Remote sensing system perspective on the Okavango

Thomas Gumbricht WERRD Mid term meeting, Heja Lodge, Windhoek 25-28 August 2003

The integrated system perspective:

The Okavango Delta – Africa's last eden

Rainfall and flooding - Okavango Delta

Population - Okavango Basin

Psst!

Ecoregion Classification methodology

Water = 2.5 m below reference level

Permanent Swamp = 2.0 m below reference level

Primary floodplain = 1.5 m below reference level

Secondary floodplain = 1.0 m below reference level

Grassland = reference level

Salt pan = 0.5 m below reference level

Occasionally flooded grassland = 0.5 m below reference level

Salt pan = 0.5 m below reference level

Riverine forest = 1.2 m above reference level

Dry woodland = reference level

Dry woodland = reference level

Landcover ecoregions

Landcover ecoregions

Linyanti Moremi Maun Mid channel common ties Semany Roddelain Socianday (loadalary Grassland (occasionally (bodded) Rivering Pangual Bry grass and/set pen (occasionally (boded) Bry Woodland (dominated by Acacia) Dry Woodland (dominated by Mosane) Dry Woodland (dom nated by Com aretem)

Surveyed profiles

Microtopography

Relative microtopography of the Okavango Delta

Okavango Delta water balance

Classification of historical flood area

Unsupervised classification of \sim 400 satellite images (NOAA AVHRR, ERS-2 ATSR), and supervised classification of Landsat MSS / TM (subset of \sim 3000 images)

Evaluation of AVHRR against Landsat TM & ATSR

AVHRR vs. Landsat TM

AVHRR vs. ATSR

Flooding, years (1985-2000)

Flooding, month (1985-2000)

Okavango Delta water balance 1992/93

- 3 ways to model the water flow in the Okavango Delta
- 1. Statistically by using historical data
- 2. Mathematical description of outflow and inflow of small cubes (like a checker-board)
- 3. Mathematical description of outflow and inflow of "natural" compartments

Statistical modelling of the Okavango Delta annual flooding

Data needed:

- •Inflow at Panhandle
- •Rainfall over the Delta
- •Area of flooding (to be predicted)

Area of flooding =
Inflow at the Panhandle +
local precipitation +
previous years flood

 4500 km^2

 5000 km^2

 5500 km^2

 6000 km^2

 6500 km^2

 7000 km^2

 7500 km^2

 $8000\;km^2$

 $8500\;km^2$

 $9000\;km^2$

 9500 km^2

10000 km^2

$10500\;km^2$

11000 km^2

11500 km^2

$12000 \; km^2$

12500 km^2

$13000 \ km^2$

Fully distributed modelling of the Okavango Delta hydrology

Data needed:

- •Inflow at Panhandle
- •Rainfall over the Delta (in each checker board "cube")
- •Area of flooding (to be predicted)
- •Regional and detailed topography (for each "cube")
- •Evapotranspiration in each "cube"
- •Water storage in each "cube"
- •Water flow resistance properties in each "cube"

Precipitation and evapotranspiration – driving variables of the Delta water balance

Remote sensing for estimating spatial distribution of precipitation and evapotranspiration

Field data for estimation of net recharge

Parameterisation of evapotranspiration, recharge and net exchange

Field data for accurate point measurements of surface energy balance (evapotranspiration)

Net radiometre

Microclimate station

At least 1 station for each land cover class

Vertical water balance of the Okavango Delta

2 layer modflow model of the Okavango Delta

2 layer modflow model of the Okavango Delta Preliminary tests

Semi distributed modelling of the Okavango Delta hydrology

Data needed:

•Inflow at Panhandle

- •Rainfall over the Delta (in each compartment
- Area of flooding (to be predicted)
- Detailed topography (in each compartment)
- •Evapotranspiration (for each compartment)
- •Water storage in each compartment
- •Water flow resistance between each compartment

Matter balance and islands – redirecting water flow on different time scales

Primary islands built from accumulation of clastic sediments

Island types

Inverted channel island

Primary islands built from accumulation of clastic sediments

Island types

Scroll bar island

Primary islands built from accumulation of clastic sediments

Island types
Anthill island

Evapotranspiration, salinity balance and island secondary growth

Secondary islands grown from precipitation of chemical sediments

Island types
Riparian forest island

Secondary islands grown from precipitation of chemical sediments

Island types
Salt islands

Detail of the Chitabe area

Detailed relief of the Chitabe area

Salt Balance: Coastline from Remote Sensing

Order of magnitude correct

	A	В	C	D	E	F	G	н
Roundness	0.49	0.91	0.51	0.48	0.36	0.47	0.58	0.92
Regional salt position	distal*	na	na	proximal	distal	equal	proximal	na
Channel salt position	front	na	na	back	back	back	back*	na

Island orientation – interacting with water flow over the Delta surface

Summary

The Rift Vallley and the Superswell created the Okavango and its Basin
The Basin feeds the Alluvial fan with sediments that keeps the surface flat
The Basin feeds clean water to the Delta that sits on the Alluvial fan
The living Wetland is sustained by the shifts in the Delta and Alluvial Fan
The Islands are born from the shifts in the Delta and Alluvial Fan
The Islands are the kidneys of the Okavango – removing salt from the Wetland

Conclusion

The Superswell will eventually divert the Okavango to the Zambezi
Clean water and sediments from the Basin is a must for the Okavango to live
Loss of water inflow would decrease the size of the Delta and Wetland
Loss os sediment inflow would disrupt the changes sustaning the living Wetland
Loss of sediment inflow would disrupt the Island birth and growth process
The growth of the Alluvial Fan preserves the flatness sustaining the Delta
The death and birth of channels is a creative destruction sustaining the living Wetland
Island birth and growth is needed for removing salt from the Wetland

Acknowledgements

This work was done in close collaboration with the University of the Witwatersrand in Johannesburg, South Africa, and was part of the SAFARI 2000 Research Initiative.

The studies were financially supported through

- Scholarship from Royal Swedish Academy of Sciences and The Swedish Foundation for International Cooperation in Research and Higher Education (STINT)
- Swedish International Development Agency (SIDA), research expenses (via KTH and Linkoping University)

