EECS 203A HWZ John Lin 25961868

1. Suppose that we have an input image with the histogram

Input

$$h(r_k) = 3r_k$$
 $r_k = 0, 1, 2, \dots, 10$

We desire a gray level transformation $M(r_k)$ such that the histogram of the transformed image is as close as possible to

$$d(r_k) = 3(10 - r_k)$$
 $r_k = 0, 1, 2, \dots, 10$

Desired

- a) Using the method described in class, determine $M(r_k)$ for $r_k = 0, 1, \dots, 10$.
- b) What is the histogram $o(r_k)$ for $r_k = 0, 1, 2, ..., 10$ of the transformed image?

rk	Pr	T(rk)	2 _k	Pz	7(Z _k) 30 57 81 102
<u>r</u> 0	Pr 0 3 6 9	T(rk) 0 3 9 18	0	Pz 30 27 24 21 18 15 12 9 6 3	30
1	3	3		27	5]
2	6	9	1 2 3 4 5	24	81
2 3 4	9	18	3	21	107
	12	30	4	18	120 135 147 156
5	15	45	5	15	135
6	18	63	6	12	147
7	2	84	7	9	156
7 8 9	15 18 21 24 27 30	30 45 63 84 108 135	7 8 9	6	162 165
1	21	135		3	
	30	165	lo	0	165
a)	<u>rk</u>	Mcrk)	b) rk		Durk)
	D I	0	0		30
		0 0 0 0 0	l		33
	2	0	2		21
	3	0	3		24
	4	0	4		D
	5	1	5		27
	<i>b</i> 7	1	6		0
		2	7		D
	8 9	3 5	b) <u>Ik</u> 0 1 2 3 4 5 6 7 8 9 10		30 33 21 24 0 27 0 0 0
		5	9		U
	10	10	10		30

2. Suppose that we capture a sequence of images

$$g(x, y, t_i) = f(x, y) + n(x, y, t_i)$$

where f(x, y) is a noise-free image and $n(x, y, t_i)$ is a zero-mean additive noise source with variance $\sigma_n^2(x, y)$. Assume that the noise at any time is independent of the noise at any other time.

a) Suppose that we form the image

$$h(x,y) = \frac{1}{N} \sum_{i=1}^{N} (-1)^{i} g(x, y, t_{i})$$

where N is an even integer. What is the expected value of h(x,y)?

b) What is the variance of h(x, y)?

a)
$$h(x,y) = \frac{1}{N} \left(-f(x,y) - n(x,y,t_1) + f(x,y) + n(x,y,t_2) + \cdots - f(x,y) - n(x,y,t_{N-1}) + f(x,y) + n(x,y,t_N) \right)$$

 $h(x,y,t_1) = \frac{1}{N} \left(-f(x,y) - n(x,y,t_1) + f(x,y) + n(x,y,t_N) \right)$

:.E[h(x,y)] = 0 b) VAR[h(x,y)] = VAR[I/N(-n(x,y,t,)+h(x,y,t₂)+...

$$-n(x,y,t_{N-1}+n(x,y,t_N))]$$

$$= 1/N^2 VAR[-n(x,y,t_1)+n(x,y,t_2)+\cdots$$

$$-n(x,y,t_{N-1}+n(x,y,t_N)]$$
\(\text{. noise is independent}\)

 $... VAR [h(x,y)] = 1/N^2 \cdot N \cdot \sigma_n^2(x,y) = 1/N \cdot \sigma_n^2(x,y)$

Computer Problems:

- a) Assume L=256 and generate a lookup table that maps input gray-levels to output gray-levels for a power law transform with $\gamma=0.4$ and $\gamma=2.5$. For the two cases, plot output gray-level s versus input gray-level r. These should look like Figure 3.6 in the textbook. Submit a plot of your two curves. Apply these two GLTs to the cat image and submit the images. Describe the appearance of the two transformed images compared to the original image.
- b) Apply histogram equalization to the cat image. Submit your code and a plot of the output gray-level versus input gray-level for the transform. Submit the histogram equalized image. Describe the appearance of the transformed image compared to the original image.

'EFCS203A_HW2_a m' generates table (.csv), plot (.jpg)
'EFCS203A_HW2_a, c' applies GLTs to generate transformed images (.raw)

'EECS203A_HWZ_b.m' generates plot (.jpg) and the histogram equalized image (.raw)

a) Compered to the original image. image of output gray level for a power law transform with $\gamma = 0.4$ turns to be brighter. and the one with $\gamma = 2.5$ turns to be clarker. b) Compared to the original image, the histogram equalized image has stronger contrast, bright part becomes brighter and dark part becomes darker