Reinforcement Learning 101

Sep 2019 Aleksandra Faust

Research Scientist Robotics at Google

Reinforcement learning 101

- Let's talk about decision-making!
- Markov decision processes
- RL Basics
 - Q-learning
 - Components of RL
- Function approximations
 - RL in continuous spaces
 - Approximate Q-iteration
 - o Deep RL
- [Wed] RL with continuous actions
 - o DDPG, Soft actor critic
- [Wed] How does RL fit in ML world?
 - o Inverse RL, AutoRL

Making **good** decisions.

Storage problems

 How much energy to store in a battery to handle the volatility of wind and spot prices to meet demands?

Storage problems

 How much money should we hold in cash given variable market returns and interest rates to meet the needs of a business?

Elements of a storage problem

- Controllable variable giving the amount in storage
 - Deposit money, charge a battery, chill the water, release water from the reservoir.
 - How much energy, money, etc.?
 - Action that the decision-maker takes.
- Multidimensional "state of the world" variable that evolves exogenously
 - Prices, Interest rates, Weather, Demand/loads
 - Action influences the state of the world.
- Immediate observable feedback
 - Cost or reward: trading fees, cost loosing charge, cost of empty battery
- Other features
 - Problem may be time-dependent (and finite horizon) or stationary
 - We may have access to forecasts of future

Planning for a risky world

Weather

- Robust design of emergency response networks.
- Insurance prices Design of financial instruments to hedge against weather emergencies to protect individuals, companies and municipalities.
- Design of sensor networks and communication systems to manage responses to major weather events.

Disease

- Models of disease propagation for response planning.
- Management of medical personnel, equipment and vaccines to respond to a disease outbreak.
- Robust design of supply chains to mitigate the disruption of transportation systems.

Energy management

Energy resource allocation

- What is the right mix of energy technologies?
- How should the use of different energy resources be coordinated over space and time?
- What should my energy R&D portfolio look like?
- What is the impact of a carbon tax?

Energy markets

- How should I hedge energy commodities?
- How do I price energy assets?
- What is the right price for energy futures?

High value spare parts

Electric Power Grid

- PJM oversees an aging investment in high-voltage transformers.
- Replacement strategy needs to anticipate a bulge in retirements and failures
- 1-2 year lag times on orders. Typical cost of a replacement ~
 \$5 million.
- Failures vary widely in terms of economic impact on the network.

Spare parts for business jets

- ADP is used to determine purchasing and allocation strategies for over 400 high value spare parts.
- Inventory strategy has to determine what to buy, when and where to store it. Many parts are very low volume (e.g. 7 spares spread across 15 service centers).
- Inventories have to meet global targets on level of service and inventory costs.

Elements of a planning problem

- Controllable variable specifying capacity
 - Evacuation routes, select energy portfolio...
 - Action that the decision-maker takes.
- Multidimensional "state of the world" variable that evolves exogenously
 - Prices, Weather, Demand/loads
 - Action influences the state of the world.
- Immediate observable feedback
 - Cost or reward: cost of parts' storage, number of affected people.
- Other features
 - Problem may be time-dependent (and finite horizon) or stationary
 - We may have access to forecasts of future

Systems' control and motion planning

Artificial Intelligence

- Games
- Modelling
- Virtual reality

Elements of a motion planning problem

- Controllable variable moving the robot / agent
 - · Move a robot or win a game pieces...
 - Action that the decision-maker takes.
- Multidimensional "state of the world" variable that evolves exogenously
 - Position, Velocity
 - Action influences the changes in the world.
- Immediate observable feedback
 - Cost or reward: game won, task completed....
- Other features:
 - Problem may be time-dependent (and finite horizon) or stati
 - We may have access to forecasts of future

Elements of a (sequential) decision-making problem

- Controllable variable
 - Action that the decision-maker takes.
- Multidimensional "state of the world" variable that evolves exogenously
 - · Action influences the changes in the world.
- Immediate observable feedback
 - Cost or reward.
- Other features:
 - Problem may be time-dependent (and finite horizon) or stationary
 - · We may have access to forecasts of future

Goal:

Select actions that maximize total cumulative future reward.

Time span

- Real-time control
 - Scheduling aircraft, pilots, generators, tankers
 - Pricing stocks, options
 - Electricity resource allocation
 - Robotics
- Near-term tactical planning
 - Can I accept a customer request?
 - Should I lease equipment?
 - How much energy can I commit with my windmills?
- Strategic planning
 - What is the right equipment mix?
 - What is the value of this contract?
 - What is the value of more reliable aircraft?

