Announcements

- Quiz 3 will be on feb 11 thursday on sections 3.1 and 3.2
- No calculators for this quiz. You have to find the determinants using the methods we have learned.
- ► Please check the homework problems posted and make sure you have the updated list.

From last class

Let

$$A = \left[\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right],$$

From last class

Let

$$A = \left[\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right],$$

then write the following matrix.

$$adj A = \begin{bmatrix} C_{11} & C_{21} & C_{23} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{bmatrix},$$

Note carefully how the subscripts appear for the entries of A and the entries of the new matrix adj A. They are flipped.

1. Here adj A is called the adjugate (or the classical adjoint) of A.

- 1. Here adj A is called the adjugate (or the classical adjoint) of A.
- 2. C_{11} , C_{12} and C_{13} are the cofactors of the 3 entries in the first row of A.

- 1. Here adj A is called the adjugate (or the classical adjoint) of A.
- 2. C_{11} , C_{12} and C_{13} are the cofactors of the 3 entries in the first row of A.
- 3. Find these cofactors and write them as a column. This gives the first column of adj A.

- 1. Here adj A is called the adjugate (or the classical adjoint) of A.
- 2. C_{11} , C_{12} and C_{13} are the cofactors of the 3 entries in the first row of A.
- 3. Find these cofactors and write them as a column. This gives the first column of adj A.
- 4. Signs alternate for the cofactors. So C_{11} is positive, C_{12} is negative and so on.

- 1. Here adj A is called the adjugate (or the classical adjoint) of A.
- 2. C_{11} , C_{12} and C_{13} are the cofactors of the 3 entries in the first row of A.
- 3. Find these cofactors and write them as a column. This gives the first column of adj A.
- 4. Signs alternate for the cofactors. So C_{11} is positive, C_{12} is negative and so on.
- 5. Repeat the same for the remaining 2 rows. (The cofactors with alternating aigns form the next 2 columns)

- 1. Here adj A is called the adjugate (or the classical adjoint) of A.
- 2. C_{11} , C_{12} and C_{13} are the cofactors of the 3 entries in the first row of A.
- 3. Find these cofactors and write them as a column. This gives the first column of adj A.
- 4. Signs alternate for the cofactors. So C_{11} is positive, C_{12} is negative and so on.
- 5. Repeat the same for the remaining 2 rows. (The cofactors with alternating aigns form the next 2 columns)
- 6. Divide adj A by det A and this gives A^{-1} .

Compute the adjugate and use it to find A^{-1} .

$$A = \left[\begin{array}{rrr} 1 & 2 & 4 \\ 0 & -3 & 1 \\ 0 & 0 & 3 \end{array} \right],$$

Compute the adjugate and use it to find A^{-1} .

$$A = \left[\begin{array}{rrr} 1 & 2 & 4 \\ 0 & -3 & 1 \\ 0 & 0 & 3 \end{array} \right],$$

Compute the adjugate and use it to find A^{-1} .

$$A = \left[\begin{array}{rrr} 1 & 2 & 4 \\ 0 & -3 & 1 \\ 0 & 0 & 3 \end{array} \right],$$

1	2	4	1	2	4
0	-3	1	0	-3	1
0	0	3	0	0	3

$$C_{11} = + \left[\begin{array}{cc} -3 & 1 \\ 0 & 3 \end{array} \right]$$

Compute the adjugate and use it to find A^{-1} .

$$A = \left[\begin{array}{rrr} 1 & 2 & 4 \\ 0 & -3 & 1 \\ 0 & 0 & 3 \end{array} \right],$$

V VIIICC C	110 5 00	71466015	WICH 51811	arcern	id till b			_
1	2	4	1	2	4	1	2	4
-								
0	-3	1	0	-3	1	0	-3	1
-								
0	0	3	0	0	3	0	0	3

$$C_{11} = + \underbrace{\begin{bmatrix} -3 & 1 \\ 0 & 3 \end{bmatrix}}_{-9}, C_{12} = - \underbrace{\begin{bmatrix} 0 & 1 \\ 0 & 3 \end{bmatrix}}_{0}$$

Compute the adjugate and use it to find A^{-1} .

$$A = \left[\begin{array}{rrr} 1 & 2 & 4 \\ 0 & -3 & 1 \\ 0 & 0 & 3 \end{array} \right],$$

