Chapitre 3: sous-espaces vectoriels de \mathbb{K}^n

Térence Bayen

Université d'Avignon

Algèbre 2 L1S2 MI/MP février 2021

Définition axiomatique 1 d'un espace vectoriel E

Dans tout le chapitre $\mathbb{K}=\mathbb{R}$ ou $\mathbb{K}=\mathbb{C}$. Un espace vectoriel E sur \mathbb{K} est un ensemble non-vide vérifiant les 8 règles suivantes :

- 1. $\forall x, y \in E, x + y = y + x$
- 2. $\forall x, y, z \in E, x + (y + z) = (x + y) + z$
- 3. $\forall x \in E, x + 0 = x$ (existence de l'élément neutre dans E)
- 4. $\forall x \in E, x + (-x) = 0$ (existence d'un symétrique)
- 5. $\forall x \in E$, 1.x = x
- 6. $\forall \alpha, \beta \in K, \forall x, y \in E, \alpha.(\beta.x) = (\alpha\beta).x$
- 7. $\forall \alpha \in K, \ \forall x, y \in E, \ \alpha(x+y) = \alpha.x + \alpha.y$
- 8. $\forall \alpha, \beta \in K$, $(\alpha + \beta).x = \alpha.x + \beta.x$

(le . est la multiplication par un réel ou un complexe).

Exemple : dans le plan euclidien $E = \mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$

On peut additionner deux vecteurs (interprétation géométrique du parallélogramme)

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$$

et multiplier un vecteur par un réel :

$$\lambda(x_1,x_2)=(\lambda x_1,\lambda x_2)$$

La multiplication entre deux vecteurs n'a aucun sens ; ce n'est pas définie.

Exemple : dans le plan euclidien $E = \mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$

Addition de deux vecteurs (règle du parallélogramme)

$$w = u + v$$

Définition de \mathbb{K}^n comme espace vectoriel

Définition

- 1. On appelle scalaire tout élément de \mathbb{K} et vecteur tout n-uplet $x = (x_1, ..., x_n) \in \mathbb{K}^n$. Le vecteur nul (0, ..., 0) est noté 0.
- 2. La somme de deux vecteurs $x = (x_1, ..., x_n)$ et $y = (y_1, ..., y_n)$ est définie par

$$x + y = (x_1 + y_1, ..., x_n + y_n).$$

3. Le produit d'un vecteur $x = (x_1, ..., x_n)$ par un scalaire λ est défini par

$$\lambda x = (\lambda x_1, ..., \lambda x_n).$$

4. L'ensemble \mathbb{K}^n de tous les vecteurs, muni des deux opérations ci-dessus, est appelé espace vectoriel².

L'addition est qualifiée d'interne et la multiplication d'externe.

Exemples

- ▶ le plan euclidien \mathbb{R}^2 ; l'espace \mathbb{R}^3 ; \mathbb{C}^2 ...
- ightharpoonup Avec n=4 et $\mathbb{K}=\mathbb{R}$, on a

$$(1, \frac{3}{2}, \pi, \sqrt{3}) + (-1, \frac{1}{2}, 2\pi, \sqrt{2}) = (0, 2, 3\pi, \sqrt{3} + \sqrt{2}).$$

▶ Avec n = 4 et $\mathbb{K} = \mathbb{C}$, on a

$$i.(1,2i,\frac{-5}{2},\sqrt{2})=(i,-2,\frac{-5i}{2},i\sqrt{2}).$$

Les expressions suivantes ne sont pas définies :

$$??(1,2,3) \times (4,5,6) = ??$$

$$??(1,2) + (3,4,5) = ??$$

Notations et règles de calcul

Notations : en général on omet les flèches sur les vecteurs ainsi que le . de la multiplication externe. On note

$$-v := -1.v$$
 et $0 = 0_{\mathbb{K}^n} = (0, ..., 0).$

- (1,2) + (3,4) = (3,4) + (1,2) = (4,6);
- [(1,2)+(3,4)]+(5,6)=(1,2)+[(3,4)+(5,6)]=(9,12);
- ightharpoonup (1,2)+(0,0)=(1,2);
- ightharpoonup (1,2) + [-1.(1,2)] = (0,0);
- ightharpoonup 1.(1,2) = (1,2);
- $ightharpoonup 2.[3.(1,2)] = (2 \times 3).(1,2) = 6.(1,2) = (6,12);$
- (2+3).(1,2) = 2.(1,2) + 3.(1,2) = (5,10);
- \triangleright 2.[(1,2) + (3,4)] = 2.(1,2) + 2.(3,4) = (8,12).

Sous-espace vectoriel

Définition

Un ensemble $F \subset \mathbb{K}^n$ est un sous-espace vectoriel de \mathbb{K}^n si

- 1. $0 \in F$,
- 2. $\forall x, y \in F, x + y \in F$,
- 3. $\forall x \in F, \forall \lambda \in \mathbb{K}, \ \lambda x \in F$.

Pour montrer qu'un ensemble F est un espace vectoriel, c'est plus simple de montrer que c'est un sev d'un certain espace vectoriel E avec dans ce cours principalement $E = \mathbb{R}^n$ ou $E = \mathbb{C}^n$!

A noter que F est un sev de \mathbb{K}^n ssi

$$F \neq \emptyset$$
 et $\lambda x + \mu y \in F$, $\forall x, y \in F$, $\forall \lambda, \mu \in \mathbb{K}$

Vérification que F est un sev de \mathbb{K}^n

On rappelle que F est un sev de \mathbb{K}^n ssi

- 1. $F \neq \emptyset$
- 2. pour tout $x, y \in F$ et tout $\lambda, \mu \in \mathbb{K}$ on a $\lambda x + \mu x \in F$.

Observations

Soit n > 1 un entier.

- ▶ $\{0_{\mathbb{K}^n}\}$ est un s.e.v. de \mathbb{K}^n appelé s.e.v. nul.
- $ightharpoonup \mathbb{K}^n$ est un s.e.v. de \mathbb{K}^n .
- Si un s.e.v. de \mathbb{K}^n contient un vecteur non nul v_1 , alors il contient l'ensemble

$$\{\lambda v_1 : \lambda \in \mathbb{K}\}.$$

Un s.e.v. non nul de \mathbb{K}^n contient donc au moins une droite : en particulier c'est un ensemble infini et non borné.

Quelques exemples et contre-exemples

Espaces vectoriels:

- 1. Plan euclidien \mathbb{R}^2 ; espace \mathbb{R}^3 ; \mathbb{R}^n
- 2. $\mathcal{F}(\mathbb{R},\mathbb{R})$; $C^0(\mathbb{R},\mathbb{R})$ $\mathbb{R}^{\mathbb{N}}$, l'ensemble des suites réelles
- 3. Les polynômes de degré ≤ 2 ,

$$P(X) = a_0 + a_1 X + a_2 X^2$$

S.e.v. de \mathbb{K}^n ou autres :

- 1. $E_1 = \{(x, y) \in \mathbb{R}^2 ; y = -2x\}$
- 2. $E_2 = \{(x, y, z) \in \mathbb{R}^3 ; x + y + z = 0\}$ mais $E_3 = \{(x, y, z) \in \mathbb{R}^3 ; x + y + z = 1\}$ N'EST PAS un sev de \mathbb{R}^3 .
- 3. Le sous-ensemble de $\mathbb{R}^{\mathbb{N}}$ constitué des suites $u=(u_n)_{n\in\mathbb{N}}$ t.q. :

$$\forall n \in \mathbb{N}, \ u_{n+2} = u_{n+1} + u_n \quad \text{avec } u_0, u_1 \in \mathbb{R}.$$

⇒ Pourquoi?? (à vérifier).

