

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Институт Информационных Технологий Кафедра Вычислительной Техники (BT)

ОТЧЁТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 2

«Основы статического временного анализа»

по дисциплине

«Схемотехника устройств компьютерных систем»

Выполнил студент группы ИВБО-11-23	Туктаров Т.А.
Принял ассистент кафедры ВТ	Дуксин Н.А.
Практическая работа выполнена	« <u>»</u> 2025 г.
«Зачтено»	« » 2025 г.

АННОТАЦИЯ

Данная работа включает в себя 10 рисунков, 2 листинга и 4 формулы. Количество страниц в работе — 15.

СОДЕРЖАНИЕ

Введение	4
1 Реализация модуля согласно персональму варианту	5
1.1 Реализация функции и анализ задействованных для этого аппаратны	[X
ресурсов	5
1.2 Создание файла проектных ограничений	6
2 Анализ показателя Slack	7
2.1 Значения WNS и WHS, рассчитанные в Vivado	7
2.2 Ручной расчёт показателя Slack по Setup	7
2.3 Ручной расчёт показателя Slack по Hold	0
2.4 Гистограммы Slack по Setup и Hold	2
ЗАКЛЮЧЕНИЕ1	4
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ1	5

ВВЕДЕНИЕ

В данной практической работе необходимо согласно персональному варианту произвести расчёт для параметра WNS и WHS (для случая анализа по Hold и по Setup) для спроектированного устройства.

В связи с главенством синхронного стиля проектирования (подробнее этот вопрос освещается в курсе лекций) практически любое устройство можно представить как набор синхронных триггеров, соединенных линией тактового сигнала, а также линией распространения данных с наличием комбинационной логики на пути следования от одного триггера до другого.

Функциональное предназначение схем закладывается на уровне RTL проектирования и может быть проверено в ходе верификации посредством функциональной симуляции. Если речь идёт о соответствии итогового устройства заявленным характеристикам производительности, например, возможности работать на заявленной тактовой частоте, то функциональной симуляции становится недостаточно и возникает необходимость прибегнуть к методам статического временного анализа.

1 РЕАЛИЗАЦИЯ МОДУЛЯ СОГЛАСНО ПЕРСОНАЛЬМУ ВАРИАНТУ

1.1 Реализация функции и анализ задействованных для этого аппаратных ресурсов

Название модуля верхнего уровня — «main». Модуль имеет 16-разрядные входные порты «a», «b», «c» и «d», входным «clk» - синхросигнал, а также 16-разрядный выходной порт «out». С помощью оператора непрерывного присваивания «assign» к выходному порту «res» подключается результат выражения на Рисунке 1.1.

21 Туктаров Тимур Азатович a * b >> c / d +	e	
---	---	--

Рисунок 1.1 – Выражение из варианта

Далее объявляются 16 битные регистры «a_r» «b_r», «c_r», «d_r», «e_r» и «out». С помощью оператора непрерывного присваивания «assign» на выход «out» подаётся значение «out».

Дальше в блоке «always», работающему по переднему фронту синхросигнала, регистрам «a_r» «b_r», «c_r», «d_r», «e_r» присваиваются соответствующие входные значения «a», «b», «c» и «d», а регистру «out» присваивается результат выражения из варианта.

Код модуля представлен в Листинге 1.1.

Листинг 1.1 – Реализация модуля верхнего уровня

```
timescale 1ns / 1ps
module main (
   input [15:0] a, b, c, d, e,
   input clk,
   output reg [16:0] out
);
    reg [15:0] a_r, b_r, c_r, d_r, e_r;
    always@(posedge clk)
    begin
       a r <= a;
        b r <= b;
        c r <= c;
        d r <= d;
        e r <= e;
    end
    always@(posedge clk)
    begin
        out <= a r * b r >> c r/d r + e r;
    end
endmodule
```

1.2 Создание файла проектных ограничений

В файле проектных ограничений создаётся объект тактового генератора с частотой 100 МГц.

Содержимое файла представлено в Листинге 1.2.

```
Листинг 1.2 – Файл проектных ограничений
```

```
create_clock -add -name clock -period 10.00 -waveform {0 5} [ get_ports { clk
} ]
```

2 АНАЛИЗ ПОКАЗАТЕЛЯ SLACK

2.1 Значения WNS и WHS, рассчитанные в Vivado

Произведем синтез и имплементацию, чтобы получить значения WNS и WHS. Результат представлен на Рисунке 2.1.

