PyCity Schools Analysis

· Your analysis here

```
In [1]: # Dependencies and Setup
    import pandas as pd
    from pathlib import Path

# File to Load (Remember to Change These)
    school_data_to_load = Path("Resources/schools_complete.csv")
    student_data_to_load = Path("Resources/students_complete.csv")

# Read School and Student Data File and store into Pandas DataFrames
    school_data = pd.read_csv(school_data_to_load)
    student_data = pd.read_csv(student_data_to_load)

# Combine the data into a single dataset.
    school_data_complete = pd.merge(student_data, school_data, how="left", on=["school_school_data_complete.head()
```

Out[1]:		Student ID	student_name	gender	grade	school_name	reading_score	math_score	School ID	ty
	0	0	Paul Bradley	М	9th	Huang High School	66	79	0	Distri
	1	1	Victor Smith	М	12th	Huang High School	94	61	0	Distri
	2	2	Kevin Rodriguez	М	12th	Huang High School	90	60	0	Distri
	3	3	Dr. Richard Scott	М	12th	Huang High School	67	58	0	Distri
	4	4	Bonnie Ray	F	9th	Huang High School	97	84	0	Distri
4										

District Summary

```
In [2]: # Calculate the total number of unique schools
    school_count = len(school_data_complete["school_name"].unique())

Out[2]:

In [3]: # Calculate the total number of students
    student_count = len(school_data_complete["Student ID"].unique())
    student_count

Out[3]: # Calculate the total budget
    total_budget = school_data["budget"].sum()
```

```
total_budget
                   24649428
  Out[4]:
                   # Calculate the average (mean) math score
  In [5]:
                   average_math_score = school_data_complete["math_score"].mean()
                   average_math_score
                   78.98537145774827
  Out[5]:
                   # Calculate the average (mean) reading score
  In [6]:
                   average_reading_score = school_data_complete["reading_score"].mean()
                   average_reading_score
                   81.87784018381414
  Out[6]:
                   # Use the following to calculate the percentage of students who passed math (math s
  In [7]:
                   passing_math_count = school_data_complete[(school_data_complete["math_score"] >= 70
                   passing_math_percentage = passing_math_count / float(student_count) * 100
                   passing_math_percentage
                   74.9808526933878
  Out[7]:
In [10]:
                   # Calculate the percentage of students who passed reading (hint: look at how the me
                   passing_reading_count = student_data.loc[student_data['reading_score'] >= 70]['reading_score'] >= 70['reading_score'] >= 70['
                   passing_reading_percentage = passing_reading_count/student_count*100
                   passing_reading_percentage
                   85.80546336482001
Out[10]:
In [11]: # Use the following to calculate the percentage of students that passed math and r\epsilon
                   passing_math_reading_count = school_data_complete[
                            (school_data_complete["math_score"] >= 70) & (school_data_complete["reading_score")
                   ].count()["student_name"]
                   overall_passing_rate = passing_math_reading_count / float(student_count) * 100
                   overall_passing_rate
                   65.17232575950983
Out[11]:
In [15]:
                   # Create a high-level snapshot of the district's key metrics in a DataFrame
                   district summary = pd.DataFrame({"Total Schools": [school count],
                                                                                "Total Students": [student_count],
                                                                                "Total Budget" : total_budget,
                                                                                "Average Math Score": average_math_score,
                                                                                "Average Reading Score": average_reading_score,
                                                                                "% Passing Math":passing_math_percentage,
                                                                                "% Passing Reading":passing_reading_percentage,
                                                                                "% Overall Passing":overall_passing_rate})
                   # Formatting
                   district_summary["Total Students"] = district_summary["Total Students"].map("{:,}"
                   district_summary["Total Budget"] = district_summary["Total Budget"].map("${:,.2f}"
                   # Display the DataFrame
                   district summary
```

```
Out[15]:
                                                  Average
                                                            Average
                                                                      % Passing
                Total
                                                                                 % Passing
                           Total
                                                                                            % Overall
                                  Total Budget
                                                    Math
                                                            Reading
              Schools
                       Students
                                                                          Math
                                                                                   Reading
                                                                                              Passing
                                                    Score
                                                              Score
           0
                   15
                          39,170 $24,649,428.00
                                                78.985371
                                                            81.87784 74.980853
                                                                                 85.805463
                                                                                            65.172326
```

