(안양시) 도시데이터 수집을 위한 IoT센서 설치 위치 선정

2020. 11. 03

조수경

분석 개요

분석 목적

- 미세먼지 저감 정책 효과 검증 및 도로변 미세먼지 발생량 모니터링을 위한 미세먼지 측정 IoT센서 설치 위치 최적화
- 도시 정책에 활용될 수 있는 IoT복합센서 설치 위치 최적화

분석 프로세스

1. Data Preprocessing

- 제공받은 데이터 중 분석
 목적에 맞는 데이터 선택
- 분석을 위한 기준 Point 생성
- 기준 Point에 데이터 통합

2. EDA

- 기준 Point에 할당된 정보 시각화
- 시사점 도출

3. 최적화 문제 정의

- 최적화 모델 선정
- ✓ Maximal Covering Location Problem ¹)
- 최종 최적화 모델 정의
- ✓ 목적함수: 특정 지역을 주어진 IoT 기기 대수로 최대 cover
- ✓ 결정 변수 분석 : covered distance 결정

분석 결과

- 주어진 IoT 기기로 가장 효율적인 설치 위치 제안
- 추가 분석에서 임의의 covered distance를 가정하여 효율적인 IoT 대수 제안
- ✓ 한 대의 IoT 기기가 700m를 cover 할 수
 있다면 각각 30대만으로 타깃 지역을 90%
 cover 가능
- 활용 방안 제시
- ✓ loT 기기의 성능과 가격, 예산에 따른 최적화 위치 도출
- ✓ 미세먼지나 복합 IoT 이외 특수 목적 기기 설치에 활용 가능 (밤길 안심 귀가 CCTV, 방범용 CCTV 추가 설치 등)

Background

국가 정책미세먼지 관리 종합계획

- ☑ 정부는 미세먼지 저감 정책을 위해 관계부처와 함께 미세먼지 관리 종합계획 수립
- ☑ 국내 미세먼지는 초미세먼지·황산화물은 사업장, 질소산화물은 수송 부문에서 다량 배출
 - 효과적인 저감 정책을 위해서는 미세먼지가 가장 많이 발생하는 산업단지와 도로변의 면밀한 모니터링이 필요
 - 경기도는 특히 질소산화물이 다량 배출되며, 이는 자동차 수송에 의해 발생됨
 - → 미세먼지 IoT 센서는 공장 주변과 교통량이 많은 도로변에 설치
- ☑ 미세먼지는 호흡기에 침착 또는 체내에 흡수되어 건강 영향 발생
 - 실내 공기질 관리와 취약계층에 대한 집중 보호 조치 마련이 요구
 - → 복합 IoT센서 또한 미세먼지 측정이 가능하므로 취약계층이 많은 곳에 우선 설치

Background

안양시 지형 특징

☑ 많은 산지

- 석수동과 비산동, 박달동, 안양9동 일대
- 산지는 loT 설치 시 후순위가 되야 할 것으로 판단

인구 현황과 공장 등록 현황

☑ 데이터

df_01: 01.안양시_격자별인구현황(전체), df_02: 02.안양시_격자별인구현황(고령),
 df_03: 03.안양시_격자별인구현황(생산가능인구), df_04: 04.안양시_격자별인구현황(유소년),
 df_10: 10.안양시_공장등록현황

☑ 전처리 방법

• 1. 격자 데이터의 geometry 에서 위도 경도 최대 최소 값을 컬럼으로 분리

df_01		
gid	geometry	Val_total
다사 448339	MULTIPOLYGON (((126.87631 37.40257, 126.87630	0

ui_pop						
gid	geometry	Val_total	lon_min	lon_max	lat_min	lat_max
다사 448339	MULTIPOLYGON (((126.87631 37.40257, 126.87630	0	126.8463	126.8763	37.4025	37.4325

