Q.N.	Question		ANS			
1	Fourier coefficient 'a ₀ ' in the Fourier series expansion of $f(x) = e^{-x}$; $0 \le x \le 2\pi$ and $f(x + 2\pi) = f(x)$ is					
	a) $\frac{1}{\pi}(1 - e^{-2\pi})$ b) $\frac{1}{2\pi}(1 - e^{2\pi})$ c) $\frac{2}{\pi}(e^{-2\pi} - 1)$	d) $\frac{1}{\pi}(1+e^{2\pi})$				
2	Fourier coefficient a_0 in the Fourier series expansion of $f(x) = \left(\frac{\pi - x}{2}\right)^2$; $0 \le x \le 2\pi$ and					
	f(x+2\pi) = f(x) is a) $\frac{\pi^2}{3}$ b) $\frac{\pi^2}{6}$ c) 0	d) $\frac{\pi}{6}$				
3	$f(x) = x, -\pi \le x \le \pi$ and period is 2π the fourier series is represented $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, then fourier coefficient b_1 is	sented by	A			
	a) 2 b) -1 c) 0	d) $\frac{2}{\pi}$				
4	$f(x) = \begin{cases} 1, & -1 < x < 0 \\ \cos \pi x, & 0 < x < 1 \end{cases}$ and period is 2.the fourier serior and 2.the fouri		С			
	a) 2 b) -1 c) 1	d) $\frac{2}{\pi}$				
5	$f(x) = x - x^3$, $-2 < x < 2$ and period is 4.the fourier series is represented by $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\pi x + b_n \sin n\pi x)$, then fourier coefficient a_0 is $a)1$ b)0 c)-2 d)-1					
6	For the half range cosine series of $f(x) = \sin x$, $0 \le x < \pi$ and period is 2π the fourier series					
	is represented by $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx)$ fourier coefficient a_0 is					
	a) 4 b) 2 c) $\frac{2}{\pi}$	d) $\frac{4}{\pi}$				
7	The value of b_1 in Harmonic analysis of y for the following tabulated data is:					
	x 0 60 120 180 240	300 360				
	y 1.0 1.4 1.9 1.7 1.5	1.2 1.0				
	Sin x 0 0.866 0.866 0 -0.866	-0.866 0				
	a) 0.0989 b) 0.3464 c) 0.1732	d) 0.6932				
8	a) 0.0989 b) 0.3464 c) 0.1732 The value of the constant term in the fourier series of $f(x) = e^{-x}$	$x \text{ in } 0 \le x \le 2\pi,$	В			
	$f(x+2\pi) = f(x) \text{ is}$					
	a) $\frac{1}{\pi} (1 - e^{-2\pi})$ b) $\frac{1}{2\pi} (1 - e^{-2\pi})$ c) $1 - e^{-2\pi}$ d) $2(1 - e^{-2\pi})$					
9	The value of the constant term in the fourier series of $f(x) = x \sin x$ in $0 \le x \le 2\pi$, is					
	a) -2 b) 2 c) - $\frac{1}{2}$	d) -1				

