The Engineering Staff of TEXAS INSTRUMENTS INCORPORATED Components Group

Supplement to The TTL Data Book

for Design Engineers

TEXAS INSTRUMENTS

INCORPORATED

ALAN

GENERAL INFORMATION	A
INDEXES Numerical • Functional/Selection Guide	В
ORDERING INSTRUCTIONS AND MECHANICAL DATA	1
54/74 FAMILY SSI CIRCUITS	2
54/74 FAMILY MSI/LSI CIRCUITS	3
SERIES 29000 SSI CIRCUITS	4
SERIES 29300/39300 MSI CIRCUITS	5
54/74 FAMILY BEAM-LEAD TTL CIRCUITS	6
54/74 FAMILY RADIATION-HARDENED CIRCUITS	7:
38510/MACH IV PROCUREMENT SPECIFICATION	8
JAN MIL-M-38510 INTEGRATED CIRCUITS	9
ERRATA FOR THE TTL DATA BOOK	10 °
IC SOCKETS AND INTERCONNECTION PANELS	11

TI worldwide sales offices

ALABAMA

Sahara Office Park Bldg., Suite 111 3313 Memorial Parkway, S.W. Huntsville, Alabama 35801 205-881-4061

ARIZONA

4820 N. Black Canyon Hwy. Suite 202 Phoenix, Arizona 85017 602-248-8028

CALIFORNIA

11222 South La Cienega, Suite 360, P.O. Box 6005 Inglewood, California 90301 213-649-2710

Balboa Towers Bldg., Suite 805 5252 Balboa Avenue San Diego, California 92117 714-279-2622

1505 East 17th St., Suite 201 Senta Ana, California 92701 714-835-9031

753 North Pastoria Avenue Sunnyvale, California 94086 408-732-1840

COLORADO

2149 South Holly St. Denver, Colorado 80222 303-758-2151

CONNECTICUT

35 Worth Avenue Hamden, Connecticut 06518 203-281-0074

FLORIDA

601 W. Oakland Park Blvd. Fort Lauderdale, Florida 33311 305-566-3294

5400 Diplomat Circle Diplomat Bldg., Suite 252 Orlando, Florida 32810 305-644-3535

9700 Gandy Blvd., Suite 105 St. Petersburg, Florida 33702 813-898-0807

GEORGIA

1720 Old Springhouse Lane, N.E. Suite 303 Atlanta, Georgia 30341 404-458-7791

ILLINOIS

1701 Lake Street, Suite 300 Glenview, Illinois 60025 312-729-5710

INDIANA

3702 Rupp Drive Lewrence Bldg., Rm. 106 Fort Wayne, Indiana 46805 219-484-0606

5264 East 73rd Ct. Indianapolis, Indiana 46250 317-849-7397

MASSACHUSETTS

504 Totten Pond Road Waltham, Mass. 02154 617-890-7400

MICHIGAN

Central Park Plaza 26211 Central Park Blvd., Suite 215 Southfield, Michigan 48076 313-352-5720

MINNESOTA

A.I.C. Bidg., Suite 202 7615 Metro Bivd. Edina, Minn. 55435 612-835-2900

NEW JERSEY

1245 Westfield Ave. Clark, New Jersey 07066 201-574-9800

NEW MEXICO

1101 Cardenas Drive, N.E., Room 215 Albuquerque, New Mexico 87110 505-265-8491

NEW YORK

3529 Winton Road S. Rochester, New York 14623 716-461-1800

7 Adler Drive East Syracuse, New York 13057 315-463-9291

P.O. Box 618, 112 Nanticoke Ave. Endicott, New York 13760 607-785-9987

167 Main Street Fishkill, New York 12524 914-896-6793

2 Huntington Quadrangle, Suite 2N04 Huntington Station, New York 11746 516-293-2560

NORTH CAROLINA

3631 Westfield High Point, N.C. 27260 919-869-3651

оню

23811 Chagrin Blvd., Suite 100 Beachwood, Ohio 44122 216-464-1192

Suite 205, Paul Welch Bldg. 3300 South Dixie Dr. Dayton, Ohio 45439 513-298-7513

PENNSYLVANIA

275 Commerce Drive Fort Weshington, Pa. 19034 215-643-6450

TEXAS

Headquarters — Gen. Offices Dallas, Texas 75222 214-238-2011

MS366-P.O. Box 5012 Dallas, Texas 75222 214-238-6805

3939 Ann Arbor Houston, Texas 77042 713-785-6906

VIRGINIA

8512 Trabue Road Richmond, Virginia 23235 703-320-3830

WASHINGTON

700 112th N.E., Suite 101 Bellevue, Washington 98004 206-455-3480

WASHINGTON, D.C.

1500 Wilson Blvd., Suite 1100 Arlington, Virginia 22209 703-525-0336

ARGENTINA

Texas Instruments Argentina S.A.I.C.F.

C.C. Box 2296—Correo Central Buenos Aires, Argentina 748-1141

ASIA

Texas Instruments Asia Limited

5F Aoyama Tower Bldg. 24-15 Minami Aoyama Chome Minato-ku, Tokyo 107, Japan 402-6171

> 11A-15 Chatham Road First Floor, Kowloon Hong Kong 3-670061

Texas Instruments Singapore (PTE) Ltd. 27 Kallang Place Singapore 1, Rep. of Singapore 258-1122

Texas Instruments Taiwan Limited P.O. Box 3999 Taipei, Chung Ho, Taiwan 921 623

Texas-Instruments Malaysia SDN. BHD. Number 1 Lorong Enggang 33 Kuala Lampur 15-07, Malaysia 647 911

AUSTRALIA

Texas Instruments Australia Ltd.

Suite 205, 118 Great North Road Five Dock N.S.W. 2046 Australia 83 87 87

Box 63, Post Office 171-175 Philip Highway Elizabeth 5112 South Australia 255-2066

BRAZIL

Texas Instrumentos Electronicos do Brasil Ltda.

Rua Joao Annes, 153-Lapa Caixa Postal 30.103, CEP 01.000 Sao Paulo, SP, Brasil 260-2956

CANADA

Texas Instruments Incorporated

2750 Pitfield Blvd. St. Laurent 386 Quebec, Canada 514-332-3550

5F Caesar Avenue Ottawa 12 Ontario, Canada 613-825-3716

280 Centre Str. East Richmond Hill (Toronto Ontario, Canada 416-889-7373

DENMARK

Texas Instruments Denmark

46D, Marielundvej 2730 Herley, Denmari (01) 91 74 00

FINLAND

Texas Instruments Finland OY

Fredrikinkatu 75, A7 Helsinki 10, Finland 44 71 71

FRANCE

Texas Instruments France

Boite Postale 5 06 Villeneuve-Loubet, France 31 03 64

379 Av du General de Gaulle 92 Clamart, France 645 07 07

> 30-31 Quai Rambaud 69 Lyon, France 42 78 50

GERMANY

Texas Instruments Deutschland GmbH

Haggerty Str. 1 8050 Freising, Germany 08161/80-1

Arabellastrasse 4, Sternhaus/V 8000 Munich 81, Germany 0811/91 10 61

Lazarettstrasse, 19 4300 Essen, Germany 02141/20916

Krugerstrasse 24 1000 Berlin 49, Germany 0311/74 44 041

Westendstrasse 52 00 Frankfurt a.M., Germany 0611/72 64 41 Steimbker Hof 8A 3000 Hannover, Germany 0511/55 60 41

Im Kaisemer 5 7000 Stuttgart 1, Germany 0711/22 50 92

ITALY

Texas Instruments Italia SpA

Via Della Giustizia 9

20125 Milan, Italy 02-688 31 41

Via L. Mancinella 65 00154 Roma, Italy 06-83 77 45

011-83 22 76

MEXICO

Texas Instruments de Mexico S.A

Poniente 116 #489 Col. Industrial Vallejo Mexico City, D.F., Mexico 567-92-00

NETHERLANDS

Texas Instruments Holland N.V.

Entrepot Gebouw-Kamer 225 P.O. Box 7603 Schiphol-Centrum 020-17 36 36

NORWAY

Texas Instruments Norway A/S Sentrumskontorene Brugaten 1 Oslo 1, Norway 33 18 80

SWEDEN

Texas Instruments Sweden AB

S-104 40 Stockholm 14 Skeppargatan 26 67 98 35

UNITED KINGDOM

Texas Instruments Limited

Manton Lane Bedford, England 0234-67466

Supplement to The TTL Data Book for Design Engineers

First Edition

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

Information contained herein is supplemental to the data published in CC-411. Where information on a product is given in this supplement as well as in CC-411, the information contained herein supercedes the data published in CC-411.

Copyright © 1974
Texas Instruments Incorporated

Supplement to The TTL Data Book for Design Engineers First Edition

This 400-page supplement provides detailed specifications on 171 new Texas Instruments TTL device types. Included are:

- 9 high-performance Schottky-clamped[†] TTL memory functions
- 48 Series 54LS/74LS Schottky-clamped functions plus five functions with improved specifications
- 15 Series 54S/74S Schottky-clamped logic functions
- 15 functions in the 54/74 family
- 4 beam-lead chips

As an example, the memory circuits include two 1024-bit PROM's, two 256-bit RAM's, and four 2048-bit ROM's. The low-power Schottky and 54S/74S add high-performance counters, arithmetic elements, and even a complete accumulator, the SN54S281/SN74S281. Series 54/74 adds dual 4-bit counters, bus-driving circuits with 3-state outputs, and other functions designed to simplify and reduce the costs of systems. Furthermore, several new devices are included that are in a new 20-pin plastic dual-in-line package with pins on 300-mil row spacing.

Margin tabs in this supplement correspond to those in the first edition of *The TTL Data Book for Design Engineers* (CC-411) even though in some of these sections no new or revised data are included in this supplement.

Both the numerical and the functional indexes are complete listings of all TI TTL integrated circuits available at this writing. Moreover, the functional index provides a more up-to-date listing of packages available for each device type than previously published information. Page numbers with an "S-" prefix refer to pages in this supplement; page numbers without a prefix refer to pages in The TTL Data Book for Design Engineers.

In the SSI section of this supplement, only the new device types are included. However in the MSI/LSI section, where a new device type has been added, all device types that appear in the same data sheet with the new type are included with their complete specifications. For example, the SN54LS156 and SN74LS156 are additions covered by this supplement, but since they are included in the same data sheet as the SN54155, SN74155, SN54156, SN74156, SN54LS155, and SN74LS155, complete specifications on all of these types are included.

The 38510/MACH IV Procurement Specification is included in its entirety and now incorporates revised level IV (SNH) processing and technological criteria for precap of complex circuits. The new listing of JAN MIL-M-38510 integrated circuits provides a current cross-reference from circuit type number to 38510 slash sheet and from 38510 slash sheet to circuit type number.

This supplement includes an errata for the first edition of *The TTL Data Book for Design Engineers*. This errata includes the corrections that have already been made on those pages that reappear in this supplement.

Another addition is the section on IC sockets and interconnection panels. TI produces a complete line of these products, and their inclusion here provides a handy reference for the design engineer.

[†]Integrated Schottky-barrier diode-clamped transistor is patented by Texas Instruments. U.S. Patent Number 3,463,975.

Although The TTL Data Book for Design Engineers and this supplement offer design and specification data only for TTL integrated circuits, additional technical data for any TI semiconductor/component product are available from your nearest TI field sales office, local authorized TI distributor, or by writing directly to:

Marketing and Information Services Texas Instruments Incorporated P.O. Box 5012 MS 308 Dallas, Texas 75222

Additional information on IC sockets and interconnection panels is available from the above sources, or by writing directly to:

Texas Instruments Incorporated Connector Product Marketing 34 Forest Street MS 11-1 Attleboro, Massachusetts 02703

Indexes

- Numerical
- · Functional/Selection Guide

Indexes
Nomerical
Functional/Selection Guide

TYPE N	UMBERS	ELECTRICAL PAGE [†]	ASSIGNMENTS	TYPE NUMBERS	LECTRICAL PAGE [†]	PIN ASSIGNMENTS
		IAGE	PAGE [†]	ŀ		PAGE [†]
BL5400Y	BL7400Y	543	543	BL54LS197Y BL74LS197Y	568	570
BL54L00Y	BL74L00Y	545	545	BL54LS253Y BL74LS253Y	568	570
BL54LS00Y	BL74LS00Y	568	569	BL54LS266Y BL74LS266Y	S-341	S-341
BL5401Y	BL7401Y	547	547	BL54LS295Y BL74LS295Y	568	570
BL54LS01Y	BL74LS01Y	568	569	RSN5400	582	581
BL54LS02Y	BL74LS02Y	568	569	RSN54H00	582	581
BL54LS03Y	BL74LS03Y	568	569	RSN54L00	584	583
BL54LS04Y	BL74LS04Y	568	569	RSN5404	585	585
BL54LS05Y	BL74LS05Y	568	569	RSN54H04	585	585
BL54LS08Y	BL74LS08Y	568	569	RSN5410	582	581
BL54LS09Y	BL74LS09Y	568	569	RSN54H10	582	581
BL5410Y	BL7410Y	543	543	RSN54L10	584	583
BL54LS10Y	BL74LS10Y	S-341	S-341	RSN5420	582	581
BL54LS11Y	BL74LS11Y	568	569	RSN54H20	582	581
BL54LS15Y	BL74LS15Y	568	569	RSN54L20	584	583
BL54LS20Y	BL74LS20Y	545	545	RSN5431	582	581
BL54LS20Y	BL74LS20Y	568	569	RSN54H31	582	581
BL54LS21Y	BL74LS21Y	568	569	RSN5440	586	586
BL54LS22Y	BL74LS22Y	568	569	RSN54H40	586	586
BL54LS28Y	BL74LS28Y	568	569	RSN5456	588	587
BL54L30Y	BL74L30Y	549	549	R\$N54H56	588	587
BL54LS30Y	BL74LS30Y	568	569	RSN5457	588	587
BL54LS32Y	BL74LS32Y	568	569	RSN54H57	588	587
BL54LS33Y	BL74LS33Y	568	569	RSN54L57	589	589
BL54LS37Y	BL74LS37Y	568	569	RSN5458	588	587
BL54LS38Y	BL74LS38Y	568	569	RSN54H58	588	587
BL54LS51Y	BL74LS51Y	568	569	RSN54H66	588	587
BL54LS54Y	BL74LS54Y	568	569	RSN54L71	591	590
BL54L55Y	BL74L55Y	551	551	RSN54L72	594	593
BL54LS55Y	BL74LS55Y	568	569	RSN5474	596	596
BL54L67Y	BL74L67Y	553	553	RSN54H74	596	596
BL54L68Y	BL74L68Y	556	556	RSN54L74	596	596
BL54L69Y	BL74L69Y	559	559	RSN54H103	600	600
BL5473Y	BL7473Y	562	562	RSN54L130	584	583
BL5474Y	BL7474Y	565	565	RSN54L131	584	583
BL54LS76Y	BL74LS76Y	S-341	S-341	RSN54H149	603	603
BL54LS86Y	BL74LS86Y	S-341	S-341	SN29000	514	514
BL54LS95A	Y BL74LS95A	Y 568	570	SN29001	514	514
BL54LS136	/ BL74LS136Y	′ S-341	S-341	SN29002	512	512
BL54LS138	/ BL74LS138\	7 568	570	SN29003	512	512
BL54LS139	/ BL74LS139\	7 568	570	SN29004	512	512
BL54LS153	/ BL74LS153\	7 568	570	SN29005	512	512
	/ BL74LS155\		570	SN29007	512	512
	/ BL74LS181		570	SN29008	512	512
	/ BL74LS194\		570	SN29009	512	512
	/ BL74LS195\	-	570	SN29012	512	512
	/ BL74LS196\		570	SN29016	512	512

[†]Page numbers with "S-" preceding them refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers.

	•								
			ELECTRICAL	PIN	1			ELECTRICAL	PIN
	TYPE	NUMBERS	PAGE [†]	ASSIGNMENTS		TYPE	NUMBERS	PAGE†	ASSIGNMENTS
				PAGE [†]	-				PAGE [†]
		SN29024	514	514	1	SN54H10	SN74H10	86	64
	39300	SN29300	521	521	ļ	SN54L10	SN74L10	86	64
	39301	SN29301	523	523		SN54LS10	SN74LS10	86	64
	39308	SN29308	525	525		SN54S10	SN74S10	86	64
	39309	SN29309	527	527		SN54H11	SN74H11	94	65
	39310	SN29310	529	529	1	SN54LS11	SN74LS11	94	65
	39311	SN29311	531	531	1	SN54S11	SN74S11	94	65
	39312	SN39312	533	533	1	SN5412 ·	SN7412	88	65
	39316	SN29316	529	529		SN54LS12	SN74LS12	S-48	S-48
	9318	SN29318	535	535	1	SN5413	SN7413	98	65
SN3	9322	SN29322	537	537	1	SN54LS13	SN74LS13	S-49	S-49
		SN29601	516	516	1	SN5414	SN7414	98	65
	400	SN7400	86	62	1	SN54LS14	SN74LS14	S-49	S-49
	4H00	SN74H00	86	62		SN54H15	SN74H15	96	66
SNS	4L00	SN74L00	86	62		SN54LS15	SN74LS15	96	66
SNE	4LS00	SN74LS00	86	62		SN54S15	SN74S15	96	66
	4800	SN74S00	86	62		SN5416	SN7416	106	66
SNS		SN7401	88	62	1	SN5417	SN7417	106	66
SNS	4H01	SN74H01	88	62		SN5420	SN7420	86	66
SN5	4L01	SN74L01	88	62		SN54H20	SN74H20	86	66
SN5	4LS01	SN74LS01	88	62		SN54L20	SN74L20	86	66
SN5	402	SN7402	92	62		SN54LS20	SN74LS20	86	66
SN5	4L02	SN74L02	92	62		SN54S20	SN74S20	86	66
SN5	4LS02	SN74LS02	92	62	1	SN54H21	SN74H21	94	67
SN5	4502	SN74S02	92	62	1	SN54LS21	SN74LS21	94	67
SN5	403	SN7403	88	63	1	SN5422	SN7422	88	67
SN5	4L03	SN74L03	88	63	1	SN54H22	SN74H22	88	67
SN5	4LS03	SN74LS03	88	63	1	SN54LS22	SN74LS22	88	67
SN5	4503	SN74S03	88	63	1	SN54S22	SN74S22	88	67
SN5	404	SN7404	86	63		SN5423	SN7423	113	67
SN5	4H04	SN74H04	86	63		SN5425	SN7425	92	67
SN5	4L04	SN74L04	86	63		SN5426	SN7426	106	68
SN5	4LS04	SN74LS04	86	63		SN54LS26	SN74LS26	S-53	S-53
SN5	4504	SN74S04	86	63		SN5427	SN7427	92	68
SN5	405	SN7405	88	63		SN54LS27	SN74LS27	92	68
SN5	4H05	SN74H05	88	63		SN5428	SN7428	102	68
SN5	4LS05	SN74LS05	88	63	1	SN54LS28	SN74LS28	102	68
SN5	4805	SN74S05	88	63	1	SN5430	SN7430	86	68
SN5	406	SN7406	106	63	1	SN54H30	SN74H30	86	68
SN5	407	SN7407	106	64	1	SN54L30	SN74L30	86	68
SN5	408	SN7408	94	64	1 .	SN54LS30	SN74LS30	86	68
SN5	4LS08	SN74LS08	94	64		SN54S30	SN74S30	86	68
SN5	4508	SN74S08	S-47	S-47		SN5432	SN7432	108	69
SN5	409	SN7409	96	64		SN54LS32	SN74LS32	108	69
SN5	4LS09	SN74LS09	96	64		SN54S32	SN74S32	S-54	S-54
SN5	4809	SN74S09	S-47	S-47		SN5433	SN7433	106	69
SN5	410	SN7410	86	64	1	SN54LS33	SN74LS33	106	69

[†]Page numbers with "S-" preceding them refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers.

TYPE	NUMBERS	ELECTRICAL PAGE [†]	ASSIGNME PAGE [†]	NTS	TYPE N	UMBERS	PAGE†	PIN ASSIGNMENTS PAGE [†]
SN5437	SN7437	102	69		SN54H62	SN74H62	118	74
SN54LS37	SN74LS37	102	69	0.00	SN54S64	SN74S64	110	74
SN54S37	SN74S37	S-55	S-55		SN54S65	SN74S65	112	74
SN5438	SN7438	106	69		SN5470	SN7470	120	75
SN54LS38	SN74LS38	106	69		SN54H71	SN74H71	124	75
SN54S38	SN74S38	S-55	S-55		SN54L71	SN74L71	128	75
SN5440	SN7440	102	70		SN5472	SN7472	120	76
SN54H40	SN74H40	102	70		SN54H72	SN74H72	124	76
SN54LS40	SN74LS40	102	70		SN54L72	SN74L72	128	76
SN54S40	SN74S40	102	70	- 1.46	SN5473	SN7473	120	76
SN5442A	SN7442A	S-91	S-91	3 1 1.0	SN54H73	SN74H73	124	76
SN54L42	SN74L42	S-91	S-91		SN54L73	SN74L73	128	76
SN54L42	SN74L42	S-91	S-91	пін п	SN54LS73	SN74LS73	130	76
SN5443A	SN7443A	S-91	S-91		SN5474	SN7474	120	76
SN54L43	SN74L43	S-91	S-91		SN54H74	SN74H74	124	76
SN5444A	SN7444A	S-91	S-91		SN54L74	SN74L74	128	76
SN54L44	SN74L44	S-91	S-91		SN54LS74	SN74LS74	130	76
SN5445	SN7445	171	171		SN54S74	SN74S74	132	76
SN5446A	SN7446A	S-96	S-96		SN5475	SN7475	S-109	S-109
SN54L46	SN74L46	S-96	S-96		SN54L75	SN74L75	S-109	S-109
SN54L46 SN5447A	SN7447A	S-96	S-96		SN54LS75	SN74LS75	S-109	S-109
SN54L47	SN74L47	S-96	S-96		SN5476	SN7476	120	77
SN54L47	SN74L47	S-96	S-96		SN54H76	SN74H76	124	77
SN5448	SN74L347	S-96	S-96		SN54LS76	SN74LS76	130	77
SN54LS48	SN74LS48	S-96	S-96		SN5477	011742070	S-109	S-109
SN5449	311/41346	S-96	S-96		SN54L77	SN74L77	S-109	S-109
SN54LS49	SN74LS49	S-96	S-96		SN54LS77	0.17.12.7	S-109	S-109
SN5450	SN7450	113	70		SN54H78	SN74H78	124	77
SN54H50	SN74H50	113	70		SN54L78	SN74L78	128	77
SN54F150	SN741150	110	70		SN54LS78	SN74LS78	130	77
SN54H51	SN74H51	110	70		SN5480	SN7480	187	187
SN54L51	SN74L51	110	70		SN5481A	SN7481A	190	190
SN54LS51	SN74LS51	110	70		SN5482	SN7482	195	195
SN54S51	SN74S51	110	70		SN5483A	SN7483A	S-115	S-115
SN54H52	SN74H52	113	71		SN54LS83A	SN74LS83A	S-115	S-115
SN5453	SN7453	113	71		SN5484A	SN7484A	190	190
SN54H53	SN74H53	113	71		SN5485	SN7485	S-119	S-119
SN5454	SN7454	110	72		SN54L85	SN74L85	S-119	S-119
SN54H54	SN74H54	110	72		SN54LS85	SN74LS85	S-119	S-119
SN54L54	SN74L54	110	72		SN54S85	SN74S85	S-119	S-119
SN54LS54	SN74LS54	110	72		SN5486	SN7486	209	209
SN54H55	SN74H55	113	73		SN54L86	SN74L86	209	209
SN54L55	SN74L55	110	73		SN54LS86	SN74LS86	209	209
SN54LS55	SN74LS55	110	73		SN54S86	SN74S86	209	209
SN5460	SN7460	117	73		SN54H87	SN74H87	214	214
SN54H60	SN74H60	118	73		SN5488A	SN7488A	216	216
SN54H61	SN74H61	119	73			SN7489	220	220
3143-1101	311741101				-	A. 140-140-150-150-150-150-150-150-150-150-150-15		

[†]Page numbers with "S-" preceding them refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers.

SNEADON SNI-4900 S-127 S-127 SNEAL122 SNI-41122 SS-88 S-568 S-568 SNEAL590 SNI-41300 S-127 S-127 SNEAL5122 SNI-415122 SS-88 S-568 S-568 SNEAL5120 SNI-41300 S-127 SNEAL5122 SNI-415123 SNI-41513 SS-88 S-568 SNEAL5141 SNI-4914 S-136 S-136 SNEAL5123 SNI-41513 SS-88 S-568 SNEAL5141 SNI-4914 S-136 S-136 SNEAL5123 SNI-41513 SS-88 S-568 SNI-41514 SNI-4914 S-136 S-136 SNEAL5123 SNI-41513 S-58 S-58 S-562 S-62 SNI-41523 SNI-41513 S-58 S-58 S-562 SNI-41523 SNI-41513 S-58 S-562 S-62 SNI-41524 SNI-41514 S-62 S-62 S-62 SNI-41524 SNI-41514 S-62 S-62 SNI-41524 SNI-41514 S-62 S-62 SNI-41523 SNI-415125 SNI-415125 SNI-415125 SNI-415125 SNI-415125 SNI-415125 SNI-415125 SNI-41525 SNI-41525	TYPE I	NUMBERS	ELECTRICAL PAGE [†]	PIN ASSIGNMENTS PAGE [†]		TYPE I	NUMBERS	ELECTRICAL PAGE [†]	ASSIGNMENTS
SNS-14.90 SN74L90 S-127 S-127 SNS-1512 SNS-	SN5490A	SN7490A	S-127			SNE41 122	SN741 122	120	
SNEALS90 SN74LS90 S.127 S.127 SNEALS23 SN74L123 138 82	SN54L90	SN74L90	S-127		ı				
SNS-491A SN7-491A S-138 S-136 SNS-4L123 SN7-4L123 138 82 SNS-4L91 SN7-4L91 S-136 S-136 SNS-4LL5123 SN7-4L123 S-58 S-58 SNS-4LS91 SN7-4L91 S-136 S-136 SNS-4LLS123 SN7-4L1323 S-58 S-58 SNS-4LS92 SN7-4B2A S-127 S-127 SNS-4S124 SN7-4S124 S-62 S-62 SNS-4B2S SN7-4B2A S-127 S-127 SNS-4S124 SN7-4S124 S-62 S-62 SNS-4B32 SN7-4B32 S-127 S-127 SNS-4S126 SN7-4S126 142 83 SNS-4B33 SN7-4B33 S-127 S-127 SNS-4S128 SN7-4S128 SN7-4S133 SNS-4B33 SN7-4B33 S-127 S-127 SNS-4S132 SNR-4S132 SNR-4S133 SN7-4B34 SNR-4S133 SN7-4S133 SNR-4S133 SNR-4S134 SNR-4S132 SNR-4S132 SNR-4S133 SNR-4S133 SNR-4S133 SNR-4S133 SNR-4S133 SNR-4S133 SNR-4S133 SNR-4S133 SNR-4S133 SNR-4S134 SNR-4S134 SNR-4S134 SNR-4S134 SNR-4S135 SNR-4S135	SN54LS90								
SN54L91 SN74L91 S-138 S-138 SN64LS123 SN74LS123 S-58 S-58 SN54LS91 SN74LS91 S-136 S-138 SN64LS124 SN74LS124 S-62 S-62 S-62 SN54S22A SN74LS92 S-127 S-127 SN64S124 SN74LS124 S-62 S-62 S-62 SN54LS92 SN74LS92 S-127 S-127 SN64126 SN74126 142 S-3 SN54S92A S-127 S-127 SN64126 SN74126 142 S-3 SN54S93A S-127 S-127 SN64126 SN74126 142 S-3 SN54S93A S-127 S-127 SN64128 SN74128 104 S-3 SN54LS93 S-127 S-127 SN64128 SN74128 104 S-3 SN54LS93 S-127 S-127 SN64128 SN74128 104 S-3 SN54LS93 S-127 S-127 SN64128 SN74128 S-7 S-67 S					- 1		_		
SN54LS91 SN74LS91 S.136 S.136 S.136 SN54LS124 SN74LS124 S.62 S.62 SN64S124 SN74LS92A S.127 S.127 SN64S124 SN74LS92 S.62 S.62 SN64LS92 SN74LS92 S.127 S.127 SN64S126 SN74126 142 83 SN54LS93 SN74S93A S.127 S.127 SN64126 SN74126 142 83 SN54LS93 SN74LS93 S.127 S.127 SN64126 SN74126 142 83 SN54LS93 SN74LS93 S.127 S.127 SN64128 SN74126 142 83 SN54LS93 SN74LS93 S.127 S.127 SN64123 SN74126 142 83 SN54LS93 SN74LS93 S.127 S.127 SN64123 SN74132 S8 83 SN54LS94 SN74LS94 Z.34 Z.34 Z.34 SN64LS132 SN74LS132 S.67	SN54L91	- · · · - · · ·							
SNE482A SN7482A S-127 S-127 SNE45124 SN745124 S-62 S-62 SNE41.592 SN741.592 S-127 S-127 SNE4126 SN74126 142 83 SNS493A S-127 S-127 SNE4126 SN74126 142 83 SNS493A S-127 S-127 SNE4128 SN74128 104 83 SNS4128 SN74128 SN74129 98 83 SNS4128 SN74128 SN74129 98 83 SNS493A S-127 S-127 SNE4128 SN74122 98 83 SNS493A S-127 S-127 SNE4128 SN74122 98 83 SNS493A S-127 S-127 SNE4128 SN74122 98 83 SNS493A S-141 S-141 SNE4S132 SN74S132 98 83 SNS493A SN7495A S-141 S-141 SNE4S132 SN74S132 98 83 SNS4145 S-67 S-67 SNE4128 SN74155 S-67 S-67 SNE4128 SN74155 S-141 S-141 SNE4S133 SN74S133 S6 S4 SNS41455 SN74S155 S-147 S-147 SNE4S134 SN74S133 S6 S4 SNS4145 SNS496 S-147 S-147 SNE4S135 SN74S135 S-69 S-69 SNS4145 SNS4155 SNS415	SN54LS91	SN74LS91							
SN54LS92 SN74LS92 S-127 S-127 SN54126 SN74126 142 83 SN54S93 SN74LS93 S-127 S-127 SN54126 SN74126 142 83 SN54LS93 SN74LS93 S-127 S-127 SN54128 SN74126 142 83 SN54LS93 SN74LS93 S-127 S-127 SN54128 SN74122 98 83 SN54LS93 SN74LS93 S-127 S-127 SN54128 SN74132 98 83 SN54LS94 SN74S94 234 234 SN54LS132 SN74LS132 S-67 S-67 SN54DS95 SN74LS95 S-141 S-141 SN54S132 SN74LS132 98 83 SN54LS95 SN74LS95 S-141 S-141 SN54S132 SN74S133 86 84 SN54LS95 SN74LS95 S-141 S-141 SN54S133 SN74S133 86 84 SN54LS95 SN74LS95 S-141 S-141 SN54S133 SN74S133 86 84 SN54LS95 SN74LS95 S-147 S-147 SN54S135 SN74S133 S69 269 SN54LS96 SN74LS96 S-147 S-147 SN54LS136 SN74LS3 SN74LS96 S-147 S-147 SN54LS96 SN74LS96 S-147 S-147 SN54LS136 SN74LS3 Z-71 Z-71 SN54LS98 SN74LS96 S-147 S-147 SN54LS136 SN74LS3 Z-71 Z-71 SN54LS98 SN74LS96 S-147 S-147 SN54LS136 SN74LS138 Z-74 Z-74 SN54LS99 SN74LS9 Z-55 Z-55 SN54LS138 SN74LS138 Z-74 Z-74 SN54LS99 SN74LS9 Z-55 Z-55 SN54LS139 SN74LS139 Z-74 Z-74 SN54LS99 SN74LS9 Z-55 Z-56 SN54LS139 SN74LS139 Z-74 Z-74 SN54H101 SN74H101 126 78 SN54LS139 SN74LS139 Z-74 Z-74 SN54H102 SN74H102 126 78 SN54LS140 SN74H141 Z-78 Z-78 SN54H103 SN74H03 126 78 SN54LS145 SN74LS140 SN74H142 Z-74 Z-74 SN54H104 SN74H105 S-14 S-14 SN54H14 Z-74 Z-74 SN54H106 SN74H107 120 79 SN54LS145 SN74LS140 S-154 S-154 SN54H107 SN74H108 126 79 SN54LS145 SN74LS140 Z-74 Z-74 SN54H108 SN74H109 120 80 SN54LS151 SN74LS151 Z-94 Z-94 SN54H101 SN74H101 120 80 SN54LS151 SN74LS151 Z-94 Z-94 SN54H101 SN74H101 120 80 SN54LS15 SN74LS15 Z-94 Z-94 SN54LS112									
SNB493A	SN54LS92	SN74LS92							
SN54L93	SN5493A	SN7493A						=	
SN54LS93	SN54L93	SN74L93							
SN5494 SN7494 234 234 SN64LS132 SN74LS132 S-67 S-67 S-67 SN5495A SN7495BA S-141 S-141 SN54S132 SN74LS132 98 83 SN54LS95B SN74LS95B S-141 S-141 SN54S133 SN74S133 86 84 SN54LS95B SN74LS95B S-141 S-141 SN54S133 SN74S133 86 84 SN54LS95B SN74LS95B S-147 S-147 SN54S135 SN74S135 269 2	SN54LS93	SN74LS93	S-127	=			· -		
SNE495A SN7495A S-141 S-141 S-141 SN54132 SN74S132 98 83 SNS4L95 SN74L95 S-141 S-141 SN54S133 SN74S133 86 84 SNS4196 SN74S95 S-147 S-147 S-147 SN54S135 SN74S135 269 269 SNS4196 SN74L96 S-147 S-147 S-147 SN54S136 SN74L96 271 271 SNS4L96 SN74L96 S-147 S-147 S-147 SN54S136 SN74L936 271 271 SNS4L98 SN74L99 248 248 SNS4LS138 SN74LS138 274 274 SNS4L99 SN74L99 255 255 SNS4S139 SN74LS139 274 274 SNS4109 SN74L99 255 255 SNS4S139 SN74S139 274 274 SNS4109 SN74H010 126 78 SNS4S139 SN74S139 274 274 SNS4H09 SN74H010 126 <	SN5494	SN7494	234						
SN54L95	SN5495A	SN7495A	S-141	S-141					
SN54L596B SN74L595B S-141 S-141 SN64S134 SN74S134 142 84 SN549B SN7496 S-147 S-147 SN64S135 SN74L515 269 269 SN54L596 SN74L96 S-147 S-147 SN54L518 SN74L5136 271 271 SN54L596 SN74L99 S-147 S-147 SN54L5138 SN74LS138 274 274 SN54L9B SN744P7 248 248 SN54LS138 SN74LS138 274 274 SN54L9B SN74L99 255 255 255 SN54LS139 SN74LS138 274 274 SN54100 SN74100 269 259 SN54S139 SN74LS139 274 274 SN54H101 SN74H101 126 78 SN54S139 SN74H5139 274 274 SN54H102 SN74H103 126 78 SN54S140 SN74S139 274 274 SN54H102 SN74H103 126 78 SN54S140 SN74H141	SN54L95	SN74L95	S-141	S-141					
SN5496 SN7496 S-147 S-147 S-147 SN64S135 SN74S135 269 268 SN54L96 SN74L96 S-147 S-147 SN54L836 SN74LS136 271 271 SN54L97 SN54LS96 S-147 S-147 SN54LS138 SN74LS138 274 274 SN54L98 SN74LS9 253 253 SN54LS138 SN74LS138 274 274 SN54L99 SN74LS9 255 256 SN54LS139 SN74LS139 274 274 SN54100 SN74100 259 259 SN54S139 SN74S139 274 274 SN54H101 126 78 SN54S139 SN74S139 274 274 SN54H102 SN74H101 126 78 SN54S139 SN74S139 274 274 SN54H103 SN74H103 126 78 SN54S139 SN74H251 014 84 SN54H103 SN74H103 126 78 SN54H3 SN74H34 283 <t< td=""><td>SN54LS95B</td><td>SN74LS95B</td><td>S-141</td><td>S-141</td><td></td><td></td><td></td><td></td><td></td></t<>	SN54LS95B	SN74LS95B	S-141	S-141					
SNE4L96 SN74L96 S-147 S-147 SN54L986 SN74L986 S-147 S-147 SN54L5368 SN74L5368 271 271 SNS44S98 SN74US98 S-147 S-147 SN54LS138 SN74LS138 274 274 SNS4L98 SN54US9 253 253 SN54S138 SN74S138 274 274 SNS4L99 255 255 255 SN54S139 SN74LS139 274 274 SNS4100 SN74H010 259 259 SN54S139 SN74S139 274 274 SNS4H101 SN74H101 126 78 SN54S140 104 84 SNS4H102 126 78 SN54S140 104 84 88 SNS4H103 SN74H03 126 78 SN74H141 278 278 SNS4H104 SN74H103 126 78 SN54H343 SN74H343 283 283 SNS4H105 SN74H04 514 514 SN54H343 SN74H344 283 <td>SN5496</td> <td>SN7496</td> <td>S-147</td> <td>S-147</td> <td>ľ</td> <td></td> <td></td> <td></td> <td></td>	SN5496	SN7496	S-147	S-147	ľ				
SN54LS96 SN74LS96 S-147 S-147 SN54LS136 SN74LS136 SN74LS136 SN74LS136 SN74LS138 SN54LS138 SN54LS139 SN74LS139 Z74 Z74 SN54LS10 SN74LS100 Z55 Z55 Z55 SN54S139 SN74LS139 Z74 Z74 SN54LS10 SN74LS100 Z55 Z55 SN54S139 SN74LS139 Z74 Z74 SN54LS10 SN74H101 Z16 78 SN54S140 SN74S140 D104 B4 SN54H102 SN74H102 Z16 78 SN54S140 SN74H102 Z80 Z80 Z80 SN74H103 SN74H103 Z16 78 SN74H104 Z18 Z18 Z18 SN54H104 SN54H04 SN74H104 Z83 Z83 SN54H106 SN74H106 Z16 79 SN54LS4 SN54H44 SN74H44 Z83 Z83 SN54H06 SN74H106 Z16 79 SN54LS45 SN54LS45 S-154 S-154 SN54H07 SN74H06 Z16 79 SN54LS45 SN74H45 S-154 S-154 SN54H08 SN74H08 Z16 79 SN54LS48 SN74H47 Z90 Z90 SN54H09 SN74H08 Z16 79 SN54LS48 SN74H48 Z90 Z90 SN54H09 SN74H09 Z10 B0 SN54H50 SN74H51 Z94 Z94 Z94 SN54LS109 SN74LS109 J30 B0 SN54LS16 SN74LS104 Z94 Z94 Z94 SN54LS109 SN74LS109 J30 B0 SN54LS16 SN74LS104 Z94 Z9	SN54L96	SN74L96	S-147	S-147					
SN5497 SN7497 248 248 SN54LS138 SN74LS138 274 274 SN54LS9 SN74LS9 253 253 253 SN54S138 SN74LS138 274 274 SN54LS9 SN74LS9 255 255 255 SN54S139 SN74LS139 274 274 SN54H00 SN74H00 259 259 SN54S139 SN74LS139 274 274 SN54H101 SN74H01 126 78 SN54S140 SN74S140 104 84 SN54H102 126 78 SN54S140 SN74S140 104 84 SN54H103 SN74H03 126 78 SN54H3 SN74H42 280 280 SN54H103 SN74H03 126 78 SN54H3 SN74H42 280 280 SN54H103 SN74H06 126 79 SN54H3 SN74H3 283 283 SN54H107 SN74LS107 S-56 S-56 SN54H5 SN74H3 SN74H5 S	SN54LS96	SN74LS96	S-147	S-147					
SN54L98 SN74L98 253 253 SN54S138 SN74S138 274 274 SN54L99 SN74L99 255 256 SN64LS139 SN74LS139 274 274 SN54100 SN74H00 259 259 SN54S139 SN74S139 274 274 SN54H101 SN74H101 126 78 SN54S139 SN74S140 104 84 SN54H102 SN74H102 126 78 SN54S140 SN74S140 104 84 SN54H103 SN74H102 126 78 SN74H141 278 278 SN54H103 SN74H103 126 78 SN74H142 280 280 SN54H104 SN74H103 126 78 SN54H44 SN74H43 283 283 SN54H106 SN74H106 126 79 SN54H54 SN74H55 S-154 S-154 SN54LS107 SN566 S-56 S-56 SN54H56 SN74H55 S-154 S-154 SN54LS109	SN5497	SN7497	248	248					
SN54L99 SN74L99 255 255 255 SN54LS139 SN74LS139 274 274 SN54100 SN74100 259 259 SN54S139 SN74S139 274 274 SN54H101 SN74H101 126 78 SN54S140 SN74S140 104 84 SN54H102 SN74H103 126 78 SN74H414 278 278 SN54H103 SN74H103 126 78 SN74H42 280 280 SN74H04 [‡] 514 514 514 SN54H43 SN74H42 280 283 SN54H106 SN74H05 [‡] 514 514 SN54H44 SN74H44 283 283 SN54H106 SN74H07 120 79 SN54H55 SN74H5 S-154 S-154 SN54LS107 SN74S6 S-56 S-56 SN54H47 SN74H48 290 290 SN54108 SN74H108 126 79 SN54H58 SN74H58 294 294 SN	SN54L98	SN74L98	253	253					
SN54100 SN74100 259 259 259 SN54S139 SN74S139 274 274 274 SN54H101 SN74H101 126 78 SN54S140 SN74S140 104 84 SN54H102 SN74H102 126 78 SN74H11 278 278 SN54H103 SN74H103 126 78 SN74H12 280 280 280 SN74H104 514 514 SN54H43 SN74H33 283 283 SN74H05 SN74H04 514 SN54H44 SN74H44 283 283 SN54H106 SN74H106 126 79 SN54H46 SN74H45 S-154 S-154 SN54H07 SN74H07 120 79 SN54H35 SN74H35 S-154 S-154 SN54H07 SN74H07 120 79 SN54H35 SN74H37 290 290 SN54H08 SN74H08 126 79 SN54H36 SN74H37 290 290 SN54H08 SN74H08 126 79 SN54H36 SN74H38 290 290 SN54H09 SN74H09 120 80 SN54H36 SN74H38 290 290 SN54H09 SN74H09 120 80 SN54H36 SN74H50 294 294 SN54H10 SN74H10 120 80 SN54H51 SN74H51 294 294 SN54H10 SN74H10 120 80 SN54H51 SN74H51 294 294 SN54H11 SN74H11 120 80 SN54H51 SN74H51 294 294 SN54H11 SN74H11 120 80 SN54H52 294 294 SN54H11 SN74H11 120 80 SN54H52 294 294 SN54H11 SN74H11 120 81 SN54H5162 294 294 SN54H11 SN74H11 130 81 SN54H5162 294 294 SN54H511 SN74H511 130 81 SN54H5163 SN74H53 302 302 SN54H511 SN74H511 130 81 SN54H5163 SN74H53 302 302 SN54H511 SN74H511 130 81 SN54H5163 SN74H513 302 302 SN54H511 SN74H511 130 81 SN54H5163 SN74H513 302 302 SN54H511 SN74H516 SN74H516 SN74H516 SN74H516 SN74H516 SN74H516 SN74H516 SN74H56 SN74H56 SN74H56 SN74H56 SN54H56 SN74H56 SN74H56 SN54H56 SN74H56 SN54H56 SN74H56 SN54H56 SN54H56	SN54L99	SN74L99	255	255					
SN54H101 SN74H101 126	SN54100	SN74100	259	259				_	
SN54H102 SN74H102 126 78 SN74H141 278 278 SN54H103 126 78 SN74H142 280 280 SN74H04 [‡] 514 514 SN54H3 SN74H3 283 283 SN54H106 SN74H06 126 79 SN54H4 SN74H4 283 283 SN54H107 120 79 SN54H5 SN74H5 S-154 S-154 SN54H07 SN74LS107 S-56 S-56 SN54H5 SN74LS145 S-154 S-154 SN54H108 SN74LS107 S-56 S-56 SN54H48 SN74LS147 290 290 SN54H108 SN74H108 126 79 SN54H8 SN74H8 290 290 SN54H09 SN74LS109 120 80 SN54H5 SN74H5 294 294 SN54H110 SN74LS109 130 80 SN54LS161 SN74LS151 294 294 SN54H110 SN74LS112 130 81	SN54H101	SN74H101	126	78					
SN54H103 SN74H103 126 78 SN74142 280 280 SN74104‡ 514 514 514 SN54143 SN74143 283 283 SN54105§ 514 514 SN54144 SN74144 283 283 SN54106 SN74H106 126 79 SN54145 SN74145 S-154 S-154 SN54107 SN74107 120 79 SN54145 SN74155 S-154 S-154 SN541107 SN56 S-56 S-56 SN64147 SN74147 290 290 SN541108 SN74108 126 79 SN54154 SN74148 290 290 SN54109 SN74109 120 80 SN64150 SN74150 294 294 SN54110 SN74150 130 80 SN54151A SN74151A 294 294 SN54111 SN74111 120 80 SN54151A SN74LS151 294 294 SN54111 SN74111 <td>SN54H102</td> <td>SN74H102</td> <td>126</td> <td></td> <td></td> <td>0.10.10.40</td> <td></td> <td></td> <td></td>	SN54H102	SN74H102	126			0.10.10.40			
SN74104‡ 514 514 514 514 SN54143 SN74143 283 283 283 SN74105\$ 514 514 SN54144 SN74144 283 283 283 SN54H106 SN74H106 126 79 SN54L515 SN74L515 S-154 S-154 SN54107 SN74107 120 79 SN54L5145 SN74L5145 S-154 S-154 SN54L5107 SN74L5107 S-56 S-56 S-56 SN54147 SN74L5147 290 290 SN54H108 SN74H108 126 79 SN54L88 SN74H88 290 290 SN54109 SN74L5109 130 80 SN54150 SN74L510 SN74L5109 130 80 SN54L516 SN74L516 294 294 SN54L510 SN74L110 120 80 SN54L516 SN74L515 294 294 SN54L111 SN74L11 120 80 SN54S151 SN74L515 294 294 SN54L5112 SN74LS112 130 81 SN54L5162 SN74S151 294 294 SN54LS112 SN74LS112 130 81 SN54L5162 294 294 SN54LS113 SN74LS113 130 81 SN54LS163 SN74L513 302 302 SN54LS113 SN74LS113 130 81 SN54L5163 SN74L515 302 302 SN54LS114 SN74LS114 130 81 SN54LS163 SN74L5153 302 302 SN54LS114 SN74LS114 130 81 SN54LS163 SN74LS163 SN74LS163 302 302 SN54LS114 SN74LS164 308 308 SN54LS10 SN74LS164 308 308 SN54LS10 SN74LS164 308 308 SN54LS10 SN74LS165 SN74LS165 SN54LS165 SN54LS165 SN54LS165	SN54H103	SN74H103	126	78					
\$\text{SNF41106} \\ \frac{\\$5}{\\$14} \\ \frac{\\$514}{\\$514} \\ \frac{\\$514}{\\$514} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		SN74104‡	514	514	- 1	SN54143			
SN54H106 SN74H106 126 79 SN54145 SN74145 S-154 S-154 SN54107 SN74107 120 79 SN54LS145 SN74LS145 S-154 S-154 SN54LS107 SN566 S-56 S-56 S-56 SN54147 SN74147 290 290 SN54H108 SN74H108 126 79 SN54148 SN74148 290 290 SN54109 SN74H09 120 80 SN54150 SN74150 294 294 SN54LS109 SN74LS109 130 80 SN54151A SN74151A 294 294 SN54110 SN74110 120 80 SN54LS151 SN74LS151 294 294 SN54111 SN74111 120 80 SN54S151 SN74S151 294 294 SN541S112 SN74LS112 130 81 SN54S151 SN74S151 294 294 SN54LS112 SN74LS113 130 81 SN54LS152 294 294		SN74105§	514	514	- 1				
SN54107 SN74107 120 79 SN54LS145 SN74LS145 S-154 S-154 SN54LS107 SN74LS107 S-56 S-56 SN54147 SN74147 290 290 SN54H108 SN74H108 126 79 SN54148 SN74148 290 290 SN54109 SN74109 120 80 SN54150 SN74150 294 294 SN541109 SN74LS109 130 80 SN54151A SN74151A 294 294 SN54110 SN74LS109 130 80 SN54LS151 SN74LS151 294 294 SN54110 SN74110 120 80 SN54LS151 SN74LS151 294 294 SN54111 SN74LS112 130 81 SN54LS151 SN74S151 294 294 SN54LS112 SN74LS112 132 81 SN54LS152 294 294 SN54LS113 SN74LS113 130 81 SN54LS153 SN74LS153 302 302 <td>SN54H106</td> <td>SN74H106</td> <td>126</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	SN54H106	SN74H106	126						
SN54LS107 SN74LS107 S-56 S-56 S-56 SN54147 SN74147 290 290 SN54H108 SN74H108 126 79 SN54148 SN74148 290 290 SN54109 SN74109 120 80 SN54150 SN74150 294 294 SN54LS109 SN74LS109 130 80 SN54151A SN74151A 294 294 SN54110 SN74110 120 80 SN54LS151 SN74LS151 294 294 SN54111 SN74111 120 80 SN54S151 SN74LS151 294 294 SN54111 SN74LS112 130 81 SN54S151 SN74S151 294 294 SN54S112 SN74S112 132 81 SN54LS152 294 294 SN54LS113 SN74LS113 130 81 SN54LS152 294 294 SN54LS113 SN74LS113 132 81 SN54LS153 SN74LS153 302 302	SN54107	SN74107	120	79					
SN54H108 SN74H108 126 79 SN54148 SN74148 290 290 SN54109 SN74109 120 80 SN54150 SN74150 294 294 SN54LS109 SN74LS109 130 80 SN54151A SN74151A 294 294 SN54110 SN74110 120 80 SN54LS151 SN74LS151 294 294 SN54111 SN74111 120 80 SN54S151 SN74S151 294 294 SN54LS112 SN74LS112 130 81 SN54I52A 294 294 SN54S112 SN74S112 132 81 SN54LS152 294 294 SN54LS113 SN74LS113 130 81 SN54LS152 294 294 SN54LS113 SN74LS113 130 81 SN54LS153 SN74LS3 302 302 SN54LS113 SN74LS113 132 81 SN54LS3 SN74LS3 302 302 SN54LS114 SN74LS114 <td>SN54LS107</td> <td>SN74LS107</td> <td>S-56</td> <td>S-56</td> <td></td> <td></td> <td></td> <td></td> <td></td>	SN54LS107	SN74LS107	S-56	S-56					
SN54109 SN74109 120 80 SN64150 SN74150 294 294 SN54LS109 130 80 SN54151A SN74151A 294 294 SN54110 SN74110 120 80 SN54LS161 SN74LS161 294 294 SN54111 SN74111 120 80 SN54S161 SN74S151 294 294 SN54LS112 SN74LS112 130 81 SN54S162A 294 294 SN54S112 SN74S112 132 81 SN54LS162 294 294 SN54LS113 SN74LS113 130 81 SN54LS162 294 294 SN54LS113 SN74LS113 130 81 SN54LS152 294 294 SN54LS113 SN74LS113 130 81 SN54LS153 SN74LS153 302 302 SN54LS114 SN74LS114 130 81 SN54LS153 SN74LS153 302 302 SN54S114 SN74LS114 132 81 <td>SN54H108</td> <td>SN74H108</td> <td>126</td> <td>79</td> <td></td> <td></td> <td></td> <td></td> <td></td>	SN54H108	SN74H108	126	79					
SN54LS109 SN74LS109 130 80 SN54LS161 SN74151A 294 294 SN54110 SN74110 120 80 SN54LS161 SN74LS151 294 294 SN54111 SN74111 120 80 SN54LS161 SN74LS151 294 294 SN54LS112 SN74LS112 130 81 SN54LS162 294 294 SN54S112 SN74S112 132 81 SN54LS162 294 294 SN54LS113 SN74LS113 130 81 SN54LS162 294 294 SN54LS113 SN74LS113 130 81 SN54LS152 294 294 SN54LS113 SN74LS113 130 81 SN54LS153 SN74LS153 302 302 SN54LS114 SN74LS114 130 81 SN54LS153 SN74LS153 302 302 SN54S114 SN74S114 132 81 SN54S153 SN74LS153 302 302 SN54S114 SN74S114	SN54109	SN74109							
SN54110 SN74110 120 80 SN54LS151 SN74LS151 294 294 SN54111 SN74111 120 80 SN54S151 SN74LS151 294 294 SN54LS112 SN74LS112 130 81 SN54LS152 294 294 SN54S112 SN74S112 132 81 SN54LS152 294 294 SN54LS113 SN74LS113 130 81 SN54LS152 294 294 SN54LS113 SN74LS113 130 81 SN54LS153 SN74LS153 302 302 SN54LS113 SN74S113 132 81 SN54LS153 SN74LS153 302 302 SN54LS114 SN74LS114 130 81 SN54LS153 SN74LS153 302 302 SN54S114 SN74S114 132 81 SN54S153 SN74LS153 302 302 SN54S114 SN74S114 132 81 SN54S153 SN74LS153 302 302 SN54S114	SN54LS109	SN74LS109	130		- 1				
SN54111 SN74111 120 80 SN54S151 SN74S151 294 294 SN54LS112 SN74LS112 130 81 SN54LS162 294 294 SN54S112 SN74S112 132 81 SN54LS162 294 294 SN54LS113 SN74LS113 130 81 SN54LS153 SN74LS153 302 302 SN54LS113 SN74S113 132 81 SN54LS153 SN74LS153 302 302 SN54LS114 SN74LS114 130 81 SN54LS153 SN74LS153 302 302 SN54S114 SN74LS114 132 81 SN54LS153 SN74LS153 302 302 SN54S114 SN74S114 132 81 SN54S153 SN74LS153 302 302 SN54S114 SN74S116 261 261 SN54S153 SN74LS153 302 302 SN54S116 SN74S116 261 261 SN54S154 SN74LS4 308 308	SN54110	SN74110	120	80					
SN54LS112 SN74LS112 130 81 SN54152A 294 294 SN54S112 SN74S112 132 81 SN54LS152 294 294 SN54LS113 SN74LS113 130 81 SN54153 SN74153 302 302 SN54S113 SN74S113 132 81 SN54L153 SN74L153 302 302 SN54LS114 SN74LS114 130 81 SN54LS153 SN74LS153 302 302 SN54S114 SN74S114 132 81 SN54S153 SN74LS153 302 302 SN54116 SN74116 261 261 SN54S153 SN74S153 302 302 SN54116 SN74116 261 261 SN54S153 SN74S153 302 302 SN54120 SN74120 264 264 SN54L154 SN74L154 308 308 SN54121 SN74L211 134 82 SN54L55 SN74L5155 S-157 S-157 SN54L21	SN54111	SN74111	120	80					
SN54S112 SN74S112 132 81 SN54LS152 294 294 SN54LS113 SN74LS113 130 81 SN54153 SN74L53 302 302 SN54S113 SN74S113 132 81 SN54L153 SN74L153 302 302 SN54LS114 SN74LS114 130 81 SN54LS153 SN74LS153 302 302 SN54S114 SN74S114 132 81 SN54S153 SN74LS153 302 302 SN54116 SN74116 261 261 SN54154 SN74154 308 308 SN54120 SN74120 264 264 SN54154 SN74L154 308 308 SN54121 SN74L21 134 82 SN54155 SN74L515 S-157 S-157 SN54L121 SN74L121 134 82 SN54LS155 SN74LS155 S-157 S-157	SN54LS112	SN74LS112	130	81			0		
SN54LS113 SN74LS113 130 81 SN54153 SN74153 302 302 SN54S113 SN74S113 132 81 SN54L153 SN74L153 302 302 SN54LS114 SN74LS114 130 81 SN54LS153 SN74LS153 302 302 SN54S114 SN74S114 132 81 SN54S153 SN74S153 302 302 SN54116 SN74116 261 261 SN54154 SN74154 308 308 SN54120 SN74120 264 264 SN54154 SN74L154 308 308 SN54121 SN74121 134 82 SN54155 SN74L55 S-157 S-157 SN54L121 SN74L121 134 82 SN54LS155 SN74LS155 S-157 S-157	SN54S112	SN74S112	132	81	- 1				
SN54S113 SN74S113 132 81 SN54L153 SN74L153 302 302 SN54LS114 SN74LS114 130 81 SN54LS153 SN74LS153 302 302 SN54S114 SN74S114 132 81 SN54S153 SN74S153 302 302 SN54116 SN74116 261 261 SN54154 SN74154 308 308 SN54120 SN74120 264 264 SN54154 SN74L154 308 308 SN54121 SN74121 134 82 SN54155 SN74L55 S-157 S-157 SN54L121 SN74L121 134 82 SN54LS155 SN74LS155 S-157 S-157	SN54LS113	SN74LS113	130	81		SN54153	SN74153		
SN54LS114 SN74LS114 130 81 SN54LS153 SN74LS153 302 302 SN54S114 SN74S114 132 81 SN54S153 SN74S153 302 302 SN54116 SN74116 261 261 SN54154 SN74154 308 308 SN54120 SN74120 264 264 SN541154 SN74L154 308 308 SN54121 SN74121 134 82 SN54155 SN74L515 S-157 S-157 SN54L121 SN74L211 134 82 SN54LS155 SN74LS155 S-157 S-157	SN54S113	SN74S113	132	81					
SN54S114 SN74S114 132 81 SN54S153 SN74S153 302 302 SN54116 SN74116 261 261 SN54154 SN74154 308 308 SN54120 SN74120 264 264 SN54L154 SN74L154 308 308 SN54121 SN74121 134 82 SN54155 SN74L55 S-157 S-157 SN54L121 SN74L121 134 82 SN54LS155 SN74LS155 S-157 S-157	SN54LS114	SN74LS114	130	81	- 1	SN54LS153			
SN54116 SN74116 261 261 SN54154 SN74154 308 308 SN54120 SN74120 264 264 SN54154 SN74L154 308 308 SN54121 SN74121 134 82 SN54155 SN74L55 S-157 S-157 SN54L121 SN74L121 134 82 SN54LS155 SN74LS155 S-157 S-157	SN54S114	SN74S114	132	81					
SN54120 SN74120 264 264 SN54L154 SN74L154 308 308 SN54121 SN74121 134 82 SN54155 SN74L55 S-157 S-157 SN54L121 SN74L121 134 82 SN54LS155 SN74LS155 S-157 S-157	SN54116	SN74116	261		1				
SN54121 SN74121 134 82 SN54155 SN74155 S-157 SN54L121 SN74L121 134 82 SN54LS155 SN74LS155 S-157 S-157	SN54120	SN74120	264	264					
\$N54L121 \$N74L121 134 82 \$N54L\$155 \$N74L\$155 \$-157	SN54121	SN74121	134		1				
CNITATO CNITATO	SN54L121	SN74L121	134	82					
' 1 01104100 00141410 0-15/ 5-15/	SN54122	SN74122	138	82		SN54156	SN74156	S-157	S-157

[†]Page numbers with "S-" preceding them refer to pages in this supplement; those without "S-" refer to pages in *The TTL Data Book for Design Engineers*.
‡ Redesignated SN29000
§ Redesignated SN29001

TYPE N	UMBERS	ELECTRICAL PAGE [†]	PIN ASSIGNMENTS PAGE [†]		TYPE NI	UMBERS	ELECTRICAL PAGE [†]	PIN ASSIGNMENTS PAGE [†]
SN54LS156	SN74LS156	S-157	S-157		SN54H183	SN74H183	396	396
SN54157	SN74157	S-163	S-163		SN54184	SN74184	398	398
SN54L157	SN74L157	S-163	S-163		SN54185A	SN74185A	398	398
SN54LS157	SN74LS157	S-163	S-163		SN54186	SN74186	404	404
SN54S157	SN74S157	S-163	S-163		SN54187	SN74187	410	410
SN54LS158	SN74LS158	S-163	S-163	1		SN74188A	414	414
SN54S158	SN74S158	S-163	S-163		SN54S189	SN74S189	S-211	S-211
SN54159	SN74159	323	323		SN54190	SN74190	417	417
SN54160	SN74160	S-170	S-170	- 1	SN54LS190	SN74LS190	417	417
SN54LS160	SN74LS160	S-170	S-170		SN54191	SN74191	417	417
SN54161	SN74161	S-170	S-170	1	SN54LS191	SN74LS191	417	417
SN54LS161	SN74LS161	S-170	S-170		SN54192	SN74192	427	427
SN54162	SN74162	S-170	S-170		SN54L192	SN74L192	427	427
SN54LS162	SN74LS162	S-170	S-170		SN54LS192	SN74LS192	427	427
SN54S162	SN74S162	S-170	S-170	- 1	SN54193	SN74193	427	427
SN54163	SN74163	S-170	S-170	1	SN54L193	SN74L193	427	427
SN54LS163	SN74LS163	S-170	S-170	l	SN54LS193	SN74LS193	427	427
SN54S163	SN74S163	S-170	S-170		SN54194	SN74194	S-215	S-215
SN54164	SN74164	S-186	S-186			SN74LS194A	S-215	S-215
SN54L164	SN74L164	S-186	S-186		SN54S194	SN74S194	S-215	S-215
SN54LS164	SN74LS164	S-186	S-186	1	SN54195	SN74195	S-223	S-223
SN54165	SN74165	339	339	İ	*****	SN74LS195A	S-223	S-223
SN54166	SN74166	343	343		SN54S195	SN74S195	S-223	S-223
	SN74166	347	347		SN54196	SN74196	451	451
SN54167 SN54LS168	SN74167 SN74LS168	S-192	S-192		SN54LS196	SN74LS196	451	451
•	SN74LS168	S-192 S-192	S-192		SN54L3190	SN74197	451	451
SN54S168		S-192	S-192		SN54LS197	SN74LS197	451	451
SN54LS169	SN74LS169 SN74S169	S-192 S-192	S-192	ŀ	SN54198	SN74198	456	456
SN54S169		S-192 S-203	S-192 S-203	l l	SN54199	SN74199	456	457
SN54170	SN74170	S-203 S-203	S-203	- 1	31454 155	SN74200	463	463
SN54LS170	SN74LS170			- 1	CNEACOOD	SN74200	466	466
	SN74172	356	356		SN54S200	SN74S200	s-230	S-230
SN54173	SN74173	360	360	1	SN54S206	SN74S201	470	470
SN54174	SN74174	363	363	- 1		SN743200 SN74221	S-69	S-69
SN54LS174	SN74LS174	363	363		SN54221	SN74221 SN74LS221	S-69	S-69
SN54S174	SN74S174	363	363	ı	SN54LS221	SN74L3221	S-233	S-233
SN54175	SN74175	363	363	1	SN54246	SN74246 SN74247	S-233	S-233
SN54LS175	SN74LS175	363	363		SN54247	SN74247 SN74LS247	S-233	S-233
SN54S175	SN74S175	363	363	1	SN54LS247	SN74248	S-233	S-233
SN54176	SN74176	369	369		SN54248	•	S-233 S-233	S-233
SN54177	SN74177	369	369		SN54LS248	SN74LS248 SN74249	s-233 S-233	S-233
SN54178	SN74178	375	375 .	1	SN54249		S-233	\$-233
SN54179	SN74179	375	375		SN54LS249	SN74LS249		473
SN54180	SN74180	379	379		SN54251	SN74251	473 473	473 473
SN54181	SN74181	381	381		SN54LS251	SN74LS251	473 473	473 473
SN54LS181	SN74LS181	381	381		SN54S251	SN74S251	473 480	480
SN54S181	SN74S181	381	381		SN54LS253	SN74LS253		5-244
SN54182	SN74182	392	392		SN54LS257	SN74LS257	S-244 S-244	5-244 S-244
SN54S182	SN74S182	392	392	ı	SN54S257	SN74S257	3-244	3-244

[†]Page numbers with "S-" preceding them refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers.

TYPE	NUMBERS	ELECTRICAL PAGE [†]	PIN ASSIGNMENTS PAGE [†]	TYPE N	UMBERS	ELECTRICAL PAGE [†]	PIN ASSIGNMENTS PAGE [†]
SN54LS25	3 SN74LS258	S-244	S-244	SN54LS290	SN74LS290	S-287	S-287
SN54S258	SN74S258	S-244	S-244	SN54293	SN74293	S-287	S-287
SN54S260	SN74S260	92	84	SN54LS293	SN74LS293	S-287	S-287
SN54LS26	I SN74LS261	S-248	S-248	SN54LS295A	SN74LS295A	S-293	S-293
SN54265	SN74265	S-77	S-77	SN54298	SN74298	S-296	S-296
SN54LS26	5 SN74LS266	486	486	SN54LS298	SN74LS298	S-296	S-296
SN54S270	SN74S270	S-254	S-254		SN74S299	S-301	S-301
	SN74S271	S-254	S-254		SN74351	S-305	S-305
	SN74273	S-260	S-260	SN54365	SN74365	S-84	S-84
	SN74S274	S-262	S-262	SN54366	SN74366	S-84	S-84
SN54S275	SN74S275	S-262	S-262	SN54367	SN74367	S- 8 4	S-84
SN54278	SN74278	488	488	SN54368	SN74368	S-84	S-84
SN54279	SN74279	141	85	SN54S370	SN74S370	S-308	S-308
SN54LS279	SN74LS279	S-82	S-82		SN74S371	S-308	S-308
SN54S280	SN74S280	491	491		SN74S381	S-312	S-312
SN54S281	SN74S281	S-271	S-271	SN54LS386	SN74LS386	S-315	S-315
SN54283	SN74283	S-276	S-276		SN74S387	S-317	S-317
SN54LS283	SN74LS283	S-276	S-276	SN54390	SN74390	S-321	S-321
SN54284	SN74284	496	496	SN54393	SN74393	S-321	S-321
SN54285	SN74285	496	496	SN54LS395	SN74LS395	S-325	S-325
	SN74S287	S-279	S-279	SN54490	SN74490	S-328	S-328
SN54S289	SN74S289	S-283	S-283	SN54LS670	SN74LS670	S-332	S-332
SN54290	SN74290	S-287	S-287	SN83433	SN93433	539	539

[†]Page numbers with "S-" preceding them refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers.

FUNCTIONAL INDEX/SELECTION GUIDE

The following pages contain functional indexes and selection guides designed to simplify the choice of a particular function to fit a specific application. Essential characteristics of similar or like functions are grouped for comparative analysis, and the electrical specifications are referenced by page number. The following catagories of functions are covered:

SSI F	UNCTIONS -	Page
	Positive-NAND gates and inverters with totem-pole outputs	S-16 S-16
	Positive-NOR gates with totem-pole outputs	S-17
	Destation AND associated appropriate controller	S-17
	Schmitt-trigger positive-NAND gates and inverters with totem-pole outputs	
	Buffers/clock drivers with totem-pole outputs	S-18
	Positive-OR gates with totem-pole outputs	S-19
	AND-OR-INVERT gates with totem-pole outputs	
	AND OD INVERT garge with open-collector outputs	S-19
	Eupandahla astas	S-19
	Europedore	S-19
	Dual I K adap triangrad flin-flone	S-20
	Pulse-triggered dual flip-flops	S-21
	Single J-K edge-triggered inp-rious	5-21
	Pulsi-triggered single http://links.com/single-trip-flops with data lockout	S-21
	Single J-K flip-flops with data lockout	S-21
	Single J-K filp-riops with data lockout Dual D-type flip-flops Monostable multivibrators with Schmitt-trigger inputs	S-22
	Retriggerable monostable multivibrators	S-22
	CD leaches	0.22
	Due interfere enter with 2 state total money out outs	3-22
	Clock generator circuits	S-22
	LSI FUNCTIONS	
(A)21\		S-23
	Adders	
	Accumulators, arithmetic logic units, look-ahead carry generators	S-23
	Povini gonorotore/objectore	3-23
	Oshor orishmetia operatore	S-24
	Chiff majorage	3.24
	Position files	S-25 S-25
	Other registers	S-25
	Other registers Latches Read-only memories (ROM's, PROM's)	S-26
	Read-only memories (ROM's, PHOM's)	S-26
	Random-access read/write memories (MAWIS)	S-26
	Priority encoders/registers	S-27
	Dulen numehronizare	3.21
	man in the first terminal to the contract of t	3-21
	Decorlers/demultiplexers	S-28
	Data selectors/multiplexers Decoders/demultiplexers Open-collector display decoders/drivers with counters/latches	S-28
	Once collector display decoders (drivers	0.20
	Assochronous counters (rinnle clock)—negative-edge triggered	3-34
	Synchronous counters—Positive-edge triggered	-
BEA	M-LEAD TTL CHIPS	
	Inverters/NAND/NOR/AND/OR gates with totern-pole outputs	S-32
	In any MANDIAND agree with open-collector outputs	3-34
	Buffers with total nota outputs	3-3
	Buffore with once collector outputs	3-3
	AND-OR-INVERT gates	
	Hip-flops	S-3
RAI	NATION-HARDENED TTL	
	Inverters and positive-NAND gates	S-3-
	AND OD INVEDT gates	S-3-
		S-3
	Pitp-trops Decodor/demultiplexer	3-3

SSI FUNCTIONS FUNCTIONAL INDEX/SELECTION GUIDE

POSITIVE-NAND GATES AND INVERTERS WITH TOTEM-POLE OUTPUTS ELECTRICAL TABLES—PAGE 86[†]

							
	TYPICAL	TYP POWER		DEVIC	E TYPE		PIN
DESCRIPTION	PROPAGATION	DISSIPATION			CKAGE		ASSIGNMENTS
	DELAY TIME	PER GATE	-55°C to	125°C	0°C to 7	ro°C	PAGE NO.†
	3 ns	19 mW	SN54S04	J, W	SN74S04	J, N	
	6 ns	22 mW	SN54H04	J, W	SN74H04	J, N	İ
HEX INVERTERS	9.5 ns	2 mW	SN54LS04	J, W	SN74LS04	J, N	63
	10 ns	10 mW	SN5404	J, W	SN7404	J, N	
	33 ns	1 mW	SN54L04	J, N, T	SN74L04	J, N, T	
	3 ns	19 mW	SN54S00	J, N, W	SN74500	J, N	
QUADRUPLE 2-INPUT	6 ns	22 mW	SN54H00	J, W	SN74H00	J, N	
POSITIVE-NAND GATES	9.5 ns	2 mW	SN54LS00	J, W	SN74LS00	J, N	62
TOSITIVE HAND GATES	10 ns	10 mW	SN5400	J, W	SN7400	J, N	
	33 ns	1 mW	SN54L00	J, N, T	SN74L00	J, N, T	
TRIPLE 3-INPUT	3 ns	19 mW	SN54S10	J, W	SN74S10	J, N	
	6 ns	22 mW	SN54H10	J, W	SN74H10	J, N	ļ
POSITIVE-NAND GATES	9.5 ns	2 mW	SN54LS10	J, W	SN74LS10	J, N	64
TOSTITUE MAND GATES	10 ns	10 mW	SN5410	J, W	SN7410	J, N	
	33 ns	1 mW	SN54L10	J, N, T	SN74L10	J, N, T	1
	3 ns	19 mW	SN54S20	J, W	SN74S20	J, N	
DUAL 4-INPUT	6 ns	22 mW	SN54H20	J, W	SN74H20	J, N	
POSITIVE-NAND GATES	9.5 ns	2 mW	SN54LS20	J, W	SN74LS20	J, N	66
TOSTTVE-NAND GATES	10 ns	10 mW	SN5420	J, W	SN 7420	J, N	i
	33 ns	1 mW	SN54L20	J, N, T	SN74L20	J, N, T	•
	3 ns	19 mW	SN54S30	J, W	SN74S30	J, N	
8-INPUT	6 ns	22 mW	SN54H30	J, W	SN74H30	J, N	
POSITIVE-NAND GATES	17 ns	2.4 mW	SN54LS30	J, W	SN74LS30	J, N	68
OSITIVE MAND GATES	10 ns	10 mW	SN5430	J, W	SN7430	J, N	l
	33 ns	1 mW	SN54L30	J, N, T	SN74L30	J, N, T	
13-INPUT POSITIVE-NAND GATES	3 ns	19 mW	SN54S133	J, W	SN74S133	J, N	84

POSITIVE-NAND GATES AND INVERTERS WITH OPEN-COLLECTOR OUTPUTS ELECTRICAL TABLES—PAGE 88[†]

	TYPICAL	TYP POWER			E TYPE		PIN
DESCRIPTION	PROPAGATION	DISSIPATION		AND PA	CKAGE		ASSIGNMENTS
·	DELAY TIME	DELAY TIME PER GATE -		125°C	0°C to 70°C		PAGE NO.†
	5 ns	17.5 mW	SN54S05	J, W	SN74S05	J, N	
HEX INVERTERS	8 ns	22 mW	SN54H05	J, W	SN74H05	J, N	l
THE REPORT OF THE PARTY OF THE	16 ns	2 mW	SN54LS05	J, W	SN74LS05	J, N	63
	22 ns	10 mW	SN5405	J, W	SN7405	J, N	1
	5 ns	17.5 mW	SN54S03	J, W	SN74S03	J, W	63
QUADRUPLE 2-INPUT	8 ns	22 mW	SN54H01	J, W	SN74H01	J, N	62
	16 ns	2 mW	SN54LS01	J, W	SN74LS01	J, N	62
POSITIVE-NAND-GATES	16 ns	2 mW	SN54LS03	J, W	SN74LS03	J, N	63
· OUT I LAND GATES	22 ns	10 mW	SN5401	J, W	SN7401	J, N	62
	22 ns	10 mW	SN5403	J	SN7403	J, N	63
	41 ns	1 mW	SN54L01	т	SN74L01	T	62
	41 ns	1 mW	SN54L03	J, N	SN74L03	J, N	63
TRIPLE 3-INPUT	16 ns	2 mW	SN54LS12	J, W	SN74LS12	J, N	S-48
POSITIVE-NAND GATES	22 ns	10 mW	SN5412	J, W	SN7412	J, N	65
	5 ns	17.5 mW	SN54S22	J, W	SN74S22	J, N	
DUAL 4-INPUT	. 8 ns	22 mW	SN54H22	J, W	SN74H22	J, N	۱
POSITIVE-NAND GATES	16 ns	2 mW	SN54LS22	J, W	SN74LS22	J, N	67
	22 ns	10 mW	SN5422	J,W	SN7422	J, N	l

[†]Page numbers with "S-" preceding the number refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers (CC-411). Electrical tables for devices in this supplement are on the same page as (or immediately following) the pin assignments.

SSI FUNCTIONS FUNCTIONAL INDEX/SELECTION GUIDE

POSITIVE-NOR GATES WITH TOTEM-POLE OUTPUTS ELECTRICAL TABLES—PAGE 92[†]

DESCRIPTION	TYPICAL PROPAGATION	TYP POWER		PIN ASSIGNMENTS			
	DELAY TIME	PER GATE	-55°C to	125°C	0°C to 7	0°C	PAGE NO.†
	3.5 ns	29 mW	SN54S02	J, W	SN74S02	J, N	
QUADRUPLE 2-INPUT	10 ns	2.75 mW	SN54LS02	J, W	SN74LS02	J, N	62
POSITIVE-NOR GATES	10 ns	14 mW	SN5402	J, W	SN7402	J, N	02
	33 ns	1.5 mW	SN54L02	J, N, T	SN74L02	J, N, T	
TRIPLE 3-INPUT	8.5 ns	22 mW	SN5427	J, W	SN7427	J, N	68
POSITIVE-NOR GATES	10 ns	4.5 mW	SN54LS27	J, W	SN74LS27	J, N	
DUAL 4 INPUT POSITIVE-NOR GATES WITH STROBE	10.5 ns	23 mW	SN5425	J, W	SN7425	J, N	67
DUAL 5-INPUT POSITIVE-NOR GATES	4 ns	54 mW	SN54S260	J,W	SN74S260	J, N	84

POSITIVE-AND GATES WITH TOTEM-POLE OUTPUTS ELECTRICAL TABLES—PAGE 94[†]

DESCRIPTION	TYPICAL PROPAGATION	TYP POWER		PIN ASSIGNMENTS			
	DELAY TIME	PER GATE	-55°C to	125°C	0°C to 70°C		PAGE NO. [†]
	4.75 ns	32 mW	SN54S08	J, W	SN74S08	J, N	S-47
QUADRUPLE 2-INPUT	12 ns	4.25 mW	SN54LS08	J, W	SN74LS08	J, N	64
POSITIVE-AND GATES	15 ns	19 mW	SN5408	J, W	SN7408	J, N	64
	4.75 ns	31 mW	SN54S11	J,W	SN74S11	J, N	
TRIPLE 3-INPUT	8.2 ns	40 mW	SN54H11	J, W	SN74H11	J, N	65
POSITIVE-AND GATES	12 ns	4.25 mW	SN54LS11	J, W	SN74LS11	J, N	
DUAL 4-INPUT	8.2 ns	40 mW	SN54H21	J, W	SN74H21	J, N	67
POSITIVE-AND GATES	12 ns	4.25 mW	SN54LS21	J, W	SN74LS21	J, N	, , , , , , , , , , , , , , , , , , ,

POSITIVE-AND GATES WITH OPEN-COLLECTOR OUTPUTS ELECTRICAL TABLES-PAGE 96[†]

DESCRIPTION	TYPICAL PROPAGATION	TYP POWER			PIN ASSIGNMENTS		
DESCRIPTION	DELAY TIME	PER GATE	-55°C to 125°C		0°C to 7	PAGE NO.†	
	6.5 ns	32 mW	SN54S09	J, W	SN74S09	J, N	S-47
QUADRUPLE 2-INPUT	18.5 ns	19.4 mW	SN5409	J, W	SN7409	J, N	64
POSITIVE-AND GATES	20 ns	4.25 mW	SN54LS09	J, W	SN74LS09	J, N	64
	6 ns	28 mW	SN54S15	J, W	SN74S15	J, N	
FRIPLE 3-INPUT	10,5 ns	38 mW	SN54H15	J, W	SN74H15	J, N	66
POSITIVE-AND GATES	20 ns	4.25 mW	SN54LS15	J, W	SN74LS15	J, N	

SCHMITT-TRIGGER POSITIVE-NAND GATES AND INVERTERS WITH TOTEM-POLE OUTPUTS ELECTRICAL TABLES-PAGE 98[†]

DESCRIPTION	TYPICAL	TYPICAL DELAY	1		E TYPE CKAGE		PIN ASSIGNMENTS
D2301111 113.11	HYSTERESIS	TIME	-55°C to 125°C		0°C to 70°C		PAGE NO.†
	0.8 V	15 ns	SN5414	J, W	SN7414	J, N	65
HEX SCHMITT TRIGGER INVERTERS	0.8 V	15 ns	SN54LS14	J, W	SN74LS14	J, N	S-49
	0.55 V	8 ns	SN54S132	J, W	SN74S132	J, N	83
QUADRUPLE 2-INPUT	0.8 V	15 ns	SN54132	J, W	SN 74132	J, N	83
POSITIVE-NAND SCHMITT TRIGGERS	0.8 V	15 ns	SN54LS132	J, W	SN74LS132	J, N	S-67
DUAL 4 INPUT POSITIVE-NAND	0.8 V	16.5 ns	SN5413	J, W	SN7413	J, N	65
SCHMITT TRIGGERS	0.8 V	16.5 ns	SN54LS13	J, W	SN74LS13	J, N	S-49

[†]Page numbers with "S-" preceding the number refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers (CC-411). Electrical tables for devices in this supplement are on the same page as (or immediately following) the pin assignments.

SSI FUNCTIONS FUNCTIONAL INDEX/SELECTION GUIDE

BUFFERS/CLOCK DRIVERS WITH TOTEM-POLE OUTPUTS (ALSO SEE CLOCK GENERATOR CIRCUITS) ELECTRICAL TABLES—PAGE 102[†]

	LOW-LEVEL	HIGH-LEVEL		TYP POWER		DEVI	CE TYPE		PIN	
DESCRIPTION	OUTPUT	CUTPUT	DELAY	PER			ASSIGNMENTS			
	CURRENT	CURRENT	TIME	GATE	-55°C to 125°C 0°C to 70°			o°c _	PAGE NO.†	
QUADRUPLE 2-INPUT	48 mA	-2.4 mA	7 ns	28 mW	SN5428	J, W	SN7428	J, N		
POSITIVE-NOR	24 mA	-1.2 mA	12 ns	5.5 mW	1	1	SN74LS28	J, N	68	
BUFFERS	12 mA	-1.2 mA	12 ns	5.5 mW	SN54LS28	J, W				
QUADRUPLE	60 mA	-3 mA	4 ns	41 mW	SN54S37	J, W	SN74S37	J, N	\$-55	
2-INPUT	48 mA	-1.2 mA	10.5 ns	27 mW	SN5437	J, W	SN7437	J, N	69	
POSITIVE-NAND	24 mA	-1.2 mA	12 ns	4.3 mW	1		SN74LS37	J, N	69	
BUFFERS	12 mA	−1.2 mA	12 ns	4.3 mW	SN54LS37	J, W	Ì	-	69	
	60 mA	-3 mA	4 ns	44 mW	SN54S40	J, W	SN74S40	J, N		
DUAL 4-INPUT	60 mA	-1.5 mA	7.5 ns	44 mW	SN54H40	J, W	SN74H40	J, N		
POSITIVE-NAND	48 mA	−1.2 mA	10.5 ns	26 mW	SN5440	J, W	SN7440	J, N	70	
BUFFERS	- 24 mA	-1.2 mA	12 ns	4.3 mW			SN74LS40	J, N		
	12 mA	-1.2 mA	12 ns	4.3 mW	SN54LS40	J. W		ľ		

50-OHM/75-OHM LINE DRIVERS ELECTRICAL TABLES—PAGE 104[†]

DESCRIPTION	LOW-LEVEL OUTPUT	HIGH-LEVEL OUTPUT	TYPICAL DELAY	TYP POWER PER	DEVICE TYPE AND PACKAGE				PIN ASSIGNMENTS	
	CURRENT	CURRENT	TIME	GATE	-55°C to	126°C	0°C to 70	0°C	PAGE NO.†	
DUAL 4-INPUT POSITIVE-NAND LINE DRIVERS	60 mA	-40 mA	4 ns	44 mW	SN54S140	J, W	SN74S140	J, N	84	
QUADRUPLE 2-INPUT POSITIVE-NOR LINE DRIVERS	48 mA 48 mA	42.4 mA 29 mA	7 ns 7 ns	28 mW 28 mW	SN54128	J, W	SN74128	J, N	83	

BUFFER AND INTERFACE GATES WITH OPEN-COLLECTOR OUTPUTS ELECTRICAL TABLES—PAGE 106[†]

DESCRIPTION	HIGH-LEVEL	LOW-LEVEL OUTPUT	TYPICAL DELAY	TYP POWER PER			CE TYPE ACKAGE		PIN ASSIGNMENTS
	VOLTAGE	CURRENT	TIME		-55°C to 125°C 0°C t			PAGE NO.†	
HEX	30 V 30 V	40 mA 30 mA	13 ns 13 ns	21 mW 21 mW	SN5407	J, W	SN7407	J, N	64 64
BUFFERS/DRIVERS	15 V 15 V	40 mA 30 mA	13 ns 13 ns	21 mW 21 mW	SN5417	J, W	SN7417	J, N	66 66
HEX INVERTER BUFFERS/DRIVERS	30 V 30 V 15 V	40 mA 30 mA 40 mA	12.5 ns 12.5 ns 12.5 ns	26 mW	SN5406	J, W	SN7406 SN7416	J, N	63 63 66
	15 V 15 V 15 V	30 mA 16 mA 8 mA	12.5 ns 13.5 ns 16 ns		SN5416 SN5426	1 1, W	SN7426 SN74LS26	J, N	66 68 \$-53
QUADRUPLE 2-INPUT POSITIVE-NAND BUFFERS	15 V 5.5 V 5.5 V 5.5 V	4 mA 60 mA 48 mA 24 mA	16 ns 6.5 ns 12.5 ns 19 ns	2 mW 41 mW	SN54LS26 SN54S38 SN5438	1' M 1' M 1' M	SN74S38 SN7438 SN74LS38	1, N 1, N	S-53 . S-55 69 69
QUADRUPLE 2-INPUT POSITIVE- NOR BUFFERS	5.5 V 5.5 V 5.5 V 5.5 V	12 mA 48 mA 24 mA 12 mA	19 ns 11 ns 19 ns 19 ns	28 mW 5.45 mW	SN54LS38 SN5433 SN54LS33	1. W	SN7433 SN74LS33	J, N	69 69 69 69

[†]Page numbers with "S-" preceding the number refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers (CC-411). Electrical tables for devices in this supplement are on the same page as (or immediately following) the pin assignments.

SSI FUNCTIONS FUNCTIONAL INDEX/SELECTION GUIDE

POSITIVE-OR GATES WITH TOTEM-POLE OUTPUTS ELECTRICAL TABLES—PAGE 108[†]

	TYPICAL	TYP POWER		PIN			
DESCRIPTION	PROPAGATION	DISSIPATION	ŀ	AND PACKAGE			ASSIGNMENTS
	DELAY TIME	PER GATE	-55°C to 125°C		0°C to 7	PAGE NO.†	
	4 ns	35 mW	SN54S32	J, W	SN74S32	J, N	S-54
QUADRUPLE 2-INPUT	12 ns	24 mW	SN5432	J, W	SN7432	J, N	69
POSITIVE-OR GATES	12 ns	5 mW	SN54LS32	J, W	SN74LS32	J, N	69

AND-OR-INVERT GATES WITH TOTEM-POLE OUTPUTS ELECTRICAL TABLES—PAGE 110[†]

DESCRIPTION	TYPICAL PROPAGATION	TYP POWER DISSIPATION	-		E TYPE CKAGE		PIN ASSIGNMENTS
	DELAY TIME	PER GATE	-65°C to	0°C to 7	0°C	PAGE NO.†	
	12.5 ns	2.75 mW	SN54LS55	J, W	SN74LS55	J, N	73
2-WIDE 4-INPUT	43 ns	1,5 mW	SN54L55	J, N, T	SN74L55	J, N, T	
4-WIDE 4-2-3-2-INPUT	3.5 ns	29 mW	SN54S64	J, W	SN74S64	J, N	74
4WIDE 2-2-3-2-INPUT	6.6 ns	41 mW	SN54H54	J, W	SN74H54	J, N	72
4-WIDE 2-INPUT	10.5 ns	23 mW	SN5454	J, W	SN7454	J, N	72
4-WIDE 2-3-3-2-INPUT	12.5 ns	4.5 mW	SN54LS54	J, W	SN74LS54	J, N	72
4-WIDE 2-3-3-2-INPUT	43 ns	1.5 mW	SN54L54	J, N, T	SN74L54	J, N, T	72
<u> </u>	3.5 ns	28 mW	SN54S51	J, W	SN74S51	J, N	
	6.5 ns	29 mW	SN54H51	J, W	SN74H51	J, N	ļ
DUAL 2-WIDE 2-INPUT	10.5 ns	14 mW	SN5451	J, W	SN7451	J, N	70
	12.5 ns	2.75 mW	SN54LS51	J, W	SN74LS51	J, N	
	43 ns	1.5 mW	SN54L51	J, N, T	SN74L51	J, N, T	<u> </u>

AND-OR-INVERT GATES WITH OPEN-COLLECTOR OUTPUTS ELECTRICAL TABLES-PAGE 112†

	TYPICAL	TYP POWER	Į	DEVIC	E TYPE		PIN
DESCRIPTION	PROPAGATION	DISSIPATION	l .	AND PACKAGE			
	DELAY TIME	PER GATE	-55°C to 1	125°C	0°C to 70	0°C	PAGE NO.†
4-WIDE 4-2-3-2-INPUT	5.5 ns	36 mW	SN54S65	J, W	SN74S65	J, N	74

EXPANDABLE GATES ELECTRICAL TABLES—PAGE 113[†]

DESCRIPTION	TYPICAL PROPAGATION	TYP POWER DISSIPATION			PIN ASSIGNMENTS		
	DELAY TIME	PER GATE	-55°C to 125°C		0°C to 7	PAGE NO.†	
DUAL 4-INPUT POSITIVE-NOR GATES WITH STROBE	10.5 ns	23 mW	SN5423	J, W	SN7423	J, N	67
4-WIDE AND-OR GATES	9.9 ns	88 mW	SN54H52	J, W	SN74H52	J, N	71
	6.6 ns	41 mW	SN54H53	J, W	SN74H53	J, N	71
4-WIDE AND-OR-INVERT GATES	10.5 ns	23 mW	SN5453	J,W	SN7453	J, N	
2-WIDE AND-OR-INVERT GATES	6.8 ns	30 mW	SN54H55	J, W	SN74H55	J, N	73
DUAL 2-WIDE AND-OR-INVERT	6.5 ns	29 mW	SN54H50	J, W	SN74H50	J, N	70
GATES	10.5 ns	14 mW	SN5450	J, W	SN7450	J, N	

EXPANDERS ELECTRICAL TABLES—PAGE 117[†]

DESCRIPTION	TYP POWER DISSIPATION		DEVICE TYPE AND PACKAGE					
	PER GATE	–55°C to	-55°C to 125°C		0°C to 70°C			
	4 mW	SN5460	J, W	SN7460	J, N	73		
DUAL 4-INPUT EXPANDERS	6 mW	SN54H60	J,W	SN74H60	J, N			
TRIPLE 3-INPUT EXPANDERS	13 mW	SN54H61	J, W	SN74H61	J, N	73		
3-2-2-3-INPUT AND-OR EXPANDERS	25 mW	SN54H62	J, W	SN74H62	J, N	74		

[†]Page numbers with "S-" preceding the number refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers (CC-411). Electrical tables for devices in this supplement are on the same page as (or immediately following) the pin assignments.

SSI FUNCTIONS **FUNCTIONAL INDEX/SELECTION GUIDE**

DWG	TYPICAL CHAI	RACTERISTICS	DATA	TIMES		DEVIC	E TYPE		PAGE REF	ERENCES†
REF.	f _{max}	Pwr/F·F	SETUP	HOLD		AND P	ACKAGE		PIN	
	(MHz)	(Wm)	(ns) (ns)		-65°C to 126°C		0°C to 70°C		ASSIGNMENTS	ELECTRICAL
	125	75	6 ۱	. 01	SN54S112	J, W	SN74S112	J, N	81	132
A	50	100	131	Ot	SN54H106	J, W	SN74H106	J, N	79	126
^	45	10	20ı	01	SN54LS76	J, W	SN74S76	J, N	77	130
	45	10 ~	201	01	SN54LS112	J, W	SN74LS112 -	J, N	81	130
	125	75	61	01	SN54S114	J, W	SN74S114	J, N	81	132
В	50	100	131	Ot	SN54H108	J, W	SN74H108	J, N	79	126
ъ.	45	10	20 i	Oî	SN54LS78	J, W	SN74LS78	J, N	77	130
	45	10	20ı	Ot	SN54LS114	J, W	SN74LS114	J, N	81	130
С	125	75	6١	Ot	SN54S113	J, W	SN74S113	J, N	81	132
	45	10	201	O١	SN54LS113	J, W	SN74LS113	J, N	81	130
	50	100	131	Ot	SN54H103	J, W	SN74H103	J, N	78	126
D	45	10	201	01	SN54LS73	J, W	SN74LS73	J, N	76	130
	45	10	201	01	SN54LS107	J	SN74LS107	J, N	S-56	S-67
E	33	10	20t	51	SN54LS109	J, W	SN74LS109	J, N	80	130
	33	45	10t	61	SN54109	J, W	SN74109	J, N	80	120
F	50	100	131	Of	SN54H101	J, W	SN74H101	J, N	78	126
G	50	100	131	٥t	SN54H102	J, W	SN74H102	J, N	78	126
H	35	65	20†	5t	SN5470	J, W	SN7470	J, N	75	120

^{†1} The arrow indicates the edge of the clock pulse used for reference: † for the rising edge, ‡ for the falling edge.
†Page numbers with "S-" preceding the number refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers (CC-411).

SSI FUNCTIONS FUNCTIONAL INDEX/SELECTION GUIDE

	TYPICAL CHAP	ACTERISTICS	DATA	TIMES		DEVIC	E TYPE		PAGE REFE	RENCES†
DWG.	4 _{max}	Pwr/F-F	SETUP	HOLD		AND PACKAGE			PIN	ELECTRICAL
REF.	(MHz) (mW)		(ns)	(ns)	-55°C to 1	25°C	0°C to 70)°C	ASSIGNMENTS	CECOTHICKE
	30	80	01	01	SN54H73	J, W	SN74H73	J, N	76	124
	20	50	01	01	SN5473	J, W	SN7473	J. N	76	120
1	20	50	01	01	SN54107	J	SN74107	J, N	79	120
	3	3.8	Ot	01	SN54L73	J,N,T	SN74L73	J,N,T	76	128
	30	80	01	01	SN54H76	J, W	SN74H76	J, N	77	124
7	20	50	Ot	01	SN5476	J, W	SN7476	J, N	77	120
	30	80	O†	01	SN54H78	J, W	SN74H78	J, N	77	124
K	3	3.8	Of	Oı	SN54L78	J,N,T	SN74L78	J,N,T	77	128
L	30	80	01	O١	SN54H71	J,W	SN74H71	J, N	75	124
	30	80	01	Οt	SN54H72	J, W	SN74H72	J, N	76	124
м	20	50	01	Οt	SN5472	J, W	SN7472	J, N	76	120
	3	. 3.8	01	01	SN54L72	J,N,T	SN74L72	J,N,T	76	128
N	3	3.8	O1	01	SN54L71	J,N,T	SN74L71	J,N,T	75	128

	TYPICAL CHA	RACTERISTICS	DATA	TIMES	DEVICE TYPE				PAGE REFERENCES [†]			
DWG.	fmax	Pwr/F-F	SETUP	HOLD	1 .	AND P	ACKAGE		PIN	ELECTRICAL		
REF.	(MHz)	(mW)	(ns) (i	(ns)	-55"C to 125"C 0"C to 70°C			o°C	ASSIGNMENTS	ELECTRICAL		
0	25	70	01	301	SN54111	J, W	SN74111	J, N	80	120		
P	25	100	201	51	SN54110	J, W	SN74110	J, N	80	120		
	110	75	31	21	SN54S74	J, W	SN74574	J, N	76	132		
	43	75	151	51	SN54H74	J,W	SN74H74	J, N	76	124		
a	33	10	251	51	SN54LS74	J,W	SN74LS74	J, N	76	130		
_	25	43	20 t	51	SN5474	J.W	SN7474	J, N	76	120		
	3	4	501	151	SN54L74	J.N.T	SN74L74	J,N,T	76	128		

^{†‡}The arrow indicates the edge of the clock pulse used for reference: † for the rising edge, ‡ for the falling edge.

[†]Page numbers with "S-" preceding the number refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers (CC-411).

SSI FUNCTIONS FUNCTIONAL INDEX/SELECTION GUIDE

MONOSTABLE MULTIVIBRATORS WITH SCHMITT-TRIGGER INPUTS ELECTRICAL TABLES-PAGE 134[†]

DESCRIPTION	NO. OF	NO. OF INPUTS		TYP TOTAL POWER		PIN ASSIGNMENTS			
	POSITIVE NEGATIVE RANGE		RANGE	DISSIPATION	-55°C to 1	25°C	0°C to 70	PAGE NO.†	
SINGLE	1	2	40 ns-28 s	90 mW	SN54121	J, W	SN74121	J, N	
	_ 1	2	40 ns-28 s	40 mW	SN54L121	J,N,T	SN74L121	J,N,T	82
	1	1	20 ns-70 s	23 mW			SN74LS221	J, N	
DUAL	1	1	20 ns-49 s	23 mW	SN54LS221	J, W			l
DOAL	1 1	1	20 ns-28 s	130 mW			SN74221	J, N	S-69
	111	1	20 ns-21 s	130 mW	SN54221	J, W			1

RETRIGGERABLE MONOSTABLE MULTIVIBRATORS ELECTRICAL TABLES—PAGE 138[†]

DESCRIPTION	NO. OF	NO. OF INPUTS		DIRECT OUTPUT PULSE		l		E TYPE CKAGE		PIN ASSIGNMENTS
	POSITIVE	NEGATIVE	CLEAR	RANGE	POWER	-55°C to 1	25°C	0°C to 70)°C	PAGE NO.†
	2	2	Yes	45 ns-∞	115 mW	SN54122	J, W	SN74122	J, N	82
SINGLE	2	2	Yes	90 ns-∞	55 mW	SN54L122	T,N,L	SN74L122	J,N,T	82
	2	2	Yes	45 ns-∞	30 mW	SN54LS122	J, W	SN74LS122	J, N	S-58
	1	1	Yes	45 ns-∞	230 mW	SN54123	J, W	SN74123	J, N	82
DUAL	1	1	Yes	90 ns-∞	115 mW	SN54L123	J	SN74L123	J, N	82
	1	1 1	Yes	45 ns-∞	60 mW	SN54LS123	J, W	SN74LS123	J, N	S-58

S-R LATCHES ELECTRICAL TABLES—PAGE 141[†]

DESCRIPTION	TYPICAL PROPAGATION	TYP TOTAL POWER			PIN ASSIGNMENTS		
	DELAY TIME	DISSIPATION	-55°C to 1	-55°C to 125°C		°C	PAGE NO.†
QUADRUPLE S.R LATCHES	12 ns	19 mW	SN54LS279	J, W	SN74LS279	J, N	S-82
	12 ns	90 mW	SN54279	J, W	SN74279	J, N	85

BUS INTERFACE GATES WITH 3-STATE TOTEM-POLE OUTPUTS ELECTRICAL TABLES—PAGE 142[†]

DESCRIPTION	TYPICAL PROPAGATION	TYP POWER DISSIPATION PER GATE			E TYPE CKAGES		PIN ASSIGNMENTS
	DELAY TIME		-55°C to	125°C	0°C to 7	0°C	PAGE NO.†
HEX BUS DRIVERS	12 ns	54 mW	SN54365	J, W	SN 74365	J, N	
	12113	341.111	SN54367	J, W	SN74367	J, N	S-84
HEX INVERTER BUS DRIVERS	11 ns	49 mW	SN54366	J, W	SN74366	J, N	
	11113	451110	SN54368	J, W	SN74368	J, N	\$-84
QUADRUPLE BUS BUFFERS	10 ns	40 mW	SN54125	· J, W	SN74125	J, N	
	10 ns	45 mW	SN54126	J, W	SN74126	J, N	83
12-INPUT POSITIVE-NAND GATES	4.5 ns	45 mW	SN54S134	J, W	SN74S134	J, N	84

CLOCK GENERATOR CIRCUITS

DESCRIPTION	TYP TOTAL POWER			CE TYPE ACKAGE		PAGE NO.†
	DISSIPATION	-55°C to 1	25°C	0°C to 70	°C	
QUADRUPLE COMPLEMENTARY-OUTPUT LOGIC ELEMENTS	125 mW	SN54265	J, W	SN74265	J, N	S-77
DUAL VOLTAGE-CONTROLLED OSCILLATORS		SN54LS124 SN54S124	1 '	SN74LS124 SN74S124	J, N	S-62

[†]Page numbers with "S-" preceding the number refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers (CC-411). Electrical tables for devices in this supplement are on the same page as (or immediately following) the pin assignments.

