A Style-Based Generator Architecture for Generative Adversarial Networks

Tero Karras, Samuli Laine, Timo Aila NVIDIA

Presenter: Diego Cantor, PhD

Facilitators: Michael Vertolli and David McDonald

Despite improvement in image quality synthesis, GAN generators operate as black boxes

Understanding of image synthesis is poor

This work proposes a model for the generator that is inspired by **style** transfer networks

Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization, Huang and Belongie, 2017

Everything started with the usage of batch normalization to improve training

$$BN(x) = \gamma \left(\frac{x - \mu(x)}{\sigma(x)}\right) + \beta$$

$$IN(x) = \gamma \left(\frac{x - \mu(x)}{\sigma(x)}\right) + \beta$$

Gamma and Beta are learned from data

Instance normalization improves style-transfer loss when compared to other approaches

Content

Style

StyleNet BN

StyleNet IN (ours)

Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, Ulyanov and Vedaldi, CVPR, 2017

Adaptive Instance Normalization simply scales the normalized input with style spatial statistics. This has profound implications.

AdaIN
$$(x,y) = \sigma(y) \left(\frac{x - \mu(x)}{\sigma(x)} \right) + \mu(y)$$

Style statistics are not learnable. So AdalN has no learnable parameters
$$\mathrm{BN}(x) = \gamma \left(\frac{x - \mu(x)}{\sigma(x)}\right) + \beta \qquad \qquad \mathrm{IN}(x) = \gamma \left(\frac{x - \mu(x)}{\sigma(x)}\right) + \beta$$

AdaIN
$$(x, y) = \sigma(y) \left(\frac{x - \mu(x)}{\sigma(x)} \right) + \mu(y)$$

The baseline configuration is the progressive GAN setup (same research group at NVIDIA)

Progressive growing of GANs for improved quality, stability and variation, Karras et al., ICLR 2018

Smooth transition into higher-res layers using bilinear interpolation

Step A

Original baseline, no changes.

Step B

- Replace nearest neighbor with bilinear upsampling
- Replace pooling with bilinear downsampling (in the discriminator)

Step C

Add mapping network and styles.

Styles are generated from W and used in AdalN operations

Step D

remove traditional input

Step E

Add noise inputs (enables generating stochastic detail)

This is the key: AdaIN operation affects the relative importance of features at every scale. How much? This is determined by the style.

Convolution

Style A

Style affects the entire image but noise is added per pixel. The network learns to use it to control **stochastic variation.**

2 min break

Results

This group used the **Fréchet inception distance** (FID) to measure the quality of generated images

50K random images

(CelebA-HQ / FFHQ)

from training set

Lower score is better (more similar)

Results: quality of the generated images. Lower FID is better

Method	CelebA- HQ	FFHQ
A Baseline Progressive GAN	7.79	8.04
B + Tuning (incl. bilinear up/down)	6.11	5.25
C + Add mapping and styles	5.34	4.85
D + Remove traditional input	5.07	4.88
E + Add noise inputs	5.06	4.42
F + Mixing regularization	5.17	4.40

Mixing styles during image synthesis

Mixing styles during image synthesis. Coarse styles such as pose, face shape and glasses are copied.

Middle styles copied: hair style, facial features but not pose or glasses

destination

Middle styles copied

Copying only fine resolution style such as colour scheme

destination

Style-based generator architecture

Major contributions

- 1. Significant improvement over traditional GAN generators architecture
- 2. Separation of high-level attributes from stochastic effects
- 3. Does not generate new images **from scratch** but rather through a smart combination of styles that are embedded in sample images (latent codes)