Institut für Informatik

Prof. Dr. François Bry

Logik und diskrete Strukturen, SoSe 18 Übungsblatt 1

Abgabe: bis Di 17.04.2018 12 Uhr Besprechung ab Di 17.04.

Aufgabe 1-1 schriftlich bearbeiten Strukturelle Induktion

Sei \mathcal{L} eine Sprache der Aussagenlogik. Für eine \mathcal{L} -Formel φ sei $|\varphi|_A$ die Anzahl der Vorkommen von Aussagensymbolen (nullstelligen Relations-/Prädikatssymbolen) bzw. von \top oder \bot in φ und $|\varphi|_J$ die Anzahl der Vorkommen von zweistelligen Junktoren in φ .

Beispiel: sei φ die \mathcal{L} -Formel $(\neg p \Leftrightarrow (p \Rightarrow \bot))$ dann ist $|\varphi|_A = 3$ und $|\varphi|_J = 2$.

Zeigen Sie durch strukturelle Induktion, dass für jede \mathcal{L} -Formel φ gilt $|\varphi|_A = |\varphi|_J + 1$.

Aufgabe 1-2 schriftlich bearbeiten Strukturelle Induktion

Sei \mathcal{L} eine Sprache der Aussagenlogik. Für eine \mathcal{L} -Formel φ sei $|\varphi|$ die Anzahl der Vorkommen von Symbolen (logischen Symbolen oder Symbolen der Signatur) in φ .

Beispiel: sei φ die \mathcal{L} -Formel $(\neg p \Leftrightarrow (p \Rightarrow \bot))$ dann ist $|\varphi| = 10$ (davon 4 Klammern).

Zeigen Sie durch strukturelle Induktion, dass für jede **negationsfreie** \mathcal{L} -Formel φ gilt $|\varphi| = 4k + 1$ für ein $k \in \mathbb{N}$.

Bemerkung: $\mathbb{N} = \{0, 1, 2, \ldots\}$ enthalte die Zahl Null, wie allgemein in der Informatik üblich.

Aufgabe 1-3 Größe und Anzahl der aussagenlogischen Formeln

Sei \mathcal{L} eine Sprache der Aussagenlogik.

- a) Zeigen Sie durch strukturelle Induktion, dass jede \mathcal{L} -Formel φ aus endlich vielen Symbolen besteht.
- b) Zeigen Sie, dass es unendlich viele \mathcal{L} -Formeln gibt, selbst wenn die Signatur von \mathcal{L} nur endlich viele Aussagensymbole (nullstellige Relations- oder Prädikatssymbole) enthält.