程序代写代做 St编码 Analysis

Single Agent Se

Lecture 8 **IDA*** Performance

- What is "b"
 - · Used the value, but haven't analyzed where it comes from
 - Analyze problems to compute b
 - Predict performance of IDA* (node exp)

cstutorcs

UNIVERSITY OF DENVER

Assignment Project Exam Help

Easy Example tutorcs@163.cemer Example

- •2x2 sliding tile puzzle (3-puzzle)
- · Branching factor?

 - 1 if we don't
- 2 if we include parents in analysis QQ:749389476
 - 2/6 states are edge states

•3x2 5-puzzle

- branching factor is 3 (2 w/o parent)
- 4/6 states are corner states

https://tutorcs.compranching factor is 2 (1 w/o parent)

- b = 2/6*3 + 4/6*2 = 2.3333
 - Assumes we are equally likely to be any state

Single Agent Search

Time spent in eac程等程度写代做Asy蜿蜒划瓣的nching factor

- Label states with types A/B
- Without pruning parents
 - $\bullet A \rightarrow 2B + 1A$
 - B → 1A + 1B
- Use this to determine branching fac

- Consider a tree from any particular start state
 - · Compute the number of nodes at each level

Asymptotic branching factor

- b is the ratio of nodes at level n to n+1
 - (As n gets large)
- (Demonstrate example on 5-puzzle)

Assignment Project Exam Help

Asymptotic Branching Factor tutor

- At any particular level of the tree how many states of type A and of type B are there?
 - Eventually the fraction of A and B state should stabilize
 - The number of A nodes at the next level will be the same as the previous level
 - The actual count will differ by a multiple of b

• So, we know:

• b
$$f_a = f_a + f_b$$

• b
$$f_b = 2f_a + f_b$$

•
$$f_a + f_b = 1$$

https://tutorcs.com/for b and get b = $1+\sqrt{2}$

Single Agent Search

Removing reverse operatore 写代

- Now we need 4 variables
 - · A center (from a center)
 - B center (from a corner)
 - C corner (from a center)
 - D corner (from a corner)

Regraving the rese operators

- A → 2C
- b $f_a = f_b$
- $\cdot B \rightarrow A + C$
- b fb =fd
- $\cdot C \rightarrow D$
- $b f_c = 2f_a + f_b$
- $\cdot D \rightarrow B$
- $b f_d = f_c$
- $f_a + f_b + f_c + f_d = 1$
 - $b^4 b 2 = 0$
- Solve for b = 1.35

WeChat: cstutorcs

Assignment Project Exam Help

Rubik's Cube - Best Rubik's Cubemail: tutorcs@163.compproach

- · Naive approach:
- 18 moves (90°, -90°, 180° turns perface): 749389476 Faces should all bords. Called the faces are "second faces"
- Better approach:
 - 15 moves (disallow previous face)
- Even better approach:
 - Restrict successive turns of face, opposite face and then first face

- Label 3 faces "first faces"
- · Faces should all border each other
- Disallow turning a first face after turning its
- https://tutorcs.compassociated second face

Single Agent Search

- Recurrence
 - F → 6F+9S
 - \cdot S \rightarrow 6F+6S
- Equations
 - bF = 6S + 6F
 - bS = 9F + 6S
 - S+F=1
- F = 0.4494897428
- \cdot S = 0.5505102572

UNIVERSITY OF DENVER Rubik's Cub程序代写代做 CS编程辅助*

- Want to predict the performance of IDA* in general
- What is the asymptotic effect of having a heuristic?
 - Pearl, 84 predicted:
 - Search size bd
 - With better heuristic ad with a < b.
- · Analysis isn't necessarily incorrect; depends on assumptions

Assignment Project Exam Help

Characterizing a heuristic -Predicting IDA* performance tutorcs@163ndamassessment

- What do we need to determine performance?
 - Assume consistent heuristic
- Analysis has been performed for inconsistent 9389476 heuristics, but more come." heuristics, but more complicated
 - - All nodes with f(n) < c must be expanded
 - All nodes with $f(n) \le c$ may be expanded
 - Information about the heuristic