• 2. "gid" 컬럼을 공통으로 가지는 데이터 셋을 모두 결합

- Val_total: 전체인구, val_senior: 고령인구, val_work: 생산가능 인구, val_junior: 유소년, fac_cnt: 공장등록 수

gid	geometry	Val_total	Val_senior	Val_work	Val_junior	Fac_cnt	lon_min	lon_max	lat_min	lat_max
다사 448339	MULTIPOLYGON (((126.87631 37.40257, 126.87630	150	123	10	12	5	126.8463	126.8763	37.4025	37.4325

- 3. 모든 값 정규화 하여 시각화
 - 정규화 값: 값 / 최대값

주요시설 위치

☑ 데이터

df_06: 06.안양시_학교현황, df_07: 07.안양시_유치원현황, df_08: 08.안양시_복지회관_보건소현황,
 df_09: 09.안양시_병원정보, df_10: 10.안양시_공장등록현황, df_11: 11.안양시_공장등록현황_격자별,
 df_13: 13.안양시_버스정류장 위치정보, df_14: 14.안양시_버스정류장별 이용객수, df_15: 15.안양시_지하철역 위치정보

☑ 전처리 방법

- 1. 주요 위치 데이터의 위도 경도 ± 300m에 해당하는 행을 df pop에서 추출, 1 부여
 - (WGS84 좌표계)약 1m = (1/88.74/1000)

df 06

지역명	학교명	Lon	Lat			
경기도 안양시 동안구 관양고등학교 126.960063 37.408497						
(-df_pop['lon_m	pop['lon_max']<=df x']<=df_06.loc[i,' in']<= -df_06.loc[in']<= -df_06.loc[<pre>lat']+coor_1m*30 [i,'lon']+coor_1m</pre>	0)& +300)&			

df_pop

gid	geometry	Val_total		School
다사448339	MULTIPOLYGON (((126.87631 37.40257, 126.87630	0		1
다사448340	MULTIPOLYGON (((126.87630 37.40347, 126.87629	0		1

승하차 수

☑ 데이터

• df_13: 13.안양시_버스정류장 위치정보, df_14: 14.안양시_버스정류장별 이용객수

☑ 전처리 방법

- 1. df_14에서 특정 날짜 (2019. 10. 22) 선택
- 2. df 14에서 정류소 ID별로 승차/ 하차 결과 합 (Python cod: groubby)
- 3. df 14의 "전체 승차 건수" 열과 "전체 하차 건수" 열을 합하여 "승하차" 열 생성
- 4. df_14와 df_13을 "정류소ID"로 통합하여 정류소의 위도 경도 정보 결합
- 5. df pop에서 위도 경도 ± 300m에 해당하는 행 추출, 승하차 값 할당
- 6. 승하차 값 정규화 컬럼 생성

정류소ID	STATION_NM	Lon	Lat
209000225	친목마을	126.960063	37.408497

df_14

정류소ID	일자	전체 승차 건수	전체 하차 건수
209000225	20191022	0	1

df_pop

gid	geometry	Val_total	승하차
다사448339	MULTIPOLYGON (((126.87631 37.40257, 126.87630	0	 127
다사448340	MULTIPOLYGON (((126.87630 37.40347, 126.87629	0	 123

교통량

☑ 데이터

• df_17: 17.안양시_링크정보, df_18: 18.안양시_교통량정보

☑ 전처리 방법

- 1. df_18에서 특정 날짜 (2019. 10. 22) 추출
- 2. df_18에서 출근 시간 대와 업무시간 대 교통량 추출 (각각 7시, 15시로 가정)
- 3. df_18과 df_17을 "LINK_ID"로 통합하여 도로 geometry와 교통량 결합

df_17

LINK_ID	ROAD_NAME	geometry
2080000700	서울외곽순환고속도로	MULTILINESTRING ((126.93914 37.39807, 126.9438

df_18

dt	tm	LINK_ID	Sum_probecount
2091022	7	2080000700	136

df_traffic_7

LINK_ID	ROAD_NAME	geometry	교통량07
2080000700	서울외곽순환 고속도로	MULTILINESTRING ((126.93914 37.39807, 126.9438	136
2080062700	제2경인 고속도로	MULTILINESTRING ((126.93914 37.39807, 126.9438	123

