Theoretical Assignment DeepBayes Summer School 2018 (deepbayes.ru)

Markovich Alexander

May 15, 2018

Problem 1. The random variable ξ has Poisson distribution with the parameter λ . If $\xi = k$ we perform k Bernoulli trials with the probability of success p. Let us define the random variable η as the number of successful outcomes of Bernoulli trials. Prove that η has Poisson distribution with the parameter $p\lambda$.

Solution

Let $\xi \sim \text{Pois}(\lambda)$ and $\eta \mid \xi \sim \text{Bin}(\xi, p)$. We need to prove that $\eta \sim \text{Pois}(p\lambda)$.

Let $t \leq k$ and use law of total probability, otherwise $p(\eta) = 0$:

$$p(\eta) = p(\eta = t \mid \xi = k) \cdot p(\xi = k)$$
$$= p^{t} (1 - p)^{k - t} {k \choose t} q \cdot \frac{\lambda^{k}}{k!} \exp(-\lambda)$$

Thus:

$$p(\eta) = \sum_{t=k}^{\infty} \left[\frac{\lambda^k}{k!} \exp(-\lambda) \cdot {k \choose t} p^t (1-p)^{k-t} \right] = \left\{ k - t = u, k = t + u \right\}$$

$$= \sum_{u=0}^{\infty} \frac{\lambda^{t+u}}{(t+u)!} \exp(-\lambda) \frac{(t+u)!}{t!(t+u-t)!} p^t (1-p)^u$$

$$= \frac{\lambda^t \exp(-\lambda) p^t}{t!} \sum_{u=0}^{\infty} \frac{(1-p)^u \lambda^u}{u!}$$

$$= \frac{\lambda^t \exp(-\lambda) p^t}{t!} \exp(\lambda - p\lambda) = \frac{(\lambda p)^t \exp(-p\lambda)}{t!} = \operatorname{Pois}(p\lambda)$$

Problem 2. A strict reviewer needs t_1 minutes to check assigned application to Deep—Bayes summer school, where t_1 has normal distribution with parameters $\mu_1 = 30$, $\sigma_1 = 10$. While a kind reviewer needs t_2 minutes to check an application, where t_2 has normal distribution with parameters $\mu_2 = 20$, $\sigma_2 = 5$. For each application the reviewer is randomly selected with 0.5 probability. Given that the time of review t = 10, calculate the conditional probability that the application was checked by a kind reviewer.

Solution

Let $p(t | \text{strict}) \sim \mathcal{N}(t | 30, 100)$, $p(t | \text{kind}) \sim \mathcal{N}(t | 20, 25)$ and p(type) = 0.5. We need to find p(type = kind | t = 10)

Use lovely Bayes' theorem and law of total probability:

$$\begin{split} p(\text{type} &= \text{kind} \, | \, t = 10) = \frac{p(t = 10 \, | \, \text{type} = \text{kind}) p(\text{type} = \text{kind})}{p(t = 10)} \\ &= \frac{p(t = 10 \, | \, \text{type} = \text{kind}) p(\text{type} = \text{kind})}{p(t = 10 \, | \, \text{type} = \text{kind}) p(\text{type} = \text{kind}) + p(t = 10 \, | \, \text{type} = \text{strict}) p(\text{type} = \text{strict})} \\ &= \frac{\mathcal{N}(10 \, | \, 20, 25)}{\mathcal{N}(10 \, | \, 20, 25) + \mathcal{N}(10 \, | \, 30, 100)} = 0.67 \end{split}$$