VVIIIC	Write the 5 cordetors with sign diternating									
1	2	4	1	2	4	1	2	4		
-										
0	-3	1	0	-3	1	0	-3	1		
-										
0	0	3	0	0	3	0	0	3		

$$C_{11} = + \underbrace{\begin{bmatrix} -3 & 1 \\ 0 & 3 \end{bmatrix}}_{-9}, C_{12} = - \underbrace{\begin{bmatrix} 0 & 1 \\ 0 & 3 \end{bmatrix}}_{0}, C_{13} = + \underbrace{\begin{bmatrix} 0 & -3 \\ 0 & 0 \end{bmatrix}}_{0}$$

$$C_{21} = -\underbrace{\left[\begin{array}{cc} 2 & 4 \\ 0 & 3 \end{array}\right]}_{6}$$

$$C_{21} = -\underbrace{\begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix}}_{6}, C_{22} = +\underbrace{\begin{bmatrix} 1 & 4 \\ 0 & 3 \end{bmatrix}}_{3}, C_{23} = -\underbrace{\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}}_{0}$$

$$C_{31} = + \underbrace{\begin{bmatrix} 2 & 4 \\ -3 & 1 \end{bmatrix}}$$

$$C_{31} = + \underbrace{\begin{bmatrix} 2 & 4 \\ -3 & 1 \end{bmatrix}}_{14}, C_{32} = - \underbrace{\begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}}_{1}$$

$$C_{31} = + \underbrace{\begin{bmatrix} 2 & 4 \\ -3 & 1 \end{bmatrix}}_{14}, C_{32} = - \underbrace{\begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}}_{1}, C_{33} = + \underbrace{\begin{bmatrix} 1 & 2 \\ 0 & -3 \end{bmatrix}}_{-3}$$

Now you have all cofactors with proper signs. Write them down as columns. Be careful about terms with double negatives.

$$adj A = \begin{bmatrix} -9 & -6 & 14 \\ 0 & 3 & -1 \\ 0 & 0 & -3 \end{bmatrix},$$

To find A^{-1} , we have to find det A. Here det A=-9 (Why?). So

$$A^{-1} = \left(-\frac{1}{9}\right) \left[\begin{array}{ccc} -9 & -6 & 14 \\ 0 & 3 & -1 \\ 0 & 0 & -3 \end{array} \right],$$

Determinants and Geometry

Theorem

If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is $|\det A|$ (the absolute value of $\det A$, since area is never negative).

Steps to find area if 4 vertices ae given

- 1. We have to first translate the given parallelogram to one with the origin as a vertex.
- 2. To do this, choose any one vertex and subtract this from each of the four vertices

Steps to find area if 4 vertices ae given

- 1. We have to first translate the given parallelogram to one with the origin as a vertex.
- 2. To do this, choose any one vertex and subtract this from each of the four vertices
- Now the parallelogram is identified by the columns of a 2 x 2
 matrix whose columns are any two "new" vertices written as
 columns.

Steps to find area if 4 vertices ae given

- 1. We have to first translate the given parallelogram to one with the origin as a vertex.
- 2. To do this, choose any one vertex and subtract this from each of the four vertices
- Now the parallelogram is identified by the columns of a 2 x 2 matrix whose columns are any two "new" vertices written as columns.
- 4. Find the determinant of this matrix, drop the negative sign.

Find the area of the parallelogram whose vertices are (0,0), (-1,3), (4,-5) and (3,-2).

<u>Solution:</u> Here one vertex is already (0,0). So we can write the 2×2 matrix as (You can choose any 2 vertices other than the origin)

Find the area of the parallelogram whose vertices are (0,0), (-1,3), (4,-5) and (3,-2).

<u>Solution:</u> Here one vertex is already (0,0). So we can write the 2×2 matrix as (You can choose any 2 vertices other than the origin)

$$A = \left[\begin{array}{cc} -1 & 4 \\ 3 & -5 \end{array} \right],$$

So $\det A = -7$ and the area of the parallelogram is 7 sq units.

Find the area of the parallelogram whose vertices are (0,-2), (6,-1), (-3,1) and (3,2).

<u>Solution:</u> Here we have to translate the parallelogram so that one vertex is (0,0).

Find the area of the parallelogram whose vertices are (0,-2), (6,-1), (-3,1) and (3,2).

<u>Solution:</u> Here we have to translate the parallelogram so that one vertex is (0,0).

Choose (0,-2) (or any one you like) and subtract all four vertices from this.

Find the area of the parallelogram whose vertices are (0,-2), (6,-1), (-3,1) and (3,2).

<u>Solution:</u> Here we have to translate the parallelogram so that one vertex is (0,0).

