AI Domain Specific Processor Design

北京希姆计算科技有限公司 Stream Computing Inc.

Mark Zhan
OS2ATC 2019@ShenZhen

Agenda

- Market Analysis of AI Processor
- > Architecture of AI Processor
 - Evolution of AI Processor Architecture
 - Key Metrics of AI Processor Architecture
- > Software of AI Processor
 - Program Parallelism Strategy
 - Data Sharding of Matrix Multiplication
 - Graph Compiler
- > Summary

Global AI Chip Market Trend

- ➤ AI Chip Market will grow > 10 times in next 5 years
 - The total AI chip market is projected to attain \$90.35 billion by 2025 at 45.2% CAGR
 - AI Inference Chip (server-side & edge-computing) will have bigger market share than AI training chip

- > NVIDIA FY20 Q3 Financial Report shows Data-Center Biz Revenue continues to grow rapidly, driven by the rise of:
 - Inference: The revenue of GPU T4 exceeds GPU V100
 - Conversational AI

What is driving the endless need to AI Computing Power?

- > For internet companies, various value-added services have been powered by AI technology in cloud-side
- ➤ The rise of 5G and AIoT is pushing more computing to edge-side, w/ better real-time performance and better data security

What is blocking broader adoption of AI Computing Power?

- > Total Cost of Ownership (TCO) of AI Computing Infrastructure includes:
 - Server Hardware (NRE H/W Cost)
 - Software: Licenses and Services
 - Operation expenses: Building Infrastructure, Electricity (Cooling, backup power), etc.
- > TCO of AI Server Deployment is still very high today!

	Performance (fps)	CPU (Intel Xeon 6140 x2)	GPU (x4)	Memory (64GB x2)	SSD (960G)	DISK (10T)	Server	Total	H/W TCO (¥/f)
nVidia T4 (ResNet-50)	20000							¥200,000	¥10
nVidia V100 (BERT)	12000							¥450,000	¥37.5

Agenda

- Market Analysis of AI Processor
- > Architecture of AI Processor
 - Evolution of AI Processor Architecture
 - Key Metrics of AI Processor Architecture
- > Software of AI Processor
 - Program Parallelism Strategy
 - Data Sharding of Matrix Multiplication
 - Graph Compiler
- > Summary

Evolution of AI Computing Engine

- ➤ Before 2006, CPU has been the major computing platform for logic-based applications.
- In General CPU, the majority of transistors are used for control logic and memory unit, only very small portion of transistors are used for ALUs.
- ➤ Being closer to the limitation of silicon process, Moore Law becomes invalid — The performance improvement of processor becomes slow!

- ➤ In 2006, NVIDIA released its epochal GPU product "G80" and "Fermi" architecture.
- > GPU is designed for computing: the majority of transistors are used for ALUs.
- ➤ Powerful Massive Parallel computing ability opens the door of AI age.

Evolution of AI Computing Engine

- > GPU has been the defacto computing platform for AI. But:
- ◆ GPU is very expensive Very high TCO for customers
- GPU is not designed for AI computing, e.g. redundant transistors for computer graphics, double-precision etc.
- ◆ Not sufficient memory design: Too small on-chip SRAM causes big latency.
- ◆ Poor performance for small batch size

	CPU	FPGA	GPU	DSA TPU/NPU
pros	 Good Programmability General Purpose: Almost can do everything 	Very flexible programmability.Suitable for quick algorithm iteration	 Compared with CPU, GPU has massive parallel computing ability Compared with FPGA, good universality 	 Al-Oriented Domain Specific Architecture Design and Optimization Best Trade-off for chip PPA Low cost for silicon large volume shipment
cons	 High Difficulty and Cost of Silicon Development Low Computing Power. Not suitable for computing intensive workload 	 Limited Computing Power. Speed and Power are not competitive with ASIC High cost for large volume shipment. 	 Expensive — High TCO High power consumption Redundant design for AI Inference Computing (e.g: useless FP64) 	High design and development difficultyDSA design cause limited universality

