Problem Set 10

D. Zack Garza

December 3, 2019

Contents

1	Problem 1	1
2	Problem 2	2
3	Problem 3	2
4	Problem 4	2
_	Problem 5 5.1 Part 1 5.2 Part 2	
6	Problem 6	7
	Problem 7 7.1 Part 1	7 7

1 Problem 1

Let ϕ be an *n*-form. If suffices to show these statements for n=2.

 \implies : Suppose ϕ is alternating, then $\phi(b,b)=0$ for all $b\in B$.

Letting $a,b \in B$ be arbitrary, we then have

$$0 = \phi(a + b, a + b)$$

$$= \phi(a, a + b) + \phi(b, a + b)$$

$$= \phi(a, a) + \phi(a, b) + \phi(b, a) + \phi(b, b)$$

$$= \phi(a, b) + \phi(b, a)$$

$$\implies \phi(a, b) = -\phi(b, a),$$

which shows that ϕ is skew-symmetric.

 \Leftarrow Suppose ϕ is skew-symmetric, so $\phi(a,b) = -\phi(b,a)$ for all $a,b \in B$. Then $\phi(b,b) = -\phi(b,b)$ by transposing the terms, which says that $\phi(b,b) = 0$ for all $b \in B$ and thus ϕ is alternating.

2 Problem 2

Let $f(x) = \det(P + xQ) \in R[x]$, then f is a polynomial in x which is not identically zero.

To see that $f \not\equiv 0$, we can use that fact that P is invertible to evaluate $f(0) = \det(P) \neq 0$.

We can now note that f has finite degree, and thus finitely many zeroes in R.

3 Problem 3

Letting $k[x] \curvearrowright_{\phi} E$ to yield a k[x]-module structure on E and take an invariant factor decomposition,

$$E = E_1 \oplus E_2 \oplus \cdots \oplus E_t, \quad E_i = \frac{k[x]}{(q_i)}, \quad q_1 \mid q_2 \mid \cdots \mid q_t$$

where $E_i = k[x]/(q_i)$. Then $q_t = q$, the minimal polynomial of E.

In particular, E_t is a ϕ -invariant subspace of E, and if deg $q_t = m$, then E_t is in fact an m-dimensional cyclic module with basis $\{\mathbf{v}, \phi(\mathbf{v}), \phi^2(\mathbf{v}), \cdots, \phi^{m-1}(\mathbf{v})\}$ for some $\mathbf{v} \in E_t$.

But since $E_t \leq E$ is a subspace, we have

$$m = \deg q(x) = \deg q_t(x) = \dim E_t \le \dim E.$$

4 Problem 4

 \implies : Suppose $A \sim D$ where D is diagonal. Then JCF(A) = JCF(D) = D, which means that every Jordan block of A has size exactly 1.

Since the elementary divisors of A are precisely the minimal polynomials of the Jordan blocks of A, and the minimal polynomial of any 1×1 matrix $[a_{ij}]$ is given by the linear polynomial $x - a_{ij}$, every elementary divisor of A must be linear.

 \Leftarrow : Suppose all of the elementary divisors of A are linear. Every elementary divisor is the minimal polynomial of a Jordan block of A, and so if we write $JCF(A) = \bigoplus M_i$, then the minimal polynomial of each M_i is linear.

Supposing that M_i has minimal polynomial $p_i(x) = x - c$ for some scalar c, we have

$$p_i(M_i) = 0 \implies M_i - cI_n = 0 \implies M_i = cI_n$$

which shows that M_i is a diagonal matrix with only c on its diagonal.

But if every Jordan block of A is diagonal, then JCF(A) = D is diagonal and $A \sim D$.

5 Problem 5

5.1 Part 1

We'll use the fact that the minimal polynomial q is the invariant factor of highest degree, and so every other invariant factor must divide q.

Moreover, $RCF(A) = C_1 \oplus C_2 \oplus \cdots \oplus C_k$ where each C_i is the companion matrix of the *i*th invariant factor if we write $V \cong \bigoplus_{i=1}^k k[x]/(a_i)$. So it suffices to determine all of the possible distinct combinations of invariant factors.

