-3

Lab#4 is extended for another week for

- i) Midterm exams
- ii) Synchronizing the labs and lectures

Lab#4 becomes a 3-week lab and its due date is March 13, 2019.

All other remaining labs and due dates are pushed back for one week accordingly.

Make-up Class

-2

For university closure on Feb. 12, 2019 Within {Feb. 26, 27, Mar. 6, 7, 8}, the only availability is:

Date

Thursday, March 7, 2019

Time

9:00-12:00

Location

VIC608

Last Week × Q4Me

Book vs. Slides

W09-A: CH02, CH05 (2nd Ed.), CH05 (1st Ed.)

Lab

Last Weeks

Last Week ×Q4U

 $\left(\right)$

Today


```
Real World Entity

Conceptual Level | Entity-Relationship Model (E/R)

| Logical Level | Relational Model

| Physical Level | SQL

Computable Entity
```

Relational

Edgar Frank "Ted" Codd, IBM, 1969, 1970

Information Retrieval

A Relational Model of Data for Large Shared Data Banks

E. F. Codd IBM Research Laboratory, San Jose, California

Given a set, defining operations on elements of the set!

Given $Z=\{integers\}=\{..., -2, -1, 0, 1, 2, ...\}$

Operators & Operands:

Unary: -(2), 2!

Binary: 2+3, 2*3, 2^3

Closure:

Result is also an element of the set

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Query in Natural Language -> Query in Math Formula

Who made 'Pulp Fiction'?

```
π (σ (Movie × MovieDirector × Director))

Director.FirstName
Director.LastName

Movie.Id=MovieDirector.Movield
Director.Id=MovieDirector.DirectorId
```

Who acted in 'Pulp Fiction'?

```
π (Movie × Starln × Director))

Actor.FirstName
Actor.LastName

Movie.Title='PulpFiction' AND
Movie.Id=Starln.Movield AND
Actor.Id=Starln.ActorId
```

3

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Unary Operation	Binary Operation (Set Theory)
$\pi(R)$: Project	R1∪ R2: Union
$\sigma(R)$: Select	R1 ∩ R2: Intersection
ho(R) : Rename	R1 \ R2 : Set Difference
	R1 × R2: Cartesian Product

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product

Vertical

Filtering

Algebra \times Project (π)

 π , pi, is used to select a subset of <u>attributes</u> (columns) from a relation

$$A = \pi_{\langle attribute \ list \rangle}(R)$$

R is a relation

<attribute list> subset of attributes of R

A is a <u>relation</u> including all tuples in R with only attributes in list

	Director						
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount	
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13	
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47	
3	Clint	Eastwood	May 31, 1930	USA	803	35	

What are directors' name?

$$A = \pi_{FirstName, LastName}(Director)$$

	Director							
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount		
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13		
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47		
3	Clint	Eastwood	May 31, 1930	USA	803	35		

What are directors' name?

$$A = \pi_{FirstName, LastName}(Director)$$

	Director							
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount		
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13		
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47		
3	Clint	Eastwood	May 31, 1930	USA	803	35		

How many movies each director made?

$$A = \pi_{FirstName, LastName, MovieCount}(Director)$$

	Director Director							
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount		
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13		
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47		
3	Clint	Eastwood	May 31, 1930	USA	803	35		

How many movies each director made?

$$A = \pi_{FirstName, LastName, MovieCount}(Director)$$

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product

 σ , sigma, is used to select a subset of <u>tuples</u> from a relation based on a <u>condition</u> (θ) over relation's attributes.

$$A = \sigma_{\theta}(R)$$

R is a relation

 θ is a Boolean expression on the attributes of R A is a <u>relation</u> including tuples that make θ true

Horizontal Filtering

	Director							
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount		
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13		
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47		
3	Clint	Eastwood	May 31, 1930	USA	803	35		

Which director was born in US?

$$A = \sigma_{PlaceOfBirth='USA'}$$
 (Director)

	Director							
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount		
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13		
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47		
3	Clint	Eastwood	May 31, 1930	USA	803	35		

Which director was born in US?

$$A = \sigma_{PlaceOfBirth='USA'}$$
 (Director)

	Director							
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount		
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13		
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47		
3	Clint	Eastwood	May 31, 1930	USA	803	35		

Which director make more than 20 movies?

$$A = \sigma_{MovieCount > 20}$$
 (Director)

	Director						
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount	
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13	
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47	
3	Clint	Eastwood	May 31, 1930	USA	803	35	

Which director make more than 20 movies?

$$A = \sigma_{MovieCount > 20}$$
 (Director)

	Director						
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount	
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13	
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47	
3	Clint	Eastwood	May 31, 1930	USA	803	35	

Which director has same first and last names?

$$A = \sigma_{FirstName = LastName}$$
 (Director)

	Director							
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount		
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13		
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47		
3	Clint	Eastwood	May 31, 1930	USA	803	35		

Which director has same first and last names?

$$A = \sigma_{FirstName = LastName}$$
 (Director)
= \emptyset

egican be made up of number of Boolean clauses

	Director						
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount	
7	Stanley	Kubrick	Jul. 26, 1928	USA	7	13	
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47	
3	Clint	Eastwood	May 31, 1930	USA	803	35	

Which American director made more than 20 movies?

$$A = \sigma_{PlaceOfBirth='USA'}$$
 AND MovieCount > 20 (Director)

	Director							
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount		
7	Stanley	Kubrick	Jul. 26, 1928	USA	7	13		
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47		
3	Clint	Eastwood	May 31, 1930	USA	803	35		

Which American director made more than 20 movies or is not American?

