Logistic Regression

In [30]:

```
classifier = LogisticRegression(random_state = random_state)

classifier.fit(X_train,y_train)

y_pred = classifier.predict(X_test)

print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
0	1.00	0.96	0.98	105
1	0.94	1.00	0.97	91
2	0.99	0.95	0.97	92
3	0.97	0.99	0.98	112
accuracy			0.97	400
macro avg	0.98	0.97	0.97	400
weighted avg	0.98	0.97	0.98	400

Confusion Matrix

```
cm = confusion_matrix(y_test, y_pred)

df1 = pd.DataFrame(columns=["0","1","2","3"], index= ["0","1","2","3"], data= cm )

f,ax = plt.subplots(figsize=(6,6))

sns.heatmap(df1, annot=True,cmap="Greens", fmt= '.0f',ax=ax,linewidths = 5, cbar = False,annot_kws={"size": 16})

plt.xlabel("Predicted Label")
plt.xticks(size = 12)
plt.yticks(size = 12, rotation = 0)
plt.ylabel("True Label")
plt.title("Confusion Matrix", size = 12)
plt.show()
```

