

Database Systems (CSF212) Lecture – 19-20-21

Relational Database Design

Closure of a Set of Functional Dependencies

- Given a set F set of functional dependencies, there are certain other functional dependencies that are logically implied by F.
 - For example: If $A \rightarrow B$ and $B \rightarrow C$, then we can infer that $A \rightarrow C$

closure of F: The set of all FDs logically implied by F.
 It is denoted as F⁺

Closure of a Set of Functional Dependencies

- F+ is computed using Inference rules defined for FDs:
 - IR1: if $\beta \subseteq \alpha$, then $\alpha \to \beta$ (reflexivity)
 - IR2: if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$ (augmentation)
 - IR3: if $\alpha \rightarrow \beta$, and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$ (transitivity)
- These rules are
 - sound (generate only functional dependencies that actually hold) and
 - complete (generate all functional dependencies that hold).

Closure of a Set of Functional Dependencies

- Few other IR rules that can be used for computing
 F⁺ We can further simplify manual computation of F⁺
 by using some additional inference rules:
 - If $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ holds (union)
 - If $\alpha \to \beta \gamma$ holds, then $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds (decomposition)
 - If $\alpha \to \beta$ holds and $\gamma \beta \to \delta$ holds, then $\alpha \gamma \to \delta$ holds (pseudo-transitivity)
 - The above rules can be inferred from IR1, IR2 and IR3

F+ Example

- R = (A, B, C, G, H, I) $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I B \rightarrow H\}$ • $F + A \rightarrow B \rightarrow A \rightarrow C \rightarrow CG \rightarrow H \rightarrow GG \rightarrow I$
- $F^+ = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I B \rightarrow H, A \rightarrow H, CG \rightarrow H, CG \rightarrow I\}$
 - A → H by transitivity from A → B and B → H
 - AG → I by augmenting A → C with G, to get AG → CG and then transitivity with CG → I
 - $CG \rightarrow HI$ by pseudo-transitivity ($A \rightarrow C, CG \rightarrow I$)

Procedure for Computing F+

 To compute the closure of a set of functional dependencies F:

```
Start: F + = F
  repeat
  for each functional dependency f in F+
      apply reflexivity and augmentation rules on f
      and add the resulting functional
dependencies to F +
  for each pair of functional dependencies f<sub>1</sub> and f<sub>2</sub>
in F +
```

if f_1 and f_2 can be combined using transitivity **then** add the resulting functional dependency to F^+

until *F* + does not change any further

NOTE: We shall see an alternative procedure for this task later

F+ Example

R(A,B,C,D,E)

$$F = \{A \rightarrow C, A \rightarrow D, AB \rightarrow CD, DE \rightarrow B\}$$

Few FD's in F+ are:
F = {A → C, A → D, AB → CD, DE →B,
AB → C(augmentation), AC → C (reflexivity) A →
CD(union), AE → B(augmentation and transitivity)}

F+ Example

$$R = (A, B, C)$$

 $F = \{AB \rightarrow C, A \rightarrow B\}$

Few FD's in F+ are:

$$F^+ = \{AB \rightarrow C, A \rightarrow B, A \rightarrow C, A \rightarrow BC, AC \rightarrow B\}$$

Closure of Attribute Sets

- Given a set of attributes a, define the closure of a under F (denoted by a+) as the set of attributes that are functionally determined by a under F
- Algorithm to compute a+, the closure of a under F

```
 \begin{array}{l} \textit{result} := \text{a}; \\ \textbf{while} \; (\textit{changes to } \textit{result}) \; \textbf{do} \\ \textbf{for each } \beta \rightarrow \gamma \; \textbf{in } \textit{F} \; \textbf{do} \\ \textbf{begin} \\ \textbf{if } \beta \subseteq \textit{result} \; \textbf{then } \textit{result} := \textit{result} \cup \gamma \\ \textbf{end} \\ \end{array}
```