School Summary

```
In [18]:
                 # Use the code provided to select all of the school types
                 school_types = school_data.set_index('school_name')['type']
                 # Calculate the total student count per school
In [22]:
                 #groups by school
                 by_school = school_data_complete.set_index('school_name').groupby(['school_name'])
                 per_school_counts = by_school['Student ID'].count()
In [28]:
                 # Calculate the total school budget and per capita spending per school
                 per_school_budget = school_data.set_index('school_name')['budget']
                 per_school_capita = school_data.set_index('school_name')['budget']/school_data.set_
                 # Calculate the average test scores per school
In [30]:
                 per_school_math = by_school['math_score'].mean()
                 per_school_reading = by_school['reading_score'].mean()
                 # Calculate the number of students per school with math scores of 70 or higher
In [77]:
                 students_passing_math = school_data_complete[school_data_complete['math_score'] >=
                 school_students_passing_math = students_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('school_name')['Student's_passing_math.groupby('schoo
In [78]:
                 # Calculate the number of students per school with reading scores of 70 or higher
                 students_passing_reading = school_data_complete[school_data_complete['reading_score
                 school_students_passing_reading = students_passing_reading.groupby('school_name')[
                 #school_data_complete[school_data_complete['reading_score'] >= 70].groupby('school_
In [79]:
                 # Use the provided code to calculate the number of students per school that passed
                 students_passing_math_and_reading = school_data_complete[
                         (school_data_complete["reading_score"] >= 70) & (school_data_complete["math_score")
                 school_students_passing_math_and_reading = students_passing_math_and_reading.groupl
In [80]:
                 # Use the provided code to calculate the passing rates
                 per_school_passing_math = school_students_passing_math / per_school_counts * 100
                 per_school_passing_reading = school_students_passing_reading / per_school_counts *
                 overall_passing_rate = school_students_passing_math_and_reading / per_school_count
                 # Create a DataFrame called `per_school_summary` with columns for the calculations
In [81]:
                 per_school_summary = pd.DataFrame({
                         "School Type": school_types,
                        "Total Students": per_school_counts,
                        "Per Student Budget": per_school_capita,
                         "Total School Budget": per_school_budget,
                         "Average Math Score": per_school_math,
                         "Average Reading Score": per_school_reading,
                         '% Passing Math': per_school_passing_math,
                         '% Passing Reading': per_school_passing_reading,
                         "Overall Passing Rate": overall_passing_rate
                 })
```

```
# Formatting
per_school_summary["Total School Budget"] = per_school_summary["Total School Budge"
per_school_summary["Per Student Budget"] = per_school_summary["Per Student Budget"

# Display the DataFrame
per_school_summary
```

Out[81]:

	School Type	Total Students	Per Student Budget	Total School Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading
school_name								
Bailey High School	District	4976	\$628.00	\$3,124,928.00	77.048432	81.033963	66.680064	81.933280
Cabrera High School	Charter	1858	\$582.00	\$1,081,356.00	83.061895	83.975780	94.133477	97.039828
Figueroa High School	District	2949	\$639.00	\$1,884,411.00	76.711767	81.158020	65.988471	80.739234
Ford High School	District	2739	\$644.00	\$1,763,916.00	77.102592	80.746258	68.309602	79.299014
Griffin High School	Charter	1468	\$625.00	\$917,500.00	83.351499	83.816757	93.392371	97.138965
Hernandez High School	District	4635	\$652.00	\$3,022,020.00	77.289752	80.934412	66.752967	80.862999
Holden High School	Charter	427	\$581.00	\$248,087.00	83.803279	83.814988	92.505855	96.252927
Huang High School	District	2917	\$655.00	\$1,910,635.00	76.629414	81.182722	65.683922	81.316421
Johnson High School	District	4761	\$650.00	\$3,094,650.00	77.072464	80.966394	66.057551	81.222432
Pena High School	Charter	962	\$609.00	\$585,858.00	83.839917	84.044699	94.594595	95.945946
Rodriguez High School	District	3999	\$637.00	\$2,547,363.00	76.842711	80.744686	66.366592	80.220055
Shelton High School	Charter	1761	\$600.00	\$1,056,600.00	83.359455	83.725724	93.867121	95.854628
Thomas High School	Charter	1635	\$638.00	\$1,043,130.00	83.418349	83.848930	93.272171	97.308869
Wilson High School	Charter	2283	\$578.00	\$1,319,574.00	83.274201	83.989488	93.867718	96.539641
Wright High School	Charter	1800	\$583.00	\$1,049,400.00	83.682222	83.955000	93.333333	96.611111

