FUNDAMENTALS OF

PHOTONICS

Numerical tutorial 3 - Imaging

Outline

- Coherence
 - Partially coherent light (coherence time, length, area)
 - Effect on interference in space and time
- Ordinary light sources
 - Incoherent approximation
 - Modelling wave propagation
- Imaging in ordinary light
 - Point spread function
- Galilean telescope (HA3)
 - Simulation method
 - Numerical windows

Introduction

Coherent

Predictable wave = wave from "ideal" laser

- Characteristic: single frequency with ordered phase in time and space (e.g. plane, spherical wave)
- In microwaves: always assumed
- In photonics: always assumed <u>except</u>
- Numerical propagation techniques: HFM, TSM, FDTD, ...

Incoherent

Chaotic wave ≈ wave from (objects illuminated by) ordinary light sources

- Characteristic: broad spectrum with random phase in time and space
- Case of imaging and lighting applications
- Numerical propagation techniques:
 None directly!

Partially coherent light (Statistical Optics)

Temporal coherence

Time interval within which phase of wave is predictable (wave auto-correlation ↔ phase correlation of a point in wave relative to itself, over time)

- Coherence time, $\underline{\tau}_c = 1/\Delta v$ where $\Delta v =$ spectral width of source
- Coherence length (along propagation direction), $L_c = c \cdot \tau_c$

Wave can only interfere with itself delayed with a time $< \tau_c$

Wave can only interfere with itself propagated a distance $< L_c$

Source	$\Delta \nu_c$ (Hz)	$\tau_c = 1/\Delta \nu_c$	$l_c = c\tau_c$
Filtered sunlight ($\lambda_a = 0.4-0.8 \mu \text{m}$)	3.75×10^{14}	2.67 fs	800 nm
Light-emitting diode ($\lambda_o = 1 \mu \text{m}, \Delta \lambda_o = 50 \text{ nm}$)	1.5×10^{13}	67 fs	$20 \mu m$
Low-pressure sodium lamp	5×10^{11}	2 ps	600 μm
Multimode He-Ne laser ($\lambda_o = 633 \text{ nm}$)	1.5×10^{9}	0.67 ns	20 cm
Single-mode He-Ne laser ($\lambda_o = 633 \text{ nm}$)	1×10^6	$1 \mu s$	300 m

Spatial coherence

Space interval within which phase of wave is predictable (wave cross-correlation ↔ phase correlation of two points in wave, over time)

- Coherence area (normal to propagation direction), A_c , having a coherence diameter d_c
- Coherence area changes along free-space propagation (in contrast to coherence time/length), as wave diverges/converges

Interference patterns can only be produced from area A_c

Double-slit experiment

- Interference pattern appear in plane 2 if:
 - 1. Slit separation $d < d_c$, where d_c is coherence diameter of source wave at plane 1
 - 2. Optical path difference L_2 - L_1 < L_c , where L_c is coherence length of source wave
- Coherence of incident wave at plane 1 can be improved:

Alternative to using pinhole aperture is to increase distance between wave source and plane 1

Ordinary light sources

- Ordinary light sources for illumination, such as LED, fluorescent tube, incandescent bulb, and the sun are approximately incoherent:
 - 1. White light emission ↔ broad frequency extent → coherence time/length ≈ 0
 - 2. Physical size ↔ spatial extent → **coherence diameter** ≈ **0** (close to source)

Thus, there will be no time averaged interference effect in space!

How to model wave propagation?

- 1. Consider one frequency of source at a time
- 2. Consider a point on source surface (or object surface illuminated by source) as a point source, i.e. oscillating dipole, generating a coherent spherical wave with frequency given by 1.
- 3. Propagate this spherical wave using e.g. HFM or TSM through optical system
- 4. Repeat 1-3. for all frequencies* and points on source surface
- 5. <u>Sum intensities</u> (not E-fields!) to get total intensity, resulting from all propagated spherical waves in 4. This is equivalent to that point sources on source surface are uncorrelated and no interference effects occur

Alternative "natural" model (not used in HA3):

Same as above, but in 2. generate a random starting phase for spherical wave. In 5. E-fields can now be conventionally summed to get total intensity.

However, to get a correct statistical average points 1-5 must be redone a large number of times → inefficient numerically method!

*Often only one "typical" wavelength is studied (as in HA3)

Imaging

Definitions:

- Plane 1 ≡ object plane ↔ object illuminated by ordinary light, i.e. from an incoherent light source
- Optical system ≡ imaging system
- Plane 2 ≡ image plane ↔ contains a "blurred" and scaled replica of input plane

Function:

Coherent light emitted from point source in plan 1, and captured by optical system, ends up in spot with diameter $\sim \lambda/d$, centered at unique point in plane 2.

- Spot centered at (u=0,v=0) ↔ impulse respons function h(u,v), but here referred to as point spread function
- Linear system + incoherent summation \rightarrow image intensity (considering just one source frequency, $v=c/\lambda$):

$$I_2(u,v) \sim |E_1(x,y)|^2 \otimes |h(u,v)|^2 = I_1(x,y) \otimes |h(u,v)|^2$$

Point spread function (PSF)

• Finite diameter of PSF results from diffraction of coherent wave from point source with circular aperture of imaging system (e.g. shutter aperture of a camera lens)

Larger aperture → increased image resolution (but trade-off with depth of focus...)

Pictures taken by the Hubble telescope before and after improving PSF:

Galilean telescope (HA3)

• Light coming from a distant point source has approximately planar wavefronts, i.e. parallel incoming rays:

HFM for a distant point source:

$$E_1(x,y) = \delta(x,y), \quad L \to \infty \implies E_2(u,v) \sim \exp\left(-jk\frac{ux+vy}{L}\right) \iff \text{Plane wave arriving at an angle } (x/L,y/L)!$$

- A convex objective lens is used to capture parallel incoming rays, and a concave ocular lens is used to redirect them towards observer's eye
- Lens in eye itself brings parallel incoming rays to a focus on observer's retina

Propagation	1	1→2	2	2→3	3	3→4	4
Method	Objective aperture + lens transmission function	TSM	Lens transmission function	TSM	Pupil aperture + lens transmission function	TSM	
Numerical window	2 x 2 cm		2 x 2 mm		2 x 2 mm		0.2 x 0.2 mm