

Sem consulta. Duração: 3h00m.

RESPONDA ÀS QUESTÕES DE CADA PARTE EM FOLHAS SEPARADAS

PARTE I

1. ______ (20 %)

A empresa "FotoMoldes" é especializada na produção de molduras para fixação/exposição de fotografias. Na secção de montagem entram 3 tipos de componentes, nomeadamente:

- **Aros da moldura** (intervalo de chegada segue uma distribuição exponencial negativa com 1 minuto de média);
- **Tampos traseiros** (intervalo de chegada segue uma distribuição de Poisson com 1 minuto de média);
- **Parafusos** (intervalo de chegada segue uma distribuição uniforme com mínimo de 20 segundos e máximo de 30 segundos).

Nesta secção são usados **4 parafusos** para juntar o tampo traseiro ao aro da moldura, pelo que uma moldura completa é composta pelo aro da moldura, um tampo traseiro e 4 parafusos. Esta operação é efetuada por **2 operários com o auxílio de 1 berbequim**. Após a montagem, as molduras completas seguem para o armazém. Informação adicional: (A = Entrada de aros de moldura); (B = Entrada de tampos traseiros); (C = Entrada de parafusos); (M1 – batch size = 4); (M3 – batch size = 3); (D – Seize/Delay/Release).

1.1 Diga, **justificando** sucintamente, qual/quais dos modelos lógicos apresentados na seguinte figura representam o cenário descrito.

Qual/quais as opções que estão corretas no que respeita à informação, relativa ao intervalo de chegada, contida nos módulos A, B e C?

- a) A = EXPO(-1); B = POIS(1); C = UNIF(20,30);
- **b)** A = -EXPO(1); B = POIS(1); C = SCHEDULE(UNIF(20,30));
- c) A = -1; B = VALUE(POIS(1)); C = VALUE(UNIF(20,30));
- **d**) A = CONST(1); B = SCHEDULE(POIS(1)); C = NORM(20,30);
- e) A = EXPO(1); B = POIS(1); C = UNIF(20,30);
- $\mathbf{f)} \quad \mathbf{A} = \mathrm{GET}(\mathrm{EXPO}(\text{-}1)); \ \mathbf{B} = \mathrm{GET}(\mathrm{POIS}(1)); \ \mathbf{C} = \mathrm{GET}(\mathrm{UNIF}(20,30));$

1.3 A figura seguinte representa alguns resultados do Arena. Com base na informação disponível responda às seguintes questões:

Instantaneous Utilization	Average	Half Width	Minimum Average	Maximum Average	Minimum Value	Maximum Value
Berbequim	0.02928989	,001	0.02484172	0.03114030	0.00	0.1167
Operario	0.05021123	,002	0.04258580	0.05338338	0.00	0.2000
Number Busy	Average	Half Width	Minimum Average	Maximum Average	Minimum Value	Maximum Value
Berbequim	1.7574	,063	1.4905	1.8684	0.00	7.0000
Operario	3.5148	,127	2.9810	3.7368	0.00	14.0000
Number Scheduled	Average	Half Width	Minimum Average	Maximum Average	Minimum Value	Maximum Value
Berbequim	60.0000	,000	60.0000	60.0000	60.0000	60.0000
Operario	70.0000	,000	70.0000	70.0000	70.0000	70.0000

- a) Quantos recursos de cada tipo foram definidos para a simulação?
- b) Qual a média percentual de utilização individual de cada recurso?
- c) Qual o número adequado de recursos para a secção de montagem?

2. ______ (10 %)

Indique se as seguintes afirmações são verdadeiras ou falsas:

- 1. Numa simulação estática o tempo é relevante para a determinação do estado do sistema, pelo que se recorre a computadores para diminuir a relevância do tempo;
- **2.** A simulação de um sistema estocástico é como assistir a um filme, não existe variabilidade e tudo acontece exatamente nos mesmos instantes de tempo;
- **3.** Uma simulação discreta caracteriza-se pela impossibilidade de determinar o estado do sistema em momentos discretos no tempo;
- **4.** Uma simulação dinâmica, embora exija muito poder de computação, caracteriza-se pelo estado do sistema não depender do tempo;
- **5.** Uma simulação determinística, como o próprio nome indica, caracteriza-se por ser determinada em modelar sistemas que incorporam aleatoriedade e incerteza;
- **6.** A maioria dos sistemas são dinâmicos, discretos e estocásticos.

