Puntúa 5,00 sobre 5.00 En un Sistema de Partículas la energía mecánica se mantiene constante, entonces

Seleccione una:

- a. El trabajo de las fuerzas no conservativas externas es nulo
- O b. El trabajo de las fuerzas externas e internas es nulo
- ◎ c. El trabajo de las fuerzas no conservativas externas e internas es nulo
- d. La suma de las fuerzas externas es nula

Pregunta **2**

Correcta

Puntúa 10,00 sobre 10,00 Un hombre está en reposo parado sobre un piso horizontal rugoso y comienza a caminar sin patinar. Elegir la opción correcta:

Seleccione una

- a. La energía cinética del hombre no cambia porque las fuerzas internas no hacen trabajo y las fuerzas externas tampoco.
- b. El aumento de la energía cinética del hombre se debe al trabajo de la fuerza de rozamiento que le hace el piso.
- c. No cambia la energía cinética del hombre porque el trabajo de la fuerza de rozamiento estática es nulo.
- d. Ninguna de las respuestas indicadas es correcta

Pregunta 3

Correcta

Puntúa 10,00 sobre 10,00 En el gráfico se muestra la velocidad de dos puntos de un objeto de longitud L. A partir de estos datos, determinar si podría ser un cuerpo rígido. En caso de serlo, determinar el módulo de la velocidad angular.

Seleccione una:

- a. No es un cuerpo rígido
- b. Es un cuerpo rígido y el módulo de la velocidad angular es 2v/L
- © c. Es un cuerpo rígido y el módulo de la velocidad angular es 2v √3/L
- O d. Es un cuerpo rígido y el módulo de la velocidad angular es v/L

Pregunta **4**

Correcta

Puntúa 10,00 sobre 10,00 Un hombre está parado en el extremo de su lancha pequeña, que está flotando quieta en un lago con el agua calma. Entre la lancha y el agua se puede despreciar el rozamiento. En un momento, el hombre salta hacia el otro extremo de la lancha. Suponiendo que el eje x positivo tiene la dirección y sentido del movimiento del hombre, un observador parado en el centro de masa del sistema hombre-lancha ve que:

Seleccione una:

- a. La coordenada x del hombre aumenta y la lancha se desplaza hacia el eje x negativo.

 ✓
- La coordenada x del hombre disminuye y la lancha se mueve hacia el eje x negativo
- La coordenada x del hombre disminuye mientras que la posición x del centro de la lancha permanece constante

d.

La coordenada x del hombre aumenta mientras que la posición x del centro de la lancha permanece constante

Una bala de 3 g impacta contra un péndulo balístico de madera de masa 300 g y largo L=100 cm, quedando incrustada en él. Qué velocidad llevaba la bala si el péndulo tiene un desplazamiento máximo de 15 grados. Expresarla en unidades del SI.

Seleccione una:

- a. 834±2
- b. 210±2
- c. 444±2
- d. 83 ±2

 ✓

En la pregunta 6 hay que elegir el número de curso

Pregunta **7**

Puntúa 10,00 sobre 10,00 Dos esferas de igual masa, apoyadas sobre una superficie horizontal sin rozamiento, se aproximan al origen del sistema de coordenadas: una moviéndose hacia abajo a lo largo del eje y a 2 m/s y la otra hacia la derecha a lo largo del eje - x a 3 m/s. Se considera un sistema de coordenadas cuyos ejes son positivos en las direcciones arriba y derecha. Después de chocar, una de las esferas se mueve hacia la derecha a 1,2 m/s a lo largo del eje x.

Calcule las componentes escalares de la velocidad de la otra pelota.

Seleccione una:

$$V_{fx} = -1.8 \ m/s \ V_{fy} = +2 \ m/s$$

$$V_{fx} = 0 \ m/s \ V_{fy} = 3.8 \ m/s$$

$$V_{fx} = 1.8 \ m/s \ V_{fy} = -2 \ m/s$$

$$V_{fx} = -1.2 \ m/s \ V_{fy} = 0 \ m/s$$
 o d.

Pregunta 8

Correcta Puntúa 15,00 sobre 15,00 Sobre una superficie horizontal sin rozamiento se encuentran una masa M y un cañón de masa 5M (descargado). La masa M está unida a un resorte de constante k, que por su otro extremo está unido a una pared (ver figura). Se carga el cañón con una bala de masa m que luego es disparada horizontalmente hacia M y se incrusta en ella; lo suficientemente rápido como para que mientras se va incrustando la masa M no se mueve apreciablemente. Luego de la colisión, la máxima compresión del resorte es d. ¿Cuál es el módulo de la velocidad de retroceso del cañón?

Seleccione una:

$$d\sqrt{K(M+m)}$$

$$4M+m$$

$$d\sqrt{K(M+m)}$$

$$\frac{d\sqrt{K(M+m)}}{10\ M}$$

$$\frac{d\sqrt{K(M+m)}}{5 M}$$

$$d\sqrt{K(M+m)}$$

Pregunta **9**

Finalizado Puntúa 30,00 sobre 30,00 Enviar una imagen de una sola hoja manuscrita escrita en forma clara con Nombres,
Apellido, Número de padrón y Número de curso. Debe figurar: 1) Diagramas de Cuerpo
Libre. Planteo del problema (indicando SR y SC seleccionados) con todas las ecuaciones a
emplear en la resolución, 2) expresión final de las magnitudes solicitadas en función de los
parámetros que son datos, 3) resultados numéricos finales (sin cálculos parciales).

Enunciado

Un cilindro homogéneo de radio R= 0,10 m y masa M= 2,5 kg (I^{CM}=MR²/2), asciende rodando sin deslizar por un plano inclinado rugoso de ángulo α =30° con la horizontal. En todo momento se le aplica, en el centro de masa, una fuerza F=25 N horizontal tal como indica la figura. El cuerpo parte desde el reposo en la posición A, en el que la altura del centro de masa es h_A =1m respecto de la superficie horizontal indicada. En el punto B el centro de masa alcanza una altura h_B =3m y, a partir de ese punto en cuerpo se mueve en un tramo liso (el rozamiento puede considerarse despreciable) hasta el punto C, que tiene una altura h_c =4m, respecto de la horizontal. (|g|=10 m/s²)

- a) Calcular el trabajo de cada fuerza en el tramo AC.
- b) Hallar el vector aceleración del centro de masa del cilindro en la posición A y también en la posición C.

