3D 打印实训

浙江大学 工程训练中心

实训要点及步骤

了解 3D 打印基础概念

熟悉 3D 打印通用格式

掌握 Magics 软件处理

掌握 FDM 3D 打印机操作

传统加工技术:车、铣、刨、磨

3D 打印:通过连续的物理层叠加,逐层增加 材料来生成三维实体的技术,与传统的去除 材料加工技术不同,因此又称为增材制造。

3D 打印存在着许多不同的技术,可以用于多种材料的增材成形。不同的材料的打印方法不同,但都统称为 3D 打印。

3D 打印概念→3D 打印通用格 ➤ Magics 软件处理 ➤ 3D 打印

3D 打印常用材料有尼龙玻纤、耐用性尼龙材料、石膏材料、铝材料、钛合金、不锈钢、镀银、镀金、橡胶类材料。

类型	堆积技术	基本材料	
挤压	熔融沉积式(FDM)	热塑性塑料,共晶系统金属、可食用 材料	
线	电子束自由成型制造(EBF)	几乎任何合金	
粒状	直接金属激光烧结(DMLS)	几乎任何合金	
	电子束熔化成型 (EBM)	钛合金	
	选择性激光熔化成型(SLM)	钛合金, 钴铬合金, 不锈钢, 铝	
	选择性热烧结(SHS)	热塑性塑料	
	选择性激光烧结(SLS)	热塑性塑料、金属粉末、陶瓷粉末	
粉末层喷头 3D 打印	石膏 3D 打印(PP)	石膏	
层压	分层实体制造(LOM)	纸、金属膜、塑料薄膜	
光聚合	立体光固化(SLA)	光固化树脂	
	数字光处理(DLP)	光固化树脂	

3D 打印主要技术方法—— SLA

光固化快速成形 SLA(Stereo Lithography Apparatus),又称立体光刻、光成形等,是一种采用紫外线激光束逐点扫描液态光敏树脂使之固化的 RP 成形工艺。

SLA 工艺原 理: Laser, Scanning mirror Cured resin (to form model) Re-coating bar Liquid resin

应用: 对样品形状及尺寸设计进行直观分析

3D 打印光固化(SLA)材料—光敏树脂

光敏树脂即是 uv 树脂,由聚合物单体与预聚体组成,其中加有光(紫外线)引发剂或称为光敏剂,在一定波长的紫外光照射下立刻引起聚合反应,完成固化。光敏树脂一般为液态。

光固化反应

3D 打印光固化(SLA)

优势:

- 1. 发展时间长,工艺成熟;
- 2. 表面质量较好,层厚0.076~0.381mm;
- 3. 尺寸精度较高;
- 4. 可以制作结构较为复杂的模型;

缺点:

- 1. 工作环境要求较高;
- 2. 材料强度、耐热性有限,不利于保存;
- 3. 系统造价昂贵。

超快的光固化—— CLIP

优势:

- 颠覆性的打印速度,可比传统 3D 打印快
 25~100 倍;
- 2. 提高表面质量和力学性能。
- 3. 耗材添加量较 SLA 少。

缺点: 无法打印大物件

3D 打印主要技术方法—— SLS

激光选区烧结 SLS(selected laser sintering) 工艺,又称选择性激光烧结,它是采用红外激光作为热源来烧结粉末材料,并以逐层堆积方式成形三维零件的一种快速成形技术。航空航天、医疗等领域应用前景广阔。

SLS 工艺原理:

3D 打印激光烧结(SLS)材料—粉末材料

金属粉末是指尺寸小于 1mm 的金属颗粒群。包括单一金属粉末、合金粉末以及具有金属性质的某些难熔化合物粉末

陶瓷粉末是一种轻质非金属多功能材料, 主要成分是 SiO2 和 Al2O3, 分散性好、遮盖力高、白度高、悬浮性好、化学稳定性好、可塑性好、耐热温度高、密度小、烧失量低、光散射性好、绝缘性好。

塑料粉末是利用单体原料以合成或缩合 反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、润滑剂、色料等 添加剂组成的。

粉末熔化

逐层烧结成型

3D 打印主要技术方法—— SLS

优势:

- 1.可使用材料较多;
- 2.模型的机械性能可随材料而定;
- 3. 材料利用率较高;

缺点:

- 1.表面粗糙;
- 2.制造成本高;

3D 打印主要技术方法—— FDM

熔融沉积成型(Fused deposition modeling , FDM)工艺由美国工程师 ScottCrump 于 1988 年研制成功。

FDM 的材料一般是<mark>热塑性材料</mark>,以丝状供料。材料在喷头内被<mark>加热熔化</mark>,喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出,材料迅速凝固,并与周围的材料凝结。以其较高的性价比,应用较广泛。

应用实例

3D 打印熔融沉积(FDM)材料—热塑性材料

工程塑料指被用做工业零件或外壳材料的工业用塑料,是强度、耐冲击性、耐热性、硬度及抗老化性均优的塑料。工程塑料是当前应用最广泛的一类 3D 打印材料,常见的有ABS、 PC 类材料、 PLA、 尼龙类材料等。材料一般以丝状供料。