Example of Attribute Set Closure

- R = (A, B, C, G, H, I)
- $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$
- (*AG*)+
 - 1.result = AG
 - 2. result = ABCG ($A \rightarrow C$ and $A \rightarrow B$)
 - 3. result = $ABCGHI(CG \rightarrow H, CG \rightarrow I, \text{ and } CG \subseteq ABCG)$
- Is AG a candidate key?
 - 1.Is AG a super key?
 - 1. Does $AG \rightarrow R$? == Is $(AG)^+ \supseteq R$
 - 2.Is any subset of AG a superkey?
 - 1. Does $A \rightarrow R$? == Is $(A)^+ \supseteq R$
 - 2.Does $G \rightarrow R$? == Is (G)+ \supseteq R

Uses of Attribute Set Closure

There are several uses of the attribute closure algorithm:

- Testing for superkey:
 - To test if α is a superkey, we compute α^{+} , and check if α^{+} contains all attributes of R.
- Testing functional dependencies
 - To check if a functional dependency $\alpha \to \beta$ holds (or, in other words, is in F^+), just check if $\beta \subseteq \alpha^+$.
 - That is, we compute α^+ by using attribute closure, and then check if it contains β .
 - Is a simple and cheap test, and very useful
- Computing closure of F
 - For each $\gamma \subseteq R$, we find the closure γ^+ , and for each $S \subseteq \gamma^+$, we output a functional

Example of Attribute Set Closure

```
R = (A, B, C)

F = \{AB \rightarrow C, A \rightarrow B\}

• (A)^{+} = \{ABC\}

• (B)^{+} = \{B\}

• (C)^{+} = \{C\}

• (AB)^{+} = \{ABC\}

• (CA)^{+} = \{ABC\}

• (ABC)^{+} = \{ABC\}
```

F⁺ = {A → B, A → C, A → AB, A → BC, A → AC, A → ABC, AB.....}

Equivalence of Sets of FDs

- Two sets of FDs F and G are equivalent if F + = G
 +, i.e.,
 - Every FD in F can be inferred from G, and
 - Every FD in G can be inferred from F
- Definition: F covers G if every FD in G can be inferred from F (i.e., if G + <u>subset-of</u> F +)
- F and G are equivalent if F covers G and G covers

Canonical Cover

- Sets of functional dependencies may have redundant dependencies that can be inferred from the others
 - For e.g., $A \rightarrow C$ is redundant in: { $A \rightarrow B$, $B \rightarrow C$ }
 - Parts of a functional dependency may be redundant
 - E.g.: on RHS: $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$ can be simplified to $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
 - E.g.: on LHS: $\{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$ can be simplified to $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
- Intuitively, a canonical cover of F is a "minimal" set of functional dependencies equivalent to F, having no redundant dependencies or redundant parts of dependencies

Extraneous Attributes

- Consider a set F of functional dependencies and the functional dependency $\alpha \to \beta$ in F.
 - Attribute A is extraneous in α if $A \in \alpha$ and F logically implies $(F \{\alpha \rightarrow \beta\}) \cup \{(\alpha A) \rightarrow \beta\}$.

Example: Given $F = \{A \rightarrow C, AB \rightarrow C\}$. B is extraneous in $AB \rightarrow C$ because $\{A \rightarrow C, AB \rightarrow C\}$ logically implies $A \rightarrow C$ (i.e. the result of dropping B from $AB \rightarrow C$).

- Attribute A is extraneous in β if $A \in \beta$ and F logically implies $(F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$

Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$. C is extraneous in $AB \rightarrow CD$ since $AB \rightarrow C$ can be inferred even after deleting C

Testing if an Attribute is Extraneous

- Consider a set F of functional dependencies and the functional dependency $\alpha \to \beta$ in F.
- To test if attribute $A \in \alpha$ is extraneous in α
 - 1. compute $(\{\alpha\} A)^+$ using the dependencies in F
 - 2. check that $(\{\alpha\} A)^+$ contains β ; if it does, A is extraneous in α
- To test if attribute $A \in \beta$ is extraneous in β
 - 1. compute α^+ using only the dependencies in $F' = (F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\},$
 - 2. check that α^+ contains A; if it does, A is extraneous in β

Canonical Cover

- A canonical cover for a set of functional dependencies F is a set of dependencies F_c such that
 - F logically implies all dependencies in F_c and
 - F_c logically implies all dependencies in F_c and
 - No functional dependency in F_c contains an extraneous attribute, and
 - Each left side of functional dependency in F_c is unique.

