CSE 3521: Introduction to Artificial Intelligence

Logical Inference

- Knowledge-based logical agents
 - Knowledge base and representation
 - o Entailment and inference
- Propositional logic

In which we design agents that can form <u>representations</u> of the world, use a process of <u>inference</u> to <u>derive new representations</u> about the world, and use these new representations to <u>deduce what to do</u>.

In contrast, planning agents find the best action sequence by strategically trial and error in the simulation!

Knowledge-Based Logical Agents

- Two central concepts
 - Or Representation of <u>knowledge</u> (state sequences?)
 - Reasoning processes acting on knowledge (e.g., choose actions)
- Play crucial role in "Partially Observable" environments
 - Combine general knowledge with current percepts to infer hidden aspects before acting
- Aids in agent flexibility
 - Learn new knowledge for <u>new tasks</u>
 - o Adapt to changes in environment by updating relevant knowledge

Knowledge Base

- Central component is its knowledge base (KB)
 - Contains set of "sentences" (in knowledge representation language)
 - KB initially contains some background knowledge
- How to add new information to KB?
 - o TELL function
 - Inference: deriving new sentences from old ones
- How to query what is known?
 - ASK function
 - Answers should follow what has been told to the KB previously

Logic

- For <u>logical</u> agents, knowledge is <u>definite</u>
 - o Each proposition is either "True" or "False"
- Logic has advantage of being simple representation for knowledge-based agents
 - But limited in its ability to handle uncertainty
- We will examine propositional logic and first-order logic

Wumpus World Environment

- Simple environment to motivate <u>logical reasoning</u>
- Agent explores cave with rooms connected by passageways
- "Wumpus" beast lurking somewhere in cave
 - Eats anyone who enters its room
 - Agent has one arrow (can kill Wumpus)
- Some rooms contain bottomless pits
- Occasional heap of gold present
- Agent task
 - Enter cave, find the gold, return to entrance, and exit

Wumpus World PEAS Description

- (P)erformance measure
 - Cost of −1000 for falling into pit or being eaten by Wumpus (GAME OVER!)
 - Receive +1000 for picking up gold
 - Cost of −1 for each action taken
 - Cost of −10 for using up the only arrow
- (E)nvironment
 - 4x4 grid of rooms
 - Agent starts in square [1,1]
 - Wumpus and gold locations chosen randomly
 - Probability of square being a pit is .2
 - [0=no, ..., 0.5=maybe, ..., 1=yes]

Wumpus World PEAS Description

• (A)ctuators

- Move forward, turn left, turn right
 - Note: die if enter pit or live wumpus square
- Grab (gold)
- Shoot (arrow)
 - Kills wumpus if facing its square

• (S)ensors

- O Nose: squares adjacent to wumpus are "smelly"
- O Skin/hair: Squares adjacent to pit are "breezy"
- o Eye: "Glittery" if and only if gold is in the same square
- Percepts: [Stench, Breeze, Glitter]

A = agent

 $\mathbf{B} = \text{breeze}$

G = glitter, gold

OK = safe square

P = pit

S = stench

V = visited

W = Wumpus

ОК		
OK A	ОК	

From local percepts, determines that $\{(1,1), (1,2), (2,1)\}$ are free from danger.

A = agent

 $\mathbf{B} = \text{breeze}$

G = glitter, gold

OK = safe square

 $\mathbf{P} = pit$

S = stench

V = visited

W = Wumpus

From <u>breeze</u> percept, determines that (2,2) or (3,1) is a pit. Go back to (1,1) and move up to (1,2).

A = agent

 $\mathbf{B} = \text{breeze}$

G = glitter, gold

OK = safe square

 $\mathbf{P} = pit$

S = stench

V = visited

W = Wumpus

From <u>stench</u> and <u>no-breeze</u> percept in (1,2), determines that Wumpus in (1,3), pit in (3,1), and (2,2) clear.

A = agent

 $\mathbf{B} = \text{breeze}$

G = glitter, gold

OK = safe square

P = pit

S = stench

V = visited

W = Wumpus

From local percepts, it is OK to move up or right.