Setup		Hold		Pulse Width			
Worst Negative Slack (WNS):	-27.397 ns	Worst Hold Slack (WHS):	0.959 ns	Worst Pulse Width Slack (WPWS):	4.500 ns		
Total Negative Slack (TNS):	-461.162 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns		
Number of Failing Endpoints:	17	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0		
Total Number of Endpoints:	17	Total Number of Endpoints:	17	Total Number of Endpoints:	73		
Timing constraints are not mot							

Рисунок 2.1 – Значения WNS и WHS схемы

2.2 Ручной расчёт показателя Slack по Setup

Slack по Setup рассчитывается по Формуле 2.1.

$$Slack = T_{dcd} + T_{clk} - T_{su} - T_{scd} - T_{dd} + T_{clock \ uncertainty} + T_{clock \ pessimism}$$
(2.1)

где T_{dcd} – время распространения синхросигнала до второго триггера,

 T_{clk} – период синхросигнала,

 T_{su} — время Setup триггера,

 T_{scd} — время распространения синхросигнала до первого триггера,

 T_{dd} – время распространения данных.

Посчитаем показатель Slack для первого пути по данным, предоставленным в Vivado (Рисунки 2.2 и 2.5).

Source Clock Path				
Delay Type	Incr (ns)	Path	Location	Netlist Resource(s)
(clock clock rise edge)	(r) 0.000	0.000		
	(r) 0.000	0.000	Site: P15	
net (fo=0)	0.000	0.000		→ clk
IBUF (Prop ibuf I O)	(r) 0.951	0.951	Site: P15	d clk_IBUF_inst/O
net (fo=1, routed)	1.966	2.916		∠ dk_IBUF
BUFG (Prop bufg I O)	(r) 0.096	3.012	Site: BUFTRL_X0Y0	dk_IBUF_BUFG_in
net (fo=73, routed)	1.630	4.643	s	∠ dk_IBUF_BUFG
FDRE			Site: SLICE_X5Y1	d_r_reg[5]/C

Рисунок 2.2 – Данные о времени распространения сигналов в source триггере

Data Path			
Delay Type	Incr (ns)	Path (ns)	Location
FDRE (Prop fdre C Q)	(f) 0.456	5.099	Site: SLICE_X5Y1
net (fo=17, routed)	0.714	5.812	
LUT1 (Prop lut1 I0 O)	(r) 0.124	5.936	Site: SLICE_X6Y1
net (fo=1, routed)	0.000	5.936	
CARRY4 (PropS[1] CO[3])	(r) 0.533	6.469	Site: SLICE_X6Y1
net (fo=1, routed)	0.000	6.469	
CARRY4 (Pro Cl CO[3])	(r) 0.117	6.586	Site: SLICE_X6Y2
net (fo=1, routed)	0.000	6.586	
CARRY4 (Pro CI CO[3])	(r) 0.117	6.703	Site: SLICE_X6Y3
net (fo=1, routed)	0.000	6.703	
CARRY4 (Pro CI CO[0])	(r) 0.254	6.957	Site: SLICE_X6Y4
net (fo=20, routed)	0.765	7.722	
CARRY4 (PropINIT CO[3])	(r) 0.823	8.545	Site: SLICE_X7Y1
net (fo=1, routed)	0.000	8.545	
CARRY4 (Pro CI CO[3])	(r) 0.114	8.659	Site: SLICE_X7Y2
net (fo=1, routed)	0.000	8.659	
CARRY4 (Pro CI CO[3])	(r) 0.114	8.773	Site: SLICE_X7Y3
net (fo=1, routed)	0.000	8.773	
CARRY4 (Pro CI CO[3])	(r) 0.114	8.887	Site: SLICE_X7Y4
net (fo=1, routed)	0.000	8.887	
CARRY4 (Pro CI CO[1])	क्र) 0.157	9.044	Site: SLICE_X7Y5
net (fo=21, routed)	0.882	9.926	
LUT3 (Prop lut3 I0 O)	(r) 0.329	10.255	Site: SLICE_X8Y4
net (fo=1, routed)	0.000	10.255	
CARRY4 (PropS[1] CO[3])	(r) 0.533	10.788	Site: SLICE_X8Y4
net (fo=1, routed)	0.000	10.788	
CARRY4 (Pro CI CO[3])	(r) 0.117	10.905	Site: SLICE_X8Y5
net (fo=1, routed)	0.000	10.905	
CARRY4 (Pro CI CO[3])	(r) 0.117	11.022	Site: SLICE_X8Y6
net (fo=1, routed)	0.000	11.022	
CARRY4 (Pro CI CO[3])	(r) 0.117	11.139	Site: SLICE_X8Y7
net (fo=1, routed)	0.000	11.139	
CARRY4 (Pro CI CO[1])	(r) 0.157	11.296	Site: SLICE_X8Y8

