

3.6 I²C 接口

3.6.1 ZXP3 芯片 I2C 地址描述

表 3.6.1

A 7	A6	A 5	A4	A3	A2	A 1	W/R
1	1	0	1	1	0	1	0/1

ZXP3 的地址位信息如表 3.1 所示, A1~A7 为地址位, W/R 为方向位。

写寄存器的 Slave 地址命令: 11011010 (0xDA)

读寄存器的 Slave 地址命令: 11011011 (0xDB)

3.6.2 I2C 通讯协议

表 3.6.2 I²C 通讯引脚的电性特性

参数	符号					
少 数		条件	最小	标准	最大	单位
时钟频率	$F_{\rm sc1}$				400	KHz
两次通讯之间间隔时间	$t_{\scriptscriptstyle \mathtt{BUF}}$			1.3		us
开始条件保持时间	$t_{\scriptscriptstyle HDSTA}$			0.6		us
每次开始时的建立时间	$t_{\scriptscriptstyle{SUSTA}}$			0.6		us
停止时间建立时间	$t_{\scriptscriptstyle{SUSTO}}$			0.6		us
SDA 保持时间	$t_{ ext{ t HDDAT}}$			0		us
SDA 建立时间	${\sf t}_{\scriptscriptstyle \sf SUDAT}$			0.1		us
时钟低脉冲维持时间	$t_{\scriptscriptstyle{\mathtt{LOW}}}$			1.3		us
时钟高脉冲维持时间	$t_{ ext{HIGH}}$			0.6		us

图 3.6.2a: I²C 通讯时序图

I²C 通讯协议有着特殊的开始(S)和终止(P)条件。当 SCL 处于高电平同时,SDA的下降沿标志数据传输开始。I²C 主设备依次发送从设备的地址(7 位)和读/写控制位。当从设备识别到这个地址后,产生一个应答信号并在第九个周期将 SDA 拉低。得到从设备应答后,主设备继续发送 8 位寄存器地址,得到应答后继续发送或读取数据。SCL 处于高电平,SDA 发生一个上升沿动作标志 I²C 通信结束。除了开始和结束标志之外,当 SCL 为高时 SDA 传输的数据必须保持稳定。当 SCL 为低时 SDA 传输的值可以改变。I²C 通信中的所有数据传输以 8 位为基本单位,每 8 位数据传输之后需要一位应答信号以保持继续传输。

图 3.6.2b: I²C 协议

3.6.3 I2C 读写时序

主机首先发送芯片地址,然后才能与芯片通讯。从机地址字节由 7 个地址位和一个方向位组成,方向位确定让从机接受还是发送。芯片的 I^2C 地址为 1101101x,芯片写地址为 0xDA,芯片读地址为 0xDB。

图 3.6.3a 为主机写芯片寄存器配置的时序图。

图 3.6.3a : I2C 写命令

图 3.6.3b 为读芯片所需配置的时序图。

图 3.6.3b: I2C 读数据

3.6.4 通用寄存器

表 3.6.4 通用寄存器

地址	描述	RW	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	默认值
0x06	DATA_MSB	R		Data out<23:16>							0x00
0x07	DATA_CSB	R		Data out<15:8>							0x00
0x08	DATA_LSB	R		Data out<7:0>							0x00
0x09	TEMP_MSB	R		Temp out<15:8>							0x00
OxOA	TEMP_LSB	R	Temp out<7:0>							0x00	
0x30	CMD	RW	Sleep_time<3:0> Sco Measurement_ctr1<2:0>						1<2:0>	0x00	
0x6C	OTP_CMD	RW	Blow start<6:0> margin						0x00		
0xA5	Sys config	Sys config RW	Raw_da							OTP	
UXAJ SYS	Sys_coming Rw		ta_on						OII		

3.6.5 压力寄存器 Reg0x06-Reg0x08:

Data_out: 当 'raw_data_on' = 1 时, 24 位 ADC 最低位的值等效于 (1/2²³)*(VEXT-PSW)。当 'raw_data_on' = 0 时, 24 位 ADC 储存较准后的值。

将 raw_data_on 置 0,读取 24 位 ADC 储存较准后的值,ADC 数字到 Pa 转换(该转换过程与配置中的 FullScale 有关):

ZXP3 中 ADC 位为 24 位。数据格式:最高位为符号位(0为正数,1为负数),23 位数据位。23 位数据位中有高 N 位整数位,低 n 位为小数位,则要求 n 满足不等式: 2^(23-(n+1))<FullScale<2^(23-n)其中 FullScale 单位为 Pa。确定小数位后,读取 ADC 数字转换为 Pa 公式为: ADC 数值/2^n

3.6.6 温度寄存器 Reg0x09-Reg0x0a

Temp out: 温度输出是一个二进制的 16 位的数 T, 温度等于 T*(1/256) ℃。

3.6.7 ZXP3 芯片读写操作

(1) 读温度值

- a. 初始化数据更新;
 - 发送写 Slave 地址 0xDA;
 - 向寄存器 0xA5 写入 0x01, 使其输出校准后数据:
 - 向寄存器 0x30 写入 0x08, 开始一次传感器信号采集;

b. 检查新数据可用状态标志

- 发送写 Slave 地址 0xDA;
- 发送寄存器地址 0x30;
- 发送读 Slave 地址 0xDB;
- 读出寄存器 0x30 的 Sco 值, 1 开始数据采集,采集结束后自动回到 0(休眠模式 除外)。

c. 读取温度数据

- 发送写 Slave 地址 OxDA;
- 发送寄存器地址 0x09;
- 发送读 Slave 地址 0xDB;
- 连续读取寄存器 0x09-0x0A 中温度数值。

(2)读压力值

- a. 初始化数据更新
 - 发送写 Slave 地址 0xDA:
 - 向寄存器 0xA5 写入 0x11, 使其输出校准后数据;
 - 向寄存器 0x30 写入 0x09, 开始一次传感器信号采集;
- b. 检查新数据可用状态标志
 - 发送写 Slave 地址 0xDA:
 - 发送寄存器地址 0x30;
 - 发送读 Slave 地址 0xDB;
 - 读出寄存器 0x30 的 Sco 值, 1 开始数据采集,采集结束后自动回到 0(休眠模式除外)。

c. 读取压力数据

- 发送写 Slave 地址 OxDA;
- 发送寄存器地址 0x06;
- 发送读 Slave 地址 0xDB;
- 连续读取寄存器 0x06-0x08 中压力数值。