MSI/LSI FUNCTIONS FUNCTIONAL INDEX/SELECTION GUIDE

ADDERS

DESCRIPTION	TYPICAL CARRY TIME	TYPICAL ADD TIME	TYP POWER DISSIPATION PER BIT	DEVICE TYPE AND PACKAGE -55°C to 125°C 0°C to 70°C				PAGE NO. [†]
		52 ns	105 mW	SN5480	J. W	SN7480	J, N	187
SINGLE 1-BIT GATED FULL ADDERS	10.5 ns	52 NS					<u> </u>	
SINGLE 2-BIT FULL ADDERS	14.5 ns	25 ns	87 mW	SN5482	J, W	SN7482	J, N	195
	10 ns	15 ns	24 mW	SN54LS83A	J, W	SN74LS83A	J, N	S-115
	10 ns	15 ns	24 mW	SN54LS283	J, W	SN74LS283	J, N	S-276
SINGLE 4-BIT FULL ADDERS	10 ns	16 ns	76 mW	SN5483A	J, W	SN7483A	J, N	S-115
	10 ns	16 ns	76 mW	SN54283	J, W	SN74283	J, N	S-276
DUAL 1-BIT CARRY-SAVE FULL ADDERS	11 ns	11 ns	110 mW	SN54H183	J, W	SN74H183	J, N	396

ACCUMULATORS, ARITHMETIC LOGIC UNITS, LOOK-AHEAD CARRY GENERATORS

DESCRIPTION	TYPICAL	TYPICAL ADD	TYP TOTAL POWER			PAGE NO.†		
2230iii	TIME	TIME	DISSIPATION	-55°C to 125°C		0°C to 70°C		NO.
4-BIT PARALLEL BINARY ACCUMULATORS	10 ns	20 ns	720 mW	SN54S281	J, W	SN74S281	J, N	S-271
4-BIT ARITHMETIC LOGIC UNITS/ FUNCTION GENERATORS	11 ns 7 ns 12.5 ns 16 ns	20 ns 11 ns 24 ns 24 ns	525 mW 600 mW 455 mW 102 mW	SN54S181 SN54181 SN54LS181	1, W 1, W 1, W	SN74S381 SN74S181 SN74181 SN74LS181	1, N 1, N 1, N	S-312 381 381 381
LOOK-AHEAD CARRY GENERATORS	7 ns 13 ns		260 mW 180 mW	SN54S182 SN54182	J, W	SN74S182 SN74182	J, N	392

MULTIPLIERS

	DEVICE	TYPE	AND PACKAGE		PAGE
DESCRIPTION	-55°C to 125°C	C .	0°C to 70°C	NO.†	
2-BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS	SN54LS261	J, W	SN74LS261	J, N	S-248
4-BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS	SN54284, SN54285	J, W	SN74284, SN74285 SN74S274	J, N N	496 S-262
7-BIT-SLICE WALLACE TREE	SN54S275	J	SN74S275	J, N	S-262
25-MHz 6-BIT-BINARY RATE MULTIPLIERS	SN5497	J, W	SN7497	J, N	248
25-MHz DECADE RATE MULTIPLIERS	SN54167	J, W	SN74167	J, N	347

COMPARATORS

	DESCRIPTION	TYPICAL	TYP TOTAL POWER			E TYPE ACKAGE		PAGE NO.†
l	DESCRIPTION	TIME	DISSIPATION	-55°C to 1	25°C	0°C to 70	°C	NO.
t		11.5 ns	365 mW	SN54S85	J, W	SN74S85	J, N	ŀ
ı		21 ns	275 mW	SN5485	J, W	SN7485	J, N	S-119
١	4-BIT MAGNITUDE COMPARATORS	23.5 ns	52 mW	SN54LS85	J, W	SN74LS85	J, N	••
1		82 ns	20 mW	SN54L85	J	SN74L85	J, N	

PARITY GENERATORS/CHECKERS

DESCRIPTION	TYPICAL	TYP TOTAL POWER			PAGE		
DESCRIPTION		DISSIPATION	-55°C to 125°C		0°C to 70°C		NO.†
9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS	13 ns	335 mW	SN54S280	J, W	SN74S280	J, N	491
8-BIT ODD/EVEN PARITY GENERATORS/CHECKERS	35 ns	170 mW	SN54180	J, W	SN74180	J, N	379

[†]Page numbers with "S-" preceding the number refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers (CC-411).

MSI/LSI FUNCTIONS **FUNCTIONAL INDEX/SELECTION GUIDE**

OTHER ARITHMETIC OPERATORS

	TYPICAL	TYP TOTAL		DEVIC	E TYPE		PAGE
DESCRIPTION	DELAY	POWER		AND PA	ACKAGE		
	TIME	DISSIPATION	-55°C to 1	25°C	0°C to 70°C		NO.†
	7 ns	250 mW	SN54S86	J, W	SN74S86	J, N	209
QUADRUPLE 2-INPUT EXCLUSIVE-OR	10 ns	30 mW	SN54LS86	J, W	SN74LS86	J, N	209
GATES WITH TOTEM-POLE OUTPUTS	10 ns	30 mW	SN54LS386	J, W	SN74LS386	J, N	S-315
GATES WITH TOTEWARDLE GOTFOTS	14 ns	150 mW	SN5486	J, W	SN7486	J, N	209
	55 ns	15 mW	SN54L86	J,N,T	SN74L86	J,N,T	209
QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES	18 ns	30 mW	SN54LS136	J, W	SN74LS136	J, N	
WITH OPEN-COLLECTOR OUTPUTS	27 ns	150 mW	SN54136	J, W	SN74136	J, N	271
QUADRUPLE 2-INPUT EXCLUSIVE-NOR GATES	18 ns	40 mW	SN54LS266	J,W	SN74LS266	J, N	486
QUADRUPLE EXCLUSIVE OR/NOR GATES	8 ns	325 mW	SN54S135	J, W	SN74S135	J, N	269
4-BIT TRUE/COMPLEMENT, ZERO/ONE ELEMENT	14 ns	270 mW	SN54H87	J, W	SN74H87	J, N	214

SHIFT REGISTERS

									ioreno					
	NO	SHIFT	SERIAL	ASYNC	-	MOI			TYP TOTAL	1		E TYPE		PAGE
DESCRIPTION	OF	FREQ	DATA	CLEAR	\$R#	‡Ts	Ă	걸	POWER DISSIPATION	<u> </u>		ACKAGE		NO.†
	BITS		INPUT							-55°C to 1	25°C	0°C to 70	°C	1.00.
	8	50 MHz	D	Low		X			750 mW	ĺ		SN74S299	N	S-301
PARALLEL-IN	<u> </u>	25 MHz	D	Low		×	X	_	360 mW	SN54198	J, W	SN74198	J, N	456
PARALLEL-OUT	ł	70 MHz	D	Low	×	х	X	×	450 mW	SN54S194	J, W	SN74S194	J, N	
(BIDIRECTIONAL)	4	25 MHz	D	Low	×	l í		×	75 mW	SN54LS194A	J, W	SN74LS194A	J, N	S-215
		25 MHz	D	Low		x	X	x	195 mW	SN54194	J, W	SN74194	J, N	
	8	25 MHz	J-K	Low	×		X	X	360 mW	SN54199	J, W	SN74199	J, N	456
	l	10 MHz	D	Low	×		X		60 mW	SN54LS96	J,W	SN74LS96	J, N	
	5	10 MHz	D	Low	×		X	Ι,	240 mW	SN5496	J, W	SN7496	J, N	S-147
		5 MHz	D	Low	x		X		120 mW	SN54L96	J	SN74L96	J, N	
	ĺ	70 MHz	J⊦K	Low	х		X		375 mW	SN54S195	J, W	SN74S195	J, N	S-223
	ł	30 MHz	ŀΚ	Low	×		X		195 mW	SN54195	J, W	SN74195	J, N	S-223
PARALLEL-IN,		25 MHz	D	Low	×	i	X		75 mW	SN54LS395	J, W	SN74LS395	J, N	S-325
PARALLEL-OUT		25 MHz	D	None	×		x		195 mW	SN5495A	J, W	SN7495A	J, N	S-141
PARALLEL-001		25 MHz	D	Low	x		X	x	230 mW	SN54179	J, W	SN74179	J, N	375
	4	25 MHz	D	None	х		X	x	230 mW	SN54178	J, W	SN74178	J, N	375
		30 MHz	J⊦K	Low	х		X		70 mW	SN54LS195A	J, W	SN74LS195A	J, N	S-223
		25 MHz	D	None	x		x		65 mW	SN54LS95B	J, W	SN74LS95B	J, N	S-141
		25 MHz	D	None	X		х	İ	70 mW	SN54LS295A	J, W	SN74LS295A	J, N	S-293
		3 MHz	J-Ř	None	х		X		19 mW	SN54L99	J	SN74L99	J, N	255
		3 MHz	D	None	x	١,	x		19 mW	SN54L95	J,N,T	SN74L95	J,N,T	S-141
SERIAL-IN,		25 MHz	Gated D	Low	х				80 mW	SN54LS164	J, W	SN74LS164	J, N	
PARALLEL-OUT	8	25 MHz	Gated D	Low	х				167 mW	SN54164	J, W	SN74164	J, N	S-186
PARALLEL-UUT		12 MHz	Gated D	Low	x				84 mW	SN54L164	J,N,T	SN74L164	J.N.T	
DADALLEL IN	•	25 MHz	D	None	x		х	х	210 mW	SN54165	J, W	SN74165	J, N	339
PARALLEL-IN,	8	20 MHz	D	Low	x		x	х	360 mW	SN54166	J, W	SN74166	J, N	343
SERIAL-OUT	4	10 MHz	D	High	x	П	x	П	176 mW	SN5494	J, W	SN 7494	J, N	234
CEDIAL IN		10 MHz	Gated D	None	x	П		П	60 mW	SN54LS91	J, W	SN74LS91	J, N	
SERIAL-IN,	8	10 MHz	Gated D	None	x				175 mW	SN5491A	J, W	SN7491A	J, N	S-136
SERIAL-OUT		3 MHz	Gated D	None	x				17.5 mW	SN54L91			J,N,T	

[†]Page numbers with "S-" preceding the number refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers (CC-411).

‡S-R = shift right, S-L = shift left

MSI/LSI FUNCTIONS FUNCTIONAL INDEX/SELECTION GUIDE

REGISTER FILES

DESCRIPTION	TYPICAL ADDRESS	TYP READ	DATA	TYP TOTAL POWER			E TYPE ACKAGE		PAGE NO.†	
2.22.23	TIME	TIME	RATE	DISSIPATION	-55°C to 1	25°C	0°C to 70)°C	NO.	
EIGHT WORDS OF TWO BITS	33 ns	15 ns	20 MHz	560 mW			SN74172	J, N	356	
	27 ns	15 ns	20 MHz	125 mW	SN54LS170	J, W	SN74LS170	J, N	S-203	
FOUR WORDS OF FOUR BITS	30 ns	15 ns	20 MHz	635 mW	SN54170	J, W	SN74170	J, N	3-203	
FOUR WORDS OF FOUR BITS (3-STATE OUTPUTS)	24 ns	19 ns	20 MHz	135 mW	SN54LS670	J, W	SN74LS670	J, N	S-332	

OTHER REGISTERS

DESCRIPTION	FREQ	ASYNC CLEAR	TYP TOTAL POWER DISSIPATION	_55°C to	70°C	PAGE NO.†			
			DISSIPATION	-55 C 10	125 C			S-260	
OCTAL D-TYPE REGISTERS			l			SN74S273	_ N		
	75 MHz	Low	450 mW	SN54S174	J, W	SN74S174	J, N	363	
HEX D-TYPE REGISTERS	30 MHz	Low	80 mW	SN54LS174	J, W	SN74LS174	J, N	363	
	25 MHz	Low	225 mW	SN54174	J, W	SN74174	J, N	363	
	75 MHz	Low	300 mW	SN54S175	J, W	SN74S175	J, N	363	
QUADRUPLE D-TYPE REGISTERS	30 MHz	Low	55 mW	SN54LS175	J, W	SN74LS175	J, N	363	
	25 MHz	Low	150 mW	SN54175	J, W	SN74175	J, N	363	
	25 MHz	None	65 mW	SN54LS298	J, W	SN74LS298	J, N	S-296	
QUADRUPLE MULTIPLEXERS	25 MHz	None	195 mW	SN54298	J, W	SN74298	J, N	S-296	
WITH STORAGE	3 MHz	None	25 mW	SN54L98	J	SN74L98	J, N	253	
8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS	50 MHz	Low	750 mW			SN74S299	N	S-301	
QUADRUPLE BUS-BUFFER REGISTERS	25 MHz	High	250 mW	SN54173	J, W	SN74173	J, N	360	

LATCHES

DESCRIPTION	NO. OF	CLEAR	OUTPUTS	TYPICAL DELAY	TYP TOTAL POWER	1		E TYPE CKAGE		PAGE NO.†
	BITS			TIME	DISSIPATION	-55°C to 1	25°C	0°C to 70)°C	NO.
		Low	a	11 ns	250 mW	SN54116	J, W	SN74116	J, N	261
	8	None	a	15 ns	320 mW	SN54100	J, W	SN74100	J, N	259
•		None	a,ā	11 ns	32 mW	SN54LS75	J, W	SN74LS75	J, N	
	1	None	a	10 ns	35 mW	SN54LS77	w	l		}
DG (CLOCKED) LATCHES	١.	None	a,ā	15 ns	160 mW	SN5475	J, W	SN7475	J, N	S-109
	4	None	a	15 ns	160 mW	SN5477	w			3-109
		None	a,ā	30 ns	80 mW	SN54L75	J	SN74L75	J, N	
	1	None	a	30 ns	80 mW	SN54L77	T	SN74L77	T	
==	Τ.	None	a	12 ns	19 mW	SN54LS279	J, W	SN74LS279	J, N	S-82
S-R Latches (SSI)	4	None	l a	12 ns	90 mW	SN54279	J, W	SN74279	J, N	85

[†]Page numbers with "S-" preceding the number refer to pages in this supplement; those without "S-" refer to pages in *The TTL Data Book for Design Engineers* (CC-411).

MSI/LSI FUNCTIONS FUNCTIONAL INDEX/SELECTION GUIDE

READ-ONLY MEMORIES (ROM's, PROM's)

	ORGANI-	TYPE	TYPICAL	TYPICAL	TYP POWER			PAGE		
DESCRIPTION	ZATION	OF	ADDRESS	ENABLE	DISSIPATION		AND PA	ACKAGE		
		OUTPUT	TIME	TIME	PER BIT	-55°C to 125°C		0°C to 70°C		NO.T
	512 X 4	0-C	45 ns	15 ns	0.26 mW	SN54S270	J	SN74S270	J, N	S-254
2048-BIT ROM	256 X 8	o-c	45 ns	15 ns	0.26 mW		1	SN74S271	N	S-254
2040-011 11011	512 X 4	3-State	45 ns	15 ns	0.26 mW	SN54S370	J	SN74S370	J. N	S-308
	256 X 8	3-State	45 ns	15 ns	0.26 mW	<u></u>		SN74S371	N	S-308
1024-BIT PROM	256 X 4	3-State	40 ns	15 ns	0.49 mW			SN74S287	J, N	S-279
	256 X 4	O-C	40 ns	15 ns	0.49 mW		ļ	SN74S387	J, N	S-317
1024-BIT ROM	256 X 4	O-C	40 ns	20 ns	0.46 mW	SN54187	J, W	SN74187	J, N	410
512-BIT PROM	64 X 8	O-C	50 ns	47 ns	0.6 mW	SN54186	J, W	SN74186	J, N	404
256-BIT PROM	32 X 8	O-C	29 ns	28 ns	1.3 mW			SN74188A	J, N	414
256-BIT ROM	32 X 8	o-c	26 ns	22 ns	1.1 mW	SN5488A	J, W	SN7488A	J, N	216

RANDOM ACCESS READ-WRITE MEMORIES (RAM's)

DESCRIPTION	ORGANI-	TYPE OF	TYPICAL ADDRESS	TYPICAL ENABLE	TYP POWER DISSIPATION			E TYPE ACKAGE		PAGE
	ZATION	CUTPUT	TIME	TIME	PER BIT	-55°C to 1	25°C	0°C to 70)°C	NO.†
256-BIT	256 X 1	3-State	30 ns	9 ns	1.7 mW	SN54S200	J, W	SN74S200	J, N	466
READWRITE	256 X 1	3-State	42 ns	17 ns	1.8 mW		1	SN74200	J, N	463
MEMORY	256 X 1	O-C	32 ns	17 ns	1.7 mW	SN54S206	J, W	SN74S206	J, N	470
WEWON	256 X 1	3-State	42 ns	17 ns	1.9 mW		1	SN74S201	J, N	S-230
64-BIT	16 X 4	3-State	25 ns	12 ns	5.9 mW	SN54S189	J,W	SN74S189	J, N	S-211
READ WRITE	16 X 4	O-C	25 ns	12 ns	5.9 mW	SN54S289	J, W	SN74S289	J, N	S-283
MEMORY	16 X 4	O-C	32 ns	30 ns	5.9 mW		l	SN7489	J, N	220
16-BIT READ/WRITE	16 X 1	о-с	15 ns	15 ns	14 mW	SN5481A	J, W	SN7481A	J, N	190
MEMORY	16 X 1	о-с	15 ns	15 ns	14 mW	SN5484A	J, W	SN7484A	J, N	190
16-BIT										
MULTIPLE-PORT	8 X 2	3-State	33 ns	15 ns	35 mW			SN74172	J, N	356
REGISTER FILE										
16-BIT	4 X 4	O-C	27 ns	15 ns	7.8 mW	SN54LS170	J, W	SN74LS170	J, N	S-203
REGISTER FILE	4 X 4	O-C	30 ns	15 ns	40 mW	SN54170	J, W	SN74170	J, N	S-203
	4 X 4	3-State	24 ns	19 ns	9.3 mW	SN54LS670	J, W	SN74LS670	J, N	S-332

CODE CONVERTERS

DESCRIPTION	TYPICAL DELAY TIME PER PACKAGE	TYPICAL TOTAL POWER			E TYPE ACKAGE		PAGE NO.†
	LEVEL	DISSIPATION	-55°C to 12	25°C	0°C to 70°	°C	'''
6-LINE-BCD TO 6-LINE				Π		1	
BINARY, OR 4-LINE TO 4-LINE	25 ns	280 mW	SN54184	J,W	SN74184	J, N	398
BCD 9's/BCD 10's CONVERTERS					1	l	l
6-BIT-BINARY TO 6-BIT-BCD CONVERTERS	25 ns	280 mW	SN54185A	J, W	SN74185A	J, N	398

[†]Page numbers with "S-" preceding the number refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers (CC-411).

MSI/LSI FUNCTIONS FUNCTIONAL INDEX/SELECTION GUIDE

PRIORITY ENCODERS/REGISTERS

DESCRIPTION	TYPICAL PROPAGATION	TYPICAL TOTAL POWER			E TYPE ACKAGE		PAGE NO. [†]
5-100	DELAY TIME	DISSIPATION	-55°C to 1	25°C	0°C to 7	0°C	140.
FULL BCD PRIORITY ENCODERS	10 ns	225 mW	SN54147	J, W	SN74147	J, N	290
CASCADABLE OCTAL PRIORITY ENCODERS	12 ns	190 mW	SN54148	J, W	SN74148	J, N	290
4-BIT CASCADABLE PRIORITY REGISTERS	35 ns	275 mW	SN54278	J, W	SN74278	J, N	488

PULSE SYNCHRONIZERS

DESCRIPTION	TYPICAL DELAY	TYP TOTAL POWER	DEVICE TYPE AND PACKAGE				PAGE NO.†
	TIME	DISSIPATION	-55°C to 12	25° C	0°C to 7	0°C	140.
DUAL 30-MHz PULSE SYNCHRONIZERS/DRIVERS	16 ns	255 mW	SN54120	J, W	SN74120	J, N	264

DATA SELECTORS/MULTIPLEXERS

		TYPICA	L DELAY T	MES	TYP TOTAL		DEVIC	E TYPE		
	TYPE	DATA TO	DATA TO	FROM	POWER			ACKAGE		PAGE
DESCRIPTION	OF	INV	NON-INV				IND FA			NO.†
	OUTPUT	CUTPUT	OUTPUT	ENABLE	DISSIPATION	-55°C to 13	25°C	0°C to 70	°c	
16-LINE-TO-1-LINE	2-State	11 ns		18 ns	200 mW	SN54150	J, W	SN74150	J, N	294
DUAL		40		17 ns	220 mW			SN74351	N	S-305
8-LINE-TO-1-LINE	3-State	10 ns		17115	220 11111					
	3-State	4.5 ns	8 ns	14 ns	275 mW	SN54S251	J, W	SN74S251	J, N	473
	3-State	17 ns	21 ns	21 ns	250 mW	SN54251	J, W	SN74251	J, N	473
	3-State	17 ns	21 ns	21 ns	35 mW	SN54LS251	J, W	SN74LS251	J, N	473
	2-State	4.5 ns	8 ns	9 ns	225 mW	SN54S151	J, W	SN74S151	J, N	294
8-LINE-TO-1-LINE	2-State	8 ns	16 ns	22 ns	145 mW	SN54151A	J, W	SN74151A	J, N	294
	2-State	8 ns			130 mW	SN54152A	w			294
	2-State	11 ns	18 ns	27 ns	30 mW	SN54LS151	J, W	SN74LS151	J, N	294
	2-State	11 ns		18 ns	28 mW	SN54LS152	W			294
	3-State		12 ns	16 ns	35 mW	SN54LS253	J, W	SN74LS253	J, N	480
	2-State		6 ns	9.5 ns	225 mW	SN54S153	J, W	SN74S153	J, N	302
DUAL	2-State		14 ns	17 ns	180 mW	SN54153	J, W	SN74153	J, N	302
4-LINE-TO-1-LINE	2-State		14 ns	17 ns	31 mW	SN54LS153	J, W	SN74LS153	J, N	302
	2-State		27 ns	34 ns	90 mW	SN54L153	J	SN74L153	J, N	302
QUADRUPLE			20 ns		65 mW	SN54LS298	J, W	SN74LS298	J. N	S-296
2-LINE-TO-1-LINE	2-State		from	1	195 mW	SN54298	J, W	SN74298	J, N	S-296
WITH STORAGE	2-State	ļ	cłock		195 MW	31134256	3, **	31174230	3,	
	3-State	4 ns		14 ns	280 mW	SN54S258	J, W	SN74S258	J, N	S-244
	3-State	1	5 ns	14 ns	320 mW	SN54S257	J, W	SN74S257	J, N	S-244
	2-State	4 ns	İ	7 ns	195 mW	SN54S158	J, W	SN74S158	J, N	S-163
	2-State		5 ns	8 ns	250 mW	SN54S157	J, W	SN74S157	J, N	S-163
QUADRUPLE	3-State	12 ns		20 ns	35 mW	SN54LS258	J, W	SN74LS258	J, N	S-244
2-LINE-TO-1-LINE	3-State		12 ns	20 ns	50 mW	SN54LS257	J, W	SN74LS257	J, N	S-244
	2-State	7 ns		12 ns	24 mW	SN54LS158	J, W	SN74LS158	J, N	S-163
	2-State		9 ns	14 ns	49 mW	SN54LS157	J, W	SN74LS157	J, N	S-163
	2-State		9 ns	14 ns	150 mW	SN54157	J, W	SN74157	J, N	S-163
	2-State		18 ns	27 ns	75 mW	SN54L157	J	SN74L157	J, N	S-163

[†]Page numbers with "S-" precoding the number refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers (CC-411).

MSI/LSI FUNCTIONS FUNCTIONAL INDEX/SELECTION GUIDE

DECODERS/DEMULTIPLEXERS

				OLIII ELXENO					
	TYPE OF	TYPICAL	TYPICAL	TYP TOTAL	_	DEVIC	E TYPE		PAGE
DESCRIPTION	CUTPUT	SELECT	ENABLE	POWER		AND P	ACKAGE		
	0001	TIME	TIME	DISSIPATION	-55°C to 1	25°C	0°C to 70)°C	NO.†
	Totem-Pole	23 ns	19 ns	170 mW	SN54154	J, W	SN74154	J, N	308
4-LINE-TO-16-LINE	Totem-Pole	46 ns	38 ns	85 mW	SN54L154	J	SN74L154	J, N	308
	Open-Collector	24 ns	19 ns	170 mW	SN54159	J, W	SN74159	J, N	323
4-LINE-TO-10-LINE,	Totem-Pole	17 ns		35 mW	SN54LS42	J, W	SN54LS42	J, N	
BCD-TO-DECIMAL	Totem-Pole	17 ns		140 mW	SN5442A	J,W	SN7442A	J, N	S-91
BCD-10-DECIMAL	Totem-Pole	34 ns		70 mW	SN54L42	J	SN74L42	J, N	
4-LINE-TO-10-LINE,	Totem-Pole	17 ns		140 mW	SN5443A	J, W	SN7443A	J, N	
EXCESS-3-TO-DECIMAL	Totem-Pole	34 ns		70 mW	SN54L43	J	SN74L43	J, N	S-91
4-LINE-TO-10-LINE	Totem-Pole	17 ns		440	01:54444				
EXCESS-3-GRAY-		_		140 mW	SN5444A	J, W	SN7444A	J, N	S-91
TO-DECIMAL	Totem-Pote	34 ns		70 mW	SN54L44	l 1	SN74L44	J, N	1
3-LINE-TO-8-LINE	Totem-Pole	8 ns	7 ns	225 mW	SN54S138	J, W	SN74S138	J, N	274
3-LINE-10-8-LINE	Totem-Pole	22 ns	21 ns	31 mW	SN54LS138	J,W	SN74LS138	J, N	274
	Totem-Pole	7.5 ns	6 ns	300 mW	SN54S139	J, W	SN74S139	J, N	274
	Totem-Pole	22 ns	19 ns	34 mW	SN54LS139	J, W	SN74LS139	J, N	274
DUAL 2-LINE-TO-4-LINE	Totem-Pole	18 ns	15 ns	30 mW	SN54LS155	J,W	SN74LS155	J, N	S-157
DUAL 2-LINE-10-4-LINE	Totem-Pole	21 ns	16 ns	250 mW	SN54155	J,W	SN74155	J, N	S-157
	Open-Collector	23 ns	18 ns	250 mW	SN54156	J, W	SN74156	J, N	S-157
	Open-Collector	33 ns	26 ns	31 mW	SN54LS156	J, W	SN74LS156	J, N	S-157

OPEN-COLLECTOR DISPLAY DECODERS/DRIVERS WITH COUNTERS/LATCHES

DESCRIPTION	OUTPUT SINK CURRENT	OFF-STATE OUTPUT VOLTAGE	TYP TOTAL POWER DISSIPATION	BLANKING		DEVICE TYPE AND PACKAGE -55°C to 125°C 0°C to 70°C			PAGE NO.†
BCD COUNTER/ 4-BIT LATCH/ BCD-TO-DECIMAL DECODER/DRIVER	7 mA	55 V	340 mW		-55 C to		SN74142	J, N	280
BCD COUNTER/ 4-BIT LATCH/ BCD-TO-SEVEN- SEGMENT DECODER/ LED DRIVER	Constant Current 15 mA	7 V	280 mW	Ripple	SN54143	J,W	SN74143	J, N	283
BCD COUNTER/ 4-BIT LATCH/ BCD-TO-SEVEN- SEGMENT DECODER/ LAMP DRIVER	20 mA 25 mA	15 V 15 V	280 mW 280 mW	Ripple Ripple	SN54144	J,W	SN74144	J, N	283 283

RESULTANT DISPLAYS USING '143, '144

[†]Page numbers with "S-" preceding the number refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers (CC-411).

MSI/LSI FUNCTIONS FUNCTIONAL INDEX/SELECTION GUIDE

OPEN-COLLECTOR DISPLAY DECODERS/DRIVERS

	OUTPUT	OFF-STATE	TYP TOTAL			DEVIC	E TYPE		PAGE
DESCRIPTION	SINK	OUTPUT	POWER	BLANKING		ND PA	CKAGE		NO.†
	CURRENT	VOLTAGE	DISSIPATION		-65°C to 1	25°C	0°C to 70	°C	
	80 mA	30 V	215 mW	Invalid Codes	SN5445	J, W	SN7445	J, N	171
	80 mA	15 V	35 mW	Invalid Codes	[SN74LS145	J, N	S-154
BCD-TO-DECIMAL	12 mA	15 V	35 mW	Invalid Codes	SN54LS145	J, W			S-154
DECODERS/DRIVERS	80 mA	15 V	215 mW	Invisid Codes	SN54145	J, W	SN74145	J, N	S-154
	7 mA	60 V	80 mW	Invalid Codes			SN74141	J, N	278
	40 mA	30 V	320 mW	Ripple	SN5446A	J, W	SN7446A	J, N	S-96
	40 mA	30 V	320 mW	Ripple	SN54246	J, W	SN74246	J, N	S-233
	40 mA	15 V	320 mW	Ripple	SN5447A	J, W	SN7447A	J, N	S-96
	40 mA	15 V	320 mW	Ripple	SN54247	J, W	SN74247	J, N	S-233
	24 mA	15 V	35 mW	Rippte			SN74LS47	J, N	S-96
	24 mA	15 V	35 mW	Ripple			SN74LS247	J, N	S-233
	12 mA	15 V	35 mW	Ripple	SN54LS47	J, W			S-96
	12 mA	15 V	35 mW	Ripple	SN54LS247	J, W			S-233
	20 mA	30 V	133 mW	Ripple	SN54L46	J	SN74L46	J, N	S-96
BCD-TO-	20 mA	15 V	133 mW	Ripple	SN54L47	J	SN74L47	J, N	S-96
SEVEN-SEGMENT	6.4 mA	5.5 V	265 mW	Ripple	SN5448	J, W	SN7448	J, N	S-96
DECODERS/DRIVERS	6.4 mA	5.5 V	265 mW	Ripple	SN54248	J, W	SN74248	J, N	S-233
	6 mA	5.5 V	125 mW	Ripple	1		SN74LS48	J, N	S-96
	6 mA	5.5 V	125 mW	Ripple			SN74LS248	J, N	S-233
	2 mA	6.5 V	125 mW	Ripple	SN64LS48	J, W	1		S-96
	2 mA	5.5 V	125 mW	Ripple	SN54LS248	J, W	ľ		S-233
	10 mA	5.5 V	165 mW	Direct	SN5449	w			S-96
	10 mA	5.5 V	265 mW	Direct	SN54249	J, W	SN74249	J, N	S-233
	8 mA	5.5 V	40 mW	Direct		1	SN74LS249	J, N	S-233
	4 mA	5.5 V	40 mW	Direct	SN54LS49	J, W	SN74LS49	J, N	S-96
	4 mA	5.5 V	40 mW	Direct	SN54LS249	J, W			S-233

RESULTANT DISPLAYS USING '46A, '47A, '48, '49, 'L46, 'L47, 'LS47, 'LS48, 'LS49

RESULTANT DISPLAYS USING '246, '247, '248, '249, 'LS247, 'LS248, 'LS249

[†]Page numbers with "S-" preceding the number refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers (CC-411).

MSI/LSI FUNCTIONS FUNCTIONAL INDEX/SELECTION GUIDE

ASYNCHRONOUS COUNTERS (RIPPLE CLOCK)—NEGATIVE-EDGE TRIGGERED

	COUNT	PARALLEL		TYP TOTAL		DEVIC	E TYPE		PAGE
DESCRIPTION	FREQ	LOAD	CLEAR	POWER		AND PA	CKAGE		NO.†
	rned	LOAD		DISSIPATION	-55°C to 1	25°C	0°C to 70°C		NO.
	50 MHz	Yes	Low	240 mW	SN54196	J,W	SN74196	J, N	451
•	35 MHz	Yes	Low	150 mW	SN54176	J, W	SN74176	J, N	369
	32 MHz	Set-to-9	High	40 mW	SN54LS90	J, W	SN74LS90	J, N	S-127
DECADE	32 MHz	Set-to-9	High	40 mW	SN54LS290	J, W	SN74LS290	J, N	S-287
DEGADE	32 MHz	Set-to-9	High	160 mW	SN5490A	J,W	SN7490A	J, N	S-127
	32 MHz	Set-to-9	High	160 mW	SN54290	J, W	SN74290	J, N	S-287
	30 MHz	Yes	Low	60 mW	SN54LS196	J, W	SN74LS196	J, N	451
	3 MHz	Set-to-9	High	20 mW	SN54L90	J,N,T	SN74L90	J,N,T	S-127
	50 MHz	Yes	Low	240 mW	SN54197	J, W	SN74197	J, N	451
	35 MHz	Yes	Low	150 mW	SN54177	J, W	SN74177	J, N	369
	32 MHz	None	High	39 mW	SN54LS93	J, W	SN74LS93	J, N	S-127
4-BIT BINARY	32 MHz	None	High	39 mW	SN54LS293	J, W	SN74LS293	J, N	S-287
4011 BINAN I	32 MHz	None	High	160 mW	SN5493A	J, W	SN 7493A	J, N	S-127
-	32 MHz	None	High	160 mW	SN54293	J,W	SN74293	J, N	S-287
	30 MHz	Yes	Low	60 mW	SN54LS197	J,W	SN74LS197	J, N	451
	3 MHz	None	High	20 mW	SN54L93	J,N,T	SN74L93	J,N,T	S-127
DIVIDE-BY-12	32 MHz	None	High	39 mW	SN54LS92	J, W	SN74LS92	J, N	S-127
DIVIDE: 1-12	32 MHz	None	High	160 mW	SN5492A	J, W	SN7492A	J, N	S-127
DUAL DECADE	25 MHz	None	High	210 mW	SN54390	J, W	SN74390	J, N	S-321
DOAL DECADE	25 MHz	Set-to-9	High	225 mW	SN54490	J,W	SN74490	J, N	S-328
DUAL 4-BIT BINARY	25 MHz	None	High	190 mW	SN54393	J, W	SN74393	J, N	S-321

[†]Page numbers with "S-" preceding the number refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers (CC-411).

MSI/LSI FUNCTIONS **FUNCTIONAL INDEX/SELECTION GUIDE**

SYNCHRONOUS COUNTERS-POSITIVE-EDGE TRIGGERED

DESCRIPTION	COUNT	PARALLEL	CLEAR	TYP TOTAL POWER	1		E TYPE ACKAGE		PAGE NO.†
	FREQ	LOAD		DISSIPATION	-55°C to 1	25°C	0°C to 70	°C	NO.
	40 MHz	Sync	Sync-L	475 mW	SN54S162	J, W	SN74S162	J, N	
	25 MHz	Sync	Sync-L	93 mW	SN54LS162	J, W	SN74LS162	J, N	and the
DECADE	25 MHz	Sync	Async-L	93 mW	SN54LS160	J, W	SN74LS160	J, N	S-170
	25 MHz	Sync	Sync-L	305 mW	SN54162	J, W	SN74162	J, N	
	25 MHz	Sync	Async-L	305 mW	SN54160	J, W	SN74160	J, N	
	40 MHz	Sync	None	500 mW	SN54S168	J, W	SN74S168	J, N	S-192
	25 MHz	Sync	None	100 mW	SN54LS168	J, W	SN74LS168	J, N	S-192
	25 MHz	Async	Async-H	85 mW	SN54LS192	J, W	SN74LS192	J, N	427
DECADE	25 MHz	Async	Async-H	325 mW	SN54192	J,W	SN74192	J, N	427
UP/DOWN	20 MHz	Async	None	100 mW	SN54LS190	J, W	SN74LS190	J, N	417
	20 MHz	Async	None	325 mW	SN54190	J, W	SN74190	J, N	417
	3 MHz	Async	Async-H	42 mW	SN54L192	J	SN74L192	J, N	427
DECADE 1 RATE MULTIPLIER, N ₁₀	25 MHz	Set-to-9	Async-H	270 mW	SN54167	J, W	SN74167	J, N	347
	40 MHz	Sync	Sync-L	475 mW	SN54S163	J, W	SN74S163	J, N	
	25 MHz	Sync	Sync-L	93 mW	SN54LS163	J, W	SN74LS163	J, N	
4-BIT BINARY	25 MHz	Sync	Async-L	93 mW	SN54LS161	J, W	SN74LS161	J, N	S-170
	25 MHz	Sync	Sync-L	305 mW	SN54163	J, W	SN74163	J, N	
	25 MHz	Sync	Async-L	305 mW	SN54161	J, W	SN74161	J, N	
Test Test Test Test Test Test Test Test	40 MHz	Sync	None	500 mW	SN54S169	J, W	SN74S169	J, N	S-192
	25 MHz	Sync	None	100 mW	SN54LS169	J, W	SN74LS169	J, N	S-192
	25 MHz	Async	Async-H	85 mW	SN54LS193	J, W	SN74LS193	J, N	427
4-BIT BINARY	25 MHz	Async	Async-H	325 mW	SN54193	J,W	SN74193	J, N	42
UP/DOWN	20 MHz	Async	None	90 mW	SN54LS191	J, W	SN74LS191	J, N	417
	20 MHz	Async	None	325 mW	SN54191	J, W	SN74191	J, N	417
	3 MHz	Async	Async-H	42 mW	SN54L193	J	SN74L193	J, N	42
6-BIT BINARY 1 RATE MULTIPLIER, N2	25 MHz		Async-H	345 mW	SN5497	J,W	SN7497	J, N	248

Page numbers with "S-" preceding the number refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers (CC-411).

BEAM-LEAD TTL CHIPS FUNCTIONAL INDEX/SELECTION GUIDE

INVERTERS/NAND/NOR/AND/OR GATES WITH TOTEM-POLE OUTPUTS

DESCRIPTION	TYPICAL PROPAGATION	TYP POWER DISSIPATION	TEMPERATU	RE RANGE	PAGE
DESCRIPTION	DELAY TIME	PER GATE	-55°C to 125°C	0°C to 70°C	NO.1
HEX INVERTERS	9.5 ns	2 mW	BL54LS04Y	BL74LS04Y	568
	9.5 ns	2 mW	BL54LS00Y	BL74LS00Y	568
QUADRUPLE 2-INPUT POSITIVE-NAND GATES	10 ns	10 mW	BL5400Y	BL7400Y	543
	33 ns	1 mW	BL54L00Y	BL74L00Y	545
TRIPLE 3-INPUT POSITIVE-NAND GATES	9.5 ns	2 mW	BL54LS10Y	BL74LS10Y	S-341
	10 ns	10 mW	BL5410Y	BL7410Y	543
DUAL AUSPUT DOCUTIVE NAME CATES	9.5 ns	2 mW	BL54LS20Y	BL74LS20Y	568
DUAL-4-INPUT POSITIVE-NAND GATES	33 ns	1 mW	BL54L20Y	BL74L20Y	545
O INDUSTRUCTIVE MAND CATES	17 rs	2 mW	BL54LS30Y	BL74LS30Y	568
8-INPUT POSITIVE-NAND GATES	33 ns	1 mW	BL54L30Y	BL74L30Y	549
QUADRUPLE 2-INPUT POSITIVE-NOR GATES	10 ns	2.75 mW	BL54LS02Y	BL74LS02Y	568
QUADRUPLE 2-INPUT POSITIVE-AND GATES	12 ns	4.25 mW	BL54LS08Y	BL74LS08Y	568
TRIPLE 3-INPUT POSITIVE-AND GATES	12 ns	4.25 mW	BL54LS11Y	BL74LS11Y	568
DUAL 4-INPUT POSITIVE-AND GATES	12 ns	4.25 mW	BL54LS21Y	BL74LS21Y	568
QUADRUPLE 2-INPUT POSITIVE-OR GATES	12 ns	5 mW	BL54LS32Y	BL74LS32Y	568

INVERTERS/NAND/AND GATES WITH OPEN-COLLECTOR OUTPUTS

DESCRIPTION	TYPICAL PROPAGATION	TYP POWER DISSIPATION	TEMPERATU	PAGE	
	DELAY TIME	PER GATE	-55°C to 125°C	0°C to 70°C	NO.†
HEX INVERTERS	16 ns	2 mW	BL54LS05Y	BL74LS05Y	568
	16 ns	2 mW	BL54LS01Y	BL74LS01Y	568
QUADRUPLE 2-INPUT POSITIVE-NAND GATES	16 ns	2 mW	BL54LS03Y	BL74LS03Y	568
	22 ns	10 mW	BL5401Y	BL7401Y	547
DUAL 4-INPUT POSITIVE-NAND GATES	16 ns	2 mW	BL54LS22Y	BL74LS22Y	568
QUADRUPLE 2-INPUT POSITIVE-AND GATES	20 ns	4.25 mW	BL54LS09Y	BL74LS09Y	568
TRIPLE 3-INPUT POSITIVE-AND GATES	20 ns	4.25 mW	BL54LS15Y	BL74LS15Y	568

BUFFERS WITH TOTEM-POLE OUTPUTS

DESCRIPTION	LOW-LEVEL OUTPUT	HIGH-LEVEL OUTPUT	TYP POWER DISSIPATION	TEMPERATU	TEMPERATURE RANGE	
	CURRENT	VOLTAGE	PER GATE	-55°C to 125°C 0°C to 70°C		NO.†
QUADRUPLE 2-INPUT	24 mA	−1.2 mA	4.3 mW		BL74LS37Y	500
POSITIVE-NAND BUFFERS	12 mA	−1.2 mA	4.3 mW	BL54LS37Y		568
QUADRUPLE 2-INPUT	24 mA	-1.2 mA	5.5 mW		BL74LS28Y	568
POSITIVE-NOR BUFFERS	12 mA	-1.2 mA	5.5 mW	BL54LS28Y		308

BUFFERS WITH OPEN-COLLECTOR OUTPUTS

DESCRIPTION	LOW-LEVEL OUTPUT	HIGH-LEVEL OUTPUT	TYP POWER DISSIPATION	TEMPERATU	TEMPERATURE RANGE	
	CURRENT	VOLTAGE	PER GATE	-55°C to 125°C 0°C to 70°C		NO.†
QUADRUPLE 2-INPUT	24 mA	5.5 V	4.3 mW		BL74LS38Y	E00
POSITIVE-NAND BUFFERS	12 mA	5.5 V	4.3 mW	BL54LS38Y		568
QUADRUPLE 2-INPUT	24 mA	5.5 V	5.45 mW		BL74LS33Y	568
POSITIVE-NOR BUFFERS	12 mA	5.5 V	5.45 mW	BL54LS33Y		500

[†]Page numbers with "S-" precoding the number refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers (CC-411).

BEAM-LEAD TTL CHIPS FUNCTIONAL INDEX/SELECTION GUIDE

AND-OR-INVERT GATES

DESCRIPTION	TYPICAL PROPAGATION	TYP POWER DISSIPATION	TEMPERATI	JRE RANGE	PAGE
	DELAY TIME	PER BIT	-55°C to 125°C	0°C to 70°C	NO.†
4-WIDE 2-3-3-2-INPUT AND-OR-INVERT GATES	12.5 ns	4.5 mW	BL54LS54Y	BL74LS54Y	568
2-WIDE 4-INPUT AND-OR-INVERT GATES	12.5 ns	2.75 mW	BL54LS55Y	BL74LS55Y	568
2-WIDE 4-INPUT AND-OR-INVERT GATES	43 ns	1,5 mW	BL54L55Y	BL74L55Y	551
DUAL 2-WIDE AND-OR-INVERT GATES	12.5 ns	2.75 mW	BL54LS51Y	BL74LS51Y	568

FLIP-FLOPS

DESCRIPTION	TEMPERATU	RE RANGE	PAGE
DESCRIPTION	-55°C to 125°C	0°C to 70°C	NO.†
J-K EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR AND PRESET	BL54L67Y	BL74L67Y	553
DUAL J-K EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR AND PRESET	BL54LS76Y	BL74LS76Y	S-341
DUAL J-K EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR	BL54L68Y	BL74L68Y	556
DUAL J-K EDGE-TRIGGERED FLIP-FLOPS WITH PRESET, COMMON CLEAR, AND COMMON CLOCK	BL54L69Y	BL74L69Y	559
DUAL J-K MASTER-SLAVE FLIP-FLOPS WITH CLEAR	BL5473Y	BL7473Y	562
DUAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR AND PRESET	BL5474Y	BL7474Y	565

MSI FUNCTIONS

	1050	TEMPERATU	IRE RANGE	PAGE
DESCRIPTION/FEATU	JRES	-55°C to 125°C	0°C to 70°C	NO.†
	BIDIRECTIONAL	BL54LS194Y	BL74LS194Y	
PARALLEL-IN, PARALLEL-OUT,	D-TYPE SERIAL INPUT	BL54LS95AY	BL74LS95AY]
4-BIT SHIFT REGISTERS	J-K SERIAL INPUTS	BL54LS195Y	BL74LS195Y]
	THREE-STATE OUTPUTS	BL54LS295Y	BL74LS295Y	1
DUAL 4-LINE-TO-1-LINE	TWO-STATE OUTPUTS	BL54LS153Y	BL74LS153Y	Ī
DATA SELECTORS/MULTIPLEXERS	THREE-STATE OUTPUTS	BL54LS253Y	BL74LS253Y	568
	3-LINE-TO-8-LINE	BL54LS138Y	BL74LS138Y	508
DECODERS/DEMULTIPLEXERS	5.141 S.1415 TO 4.1415	BL54LS139Y	BL74LS139Y	ĺ
	DUAL 2-LINE-TO-4-LINE	BL54LS155Y	BL74LS155Y	
CO MAIL COMMETTERS A TOMES	DECADE	BL54LS196Y	BL74LS196Y]
30-MHz COUNTERS/LATCHES	4-BIT BINARY	BL54LS197Y	BL74LS197Y	
4-BIT ARITHMETIC LOGIC UNIT/FUNCTION GENERATOR		BL54LS181Y	BL74LS181Y	
QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES	TOTEM-POLE OUTPUTS	BL54LS86Y	BL74LS86Y	
	OPEN-COLLECTOR OUTPUTS	BL54LS136Y	BL74LS136Y	S-341
QUADRUPLE 2-INPUT EXCLUSIVE-NOR GATES	BL54LS266Y	BL74LS266Y]	

[†]Page numbers with "S-" preceding the number refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers (CC-411).

RADIATION-HARDENED TTL FUNCTIONAL INDEX/SELECTION GUIDE

INVERTERS AND POSITIVE-NAND GATES

DESCRIPTION	TYPE NO.	PACKAGE	PAGE NO.†
	RSN5404	н	585
HEX INVERTERS	RSN54H04	н	585
	RSN5400	Н	581
QUADRUPLE 2-INPUT POSITIVE-NAND GATES	RSN54H00	н	581
	RSN54L00	Н	583
	RSN5410	Н	581
TRIPLE 3-INPUT POSITIVE-NAND GATES	RSN54H10	н	581
	RSN54L10	н	583
DUAL 3-INPUT POSITIVE-NAND GATE	RSN54L130	Н	583
DUAL EXPANDABLE 3-INPUT POSITIVE-NAND GATE	RSN54L131	Н	583
	RSN5420	н	581
DUAL 4-INPUT POSITIVE-NAND GATES	RSN54H20	н	581
•	RSN54L20	н	583
	RSN5440	Н	586
DUAL 4-INPUT POSITIVE-NAND BUFFERS	RSN54H40	l H	586
	RSN5431	Н	581
11-INPUT POSITIVE-NAND GATES	RSN54H31	Н	581

AND-OR INVERT GATES

DESCRIPTION	TYPE NO.	PACKAGE	PAGE NO.†
	RSN5457	н	587
4-WIDE 3-3-2-3-INPUT AND-OR-INVERT GATES	RSN54H57	н	587
	RSN54L57	н	589
	RSN5458	Н	587
2-WIDE 4-INPUT AND-OR-INVERT GATES	RSN54H58	н	587
2-WIDE 3-INPUT, 2-WIDE 2-INPUT	RSN5456	Н	587
DUAL AND-OR-INVERT GATES	RSN54H56	Н	587
DUAL 2-WIDE 3-2-INPUT AND-OR-INVERT GATE	RSN54H66	н.	587

FLIP-FLOPS

DESCRIPTION	TYPE NO.	PACKAGE	PAGE NO.
S-R MASTER-SLAVE FLIP-FLOP	RSN54L71	Н	590
J-K MASTER-SLAVE FLIP-FLOP	RSN54L72	Н	593
DUAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS	RSN5474	Н	596
	RSN54H74	н	596
	RSN54L74	н	596
DUAL J-K EDGE-TRIGGERED FLIP-FLOP	RSN54H103	Н	600

DECODER/DEMULTIPLEXER

DESCRIPTION	TYPE NO.	PACKAGE	PAGE NO.
3-LINE-TO-8-LINE DECODER/DEMULTIPLEXER	RSN54H149	Н	603

[†]Page numbers with "S-" preceding the number refer to pages in this supplement; those without "S-" refer to pages in The TTL Data Book for Design Engineers (CC-411).

Ordering Instructions and Mechanical Data

ORDERING INSTRUCTIONS

Electrical characteristics presented in this data book, unless otherwise noted, apply for circuit type(s) listed in the page heading regardless of package. Except for the beam-lead chips, the availability of a circuit function in a particular package is denoted by an alphabetical reference above the pin-connection diagram(s). These alphabetical references refer to mechanical outline drawings shown in this section. Beam-lead chip designations and outlines are shown on individual data sheets.

Factory orders for circuits described in this catalog should include a four-part type number as explained in the following example.

below. Unless a specific method of shipment is specified by the customer (with possible additional costs), circuits will be shipped in the most practical carrier. Please contact your TI sales representative for the method which will best suit your particular needs.

Flat (H, T, W)

- -Mech-Pakette
- -Barnes Carrier
- -Milton Ross Carrier

Dual-in-line (J, N)

- -Slide Magazines
- -A-Channel Plastic Tubing
- -Barnes Carrier (N only)
- -Sectioned Cardboard Box
- -Individual Plastic Box

H flat package (inch dimensions, see page S-41 for metric dimensions)

This package consists of a ceramic base, ceramic cap, and a 14-lead frame. Hermetic sealing is accomplished with glass. Gold-plated leads (-00) require no additional cleaning or processing when used in welded or soldered assembly.

T flat package (inch dimensions, see page S-41 for metric dimensions)

This hermetic package features glass-to-metal seals and welded construction. Package body and leads are gold-plated F-15‡ glass-sealing alloy. Approximate weight is 0.1 gram.

T package leads

374

Gold-plated F-15[‡] leads require no additional cleaning or processing when used in soldered or welded assembly. Solder-dipped leads are also available. Formed leads are available to facilitate planar mounting of networks on flat circuit boards. Circuits can be removed from Mech-Pak carriers with lead lengths up to 0.300 inch.

FORMED LEADS (INCH) NOTES: a. All dimensions are in inches. Not applicable in Mech-Pak carrier. b. Measured from centerline of outside bends Measured from center of lead to bottom of package where lead emerges from body. When solder-dipped leads are specified, dipped area of lead extends from lead tip to outside bend (minimum).

‡F-15 is the ASTM designation for an iron-nickel-cobalt alloy containing nominally 53% iron, 29% nickel, and 17% cobalt.

W ceramic flat packages (inch dimensions, see page S-42 for metric dimensions)

These hermetically sealed flat packages consist of an electrically nonconductive ceramic base and cap, and a 14-, 16-, or 24-lead frame. Hermetic sealing is accomplished with glass. Tin-plated ("bright-dipped") leads (-00) require no additional cleaning or processing when used in soldered assembly.

J ceramic dual-in-line packages (inch dimensions, see page S-43 for metric dimensions)

These hermetically sealed, dual-in-line packages consist of a ceramic base, ceramic cap, and a 14-, 16-, or 24-lead frame. The packages are intended for insertion in mounting-hole rows on 0.300-inch or (0.600-inch) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads (-00) require no additional cleaning or processing when used in soldered assembly.

N plastic dual-in-line packages (inch dimensions, see page S-44 for metric dimensions)

These dual-in-line packages consist of a circuit mounted on a 14-, 16-, 20-, or 24-lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. These packages are intended for insertion in mounting-hole rows on 0.300-inch (or 0.600-inch) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly.

H flat package (metric dimensions, see page S-37 for inch dimensions)

This package consists of a ceramic base, ceramic cap, and a 14-lead frame. Hermetic sealing is accomplished with glass. Gold-plated leads (-00) require no additional cleaning or processing when used in welded or soldered assembly.

T flat package (metric dimensions, see page S-37 for inch dimensions)

This hermetic package features glass-to-metal seals and welded construction. Package body and leads are gold-plated F-15‡ glass-sealing alloy. Approximate weight is 0.1 gram.

T package leads

Gold-plated F-15‡ leads require no additional cleaning or processing when used in soldered or welded assembly. Solder-dipped leads are also available. Formed leads are available to facilitate planar mounting of networks on flat circuit boards. Circuits can be removed from Mech-Pak carriers with lead lengths up to 7.62 mm.

(METRIC) **FORMED LEADS** H NOTES: a. All dimensions are in millimeters. These dimensions b. Not applicable in Mech-Pak carrier.

- are for reference only. Inch dimensions govern.
 - c. Measured from centerline of outside bends.
 - d. Measured from center of lead to bottom of package where lead emerges from body.
 - When solder-dipped leads are specified, dipped area of from lead tip to outside bend lead extends (minimum).

‡F-15 is the ASTM designation for an iron-nickel-cobalt alloy containing nominally 53% iron, 29% nickel, and 17% cobalt.

W ceramic flat packages (metric dimensions, see page S-38 for inch dimensions)

These hermetically sealed flat packages consist of an electrically nonconductive ceramic base and cap, and a 14-, 16-, or 24-lead frame. Hermetic sealing is accomplished with glass. Tin-plated ("bright-dipped") leads (-00) require no additional cleaning or processing when used in soldered assembly.

J ceramic dual-in-line packages (metric dimensions, see page S-39 for inch dimensions)

These hermetically sealed, dual-in-line packages consist of a ceramic base, ceramic cap, and a 14-, 16-, or 24-lead frame. The packages are intended for insertion in mounting-hole rows on 7.62-mm (or 15.24-mm) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads (—00) require no additional cleaning or processing when used in soldered assembly.

N plastic dual-in-line packages (metric dimensions, see page S-40 for inch dimensions)

These dual-in-line packages consist of a circuit mounted on a 14-, 16-, 20-, or 24-lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. These packages are intended for insertion in mounting-hole rows on 7.62-mm (or 15.24-mm) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly.

54/74 Family SSI Circuits

54/74 FAMILIES OF COMPATIBLE TTL CIRCUITS

This table, which covers the SSI circuits of the entire 54/74 family, is reprinted here for convenience. For information on the treatment of unused inputs of positive-AND/NAND gates, on input-current requirements, and on drive capability of outputs, see pages 60 and 61 of *The TTL Data Book for Design Engineers*, CC-411.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	54 FAMILY	SERIES 54 SERIES 54H	SERIES 54L	SERIES 54LS	SERIES 54LS	SERIES 54S	
	74 FAMILY	SERIES 74 SERIES 74H	SERIES 74L	SERIES 74LS	SERIES 74LS	SERIES 74S	UNIT
				WITH DIODE INPUTS	WITH EMITTER INPUTS		
Supply voltage, V _{CC} (see Note 1)		7	8	7	7	7	V
Input voltage		5.5	5.5	7	5.5	5.5	
Interemitter voltage (see Note 2)		5.5	5.5		5.5	5,5	V
Off-state (high-level) voltage applied	'06, '07	30					
to open-collector outputs	'16, '17, '26	15					l v
	Others		8	7	7	7	
Operating free-sir temperature range	54 Family			-55 to 125			
Operating receal temperature range	74 Family			0 to 70			°C
Storage temperature range	_			-65 to 150			°C

NOTES: 1. Voltage values, unless otherwise noted, are with respect to network ground terminal.

This is the voltage between two emitters of a multiple-emitter transistor. For these SSI circuits, this rating applies between inputs that go directly into the same AND or NAND gate in the functional block diagram.

ΠL SSI

TYPES SN54S08, SN54S09, SN74S08, SN74S09 QUADRUPLE 2-INPUT POSITIVE AND GATES

BULLETIN NO. DL-S 7412082, MARCH 1974

- 'S08 has active pullups
- 'S09 has open-collector outputs

schematics (each gate)

SN54S08, SN54S09 . . . J OR W PACKAGE SN74S08, SN74S09 . . . J OR N PACKAGE (TOP VIEW)

Resistor values shown are nominal and in ohms.

recommended operating conditions

		SN54S0	8		SN54S0	9		SN74S0	8		SN74S0	9	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	O.C.
Supply voltage, VCC (see Note 1)	4.5	5	5.5	4.5	5	5.5	4.75	5	5.25	4.75	5	5.25	V
High-level output voltage, VOH	_					5.5						5.5	V
High-level output current, IOH			-1						-1				mA
Low-level output current, IQL			20			20			20			20	mA
Operating free-air temperature	-55		125	-55		125	0		70	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					'S08			' \$09		UNIT
	PARAMETER	TEST CONDITI	ONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	Civil
VIH	High-level input voltage			2			2			٧
VIL	Low-level input voltage					0.8			0.8	V
VI	Input clamp voltage	VCC = MIN, II = -18 mA				-1.2			-1.2	<u> </u>
		VCC = MIN, VIH = 2 V,	SN54S08	2.5	3.4					v
νон	High-level output voltage	I _{OH} = -1 mA	SN74S08	2.7	3.4					Ľ
ЮН	High-level output current	VCC = MIN, VIH = 2 V,	V _{OH} = 5.5 V						250	μА
VOL	Low-level output voltage	VCC = MIN, VIL = 0.8 V	IOL = 20 mA			0.5			0.5	\ <u>\</u>
ij	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V				1			1	mA
ΊΗ	High-level input current	V _{CC} = MAX, V ₁ = 2.7 V				50			50	μA
T _{IL}	Low-level input current	VCC = MAX, V1 = 0.5 V				-2	<u> </u>		2	mA
los	Short-circuit output current §	V _{CC} = MAX		-40		-100				mA
ССН	Supply current, all outputs high	V _{CC} = MAX			18	32		18	32	mA
ICCL	Supply current, all outputs low	V _{CC} = MAX			32	57		32	57	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

				'S08			'S09		UNIT
PARAMETER	TEST CON	DITIONS	MIN	NOM	MAX	MIN	NOM	MAX	Civil
		CL = 15 pF		4.5	7		6.5	10	ns
tpLH Propagation delay time, low-to-high-level output	R _L = 280 Ω,	C _L = 50 pF		6			9		<u> </u>
	See Note 2	CL = 15 pF		5	7.5		6.5	10	ns
tpHL Progagation delay time, high-to-low-level output		CL = 50 pF		7.5			9] "

1. All voltage values are with respect to network ground terminal.

PRINTED IN U.S.A.

^{*}All typical values are at V_{CC} = 5 V, T_A = 25 °C.

§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

^{2.} Load circuit and voltage waveforms are shown on page S-87.

TYPES SN54LS12, SN74LS12 TRIPLE 3-INPUT POSITIVE-NAND GATES WITH OPEN-COLLECTOR OUTPUTS

BULLETIN NO. DL-S 7412086, MARCH 1974

Functionally and Mechanically Identical to SN5412/SN7412

schematic (each gate)

SN54LS12...J OR W PACKAGE SN74LS12...J OR N PACKAGE (TOP VIEW)

Resistor values shown are nominal and in ohms.

recommended operating conditions

	_ s	N54LS1	12	s	N74LS1	12	Ī
	MIN	NOM	MAX	MIN	NOM	MAX	דואט
Supply voltage, VCC (See Note 1)	4.5	5	5.5	4.75	5	5.25	v
High-level output voltage, VOH			5.5	-		5.5	 v
Low-level output current, IOL			4				mA
Operating free-air temperature, TA	-55		125	_		70	°C

NOTE 1: Voltage values are with respect to network ground terminal.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

							,				,
	PARAMETER	TE	ST CONDITIO	Net	S	N54LS1	12	s	N74LS1	12	
					MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage	_			2			2			v
VIL	Low-level input voltage						0.7	_		0.8	V
Vi	Input clamp voltage	V _{CC} = MIN,	I ₁ = -18 mA		_		-1.5	 		-1.5	
ЮН	High-level output current	Vcc = MIN.	V _{OH} = 5.5 V	V _{IL} = 0.7 V			100				\vdash
-011		VCC - WIIV,	VOH - 5.5 V	V _{IL} ≈ 0.8 V						100	μА
VOL	Low-level output voltage	V _{CC} = MIN,	VIII = 2 V	IOL = 4 mA		0.25	0.4		0.25	0.4	
			VIH 2 V	IOL = 8 mA					0.35	0.5	٧
t _l	Input current at maximum input voltage	V _{CC} = MAX,	V ₁ = 5.5 V				0.1			0.1	mA
ΉΗ	High-level input current	V _{CC} = MAX,	V ₁ = 2.7 V		_		20			20	μА
IIL	Low-level input current	VCC = MAX,	V _I = 0.4 V		_		-0.36			-0.36	mA
ICCH	Supply current, outputs high	VCC = MAX,	All inputs at C) V	h	0.7	1.4		0.7	1.4	mA
ICCL	Supply current, outputs low	V _{CC} = MAX,	All inputs at 4	1.5 V		1.8	3.3		1.8	3.3	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

, PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output	CL = 15 pF, RL = 2 kΩ,		17	32	ns
tPHL Propagation delay time, high-to-low-level output	See Note 2		15	28	ns
Tite , output	See Note 2		15		8

NOTE 2: Load circuit and voltage waveforms are shown on page S-88.

PRINTED IN USA

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C

TYPES SN54LS13, SN54LS14, SN74LS13, SN74LS14 SCHMITT-TRIGGER POSITIVE-NAND GATES AND INVERTERS WITH TOTEM-POLE OUTPUTS

BULLETIN NO. DL-S 7412111, MARCH 1974

- Operation from Very Slow Transitions
- Temperature-Compensated Threshold Levels
- Temperature-Compensated Hysteresis, Typically 0.8 V
- High Noise Immunity

description

Each circuit functions as a NAND gate or inverter, but because of the Schmitt action, it has different input threshold levels for positive and negative-going signals. The hysteresis or backlash, which is the difference between the two threshold levels, is typically 800 millivolts.

These circuits are temperature compensated and can be triggered from the slowest of input ramps and still give clean, jitter-free output signals.

schematic (each gate)

SN54LS13...J OR W PACKAGE SN74LS13...J OR N PACKAGE

NC-No internal connection

SN54LS14...J OR W PACKAGE SN74LS14...J OR N PACKAGE

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)													•	•	•	٠	٠	•	٠	•	•	•	٠			٠	/ V
Input voltage	_																										7 V
Operating free-air temperature range	9:	SN	154	4L	S1	3,	SI	N5	541	LS	14													-	–55°C	to	125°C
		SN	174	4L	S1	3.	S	N7	141	LS	14														. 0~	Cto	o 70°C
Storage temperature range												 :												-	-65°C	to	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54LS	,		SN74LS	3'	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	10.411
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH			-400			-400	μA
Low-level output current, IOL			4			8	mA
Operating free-air temperature, TA	-55		125	0		70	°C

TYPES SN54LS13, SN54LS14, SN74LS13, SN74LS14 SCHMITT-TRIGGER POSITIVE-NAND GATES AND INVERTERS WITH TOTEM-POLE OUTPUTS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS†	_	N54LS1 N54LS1	_	ı	N74LS1		UNIT
				MIN	TYP‡	MAX	MIN	TYP‡	MAX	}
V _{T+}	Positive-going threshold voltage	VCC = 5 V		1.5	1.7	2	1.5	1,7	2	V
V _T	Negative-going threshold voltage	V _{CC} = 5 V		0.6	0.9	1,1	0.6	0.9	1.1	V
VT+ - VT-	Hysteresis	V _{CC} = 5 V		0.4	0.8		0.4	0.8		V
VI	Input clamp voltage	VCC = MIN,	I _I = -18 mA			-1.5			-1.5	V
v _{он}	High-level output voltage	V _{CC} = MIN, V _I = 0.6 V	I _{OH} = -400 μA,	2.5	3.4		2.7	3.4		٧
VOL	Low-level output voltage	V _{CC} = MIN,	IOL = 4 mA		0.25	0.4		0.25	0.4	>
		V _I = 2 V	IOL = 8 mA					0.35	0.5	ľ
I _{T+}	Input current at positive-going threshold	V _{CC} = 5 V,	VI = VT+		-0.14			-0.14		mA
I _T	Input current at negative-going threshold	V _{CC} = 5 V,	VI = VT-		-0.18			-0.18		mA
t _l	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V			0.1			0.1	mA
<u>11H</u>	High-level input current	VCC = MAX,	V _I = 2.7 V			20			20	μΑ
կլ	Low-level input current	VCC = MAX,	V _I = 0.4 V			-0.4			-0.4	mA
los	Short-circuit output current §	V _{CC} = MAX		-6		-40	-5		-42	mA
loou	Supply current, all outputs high	V _{CC} = MAX,	'LS13		2.9	6		2.9	6	
ІССН	Supply Carrent, an Sutputs nigh	V _I = 0 V	'LS14		8.6	16		8.6	16	mA
loo	Supply current, all outputs low	V _{CC} = MAX,	'LS13		4.1	7		4.1	7	
CCL	Supply culterit, an outputs low	V _I = 4.5 V	'LS14		12	21		12	21	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

	PARAMETER	TEST CONDITIONS		'LS13			'LS14		UNIT
	- ANAMEIEN	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
tPL	H Propagation delay time, low-to-high-level output	CL = 15 pF,		15	22		15	22	ns
tPH	Propagation delay time, high-to-low-level output	Ř∟=2kΩ		18	27		15	22	ns

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

VOLTAGE WAVEFORMS

NOTES: A. The input waveform is supplied by a generator with the following characteristics:

- $Z_{\rm out}$ = 50 Ω and PRR < 1 MHz, $t_{\rm f}$ < 15 ns, $t_{\rm f}$ < 6 ns.
- B. C_L includes probe and jig capacitance.
- C. All diodes are 1N916 or 1N3064.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

TYPES SN54LS13, SN54LS14, SN74LS13, SN74LS14 SCHMITT-TRIGGER POSITIVE-NAND GATES AND INVERTERS WITH TOTEM-POLE OUTPUTS

TYPICAL CHARACTERISTICS†

1.2

V_I-Input Voltage-V

1.6

0

0

†Data for temperatures below 0°C and above 70°C and supply voltages below 4.75 V and above 5.25 are applicable for SN54LS13, SN54LS14, and SN54LS132 only.

TYPICAL APPLICATION DATA

PULSE STRETCHER

TYPES SN54LS26, SN74LS26 QUADRUPLE 2-INPUT HIGH-VOLTAGE INTERFACE POSITIVE-NAND GATES

BULLETIN NO. DL S 7412084, MARCH 1974

Functionally and Mechanically Identical to SN5426/SN7426

schematic (each gate)

SN54LS26...J OR W PACKAGE SN74LS26...J OR N PACKAGE (TOP VIEW)

Resistor values shown are nominal and in ohms.

recommended operating conditions

	S	N54LS2	26	S	N74LS2	26	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	Civil
Supply voitage, V _{CC} (see Note 1)	4.5	5	5.5	4.75	5	5.25	٧
High-level output voltage, VOH			15			15	V
Low-level output current, IOL			4			8	mA
Operating free-sir temperature, TA	-55		125	0		70	°C

NOTE 1: Voltage values are with respect to network ground terminal.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				-	S	N54LS2	26	S	N74LS2	:6	UNIT
	PARAMETER	TE	ST CONDITIONS	•	MIN	TYP‡	MAX	MIN	TYP‡	MAX	CIVIT
VIH	High-level input voltage				2			2			v
VIL	Low-level input voltage						0.7			0.8	٧
VI	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	٧
			11 -11 may	V _{OH} = 12 V			50			50	μА
ЮН	High-level output current	V _{CC} = MIN,	VIL = VIL max	V _{OH} = 15 V			1			1	mA
l			V - 0V	IOL = 4 mA		0.25	0.4		0.25	0.4	v
VOL	Low-level output voltage	V _{CC} = MIN,	V _{IH} = 2 V	IOL = 8 mA					0.35	0.5	<u></u>
11	Input current at maximum input voltage	VCC = MAX,	V _I = 7 V				0.1			0.1	mA
1 _{IH}	High-level input current	V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μА
11L	Low-level input current	V _{CC} = MAX,	V ₁ = 0.4 V				-0.36			-0.36	mA
	Supply current, outputs high	V _{CC} = MAX,	All inputs at 0 V			0.8	1.6		8.0	1.6	mA
	Supply current, outputs low	V _{CC} = MAX,	All inputs at 4.5	V		2.4	4.4		2.4	4.4	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tpLH Propagation delay time, low-to-high-level output	C _L =15 pF, R _L =2 kΩ,		17	32	ns
tpHL Propagation delay time, high-to-low-level output	See Note 2		15	28	ns

NOTE 2: Load circuit and voltage waveforms are shown on page S-88.

PRINTED IN U.S.A.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

TYPES SN54S32, SN74S32 QUADRUPLE 2-INPUT POSITIVE-OR GATES

BULLETIN NO. DL-S 7412079, MARCH 1974

Resistor values shown are nominal and in ohms.

SN54S32...J OR W PACKAGE SN74S32 . . . J OR N PACKAGE (TOP VIEW)

recommended operating conditions

		SN54S32			SN74S32			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, V _{CC} (see Note 1)	4.5	5	5.5	4.75	5	5.25	v	
High-level output current, IOH			-1			-1	mA	
Low-level output current, IOL			20	_	_	20	mA	
Operating free-air temperature, TA	-55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITION	st	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage			2			v
VIL	Low-level input voltage					0.8	V
V _I	Input clamp voltage	VCC = MIN, II = -18 mA			_	-1.2	V
VOH	High-level output voltage	VCC = MIN, VIH = 2 V,	SN54S32	2.5	3.4		<u> </u>
топ		IOH = -1 mA	SN74S32	2.7	3.4		V
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V, I _{OL} = 20 mA				0.5	v
II	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V				1	mA
Ιн	High-level input current	V _{CC} = MAX, V ₁ = 2.7 V				50	μА
IIL	Low-level input current	V _{CC} = MAX, V ₁ = 0.5 V				-2	mA
los	Short-circuit output current §	V _{CC} = MAX		-40		-100	mA
ІССН	Supply current, all outputs high	V _{CC} = MAX			18	32	mA
ICCL	Supply current, all outputs low	V _{CC} = MAX			38	68	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CO	ONDITIONS	MIN	TYP	MAX	UNIT
tPLH F	Propagation delay time, low-to-high-level output		CL = 15 pF		4	7	
1 211		R _L = 280 Ω,	C _L = 50 pF		5		ns
TPHL F	Propagation delay time, high-to-low-level output	See Note 2	CL = 15 pF		4	7	
_ nL '			CL = 50 pF		5.5		ns

NOTES: 1. All voltage values are with respect to network ground terminal.

TENTATIVE DATA SHEET

S-54

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25^{\circ}\text{C}$.

Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

^{2.} Load circuit and voltage waveforms are shown on page S-87.

TTL SSI

TYPES SN54S37, SN54S38, SN74S37, SN74S38 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

BULLETIN NO. DL-S 7412081, MARCH 1974

- 'S37 has active pullups
- 'S38 has open-collector outputs

schematics (each gate)

SN54S37, SN54S38 . . . J OR W PACKAGE SN74S37, SN74S38 . . . J OR N PACKAGE (TOP VIEW)

Resistor values shown are nominal and in ohms.

recommended operating conditions

		SN54S37			SN54S38		SN74S37			SN74S38			TINU
	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	U.VI.
Supply voltage, VCC (see Note 1)	4.5	5	5.5	4.5	5	5.5	4.75	5	5.25	4.75	5	5.25	٧
High-level output voltage, VOH						5.5						5.5	٧
High-level output current, IOH			-3						-3				mA
Low-level output current, IOL			60			60			60			60	mA
Operating free-air temperature	-55		125	-55		125	0		70	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		I				'S37			'\$38		UNIT
	PARAMETER	TE	ST CONDITIO	ons	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage			<u> </u>	2			2			٧
VIL	Low-level input voltage						0.8			0:8	V
V _I	Input clamp voltage	VCC = MIN,	I _I = -18 mA				-1.2			-1.2	V
		V _{CC} = MIN,	V _{IL} = 0.8 V,	SN54S37	2.5	3.4					v
VOH	High-level output voltage	I _{OH} = -3 mA		SN74S37	2.7	3.4					
ЮН	High-level output current	VCC = MIN,	V _{IL} = 0.8 V,	V _{OH} = 5.5 V						250	μА
VOL	Low-level output voltage	VCC = MIN,	V _{IH} = 2 V,	IOL = 60 mA			0.5			0.5	V
l ₁	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
ЧН	High-level input current	VCC = MAX,	V ₁ = 2.7 V				100			100	μΑ
TIL.	Low-level input current	VCC = MAX,	V _I = 0.5 V				-4			-4	mA
los	Short-circuit output current §	V _{CC} = MAX			-50		-225				mA
Іссн	Supply current, all outputs high	VCC = MAX				20	36		20	36	mA
ICCL	Supply current, all outputs low	VCC = MAX				46	80		46	80	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

		'S37				'S38		UNIT		
PARAMETER	TEST CONDITIONS		MIN	NOM	MAX	MIN	NOM	MAX	וואטן	
December delegation law to high level queent	R _L = 93 Ω, See Note 2	CL = 15 pF		4	6.5		6.5	10	Ī.,	
tpLH Propagation delay time, low-to-high-level output		RL = 93 Ω,	CL = 50 pF		6			9		ns
					6.5	10				
tPHL Propagation delay time, high-to-low-level output			C _L = 50 pF		6			8.5		ns

NOTES: 1. All voltage values are with respect to network ground terminal.

TENTATIVE DATA SHEET

374

PRINTED IN U.S.A.

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25 °C. §Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

^{2.} Load circuit and voltage waveforms are shown on page S-87.

TYPES SN54LS107, SN74LS107 DUAL J-K NEGATIVE-EDGE-TRIGGERED FLIP-FLOPS

BULLETIN NO. DL-S 7412096, MARCH 1974

Functionally and Mechanically Equivalent to SN54107/SN74107 Master-Slave Flip-Flops

SN54LS107...J OR W PACKAGE SN74LS107...J OR N PACKAGE (TOP VIEW)

functional block diagram (each flip-flop)

description

These monolithic edge-triggered dual J-K flip-flops feature individual J, K, clock, and clear inputs to each flip-flop. A low logic level at the clear input resets the Q output to a low level regardless of the levels at the other inputs. With clear inactive (high), a high level at the clock input enables the J and K inputs and data will be accepted. The logic levels at the J and K inputs may be allowed to change when the clock pulse is high and the bistable will perform according to the function table, as long as minimum setup and hold times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse.

FUNCTION TABLE (EACH FLIP-FLOP)

	INPUTS	3		OUT	PUTS
CLEAR	CLOCK	J	K	Q	Q
L	X	Х	×	L	Н
н	1	L	L	Q ₀	$\bar{\mathbf{Q}}_{0}$
Н	ţ	Н	L	H	Ľ
н	ţ	L	н	L	н
Н	‡	н	н	TOG	GLE
н	н	Х	X	Q ₀	$\overline{\mathbf{Q}}_{0}$

- H = high level (steady state)
- L = low level (steady state)
- X = irrelevant
- 1 = transition from high to low level
- Q₀ = the level of Q before the indicated input conditions were established

TOGGLE: Each output changes to the complement of its previous level on each 1 clock transition.

recommended operating conditions

		SI	N54LS1	07	SI	07	UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	CIVIT
Supply voltage, V _{CC} (see Note 1)		4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH				-400			-400	μА
Low-level output current, IOL				4			8	mA
Clock frequency, f _{clock}		0		30	0		30	MHz
Pulse width, tw	Clock high	20			20			
Foise Widdi, tw	Clear low	25			25			ns
Setup time, t _{setup}		20	ļ		20 ‡			ns
Hold time, thold		0.	Į .		0.1			ns
Operating free-air temperature, TA		-55		125	0		70	°C

The arrow indicates that the falling edge of the clock pulse is used for reference.

NOTE 1: Voltage values are with respect to network ground terminal.

TYPES SN54LS107, SN74LS107 DUAL J-K NEGATIVE-EDGE-TRIGGERED FLIP-FLOPS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

						S	N54LS1	07	S	07	UNIT	
	PARAMETER		TES	T CONDITIONS	ξŤ	MIN	TYP‡	MAX	MIN	TYP‡	MAX	GNII
VIH	High-level input vol	Itage				2			2			٧
VIL	Low-level input vol							0.7			0.8	V
VI	Input clamp voltage		V _{CC} = MIN,	I ₁ = -18 mA				-1.5			-1.5	v
	High-level output v		V _{CC} = MIN,			2.5	3.4		2.7	3.4		v
			VCC = MIN,		IOL = 4 mA		0.25	0.4		0,25	0.4	V
VOL	Low-level output v	oltage	VIL = VIL max	***	IOL = 8 mA					0.35	0.5	
	Input current	J or K						0.1			0.1	
l _L	at maximum	Clear	VCC = MAX,	V1 = 7 V				0.3			0.3	mA
''	input voltage	Clock	1 00	•				0.4			0.4	
	III DEC CO. III GO	J or K						20			20	1
Ιн	High-level	Clear	V _{CC} = MAX,	V ₁ = 2.7 V				60			60	μΑ
'IH	input current	Clock	1	•				80			80	
		J or K						-0.36			-0.36	
1	Low-level	Clear	VCC = MAX,	V _I = 0.4 V				-0.8			-0.8	mA
ΊL	input current	Clock	1	•				-0.72			-0.72	
los	Short-circuit outpu		V _{CC} = MAX			-6		-40	-5		-42	mA
ICC	Supply current		VCC = MAX,	See Note 2		Т	4	.8		4	8	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax	Maximum clock frequency		30	45		MHz
	Propagation delay time, low-to-high-level	7,		11	20	ns
^t PLH		$C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega, \text{ See Note 3}$				<u> </u>
	Propagation delay time, high-to-low-level			15	30	ns
TPHL	output from clear or clock					1

NOTE 3: Load circuit and voltage waveforms are shown on page S-88.

schematics of inputs and outputs

PRINTED IN U.S.A.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

Not more than one output should be shorted at a time.

NOTE 2: ICC is measured with outputs open, first with all inputs grounded, and second with J and clear at 4.5 V, K grounded, and clock at a momentary 4.5 V then grounded.

TTL

TYPES SN54LS122, SN54LS123, SN74LS122, SN74LS123 SINGLE AND DUAL RETRIGGERABLE MONOSTABLE MULTIVIBRATORS WITH CLEAR

BULLETIN NO. DL-S 7412113, MARCH 1974

- Functionally and Mechanically Identical to SN54122/SN74122 and SN54123/SN74123
- Retriggerable for Very Long Output Pulses, Up to 100% Duty Cycle
- Overriding Clear Terminates Output Pulse
- Low Power Dissipation:

'LS122 . . . 30 mW Typical 'LS123 . . . 60 mW Typical

'LS122 FUNCTION TABLE (SEE NOTE 1)

'LS123 FUNCTION TABLE (SEE NOTE 1)

	INP	UTS			CUT	PUTS					
CLEAR	A1	A2	B1	B2	a	ā					
L	X	X	Х	Х	L	н					
×	н	н	X	×	L	н					
×	x	х	L	×	L	н					
×	х	X	X	L	L	- н					
×	L	X	н	н	L	н					
н	L	X	t	н	Л	ប					
н	L	X	Н	t	л	ប					
н	х	L	н	н	L	н					
н	х	L	†	н	π	υ					
н	x	L	н	t	л	ប					
н	н	Į.	н	н	v	ប					
н	1	ı	н	н	л	บ					
н	1	н	н	н	л	ช					
t	L	х	н	н	v	υ					
_ †	x	L	н	н	7	Մ					

(022.11012.17											
INP	UTS	OUTPUTS									
CLEAR	A	В	a	ä							
L	Х	х	L	Н							
×	н	X	L	н							
x	х	L	L	н							
н	L	1	v	U							
Н	1	н	π	v							
1 1	L	н	J.	٦Γ							

description

S-58

The 'LS122 and 'LS123 multivibrators feature d-c triggering from gated low-level-active (A) and highlevel-active (B) inputs, and also provide overriding direct clear inputs. Complementary outputs are provided. The retrigger capability simplifies the generation of output pulses of extremely long duration. By triggering the input before the output pulse is terminated, the output pulse may be extended. The overriding clear capability permits any output pulse to be terminated at a predetermined time independently of the timing components R and C. Enough Schmitt hysteresis is provided to ensure jitter-free triggering from the B inputs with transition rates as slow as 1 volt per second. Figure 1 illustrates triggering the one-shot with the high-level-active (B) inputs.

- Compensated for V_{CC} and Temperature Variations
- D-C Triggered from Active-High or Active-Low Gated Logic Inputs
- 'LS122 Has Internal 10-kΩ Timing Resistor
- Diode-Clamped Inputs
- Compatible for Use with TTL or DTL

SN54LS122...J OR W PACKAGE SN74LS122...J OR N PACKAGE (TOP VIEW) (SEE NOTES 2 THRU 5)

NC-No internal connection.

SN54LS123...J OR W PACKAGE SN74LS123...J OR N PACKAGE (TOP VIEW) (SEE NOTES 2 THRU 5)

NOTES: 1. H = high level (steady state), L = low level (steady state), f = transition from low to high level, 1 = transition from high to low level, \(\Omega \) = one high-level pulse, \(\Omega \) = one low-level pulse, \(\X = \) irrelevant (any input, including transitions).

- 2. To use the internal timing resistor of 'LS122, connect $\rm R_{int}$ to $\rm V_{CC}$
- 3. An external timing capacitor may be connected between Coxt and Rext/Coxt (positive).
- 4. For accurate repeatable pulse widths, connect an external resistor between Rext/Cext and VCC with Rint open circuited.
- 5. To obtain variable pulse widths, connect external variable resistance between Rint or Roxt/Cext and VCC.

TYPES SN54LS122, SN54LS123, SN74LS122, SN74LS123 SINGLE AND DUAL RETRIGGERABLE MONOSTABLE MULTIVIBRATORS WITH CLEAR

NOTE: Retrigger pulse must not start before 0.22 Cext (in picofarads) nanoseconds after previous trigger pulse.

FIGURE 1-TYPICAL INPUT/OUTPUT PULSES

†These values of resistance exceed the maximum recommended for use over the full temperature range of the SN54LS' circuits.

These monostables are designed to provide the system designer with complete flexibility in controlling the pulse width, either to lengthen the pulse by retriggering, or to shorten by clearing. The 'LS122 has an internal timing resistor which allows the circuit to be operated with only an external capacitor, if so desired.

The output pulse is primarily a function of the external capacitor and resistor. For Cext > 1000 pF, the output pulse width (tw) is defined as:

where

174

RT is in $k\Omega$ (either internal or external timing resistor), Cext is in pF,

tw is in ns.

For pulse widths when Cext ≤ 1000 pF, see Figure 2.

schematics of inputs and outputs

TYPES SN54LS122, SN54LS123, SN74LS122, SN74LS123 SINGLE AND DUAL RETRIGGERABLE MONOSTABLE MULTIVIBRATORS WITH CLEAR

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)			. .	7V
Input voltage				7V
Operating free-air temperature range	SN54LS122, SN54LS123			-55°C to 125°C
•	SN74LS122, SN74LS123	·	. .	0°C to 70°C
Storage temperature range				-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		1	N54LS1 N54LS1			N74LS1 N74LS1		UNIT
<u> </u>		MIN	NOM	MAX	MIN	NOM	MAX	1
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-400			-400	μА
Low-level output current, IOL				4			8	mA
	A or B inputs high	40			40	-		
Pulse width, t _W	A or B inputs low	40			40			ns
	Clear low	40			40			1
External timing resistance, Rext		5		225	5		360	kΩ
External capacitance, Cext		No	restrict	ion	No	restrict	ion	
Wiring capacitance at Rext/Cext terminal				50			50	pF
Operating free-air temperature, TA		-55		125	0		70	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS [†]				SN54LS122 SN54LS123			SN74LS122 SN74LS123		
					MIN	TYP‡	MAX	MIN	TYP‡	MAX	1
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage				1		0.7			0.8	V
VL	Input clamp voltage	V _{CC} = MIN,	I _I = -18 m/	· -			-1.5	_		-1.5	V
Vон	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	••••	ΙμΑ	2.5	3.5		2.7	3.5		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max		IOL = 4 mA		0.25	0.4		0.25	0.4	v
I _I	Input current at maximum input voltage	V _{CC} = MAX,	V ₁ = 7 V	, , , ,			0.1			0.1	mA
Ιн	High-level input current	VCC = MAX,	V _I = 2.7 V			-	20			20	μА
111	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V		1		-0.4			-0.4	mA
los	Short-circuit output current §	V _{CC} = MAX			-15		-100	-15		-100	mA
Icc	Supply current (quiescent or triggered)	V _{CC} = MAX,	See Note 2	'LS122 'LS123	-	6 12	11		6 12	11 20	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

All typical values are at V_{CC} = 5 V, T_A = 25°C.

Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, ICC is measured after a momentary ground, then 4.5 V, is applied to clock.

TYPES SN54LS122, SN54LS123, SN74LS122, SN74LS123 SINGLE AND DUAL RETRIGGERABLE MONOSTABLE MULTIVIBRATORS WITH CLEAR

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
	Α	a				22	33	ns
^t PLH	В	В				29	44	113
	A		B - 51:0		30	45		
†PHL	В	1 °	C _{ext} = 0, C _L = 15 pF,	R _{ext} = 5 kΩ, R _I = 2 kΩ		37	56	nş
tPHL.		Q	CL = 15 pr,	HF = 5 K75		18	27	
tPLH .	Clear	ā	1			30	45	ns
twQ (min)	A or B	Q]			45	68	ns
t _w Q	A or B	a	C _{ext} = 1000 pF, C _L = 15 pF,	, R _{ext} = 10 kΩ, R _L = 2 kΩ	3.08	3.42	3.76	μs

[¶] tpLH ≡ propagation delay time, low-to-high-level output tpHL ≡ propagation delay time, high-to-low-level output

TYPICAL APPLICATION DATA

TIMING COMPONENT CONNECTIONS

twQ ≡ width of pulse at output Q

TYPES SN54LS124, SN54S124, SN74LS124, SN74S124 DUAL VOLTAGE-CONTROLLED OSCILLATORS

BULLETIN NO. DL-S 7412025, MARCH 1974

- Two Fully Independent VCO's in a 16-Pin Package
- Output Frequency Set by Single External Component:

Crystal for High-Stability Fixed-Frequency Operation

Capacitor for Fixed- or Variable-Frequency Operation

- Separate Supply Voltage Pins for Isolation of Inputs and Oscillators from Logic Circuitry
- Highly Stable Operation over Specified Temperature and/or Supply Voltage Ranges

	GUARANTEED	TYPICAL	TYPICAL
TYPE	FREQUENCY	f _{max}	POWER
1 5124	RANGE 1 Hz to 35 MHz	50 MHz	DISSIPATION 110 mW
	1 Hz to 60 MHz	85 MHz	525 mW

SN54LS124, SN54S124...J OR W PACKAGE SN74LS124, SN74S124...J OR N PACKAGE (TOP VIEW)

input is high, the output is high.

description

The 'LS124 and 'S124 feature two fully independent voltage-controlled oscillators (VCO) in a single monolithic chip. The output frequency of each VCO is established by a single external component, either a capacitor or a crystal, in combination with two voltage-sensitive inputs, one for frequency range and one for frequency control, that can be used to vary the output frequency as shown under typical characteristics for the 'S124. The concept also applies for the 'LS124. An enable input is provided that can be used to start or stop the output pulses when it is low or high, respectively. The internal oscillator of the 'LS124 runs continuously even while the output is disabled, while the internal oscillator of the 'S124 is itself started and stopped by the enable input. A pulse synchronizer ensures that the first output pulse is neither clipped nor extended. Duty cycle of the output pulses is fixed at approximately 50 percent.

The highly stable oscillator can be set to operate at any frequency between 0.12 Hz and 50 MHz typically ('LS124) or 0.12 hertz and 85 megahertz typically ('S124). Under the conditions used in Figure 1, the output frequency can be approximated as follows:

$$f_0 = \frac{500}{C_{ext}}$$

where: fo = output frequency in megahertz

Cext = external capacitance in picofarads

The enable input and the buffered output operate at standard Schottky-clamped TTL levels. The enable input is one standard load in each series. Although these devices can operate from a single 5-volt supply, separate supply-voltage and ground pins are provided for the digital logic and for the oscillator/range control circuits so that effective isolation can be accomplished in the system.

The SN54LS124 and SN54S124 are characterized for operation over the full military temperature range of -55°C to 125°C; the SN74LS124 and SN74S124 are characterized for operation in 0°C to 70°C industrial environments.

TYPES SN54LS124, SN74LS124 DUAL VOLTAGE-CONTROLLED OSCILLATORS

recommended operating conditions

	SI	24	SI	דואט			
	MIN	NOM	MAX	MIN	NOM	MAX	Civi
Supply voltage, VCC (see Note 1)	4.5	5	5.5	4.75	5	5.25	٧
Input voltage at frequency control or range input, V ₁ (freq) or V ₁ (rng)	0		5	0		5	V
High-level output current, IOH			-1.2		_	-1.2	mA
Low-level output current, IQL			12			:24	mA
	1			1			Hz
Output frequency (enabled), fo			35			35	MHz
Operating free-air temperature, TA	-55		125	0		70	°c

NOTE 1: Throughout this data sheet, the symbol V_{CC} is used for the voltage applied to both pins 15 and 16.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

						SI	V54LS1	24	St	174LS1	24	UNIT
	PARAMETE	R	TES	T CONDITIO	NST	MIN	TYP‡	MAX	MIN	TYP‡	MAX	Civil
VIH	High-level input voltage at enable					2			2			٧
VIL	Low-level input voltage at enable							0.7			0.8	٧
Vi	Input clamp volta	ge at enable	VCC = MIN,	I _I = -18 mA				-1.5			-1.5	٧
VOH	High-level output		V _{CC} = MIN, I _{OH} = -1.2 mA	V _{IH} = 2 V,		2.5	3.4		2.7	3.4		٧
VOL	Low-level output	voltage	V _{CC} = MIN, I _{OL} = 20 mA		I _{OL} = 12 mA		0.25	0.4		0.25 0.35	0.4	٧
11	Input current	Freq control or range	V _{CC} = MAX		V _I = 5 V V _I = 1 V		50 10	250 50		50 10	250 50	ıı A
ij	Input current at maximum input voltage	Enable	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
чн	High-level	Enable	V _{CC} = MAX,	V _I = 2.7 V				20			20	μА
11L	Low-level	Enable	V _{CC} = MAX,	V ₁ = 0.5 V				-0.4			-0.4	mA
los	Short-circuit out	put current§	VCC = MAX			-30		-100	-25		-110	mA
¹cc	Supply current, pins 15 and 16	total into	V _{CC} = MAX,	See Note 2			22	37		22	37	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, R_L = 667 Ω , C_L = 45 pF, T_A = 25°C

	PARAMETER		MIN	TYP	MAX	UNIT.
		C _{ext} = 2 pF V((freq) = 4 V, V((rng) = 1 V	35	50		MHz
fo	Output frequency	C _{ext} = 2 pF V _{i(freq)} = 1 V, V _{i(rng)} = 5 V	11	20		
	Output duty cycle	C _{ext} = 8.3 pF to 500 μF		50%		
tPHL	Propagation dalay time,	f _o > 1 Hz		30+*		ns
	high-to-low-level output from enable					

^{*}The delay will typically be 30 ns plus up to one half the period of one cycle (i.e. 30 ns to 30 ns + $\frac{5 \times 10^8}{f_0(Hz)}$ ns) depending upon the timing of the enable pulse with respect to the signal generated by the internal oscillator.

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

NOTE 2: ICC is measured with the outputs disabled and open.

TYPES SN54S124, SN74S124 **DUAL VOLTAGE-CONTROLLED OSCILLATORS**

recommended operating conditions

	SN54S124				UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	UNII
Supply voltage, V _{CC} (see Note 1)	4.5	5	5.5	4.75	5	5.25	V
Input voltage at frequency control or range input, VI(freq) or VI(rng)	1		5	1		5	V
High-level output current, IOH			-1			-1	mA
Low-level output current, IOL			20			20	mA
Outros franciscos (analytical) 6	1			1			Hz
Output frequency (enabled), fo			60			60	MHz
Operating free-air temperature, T _A	-55		125	0		70	°c

NOTE 1: Throughout this data sheet, the symbol V_{CC} is used for the voltage applied to both pins 15 and 16.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CO	OITION	NS [†]	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage at enab	le				2			V
VIL	Low-level input voltage at enab	le						8.0	V
٧ı	Input clamp voltage at enable		VCC = MIN, II = -	18 mA				-1.2	V
Vari	High-level output voltage		VCC = MIN, VIH =	2 V,	SN54S'	2.5	3.4		v
VOН	mightever output voltage		IOH = −1 mA		SN74S'	2.7	3.4		
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = I _{OL} = 20 mA	0.8 V,		Ì		0.5	٧
l _l	Input current	Freq control	V _{CC} = MAX		V ₁ = 5 V		10	50	
''	input current	or range	ACC - IIIVY		V ₁ = 1 V		1	15	μΑ
11	Input current at maximum input voltage	Enable	VCC = MAX, VI = 5	5.5 V				1	mA
ΙΗ	High-level input current	Enable	VCC = MAX, VI = 2	2.7 V .				50	μА
IIL	Low-level input current	Enable	VCC " MAX, VI = 0	.5 V				-2	mA
los	Short-circuit output current §		V _{CC} = MAX			-40		-100	mA
	Supply surrent total into		VCC = MAX, See N	ote 2		1	105	150	
lcc	Supply current, total into pins 15 and 16		V _{CC} = MAX, T _A = See Note 2	125°C,	W package only			110	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, RL = 280 Ω , CL = 15 pF, TA = 25°C

	PARAMETER TEST CONDITIONS						UNIT
f - Output fraguer	Output frequency	C _{ext} = 2 pF	V _{I(freq)} = 4 V, V _{I(rng)} = 1 V		85		MHz
'0) Corpor requestry	Cext - 2 pi	V _{I(freq)} = 1 V, V _{I(rng)} = 5 V	25	40		Wiriz
	Output duty cycle	C _{ext} = 8.3 pF		50%			
	Propagation delay time,	fo = 1 Hz to	20 MHz		1.4		s
tPHL	high-to-low-level output from enable				fo(Hz)		
<u> </u>		f ₀ > 20 MHz			70		ns

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

NOTE 2: ICC is measured with the outputs disabled and open.

TYPES SN54LS124, SN54S124, SN74LS124, SN74S124 DUAL VOLTAGE-CONTROLLED OSCILLATORS

TYPICAL APPLICATION DATA

free-running oscillator

Free-running oscillators can be implemented for most systems by setting the output frequency of the VCO with either a capacitor or a crystal. If excitation is provided with a capacitor the frequency control and/or range inputs can be used to vary the output frequency.

If excited with a crystal, low-frequency response (\leq 1 MHz) can be improved if a relatively small capacitor (5 to 15 pF) is paralleled with the crystal. When operated at the fundamental frequency of a crystal, the frequency control input should be low (\approx 1 V) and the range input should be high (4 V to 5 V) for maximum stability over temperature and supply voltage variations.

phase-locked loops

A basic crystal-controlled phase-locked loop is illustrated in Figure A. This application can be used for implementation of:

- a. A highly stable fixed-frequency clock generator.
- b. A highly stable fixed- or variable-frequency synthesizer.
- c. A highly efficient "slave-clock" system for synchronizing off-card, remote, or data-interfacing clock systems

With fixed division rates for both M and N, the output frequency (f_0) will be stable at $f_0 = \frac{N}{M} f_1$. Obviously, either M or N, or both, could be programmable counters in which case the output frequency (f_0) will be a variable frequency dependent on the instantaneous value of $\frac{N}{M} f_1$.

The crystal-controlled VCO can be operated up to 60 MHz with an accuracy that is dependent on the crystal. At the higher frequencies, response of the phase comparator can become a limiting factor and one of the following approaches may be necessary to extend the operating frequency range.

a. Frequencies $\frac{11}{M}$ and $\frac{1}{N}$ can be divided equally by the same constant (K) also shown in Figure A. The constant can be any value greater than unity (K > 1), and should be selected to yield frequency ranges that can be handled adequately by the phase-comparator and filter. The output frequency (f_O) retains the same relationship as previously explained because now:

$$f_0 = \frac{KN}{KM} f_1 = \frac{N}{M} f_1$$

b. In another method, the comparison of $\frac{f_1}{M}$ and $\frac{f}{N}$ can be performed with either an SN54LS85/SN74LS85 or SN54S85/SN74S85. The resultant A > B and A < B outputs from the 'LS85 or 'S85 permit the detector to be simplified to a charge-pump circuit. See Figure B.