A Matilde foi ao shopping. Dirigiu-se a um terminal ATM para levantar dinheiro. De seguida foi imprimir uns documentos numa impressora automática. Depois lembrou-se e foi fazer umas compras no hipermercado. Levou um carrinho de compras, recolheu as compras, fez o pagamento, deixou o carrinho, e foi embora. Atente ao diagrama seguinte. Complete o diagrama com as letras da lista abaixo, de forma a simular o dia da Matilde. Se necessário, pode repetir a utilização de letras.

<u>A</u>: Create; <u>B</u>: Dispose; <u>C</u>: Delay; <u>D</u>: Separate (Duplicate Original); <u>E</u>: Batch (Batch Size = 2); <u>F</u>: Process (Delay Release); <u>G</u>: Process (Hold Wait Free); <u>H</u>: Process (Seize Delay Release) <u>I</u>: Match; <u>I</u>: Signal; <u>K</u>: Wait; <u>L</u>: Move; <u>M</u>: Process (Seize Delay); <u>N</u>: Assign; <u>O</u>: Variable

4. (15 %)

A imagem seguinte representa um sistema simples. As entidades entram e são processadas pelo colaborador no *Process 1*. Depois, no *Process 2*, o colaborador trabalha as entidades, uma a uma, enviando-as para a secção seguinte.

- **4.1** Quanto tempo demoram as entidades a chegar à "Station 2" desde a saída do *Process 1*? Selecione a opção (ou opções) correta/as.
- a) Aproximadamente 7 vezes mais do que o tempo entre a Station 2 e o Process 2;
- **b**) Depende do intervalo entre chegadas no *Create 1*;
- c) Impossível responder, pois depende da velocidade relativa da entidade;
- d) Pelo modelo apresentado, a movimentação é instantânea, pelo que o tempo é zero;
- e) Impossível responder, pois depende da velocidade relativa da replicação da simulação;
- f) Pelo modelo apresentado, depende do tipo de transportador disponível no sistema;
- g) Nenhuma das anteriores;
- **4.2** Se se pretendesse fazer a animação da movimentação entre o *Process 1* e a *Station 2*, que módulo (que não implica uso de recursos de transporte) seria suficiente incluir no modelo lógico apresentado? Onde deveria ser incluído? <u>Justifique sucintamente</u>.
- **4.3** Assuma que a **Variável Global** "<u>Count</u>" contabiliza o número de entidades que transitam para a secção seguinte. Qual das seguintes opções representa a correta programação dessa funcionalidade no modelo?
- a) Módulo **Assign**; Expressão: <u>Variable Count = Count + Dispose 1.NumberOut</u>;
- **b)** Módulo **Batch**; Expressão: <u>BatchSize = Count + 1</u>;
- c) Módulo **Assign**; Expressão: <u>Variable Count = Count + 1</u>;
- **d)** Módulo **Separate**; Expressão: <u>#Duplicates = nextSection +1</u>;
- e) Módulo **Forward**; Expressão: $\underline{\text{Count}} = \underline{\text{GoNext}} + 1$;
- **f)** Módulo **Assign**; Expressão: Attribute Count = Count + 1;
- g) Nenhuma das anteriores;

(10 %)

O modelo representado na imagem seguinte tem um problema de modelação que pode, eventualmente, impedir o normal funcionamento do sistema. <u>Identifique o problema e justifique</u> o porquê de poder impedir o normal funcionamento do sistema.

6	(10 %)
Atente à imagem do "Create 1".	
0	

- **6.1** Quantas entidades, no máximo, entram no sistema com o "Create 1"? <u>Justifique</u> sucintamente.
- **6.2** Suponha que a simulação do sistema inicia às 07h00, e que o "Create 1" é o único "Create" do sistema. A que horas entra a primeira entidade? E a última? <u>Justifique sucintamente</u>.

|--|

Indique se as seguintes afirmações são verdadeiras ou falsas:

- 1. Uma das vantagens da simulação é a possibilidade de incorporação da incerteza nos modelos desenvolvidos;
- **2.** Uma das desvantagens da simulação é a necessidade de interromper as atividades de um sistema real para o poder simular;
- **3.** A simulação pode fornecer uma replicação mais realista de um sistema, embora seja menos precisa comparativamente aos modelos matemáticos;
- **4.** Uma vantagem da simulação é a eventualidade do tempo computacional necessário ser significativo para simular sistemas complexos.

