INLÄMNINGSUPPGIFT 1-1045

Ersätt nedanstående enport A-B med en Theveninekvivalent eller Nortonekvivalent.

För beräkningar av strömmar/spänningar får Ohms lag, KCL, KVL samt slinganalys, nodanalys eller metoden med incidensmatriser användas.

INLÄMNINGSUPPGIFT 2-1045

- a) Beräkna spänningen u(t).
- b) Beräkna den aktiva och den reaktiva effekt som erhålls i belastningen R3-L1.
- c) Antag nu att R1 och C2 är variabla och bestäm R1 och C2 så att effektutvecklingen i enporten A-B blir maximal.

 $i_0(t) = 10\sin(1000t)$ (mA) 1u = 1 mikrofarad Källans inre impedans är $Zi = 100e^{jpi/4}$ (ohm)

Transformatorn är ideal med omsättningsförhållandet N1/N2=10.

INLÄMNINGSUPPGIFT 5.1045

Nedanstående förstärkare har ett Gemensamt Bassteg (GB-steg) som andra steg. (GB-steget har mycket låg inimpedans och används därför bland annat tillsammans med lågimpediva signalgeneratorer. GB-steget har också den fördelen att bandbredden inte sjunker med ökande förstärkning, vilken den gör för GE-steg.) Typiskt för GB-steget är att signalen matas in på emittern.

 $R_{G1} = R_{G2} = 1 \text{ M}\Omega, \ R_{D2} = 100 \ \Omega, \ R_{S1} = 200 \ \Omega, \ R_{S2} = 2 \ k\Omega, \ R_{I} = 10 \ k\Omega, \ R_{L} = 2 \ k\Omega, \ E = 12 \ V$

Fälteffekttransistorernas parametrar:

 $U_P = -3.5 \text{ V}, I_{DSS} = 9.8 \text{ mA}.$

Brantheten 4 mS och utadmittansen 10 μ S. $Z_{in} = \infty$.

För FET-transistorerna gäller vidare: $i_D = I_{DSS} \left(1 - \frac{u_{GS}}{U_p}\right)^2$

Bipolartransistorns parametrar:

Inimpedans 2 kΩ, återkopplingsförhållande $2 \cdot 10^{-4}$, strömförstärkningsfaktor 100 och utadmittans 50 μS. B=100.

- a) Beräkna R_{D1} , R_2 och R_3 så att FET-transistorn T_1 får arbetspunkten I_{DQ} =5 mA, U_{DSQ} =5 V, och bipolartransistorn får arbetspunkten I_{CQ} =1 mA, U_{CEQ} =4 V.
- b) Rita ett ekvivalent småsignalschema för förstärkaren, varvid fälteffekttransistorernas utadmittans samt bipolartransistorns återkopplingsförhållande och utadmittans försummas. Kapacitanserna är stora.

Beräkna därefter utspänningen $u_{ut}(t)$ om $u_{in}(t)=\sin(10^3t)$ [mV].

Eventuella approximationer skall noggrant motiveras.

