Field Homomorphism Injectivity Proof

Prove that a field homomorphism to the field of complex numbers is injective

Let $f:F\to\mathbb{C}$ be a field homomorphism, where F is any field. To prove that f is injective, we will show that its kernel is trivial.

Step 1. Consider the Kernel of f

The **kernel** of f is defined as:

$$\ker(f) = \{x \in F \mid f(x) = 0\}.$$

A fundamental property of ring homomorphisms is that the kernel is an ideal in the domain.

Step 2. Use the Structure of Fields

Since F is a field, it has only two ideals:

- 1. The trivial ideal $\{0\}$, and
- 2. The entire field F itself.

Step 3. Eliminate the Possibility $\ker(f) = F$

Assume for contradiction that $\ker(f)=F$. Then, for every $x\in F$, we would have f(x)=0. However, because f is a field homomorphism, it must send the multiplicative identity 1_F of F to the multiplicative identity $1_{\mathbb C}$ in ${\mathbb C}$. That is,

$$f(1_F)=1_{\mathbb{C}}.$$

But $1_{\mathbb C}
eq 0$ in the field $\mathbb C.$ This contradiction shows that $\ker(f)$ cannot equal F.

Step 4. Conclude That $\ker(f)=\{0\}$

Since the only ideals in F are $\{0\}$ and F itself, and we have ruled out F, it must be that:

$$\ker(f) = \{0\}.$$

Step 5. Deduce Injectivity

A homomorphism is injective if and only if its kernel is trivial. Since $\ker(f)=\{0\}$, it follows that f is injective.

Final Conclusion

Thus, any field homomorphism $f:F o\mathbb{C}$ is injective because its kernel is $\{0\}.$