NVIDIA Open Source NVDLA

- > A complete design, both s/w and h/w are open source
- > Good for beginners

Google TPU v1

- > The Matrix Unit ($\sim 1/4$ chip area):
 - 256x256 **Systolic Array** of 8-bit MAC
 - 700MHz, Peak Performance 90TOPS
- ➤ Big size of on-chip SRAM (>1/4 chip area): 24MiB activation memory
- ➤ Host controls TPUv1 through 5 CMD Instructions:
 - Read Host Memory, Write Host Memory, Read Weights, MatrixMultiply/Conv, Activate(ReLU, Sigmoid, Maxpool, LRN,...)
 - 4-stage overlapped execution, 1 instruction type / stage
- Software Complexity:
 - no branches, in-order issue, s/w controlled buffers, SW controlled pipeline synchronization.
- > Overall Design:
 - As a slave computation accelerator
 - Only Meet the current need (at that time) of DNN models
 - Limited Flexibility to meet future need of future DNN models

Google TPU v1 — Systolic Array

- Problem: energy/time for repeated SRAM accesses of matrix multiply
- Solution: "Systolic Execution" to compute data on the fly in buffers by pipelining control and data
 - Control and Data are pipelined
 - Relies on data from different directions arriving at cells in an array at regular intervals and being combined
- Major benefit of systolic arrays:
 - all operand data and partial results are stored within (passing through) the cell array
 - There is no need to access external main memory or internal caches during each operation as is the case with Von Neumann or Harvard sequential machines

Google TPU v1 — Systolic Array Inside

➤ Use a generic 2*2 matrix multiply to show how systolic array works:

$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} * \begin{bmatrix} 1A & 1B \\ 1C & 1D \end{bmatrix} = \begin{bmatrix} 1*1A + 3*1C & 1*1B + 3*1D \\ 2*1A + 4*1C & 2*1B + 4*1D \end{bmatrix}$$

4

3

Google TPU v2/v3

- ➤ The change of design objectives impacts H/W & S/W Codesign:
 - Inference (TPUv1) => Training (TPUv2/v3)
 - meet our current and future needs:
 - ◆ Enough flexibility & Programmability to handle future models
 - ◆ Choosing the right amount of flexibility is central to the codesign process
- > Tensor Processing Core:
 - Scalar + SIMD Vector + Matrix GEMM

- > SW & HW IF: Traditional CPU Architecture ISA
 - Build a NN Supercomputer, rather than a NN coprocessor chip
- > Matrix Unit:
 - 128 x 128 Systolic MAC Array
 - bfloat16 multiplies
 - float32 accumulate

TPUv2 Core — A Turing-Complete Processor Core

DSA Design —— S/W & H/W Codesign

David Patterson: Next Decade is A New Golden Age for Domain Specific Architecture

What is DSA Processor?

• A processor runs a few categories of specific workloads, but does very well (high-performance).

➤ DSA Processor S/W & H/W Codesign Guidelines:

- Control Path: Analyze the control logic of your program
- Data Path: Analyze the data movement pattern
- Analyze the computation intensity
- What is your PPA goal of your processor?
- Other Design Goals...

DSA Design —— NN Computation Graph Program Analysis

Characters of Neural Network Computation Workload Programs:

- Graph-based workload and dataflow
- ➤ Intensive Tensor-based Computation
- Heavy Memory Access (Weight Params Load)
- Non-Linear Activation Function: sqrt, exp, recip etc.
- ➤ Asymmetrical Computation Intensity:
 - Dense vs Sparse

DSA Design — Tradeoff among various design factors

- ➤ Target User Scenario & Performance:
 - Training or Inference?
 - Silicon PPA Target?
- ➤ How much chip resources can be invested into PEs?
 - How do you design your PE Array?
- ➤ What is Memory Model Architecture? How to solve Memory Wall Problem?
 - How much on-chip SRAM?
 - How your data is moved? What is your memory bandwidth need?
- Supported Data Types:
 - Training: FP32 is must-have. Support BFP16?
 - Inference: FP16? INT16?
 - INT8 Quantization? Or even INT4?
- Parallelism Strategy?
 - Instruction Level Parallelism: VLIW or SIMD? Superscalar, Single or Multi issue?
 - What is your program parallelism model?