A1 =
$$\sigma_{PlaceOfBirth='USA'}$$
 AND MovieCount > 20 OR PlaceOfBirth<>'USA' (Director)

$$A2 = \sigma_{PlaceOfBirth='USA' AND (MovieCount > 20 OR PlaceOfBirth<>'USA')}$$
 (Director)

A3 =
$$\sigma_{\text{(PlaceOfBirth='USA' AND MovieCount > 20) OR (PlaceOfBirth<>'USA')}}$$
(Director)

	Director							
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount		
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13		
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47		
3	Clint	Eastwood	May 31, 1930	USA	803	35		

Which American director made more than 20 movies or is not American?

A2 =
$$\sigma_{PlaceOfBirth='USA'}$$
 (MovieCount > 20 OR PlaceOfBirth<>'USA') (Director)

	Director						
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount	
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13	
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47	
3	Clint	Eastwood	May 31, 1930	USA	803	35	

Which American director made more than 20 movies or is not American?

A3 =
$$\sigma_{\text{(PlaceOfBirth='USA' AND MovieCount > 20) OR (PlaceOfBirth<>'USA')}}$$
 (Director)

Operation Precedence

$$() > \S > † > ‡$$

Commutative Law

$$A \S B = B \S A$$
 (we say A commutes with B under §)

Associative Law

$$A \S (B \S C) = (A \S B) \S C = A \S B \S C$$

Distributive Law

$$A \S (B + C) = (A \S B) + (A \S C)$$

```
Operation Precedence for Logical Operations
() > NOT > AND = OR
```

Commutative Law

```
A AND B = B AND A (we say A commutes with B under AND)
A OR B = B OR A (we say A commutes with B under OR)
```

Associative Law

```
A AND (B AND C) = (A AND B) AND C = A AND B AND C
A OR (B OR C) = (A OR B) OR C = A OR B OR C
```

Distributive Law

```
A AND (B OR C) = (A AND B) OR (A AND C)

A OR (B AND C) = (A OR B) AND (A OR C)
```

de Morgan's Theorem**

```
NOT (A AND B) = NOT(A) OR NOT(B)
NOT (A OR B) = NOT(A) AND NOT(B)
```

	Director						
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount	
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13	
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47	
3	Clint	Eastwood	May 31, 1930	USA	803	35	

Which American director made more than 20 movies?

$$A = \sigma_{PlaceOfBirth='USA'}$$
 AND MovieCount > 20 (Director)

=
$$\sigma_{\text{MovieCount}} > 20 \text{ AND PlaceOfBirth='USA'}$$
 (Director)

	Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which American director made more than 20 movies?

A1 =
$$\sigma_{PlaceOfBirth='USA'}$$
 (Director)
A = $\sigma_{MovieCount > 20}$ (A1)

	Director Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which American director made more than 20 movies?

$$A = \sigma_{MovieCount > 20} (\sigma_{PlaceOfBirth='USA'} (Director))$$

	Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which American director made more than 20 movies?

A =
$$\sigma_{\text{PlaceOfBirth='USA'}}(\sigma_{\text{MovieCount}}, \sigma_{\text{20}}(\text{Director}))$$

= $\sigma_{\text{PlaceOfBirth='USA'}}(\sigma_{\text{MovieCount}}, \sigma_{\text{20}}(\text{Director}))$

=
$$\sigma_{\text{MovieCount} > 20}$$
 ($\sigma_{\text{PlaceOfBirth='USA'}}$ (Director))

$$\sigma_{\theta}(\sigma_{\theta'}(R))$$

$$=$$

$$\sigma_{\theta \text{ AND } \theta'}(R)$$

$$=$$

$$\sigma_{\theta' \text{AND } \theta}(R)$$

$$=$$

$$\sigma_{\theta'}(\sigma_{\theta}(R))$$

Corollary:
$$\sigma_{\theta}(\sigma_{\theta'}(\sigma_{\theta''}(\sigma_{\theta'''}(R)) = \sigma_{\theta \text{ AND } \theta' \text{AND } \theta''}(R))$$

Algebra \times Selection (σ) \times Project (π)

\mathcal{I}	7
)	/

	Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Algebra × Selection (σ) × Project (π)

	Director						
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount	
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13	
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47	
3	Clint	Eastwood	May 31, 1930	USA	803	35	

$$A1 = \sigma_{MovieCount > 20}$$
 (Director)

