Estatística: Aplicação ao Sensoriamento Remoto

SER 204 - ANO 2024

Distribuições de Probabilidade

Camilo Daleles Rennó

camilo.renno@inpe.br http://www.dpi.inpe.br/~camilo/estatistica/

Distribuições de Probabilidade

Considere os seguintes experimentos:

Retiram-se 3 bolas da urna (com reposição). Define-se uma v.a. X cujos valores representam o número total de bolas vermelhas dentre as 3 escolhidas.

A partir de um mapa, 10 pontos são sorteados aleatoriamente (com reposição). Define-se uma v.a. Y cujos valores representam o número total de pontos pertencentes à classe floresta dentre os 10 escolhidos.

O que esses dois experimentos têm em comum?

- · Um número fixo de elementos são escolhidos
- A escolha de um elemento não influencia a escolha do próximo (eventos independentes)
- · Cada elemento escolhido pertence ou não ao atributo (cor/classe) de interesse

Dessa forma, pode-se dizer que X e Y têm propriedades semelhantes, ou seja, seguem a mesma distribuição de probabilidade.

Distribuições de Probabilidade

Quantas funções que descrevem distribuições de v.a. existem?

V.A. Discreta

V.A. Contínua

- Uniforme Discreta
- Bernoulli
- Binomial
- · Geométrica
- Binomial Negativa ou Pascal
- Hipergeométrica
- Poisson

- Uniforme
- Normal ou Gaussiana
- t de Student
- · χ²
- F
- Exponencial
- · Rayleigh
- Gamma

O que é importante saber:

- Tipo de v.a. (discreta ou contínua)
- · Escopo da v.a. (mínimo e máximo)
- ·Os parâmetros das distribuições
- · A média (medida de tendência central)
- · A variância (medida de dispersão)

Considere uma v.a. X cujos valores são inteiros de 1 a N, equiprováveis, ou seja, todos os valores têm igual probabilidade de ocorrência.

$$P(X = 1) = 1/6$$

$$P(X = 2) = 1/6$$

$$P(X = 3) = 1/6$$

$$P(X = 4) = 1/6$$

$$P(X = 5) = 1/6$$

$$P(X = 6) = 1/6$$

$$f(x) = \frac{1}{N}$$

$$E(X) = ?$$

$$Var(X) = ?$$

$$E(X) = \sum_{x=1}^{N} P(X = x) = \frac{1}{N}$$

$$E(X) = \frac{1}{N} \sum_{x=1}^{N} x = \frac{N(N+1)}{2}$$

$$E(X) = \frac{1}{N} \frac{N(N+1)}{2}$$

$$E(X) = \frac{N+1}{2}$$

Considere uma v.a. X cujos valores são inteiros de 1 a \mathbb{N} , equiprováveis, ou seja, todos os valores têm igual probabilidade de ocorrência.

$$X: \{1, 2, 3, 4, 5, 6\} \qquad Var(X) = E(X^{2}) - [E(X)]^{2}$$

$$P(X = 1) = 1/6$$

$$P(X = 2) = 1/6$$

$$P(X = 3) = 1/6$$

$$P(X = 4) = 1/6$$

$$P(X = 6) = 1/6$$

$$P(X = 6) = 1/6$$

$$E(X^{2}) = \frac{1}{N} \sum_{x=1}^{N} x^{2} = \frac{N(N+1)(2N+1)}{6}$$

$$E(X^{2}) = \frac{1}{N} \sum_{x=1}^{N} x^{2} = \frac{N(N+1)(2N+1)}{6}$$

$$E(X^{2}) = \frac{1}{N} \sum_{x=1}^{N} (N+1)(2N+1) = \frac{1}{N} \sum_{x=1}^{N} (N+1) = \frac{1}{N} \sum_{x=1}^{N} (N+1) = \frac{1}{N} \sum_{x=1}^{N} (N+1) = \frac{1}{N} \sum_{x=1}^{N} (N+1) = \frac{1}{N} \sum_$$

Considere uma v.a. X cujos valores são inteiros de 1 a N, equiprováveis, ou seja, todos os valores têm igual probabilidade de ocorrência.