Choose (0,-2) (or any one you like) and subtract all four vertices from this.

We get (0,0), (6,1), (-3,3) and (3,4)

Find the area of the parallelogram whose vertices are (0,-2), (6,-1), (-3,1) and (3,2).

<u>Solution:</u> Here we have to translate the parallelogram so that one vertex is (0,0).

Choose (0,-2) (or any one you like) and subtract all four vertices from this.

We get (0,0), (6,1), (-3,3) and (3,4)

So we can write the 2×2 matrix as (You can choose any 2 vertices, again don't choose origin)

$$A = \left[\begin{array}{cc} 6 & -3 \\ 1 & 3 \end{array} \right].$$

So $\det A = 21$ and the area of the parallelogram is 21 sq units.

Area of any triangle with vertices given

Let R be a triangle with vertices at (x_1, y_1) , (x_2, y_2) and (x_3, y_3) . Then the area of the triangle is given by

$$\frac{1}{2} \left| \det \left[\begin{array}{ccc} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{array} \right] \right|.$$

Here the vertical lines denote the absolute value of the determinant of the matrix shown.

Example

Find the area of a triangle whose vertices are (1,2), (3,4) and (2,8)

Solution:

$$\frac{1}{2} \left| \det \begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 1 \\ 2 & 8 & 1 \end{bmatrix} \right| = \frac{1}{2} ((1)(-4) - (2)(1) + (1)(16)) = \frac{1}{2} (10) = 5.$$

Question

Suppose you are given 3 points and asked to find the area of a triangle with those points as vertices. What is your conclusion if the determinant in the area formula is 0?

Question

Suppose you are given 3 points and asked to find the area of a triangle with those points as vertices. What is your conclusion if the determinant in the area formula is 0?

<u>Answer:</u> The 3 points cannot form a triangle. They all lie on a straight line or the 3 points are collinear.

Example

Consider (1,1), (2,2) and (3,3) and see what happens!

Points in \mathbb{R}^3 to be coplanar

Let $(x_1,y_1,z_1), (x_2,y_2,z_2)$ and (x_3,y_3,z_3) be any 3 points in \mathbb{R}^3 . If

$$\det \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{bmatrix} = 0,$$

we say that these 3 points are in the same plane (coplanar).

Equation of a straight line

Let (x_1,y_1) , and (x_2,y_2) be any 2 distinct points in \mathbb{R}^2 . Then

$$\det \left[\begin{array}{ccc} 1 & x & y \\ 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \end{array} \right] = 0$$

gives the equation of the straight line passing through these points.

Example

Find the equation of the straight line passing through the points (1,3), and (2,-4).

Solution: Then

$$\det \begin{bmatrix} 1 & x & y \\ 1 & 1 & 3 \\ 1 & 2 & -4 \end{bmatrix} = 0$$

$$(1)(-10) - x(-7) + y(1) = 0$$

$$7x + y - 10 = 0$$

Equation of a Plane

Let (x_1, y_1, z_1) , (x_2, y_2, z_2) and (x_3, y_3, z_3) be any 3 points in \mathbb{R}^3 . The equation of a plane passing through these points is

$$\det \begin{bmatrix} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \end{bmatrix} = 0,$$

This gives an equation of the form Ax + By + Cz = D where A, B, C and D are numbers depending on the given vertices. (You learn a more elegant way to do this in calculus, using normal vectors)

How to use TI-89 calculator in Linear Algebra?

- 1. TI-89 calculators have useful linear algebra options that will help you with matrix/determinant calculations.
- 2. Very useful in classes whose objective is to calculate and move on (esp in engineering, economics, chemistry etc)
- For a MA2321 exam/quiz you could use it to check your answer but if "No Calculator" is specified, you must show your work for that problem.
- 4. If you use it on a test/quiz please be familiar with the options beforehand. Trying to master the "User's Manual" during the test/quiz will not work out.

T189- The "Home Screen" way

How to enter a matrix from home screen?

Use the **Define** option. You could do this by pressing F4 and option 1 or typing it in. Suppose you want $a = \begin{bmatrix} 2 & 3 & 0 \\ 1 & 2 & 3 \end{bmatrix}$,

- 1. Separate columns by commas
- 2. Separate rows by semi-colons
- 3. Put [and] before and after.

T189- More Examples

Similarly you enter
$$u = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $v = \begin{bmatrix} 1 & 2 & -3 & 4 \end{bmatrix}$ as follows.

