Model Theoretic Approach to Homogeneous Structures and their Automorphism Groups

Yibei Li

Imperial College, London

BLC2017, University of Sussex

Overview

- Amalgamation classes and semi-free amalgamation.
- Stationary independence relation on the structures.
- Automorphism groups of structures with the stationary independence relation

Amalgamation Class

Definition

Let \mathcal{L} be a relational language, an amalgamation class is a class \mathcal{C} of finite \mathcal{L} -structures satisfying the following three conditions:

- **●** Hereditary property: For every $A \in C$ and any substructure $B \subseteq A$ we have $B \in C$;
- ② Joint embedding property: For every $A, B \in \mathcal{C}$ there exists $C \in \mathcal{C}$ such that C contains both A and B as substructures;
- **3** Amalgamation property: For A, B, C and $f_1: B \to A$, $f_2: B \to C$ are embeddings, there is $D \in \mathcal{C}$ and embeddings $g_1: A \to D, g_2: C \to D$ such that $g_1 \circ f_1 = g_2 \circ f_2$.

Amalgamation Property

Examples

• the class of all finite graphs with free amalgamation

Definition

We say A, C are freely amalgamated over B, if for any $a \in g_1(A) \setminus g_1 f_1(B)$, $c \in g_2(C) \setminus g_2 f_2(B)$, a, c are not in any relation.

- the class of all finite K_n -free graphs
- the class of all finite rational metric spaces

Fraïssé's Theorem

Definition

An \mathcal{L} -structure \mathcal{M} is homogeneous if isomorphisms between finite substructures extend to automorphisms of \mathcal{M} .

Theorem (Fraïssé's Theorem)

There is a one-to-one correspondence between amalgamation classes and countable homogeneous structures, called the Fraïssé limit

Examples

- the class of all finite graphs with free amalgamation Fraïssé limit: the random graph
- the class of all finite K_n -free graphs Fraïssé limit: the generic K_n -free graph
- the class of all finite rational metric spaces
 Fraïssé limit: the universal homogeneous rational metric space
 Its completion is the Urysohn space.

Semi-free amalgamation

Definition

 \mathcal{C} is a semi-free amalgamation class if there exists $\mathcal{L}'\subsetneq\mathcal{L}$ such that for any finite structures $A,B,C\in\mathcal{C}$ and embeddings $f_1:B\to A,f_2:B\to C$, there exist $D\in\mathcal{C}$ and embeddings $g_1:A\to D,g_2:C\to D$ such that $g_1f_1(B)=g_2f_2(B)=g_1(A)\cap g_2(C)$ and for any $a\in g_1(A)\setminus g_1f_1(B),c\in g_2(C)\setminus g_2f_2(B)$, a,c are in some relation $B\in\mathcal{L}'$.

Note this is a generalisation of the free amalgamation.

Semi-free amalgamation classes

Let $\mathcal L$ a relational language, semi-free amalgamation class can be given in the form of forbidden triangles:

- S a set of the forbidden triangles
- $Forb^c(S)$ the set of all finite completely labelled \mathcal{L} -structures that do not embed any triangle in S.

Example

Let $\mathcal{L} = \{R, G, Y\}$ and $S = \{RYY, GGY, YYY\}$.

Stationary Independence Relation

Definition

An n-type over B is a set $p(x_1,...,x_n)$ of formulas in $\mathcal{L}(B)$ such that for every finite subset $p_0 \subseteq p$, there are some elements $b_1,...,b_n \in \mathcal{M}$ such that $\mathcal{M} \models p_0(b_1,...,b_n)$.

We say $(b_1,...,b_n)$ is a realisation of p if $\mathcal{M} \models p(b_1,...,b_n)$.

For a homogeneous structure \mathcal{M} , \bar{a} , \bar{b} have the same type over B in \mathcal{M} if and only if they are in the same $Aut(\mathcal{M})_B$ -orbit.

Stationary Independence Relation

Definition

Let $\mathcal M$ be a structure. \bigcup is a stationary independence relation if the following is satisfied for any substructure $A,B,C,D\subseteq \mathcal M$:

- Invariance: A, C independence over B depends only on the type of ABC
- Monotonicity: $A \perp_B CD \Rightarrow A \perp_B C$, $A \perp_{BC} D$
- Transitivity: $A \bigcup_B C$, $A \bigcup_{BC} D \Rightarrow A \bigcup_B D$
- Symmetry: $A \bigcup_B C \Rightarrow C \bigcup_B A$
- Existence: If p is a type over B and C is a finite set, then p has a realisation that is independent from C over B
- Stationarity: If \(\bar{a}\) and \(\bar{a}'\) have the same type over B and are both independent from C over B, then \(\bar{a}\) and \(\bar{a}'\) have the same type over BC.

Definition

 $g \in Aut(\mathcal{M})$ moves almost maximally if for every 1-type over a finite set X has a realisation a such that a $\bigcup_{X} ga$.

Theorem (Tent and Ziegler, 2012, Corollary 5.4

Let \mathcal{M} be a countable homogeneous structure with a stationary independence relation. If $g \in Aut(\mathcal{M})$ moves almost maximally, then any element of $Aut(\mathcal{M})$ is the product of sixteen conjugates of g.

- we want to find a stationary independence relation on the Fraïssé limit M of the semi-free amalgamation classes. The key is to find a 'unique' amalgam for every A, C over B.
- we want to find an automorphism of ${\mathcal M}$ that moves almost maximally.

Definition

 $g \in Aut(\mathcal{M})$ moves almost maximally if for every 1-type over a finite set X has a realisation a such that a $\bigcup_{x} ga$.

Theorem (Tent and Ziegler, 2012, Corollary 5.4)

Let \mathcal{M} be a countable homogeneous structure with a stationary independence relation. If $g \in \operatorname{Aut}(\mathcal{M})$ moves almost maximally, then any element of $\operatorname{Aut}(\mathcal{M})$ is the product of sixteen conjugates of g.

- we want to find a stationary independence relation on the Fraïssé limit M of the semi-free amalgamation classes. The key is to find a 'unique' amalgam for every A, C over B.
- we want to find an automorphism of ${\mathcal M}$ that moves almost maximally.

Definition

 $g \in Aut(\mathcal{M})$ moves almost maximally if for every 1-type over a finite set X has a realisation a such that a $\bigcup_{x} ga$.

Theorem (Tent and Ziegler, 2012, Corollary 5.4)

Let \mathcal{M} be a countable homogeneous structure with a stationary independence relation. If $g \in Aut(\mathcal{M})$ moves almost maximally, then any element of $Aut(\mathcal{M})$ is the product of sixteen conjugates of g.

- we want to find a stationary independence relation on the Fraïssé limit M of the semi-free amalgamation classes. The key is to find a 'unique' amalgam for every A, C over B.
- we want to find an automorphism of ${\mathcal M}$ that moves almost maximally.