Simulation and Scientific Computing

(Simulation und Wissenschaftliches Rechnen - SiWiR)

Winter Term 2014/15

Florian Schornbaum Chair for System Simulation

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

Assignment 2: OpenMP-Parallel Red-Black Gauss-Seidel Method

November 3, 2014 – November 25, 2014

Finite Differences: Differential Quotients

- Differential quotient for first derivative $u'(x) = \frac{\partial u(x)}{\partial x}$:
 - forward difference: $\frac{u(x+h)-u(x)}{h}$
 - backward difference: $\frac{u(x)-u(x-h)}{h}$
 - central difference: $\frac{u(x+h)-u(x-h)}{2h}$

- Differential quotient for first derivative $u'(x) = \frac{\partial u(x)}{\partial x}$:
 - forward difference: $\frac{u(x+h)-u(x)}{h}$
 - backward difference: $\frac{u(x)-u(x-h)}{h}$
 - central difference: $\frac{u(x+h)-u(x-h)}{2h}$

- Differential quotient for first derivative $u'(x) = \frac{\partial u(x)}{\partial x}$:
 - forward difference: $\frac{u(x+h)-u(x)}{h}$
 - backward difference: $\frac{u(x)-u(x-h)}{h}$
 - central difference: $\frac{u(x+h)-u(x-h)}{2h}$

- Differential quotient for first derivative $u'(x) = \frac{\partial u(x)}{\partial x}$:
 - forward difference: $\frac{u(x+h)-u(x)}{h}$
 - backward difference: $\frac{u(x)-u(x-h)}{h}$
 - central difference: $\frac{u(x+h)-u(x-h)}{2h}$

• Differential quotient for second derivative $u''(x) = \frac{\partial^2 u(x,y)}{\partial x^2}$:

$$\frac{\partial^2 u(x,y)}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial u(x)}{\partial x} \right) \approx \frac{\frac{u(x+h) - u(x)}{h} - \frac{u(x) - u(x-h)}{h}}{h}$$

u(x+h) - 2u(x) + u(x-h)

three central differences with ^h/a I

• Differential quotient for second derivative $u''(x) = \frac{\partial^2 u(x,y)}{\partial x^2}$:

$$\frac{\partial^2 u(x,y)}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial u(x)}{\partial x} \right) \approx \frac{\frac{u(x+h) - u(x)}{h} - \frac{u(x) - u(x-h)}{h}}{h}$$

$$u(x+h) - 2u(x) + u(x-h)$$

three central differences with h/2!

• Differential quotient for second derivative $u''(x) = \frac{\partial^2 u(x,y)}{\partial x^2}$:

$$\frac{\partial^2 u(x,y)}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial u(x)}{\partial x} \right) \approx \frac{\frac{u(x+h)-u(x)}{h} - \frac{u(x)-u(x-h)}{h}}{h}$$

$$u(x+h) - 2u(x) + u(x-h)$$

three central differences h^2 with h/2!

• Differential quotient for second derivative $u''(x) = \frac{\partial^2 u(x,y)}{\partial x^2}$:

$$\frac{\partial^2 u(x,y)}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial u(x)}{\partial x} \right) \approx \frac{\frac{u(x+h) - u(x)}{h} - \frac{u(x) - u(x-h)}{h}}{h}$$

$$u(x+h) - 2u(x) + u(x-h)$$

 $=\frac{u(x+n)-2u(x)+u(x-n)}{-}$

three central differences with h/2!

• Differential quotient for second derivative $u''(x) = \frac{\partial^2 u(x,y)}{\partial x^2}$:

$$\frac{\partial^{2}u(x,y)}{\partial x^{2}} = \frac{\partial}{\partial x} \left(\frac{\partial u(x)}{\partial x} \right) \approx \frac{\frac{u(x+h)-u(x)}{h} - \frac{u(x)-u(x-h)}{h}}{h}$$

$$= \frac{u(x+h)-2u(x)+u(x-h)}{h^{2}}$$
 three central differences with $h/2$!

