Data Formats

CMSE 890-602

What is data?

What is data?

- Text
- Tables
- Time series

- Images tables of color information
- Videos time series of images
- Sound time series of frequencies
- etc

Human vs Machine-readable

- Humans typically prefer whitespace or lines as a delimiter for tables
- Computers work best with specific characters
- Special characters in text (especially from non-English languages) may be difficult to handle

A bad but human-readable format

WR134 - time sequence polarimetry (Crimea 1989, values plus errors)

2447700	ι	J		В	V			R		1	
	q	u	q	u q	u	q	u	q	u		
59.3018	1.204 .048	0.358 .079	0.946 .032	0.218 .048	1.091 .062	0.303 .	.068	0.839 .028	0.190 .059	0.777 .023 0.	155 .053
60.4033	1.051 .034	0.265 .025	0.872 .039	0.179 .028	0.912 .040	0.203 .	.026	0.717 .021	0.114 .039	0.621 .037 0.4	168 .021
60.4692	0.946 .070	0.395 .060	0.790 .050	0.229 .054	0.858 .046	0.268 .	.068	0.738 .064	0.215 .045	0.622 .048 0.2	204 .043
61.2734	1.182 .059	0.441 .104	0.990 .034	0.256 .077	1.015 .039	0.275 .	.081	0.793 .029	0.245 .072	0.739 .045 0.	175 .053
61.3306	1.360 .108	0.340 .089	1.145 .044	0.244 .065	1.261 .051	0.176 .	.071	0.920 .081	0.167 .054	0.859 .050 0.	115 .056
61.4160	1.284 .082	0.468 .086	1.051 .032	0.331 .041	1.161 .060	0.398 .	.057	0.995 .077	0.200 .073	0.897 .050 0.2	225 .056
61.5273	1.500 .097	0.340 .107	1.009 .047	0.277 .019	1.148 .041	0.292 .	.034	0.960 .062	0.214 .059	0.889 .075 0.	176 .061
62.3887	1.106 .063	0.191 .053	0.978 .034	0.070 .031	1.035 .039	0.162 .	.058	0.783 .033	0.033 .039	0.689 .018 0.0	002 .033

CSV format

id,name,salary,department

1,john,2000,sales

2,Andrew,5000,finance

3,Mark,8000,hr

4,Rey,5000,marketing

5,Tan,4000,IT

Text vs Binary

- Text is stored as characters
 - Easy to version control
 - Easy to read
 - Potentially human readable
 - Large file sizes
- Binary data is stored as a direct binary representation
 - Not human readable
 - Difficult to version control
 - Potentially smaller file sizes

HDF: a common binary format

Metadata example with HDF

Compression

- Converts data to a binary representation
- Reduces file size by reducing duplication of information
- More redundant data = better compression
- Typically data must be decompressed in its entirety to be read
- Some compressed formats can be decompressed into memory for access

FAIR data

- Findability
- Accessibility
- Interoperability
- Reusability

https://www.go-fair.org/fair-principles/

Findability

- Data is searchable and can be searched for
- This requires metadata (data about data!)
 - Labels
 - References
 - Provenance (where did it come from?)
 - Uniqueness
- Data should be stored in a location that can be searched

Accessibility

- The data can be read by both humans and machines
- The metadata includes clear format information
- Examples of how to read the data may be provided
- Metadata can always be read even if the data is gone

Interoperability

- The data works with multiple machine types
 - Operating systems
 - Programming languages
- Reference other data where necessary

Reusability

- Data are clearly described
- Data are clearly licensed
- Relevant community standards are met

Storage locations for data

- Data Dryad
- Zenodo
- ACCESS long-term storage
- REDCap
- MSU digital commons
- All are searchable and handle metadata
- Some include automatic DOI minting

Tables

- Straightforward storage of related data
- Columns define the content
- Rows store the content
- Index accesses rows

Index	Column 1	Column 2	Column 3
0	Data	Data	
1		Data	
2	Data		

Common table operations

- Index a row or selection of rows
- Select a column or selection of columns
- Compute summary statistics
 - Row or column direction.
- Create new rows or columns
- Transpose the table (swap rows and columns)

Index	Column 1	Column 2	Column 3	
0	Data	Data		Summary row 0
1		Data		
2	Data			
		Summary Column 2		

Activity

- On D2L access the in-class assignment and follow the instructions
- PDF of instructions will be posted to the class repository as well

Homework

https://classroom.github.com/a/OV0NXygu

- 1. Create or load a Python environment containing pandas and jupyter
- Open the notebook pandas-and-uci-adult-dataset.ipynb in VSCode or your preferred notebook editor
- 3. Complete the empty code cells by answering the questions. Refer to the file exploratory-data-analysis-with-pandas.html (open it in a web browser) for help. There are many helpful links in the document.
- 4. Commit the notebook back into the GitHub classroom repository

Pre-class 9: Databases

- Go to https://www.w3schools.com/sql/ and learn about SQL
- Try to complete the first 12 exercises at https://www.w3schools.com/sql/exercise.asp
- Post a screenshot of your results on D2L