# **Trabajo Practico 4**

Capa de Red

Colazo, Agustín Passaglia, Nicolás

Facultad de Ciencias Exactas, Físicas y Naturales.
Universidad Nacional de Córdoba

Ejercicio 1

1.1)

Dada la red 10.0.0.4/24, subdividir en 8 redes.

| Red        | Mascara         | Broadcast  | Asignación útil       |
|------------|-----------------|------------|-----------------------|
| 10.0.0.0   | 255.255.255.248 | 10.0.0.31  | 10.0.0.1-10.0.0.30    |
| 10.0.0.32  | 255.255.255.248 | 10.0.0.63  | 10.0.0.33-10.0.0.62   |
| 10.0.0.64  | 255.255.255.248 | 10.0.0.95  | 10.0.0.65-10.0.0.94   |
| 10.0.0.96  | 255.255.255.248 | 10.0.0.127 | 10.0.0.97-10.0.0.126  |
| 10.0.0.128 | 255.255.255.248 | 10.0.0.159 | 10.0.0.129-10.0.0.158 |
| 10.0.0.160 | 255.255.255.248 | 10.0.0.191 | 10.0.0.161-10.0.0.190 |
| 10.0.0.192 | 255.255.255.248 | 10.0.0.223 | 10.0.0.193-10.0.0.222 |
| 10.0.0.224 | 255.255.255.248 | 10.0.0.255 | 10.0.0.254            |

1.2)
Dada la red 192.168.0.0/23, subdividir en 16 redes.

| Red           | Mascara         | Broadcast     | Asignación útil                 |
|---------------|-----------------|---------------|---------------------------------|
| 192.168.0.0   | 255.255.255.224 | 192.168.0.31  | 192.168.0.1-<br>192.168.0.30    |
| 192.168.0.32  | 255.255.255.224 | 192.168.0.63  | 192.168.0.33-<br>192.168.0.62   |
| 192.168.0.64  | 255.255.255.224 | 192.168.0.95  | 192.168.0.65-<br>192.168.0.94   |
| 192.168.0.96  | 255.255.255.224 | 192.168.0.127 | 192.168.0.97-<br>192.168.0.126  |
| 192.168.0.128 | 255.255.255.224 | 192.168.0.159 | 192.168.0.129-<br>192.168.0.158 |
| 192.168.0.160 | 255.255.255.224 | 192.168.0.191 | 192.168.0.161-<br>192.168.0.190 |
| 192.168.0.192 | 255.255.255.224 | 192.168.0.223 | 192.168.0.193-<br>192.168.0.222 |
| 192.168.0.224 | 255.255.255.224 | 192.168.0.255 | 192.168.0.254                   |
| 192.168.1.0   | 255.255.255.224 | 192.168.1.31  | 192.168.1.1-<br>192.168.1.30    |
| 192.168.1.32  | 255.255.255.224 | 192.168.1.63  | 192.168.1.33-<br>192.168.1.62   |
| 192.168.1.64  | 255.255.255.224 | 192.168.1.95  | 192.168.1.65-                   |

|               |                 |               | 192.168.1.94                    |
|---------------|-----------------|---------------|---------------------------------|
| 192.168.1.96  | 255.255.255.224 | 192.168.1.127 | 192.168.1.97-<br>192.168.1.126  |
| 192.168.1.128 | 255.255.255.224 | 192.168.1.159 | 192.168.1.129-<br>192.168.1.158 |
| 192.168.1.160 | 255.255.255.224 | 192.168.1.191 | 192.168.1.161-<br>192.168.1.190 |
| 192.168.1.192 | 255.255.255.224 | 192.168.1.223 | 192.168.1.193-<br>192.168.1.222 |
| 192.168.1.224 | 255.255.255.224 | 192.168.1.255 | 192.168.1.254                   |

### 1.3)

Con la red 172.16.0.0/24 no se puede cubrir 320 hosts, ya que hay 8 bits para hosts disponibles. Esto hace un total de  $2^8-2=254$  hosts disponibles.

Por lo tanto, debemos supernetear. Esto es usar redes contiguas para hacer una superred con mayor capacidad de hosts. Si tuviésemos 9 bits para hosts (un bit mas de lo actual), tendríamos una capacidad para 510 hosts.

Solo podríamos hacer supernetting si la red 172.16.1.0/24 estuviese disponible.

#### El resultado seria:

| Red        | Mascara       | Broadcast    | Asignación útil         |
|------------|---------------|--------------|-------------------------|
| 172.16.0.0 | 255.255.254.0 | 172.16.1.255 | 172.16.0.1-172.16.1.254 |

### 1.4)

Los casos de espacios de direcciones presentados anteriormente tienen las siguientes características en común:

- Son redes classless, esto lleva a un direccionamiento mas eficiente.
- Son todas redes privadas. Están descriptas en una RFC. Estas redes se encuentran detrás del NAT, y no se pueden usar como ips publicas.