10	If $a_n = \frac{2}{n^2 - 1}$ for $n > 1$, in the fourier series of $f(x) = x \sin x$ in $0 \le x \le 2\pi$, then the value	C			
	of a_1 is				
	a) -2 b) $\frac{2}{n^2-1}$ c) $-\frac{1}{2}$ d) $\frac{1}{2}$				
	n^{2} n^{2} n^{2} n^{2} n^{2} n^{2}				
11	The value of the constant term in the fourier series of	A			
0.000	$f(x) = \begin{cases} -\pi & -\pi < x < 0 \\ x & 0 < x < \pi \end{cases}, is$				
	a) $-\frac{\pi}{4}$ b) $-\frac{\pi}{2}$ c) $\frac{\pi}{4}$ d) $\frac{\pi}{2}$				
12	$(\cos x; -\pi < x < 0$	D			
	The value of a_n in the fourier series of $f(x) = \begin{cases} \cos x; & -\pi < x < 0 \\ -\cos x; & 0 < x < \pi \end{cases}$				
	$a)\frac{(-1)^n}{n}$ $b)\frac{1}{n}$ $c)\frac{(-1)^n}{n^2-1}$ $d)0$				
	n = 0				
13	The value of b_n in the fourier series of $f(x) = x$ in $-\pi < x < \pi$, is	С			
1997/77	a) 0 b) $\frac{\cos n\pi}{n}$ c) $-\frac{2\cos n\pi}{n}$ d) $-\frac{\cos n\pi}{n}$				
	n n				
14	The Fourier constant ' a_n ' for f (x) = 4 - x^2 in the interval 0 < x < 2 is	A			
	(a) $-\frac{4}{\pi^2 n^2}$ (b) $\frac{4}{\pi n^2}$ (c) $\frac{4}{\pi^2 n^2}$ (d) $\frac{2}{\pi^2 n^2}$				
	R.R. R.R. R.A.	С			
15	If $f(x)$ =sin ax defined in the interval $(-l, l)$ then value of ' a_n ' is				
	$a)\frac{2}{\pi n^2}$ $b)\frac{1}{n^2}$ $c)0$ $d)-\frac{1}{n^2}$				
16	. 0 -2 <r<-1< td=""><td>В</td></r<-1<>	В			
16	The function $f(x) = \begin{cases} 0 & -2 < x < -1 \\ 1 + x & -1 < x < 0 \\ 1 - x & 0 < x < 1 \end{cases}$ Is	Б			
	0 1 <x<2< td=""><td></td></x<2<>				
	a) on old function b) on over function				
	a)an odd function b) an even function c) neither even nor odd function d)cannot be decided				
17	The Fourier constant a_n for $f(x)=x^2$ in the interval $-1 \le x \le 1$ is	A			
	a) $\frac{4(-1)^n}{\pi^2 n^2}$ b) $\frac{4(-1)^{n+1}}{\pi^2 n^2}$ c) $\frac{4}{\pi^2 n^2}$ d) $-\frac{4}{\pi^2 n^2}$				
	$\pi^2 n^2$ $\pi^2 n^2$ $\pi^2 n^2$ $\pi^2 n^2$				
18	If $f(x) = \begin{cases} -x, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$, then $f(x)$ is	A			
	a) Even function b) odd function c) Neither even nor odd d) none of these				
	a) none of these				
19	In fourier series for $f(x) = x$ in the interval $-\pi \le x \le \pi$ which of the following is correct	В			
	a) $a_0 = \pi$, $a_n = \frac{1+(-1)^n}{n}$, $b_n = 0$ b) $a_0 = 0$, $a_n = 0$, $b_n = \frac{-2(-1)^n}{n}$				
	c) $a_0 = \frac{\pi}{2}$, $a_n = \frac{1 + (-1)^n}{n}$, $b_n = \frac{-2(-1)^n}{n}$ d) $a_0 = 0$, $a_n = 0$, $b_n = 0$				
	$u_0 - \frac{1}{2}, u_n - \frac{1}{n}, u_n - \frac{1}{n}$	}			
	<u> </u>				

20	The Fourier constant b_n for $f(x)=2-\frac{x^2}{2}$ in the interval $0 \le x \le 2$ is			
	a) $\frac{-2}{n\pi}$ b) $\frac{2}{n\pi}$ c) $\frac{2}{\pi^2 n^2}$ d) none of these.			
21	If $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$ is discontinuous at $x = 0$. Then value of $f(0)$ is			
	a) $\pi/2$ b) 0 c) $-\frac{\pi}{2}$ d) π	,.		
22	The function $f(x) = \begin{cases} 0 & -2 < x < -1 \\ 1 + x & -1 < x < 0 \\ 1 - x & 0 < x < 1 \\ 0 & 1 < x < 2 \end{cases}$ Find a_0 a)2 b) 1/4 c) 1/2 d)0	D		
23	Which of the following is the half range sine series of $f(x)$ in the interval, $0 \le x \le \pi$? a) $f(x) = \sum_{n=1}^{\infty} b_n sin \frac{n\pi x}{L}$ b) $f(x) = \frac{a_0}{2} \sum_{n=1}^{\infty} b_n sinnx$ c) $f(x) = \sum_{n=1}^{\infty} b_n sinnx$ d) none of these.	С		
24	For the function $f(x) = \begin{cases} -\pi, & 0 < x < \pi \\ x - \pi, & \pi < x < 2\pi \end{cases}$ what is the value of a_0 $a) \frac{1}{2} \qquad b) - \frac{\pi}{2} \qquad c) \frac{\pi}{2} \qquad d) \pi$	В		
25	If $f(x) = e^x$, $-1 \le x \le 1$ then constant term of $f(x)$ in fourier expansion is a) $\frac{e}{2}$ b) $\frac{e - e^{-1}}{2}$ c) $\frac{e + e^{-1}}{2}$ d) $\frac{1 + e}{2}$	В		
26	If $f(x) = \begin{cases} -\pi, & 0 < x < \pi \\ x, & \pi < x < 2\pi \end{cases}$ is discontinuous at $x = 0$ then value of $f(0)$ is a) $-\pi$ b) 0 c) $-\frac{\pi}{2}$ d) π			
27	If $\sum y = 42, n=6$. $\sum y\cos\theta = -8.5$, $\sum y\cos2\theta = -1.5$, what are the values of a_0 , a_1, a_2 a)7,-2.8,-2.8 b)14,-2.8,1.5 c) 7,-1.5,-2.8 d)none of these	D		
28	If $f(x) = x^4$ in (-1,1) then the fourier coefficient b_n is a) $\frac{2^{4(-1)^n}}{n^3\pi^3}$ b) 6 $\left[\frac{(-1)^n+1}{n^4\pi^4}\right]$ c)0 d)None of these.	С		
29	For the function $f(x) = 2x - x^2$, $0 \le x \le 3$ the value of b_n is, a) 0 b) $\frac{-9}{n^2\pi^2}$ c) $\frac{3}{n\pi}$ d) none of these			
30	In the Fourier expansion of the function $f(x) = \frac{1}{2}(\pi - x)$ in the interval $0 \le x \le 2\pi$ the value of a_n is, a) $\frac{1}{n^2\pi}$ b) $\frac{\pi}{n^2}$ c) 0 d) $\frac{(-1)^n}{n^2\pi}$	С		

