Hoja de Trabajo #5

Capacitancia

1. a) Encontrar la capacitancia equivalente del siguiente circuito entre las terminales a y b. b) Si entre los puntos a y b se aplica una diferencia de potencial de 10V, determine la diferencia de potencial en los bornes del capacitor uno (C_1) . R:/a) $2\mu F$; b) V=3.33V

<u>Solución</u>. Empezaremos numerando los capacitores como se muestra en la figura. Observemos para hacer las primeras simplificaciones en el circuito que los capacitores 9 y 10 se encuentran en serie por lo que se pueden reducir por un capacitor equivalente al que denominaremos C_{eq1} :

$$C_{eq1} = \left(\frac{1}{2 \times 10^{-6}} + \frac{1}{2 \times 10^{-6}}\right)^{-1} = 1 \times 10^{-6} F$$

Asimismo, los capacitores 5 y 6 se encuentran en paralelo por lo que se pueden remplazar por un capacitor de capacitancia:

Observe también, que luego de redibujar el circuito el \mathcal{C}_{eq2} está en serie con el capacitor 7:

$$C_{eq3} = \left(\frac{1}{2 \times 10^{-6}} + \frac{1}{2 \times 10^{-6}}\right)^{-1} = 1 \times 10^{-6} F$$

Asimismo, el capacitor C_{eq1} está en paralelo con el capacitor 8:

$$C_{eq4} = C_{eq1} + C_8 = 2\mu F$$

Continuando con las reducciones se tiene que \mathcal{C}_{eq3} y \mathcal{C}_4

están en paralelo.

$$C_{eq5} = C_{eq3} + C_4 = 2\mu F$$

También el capacitor 3 y el capacitor 2 están en paralelo por lo que los podemos remplazar por un capacitor C_{eq6}

$$C_{eq6} = C_2 + C_3 = 2\mu F$$

De la reducción de C_{eq4} y C_{eq5} en serie:

$$C_{eq7} = \left(\frac{1}{C_{eq4}} + \frac{1}{C_{eq5}}\right)^{-1} = 1\mu F$$

Ahora \mathcal{C}_{eq6} y \mathcal{C}_{eq7} quedan en paralelo y al sustituirlos:

$$C_{ea8} = C_{ea6} + C_{ea7} = 3\mu F$$

Y finalmente C_{eq8} en serie con **C1** por lo que la capacitancia equivalente de la combinación es:

$$C_{eqT} = \left(\frac{1}{C_{eq8}} + \frac{1}{C_1}\right)^{-1} = \frac{2\mu F}{C_1}$$

b) Si entre los puntos a y b se aplica una diferencia de potencial de 10V, determine la diferencia de potencial en los bornes del capacitor uno (C_1) .

Si entre los bornes del capacitor equivalente se aplican 10 voltios la carga del capacitor equivalente es:

$$Q_{eqT} = V_{ab}(C_{eqT}) = 20\mu C$$

Como el capacitor equivalente total está remplazando a una combinación en serie tiene la misma carga que los capacitores que remplaza:

$$Q_{eqT} = Q_{eq8} = Q_1 = 20\mu C$$

Por lo que el voltaje en los bornes del capacitor uno es:

$$V_1 = \frac{Q_1}{C_1} = \frac{20\mu C}{6\mu F} = \frac{3.33V}{6\mu F}$$

2. ¿Cuál es la energía total almacenada en el grupo de capacitores mostrados en la figura si la diferencia de potencial V_{ab} es 50 V?

a. 48mJ	b.	27 mJ	c. 37 mJ	d. 19 mJ	e. 10mJ

<u>Solución</u>. Para encontrar la energía almacenada en el conjunto de capacitores encontraremos la capacitancia equivalente de esta combinación y posteriormente la energía almacenada por el capacitor equivalente, que es la energía del conjunto de capacitores.

