## 17.3.17 Timer input XOR function

The TI1S bit in the TIMx\_CR2 register, allows the input filter of channel 1 to be connected to the output of a XOR gate, combining the three input pins TIMx\_CH1, TIMx\_CH2 and TIMx\_CH3.

The XOR output can be used with all the timer input functions such as trigger or input capture. An example of this feature used to interface Hall sensors is given in *Section 17.3.18* below.

## 17.3.18 Interfacing with Hall sensors

This is done using the advanced-control timers (TIM1) to generate PWM signals to drive the motor and another timer TIMx (TIM2 or TIM3) referred to as "interfacing timer" in *Figure 102*. The "interfacing timer" captures the 3 timer input pins (CC1, CC2, CC3) connected through a XOR to the TI1 input channel (selected by setting the TI1S bit in the TIMx CR2 register).

The slave mode controller is configured in reset mode; the slave input is TI1F\_ED. Thus, each time one of the 3 inputs toggles, the counter restarts counting from 0. This creates a time base triggered by any change on the Hall inputs.

On the "interfacing timer", capture/compare channel 1 is configured in capture mode, capture signal is TRC (See *Figure 85: Capture/compare channel (example: channel 1 input stage) on page 340*). The captured value, which corresponds to the time elapsed between 2 changes on the inputs, gives information about motor speed.

The "interfacing timer" can be used in output mode to generate a pulse which changes the configuration of the channels of the advanced-control timer (TIM1) (by triggering a COM event). The TIM1 timer is used to generate PWM signals to drive the motor. To do this, the interfacing timer channel must be programmed so that a positive pulse is generated after a programmed delay (in output compare or PWM mode). This pulse is sent to the advanced-control timer (TIM1) through the TRGO output.

Example: you want to change the PWM configuration of your advanced-control timer TIM1 after a programmed delay each time a change occurs on the Hall inputs connected to one of the TIMx timers.

- Configure 3 timer inputs XORed to the TI1 input channel by writing the TI1S bit in the TIMx\_CR2 register to '1',
- Program the time base: write the TIMx\_ARR to the max value (the counter must be
  cleared by the TI1 change. Set the prescaler to get a maximum counter period longer
  than the time between 2 changes on the sensors,
- Program channel 1 in capture mode (TRC selected): write the CC1S bits in the TIMx\_CCMR1 register to '01'. You can also program the digital filter if needed,
- Program channel 2 in PWM 2 mode with the desired delay: write the OC2M bits to '111' and the CC2S bits to '00' in the TIMx\_CCMR1 register,
- Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx\_CR2 register to '101',

In the advanced-control timer TIM1, the right ITR input must be selected as trigger input, the timer is programmed to generate PWM signals, the capture/compare control signals are preloaded (CCPC=1 in the TIMx\_CR2 register) and the COM event is controlled by the trigger input (CCUS=1 in the TIMx\_CR2 register). The PWM control bits (CCxE, OCxM) are written after a COM event for the next step (this can be done in an interrupt subroutine generated by the rising edge of OC2REF).



Figure 102 describes this example.

Figure 102. Example of hall sensor interface