## Ejercicio 2

### 2.1)

### **LAN 1 (10 hosts)**

| Red        | Mascara         | Broadcast  | Asignación útil       |
|------------|-----------------|------------|-----------------------|
| 10.4.0.192 | 255.255.255.240 | 10.4.0.207 | 10.4.0.193-10.4.0.206 |

### **LAN 2 (63 hosts)**

| Red      | Mascara         | Broadcast  | Asignación útil     |
|----------|-----------------|------------|---------------------|
| 10.4.0.0 | 255.255.255.128 | 10.4.0.127 | 10.4.0.1-10.4.0.126 |

### **LAN 3 (32 hosts)**

| Red        | Mascara         | Broadcast  | Asignación útil       |
|------------|-----------------|------------|-----------------------|
| 10.4.0.128 | 255.255.255.192 | 10.4.0.191 | 10.4.0.129-10.4.0.190 |

### LINK 1 (2 hosts)

| Red        | Mascara         | Broadcast  | Asignación útil       |
|------------|-----------------|------------|-----------------------|
| 10.4.0.208 | 255.255.255.252 | 10.4.0.211 | 10.4.0.209-10.4.0.210 |

### LINK 2 (2 hosts)

| Red        | Mascara         | Broadcast  | Asignación útil       |
|------------|-----------------|------------|-----------------------|
| 10.4.0.216 | 255.255.255.252 | 10.4.0.219 | 10.4.0.217-10.4.0.218 |

### LINK 3 (2 hosts)

| Red        | Mascara         | Broadcast  | Asignación útil       |
|------------|-----------------|------------|-----------------------|
| 10.4.0.212 | 255.255.255.252 | 10.4.0.215 | 10.4.0.213-10.4.0.214 |

#### **ROUTER 0**

| Red        | Mascara         | Próximo Salto |
|------------|-----------------|---------------|
| 10.4.0.0   | 255.255.255.128 | 10.4.0.218    |
| 10.4.0.128 | 255.255.255.192 | 10.4.0.214    |
| 10.4.0.192 | 255.255.255.240 | 10.4.0.209    |

#### **ROUTER 1**

| Red        | Mascara         | Próximo Salto |
|------------|-----------------|---------------|
| 10.4.0.0   | 255.255.255.128 | 10.4.0.210    |
| 10.4.0.128 | 255.255.255.192 | 10.4.0.210    |

#### **ROUTER 2**

| Red        | Mascara         | Próximo Salto |
|------------|-----------------|---------------|
| 10.4.0.128 | 255.255.255.192 | 10.4.0.217    |
| 10.4.0.192 | 255.255.255.240 | 10.4.0.217    |

#### **ROUTER 3**

| Red        | Mascara         | Próximo Salto |
|------------|-----------------|---------------|
| 10.4.0.0   | 255.255.255.128 | 10.4.0.213    |
| 10.4.0.192 | 255.255.255.240 | 10.4.0.213    |

### 2.3)

Cuando un host de la LAN 1 quiere comunicarse con un host de la LAN 3 lo que pasa es lo siguiente. Para mayor comprensión llamaremos H1 al host de la LAN 1, y H3 al host de la LAN 3. Supongamos que la ip de H1 es 10.4.0.194 y la ip de H3 es 10.4.0.130.

H1 enviá un mensaje a H3, la ip de la fuente y del destino se encuentra en la cabecera del mensaje ipv4. H1 enviá el mensaje a su Gateway, que se corresponde con la interfaz 10.4.0.193 del Router 1.

El Router 1 busca si la ip destino se corresponde con alguna de las redes agregadas en la tabla de enrutamiento estático o de sus interfaces. Si la ip se corresponde con una red (y su mascara), entonces el mensaje se enviá a la dirección "próximo salto" por la interfaz correspondiente.

El Router 1 busca la dirección asociada a esa red y enviá el mensaje a 10.4.0.217 (Router 0).

El Router 0 busca la red a la que pertenece esa ip en la tabla de enrutamiento y enviá el mensaje a 10.4.0.214 (Router 3).

El Router 3 recibe el mensaje y enviá el mensaje al host 10.4.0.130 por la interfaz 10.4.0.129.

2.4)

#### **Packet Tracer**



```
Command Prompt
                                                                                                             X
C:\>ping 10.4.0.130
Pinging 10.4.0.130 with 32 bytes of data:
Reply from 10.4.0.130: bytes=32 time=16ms TTL=125
Reply from 10.4.0.130: bytes=32 time=11ms TTL=125
Reply from 10.4.0.130: bytes=32 time=4ms TTL=125
Reply from 10.4.0.130: bytes=32 time=11ms TTL=125
Ping statistics for 10.4.0.130:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 4ms, Maximum = 16ms, Average = 10ms
C:\>ipconfig
FastEthernet0 Connection:(default port)
  Link-local IPv6 Address...... FE80::202:16FF:FE09:7189
  IP Address..... 10.4.0.194
  Subnet Mask..... 255.255.255.240
  Default Gateway..... 10.4.0.193
```