Chương 1 **Hệ thống số đếm và mã**

Nội dung chương 1

- Các hệ thống số đếm
- Chuyển đổi giữa các hệ cơ số
- Mã nhị phân (BCD)

Các hệ thống số đếm

Hệ thống số đếm	Cơ số	Các ký tự
Nhị phân	2	0,1
Bát phân	8	0, 1, 2, 3, 4, 5, 6, 7
Thập phân	10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Thập lục phân	16	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Biểu diễn hệ thống số đếm

• Số N trong hệ cơ số X:

$$N_X = a_n a_{n-1} \dots a_1 a_0 \cdot b_1 b_2 \dots b_{m-1} b_m$$

• N_X có giá trị là:

$$N_X = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X^1 + a_0 X^0 + b_1 X^{-1} + \dots + b_m X^{-m}$$

• Ví dụ:

```
1001_{2} = 1 * 2^{3} + 0 * 2^{2} + 0 * 2^{1} + 1 * 2^{0} = 9
35_{8} = 3 * 8^{1} + 5 * 8^{0} = 29
953.78_{10} = 9 * 10^{2} + 5 * 10^{1} + 3 * 10^{0} + 7 * 10^{-1} + 8 * 10^{-2}
A2F_{16} = 10 * 16^{2} + 2 * 16^{1} + 15 * 16^{0} = 2607
```

Hệ thống số thập phân

Phân bố trọng số:

• Ví dụ: phân tích số thập phân 2745.214_{10} $2745.214_{10} = 2 * 10^3 + 7 * 10^2 + 4 * 10^1 + 5 * 10^0$ $+2 * 10^{-1} + 1 * 10^{-2} + 4 * 10^{-3}$

Hệ thống số nhị phân

Phân bố trọng số:

• Ví dụ: phân tích số nhị phân 1011.101_2 $1011.101_2 = 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 1 * 2^0$ $+1 * 2^{-1} + 0 * 2^{-2} + 1 * 2^{-3}$ $= 11.625_{10}$

Phép cộng nhị phân

• Cộng hai bit nhị phân

A	В	A + B
0	0	0
0	1	1
1	0	1
1	1	0 (nhớ 1)

Phép cộng nhị phân (tt)

Cộng hai số nhị phân không dấu

Phép trừ nhị phân

• Trừ hai bit nhị phân

A	В	A - B
0	0	0
0	1	1 (mượn 1)
1	0	1
1	1	0

Phép trừ nhị phân (tt)

Trừ hai số nhị phân không dấu

Phép nhân nhị phân

• Nhân hai bit nhị phân

A	В	A x B
0	0	0
0	1	0
1	0	0
1	1	1

Phép nhân nhị phân (tt)

• Nhân hai số nhị phân

		,		1		1		
			×	1	0	0	1	
		-		1	0	1	1	
+			0	0	0	0		
		0	0	0	0			
	1	0	1	1				
	1	1	0	0	0	1	1	

Phép chia nhị phân (tt)

• Chia hai số nhị phân

Số nhị phân có dấu

- Số bù 2: "đảo bit cộng 1"
- Ví dụ: số bù hai (8 bit) của 5

```
5 = 00000101_{2}

Đảo bit của 5 = 11111010_{2}

Cộng 1 = 11111011_{2}

= 11111011_{2}
```

- Bit đầu tiên xác định dấu
 - Bit dấu bằng 0 xác định số dương
 - Bit dấu bằng 1 xác định số âm

Số nhị phân có dấu (tt)

- Phạm vi biểu diễn của số nhị phân có dấu n bit: -2^{n-1} đến $2^{n-1}-1$
- Tìm giá trị của số âm:
 - Cách 1: Khai triển như số dương nhưng bit có trọng số lớn nhất được nhân thêm với (-1)
 - Cách 2: Lấy bù hai của nó được số dương có cùng biên độ
- Giá tri -1 được biểu diễn là 11...1 (n bit 1)
- Giá trị -2^n được biểu diễn là 100...0 (n bit 0)
 - Ví dụ: $-32 = -2^5$ được biểu diễn là 100000_2

Cộng trừ số nhị phân có dấu

- Thực hiện như số không dấu
- Thực hiện trên toán hạng có cùng chiều dài và kết quả cũng có cùng số bit
- Kết quả đúng nếu nằm trong phạm vi biểu diễn số dấu, nếu kết quả sai thì cần mở rộng chiều dài bit

