(10 точки)

f(A[1...n]: array of integers; lower, upper: integers): integer

- 1) **if** lower = upper
- 2) return A[lower]
- 3) **else if** upper = lower + 1
- 4) return A[lower] × A[upper]
- 5) **else**

6)
$$p \leftarrow \left[\frac{\text{upper} + 2 \times \text{lower}}{3} \right]$$

7)
$$q \leftarrow \begin{bmatrix} 1 \text{ower} + 2 \times \text{upper} \\ \hline 3 \end{bmatrix}$$

8) return
$$f(A, lower, p) \times f(A, p+1, q) \times f(A, q+1, upper)$$

Решение: Сложността удовлетворява рекурентното уравнение $T(n) = 3T\left(\frac{n}{3}\right) + \Theta(1)$.

Първото събираемо е времето за трите рекурсивни извиквания, а второто събираемо дава времето за всички други инструкции (нерекурсивната част). От мастър-теоремата намираме времевата сложност на алгоритъма: $T(n) = \Theta(n)$.

Зад. 2. Имате n празни кухненски съда с вместимости A[1], A[2], ..., A[n] литра. Напълнете догоре максимален брой от тях, ако разполагате с пълен бидон от L литра.

Точки: 10 точки, ако сложността $T(n) = O(n \cdot \log n)$; 20 точки, ако T(n) = O(n). Грешните алгоритми не носят точки. Бавните също. Демонстрирайте алгоритьма с пример. Анализирайте алгоритьма по време (ако липсва анализ, се отнемат 5 точки).

Решение: За да напълним възможно най-много съдове, трябва да изберем най-малките. Това може да стане чрез сортиране (напр. пирамидално сортиране) за време $\Theta(n \cdot \log n)$ или чрез двоично търсене на разделителя с алгоритъма РІСК за време $\Theta(n)$.

Зад. 3. Какво връща следният алгоритъм?

(20 точки)

Дайте строго доказателство, например с инварианта.

- 1) $p \leftarrow 1$
- 2) $q \leftarrow b$
- 3) while q > 0 do
- 4) $p \leftarrow p \times a$
- 5) $q \leftarrow q 1$
- 6) return p

Решение: Алгоритъмът връща a^b . Инварианта: $p = a^{b-q}$.

(10 точки)

f(A[1...n]: array of integers): integer

- 1) **if** n = 1
- 2) **return** A[1]

3)
$$x \leftarrow f(A[1...n-1])$$

4) for
$$i \leftarrow \left| \frac{n}{2} \right| + 1$$
 to n

- 5) **if** x < A[i]
- 6) $x \leftarrow A[i]$
- 7) return x

Решение: Сложността удовлетворява рекурентното уравнение $T(n) = T(n-1) + \Theta(n)$. Първото събираемо е времето за рекурсивното извикване, а второто събираемо дава времето за всички други инструкции (нерекурсивната част). Чрез развиване или с помощта на характеристично уравнение намираме времевата сложност на алгоритъма: $T(n) = \Theta(n^2)$.

Зад. 2. Известно е, че повече от половината елементи на числов масив A[1...n] имат една и съща стойност. Намерете тази стойност.

Точки: 10 точки, ако сложността $T(n) = O(n \cdot \log n)$; 20 точки, ако T(n) = O(n). Грешните алгоритми не носят точки. Бавните също. Демонстрирайте алгоритьма с пример. Анализирайте алгоритьма по време (ако липсва анализ, се отнемат 5 точки).

Решение: Сортираме масива (например с пирамидално сортиране) за време $\Theta(n \cdot \log n)$, след което връщаме средния елемент (медианата). Или намираме медианата с помощта на алгоритьма РІСК за време $\Theta(n)$.

Зад. 3. Какво връща следният алгоритъм? Дайте строго доказателство, например с инварианта.

f(a, b: positive integers): integer

(20 точки)

- 1) $p \leftarrow 0$
- 2) $q \leftarrow a$
- 3) while $q \ge b$ do
- 4) $p \leftarrow p + 1$
- 5) $q \leftarrow q b$
- 6) return p

Решение: Алгоритьмът връща $\left\lfloor \frac{a}{b} \right\rfloor$. Инварианта: a = bp + q.

f(A[1...n]: array of integers): integer

- 1) **if** n = 1
- 2) **return** A[1]

3)
$$x \leftarrow f(A[1...n-1]) + f(A[2...n])$$

- 4) for $i \leftarrow \left| \frac{n}{2} \right| + 1$ to n
- 5) $x \leftarrow x + A[i]$
- 6) return x

Решение: Сложността удовлетворява рекурентното уравнение $T(n) = 2T(n-1) + \Theta(n)$. Първото събираемо е времето за рекурсивното извикване, а второто събираемо дава времето за всички други инструкции (нерекурсивната част). С помощта на характеристично уравнение намираме времевата сложност на алгоритъма: $T(n) = \Theta(2^n)$.

