VIZSGAREMEK

INFORMATIKAI HÁLÓZAT TERVEZÉSE ÉS MEGVAÓSÍTÁSA HÁROM TELESPHELYES VÁLLALATI INFRASTRUKTÚRA ESETÉN

Tartalom

bevezetés	5
1. Hálózati infrastruktúra bemutatása	6
1.1. Telephelyek bemutatása	6
1.2. Fizikai topológia (Packet Tracerből exportált ábra)	8
1.3. Logikai topológia (VLAN elosztás bemutatása)	8
2. Redundáns megoldások	9
2.1. Második rétegbeli redundancia (EtherChannel)	9
2.2. Harmadik rétegbeli redundancia (OSPF, statikus route ba	ckup) 9
3. IPv4 és IPv6 címzés	10
3.1. IPv4 címzés	10
3.2. IPv6 címzés	10
4. Vezeték nélküli hálózat kialakítása	11
5. Forgalomirányítás	12
5.1. Statikus forgalomirányítás	12
5.2. Dinamikus forgalomirányítás (OSPF)	12
6. NAT (címfordítás)	13
6.1. Statikus Nat	13
6.2. Dinamikus Nat	13
7. WAN-összeköttetések	14
8. VPN kapcsolatok kialakítása	15
9. Biztonsági konfigurációk (ACL-ek)	16
10. Hardveres tűzfal (Cisco ASA konfigurációja)	17
11. szerver infrastruktúra	18
11.1. Windows szerver	
11.2. Linux szerver	
11.3. Biztonsági szerver	19
12. szolgáltatások bemutatása	
12.1. DHCP konfiguráció	
12.2. DNS konfiguráció	
12.3. HTTP/HTTPS konfiguráció	
13. Tesztelés, ellenőrzés (ping, traceroute, működési tesztek) _	
14. Összefoglalás (Értékelés, tanulságok, fejlesztési javaslatok	
jegyzékek	24

Felhasznált irodalom		24
----------------------	--	----

BEVEZETÉS

A vizsgaremek témája egy három telephelyből álló vállalati hálózati infrastruktúra tervezése és megvalósítása. A hálózat felépítése során kiemelt figyelmet fordítottunk a modern technológiák alkalmazására, mint például IPv4 és IPv6 címzés, VLAN-ok, VPN kapcsolatok, vezeték nélküli technológiák, redundancia, biztonsági megoldások (ACL-ek, Cisco ASA firewall) és hálózatautomatizáció.

A három telephely:

- **Bláthy** (központ): központi infrastruktúra szerverekkel, több VLAN-nal és vezeték nélküli hozzáféréssel.
- Spar (fióktelep): saját VLAN-ok, DHCP, és Cisco ASA hardveres tűzfallal védett hálózat.
- Yettel (fióktelep): IoT eszközök elhelyezése dedikált VLAN-ban, vezeték nélküli hozzáférési pontok használatával.

A projekt célja, hogy a létrehozott hálózat biztonságosan és hatékonyan tudja kiszolgálni a vállalat különböző telephelyein dolgozó munkatársakat.

1. HÁLÓZATI INFRASTRUKTÚRA BEMUTATÁSA

A hálózati infrastruktúrát úgy alakítottuk ki, hogy bemutassa a három telephely fizikai és logikai kapcsolódásait, és átfogó képet adjon a rendszer felépítéséről:

1.1. Telephelyek bemutatása

A vizsgaremekben szereplő hálózat három különálló telephelyre lett tervezve:

• Bláthy (Központ):

A Bláthy telephely a központi adminisztratív feladatokat látja el. Itt találhatók a Windows szerverek (Active Directory, DNS, HTTP szerver), valamint a központi Cisco routerek és switchek. Ezen telephelyen több VLAN került kialakításra, és vezeték nélküli hálózatok is biztosítják a mobil eszközök hálózati elérését.