We can restrict this list by noting that the characteristic polynomial satisfies $\chi_A(x) = \prod a_i$, and in particular, deg $\chi_A(x) = 6$. Noting that deg q(x) = 3, the degrees of the remaining invariant factors must sum to 3.

So the possibilities are:

$$\begin{array}{lll} R_1: a_1=(x-2), & a_2=(x-2)^2, & a_3=q(x), \\ R_2: a_1=(x-2), & a_2=(x-2)(x+3), & a_3=q(x), \\ R_3: a_1=(x+3), & a_2=(x-2)(x+3), & a_3=q(x), \\ R_4: a_1=(x-2), & a_2=(x-2), & a_3=(x-2) & a_4=q(x), \\ R_5: a_1=(x+3), & a_2=(x+3), & a_3=(x+3) & a_4=q(x). \end{array}$$

This exhausts all possibilities, because the degrees of a_i must be a weakly increasing integer partitions of 3, namely (1,2) or (1,1,1). A (1,2) partition can only yield a quadratic factor for a_2 , and since $a_2 \mid a_3$ there are only two choices. If a repeated factor is chosen like $(x-2)^2$, then $a_1 \mid a_2$ forces $a_1 = x - 2$, yielding R_1 . Otherwise, we can pick either distinct factor of a_2 as a choice for a_1 , yielding R_2 , R_3 . Any (1,1,1) partition can only be a repeated linear factor, since we must have $a_1 \mid a_2 \mid a_3$, and there are only two choices. This yields R_4 , R_5 .

Noting that

$$(x-2)^2 = x^2 - 4x + 4$$
$$(x-2)(x+3) = x^2 + x - 6$$
$$q(x) = x^3 - x^2 - 8x + 12,$$

these choices correspond to the matrices

$$R_1 = \begin{bmatrix} \frac{2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -4 & 0 & 0 & 0 & 0 \\ 0 & 1 & 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -12 \\ 0 & 0 & 0 & 1 & 0 & 8 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \qquad R_2 = \begin{bmatrix} \frac{2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 6 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -12 \\ 0 & 0 & 0 & 1 & 0 & 8 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}, R_3 = \begin{bmatrix} \frac{3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 6 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -12 \\ 0 & 0 & 0 & 1 & 0 & 8 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$R_4 = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & -12 \\ 0 & 0 & 0 & 1 & 0 & 8 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \qquad R_5 = \begin{bmatrix} -3 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & -3 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & -3 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & -12 \\ 0 & 0 & 0 & 1 & 0 & 8 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

Note: these are perhaps transposed from Hungerford's notation.

Since none of the associated polynomials were irreducible over \mathbb{Q} , RCF(A) takes these forms over \mathbb{C} as well.

To obtain the possible Jordan Canonical forms, we'll instead need to consider elementary divisors. These can be obtained from the invariant factors above, yielding the possibilities:

$$R_1:(x-2), (x-2), (x-2)^2 (x+3)$$

 $R_2:(x-2), (x-2), (x-2)^2, (x+3), (x+3)$
 $R_3:(x-2), (x-2)^2, (x+3), (x+3), (x+3)$
 $R_4:(x-2), (x-2), (x-2), (x-2)^2, (x+3)$
 $R_5:(x+3), (x+3), (x+3), (x+3), (x-2)^2$

For the sake of notation, write J_{λ}^{k} for a $k \times k$ Jordan block with λ on the diagonal and 0_{k} for the $k \times k$ zero matrix. We then have

$$R_1: 0_2 \oplus J_2^1 \oplus J_2^1 \oplus J_2^2 \oplus J_3^1$$

$$R_2: J_2^1 \oplus J_2^1 \oplus J_2^2 \oplus J_3^1 \oplus J_3^1$$

$$R_3: J_2^1 \oplus J_2^2 \oplus J_3^1 \oplus J_3^1 \oplus J_3^1$$

$$R_4: J_2^1 \oplus J_2^1 \oplus J_2^1 \oplus J_2^2 \oplus J_3$$

$$R_5: J_2^2 \oplus J_3^1 \oplus J_3^1 \oplus J_3^1 \oplus J_3^1$$

5.2 Part 2

We'll first exhibit the possibilities over \mathbb{C} , then show what subset can be obtained over \mathbb{Q} .