Un exemple en détail

Soit $D = \{(x, y) \in \mathbb{R}^2 : 2x + y = 0\}$ (D est une droite de \mathbb{R}^2). Objectif: Montrer que D est un s.e.v. de \mathbb{R}^2 .

- (i) On a $(0,0) \in D$ car $2 \times 0 + 0 = 0$.
- ▶ (ii) Soient $(x_1, y_1), (x_2, y_2) \in D$ et $\lambda, \mu \in \mathbb{R}$. Par définition de D, on a

$$2x_1 + y_1 = 0$$
 et $2x_2 + y_2 = 0$. (1)

D'autre part, on a

$$\lambda(x_1, y_1) + \mu(x_2, y_2) = (\underbrace{\lambda x_1 + \mu x_2}_{=:X}, \underbrace{\lambda y_1 + \mu y_2}_{=:Y}).$$

Pour voir que $(X, Y) \in D$, il reste à écrire

$$2X + Y = 2(\lambda x_1 + \mu x_2) + \lambda y_1 + \mu y_2 = \lambda(2x_1 + y_1) + \mu(2x_2 + y_2) = 0,$$

où la dernière égalité résulte de (??).

Exercice: reconnaitre les s.e.v.

- 1) Parmi les 5 ensembles suivants :
 - $ightharpoonup \mathbb{R}_+ imes \mathbb{R}_+$
 - $ightharpoonup C^0(\mathbb{R},\mathbb{R}_+)$
 - $\blacktriangleright \{(x,y) \in \mathbb{R}^2 ; x^2 + y^2 = 1\}$
 - ▶ $\{(x,y) \in \mathbb{R}^2 ; x = 0 \text{ ou } y = 0\}$
 - $\{(x,y) \in \mathbb{R}^2 ; x^2 + y^2 = 0\}$

lequel est un sev?

2) Quels sont les sev. de \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 ?

Propriétés des sous-espaces vectoriels

Proposition

Si F et G sont des sous-espaces vectoriels de \mathbb{K}^n , alors $F \cap G$ est un sous-espace vectoriel de \mathbb{K}^n .

En effet : $x \in F \cap G$, $y \in F \cap G \Rightarrow x, y \in F \Rightarrow \lambda x + \mu y \in F$ car F est un sev de \mathbb{K}^n . De même pour G.

Illustration et utilisation du résultat précédent

Soient $(a_1, b_1, c_1) \in \mathbb{R}^3$ et $(a_2, b_2, c_2) \in \mathbb{R}^3$. L'ensemble

$$\mathcal{I} := \left\{ (x, y, z) \in \mathbb{R}^3 : \left\{ \begin{aligned} a_1 x + b_1 y + c_1 z &= 0 \\ a_2 x + b_2 y + c_2 z &= 0 \end{aligned} \right\} \right\}$$

est un s.e.v. de \mathbb{R}^3 car il est l'intersection de deux s.e.v. de \mathbb{R}^3 :

$$\mathcal{I} = \mathcal{P}_1 \cap \mathcal{P}_2$$

où pour
$$i \in \{1,2\}$$
, $\mathcal{P}_i := \{(x,y,z) \in \mathbb{R}^3 : a_i x + b_i y + c_i z = 0\}$.

Intersection de plusieurs sev

Proposition

Soit $(F_i)_{i\in I}$ une famille non vide (i.e., $I \neq \emptyset$) de s.e.v. de \mathbb{K}^n avec $n \geq 1$ fixé. Alors, l'intersection

$$\bigcap_{i\in I} F_i := \{x \in \mathbb{K}^n : \forall i \in I, x \in F_i\}$$

est un s.e.v. de \mathbb{K}^n .

Preuve. Puisque $0_{\mathbb{K}^n}$ est dans chacun des F_i $(i \in I)$, nous savons que $0_{\mathbb{K}^n}$ est dans l'intersection considérée.

Soient $x, y \in \bigcap_{i \in I} F_i$ et $\lambda, \mu \in \mathbb{K}$. Pour chaque $i \in I$, on a (car F_i est un s.e.v. de \mathbb{K}^n)

$$\lambda x + \mu y \in F_i$$
.

Ceci nous dit que $\lambda x + \mu y \in \bigcap_{i \in I} F_i$. La preuve est terminée.

Exercice (classique) sur la réunion de deux sev

 $F \cup G$ n'est jamais un sev!

Exercice

Soit F, G, deux sev de \mathbb{K}^n . Alors $F \cup G$ est un sev si et seulement si $F \subset G$ ou $G \subset F$.

 \Rightarrow : Supposons qu'il existe $x \in F$ tel que $x \notin G$ et qu'il existe $y \in G$ tel que $y \notin F$. Comme $F \cup G$ est un sev et que $x \in F \cup G$ et $y \in F \cup G$, on a : $x + y \in F \cup G$. Si $x + y \in F$ alors $y = x + y + (-x) \in F$, faux. Si $x + y \in G$, alors $x = (x + y) + (-y) \in G$, faux. Contradiction \Rightarrow

$$\forall x \in F, x \in G \text{ ou } \forall x \in G, x \in F.$$

$$\Leftarrow : F \subset G \Rightarrow F \cup G = G ; G \subset F \Rightarrow F \cup G = F$$

Exercice (classique) sur la réunion de deux sev

Propriétés des sous-espaces vectoriels

Proposition

L'ensemble des solutions d'un système linéaire homogène

$$Ax = 0$$

d'inconnue $x=(x_1,...,x_n)\in\mathbb{K}^n$ est un sous-espace vectoriel de \mathbb{K}^n .

En effet, pour tout couple de scalaires λ,μ :

$$A0 = 0$$
, $Ax = 0$ et $Ay = 0 \Rightarrow A(\lambda x + \mu y) = \lambda Ax + \mu Ay = 0$

Remarque : l'ensemble s'écrit

$$\{x \in \mathbb{R}^n ; Ax = 0\}$$

Propriétés des sous-espaces vectoriels (suite)

Définition

Soit $n \ge 1$ un entier. Etant donnés $a_1, \ldots, a_n \in \mathbb{K}$ non tous nuls et $b \in \mathbb{K}$, on appelle hyperplan affine de \mathbb{K}^n l'ensemble

$$\{(x_1,\ldots,x_n)\in\mathbb{K}^n: a_1x_1+\ldots+a_nx_n=b\}.$$

Lorsque b=0, l'ensemble ci-dessus est appelé **hyperplan vectoriel** de \mathbb{K}^n . Pour n=2 (resp. n=3) le terme "hyperplan" est remplacé par "droite" (resp. "plan").

Ainsi, un système linéaire (resp. système linéaire homogène) de \mathbb{K}^n est une intersection finie d'hyperplans affines (resp. vectoriels) de \mathbb{K}^n . Ceci revient à se donner m équations de la forme

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m; \end{cases}$$

Définition

Soient x et y des vecteurs non nuls. On dit que x et y sont colinéaires s'il existe un scalaire λ tel que $y = \lambda x$.

Définition

Soient $y, x_1, ..., x_m$ des vecteurs. On dit que y est combinaison linéaire de $x_1, ..., x_m$ s'il existe des scalaires $\lambda_1, ..., \lambda_m$ tels que

$$y = \lambda_1 x_1 + \dots + \lambda_m x_m.$$

Par exemple, si $\mathbb{K} = \mathbb{R}$, n = 4, p = 2, $v_1 = (1, 2, 3, 4)$ et $v_2 = (5, 6, 7, 8)$, alors :

$$2v_1 - 3v_2 = (2, 4, 6, 8) - (15, 18, 21, 24) = (-13, -14, -15, -16)$$

est une combinaison linéaire de v_1 et de v_2 .

