Universidade do Minho

5 de janeiro de 2023

2º Teste de

Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 2 horas

Este teste é constituído por 4 questões. Todas as respostas devem ser devidamente justificadas.

- 1. Seja $h: \mathbb{N}_0^3 \to \mathbb{N}_0$ a função definida, para cada $(x, y, z) \in \mathbb{N}_0^3$, por h(x, y, z) = (x+1)(y+z).
 - a) Defina recursivamente a função h. Ou seja, determine funções $f: \mathbb{N}_0^2 \to \mathbb{N}_0$ e $g: \mathbb{N}_0^4 \to \mathbb{N}_0$ tais que h = Rec(f, g).
 - b) Mostre que h é uma função recursiva primitiva.
 - c) Determine a função M_h de minimização de h.
- **2**. Seja $A: \mathbb{N}_0^2 \to \mathbb{N}_0$ a função de Ackermann que, recorde, é uma função total definida por:
- i) A(0,y) = y + 1; ii) A(x+1,0) = A(x,1); iii) A(x+1,y+1) = A(x,A(x+1,y)).
- a) Sabendo que A(1,3) = 5 e que A(2,y) = 2y + 3 para todo o $y \in \mathbb{N}_0$, determine A(3,1).
- **b)** Mostre que A(x,y) > 0 para quaisquer $x, y \in \mathbb{N}_0$.
- 3. Considere o alfabeto $A = \{a, b\}$ e seja \mathcal{T} a seguinte máquina de Turing sobre A,

- a) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \Delta aababb).$
- b) Identifique, justificando, a linguagem L reconhecida por \mathcal{T} .
- c) Identifique a função parcial $g: A^* \to A^*$ calculada por \mathcal{T} .
- d) Determine a função $tc_{\mathcal{T}}$, de complexidade temporal da máquina \mathcal{T} .
- e) Mostre que $L \in DTIME(n^2)$.
- f) Sendo K a linguagem $K = \{w \in A^* : |w|_b \ge 2\}$, mostre que $L \le_p K$.
- 4. Diga, justificando, quais das afirmações seguintes são verdadeiras e quais são falsas.
 - a) Seja A a função de Ackermann e sejam $f, g: \mathbb{N}_0^2 \to \mathbb{N}_0$ as funções parciais definidas por $f = pred \circ A \in g(x,y) = x(y+1) - yx + 2$, onde pred designa a função predecessor. Todas as funções A, f e g são funções totais.
 - **b)** A função $f(n) = 4n^3 + 2n + sen(n)$ é de ordem $\mathcal{O}(n^3)$.

Cotações	1.	2.	3.	4.
	1,5+1,5+1,5	1,5+2	1+1,5+1,5+2+1+2	1,5+1,5