Disciplines

- Sequential decisions in
 - Economics
 - Robotics
 - Energy management
 - Resource management
 - Video games/simulations
- Fields
 - Operations research
 - Systems controls
 - Al/Machine Learning
 - Neuroscience

Markov Decision Process (MDP)

Markov decision process (MDP)

- Stochastic automata with utilities
- Describes the problem
- Defined with
 - Set of states S
 - Set of actions A
 - Description of effect of each action on every state
 - Reward function R: S->R

Markovian property

 The effects of the action taken in a state, depend only on the current state, and not on how that state was reached

 Select actions that maximize total cumulative future reward.

Image from Wikipedia

Learning by Reinforcement

- Questions
 - Can we influence system behavior with reinforcement?
 - · Given natural consequences, can we learn to control system?
- · Robot (agent)
 - Sensors observe state of environment
 - Performs actions to change the states
 - Receives numerical feedback, reward
- Problem statement
 - Learn to choose actions that maximize accumulated reward, i.e.
 - Learn the total accumulated reward to be encountered heuristic, and use hill-climbing

MDP action description

Deterministic

- For each state and action the next state is unique F:SxA -> S
- · Boolean tabular representation for finite states and actions
- Deterministic finite state automata

Stochastic

- For each state and action a probability distribution defines next state P(s' | s, a)
- · Numeric tabular representation for finite states and actions
- Nondeterministic finite state automata

Markov chain

- Has single action (no choice)
- Has no reward (no motivation)

MDP solution

- Policy π , mapping from states to actions
 - Tells us what action to take
 - · Tabular representation for finite states and actions
- Following policy, π,
 - 1. Repeat
 - Determine current state s
 - 2. Look up action $a = \pi(s)$
 - 3. Apply action a to state s
- Full observability current state s can be fully determined, known to the system
- Partial observability partially observable MDP (POMDP)

Policy evaluation

- How good is a policy?
- Deterministic
 - Sum of rewards encountered
- Stochastic
 - Expected total reward
- Objective function (value function)
 - $V(s_0) = R(s_0) + R(s_1) + R(s_2) + \dots$
- Can be infinite
 - Finite horizon consider fixed number of steps

•
$$V(s_0) = R(s_0) + R(s_1) + R(s_2) + \dots + R(s_n)$$

- Discounting value earlier reward more
 - $V(s_0) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots = \sum_{i=1}^{n} \gamma^i R(s_i)$

Value function (State value function)

- · Goal to maximize (discounted) value function
 - $V(s_0) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots = \sum_{i=1}^{n} \gamma^i R(s_i)$
- Optimal value function is a fixed point

•
$$V^*(s_0) = \max V(s_0)$$

 $= \max(R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) +)$
 $= R(s_0) + \gamma \max(R(s_1) + \gamma^1 R(s_2) +)$
 $= R(s_0) + \gamma V^*(s_1)$

Bellman equation

- [Bellman, 1957]
- $V^*(s_0) = R(s_0) + \gamma V^*(s_1)$
- Tool how to calculate value iteratively

Action value function (Q function)

- Q: S x A -> R
- · Q(s,a) Value of action a performed at state s.
- Optimal value function is a fixed point
 - $Q(s,a) = r + \gamma V(s')$ and $V(s) = \max_{\alpha} Q(s,a)$
 - $Q(s,a) = r + \gamma(\max_{\alpha'}(Q(s',a'))$
- Tool how to calculate value iteratively when (s, a, r, s') samples available.
- Optimal policy
 - $\pi^*(s) = \operatorname{argmax} Q^*(s,a)$, over all a
 - $\pi^*(s)$ = argmax $V^*(s')$, over all state s' reachable from s

Review: Sequential Decision Making

- What are decision-making problems?
 - Problems where we modify one or more variables that influence the system to accomplish a goal.
- · How do we model decision-making problems?
 - States
 - Actions
 - Transition function
 - Reward
 - Markov decision process
- What is the goal?
 - To maximize long-term gain, while making short-term decisions.
- What is a solution?
 - · Policy, mapping from states to actions

Basic RL

Reinforcement Learning

- Markov decision process (MDP)
 - Set of states S
 - Set of actions A
 - Transition function F: SxA->S (not available analytically)
 - Reward function R: S->R (not available analytically)

