} in Nul A ? Is \mathbf{u} in

Col A? Justify your answer.

Solution: In order to check whether the given vector \mathbf{u} is in the Null space of A or not we will check the matrix product

$$\begin{bmatrix} 1 & -1 & 5 \\ 2 & 0 & 7 \\ -3 & -5 & -3 \end{bmatrix} \begin{bmatrix} -7 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} -7 - 3 + 10 \\ -14 + 0 + 14 \\ 21 - 15 - 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

which shows that \mathbf{u} is in the Null space of the matrix A. For checking whether the vector is in column space of A or not, we will solve the system $A\mathbf{x} = \mathbf{u}$. If the system is consistent then \mathbf{u} is in the column space of A otherwise not. The augmented matrix is

$$\left[\begin{array}{cccc} 1 & -1 & 5 & -7 \\ 2 & 0 & 7 & 3 \\ -3 & -5 & -3 & 2 \end{array}\right].$$

Check yourself or see the lecture.

Basis for a Subspace: A basis for a subspace H of \mathbb{R}^n is a linearly independent set in H that spans H.

Example: The columns of an invertible $n \times n$ matrix form a basis for all of \mathbb{R}^n because they are linearly independent and span \mathbb{R}^n , by the Invertible Matrix Theorem.

One such matrix is the $n \times n$ identity matrix. Its columns are denoted by $\mathbf{e}_1, ..., \mathbf{e}_n$.

The set $\{e_1,...,e_n\}$ is called a standard basis for \mathbb{R}^n .

Example: Find a basis for the Null Space of the matrix

$$\begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}.$$

Solution: The echelon form of the augmented matrix of the system $A\mathbf{x} = \mathbf{0}$ is

$$\begin{bmatrix} -3 & 6 & -1 & 1 & -7 & 0 \\ 1 & -2 & 2 & 3 & -1 & 0 \\ 2 & -4 & 5 & 8 & -4 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 2 & 3 & -1 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

and the parametric vector form of the solution is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}.$$

Which show that the basis for the Null space of the given matrix is

$$\left\{ \begin{bmatrix} 2\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\-2\\1\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\2\\0\\1 \end{bmatrix} \right\}.$$

Basis for the column space of a matrix: Finding a basis for the column space of a matrix is actually less work than finding a basis for the null space.

Example: Find a basis for the column space of the matrix

$$\left[\begin{array}{ccccc}
1 & 0 & 2 & 5 & 0 \\
0 & 1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right].$$

Solution: Firs of all notice that $\mathbf{b}_3 = -3\mathbf{b}_1 + 2\mathbf{b}_2$ and $\mathbf{b}_4 = 5\mathbf{b}_1 - \mathbf{b}_2$. This means that

$$\mathit{Span}\{b_1,b_2,b_3,b_4,b_5\} = \mathit{Span}\{b_1,b_2,b_5\}$$

and the vectors $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_5$ are linearly independent and hence form a basis for the column space of the given matrix.

Theorem: The pivot columns of a matrix A form a basis for the column space of A.

Remark: Be careful to use pivot columns of A itself for the basis of Col A. The columns of an echelon form B are often not in the column space of A.

Example: Suppose an $n \times n$ matrix A is invertible. What you can say about $Col\ A$? About $Null\ A$?

13.3 Some Practice Problems

Question Let

$$\mathbf{v}_1 = \begin{bmatrix} -2\\0\\6 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -2\\3\\3 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} 0\\-5\\5 \end{bmatrix} \quad \text{and} \quad \mathbf{p} = \begin{bmatrix} -6\\1\\17 \end{bmatrix}$$

Determine if **p** is in the columns space of $A[\mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{v}_3]$? Is **p** is in the Null space of A?

Question: Give integers p and q such that Nul A is a subspace of \mathbb{R}^p and Col A is a subspace of \mathbb{R}^q .

1.
$$A = \begin{bmatrix} 3 & 2 & 1 & -5 \\ -9 & -4 & 1 & 7 \\ 9 & 2 & -5 & 1 \end{bmatrix}$$
.

$$2. \ A = \left[\begin{array}{rrr} 3 & 2 & 1 \\ -9 & -4 & 1 \\ 9 & 2 & -5 \end{array} \right].$$