FIGURE A-PHASE-LOCKED LOOP

FIGURE B-HIGH-FREQUENCY PHASE-LOCKED LOOP

TYPES SN54S124, SN74S124 **DUAL VOLTAGE-CONTROLLED OSCILLATORS**

TYPICAL CHARACTERISTICS ('S124 only)

OUTPUT FREQUENCY EXTERNAL CAPACITANCE

FIGURE 1

OUTPUT FREQUENCY

TYPES SN54LS132, SN74LS132 SCHMITT-TRIGGER POSITIVE-NAND GATES WITH TOTEM-POLE OUTPUTS

BULLETIN NO. DL-S 7412112, MARCH 1974

- **Operation from Very Slow Transitions**
- **Temperature-Compensated Threshold Levels**
- Temperature-Compensated Hysteresis, Typically 0.8 V
- **High Noise Immunity**

description

Each circuit functions as a NAND gate, but because of the Schmitt action, it has different input threshold levels for positive- and negative-going signals. The hysteresis or backlash, which is the difference between the two threshold levels, is typically 800 millivolts.

SN54LS132...J OR W PACKAGE SN74LS132...J OR N PACKAGE

These circuits are temperature compensated and can be triggered from the slowest of input ramps and still give clean, jitter-free output signals.

For typical characteristics and typical application data, see the SN54LS13/SN74LS13 data sheet, page S-49.

schematic (each gate)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		
Input voltage		
Operating free-air temperature range	: SN54LS132	
	SN74LS132	
Storage temperature range		

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	s	N54LS1	32	SI	UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	UNII
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			4			8	mA
Operating free-air temperature, TA	-55		125	0		70	°C

TENTATIVE DATA SHEET

TYPES SN54LS132, SN74LS132 SCHMITT-TRIGGER POSITIVE-NAND GATES WITH TOTEM-POLE OUTPUTS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITION	et.	SI	N54LS1:	32	SI				
	PANAMETER	TEST CONDITION		MIN	TYP‡ MAX		MIN	MIN TYP‡		UNIT	
V _{T+}	Positive-going threshold voltage	V _{CC} = 5 V 1		1.5	1.7	2	1.5	1.7	2	V	
V _T _	Negative-going threshold voltage	V _{CC} = 5 V		0.6	0.9	1.1	0.6	0.9	1.1	٧	
V _{T+} - V _{T-}	Hysteresis	V _{CC} = 5 V		0.4	0.8		0.4	0.8		V	
V _I	Input clamp voltage .	V _{CC} = MIN, I ₁ = -18	mA			-1.5			-1.5	V	
Voн	High-level output voltage	V _{CC} = MIN, I _{OH} = -4	400 μA,	2.5	3.4		2.7	3.4		v	
V	1 and the state of	VCC = MIN, IOL = 4	mA		0.25	0.4		0.25	0.4	~	
VOL	Low-level output voltage	V1 = 2 V IOL = 8	mA					0.35	0.5	\ \	
I _{T+}	Input current at positive-going threshold	VCC = 5 V, VI = VT+	+		-0.14			-0.14		mA	
I _T _	Input current at negative-going threshold	VCC = 5 V, VI = VT-	_		-0.18			-0.18		mA	
l _k	Input current at maximum input voltage	VCC = MAX, VI = 7 V				0.1			0.1	mA	
Чн	High-level input current	V _{CC} = MAX, V _I = 2.7	V		_	20			20	μΑ	
hL.	Low-level input current	VCC = MAX, V1 = 0.4	٧			-0.4			-0.4	mA	
los	Short-circuit output current §	VCC = MAX		-6		-40	-5		-42	mA	
^І ССН	Supply current, all outputs high	VCC = MAX, VI = 0 V			5.9	11		5.9	11	mA	
ICCL	Supply current, all outputs low	V _{CC} = MAX, V _I = 4.5	v		8.2	14		8.2	14	mA	

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output	C _L = 15 pF,		15	22	ns
TPHL	Propagation delay time, high-to-low-level output	R _L = 2 kΩ		15	22	กร

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. The input waveform is supplied by a generator with the following characteristics:
 - $Z_{\rm out} = 50~\Omega$ and PRR < 1 MHz, $t_{\rm r}$ < 15 ns, $t_{\rm f}$ < 6 ns.
 - B. CL includes probe and jig capacitance.
 - C. All diodes are 1N916 or 1N3064.

S-68

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

Not more than one output should be shorted at a time.

TTL MSI

TYPES SN54221, SN54LS221, SN74221, SN74LS221 **DUAL MONOSTABLE MULTIVIBRATORS** WITH SCHMITT-TRIGGER INPUTS

BULLETIN NO. DL-S 7412027, MARCH 1974

- SN54221, SN54LS221, SN74221 and SN74LS221 Are Dual Versions of Highly Stable SN54121, SN74121 One-Shots on a Monolithic Chip
- Pulse-Width Variance Is Typically Less than ±0.5% for 98% of the Units
- SN54221 and SN74221 Demonstrate **Electrical and Switching Characteristics** That Are Virtually Identical to the SN54121, SN74121 One-Shots
- Pin-Out Is Identical to the SN54123 SN74123, SN54LS123, SN74LS123
- **Overriding Clear Terminates Output Pulse**

TYPE	TYPICAL POWER DISSIPATION	MAXIMUM QUTPUT PULSE LENGTH
\$N54221	130 mW	21 s
SN74221	130 mW	28 s
SN54LS221	23 mW	49 s
SN74LS221	23 mW	70 s

SN54221, SN54LS221...J OR W PACKAGE SN74221, SN74LS221...J OR N PACKAGE (TOP VIEW)

description

The '221 and 'LS221 are monolithic dual multivibrators with performance characteristics virtually identical to those of the '121. Each multivibrator features a negative-transition-triggered input and a positive-transition-triggered input either of which can be used as an inhibit input.

Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. Schmitt-trigger input circuitry (TTL hysteresis) for B input allows jitter-free triggering from inputs with transition rates as slow as 1 volt/second, providing the circuit with excellent noise immunity of typically 1.2 volts. A high immunity to VCC noise of typically 1.5 volts is also provided by internal latching circuitry.

Once fired, the outputs are independent of further transitions of the A and B inputs and are a function of the timing components, or the output pulses can be terminated by the overriding clear. Input pulses may be of any duration relative to the output pulse. Output pulse length may be varied from 35 nanoseconds to the maximums shown in the above table by choosing appropriate timing components. With $R_{ext} = 2 k\Omega$ and $C_{ext} = 0$, an output pulse of typically 30 nanoseconds is achieved which may be used as a d-c-triggered reset signal. Output rise and fall times are TTL compatible and independent of pulse length. Typical triggering and clearing sequences are illustrated as a part of the switching characteristics waveforms.

width stability is achieved through internal compensation and is virtually independent of VCC and temperature. In most applications, pulse stability will only be limited by the accuracy of external timing components.

Jitter-free operation is maintained over the full temperature and VCC ranges for more than six decades of timing capacitance (10 pF to 10 μ F) and more than one decade of timing resistance (2 k Ω to 30 k Ω for the SN54221, 2 k Ω to 40 k Ω for the SN74221, 2 k Ω to 70 k Ω for the SN54LS221, and 2 $k\Omega$ to 100 $k\Omega$ for the SN74LS221). Throughout these ranges, pulse width is defined by the relationship: $t_{W(out)} = C_{ext}R_{ext}$ $ln2 \approx 0.7$ $C_{ext}R_{ext}$. In circuits where pulse cutoff is not critical, timing capacitance up to 1000 µF and timing resistance as low as 1.4 k Ω may be used. Also, the range of jitter-free output pulse widths is extended if VCC is

FUNCTION TABLE

(EACH MONOSTARI E)

(EMON MONOTHEE)									
IN	INPUTS								
CLEAR	Α	В	Q	ā					
L	х	х	L	Н					
×	н	X.	L	Н					
x	×	L	L	н					
н	L	Ť	ъ.	ľ					
н	1	Н	工	ъ					
Also see description and switching									
characteristics									

H = high level (steady state)

____ one high-level pulse

= low level (steady state) 1 = transition from low to

∵= one low-level pulse

high level

X = irrelevant

transition from high to

low level

TYPES SN54221, SN54LS221, SN74221, SN74LS221 DUAL MONOSTABLE MULTIVIBRATORS WITH SCHMITT-TRIGGER INPUTS

description (continued)

held to 5 volts and free-air temperature is 25°C. Duty cycles as high as 90% are achieved when using maximum recommended R_T. Higher duty cycles are available if a certain amount of pulse-width jitter is allowed.

The variance in output pulse width from device to device is typically less than ±0.5% for given external timing components. An example of this distribution for the '221 is shown in Figure 2. Variations in output pulse width versus supply voltage and temperature for the '221 are shown in Figure 3 and 4, respectively.

Pin assignments for these devices are identical to those of the SN54123/SN74123 or SN54LS123/SN74LS123 so that the '221 or 'LS221 can be substituted for those products in systems not using the retrigger by merely changing the value of R_{ext} and/or C_{ext} .

TIMING COMPONENT CONNECTIONS

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																						7 V	
Input voltage: SN54221, SN74221																						5.5 V	
SN54LS221, SN741	_S2	21																				7 V	
Operating free-air temperature rang																							
	. :	SN	74:	22	1, 5	SN	74 L	.S2	21										()°C	to	70°C	
Storage temperature range																		-6	65°	C t	to	150°C	

NOTE 1: Voltage values are with respect to the network ground terminal.

TYPES SN54221, SN74221 **DUAL MONOSTABLE MULTIVIBRATORS** WITH SCHMITT-TRIGGER INPUTS

recommended operating conditions

			SN5422	1		UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	וואטן
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	·V
High-level output current, IOH				-800			-800	μА
Low-level output current, IOL				16			16	mA
	Schmitt input, B	1			1_			V/s
Rate of rise or fall of input pulse, dv/dt	Logic input, A	1			1			V/μs
	A or B, t _{W(in)}	50			50			l ns
Input pulse width	Clear, tw(clear)	20			20			
Clear-inactive-state satup time, t _{setup}		15			15			ns
External timing resistance, Rext		1.4		30	1.4		40	kΩ
External timing capacitance, Cext		0		1000	0		1000	μF
	R _{ext} = 2 kΩ			67			67	- %
Output duty cycle	Rext = MAX Rext			90			90	<u>l "</u>
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITI	ONS [†]	MIN	TYP‡	MAX	UNIT
V _{T+}	Positive-going threshold voltage at A input	VCC = MIN			1.4	2	>
V _T _	Negative-going threshold voltage at A input	V _{CC} = MIN		0.8	1.4		>
V _{T+}	Positive-going threshold voltage at B input	VCC = MIN			1.55	2	>
VT-	Negative-going threshold voltage at B input	V _{CC} = MIN		0.8	1.35		>
Vi	Input clamp voltage	V _{CC} = MIN, I _I = -12 mA				-1.5	>
VOH	High-level output voltage	V _{CC} = MIN, I _{OH} = -800	μΑ	2.4	3.4		>
VOL	Low-level output voltage	VCC = MIN, IOL = 16 mA	·		0.2	0.4	v
11	Input current at maximum input voltage	VCC = MAX, V1 = 5.5 V				1	mA
	III de ferrel la contracta de	VMAY V24V	Input A			40	μА
ЧН	High-level input current	VCC = MAX, VI = 2.4 V	Input B, Clear			80	μ
	4 - 4 - 4 - 4	VMAY V04V	Input A			-1.6	mA
11L	Low-level input current	V _{CC} = MAX, V _I = 0.4 V	Input B,Clear			-3.2	IIIA
Ī			SN54221	-20		-55	
los	Short-circuit output current §	VCC = MAX	SN74221	-18		-55	mA
			Quiescent		26	50	
1cc	Supply current	VCC = MAX	Triggered		46	80	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	т	EST CONDITIONS	MIN	TYP	MAX	UNIT
	A	a				45	70	ns
tPLH	В	Q	7			35	55	113
	Α	ā	1	C _{ext} = 80 pF, R _{ext} = 2 kΩ		50	80	
^t PHL	8	ā	7			40	65	ns
tPHL.	Clear	a	- C _L = 15 pF, - R _L = 400 Ω,				27	ns
†PLH	Clear	ă	See Figure 1				40	ns
			and Note 2	$C_{\text{ext}} = 80 \text{ pF}, R_{\text{ext}} = 2 \text{ k}\Omega$	70	110	150	
		_ =	3.10 .101.0 2	$C_{ext} = 0$, $R_{ext} = 2 k\Omega$	20	30	50	ns
^t w(out)	A or B	Q or Q	1	C _{ext} = 100 pF,R _{ext} = 10 k		700	750	<u> </u>
		i		$C_{ext} = 1 \mu F$, $R_{ext} = 10 k$		7	7.5	ms

 $[\]P_{\mathsf{tp}_\mathsf{LH}} \equiv \mathsf{Propagation} \; \mathsf{delay} \; \mathsf{time}, \; \mathsf{low-to-high-level} \; \mathsf{output}$

174

t_{w(out)} ≡ Output pulse width
NOTE 2: Load circuit is shown on page S-87.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

tpHL = Propagation delay time, high-to-low-level output

TYPES SN54LS221, SN74LS221 DUAL MONOSTABLE MULTIVIBRATORS WITH SCHMITT-TRIGGER INPUTS

recommended operating conditions

	-	SI	N54LS2	LS221 SN74LS221			21	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	v
High-level output current, IOH				-400			-400	μА
Low-level output current, IOL				4			8	mA
Rate of rise or fall of input pulse, dv/dt	Schmitt, B	1			1			V/s
Hate of fise of fall of hiput pulse, av/at	Logic input, A	1	-		1			V/µs
Input pulse width	A or B, tw(in)	40			40		_	
	Clear, tw(clear)	40			40			ns
Clear-inactive-state setup time, t _{setup}		15			15			ns
External timing resistance, Rext		1.4		70	1.4	-	100	kΩ
External timing capacitance, Cext		0		1000	0		1000	μF
Output duty cycle	R _T = 2 kΩ			67			67	
	RT = MAX Rext			90			90	%
Operating free-air temperature, TA	-	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		75	ST CONDITIONS	+	SI	V54LS2	21	SI	N74LS2	21	
	FARAMETER		l E			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
V _{T+}	Positive-going threshold voltage at A input		VCC = MIN				1.0	2		1.0	2	٧
v _T _	Negative-going threshold voltage at A input		V _{CC} = MIN			0.7	1.0		0.8	1.0		V
V _{T+}	Positive=going threshold voltage at B input		V _{CC} = MIN				1.0	2		1.0	2	٧
V _T _	Negative-going threshold voltage at B input		V _{CC} = MIN			0.7	0.9		0.8	0.9	_	٧
٧	Input clamp voltage		VCC = MIN,	I _I = -18 mA				-1.5			-1.5	v
VOH	High-level output voltage	,	V _{CC} = MIN,	I _{OH} = -400 μA		2.5	3.5	-	2.7	3.5		V
VOL	Low-level output voltage		VCC = MIN		IOL = 4 mA		0.25	0.4		0.25	0.4	.,
,OL			AGG - MIIIA		IOL = 8 mA					0.35	0.5	٧
-	Input current at maximum input voltage		V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
Ιн	High-level input current		VCC = MAX,	V _I = 2.7 V				20			20	μА
		Input A						-0.36			-0.36	
11L	Low-level input current	Input B	VCC " MAX,	V _I = 0.4 V				-0.44			-0.44	mA
		Clear						-0.54			-0.54	
los	Short-circuit output curre	ent§	VCC = MAX			-15		-100	-15		-100	mA
Icc	Supply current		V _{CC} = MAX		Quiescent		4.7	11		4.7	11	4
-00	- Coppiy Carrollt		VCC - WAA		Triggered		19	27		19	27	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡All typical values are at V_{CC} = 5 V, T_A = 25°C §Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

TYPES SN54LS221, SN74LS221 DUAL MONOSTABLE MULTIVIBRATORS WITH SCHMITT-TRIGGER INPUTS

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	T	EST CONDITIONS	MIN	TYP	MAX	UNIT
	A	Q			1	45	70	ns
tPLH	В	a	7] [35	55	
	A	ā	7	00.5 0 -010		50	80	ns
^t PHL	В	ā		$C_{\text{ext}} = 80 \text{ pF}, R_{\text{ext}} = 2 \text{ k}\Omega$		40	65	113
tPHL	Clear	a	CL = 15 pF,				27	ns
tPLH	Clear	ā	R _L = 2 kΩ,		<u> </u>		40	ns
1 4.11			See Figure 1 and Note 3	$C_{ext} = 80 pF$, $R_{ext} = 2 k\Omega$	70	110	150	1
			and More 2	$C_{ext} = 0$, $R_{ext} = 2 k\Omega$	20	30	50	ns
tw(out)	A or B	Q or Q		C _{ext} = 100 pF,R _{ext} = 10 kΩ	650	700	750]
				C _{èxt} = 1 μF, R _{ext} = 10 kΩ		7	7.5	ms

 $[\]P_{\mbox{tpLH}} \equiv \mbox{Propagation delay time, low-to-high-level output $t_{\mbox{pHL}} \equiv \mbox{Propagation delay time, high-to-low-level output $t_{\mbox{w(out)}} \equiv \mbox{Output pulse width}$

NOTE 3: Load circuit is shown on page S-88.

TYPES SN54221, SN54LS221, SN74221, SN74LS221 DUAL MONOSTABLE MULTIVIBRATORS WITH SCHMITT-TRIGGER INPUTS

FIGURE 1-SWITCHING CHARACTERISTICS

TYPES SN54221, SN54LS221, SN74221, SN74LS221 DUAL MONOSTABLE MULTIVIBRATORS WITH SCHMITT-TRIGGER INPUTS

PARAMETER MEASUREMENT INFORMATION

NOTES: A. Input pulses are supplied by generators having the following characteristics: PRR < 1 MHz, Z_{out} ≈ 50 Ω; for '221, t_r < 7 ns, t_f < 7 ns, for 'LS221, t_r < 15 ns, t_f < 6 ns.

B. All measurements are made between the 1.5 V points of the indicated transitions for the '221 or between the 1.3 V points for the 'LS221.

FIGURE 1-SWITCHING CHARACTERISTICS (CONTINUED)

S-76

TYPES SN54221, SN74221 DUAL MONOSTABLE MULTIVIBRATORS WITH SCHMITT-TRIGGER INPUTS

TYPICAL CHARACTERISTICS ('221 ONLY)†

NOTE 4: These values of resistance exceed the maximum recommended for use over the full temperature range of the SN54221.

†Data for temperatures below 0°C and above 70°C, and for supply voltages below 4.75 V and above 5.25 V are applicable for the SN54221 only.

FOR SYMMETRICAL GENERATION OF COMPLEMENTARY TTL SIGNALS

- **Switching Time Skew of the Complementary** Outputs is Typically 0.5 ns . . . Guaranteed to be No More than 3 ns at Rated Loading
- Full Fan-Out to 20 High-Level and 10 Low-Level 54/74 Loads
- **Active Pull-Down Provides Square Transfer Characteristic**

description

The SN54265 and SN74265 circuits feature complementary outputs from each logic element, which have virtually symmetrical switching time delays from the triggering input. They are designed specifically for use in applications such as:

- Symmetrical clock/clock generators
- Complementary input circuit for decoders and code converters
- Switch debouncing
- Differential line driver

Examples of these four functions are illustrated in the typical application data.

The SN54265 is characterized for operation over the full military temperature range of -55°C to 125°C; the SN74265 is characterized for operation from 0°C to 70°C.

SN54265...J OR W PACKAGE SN74265...J OR N PACKAGE (TOP VIEW)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)													. 71	,
Input voltage					•								. 5.5 \	/
Interemitter voltage (see Note 2)													5.5 \	/
Operating free-air temperature range:	SN54265										-55	°C to	o 125°(3
	SN74265											0°C	to 70°(3
Storage temperature range											_66	° ~ +.	150°	~

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, the rating applies between inputs 2A and 2B and between inputs 3A and 3B.

recommended operating conditions

		SN5426	5				
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	
High-level output current, IOH			-800			-800	μА
Low-level output current, IOL			16			16	mA
Operating free-air temperature, TA	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS†	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage			2			V
VIL	Low-level input voltage			1		0.8	V
VI	Input clamp voltage	V _{CC} = MIN,	I _j = -12 mA		-	-1.5	V
VOH	High-level output voltage	V _{CC} = MIN,	I _{OH} = -800 μA	2.4	3.4		V
VOL	Low-level output voltage	V _{CC} = MIN,	I _{OL} = 16 mA		0.2	0.4	v
l <u>j</u>	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5 V			1	mA
ЧН	High-level input current	V _{CC} = MAX,	V _I = 2.4 V	1		40	μА
IL	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V			-1.6	mA
los	Short-circuit output current §	Von HAY	SN54265	-20		57	
los		V _{CC} = MAX,	SN74265	-18		-57	mA
Icc	Supply current	V _{CC} = MAX,	See Note 3		25	34	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 3: ICC is measured with all outputs open and all inputs grounded.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH(W)	A or B	w			11.6	18	
tPHL(Y)	(as applicable)	Y	0 - 400 0		11.3	18	ns
[†] PHL(W)	A or B	W	R _L = 400 Ω,		9.8	18	
tPLH(Y)	(as applicable)	Y	CL = 15 pF,		10.2	18	ns
tPLH(W)-tPHL(Y)	A or B	W with	See Note 4		+0.3	±3	
tPHL(W)-tPLH(Y)	(as applicable)	respect to Y			-0.4	±3	ns

tpLH = Propagation delay time, low-to-high-level output.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

tpHL = Propagation delay time, high-to-low-level output.

TRIL TRIANGED TO THE WARD TRIANGED TO THE WARD TO THE WARD TO THE WARD TO THE WARD TO THE WARD TO THE WARD TO THE WARD

TYPICAL CHARACTERISTICS†

PROPAGATION DELAY TIME DIFFERENCE vs LOAD CAPACITANCE

†Data for temperatures below 0°C and above 70°C and for supply voltages below 4.75 V and above 5.25 V are applicable for SN54265 only.

TYPICAL APPLICATION DATA

FIGURE C - TYPICAL DECODER/CODE CONVERTER

DECODER SPIKE

FIGURE D - SYMMETRICAL DECODER/CODE CONVERTER

NO DECODE SPIKE

OUTPUT 2

OUTPUT 2

TYPES SN54LS279, SN74LS279 QUADRUPLE S-R LATCHES

BULLETIN NO. DL-S 7412085, MARCH 1974

- **Functionally and Mechanically Identical to SN54279/SN74279**
- **Features Low Power Dissipation** of 19 mW Typical

FUNCTION TABLE (EACH LATCH) INPUTS CUTPUT ξt R Q н o_0 н н н L L н•

SN54SL279 ... J OR W PACKAGE

H = high level

L = low level

 $Q_0 =$ the level of Q before the indicated input conditions were established.

*This output level is pseudo stable: that is, it may not persist when the

S and R inputs return to their inactive (high) level.

[†]For latches with double \$\overline{S}\$ inputs:

H = both S inputs high

L = one or both \$\overline{S}\$ inputs low

schematics of inputs and outputs

TYPES \$N54LS279, \$N74LS279 QUADRUPLE S-R LATCHES

recommended operating conditions

	SI	N54LS2	79	SI	79	UNIT	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC (See Note 1)	4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH			-400			_400	μA
Low-level output current, IOL			4			8	mA °C
Operating free-sir temperature, TA	-55		125	0		70	, °C

NOTE 1: Voltage values are with respect to network ground terminal.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					SI	N54LS2	79	SI	N74LS2	79	UNIT
	PARAMETER	TES	ST CONDITIONS	•	MIN	TYP‡	MAX	MIN	TYP‡	MAX	0
VIH	High-level input voltage				2			2			٧
VIL	Low-level input voltage						0.7			0.8	V
VI	Input clamp voltage	VCC = MIN,	I _I = -18 mA	•			-1.5			_1.5	
	High-level output voltage	V _{CC} = MIN,	V _{IH} = 2 V, I _{OH} = -400 μA		2.5	3.5		2.7	3.5		٧
		V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	v
VOL	Low-level output voltage	VIL = VIL max		IOL = 8 mA					0.35	0.5	
11	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
ин	High-level input current	V _{CC} = MAX,	V _I = 2.7 V				20			20	μΑ
111	Low-level input current	VCC = MAX,	V _I = 0.4 V				-0.4			-0.4	mA
los	Short-circuit output current §				-6		-40	-5		-42	-
Icc	Supply current	V _{CC} = MAX,	See Note 2			3.8	7		3.8	7	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 \uparrow All typical values are at V_{CC} = 5 V, T_A = 26 °C. Not more than one output should be shorted at a time. NOTE 2: I_{CC} is measured with all \uparrow inputs grounded, all \uparrow inputs at 4.5 V, and all outputs open.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tpLH Propagation delay time, low-to-high-level output from \$ input	C _L = 15 pF,		12	22	<u> </u>
tpHL Propagation delay time, high-to-low-level output from S input	$R_L = 2 k\Omega$,		9	15	ns
tpHL Propagation delay time, high-to-low-level output from R input	See Note 3		15	27	<u> </u>

NOTE 3: Load circuit and voltage waveforms are shown on page S-88.

2

TYPES SN54365, SN54366, SN54367, SN54368, SN74365, SN74366, SN74367, SN74368 HEX BUS DRIVERS WITH 3-STATE OUTPUTS

BULLETIN NO. DL-S 7412117, MARCH 1974

SN54365 ... J OR W PACKAGE SN74365 ... J OR N PACKAGE

Bus Buffers/Drivers with 3-State Outputs

Can Be Used to Drive Bus Line Directly

'365

True Data

Inverted Data

 Gated Enable Inputs for X-Y Coincident Bus Control

Gated Enable Inputs for X-Y Coincident Bus Control

'365 FUNCTION TABLE (EACH DRIVER)

(I	VPUT	CUTPUT	
Ĝ1	Ğ2	A	Y
Н	Х	X	Z
х	Н	X	z
L	L	Н	[H [
L	L	L	L

H = high level, L = low level, X = irrelevant, Z = high-impedance

(TOP VIEW)

VCC 62 6A 6Y 5A 5Y 10 10 9

'366

FUNCTION TABLE (EACH DRIVER)

	VPU7	OUTPUT	
Ğ1	Ĝ2	Α	Y
H	X	х	Z
х	Н	X	z
L	L	H	L
L	L	L	н

H = high level, L = low level, X = irrelevant, Z = high-impedance

SN54366 ... J OR W PACKAGE SN74366 ... J OR N PACKAGE (TOP VIEW)

'367

'366

- True Data
- 4-Line and 2-Line Enable Inputs Can Be Organized for 4-Bit Bytes or Digit Control

'367

FUNCTION TABLE (EACH DRIVER)

INP	UTS	CUTPUT
ı	Α	Y
Н	X	Z
L	Н	н
L	L	L

H = high level, L = low level, X = irrelevant, Z = high-impedance

SN54387 ... J OR W PACKAGE SN74367 ... J OR N PACKAGE (TOP VIEW)

SN54368 ... J OR W PACKAGE SN74368 ... J OR N PACKAGE

(TOP VIEW)

′368

- Inverted Data
- 4-Line and 2-Line Enable Inputs Can Be Organized for 4-Bit Bytes or Digit Control

'368

FUNCTION TABLE (EACH DRIVER)

INF	UTS	OUTPUT
ĪĞ	Α	Υ
н	х	Z
L	н	L
L	L	н

H = high level, L = low level, X = irrelevant, Z = high-impedance

TEXAS INSTRUMENTS

TYPES SN54365, SN54366, SN54367, SN54368, SN74365, SN74366, SN74367, SN74368 HEX BUS DRIVERS WITH 3-STATE OUTPUTS

schematics

 † R is 900 Ω for the control section associated with \overline{G} 1 and 600 Ω for the control section associated with \overline{G} 2.

 † R is 900 Ω for the control section associated with $\overline{G}1$ and 600 Ω for the control section associated with $\overline{G}2$.

374

Resistor values shown are nominal and in ohms.

TYPES SN54365, SN54366, SN54367, SN54368, SN74365, SN74366, SN74367, SN74368 HEX BUS DRIVERS WITH 3-STATE OUTPUTS

recommended operating conditions

	Į.	•	N54366 N54368	SN74 SN74	UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	1
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-2			-5.2	mA
Low-level output current, IOL			32			32	mA
Operating free-air temperature, TA	-55		125	0		70	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CON	IDITIONS†	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			V
VIL	Low-level input voltage				— <u> </u>		0.8	l v
VI	Input clamp voltage	V _{CC} = MIN,	I _I = -12 mA	-		-1.5	v	
VOH	High-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	•••	2.4	3.1		v	
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,				0.4	v	
vo	Output clamp voltage	V _{CC} = 0 V	I _O = 12 mA			1.5 1.5	٧	
lozh	Off-state output current, high-level voltage applied	V _{CC} = MAX, V _O = 2.4 V	V _{IH} = 2 V,			40	μΑ	
lozL	Off-state output current, low-level voltage applied		V _{CC} = MAX, V _O = 0.4 V	V _{IH} = 2 V,			-40	μА
lj .	Input current at maximum input voltage		VCC = MAX,	V _I = 5.5 V			1	mA
ΉΗ	High-level input current		V _{CC} = MAX,	V _{IH} = 2.4 V			40	μА
		A input	V _{CC} = MAX, Both \overline{G} inputs	•			-40	μА
ΊL	Low-level input current .	- Input	V _{CC} = MAX, V _I = 0.4 V Both G inputs at 0.4 V				-1.6	mA
		G input	V _{CC} = MAX,	V ₁ = 0.4 V			-1.6	mA
los	Short-circuit output current §	V _{CC} = MAX		-40		-130	mA	
lcc	Supply current		V _{CC} = MAX	'365, '367 '366, '368		65 59	85 77	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

	PARAMETER	TEST CONDITIONS	'365,	'367	'366 ,		
	TANAMETER	TEST COMDITIONS	MIN	MAX	MIN	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output			16		17	ns
tPHL	Propagation delay time, high-to-low-level output	C _L = 50 pF,		22		16	ns
^t ZH	Output enable time to high level	R _L = 400 Ω		35		35	ns
tZL	Output enable time to low level			37		37	ns
tHZ	Output disable time from high level	C _L = 5 pF,		11		11	กร
tLZ	Output disable time from low level	R _L = 400 Ω		27		27	ns

 $^{^{\}lozenge}$ Load circuit and voltage waveforms are shown on page S-87.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

SERIES 54/74, 54H/74H, 54S/74S, AND SPECIFIED SERIES 54L/74L DEVICES

A. C_L includes probe and jig capacitance.

B. All diodes are 1N916 or 1N3064.

- NOTES: C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - D. In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily.
 - E. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_{out} \approx 50~\Omega$ and: For Series 54/74 and 54H/74H, $t_r \le 7$ ns, $t_f \le 7$ ns;

For Specified[†] Series 64L/74L devices: $t_r \le 10$ ns, $t_f \le 10$ ns;

For Series 54S/74S, $t_r \le 2.5$ ns, $t_f \le 2.5$ ns.

F. When measuring propagation delay times of 3-state outputs, switches S1 and S2 are closed.

†'L42, 'L43, 'L44, 'L46, 'L47, 'L75, 'L77, 'L96, 'L121, 'L122, 'L123, 'L153, 'L154, 'L157, 'L164

SERIES 54LS/74LS AND MOST * SERIES 54L/74L DEVICES

PARAMETER MEASUREMENT INFORMATION

- NOTES A. C₁ includes probe and jig capacitance.
 - B. All diodes are 1N916 or 1N3064.
 - C. C1 (30 pF) is used for testing Series 54L/74L devices only.

- NOTES: D. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

 Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - E. In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily.
 - F. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_{out} \approx$ 50 Ω and: For Series 54L/74L gates and inverters, t_r = 60 ns;
 - For Series 54L/74L flip-flops and MSI, $t_{\rm f} \le 25$ ns, $t_{\rm f} \le 25$ ns;
 - For Series 54LS/74LS, $t_r \le 15$ ns, $t_f \le 6$ ns.
 - G. When measuring propagation delay times of 3-state outputs, switches S1 and S2 are closed.

†Except 'L42, 'L43, 'L44, 'L46, 'L47, 'L75, 'L77, 'L96, 'L121, 'L122, 'L123, 'L153, 'L154, 'L157, 'L164

54/74 Family MSI/LSI Circuits

•

TTL MSI

TYPES SN5442A THRU SN5444A, SN54L42 THRU SN54L44, SN54LS42, SN7442A THRU SN7444A, SN74LS42 THRU SN74LS42 4-LINE-TO-10-LINE DECODERS (1-OF-10)

BULLETIN NO. DL-S 7411861, MARCH 1974

'42A, 'L42, 'LS42 ... BCD-TO-DECIMAL '43A, 'L43 ... EXCESS-3-TO-DECIMAL '44A, 'L44 ... EXCESS-3-GRAY-TO-DECIMAL

- All Outputs Are High for Invalid Input Conditions
- Also for Application as
 4-Line-to-16-Line Decoders
 3-Line-to-8-Line Decoders
- Diode-Clamped Inputs

=1/0=0	TYPICAL	TYPICAL
TYPES P(POWER DISSIPATION	PROPAGATION DELAY
'42A, '43A, '44A	140 mW	17 ns
'L42, 'L43, 'L44	70 mW	49 ns
'LS42	35 mW	17 ns

description

These monolithic decimal decoders consist of eight inverters and ten four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid input logic ensures that all outputs remain off for all invalid input conditions.

The '42A, 'L42, and 'LS42 BCD-to-decimal decoders, the '43A and 'L43 excess-3-to-decimal decoders, and

SN5442A THRU SN5444A, SN54LS42 . . . J OR W PACKAGE SN54L42 THRU SN54L44 . . . J PACKAGE SN7442A THRU SN7444A, SN74L42 THRU SN74L44, SN74LS42 . . . J OR N PACKAGE

the '44A and 'L44 excess-3-gray-to-decimal decoders feature inputs and outputs that are compatible for use with most TTL and other saturated low-level logic circuits. D-c noise margins are typically one volt.

Series 54, 54L, and 54LS circuits are characterized for operation over the full military temperature range of -55°C to 125°C; Series 74, 74L, and 74LS circuits are characterized for operation from 0°C to 70°C.

										UNCT	ION	ADLE										
	'42	A, 'L	42, 'L	S42		'43A,	'L43			'44A,	'L44					4	ALL 1	YPE	3			
NO.	1	BCD I	NPUT	r	EX	CESS-	3-INF	TU	EXCE	SS-3-G	RAY I	NPUT				DEC	IMAL	OUT	PUT			
	D	С	В	Α	D	С	В	Α	٥	С	В	Α	0	1_	2	3	4	5	6	7_	8	9
0	L	L.	L	L	L	L	Н	Н	L	L	Н	٦	L	Н	Н	Н	н	Н	Н	Н	Н	Н
1	L	L	L	н	L	н	L	L	L	Н	н	L	н	L	Н	Н	Н	Н	Н	Н	Н	Н
2	L	L	н	L	L	н	L	н	L	н	н	н	н	Н	L	Н	Н	Н	Н	н	Н	Н
3	L	L	н	н	L	н	н	L	L	н	L	н	н	н	Н	L	Н	Н	н	Н	н	Н
4	L	н	L	L	L	н	н	н	L	н	L	L	н	Н	Н	н	L	н	н	Н	Н	н
5	L	Н	L	Н	Н	L	L	L.	Н	Н	L	L	Н	Н	Н	• н	Н	L	н	Н	Н	Н
6	٦	н	н	L	н	L	L	н	Н	н	L	н	н	н	н	н	н	н	L	н	Н	Н
7	<u>-</u>	н	н	н	н	L	н	L	н	н	н	н	н	н	н	н	н	н	н	L	Н	Н
8	н	L	L	L	н	L	н	н	н	н	н	L	н	н	н	н	н	н	н	н	L	Н
9	н	Ē	L	н	н	н	L	L	Н	L	н	L	н	н	н	н	н	н	н	н	н	L
	н	ī	-	L	н	Н	ī	H	н	L	Н	Н	Н	Н	н	Н	Н	н	Н	Н	Н	Н
	н	L	н	н	Н	н	н	L	н	L	L	н	н	н	н	н	н	н	н	н	Н	Н
=	lн	н	L	L	н	н	н	н	Н	L	L	L	н	н	н	н	Н	Н	н	н	н	Н
INVALID	н	н	Ĺ	н	ا	L	L	L	ال	L	L	L	н	н	н	н	н	н	н	н	н	н
Z	н	н	н	L	٦	Ĺ	L	н	اً	L	L	н	Н	н	н	н	н	н	н	н	н	н
	н.	н	н	н	٦	ī.	н	Ľ	lī	L	Н	н	н	н	н	н	н	н	н	н	н	н
			. 1 1	•••									<u> </u>									

H = high level, L = low level

TYPES SN5442A THRU SN5444A, SN54L42 THRU SN54L44, SN54LS42, SN7442A THRU SN7444A, SN74L42 THRU SN74L44, SN74LS42 4-LINE-TO-10-LINE DECODERS (1-OF-10)

TYPES SN5442A, SN5443A, SN5444A, SN7442A, SN7443A, SN7444A 4-LINE-TO-10-LINE DECODERS (1-OF-10)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)			 	7 V
Innut voltage		·	 	5.5 V
Operating free-air temperature range:	: SN54' Circu	its	 	-55°C to 125°C
	SN74' Circu	its	 	. 0°C to 70°C
Storage temperature range			 	-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN5442 SN5443 SN5444	A	\$	UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC	4.5	5	5.5	4.75	5_	5.25	V
High-level output current, IOH			-800			- 800	μА
Low-level output current, IOL			16			16	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				SN5442	A	- :	A		
1		TEST CONDITIONS†	:	N5443	A	:	SN7443	A	UNIT
l ·	PARAMETER	TEST CONDITIONS.	L .	SN5444	A	. :	A	0.4	
			MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH	High-level input voltage		2			2			٧
VIL	Low-level input voltage				8.0			0.8	V
VI	Input clamp voltage	VCC = MIN, II = -12 mA			-1.5			-1.5	٧
VOH	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -800 μA	2.4	3.4		2.4	3.4		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	v
l ₁	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1			1_	mA
ЧН	High-level input current	V _{CC} = MAX, V _I = 2.4 V			40			40	μΑ
TIL	Low level input current	V _{CC} = MAX, V ₁ = 0.4 V			-1.6			-1.6	mA
los	Short-circuit output current §	V _{CC} = MAX	-20		-55	-18		-55	mA
Icc	Supply current	V _{CC} = MAX, See Note 2		28	41		28	56	mA

For conditions shown as MIN or MAX, use the appropriate values specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
*****	Propagation delay time, high-to-low-level			14	25	ns
tPHL.	output from A, B, C, or D through 2 levels of logic	<u> </u>				
****	Propagation dalay time, high-to-low-level	CL = 15 pF,	1	17	30	ns
tPHL.	output from A, B, C, or D through 3 levels of logic	$R_1 = 400 \Omega_r$				
	Propagation delay time, low-to-high-level	See Note 3	1	10	25	ns ns
tPLH	output from A, B, C, and D through 2 levels of logic					
	Propagation delay time, low-to-high-level			17	30	ns
tPLH	output from A, B, C, and D through 3 levels of logic	I	l			<u> </u>

NOTE 3: Load circuits and waveforms are shown on page S-87.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§]Not more than one output should be shorted at a time.

NOTE 2: ICC is measured with all outputs open and all inputs grounded.

TYPES SN54L42, SN54L43, SN54L44, SN74L42, SN74L43, SN74L44 4-LINE-TO-10-LINE DECODERS (1-0F-10)

absolute maximum ratings over opera	ting free	-air tem	pe	ratu	ıre	rar	nge	(uı	nle	SS	otl	her	wi	se	no	te	d)				
Supply voltage, V _{CC} (see Note 1)			7 V																		
Input voltage																				. 5.	.5 V
Operating free-air temperature range:	SN54L' (Circuits.																-5	5°C t	o 12	5°C
•	SN74L' (Circuits																	0°C	to 7	O°C
Storage temperature range																		_6	5°C t	n 15	ന°ന

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54L4 SN54L4 SN54L4	13	:	UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			8			8	mA
Operating free-air temperature, TA	-55	_	125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST C	ONDITIONS	•	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			٧
VIL	Low-level input voltage						0.8	V
V _I	Input clamp voltage	V _{CC} = MIN,	ij = -12 m	A			-1.5	V
Voн	High-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = -40		2.4	3.4		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 8 mA			0.2	0.4	v
T ₁	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5 V				1	mA
ΉΗ	High-level input current	V _{CC} = MAX,	V ₁ = 2.4 V				20	μА
ΊL	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V				-0.8	mA
los	Short-circuit output current §	V _{CC} = MAX			-9		-28	mA
Icc	Supply Current	V _{CC} = MAX, See Note 2	-	SN54L' SN74L'		14	22 28	mA

For conditions shown as MIN or MAX, use the appropriate values specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
TPHL	Propagation delay time, high-to-low-level output from A, B, C, or D through 2 levels of logic		10 44		60	ns
TPHL	Propagation delay time, high-to-low-level output from A, B, C, or D through 3 levels of logic	C _L = 15 pF,		46	70	ns
tPLH	Propagation delay time, low-to-high-level output from A, B, C, and D through 2 levels of logic	RL = 800 Ω, See Note 3	10	34	50	ns
tPLH	Propagation delay time, low-to-high-level output from A, B, C, and D through 3 levels of logic			52	70	ns

NOTE 3: Load circuit and voltage waveforms are shown on page S-87.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

NOTE 2: ICC is measured with all outputs open and inputs grounded.

TYPES SN54LS42, SN74LS42 4-LINE-TO-10-LINE DEODERS (1-OF-10)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, Vcc (see Note 1)		7 V
Input voltage		7 V
Operating free-air temperature range: SN54LS42		25°C
SN74LS42		70°C
Storage temperature range	0	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	s	N54LS4	12	S	N74LS4	12	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	10.4
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			4			8	mA
Operating free-air temperature, TA	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS†				N54LS4	2	S	12	UNIT	
	PARAMETER	TES	ST CONDITIC	ons.	MIN	TYP‡	MAX	MIN	TYP‡	MAX	CNII
VIH	High-level input voltage				2			2			٧
VIL	Low-level input voltage						0.7			0.8	V
Vi	Input clamp voltage	V _{CC} = MIN,	I ₁ = -18 mA				-1.5			-1.5	V
	High-level output voltage	VCC = MIN, VIL = VIL max,	V _{IH} = 2 V,	μΑ	2.5	3.5		2.7	3.5		v
		V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	l v l
VOL	Low-level output voltage	VIL = VIL max		IOL = 8 mA					0.35	0.5	ľ
11	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
ЧН	High-level input current	VCC = MAX,	V ₁ = 2.7 V				20			20	μΑ
TIL	Low-level input current	VCC = MAX,	V _I = 0.4 V				-0.4			-0.4	mΑ
los	Short-circuit output current §	V _{CC} = MAX			-6		-40	-5		-42	mA
ICC	Supply current	VCC = MAX,	See Note 2			7	13		7	13	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
₹PHL	Propagation delay time, high-to-low-level output from A, B, C, or D through 2 levels of logic			14	25	ns
TPHL	Propagation delay time, high-to-low-level output from A, B, C, or D through 3 levels of logic	CL = 15 pF,		17	30	ns
ФLН	Propagation delay time, low-to-high-level output from A, B, C, and D through 2 levels of logic			10	25	ns
^t PLH	Propagation delay time, low-to-high-level output from A, B, C, and D through 3 levels of logic	_		17	30	ns

NOTE 4: Load circuit and voltage waveforms are shown on page S-88.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time.

NOTE 2. ICC is measured with all outputs open and inputs grounded.

BULLETIN NO. DL-S 7411811, MARCH 1974

'46A, '47A, 'L46, 'L47, 'L\$47 feature '48, 'LS48 feature

'49, 'LS49 feature

- Open-Collector Outputs
 Drive Indicators Directly
- Internal Pull-Ups Eliminate Need for External Resistors

Lamp-Test Provision

Open-Collector Outputs

Blanking Input

- Lamp-Test Provision
- .
- Leading/Trailing Zero Suppression
- Leading/Trailing Zero Suppression
- All Circuit Types Feature Lamp Intensity Modulation Capability

		DRIVER OU	TPUTS		TYPICAL	
TYPE	ACTIVE	OUTPUT	SINK	MAX	POWER	PACKAGES
	LEVEL	CONFIGURATION	CURRENT	VOLTAGE	DISSIPATION	
SN5446A	low	open-collector	40 mA	30 V	320 mW	J, W
SN5447A	low	open-collector	40 mA	15 V	320 mW	J, W
SN5448	high	2-kΩ pull-up	6.4 mA	5.5 V	265 mW	J.W
SN5449	high	open-collector	10 mA	5.5 V	165 mW	l w
SN54L46	low	open-collector	20 mA	30 V	160 mW	J
SN54L47	low	open-collector	20 mA	15 V	160 mW	J
SN54LS47	low	open-collector	12 mA	15 V	35 mW	J. W
SN54LS48	high	2-kΩ pull-up	2 mA	5.5 V	125 mW	J, W
SN54LS49	high	open-collector	4 mA	5.5 V	40 mW	J, W
SN7446A	low	open-collector	40 mA	30 V	320 mW	J, N
SN7447A	low	open-collector	40 mA	15 V	320 mW	J, N
SN7448	high	2-kΩ puil-up	6.4 mA	5.5 V	265 mW	J, N
SN74L46	low	open-collector	20 mA	30 V	160 mW	J, N
SN74L47	low	open-collector	20 mA	15 V	160 mW	J, N
SN74LS47	low	open-collector	24 mA	15 V	35 mW	J, N
SN74LS48	high	2-kΩ pull-up	6 mA	5.5 V	125 mW	J, N
SN74LS49	high	open-collector	8 mA	5.5 V	40 mW	J, N

description

The '46A, 'L46, '47A, 'L47, and 'LS47 feature active-low outputs designed for driving common-anode VLEDs or incandescent indicators directly, and the '48, '49, 'LS48, 'LS49 feature active-high outputs for driving lamp buffers or common-cathode VLEDs. All of the circuits except '49 and 'LS49 have full ripple-blanking input/output controls and a lamp test input. The '49 and 'LS49 circuits incorporate a direct blanking input. Segment identification and resultant dispalys are shown below. Display patterns for BCD input counts above 9 are unique symbols to authenticate input conditions.

The '46A, '47A, '48, 'L46, 'L47, 'LS47, and 'LS48 circuits incorporate automatic leading and/or trailing-edge zero-blanking control (RBI and RBO). Lamp test (LT) of these types may be performed at any time when the BI/RBO node is at a high level. All types (including the '49 and 'LS49) contain an overriding blanking input (BI) which can be used to control the lamp intensity by pulsing or to inhibit the outputs. Inputs and outputs are entirely compatible for use with TTL or DTL logic outputs.

The SN54246/SN74246 through '249 and the SN54LS247/SN74LS247 through 'LS249 compose the 6 and the 9 with tails and have been designed to offer the designer a choice between two indicator fonts. The SN54249/SN74249 and SN54LS249/SN74LS249 are 16-pin versions of the 14-pin SN5449 and 'LS49. Included in the '249 circuit and 'LS249 circuits are the full functional capability for lamp test and ripple blanking, which is not available in the '49 or 'LS49 circuit.

'46A, '47A, 'L46, 'L47, 'LS47 FUNCTION TABLE

DECIMAL			INP	UTS			BI/RBO [†]			0	UTPUI	rs			NOTE
FUNCTION	LT	RBI	D	С	В	A		а	ь	С	d	•	f	9	
0	н	Н	L	L	L	L	н	ON	ON	ON	ON	ON	ON	OFF	
1	н	x	L	L	L	н	н	OFF	ON	ON	OFF	OFF	OFF	OFF	
2	н	x	L	L	н	L	н	ON	ON	OFF	ON	ON	OFF	ON	
3	н	х	L	L	н	н	н	ON	ON	ON	ON	OFF	OFF	ON	
4	н	Х	L	Н	L	L	H	OFF	ON	ON	OFF	OFF	ON	ON	
5	н	x	L	Н	L	Н	н	ON	OFF	ON	ON	OFF	ON	ON	
6	н	x	L	н	н	L	н	OFF	OFF	ON	ON	ON	ON	ON	
7	н	x	L	н	н	н	н	ON	ON	ON	OFF	OFF	OFF	OFF	
8	Н	X	Н	L	L	L	Н	ON	ON	ON	ON	ON	ON	ON	•
9	н	×	Н	L	L	н	н	ON	ON	ON	OFF	OFF	ON	ON	
10	н	X	Н	L	Н	L	н	OFF	OFF	OFF	ON	ON	OFF	ON	
11	н	х	н	L	н	Н	н	OFF	OFF	ON	ON	OFF	OFF	ON	
12	Н	X	Н	н	L	L	Н	OFF	ON	OFF	OFF	OFF	ON	ON	ŀ
13	н	x	н	н	L	н	н	ON	OFF	OFF	ON	OFF	ON	ON	l
14	н	х	н	н	н	L	н	OFF	OFF	OFF	ON	ON	ON	ON	j
15	н	х	Н	н	н	н	н	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
ВІ	×	×	х	х	Х	х	L	OFF	OFF	OFF	OFF	OFF	OFF	OFF	2
RBI	н	L	L	5 L	L	L	L	OFF	OFF	OFF	OFF	OFF	OFF	OFF	3
LT	L	x	х	х	X	х	н	ON	ON	ON	ON	ON	ON	ON	4

H = high level, L = low level, X = irrelevant

IDENTIFICATION

- NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high if blanking of a decimal zero is not desired.
 - 2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are off regardless of the level of any other input.
 - 3. When ripple-blanking input (RBI) and inputs A, B, C, and D are at a low level with the lamp test input high, all segment outputs go off and the ripple-blanking output (RBO) goes to a low level (response condition).
 - 4. When the blanking input/ripple blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all segment outputs are on.

†BI/RBO is wire-AND logic serving as blanking Input (BI) and/or ripple-blanking output (RBO).

'48, 'LS48 FUNCTION TABLE

DECIMAL OR			INP	JTS			BI/RBO†			01	UTPU	TS			NOTE
FUNCTION	LT	RBI	D	С	В	Α		a	ь	c	d	е	f	8	
0	Н	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	L	
] 1	H	X	L	L	L	Н	н	L	Н	н	L	L,	L	L	
2	Н	х	Ľ	L	Н	L	Н	н	Н	L	н	Н	L	н	
3	н	х	L	L	Н	н	Н	н	H	н	н	L	L	н	
4	Н	Х	٦	Н	L	L	н	L	Н	Н	L	L	Н	I	
5	н	X	L	Н	L	Н	Н	н	L	Н	Н	L	Н	н	
6	н	X	L	н	н	L	н	L	L	н	Н	Н	н	н	
7	н	X	L	Н	н	н	н	н	Н	H	L	L	L	L	
8	н	X	Н	L	L	L	Н	H	Н	Н	Н	Н	Н	I	
9	н	x	Н	L	L	Н	н	н	Н	н	L	L	н	н	
10	H.	X	Н	L.	н	L	н	L	L	L	н	н	L	н	
11	н	X	Ξ	L	Н	н	н	L	L	Н	н	L	L	н	
12	H	X	H	Н	L	L	Н	r	Н	L	L	L	H	I	
13	н	X	н	н	L	н	Н	н	L	L	Н	L	Н	н	
14	н	x	н	н	Н	L	н	L	L	L	Н	н	н	н	
15	н	Х	Ŧ	н	н	н	Н	L	L,	L	L	L	L	L	
BI	Х	Х	×	Х	Х	Х	L	L	L	L	L	L	L	L	2
RBI	н	L	L	L	L	L	L	L	L	L	L	L	L	L	3
LT	L	Х	X	X	X	_ X	н	н	н	н	н	Н	H	Н	4

H = high level, L = low level, X = irrelevant

NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high, if blanking of a decimal zero is not desired.

- 2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are low regardless of the level of any other input.
- When ripple-blanking input (RBI) and inputs A, B, C, and D are at a low level with the lamp-test input high, all segment outputs go low and the ripple-blanking output (RBO) goes to a low level (response condition).
- 4. When the blanking input/ripple-blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all segment outputs are high.

†BI/RBO is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO).

'49, 'LS49 FUNCTION TABLE

DECIMAL OR		II	NPUT	s				O	JTPU	TS			NOTE
FUNCTION	D	С	В	Α	ВІ	а	b	C	d	е	f	9	
0	L.	L	L	L	H	H	Н	Н	Н	Н	H	L	
1	L	L	L	Н	н	L	н	Н	L	L	L	L	
2	L	L	Н	L	н	н	Н	L	н	н	L	н	1 1
3	L	L	Н	Н	<u>H</u>	н	Н	н	Н	L	L	H	1 1
4	L	Н	L	L	H	L	Н	Н	L	L	H	Н	1
5	L	н	L	Н	Н	H	L	н	н	L	Н	н	
6	L	н	Н	L	н	L	L	Н	н	Н	Н	Н	
7	ᆫ	Н	Н	Н	H	H_	Н	H	L	L	L	L	
8	Н	L	L	L	H	H	Н	Н	Н	Н	Н	Н	i '
9	н	L.	L	Н	Н	н	н	Н	L	L	Н	Н	
10	н	L	н	L	н	L	L	L	н	Н	L	Н	
11	H_	L	н	н	н	L	L	Н	H	L	L	Н	1
12	Н	Н	L	L	Н	L	Н	٦	٦	L	Н	Н	
13	H	Н	L	н	н	Н	L	L	н	L	Н	Н	
14	н	н	Н	L	н	L	L	L	Н	н	Н	н	
15	Н	н	H	н	н	L	L	L	L	L	L	L	
BI	X	Х	Х	Х	L	L	L	L	L	L	L	L	2

H = high level, L = low level, X = irrelevant

NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired.

When a low logic level is applied directly to the blanking input (BI), all segment outputs are low regardless of the level of any other input.

S-98

functional block diagrams

TYPES SN5446A, '47A, '48, '49, SN54L46, 'L47, SN7446A, '47A, '48, SN74L46, 'L47 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

schematics of inputs and outputs

'46A, '47A

'L46, 'L47

TYPICAL OF OUTPUTS
a THRU g

VCC
2 kΩ
NOM
OUTPUT

TYPES SN54LS47, 'LS48, 'LS49, SN74LS47, 'LS48, 'LS49 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

schematics of inputs and outputs

'LS47, 'LS48, 'LS49

'L\$47, 'L\$48, 'L\$49

'LS47

'LS48

'LS49

TYPES SN5446A, SN5447A, SN7446A, SN7447A BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

REVISED MARCH 1974

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)																							7 V
Input voltage			•																				5.5 V
Current forced into any output in the	e of	ff s	sta	te																			1 mA
Operating free-air temperature range:	S	NE	544	16	Α,	SI	۷5	44	74	١.									_5	55°	C t	0	125°C
	S	N7	144	16,	Α,	SI	۱7	44	7 <i>P</i>											0	°C	to	70°C
Storage temperature range																			_6	ss°	C t		150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			N5446	A		SN5447	Α		N7446	A		N7447	Α	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	ONII
Supply voltage, VCC		4.5	5	5.5	4.5	5	5.5	4.75	5	5.25	4.75	5	5.25	٧
Off-state output voltage, VO(off)	a thru g			30			15			30			15	V
On-state output current, IO(on)	a thru g			40			40			40			40	mA
High-level output current, IOH	BI/RBO			-200			-200			-200			-200	μА
Low-level output current, IOL	BI/RBO			8			8			8			8	mA
Operating free-air temperature, Tp	١	-55		125	-55		125	0		70	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST COND	ITIONS†	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			V
VIL	Low-level input voltage						0.8	V
VI	Input clamp voltage		V _{CC} = MIN, II	= -12 mA			1.5	V
VOH	High-level output voltage	BI/RBO	V _{CC} = MIN, V _I V _{IL} = 0.8 V, I _O	• •	2.4	3.7		v
VOL	Low-level output voltage	BI/RBO	V _{CC} = MIN, V _I V _{IL} = 0.8 V, I _O			0.27	0.4	v
lO(off)	Off-state output current	a thru g	V _{CC} = MAX, V _I V _{IL} = 0.8 V, V _C				250	μА
V _{O(on)}	On-state output voltage	a thru g	V _{CC} = MAX, V _I V _{IL} = 0.8 V, I _O	• •		0.3	0.4	v
I	Input current at maximum input voltage	Any input except BI/RBO	VCC = MAX, VI	= 5.5 V			1	mA
ΊΗ	High-level input current	Any input except BI/RBO	VCC = MAX, VI	= 2.4 V			40	μА
IIL	Low-level input current	Any input except BI/RBO	VCC = MAX, VI	= 0.4 V			-1.6	mA
		BI/RBO	<u></u>				-4	
los	Short-circuit output current	BI/RBO	VCC = MAX				4	mΑ
Icc	Supply current		V _{CC} = MAX, See Note 2	SN54' SN74'		64 64	85 103	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
toff	Turn-off time from A input				100	
ton	Turn-on time from A input	CL = 15 pF, RL = 120 Ω,			100	กร
toff	Turn-off time from RBI input	See Note 3			100	
ton	Turn-on time from RBI input				100	ns

NOTE 3: Load circuit and voltage waveforms are shown on page S-87; toff corresponds to tpLH and ton corresponds to tpHL.

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V.

TYPES SN54L46, SN54L47, SN74L46, SN74L47 **BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS**

solute maximum ratings over operating free-air tempe	rat	ur	e ı	rar	nge	e (un	le	SS (ot	he	rw	ise	e r	101	tec	(k				
Supply voltage, VCC (see Note 1)																					. 7 V
Input voltage																					. 5.5 V
Peak output current (t _W ≤ 1 ms, duty cycle ≤ 10%)											•	•		•				•	•	•	200 mA
Current forced into any output in the off state																			٠.		. 1 m/
Operating free-air temperature range: SN54L46, SN54L47																		— 5	55°	C t	o 125°C
SN74L46, SN74L47	'																	٠	0	L,C	to 70°C
Storage temperature range																		-6	35°	C t	o 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		!	SN54L4	6		N54L4	7		N74L4	6		N74L4	7	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.5	5	5.5	4.5	5	5.5	4.75	5	5.25	4.75	5	5.25	V
Off-state output voltage, VO(off)	a thru g			30			15			30			15	V
On-state output current, IO(on)	a thru g			20			20			20			20	mA
High-level output current, IOH	BI/RBO			-100			-100			-100			-100	μΑ
Low-level output current, IOL	BI/RBO			4			4			4			4	mA
Operating free-air temperature, T	<u> </u>	-55		125	-55		125	0		70	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CON	DITIONST	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			V
VIL	Low-level input voltage						0.8	V
V _I	Input clamp voltage	Any input except BI/RBO	V _{CC} = MIN, I	= -12 mA			-1.5	٧
Voн	High-level output voltage	BI/RBO	V _{CC} = MIN, V		2.4	3.4		٧
VOL	Low-level output voltage	BI/RBO	V _{CC} = MIN, V			0.2	0.4	٧
IO(off)	Off-state output current	a thru g	V _{CC} = MAX, V V _{1L} = 0.8 V, V	•••			250	μА
VO(on)	On-state output voltage	a thru g	V _{CC} = MAX, V V _{IL} = 0.8 V, 1			0.3	0.4	٧
l _l	Input current at maximum input voltage	Any input except BI/RBO	VCC = MAX, V	' _I = 5.5 V		_	1	mA
ΙΗ	High-level input current	Any input except BI/RBO	V _{CC} = MAX, V	/ ₁ = 2.4 V			20	μА
ИL	Low-level input current	Any input except BI/RBO	VCC = MAX, V	/ _I = 0.4 V			-0.8	mA
		BI/RBO					-2	
los	Short-circuit output current	BI/RBO	VCC = MAX				-2	
Icc	Supply current		V _{CC} = MAX, See Note 2	SN54L' SN74L'		32 32	43 52	4 mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
toff	Turn-off time from A input	-			200	ns
ton	Turn-on time from A input	CL=15pF, RL=280Ω,			200	,,,,
toff	Turn-off time from RBI input	See Note 3			200	ns
ton	Turn-on time from RBI input				200	

NOTE 3: Load circuit and voltage waveforms are shown on page S-87; toff corresponds to tpLH and ton corresponds to tpHL.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V.

TYPES SN54LS47, SN74LS47 **BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS**

absolute maximum ratings over o	operatir	ng free-air	te	m	pei	rat	un	e ra	ang	e ((ur	ile	SS	otl	nei	wi	se	no	te	d)					_
Supply voltage, VCC (see Note 1	1)																							7	٧
Input voltage			٠.	٠	•	•	•		•	٠	•	•	•	•	•		٠	•	•		•			7	٧
Peak output current (t _W ≤ 1 ms,	, auty cy	ycle ≤ 10%)	٠	•	•	•		٠	٠	•	•	•	•	•		•	•	٠	•	•		. 2	200 m	ıA
Current forced into any output i	in the of	rt state .	٠	•	•	•	٠.		•	•	•	•	•	٠	•		•	٠	٠	•	•_			1 m	ìΑ
Operating free-air temperature ra	ange: Si	N54L547	٠	٠	•	•	•	• •	٠	•	•	•	•	•	•		٠	•	•		-5	5 (C to	125	ŢC
Storage temperature renee	51	N74LS47	•	•	•	٠	•		٠	•	•	•	•	•	•	٠.	٠	•	٠	٠	٠.	0	C t	o 70	C.
Storage temperature range			•	•	•	•	•		•	•	٠	•	•	•	•		•	•	٠		-6	5 (J to	150	C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	-	S	N54LS	17	S	N74LS4	17	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage; VCC		4.5	5	5.5	4.75	5	5.25	v
Off-state output voltage, VO(off)	a thru g			15			15	V
On-state output current, IO(on)	a thru g	<u> </u>		12			24	mĀ
High-level output current, IOH	BI/RBO			-50			-50	μА
Low-level output current, IOL	BI/RBO			1.6			3.2	mA
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST COL	IDITIONS!	S	N54LS	47	S	N74LS	47	
	PARAMETER		IESI CON	IDITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	V
VI	Input clamp voltage		V _{CC} = MIN,	I _j = -18 mA			-1.5			-1.5	V
v _{OH}	High-level output voltage	BI/RBO	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{1H} = 2 V, I _{OH} = -50 μA	2.4	4.2		2.4	4.2		v
VOL	Low-level output voltage	BI/RBO	V _{CC} = MIN, V _{IH} = 2 V,	I _{OL} = 1.6 mA		0.25	0.4		0.25	0.4	V
			VIL = VIL max	IOL = 3.2 mA					0.35	0.5	
^I O(off)	Off-state output current	a thru g	V _{CC} = MAX, V _{IL} = V _{IL} max,	V _{IH} = 2 V, V _{O(off)} = 15 V			250			250	μА
V _{O(on)}	On-state output voltage	a thru g	V _{CC} = MAX, V _{IH} = 2 V,	I _{O(on)} = 12 mA		0.25	0.4		0.25	0.4	v
O(011)			VIL = VIL max	I _{O(on)} = 24 mA					0.35	0.5	ľ
11	Input current at maximur	n input voltage	V _{CC} = MAX,	V _I = 7 V			0,1			0.1	mA
ЧН	High-level input current		V _{CC} = MAX,	V _I = 2.7 V			20			20	μА
IIL	Low-level input current	Any input except BI/RBO	V _{CC} = MAX,	V _I = 0.4 V			-0.36			-0.36	mA
		BI/RBO					-1			-1	
los	Short-circuit output current	BI/RBO	V _{CC} = MAX	_	-0.3		-2	-0.3	-	-2	mA
ICC	Supply current		V _{CC} = MAX,	See Note 2		7	13		7	13	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡All typical values are at V_{CC} = 5 V, T_A = 25°C.

NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4,5 V.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
toff	Turn-off time from A input				100	
ton	Turn-on time from A input	CL = 15 pF, RL = 665 Ω,			100	ns
toff	Turn-off time from RBI input	See Note 4			100	
ton	Turn-on time from RBI input				100	ns

NOTE 4: Load circuit and voltage waveforms are shown on page S-88. toff corresponds to tplH and ton corresponds to tpHL.

TENTATIVE DATA

TYPES SN5448, SN7448 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

REVISED MARCH 1974

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																		7 V
Input voltage																	. 5	5.5 V
Operating free-air temperature range:	SN5448	١.													-5	5°C t	0 12	25°C
	SN7448	₿.														0.0	to /	70°C
Storage temperature range				•	 •		•	•	 •	•	•	•	•	•	-6	5°C t	o 15	50°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		1	SN544	В		SN744	В	UNIT
		MIN 4.5	NOM	MAX	MIN	NOM	MAX	CIVIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
	a thru g	T		-400			-400	μA
High-level output current, IOH	BI/RBO			-200			-200	μΑ.
	a thru g			6.4			6.4	mA
Low-level output current, IOL	BI/RBO			8			8	1'''
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CON	IDITIONS†	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			V
VIL	Low-level input voltage				<u> </u>		0.8	
Vi	Input clamp voltage		V _{CC} = MIN,	<u> </u>			-1.5	V
	I l'ab tarat annua voltana	a thru g	V _{CC} = MIN,	V _{IH} = 2 V,	2.4	4.2	_	l v
VOH	High-level output voltage	BI/RBO	V _{IL} = 0.8 V,	IOH = MAX	2.4	3.7		
ю	Output current	a thru g	V _{CC} = MIN, Input condition	_	-1.3	-2		mA
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,			0.27	0.4	٧
11	Input current at maximum input voltage	Any input except BI/RBO	V _{CC} = MAX,	V _I = 5.5 V	<u> </u>		1	mA
чн	High-level input current	Any input except BI/RBO	V _{CC} = MAX,	V _I = 2.4 V			40	μΑ
hr.	Low-level input current	Any input except BI/RBO	V _{CC} = MAX,	V ₁ = 0.4 V			-1.6	mA
''L	Low-lover impact derivative	BI/RBO	1 33	•			-4	<u> </u>
los	Short-circuit output current	BI/RBO	VCC = MAX				-4	mA
			V _{CC} = MIN,	SN5448		53	76	mA.
Icc	Supply current		See Note 2	SN7448		53	90	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

174

‡All typical values are at V_{CC} = 5 V, T_A = 25°C. NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V.

switching characteristics, VCC = 5 V, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPHL	Propagation delay time, high-to-low-level output from A input				100	l ns
tPLH	Propagation delay time, low-to-high-level output from A input	CL=15pF, RL=1kΩ,			100	
tPHL	Propagation delay time, high-to-low-level output from RBI input	See Note 5			100	ns
tPLH	Propagation delay time, low-to-high-level output from RBI input				100	

NOTE 5: Load circuit and voltage waveforms are shown on page S-87.

TYPES SN54LS48, SN74LS48 **BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS**

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)	
Supply voltage, VCC (see Note 1)	7 V
Input voltage	7 V
Operating free-air temperature range: SN54LS48	
SN74LS48	
Storage temperature range	റ°റ

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		S	N54LS4	18	S	N74LS	18	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH	a thru g			-100			-100	
Trighteer on that carrent, 10H	BI/RBO			-50			5.25 -100 -50 6 3.2	μА
Low-level output current, IOI	a thru g			2			6	
Eowiese oathat callent, 10[BI/RBO			1.6			3.2	mA
Operating free-air temperature, TA		-56		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST	IDITIONS†	s	N54LS	18	S	N74LS	48	J
	TANAMETER		TEST CON	IDITIONS.	MIN	TYP‡	MAX	MIN	TYP‡	MAX	דומט
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage				1		0.7			0.8	V
٧ı	Input clamp voltage		VCC = MIN,	1 ₁ = -18 mA	i —		-1.5			-1.5	V
VOH	High-level output voltage	a thru g and BI/RBO	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = MAX	2.4	4.2		2.4	4.2		V
lo	Output current	a thru g	V _{CC} = MIN, Input conditions	V _O = 0.85 V,	-1.3	-2	_	-1.3	-2		mA
		a thru g	V _{CC} = MIN, V _{IH} = 2 V,	IOL = 2 mA		0.25	0.4		0.25	0.4	V
VOL	Low-level output voltage		VIL = VIL max	IOL = 6 mA					0.35	0.5	ľ
*OL	COM-16461 On that Antiste	BI/RBO	V _{CC} = MIN, V _{IH} = 2 V,	I _{OL} = 1.6 mA		0.25	0.4		0.25	0.4	V
			VIL = VIL max	I _{OL} = 3.2 mA					0.35	0.5	
l _l	Input current at maximum input voltage	Any input except BI/BRO	V _{CC} = MAX,	V _I = 7 V			0.1		_	0.1	mA
ΊΗ	High-level input current	Any input except BI/RBO	V _{CC} = MAX,	V _I = 2.7 V			20			20	μА
IIL	Low-level input current	Any input except BI/RBO	V _{CC} = MAX,	V _I = 0.4 V			-0.36			-0.36	mA
		BI/RBO					-1			-1	1
los	Short-circuit output current	BI/RBO	V _{CC} = MAX		-0.3		-2	-0.3		-2	mA
Icc	Supply current		VCC = MAX,	See Note 2		25	38		25	38	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡All typical values are at V_{CC} = 5 V, T_A 25° C. NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPHL.	Propagation delay time, high-to-low-level output from A input	CL = 15 pF, RL = 4 kΩ,			100	
ФLН	Propagation delay time, low-to-high-level output from A input	See Note 6			100	ns
PHL	Propagation delay time, high-to-low-level output from RBI input	CL = 15 pF, RL = 6 kΩ,			100	
ФLН	Propagation delay time, low-to-high-level output from RBI input	See Note 6			100	ns

NOTE 6: Load circuit and voltage waveforms are shown on page S-88.

TYPE SN5449 **BCD-TO-SEVEN-SEGMENT DECODER/DRIVER**

REVISED MARCH 1974

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)															7 V
Input voltage															
Current forced into any output in the off state			. ,												1 mA
Operating free-air temperature range											-5	5°	C t	o 1	125°C
Storage temperature range											-6	5°	C t	0 1	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN5449	9	UNIT
Ak	MIN	NOM	MAX	10.4
Supply voltage, VCC	4.5	5	5.5	V
High-level output voltage, VOH			5.5	V
Low-level output current, IOL			10	mA
Operating free-air temperature, TA	-55		125	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		THE CONTRICTOR		SN5449		UNIT
)	PARAMETER	TEST CONDITIONS†	MIN	TYP‡	MAX	ONI
VIH	High-level input voltage		2			٧
VIL	Low-level input voltage		1		0.6	٧_
V ₁	Input clamp voltage	V _{CC} = MIN, I _I = -10 mA			-1.5	٧
Юн	High-level output current	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, V _{OH} = 5.5 V			250	μА
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 10 mA		0.27	0.4	v
11	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1	mA
1 _{IH}	High-level input current	V _{CC} = MAX, V _I = 2.4 V			40	μА
IIL.	Low-level input current	V _{CC} = MAX, V ₁ = 0.4 V			-1.6	mA
ICC	Supply current	VCC = MAX, See Note 2		33	47	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

174

‡All typical values are at V_{CC} = 5 V, T_{A} = 25°C. NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V.

switching characteristics, VCC = 5 V, TA = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPHL	Propagation delay time, high-to-low-level output from A input				100	ns
tPLH	Propagation delay time, low-to-high-level output from A input	CL = 15 pF, RL = 667 Ω,	<u></u>		100	
tPHL.	Propagation delay time, high-to-low-level output from RBI input	See Note 5			100	ns
tPI H	Propagation delay time, low-to-high-level output from RBI input				100	<u> </u>

NOTE 5: Load circuit and voltage waveforms are shown on page S-87.

TYPES SN54LS49, SN74LS49 **BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS**

Supply voltage, VCC (see Note 1) .																	
Input voltage																	
Current forced into any output in the	off s	tate															1
Operating free-air temperature range:	SN5	4LS	19											-5	5°(C to	12
	SN7	4LS4	19												0	°C t	o 7
Storage temperature range														-6	5°(C to	15
TE 1: Voltage values are with respect to netwo	vk ar	ound	terr	nin	١.												

•	s	N54LS4	19	S	N74LS4	19	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	UNII
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, VOH			5.5			5.5	V
Low-level output current, IOL			4			8	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST COL	NDITIONS†	S	N54LS4	19	S	N74LS4	49	
	PARAMETER	TEST CON	ADITIONS.	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage			2			2			^
VIL	Low-level input voltage					0.7			0.8	V
Vι	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA			-1.5			-1.5	V
ЮН	High-level output current	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, V _{OH} = 5.5 V			250			250	μΑ
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	V
, OL	- ·	VIL = VIL max	IOL = 8 mA					0.35	0.5]
=	Input current at maximum input voltage	VCC = MAX,	V _I = 7 V		_	1			1	mA
ΉΗ	High-level input current	V _{CC} = MAX,	V ₁ = 2.7 V			20			20	μА
11L	Low-level input current	V _{CC} = MAX,	V ₁ = 0.4 V			-0.36			-0.36	mA
¹ CC	Supply current	V _{CC} = MAX,	See Note 2	T T	8	15		8	15	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
TPHL	Propagation delay time, high-to-low-level output from A input	C _L = 15 pF, R _L = 2 kΩ,			100	
ФLН	Propagation delay time, low-to-high-level output from A input	See Note 6			100	ns
ФHL	Propagation delay time, high-to-low-level output from RBI input	C _L =15pF, R _L =6kΩ,			100	
tPLH	Propagation delay time, low-to-high-level output from RBI input	See Note 6		-	100	ns

NOTE 6: Load circuit and voltage waveforms are shown on page S-88.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V.

ΠL MSI

TYPES SN5475, SN5477, SN54L75, SN54L77, SN54LS75, SN54LS77, SN7475. SN74L75. SN74L77. SN74LS75 **4-BIT BISTABLE LATCHES**

BULLETIN NO. DL-S 7411851, MARCH 1974

logic

FUNCTION TABLE

(Each Latch)

INP	UTS	OUT	PUTS
۵	G	d	ā
L	Н	L	Н
н	н	Н	L
×	L	αo	₫0

H = high level, L = low level, X = (rrelevant Q₀ = the level of Q before the high-to-low transition of G

description

374

These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable (G) is high and the Q output will follow the data input as long as the enable remains high. When the enable goes low, the information (that was present at the data input at the time the transition occurred) is retained at the Q output until the enable is permitted to go high.

The '75, 'L75, and 'LS75 feature complementary Q and Q outputs from a 4-bit latch, and are available in various 16-pin packages. For higher component density applications, the '77, 'L77, and 'LS77 4-bit latches are available in 14-pin flat packages.

These circuits are completely compatible with all popular TTL or DTL families. All inputs are diodeclamped to minimize transmission-line effects and simplify system design. Series 54, 54L, and 54LS devices are characterized for operation over the full military temperature range of -55°C to 125°C; Series 74, 74L, and 74LS devices are characterized for operation from 0°C to 70°C.

SN5475, SN54LS75 . . . J OR W PACKAGE SN54L75...J PACKAGE SN7475, SN74L75, SN74LS75 . . . J OR N PACKAGE (TOP VIEW)

SN5477, SN54LS77 . . . W PACKAGE SN54L77, SN74L77 . . . T PACKAGE

NC-No internal connection

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																									7	٧
Input voltage: '75, 'L75, '77, 'L77																									5.5	٧
'LS75, 'LS77																					•				7	٧
Interemitter voltage (see Note 2)																									5.5	V
Operating free-air temperature range	:	SN	154	٠,:	SN	54	Ľ,	SI	۷5	4L	S	Ci	rcu	its		•	•	•			-5	5	C t	0	125°	С
		SN	174		SN	74	Ľ.	SI	٧7	4L	S'	Ci	rcu	its								0) C	to	70	С
Storage temperature range	_	_	_																		-6	_ا 55	C t	0	150°	С

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter input transistor.

TYPES SN5475, SN5477, SN54L75, SN54L77, SN54LS75, SN54LS77, SN7475, SN74L75, SN74L77, SN74LS75 4-BIT BISTABLE LATCHES

TYPES SN5475, SN5477, SN7475 **4-BIT BISTABLE LATCHES**

REVISED MARCH 1974

recommended operating conditions

	SNS	475, SN	5477		SN7475		UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	URIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	>
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			16	l		16	mA
Width of enabling pulse, tw	20			20			ns
Setup time, t _{setup}	20	-		20			ns
Hold time, thold	5			5			ns
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CO	NDIT	IONS†	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage					2			٧
VIL	Low-level input voltage							0.8	V
V _I	Input clamp voltage		VCC = MIN,	11 =	-12 mA			-1.5	٧
VOH	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,		= 2 V, = -400 μA	2.4	3.4		v
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	•••	= 2 V, = 16 mA		0.2	0.4	٧
T ₁	Input current at maximum input voltage		V _{CC} = MAX,	V ₁ =	5.5 V			1	mA
ЧН	High-level input current	D input G input	V _{CC} = MAX,	V ₁ =	2.4 V	-		80 160	μА
		D input						-3.2	
IIL.	Low-level input current	G input	V _{CC} = MAX,	۷۱۰	· 0.4 V			-6.4	mA
					SN54'	-20		-57	mA
los	Short-circuit output current §		V _{CC} = MAX		SN74'	-18		-57	
			V _{CC} = MAX,		SN54'		32	46	mA
Icc	Supply current		See Note 3		SN74'		32	53	

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 3: ICC is tested with all inputs grounded and all outputs open.

switching characteristics, VCC = 5 V, $T_A = 25^{\circ}C$

PARAMETER [¢]	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH .					16	30]
tPHL	D	٥			14	25	ns
			1		24	40	
tPLH¶	D	ā	C _L = 15 pF,	-	7	15	ns
tPHL (RL = 400 Ω,		16	30	
tPLH	G	α	See Figure 1		7	15	ns
tPHL to 1.00		 	╡		16	30	
tPLH¶ tPHL¶	G	٥			7	15	ns

OtpLH ≅ propagation delay time, low-to-high-level output

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

 $t_{PHL} \equiv propagation delay time, high-to-low-level output$

[¶] These parameters are not applicable for the SN5477.

TYPES SN54L75, SN54L77, SN74L75, SN74L77 **4-BIT BISTABLE LATCHES**

REVISED MARCH 1974

recommended operating conditions

		SN54	L75, SN	54L77	SN74	L75, SN	74L77	
	<u> </u>	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-200			-200	μА
Low-level output current, IOL				8			8	mA
Width of enabling pulse, tw		100			100			ns
Setup time, t _{setup}		40		-	40			ns
Hold time, thold		10			10			ns
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CO	ONDI	TIONST	MIN	TYP‡	MAX	UNIT
٧H	High-level input voltage					2			V
٧ıL	Low-level input voltage							0.8	V
VI	Input clamp voltage		VCC = MIN,	11:	= -12 mA	 		-1.5	V
Voн	High-level output voltage		V _{CC} = MIN,	VI	H=2V,				<u> </u>
VOH			V _{IL} = 0.8 V,	lo	H = −200 µA	2.4	3.4		\ \
VOL	Low-level output voltage		VCC = MIN,	VII	H = 2 V,				
,01			V _{IL} = 0.8 V,	lo	L = 8 mA		0.2	0.4	\ \
-	Input current at maximum input voltage		VCC = MAX,	VI	= 5.5 V			1	mA
Чн	High-level input current	D input	Vcc = MAX,	٧.	= 2.4 V			40	
		G input	VCC - IMAX,	١٧	- 2.4 V			80	μΑ
1 ₁ L	Low-level input current	D input	VCC = MAX,	٧.	= 0.4 V			-1.6	
		G input	VCC - WAX,	٧١	- 0.4 V			-3.2	mA
los	Short-circuit output current§		V _{CC} = MAX		SN54L'	-10		-29	
			VCC - WAX		SN74L'	-9		-29	mA
Icc	Supply current		VCC = MAX,		SN54L'		16	23	
			See Note 3		SN74L'		16	27	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡All typical values are at V_{CC} = 5 V, T_A = 25°C. §Nor more than one output should be shorted at a time.

NOTE 3: ICC is tested with all inputs grounded and all outputs open.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER*	FROM (INPUT)	TO (TEST CONDITIONS	MIN T	P MAX	דומט
^t PLH	D	Q		- :	2 60	
^t PHL		u			8 50	ns
₽LH¶	D	ā	0 45 - 5	4	8 80	1
tPHL¶		<u> </u>	CL = 15 pF, RL = 800 Ω,	1	4 30	ns
^t PLH	G	a	See Figure 1	3	2 60	1 -
tPHL			See Figure 1	1	4 30	ns
Ф∟н¶		ā	1	3	2 60	1
tPHL¶	•	\		1	4 30	ns

 $[\]diamond_{\mathsf{tpLH}} = \mathsf{propagation}$ delay time, low-to-high-level output

tpH_ = propagation delay time, high-to-low-level output These parameters are not applicable for the SN54L77 and SN74L77.

TYPES SN54LS75, SN54LS77, SN74LS75 **4-BIT BISTABLE LATCHES**

recommended operating conditions

		N54LS7			N74LS	75	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			4			8	mA
Width of enabling pulse, tw	20			20			ns
Setup time, t _{setup}	20			20			ns
Hold time, thold	0			0			ns
Operating free-air temperature, TA	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST	CONDITION	S [†]		N54LS7 N54LS7		s	N74LS7	75	דומט
	FANAMETEN				MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	
V _I	Input clamp voltage	VCC = MIN,	I _I = -18 mA				-1.5			-1.5	
VOH	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -400 /	шA	2.5	3.5		2.7	3.5		٧
		V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	V
VOL	Low-level output voltage	VIL = VIL max		IOL = 8 mA					0.35	0.5	<u> </u>
	Input current at			D input			0.1			0.1	mA
IJ	maximum input voltage	V _{CC} = MAX,	V _I = 7 V	G input			0.4			0.4	
	maximum input voitage			D input			20			20	-1 Δ
Ιн	High-level input current	V _{CC} = MAX,	V _I = 2.7 V	G input			80			. 80	
				D input			-0.4			-0.4	mA
IIL.	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V	G input			-1.6			-1.6	1
loc	Short-circuit output current §	V _{CC} = MAX			-6		-40	-5		-42	mA
los_	Onort on our carpat carrent			'LS75		6.3	12		6.3	12	mA
Icc	Supply current	VCC = MAX,	See Note 2	'LS77		6.9	13		6.9	13	<u> </u>

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

	FROM	то			'LS75			'LS77		UNIT
PARAMETER [¢]	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	OIVI I
****					15	27	ļ	11	19	ns
tPLH	D	a			9	17		9	17	\ '" "
tPHL				-	12	20				<u> </u>
tPLH	D	ā	C∟ = 15 pF,							ns
tPHL.		_	R _L = 2 kΩ,			15	<u> </u>			
tPLH .					15	27	1	10	18	ns
	G	Q	See Figure 1		14	25		10	18] '''
tPHL			1		16	30				
tPLH	G	ā		_		15	 			ns
tPHL							<u></u>			<u> </u>

 $[\]diamond_{\mathsf{tpLH}} \equiv \mathsf{propagation} \; \mathsf{delay} \; \mathsf{time}$, low-to-high-level output

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

NOTE 2: ICC is tested with all inputs grounded and all outputs open.

tpHL ≡ propagation delay time, high-to-low-level output

TYPES SN5475, SN5477, SN54L75, SN54L77, SN54LS75, SN54LS77, SN7475, SN74L75, SN74L77, SN74LS75 4-BIT BISTABLE LATCHES

PARAMETER MEASUREMENT INFORMATION

switching characteristics†

- NOTES: A. The pulse generators have the following characteristics: $Z_{out} \approx 60 \ \Omega$; for pulse generator A, PRR < 500 kHz; for pulse
 - generator B, PRR ≤ 1 MHz. Positions of D and G input pulses are varied with respect to each other to verify setup times. B. C_L includes probe and jig capacitance.
 - C. All diodes are 1N3064.
 - D. When measuring propagation delay times from the D input, the corresponding G input must be held high.
- E. For '75, '77, 'L75, and 'L77, V_{ref} = 1.5 V; for 'LS75 and 'LS77, V_{ref} = 1.3 V.

FIGURE 1

[†]Complementary Q outputs are on the '75, 'L75, and 'LS75 only.

TTL MSI

TYPES SN5483A, SN54LS83A, SN7483A, SN74LS83A 4-BIT BINARY FULL ADDERS WITH FAST CARRY

BULLETIN NO. DL-S 7411853, MARCH 1974

- Full-Carry Look-Ahead across the Four Bits
- Systems Achieve Partial Look-Ahead Performance with the Economy of Ripple Carry
- SN54283/SN74283 and SN54LS283/SN74LS283
 Are Recommended For New Designs as They
 Feature Supply Voltage and Ground on Corner
 Pins to Simplify Board Layout

	TYPICAL A	ADD TIMES	TYPICAL POWER
	TWO	TWO	DISSIPATION PER
TYPE	8-BIT	16-BIT	4-BIT ADDER
	WORDS	WORDS	4-BIT ADDER
'83A	23 ns	43 ns	310 mW
'LS83A	25 ns	45 ns	95 mW

description

These improved full adders perform the addition of two 4-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit. These adders feature full internal look ahead across all four bits generating the carry term in ten nanoseconds typically. This provides the system designer with partial look-ahead performance at the economy and reduced package count of a ripple-carry implementation.

The adder logic, including the carry, is implemented in its true form meaning that the end-around carry can be accomplished without the need for logic or level inversion.

Designed for medium-speed applications, the circuits utilize transistor-transistor logic that is compatible with most other TTL families and other saturated low-level logic families.

Series 54 and 54LS circuits are characterized for operation over the full military temperature range of -55°C to 125°C, and Series 74 and 74LS circuits are characterized for operation from 0°C to 70°C.

SN5483A, SN54LS83A...J OR W PACKAGE SN7483A, SN74LS83A...J OR N PACKAGE (TOP VIEW)

FUNCTION TABLE

ſ							OUT	PUT		
1					WHE	N		WHE	N	
1		INP	UT		C0 =	400		co -	н 🏒	
I					_	/ W	HEN	1	***	HEN
L					_	C	2 - L		2200	2 - H
7	41/	B1/		B2/	Σ1/	Σ2/	C2/	1/88	Σ2/	C2/
ļ	/ A3	<u>/ 83</u>	<u> </u>	<u> </u>	<u>∕ Σ3</u>	/ 3/4	∕ α	∠ 23	Z 74	<u> / c</u>
١	L	L	L	L	L '	L	L	н	L	L
١	н	L	L	L	н	L	L	L	н	L
١	L	н	L	L	н	L	L	L	н	L
١	н	н	L	L	L	н	L	н	н	L
١	L	L	н	L	L	н	L	н	н	L
١	н	L	н	L	н	н	L	L	L	н
١	L	н	н	L	н	н	L	L	L	н
Į	н	н	н	L	L	L	н	н	L	н
	L	L	L	н	L	н	L	н	н	L
	н	L	L	н	н	н	L	L	L	н
	L	н	L	н	н	н	L	L	L	н
	н	н	L	н	L	L	н	н	L	н
	L	ار	н	н	L	L	Н	н	L	н
	Н	Ī	н	Н	Н	L	н	L.	н	н
	L	н	н	н	н	١.	н	L	н	н
	н	н	н	н	L	Н_	н	.н	H	н

H = high level, L = low level

NOTE: Input conditions at A1, B1, A2, B2, and C0 are used to determine outputs £1 and £2 and the value of the internal carry C2. The values at C2, A3, B3, A4, and B4 are then used to determine outputs £3, £4, and C4.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																									•	•	•	•	•	•	7 V
Input voltage: '83A																					•	•	٠	•	•	•	•	٠	٠	•	5.5 V
'LS83A																				•		•		٠	٠	٠	•	٠	•	٠	/ V
Imageneriates valtage (con Note 2)																											٠				5.5 V
Operating free-air temperature range:	: :	SN	154	183	3A	, s	N5	4 L	.SE	33/	4	•	•			•	•	•	•	٠	•	٠	٠	٠	•		_	55	C	to	125 (
	•	S٨	174	18:	ЗΔ	S	N7	41	.SE	33/	Δ.															٠	•		U	U	0 / 0 (
Storage temperature range								•				٠		•	•	٠	•	•	٠	•	•	٠	•	•	•		-	65	, (to	150 0

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter transistor. This rating applies for the '83A only between the following pairs: A1 and B1, A2 and B2, A3 and B3, A4 and B4.

TYPES SN5483A, SN54LS83A, SN7483A, SN74LS83A 4-BIT BINARY FULL ADDERS WITH FAST CARRY

schematics of inputs and outputs

TYPES SN5483A, SN7483A 4-BIT BINARY FULL ADDERS WITH FAST CARRY

recommended operating conditions

		1 - 5	SN5483	A		SN7483.	A	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	CNII
Supply Voltage, VCC		4.5	5	5.5	4.75	5	5.25	٧
	Any output except C4			-800			-800	μA
High-level output current, IOH	Output C4			-400			-400	
	Any output except C4	T		16			16	mA
Low-level output current, IOL	Output C4			8			8	
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

						N5483	A		N7483	A	UNIT
	PARAME	TER	TEST CO	NDITIONST	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
	High-level input volta	ne -			2			2			٧
VIH	Low-level input volta						0.8			0.8	٧
V _I L.	Input clamp voltage	30	V _{CC} = MIN,	I _I = -12 mA			-1.5			-1.5	٧
VOH	High-level output vol	age	V _{CC} = MIN,	V _{IH} = 2 V,	2.4	3.4		2.4	3.4		٧
VOL	Low-level output voit	age	V _{CC} = MIN, V _{IL} = 0.8 V,			0.2	0.4		0.2	0.4	v
ų	Input current at max	mum	VCC = MAX,	V _I = 5.5 V			1			1	mA
1	High-level input curre	ent	VCC = MAX,	V ₁ = 2.4 V			40			40	μА
<u> </u>	Low-level input curre		VCC = MAX,				-1.6			-1.6	mA
11L		Any output except C4			-20		-55	-18		-55	mA
los	Short-circuit output current§	Output C4	V _{CC} = MAX		-20		-70	-18		-70] "'``
	output durinity	1 ******	VCC = MAX,	All B low, other inputs at 4.5 V		56			56		mA
'cc	Supply current		1	All inputs at 4.5 V		66	99		66	110	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡All typical values are at V_{CC} = 5 V, T_A = 25°C. § Only one output should be shorted at a time.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	31103, 400 0 17.17		TEST CONDITIONS	MIN	TYP	MAX	UNIT
PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST COMBITTORS		14	21	-
tPLH	CO	Any Σ			12	21	ns
ФНL	1		C _L = 15 pF, R _L = 400 Ω, See Note 3	— —		24	
tPLH					16		ns
tPHL	A _i or B _i	A _i or B _i Σ _i		J	16	24	
				9	14	ns	
₽LH	CO CO	C4	CL = 15 pF, RL = 780 Ω,		11	16	1 ""
tPHL	ļ		See Note 3		9	14	
tPLH	A _i or B _i	C4	36811010		11	16	ns
tPH L	.,,,,,,,						

[¶]tpLH ≡ Propagation delay time, low-to-high-level output

tpHL ≡ Propagation delay time, high-to-low-level output

NOTE 3: Load circuit and voltage waveforms are shown on page S-87.

TYPES SN54LS83A, SN74LS83A 4-BIT BINARY FULL ADDERS WITH FAST CARRY

recommended operating conditions

		S	154LS8	3A	St	LINIT		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	<u>-</u>	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-400			-400	μÃ
Low-level output current, IOL		i		4			8	mA
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

ļ.	PARAMET	FR	TE-	ST CONDITIO	Net	SI	V54LS8	3A	SI	V74LS8	3A	Ī
		<u> </u>				MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input	voltage				2			2			v
VIL	Low-level input	voltage			_			0.7			8.0	V
V _I	Input clamp volt	age	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	V
νон	High-level outpu	t voltage	V _{CC} = MIN, I _{OH} = -400 μA	•••	VIL = VIL max,	2.4	3.4	_	2.7	3.4		v
Vai	Low-level output	t voltage	VCC = MIN,	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	
- 01			ViL = VIL max		IOL = 8 mA					0.35	0.5	٧
lı .	Input current at maximum	Any A or B						0.2			0.2	
'I	input voltage	CO	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mΑ
ин	High-level	Any A or B	V _{CC} = MAX,	V. = 27V				40			40	
1111	input current	CO	VCC - WAA,	V - 2.7 V				20			20	μА
lı L	Low-level	Any A or B	VCC = MAX,	V _I = 0.4 V				-0.8			-0.8	
	input current	CO						-0.4			-0.4	mA
los	Short-circuit out	put current §	V _{CC} = MAX			-6		-40	-5		-42	mA
					All inputs grounded		22	39		22	39	
lcc	Supply current		V _{CC} = MAX, Outputs open	·	All B low, other inputs at 4.5 V		19	34		19	34	mA
					All inputs at 4.5 V		19	34		19	34	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER 9	FROM (INPUT)	TO (OUTPUT)	TEST CO	MIN	TYP	MAX	LIMIT	
^t PLH	CO	A =				16	24	
tPHL_	1	Any Σ				15	24	ns
^t PLH	A. or P.	5			-	15	24	-
^t PHL	A _i or B _i	Σ_{i}	CL = 15 pF,	$R_L = 2 k\Omega$,		15	24	ns
tPLH	CO	C4	See Note 4			11	17	-
tPHL		<u>س</u>				11	17	ns
^t PLH	A _i or B _i				— —	11	17	\vdash
^t PHL	7,0,0	C4			_	12	17	ns

[¶]tpLH ≡ Propagation delay time, low-to-high-level output

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. §Only one output should be shorted at a time.

tpHL = Propagation delay time, high-to-low-level output

Note 4: Load circuit and voltage waveforms are shown on page S-88.

TTL MSI

TYPES SN5485, SN54L85, SN54L885, SN54S85, SN7485, SN74L85, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS

BULLETIN NO. DL-S 7411810, MARCH 1974

SN54L85...J PACKAGE SN74L85...JOR N PACKAGE (TOP VIEW)

description

These four-bit magnitude comparators perform comparison of straight binary and straight BCD (8-4-2-1) codes. Three fully decoded decisions about two 4-bit words (A, B) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The A>B, A<B, and A=B outputs of a stage handling less-significant bits are connected to the corresponding A > B, A < B, and A = B inputs of the next stage handling more-significant bits. The stage handling the least-significant bits must have a high-level voltage applied to the A = B input and in addition for the 'L85, low-level voltages applied to the A > B and A < B inputs. The cascading paths of the '85, 'LS85, and 'S85 are implemented with only a two-gate-level delay to reduce overall comparison times for long words. An alternate method of cascading which further reduces the comparison time is shown in the typical application data.

	FUNCTION TABLES									
	COMP/			CA	SCADIN INPUTS	IG	C	UTPUT		
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A < B	A = B	A > B	A < B	A = B	
A3 > B3	×	×	х	×	×	X	H	L	L	
A3 < B3	l x	×	×	x	×	x	L	н	L	
A3 - B3	A2 > B2	×	×	×	×	X	н	L	L	
A3 - B3	A2 < B2	x	×	х	×	×	L	н	L	
A3 - B2	A2 = B2	A1 > B1	x	×	x	×	н	L	L	
A3 - B3	A2 - B2	A1 < B1	×	x	×	×	L	н	Ĺ	
A3 = B3	A2 - B2	A1 = B1	A0 > B0	×	×	×	н	L	L	
A3 - B3	A2 - B2	A1 - B1	A0 < B0	x	×	×	L	н	L	
A3 - B3	A2 = B2	A1 = B1	A0 = B0	н	L	L	н	L	L	
A3 = B3	A2 = B2	A1 - B1	A0 = B0	L	н	L	L	н	L	
A3 = B3	A2 = B2	A1 - B1	A0 = B0	L	L	н	L	L	н	
•			'85 ,	'LS85, '	S85					
A3 = B3	A2 = B2	A1 = B1	A0 = B0	×	×	Н	L	L.	н	
A3 = B3	A2 = B2	A1 - B1	A0 = B0	н	н	L	L	L	L	
A3 = B3	A2 = B2	A1 - B1	A0 = B0	L	L	L	Н	н	L	
				'L85						
A3 = B3	A2 - B2	A1 - B1	A0 = B0	L	Н	Н	L	Н	Н	
A3 = B3	A2 - B2	A1 - B1	A0 = B0	н	L	н	н	L	н	
A3 = B3	A2 - B2	A1 = B1	A0 = B0	н	н	н	н	н	н	
A3 - B3	A2 - B2	A1 = B1	A0 = B0	н	н	L	н	Н	L	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L_	L	L	L	L.	L	
H = high	level, L =	low level,	X = irrel	evant						

TEXAS INSTRUMENTS

TYPES SN5485, SN54L85, SN54LS85, SN54S85, SN7485, SN74L85, SN74LS85, SN74S85 **4-BIT MAGNITUDE COMPARATORS**

TYPES SN5485, SN54L85, SN54LS85, SN54S85, SN74B5, SN74L85, SN74LS85, SN74LS85 **4-BIT MAGNITUDE COMPARATORS**

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN54' SN54S'	SN54L	CNIFAL S'	SN74' SN74S'	SN74L	SN74LS	UNIT
Supply voltage, VCC (see Note 1)	7	8	7	7	8	7	٧
Input voltage (see Note 2)	5.5	5.5	7	5.5	5.5	7	٧
Interemitter voltage (see Note 3)	5.5			5.5			٧
Operating free-air temperature range		-55 to 1	25	0 to 70)	°C
Storage temperature range	-65 to 150 -65 to 150			50	°C_		

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

- 2. Input voltages for 'L85 must be zero or positive with respect to network ground terminal.
- 3. This is the voltage between two emitters of a multiple-emitter input transistor. This rating applies to each A input in conjunction with its respective B input of the '85 and 'S85.

