Weekly Reports

Luftqualität in Innenräumen - Gruppe 1

4. Dezember 2021

Name	Matrikel Nr.	Arbeitsaufwand (h)
Friedrich Just	1326699	17,00
Stipe Knez	1269206	17,00
Lucas Merkert	1326709	17,00
Achim Glaesmann	1309221	19,00
Max-Rene Konieczka	1211092	16,00
Can Cihan Nazlier	1179244	21,00

Tabelle 1: Arbeitsaufwand dieser Woche

1 Überblick

1.1 Friedrich Just

In dieser Woche habe ich mich mit dem Pflichtenheft befasst, mir angesehen, welche Sensoren wir haben und was diese können. Ich habe mir die passenden Datenblätter [3] [4] [5] zusammengesucht. In diesen sind mir einige Begriffe unklar gewesen, wie VOC bzw. TVOC [12], eCO2 [11] und relative Luftfeuchtigkeit [9]. Dazu habe ich recherchiert. Danach habe ich diese durchgearbeitet, um die Sensoren und deren Funktionsweise genauer zu verstehen. Außerdem habe ich mich mit den Funkmodulen auseinandergesetzt und wollte den Temperatursensor aus dem ZigBee-Set(LM73) und das ZigBee-Netzwerk miteinander verbinden, so dass die Sensordaten an den Koordinator weitergeleitet werden. Während dieser Zeit habe ich mich erneut mit dem I²C-Bus und der Übertragung von Daten beschäftigt. Abbildung 2 i2c Adresse 0x62 [4]Seite 7

1.2 Stipe Knez

In der ersten Woche lag der Fokus auf zwei Bereichen: Dem Nachbessern des Pflichtenhefts nach einer internen Besprechnung und dem Schaffen einer geeigneten Programmierumgebung für den weiteren Verlauf des Projektes auf meinem Rechner samt der Einarbeitung in Javascript. Neben dem ausbessern vorhandenem Inhalts haben wir uns Gedanken über unsere Vorgehensweise gemacht

Write	Input parameter	Input parameter: -		Response parameter: CO ₂ , Temperature, Relative Humidity		Max.
(hexadecimal)	length [bytes]	length [bytes] signal conversion length [bytes] signal conversion		signal conversion	duration [ms]	
			3		CO ₂ [ppm] = word[0]	
0xec05 -	-	3		T = - 45 + 175 * word[1] / 216	1	
			3		RH = 100 * word[2] / 216	
Example: read	sensor output (500 p	pm, 25 °C, 37 % RH)			
Write	0xec05					
(hexadecimal)	Command					
Wait	1 ms command execution time					
Response	0x01f4	0x7b	0x6667	0xa2	0x5eb9	0x3c
(hexadecimal)	CO ₂ = 500 ppm	CRC of 0x01f4	Temp. = 25 °C	CRC of 0x66	67 RH = 37 %	CRC of 0x5eb9

Abbildung 1: Auswertung einer Messung [4]

Domain	Command	Hex.	I ² C sequence type	Execution	
		Code	(see chapter 3.3)	time [ms]	During meas.*
Basic Commands Chapter 3.5	start_periodic_measurement	0x21b1	send command	-	no
	read_measurement	0xec05	read	1	yes
	stop_periodic_measurement	0x3f86	send command	500	yes
	set_temperature_offset	0x241d	write	1	no
On-chip output signal	get_temperature_offset	0x2318	read	1	no
compensation Chapter 3.6	set_sensor_altitude	0x2427	write	1	no
	get_sensor_altitude	0x2322	read	1	no
	set_ambient_pressure	0xe000	write	1	yes
Field calibration Chapter 3.7	perform_forced_recalibration	0x362f	send command and fetch result	400	no
	set_automatic_self_calibration_enabled	0x2416	write	1	no
	get_automatic_self_calibration_enabled	0x2313	read	1	no
Low power	start_low_power_periodic_measurement	0x21ac	send command	-	no
Chapter 3.8	get_data_ready_status	0xe4b8	read	1	yes
	persist_settings	0x3615	send command	800	no
Advanced features Chapter 3.9	get_serial_number	0x3682	read	1	no
	perform_self_test	0x3639	read	10000	no
	perform_factory_reset	0x3632	send command	1200	no
	reinit	0x3646	send command	20	no
Low power single shot	measure_single_shot	0x219d	send command	5000	no
(SCD41 only) Chapter 3.10	measure_single_shot_rht_only	0x2196	send command	50	no

Abbildung 2: Befehle zum Ansteuern des SCD41 Sensors [5]

woraufhin ich nach Vorgehensweisen recherchiert habe [scrum], von denen wir uns für unser eigenes Projekt inspirieren lassen können. Anschließend habe ich unsere Vorgehensweise nach kurzer Absprache und Beratung mit der Gruppe ausformuliert und für das Pflichtenheft vorbereitet.

