Лабораторная работа №5.5.5

Компьютерная сцинтилляционная γ -спектрометрия

Автор работы: Хоружий Кирилл

От: 1 декабря 2021 г.

Цель работы

- 1. Изучить спектр гамма-излучений для образцов $^{22}{\rm Na},\,^{137}{\rm Cs},\,^{60}{\rm Co},\,^{241}{\rm Am}$ и $^{152}{\rm Eu}.$
- 2. Найти для исследумых образцов пики полного поглощения и обратного рассеяния.
- 3. Найти для исследумых образцов энергию, соответствующую краю комптоновских электронов.

Основные формулы

Энергетическое разрешение спектрометра определяется, как

$$R_i = \frac{\delta E_i}{E_i}, \qquad R_i = \frac{\text{const}}{\sqrt{E_i}},$$
 (1)

где δE_i – ширина соответствующего максимума.

Положение пика обратного рассеяния определяется по формуле

$$E_{\text{ofp}} = \frac{E}{1 + 2E/mc^2},\tag{2}$$

где E – энергия соответствующего фотопика, $mc^2=511$ кэВ.

Максимальная энергия комптоновских электронов, соответствует

$$E_{\rm \tiny K,\ max} = \frac{\hbar \omega}{1 + m_e c^2/2\hbar \omega}. \label{eq:ekspec}$$

Экспериментальная установка

Рис. 1: Принципиальная блок-схема спектрометра

На рисунке 1 – сцинтиллятор, 2 – Φ ЭУ, 3 – предусилитель импульсов, 4 – высоковольный блок питания для Φ ЭУ, 5 - АЦП, 6 – компьютер для сбора даннных.

В качестве сцинтиллятора используютсся кристаллы NaI(Tl).

Излучение образца улавливается сцинтиллятором, затем, с помощью $\Phi \ni V$, и описанной схемы преобразуется в спектрограмму.

Измерения

Измерения спектра. Измерим гамма-спектр для 22 Na, 137 Cs, 60 Co, 214 Am, и 152 Eu(см. дополнение, общий вид спектра). Измерим фон (рис. 19). Все измерения проводились в течение $\tau=10$ минут. Погрешность соответствующего измерения можем найти, как

$$\eta(n) = \frac{N}{\tau} \pm \frac{\sqrt{N}}{\tau}, \qquad \eta - \eta_0 = \frac{N - N_0}{\tau} \pm \frac{\sqrt{N} + \sqrt{N_0}}{\tau}.$$

где n – номер канала, N – количество зарегистрированных частиц, $\eta = N/\tau$ – количество частиц в секунду, η_0 – фоновый спектр.

Аппроксимация. Аппроксимируем соответствующие части спектра гауссом + полином (степень указана в подписи к соответствующему графику). Далее μ - номер канала, соответствующего максимуму гауссианы, σ - среднеквадратичное отклонение.

В силу маленького значения $\Delta(\mu)$, но наличия чувствительности к аппроксимирующей функции погрешность измерения максимума далее считается равной 1 каналу: $\Delta(\mu) \equiv 1$.

Калибровка. В частности, для калибровки важны значения пиков полного поглощения для 22 Nau 137 Cs:

$$\mu(^{22}\text{Na})_1 = 739, \quad \mu(^{22}\text{Na})_2 = 1823, \quad \mu(^{137}\text{Cs}) = 952,$$

которым соответствуют значения энергии в 511 кэВ, 662 кэВ, 1275 кэВ, соответственно.

По трём значениям найдём калибровочную функцию $E(n) = a_c n + b_n$, см. рис. 2. И, соответственно, пара-

Рис. 2: Калибровка спектрометра

метры E(n):

$$a_c = (0.705 \pm 0.001)$$
 кэВ, $b_c = (-9 \pm 1)$ кэВ.

Погрешность соответствующего перехода $n \to E$ можно оценить, как

$$\Delta[E(n)] = \left[(1, n) \cot(1, n)^{\mathrm{T}} + (\Delta(\mu) \cdot a_c)^2 \right]^{1/2} = \left[(1, n) \cot(1, n)^{\mathrm{T}} + a_c^2 \right]^{1/2}.$$

Фотопики. Зная калибровку, находим соответствующие максимумы $\mu_i(n_i)$ (см. дополнение, параметры аппроксимации), и находим соответствующие значения энергии E_{fa} :

$$\begin{split} E_{\mathrm{fa}}(^{60}\mathrm{Co}) &= \{1174 \pm 2, 1334 \pm 2\} \text{ кэВ,} \\ E_{\mathrm{fa}}(^{214}\mathrm{Am}) &= \{62 \pm 2\} \text{ кэВ,} \\ E_{\mathrm{fa}}(^{152}\mathrm{Eu}) &= \{125 \pm 2, 245 \pm 2, 343 \pm 1\} \text{ кэВ,} \end{split}$$

что, например, сходится с табличным значением для $^{60}\mathrm{Co}$:

$$E_{\text{fa}}^{\text{table}}(^{60}\text{Co}) = \{1173, 1332\}$$
 кэВ.

