

Claims

Sub A4

What is claimed is:

1. A digital signal processor comprising:
 - 2 an analog front end including an analog-to-digital converter for
 - 3 receiving an input signal;
 - 4 a digital base-band processor having a latency period for detecting a
 - 5 signal, coupled to the analog front end;
 - 6 a shift register for tracking data representing the relative amplitude of
 - 7 samples of the input signal;
 - 8 a gain control counter controlled by a current relative amplitude of
 - 9 sample of the input signal and an output from the shift register, coupled to
 - 10 the shift register; and
 - 11 a gain control circuit coupled to the counter for controlling gain of the
 - 12 input signal.

- 1 2. The digital signal processor of claim 1 wherein the shift register tracks
- 2 data representing a period equal to at least the latency period.

- 1 3. The digital signal processor of claim 2 wherein the gain control
- 2 counter ceases to be controlled by the output of the shift register once the

- 3 base-band detector detects a signal of a predetermined threshold from the
4 analog front end.

- Substantiation*
- 1 4. The digital signal processor of claim 2 wherein the gain control circuit
2 includes a comparator for comparing a count in the gain control counter with
3 a predetermined count and based upon the results of the comparison,
4 adjusts the gain of the input signal.

- 1 5. The digital signal processor of claim 1 wherein the shift register
2 comprises a first shift register and a second shift register.

- Substantiation*
- 1 6. The digital signal processor of claim 5 wherein the first shift register is
2 coupled to a first comparator which compares samples of the input signal
3 with a lower threshold level.

- 1 7. The digital signal processor of claim 6 wherein the second shift
2 register is coupled to a second comparator which compares samples of the
3 sampled input signal with an upper threshold level.

1 8. The digital signal processor of claim 7 wherein the first and second
2 shift registers each have a number of stages approximately equal to the
3 number of samples occurring during the latency period.

1 9. The digital signal processor defined by claim 8 wherein the gain
2 control counter comprises a first gain control counter and a second gain
3 control counter, the first gain control counter being controlled by the first
4 comparator and the first shift register and the second gain control counter
5 being controlled by the second comparator and the second shift register.

1 10. The digital signal processor defined by claim 9 wherein the control of
2 the first and second gain control counter by the first and second shift
3 registers, respectively, ceases once the band-based processor detects the
4 signal having the predetermined threshold.

1 11. The digital signal processor defined by claim 10 including a first logic
2 circuit coupled to receive a most significant bit from the first shift register and
3 an output of the first comparator for providing a count-up and count-down
4 signal to the first gain control counter.

1 12. The digital signal processor of claim 11 including a second logic circuit
2 coupled to receive a most significant bit from the second shift register and an
3 output of the second comparator for providing a count-up and count-down
4 signal to the second gain control counter.

1 13. The digital signal processor of claim 10 including a third comparator
2 for comparing a current count in the first gain control counter with a first
3 predetermined count and for providing an output for increasing gain if the
4 current count is less than the first predetermined count.

1 14. The digital signal processor of claim 11 including a fourth comparator
2 for comparing the current count in the second gain control counter with a
3 second predetermined count and for decreasing gain if the current count is
4 greater than the second predetermined count.

1 15. In a digital signal processor having a latency period for detecting a
2 signal, an improvement comprising:
3 memory means for recording a history of the relative amplitude of
4 samples of an input to the processor; and

5 gain control means for controlling the gain of the input to the
6 processor based upon the current amplitude of the input to the processor and
7 the relative amplitude of prior input samples recorded in the memory means.

1 16. The digital signal processor of claim 15 wherein the memory means
2 stores the relative amplitude of samples for a period of at least equal to the
3 digital base-band processor latency period.

1 17. The digital signal processor of claim 16 wherein the memory means
2 comprises a first and a second shift register.

1 18. The digital signal processor of claim 17 wherein the gain control
2 means includes a first counter coupled to receive an output of the first shift
3 register and a second counter coupled to receive an output of the second
4 shift register.

1 19. A method for controlling gain in a digital signal processor comprising:
2 tracking data representing the relative amplitude of an input signal;
3 and
4 controlling the gain by considering a current amplitude and a prior
5 amplitude from the tracked data.

- 1 20. The method defined by claim 19 wherein the controlling of the gain
2 ceases to consider the tracked data once a signal is detected.

- 1 } 21. The method defined by claim 20 wherein the tracking step comprises,
2 recording first bits representing samples of the input signal that exceed a first
3 predetermined threshold and second bits representing samples of the input
4 signal that are less than a second predetermined threshold.

- 1 22. The method defined by claim 21 wherein the processor has a signal
2 detection latency period and the tracked data is for a period at least as long
3 as the latency period.

Add Art>