8.	(1	0	9/	6)

8.1 Associe os módulos da coluna esquerda aos conceitos da coluna direita:

Entity	Delay
Resource	By Chance
Assign	Time Between Arrivals
Create	Temporary/Permanent
Batch	Picture
Decide	Capacity
Process	Variable

8.2 Descreva, sucintamente, a diferença entre Entity e Resource.

a		15	, (٥/,	_ '
J	J. V	1 ~	,	/1	97
					- 4

Atente aos dois modelos abaixo. É possível que ambos os modelos consigam representar exatamente o mesmo sistema? <u>Justifique sucintamente.</u>

RESPONDA ÀS QUESTÕES DE CADA PARTE EM FOLHAS SEPARADAS

PARTE II

1. ______ (30 %)

Considere a rede da figura.

- **a)** Apresente um modelo de programação linear para o problema do caminho mais curto entre 1 e 6.
- **b**) Com base num algoritmo adequado obtenha a árvore dos caminhos mais curtos com raiz em 1.
- c) Como poderia obter o segundo caminho mais curto com base no modelo da alínea a) e na solução obtida na alínea b)?
- d) Considere que os valores junto aos arcos correspondem a distâncias e que também se pretende ter em conta a duração dos arcos. Assim, cada arco na horizontal ou vertical (e.g. 1-2, 1-4) demora a unidades de tempo a ser percorrido e que cada arco na diagonal (1-5, 3-5 e 5-3) demora b unidades de tempo a ser percorrido. Apresente um modelo de programação inteira para o problema de determinar o caminho mais curto cuja duração não exceda c unidades de tempo.

2. ______ (30 %)

A folha de cálculo seguinte foi construída para resolver um problema de caminho mais curto com um Solver de programação inteira.

- a) Quantos nodos e quantos arcos tem a rede do problema?
- **b)** Represente a rede do problema.
- c) Indique o caminho selecionado e o custo associado a essa solução.
- d) Qual a fórmula inserida na célula M4? E na célula M12?
- e) Complete os parâmetros do Solver para o problema de caminho mais curto da folha de cálculo:
 - i. Qual é a célula de objetivo (Z)?
 - ii. Quais são as células que correspondem às variáveis de decisão (X)?
 - iii. Quais são as restrições (R) em falta?
- f) Indique o caminho em que o arco mais longo do caminho tem a menor distância (objetivo minmax).

3. ______ (10 %)

Um gestor de projetos tem de decidir sobre a equipa que vai trabalhar num determinado projeto relacionado com Tecnologias da Informação. Na sua decisão pretende minimizar o tempo (meses) que demora a ter o produto final e, também, minimizar o número de engenheiros de *software* necessários para o desenvolver.

No gráfico seguinte são apresentadas algumas das equipas possíveis para desenvolver o projeto:

- a) Tendo em conta as alternativas e os objetivos do gestor de projetos, determine as soluções (equipas) eficientes e as soluções (equipas) dominadas.
- **b**) O gestor de projetos recebeu a informação de que o produto deve estar terminado até dia 1 de agosto de 2019 (daqui a 6 meses). Sabendo que a empresa pode estar disposta a ter equipas com mais engenheiros, desde que por cada engenheiro a mais haja a redução de pelo menos um mês no tempo de execução do projeto, por qual equipa o gestor deve optar?

4. ______ (30 %)

Considere o problema do caixeiro-viajante simétrico com seis vértices e as distâncias dadas na tabela.

	1	2	3	4	5	6
1	•	5	8	6	3	14
2	5	•	11	16	13	12
3	8	11	-	7	15	10
4	6	16	7	•	8	5
5	3	13	15	8	-	9
6	14	12	10	5	9	•

- a) Obtenha uma solução aplicando a heurística do vizinho mais próximo começando no nodo 1.
- b) Obtenha uma solução aplicando a heurística da aresta de menor custo.
- c) Aplique a heurística de Clarke e Wright (também designada por heurística das poupanças) até ter três subcircuitos (i.e. basta que façam duas iterações). Considere o nodo 1 como o vértice central, resultando nos seguintes cinco subcircuitos iniciais: 1-2-1 (custo 10), 1-3-1 (custo 16), 1-4-1 (custo 12), 1-5-1 (custo 6) e 1-6-1 (custo 28) com um custo total de 72.

(Calcule e apresente a matriz das poupanças para justificar as suas considerações.)

- d) Considerando a estrutura de vizinhança troca de duas arestas (2-Opt):
 - i. As soluções obtidas em 4a) e 4b) são soluções vizinhas?
 - ii. A solução obtida em 4a) é uma solução ótima local? Justifique.