부흥고등학교 은하수미

은하수마을청구아파트

롯데백화점

평촌고등학교

인구 관련 요소와 공장 수 할당

☑ 기준 Point 생성

- 격자별 인구 현황의 grid 기준의 중심 (central point)를 **기준 Point**로 명명
- 기준 Point 마다 인구 현황과 공장 수 할당

주요 시설 요소 할당

☑ 주요시설 Point 관련 요소, 기준 Point에 할당

→ 주요 시설 Point의 300m 주변에 해당하는 기준 Point에 1 부여

교통량 할당

☑ MultiLineString 관련 요소, 기준 Point에 할당

- MultiLineString 정보에 buffer를 적용, 도로 근방 약 50 m에 포함되는 기준 point에 MultiLineString 정보 할당
- 할당된 정보: 07시 교통량, 15시 교통량

2. Exploratory Data Analysis

인구 현황 분석

☑ 시각화

인구 적음

☑ 시사점

- 생산가능인구와 고령인구 패턴이 비슷함
 - 비산동에 가장 많은 인구가 있음
- 유소년인구는 **호계동, 비산동** 순으로 많음
- 산지를 제외하고 분포함을 확인,
 인구 현황이 1명 이상 있는 곳을 추출,
 복합 IoT 설치 후보지로 고려

[126.95841195631212, 37.37638621867855]

[126 96398217179078 37 387228087123226]

[126.9616456192921, 37.39803394343237]

[126.96510537089685, 37.388134546436]

1.000000

0.980080

0.940239

0.912351

0.816733

5075 다사520309

5521 다사525321

2. Exploratory Data Analysis

주요 시설 위치

☑ 시각화

• 적음 _____ 많음

☑ 시사점

- 학교와 유치원은 비슷한 곳에 분포
- 보건소와 병원은 비슷한 곳에 분포
- 버스 승하차가 가장 많은 곳은 **관양 1동**
- 지하철 역 근처는 승하차 수가 보통 많으므로,
 유동인구가 많은 곳으로 기대
- 공장은 안양에 전반적으로 고르게 분포
 - **안양 7동, 관양2동, 평촌동**에 많이 분포
- 복합 IoT는 환경 데이터 뿐만 아니라 도시 데이터 수집 목적도 있으므로 인구 현황이 높은 곳 뿐만 아니라 유동인구가 높은 곳과 주요 시설 근처에 설치되어야 한다고 판단

[126.96955397583552, 37.39806968577225]

0.490909

2. Exploratory Data Analysis

교통량 분석

☑ 시각화

• 교통량 많음 교통량 적음

• 선의 굵기: 교통량

☑ 시사점

- 출근 시간과 업무시간 패턴이 비슷함
 - 서울외곽순환고속도로와 제2 경인고속도로, 서해안고속도로에 교통량 많음
- 석수동, 비산동, 호계동, 평촌동 일대 교통량이 많음
- 미세먼지 모니터링은 도로 주변에 설치 되어야 효과적이라 생각됨

최적화 모델 설명

■ Maximal Covering Location Problem (MCLP)

- MCLP는 최대지역커버문제로 Mixed Integer Linear Programming 문제
- 설비가 cover하는 수요 (covered demand)의 합을 최대화 하면서 K개 설비를 세울 위치를 선정하는 문제
- 가정
 - 설비의 위치가 수요 발생 지점으로부터 일정 거리 Residual 이내에 수요를 커버함.
 - 이때 거리 Residual은 커버리지 거리(covered distance) 라고 함

최적화 모델 문제 정의

✓ Maximal Covering Location Problem (MCLP)