- ➤ How to reduce data movement?
 - Batches: Reuse weights once fetched from memory across multiple inputs
 - Apply compression to exploit redundancy in data requires additional hardware
- > How to increase PE utilization rate?
 - What is your DNN model mapping solution?
- > Reduce time and energy per MAC
 - Reduce precision => If precision varies, what is the impact to accuracy?
- Reduce unnecessary MACs?
 - Exploit sparsity => requires additional hardware; impact on accuracy
 - Exploit redundant operations => requires additional hardware

DSA Design — Key Metrics to Evaluate

- Peak Performance:
 - TOPS/TFLOPS: # of MACs * Freq
- Real Performance Throughput & Latency:
 - Real ResNet-50/BERT throughput (fps) with different batch size?
 - Latency with different batch size?
 - MLPerf Performance Benchmark Suite
- Energy and Power:
 - What is your peak power consumption (# Watt)?
 - What is your "throughput/watt"?
- Computation Accuracy
 - What is your precision/accuracy loss? (compared with golden data on CPU/GPU)
- Hardware Cost (\$\$\$)?
- Flexibility and Programmability:
 - Range of supported DNN Models and Workloads?
 - Easy to customize operator function?
- > Scalability:
 - Scaling of performance with amount of resources?

Agenda

- Market Analysis of AI Processor
- > Architecture of AI Processor
 - Evolution of AI Processor Architecture
 - Key Metrics of AI Processor Architecture
- Software of AI Processor
 - Program Parallelism Strategy
 - Data Sharding of Matrix Multiplication
 - Graph Compiler
- Summary

Parallelism Strategy — Task Decomposition vs Data Decomposition

- ➤ How do we parallelize a task? We need to *decompose* problems to achieve parallelism:
 - We can decompose a task on either *the control* or *the data*

Task Decomposition Parallelism

- Decompose a big task into a few small sub-tasks.
- The output of a previous sub-task will be the input of next sub-task.
- Running all sub-tasks on different machines/processors
- aka: *sub-task pipeline parallelism*

- All machines execute the same task, but handle different partition of the whole dataset.
- The degree of parallelism comes from the data decomposition and grows with the number of parallel machines
- very high speedups, and usually very finegrained (e.g., SIMD vectorization)

Parallelism Strategy — Task Decomposition vs Data Decomposition

	Task Decomposition Parallelism	Data Decomposition Parallelism		
pros	 In Theory, by handy decomposition we can achieve maximum performance 	 Easiest & Consistent Parallelism Model Can achieve high speedups, and fine granularity No handy sub-tasks balance issues 		
cons	 No Unique Decomposition Solution The number of sub-tasks determines the parallelism degree. Extra communication overhead is introduced by data exchange among sub-tasks Tasks Granularity is the key: fine-grained vs coarse grained decomposition 	 Memory Bandwidth Pressure by Parallel Cores access shared memory Latency will grow with the bigger dataset or batch size 		

Parallelism Strategy — Amdahl Law: Principle to evaluate your program performance

> The fundamental law of parallel computing : define the theoretical speedup that a program can be parallelized:

Speedup =
$$\frac{1}{\frac{P}{N} + S}$$

Where: (1) P — the percentage of the execution time in a program can be parallelized. (2) S — the percentage of the sequential execution time in a program, which will not benefit from the improved parallel resources. S = 1 - P. (3)N — The number of parallel computing resources.

> The upper limitation of parallel speedup:

Max Speedup =
$$\frac{1}{1-P}$$

Amdahl Law Famous Hint: You can spend a lifetime getting 95% of your code to be parallel, and never achieve better than 20x speedup no matter how many processors you throw at it!

Parallelism	Speedup	(Various parall	elized fraction	" P ")
N	0.50	0.90	0.95	0.99
4	1.60	3.08	3.48	3.88
8	1.78	4.71	5.93	7.48
16	1.88	6.40	9.14	13.91
32	1.94	7.80	12.55	24.43
64	1.97	8.77	15.42	39.26
100	1.98	9.17	16.81	50.25
1000	2.00	9.91	19.63	90.99
10000	2.00	9.99	19.96	99.02
100000	2.00	10.00	20.00	99.90

NOTICE: **P** of NN Model Program is important to us!!!

Matrix Multiplication Data-Sharding Solutions

Option #1: Split the columns of right matrix

- 1) Only split the columns of right matrix, no split to the left matrix;
 2) Reduce the size of input right matrix, and hence reduce the size of output matrix, but each time we get a complete output result.
- **Disadvantages:** For each block of right matrix and output, memory address are not continuous.

Option #3: Split the height of left matrix

- > 1) Split the row of the left matrix; 2) Each time we get half of final output matrix; 3) The memory address is continuous for all blocks (A1, A2, C1, C2)
- > The option is useful when size of left matrix is very big

Option #2: Split the height of right matrix (and hence the left matrix needs to be split in height direction)

> **Disadvantages:** Each time we get a complete shape of output matrix, but only partial result. Extra accumulation is needed.

