Lesson 2: Database System Concepts & Architecture

CSC430/530 - DATABASE MANAGEMENT SYSTEMS

DR. ANDREY TIMOFEYEV

OUTLINE

- ·Data model. hundled before the DB is created
- Database schema and state.
- Data independence.
- •DBMS languages, interfaces & system utilities.
- Centralized DBMS architecture.
- •Two-tier & three-tier client/server DBMS architecture.
- •DBMS classification.

DATA MODEL: DEFINITIONS

- Data model is a set of concepts to describe: used during the design • **structure** of a database,
 - operations for manipulating these structures, and actions
 - certain constraints that the database should obey. cules
- Data model structure & constraints:
 Database structure is defined by constructs.
 - Constraints specify restrictions on valid data that must be enforced at all times.
- Data model includes set of operations that govern database retrievals and updates.
 - Basic operations: Insert, Delete, Update.
 - User-defined operations: compute_student_gpa, update_inventory.

DATA MODELS: CATEGORIES

•Categories of data models:

- n. Conceptual data models. The idea of ER and EER
 - High-level or semantic.
 - Provide concepts that are close to the way users perceive data.
 - Entities, attributes, relationships.
- Implementation data models.
 - Hide many details of data storage, but can be implemented on system directly.
 - User views and computer storage details.
- Physical data models:
 - Low-level or internal.
 - Describe how data is stored as files on the computer.
 - Record formats, record orderings, and access paths.

Entities are the real world objects.

Attributes belong to the

entities i.e GPA, Name

Relationships are how the entitities are connected

DATABASE SCHEMA & STATE (1)

- •Data model consists of two parts:
 - Database schema description of the database.
 - Describes database structure and constraints that should hold on the database.
 - Specified during database design and rarely changed.
 - Database state snapshot of the database.
 - Data in the database at a particular moment in time.
 - Database state changes every time a value of data item in a record is changed or a record is inserted or deleted.

Adding or deleting un attribute is an example of schema evolution. Schema evolution is rare.

DATABASE SCHEMA & STATE (2)

- Distinction between database schema & state:
 - The database schema changes very infrequently (schema evolution).
 - The database state changes every time the database is updated on to upon refriend
 - Schema = *intension*, state = *extension*.
- •DBMS ensures valid state of database, based on the database schema (structure & constrains).

THREE-SCHEMA ARCHITECTURE (1)

- •Three-schema architecture supports database approach characteristics:
 - Self-describing nature (DBMS catalog).
 - Program-data independence.
 - Support of data multiple views.

user External Conceptual Schema Internal Neutral View Schema Schema Three-Schema Architecture Simplified View

THREE-SCHEMA ARCHITECTURE (2)

- •Schemas are defined in three levels:
 - Internal schema.
 - Describes details of physical data storage & accessing paths.
 - Uses physical data model.
 - Conceptual schema.
 - Describes structure of the whole database to the user.
 - Uses conceptual or implementation data models.
 - External schema.
 - Describes the specific part of the database to a user.
 - Uses same data models as conceptual schema.
- •Mappings among schema levels are needed to transform requests and data.

Three-Schema Architecture Detailed View

DATA INDEPENDENCE

- •Data independence capacity to change the schema at one level of the database system without having to change the schema at the next higher level.
- •Two types of data independence:
 - Logical data independence:
 - Change of conceptual schema ≠ change of external schemas.
 - Physical data independence:
 - Change of internal schema ≠ change of conceptual schema.
- •Change of schema at a lower-level will only causes change of mapping to higher-level schemas.
 - Main benefit: no need to change application programs since they refer to the external schemas.

Three-Schema Architecture

DBMS LANGUAGES: DDL

- •Next step after DBMS design is the implementation of the conceptual and internal schemas and mappings between two. • Done by data definition language (DDL).
- •Data definition language (DDL):
 - Used by the DBA and database designers to specify the conceptual schema of a database.
 - In addition, DDL is used to define internal and external schemas.

DBMS LANGUAGES: DML

- •Once the database schemas are compiled and database is populated with data, user must have means to **manipulate** the data.
 - Done by data manipulation language (DML).
- •Data manipulation language (DML):
 - Used to specify database retrievals and updates.
 - High-level (non-procedural).
 - Specifies which data to retrieve, rather than how to retrieve it.
 - Operates on a set of data.
 - Low-level (procedural).
 - Specifies how to retrieve the data.
 - Operates on a single record.

SQL has both

DDL and DML

DBMS SYSTEM UTILITIES

- •**DBMS utilities** offer following functionality:
 - Loading.
 - Loading existing data files into DB or transferring data form one DB to another.
 - Backup.
 - Create a backup of database current state.
 - Storage reorganization.
 - Reorganize database files to improve performance
 - Performance monitoring.
 - Monitors database usage to check if reorganization is needed.
 - Data dictionary system.
 - Data dictionary stores meta-date, design decisions, usage standards, application program description and user information.
 - Application development environments. They sal workburch
 - Aid in database application development.

CENTRALIZED DBMS ARCHITECTURE

- •Centralized DBMS architecture combines all elements into a single system.
 - DBMS software, hardware, application programs, and user interface processing software.

TWO-TIER CLIENT/SERVER ARCHITECTURE (1)

•Basic two-tier client/server architecture:

- Specialized servers with specialized functions.
 - Print server.
 - File server.
 - DBMS server.
 - Web server.
 - Email server.
- Clients can access the specialized servers as needed.
 - When client requires access to additional functionality (database access) it connects to the server.

Logical Two-Tier Client/Server Architecture

TWO-TIER CLIENT/SERVER ARCHITECTURE (2)

- •Two-tier client/server DBMS architecture:
 - User interface and application programs are stored on the client side.
 - Query & transaction functionality related to SQL processing is performed by the server (SQL server).
- •When **DBMS** access required, **program** (client) establishes a connection to the **DBMS** (server).
 - Once connection is established the client can communicate with the DBMS.
 - Query results are sent back to client program which processes and displays the results.

THREE-TIER CLIENT/SERVER ARCHITECTURE

- •Three-tier is a common architecture for web applications.
 - Intermediate layer between client and database server.
- •Clients → user interface & web browsers.
- •Middle tier \rightarrow application server or web server.
 - Runs apps or stores business rules (*procedures, constrains*) that are used to access the data form server.
 - In addition, used for security by checking client credentials.

Three-Tier Client/Server Architecture

DBMS CLASSIFICATION

- •DBMS are **classified** by following **characteristic**:
 - Data model.
 - Hierarchical.
 - Network.
 - Relational.
 - Object.
 - Document.
 - Graph.
 - Key-value.

- Number of users.
 - Single-user.
 - Multi-user.
- Number of cites.
 - Centralized (single cite).
 - Distributed (multiple cites).
 - Homogeneous (same DBMS on all cites).
 - Heterogeneous (different DBMS on cites).

- Cost.
 - Open source (free).
 - MySQL, PostgreSQL.
 - Commercial (\$\$\$).

SUMMARY

- Data model definition and categories.
- Database schema and state.
- Three-schema architecture and mappings.
- Logical and physical data independence.
- DBMS languages.
- Two-tier and three-tier DBMS architecture.
- •DBMS classification.