Metody MDS

Mikołaj Dłuś Mateusz Monasterski

github.com/Dwoosh/MDS_tutorial

Po co nam one skoro PCA tak ładnie wizualizowało?

- PCA i jemu podobne algorytmy wybierają "interesującą" liniową projekcję danych
- Problem gdy dane zawierają ważne nieliniowe struktury

- PCA najdokładniejsza reprezentacja danych w przestrzeni nisko-wymiarowej, zachowuje kowariancję danych
- Iteratywny prawdziwy MDS ma jako główny cel rekonstrukcję/zachowanie odległości między parami obiektów

Manifold Learning

- Podejście do nonlinear dimensionality reduction (NLDR)
- Można go rozumieć jako próbę uogólnienia liniowych algorytmów takich jak PCA, aby były wrażliwe na nieliniową strukturę danych

Multidimensional Scaling

- Są to sposoby wizualizacji poziomu podobieństwa lub odmienności poszczególnych przypadków zbioru danych.
- Celem tej analizy jest wykrycie sensownych ukrytych wymiarów, które pozwalają badaczowi wyjaśnić obserwowane podobieństwa lub odmienności (odległości) między badanymi obiektami.
- Szuka nisko-wymiarowej reprezentacji danych, w których odległości odpowiednio szanują odległości w pierwotnej przestrzeni o wysokim wymiarze.

Multidimensional Scaling

- Obrót układu współrzędnych i odbicie zwierciadlane nie zmieniają odległości pomiędzy punktami, więc wynik skalowania można poddać rotacji lub odbiciu.
- Korzysta z symetrycznej macierzy odległości różnic miedzy obiektami
- W scikit-learn w przypadku atrybutu dissimilarity=='precomputed' Należy na wejściu podać właśnie taką macierz

Algorytm metryczny MDS

- W metrycznym MDS macierz podobieństwa wejściowego wynika z metryki (a zatem respektuje nierówność trójkąta)
- odległości między wyjściowymi dwoma punktami są następnie ustawiane tak, aby były jak najbliżej danych podobieństwa lub niepodobieństwa.

Algorytm niemetryczny MDS

• W wersji niemetrycznej algorytmy będą próbowały zachować kolejność odległości, a zatem poszukują monotonicznego związku między odległościami w przestrzeni osadzonej a podobieństwami / odmiennościami.

Przykład

		1	2	3	4	5	6	7	8	9
		BOST	ИХ	DC	\mathtt{MAIM}	CHIC	SEAT	SF	LA	DENV
1	BOSTON	0	206	429	1504	963	2976	3095	2979	1949
2	NY	206	0	233	1308	802	2815	2934	2786	1771
3	DC	429	233	0	1075	671	2684	2799	2631	1616
4	IMAIM	1504	1308	1075	0	1329	3273	3053	2687	2037
5	CHICAGO	963	802	671	1329	0	2013	2142	2054	996
6	SEATTLE	2976	2815	2684	3273	2013	0	808	1131	1307
7	SF	3095	2934	2799	3053	2142	808	0	379	1235
8	LA	2979	2786	2631	2687	2054	1131	379	0	1059
9	DENVER	1949	1771	1616	2037	996	1307	1235	1059	0

Korzystając z takiej macierzy odległości między miastami, jest w stanie przedstawić na wykresie 2d rozmieszczenie tych miast względem siebie

Multidimensional scaling

Wady:

- Iteracyjny proces
- Wymaga dużej mocy obliczeniowej do obliczania macierzy niepodobieństwa przy każdej iteracji

Isomap - Isometric Mapping

- Jest jednym z pierwszych podejść do Manifold Learning
- Może być postrzegana jako rozszerzenie MDS albo Kernel PCA
- Isomap służy do obliczania quasi-izometrycznego, niskowymiarowego embeddingu zestawu punktów danych o dużych wymiarach.

Działanie Isomap składa się z trzech etapów:

- wyszukanie najbliższych sąsiadów
- wyszukanie najkrótszej ścieżki w grafie
- częściowy rozkład wartości własnej

Isomap

Wady:

 działa słabo jeśli manifold zawiera dziury i/lub nie jest gęsty

Locally Linear Embedding - LLE

- Tak jak poprzednio przedstawione metody, wyszukuje nisko-wymiarowej projekcji danych zachowując odległości w lokalnych sąsiedztwach
- Może być traktowany jako seria lokalnych PCA, które są globalnie porównywane w celu znalezienia najlepszego nieliniowego embeddingu.

Działanie LLE składa się z trzech etapów:

- wyszukanie najbliższych sąsiadów
- budowa macierzy wag
- częściowy rozkład wartości własnej

LLE

Zaleta w stosunku do Isomap:

 szybsza optymalizacja jeśli jest zaimplementowany do wykorzystania algorytmów na macierzach rzadkich