A = agent

 $\mathbf{B} = \text{breeze}$

G = glitter, gold

OK = safe square

P = pit

S = stench

V = visited

W = Wumpus

Found gold! No need to explore further. Time to head back.

A = agent

 $\mathbf{B} = \text{breeze}$

G = glitter, gold

OK = safe square

P = pit

S = stench

V = visited

W = Wumpus

Then go home using **OK** squares (retrace route).

Tight Spot

<u>Breeze</u> in (1,2) and (2,1) \rightarrow no safe actions!

Pit may actually only be in (2,2), but can't tell.

More Tight Spot

Smell in (1,1) → Cannot move!

Possible action: shoot arrow straight ahead

Logical Agent

- Need agent to represent beliefs
 - o "There is a pit in (2, 2) or (3, 1)"
 - o "There is no Wumpus in (2, 2)"
- Need to make inferences
 - o If available information is correct, draw a conclusion that is guaranteed to be correct
- Need representation and reasoning
 - Support the operation of knowledge-based agent

Knowledge Representation

- For expressing knowledge in computer-tractable form
- Knowledge representation language defined by
 - **Syntax**
 - Defines the possible well-formed configurations of sentences in the language
 - **Semantics**
 - Defines the "meaning" of sentences (need interpreter)
 - Defines the truth of a sentence in a world (or model)

The Language of Arithmetic

• Syntax: " $x + 2 \ge y$ " is a sentence

"x2 + y >" is not a sentence

• Semantics: $x + 2 \ge y$ is true iff the number x + 2 is no less than the number y

 $x + 2 \ge y$ is True in a world where x=7, y=1

 $x + 2 \ge y$ is False in a world where x=0, y=6

Inference

- Sentence is <u>valid</u> iff it is true under all possible interpretations in all possible worlds
 - Also called <u>tautologies</u>
 - o "There is a stench at (1,1) or there is not a stench at (1,1)"
 - o "There is an open area in front of me" is not valid in all worlds
- Sentence is <u>satisfiable</u> iff there is some interpretation in some world for which it is true
 - o "There is a wumpus at (1,2)" could be true in some situation
 - o "There is a wall in front of me and there is no wall in front of me" is unsatisfiable

Propositional Logic: Syntax

- Syntax of propositional logic defines <u>allowable</u> sentences
- Atomic sentences consists of a single proposition symbol
 - Each symbol stands for proposition that can be True or False
- Symbols of propositional logic
 - Propositional symbols: P, Q, ... (e.g., "Today is Tuesday")
 - Logical constants: True, False
- Making complex sentences
 - \circ Logical connectives of symbols: \land , \lor , \Leftrightarrow , \Rightarrow , \neg
 - Also have parentheses to enclose each sentence: (...)
- Sentences will be used for inference/problem-solving

Propositional Logic: Syntax

- True, False, S_1 , S_2 , ... are sentences
- If S is a sentence, ¬S is a sentence
 Not (negation)
- $S_1 \wedge S_2$ is a sentence, also $(S_1 \wedge S_2)$
 - And (conjunction)
- $S_1 \vee S_2$ is a sentence
 - Or (disjunction)
- $S_1 \Rightarrow S_2$ is a sentence (e.g., "Today is Tuesday" implies "Tomorrow is Wednesday")
 - Implies (conditional)
- $S_1 \Leftrightarrow S_2$ is a sentence
 - Equivalence (biconditional)

Propositional Logic: Semantics

- Semantics defines the rules for determining the truth of a sentence
 - With respect to a particular model)
 - $\neg S$ is true iff S is false
 - $S_1 \wedge S_2$ is true iff S_1 is true and S_2 is true
 - $S_1 \vee S_2$ is true iff S_1 is true or S_2 is true
 - $S_1 \Rightarrow S_2$ is true iff S_1 is false <u>or</u> S_2 is true (is false iff S_1 is true <u>and</u> S_2 is false) (if S_1 is true, then claiming that S_2 is true, otherwise make no claim)
 - $S_1 \Leftrightarrow S_2$ is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true (S_1 same as S_2)