Formulation

Formulation $\sum_{i \in I} w_i y_i \dots (1)$ s.t. $y_i \leq \sum_{j \in N_i} x_j$ for all $i \in I \dots (2)$ $\sum_{j \in J} x_j = K \dots (3)$ $x_j, y_i \in \{0, 1\}$ for all $i \in I, j \in J$

Mathematical statement

- i : 수요 포인트 index
- j : 설비 후보지역 index
- -I: 수요 포인트 집합
- J: 설비 후보지역 집합
- к : 총 설치해야 하는 설비 개수
- -x:설비 후보 지역 중 위치 j에 설비가 설치되면 1, 그렇지 않으면 0
- v: 적어도 하나의 설비로 그 포인트가 커버가 되면 1, 그렇지 않으면 0
- w : 가중치

Describe

- -(1): 목적함수, 가중치 w인 수요 포인트를 최대한 많이 커버하게 해라
- -(2): 수요포인트 i는 설비 후보 지역이 커버하는 거리 안에서 적어도
- 하나 이상의 설비로 부터 커버가 된다.
- -(3) : 총 설치할 설비는 K개 이다.

• 결정 변수

- y: 설치 후보 기준 Point
- K: IoT 설치 대수
- w: 가중치, 각 loT 설치 목적에 맞는 가중치를 정의
- Covered distance: 한 설비가 cover 가능한 범위, 시나리오 분석을 통해 미세먼지 IoT 40개, 복합 IoT 80개를 가장 효과적으로 설치할 수 있는 범위 도출, 만약 실제 IoT가 cover 가능 한 범위가 주어진다는 가정하에 가장 효과적인 IoT 개수를 추가 분석 함

결정 변수 선정 (y, K, w)

☑ 미세먼지 IoT

- y: 도로 주변과 공장이 1개 이상 있는 Point
- K: 40
- w: 교통량과 공장등록 개수가 많을 수록 큼
 - 정규화된 07시 교통량 (정규화_교통량07)
 - 정규화된 15시 교통량 (정규화 교통량15)
 - 정규화된 공장등록 개수 (정규화 fac cnt)

☑ 복합 loT

- y: 인구 현황과 승하차 기록이 1명 이상 있는 곳
- K: 80
- w: 다음과 같이 우선순위를 고려하여 가중치 개발
 - (공기 질 모니터링) 유소년 인구가 많은 곳 (정규화_junior*0.20)
 - (공기 질 모니터링) 고령 인구가 많은 곳 (정규화_senior*0.15)
 - (공기 질 모니터링) 학교 혹은 어린이집이 있는 곳 (kinder0.075, school0.075)
 - (공기 질 모니터링) 보건소 혹은 병원이 있는 곳 (pub_hos0.05, hos0.05)
 - (유동인구 모니터링) 승하차 인구가 많은 곳 (정규화_승하차*0.2)
 - (유동인구 모니터링) 지하철 역이 있는 곳 (sub*0.15)
 - (공기 질 모니터링) 인구가 많은 곳 (정규화_인구*0.05)

미세먼지 IoT covered distance 분석

☑ (40대 일 때) Covered distance 에 따른 cover 가능도

미세먼지IoT 40대를 설치할 경우, covered distance가
 500m 이면 약 80%를 cover 할 수 있으며,
 700m 이면 약 90%를 cover 할 수 있다.

☑ IoT 대수에 따른 cover 가능도

▶ Covered distance 700m인 경우 90% 커버 가능

- **30대**가 가장 효율적
- Covered distance 500m인 경우 80% 커버 가능

40대가 가장 효율적

covered distance가 500m일 때 40대로 80%를 cover 하는 것이 가장 효율적이라 예상됨

복합 IoT covered distance 분석

☑ (80대 일 때) Covered distance 에 따른 cover 가능도

복합IoT 80대를 설치할 경우, covered distance가
 400m 이면 약 80%를 cover 할 수 있으며,
 700m 이면 약 90%를 cover 할 수 있다.