Algebra × Selection (σ) × Project (π)

	Director					
<u>ld</u>	MovieCount					
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

A1 =
$$\sigma_{\text{MovieCount} > 20}$$
 (Director)

A = $\pi_{\text{FirstName, LastName}}$ (A1)

= $\pi_{\text{FirstName, LastName}}$ ($\sigma_{\text{MovieCount} > 20}$ (Director))

Algebra × Selection (σ) × Project (π) 40

	Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

$$A = \sigma_{\text{MovieCount}} > 20 (\pi_{\text{FirstName, LastName}} (\text{Director}))$$

Relational Model × Algebra

41

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product

Algebra \times Rename (ρ)

 ρ , rho, is used to rename a relation or its attributes or both

$$A = \rho_{\langle R'(a'/a, b'/b, ...) \rangle}(R)$$

R is a relation

R' is the new name for R(a, b, ...)

a' is the new name for attribute a of R

b' is the new name for attribute b of R

...

43

Algebra \times Rename (ρ)

	Director Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

$$A = \pi_{\text{FirstName, Name}} \left(\rho_{\text{ActiveDirector(Name/LastName)}} \left(\sigma_{\text{MovieCount}} > 20 (\text{Director}) \right) \right)$$

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product

Algebra × Binary Operations

Relational Model × Algebra

46

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product

Algebra \times Union (\cup)

U, union, is used to include tuples exist in either relations

$$A = R1 \cup R2$$

R1 and R2 are relations A has all tuples from R1 and R2

No duplicate!

U, union, is used to include tuples exist in either relations

$$A = R1 \cup R2$$

Commutative Law $R1 \cup R2 = R2 \cup R1$

Associative Law R1 \cup (R2 \cup R3) = (R1 \cup R2) \cup R3 = R1 \cup R2 \cup R3

	Director Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
1	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

	Actor					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount
7	John	Travolta	Feb. 18, 1954	USA	You	61
2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125
3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51
4	Clint	Eastwood	May 31, 1930	USA	A good	69

Show all American cast and crews' name?

	Director							
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount		
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13		
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47		
3	Clint	Eastwood	May 31, 1930	USA	803	35		

	Actor						
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount	
1	John	Travolta	Feb. 18, 1954	USA	You	61	
2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125	
3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51	
4	Clint	Eastwood	May 31, 1930	USA	A good	69	

Actor ∪ Director

	Director Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

	Actor						
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount	
1	John	Travolta	Feb. 18, 1954	USA	You	61	
2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125	
3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51	
4	Clint	Eastwood	May 31, 1930	USA	A good	69	

 $\sigma_{\text{PlaceOfBirth='USA'}}$ (Actor \cup Director)

	Director Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

	Actor					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount
7	John	Travolta	Feb. 18, 1954	USA	You	67
2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125
3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51
4	Clint	Eastwood	May 31, 1930	USA	A good	69

 $A = \pi_{FirstName, LastName} (\sigma_{PlaceOfBirth='USA'} (Actor \cup Director))$

= $\pi_{\text{FirstName, LastName}}$ ($\sigma_{\text{PlaceOfBirth='USA'}}$ (Actor) $\cup \sigma_{\text{PlaceOfBirth='USA'}}$ (Director))

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product

Algebra × Intersection (^)

o, intersection, is used to include tuples exist in both relations

$$A = R1 \cap R2$$

R1 and R2 are relations

A bac tupled evict both in R1 and R2

A has tuples exist both in R1 and R2

Algebra × Intersection (^)

on, intersection, is used to include tuples exist in both relations

$$A = R1 \cap R2$$

Commutative Law

$$R1 \cap R2 = R2 \cap R1$$

Associative Law

$$R1 \cap (R2 \cap R3) = (R1 \cap R2) \cap R3 = R1 \cap R2 \cap R3$$

Distributive Law

$$R1 \cap (R2 \cup R3) = (R1 \cap R2) \cup (R1 \cap R3)$$

$$R1 \cup (R2 \cap R3) = (R1 \cup R2) \cap (R1 \cup R3)$$

Algebra × Intersection (\cappa)

	Director Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

	<u>Actor</u>						
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount	
7	John	Travolta	Feb. 18, 1954	USA	You	61	
2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125	
3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51	
4	Clint	Eastwood	May 31, 1930	USA	A good	69	

Which actor has directed a movie?