Heuristic

- Value functions V and Q: cost to go, potential for accumulated reward
- · Example: value of high school degree

· Strategy / Goal

- Find policy π which produces action sequence that maximizes the value
- F and R are known dynamic programming

- Find the cheese and avoid the cat
- Move up, down, left, and right
- · Cheese: 100
- · Cat: -1000
- · Step: -1
- Mouse doesn't know:
 - · Where the cheese is
 - · Where the cats are

Example – dynamic programming

Reward and transitions known

Reward

1st iteration

Example – dynamic programming

Reward and transitions known

-1	-2	-2	-1	-2	-2	-1	-2	-2	-1	-2	-2	-1
-2			-2			-900			-2			-2
-2		9	-2			-2			-2	1	4	-2
-1	-2	-2	-1	-900	-2	100	-2	-900	-1	-2	-2	-1
-2			-900			99			-900			-2
-2			-2			-900			-2	ļ.		-2
-1	-900	-2	100	99	-900	-1	-900	99	100	-2	-900	-1
-2	,		-2			99			-2			-2
-2		9	-900			99			-900		9	-2
-1	-2	-2	-1	99	-2	100	-2	99	-1	-2	-2	-1
-2			-2			-2			-2	1		99
-2			-2			99			-2	4		-2
-1	-2	-2	-1	-2	-2	-1	-2	-2	-1	99	-2	100
-2			-2			-2			-900			99
-2		9	-2			-2			-2		4	99
-1	-2	-2	-1	-2	-2	-1	-900	-2	100	99	-900	-1

-2	-3	-3	-2	-3	-3	-2	-3	-3	-2	-3	-3	-2
-3			-3			-901			-3		- 2	-3
-3			-3			-3			-3	L		-3
-2	-3	-3	-2	-901	-3	99	-3	-901	-2	-3	-3	-2
-3		- 60	-901			199			-901			-3
-3			-3			-901			-3			-3
-2	-901	-3	99	199	-901	99	-901	199	99	-3	-901	-2
-3			98			98			98			98
-3			-901			199			-901			-3
-2	98	-3	99	98	98	99	98	98	99	98	98	99
-3		- 2	-3			98			98			98
-3			98			98			98			98
-2	-3	-3	-2	98	-3	99	98	98	99	98	98	99
-3			-3			-3			-901			199
-3			-3			98			98			98
-2	-3	-3	-2	-3	-3	-2	-901	-3	99	199	-901	99
1												- 4

2nd iteration

3rd iteration Starts to back propagate

Example – dynamic programming

- Reward and transitions known
- Heuristic (value function) is table
- Pattern emerges
 - · Cats are blocked off
 - · Small area of uncertainty
- What to do
 - with no knowledge of reward?
 - when we don't know the transitions?
- Learn from experience by trial and error

· Cheese: 100

· Cat: -1000

• Step: -1

Mouse doesn't know:

· Where the cheese is

Action	Reward	Value
Right	-1	-1

	•	
K		

· Cheese: 100

· Cat: -1000

· Step: -1

Mouse doesn't know:

· Where the cheese is

Action	Reward	Value
Right	-1	-1
Right	-1	-2

-1		

· Cheese: 100

· Cat: -1000

• Step: -1

Mouse doesn't know:

· Where the cheese is

Action	Reward	Value
Right	-1	-1
Right	-1	-2
Right	-1000	-1002

-1	-1	i

· Cheese: 100

· Cat: -1000

• Step: -1

Mouse doesn't know:

· Where the cheese is

Action	Reward	Value
Right	-1	-1
Right	-1	-2
Right	-1000	-1002
Right	100	-902

	-		
-1	-1	-1000	

· Cheese: 100

· Cat: -1000

• Step: -1

Action	Reward	Value
Right	-1	-1
Right	-1	-2
Right	-1000	-1002
Right	100	-902
Up	-1	-903
Left	-1	-904
Up	-1	-905
Left	-1	-906

		-1	-1	
			-1	-1
0	-1	-1	-1000	100

Example - Continued

- How good is a particular decision?
- Estimate value of action:
 - One step at the time
 - Reward plus the value of the next state
 - What's college going to cost me plus expected earning afterwards
- State action value, Q
- Q(s,a) = r + max Q(s',a)
- max Q(s,a): value of state

		r = -1	r = -1 Q(I) = -2	
			r = -1 Q(u) = -2	r = -1 Q(I)= -1
r = 0 Q(r)=-1	r=-1 Q(r)=-2	r=-1 Q(r)=-1001	r=-1000 Q(r)=-900	r= 100 Q(u)= 99