Semantics in Truth Table Form

P	Q	¬P	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

Propositional Inference: Enumeration Method

- Truth tables can test for valid sentences
 - True under all possible interpretations in all possible worlds
- For a given sentence, make a truth table
 - Columns as the combinations of propositions in the sentence
 - Rows with all <u>possible</u> truth values for proposition symbols
- If sentence true in every row, then valid

Propositional Inference: Enumeration Method

• Test $((P \lor H) \land \neg H) \Rightarrow P$

P	Н	$P \vee H$	$\neg H$	(P ∨ H) ∧ ¬H	$((P \lor H) \land \neg H)$ $\Rightarrow P$
False	False	False	True	False	True
False	True	True	False	False	True
True	False	True	True	True	True
True	True	True	False	False	True

Practice

• Test $(P \wedge H) \Rightarrow (P \vee \neg H)$

Practice

• Test $(P \wedge H) \Rightarrow (P \vee \neg H)$

P	Н	$P \wedge H$	$\neg H$	(P ∨¬H)	$(P \wedge H) \Rightarrow (P \vee \neg H)$
False	False	False	True	True	True
False	True	False	False	False	True
True	False	False	True	True	True
True	True	True	False	True	True

Simple Wumpus Knowledge Base

- For simplicity, only deal with the pits
- Choose vocabulary
 - \circ Let $P_{i,j}$ be True if there is a pit in [i,j]
 - \circ Let $B_{i,j}$ be True if there is a breeze in [i,j]
- KB sentences
 - o **FACT:** "There is no pit in [1,1]"

$$R_1: \neg P_{1.1}$$

• RULE: "There is breeze in adjacent neighbor of pit"

$$R_2$$
: $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$

$$R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

Need rule for each square!

Wumpus Environment

- Given knowledge base
- Include percepts as move through environment (online)
- Need to "deduce what to do"
- Derive chains of conclusions that lead to the desired goal
 - Use inference rules

$$\frac{\alpha}{\beta}$$
 Inference rule: "\alpha derives \beta"

Knowing α is true, then β must also be true

• Modus Ponens

o From implication and premise of implication, can infer conclusion

$$\frac{\alpha \Rightarrow \beta, \ \alpha}{\beta}$$

• And-Elimination

o From conjunction, can infer any of the conjuncts

$$\frac{\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n}{\alpha_i}$$

• And-Introduction

o From list of sentences, can infer their conjunction

$$\frac{\alpha_1,\alpha_2,\dots,\alpha_n}{\alpha_1\wedge\alpha_2\wedge\cdots\wedge\alpha_n}$$

• Or-Introduction

o From sentence, can infer its disjunction with anything else

$$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \cdots \vee \alpha_n}$$

- <u>Double-Negation Elimination</u>
 - o From doubly negated sentence, can infer a positive sentence

$$\frac{\neg \neg \alpha}{\alpha}$$

Inference Rules for Prop. Logic

• Unit Resolution

o From disjunction, if one of the disjuncts is false, can infer the other is true

$$\frac{\alpha \vee \beta, \ \ \neg \beta}{\alpha}$$

Inference Rules for Prop. Logic

Resolution

- \circ Most difficult because β cannot be both true and false
- One of the other disjuncts must be true in one of the premises
 - (implication is transitive)

$$\frac{\alpha \vee \beta, \ \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

$$\begin{array}{ccc} \neg \beta & \text{or} & \beta \\ \frac{\alpha \vee \beta, \neg \beta}{\alpha} & \text{or} & \frac{\neg \beta \vee \gamma, \beta}{\gamma} \\ & \alpha & \text{or} & \gamma \end{array}$$

α	β	γ	$\alpha \vee \beta$	$\neg \beta \lor \gamma$	αVγ
Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	Т
Т	F	Т	Т	Т	Т
Т	F	F	Т	Т	Т
F	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т
F	F	Т	F	Т	F
F	F	F	F	Т	F

TASK: Find the Wumpus

Can we infer that the Wumpus is in cell (1,3), given our percepts and environment rules?

