Maths Discrètes

Solutions TP 5

Beltus Marcel

Exercice 1

$$n = \frac{mL - 1}{m - 1}$$
$$= \frac{3 \times 521 - 1}{3 - 1}$$
$$= 781$$

$$h = log_3(521)$$
$$= 5.69$$

$$L = \frac{L-1}{m-1}$$
$$= \frac{L-1}{2}$$
$$= 26$$

Comme entier et équilibré, seuls les deux derniers niveaux possèdent des feuilles.

- h_5 possède $i\sum_{k=0}^4 3^k = 139$ sommets. si h_5 n'avait pas de feuilles, il avait $3^5 = 243$ sommets donc h_5 possède 243 - 139 = 104 feuilles.
- h_6 possède donc 510-104 ou $139\times 3=417$ feuilles.

Exercice 2

1.

2.

Exercice 3

2.
$$xy - x17 + 7 - *$$

Exercice 4

- (a) 3 arbres sous-tendants
- (b) 4 arbres sous-tendants
- (c) 5 arbres sous-tendants
- (d) 16 arbres sous-tendants

Exercice 5

Exercice 6

Exercice 7

Comme démo de TP 4 exercice 5.

Exercice 8

$$\sum_{k=0}^{n} 2^{k} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} 2^{k} 1^{n-k}$$
$$= (2+1)^{n}$$
$$= 3^{n}$$

Exercice 9

$$\sum_{k=m}^{n} \binom{k}{m} \binom{n}{k} = 2^{n-m} \binom{n}{m}$$
le nombre de façons d
 echoisir m parmi k, et k parmi n soit :

le nombre de façons de choisir m
 parmi n et d'inclure ou non un élément de n dans k. (m
n y étant par définition donc sans choix)

Exercice 10

Indice $x_1=\#1,\ x_2=\#2,\ldots,\ x_6=\#6$ $x_i\geq\in\mathbb{N}$ où $x_i=$ le nombre de D qui tombent sur i. et si on les additionnent tous on à le nombre de D qu'on a lancé. $x_1+x_2+x_3+\cdots+x_6=n$ Puis il faut retrouver la forme polynomiale.