Example - Continued

- Keep exploring
- · Iteratively update Q

•
$$Q(s,a) = r + max Q(s',a)$$

- The values start backtracking
- Retrospective

Example - Continued

- After lots of exploration learns to avoid the cat
- Each state has a preferred direction: policy
- State action values might not be accurate, but direction is – most of the time
- Similar pattern, but only small area covered
- What happened?

Q-Learning

Q-Learning

- · Initialize Q table
- Repeat
 - · Pick a state, action (s,a) transition
 - · Make the transition from (s,a) -> s'
 - Receive reward r
 - Update Q(s,a) <- $(1-\alpha)$ Q(s, a) + α (r + γ max_a Q(s', a))
- Until sufficiently happy with performance

[Watkins 1989]

Q-Learning Continued

- Update done as weighted average Why?
- $\cdot \alpha$ learning rate (0 <= α <= 1)
 - · Weight of new information
- \cdot γ discount factor (0 <= γ < 1)
 - Instant gratification: rewards obtained sooner are more desirable
 - Keeps value function finite
- Converges to optimal policy when
 - Repeated infinitely many times
 - Explores
- Works in discrete (small) spaces
 - But it is slow

```
Repeat
Pick (s,a)
Make the transition to s'
Receive reward r
Q(s,a) <- (1-α)Q(s, a) + α(r + γ
max Q(s', a))
Until sufficiently happy with
performance
```

Exploration vs. Exploitation

- Exploration
 - Discovers state space
 - Takes risks, makes mistakes, learns
 - · Random, biased
- Exploitation
 - Uses known information to pick action
 - Learned policy
- We need exploration to learn, to perform well we need exploitation
- · How do we reconcile:
 - Offline learning: separate learning and exploitation phases
 - Online learning: ε-greedy policy, decaying exploration

```
Repeat

Pick (s,a)

Make the transition to s'

Receive reward r

Q(s,a) <- (1-\alpha)Q(s,a) + \alpha(r + \gamma + \gamma)

max Q(s', a))

Until sufficiently happy with performance
```

Off-policy / on-policy

· (s, a, r, s') can be data observed from demonstration

- Recorded data
- Expert
- Novice
- Simulator
- Off-policy Q-learning
- On-policy SARSA

Repeat

Pick (s,a)

Make the transition to s'

Receive reward r $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(r + \gamma \max Q(s',a))$ Until sufficiently happy with performance

Q-Learning Pseudo Code

```
a[da] - actions array
     s[ds] - states array
      Q[ds,da] - Q table
      epsilon = 0.3;
     gamma = 0.9; % discount factor;
      alpha = 0.9; % learning constant
    Ffor i=1..ds, i=1..da
        Q(i,j) = 0;
10
      end
11
    while not done
          currentState = agent.getCurrentState();
13
          is <- find index 'is' s.t. currentState = ds[is]
14
1.5
          % epsilon greedy policy
16
          ra = rand(0,1);
17
          if ra < epsilon
              % select random action
19
              ia = rand(1,da);
          else
              %choose best one
              ia = argmax(Q[is, j]), j=1,...,da
          end
24
          currentAction = a[ia]:
25
26
          % apply action to the current state, observe reward
          r = agent.applyAction(currentAction);
          nextState = agent.getCurrentState();
29
          isn <- find index 'isn' s.t. nextState = ds[isn]
30
31
          Q(is,ia) = (1-alpha)Q(is,ia) + alpha(r +
                     gamma * max(Q(isn, jn), jn=1,...,da))
      end
```

Model-free vs. model-based

- Model-based
 - Simulator available
 - · Used to create (s, a, s') tuples
- Model-free
 - · (s, a, s') observed
 - Recorded data
 - Expert
 - Novice

```
Repeat
Pick (s,a)
Make the transition to s'
Receive reward r
Q(s,a) <- (1-\alpha)Q(s,a) + \alpha(r + \gamma max_a Q(s',a))
Until sufficiently happy with performance
```

Q-Learning Pros and Cons

- Pros
 - Simple
 - Each iteration is fast
 - Extensible framework

Cons

- Takes many steps to learn
- Doesn't scale up
- · Generalization is hard: rote memory with a bit of bookkeeping
- Exploration might be unsafe

Components of RL

- Model (MDP)
 - Transitions between states and actions
 - · Reward, R
- Value functions
 - State value, V: what's the potential payoff for the state
 - State action value, Q: what's the potential payoff for the action
 - Difference between V and Q: going to college example
- Policy, π
 - Where should I go next?

