NORTHERN ARIZONA UNIVERSITY

College of Engineering, Informatics, and Applied Sciences

Biomechanical Model of a Finger Fabricated Using Torsional Artificial Muscles

Diego Higueras Ruiz Sam Sarkar Siwoo Jeong

STPA vs TPA

STPA

- Straight twisted polymer actuators (STPAs)
 - Twisted Polymer monofilament
 - Nylon fishing line
 - Thin, light, cheap!
- The mechanism of untwisting actuation
 - Linear actuator
 - Untwisting due to an asymmetric thermal expansion
 - Radial expansion & axial contraction

Reference	Type of Torsional Actuator	Activation Mechanism	Specific gravity	Free torsion (º/mm)	Torque normalized by cross sectional. (N/mm)	Magnitude of activation.
Jardine et al. 1996	SMA	Temperature	6.5	0.18	(100 – 200)	~ (0 – 100)°C
Baghani et al. 2014	SMP Shape Memory Polymers	Temperature	1.12	~1.8	~1	~ (0 – 62)°C
Fang et al. 2011	EAPs Ion-based actuation	Electricity	1.12	0.01	Unknown	~ (100 – 200) V/µm
Sanan et al. 2013	PAMs (Antagonistic Torsion Shape Actuators)	Pneumatic (Pressure)	0.315	0.287	~ (0 –1.43)	~ (50 – 90) kPa
Sanan et al. 2013	PAMs (Peano Actuators)	Pneumatic (Pressure)	0.315	0.315	~ (0 – 0.7)	~ (50 – 90) kPa
Foroughi et al. 2011 Suh et. al, 2016. Chun et. Al. 2013	CNT	Temperature	1.6	~ (15 – 80)	~ (0.5 – 1.8)	~ (0 – 90)°C
Shafer et al. 2016 Shafer et al. 2017	STPA	Temperature	1.12	~12.7	~ (0 – 119)	~ (0 – 90)°C

Fabrication

Annealing at 120°C for 20 minutes and cooled down to room temperature

Microscope Images

INTRODUCTION

Human Hand

- A very sophisticated means for physical and social interaction
- 23 DoFs for the hand and 6 for the Wrist

Hand loss

- Around 541,000 Americans (Ziegler-Graham et al., 2008)
- A devastating damage
- Limiting the capability of performing ADLs

INTRODUCTION

- Hand prosthesis
 - Passive prostheses
 - Cosmetic or functional prostheses
 - Active prostheses
 - Externally powered
- Engineering Challenges in the development of prosthetic devices
 - Size and weight of the replaced hand (Cordella et al., 2016)
 - Control of prosthesis that notably affects functionality (Gonzales & Castellini, 2013; Wininger et al., 2008)

i-Limb

Michelangelo

INTRODUCTION

Our Question

"Can a finger model made of STPAs be a candidate to substitute a human finger?"

Light weight and cheap!!!

- In this study, as the first step
 - The relationship between the temperature and the joint angle
 - The relationship between the temperature and the joint torque

SolidWorks Model. Problem Statement

Experimental Results. Lower Torsional Actuator Joint

Angular displacement and temperature vs. time of the Lower Torsional Actuator Joint.

Experimental Results. Upper Torsional Actuator Joint

Angular displacement and temperature vs. time of the Upper Torsional Actuator Joint.

Angular Displacement, Velocity, and Acceleration for the Lower and Upper Joint

Angular displacement vs. time of the upper and lower Torsional actuator joint along with curves fit.

$$\Delta\theta_{LJ} = 0.6467 t^2 - 1.7408t$$
$$\Delta\theta_{UJ} = -0.004 t^2 + 5.3438t$$

Angular velocity vs. time of the upper and lower torsional actuator joint.

$$\omega_{LJ} = 1.2934t - 1.7408$$

$$\omega_{UJ} = -0.004t + 5.3438$$

Angular acceleration vs. time of the upper and lower torsional actuator joint.