Algebra × Intersection ()

	Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

	Actor					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount
7	John	Travolta	Feb. 18, 1954	USA	You	67
2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125
3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51
4	Clint	Eastwood	May 31, 1930	USA	A good	69

$$A = \pi_{FirstName, LastName}$$
 (Actor \cap Director)

Algebra × Intersection (\cappa)

		Director					
Į	<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
	1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
	2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
	3	Clint	Eastwood	May 31, 1930	USA	803	35

	Actor Actor					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount
7	John	Travolta	Feb. 18, 1954	USA	You	61
2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125
3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51
4	Clint	Eastwood	May 31, 1930	USA	A good	69

 $A = \pi_{FirstName, LastName}$ (Actor \cap Director)

Algebra × Intersection (^)

FirstName	LastName
Stanley	Kubrick
Alfred	Hitchcock
Clint	Eastwood

FirstName	LastName	
John	Travolta	
Samuel	Jackson	
Uma	Thurman	
Clint	Eastwood	

 $\pi_{\text{FirstName, LastName}}(\text{Director})$

FirstName	LastName	
Stanley	Kubrick	
Alfred	Hitchcock	
Clint	Eastwood	

FirstName	LastName
John	Travolta
Samuel	Jackson
Uma	Thurman
Clint	Eastwood

 $\pi_{\text{FirstName, LastName}}$ (Actor)

Algebra × Intersection (^)

FirstName	LastName	
Stanley	Kubrick Hitchcock	
Alfred		
Clint	Eastwood	

FirstName	LastName		
John	Travolta		
Samuel	Jackson		
Uma	Thurman		
Clint	Eastwood		

$$A = (\pi_{FirstName, LastName}(Actor)) \cap (\pi_{FirstName, LastName}(Director))$$

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 \cap R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product

Algebra × Set Difference (\)

\, minus, is used to exclude tuples from a relation

$$A = R1 \setminus R2$$

R1 and R2 are relations A has tuples in R1 but not in R2

Algebra × Set Difference (\)

\, minus, is used to exclude tuples from a relation

$$A = R1 \setminus R2$$

Commutative Law R1 \ R2 ≠ R2 \ R1


```
Algebra × Set Difference (\)
```

\, minus, is used to exclude tuples from a relation

$$A = R1 \setminus R2$$

Associative Law R1 \ (R2 \ R3) \neq (R1 \ R2) \ R3 (Why?)

Algebra × Set Difference (\)

Director						
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Actor						
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount
7	John	Travolta	Feb. 18, 1954	USA	You	61
2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125
3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51
4	Clint	Eastwood	May 31, 1930	USA	A good	69

Which director never appeared in a movie?

Algebra × Set Difference (\)

Director						
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Actor						
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount
7	John	Travolta	Feb. 18, 1954	USA	You	61
2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125
3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51
4	Clint	Eastwood	May 31, 1930	USA	A good	69

$$A = \pi_{FirstName, LastName}$$
 (Director \ Actor)

Algebra × Set Difference (\)

	Director Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

	Actor					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount
1	John	Travolta	Feb. 18, 1954	USA	You	61
2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125
3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51
4	Clint	Eastwood	May 31, 1930	USA	A good	69

Director \ Actor

Algebra × Set Difference (\)

FirstName	LastName		
Stanley	Kubrick		
Alfred	Hitchcock		
Clint	Eastwood		

FirstName	LastName
John	Travolta
Samuel	Jackson
Uma	Thurman
Clint	Eastwood

 $\pi_{\text{FirstName, LastName}}$ (Director)

FirstName	LastName		
Stanley	Kubrick		
Alfred	Hitchcock		
Clint	Eastwood		

FirstName	LastName
John	Travolta
Samuel	Jackson
Uma	Thurman
Clint	Eastwood

 $\pi_{\text{FirstName, LastName}}$ (Actor)

FirstName	LastName
Stanley	Kubrick
Alfred	Hitchcock
Clint	Eastwood

FirstNar	ne	LastName
John		Travolta
Samu	iel	Jackson
Uma		Thurman
Clint		Eastwood

$$A = (\pi_{FirstName, LastName} (Director)) \setminus (\pi_{FirstName, LastName} (Actor))$$

Algebra × Set Compatibility

	Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

	Movie Movie					
Į	<u>d</u>	Title	Language	RunningTime		
	1	2001: A Space Odyssey	English	142		
	2	Rosemary's Baby	English	136		

Director and Movie do <u>not</u> share same

- i) Number of attributes
- ii) Datatype in attributes

A = Director ∪ Movie

A = Director \(\cap \) Movie

A = Director \ Movie

Algebra × Set Compatibility

	Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

	Movie Movie				
<u>ld</u>	Title	Language	RunningTime		
1	2001: A Space Odyssey	English	142		
2	Rosemary's Baby	English	136		

Find movies which are NOT the best movies of any directors?

Algebra × Set Compatibility

74

BestMovield
1
203
803

ld 1 2

Find movies which are NOT the best movies of any directors? $A = (\pi_{ld} \text{ (Movie)}) \setminus (\pi_{BestMovield} \text{ (Director)})$

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product

×, product, is used to pair attributes (columns) and tuples (rows)

of two relations

 $A = R1 \times R2$

Pairing

R1(a_1 , a_2 , ..., a_n) and R2(a'_1 , a'_2 , ..., a'_m) are relations A is a relation with all attributes in R1 & R2:

 $A(a_1, a_3, ..., a_n, a_1, a_2, ..., a_m)$

In A, <u>each</u> tuple of R1 is paired with <u>all</u> tuples of R2

×, product, is used to pair attributes (columns) and tuples (rows) of two relations

$$A = R1 \times R2$$

attributes in A, n + m# tuples in A, $|A| = |R1| \times |R2|$

Commutative Law $R1 \times R2 = R2 \times R1$

Associative Law

 $R1 \times (R2 \times R3) = (R1 \times R2) \times R3 = R1 \times R2 \times R3$

×, product, is used to pair attributes (columns) and tuples (rows) of two relations

$$A = R1 \times R2$$

R1 and R2 do <u>not</u> have to be set compatible Any two relations can be paired.