Highest-Performing Schools (by % Overall Passing)

```
'Total School Budget',
                            'Per Student Budget',
                            'Average Math Score',
                            'Average Reading Score',
                            '% Passing Math',
                            '% Passing Reading',
                            'Overall Passing Rate']]
#data formatting
sch_summary.style.format({'Total Students': '{:,}',
                            "Total School Budget": "${:,}",
"Per Student Budget": "${:.0f}",
                            'Average Math Score': "{:.1f}",
                            'Average Reading Score': "{:.1f}",
                            "% Passing Math": "{:.1%}",
                            "% Passing Reading": "{:.1%}",
                            "Overall Passing Rate": "{:.1%}"})
# Sort the schools by `% Overall Passing` in descending order and display the top.
top_schools = sch_summary.sort_values("Overall Passing Rate", ascending = False)
top_schools.head(5)
```

Out[83]:		School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading
	school_name								
	Cabrera High School	Charter	1858	\$1,081,356.00	\$582.00	83.061895	83.975780	94.133477	97.039828
	Thomas High School	Charter	1635	\$1,043,130.00	\$638.00	83.418349	83.848930	93.272171	97.308869
	Griffin High School	Charter	1468	\$917,500.00	\$625.00	83.351499	83.816757	93.392371	97.138965
	Wilson High School	Charter	2283	\$1,319,574.00	\$578.00	83.274201	83.989488	93.867718	96.539641
	Pena High School	Charter	962	\$585,858.00	\$609.00	83.839917	84.044699	94.594595	95.945946
4									•

Bottom Performing Schools (By % Overall Passing)

```
In [85]: # Sort the schools by `% Overall Passing` in ascending order and display the top 5
bottom_schools = top_schools.tail()
bottom_schools = bottom_schools.sort_values('Overall Passing Rate')
bottom_schools.head(5)
```

Out[85]:		School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading
	school_name								
	Rodriguez High School	District	3999	\$2,547,363.00	\$637.00	76.842711	80.744686	66.366592	80.220055
	Figueroa High School	District	2949	\$1,884,411.00	\$639.00	76.711767	81.158020	65.988471	80.739234
	Huang High School	District	2917	\$1,910,635.00	\$655.00	76.629414	81.182722	65.683922	81.316421
	Hernandez High School	District	4635	\$3,022,020.00	\$652.00	77.289752	80.934412	66.752967	80.862999
	Johnson High School	District	4761	\$3,094,650.00	\$650.00	77.072464	80.966394	66.057551	81,222432
4									•

Math Scores by Grade

```
In [92]:
         # Use the code provided to separate the data by grade
         ninth_graders = school_data_complete[(school_data_complete["grade"] == "9th")]
         tenth_graders = school_data_complete[(school_data_complete["grade"] == "10th")]
         eleventh_graders = school_data_complete[(school_data_complete["grade"] == "11th")]
         twelfth_graders = school_data_complete[(school_data_complete["grade"] == "12th")]
         # Group by `school_name` and take the mean of the `math_score` column for each.
         ninth_grade_math_scores = ninth_graders.groupby('school_name')["math_score"].mean(
         tenth_grader_math_scores = tenth_graders.groupby('school_name')["math_score"].mean
         eleventh_grader_math_scores = eleventh_graders.groupby('school_name')["math_score"
         twelfth_grader_math_scores = twelfth_graders.groupby('school_name')["math_score"].
         # Combine each of the scores above into single DataFrame called `math_scores_by_gre
         math_scores_by_grade = pd.DataFrame({
                 "9th": ninth_grade_math_scores,
                 "10th": tenth_grader_math_scores,
                  "11th": eleventh grader math scores,
                  "12th": twelfth grader math scores
         })
         # Minor data wrangling
         math_scores_by_grade.index.name = None
         # Display the DataFrame
         math scores by grade
```

