

https://pixabay.com/photos/spaghetti-pasta-food-restaurant-863304/

Parsing With a PDR

- A PDR is effectively doing a derivation on the stack from the start symbol S
- A string is valid if it can get to H with no input string left
- and the terminals it has generated in the derivation match from left to right against the input string

Using the PDA on aaabb

- start in state 1 looking at a with ⊥ on the stack
- in state 2 looking at a with S⊥ on the stack
- in state 2 looking at a with aSb⊥ on the stack
- in state 2 looking at (the 2nd) a with Sb⊥ on the stack
- in state 2 looking at (the 2nd) a with aSbb⊥ on the stack
- in state 2 looking at (the 3rd) a with Sbb⊥ on the stack

Using the PDA on aaabb

- in state 2 looking at b with bbb
 _ on the stack
- in state 2 looking at (the 2nd) b with bb⊥ on the stack
- in state 2 looking at end of input with b⊥ on the stack
- none of the arcs apply we are stuck

Non-determinism (again!)

This type of PDR is non-deterministic

 Can we revise the PDR to make it deterministic?

Converting to Deterministic PDR

- There is no formula for converting a nondeterministic PDR into a deterministic one
- The general rule of thumb is:
 - for every terminal (t) that can start the string there is an arc labelled $t/\bot/t\bot$
 - for numerical relations between characters
 (e.g. aⁱbⁱ) push on a and pop off an a for every
 - ends with $\varepsilon/\perp/\perp$ as usual

A Deterministic PDR for G₅

- G_5 is $\{a^ib^i : i \ge 1\}$
 - The input symbol separates the arcs from state 2 and the stack bottom marker separates the arcs from state 3
 - We can try aaabbb and aaabb

Using the New PDA on aaabbb

- start in state 1 looking at a with ⊥ on the stack
- in state 2 looking at the 2nd a with a⊥ on the stack
- in state 2 looking at the 3rd a with aa⊥ on the stack
- in state 2 looking at the b with aaa⊥ on the stack
- in state 3 looking at the 2nd b with aa⊥ on the stack
- in state 3 looking at the 3rd b with a⊥ on the stack
- in state 3 looking at end of string with ⊥ on the stack
- in state H looking at end of string with ⊥ on the stack

A Deterministic PDR for G₆

 Try these strings: aabbaababb, babaa, abc

$$S \rightarrow aB \mid bA \mid \epsilon$$
 $A \rightarrow aS \mid bAA$
 $B \rightarrow bS \mid aBB$
 G_6

{x : x is any mixture of 'a's and 'b's, where the no. 'a's = no. 'b's}

A Deterministic PDR for G₇

- Here the string may or may not start with c
 - Try: ccccaabbb, abbb, caaabbbbbbb

$$S \rightarrow cS \mid A$$
 $A \rightarrow aAbb \mid abb$
 G_7

$$\{c^i a^j b^{2j} : i \ge 0, j \ge 1\}$$

Special Non-Deterministic PDRs

- Consider the context free grammar (G₈):
 - $-S \rightarrow aSa \mid bSb \mid cSc \mid a \mid b \mid c$
 - it generates palindrome strings
 - definitely a context free grammar, and hence the language is context free

- Can we design a deterministic PDR for the grammar G₈?
 - If not, why not?

A PDA for the Grammar G₈

we could construct a (non-deterministic) PDA as in the earlier example

A Partial Stack Trace for This PDA Applied to abacbcaba

- start in state 1 looking at a with \perp on the stack
- in state 2 looking at a with S⊥ on the stack
- in state 2 looking at a with aSa⊥ on the stack
- in state 2 looking at b with Sa⊥ on the stack
- in state 2 looking at b with bSba⊥ on the stack
- in state 2 looking at a with Sba⊥ on the stack
- in state 2 looking at a with aSaba⊥ on the stack
- in state 2 looking at c with Saba⊥ on the stack
- in state 2 looking at c with cScaba⊥ on the stack
- in state 2 looking at b with Scaba⊥ on the stack

Now What?

