3.3 The Product and Quotient Rules (Continued)

Proposition (★★)

- Proofs
- Examples

3.4 Derivatives of Trigonometric Functions

We have

$$\sin x \approx x \approx \tan x$$
 around $x = 0$.

Graphs

Proposition

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \text{and} \qquad \lim_{x \to 0} \frac{\tan x}{x} = 1$$

- ★ $\frac{0}{0}$ -type with $\sin mx$ or $\tan mx$: make replacement with mx
- ★ $\frac{0}{0}$ -type with $\cos x 1$: make multiplication by $\cos x + 1$
 - Examples

Proposition (★★)

$$[\sin x]' = \cos x$$
 $[\cos x]' = -\sin x$
 $[\tan x]' = \sec^2 x$ $[\cot x]' = -\csc^2 x$
 $[\sec x]' = \sec x \tan x$ $[\csc x]' = -\csc x \cot x$

Proofs: We need to use

$$\sin(x+y) = \sin x \cos y + \cos x \sin y,$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y.$$

Examples