Regressão Linear

Prática 02: Predizendo o preço das casas

Prof^a Deborah Magalhães Monitor: Davi Luis de Oliveira

Olá!

Curso: Bacharelado em Sistema de Informação

Disciplina: Sistemas Inteligentes

Predição com RL

Você pode me encontrar em **deborah.vm@gmail.com** (Dúvidas e sugestões serão bem-vindas =D)

Passo 1: Baixar o dataset

```
# fazer o download do dataset home_data.gl.zip
$ git pull https://github.com/daviluis321/Sistemas-Inteligentes.git
```

Passo 2: Abrir notebook

```
$ source activate gl-env
$ jupyter notebook
```

```
deborah@deborah-Lenovo-ideapad-300S-14ISK:~/Sistemas Inteligentes/Regressão/Pratica 01$ jupyter notebook [I 09:54:06.321 NotebookApp] Serving notebooks from local directory: /home/deborah/Sistemas Inteligentes/Regressão/Pratica 01 [I 09:54:06.321 NotebookApp] 0 active kernels [I 09:54:06.321 NotebookApp] The Jupyter Notebook is running at: http://localhost:8888/ [I 09:54:06.322 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
```

5 Passo 2: Abrir notebook

6 Passo 3: Criar notebook

Passo 4: Renomear notebook

Passo 5: Carregar os dados

r 1522339428.log

```
In [1]: import graphlab

Carregar os dados

In [4]: vendas = graphlab.SFrame("home_data.gl/")

This non-commercial license of GraphLab Create for academic use is assigned to deborah.vm@gm ail.com and will expire on January 26, 2019.

[INFO] graphlab.cython.cy server: GraphLab Create v2.1 started. Logging: /tmp/graphlab serve
```

Passo 6: Visualizar os dados

In [5]: vendas

Out[5]:

id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors
7129300520	2014-10-13 00:00:00+00:00	221900	3	1	1180	5650	1
6414100192	2014-12-09 00:00:00+00:00	538000	3	2.25	2570	7242	2
5631500400	2015-02-25 00:00:00+00:00	180000	2	1	770	10000	1
2487200875	2014-12-09 00:00:00+00:00	604000	4	3	1960	5000	1
1954400510	2015-02-18 00:00:00+00:00	510000	3	2	1680	8080	1
7237550310	2014-05-12 00:00:00+00:00	1225000	4	4.5	5420	101930	1
1321400060	2014-06-27 00:00:00+00:00	257500	3	2.25	1715	6819	2
2008000270	2015-01-15 00:00:00+00:00	291850	3	1.5	1060	9711	1
2414600126	2015-04-15 00:00:00+00:00	229500	3	1	1780	7470	1

Passo 6: Visualizar os dados

Visualização dos Dados

```
In [16]: graphlab.canvas.set_target("ipynb")
    vendas["sqft_living","price"].show(view="Scatter Plot")
```


Passo 7: Divisão treino/teste

Divisão treino/teste

```
In [18]: vendas_treino, vendas_teste = vendas.random_split(.8)
```

Passo 8: Construindo o modelo

```
vendas_model = graphlab.linear_regression.create(vendas_treino,
target='price', features=['sqft_living'])
```

Passo 9: Avaliando o modelo

Avaliar o modelo

```
In [15]: print vendas_teste["price"].mean()
545521.140795

In [16]: print vendas_model.evaluate(vendas_teste)
{'max error': 4389959.965411294, 'rmse': 278330.74677213107}
```

Passo 10: Visualizando o modelo

import matplotlib.pyplot as plt %matplotlib inline

```
plt.plot(vendas_teste["sqft_living"],vendas_teste["price"],'.',
vendas_teste["sqft_living"], vendas_model.predict(vendas_teste),'-')
```

Passo 10: Visualizando o modelo

Passo 11: Capturando os coeficientes do modelo

Capturando os coeficientes do modelo

In [22]:

vendas_model.get('coefficients')

Out[22]:

name	index	value	stderr	
(intercept)	None	-37962.1561098	4985.53257957	
sqft_living	None	277.842505452	2.19809468078	

[2 rows x 4 columns]

Passo 12: Explorando outras características dos dados

Explorando outras características das casas

```
In [24]: caracteristicas = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'zipcode']
In [25]: vendas[caracteristicas].show()
```

bedrooms		bathrooms		sqft_living		sqft_lot	
dtype:	str	dtype:	str	dtype:	int	dtype:	int
num_unique (est.):	13	num_unique (est.):	30	num_unique (est.):	1,036	num_unique (est.):	9,74
num_undefined:	0	num_undefined:	0	num_undefined:	0		
requent items:		frequent items:		min:	290	num_undefined:	0
				max:	13,540	min:	520
3		2.5		median:	1,910	max:	1,65
4		1		mean:	2,079.9	median:	7,61
2		1.75		std:	918.42	mean:	15,1
5		2.25				std:	41,4
6		1.5		distribution of values:		distribution of values:	
		1.0				100	

Passo 12: Explorando outras características dos dados

vendas.show(view='BoxWhisker Plot', x='zipcode',y='price')

Passo 12: Explorando outras características dos dados

Passo 13: Construindo o modelo com mais características

vendas_model_plus = graphlab.linear_regression.create(vendas_treino,
target='price', features=caracteristicas)

Passo 13: Construindo o modelo com mais características

```
In [30]: print vendas_model.evaluate(vendas_teste)
    print vendas_model_plus.evaluate(vendas_teste)

{'max_error': 4389959.965411294, 'rmse': 278330.74677213107}
{'max_error': 4468535.609018347, 'rmse': 202500.26054778424}
```


Dúvidas?Sugestões? Inquietações? Aconselhamentos?

Desabafe em: deborah.vm@gmail.com