$$T(n) \leq cn^2$$

assume
$$T(n-1) \leq c(n-1)^2$$

$$T(n) = T(n-1) + n$$

$$\leq ((n-1)^2 + n)$$

$$c(30+1) > 0$$

$$(5 \frac{(3 \sqrt{1})}{1}) \approx \frac{3}{1}$$

3 (a)
$$q=2$$
, $b=2$, $f(n)=n^3$, $\log_b q=1$, $\log_b q=n$
 $f(n) = \Omega \left(n^{1+\epsilon} \right) \Rightarrow T(n) = \Theta(n^3)$

(a)
$$q = 2$$
, $b = 3$, $f(n) = n^{\frac{3}{2}}$, $\log_{10} x = 0.031$, $n^{\log_{10} x} = n^{0.031}$

$$f(n) = O(n^{0.631-\epsilon}) \Rightarrow T(n) = O(n^{0.631})$$

g) claim!
$$T(n) = O(\log(n))$$

T(n) $\leq C \cdot \log(n)$

$$V = C \cdot \log(n)$$

$$V = C \cdot \log(n)$$