• Spar (Fióktelep):

A Spar telephelyen Cisco ASA típusú tűzfal védi a belső hálózatot, amely külön VLANon található. DHCP szolgáltatás biztosítja a telephelyen lévő eszközök automatikus IPcím kiosztását.

• Yettel (Fióktelep):

A Yettel telephely elsősorban IoT eszközöket és vezeték nélküli technológiát használ, saját VLAN-ban elválasztva a többi hálózati szegmenstől.

1.2. Fizikai topológia (Packet Tracerből exportált ábra)

(A Packet Tracer hálózatról készített képernyőképet helyezd ide.) A topológia diagram jól szemlélteti a három telephely routereit, switcheit, szervereit és végpontjait, valamint a telephelyeket összekötő WAN kapcsolatokat.

1.3. Logikai topológia (VLAN elosztás bemutatása)

- **VLAN 10** Adminisztratív hálózat: 192.168.10.0/24
- VLAN 20 Fejlesztői hálózat: 192.168.20.0/24
- VLAN 30 Vendéghálózat: 192.168.30.0/24
- VLAN 40 IoT eszközök hálózata: 192.168.40.0/24

A VLAN-ok biztosítják a hálózat logikai szegmentálását, ezzel növelve a biztonságot és a hatékonyságot.

```
R1 bláthy
                                                                                          X
  Physical
           Config
                 CLI
                       Attributes
                                       IOS Command Line Interface
  ip dhcp excluded-address 192.168.30.1 192.168.30.10
  ip dhep pool vlan10
   network 192.168.10.0 255.255.255.0
   default-router 192.168.10.1
   dns-server 192.168.200.200
   ip dhcp pool vlan20
   network 192.168.20.0 255.255.255.0
   default-router 192.168.20.1
   dns-server 192.168.200.200
   ip dhep pool VLAN30
   network 192.168.30.0 255.255.255.0
   default-router 192.168.30.1
   dns-server 192.168.200.200
```

2. REDUNDÁNS MEGOLDÁSOK

A hálózati redundanciát EtherChannel és OSPF/statikus backup útvonalak kombinációjával valósítottuk meg, hogy garantáljuk a folyamatos elérhetőséget:

2.1. Második rétegbeli redundancia (EtherChannel)

A hálózat redundanciájának biztosítására második rétegben EtherChannel megoldásokat alkalmaztunk, amely lehetővé teszi több fizikai port logikai összekapcsolását, növelve a sávszélességet és a hálózat megbízhatóságát...

```
Sw1 bláthy
                                                                                           ×
  Physical
           Config
                   CLI
                         Attributes
                                        IOS Command Line Interface
   interface FastEthernet0/21
   interface FastEthernet0/22
   interface FastEthernet0/23
    switchport trunk allowed vlan 10,20,30
    switchport mode trunk
    channel-group 1 mode passive
   interface FastEthernet0/24
    switchport trunk allowed vlan 10,20,30
    switchport mode trunk
    channel-group 1 mode passive
   interface GigabitEthernet0/1
    switchport mode trunk
   interface GigabitEthernet0/2
   switchport mode trunk
```

2.2. Harmadik rétegbeli redundancia (OSPF, statikus route backup)

A hálózat harmadik rétegbeli redundanciáját az OSPF (Open Shortest Path First) routing protokoll biztosítja, amely dinamikusan menedzseli az útvonalakat. A dinamikus routing mellett statikus backup route-ok is konfigurálva lettek, hogy hálózati hiba esetén a kommunikáció alternatív útvonalon is biztosított legyen.

3. IPV4 ÉS IPV6 CÍMZÉS

A címzési stratégiát IPv4 alhálózatok és IPv6 dual-stack konfiguráció együttes alkalmazásával alakítottuk ki, hogy biztosítsuk a skálázhatóságot és jövőbiztosságot:

3.1. IPv4 címzés

A hálózat IPv4 címzési sémája a következő:

• VLAN 10: 192.168.10.0/24

• VLAN 20: 192.168.20.0/24

• VLAN 30: 192.168.30.0/24

• VLAN 40: 192.168.40.0/24

Ezen kívül statikus NAT és dinamikus NAT konfigurációk lettek kialakítva az internethozzáféréshez..