Зад. 2. Масивът $A[1 \dots n]$ съдържа цели положителни числа. Намерете три различни елемента (т.е. с различни индекси; обаче може да имат равни стойности), чийто сбор е 21.

Точки: 10 точки, ако сложността $T(n) = O(n^2 \cdot \log n)$; 20 точки, ако T(n) = O(n). Грешните алгоритми не носят точки. Бавните също. Демонстрирайте алгоритьма с пример. Анализирайте алгоритьма по време (ако липсва анализ, се отнемат 5 точки).

Решение: Сортираме масива (например с пирамидално сортиране) за време $\Theta(n \cdot \log n)$, след което за всеки два елемента търсим трети, който ги допълва до сбор 21. Третия елемент намираме чрез двоично търсене, откъдето цялата времева сложност става $\Theta(n^2 \cdot \log n)$: множителят n^2 е равен (по порядък) на броя на двойките от първите два елемента, а $\log n$ е времето за двоичното търсене.

По-бърз алгоритъм се постига с идеята на сортирането чрез броене. за време $\Theta(n)$ преброяваме по колко пъти се среща всяко цяло число от 1 до 19 (възможните събираеми на сбор 21). После за константно време проверяваме възможните варианти за образуване на желания сбор.

Зад. 3. Какво връща следният алгоритъм?

(20 точки)

(10 точки)

Дайте строго доказателство, например с инварианта.

f(a, b: non-negative integers): integer

- 1) $p \leftarrow a$
- 2) $q \leftarrow 0$
- 3) while p > 0 do
- 4) $p \leftarrow p 1$
- 5) $q \leftarrow q + b$
- 6) return q

Решение: Алгоритъмът връща ab. Инварианта: q = (a-p)b.

(10 точки)

f(A[1...n]: array of integers): integer

- 1) **if** n = 1
- 2) **return** A[1]

3)
$$x \leftarrow f\left(A\left[1...\left\lfloor\frac{n}{4}\right\rfloor\right]\right) + f\left(A\left[\left\lfloor\frac{n}{4}\right\rfloor...\left\lfloor\frac{n}{2}\right\rfloor\right]\right)$$

4) for
$$i \leftarrow \left\lfloor \frac{n}{2} \right\rfloor + 1$$
 to n

5) **for** j
$$\leftarrow \left| \frac{n}{2} \right| + 1$$
 to n

$$(6) \qquad x \leftarrow x + A[i] \times A[j]$$

7) return x

Решение: Сложността удовлетворява рекурентното уравнение $T(n) = 2T(\frac{n}{4}) + \Theta(n^2)$.

Първото събираемо е времето за двете рекурсивни извиквания, а второто събираемо дава времето за всички други инструкции (нерекурсивната част). От мастър-теоремата намираме времевата сложност на алгоритъма: $T(n) = \Theta(n^2)$.

Зад. 2. В акционерно дружество участват n акционери. Масивът A[1...n] показва кой колко акции държи: A[i] = k значи, че i-тият акционер държи k акции. Как да купим контролен пакет акции (т.е. повече от половината) с минимален брой сделки (т.е. да водим преговори с минимален брой акционери)?

Точки: 10 точки, ако сложността $T(n) = O(n \cdot \log n)$; 20 точки, ако T(n) = O(n). Грешните алгоритми не носят точки. Бавните също. Демонстрирайте алгоритьма с пример. Анализирайте алгоритьма по време (ако липсва анализ, се отнемат 5 точки).

Решение: Броят на сделките е минимален, ако ги сключим с най-богатите акционери. Сортираме ги по брой акции (напр. с пирамидално сортиране) за време $\Theta(n \cdot \log n)$ или намираме разделителя за време $\Theta(n)$ чрез двоично търсене с алгоритъма РІСК.

Зад. 3. Какво връща следният алгоритъм?

(20 точки)

Дайте строго доказателство, например с инварианта.

f(a, b: positive integers): integer
$$//$$
 b \geq 2

- 1) $p \leftarrow 0$
- 2) $q \leftarrow a$
- 3) while $q \ge b$ do Oтговор: Алгоритьмът връща $\lfloor \log_b a \rfloor$.
- 4) $p \leftarrow p + 1$
- 5) $q \leftarrow \frac{q}{b}$ Инварианта: $qb^p = a$.
- 6) return p