Разрешение спектрометра. Для проверки формулы 1, из аппроксимации определим ширины (полная ширина на полувысоте) соответствующих пиков:

$$\delta E_i = \text{FWHM} = 2\sqrt{2\ln 2}\sigma_i \times a_c,$$

где соответствующие σ_i указаны в дополнение.

Построим $R^2(1/E)$, и аппроксимируем линейной зависимостью $R^2=a_R/E+b_R$. Видно, что при достаточно

Рис. 3: Проверка зависимости для разрешения спектрометра $R^2 \sim 1/E$

больших энергиях формула (1) прекрасно выполняется, так, например при аппроксимации прямой вплоть до E=244 кэВ, ξ^2/ndf составило 4.0. Погрешности обусловлены погрешностью a_c , σ_i , функции $E(n_i)$ и $\Delta\mu$.

Пики обратного рассеяния. Аналогично, аппроксимируем пики обратного рассеяния для исследуемых веществ (см. дополнение), что определить соответствующие n_i .

Рис. 4: Сравнение наблюдаемых пиков обратного рассеяния с теоретическими значениями

Заметим, что для 22 Nадва пика обратного рассеяния неразличимы, однако они отстоят от теоретической кривой на равное расстояние. Сдвинутые на равные значения $n_i^{
m secn}$ для 22 Nаотображены треуголными маркерами, пунктирной линией построена зависимость (2).

Видно, что наблюдаемые пики обратного рассеяния находятся близко к теоретической кривой.

Комптоновское рассеяние. Также определим по снятому спектру край спектра $E_{\rm k}$ комптоновских электронов. Для этого по экспериментальным данным строился сплайн, 1/2 от начала явного спада считалась границей. В силу условности границы, погрешностью считалась 1/4 от размеров спада. Так приходим к значениям

$$E_{\kappa}(^{22}\text{Na}) = \{336 \pm 5, 1048 \pm 18\} \text{ кэB},$$
 $E_{\kappa}(^{137}\text{Cs}) = \{469 \pm 10\} \text{ кэB},$ $E_{\kappa}(^{60}\text{Co}) = \{956 \pm 18\} \text{ кэB},$ $E_{\kappa}(^{214}\text{Am}) = \{32 \pm 1\} \text{ кэB},$

что в пределах погрещности совпадает с табличными значениями

$$E_{\kappa}^{\text{table}}(^{22}\text{Na}) = \{341, 1062\} \text{ кэВ},$$
 $E_{\kappa}^{\text{table}}(^{137}\text{Cs}) = \{477\} \text{ кэВ},$
 $E_{\kappa}^{\text{table}}(^{60}\text{Co}) = \{960\} \text{ кэВ}.$

Выводы

Изучен спектр 22 Na, 137 Cs, 60 Co, 214 Am, и 152 Eu. В нем выделен спектр комптоновских электронов, фотопики и пики обратного рассеяния.

Полученные экспериментально значения фотопиков и края комптоновского спектра сходятся в пределах погрешности с табличными значениями. Наблюдаемые пики обратного рассеяния также ложатся на теоретическую кривую (2).

Из аппроксимации также получены соответствующие ширины пиков, по которым проверена формула (1) для разрешения спектрометра.

Дополнение

Определение параметров для $^{22}\mathrm{Na}$

Рис. 5: Определение параметров пиков полного поглощения $^{22}\mathrm{Na}$

Рис. 6: Определение края комптоновского рассеяния и пика обратного рассеяния для ²²Na

Определение параметров для $^{137}\mathrm{Cs}$

Рис. 7: Общий вид спектра $^{137}\mathrm{Cs}$

Рис. 8: Определение параметров пиков полного поглощения $^{137}\mathrm{Cs}$

Рис. 9: Определение края комптоновского рассеяния и пика обратного рассеяния для $^{137}\mathrm{Cs}$

Определение параметров для ⁶⁰Со

Рис. 10: Общий вид спектра 60 Со

Рис. 11: Определение параметров пиков полного поглощения ⁶⁰Co

Рис. 12: Определение края комптоновского рассеяния и пика обратного рассеяния для ⁶⁰Co

Определение параметров для $^{214}\mathrm{Am}$

Рис. 13: Общий вид спектра $^{214}{\rm Am}$

Рис. 14: Определение параметров пиков полного поглощения $^{60}\mathrm{Co}$

Рис. 15: Определение края комптоновского рассеяния $^{214}\mathrm{Am}$

Определение параметров для $^{152}\mathrm{Eu}$

Рис. 16: Общий вид спектра $^{137}\mathrm{Cs}$

Рис. 17: Определение параметров пиков полного поглощения $^{152}{\rm Eu}$

Рис. 18: Определение параметров пика обратного рассеяния для $^{152}{\rm Eu}$

Измерение фона

Рис. 19: Фоновый гамма-спектр