Des Weiteren spielte wie zuvor erwähnt auch das Schaffen einer geeigneten Programmierumgebung samt der Einarbeitung in Javascript diese Woche für

mich eine große Rolle. Zuerst habe ich die beiden IDEs Webstorm und IntelliJ IDEA Ultimate eingerichtet. Dabei soll Webstorm der Entwicklung in Javascript und IntelliJ der Entwicklung in Java dienen. Weil ich in Javascript noch nicht allzu viel Programmiererfahrung gesammelt habe, habe ich mich in die Sprache eingearbeitet. Hilfreich waren dabei eine Javascript Dokumentation [10] sowie Lerninhalte in Videoform [8]. Außerdem habe ich noch die GitHub Desktop Anwendung auf meinem Rechner eingerichtet und mich mit LaTex auseinandergesetzt und die dazugehörigen Anwendungen installiert.

1.3 Lucas Merkert

Einarbeitung SHT21: Der SHT21 Sensor wird über den I2C-Bus angesprochen Abbildung 3 um die Temperatur und relative Luftfeuchtigkeit zu messen. Der Sensor gibt die Temperatur in einer 14 Bit Auflösung und die Relative Luftfeuchtigkeit in einer 12 Bit Auflösung zurück. Die Werte können dann mit den Formel aus Abbildung 4 und Abbildung 5 berechnet werden. Dabei ist das Problem aufgetreten wie genau man den Sensor über HAL_WriteI2cPacket() anspricht.

Command	Comment	Code
Trigger T measurement	hold master	1110'0011
Trigger RH measurement	hold master	1110'0101
Trigger T measurement	no hold master	1111'0011
Trigger RH measurement	no hold master	1111'0101
Write user register		1110'0110
Read user register		1110'0111
Soft reset		1111'1110

Abbildung 3: Befehle zum Ansteuern des SGT21 Sensors, T für Temperatur, RH für relative Luftfeuchtigkeit [5]

$$T = -46.85 + 175.72 \cdot \frac{S_T}{2^{16}}$$

Abbildung 4: Formel zur Berechnung der Temperatur [5]

$$RH = -6 + 125 \cdot \frac{S_{RH}}{2^{16}}$$

Abbildung 5: Formel zur Berechnung der relativen Luftfeuchtigkeit [5]

1.4 Achim Glaesmann

In der vergangenen Woche wurden von mir folgende Aufgaben bearbeitet. Zunächst wurde das Pflichtenheft ausgebessert, wobei von mir die Projektbeschreibung

angefertigt wurde. Außerdem war es nötig die für die Entwicklung vorraussichtlich benötigte Software zu installieren. Dazu zählte die Installation von Github, so wie eine entsprechende Einarbeitung. Die Installation von Intellij IDEA als IDE für die Java Entwicklung sowie eine entsprechende Einarbeitung. Die Installation von WebStorm als IDE für die Javascript Entwicklung so wie eine entsprechende Einarbeitung. Die Installation von MikTex als Compiler für Tex files so wie eine entsprechende Einarbeitung in die Syntax von LaTex. Weiterhin wurde sich in einer kleinen Gruppe Mittwochs getroffen um die Sensoren in Verbindung mit den Mikrokontrollern zu testen. Bis jetzt war es uns nicht möglich die Daten auszulesen, es ist beabsichtigt das Problem in der kommenden Woche zu lösen. Eine ausgiebige Recherche der Datenblätter sollte hierbei helfen. [5]q Es wurden weiterhin Recherchen betrieben zur Risikoabschätzung der Aerosolbelastung basierend auf dem CO2 gehalt der Umgebungsluft. Hierbei wurden mehrere Paper gelesen wobei eines bis jetzt die vielversprechensten Informationen lieferte. [6] Die Recherche wird in den kommenden Wochen fortgeführt. Weiterhin wurde die Präsentation zu Analog Digital Wandlern angefertigt. Das Übungsblatt 2 wurde korrigiert. Es wurden insgesamt 4 Meetings mit der Gruppe gehalten.

