III. ESTIMATION OF OFF-DIAGONAL GLUON MASS IN MA GAUGE

Next, we investigate the effective gluon mass. We start from the Lagrangian of the free massive vector field A_{μ} with the mass $M \neq 0$ in the Proca formalism,

$$\mathcal{L} = \frac{1}{4} (\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu})^{2} + \frac{1}{2} M^{2} A_{\mu} A_{\mu}, \qquad (6)$$

in the Euclidean metric. The scalar combination of the propagator $G_{\mu\mu}(r;M)$ can be expressed with the modified Bessel function $K_1(z)$ as

$$G_{\mu\mu}(r;M) = \langle A_{\mu}(x)A_{\mu}(y)\rangle$$

$$= \int \frac{d^4k}{(2\pi)^4} e^{ik\cdot(x-y)} \frac{1}{k^2 + M^2} \left(4 + \frac{k^2}{M^2}\right)$$

$$= 3 \int \frac{d^4k}{(2\pi)^4} e^{ik\cdot(x-y)} \frac{1}{k^2 + M^2} + \frac{1}{M^2} \delta^4(x-y)$$

$$= \frac{3}{4\pi^2} \frac{M}{r} K_1(Mr) + \frac{1}{M^2} \delta^4(x-y). \tag{7}$$

In the infrared region with large Mr, Eq. (7) reduces to

$$G_{\mu\mu}(r;M) \simeq \frac{3\sqrt{M}}{2(2\pi)^{\frac{3}{2}}} \frac{e^{-Mr}}{r^{\frac{3}{2}}},$$
 (8)

using the asymptotic expansion,

$$K_1(z) \simeq \sqrt{\frac{\pi}{2z}} e^{-z} \sum_{n=0}^{\infty} \frac{\Gamma(\frac{3}{2} + n)}{n! \Gamma(\frac{3}{2} - n)} \frac{1}{(2z)^n},$$
 (9)

for large Re z.

FIG. 2: The logarithmic plot of $r^{3/2}G_{\mu\mu}^{\rm off}(r)$ and $r^{3/2}G_{\mu\mu}^{\rm Abel}(r)$ as the function of the four-dimensional Euclidean distance r in the MA gauge with the U(1)₃×U(1)₈ Landau gauge fixing, using the SU(3) lattice QCD with 16⁴ at $\beta=5.7,\,5.8$ and 6.0. The solid line denotes the logarithmic plot of $r^{3/2}G_{\mu\mu}(r)\sim r^{1/2}K_1(Mr)$ in the Proca formalism.

In Fig.2, we show the logarithmic plot of $r^{3/2}G_{\mu\mu}^{\rm off}(r)$ and $r^{3/2}G_{\mu\mu}^{\rm Abel}(r)$ as the function of the four-dimensional

Euclidean distance r in the MA gauge with the U(1)₃×U(1)₈ Landau gauge fixing. From the linear slope on $r^{3/2}G_{\mu\mu}^{\rm off}(r)$, the effective off-diagonal gluon mass $M_{\rm off}$ is estimated. Note that the gluon-field renormalization does not affect the gluon mass estimate, since it gives only an overall constant factor for the propagator. We summarize in Table I the effective off-diagonal gluon mass $M_{\rm eff}$ obtained from the slope analysis in the range of $r=0.3-0.8{\rm fm}$ at $\beta=5.7, 5.8$ and 6.0. The off-diagonal gluons seem to have a large effective mass of $M_{\rm off}\simeq 1.1-1.2{\rm GeV}$. This result approximately coincides with SU(2) lattice calculation [18].

Also for the diagonal gluon, we try to estimate its effective mass $M_{\rm diag}$, although its propagator largely depends on β , i.e., the volume or the spacing, as is indicated in Fig.2. We estimate the diagonal gluon mass $M_{\rm diag}$ from the slope analysis in the range of $r=0.3-0.8{\rm fm}$ at each β , and add the result in Table I. In any case, the diagonal gluon seems to have a small effective mass of $M_{\rm diag} \simeq 0.1-0.3{\rm GeV}$. For the definite argument on $G_{\mu\mu}^{\rm Abel}(r)$ and the diagonal gluon mass, more careful analysis with a large-volume lattice would be needed.

TABLE I: Summary table of conditions and results in SU(3) lattice QCD. The off-diagonal gluon mass $M_{\rm off}$ is estimated from the slope analysis of $r^{3/2}G_{\mu\mu}^{\rm off}(r)$ for $r=0.3-0.8{\rm fm}$ at each β . In the MA gauge, the off-diagonal gluons seem to have a large effective mass of $M_{\rm off}\simeq 1.1-1.2{\rm GeV}$. The best-fit mass parameter $m_{\rm off}$ is also listed at each β : $G_{\mu\mu}^{\rm off}(r)$ in the range of $r=0.1-0.8{\rm fm}$ is well described with the four-dimensional Euclidean Yukawa function $\sim e^{-m_{\rm off} r}/r$ with $m_{\rm off}\simeq 1.3-1.4{\rm GeV}$. We add the diagonal gluon effective mass $M_{\rm diag}$ at each β , estimated in a similar manner to $M_{\rm off}$.

lattice size	β	$a[\mathrm{fm}]$	$M_{\rm off} [{\rm GeV}]$	$m_{\rm off} [{\rm GeV}]$	$M_{\rm diag} [{ m GeV}]$
	5.7	0.186	1.2	1.3	0.3
164	5.8	0.152	1.1	1.3	0.2
	6.0	0.104	1.1	1.4	0.1

Finally in this section, we discuss the relation between infrared abelian dominance and the off-diagonal gluon mass. Due to the large effective mass $M_{\rm off}$, the off-diagonal gluon propagation is restricted within about $M_{\rm off}^{-1} \simeq 0.2$ fm in the MA gauge. Therefore, at the infrared scale as $r \gg 0.2$ fm, the off-diagonal gluons A_{μ}^a ($a \neq 3,8$) cannot mediate the long-range force like the massive weak bosons in the Weinberg-Salam model, and only the diagonal gluons A_{μ}^3 , A_{μ}^8 can mediate the long-range interaction in the MA gauge. In fact, in the MA gauge, the off-diagonal gluons are expected to be inactive due to the large mass $M_{\rm off}$ in the infrared region in comparison with the diagonal gluons. Then, infrared abelian dominance holds for $r \gg M_{\rm off}^{-1}$.