Empezaremos numerando los capacitores como se muestra en la figura. Observemos que C_1 y C_2 están en paralelo por lo que pueden ser sustituidos por un capacitor con capacitancia:

$$C_{12} = C_1 + C_2 = 60 \mu F$$

Después de realizar la reducción anterior, se tiene que C_{12} está en serie con el capacitor C_3 por lo cual la capacitancia equivalente de la combinación es:

$$C_{eq} = \left(\frac{1}{C_{12}} + \frac{1}{C_3}\right)^{-1} = \left(\frac{1}{60 \times 10^{-6}} + \frac{1}{20 \times 10^{-6}}\right)^{-1} = 15\mu F$$

Y la energía del conjunto de capacitores:

$$U_{sistema} = \frac{1}{2}C_{eq}\Delta V^2 = \frac{1}{2}(15 \times 10^{-6})50^2 = \frac{19mJ}{2}$$

3. Determine la carga almacenada en C_1 cuando $C_1=20\mu F$; $C_2=10\mu F$;

$C_3 = 30 \mu F$;	$V_o = 18V$			
a) 0.37 <i>mC</i>	b) 0.24 <i>mC</i>	c) 0.32 <i>mC</i>	d) 0.40 <i>mC</i>	e) 0.50 <i>mC</i>

Solución: Calcularemos la capacitancia equivalente del circuito y a partir de ésta analizaremos y encontraremos la carga del capacitor C_1

Observemos que C_2 y C_3 están en paralelo por lo que su capacitancia equivalente es:

$$C_{23} = C_2 + C_3 = 10\mu F + 30\mu F = 40\mu F$$

Asimismo, C_{23} está en serie con C_1 por lo que el capacitor equivalente de la combinación es:

$$C_{eq} = \left(\frac{1}{C_1} + \frac{1}{C_{23}}\right)^{-1} = \left(\frac{1}{20 \times 10^{-6}} + \frac{1}{40 \times 10^{-6}}\right)^{-1} = \frac{40}{3} \mu F$$

La carga de este capacitor equivalente es:

$$Q_{eq} = C_{eq}V_o = \frac{40}{3} \times 10^{-6} (18) = 240 \mu C$$

Este capacitor sustituye a una combinación en serie, por lo que su carga es la misma que los capacitores que remplaza:

$$Q_{eq} = Q_1 = Q_{23} = 240\mu C$$

4. ¿Cuál es la energía almacenada en C_3 si $C_1=50~\mu F$; $C_2=30~\mu F$; $C_3=36~\mu F$; $C_4=12~\mu F$ y $V_0=30~V$?

_					
	a) 6.3 <i>mJ</i>	b) 25 <i>mJ</i>	c) 57 <i>mJ</i>	d) 1.6 <i>mJ</i>	e) 14 <i>mJ</i>

Solución: Reduciremos el circuito a un solo capacitor equivalente y posteriormente analizaremos la energía almacenada en C_3 . Observemos que C_1 y C_2 están en paralelo:

$$C_{12} = C_1 + C_2 = 80 \mu F$$

Asimismo C_3 y C_4 están en paralelo:

$$C_{34} = C_3 + C_4 = 48\mu F$$

Por ultimo C_{34} y C_{12} están en <u>serie</u>:

$$C_{eq} = \left(\frac{1}{C_{12}} + \frac{1}{C_{34}}\right)^{-1} = \left(\frac{1}{80 \times 10^{-6}} + \frac{1}{48 \times 10^{-6}}\right)^{-1} = 30\mu F$$

La carga del capacitor equivalente es:

$$Q_{eq} = C_{eq}V_0 = 30 \times 10^{-6}(30) = 900\mu C$$

Dado que el capacitor equivalente está sustituyendo a una combinación en serie:

$$Q_{eq} = Q_{12} = Q_{34}$$

Con la carga de C_{34} podremos calcular el voltaje de este capacitor:

$$V_{34} = \frac{Q_{34}}{C_{34}} = \frac{900\mu C}{48\mu F} = 18.75V$$

Debido a que C_{34} remplaza a una combinación en paralelo, su voltaje es el mismo que el C_3 y C_4 :

$$V_{34} = V_3 = V_4 = 18.75V$$

Entonces la energía almacenada en C_3 es:

$$U_3 = \frac{1}{2}C_3V_3^2 = \frac{1}{2}(36 \times 10^{-6})(18.75)^2 = \frac{6.33mJ}{10^{-6}}$$

5. Un capacitor de placas paralelas de $120\mu F$ tiene placas de $120cm^2$ y mica como dieléctrico K=6.2. El voltaje máximo que puede aplicarse al capacitor es 90V. Calcule: a) la resistencia dieléctrica de la mica. La carga inducida. R: $\sqrt{E_{max}} = 1.64 \times 10^{10} V/m Q_{ind} = 9.058 \times 10^{-3} C$