Proposition

Soient $v_1, ..., v_m$ m vecteurs de \mathbb{K}^m . L'ensemble des vecteurs qui sont combinaisons linéaires de $v_1, ..., v_m$ forme un sous-espace vectoriel de \mathbb{K}^n . Il est appelé sous-espace vectoriel engendré 3 par $v_1, ..., v_m$ et il est noté

$$Vect(v_1,...,v_m).$$

Si $v_1, ..., v_m$ sont m vecteurs de $\mathbb K$:

$$Vect(v_1,...,v_m) = \{\lambda_1 v_1 + \cdots + \lambda_m v_m ; \lambda_1,...,\lambda_m \in \mathbb{K}\}.$$

Exemple : dans \mathbb{R}^3 , soit u=(1,2,3) et v=(0,1,2). On a :

$$\mathsf{Vect}(u,v) = \left\{ \lambda_1 \left(egin{array}{c} 1 \ 2 \ 3 \end{array}
ight) + \lambda_2 \left(egin{array}{c} 0 \ 1 \ 2 \end{array}
ight) \; ; \; \lambda_1,\lambda_2 \in \mathbb{R}
ight\}.$$

c.a.d.

$$\mathsf{Vect}(u,v) = \left\{ \left(egin{array}{c} \lambda_1 \ 2\lambda_1 + \lambda_2 \ 3\lambda_1 + 2\lambda_2 \end{array}
ight) \; ; \; \lambda_1,\lambda_2 \in \mathbb{R}
ight\}.$$

Justifions que

$$Vect(v_1,...,v_m)$$

est un s.e.v. de \mathbb{K}^n .

- ▶ II contient $0_{\mathbb{K}^n}$ car $0_{\mathbb{K}^n} = 0.v_1 + ... + 0.v_m$.
- On observe d'une part que la somme de deux combinaisons linéaires de v₁,..., v_m est une combinaison linéaire de v₁,..., v_m (POURQUOI?) et d'autre part que le produit de λ∈ K par une combinaison linéaire de v₁,..., v_m reste une combinaison linéaire de v₁,..., v_m (POURQUOI?).

Propriété

Soit $v_1, ..., v_m$ m vecteurs de \mathbb{K}^n . Alors, $Vect(v_1, ..., v_m)$ est le plus petit s.e.v. contenant la famille $\mathcal{F} := \{v_1, ..., v_m\}$.

$$v_i \in F \Rightarrow \sum_{k=1}^m \lambda_k v_k \in F...$$

$$u + v \in \text{Vect}(u, v)$$
; $w = -u \in \text{Vect}(u, v)$; $\lambda u \in \text{Vect}(u)$

En résumé

Soit $v_1, ..., v_m$ m vecteurs de \mathbb{K}^m .

$$\begin{aligned} \mathsf{Vect}(v_1,...,v_m) &= \{\lambda_1 v_1 + \dots + \lambda_m v_m \; ; \; \lambda_1,...,\lambda_m \in \mathbb{K}\} \\ &= \mathbb{K}v_1 + \dots + \mathbb{K}v_m \end{aligned}$$

Somme de sous-espaces vectoriels

Définition

Soient F et G deux sous-espaces vectoriels de \mathbb{K}^n . La somme de F et G est l'ensemble

$$F + G = \{x + y ; x \in F \text{ et } y \in G\}.$$

Proposition

La somme de deux sous-espaces vectoriels de \mathbb{K}^n est un sous-espace vectoriel de \mathbb{K}^n .

En effet :
$$0 \in F + G$$
; $z, z' \in F + G \Rightarrow z = x + y$ et $z' = x' + y'$ avec $(x, y) \in F \times G$, $(x', y') \in F \times G \Rightarrow \lambda z + \mu z' = [\lambda x + \mu x'] + [\lambda y + \mu y'] \in F + G$.

Proposition

Soient $v_1,...,v_m,w_1,...,w_p$ des vecteurs de \mathbb{K}^n . On a

$$Vect(v_1,...,v_m) + Vect(w_1,...,w_p) = Vect(v_1,...,v_m,w_1,...,w_p).$$

Somme directe de sous-espaces vectoriels

Définition

- (i) Soient F et G deux sous-espaces vectoriels de \mathbb{K}^n tels que $F \cap G = \{0\}$. La somme de F et G est alors dite directe et est notée $F \oplus G$.
- (ii) Si on a l'égalité

$$\mathbb{K}^n = F \oplus G$$
,

on dit que F et G sont supplémentaires, ou que F (resp. G) est un supplémentaire de G (resp. F).

Proposition

Soient F, G, H trois sous-espaces vectoriels de \mathbb{K}^n tels que $H=F\oplus G$. Alors tout vecteur de H se décompose de manière unique comme somme d'un vecteur de F et d'un vecteur de F.

Preuve de l'unicité :
$$z = x + y = x' + y' \Rightarrow x - x' = y' - y \in F \cap G \Rightarrow x - x' = y' - y = 0 \text{ car } F \cap G = \{0\}.$$

Exemples d'espace supplémentaires

1. On a $\mathbb{R}^2 = F \oplus G$ où $F := \mathbb{R}(1,1)$ et $G := \mathbb{R}(1,2)$. En effet : (x,y) = x(1,0) + y(0,1) = (2x - y)(1,1) + (y - x)(1,2) et : $\forall (x,y) \in \mathbb{R}^2, \Rightarrow (x,y) \in F + G$

de plus $F \cap G = \{0\}$.

- 2. $F = \{(x, y, z) \in \mathbb{R}^3 : x = 0\}$ et $G = \{(x, y, z) \in \mathbb{R}^3 : y = 0\}$. Alors F et G ne sont PAS en somme directe car $F \cap G = \mathbb{R}(0, 0, 1)$ mais $\mathbb{R}^3 = F + G$ (Pourquoi??)
- 3. Dans \mathbb{R}^3 , soit P = Vect(u, v) et $w \notin P \Rightarrow \mathbb{R}^3 = \mathbb{R}w \oplus P$

Familles libres

Définition

(i) Une famille $(v_1, ..., v_m)$ de vecteurs est dite libre si pour toute famille $(\lambda_1, ..., \lambda_m)$ de scalaires

$$\lambda_1 v_1 + ... + \lambda_m x_m = 0 \Longrightarrow \lambda_1 = ... = \lambda_m = 0.$$

On dit aussi que les vecteurs $v_1, ..., v_m$ sont linéairement indépendants.

(ii) Une famille qui n'est pas libre est dite liée.

Proposition

Une famille \mathcal{F} est liée si et seulement si l'un au moins de ses vecteurs est combinaison linéaire des autres.

(c.a.d., si par exemple $\mathcal{F} = \{u, v, w\}$, alors il existe $\alpha, \beta \in \mathbb{K}$ tels que $w = \alpha u + \beta v$)

Exemples

- 1. Dans \mathbb{R}^2 posons $e_1 = (1,0)$; $e_2 = (0,1)$; $e_3 = (-1,-1)$ $\{e_1\}$; $\{e_2\}$; $\{e_1,e_2\}$ sont libres $\{e_1,e_2,e_3\}$ est liée car $e_1+e_2+e_3=0$.
- 2. Profil type de l'exercice ultra classique : dans \mathbb{R}^3 : $\mathcal{F} = \{(1,0,1),(0,2,2),(3,7,1)\}.$

$$lpha(1,0,1) + eta(0,2,2) + \gamma(3,7,1) = 0 \Rightarrow \left\{ egin{array}{ccc} lpha & +3\gamma & = 0 \\ 2eta & +7\gamma & = 0 \\ lpha & +2eta & +\gamma & = 0 \end{array}
ight.$$

On résout le système linéaire... $2\beta - 2\gamma = 0 \Rightarrow 9\gamma = 0 \Rightarrow$

$$\alpha = \beta = \gamma = 0,$$

donc la famille \mathcal{F} est libre.