- Suppose there are N states in the world
 - How many states have h(a) = a for a in 1...N?
 - Define this as d(a)
 - D(h) is: $(\sum d(a)) / N$ for a = 1...h
- Assume cost threshold of c on last iteration://tutorcs.com_he percentage (fraction) of states with $h(s) \leq h$
 - Heuristic distribution

Single Agent Search

Characterizing heuristic & search space程序代写代数 Eg编译编写distribution

- Heuristic distribution may not represent how we exactly encounter states in our sea
- This is controlled by the equilibrium
 - · What is the actual distribution of in practice
 - A bit strange, because we sear start state
 - Cleaned up in later analysis

- Consider 5-puzzle, blank is:
 - 35.321% of time in side position
 - 64.679% of time in corner position
- · Consider the heuristic distribution according to where the blank is

Assignment Project Exam Help

Equilibrium Distribution tutores@163.com

- P(h)
 - The probability of a node having the pristic 749389476
 - $P(h(n) < h \mid side) \cdot P(side) +$ $P(h(n) < h \mid corner) \cdot P(corner)$
- Example table with manhattan distance the slide. \(//tutorcs.co slide)
 - P(h) is different from D(h)

	U	1	1	0.002778	1	U	1	U	0.002695	
)	1	2	3	0.008333	1	1	2	1	0.008333	
	2	3	6	0.016667	1	2	3	3	0.016915	
	3	6	12	0.033333	5	1	8	4	0.033333	
	4	30	42	0.116667	25	5	33	9	0.115424	
O	5	58	100	0.277778	38	20	71	29	0.276701	
	m	61	161	0.447222	38	23	109	52	0.446808	
	7	58	219	0.608333	41	17	150	69	0.607340	
	8	60	279	0.775000	44	16	194	85	0.773012	
	9	48	327	0.908333	31	17	225	102	0.906594	
	10	24	351	0.975000	11	13	236	115	0.974503	
	11	8	359	0.997222	4	4	240	119	0.997057	
	12	1	360	1.000000	0	1	240	120	1.000000	

Single Agent Search

What does a tree logk 序段写代做 CS编和

- Given a node & consistent heuristic:
 - h-value is either 1 greater than o original heuristic value
- Divide children into buckets
 - Sample tree
 - h = 0...3, c = 5

Heuristic branching factor:

Search depth 8

Max heuristic = 4

WeChat: cstutore. Sample tree for analysis of IDA*.

Assignment Project Exam Help

What is the total work? tutorcs@163.com Analysis

Expected number of nodes expanded

$$E(N, c, P) = \sum_{i=0}^{c} N_i P(c-i)$$

$$E(N,c,P) = \sum_{i=0}^{c} N_i P(c-i) \qquad \text{QQ: 7493} \\ 89 \\ 476 \qquad \frac{E(N,c,P)}{E(N,c-1,P)} = \frac{\sum_{i=0}^{c} N_i P(c-i)}{\sum_{i=0}^{c-1} N_i P(c-i-i)}$$

• N_i is simply b^i where b is the asymptotic branching factor

Using this, what is the heuristic brance

$$\begin{array}{c|c} & b^0 P(c) + b^1 P(c-1) + b^2 P(c-2) + \cdots + b^c P(0) \\ \hline \text{anching factor?} & & \\ \hline \end{array}$$

 $\approx b$

Single Agent Search

Analysis 程序代写代做 CS编程 编写sion

UNIVERSITY DENVER

- In an exponential domain the effect of a heuristic is to keep the branching factor the sai
- If we increase the heuristic, we dec at which we get cutoffs
 - In exponential spaces, improving just decreases the effective level

- Perfectly predicts nodes expanded for 8-puzzle if:
 - Average over all starting states
 - Search to fixed depth c (past the goal)
- · Not necessarily a good predictor for an actual problem

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com