Liste der noch zu erledigenden Punkte

Layout!	2
so richtig?	2
Wort?	2
Skizze	2
skipped: Very fast intro: Matlab and images	2
motions?P.4	3
Matlab stuff	4
basis	5

Kapitel 1

1.Overview

• "image society" (webpages: 1995 text-based, 2005 image based, 2015 video based . . .) - data transfer rates ↑, compression rates ↑ critical shift: reading \rightarrow watching • "Photoshop"-ing (remove wrinkles, bumps, ...) • Images in medicine ("medical image proscessing"), x-ray, CT, MRI, ultrasound, ... ("modalities"). different questions: Layout! measurments $\stackrel{?}{\Rightarrow}$ image align bottom \exp l: tomography \Rightarrow difficult mathematical problems 2.) Image enhancements - denoising simple pixels/lines: "sandpaper" interpolation so richtig? global noise: smoothing - grayscale histogramm balancing (spreading) distortion makes straight lines (in real world) straight (in the images) - edge detection contour enhancement - segmentation detect and separate parts of the image sequence of images of the same object \Rightarrow Wort?, compare Skizze → object following in a movie Our Focus: - mathematical models/methods/ideas - (algorthms) - ((implementation))

skipped: Very fast intro: Matlab and images

Kapitel 2

2. What is an image?

2.1 Discrete and continuous images

There are (at least) two different points of view:

• continuous/analogue

object: matrix

tools: linear algebra (SVD, ...)

pros: (finite storage) storage, complexity

cons: limitations: zooming, rotations, ...

function

analysis (differentrage, integrate, ...)

freedom, tools, motions?P.4

(e.g. edge discontinuity)

storage (infinite amout of data)

arguably, one has:

- real life \Rightarrow continuous "images" (objects)
- \bullet digital camers \Rightarrow discrete images

In general we will say:

Definition 2.1 ((mathematical) image). A (mathematical) image is a function

$$u:\Omega\to F$$
,

where:
$$\Omega \subset \mathbb{Z}^d$$
 (discrete) or $\Omega \subset \mathbb{R}^d$ (continuous) . . . $domain$ $d=2$ (typical case 2D), $d=3$ (,,3D image" = body or $2D + time$) $d=4$ (3D + time)

 $F \dots range \ of \ colours$

$$F=\mathbb{R}$$
 or $[0,\infty]$ or $[0,1]$ or $\{0,\dots 255\},$... grayscale (light intensity) $F\subset\mathbb{R}^3$...RGB image (colored)

$$F = \{0, 1\} \dots \text{black/white}$$

3 Layers

⇒ colored images:w

Matlab stuff

Large parts of the course: analytical approach (i.e. continuous domain Ω) Since we want to differentiate, ... the image u.

Still: need to assume that also F ist continuous (not as $\{0,1\}, \{0,1,\ldots,255\}$ or \mathbb{N}) since otherwise the only differentiable (actually, the only continuous) functions $u:\Omega\to F$ are constant functions \Leftrightarrow single-colour images

Also: We usually take F one-dimensional $(F \subset \mathbb{R})$. Think of it as either

- gray scaled image, or
- treating R,G & B layer separately

2.2 Switching between discrete and continuous images

continuous \rightarrow discrete:

- divide the continuous image in small squared pieces (boxes) (superimpose grid)
- now: represent each box by one value
 - strategy 1: take function value $u(x_i)$ for $x_i = \text{midpoint of box } B_i$
 - strategy 2: use mean value

$$\frac{1}{|B_i|} \int_{B_i} u(x) dx$$

 \Rightarrow discrete image

- strategy 1: simple (and quick) but problemativ $(u(x_i) \text{ might represent } u|_{B_i} \text{ badly; for } u \in L^p$, single point evaluation not even defined)
- strategy 2: more komplex but also more "democratic" (actually closer to the way how CCD Sensors in digital camers work)

often the image value of the box B_i gets also digitized, i.e. fitted (by scaling & rounding) into range $\{0, 1, dots, 255\}$

$discrete \rightarrow continous$

This is of course more tricky ...

