Continuity

Definition

To say that f(z) is *continuous* at a point z_0 means:

$$\forall \epsilon > 0, \exists \delta > 0, 0 < |z - z_0| < \delta \implies |f(z) - f(z_0)| < \epsilon$$

In other words:

$$\lim_{z \to z_0} f(z) = f(z_0)$$

To say that f(z) is continuous in a region R means $\forall z \in R, f(z)$ is continuous at z.

Theorem

Let
$$f(z) = u + iv$$
 and $z_0 = x_0 + iy_0$:
 $f(z)$ is continuous at $z_0 \iff u$ and v are continuous at (x_0, y_0)

Proof

 \implies Assume f(z) is continuous at z_0

Let
$$u(x_0,y_0) = u_0$$
 and $v(x_0,y_0) = v_0$
 $\lim_{z \to z_0} f(z) = f(z_0) = u(x_0,y_0) + iv(x_0,y_0) = u_0 + iv_0$
 $\lim_{z \to z_0} f(z) = \lim_{(x,y) \to (x_0,y_0)} u(x,y) + i \lim_{(x,y) \to (x_0,y_0)} v(x,y)$
 $\lim_{(x,y) \to (x_0,y_0)} u(x,y) + i \lim_{(x,y) \to (x_0,y_0)} v(x,y) = u_0 + iv_0$
 $\lim_{(x,y) \to (x_0,y_0)} u(x,y) = u_0$ and $\lim_{(x,y) \to (x_0,y_0)} v(x,y) = v_0$
 $\therefore u$ and v are continuous at (x_0,y_0)

 \iff Assume u and v are continuous at (x_0, y_0)

Let
$$u(x_0,y_0) = u_0$$
 and $v(x_0,y_0) = v_0$
Let $\lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0$ and $\lim_{(x,y)\to(x_0,y_0)} v(x,y) = v_0$
 $\lim_{z\to z_0} f(z) = \lim_{(x,y)\to(x_0,y_0)} u(x,y) + i \lim v(x,y) = u_0 + i v_0 = f(z_0)$
 $\therefore f(z)$ is continuous at z_0

The following theorem also follows directly from the limit laws:

Theorem

Assume f(z) and g(z) are continuous at a point z_0 :

- 1). |f(z)| is continuous at z_0
- 2). -f(z) is continuous at z_0
- 3). f(z) + g(z) is continuous at z_0
- 4). f(z) g(z) is continuous at z_0

- 5). f(z)g(z) is continuous at z_0
- 6). $f(z_0) \neq 0 \implies \frac{1}{f(z)}$ is continuous at z_0
- 7). $g(z_0) \neq 0 \implies \frac{f(z)}{g(z)}$ is continuous at z_0

Theorem

f(z) and g(z) continuous at $z_0 \implies (f \circ g)(z)$ continuous at z_0 .

Proof

Assume f(z) and g(z) are continuous at z_0 Assume $\epsilon>0$ $\exists \, \delta_1>0, 0<|z-z_0|<\delta_1 \Longrightarrow |f(z)-f(z_0)|<\epsilon$ $\exists \, \delta_2>0, 0<|f(z)-f(z_0)|<\delta_2 \Longrightarrow |g[f(z)]-g[f(z_0)]|<\epsilon$ Let $\delta=\min\{\delta_1,\delta_2\}$ Assume $0<|z-z_0|<\delta$ $|f(z)-f(z_0)|<\epsilon$ $|g[f(z)]-g[f(z_0)]|<\epsilon$

Theorem

Let f(z) be continuous at z_0 and $f(z_0) \neq 0$:

$$\exists\, \epsilon>0, \forall\, z\in N_{\epsilon}(z_0), f(z)\neq 0$$

Proof

Let
$$\epsilon = \frac{|f(z_0)|}{2} > 0$$

 $\exists \, \delta > 0, 0 < |z - z_0| < \delta \implies |f(z) - f(z_0)| < \frac{|f(z_0)|}{2}$
ABC: $\exists \, z^*, 0 < |z^* - z_0| < \delta \text{ and } f(z^*) = 0$
 $|f(z^*) - f(z_0)| = |f(z_0)| < \frac{|f(z_0)|}{2}$
But $f(z_0) \neq 0$
Contradiction!
 $\therefore f(z^*) \neq 0$

Theorem

Let R be a closed and bounded region: f(z) continuous on $R \implies \exists\, M>0, \forall\, z\in R, |f(z)|\leq M.$ Furthermore, equality occurs for at least one $z\in R.$

<u>Proof</u>

Assume f(z) is continuous on R

Let f(z) = u + iv

u and v are bounded and continuous in R

 $\sqrt{u^2+v^2}\in\mathbb{R}$ is bounded and continuous and achieves some maximum value M in R But $|f(z)|=\sqrt{u^2+v^2}$

 $\therefore \forall z \in R, |f(z)| \leq M$, with equality somewhere in R.