Soit $v_1,...,v_n$, n vecteurs linéairement indépendants de \mathbb{R}^n . Alors la famille

1. $\{v_1 - v_2, v_2 - v_3, ..., v_{n-1} - v_n, v_n - v_1\}$ est

Soit $v_1,...,v_n$, n vecteurs linéairement indépendants de \mathbb{R}^n . Alors la famille

1.
$$\{v_1 - v_2, v_2 - v_3, ..., v_{n-1} - v_n, v_n - v_1\}$$
 est liée:
 $(v_1 - v_2) + (v_2 - v_3) + \cdots + (v_{n-1} - v_n) + (v_n - v_1) = 0$

Soit $v_1, ..., v_n$, n vecteurs linéairement indépendants de \mathbb{R}^n . Alors la famille

1.
$$\{v_1 - v_2, v_2 - v_3, ..., v_{n-1} - v_n, v_n - v_1\}$$
 est liée:
 $(v_1 - v_2) + (v_2 - v_3) + \cdots + (v_{n-1} - v_n) + (v_n - v_1) = 0$

2.
$$\{v_1, v_1 + v_2, v_1 + v_2 + v_3..., v_1 + \cdots + v_n\}$$
 est

Soit $v_1, ..., v_n$, n vecteurs linéairement indépendants de \mathbb{R}^n . Alors la famille

1.
$$\{v_1 - v_2, v_2 - v_3, ..., v_{n-1} - v_n, v_n - v_1\}$$
 est liée:
 $(v_1 - v_2) + (v_2 - v_3) + \cdots + (v_{n-1} - v_n) + (v_n - v_1) = 0$

2.
$$\{v_1, v_1 + v_2, v_1 + v_2 + v_3..., v_1 + \cdots + v_n\}$$
 est libre :
$$\alpha_1 v_1 + \alpha_2 (v_1 + v_2) + \cdots + \alpha_n (v_1 + \cdots + v_n) = 0 \implies$$

Soit $v_1, ..., v_n$, n vecteurs linéairement indépendants de \mathbb{R}^n . Alors la famille

1.
$$\{v_1 - v_2, v_2 - v_3, ..., v_{n-1} - v_n, v_n - v_1\}$$
 est liée:
$$(v_1 - v_2) + (v_2 - v_3) + \dots + (v_{n-1} - v_n) + (v_n - v_1) = 0$$

2.
$$\{v_1, v_1 + v_2, v_1 + v_2 + v_3..., v_1 + \cdots + v_n\}$$
 est libre : $\alpha_1 v_1 + \alpha_2 (v_1 + v_2) + \cdots + \alpha_n (v_1 + \cdots + v_n) = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_1 + (\alpha_1 + \cdots + \alpha_n) v_2 + (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_1 + \cdots + \alpha_n) v_2 + (\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_1 + \cdots + \alpha_n) v_2 + (\alpha_1 + \cdots + \alpha_n) v_3 + (\alpha_1 + \cdots + \alpha_n) v_3 + (\alpha_1 + \cdots + \alpha_n) v_3 + (\alpha_1 +$

Exercice (classique)

Soit $v_1, ..., v_n$, n vecteurs linéairement indépendants de \mathbb{R}^n . Alors la famille

1.
$$\{v_1 - v_2, v_2 - v_3, ..., v_{n-1} - v_n, v_n - v_1\}$$
 est liée:
$$(v_1 - v_2) + (v_2 - v_3) + \dots + (v_{n-1} - v_n) + (v_n - v_1) = 0$$

2.
$$\{v_1, v_1 + v_2, v_1 + v_2 + v_3..., v_1 + \cdots + v_n\}$$
 est libre:

$$\alpha_1 v_1 + \alpha_2 (v_1 + v_2) + \cdots + \alpha_n (v_1 + \cdots + v_n) = 0 \Rightarrow$$

$$(\alpha_1 + \cdots + \alpha_n) v_1 + (\alpha_2 + \cdots + \alpha_n) v_2 + \cdots + \alpha_n v_n = 0 \Rightarrow$$

$$\begin{cases} \alpha_1 + \cdots + \alpha_n &= 0 \\ \alpha_2 + \cdots + \alpha_n &= 0 \\ \alpha_{n-1} + \alpha_n &= 0 \\ \alpha_n &= 0 \end{cases}$$

car $\{v_1, ..., v_n\}$ est libre. D'où $\alpha_n = \alpha_{n-1} = \cdots = \alpha_2 = \alpha_1 = 0$.

Remarque

- 1. Un vecteur forme une famille liée si et seulement si c'est le vecteur nul (c.a.d. $\lambda u = 0$ avec $u \neq 0 \Rightarrow \lambda = 0$).
- 2. Deux vecteurs non nuls forment une famille liée si et seulement si ils sont colinéaires (c.a.d. on a $\alpha u + \beta v = 0$ avec $(\alpha, \beta) \neq (0, 0)$).

Proposition

Soit $(v_1, ..., v_m)$ une famille libre. Alors

- aucun des v_i n'est nul;
- les v; sont deux à deux non colinaires;
- ▶ toute sous-famille de $(v_1, ..., v_m)$ est libre.

Soit $(v_1, ..., v_m)$ une famille libre et y un vecteur. Alors y est combinaison linaire de $v_1, ..., v_m$ si et seulement si la famille $(v_1, ..., v_m, y)$ est liée.

Preuve.

 $\Rightarrow y = \sum_{k=1}^{m} \alpha_k v_k \Rightarrow$ on obtient la relation de liaison :

$$y - \sum_{k=1}^{m} \alpha_k v_k = 0.$$

 \Leftarrow il existe $\lambda, \alpha_1, ..., \alpha_m$ des scalaires t.q.

$$\lambda y + \sum_{k=1}^{m} \alpha_k v_k = 0.$$

Si $\lambda = 0$, alors $\alpha_1 = \cdots = \alpha_k = 0$ Pourquoi??. Donc $\lambda \neq 0$, ainsi

$$y = -\sum_{k=1}^{m} \frac{\alpha_k}{\lambda} v_k.$$

Familles génératrices

Définition

Soit F un sous-espace vectoriel de \mathbb{K}^n . Une famille $(v_1,...,v_m)$ de vecteurs est dite génératrice de F si

$$F = Vect(v_1, ..., v_m).$$

Exemple: Les vecteurs $e_1, ..., e_n$ définis par $e_i = (e_i^1, ..., e_i^n)$, $e_i^j = 1$ si i = j, $e_i^j = 0$ si $i \neq j$, forment une famille génératrice de \mathbb{K}^n :

$$n = 3$$
 \Rightarrow $x = (x_1, x_2, x_3) = x_1 \underbrace{(1, 0, 0)}_{e_1} + x_2 \underbrace{(0, 1, 0)}_{e_2} + x_3 \underbrace{(0, 0, 1)}_{e_3}$

$$\Rightarrow \mathbb{R}^3 = \operatorname{Vect}(e_1, e_2, e_3).$$

Familles génératrices et lemme de Steinitz

Lemme de Steinitz

Soit F un sous-espace vectoriel de \mathbb{K}^n . Si $\{v_1,...,v_m\}$ est une famille génératrice de F, alors toute famille de m+1 vecteurs de F est liée.

Preuve par réccurence sur m: voir poly.

On déduit le résultat FONDAMENTAL suivant

Corollaire

- (i) Toute famille d'au moins n+1 vecteurs de \mathbb{K}^n est liée.
- (ii) Toute famille libre de \mathbb{K}^n est de cardinal inférieur ou égal à n.