T189- Matrix Algebra

Suppose
$$a = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}$$
, $b = \begin{bmatrix} 9 & 1 \\ 0 & -3 \end{bmatrix}$ and $c = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 2 & 1 \\ -2 & 0 & 3 \end{bmatrix}$.

Enter these matrices the same way. Suppose we want to find a+b, 3a-4b, ab and a+c

F1+ F Tools A19	2+ F3+ F4+ ebra Ca1c Other F	FS F6+ Pr9mIO Clean	UP
■a+b		[10 -1	3 -3]
■3·a-	- 4 · b	[-33 [-3	2 12
3a-4b		C 10004004.04	
MAIN	RAD AUTO	FUNC	2/30

F1+ F Tools #19	2+ F3+ F4+ ebra Calc Other F	F5 F6- r9ml0 Clean	Up O
N - 03	- 12 - 12 - 14	· 102	-16-1
l-		[9]	-51
•a·b		-9	-1_
870	RAD AUTO	FUNC	1/30

Suppose you want to solve the following on your TI-89. Press MATH and then Option 4 and then Option 5. This starts a line simult(. Here you fill your coefficient matrix and the vector of right hand side one after the other, close)

$$\begin{cases} x + y = 1 \\ x - y = 3 \end{cases}$$

Three equations, 3 variables. Screen re-adjusts.

$$\begin{cases} x & + & y & + & z & = & 3 \\ 2x & + & 3y & - & 4z & = & 1 \\ 3x & - & 6y & + & 5z & = & 2 \end{cases}$$

What if there are free variables? TI-89 freaks out!!

$$\begin{cases} x & + & 3y & + & 2z & = & 1 \\ x & - & 2y & + & z & = & 4 \end{cases}$$

Want to do elementary row operations. Write A and B as usual and then apply rref(augment(A,B)). (You could press MATH and Option 4 and then Option 4 for RREF and MATH and Option 4 and then Option 7 for augment).

$$\begin{cases} x + 3y + 2z = 1 \\ x - 2y + z = 4 \end{cases}$$

TI-89 WILL NOT interpret this any further. YOU must decide free variables, basic variables etc and do the rest. Keep in mind that the last column is the augmented column.

Other useful stuff

- 1. To find transpose of a matrix, use **MATH** and then Option 4 and then Option 1 for transpose
- 2. If you want to find A^{-1} , you type $A \wedge (-1)$. (Will return **error**: singular matrix if not invertible).
- 3. To get the 3×3 identity matrix, use **MATH** and then Option 4 and then Option 6. This displays **identity(**, then type 3 and then evaluate. (You could just type in the 3×3 identity matrix as well)
- 4. det(a) computes the determinant of the matrix A.

T189- "Sophisticated" matrix entry

If you want to explore all features of your TI-89, you could choose **APPS** option 6. Select "New", on the next screen choose "Matrix" for type, enter a name for the matrix and its desired size. Here are the screenshots.

F17	APPLIC	ATIONS	
10013	l:Home 2:Y= Editor 3:Window Ed 4:Graph 5:Table	ditor	
1:Cu 2:Op	rrent en	ditor	cor
3: Ne	-w <u>-</u> -chi	tor	0.00
MAIN	RAD AUTO	FUNC	0/30

T189- "Sophisticated" matrix entry

I choose "m" for the name.

Type:	Matrix	→
Folder	main >	
Variab1	e: m	
Row dir	nension: 3	
Co1 dim	ension: 3	70°
Enter	=0K	(ESC=CANCEL)
MAIN	RAD AUTO	FUNC

This is what you see in the beginning

MAT	8 8	- 12 S.	34 200 - 30	Т
3x3	c1	c2	c3	33
1	0	0	0	8
2	0 0 0	0	0	7
2 3 4	0	0	0	1
4	1000	10,0,	- 20 - 1	
Bare	1=0	192	. 33	

T189- "Sophisticated" matrix entry

Fill each slot with your numbers.

í		0	33
5 5	-4	3	
16	7	7	
teT x3 c1	L c2	c3	

If you want to enter negative numbers use the "-" key to the left of the "enter" key (NOT the subtraction key)

TI89- The "MATH- option 4" choices

Results of det, transpose

Some results

F1+ F Tools #194	2+ F3+ F4+ ebraCa1cOther P	F5 'r9mi0 (F6+ lean	Up O
_		[6	-1	5]
■ m ^T		7	4	-4
550		7	4	3 .
mΤ				
MAIN	RAD AUTO	FUN	0	1/30

Results of inverse, RREF

Some results