Over \mathbb{C} , we have $x^2 + 1 = (x - i)(x + i)$. By the same argument used in Part 1, we know that q(x) is the largest invariant factor, and since deg q = 3, the degrees of the remaining factors must sum to 4 (since the degree χ_A will be 7, and it's the product of these factors).

We also know that the degrees must form weakly decreasing partition of 4, which are

- (1,1,1,1)
 - This can only be $a_1 = a_2 = a_3 = a_4$, a repeated linear factor, so there are 3 possibilities
- (1, 1, 2)
 - This must satisfy $a_1 = a_2$, so there are 3 possibilities for $a_1 = a_2$ and 2 for a_3 , for 6 total.
- (2,2)
 - This also must satisfy $a_1 = a_2$, so there are $\binom{3}{2}/2 = 3$ possibilities

The possibilities are thus

$$R_1: a_1 = (x-i) \qquad a_2 = (x-i) \qquad a_3 = (x-i) \qquad a_4 = (x-i) \qquad a_5 = q(x)$$

$$R_2: a_1 = (x+i) \qquad a_2 = (x+i) \qquad a_3 = (x+i) \qquad a_4 = (x+i) \qquad a_5 = q(x)$$

$$R_3: a_1 = (x-7) \qquad a_2 = (x-7) \qquad a_3 = (x-7) \qquad a_4 = (x-7) \qquad a_5 = q(x)$$

$$R_4: a_1 = (x+i) \qquad a_2 = (x+i) \qquad a_3 = (x+i)(x-i) \qquad a_4 = q(x)$$

$$R_5: a_1 = (x+i) \qquad a_2 = (x+i) \qquad a_3 = (x+i)(x-7) \qquad a_4 = q(x)$$

$$R_6: a_1 = (x-i) \qquad a_2 = (x-i) \qquad a_3 = (x-i)(x+i) \qquad a_4 = q(x)$$

$$R_7: a_1 = (x-i) \qquad a_2 = (x-i) \qquad a_3 = (x-i)(x-7) \qquad a_4 = q(x)$$

$$R_8: a_1 = (x-7) \qquad a_2 = (x-7) \qquad a_3 = (x-7)(x+i) \qquad a_4 = q(x)$$

$$R_9: a_1 = (x-7) \qquad a_2 = (x-7) \qquad a_3 = (x-7)(x-i) \qquad a_4 = q(x)$$

$$R_{10}: a_1 = (x+i)(x-i) \qquad a_2 = (x+i)(x-i) \qquad a_3 = q(x)$$

$$R_{11}: a_1 = (x+i)(x-7) \qquad a_2 = (x+i)(x-7) \qquad a_3 = q(x)$$

$$R_{12}: a_1 = (x-i)(x-7) \qquad a_2 = (x-i)(x-7) \qquad a_3 = q(x)$$

The corresponding Rational Canonical Forms for each R_j can be obtained by writing the companion matrix for the blocks a_i and taking their direct sum.

It is then easy to see that if A is taken over \mathbb{Q} instead, only form R_3 is possible (since $x^2 + 1$ does not split over \mathbb{Q}).

Let nJ_{λ}^k denote $J_{\lambda}^k \oplus J_{\lambda}^k \oplus \cdots \oplus J_{\lambda}^k$, where n copies appear in the direct sum corresponding to n Jordan blocks. We can immediately obtain the corresponding Jordan forms:

