中国科学技术大学 2019 年夏令营试题

望梦阁的小梦友

2019年7月20日

注记 (1) 此试题为入营同学的回忆版, 难免有所遗漏或错误, 请见谅, 也欢迎纠错.

(2) 数学分析,线性代数是第一天考试题;实变函数,复变函数,微分几何,抽象代数是第二天考试题,三小时答卷.

1 数学分析

题 1. 请构造一个定义在 $[0,1] \times [0,1]$ 上的函数 f(x,y) 使得 $\lim_{x\to 0} \int_0^1 f(x,y) dy$ 和 $\int_0^1 f(x,y) dy$ 均存在有限但

$$\lim_{x \to 0} \int_0^1 f(x, y) dy \neq \int_0^1 \lim_{x \to 0} f(x, y) dy$$

进一步, 如果还要求 f(x,y) 为二元连续函数, 则满足上述条件的函数还存在吗? 为什么?

题 2. 设函数 $f: \mathbb{R}^n \to \mathbb{R}^n (n > 1)$ 有一阶连续偏导数,且存在常数 C > 0 使得对 $\forall x,y \in \mathbb{R}^n$ 均满足

$$|f(x) - f(y)| \geqslant C|x - y|$$

求证: $\forall x \in \mathbb{R}^n$, $f \in x$ 点在 Jacobi 矩阵 Df(x) 均可逆.

题 3. 设函数 $f(x,y): \mathbb{R}^2 \to \mathbb{R}$ 具有二阶连续偏导数且满足

$$\left| \frac{\partial^2 f}{\partial x^2} \right|, \left| \frac{\partial^2 f}{\partial y^2} \right|, \left| \frac{\partial^2 f}{\partial x \partial y} \right| \leqslant 1, \quad \forall (x, y) \in \mathbb{R}^2.$$

而且

$$f(1,1) = f(1,-1) = f(-2,0).$$

求证:

$$\left|\frac{\partial f}{\partial x}(x,y)\right|, \left|\frac{\partial f}{\partial y}(x,y)\right| \leqslant 2019, \quad \forall x^2+y^2 \leqslant 1.$$

题 4. 是否存在函数项级数 $\sum_{n=1}^{\infty} f_n(x)$ 满足 $\sum_{n=1}^{\infty} f_n(x)$ 在 [0,1] 上一致收敛,且 $\sum_{n=1}^{\infty} |f_n(x)|$

在 [0,1] 上收敛, 但 $\sum_{n=1}^{\infty} |f_n(x)|$ 在 [0,1] 上不一致收敛?并说明理由.

2 线性代数

题 5. 将二次型 $x^2 + y^2 - z^2 - xy - yz - xz + 2z + 1 = 0$ (也有可能是 $x^2 + y^2 - z^2 - xy - yz - xz - 2z + 1 = 0$) 化为标准形并判断其所属曲面类型.

题 6. 设
$$A = \begin{pmatrix} 7 & 1 \\ 2 & 7 \end{pmatrix}$$
, 定义线性变换

$$f: M_2(\mathbb{C}) \to M_2(\mathbb{C}), f(X) = AX - XA.$$

求 f 的特征根与对应的特征向量.

题 7. 已知五个向量 $\alpha_1, \alpha_2, \dots, \alpha_5$ (具体数值忘记了), 求 α_2 所在的极大线性无关组.

题 8. 设 $A, B \in M_n(\mathbb{C}), AB = BA$, 证明存在可逆矩阵 P 使得 $P^{-1}AP$ 和 $P^{-1}BP$ 均为上三角矩阵.

3 实变函数

题 9. 设 f_n 是 [0,1] 上的可测函数列,几乎处处收敛于 f, 若 $1 \le q , 并且 <math>||f_n||_{L^p}$ 是有界的. 证明:

$$\lim_{n \to \infty} \int_0^1 |f_n(x) - f(x)|^q dx = 0$$

题 10. 设 $E \subset \mathbb{R}$ 满足 $m^*(E) > 0$, 其中 m^* 是外测度. 证明对任何 $\alpha \in (0,1)$, 存在一个 开区间 I 使得

$$m^*(I \cap E) \ge \alpha m^*(I)$$
.

4 复变函数

题 11. 方程 $z^4 - 8z - 10 = 0$ 在圆环 1 < |z| < 3 内有几个根?为什么?

题 12. 设 f(x) 在 $\{z||z| < 1\}$ 内解析,在 $\{z||z| \le 1\}$ 上连续,并且当 |z| = 1 时,有 |f(z)| = 1. 试证明: f(z)(可解析延拓为) 有理函数.

5 微分几何

题 13. 设 $f(x_1,x_2)$ 是某个平面区域 D 上的光滑函数. 考虑三维欧氏空间 E^3 中的曲面 S:

$$(x_1, x_2, f(x_1, x_2)), (x_1, x_2) \in D$$

$$id f_i := \frac{\partial f}{x_i}, |\nabla f|^2 := \sum_{i=1}^2 f_i^2.$$

- (1) 求曲面 S 的第一基本形式和第二基本形式.
- (2) 称平均曲率为零的曲面为极小曲面. 证明: 若 f 满足方程

$$\sum_{i=1}^{2} \frac{\partial}{\partial x_i} \left(\frac{f_i}{\sqrt{1 + |\nabla f|^2}} \right) = 0.$$

则曲面 S 为极小曲面.

题 14.

- (1) 平面与单位球之间能否建立等距同构映射?说明理由.
- (2) 测地线是否是最短线?说明理由.

6 抽象代数

题 15. S_4 中 (12)(34) 所在的共轭类记为 C, 求 C 中所有元素在共轭作用下的稳定子群.

题 16. 设 $\mathbb{F}_2 = \{\overline{0}, \overline{1}\}$, 判断 $\mathbb{F}_2/(t^2)$, $\mathbb{F}_2/(t^2+t+\overline{1})$, $\mathbb{F}_2/(t^2+\overline{1})$ 之间是否有环同构. 并说明理由.