Inbyggd Elektronik 2018-04-10

Power consumed in the load RL?

$$R_{L} P = U \cdot 1 = V_{TH} \frac{R_{L}}{R_{TH} + R_{L}} \frac{V_{TH}}{R_{TH} + R_{L}} = \frac{R_{L}}{(R_{TH} + R_{L})^{2}} V_{TH}^{R}$$

Find Pmax
$$\frac{dP}{dR_L} = \left\{ \frac{d}{dR_L} \frac{1}{(R_{TH} + R_L)^2} = \frac{-2}{(R_{TH} + R_L)^3} \right\} =$$

$$= \left(\frac{1}{(R_{HH} + R_{L})^{2}} - \frac{2R_{L}}{(R_{HH} + R_{L})^{3}} \right) V_{HH}^{2} = 0$$

$$\Rightarrow 1 - \frac{2RL}{R_{TH} + R_L} = 0 \Rightarrow R_{TH} + R_L - 2R_L = 0 \Rightarrow \boxed{R_L = R_{TH}}$$

Maximum power is consumed in the load when RL=RTH

$$P_{\text{MAX}} = \frac{R_{\text{TH}}}{(2R_{\text{TH}})^2} V_{\text{TH}} = \frac{V_{\text{TH}}^3}{4R_{\text{TH}}}$$

Dependent Sources

Transistoris a voltage controlled current source

VOUT = K. Vgs · RL => VOUT = KRL if k. RL > 1 then amplification

Active component:

Non-linear characteristics

Gads Commonly diode modelect

Detailed analysis gives Io = Io(ex-1) For S: Vo~25mV Io~nA

For Vp < VT In = 0

Vp=VT Ideal voltage source Vo>Vy not possible

if Vo > VT is applied and no resistor limits the current the power in the diode will heat it up and eventually destroy it. Typically ID<20mA For Silde energy is converted to heat For Light Emitting Diodes (LED) part of the energy is converted to light.

Operational Amplifier

Basic building block to build analog circuits eg. amplifier.

PRin

Input resistance Rin≥10MD

$$\Rightarrow I_P = \overline{I}_0 = 0$$

So is can be large although ip = in = 0! We assure that the op-amp is in the linear region

by using negative feedback i.e. connecting a resistor Re

between output and the inverting node (-) Ex. Inverting-Amplifier

Ideal op-amp
$$V_n=V_P$$
 $in=ip=0$

ICCL at node $V_n: V_S=0 + V_O=0$

Rs

Rf

Vo = $-\frac{R_E}{R_S}V_S$ Vs is proportional to V_S

and amplification is $-\frac{R_E}{R_S}$

Typically A>10000

⇒ Linear region if Up-Vn < 1,5mV

region $V_p = V_n$

and Vce = 15V