Lenguaje matemático, conjuntos y números

Prueba Objetiva Calificable

Ejercicio 1

Sean A, B y C subconjuntos arbitrarios de un conjunto no vacío U.

Sea el conjunto $Y = ((A \cup \overline{B}) \cap \overline{C}) \cup ((\overline{A} \cup \overline{C}) \cap B).$

Consideramos las afirmaciones:

p; $Y \subset \overline{C} \cup B$.

q; $Y = \overline{C} \cup (\overline{A} \cap B)$.

r; $Y \cap B = \emptyset$.

s; $Y \subset A \cup B$.

Las únicas afirmaciones verdaderas son:

- a) pyq.
- b) rys.
- c) Ninguna de las otras respuestas.

Ejercicio 2

Consideramos las relaciones definidas en \mathbb{N}^* por:

p; $n \mathcal{R}_1 m$ si y sólo si n divide a m.

q; $n \mathcal{R}_2 m$ si y sólo si $n^2 + m^2 = 2mn + 2n$.

r; $n \mathcal{R}_3 m$ si y sólo si $n^2 + m^2 = 2mn$.

s; $n \mathcal{R}_4 m$ si v sólo si $n^2 = m^2$.

Única y exclusivamente son relaciones de equivalencia en \mathbb{N}^* :

- a) La de p y la de q.
- b) La de r y la de s.
- c) Ninguna de las otras respuestas.

Ejercicio 3

Consideramos las relaciones definidas en \mathbb{N} por:

p; $n \mathcal{R}_1 m$ si y sólo si $n - m \ge 1$.

q; $n \mathcal{R}_2 m$ si y sólo si $n - m \le 1$.

r; $n \mathcal{R}_3 m$ si y sólo si $\exists k \in \mathbb{N} \ m^2 = k - n^2$.

s; $n \mathcal{R}_4 m$ si y sólo si $\exists k \in \mathbb{N} \ m^2 = k + n^2$.

Única y exclusivamente son relaciones de orden en \mathbb{N} :

- a) La de p y la de q.
- b) La de r y la de s.
- c) Ninguna de las otras respuestas.

Ejercicio 4

Dados X e Y dos conjuntos finitos arbitrarios no vacíos y dada

 $f: X \longrightarrow Y$ una aplicación, consideramos las afirmaciones:

p; Si card(X) > card(Y) entonces f es sobreyectiva.

q; Si card(X) > card(Y) entonces f no es invectiva.

r; Si card(X) = card(Y) entonces f es biyectiva.

s; Si card(X) = card(Y) y f no es sobreyectiva entonces f no es invectiva.

Las únicas afirmaciones verdaderas son:

- a) pyr.
- b) qys.
- c) Ninguna de las otras respuestas.

Ejercicio 5

Sean $a,b\in\mathbb{N}^*$ tales que el cociente y resto de la división entera de a entre b son 18 y 48, respectivamente. Consideramos las afirmaciones:

- p; El resto de la división entera de a entre 18 es 12.
- q; El resto de la división entera de a entre 2b es 96.
- r; a es múltiplo de 6.
- s; El cociente de la división entera de 2a entre 2b es 96.

Las únicas afirmaciones verdaderas son:

- a) pyr.
- b) qys.
- c) Ninguna de las otras respuestas.

Soluciones

Observación: En estos ejercicios, la frase "Las únicas afirmaciones verdaderas son" significa que si por ejemplo se responde la opción "p y q" esto significa que p y q son verdaderas y r y s no lo son.

Ejercicio 1

p es verdadera: En efecto, basta observar que $(A \cup \overline{B}) \cap \overline{C} \subset \overline{C}$ y que $(\overline{A} \cup \overline{C}) \cap B \subset B$. Por tanto, $Y = ((A \cup \overline{B}) \cap \overline{C}) \cup ((\overline{A} \cup \overline{C}) \cap B) \subset \overline{C} \cup B$.

q es verdadera:

$$Y = ((A \cup \overline{B}) \cap \overline{C}) \cup ((\overline{A} \cup \overline{C}) \cap B)$$

$$= ((A \cup \overline{B}) \cap \overline{C}) \cup (\overline{A} \cap B) \cup (\overline{C} \cap B)$$

$$= ((A \cup \overline{B}) \cap \overline{C}) \cup (B \cap \overline{C}) \cup (\overline{A} \cap B)$$

$$= ((A \cup \overline{B} \cup B) \cap \overline{C}) \cup (\overline{A} \cap B)$$

$$= (U \cap \overline{C}) \cup (\overline{A} \cap B)$$

$$= \overline{C} \cup (\overline{A} \cap B)$$

Las afirmaciones r y s no son en general verdaderas. Veamos un contraejemplo: Sean $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $A = \{1, 2, 3, 4\}$, $B = \{2, 3, 5, 6\}$ y $C = \{3, 4, 5, 7\}$. Se cumple que $A \cup \overline{B} = \{1, 2, 3, 4, 7, 8\}$, $\overline{A} \cup \overline{C} = \{1, 2, 5, 6, 7, 8\}$ y en consecuencia $(A \cup \overline{B}) \cap \overline{C} = \{1, 2, 8\}$ y $(\overline{A} \cup \overline{C}) \cap B = \{2, 5, 6\}$. Así pues $Y = \{1, 2, 8\} \cup \{2, 5, 6\} = \{1, 2, 5, 6, 8\}$. Claramente se tiene $Y \cap B = \{2, 5, 6\} \neq \emptyset$ y además no se cumple que $Y \subset A \cup B$ pues $8 \in Y$ y $8 \notin A \cup B$.