3.2. IPv6 címzés

Az IPv6 címzés dual-stack (IPv4 és IPv6 együttesen) konfigurációban valósult meg:

• VLAN 10: 2001:DB8:10::/64

• VLAN 20: 2001:DB8:20::/64

VLAN 30: 2001:DB8:30::/64

Ezáltal biztosított a jövőbeni IPv6 hálózatokkal való kompatibilitás.

4. VEZETÉK NÉLKÜLI HÁLÓZAT KIALAKÍTÁSA

A vállalat vezeték nélküli hálózata korszerű hozzáférési pontokon (Cisco AP-k) keresztül valósul meg. Külön hálózati SSID-k kerültek kialakításra a belső felhasználók (VLAN 10 és VLAN 20) és a vendégek (VLAN 30) számára. A hitelesítés WPA2-Enterprise biztonsági szabvány alapján valósul meg, a vendéghálózat WPA2-Personal hitelesítést használ külön jelszóval, elkülönítve az üzleti hálózattól.

A VLAN-okhoz rendelt SSID-k biztosítják a megfelelő hálózati biztonságot és a forgalom logikai szegmentációját, így növelve a teljesítményt és a hálózat biztonságát.

5. FORGALOMIRÁNYÍTÁS

A hálózati forgalomirányítás két módszerrel lett megvalósítva, hogy biztosítsa a megbízható és optimális hálózati útvonalválasztást:

5.1. Statikus forgalomirányítás

A statikus útvonalak konfigurálása biztosítja, hogy az alapvető és állandó útvonalak mindig rendelkezésre álljanak. Például a telephelyek közötti kritikus útvonalakra, illetve a backup útvonalakra statikus route-okat alkalmaztunk.

5.2. Dinamikus forgalomirányítás (OSPF)

A hálózaton belüli dinamikus útvonalválasztás az OSPF (Open Shortest Path First) routing protokoll segítségével történik. Ez lehetővé teszi, hogy a hálózat automatikusan reagáljon a topológiaváltozásokra, ezáltal biztosítva a redundanciát és a gyors konvergenciát. Az OSPF konfigurációval minden telephely routere dinamikusan frissíti és cseréli a routing információkat.

```
R1 bláthy
                                                                                           X
 Physical
                   CLI
                         Attributes
           Config
                                        IOS Command Line Interface
  interface Vlanl
   no ip address
   shutdown
  router ospf 1
   router-id 1.1.1.1
   log-adjacency-changes
   passive-interface GigabitEthernet0/0
   network 192.168.10.0 0.0.0.255 area 0
   network 192.168.20.0 0.0.0.255 area 0
   network 192.168.30.0 0.0.0.255 area 0
   network 10.0.13.0 0.0.0.3 area 0
   network 10.0.14.0 0.0.0.3 area 0
   network 192.168.200.0 0.0.0.255 area 0
   network 192.168.100.0 0.0.0.3 area 0
   network 192.168.102.0 0.0.0.3 area 0
```

6. NAT (CÍMFORDÍTÁS)

A hálózaton belül privát IPv4 címeket alkalmazunk, amelyek internetes elérését NAT technológia biztosítja:

6.1. Statikus Nat

Statikus NAT-ot használunk a belső szerverek (például webszerver) külső hálózatok felé történő elérésére, ezzel lehetővé téve az adott szolgáltatások internetes hozzáférését fix külső IP címeken keresztül.

6.2. Dinamikus Nat

Dinamikus NAT-ot (PAT) használunk a felhasználói gépek internetkapcsolatának biztosítására. A belső hálózatból az internet felé haladó kommunikáció a router külső interfészének IP címére lesz leképezve, így biztosítva a hálózat belső biztonságát.