Solución. La capacitancia de un capacitor con dieléctrico es:

$$C = \frac{K\varepsilon_o A}{d}$$

Si de la ecuación anterior se despeja la distancia entre las placas se tiene:

$$d = \frac{K\varepsilon_o A}{C} = \frac{6.2(8.85 \times 10^{-12})(120 \times 10^{-4})}{120 \times 10^{-6}} = 5.487 \times 10^{-9} m$$

Entonces si la relación entre el voltaje y el campo eléctrico en un capacitor de placas paralelas es:

$$\Delta V = Ed$$

Entonces:

$$E = \frac{90}{5.487 \times 10^{-9}} = 1.64 \times 10^{10} \, V/m$$

Para calcular la carga inducida en el material dieléctrico, primero se calculará la carga en las placas del capacitor:

$$Q = CV = 120 \times 10^{-6} (90) = 0.0108C$$

Y la carga inducida:

$$Q_{ind} = Q\left(1 - \frac{1}{K}\right) = 0.0108\left(1 - \frac{1}{6.2}\right) = 9.058 \times 10^{-3} C$$

6. Dos placas paralelas de área $0.01m^2$ se cargan con la misma cantidad de carga pero opuesta en signo, $Q=8.9\times 10^{-7}C$; el campo eléctrico en el material dieléctrico es 1.4×10^6 V/m. Calcule el valor de K y la carga inducida en el dieléctrico. R: \ K=7.18 $Q_{ind}=7.66\times 10^{-7}C$

Solución. El campo eléctrico en un capacitor que posee un dieléctrico está dado por:

$$E = \frac{E_o}{K} = \frac{\sigma}{K\varepsilon_o}$$

En la ecuación anterior E_0 representa el valor del campo del capacitor si éste no tuviera dieléctrico, el cual está dado por la relación entre la densidad de carga de la placa del capacitor y la constante \mathcal{E}_o .

Despejando entonces la constante K de la ecuación anterior:

$$K = \frac{\sigma}{E\varepsilon_o} = \frac{Q}{EA\varepsilon_o} = \frac{8.9 \times 10^{-7}}{(1.4 \times 10^6)(0.01)(8.85 \times 10^{-12})} = 7.18$$

Y la carga inducida en el dieléctrico:

$$Q_{ind} = Q\left(1 - \frac{1}{K}\right) = 8.9 \times 10^{-7} C\left(1 - \frac{1}{7.18}\right) = 7.66 \times 10^{-7} C$$

7. Para el sistema de capacitores que se muestra en la figura adjunta, se sabe que el cuarto capacitor C_4 posee una carga $Q_4=50\mu C$; $C_1=5\mu F$, $C_2=C_3=C_4=10\mu F$.

La carga eléctrica que posee C_1 , en μC , está dada por:

		•		
a) <mark>75</mark>	b) 90	c) 50	d) 30	e) NEC

Solución.

A partir de la carga que posee el capacitor C4, calcularemos la diferencia de potencial entre sus terminales:

$$V_4 = \frac{Q_4}{C_4} = \frac{50\mu C}{10\mu F} = 5V$$

Se simplificará el circuito de la siguiente forma, se reducirá a un solo capacitor la combinación en serie de C2 y C3

$$C_{23} = \left(\frac{1}{C_3} + \frac{1}{C_2}\right)^{-1} = 5\mu F$$

Por estar en paralelo este capacitor con C4, se puede reducir a un solo capacitor

$$C_{234} = C_{23} + C_4 = 15\mu F$$

Este capacitor equivalente tiene el mismo voltaje que el capacitor C4 y que el capacitor C_{23} por haber sustituido a una combinación en paralelo. $V_{234} = 5V$ y la carga de este capacitor es:

$$Q_{234} = V_{234}C_{234} = 75\mu C$$

Observe que al reducir los capacitores el capacitor C_{234} queda en serie con el capacitor C1, por lo que deben tener la misma carga:

$$Q_1 = Q_{234} = 75\mu C$$

La diferencia de potencial entre los puntos A y B del sistema, en V, está dada por:

a) <mark>20</mark>	b) 24	c) 15	d) 4	e) NEC

Solución.

