1. Bevezető

Az $\frac{1}{n^2}$ sorösszege:

$$\sum_{i=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Az n! (n faktoriális) a számok szorzata 1-töl n-ig, azaz

$$n! := \prod_{k=1}^{n} k = 1 \cdot 2 \cdot \ldots \cdot n.$$

Konvenció szerint 0! = 1

Legyen 0 k n. A binomiális együttható

$$\binom{n}{k} := \frac{n!}{k! \cdot (n-k)!}$$

ahol a faktoriálist (1) szerint definiáljuk.

Az előjel- azaz szignum függvényt a következőképpen definiáljuk:

$$sgn(x) := \begin{cases} 1, & \text{ha } x > 0, \\ 0, & \text{ha } x = 0, \\ -1, & \text{ha } x < 0. \end{cases}$$

2.Determináns

Legyen

$$[n] := \{1, 2, \dots, n\}$$

a természetes számok halmaza 1-től n-ig.

Egy n-edrendű permutáció σ egy bijekció [n]-b
ől [n]-be. Az n-edrendű permutációk halmazát, az ún. szimmetrikus csoportot, S_n -nel jelöljük.

Egy $\sigma \in S_n$ permutációban inverziónak nevezünk egy (i, j) párt, ha i < j de $\sigma_i > \sigma_j.$

Egy $\sigma \in S_n$ permutáció paritásának az inverziók számát nevezzük:

$$\mathcal{I}(\sigma) := |\{(i,j)|i,j \in [n], i < j, \sigma_i > \sigma_i\}|$$

Legyen A $\in R^{n\times n},$ egy n \times n-es (négyzetes) valós mátrix:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Az A mátrix determinánsát a következőképpen definiáljuk:

$$det(A) = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} := \sum_{\sigma \in S_n} (-1)^{\mathcal{I}(\sigma)} \prod_{i=1}^n a_{i\sigma_i}$$

3. Logikai azonosság

Készítsük el a következő táblázatot, formulákat és levezetést. Ügyeljünk a számozásra és igazításra is! Tekintsük az $L=\{0,1\}$ halmazt, és rajta a következő, igazságtáblával definiált műveleteket:

		\boldsymbol{x}	y	$x \vee y$	$x \wedge y$	$x \to y$
x	\bar{x}	0	0	0	0	1
0	1	0	1	1	0	1
1	0	1	0	1	0	0
'		1	1	1	1	1

Legyenek a, b, c, $d \in L$. Belátjuk a következő azonosságot:

$$(a \land b \land c) \to d = a \to (b \to (c \to d)). \tag{1}$$

$$(a+b)^{n+1} = (a+b) \cdot \left(\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k\right) = \sum_{k=0}^{n} \binom{n}{k} a^{(n+1)-k} b^k + \sum_{k=1}^{n+1} \binom{n}{k-1} a^{(n+1)-k} b^k = \binom{n+1}{0} a^{n+1-0} b^0 + \sum_{k=1}^{n} \binom{n}{k} a^{n-k} b^k$$