31	If $f(x) = \frac{\pi^2}{2} - \frac{x^2}{4}$, $-\pi \le x \le \pi$ then values of a_n and b_n are				D			
	a) $0, \frac{3}{n\pi}$	b) 0, ($\frac{-1)^{n+1}}{n^2}$	c) $\frac{(-1)^n+1}{n^2-1}$	-,0	$(1)^{\frac{-(-1)^n}{n^2}}, 0$		
32	The following values of y give the displacement in inches of a certain machine part for the rotation x of the flywheel						С	
	x	0	π/6 9.2	$2\pi/6$	$3\pi/6$	$4\pi/6$	$5\pi/6$	
	Y	0	9.2	14.4	17.8	17.3	11.7	
	What is the va a)11.733	alue of a_0 b)1	4.4	c)23.466	d) r	none of these		
33	If $\sin x = \frac{2}{\pi}$	$-\frac{2}{\pi}\sum_{n=2}^{\infty}\frac{1+(n-1)^n}{(n-1)^n}$	$\frac{(n+1)^n}{(n+1)}\cos nx$	for $0 \le x \le \pi$	then which	of the following	ng correct	A
	a) $\frac{1}{2} = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots$ b) $\frac{\pi^2}{2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$ c) $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$ d) none of these							
34	If $a_0 = \frac{4\pi^2}{3}$, $a_n = \frac{4(-1)^{n+1}}{n^2}$ are the fourier coefficient of $f(x)$ in $-\pi \le x \le \pi$ then which of the following correct a) $f(x) = \frac{2\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n^2} \cos \frac{n\pi x}{2}$ b) $f(x) = \frac{4\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n^2} \sin nx$						С	
	c) $f(x) = \frac{2\pi^2}{3} - \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2} \cos nx$ d) none of these							
35	If $f(x) = x^2$,	0 < x < 2 the	en in half ran	ge cosine serie	$s \frac{a_0}{2}$ is			C
	a) 4	b) 12		c) $\frac{8}{3}$	4	d) 8		
36	For the half r which of the fa a) $\frac{\pi^2}{6} = \frac{1}{1^2} - \frac{1}{2^2}$ c) $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2}$	Following state $+\frac{1}{3^2} - \frac{1}{4^2} - \cdots$	ement is corr	b)	$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}$	$\frac{\pi^2}{6}$, $a_n = \frac{1}{n^2}$, b_n $\frac{1}{5^2} + \frac{1}{7^2}$ $\frac{1}{5^2} + \frac{1}{7^2}$		С

Q.N.	Question				
1	If $\emptyset(a) = \int_0^\infty \frac{e^{-x}}{x} (1 - e^{-ax}) dx$, $a > -1$ then by DUIS rule, $\frac{d\emptyset}{da}$ is a) $\frac{e^{-x}}{x} (1 - e^{-ax})$ b) $\int_0^\infty \frac{a}{x} (e^{-(a+1)x}) dx$ c) $\int_0^\infty (e^{-ax}) dx$ d) $\int_0^\infty (e^{-(a+1)x}) dx$	D			
2	If $\emptyset(a) = \int_0^1 \frac{x^a - 1}{\log x} dx$, $a \ge 0$ then by DUIS rule, $\frac{d\emptyset}{da}$ is a) $\int_0^1 \frac{x^a \log a}{\log x} dx$ b) $\int_0^1 \frac{ax^{a-1}}{\log x} dx$ c) $\int_0^1 x^a dx$ d) $\frac{x^a - 1}{\log x}$	С			