Computing a Canonical Cover

 To compute a canonical cover for F: repeat

Use the union rule to replace any dependencies in $F: \alpha_1 \to \beta_1$ and $\alpha_1 \to \beta_2$ with $\alpha_1 \to \beta_1$ β_2

Find a functional dependency $\alpha \to \beta$ with an extraneous attribute either in α or in β

If an extraneous attribute is found, delete it from $\alpha \to \beta$

until *F* does not change

 Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

Computing a Canonical Cover

- R = (A, B, C) $F = \{A \to BC, B \to C, A \to B, AB \to C\}$
- Combine $A \rightarrow BC$ and $A \rightarrow B$ into $A \rightarrow BC$
 - *F* is now {*A* → *BC*, *B* → *C*, *AB* → *C*}
- A is extraneous in $AB \rightarrow C$
 - Check if the result of deleting A from $AB \rightarrow C$ is implied by the other dependencies
 - Yes: in fact, $B \rightarrow C$ is already present!
 - Set is now ${A \rightarrow BC, B \rightarrow C}$
- C is extraneous in A → BC
 - Check if $A \rightarrow C$ is logically implied by $A \rightarrow B$ and the other dependencies
 - Yes: using transitivity on A → B and B → C.
 - Can use attribute closure of A in more complex cases
- The canonical cover is: $A \rightarrow B$, $B \rightarrow C$

Computing a Canonical Cover

- R = (A, B, C, D, E, F)
- $F = \{AB \rightarrow CDEF, C \rightarrow D, E \rightarrow F, C \rightarrow E\}$

- Combine $C \rightarrow D$ and $C \rightarrow E$ into $C \rightarrow DE$
 - F is now $\{AB \rightarrow CDEF, C \rightarrow DE, E \rightarrow F\}$
- Combine $C \rightarrow DE$ and $E \rightarrow F$ into $C \rightarrow DEF$
 - *F* is now {AB → CDEF, C → DEF}
- The canonical cover is: $\{AB \rightarrow CDEF, C \rightarrow DEF\}$

Lossless-join and Dependency Preserving Decomposition

A decomposition of R into R₁ and R₂ is lossless join if and only if at least one of the following dependencies is in F+:

$$-R_1 \cap R_2 \rightarrow R_1$$

$$-R_1 \cap R_2 \rightarrow R_2$$

 Let F_i be the set of dependencies F + that include only attributes in R_i. A decomposition is

dependency preserving, if only

-
$$(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$$

 If it is not, then checking updates for violation of functional dependencies may require computing joins, which is expensive.

Testing for Dependency Preservation

- To check if a dependency $\alpha \to \beta$ is preserved in a decomposition of R into $R_1, R_2, ..., R_n$ we apply the following test (with attribute closure done with respect to F)
 - $result = \alpha$ while (changes to result) do for each R_i in the decomposition $t = (result \cap R_i)^+ \cap R_i$ //to remove unwanted attributes $result = result \cup t$
 - If *result* contains all attributes in β , then the functional dependency
 - $-\alpha \rightarrow \beta$ is preserved.
- We apply the test on all dependencies in F to check if a decomposition is dependency preserving
- This procedure takes **polynomial time**, instead of the **exponential time** required to compute F^+ and $(F_1 \cup F_2 \cup F_3)$

Example

- R = (A, B, C) $F = \{A \rightarrow B, B \rightarrow C\}$
 - Can be decomposed in two different ways
- $R_1 = (A, B), R_2 = (B, C)$
 - Lossless-join decomposition:

$$R_1 \cap R_2 = \{B\}$$
 and $B \rightarrow B$ Dependency preserving

- $R_1 = (A, B), R_2 = (A, C)$
 - Lossless-join decomposition: $R_1 \cap R_2 = \{A\} \text{ and } A \rightarrow AB$ Not dependency preserving
 - Not dependency preserving (cannot check $B \rightarrow C$ without computing $R_1^{\bowtie} R_2$)