TYPES SN5485, SN7485 4-BIT MAGNITUDE COMPARATORS

recommended operating conditions

		SN5485			SN7485			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	٧	
High-level output current, IOH			-400			-400	μА	
Low-level output current, IOL			16			16	mA	
Operating free-air temperature, TA	-55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	3	TE	EST CONDIT	IONS†		MIN	TYP	MAX	UNIT
VIH	High-level input voltage						2			V
VIL	Low-level input voltage					,			0.8	٧
VI	input clamp voltage		V _{CC} = MIN,		l ₁ = -1	2 mA			-1.5	v
VОН	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,		V _{IH} = :	2 V, –400 μA	2.4	3.4		v
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,		V _{IH} = 1	-		0.2	0.4	٧
Ч	Input current at maximum is	nput voltage	V _{CC} = MAX,		V _I = 5.	5 V			1	mA
1	High lavel input aureant	A < B, A > B inputs	14				_		40	
ЧН	High-level input current	all other inputs	V _{CC} = MAX,		V ₁ = 2.	4 V			120	μА
1	Low-level input current	A < B, A > B inputs	V - MAY	-					-1.6	
11L	Low-level input current	all other inputs	V _{CC} = MAX,		V _I = 0.4	4 V			-4.8	mA
loo	Short-circuit output current	8	V	a		SN5485	-20		-55	
los	- Short-circuit output current	3	V _{CC} = MAX,	νO = 0		SN7485	-18		-55	mA
Icc	Supply current		VCC = MAX,	See Note 4				55	88	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 4: I_{CC} is measured with outputs open, A = 8 grounded, and all other inputs at 4.5 V.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER	FROM INPUT	TO OUTPUT	NUMBER OF GATE LEVELS	TEST CONDITIONS	MIN	TYP	MAX	דומט		
			1			7				
to.	Any A or B data input	A < B, A > B 2			12					
^t PLH	Any A or 6 data input		3			17	26	ns		
		A ≃ B	4			23	35			
			. 1]			11		
•	Any A or B data input	A < B, A > B	2	C _L = 15 pF,		15				
tPHL			3	R _L = 400 Ω,		20	30	ns		
		A = B	4	See Note 5		20	30	1		
^t PLH	A < B or A = B	A > B	1	See NOte 5		7	11	ns		
tPHL.	A < B or A = B	A > B	1	,	-	11	17	ns		
tPLH .	A = B	A≃B	2			13	20	ns		
^t PHL	A = B	A = B	2			11	17	ns		
tPLH	A > B or A = B	A < B	1			7	11	ns		
tPHL	A > B or A = B	A < B	1			11	17	ns		

 $q_{\text{tpLH}} \equiv \text{propagation delay time, low-to-high-level output}$

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§]Not more than one output should be shorted at a time.

tpHL = propagation delay time, high-to-low-level output.

NOTE 5: Load circuit and voltage waveforms are shown on page S-87.

TYPES SN54L85, SN74L85 **4-BIT MAGNITUDE COMPARATORS**

recommended operating conditions

		SN54L8	5		5	UNIT	
	MIN	NOM	MAX	MIN	NOM	MAX	ONLI
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-100			-200	μА
Low-level output current, IOL			2			3.6	mA
Operating free-air temperature, TA	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TES	TCONDITION	st	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage					2			V
VIL	Low-level input voltage							0.7	٧
VIL	2011 lavar mpac variage		VCC = MIN,	V _{IH} = 2 V,	SN54L85	2.4	3.3		V
VOH	High-level output voltage		V _{IL} = 0.7 V,	IOH = MAX	SN74L85	2,4	3.2		<u>l </u>
			VCC = MIN,	V _{IH} = 2 V,	SN54L85		0.15	0.3] v
VOL	Low-level output voltage		V _{IL} = 0.7 V,	IOL = MAX	SN74L85		0.2	0.4	<u> </u>
	Input current at	A < B, A > B, or A = B		V 5 5 V				100	μА
11	maximum input voltage	A or B inputs	V _{CC} = MAX,	v = 5.5 v				300	
		A < B, A < B, or A = B	V _{CC} = MAX,	V:= 24 V				10	-luA
ΉН	High-level input current	A or B inputs	ACC - MINY	V - 2.4 V				30	1
		A < B, A > B, or A = B	V _{CC} = MAX,	V. = 0.3 V				-0.18	–l mA
11L	Low-level input current	A or B inputs	VCC - IVIAA,	V = 0.3 V				-0.54	ļ
los	Short-circuit output current§		VCC = MAX			-3		-15	mA
103				0 - 11 0	Condition A		4.0	7.7	- mA
tcc	Supply current		VCC = MAX,	See Note 6	Condition B		3.2	7.2	

for conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 6: With all outputs open, I_{CC} is measured for Condition A with all inputs at 4.5 V, and for Condition B with all inputs grounded.

switching characteristics, VCC = 5 V, $T_A = 25^{\circ}C$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	A A B	Any			90	150	ns
tPHL.	Any A or B	Any	C_= 50 pF, RL = 4 kΩ,		75	150	ļ
tPLH	A > B, A < B,	Any	See Note 7		75	150	ns
tPHL.	or A ≃ B	1		1	55	100	

 $[\]P_{tplh} \equiv propagation delay time, low-to-high-level output$

the propagation delay time, high-to-low-level output
NOTE 7: Load circuit and voltage waveforms are shown on page S-88.

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$.

[§]Not more than one output should be shorted at a time.

TYPES SN54LS85, SN74LS85 **4-BIT MAGNITUDE COMPARATORS**

recommended operating conditions

	S	SN54LS85			SN74LS85		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			4			8	mΑ
Operating free-air temperature, TA	-55		125	0	-	70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	DADA	METER	TEST CONDITIONS†		S	N54LS	35	SN74LS85]	
		WEIGN	1EST CON	ADITIONS.	MIN	TYP‡	MAX	MIN	TYP‡	MAX	TINU	
VIH	High-level input	voltage			2			2			V	
VIL	Low-level input	voltage					0.7			0.8	V	
VI	Input clamp vol	tage	V _{CC} = MIN,	I ₁ = -18 mA			-1.5		-	-1.5	V	
Vон	High-level outpu	ıt voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -400 μA	2.4	3.4		2.4	3.4		v	
VOL	Low-level outpu	it voltage	V _{CC} = MIN, V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	v	
•02		rt vortage	VIL = VIL max IOL = 8 mA					0.35	0.5			
1.	Input current at maximum	A < B, A > B inputs		Vcc = MAX,	Vı = 7 V			0.1			0.1	
4	input voltage	all other inputs	ACC - MIXY	V - / V			0.3			0.3	mA	
1	High-level	A < B, A > B inputs	V MAY	V _I = 2.7 V			20			20	T .	
ΉΗ	input current	all other inputs	V _{CC} = MAX,	V = 2.7 V			60			60	μΑ	
1	Low-level	A < B, A > B inputs	V MAY	V _I = 0.4 V			-0.4			-0.4		
11L	input current	all other inputs	V _{CC} = MAX,	V ~ U.4 V			-1.2			-1.2	mA	
los	Short-circuit ou	tput current §	V _{CC} = MAX		-6		-40	-5	_	-42	mA	
Icc	Supply current		VCC = MAX,	See Note 4		10.4	20		10.4	20	mA	

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 4: ICC is measured with outputs open, A = B grounded, and all other inputs at 4.5 V.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	FROM INPUT	TO OUTPUT	NUMBER OF GATE LEVELS	TEST CONDITIONS	MIN TYP	MAX	UNIT
		A < B, A > B 1 2 3		14			
*****	Any A or B data innut		2		19		ns
t₽LH	Any A or B data input		3	Į.	24	36	
	L	A≖B	4		23	35	
		ny A or B data input	1		11		
•	Any A or B data input		2	0 - 45 -5	15		- 1
tPHL			3	CL = 15 pF,	20	30	
		A=B	4	R _L = 2 kΩ,	20	30	
tPLH .	A < B or A = B	A > B	1	See Note 5	14	22	ns
tPHL.	A < B or A = B	A > B	1		11	17	ns
tPLH	A = B	A = B	2	1	13	20	ns
tPHL	A = B	A = B	2		11	17	ns
tPLH .	A > B or A = B	A < B	1		14	22	ns
tPHL.	A > B or A = B	A < B	1		11	17	ns

 $[\]mathbf{f}_{\mathsf{tp}_{\mathsf{LH}}} = \mathsf{propagation} \; \mathsf{delay} \; \mathsf{time}, \; \mathsf{low-to-high-level} \; \mathsf{output}$

NOTE 7: Load circuit and voltage waveforms are shown on page S-88.

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C. 8 Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

tpHL = propagation delay time, high-to-low-level output

TYPES SN54S85, SN74S85 **4-BIT MAGNITUDE COMPARATORS**

recommended operating conditions

	SN54S85			SN74S85		
MIN	NOM	MAX	MIN	NOM	MAX	UNIT
4.5	5	5.5	4.75	5	5.25	V
		-1			-1	mA
		20			20	mA
-55		125	0		70	°c
	MIN	MIN NOM 4.5 5	MIN NOM MAX 4.5 5 5.5 -1 20	MIN NOM MAX MIN 4.5 5 5.5 4.751 20	MIN NOM MAX MIN NOM 4.5 5 5.5 4.75 51 20	MIN NOM MAX MIN NOM MAX 4.5 5 5.5 4.75 5 5.2511 20 20

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS†			MIN	TYP‡	MAX	UNIT
·/···	High-level input voltage					2			V
VIH.	Low-level input voltage							8.0	V
VIL	Input clamp voltage		V _{CC} = MIN,	I ₁ = -18 mA				-1.2	V
Vı_	Input classip vortage		VCC = MIN,		SN54S85	2.5	3.4		V
۷он	High-level output voltage			I _{OH} = -1 mA	SN74S85	2.7	3.4		<u> </u>
VOL	Low-level output voltage		V _{CC} = MIN,					0.5	V
h	Input current at maximum inpu	voltage	VCC = MAX,	V ₁ = 5.5 V				1	mA
<u>''</u> _		A < B, A > B inputs	V _{CC} = MAX, V ₁ = 2.7 V				50	Αμ ا	
ΉН	High-level input current	all other inputs	1 vcc = wa^,	V - 2.7 V				150	<u> </u>
		A < B, A > B inputs		V = 0.5.V				-2	mA
IIL.	Low-level input current	all other inputs	VCC = MAX,	V = 0.5 V				-6	
laa	Short-circuit output current§		Vcc = MAX			-40		-100	mA
los	Short-cheart ou par content		VCC = MAX,	See Note 4			73	115	
Icc	Supply current			T _A = 125°C,	SN54S85W			110	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 4: ICC is measured with outputs open, A = B grounded, and all other inputs at 4.5 V.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	FROM INPUT	TO OUTPUT	NUMBER OF GATE LEVELS	TEST CONDITIONS	MIN TYP	MAX	UNIT
			1		5]
		A < B, A > B	2		7.5		ns
tPLH	Any A or B data input		3	1	10.5	16] ""
		A = B	4	1	12	18	
	Any A or B data input		1		5.5		ns
		A < B, A > B	2	1	7		
tPHL			3	CL = 15 pF,	11	16.5] ""
		A = B	4	R _L = 280 Ω,	11	16.5	
- tou u	A < B or A = B	A > B	1	See Note 5	5	7.5	ns
tPLH	A < B or A = B	A > B	1	İ	5.5	8.5	ns
tPHL_	A=B	A = B	2	†	7	10.5	ns
^t PLH	A=B	A = B	2	1	5	7.5	ns
tPHL			 		5	7.5	ns
tPLH .	A > B or A = B	A < B	<u> </u>		5.5		
tPHL	A > B or A = B	A < B	11		5.5	8.5	113

 $[\]P_{\text{tpLH}} \equiv \text{propagation delay time, low-to-high-level output}$

NOTE 5: Load circuit and voltage waveforms are shown on page S-87.

tpHL = propagation delay time, high-to-low-level output

TYPES SN5485, SN54L85, SN54LS85, SN54S85, SN7485, SN74L85, SN74LS85, SN74S85 **4-BIT MAGNITUDE COMPARATORS**

TYPICAL APPLICATION DATA

COMPARISON OF TWO N-BIT WORDS

This application demonstrates how these magnitude comparators can be cascaded to compare longer words. The example illustrated shows the comparison of two 24-bit words; however, the design is expandable to n-bits. As an example, one comparator can be used with five of the 24-bit comparators illustrated to expand the word length to 120-bits. Typical comparison times for various word lengths using the '85, 'L85, 'LS85, or 'S85 are:

WORD LENGTH		'85	'L85	'LS85	' S85
1-4 bits	1	23 ns	90 ns	24 ns	11 ns
5-24 bits	2-6	46 ns	180 ns	48 ns	22 ns
25-120 bits	8-31	69 ns	270 ns	72 ns	33 ns

COMPARISON OF TWO 24-BIT WORDS

TTL MSI

TYPES SN5490A, SN5492A, SN5493A, SN54L90,SN54L93, SN54L990, SN54LS92, SN54LS93, SN7490A, SN7492A, SN74LS93, SN74L90, SN74LS9, SN74LS90, SN74LS92, SN74LS93 DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS

BULLETIN NO. DL-S 7411807, MARCH 1974

'90A, 'L90, 'L\$90 . . . DECADE COUNTERS

'92A, 'LS92 . . . DIVIDE-BY-TWELVE COUNTERS

'93A, 'L93, 'LS93 . . . 4-BIT BINARY COUNTERS

TYPES	TYPICAL POWER DISSIPATION
'90A	145 mW
'L90	20 mW
'LS90	45 mW
'92A, '93A	130 mW
'LS92, 'LS93	45 mW
'L93	16 mW

description

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the '90A, 'L90, and 'LS90, divide-by-six for the '92A and 'LS92, and divide-by-eight for the '93A, 'L93, and 'LS93.

All of these counters have a gated zero reset and the '90A, 'L90, and 'LS90 also have gated set-to-nine inputs for use in BCD nine's complement applications.

To use their maximum count length (decade, divide-by-twelve, or four-bit binary) of these counters, the B input is connected to the QA output. The input count pulses are applied to input A and the outputs are as described in the appropriate function table. A symmetrical divide-by-ten count can be obtained from the '90A, 'L90, or 'LS90 counters by connecting the QD output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output QA.

SN54', SN54LS' . . . J OR W PACKAGE SN54L', SN74L' . . . J, N, OR T PACKAGE SN74', SN74LS' . . . J OR N PACKAGE

NC-No internal connection

TYPES SN5490A, '92A, '93A, SN54L90, 'L93, SN54LS90, 'LS92, 'LS93, SN7490A, '92A, '93A, SN74L90, 'L93, SN74LS90, 'LS92, 'LS93 DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS

'90A, 'L90, 'L\$90
BCD COUNT SEQUENCE
(See Note A)

_ (See N	lote	A)				
COUNT		OUTPUT					
COOM	Qρ	QC	$\mathbf{Q}_{\mathbf{B}}$	QA	ı		
0	L	L	L	L	l		
1	L	L	L	н	l		
2	L	L	н	L	l		
3	L	L.	н	н	l		
4	L	н	L	L			
5	L	н	L	н			
6	L	н	н	L			
7	L	н	н	н			
8	н	L	L	L			
1				I			

'90A, 'L90, 'LS90 BI-QUINARY (5-2)

	See P	lote	B)		
COUNT		out	PUT]
000	QA	αD	ac	QB	1
0	۲	L	L	L	1
1	L	L	L	н	ı
2	L	L	н	L	
3	L	L	н	н	
4	L	н	L	L	
5	н	L	·L	L	ı
6	н	L	L	н	
7	н	L	н	L	
8	н	L	н	н	
9	н	н	L	L	

'92A, 'LS92 COUNT SEQUENCE

	See N	lote (C)	
COUNT		OUT	PUT	
COOMI	QD	Qς	Qβ	QA
0	L	L	L	٦
1	L	L	L	н
2 '	L	L	н	L
3	L	L	н	н
4	L	н	L	L
5	L	н	L	Ļ
6	н	L	L	Ŀ
7	н	L	L	н
8	н	L	н	L
9	н	L	н	н
10	н	н	L	L
11	н	н	Ĺ	н

'93A, 'L93, 'LS93 COUNT SEQUENCE (See Note C)

COUNT		OU1	PUT	
	QD	Qς	QB	QA
0	L	L	L	L
1	L	L	L	н
2		L	н	L
3	L	L	н	н
4	L	н	L	L
5	L	н	L	н
6	L	н	н	L
7		н	н	н
8	н	L	L	L
9	н	L	L	н
10	н	L	н	L
11	н	L	н	н
12	н	н	L	L
13	н	н	L	н
14	н	н	н	L
15	н	н	н	н

'90A, 'L90, 'LS90

RESET/CO	UNT	FUNC	TION	TABLE

	RESET	INPUTS	3		OUT	PUT	
R ₀₍₁₎	R ₀₍₂₎	R ₉₍₁₎	R9(2)	å	ОC	QB	QA
Н	H	L	×	L	Ľ	L	L
Н	н	×	L	L	L	L	L
×	×	н	н	н	L	L	н
x	L	×	L		CO	UNT	
L	×	L	x		CO	UNT	.
L	X	×	L		CO	UNT	
×	L	L	x	L	CO	UNT	

NOTES: A. Output QA is connected to input B for BCD count.

- B. Output QD is connected to input A for bi-quinary count.
- C. Output Q_A is connected to input B.
- D. H = high level, L = low level, X = irrelevant

'92A, 'LS92, '93A, 'L93, 'LS93 RESET/COUNT FUNCTION TABLE

RESET	INPUTS		001	PUT					
R _{O(1)}	R ₀₍₂₎	QD	QC	QB	QA				
н	н	L	L	L	٦				
L	×		CO	TNL					
×	L	COUNT							

functional block diagrams

'92A, 'LS92

'93A, 'L93, 'LS93

The J and K inputs shown without connection are for reference only and are functionally at a high level.

TYPES SN5490A, '92A, '93A, SN54L9O, 'L93, SN54LS9O, 'LS92, 'LS93, SN7490A, '92A, '93A, SN74L90, 'L93, SN74LS90, 'LS92, 'LS93 DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS

schematics of inputs and outputs

TYPES SN5490A, SN5492A, SN5493A, SN7490A, SN7492A, SN7493A DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																										7 V	•
Input voltage																										5.5 V	•
Interemitter voltage (see Note 2)																										5.5 V	1
Operating free-air temperature range:	:	S۱	15	49	OA	١, ١	SN	54	192	2Α,	, S	NE	549	93,	Ą							-!	55°	C	to	125°C	;
		S١	17	49	0Α	١, ١	SN	74	192	2Α,	, S	N7	749	93,	4								C)°C	; to	70°C	;
Storage temperature range																						-6	35°	C	to	150°C	;

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

This is the voltage between two emitters of a multiple-emitter translator. For these circuits, this rating applies between the two R₀ inputs, and for the '90A circuit, it also applies between the two R₀ inputs.

recommended operating conditions

		SN549	0A, SN	5492A	SN749	OA, SN	7492A	
		L :	SN5493	A		SN7493	A	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH				-800			-800	μА
Low-level output current, IOL				16			16	mA
2 - 1 (- 1)	A input	0		32	0		32	MHz
Count frequency, f _{count} (see Figure 1)	B input	0		16	0		16	141112
	A input	15			15			1
Pulse width, tw	B input	30			30			ns
	Reset inputs	15			15			l
Reset inactive-state setup time, tsetup		25			25			ns
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

						'90A			'92A			'93A		UNIT
	PARAMETI	ER	TEST CONDITIO	ONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	MIN	TYP‡	MAX	GNII
VIH	High-level inpu	ıt voltage			2			2			2			V
VIL	Low-level inpu	t voltage					0.8			0.8			0.8	٧
VI	Input clamp v	oltage	VCC = MIN, II = -1	2 mA			-1.5			-1.5			-1.5	V
Voн	High-level out	put voltage	V _{CC} = MIN, V _{IH} = :		2.4	3.4		2.4	3.4		2.4	3.4		٧
VOL	Low-level out	out voltage	V _{CC} = MIN, V _{IH} = 1	_		0.2	0.4		0.2	0.4		0.2	0.4	v
ij	Input current maximum inp		VCC = MAX, VI = 5.	5 V			1			1			1	mA
		Any reset]		40			40			40	
Ιн	High-level	A input	VCC = MAX, VI = 2.	4 V			80			80			80	μА
	input current	B input					120			120			80	<u> </u>
		Any reset			I		-1.6			-1.6			-1.6]
11L	Low-level	A input	VCC = MAX, VI = 0.	4 V			-3.2			-3.2			-3.2	mA
	input current	B input	1				-4.8			-4.8			-3.2	
	Short-circuit			SN54'	-20		-57	-20		-57	-20		-57	mA
los	output curren	t§	V _{CC} = MAX	SN74'	-18		-57	-18		-57	-18		-57	/``
Icc	Supply curren	it	VCC = MAX, See No	te 3		29	42		26	39		26	39	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25^{\circ}\text{C}$.

[§]Not more than one output should be shorted at a time.

QA outputs are tested at IOL = 16 mA plus the limit value for I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.

NOTE 3: I_{CC} is measured with all outputs open, both R₀ inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

TYPES SN5490A, SN5492A, SN5493A, SN7490A, SN7492A, SN7493A DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS

switching characteristics, VCC = 5 V, TA = 25°C

	FROM	то			'90A			'92A			′93A		רואט
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	Civi
	A	QΑ		32	42		32	42		32	42		МН
f _{max}	В	ΩB	1	16			16			16			
tPLH			1		10	16		10	16		10	16	ns
tPHL	Α	QA			12	18		12	18		12	18	113
tPLH		_	1		32	48		32	48		46	70	ns
tPHL.	^	αD			34	50		34	50		46	70	
tPLH			CL = 15 pF,		10	16		10	16		10	16	ns
tPHL	В	ΩB	R _L = 400 Ω,		14	21		14	21		14	21	
tPLH		_	See Figure 1		21	32		10	16		21	32	١
tPHL	В	αc	-		23	35		14	21		23	35	ns
tPLH			1		21	32		21	32		34	51	
tPHL	В	σ _D			23	35		23	35		34	51	ns
tPHL	Set-to-0	Any	1		26	40		26	40		26	40	ns
tPLH		a_A, a_D	1		20	30							
трнц	Set-to-9	QB, QC	1		26	24							ns

 $q_{fmax} \equiv \max$ imum count frequency $t_{PLH} \equiv propagation delay time, low-to-high-level output <math>t_{PHL} \equiv propagation delay time, high-to-low-level output$

TYPES SN54L90, SN54L93, SN74L90, SN74L93 **DECADE AND BINARY COUNTERS**

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 4)	
Input voltage (see Note 5)	
Operating free-air temperature range: SN54L90, SN54L	93
	93
Storage temperature range	

NOTES: 4. Voltage values are with respect to network ground terminal.

5. Input voltages must be zero or positive with respect to network ground terminal.

recommended operating conditions

	SN541	L90, SN	54L93	SN74	L90, SN	74L93	4/3/17
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	>
Count frequency, fcount	0		3	0		3	MHz
High-level output current, IOH			-100			-200	μΑ
Low-level output current, IOL			2			3.6	mΑ
Width of input count pulse, tw(count)	200			200			ns
Width of reset pulse, tw(reset)	200			200			ns
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	242445752			7557.00	NOITIONS		'L90			'L93		
	PARAMETER	•		TEST CO	NDITIONST	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage					2			2			>
VIL	Low-level input voltage							0.7			0.7	٧
	18-b level even a velocie		SN54L'	V _{CC} = MIN,	V _{IH} = 2 V,	2.4	3.3		2.4	3.3		>
VOH	High-level output voltage		SN74L'	V _{IL} = 0.7 V,	IOH = MAX	2.4	3.2		2.4	3.2		
	1 - 1 - 1		SN54L'	V _{CC} = MIN,	V _{IH} = 2 V,		0.15	0.3		0.15	0.3	V
VOL	Low-level output voltage	· ·	SN74L'	V _{IL} = 0.7 V,	IOL = MAX¶		0.2	0.4		0.2	0.4	
		Any rese	et input					100			100	
կ	Input current at	A input	-	VCC = MAX,	V _I = 5.5 V			300			200	μΑ
	maximum input voltage	B input		1				600			200	
		Any rese	et input					10			10	
Ιιн	High-level input	A input		VCC = MAX,	V ₁ = 2.4 V			30			20	μΑ
	current	B input						60			20]
		Any rese	et input					-0.18			-0.18	
HL	Low-level input	A input		VCC - MAX,	V _I = 0.3 V			-0.54			-0.36	mA
	current	B input		1				-1.08			-0.36	
los	Short-circuit output currer	nt§		VCC = MAX		-3		-15	-3		-15	mA
ICC	Supply current			VCC = MAX,	See Note 3		4	7.2		3.2	6.6	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

	PARAMETER	TEST CONDIT	LIONE		'L90			L93		UNIT
1	PARAMETER	TEST CONDI	IONS	MIN	TYP	MAX	MIN	TYP	MAX	Citi
f _{max}	Maximum count frequency			3	6		3	6		MHz
ФLН	Propagation delay time, low-to-high-level QD				230	340		280	450	ns
	output from input A		L = 4 kΩ,							
tou	Propagation delay time, high-to-low-level QD	See Figure 1			230	340		280	450	ns
PHL	output from input A									L

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

§Not more than one output should be shorted at a time.

¶Q_A outputs are tested at I_{OL} = MAX plus the limit value for I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.

NOTE 3: ICC is measured with all outputs open, both Ro inputs grounded following momentary connection to 4.5 V, and all other inputs

TYPES SN54LS90, SN54LS92, SN54LS93, SN74LS90, SN74LS92, SN74LS93 DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage Vcc (see Note 4)	 7 V
Input voltage: R inputs	 7 V
Δ and R inputs	 5.5 V
Operating free-air temperature range: SN54LS' Circ	 125°C
SN74LS' Circ	 3 70°C
Storage temperature range	 150 C

NOTE 4: Voltage values are with respect to network ground terminal.

recommended operating conditions

			N54LS	-		N74LS			
		SN54LS92 SN54LS93				SN74LS93			
		MIN	NOM	MAX	MIN	NOM	MAX		
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V	
High-level output current, IOH	<u> </u>			-400			-400	μΑ	
Low-level output current, IOL				4			8_	mA	
	A input	0		32	0		32	MHz	
Count frequency, fcount (see Figure 1)	B input	0		16	0		16	101112	
	A input	15			15				
Pulse width, tw	B input	30			30			ns	
• •	Reset inputs	15			15				
Reset inactive-state setup time, t _{setup}		25			25			ns	
Operating free-air temperature, TA		-55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMET	'ER	TE	TEST CONDITIONS†			N54LS9 N54LS9		_	N74LS9		UNIT
						MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH	High-level input	t voltage				2			2			v
VIL	Low-level input	voltage						0.7			0.8	٧
Vι	Input clamp vo	Itage	VCC = MIN,	I _I = -18 mA				-1.5			-1.5	V
Vон	High-level outp	ut voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -400 μA		2.5	3.4		2.7	3.4		v
			VCC = MIN,	V _{IH} = 2 V,	IOL = 4 mA¶		0.25	0.4		0.25	0.4	V
VOL	Low-level outpo	ut voltage	VIL = VIL max,		IOL = 8 mA9					0.35	0.5	
	Input current	Any reset	VCC = MAX,	V _I = 7 V				0.1			0.1	
11	at maximum	A input	V - MAY	V 5 5 V				0.4			0.4	mA
	input voltage	B input	V _{CC} = MAX,	V ₁ = 5.5 V				0.8			0.8	
	High-level	Any reset						20			20	
ΉН	-	A input	V _{CC} = MAX,	V _I = 2.7 V				80			80	μА
	input current	B input						160			160	
	Low-level	Any reset		_				-0.4			-0.4	
HL		A input	V _{CC} = MAX,	V _I = 0.4 V				-2.4			-2.4	mA
	output current	B input						-3.2			-3.2	
los	Short-circuit ou	tput current§	V _{CC} ≈ MAX		•	-6		-40	-5		-42	mA
1	Supply surross		V MAY	See Note 3	'LS90		9	15		9	15	mA
'cc	Supply current		V _{CC} = MAX,	366 14016 3	'LS92		9	15		9	15	

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

TENTATIVE DATA

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§]Not more than one output should be shorted at a time.

Outputs are tested at specified IOL plus the limit value of IIL for the B input. This permits driving the B input while maintaining full fan-out capability.

NOTE 3: I_{CC} is measured with all outputs open, both R_O inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

TYPES SN54LS90, SN54LS92, SN54LS93, SN74LS90, SN74LS92, SN74LS93 DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAME1	ree	1 750	ST CONDITION	et	S	N54LS	3	S	N74LS	3	
	- ANAME	ien		SI COMDITION	3'	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level inpu	t voltage				2			2			V
VIL	Low-level inpu	t voltage		- · · · · ·				0.7			0.8	V
٧ı	Input clamp vo	ltage	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	V
VOH	High-level outp	ut voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -400 μA	\	2.5	3.4		2.7	3.4		>
Voi	Low-level outp	ut voltage	VCC = MIN,	V _{IH} = 2 V,	IOL = 4 mA¶		0.25	0.4		0.25	0,4	·
			VIL = VIL max		IOL = 8 mA¶					0,35	0.5	
lı .	Input current at maximum	Any reset	V _{CC} = MAX,	V _I = 7 V				0.1	ļ		0.1	
''	input voltage	A or B input	V _{CC} = MAX,	V ₁ = 5.5 V				0.4			0.4	mA
1	High-level	Any reset	V MAY	V = 0.7.V			-	20			20	
ΉН	input current	A or B input	V _{CC} = MAX,	V _I = 2.7 V				80			80	μΑ
	Low-level	Any reset						-0.4			-0.4	
ĦΕ		A input	V _{CC} = MAX,	V1 = 0.4 V				-2.4			-2.4	mA
	output current	B input						-1.6			-1.6	
los	Short-circuit or	tput current§	V _{CC} = MAX			-6		-40	-5		-42	mA
Icc	Supply current	-	VCC = MAX,	See Note 3			9	15		9	15	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM	ТО	TEST COMPLETIONS		'LS90			'LS92			'LS93		
PAHAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
4	Α	QA		32	42		32	42		32	42		
fmax	В	QB]	16			16			16			MHz
tРLН	Α	0.	1		10	16		10	16		10	16	
tPHL	1^	QΑ			12	18		12	18		12	18	ns
tPLH .	Α	05			32	48		32	48		46	70	
tPHL.	7	αD	Cլ = 15 pF,		34	50		34	50		46	70	ns
tPLH .	В	QΒ			10	16		10	16		10	16	
tPHL.	_ B	ав	RL≃2kΩ		14	21		14	21		14	21	ns
^t PLH	В	0-	See Figure 1		21	32		10	16		21	32	
tPHL_	L	ac			23	35		14	21		23	35	ns
^t PLH	В	0-	1		21	32		21	32		34	51	Γ.,
tPHL.	<u> </u>	α _D			23	35		23	35		34	51	ns
tPHL	Set-to-0	Any			26	40		26	40		26	40	ns
tPLH .	-Set-to-9	Q_A, Q_D			20	30							
tPHL_	-361-10-9	QB, QC			26	24							ns

^{¶&}lt;sub>fmax</sub> = maximum count frequency

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

Not more than one output should be shorted at a time.

[¶]QA outputs are tested at specified IQL plus the limit value for I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.

NOTE 3: I_{CC} is measured with all outputs open, both R₀ inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

tpLH ➡ propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

TYPES SN5490A, SN5492A, SN5493A, SN54L90, SN54L93, SN54LS90, SN54LS92, SN54LS93, SN7490A, SN7492A, SN74LS93, SN74LS90, SN74LS92, SN74LS93 DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. Input pulses are supplied by a generator having the following characteristics: for '90A, '92A, '93A, $t_r < 5$ ns, $t_r < 5$ ns, PRR = 1 MHz, duty cycle = 50%, $Z_{\rm Out} \approx 50$ ohms; for 'L90, 'L93, $t_r < 15$ ns, $t_r < 15$ ns, PRR = 500 kHz, duty cycle = 50%, $Z_{\rm Out} \approx 50$ ohms; for 'L990, 'LS92, 'LS93, $t_r < 15$ ns, PRR = 500 kHz, duty cycle = 50%, $Z_{\rm Out} \approx 50$ ohms.
 - B. C_L includes probe and jig capacitance.
 - C. C1 (30 pF) is applicable for testing 'L90 and 'L93.
 - D. All diodes are 1N916 or 1N3064.
 - E. Each reset input is tested separately with the other reset at 4.5 V.
 - F. Reference waveforms are shown with deshed lines.
 - G. For '90A, '92A, and '93A; V_{ref} = 1.5 V. For 'L90, 'L93, 'LS90, 'LS92, and 'LS93; V_{ref} = 1.3 V.

FIGURE 1

374.

TTL MSI

TYPES SN5491A, SN54L91, SN54LS91, SN7491A, SN74L91, SN74LS91 8-BIT SHIFT REGISTERS

BULLETIN NO. DL-S 7411854, MARCH 1974

MSI TTL SHIFT REGISTERS for applications in

- Digital Computer Systems
- Data-Handling Systems
- Control Systems

SN5491A, SN54LS91 . . . J PACKAGE SN54L91, SN7491A, SN74L91, SN74LS91 . . . J OR N PACKAGE DUAL-IN-LINE PACKAGE (TOP VIEW) SN5491A, SN54LS91...W PACKAGE SN54L91, SN74L91...T PACKAGE FLAT PACKAGE (TOP VIEW)

H = high, L = low, X = irrelevant t_n = Reference bit time,

clock low

tn+8 = Bit time after 8
low-to-high
clock transitions.

positive logic: see function table

NC-No internal connection

TYPE	MAXIMUM CLOCK FREQUENCY	TYPICAL POWER DISSIPATION
'91A	18 MHz	175 mW
'L91	6.5 MHz	17.5 mW
1 501	10 MH-	60 -141

TVDICAL

description

These monolithic serial-in, serial-out, 8-bit shift registers utilize transistor-transistor logic (TTL) circuits and are composed of eight R-S master-slave flip-flops, input gating, and a clock driver. Single-rail data and input control are gated through inputs A and B and an internal inverter to form the complementary inputs to the first bit of the shift register. Drive for the internal common clock line is provided by an inverting clock driver. This clock pulse inverter/driver causes these circuits to shift information one bit on the positive edge of an input clock pulse.

schematics of inputs and outputs

functional block diagram

TYPES SN5491A, SN7491A 8-BIT SHIFT REGISTERS

solute maximum ratings over operating free-	air	te	mţ	oer	at	ur	e r	an	ıge	(u	ını	ess	01	tne	erv	VIS	e r	10	tea	,	
Supply voltage, VCC (see Note 1)																					7 1
to and analysis for Note 21																					0.0
CNEAQ1A																				-	-55 6 10 125
SN7491A								_													. 0 C 10 / 0
Storage temperature range	٠	•		٠	•	٠	•	•	•	•		٠	٠	•	•	٠	•	•		•	-05 C to 130

NOTES: 1. Voltage values are with respect to network ground terminal.

2. Input signals must be zero or positive with respect to network ground terminal.

recommended operating conditions

		N5491	A		SN7491.	Α	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	Civit
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	<u></u>
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			16			16	mA
Width of clock input pulse, tw	25			25			ns
Setup time, t _{setup} (see Figure 1)	25			25			ns
Hold time, thold (see Figure 1)	0			0			ns
Operating free-air temperature, TA	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			8	SN5491.	Α		N7491	<u> </u>	UNIT
	PARAMETER	TEST CONDITIONS†	MIN	NOM	MAX	MIN	NOM	MAX	ONT
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	<u> </u>
Voн	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -400 μA	2.4	3.5		2.4	3.5		V
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	٧
T _L	Input current at maximum input voltage	VCC = MAX, VI = 5.5 V			1			1	mA
T _{IH}	High-level input current	V _{CC} = MAX, V _I = 2.4 V			40			40	μΑ
IIL.	Low-level input current	V _{CC} = MAX, V _I = 0.4 V			-1.6			-1.6	mA
los	Short-circuit output current§	V _{CC} = MAX	-20		-57	-18		<u>-57</u>	mA
Icc	Supply current	V _{CC} = MAX, See Note 3		35	50		35	58	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 3: ICC is measured after the eighth clock pulse with the output open and A and B inputs grounded.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} Maximum clock frequency	CL = 15 pF,	10	18	•	MHz
tp_H Propagation delay time, low-to-high-level output	R _L = 400 Ω,		24	40	ns
tPHL Propagation delay time, high-to-low-level output	See Figure 1		27	40	ns

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time.

TYPES SN54L91, SN74L91 8-BIT SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		8 V
Input voltage (see Note 2)		5.5 V
Operating free-air temperature range: SN54L9		125°C
	<i></i>	
Storage temperature range		150°C

NOTES: 1. Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN54L9)1	S	1		
		MIN	NOM	MAX	MIN	NOM	MAX	TINU
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-100			-200	μА
Low-level output current, IOL				2			3.6	mA
Width of clock input pulse, tw(clock)	High logic level	100			100			ns
Width of clock input pulse, tw(clock)	Low logic level	150			150			ns
Setup time, t _{setup} (see Figure 1)		120			120			ns
Hold time, thold (see Figure 1)		0			0			ns
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS†		SN54L91			SN74L91				
		1631 60	MDITIONS.	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT		
v_{IH}	High-level input voltage			2			2			v		
VIL	Low-level input voltage					0.7	<u> </u>		0.7	V		
VOH	High-level output voltage	V _{CC} = MIN, V _{IL} = 0.7 V,	V _{IH} = 2 V, I _{OH} = MAX	2.4	3.3		2.4	3.2		v		
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.7 V,	V _{IH} = 2 V I _{OL} = MAX		0.15	0.3		0.2	0.4	v		
11	Input current at maximum input voltage	VCC = MAX,	V _I = 5.5 V			100			100	μA		
Чн	High-level input current	VCC = MAX,	V _I = 2.4 V			10			10	μA		
ηL	Low-level input current	V _{CC} = MAX,	V _I = 0.3 V			-0.18			-0.18	mA		
loş	Short-circuit output current	V _{CC} = MAX		-3		-15	-3		-15	mA		
Icc	Supply current	VCC = MAX,	See Note 3		3.5	6.6		3.5	6.6	mA		

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
fmax	Maximum clock frequency			3	6.5		MHz
•=	Propagation delay time,	0 50 - 5	B 410		cc	100	
tPLH	low-to-high-level output	CL = 50 pF,	R _L = 4 kΩ,		55	100	ns
	Propagation delay time,	See Figure 1					
tPHL	high-to-low-level output				100	150	ns .

^{2.} Input signals must be zero or positive with respect to network ground terminal.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25°C.

NOTE 3: I_{CC} is measured after the eighth clock pulse with the outputs open and A and B inputs grounded.

TYPES SN54LS91, SN74LS91 **8-BIT SHIFT REGISTERS**

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)										_	_											7V
																						/ 🔻
Input voltage Operating free-air temperature range: SN54LS9		•	•	•	٠	•	•	•	•	•												-55°C to 125°C
Operating free-air temperature range: SN54L59	١.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•		. 0°C to 70°C
SN74LS9	1.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-65°C to 150°C
Storage temperature range		٠	•	•	•	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•		-05 0 10 100 0

NOTES: 1. Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54L	91	S	SN74LS91			
	MIN	NOM	MAX	MIN	NOM	MAX	UKI	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V	
High-level output current, IOH			-400			-400	μΑ	
Low-level output current, IOL			4	<u> </u>		8	mA	
Width of clock input pulse, tw	25			25			ns	
Setup time, t _{setup} (see Figure 1)	25	<u> </u>		25			ns	
Hold time, thold (see Figure 1))		0			°C	
Operating free-air temperature, TA	_5	5	125	<u> </u>		70	<u> </u>	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				SI	V54LS9	1	SI	N74LS9	1	UNIT
PARAMETER	TES	T CONDITIONS	ST	MIN	TYP‡	MAX	MIN	TYP‡	0.8 -1.5 0.4 0.5 0.1 20 -0.4 -42	CNI
VIH High-level input voltage				2			2			<u> </u>
VIL Low-level input voltage						0.7				-
V ₁ Input clamp voltage	V _{CC} = MIN,	I ₁ = -18 mA				-1.5			<u>-1.5</u>	<u> v</u>
VOH High-level output voltage	VCC = MIN, VIL = VIL max,	V _{IH} = 2 V, I _{OH} = -400 μ	A	2.5	3.5		2.7	3.5		٧
	V _{CC} = MIN,		IOL = 4 mA		0.25	0.4		0.25		4 V
VOL Low-level output voltage	VIL = VIL max		IOL = 8 mA					N TYP‡ MAX 2 0.8 -1.5 7 3.5 0.25 0.4 0.35 0.5 0.1 20 -0.4 -5 -42	<u> </u>	
Input current at	VCC = MAX,	V _I = 7 V				0.1	_		0.1	mA
I _{IH} High-level input current	V _{CC} = MAX,	V _I = 2.7 V				20			20	μΑ
IL Low-level input current	VCC = MAX,	V _I = 0.4 V				-0.4				-
IOS Short-circuit output current §	VCC = MAX			-6		-40	-5			_
ICC Supply current	VCC = MAX,	See Note 3			12	20		12	20	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 3: ICC is measured after the eighth clock pulse with the output open and A and B inputs grounded.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} Maximum clock frequency	C _L = 15 pF,	10	18		MHz
tpl H Propagation delay time, low-to-high-level output	R _L = 2 kΩ,		24	40	ns
tPHL Propagation delay time, high-to-low-level output	See Figure 1		27	40	ns

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

TYPES SN5491A, SN54L91, SN54LS91, SN7491A, SN74L91, SN74LS91 8-BIT SHIFT REGISTERS

PARAMETER MEASUREMENT INFORMATION

PROPAGATION DELAY TIMES VOLTAGE WAVEFORMS

SWITCHING TIMES VOLTAGE WAVEFORMS

- NOTES: A. The generator has the following characteristics: $t_{W(clock)} = 500$ ns, PRR < 1 MHz, $Z_{out} \approx 50 \Omega$. For SN5491A/SN7491A, $t_r < 10$ ns and $t_f < 10$ ns; for SN54L91/SN74L91, $t_r < 15$ ns and $t_f < 15$ ns; and for SN54LS91/SN74LS91, $t_r = 15$ ns, and $t_f = 6$ ns.
 - B. C_L includes probe and jig capacitance.
 - C. All diodes are 1N3064 or 1N916.
 - D. C₁ = 30 pF and is used for SN54L91/SN74L91 only.
 - E. For SN5491A/SN7491A, V_{ref} = 1.5 V; for SN54L91/SN74L91 and SN54LS91/SN74LS91, V_{ref} = 1.3 V.

FIGURE 1-SWITCHING TIMES

TTL MSI

TYPES SN5495A, SN54L95, SN54LS95B, SN7495A, SN74L95, SN74LS95B 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

BULLETIN NO. DL-S 7411872, MARCH 1974

TYPE	TYPICAL MAXIMUM CLOCK FREQUENCY	TYPICAL POWER DISSIPATION
'95A	36 MHz	195 mW
'L95	5 MHz	19 mW
'LS95B	36 MHz	65 mW

description

These 4-bit registers feature parallel and serial inputs, parallel outputs, mode control, and two clock inputs. The registers have three modes of operation:

Parallel (broadside) load Shift right (the direction QA toward QD) Shift left (the direction QD toward QA)

Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock-2 input. During loading, the entry of serial data is inhibited.

Shift right is accomplished on the high-to-low transition of clock 1 when the mode control is low; shift left is accomplished on the high-to-low transition of clock 2 when the mode control is high by connecting the output of each flip-flop to the parallel input of the previous flip-flop (QD to input C, etc.) and serial data is entered at input D. The clock input may be applied commonly to clock 1 and clock 2 if both modes can be clocked from the same source. Changes at the mode control input should normally be made while both clock inputs are low; however, conditions described in the last three lines of the function table will also ensure that register contents are protected. SN5495A, SN54LS95B . . . J OR W PACKAGE SN7495A, SN74LS95B . . . J OR N PACKAGE (TOP VIEW)

SN54L95, SN74L95 . . . J, N, OR T PACKAGE (TOP VIEW)

FUNCTION TABLE

			INPUTS						OUTI	PUTS	
MODE	CLO	CKS	SERIAL		PARA	LLEL		Q _A .	α_{B}	αc	a_{D}
CONTROL	2 (L)	1 (R)	SENIAL	Α	В	С	D	L		<u></u> C	<u> </u>
. н	Н	Х	×	х	X	Х	Х	Q _{A0}	σ_{B0}	σ_{C0}	σ_{D0}
н	4	X	x	а	b	С	d	а	b	C	d
н	1	X	×	QBt	QCt	Q_D^{\dagger}	d	QBn	Q_{Cn}	Q_{Dn}	d
L	L	н	×	×	X	X	X	Q _{A0}	a_{B0}	σ_{C0}	a_{D0}
L	х	1	н	x	X	X	X	н	Q_{An}	Q_{Bn}	a_{Cn}
L	х	†	L	х	Х	Х	X	L	\mathbf{q}_{An}	Q_{Bn}	σ_{Cu}
†	L	L	х	x	X	X	X	Q _{A0}	Q_{B0}	a_{C0}	Q_{D0}
1 4	L	L	×	x	X	X	X	QAO	Q_{B0}	QC0	a_{D0}
+	L	H	×	×	X	X	X	Q _A O	a_{B0}	a_{co}	Q_{D0}
†	н	L	×	×	X	X	×	Q _{A0}	α_{B0}	a_{C0}	Q_{D0}
t	н	Н	×	×	x	X	×	Q _{A0}	α_{B0}	QC0	σ_{D0}

†Shifting left requires external connection of QB to A, QC to B, and QD to C. Serial data is entered at input D.

H = high level (steady state), L = low level (steady state), X = irrelevant (any input, including transitions)

+ = transition from high to low level, † = transition from low to high level

a, b, c, d = the level of steady-state input at inputs A, B, C, or D, respectively.

 Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = the level of Q_A , Q_B , Q_C , or Q_D , respectively, before the indicated steady-state input conditions were established. Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = the level of Q_A , Q_B , Q_C , or Q_D , respectively, before the most-recent \downarrow transition of the clock.

TYPES SN5495A, SN54L95, SN54LS95B, SN7495A, SN74L95, SN74LS95B 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN54'	SN54L'	SN54LS'	SN74'	SN74L	SN74LS'	UNIT
Supply voltage, V _{CC} (see Note 1)	7	8	7	7	8	7	>
Input voltage (see Note 2)	5.5	5.5	7	5.5	5.5	7	V
Interemitter voltage (see Note 3)	5.5	5.5		5.5	5.5	i i	V
Operating free-air temperature range		-55 to 1	25		.5 5.5 0 to 70		°C
Storage temperature range		-65 to 1	50				

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

- 2. For the 'L95, input voltages must be zero or positive with respect to network ground terminal.
- 3. This is the voltage between two emitters of a multiple-emitter input transistor. This rating applies between the clock-2 input and the mode control input.

TYPES SN5495A, SN7495A 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

REVISED MARCH 1974

recommended operating conditions

		N5495	A		N7495	A	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	Civil
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-800			-800	μΑ
Low-level output current, IOL			16			16	mA
Clock frequency, fclock	0		25	0		25	MHz
Width of clock pulse, tw(clock) (see Figure 1)	20			20			ns
Setup time, high-level or low-level data, t _{setup} (see Figure 1)	15			15			ns .
Hold time, high-level or low-level data, thold (see Figure 1)	0			0			ns
Time to enable clock 1, tenable 1 (see Figure 2)	15			15			ns
Time to enable clock 2, tenable 2 (see Figure 2)	15			15			ns
Time to inhibit clock 1, tinhibit 1 (see Figure 2)	5			5			กร
Time to inhibit clock 2, tinhibit 2 (see Figure 2)	5			5			ns
Operating free-air temperature, TA	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					N5495	A		UNIT		
	PARAME	TER	TEST CONDITIONST	MIN	TYP‡	MAX	MIN	TYP‡	MAX	CIVIT
VIH	High-level input volta	age .		2			2	_		V
VIL	Low-level input volta					0.8			0.8	V
VI	Input clamp voltage		VCC = MIN, I1 = -12 mA			-1.5			-1.5	V
VOH	High-level output vol	tage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -800 μA	2.4	3.4		2.4	3.4		٧
VOL	Low-level output vol	tage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	٧
11	Input current at maximum input volta	age	V _{CC} = MAX, V _I = 5.5 V			1		_	1	mA
ЧН	High-level	Serial, A, B, C, D, Clock 1 or 2	VCC = MAX, VI = 2.4 V			40			40	μΑ
.1111	input current	Mode control	1 3			80			80	
1	Low-level	Serial, A, B, C, D, Clock 1 or 2	V _{CC} = MAX, V _I = 0.4 V			-1.6			-1.6	mA
11L	input current	Mode control	1 55			-3.2			-3.2	
los	Short-circuit output		V _{CC} = MAX	-18		-57	-18		-57	mA
Icc	Supply current		VCC = MAX, See Note 4	1	39	63	1	39	63	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡All typical values are at VCC = 5 V, TA = 25°C.

switching characteristics, VCC = 5 V, TA = 25°C

					UNIT
f _{max} Maximum clock frequency	C ₁ = 15 pF, R ₁ = 400 Ω,	25	36		MHz
tpLH Propagation delay time, low-to-high-level output from clock	See Figure 1		18	27	ns
tpHL Propagation delay time, high-to-low-level output from clock	Gee rigure i		21	32	ns

[§]Not more than one output should be shorted at a time.

NOTE 4: I_{CC} is measured with all outputs and serial input open; A, B, C, and D inputs grounded; mode control at 4.5 V; and a momentary 3 V, then ground, applied to both clock inputs.

TYPES SN54L95, SN74L95 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

recommended operating conditions

	8	N54L9	5		N74L9	5	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-100			-200	μА
Low-level output current, IOL			2	_		3.6	mA
Clock frequency, fclock	0		3	0		3	MHz
Width of clock pulse, tw(clock) (see Figure 1)	200			200			ns
Setup time, high-level data, t _{setup} (see Figure 1)	100			100			ns
Setup time, low-level data, t _{setup} (see Figure 1)	120			120			ns
Hold time, high-level or low-level data, thold (see Figure 1)	0			0			ns
Time to enable clock 1, tenable 1 (see Figure 2)	225			225			ns
Time to enable clock 2, tenable 2 (see Figure 2)	200	_		200			ns
Time to inhibit clock 1, tinhibit 1 (see Figure 2)	100	_		100			ns
Time to inhibit clock 2, tinhibit 2 (see Figure 2)	0			0			ns
Operating free-air temperature, TA	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAM	METER	TEST CONDITIONS†	s	N54L95	5	:	SN74L9	5	
			TEST CONDITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input vol	tage		2			2			V
VIL	Low-level input vol	tage				0.7			0.7	V
v _{OH}	High-level output ve	oltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.7 V, I _{OH} = MAX	2.4	3.3		2.4	3.2		v
VOL	Low-level output vo	oltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.7 V, I _{OL} = MAX		0.15	0.3		0.2	0.4	v
l ₁	Input current at maximum	Serial, A, B, C, D, Clock 1 or 2	V _{CC} = MAX, V _I = 5.5 V			100			100	μА
	input voltage	Mode control	1			200			200	1
Ιн	High-level	Serial, A, B, C, D, Clock 1 or 2	V _{CC} = MAX, V _I = 2.4 V			10			10	μΑ
	input correit	Mode control	1			20			20	1
ИL	Low-level	Serial, A, B, C, D, clock 1 or 2	V _{CC} = MAX, V _I = 0.3 V			-0.18			-0.18	mA
	mpor ouriont	Mode control				-0.36			-0.36	1
los	Short-circuit output	t current§	V _{CC} = MAX	-3		-15	-3		-15	mA
ICC	Supply current		VCC = MAX, See Note 4		3.8	9		3.8	9	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} Maximum clock frequency	C _L = 50 pF, R _L = 4 kΩ,	3	5		MHz
tp_H Propagation delay time, low-to-high-level output from clock	See Figure 1		115	200	ns
tpHL Propagation delay time, high-to-low-level output from clock	See Figure (125	200	ns

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

Not more than one output should be shorted at a time.

NOTE 4: Icc is measured with all outputs and serial input open; A, B, C, and D inputs grounded; mode control at 4.5 V; and a momentary 3 V, then ground, applied to both clock inputs.

TYPES SN54LS95B, SN74LS95B **4-BIT PARALLEL-ACCESS SHIFT REGISTERS**

recommended operating conditions

	SI	V54LS9	5B	SI	174LS9	5B	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400	Ī		-400	μΑ
Low-level output current, IOL			4			8	mA
Clock frequency, fclock	0		25	0		25	MHz
Width of clock pulse, tw(clock) (see Figure 1)	25			25			ns
Setup time, high-level or low-level data, t _{setup} (see Figure 1)	20			20			ns
Hold time, high-level or low-level data, thold (see Figure 1)	10			10			ns
Time to enable clock 1, tenable 1 (see Figure 2)	20			20			ns
Time to enable clock 2, tenable 2 (see Figure 2)	20			20			ns
Time to inhibit clock 1, tinhibit 1 (see Figure 2)	20			20			ns
Time to inhibit clock 2, tinhibit 2 (see Figure 2)	20			20			ns
Operating free-air temperature, TA	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					SI	154LS9	5B	SI	N74LS9	5B	UNIT
	PARAMETE	R	TEST CO	NDITIONS†	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			V
	Low-level input voltage						0.7			8.0	V
VIL.			V _{CC} = MIN,	I ₁ '=18 mA			-1.5			-1.5	V
V _I	Input clamp voltage High-level output voltage		V _{CC} = MIN,	V _{IH} = 2 V,	2.5	3.4		2.7	3.4		٧
			VCC = MIN,	IOL = 4 mA		0.25	0.4		0.25	0.4	V
VOL	Low-level output voltage	•	V _{IH} = 2 V, V _{IL} = V _{IL} max	IOL = 8 mA					0.35	0.5	<u> </u>
	1	Clock inputs	<u> </u>	L	1		0.2			0.2	mA
l _l	Input current at maximum input voltage		VCC = MAX,	V ₁ = 7 V			0.1			0.1] ""
		Clock inputs	- 		1		40			40	μA
ηн	High-level	Other inputs	VCC = MAX,	V ₁ = 2.7 V			20			20] "^
	input current				_		-0.8	1		-0.8	
IIL.	Low-level	Clock inputs	VCC = MAX,	V1 = 0.4 V			-0.4	1		-0.4	⊢ mA
'IL	input current	Other inputs			+		-40	-5		-42	mA
los	Short-circuit output cur	rent §	V _{CC} = MAX		-6			+	13	21	mA
Icc	Supply current		V _{CC} = MAX,	See Note 4		13	21	<u>L</u> _			1

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 4: ICC is measured with all outputs and serial input open; A, B, C, and D inputs grounded; mode control at 4.5.V; and a momentary 3 V, then ground, applied to both clock inputs.

switching characteristics, VCC = 5 V, $TA = 25^{\circ}C$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		25	36		MHz
f _{max} Maximum clock frequency	CL=15pF, RL=2kΩ,	\vdash	18	27	ns
tpLH Propagation delay time, low-to-high-level output from clock	See Figure 1	<u> </u>	21	32	ns
tpHL Propagation delay time, high-to-low-level output from clock		1			

374

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

TYPES SN5495A, SN54L95, SN54LS95B, SN7495A, SN74L95, SN74LS95B 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. Input pulses are supplied by a generator having the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, and $Z_{out} \approx 50 \Omega$. For the data pulse generator, PRR = 500 kHz; for the clock pulse generator, PRR = 1 MHz. When testing f_{max} , vary PRR. For '95A, $t_{w(data)} > 20 \text{ ns}; t_{w(clock)} > 15 \text{ ns}. \text{ For 'L95}, t_{w(data)} > 150 \text{ ns}; t_{w(clock)} > 200 \text{ ns}. \text{ For 'L955B}, t_{w(data)} > 20 \text{ ns},$ $t_{W(clock)} > 15 \text{ ns.}$
 - B. C_L includes probe and jig capacitance.
 - C. C1 (30 pF) is applicable for testing 'L95.
 - D. All diodes are 1N916 or 1N3064.
 - E. For '95A, V_{ref} = 1.5 V; for 'L95 and 'LS95B, V_{ref} = 1.3 V.

VOLTAGE WAVEFORMS FIGURE 1-SWITCHING TIMES

NOTES: A. Input A is at a low level.

B. For '95A, V_{ref} = 1.5 V; for 'L95 and 'LS95B, V_{ref} = 1.3 V.

VOLTAGE WAVEFORMS FIGURE 2-CLOCK ENABLE/INHIBIT TIMES

37

TYPES SN5496, SN54L96, SN54LS96, SN7496, SN74L96, SN74LS96 5-BIT SHIFT REGISTERS

SN5496, SN54LS96 . . . J OR W PACKAGE

SN54L96...JPACKAGE SN7496, SN74L96, SN74LS96 . . . J OR N PACKAGE

BULLETIN NO. DL-S 7411821, MARCH 1974

- N-Bit Serial-To-Parallel Converter
- N-Bit Parallel-To-Serial Converter
- N-Bit Storage Register

TYPICAL

TYPICAL

TYPE PROPAGATION DELAY TIME POWER DISSIPATION

'96 25 ns

240 mW

'L96 50 ns 'LS96 25 ns

120 mW 60 mW

description

These shift registers consist of five R-S master-slave flip-flops connected to perform parallel-to-serial or serial-to-parallel conversion of binary data. Since both inputs and outputs for all flip-flops are accessible, parallel-in/parallel-out or serial-in/serial-out operation may be performed.

All flip-flops are simultaneously set to a low output level by applying a low-level voltage to the clear input

while the preset is inactive (low). Clearing is independent of the level of the clock input.

(TOP VIEW) OUTPUTS OUTPUTS QE CLEAR / QA QD QB Qr 10 q 15 14 13 12 11 16 QA QC QD QB SERIAL CLEAR INPLIT CK 2 3 7 1 D PRESET PRESET positive logic: see function table

The register may be parallel loaded by using the clear input in conjunction with the preset inputs. After clearing all stages to low output levels, data to be loaded is applied to the individual preset inputs (A, B, C, D, and E) and a high-level load pulse is applied to the preset enable input. Presetting like clearing is independent of the level of the clock input.

Transfer of information to the outputs occurs on the positive-going edge of the clock pulse. The proper information must be set up at the R-S inputs of each flip-flop prior to the rising edge of the clock input waveform. The serial input provides this information to the first flip-flop, while the outputs of the subsequent flip-flops provide information for the remaining R-S inputs. The clear input must be high and the preset or preset enable inputs must be low when clocking occurs.

FUNCTION TABLE

		INPUTS									OUTPUTS								
	PRESET		PF	RESE	Т		OL OCK	SERIAL	٥.	0-	00	α_{D}	QΕ						
CLEAR	ENABLE	Α	В	С	D	E	CLUCK	SENIAL	QΑ	σB	αc	α _D	ΨE.						
L	L	X	Х	Х	Х	Х	×	X	L	L	L	L	L						
L	×	L	L	L	L	L	×	X	L	L	L	L	L						
Н	Н	н	Н	Н	Н	Н	×	×	Н	Н	Н	Н	Н						
н	Н	L	L	L	L	L	L	×	QAO	Q_{B0}	QC0	Q_{D0}	QE0						
Н	н	Н	L	Н	L	Н	L	×	н	Q _{B0}	Н	Q_{D0}	Н						
н	L	x	X	X	X	X	L	×	Q _A 0	Q _{B0}	QCO	Q_{D0}	QE0						
н	L	x	X	X	X	X	1	н	н	Q_{An}	Q_{Bn}	Q_{Cn}	Q_{Dn}						
н	· L	X	X	Х	X	X	1	L	L	QAn	Q_{Bn}	Q_{Cn}	a_{Dn}						

H = high level (steady state), L = low level (steady state)

X = irrelevant (any input, including transitions)

† = transition from low to high level

QAO, QBO, etc = the level of QA, QB, etc, respectively before the indicated steady-state input conditions were established.

 Q_{An} , Q_{Bn} , etc = the level of Q_A , Q_B , etc, respectively before the most-recent \uparrow transition of the clock.

TYPES SN5496, SN54L96, SN54LS96, SN7496, SN74L96, SN74LS96 5-BIT SHIFT REGISTERS

typical clear, shift, preset, and shift sequences

functional block diagram

TYPES SN5496, SN54L96, SN54LS96, SN7496, SN74L96, SN74L96, SN74LS96 5-BIT SHIFT REGISTERS

schematics of inputs and outputs

TYPES SN5496, SN7496 5-BIT SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)														7 V
Input voltage (see Note 2)													5	5.5 V
Operating free-air temperature range:														
	SN7496											. (O'C to	70°C
Storage temperature range												ec.	O 45	= 0° 0

NOTES: 1. Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN5496	3		3	UNIT	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	. 5	5.5	4.75	5	5.25	V
High-level output current, IOH		_	-400			-400	μА
Low-level output current, IOL			16			16	mA
Clock frequency, fclock	0		10	0		10	MHz
Width of clock input pulse, tw(clock)	35			35			ns
Width of preset and clear input pulse, tw	30			30			ns
Serial input setup time, t _{setup} (see Figure 1)	30			30			ns
Serial input hold time, thold (see Figure 1)	. 0			0			ns
Operating free-sir temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	1	TEST CO	NDITIONS†		SN5496	i		SN7496	,	
_			1201 00		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			v
VIL	Low-level input voltage						0.8	<u> </u>		0.8	V
VOH	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = -400 μA	2.4	3.4		2.4	3.4		v
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	v
l _l	Input current at maximum	input voltage	VCC = MAX,	V _I = 5.5 V			1			1	mA
ΊΗ	High-level input current	any input except preset enable	V _{CC} = MAX,	V _I = 2.4 V			40			40	μΑ
		preset enable					200			200	
IIL.	Low-level input current	any input except preset enable	V _{CC} = MAX,	V ₁ = 0.4 V			-1.6			-1.6	mA
		preset enable					-8			-8	
los	Short-circuit output curren	nt§	VCC = MAX		-20		-57	-18		-57	mA
1cc	Supply current		VCC = MAX,	See Note 3		48	68		48	79	mA

[†] For conditions shown at MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, $TA = 25^{\circ}C$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output from clock	0 45-5		25	40	ns
tpHL Propagation delay time, high-to-low-level output from clock	CL = 15 pF,		25	40	ns
tpLH Propagation delay time, low-to-high-level output from preset or preset enable	RL = 400 Ω,		28	35	ns
tpHL Propagation delay time, high-to-low-level output from clear	See Figure 1			55	ns

^{2.} Input voltages must be zero or positive with respect to network ground terminal.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time. NOTE 3: I_{CC} is measured with the clear input grounded and all other inputs and outputs open.

TYPES SN54L96, SN74L96 5-BIT SHIFT REGISTERS

llute maximum ratings over operat	ting	fre	9 e-8	air	te	m	pe	rat	tur	e i	rar	nge	e (un	les	SS	ot	he	rw	ise	еп	101	tec	(t				
Supply voltage, VCC (see Note 1) .																												7
Input voltage (see Note 2)																			•	•							•	5.5
Operating free-air temperature range:	SNE	54L	96																				•		-5	°C	to	125
	SN7	74L	96																							0,0	; to	70
Storage temperature range																									-6	°C	to	150

2. Input voltage must be zero or positive with respect to network ground terminal.

recommended operating conditions

		N54L9	6	. :	SN74L9	6	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-200			-200	μА
Low-level output current, IQL			8			8	mA
Clock frequency, fclock	0		5	0		5	MHz
Width of clock, preset, or clear input pulse, tw	100			100			ns
Serial input setup time, t _{setup} (see Figure 1)	100			100			ns
Serial input hold time, thold (see Figure 1)	0			0			ns
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

						N54L9	6		SN74L9	6	UNIT
	PARAMETER		TEST CO	NDITIONST	MIN	TYP‡	MAX	MIN	TYP‡	MAX	GIVII
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.8			0.8	٧
VOH	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = -200 μA	2.4	3.2		2.4	3.2		٧
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	•••		0.2	0.4		0.2	0.4	٧
11	Input current at maximu	m input voltage	V _{CC} = MAX,	V _I = 5.5 V			1			1	mA
чн	High-level input current	any input except preset enable	V _{CC} = MAX,	V _I = 2.4 V			20			20	μΑ
'IH	riigirierer inpat carron	preset enable		•			100			100	
1	Low-level input current	any input except	V _{CC} = MAX,	V _I = 0.4 V			-0.8			-0.8	mA
11L	activities impartant	preset enable		·			-4			-4	
los	Short-circuit output curr	ent §	V _{CC} = MAX		-10		-29	-9		-29	mA
Icc	Supply current		VCC = MAX,	See Note 3		24	34	<u></u>	24	40	mA

[‡]For conditions shown at MIN or MAX, use the appropriate value specified under recommended operating conditions.

*All typical values are at V_{CC} = 5 V, T_A = 25°C.

§Not more than one output should be shorted at a time.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tpLH Propagation delay time, low-to-high-level output from clock	0 -45-5		50	80	ns
tpHL Propagation delay time, high-to-low-level output from clock	CL = 15 pF,		50	80	ns
TPLH Propagation delay time, low-to-high-level output from preset or preset enable	R _L = 800 Ω, See Figure 1		56	70	ns
tpHL Propagation delay time, high-to-low-level output from clear	See Figure 1			110	ns

NOTE 3: I_{CC} is measured with the clear input grounded and all other inputs and outputs open.

TYPES SN54LS96, SN74LS96 5-BIT SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)												
Input voltage												
Storage temperature range	4LS9										_	

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	s	N54LS	96	S	N74LS	96	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL		-	4			8	mA
Clock frequency, fclock	0		10	0		10	MHz
Width of clock input pulse, tw(clock)	35			35			ns
Widthiof preset and clear input pulse, tw	30			30			ns
Serial input setup time, t _{setup} (see Figure 1)	30			30			ns
Serial input hold time, thold (see Figure 1)	0			0			ns
Operating free-air temperature, TA	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CON	DITIONS	S	N54LS	96	s	N74LS	6	L
FARAMETER	IESI CONI		MIN	TYP‡	MAX	MIN	TYP‡	MAX	רומט
VIH High-level input voltage			2			2			V
VIL Low-level input voltage					0.7			0.8	V
V _I Input clamp voltage	V _{CC} = MIN, I ₁ = -1	I8 mA			-1.5	F		-1.5	V
VOH High-level output voltage	V _{CC} = MIN, V _{IH} = V _{IL} = V _{IL} max, I _{OH} =		2.5	3.5		2.7	3.5		v
VOL Low-level output voltage	V _{CC} = MIN, V _{IH} = V _{IL} = V _{IL} max	2 V, I _{OL} = 4 mA P _{OL} = 8 mA		0.25	0.4		0.25 0.35	0.4	v
Input current at maximum input voltage	V _{CC} = MAX, V _I = 7	v		•	0.1			0.1	mA
I _{IH} High-level input current	VCC = MAX, V1 = 2.	.7 V			20			20	μА
IIL Low-level input current	VCC = MAX, VI = 0.	.4 V			-0.4			-0.4	mΑ
IOS Short-circuit output current §	V _{CC} = MAX		-6		-40	-5		-42	mA
ICC Supply current	V _{CC} = MAX, See No	te 3		12	20		12	20	mA

For conditions shown at MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output from clock	0 - 15 - 5		25	40	ns
tpHL Propagation delay time, high-to-low-level output from clock	CL = 15 pF,		25	40	ns
tPLH Propagation delay time, low-to-high-level output from preset or preset enable	R _L = 2 kΩ, See Figure 1		28	35	ns
tPHL Propagation delay time, high-to-low-level output from clear	See Figure 1			55	ns

All typical values are at V_{CC} = 5 V, T_A = 25°C.
Not more than one output should be shorted at a time.

NOTE 3: I_{CC} is measured with the clear input grounded and all other inputs and outputs open.

TYPES SN5496, SN54L96, SN54LS96, SN7496, SN74L96, SN74LS96 **5-BIT SHIFT REGISTERS**

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

VOLTAGE WAVEFORMS

NOTES: A. Input pulses are supplied by pulse generators having the following characteristics: duty cycle \leq 50%, $Z_{out} \approx$ 50 Ω ; for '96 and 'L96, $t_r \le$ 10 ns, $t_f \le$ 10 ns, and for 'LS96 t_r = 15 ns, t_f = 6 ns.

- B. C_L includes probe and jig capacitance.
- C. All diodes are 1N3064 or 1N916.
- D. Preset may be tested by applying a high-level voltage to the individual preset inputs and pulsing the preset enable or by applying a high-level voltage to the preset enable and pulsing the individual preset inputs.
- E. QA output is illustrated. Relationship of serial input to other Q outputs is illustrated in the typical shift sequence.
- F. Outputs are set to the high level prior to the measurement of tpHL from the clear input.
- G. For '96 and 'L96, Vref = 1.5 V; for 'LS96 Vref = 1.3 V.

FIGURE 1-SWITCHING TIMES

PRINTED IN U.S.A.

It cannot assume any responsibility for any circuits shown

ar represent that they are free from patent infringement.

TYPES SN54145, SN54LS145, SN74145, SN74LS145 BCD-TO-DECIMAL DECODERS/DRIVERS

BULLETIN NO. DL-S 7411815, MARCH 1974

FOR USE AS LAMP, RELAY, OR MOS DRIVERS

- Full Decoding of Input Logic
- SN54145, SN74145, and SN74LS145 Have 80-mA Sink-Current Capability
- All Outputs Are Off for Invalid BCD Input Conditions
- Low Power Dissipation of 'LS145 . . .
 35 mW Typical

logic

FUNCTION TABLE

NO.		INP	UTS	;				0	UTI	PUT	s ˙			
1.0.	٥	С	В	Α	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	۲	Н	Н	Н	Н	Н	Н	Н	Н	Н
1 '	L	L	L	Н	н	L	Н	Н	Н	Н	Н	Н	Н	н
2	L	L	Н	L	н	Н	L	Н	Н	Н	н	н	Н	н
3	L	L	н	Н	н	Н	Н	L	Н	Н	H	Н	Н	н
4	L	н	L	L	Н	Н	Н	Н	L	н	Н	<u>H</u>	Н	Н
5	L	н	L	н	н	Н	Н	Н	Н	L	Н	Н	н	Н
6	L	н	Н	L	н	н	Н	Н	Н	Н	L	Н	Н	н
7	L	Н	Н	Н	н	н	н	Н	Н	Н	Н	L	Н	н
8	н	L	L	L	н	н	Н	Н	Н	Н	Н	Н	L	н
9	Ŧ	L	L	н	H	Н	Н	Н	Н	Н	Н	Н	Н	L
	Н	L	Н	L	Η	Н	Н	Н	Н	Н	Н	Н	н	Н
ا ہ ا	Н	L	Н	Н	н	н	Н	Н	н	Н	Н	Н	Н	н
INVALID	н	Н	L	L	н	Н	Н	Н	н	Н	Н	н	н	н
🔰	н	Н	L	н	н	Н	Н	Н	Н	Н	Н	Н	Н	Н
ا ځا	н	н	Н	L	н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Ш	Н	Н	н	Н	Н	_н	Н	н	Н	н	Н	н	Н	н

H = high level (off), L = low level (on)

description

These monilithic BCD-to-decimal decoder/drivers consist of eight inverters and ten four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid BCD input logic ensures that all outputs remain off for all invalid binary input conditions. These decoders feature high-performance, n-p-n output transistors designed for use as indicator/ relay drivers or as open-collector logic-circuit drivers. Each of the high-breakdown output transistors (15 volts) of the SN54145, SN74145, or SN74LS145 will sink up to 80 milliamperes of current. Each input is one Series 54/74 or Series 54LS/74LS standard load, respectively. Inputs and outputs are entirely compatible for use with TTL or DTL logic circuits, and the outputs are compatible for interfacing with most MOS integrated circuits. Power dissipation is typically 215 milliwatts for the '145 and 35 milliwatts for the 'LS145.

SN54145, SN54LS145 . . . J OR W PACKAGE SN74145, SN74LS145 . . . J OR N PACKAGE (TOP VIEW)

functional block diagram

TYPES SN54145, SN74145 BCD-TO-DECIMAL DECODERS/DRIVERS

REVISED MARCH 1974

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)															7 V
Input voltage															5.5 V
Maximum current into any output (off-state) .												÷			1 mA
Operating free-air temperature range: SN54145								•	•		٠	-5	5°C	to	125°C
SN74145															
Storage temperature range	_			 	_	_	 	_				-6	5°C	to	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN5414	5		SN74145				
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT		
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	٧		
Off-state output voltage, VO(off)			15			15	V		
Operating free-air temperature, TA	-55		125	0		70	°C		

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITION	ONS [†]	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage			2			٧
VIL	Low-level input voltage					0.8	٧
VI	Input clamp voltage	V _{CC} = MIN, I _I = -12 mA				-1.5	
IO(off)	Off-state output current	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, V _{O(off)} = 15 \	,			250	μА
	_	VCC = MIN, VIH = 2 V,	I _{O(on)} = 80 mA		0.5	0.9	V
VO(on)	On-state output voltage	V _{IL} = 0.8 ∨	$I_{O(on)} = 20 \text{ mA}$			0.4	<u> </u>
I ₁	Input current at maximum input voltage	VCC = MAX, VI = 5.5 V				1	mA
Чн	High-level input current	VCC = MAX, VI = 2.4 V				40	μΑ
116	Low-level input current	V _{CC} = MAX, V _I = 0.4 V				-1.6	mA
		May Cas Nass 2	SN54145		43	62	mA
ICC	Supply current	V _{CC} = MAX, See Note 2	SN74145		43	70	<u> </u>

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

swicthing characteristics, VCC = 5 V, TA = 25°C

	PARAMETER		TEST CONDITI	ONS	MIN	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output	0 15 - 5	R ₁ = 100 Ω,	See Note 3		50	ns
tPHL	Propagation delay time, high-to-low-level output	CL = 15 pF,	ML = 100 12,	See More 2		50	ns

NOTE 3: Load circuit and waveforms are shown on page S-87.

schematics of inputs and outputs

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

NOTE 2: I_{CC} is measured with all inputs grounded and outputs open.

TYPES SN54LS145, SN74LS145 BCD-TO-DECIMAL DECODERS/DRIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)							 				7V
Input voltage											7V
Operating free-air temperature range	: SN54LS145										-55°C to 125°C
	SN74LS145										. 0°C to 70°C
Storage temperature range								•			_65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	SI	SN54LS145					
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
Off-state output voltage, VO(off)			15			15	l v
Operating free-air temperature, TA	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CON	DITIONET	SI	N54LS1	45	SI	N74LS1	45_	J
	TANAMETER	1EST CON	DI HUNS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	דומט
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage					0.7			0.8	V
V _I	Input clamp voltage	VCC = MIN,	I _I = ~18 mA			-1.5			-1.5	V
la	Off-state output current	VCC = MIN,	V _{IH} = 2 V,							
O(off)	Ori-state output current	VIL = VIL max,	V _{OH} = 15 V			250			250	μА
-		VCC = MIN,	IOL = 12 mA		0.25	0.4		0.25	0.4	
VO(on)	On-state output voltage	VIH = 2 V,	IOL = 24 mA	i -				0.35	0.5	l v
		VIL = VIL max	IOL = 80 mA					1.5	1.7	
lj .	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V		_	0.1			0.1	mA
ЧН	High-level input current	V _{CC} = MAX,	V _I = 2.7 V			20			20	μА
IIL.	Low-level input current	VCC = MAX,	V _I = 0.4 V			-0.4			-0.4	mA
ICC	Supply current	VCC - MAX,	See Note 2		7	13		7	13	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: I_{CC} is measured with all inputs grounded and outputs open. switching characteristics, V_{CC} = 5 V, T_A = 25°C

	PARAMETER		TEST CONDITI	ONS	MIN	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output	C. = 45 = 5	R ₁ = 665 Ω.	Con Alona 4		50	ns
tPHL	Propagation delay time, high-to-low-level output	CL = 45 pF,	uf = 000 11'	See Note 4		50	ns

NOTE 4: Load circuit and waveforms are shown on page S-88.

schematic of inputs and outputs

TENTATIVE DATA

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

TTL MSI

TYPES SN54155, SN54156, SN54LS155, SN54LS156, SN74LS156, SN74LS156, SN74LS155, SN74LS156 DUAL 2-LINE-TO-4-LINE DECODERS/DEMULTIPLEXERS

BULLETIN NO. DL-S 7411850, MARCH 1974

Applications:

Dual 2-to-4-Line Decoder
Dual 1-to-4-Line Demultiplexer
3-to-8-Line Decoder

1-to-8-Line Demultiplexer

- Individual Strobes Simplify Cascading for Decoding or Demultiplexing Larger Words
- Input Clamping Diodes Simplify System Design
- Choice of Outputs: Totem Pole ('155, 'LS155) Open-Collector ('156, 'LS156)

TYPES	TYPICAL AVERAGE PROPAGATION DELAY	TYPICAL POWER
11765	3 GATE LEVELS	DISSIPATION
155, 156	21 ns	125 mW
'LS155	18 ns	31 mW
'LS156	32 ns	31 mW

SN54155, SN54156, SN54LS155, SN54LS156 . . . J OR W PACKAGE SN74155, SN74156, SN74LS155, SN74LS156 . . . J OR N PACKAGE (TOP VIEW)

description

These monolithic transistor-transistor-logic (TTL) circuits feature dual 1-line-to-4-line demultiplexers with individual strobes and common binary-address inputs in a single 16-pin package. When both sections are enabled by the strobes, the common binary-address inputs sequentially select and route associated input data to the appropriate output of each section. The individual strobes permit activating or inhibiting each of the 4-bit sections as desired. Data applied to input 1C is inverted at its outputs and data applied at 2C is not inverted through its outputs. The inverter following the 1C data input permits use as a 3-to-8-line decoder or 1-to-8-line demultiplexer without external gating. Input clamping diodes are provided on all of these circuits to minimize transmission-line effects and simplify system design.

Series 54 and 54LS are characterized for operation over the full military temperature range of -55°C to 125°C; Series 74 and 74LS are characterized for operation from 0°C to 70°C.

schematics of inputs and outputs

TYPES SN54155, SN54156, SN54LS155, SN54LS156, SN74155, SN74156, SN74LS155, SN74LS156 DUAL 2-LINE-TO-4-LINE DECODERS/DEMULTIPLEXERS

functional block diagram and logic

FUNCTION TABLES 2-LINE-TO-4-LINE DECODER OR 1-LINE-TO-4-LINE DEMULTIPLEXER

		INPUTS			OUT	PUTS	
SEI	ECT	STROBE	DATA	110	1Y1	1Y2	1Y3
В	A	1G	1C	ייין	111	112	113
×	X	Н	×	н	н	н	н
Ĺ	L	<u>ر</u> ا ا	н	L	н	н	н
L	н	L	н	н	L	н	н
н	L	L	н	н	н	L	н
н	н	L	н	н	н	н	L
lχ	×	l x	l L	Ιн	н	н	н

		INPUTS			OUT	PUTS	
SEL	ECT.	STROBE	DATA	21/2			
В	Α	2G	2C	2Y0	2Y1	2Y2	2Y3
х	Х	Н	×	Н	Н	н	Н
L	L	L	L	L	н	н	н
L	н	L	L	н	L	н	н
н	L	L	L	н	н	L	н
н	н	L	L	Н	н	н	L
X	x	×	Н	н	н	н	н

FUNCTION TABLE 3-LINE-TO-8-LINE DECODER OR 1-LINE-TO-8-LINE DEMULTIPLEXER

	ı	NPUT	rs				OUTP	UTS			
s	ELEC	т	STROBE OR DATA	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
C [†]	В	Α	G‡	2Y0	2Y1	2Y2	2Y3	1Y0	1Y1	1Y2	1Y3
х	х	х	Н	Н	Н	Н	н	Н	Н	н	н
L	L	L	L	L	н	Н	н	Н	н	н	н
L	L	н	L	Н	L	н	н	н	н	н	н
L	н	L	L	н	н	L	н	н	н	н	н
L	н	н	L	н	н	н	L	н	н	н	н
н	L	L	L	н	н	н	н	L	н	Н	н
н	L	н	L	н	н	н	н	н	L	н	н
н	н	L	L	н	н	н	н	н	н	L	н
н	н	н	L	Н	н	н	н	н	н	н	L

[†]C = inputs 1C and 2C connected together

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																						7 V
Input voltage: '155, '156																						5.5 V
'LS155, 'LS156																						7 V
Off-state output voltage: '155																						5.5 V
'LS155																						7 V
Operating free-air temperature range:	SI	N54	4',	S۱	154	LS	' C	Circu	ıits									_!	55°	,C	to	125°C
																						o 70°C
Storage temperature range		•		•		•					•				•			-6	65°	,C	to	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

[‡]G = inputs 1G and 2G connected together

H = high level, L = low level, X = irrelevant

TYPES SN54155, SN74155 **DUAL 2-LINE-TO-4-LINE DECODERS/DEMULTIPLEXERS**

recommended operating conditions

		SN5415	5		SN74155			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	٧	
High-level output current, IOH			-800			-800	μА	
Low-level output current, IOL			16			16	mA	
Operating free-air temperature, TA	-55		125	0		70	°c_	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

_	PARAMETER:	TEST CONDI	TIONS [†]		UNIT		
	PARAWEIER	120, 00,00		MIN	TYP‡	MAX	
VIH	High-level input voltage			2			V
VIL	Low-level input voltage					0.8	_ v_
V _I	Input clamp voltage	VCC = MIN, II	= −12 mA			-1.5	V
Voн	High-level output voltage	V _{CC} = MIN, V _I V _{IL} = 0.8 V, I _O		2.4	3.4		٧_
VOL	Low-level output voltage	V _{CC} = MIN, V _I V _{IL} = 0.8 V, I _O	· -		0.2	0.4	٧
T _L	Input current at maximum input voltage	VCC = MAX, VI	= 5.5 V			1_	mA
Чн	High-level input current	VCC = MAX, VI	= 2.4 V			40	μА
HL.	Low-level input current	VCC = MAX, VI	= 0.4 V			-1.6	mA
<u>'1L</u>			SN54155	-20		-55	mA
los	Short-circuit output current§	V _{CC} = MAX	SN74155	-18		-57	IIIA
		V _{CC} = MAX,	SN54155		25	35	۱_۰
Icc	Supply current	See Note 2	SN74155		25	40	mA.

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

NOTE 2: ICC is measured with outputs open, A, B, and 1C inputs at 4.5 V, and 2C, 1G, and 2G inputs grounded.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	LEVELS OF LOGIC	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	A, B, 2C, 1G, or 2G	Y	2			13	20	ns
tPHL	A, B, 2C, 1G, or 2G	Y	2	C_L = 15 pF, R_L = 400 Ω ,		18	27	ns
tPLH	A or B	Υ	3	See Note 3		21	32	ns
tPHL	A or B	Y	3	555 175KB 5		21	32	ns
tPLH	1C	Y	3			16	24	ns
†PHL	1C	Υ	3			20	30	ns

 $[\]P_{ extsf{tpLH}}$ = propagation delay time, low-to-high-level output

THE propagation delay time, high-to-low-level output NOTE 3: Load circuit and voltage waveforms are shown on page S-87.

1272

TYPES SN54LS155, SN74LS155 DUAL 2-LINE-TO-4-LINE DECODERS/DEMULTIPLEXERS

recommended operating conditions

	SI	N54LS1	55	SI	N74LS1	55	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	ויאטן
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			4			8	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TE	ST CONDITION	et	SI	N54LS1	55	SI	N74LS1	55	
			SI COMBITTON	.	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
v_{IH}	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	V
VI	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	V
VOH	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	V _{1H} = 2 V, _c , I _{OH} = -400 μ	Α	2.5	3.4		2.7	3.4		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25 0.35	0.4 0.5	ı v
11	Input current at maximum input voltage	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mA
ΉΗ	High-level input current	V _{CC} = MAX,	V _I = 2.7 V				20			20	μА
IIL.	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V				-0.36			-0.36	
los	Short-circuit output current §	V _{CC} = MAX			-6		-40	-5		-42	mA
Icc	Supply current	V _{CC} = MAX,	See Note 2			6.1	10		6.1	10	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LEVELS OF LOGIC	TEST CONDITIONS		SN54LS155 SN74LS155					UNIT
		10011017	0. 200.0		MIN	TYP	MAX]			
^t PLH	A, B, 2C, 1G, or 2G	Y	2			10	15	ns			
^t PHL	A, B, 2C, 1G, or 2G	Y	2	CL = 15 pF,		19	30	ns			
tPLH	A or B	Υ	3	R _L = 2 kΩ,	<u> </u>	17	26	ns			
tPHL_	A or B	Y	3	See Note 4		19	30	ns			
^t PLH	1C	Υ	3			18	27				
tPHL	1C	Y	3			18	27	ns			

[¶] tpLH ≅ propagation delay time, low-to-high-level output tpHL ≅ propagation delay time, high-to-low-level output NOTE 4: Load circuit and voltage waveforms are shown on page S-88,

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time.

NOTE 2: ICC is measured with outputs open, A, B, and 1C inputs at 4.5 V, and 2C, 1G, and 2G inputs grounded.

TYPES SN54156, SN74156 **DUAL 2-LINE-TO-4-LINE DECODERS/DEMULTIPLEXERS**

recommended operating conditions

		SN5415	6	:	SN74156			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	٧	
High-level output voltage, VOH			5.5			5.5	V	
Low-level output current, IOL			16			16	mA	
Operating free-air temperature, TA	-55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS [†]	1	SN54156 SN74156			
	·		MIN	TYP‡	MAX		
VIH	High-level input voltage		2			٧	
VIL	Low-level input voltage				0.8	V	
٧ı	Input clamp voltage	V _{CC} = MIN, I _I = -12 mA			-1.5	٧	
1	Mich level autous autous	V _{CC} = MIN, V _{IH} = 2 V,			250	μА	
ЮН	High-level output current	V _{IL} = 0.8 V, V _{OH} = 5.5 V	'		250	μ.	
.,	1 and the state of	V _{CC} = MIN, V _{IH} = 2 V,		0.2	0.4	v	
VOL	Low-level output voltage	V ₁ L = 0.8 V, I _O L = 16 mA		0.2	0.4		
Tj.	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1	mΑ	
ΊΗ	High-level input current	V _{CC} = MAX, V _I = 2.4 V			40	μА	
TIL	Low-level input current	V _{CC} = MAX, V _I = 0.4 V			-1.6	mA	
		V _{CC} = MAX, SN54156		25	35	mA	
ICC	Supply current	See Note 2 SN74156		25	40	וויך דייין	

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LEVELS OF LOGIC	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
^t PLH ·	A, B, 2C, 1G, or 2G	Y	2			15	23	ns
^t PHL	A, B, 2C, 1G, or 2G	Y	2	$C_L = 15 pF$, $R_L = 400 \Omega$,		20	30	ns
tPLH	A or B	Y	3	See Note 3		23	34	ns
tPHL.	A or B	· Y	3	See Note 3		23	34	ns
tPLH .	1C	Y	3			18	27	ns
^t PHL	1C	Y	3			22	33	ns

NOTE 3: Load circuit and voltage waveforms are shown on page S-87.

1272

 $[\]ddagger$ All typical values are at $V_{CC} = 5 \text{ V, } T_A = 25^{\circ}\text{C.}$

NOTE 2: I_{CC} is measured with outputs open, A, B, and 1C inputs at 4.5 V, and 2C, 1G, and 2G inputs grounded.

 $[\]P_{\text{tpLH}} \equiv \text{propagation delay time, low-to-high-level output}$ tpHL Ξ propagation delay time, high-to-low-level output

TYPES SN54LS156, SN74LS156 DUAL 2-LINE-TO-4-LINE DECODERS/DEMULTIPLEXERS

recommended operating conditions

	SI	N54LS1	56	SI	N74LS1	56	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	CIVIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	٧
High-level output voltage, VOH			5.5			5.5	٧
Low-level output current, IOL			4			8	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				•	SI	V54LS1	56	SI	174LS1	56	
	PARAMETER	TES	T CONDITIONS	S'	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	V.
ν _l	Input clamp voltage	VCC = MIN,	I _I = -18 mA	<u> </u>			-1.5			-1.5	٧
ЮН	High-level output current	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, V _{OH} = 5.5 V				100			100	μА
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	'V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0,25	0,4 0.5	iv
l _l	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
ЧН	High-level input current	VCC - MAX,	V _I = 2.7 V				20			20	μА
IIL	Low-level input current	VCC = MAX,	V _I = 0.4 V				-0.36			-0.36	mĄ
Icc	Supply current	VCC = MAX,	See Note 2			6.1	10		6.1	10	mA

^{*}For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: ICC is measured with outputs open, A, B, and 1C inputs at 4.5 V, and 2C, 1G, and 2G inputs grounded.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM	то	LEVELS	TEST CONDITIONS	56 56	UNIT		
	(INPUT)	T) (OUTPUT) OF LOGIC		MIN	TYP	MAX		
tPLH	A, B, 2C 1G, or 2G	Y	2			18	27	ns
tPHL	A, B, 2C, 1G, or 2G	Y	2	CL = 15 pF, RL = 2 kΩ,		34	51	ns
tPLH .	A or B	Y	3	See Note 4		31	46	ns
tPHL.	A or B	Y	3	366 14016 4		34	51	ns
tPLH	1C	Y	3	÷		32	48	ns
tPHL	1C	Y	3			32	48	ns

Ttp_H = propagation delay time, low-to-high-level output

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

the propagation delay time, high-to-low-level output
NOTE 4: Load circuit and voltage waveforms are shown on page S-88.

TYPES SN54157, SN54L157, SN54LS157, SN54LS158, SN54S157, SN54S158, SN74L57, SN74L157, SN74LS157, SN74LS158, SN74S157, SN74S158 QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS

BULLETIN NO. DL-S 7411847, MARCH 1974

features

- Buffered Inputs and Outputs
- Three Speed/Power Ranges Available

TYPES	TYPICAL AVERAGE PROPAGATION TIME	TYPICAL POWER DISSIPATION
157	9 ns	150 mW
'L157	18 ns	75 mW
'LS157	9 ns	49 mW
'S157	5 ns	250 mW
'LS158	7 ns	24 mW
'S158	4 ns	195 mW

applications

- Expand Any Data Input Point
- Multiplex Dual Data Buses
- Generate Four Functions of Two Variables (One Variable Is Common)
- Source Programmable Counters

description

374

These monolithic data selectors/multiplexers contain inverters and drivers to supply full on-chip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. The '157, 'L157, 'LS157, and 'S157 present true data whereas the 'LS158 and 'S158 present inverted data to minimize propagation delay time.

FUNCTION TABLE

	INPL		OUTPUT Y							
STROBE	SELECT	A	В	'157, 'L157, 'LS157,'S157	'LS158 'S158					
Н	×	X	Х	L	Н					
L	L	L	X	L	н					
L	L	н	×	н	L					
L	+	×	L	L	н					
L	н	×	н	н	L					

H = high level, L = low level, X = irrelevant

SN64157, SN64LS157, SN64S157 . . . J OR W PACKAGE SN64L167 . . . J PACKAGE SN74167, SN74L167, SN74LS157, SN74S157 . . . J OR N PACKAGE

SN54LS158, SN54S158...J OR W PACKAGE SN74LS158, SN74S158...J OR N PACKAGE (TOP VIEW)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																												7١	/
Input voltage: '157, 'L157, 'S158																:												5.5 \	/
'LS157, 'LS158 .																												7 \	/
Operating free-air temperature range:	:	SI	V 5	4	٠. :	SN	154	4 L	' ,	SN	54	LS	, S	N5	45	' C	irc	ui	ts					_	55	°C	to	125	0
· -		12	٧7	4	٠. :	SN	174	4L	٠.:	SN	74	LS	. S	N7	45	" C	irc	ui	ts							0	C t	o 70°(С
Storage temperature range									٠,															_	65	°C	to	150°	3

NOTE 1: Voltage values are with respect to network ground terminal.

TYPES SN54157, SN54L157, SN74L57, SN74L157, QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS

functional block diagram

'157, 'L157

schematics of inputs and outputs

TYPES SN54LS157, SN54LS158, SN54S157, SN54S158, SN74LS157, SN74LS158, SN74S157, SN74S158 QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS

374

TYPES SN54157, SN74157 QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

		SN5415	7	:	UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-800			-800	μА
Low-level output current, IOL			16		<u>'</u>	16	mA
Operating free-air temperature, TA	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST C	ONDITIONS†		SN5415	7		7	UNIT	
	· Aname ren	1231 0		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage			1		0.8			0.8	V
VI	Input clamp voltage	V _{CC} = MIN,	I _I = -12 mA			-1.5			-1.5	V
VOH	High-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = -800 μA	2.4	3.4		2.4	3.4		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	v
ել	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5 V	1		1			1	mA
۱н	High-level input current	V _{CC} = MAX,	V ₁ = 2.4 V			40			40	μА
1 ₁ L	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V			-1.6			-1.6	mA
los	Short-circuit output current §	V _{CC} = MAX		-20		-55	-18		-55	mA
Icc	Supply current	V _{CC} = MAX,	See Note 2		30	48		30	48	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER	FROM (INPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Data			9	14	
tPHL .	Data			9	14	ns
tPLH	Strobe	CL = 15 pF,		13	20	
^t PHL		R _L = 400 Ω,		14	21	ns
^t PLH	Select	See Note 3		15	23	
tPHL.				18	27	ns

q_{tpLH} = propagation delay time, low-to-high-level output

NOTE 3: Load circuit and voltage waveforms are shown on page S-87.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§]Not more than one output should be shorted at a time.

NOTE 2: ICC is measured with 4.5 V applied to all inputs and all outputs open.

tpHL = propagation delay time, high-to-low-level output

TYPES SN54L157, SN74L157 QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

	\$	N54L18	57	s	UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH			-400			-400	μΑ
Low-level output current, IOL			8			8	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS†	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage		2			٧
VIL	Low-level input voltage				0.8	<u> </u>
Vi	Input clamp voltage	V _{CC} = MIN, I _I = -12 mA			-1.5	
VOH		V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -400 μA	2.4	3.4		٧
VOL	Low-level output voltage ,	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 8 mA		0.2	0.4	٧
I _L	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1	mA
TiH	High-level input current	V _{CC} = MAX, V _I = 2.4 V			20	μΑ
IIL.	Low-level input current	V _{CC} = MAX, V _I = 0.4 V			-0.8	mA
los	Short-circuit output current §	V _{CC} = MAX	-9		-28	mA
Icc	Supply current	V _{CC} = MAX, See Note 2		15	24	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: ICC is measured with 4.5 V applied to all inputs and all outputs open.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	FROM (INPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
				18	28	
ФЦН	Data			18	28	ns
tPHL		C _L = 15 pF,		26	40	
tPLH	Strobe	RL = 800 Ω,		28	42	ns
tPHL		See Note 3				—
tpLH				30	46	ns
	Select	1		36	54	
tPHL	<u>L.,</u>					

 $[\]P_{ ext{tpLH}} \equiv ext{propagation delay time, low-to-high-level output}$ tpHL ≡ propagation delay time, high-to-low-level output

NOTE 3: Load circuit and voltage waveforms are shown on page S-87.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

TYPES SN54LS157, SN54LS158, SN74LS157, SN74LS158 QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

		SN54LS	5	:	UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	ואט
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	>
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			4			8	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAME	TED	750	CT CONDITION	CONDITIONS† SN54LS'			'		SN74LS		
	FARAME	TEN	15.			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level inpu	t voltage				2		_	2			٧
VIL	Low-level input	t voltage						0.7			0.8	V
٧ı	Input clamp vo	Itage	V _{CC} = MIN,	lj =18 mA				-1.5			-1.5	V
Vон	High-level outp	ut voltage	V _{CC} = MIN, V _{IL} = MAX,	V _{IH} = 2 V, I _{OH} = -400	μΑ	2.5	3.4		2.7	3.4		٧
VOL	Low-level outp	ut valtana	V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	
VOL		ut vortage	VIL = MAX		IOL = 8 mA					0.35	0.5	V
, ,	Input current at maximum	S or G input	V _{CC} = MAX,	V _I = 7 V				0.2			0.2	
Ľ.	input voltage	A or B input	VCC - WAA,	V - / V				0.1			0.1	mA
١	High-level	S or G input	\/ NAAY	V = 0.7 V				40			40	
Ή	input current	A or B input	V _{CC} = MAX,	V _I = 2.7 V				20			20	μА
١	Low-level	S or G input	V	V = 0.4 V			-	-0.8	_		-0.8	
IIL.	input current	A or B input	V _{CC} = MAX,	V _I = 0.4 V				-0.4			-0.4	mA
los	Short-circuit ou	tput current§	V _{CC} = MAX			-6		-40	-5		-42	mA
Icc	Supply current		V _{CC} = MAX,	See Note 2	'LS157		9.7	16		9.7	16	
	——————		VCC - WAX.	3ee 140te 2	'LS158		4.8	8		4.8	8	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: I_{CC} is measured with 4.5 V applied to all inputs and all outputs open.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER¶	FROM	TEST CONDITIONS		TEST CONDITIONS		'LS157			'LS158				
	(INPUT)		MIN	TYP	MAX	MIN	TYP	MAX	UNIT				
tPLH .	Data			9	14		7	12					
tPHL.	D818	C: = 15 = 5		9	14		7	12	ns				
tPLH	Strobe	CL = 15 pF, RL = 2 kΩ,		13	20		11	17					
tPHI.		See Note 4		14	21		12	18	ns				
tPLH	Select	See Note 4		15	23		13	20					
tPHL.	Select	· ·		18	27		16	24	ns				

[¶]tpLH ≡ propagation delay time, low-to-high-level output

the Dropagation delay time, high-to-low-level output
NOTE 4: Load circuit and voltage waveforms are shown on page S-88.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time and duration of the short-circuit test should not exceed one second.

TYPES SN54S157, SN54S158, SN74S157, SN74S158 QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

		SN54S157 SN54S158					UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-1			-1	mA
Low-level output current, IOL			20			20	mA
Operating free-air temperature, TA	-55		125	0		70	°C_

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS†				N54S15		SI	58 58	UNIT	
	, Alland		1			MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH	High-level input voltage					2			2			_ v
VIL	Low-level input voltage							0.8			0.8	V
VI	Input clamp voltage		VCC = MIN,	I _I = -18 mA				-1.2			-1.2	٧
<u> </u>	Input clamp vertege		VCC = MIN,		Series 54S	2.5	3.4		2.5	3.4		l v
VOH High-level output voltage			I _{OH} = -1 mA	Series 74S	2.7	3.4		2.7	3.4		Ľ	
		VCC = MIN,					0.5			0.5	l v	
VOL	Low-level output voltage		V _{IL} = 0.8 V,	I _{OL} = 20 mA								<u> </u>
11	Input current at maximum	n input voltage	VCC = MAX,	V ₁ = 5.5 V		L		1	<u> </u>		1	mA
		S or G input						100	<u> </u>		100	μ_Α
Ιн	High-level input current	A or B input	VCC = MAX,	V ₁ = 2.7 V				50			50	
		S or G input						-4			-4	mA
ηL	Low-level input current	A or B input	VCC = MAX,	V ₁ = 0.5 V			-2					<u>: </u>
los	Short-circuit output curre		VCC = MAX			-40		-100	-40		-100	+
ICC	Supply current		V _{CC} = MAX,	See Note 2			50	78		39	61	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

	FROM	TEST CONDITIONS		N54S1 N74S1		SI SI	UNIT		
PARAMETER ¶	(INPUT)		MIN	TYP	MAX	MIN	TYP	MAX	
				5	7.5		4	6	ns
tPLH	Data			4.5	6.5		4	6	""
tPHL		CL = 15 pF,		8.5	12.5		6.5	11,5	
tPLH	Strobe	R _L = 280 Ω,	-	7.5	12		7	12	ns
tPHL.		See Note 3	-		15		- 0	12	
tPLH	Select	1	-	9.5		├			ns
tPHL	36,601			9.5	15	L	8	12	L

 $[\]P_{ extstyle$

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

Not more than one output should be shorted at a time and duration of the short-circuit test should not exceed one second.

