Game Theory Homework 3

Zhang Shaozuo

Qn₂

1)

a) Monopoly

Maximize $(1 - p_1 - p_2)p_1 + (1 - p_1 - p_2 - 0.1)p_2 = (1 - p_1 - p_2)(p_1 + p_2) - 0.1p_2$ where p_1, p_2 are the quantities of the product of the old firm and the new firm respectively.

The payoff is maximized when $p_2=0$ and $p_1=0.5$, which is $u_1=0.25$ and $u_2=0$

b) Cournot duopoly

Payoff of the old firm(monopolist) $u_1=(1-p_1-p_2)p_1$, the payoff is maximized when $p_1=(1-p_2)/2$,

Payoff of the new firm $u_2=(1-p_1-p_2-0.1)p_2$, the payoff is maximized when $p_2=(0.9-p_1)/2$,

so
$$p_1=rac{11}{30}, p_2=rac{4}{15}, u_1=rac{121}{900}, u_2=rac{16}{225}$$

c) Aggressive behavior

The old firm(monopolist) wants the new entrant to make losses, so

$$u_2=(1-p_1-p_2-0.1)p_2\leq 0$$
 for every $0\leq p_2\leq 1$

That is
$$u_2=(0.9-p_1-rac{0.9-p_1}{2})^{rac{0.9-p_1}{2}}\leq 0$$
 , solve $p_1=0.9$.

$$u_1 = (1 - 0.9)0.9 = 0.09, u_2 = 0$$

2)

Monopoly: $u_1=(1-p_1-c)p_1$, the payoff is maximized when $p_1=\frac{1-c}{2}$, the maximum payoff is $u_1=\frac{(1-c)^2}{4}$

Cournot duopoly:
$$p_1=(1-c-p_2)/2$$
, $p_2=(0.9-c-p_1)/2$, solve $p_1=\frac{11-10c}{30}$, $p_2=\frac{4-5c}{15}$, $u_1=(1-c-p_1-p_2)p_1=\frac{(11-10c)^2}{900}$, $u_2=\frac{(4-5c)^2}{225}$

Aggressive behavior: $u_2=(0.9-c-p_1-p_2)p_2\leq 0$ for every $0\leq p_2\leq 1$. (The old firm wants the new entrant to earn nothing) That is $p_1=0.9-c$, $u_1=0.09-0.1c$

3)

a)

The old firm would be **passive** if $(11-10c)^2/900 > 0.09-0.1c$

$$f(c)=(11-10c)^2-(81-90c)=100c^2-130c+40.\ f(0.5)=f(0.8)=0$$
, solve $(11-10c)^2/900>0.09-0.1c$ when $c>0.8$ or $c<0.5$

In this case, the new entrant would **enter** the market because $\frac{(4-5c)^2}{225}>0$. The SPE of the game is (**Passive, Enter**). The threat of aggressive behavior is not credible because anyway the new entrant would enter the market

b)

Otherwise (0.5 < c < 0.8), the old firm would be **aggressive**. The new entrant is indifferent in choosing **Enter** or **Not Enter** because anyway its payoff is 0. The SPE of the game is (**Aggressive**, **Enter**) and (**Aggressive**, **Not Enter**). The threat of aggressive behavior is still not credible because it cannot prevent the new entrant from entering the market.

c)

If c=0.5, the old firm's payoff is always $(11-10c)^2/900=0.09-0.1c=0.04$ no matter being **Passive or Aggressive**.

The new entrant will choose **Enter** because $\frac{(4-5c)^2}{225} > 0$, the SPE of the game is (**Passive, Enter**) and (**Aggressive, Enter**)

d)

If c=0.8, the old firm's payoff is always $(11-10c)^2/900=0.09-0.1c=0.01$ no matter being **Passive or Aggressive**.

The new entrant is in different in choosing **Enter** and **Not Enter** because anyway its payoff is 0. In this case, any action pair is SPE.

In all cases, the threat of aggressive behavior is not credible.

4)

	Enter	Not Enter
Passive	$(\frac{(11-10c)^2}{900}, \frac{(4-5c)^2}{225})$	$(rac{(1-c)^2}{4},0)$
Aggressive	(0.09-0.1c,0)	$(rac{(1-c)^2}{4},0)$

If $0 \le c < 0.1426$, because

$$0.09 + 0.8c - c^2 < rac{(1-c)^2}{4}$$
 when $0 \leq c < 0.1426$.

a)

If c>0.8 or c<0.5, we can prove that $0.09-0.1c<rac{(1-c)^2}{4}$.

Prove:
$$f(c) = 100 imes (rac{(1-c)^2}{4} - (0.09 - 0.1c)) = 25c^2 - 40c + 16 = (5c - 4)^2 > 0$$

(**Aggressive, Not Enter**) is a pure strategy Nash equilibrium that is not subgame perfect equilibrium

For other value of c, there is no pure strategy Nash equilibrium that is not subgame perfect equilibrium.

5)

The SPNE will be the same as the answer to 3) because each market's payoff is independent to other market's payoff.