	9th	10th	11th	12th
Bailey High School	77.083676	76.996772	77.515588	76.492218
Cabrera High School	83.094697	83.154506	82.765560	83.277487
Figueroa High School	76.403037	76.539974	76.884344	77.151369
Ford High School	77.361345	77.672316	76.918058	76.179963
Griffin High School	82.044010	84.229064	83.842105	83.356164
Hernandez High School	77.438495	77.337408	77.136029	77.186567
Holden High School	83.787402	83.429825	85.000000	82.855422
Huang High School	77.027251	75.908735	76.446602	77.225641
Johnson High School	77.187857	76.691117	77.491653	76.863248
Pena High School	83.625455	83.372000	84.328125	84.121547
Rodriguez High School	76.859966	76.612500	76.395626	77.690748
Shelton High School	83.420755	82.917411	83.383495	83.778976
Thomas High School	83.590022	83.087886	83.498795	83.497041
Wilson High School	83.085578	83.724422	83.195326	83.035794
Wright High School	83.264706	84.010288	83.836782	83.644986

Reading Score by Grade

Out[92]:

```
In [91]:
         # Use the code provided to separate the data by grade
         ninth_graders = school_data_complete[(school_data_complete["grade"] == "9th")]
         tenth_graders = school_data_complete[(school_data_complete["grade"] == "10th")]
         eleventh_graders = school_data_complete[(school_data_complete["grade"] == "11th")]
         twelfth_graders = school_data_complete[(school_data_complete["grade"] == "12th")]
         # Group by `school_name` and take the mean of the the `reading_score` column for ed
         ninth_grade_reading_scores = ninth_graders.groupby('school_name')["reading_score"]
         tenth_grader_reading_scores = tenth_graders.groupby('school_name')["reading_score"
         eleventh grader reading scores = eleventh graders.groupby('school name')["reading !
         twelfth_grader_reading_scores = twelfth_graders.groupby('school_name')["reading_scores")
         # Combine each of the scores above into single DataFrame called `reading_scores_by
         reading_scores_by_grade = pd.DataFrame({
                  "9th": ninth_grade_reading_scores,
                  "10th": tenth grader reading scores,
                  "11th": eleventh_grader_reading_scores,
                  "12th": twelfth_grader_reading_scores
         })
         # Minor data wrangling
         reading_scores_by_grade = reading_scores_by_grade[["9th", "10th", "11th", "12th"]]
         reading_scores_by_grade.index.name = None
         # Display the DataFrame
         reading_scores_by_grade
```

	9th	10th	11th	12th
Bailey High School	81.303155	80.907183	80.945643	80.912451
Cabrera High School	83.676136	84.253219	83.788382	84.287958
Figueroa High School	81.198598	81.408912	80.640339	81.384863
Ford High School	80.632653	81.262712	80.403642	80.662338
Griffin High School	83.369193	83.706897	84.288089	84.013699
Hernandez High School	80.866860	80.660147	81.396140	80.857143
Holden High School	83.677165	83.324561	83.815534	84.698795
Huang High School	81.290284	81.512386	81.417476	80.305983
Johnson High School	81.260714	80.773431	80.616027	81.227564
Pena High School	83.807273	83.612000	84.335938	84.591160
Rodriguez High School	80.993127	80.629808	80.864811	80.376426
Shelton High School	84.122642	83.441964	84.373786	82.781671
Thomas High School	83.728850	84.254157	83.585542	83.831361
Wilson High School	83.939778	84.021452	83.764608	84.317673
Wright High School	83.833333	83.812757	84.156322	84.073171