- now shall we use the "ε / S / bSb" or the "ε / S / b" arc?
 - in fact there was a choice like this every time we rewrote S
- the only way to be sure is to see how many characters there are to the end of the string
- the problem is that the PDA has to "guess" where the middle of the palindrome is
- we cannot create a deterministic version of this PDA

Special Non-Deterministic PDRs

- We could try the following technique:
 - Push each symbol from the input stream onto the stack until the middle of the input string is reached, then pop a corresponding symbol off the stack for each of the remaining symbols in the input stream.
- But how does the PDR know when the middle of the input string has been reached?

Non-Deterministic CFLs

- Unlike regular languages, which are all deterministic, many context free languages are only non-deterministic
- Such languages cannot be processed by a deterministic PDR

Deterministic and Non-Deterministic CFLs

- so the set of all context-free languages is divided into
 - a set for which there is a deterministic PDA to parse them
 - a set for which there is no deterministic PDA (only a non-deterministic one)

Uses of Context Free Grammars

 with Regular Grammars everything is straightforward - we can create a deterministic FSM and parse with it

 with Context-Free Grammars things are not so straightforward - our CF grammar may be nondeterministic

But ...

- Context Free Grammars are very important in computer science for compiling etc.
- The syntax of most programming languages are properly context free
 - e.g. the original version of Pascal
- How can we discover if a language is properly context free?
 - We can use LR(k) parsing
 - LR stands for "Look ahead Right"

Much more on this in the second half of SCC312. Web search for Yacc, Bison, etc

Chomsky Hierarchy: our roadmap

Ambiguity

Syntax and Semantics

Reminder

- Languages usually have meaning (semantics) as well as structure (syntax)
- In natural languages, sentences can be syntactically correct but not make sense:
 - "the raggedy doctor parsed the zarbi-oriented flowery tardis"
- Moreover, natural languages can be highly ambiguous (more than one meaning)
 - "Fruit flies like a banana"
 - "Doctor who saved my life"

Ambiguity in CFLs

 Formally, ambiguity means that within a language one or more sentences can be parsed into more than one structure

Ambiguity in CFLs

 Consider the following non-deterministic language (G₉)

Ambiguity in G₉

 Any sentence of the form aibici will be associated with two derivation trees:

A Proposed Grammar for (Simple) Arithmetic Expressions

```
<expression> ::= <factor> |
         <expression> + <expression> |
         <expression> - <expression> |
         <expression> * <expression> |
         <expression> / <expression>
<factor> ::= number |
          identifier |
          ( <expression> )
     e.g. an expression
```

something like: "2 + 3 * b – a / 2"

Backus-Naur Form (BNF)

Reminder

- non-terminals in < ... > brackets
- alternatives for the same non-terminal are written as a single right-hand side, separated by | (meaning "or")

Deriving a - b + c

- <expression>
- <expression> + <expression>
- <expression> + <factor>
- <expression> + identifier (c)
- <expression> <expression> + identifier (c)
- <expression> <factor> + identifier(c)
- <expression> identifier(b) + identifier(c)
- <factor> identifier(b) + identifier(c)
- identifier(a) identifier(b) + identifier(c)

The Parse Tree for a - b + c

Another Derivation of a - b + c

- <expression>
- <expression> <expression>
- <factor> <expression>
- identifier(a) <expression>
- identifier(a) <expression> + <expression>
- identifier(a) <factor> + <expression>
- identifier(a) identifier(b) + <expression>
- identifier(a) identifier(b) + <factor>
- identifier(a) identifier(b) + identifier(c)

Another Parse Tree for a - b + c

Ambiguous Grammars I

- this grammar (let's call it G1) gives rise to two possible parses for this (and other) strings - there is an ambiguity
- the ambiguity is important if a = 6, b = 4 and c = 5 the first parse of "a-b+c" evaluates to (6-4)+5 or 7, and the second to 6-(4+5) or -3

Ambiguous Grammars II

- a sentence (grammatical string) is
 ambiguous if it can be parsed according
 to a grammar in at least two different ways
 (that is, the parse trees are different, not
 just the order of derivation)
- a grammar is ambiguous if there is at least one ambiguous sentence according to the grammar