3	If $\emptyset(\alpha) = \int_0^\infty \frac{e^{-x} \sin \alpha x}{x} dx$ then by DUIS rule, $\frac{d\emptyset}{d\alpha}$ is	В				
	a) $\int_0^\infty e^{-x} \sin \alpha x dx$ b) $\int_0^\infty e^{-x} \cos \alpha x dx$ c) $\int_0^\infty \frac{\alpha e^{-x} \sin \alpha x}{x} dx$ d) $\frac{e^{-x} \sin \alpha x}{x}$					
4	If $\emptyset(a) = \int_0^{\frac{\pi}{2}} \frac{\log(1 + a \sin^2 x)}{\sin^2 x} dx$, $a > 0$, then by DUIS rule, $\frac{d\emptyset}{da}$ is	С				
	a) $\int_0^{\frac{\pi}{2}} \frac{2\sin x \cos x}{(1+a\sin^2 x)} dx$ b) $\int_0^{\frac{\pi}{2}} \frac{1}{(1+a\sin^2 x)\sin^2 x} dx$ c) $\int_0^{\frac{\pi}{2}} \frac{1}{1+a\sin^2 x} dx$ d) $\int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{(1+a\sin^2 x)} dx$					
5	If $\emptyset(a) = \int_a^{a^2} \log(ax) dx$, then by DUIS rule II, $\frac{d\emptyset}{da}$ is	Α				
	a) $\int_{a}^{a^{2}} \frac{\partial}{\partial a} \log(ax) dx + 2a \log a^{3}$ b) $\int_{a}^{a^{2}} \frac{\partial}{\partial a} \log(ax) dx$					
,	c) $\int_a^{a^2} \frac{\partial}{\partial a} \log(ax) dx + 2a \log a^3 - 2\log a$ d) $\int_a^{a^2} \frac{\partial}{\partial a} \log(ax) dx - 2a \log a^3 + 2\log a$					
6	If $\emptyset(a) = \int_0^{a^2} tan^{-1} \left(\frac{x}{a}\right) dx$, then by DUIS rule II, $\frac{d\emptyset}{da}$ is	А				
	a) $\int_0^{a^2} \frac{\partial}{\partial a} tan^{-1} \left(\frac{x}{a}\right) dx + 2atan^{-1}a$ b) $\int_0^{a^2} \frac{\partial}{\partial a} tan^{-1} \left(\frac{x}{a}\right) dx$					
	c) $\int_0^{a^2} \frac{\partial}{\partial a} tan^{-1} \left(\frac{x}{a}\right) dx + a^2 tan^{-1} a$ d) $\int_0^{a^2} \frac{\partial}{\partial a} tan^{-1} \left(\frac{x}{a}\right) dx + a^2 tan^{-1} a - tan^{-1} \left(\frac{x}{a}\right)$					
7	IF $I(a) = \int_a^{a^2} \frac{1}{x+a} dx$, then by DUIS rule II, $\frac{dI}{da}$ is	В				
	a) $\int_{a}^{a^{2}} \frac{\partial}{\partial a} \left(\frac{1}{x+a} \right) dx - \frac{1}{a^{2}+a} (2a) + \frac{1}{2a}$ b) $\int_{a}^{a^{2}} \frac{\partial}{\partial a} \left(\frac{1}{x+a} \right) dx + \frac{1}{a^{2}+a} (2a) - \frac{1}{2a}$					
	c) $\int_a^{a^2} \frac{\partial}{\partial a} \left(\frac{1}{x+a} \right) dx - \frac{1}{a^2+a}$ d) $\int_a^{a^2} \frac{\partial}{\partial a} \left(\frac{1}{x+a} \right) dx$					
8	Using DUIS Rule the value of the integral $\emptyset(a) = \int_0^\infty \frac{e^{-x}}{x} (1 - e^{-ax}) dx$, $a > -1$, given	Α				
	$\frac{d\phi}{da} = \frac{1}{a+1} is$					
	a)log(a+1) b) $-\frac{1}{(a+1)^2}$ c)log(a+1) + π d) $-\frac{1}{(a+1)^2}$ + 1					
9	Using DUIS Rule the value of the integral $\emptyset(a) = \int_0^{\frac{\pi}{2}} \frac{\log{(1 + a \sin^2{x})}}{\sin^2{x}} dx$ with $\frac{d\emptyset}{da} = \frac{\pi}{2} \frac{1}{\sqrt{a+1}}$ is	С				
	a) $\pi \sqrt{a+1}$ b) $\pi \sqrt{a+1} + \pi$ c) $\pi \sqrt{a+1} - \pi$ d) $3\pi (a+1)^{\frac{3}{2}} - \pi$					
10	Using DUIS Rule the value of the integral $\emptyset(a) = \int_0^\infty \frac{1-\cos ax}{x^2} dx$, with $\frac{d\emptyset}{da} = \frac{\pi}{2}$ is	В				
	a) $\frac{\pi}{2}$ b) $\frac{\pi a}{2}$ c) πa d) $\frac{\pi a}{2} + \frac{\pi}{2}$					
11	If $I(a) = \int_0^1 \frac{x^a - x^b}{\log x} dx$ then the value of $I(a)$ is	В				
	a) $\log\left(\frac{a}{b}\right)$ b) $\log\left(\frac{a+1}{b+1}\right)$ c) $\log\left(\frac{b+1}{a+1}\right)$ d) $\log\left(\frac{b}{a}\right)$					

