Introducción a la Matemática

Iker M. Canut

February 11, 2020

Contents

1	Con	njuntos	:
	1.1	Definiciones Básicas	٠
	1.2	Representación de conjuntos	•
	1.3	Subconjuntos	•
	1.4	Operaciones	•
2	Núr	meros Reales	4
	2.1	Suma y Producto	4
	2.2	Resta y División	
		Potenciación	
	2.4	Radicación	,
	2.5	Logaritmo	
		Formas Especiales	
	2.7	Relacion de Orden del Conjunto de los Numeros Reales	,
	2.8	Valor Absoluto	
3	Núr	meros Compleios	7

1 Conjuntos

1.1 Definiciones Básicas

Un Conjunto es una colección de objetos. Los conjuntos se denominan con letras mayúsculas. Y los elementos que lo forman con letras minúsculas. El conjunto vacio se denomina \emptyset .

1.2 Representación de conjuntos

• Por Extensión: Se lista todo entre llaves. $\{a,b,c,d,...\}$

• Por Comprension: Se dicen las propiedades. $\{x/x...\}$

1.3 Subconjuntos

El conjunto B es subconjunto de A si y sólo si todo elemento de B, es también de A.

$$B \subset A \iff (x \in B \Rightarrow x \in A)$$

Dos conjuntos serán iguales cuando posean los mismos elementos.

$$B = A \iff (A \subset B \land B \subset A)$$

Al conjunto que contiene a todos los datos en un contexto específico lo denominaremos **Conjunto Universal** y se denota con la letra **U**.

1.4 Operaciones

• Intersección de Conjuntos: $A \cap B = \{x/x \in A \land x \in B\}$

• Unión de Conjuntos: $A \cup B = \{x/x \in A \lor x \in B\}$

Si dos conjuntos no tienen elementos en comun, entonces son **disjuntos**. A y B disjuntos $\iff A \cap B = \emptyset$

Propiedades	UNIÓN	INTERSECCIÓN
Conmutativa	$A \cup B = B \cup A$	$A \cap B = B \cap A$
Asociativa	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$
Distributiva	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Idempotencia	$A \cup A = A$	$A \cap A = A$

• Diferencia: $A - B = \{x/x \in A \land x \notin B\}$

• Complemento: $C_A = \overline{A} = U - A$. Se cumple que $A - B = A \cap \overline{B}$

Propiedades		
Complemento	$\overline{\overline{A}} = A$ $A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$ $\overline{\emptyset} = U \wedge \overline{U} = \emptyset$	
Leyes de Morgan	$\overline{\frac{A \cap B}{A \cup B}} = \overline{A} \cup \overline{B}$	

3

• Cardinal de un conjunto: Es el número de elementos. |A| = card(A)

2 Números Reales

• Racionales $Q = \left\{ x/x = \frac{p}{q}, p \in Z, q \in Z, q \neq 0 \right\}$

• Naturales con cero N_0 : $\{0, 1, 2, 3, ...\}$

• Enteros Z: $\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

• Irracionales $I=Q\cap I=\emptyset \land Q\cup I=R$

$$N \subset N_0 \subset Z \subset Q \subset R \land I \subset R$$

2.1 Suma y Producto

	Suma	Producto
Conmutativa	a+b=b+a	a.b = b.a
Asociativa	(a+b) + c = a + (b+c)	(a.b).c = a.(b.c)
∃ Elemento Neutro	a+0=a	a.1 = a
∃ Elemento Inverso	a + (-a) = 0	$a.\frac{1}{a} = 1$
Cancelativa	$a+b=a+c \Rightarrow b=c$	$a.b = a.c \Rightarrow b = c, a \neq 0$
Uniforme	$a = b \Rightarrow a + c = b + c$	$a = b \Rightarrow a.c = b.c$
Distributiva	a.(b+c) =	= a.b + a.c

2.2 Resta y División

$$\bullet \ a - b = a + (-b)$$

$$\bullet \ a:b=\frac{a}{b}=a.\frac{1}{b}$$

$$\bullet \ \frac{p}{q} + \frac{r}{s} = \frac{ps + rq}{qs}, q \neq 0 \land s \neq 0$$

$$\bullet \ \frac{p}{q}.\frac{r}{s} = \frac{pr}{qs}, q \neq 0 \land s \neq 0$$

$$\bullet \ \frac{p}{q} \div \frac{r}{s} = \frac{ps}{qr}, q \neq 0 \land s \neq 0 \land r \neq 0$$

