A Statistical Parser for Hindi in < 2 weeks

Corpus-Based Natural Language Processing Workshop AU-KBC Center, Madras Institute of Technology December 17-31, 2001

Pranjali Kanade T. Papi Reddy Mona Parakh Vivek Mehta Anoop Sarkar

Initial Goals

- Build a statistical parser for Hindi (provides single-best parse for a given input)
- Train on the Hindi Treebank (built at LTRC, Hyderabad)
- Active learning experiments: informative sampling of data to be annotated based on the parser

Initial Linguistic Resources

abad Annotated corpus for Hindi, "AnnCorra" prepared at LTRC, IIIT, Hyder-

Corpus description: extracts from Premchand's novels.

Corpus size: 338 sentences.

Manually annotated corpus; marked for verb-argument relations.

Corpus Cleanup and Correction

- Annotators who were part of the team manually corrected the following problems
- Inconsistency of tags resolved.
- Resolved the discrepancies in the tagsets
- Problems of local word grouping resolved.
- sentences without punctuation in the corpus. Explicitly marked the clause boundaries to disambiguate long complex

Goals: Reconsidered

- Corpus Cleanup and Correction
- Default rules and Explicit Dependency Trees
- Various models of parsing based on the Treebank
- Trigram tagger/chunker
- Probabilistic CFG parser (stemming, no smoothing)
- Fully lexicalized statistical parser (with smoothing)
- Papi's parser and sentence units

Default rules and Explicit Dependency Trees

Raw corpus:

```
n
T
                                                                                                                        [dasa miniTa_meM]/k7.1 [harA-bharA bAga]/k1
                                                                                                      ten
   ten minutes
                                                                                                     minutes in
                                         was-destroy-past
                                                            naShTa_ho_gayA::v }
  the
green garden was
                                                                                                    green
                                                                                                    garden
  destroyed
```

Explicit dependencies are not marked

Default rules are listed in the guidelines

Evaluated the default rules and built a program to convert original corpus into explicit dependency trees

Default rules and Explicit Dependency Trees

```
{ [dasa miniTa_meM]/k7.1 [harA-bharA bAga]/k1
naShTa_ho_gayA::v }
```

n T ten minutes the green garden was destroyed

Default rules and Explicit Dependency Trees

Default rules could not handle 24 out of 334 sentences

ad-hoc defaults for multiple sentence units within a single sentence (added yo as parent of all clauses)

Trigram Tagger/Chunker

• Input:

```
\{ [	exttt{tahasIla madarasA barA.Nva\_ke}]/6 \}
vyasana_thA::v}
                                     kuchha::adv
                                                              bAgavAnI_kA/6
                                                                                              [prathamAdhyApaka muMshI bhavAnIsahAya_ko]/kl
```

Converted to representation for tagger:

```
tahasIla//adj//cb
madarasA//adj//cb
barA.Nva_ke//6//cb
prathamAdhyApaka//adj//cb
muMshI//adj//cb
bhavAnIsahAya_ko//k1//cb
bAgavAnI_kA//6//co
kuchha//adv//co
vyasana_thA//v//co
```

Trigram Tagger/Chunker

- Bootstrapped using existing supertagger code
- 70-30 training-test split
- Testing on training data performance:
- tag accuracy: 95.17% chunk accuracy: 96.69%
- Unseen Test data
- tag accuracy: 55% chunk accuracy: 71.8%

Probabilistic CFG Parser

- Extracted context-free rules from the Treebank
- Estimated probabilities for each rule using counts from the Treebank
- Used PCFG parser to compute the best derivation for a given sentence
- Used some existing code written earlier for prob CKY parsing