- Again: each pixel of the discrete image corresponds to a "box" of the continuous image (that is still to be constructed)
- \bullet Usually: \quad pixel value \mapsto function value at the $\mathit{midpoint}$ of the box
- Question: How to get the other function values (in the box)?

idea 1: just take the function value of the nearest midpoint ("nearest neighbour interpolation")

For each $x \in B_i : u(x) := u(x_j)$ where $|x - x_j| = \min_k |x - x_k|$

- \Rightarrow $u(x) = u(x_i)$ for all $x \in B_i$
- \Rightarrow each box is uni-color
- ⇒ the continuous image is essentially still discrete

idea 2: (bi-) lineare interpolation

Let $a,b,c,d\dots$ function values at 4 surroundring adjacemt midpointes (\nearrow figure)

 $\alpha, \beta, 1-\alpha, 1-\beta...$ distance to dotted lines (\nearrow figure, w.l.o.g, bob is 1×1)

interpolation (linear) on the dotted line between a and b:

$$e:=a+\alpha(b-a)=(1-\alpha)a+ab$$
 (1D - interpolation, convex combination)

similarly:
$$f = (a - \alpha)c + ad$$

Then: The same 1D-interpolation between e and f

$$\Rightarrow u(x) := (1 - \beta) \cdot e + \beta \cdot f$$

$$= (1 - \beta)[(1 - \alpha)a + ab] + \beta[(1 - \alpha)c + \alpha d]$$

$$= \underbrace{(1 - \alpha)(1 - \beta)}_{\in [0, 1]} a + \underbrace{\alpha(1 - \beta)}_{\in [0, 1]} b + \underbrace{(1 - \alpha)\beta}_{\in [0, 1]} c + \underbrace{\alpha\beta}_{\in [0, 1]} d$$

- \Rightarrow convex combination of the function values a, b, c, d at the the surrounding 4 midpoints (on which points is the nearest instead of taking just a, b, c or d depending)
- \Rightarrow 2D linear interpolation, bi-linear interpolation (can be interpreted as spline interpolation with bilinear basis splines).

Beispiel 2.2. Rotate image

by angle $\phi \neq k \cdot \frac{\pi}{2}$

• continuous image case: no problem

$$x = D_{\varphi} y \qquad x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \ y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \ D_{\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$
2D rotation matrix

$$y = D_{\varphi}^{-1} \ x = D_{-\varphi} \ x$$

 $\Rightarrow v(x) := u(y) = u(D_{-\varphi} x) \quad \forall x \in \text{domain of the rotated image}$

• discrete image case: problem!

For $x \in \text{domain of notated image, in general } D_{-\varphi} \ x \notin \text{domain of original image}^1$ Way out: v(x) := interpolation between the $u(\cdot)$ of the 4 surrounding pixels of $D_{-\varphi}$

Something to think about:

What happens in the limit (?) if we, starting with an image (discrete or continuous), repeatedly switch between discrete and continuous, non-stop ...?

Does the answer depend on the way of switching ? (continuous \rightarrow discrete: midpoint or average, discrete \rightarrow continuous: nearest neighbour or bilinear?)

 $^{^1\}mathrm{it's}$ not an integer

Kapitel 3

3. Histogramm and first applicatsion

3.1 The histogramm

Definition 3.1 (histogram). Let $\Omega \subset \mathbb{Z}^d$, $F \subset \mathbb{R}$ discrete and $u : \Omega \to F$ a discrete discrete image.

$$H_u: F \to \mathbb{N}_0 \ (:= \mathbb{N} \cup \{0\})$$

with

$$H_u(k) := \# \{ x \in \Omega : u(x) = k \}, \quad k \in F$$

is called histogramm of the image u.

 $H_u(k)$ counts how often colour k appears in u.

$$\sum_{k \in F} H_u(k) = |\Omega| = \text{number of pixels in the whole image}$$

or

$$\frac{H_u(k)}{|\Omega|} = \text{relative frequence of colour } k \text{ in image } u$$
 (relative Häufigkeit)

Beispiel 3.2.
$$u =$$
 has $H_n =$

has
$$H_n =$$