Wumpus Knowledge Base

• Percept sentences (facts) "at this point"

$$\neg S_{1,1} \qquad \neg B_{1,1} \\
\neg S_{2,1} \qquad B_{2,1} \\
S_{1,2} \qquad \neg B_{1,2}$$

$$R_{l}: \neg S_{l,1} \Rightarrow \neg W_{l,1} \wedge \neg W_{l,2} \wedge \neg W_{2,1}$$

$$R_2: \neg S_{2,1} \Rightarrow \neg W_{1,1} \land \neg W_{2,1} \land \neg W_{2,2} \land \neg W_{3,1}$$

$$R_3$$
: $\neg S_{1,2} \Rightarrow \neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,2} \land \neg W_{1,3}$

$$R_4: S_{1,2} \Rightarrow W_{1,3} \vee W_{1,2} \vee W_{2,2} \vee W_{1,1}$$

Conclude $W_{1,3}$?

- Does the Wumpus reside in square (1,3)?
- In other words, can we infer $W_{1,3}$ from our knowledge base?

$$KB \vdash_i W_{1,3}$$

Conclude $W_{1,3}$ (Step #1)

• Modus Ponens $\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$

$$R_1$$
: $\neg S_{1,1} \Rightarrow \neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1}$
Percept: $\neg S_{1,1}$

• Infer

$$\neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1}$$

Conclude $W_{1,3}$ (Step #2)

• And-Elimination $\frac{\alpha_1^{\wedge} \alpha_2^{\wedge}...^{\wedge} \alpha_n}{\alpha_i}$

$$\neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1}$$

• Infer

$$\neg W_{1,1} \neg W_{1,2} \neg W_{2,1}$$

Conclude $W_{1,3}$ (Step #3)

• Modus Ponens $\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$

$$R_2$$
: $\neg S_{2,1} \Rightarrow \neg W_{1,1} \land \neg W_{2,1} \land \neg W_{2,2} \land \neg W_{3,1}$
Percept: $\neg S_{2,1}$

Infer

$$\neg W_{1,1} \land \neg W_{2,1} \land \neg W_{2,2} \land \neg W_{3,1}$$

• And-Elimination $\frac{\alpha_1^{\wedge} \alpha_2^{\wedge}...^{\wedge} \alpha_n}{\alpha_i}$

$$\neg W_{1,1} \neg W_{2,1} \neg W_{2,2} \neg W_{3,1}$$

Conclude $W_{1,3}$ (Step #4)

• Modus Ponens $\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$

$$R_4: S_{1,2} \Rightarrow W_{1,3} \vee W_{1,2} \vee W_{2,2} \vee W_{1,1}$$

Percept: $S_{1,2}$

• Infer

$$W_{1,3} \vee W_{1,2} \vee W_{2,2} \vee W_{1,1}$$

Conclude $W_{1,3}$ (Step #5)

• Unit Resolution $\frac{\alpha \vee \beta, \ \neg \beta}{\alpha}$

$$W_{1,3} \vee W_{1,2} \vee W_{2,2} \vee W_{1,1}$$
 from Step #4

- $-W_{1,1}$ from Step #2
- Infer

$$W_{1,3} \vee W_{1,2} \vee W_{2,2}$$

Conclude $W_{1,3}$ (Step #6)

• Unit Resolution $\frac{\alpha \vee \beta, \ \neg \beta}{\alpha}$

$$W_{1,3} \vee W_{1,2} \vee W_{2,2}$$
 from Step #5

- $-W_{2,2}$ from Step #3
- Infer

$$W_{1,3} \vee W_{1,2}$$

Conclude $W_{1,3}$ (Step #7)

• Unit Resolution

$$\frac{\alpha \vee \beta, \ \neg \beta}{\alpha}$$

```
W_{1,3} \vee W_{1,2} from Step #6
```

 $\neg W_{1,2}$ from Step #2

• Infer

 $W_{1,3} \rightarrow$ The wumpus is in cell 1,3!!!

Wumpus in $W_{1,3}$

Propositional Logic

- Propositional logic commits to existence of facts about the world being represented
 - Simple syntax and semantics
- Proof methods
 - o Truth table
 - o Inference rules
 - Modus Ponens
 - And-Elimination
 - And/Or-Introduction
 - Double-Negation Elimination
 - Unit Resolution
 - Resolution
- Propositional logic quickly becomes impractical