Components of RL

- Model, Value functions, and Policy are related
- Choice of what to learn
 - Model model-based RL
 - Value functions value iteration RL
 - Policy policy search, or policy iteration
 - Value and policy actor critic methods.
- Q-Learning is value iteration RL

RL in Continuous Spaces

RL in Continuous Spaces

- · 7 DoF robotic arm, each joint 10 position
 - 10 million states, without considering velocity
- What is the state space for the self-driving car?
- What do we do if state space is large? Or continuous?
- Function approximation
 - · Parametric, non-parametric
- What functions?
 - Model, Value, Policy
- Much, much faster. Why?
 - Similar states, behave similarly
 - More generalization
- Requires expert knowledge

RL Approximation

- State space infinite
 - · Q cannot be tabular
- Action space infinite
 - Action selection approximation
 - Maximization problem
- Generalization
- Compact representation of a function

```
Repeat
Pick (s,a)
Make the transition to s'
Receive reward r
Q(s,a) <- (1-α)Q(s, a) + α(r + γ max Q(s', a))
Until sufficiently happy with performance
```

Approximation Taxonomy

- Parametric $Q_n = F(\theta_n)$
 - Fixed number of parameters
 - · Feature vector, F, derived from the problem domain
 - · (Deep) neural net
 - : Example: $F(\theta_1, \theta_2, \theta_3) = \theta_1(x-1)^2 + \theta_2(y-2)^2 + \theta_3 xy$
- Nonparametric
 - Derived from data
 - Data dependent parameters and/or features
 - Examples: regression tree
- Approximation error
 - Difference between true function and approximation
- Convergence, stability, and consistency

Parametric approximation

- Linear
 - Feature vector $F(\theta_1, \theta_2, \theta_3) = \theta_1(x-1)^2 + \theta_2(y-2)^2 + \theta_3xy$
- Nonlinear
 - $F(\theta_1, \theta_2, \theta_3) = \theta_1 \theta_2(x-1) + \theta_2(y-2) + \theta_3^2 xy$
- Examples
 - State aggregation
 - Gaussian radial function
 - Problem-specific features
 - Neural networks
- Pros
 - · Convergence criteria in linear case
- Cons
 - Difficult convergence criteria in nonlinear case
 - Needs prior knowledge to design features

Nonparametric approximation

- · Builds a model from the available data
- Examples
 - · Kernels, SVM, regression trees
- Pros
 - Flexible
 - · Sample-efficient
- Cons
 - · Very problematic convergence criteria
 - · Too much data too complex
 - Overfitting

Approximate Q-Iteration

- Discrete case
 - Update Q function
 - Q(s,a) <- $(1-\alpha)$ Q(s, a) + α (r + γ max Q(s', a))

Businiu et al. 2010

Approximate case

- Approximate $Q_n(s,a) = F(\theta_n, s', a)$
- Update

•
$$q_{n+1}(s,a) <- (1-\alpha)F(\theta_n, s, a) + \alpha(r + \gamma \max_a F(\theta_n, s', a))$$

- Find new approximation / projection
 - θ_{n+1} = argmin_{θ} || q_{n+1} (s,a) $F(\theta_n$, s, a) ||²

Stopping Criteria

- Fixed number of iterations
- Convergence $\|\theta_{n+1} \theta_n\| < \epsilon$

Convergence

- Convergence to optimal policy
 - When approximation is contraction
 - · Case to case basis on dynamics, feature vectors, and projections
- Probabilistic bounds on suboptimality
 - Based on number of samples
 - · How far off will I be given n samples?

