Clusteringbased Pair trading using reinforcement learning

Presented By Leung Pak Hei Hong Kong University of Science and Technology

Data I used:

- + Target: Stock under S&P500
- + Training Period: 2017-2021
- + Testing Period: 2021-Mar 2023

Clustering method used:

- + K-means
- + Hierarchical Clustering
- + Affinity Propagation
- + DBSCAN
- + Gaussian Mixture Model
- Ordering Points to Identify the Clustering Structure(OPTICS)
- + Agglomerative Hierarchy clustering

$$rg\min_{\mathbf{S}} \sum_{i=1}^k \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - oldsymbol{\mu}_i\|^2 = rg\min_{\mathbf{S}} \sum_{i=1}^k |S_i| \operatorname{Var} S_i$$

K-means

- + centroid-based algorithm
- minimize the variance of data points within a cluster.

DBSCAN clustering & **OPTICS**

- density-based spatial clustering of applications with noise
- + DBSCAN uses two parameters to determine how clusters are defined: minPts and eps.
- + OPTICS is a variation of DBSCAN, with Core Distance and Reachability Distance

Cluster Dendrogram

Hierarchical Clustering & Agglomerative Hierarchy clustering

Maximum or complete-linkage clustering	$\max_{a\in A,b\in B}d(a,b)$
Minimum or single-linkage clustering	$\min_{a \in A, b \in B} d(a,b)$
Unweighted average linkage clustering (or UPGMA)	$rac{1}{ A \cdot B } \sum_{a\in A} \sum_{b\in B} d(a,b).$
Weighted average linkage clustering (or WPGMA)	$d(i\cup j,k)=rac{d(i,k)+d(j,k)}{2}.$

 Top-down approach: All observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.

Affinity Propagation

- each data point sends messages to all other points informing its relative attractiveness.
- Each target then responds to all senders with a reply
- Senders reply to the targets with messages informing each target of the target's revised relative attractiveness to the sender.
- + The message-passing procedure proceeds until a consensus is reached.

Gaussian Mixture Models

- + One way to think about the k-means model is that it places a circle (or, in higher dimensions, a hyper-sphere) at the center of each cluster. This works fine for when data is circular.
- + In contrast, Gaussian mixture models can handle even very oblong clusters.

Example of clustering results

How can we know which clustering algorithms works the best?

- + Silhouette Score = (b-a)/max(a,b) , [-1,1]
- where a= average intra-cluster distance i.e the average distance between each point within a cluster.
- + b= average inter-cluster distance i.e the average distance between all clusters.
- + 1: Means clusters are well apart from each other and clearly distinguished.
- + -1: Means clusters are assigned in the wrong way.

Comparison

Silhouette Score comparison	
Algorithm	Silhouette Score
K-means	0.389
Hierarchical Clustering	0.325
Affinity Propagation	0.312
DBSCAN	0.365
OPTICS	0.375
Gaussian Mixture Model	0.395

Apply Reinforcement learning

- + Network: Deep Q-learning
- + Action space: {-1,0,1} #Sell, Hold, Buy
- + Environment variables: spread of trading pairs, normalized price ratio, technical indicators (Moving average, Relative Strength Index), Bi-LSTM predicted price
- + Reward: profit/loss

Last Step: Back-testing

Sharpe ratio: 1.68

$$S_a = rac{E\left[R_a - R_b
ight]}{\sigma_a}$$

 S_a = Sharpe ratio

 $oldsymbol{E}$ = expected value

 R_a = asset return

 R_b = risk free return

 σ_a = standard deviation of the asset excess return

A Perfect Sharpe ratio?

Transaction fee was not considered

My estimated Sharpe ratio is around 1.45

End

