OBD Development for Diesel Engines: Experiences and Lessons Learned

Dr. Andy Noble, Graham Hunt and Simon Finch

Ricardo

- Stakeholders in OBD
- Typical process for OBD development
- Example issues
 - Diesel Particulate Filter Wall flow and through flow
 - EGR system
 - Immature base calibration
- Tools
 - Early IUMPR assessment
 - Fleet logger analysis
 - HiL
- Conclusions and lessons learned

- Stakeholders in OBD
- Typical process for OBD development
- Example issues
 - Diesel Particulate Filter Wall flow and through flow
 - Diesel EGR system
 - Immature base calibration
- Tools
 - Early IUMPR assessment
 - Fleet logger analysis
 - HiL
- Conclusions and lessons learned

Stakeholders in OBD

Authorities

Improve air quality
Understand technologies
Define/Enforce OBD regulations
Evolve regulations
Grant approval
Correct detection
Ensure level playing field

OEMs and Suppliers

Develop technologies
Develop OBD systems
Gain compliance
Minimise risk
Minimise cost
No misdetection

End Customers

OBD not high profile
Reliable vehicle
Submit vehicles for test
Annoyance if OBD goes wrong

R&D Institutions, Consultants

Develop technologies Contract to OEMs and suppliers Advise authorities on feasibility (or not) of new regulations

- Stakeholders in OBD
- Typical process for OBD development
- Example issues
 - Diesel Particulate Filter Wall flow and through flow
 - Diesel EGR system
 - Immature base calibration
- Tools
 - Early IUMPR assessment
 - Fleet logger analysis
 - HiL
- Conclusions and lessons learned

OBD Development – Overview of Typical Process

Time **Project Quarters Tasks** Q1 Q2 Q3 Q4 **Q5** Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 **OBD Pre-development OBD Algorithm** Development XIL Validation (X= M,S,H) **Emission Relevance** Testing **Engine Calibration Vehicle Calibration** Fleet Validation **Demo Testing Certification Negotiation PVE Testing IUMPR** Validation **Key Milestones** Kick-off Feasibility of high **OBD Cal Freeze** SOP risk strategies

- Stakeholders in OBD
- Typical process for OBD development
- Example issues
 - Diesel Particulate Filter Wall flow and through flow
 - Diesel EGR system
 - Immature base calibration
- Tools
 - Early IUMPR assessment
 - Fleet logger analysis
 - HiL
- Conclusions and lessons learned

Wall Flow DPF Issue - 1

- Calibrated DPF bypass system used to simulate loss of DPF filtration efficiency
- Threshold failure was correctly detected on the dyno test cycle for development and demonstration
- Threshold failure was correctly identified when tested by Ricardo on development vehicles
- IUMPR data was good during fleet validation
- OBD authority were unable to detect fault during confirmatory testing.
 - No pending code set
 - Numerator was found not to have incremented
 - Investigation found that DPF regeneration was happening before the soot model used by the OBDII monitor reached a sufficiently high fill level to enable the monitor

Wall flow DPF Issue - 2

- 2 separate soot models were used in the ECU
 - A Regeneration soot model and
 - An OBD soot model
- Reasons for having 2 models:
 - Regeneration soot model overestimates fill level to minimise risk of uncontrolled regeneration
 - OBD soot model seeks accurate, if anything underestimation, of fill level model to minimise risk of false detection of leakage in DPF

Wall flow DPF Issue - 3

- Root cause
 - Regeneration triggered before OBD system enabled DPF monitor because of difference between 2 models
 - Driving style dependent (worst case was extremely gentle driving)
 - Fleet validation on 'mixed driving' routes masked this effect
 - Limited amount of testing by authority meant fault was never enabled
- Resolution
 - Evaluate IUMPR data from field
 - Investigation into possible recalibration with lower enable threshold
- Effort to investigate & rectify issue
 - 1 engineer-month investigation
 - Engineer required to travel to repeat test in territory
 - No rectification required

Through flow DPF Issue

Issue

- Blocked DPF was detected OK
- Missing DPF monitor detected OK but also false MILs found to be generated during fleet testing

Root cause

- Through flow DPF has low ΔP vs. flow characteristics
- Insufficient difference between ΔP's for missing and actual (good) DPF at low exhaust flows

Resolution

- Enable missing DPF monitor only at higher exhaust flows
- Effort to investigate & rectify issue
 - Strategy change & validate offline
 - Software implement & check in ECU
 - Re-validate on vehicle
 - Total effort ~3 man-months

EGR Low Flow Issue - 1

- Development testing identified the level of EGR circuit restriction which caused NOx emissions to be at the OBD threshold
- The restriction was correctly detected on the FTP test
- The restriction was correctly detected by the OBD authority during confirmatory testing
- Issue:
 - 1. Although the threshold EGR flow restrictor can be detected, it is only detected when at idle with the transmission shifted into Park or Neutral
 - Many drivers may not shift into Park when stationary except just before switching off the engine (10 seconds required to detect the fault)
 - Pending codes may easily be cleared on a subsequent drive cycle
 - 2. The monitor is enabled outside the no-load idle area in-use performance ratio numerator increments with transmission outside P or N
 - Monitor makes a full judgement that the system is ok without having been operated at the most sensitive point required to detect the threshold fault
- Opinion of authority was that the system was not valid *despite passing all the* tests due to risk of false passes

EGR Low Flow Issue - 2

- Root cause
 - During development, EGR low flow monitor had to be de-sensitized outside no-load idle region due to false MIL risk
 - Although detectable on newer vehicles over wider enable region, on higher mileage vehicles threshold EGR restrictor not distinguishable from good system
 - Calibration of base EGR control strategy limited operating regions where reliable, robust monitoring possible
- Resolution
 - Reduce enable region to area where sensitivity to fault is reasonable
 - Re-calibrate monitor so that EGR restrictor distinguishable from good system on higher mileage vehicles
- Effort to investigate & rectify issue
 - Approx 6 man-months

