1. Suppose A is a real $n \times n$ matrix which satisfies $A^3 = A + I_n$. Show that A has a positive determinant.

If v is any eigenvector of A, corresponding to the eigenvalue λ , then $A^3v = \lambda^3v$ and $(A+I)v = (\lambda+1)v$. Since these two are equal (and v is not the zero vector), it follows that $\lambda^3 = \lambda + 1$, i.e. that λ is a root of $X^3 - X - 1$. A glance at the graph of this polynomial shows that it has one real root λ_0 (which is positive), and a conjugate pair of complex roots λ_1, λ_2 (and the product of any nonzero complex number and its conjugate is also positive).

Now, the determinant of a matrix is the product of its eigenvalues, each taken with its algebraic multiplicity (i.e. as a root of the characteristic polynomial). Since the matrix is real, so is its characteristic polynomial, which means each non-real root appears with the same multiplicity as its complex conjugate. Hence $\det(A) = \lambda_0^r(\lambda_1 \lambda_2)^s$ for some positive integers r and s, and this product is positive.

2. Suppose $A, B \in M_2(\mathbf{C})$ satisfy AB = BA. Assume that A is not of the form aI_2 for any complex number a. Show that B = yA + zI for some complex numbers x, y.

Many, many problem in Linear Algebra can be treated like this: first you conjugate (i.e. switch to a more convenient basis), then do your work, and then conjugate back. The computations can be much simpler that way. Let me clarify.

Every complex 2×2 matrix is diagonalizable or nearly so: there will always be complex matrices P and Q with PQ = QP = I such that PAQ = A' where A' is either diagonal or of the form

$$\begin{pmatrix} e & 1 \\ 0 & e \end{pmatrix}$$

So the strategy is to conjugate the whole problem by P and Q. That is, let B' = PBQ and then note A' and B' commute too:

$$A'B' = (PAQ)(PBQ) = PAIBQ = P(AB)Q = P(BA)Q = PBIAQ = (PBQ)(PAQ) = B'A' \blacksquare PA' = PAIBQ = PAIB$$

Also if A' were equal to aI for some scalar a, then we would have A = QA'P = Q(aI)P = a(QIP) = aI, a contradiction. And finally if B' = yA' + zI for some y and z then B = QB'P = Q(yA' + zI)P = y(QA'P) + z(QIP) = yA + zI. In other words, it will be sufficient to prove the desired result for A' and B'.

So we need only solve the problem in the special case that A is of one of these two forms:

$$\begin{pmatrix} e & 1 \\ 0 & e \end{pmatrix} \qquad or \qquad \begin{pmatrix} e & 0 \\ 0 & f \end{pmatrix}$$

where $e \neq f$.

Very well then. Suppose $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$; then in the diagonal case

$$AB = \begin{pmatrix} ea & eb \\ fc & fd \end{pmatrix}$$
 while $BA = \begin{pmatrix} ea & fb \\ ec & fd \end{pmatrix}$

so for the two to be equal we need b=c=0. This makes B also into a diagonal matrix, and we will indeed have B=yA+zI as long as a=ye+z, d=yf+z; two such complex numbers y and z do exist since $\det\begin{pmatrix} e & 1 \\ f & 1 \end{pmatrix} \neq 0$.

Similarly in the non-diagonal case we expand out AB - BA and observe that this matrix will be zero iff a = d and c = 0. We easily solve a system of equations to discover that if y = b and z = a - be then B = yA + zI.

So the result is true for both types of matrices A, and we are done.

Let me remark that every matrix A commutes with every polynomial in A, that is, with every $B = zI + yA + xA^2 + wA^3 + \dots$ For most matrices, there is nothing else that commutes with A; only when the characteristic polynomial of A has repeated roots can there be any other commuting matrices B. It's also true that every polynomial in A can also be expressed as a polynomial in A of degree less than n (the size of the matrix). This problem essentially asked you to prove all this when n = 2.