Cộng trừ số nhị phân có dấu (tt)

• Ví dụ:

Cộng trừ số nhị phân có dấu (tt)

• Ví dụ:

Bội trong hệ nhị phân

Bội	Đơn vị	Kí hiệu	Giá trị
2 ¹⁰	Kilo	K	1024
2 ²⁰	Mega	M	1.048.576
2 ³⁰	Giga	G	1.073.741.824
2 ⁴⁰	Tera	Т	1.099.511.627.776

Hệ thống số bát phân

Phân bố trọng số:

Ví dụ: phân tích số bát phân 372₈

$$372_8 = 3 * 8^2 + 7 * 8^1 + 2 * 8^0 = 250_8$$

Hệ thống số thập lục phân

Phân bố trọng số:

• Ví dụ: phân tích số bát phân $3BA_{16}$ $3BA_{16} = 3 * 16^2 + 11 * 16^1 + 10 * 16^0 = 954_{10}$

Nội dung chương 1

- Các hệ thống số đếm
- Chuyển đổi giữa các hệ cơ số
- Mã nhị phân (BCD)

- Cơ số X sang cơ số 10:
 - Số N trong hệ cơ số X:

$$N_X = a_n a_{n-1} \dots a_1 a_0 \cdot b_1 b_2 \dots b_{m-1} b_m$$

• N_X có giá trị là:

$$N_X = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X^1 + a_0 X^0 + b_1 X^{-1} + \dots + b_m X^{-m}$$

Ví dụ:

$$1001_2 = 1 * 2^3 + 0 * 2^2 + 0 * 2^1 + 1 * 2^0 = 9$$

$$35_8 = 3 * 8^1 + 5 * 8^0 = 29$$

$$A2F_{16} = 10 * 16^2 + 2 * 16^1 + 15 * 16^0 = 2607$$

Cơ số 10 sang cơ số X:

- Phần nguyên:
 - Chia phần nguyên của N cho X được thương và số dư a_o
 - Tiếp tục chia phần thương cho X được thương mới và số dư a_1
 - Tiếp tục cho đến khi thương bằng 0 và số dư a_n
 - Phần nguyên biểu diễn trong hệ cơ số X là $a_n \dots a_1 a_o$

Phần thập phân

- Nhân phần thập phân của N với X được tích có phần nguyên là b_1
- Tiếp tục nhân phần thập phân của tích với X được tích mới có phần nguyên là b_2
- Tiếp tục cho đến khi phần thập phân của tích nhận được bằng 0 hoặc sau một số bước nhất định tùy theo độ chính xác yêu cầu
- Phần thập phân biểu diễn trong hệ cơ số X là $b_1b_2...b_m$

- Cơ số 10 sang cơ số X:
 - Ví dụ 1: biến đổi 8.625₁₀ sang nhị phân

- Cơ số 10 sang cơ số X:
 - Ví dụ 2: biến đổi 1480.4296875₁₀ sang thập lục phân

```
1480 : 16 = 92 du 8 (LSD)
92 : 16 = 5 du 12
5 : 16 = 0 du 5

0.4296875 x 16 = 6.875 phần nguyên 6 (MSD)
0.875 x 16 = 14.0 phần nguyên 14
```

- Cơ số 8 sang cơ số 2:
 - Biến mỗi ký tự trong hệ bát phân thành 3 bit nhị phân tương ứng

Octal	0	1	2	3	4	5	6	7
Binary	000	001	010	011	100	101	110	111

Ví dụ: biến đổi 472₈ sang nhị phân

- Cơ số 16 sang cơ số 2:
 - Biến mỗi ký tự trong hệ thập lục phân thành 4 bit nhị phân tương ứng
 - Ví dụ: biến đổi 10AF₁₆ sang nhị phân

1	0	Α	F	
\downarrow	\downarrow	↓	↓	1000010101111 ₂
0001	0000	1010	1111	

Hexa	Decimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

- Cơ số 2 sang cơ số 8:
 - Bắt đầu từ phải sang trái, nhóm các bit nhị phân thành các nhóm 3 bit
 - Biến đổi mỗi nhóm 3 bit thành một Octal
 - Ví dụ: biến đổi 1011010111₂ sang bát phân

$$1011010111_2 = 1327_8$$

- Cơ số 2 sang cơ số 16:
 - Bắt đầu từ phải sang trái, nhóm các bit nhị phân thành các nhóm 4 bit
 - Biến đổi mỗi nhóm 4 bit thành một Hexa
 - Ví dụ: biến đổi 10101101010111001101010₂ sang thập lục phân