NOTE 2: ICC is measured with 4.5 V applied to all inputs and outputs open.

 $t_{PHL} \equiv propagation delay time, high-to-low-level output$

NOTE 3: Load circuit and voltage waveforms are shown on page S-87.

TTL MSI

TYPES SN54160 THRU SN54163, SN54LS160 THRU SN54LS163, SN54S162, SN54S163, SN74160 THRU SN74163. SN74LS160 THRU SN74LS163, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS BULLETIN NO. DL-S 7411385, MARCH 1974

'160, '161, 'LS160, 'LS161 . . . SYNCHRONOUS COUNTERS WITH DIRECT CLEAR '162, '163, 'LS162, 'LS163, 'S162, 'S163 . . . FULLY SYNCHRONOUS COUNTERS

- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- **Synchronous Counting**
- Synchronously Programmable
- **Load Control Line**
- **Diode-Clamped Inputs**

ТҮРЕ	TYPICAL PROPAGATION TIME, CLOCK TO Q OUTPUT	TYPICAL MAXIMUM CLOCK FREQUENCY	TYPICAL POWER DISSIPATION
'160 thru '163	14 ns	32 MHz	305 mW
'LS160 thru 'LS163	14 ns	32 MHz	93 mW
'S162 and 'S163	9 ns	70 MHz	475 mW

SERIES 54', 54LS', 54S' . . . J OR W PACKAGE

SERIES 74', 74LS', 74S' . . . J OR N PACKAGE

description

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The '160, '162, 'LS160, 'LS162, and 'S162 are decade counters and the '161, '163, 'LS161, 'LS163, and 'S163 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.

These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs. Low-to-high transitions at the load input of the '160 thru '163 should be avoided when the clock is low if the the enable inputs are high at or before the transition. This restriction is not applicable to the 'LS160 thru 'LS163, or 'S162 and 'S163. The clear function for the '160, '161, 'LS160, and 'LS161 is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of clock, load, or enable inputs. The clear function for the '162, '163, 'LS162, 'LS163, 'S162, and 'S163 is synchronous and a low level at the clear input sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily as decoding the maximum count desired can be accomplished with one external NAND gate. The gate output is connected to the clear input to synchronously clear the counter to 0000 (LLLL). Low-to-high transitions at the clear input of the '162 and '163 should be avoided when the clock is low if the enable and load inputs are high at or before the transition.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output. Both count-enable inputs (P and T) must be high to count, and input T is fed forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the QA output. This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. High-to-low-level transitions at the enable P or T inputs of the '160 thru '163 should occur only when the clock input is high. Transitions at the enable P or T inputs of the 'LS160 thru 'LS163 or 'S162 and 'S163 are allowed regardless of the level of the clock input.

'LS160 thru 'LS163, 'S162 and 'S163 feature a fully independent clock circuit. Changes made to control inputs (enable P or T, load or clear) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

Series 54, Series 54LS, and Series 54S circuits are characterized for operation over the full military temperature range of -55°C to 125°C; Series 74, Series 74LS, and Series 74S circuits are characterized for operation from 0°C to 70°C.

TYPES SN54160 THRU SN54163, SN74160 THRU SN74163 SYNCHRONOUS 4-BIT COUNTERS

374

TYPES SN54LS160 THRU SN54LS163, SN74LS160 THRU SN74LS163 SYNCHRONOUS 4-BIT COUNTERS

functional block diagram

SN54LS160, SN74LS160 SYNCHRONOUS DECADE COUNTERS

SN54LS162, SN74LS162 synchronous decade counters are similar; however the clear is synchronous as shown for the SN54LS163, SN74LS163 binary counters at right.

SN54LS163, SN74LS163 SYNCHRONOUS BINARY COUNTERS

SN54LS161, SN74LS161 synchronous binary counters are similar; however, the clear is asynchronous as shown for the SN54LS160, SN74LS160 decade counters at left.

TYPES SN54S162, SN54S163, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

374

TYPES SN54160, SN54162, SN54LS160, SN54LS162, SN54S162, SN74160, SN74162, SN74LS160, SN74LS162, SN74S162 SYNCHRONOUS 4-BIT COUNTERS

'160, '162, 'LS160, 'LS162, 'S162 SYNCHRONOUS DECADE COUNTERS

typical clear, preset, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Clear outputs to zero
- 2. Preset to BCD seven
- 3. Count to eight, nine, zero, one, two, and three
- 4. Inhibit

TYPES SN54161, SN54163, SN54LS161, SN54LS163, SN54S163, SN74161, SN74163, SN74LS161, SN74LS163, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

'161, 'LS161, '163, 'LS163, 'S163 SYNCHRONOUS BINARY COUNTERS

typical clear, preset, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Clear outputs to zero
- 2. Preset to binary twelve
- 3. Count to thirteen, fourteen fifteen, zero, one, and two
- 4. Inhibit

TYPES SN54160 THRU SN54163, SN74160 THRU SN74163 SYNCHRONOUS 4-BIT COUNTERS

REVISED MARCH 1974

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																	7 V
input voltage																	55 V
Interemitter voltage (see Note 2)										•	•		·	٠	•	•	5.5.V
Operating free-air temperature range: SN54' Circu	its				•	•	•	•		•	•	•	•	•	•	•	EE°C + 125°C
SN74' Circui	its	• •	•	• •	•	• •	•	•	٠.	•	•	•	•	•	•	•	. 0°C to 70°C
Storage temperature range		• •	•	• •	•		•	•		٠	٠	٠	•	•	•	•	. 0 C to /0°C
Storage temperature range	• •		٠	• •	•		•	•			٠					•	65°C to 150°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

This is the voltage between two emitters of a multiple-emitter transistor. For these circuits, this rating applies between the count enable inputs P and T.

recommended operating conditions

		SN541	60, SN	4161	SN741	60, SN	74161	$\overline{}$
		SN541	62, SN		SN741			UNIT
0 1		MIN	NOM	MAX	MIN	NOM	MAX	1
Supply voltage, V _{CC}	-	4.5	5	5.5	4.75	5	5.25	v
High-level output current, IOH				-800			-800	μА
Low-level output current, IOL		+		16			16	mA
Clock frequency, fclock				25	0			
Width of clock pulse, tw(clock)				-25	25		25	MHz
Width of clear pulse, tw(clear)		25			20			ns
	Data inputs A, B, C, D	20			20			ns
Setup time, t _{setup} (see Figures 1 and 2)	Enable P	20			20		-	
Setup (see Figures Faile 2)	Load	25			25			ns
	Clear [♦]	20			20			
Hold time at any input, thold		0		\neg			-+	
Operating free-air temperature, TA		-55		125	0		70	°C

[©]This applies only for '162 and '163, which have synchronous clear inputs.

TYPES SN54160 THRU SN54163, SN74160 THRU SN74163 SYNCHRONOUS 4-BIT COUNTERS

REVISED MARCH 1974

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS†	1	60, SN 62, SN		l	160, SN 162, SN		UNIT
				MIN	TYP‡	MAX	MIN	TYP‡	MAX	ļ
VIH	High-level input	voltage		2			2			<u></u>
VIL	Low-level input voltage					0.8			0.8	<u>v</u>
V _I	Input clamp voltage		VCC = MIN, II =12 mA			-1.5	<u> </u>		-1.5	V
v _{OH}	High-level output voltage		V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -800 μA	2.4	3.4		2.4	3.4		\ <u>\</u>
V _{OL}	Low-level output	t voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{II} = 0.8 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	V
	Input current at	maximum input voltage	VCC = MAX, V1 = 5.5 V			1			1	mA
<u>"- </u>	High-level	Clock or enable T				80			80	μA
ΉН	input current	Other inputs	V _{CC} = MAX, V _I = 2.4 V			40			40	ļ <u>.</u>
	Low-level	Clock or enable T				-3.2	l		-3.2	l mA
l _{IL}	input current	Other inputs	V _{CC} = MAX, V _I = 0.4 V			-1,6			-1.6	IIIA
loo	Short-circuit out		VCC = MAX	-20		57	-18		57	mA
los			VCC = MAX, See Note 3		59	85		59	94	mA
ICCH	a t all antended laves		VCC = MAX, See Note 4		63	91		63	101	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

§Not more than one output should be shorted at a time.

NOTES: 3. ICCH is measured with the load input high, then again with the load input low, with all other inputs high and all outputs open.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	МАХ	UNIT
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			25	32		ns
[†] max		Ripple	-1		23	35	
tPLH	Clock				23	35	ns
tPHL	7 """	carry		<u> </u>			├
	Clock	Any	C _L = 15 pF,		13	20	l ns
tPLH		a	$R_1 = 400 \Omega$,		15	23	1
tPHL.	(load input high)				17	25	$\overline{}$
tPLH .	Clock	Any	See Figures 1 and 2	<u> </u>			ns
	(load input low)	Q	and Notes 5 and 6	1	19	29	
tPHL	(load input ion)	Ripple	1 !		11	16	l
^t PLH	Enable T	Kippie		-	11	16	ns
†PHL	7	carry		<u> </u>			+
tPHL	Clear	Any Q			26	38	ns

[¶]f_{max} = Maximum clock frequency

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

^{4.} ICCL is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.

 $tp_{LH} \equiv propagation delay time, low-to-high-level output$

tpHL = propagation delay time, high-to-low-level output

NOTES: 5. Load circuit is shown on page S-87.

^{6.} Propagation delay for clearing is measured from the clear input for the '160 and '161 or from the clock input transition for the '162 and '163.

TYPES SN54LS160 THRU SN54LS163, SN74LS160 THRU SN74LS163 SYNCHRONOUS 4-BIT COUNTERS

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 7)		····· 7V
The contage		7 V · · · · · · · · · · · · · · · · · ·
	SN/4LS' Circuits	0°0 x 70°0
otorage temperature range		

NOTE 7: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN54LS	5	s	7	UNIT	
Const		MIN	NOM	MAX	MIN	NOM	MAX	4
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	v
High-level output current, IOH	1			4.73				
Low-level output current, IOL		├ ──		-400 .			-400	μΑ
Clock frequency, fclock		10		4			8	mA
Width of clock pulse, tw(clock)				_25_	0		25	MHz
Width of class sules A		25			25			ns
Width of clear pulse, tw(clear)		20			20			ns
	Data inputs A, B, C, D	0			0			
Setup time, t _{setup} (see Figures 1 and 2)	Enable P or T	20			20			
2	Load	20			20			ns
	Clear≎	20		\neg	20			
Hold time at any input, thold	old time at any input, thold				25¶			
Operating free-air temperature, TA	eting free-air temperature, TA			125	0		70	°C

[♦] This applies only for 'LS162 and 'LS163, which have synchronous clear inputs.

S-178

The minimum hold time is 25 ns or as long as the clock input takes to rise from 0.8 V to 2 V, whichever is longer.

TYPES SN54LS160 THRU SN54LS163, SN74LS160 THRU SN74LS163 **SYNCHRONOUS 4-BIT COUNTERS**

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

						SN54LS	•		SN74LS	,	דואט
	PARA	METER	TEST CON	DITIONST	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input vo	ltage			2			2			V
VIL	Low-level input vo						0.7			8.0	V
VI	Input clamp voltage		V _{CC} = MIN,	I _I = -18 mA			-1,5			-1.5	V
·	High-level output			V _{IH} = 2 V,	2.5	3.4		2.7	3.4		٧
			V _{CC} = MIN,	IOL = 4 mA		0.25	0.4	1	0.25	0.4	l v
VOL	Low-level output v	voltage	V _{IH} = 2 V, V _{IL} = V _{IL} max	IOL = 8 mA					0.35	0.5	Ľ
		Data or enable P					0.1			0.1	1
	Input current	Load, clock, or enable T	i				0.2			0.2	l ma
կ	at maximum	Clear ('LS160, 'LS161)	V _{CC} = MAX,	V _I = 7 V			0.1			0.1] ""
	input voltage	Clear ('LS162, 'LS163)					0.2			0.2	
		Data or enable P					20			20	1
	High-level	Load, clock, or enable T	ţ				40	Ι		40	میر اـ
ЧΗ	input current	Clear ('LS160, 'LS161)	V _{CC} = MAX,	V _I = 2.7 V			20			20] "ົ
	input current	Clear ('LS162, 'LS163)	1				40	Г		40]
		Data or enable P					-0.4			-0.4	
	Low-level	Load, clock, or enable T	1				-0.8			-0.8	l m/
IJΕ		Clear ('LS160, 'LS161)	V _{CC} = MAX,	V ₁ = 0.4 V			-0.4			-0.4] ""
	input current	Clear ('LS162, 'LS163)	†				-0.8			-0.8	
los	Short-circuit outp		VCC = MAX		-6		-40	-5		-42	_
	Supply current, a		VCC = MAX,	See Note 3	Г	18	31		18	31	
IccH	Supply current, a	Il outputs low	V _{CC} = MAX,	See Note 4	Ť –	19	32		19	32	m/

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

NOTES: 3. ICCH is measured with the load input high, then again with the load input low, with all other inputs high and all outputs open.

4. ICCL is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	ТҮР	MAX	<u> </u>
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			25	32		МН
† max		Ripple	-		23	35	\Box
tPLH	Clock	• •			23	35	l ns
†PHL	7 5.55	carry	Cլ = 15 pF,				╀
tPLH .	Clock	Any	$R_L = 2 k\Omega$,		16	24	- ا
	(load input high)	Q	_		18	27	
tPHL			See Figures		17	25	Т
tPLH .	Clock	Any	1 and 2 and		19	29	ქ ი
tPHL	(load input low)	Q	Notes 8 and 9				╄
	 	Rippte	T Notes 6 and 5		15	23	J ,
tPLH	Enable T	• •			15	23	1 '
tPHL		carry			26	38	+,
tPHL	Clear	Any Q			26		ــــــــــــــــــــــــــــــــــــــ

[¶]f_{max} = Maximum clock frequency

tpLH ≡ propagation delay time, low-to-high-level output.
tpHL ≡ propagation delay time, high-to-low-level output.

NOTES: 8. Load circuit is shown on page 5-88.

^{9.} Propagation delay for clearing is measured from the clear input for the 'LS160 and 'LS161 or from the clock input transition for the 'LS162 and 'LS163.

TYPES SN54S162, SN54S163, SN74S162, SN74S163 **SYNCHRONOUS 4-BIT COUNTERS**

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																		7V
Input voltage														_				55 V
Interemitter voltage (see Note 2)							_							•	•	•	•	
Operating free-air temperature range:	SN	545	162	SNE	1016	:3 /e	N	 Joto	101	• •	•	•	• •	•		•	•	5.5 V
- The state of the	CNI	740	162,	CNIZ	1016		CC 1	VOLC	10,	•	•	•	٠.	•		•		-55 C to 125 C
Ctorono tomanatura un an	SIV	743	102,	SIN /	+510	3	٠	• •	•	٠.	٠	•		٠		٠		. 0°C to 70°C
Storage temperature range		• •		•		٠.					•							-65°C to 150°C

recommended operating conditions

		SN545	162, SN	545163	SN745	162, SN	45163	
		MIN	NOM	MAX	MIN	NOM	MAX	UNI.
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-1			-1	mA
Low-level output current, IOL			· .	20			20	mA
Clock frequency, fclock		0		40	0		40	MHz
Width of clock pulse, tw(clock) (high or lo	w)	10			10			ns
Width of clear pulse, tw(clear)		10			10		_	ns
	Data inputs, A, B, C, D	4			4			
	Enable P or T	12			12			ł
Setup time, t _{setup} (see Figure 4)	Load	14			14			
octop time, tsetup tsee rigure 4/	Clear	14			14			ns
	Load inactive-state	12			12			
	Clear inactive-state	12			12			
Release time, t _{release} (see Figure 4)	Enable P or T			4			4	ns
	Data inputs A, B, C, D	3			3			
Hold time, thold (see Figure 4)	Load	0			0			ns
	· Clear	0			0			
Operating free-air temperature, TA (see No	te 10)	-55		125	0		70	°C

- NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
 - 2. This is the voltage between two emitters of a multiple-emitter transistor. For these circuits, this rating applies between the count enable inputs P and T.
 - 10. An SN54S162 or SN54S163 in the W package operating at free-air temperatures above 91°C requires a heat sink that provides a thermal resistance from case to free-air, $R_{\theta CA}$, of not more than 26° C/W.

TENTATIVE DATA

S-180

TYPES SN54S162, SN54S163, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS†	_	N54S16		_	N74S16		דומט
	, Allameter			_	MIN	TYP‡	MAX	MIN	TYP‡	MAX	<u> </u>
VIH	High-level input voltage				2			2			<u> </u>
VIL	Low-level input voltage						0.8			.0.8	
Vi	Input clamp voltage		VCC = MIN,	I _I = -18 mA			-1.2			-1.2	V
<u> </u>	High-level output voltage		V _{CC} = MIN, V _{II} = 0.8 V,	V _{IH} = 2 V, I _{OH} = -1 mA	2.5	3.4		2.7	3.4		v
VOL	Low-level output voltage	-	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 20 mA			0.5			0.5	v
I _I	Input current at maximum input	/oltage	VCC = MAX,	V ₁ = 5.5 V			1			1	mA
<u>''</u>	pat out out out out out out out out out ou	Enable T					100			100	Δμ ا
чн	High-level input current	Other inputs	V _{CC} = MAX,	$V_1 = 2.7 \text{ V}$			50	Ī		50	1
		Enable T			\top		-4			-4	l ma
IL	Low-level input current	Other inputs	VCC = MAX,	V _I = 0.5 V			-2			-2	<u> </u>
los	Short-circuit output current	1	V _{CC} = MAX		-40		-100	-40		-100	
Icc	Supply current		V _{CC} = MAX			95	160		95	160	mA

¹ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
				40	70		MHz
^t max		Dinale	1		14	25	I
tPLH	Clock	Ripple	C 15 of	—	17	25	ns
tPHL		carry	CL = 15 pF,	-		15	
tPLH	Clock	Any Q	R _L = 280 Ω,				ns
	Clock	^, ~	See Figures 1, 3, and 4 and		10	15	
tPHL		Ripple	Note 5		10	15	1
¹PLH	Enable T	Rippie	1	-	10	15	ns
tpHL		carry			- 10	- 13	

[¶]f_{max} ≡maximum clock frequency

NOTE 5: Load circuit is shown on page S-87.

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25 °C.

^{\$}Not more than one output should be shorted at a time.

 $t_{PLH} \equiv propagation delay time, low-to-high-level output$

tpHL ≡ propagation delay time, high-to-low-level output

TYPES SN54160 THRU SN54163, SN54LS160 THRU SN54LS163, SN54S162, SN54S163, SN74160 THRU SN74163, SN74LS160 THRU SN74LS163, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

- NOTES: A. The input pulses are supplied by a generator having the following characteristics: PRR < 1 MHz, duty cycle < 50%, Z_{out} ≈ 50 Ω;
 - , for '160 thru '163, $t_f < 10$ ns, $t_f < 10$ ns; for 'LS160 thru 'LS163, $t_f < 15$ ns, $t_f < 6$ ns; and for 'S162, 'S163, $t_f < 2.5$ ns, $t_f < 2.5$ ns, Vary PRR to measure f_{max} .
 - B. Outputs Q_D and carry are tested at t_{n+10} for '160, '162, 'LS160, 'LS162 and 'S162, and at t_{n+16} for '161, '163, 'LS161, 'LS163, and 'S163, where t_n is the bit time when all outputs are low.
 - C. For '160 thru '163, 'S162, and 'S163, V_{ref} = 1.5 V; for 'LS160 thru 'LS163, V_{ref} = 1.3 V.

FIGURE 1-SWITCHING TIMES

TYPES SN54160 THRU SN54163, SN54LS160 THRU SN54LS163, SN74160 THRU SN74LS163, SN74LS160 THRU SN74LS163 SYNCHRONOUS 4-BIT COUNTERS

NOTES: A. The input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, $Z_{out} \approx$ 50 Ω ; for '160 thru '163, $t_r \leq$ 10 ns, $t_f \leq$ 10 ns; and for 'LS160 thru 'LS163, $t_r \leq$ 15 ns, $t_f \leq$ 6 ns.

- B. Enable P and enable T setup times are measured at tn+0-
- C. For '160 thru '163, V_{ref} = 1.5 V; for 'LS160 thru 'LS163, V_{ref} = 1.3 V.

FIGURE 2-SWITCHING TIMES

TYPES \$N54\$162, \$N54\$163, \$N74\$162, \$N74\$163 \$YNCHRONOUS 4-BIT COUNTERS

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: $t_r \le 2.5$ ns, $t_f \le 2.5$ ns, PRR ≤ 1 MHz, duty cycle $\le 50\%$, $Z_{OUT} \approx 50$ Ω .
 - B. tp_H and tpHL from enable T input to carry output assume that the counter is at the maximum count (Q_A and Q_D high for 'S162, all Q outputs high for 'S163).

FIGURE 3-PROPAGATION DELAY TIMES FROM ENABLE T INPUT TO CARRY OUTPUT

NOTE A: The input pulses are supplied by generators having the following characteristics: $t_r \le 2.5$ ns, $t_f \le 2.5$ ns, PRR ≤ 1 MHz, duty cycle $\le 50\%$, $Z_{\rm out} \approx 50~\Omega$.

FIGURE 4-PULSE WIDTHS, SETUP TIMES, HOLD TIMES, AND RELEASE TIME

TYPES SN54160 THRU SN54163, SN54LS160 THRU SN54LS163, SN54S162, SN54S163, SN74160 THRU SN74163, SN74LS160 THRU SN74LS163, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

TTL TYPES SN54164, SN54L164, SN54LS164, SN74164, SN74L164, SN74LS164 MSI 8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

BULLETIN NO. DL-S 7411835, MARCH 1974

- Gated (Enable/Disable) Serial Inputs
- Fully Buffered Clock and Serial Inputs
- Asynchronous Clear

TYPE	TYPICAL MAXIMUM CLOCK FREQUENCY	TYPICAL POWER DISSIPATION
164	36 MHz	21 mW per bit
'L164	18 MHz	11 mW per bit
'LS164	36 MHz	10 mW per bit
description	1	

These 8-bit shift registers feature gated serial inputs and an asynchronous clear. The gated serial inputs (A and B) permit complete control over incoming data as a low at either (or both) input(s) inhibits entry of the new data and resets the first flip-flop to the low level at the next clock pulse. A high-level input enables the other input which will then determine the state of the

SN54164, SN54LS164 . . . J OR W PACKAGE SN54L164, SN74L164 . . . J, N, OR T PACKAGE SN74164, SN74LS164 . . . J OR N PACKAGE

first flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup requirements will be entered. Clocking occurs on the low-to-high-level transition of the clock input. All inputs are diode-clamped to minimize transmission-line effects.

Series 54, 54L, and 54LS devices are characterized for operation over the full military temperature range of -55°C to 125°C; Series 74, 74L, and 74LS devices are characterized for operation from 0°C to 70°C.

FUNCTION TABLE

	INPUTS				OUTP	JTS
CLEAR	CLOCK	Α	В	QA	QΒ	он
L	×	×	Х	L	L	Ļ
Н	L	×	X	Q _{A0}	Q_{B0}	QH0
H ,	Ť	н	Н	н	Q_{An}	Q_{Gn}
Н	t	L	Х	L	Q_{An}	Q_{Gn}
н	Ť	X	L	L	\mathbf{Q}_{An}	Q_{Gn}

H = high level (steady state), L = low level (steady state)

X = irrelevant (any input, including transitions)

† = transition from low to high level.

 Q_{A0} , Q_{B0} , Q_{H0} = the level of Q_A , Q_B , or Q_H , respectively, before the indicated steady-state input conditions were established.

Q_{An}, Q_{Gn} = the level of Q_A or Q_G before the most-recent † transition of the clock; indicates a one-bit shift.

schematics of inputs and outputs

TYPES SN54164, SN54L164, SN54LS164, SN74L64, SN74L164, SN74LS164 8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

functional block diagram

TYPES SN54164, SN74164 8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

REVISED MARCH 1974

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																			7	' V
Input voltage																				
Operating free-air temperature rang	je:	SN	V 54	416	34											-5	55°	C to	125	°C
		S١	۱74	416	4												(°C	to 70)°C
Storage temperature range																-6	35°	C te	150	°C.

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN5416	4		SN7416	4	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			8			8	mA
Clock frequency, f _{clock}	0		25	0		25	MHz
Width of clock or clear input pulse, tw	20			20			ns
Data setup time, t _{setup} (see Figure 1)	15			15			ns
Data hold time, thold (see Figure 1)	5			5			ns
Operating free-air temperature, T _A	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS†	;	SN5416	4		SN7416	4	Ī
		TEST CONDITIONS.	MIN	TYP‡	MAX	MIN	TYP‡	MAX	ואטן.
VIH	High-level input voltage		2			2			l v
٧ıL	Low-level input voltage				8.0			0.8	V
٧ı	Input clamp voltage	V _{CC} = MIN, I ₁ = -12 mA			-1.5			-1.5	ĺ▽
VOH	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -400 μA	2.4	3.2		2.4	3.2		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 8 mA	-	0.2	0.4		0.2	0.4	v
1	Input current at maximum input voltage	VCC = MAX, V1 = 5.5 V,			1				mĀ
ΉΗ	High-level input current	VCC = MAX, VI = 2.4 V			40			40	μА
ΊL	Low-level input current	VCC = MAX, V1 = 0.4 V			-1.6			-1.6	mA
los	Short-circuit output current§	V _{CC} = MAX	-10		-27.5	-9		-27.5	mA
lcc	Supply current	VCC = MAX, VI(clock) = 0.4 V		30			30		-
		See Note 2 VI(clock) = 2.4 V		37	54		37	54	mΑ

[†]For conditions shown at MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

	PARAMETER	TEST CONDI	TIONS	MIN	TYP	MAX	UNIT
f _{max}	Maximum clock frequency		CL = 15 pF	25	36		MHz
ФHL	Propagation delay time, high-to-low-level		CL = 15 pF		24	36	_
	Q outputs from clear input	R _L = 800 Ω,	C _L = 50 pF		28	42	ns
ФLН	Propagation delay time, low-to-high-level	See Figure 1	CL = 15 pF	8	17	27	
	d outputs from clock input		C _L = 50 pF	10	20	30	ns
tрнı	Propagation delay time, high-to-low-level		C _L = 15 pF	10	21	32	
	Q outputs from the clock input		C _L = 50 pF	10	25	37	ns

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V, } T_{A} = 25^{\circ}\text{C.}$

[§] Not more than two outputs should be shorted at a time.

NOTE 2: ICC is measured with outputs open, serial inputs grounded, and a momentary ground, then 4.5 V, applied to clear.

TYPES SN54L164, SN74L164 8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

REVISED MARCH 1974

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		 7 V
Input voltage		 5 V
Operating free-air temperature range:	SN54L164	 5°C
	SN74L164	 0-C
Storage temperature range		 O-C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		N54L1	64		64	UNIT	
	MIN	NOM	MAX	MIN	NOM	MAX	ON
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH			-200			-200	μА
Low-level output current, IOL			4			4	mA
Clock frequency, fclock	0		12	0		12	MHz
Width of clock or clear input pulse, tw	40			40			ns
Data setup time, t _{setup} (see Figure 1)	30			30			ns
Data hold time, thold (see Figure 1)	10			10			ns
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				SN54L1	64	S	34	UNIT	
	PARAMETER	TEST CONDITIONS†	MIN	TYP‡	MAX	MIN	TYP‡	MAX	CIVIT
VIH	High-level input voltage		2			2			٧
VIL	Low-level input voltage				8.0			0.8	
٧ı	Input clamp voltage	VCC = MIN, II = -12 mA			-1.5			-1.5	٧
		VCC = MIN, VIH = 2 V,	2.4	3.2		2.4	3.2		l v i
VOH	High-level output voltage	V _{IL} = 0.8 V, I _{OH} = -200 μA,							
		VCC = MIN, VIH = 2 V,		0.2	0.4	l	0.2	0.4	v
VOL	Low-level output voltage	VIL = 0.8 V, IOL = 4 mA		<u> </u>					
11	Input current at maximum input voltage	VCC = MAX, VI = 5.5 V			1	<u> </u>		1	mA
ΉΗ	High-level input current	VCC = MAX, VI = 2.4 V			20			20	
111	Low-level input current	VCC = MAX, V1 = 0.4 V			-0.8			-0.8	-
los	Short-circuit output current §	VCC = MAX	-5		-20	-4		-20	mA
1cc	Supply current	VCC = MAX, See Note 3		19	27		19	27	mA

[†]For conditions shown at MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VC@ = 5 V, TA = 25°C

	PARAMETER	TEST CONDIT	TEST CONDITIONS				
fmax	Maximum clock frequency		C _L = 15 pF	12	18		MHz
	Propagation delay time, high-to-low-level		CL = 15 pF		48	72	ns
	Q outputs from clear input		C _L = 50 pF		56	84	
	Propagation delay time, low-to-high-level	R _L = 800 Ω,	C _L = 15 pF	8	34	54	ns
PLH	Q outputs from clock input	See Figure 1	C _L = 50 pF	10	20	60	
\vdash	Propagation delay time, high-to-low-level		C _L = 15 pF	10	42	64	ns
₩HL	Q outputs from the clock input		C _L = 50 pF	10	50	74	1

For conditions shown at with or MAA, use the appropriate value specified under recommended operating conditions.

\$ Not more than two outputs should be shorted at a time.

NOTE 3: ICC is measured with outputs open, serial inputs grounded, the clock input at 2.4 V, and a momentary ground, then 4.5 V, applied to

TYPES SN54LS164, SN74LS164 8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note	1)	 7 V
Input voltage		 7 V
Operating free-air temperature	range: SN54LS16	 5°C
	SN74LS16	 0°C
Storage temperature range .		 0°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	SI	N54LS1	64	SI			
	MIN	NOM	MAX	MIN	NOM	MAX	דומט
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400	<u> </u>		-400	μA
Low-level output current, IOL			4			8	mA
Clock frequency, f _{clock}	0		25	0		25	MHz
Width of clock or clear input pulse, tw	20			20			ns
Data setup time, t _{setup} (see Figure 1)	15			15			ns
Data hold time, thold (see Figure 1)	5			5			ns
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS†		S	N54LS1	64	SI	64	UNIT		
		1231 CONDITIONS			MIN	TYP‡	MAX	MIN	TYP‡	MAX	דומטן
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	
٧ı	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	
v _{OH}	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -400	μΑ	2.5	3.5		2.7	3.5		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	V _{IH} ≠ 2 V,	I _{OL} = 4 mA		0.25	0.4		0.25 0.35	0.4	ıv
11	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V	102			0.1		0.55	0.1	mA
ΉΗ	High-level input current	VCC = MAX,	V ₁ = 2.7 V				20			20	μА
կլ	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V				-0.4			-0.4	mA
los	Short-circuit output current §	V _{CC} = MAX			-6		-40	5		-42	mA
lcc	Supply current	V _{CC} = MAX,	See Note 3			16	27	-5	16	27	mA

 $[\]frac{1}{2}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Maximum clock frequency		25	36		MHz
Propagation delay time, high-to-low-level Q outputs from clear input	CL = 15 pF, Rt = 2 ks	ı. 		36	ns
Propagation delay time, low-to-high-level Q outputs from clock input	See Figure 1	·	17		ns
			21		ns
	Maximum clock frequency Propagation delay time, high-to-low-level Q outputs from clear input Propagation delay time, low-to-high-level Q outputs from clock input	Maximum clock frequency	Maximum clock frequency 25 Propagation delay time, high-to-low-level Q outputs from clear input $C_L = 15 pF$, $R_L = 2 k\Omega$, Propagation delay time, low-to-high-level Q outputs from clock input $R_L = 15 pF$, $R_L = 2 k\Omega$, $R_L = 2 k\Omega$	Maximum clock frequency Propagation delay time, high-to-low-level Q outputs from clear input Propagation delay time, low-to-high-level Q outputs from clock input See Figure 1 17	Maximum clock frequency 125 color flows MIN 177 max Propagation delay time, high-to-low-level Q outputs from clock input CL = 15 pF, RL = 2 kΩ, 25 36 Propagation delay time, low-to-high-level Q outputs from clock input See Figure 1 17 27

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

NOTE 3: ICC is measured with outputs open, serial inputs grounded, the clock input at 2.4 V, and a momentary ground, then 4.5 V applied to clear.

TYPES SN54164, SN54L164, SN54LS164, SN74164, SN74L164, SN74LS164 8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTES: A. The pulse generators have the following characteristics: duty cycle < 80%, Z_{out} ≈ 50 Ω; for '164 and 'L164, t_r < 10 ns, $t_f \le 10$ ns, and for 'LS164, $t_r \le 15$ ns, $t_f \le 6$ ns.

- B. C_L includes probe and jig capacitance.
 C. All diodes are 1N3064 or 1N916.
- D. QA output is illustrated. Relationship of serial input A and B data to other Q outputs is illustrated in the typical shift sequence.
- E. Outputs are set to the high level prior to the measurement of tpHL from the clear input.
- F. For '164 and 'L164, V_{rof} = 1.5 V; for 'LS164, V_{rof} = 1.3 V.

FIGURE 1-SWITCHING TIMES

Il cannot assume any responsibility for any circuits shown

or represent that they are free from patent infringement.

TTL MSI

TYPES SN54LS168, SN54LS169, SN54S168, SN54S169, SN74LS168, SN74LS169, SN74S168, SN74S169 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

BULLETIN NO. DL-S 7412068, MARCH 1974

'LS168, 'S168... SYNCHRONOUS UP/DOWN DECADE COUNTERS 'LS169, 'S169... SYNCHRONOUS UP/DOWN BINARY COUNTERS

Programmable Look-Ahead Up/Down Binary/Decade Counters

- Fully Synchronous Operation for Counting and Programming
- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- Fully Independent Clock Circuit

TV05		TYPICAL MAXIMUM CLOCK FREQUENCY					
TYPE	COUNTING	COUNTING	POWER				
	UP	DOWN	DISSIPATION				
'LS168, 'LS169	35 MHz	35 MHz	100 mW				
'S168, 'S169	70 MHz	55 MHz	500 mW				

SERIES SN54LS', SN54S' . . . J OR W PACKAGE SERIES SN74LS', SN74S' . . . J OR N PACKAGE (TOP VIEW)

description

These synchronous presettable counters feature an internal carry look-ahead for cascading in high-speed counting applications. The 'LS168 and 'S168 are decade counters and the 'LS169 and 'S169 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation helps eliminate the output counting spikes that are normally associated with asynchronous (ripple-clock) counters. A buffered clock input triggers the four master-slave flip-flops on the rising (positive-going) edge of the clock waveform.

These counters are fully programmable; that is, the outputs may each be preset to either level. The load input circuitry allows loading with the carry-enable output of cascaded counters. As loading is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the data inputs after the next clock pulse.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a carry output. Both count enable inputs (\overline{P} and \overline{T}) must be low to count. The direction of the count is determined by the level of the up/down input. When the input is high, the counter counts up; when low, it counts down. Input \overline{T} is fed forward to enable the carry output. The carry output thus enabled will produce a low-level output pulse with a duration approximately equal to the high portion of the QA output when counting up and approximately equal to the low portion of the QA output when counting down. This low-level overflow carry pulse can be used to enable successive cascaded stages. Transitions at the enable \overline{P} or \overline{T} inputs are allowed regardless of the level of the clock input. All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design.

These counters feature a fully independent clock circuit. Changes at control inputs (enable \overline{P} , enable \overline{T} , load, up/down), which modify the operating mode, have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

Series 54LS and Series 54S circuits are characterized for operation over the full military temperature range of -55°C to 125°C; Series 74LS and Series 74S circuits are characterized for operation from 0°C to 70°C.

TYPES SN54LS168, SN54LS169, SN74LS168, SN74LS169, SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

TYPES SN54S168, SN54S169, SN74S168, SN74S169 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

functional block diagrams SN54S169, SN74S169 BINARY COUNTERS CLOCK (2) LOAD (8) OAO1 SN54S168, SN74S168 DECADE COUNTERS

TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 • DALLAS, TEXAS 75222

Clock In (S) OVO1

TYPES SN54LS168, SN54S168, SN74LS168, SN74S168 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

'LS168, 'S168 DECADE COUNTERS

typical load, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Load (preset) to BCD seven
- 2. Count up to eight, nine (maximum), zero, one, and two
- 3. Inhibit
- 4. Count down to one, zero (minimum), nine, eight, and seven

TYPES SN54LS169, SN54S169, SN74LS169, SN74S169 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

'LS169, 'S169 BINARY COUNTERS

typical load, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Load (preset) to binary thirteen
- 2. Count up to fourteen, fifteen (maximum), zero, one, and two
- 3. Inhibit
- 4. Count down to one, zero (minimum), fifteen, fourteen, and thirteen

TYPES SN54LS168, SN54LS169, SN74LS168, SN74LS169 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)				 	 		7 V
Input voltage			 	 	 		7 V
Operation free-air temperature range:	SN54LS168	. SN54LS169		 	 	. –55	C to 125 C
Cps.comg	SN74LS168	, SN74LS169		 	 	'	0 6 10 70 6
Storage temperature range							°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		1 -	N54LS1		SN74LS168 SN74LS169			דואט
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC		4.5	5	5.5	4.75	5	5,25	>
High-level output current, IOH				-400			-400	μΑ
Low-level output current, IOL		1		4			8	mA
Clock frequency, fclock		0		25	0		25	MHz
Width of clock pulse, tw(clock) (high or low) (see Figure 1)	25			25			ns
	Data inputs A, B, C, D	15			15			
	Enable P or T	20			20			ns
Setup time, t _{setup} (see Figure 1)	Load	25			25] '''
	Up/Down	30			30			
Hold time at any input with respect to clock	thold (see Figure 1)	25 ⁽	,		25≎	· ·		ns
Operating free-air temperature, TA		-55		125	0		70	°c

 $^{\lozenge}$ The minimum hold time is 25 ns or as long as the clock input takes to rise from 0.8 V to 2 V, whichever is longer.

TYPES SN54LS168, SN54LS169, SN74LS168, SN74LS169 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMET	ER	TEST CON	DITIONS		N54LS1		_	N74LS1		UNIT
			1				MAX	MIN	TYP‡	MAX	
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	V
V ₁	Input clamp voltage		VCC = MIN,	I ₁ = -18 mA			-1.5			-1.5	V
VOH	High-level output voltage	ie.	VCC = MIN, VIL = VIL max,		2.5	3.4	•	2.7	3.4		٧
VOL	Low-level output voltag	•	V _{CC} = MIN, V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	V
VOL	Low-level output voltag		VIL = VIL max IOL = 8 mA						0.35	0.5]
	Input current	A, B, C, D, P, U/D					0.1			0.1	
η	at maximum	Clock, T	VCC = MAX,	V _I = 7 V			0.2			0.2	mA
	input voltage	Load	<u> </u>				0.3			0.3	1
	High-level	A, B, C, D, P, U/D					20			20	
Iн	input current	Clock, T	V _{CC} = MAX,	V _I = 2.7 V			40			40	μΑ
	input current	Load		_			60			60	
	Low-level	A, B, C, D, P, U/D					-0.4			-0.4	
ηL	input current	Clock, T	VCC - MAX,	V _I = 0.4 V			-0.8			-0.8	mA
	input current	Load					-1.2			-1.2	1
los	Short-circuit output cur	rent§	VCC = MAX		-6		-40	-5		-42	mA
Icc	Supply current		VCC = MAX,	See Note 2		20	34		20	34	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}				25	32	-	MHz
^t PLH	Clock	Ripple	·		23	35	\vdash
^t PHL	Olock	carry	0 - 45 - 5		23	35	ns
^t PLH	Clock	Any	C _L = 15 pF,		13	20	
^t PHL		a	R _L = 2 kΩ,		15	23	ns
^t PLH	Enable T	Ripple	See Figures 2 and 3		10	14	\vdash
^t PHL		carry	and Note 3		10	14	ns
tPLH≎	Up/Down	Ripple			17	25	
tPHL*	Op/DOWN	carry			19	29	ns

[¶]f_{max} ≡ Maximum clock frequency

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25^{\circ}\text{C}$.

[§]Not more than one output should be shorted at a time.

NOTE 2: ICC is measured after applying a momentary 4.5 V, then ground, to the clock input with all other inputs grounded and the outputs

tp_H = propagation delay time, low-to-high-level output.

tpHL = propagation delay time, high-to-low-level output.

Propagation delay time from up/down to ripple carry must be measured with the counter at either a minimum or a maximum count. As the logic level of the up/down input is changed, the ripple carry output will follow. If the count is minimum (0), the ripple carry output transition will be in phase. If the count is maximum (9 for 'LS168 or 15 for 'LS169), the ripple carry output will be out of phase. NOTE 3: Load circuit is shown on page S-88.

TYPES SN54S168, SN54S169, SN74S168, SN74S169 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 4)																		•	•	•	٠	٠	•	•	•	•	/ V	
Input voltage																							•	•			5.5 V	
Internamietar valtaga (coa Note 5)																									•	•	o.o v	
Operating free air temperature range		SN	549	S1	คล	S	N!	45	:16	66	(se	e i	Nο	te	6)								-:	כנ	Ct	0 1	25 C	
	•	NS	74	51	คร	S	N.	749	\$1 6	39											٠			٠,	,	ω	70 C	
Storage temperature range	. '					•																	-6	35°	C t	o 1	150°C	

recommended operating conditions

		S	N54S16	8	SI	N74S16	В	1
		s	N54S16	9	SI	N74S16	9	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-1			1	mA
Low-level output current, IQL				20			20	mA _.
Clock frequency, fclock		0		40	0		40	MHz
Width of clock pulse, tw(clock) (high or low)	(see Figure 1)	10			10			ns
	Data inputs A, B, C, D	4			4			
	Enable P or T	14			14			ns
Setup time, t _{setup} (see Figure 1)	Load	6			6			↓ ```
	Up/Down	20			20			
Hold time at any input with respect to clock	, thotd (see Figure 1)	1			1			ns
Operating free-air temperature, TA (see Note		-55		125	0		70	°c

NOTES: 4. Voltage values, except interemitter voltage, are with respect to network ground terminal.

- 5. This is the voltage between two emitters of a multiple-emitter transistor. For these circuits, this rating applies between the count enable inputs P and T.
- 6. An SN54S168 or SN54S169 in the W package operating at free-air temperatures above 91°C requires a heat sink that provides a thermal resistance from case to free-air, $H_{\theta CA}$, of not more than 26°C/W.

TYPES SN54S168, SN54S169, SN74S168, SN74S169 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CON	IDITIONS†	1	N54S1			N74S16	-	UNIT
					MIN	TYP‡	MAX	MIN	TYP‡	MAX	}
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.8			8.0	V
VI	Input clamp voltage		V _{CC} = MIN,	I _I = -18 mA			-1.2			-1.2	V
V _{OH}	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = -1 mA	2.5	3.4		2.7	3.4		٧
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 20 mA			0.5			0.5	٧
լ	Input current at maximum input vo	oltage	V _{CC} = MAX,	V _I = 5.5 V			1		-	1	mA
Ιιн	High-level input current	Enable T Other inputs	V _{CC} = MAX,	V _I = 2.7 V			100 50			100 50	μА
11L	Low-level input current	Enable T	V _{CC} = MAX,	V1 = 0 5 V			-4			<u>-4</u>	mA
-1.		Other inputs	100				-2			-2	IIIA
los	Short-circuit output current§	•	V _{CC} = MAX		-40		-100	-40		-100	mA
Icc	Supply current		V _{CC} = MAX, V _{CC} = MAX,			100	160 160		100	160	mA
			T _A = 125°C	only)		100				

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

PARAMETER¶	FROM	то	TEST CONDITIONS	UP/0	OWN =	HIGH	UP/D	OWN =	LOW	Ī
	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
f _{max}				40	70		40	55		MHz
^t PLH	Clock	Ripple			14	21		14	21	
^t PHL	CIOCK	carry	C: = 15 = 5		20	28		20	28	ns
ФLН	Clock	Any Q	CL = 15 pF,		- 8	15		8	15	
₹PHL_	———	Anyu	R _L = 280 Ω,		11	15		11	15	ns
tPLH .	Enable T	Ripple	See Figures 2 and 3 and Note 7		7.5	11		6	12	
tPHL .	Cuspie 1	carry	and Note /		15	22		15	25	ns
tPLH♦	LI- (D	Ripple			9	15		8	15	
tpHL♦	Up/Down	carry			10	15		16	22	ns

[¶]fmax = maximum clock frequency

on a new product. Texas Instruments reserves the right to change specifications for this product in any manner without notice.

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25^{\circ}\text{C}$.

Not more than one output should be shorted at a time.

NOTE 2: ICC is measured after applying a momentary 4.5 V, then ground, to the clock input with all other inputs grounded and the outputs

tp_H = propagation delay time, low-to-high-level output

tpHL ≡ propagation delay time, high-to-low-level output

Propagation delay time from up/down to ripple carry must be measured with the counter at either a minimum or a maximum count. As the logic level of the up/down input is changed, the ripple carry output will follow. If the count is minimum (0), the ripple carry output transition will be in phase. If the count is maximum (9 for '\$168 or 15 for '\$169), the ripple carry output will be out of phase. NOTE 7: Load circuit is shown on page S-87.

TYPES SN54LS168, SN54LS169, SN54S168, SN54S169, SN74LS168, SN74LS169, SN74S168, SN74S169 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

- NOTES: A. The input pulses are supplied by a generator having the following characteristics: PRR < 1 MHz, duty cycle < 50%, Z_{Out} ≈ 50 Ω; for 'LS168 and 'LS169, $t_r \le 15$ ns, $t_f \le 6$ ns, and for 'S168 and 'S169, $t_r \le 2.5$ ns, $t_f \le 2.5$ ns.
 - B. For 'LS168 and 'LS169, V_{ref} = 1.3 V, for 'S168 and 'S169, V_{ref} = 1.5 V.

FIGURE 1-PULSE WIDTHS, SETUP TIMES, HOLD TIMES

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, Z_{Out} \approx 50 Ω ;
 - for 'LS168 and 'LS169, $t_f < 15$ ns, $t_f < 6$ ns; and for 'S168 and 'S169, $t_f < 2.5$ ns, $t_f < 2.5$ ns.

 8. tp_H and tpHL from enable \overline{T} input to ripple carry output assume that the counter is at the maximum count (Q_A and Q_D high for 'LS168 and 'S168, all Q outputs high for 'LS169 and 'S169).
 - C. For 'LS168 and 'LS169, V_{ref} = 1.3 V; for 'S168 and 'S169, V_{ref} = 1.5 V.
 - D. Propagation delay time from up/down to ripple carry must be measured with the counter at either a minimum or a maximum count. As the logic level of the up/down input is changed, the ripple carry output will follow. If the count is minimum (0) the ripple carry output transition will be in phase. If the count is maximum (9 for 'LS168 or 15 for 'LS169 and 'S169) the ripple carry output will be out of phase

FIGURE 2-PROPAGATION DELAY TIMES TO CARRY OUTPUT

TYPES SN54LS168, SN54LS169, SN54S168, SN54S169, SN74LS168, SN74LS169, SN74S168, SN74S169 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

PARAMETER MEASUREMENT INFORMATION

UP-COUNT VOLTAGE WAVEFORMS

NOTES: A. The input pulses are supplied by a generator having the following characteristics: PRR < 1 MHz, duty cycle < 50%, $Z_{out} \approx 50 \Omega$; for 'LS168 and 'LS169, $t_f < 15$ ns, $t_f < 6$ ns; and for 'S168 and 'S169, $t_f < 2.5$ ns, $t_f < 2.5$ ns, Vary PRR to measure $t_f < 1.5$ ns.

- B. Outputs Q_D and carry are tested at t_{n+10} for the 'LS168 and 'S168, and at t_{n+16} for the 'LS169 and 'S169, where t_n is the bit-time when all outputs are low.
- C. For 'LS168 and 'LS169, V_{ref} = 1.3 V; for 'S168 and 'S169, V_{ref} = 1.5 V.

FIGURE 3-PROPAGATION DELAY TIMES FROM CLOCK

TTL MSI

TYPES SN54170, SN54LS170, SN74170, SN74LS170 4-RY-4 REGISTER FILES WITH OPEN-COLLECTOR OUTPUTS

BULLETIN NO. DL-S 7411349, MARCH 1974

- Separate Read/Write Addressing Permits Simultaneous Reading and Writing
- Fast Access Times . . . Typically 20 ns
- Organized as 4 Words of 4 Bits
- Expandable to 1024 Words of n-Bits
- For Use as: Scratch-Pad Memory

Buffer Storage between Processors Bit Storage in Fast Multiplication Designs

- **Open-Collector Outputs with Low** Maximum Off-State Current: '170 . . . 30 μA 'LS170 . . . 100 µA
- SN54LS670 and SN74LS670 Are Similar But Have 3-State Outputs

SN54170, SN54LS170 . . . J OR W PACKAGE SN74170, SN74LS170 . . . J OR N PACKAGE (TOP VIEW)

description

The '170 and 'LS170 MSI 16-bit TTL register files incorporate the equivalent of 98 gates. The register file is organized as 4 words of 4 bits each and separate on-chip decoding is provided for addressing the four word locations to either write-in or retrieve data. This permits simultaneous writing into one location and reading from another word location.

Four data inputs are available which are used to supply the 4-bit word to be stored. Location of the word is determined by the write-address inputs A and B in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high-level signal is desired from the output, a high level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the write-enable input, Gw, is high, the data inputs are inhibited and their levels can cause no change in the information stored in the internal latches. When the read-enable input, GR, is high, the data outputs are inhibited and remain high.

The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.

This arrangement—data-entry addressing separate from data-read addressing and individual sense line—eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (30 nanoseconds typical) and the read time (25 nanoseconds typical). The register file has a nondestructive readout in that data is not lost when addressed.

All '170 inputs and all inputs except the read enable and write enable of the 'LS170 are buffered to lower the drive requirements to one Series 54/74 or Series 54LS/74LS standard load, respectively. Input-clamping diodes minimize switching transients to simplify system design. High-speed, double-ended AND-OR-INVERT gates are employed for the read-address function and drive high-sink-current, open-collector outputs. Up to 256 of these outputs may be wire-AND connected for increasing the capacity up to 1024 words. Any number of these registers may be paralleled to provide n-bit word length.

The SN54170 and SN54LS170 are characterized for operation over the full military temperature range of -55°C to 125°C; the SN74170 and SN74LS170 are characterized for operation from 0°C to 70°C.

TYPES SN54170, SN54LS170, SN74170, SN74LS170 4-BY-4 REGISTER FILES WITH OPEN-COLLECTOR OUTPUTS

logic

WRITE FUNCTION TABLE (SEE NOTES A, B, AND C)

WR	ITE INP	UTS		WC	RD	
WB	WA	Gw	0	1	2	3
L	L	L	Q = D	α ₀	σο	00
L	н	L	σo	Q = D	σ_0	σ_0
Н	L	Ŀ	α_0	σ_0	Q = D	\mathbf{q}_0
Н	н	L	o₀	a_0	\mathbf{c}_{0}	Q = D
X	×	н	α_0	\mathbf{q}_{0}	α_0	α_0

READ FUNCTION TABLE (SEE NOTES A AND D)

RE	AD INPU	JTS		OUT	PUTS	
RB	RA	GR	Q1	Q2	Q3	Q4
L	L	L	W0B1	W0B2	W0B3	W0B4
L	н	L	W1B1	W1B2	W1B3	W1B4
н	L	L	W2B1	W2B2	W2B3	W2B4
н	н	L	W3B1	W3B2	W3B3	W3B4
×	×	н	н	H	н	н

NOTES: A. H = high level, L = low level, X = irrelevant.

- B. (Q = D) = The four selected internal flip-flop outputs will assume the states applied to the four external data inputs
- C. Q₀ = the level of Q before the indicated input conditions were established
- D. WOB1 = The first bit of word 0, etc.

functional block diagram

TYPES SN54170, SN54LS170, SN74170, SN74LS170 4-BY-4 REGISTER FILES WITH OPEN-COLLECTOR OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see	Nata	11																																7١
Input voltage: '170 .	NOTE	,		•	•	•	•	•	•	٠	•	•	٠	•	•	•	•																	5.5 \
Input voltage: '170 . 'LS170		٠	•	٠	٠	•	٠	•	•	٠	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•							_	7١
'LS170		٠	٠	٠	•	•	٠	٠	•	•	٠		•	•	٠	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	:	•	•	55
Off-state output voltage:	′170	}			•	٠	•		٠		•	٠	٠	•	•	•	٠	٠	٠	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	7,
Operating free-air tempera	ature	rar	nge	: :	SN	154	17	О,	S١	154	‡L	S1	70	(se	e	No	te	2)		٠	•	•	٠	٠	٠	٠	•	•		-5	,סי	ا ل م	10	120
Storage temperature range								·					_																	-6	35 ~	C 1	ίO	150°

NOTES: 1. Voltage values are with respect to network ground terminal.

374

2. An SN54170 in the W package operating at free-air temperatures above 105°C requires a heat sink that provides a thermal resistance from case to free air, R $_{ extstyle GCA}$ of not more than 38 $^{\circ}$ C/W

TYPES SN54170, SN74170 4-BY-4 REGISTER FILES WITH OPEN-COLLECTOR OUTPUTS

recommended operating conditions

			SN5417	0		SN7417	0	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	6.25	V
High-level output voltage, VOH				5.5			5.5	V
Low-level output current, IOL				16	·	_	16	mA
Width of write-enable or read-enable pulse, tw		25			25			ns
Setup times, high- or low-level data	Data input with respect to write enable, tsetup(D)	10			10			ns
(see Figure 2)	Write select with respect to write enable, t _{setup} (W)	15			15			ns
Hold times, high- or low-level data	Data input with respect to write enable, thold(D)	15			15			ns
(see Note 3 and Figure 2)	Write select with respect to write enable, thold(W)	5			5		_	ns
Latch time for new data, t _{latch} (see Note 4)		25			25			ns
Operating free-air temperature range, TA (see Note 2	2)	-55		125	0		70	°c

NOTES: 2. An SN54170 in the W package operating at free-air temperatures above 105°C requires a heat sink that provides a thermal resistance from case to free-air, $R_{\theta CA}$, of note more than 38°C/W.

3. Write select setup time will protect the data written into the previous address, if protection of data in the previous address is not required, t_{setup(W)} can be ignored as any address selection sustained for the final 30 ns of the write-enable pulse and during thold(W) will result in data being written into that location. Depending on the duration of the input conditions, one or a number of previous addresses may have been written into.

4. Latch time is the time allowed for the internal output of the latch to assume the state of new data. See Figure 2. This is important only when attempting to read from a location immediately after that location has received new data.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS†	MIN	TYP#	MAX	UNIT
v_{IH}	High-level input voltage		2			V
VIL	Low-level input voltage		 -		0.8	+ v
V _I	Input clamp voltage	V _{CC} = MIN, I ₁ = -12 mA	 		-1.5	l v
ЮН	High-level output current	V _{CC} = MIN, V _{OH} = 5.5 V, V _{IH} = 2 V, V _{IL} = 0.8 V			30	μА
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA		0.2	0.4	v
l _l	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V	+			mA
۱ін	High-level input current	V _{CC} = MAX, V ₁ = 2.4 V	 -		40	μA
IIL	Low-level input current	V _{CC} = MAX, V _I = 0.4 V	\vdash		-1.6	mA
Icc	Supply current	V _{CC} = MAX, SN54170		1278	140	
-00		See Note 5 SN74170		1278	150	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡All typical values are at V_{CC} = 5 V, T_A = 25°C. § Typical supply current shown is an average for 50% duty cycle.

NOTE 5: Maximum ICC is guaranteed for the following worst-case conditions: 4.5 V is applied to all data inputs and both enable inputs, all address inputs are grounded, and all outputs are open.

TYPES SN54170, SN74170 4-BY-4 REGISTER FILES WITH OPEN-COLLECTOR OUTPUTS

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	רואט
tPLH			0 15 - 5		10	15	ns
tPHL	Read enable	Any Q	CL = 15 pF,		20	30	1 '''
tPLH		_	R _L = 400 Ω,		23	35	ns
	Read Select	Any Q	See Figures 1 and 2		30	40	1 "
tPHL				+	25	40	
^t PLH	Write enable	Any Q	C _L = 15 pF,		34	45	ns
tPHL			R _L = 400 Ω,		20	30	+
^t PLH	Data	Any Q	See Figures 1 and 3		30	45	ns
tPHL		·			30	45	

 $[\]P_{tplh}$ = propagation delay time, low-to-high-level output t_{phl} = propagation delay time, high-to-low-level output

schematics of inputs and outputs

170

TYPES SN54LS170, SN74LS170 4-BY-4 REGISTER FILES WITH OPEN-COLLECTOR OUTPUTS

recommended operating conditions

		SI	N54LS1	70	St	N74LS1	70	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, VOH		1		5.5			5.5	V
Low-level output current, IOL				4			8	mA
Width of write-enable or read-enable pulse, tw		25			25			ns
Setup times, high- or low-level data	Data input with respect to write enable, t _{satup} (D)	10			10			ns
(see Figure 2)	Write select with respect to write enable, t _{setup} (W)	15			15			ns
Hold times, high- or low-level data	Data input with respect to write enable, thold(D)	15			15			ns
(see Note 3 and Figure 2)	Write select with respect to write enable, thold(W)	5			5			ns
Latch time for new data, t _{latch} (see Note 4)		25			25			ns
Operating free-air temperature range, TA		-55		125	0		70	°c

NOTES: 3. Write-select setup time will protect the data written into the previous address. If protection of data in the previous address is not required, t_{setup(W)} can be ignored as any address selection sustained for the final 30 ns of the write-enable pulse and during thold(W) will result in data being written into that location. Depending on the input conditions, one or a number of previous addresses may have been written into.

4. Latch time is the time allowed for the internal output of the latch to assume the state of new data. See Figure 2. This is important only when attempting to read from a location immediately after that location has received new data.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CON	SI	N54LS1	70	St	T			
		1231 0011	MIN	TYP‡	MAX	MIN	TYP‡	MAX	רומט		
VIH	High-level input voltage				2			2			₩.
VIL	Low-level input voltage						0,7	<u> </u>		0.8	V
٧ı	Input clamp voltage		V _{CC} = MIN,	I _I = -18 mA			-1.5			-1.5	V
юн	High-level output current		V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{OH} = 5.5 V, V _{IH} = 2 V		-	100			100	μΑ
Vol L	Low-level output voltage	Low-level output voltage		IOL = 4 mA		0.25	0.4		0.25	0.4	İ
	· · · · · · · · · · · · · · · · · · ·		V _{IH} = 2 V, V _{IL} = V _{IL} max	IOL = 8 mA				_	0.35	0.5	"
ij	Input current at	Any D, R, or W	VCC = MAX,	Vı = 7 V			0.1		0.1		\vdash
	maximum input voltage	G _R or G _W	TVCC - WAA,	VI= / V F		0,2			0.2	mΑ	
Ιн	High-level input current	Any D, R, or W	V 444 V	V = 0.7.V			20			20	\vdash
	- Input current	GR or GW .	VCC - MAX,	V _I = 2.7 V		40				40	μΑ
1 _L	Low-level input current	Any D, R, or W	14 - 144.14				-0.4			-0.4	
11.		G _R or G _W	V _{CC} = MAX,	V _I ≈ 0.4 V			-0.8			-0.8	mA
Icc	Supply current		VCC = MAX,	See Note 6		25	40		25	40	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡All typical values are at V_{CC} = 5 V, T_A = 25°C.

NOTE 6: I_{CC} is measured under the following worst-case conditions: 4.5 V is applied to all data inputs and both enable inputs, all address

TYPES SN54LS170, SN74LS170 4-BY-4 REGISTER FILES WITH OPEN-COLLECTOR OUTPUTS

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETERS	FROM (INPUT)	TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH			0 45 5		20	30	ns
tPHL	Read enable	Any Q	C _L = 15 pF,		20	30	1
tPLH			$R_L = 2 k\Omega$,		25	40	ns
tPHL	Read select	Read select Any Q See Figures 1 and 2		24	40	1 '''	
			- 45.5		30	45	ns
tPLH	Write enable			26	40	1 '''	
tPHL			R _L = 2 kΩ,		30	45	T
tPLH tPHL	Data	Any Q	See Figures 1 and 3		22	35	ns

[¶]tpLH = propagation delay time, low-to-high-level output tpHL = propagation delay time, high-to-low-level output

schematics of inputs and outputs

'LS170

'LS170

TYPES SN54170, SN54LS170, SN74170, SN74LS170 4-BY-4 REGISTER FILES WITH OPEN-COLLECTOR OUTPUTS

REVISED MARCH 1974

PARAMETER MEASUREMENT INFORMATION

FIGURE 1

FIGURE 2

FIGURE 3

- NOTES: A. High-level input pulses at the select and data inputs are illustrated in Figure 2; however, times associated with low-level pulses are measured from the same reference points.
 - B. When measuring delay times from a read-select input, the read-enable input is low. When measuring delay times from the read-enable input, both read-select inputs have been established at steady states.
 - C. In Figure 3, each select address is tested. Prior to the start of each of the above tests, both write and read address inputs are stabilized with $W_A = R_A$ and $W_B = R_B$. During the test G_R is low.
 - D. Input waveforms are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_{Out} \approx 50 \Omega$, duty cycle \leq 50%, $t_{\rm f} \le 10$ ns and $t_{\rm f} \le 10$ ns for '170, and $t_{\rm f} \le 15$ ns and $t_{\rm f} \le 6$ ns for 'LS170.
 - D. For '170, V_{ref} = 1.5 V; for 'LS170, V_{ref} = 1.3 V.

BULLETIN NO. DL-S 7412107, MARCH 1974

SN54S189 . . . J OR W PACKAGE

SN74S189 . . . J OR N PACKAGE (TOP VIEW)

SELECT INPUTS

 Schottky-Clamped for High-Speed Buffer/Scratchpad Memory Systems:

Access from Chip-Enable Inputs . . . 12 ns Typ Access from Address Inputs . . . 25 ns Typ

- Three-State Outputs Drive Bus-Organized Systems and/or Highly Capacitive Loads
- SN54S289, SN74S289 Are Functionally Equivalent, Have Open-Collector Outputs, and Replace Intel 3101A in Most Applications
- SN54S189 Is Guaranteed for Operation Over the Full Military Temperature Range of -55°C to 125°C
- Compatible with Most TTL and DTL Logic Circuits
- Chip-Enable Input Simplifies Word Expansion

DATA OUTPUT INPUT OUTPUT INPUT OUTPUT INPUT OUTPUT INPUT OUTPUT INPUT OUTPUT INPUT OUTPUT INPUT OUTPUT INPUT OUTPUT INPUT OUTPUT

description

These 64-bit active-element memories are monolithic Schottky-clamped transistor-transistor logic (TTL) arrays organized as 16 words of four-bits each. They

are fully decoded and feature a chip-enable input to simplify decoding required to achieve the desired system organization. The memories feature p-n-p input transistors that reduce the low-level input current requirement to a maximum of -0.25 milliamperes, only one-eighth that of a Series 54S/74S standard load factor. The chip-enable circuitry is implemented with minimal delay times to compensate for added system decoding.

The three-state output combines the convenience of an open-collector with the speed of a totem-pole output; it can be bus-connected to other similar outputs, yet it retains the fast-rise-time characteristic of the TTL totem-pole output. Systems utilizing data-bus lines with a defined pull-up impedance can employ the open-collector 'S289.

write cycle

The complement of the information at the data input is written into the selected location when both the chip-enable input and the read/write input are low. While the read/write input is low, the outputs are in the high-impedance state. When a number of the 'S189 outputs are bus-connected, this high-impedance state will neither load nor drive the bus line, but it will allow the bus line to be driven by another active output or a passive pull-up if desired.

read cycle

374

The stored information (complement of information applied at the data inputs during the write cycle) is available at the outputs when the read/write input is high and the chip-enable input is low. When the chip-enable input is high, the outputs will be in the high-impedance state.

FUNCTION TABLE										
	INP	JTS								
FUNCTION	CHIP ENABLE	READ/ WRITE	ОИТРИТ							
Write (Store Complement of Data)	L	L	High Impedance							
Read	L	Н	Stored Data							
Inhibit	Н	X	High Impedance							

H = high level, L = low level, X = irrelevant

The fast access time of the 'S189 makes it particularly attractive for implementing high-performance memory functions requiring access times on the order of 25 nanoseconds. The high capacitive-drive capability of the outputs permits expansion without additional output buffering. The unique functional capability of the 'S189 outputs being at a high impedance during writing combined with the data inputs being inhibited during reading means that both data inputs and outputs can be connected to the data lines of a bus-organized system without the need for interface circuits.

functional block diagram and schematics of inputs and outputs

absolute maximum ratings over opera	ting fr	ee-ai	ir to	em	peı	ratı	ure	ra	nge	e (un	les	s c	oth	er	wis	e 1	no	te	d)					
Supply voltage, VCC (see Note 1)																								•	7 V
Input voltage		•																						5.	5 V
Off-state output voltage.			•	•	•	•		•																5.	5 V
Operating free-air temperature range:	CNICAC			•	•	•	•	•	•	•	•	•	•		•	·	·	•	•		F	55°	C to	12!	5°C
Operating free-air temperature range:	SN545	189	•	•	٠	•		•	•		•	•	•	•		•	•	•	•		·	~ c	າ°ດີ	to 7	o°C
	SN 745	189		٠	٠	•	• •	•	٠	٠	•	•	•	•	•	•	•	•	•	•	٠,		, C	. 15	oo.c
Storage temperature range								٠	٠	٠	٠	٠	•	•		٠	•	•	•			ງວ	CI) (3(, C

recommended operating conditions

		S	N54S18	9	S	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	0.41
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	٧
High-level output voltage, IOH				- 2			6.5	
Low-level output current, IOL				16			16	mA
Width of write-enable pulse (read/write)	ow), t _W	25			25			٥,
	Address to read/write	01			01			1
Setup time, t _{setup} (see Figure 1)	Data to read/write	251			251			ns.
Setup	Chip enable to read/write	01			01			<u> </u>
	Address from read/write	01			0†			1
Hold time, thold (see Figure 1)	Data from read/write	Ot			01			ns
Thora time, thora ties ties to	Chip enable from read/write	01			01			↓
Operating free-air temperature, TA		-55		125	0		70	C

†1The arrow indicates the transition of the read/write input used for reference: ffor the low-to-high transition, ifor the high-to-low transition, electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

SN74S189 SN54S189 UNIT TEST CONDITIONS[†] PARAMETER MIN TYP\$ MAX TYP\$ MAX MIN v 2 2 High-level input voltage VIH 0.8 v VIL Low-level input voltage ٧ - 1.2 -1.2VCC - MIN, I_I = -18 mA Input clamp voltage νı VCC - MIN, VIH = 2 V, ٧ 3.4 2.4 3.2 2.4 High-level output voltage V_{IL} = 0.8 V, ۷он IOH = MAX VIH = 2 V. VCC = MIN, 0.45 v 0.5 VOL Low-level output voltage VIL = 0.8 V, IOL = 16 mA VCC = MAX, VIH = 2 V, μΑ 50 Off-state output current 50 lozh VIL = 0.8 V, VO = 2.4 V high-level voltage applied VCC = MAX, VIH = 2 V, -50 μА Off-state output current -50 $V_{IL} = 0.8 \text{ V}, \quad V_{O} = 0.5 \text{ V}$ OZL low-level voltage applied mA VCC - MAX, VI - 5.5 V Input current at maximum input voltage 11 μА 25 V_{CC} - MAX, V_I = 2.7 V 25 High level input current ЧН μА VCC - MAX, VI = 0.5 V -250 -250 Low-level input current Tit -100 mΑ -100 -30 -30 VCC TMAX Short-circuit output current los 110 110 mΑ 75 VCC - MAX, See Note 2 Supply current

Icc

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C

Duration of the short-circuit should not exceed one second.

NOTES: 1. All voltage values are with respect to network ground terminal.

^{2.} ICC is measured with the read/write and chip-enable inputs grounded, all other inputs at 4.5 V, and the outputs open.

switching characteristics over recommended operating ranges of TA and VCC (unless otherwise noted)

	PARAMETER	TEST	SN54	S189	SN74	UNIT		
	- Allenetell	CONDITIONS	TYP‡	TYP# MAX				MAX
tPLH	Propagation delay time, low-to-high-level output	Access times		25	50	25	35	
^t PHL	Propagation delay time, high-to-low-level output	from address		25	50	25	35	ns
^t ZH	Output enable time to high level	Access times from	C _L = 30 pF,	12	25	12	17	
†ZL	Output enable time to low level	chip enable	RL = 280 Ω,	12	25	12	17	ns
^t ZH	Output enable time to high level	Sense recovery times	See Figure 1	22	40	22	35	<u> </u>
tZL	Output enable time to low level	from read/write		22	40	22	35	ns
^t HZ	Output disable time from high level	Disable times from	 -	12	25	12	17	
tLZ	Output disable time from low level	chip enable	C _L = 5 pF,	12	25	12	17	ns
tHZ	Output disable time from high level	Disable times	$R_L = 280 \Omega$,	12		12		
tLZ	Output disable time from low level	from read/write	See Figure 1	12		12		ns

 ‡ All typical values are at V_{CC} = 5 V, T_{A} = 25°C.

PARAMETER MEASUREMENT INFORMATION

ACCESS TIME FROM ADDRESS INPUTS VOLTAGE WAVEFORMS

VOLTAGE WAVEFORMS

- NOTES: A. Waveform 1 is for the output with internal conditions such that the output is low except when disabled. Waveform 2 is for the output with internal conditions such that the output is high except when disabled.
 - B. When measuring delay times from address inputs, the chip-enable input is low and the read/write input is high. C. When measuring delay times from chip-enable input, the address inputs are steady-state and the read/write input is high.
 - D. Input waveforms are supplied by pulse generators having the following characteristics: $t_r \le 2.5$ ns, $t_f \le 2.5$ ns, PRR ≤ 1 MHz, and $Z_{out} \approx 50 \ \Omega$.

FIGURE 1

374

Il cannot assume any responsibility for any circuits shown or represent that they are free from potent infringement.

TTL MSI

TYPES SN54194, SN54LS194A, SN54S194, SN74194, SN74LS194A, SN74S194 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

BULLETIN NO. DL-S 7411866, MARCH 1974

- Parallel Inputs and Outputs
- Four Operating Modes:

Synchronous Parallel Load Right Shift Left Shift Do Nothing

- Positive Edge-Triggered Clocking
- Direct Overriding Clear

TYPE	TYPICAL MAXIMUM CLOCK	TYPICAL POWER
	FREQUENCY	DISSIPATION
'194	36 MHz	195 mW
'LS194A	36 MHz	75 mW
'S194	105 MHz	425 mW

SN54194, SN54LS194A, SN54S194 . . . J OR W PACKAGE SN74194, SN74LS194A, SN74S194 . . . J OR N PACKAGE (TOP VIEW)

description

These bidirectional shift registers are designed to incorporate virtually all of the features a system designer may want in a shift register. The circuit contains 46 equivalent gates and features parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

Parallel (broadside) load
Shift right (in the direction QA toward QD)
Shift left (in the direction QD toward QA)
Inhibit clock (do nothing)

Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, SO and S1, high. The data are loaded into the associated flip-flops and appear at the outputs after the positive transistion of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when S0 is high and S1 is low. Serial data for this mode is entered at the shift-right data input. When S0 is low and S1 is high, data shifts left synchronously and new data is entered at the shift-left serial input.

Clocking of the flip-flop is inhibited when both mode control inputs are low. The mode controls of the SN54194/SN74194 should be changed only while the clock input is high.

FUNCTION TABLE

	FORCTION TABLE												
	INPUTS											UTS	
	MO	DE		SEF	RIAL	F	ARA	LLEL		QA	QΒ	$\alpha_{\mathbf{C}}$	QD
CLEAR	S1	SO	CLOCK	LEFT	RIGHT	Α	В	С	D	-A	-Б		
	х	×	×	×	x	X	X	Х	X	L	L	L	L
H	x	x	L	×	×	×	X	×	X	Q _{A0}	a_{B0}	σ_{C0}	σ_{D0}
"	Н	н	1 1	×	×	а	ь	c	d	а	b	C	d
;;	l ;;	н	1	×	н	×	x	X	X	н	\mathbf{Q}_{An}	Q_{Bn}	σ_{Cn}
\	-	н	1	x	L	×	x	X	×	L	Q_{An}	α_{Bn}	a_{Cn}
Н	н	Ĺ	1	н	×	×	x	X	X	QBn	Q_{Cn}	α_{Dn}	Н
l "i	;;		1	L	×	×	×	X	X	QBn		_	L
н	l ;;	-	×	×	×	×	X	x	×	QAO			σ_{D0}
"	-	_	1 ^	l ~									

- H = high level (steady state)
- L = low level (steady state)
- X = irrelevant (any input, including transitions)
- transition from low to high level
- a, b, c, d = the level of steady-state input at inputs A, B, C, or D, respectively.
- Q_{A0}, Q_{B0}, Q_{C0}, Q_{D0} = the level of Q_A, Q_B, Q_C, or Q_D, respectively, before the indicated steady-state input conditions were established.
- Q_{An}, Q_{Bn}, Q_{Cn}, Q_{Dn} = the level of Q_A, Q_B, Q_C, respectively, before the most-recent 1 transition of the clock.

TYPES SN54194, SN54LS194A, SN54S194, SN74194, SN74LS194A, SN74S194 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

functional block diagrams

PARALLEL OUTPUTS

TYPES SN54194, SN54S194A, SN54S194, SN74194, SN74LS194A, SN74S194 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

typical clear, load, right-shift, left-shift, inhibit, and clear sequences

TYPES SN54194, SN54LS194A, SN54S194, SN74194, SN74LS194A, SN74S194 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

schematics of inputs and outputs

'LS194A

TYPES SN54194, SN74194 **4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS**

REVISED MARCH 1974

absolute maximum ratings over ope	rating free-air	temperature range	(unless otherwise noted)	
Supply voltage, Vcc (see Note 1)				

. . 5.5 V 0°C to 70°C

-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		!	SN54194		SN74194			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	CIVI
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH				-800			-800	μΑ
Low-level output current, I OL				16			16	mA
Clock frequency, fclock				25	0		25	MHz
Width of clock or clear pulse, tw		20			20			ns
	Mode control	30			30			ns
Setup time, t _{setup}	Serial and parallel data	20			20			ns
cotop time, satup	Clear inactive-state	25			25			ns
Hold time at any input, thold		0			0			ns
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS†			SN5419	4		UNIT		
	PARAMETER			MIN TYP		MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage					0.8			0.8	V
VI.	Input clamp voltage	V _{CC} = MIN,	I _I = -12 mA			-1.5			-1.5	<u> </u>
	High-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = -800 μA	2.4	3.4		2.4	3.4		\ \ \
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	V
l ₁	Input current at maximum input voltage	VCC = MAX,	V _I = 5.5 V			1	<u> </u>		1	mA
чн	High-level input current	VCC = MAX,	V _I = 2.4 V			40			40	+
46	Low-level input current	VCC = MAX,	V ₁ = 0.4 V			-1.6			-1.6	+
	Short-circuit output current§	V _{CC} = MAX		-20		-57	-18		-57	mA
Icc	Supply current	V _{CC} = MAX,	See Note 2		39	63		39	63	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

TEST CONDITIONS	MIN	TYP	MAX	UNIT
2.45.5	25	36		MHz
		19	30	ns
_		14	22	ns
See Figure 1		17	26	ns
	TEST CONDITIONS C _L = 15 pF, R _L = 400 Ω, See Figure 1	C _L = 15 pF, R _L = 400 Ω,	C _L = 15 pF, 19 R _L = 400 Ω, 14	C _L = 15 pF, R _L = 400 Ω, See Figure 1

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

NOTE 2: With all outputs open, inputs A through D grounded, and 4.5 V applied to S0, S1, clear, and the serial inputs, I_{CC} is tested with a momentary GND, then 4.5 V applied to clock.

TYPES SN54LS194A, SN74LS194A 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		7 V
Input voltage		7 V
Operating free-air temperature range	SN54LS194A	125°C
	SN74LS194A	70°C
Storage temperature range		150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN	SN54LS194A		SN74LS194A			Ī
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-400			-400	μА
Low-level output current, IOL		—		4			- 8	mA
Clock frequency, fclock		1 0		25	0		25	MHz
Width of clock or clear pulse, t _W		20			20			ns
	Mode control	30			30			ns
Setup time, t _{setup}	Serial and parallel data	20			20			ns
	Clear inactive-state	25			25			ns
Hold time at any input, thold		0			0			กร
Operating free-air temperature, TA		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS†		SN54LS194A			SN74LS194A			T	
		TEST CONDITIONS.			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			1 v
VIL	Low-level input voltage						0.7	† · · · ·		0.8	V
VΙ	Input clamp voltage	VCC = MIN,	I _I = -18 mA				1.5	 		-1.5	
Vон	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	V _{IH} = 2 V,	μΑ	2.5	3.5		2.7	3.5		v
VOL	Low-level output voltage	V _{CC} = MIN,	•••	IOL = 4 mA		0.25	0.4	<u> </u>	0.25	0.4	V
		VIL = VIL max		IOL = 8 mA	1			ГТ	0.35	0.5	1 °
I _I	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
ΉΗ	High-level input current	V _{CC} = MAX,	V _I = 2.7 V				20	-		20	μА
1 ₁ L	Low-level input current	VCC = MAX,	V ₁ = 0.4 V		+		-0.4	 		-0.4	mA
los	Short-circuit output current §	VCC = MAX			-6		-40	-5		-42	mA
¹ CC	Supply current	VCC = MAX,	See Note 2		† – Ť	15	23	Ť	15	23	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: With all outputs open, inputs A through D grounded, and 4.5 V applied to S0, S1, clear, and the serial inputs, ICC is tested with a momentary GND, then 4.5 V, applied to clock.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

TEST CONDITIONS	MIN	TYP	MAX	UNIT
0 45 5	25	36		MHz
		19	30	ns
-		14	22	ns
See Figure 1	<u> </u>	17	22	ns
	TEST CONDITIONS CL = 15 pF, RL = 2 kΩ, See Figure 1	C _L = 15 pF, 25 R _L = 2 kΩ,	C _L = 15 pF, 25 36 R _L = 2 kΩ, 19	C _L = 15 pF, 25 36 R _L = 2 kΩ, 19 30 See Figure 1 17 22

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

Not more than one output should be shorted at a time.

TYPES SN54S194, SN74S194 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

REVISED MARCH 1974

Supply voltage, VCC (see Note 1)		
Input voltage		
Operation free-air temperature range: S	SN54S194	
S	SN74S194	
Storage temperature range		

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		S	N54S19	94	S	N74S19	34	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	וואט
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH				-1			-1	mA
Low-level output current, IQL				20			20	mA
Clock frequency, fclock		0		70	0		70	MHz
Width of clock pulse, tw(clock)		7			7			ns
Width of clear pulse, tw(clear)		12			12			ns
	Mode control	11			11			ns
Setup time, t _{setup}	Serial and parallel data	5			5		_	ns
Setup time, satup	Clear inactive-state	9			9			ns
Hold time at any input, thold		3			3			ns
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			S	N54S19	34	S	N74S19	14	רומט
	PARAMETER	TEST CONDITIONS†	MIN	TYP‡	MAX	MIN	TYP‡	MAX	CIVI
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	<u> </u>
VI	Input clamp voltage	V _{CC} = MIN, I ₁ = -18 mA			-1,2			-1,2	<u> </u>
Voh		V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -1 mA	2.5	3.4		2.7	3.4		V
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 20 mA			0.5			0.5	V
i _l	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1	<u> </u>		1	mA
1 ін	High-level input current	V _{CC} = MAX, V _I = 2.4 V			50			50	μΑ
I _I L	Low-level input current	VCC = MAX, VI = 0.4 V	<u> </u>		-2	+		-2	+-
los	Short-circuit output current§	V _{CC} = MAX	-40		-100	-40		-100	
-03		V _{CC} = MAX, See Note 2	Ι	85	135		85_	135	4
ICC	Supply current	V _{CC} = MAX, T _A = 125°C, W package See Note 2			110				mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
6 Mariana alack fraguency	0 45 5	70	105		MHz
tehl Propagation delay time, high-to-low-level output from clear	C _L = 16 pF, R ₁ = 280 Ω,		12.5	18.5	ns
tpLH Propagation delay time, low-to-high-level output from clock	See Figure 1	4	8	12	ns
tphi Propagation delay time, high-to-low-level output from clock	3661.190701	4	11_	16.5	ns

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

§ Not more than one output should be shorted at a time, and duration of short-circuit should not exceed one second.

NOTE 2: With all outputs open, inputs A through D grounded, and 4.5 V applies to S0, S1, clear, and the serial inputs, I_{CC} is tested with a momentary GND, then 4.5 V, applied to clock.

TYPES SN54194, SN54LS194A, SN54S194, SN74194, SN74LS194A, SN74S194 **4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS**

PARAMETER MEASUREMENT INFORMATION

TEST TABLE FOR SYNCHRONOUS INPUTS

DATA INPUT FOR TEST	S1	S0	OUTPUT TESTED (SEE NOTE E)
Α	4.5 V	4.5 V	Q _A at t _{n+1}
В	4.5 V	4.5 V	Q _B at t _{n+1}
С	4.5 V	4.5 V	Q _C at t _{n+1}
D	4.5 V	4.5 V	QD at tn+1
L Serial Input	4.5 V	0 V	Q _A at t _{n+4}
R Serial Input	0 V	4.5 V	QD at tn+4

- NOTES: A. The clock pulse generator has the following characteristics: $Z_{Out} \approx 50 \Omega$ and PRR < 1 MHz, For '194, $t_f \leq 7$ ns and $t_f \leq 7$ ns. For 'LS194A, $t_r \le 15$ ns and $t_f \le 6$ ns. For 'S194, $t_r \le 2.5$ ns and $t_f \le 2.5$ ns. When testing f_{max} , vary PRR.
 - B. C_L includes probe and jig capacitance.C. All diodes are 1N3064 or 1N916.

 - D. A clear pulse is applied prior to each test.
 - E. For '194 and 'S194, $V_{ref} = 1.5 \text{ V}$; for 'LS194A, $V_{ref} = 1.3 \text{ V}$.
 - F. Propagation delay times (tpLH and tpHL) are measured at tn+1. Proper shifting of data is verified at tn+4 with a functional test. G. tn = bit time before clocking transition.
 - t_{n+1} = bit time after one clocking transition. t_{n+4} = bit time after four clocking transitions.

FIGURE 1-SWITCHING TIMES

TTL MSI

TYPES SN54195, SN54LS195A, SN54S195, SN74195, SN74LS195A, SN74S195 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

BULLETIN NO. DL-S 7411820, MARCH 1974

- Synchronous Parallel Load
- Positive-Edge-Triggered Clocking
- Parallel Inputs and Outputs from Each Flip-Flop
- **Direct Overriding Clear**
- J and K Inputs to First Stage
- Complementary Outputs from Last Stage
- For Use in High-Performance: Accumulators/Processors Serial-to-Parallel, Parallel-to-Serial Converters

description

These 4-bit registers feature parallel inputs, parallel outputs, J-K serial inputs, shift/load control input, and a direct overriding clear. All inputs are buffered to lower the input drive requirements. The registers have two modes of operation:

Parallel (broadside) load Shift (in the direction Q_A toward Q_D)

Parallel loading is accomplished by applying the four bits of data and taking the shift/load control input

low. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shifting is accomplished synchronously when the shift/load control input is high. Serial data for this mode is entered at the J-K inputs. These inputs permit the first stage to perform as a J-K, D-, or T-type flip-flop as shown in the function table.

The high-performance 'S195, with a 105-megahertz typical maximum shift-frequency, is particularly attractive for veryhigh-speed data processing systems. In most cases existing systems can be upgraded merely by using this Schottky-clamped shift register.

SN54195, SN54LS195A, SN54S195...J OR W PACKAGE SN74195, SN74LS195A, SN74S195...J OR N PACKAGE (TOP VIEW)

	TYPICAL	TYPICAL
TYPE	MAXIMUM CLOCK	POWER
	FREQUENCY	DISSIPATION
195	39 MHz	195 mW
'LS195A	39 MHz	70 mW
'S195	105 MHz	350 mW

FUNCTION TABLE

		INP	UTS							OL	JTPU1	rs	
	SHIFT/		SER	IÁL	P/	ARA	LLE	EL		Ω-	Λ-	αD	Ōρ
CLEAR	LOAD	CLOCK	7	ĸ	A	В	С	D	Q _A	α _B		<u>u</u>	رب
L	×	×	х	×	х	Х	X	X	L	L	L	L	Н
н	L	1	×	X	a	b	С	d	а	b	c	d	ď
Н	н	L	×	x	×	Х	X	Х	Q _{A0}	Q_{B0}	σ_{C0}	σ_{D0}	ōD0
н	н	1	L	н	x	X	X	X	QAO	Q _A 0	\mathbf{Q}_{Bn}	\mathbf{Q}_{Cn}	$\bar{\alpha}_{Cn}$
н	н	1	L	L	×	X	X	X	L	Q_{An}	Q_{Bn}	α_{Cn}	$\bar{\mathbf{a}}_{Cn}$
н	н	+	н	н	×	X	X	х	н	Q_{An}	α_{Bn}	α_{Cn}	ā _{Cn}
н	н	1	н	L	х	x	X	x	$\bar{\mathbf{q}}_{An}$				_

H = high level (steady state)

L = low level (steady state)

X = irrelevant (any input, including transitions) t = transition from low to high level

a, b, c, d = the level of steady-state input at A, B, C. or D. respectively

 α_{A0} , α_{B0} , α_{C0} , α_{D0} = the level of α_{A} , α_{B} , α_{C} , or QD, respectively, be-fore the indicated steadystate input conditions were established

QAn, QBn, QCn = the level of QA, QB, or QC, respectively, before the mostrecent transition of the clock

TYPES SN54195, SN54LS195A, SN54S195, SN74195, SN74LS195A, SN74S195 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

[†]This connection is made on '195 only.

typical clear, shift, and load sequences

TYPES SN54195, SN54LS195A, SN54S195, SN74195, SN74LS195A, SN74S195 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

schematics of inputs and outputs

195

'LS195A

TYPES SN54195, SN74195 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

REVISED MARCH 1974

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .			 									7 V
Input voltage			 									5.5 V
Operating free-air temperature range:	SN54195	• '	 								-55°C to	125°C
	SN74195		 									
Storage temperature range											_65°C +0	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		4.5 5 5 5 6 6 7 8 7 8 7 9 16 12 25 12 12 12 12 12 12 12 12 12 12 12 12 12	5	:	SN7419			
		MIN	NOM	MAX	MIN	NOM	MAX	דואט
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-800			-800	μА
Low-level output current, IOL				16			16	mA
Clock frequency, f _{clock}		0		30	0		30	MHz
Width of clock input pulse, tw(clock)		16			16			ns
Width of clear input pulse, tw(clear)		12			12			ns
	Shift/load	25			25			\vdash
Setup time, t _{setup} (see Figure 1)	Serial and parallel data	20			20			ns
	Clear inactive-state	25			25			
Shift/load release time, t _{release} (see Figure 1)				10			10	ns
Serial and parallel data hold time, thold (see Figure 1)	·	0			0			ns
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	1 10	AIN	TYP‡	MAX	LINIT
VIH	High-level input voltage			2			V
VIL	Low-level input voltage			Ť		0.8	l v
V _I	Input clamp voltage	VCC = MIN, II = -12 m	iA			-1.5	Ť
VOH	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V V _{IL} = 0.8 V, I _{OH} = -80		2.4	3.4		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V _I V _{IL} = 0.8 V, I _{OL} = 16 n			0.2	0.4	v
4	Input current at maximum input voltage	VCC = MAX, VI = 5.5 V		_			mA
ΊΗ	High-level input current	V _{CC} = MAX, V _I = 2.4 V				40	μА
IIL	Low-level input current	VCC = MAX, VI = 0.4 V				-1.6	mA
los	Short-circuit output current§	SN!	54195 -	20		-57	
		VCC = MAX SN	74195 -	18		-57	mA
ICC	Supply current	V _{CC} = MAX, See Note 2			39	63	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: With all outputs open, shift/load grounded, and 4.5 V applied to the J, K, and data inputs, I_{CC} is measured by applying a momentary ground, followed by 4.5 V, to clock.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} Maximum clock frequency		30	39		MHz
tphe Propagation delay time, high-to-low-level output from clear	C _L = 15 pF,		19	30	ns
tPLH Propagation delay time, low-to-high-level output from clock	RL = 400 Ω,		14	- 22	ns
tPHL Propagation delay time, high-to-low-level output from clock	See Figure 1	-	17	26	ns

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

Not more than one output should be shorted at a time.

TYPES SN54LS195A, SN74LS195A 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)													7 V
Input voltage													7 V
Operating free-air temperature range:	SN54LS195A	١.									–55°C	to 12	25°C
Operating	SN74LS195A										. 0°0	c to 7	70°C
Storage temperature range			Ċ								-65°C	to 15	50°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SI	V54LS1	95A	SN.	SN74LS195A			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, VCC		4.5	5	5.5	4.75	. 5	5.25	V	
High-level output current, IOH				-400			-400	μА	
Low-level output current, IOL				4			8	mΑ	
Clock frequency, fclock		0		20	0		20	MHz	
Width of clock or clear pulse, tw(clock)		16			16			ns	
Width of clear input pulse, tw(clear)		12			12			ns	
	Shift/load	25			25				
Setup time, t _{setup} (see Figure 1)	Serial and parallel data	15			15			ns	
2000	Clear inactive-state	25			25			<u></u>	
Shift/load release time, t _{release} (see Figure 1)				10			10	ns	
Serial and parallel data hold time, thold (see Figure 1)		0			0		_	ns	
Operating free-sir temperature, TA		-55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	·				SN	54LS19	5A	SN	74LS19	5A	UNIT
	PARAMETER	TES	T CONDITIO	INS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	OIVI I
VIH	High-level input voltage				2			2			٧
VIL	Low-level input voltage						0.7			8.0	
VI	Input clamp voltage	V _{CC} = MIN,	I ₁ = -18 mA				-1.5			-1.5	
		VCC = MIN, VIL = VIL max,	V _{IH} = 2 V,	μΑ	2.5	3,4		2.7	3.4		v_
		VCC = MIN,		IOL = 4 mA		0.25	0.4		0.25	0.4	l v
VOL	Low-level output voltage	VIL = VIL max		IOL = 8 mA					0.35	0,5	
lį	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V				0.1		_	0.1	mA
ЧН	High-level input current	VCC = MAX,	V ₁ = 2.7 V				20	<u> </u>		20	μА
	Low-level input current	VCC = MAX,	V ₁ = 0.4 V				-0.4			-0.4	mA
IIL.	Short-circuit output current §	V _{CC} = MAX	_ `		-6	_	-40	-5		-42	mA
los_	Supply current	V _{CC} = MAX,	See Note 2			14	21	<u></u>	14	21	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
4 Mayimum clock fraguency	C ₁ = 15 pF,	30	39		MHz
tphL Propagation delay time, high-to-low-level output from clear			19	30	ns
tpLH Propagation delay time, low-to-high-level output from clock	See Figure 1		14	22	ns
tpHL Propagation delay time, high-to-low-level output from clock			17	26	ns

TENTATIVE DATA

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25 \text{ C}$. \$Not more than one output should be shorted at a time.

Not more than one output should be shorted at a time.

NOTE 2: With all outputs open, shift/load grounded, and 4.5 V applied to the J. K, and data inputs, I_{CC} is measured by applying a momentary ground, followed by 4.5 V, to clear and then applying a momentary ground, followed by 4.5 V, to clock.

TYPES SN54S195, SN74S195 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

REVISED MARCH 1974

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) .															7 V
Input voltage		•													5.5 V
Operating free-air temperature range:	SN54S195											-55	°C t	o 1	25°C
	SN74S195												0°C	to	70°C
Storage temperature range															

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			N54S19	35	S	N74S19	35	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH	-			-1			-1	mA
Low-level output current, IOL		1		20			20	mA
Clock frequency, f _{clock}		0		70	0		70	MHz
Width of clock input pulse, tw(clock)		7			7			ns
Width of clear input pulse, tw(clear)		12			12			ns
	Shift/load	11			11			
Setup time, t _{setup} (see Figure 1)	Serial and parallel data	5			5			กร
	Clear inactive-state	9		-	9			1
Shift/load release time, t _{release} (see Figure 1)				6			6	ns
Serial and parallel data hold time, thold (see Figure 1)		3	_		3		Ť	ns
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIO	NS [†]	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			V
VIL	Low-level input voltage			· ·	+		0.8	V
٧ı	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA	-			-1.2	l v
Voн	High-level output voltage	V _{CC} = MIN,	V _{IH} = 2 V,	SN54S195	2.5	3.4		
•оп		V _{IL} = 0.8 V,	I _{OH} = -1 mA	SN74S195	2.7	3.4		V
VOL	Low-level output voltage	VCC = MIN,	V _{IH} = 2 V,		\top			_
*OL		V _{IL} = 0.8 V,	I _{OL} = 20 mA				0.5	^
l ₁	Input current at maximum input voltage	VCC = MAX,	V _I = 5.5 V				1	mA
Ή	High-level input current	VCC = MAX,	V _I = 2.7 V		_		50	μА
IIL.	Low-level input current	VCC = MAX,	V _I = 0.5 V				-2	mA
los	Short-circuit output current§	V _{CC} = MAX			-40		-100	mA
laa	Supply susses	1,, ,,,,,	•	SN54S195	- 	70	99	
Icc	Supply current	V _{CC} = MAX,	See Note 2	SN74S195		70	109	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} Maximum clock frequency	0 15 - 5	70	105		MHz
tPHL Propagation delay time, high-to-low-level output from clear	C _L = 15 pF,		12.5	18.5	ns
tPLH Propagation delay time, low-to-high-level output from clock			8	12	ns
tPHL Propagation delay time, high-to-low-level output from clock	See Figure 1		11	16.5	ns

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

^{\$}Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: With all outputs open, shift/load grounded, and 4.5 V applied to the J, K, and data inputs, I_{CC} is measured by applying a momentary ground, followed by 4.5 V, to clear, and then applying a momentary ground, followed by 4.5 V, to clock.

TYPES SN54195, SN54LS195A, SN54S195, SN74195, SN74LS195A, SN74S195 **4-BIT PARALLEL-ACCESS SHIFT REGISTERS**

PARAMETER MEASUREMENT INFORMATION

LOAD FOR OUTPUT UNDER TEST

NOTES: A. The clock pulse generator has the following characteristics: $Z_{Out} \approx 50 \Omega$ and PRR < 1 MHz. For '195, $t_r \le 7$ ns and $t_f \le 7$ ns. For 'LS195A, $t_r \le 15$ ns and $t_f \le 6$ ns. For 'S195, $t_r = 2.5$ ns and $t_f = 2.5$ ns. When testing f_{max} , vary the clock PRR.

- B. C_L includes probe and jig capacitance.
- C. All diodes are 1N3064.
- D. A clear pulse is applied prior to each test.
- E. For '195 and 'S195, V_{ref} = 1.5 V; for 'LS195A, V_{ref} = 1.3 V.
- F. Propagation delay times (tpLH and tpHL) are measured at tn+1. Proper shifting of data is verified at tn+4 with a functional test.
- G. J and K inputs are tested the same as data A, B, C, and D inputs except that shift/load input remains high.
- H. t_n = bit time before clocking transition.
 - t_{n+1} = bit time after one clocking transition.
 - t_{n+4} = bit time after four clocking transitions.

FIGURE 1-SWITCHING TIMES

INPUTS

J OR N

DUAL-IN-LINE PACKAGE (TOP VIEW)

DATA READ

ADDRESS

н,

- Plug in Replacement for SN74200
- Fully Decoded, Organized as 256 Words of One Bit Each
- Schottky-Clamped for High-Speed Memory Systems: Access from Chip-Enable Inputs . . . 13 ns Typical Access from Address Inputs . . . 42 ns Typical Power Dissipation . . . 1.95 mW/Bit Typical
- Three-State Output for Driving Bus-Organized Systems and/or Highly Capacitive Loads
- Compatible with Most TTL and DTL Logic Circuits
- Multiple Chip-Enable Inputs to Minimize External Decoding

description

This 256-bit active-element memory is a monolithic transistortransistor logic (TTL) array organized as 256 words of one bit each. It is fully decoded and has three gated chip-enable inputs to simplify decoding required to achieve the desired system organization. The SN74S201 features a three-state output and is functionally equivalent to both the SN74200 and the SN74S200.

schematics of inputs and outputs

write cycle

The complement of the information at the data input is written into the selected location when all chip-enable inputs and the read/write input are low. While the read/write input is low, the output is in the high-impedance state. When a number of outputs are bus-connected, this high-impedance output state will neither load nor drive the bus line, but it will allow the bus line to be driven by another active output or a passive pull-up if desired.

read cycle

The stored information (complement of information applied at the data input during the write cycle) is available at the output when the read/write input is high and the three chip-enable inputs are low. When any one of the chip-enable inputs is high, the output will be in the high-impedance state.

FUNCTION TABLE

	INP	JTS	
* FUNCTION	CHIP ENABLE [†]	READ/ WRITE	,
Write (Store Complement of Data)	L	L	High Impedance
Read	L	Н	Stored Data
Inhibit	H	Х	High Impedance

H = high level, L = low level, X = irrelevent † For chip-enable: L = all CE inputs low, H = one or more CE inputs high.

