

POLITECHNIKA WARSZAWSKA

WYDZIAŁ: Mechaniczny Energetyki I Lotnictwa

Metoda Elementów Skończonych II

SPRAWOZDANIE

Ćwiczenie nr 2 (ANSYS)

<u>Oynamika – stany nieustalone</u> <u>(Transient Analysis)</u>

Wykonał: Adam Nowak (indeks 304250)

(magisterskie niestacjonarne)

WARSZAWA, maj 2024

1. Cel ćwiczenia

Celem przeprowadzonego ćwiczenia była analiza stanów nieustalonych wspornika stalowego, który był analizowany podczas pierwszego laboratorium. Wspornik został odpowiednio utwierdzony i obciążony przez pewien czas, a następnie obciążenie zdjęto.

2. Objekt – dane

2a. Przyjęty układ.

Przyjęty układ odniesienia został umieszczony w płaszczyźnie symetrii przekroju belki, z jego początkiem na końcu belki. Układ ten został przedstawiony na Rysunku 1.

Rysunek 1 Układ odniesienia

2b. Wymiary, gabaryty, kształt

Na Rys 2. przedstawiono ogólny układ oraz gabaryty belki (60 x 40 x 1000 mm).

Rysunek 2 Wymiary belki, utwierdzenie belki, obciążenie

2c. Dane materialowe:

Stal
$$E = 200 \ GPa, v = 0.3, \ \rho = 8000 \frac{kg}{m^3}$$

Zastosowano model liniowy izotropowy.

2d. Warunki brzegowe i obciążenie.

- 1) Brak obciążeń zewnętrznych oraz zablokowanie wszystkich stopni swobody.
- 2) Do chwili 0.3s belka została obciążona na drugim końcu czterema siłami o wartości 125N
- 3) Od 0.3s 0.5s obciążenie zostało zdjęte, belka pozostała utwierdzona

3. Model MES

3a. Użyte oprogramowanie.

Do przeprowadzenia symulacji wykorzystano oprogramowanie Ansys Mechanical Enterprise z wykorzystaniem aplikacji wewnętrznej APDL.

3b. Zastosowane elementy skończone.

Zastosowano model typu solid 186.

3c. Siatka podziału, liczby elementów / węzłów

Siatka została podzielona poprzez linie kolejno na każdej powierzchni. Na rys 5 został przedstawiony schemat podziału linii na ilość komórek.

Cechy siatki	
Ilość węzłów	6800
Ilość elementów	33485

Tabela 1 Cechy siatki

3d. Ustawienia solvera

- 1) Ze względu na analizę w czasie zastosowano analizę "transient".
- 2) Pierwsza część analizy została ustawiona na 150 kroków przez 0.3 s.
- 3) Druga część analizy została ustawiona na 25 kroków przez 0.2 s.
- 4) Współczynnik tłumienia w obu krokach ustawiono na B = 0.000435

Rysunek 3 ustawienie podziału elementów w celu utworzenia siatki

4. Wykresy

Rysunek 4 Wykres przemieszczeń dowolnego punktu znajdującego się na belce

Rysunek 5 Wykres przemieszczeń bezpośrednio po przyłożeniu obciążenia

Rysunek 6 Wykres przemieszczeń po 0,1 s

Rysunek 7 Wykres przemieszczeń po 0,2 s

Rysunek 8 Wykres przemieszczeń bezpośrednio po zdjętym obciążeniu, t = 0,308 s

Rysunek 9 Wykres przemieszczeń po zdjętym obciążeniu, t = 0,42 s

Rysunek 10 Wykres przemieszczeń po zdjętym obciążeniu, t = 0,5 s

5. Podsumowanie

Po przyłożeniu obciążenia wartość przemieszczenia belki w osi Y zmienia się na ujemną, co oznacza, że belka odgina się w dół. Odgięcie belki w dół można zaobserwować na mapach przemieszczeń umieszczonych powyżej (Rysunek 5, Rysunek 6, Rysunek 7). Następnie przemieszczenie stabilizuje się na poziomie około -0.8 cm, oscylując gasnącym ruchem. W momencie zdjęcia obciążenia, zanim oscylacje całkowicie wygasły i belka się ustabilizowała, belka ponownie zaczyna oscylować. Tym razem odgięcie belki jest dodatnie co oznacza, iż belka odgina się w górę (Rysunek 8, Rysunek 9, Rysunek 10). Oscylacje te dążą do zerowej wartości przemieszczenia, co oznacza powrót do stanu początkowego.