Preuve:

(i) $\{e_1, ..., e_n\}$ est génératrice de \mathbb{K}^n ; appliquer le résultat précédent. Pour (ii) par l'absurde.

Comment obtenir une famille génératrice?

Soit $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : 2x + y = 0\}$. On a vu que \mathcal{D} est un s.e.v. de \mathbb{R}^2 . Nous allons montrer comment obtenir une famille génératrice de \mathcal{D} , i.e., comment trouver $v_1, \ldots, v_p \in \mathbb{R}^2$ tels que

$$\mathcal{D} = \operatorname{vect} \left\{ v_1, \dots, v_p \right\}.$$

En écrivant pour tout $(x, y) \in \mathbb{R}^2$,

$$(x,y) \in \mathcal{D} \Leftrightarrow 2x+y=0 \Leftrightarrow (x,y)=(x,-2x) \Leftrightarrow (x,y)=x(1,-2)$$

on voit que

$$\mathcal{D} = \{\lambda(1, -2) : \lambda \in \mathbb{R}\} = \text{vect}\{(1, -2)\} =: \mathbb{R}(1, -2).$$

Le s.e.v. \mathcal{D} admet donc une famille génératrice à 1 élément constituée du vecteur (1, -2).

A méditer

On peut facilement observer que

$$\mathcal{D} := \{(x, y) \in \mathbb{R}^2 : 2x + y = 0\}$$

$$= \text{vect} \{(1, -2), (2, -4)\}$$

$$= \text{vect} \{(1, -2), (2, -4), (3, -6)\} = \dots$$

A méditer

On peut facilement observer que

$$\mathcal{D} := \{(x, y) \in \mathbb{R}^2 : 2x + y = 0\}$$

$$= \text{vect} \{(1, -2), (2, -4)\}$$

$$= \text{vect} \{(1, -2), (2, -4), (3, -6)\} = \dots$$

Par exemple :
$$(x, -2x) = \frac{x}{2}(1, -2) + \frac{x}{4}(2, -4)...$$

A méditer

On peut facilement observer que

$$\mathcal{D} := \{(x, y) \in \mathbb{R}^2 : 2x + y = 0\}$$

$$= \text{vect} \{(1, -2), (2, -4)\}$$

$$= \text{vect} \{(1, -2), (2, -4), (3, -6)\} = \dots$$

Par exemple :
$$(x, -2x) = \frac{x}{2}(1, -2) + \frac{x}{4}(2, -4)...$$

Conséquences.

- Pas d'unicité de la famille génératrice.
- Pas d'unicité du nombre d'éléments d'une famille génératrice : l'intérêt est d'avoir à disposition une famille génératrice avec le plus petit nombre d'éléments possible.

D'une famille génératrice vers une équation cartésienne

• Dans \mathbb{R}^2 , $\mathcal{D} := \text{vect}(u)$ où u = (3,5). Pour tout $(x,y) \in \mathbb{R}^2$,

$$(x,y) \in \mathcal{D} \Leftrightarrow \exists t \in \mathbb{R}, (x,y) = t(3,5) \Leftrightarrow \exists t \in \mathbb{R}, \begin{cases} x = 3t \\ y = 5t \end{cases} \Leftrightarrow \frac{5}{3}x - y = 0.$$

L'avant-dernière équivalence donne une équation paramétrique de \mathcal{D} tandis que la dernière propose une équation cartésienne de \mathcal{D} .

• Dans \mathbb{R}^3 , P := vect(u, v) avec u = (1, 1, 1) et v = (-1, 0, 2):

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} \Leftrightarrow \begin{cases} x = \lambda - \mu \\ y = \lambda \\ z = \lambda + 2\mu \end{cases}$$

$$\Rightarrow \begin{cases} \lambda = y \\ \mu = y - x \\ 0 = z - y - 2(y - x) \end{cases} \Rightarrow 2x - 3y + z = 0.$$

Exercice pour s'entraîner

1) Montrer que :

$$\mathcal{P} := \left\{ (x,y,z) \in \mathbb{R}^3 : x+y+z=0 \right\} = \mathrm{vect} \left\{ (1,0,-1), (0,1,-1) \right\}$$

2) Peut-on trouver une famille génératrice de ${\mathcal P}$ qui ne contienne qu'un seul élément ?

Exercice pour s'entraîner

1) Montrer que:

$$\mathcal{P} := \left\{ (x,y,z) \in \mathbb{R}^3 : x+y+z=0 \right\} = \mathrm{vect} \left\{ (1,0,-1), (0,1,-1) \right\}$$

2) Peut-on trouver une famille génératrice de ${\cal P}$ qui ne contienne qu'un seul élément ?

correction: on a

$$(x,y,z)=(x,y,-x-y)$$

Exercice pour s'entraîner

1) Montrer que:

$$\mathcal{P} := \left\{ (x, y, z) \in \mathbb{R}^3 : x + y + z = 0 \right\} = \text{vect} \left\{ (1, 0, -1), (0, 1, -1) \right\}$$

2) Peut-on trouver une famille génératrice de ${\cal P}$ qui ne contienne qu'un seul élément ?

correction: on a

$$(x, y, z) = (x, y, -x - y) = x(1, 0, -1) + y(0, 1, -1)$$

et (1,0,1) et (0,1,-1) ne sont pas colinéaires

▶ toute famille de 4 vecteurs $\{u_1, u_2, u_3, u_4\}$ de \mathbb{R}^3 est

▶ toute famille de 4 vecteurs $\{u_1, u_2, u_3, u_4\}$ de \mathbb{R}^3 est liée!

- ▶ toute famille de 4 vecteurs $\{u_1, u_2, u_3, u_4\}$ de \mathbb{R}^3 est liée!
- Les familles suivantes sont elles génératrices (resp. de \mathbb{R}^3 , \mathbb{R}^2 , \mathbb{R}^3)?

$$\mathcal{F}_1 = \left\{ \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 2 \\ 0 \end{array} \right), \left(\begin{array}{c} 5 \\ 1 \\ 0 \end{array} \right) \right\}$$

- ▶ toute famille de 4 vecteurs $\{u_1, u_2, u_3, u_4\}$ de \mathbb{R}^3 est liée!
- Les familles suivantes sont elles génératrices (resp. de \mathbb{R}^3 , \mathbb{R}^2 , \mathbb{R}^3)?

$$\mathcal{F}_1 = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix} \right\}$$

$$\mathcal{F}_2 = \left\{ \left(\begin{array}{c} 5 \\ 1 \end{array} \right), \left(\begin{array}{c} 2 \\ 8 \end{array} \right), \left(\begin{array}{c} 1 \\ 3 \end{array} \right) \right\}$$

- ▶ toute famille de 4 vecteurs $\{u_1, u_2, u_3, u_4\}$ de \mathbb{R}^3 est liée!
- Les familles suivantes sont elles génératrices (resp. de \mathbb{R}^3 , \mathbb{R}^2 , \mathbb{R}^3)?

$$\begin{split} \mathcal{F}_1 &= \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix} \right\} \\ \mathcal{F}_2 &= \left\{ \begin{pmatrix} 5 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 8 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix} \right\} \\ \mathcal{F}_3 &= \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix} \right\} \end{split}$$

- ▶ toute famille de 4 vecteurs $\{u_1, u_2, u_3, u_4\}$ de \mathbb{R}^3 est liée!
- Les familles suivantes sont elles génératrices (resp. de \mathbb{R}^3 , \mathbb{R}^2 , \mathbb{R}^3)?

$$\mathcal{F}_{1} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix} \right\}$$

$$\mathcal{F}_{2} = \left\{ \begin{pmatrix} 5 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 8 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix} \right\}$$

$$\mathcal{F}_{3} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix} \right\}$$

non / oui / non

Retour sur \mathcal{F}_2

$$\begin{pmatrix} x \\ y \end{pmatrix} = a \begin{pmatrix} 5 \\ 1 \end{pmatrix} + c \begin{pmatrix} 2 \\ 8 \end{pmatrix}$$

$$\Rightarrow \begin{cases} 5a + 2c = x \\ a + 8c = y \end{cases}$$

(on vérifie que ce système admet une seule et unique solution). Donc la famille est génératrice.