$$R_{1}: 5J_{i}^{1} \oplus J_{-i}^{1} \oplus J_{7}^{1}$$

$$R_{2}: 5J_{-i}^{1} \oplus J_{i}^{1} \oplus J_{7}^{1}$$

$$R_{3}: 5J_{7}^{1} \oplus J_{i}^{1} \oplus J_{-i}^{1}$$

$$R_{4}: 4J_{-i}^{1} \oplus 2J_{i}^{1} \oplus J_{7}^{1}$$

$$R_{5}: 4J_{-i}^{1} \oplus J_{i}^{1} \oplus 2J_{7}^{1}$$

$$R_{6}: 4J_{i}^{1} \oplus 2J_{-i}^{1} \oplus J_{7}^{1}$$

$$R_{7}: 4J_{i}^{1} \oplus J_{-i}^{1} \oplus 2J_{7}^{1}$$

$$R_{8}: 2J_{-i}^{1} \oplus J_{i}^{1} \oplus 2J_{7}^{1}$$

$$R_{9}: 2J_{i}^{1} \oplus J_{-i}^{1} \oplus 4J_{7}^{1}$$

$$R_{10}: 3J_{i}^{1} \oplus 3J_{-i}^{1} \oplus 3J_{7}^{1}$$

$$R_{12}: 3J_{i}^{1} \oplus 3J_{-i}^{1} \oplus 3J_{7}^{1}$$

6 Problem 6

Let $\phi \in \text{End}(V)$, then following a different proof than what is suggested in Hungerford, define an action

$$k[x] \curvearrowright V$$

 $p(x) \curvearrowright \mathbf{v} = p(\phi)(\mathbf{v}),$

which induces an invariant factor decomposition

$$V \cong \bigoplus_{i=1}^n \frac{k[x]}{(f_i)}, \quad f_i \in k[x], \quad f_1 \mid f_2 \mid \cdots \mid f_n.$$

Then $f_n(x)$ is the minimal polynomial of ϕ , and the characteristic polynomial is given by $p_{\phi}(x) = \prod_{i=1}^{n} f_i(x)$. In particular, $f_n(x) \mid p_{\phi}(x)$ and $f_n(\phi) = 0$ by definition, so $p_{\phi}(\phi) = 0$ as well. \square

7 Problem 7

7.1 Part 1

Suppose $\phi \psi = \psi \phi$ and both ϕ, ψ have bases of eigenvectors.

Letting λ_i denote the eigenvalues of ϕ , write

$$V = \bigoplus_{i} V_{\lambda_i}.$$

Now let \mathbf{v} be an eigenvector corresponding to λ_i . We have $\phi(\mathbf{v}) = \lambda_i \mathbf{v}$, and

$$\phi\psi(\mathbf{v}) = \psi\phi(\mathbf{v}) = \psi(\lambda_i\mathbf{v}) = \lambda_i\psi(\mathbf{v}),$$

which demonstrates that $\psi(\mathbf{v})$ is also an eigenvector for ϕ , and moreover $\psi(V_{\lambda_i}) \subseteq V_{\lambda_i}$, so it only sends λ_i eigenvectors to other λ_i eigenvectors.

Now consider $\psi|_{V_{\lambda_i}}$, the restriction of ψ this eigenspace. Since ψ had an eigenbasis on V, this restricts to an eigenbasis $\mathcal{B}_i = \{\mathbf{w}_i\}$ of V_{λ_i} . But then every element of \mathbf{w}_i is an eigenvector of ψ by definition, and we also have $\mathbf{w}_i \in V_{\lambda_i}$, so the \mathbf{w}_i are **also** eigenvectors for ϕ .

Doing this for every i, we obtain $\mathcal{B} = \coprod_i \mathcal{B}_i$ where $\operatorname{span}(\mathcal{B}) = E$, which yields a simultaneous eigenbasis of E for both ψ and ϕ .

7.2 Part 2

Writing $\mathcal{B} = \{\mathbf{v}_i \mid 1 \leq i \leq n\}$, this means we can form an invertible matrix $P = [\mathbf{v}_1^t, \dots, \mathbf{v}_n^t]$. Then if A is the matrix of ϕ in the standard basis and B is the matrix of ψ , we have

$$PAP^{-1} = D_1$$
 and $PBP^{-1} = D_2$

where D_1, D_2 are diagonal. In other words, P simultaneously diagonalizes both A and B.