Probabilistic CFG Parser

v -> k7.1 k1 naShTa_ho_gaya k7.1 -> dasa miniTa_meM k1 -> harA-bharA bAga

Probabilistic CFG Parser: Results on Training Data

99.33	П	2 or less crossing
91.25	Ш	No crossing
0.12	П	Average crossing
48.82	Ш	Complete match
86.29	П	Bracketing Precision
76.94	II	Bracketing Recall
297	П	Number of Valid sentence
0	Ш	Number of Skip sentence
13	II	Number of Error sentence
310	П	Number of sentence
1min 27secs	II	Time

Probabilistic CFG Parser: Results with Stemming on Training Data

2 or less crossing	No crossing	Average crossing	Complete match	Bracketing Precision	Bracketing Recall	Number of Valid sentence	Number of Skip sentence	Number of Error sentence	Number of sentence
П	П	П	Ш	Ш	II	Ш	Ш	Ш	П
94.95	66.33	0.58	25.59	60.05	59.74	297	0	13	310

Probabilistic CFG Parser: Unseen Data; Test Data = 20%

2 or less crossing	No crossing	Average crossing	Complete match	Bracketing Precision	Bracketing Recall	Number of Valid sentence	Number of Skip sentence	Number of Error sentence	Number of sentence
Ш	П	Ш	Ш	Ш	Ш	II	Ш	П	II
91.23	73.68	0.53	5.26	53.45	37.96	57	0	51	62

Lexicalized StatParser: Building up the parse tree

Lexicalized StatParser: Building up the parse tree

$$P_s(v, \text{naShTa}, \text{v} \mid \text{TOP}) \times$$
 (1)
 $ga, \text{n} \mid v, \text{naShTa}, \text{v}, \leftarrow) \times$ (2)
 $Ta, \text{n} \mid v, \text{naShTa}, \text{v}, \leftarrow) \times$ (3)
 $A, \text{a} \mid k7.1, \text{bAga}, \text{n}, \leftarrow) \times$ (4)

$$P_m(k1, bAga, n \mid v, naShTa, v, \leftarrow) \times P_m(k7.1, miniTa, n \mid v, naShTa, v, \leftarrow) \times$$

$$P_m(k\mathsf{7.1}, \mathtt{miniTa}, \mathtt{n} \mid v, \mathtt{naShTa}, \mathtt{v}, \longleftarrow) imes$$

$$P_m(\cdot, ext{harA} - ext{bharA}, ext{a} \mid k ext{7.1}, ext{bAga}, ext{n}, \leftarrow) imes
onumber \ P_m(\cdot, ext{dasa}, ext{a} \mid k ext{1}, ext{miniTa}, ext{n}, \leftarrow)
onumber$$

Lexicalized StatParser: Start Probabilities

	2		0	$P_s(lpha \mid exttt{TOP})$
		$P_{s1}(t_{lpha})$	$P_{s1}(t_{lpha} \mid exttt{TOP})$	1
		$P_{s2}(w_\alpha \mid t_\alpha)$	$P_{s2}(w_{lpha}\mid t_{lpha}, exttt{TOP})$	2
-	$P_{ m s3}(au_lpha \mid t_lpha)$	$P_{s3}(au_lpha \mid t_lpha, w_lpha)$	$P_{s3}(au_lpha \mid t_lpha, w_lpha, exttt{TOP})$	3