TYPE SN74S201 256-BIT RANDOM-ACCESS MEMORY WITH 3-STATE OUTPUT

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																									٠		٠		•	/	V
Input voltage																_	_			_										5.5	٧
input voitage	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•											5.5	v
Off-state output voltage	٠	•	•	٠	٠	٠	٠	٠	•	٠	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•		٠.	- 70°	ċ
Operating free-air temperature range	;							٠	•	•	•	•	•	•	٠	٠	٠	•	٠	٠	٠	٠	٠	•	٠	٠	٠	0-	. (, /U	, .
Storage temperature range																									•		-	-65°C	to	150	C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.75	5	5.25	>
				-10.3	mA
High-level output voltage, IOH Low-level output current, IOL				16	mA
Width of write-enable pulse (read/write low), tw		65			ns
William Co.	Address to read/write	01			
Setup time, t _{setup}	Data to read/write	65t			ns
Satup time, setup	Chip enable to read/write	Ot			<u> </u>
	Address from read/write	O†			1
Hold time, thold	Data from read/write	O†			ns
Tiola time, thou	Chip enable from read/write	Ot		_	└
Operating free-air temperature, TA		0		70	°c

^{†4}The arrow indicates the transition of the read/write input used for reference: † for the low-to-high transition, ‡ for the high-to-low transition.

TYPE SN74S201 256-BIT RANDOM-ACCESS MEMORY WITH 3-STATE OUTPUT

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS†	MIN	TYP‡	MAX	UNIT
ViH	High-level input voltage		2			V
VIL	Low-level input voltage				0.8	V
٧į	Input clamp voltage	VCC = MIN, II = -18 mA			-1,2	v
νон	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -10.3 mA	2,4	2.9		>
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA		0,38	0.45	· v
lozh	Off-state output current, high-level voltage applied	V _{CC} = MAX, V _{IH} = 2 V, V _{IL} = 0.8 V, V _O = 2.4 V			40	μА
lozL	Off-state output current, low-level voltage applied	V _{CC} = MAX, V _{IH} = 2 V, V _{IL} = 0.8 V, V _O = 0.4 V			-40	μА
l _l	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V				mA
ΊΗ	High-level input current	V _{CC} = MAX, V ₁ = 2.7 V			25	μА
1 ₁ L	Low-level input current	V _{CC} = MAX, V _I = 0.5 V			-250	μА
los	Short-circuit output current §	V _{CC} = MAX	-30	_	-100	mA
<u>lcc</u>	Supply current	V _{CC} = MAX, See Note 2		100	140	mA

switching characteristics over recommended operating ranges of TA and VCC (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	Access times			42	65	-
tPHL.	Propagation delay time, high-to-low-level output	from address			42	65	ns
tZH	Output enable time to high level	Access times from	CL = 15 pF,		13	30	
_tZL	Output enable time to low level	chip enable	R _L = 400 Ω,		13	30	ns
†ZH	Output enable time to high level	Sense recovery times	See Note 3	_	20	40	
tZL	Output enable time to low level	from read/write			20	40	ns
tHZ	Output disable time from high level	Disable times from		 -	10	20	
tLZ	Output disable time from low level	chip enable	$C_L = 5 pF$,	-	8	20	ns
tHZ	Output disable time from high level	Disable times	R _L = 400 Ω,	<u> </u>	11	35	
tLZ	Output disable time from low level	from read/write	See Note 3		15	35	ns

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. § Duration of the short circuit should not exceed one second.

NOTES: 2. ICC is measured with all chip-enable inputs grounded, all other inputs at 4.5 V, and the output open.

^{3.} Load circuit and voltage waveforms are the same as those shown for the SN54S189, SN74S189 page number S-214 except that for the input waveforms: $t_r \le 7$ ns, $t_f \le 7$ ns.

TTL MSI

TYPES SN54246 THRU SN54249, SN54LS247 THRU SN54LS249, SN74246 THRU SN74249, SN74LS247 THRU SN74LS249 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

BULLETIN NO. DL-S 7412078, MARCH 1974

'246, '247, 'LS247 feature '248, 'LS248 feature '249, 'LS249 feature

Open-Collector Outputs
 Drive Indicators Directly

Lamp-Test Provision

Leading/Trailing Zero

Suppression

- Internal Pull-Ups Eliminate
 Need for External Resistors
 - eed for External Resistors Lam
- Lamp-Test Provision
 - Leading/Trailing Zero
 Suppression
- Open-Collector Outputs
- Lamp-Test Provision
- Leading/Trailing Zero Suppression
- All Circuit Types Feature Lamp Intensity Modulation Capability

	ſ	DRIVER OU	TPUTS		TYPICAL	
TYPE	ACTIVE	OUTPUT	SINK	MAX	POWER	PACKAGES
	LEVEL	CONFIGURATION	CURRENT	VOLTAGE	DISSIPATION	
SN54246	low	open-collector	40 mA	30 V	320 mW	J,W
SN54247	low	open-collector	40 mA	15 V	320 mW	J, W
SN54248	high	2-kΩ pull-up	6.4 mA	5.5 V	265 mW	J,W
SN54249	high	open-collector	10 mA	5.5 V	265 mW	J, W
SN54LS247	low	open-collector	12 mA	15 V	35 mW	J, W
SN54LS248	high	2-kΩ pull-up	2 mA	5.5 V	125 mW	J, W
SN54LS249	high	open-collector	4 mA	5.5 V	40 mW	J, W
SN74246	low	open-collector	40 mA	30 V	320 mW	J, N
SN74247	low	open-collector	40 mA	15 V	320 mW	J, N
SN74248	high	2-kΩ pull-up	6.4 mA	5.5 V ·	265 mW	J, N
SN74249	high	open-collector	10 mA	5.5 V	265 mW	J, N
SN74LS247	low	open-collector	24 mA	15 V	35 mW	J, N
SN74LS248	high	2-kΩ pull-up	6 mA	5.5 V	125 mW	J, N
SN74LS249	high	open-collector	8 mA	5.5 V	40 mW	J, N

description

The '246 through '248 are electrically and functionally identical to the SN5446A/SN7446A, SN5447A/SN7447A, and SN5448/SN7448, respectively, and have the same pin assignments as their equivalents. Also the 'LS247 and 'LS248 are electrically and functionally identical to the SN54LS47/SN74LS47 and SN54LS48/SN74LS48, respectively, and have the same pin assignments as their equivalents. They can be used interchangeably in present or future designs to offer designers a choice between two indicator fonts. The '249 and 'LS249 are 16-pin versions of the 14-pin SN5449 and SN54LS49/SN74LS49, respectively. Included in the '249 and 'LS249 circuits is the full functional capability for lamp test and ripple blanking, which is not available in the '49 and 'LS49 circuits. The '46A, '47A, '48, '49, 'LS47, 'LS48, and 'LS49 compose the b and the without tails and the '246 through '249 and 'LS247, 'LS248, and 'LS249

TYPES SN54246 THRU SN54249, SN54LS247 THRU SN54LS249, SN74246 THRU SN74249, SN74LS247 THRU SN74LS249 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

description (continued)

IDENTIFICATION

compose the $ar{\Box}$ and the $ar{\Box}$ with tails. Composition of all other characters, including display patterns for BCD inputs above nine, is identical. The '246, '247, and 'LS247 feature active-low outputs designed for driving indicators directly, and the '248, '249, 'LS248, and 'LS249 feature active-high outputs for driving lamp buffers. All of the circuits have full ripple-blanking input/output controls and a lamp test input. Segment identification and resultant displays are shown below. Display patterns for BCD input counts above 9 are unique symbols to authenticate input conditions.

All of these circuits incorporate automatic leading and/or trailing-edge zero-blanking control (RBI and RBO). Lamp test (LT) of these types may be performed at any time when the BI/RBO node is at a high level. All types contain an overriding blanking input (BI) which can be used to control the lamp intensity by pulsing or to inhibit the outputs. Inputs and outputs are entirely compatible for use with TTL or DTL logic outputs.

Series 54 and Series 54LS devices are characterized for operation over the full military temperature range of -55°C to 125°C; Series 74 and Series 74LS devices are characterized for operation from 0°C to 70°C.

'246, '247, 'LS247 FUNCTION TABLE

DECIMAL OR			INP	UTS			BI/RBO†				UTPU	TS.			4075
FUNCTION	LT	RBI	D	С	В	A		а	ь	c	d		f		NOTE
0	Н	Н	L	L	L	L	н	ON	ON	ON	ON	ON	ON	OFF	
1	н	х	L	ι	L	н	н	OFF	ON	ON	OFF	OFF	OFF	OFF	ľ
2	н	х	L	L	н	L	н	ON	ON	OFF	ON	ON	OFF	ON	
3	н	х	L	L,	н	н	н	ON	ON	ON	ON	OFF	OFF	ON	
4	н	X	L	Н	L	L	н	OFF	ON	ON	OFF	OFF	ON	ON	ł
5	н	x	L	н	L	н	н	ON	OFF	ON	ON	OFF	ON	ON	
6	н	×	L	н	н	L	н	ON	OFF	ON	ON	ON	ON	ON	
7	н	x	L	н	н	н	н	ON	ON	ON	OFF	OFF	OFF	OFF	i
8	Н	Х	Н	L	L		н	ON	ON	ON	ON	ON	ON	ON	1
9	н	x	н	L	L	н	н	ON	ON	ON	ON	OFF	ON	ON	
10	н	х	н	L	н	L	н	OFF	OFF	OFF	ON	ON	OFF	ON	
11	н	×	н	L	н	н	н	OFF	OFF	ON	ON	OFF	OFF	ON	
12	Н	Х	н	н	L	L	н	OFF	ON	OFF	OFF	OFF	ON	ON	
13	н	x	н	н	L	н	н	ON	OFF	OFF	ON	OFF	ON	ON	
14	н	x	н	н	н	L	н	OFF	OFF	OFF	ON	ON	ON	ON	
15	н	x	н	н	н	н	н	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
ВІ	х	X	×	х	х	х	L	OFF	OFF	OFF	OFF	OFF	OFF	OFF	2
RBI	н	L	L	·L	L	L	Ĺ	OFF	OFF	OFF	OFF	OFF	OFF	OFF	3
LT	L	x	х	x	x	x	H	ON	ON	ON	ON	ON	ON	ON	3 4

H = high level, L = low level, X = irrelevant

NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high if blanking of a decimal zero is not desired.

- 2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are off regardless of the level of any other input.
- 3. When ripple-blanking input (RBI) and inputs A, B, C, and D are at a low level with the lamp test input high, all segment outputs go off and the ripple-blanking output (RBO) goes to a low level (response condition).
- When the blanking input/ripple blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all segment outputs are on.

[†]BI/RBO is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO).

TYPES SN54246 THRU SN54249, SN54LS247 THRU SN54LS249, SN74246 THRU SN74249, SN74LS247 THRU SN74LS249 **BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS**

'248, '249, 'LS248, 'LS249 **FUNCTION TABLE**

DECIMAL OR			INPL	JTS			BI/RBO†			Ot	JTPU	TS			NOTE
FUNCTION	LT	RBI	D	С	В	Α		8	ь	С	d	0	f	9	
0	Н	Н	L	L	L	L	Н	H	Н	Н	Н	Н	Н	L	1
1 1	н	x	L	L	,L	Н	н	L	Н	Н	L	· L	L	L	1
2	н	x	L	L	Н	L	н	н	Н	L	Н	Н	L	н	
3	н	x	L	L	н	н	н	1	H	Н	Н	L	L	н	
4	Н	х	L	Н	L	L	Н	Ļ	Н	Н	L	L	н	н	
5	н	x	L	н	L	н	н	Н	L	Н	н	L	Н	н	
6	н	х	L	н	Н	L	н	H	L	Н	н	Н	Н	н	
7	н	x	L	н	н	Н	н	Н	Н	H	L	L.	L	L	1
8	н	×	Н	L	L	L	Н	Ξ	Н	Н	н	Н	Н	н	-
9	н	×	н	L	L	Н	н	н	Н	Н	H.	L	Н	Н	
10	н	x	н	L	Н	L	н '	L	L	L	Н	Н	L	н	
11	н	l x l	н	L	н	H	н	L	L	н	<u>H</u>	L	L	Н	
12	Н	×	Н	н	L	L	Н	r	H	L	L	L	Н	Н	
13	н	x	н	Н	L	Н	∖ н	н	L	L	Н	L	Н	Н	
14	н	l x	н	н	н	L	Н	L	L	L	н	Н	н	н	1
15	н	×	н	н	н	H	Н	L	L_	L	<u> </u>	ᆫ	L	L_	
BI	x	×	×	×	×	×	L	L	L	L	L	L	L	L	2
RBI	н	L	L,	L	L	L	L	L	L	L	L	L	L	L	3
LT	l١	Ι×	x	×	х	X	Н	Н	H	н	<u>H</u>	H	H	н	4

- H = high level, L = low level, X = irrelevant
 NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high if blanking of a decimal zero is not desired.
 - 2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are low regardless of the level of any other input.
 - 3. When ripple-blanking input (RBI) and inputs A, B, C, and D are at a low level with the lamp test input high, all segment outputs go low and the ripple-blanking output (RBO) goes to a low level (response condition).
 - 4. When the blanking input/ripple-blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all segment outputs are high.

†BI/RBO is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO).

TYPES SN54246 THRU SN54249, SN74246 THRU SN74249 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

schematics of inputs and outputs

'246, '247, '248, '249

'246, '247, '248, '249

'246, '247

'248

'249

TYPES SN54LS247 THRU SN54LS249, SN74LS247 THRU SN74LS249 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

schematics of inputs and outputs

'LS247, 'LS248, 'LS249

'LS247, 'LS248, 'LS249

'LS247

'LS248

'LS249

TYPES SN54246, SN54247, SN74246, SN74247 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

REVISED MARCH 1974

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC (see Note 1)
Input voltage
Current forced into any output in the off state
Operating free-air temperature range: SN54246, SN54247
SN74246, SN74247
Storage temperature range
NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN5424	6		SN5424	7	. :	SN7424	6		N7424	7	
		MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.5	5	5.5	4.75	5	5.25	4.75	5	5.25	l v
Off-state output voltage, VO(off)	a thru g	1		30			15			30			15	V
On-state output current, IO(on)	a thru g	-		40			40	\vdash		40			40	mA
High-level output current, IOH	BI/RBO			-200			-200			-200			-200	μA
Low-level output current, IOL	BI/RBO		_	.8			8		-	8			8	mA
Operating free-air temperature, T	<u> </u>	-55	_	125	-55		125	0		70	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS†	MIN	TYP‡	MAX	UNI
VIH	High-level input voltage			2			V
VIL	Low-level input voltage	 		 		0.8	Ť
ν _I	Input clamp voltage		V _{CC} = MIN, I _I = -12 mA	 		1.5 V	V
v _{он}	High-level output voltage	BI/RBO	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -200 μA	2.4	3.7		v
VOL	Low-level output voltage	BI/RBO	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 8 mA		0.27	0.4	v
IO(off)	Off-state output current	a thru g	V _{CC} = MAX, V _{IH} = 2 V, V _{IL} = 0.8 V, V _{O(off)} = MAX			250	μА
VO(on)	On-state output voltage	a thru g	V _{CC} = MAX, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{O(on)} = 40 mA		0.3	0.4	v
11	Input current at maximum input voltage	Any input except BI/RBO	V _{CC} = MAX, V ₁ = 5.5 V			1	mA
Ч н	High-level input current	Any input except BI/R80	V _{CC} = MAX, V _I = 2.4 V		-	40	μА
IIL	Low-level input current		V _{CC} = MAX, V _I = 0.4 V			-1.6	mA
		BI/RBO				-4	
los	Short-circuit output current	BI/RBO	V _{CC} = MAX			-4	mA
ICC	Supply current		V _{CC} = MAX, See Note 2		64	103	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡All typical values are at VCC = 5 V, T_A = 25°C.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
toff	Turn-off time from A input				100	-
ton	Turn-on time from A input	C _L = 15 pF, R _L = 120 Ω,	_		100	ns
toff	Turn-off time from RBI input	See Note 3	-		100	_
ton	Turn-on time from RBI input		 		100	ns

NOTE 3: Load circuit and voltage waveforms are shown on page S-87; toff corresponds to tpLH and ton corresponds to tpHL-

NOTE 2: ICC is measured with all outputs open and all inputs at 4.5 V.

TYPES SN54LS247, SN74LS247 **BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS**

absolute maximum ratings over operating free-air t	ter	np	er	at	ur	e 1	rai	nge	е (ur	nle	SS	ot	he	rv	/is	e r	10	tec	1)				
Supply voltage, Vcc (see Note 1)																						. .		7 V
Input voltage	•	•	•	•	٠	٠	•	•	•	٠	•	٠	•	٠	٠	•	•	•	•	•	•	•	٠,	/ V A ~ OO
Peak output current (t _W ≤ 1 ms, duty cycle ≤ 10%)		•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•		2	1 m A
Current forced into any output in the off state . Operating free-air temperature range: SN54LS247	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	-51	5°C	: to	125°C
Operating free-air temperature range: SN54L5247 SN74LS247		•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•		_ 5.	ິດີ	C t	0 70°C
Storage temperature range		•	•	•	•	•	•	•	•	•	•	•	:	:	:	:	:	:	Ċ	٠	-6!	5°(to	150°C
NOTE 1: Voltage values are with respect to network ground termi	nal	I.	•	•	•	•	·	•	•	Ī	·	•	-	-	-	-								

recommended operating conditions

		Sf	V54LS2	47	SI	174LS2	47	UNIT
			NOM	MAX	MIN	NOM	MAX	GNII
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	
Off-state output voltage, VO(off)	a thru g			15			15	V
On-state output current, IQ(on)	a thru g			12			24	mA
High-level output current, IOH	BI/RBO			-50			-50	<u> </u>
Low-level output current, IQL	BI/RBO	Ī		1.6			3.2	mA
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	DADAMETER				SN	154LS2	47	SI	174LS2		UNIT
	PARAMETER		TEST CON	DITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	OIVI .
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	V
	Input clamp voltage		VCC = MIN,	I _I = -18 mA			-1.5			-1.5	>
v _I v _{OH}	High-level output voltage	BI/RBO		V _{IH} = 2 V, I _{OH} = -50 μA	2.4	4.2		2.4	4.2		٧
			VCC = MIN,	IOL = 1.6 mA		0.25	0.4		0.25	0.4	v
VOL	Low-level output voltage	BI/RBO	V _{IH} = 2 V, V _{IL} = V _{IL} max	I _{OL} = 3.2 mA				<u></u>	0.35	0.5	
lO(off)	Off-state output current	a thru g	V _{CC} = MAX, V _{IL} = V _{IL} max,	V _{IH} = 2 V, V _{O(off)} = 15 V			250			250	μА
			VCC = MAX,	1 _{O(on)} = 12 mA		0.25	0.4		0.25	0.4	V
VO(on)	On-state output voltage	a thru g	V _{IH} = 2 V, V _{IL} = V _{IL} max	I _{O(on)} = 24 mA					0.35	0.5	
II	Input current at maximus	m input voltage	VCC = MAX,	V ₁ = 7 V			0.1			0.1	mA
<u>ч</u> Чн	High-level input current		VCC - MAX,	V ₁ = 2.7 V			20			20	μА
		Any input except BI/RBO	V _{CC} = MAX,	V _I = 0.4 V			-0.36			0.36	mA
11L	Low-level input current	BI/RBO	+CC = M/5/4,	-1			-1			-1	
los	Short-circuit output current	BI/RBO	VCC = MAX	_	-0.3		-2	-0.3		-2	↓
Icc	Supply current		VCC = MAX,	See Note 2		7	13		7	13	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡All typical values are at V_{CC} = 5 V, T_A = 25°C.

NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V.

muitabling abarractoristics VCC = 5 V TA = 25°C

SWICEILING CHARACTER ISSUES, VCC OV, IA					
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
				100	ns
- Company Company	CL = 15 pF, RL = 665 Ω,			100	
toff Turn-on time from A input toff Turn-off time from RBI input	See Note 4			100	ns
ton Turn-on time from RBI input				:100	

NOTE 4: Load circuit and voltage waveforms are shown on page S-88, toff corresponds to tpLH and ton corresponds to tpHL.

TYPES SN54248, SN74248 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

REVISED MARCH 1974

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																			7 V
Input voltage	 · SN54248	•	•	 •	•	•	•	 ٠	•	•	•	•	•	•	•		٠.	•	5.5 V
	SN74248	;															o°c	to	70°C
Storage temperature range																-65	°C t	ю.	150°C

NOTE 1: Voltage values are with respect to network ground terminals.

recommended operating conditions

	•		SN5424	8		SN7424	8	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	v
High-level output current, IOH	a thru g			-400			-400	
	BI/RBO			-200			5.25 -400 -200 6.4	μΑ
Low-level output current, IOL	a thru g			6.4			6.4	
	BI/RBO			8			8	mA
Operating free-air temperature, TA	-	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS†	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage			1 2			V
VIL	Low-level input voltage			+-		0.8	<u> </u>
V _I	Input clamp voltage		IVCC = MIN, II = -12 mA	 		-1.5	
Vон	High-level output voltage	a thru g	VCC = MIN, VIH = 2 V,	2.4	4.2		
- OH		BI/RBO	VIL = 0.8 V, IOH = MAX	2.4	3.7		\ \
10	Output current	a thru g	V _{CC} = MIN, V _O = 0.85 V, Input conditions as for V _{OH}	-1.3	-2		mA
VOL	Low-level output voltage		V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = MAX		0.27	0.4	v
t _l	Input current at maximum input voltage	Any input except BI/RBO	V _{CC} = MAX, V _I = 5.5 V			1	mA
ΉΗ	High-level input current	Any input except BI/RBO	V _{CC} = MAX, V _I = 2.4 V			40	μА
ΊL	Low-level input current	Any input except BI/RBO BI/RBO	V _{CC} = MAX, V _I = 0.4 V			-1.6	mA
los	Short-circuit output current	BI/RBO	V _{CC} = MAX	+		_4	
ICC	Supply current	1555	V _{CC} = MAX, See Note 2	+	53	4 90	mA mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN TYP	MAY	UNIT
^t PHL	Propagation delay time, high-to-low-level output from A input			100	_
^t PLH	Propagation delay time, low-to-high-level output from A input	CL=15 pF, R _L =1 kΩ.		100	ns
tPHL.	Propagation delay time, high-to-low-level output from RBI input	See Note 5		100	
^t PLH	Propagation delay time, low-to-high-level output from RBI input	000110120		100	ns

NOTE 5: Load circuit and voltage waveforms are shown on page S-87.

[‡]All typical values are at V_{CC} = 5 V, T_{A} = 26°C. NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V.

TYPES SN54LS248, SN74LS248 **BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS**

absolute maximum ratings over operating free-air	ten	npe	era	tuı	e ı	ran	ıge	(u	nle	SS	01	the	rv	vis	e r	10	tec	i)				
Supply voltage, Voc (see Note 1)																						7 V
Input voltage			•	٠	•	•	•	•	٠	•	٠	٠	٠	٠	•	•	٠	•				۷ / اعدور
Operating free-air temperature range: SN54LS248 SN74LS248	•		٠	•	•	•	• .	•	٠	•	•	•	•	•	•	•	•	_	-50	ິດິເ	C to	70°C
Storage temperature range			:	:	•	•				:	:	:	•		:	:	:	٠	-6!	5°C	to	150°C
NOTE 1: Voltage values are with respect to network ground term	ninal																					

recommended operating conditions

		St	V54LS2	48	Si	174LS2	48	דומט
		MIN	NOM	MAX	MIN	NOM	MAX	Civi
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	٧
Outphy voltage, v CC	a thru g			-100			-100	μА
High-level output current, IOH	BI/RBO			-50			-50	
	a thru g			2			6	mA
Low-level output current, IOL	BI/RBO			1.6		-	3.2]
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

_					SI	154LS2	48	SP	174LS2	48	UNIT
	PARAMETER		TEST CON	DITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH	High-level input voltage				2			2			<u> </u>
VIL	Low-level input voltage						0.7			0.8	V
V _I	Input clamp voltage		VCC = MIN,	I _I = -18 mA			<u>-1.5</u>			-1.5	<u> </u>
Vон	High-level output voltage	a thru g and BI/RBO	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V,	2.4	4.2		2.4	4.2		٧
10	Output current	a thru g		V _O = 0.85 V,	-1.3	-2		-1.3	-2		mA
		a thru g	V _{CC} = MIN, V _{IH} = 2 V,	I _{OL} = 2 mA	ļ	0.25	0.4		0.25	0.4	v
VOL	Low-level output voltage		V _{IL} = V _{IL} max	I _{OL} = 6 mA	 	0.25	0.4		0.35	0.4	_
		BI/RBO	V _{IH} = 2 V, V _{IL} = V _{IL} max	I _{OL} = 1.6 mA	-	0.25	0.4		0.35	0.5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
l _l	Input current at maximum input voltage	Any input except BI/BRO	VCC = MAX,	V ₁ = 7 V			0.1			0.1	mA
ЧН	High-level input current	Any input except BI/RBO	V _{CC} = MAX,	V _I = 2.7 V			20			20	μА
116	Low-level input current	Any input except BI/RBO	V _{CC} = MAX,	V ₁ = 0.4 V			-0.36			-0.36	mA
1,0		BI/RBO	1		_		-1	ـــ			┼─
los	Short-circuit output current	BI/RBO	V _{CC} = MAX		-0.3		-2	-0.3		-2 	-
Icc	Supply current		VCC = MAX,	See Note 2		25	38		25	38	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡All typical values are at V_{CC} = 5 V, T_A 25°C. NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V.

switching characteristics, VCC = 5 V, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
†PHL	Propagation delay time, high-to-low-level output from A input	C _L = 15 pF, R _L = 4 kΩ,			100	ns
tPLH	Propagation delay time, low-to-high-level output from A input	See Note 6	<u> </u>		100	<u> </u>
tPHL.	Propagation delay time, high-to-low-level output from RBI input	$C_L = 15 pF$, $R_L = 6 k\Omega$,			100	ns
†PLH	Propagation delay time, low-to-high-level output from RBI input	See Note 6	<u> </u>		100	

NOTE 6: Load circuit and voltage waveforms are shown on page S-88.

TYPES SN54249, SN74249 **BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS**

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Current forced into any output in the off state Operating free-air temperature range: SN54249 -55°C to 125°C SN74249 0°C to 70°C -65°C to 150°C NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN5424	9		N7424	9	Ī
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	v
High-level output voltage, VOH		+		5.5		<u> </u>	5.5	
High-level output current, IOH	BI/RBO	†		-200	<u> </u>		-200	μA
Low-level output current, IOI	a thru g	\dagger	-	10	 		10	<u> </u>
	BI/RBO	T		8			8	mA
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS†	MIN	TYP‡	MAX	LINIT
VIH	High-level input voltage			2		11177	V
VIL	Low-level input voltage			 		- 00	
٧ _I	Input clamp voltage		V _{CC} = MIN, I _I = -12 mA			0.8 -1.5	
VOH	High-level output voltage	BI/RBO	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = MAX	2.4	3.7		v
ЮН	High-level output current	a thru g	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, V _{OH} = 5.5 V			250	μА
VOL	Low-level output voltage		V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = MAX		0.27	0.4	v
lj .	Input current at maximum input voltage	Any input except BI/RBO	VCC MAX, VI = 7 V			1	mA
ΊΗ	High-level input current	Any input except BI/RBO	V _{CC} = MAX, V _I = 2.4 V			40	μΑ
lıL.	Low-level input current	Any input except BI/RBO BI/RBO	V _{CC} = MAX, V _I = 0.4 V			-1.6	mA
los	Short-circuit output current	BI/RBO	VestMAY			-4	
Icc	Supply current	51/1180	V _{CC} = MAX V _{CC} = MAX, See Note 2		53	4 90	mA mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

<u></u>	PARAMETER PARAMETER	TEST CONDITIONS	MIN	TYP	MAY	UNIT
tPHL.	Propagation delay time, high-to-low-level output from A input				100	
tPLH .	Propagation delay time, low-to-high-level output from A input	CL = 15 pF, RL = 667 Ω,			100	l ns l
TPHL	Propagation delay time, high-to-low-level output from RBI input	See Note 5	<u> </u>		100	
tPLH	Propagation delay time, low-to-high-level output from RBI input	Gee Note 5			100	ns
NOTE 5:	Load circuit and voltage waveforms are shown on page \$-87	L	Ь		100	

TYPES SN54LS249, SN74LS249 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

lute maximum ratings over operating free-air																				
Supply voltage, VCC (see Note 1)								•	•	•	٠	•	•	•	•	•	٠	٠	•	•
Input voltage								•	•	•	•	•	•	٠	•	٠	٠	٠	•	٠
O former former times and acceptable in the affectate																				
Operating free air temperature range: SN541 S249	1					_	_		_				_				-	55	-C 1	to 1
SN741 S749								_										٠,	J	
Storage temperature range																	-6	35`	'C 1	to 1

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	<u> </u>	SI	V54LS2	49	SI	174LS2	49	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	CIVIT
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	٧
High-level output voltage, VOH	a thru g	1		5.5			5.5	V
High-level output current, IOH	BI/RBO			-50			-50	μΑ
	a thru g			4	<u> </u>		. 8	mA
Low-level output current, IOL	BI/RBO			1.6			3.2	""
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					SI	154LS2	49	SI	174LS2	49	UNIT
	PARAMETER		TEST CON	DITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	ONI
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7	L		0.8	<u>v</u>
V _I	Input clamp voltage		V _{CC} = MIN,	I _I = -18 mA			-1.5			_1.5	<u> </u>
VOH	High-level output voltage	BI/RBO	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -50 μA	2.4	4.2		2.4	4.2		v
ЮН	High-level output current	a thru g	VCC = MIN,	V _{IH} = 2 V,			250			250	μА
		BI/RBO	V _{CC} = MIN, V _{IH} = 2 V,	I _{OL} = 1.6 mA		0.25	0.4		0,25	0.4	ļ,
V	Low-level output voltage	J.//130	VIL = VIL max	I _{OL} = 3.2 mA					0.35	0.5	_
VOL	COM-level output voitage		V _{CC} = MIN, V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4] v
		a thru g	VIH = Z V,	IOL = 8 mA					0.35	0.5	
I _I	Input current at maximum input voltage	Any input except BI/RBO	V _{CC} = MAX,	V _I = 7 V			1			1	m/
ΉΗ	High-level input current	Any input except BI/RBO	VCC = MAX,	V _I = 2.7 V			20			20	μА
hr.	Low-level input current	Any input except BI/RBO	V _{CC} = MAX,	V _I = 0.4 V			-0.36			-0.36	m/
		BI/RBO		<u> </u>			-1	\perp		<u>-1</u>	\vdash
los	Short-circuit output current	BI/RBO	V _{CC} = MAX	,	-0.3		-2	-0.3			_
Icc	Supply current		VCC = MAX,	See Note 2	l	8	15		8	15	m

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡All typical values are at V_{CC} = 5 V, T_{A} = 25°C. NOTE 2: I_{CC} is measured with all outputs open and inputs at 4.5 V.

switching characteristics, VCC = 5 V, TA = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPHL	Propagation delay time, high-to-low-level output from A input	C _L = 15 pF, R _L = 2 kΩ,			100	ns
tPLH	Propagation delay time, low-to-high-level output from A input	See Note 6			100	
tPHL	Propagation delay time, high-to-low-level output from RBI input	$C_L = 15 pF$, $R_L = 6 k\Omega$,			100	ns
tPLH	Propagation delay time, low-to-high-level output from RBI input	See Note 6	<u> </u>		100	L

NOTE 6: Load circuit and voltage waveforms are shown on page S-88.

PRINTED IN U.S.A.

TTL MSI

TYPES SN54LS257, SN54LS258, SN54S257, SN54S258, SN74LS257, SN74LS258, SN74S257, SN74S258 QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS

BULLETIN NO. DL-S 7411734, MARCH 1974

- Three-State Outputs Interface Directly with System Bus
- Schottky-Clamped for Significant Improvement in A-C Performance
- Fully Compatible with Most TTL Functions Including MSI
- Same Pin Assignments as SN54LS157, SN74LS157, SN54S157, SN74S157, and SN54LS158, SN74LS158, SN54S158, SN74S158
- Provides Bus Interface from Multiple Sources in High-Performance Systems

	AVERAGE PROPAGATION	TYPICAL
	DELAY FROM	POWER
	DATA INPUT	DISSIPATION
'LS257	12 ns	50 mW
'LS258	12 ns	35 mW
'S257	4.8 ns	320 mW
'S258	4 ns	280 mW

♦Off state (worst case)

description

These Schottky-clamped high-performance multiplexers feature three-state outputs that can interface directly with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state) the low impedance of the single enabled output will drive the bus line to a high or low logic level. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output-enable circuitry is designed such that the output disable times are shorter than the output enable times.

This three-state output feature means that n-bit (paralleled) data selectors with up to 258 sources can be implemented for data buses. It also permits the use of standard TTL registers for data retention throughout the system.

Series 54LS and 54S are characterized for operation over the full military temperature range of -55°C to 125°C; Series 74LS and 74S are characterized for operation from 0°C to 70°C.

SN54LS257, SN54S257 ... J OR W PACKAGE SN74LS257, SN74S257 ... J OR N PACKAGE (TOP VIEW)

SN54LS258, SN54S258 . . . J OR W PACKAGE SN74LS258, SN74S258 . . . J OR N PACKAGE (TOP VIEW)

FUNCTION TABLE

	INPL	JTS		OUTF	UT Y
OUTPUT CONTROL	SELECT	A	В	'LS257 'S257	'LS258 'S258
Н	×	X	Х	Z	Ž
L	L	L	X	L	н
L	L	н	×	н	L
L	н	×	L	L	н
L	н	x	н	н	L

H = high level, L = low level, X = irrelevant, Z = high impedance (off)

TYPES SN54LS257, SN54LS258, SN54S257, SN54S258, SN74LS257, SN74LS258, SN74S257, SN74S258 QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS

TYPES SN54LS257, SN54LS258, SN74LS257, SN74LS258 QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

		SN54LS	5		SN74LS	<u> </u>	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-1			-2.6	mA
Low-level output current, IOL			4			8	mA
Operating free-sir temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONI	DITIONET		SN54LS	7		SN74LS	·	
	PANAMETEN		1EST CONL	DITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage					_	0.7			0,8	V
VI	Input clamp voltage		V _{CC} = MIN,	l _I = -18 mA			-1.5			-1.5	V
VOH	High-level output voltage		V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = MAX	2.4	3.4		2.4	3.1		v
VOL	Low-level output voltage	-	V _{CC} = MIN, V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0,4	v
			VIL = VIL max	IQL = 8 mA			•	i	0.35	0.5	`
lozh	Off-state output current, high-level voltage applied		V _{CC} = MAX, V _O = 2.4 V	V _{IH} = 2 V,			20			20	μА
lozL	Off-state output current, low-level voltage applied		V _{CC} = MAX, V _O = 0.4 V	V _{IH} = 2 V,		-	-20			-20	μА
1	Input current at	S input					0.2	\vdash		0.2	-
	maximum input voltage	Any other	V _{CC} = MAX,	V _I = 7 V			0.1			0.1	mΑ
ЧН	High-level	S input					40			40	_
1111	input current	Any other	V _{CC} = MAX,	V _I = 2.7 V			20			20	μΑ
1 ₁ L	Low-level	S input					-0.8	\vdash		-0.8	_
11.	input current	Any other	V _{CC} = MAX,	V _I = 0.4 V			-0.4			-0.4	mA
los	Short-circuit output current§		V _{CC} = MAX		-6		-40	-5		-42	mA
		All outputs high				5.9			5.9		
		All outputs low		'LS257		9.2			9.2		
Icc	Supply current	All outputs off	V _{CC} = MAX,			10			10		
	aspp., content	All outputs high	See Note 2			4.1			4.1		mA
		All outputs low		'LS258		6.2			6.2		
		All outputs off				7.0			7.0		

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, $R_L = 2 \text{ k}\Omega$

PARAMETER¶	FROM	то	TEST		'LS257	,		'L\$258		
	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	דומט
^t PLH	Data	A			12	18		12	18	
^t PHL	Data	Any			12	18		12	18	ns
tPLH	Select	A	C լ = 15 pF,		14	21		14	21	
tPHL	Select	Any	See Note 3		14	21		14	21	пş
^t ZH	Output	A	1		20	30	<u> </u>	20	30	
tZL	Control	Any			20	30		20	30	ns
tHZ	Output		C _L = 5 pF,		14	21		14	21	
tLZ	Control	Any	See Note 3		14	21		14	21	ns

[¶]tp_H ≅ propagation delay time, low-to-high-level output tpHL ≡ propagation delay time, high-to-low-level output tzH = output enable time to high level

374

TENTATIVE DATA

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time and duration of the short-circuit test should not exceed one second. NOTE 2: ICC is measured with all outputs open and all possible inputs grounded while achieving the stated output conditions.

NOTE 3: Load circuit and waveforms are shown on page S-88.

tZL = output enable time to low level

tHZ ≡ output disable time from high level

tLZ = output disable time from low level

TYPES SN54S257, SN54S258, SN74S257, SN74S258 QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

•	SN54S	SN54S257, SN54S258 SN74S257, SN7 MIN NOM MAX MIN NOM 4.5 5 5.5 4.75 5					UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	UNII
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH			-2		-	-6.5	mA
Low-level output current, IOL			20			20	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

						SN54S	257, SN	74\$257	SN54S	258, SN	74S258	
	PARAMETEI	3	TEST	CONDITIONS	•	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltag	e				2			2			٧
VIL	Low-level input voltage	9						0.8			0.8	٧
VI	Input clamp voltage		V _{CC} = MIN,	I _I = -18 mA				-1.2			-1.2	V
			V _{CC} = MIN,	V _{IH} = 2 V,	SN54S'	2.4	3.4		2.4	3.4		l v
VOH	High-level output volta	age .	VIL = 0.8 V,	IOH = MAX	SN74S'	2.4	3.2		2.4	3.2		L
			V _{CC} = MIN,	V _{IH} = 2 V,				0.5			0.5	l v
VOL	Low-level output volta	ige	VIL = 0.8 V,	IOL = 20 mA				<u> </u>				<u> </u>
	Off-state output curre	nt,	VCC = MAX,	V _{IH} = 2 V,				50			50	μA
IOZH	high-level voltage appli	ied	Vo = 2.4 V									
	Off-state output curre	nt, ø	V _{CC} = MAX,	V _{IH} = 2 V,				-50			-50	μА
OZL	low-level voltage applic	ed	V _O = 0.5 V		_							<u> </u>
	Input current at maxir	num	VCC = MAX,	V. = 55V				1			1	mA
l _l	input voltage		ACC - MYYY									
	High-level	S input	VCC = MAX,	V1=27V				100			100	μA
чн	input current	Any other	VCC - WAA,	01 2.7 0				50	<u> </u>		50	L .
	Low-level	S input	VCC = MAX,	V1 = 0 5 V				4			-4	mA
ΊL	input current	Any other	VCC - WAA,	V1 0.0 V				-2	<u>. </u>		-2	<u> </u>
los	Short-circuit output co	urrent §	V _{CC} = MAX			-40		-100	-40		-100	mA
		All outputs high				ļ	44	68	<u> </u>	36	56	┥ .
1cc	Supply current	All outputs low	VCC = MAX,	See Note 2			60	93	<u> </u>	52	81	mA
		All outputs off	·				64	99		56	87	

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C, RL = 280 Ω

	FROM	то	TEST	SN54S	257, SN	748257	SN54S	258, SN	745258	UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	C.VIII
tPLH	Data	Any			5	7.5		4	6	ns
tPHL	Data	Ally			4.5	6.5		4	6	
tPLH			CL = 15 pF,		8.5	15		8	12	ns
tPHL	Select	Any	See Note 4		8.5	15		7.5	12]
tzH	Output		1		13	19.5		13	19.5	ns
tZL	Control	Any			14	21		14	21	1 ""
tHZ	Output		CL = 5 pF,	1	5.5	8.5		5.5	8.5	ns
tLZ	Control	Any	See Note 4		9	14		9	14	<u> </u>

[¶]tpLH ≡|propagation delay time, low-to-high-level output tpHL = propagation delay time, high-to-low-level output tZH = output enable time to high level

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time and duration of the short-circuit test should not exceed one second.

NOTE 2: ICC is measured with all outputs open and all possible inputs grounded while achieving the stated output conditions.

NOTE 4: Load circuit and waveforms are shown on page S-87.

tZL ≡ output enable time to low level

tHZ ≅ output disable time from high level

 $t_{LZ} \equiv$ output disable time from low level

TYPES SN54LS261, SN74LS261 2-BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS

BULLETIN NO. DL-S 7412123, MARCH 1974

- Fast Multiplication . . . 5-Bit Product in 26 ns Typ
- Power Dissipation . . . 110 mW Typical
- **Latch Outputs for Synchronous Operation**
- Expandable for m-Bit-by-n-Bit Applications
- Fully Compatible with Most TTL and Other Saturated Low-Level Logic Families
- **Diode-Clamped Inputs Simplify System** Design

description

These low-power Schottky circuits are designed to be used in parallel multiplication applications. They perform binary multiplication in two's-complement form, two bits at a time.

The M inputs are for the multiplier bits and the B inputs are for the multiplicand. The Q outputs represent the partial product as a recoded base-4 number. This recoding effectively reduces the Wallace-tree hardware requirements by a factor of two.

The outputs represent partial products in one'scomplement form generated as a result of multiplication. A simple rounding scheme using two additional gates is needed for each partial product to generate two's complement.

The leading (most-significant) bit of the product is inverted for ease in extending the sign to square (left justify) the partial-product bits.

The SN54LS261 is characterized for operation over the full military temperature range of -55°C to 125°C; the SN74LS261 for operation from 0°C to 70°C.

SN54LS261...J OR W PACKAGE SN74LS261 ... J OR N PACKAGE

FUNCTION TABLE

	INPUT	s			01	JTPU	TS	
LATCH	ML	ILTIPLI	ER	<u>0</u> 4				
G	M2	M1	MO	U4	Ø3	Q2	uı	QO
L	х	X	X	₫40	Q3 ₀	020	Q1 ₀	000
н	L	L	L	н	L	L	L	L
н	L	L	н	B4	В4	В3	B2	В1
н	L	н	L	B̃4	В4	В3	B2	В1
Ъ	L	н	н	B ₄	В3	B2	B1	во
н	Н	L	L	В4	B 3	B2	B1	ВO
н	н	L	н	B4	B 4	B3	B2	₽1
Н	н	Н	L	В4	B4	B 3	B2	B1
Н	н	Н	н	н	L	L	L	L,

 \underline{H} = high level, L = low level, X = Irrelevant

 $\overline{Q4}_0 \dots \overline{Q0}_0$ = The logic level of the same output before the high-to-low transition of G.

B4...B0 = The logic level of the indicated multiplicand (B) input,

TENTATIVE DATA SHEET

schematics of inputs and outputs

This document provides tentative information on a new product. Texas Instruments reserves the right to change specifications for this product in any manner without notice.

TYPES SN54LS261, SN74LS261 2-BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS

TYPES SN54L\$261, SN74L\$261 2-BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS

absc	lute maximum ratings over operating free-air	æ	mį	Del	rat	cui	ושו	rai	ige	: ((um	es:	5 0	uu	:rv	VIS	e i	Ю	LEU	7				
	Supply voltage, V _{CC} (see Note 1)																						. 7	٧
	Input voltage																							
	Operating free-air temperature range: SN54LS261		•			•		•			•			•	•	-					-55	°C t	o 125	°C
	SN74LS261																							
	Storage temperature range	٠	٠	•	•	٠	٠	•	•	•	•		•	•	•	٠	•	٠	•		-65	C to	o 150	C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	-	SI	154LS2	61	St	174LS2	61	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	CNII
Supply voltage, VCC		4.5	5	5,5	4.75	5	5.25	٧
High-level output current, IOH				-1			-1	mA
Low-level output current, IOL				4			8	mA
Width of enable pulse, tw		25			25			пs
Satura sima s	Any M input	171			17↓			
Setup time, t _{setup}	Any B input	15↓			151			ns
Held sizes A.	Any M input	Ot			0;			
Hold time, thold	Any B input	Of			O†			ns
Operating free-air temperature, TA		-55		125	0		70	°c

[‡]The arrow indicates that the falling edge of the enable pulse is used for reference.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS†			SN54LS261			SN74LS261			
L	FARAMETER	TEST CONDITIONS.			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage				1		0.7			0.8	V
٧ı	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	V
Voн	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -1 mA		2.5	3.4		2.7	3.4		٧
VOL	Low-level output voltage	V _{CC} = MIN,	V _{IH} = 2 V,	I _{OL} = 4 mA	-	0.25	0.4		0.25	0.4	v
l _l	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V	1			0.1			0.1	mA
ЧН	High-level input current	V _{CC} = MAX,	V _I = 2.7 V				20			20	μА
JIL.	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V				-0.4			-0,4	mA
los	Short-circuit output current§	V _{CC} = MAX	•		-6		-40	-5		-42	mA
Icc	Supply current	V _{CC} = MAX, Outputs open	All inputs at 0	V		22	38		22	40	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER 9	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Enable G	Any Q		1	22	35	ns
tPHL			C _L = 15 pF, R _L = 2 kΩ, See Note 2		20	30	ns
tPLH .	Any M input	Any Q			25	40	ns
tPHL.	Any w mput				22	35	ns
tPLH .	Any B input	Any Q	See Note 2		27	42	ns
tPHL_					24	37	ns

[¶]tp_H = propagation delay time, low-to-high-level output.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

tpHL = propagation delay time, high-to-low-level output.

NOTE 2: Load circuit and voltage waveforms are shown on page S-88.

TYPES SN54LS261, SN74LS261 2-BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS

TYPICAL APPLICATION DATA

Multiplication of the numbers 26 (multiplicand) by 29 (multiplier) in decimal, binary, and 2-bit-at-a-time-binary is shown here:

Two points should be noted in the two-bit-at-a-time-binary example above. First, in positioning the partial products beneath each other for final addition, each partial product is shifted two places to the left of the partial products above it instead of one place as is done in regular multiplication. Second, the msb of the partial product (the sign bit) is extended to the sign-bit column of the final answer.

A substantial reduction of multiplication time, cost, and power is obtained by implementing a parallel partial-product-generation scheme using a 2-bit-at-a-time algorithm, followed by a Wallace Tree summation.

Partial-product-generation rules of the algorithm are:

374

1. Examine two bits of multiplier M plus the next lower bit. For the first partial product (PP1) the next lower bit is zero.

TYPES SN54LS261, SN74LS261 2-BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS

TYPICAL APPLICATION DATA

2. Generate partial product (PPi) as shown in the following table:

MULT	IPLIER BITS STEP 1	FROM	OPERATOR SYMBOL	TO OBTAIN PARTIAL PRODUCT
22i-1	2 ² i-2	221-3	STRIBUL	
0	0	0	0	Replace multiplicand by zero
0	0	1	+1 B	Copy multiplicand
0	1	0	+1 B	Copy multiplicand
0	1	1	+2 B	Shift multiplicand left one bit
1	0	0	-2 B	Shift two's complement of multiplicand left one bit
1	0	1	-1 B	Replace multiplicand by two's complement
1	1	0	-1 B	Replace multiplicand by two's complement
1	1	1	0	Replace multiplicand by zero

- 3. Weight the partial products by indexing each two places left relative to the next-less-significant product,
- 4. Extend the most-significant bit of the partial product to the sign-bit place value of the final product.

EXAMPLE OF ALGORITHM

The summation of these partial products was shown in the 2-bit-at-a-time binary multiplication example above.

The 'LS261 generates partial products according to this algorithm with two exceptions:

- The one's complement is generated for the cases requiring the two's complement. The two's complement can be
 obtained by adding one to the one's complement; this rounding can be done by using one NAND gate and one AND
 gate as shown in Figure B.
- The most-significant bit is complemented to reduce the hardware required to extend the sign bit. This extension can be accomplished by adding a hard-wired logic 1 in bit position 2²ⁱ⁺¹⁵ of each partial product and also in bit position 2¹⁶ of the first partial product (PP1).

TYPES SN54LS261, SN74LS261 2-BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS

FIGURE A-FIRST PARTIAL PRODUCT, PP1

FIGURE B-OTHER PARTIAL PRODUCTS, PP

FIGURE C-MANIPULATION OF PARTIAL PRODUCTS FOR ENTRY INTO WALLACE TREE

In general, the 4 x 2 bit 'LS261 can be expanded for use in 4m x 2n bit multipliers. Partial product generation uses $m \times n$ 'LS261s $m \times n \div 16$ 'LS00s, and $m \times n \div 16$ 'LS08s. The size of the Wallace tree and ALU requirements vary depending on the size of the problem. The count for the 16 x 16 bit multiplier is:

- 32 SN54LS261/SN74LS261
- SN54LS00/SN74LS00 2
- 2 SN54LS08/SN74LS08
- 56 SN54H183/SN74H183
- SN54LS181/SN74LS181 7
- 2 SN54LS182/SN74LS182

TTL

TYPES SN54S270, SN74S270, SN74S271 2048-BIT READ-ONLY MEMORIES WITH OPEN-COLLECTOR OUTPUTS

BULLETIN NO. DL-S 7412080, MARCH 1974

- Full Schottky Clamping for High Performance:
 Address Access Time . . . 45 ns Typical
 Chip-Select Time . . . 15 ns Typical
 Power Dissipation . . . 0.25 mW/Bit Typical
- 'S270 Is Organized as 512 Words by 4 Bits
- 'S271 Is Organized as 256 Words by 8 Bits and Is in a 20-Pin Package for 0.300-Inch Row Spacing
- Ideal for Microprogramming, Reference Tables, and High-Speed Code Converters
- Open-Collector Outputs Permit Expansion
- SN54S370, SN74S370 and SN74S371 Are Functionally Equivalent But Have 3-State Outputs.

description

The SN54S270, SN74S270, and SN74S271 are 2048-bit monolithic custom-programmed read-only memories. The 'S270 is organized as 512 words of four bits each and the 'S271 is organized as 256 words of eight bits each. These Schottky-clamped, high-speed transistor-transistor-logic (TTL) memory arrays are addressed in straight binary with full on-chip decoding. Overriding chip-select inputs are provided which, when one or more is taken high, will inhibit the function causing all outputs to remain high. Data, as specified by the customer, are permanently programmed into the monolithic structure for the 2048 bit locations.

The memory matrix consists of 32 transistors comprising the X plane with each transistor having 64 emitters. Each of the 64 bit lines that comprise the Y plane of the matrix is connected to one emitter from each of the 32 transistors. The address of a word is accomplished through the buffered binary select inputs coincident with low-level voltages at all chip-select inputs. Five binary select inputs are decoded internally in the X plane to select one of the 32 matrix transistors. In the 'S270 the four remaining select inputs are internally decoded in the Y plane to select four of the 64 bit lines. These selected bit lines

SN54S270 ... J PACKAGE SN74S270 ... J OR N PACKAGE (TOP VIEW)

SN74S271 ... N PACKAGE (TOP VIEW)

appear as a four-bit word output. In the 'S271 the three remaining select inputs are internally decoded in the Y plane to select eight of the 64 bit lines. These selected bit lines appear as an eight-bit word output.

The customer can specify the output logic level desired at each of the 2048 bit locations by completing the supplementary ordering data and a set of data cards punched in accordance with the data format shown under ordering instructions. Upon receipt of the order, Texas Instruments will assign a special device number to the device programmed according to the customer's order. The completed device will be marked with the TI special device number. It is important that the customer specify not only the output levels desired at all 2048 bit locations, but also the other information requested.

S-254

SN54S270/SN74S270 functional block diagram and word selection

	VO	RD-	SEI	LEC	T 1	A	LE							
WORD !INPUTS														
WORD		Н	G	F	E	D	C	В	Α					
0	L	L	L	L	L	L	L	L	٦					
1	L	L	L	L	L	L	L	L	н					
2	L	L	L	L	L	L	L	Н	L					
3	L	L	L.	L	L	L	Н	н						
4	4 LLLLLHL													
5	L	L	L	L	L	L	Н	L	Н					
6	L	L	L	L	L	L	н	н	L					
7	L	L	L	L	L	L	н	н	н					
8	L	L	L	L	L	Н	L	L	Ļ					
	Ι.													
	١ ١	Wo	ds	9 th	ru !	506	on	titte	ed					
507	н	н	н	н	н	н	L	н	н					
508	Н	Н	Н	Н	н	Н	Н	L	Г					
509	н	Н	н	н	н	Н	н	L	н					
510	н	н	н	н	н	н	н	н	L					
511	H	Н	Н	Н	Н	н	н	Н	н					

Word selection is accomplished in a conventional 9-bit positive-logic binary code with the A select input being the least-significant bit progressing alphabetically through the select inputs to I which is the most-significant bit.

SN74S271 functional block diagram and word selection

374

Word selection is accomplished in a conventional 8-bit positive-logic binary code with the A select input being the least-significant bit progressing alphabetically through the select inputs to H which is the most-significant bit.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)					 		 				7 V
Input voltage					 		 				5.5 V
Off-state output voltage					 		 				5.5 V
Operating free-air temperature range:	SN54S	270			 . :		 		–55°	C to	125°C
	SN74S	270, 9	SN74	S271			 		0	°C to	70°C
Storage temperature range					 		 		-65°	C to	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	S	N54S27	70	1 -	N74S27		UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, VOH			5.5			5.5	V
Low-level output current, IOL		-	12			15	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS†		N54S27	70	1	70 71	UNIT	
				MIN	TYP‡	MAX	MIN	TYP‡	MAX	l i
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage					0.8			0.8	V
V _I	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA			-1.2			-1.2	V
юн	High-level output current	V _{CC} = MIN, V _{IH} = 2 V,	V _{OH} = 5.5 V			250			250	μА
-01		VIH 2 V,	V _{OH} = 2.4 V			50			50	μА
Voi	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V,	I _{OL} = 12 mA			0.5				٧
<u> </u>		V _{IL} = 0.8 V	I _{OL} = 15 mA						0.5	٧
<u> 1</u>	Input current at maximum input voltage	V _{CC} = MAX,	V ₁ = 5.5 V			1			1	mA
1 _{1H}	High-level input current	V _{CC} = MAX,	V _I = 2.7 V			25			25	μΑ
կլ	Low-level input current	V _{CC} = MAX,	V _I = 0.5 V			-0.25			-0.25	mA
Icc	Supply current	VCC = MAX,	See Note 2		105	155		105	155	mA
co	Off-state output capacitance	V _{CC} = 5 V, f = 1 MHz	V _O = 5 V,		6.5			6.5	-	ρF

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡All typical values are at V_{CC} = 5 V, T_A = 25°C.

NOTE 2: With outputs open and CS input(s) grounded, I_{CC} is measured first by selecting a word that contains the maximum number of programmed high-level outputs; then by selecting a word that contains the maximum number of programmed low-level outputs.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tplH Propagation delay time, low-to-high-level output from address select	C _L = 30 pF,		45		
tphL Propagation delay time, high-to-low-level output from address select	$R_{L1} = 400 \Omega$		45	_	ns
tplH Propagation delay time, low-to-high-level output from chip select	$R_{L2} = 600 \Omega$		15		
tpHL Propagation delay time, high-to-low-level output from chip select	See Figure 1		15		ns

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

VOLTAGE WAVEFORMS

- NOTES: A. The input pulse generator has the following characteristics: $t_r \le 2.5$ ns, $t_f \le 2.5$ ns, PRR ≤ 1 MHz, $Z_{out} \approx 50~\Omega$.
 - B. C_L includes probe and jig capacitance.
 - C. The pulse generator is connected to the input under test. The other inputs, memory content permitting, are connected so that the input will switch the output under test.

FIGURE 1-PROPAGATION DELAY TIMES

schematics of inputs and outputs

ORDERING INSTRUCTIONS

Programming instructions for these read-only memories are solicited in the form of a sequenced deck of 64 standard 80-column data cards providing the information requested under "data card format," accompanied by a properly sequenced listing of these cards, and the supplementary ordering data. Upon receipt of these items, a computer run will be made from the deck of cards which will produce a complete function table for the requested part. This function table, showing output conditions for each of the words, will be forwarded to the purchaser as verification of the input data as interpreted by the computerautomated design (CAD) program. This single run also generates mask and test program data; therefore, verification of the function table should be completed promptly.

Each card in the data deck prepared by the purchaser identifies the words specified and describes the levels at the outputs. All addresses must have all outputs defined and columns designated as "blank" must not be punched. Cards should be punched according to the data card format shown.

SUPPLEMENTARY ORDERING DATA

Submit the following information with the data cards:

- a) Customer's name and address
- b) Customer's purchase order number
- c) Customer's drawing number.

The following information will be furnished to the customer by Texas Instruments:

- a) TI part number
- b) TI sales order number
- c) Date received.

'S270 DATA CARD FORMAT (64 CARDS)

Column

- 1- 3 Punch a right-justified integer representing the binary input address (000-504) for the first set of outputs described on the card.
 - 4 Punch a "-" (Minus sign)
- 5- 7 Punch a right-justified integer representing the binary input address (007-511) for the last set of outputs described on the card.
- 8-9 Blank
- 10-13 Punch "H", "L", or "X" for bits four, three, two, and one (outputs Y4, Y3, Y2, and Y1 in that order) for the first set of

outputs specified on the card. H = high-voltage-level output, L = low-voltage-level output, X = output level irrelevant.

- 14 Blank
- 15-18 Punch "H", "L", or "X" for the second set of outputs.
 - 19 Blank
- 20-23 Punch "H", "L", or "X" for the third set of outputs.
 - 24 Blank
- 25-28 Punch "H" "L", or "X" for the fourth set of outputs.
 - 29 Blank
- 30-33 Punch "H", "L", or "X" for the fifth set of outputs.
 - 34 Blank
- 35-38 Punch "H", "L", or "X" for the sixth set of outputs.
 - 39 Blank
- 40-43 Punch "H", "L", or "X" for the seventh set of outputs.
 - 44 Blank
- 45-48 Punch "H", "L", or "X" for the eighth set of outputs.
 - 49 Blank
- 50-51 Punch a right-justified integer representing the current calendar day of the month.
 - 52 Blank
- 53-55 Punch an alphabetic abbreviation representing the current month.
 - 56 Blank
- 57-58 Punch the last two digits of the current year.
 - 59 Blank
- 60-61 Punch "SN"
- 62-66 Punch a left-justified integer representing the Texas Instruments part number. This is supplied by the factory through a TI sales representative.
- 67-68 Blank
- 69-80 Preferably these columns should be punched to reflect the customer's part or specification-control number. This information is not essential.

SN74S271 DATA CARD FORMAT (64 CARDS)

Column

- 1- 3 Punch a right-justified integer representing the binary input address (000-252) for the first set of outputs described on the card.
 - 4 Punch a "-" (Minus sign)
- 5- 7 Punch a right-justified integer representing the binary input address (003-255) for the last set of outputs described on the card.
- 8-9 Blank
- 10-17 Punch "H", "L", or "X" for bits eight, seven, six, five, four, three, two, and one (outputs Y8, Y7, Y6, Y5, Y4, Y3, Y2, and Y1 in that order) for the first set of outputs specified on the card. H = high-voltage-level output, L = low-voltage-level output, X = output level irrelevant.
 - 18 Blank
- 19-26 Punch "H", "L", or "X" for the second set of outputs.
 - 27 Blank
- 28-35 Punch "H", "L", or "X" for the third set of outputs.
 - 36 Blank

- 37-44 Punch "H", "L", or "X" for the fourth set of outputs.
- 45-49 Blank
- 50-51 Punch a right-justified integer representing the current calendar day of the month.
 - 52 Blank
- 53-55 Punch an alphabetic abbreviation representing the current month.
 - 56 Blank
- 57-58 Punch the last two digits of the current year.
 - 59 Blank
- 60-61 Punch "SN"
- 62-66 Punch a left-justified integer representing the Texas Instruments part number. This is supplied by the factory through a TI sales representative.
- 67-68 Blank
- 69-80 Preferably these columns should be punched to reflect the customer's part or specification-control number. This information is not essential.

3

TYPE SN74273 OCTAL D-TYPE FLIP-FLOP WITH CLEAR

BULLETIN NO. DL-S 7412091, MARCH 1974

- Contains Eight Flip-Flops with Single-Rail Outputs
- Buffered Clock and Direct Clear Inputs
- Individual Data Input to Each Flip-Flop
- Applications Include:

Buffer/Storage Registers Shift Registers Pattern Generators

description

These monolithic, positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic with a direct clear input.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

These flip-flops are guaranteed to respond to clock frequencies ranging from 0 to 25 MHz while maximum clock frequency is typically 35 megahertz. Typical power dissipation is 39 milliwats per flip-flop.

N DUAL-IN-LINE PACKAGE (TOP VIEW)

FUNCTION TABLE (EACH FLIP-FLOP)

IN	PUTS		OUTPUT
CLEAR	CLOCK	D	Q
L	Х	Х	L
н	†	н	н
Н	t	L	L
н	L	х	α_0

- H = high level (steady state)
- L = low level (steady state)
- X = irrelevant
- 1 = transition from low to high level
- Q₀ = the level of Q before the indicated steady-state input conditions were established.

schematics of inputs and output

functional block diagram

TENTATIVE DATA SHEET

TYPE SN74273 OCTAL D-TYPE FLIP-FLOP WITH CLEAR

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																	. 7	<i>'</i> V	
Innut voltage																	5.5	5 V	
Operating free-air temperature range														- (O°C	c to	70) C	:
Storage temperature range													_	65`	′C ·	to	150	ľС	,

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.75	5	5.25	V
High-level output current, IOH				-800	μΑ
Low-level output current, IQL				16	mA
Clock frequency, fclock		0		25	MHz
Width of clock or clear pulse, tw		20			ns
	Data input	201			ns
Setup time, t _{setup}	Clear inactive state	251			ns
Data hold time, thold		51			ns
Operating free-air temperature, TA		0		70	°C

†The arrow indicates that the rising edge of the clock pulse is used for reference.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS†	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage			2			_ v
VIL	Low-level input voltage		•			0.8	V
VI	Input clamp voltage		V _{CC} = MIN, I _I = -12 mA	l		-1.5	_ v_
VOH	High-level output voltage		V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -800 μA	2.4	3.4		V
VOL	Low-level output voltage		V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA			0.4	٧
I ₁	Input current at maximum input voltage		V _{CC} = MAX, V _I = 5.5 V			1	mA
Ιн	High-level input current	Clear Clock or D	V _{CC} = MAX, V _I = 2.4 V			80 40	μА
ΊL	Low-level input current	Clear Clock or D	V _{CC} = MAX, V _I = 0.4 V			-3.2 -1.6	mA
los	Short-circuit output current§		V _{CC} = MAX	-18		-57	mA
Icc	Supply current		V _{CC} = MAX, See Note 2		62	94	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} Maximum clock frequency	C: = 15 = 5	25	35		MHz
tphL Propagation delay time, high-to-low-level output from clear	C _L = 15 pF, R ₁ = 400 Ω,		23	35	ns
tpLH Propagation delay time, low-to-high-level output from clock	See Note 3		20	30	ns
tphL Propagation delay time, high-to-low-level output from clock	See Note 3		21	30	ns

NOTE 3: Load circuit and voltage waveforms are shown on page S-87.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_{A} = 25°C.

Not more than one output should be shorted at a time.

NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, ICC is measured after a momentary ground, then 4.5 V, is applied to clock,

TTL LSI

TYPES SN54S275, SN74S274, SN74S275 4-BIT-BY-4-BIT BINARY MULTIPLIER WITH 3-STATE OUTPUTS 7-BIT-SLICE WALLACE TREES WITH 3-STATE OUTPUTS

BULLETIN NO. DL-S 7412121, MARCH 1974

- 'S274 Provides 8-Bit Product in Typically 45 ns
- 'S274 Can Provide Sub-Multiple Products for n-Bit-by-n-Bit Binary Numbers
- 'S275 Accepts 7 Bit-Slice Inputs and 2 Carry Inputs for Reduction to 4 Lines in Typically 45 ns
- These New High-Complexity Functions Can Reduce Package Count by Nearly 50% in Most Parallel Multiplier Designs
- When Combined With SN74H183 and Schottky Look-Ahead Adders, Multiplication Times Are Typically:

16-Bit Product in 75 ns 32-Bit Product in 116 ns

description

These high-complexity Schottky-clamped TTL circuits are designed specifically to reduce the defay time required to perform high-speed parallel binary multiplication and significantly reduce package count. The 'S274 is a basic 4-bit-by-4-bit parallel multiplier in a single package, and as such, no additional components are required to obtain an 8-bit product. The 'S275 expandable bit-slice Wallace tree has been designed to accept up to seven bit-slice inputs and two carry inputs from previous slices for reduction to four lines. For word lengths longer than 4 bits, a number of 'S274 multipliers can be combined to generate sub-multiple partial products. These partial products can then be combined in Wallace trees to obtain the final product. See Typical Application Data.

SN74S274 . . . N PACKAGE

SN54S275...J PACKAGE SN74S275...J OR N PACKAGE (TOP VIEW)

functional block diagram

schematics of inputs and outputs

NOTE: When one of the C2ⁿ carry inputs is not used, it must be grounded. If neither C2ⁿ carry input is used, both C2ⁿ inputs are grounded and the C2ⁿ⁺¹ output is normally left open.

TENTATIVE DATA SHEET

This document provides tentative information on a new product. Texas Instruments reserves the right to change specifications for this product in any manner without notice.

EXAS INSTRUMENTS

. . . . -65°C to 150°C

TYPES SN54S275, SN74S274, SN74S275 4-BIT-BY-4-BIT BINARY MULTIPLIER WITH 3-STATE OUTPUTS 7-BIT-SLICE WALLACE TREES WITH 3-STATE OUTPUTS

bsolute,maximum ratings over opera	tin	g '	fre	e-a	ir	te	mp) e i	at	ur	e	rar	1ge	3 (un	le	SS	ot	he	rv	vis	e ı	no	te	d)					
Supply voltage, VCC (see Note 1)	_					_																								7 V
Input voltage																														5.5 V
Off cents output voltage									_	_	_																			5.5 V
Operating free air temperature range:	SI	V5	452	75																						_	55	C	to	125 0
•	C	47	401	7/		NI7	40	:27	15									_										0"	C t	o 70°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	s	N54S27	76	S		UNIT	
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-2	Ĺ		-6.5	mA
Low-level output current, IOL			12			12	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS [†]	8	N54S27	76	9	UNIT		
	TAILAND TO			MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage			<u> </u>		0.8			0.8	٧
V _I	Input clamp voltage	VCC = MIN,	I _I = -18 mA			-1.2			-1.2	٧
	High-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = MAX	2.4	3.4		2.4	3.2		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 12 mA			0.5			0.5	v
lozh	Off-state output current, high-level voltage applied	V _{CC} = MAX, V _O = 2.4 V	V _{IH} = 2 V,		·	50			50	μА
lozL	Off-state output current,	V _{CC} = MAX, V _O = 0.5 V	V _{IH} = 2 V,			-50			-50	μА
4	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5 V			1			1	mA
л Пн	High-level input current	VCC = MAX,	V ₁ = 2.7 V			25			25	μА
lil.	Low-level input current	VCC = MAX,	V _I = 0.5 V			-0.25			-0.25	mA
los	Short-circuit output current §	VCC = MAX		-30		-100	-30		-100	mA
Icc	Supply current	VCC = MAX			105	155	L	105	155	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25°C. \$Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP MAX	UNIT
tPLH	Any A or B ('S274),	A	CL = 30 pF, RL = 400 Ω,	45	
tPHL.	or Any Slice or Carry ('S275)	Any	See Figure 1	45	ns
tzH				15	_
tZL	Any Enable		CL=5pF, RL=400Ω,	15	ns
tHZ	Any Eliable	Any	See Figure 1	10	
tLZ_			1	10	ns

[¶]tp_H = Propagation delay time, low-to-high-level output tpHL = Propagation delay time, high-to-low-level output

PARAMETER MEASUREMENT INFORMATION

C_L includes probe and jig capacitance.
All diodes are 1N3064 or 1N916,
LOAD CIRCUIT

ENABLE TIME AND DISABLE TIME FROM ENABLE VOLTAGE WAVEFORMS

FIGURE 1-SWITCHING TIMES

NOTES: A. When measuring delay times from data inputs, the enable input(s) are low.

- B. When measuring delay times from enable input(s), the data inputs are steady-state.
- C. Waveform 1 is for the output with internal conditions such that the output is low except when disabled, Waveform 2 is for the output with internal conditions such that the output is high except when disabled.
- D. Input waveforms are supplied by pulse generators having the following characteristics: $t_r \le 2.5$ ns, $t_f \le 2.5$ ns, PRR ≤ 1 MHz, and $Z_{out} \approx 50 \ \Omega$.

tZH ≡ Output enable time to high level

tZL ≅ Output enable time to low level

tHZ ≡ Output disable time from high level

tLZ = Output disable time from low level

TYPICAL APPLICATION DATA

FIGURE FIGURE 2-BASIC BIT-SLICE WALLACE TREE

FIGURE 3-HIGH-SPEED BIT-SLICE WALLACE TREE

FIGURE 4-MODERATE-SPEED BIT-SLICE WALLACE TREE

TO n+2 Tree See Note A To n+2 Tree See Note C See Note C See Note A See

NOTES: A. Ground unused inputs.

- B. These outputs from preceeding trees may go to any of the inputs of the 'S275.
- C. The circuit within the dotted lines may be either the basic bit-slice Wallace tree or the high-speed Wallace tree. In the latter case both carry inputs of the '275 must be grounded.

FIGURE 5-15-BIT-SLICE WALLACE TREE FOR 32-BIT X 32-BIT MULTIPLIER

NOTES: A. Ground unused inputs.

B. The number of bits in parentheses is the maximum number of bits this tree can combine if the remaining 'S275's (all having a higher number in the parentheses) were not connected.

FIGURE 6-7-TO-31-BIT-SLICE WALLACE TREE FOR UP TO 64-BIT X 64-BIT MULTIPLIERS

!TYPICAL APPLICATION DATA

2upper half of n X 2lower half of n
2upper half of n X 2upper half of n
2lower half of n X 2upper half of n

NOTE A: The left-hand half of each rectangle is the portion of word one used to obtain the product shown within the rectangle. Similarly, the right-hand half of each rectangle is the portion of word two used.

FIGURE 7-UNIVERSAL METHOD OF ADDING $\frac{n}{2}$ -BIT PRODUCTS TO OBTAIN AN n-BIT PRODUCT

(2¹⁶ to 2³¹) X (2⁰ to 2¹⁵) (2¹⁶ to 2³¹) X (2¹⁶ to 2³¹) (2⁰ to 2¹⁵) X (2⁰ to 2¹⁵) (2⁰ to 2¹⁵) X (2¹⁶ to 2³¹)

> FIGURE 8-METHOD OF ADDING 32-BIT PRODUCTS TO OBTAIN A 64-BIT PRODUCT

FIGURE 9-FINAL PRODUCTS AND ARRAY SUBPRODUCT ADDITIONS FOR 32-BIT X 32-BIT MULTIPLIER

NOTE A: See Note B of Figure 6 for designing trees with any number of inputs up to 31.

FIGURE 10—ARRAY ARRANGEMENT FOR VARIOUS MULTIPLIERS INCLUDING ARRAY SUBPRODUCT ADDITIONS FOR 64-BIT X 64-BIT

MULTIPLIER

TYPICAL APPLICATION DATA

FIGURE 11—16-BIT X 16-BIT MULTIPLIER (SHEET 1 OF 3-INPUT CONNECTIONS)

TYPICAL APPLICATION DATA 211210 29 28 23 22 ; \$274 S274 5274 S274 FIGURE 11–16-BIT X 16-BIT MULTIPLIER (SHEET 2 OF 3–OUTPUT CONNECTIONS) 215214213212, \$274 \$274 S274 5274 215214213212 219218217216 215214213212 \$274 S274 \$274 \$274 \$274 S274

TYPICAL APPLICATION DATA

^{*}Each starred block may be either a basic bit-slice Wallace tree ('S275 only) or a high-speed bit-slice Wallace tree ('S275 plus ½ 'H183), in either case the function of the terminal is the same as the similarly located terminal of the basic bit-slice (Figure 2) or high-speed bit-slice Wallace tree (Figure 3). Also for either tree, when only five inputs of the seven-input adder of the 'S275 are used, the remaining two inputs must be grounded. When the high-speed adder is used, the C2ⁿ inputs of the 'S275 must be grounded.

FIGURE 11-16-BIT X 16-BIT MULTIPLIER (SHEET 3 OF 3-SUMMING PARTIAL PRODUCTS)

For improved performance, SN74S181 ALUs with SN74S182 look-shead generators can be substituted for the SN74283 adders. Typically, the multiplication time will be reduced by 32 nanoseconds.

BULLETIN NO. DL-S 7412065, FEBRUARY 1974

- Full 4-Bit Binary Accumulator in a Single Package
- 15 Arithmetic/Logic-Type Operations:
 Add
 Subtract (B—A or A—B)
 Complement
 Increment
 Transfer
 Plus 10 Other Functions
- Full Shifting Capabilities:
 Logic Shift (Left or Right)
 Arithmetic Shift (Left or Right)
 for Sign Bit Protection
 Hold
 Parallel Load
- Expandable to Handle n-Bit Words with Full Carry Look-Ahead
- Logic Mode Operation Provides Seven Boolean Functions of the Two Variables

SN54S281 ... J OR W PACKAGE SN74S281 ... J J OR N PACKAGE

description

These Schottky-clamped four-bit accumulators integrate high-performance versions of an arithmetic logic unit/function generator and a shift/storage matrix on a single monolithic circuit bar. The arithmetic logic unit (ALU) portion, similar to the SN54S181/SN74S181 circuit, incorporates the capability to perform 16 arithmetic/logic-type operations as detailed in Table 1. The accumulator includes an exchange of subtract operands by which either A–B or B–A can be accomplished directly. The ALU is controlled by three function-select inputs (ASO, AS1, AS2) and a mode-control input (M). When the mode-control input is high, the ALU is placed in a logic mode which performs any of seven logic functions on two binary variables as detailed in Table 2. Full carry look-ahead is provided for fast, simultaneous carry generation for the full four binary bits. The carry input (Cn) and propagate and generate outputs (P, G) are implemented for direct use with the SN54S182/SN74S182 look-ahead carry generators. This permits systems to be implemented with the added advantage of full look-ahead across any word length to minimize the accumulator delay times. Once data is loaded into the accumulator, the typical add time with full look-ahead is 29 nanoseconds for 16-bit words.

The shift/storage matrix is analogous in its capabilities to the SN54S194/SN74S194 universal bidirectional shift register with the added advantages of multiplexed input/output (I/O) cascading lines which comprehend arithmetic shift functions having a sign bit, such as 2's complements. The matrix can be used to perform either logic or arithmetic shifts in either direction (left or right), parallel load, or hold. Control of the register is accomplished with three inputs: register control (RC) and register selection (RSO, RS1). The cascading input/output lines incorporate three-state outputs multiplexed with an input. The least-significant cascading bit is combined with the AO, FO circuitry to provide the shift-right input and the shift-left output (RI/LO), and the most significant bit is coupled with the A3, F3 circuitry to provide the shift-left input and the shift-right output (LI/RO).

Series 54S circuits are characterized for operation over the full military temperature range of -55°C to 125°C; Series 74S circuits are characterized for operation from 0°C to 70°C.

FUNCTION TABLES

TABLE 1-ARITHMETIC FUNCTIONS Mode Control (M) = Low

	ALU		ACTIVE-H	IIGH DATA
SEL	.ECT	ION	C _n = H	C _n = L
AS2	AS1	AS0	(with carry)	(no carry)
L	L	L	Fo=L, F1=F2=F3=H	F _n = H
L	L	н	F = B MINUS A	F = B MINUS A MINUS 1
L	L H L		F = A MINUS B	F = A MINUS B MINUS 1
L	Н	Н	F = A PLUS B PLUS 1	F = A PLUS B
н	L	L	F = B PLUS 1	Fn = Bn
н	L	н	F = B PLUS 1	$\overline{F}_n = \overline{B}_n$
н	H H L		F = A PLUS 1	Fn = An
н	н	н	F = A PLUS 1	Fo = Ão

TABLE 2-LOGIC FUNCTIONS Mode Control (M) = High Carry Input (Cn) = X (Irrelevant)

SEL	ALU .ECT	ION	ACTIVE-HIGH DATA FUNCTION
AS2	AS1	AS0	DATA FUNCTION
L	L	٦	F _n = L
L	X	н	F _n = <u>A</u> n ⊕ B _n
L	Н	L	Fn=An + Bn
н	L	L	F _n = A _n B _n
H	L	н	Fn = An + Bn .
Н	Н	L	F _n = A _n B _n
Н	Н	н	F _n = A _n + B _n

TABLE 3-SHIFT-MODE FUNCTIONS Cn = M = S0 = S1 = L, and S2 = H

	STER	REGISTER CONTROL	SHIF	T-MAT	RIX IN	PUTS	CLOCK	INPUT/ OUTPUT	SHIFT		IX OU	TPUTS	INPUT/ OUTPUT
RS1	RS0	INPUT	FO	F1	F2	F3	INPUT	RI/LO	QA	QB	QC	QD	LI/RO
L	L	×	f0	f1	f2	f3	†	Z	fO	f1	f2	f3	Z .
L	н	L	QBn	Q_{Cn}	Q_{Dn}	li	t	Q _{Bn}	QBn	Q_{Cn}	Q_{Dn}	li	li ii
L	н	н	Q _{A0}	a_{Cn}	Q_{Dn}	li	Ť	Q _{Bn}	QBn		li	σ_{D0}	li
н	L	L	ri	Q_{An}	Q_{Bn}	QCn	t	ri	ri	QAn	Q_{Bn}	QCn	Q _{Cn}
н	L	н	ri	Q_{An}	Q_{Bn}	a_{D0}	t	ri	ri	Q_{An}	QBn	Q_{D0}	QCn
н	н	×	Q _{A0}	Q_{B0}	a_{co}	a_{D0}	†	z	QAO	Q _{BO}	QC0	α_{D0}	Z
X	X	×	Q _{A0}	Q_{BO}	a_{C0}	a_{D0}	L	×	QAO	σ_{B0}	α_{CO}	σ_{D0}	x

- H = high level (steady state)
- L = low level (steady state)
- X = irrelevant (any input, including transitions)
- Z = high impedance (output off)
- † = transition from low to high level
- f0, f1, f2, f3, ri, li = the level of steady-state conditions at F0, F1, F2, F3, RI/LO, or LI/RO respectively
- Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = the level of Q_A , Q_B , Q_C , or Q_D , respectively, before the indicated steady-state input conditions were established Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = the level of Q_A , Q_B , Q_C , or Q_D , respectively, before the most recent transition of the clock

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)				 	7V
Input voltage				 	5.5 V
Operating free-air temperature range	SN54S281	(see Note	2)	 	-55°C to 125°C
	SN74S281	<i>.</i>		 	. 0°C to 70°C
Storage temperature range				 	-65°C to 150°C

NOTES: 1. Voltage values are with respect to network ground terminal.

2. An SN54S281 in the W package operating at free-air temperatures above 110°C requires a heat sink that provides thermal resistance from case to free-air, R $_{\theta\,CA}$, of not more than 20°C/W.

recommended operating conditions

		8	N54S2	31		N74S28	B1	UNIT					
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT					
Supply voltage, VCC		4.5	5	5.5	4.75	5_	5.25	V					
	Any output except LI/RO and RI/LO			-1			1	- MA					
High-level output current, IOH			2										
	Any output except LI/RO and RI/LO			20			20	mA					
Low-level output current, IOL	LI/RO and RI/LO			10			10						
Clock frequency, fclock (for shifting)		0		50	0		50	MHz					
Width of clock pulse, tw(clock)		8			8			ns					
Data setup time with respect to clock, t _{setup}		01	•		01	<u> </u>		ns					
Data hold time with respect to clock,	· · · · · · · · · · · · · · · · · · ·	181			181	<u> </u>		ns					
Operating free-air temperature, TA (se	-55		125	0		70	°c						

[†]The arrow indicates that the rising edge of the clock pulse is used for reference.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				S	N54S28	31	S	UNIT			
	PARAMET	ER	TEST CONI	OITIONS	MIN	түр‡	MAX	MIN	TYP‡	MAX	ONT
VIH	High-level input voltage				2			2	_		V
VIL	Low-level input voltage						0.8			0.8	٧
V _I	Input clamp voltage	Any input except LI/RO and RI/LO	V _{CC} = MIN,	I _I = -18 mA			-1.2			-1.2	٧
Voн	High-level	Any output except LI/RO and RI/LO	VCC = MIN,		2.5	3.4		2.7	3.4		v
· On	output voltage	LI/RO, RI/LO		IOH = MAX	2.4	3.4		2.4			
VOL			V _{CC} = MIN, V _{IL} = 0.8 V,				0.5			0.5	v
T ₁	Input current at maximum	n input voltage	V _{CC} = MAX,				1			1	mA
<u>'</u> -		RS0, RS1					50	L		<u>50</u>	1
		M, Clock],, _,,,v	V 27V			150			150	ļ
ин	High-level	LI/RO, RI/LO	VCC = MAX,	V - 2.7 V,			200	<u> </u>		200	μA
.111	input current	AS2	See Note 3				300			300	1
		All others	1				250			250	<u> </u>
		RSO, RS1, LI/RO					<u>–2</u>				
		RI/LO	1		l		3			-3	
1	Low-level	M. Clock	V _{CC} = MAX,	V _I = 0.5 V			-4			4	mA
ИL	input current	ASO, AS1	See Note 3				-6			<u>-6</u>	
		All others	┥				-8			<u>–8</u>	
los	Short-circuit output curre				-40		-110	-40		-110	mA
los Short-circuit output current's		V _{CC} = MAX	W package			190				1	
loc	ICC Supply current	TA = 125°C	1			190				mA	
		V _{CC} = MAX	All packages		144	230		144	230		

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: An SN54S281 in the W package operating at free-air temperatures above 110°C requires a heat sink that provides thermal resistance from case to free-sir, $H_{\theta\,CA}$, of not more than 20°C/W.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§]Not more than one output should be shorted at a time.

NOTE 3. When testing input current at the RI/LO or LI/RO terminals, the output under test must be in the high-impedance (off) state.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM (INPUT)	TO (CUTPUT)	TEST CONDITIONS	MIN	ТУР	MAX	UNIT
tPLH .	C _n				10	20	
ФHL_	_ ∽n	C _{n+4}			10	20	ns
tPLH .	Any A	<u> </u>	1		18	30	
tPHL_	Ally A	C _{n+4}			18	30	ns
tPLH_	C _n	Any F	7		10	20	
tPHL	<u>~</u> n	Any F			10	20	ns
tPLH	Any A	G			14	24	
tPHL	Olly O				14	24	ns
ФLН	Any A	P	7		12	20	l —
tPHL_					12	20	ns
tPLH	Ai	Fi	1		20	35	
TPHL	<u> </u>				20	35	ns
ም LH	Ao	RI/LO	CL = 15 pF,		30	45	
tPHL,		NI/LO	I/O outputs: R _L = 560 Ω,		30	45	ns
<u> </u>	A3	LI/RO	Other outputs: R _L = 280 Ω,		30	45	
tPHL	^3	LI/RO	See Figure 1		30	45	ns
<u> tPLH</u>	Fo	RI/LO	1		7	11	
ም ዘዜ	'0	NI/LO	Į .		7	11	ns
tPLH	F ₃	LI/RO			7	11	
tPHL,		Limo			7	11	ns
ФLН	Any AS	Any F or			28	45	
tPHL.	Ally A0	C _{n+4}			28	45	ns
tPLH	Any AS	P or G]		20	33	
t _{PHL}		. 61 G				33	ns
tPLH	Clock	Any F]	3		45	
tPHL_	0,000	Ally F	_		30	45	ns
tPLH	Clock	RI/LO or	7		35	55	
tPHL_	Olock	LI/RO		35	55	ns	

 $[\]P_{\text{tpLH}} \equiv \text{Propagation delay time, low-to-high-level output}$ tpHL = Propagation delay time, high-to-low-level output

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

- NOTES: A. Input pulse is supplied by a generator having the following characteristics: $t_f \le 2.5$ ns, $t_f \le 2.5$ ns, PRR ≤ 1 MHz, $Z_{out} \approx 50 \ \Omega$.
 - B. C_L infcudes probe and jig capacitance.
 C. All diodes are 1N916 or 1N3064.

FIGURE 1

TENTATIVE DATA SHEET

TYPICAL APPLICATION DATA LEFT LI/RO RI/LO LI/RO RIGHT RI/LO RI/LO LI/RO RI/LO LI/RO DATA IN DATA IN CARRY Cn+4 CARRY Cn+4 Cn+4 OUTPUT INPUT 'S281 'S281 'S281 'S281

ENTER AND STORE TIME:

38 ns typical

EACH SUCCESSIVE ADDITION TO STORED DATA: 44 ns typical

FIGURE A-16-BIT BINARY ACCUMULATOR USING FOUR SN54S281/SN74S281 CIRCUITS IN RIPPLE-CARRY MODE

ENTER AND STORE TIME:

37 ns typical

EACH SUCCESSIVE ADDITION TO STORED DATA: 29 ns typical

FIGURE B-16-BIT BINARY ACCUMULATOR USING FOUR SN54S281/SN74S281 CIRCUITS AND ONE SN54S182/SN74S182 IN FULL LOOK-AHEAD CARRY MODE

ENTER AND STORE TIME:

42 ns typical

EACH SUCCESSIVE ADDITION TO STORED DATA: 34 ns typical

FIGURE C-64-BIT BINARY ACCUMULATOR USING 16 SN54S281/SN74S281 CIRCUITS AND FIVE SN54S182/SN74S182 CIRCUITS FOR FULL CARRY LOOK-AHEAD

A inputs and F outputs of 'S281 are not shown.

TTL MSI

TYPES SN54283, SN54LS283, SN74283, SN74LS283 4-BIT BINARY FULL ADDERS WITH FAST CARRY

BULLETIN NO. DL-S 7411832, MARCH 1974

- Full-Carry Look-Ahead across the Four Bits
- Systems Achieve Partial Look-Ahead Performance with the Economy of Ripple Carry
- Supply Voltage and Ground on Corner Pins to Simplify P-C Board Layout

	TYPICAL /	ADD TIMES	TV01041 D014150
TYPE	TWO	TWO	TYPICAL POWER
1176	8-BIT	16-BIT	DISSIPATION PER
	WORDS	WORDS	4-BIT ADDER
'283	23 ns	43 ns	310 mW
'LS283	25 ns	45 ns	95 mW

description

The '283 and 'L283 adders are electrically and functionally identical to the '83A and 'LS83A respectively; only the arrangement of the terminals has been changed.

These improved full adders perform the addition of two 4-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit. These adders feature full internal look ahead across all four bits generating the carry term in ten nanoseconds typically. This provides the system designer with partial look-ahead performance at the economy and reduced package count of a ripple-carry implementation.

The adder logic, including the carry, is implemented in its true form meaning that the end-around carry can be accomplished without the need for logic or level inversion.

Designed for medium-speed applications, the circuits utilize transistor-transistor logic that is compatible with most other TTL families and other saturated low-level logic families.

function table and schematics of inputs and outputs

Same as SN5483A/SN7483A and SN54LS83A/SN74LS83A, see pages S-115 and S-116.

SN54283, SN54LS283 . . . J OR W PACKAGE SN74283, SN74LS283 . . . J OR N PACKAGE (TOP VIEW)

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	•	٠	•	٠	٠	•	•			٠	•	•	•	•												7	V
Input voltage: '283	•	•	•	•	•	•					•															5.5	V
LS283																										7	v
Interemitter voltage (see Note 2)																	_	_								55	v
Operating free-air temperature rang	e:	SN	154	28	3,	S۱	154	LS	283													-5	55°	c.	to	125°	°C
		SN	174	28	3,	S١	174	LS2	283						_	_	_	_	_				c	۱°۲	. **	n 70°	o.
Storage temperature range		•																				-6	i5°	C i	to	150°	,Ċ

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

This is the voltage between two emitters of a multiple-emitter transistor. This rating applies for the '283 only between the following pairs: A1 and B1, A2 and B2, A3 and B3, A4 and B4.

TYPES SN54283, SN74283 4-BIT BINARY FULL ADDERS WITH FAST CARRY

recommended operating conditions

			SN5428	3	-	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	וואטן
Supply Voltage, VCC		4.5	5	5.5	4.75	5	5.25	٧
	Any output except C4			-800			-800	μА
High-level output current, IOH	Output C4			-4 00			-400	μ.
	Any output except C4	i i		16			16	
Low-level output current, IQL	Output C4			8			8	mA
Operating free-air temperature, T _A		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				t	:	SN5428	3		SN7428	3	UNIT
	PARAME	TER	TEST CO	NDITIONS [†]	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input volta	ge			2			2			V
VIL	Low-level input volta	ge					0.8			0.8	\ \
VI	Input clamp voltage		VCC = MIN.	I _I = -12 mA			-1.5			-1.5	V
VOH	High-level output vol	tage	V _{CC} = MIN, V _{IL} = 0.8 V,	•••	2.4	3.6	_	2.4	3.6		٧
VOL	Low-level output volt	age	V _{CC} = MIN, V _{IL} = 0.8 V,	•••		0.2	0.4		0.2	0.4	v
I _I	Input current at max input voltage	imum	V _{CC} = MAX,	V _I = 5.5 V			1			1	mA
Ιн	High-level input curre	ent	VCC = MAX,	V _I = 2.4 V			40			40	μА
I _I L	Low-level input curre	ent	V _{CC} = MAX,	V _I = 0.4 V			-1.6			-1.6	mA
	Short-circuit	Any output except C4	VCC = MAX		-20		-55	-18		-55	l mA
los	output current§	Output C4	1 VCC - IIIAA		-20		-70	-18		-70	
			V _{CC} = MAX,	All B low, other inputs at 4.5 V		56			56		mA.
lcc	Supply current		Outputs open	All inputs at 4.5 V		66	99		66	110	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
tPLH					14	21	Γ	
tPHL	C0	Any Σ	CL = 15 pF, RL = 400 Ω,		12	21	ns	
tPLH			See Note 3		16	24		
	A _i or B _i	Σ_{i}			16	24	ns	
tPHL					9	14		
tPLH	СО	C4	C _L = 15 pF, R _L = 780 Ω,		11	16	ns	
tPHL			See Note 3			9	14	
tPLH	A _i or B _i	C4			11	16	ns	
tPHL					- ''		Щ	

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Only one output should be shorted at a time.

[¶] tpLH ≡ Propagation delay time, low-to-high-level output
tpHL ≡ Propagation delay time, high-to-low-level output
NOTE 3: Load circuit and voltage waveforms are shown on page S-87.

TYPES SN54LS283, SN74LS283 4-BIT BINARY FULL ADDERS WITH FAST CARRY

recommended operating conditions

	S	N54LS2	83	SI	T		
	MIN	NOM	MAX	MIN	NOM	MAX	דואט
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			4			8	mA
Operating free-air temperature, TA	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMET	ren	To	ST CONDITIO	nuot	S	N54LS2	B3	SI	N74LS2	83	T
	PARAME	EN	16	SI CONDITIC	יפאונ	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input	voltage				2			2			V
VIL	Low-level input	voltage						0.7			0.8	V
VI	Input clamp vol	tage	V _{CC} = MIN,	I ₁ =18 mA				-1.5			-1.5	V
Voн	High-level outpu	t voltage	V _{CC} = MIN, I _{OH} = -400 μA		VIL = VIL max,	2.4	3.4		2.7	3.4		v
Voi	Low-level outpu	t waltons	V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 4 mA	•	0.25	0.4		0.25	0.4	<u> </u>
VOL	Low-level outpu	t voitage	VIL = VIL max		IOL = 8 mA					0.35	0.5	V
l ₁	Input current at maximum	Any A or B	V _{CC} = MAX,	V. = 7 V				0.2			0.2	
•	input voltage	CO	VCC - MAX,	V -/V				0.1			0.1	mA
ΙΉ	High-level	Any A or B	VCC = MAX,	V ₁ = 2.7 V				40			40	
'IH	input current	CO	VCC - MAA,	V1 - 2.7 V				20			20	μА
l _{IL}	Low-level	Any A or B	Vcc = MAX,	V _I = 0,4 V	-			-0.8			-0.8	
·1L	input current	CO	▼ CC = MAX,	V) - 0,4 V				-0.4			-0.4	mA
los	Shor-circuit out	out current §	V _{CC} = MAX			-6		-40	-5		-42	mA
					All inputs grounded		22	39		22	39	
Icc	Supply current		V _{CC} = MAX, Outputs open		All B low, other inputs at 4.5 V		19	34		19	34	mA
					All inputs at 4.5 V		19	34		19	34	

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
^t PLH	CO	A = 11 E				16	24	
tPHL.		Απу Σ				15	24	ns
^t PLH	A; or B;	Σ,	1			15	24	
^t PHL	7/0/5/	Σ_{i}	CL = 15 pF,	$R_L = 2 k\Omega$,		15	24	ns
tPLH	CO	C4	See Note 4			11	17	
tPHL .] ~~	<u>۷</u>				11	17	ns
^t PLH	A; or B;	C4	1			11	17	
tPHL		, ~	1			12	17	ns

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. §Only one output should be shorted at a time.

[¶] tp_H ≡ Propagation delay time, low-to-high-level output tpHL ≡ Propagation delay time, high-to-low-level output NOTE 4: Load circuit and voltage waveforms are shown on page S-88.

TTL MSI

TYPE SN74S287 1024-BIT PROGRAMMABLE READ-ONLY MEMORY WITH 3-STATE OUTPUTS

BULLETIN NO. DL-S 7412090, MARCH 1974-REVISED MAY 1974

- Provides the Versatility of Custom Designs Virtually "Off the Shelf"
- Applications Include:
 Microprogramming
 Look-up Tables for any Fixed Program
 Parallel Code Converters
 Sequence, Routine, and Subroutine Generators
 Random-Logic Function Generator
- Schottky-Clamped for High Performance:
 Chip-Select Access Time . . . 15 ns Typ
 Address Access Time . . . 40 ns Typ
- Interchangeable with Most Other 256-Wordby-4-Bit TTL PROMs/ROMs
- Bus-Driving, 3-State Outputs for Easy Word Expansion
- SN74S387 Is Functionally Equivalent but Has Open-Collector Outputs
- Fully Decoded, Low-Current P-N-P Inputs
- Fully Compatible with Most TTL and Other Saturated Low-Level Logic Families

SELECT ENABLE DATA OUTPUTS INPUT SSZ SST V1 V2 V3 V4 IS 15 14 13 12 11 10 9 H CS V1 V2 V3 V4 F E D A B C GND SELECT INPUTS positive logic: see description

J OR N PACKAGE

description

The SN74S287 is a field-programmable, 1024-bit, read-only memory organized as 256 words of four bits each. This monolithic, high-speed, Schottky-clamped TTL memory array is addressed in eight-bit binary with full on-chip decoding. Two overriding chip-select inputs are provided which, when either one or both are high, cause all four three-state outputs to assume a high-impedance state. This memory features p-n-p input transistors, which reduce the low-level-input-current requirement to a maximum of -0.25 milliampere, only one-eighth that of a Series 74S standard load. The organization is expandable with no additional output buffering, as shown in Table 1 below.

The address of a four-bit word is accomplished through the buffered binary select inputs in coincidence with a low level at both chip-select inputs. Where multiple 'S287 devices are used in a memory system, the chip-select inputs allow easy decoding of additional address bits.

Data can be electronically programmed, as desired, at any of the 1024 bit locations in accordance with the programming procedure specified. Prior to programming, the memory contains a high-logic-level output condition at all bit locations. The programming procedure open-circuits metal links which results in a low-logic-level output at the selected locations. The procedure is irreversible; once altered, the output for that bit is permanently programmed to provide a low logic level. Outputs never having been altered may later be programmed to supply a low-level output. Operation of the device within the recommended operating conditions will not alter the memory content.

The three-state output combines the convenience of an open-collector with the speed of a totem-pole output; it can be bus-connected to other similar outputs (see Table 1), yet it retains the fast-rise-time characteristic of the TTL totem-pole output.

TABLE 1
WORD CAPACITY vs 74S LOADS

SERIES 74S LOADS	MAX NO. OF COMBINED OUTPUTS‡	MAX NO. OF WORDS
1	129	33 024
2	128	32 768
3	120	30 720
4	80	20 480
5	40	10 240

‡Total number of outputs connected to each common bus

TYPE SN74S287 1024-BIT PROGRAMMABLE READ-ONLY MEMORY WITH 3-STATE OUTPUTS

step-by-step programming procedure

- Apply steady-state supply voltage (V_{CC} = 5 volts) and address the word to be programmed. See recommended conditions for programming on the following page.
- Verify that the bit location needs to be programmed. (With the load circuit of Figure A, an unprogrammed output will be at 2 volts or greater; a programmed output will be at 0.8 volts or less.) If a bit is already programmed, proceed to the next bit.
- 3. If the bit requires programming, disable the outputs by applying a high-logic-level voltage to both chip-select inputs.
- 4. Only one bit location is programmed at a time. Apply the load circuit of Figure A to the outputs not being programmed; then, ground the output to be programmed as a low logic level.
- 5. Ramp V_{CC} to 10.5 volts nominal. Maximum supply current required during programming is 750 mA.
- Apply a low-logic-level voltage to both chip-select inputs. This should occur between 10 microseconds and 1 millisecond after V_{CC} has reached its 10.5-volt level. See programming sequence of Figure B.
- 7. After the X program pulse time (1 millisecond) is reached, a high logic level is applied to the chip-select inputs to disable the outputs.
- Within 10 microseconds to 1 millisecond after the chip-select inputs reach a high logic level, VCC should be ramped down to 5 volts at which level verification can be accomplished.
- The chip-select inputs may be taken to a low logic level (to permit program verification) 10 microseconds or more after VCC reaches its steady-state value of 5 volts.
- 10. At a Y pulse duty cycle of 10% or less, repeat steps 1 through 8 for each output where a bit at this address is desired to be programmed.
 - NOTES: A) V_{CC} should be removed between program pulses to reduce total average power dissipation and resultant chip temperatures. See Figure B.
 - B) When verification indicates that a bit did not program (output is 2 volts or greater), repeat steps 3 through 9. If the bit did not program after the second application of a 1 millisecond X pulse, repeat steps 3 through 9 using an X pulse time of 50 to 75 millisconds. Regardless of the X duration, the total average pulse time of Y should be no more than 10% of the programming cycle.
 - C) The circuit shown in Figure A, or equivalent, is used to limit voltage to 6 volts or less for outputs not being programmed.