Retour sur \mathcal{F}_3

$$\mathcal{F}_{3} = \left\{ \underbrace{\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}}_{u}, \underbrace{\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}}_{v}, \underbrace{\begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix}}_{\frac{3}{2}(u+v)} \right\}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{F}_{3} \iff \exists \lambda, \mu \in \mathbb{R}^{2}, \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

$$\Rightarrow \mathcal{F}_{3} = \{(x, y, z) \in \mathbb{R}^{3} ; x - z = 0\} \text{ car}$$

$$\begin{cases} \lambda + \mu &= x \\ \lambda - \mu &= y \\ \lambda + \mu &= z \end{cases}$$

Bases dans \mathbb{K}^n

Définition

Soit F un sous-espace vectoriel de \mathbb{K}^n . On dit qu'une famille $\{v_1,...,v_m\}$ de vecteurs est une base de F si c'est une famille libre et génératrice.

Théorème

Tout sous-espace vectoriel F de \mathbb{K}^n non réduit à $\{0\}$ admet une base.

<u>Preuve</u>: soit $\{v_1,...,v_m\}$ une famille libre de F de cardinal maximal. Soit $v \in F$ quelconque. Alors la famille de F, $\{v_1,...v_m,v\}$, est liée. Donc $\{v_1,...,v_m\}$ est génératrice.

Exemple FONDAMENTAL. La famille $\{e_1,...,e_n\}$ est une base de \mathbb{K}^n , dite base canonique de \mathbb{K}^n . Pour n=4:

$$\{(1,0,0,0);(0,1,0,0);(0,0,1,0);(0,0,0,1)\}$$

est la base canonique de \mathbb{R}^4 .

Bases dans \mathbb{K}^n

Théorème (théorème de la base incomplète)

Soit F un sous-espace vectoriel de \mathbb{K}^n non réduit à $\{0\}$. Soient $\{v_1,...,v_m\}$ et $\{w_1,...,w_p\}$ deux familles de vecteurs de F respectivement libre et génératrice. Alors, on peut compléter $\{v_1,...,v_m\}$ par des vecteurs de $\{w_1,...,w_p\}$ pour obtenir une base de F.

<u>Preuve</u>: considérer une famille libre de F contenant $\{v_1,...,v_m\}$, inclue dans $\{v_1,...,v_m,w_1,...,w_p\}$ de cardinal maximal m+k:

$$\mathcal{F}:=\{v_1,...,v_m,w_{i_1},...,w_{i_k}\}.$$

Alors, $j \notin \{i_1, ..., i_k\} \Rightarrow$

$$\{v_1, ..., v_m, w_{i_1}, ..., w_{i_k}, w_j\}$$
 est liee.

On montre que tout vecteur x se décompose bien sur \mathcal{F} (car sur tout les $(w_j)_{1 \leq j \leq n}$ et distinguer si $j \in \{i_1, ..., i_k\}$ ou pas).

(Démonstration : suite)

Il vient que si $j \notin \{i_1, ..., i_k\}$

$$w_j = \sum_{l=1}^m \alpha_{l,j} v_l + \sum_{m=1}^k \beta_{m,j} w_{i_m}$$

ce qui donne

$$x = \sum_{j=1}^{p} x_{j} w_{j}$$

$$= \sum_{r=1}^{k} x_{i_{r}} w_{i_{r}} + \sum_{j \notin \{i_{1}, \dots, i_{k}\}} x_{j} w_{j}$$

$$= \sum_{r=1}^{k} x_{i_{r}} w_{i_{r}} + \sum_{j \notin \{i_{1}, \dots, i_{k}\}} x_{j} \left[\sum_{l=1}^{m} \alpha_{l,j} v_{l} + \sum_{m=1}^{k} \beta_{m,j} w_{i_{m}} \right]$$

Propriété de décomposition

Proposition

Soit F un sous-espace vectoriel de \mathbb{K}^n et $\{v_1, ..., v_m\}$ une base de F. Tout vecteur x de F se décompose de manière unique sous la forme

$$x = t_1 v_1 + \dots + t_m v_m$$

avec $t_1, ..., t_m \in \mathbb{K}$. Les scalaires $t_1, ..., t_m$ sont appelés coordonnées de x dans la base $(v_1, ..., v_m)$.

Encore la base canonique

$$x = (x_1, ..., x_n)$$
$$= \sum_{k=1}^n x_k e_k$$

où pour $1 \le k \le n$ e_k est le k-ième vecteur de la base canonique dans \mathbb{K}^n :

$$e_k = (0, ..., 0, \underbrace{1}_k, 0, ..., 0)$$

Encore la base canonique

$$x = (x_1, ..., x_n)$$
$$= \sum_{k=1}^{n} x_k e_k$$

où pour $1 \le k \le n$ e_k est le k-ième vecteur de la base canonique dans \mathbb{K}^n :

$$e_k = (0, ..., 0, \underbrace{1}_{k}, 0, ..., 0)$$

Autre exemple : ecrire (x, y) sur $\mathcal{B} = \{(1, 1), (-1, 2)\}$

$$(x,y) = \left(\frac{(2x+y)}{3}(1,1) + \frac{(y-x)}{3}(-1,2)\right)$$

Dimension

Théorème

Soit F un sous-espace vectoriel de \mathbb{K}^n non réduit à $\{0\}$. Toutes les bases de F comportent le même nombre de vecteurs.

Preuve : Il existe des bases. Soit $\mathcal{E}, \mathcal{E}'$ deux bases de F de cardinal k et m. La famille \mathcal{E} est libre et \mathcal{E}' est génératrice

$$\Rightarrow \operatorname{card}(\mathcal{E}) = k \le m = \operatorname{card}(\mathcal{E}')$$

(car sinon, par l'absurde, si k > m, alors $\mathcal E$ serait liée, cf. Steinitz).

Définition

Soit F un sous-espace vectoriel de \mathbb{K}^n non réduit à $\{0\}$. On appelle dimension de F, notée $\dim F$ le nombre de vecteurs de toute base de F. Par convention, $\dim\{0\} = 0$.

Exemples

1. $\{(1,0,-1),(0,1,-1)\}$ est une base du plan \mathcal{P} car

$$\mathcal{P} := \left\{ (x,y,z) \in \mathbb{R}^3 : x+y+z=0 \right\} = \mathrm{vect} \left\{ (1,0,-1), (0,1,-1) \right\}$$

$$\operatorname{car} \left(\begin{array}{c} x \\ y \\ z \end{array} \right) = \left(\begin{array}{c} x \\ y \\ -x - y \end{array} \right) = x \left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array} \right) + y \left(\begin{array}{c} 0 \\ 1 \\ -1 \end{array} \right)$$

2. Dans \mathbb{R}^2 , dire quelles familles constituent une base de \mathbb{R}^2 :

$$\{(1,2)\},\{(1,1),(1,2),(2,2)\},\{(-7,56),(7,-57)\}$$

3. Trouver une base de

$$F := \{(x, y, z, t) \in \mathbb{R}^4 ; x + y - z + t = 0 \text{ et } 2x - z - 2t = 0\}.$$

Solution

En résolvant le système,

$$\begin{cases} x + y - z + t = 0 \\ 2x - z - 2t = 0 \end{cases}$$

un vecteur $(x, y, z, t) \in F$ s'écrit :

$$\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} \frac{z}{2} + t \\ \frac{z}{2} - 2t \\ z \\ t \end{pmatrix} = z \begin{pmatrix} 1/2 \\ 1/2 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix}$$

Dimension

Proposition

On a dim $\mathbb{K}^n = n$ et dim $F \leq n$ pour tout sous-espace vectoriel F de \mathbb{K}^n .