An Alternative Grammar (G2) I

```
<expression> ::= <factor> |
         <expression> + <factor> |
         <expression> - <factor> |
         <expression> * <factor> |
         <expression> / <factor>
<factor> ::= number |
         identifier |
         ( <expression> )
```

The right hand sides are new

An Alternative Grammar (G2) II

- this grammar agrees with G1 as to which strings are grammatical and which are not
 that is, the grammars are (weakly)
 equivalent
- but grammar G2 disallows the second parse tree - check that you can see why
- this appears to be what we want, but there is still a problem

Parsing a - b * c with Grammar G2

- <expression>
- <expression> * <factor>
- <expression> * identifier(c)
- <expression> <factor> * identifier(c)
- <expression> identifier(b) * identifier(c)
- <factor> identifier(b) * identifier(c)
- identifier(a) identifier(b) * identifier(c)

The Parse Tree for a - b * c

Precedence

- so grammar G2 parses a b * c as if it was (a - b) * c
- however, the usual convention is that the operators * and / have higher precedence than + and -
- so a b * c should be interpreted as a (b * c), even if the programmer doesn't insert the brackets
- so let's try again

A Third Attempt - Grammar G3

```
<expression> ::= <term> |
       <expression> + <term> |
       <expression> - <term>
<term> ::= <factor> |
       <term> * <factor> |
       <term> / <factor>
<factor> ::= number |
       identifier |
       ( <expression> )
```

This is the bit that differs from G2

Parsing a - b * c with Grammar G3

- <expression>
- <expression> <term>
- <expression> <term> * <factor>
- <expression> <term> * identifier(c)
- <expression> <factor> * identifier(c)
- <expression> identifier(b) * identifier(c)
- <term> identifier(b) * identifier(c)
- <factor> identifier(b) * identifier(c)
- identifier(a) identifier(b) * identifier(c)

The Parse Tree for a - b * c

Grammar G3

- can be shown to be unambiguous (that is, there is only one way of parsing any particular valid string)
- is (weakly) equivalent to grammar G1
- gives the correct precedence to the arithmetic operators
 - for instance, there is no way to parse "a b * c" as if it had the structure "(a b) * c" (unless you explicitly write the brackets)

Ambiguity in Programming

- When compiling source code programs, the compiler generates a parse tree of the statements
 - the syntactic structure is used as a basis for the generation of the code
 - if there are two possible syntactic structures for a statement, there are two possible ways in which a statement could execute.
 - a program could execute in ways we do not expect

Ambiguity in Pascal

 Now consider the following fragment from the original definition of Pascal:

The above definition is ambiguous

Ambiguity in Pascal

- We can generate two parse trees for:
 - if x > y then if y < z then x := x + 1 else x := x 1

Ambiguity in Pascal

- Consider the effect on the execution of:
 - if x > y then if y < z then x := x + 1 else x := x 1
 - where x = 2, y = 1, and z = 0
 - Parse Tree 1:
 - if 2 > 1 then (if 1 < 0 then x := 2 + 1 else x := 2 1)
 - x := 1
 - Parse Tree 2:
 - if 2 > 1 then (if 1 < 0 then x := 2 + 1) else x := 2 1
 - Nothing changes

Semantic Implications

- In itself, formal ambiguity is not necessarily a problem
 - what matters is if the semantics of two syntactic structures for the same statement are different
 - these are the semantic implications
 - this is the case in the Pascal example and the order of precedence example

Ambiguity in Grammars

- Ambiguity in grammars for programming languages is not acceptable
- We would like to rewrite any ambiguous grammars to become unambiguous
- It turns out that this is not always possible
- Some context free languages are inherently ambiguous

Chomsky Hierarchy

Summary

Week 13

 Not all languages are regular, as can be shown by the "Repeat State" Theorem

For further reading, web search "pumping lemma"

Context-free grammars have rules: X → RHS

- For every CF grammar there is a pushdown recogniser, but not all are deterministic
- CF grammars are used for most programming languages
- Ambiguous grammars have semantic implications

https://pixabay.com/photos/youth-active-jump-happy-sunrise-570881/