1.5 Max-Rene Konieczka

Aufbauend zur letzten Woche, hat man sich mit der korrekten Einrichtung des Projektes beschäftigt, welches von Can Cihan Nazlier letzte Woche konfiguriert wurde. Darüber hinaus wurde influxDB installiert, was sich gut dafür eignet Zeitreihen-Daten zu verwalten. Da die Applikation eine Reactive Web App sein wird, wurden Recherchen zum Thema Websockets und SocketIO gemacht. SocketIO ist eine JavaScript-Bibliothek, welche für Echtzeit-Webanwendungen verwendet wird. Diese ermöglicht bidirektionale Echtzeit-Kommunikation zwischen dem Browser und einem Server. Dadurch werden Benutzereingaben schneller behandelt und die App läuft flüssiger. Websocket wiederum ist ein Netzwerkprotokoll, was auf TCP basiert. SocketIO macht sich das Websocketprotokoll zunutze.

1.6 Can Cihan Nazlier

Im Verlauf der Woche habe ich unserer Projekt konfiguriert und auf Github gepusht. Er besteht aus einem backend, frontend, models und einem electron Teil. Ich habe das frontend mit node so konfiguriert, dass es sich in den electron Ordner buildet und wir eine desktop application daraus erstellen können. Das backend habe ich mit express aufgesetzt und die von Herrn Merkl empfohlene Datenbank influxDB integriert. Zudem habe ich angefangen das Zeichentool zu programmieren und einen ersten Prototypen zu entwickeln. Des weiteren habe ich mich mit den Schnittstellen befasst und dem Datenaustausch zwischen den modulen und den Mockup. Ich habe erste Datentransfermodelle entwickelt und im Laufe der Woche werde ich Mockup Daten erstellen und mit diesen erste usecases nachstellen. Ich habe mich auch noch mit Socket IO auseinandergesetzt,

weil wir mit Websockets arbeiten werden, um eine reactive app zu gestalten.

Literatur

- [1] DeKay Arts. Timeseries Database: A gentle introduction to Influxdb in Nodejs. URL: https://www.youtube.com/watch?v=wwAsjs2XcBU&t=3s.
- [2] Compare InfluxDB to SQL databases. URL: https://docs.influxdata.com/influxdb/v1.8/concepts/crosswalk/.
- [3] Datasheet CCS811. URL: https://learn.adafruit.com/adafruit-ccs811-air-quality-sensor?view=all#documents.
- [4] Datasheet SCD41. URL: https://www.sensirion.com/en/environmental-sensors/evaluation-kit-sek-environmental-sensing/evaluation-kit-sek-scd41/#c50745.
- [5] Datasheet SHT21. URL: https://www.sensirion.com/de/umweltsensoren/feuchtesensoren/feuchte-temperatursensor-sht2x-digital-i2c-genauigkeit/.
- [6] Exhaled CO2 as a COVID-19 Infection Risk Proxy for Different Indoor Environments and Activities. URL: https://pubs.acs.org/doi/10.1021/acs.estlett.1c00183.
- [7] JavaScript Tutorials. URL: https://developer.mozilla.org/en-US/docs/Web/Tutorials.
- [8] Learn JavaScript Full Course for Beginners. URL: https://www.youtube.com/watch?v=PkZNo7MFNFg.
- [9] Relative Luftfeuchtigkeit. URL: https://www.ratgeber-luftfeuchtigkeit.de/relative-luftfeuchtigkeit/.
- [10] The Modern Javascript Tutorial. URL: https://javascript.info.
- [11] TVOC and ECO2 Sensors. URL: https://wolles-elektronikkiste.de/en/tvoc-and-eco2-sensors.
- [12] Understanding TVOC: What You Need To Know About Volatile Oragnic Compounds. URL: https://learn.kaiterra.com/en/air-academy/understanding-tvoc-volatile-organic-compounds.