TABLE 3.4 Temperature distribution and heat loss for fins of uniform cross section

Case	Tip Condition $(x = L)$	Temperature Distribution θ/θ_b $\frac{\cosh m(L-x) + (h/mk) \sinh m(L-x)}{\cosh mL + (h/mk) \sinh mL}$		Fin Heat Transfer Rate q_f $M \frac{\sinh mL + (h/mk) \cosh mL}{\cosh mL + (h/mk) \sinh mL}$	
A	Convection heat transfer: $h\theta(L) = -kd\theta/dx _{x=L}$				
			(3.70)	, ,	(3.72)
В	Adiabatic $d\theta/dx _{x=L} = 0$	$\frac{\cosh m(L-x)}{\cosh mL}$		M anh mL	
C ,	Prescribed temperature: $\theta(L) = \theta_L$	$(\theta_L/\theta_b)\sinh mx + \sinh m(L-x)$		(3.76) $(\cosh mL - \theta_1/\theta_b)$	
		sinh mL		$M\frac{(\cosh mL - \theta_L)}{\sinh mL}$	
D	Infinite fin $(L \to \infty)$:		(3.77)		(3.78)
	$\theta(L)=0$	e^{-mx}	(3.79)	M	(3.80)
$\theta \equiv T - T$	$T_{\infty} \qquad m^2 \equiv hP/kA_c$				
$\theta_b = \theta(0)$	$= T_b - T_{\infty} \qquad M \equiv \sqrt{hPkA_c}\theta_b$				

Note: T_f $A_c = s$ in our notes.