Markov chain and transition matrix

1 Markov chain

Definition:

Let T be a k*k matrix with elements $\{T_{ij}: i, j=1,...n\}$. A random process $(X_1,X_2,...,)$ with finite state space $S=\{s_1,...,s_n\}$ is said to be a homogeneous Markov chain with transition matrix T, if for all k, all $i,j\in\{1,...,n\}$ and all $i_0,...,i_{n-1}\in\{1,...,n\}$ we have:

$$P(X_{k+1} = s_j | X_0 = s_{i_0}, X_1 = s_{i_1}, ..., X_{k-1} = s_{i_{k-1}}, X_k = s_i) = P(X_{k+1} = s_j | X_k = s_i) = T_{i_j}.$$

The elements of the transition matrix T are called transition probabilities.

Every transition matrix satisfies:

$$(1)T_{ij} \geq 0$$
 for all $i, j \in \{1, ..., n\}$, and

$$(2)\sum_{i=1}^{n} T_{ij} = 1 \text{ for all } i, j \in \{1, ..., n\}$$

There is another important characteristic of a Markov chain, namely the initial distribution, which tells us how the Markov chain starts. The initial distribution is represented as a row vector:

$$\boldsymbol{\mu}^{(0)} = (\mu_1^{(0)}, \mu_2^{(0)}, ..., \mu_n^{(0)}) = (P(X_0 = s_1), P(X_0 = s_2), ... P(X_0 = s_n))$$

and we have:

$$\sum_{i=1}^{n} \mu_i^{(0)} = 1$$

Theorem 1. For a Markow chain $(X_0, X_1, ...)$ with state space $S = \{s_1, ..., s_n\}$, initial distribution $\mu^{(0)}$ and transition matrix T, we have for any k that the distribution $\mu^{(n)}$ at time n satisfies:

$$\mu^{(k)} = \mu^{(0)} T^k$$
.

Now let us assume momentarily that for a given homogeneous Markov Chain with transition matrix T and initial probability distribution μ_0 there exists a limit distribution $\pi \in [0,1]^n$ such that $\lim_{t\to\infty}\mu^{(t)}=\pi$

Then it must be the case that:

$$\pi = \lim_{t \to \infty} \mu^{(0)} T^t = \lim_{t \to \infty} \mu^{(0)} T^{t+1} = (\lim_{t \to \infty} \mu^{(0)} T^t) T = \pi T$$

Thus, any limit distribution is a left eigenvector of the transition matrix with eigenvalue 1, and can be computed by solving the equation $\pi = \pi T$. Solutions to this equation are called the equilibrium or stationary distributions of the chain.

2 Second largest eigenvalue

Theorem 2. Let x be a vector of length n such that $x_i = 1$ for all i = 1, ..., n. Then $(Tx)_i = \sum_{j=1}^n a_{ij}x_j = \sum_{j=1}^n a_{ij}1 = 1 = x_i$. Consequently $\lambda = 1$ is an eigenvalue.

Then we'll prove that $\lambda = 1$ is the largest eigenvalue for transition matrix T.

Theorem 3. If λ is an eigenvalue of a stochastic matrix T then $\lambda \leq 1$.

Proof. Let x be a right eigenvector corresonding to eigenvalue λ and let $x_k = max_{i \in n}x_i$. Since $Tx = \lambda x$, so $(\lambda x)_k = (Tx)_k = p_{k1}x_1 + ... + p_{kn}x_n$ It follows that

$$|\lambda||x_k| = |p_{k1}x_1 + \ldots + p_{kn}x_n| \le |p_{k1}x_1| + \ldots + |p_{kn}x_n| = p_{k1}|x_1| + \ldots + p_{kn}|x_n| \le |x_k|(p_{k1} + \ldots + p_{kn}) = x_k \text{ which proves the claim.}$$

Theorem 4. (Spectral Decomposition)