Рисунок 2.3 – Таблица data path

Рисунок 2.4 – Arrival time из таблицы data path

Destination Clock Path							
Delay Type	Incr (ns)	Path (Location	Netlist Resource(s)			
(clock clock rise edge)	(r) 10.000	10.000					
	(r) 0.000	10.000	Site: P15	D clk			
net (fo=0)	0.000	10.000		∠ clk			
IBUF (Prop ibuf I O)	(r) 0.817	10.817	Site: P15	dk_IBUF_inst/O			
net (fo=1, routed)	1.862	12.679		∠ dk_IBUF			
BUFG (Prop bufg I O)	(r) 0.091	12.770	Site: BUFTRL_X0Y0	dk_IBUF_BUFG_inst/0			
net (fo=38, routed)	1.522	14.293		∠ dk_IBUF_BUFG			
DSP48E1			Site: DSP48_X0Y22	out_reg/CLK			
clock pessimism	0.242	14.535					
clock uncertainty	-0.035	14.499					
DSP48E1 (Setup8e1 CLK A[14])	-3.722	10.777	Site: DSP48_X0Y22	out_reg			
Required Time		10.777					

Рисунок 2.5 – Данные о времени распространения сигналов в destinasion триггере

Из таблицы «Source Clock Path» получим значение T_{scd} , равное 4,643. Просуммировав значения столбца «Incr (ns)» таблицы «Data Path», получим значение T_{dd} , равное 37,197. Просуммировав значения столбца «Incr (ns)» с 3 по 7 строки таблицы «Destination Clock Path», получим значение T_{dcd} , равное 4,201. Значение T_{su} , равное 0,032, представлено в предпоследней строке таблицы «Destination Clock Path».

Подставим данные значения в Формулу 2.1. Получим значение Slack в Формуле 2.2.

$$Slack = 4,201 + 10 - 0,032 - 4,643 - 37,197 - 0,035 + 0,242$$

= -27,464 (2.2)

Вычисленный вручную Slack (показан на Рисунке 2.4) приблизительно равен значению, рассчитанному в Vivado.

Slack <u>-27.397ns</u>

Рисунок 2.4 – Показатель Slack вычисленный в Vivado

2.3 Ручной расчёт показателя Slack по Hold

Slack по Hold рассчитывается по Формуле 2.3.

$$Slack = T_{scd} + T_{dd} - T_{dcd} - T_h - T_{clock \ pessimism}$$
 (2.3)

где T_{dcd} – время распространения синхросигнала до второго триггера,

 T_{clk} — период синхросигнала,

 T_h — время Hold триггера,

 T_{scd} — время распространения синхросигнала до первого триггера,

 T_{dd} — время распространения данных.

Посчитаем показатель Slack для одиннадцатого пути по данным, предоставленным в Vivado (Рисунок 2.5).

Summary									
Name	Ŋ Path 11								
Slack (Hold)	<u>0.959ns</u>								
Source	e_r_reg[4]/C (rising edge-triggered cell FDRE clocked by clock {rise@0.000ns fall@5.000ns period=10.000ns})								
Destination	D out_reg[16]/D (rising edge-triggered cell FDRE clocked by clock {rise@0.000ns fall@5.000ns period=10.000ns})								
Path Group	clock								
Path Type	Hold (Min at Fast Process Corner)								
Requirement	0.000ns (clock rise@0.000ns - clock rise@0.000ns)								
Data PDelay	1.058ns (logic 0.384ns (36.280%) route 0.674ns (63.720%))								
Logic Levels		-		1 LUT6=	-				
Clock Skew	0.007ns				,				
Source Clock Pat		_							
Delay Type		Incr (ns	s) F	Path (ns)	Locati	on	Netli	ist Resource(s)	
(clock clock rise e	edge)	(r) 0.0	000	0.000					
		(r) 0.0	000	0.000	Site: F	15	D 0	dk	
net (fo=0)		0.0	000	0.000			∕ ¹ 0	lk	
IBUF (Prop ibuf	<u>l 0)</u>	(r) 0.1	80	0.180	Site: F	15	- c	lk_IBUF_inst/O	
net (fo=1, routed)		0.6		0.811				lk_IBUF	
BUFG (Prop. bufc		(r) 0.0		0.837	Site: E	SUFTRL_X0Y0		lk_IBUF_BUFG_inst/O	
net (fo=73, routed		0.5		1.424				lk_IBUF_BUFG	
FDRE	,		-		Site: S	SLICE_X6Y57	_	e_r_reg[4]/C	
Data Path					Oito. C				
Delay Type			Incr (ns) Pa	ath (ns)	Location		Netlist Resource(s)	
FDRE (Prop fdre	C Q)		(r) 0.	.164	1.588	Site: SLICE_X6	Y57		
net (fo=1, routed)			0.	.328	1.915			✓ e_r[4]	
LUT2 (Prop lut2	I1 O)		(r) 0.	.045	1.960			d out[16]_i_20/O	
net (fo=1, routed)				.000	1.960	_			
CARRY4 (Prop		O[0])	(f) 0	.070	2.030	Site: SLICE_X8	Y58	<pre>d out_reg[16]_i_3/O[0]</pre>	
net (fo=21, routed				.347	2.377	_		✓ out10[4]	
LUT6 (Prop lut6				.105	2.482	Site: SLICE_X1	1Y60	d out[16]_i_1/O	
net (fo=1, routed)				.000	2.482	5.15. 5215E_X1		✓ p_0_in[16]	
FDRE			J.		2. 102	Site: SLICE_X1	1760	D out_reg[16]/D	
Arrival Time					2.482	SILU. OLIOL_XI		_ ca_reg_rejib	
Destination Clock	k Path				2.402				
Delay Type		Incr (n	ıs) f	Path (ns)	Locat	ion	Netl	list Resource(s)	
(clock clock rise e	edge)	(r) 0.0		0.000		20000011			
	-	(r) 0.0	000	0.000	Site: F	Site: P15		clk	
net (fo=0)			000	0.000		Cito. 1 10		clk	
IBUF (Prop ibuf	I O)	(r) 0.3		0.369		Site: P15		clk_IBUF_inst/O	
net (fo=1, routed)			685	1.053		Site. F 15		clk_IBUF	
BUFG (Prop bufo		(r) 0.0		1.082		Site: BUFTRL X0Y0		dk_iBUF_BUFG_inst/O	
net (fo=73, routed			827	1.910		Site. DUFTKL_XUYU		clk_IBUF_BUFG	
FDRE	7	0.0				SLICE_X11Y60		out_reg[16]/C	
clock pessimism		-0.4	479	1.431		JEIOE_X11100		out_regitore	
FDRE (Hold fdre			092	1.523		SLICE_X11Y60		out_reg[16]	
	0 0)	0.0	002			JEIOL_XTTT00		out_reg[10]	
Required Time				1.523	1				