3.(a) Find two real matrices A, B with

$$A^2 + B^2 = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$$

(b) Show that if A, B are real matrices with

$$A^2 + B^2 = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$$

then $AB \neq BA$

For (a) I instinctively began with $A = c \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ where $c = \sqrt{3}$. Then B^2 would have to be -I, which is possible: -I represents a 180° rotation of the plane, which can be thought of as the composite of two 90° rotations, which are represented by $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Alternatively, Dennis noted that $\begin{pmatrix} 1 & 3/2 \\ 0 & 1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$ and that adding this matrix to its transpose gives the desired sum. So using $A = \begin{pmatrix} 1 & 3/2 \\ 0 & 1 \end{pmatrix}$ and $B = A^T$ will do the job.

4. Suppose A is a 3×3 matrix with rational entries, for which $A^8 = I$. Show that in fact $A^4 = I$.

This is actually a number-theory question!

If λ is any eigenvalue of A, let v be an eigenvector with $Av = \lambda v$. Then $v = Iv = A^8v = \lambda^8v$, so $\lambda^8 = 1$. (There are 8 complex numbers λ which satisfy this equation.) Now, each of these eigenvalues is a root of the characteristic polynomial, which is a cubic polynomial with rational coefficients. There are indeed such polynomials which have 1, -1, i, and -i as roots. But the other four roots have degree 4 over the rationals, that is, the smallest-degree rational polynomials which have such numbers as roots are of degree 4 (such as $X^4 + 1 = 0$). So those numbers are not among the eigenvalues of A.

Each of the other roots of X^8-1 is already a root of one of its factors, namely X^4-1 . So since A is diagonalizable and $\lambda^4=1$ for each of its eigenvalue, it follows that $A^4=I$ too.

5. Suppose A, B are real 3×3 matrices. Prove that

$$rank(A) + rank(B) \le 3$$

iff there is an invertible matrix X with $AXB = O_3$

6. Is there an infinite sequence of real numbers a_1, a_2, a_3, \ldots such that

$$a_1^m + a_2^m + a_3^m + \dots = m$$

for every positive integer m?

No there is not. Let $s_m = \sum a_i^m$. Then $s_2^2 - s_4 = (\sum a_i^2)^2 - \sum a_i^4 = 2\sum_{i < j} (a_i)^2 (a_j)^2$ which is clearly positive (as long as there are at least two nonzero numbers a_i .) That is, we will surely have $s_2^2 > s_4$ (and thus if $s_2 = 2$ then $s_4 < 4$) unless all but one a_i is zero; but in that case the equations $s_1 = 1$ and $s_2 = 2$ are contradictory.

Thus was a Putnam question in 2010.

7. Let x_1, x_2, \ldots, x_n be differentiable (real-valued) functions of a single variable f which satisfy

$$\frac{dx_1}{dt} = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n$$

$$\frac{dx_2}{dt} = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n$$

•

$$\frac{dx_n}{dt} = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n$$

for some constants $a_{ij} > 0$. Suppose that for all $i, x_i(t) \to 0$ as $t \to \infty$. Are the functions x_1, x_2, \ldots, x_n necessarily linearly dependent?

8. Alan and Barbara play a game in which they take turns filling entries of an initially empty 2008×2008 array. Alan plays first. At each turn, a player chooses a real number

and places it in a vacant entry. The game ends when all the entries are filled. Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if its is zero. Which player has a winning strategy?

9. If A and B are square matrices of the same size such that ABAB = 0, does it follow that BABA = 0?

No. Here is a counterexample:

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Geometrically the idea is this: AB annihilates a plane and sends all of space into that plane, so $(AB)^2 = 0$. On the other hand BA = A only annihilates a line and so it is geometrically impossible for $(BA)^2$ to be zero. $(\dim(\ker(BA))=1 \text{ implies } \dim(\ker((BA)^2)) \le 2.)$