RoboSkate

Final Project Presentation

Michelle Bettendorf Gintautas Palinauskas Meriç Sakarya Batuhan Yumurtacı Finn Süberkrüb

Cloud-Based Machine Learning in Robotics Summer Semester 2021

Agenda

- 1. RL algorithm structure
- 2. Results (numerical)
- 3. Image feature extractor
 - a. Image preprocessing
 - b. VAE
 - c. Image segmentation
- 4. Behavioral cloning
- 5. NRP
- 6. Suggestions for RoboSkate and NRP

RL Algorithm structure

RL Algorithm structure

Results

RoboSkate Numerical Agent

Time to finish level 1-3:

0:50

Learning graphs from tensorboard SAC Agent v1

Training Time 10h 36m 6s

Learning graphs from tensorboard SAC Agent v2

Uses v1 as pre-trained agent

Training Time 21h 9m 45s

Agent Training

New Player

Cloud-Based Machine Learning in Robotics SS2021

Comparison between human and robot

RoboSkate Developer Playthrough by Matas Sakalauskas https://www.youtube.com/watch?v=_BWT11ttgJ4
Youtube Speedrunner https://www.youtube.com/watch?v=xL9v7Ss90LU

Image feature extractors

Image Preprocessing

Images: 100 x 100 pixels

Image Preprocessing: Detecting the obstacles

Image Preprocessing: Problems

Image Preprocessing: Results

Level 1: average of 4:30 min around 1800 pictures needed

Level 2: too much speed for the algorithm

- Dimensionality reduction
- Observing the latent space
- Faster training due to smaller observation shape
- Avoids overfitting

Illustration of an autoencoder with its loss function. [1]

loss =
$$||x - \hat{x}||^2 + KL[N(\mu_x, \sigma_x), N(0, I)] = ||x - d(z)||^2 + KL[N(\mu_x, \sigma_x), N(0, I)]$$

Illustration of a variational autoencoder. [1]

Cloud-Based Machine Learning in Robotics SS2021

RoboSkate

Latent Space: 32 variables

Latent Space: 8 variables

32-Latent Variables

VAE - image segmentation

VAE - image segmentation - feature space

VAE - image segmentation - learning curve

VAE - image segmentation - agent level 1 & 3

Stable Baseline 3 integration in the NRP (Dockerfiles)

Suggestions

NRP issues

- 1. Trained agent's behaviour changes.
- 2. Synchronization between NRP and SB3.
- 3. There is no shutdown() or restart() method for NRP, which are needed to train agents with SB3.
- 4. Only importing locally libraries worked.

Suggestions

- 1. Unity control methods like restart(), shutdown() are useful.
- 2. Simpler way of retrieving data from unity.

RoboSkate for reinforcement learning issues

- The game is GPU intensive.
- 2. Running without rendering (headless mode) gives out errors that don't disrupt the simulation.
- 3. NVIDIA docker images don't fully support Vulkan rendering engine.

Suggestions

- 1. Useful to control the rendering quality of the game.
- 2. Having a unity physics engine running without rendering.
- Adjusting game running speed.
- 4. Changing Vulkan rendering engine to another.

5. Disable user visual output, but keep the image rendering.

Recap of the achievements

- Running the games locally
- Implementing custom gym env.
- Training with SAC, A2C, PPO on SB3
- Training in the cloud
- First successful numerical DB agent
- Successful image based DummyBall agent
- RS first real push forward
- Running standard env. with RL_zoo
- Teleoperation v1.0, v2.0 implemented
- Finishing level 1, 2, 3 with numerical RS
- Implemented a VAE
- Successfully ran SB3 with NRP
- Finishing level 1 with VAE segmentation RS
- Using IL on standard env., generating expert data for custom env.

Future plans

- Get training result of latent space size 2 VAE with RS
- Investigate the issues with VAE training
- Merge with master branch after clean up and thorough testing
- Detailed documentation

Lessons learned

- R&D in RL
- Different image segmentation methods
- Git, Docker, CLI, cloud ML
- Teamwork, Leadership, Coordination

Responsibilities

	Preliminary Tasks
Michelle Bettendorf	Image preprocessing
Gintautas Palinauskas	Imitation learning, SB3 in NRP
Meriç Sakarya	VAE image to image
Batuhan Yumurtacı	Human-Agent benchmarking, evaluation of results
Finn Süberkrüb	Learning from numerical data, from segmentation and combined policy, VAE - with labeled images

Questions?

Michelle Bettendorf Gintautas Palinauskas Meriç Sakarya Batuhan Yumurtacı Finn Süberkrüb

Cloud-Based Machine Learning in Robotics Summer Semester 2021

Appendix

Resources summary

RoboSkate: https://store.steampowered.com/app/1404530/RoboSkate/

Unity headless: https://stackoverflow.com/questions/52316136/how-to-run-unity-in-headless-mode-on-linux

Unity without monitor: https://towardsdatascience.com/how-to-run-unity-on-amazon-cloud-or-without-monitor-3c10ce022639

Nvidia gpu container runtime: https://github.com/NVIDIA/nvidia-container-runtime

Nvidia Vulkan: https://hub.docker.com/r/nvidia/vulkan SB3: https://stable-baselines3.readthedocs.io/en/master/ RL_zoo: https://github.com/DLR-RM/rl-baselines3-zoo Imitation: https://github.com/HumanCompatibleAl/imitation

Accelerated learning through new starting position

RoboSkate image labelling

Multiple Input Observation

Agent without limitations learn to pull forward

Model trained on level 2 finishes level 3

VAE - image segmentation - problems

RoboSkate numerical agent level 1

Learns first to finish the level and then optimise the movements.

Algorithms comparison (numerical agent level 1)

MLP Policy

Teleoperation

Agent

Termination conditions

Roll angle too high

Pitch angle too high

Joint velocity 1 too high

Imitation learning issues with HumanCompatibleAl/imitation

Not runnable on Windows

BC - behaviour cloning GAIL

AIRL

- Able to generate expert trajectories.
- At the moment, GAIL and BC don't interoperate well with SB3 in environments with image-based observation spaces
- The policy created by BC is not compatible with all SB3 algorithms
- Errors running AIRL with Cnn Policy

