Álgebra lineal

Trabajo práctico $N^{\circ}4, 5 - 2022$

Polinomios

- 1. Sean $p, q, r \in \mathbb{K}[x]$, probar que:
 - a) Si $p|q \ y \ p|r$ entonces p|(mq+nr) para todo $m, n \in \mathbb{K}[x]$.
 - b) Si p|q y p|q+r entonces p|r.
 - c) Si p|q y gr(p) = gr(q) entonces existe $k \in \mathbb{K}$ tal que p = kq.
- 2. Determinar si los siguientes conjuntos de polinomios son subespacios de $\mathbb{K}[x]$.
 - a) $\mathbb{K}^{(n)}[x] = \{ p \in \mathbb{K}[x] : \operatorname{gr}(p) < n \} \cup \{ 0 \}.$
 - b) $\{p \in \mathbb{K}[x] : gr(p) = n\} \cup \{0\}.$
 - c) $\{p \in \mathbb{K}[x] : \operatorname{gr}(p) \text{ es impar}\} \cup \{0\}.$
- 3. Raíces de polinomios de grado dos. Sea $p(x) = x^2 + bx + c \in \mathbb{R}[x]$. Probar que

$$p(x) = (x - \lambda_1)(x - \lambda_2)$$
 para $\lambda_1, \lambda_2 \in \mathbb{R}$,

si y sólo si $b^2 \ge 4c$.

- 4. Probar que en $\mathbb{R}[x]$ no existen polinomios no nulos tales que $p^2+q^2=0$. ¿Ocurre lo mismo en $\mathbb{C}[x]$?
- 5. Sean $p(x) = 2x^3 3x^2 + 1$ y $q(x) = 2x^2 + 4x 1$, mostrar que no existen c y r en $\mathbb{Z}[x]$ tales que p = cq + r y gr(r) < gr(q). ¿Qué se puede decir de la existencia de algoritmo de división en $\mathbb{Z}[x]$?
- 6. Hallar el m. c. d. entre los siguientes polinomios de $\mathbb{R}[x]$.
 - a) $p(x) = x^5 4x^4 3x + 1$ y $q(x) = 3x^2 + 2x + 1$.
 - b) $p(x) = x^4 2x^3 + 1$ y $q(x) = x^2 x + 2$.
 - c) $p(x) = 2x^3 4x^2 + x 1$ y $q(x) = x^3 x^2 + 2x$.
- 7. Decir cuáles de los siguientes conjuntos son ideales:
 - a) $\{p \in \mathbb{K}[x] : \operatorname{gr}(p) \ge 2\} \subset \mathbb{K}[x].$
 - b) $\{p(x^2+4) \in \mathbb{R}[x] : p \in \mathbb{R}[x]\} \subset \mathbb{R}[x].$
 - c) $p \mathbb{K}[x] \subset \mathbb{K}[x]$, para $p \in \mathbb{K}[x]$.
 - d) Dado $\alpha \in \mathbb{K}$, $\{p \in \mathbb{K}[x] : p(\alpha) = 0\} \subset \mathbb{K}[x]$.

Departamento de Matemática - Facultad de Ciencias Exactas - UNLP

8. En el álgebra de polinomios con coeficientes reales $\mathbb{R}[x]$, consideremos el ideal $M = (x-1)\mathbb{R}[x] + (x^2-1)\mathbb{R}[x]$. Mostrar que $M = (x-1)\mathbb{R}[x]$.

¿Cambia algo si reemplazamos al cuerpo \mathbb{R} por otro cuerpo arbitrario \mathbb{K} ?

- 9. Hallar el generador mónico de los siguientes ideales de $\mathbb{Q}[x]$.
 - a) $M = \{ p \in \mathbb{R}[x] : p(1) = p(2) = 0 \}.$
 - b) $M = \{ p \in \mathbb{R}[x] : (x \pi)|p \}.$
 - c) $M = \{ p \in \mathbb{R}[x] : p \text{ es divisible por } x^2 + 4 \quad \text{y} \quad x^4 16 \}.$
- 10. Sea $p(x) = 1 + x + x^2 + x^3$.
 - a) Calcular p(A) para

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} .$$

- b) Probar que A y p(A) conmutan.
- 11. Sean $T \in L(\mathbb{R}^3)$ dada por T(x, y, z) = (-x, -z, 2y) y $p(x) = x^2 + 3 \in \mathbb{R}[x]$.
 - a) Hallar p(T) y calcular (pT)(1,0,-1).
 - b) Probar que $p(T) \in L(\mathbb{R}^3)$.
 - c) Escribir la representación matricial de p(T) en la base canónica de \mathbb{R}^3 .
 - d) Probar que $[p(T)]_{\mathcal{E}} = p([T]_{\mathcal{E}}).$