Scores by School Spending

Out[91]:

```
In [155...
                                          # Establish the bins
                                          spending_bins = [0, 585, 630, 645, 680]
                                          labels = ["<$585", "$585-630", "$630-645", "$645-680"]
In [168...
                                          # Create a copy of the school summary since it has the "Per Student Budget"
                                          school_spending_df = per_school_summary.copy()
In [169...
                                          print(school_spending_df["Per Student Budget"].dtype)
                                          school_spending_df["Per Student Budget"] = school_spending_df["Per Student Budget"
                                          school_spending_df["Per Student Budget"] = pd.to_numeric(school_spending_df["Per Student Budget") = pd.
                                         object
                                          # Use `pd.cut` to categorize spending based on the bins.
In [172...
                                          per_school_summary["Spending Ranges (Per Student)"] = pd.cut(school_spending_df["Per Student)"]
                                          school_spending_df
```

	School Type	Total Students	Per Student Budget	Total School Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading
school_name								
Bailey High School	District	4976	628.0	\$3,124,928.00	77.048432	81.033963	66.680064	81.933280
Cabrera High School	Charter	1858	582.0	\$1,081,356.00	83.061895	83.975780	94.133477	97.039828
Figueroa High School	District	2949	639.0	\$1,884,411.00	76.711767	81.158020	65.988471	80.739234
Ford High School	District	2739	644.0	\$1,763,916.00	77.102592	80.746258	68.309602	79.299014
Griffin High School	Charter	1468	625.0	\$917,500.00	83.351499	83.816757	93.392371	97.138965
Hernandez High School	District	4635	652.0	\$3,022,020.00	77.289752	80.934412	66.752967	80.862999
Holden High School	Charter	427	581.0	\$248,087.00	83.803279	83.814988	92.505855	96.252927
Huang High School	District	2917	655.0	\$1,910,635.00	76.629414	81.182722	65.683922	81.316421
Johnson High School	District	4761	650.0	\$3,094,650.00	77.072464	80.966394	66.057551	81.222432
Pena High School	Charter	962	609.0	\$585,858.00	83.839917	84.044699	94.594595	95.945946
Rodriguez High School	District	3999	637.0	\$2,547,363.00	76.842711	80.744686	66.366592	80.220055
Shelton High School	Charter	1761	600.0	\$1,056,600.00	83.359455	83.725724	93.867121	95.854628
Thomas High School	Charter	1635	638.0	\$1,043,130.00	83.418349	83.848930	93.272171	97.308869
Wilson High School	Charter	2283	578.0	\$1,319,574.00	83.274201	83.989488	93.867718	96.539641
Wright High School	Charter	1800	583.0	\$1,049,400.00	83.682222	83.955000	93.333333	96.611111

In [173...

Calculate averages for the desired columns.

spending_math_scores = school_spending_df.groupby(["Spending Ranges (Per Student)" spending_reading_scores = school_spending_df.groupby(["Spending Ranges (Per Student spending_passing_math = school_spending_df.groupby(["Spending Ranges (Per Student)"] spending_passing_reading = school_spending_df.groupby(["Spending Ranges (Per Stude)
overall_passing_spending = school_spending_df.groupby(["Spending Ranges (Per Stude)

In [174...

```
# Assemble into DataFrame
spending_summary = pd.DataFrame({
```

[&]quot;Average Math Score": spending_math_scores,

[&]quot;Average Reading Score": spending_reading_scores,

^{&#}x27;% Passing Math': spending_passing_math,

^{&#}x27;% Passing Reading': spending_passing_reading,

```
"Overall Passing Rate": overall_passing_spending
})

# Display results
spending_summary
```

Out[174]:		Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Passing Rate
	Spending Ranges (Per Student)					
	<\$585	83.455399	83.933814	93.460096	96.610877	90.369459
	\$585-630	81.899826	83.155286	87.133538	92.718205	81.418596
	\$630-645	78.518855	81.624473	73.484209	84.391793	62.857656
	\$645-680	76.997210	81.027843	66.164813	81.133951	53.526855

Scores by School Size

```
In [123... # Establish the bins.
    size_bins = [0, 1000, 2000, 5000]
    labels = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"]

In [130... # Categorize the spending based on the bins
    # Use `pd.cut` on the "Total Students" column of the `per_school_summary` DataFrame
    per_school_summary["School Size"] = pd.cut(school_spending_df["Total Students"], s:
        per_school_summary</pre>
```

