Regression Analysis Model Selection

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Prediction Risk Estimation

About This Lesson

Bias-Variance Tradeoff

- Variable Selection: Bias vs. Variance
 - Many covariates
 - Low bias, high variance
 - Few covariates
 - High bias, low variance
 - Too few covariates
 - High bias, high variance
- Prediction Risk: Measure of the Bias-Variance Tradeoff

$$R(S) = \frac{1}{n} \sum_{i=1}^{n} E(\widehat{\mathbf{Y}}_{i}(S) - \mathbf{Y}_{i}^{*})^{2}$$

with $\hat{Y}_i(S)$ the fitted response for submodel S and Y_i^* the future observation

We cannot obtain the prediction risk because we do not have the future observations.

How to estimate?

Training Risk

Replace future observations with actual observations

$$R_{\rm tr}(S) = \frac{1}{n} \sum_{i=1}^{n} (\widehat{\mathbf{Y}}_i(S) - \mathbf{Y}_i)^2$$

with $\hat{Y}_i(S)$ the fitted response for submodel S and Y_i the actual observation

- Uses data twice (data snooping): upward bias in prediction risk estimate
- Always prefers/selects larger/more complex model
- **→** Correcting for the bias

$$R_{tr}(S) + Complexity Penalty$$

Variable Selection Criteria

- \rightarrow Correcting for the bias: $R_{tr}(S) + Complexity Penalty$
- Mallow's Cp: $Complexity\ Penalty = \frac{2|S|\hat{\sigma}^2}{n}$ where |S| is the model size (number of predictors) and $\hat{\sigma}^2$ is the estimated variance based on the full model.
- Akaike Information Criterion (AIC): Complexity Penalty = $\frac{2|S|\sigma^2}{n}$ where |S| is the model size and σ^2 is the true variance.
 - For AIC, we need to replace σ^2 with an estimate (from the full model or from the S submodel).

Variable Selection Criteria (cont'd)

- \rightarrow Correcting for the bias: $R_{tr}(S) + Complexity Penalty$
- Bayesian Information Criterion (BIC):

Complexity Penalty =
$$\frac{|S|\sigma^2 \log(n)}{n}$$

where |S| is the model size and σ^2 is the true variance

- For BIC, we need to replace σ^2 with an estimate (from the full model or from the S submodel)
- BIC penalizes complexity more than other approaches
 - Preferred in model selection for prediction

Variable Selection Criteria (cont'd)

- \rightarrow Correcting for the bias: $R_{tr}(S) + Complexity Penalty$
- Leave-one-out Cross Validation

$$R_{\text{CV}}(S) = \frac{1}{n} \sum_{i=1}^{n} (\widehat{\mathbf{Y}}_{(i)}(S) - \mathbf{Y}_i)^2$$

where $\hat{Y}_{(i)}(S)$ is the *i*-th predicted value from the S submodel without the *i*-th observation

Leave-one-out Cross Validation Approximation

$$\hat{R}_{CV}(S) \approx R_{tr}(S) + \frac{2|S|\hat{\sigma}^2(S)}{n}$$

where $\hat{\sigma}^2(S)$ is the estimated variance based on the S submodel.

Generalized Linear Models

Training Risk for Generalized Linear Models (including for logistic regression and Poisson regression)

$$R_{\text{tr}}(S) = \frac{1}{n} \sum_{i=1}^{n} 2Y_i \log[Y_i/\widehat{Y}_i(S)] + 2(n_i - Y_i) \log[(n_i - Y_i)/n_i - \widehat{Y}_i(S))])$$

where $\hat{Y}_i(S)$ the fitted response for submodel S and Y_i the actual observation

- \rightarrow Correcting for the bias: $R_{tr}(S) + Complexity Penalty$
- AIC & BIC are commonly used for model selection for GLMs

Ranking States by SAT Performance

SAT Mean Score by State – Year 1982 790 (South Carolina) – 1088 (Iowa)

- Which variables are associated with state average SAT scores?
- After accounting for selection biases, how do the states rank?
- Which states perform best for the amount of money they spend?

Model Selection Criteria Using R

library(CombMSC)
n = nrow(datasat)

full model

c(Cp(regression.line, S2=summary(regression.line)\$sigma^2). AIC(regression.line, k=2) AIC(regression.line k=log(n))) [1] 7.016756 471.698197 486.994381

reduced model

c(Cp(regression.red, S2=summary(regression.line)\$sigma^2).
AIC(regression.red, k=2) AIC(regression.red k=log(n))
[1] 29.67045 490.59880 498.24689

- Mallow's Cp: $\hat{\sigma} = 24.86$ is the estimated standard deviation for the full model
 - Use the estimated variance,
 ô^2, as the S2 parameter
 value
- BIC Similar to AIC but the AIC complexity is further penalized by log(n)/2
- The values of the three criteria are different and not comparable
- The full model is better according to all three criteria

Summary

