

Dmitry Meshkov

Ergo platform: from prototypes to a survivable cryptocurrency

Outline

History

Vision

Why to start a new cryptocurrency?

- Huge hype of cryptocurrencies, but technology stuck
- Blockchain 2.0, 3.0, ..., while actually we are still at 1.0
- New protocols are trying to achieve high throughput,
 complicated smart contracts, ...
- .. while sacrificing decentralization, promising that it will be achieved somewhere in the future

Vision

Ergo idea

- Blockchain 1.1 a major update to blockchain technology without breaking changes
- Truly decentralized system
- Long-term survivability
- Fundamental approach
- Friendly for clients and applications

Vision

Who should be interested in Ergo

Ergo may appeal to the entire spectrum of crypto currency users given its diverse set of features and fundamental focus on decentralization and security.

- Users control over your money via trustless light clients in decentralized and stable permissionless-blockchain
- DApp developers Ergo has secure and flexible smart contract language, native multi-token support and fast verification
- Long-term investors survivabile cryptocurrency with no ICO and premine and strictly limited supply
- Miners Ergo mined from zero with no-premine and gives miners on-chain voting and a strong role in governance
- And others...

Consensus: Why Proof-of-Work?

- Widely studied and tested
- Have high security guarantees
- Allows new members to join the network
- Light validation allows to use the blockchain without third parties

Consensus: Known Proof-of-Work Drawbacks

ASICs – centralize the network around ASICs manufacturers

Mining pools - centralize the network around pool operators

Consensus: Mining pools

Regardless of the PoW algorithm, 2-4 pools control the network

Consensus: Autolykos

- Combination of Equihash and Schnorr signatures
- Solution search requires 2Gb of memory and is done over secret keys
- Solution verification requires 2Kb of memory and is done over public keys
- Efficient in terms of solution size and verification time

Light clients: Now

- You must set up a node or trust someone
- Node synchronization is slow, unreliable and resource intensive
- Regular users resort to trusted solutions
- If service provider is hacked (or become malicious), users may lose their funds
- And may not even notice this, because they use trusted block explorer
- Better alternatives (e.g. SPV nodes in Bitcoin) exist, but only allows to validate some subset of rules

Light clients: Ergo

Light clients: Ergo

- Ergo block header supports Non-Interactive Proofs of Proof-of-Work, that allows to synchronize the network, by downloading < 1Mb of data
- Ergo state is authenticated, which enables verification of transactions without any trust and without keeping the entire state
- Flexible configuration for facilitated node regimes

Node regimes: Ergo

It is possible to use Ergo from a smartphone without any trust.

It is possible to join the network and start mining within a few hours.

No material performance degradation over time.

Demurrage: Cryptocurrency fees

- Transaction utilizes 3 types of resources: network, CPU, storage
- Bitcoin fees for transaction size (network resources)
- Ethereum fees for gas consumed (CPU resources)
- In both system user can put a data for miners storage forever
- Ergo fees for storage consumed

Demurrage: Storage rent

- Demurrage payment from users to miners for keeping their data in the state
- Similar to regular cloud storage payment is proportional to space*time
- Payment is collected from the box once per 4 years
- If there are not enough coins in the box at this point it is removed from the state.
- Storage price may be changed via miner votes

Demurrage: Effects

- Upper-bound of the state size become predictable
- Prevent circulating supply decrease due to lost keys, incorrect contracts, etc.
- Stabilizes mining by providing additional fixed reward
- Incentivizes people to use their money

Development

- Environment is not static, therefore the network should also be changeable
- But how to make these changes?
- A decentralized cryptocurrency should avoid a dedicated "core" team
- The network should achieve long-term survivability without promised further changes

Development: Voting protocol

- Ergo allows to change a lot of parameters via miners voting: block size, contract costs, demurrage coefficients and more...
- Parameters are changed with a small step (1% per 1024 blocks)
- But it allows to make big changes step by step

Smart contracts: Smart money

- 2 main directions: protecting script (e.g. BTC) vs preform computations (e.g. ETH)
- Ergo protecting script, platform for smart money
- Complicated protecting scripts (like multisig) are natural
- Computations (onchain or offchain) are also possible

Ergo script: Idea

- Language for verifications rather than computations
- Strict upper-bound for computation time
- Only operations, that allow to estimate script complexity before execution
- Constant-time access to environment (few last headers)
- Based on Σ-protocols

Smart contracts: Computations

- Even Bitcoin script allows to implement a lot of contracts: https://en.bitcoin.it/wiki/Contract
- But what is possible?
- Assumed to be not Turing complete (because of lack of loops)

Ergo script: Chaining

- But Turing-completeness may be achieved without loops inside the languages
- Turing completeness proof implementation of known Turing complete system
- Rule 110 was implemented in Ergo script (see http://arxiv.org/pdf/1806.10116v1)

Ergo script: Chaining

Even if you don't have infinite loop inside a block, you have it between blocks

Ergo script: Chaining

If you need some computation:

- Estimate work done before execution
- Put it to one or multiple transactions

Ergo script: Emission

- Atomic swaps, DEX, crowdfunding, rule 110 and more at https://git.io/fpDhE
- Emission box: every block miner can take a part from it, returning the rest to the same script
- It should be spent in such a transaction, that has exactly one output, which creation height is current height, and proposition is: Height >= SELF.creationHeight + 720 && minerPk

Monetary settings

- No ICO and premine
- 97739925 coins total after 8 years emission
- Part of the emission goes to a treasury to fund the development
- For the first 2 years, block reward is 75 Erg, 7.5 Erg (10%) of them goes to foundation
- After that treasury part reduces for 3 coins every 3 months

Monetary settings

- EFYT token was issued at a start of implementation
- First year foundation reward will be used to cover EFYT token with 1:1 rate
- After the first year the community will decide, where to spend these funds via voting

Roadmap

Thank You The End

http://www.slideshare.net/DmitryMeshkov

https://twitter.com/DmitryMeshkov

catena@protonmail.com