☑ IoT 대수에 따른 cover 가능도

Covered distance 700m인 경우 90% 커버 가능

- **30대**가 가장 효율적
- Covered distance 400m인 경우 80% 커버 가능

- **80대**가 가장 효율적

covered distance가 400m일 때 80대로 80%를 cover 하는 것이 가장 효율적이라 예상됨

4. IoT 센서 설치 최적화 결론

가중치를 고려하지 않을 때 최적화 결론

☑ 미세먼지 IoT

• 도로변과 공장주변이 아닌 안양시 전체에 고르게 분포

☑ 복합 IoT

• 인구 현황과 유동인구 분포와는 상관 없이 고르게 분포

4. IoT 센서 설치 최적화 결론

최종 선정 지역

☑ 미세먼지 IoT

☑ 복합 IoT

미세먼지 IoT 기기는 도로변과 공장 주변으로, 복합 IoT는 주요 시설과 유동인구 주변에 고르게 분포

4. IoT 센서 설치 최적화 결론

(추가) Covered distance 700m 가정

☑ 미세먼지 IoT

☑ 복합 IoT

700m를 cover **할 수 있는 IoT**가 있다면 미세먼지와 복합 IoT 기기는 30대 만으로 90% cover 가능

결론

결과 유의성

☑ 미세먼지 관리 종합계획을 반영해 미세먼지 IoT와 복합 IoT 최적화 위치가 목적에 맞게 잘 배치됨

• 미세먼지 IoT는 도로변과 공장주변에, 복합 IoT는 주요 위치 주변과 유동인구가 많은 곳에 적절하게 배치됨

데이터 활용성

☑ IoT 목적에 맞게 데이터를 활용함

- 미세먼지 IoT 설치를 위해 교통량과 공장 현황 데이터를 활용했으며, 이는 미세먼지 관리 종합계획을 반영
- 복합 IoT 설치를 위해 학교 · 유치원 · 병원 위치, 고령 ·유소년 인구현황 등 데이터를 활용하여 취약계층을 고려 했으며, 전체 인구 현황, 지하철 역 위치, 버스 승하차 등 데이터를 활용하여 유동인구를 고려했음

분석 창의성

☑ IoT 목적을 반영한 최적화 모델 정의로 해결

- 미세먼지 IoT와 복합 IoT 목적을 반영한 적절한 가중치 부여
- ☑ 최적의 결정 변수 도출을 위한 다양한 시나리오 분석
 - 주어진 covered distance가 없어 시나리오 분석을 통해 주어진 IoT 설치에서 가장 효율적인 covered distance 도출
 - 임의의 covered distance를 가정하여 효율적인 IoT 대수 제안

공공 활용성

☑ 모든 패키지는 오픈소스를 사용

• Mixed Integer Programming을 풀기 위한 solver는 COIN-OR CBC로, 오픈소스 solver 중 가장 성능이 뛰어남

경제성

- ☑ 추가 모델 구현 없이 적은 결정변수 (IoT 대수, discovered distance) 수정으로 상황에 맞는 최적화 결과 도출 가능
- ☑ 한 IoT의 covered distance가 주어지면 타깃 범위를 cover하는 가장 효율적인 IoT 대 수를 유추, 예산 절약

활용 방안 및 제안

- ☑ IoT 기기의 성능과 가격이 주어지면 예산에 맞춰 가장 효율적인 IoT 대수와 위치 도출 가능
- ☑ 미세먼지나 복합 IoT 이외 특수 목적 기기 설치에 활용 가능
 - 밤길 안심 귀가를 위한 CCTV 설치, 범죄 빈도 높은 지역 방범용 CCTV 추가 설치 등

첨부1.

분석 소요 시간

- ☑ 분석에는 총 1일 5시간 씩 7일 소요
- ☑ 제출 코드의 running time은 약 10분 가량 소요됨

감사합니다.