oef 48

wietse vaes

Zij X en Y TR, met Y een Haussdrof ruimte. Zij $A \subset X$ en $f: A \to Y$ continu. veronderstel nu dat zowel $g_1: \overline{A} \to Y$ en $g_1: \overline{A} \to Y$ continu zijn en voldoen aan $g_1|_A = f = g_2|_A$. ATT: $g_1 = g_2$.

- We zien in dat de functies hetzelfde domein en codomein hebben.
- Ook weten we dat: $\forall x \in A : g_1(x) = g_2(x)$. Dit is gegeven. Omdat $g_1 : \overline{A} \to Y$ en $g_2 : \overline{A} \to Y$ twee continue afbeeldingen zijn, moet uit stelling 1.63 volgen dat $S = \{x \in \overline{A} : g_1(x) = g_2(x)\}$ gesloten is, duidelijk is dat $S \subset \overline{A}$. We weten alvast dat $A \subset S$ is, en omdat \overline{A} de kleinste gesloten verzameling is die A bevat en S gesloten is; moet $\overline{A} \subset S$. Dus is $S = \overline{A}$, oftewel $\overline{A} = \{x \in \overline{A} : g_1(x) = g_2(x)\}$, oftewel is $\forall x \in \overline{A} : g_1(x) = g_2(x)$.

Hieruit volgt dat $g_1 = g_2$