Example – Poisson's equation:

$$\Delta u(x,y) = f(x,y) \text{ in } \Omega$$

$$u(x,y) = g(x,y) \text{ on } \delta\Omega \text{ (Dirichlet boundaries)}$$

$$\Delta u(x,y) = \nabla^2 u(x,y) = \frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} = f(x,y)$$

• Discretization using **differential quotients** for $\Delta u(x, y)$:

$$\frac{u(x - h_x, y) - 2u(x, y) + u(x + h_x, y)}{h_x^2} + \frac{u(x, y - h_y) - 2u(x, y) + u(x, y + h_y)}{h_y^2} = f(x, y)$$

• Discretization using differential quotients for $\Delta u(x,y)$:

$$\frac{1}{h_x^2} [u(x - h_x, y) + u(x + h_x, y)] + \frac{1}{h_y^2} [u(x, y - h_y) + u(x, y + h_y)]$$
$$-\left(\frac{2}{h_x^2} + \frac{2}{h_y^2}\right) u(x, y) = f(x, y)$$

• We are solving Poisson's equation on a **discretized domain** Ω :

$$u(x,y) / f(x,y)$$

$$u(x - h_x, y)$$

$$u(x + h_x, y)$$

$$u(x, y - h_y)$$

$$u(x, y + h_y)$$

• For every point $u_{x,y}$ on the grid, we can formulate a linear equation:

$$\frac{1}{h_x^2} \left(u_{x-1,y} + u_{x+1,y} \right) + \frac{1}{h_y^2} \left(u_{x,y-1} + u_{x,y+1} \right) - \left(\frac{2}{h_x^2} + \frac{2}{h_y^2} \right) u_{x,y} = f_{x,y}$$

$$u_{x,y} / f_{x,y}$$

$$u_{x-1,y}$$

$$u_{x+1,y}$$

$$u_{x,y-1}$$

$$u_{x,y+1}$$

$$\begin{bmatrix} 0 & \frac{1}{h_y^2} & 0 \\ \frac{1}{h_x^2} & -\left(\frac{2}{h_x^2} + \frac{2}{h_y^2}\right) & \frac{1}{h_x^2} \\ 0 & \frac{1}{h_y^2} & 0 \end{bmatrix}$$
stencil

• For every point $u_{x,y}$ on the grid, we can formulate a linear equation:

$$\frac{1}{h_x^2} \left(u_{x-1,y} + u_{x+1,y} \right) + \frac{1}{h_y^2} \left(u_{x,y-1} + u_{x,y+1} \right) - \left(\frac{2}{h_x^2} + \frac{2}{h_y^2} \right) u_{x,y} = f_{x,y}$$

$$u_{x,y} / f_{x,y}$$

$$u_{x-1,y}$$

$$u_{x+1,y}$$

$$u_{x,y-1}$$

$$u_{x,y+1}$$

$$\begin{bmatrix} 0 & \gamma & 0 \\ \beta & \alpha & \beta \\ 0 & \gamma & 0 \end{bmatrix}$$
 stencil

$$\alpha = -\left(\frac{2}{h_x^2} + \frac{2}{h_y^2}\right)$$
$$\beta = \frac{1}{h_x^2} \quad \gamma = \frac{1}{h_y^2}$$

• Solving Poisson's equation $\Delta u(x,y) = f(x,y)$ with u(x,y) = g(x,y) on the boundary $\delta\Omega$ on 5×5 grid with 9 unknowns:

• Solving Poisson's equation $\Delta u(x,y) = f(x,y)$ with u(x,y) = g(x,y) on the boundary $\delta\Omega$ on 5×5 grid with 9 unknowns:

$$\begin{bmatrix} \alpha & \beta & 0 & \gamma & 0 & 0 & 0 & 0 & 0 \\ \beta & \alpha & \beta & 0 & \gamma & 0 & 0 & 0 & 0 \\ 0 & \beta & \alpha & 0 & 0 & \gamma & 0 & 0 & 0 \\ \gamma & 0 & 0 & \alpha & \beta & 0 & \gamma & 0 & 0 \\ 0 & \gamma & 0 & \beta & \alpha & \beta & 0 & \gamma & 0 \\ 0 & 0 & \gamma & 0 & \beta & \alpha & 0 & 0 & \gamma \\ 0 & 0 & 0 & \gamma & 0 & 0 & \alpha & \beta & 0 \\ 0 & 0 & 0 & 0 & \gamma & 0 & \beta & \alpha & \beta \\ 0 & 0 & 0 & 0 & \gamma & 0 & \beta & \alpha & \beta \\ 0 & 0 & 0 & 0 & \gamma & 0 & \beta & \alpha & \beta \\ 0 & 0 & 0 & \gamma & 0 & \beta & \alpha & \beta \\ 0 & 0 & 0 & \gamma & 0 & \beta & \alpha & \beta \\ 0 & 0 & 0 & \gamma & 0 & \beta & \alpha \\ 0 & 0 & 0 & 0 & \gamma & 0 & \beta & \alpha \\ 0 & 0 & 0 & 0$$