Définition

Soit F un sous-espace vectoriel de \mathbb{K}^n . Si :

- 1. $\dim F = 1$, on dit que F est une droite vectorielle;
- 2. $\dim F = 2$, on dit que F est un plan vectoriel;
- 3. $\dim F = n 1$, on dit que F est un hyperplan.

Propriété fondamentale

Propriété FONDAMENTALE dans de nombreux exercices

Proposition

Soit F, G deux sev de \mathbb{K}^n . Alors :

$$F \subset G \text{ et } \dim(F) = \dim(G) \Rightarrow F = G.$$

<u>Preuve</u>: prendre une base de F, $\{v_1,...,v_m\}$ et compléter en une base de G, notée $\{v_1,...,v_m,w_1,...,w_p\}$ et si $p \geq 1$, alors contradiction par les dimensions.

Corollaire

Soit F un sev de \mathbb{K}^n . Si dim F = n, alors $F = \mathbb{K}^n$.

Soit F un sous-espace vectoriel de \mathbb{K}^n tel que $\dim F = m$.

- 1. Si p vecteurs de F sont linéairement indépendants, alors $p \le m$.
- 2. Si m vecteurs de F sont linéairement indépendants, alors ils forment une base de F.
- 3. Si p vecteurs de F engendrent F, alors $p \ge m$.
- 4. Si m vecteurs de F engendrent F, alors ils forment une base de F.

Preuve. 1. : Soit $\{v_1,...,v_p\}$ une telle famille et $\{w_1,...,w_m\}$ une base de F. Utiliser le thm. de la base incomplète.

Soit F un sous-espace vectoriel de \mathbb{K}^n tel que $\dim F = m$.

- 1. Si p vecteurs de F sont linéairement indépendants, alors $p \le m$.
- 2. Si m vecteurs de F sont linéairement indépendants, alors ils forment une base de F.
- 3. Si p vecteurs de F engendrent F, alors $p \ge m$.
- 4. Si m vecteurs de F engendrent F, alors ils forment une base de F.

Preuve. 1. : Soit $\{v_1, ..., v_p\}$ une telle famille et $\{w_1, ..., w_m\}$ une base de F. Utiliser le thm. de la base incomplète.

2. Soit $F' = Vect(u_1, ..., u_m)$ (où $u_i \in F$) qui vérifie $F' \subset F$ et dim(F') = m par construction. Prop. précédente $\Rightarrow F' = F$.

Soit F un sous-espace vectoriel de \mathbb{K}^n tel que $\dim F = m$.

- 1. Si p vecteurs de F sont linéairement indépendants, alors $p \le m$.
- 2. Si m vecteurs de F sont linéairement indépendants, alors ils forment une base de F.
- 3. Si p vecteurs de F engendrent F, alors $p \ge m$.
- 4. Si m vecteurs de F engendrent F, alors ils forment une base de F.

Preuve. 1. : Soit $\{v_1, ..., v_p\}$ une telle famille et $\{w_1, ..., w_m\}$ une base de F. Utiliser le thm. de la base incomplète.

- 2. Soit $F' = Vect(u_1, ..., u_m)$ (où $u_i \in F$) qui vérifie $F' \subset F$ et dim(F') = m par construction. Prop. précédente $\Rightarrow F' = F$.
- 3. Soit $\{u_1, ..., u_p\}$ une telle famille et supposons que p < m. On peut extraire une base de F à partir de cette famille de cardinal < m. Absurde.

Soit F un sous-espace vectoriel de \mathbb{K}^n tel que $\dim F = m$.

- 1. Si p vecteurs de F sont linéairement indépendants, alors $p \le m$.
- 2. Si m vecteurs de F sont linéairement indépendants, alors ils forment une base de F.
- 3. Si p vecteurs de F engendrent F, alors $p \ge m$.
- 4. Si m vecteurs de F engendrent F, alors ils forment une base de F.

Preuve. 1. : Soit $\{v_1, ..., v_p\}$ une telle famille et $\{w_1, ..., w_m\}$ une base de F. Utiliser le thm. de la base incomplète.

- 2. Soit $F' = Vect(u_1, ..., u_m)$ (où $u_i \in F$) qui vérifie $F' \subset F$ et dim(F') = m par construction. Prop. précédente $\Rightarrow F' = F$.
- 3. Soit $\{u_1, ..., u_p\}$ une telle famille et supposons que p < m. On peut extraire une base de F à partir de cette famille de cardinal < m. Absurde.
- 4. Si $\{v_1,...,v_m\}$ est liée, alors, par exemple $v_m \in Vect(v_1,...,v_{m-1})$. Ainsi, $dim(Vect(v_1,...,v_m)) \leq m-1 < m$. C'est une contradiction avec $Vect(v_1,...,v_m) = F$ et dim(F) = m.

Formule de Grassman

Proposition

Soient F et G des sous-espace vectoriels de \mathbb{K}^n .

(i) Si F et G sont en somme directe i.e. $F \cap G = \{0\}$ alors

$$\dim(F \oplus G) = \dim F + \dim G.$$

(ii) De manière générale on a la formule de Grassman :

$$\dim(F+G)+\dim(F\cap G)=\dim F+\dim G.$$

Corollaire

Tout sous-espace vectoriel de \mathbb{K}^n admet un supplémentaire, et si F et G sont supplémentaires alors dim F + dim G = n.

Preuve de la formule de Grassman 1/3

Proposition

Si F et G sont deux sous-espaces vectoriels de \mathbb{K}^n en somme directe, alors

$$\dim(F \oplus G) = \dim F + \dim G.$$

Démonstration.

On considère une base de F et une base de G, notées $\{f_1,...,f_r\}$ et $\{g_1,...,g_s\}$ respectivement. La réunion de ces deux familles est bien génératrice de F+G. De plus, si

$$\sum_{i=1}^{r} \alpha_i f_i = -\sum_{i=1}^{s} \beta_i g_i$$

, alors, comme $F \cap G = \{0\}$, on a immédiatement que $\alpha_i = 0$ et $\beta_i = 0$ pour tout i. Ainsi, la dimension de $F \oplus G$ est bien r + s. \square

Preuve de la formule de Grassman 2/3

Proposition

Soient F et G des sous-espace vectoriels de \mathbb{K}^n . On a

$$\dim(F+G)+\dim(F\cap G)=\dim F+\dim G.$$

Démonstration.

Soit H un supplémentaire de $F \cap G$ dans G de sorte que $G = F \cap G \oplus H$. On a

$$F+G=F\oplus H$$
.

En effet, si $x \in F + G$, alors x = y + z avec $y \in F$, $z \in G$. De plus, z = u + v avec $u \in F \cap G$ et $v \in H$ et $x = (y + u) + v \in F + H$. Supposons $x \in F \cap H$. Alors, $x \in F \cap G$ car $x \in H$ et $H \subset G$. D'où x = 0. Ainsi, $\dim(F + G) = \dim(F \oplus H) = \dim F + \dim H = \dim F + \dim G - \dim(F \cap G)$ (par le résultat précédent).