Generalized Definition 3NF

- **3NF:** A relation schema R is in 3NF with respect to a set F of functional dependencies if for all functional dependencies in F⁺ of the form $\alpha \square \rightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:
 - $-\alpha \rightarrow \beta$ is trivial (i.e., $\beta \in \alpha$)
 - $-\alpha$ is a superkey for R
 - Each attribute A in β is a prime attribute (**NOTE**: each attribute may be in a different candidate key)

Testing for 3NF

- Need to check for all FDs in F, need not check all FDs in F^+ .
- Use attribute closure to check for each dependency $\alpha \rightarrow \beta$, if α is a superkey.
- If α is not a superkey, we have to verify if each attribute in β is contained in a candidate key of R
 - This test is rather more expensive, since it involve finding candidate keys
 - While testing for 3NF has been shown to be NPhard, decomposition into third normal form can be done in polynomial time

3NF Decomposition Algorithm

```
Let F be a canonical cover for F;
i := 0:
for each functional dependency \alpha \to \beta in F_c do
    if none of the schemas R_i, 1 \le i \le i contains \alpha \to \beta
        then begin
                 i := i + 1:
                 R_i := \alpha \rightarrow \beta
             end
if none of the schemas R_i, 1 \le j \le i contains a candidate key for R
    then begin
             i := i + 1:
             R_i := any candidate key for R_i
        end
  if any schema Rj is contained in another schema Rk
 then
 /* Delete Ri */
 Rj := Ri;
 i := i - 1;
 until no more Rjs can be deleted
 return (R_1, R_2, ..., R_i)
```

3NF Decomposition Algorithm

- Above algorithm ensures:
 - each relation schema R_i is in 3NF
 - decomposition is dependency preserving and lossless-join

3NF Decomposition Example

- cust_bank = (c_id, agent_id, branch_id, type)
- The functional dependencies for this relation schema are:
 - 1. c_id, agent_id → branch_id, type
 - 2. agent_id → branch_id
 - 3. c_id, branch_id → agent_id
- We first compute a canonical cover
 - branch_name is extraneous in the r.h.s. of the 1st dependency
 - No other attribute is extraneous, so we get F_c
 - 1. c_id , $agent_id \rightarrow type$
 - 2. agent_id → branch_id
 - 3. c_id, branch_id → agent_id

3NF Decomposition Example

The for loop generates following 3NF schema:

```
R1(c_id, agent_id, type)
R2(<u>agent_id</u>, branch_id)
R3(c id, branch id, agent id)
```

- Observe that (c id, agent id, type) contains a candidate key of the original schema, so no further relation schema needs be added
- Detect and delete redundant schemas, such as (<u>agent_id</u>, <u>branch_id</u>), which are subsets of other schemas
- The resultant simplified 3NF schema is:

```
R1(c_id, agent_id, type)
R3(c id, branch id, agent id)
```

Redundancy in 3NF Decomposition

banker(c_id, agent_no, br_code)

candidate key = $\{\{c_id, agent_no\}, \{c_id, broade\}\}$

agent_no	br_code	c_id
A1	B1	C1
A1	B1	C2
A2	B1	C3
A3	B2	C1
A3	B2	C2
A4	B1	C5
A4	B2	C5

Boyce-Codd Normal Form

A relation schema R is in BCNF with respect to a set F of functional dependencies if for all functional dependencies in F⁺ of the form $\alpha \square \rightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

- $\alpha \square \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for R

Let R be a schema that is not in BCNF. Then there is at least one **nontrivial functional dependency** $\alpha \square \to \beta$ such that $\alpha \square$ is not a superkey for R. Replace R with two schemas:

- $(\alpha \sqcap \cup \beta)$
- $(R (\beta \alpha))$

Boyce-Codd Normal Form

Above relation is not in BCNF due to the following FD:

AREA → **COUNTRY_NAME**

Boyce-Codd Normal Form

Functional dependency that violates BCNF condition:

AREA
$$\Box$$
 → COUNTY_NAME $\alpha\Box$ = AREA, β = COUNTRY_NAME

- $(\alpha \square \cup \beta) = \{AREA, COUNTRY NAME\}$
- $(R (\beta \alpha)) = \{PROPERTY | ID, AREA, LOT\}$

