TD Optimisation Convexe Préliminaires géométriques

Guillaume TOCHON

Majeure IMAGE

Produit scalaire et norme

Exercice: Le produit scalaire dans \mathbb{R}^2

Soient \mathbf{x} et \mathbf{y} deux vecteurs de \mathbb{R}^2 , représentés par deux points dans le plan euclidien. On note θ l'angle orienté (dans le sens direct) entre \mathbf{x} et \mathbf{y} , ϕ (respectivement ψ l'angle entre \mathbf{x} (respectivement \mathbf{y}) et la partie positive de l'axe des abscisses.

- 1. Exprimer les coordonnées de \mathbf{x} et \mathbf{y} en fonction de leurs normes respectives et des angles ϕ et ψ .
- 2. Retrouver l'expression du produit scalaire de $\langle \mathbf{x}, \mathbf{y} \rangle$ en fonction de θ et des normes de \mathbf{x} et \mathbf{y} .

Exercice: Norme découlant d'un produit scalaire

On rappelle que chaque produit scalaire $\langle \ , \ \rangle$ induit une norme $\| \cdot \|$ par la relation $\| \mathbf{x} \| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$

1. Vérifier que la norme induite par le produit scalaire (peu importe sa définition) vérifie bien les trois propriétés de séparation, homogénéité et inégalité triangulaire.

Exercice: Inégalité triangulaire inversée

On rappelle l'inégalité triangulaire inversée : $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $||\mathbf{x}|| - ||\mathbf{y}|| \le ||\mathbf{x} - \mathbf{y}||$

1. Démontrer cette relation en vous servant de l'inégalité triangulaire classique.

Au risque d'enfoncer des portes ouvertes, on rappelle la relation $\mathbf{x} = \mathbf{x} + \mathbf{y} - \mathbf{y}$, quelques soient les vecteurs \mathbf{x} et \mathbf{y} ...

Exercice: Normes équivalentes

On rappelle que deux normes $\|\cdot\|_{\alpha}$ et $\|\cdot\|_{\beta}$ sont dites équivalentes s'il existe des constantes A, B > 0 telles que $\forall \mathbf{x} \in \mathbb{R}^n$, $A\|\mathbf{x}\|_{\beta} \leq \|\mathbf{x}\|_{\alpha} \leq B\|\mathbf{x}\|_{\beta}$, et que toutes les normes définies sur $\mathbb{R}^{n \cdot 1}$ sont équivalentes.

1. Montrer que les normes $\|\cdot\|_1$, $\|\cdot\|_2$ et $\|\cdot\|_\infty$ sont équivalentes.

Écriture paramétrique et écriture implicite

Exerice : Décrire un lieu de \mathbb{R}^2

- 1. Déterminer et tracer le lieu de \mathbb{R}^2 donné par la relation matricielle $\begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \leq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
- 2. Même question, mais avec $(3,2)^T$ comme second membre au lieu de $(0,0)^T$
- 3. Quel lieu obtient-on si on inverse l'inégalité?

^{1.} Et plus généralement, sur n'importe quel espace vectoriel de dimension finie

Exerice: Écriture paramétrique d'un sous espace affine

Écrire paramétriquement :

- 1. La droite de \mathbb{R}^2 de vecteur directeur $\mathbf{u} = (1, -1)^T$ et passant par le point $\mathbf{a} = (2, 3)^T$
- 2. Le plan de \mathbb{R}^3 contenant les points $\mathbf{a} = (1,0,0)^T$, $\mathbf{b} = (0,2,1)^T$ et $\mathbf{c} = (-1,0,1)^T$

Exerice: Écriture implicite d'un sous espace affine

Écrire implicitement :

- 1. La droite de \mathbb{R}^2 de vecteur normal $\mathbf{n} = \begin{pmatrix} 2,1 \end{pmatrix}^T$ et passant par le point $\mathbf{a} = \begin{pmatrix} 1,-2 \end{pmatrix}^T$
- 2. Le plan de \mathbb{R}^3 contenant les points $\mathbf{a} = (1,0,0)^T$, $\mathbf{b} = (0,2,1)^T$ et $\mathbf{c} = (-1,0,1)^T$

Exerice: D'une écriture implicite vers une écriture paramétrique

Déterminer l'écriture paramétrique :

- 1. du plan de \mathbb{R}^3 donné par l'équation $x_1 + x_2 + x_3 = 2$
- 2. de la droite de \mathbb{R}^3 décrite comme l'intersection de deux plans d'équations x+y-2z=1 et 3x-2y+z=0

Exerice : D'une écriture paramétrique vers une écriture implicite

Déterminer l'écriture implicite :

- 1. du plan de \mathbb{R}^3 engendré par les vecteurs $\mathbf{u}_1 = (1,2,3)^T$ et $\mathbf{u}_2 = (-3,1,0)^T$ et contenant le point $\mathbf{a} = (0,2,0)^T$
- 2. de la droite de \mathbb{R}^3 de vecteur directeur $\mathbf{u} = (1,1,1)^T$ et passant par le point $\mathbf{a} = (1,-1,0)^T$

À propos des matrices symétriques

Exercice: Positivité/négativité d'une matrice symétrique

On rappelle qu'une matrice symétrique \mathbf{A} de spectre $Sp(\mathbf{A})$ est positive (respectivement définie positive, négative, définie négative) si $Sp(A) \subset \mathbb{R}^+$ (respectivement $Sp(A) \subset \mathbb{R}^+$, $Sp(A) \subset \mathbb{R}^-$, $Sp(A) \subset \mathbb{R}^-$)

1. Déterminer si les matrices suivantes sont positives; définies positives; négatives; négatives; négatives; ni positive ni négative.

$$\mathbf{A}_1 = \begin{pmatrix} 2 & -2 \\ -2 & 3 \end{pmatrix} \quad \mathbf{A}_2 = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \quad \mathbf{A}_3 = \begin{pmatrix} -2 & -3 \\ -3 & -2 \end{pmatrix} \quad \mathbf{A}_4 = \begin{pmatrix} -3 & -2 \\ -2 & -3 \end{pmatrix} \quad \mathbf{A}_6 = \begin{pmatrix} -5 & 3 \\ 3 & -2 \end{pmatrix} \quad \mathbf{A}_6 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$

2. Déterminer, en fonction de la valeure de $\lambda \in \mathbb{R}$, si la matrice $\mathbf{A}_{\lambda} = \begin{pmatrix} \lambda & 1 \\ 1 & \lambda \end{pmatrix}$ est positive; définie positive; négative; ni positive ni négative.

Exercice: Lien avec le produit scalaire

Soit $\mathbf{A} \in \mathbb{R}^{n \times n}$ une matrice symétrique. On rappelle que si \mathbf{A} est définie positive $(A \succ 0)$, alors l'application $(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x}^T \mathbf{A} \mathbf{y}$ définit un produit scalaire.

2

1. Vérifier que l'application $(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x}^T \mathbf{A} \mathbf{y}$ vérifie bien les propriétés de symétrie, bilinéarité, définition et positivité d'un produit scalaire si $\mathbf{A} \succ 0$.