Рисунок 2.5 – Данные о времени распространения сигналов

Из таблицы «Source Clock Path» получим значение T_{scd} , равное 1,424. Просуммировав значения столбца «Incr (ns)» таблицы «Data Path», получим значение T_{dd} , равное 1,059. Просуммировав значения столбца «Incr (ns)» с 3 по 7 строки таблицы «Destination Clock Path», получим значение T_{dcd} , равное 1,91. Значение T_h , равное 0,092, представлено в предпоследней строке таблицы «Destination Clock Path». Значение «Clock pessimism» равняется -0.479.

Подставим данные значения в Формулу 2.3. Получим значение Slack в Формуле 2.4.

$$Slack = 1,424 + 1,059 - 1,91 - 0,092 + 0,479 = 0,96$$
 (2.4)

Вычисленный вручную Slack сходится со значением, рассчитанным в Vivado..

2.4 Гистограммы Slack по Setup и Hold

Гистограммы Slack по Setup и Hold представлены на Рисунке 2.6 и Рисунке 2.7 соответственно.

Рисунок 2.6 – Гистограмма Slack по Setup

Рисунок 2.7 – Гистограмма Slack по Hold

ЗАКЛЮЧЕНИЕ

В ходе практической работы произведен расчёт для параметров WNS (Worst Negative Slack) и WHS (Worst Hold Slack) при анализе по Setup и по Hold для спроектированного устройства в САПР Vivado, произведен ручной расчет тех же параметров, рассмотрены Slack гистограммы для анализа по Setup и по Hold, в соответствии с персональным вариантом.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Тарасов И. Е. ПЛИС Xilinx. Языки описания аппаратуры VHDL и Verilog, САПР, приемы проектирования. М.: Издательство: Горячая линия Телеком, 2019 г. ISBN: 978-5-9912-0802-4
- 2. Орлов С.А. Организация ЭВМ и систем: Учебник для вузов. 3-е изд. Стандарт третьего поколения / С.А. Орлов, Б.Я. Цилькер. Санкт-Петербург: Питер, 2014. 688 с. ISBN 978-5-496-01145-7.
- 3. Паттерсон Д., Хеннесси Дж. Архитектура компьютера и проектирование компьютерных систем. 4-е изд. СПб.: Питер, 2012. ISBN 978-5-459-00291-1.
- 4. Рабан, Жан.М., Чандракасан, А., Николич, Б. Цифровые интегральные схемы. Методология проектирования. 2-е изд.: Пер. с англ. М.: ООО «И.Д. Вильямс», 2016. 912 с.: ил. Паралтит. англ. ISBN 978-5-8459- 1116-2 (рус.).
- 5. Шафер Д., Фатрелл Р., Шафер Л. Управление программными проектами: достижение оптимального качества при минимуме затрат: Пер. с англ. М.: Издательский дом «Вильямс», 2004. 1136 с.: ил. Парал.тит.англ.