TYPE SN74S287 1024-BIT PROGRAMMABLE READ-ONLY MEMORY WITH 3-STATE OUTPUTS

recommended conditions for programming

		MIN	NOM	MAX	UNIT
Complementary March March 13	Steady state	4.75	5	5.25	
Supply voltage, V _{CC} (see Note 1)	Program pulse	10	10.5	11 [†]	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Innua velace	High level	2.4		5	
Input voltage	Low level	0		0.5	
Output conditions for programming	To a high logic level		See Figure /	4	
Output conditions for programming	To a low logic level		0	-0.8	V
Duration of programming pulse X (see Figure B)		1		75	ms

NOTE 1: All voltage values are with respect to network ground terminal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Notes 1 and 2)																7	٧
Input voltage																5.5	٧
Off-state output voltage																	
Operating free-air temperature range													C)°C	to	70	,C
Storage temperature range												-6	35°	C t	ю '	150	°C

NOTES: 1. Voltage values are with respect to network ground terminal.

recommended operating conditions

	MIN	NOM MAX UNI
Supply voltage, VCC	4.75	5 5.25 V
High-level output current, IOH		−6.5 mA
Low-level output current, IOL		16 mA
Operating free-air temperature, TA	0	70 °C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS†	MIN	TYP‡	MAX	UNIT
ViH	High-level input voltage		2			>
الم	Low-level input voltage				0.8	٧
VI	Input clamp voltage	V _{CC} = MIN, I _I = -18 mA			-1.2	>
Voн	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = MAX	2.4	3.2		>
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA			0.5	>
lоzн	Off-state output current, high-level voltage applied	V _{CC} = MAX, V _{IH} = 2 V, V _O = 2.4 V			50	μА
IOZL	Off-state output current, low-level voltage applied	V _{CC} = MAX, V _{IH} = 2 V, V _O = 0.5 V			-50	μΑ
I _I	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1	mA
ЧН	High-level input current	V _{CC} = MAX, V ₁ = 2.7 V			25	μА
1 ₁ L	Low-level input current	V _{CC} = MAX, V ₁ = 0.5 V			-250	μА
los	Short-circuit output current §	V _{CC} = MAX	-30		-100	mΑ
Icc	Supply current	V _{CC} = MAX, See Note 3		110	150	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[†]Absolute maximum rating

^{2.} This rating applies at all times except during programming.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

Not more than one output should be shorted at a time and duration of the short-circuit test should not exceed one second.

NOTE 3: I_{CC} is measured with outputs open and both \overline{CS} inputs grounded.

TYPE SN74S287 1024-BIT PROGRAMMABLE READ-ONLY **MEMORY WITH 3-STATE OUTPUTS**

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Address	. Any				42	60	ns
tPHL	Address		CL = 30 pF,	R _L = 400 Ω,		42	60	L'' '
tZH	Chip	A mu	See Notes 4 and 5			15	30	
^t ZL	select	Any	İ			15	30	ns
tHZ	Chip	Any	C _L =5pF,	See Notes 4 and 5		12		ns
tLZ	select	~my	CL-SPC,	300 NOTES 4 8110 5		12] ' ¹⁵

[¶]tpLH = propagation delay time, low-to-high-level output

NOTES: 4. When measuring times from address inputs, both CS1 and CS2 are low. When measuring times from chip-select inputs, the address inputs are held steady.

5. Load circuit and waveforms are shown on page S-87.

schematics of inputs and outputs

tpHL ≡ propagation delay time, high-to-low-level output

tZH ≡ output enable time to high level

tZL ≡ output enable time to low level

tHZ ≡ output disable time from high level

tLZ ≡ output disable time from low level

TYPES SN54S289, SN74S289 64-BIT RANDOM-ACCESS MEMORIES WITH OPEN-COLLECTOR OUTPUTS

BULLETIN NO. DL-S 7412108, MARCH 1974

SN54S289 . . . J OR W PACKAGE

 Schottky-Clamped for High-Speed Buffer/Scratchpad Memory Systems:

> Access from Chip-Enable Inputs . . . 12 ns Typ Access from Address Inputs . . . 25 ns Typ

- Open-Collector Outputs for Controlled-Impedance Bus Lines
- SN54S189, SN74S189 Are Functionally Equivalent But Have Three-State Outputs
- SN54S289 Is Guaranteed for Operation Over the Full Military Temperature Range of -55°C to 125°C
- Compatible with Most TTL and DTL Logic Circuits
- Chip-Enable Input Simplifies Word Expansion
- Direct Replacement for Intel 3101A in Most Applications

description

These 64-bit active-element memories are monolithic Schottky-clamped transistor-transistor logic (TTL) arrays organized as 16 words of four bits each. They are fully decoded and feature a chip-enable input to simplify decoding required to achieve the desired system organization. The memories feature p-n-p input transistors that reduce the low-level input current requirement to a maximum of -0.25 milliamperes, only one-eighth that of a Series 54S/74S standard load factor. The chip-enable circuitry is implemented with minimal delay times to compensate for added system decoding.

write cycle

The complement of the information at the data input is written into the selected location when both the chip-enable input and the read/write input are low. While the read/write input is low, the outputs are at a high logic level (off).

read cycle

374

The stored information (complement of information applied at the data inputs during the write cycle) is available at the outputs when the read/write input is high and the chip-enable input is low. When the chip-enable input is high, the outputs are high (off).

FUNCTION TABLE

i	INP	UTS			
FUNCTION	CHIP READ/ ENABLE WRITE		OUTPUT		
Write (Store Complement of Data)	٦	٦	н		
Read	L	Н	Stored Data		
Inhibit	Н	X	н		

H = high level, L = low level, X = irrelevant

TYPES SN54S289, SN74S289 64-BIT RANDOM-ACCESS MEMORIES WITH OPEN-COLLECTOR OUTPUTS

description (continued)

The fast access time of the 'S289 makes it particularly attractive for implementing high-performance memory functions requiring access times on the order of 25 nanoseconds. The unique functional capability of the 'S289 outputs being high during writing combined with the data inputs being inhibited during reading means that both data inputs and outputs can be connected to the data lines of a bus-organized system without the need for interface circuits.

functional block diagram

schematics of inputs and outputs

TYPES SN54S289, SN74S289 64-BIT RANDOM-ACCESS MEMORIES WITH OPEN-COLLECTOR OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)		 	 . .	7V
Input voltage		 	 	5.5 V
Off-state output voltage				
Operating free-air temperature range: SN	N54S289	 	 	-55°C to 125°C
SN	N74S289	 	 . .	0°C to 70°C
Storage temperature range				-65°C to 150°C

recommended operating conditions

		S	SN54S289			SN74S289		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, VOH	-			5.5			5.5	V
Low-level output current, IOL				16			16	mA
Width of write-enable pulse (read/write	Width of write-enable pulse (read/write low), tw				25	-		ns
Setup time, t _{setup} (see Figure 1)	Address to read/write	01			O†			
	Data to read/write	251			25↑			ns
	Chip enable to read/write	0†			O†			
Hold time, thold (see Figure 1)	Address from read/write	01			01			
	Data from read/write	01			0 †			ns
	Chip enable from read/write	0†			01			
Operating free-air temperature, TA		-55		125	0		70	°C

^{†‡}The arrow indicates the transition of the read/write input used for reference: † for the low-to-high transition, ‡ for the high-to-low transition.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	242445	TEST CONDITIONS†		SN54S289						
	PARAMETER			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage					0.8			0.8	٧
٧ı	Input clamp voltage	VCC = MIN,	I _I = -18 mA			-1.2			-1.2	V.
lan	High-level output current	V _{CC} = MIN, V _{IH} = 2 V,	V _{OH} = 2.4 V			40			40	
IOH	nigh-level output current	V _{IL} = 0.8 V	V _{OH} = 5.5 V			100			100	μΑ
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	•••			0.5			0.45	v
11	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5 V			1			1	mA
ΊΗ	High-level input current	V _{CC} = MAX,	V _I = 2.7 V			25			25	μΑ
ΊL	Low-level input current	V _{CC} = MAX,	V _I = 0.5 V			-250			-250	μА
Icc	Supply current	V _{CC} = MAX,	See Note 2		75	105		75	105	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

NOTES: 1. All voltage values are with respect to network ground terminal.

^{2.} ICC is measured with the read/write and chip-enable inputs grounded, all other inputs at 4.5 V, and the outputs open.

TYPES SN54S289, SN74S289 64-BIT RANDOM-ACCESS MEMORIES WITH OPEN-COLLECTOR OUTPUTS

switching characteristics over recommended operating ranges of VCC and TA (unless otherwise noted)

PARAMETER §		TEST COMPLETIONS	SN54S289			SN74S289			
		TEST CONDITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
tPLH	Access times from address	C _L = 30 pF, R _{L1} = 300 Ω, R _{L2} = 600 Ω, See Figure 1		25	50		25	35	ns
tPHL	Access times from address			25	50		25	35	, "s
ФLН	Disable time from chip enable			12	25		12	17	ns
tPHL	Enable time from chip enable			12	25		12	17	ns
tsR	Sense-recovery time			22	40		22	35	ns

 $[\]frac{1}{2}$ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

PARAMETER MEASUREMENT INFORMATION

'ACCESS TIME FROM ADDRESS INPUTS **VOLTAGE WAVEFORMS**

ACCESS (ENABLE) TIME AND DISABLE TIME FROM CHIP ENABLE **VOLTAGE WAVEFORMS**

NOTES: A. Waveform shown is for the output with internal conditions such that the output is low except when disabled.

- B. When measuring delay times from address inputs, the chip-enable input is low and the read/write input is high.
- C. When measuring delay times from chip-enable input, the address inputs are steady-state and the read/write input is high.
- D. Input waveforms are supplied by pulse generators having the following characteristics: $t_f < 2.5$ ns, $t_f < 2.5$ ns, PRR < 1 MHz, and $\rm Z_{out}\approx 50~\Omega.$

FIGURE 1

^{\$}tpLH 프 propagation delay time, low-to-high-level output; tpHL 프 propagation delay time, high-to-low-level output

tsp = recovery time for valid data after writing

MSI

TYPES SN54290, SN54293, SN54LS290, SN54LS293 SN74290, SN74293, SN74LS290, SN74LS293 **DECADE AND 4-BIT BINARY COUNTERS**

BULLETIN NO. DL-S 7411833, MARCH 1974

'290, 'LS290 . . . DECADE COUNTERS '293, 'LS293 . . . 4-BIT BINARY COUNTERS

GND and VCC on Corner Pins (Pins 7 and 14 Respectively)

description

The SN54290/SN74290, SN54LS290/SN74LS290, SN54293/SN74293, and SN54LS293/SN74LS293 counters are electrically and functionally identical to the SN5490A/SN7490A, SN54LS90/SN74LS90, SN5493A/SN7493A, and SN54LS93/SN74LS93, respectively. Only the arrangement of the terminals has been changed for the '290, 'LS290, '293, and 'LS293.

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divideby-five for the '290 and 'LS290 and divide-by-eight for the '293 and 'LS293.

All of these counters have a gated zero reset and the '290 and 'LS290 also have gated set-to-nine inputs for use in BCD nine's complement applications.

To use the maximum count length (decade or four-bit binary) of these counters, the B input is connected to the QA output. The input count pulses are applied to input A and the outputs are as described in the appropriate function table. A symmetrical divide-byten count can be obtained from the '290 and 'LS290 counters by connecting the QD output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output QA.

SN54290, SN54LS290 . . . J OR W PACKAGE SN74290, SN74LS290 . . . J OR N PACKAGE (TOP VIEW)

SN54293, SN54LS293...J OR W PACKAGE SN74293, SN74LS293 . . . J OR N PACKAGE (TOP VIEW)

NC-No internal connection

TYPES SN54290, SN54293, SN54LS290, SN54LS293, SN74290, SN74293, SN74LS290, SN74LS293 **DECADE AND 4-BIT BINARY COUNTERS**

'290, 'LS290 **BCD COUNT SEQUENCE**

(S	268 L	BTOP	MI	
COUNT		ουτ	PUT	
COOM	αD	ΩÇ	QB	٥
0	L	L	L	٦
1	L	L	L	н
2	L	L	н	L
3	L	L	н	н
4	L	н	L	L
5	L	н	L	н
6	L	н	н	L
7	L	н	н	н
8	н	L	L	L
9	н	L	L	н

'290, 'LS290 **BI-QUINARY (5-2)** (Can Nata D)

(5	ee N	ote	В)	
COUNT		OUT	PUT	
COOM	QA	QD	ac	QΒ
0	۲	L	L	L
1	L	L	L	Н
2	L	Ł	н	L
3	L	L	Н	н
4	L	н	L	L
5	н	L	L	L
6	н	L	L	Н
7	н	L	н	L
8	н	L	н	н
9	н	н	L	L

'290, 'LS290 RESET/COUNT FUNCTION TABLE

	RESET	INPUTS	3	Ī	OUT	PUT							
R ₀₍₁₎	R ₀₍₂₎	Rg(1)	R ₉₍₂₎	å	σc	QB	QA						
н	Н	L	×	٦	L	L	г						
н	н	×	L	L	L	L	L						
х	x	н	н	н	L	L	н						
х	L	×	L		co	UNT	.						
L	×	L	x	ŀ	co	UNT							
L	x	X	L	COUNT									
x	L.	L	X		co	UNT	•						

'293, 'LS293 COUNT SEQUENCE (See Note C)

			-,	
COUNT		CUI	PUT	
COUNT	å	QС	QB	Φ
0	٦	L	L	L
1	L	L	L	н
2	L	L	н	L
3	L	L	н	н
4	L	н	L	L
5	L	н	L	н
6		н	н	L
7	L	н	н	н
8	н	L	L	L
9	н	L	L	н
10	н	L	н	L
11	н	L	н	н
12	н	н	L	L
13	н	н	L	н
14	н	н	н	L
15	н	н	н	н

'293, 'LS293

RESET/COUNT FUNCTION TABLE υT

4	RESET	NPUTS		דטס	PUT	
A. Output Q _A is connected to input B for BCD count. B. Output Q _D is connected to input A for bi-quinary	R _{O(1)}	R ₀₍₂₎	αD	QC	QB	
count.	Н	Н	L	T	L	
C. Output Q _A is connected to input B.	L	×	i	COI		
D. H = high level. L = low level. X = irrelevent	J X	L	I	COL	JNT	

functional block diagrams

NOTES: A. Output QA is connected to input B for BCD count.

D. H = high level, L = low level, X = irrelevant

QA

Ĺ

The J and K inputs shown without connection are for reference only and are functionally at a high level.

S-288

TYPES SN54290, SN54293, SN74290, SN74293 DECADE AND 4-BIT BINARY COUNTERS

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																							7	' V	•
Input voltage											. •												5.5	į۷	1
Interemitter voltage (see Note 2)																							5.5	٧ ز	1
Operating free-air temperature range:		S٨	154	1'	Ci	rc	ui	ts											_	55	°C	to	125	ďC	;
	- 1	S١	174	4'	Ci	rc	ui	ts											٠		0-0	Ct	o /U) (j
Storage temperature range										_									_	65	°C	to	150	ľC	3

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

 This is the voltage between two emitters of a multiple-emitter translator. For these circuits, this rating applies between the two R₀ Inputs, and for the '290 circuit, it also applies between the two R₉ Inputs.

recommended operating conditions

			SN5	4,	4.75 S 0 0 1 0 1 15 30	SN74	•	
		0 0 15 30	NOM	MAX	MIN	NOM	MAX	דואט
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-800			-800	μΑ
Low-level output current, IOL				16			16	mA
ow-level output current, IOL	A input	0		32	0		32	MHz
Count frequency, f _{count}	B input	0		16	0		16	141112
	A input	15			15			j
Pulse width, tw	B input	30			30			ns
	Reset inputs	15			15			
Reset inactive-state setup time, t _{setup}		25			25			ns
Operating free-air temperature, TA		-55		125	0		70	°C

TYPES SN54290, SN54293, SN74290, SN74293 **DECADE AND 4-BIT BINARY COUNTERS**

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIO	nct.		′290			′293		1
	PAHAMETER		TEST CONDITIO	M2.	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.8			0.8	V
VΙ	Input clamp voltage	·	VCC = MIN, II = -1	2 mA			-1.5			-1.5	V
Voн	High-level output voltage		V _{CC} = MIN, V _{IH} = : V _{IL} = 0.8 V, I _{OH} = :		2.4	3.4		2.4	3.4		V
VOL	Low-level output voltage		V _{CC} = MIN, V _{IH} = 1 V _{IL} = 0.8 V, I _{OL} = 1			0,2	0.4		0.2	0.4	v
11	Input current at maximum inpu	t voltage	VCC = MAX, VI = 5.	5 V			1			1	mA
		Any reset					40			40	
ΉΗ	High-level input current	A input	VCC = MAX, V1 = 2.	4 V			80			80	μА
		B input					120			80	1
		Any reset					1.6			-1.6	
l _{IL}	High-level input current	A input	VCC = MAX, VI = 0.	4 V			-3.2			-3.2	mA
		B input					-4.8			-3.2	1
los	Short-circuit output current §	<u> </u>	V _{CC} = MAX	SN54'	-20		-57	-20		-57	^
-03				SN74'	-18		-57	-18		-57	mA
Icc	Supply current		VCC = MAX, See No	te 3		29	42		26	39	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER*	FROM	то	TEST CONDITIONS		'290			′293		
	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
f _{max}	Α	QΑ		32	42		32	42		
'max	В	α _B		16			16			MHz
^t PLH	А	0.			10	16		10	16	
TPHL		QA			12	18		12	18	ns
TPLH	A	. 05			32	48		46	70	
ФHL			C. 545 55		34	50		46	70	ns
tPLH .	В		- Cլ≖15 pF, Rլ=400 Ω,		10	16		10	16	
ФHL			See Note 4		14	21		14	21	ns
ФLН	В	Q _B	366 140(6.4		21	32		21	32	
ФНL					23	35		23	35	ns
ФLН	В	α _D			21	32		34	51	
†PHL					23	35		34	51	ns
^t PHL	Set-to-0	Any]		26	40		26	40	ns
tРL Н	Set-to-9	Q_A, Q_D]		20	30				
ФНL	0001000	QB, QC	1		26	24				ns

[♦]f_{max} = maximum count frequency

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

QA outputs are tested at IOL = 16 mA plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.

NOTE 3: ICC is measured with all outputs open, both Ro inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

tpLH ≡ propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

NOTE 4: Load circuit and voltage waveforms are the same as those shown for the '90A and '93A, page S-135.

TYPES SN54LS290, SN54LS293, SN74LS290, SN74LS293 DECADE AND 4-BIT BINARY COUNTERS

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 5)																				7 V
Input voltage: R inputs																				
A and B inputs .																				5.5 V
Operating free-air temperature range:	SN	541	LS2	90	. Si	N 54	4LS	329	3								-5	5°C	C to	125°C
	SN	741	LS2	90	, SI	N74	4LS	329	3									0,	'C t	o 70°C
Storage temperature range		_															-6	5°(C to	150°C

NOTE 5: Voltage values are with respect to network ground terminal.

recommended operating conditions

			N54LS			SN74LS	.	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNII
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	>
High-level output current, IOH				-400			-400	μА
Low-level output current, IOL				4			4	mA
ligh-level output current, IOH count frequency, f _{count}	A input	0		32	0		32	MHz
	B input	0		16	0		16	IVITIZ
	A input	15			15			
Pulse width, tw	B input	30			30			ns
• ••	Reset inputs	15			15			
Reset inactive-state setup time, t _{setup}		25			25			ns
		-55		125	0		70	°C

TYPES SN54LS290, SN54LS293, SN74LS290, SN74LS293 **DECADE AND 4-BIT BINARY COUNTERS**

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER						SN54LS	·		SN74LS		
	PARAMET	ER	TES	ST CONDITIONS	; '	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input	voltage				2			2			V
VIL	Low-level input							0.7			0.8	
VI	Input clamp vo		V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	V
	High-level outp		VCC = MIN, VIL = VIL max,	V _{IH} = 2 V,		2,5	3.4		2.7	3.4		٧
			V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 4 mA9		0.25	0.4		0.25	0.4	
VOL	Low-level outpo	ut voltage	VIL = VIL max		IOL = 8 mA¶					0.35	0.5	V
		Any reset	VCC = MAX,	V _I = 7 V				0.1			0.1	
_	Input current	A input						0.4			0.4	
Ч	at maximum	B of 'LS290	VCC = MAX,	V _I = 5.5 V			_	0.8			0.8	mA
	input voltage	B of 'LS293	i				-	0.4			0.4	
		Any reset				İ		20			20	
	High-level	A input	1					80	,		80] .
ЧН	input current	B of 'LS290	V _{CC} = MAX,	V _I = 2.7 V				160			160	μΑ
		B of 'LS293	1					80			80	
		Any reset						0.4			-0.4	
	Low-level	A input	1					-2.4			-2.4] .
ΊL	output current	B of 'LS290	V _{CC} = MAX,	V _I = 0.4 V				-3.2			-3.2	mA
		B of 'LS293						-1.6			-1.6	
los	Short-circuit ou	Itput current§	VCC = MAX			-6		-40	-5		-42	mA
1	Curali, augus		V MAY	See Nees 2	'LS290		9	15		9	15	
lcc	CC Supply current		V _{CC} = MAX,	See Note 3	'LS293		9	15		9	15	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER [¢]	FROM	то	TEST COMPLETIONS		'LS290)		'LS293		
TANAMETER.	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	דומט
•	Α	Q _A		32	42		32	42		
f _{max}	В	QΒ]	16			16			MHz
tPLH .	Α	0.]		10	16		10	16	
tPHL	<u> </u>	QA			12	18		12	18	ns
tPLH	Α	α _D	1		32	48		46	70	
^t PHL	,		C _L = 15 pF,		34	50		46	70	ns
tPLH .	В	ΩB	R _L = 400 Ω,		10	16		10	16	
ФНL			See Note 6		14	21		14	21	ns
tPLH	В	α _C	269 MOSS P		21	32		21	32	
^t PHL	L	٥			23	35		23	35	ns
^t PLH	В	α _D	Ì		21	32		34	51	
^t PHL					23	35		34	51	ns
ФНL	Set-to-0	Any			26	40		26	40	ns
tPLH .	Set-to-9	Q_A, Q_D			20	30				
₽HL	50.10-5	Q _B , Q _C			26	24			_	ns

[♦]f_{max} = maximum count frequency

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

QA outputs are tested at specified IOL plus the limit value of IIL for the B input. This permits driving the B input while maintaining full fan-out capability.

NOTE 3: ICC is measured with all outputs open, both Ro inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

tp_H = propagation delay time, low-to-high-lovel output

tpHL

propagation delay time, high-to-low-level output

NOTE 6: Load circuit and voltage waveforms are the same as those shown for the 'LS90 and 'LS93, page S-135.

TYPES SN54LS295A, SN74LS295A **4-BIT RIGHT-SHIFT LEFT-SHIFT REGISTERS** WITH 3-STATE OUTPUTS

BULLETIN NO. DL-S 7411780, MARCH 1974

- Three-State Versions of SN54LS95B and SN74LS95B Parallel-In, Parallel-Out Registers
- Schottky-Diode-Clamped Transistors
- Low Power Dissipation . . . 70 mW Typical (Enabled)
- Applications:

N-Bit Serial-To-Parallel Converter N-Bit Parallel-To-Serial Converter N-Bit Storage Register

description

These 4-bit registers feature parallel inputs, parallel outputs, and clock, serial, mode, and output control inputs. The registers have three modes of operation:

Parallel (broadside) load

Shift right (the direction QA toward QD)

Shift left (the direction QD toward QA)

SN54LS295A ... J OR W PACKAGE SN74LS295A...J OR N PACKAGE (TOP VIEW)

Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock input. During parallel loading, the entry of serial data is inhibited.

Shift right is accomplished when the mode control is low; shift left is accomplished when the mode control is high by connecting the output of each flip-flop to the parallel input of the previous flip-flop (QD to input C, etc.) and serial data is entered at input D.

When the output control is high, the normal logic levels of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a low logic level at the output control input. The outputs then present a high impedance and neither load nor drive the bus line; however, sequential operation of the registers is not affected.

The SN54LS295A is characterized for operation over the full military temperature range of -55°C to 125°C; the SN74LS295A is characterized for operation from 0°C to 70°C.

FUNCTION TABLE

		INPUTS						OUT	PUTS	
MODE	01.001	055141		PARA	LLEL			0-	0-	QD
CONTROL	CLOCK	SERIAL	A	В	С	D	Q _A	αB	αc	чь
н	Н	х	х	х	Х	Х	a_{A0}	Q _{B0}	QC0	σ_{D0}
н	1	×	а	b	С	d	а	b	c	d
н	1	×	QBt	$q_{C^{\dagger}}$	a_Dt	d	QBn	Q_{Cn}	σ_{Dn}	ď
L	н	×	×	X	X	X	Q _A 0	Q_{BO}	σ_{C0}	σ^{D0}
L	1	н	×	X	X	X	н	Q_{An}	Q_{Bn}	Q_{Cn}
L	1	L	×	×	Х	X	L	Q_{An}	Q_{Bn}	Q _{Cn}

When the output control is low, the outputs are disabled to the high-impedance state; however, sequential operation of the registers is not affected.

 $^{^\}dagger$ Shifting left requires external connection of Q_B to A, Q_C to B, and Q_D to C. Serial data is entered at input D.

H = high level (steady state), L = low level (steady state), X = irrelevant (any input, including transitions)

^{1 =} transition from high to low level.

a, b, c, d = the level of steady-state input at inputs A, B, C, or D, respectively.

QAO, QBO, QCO, QDO = the level of QA, QB, QC, or QD, respectively, before the indicated steady-state input conditions were established.

 Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = the level of Q_A , Q_B , Q_C , or Q_D , respectively, before the most recent 1 transition of the clock.

TYPES SN54LS295A, SN74LS295A 4-BIT RIGHT-SHIFT LEFT-SHIFT REGISTERS WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		 7 V
Operating free-air temperature range	: SN54LS295A	 125°C
	SN74LS295A	 to 70°C
Storage temperature range		 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN	54LS29	95A	SN	UNIT		
	F	MIN	NOM	MAX	MIN	NOM	MAX	וואטן
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-1			-2.6	mA
Low-level output current, IOL				4		-	8	mA
Clock frequency, fclock		0		20	0		20	MHz
Width of clock pulse, tw(clock)		25			25			ns
Setup time, high-level or low-level data, t _{setup}		20			20			ns
Hold time, high-level or low-level data, thold		20			20			nş
Operating free-air temperature, TA		-55		125	0	_	70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TER TEST CONDITIONS					5A	SN	5A		
	TANAMETER	168	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT		
VIH	High-level input voltage			_	2			2			V
٦	Low-level input voltage						0.7			0.8	V
ا ا>	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA		i		-1.5			-1.5	V
VOH	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = MAX		2.4	3.4		2.4	3.1		v
VOL	Low-level output voltage	V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	
101		VIL = VIL max		IOL = 8 mA					0.35	0.5	٧
lozh	Off-state output current,	VCC = MAX,	VIL = VIL max								
·02H	high-level voltage applied	Vo = 2.7 V					20	İ		20	μА
1071	Off-state output current,	V _{CC} = MAX,	V _{1H} = 2 V,								
lozL	low-level voltage applied	V _O = 0.4 V					-20			-20	μА
11	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
ЧН	High-level input current	V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μА
III.	Low-level input current	V _{CC} = MAX,	V ₁ = 0.4 V				-0.4			-0.4	mA
los	Short-circuit output current §	V _{CC} = MAX			-6		-40	-5	· · · · ·	-42	mA
Icc	Supply current	V _{CC} = MAX,	See Note 2	Condition A		14	23		14	23	
-00		ACC - MMY	See Note 2	Condition B		15	25		15	25	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

Not more than one output should be shorted at a time.

NOTE 2: ICC is measured with the outputs open, the sorial input and mode control at 4.5 V, and the data inputs grounded under the following conditions:

A. Output control at 4.5 V and a momentary 3 V, then ground, applied to clock input.

B. Output control and clock input grounded.

TYPES SN54LS295A, SN74LS295A 4-BIT RIGHT-SHIFT LEFT-SHIFT REGISTERS WITH 3-STATE OUTPUTS

switching characteristics, VCC = 5 V, T_A = 25°C, R_L = 2 $k\Omega$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} Maximum clock frequency		20	28		MHz
tPLH Propagation delay time, low-to-high-level output	C 15 nF		40	60	ns
tPHL Propagation delay time, high-to-low-level output	C _L = 15 pF,		47	70	ns
tZH Output enable time to high level	See Note 3		15	25	ns
tZL Output enable time to low level			21	30	ns
tHZ Output disable time from high level	C _L = 5 pF,		39	60	ns
tLZ Output disable time from low level	See Note 3		32	50	ns

NOTE 3: Load circuit and voltage waveforms are shown on page S-88.

functional block diagram

schematics of inputs and outputs

TYPES SN54298, SN54LS298, SN74298, SN74LS298 QUADRUPLE 2-INPUT MULTIPLEXERS WITH STORAGE

BULLETIN NO. DL-S 7411747, MARCH 1974

 Selects One of Two 4-Bit Data Sources and Stores Data Synchronously with System Clock

Applications:

Dual Source for Operands and Constants in Arithmetic Processor; Can Release Processor Register Files for Acquiring New Data

Implement Separate Registers Capable of Parallel Exchange of Contents Yet Retain External Load Capability

Universal Type Register for Implementing Various Shift Patterns; Even Has Compound Left-Right Capabilities

description

These monolithic quadruple two-input multiplexers with storage provide essentially the equivalent functional capabilities of two separate MSI functions (SN54157/SN74157 or SN54LS157/SN74LS157 and SN54175/SN74175 or SN54LS175/SN74LS175) in a single 16-pin package.

When the word-select input is low, word 1 (A1, B1, C1, D1) is applies to the flip-flops. A high input to word select will cause the selection of word 2 (A2, B2, C2, D2). The selected word is clocked to the output terminals on the negative-going edge of the clock pulse.

Typical power dissipation is 195 milliwatts for the '298 and 65 milliwatts for the 'LS298. SN54298 and SN54LS298 are characterized for operation over the full military temperature range of -55°C to 125°C; SN74298 and SN74LS298 are characterized for operation from 0°C to 70°C.

FUNCTION TABLE

INF	UTS		OUT	PUTS	
WORD SELECT	CLOCK	QA	αB	αc	α _D
L	+	a1	b1	c1	d1
н	1	a2	b2	c2	d2
X	Н	Q _{A0}	σ_{B0}	σ_{C0}	σ_{D0}

H = high level (steady state)

L = low level (steady state)

X = irrelevant (any input, including transitions)

1 = transition from high to low level

a1, a2, etc. = the level of steady-state input at A1, A2, etc.

Q_{A0}, Q_{B0}, etc. = the level of Q_A, Q_B, etc. entered on the most-recent ↓ transition of the clock input.

SN54298, SN54LS298 . . . J OR W PACKAGE SN74298, SN74LS298 . . . J OR N PACKAGE

functional block diagram

- Dynamic Input activated by a transition from a high level to a low level

TYPES SN54298, SN54LS298, SN74298, SN74LS298 QUADRUPLE 2-INPUT MULTIPLEXERS WITH STORAGE

schematics of inputs and outputs

TYPES SN54298, SN74298 QUADRUPLE 2-INPUT MULTIPLEXERS WITH STORAGE

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)												 7 V
Input voltage												
Operating free-air temperature range: SN54298 SN74298												
Storage temperature									-	-	_	

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

							В	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNII
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-800		-	-800	μА
Low-level output current, IOL				16			16	mA
Width of clock pulse, high or low level, tw	20			20			ns	
Satur tima t	Data	15			15			
etup time, t _{setup} Word select					25			ns
Hold time, thold	Data	5			5			
Tiola time, thold	Word select	0			0			ns
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS†	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage		2			V
VIL	Low-level input voltage				0.8	V
٧ı	Input clamp voltage	V _{CC} = MIN, I ₁ = -12 mA			-1.5	V
Vон	High-level output voltage	V _{CC} = MIN, V _{HI} = 2 V, V _{IL} = 0.8 V, I _{OH} = -800 µ	A 2.4	3.2		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA			0.4	v
11	Input current at maximum input voltage	V _{CC} = MAX, V ₁ = 5.5 V			1	mA
Iн	High-level input current	V _{CC} = MAX, V ₁ = 2.4 V			40	μΑ
IL	Low-level input current	V _{CC} = MAX, V _I = 0.4 V			-1.6	mA
los	Short-circuit output current§	SN54298	-20		-57	
.03		V _{CC} = MAX SN74298	-18		-57	mA
Icc	Supply current	V _{CC} = MAX, See Note 2		39	65	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

tplH Propagation delay time, low-to-high-level output $C_L = 15 pF$, $R_L = 400 \Omega$, 18 27 tpHL Propagation delay time, high-to-low-level output See Note 3 21 32	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
TPHL Propagation delay time, high-to-low-level output See Note 3 21 32	tp_H Propagation delay time, low-to-high-level output	CL = 15 pF, RL = 400 Ω,		18	27	
	tphL Propagation delay time, high-to-low-level output	See Note 3		21	32	ns

NOTE 3: Load circuit and waveforms are shown on page S-87.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

NOTE 2: With all outputs open and all inputs except clock low, I_{CC} is measured after applying a momentary 4.5 V, followed by ground, to the clock input.

TYPES SN54LS298, SN74LS298 QUADRUPLE 2-INPUT MULTIPLEXERS WITH STORAGE

absolute maximum ratings over operating free-air t	tem	pe	rat	ur	e r	ang	je (ur	le	SS	ot	he	rv	vis	e ı	10	te	d)					
Supply voltage, V _{CC} (see Note 1)																							7 V
Input voltage								•		•	•	•		•	•			•	٠	٠,		٠	7 V
Operating free-air temperature range: SN54LS298		•							٠	•		•	•	•	٠				_!	55	,Č	to	125 C
SN74LS298																				- (0~(C to	70°C
Storage temperature range																			-	65	°C	to	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SI	N54LS2	98	SI	174LS2	98	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	5
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	>
High-level output current, IOH				-400			-400	μΑ
Low-level output current, IOL				4			8	mΑ
Width of clock pulse, high or low level, tw		20			20			ns
	Data	15			15			ns
Setup time, t _{setup}	Word select	25			25			
	Data	5			5			ns
Hold time, thold	Word select	0			0			
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					SI	154LS2	98	SI	174LS2	98	UNIT
	PARAMETER	TES	T CONDITIONS	'	MIN	TYP‡	MAX	MIN	TYP [‡]	MAX	01111
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	V
VI	Input clamp voltage	VCC = MIN,	I _I = -18 mA				-1.5			<u>–1.5</u>	<u></u>
VOH		V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -400 μA		2.5	3.4		2.7	3.4		٧
		V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4] ,
VOL	Low-level output voltage	VIL = VIL max		IOL = 8 mA					0.35	0.5	<u> </u>
ų.	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
	High-level input current	V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μА
ΉΗ	Low-level input current	VCC = MAX,	V ₁ = 0.4 V				-0.4			-0.4	mA
111	Short-circuit output current§	V _{CC} = MAX			-6		-40	-5		-42	mA
los lcc	Supply current	VCC = MAX,	See Note 2			13	21		13	21	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: With all outputs open and all inputs except clock low, I_{CC} is measured after applying a momentary 4.5 V, followed by ground, to the clock input.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	THE PROPERTY OF THE PARTY OF TH	MIN	TYP	MAX	UNIT
PARAMETER	TEST CONDITIONS	MILIA	111	IIIAA	0
tpLH Propagation delay time, low-to-high-level output	$C_1 = 15 pF$, $R_L = 2 k\Omega$,		18_	27	ns
TPLH Propagation delay time, tow-to-night total extent	See Note 4		21	32	'''
toul Propagation delay time, high-to-low-level output	000 11010 1				

NOTE 4: Load circuit and waveforms are shown on page S-88.

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$. § Note more than one output should be shorted at a time.

TYPES SN54298, SN54LS298, SN74298, SN74LS298 QUADRUPLE 2-INPUT MULTIPLEXERS WITH STORAGE

TYPICAL APPLICATION DATA

This versatile multiplexer/register can be connected to operate as a shift register that can shift N-places in a single clock pulse.

The following figure illustrates a BCD shift register that will shift an entire 4-bit BCD digit in one clock pulse.

When the word-select input is high and the registers are clocked, the contents of register 1 is transferred (shifted) to register 2 and etc. In effect, the BCD digits are shifted one position. In addition, this application retains a parallel-load capability which means that new BCD data can be entered in the entire register with one clock pulse. This arrangement can be modified to perform the shifting of binary data for any number of bit locations.

Another function that can be implemented with the '298 or 'LS298 is a register that can be designed specifically for supporting multiplier or division operations. The example below is a one place/two-place shift register.

When word select is low and the register is clocked, the outputs of the arithmetic/logic units (ALU's) are shifted one place. When word select is high and the registers are clocked, the data is shifted two places.

BULLETIN NO. DL-S 7412115, MARCH 1974

 Multiplexed Inputs/Outputs Provide Improved Bit Density

Four Modes of Operation:

Hold (Store)

Shift Left

Shift Right Load Data

- Operates with Outputs Enabled or at High Z
- 3-State Outputs Drive Bus Lines Directly
- Can Be Cascaded for N-Bit Word Lengths
- High Performance:

Access (Read) Time from Clock, Clear, and Read Enable Inputs . . . 12 ns Typical Guaranteed Shift (Clock) Frequency . . . 50MHz

Applications:

Stacked or Push-Down Registers, Buffer Storage, and Accumulator Registers

VCC SI SL QH' H/QH F/QF D/QD B/QB CLOCK SR SI SL QH' H/QH F/QF D/QD B/QB CK SR G G/QG E/QE C/QC A/QA QA' CLEAR GND OUTPUT CONTROLS

logic: see description and function table

DUAL-IN-LINE PACKAGE (TOP VIEW)

description

This Schottky TTL eight-bit universal register features multiplexed inputs/outputs to achieve full eight bit data handling in a single 20-pin package. Two function-select inputs and two output-control inputs can be used to choose the modes of operation listed in the function table.

Synchronous parallel loading is accomplished by taking both function-select lines, SO and S1, high. This places the three-state outputs in a high-impedance state, which permits data that is applied on the input/output lines to be clocked into the register. Reading out of the register can be accomplished while the outputs are enabled in any mode. A direct overriding input is provided to clear the register whether the outputs are enabled or off.

FUNCTION TABLE

			_	INPL	TS						IN	PUTS/C	OUTPU	TS			OUT	PUTS
MODE	CLEAR		CTION .ECT	CON.	TPUT	CLOCK			A/Q _A	B/QB	c/QC	D/QD	E/QE	F/Q _F	G/QG	н/он	QΑ,	ο _H ,
		S1	S0	Ğ1 [†]	Ğ2 [†]		SL	SR										
	L	×	L	L	L	х	х	X	L	L	L	L	L	L	L	L	L	L
Clear	ادا	L	×	اد	L	×	×	X	L	L	L_	L	L	L	L	L	L	L_
	H	L	L	L	L	×	×	×	Q _A 0	QBO	QC0	αpo	ŒΘ	QF0	q_{G0}	σ_{H0}	Q _A 0	σ^{H0}
Hold	н	x	х	ار	L	L	×	×	QAO	Q_{B0}	QC0	a_{D0}	a_{E0}	Q_{F0}	Q_{G0}	Ω H 0	Q _{A0}	σ _{H0}
	н	L	Н	1	L	1	×	Н	Н	QAn	QBn	QCn	QDn	QEn	QFn	QGn	Н	Q_{Gn}
Shift Right	н	اً	н	اد	L	1 +	x	L	L	QAn	QBn	QCn	Q_{Dn}	Q _{En}	QFn	α_{Gn}	L	α_{Gn}
	Н	H	L	L		1	Н	×	QBn	QCn	ΩDn	QEn	QFn	QGn	QHn	Н	Q_{Bn}	н
Shift Left	l ii	н	L	اً	L	l +	L	×	QΒn	QCn	QDn	α_{En}	Q_{Fn}	Q_{Gn}	Q_{Hn}	L	QBn	L
Load	Н	Н	Н	l x	×	1	X	×	а	ь	С	d	е	f	9	h	8	h

†When one or both output controls are high the eight input/output terminals are disabled to the high-impedance state; however, sequential operation or clearing of the register is not affected.

H = high level (steady state), L = low level (steady state), f = transition from low to high level, X = irrelevant (any input, including transitions)

QQ0. QB0...QH0 = the level of the respective internal Q outputs before the indicated steady-state input conditions were established.

 Q_{A0} , Q_{B0} ... Q_{H0} = the level of the respective internal Q outputs before the indicated steady-state input conditions who example Q_{An} , Q_{Bn} ... Q_{Hn} = the level of Q_{A} , Q_{B} ... Q_{Hn} , respectively before the most-recent \uparrow transition of the clock.

An. ABn ... AHn - the level of the steady-state input at inputs A through H, respectively, is loaded into the flip-flops while the flip-flop outputs are isolated from the input/output terminals.

functional block diagram

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .		_																						٠.					. 7	7 V
Input voltage																													5.5	ŝΥ
Off-state output voltage	•	٠	•	-									_																5.5	5 V
Operating free-air temperature range	٠.	•	٠	•	•	•	•	•	•	•	•	٠	•	•	•	•	Ť									_	O	°C	to 70)°C
Operating free-air temperature range Storage temperature	•	•	•	•	٠	٠	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	ee°	C +,	150	1°C
Storage temperature													•	•		•	•	•	٠	٠	•	•	٠	٠		_	UU	O 11	, , , ,	, 0

NOTES: 1. Voltage values are with respect to network ground terminal.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.75	5	5.25	>
	Q _A thru Q _H			-6.5	mA.
High-level output current, IOH	QA' or QH'			-0.5	1117
	Q _A thru Q _H			20	mA
Low-level output current, IOL	QA' or QH'			6	
Clock frequency, fclock		0		50	MHz
	Clock high	10			ns
Width of clock pulse, tw(clock)	Clock low	10			""
	Select	5t			
	High-level data [♦]	51			ns
Setup time, t _{setup}	Low-level data [♦]	51] ""
	Clear inactive-state	101			
	Select	10t			l ns
Hold time, thold	Data≎	51			
Operating free-sir temperature, TA		0		70	°c

OData includes the two serial inputs and the eight input/output data lines.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CO	NDITIONS†	MIŅ	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			V
VIL	Low-level input voltage						0.8	V
VI	Input clamp voltage		V _{CC} = MIN,	I _I = -18 mA			-1.2	V
Voн	High-level output voltage	Q _A thru Q _H	V _{CC} = MIN,	V _{IH} = 2 V,	2.4	3.2		V
VOH	right-level output voltage	QA' or QH'	V _{IL} = 0.8 V,	IOH = MAX	2.7	3.4		,
VOL	Low-level output voltage	-	V _{CC} = MIN, V _{IL} = 0.8 V,	VIH = 2 V,			0.5	V
1	Off-state output current,		V _{CC} = MAX,	V _{IH} = 2 V,	1			
IOZH	high-level voltage applied	Q _A thru Q _H	V _O = 2.4 V		ł		100	μA
lan.	Off-state output current,	0. 110	V _{CC} = MAX,	V _{IH} = 2 V,				
IOZL	low-level voltage applied	Q _A thru Q _H	V _O = 0.5 V		1		-250	μΑ
l _I	Input current at maximum input voltage		V _{CC} = MAX,	V _I = 5.5 V			1	mA
¹ 1H	High-level input current		V _{CC} = MAX,	V _I = 2.7 V			50	μА
ЧL	Low-level input current	Clock or clear	V	V - 0.5.V			-2	mA
-11		Any other	V _{CC} = MAX,	V _I = 0.5 V			-250	μА
los	Short-circuit output current §	Q _A thru Q _H	VasaMAY		-40		-100	
.03		QA' or QH'	V _{CC} = MAX		-20		-100	mA
Icc	Supply current		V _{CC} = MAX			150	240	mΑ

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

swtiching characteristics, VCC = 5 V, $T_A = 25^{\circ}C$

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDI	TIONS	MIN	ТҮР	MAX	UNIT
f _{max}			See Note 2	-	50	70		. ns
tPLH .	Clock	0	0 - 15 - 5	410		15		
^t PHL	Olock	QA, ot GH,		. = 1 kΩ,		15		ns
^t PHL	Clear	QA, or QH,	See Note 2			15		ns
tPLH .	Clock	Q _A thru Q _H				15		
tPHL.		dy through	0 - 50 - 5	200 0		15		ns
tPHL	Clear	Q _A thru Q _H	C _L = 50 pF, R _L See Note 2	= 280 Ω,		15		ns
^t ZH	G1, G2	Q _A thru Q _H	See Note 2			10		
tZL	01, 02	QA min QH				12		ns
tHZ	G1, G2	Q _A thru Q _H	CL=5pF, RL	≃ 280 Ω,		8		
†LZ	01, 02	A IIII GH	See Note 2			8		ns

 $[\]P_{\mathsf{f_{max}}} \equiv \mathsf{maximum} \ \mathsf{clock} \ \mathsf{frequency}$

NOTE 2: For testing f_{max}, all outputs are loaded simultaneously, each with C_L and R_L as specified for the propagation times. See load circuits and waveforms on page S-87.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

Not more than one output should be shorted at a time and duration of the short-circuit test should not exceed one second.

tp_H ≡ propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

tZH ≡ output enable time to high level tZL ≡ output enable time to low level

tHZ ≡ output disable time from high level

 $t_{LZ} \equiv$ output disable time from low level

- Dual 8-Line-to-1-Line Multiplexer That Can Replace Two SN54151, SN74151 Multiplexers in Some Applications
- Four Common Data Lines Permit Simultaneous Interdigitation with Parallel-to-Serial Conversion
- 4-Bit Organization Is Easily Adapted to Handle Binary or BCD
- Three-State Outputs Can Be Connected Directly to System Bus Lines
- Enable Input Controls Impedance Levels of the
 12 Data Inputs and Two Outputs

description

The SN74351 comprises two 8-line-to-1-line data selectors/multiplexers with full decoding on one monolithic chip. Symmetrically switching, complementary decode generators minimize decoder skew during changes at the select inputs and ensure that potentially erroneous effects are minimized at the data outputs. Four data inputs are exclusive to each multiplexer and four are common to both. A common enable input is provided which, when high, causes both outputs to assume the high-impedance (off) state and simultaneously diverts the majority of the input current, which reduces the load significantly on the data input drivers. A low logic level at the enable input activates both outputs so that each will assume the complement of the level of the selected input.

FUNCTION TABLE

INF	ידעיי	3		CUTI	STI IS
ENABLE	SE	LEC	т:		0.0
Ğ	С	В	Α	1Y	2Y
Н	Х	Х	х	Z	z
L	L	L	L	1D0	2D0
L	L	L	н	1D1	2D1
L	L	н	L	1D2	2D2
L	L	Н	н	1D3	2D3
L	н	L	L	<u>D4</u>	D4
L	н	L	Н	D5	D5
L	н	Н	L	D6	D6
L	н	Н	н	D7	D7

H = high level, L = low level, X = irrelovant

Z = high impedance (off)

1D0, 1D1,...D7 = The complement of the level of the respective D input

functional block diagram

TYPE SN74351 DUAL DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUTS

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .	•																						7	7 V	,
Input voltage	•																						5.5	5 V	
Operating free-air temperature range	•			•																- (o°c	C to	o 70)°C	:
Storage temperature range	•	•	•	•	•	•	•	•	•		•	•							(65°	,C	to	150)°C	;

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

Constant to the	IAIIIA	IACIAI	MAX	UNII
Supply voltage, VCC	4.75	5	5.25	V
High-level output current, IOH		_	-2	
Low-level output current, IOL				
Operating free air temperature T.	_		-	mΑ
Operating free-air temperature, T _A	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CO	NDITIONS	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			V
VIL	Low-level input voltage				 		0.8	Ť
٧ı	Input clamp voltage		VCC = MIN,	I _I = -12 mA	 		-1.5	₩
VOH	High-level output voltage		VCC = MIN,		2.4	3.4	1.5	v
VOL	Low-level output voltage		VCC = MIN,			0.2	0.4	v
lоzн	Off-state output current, high-level volt	age applied	V _{CC} = MAX, V _O = 2.4 V	V _{IH} = 2 V,			40	μА
lozL	Off state output current, low level volta	ge applied	V _{CC} = MAX, V _O = 0.4 V	V _{IH} = 2 V,			-40	μА
11	Input current at maximum input voltage	9	VCC = MAX,	V _I = 5.5 V			1	mA
ΙΗ	High-level input current	Enable, any select, any D0 thru D3	V _{CC} = MAX,				40	μΑ
		D4 thru D7					80	
		Enable, any select, any D0 thru D3	V _{CC} = MAX,	V _I = 0.4 V			-1.6	mA
lıL.	Low-level input current	D4 thru D7]				-3.2	
		Any D	V _{CC} = MAX, V _{I(enable)} = 2	•			-40	μΑ
los	Short-circuit output current§		VCC = MAX		-18	-	-55	mA
Icc	Supply current		VCC = MAX,	See Note 2	_	44	66	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

NOTE 2: ICC is measured with the enable input grounded, other inputs and both outputs open.

TYPE SN74351 DUAL DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUTS

PARAMETER [¶]	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP MAX	UNIT
tPLH	A, B, or C			20	ns
tPHL.	7 4, 5, 6, 6	·		20	""3
tРLН	A D		CL = 50 pF, RL = 400 Ω,	10	ns
tPHL	Any D	'	See Note 3	10	""
†ZH	Ğ		7	13	ns
tZL.	7 6	Y	· I	20	_ '' `
tHZ	-		CL=5pF, RL=400 Ω	. 6	ns
tLZ	– G	Ψ	See Note 3	10	

 $[\]P_{tpLH} \equiv$ propagation delay time, low-to-high-level output

NOTE 3: Load circuit and voltage waveforms are shown on page S-87.

TYPICAL APPLICATION DATA

This application illustrates how common data can be interdigitated onto two serial data lines. It is useful for transmitting prefixes, suffixes, addresses, or similar functions.

tpHL ≅ propagation delay time, high-to-low-level output tZH ≅ output enable time to high level

tZL ≡ output enable time to low level

tHZ ≡ output disable time from high level

tLZ ≡ output disable time from low level

It cannot assume any responsibility for any circuits shown

BULLETIN NO. DL-S 7412083, MARCH 1974

- Full Schottky Clamping for High Performance: Address Access Time . . . 45 ns Typical Chip Select Time . . . 15 ns Typical Power Dissipation . . . 0.25 mW/Bit Typical
- 'S370 Is Organized as 512 Words by 4 Bits
- 'S371 Is Organized as 256 Words by 8 Bits and Is in a 20-Pin Package for 0.300-Inch **Row Spacing**
- Ideal for Microprogramming, Reference Tables, and High-Speed Code Converters
- **Bus-Driving 3-State Outputs Are Easily** Expandable
- SN54S270/SN74S270 and SN54S271 Are **Functionally Equivalent But Have Open-Collector Outputs**

description

The SN54S370, SN74S370, and SN74S371 are 2048-bit monolithic custom-programmed read-only memories. The 'S370 is organized as 512 words of four bits each and the 'S371 is organized as 256 words of eight bits each. These Schottkyclamped, high-speed transistor-transistor-logic (TTL) memory arrays are addressed in straight binary with full on-chip decoding. Overriding chip-select inputs are provided which, when one or more is taken high, will inhibit the function causing all outputs to be in a high-impedance state that neither loads nor drives the bus lines. Data, as specified by the customer, are permanently programmed into the monolithic structure for the 2048 bit locations.

The memory matrix consists of 32 transistors comprising the X plane with each transistor having 64 emitters. Each of the 64 bit lines that comprise the Y plane through the matrix is connected to one emitter from each of the 32 transistors. The address of a word is accomplished through the buffered binary select inputs coincident with low-level voltages at all chip-select inputs. Five binary select inputs are decoded internally in the X plane to select one of the 32 matrix transistors. In the 'S370 the four remaining select inputs are internally decoded in the Y plane to SN54S370 ... J PACKAGE SN74S370 ... J OR N PACKAGE (TOP VIEW)

SN74S371...N PACKAGE (TOP VIEW)

select four of the 64 bit lines. These selected bit lines appear as a four-bit word output. In the 'S371 the three remaining select inputs are internally decoded in the Y plane to select eight of the 64 bit lines. These selected bit lines appear as an eight-bit word output.

The customer can specify the output logic level desired at each of the 2048 bit locations by completing the supplementary ordering data and a set of data cards punched in accordance with the data format shown under ordering instructions. Upon receipt of the order, Texas Instruments will assign a special device number to the device programmed according to the customer's order. The completed device will be marked with the TI special device number. It is important that the customer specify not only the output levels desired at all 2048 bit locations, but also the other information requested.

SN54S370/SN74S370 functional block diagram and word selection

WORD-SELECT TABLE													
WORD				IN	PU	ŤS							
WURD	1	Н	G	F	E	D	С	В	7				
0	L	L	L	L	L	L	L	L	Г				
1	L	L	L	L	L	L	L	L	н				
2	L	Ł	L	L	L	L,	L	Н	L				
3	<u>LLLLLLLH</u>												
4	L	L	L	L	L	L	Н	L	L				
5	L	L	L	L	L	L	Н	L	н				
6	L	L	L	L	L	L	Н	Н	L				
7	L	L	L.	L	L	L	H	Н	н				
8	L	L	L	L	L	L	L						
	,	Woi	ds !	9 th	ru !	506	on	nitte	ed				
507	н	н	Н	H	н	Н	L	Н	Н				
508	н	Н	Н	Н	Н	Н	Н	L	L				
509	н	Н	н	Н	Н	Н	Н	L	Н				
510	н	нннн			Н	н	Н	Н	L				
511	н	Н	Н	Н	Н	Н	Н	Н	Н				

Word selection is accomplished in a conventional 9-bit positive-logic binary code with the A select input being the least-significant bit progressing alphabetically through the select inputs to I which is the most significant bit.

SN74S371 functional block diagram and word selection

WORD-SELECT TABLE															
:#OBB		INPUTS													
WORD	Н	G	F	E	D	С	В	Α							
0	L	L	L	L	L	L	L	٦							
1	L	L	L	L	L	L	L	н							
2	L	L	L	L	L	L	Н	L							
3	L	L	L	L	L	L	Н	н							
4	L	L	L	L	L	Н	L	L							
5	L	L	L	L	L	Н	L	н							
6	L	L	L	L	L	Н	Н	L							
7	ᆫ	L	L	L	L	Н	Η.	н							
8	L	L	L	L	Н	L	L	Г							
1	w	ords	9 1	thru	25	О о	mit	ted							
251	н	н	Н	н	H_	L	Н	н							
252	Н	Н	Н	Н	Н	Н	L	L							
253	н	Н	н	Н	н	Н	L	Н							
254	н	Н	н	Н	Н	Н	Н	L							
255	lн	Н	Н	Н	Н	Н	Н	Н							

Word selection is accomplished in a conventional 8-bit positive-logic binary code with the A select input being the least-significant bit progressing alphabetically through the select inputs to H which is the most-significant bit.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	7 V
Input voltage	5.5 V
Off-state output voltage	5.5 V
Operating free-air temperature range: SN54S370	25°C
SN74S370, SN74S371	70°C
Storage temperature range	50°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SI	N54S37	0	S	UNIT		
	MI	N	NOM	MAX	MIN	NOM	MAX	i
Supply voltage, V _{CC}	4.	.5	5	5.5	4.75	5	5.25	v
High-level output current, IOH				-2			-6.5	mA
Low-level output current, IOL				12			15	mA
Operating free-air temperature, TA	-5	-55 125					70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS†	8	N54S37	70	S	UNIT		
				MIN	TYP‡	MAX	MIN	TYP‡	MAX	1
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage					0.8			0.8	V
V _I	Input clamp voltage	V _{CC} = MIN,	l ₁ = −18 mA		-	-1.2			-1.2	V
Voн	High-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	IOH = MAX	2.4			2.4			v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V	I _{OL} = 12 mA			0.5			0.5	v
loz	Off-state (high-impedance state) output current	V _{CC} = MAX, V V _{IH} = 2 V	Vo = 2.4 V			50 -50			50	
11	Input current at maximum input voltage	VCC = MAX,				-50			-50	mA
IIН	High-level input current	VCC = MAX, V				25			25	
ΊL	Low-level input current	VCC = MAX, Y				-0.25			-0.25	_
los	Short-circuit output current§	V _{CC} = MAX	1, 0,0	-30		-100	-30		-100	
Icc	Supply current	VCC = MAX, S	See Note 2		105	155		105	155	
co	Off-state output capacitance	VCC = 5 V, V			6.5			6.5	- 133	pF

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER		TEST CONDITIONS	MIN TY	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output	Access times		45		1
tp_H Propagation delay time, high-to-low-level output	from address select	CL = 30 pF,	45		ns
tZH Output enable time to high level	Access times from	R _L = 400 Ω,	15		
tZL Output enable time to low level	chip select	See Figure 1	15		ns
tHZ Output disable time from high level	Disable times from		10		
tLZ Output disable time from low level	chip select	$R_L = 400 \Omega$, See Figure 1	10		ns

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

§Not more than one output should be shorted at a time and duration of the short-circuit test should not exceed one second.

NOTE 2: With outputs open and CS input(s) grounded, ICC is measured first by selecting a word that contains the maximum number of programmed high-level outputs; then by selecting a word that contains the maximum number of programmed low-level outputs.

PARAMETER MEASUREMENT INFORMATION

C_L includes probe and jig capacitance. All diodes are 1N3064. LOAD CIRCUIT ADDRESS INPUTS (See Note B) 1.5 V 1.5 V 1.5 V 0.4 VOH OUTPUT (S1 and S2 closed)

ACCESS TIME FROM ADDRESS INPUTS VOLTAGE WAVEFORMS

ACCESS (ENABLE) TIME AND DISABLE TIME FROM CHIP SELECT VOLTAGE WAVEFORMS

FIGURE 1-SWITCHING TIMES OF 'S370 AND 'S371

NOTES: A. Waveform 1 is for the output with internal conditions such that the output is low except when disabled. Waveform 2 is for the output with internal conditions such that the output is high except when disabled.

- B. When measuring delay times from address inputs, the chip-select inputs are low.
- C. When measuring delay times from chip-select inputs, the address inputs are steady-state.
- D. Input waveforms are supplied by pulse generators having the following characteristics: $t_r \le 2.5$ ns, $t_f \le 2.5$ ns, PRR ≤ 1 MHz, and $Z_{out} \approx 50 \ \Omega$.

schematics of inputs and outputs

ordering instructions

The ordering instructions for the SN54S270, SN74S270, and SN74S271 also apply for the SN54S370, SN74S370, and SN74S371, respectively. See pages S-258 and S-259.

Il cannot assume any responsibility for any circuits shown

TYPE SN74S381 ARITHMETIC LOGIC UNIT/FUNCTION GENERATOR

BULLETIN NO. DL-S 7412124, MARCH 1974

PIN DESIGNATIONS

DESIGNATION	PIN NOS.	FUNCTION
A3, A2, A1, A0	17, 19, 1, 3	WORD A INPUTS
B3, B2, B1, B0	16, 18, 2, 4	WORD B INPUTS
62 61 60	7.6.5	FUNCTION-SELECT
S2, S1, S0	7, 6, 5	INPUTS
		CARRY INPUT FOR
	15	ADDITION, INVERTED
Cn	15	CARRY INPUT FOR
		SUBTRACTION
F3, F2, F1, F0	12, 11, 9, 8	FUNCTION OUTPUTS
	14	INVERTED CARRY
r	14	PROPAGATE OUTPUT
G	13	INVERTED CARRY
	13	GENERATE OUTPUT
Vcc	20	SUPPLY VOLTAGE
GND	10	GROUND

- A Fully Parallel 4-Bit ALU in 20-Pin Package for 0.300-Inch Row Spacing
- Ideally Suited for High-Density Economical Processors
- Parallel Inputs and Outputs and Full Look-Ahead Provide System Flexibility
- Arithmetic and Logic Operations Selected Specifically to Simplify System Implementation:

A Minus B
B Minus A
A Plus B
and Five Other Functions

 Schottky-Clamped for High Performance 16-Bit Add Time . . . 29 ns Typ Using Look-Ahead
 32-Bit Add Time . . . 34 ns Typ Using Look-Ahead

DUAL-IN-LINE PACKAGE (TOP VIEW) OUTPUTS Ğ F3 F2 20 19 12 IJ 18 15 14 13 12 11 CUTPUTS logic: see function table

FUNCTION TABLE

SEI	ECT	ON	ARITHMETIC/LOGIC
\$2	S1	SO	OPERATION
L	L	L	CLEAR
L	L	Н	B MINUS A
L	Н	L	A MINUS B
L	Н	н	A PLUS B
н	L	L	A⊕B
H	L	н	A + B
н	Н	L	AB
н	Н	н	PRESET

H = high level, L = low level

description

The SN74S381 is a Schottky TTL arithmetic logic unit (ALU)/function generator that performs eight binary arithmetic/logic operations on two 4-bit words as shown in the function table. These operations are selected by the three function-select lines (S0, S1, S2). A full carry look-ahead circuit is provided for fast, simultaneous carry generation by means of two cascade outputs (P̄ and Ḡ) for the four bits in the package. The method of cascading SN54182/SN74182 or SN54S182/SN74S182 look-ahead carry generators with these ALU's to provide multi-level full carry look-ahead is illustrated under typical applications data for the '182 and 'S182. The typical addition times shown above illustrate the short delay time required for addition of longer words when full look-ahead is employed. The exclusive-OR, AND, or OR function of two Boolean variables is provided without the use of external circuitry. Also, the outputs can be either cleared (low) or preset (high) as desired.

TYPE SN74S381 ARITHMETIC LOGIC UNIT/FUNCTION GENERATOR

functional block diagram and schematics of inputs and outputs

TYPE SN74S381 ARITHMETIC LOGIC UNIT/FUNCTION GENERATOR

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (See Note 1)																				7	٧
Input voltage																					
Interemitter voltage (See Note 2)																				5.5	٧
Operating free-air temperature range																	0	°C	to	, 70°	С
Storage free-air temperature range		_	_	_	_		_									6	5°	C t	0	150°	С

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter translator. For this circuit, this rating applies to each A input in conjunction with its respective B input; for example A0 with B0, etc.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	v
High-level output current, IOH			-1	mA
Low-level output current, IOL			20	mA
Operating free-air temperature, TA	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS†	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage			2			V
VIL	Low-level input voltage					0.8	V
٧į	Input clamp voltage		VCC = MIN, II = -18 mA			-1.2	V
Voн	High-level output voltage		V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -1 mA	2.7	3.4		v
VOL	Low-level output voltage		V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 20 mA			0.5	v
l _l	Input current at maximum input voltage	_	V _{CC} = MAX, V ₁ = 5.5 V			1	mA
Ιн	High-level input current	Any S input All others	V _{CC} = MAX, V _I = 2.4 V			50 200	μА
liL.	Low-level input current	Any S input All others	V _{CC} = MAX, V _I = 0.4 V			-2 -6	mA
los	Short-circuit output current §		V _{CC} = MAX	-40		-100	mA
Icc	Supply current		V _{CC} = MAX		105	160	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, $T_A = 25^{\circ}C$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP MAX	UNIT			
tPLH		Any F		11				
tPHL .	C _n	Any F		11	ns			
tPLH_	Any A or B	G		13	1			
tPHL	Ally A Of B	١		13	ns			
tPLH	Any A or B	P	CL=15pF, RL=280Ω,	11	1			
tPHL_	Ally A OI B		See Note 3	11	ns			
tPLH .	A. o. B.	A. c. P.	A _i or B _i F _i					
tPHL.	A) Or B)	<u> </u>		20	ns			
tPLH .	Any S	Any	7	28				
^t PHL		28	ns					

 $[\]P_{tpLH} \equiv$ propagation delay time, low-to-high-level output

S-314

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

tpHL = propagation delay time, high-to-low-level output

NOTE 3: Load circuit and voltage waveforms are shown on page S-87.

TYPES SN54LS386, SN74LS386 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

BULLETIN NO. DL-S 7412118, MARCH 1974

SN54LS386 ... J OR W PACKAGE SN74LS386 ... J OR N PACKAGE (TOP VIEW)

- Electrically Identical to SN54LS86/SN74LS86
- Mechanically Identical to SN54L86/SN74L86
- Total Average Propagation Delay Times . . . 10 ns
- Typical Total Power Dissipation . . . 30.5 mW

FUNCTION TABLE (EACH GATE)

INP	UTS_	OUTPUT
Α	В	001701
L	L	L
L	н	н
н	L	н
н	Н] [

H = high level

L = low level

schematics of inputs and outputs

TYPES SN54LS386, SN74LS386 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)												7 '	٧
Input voltage													
Operating free-air temperature range:	SN54LS386									-55°	'C to	125°	С
	SN74LS386									. ()°C 1	:o 70°	С
Storage temperature range		 								-65°	C to	150°	C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	Si	N54LS3	86	SI	UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			4			8	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS†	S	N54LS3	86	S]		
	- ANAMETER	TEST CONDITIONS.	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.7			0.8	V
Vi	Input clamp voltage	VCC = MIN, II = -18 mA	1		-1.5			-1.5	v
v _{он}	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = V _{IL} max, I _{OH} = -400 µ/	2.5	3.4		2.7	3.4		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = V _{IL} max, I _{OL} = MAX		0.25	0.4		0.35	0.5	v
lj	Input current at maximum input voltage	VCC = MAX, VI = 7 V	Ť		0.2			0.2	mA
Ιн	High-level input current	V _{CC} = MAX, V _I = 2.7 V			40			40	μА
IIL	Low-level input current	V _{CC} = MAX, V _I = 0.4 V			-0.6			-0.6	mA
los	Short-circuit output current §	V _{CC} = MAX	-6	_	-40	-5		-42	mA
Icc	Supply current	V _{CC} = MAX, See Note 2	1	6.1	10		6.1	10	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: I_{CC} is measured with the inputs grounded and the outputs open.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER¶	FROM (INPUT)	TEST CONDI	MIN	TYP	MAX	UNIT	
tPLH	A or B	Oshor in and law	0 - 45 - 5		10	17	
^t PHL	A 01 B	Other input low			10	17	ns
tPLH	A or B	Other input high	RL = 2 kΩ,		10	17	
tPHL		Other input night s	See Mote 3		10	17	ns

[¶]tp_H ≅ propagation delay time, low-to-high-level output

NOTE 3: Load circuit and voltage waveforms are shown on page S-88.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

tpHL = propagation delay time, high-to-low-level output

TYPE SN74S387 1024-BIT PROGRAMMABLE READ-ONLY MEMORY

BULLETIN NO. DL-S 7412106, MARCH 1974-REVISED MAY 1974

J OR N PACKAGE

- Provides the Versatility of Custom Designs Virtually "Off the Shelf"
- Applications Include:
 Microprogramming
 Look-up Tables for any Fixed Program
 Parallel Code Converters
 Sequence, Routine, and Subroutine Generators
 Random-Logic Function Generator
- Schottky-Clamped for High Performance: Chip-Select Access Time . . . 15 ns Typ Address Access Time . . . 40 ns Typ
- Interchangeable with Most Other 256 Word by 4 Bit TTL PROMs/ROMs
- Open-Collector Outputs for Easy Word Expansion
- SN74S287 Is Functionally Equivalent but Has Bus-Driving, 3-State Outputs
- Fully Decoded, Low-Current P-N-P Inputs
- Fully Compatible with Most TTL and Other Saturated Low-Level Logic Families

description

The SN74S387 is a field-programmable, 1024-bit, read-only memory organized as 256 words of four bits each. This monolithic, high-speed, Schottky-clamped TTL memory array is addressed in eight-bit binary with full on-chip decoding. Two overriding chip-select inputs are provided which, when either one or both are high, cause all four outputs to be high (off). This memory features p-n-p input transistors, which reduce the low-level-input-current requirement to a maximum of -0.25 milliampere, only one-eighth that of a Series 74S standard load. The organization is expandable with no additional output buffering, as shown in Table 1 below.

The address of a four-bit word is accomplished through the buffered binary select inputs in coincidence with a low level at both chip-select inputs. Where multiple 'S387 devices are used in a memory system, the chip-select inputs allow easy decoding of additional address bits.

Data can be electronically programmed, as desired, at any of the 1024 bit locations in accordance with the programming procedure specified. Prior to programming, the memory contains a high-logic-level output condition at all bit locations. The programming procedure open-circuits metal links which results in a low-logic-level output at the selected locations. The procedure is irreversible; once altered, the output for that bit is permanently programmed to provide a low logic level. Outputs never having been altered may later be programmed to supply a low-level output. Operation of the device within the recommended operating conditions will not alter the memory content.

The programmable 'S387 can be used to replace the SN74187 as they are functionally and mechanically identical.

TABLE 1
WORD CAPACITY vs 74S LOADS

SERIES 74S LOADS	MIN R _L	MAX NO WIRE-ANDS‡	MAX NO OF WORDS
1	450	114	29 184
2	563	90	23 040
3	750	66	16 996
4	1125	42	10 752
5	2250	18	4 608

‡Total number of outputs connected to each common bus

TYPE SN74S387

1024-BIT PROGRAMMABLE READ-ONLY MEMORY

step-by-step programming procedure

- Apply steady-state supply voltage (V_{CC} = 5 volts) and address the word to be programmed. See recommended conditions for programming on the following page.
- Verify that the bit location needs to be programmed. (With the load circuit of Figure A, an unprogrammed output will be at 2 volts or greater; a programmed output will be at 0.8 volts or less.) If a bit is already programmed, proceed to the next bit.
- 3. If the bit requires programming, disable the outputs by applying a high-logic-level voltage to both chip-select inputs,
- 4. Only one bit location is programmed at a time. Apply the load circuit of Figure A to the outputs not being programmed; then, ground the output to be programmed as a low logic level.
- 5. Ramp VCC to 10.5 volts nominal. Maximum supply current required during programming is 750 mA.
- Apply a low-logic-level voltage to both chip-select inputs. This should occur between 10 microseconds and 1 millisecond after VCC has reached its 10.5-volt level. See programming sequence of Figure B.
- After the X program pulse time (1 millisecond) is reached, a high logic level is applied to the chip-select inputs to disable the outputs.
- Within 10 microseconds to 1 millisecond after the chip-select inputs reach a high logic level, VCC should be ramped down to 5 volts at which level verification can be accomplished.
- The chip-select inputs may be taken to a low logic level (to permit program verification) 10 microseconds or more after V_{CC} reaches its steady-state value of 5 volts.
- 10. At a Y pulse duty cycle of 10% or less, repeat steps 1 through 8 for each output where a bit at this address is desired to be programmed.
 - NOTES: A) VCC should be removed between program pulses to reduce total average power dissipation and resultant chip temperatures. See Figure B.
 - B) When verification indicates that a bit did not program (output is 2 volts or greater), repeat steps 3 through 9. If the bit did not program after the second application of a 1 millisecond X pulse, repeat steps 3 through 9 using an X pulse time of 50 to 75 millisconds. Regardless of the X duration, the total average pulse time of Y should be no more than 10% of the programming cycle.
 - C) The circuit shown in Figure A, or equivalent, is used to limit voltage to 6 volts or less for outputs not being programmed.

TYPE SN74S387 1024-BIT PROGRAMMABLE READ-ONLY MEMORY

recommended conditions for programming

· · · · · · · · · · · · · · · · · · ·		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC} (see Note 1)	Steady state	4.75	- 5	5.25	
	Program pulse	10	10.5	11	V
Input voltage	High level	2.4		5	T
	Low level	0		0.5	'
Output conditions for programming	To a high logic level		ee Figure A		
	To a low logic level		0	-0.8	v
Duration of programming pulse X (see Figure B)		1		75	ms

NOTE 1: All voltage values are with respect to network ground terminal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Notes 1 and 2)																7 V
Input voltage																5.5 V
Off-state output voltage																5.5 V
Operating free-air temperature range																
Storage temperature range												-6	35°	C 1	to '	150°C

NOTES: 1. Voltage values are with respect to network ground terminal.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.75	5	5.25	V
High-level output voltage, VOH			5.5	V
Low-level output current, IOL			16	mΑ
Operating free-air temperature, TA	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS†	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage		2			V
VIL	Low-level input voltage				0.8	V
VI	Input clamp voltage	V _{CC} = MIN, I ₁ = -18 mA			-1.2	٧
		V _{CC} = MIN, V _{OH} = 2.4	v		50	μА
ЮН	High-level output current	V _{IH} = 2 V, V _{IL} = 0.8 V V _{OH} = 5.5	V		250	
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 m/			0.5	v
1.	Input current at maximum input voltage	V _{CC} = MAX, 'V _I = 5.5 V			1	mA
I _{IH}	High-level input current	V _{CC} = MAX, V _I = 2.7 V			25	μΑ
IIL	Low-level input current	V _{CC} = MAX, V _I = 0.5 V			-250	μΑ
Icc	Supply current	V _{CC} = MAX, See Note 3		110	150	mA

NOTE 3: ICC is measured with outputs open and both CS inputs grounded.

574.

[†]Absolute maximum rating

^{2.} This rating applies at all times except during programming.

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at VCC = 5 V, TA = 25°C.

TYPES SN54390, SN54393, SN74390, SN74393 DUAL 4-BIT DECADE AND BINARY COUNTERS

'390 BCD COUNT SEQUENCE (EACH COUNTER)

	'390
	BI-QUINARY (5-2)
	(EACH COUNTER)
	(See Note B)
-	The second second second

FUNCTION TABLES

See Note A See Note A				(:	See !	Vote	B)				
7 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		OUT	PUT		COLINIT	OUTPUT					
COUNT	QD	αc	QB	QA	COUNT	Q_A	Q_{D}	α_{C}	Q_B		
0	L	L	L	L	0	L	L	L	L		
1	L	L	L	Н	1	L	L	L	Н		
2	L	L	Н	L	2	L	L	Н	L		
3	L	L	Н	Н	3	L	L	Н	Н		
4	L	Н	L	L	4	L	Н	L	L		
5	L	Н	L	н	5	Н	L	L	L		
6	L	Н	Н	L	6	Н	L	L	Н		
7	L	Н	Н	Н	7	Н	L	н	L		
8	Н	L	L	L	8	Н	L	Н	Н		
9	н	L	L	н	9	Н	Н	L	L		

NOTES: A. Output Q_A is connected to input B for BCD count.
B. Output Q_D is connected to input A for bi-quinary

count.
C. H = high level, L = low level.

schematics of inputs and outputs

'393 COUNT SEQUENCE (EACH COUNTER)

COUNT	or a	TUO	PUT	11/10	
COUNT	a_{D}	αc	Q_{B}	QA	
0	L	L	L	L	
1	L	L	L	Н	
2	L	L	H	L	
3	L	L	н	Н	
4	L	Н	L	L	
5	L	Н	L	Н	
6	L	Н	Н	L	
7	L	н	н	Н	
8	н	L	L	L	
9	н	L	L	H	
10	н	L	н	L	
11	н	L	н	Н	
12	н	Н	L	L	
13	н	Н	L	Н	
14	н	Н	Н	L	
15	н	н	Н	Н	

functional block diagrams

TYPES SN54390, SN54393. SN74390, SN74393 **DUAL 4-BIT DECADE AND BINARY COUNTERS**

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		7V
Input voltage		
Operating free-air temperature range: SN5439	90, SN54393	
		0°C to 70°C
Storage temperature range		65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		- 1	SN54390 SN54393			SN74390 SN74393		
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}			5	5.5	4.75	5	5.25	٧
High-level output current, IOH				-800			-800	μА
Low-level output current, IOL				16			16	mA
	A input	0		25	0		25	MHz
Count frequency, fcount	B input	0		20	0		393 U M MAX 5.25 —800 16	2
	A input high or low	20			20			
Pulse width, tw	B input high or low	25			25			ns
•	SIN54393 SIN74393 SIN74393 MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX M							
Clear inactive-state setup time, t _{setup}		254			25‡			ns
Operating free-air temperature, TA		-55		125	0		70	°C

¹ The arrow indicates that the falling edge of the clock pulse is used for reference.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				'390			′393			דומט	
PARAMETER			TEST CONDITIONS†		MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH	High-level input voltage				2			2			٧_
VIL	Low-level input voltage						0.8			0.8	
V _I	Input clamp voltage		VCC = MIN, II	= −12 mA			-1.5			-1.5	V
Voн	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V, I _C		2.4	3.4		2.4	3.4		v
VOL	Low-level output voltage		V _{CC} = MIN, V V _{IL} = 0.8 V, I _C			0.2	0.4		0.2	0.4	v
Ц	Input current at maximum input voltage		V _{CC} = MAX, V	ı = 5.5 V			1			1	mA
	High-level input current	Clear		V _I = 2.4 V			40	<u> </u>		40	1
чн		Α	TV _{CC} = MAX, V				80			80	μA.
	В		7				120	Ĺ			
	· · · · · · · · · · · · · · · · · · ·	Clear					1			1	1
կլ	Low-level input current	Α	V _{CC} ≖MAX, V	V _I = 0.4 V		-	-3.2			-3.2	mA
'-	-	В	1				-4.8				<u> </u>
				SN54'	-20		-57	-20		-57	mA
los	Short-circuit output current	8	VCC = MAX SN74'	SN 74'	-18		-57	-18		-57	L'''_
1cc	Supply current		VCC = MAX, Se	ee Note 2		42	69		38	64	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

The QA outputs of the '390 are tested at IOL = 16 mA plus the limit value for IIL for the B input. This permits driving the B input while maintaining full fan-out capability.

[§]Not more than one output should be shorted at a time.

NOTE 2: ICC is measured with all outputs open, both clear inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

TYPES SN54390, SN54393, SN74390, SN74393 **DUAL 4-BIT DECADE AND BINARY COUNTERS**

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER §	FROM	то	TEST CONDITIONS		'390			'393		UNIT
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	Α	QA		25	35		25	35		MHz
f _{max}	В	QB]	20	30					WITZ
tPLH		0.	Cլ = 15 pF,		12	20		12	20	
tPHL.	<u> </u>	QΑ			13	20		13	20	ns
tPLH	A	^Q C of '390			37	60		40	60	
tPHL	1 ^	QD of '393	R _L = 400 Ω,		39	60		40	60	ns ns
tPLH	В	0=	See Note 3		13	21				
tPHL		αB	and		14	21				ns
tPLH_	В	Q _C	Figure 1		24	39				
^t PHL	<u> </u>	u _c			26	39				ns
^t PLH	В	QD			13	21				
tPHI,		4D			14	21				ns
tPHLtPHL	Clear	Any			24	39		24	39	ns

[¶]f_{max} = maximum count frequency

PARAMETER MEASUREMENT INFORMATION

NOTE A: Input pulses are supplied by a generator having the following characteristics t_r < 5 ns, t_f < 5 ns, PRR = 1 MHz, duty cycle = 50%, $Z_{out} \approx 50$ ohms.

FIGURE 1

tp_{LH} ≡ propagation delay time, low-to-high-level output tp_{HL} ≡ propagation delay time, high-to-low-level output

NOTE 3: Load circuit is shown on page S-87.

TTL MSI

TYPES SN54LS395, SN74LS395 4-BIT CASCADABLE SHIFT REGISTERS WITH 3-STATE OUTPUTS

BULLETIN NO. DL-S 7412114, MARCH 1974

- Three-State, 4 Bit, Cascadable, Parallel-In, Parallel-Out Registers
- Schottky-Diode-Clamped Transistors
- Low Power Dissipation . . . 75 mW Typical (Enabled)
- Applications:

N-Bit Serial-To-Parallel Converter N-Bit Parallel-To-Serial Converter N-Bit Storage Register

description

These 4-bit registers feature parallel inputs, parallel outputs, and clock, serial, load/shift, output control and direct overriding clear inputs.

Shifting is accomplished when the load/shift control is low. Parallel loading is accomplished by applying the four bits of data and taking the load/shift control

OUTPUTS CASCADE OUTPUT QD' OUTPUT QA Qв œ œ Vcc OCK CONTROL 18 12 tO 15 14 13 11 9 čĸ QA Qв QС QD Φ, OUTPUT CLEAR SERIAL LOAD/ SHIFT INPUT 7 2

SN54LS395...J OR W PACKAGE SN75LS395...J OR N PACKAGE

(TOP VIEW)

PARALLEL INPUTS positive logic: see function table

LOAD

SHIFT

GND

input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock input. During parallel loading, the entry of serial data is inhibited.

CLEAR SERIAL

INPLIT

When the output control is low, the normal logic levels of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a high logic level at the output control input. The outputs then present a high impedance and neither load nor drive the bus line; however, sequential operation of the registers is not affected. During the high-impedance mode, the output at QD' is still available for cascading.

The SN54LS395 is characterized for operation over the full military temperature range of -55°C to 125°C; the SN74LS395 is characterized for operation from 0°C to 70°C.

FUNCTION TABLE

		INPUTS		INPUTS PARALLEL										
0.545	LOAD/SHIFT	CI OCK	SERIAL	PA	RA	LL	EL	QA	QΒ	QC	αD	OUTPUT		
CLEAR	CONTROL	CLUCK	SENIAL	Α	В	C	D	LAA	~в	<u>-c</u>	-0	σD,		
L	×	×	х	X	X	×	X	L	L	L	L	L		
н	н	н	×	×	х	х	х	QAO	σ_{B0}	σ^{CO}	σ_{D0}	α _{D0}		
н	н	ı	×	а	b	С	d	а	ь	C	d	d		
н	L	н	×	×	X	X	X	Q _{A0}	α_{B0}	Q _{C0}	σ_{D0}	σ _{D0}		
Ιн	L	.	н	x	х	X	х	н	Q_{An}	α_{Bn}	\mathbf{Q}_{Cn}	QCn		
н	L	ı	L	×	Х	X	X	L	\mathbf{q}_{An}	α_{Bn}	σ_{Cn}	Q _{Cn}		

When the output control is high, the 3-state outputs are disabled to the high-impedance state; however, sequential operation of the registers and the output at QD' are not affected.

374

H = high level (steady state), L = low level (steady state), X = irrelevant (any input, including transitions)

^{| =} transition from high to low level.

QAO, QBO, QCO, QDO = the level of QA, QB, QC, or QD, respectively, before the indicated steady state input conditions were established.

QAn, QBn, QCn, QDn = the level of QA, QB, QC, or QD, respectively, before the most recent 1 transition of the clock.

TYPES SN54LS395, SN74LS395

4-BIT CASCADABLE SHIFT REGISTERS WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)												7 V
Input voltage												
Operating free-air temperature range:	SN54LS395									-55 °	'C to	125°C
	SN74LS395									. (D°C	to 70°C
Storage temperature range										-65	C to	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	SI	SN54LS395			SN74LS395				
•	MIN	NOM	MAX	MIN	NOM	MAX	UNIT		
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V		
High-level output current, IOH			-1			-2.6	mA		
Low-level output current, IOL			4			8	mA		
Clock frequency, f _{clock}	0		25	0.		25	MHz		
Width of clock pulse, tw(clock)	25		_	25			ns		
Setup time, high-level or low-level data, t _{setup}	20			20			ns		
Hold time, high-level or low-level data, thold	10	_		10			ns		
Operating free-air temperature, TA	-55		125	0		70	°c		

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEC	T CONDITIONS	et .	SI	N54LS3	95	SI	174LS3	95	Ī <u> </u>
			T CONDITION:		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	V
VI	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	V
Vон	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = MAX		2.4	3.4		2.4	3.1		v
Voi	Low-level output voltage	V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4	<u> </u>	0.25	0.4	
TOL		VIL = VIL max		IOL = 8 mA					0.35	0.5	٧
lozh	Off-state output current,	V _{CC} = MAX,	V _{IH} = 2 V,						_		
102H	high-level voltage applied	Vo = 2.7 V			İ		20	l		20	μΑ
lozL	Off-state output current,	VCC = MAX,	V _{IH} = 2 V,								
·02L	low-level voltage applied	V _O = 0.4 V					-20			-20	μΑ
ij	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
ЧН	High-level input current	VCC = MAX,	V _I = 2.7 V				20			20	μА
I _I L	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V				-0.4	_		-0.4	mA
los	Short-circuit output current§	V _{CC} = MAX			-6		-40	-5		-42	mA
Icc	Supply current	V _{CC} = MAX,	See Note 2	Condition A		18	29		18	29	
-00		VCC = WAX,	366 14018 2	Condition B		15	25		15	25	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

NOTE 2: ICC is measured with the outputs open, the serial input and mode control at 4.5 V, and the data inputs grounded under the following conditions:

A. Output control at 4.5 V and a momentary 3 V, then ground, applied to clock input.

B. Output control and clock input grounded.

TYPES SN54LS395, SN74LS395 4-BIT CASCADABLE SHIFT REGISTERS WITH 3-STATE OUTPUTS

switching characteristics, VCC = 5 V, TA = 25°C, RL = 2 $k\Omega$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax Max	ximum clock frequency		25	35		MHz
tpLH Pro	pagation delay time, low-to-high-level output	C _L = 15 pF,		18	27	กร
tpHL Pro	pagation delay time, high-to-low-level output	See Note 3		21	32	ns
tZH Out	tput enable time to high level	266 14016.2		15	25	ns
	tput enable time to low level	1		20	30	ns
	tput disable time from high level	C _L = 5 pF,		30	50	ns
	tput disable time from low level	See Note 3		30	50	ns

NOTE 3: Load circuit and voltage waveforms are shown on page S-88.

functional block diagram

schematics of inputs and outputs

374

TTL MSI

TYPES SN54490, SN74490 **DUAL 4-BIT DECADE COUNTERS**

SN54490 . . . J OR W PACKAGE

SN74490 ... J OR N PACKAGE

(TOP VIEW)

BULLETIN NO. DL-S 7412089, JANUARY 1974

- Dual Version of Popular SN5490A. **SN7490A Counters**
- **Direct Clear and Set-to-9 Inputs** for Each 4-Bit Counter
- Individual Clock for Each 4-Bit Counter
- **Dual Counters Can Significantly Improve** System Densities as Package Count Can Be Reduced by 50%
- Maximum Count Frequency . . . 35 MHz **Typical**
- **Active Pull-Down Provides Square** Transfer Characteristics
- **Buffered Outputs Reduce Possibility** of Collector Commutation

description

Each of these monolithic circuits contains eight master-slave flip-flops and additional gating to implement two individual 4-bit decade counters in a single package. Each decade counter has individual clock,

CHITPHITS CLOCK CLEAR 200 2Qp PUT TO-9 20n 15 14 16 13 9 呠 SET-TO-9 СК SET.TO. CLEAR 2 CLOCK CLEAR OUT

positive logic: High input to clear resets all four outputs low; high input to set-to-9 sets QA and QD high, QB and Q_C low.

clear, and set-to-9 inputs. BCD count sequences of any length up to divide-by-100 may be implemented with a single SN54490 or SN74490. Buffering on each output is provided to ensure that susceptibility to collector commutation is reduced significantly. All inputs are diode-clamped to reduce the effects of line ringing.

The SN54490 is characterized for operation over the full military temperature range of -55°C to 125°C; the SN74490 is characterized for use in industrial systems operating from 0°C to 70°C.

RCD COUNT SECUENCE

(EACH COUNTER)

COUNT		τυο	PUT	
COUNT	å	αc	QΒ	QA
0	٦	L	L	Г
1	L	L	L	н
2	L	L	Н	L
3	L	L	Н	н
4	L	Н	L	L
5	L	Н	L	н
6	L	Н	н	ᅵᅵ
7	L	Н	Н	н
8	н	L	L	L
9	Н	L	L	н

CLEAR/SET-TO-9 **FUNCTION TABLE** (EACH COUNTER)

INI	PUTS		ודטכ	PUT	S
CLEAR	SET-TO-9	QΑ	$\mathbf{Q}_{\mathbf{B}}$	Qς	αD
Н	L	L	L	L	L
L	н	н	L	L	н
L	L		COL	JNT	

H = high level, L = low level

schematics of inputs and outputs

TENTATIVE DATA SHEET

This document provides tentative information on a new product. Texas Instruments reserves the right to change specifications for this product in any manner without notice.

OFFICE BOX 5012 . DALLAS, TEXAS 75222

TYPES SN54490, SN74490 DUAL 4-BIT DECADE COUNTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																						7 V
Input voltage		•	•	•	•	•	•					_	_									5.5 V
Operating free-air temperature range: S		•	•	•	•	•	•	•	•	•	•											-55°C to 125°C
Operating free-air temperature range: 3	CONTRINS	•	•	•	•	•	•	• •	•	•	•	•	Ċ	•	•				٠			. 0°C to 70°C
Storage temperature range	31474450	•	•	•	•	•	•		•	•	•	•	•	٠	Ī	Ī	·					-65°C to 150°C
Storage temperature range		٠	•	•	•	•	•		•	•	٠	•	•	•	•	•	•	•	٠	•	•	

NOTE 1: Voltage values are with respect to network ground terminal.

TYPES SN54490, SN74490 **DUAL 4-BIT DECADE COUNTERS**

recommended operating conditions

	-		SN5449	0		0	UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	v
High-level output current, IOH				-800	-		800	μА
Low-level output current, IOL				16		-	16	mA
Count frequency, f _{count}		0		25	0		25	MHz
Pulse width, tw	Clock	20			20			
- use widdi, tw	Clear or set-to-9	20			20			ns
Clear or set-to-9 inactive-state setup time, t _{setup}		25			25			ns
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CO	NDITIONS†	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			V
VIL	Low-level input voltage						0.8	V
٧ı	Input clamp voltage		VCC = MIN,	I _I = -12 mA			-1.5	V
Vau	High lavel quenue volence		V _{CC} = MIN,					-
•он	High-level output voltage			I _{OH} = -800 μA	2.4	3.4		V
Voi	Low-level output voltage		VCC = MIN,					-
*OL			V _{IL} = 0.8 V	I _{OL} = 16 mA		0.2	0.4	V
11	Input current at maximum input voltage		VCC = MAX,	V _I = 5.5 V			1	mA
Ιн	High-level input current	Clear, set-to-9	V				40	
-1171		Clock	V _{CC} = MAX,	V _I = 2.4 V			80	μА
HL	Low-level input current	Clear, set-to-9	V MAY	W - 0.4 W			-1	
		Clock	V _{CC} = MAX,	V = 0.4 V			-3.2	mA
los	Short-circuit output current§		V _{CC} = MAX	SN54490	-20		-57	
			AGG - MAX	SN74490	-18		-57	mA
ICC	Supply current		VCC = MAX,	See Note 2		45	70	mΑ

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	IDITIONS	MIN	TYP	MAX	דומט
f _{max}	Clock	QΑ			25	35		MHz
^t PLH	Clock					12	20	
tPHL	Clock	Q _A				13	20	ns
^t PLH	Clock				<u> </u>	24	39	\vdash
^t PHL	CIOCK	α _B , α _D	Cլ = 15 pF,	$R_{\perp} = 400 \Omega_{\star}$	-	26	39	ns
^t PLH	Clock		See Figure 1	<u>-</u>		32	54	\vdash
^t PHL	Clock	□c				36	54	ns
tPHL	Clear	Any Q				24	39	ns
tPLH	Set-to-9	Q_A, Q_D			—	24	39	
^t PHL	281-10-9	QB, QC				20	36	ns

[¶]fmax = maximum count frequency

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time,

NOTE 2: ICC is measured with all outputs open, both clear inputs grounded following momentary connection to 4.5 V, and all other inputs grounded,

tpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

TYPES SN54490, SN74490 DUAL 4-BIT DECADE COUNTERS

PARAMETER MEASUREMENT INFORMATION

NOTES: A. Input pulses are supplied by a generator having the following characteristics: t_r < 5 ns, t_f < 5 ns, PRR = 1 MHz, duty cycle = 50%, Z_{OU1} ≈ 50 ohms.

- B. C_L includes probe and jig capacitance.
- C. All diodes are 1N916 or 1N3064.

FIGURE 1

BULLETIN NO. DL-S 7412122, MARCH 1974

- Separate Read/Write Addressing Permits Simultaneous Reading and Writing
- Fast Access Times . . . Typically 20 ns
- Organized as 4 Words of 4 Bits
- Expandable to 1024 Words of n-Bits
- For Use as:

Scratch-Pad Memory
Buffer Storage between Processors
Bit Storage in Fast Multiplication Designs

- 3-State Outputs
- SN54LS170 and SN74LS170 Are Similar But Have Open-Collector Outputs

description

SN54LS670 ... J OR W PACKAGE SN74LS670 ... J OR N PACKAGE (TOP VIEW)

The SN54LS670 and SN74LS670 MSI 16-bit TTL register files incorporate the equivalent of 98 gates. The register file is organized as 4 words of 4 bits each and separate on-chip decoding is provided for addressing the four word locations to either write-in or retrieve data. This permits simultaneous writing into one location and reading from another word location.

Four data inputs are available which are used to supply the 4-bit word to be stored. Location of the word is determined by the write-address inputs A and B in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high-level signal is desired from the output, a high-level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the write-enable input, GW, is high, the data inputs are inhibited and their levels can cause no change in the information stored in the internal latches. When the read-enable input, GR, is high, the data outputs are inhibited and go into the high-impedance state.

The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.

This arrangement—data-entry addressing separate from data-read addressing and individual sense line—eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (27 nanoseconds typical) and the read time (24 nanoseconds typical). The register file has a nondestructive readout in that data is not lost when addressed.

All inputs except read enable and write enable are buffered to lower the drive requirements to one Series 54LS/74LS standard load, and input-clamping diodes minimize switching transients to simplify system design. High-speed, double-ended AND-OR-INVERT gates are employed for the read-address function and have high-sink-current, three-state outputs. Up to 256 of these outputs may be wire-AND connected for increasing the capacity up to 1024 words. Any number of these registers may be paralleled to provide n-bit word length.

The SN54LS670 characterized for operation over the full military temperature range of -55° C to 125°C; the SN74LS670 is characterized for operation from 0°C to 70°C.

logic

WRITE FUNCTION TABLE (SEE NOTES A, B, AND C)

WR	ITE INP	JTS		wo	RD	
WB	WA	GW	0	1	2	3
L	L	L	Q = D	00	a ₀	α_0
L	н	L	α ₀	Q = D	a_0	α_0
н	L	L	α_0	a_0	Q = D	α_0
н	н	L	α_0	α_0	a_0	Q = D
x	×	н	a 0	a_0	a_0	Q ₀

READ FUNCTION TABLE (SEE NOTES A AND D)

RE	AD INPU	ITS		OUT	PUTS	
RB	RA	GR	Q1	Q2	Q3	Q4
L	L	L	W0B1	W0B2	WCB3	W0B4
L	н	L	W1B1	W1B2	W1B3	W1B4
н	L	L	W2B1	W2B2	W2B3	W2B4
н	н	L	W3B1	W3B2	W3B3	W3B4
×	×	н	z	Z	Z	Z

NOTES: A. H = high level, L = low level, X = irrelevant, Z = high impedance (off)

- B. (Q = D) = The four selected internal flip-flop outputs will assume the states applied to the four external data inputs.
- C. Q₀ = the level of Q before the indicated input conditions were established.
 D. W0B1 = The first bit of word 0, etc.

functional block diagram

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)													_						7 V
Input voltage						_						•		•	•	•	٠.	•	7 \
Off-state output voltage			•	•	•	•	 •	•	•	•	•	•	•	•	• •	•	٠.	•	-
Operating free-air temperature range:	CNEAL CETO		•	•	٠.	•	 •	•	• •	•	•	•	•	•	• •	٠.	0-	•	5.5 V
operating receal temperature range.	SN34L3070	•	•	•	• •	•	 ٠	٠	٠.	•	•	٠	•	•		-!	55°C	to	125°C
0.	SN74LS670	•	٠	•				•									O°	C to	70°C
Storage temperature range																-6	35°C	to	150°C

recommended operating conditions

		SI	N54LS6	70	SI			
		MIN	NOM	MAX	MIN	NOM	MAX	רואט
Supply voltage, V _{CC}		4.5	5	5.5	4.75		5.25	V
High-level output current, IOH				-1			-2.6	mA
Low-level output current, IOL				4			8	mA
Width of write-enable or read-enable pulse, tw		25			25		<u>_</u>	ns
Setup times, high- or low-level data	Data input with respect to write enable, t _{setup} (D)	10			10			ns
(see Figure 2)	Write select with respect to write enable, t _{setup} (W)	15			15			ns
Hold times, high- or low-level data	Data input with respect to write enable, thold(D)	15			15			ns
(see Note 2 and Figure 2)	Write select with respect to write enable, thold(W)	5			5			ns
Latch time for new data, t _{latch} (see Note 3)	25			25			ns	
Operating free-air temperature range, TA		-55		125	0		70	°C

- NOTES: 1. Voltage values are with respect to network ground terminal.
 - 2. Write-select setup time will protect the data written into the previous address. If protection of data in the previous address is not required, t_{setup}(w) can be ignored as any address selection sustained for the final 30 ns of the write-enable pulse and during thold(w) will result in data being written into that location. Depending on the duration of the input conditions, one or a number of previous addresses may have been written into.
 - 3. Latch time is the time allowed for the internal output of the latch to assume the state of new data. See Figure 2. This is important only when attempting to read from a location immediately after that location has received new data.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

						V54LS6	70	SI	174LS6	70	UNIT
	PARAMETER	TE	ST CONDITIO	NS,	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
ViH	High-level input voltage				2			2			\ \
VIL	Low-level input voltage						0.7			8.0	٧
V _I	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	
		VCC = MIN,	V _{IH} = 2 V,	I _{OH} = -1 mA	2.4	3.4					l v
VOH	High-level output voltage	VIL = VIL max		I _{OH} = -2.6 mA				2.4	3.1		Ľ
		VCC = MIN,	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0,25	0.4	v
VOL	Low-level output voltage	VIL = VIL max		IOL = 8 mA					0.35	0.5	Ļ
lozh	Off-state output current, high-level voltage applied	V _{CC} = MAX,	V _{1H} = 2 V,	V _O = 2.7 V			20			20	μА
IOZL	Off-state output current, low-level voltage applied	VCC = MAX,	V _{IH} = 2 V,	V _O = 0.4 V			-20			-20	μΑ
		V _{CC} = MAX,	Any D, R, or	W			0.1			0.1]
11	Input current at		Gw				0.2			0.2	mA.
•	maximum input voltage	V1 = 7 V	GR				0.3			0.3	
		V _{CC} = MAX,	Any D, R, or	W			20			20	1
Ιн	High-level input current		Gw				40			40	μA
•••	·	V _I = 2.7 V	GR				60			60	<u> </u>
			Any D, R, or	W		_	-0.4			-0.4	1.
IIL	Low-level input current	V _{CC} = MAX	Gw				-0.8	<u> </u>		-0.8	-
-	•		GR		<u> </u>		-1.2	Ļ		-1.2	
los	Short-circuit output current§	VCC = MAX			-6		-40	-5		-42	
Icc	Supply current	VCC = MAX,	See Note 4			30	50	l	30	50	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 4: Maximum ICC is guaranteed for the following worst-case conditions: 4.5 V is applied to all data inputs and both enable inputs, all address inputs are grounded and all outputs are open.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETERS	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
tPLH		Any Q	C _L =15 pF, R _L = 2 kΩ,		23	40	ns
tPHL	Read select	Any C	See Figures 1 and 2		25	45	
					26	45	ns
tPLH .	Write enable	Any Q	CL = 15 pF, RL = 2 kΩ,		28	50	1 '''
tphl			See Figures 1 and 3		25	45	1
tPLH	Data	Any Q	See Figures Fund 5		23	40	ns
tPHL				ļ		35	
tzH		1			15		ns
tzL			$C_L = 5 pF$, $R_L = 2 k\Omega$,		22	40	
	Read enable	Any Q	See Figures 1 and 4		30	50	١
tHZ	ļ	Ì			16	35	ns
tLZ						`	

 $[\]P_{tplh} \equiv$ propagation delay time, low-to-high-level output

374

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time.

tpHL ≡ propagation delay time, high-to-low-level output

tZH ≡ output enable time to high level

tZL ≡ output enable time to low level ,

tHZ = output disable time from high level

tLZ ≡ output disable time from low level

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. All diodes are 1N916 or 1N3064.