丝材熔化挤出

逐层堆积成型

3D 打印主要技术方法—— FDM

优点

环境友好、机器体积小

使用简单

造价便宜

材料便宜

缺点

表面略粗糙

需要支撑

加工时间长

容易发生翘曲变形

▶3D 打印通用格►Magics 软件处理

- 现在 3D 打印机识别的格式有很多,比如: STL、 STP、 OBJ、 AMF、 3MF 等等, 其中使用最多的应该当属 STL。
- STL 文件格式(stereolithography, 光固化 立体造型术的缩写)是由 3D SYSTEMS 公司 于 1988 年制定的一种为快速原型制造术服 务的三维图形文件格式。 STL 文件有二进制 和 ASCII 码两种输出形式。


```
Merge_of_狮子_布尔运算 - 记事本
文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)
solid
facet normal -0.376400 -0.609361 0.697855
vertex -62.97920000 -34.03320000 -46.43880000
vertex -61.56820000 -34.21420000 -45.83580000
vertex -62.86620000 -32.19620000 -44.77380000
endloop
endfacet
facet normal -0.927567 0.029291 0.372507
outer loop
vertex -70.50820000 -20.93920000 -42.43980000
vertex -70.30320000 -19.40720000 -42.04980000
vertex -71.84120000 -18.97120000 -45.91380000
endfacet
facet normal -0.356836 -0.739314 -0.571037
outer loop
vertex -15.98120000 -6.62820000 23.01920000
vertex -15.56920000 -5.97820000 21.92020000
vertex -13.59120000 -7.79720000 23.03920000
endloop
endfacet
facet normal 0.110861 0.987113 -0.115404
outer loop
vertex -64.68720000 -1.44320000 -36.70380000
vertex -60.64620000 -2.03920000 -37.91980000
vertex -66.52020000 -1.36220000 -37.77180000
endfacet
facet normal 0.405009 0.367799 0.837074
outer loop
vertex -67.77120000 6.08480000 -48.00080000
vertex -68.17120000 7.42880000 -48.39780000
vertex -68.65920000 6.46180000 -47.73680000
endfacet
facet normal -0.291893 0.200136 -0.935277
vertex -55.53220000 10.58680000 -31.08280000
vertex -54.16420000 8.39480000 -31.97880000
vertex -57.08520000 8.56480000 -31.03080000
endfacet
facet normal 0.513515 0.734758 -0.443208
outer loop
vertex -15.88220000 12.00980000 14.43620000
vertex -15.34320000 13.04580000 16.77820000
vertex -14.71720000 11.87480000 15.56220000
endloop
endfacet
facet normal -0.889643 0.438526 -0.127396
outer loop
vertex -65.91720000 12.69480000 18.51520000
```

STL 文件的获取

STL 文件的 获取方式

建模(Solidworks 、Proe、3DMAX 、MAYA等) 测量、后处理 (Geomagic 、 Im ageware 、 UG 等) 直接从网站上下载已有 的模型: www.thingiverse.com www.dayin.la

the magic of making it simple™

Magics 软件制作印章步骤

3D 打印概念 3D 打印通用格 Magics 软件处理

Magics 是比利时 Materialise 公司针对 3D 打印工艺特征开发的软件,专业处理 STL 文件。具有功能强大、易用、高效等优点,是从事 3D 打印行业必不可少的软件,常用于布尔运算、模型修复、添加支撑、切片等环节。

Magics 软件

三角面片的模型

3D 打印概念 3D 打印通用格 Magics 软件处理

Magics 是比利时 Materialise 公司针对 3D 打印工艺特征开发的软件,专业处理 STL 文件。具有功能强大、易用、高效等优点,是从事 3D 打印行业必不可少的软件,常用于布尔运算、模型修复、添加支撑、切片等环节。

Magics 软件布尔运算

Boolean(布尔运算)通过对两个以上的零件进行并集、差集、交集的运算,从而得到新的物体形态。软件提供了 4 种布尔运算方式: Union (并集)、Intersection(交集)和 Subtraction(差集,包括 A-B 和 B-A 两种

将两个零件 合并为一个 新零件 将两个零件相交 处保留,剪除其 他部分 将 A 零件中剪除与 B 零件相交的部分

B 减 **A** 与A减B相 反

Magics 软件制作印章步骤

创建

平移

布尔运算

添加标签

https://www.materialise.com/zh-hans/software/magics

欢迎进入注册向导

向导将指导整个Magics注册过程。. 请选择下面的一个注册选项并点击'下一步'来开始。

● 试用选择此选项来评估Magics。

○ 许可 选择此选项来激活你的Magics 副本。

○ 网络许可服务器连接安装在网络上的网络许可服务器。

○ 显示许可和系统信息

<返回(B)

下一個(N)>

取消

說明(H)

Key file registered successfully

┌注册的模块:

	模块	版本	有效期到
1	Magics RP	24.0	16/03/2020
2	Magics Chinese Version	24.0	16/03/2020
3	Magics RP Demo	24.0	01/01/1970
4	Magics Link	24.0	01/01/1970

<返回(B)

完成(F)

說明(<u>H</u>)