Option #4: Practical Solution

- Practical Sharding solution to feed data to your Matrix MAC Array
- > Impact your operator implementation, performance, buffer allocation, etc.

Neural Network Compiler (aka: Graph Compiler)

- ➤ A key component for AI Processor S/W stack:
 - Map NN Workloads to low-level AI hardware
- Graph IR (e.g: NNVM/Relay IR etc)
 - Generate an unified graph representation
 - General Graph Optimization:
 - ◆ target-independent op fusion
 - Dead code elimination
 - ◆ Constant propagation
- > Challenges: How to generate optimized codes for each operators for different target backend? The problems to rely on ops library like: cuDNN/mkl-DNN:
 - Can't do target-dependent further op fusion optimization
 - Can't do optimization using compile-time constants (e.g. tensor shape)
 - Can't do graph-level optimization depending on target architecture
- > Solution: Low-Level IR
 - Address the huge difference between Graph-IR and Target Codes
 - Target Dependent Optimization through Progressive IR Lowering

Operator Fusion Example

- Operator Fusion is a popular optimization mechanism for almost all NN Compilers
- Operator Fusion is very efficient for Element-Wise Operation in NN Graph:
 - Improve the ratio of Computation/MemAccess
 - Reduce the times to access SRAM
- Example Pattern: Two Relu Ops + Add Op, N * 64 FP16, Vector 1024bit

- Each Relu Op (Assume 1 CPI)
 - Cycles: N * 4
 - Mem Access: N * 2
- Add Op:
 - Cycles: N * 7
 - Mem Access: N * 3
- Overall:
 - Cycles: 2 * (N*4) + (N*7) = 15 * N
 - Mem Access: 7 * N

v0, (t0)
v1, (t1)
t0, t0, 128
t1, t1, 128
v0, v0, r0
v1, v1, r0
v0, v0, v1
v0, (t2)
t2, t2, 128

> Fused Op ((Assume 1 CPI):

relu

• Cycles: 9 * N

add

Mem Access: 3 * N

relu

Less Cycles

Redundant

eleminated

MemAccess are

Overview of NN Compilers in Community

Tensorflow XLA

- HLO IR: DSL to represent BAISC Linear Algebra in various NN operators
 - E.g: A softmax op can be split and represented by a combination of basic "exp, div, reduce" operations.
- Current XLA Framework is lack of lowlevel IR:
 - Highly depends on manually optimized ops library

TVM

- A end-2-end complete NN Compiler stack
- Graph-IR: NNVM/Relay, supports different NN Models (Tensorflow, PyTorch etc)
- Low-level IR: Halide IR extension, based on Polyhedral model, A "compute/schedule" separate design.
- TVM Weakness:
 - Can't do graph global optimization in lowlevel Halide IR, schedule optimization only can be in operator-level
 - Limited Schedule Rules

PyTorch Glow

- A rising star: NN Compiler for PyTorch
- Glow High-level IR: Graph-Level IR
- Glow Lowered High-Level IR: Tensor
- Glow Low-level IR: w/ global graph info
 - Limited. Only a Memory-level IR
 - No loop-level IR, computation decomposition ability

Google MLIR — Multi-Level IR Framework

- From Compiler GURU "Chris Lattner"!
- ➤ Multi-Level IR Framework, Major Design goals: Extend the LLVM's Codegen framework & Archindependent optimizations into domain-specific IRs, e.g. Neural Network Compiler is one of the major target domains.
 - Progressive Lowering Multi-level IR framework
 - Help compiler engineer to design your own IR (aka: dialect) in different level to address different problems/needs.
- ➤ The following facilities are provided by MLIR Framework:
 - An unified IR framework from high-level IR to low-level IR
 - General compilation optimization algorithms common to different level dialects
 - IR definition and transform framework based on LLVM TableGen, to simplify IR definition, optimization and lowering implementation
 - Common types in neural network domain, e.g. tensor, memref etc
 - Polyhedral-based algorithms implementation for Code transformation, buffer management, DMA code injection etc.
- ➤ **Highlight**: MLIR is NOT a complete NN compiler implementation, it is a framework to help you to implement your own NN compiler.

Summary of AI Processor Architecture

Q&A

Thanks!