0	[120]	
UUT	1 1 3/4 1	
Out	1770	

	School Type	Total Students	Per Student Budget	Total School Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading
school_name								
Bailey High School	District	4976	\$628.00	\$3,124,928.00	77.048432	81.033963	66.680064	81.933280
Cabrera High School	Charter	1858	\$582.00	\$1,081,356.00	83.061895	83.975780	94.133477	97.039828
Figueroa High School	District	2949	\$639.00	\$1,884,411.00	76.711767	81.158020	65.988471	80.739234
Ford High School	District	2739	\$644.00	\$1,763,916.00	77.102592	80.746258	68.309602	79.299014
Griffin High School	Charter	1468	\$625.00	\$917,500.00	83.351499	83.816757	93.392371	97.138965
Hernandez High School	District	4635	\$652.00	\$3,022,020.00	77.289752	80.934412	66.752967	80.862999
Holden High School	Charter	427	\$581.00	\$248,087.00	83.803279	83.814988	92.505855	96.252927
Huang High School	District	2917	\$655.00	\$1,910,635.00	76.629414	81.182722	65.683922	81.316421
Johnson High School	District	4761	\$650.00	\$3,094,650.00	77.072464	80.966394	66.057551	81.222432
Pena High School	Charter	962	\$609.00	\$585,858.00	83.839917	84.044699	94.594595	95.945946
Rodriguez High School	District	3999	\$637.00	\$2,547,363.00	76.842711	80.744686	66.366592	80.220055
Shelton High School	Charter	1761	\$600.00	\$1,056,600.00	83.359455	83.725724	93.867121	95.854628
Thomas High School	Charter	1635	\$638.00	\$1,043,130.00	83.418349	83.848930	93.272171	97.308869
Wilson High School	Charter	2283	\$578.00	\$1,319,574.00	83.274201	83.989488	93.867718	96.539641
Wright High School	Charter	1800	\$583.00	\$1,049,400.00	83.682222	83.955000	93.333333	96.611111

```
size_passing_reading = per_school_summary.groupby(["School Size"])["% Passing Read:
size_overall_passing = per_school_summary.groupby(["School Size"])["Overall Passing

In [134...

# Create a DataFrame called `size_summary` that breaks down school performance base
# Use the scores above to create a new DataFrame called `size_summary`
size_summary = pd.DataFrame({
    "Average Math Score": size_math_scores,
    "Average Reading Score": size_reading_scores,
    '% Passing Math': size_passing_math,
    '% Passing Reading': size_passing_reading,
    "Overall Passing Rate": size_overall_passing

})

# Display results
```

size_reading_scores = per_school_summary.groupby(["School Size"])["Average Reading
size_passing_math = per_school_summary.groupby(["School Size"])["% Passing Math"].

Out[134]:		Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Passing Rate
	School Size					
	Small (<1000)	83.821598	83.929843	93.550225	96.099437	89.883853
	Medium (1000-2000)	83.374684	83.864438	93.599695	96.790680	90.621535
	Large (2000- 5000)	77.746417	81.344493	69.963361	82.766634	58.286003

Scores by School Type

size_summary

```
# Group the per_school_summary DataFrame by "School Type" and average the results.
In [136...
          average_math_score_by_type = per_school_summary.groupby(["School Type"])["Average /
          average_reading_score_by_type = per_school_summary.groupby(["School Type"])["Average"]
          average_percent_passing_math_by_type = per_school_summary.groupby(["School Type"])
          average_percent_passing_reading_by_type = per_school_summary.groupby(["School Type"]
          average percent overall passing by type = per school summary.groupby(["School Type
          # Assemble the new data by type into a DataFrame called `type summary`
In [137...
          type summary = pd.DataFrame({
               "Average Math Score": average_math_score_by_type,
              "Average Reading Score": average_reading_score_by_type,
               '% Passing Math': average_percent_passing_math_by_type,
              '% Passing Reading': average_percent_passing_reading_by_type,
              "Overall Passing Rate": average_percent_overall_passing_by_type})
          # Display results
          type summary
```

Out[137]:		Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Passing Rate
	School Type					
	Charter	83.473852	83.896421	93.620830	96.586489	90.432244
	District	76.956733	80.966636	66.548453	80.799062	53.672208
In []:						