

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО «МГТУ «СТАНКИН»)

ИНСТИТУТ информационных систем и технологий

Кафедра информационных систем

КУРСОВОЙ ПРОЕКТ

по дисциплине «Проектирование информационных систем»

на тему: Разработка виртуального 3D тура.

Направление 09.03.02 Информационные системы и технологии

Студент		
группы ИДБ-16-07		Чебыкин Г.Н.
	подпись	
Руководитель		
ст. преподаватель	полнись	Овчинников П.Е.

ОГЛАВЛЕНИЕ

Введение	3
Глава 1. Функциональная модель (IDEF0)	4
Глава 2. Модель потоков данных (DFD)	8
Глава 3. Диаграммы классов (ERD)	11
Заключение	12

ВВЕДЕНИЕ

Система виртуально 3D тура по университету позволяет абитуриентам заранее рассмотреть корпуса университета, а студентам позволяет найти определенное место или определенную аудиторию.

Данная система представляет собой web приложение, которое помогает решать следующие задачи:

- 1. Просмотр университета изнутри.
- 2. Поиск необходимой аудитории.

Объектом исследования является создание виртуального 3D тура.

Исследования выполняются путем построения следующих моделей:

- 1. функциональной (IDEF0);
- 2. потоков данных (DFD);
- 3. реляционной базы данных (ERD).

Функциональная модель разрабатывается с точки зрения владельца.

Целью моделирования является определение процессов, на основе которых будет создан тур.

ГЛАВА 1. ФУНКЦИОНАЛЬНАЯ МОДЕЛЬ (IDEF0)

Внешним входным информационным потоком процесса является

1. Фототехника.

Внешним выходным информационным потоком процесса является:

1. Окончание эксплуатации

Внешним управляющим потоком процесса является:

1. Техническая документация.

Основными механизмами процесса являются:

- 1. Программист.
- 2. Фотограф.
- 3. Абитуриент.
- 4. Студента.
- 5. Дополнительное ПО.

На рисунках 1.1-1.6 представлены IDEF0-диаграммы для данной модели.

Рис. 1.1. Блок А0 – Создание и эксплуатация 3D тура

Рис. 1.2. Создание и эксплуатация 3D тура

Рис. 1.3. Создание 360 фотографий

Рис. 1.4. Реализация 3D тура

Рис. 1.5. Эксплуатация 3D тура

Рис. 1.6. Завершение эксплуатации

ГЛАВА 2. МОДЕЛЬ ПОТОКОВ ДАННЫХ (DFD)

Для контрольной настройки 3D тура перед внедрением необходимо использовать базу данных карт этажей и базу данных пронумерованных панорам для создания связей между переходами.

Рис. 2.1. Учет комплектующих

Определение числовых показателей для цели потенциального проекта автоматизации

Допустим, что средние потери времени для просмотра университета до автоматизации примерно составляли 8 часов, а после — 0,5 часа, т.е. время работы с заявкой уменьшилось с 8 часов до 0,5 часов. Соответственно, количество времени, затрачиваемого на просмотр университета, сократилось в 16 раз.

Расчет долгосрочной экономии времени от реализации проекта: при количестве студентов 10 человек, при прогулке по университету продолжительностью 8 часов, ежемесячная экономия времени составит 8/8 * 10 = 10 чел/мес.

Расчет дополнительно выполненных виртуальных прогулок за счет экономии времени: после автоматизации время, затрачиваемое на тур по университету, сократилось в 16 раз, т.к. смена равна 8 часам, делаем вывод, что появилось 7,5 «свободных» часов. За эти 7,5 часов один студент может выполнить еще 15 прогулок по университету. Для всех студентов получается следующий результат: 10*15 = 150 дополнительных виртуальных прогулок в день за счет экономии времени.

Определение числовых показателей для трудозатрат на разработку программных средств

Таблица 2.1. Определение числа и сложности функциональных точек для модулей и хранилищ

Номер	Наименование	Форм	Данных	UFP
A0	Создание и			
	эксплуатация 3D тура			
A1	Создание 360	0	0	0
	фотографий			U
A2	Реализация 3D тура	3	2	26
A3	Эксплуатация 3D тура	0	0	0
A4	Завершение	0	0 0	0
	эксплуатации		U	U
				26

Таблица 2.2.

Расчет сложности разработки методом FPA/IFPUG.

VAF:	1,25
UFP:	26
DFP:	33
SLOC:	1625
KLOC:	2

Таблица 2.3.

Расчет трудозатрат на разработку «с нуля» методом СОСОМО II.

SF:	18,97
E:	1,10
EM:	1,00
PM:	5 ч/мес
TDEV:	6 мес

ГЛАВА 3. ДИАГРАММЫ КЛАССОВ (ERD)

Рис. 3.1. Диаграмма потоков

Рис. 3.2. Диаграмма ролей

Рис. 3.3. Диаграмма модулей

ЗАКЛЮЧЕНИЕ

В ходе данной работы был исследован процесс работы системы виртуального 3D тура путем выполнения функционального моделирования системы, а также построения модели потоков данных и диаграммы классов.

Определены показатели для поставленной цели моделирования и для цели потенциального проекта 3D тура.

Были определены числовые показатели для трудозатрат на разработку программных средств, а именно: определены число и сложность функциональных точек для модулей и хранилищ, рассчитана сложность разработки методом FPA/IFPUG, рассчитаны трудозатраты на разработку «с нуля» методом СОСОМО II.