2.3 Potenciación

• Si
$$a \neq 0, a^0 = 1$$

$$\bullet \ a^1=a$$

• Si
$$n \in N, n > 1, a^n = \underbrace{a.a....a}_{\text{n factores "a"}}$$

• Si
$$a \in R \land a \neq 0 \land n \in N, a^{-n} = \frac{1}{a^n} = \underbrace{\frac{1}{a.a....a}}_{\text{n veces}}$$

Distributiva respecto a la multiplicación	$(a.b)^n = a^n.b^n$
Distributiva respecto al cociente	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, b \neq 0$
Producto de potencias de igual base	$a^n.a^m = a^{n+m}$
Cociente de potencias de igual base	$a^n \div a^m = a^{n-m}$
Potencia de potencia	$\left(a^{n}\right)^{m} = a^{n.m}$

2.4 Radicación

$$\sqrt[n]{a} = b \iff b^n = a$$

y se nombra $\sqrt[indice]{radicando}$ = raiz enesima

No existe en los reales la raiz cuadrada (y de ningún índice par) de números negativos. Es decir:

- Si n es un numero natural impar, entonces es valida para todo número real a.
- Si n es un numero natural par, entonces es valida para todo número real a no negativo.

$$a^{\frac{m}{n}} = \sqrt[n]{a^m} \wedge a^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{a^m}}, a \neq 0$$

Distributiva respecto al producto	$\sqrt[n]{a.b} = \sqrt[n]{a}.\sqrt[n]{b}$
Distributiva respecto al cociente	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
Raiz de raiz	$\sqrt[m]{\sqrt[n]{a}} = \sqrt[m \cdot n]{a}$

2.5 Logaritmo

El logaritmo en base a de x es y y lo notamos $\log_a(x) = y$, como el numero al cual tengo que elevar a a para obtener x.

$$log_a(x) = y \iff a^y = x$$
, se necesita que $a > 0 \land x > 0 \land a \neq 1$

•
$$log_a(1) = 0$$

•
$$log_a\left(\frac{x}{y}\right) = log_a(x) - log_a(y)$$

•
$$log_a(a) = 1$$

•
$$log_a(x^c) = c.log_a(x)$$

•
$$log_a(x.y) = log_a(x) + log_a(y)$$

•
$$a^{log_a(x)} = x$$

$$log_b(x) = \frac{log_a(x)}{log_a(b)}$$

2.6 Formas Especiales

Binomio al Cuadrado \leftrightarrow Trinomio Cuadrado Perfecto

$$(x+y)^2 = x^2 + 2xy + y^2$$

Binomio al Cubo \leftrightarrow Cuatrinomio Cubo Perfecto

$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$

Diferencia de Cuadrados

$$(a-b).(a+b) = a^2 - b^2$$

2.7 Relacion de Orden del Conjunto de los Numeros Reales

•
$$a < b \text{ si } 0 < b - a$$

•
$$a < b \land b < c \Rightarrow a < c$$

•
$$a < b \land c > 0 \Rightarrow a.c < b.c$$

•
$$a > b$$
 si $b < a$

•
$$a < b \Rightarrow a + c < b + c$$

5

•
$$a < b \land c < 0 \Rightarrow a.c > b.c$$

2.8 Valor Absoluto

Es la distancia que hay, en la recta numérica, desde su punto representativo al origen de coordenadas. El valor absoluto es será siempre un número positivo (o cero).

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

•
$$|a| \ge 0$$

•
$$|a|.|b| = |a|.|b|$$

$$\bullet |a| = 0 \iff a = 0$$

$$\forall a, b \in R \land k > 0$$

$$\bullet ||a+b| \le |a| + |b|$$

$$\bullet ||a-b| \ge ||a| - |b||$$

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

$$\bullet \ \left| \frac{a}{b} \right| = \frac{|a|}{|b|}, b \neq 0$$

$$\bullet \ |-a| = |a|$$

•
$$\sqrt{a^2} = |a|$$

•
$$|a| < k \iff -k < a < k$$

•
$$|a| > k \iff (a > k \lor a < (-k))$$

3 Números Complejos