Si el circuito se sigue simplificando se debe reducir el capacitor C_{234} en serie con el capacitor C1, por lo que el capacitor equivalente de la combinación de capacitores es:

$$C_{eq} = \left(\frac{1}{C1} + \frac{1}{C_{234}}\right)^{-1} = \frac{15}{4}\mu F$$

Este capacitor por reemplazar a la combinación en serie de C1 y C₂₃₄, tiene la misma carga que estos:

$$Q_{eq} = 75\mu C$$

Y su voltaje es la diferencia de potencial entre los puntos A y B.

$$V_{eq} = \frac{Q_{eq}}{C_{eq}} = \frac{75\mu C}{\frac{15}{4}\mu F} = \frac{20V}{V_{eq}}$$

La energía almacenada en el capacitor C_3 , en μJ , está dada por:

a) 6	b) 10	c) <mark>31</mark>	d) 45	e) NEC
------	-------	--------------------	-------	--------

Solución.

Para calcular la energía del capacitor C3, encontraremos la carga del capacitor C_{23} ya que por sustituir a una combinación en serie C2 y C3 tiene la misma carga:

$$Q_{23} = C_{23}V_{23} = 5\mu F * (5V) = 25\mu C$$

Entonces la energía de C3:

$$U_3 = \frac{Q_3^2}{2C_3} = \frac{(25 \times 10^{-6})^2}{2(10 \times 10^{-6})} = 3.125 \times 10^{-5} J$$

Se sabe que el cuarto capacitor está relleno con un dieléctrico con constante dieléctrica (permitividad relativa) $\kappa = 5$. La carga inducida en el dieléctrico, en μC , está dada por:

a) 24 b) 20 c) 48 d) <mark>40</mark> e) NEC

Solución.

$$Q_{ind} = Q\left(1 - \frac{1}{K}\right) = 50 \times 10^{-6} C\left(1 - \frac{1}{5}\right) = 4 \times 10^{-5} C$$

8. Un capacitor de placas paralelas se encuentra conectado a una fuente de voltaje $V_o=30V$, dicha fuente en ningún momento se desconecta del capacitor. El espacio entre las placas se encuentra vacío. El valor del área de las placas es $100cm^2$ y la separación entre las placas es d=0.5mm El valor de la carga que aparece en las placas del capacitor, en nC, está dada por:

a) 10.62	b) 1.77	c) 3.54	d) 5.31	e) NEC

Solución. Primero se encontrará la capacitancia del capacitor:

$$C = \frac{\varepsilon_o A}{d} = \frac{8.85 \times 10^{-12} (100 \times 10^{-4})}{0.0005} = 1.77 \times 10^{-10} F$$

Por lo tanto la carga que aparece es:

$$Q = CV = (1.77 \times 10^{-10})(30) = 5.31nC$$

Se introduce un material dieléctrico que llena completamente el capacitor, su constante dieléctrica es K=4, cuánta carga extra, en nC, debe proporcionar la fuente para que el campo eléctrico en el interior se mantenga constante.

a) 15.93 b) 21.24 c) 0.2	214 d) 10.62 e) NEC
------------------------------	---------------------

Solución. Antes de insertar el dieléctrico el campo eléctrico es:

$$E = \frac{V}{d} = \frac{30}{0.0005} = 60kV$$

El campo eléctrico en un capacitor con dieléctrico está dado por:

$$E_f = \frac{\sigma}{K\varepsilon_o} = \frac{Q}{K\varepsilon_o A}$$

Por lo que si se requiere mantener la intensidad del campo eléctrico $(E=E_f)$ la carga que deben tener las placas es:

$$Q = E_f K \varepsilon_0 A = (60000)(4)(8.85 \times 10^{-12})(100 \times 10^{-4}) = 21.24 nC$$

Por lo que la carga extra será: 21.24nC - 5.31nC = 15.93nC

Si la rigidez dieléctrica del material dieléctrico es $6 \times 10^7 \ V/m$, el potencial de ruptura del capacitor en kV, está dado por:

a) 0	b) 15	c) 40	d) <mark>30</mark>	e) NEC
Solucion.	$V_{max} = E_{max}d =$	$6 \times 10^7 (0.0005)$	= 30kV	