Several negotiation trips to OEM and OBD authority

Immature Base Calibration

Issue

- Compressed program timescales led to overlap between emissions development and OBD
- Emissions were not inside target type approval box with engineering margins at start of OBD development over transient cycles
- Root cause
 - Steady-state emissions calibration was OK, transient emissions status not sufficiently mature
- Resolution
 - OBD development was split into two phases
 - Steady-state coarse screening for emission relevance and threshold determination was performed on engine dyno
 - Fine tuning was performed once transient emissions complete on vehicle
- Effort to rectify issue
 - 3 man months & one testbed month

- Stakeholders in OBD
- Typical process for OBD development
- Example issues
 - Diesel Particulate Filter Wall flow and through flow
 - Diesel EGR system
 - Immature base calibration
- Tools
 - Early IUMPR assessment
 - Fleet logger analysis
 - HiL
- Conclusions and lessons learned

Early Assessment of IUMPR

Tool to assess IUMPR issues at early stage of OBD algorithm development and

calibration:

Vehicle Parameters Engine Parameters

V-SIM Vehicle Model to Predict DC Torque

Driving Cycle

- Typical "average"
- Typical F, UK, De, I etc
- Special

Driving Style

- Gentle
- Aggressive
- Gear shift early/normal/late

Enable Window in terms of

- Engine rpm
- Engine torque, fuel or throttle
- Coolant Temp

Duration in Window (s)

Data management – a significant task requiring thorough planning

Data distribution & processing - data analysis using FLA (fleet logger analysis) tool

- Automated Fleet Data Analysis
 - Daily uploads of logged data from Fleet to ftp server
 - Automated daily downloads of logger data & distribution to powerful workstation PCs
 - Automated data analysis using FLA (Fleet Logger Analysis) tool developed in-house by Ricardo
- FLA tool:
 - Used to automate and analyse the huge amount of OBD fleet data
 - Generates statistical reports which can be used to validate the OBD calibration, and to identify problem areas
 - Displays statistical distributions or time series data
 - Automated report generation to Excel/PowerPoint formats
 - Matlab based software tool

Secure Server

Data analysis using Ricardo FLA – example report plots

- Results can be presented in different formats
- Shown on this slide are:
 - Margin distribution
 - Margin and Engine speed distribution
 - Positive and Negative margin time distribution

Hardware in the Loop #1

- Problem
 - Inserting faults on sophisticated engine architectures (twin turbo, multi route EGR) can cause possible engine failures
- Solution
 - Use a real-time, crank-resolved, physically-based simulation model to allow faults to be inserted without risking engine hardware
- Benefits
 - No risk to engine hardware
 - Runs on PC and so more engineers can have access and use in parallel
 - Reduced testbed time hence reduced cost

WAVE-RT Results for B50 Control

CPEMS rCube

Hardware in the Loop #2

Problem

- Late or no availability of development vehicles for OBD development team
 - Debugging of OBD manager and basic operation is carried out on testbed
 - Proves very costly

Solution

Use a HiL system with simple mean value engine model

Benefits

- Reduces project cost (configuration of a simple HiL is cheaper than testbed usage)
- allows debug of OBD logic operation in a lab environment with easy access to all parameters and signals
- Allows automated fault injection

- Stakeholders in OBD
- Typical process for OBD development
- Example issues
 - Diesel Particulate Filter Wall flow and through flow
 - Diesel EGR system
 - Immature base calibration
- Tools
 - Early IUMPR assessment
 - Fleet logger analysis
 - Hil
- Conclusions and lessons learned

Conclusions and Lessons Learned

- **Development Process**
 - Be aware of stakeholders different requirements
 - Carry out analysis/testing to identify/confirm:
 - What can affect emissions?
 - How will the control system respond to faults?
 - What could stop a monitor running?
 - Is everything covered by OBD strategy that should be?
 - OBD engineers need input early in base control algorithms development & calibration as this will strongly impact OBD
 - Example: EGR OBD depends strongly on calibration of EGR (& boost) control system. Poor base control system calibration will limit OBD effectiveness
 - Carry out emissions relevance testing after a steady state and transient calibration are fixed and frozen. If this is not possible, be aware of the risks and make contingency plans
 - Determine at an early stage how components will be aged and time/test cycles involved
 - For certification on a dynamometer cycle, testing for correct detection of fault in-vehicle is important
 - A range of drivers not familiar with the monitoring strategies is a benefit
 - Fleet testing must cover a wide range of different driving conditions, but also cover continued operation in the same driving conditions (e.g. only city or only highway driving, extreme driving styles)

Conclusions and Lessons Learned

Regulations

- The devil is in the detail
- Make sure your interpretation is same as other stakeholders
- Watch for changes

Monitors

- Consider all component tolerances (mechanical, electrical, ageing, environment) when calibrating OBD monitors or else false MILs will occur
- Avoiding 'false pass' conditions needs to be as given as much effort as ensuring correct detection/no misdetection

Tools

- Having a tool that can give an IUMPR assessment at an early stage in development mitigates risk of algorithm re-design late in the project
- HiL can help OBD development during early stages when vehicles are unavailable
- Fleet testing can result in large amounts of data. A data analysis tool needs to be utilised so that the data can be analysed quickly and anomalies identified

Contact

Dr. Andy Noble Ricardo UK Shoreham-by-Sea West Sussex **BN43 5FG** England

Tel: +44 1273 794378

andy.noble@ricardo.com http://www.ricardo.com