12	If $\operatorname{erf}(\sqrt{t}) = \frac{2}{\sqrt{\pi}} \int_0^{\sqrt{t}} e^{-u^2} du$ then $\frac{d}{dt} \operatorname{erf}(\sqrt{t})$ is $a) \frac{e^{-t}}{2\sqrt{t}}$ b) $\frac{e^{-t^2}}{\sqrt{\pi t}}$	c) $\frac{e^{-t}}{\sqrt{\pi}}$	d) $\frac{e^{-t}}{\sqrt{\pi t}}$	D
13	$\int_0^t \operatorname{erf}(ax) dx + \int_0^t \operatorname{erf} c(ax) dx = ?$ a) t b) x	c) 0	d) $\frac{t^2}{2}$	А
14	If $\frac{d}{dx} \operatorname{erf}(ax) = \frac{2ae^{-a^2x^2}}{\sqrt{\pi}}$, the value of $\int_0^t \operatorname{erf}(ax) dx$ a) $\operatorname{terf}(at) + \frac{1}{a\sqrt{\pi}} e^{-a^2t^2} - \frac{1}{a\sqrt{\pi}}$ c) $\operatorname{erf}(at) + \frac{1}{a\sqrt{\pi}} e^{-a^2t^2} + \frac{1}{a\sqrt{\pi}}$	is b) t erf(at)— d) t erf(at)—	$-\frac{1}{a\sqrt{\pi}}e^{-a^{2}t^{2}} - \frac{1}{a\sqrt{\pi}}$ $\frac{1}{a\sqrt{\pi}}e^{-a^{2}t^{2}} + \frac{1}{a\sqrt{\pi}}$	A
15	The integral for "erf(b)-erf(a)" is, a) $\frac{2}{\sqrt{\pi}} \int_{a}^{b} e^{-t^2} dt$ b) $\sqrt{\frac{2}{\pi}} \int_{a}^{b} e^{-t^2} dt$	c) $\int_{a}^{b} e^{-t^2} dt$	d) none of these	A

Scanned by CamScanner
Scanned with CamScanner

8.1) S'S dxdy. a) $\frac{\pi^2}{3}$ b) $\frac{\pi^2}{4}$ c) π d) 1 9.2) { Sydodr = --a) Ta2 b) T c) Tra d) 5 9.3) SSexty dx dy = ---9 (e-1)2 b) e-1 c) e d) e 9.4) After changing the order of integration

I= 5'5' exdxdy, the new limits of x & y are of 0 = x < 4, 0 = y < x b) 4 < x < 0, x < y < 0 c) 0 = x < y, 0 < y < 4 d) 0 < x < 1, 0 < y < 4 g.s) After changing the order of integration of I= SS = dxdy the new limits of x fy LOTOEXEY DEYROR PDJOSYEX, OSXCO ich DEXEL MXEARL PORXEL DERES

Scanned with CamScanner
Scanned with CamScanner

8.1) S'S drdy a) The by The ch TI dy 1 9.2) S Sidodr = --a) मुब b) मु ८) मुंब d) 5 9.3) SS exty dx dy= 9) (e-1)2 b) e-1 c) e d) e 9.4) After changing the order of integration

I = S'S' exdxdy, the new limits of x & y are LOT 0 = x = 4, 0 = 4 < 2 by 4 < x < 0, 2 < 4 < 9 < 0 c) 0 = x = 1, 0 = y = 4 d) 0 = x = 1, 0 < y < 4 9.5) After changing the order of integration of I= SS = dxdy the new limits of x fy LATOEXEY DEYROR PDJOEYEX, OEXCOO d) 0 < x < 1, 0 < y < 2 12 C > x

Scanned with CamScanner Scanned with CamScanner