 $10101101010111001101010_2 = 56AE6A_{16}$

- Cơ số 8 sang cơ số 16:
 - Biến đổi số bát phân thành số nhị phân
 - Biến đổi số nhị phân thành số thập lục phân
 - Ví dụ: biến đổi 1076₈ sang thập lục phân

- Cơ số 16 sang cơ số 8:
 - Biến đổi số thập lục phân thành số nhị phân
 - Biến đổi số nhị phân thành số bát phân
 - Ví dụ: biến đổi $1F0C_{16}$ sang bát phân

Nội dung chương 1

- Các hệ thống số đếm
- Chuyển đổi giữa các hệ cơ số
- Mã nhị phân (BCD)

Mã hóa số thập phân

- Dùng số nhị phân 4 bit để mã hóa các chữ số thập phân (0-9), gọi là số BCD (Binary Coded Decimal)
- Phân loại:
 - BCD có trọng số
 - BCD tự nhiên: BCD 8421, BCD 5421,...
 - BCD số học: BCD 2421, BCD 5121,...
 - BCD không có trọng số: mã Gray, Gray thừa 3,...

Mã BCD tự nhiên

Số thập		BCD	8421			BCD	5421	
phân	a ₃	$\mathbf{a_2}$	$\mathbf{a_1}$	$\mathbf{a_0}$	a ₃	$\mathbf{a_2}$	$\mathbf{a_1}$	$\mathbf{a_0}$
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	0
3	0	0	1	1	0	0	1	1
4	0	1	0	0	0	1	0	0
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0

Mã BCD số học

Số thập		BCD	2421			BCD	5121	
phân	a ₃	$\mathbf{a_2}$	a_1	$\mathbf{a_0}$	a ₃	$\mathbf{a_2}$	$\mathbf{a_1}$	$\mathbf{a_0}$
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	0
3	0	0	1	1	0	0	1	1
4	0	1	0	0	0	1	1	1
5	1	0	1	1	1	0	0	0
6	1	1	0	0	1	1	0	0
7	1	1	0	1	1	1	0	1
8	1	1	1	0	1	1	1	0
9	1	1	1	1	1	1	1	1

Mã Gray

- Hai giá trị liên tiếp nhau có tổ hợp bit biểu diễn chỉ khác nhau 1 bit
- Được suy ra từ mã BCD 8421 bằng cách:
 - Bit đứng sau bit 0 giữ nguyên
 - Bit đứng sau bit 1 thì đảo 0 thành 1, 1 thành 0

Mã Gray (tt)

Số thập		BCD	8421			Gı	ay	
phân	a ₃	$\mathbf{a_2}$	$\mathbf{a_1}$	$\mathbf{a_0}$	a ₃	$\mathbf{a_2}$	$\mathbf{a_1}$	$\mathbf{a_0}$
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	1
3	0	0	1	1	0	0	1	0
4	0	1	0	0	0	1	1	0
5	0	1	0	1	0	1	1	1
6	0	1	1	0	0	1	0	1
7	0	1	1	1	0	1	0	0
8	1	0	0	0	1	1	0	0
9	1	0	0	1	1	1	0	1

Mã Gray (tt)

Số thập	BCD thừa 3				Gray thừa 3			
phân	a ₃	$\mathbf{a_2}$	$\mathbf{a_1}$	$\mathbf{a_0}$	a ₃	$\mathbf{a_2}$	$\mathbf{a_1}$	$\mathbf{a_0}$
0	0	0	1	1	0	0	1	0
1	0	1	0	0	0	1	1	0
2	0	1	0	1	0	1	1	1
3	0	1	1	0	0	1	0	1
4	0	1	1	1	0	1	0	0
5	1	0	0	0	1	1	0	0
6	1	0	0	1	1	1	0	1
7	1	0	1	0	1	1	1	1
8	1	0	1	1	1	1	1	0
9	1	1	0	0	1	0	1	0

So sánh BCD và Binary

- BCD sử dụng nhiều bit hơn nhưng quá trình biến đổi đơn giản hơn
- Ví dụ:

```
137_{10} = 10001001_2 (Binary)

137_{10} = 0001 \ 0011 \ 0111 (BCD 8421)
```