• Solving Poisson's equation $\Delta u(x,y) = f(x,y)$ with u(x,y) = g(x,y) on the boundary $\delta\Omega$ on 5×5 grid with 9 unknowns:

$$\begin{bmatrix} \alpha & \beta & 0 & \gamma & 0 & 0 & 0 & 0 & 0 \\ \beta & \alpha & \beta & 0 & \gamma & 0 & 0 & 0 & 0 \\ 0 & \beta & \alpha & 0 & 0 & \gamma & 0 & 0 & 0 \\ \gamma & 0 & 0 & \alpha & \beta & 0 & \gamma & 0 & 0 \\ 0 & \gamma & 0 & \beta & \alpha & \beta & 0 & \gamma & 0 \\ 0 & 0 & \gamma & 0 & \beta & \alpha & 0 & 0 & \gamma \\ 0 & 0 & 0 & \gamma & 0 & 0 & \alpha & \beta & 0 \\ 0 & 0 & 0 & \gamma & 0 & 0 & \alpha & \beta & 0 \\ 0 & 0 & 0 & \gamma & 0 & \beta & \alpha & \beta \\ 0 & 0 & 0 & \gamma & 0 & \beta & \alpha & \beta \\ 0 & 0 & 0 & \gamma & 0 & \beta & \alpha \end{bmatrix} \cdot \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \\ u_8 \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \\ f_8 \end{bmatrix} - \begin{bmatrix} \beta g_5 + \gamma g_1 \\ \gamma g_2 \\ \beta g_6 + \gamma g_3 \\ \beta g_7 \\ 0 \\ \beta g_8 \\ \beta g_9 + \gamma g_{12} \\ \gamma g_{13} \\ \beta g_{10} + \gamma g_{14} \end{bmatrix}$$

One "block" on the diagonal of the matrix for each row/line in the grid.

$$\Rightarrow Au = f + \tilde{g}$$

• Taylor Expansion for u(x+h):

$$u(x+h) = u(x) + hu'(x) + \frac{h^2}{2}u''(\xi^+)$$
(1)

$$= u(x) + hu'(x) + \frac{h^2}{2}u''(x) + \frac{h^3}{6}u^{(3)}(\xi^+)$$
 (2)

$$= u(x) + hu'(x) + \frac{h^2}{2}u''(x) + \frac{h^3}{6}u^{(3)}(x) + \frac{h^4}{24}u^{(4)}(\xi^+)$$
 (3)

• Taylor Expansion for u(x - h):

$$u(x-h) = u(x) - hu'(x) + \frac{h^2}{2}u''(\xi^-)$$
 $\xi^- \in]x - h, x[$ (4)

$$= u(x) - hu'(x) + \frac{h^2}{2}u''(x) - \frac{h^3}{6}u^{(3)}(\xi^{-})$$
 (5)

$$= u(x) - hu'(x) + \frac{h^2}{2}u''(x) - \frac{h^3}{6}u^{(3)}(x) + \frac{h^4}{24}u^{(4)}(\xi^{-})$$
 (6)

• For this to work, the function u must be C^2 , C^3 , or C^4 continuous in the neighborhood of x, respectively.

First derivative – forward difference [using (1)]:

$$u(x+h) = u(x) + hu'(x) + \frac{h^2}{2}u''(\xi^+)$$

$$\Rightarrow \frac{u(x+h)-u(x)}{h} = u'(x) + \frac{h}{2}u''(\xi^+)$$

$$\Rightarrow \left|\frac{u(x+h)-u(x)}{h} - u'(x)\right| \le h \cdot C$$

 \Rightarrow first order consistent approximation of u'(x)

• First derivative – backward difference [using (4)]:

$$u(x - h) = u(x) - hu'(x) + \frac{h^2}{2}u''(\xi^-)$$

$$\Rightarrow \frac{u(x) - u(x - h)}{h} = u'(x) - \frac{h}{2}u''(\xi^-)$$

$$\Rightarrow \left| \frac{u(x) - u(x - h)}{h} - u'(x) \right| \le h \cdot C$$

 \Rightarrow first order consistent approximation of u'(x)