30

×, product, is used to pair attributes (columns) and tuples (rows) of two relations

$$A = R1 \times R2$$

R1 and R2 do <u>not</u> have to be set compatible Any two relations can be paired.

But if you want to pair two or more relations, which ones?

	Movie			
<u>ld</u>	Title	Language	RunningTime	
1	2001: A Space Odyssey	English	142	
2	Rosemary's Baby	English	136	

User			
<u>ld</u>	Username	Password	
7	fani	***	
2	cjason	***	
3	h_f492	***	

What meaningful queries can be answered by pairing these two relations?

	Movie		
<u>ld</u>	Title	Language	RunningTime
1	2001: A Space Odyssey	English	142
2	Rosemary's Baby	English	136

What meaningful queries can be answered by pairing these two relations?

MovieGenre		
<u>Movield</u>	<u>Genreld</u>	
1	1	
1	3	
2	6	
2	7	
2	2	

	Genre		
<u>ld</u>	Title		
1	Sci-fi		
2	Action		
3	Adventure		
4	Comedy		
5	Crime		
6	Drama		
7	Horror		

	Movie × MovieGenre				
<u>ld</u>	Title	Language	RunningTime	<u>Movield</u>	<u>Genreld</u>
1	2001: A Space Odyssey	English	142	1	7
1	2001: A Space Odyssey	English	142	1	3
1	2001: A Space Odyssey	English	142	2	6
1	2001: A Space Odyssey	English	142	2	7
1	2001: A Space Odyssey	English	142	2	2
2	Rosemary's Baby	English	136	1	7
2	Rosemary's Baby	English	136	1	3
2	Rosemary's Baby	English	136	2	6
2	Rosemary's Baby	English	136	2	7
2	Rosemary's Baby	English	136	2	2

	Genre
<u>d</u>	Title
1	Sci-fi
2	Action
3	Adventure
4	Comedy
5	Crime
6	Drama
7	Horror

	Movie × MovieGenre				
<u>ld</u>	Title	Language	RunningTime	<u>Movield</u>	<u>Genreld</u>
1	2001: A Space Odyssey	English	142	1	7
1	2001: A Space Odyssey	English	142	1	3
1	2001: A Space Odyssey	English	142	2	6
1	2001: A Space Odyssey	English	142	2	7
1	2001: A Space Odyssey	English	142	2	2
2	Rosemary's Baby	English	136	1	7
2	Rosemary's Baby	English	136	1	3
2	Rosemary's Baby	English	136	2	6
2	Rosemary's Baby	English	136	2	7
2	Rosemary's Baby	English	136	2	2

	Genre
<u>ld</u>	Title
1	Sci-fi
2	Action
ന	Adventure
4	Comedy
5	Crime
6	Drama
7	Horror

<u>ld</u>	Title	Language	RunningTime	<u>Movield</u>	<u>Genreld</u>
1	2001: A Space Odyssey	English	142	1	1
1	2001: A Space Odyssey	English	142	7	3

old=Movield AND Title='2001: A Space Odyssey' (Movie×MovieGenre)

	Genre		
<u>ld</u>	Title		
1	Sci-fi		
2	Action		
3	Adventure		
4	Comedy		
5	Crime		
6	Drama		
7	Horror		

85

86

Algebra × Cartesian Product (×)

<u>ld</u>	Title	Language	RunningTime	<u>Movield</u>	<u>Genreld</u>	<u>ld</u>	Title
1	2001: A Space Odyssey	English	142	1	1	1	Sci-fi
1	2001: A Space Odyssey	English	142	1	7	2	Action
1	2001: A Space Odyssey	English	142	1	1	3	Adventure
1	2001: A Space Odyssey	English	142	1	1	4	Comedy
1	2001: A Space Odyssey	English	142	1	1	5	Crime
1	2001: A Space Odyssey	English	142	1	1	6	Drama
1	2001: A Space Odyssey	English	142	1	1	7	Horror
1	2001: A Space Odyssey	English	142	1	3	1	Sci-fi
1	2001: A Space Odyssey	English	142	1	3	2	Action
1	2001: A Space Odyssey	English	142	1	3	3	Adventure
1	2001: A Space Odyssey	English	142	1	3	4	Comedy
1	2001: A Space Odyssey	English	142	1	3	5	Crime
1	2001: A Space Odyssey	English	142	1	3	6	Drama
1	2001: A Space Odyssey	English	142	1	3	7	Horror

```
(σ<sub>Id=Movield AND</sub> (Movie×MovieGenre)×Genre)
Title='2001: A Space Odyssey'
```