Remi Munos, DeepMind

Approximate Q-iteration Summary

- Q-learning
- Approximate Q-iteration
- Three steps for algorithm approximation
 - Function approximation
 - Estimate of new function
 - Projection to the function approximation domain
- Pros
 - Generalization
 - Speed
- Cons
 - Convergence
 - Harder setup

Offline least squares approximate Q-iteration with linear parameterization

- Input
 - Discount factor γ
 - Feature vector $F: S \times A > \mathbb{R}^n$
 - Samples $\{(s_{l_n},a_{l_n},s'_{l_n},r_{l_n})|l=1,...,m_n,n=1,..,N\}$
- ullet Start with arbitrary $heta_0$
- While not done
- For l = 1, ..., m
 - New sample values $Q_{l_{n+1}} = r_{l_n} + \gamma \max_{a \in A} heta_n^T F(s_{l_n}', a)$

$$\theta_{n+1} = \operatorname{argmax}_{\theta} ||Q_{l_{n+1}} - \theta^T F(s_{l_n}, a_{l_n})||^2$$

• Find new $heta_{n+1}$ through least squares

Offline non-parametric approximate Q-iteration

- Input
 - ullet Discount factor $_{\gamma}$
 - Feature vector $F: S \times A > \mathbb{R}^n$
 - Samples $\{(s_{l_n}, a_{l_n}, s'_{l_n}, r_{l_n}) | l = 1, ..., m_n, n = 1, ..., N\}$
- Start with arbitrary θ_0
- While not done l = 1, ..., m
 - For $Q_{l_{n+1}}=r_{l_n}+\gamma\max_{a\in A}\tilde{Q_n}(s'_{l_n},a)$ New sample values
 - Find new Q_{n+1} by solving machine learning problem $(s_{l_n}, a_{l_n}, Q_{l_{n+1}})$

Deep Q-learning

- Deep neural network approximates Q function.
- · Learn Q's weights.
- Bellman update + supervised learning.
- Add replay buffer to create mini-batches.

```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights \theta
Initialize target action-value function \hat{Q} with weights \theta^- = \theta
For episode = 1, M do
  Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
  For t = 1,T do
       With probability \varepsilon select a random action a_t
       otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
       Execute action a_t in emulator and observe reward r_t and image x_{t+1}
       Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
       Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
       Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from D
```

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

End For

Recap

- RL
 - Method for solving MDP when model is not known.
 - Appropriate for agents interacting with the world trying to accomplish a task.
 - Policy: a sequence of actions that maximize accumulated reward.
- · Components of RL problem
 - Model (States, actions, transitions, reward), value functions, policy.
 - · Learn any of them. Policy can be derived.
- Small discrete spaces
 - Tabular representation of values
 - Iterations: new estimate = experienced reward + old estimate
- Large spaces
 - Approximation.

Why use RL?

- Trial and error learningLearns expectation over cumulative label

Questions

- 1. What is off-policy learning?
- 2. What is off-line learning?
- 3. What is model-free learning?
- What is deep RL?
- 5. What does policy search mean?
- 6. When is exploration important?
- 7. When is exploitation needed?
- DDPG is an actor-critic, model-free, off-policy algorithm with DNNs as approximators.
 - a. What does that tell you?
- 9. Kernel based Q-learning.
 - a. What does it mean?
- 10. PPO is an on-policy policy optimization with DNNs.
 - a. What does it mean?

Useful links

Reinforcement Learning 101

Dave Silver's class

Abbeel and Schulman's tutorial

Introduction to Various Reinforcement Learning Algorithms. Part I (Q-Learning, SARSA, DQN, DDPG)

RL algorithms taxonomy

Thank you

Questions?

RL and learning from demonstration

Add a slide on off policy, on-policy

- PPO is on-policy RL algorithm, with neural net approximator.
- DDPG is off-policy RL, with neural net approximator

Inverse Reinforcement Learning

- When no reward available
- Expert demonstration available
- Learn reward from the expert demonstration
- Introduction
 - http://www.youtube.com/watch?v=M-QUkgk3HyE
- Peter Abbeel's page
 - http://ai.stanford.edu/~pabbeel/RL-v ideos.html

Skill Learning with Policy search

- Given basic motions (motion primitives)
- Policy search
 - Natural actor-critic
 - Weighted combination of the motion primitives
- Batting
 - http://www.youtube.com/watch?v=cPIGG KBnUZI
- Pancake flipping
 - http://www.youtube.com/watch?v=W_gx LKSsSIE

Intro to Deep RL

- DQN
 - Off-policy
 - Q-function deep convolutional net
 - Experience replay model-based
- Asynchronous Advantage Actor-Critic (A3C)
 - Actor-critic
 - Advantage: A = R V(s)
- Thanks to Brandyn:

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0#.terdpa6v7