LOAD CIRCUIT

FIGURE 1

VOLTAGE WAVEFORMS (S1 AND S2 ARE CLOSED)

NOTES: A. High-level input pulses at the select and data inputs are illustrated; however, times associated with low-level pulses are measured from the same reference points.

- B. When measuring delay times from a read-select input, the read-enable input is low.
- C. Input waveforms are supplied by generators having the following characteristics: PRR \leq 2 MHz, Z_{out} \approx 50 Ω , duty cycle \leq 50%, $t_r \leq$ 15 ns, $t_r \leq$ 6 ns.

FIGURE 2

VOLTAGE WAVEFORM 2 (S1 AND S2 ARE CLOSED)

- NOTES: A. Each select address is tested. Prior to the start of each of the above tests both write and read address inputs are stabilized with $W_A = R_A$ and $W_B = R_B$. During the test G_R is low.
 - The state of the $t_r \le 15$ ns, $t_r \le 6$ ns.

FIGURE 3

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

- NOTES: A. Waveforms 1 is for an output with internal conditions such that the output is low except when disabled by the read-enable input. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the read-enable input.
 - B. When measuring delay times from the read-enable input, both read-select inputs have been established at steady states.
 - C. Input waveforms are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_{out} \approx$ 50 Ω , duty cycle \leq 50%, $t_r \le 15$ ns, $t_r \le 6$ ns. FIGURE 4

374

.

•

54/74 Family Beam-Lead TTL Circuits

:

BEAM-LEAD LOW-POWER SCHOTTKY CHIPS

TYPES BL54LS10, BL54LS76, BL54LS86, BL54LS136, BL54LS266, BL74LS10, BL74LS76, BL74LS86, BL74LS136, BL74LS266

BULLETIN NO. DL-S 7412120, MARCH 1974

- Silicon-Nitride-Sealed Junctions
- Gold Beams

 Available in Two Temperature Ranges: Series BL54LS...-55°C to 125°C Series BL74LS...0°C to 70°C

description

Series BL54LS/BL74LS integrated circuit chips comprise a family of TTL designed for general purpose and high-reliability applications and feature low power with medium operating speed. These chips utilize beam-lead sealed-junction technology and may be combined to form more complex beam-lead assemblies. The chips when assembled exhibit characteristics comparable to the Series 54LS/74LS devices of the same type number. The list below shows only the additions to the list shown in *The TTL Data Book for Design Engineers*, CC-411, and the BL54LS10Y and BL74LS10Y for which the beam assignments were shown incorrectly in CC-411.

			TYPICAL AVERAGE	TYPICAL TOTAL
DEVICE	TYPES	FUNCTION	PROPAGATION DELAY TIME	
BL54LS10	BL74LS10	Triple 3-Input NAND Gates	9.5 ns	6 mW
BL54LS10		Dual J-K Negative-Edge Triggered Flip-Flops with Preset and Clear	13 ns	20 mW
BL54LS86		Quadruple 2-Input Exclusive-OR Gates	10 ns	30.5 mW 30.5 mW
BL54LS136 BL54LS266	BL74LS136 BL74LS266	Quadruple 2-Input Exclusive-OR Gates with Open-Collector Outputs Quadruple 2-Input Exclusive-NOR Gates with Open-Collector Outputs	18 ns 18 ns	40 mW

BEAM ASSIGNMENTS

TYPE	BL54LS10Y BL74LS10Y	BL54LS76Y BL74LS76Y	BL54LS86Y BL74LS86Y	BL54LS136Y BL74LS136Y	BL54LS266Y BL74LS266Y
FORMAT	50	65	45	45	45
1	1Y*	NC	1A	1A	1A
2	1A*	1 CLEAR	1B	1B	1B
3	vcc	1J	1Y	1Y	1Y
4	NC	v _{cc}	2A	2A	2Y
5	1B*	2 CLOCK	28	2B	2A
6	1C*	NC	2Y	2Y	2B
7	2A	2 PRESET	GND	GND	GND
8	2B	2 CLEAR	3Y	3Y	3A
9	2C	2.5	3A	3A	3B
10	2Y	NC	3B	3B	3Y
11	GND	2₫	4Y	4Y	4Y
12	NC	NC	4A	4A	4A
13	3Y	20	4B	48	4B
14	3A	2K	v _{cc}	Vcc	Vcc
15	3B	GND			
16	3C	10			
17		NC			
18		10	1		
19		NC			
20		1K	l	l .	
21		1 CLOCK		1	
22	1	1 PRESET	l		

NC-No internal connection

^{*}Changes from previously published data.

[†]Integrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments, U.S. Patent Number 3,463,975.

TYPES BL54LS10, BL54LS76, BL54LS86, BL54LS136, BL54LS266, BL74LS10, BL74LS76, BL74LS86, BL74LS136, BL74LS266

MECHANICAL DATA FOR BEAM-LEAD CHIPS

NOTES: a. Beam relative positions are identical on all four sides.

b. All dimensions are in inches.

NOTES: a. Beam relative positions are identical on all four sides. b. All dimensions are in inches.

NOTES: a. Beam relative positions are identical on all four sides.

b. All dimensions are in inches.

38510/MACH IV High Reliability Microelectronics Procurement Specifications MIL-STD-883

	CONTENTO	
	CONTENTS	
SECTION		PAGE
1.0	SCOPE	S-347
2.0	APPLICABLE DOCUMENTS	S-347
3.0	GENERAL REQUIREMENTS	S-349
4.0	QUALITY ASSURANCE PROVISIONS	S-359
5.0	PREPARATION FOR DELIVERY	S-369
6.0	NOTES	S-371

ior 7040 A Incorporate MIL-M-38510 and Revision Notice 2 of MIL-STD-883 B Incorporate Revision Notice 3 and 4 of MIL-STD-883 and Revision A of MIL-STD-38510 9/1/72 ior 7401 C Incorporate revised Level IV (SNH)	7040 A Incorporate MIL-M-38510 and Revision Notice 2 of MIL-STD-883 7239 B Incorporate Revision Notice 3 and 4 of MIL-STD-883 and Revision A of MIL-STD-38510	CLASSIFICATION (MAJOR/MINOR)	DATE CODE EFFECTIVITY	LTR	REVISIONS DESCRIPTION	DATE	APPROVED
of MIL-STD-883 and Revision A of MIL-STD-38510 The property of the property o	of MIL-STD-883 and Revision A of MIL-STD-38510 7401 C Incorporate revised Level IV (SNH) processing with inclusion of recorded electrical data with delta requirements; incorporate technological criteria in	Major	7040	Α		8/15/70	AS. JAdas
101 1 1401 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	processing with inclusion of recorded electrical data with delta requirements; incorporate technological criteria in	Major	7239	В	of MIL-STD-883 and Revision A of	9/1/72	
electrical data with delta requirements; incorporate technological criteria in		Major	7401	С	processing with inclusion of recorded electrical data with delta requirements; incorporate technological criteria in	1/1/74	The PS out 18 18 18 18 18 18 18 18 18 18 18 18 18

UNLESS OTHERWISE SPECIFIED TEXAS INSTRUMENTS
INCORPORATED
SEMICONDUCTOR CIRCUITS DIVISION DALLAS, TEXAS DIMENSIONS ARE IN INCHES Think to Italian A Language of Allami TOLERANCES: ANGLES : 1° 3 PLACE DECIMAL ±.010 2 PLACE DECIMAL ±.02 INTERPRET DWG, IN MICROELECTRONICS, HIGH RELIABILITY PROCUREMENT SPECIFICATION ACCORDANCE WITH STD. DESCRIBED IN MIL-STD-100 MATERIAL: (MIL-STD 38510/883) CODE IDENT NO. DRAWING NO. SIZE DESIGN ACTIVI DEPARTMENT 01295 38510/MACH IV PROGRAM Α MANAGER, TAL CIRCUITS DIVISION MANAGER REV C SHEET

38510/MACH IV PROGRAM

The Texas Instruments 38510/MACH IV Program includes a complete procurement document encompassing general specification MIL-M-38510 and MIL-STD-883. The 38510/MACH IV Program is a realistic cost-effective supplement to JAN, offering 38510/883 screening for those device types not yet covered by JAN specifications or those JAN circuits without adequate availability. The 38510/MACH IV Program device types may be cross-referenced to JAN circuit types, class, package, and finish codes on pages S-376 through S-378. The 38510/MACH IV Program places major emphasis on designing and building quality and reliability into the device, realizing that no specification or screening procedure can substitute for inherent reliability. It is realized that irrespective of lot quality, there will always be some small percentage of devices that are subject to early failure ("infant mortality"). The 38510/MACH IV screening will reduce these early failures and serve to demonstrate with a high degree of statistical confidence that the required levels of quality and reliability have in fact been built into the device. The program is backed up by factory and distributor stocking programs on standard 38510/MACH IV Class B (SNC) devices, allowing quick delivery on most popular device types.

The 38510/MACH IV Program establishes the following reliability screening levels.

CLASS	NUMBER	ESTIMATED FAILURE RATE*
Class C	SNM54XX	0.010 - 0.020% per 1000 hours
Industrial Hi Rel	SNA54XX	0.007 - 0.020% per 1000 hours
Class B	SNC54XX	0.004 - 0.008% per 1000 hours
Class A	SNH54XX	0.002 - 0.005% per 1000 hours *Not guaranteed

Each reliability screening level is tested to the following method of MIL-STD-883 test methods and procedures.

TEST METHOD	CLASS C SNM	INDUSTRIAL HI-REL SNA	CLASS B SNC	CLASS A SNH
Precap Visual, 2010.1	Cond B	TI Defined	Cond B	Cond A
Stab. Bake, 1008	100%	100%	100%	100%
Temp. Cycle, 1010	100%	100%	100%	100%
Centrifuge, 2001	100%	100%	100%	100%
Fine Leak, 1014	100%	Sample	100%	100%
Gross Leak, C1, 1014	100%	Sample	100%	100%
Pre-Burn In Data, 25°C, DC				100%
Burn-In, 1015		168 hours	168 hours	240 hours
Post-Burn In Data, 25°C, DC				100%
X-Ray, 2012				100%

The 38510/MACH IV Program also offers an aid to specification writing by providing a base 38510 and 883 document, whereby special device program specifications may be written invoking any additional testing options unique to a specific program. The 38510/MACH IV specification is organized and written per MIL-STD-100 to allow its use as a program specification by merely adding the user's company name and drawing number, as well as any required additions or deletions necessary to meet the specific program goals.

38510/MACH IV PROGRAM

1.0 SCOPE

1.1 This specification establishes standards for materials, workmanship, performance capabilities, identification and processing of high-reliability bipolar monolithic integrated circuits.

1.2 Intent

The intent of this document is such as to recognize that quality and reliability are built into, not tested into, a product. There is no specification or screening procedure that can substitute for inherent, built-in reliability. However, it must be realized that irrespective of lot quality, there will always be some small percentage of devices that are subject to early failure (infant mortality). A well engineered screening procedure will eliminate most, if not all, of these early failures. Secondly, the screening and acceptance testing described herein will also serve to demonstrate, with a high degree of statistical confidence, that the required levels of quality and reliability have, in fact, been built into the product.

2.0 **APPLICABLE DOCUMENTS**

The following specifications and standards, of the issue in effect on the date of invitation 2.1 for bids or request for proposal, form a part of this specification to the extent specified herein:

2.2 **Specifications**

Military/NASA

MIL-M-55565 MIL-M-38510 NASA 85M03766 Microcircuits, Packaging of

Microcircuits devices, general specification for Microcircuit, Monolithic Silicon TTL Family of Devices, Specification Control Drawing for

2.3 Standards

Military/NASA

MIL-STD-105 Sampling Procedures and Tables for Inspection by Attributes Test Methods and Procedures for MIL-STD-883 Microelectronics MIL-STD-790 Reliability Assurance Program for **Electronic Parts Specification** MIL-STD-1276 Leads, Weldable, for Electronic **Components Parts** MIL-STD-1313 Microelectronics Terms and Definitions MSFC-STD-355 Radiographic Inspection Standard for **Electronic Parts**

Detail Specifications

SNXXXX

Detail Specification for a Particular Part Type (e.g., Manufacturer's

Data Sheet)

2.4 Precedence of Documents

For the purpose of interpretation, in case of any conflicts, the following order of precedence shall apply:

-The purchase order shall have Purchase Order a)

precedence over any referenced

specification.

Detail Specification -The detail specification shall have b)

precedence over this specification and other referenced specifications.

This Specification -This specification shall have

precedence over all referenced

specifications.

Referenced -Referenced Specifications shall apply

Specifications to the extent specified herein.

2.5 Federal and/or military specifications and standards required shall be obtained from the usual government sources.

3.0 GENERAL REQUIREMENTS

The individual item requirements shall be as specified herein and in accordance with the applicable detail specification. In the event of any conflict between the requirements of this specification and the detail specification, the latter shall govern. The static and dynamic electrical performance requirements of the integrated circuits plus absolute maximum ratings and test methods shall be as specified in the detail specifications.

3.1.1 Definitions

a)	LTPD	Lot Tolerance Percent Defective shall be as defined by MIL-M-38510.
b)	λ	Lambda, stated in percent per 1000 hours as defined by MIL-M-38510.
c)	MRN	Minimum reject number as defined by MIL-M-38510.
d)	Production Lot	For the purpose of this specification, a production lot shall be defined per MIL-M-38510.
e)	Inspection Lot	An inspection lot shall be as defined in MIL-M-38510.
f)	С	Acceptance number as defined by MIL-M-38510.

3.1.2 Terms and Definitions

Terms and definitions shall be as defined in MIL-STD-1313.

3.1.3 Classification of Requirements

The requirements for the integrated circuits are classified herein as follows:

Requirement	Paragraph
Process Conditioning, Testing and Screening	3.2
Qualification	3.3
Design and Construction	3.4

Marking of Integrated Circuits	3.5
Product Assurance	3.6
Workmanship	3.7
Performance Capabilities	3.8
Quality and Reliability Assurance Program Plan	3.9

3.2 Process Conditioning, Testing and Screening

Four levels of screening and quality assurance for integrated circuits are provided for in this specification. Process conditioning, testing and screening shall be as specified in 4.3 and the applicable figure for the appropriate quality assurance level stated on the purchase order and defined as follows:

Screening Level	Part Number Prefix	Applicable Process Flow Chart
38510/883A	SNH (Level IV)	Figure 4
38510/883B	SNC (Level III)	Figure 3
38510/883C	SNM (Level I)	Figure 1
Industrial High Reliability	SNA (Level II)	Figure 2

3.3 Qualification

Vendor qualification for delivery of integrated circuits to this specification shall be as specified in paragraph 4.2.

3.4 Design and Construction

Integrated circuit design and construction shall be in accordance with the requirements specified herein and in the applicable detail specification.

3.4.1 Topography

Integrated circuits furnished under this specification shall have topography information available for review by procuring activity. The information made available shall provide sufficient data for thorough circuit design, application, performance, and failure analysis studies.

3.4.1.1 Monolithic Die Topography

An enlarged photograph or drawing (to scale) with a minimum magnification of 80 times the die (chip) size showing the topography of elements formed on the silicon monolithic die shall be available for review. This shall be identified with the specific detail integrated circuit part-type in which it is used and the applicable detail specification.

3.4.1.2 Die Intraconnection Pattern

An enlarged photograph or drawing (to scale) with a minimum magnification of 80 times the die (chip) size showing the specific intraconnection pattern utilized to intraconnect the elements in the circuit. This shall be in the same scale as the die topography 3.4.1.1 so that the elements utilized and those not being used can easily be determined.

3.4.2 Materials

Materials shall be inherently non-nutrient to fungus and shall not blister, crack, outgas, soften, flow or exhibit other immediate or latent defects that adversely affect storage, operation or environmental capabilities of integrated circuits.

3.4.2.1 Material Selection

Materials selected for use in the construction of the integrated circuits shall be chosen for maximum suitability for the application. This shall include consideration of the best balance for:

- a) Electrical performance
- b) Thermal compatibility and conductivity
- c) Chemical stability including resistance to deleterious interactions with other materials
- Metallurgical stability with respect to adjacent materials and change in crystal configuration
- Maximum stability with regard to continued uniform performance through the specified environmental conditions and life.

3.4.2.2 Foreign Materials

No lacquer, grease, paste, desiccant or other similar foreign encapsulant or coating material shall be included in the circuit enclosure nor applied to any part of the internal circuit assembly.

3.4.3 Mechanical

3.4.3.1 Case

Each integrated circuit shall be securely mounted and hermetically sealed within a case designed and constructed to conform to the outline and physical dimensions shown in the detailed specification. External surfaces of the integrated circuit case shall be unpainted except for markings.

3.4.3.2 Interconnections

Interconnections within the integrated circuit case shall be minimized and there shall be no wire crossovers. Circuit intraconnections by means of wire jumpers shall not be used. (See Note 6.2)

3.4.3.3 Leads

Lead material, construction, and outline shall be as specified on the detail specification and shall be capable of meeting the solderability test of MIL-STD-883, Method 2003. (See note 6.4).

3.4.3.3.1 Lead Size

Lead outline and dimensions shall be as specified in the detail specification.

3.4.3.3.2 Lead Surface Condition

Leads shall be free of the following defects over their entire length when inspected under a minimum of 4X magnification:

- a) Foreign materials adhering to the leads such as paint, film, deposits and dust. Where adherence of such foreign materials is in question, leads may be subjected to a clean, contaminant-free (e.g., oil, dust, etc.), filtered air stream (suction or expulsion) of 88 feet per second maximum, or a wash/rinse as necessary and reinspected.
- Nicks, cuts, scratches or other surface defacing defects which expose the base metal.

3.4.3.3.3 Lead Straightness

Leads shall be aligned within a 0.050-inch diameter, 0.050-inch length cylinder concentric to the point of lead emergence from the case and the X-axis (the axis parallel to the lead axis). Along the remaining lead length, there shall be no unspecified bend whose radius is less than 0.10 inch and no twist whose angle is greater than 30° (ribbon leads, only).

3.4.3.3.4 Preformed Leads

Preformed leads, when specified, shall be in accordance with the detail specification. The part number of the integrated circuit shall remain as specified in the applicable detail specification or purchase order, the applicable suffix designation shall appear on the purchase order but shall not be marked on the device.

3.4.3.3.5 Carriers (Mech-Pak Carrier)

Carrier-matrix assemblies consisting of individually mounted integrated circuits shall be furnished when so specified by purchase order. The individual carriers shall have provisions for use with automatic test equipment contacts. Devices supplied "clipped-out" of the Mech-Pak Carrier shall be supplied in the Barnes Carrier type 029-188 or equivalent. (Applicable to Flat Packs only.)

3.5 Marking of Integrated Circuits

3.5.1 Legibility

All marking shall be permanent in nature and remain legible when subjected to specified operating, storage, and environmental requirements. All markings shall be insoluble in standard solvents such as trichlorethylene, water and xylene.

3.5.2 Marking Details

Marking of the integrated circuits shall be located as follows unless otherwise specified in the detail specification:

- a) TO-99, TO-100, and similar "can" cases shall be marked on the top of the case.

 Where space limitations exist, the side of the case may be used.
- b) Flat Packs shall be marked on the top of the case. Where space limitation exists, the bottom of the package may be utilized as necessary. As a minimum the top of the package shall show the manufacturer's identification mark or symbol, the device part number, date code, and pin 1 orientation mark (where applicable).
- c) Dual-in-line plug-in packages shall be marked in the same manner as flat packs.

3.5.3 Required Device Marking

- Index point indicating the starting point for numbering of leads shall be as indicated in the detail specification. The indexing point may be a tab, color dot, or other suitable indicator.
- b) Manufacturer's identification mark or symbol.
- c) An alpha-numeric lot date code indicating the week of initial submission for screening or inspection. The date code shall be as follows:
 - EIA four-digit date code, the first two numbers shall be the last two digits of the year, the last two numbers shall indicate the calendar week.

- 2) A Gothic letter which identifies separate lots of the same device type processed within the same calendar week. (If no more than one lot is processed through screening or inspection in a given calendar week, the Gothic letter may be omitted.)
- d) Manufacturer's part number defining circuit type and applicable MACH IV screening level and MIL-M-38510 product assurance level as defined in paragraph 3.2.
- e) Individual device serial number is required for Level IV (SNH).
- f) A dot to indicate acceptance by Radiographic inspection

NOTE:

When a color dot is used to identify pin one, the radiographic inspection acceptance dot shall be placed on the bottom of the package.

3.6 Product Assurance

The manufacturer shall establish and maintain a reliability assurance program that complies with the basic intent of MIL-STD-790. Furthermore, it is intended that each integrated circuit delivered shall be free of any defect in design, material, manufacturing process, testing and handling, which would degrade or otherwise limit its performance when used within the specified limits.

3.6.1 Visual and Mechanical Examination

Integrated circuits shall be examined to verify that material, design, construction, physical dimensions, marking and workmanship are in accordance with the specified acceptance criteria.

3.6.2 **Test Equipment**

The manufacturer shall prepare and maintain a current list, by name and drawing number or other unique identification, of test equipment used in the manufacturing and testing of devices submitted for acceptance inspection under this specification. This list shall be made available to the procuring activity representative upon request.

3.6.3 **Process Controls**

Each integrated circuit shall be constructed by manufacturing processes which are under the surveillance of the manufacturer's Quality Control department. The processes shall be monitored and controlled by use of statistical techniques in accordance with published specifications and procedures. The manufacturer shall prepare and maintain suitable documentation (such as quality control manuals, inspection instructions, control charts, etc.) covering all phases of incoming part and material inspection and in-process inspections required to assure that product quality meets the requirements of this specification. The

procuring activity may verify, with the permission of and in the company of the manufacturer's designated representative, that suitable documentation exists and is being applied. Information designated as proprietary by the manufacturer will be made available to the procuring activity or its representative only with the written permission of the manufacturer.

Process control is recognized as being vital to the concept of "built-in" quality. Appendix A defines an acceptable process-control system. Devices delivered to this specification shall be manufactured in a controlled system similar to that set forth in Appendix A. The process control program shall include a scanning electron microscope (SEM) monitor program for evaluating the metal integrity over oxide step and oxide step contour. The SEM analysis will be defined in a Quality & Reliability Assurance document.

3.6.4 Production Changes

The manufacturer shall advise the procuring activity of the time at which any major change(s) in production or QC methods or documentation become effective during the period of device production for delivery against any given purchase order referencing this specification.

3.7 Workmanship

Integrated circuits shall be manufactured and processed in a careful and workmanlike manner, in accordance with the production processes, workmanship instructions, inspection and test procedures, and training aids prepared by the manufacturer in fulfillment of the reliability assurance program established by paragraph 3.6.

3.7.1 Personnel Certification

The manufacturer shall be responsible for training, testing and certification of personnel involved in producing integrated circuits. Training shall be commensurate and consistent with the requirements of this specification and in conformance to the basic intent of MIL-STD-790. Training aids in the form of satisfactory criteria shall be available for operator and inspector review at any time.

3.7.2 Personnel Evaluation

The supplier shall maintain a continuous evaluation of the proficiency of personnel concerned with production and inspection. Retraining of an operator or inspector shall be required when this evaluation establishes that a degree of proficiency necessary to meet the requirements of this specificaiton is not being exercised.

3.7.3 Rework Provisions

3.7.3.1 Rework

All rework on micorcircuits manufactured under this specification shall be accomplished in accordance with paragraph 3.7.1 of MIL-M-38510 as defined herein.

3.7.3.2 Rebonding

Rebonding shall be in accordance with MIL-M-38510, with the total number of rebond attempts per microcircuit limited to a maximum of 10 percent of the total number of bonds in the microcircuit. The 10 percent limit on rebonds may be interpreted as the nearest whole number to the 10 percent value. A bond shall be defined as a wire to post or wire to pad bond (i.e., for a 14-lead wire-bonded package there are 28 bonds). Bond-offs required to clear the bonder after an unsuccessful first bond attempt need not be considered as rebonds provided they can be identified as bond-offs by being made physically off the plated post or if they contain a non-typical number of wedge marks. The initial bond attempt need not be visible. A replacement of one wire bonded at one end of an unsuccessful bond attempt at one end of the wire counts as one rebond; a replacement of a wire bonded at both ends counts as two rebonds. A ball bond on top of a ball bond is not permissible. No more than one rebond attempt shall be permitted at any pad or post and no rebonds shall be made where pad metallization has been lifted.

3.8 Performance Capabilities

The integrated circuits delivered to this specification shall be designed to be capable of meeting the environmental requirements specified in Table II. The manufacturer need not perform these tests specifically for the contract or specification, but shall provide data which demonstrates the ability of the integrated circuits to pass the environmental tests. The data shall have been generated on devices from the same generic family as the circuits being supplied to this specification, and the package configuration shall be the same as for the delivered parts (i.e., Flat Pack, TO-100, etc.).

3.9 Quality and Reliability Assurance Program Plan

The manufacturer shall establish and implement a Quality and Reliability Assurance Program Plan that meets the intent of MIL-M-38510, Appendix A. Submission of the program plan to the procuring activity shall not be a requirement of this specification, however, the program plan shall be maintained by the manufacturer and shall be available for review by the procuring activity.

4.0 QUALITY ASSURANCE PROVISIONS

4.1 Responsibility for Inspection

Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection requirements specified herein. Except as otherwise specified, the manufacturer may utilize his own facilities or any commercial laboratory acceptable to the procuring activity. The procuring activity may, at its discretion, perform any of the inspections set forth in the specification where such inspections are deemed necessary to assure supplies and services conform to prescribed requirements.

4.1.1 Inspection and Testing Procedures Coverage

Inspection and testing processes and procedures prepared in fulfillment of the reliability assurance program established per paragraph 3.6 shall be prescribed by clear, complete and current instructions. These instructions shall assure inspection and test of materials, work in process and completed integrated circuits as required by this specification. In addition, criteria for approval and rejection of materials and integrated circuits shall be included.

4.1.2 Inspection at Point of Delivery

The procuring activity may, at its discretion, reinspect any or all of the delivered parts. (Excluding Group B destructive samples as defined by MIL-STD-883). All parts, found to be defective and/or lacking specified documentation (such as test documentation) may be returned to the manufacturer at the manufacturer's expense.

4.1.3 Inspection Records

The manufacturer shall maintain a reliability data and records library. This library shall have on file, for review by the procuring activity, records of examination, qualification test results, variables data (when required) and all other pertinent data generated on devices manufactured to this specification.

4.1.4 Control of Procurement Sources

The manufacturer shall be responsible for assuring that all supplies and services conform to this specification, the detail specification and the manufacturer's procurement requirements.

4.1.4.1 Manufacturer's Receiving Inspection

Purchased supplies shall be subjected to inspection after receipt as necessary to ensure conformance to contract requirements. In selecting sampling plans, consideration shall be given to the controls exercised by the procurement source and evidence of sustained quality conformance.

- 4.1.4.2 The manufacturer shall provide procedures for withholding from use all incoming supplies pending completion of required tests or receipt of necessary certification or test records and their evaluation.
- 4.1.4.3 The manufacturer shall initiate corrective action with the procurement source depending upon the nature and frequency of receipt of nonconforming supplies.
- 4.1.5 Procuring Activity Quality Assurance Representative

The procuring activity, may, at its discretion, place quality assurance representatives in the manufacturer's plant as deemed necessary to assure conformance to contract requirements in any non-proprietary phase of design, fabrication, processing, inspection, testing, and reliability of the integrated circuits being produced. The manufacturer shall provide reasonable facilities and assistance for the safety and convenience of such personnel in the performance of their duties. Inspection and test procedures shall be made available for review by the quality assurance representative.

4.2 Qualification and Quality Conformance Inspection

4.2.1 Qualification

Manufacturer's qualification shall be based on compliance with the established reliability test program requirements of paragraph 4.2.1.1 herein. The manufacturer may, at his discretion, substitute the qualification test plan of paragraph 4.2.1.2 in order to establish initial qualification. However, the substitution of paragraph 4.2.1.2 does not relieve the manufacturer from the responsibility of establishing an in-house reliability evaluation program as defined by paragraph 4.2.1.1.

4.2.1.1 Established Reliability Test Program

The manufacturer shall have an established and well defined in-house reliability program. This program shall be so designed as to demonstrate that the manufacturer's product is capable of meeting, as a minimum, the environmental and minimum life requirements listed in Table I herein. The reliability program may be modeled after the test procedure of Table I or it may take the form of a step-stress testing program similar to that defined by

MIL-STD-883, Method 5006. The program shall be on-going in nature; that is, at specified intervals the manufacturer shall randomly select product that is representative of current production techniques, and subject the devices to the specified tests. Sampling shall be done on each generic family.

4.2.1.2 Qualification Test Program

In lieu of meeting the requirements of 4.2.1.1, the manufacturer may establish qualification by performing an initial, one-time qualification test in accordance with Table I herein. Qualification testing shall be performed on each generic family supplied to this specification. Upon successful completion of the qualification program, the manufacturer shall remain qualified for a period not to exceed 12 calendar months. Continued qualification shall then be based on compliance with the requirements of paragraph 4.2.1.1.

4.2.1.3 Procedures and Definitions

4.2.1.3.1 Sampling Procedure

Device selection for the qualification procedure of 4.2.1.1 or 4.2.1.2 shall be based on a random sampling technique. Linear sample shall be obtained from one generic family. Digital testing shall be done on a mixture of device types that adequately represent the entire generic family. The following is a recommended mix ratio:

Gates : 65% of total sample

Flip-Flops : 25% of total sample

MSI : 10% of total sample

4.2.1.3.2 Generic Family

Electrically and structurally similar devices shall be said to comprise a generic family (e.g., TTL) if they meet the following criteria:

- a) Are designed with the same basic circuit-element configuration such as TTL, DTL, ECL, or Linear, and differ only in the number or complexity of specified circuits which they contain.
- Are designed for the same supply, bias and signal voltage, and for input/output capability with each other under an established set of loading rules.
- c) Are enclosed in housings (packages) of the same basic construction (e.g., hermetically sealed flat packages, dual-in-line ceramic, dual-in-line plastic) and outline, differing only in the number of active housing terminals included and/or utilized.

4.2.2 Quality Conformance Inspection (Groups B and C per Table !!)

- When specifically called out and funded on the purchase order or contract, the manufacturer shall perform the quality conformance inspections (Group B and/or Group C) on a lot-by-lot basis.
- b) When specifically called out and funded on the purchase order or contract, the manufacturer shall provide quality conformance inspection and generic data from the previous quarterly test results.

4.2.2.1 Lot Acceptance Sampling

Statistical sampling for quality conformance inspections shall be in accordance with MIL-M-38510 Table B1.

Group B samples except bond strength samples shall be selected from sublots that have successfully completed all of the 100% processing steps specified on the applicable process flow chart.

4.2.2.2 Resubmission of Failed Lots

When any lot submitted for quality conformance inspection fails any subgroup requirement, it may be resubmitted a maximum of one time for that particular subgroup. One additional submission is permitted, provided an analysis is performed to determine the failure mechanism for each reject device in the subgroup, and that it is determined that the failures are due to one of the following:

- a) Testing error resulting in electrical damage to devices
- b) A defect that can effectively be removed by rescreening the lot
- Random defects which do not reflect poor basic device designs or poor workmanship.

4.2.2.3 Early Shipments

When quality conformance inspection is being performed for a specific contract or purchase order, the accepted Group A devices that are awaiting shipment pending successful completion of Group B and/or Group C, shall be stored in the 38510/MACH IV bonded locker. Under no circumstances shall such parts be shipped prior to the successful completion of the Group B tests.

4.2.2.4 Groups B and C Test Data

All lot-by-lot data generated by Group B and/or Group C testing shall accompany the initial shipment of devices. This data shall consist, at a minimum, of the following:

 Attributes data for Group B. Endpoints for the subgroups are visual per the applicable MIL-STD-883 test method.

 Attributes data for Group C subgroups 1, 2, 4 and 5. Endpoints for these subgroups shall be "critical electrical parameters" only.

4.2.2.5 Procedure in Case of Test Equipment Failure or Operator Error

Where an integrated circuit is believed to have failed as a result of faulty test equipment or operator error, the failure shall be entered in the test record which shall be retained for review along with a complete explanation verifying why the failure is believed to be invalid. If it is determined that the failure is invalid, a replacement integrated circuit from the same inspection lot may be added to the sample. The replacement integrated circuit shall be subjected to all those tests to which the discarded integrated circuit was submitted prior to its failure, and any remaining specified test to which the discarded integrated circuit was not subjected prior to its failure.

4.3 Quality Assurance Processing, Methods and Procedures

This section establishes the test methods and conditions to be used for the 100% processing (screening) requirements specified by the applicable process flow chart.

4.3.1 Precap Visual Inspection

Each microcircuit shall be required to pass the appropriate precap visual inspection defined as follows. Precap Lot Acceptance shall be per paragraph 4.6.

- 4.3.1.1 Level II devices shall be visually inspected in accordance with the criteria listed in Section 6.1.2 of this specification. Inspection procedures and equipment requirements shall be as defined in MIL-STD-883.
- 4.3.1.2 38510C (Level I) and 38510B (Level III) devices shall be visually inspected in accordance with MIL-STD-883, Method 2010.1, Condition B (See Note 6.1.1).
- 4.3.1.3 38510A (Level IV) devices (designated for NASA type applications) shall be visually inspected in accordance with the NASA approved precap requirements of NASA specification 85MO3766 for digital circuits.
- 4.3.1.4 Complex MSI and LSI circuits as defined in Table III may be precap inspected per Note 6.1.2 in lieu of precap 2010.1, Condition A, paragraph 4.3.1.3, or 2010.1, Condition B, paragraph 4.3.1.2.

4.3.2 Stabilization Bake

The purpose of this test is to determine the effect on microelectronic devices of baking at elevated temperatures without electrical stress applied. Test shall be performed in accordance with MIL-STD-883, Method 1008, Condition C.

4.3.3 Thermal Shock

The purpose of this test is to determine the resistance of the device to sudden exposure to extreme changes in temperature. Test shall be performed in accordance with MIL-STD-883, Method 1011, Condition A.

4.3.4 Temperature Cycle

This test is conducted for the purpose of determining the resistance of a part to exposures at extremes of high and low temperatures, and to the effect of alternate exposures to these extremes, such as would be experienced when equipment or parts are transferred to and from heated shelters in arctic areas. Test shall be performed in accordance with MIL-STD-883, Method 1010, Condition C, minimum of 10 cycles:

4.3.5 Mechanical Shock

The shock test is intended to determine the suitability of the devices for use in electronic equipment which may be subjected to moderate severe shocks as a result of suddenly applied forces or abrupt changes in motion produced by rough handling, transportation, or field operation. Test shall be performed in accordance with MIL-STD-883, Method 2002, Condition B, five blows minimum.

4.3.6 Centrifuge (Constant Acceleration)

The centrifuge test is used to determine the effects on microelectronics devices of a centrifugal force. This test is designed to indicate structural and mechanical weaknesses not necessarily detected in shock and vibration tests. Test shall be performed in accordance with MIL-STD-883, Method 2001, Condition E.

4.3.7 Fine Leak Test

Each integrated circuit for 38510C (Level I), 38510B (Level III), and 38510A (Level IV) screens shall be subject to a fine leak test in accordance with paragraph 4.3.7.1 or 4.3.7.2. The method shall be optional providing it is consistent with and capable of detecting the specified leak rate of the applicable process flow chart. Level II devices will be sample tested to a 1% AQL.

4.3.7.1 Helium Leak Test

Helium leak test shall be performed in accordance with MIL-STD-883, Method 1014, Condition A. Helium bomb pressure shall be 30 psig maximum, bomb time shall be 4 hours minimum.

4.3.7.2 Radiflo Leak Test

Radiflo leak test shall be performed in accordance with MIL-STD-883, Method 1014, Condition B. Krypton 85 bomb pressure and dwell time are a function of the radioactivity level and shall be selected so as to conform to the equations given in Condition B.

4.3.8 Gross-Leak Test

Each integrated circuit for 38510C (Level I), 38510B (Level III), and 38510A (Level IV) screens shall be subjected to the appropriate gross-leak test of paragraphs 4.3.8.1 or 4.3.8.2 or an approved equivalent. The manufacturer may, at his option, perform gross-leak testing after the Set I Electrical Tests of paragraph 4.3.9. Level II devices will be sample tested to a 1% AQL.

- 4.3.8.1 When specifically called out and funded on the purchase order or contract, units will be bombed 4 hours minimum at 30 psi in FC-78. Units will then be immersed in FC-40 or equivalent at +125°C ± 5°C for 20 seconds minimum and observed for one large bubble or a continuous stream of small bubbles, MIL-STD-883, Method 1014, Condition C, Step 2.
- 4.3.8.2 Units will be immersed in FC-40 or equivalent at +125°C ± 5°C for 20 seconds minimum and observed for one large bubble or a continuous stream of small bubbles, MIL-STD-883, Method 1014, Condition C, Step 1.

4.3.9 Final Electrical Test (Set I)

Each integrated circuit shall be required to pass the electrical requirements of Subgroup 1 of the detail specification. The manufacturer shall also perform such additional testing necessary to assure the parts will meet the temperature extreme limits. In addition, Level IV (SNH) parts shall have critical 25°C dc electrical parameters read and recorded by serial number.

When specifically called out and funded on the purchase order or contract, the manufacturer shall perform subgroups 2, 3, and 4 of paragraph 4.4 in accordance with Method 5004 of MIL-STD-883, Notice 3.

4.3.10 Burn-In

The burn-in screen is performed for the purpose of eliminating marginal devices and early-life failures evidenced as time and stress dependent. Test shall be in accordance with MIL-STD-883, Method 1015, Condition A, D, or E at 125 ± 5°C for digital circuits and Conditions A, B, C, or D for linear circuits. The bias shall be removed from the devices prior to their return to 25°C. (See note 6.3)

4.3.11 Final Electrical Test (Set II)

Each integrated circuit shall be required to pass the electrical requirements of the detail specifications. The following tests shall be performed as a minimum: dc parameters at maximum and minimum rated temperatures, and switching parameters at 25°C. In addition, prior to dc testing at minimum and maximum rated temperature, each Level IV (SNH) part shall have critical 25°C dc electrical parameters read and recorded by serial number and shall pass the following delta requirements.

PARAMETER	DELTA LIMIT
VOL	±10% of detail specification limit
∨ŏñ	±10% of detail specification limit
	±10% of detail specification limit
IIL IIH	±10% of detail specification limit

One copy of the pre-burn-in and post-burn-in recorded data with delta calculations shall be shipped with each lot. The manufacturer may, when deemed necessary, elect to perform additional electrical testing over and above the requirements stated herein.

4.3.12 Radiographic Insepction (X-ray)

Test shall be performed in accordance with MIL-STD-883, Method 2012, the integrated circuit shall be required to pass a radiographic inspection to these requirements. In addition, the acceptance criteria shall meet, as a minimum, the requirements of NASA MSFC-STD-355 except delete voiding criteria. X-ray may be performed at any point after serialization at the manufacturer's option.

4.3.13 External Visual Inspection

The purpose of this examination is to verify that materials, construction, marking, and general workmanship are as specified. Examination shall be in accordance with MIL-STD-883, Method 2009.

4.4 Group A Conformance

Group A conformance shall consist of the electrical parameters in the manufacturer's data sheet. If an inspection lot is made up of a collection of sublots, each sublot shall conform to Group A, as specified.

SUBGROUP	LEVEL I 38510C	LTPD LEVEL II	(%) LEVEL III 385108	LEVEL IV 38510A
Subgroup 1 25°C, dc	5	7	5	5
Subgroup 2 High Temperature, dc	10	10	7	5
Subgroup 3 Low Temperature, dc	10	10	7	5
Subgroup 4	10	10	7	5

Dynamic and Switching Tests @ 25°C

NOTE: Functional tests included in dc tests.

4.5 Certification

The manufacturer shall include a certificate of compliance with each shipment of parts if requested on the purchase order. This certificate shall indicate that all specified tests and requirements of this specification have been made or met, and that the lot of devices (identified by lot and/or batch number) is acceptable. The certificate shall bear the name and signature of the manufacturer's Quality Control representative, the date of acceptance or signing, and any pertinent notes as applicable.

4.6 Precap Lot Acceptance

After each precap inspection the lot of devices shall be sampled by quality control and inspected for the specified visual criteria. The sampling plan shall be:

> 40X criteria - 1.0% AQL 100X criteria - 1.0% AQL

TABLE I MANUFACTURERS QUALIFICATION PROCEDURE

			LTPD
TEST	MIL-STD-883 METHOD	CONDITIONS	
Subgroup 1			
Physical Dimensions Visual and Mechanical	2008	Condition A & B	15
Subgroup 2 ¹			
Solderability	2003		15
Subgroup 3 ²			
Thermal Shock	1011	Condition B	
Temperature Cycling Moisture Resistance	1010 1004	Condition C Omit step 7B and	
MOISTOIR HESISTRICE		Initial Conditioning	
Critical Electrical Parameters	5004	25°C, DC -	15
Subgroup 4 ²			
Mechanical Shock	2002	Condition B	
Vibration Variable Freq.	2007	Condition A	
Constant Acceleration	2001	Condition E	
Critical Electrical Parameters	5004	25°C, DC -	15
Subgroup 5 ¹			
Lead Fatigue	2004	Condition B2	
Fine Leak	1014	Condition A, Per Para. 4.3.7 Herein	
Gross Leak	1014	Condition C, Per Para. 4.3.7 Herein	15
Subgroup 6 ¹			
Salt Atmosphere	1009	Condition A, Omit Initial Conditioning	15
Subgroup 7 ²		,	
Storage Life	1008	150°C, 1000 Hrs. Minimum	
Critical Electrical Parameters	5004	25°C, DC	10
Subgroup 8 ²			
Operating Life	1005	125°C, 1000 Hrs. Minimum Return to 25°C without bias	
Critical Electrical Parameters	5004	25°C, DC -	10
Subgroup 9 ¹			
Bond Strength			10 devices
 Thermocompressi 		Condition B, D	not greater
b. Ultrasonic	2011	Condition B, D	than 1%
			defective

^{1.} Visual and/or hermetic and points hence electrical or visual rejects may be used. Reference MIL-STD-883, Method 5005, Para.3.4.

^{2.} Electrical end points only.

TABLE II LOT ACCEPTANCE/PERIODIC QUALIFICATION TESTS (GROUP B/GROUP C)

GROUPR

		GROUP B				
				LTPD	1	
	MIL-STD-883		LEVEL IV	LEVEL III	LEVEL I	
TEST	METHOD	CONDITIONS	38610A	385108	38510C	
					333.33	
Subgroup 1						
Physical Dimensions		•				
Visual and Mechanical	2008	Condition A	10	15	20	
Subgroup 2					,	
Marking Permanency	2008	Condition B, pera. 3.2.1				
Visual and Mechanical	2008	Condition B per applicable detail specification				
Bond Strength 3 ²	2011	Condition B or D	10	15	20	
		2 grams for Au bonds		,,,	"	
Subgroup 3 ³		1 gram for Al bonds				
Solderability	2003		10	15	15	
Subgroup 4 ³						
Lead Fatigue	2004	Conditions B2				
Fine Leak	1014	Conditions A or B, per				
Gross Leak	1014	para. 4.3.7 of this spec. Condition C, per para. 4.3.8	1	:	1	
0.03 Euch	1014	of this spec.	10	15	15	
	(SROUP C				
Subgroup 1 ⁴						
•						
Thermal Shock	1011	Condition B				
Temp. Cycle	1010	Condition C	i]	
Moisture Resistance Critical Electrical Parameters	1004 5004	Omit Initial Cond. & step 7B 25°C, DC	10	15	15	
Subgroup 2 ⁴	-	20 4,50				
•						
Mechanical Shock	2002	Condition B	1		ļ	
Vibration Variable Freq.	2007	Condition A	1		1	
Constant Acceleration Critical Electrical Parameters	2001 5004	Condition E 25°C, DC	10	15	15	
Subgroup 3	3334	25 0,00	"		"	
Salt Atmosphere	1009	Condition A Omit Initial Conditioning	10	15	15	
		Conditioning			"	
Subgroup 4 ⁴						
High Temp. Storage	1008	150°C, 1000 Hrs.				
Critical Electrical Parameters	5004	25°C, DC	7	7	7	
Subgroup 5 ⁴						
Operating Life Test	1005	125°C, 1000 Hrs. Minimum				
Critical Electrical Parameters		25°C, DC	5	- 5	5	

^{1.} Also applicable for Level II.

^{2.} Bond strength test may be performed on samples randomly selected immediately following internal visual prior to sealing

^{3.} See footnote 1 in Table I

^{4.} See footnote 2 in Table I

5.0 PREPARATION FOR DELIVERY

5.1 Final Visual Shipping Inspection

Each lot of microcircuits and its associated documentation shall be sampled by Quality Control and visually inspected for the following:

- a) Scratched, nicked or bent leads
- b) Damaged header (packages)
- c) All test data specified in section 4.0
- d) Certificate of Compliance as specified in section 4.0
- e) All other pertinent documentation required and specified by this specification.

5.2 Packing Requirements

Parts shall be packed in containers of the type, size, and kind commonly used which will ensure acceptance by common carriers and safe delivery at the destination and in accordance with MIL-M-55565, Level C. The containers shall be clearly marked with manufacturer's name or symbol. The manufacturer's FEDERAL SUPPLY CODE FOR MANUFACTURER (FSCM) shall be included if applicable.

5.3 Preservation and Package Identification

The package shall be marked with the following:

The country of origin if other than U.S.A.

Procuring activity parts number

Purchase order number

Material nomenclature

Quantity

Lot number

Date code

This information shall appear on the label or shall be directly marked on each container. Method is optional.

TABLE III CIRCUIT TECHNOLOGIES APPLICABLE TO PRECAP INSPECTION PER PARAGRAPH 4.3.14

CIRCUIT TECHNOLOGY	MINIMUM COMPLEXITY CRITERIA
TTL and CMOS	200 components or 100 transistors
MOS and bipolar memories	275 transistors
Linear and interface	150 components or chip area of 7500 square mils

6.0 NOTES

6.1 Precap Visual Method 2010.1

The following precap criteria may be in conflict with the circuit design topology and construction techniques of some microcircuit manufacturers. Where such a conflict does exist, the inspection criteria listed herein may be waived. (Reference paragraph 3.0 of MIL-STD-883, Method 2010.1)

- 6.1.1 Preseal Visual Inspection, Test Condition B [38510C and 38510C (Levels I and III)].
- 6.1.1.1 Paragraph 3.2.1.7(b) delete the 40 percent perimeter requirement (selected devices only).
- 6.1.1.2 Paragraph 3.2.4.3(a) substitute the following criteria: "Bonds placed so that the wire exiting from the bond appears to come closer than two wire diameters to another wire, bonding pad, or package land, after a distance of 10 mils from the die surface.
- 6.1.1.3 Paragraph 3.2.4.3(c) delete. (Applicable to gold ball bonds only) "Bond in the fillet area (or the point where metallizations exit from the bonding pad) which do not exhibit a line of undisturbed metallization visible between the periphery of the bond and at least one side of the fillet (or one side of the connecting stripe) when viewed from above."
- 6.1.1.4 Paragraphs 3.2.1.1 and 3.2.1.2 are clarified as follows: when a bimetallic system is used (e.g., moly-gold), the scratch or void must penetrate entirely through the gold and expose moly or oxide.
- 6.1.2 Preseal Visual Inspection, Level II and Table III MSI and LSI circuits.

The same comments of 6.1.1 are applicable here plus the following:

- 6.1.2.1 Paragraph 3.2.1.1 and 3.2.1.2 delete and replace with: "Scratches or voids in the metallized lead exposing oxide for more than 50% of the lead width or 0.5 mils, whichever is less.

 Excluded from this criteria are peripheral ground metallization which may contain the defect for a maximum of 50% of its width. Bonding pad scratches or voids are acceptable provided a metal path equal to 1/2 of the width of the connecting lead exists between the bond and the lead."
- 6.1.2.2 Paragraph 3.2.2 delete.
- 6.1.2.3 Paragraph 3.2.3 delete and replace with: "Any chip or crack that intersects or crosses active metallization. Excluded from this criteria are peripheral ground metallization which may contain the defect for a maximum of 50% of its width."

6.1.2.4 Paragraph 3.2.4.3(a) delete and replace with: "For all bonds, a minimum of 2 mils separation between the bond wire and other wires, metallization stripes and edge of die. For ultrasonic bonds, this criteria will apply after a distance of 10 mils from the die surface."

Paragraph 3.2.4.3(c) delete.

Paragraph 3.2.4.3(d) delete and replace with: Wire tails which exceed 2 mils in length at the pad or 4 mils in length at the post.

- 6.1.2.5 Paragraph 3.2.5(d) delete.
- 6.1.2.6 Paragraph 3.2.6.1 delete and replace with: "Attached bonding wire or ball inside cavity, or on bar which exceeds one mil in length dimension. All unattached metallic particles or silicon chips."
- 6.1.2.7 Paragraph 3.2.6.2(c) delete.
- 6.2 Interconnections

Circuit intraconnections (metallization pattern) shall be designed so that no properly fabricated connection shall experience a current density greater than 5 X 10⁵ amperes/cm², including allowances for worst-case conductor composition, normal production tolerances on design dimensions, and nominal thickness at critical areas such as contact windows.

6.3 Burn-in Method 1015

The requirement to return the device to 25°C room ambient temperature with bias still applied should be omitted. Indications are that for most saturated logic integrated circuits, the high temperature bake after bias has been removed does not allow defective devices to recover and become good.

6.4 Salt Atmosphere Test, Method 1009

Where package design considerations necessitate (such as .75" tip-to-tip metal flat packs), there may be a conformal coating applied prior to the salt atmosphere test.

JAN MIL-M-38510 Integrated Circuits

- - ----

.

JAN MIL-M-3851D INTEGRATED CIRCUITS

The Texas Instruments JAN MIL-M-38510 Program provides production availability of Hi-Rel JAN ICs. MIL-M-38510 and MIL-STD-883 have been fully implemented to provide a broad product line of JAN microcircuits for both military original equipment and logistic requirements. When the contract specifies that JAN ICs be used, or that microcircuits shall meet the quality provisions of MIL-M-38510, rely on the industry's broadest line of JAN ICs.

Table I provides a convient cross reference from the JAN part number to the corresponding standard catalog part numbers for ease in locating the commercial equivalent. The cross reference from the catalog numbers to the JAN slash sheet numbers is provided in Table II.

The following figure defines the reliability classes of MIL-M-38510 JAN ICs, and the intended areas of application. MIL-M-38510 recommends that for original equipment complements, the device class appropriate to the need be used, while Class B is recommended for spare parts for logistic support.

RECOMMENDED USE	TYPICAL SYSTEM APPLICATIONS	MIL-STD-883 MIL-M-38510 CLASS
Where repair or replacement is readily accomplished and "down time" is not critical	Prototype, noncritical ground systems	Class C
Where repair or replacement is difficult or impossible and reliability is vital	Avionics systems, space satellite	Class B
Where repair or replacement is difficult or impossible and reliability is imperative	Manned Space Program- NASA	Class A

JAN RECOMMENDED USAGE

When system designs utilize ICs not listed on the QPL, for which no slash sheets exist, the TI 38510/MACH IV Program may be used as the detail procurement specification. The 38510/MACH IV Program implements the processing and screening requirements of MIL-M-38510 and MIL-STD-883, and is intended as a supplement to the JAN slash sheets. For more information on the 38510/MACH IV Procurement Specification, see Tab Section 8.

The complete JAN part number with the tables of class, case, and lead finish codes are given in Table III, along with a cross reference to the TI 38510/MACH IV part numbers. A table of standard TI JAN-qualified cases and lead finishes is also provided to assist in specifying the proper JAN part number. It is imperative that the proper case and lead finish shown in the table be specified on the parts list and procurement documentation. The specific package for each device is determined by referring to the proper data sheet.

The following military documents (see Note 1) establish the processing, quality, and reliability assurance requirements for JAN integrated circuits. The detail requirements of each individual JAN device are specified in the slash sheets.

MIL-M-38510/XXX, Microcircuits, Digital, TTL, ..., ..., Monolithic Silicon (Slash Sheets)
MIL-M-38510, Microcircuits, General Specification for
MIL-STD-883, Test Methods and Procedures for Microelectronics
QPL-38510, Qualified Products List for MIL-M-38510

NOTE 1: Copies of these documents may be requested from the Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, Pa. 19120.

	TABLE I. JAN INTE	GRATED CIRCUITS	AND CIRCUIT-TYPE	CROSS-REFERENC	
JAN /NO.	CKT TYPE	JAN /NO.	CKT TYPE	JAN /NO.	CKT TYPE
00101	5430	01403	54153	05001	4011A
00102 00103	5420 5410	01404 01405	9309	05002	4012A
00104	5400	01405 01406t	54157 (9322) 54151	05003 05101	4023A 4013A
00105	5404	01501	5475	05102	4027A
00106 00107	5412 5401	01502	5477	05201	4000A
00108	5405	01503 01504	54116 (9308) 9314±	05202 ′ 05203	4001A 4002A
00109	5403	01601	5408	05204	4025A
00201 00202	5472 5473	01602 01701	5409 54174	05301	4007A
00203	54107	01701	54174 54175	05302 05401	4019A 4008A
00204	5476	02001	54L30	05501	4009A
00205 00206	5474 5470	02002 02003	54L20	05502	4010A
00207	5479±	02003	54L10 54L00	05503 05504	4049A 4050A
00301	5440	02005	54L04	05601	4017A
00302 00303	5437 5438	02006 02101	54L01/54L03 54L71	05602	4018A
00401	5402	02101	54L72	05603 05604	4020A 4022A
00402	5423	02103	54L73	05605	4024A
00403 00404	5425 5427	02104 02105	54L78 54L74	05701	4006A
00501	5450	02105	54L74 54H72	05702 05703	4014A 4015A
00502	5451	02202	54H73	05704	4021A
00503 00504	5453 5454	02203 02204	54H74	05705	4031A
00601	5482	02204	54H76 54H101	05801† 06001†	4016A 10501‡
00602	5483	02206	54H103	060021	10502
00603 00701	9304‡ 5486	02301 02302	54H30	060031	10505±
00801	5406	02303	54H20 54H10	06004† 06005†	10506‡ 10507±
00802	5416	02304	54H00	06006t	10509‡
00803 00804	5407 5417	02305 02306	54H04 54H01	07001 07002	54S00 `
00901	5495	02307	54H22	07002 07003	54S03 54S04
00902 00903	5496	02401	54H40	07004	54505
00904	54164 54165	02501 02502	54L90 54L93	07005 07006	54S10 54S20
00905	54194	02503t	54L193	07007	54S20 54S22
00906 00907†	54195 9300±	02504† 02505†	93L10	07008	54S30
009081	9328	02601	93L16 54L86	07009 07010	54S133 54S134
00909t	54198	02701	54L02	07101t	54S74
00910† 01001	54166 5442	02801 02802	54L95	07102t	545112
01002	5443	02802 02803†	54L164 93L28±	07103 1 07104 1	54S113 54S114
01003	5444	02806+	54L91 [°]	07105 1	545174
01004 01005	5445 54145	02901 02902	54L42 54L43	07106t	54\$175
01006	5446	02903	54L43 54L44	07201† 07301†	54\$40 54\$02
01007 01008	5447 5448	02904	54L46	07401t	54851
01008	5448 5449	02905 03001	54L47 15930	07402t 07403t	54564
01101	54181	03002	15935	074031 07501t	54S65 54S86
01102t	54182 (9342)	03003	15936	07502t	54\$135
01201 01202	54121 54122	03004 03005	15946 15962	07601†	548194
01203	54123	03501†	MH0026	07602t 07701t	54S195 54S138
01301 01302	5492	04001	54H50	07702t	54S139
01302	5493 54160	04002 04003	54H51 54H53	07703 1 07801†	54S280
01304	54163	04004	54H54	07802 1	54S181 54S182
01305 01306	54162 54161	04005	54H55	07901t	54\$151
01307	5490	04101 04102	54L51 54L54	07902† 07903†	54S153 54S157
01308	54192	04103	54L55	07904t	54\$158
01309 01401	54193 54150	04104♦ 04201♦	54L54 54L121	07905†	54\$251
01402	9312‡	04202 +	54L121 54L122	07906† 07907†	54S257 54S258
	•			0.3071	0-0200

NOTE: Only the basic JAN and SN numbers are shown. Complete the numbers as shown in Table III.

[†]Slash sheets not released as of date of this publication.

[‡]Not recommended for new designs.

Class S only.

CKT TYPE

JAN MIL-M-38510 INTEGRATED CIRCUITS

JAN /NO.

/NO.	TYPE	/NO.	ITPE	/itO.	
	54044	10301	52710	10405	55113
08001†	54S11 54S15	10301	52711	10501†	52733
08002†	54S15 54S140	10302	52106	10601	LM102±
08101†	54S 140 54S85	10303	52111	10602	52110
08201†	54365 52741	10401	55107	10701	52109
10101	52741 52747	10401	55108	20101	54186 (PROM 512)
10102	52/4/ 52101A	10403	55114 (9614)	20102	MCM5304±
10103 10104	52101A 52108A	10404	55115 (9615)	202011	54S387 (PROM 1024)
10201	52723	10-10-1	55115 (5515)		
10201					
	TABLE II. CIRCUI	IT-TYPE AND JAN INTE			
CKT	JAN	CKT	JAN	CKT	JAN
TYPE	/NO.	TYPE	/NO.	TYPE	/NO.
				E4400	20101
4000A	05201	5425	00403	54186	01308
4001A	05202	5427	00404	54192	01309
4002A	05203	5430	00101	54193 54194	00905
4006A	05701	5437	00302	54194 54195	00906
4007A	05301	5438	00303	54198	009091
4008A	05401	5440	00301	54H00	02304
4009A	05501	5442	01001	54H01	02306
4010A	05502	5443	01002	54H04	02305
4011A	05001	5444	01003 01004	54H10	02303
4012A	05002	5445 5446	01004	54H20	02302
4013A	05101	5446 5447	01005	54H22	02307
4014A	05702	5447 5448	01007	54H30	02301
4015A	05703	5449	01008	54H40	02401
4016A	05801† 05601	5450	00501	54H50	04001
4017A		5450 5451	00502	54H51	04002
4018A	05602 05302	5453	00502	54H53	04003
4019A	05603	5454	00504	54H54	04004
4020A 4021A	05704	5470	00206	54H55	04005
4021A 4022A	05604	5472	00201	54H72	02201
4023A	05003	5473	00202	54H73	02202
4024A	05605	5474	00205	54H74	02203
4025A	05204	5475	01501	54H76	02204
4027A	05102	5476	00204	54H101	02205
4031A	05705	5477	01502	54H103	02206
4049A	05503	5479±	00207	54L00	02004
4050A	05504	5482	00601	54L01	02006
52101A	10103	5483	00602	54L02	02701
52106	10303	5486	00701	54L03	02006
52108A	10104	5490	01307	54L04	02005
52109	10701	5492	01301 01302	54L10	02003
52110	10602	5493	01302	54L20	02002
52111	10304	5495	00901	54L30	02001 02901
52710	10301	5496	00902	54L42 54L43	02901
52711	10302	54107	00203 01503	54L43 54L44	02903
52723	10201	54116	01201	54L46	02904
52733	10501†	54121 54122	01201	54L47	02905
52741	10101	54122 54123	01202	54L51	04101
52747	10102	54125 54145	01005	54L54	04102, 04104
5400 5401	00104 00107	54150	01401	54L55	04103
5402	00401	54151	01406t	54L71	02101
5402 5403	00109	54153	01403	54L72	02102
5403 5404	00105	54157	01405	54L73	02103
5405	00103	54160	01303	54L74	02105
5406	00801	54161	01306	54L78	02104
5407	00803	54162	01305	54L86	02601
5408	01601	54163	01304	54L90	02501
5408 5409	01602	54164	00903	54L91	02806+
5410	00103	54165	00904	54L93	02502
5412	00106	54166	00910t	54L95	02801
5416	00802	54174	01701	54L121	04201+
5417	00804	54175	01702	54L122	04202◆
5420	00102	54181	01101	54L164	02802
5423	00402	54182	01102 1	54L193	02503t

TABLE I. JAN INTEGRATED CIRCUITS AND CIRCUIT-TYPE CROSS-REFERENCE

CKT TYPE

JAN /NO.

NOTE: Only the basic JAN and SN numbers are shown. Complete the numbers as shown in Table III. †Slash sheets not released as of date of this publication.

JAN /NO.

[‡]Not recommended for new designs.

Class S only.

TABLE II. CIRCUIT-TYPE AND JAN INTEGRATED CIRCUITS CROSS-REFERENCE

CKT TYPE	JAN /NO.	CKT TYPE	JAN /NO.	CKT TYPE	JAN /NO.
54S00	07001	54\$140	08101t	9314±	01504
54502	07301†	54S151	07901†	9322	01405
54503	07002	54S153	07902t	9328	009081
54804	07003	54S157	07903t	9342	011021
54805	07004	54\$158	07904t	93L10	025041
54\$10	07005	54\$174	07105t	93L16	025051
54S11	08001†	54S175	07106t	93L28±	02803†
54\$15	08002t	54\$181	07801t	9614	10403
54S20	07006	54S182	07802t	9615	10404
54S22	07007	54\$194	07601†	10501±	060011
54S30	07008	54\$195	07602t	10502±	060021
54\$40	07201†	54\$251	07905†	10505±	060031
54S51	07401†	54S257	07906t	10506±	060041
54864	07402t	54\$258	07907†	10507±	060051
54865	07403t	54\$280	07703t	10509±	060061
54574	07101 †	54\$387	20201t	15930	03001
54885	08201†	55107	10401	15935	03002
54\$86	07501†	55108	10402	15936	03003
548112	07102 1	55113	10405	15946	03004
54\$113	07103t	55114	10403	15962	03005
545114	07104t	55115	10404	LM102‡	10601
54\$133	07009	9300±	00907t	MCM5304±	20102
54\$134	07010	9304±	00603	MH0026	03501†
545135	07502†	9308	01503	PROM512	20101
545138	07701†	9309	01404	PROM1024	20201
54\$139	07702t	9312‡	01402	11101111024	20201

NOTE: Only the basic JAN and SN numbers are shown. Complete the numbers as shown in Table III.

TABLE III. TI JAN AND 38510/MACH IV INTEGRATED CIRCUITST

[§]Wide acceptance of JAN class B and 38510/MACH IV SNC integrated circuits have made possible improved availability thru distributor and factory stocking programs.

[†]Slash sheets not released as of date of this publication.

[‡]Not recommended for new designs.

For JAN Class A, Class S, and SNH contact Dallas plant.

[†]Texas Instruments 38510/MACH IV program is TI's high reliability integrated circuits program designed as a supplement to JAN, and where specified circuit types are not covered by JAN Slash Sheets. The 38510/MACH IV devices utilize hi-rel IC chips from the same TI MIL-M-38510 qualified process and facility as JAN, and are assembled, processed and screened to the same specifications. Federal Stock numbers have been issued for many device types in JAN and 38510/MACH IV in FSC class 5962.

Errata for The TTL Data Book

Errata for The TTL Data Book for Design Engineers CC-411

PAGE	LOCATION: AFFECTED TYPES	CHANGE ,					
16	1st Column: SN54L11, SN54LS11	Change SN54L11 to SN54LS11.					
23	Center Table: 'S140, '128	nterchange (in their entirety) the two entires under "Description".					
25	Last line in table: SN5470, SN7470	Change 01 under "HOLD (ns)" to read 51.					
50,54 *	24-Pin W Package Outline	Change the label on the lead thickness dimension to reflect 24 leads.					
		0.006 0.003 24 LEADS (See Note e) PAGE 50 0.152 0.077 24 LEADS (See Note e) PAGE 54					
51,55 *	24-Pin J Ceramic Package Outline	At the right end of the side view, change the dimension controlling height. FROM 0.200 0.150 5.08 3.81 TO 0.225 5.72 3.81					
52,56	16-Pin N Package Outline	Anotate these outlines to indicate that the package configuration is at the option of TI. The corrected drawing for page 52 is shown here complete; the same changes apply to the metric version on page 56. INCH PAGE 52 INCH					

^{*}Corrections on these pages have been incorporated in the revised data sheets that appear in this supplement,

75 82	LOCATION: AFFECTED TYPES Function Table:											
	Function Table:	CHANGE										
82	′70	In the fund positive lo	ction table under CLO gic add: "Preset or cle	CK INP or func	UT, ch	ange the	first two	o entrie	s from lock in	"X" to put is lo	"L". U	nder
32	Pinout: '123, 'L123	Add an input to the AND gate for the first multivibrator and connect it to the CLR input.										
82	Notes: '121, '122, '123, 'L121, 'L122, 'L123	Change not for '121 an	te C to read: "C, An ex d 'L121) and R _{ext} /C _e	ternal i	timing tive fo	capacito or '122, '	r may be 123, 'L1:	connect 22, and	cted be	tween C	C _{ext} (po	sitive
92	Electrical characteristics: 'LS27	Change the two MIN values of VOH from 2.5 and 2.7 to 2.4 for both. This change does not affect 'LS02.										
93	Supply current table: '\$260	Change TYP and MAX values currently shown as 20 and 35 to read 26 and 45 respectively.										
	Switching characteristics: '\$260	Add MAX values: tplH = 5.5 and tpHL = 6 and change the 3.5 TYP values to read 4; delete "*" 3 places and "Tentative data".										
95	Supply current table: 'LS08	Change under I _{CCH} , the MAX value from 4.4 to 4.8, under I _{CCL} , the TYP value from 6.8 to 4.4.										
	Schematic: 'S132	The two input diodes should be non-Schottky:										
	Supply current table: *\$40	Last line en	itry of table should rea	d:		TYPE 'S40	TYP !	MAX 18	TYP 25	MAX 44	TYP 8.75	
	Electrical characteristics: 'LS33, 'LS38	Change the	MAX value of IOH fro	m 100	μA to	250 μΑ.						-
	Electrical characteristics: 'LS54	Change the	two MIN values of V _O	H from	2.5 a	nd 2.7 to	2.4 for l	both. T	his cha	nge doe	s not af	fect
	Electrical characteristics using expander inputs: '23, '50, 'H50	Revise first	three entries for " $1\overline{\chi}$ (n	nA)" ar mA)	nd "V _E	3E(Q) (V	')'' to rea	ed as fol		(Q) (V)	-	
		TYPE	TEST CONDITIONS	MIN	TYP	# MAX				MIN	ТҮР‡	MAX
i		SN5423 SN5450 SN5453	VXX = 0.4 V, I _{OL} = 16 mA, See Figure 10			-3.5 -2.9 -2.9	I _X + I _X R _X X = I _{OL} = ' See Fig	16 mA,	μΑ,			1.1
		SN7423 SN7450 SN7453	VXX = 0.4 V, I _{OL} = 16 mA, See Figure 10	-		-3.5 -3.1 -3.1	IX + IX	(≃ 620 0, 16 mA,				1
		SN54H50, SN54H53, SN54H55	V _X = 1.4 V, I _X = 0, I _{OL} = 0, See Figure 10			-5.85	RXX=	20 mA,				1.1

PAGE	LOCATION:	CHANGE				
116	AFFECTED TYPES: 'H53 CIRCUITS (Schematic at bottom left as viewed in the turned position)	Show omitted connection: VCC 2.8 k 760 4 k				
117	Electrical characteristics:	Change "TEST CONDITIONS" for two parameters as indicated below:				
		PARAMETER SN5460 SN7460 TEST CONDITIONS TEST CONDITIONS				
		$V_{\overline{X}X(on)} = V_{CC} = 4.5 \text{ V, } V_{IH} = 2 \text{ V,} $ $V_{X} = 1.1 \text{ V, } I_{\overline{X}} = 3.5 \text{ mA,} $ $T_{A} = -55^{\circ}\text{C} $ $V_{CC} = 4.75 \text{ V, } V_{IH} = 2 \text{ V,} $ $V_{X} = 1 \text{ V, } I_{\overline{X}} = 3.5 \text{ mA,} $ $T_{A} = 0^{\circ}\text{C}$				
		$V_{CC} = 4.5 \text{ V, V}_{IH} = 2 \text{ V,}$ $V_{X} = 1.1 \text{ V, } \overline{V_{X}} = 0,$ $V_{A} = -55^{\circ}\text{ C}$ NO CHANGE				
118	Electrical characteristics: 'H60, 'H62	Change unit for the parameter Iχ(on) from mA to μA.				
121, 125, 127	Switching characteristics: Series 54/74 and 54H/74H flip-flops	Delete the values for all MIN tplH and tpHL propagation delay time specifications.				
128	Recommended operating conditions: 'L74	Change the MIN value of hold time from 01 to 151.				
132	Recommended operating conditions: 'S74	Under the 'S74 column delete the "10" and the "12" shown as NOM for the input setup time,				
134	Description: '121, 'L121	Change 1st line of 4th paragraph to read "Pulse width stability is achieved				
135	Switching characteristics: '121, 'L121	Under the '121 column delete the values for MIN tp _{LH} and tp _{HL} propagation delay time specifications. Also delete the MIN of 20 shown for the t _W (out) for the '121 and 'L121.				
136	Figure 4: '121, 'L121	Add conditions: " $V_{CC} = 5 \text{ V}$, $C_T = 60 \text{ pF}$, $R_T = 10 \text{ k}\Omega$ ".				
140	Switching characteristics: '122, '123, 'L122, 'L123	Change MAX value for tpLH (A input to Q output for '122, '123) from 23 ns to 33 ns. Change MAX value of twQ(min) for 'L123 from 130 to 135 and change MIN value for twQ from 1.5 to 1.3. Delete all 4 stars in the table and the associated note.				
143	Switching characteristics: 'S134	Delete the values for all MIN specifications (delete "2", two places).				
180 *	Switching characteristics TEST CONDITIONS: '48	Change to read: C_L = 15 pF, R_L = 1 k Ω , See Note 4 The same value of R_L applies for both SN5448 and SN7448.				

^{*}Corrections on these pages have been incorporated in the revised data sheets that appear in this supplement,

to 1888 Section .

^{*}Corrections on these pages have been incorporated in the revised data sheets that appear in this supplement,

292	AFFECTED TYPES	
	Switching characteristics: '148	Change the TYP and MAX values as follows: CURRENTLY SHOWN: CHANGE TO:
		MIN TYP MAX MIN TYP MAX UNIT
		10 15 10 15 indicate lines changed)
		9 14 9 14
		13 19 13 19 ns
		10 15 12 19 6 10
	ļ	9 14 14 25 ns
		14 21 18 30
		12 18 14 25 ns
		10 15 10 15 ns
		10 15 10 15
		8 12 8 12 ns
		10 15 10 15
		8 13 10 15 ns
		13 19 17 30
294	Terminal assignment drawing: '150	Add inversion indicator for the W output.
295	Functional block diagram: '151A, 'LS151, 'S151	Interchange the terminal function callouts for the outputs, Pin (5) is to be "Output Y" and pin (6) is to be "Output W".
306	Electrical characteristics: SN54LS153	Change the MAX value of V _{IL} from 0.6 to 0.7.
329	Recommended operating conditions: '160, '161, '162, '163	Change the MIN values, currently shown as 15 ns (two places), for t _{setup} at data inputs A, B, C, D for all types to read 20 ns.
330	Switching characteristics:	Change the TYP and MAX values for the three parameters as shown:
*	160, 161, 162, 163	PARAMETER FROM TO MIN TYP MAX UNIT
		(INPUT) (OUTPUT)
		tpLH enable T carry 11 16 ns
		19HL 0.110310 1 26 28 18
		tpHL ctear any Q 26 38 ns
333	Typical application data:	Complete the logic connections for the carry circuit between the first two stages as follows:
*	160, 161, 162, 163	CURRENTLY SHOWN: CHANGED TO:
		EN P 180. CARRY 181. CARRY 181. CARRY 182. CARRY 183. CARRY 184. CARRY 185. CARRY 186. CARRY 187. 188. CARRY 188. CARRY 188. CARRY 188. CARRY 188. CARRY 188. CARRY 188. CARRY 188. CARRY 188. 188. CARRY 188. C

^{*}Corrections on these pages have been incorporated in the revised data sheets that appear in this supplement,

entering

^{*}Corrections on these pages have been incorporated in the revised data sheets that appear in this supplement,

PAGE	LOCATION: AFFECTED TYPE	CHANGE
434	Electrical characteristics:	Under TEST CONDITIONS for the parameter V _I , change the value of I _I to read -18 mA.
404	'LS192, 'LS193	Also change the values for I _{CC} to read: TYP MAX TYP MAX 19 34 19 34
434	Switching characteristics: 'LS192, 'LS193	Change tpHL on the 3rd and the 5th lines: FROM TO TYP MAX TYP MAX 16 24 21 33 16 24 21 33
435 436	NOTE E NOTE G: 'LS192, 'LS193	Change NOTE E page 435 and NOTE G page 436 to read: "V _{ref} is 1.5 volts for '192 and '193; 1.3 volts for 'L192, 'L193, 'LS192 and 'LS193".
440 *	Switching characteristics: '194	Delete the values for the MIN tpLH and tpHL propagation delay time specifications.
442 *	Recommended operating conditions: 'S194	Change the MIN values, currently shown as 8 ns (two places), for t _{setup} at mode control to read 11 ns
442 *	Electrical characteristics: 'S194	Change the maximum value, currently shown as 1.5 V for "V _I Input clamp voltage" to read -1.2 V in both columns.
445 *	Functional block diagram: '195, 'LS195, 'S195	Reverse the pin numbers for J and \overline{K} inputs, J is pin (2) and \overline{K} is pin (3).
447 *	Recommended operating conditions: '195	Change the MIN values, currently shown as 15 ns (two places), for t _{setup} at serial and parallel data to read 20 ns.
447 *	Switching characteristics: '195	Delete the values for the MIN tp _{LH} and tp _{HL} propagation delay time specifications.
449	Recommended operating conditions: 'S195	Change the MIN values, currently shown as 8 ns (two places), for t _{setup} at shift/load to read 11 ns.
455	Electrical characteristics: 'LS196, 'LS197	For I _{IL} , change "Low-level output current" to "Low-level input current".
462	Switching characteristics: '198, '199	Delete the MIN values for tpLH and tpHL propagation delay time specifications.
473	Switching characteristics: 'LS251	Change the MAX NO. OF COMMON OUTPUTS from 19 to 49 for SN54LS251 and to 129 for SN74LS251.
476	Electrical characteristics:	Change the MIN limit of VOH, for both types, to read 2.4 instead of 2.5 and 2.7.
481	Electrical characteristics:	Change the MAX value of V _{IL} from 0.6 to 0.7.
484	Electrical characteristics TEST CONDITIONS '\$257, '285	Change the test condition for VOL that reads "IOH = 20 mA" to read "IOL = 20 mA".
497	FIGURE B: '284, '285	The C _n inputs of the SN54S182/SN74S182 in the lower left corner and of the SN54S181/SN74S181 in the lower right corner, each presently grounded, should be connected instead to a high-logic-level voltage.
503 *	Recommended operating conditions:	Change the MIN value of thold from 0 to 20 in both columns.

^{*}Corrections on these pages have been incorporated in the revised data sheets that appear in this supplement,

PAGE	LOCATION:	CHANGE
504	AFFECTED TYPES Functional block	
*	diagram: 'LS295	Delete connection as follows: QA, QB, or QC DELETE CONNECTION 3 PLACES
521	Description: SN29300, SN39300	In the next to the last line (last paragraph) change "SN29300" to read SN39300".
569 *	Beam assignments: BL54LS10Y, BL74LS10Y	
		BEAM SHOWN AS CHANGE TO 1 1A 1Y 2 1B 1A 5 1C 1B 6 1Y 1C
	Schematic: RSN54H74, RSN74H74	Delete the two diodes at the Q and Q outputs as follows: DELETE DIODE TWO PLACES R11/R12 OUTPUT Q/Q

^{*}Corrections on these pages have been incorporated in the revised data sheets that appear in this supplement,

IC Sockets and Interconnection Panels

IC SOCKETS AND INTERCONNECTION PANELS

Texas Instruments lines of off-the-shelf interconnection products are designed specifically to meet the performance needs of volume commercial applications. They provide both the economy of a standard product line and performance features developed after many year's experience with custom designs. Foremost among these is our ability to selectively bond a wrought gold stripe at the contact point. No waste, Reduced cost. Reliable contacts.

Wrought Gold Contact

Plate a contact with gold and you get a better contact. More reliable, longer lasting. Increase the gold, you improve the contact. But gold is precious, so improved performance has to be costly — right? Wrong. Because now you can get the gold only where it is needed — at the point of contact.

How? With selective metallurgical bonding; a gold stripe inlay. Not porous plating, but durable wrought gold bonded to the contact by the same technology used to produce clad coins and thermostat metals.

Texas Instruments, Attleboro, Massachusetts, is the world's largest producer of these multimetal systems. We also know our way around electronics. The result? A full line of reliable, low cost, interconnection systems featuring an extra measure of gold where it's needed. Premium performance at no premium in price.

IC Sockets

Texas Instruments family of IC sockets includes every type and size in common use today, and as wide a choice of contact materials as you'll find anywhere. Choose from open or closed entry wire-wrapped sockets, standard or low profile solder tail sockets, cable plugs, and component platforms. Sizes from 8 to 40 pins.

IC Panels

To match the industry's broadest line of IC sockets TI offers one of the industry's widest selections of off-the-shelf pin and socket panel products. Logic panels. Logic cards. Accessories. Add TI's custom design capability and wire wrapping for full service.

Additional information including pricing and delivery quotations may be obtained from your nearest TI Distributor, TI Representative, or:

Texas Instruments Incorporated Connector Product Marketing MS 11-1 Attleboro, Massachusetts 02703 Telephone: (617) 22-2800

TELEX: ABORA927708

†Registered trademark of Gardner-Denver

SOLDER TAIL

C-93 SERIES GOLD CLAD CONTACTS

- Universal mounting and packaging
- Mylar anti-wicking wafer
- Stand-off tabs on base for solder flush
- Redundant contact points for low contact resistance, high reliability and repetitive insertion
- Closed entry construction

MATERIAL:

- A. Body-glass filled nylon (GFN)
- B. Contact-copper nickel alloy
- C. Finish-see part number schedule

NOTES:

- A. Sockets meet requirements of Texas Instruments test specification TS-0005 and test report TR-0003
- B. Operating temperature -65°C to ±150°C
- C. Contacts have redundant spring elements
- D. Accommodates standard-IC leads up to .024" square, rectangular, or .024" diameter
- E. Contact is designed and oriented in the plastic body to generate maximum possible contact pressure
- F. Socket is designed to achieve maximum density on boards
- G. Sockets may be mounted end to end on .100" centers continuous line or on .400" centers row to row
- H. Socket is designed to prevent IC leads from contacting P.C. board
- Closed entry feature provided to facilitate automatic IC insertion and protects the IC leads against damage

	8 Pin	14 Pin	16 Pin	18 Pin	20 Pin	24 Pin	28 Pin	40 Pin
Dimension X ±.005	.300	.300	.300	.300	.400	.600	.600	.600
Dimension V ±.010	.400	.700	.800	.900	1.100	1.200	1.400	2.000
Dimension W (max)	.400	.400	.400	.400	.500	.700	.700	.700

PART NO. SCHEDULE

	BLACK BODY
Pins	I IIIIIIIIII
8	C930802
14	C931402
16	C931602
	C931802
18	
18 22	C932202
22	C932202 C932402

CONTACT FINISH 100 microinch min. gold stripe inlay

STANDARD PROFILE SOCKET

WIRE WRAP

C-82 SERIES PLATED CONTACTS • C-92 SERIES GOLD CLAD CONTACTS

SOLDER TAIL

C-81 SERIES PLATED CONTACTS . C-91 SERIES GOLD CLAD CONTACTS

- Designed for low cost, reliable, high density production packaging
- Universal mounting and packaging capabilities
- 8 to 40 pin lead configurations
- Contacts accommodate .015" through .024" rectangular or round dual-in-line leads
- Wire wrap posts held to true position of .015" providing a true position of .020" on boards for efficient automatic wire wrapping

WIRE WRAP

		OPEN	ENTRY	CLOSED ENTRY		
PART NUMBER SCHEDULE						
Contact Finish	Pins	Black Body	White Body	Black Cover	White Cover	
Series	8	C810854	C810855	C810804	C810805	
C-81	14	C811454	C811455	C811404	C811405	
200-400	16	C811654	C81 1655	C811604	C81 1605	
microinch min tin	18	C811854	C81 1855	C811804	C811805	
per MIL-T-10727	24	C812454	C812455	C812404	C812405	
	28	C812854	C812855	C812804	C812805	
	36			C813604	C813605	
	40			C814004	C814005	
Series	8	C910850	C910851	C910800	C910801	
C-91	14	C911450	C911451	C911400	C911401	
50 microinch	16	C911650	C911651	C911600	C911601	
min gold stripe	18	C911850	C911851	C911800	C911801	
inlay	24	C912450	C912451	C912400	C912401	
	28	C912850	C912851	C912800	C912801	
	36			C913600	C913601	
	40			C914000	C914001	

SOLDER TAIL

		OPEN	ENTRY	CLOSED	ENTRY
PART NUMBER SCHEDULE		Typnin		nggain.	Light of the second
Contact Finish	Pins	Black Body	White Body	Black Cover	White Cover
Series	8	C820850	C820851	C820800	C820801
C-82	14	C821450	C821451	C821400	C821401
30 microinch	16	C821650	C821651	C821600	C821601
min gold per	18	C821850	C821851	C821800	C821801
MIL-G-45204 over	24	C822450	C822451	C822400	C822401
over 50 microinch min nickel per QQ-N-290	28	C822850	C822851	C822800	C822801
	36			C823600	C823601
	40			C824000	C824001
Series C-82	8	C820852	C820851	C820802	C820803
	14	C821452	C821453	C821402	C821403
50 microinch	16	C821652	C821653	C821602	C821603
min gold	18	C821852	C821853	C821802	C821803
MIL-G-45204	24	C822452	C822453	C822402	C822403
100 microinch	28	C822852	C822853	C822802	C822803
min nickel per	36			C823602	C823603
QQ-N-290	40			C824002	C824003
Series	8	C820854	C820855	C820804	C820805
C-82	14	C821454	C821455	C821404	C821405
200-400	16	C821654	C821655	C821604	C821605
microinch min tin	18	C821854	C821855	C821804	C821805
per MIL-T-10727	24	C822454	C822455	C822404	C822405
WIL-1-10/2/	28	C822854	C822855	C822804	C822805
	36			C823604	C823605
	40			C824004	C824005
Sarias	8	C920850	C920851	C920800	C920801
Series C-92	14	C921450	C921451	C921400	C921401
100 missaisat	16	C921650	C921651	C921600	C921601
100 microinch min	18	C921850	C921851	C921800	C921801
gold stripe inlay	24	C922450	C922451	C922400	C922401
	28	C922850	C922851	C922800	C922801
	36			C923600	C923601
-	40			C924000	C924001

SOCKET PANELS

STANDARD

D4 SERIES

- 180 position panel or multiples of 30 position with 14 or 16 position socket pattern
- I/O 4 rows with 13 pins per row or 3 - 14 pin sockets
- Low cost standard hardware
- Available in 98 standard series
- Off-the-shelf availability

SELECT-A-WRAP

D1 SERIES

- 180 position panel or multiples of 30 position with 14 or 16 position socket pattern
- I/O 2 rows with 23 pins per row or 3 - 14 pin sockets
- Low cost standard handware no tooling
- Available in 98 standard series
- Off-the-shelf availability
- Uncommitted ground and power pin for custom design

MULTIPURPOSE

Z3 SERIES / SELECT-A-WRAP

- Assemble your own custom panel with off-the-shelf hardware and sockets or Texas Instruments will assemble to your prints
- Holes on continuous .100 centers within rows .300 centers between rows
- Accepts 8, 14, 16, 18, 24, 28, 36, and 40 pin dual-in-line sockets, discrete component platforms and interfacing plugs
- Any pin may be soldered to power and ground with solder preform and bridging tabs

11

STANDARD PANEL PART NO. SCHEDULE -D4 Series

		_		
Group No.	I/O Option	Sockets Per Panel	C-81 Sockets	C-91 Sockets
Group I 14 Pin	SOCKETS	30 60	D411211 D411212	D411231 D411232
PIN 14 VCC		90	D411213	D411233
PIN 7 GRD		120	D411214	D411234
a a		150	D411215 D411216	D411235
13 2	EEED THOU			
0 12 3 0	FEED-THRU PINS	30 60	D411411	D411431
0 10 5 0	11 11	90	D411412 D411413	D411432 D411433
0 1 1 0		120	D411414	D411434
0 1 7		150	D411415	D411435
	11 11	180	D411416	D411436
Group II 14 Pin	SOCKETS	30	D434211	D434231
		60	D434212	D434232
PIN V VCC PIN G GRD		120	D434213 D434214	D434233 D434234
0 0		150	D434215	D434234
(a)	1 1	180	D434216	D434236
● 13 2 ●	FEED-THRU	30	D434^11	D434431
9 12 3 9 11 4 9	PINS	60	D434412	D434432
0 10 5 0		90	D434413	D434433
0 1 6 0		120	D434414	D434434
• 7 •		150 180	D434415 D434416	D434435 D434436
	SOCKETS	30	D423211	D423231
Group III 16 Pin		60	D423212	D423232
PIN 16 VCC		90	D423213	D423233
PIN 8 GRD		120	D423214	D423234
16 1		150 180	D423215 D423216	D423235 D423236
● 15 2 ● 14 3 ●				
● 13 4 ●	FEED-THRU PINS	30 60	D423411 D423412	D423431 D423432
● 12 5 ●	11.11	90	D423412	D423432
0 11 6 0 10 7 0		120	D423414	D423434
		150	D423415	D423435
0 9	0.0	180	D423416	D423436
Group IV 16 Pin	SOCKETS	30	D444211	D444231
		60	D444212	D444232
PIN V VCC PIN G GRD		90	D444213 D444214	D444233 D444234
		150	D444215	D444235
		180	D444216	D444236
V G	1 1	100		
16 1 0 15 2 0 0	FEED-THRU	30	D444411	D444431
16 1	PINS	30 60	D444411 D444412	D444431 D444432
16 1 0 15 2 0 14 3 0 13 4 0 12 5 0	FEED-THRU PINS	30 60 90	D444411 D444412 D444413	D444432 D444433
16 1 0 15 2 0 14 3 0 13 4 0	PINS	30 60	D444411 D444412	

SELECT-A-WRAP PANEL PART NO. SCHEDULE -D1 Series

Group No.		I/O Option	Sockets Per Panel	C-81 Sockets	C-91 Sockets
Group4I 1	4 Pin	SOCKETS	30	D114211	D114231
VCC and GF			60	D114212	D114232
Uncommitte	ed	1000	90	D114213	D114233
100	100		120	D114214	D114234
10.	7	-	150	D114215	D114235
		1 1	180	D114216	D114236
		FEED-THRU PINS	30	D114311	D114331
ALC: 1000		1 1	60	D114312	D114332
			90	D114313	D114333
	1		120	D114314	D114334
			150	D114315	D114335
		1 1	180	D114316	D114336
Group IV 1	6 Pin	SOCKETS	30	D124211	D124231
VCC and GF		1	60	D124212	D124232
Uncommitte	ed		90	D124213	D124233
	65		120	D124214	D124234
0 0	7		150	D124215	D124235
		' '	180	D124216	D124236
		FEED-THRU PINS	30	D124311	D124331
		FINS	60	D124312	D124332
			90	D124313	D124333
	1		120	D124314	D124334
			150	D124315	D124335
0 6			180	D124316	D124336

MULTIPURPOSE PANEL PART NO. SCHEDULE -Z3 Series

		0 0	I/O Option	Rows	Part No.
	0	0 0			
	•	0 0			
0			no pins	9	Z301100
		0 0	2 x 23	18	Z302100
•			I/O hole pattern	27	7000400
			pattern	27	Z303100
		:	and the sale	36	Z304100
				45	Z305100
				54	Z306100
				9	Z301200
• •			2 × 23	9	2301200
•		0 0	feed-thru pins	18	Z302200
		6 1 1 1 1 1 1 1 1 1 1	pills	27	Z303200
			TT	36	Z304200
				45	Z305200
			1	54	Z306200
				54	2300200

PIN PANELS

STANDARD

D7 SERIES

- Low profile high density
- Immediate delivery
- Modular construction—1-6 modules per panel—30 patterns per module 14 or 16 pin patterns
- 4 lb minimum strip force
- 10 lb minimum pin push-out force
- Optional I/O interface

SELECT-A-WRAP

D2 SERIES

- Low cost no tooling standard hardware — off-the-shelf availability
- Uncommitted ground and power pin for custom design
- Optional feed-thru pins or pin-inboard terminal for I/O interface
- 4 lb minimum strip force
- 10 lb minimum push-out force

UNIVERSAL

D3 SERIES

- Prototype/production
- Meets automatic wire wrapping tolerances
- Modular construction up to 6 modules — 9 rows per module
- Accepts 8, 14, 16, 18, 24, 28, 36, and 40 pin dual-in-line packages, discrete component platforms and interfacing plugs

Group No.	I/O Option	Pos. Per Panel	2 Level Wrap	3 Level Wrap
Group I 14 Pin	D substitu	30	D711521	D711511
PIN 14 VCC	PINS	60	D711522	D711512
PIN 7 GRD		90	D711523	D711513
		120	D711524	D711514
		150 180	D711525 D711526	D711516
0 13 2 0 12 3 0 11 4 0	FEED-THRU PINS	30	D711421	D711411
0 11 4 0	11 11	60 90	D711422	D711412
0 1 6 0		120	D711423 D711424	D711413
• 1		150	D711425	D711415
	11 11	180	D711426	D711416
Group II 14 Pin	PINS	30	D734521	D734511
PIN V VCC		60 90	D734522 D734523	D734512 D734513
PIN G GRD		120	D734524	D734514
		150	D734525	D734515
V 6	1 1	180	D734526	D734516
0 13 2 0 12 3 0	FEED-THRU PINS	30	D734421	D734411
● 11 4 ●	11 11	60	D734422	D734412
0 10 5		90 120	D734423 D734424	D734413 D734414
0 1 6 0		150	D734425	D734414
9	11 11	180	D734426	D734416
Group III 16 Pin	PINS	30	D723521	D723511
PIN 16 VCC	7,11,0	60	D723522	D723512
PIN 8 GRD		90 120	D723523 D723524	D723513 D723514
		150	D723524	D723514
16 1 0 15 2 0 0	1 1	180	D723526	D723516
0 14 3 0 0 13 4 0	FEED-THRU PINS	30	D723421	D723411
● 12 5 ●	11 11	60	D723422	D723412
0 10 7		90	D723423 D723424	D723413 D723414
9 8		150	D723424	D723414
	II II	180	D723426	D723416
Group IV 16 Pin	PINS	30	D744521	D744511
PIN V VCC		60 90	D744522	D744512
PIN G GRD		120	D744523 D744524	D744513 D744514
€v ce		150	D744525	D744515
0 16 1 0 0 15 2 0		180	D744526	D744516
● 14 3 ●	FEED-THRU PINS	30 60	D744421 D744422	D744411
13 4 0 12 5 0	11 11	90	D744422	D744412 D744413
		120	D744424	D744414
0 10 7 0		150 180	D744425 D744426	D744415 D744416

Group No.	I/O Option	Pos. Per Panel	2 Level Wrap	3 Leve Wrap
Group II 14 Pin	8446	30	D214421	D21441
VCC and GRD	PINS	60	D214422	D21441
Uncommitted		90	D214423	D21441
0 0		120	D214424	D21441
0 0		150	D214425	D21441
	1 1	180	D214426	D21441
	FEED-THRU PINS	30	D214321	D21431
	1 1	60	D214322	D21431
10 0		90	D214323	D21431
		120	D214324	D21431
0 0		150	D214325	D21431
	1 1	180	D214326	D21431
Group IV 16 Pin	DING	30	D224421	D22441
VCC and GRD	PINS	60	D224422	D22441
Uncommitted		90	D224423	D22441
0 0		120	D224424	D22441
10 01	P 150	150	D224425	D22441
•	1 1	180	D224426	D22441
	FEED-THRU	30	D224321	D22431
0 0	PINS	60	D224322	D22431
0 0		90	D224323	D22431
		120	D224324	D22431
0 0		150	D224325	D22431
0 0		180	D224326	D22431

UNIVERSAL PANEL PART NO. SCHEDULE -D3 Series

PATTERN LAYOUT Double sided	I/O Option	Rows	2 Level Wrap	3 Level Wrap
board with power and, ground planes connected	no pins	9	D381501	D381500
to additional wire wrap	2 x 23 1/O hole	18	D382501	D382500
terminations outside of	pattern	27	D383501	D383500
contact row.		36	D384501	D384500
- ** -		45	D385501	D385500
		54	D386501	D386500
50 contacts on .100 centers	2 × 23	9	D381401	D381400
contacts	feed-thru pins	18	D382401	D382400
conta	11 11	27	D383401	D383400
200		36	D384401	D384400
7 1 1 1 1 1 1		45	D385401	D385400
		54	D386401	D386400

SOCKET CARDS

STANDARD

DO2 SERIES

- Low Cost
- 14 16 pin socket pattern —
 60 position
- Standard ground and power pin commitment
- 8 standard designs
- Mates with dual 60 position edge connector

MULTIPURPOSE

DO SERIES/SELECT-A-WRAP

- Assemble your own custom logic cards with off-the-shelf hardware and sockets or Texas Instruments will assemble to your prints
- Accepts 8, 14, 16, 18, 24, 28, 36, and 40 pin dual-in-line packages, discrete component platforms and I/O plugs
- 60 position

DO2 Series STANDARD CAI	RD PART	NO. SC	HEDULE
	Board	C-81	C-91

Group No.	Board Thk.	C-81 Sockets	C-91 Sockets
Group I 14 Pin PIN 14 VCC PIN 7 GRD	1/16"	D022110	D022130
	1/8"	D021110	D021130
Group II 14 Pin PIN V VCC PIN G GRD	1/16"	D022310	D022330
	1/8"	D021310	D021330
Group III 16 Pin PIN 16 VCC PIN 8 GRD	1/16"	D022210	D022230
	1/8"	D021210	D021230
Group IV 16 Pin PIN V VCC PIN G GRD	1/16"	D022410	D022430
	1/8"	D021410	D021430

PIN CARDS

STANDARD

DO1 SERIES

UNIVERSAL

DO1 SERIES

- Low profile high density
- 14 16 pin pattern 60 position
- 2 sided P/C board with ground and voltage connected to each pattern
- 4 lb minimum strip force
- 10 lb minimum pin push-out force
- Available on 1/16" or 1/8"
 P/C board

- Universal pattern accepts wide choice of dual-in-line packages
- 20 rows of 50 contacts per row on .100 X .300 grid
- Meets all requirements for automatic wire wrapping
- Available on 1/16" or 1/8" P/C board

High retention 4-leaf beryllium copper spring contacts

Board Thk.	2 Level Wrap	3 Level Wrap	
1/16"	D012520	D012510	
1/8"	D011520	D011510	

DO1 Series STANDARD CARD PART NO. SCHEDULE

Group No.	Board Thk.	2 Level Wrap	3 Level Wrap
Group 1 14 Pin PIN 14 VCC PIN 7 GRD	1/16"	D012120	D012110
	1/8"	D011120	D011110
Group II 14 Pin PIN V VCC PIN G GRD	1/16"	D012320	D012310
	1/8"	D011320	D011310
Group III 16 Pin PIN 16 VCC PIN 8 GRD	1/16"	D012220	D012210
0 15 1 0 0 12 1 0 0 12 1 0 0 0 12 1 0 0 0 12 1 0 0 0 12 1 0 0 0 12 1 0 0 0 12 1 0 0 0 12 1 0 0 0 12 1 0 0 0 12 1 0 0 0 12 1 0 0 0 12 1 0 0 0 0	1/8"	D011220	D011210
Group IV 16 Pin PIN V VCC PIN G GRD	1/16"	D012420	D012410
	1/8"	D011420	D011410