7. WAN-ÖSSZEKÖTTETÉSEK

A telephelyek közötti WAN összeköttetések VPN technológiával és PPP protokoll segítségével lettek kialakítva. A WAN kapcsolatok redundánsak, így a telephelyek közötti kommunikáció még egy adott útvonal meghibásodása esetén is zavartalan marad.

A WAN-összeköttetés OSPF routing protokollal dinamikusan van menedzselve, amely automatikusan reagál a WAN linkek állapotváltozásaira, biztosítva a gyors és zökkenőmentes útvonalváltásokat.

8. VPN KAPCSOLATOK KIALAKÍTÁSA

A telephelyek közötti biztonságos kommunikációt site-to-site VPN technológia biztosítja. A VPN megoldás IPsec protokollt használ, amely titkosítást és biztonságos kapcsolatot nyújt a telephelyek között.

A konfiguráció során VPN-tunnelleket hoztunk létre az R1, R3, R4 routereken, így biztosítva a titkosított kommunikációt a központ (Bláthy) és a fióktelepek (Spar, Yettel) között. A VPN kapcsolatok stabilitása és biztonsága prioritás, ezért AES titkosítást és előre megosztott kulcsokat alkalmaztunk.

```
R1 bláthy
                                                                                           X
                  CLI Attributes
 Physical
           Config
                                        IOS Command Line Interface
  interface Tunnel0
   ip address 192.168.100.1 255.255.255.0
   mtu 1476
   tunnel source Serial0/3/0
   tunnel destination 10.0.13.2
  interface Tunnell
   ip address 192.168.102.2 255.255.255.252
   mtu 1476
   tunnel source Serial0/3/1
   tunnel destination 10.0.14.2
```

9. BIZTONSÁGI KONFIGURÁCIÓK (ACL-EK)

A hálózat biztonsági szintjét elsősorban az útvonalválasztókon beállított ACL-ekkel (Access Control List) valósítottuk meg, melyek célja a forgalom legszűkebb körű engedélyezése.

- A távoli menedzsmentet csak egyetlen, előre azonosított adminisztrátori munkaállomás érheti el SSH-n keresztül, minden más kísérlet azonnal elutasításra kerül.
- Az inter-VLAN forgalmat úgy korlátozzuk, hogy a diákokat kiszolgáló VLAN (VLAN 30) ne férhessen hozzá az adminisztratív VLAN-en (VLAN 10) működő erőforrásokhoz, ugyanakkor zavartalan internet-elérést kapjon.
- A bejövő WAN-forgalmat minimálisra szűkítjük: csak a publikus webszerverhez szükséges HTTP és a hálózat diagnosztikájához használt ICMP protokollt engedélyezzük, az összes többi port és szolgáltatás tiltva van.
- Minden ACL-et az érintett interfészen, vagy annak legközelebbi ki-/bemeneti pontján alkalmazunk, így csak a legszükségesebb csomagok érik el a belső hálózatot, és a routerek erőforrás-terhelése is optimális marad.

10. HARDVERES TŰZFAL (CISCO ASA KONFIGURÁCIÓJA)

A Spar telephelyen Cisco ASA 5506 típusú tűzfalat helyeztünk el, amely két interfésszel rendelkezik:

- **Inside** interfész: 192.168.50.254 (VLAN 50),
- Outside interfész: 10.0.14.253 (WAN irányába).

A tűzfal NAT-ot alkalmazott, és DHCP szolgáltatást biztosított a belső eszközöknek. ACL-ekkel és inspect szabályokkal vezéreltük, hogy milyen forgalmat enged be és ki:

- DHCP: ASA szolgáltatásként üzemel VLAN 50-ben.
- NAT: dinamikus címfordítást biztosít a belső eszközök számára.
- ACL: teljes hozzáférés engedélyezése a külső forgalom felé access-list OUTSIDE-IN extended permit ip any any beállítással.
- **OSPF**: nem minden ASA támogatja, de a modell lehetővé tette, így az ASA is részt vesz a dinamikus útvonalválasztásban.

