Practical Exercise

Activity Overview

- This exercise involves editing MATLAB code, running the code, and comparing the
 fit and forecasting performance of a standard SEIR model against other
 phenomenological growth models (i.e., generalized growth model) using data from
 the first wave of the mpox in the United States.
- This exercise will provide:
 - (1) Hands-on experience with the *QuantDiffForecast* toolbox
 - (2) Practice with the methods discussed throughout today's lectures.

Goal

To determine the best approach, using the provided SEIR model, to fit and forecast the 2022-2023 epidemic in the United States employing the tools covered today.

2022-2023 Mpox Epidemic

- In May 2022, an unprecedent, epidemiologically unique, surge in mpox cases was observed around the globe
 - Transmission
 - Symptomology
 - Impacted Communities
- Over <u>94,584 cases</u> and <u>163 deaths</u> reported worldwide in non-endemic regions (June 30th, 2024)
- **Highest impacted countries:** Brazil, Canada, France, Germany, Spain, the United Kingdom, and the <u>United States</u>

Susceptible-Exposed-Infectious-Recovered model

- Expands upon the SIR model with the inclusion of latency period via an exposed class.
- Latency Period $(1/\kappa)$: Time elapsed from effective exposure to the infectious agent to infectiousness.
- R_0 can still be calculated as β/γ

Parameters

Parameter	Initial	LB	UB	Fixed
β	6.59	0.001	10	No
N	550000	550000	550000	Yes
κ	0.526	0.526	0.526	Yes
γ	0.2439	0.2439	0.2439	Yes
r	1.9	0.001	10	No
p	0.83	0	1	No

Initial Conditions

Parameter	Initial	
S(t)	params.initial(4)-5	
E(t)	0	
I(t)	5	
R(t)	0	
$\mathcal{C}(t)$	5	

Additional Specifications

- Model: Susceptible-Infectious-Recovered, Neg. Binomial Distribution
- Comparison Models: Generalized Growth Model (GGM)
- Forecasting Dates:
 - 2022-07-14 (Use 11-weeks calibration period)
 - 2023-02-23 (Use all data for calibration)
- Forecasting Horizon: 4-weeks
- Calibration period length:
 - Weekly: 11-weeks and All data
- Bootstrapping: Use between 100-300 samples, set start points to 10

Using this information, and the parameters provided on other slides, prepare the options fit.m files and conduct a model comparison analysis.

Comparing Models: Example Table

Model	MAE	MSE	Coverage 95% PI	WIS				
Calibration Performance								
Forecast Performance								

Questions

- (1) Which model would you use to fit the early phase of the mpox epidemic?
- (2) Which model would you use to forecast during the early phase of the mpox epidemic?
- (3) Which model would you use to fit the entire mpox epidemic curve?
- (4) Which model would you use to forecast 4-weeks into the future, calibrating the model with all available weeks of data?

Please submit your responses on the course website.