$$\alpha_{LJ} = 1.2934$$

$$\alpha_{UJ} = -0.004$$

Dynamic Analysis

$$\sum_{i} M_{0} = I \alpha$$

$$\tau_{gen} + \tau_{grav} = I \alpha$$

$$\tau_{gen} = I \alpha - \tau_{grav} = I \alpha - Wd$$

Matlab code

%Analytical model for the Lower Joint

deltathetamodelUJ = -0.004*(timeUJ.^2)+5.3438*(timeUJ)
omegaUJ = -0.008*(timeUJ)+5.3438;
alphaUJ = -0.008;
alphaUJ(1:length(timeUJ),1) = alphaUJ

Tau_genUJ = -0.0008*9.81*0.006*abs(cosd(comangleUJ))
PowerUJ = omegaUJ.*Tau_genUJ |

Lower Torsional Actuator

Lower Joint				
Input	Value			
I	$6\times 10^{-8}\; kgm^2$			
m	5 grams			
α	1.29°/s²			
d	22 mm			

Upper Torsional Actuator

Upper Joint					
Input	Value				
Ι	$1.72\times10^{-8}kgm^2$				
m	0.8 grams				
α	$-0.004 ^{\circ}/s^2$				
d	6 mm				

Torque and displacement as a function of temperature

$$\Delta \theta_{LI} = 1.9735T - 52.92$$

$$\Delta\theta_{UI} = 0.8431T - 28.526$$

Conclusions

- STPA is a suitable candidate material for artificial fingers
- Specific Torque generated by STPA is 19.3 kNm/m3 which is in the same order of magnitude as that of a real human finger under blocked torque conditions (95.5 kNm/m3) [5]
- Further research is needed to (among other things) increase the total torque generated.

References

- [1] C. S. Haines, M. D. Lima, N. Li, G. M. Spinks, J. Foroughi, J. D. Madden, S. H. Kim, S. Fang, M. J. de Andrade, F. Goktepe, et al., "Artificial muscles from fishing line and sewing thread," Science, vol. 343, no.6173, pp. 868-872, 2014.
- [2] M. Shafer, H. Feigenbaum, and D. Higueras Ruiz, "A novel biomimetic torsional actuator design using twisted polymer actuators," Smart Materials, Adaptive Structures and Intelligent Systems, vol. 1, pp. 1-7, 2017.
- [3] M. W. Shafer, H. P. Feigenbaum, D. Pugh, and M. Fisher, "First steps in modeling thermal actuation of twisted polymer actuators using virgin material properties," in ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, pp. V002T06A017, American Society of Mechanical Engineers, 2016
- [4] W. Hilber, "Stimulus-active polymer actuators for next-generation microuidic devices," Applied Physics A, vol. 122, p. 751, Jul 2016.
- [5] Zatsiorsky, V. M., Gregory, R. W., & Latash, M. L. (2002). Force and torque production in static multifinger prehension: biomechanics and control.
 I. Biomechanics. Biological cybernetics, 87(1), 50–57. doi:10.1007/s00422-002-0321-6

References... contd.

- [6] Cordella, F., Ciancio, A. L., Sacchetti, R., Davalli, A., Cutti, A. G., Guglielmelli, E., et al. (2016). Literature review on needs of upper limb prosthesis users. Frontiers in Neuroscience, 10, 209.
- [7] Sierra Gonzalez, D., & Castellini, C. (2013). A realistic implementation of ultrasound imaging as a human-machine interface for upper-limb amputees. Frontiers in Neurorobotics, 7, 17.
- [8] Wininger, M., Kim, N. H., & Craelius, W. (2008). Pressure signature of forearm as predictor of grip force. *Journal of Rehabilitation Research and Development*, 45(6), 883-892.
- [9] Ziegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G., & Brookmeyer, R. (2008). Estimating the prevalence of limb loss in the united states: 2005 to 2050. Archives of Physical Medicine and Rehabilitation, 89(3), 422-429.

DEMO

Questions?

Back-up slides

Flexor Digitorum Superficialis:

- Origin: medial epicondyle of humerus, and proximal ulna & radius
- Insertion: middle phalanges of 2 5 digits
- Action: flexes digits 2-5 and flexes hand

Extensor Digitorum

- Origin: lateral epicondyle of humerus
- Insertion: middle & distal phalanges of 2–5 digits
- Action: extends digits 2-5 and flexes hand