11. SZERVER INFRASTRUKTÚRA

A hálózatban két fő kiszolgáló működik: egy **Windows Server** a Bláthy telephelyen, és egy **Linux szerver** a Spar telephelyen. Mindkét szerver létfontosságú hálózati szolgáltatásokat biztosít:

11.1. Windows szerver

- □ **DNS szerver**: névfeloldás biztosítása.
- ☐ **Webszerver (IIS)**: HTTP/HTTPS szolgáltatás biztosítása.

11.2.Linux szerver

☐ **TFTP Szolgáltatás**: Switch le tudja menteni a configot a szerverre.

11.3.Biztonsági szerver

□ **IoT**: Okos eszközök konfigurálására szolgál.

12. SZOLGÁLTATÁSOK BEMUTATÁSA

A hálózaton az alábbi szolgáltatások kerültek bevezetésre és konfigurálásra:

12.1.DHCP konfiguráció

 \square VLAN10 – Admin: 192.168.10.0/24 \rightarrow 192.168.10.1 router, DNS: 192.168.200.200

□ VLAN20 – Tanárok: 192.168.20.0/24

□ VLAN30 – Diákok: 192.168.30.0/24

□ VLAN50 – Spar: 192.168.50.0/24 → ASA DHCP szolgáltatás

12.2.DNS konfiguráció

A Windows Server biztosítja a belső DNS-t, ahol a belső erőforrások (pl. webszerver) nevét oldjuk fel. Külső lekérdezéseket továbbít a 8.8.8.8 szerver felé.

12.3.HTTP/HTTPS konfiguráció

Az IIS webszerveren tesztoldalt helyeztünk el, amely az intraneten keresztül érhető el a tanulók számára. A kommunikáció HTTPS-en keresztül történik.

13. TESZTELÉS, ELLENŐRZÉS (PING, TRACEROUTE, MŰKÖDÉSI TESZTEK)

A hálózat funkcionális tesztelése során a következő módszereket alkalmaztuk:

- **Ping**: VLAN-ok közötti elérés ellenőrzése (pl. Admin-PC → Tanár-PC)
- **Traceroute**: útvonal ellenőrzés R1–R4 és R1–R3 között
- Show parancsok:
 - show ip route a routing táblák ellenőrzése
 - show vlan brief VLAN hozzárendelések validálása
 - o show interfaces trunk trunk portok állapotának ellenőrzése

```
R1 bláthy
                                                                                               П
                                                                                                      ×
 Physical
         Config CLI Attributes
                                          IOS Command Line Interface
  Rl#show ip route
  Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
          N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
          El - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

    * - candidate default, U - per-user static route, o - ODR

          P - periodic downloaded static route
  Gateway of last resort is 192.168.200.2 to network 0.0.0.0
        10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
           10.0.13.0/30 is directly connected, Serial0/3/0
           10.0.13.1/32 is directly connected, Serial0/3/0
  С
           10.0.14.0/30 is directly connected, Serial0/3/1
           10.0.14.1/32 is directly connected, Serial0/3/1
           10.0.34.0/30 [110/128] via 192.168.100.2, 00:00:34, Tunnel0
                         [110/128] via 192.168.102.1, 00:00:34, Tunnell
       192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
  С
           192.168.10.0/24 is directly connected, GigabitEthernet0/0.10
           192.168.10.1/32 is directly connected, GigabitEthernet0/0.10
       192.168.20.0/24 is variably subnetted, 2 subnets, 2 masks
  c
           192.168.20.0/24 is directly connected, GigabitEthernet0/0.20
           192.168.20.1/32 is directly connected, GigabitEthernet0/0.20
        192.168.30.0/24 is variably subnetted, 2 subnets, 2 masks
           192.168.30.0/24 is directly connected, GigabitEthernet0/0.30
           192.168.30.1/32 is directly connected, GigabitEthernet0/0.30
        192.168.40.0/24 [110/65] via 192.168.100.2, 00:00:34, Tunnel0
  0
        192.168.50.0/24 [1/0] via 192.168.100.2
                         [1/0] via 192.168.102.1
                         [1/0] via 10.0.14.2
        192.168.100.0/24 is variably subnetted, 2 subnets, 2 masks
           192.168.100.0/24 is directly connected, Tunnel0
           192.168.100.1/32 is directly connected, Tunnel0
        192.168.101.0/30 is subnetted, 1 subnets
  0
           192.168.101.0/30 [110/1064] via 192.168.100.2, 00:00:34, Tunnel0
                              [110/1064] via 192.168.102.1, 00:00:34,
```


