Typo 1:

2.2 Write code to inplement global attention with dot product/multiplicative attention function

rubric={mechanics:1}

Intead of using the **additive attention** to get attenution score a_t :

$$\alpha_i = softmax(v_a \tanh(W_a[S_{i-1}; H]^T))$$

We will use the *global attention with dot product alignment function* (Dot-Product/Multiplicative based attention function, that is, $\alpha_i = softmax([s_i^T h_1, \dots, s_i^T h_t])$ to calculate attention score α_i and follow the subsequent steps to generate translation token y_{t+1}^{Λ} :

- 1. initialize the outputs tensor is created to hold all predictions, $\hat{Y} = \{\hat{y_1} \dots \hat{y_t}\}$ where t is the maximal length of target language;
- 2. the source sequence, $X = \{x_1, \dots, x_t\}$, is fed into the encoder to receive last hidden state, h_t , and last cell state $c_t^{Encoder}$;
- 3. the initial decoder hidden state is set to be the h_t , and the initial decoder cell state is set to be the c_t . (i.e., $s_0 = h_t$; $c_0^{Decoder} = c_t^{Encoder}$);
- 4. we use a batch of $\langle sos \rangle$ tokens as the first input (i.e., y_0);
- 5. we then decode within a loop:

for i in range(1,t): t is the maximal length of target language

- A. inserting the input token y_i , previous hidden state, s_{i-1} , and previous cell state, $c_{i-1}^{Decoder}$, into the Decoder we get new states, s_i and $c_i^{Decoder}$;
- B. use attention_function() to calculate attention vector based on h_1, \ldots, h_t (all encoder hidden states stacked up is H) and s_i ;
- C. use this attention vector to create a weighted context vector, c_i , denoted by weighted, which is a weighted sum of the encoder hidden states, H, using α_t as the weights (i.e., $c_i = \alpha_t^T H$);
- D. concatenate the current hidden state s_i with weighted context vector c_i , then give this concatanation to a linear layer, f_{mid} , to get a new hidden state s_i' that shape is [batch, decoder hidden dimension];
- E. pass s_i' the bugh the linear layer, f_{output} , to make a prediction of the next word in the target sentence, \hat{y}_{t+1} .
- F. decide if use **teacher forcing** or not, setting the next input as appropriate.

where attention_function() is based on dot product attention: $\alpha_i = softmax([s_i^T h_1, \dots, s_i^T h_t])$

The pseudo code for computing attention vector:

class Decoder(nn.Module):

```
61
               #trg = [trg len, batch size]
62
               batch size = trg.shape[1]
63
64
               # create a placeholder for traget language with shape of [max trg len, batch size] where all the eleme
65
               trg placeholder = torch.Tensor(max trg len, batch size)
66
               trg placeholder.fill (TRG PAD IDX)
67
               trg placeholder = trg placeholder.long().to(device)
68
               if attention == True:
69
70
                   output, = model(src, trg placeholder, 0) #turn off teacher forcing
71
               else:
                   #original
72
                   #output, = model(src, trg placeholder, 0) #turn off teacher forcing
73
74
75
                   # update:
76
                   output = model(src, trg placeholder, 0) #turn off teacher forcing
               # get translation results, we ignor first token <sos> in both translation and target sentences.
77
               # output translate = [(trq len - 1), batch, output dim] output dim is size of target vocabulary.
78
79
               output translate = output[1:]
80
               # store gold target sentences to a list
81
               all trg.append(trg[1:].cpu())
82
               # Choose top 1 word from decoder's output, we get the probability and index of the word
83
84
               prob, token id = output translate.data.topk(1)
85
               translation token id = token id.squeeze(2).cpu()
86
               # store gold target sentences to a list
87
               all translated trg.append(translation token id)
88
89
```