$$P_s(v, \text{naShTa}, \text{v} \mid \text{TOP}) =$$

$$P_{s1}(\text{v} \mid \text{TOP}) \times$$

$$P_{s2}(\text{naShTa} \mid \text{v}, \text{TOP}) \times$$

$$P_{s3}(v \mid \text{naShTa}, \text{v}, \text{TOP})$$

Lexicalized StatParser: Modification Probabilities

$\mid 3 \mid P_{m1}(au_{lpha} \mid au_{\eta})$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$ig \ 1 \qquad \qquad ig \ P_{m1}(au_lpha \mid au_\eta, t_\eta, p)$	$oxed{0} oxed{P_{m1}(au_lpha \mid au_\eta, t_\eta, w_\eta, p)}$	$ F_m(\alpha \mid \eta) $
$P_{m2}(t_{lpha}\mid t_{\eta})$	$P_{m2}(t_\alpha \mid \tau_\alpha, t_\eta)$		$w_{\eta},p) P_{m2}(t_{\alpha}\mid au_{lpha},t_{\eta},w_{\eta},p)$	
$P_{m3}(w_{lpha} \mid t_{lpha}, t_{\eta})$	$P_{m3}(w_\alpha \mid \tau_\alpha, t_\alpha, t_\eta)$	$P_{m3}(w_lpha \mid au_lpha, t_lpha, t_\eta, p)$	$P_{m3}(w_{lpha}\mid au_{lpha},t_{lpha},t_{\eta},w_{\eta},p)$	J

$$P_m(k1, bAga, n \mid v, naShTa, v, \leftarrow) =$$

$$P_{m1}(k1 \mid v, naShTa, v, \leftarrow) \times$$

$$P_{m2}(n \mid k1, v, naShTa, v, \leftarrow) \times$$

$$P_{m3}(bAga \mid n, k1, v, naShTa, v, \leftarrow)$$

Lexicalized StatParser: Prior Probabilities

	1	0	$P_{pr}(lpha)$
P_{pr}		$P_{pr1}(t_{lpha})$	1
$P_{pr}(k1, bAga, n) = P_{pr1}(k1) \times P_{pr2}(n \mid k1) \times P_{pr3}(bAga \mid n, k1)$		$P_{pr1}(t_lpha)$ $P_{pr2}(w_lpha \mid t_lpha)$ $P_{pr3}(au_lpha \mid t_lpha, w_lpha)$	2
1)	$P_{pr3}(au_{lpha} \mid t_{lpha})$	P_{pr} 3 $(au_{lpha} \mid t_{lpha}, u$	3
		(v_{α})	

Contributions of the project

- Cleaned and clause-bracketed Hindi Treebank
- Implementation of default rules listed in the AnnCorra guidelines Conversion of AnnCorra into dependency trees
- New NLP tools developed for Hindi:
- Trigram tagger/chunker (with evaluation)
- Probabilistic CFG parser (with evaluation)
- Lexicalized statistical parsing model (still in progress)

Future Work: Corpus development and Bugfixes

- Corpus: fix remaining errors in annotated clause boundaries ({ , })
- Evaluate the local word grouper performance Current assumption: LWG gets 100% of the groups correct
- Combine part-of-speech information into the corpus
- Part-of-speech info can then be folded into the PCFG and Lexicalized Parser
- Eliminate stemming from PCFG parser

Future Work: Lexicalized Statistical Parser

- Clean up the clause-bracketing annotation in the corpus
- Continue implementation and evaluation of lexicalized statistical parser
- Active learning experiments: informative sampling of data to be annotated based on the parser
- Write a paper describing the project

Future Work: Active Learning

Current learning model: fixed size of training and test data

Learning has no impact on the original annotated data

Model we can explore (similar to ideas in online learning and active learning):

Annotation → Machine Learner → Annotation

Annotation combined with learning

Future Work: Improving Existing Rule-based Parser for Hindi

Dependency parser for Indian languages.

Verb-argument dependencies: Demand (Karaka) charts.

Transformation rules that modify Karaka charts based on tense-aspectmodality.

Future Work: Improving Existing Rule-based Parser for Hindi

- Current Limitations of the parser.
- Creates number of spurious analyses when handling multiple-clause sentences
- Insufficient lexical resources (\approx 119 Demand charts)
- Local word grouper performs only on verb chunks. handled. Noun chunks that are larger than basal noun-phrases have to be

Future Work: Improving Existing Rule-based Parser for Hindi

- Current directions for improvement:
- Heuristics for specifying clausal boundaries.
- Dealing with ellipsis, negation, etc.
- Learning the Karaka charts and the transformation rules from the annotated corpus.
- Using default Karaka charts for unknown verbs.
- Associating adjectives with the corresponding nouns.