Let M be a real symmetric R^{d*d} matrix with eigenvalues $\lambda_1,...,\lambda_d$ and corresponding orthonormal eigenvectors $u_1,...,u_d$, and $Q=[u_1,...,u_d],$ $\Lambda=diag(\lambda_1,...,\lambda_d)$. Then:

$$M = Q\Lambda Q^T$$
 and $M = \sum_{i=1}^d \lambda_i \mu_i \mu_i^T$

Proof.
$$Q\Lambda Q^T \mu_i = Q\Lambda e_i = Q\lambda_i e_i = \lambda_i \mu_i = M\mu_i$$
. Thus $Q\Lambda Q^T = M$
And for any j, $(\sum_i \lambda_i \mu_i \mu_i^T) \mu_j = \lambda_j \mu_j = M\mu_j$
Hence $M = Q\Lambda Q^T$ and $M = \sum_{i=1}^d \lambda_i \mu_i \mu_i^T$.

Convergence of Regular Markov Chains

Theorem 5. (Jordan canonical form)

Let $A \in C^{n*n}$ be any matrix with eigenvalues $\lambda_1, ..., \lambda_l \in C$, $l \leq n$. Then there exists an invertible

$$\mathit{matrix}\ U \in \real^{n*n} \ \mathit{such}\ \mathit{that}\ UAU^{-1} = \begin{bmatrix} J_1 & 0 & \dots & 0 \\ 0 & J_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_l \end{bmatrix}$$

where each
$$J_i$$
 is a k_i*k_i Jordan block associated to some eigenvalue λ of A: $J_i = \begin{bmatrix} \lambda & 1 & \dots & 0 \\ 0 & \lambda & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda \end{bmatrix}$

A regular Markov chain with transition matrix T has a unique stationary distribution vector π such that $\pi T = \pi$. Assume for simplicity that all the eigenvalues of T are real and distinct. Then the rows of U may be taken to be left eigenvectors of the matrix P, and the Jordan canonical form reduces to the familiar eigenvalue decomposition:

$$UPU^{-1} = \Lambda = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

In this case one notes that in fact the columns of $U^1=V$ are precisely the right eigenvectors corresponding to the eigenvalues $\lambda_1, ..., \lambda_n$. T has a unique largest eigenvalue $\lambda_1=1$, and the other eigenvalues may be ordered so that $1 \geq |\lambda_2| \geq |\lambda_3| \geq ... \geq |\lambda_n|$. The unique left eigenvector associated to eigenvalue 1 is the stationary distribution π , and the corresponding unique right eigenvector is 1=(1,1,...,1). If the first row of U is normalised to π , then the first column of V must be normalised to $\vec{1}$ because $UV=UU^1=I$, and hence $(UV)_{11}=u_1v_1=\pi v_1=1$.

Denoting

$$\Lambda = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

We have then:

$$P^2=(V\Lambda U)^2=V\Lambda^2 U=V\begin{bmatrix}1&0&\dots&0\\0&\lambda_2^2&\dots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\dots&\lambda_n^2\end{bmatrix}\mathbf{U}$$

$$\text{And in general } P^t = (V\Lambda U)^t = V\Lambda^t U = V \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & \lambda_2^t & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n^t \end{bmatrix} \\ \mathbf{U} \rightarrow V \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \\ \mathbf{U} = \pi$$

To make the situation even more transparent, represent a given initial distribution $q=q_0$ in the (left) eigenvector basis as $q=\widetilde{q_1}\mu_1+\widetilde{q_2}\mu_2+...+\widetilde{q_n}\mu_n=\pi+\widetilde{q_2}\mu_2+...+\widetilde{q_n}\mu_n$, where $\widetilde{q_i}=< q^T,v_i>=qv_i$

Then
$$qP = (\pi + \widetilde{q}_2\mu_2 + ... + \widetilde{q}_n\mu_n)T = \pi + \widetilde{q}_2\lambda_2\mu_2 + ... + \widetilde{q}_n\lambda_n\mu_n$$

and generally
$$q^{(t)} = qT^t = \pi + \sum_{i=2}^n \widetilde{q_i} \lambda_i^t \mu_i$$

implying that $q^{(t)} \to \pi$, and if the eigenvalues are ordered as assumed, then

$$|| q^{(t)} - \pi || = o(|\lambda_2|^t).$$

By this we see that smaller second largest eigenvalue gives a higher rate of convergence.