<u>ld</u>	Title	Language	RunningTime	Movield	Genreld	<u>ld</u>	Title
1	2001: A Space Odyssey	English	142	1	1	1	Sci-fi
7	2001: A Space Odvssev	Enalish	142	1	3	3	Adventure

$$A = \sigma_{\text{Id=GenreId}}(\sigma_{\text{Id=Movield AND}} (\text{Movie} \times \text{MovieGenre})) \times \text{Genre})$$

$$\text{Title='2001: A Space Odyssey'}$$

×, product, is used to pair attributes (columns) and tuples (rows) of two relations

$$A = R1 \times R2$$

R1 and R2 do <u>not</u> have to be set compatible Any two relations can be paired.

But if you want to pair two or more relations, which ones?

Those have relationship in E/R diagram

Those have linked by foreign keys (FK) in relational model

ld	Title	Language	RunningTime	Movield	<u>Genreld</u>	<u>ld</u>	Title
1	2001: A Space Odysse	y English	142	1	7	1	Sci-fi
1	2001: A Space Odysse	y English	142	1	3	3	Adventure

$$A = \sigma_{\text{Id}=\text{GenreId}}(\sigma_{\text{Id}=\text{Movield AND}}^{\text{Id}=\text{Movield AND}} \text{(Movie × MovieGenre)) × Genre)}$$

$$\text{Title='2001: A Space Odyssey'}$$

Ambiguous name reference! Solution?

<u>ld</u>	Title	Language	RunningTime	<u>Movield</u>	<u>Genreld</u>	<u>ld</u>	Title
1	2001: A Space Odyssey	English	142	1	1	1	Sci-fi
1	2001: A Space Odyssey	English	142	1	3	3	Adventure

$$A = \sigma_{Genre,Id=GenreId}(\sigma_{Movie,Id=Movield\ AND} (Movie \times Movie Genre)) \times Genre)$$

$$Title='2001: A Space Odyssey'$$

Ambiguous name reference! Solution?

·, dot, namespace operator

Mld	Title	Language	RunningTime	<u>Movield</u>	<u>Genreld</u>	<u>ld</u>	Title
1	2001: A Space Odyssey	English	142	1	1	1	Sci-fi
1	2001: A Space Odyssey	English	142	1	3	3	Adventure

$$A = \sigma_{\text{Id=GenreId}}(\sigma_{\text{MId=Movield AND}} (\rho_{\text{R(MId/Id)}}(\text{Movie})) \times \text{MovieGenre})) \times \text{Genre})$$

$$\text{Title='2001: A Space Odyssey'}$$

Ambiguous name reference! Solution? p, rho, rename operator

Relational Model × Algebra

Who made 'Pulp Fiction'?

Relational Model × Algebra

Who made 'Pulp Fiction'?

- i) Find the movie in Movie relation
- ii) Find directors in Director relation
- iii) Find who made a movie in MovieDirector relation

Who made 'Pulp Fiction'?

```
σ (σ (Movie × MovieDirector)) × Director

Director.Id= Movie.Title='PulpFiction' AND

MovieDirector.DirectorId Movie.Id=MovieDirector.MovieId
```

Who made 'Pulp Fiction'?

```
σ (Movie × MovieDirector)) × Director

Director.Id= Movie.Title='PulpFiction' AND

MovieDirector.DirectorId Movie.Id=MovieDirector.MovieId
```

Selection (σ) is commutative

Who made 'Pulp Fiction'?

```
σ (σ (Movie × MovieDirector)) × Director

Director.Id= MovieDirectorId Movie.Itle='PulpFiction' AND

MovieDirector.DirectorId Movie.Id=MovieDirector.MovieId
```

=

 $\sigma_{\text{Movie.Title='PulpFiction'}}$ (Movie × MovieDirector × Director)

Movie.Id=MovieDirctor.Movield AND Director.Id=MovieDirctor.DirectorId

Relational Model × Algebra

Who acted in 'Pulp Fiction'?

Who acted in 'Pulp Fiction'?

```
π (Movie × Starln × Director))

Actor.FirstName
Actor.LastName

Movie.Title='PulpFiction' AND
Movie.Id=Starln.Movield AND
Actor.Id=Starln.ActorId
```

×, product, is used to pair attributes (columns) and tuples (rows) of two relations

$$A = R1 \times R2$$

P.S.

- Product is the most important operator in relational model
- II) Product is the most common operator in relational model
- III) Product is the most expensive operator in relational model

Algebra × Complete Set of Operators 100

 $\pi(R)$ Project

 $\sigma(R)$ Select

 $\rho(R)$ Rename

R1 ∪ R2 Union

R1 \ R2 Set Difference

R1 × R2 Cartesian Product

Any other relational algebra expression can be expressed by a combination of these operations.

