Vorkurs Einführung in die <u>Hochschulmathemati</u>k:

MENGENLEHRE

JONATHAN BUSSE

Universität Duisburg Essen GITHUB.COM/JOKABUS/VEH2020

SITZUNG VOM 29. SEPTEMBER 2020

ORGANISATORISCHES

ORGANISATORISCHES

ZEITPLANUNG

ZEITPLANUNG

- 10:00 Begrüßung und Motivation komplexer Zahlen
- 10:05 Break-Out-Session

Übung 5.2-1

Übung 5.2-2 (optional)

10:50 Kaffepause

11:00 Besprechung der Übungsabe(n)

ÜBUNGSAUFGABE

ÜBUNGSAUFGABE

VORRECHNEN

ÜBUNG 5.2 AUFGABE 1

Aufgabe 1:

Bestimme $|z|,\,\mathfrak{Re}\{z\},\,\mathfrak{Im}\{z\},\,\arg(z)$ und die komplex konjugierte Zahl \overline{z} zu

(a)
$$z = 1 - i$$
, (b) $z = \frac{(1 + i)^{13}}{(1 - i)^7}$, (c) $z = i^{2014}$, (d) $z = (1 - i)^{99}$

a)

b)

ÜBUNG 5.2 AUFGABE 1

Aufgabe 1:

Bestimme $|z|,\,\mathfrak{Re}\{z\},\,\mathfrak{Im}\{z\},\,\mathrm{arg}(z)$ und die komplex konjugierte Zahl \overline{z} zu

(a)
$$z = 1 - i$$
, (b) $z = \frac{(1 + i)^{13}}{(1 - i)^7}$, (c) $z = i^{2014}$, (d) $z = (1 - i)^{99}$

c)

d)

ÜBUNG 5.2 AUFGABE 2

Aufgabe 2:

Skizzieren Sie folgende Mengen in der Gaußschen Zahlenebene:

$$(a)\ M_1=\Big\{\,z\in\mathbb{C}\ \Big|\ |z^2|\leqslant 2\ \wedge\ \Im \mathfrak{m}\{z^2\}\leqslant 0\,\Big\}, \qquad \qquad (b)\ M_2=\Big\{\,z\in\mathbb{C}\ \Big|\ |z-2|=1\,\Big\}.$$

a)

b)

ÜBUNGSAUFGABE

VISUALISIERUNG

ÜBUNG 5.1 AUFGABE 1A

Aufgabe 1:

Bestimme |z|, $\mathfrak{Re}\{z\}$, $\mathfrak{Im}\{z\}$, $\operatorname{arg}(z)$ und die komplex konjugierte Zahl \overline{z} zu

$$(a) \ z = 1 - i, \qquad (b) \ z = \frac{(1 + i)^{13}}{(1 - i)^7}, \qquad \quad (c) \ z = i^{2014}, \qquad \quad (d) \ z = (1 - i)^{99}$$

c)
$$z = i^{2014}$$
, (d) $z = (1 - i^{2014})$

ÜBUNG 5.1 AUFGABE 1A

Aufgabe 1:

Bestimme |z|, $\Re \{z\}$, $\Im \{z\}$, $\arg \{z\}$ und die komplex konjugierte Zahl \overline{z} zu

$$(a) \ z = 1 - i, \qquad (b) \ z = \frac{(1 + i)^{13}}{(1 - i)^7}, \qquad \quad (c) \ z = i^{2014}, \qquad \quad (d) \ z = (1 - i)^{99}$$

$$(d) z = (1 - i)^{99}$$

ÜBUNG 5.1 AUFGABE 1B

Aufgabe 1:

Bestimme |z|, $\mathfrak{Re}\{z\}$, $\mathfrak{Im}\{z\}$, $\operatorname{arg}(z)$ und die komplex konjugierte Zahl \overline{z} zu

(a)
$$z = 1 - i$$
, (b) $z = \frac{(1 + i)^{13}}{(1 - i)^7}$, (c) $z = i^{2014}$, (d) $z = (1 - i)^{99}$

$$z = i^{2014}$$
, (d) $z = (1 - i)$

ÜBUNG 5.1 AUFGABE 1B

Aufgabe 1:

Bestimme |z|, $\Re \{z\}$, $\Im \{z\}$, $\arg \{z\}$ und die komplex konjugierte Zahl \overline{z} zu

(a)
$$z = 1 - i$$
, (b) $z = \frac{(1 + i)^{13}}{(1 - i)^7}$, (c) $z = i^{2014}$, (d) $z = (1 - i)^{99}$

$$(d) z = (1 - i)^{99}$$

ÜBUNG 5.1 AUFGABE 1C

Aufgabe 1:

Bestimme |z|, $\Re \{z\}$, $\Im \{z\}$, $\arg \{z\}$ und die komplex konjugierte Zahl \overline{z} zu

(a)
$$z = 1 - i$$
, (b) $z = \frac{(1 + i)^{13}}{(1 - i)^7}$, (c) $z = i^{2014}$, (d) $z = (1 - i)^{99}$

$$(c) z = i^{2014}$$
, $(d) z = (1 - i)$

ÜBUNG 5.1 AUFGABE 1C

Aufgabe 1:

Bestimme |z|, $\Re \{z\}$, $\Im \{z\}$, $\arg \{z\}$ und die komplex konjugierte Zahl \overline{z} zu

(a)
$$z = 1 - i$$
, (b) $z = \frac{(1 + i)^{13}}{(1 - i)^7}$, (c) $z = i^{2014}$, (d) $z = (1 - i)^{99}$

$$z^{2014}$$
, $(d) z = (1 - i)^5$

10

ÜBUNG 5.1 AUFGABE 1D

Aufgabe 1:

Bestimme |z|, $\mathfrak{Re}\{z\}$, $\mathfrak{Im}\{z\}$, $\operatorname{arg}(z)$ und die komplex konjugierte Zahl \overline{z} zu

(a)
$$z = 1 - i$$
, (b) $z = \frac{(1 + i)^{13}}{(1 - i)^7}$, (c) $z = i^{2014}$, (d) $z = (1 - i)^{99}$

$$(c) z = i^{2014}$$
. $(d) z = i^{2014}$

$$(d) z = (1 - i)^{99}$$

ÜBUNG 5.1 AUFGABE 1D

Aufgabe 1:

Bestimme |z|, $\Re \{z\}$, $\Im \{z\}$, $\arg \{z\}$ und die komplex konjugierte Zahl \overline{z} zu

$$(a) \ z = 1 - i, \qquad (b) \ z = \frac{(1 + i)^{13}}{(1 - i)^7}, \qquad \quad (c) \ z = i^{2014}, \qquad \quad (d) \ z = (1 - i)^{99}$$

$$(d) z = (1 - i)^{99}$$

VIEL ERFOLG FÜR DEN STUDIENSTART!