Example of BCNF Decomposition

$$-R = (A, B, C, D, E, F)$$

$$-FD's are:$$

$$AB \rightarrow CDEF$$

$$C \rightarrow D$$

$$E \rightarrow F$$

$$C \rightarrow E$$

$$(C, D)$$

$$(A, B, C, E, F)$$

$$(E, F)$$

$$(A, B, C, E)$$

$$(E, F)$$

$$(A, B, C, E)$$

$$(C, E)$$

$$(C, E)$$

$$(C, E)$$

$$(C, E)$$

$$(C, E)$$

Example of BCNF Decomposition

To check whether all the FD's in F can be determined from the set of decomposed relation obtaind, find the canonical cover F_c of F:

 $F_C = \{AB \rightarrow C \text{ (DEF are the extraneous attributes in this FD), } C \rightarrow DEF\}$

BCNF Decomposition EXAMPLE

banker(c_id, agent_no, br_code)

```
F1: agent_no → br_code
```

F2: br_code, c_id → agent_no

candidate key = $\{\{c_id, agent_no\}, \{c_id, agent_no\}\}$

agent_no	br_code	agent_no	c_id
A1	B1	A1	C1
A2	B1	A1	C2
A3	B2	A2	C3
A3		C1	
		A3	C2

BCNF and Dependency Preservation

- Functional dependencies, are costly to check in practice unless they pertain to only one relation
- Because it is not always possible to achieve both BCNF and dependency preservation, we consider a weaker normal form, known as third normal form

BCNF Decomposition EXAMPLE

banker(c_id, agent_no, br_code)

F1: agent no → br code

F2: br_code, c_id → agent_no

agent_no	br_code	agent_no	c_id
A1	B1	A1	C1
A2	B1	A1	C2
A3	B2	A2	C3
A3		C1	
		A3	C2

Since F2 is not preserved in any of the decomposed relation, this is not a dependency preserving BCNF decomposition of the *banker* relation

Testing for BCNF

- To check if a non-trivial dependency $\alpha \square \rightarrow \beta$ in F^+ causes a violation of BCNF
 - 1. compute α + (the attribute closure of α), and
 - 2. verify that it includes all attributes of *R*, that is, it is a superkey of *R*.
- **Simplified test:** To check if a relation schema *R* is in BCNF, it suffices to check only the dependencies in the given set *F* for violation of BCNF, rather than checking all dependencies in *F*+.
 - If none of the dependencies in F causes a violation of BCNF, then none of the dependencies in F+ will cause a violation of BCNF either.

Testing for BCNF

- However, using only F is incorrect when testing a relation in a decomposition of R
 - Consider R = (A, B, C, D, E), with $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Decompose R into $R_1 = (A, B)$ and $R_2 = (A, C, D, E)$
 - Neither of the dependencies in F contain only attributes from (A,C,D,E) so we might be mislead into thinking R_2 satisfies BCNF.
 - In fact, dependency $AC \rightarrow D$ in F+ shows R_2 is not in BCNF

Testing Decompositions for BCNF

- To check if a relation R_i in a decomposition of R is in BCNF:
- Either test R_i for BCNF with respect to the restriction of F to R_i (that is, all FDs in F+ that contain only attributes from R_i)
- Or use the original set of dependencies F that hold on R, but with the following test:
 - –for every set of attributes $\alpha \subseteq R_i$, check that α^+ (the attribute closure of α under F) either includes no attribute of R_i α , or includes all other attributes of R_i . (either derives no attribute or is a superkey in R_i)
 - –If the condition is violated by some $\alpha \square \to \beta$ in F, the dependency $\alpha \square \to (\alpha^+ \alpha \square) \cap R_i$ can be shown to hold on R_i , and R_i violates BCNF
- We use above dependency to decompose R_i

Comparison of BCNF and 3NF

- It is always possible to decompose a relation into a set of relations that are in 3NF such that:
 - the decomposition is lossless
 - the dependencies are preserved
- It is always possible to decompose a relation into a set of relations that are in BCNF such that:
 - the decomposition is lossless
 - it may not be possible to preserve dependencies.