Algebra × Complete Set of Operators 10

 $R1 \cap R2 = (R1 \cup R2) \setminus ((R1 \setminus R2) \cup (R2 \setminus R1))$

Algebra × Complete Set of Operators 10°

$$R1 \stackrel{\otimes}{\underset{\leftarrow}{\mathbb{R}}} R2 = R1 \setminus R1 \setminus R2$$

$$R1 \cap R2 = R1 \setminus (R1 \setminus R2)$$

 \bowtie_{θ} , θ -join, is product (×) of relations followed by selection (σ)

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

Movies and their directors?

 $\sigma_{\text{Genre.Id=GenreId}}(\sigma_{\text{Movie.Id=MovieId}} \text{ (Movie } \times \text{MovieGenre)}) \times \text{Genre})$

Movies and their directors?

 $\sigma_{\text{Genre.Id}=\text{GenreId}}(\sigma_{\text{Movie.Id}=\text{MovieId}}(\text{Movie}\times\text{MovieGenre}))\times\text{Genre})$

Movie Movield MovieGenre

Movies and their directors?

$$\sigma_{\text{Genre.Id=GenreId}}(\sigma_{\text{Movie.Id=MovieId}}(\text{Movie}\times\text{MovieGenre}))\times\text{Genre})$$

 \bowtie , natural join, is product (×) of relations followed by selection (σ)

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

Commutative?

Associative?

Movies and their directors?

```
\sigma_{\text{Movie.Id=Movield}} \text{ AND Genre.Id=GenreId} \text{ (Movie } \times \text{MovieGenre} \times \text{Genre})
```

 $\sigma_{\text{Movie.Id=Movield AND Genre.Id=Genreld}} (\text{Movie} \times \text{Genre} \times \text{MovieGenre})$

 $\sigma_{\text{Movie.Id=Movield AND Genre.Id=GenreId}} (Genre \times Movie \times Movie Genre)$

 $\sigma_{\text{Genre.Id=GenreId}} \text{ (Movie \times MovieGenre \times Genre)}$

Commutative and Associative law for AND and Product (×)

Movies and their directors?

 $\sigma_{\text{Movie.Id=Movield}} \text{ AND Genre.Id=GenreId} \text{ (Movie } \times \text{MovieGenre} \times \text{Genre})$

 \bowtie , natural join, is product (×) of relations followed by selection (σ)

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

Commutative: R1 \bowtie_{θ} R2 = R2 \bowtie_{θ} R1

Associative: (R1 \bowtie_{θ} R2) $\bowtie_{\theta'}$ R3 \neq R1 \bowtie_{θ} (R2 $\bowtie_{\theta'}$ R3) (Why?)

 \bowtie , natural join, is θ -Join <u>equating</u> all shared attributes (same name)

$$R1 \bowtie R2 = R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

where θ : R1.a = R2.a AND R1.b = R2.b AND ... AND R1.z = R2.z

Algebra × Natural Join

1		
ı		
ı	U	<u>_</u>

	Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

	Movie				
<u>ld</u>	Title	Language	RunningTime		
1	2001: A Space Odyssey	English	142		
2	Rosemary's Baby	English	136		

What are directors' best movie name?

A1				
FirstName	LastName	BestMovield → Id		
Stanley	Kubrick	1		
Alfred	Hitchcock	203		
Clint	Eastwood	803		

	Movie Movie				
<u>ld</u>	Title	Language	RunningTime		
1	2001: A Space Odyssey	English	142		
2	Rosemary's Baby	English	136		

What are directors' best movie name?

A1 =
$$\rho_{\text{Movie(Id/BestMovield)}}(\pi_{\text{FirstName, LastName, BestMovield}}(\text{Movie}))$$

Algebra × Natural Join

	A					
FirstName	LastName	BestMovield-→ Id	<u>ld</u>	Title	Language	RunningTime
Stanley	Kubrick	1	1	2001: A Space Odyssey	English	142
Alfred	Hitchcock	203				
Clint	Eastwood	803				
			2	Rosemary's Baby	English	136

What are directors' best movie name?

A = A1
$$\bowtie$$
 Movie
= A1 $\bowtie_{A1.Id=Movie.Id}$ Movie
= $\sigma_{A1.Id=Movie.Id}$ (A1 × Movie)

102

Algebra × Left Outer Join (⋈)

	A					
FirstName	LastName	BestMovield-→ Id	<u>ld</u>	Title	Language	RunningTime
Stanley	Kubrick	1	1	2001: A Space Odyssey	English	142
Alfred	Hitchcock	203	NULL	NULL	NULL	NULL
Clint	Eastwood	803	NULL	NULL	NULL	NULL
			2	Rosemary's Baby	English	136

What are directors' best movie name if any?

A = A1
$$\bowtie$$
 Movie
= (A1 $\bowtie_{A1.Id=Movie.Id}$ Movie) \cup (?)
= ($\sigma_{A1.Id=Movie.Id}$ (A1 \times Movie)) \cup (?)