Preuve de la formule de Grassman 3/3

Corollaire

Tout sous-espace vectoriel de \mathbb{K}^n admet un supplémentaire, et si F et G sont supplémentaires alors dim F + dim G = n.

Démonstration.

On applique le théorème de la base incomplète à une famille $\{v_1,...,v_m\}$ qui est une base de l'espace F.

Exercice type : système d'équation cartésiennes

But : passer de la description d'un sev $F = Vect(v_1, ..., v_m)$ à un système d'équations Ax = 0 : trouver A de taille (m, n)

$$x \in F \iff x = \sum_{i=1}^{m} \lambda_i v_i \iff Ax = 0$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} := \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{pmatrix}$$

Figure – Schéma "Ligne × Colonne"

Exercice type : système d'équation cartésiennes

Exemple / méthode : dans \mathbb{R}^3 , soit F = Vect((1, 1, 1); (2, 1, -4)) \Rightarrow éliminer les paramètres

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in F \iff \exists (\lambda, \mu) \in \mathbb{R}^2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$$

$$\begin{cases} \lambda + 2\mu = x \\ \lambda - \mu = y \\ \lambda + 4\mu = z \end{cases} \iff \begin{cases} \lambda + 2\mu = x \\ -3\mu = y - x \\ 2\mu = z - x \end{cases} \iff \begin{cases} \lambda + 2\mu = x \\ -3\mu = y - x \\ 0 = 3(z - x) + 2(y - x) \end{cases}$$

CONCLUSION: $(x, y, z) \in F \iff -5x + 2y + 3z = 0$

Soit $v_1 = (1,2,3,4)$, $v_2 = (1,1,1,3)$, $v_3 = (2,1,1,1)$, $v_4 = (-1,0,-1,2)$, $v_5 = (2,3,0,1)$. Soit $F = Vect(v_1,v_2,v_3)$ et $G = Vect(v_4,v_5)$. Calculer les dimensions de F, G, $F \cap G$, F + G. F et G en somme directe?

Soit $v_1=(1,2,3,4)$, $v_2=(1,1,1,3)$, $v_3=(2,1,1,1)$, $v_4=(-1,0,-1,2)$, $v_5=(2,3,0,1)$. Soit $F=Vect(v_1,v_2,v_3)$ et $G=Vect(v_4,v_5)$. Calculer les dimensions de F, G, $F\cap G$, F+G. F et G en somme directe?

<u>Correction</u>: dim(G) = 2 et dim(F) = 3 (poser le système pour vérifier que $\{v_1, v_2, v_3\}$ est libre).

Soit $v_1=(1,2,3,4)$, $v_2=(1,1,1,3)$, $v_3=(2,1,1,1)$, $v_4=(-1,0,-1,2)$, $v_5=(2,3,0,1)$. Soit $F=Vect(v_1,v_2,v_3)$ et $G=Vect(v_4,v_5)$. Calculer les dimensions de F, G, $F\cap G$, F+G. F et G en somme directe?

<u>Correction</u>: dim(G) = 2 et dim(F) = 3 (poser le système pour vérifier que $\{v_1, v_2, v_3\}$ est libre). Pour F + G, on écrit $xv_1 + yv_2 + zv_3 + tv_4 = 0$:

$$\begin{cases} x + y + 2z - t = 0 \\ 2x + y + z = 0 \\ 3x + y + z - t = 0 \\ 4x + 3y + z + 2t = 0 \end{cases} \begin{cases} x + y + 2z - t = 0 \\ -y - 3z + 2t = 0 \\ -2y - 5z + 2t = 0 \\ -y - 7z + 6t = 0 \end{cases} \begin{cases} x + y + 2z - t = 0 \\ -y - 3z + 2t = 0 \\ z - 2t = 0 \\ -4z + 4t = 0 \end{cases}$$

d'où t = z = y = x = 0 et dim(F + G) = 4 (noter que $\{v_1, v_2, v_3, v_4\}$ est une base de \mathbb{R}^4).

Soit $v_1 = (1,2,3,4)$, $v_2 = (1,1,1,3)$, $v_3 = (2,1,1,1)$, $v_4 = (-1,0,-1,2)$, $v_5 = (2,3,0,1)$. Soit $F = Vect(v_1,v_2,v_3)$ et $G = Vect(v_4,v_5)$. Calculer les dimensions de F, G, $F \cap G$, F + G. F et G en somme directe?

<u>Correction</u>: dim(G) = 2 et dim(F) = 3 (poser le système pour vérifier que $\{v_1, v_2, v_3\}$ est libre). Pour F + G, on écrit $xv_1 + yv_2 + zv_3 + tv_4 = 0$:

$$\begin{cases} x + y + 2z - t = 0 \\ 2x + y + z = 0 \\ 3x + y + z - t = 0 \\ 4x + 3y + z + 2t = 0 \end{cases} \begin{cases} x + y + 2z - t = 0 \\ -y - 3z + 2t = 0 \\ -2y - 5z + 2t = 0 \\ -y - 7z + 6t = 0 \end{cases} \begin{cases} x + y + 2z - t = 0 \\ -y - 3z + 2t = 0 \\ z - 2t = 0 \\ -4z + 4t = 0 \end{cases}$$

d'où t = z = y = x = 0 et dim(F + G) = 4 (noter que $\{v_1, v_2, v_3, v_4\}$ est une base de \mathbb{R}^4). Finalement :

$$dim(F \cap G) = dim(F) + dim(G) - dim(F + G) = 1$$

Liberté de $\{v_1, v_2, v_3\}$

$$av_1 + bv_2 + cv_3 = 0 \Rightarrow$$

$$a\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} + b\begin{pmatrix} 1\\1\\1\\3 \end{pmatrix} + c\begin{pmatrix} 2\\1\\1\\1 \end{pmatrix} = 0.$$

 \Rightarrow

$$\begin{cases} a+b+2c = 0 \\ 2a+b+c = 0 \\ 3a+b+c = 0 \end{cases} \Rightarrow \begin{cases} a+b+2c = 0 \\ -b-3c = 0 \\ -2b-5c = 0 \\ 4a+3b+c = 0 \end{cases}$$

...(relativement facile à montrer que a=b=c=0). Donc $\{v_1,v_2,v_3\}$ est libre.

Inversion des matrices (2, 2)

Pour $a,b,c,d\in\mathbb{K}$, la matrice $M=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ est inversible dans $M_2(\mathbb{K})$ si et seulement si $\det(M):=ad-bc\neq 0$. Si tel est le cas, on a

$$M^{-1} = \frac{1}{ad - bc} \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right)$$

Inversion des matrices (2,2)

Pour $a, b, c, d \in \mathbb{K}$, la matrice $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est inversible dans $M_2(\mathbb{K})$ si et seulement si $\det(M) := ad - bc \neq 0$. Si tel est le cas, on a

$$M^{-1} = \frac{1}{ad - bc} \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right)$$

On suppose a ou c non nul, par exemple a non nul (sinon, M pas inversible).

$$\begin{cases} ax_1 + bx_2 = y_1 \\ cx_1 + dx_2 = y_2 \end{cases} \begin{cases} ax_1 + bx_2 = y_1 \\ (d - bc/a)x_2 = y_2 - (c/a)y_1 \end{cases}$$

$$x_2 = \frac{ay_2 - cy_1}{ad - bc}$$
 $x_1 = \frac{1}{a} \left(y_1 - b \frac{ay_2 - cy_1}{ad - bc} \right) = \frac{dy_1 - by_2}{ad - bc}$

Soit

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

Soit det(A) := ad - bc. Montrer que

$$A^2 - Tr(A)A + det(A)I_2 = 0$$

(faire le calcul tranquillement : pas de difficultés)