3 Compute transition matrix for Markov chain

(1) Scalar input:

Input: observations-x, number of hidden states-n

Output: transition matrix-T

Initialzie: $T=0_{n*n}$

Recursion: for t in range(len(x)): p[x[t-1]-1, x[t]-1] = p[x[t-1]-1, x[t]-1] + 1

(2) Vector input:

Input: observations-x(a matrix with each row is a one-hot vector), number of hidden states-n(length of one-hot vector)

Output: transition matrix-T

Initialzie: $T=0_{n*n}$

Recursion: for t in range(len(x)): p=p+np.outer(x[t-1],x[t])

4 Stochastic matrix

A right stochastic matrix is a real square matrix, with each row summing to 1.

A left stochastic matrix is a real square matrix, with each column summing to 1.

A doubly stochastic matrix is a square matrix of nonnegative real numbers with each row and column summing to 1.

5 Generate doubly stochastic matrix

For transition matrix T, get the eigenvalues: $1, \lambda_2, ..., \lambda_k$

If
$$1 \geq \lambda_2 \dots \geq \lambda_k \geq -1$$

and
$$1 - (n-1)\lambda_2 + \lambda_3 + ... + \lambda_n \ge 0$$
,

$$1 + (n-1)\lambda_n \ge 0,$$

then there is an n * n nonsymmetric doubly stochastic matrix D with spectrum $1, \lambda_2, ..., \lambda_k$.

For matrix
$$V = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & -1 & 0 & \dots & 0 \\ 1 & 0 & -1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & 0 & \dots & -1 \end{bmatrix}$$

and its inverse
$$V^{-1}$$
 is given by:
$$V^{-1} = \begin{bmatrix} 1/n & 1/n & 1/n & \dots & 1/n \\ 1/n & -(n-1)/n & 1/n & \dots & 1/n \\ 1/n & 1/n & -(n-1)/n & \dots & 1/n \\ \vdots & \vdots & \ddots & \vdots \\ 1/n & 1/n & 1/n & \dots & -(n-1)/n \end{bmatrix}$$

Now the entries of the matrix $A = a_{ij} = V\Lambda V^1$ satisfy the following relations:

$$a_{11} = 1/n(trace(\Lambda))$$

$$a_{ii} = 1/n(1 + (n-1)\lambda_i)$$
 for $i = 2, ..., n$

$$a_{i1} = 1/n(1 + \lambda_2 + \dots + \lambda_{i-1} - (n-1)\lambda_i + \lambda_{i+1} + \dots + \lambda_n)$$

$$a_{ij} = 1/n(1 - \lambda_j)$$
 for $j \ge 2$ and $j \ne i$

6 Create synthetic data for different eigenvalue

According to the spectral decompostion, we can conclude that:

if Q is orthogonal, then
$$Q * \Lambda * Q^T$$
 has the same eigenvalues as A, and $\Lambda = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$.

So for different eigenvalues Λ , we can create synthetic data by randomly generate a orthonormal matrix Q and $Q * \Lambda * Q^T$ is the synthetic data.

References

- [1] Mourad, Bassam, et al. "An algorithm for constructing doubly stochastic matrices for the inverse eigenvalue problem." Linear Algebra and its Applications 439.5 (2013): 1382-1400.
- [2] Combinatorial Models and Stochastic Algorithms Lecture Notes. Pekka Orponen Helsinki University of Technology, Laboratory for Theoretical Computer Science