Ejercicio 2

La relación de p, \mathcal{R}_1 , no es una relación de equivalencia pues no es simétrica. Por ejemplo 2 divide a 6, pero 6 no divide a 2.

La relación de q, \Re_2 , no es reflexiva y por tanto no es de equivalencia. Para n=m, $n^2+m^2=2n^2$, $2mn+2n=2n^2+2n$ y se cumple que $2n^2+2n\neq 2n^2$.

Las relaciones de r y s son ambas relaciones de equivalencia. De hecho para todo $n, m \in \mathbb{N}^*$ se tiene.

$$r; n \mathcal{R}_3 m$$
 si y sólo si $n^2 + m^2 = 2mn$
si y sólo si $n^2 + m^2 - 2mn = 0$
si y sólo si $(n-m)^2 = 0$
si y sólo si $n=m$

У

$$s; n \Re_4 m$$
 si y sólo si $n^2 = m^2$ si y sólo si $n = m$

Luego ambas relaciones no son más que la relación de igualdad en N*, que es una relación de equivalencia.

Ejercicio 3

La relación de p, \Re_1 , no es una relación reflexiva pues n-n=0<1. Por tanto, no es una relación de orden.

La relación de q, \Re_2 , no es antisimétrica. En efecto, $1 \Re_2 0$ y $0 \Re_2 1$ y sin embargo $0 \neq 1$. Por tanto, no es una relación de orden.

La relación de r, \Re_3 , no es antisimétrica. En efecto, $1 \Re_3 2$ y $2 \Re_3 1$, basta tomar k=5 en ambos casos, y sin embargo $1 \neq 2$. Por tanto, no es una relación de orden. Obsérvese que esta relación es precisamente $\Re_3 = \mathbb{N} \times \mathbb{N}$.

La relación de s, \mathcal{R}_4 , es una relación de orden.

Reflexiva: en efecto, $n \mathcal{R}_4 n$, basta tomar k = 0.

Antisimétrica: si $n \mathcal{R}_4 m$ y $m \mathcal{R}_4 n$ entonces $\exists k, k' \in \mathbb{N}$ $m^2 = k + n^2$ y $n^2 = k' + m^2$. Por tanto $m^2 = k + k' + m^2$, es decir, k + k' = 0. Como $k, k' \in \mathbb{N}$ resulta que k = k' = 0, de donde se deduce que $m^2 = n^2$ y por tanto,

m=n.

Transitiva: si, $n \mathcal{R}_4 m$ y $m \mathcal{R}_4 p$ entonces $\exists k, k' \in \mathbb{N}$ $m^2 = k + n^2$ y $n^2 = k' + p^2$. Por tanto, $m^2 = (k + k') + p^2$ y en consecuencia $n \mathcal{R}_4 p$.

Ejercicio 4

p no es verdadera. Por ejemplo, tomamos $X = \{1, 2, 3\}$ e $Y = \{1, 2\}$ y f tal que f(1) = f(2) = f(3) = 1.

q es verdadera. Vemos que si f es inyectiva entonces $\operatorname{card}(X) \leq \operatorname{card}(Y)$. En efecto, si f es inyectiva, de la proposición 5.12 se deduce que $\operatorname{card}(X) = \operatorname{card}(f(X))$ y como $f(X) \subset Y$ resulta que $\operatorname{card}(f(X)) \leq \operatorname{card}(Y)$. Por tanto, $\operatorname{card}(X) \leq \operatorname{card}(Y)$.

r no es verdadera. Por ejemplo, tomamos $X = \{1, 2, 3\}$ e $Y = \{1, 2, 3\}$ y f tal que f(1) = f(2) = f(3) = 2.

s es verdadera. Supongamos que $\operatorname{card}(X) = \operatorname{card}(Y)$. Probemos que si f es inyectiva entonces f es sobreyectiva. En efecto, Si f es inyectiva entonces (proposición 5.12) $\operatorname{card}(X) = \operatorname{card}(f(X))$ y de $\operatorname{card}(X) = \operatorname{card}(Y)$ resulta que $\operatorname{card}(f(X)) = \operatorname{card}(Y)$. Pero f(X) es un subconjunto finito de Y y por la proposición 5.11, resulta que f(X) = Y Por tanto f es sobreyectiva.

Ejercicio 5

Si el cociente y resto de la división entera de a entre b son 18 y 48 respectivamente entonces

$$a = 18b + 48$$
, siendo $48 < b$.

p es verdadera pues de 48 = 2(18) + 12 se deduce que a = 18b + 48 = 18b + 2(18) + 12 = 18(b+2) + 12. Por tanto 12 es el resto de la división entera de a entre 18.

q no es verdadera. De a=18b+48=9(2b)+48 se deduce que el resto de la división entera de a entre 2b es 48. r es verdadera pues se tiene que a=18b+48=6(3b+8).

s no es verdadera pues de a=18b+48 se obtiene que 2a=18(2b)+96 y además 96<2b. Por tanto, el cociente de la división entera de 2a entre 2b es 18.