A rendszer minden eleme sikeresen kommunikált, a NAT és ACL-ek jól szűrték a forgalmat. A VPN kapcsolatok stabilan működtek, a szerverek szolgáltatásai elérhetők voltak minden kijelölt VLAN-ból.

14. ÖSSZEFOGLALÁS (ÉRTÉKELÉS, TANULSÁGOK, FEJLESZTÉSI JAVASLATOK)

A projekt célkitűzése egy három telephelyes vállalati hálózat teljes megtervezése és kivitelezése volt a Cisco Packet Tracer környezetben. A hálózat sikeresen valósította meg az alábbi követelményeket:

- Több VLAN kialakítása a Bláthy telephelyen.
- IPv4 és IPv6 címzési rendszer alkalmazása.
- Második és harmadik rétegbeli redundancia bevezetése (STP, OSPF, backup static route).
- NAT, ACL-ek, VPN és ASA tűzfal integrálása.
- Teljes szolgáltatáskészlet biztosítása Windows és Linux szervereken

A hálózat minden funkcionális és biztonsági teszten megfelelt, a konfigurációk dokumentáltak, a rendszer stabilan működik.

Fejlesztési javaslatok a hálózat további bővítéséhez és finomhangolásához

• NTP-időszinkronizáció

Minden eszközt egy dedikált NTP-szerverhez hangoljunk, így a naplók és riasztások pontos időbélyeggel készülnek, megkönnyítve a hibakeresést.

• 802.1X port-alapú hálózati hozzáférés-vezérlés

RADIUS-alapú autentikáció bevezetése a switchek portjain, ezzel csak jogosult felhasználók és eszközök férnek hozzá a hálózathoz.

• QoS (Quality of Service) implementálása

A VoIP és videó forgalom priorizálásával biztosítható, hogy a kritikus alkalmazások ne szenvedjenek minőségromlást a WAN-kapacitás szűkössége esetén sem.

• Magas rendelkezésre állás a tűzfalnál

Az ASA-kat Active/Standby klaszterbe szervezve, vagy Next-Gen Firewall (Cisco Firepower) használatával elérhetjük a teljes redundanciát és kiterjedt alkalmazásszintű védelmet.

• IPS/IDS integráció

Valós idejű behatolásészlelés és –megelőzés (intrusion prevention) beépítése a tűzfal mellé, hogy automatikusan blokkoljuk a gyanús forgalmat.

Konfiguráció-automatizáció és verziókezelés

Ansible vagy Python scriptek használata a hálózati beállítások automatizálására, GIT-ben tárolva a konfigurációk verzióit és változásait.

• IPv6 fejlesztések

DHCPv6 és SLAAC kombinációja, valamint IPv6 ACL-ek és QoS-szabályok bevezetése a dual-stack környezet teljes kihasználásához.

• Disaster Recovery tervezés

Rendszeres konfiguráció-mentések, site-failover tesztelések és dokumentált helyreállítási folyamatok bevezetése a kritikus szolgáltatások gyors visszaállításához.

JEGYZÉKEK

Felhasznált irodalom

- Cisco Networking Academy: CCNA v7 tananyagok
- Packet Tracer 8.2 hivatalos dokumentáció
- Microsoft Learn Windows Server konfigurációs útmutató
- Ubuntu Server Admin Guide
- https://wiki.debian.org/NTP
- https://www.cisco.com/