MAT 653: Statistical Simulation

Instructor: Dr. Wei Li

2023-08-29

Back Updated: 2023-08-29 Statistical Simulation, Wei Li

Eigenvalue decomposition

Given a square matrix M so that $Mx = \lambda x$ for some nonzero vector x and some λ (scalar). We call λ an eigenvalue of M whose associated eigenvector is x.

Note: A is a square matrix, $det(A) = \prod_{i=1}^{n} \lambda_i$. A square matrix is invertible if and only if its eigenvalues are non-zero.

Eigen-decomposition: A is a square and symmetric matrix, then we can write $A = P\Lambda P^T$ where

 $P = [u_1, u_2, \dots, u_n],$ u's are the orthonormal eigenvector of A $\Lambda = diag\{\text{eigenvalues of } A\}.$

Note: If this symmetric matrix A is invertible, then we have $A^{-1} = P\Lambda^{-1}P^{T}$ where

$$\Lambda^{-1} = \begin{pmatrix} \ddots & 0 & 0 \\ 0 & \frac{1}{\lambda_i} & 0 \\ 0 & 0 & \ddots \end{pmatrix}$$

Example: $A = \begin{pmatrix} 9 & 0 \\ 0 & 4 \end{pmatrix}$, $Av = \lambda v \implies (A - \lambda I)v = 0$. Here we need a non-zero solution, so

$$\det(A - \lambda I) = \begin{vmatrix} 9 - \lambda & 0 \\ 0 & 4 - \lambda \end{vmatrix} = 0 \implies \lambda_1 = 9, \lambda_2 = 4$$

For $\lambda_1 = 9$, since we know $Av_1 = 9v_1 \implies (A - 9I)v_1 = 0$, then we have

$$\begin{pmatrix} 0 & 0 \\ 0 & -5 \end{pmatrix} v_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

For $\lambda_2 = 4$, since we know $Av_2 = 4v_2 \implies (A - 4I)v_2 = 0$, then we have

$$\begin{pmatrix} 5 & 0 \\ 0 & 0 \end{pmatrix} v_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Now
$$A = P\Lambda P^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 9 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 where $P = [v_1, v_2]$.

Singular value decomposition

For a $m \times n$ matrix A, A^TA is a symmetric matrix. Let $\{v_1, \ldots, v_n\}$ be the collection of all the orthonormal eigenvectors of A^TA (eigen-decomposition); let $\lambda_1, \ldots, \lambda_n$ be the associated eigenvalues, $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$. We have $||Av_i||^2 = \lambda_i$, since

$$A^T A v_i = \lambda_i v_i \Rightarrow v_i^T A^T A v_i = \lambda_i v_i^T v_i \lambda_i.$$

The singular values of A are squared roots of the eigenvalues of A^TA , denoted by $\sigma_i = \sqrt{\lambda_i}$; $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$

Fact: The rank of a matrix A is equal to the number of positive singular value of A.

SVD: Let A ($m \times n$) be a matrix of rank r. There exists a matrix $\Sigma_{m \times n}$ of the following form, with D being a diagonal matrix whose entries are the first r (non-zero) singular value. That is

$$\Sigma_{m \times n} = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix},$$

$$D = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{bmatrix}.$$

The Singular Value Decomposition of A is:

$$A = U_{m \times m} \Sigma_{m \times n} V_{n \times n}^T$$

Where U and V are both orthogonal matrices: $V = [v_1, \dots, v_n]$ consists of all orthonormal eigenvectors of $A^T A$; $U = [u_1, \dots, u_m]$ consists the column u_i as follows

for
$$1 \le i \le r$$
, $u_i = \frac{Av_i}{\|Av_i\|} = \frac{Av_i}{\sigma_i}$,

and these columns $\{u_1,\ldots,u_r\}$ can be extended to $\{u_1,\ldots,u_m\}$ as the orthonormal basis.

Matrix U and V are not uniquely determined in general, but have the property: Col(U) spans Col(A) and Col(V) spans Row(A).

Reduced (thin) SVD

For those $A_{m\times n}$, $U_{m\times m}$, $V_{n\times n}$, $\Sigma_{m\times n}$ above, we have the partition:

$$U = [U_r, U_{m-r}], V = [V_r, V_{n-r}], \Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$$

Consequently, the SVD of A can be represented as:

$$A = \begin{bmatrix} U_r & U_{m-r} \end{bmatrix} \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_r^T \\ V_{n-r}^T \end{bmatrix} = U_r D V_r^T$$

Application

1. Linear Least Squares

We can use thin SVD to solve the Least Squares Problems as following:

$$Ax = b,$$

$$A^{T}Ax = A^{T}b,$$

$$(U_{r}DV_{r}^{T})^{T}(U_{r}DV_{r}^{T})x = (U_{r}DV_{r}^{T})^{T}b,$$

$$V_{r}DIDV_{r}^{T}x = V_{r}DU_{r}^{T}b,$$

$$DV_{r}^{T}x = U_{r}^{T}b.$$

Denote $w = V_r^T x$, $y = U_r^T b$, we have the following algorithm:

Algorithm

- 1. Find the SVD of $A = U_r D V_r^T$;
- 2. Compute $y = U_r^T b$;
- 3. Solve the diagonal system Dw = y, giving $w^* = D^{-1}y$;
- 4. Solve $V_r^T x = w^* \Rightarrow x^* = V_r w^*$;

The solution of the equation is $x^* = V_r D^{-1} U_r^T b = V \Sigma^{-1} U^T b$. We notice that this SVD method allows A, b to be arbitrary. Notice that $V_r D^{-1} U_r^T$ is like the "inverse" of A. Here we have the concept of generalized inverse.

Moore-Penrose inverse of A: $A^{\dagger} = V_r D^{-1} U_r^T$

2.LS-Problem

In LS Problem

$$\min_{x} ||Ax - b||,$$

where A and b are not restricted at all, we have:

$$A^T A x = A^T b$$
.

Let \mathfrak{L} is the set of all the minimizers to the LS problem. We have following facts.

Fact 1
$$x^* = A^+b \in \mathfrak{L}$$
.

Fact 2 $A\tilde{x_1} = A\tilde{x_2}$, for any $\tilde{x_1}, \tilde{x_2} \in \mathfrak{L}$.

Fact 3 For the optimization problem $\min_{x \in \mathcal{L}} ||x||$, there is a unique solution $x^* = A^+ b$.

Fact 4 We already have the result that if we choose some $\lambda > 0$, LS problem will have a unique solution to the "modified" normal equation:

$$(A^T A + \lambda I)x = A^T b$$

that is,

$$\hat{x} = (A^T A + \lambda I)^{-1} A^T b$$

In fact, let $\lambda \to 0$, we have

$$(A^T A + \lambda I)^{-1} A^T \to A^+$$

So

$$x^* = \lim_{\lambda \to 0} A(A^T A + \lambda I)^{-1} A^T = A^+ b.$$

Fact 5 The projection of b on Col(A) is given by $A(A^TA)^{-1}A^Tb$ (assuming A^TA is invertible), here is a more general result

$$\hat{b} = AA^{+}b = \lim_{\lambda \to 0} [A(A^{T}A + \lambda I)^{-1}A^{T}]b$$

Back Updated: 2023-08-29 Statistical Simulation, Wei Li