

Computer Engineering Technology - Computing Science

Course: Numerical Computing – CST8233

Term: Fall 2021

Lab #8

Objectives

The main objective of this lab is to use R program to implement Taylor Series.

Earning

This lab worth 1.5 % of your final course mark. Each student should complete this lab and demo the codes of the exercises to the lab professor during the lab session.

Steps

Step 1. Taylor Series

Taylor series are used to expand a function around a constant value, c. This series is infinite series and is given as follows:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(c)}{n!} (x - c)^n$$

where $f^n(c)$ is the n^{th} derivative of f(x) and c is a constant. In Maclaurin series, the value of this constant is zero.

Step 2. Exercise

A. Find Taylor series for $f(x) = \ln x$. You need to follow the same steps explained in the class except that using the constant c instead of zero. Show that Taylor series is given as follows:

$$\ln x = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x - c)^n$$

B. Write R program that takes the value of x as an input from the user and then, it computes the value of the series for up to ten terms n=1,2,...,10. The output of your code must be a table that shows the value of the function at each term around c=1. Also, the table should show the absolute and relative errors of each result. The output should look like the following:

Please enter the value of x:

Term	ln(x)	Absolute error	Relative error
1			
2			
4			
5 6			
7			
8 9			
10			

C. Change the number of terms from 10 to 100 and plot the value of the series as a function of the number of terms.

You need to demo this to your lab professor.