Algebra × Right Outer Join (►)

102

	A					
FirstName	LastName	BestMovield-→ Id	<u>ld</u>	Title	Language	RunningTime
Stanley	Kubrick	1	1	2001: A Space Odyssey	English	142
Alfred	Hitchcock	203				
Clint	Eastwood	803				
NULL	NULL	NULL	2	Rosemary's Baby	English	136

List all movies and identify whether each one is the best of its director?

A = A1
$$\bowtie$$
 Movie
= (A1 $\bowtie_{A1.Id=Movie.Id}$ Movie) \cup (?)
= ($\sigma_{A1.Id=Movie.Id}$ (A1 \times Movie)) \cup (?)

Algebra × Full Outer Join (►)

1	
ı	
ı	

	A					
FirstName	LastName	BestMovield → Id	<u>ld</u>	Title	Language	RunningTime
Stanley	Kubrick	1	1	2001: A Space Odyssey	English	142
Alfred	Hitchcock	203	NULL	NULL	NULL	NULL
Clint	Eastwood	803	NULL	NULL	NULL	NULL
NULL	NULL	NULL	2	Rosemary's Baby	English	136

 $A = A1 \bowtie Movie$ = $A1 \bowtie Movie \cup (A1 \bowtie Movie)$

Relational algebra has more complex operators such as:

```
R1 > R2 Antijoin
R1 / R2 Division
```

→ https://en.wikipedia.org/wiki/Relational_algebra

111

/, division, is used to find tuples (rows) in R1 which matched with ALL tuples (rows) in R2 :

$$A = R1 / R2$$

R1 and R2 are relations
A is a relation with all attributes in R1

112

What movie(s) belong to ALL genres?

			A1				
ld	Title	Language	RunningTime	Movield	Genreld	ld	Title
1	2001: A Space Odyssey	English	142	1	1	7	Sci-fi
1	2001: A Space Odyssey	English	142	1	3	3	Adventure
2	Rosemary's Baby	English	136	2	6	6	Drama
2	Rosemary's Baby	English	136	2	7	7	Horror
2	Rosemary's Baby	English	136	2	2	2	Action
2	Rosemary's Baby	English	136	2	1	1	Sci-fi
2	Rosemary's Baby	English	136	2	3	3	Adventure
2	Rosemary's Baby	English	136	2	4	4	Comedy
2	Rosemary's Baby	English	136	2	5	5	Crime

	Genre
<u>ld</u>	Title
1	Sci-fi
2	Action
3	Adventure
4	Comedy
5	Crime
6	Drama
7	Horror

$$A1 = \sigma_{\text{Movie.Id=Movield AND}}$$
Genre.Id=GenreId

(Movie×MovieGenre×Genre)

113

What movie(s) belong to ALL genres?

A2		
MovieTitle	Id	Title
2001: A Space Odyssey	1	Sci-fi
2001: A Space Odyssey	3	Adventure
Rosemary's Baby	6	Drama
Rosemary's Baby	7	Horror
Rosemary's Baby	2	Action
Rosemary's Baby	1	Sci-fi
Rosemary's Baby	3	Adventure
Rosemary's Baby	4	Comedy
Rosemary's Baby	5	Crime

	Genre
ld	Title
1	Sci-fi
2	Action
ഡ	Adventure
4	Comedy
5	Crime
6	Drama
7	Horror

$$A2 = \rho_{A1(MovieTitle/Movie.Title)}(\pi_{Movie.Title, Genre.Id, Genre.Title} (A1)$$

What movie(s) belong to ALL genres?

A2		
MovieTitle	Id	Title
2001: A Space Odyssey	7	Sci-fi
2001: A Space Odyssey	3	Adventure
Rosemary's Baby	6	Drama
Rosemary's Baby	7	Horror
Rosemary's Baby	2	Action
Rosemary's Baby	1	Sci-fi
Rosemary's Baby	3	Adventure
Rosemary's Baby	4	Comedy
Rosemary's Baby	5	Crime

A = A2 / Genre

Genre	
<u>ld</u>	Title
1	Sci-fi
2	Action
3	Adventure
4	Comedy
5	Crime
6	Drama
7	Horror

What movie(s) belong to ALL genres?

A2		
MovieTitle	ld	Title
2001: A Space Odyssey	7	Sci-fi
2001: A Space Odyssey	3	Adventure
Rosemary's Baby	6	Drama
Rosemary's Baby	7	Horror
Rosemary's Baby	2	Action
Rosemary's Baby	1	Sci-fi
Rosemary's Baby	3	Adventure
Rosemary's Baby	4	Comedy
Rosemary's Baby	5	Crime

A = A2 / Genre
= A2
$$\{\pi, \sigma, \rho, \cup, \setminus, \times\}$$
 Genre

	Genre	
<u>ld</u>	Title	
1	Sci-fi	
2	Action	
3	Adventure	
4	Comedy	
5	Crime	
6	Drama	
7	Horror	

Has been a movie won ALL Oscar awards?

Algebra × Extensions

Relational algebra accepts some extensions to support SQL from physical level such as:

Outerjoin Aggregation Functions (SUM, AVG, MAX, MIN) Grouping Sorting

We will cover them in more details when explaining SQL.