申請人提出俯視圖感知融合技術,解決多傳感器輸入與複雜場景下的統一表徵問題,其作為共一的 BEVFormer 工作促進了多視角三維重建和俯視圖感知發展。下表為國內主流自動駕駛公司受到俯視圖感知研究啓發,衍生出的相關的學術文章(統計截止於 2023 年 3 月,並以論文第一署名機構確定論著歸屬)。

俯視圖感知工作相關衍生(後續)論著

機構	相關工作(題目、時間年月、(會議期刊信息,如有))
1 NVIDIA	M^2BEV: Multi-Camera Joint 3D Detection and Segmentation with
	Unified Bird's-Eye View Representation, 22.04
2 Qualcomm	X-Align: Cross-Modal Cross-View Alignment for Bird's-Eye-View
	Segmentation, 22.10, WACV
3Bosch	SemanticBEVFusion: Rethink LiDAR-Camera Fusion in Unified Bird'
	s-Eye View Representation For 3D Object Detection, 22.12
4 Valeo	LaRa: Latents and Rays for Multi-Camera Bird's-Eye-View Semantic
	Segmentation, 22.06, CORL
5 Motional	3M3D: Multi-view, Multi-path, Multi-representation for 3D Object
	Detection, 23.02
	Surround-View Vision-based 3D Detection for Autonomous Driving:
	A Survey, 23.02
	Vision-RADAR fusion for Robotics BEV Detections: A Survey, 23.02
6 Volvo	F2BEV: Bird's Eye View Generation from Surround-View Fisheye
	Camera Images for Automated Driving, 23.03
7華為	Towards Domain Generalization for Multi-view 3D Object Detection
	in Bird-Eye-View, 23.03, CVPR
8 地平線	MapTR: Structured Modeling and Learning for Online Vectorized HD
	Map Construction, 22.08, ICLR
	Vision-based Uneven BEV Representation Learning with Polar
	Rasterization and Surface Estimation, 22.07, CORL
	Multi-Camera Calibration Free BEV Representation for 3D Object
	Detection, 22.10,
	Sparse4D: Multi-view 3D Object Detection with Sparse
0 ## #	Spatial-Temporal Fusion, 22.11
9 蔚來	TiG-BEV: Multi-view BEV 3D Object Detection via Target
10 十浬	Inner-Geometry Learning, 22.12 UniFormer: Unified Multi-view Fusion Transformer for
10 大疆	UniFormer: Unified Multi-view Fusion Transformer for Spatial-Temporal Representation in Bird's-Eye-View, 22.07
11 滴滴	FusionMotion: Multi-Sensor Asynchronous Fusion for Continuous
11 利利利	Occupancy Prediction via Neural-ODE, 23.02
	Consistency of Implicit and Explicit Features Matters for
	Monocular 3D Object Detection, 22.07
	Contour Context: Abstract Structural Distribution for 3D LiDAR
	Loop Detection and Metric Pose Estimation, 23.02
12 毫末智行	BEV-Lanedet: Fast Lane Detection on BEV Ground, 22.10
= 3:1:114	

13 鑒智機器	BEVDet: High-Performance Multi-Camera 3D Object Detection in
人	Bird-Eye-View, 22.06
	BEVDet4D: Exploit Temporal Cues in Multi-camera 3D Object
	Detection, 22.06
	BEVerse: Unified Perception and Prediction in Birds-Eye-View for
	Vision-Centric Autonomous Driving, 22.05
14 Nullmax	BEVSegFormer: Bird's Eye View Semantic Segmentation From Arbitrary
	Camera Rigs, 22.03, WACV
	FastPillars: A Deployment-friendly Pillar-based 3D Detector,
	23. 02
15 美團	AeDet: Azimuth-invariant Multi-view 3D Object Detection, 22.11
16 阿里巴巴	BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework,
	22.05, NeurIPS
17 京東	JPerceiver: Joint Perception Network for Depth, Pose and Layout
	Estimation in Driving Scenes, 22.07, ECCV
	Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
	Detection, 22.05
18 曠視力	PETR: Position Embedding Transformation for Multi-View 3D Object
	Detection, 22.03, ECCV
	PETRv2: A Unified Framework for 3D Perception from Multi-Camera
	Images, 22.06.
	BEVDepth: Acquisition of Reliable Depth for Multi-view 3D Object
	Detection, 22.06, AAAI
	BEVStereo: Enhancing Depth Estimation in Multi-view 3D Object
	Detection with Dynamic Temporal Stereo, 22.09
	MatrixVT: Efficient Multi-Camera to BEV Transformation for 3D
	Perception, 22.11
19 商湯	DETR4D: Direct Multi-View 3D Object Detection with Sparse
	Attention, 22.12
	Fast-BEV: Towards Real-time On-vehicle Bird's-Eye View
	Perception, 23.01, NeurIPS
	Fast-BEV: A Fast and Strong Bird's-Eye View Perception Baseline,
	23. 01
	BEVDistill: Cross-Model BEV Distillation for Multi-view 3D object
00 東京 京 左口分二	Detection, 22.11, ICLR
20 輕舟智行	BEV-Locator: An End-to-end Visual Semantic Localization Network
	Using Multi-View Images, 22.11