First derivative – central difference [using (2) – (5)]:

$$u(x+h) - u(x-h)$$

$$= u(x) + hu'(x) + \frac{h^2}{2}u''(x) + \frac{h^3}{6}u^{(3)}(\xi^+)$$

$$- \left(u(x) - hu'(x) + \frac{h^2}{2}u''(x) - \frac{h^3}{6}u^{(3)}(\xi^-)\right)$$

$$= 2hu'(x) + \frac{h^3}{6}\left(u^{(3)}(\xi^+) + u^{(3)}(\xi^-)\right)$$

$$\Rightarrow \frac{u(x+h) - u(x-h)}{2h} = u'(x) + \frac{h^2}{3}\left(u^{(3)}(\xi^+) + u^{(3)}(\xi^-)\right)$$

$$\Rightarrow \left|\frac{u(x+h) - u(x-h)}{2h} - u'(x)\right| \le h^2 \cdot C$$

 \Rightarrow second order consistent approximation of u'(x)

Second derivative [using (3) + (6)]:

$$u(x+h) + u(x-h)$$

$$= u(x) + hu'(x) + \frac{h^2}{2}u''(x) + \frac{h^3}{6}u^{(3)}(x) + \frac{h^4}{24}u^{(4)}(\xi^+)$$

$$+ \left(u(x) - hu'(x) + \frac{h^2}{2}u''(x) - \frac{h^3}{6}u^{(3)}(x) + \frac{h^4}{24}u^{(4)}(\xi^-)\right)$$

$$= 2u(x) + h^2u''(x) + \frac{h^4}{24}\left(u^{(4)}(\xi^+) + u^{(4)}(\xi^-)\right)$$

$$\Rightarrow \frac{u(x+h)-2u(x)+u(x-h)}{h^2} = u''(x) + \frac{h^2}{24}\left(u^{(4)}(\xi^+) + u^{(4)}(\xi^-)\right)$$

$$\Rightarrow \left|\frac{u(x+h)-2u(x)+u(x-h)}{h^2} - u''(x)\right| \le h^2 \cdot C$$

$$\Rightarrow \text{second order consistent approximation of } u''(x)$$

 \Rightarrow second order consistent approximation of u''(x)

Finite Differences: Convergence

Finite Differences - Convergence

Split matrix A into a diagonal, lower, and upper triangular matrix:

$$Au = f \Rightarrow A = D - L - U = \begin{bmatrix} \times & & \\ & \times & \\ & & \times \end{bmatrix} - \begin{bmatrix} \times & & \\ \times & \times \end{bmatrix} - \begin{bmatrix} & \times & \times \\ \times & \times \end{bmatrix}$$

Jacobi iteration:

$$u^{k+1} = D^{-1}(L+U)u^k + D^{-1}f$$

$$C_I \text{ (iteration matrix)}$$

Gauss-Seidel iteration:

$$u^{k+1} = (D - L)^{-1}Uu^k + (D - L)^{-1}f$$

$$C_G \text{ (iteration matrix)}$$

Finite Differences - Convergence

- These iterative methods converge if and only if the spectral radius of the iteration C matrix satisfies $\rho(C) < 1$.
- If A is strictly diagonally dominant:

$$\rho(C) \le ||C||_{\infty} = \max_{i} \sum_{j} |c_{ij}| \le \max_{i} \frac{1}{|a_{ii}|} \sum_{i \ne j} |a_{ij}|$$

- If Jacobi converges, Gauss-Seidel also converges: $ho(C_G) <
 ho(C_I)$
- $\|C\|_{\infty}$, an upper bound for the convergence factor:

$$e^{k} \coloneqq \tilde{u} - u^{k} \quad (\tilde{u}: \text{ exact solution})$$

 $\Rightarrow \|e^{k+1}\|_{\infty} \le \|C\|_{\infty}^{k+1} \|e^{k}\|_{\infty}$

Finite Differences: Additional Resources

Finite Differences

Additional material on finite differences by Pascal Frey:

http://www.ann.jussieu.fr/~frey/cours/UPMC/finite-differences.pdf

⇒ get it and read it!

 Another well written article on solving linear systems by the same author which might also be worth reading:

http://www.ann.jussieu.fr/~frey/cours/UPMC/linear%20systems.pdf

ERLANGEN-NÜRNBERG