$$X: \{1, 2, 3, 4, 5, 6\} \qquad Var(X) = E(X^{2}) - [E(X)]^{2}$$

$$P(X = 1) = 1/6$$

$$P(X = 2) = 1/6$$

$$P(X = 3) = 1/6$$

$$P(X = 4) = 1/6$$

$$P(X = 6) = 1/6$$

$$P(X = 6) = 1/6$$

$$P(X = 6) = 1/6$$

$$Var(X) = \frac{(N+1)(2N+1)}{6} - \frac{(N+1)^{2}}{4}$$

$$Var(X) = (N+1) \left[\frac{(2N+1)}{6} - \frac{(N+1)}{4} \right]$$

$$Var(X) = (N+1) \left[\frac{4N+2-3N-3}{12} \right]$$

$$Var(X) = (N+1) \frac{(N-1)}{12}$$

$$Var(X) = \frac{N+1}{2}$$

$$Var(X) = \frac{N^{2}-1}{12}$$

Considere uma v.a. X cujos valores são inteiros de 1 a N, equiprováveis, ou seja, todos os valores têm igual probabilidade de ocorrência.

$$X: \{1, 2, ..., N\}$$

$$f(x) = \frac{1}{N}$$

$$E(X) = \frac{N+1}{2}$$

$$Var(X) = \frac{N^2 - 1}{12}$$

$$f(x) = \frac{1}{6}$$

$$E(X) = \frac{6+1}{2} = 3.5$$

$$E(X) = \frac{6+1}{2} = 3.5$$
 $Var(X) = \frac{36-1}{12} = 2.92$

Considere uma v.a. X cujos valores são inteiros de 1 a N, equiprováveis, ou seja, todos os valores têm igual probabilidade de ocorrência.

$$X:\{1,2,...,N\}$$
 $f(x)=\frac{1}{N}$

$$E(X) = \frac{N+1}{2}$$
 $Var(X) = \frac{N^2-1}{12}$

Considere uma v.a. Y cujos valores são inteiros consecutivos de a a b, equiprováveis, ou seja, todos os valores têm igual probabilidade de ocorrência.

$$Y: \{a, a+1, ..., b-1, b\}$$
 $f(y) = \frac{1}{b-a+1}$

$$E(Y) = \frac{a+b}{2} \qquad Var(Y) = \frac{(b-a+1)^2 - 1}{12}$$

$$\begin{cases} Y = X + a - 1 \\ N = b - a + 1 \end{cases} E(Y) = E(X + a - 1) = \frac{b - a - 1}{2} + a - 1 = \frac{a + b}{2}$$

$$Var(Y) = Var(X + a - 1) = \frac{(b - a - 1)^2 - 1}{12}$$

Exemplos

Exemplo: Se uma v.a. Y é representada por valores múltiplos de 4, maiores que 10 e menores que 210, equiprováveis, qual a sua média e variância? Y representa uma distribuição uniforme discreta típica? Posso usar as fórmulas definidas para essa distribuição?

$$Var(Y) = \frac{(b-a+1)^2 - 1}{12}$$

Exemplo: Se uma v.a. Y é representada por valores múltiplos de 4, maiores que 10 e menores que 210, equiprováveis, qual a sua média e variância? Y representa uma distribuição uniforme discreta típica? Posso usar as fórmulas definidas para essa distribuição?

Y:
$$\{12, 16, ..., 208\}$$
 \Leftrightarrow X: $\{1, 2, ..., N\}$

Y/4: $\{3, 4, ..., 52\}$ $E(X) = \frac{N+1}{2} = \frac{51}{2} = 25,5$

Y/4 - 2: $\{1, 2, ..., 50\}$ $Var(X) = \frac{N^2 - 1}{12} = \frac{2499}{12} = 208,25$
 $X = Y/4 - 2$
 $Y = 4X + 8$
 $E(Y) = 4E(X) + 8 = 4*25,5 + 8 = 110$
 $Var(Y) = 16Var(X) = 16*208,25 = 3332$

Considere o experimento: retiram-se 3 bolas da urna (com reposição). Define-se uma v.a. X cujos valores representam o número total de bolas vermelhas dentre as 3 escolhidas.

X: {0, 1, 2, 3}

O experimento envolve 3 eventos independentes. Para cada evento:

```
P(vermelha) = 5/7 = p (probabilidade de sucesso)
P(azul) = 2/7 = q (probabilidade de fracasso, q = 1 - p)
```


Considere o experimento: retiram-se 3 bolas da urna (com reposição). Define-se uma v.a. X cujos valores representam o número total de bolas vermelhas dentre as 3 escolhidas.

X:
$$\{0, 1, 2, 3\}$$
 $p = 5/7$ $q = 2/7$ $n = 3$ (número de bolas retiradas da urna)

$$P(X=0) = \frac{2}{7} \frac{2}{7} \frac{2}{7} = \left(\frac{2}{7}\right)^3 = \frac{8}{343}$$

$$q \ q \ q$$

$$P(X=1) = \frac{3!}{1!2!} \frac{5}{7} \frac{2}{7} \frac{2}{7} = 3 \left(\frac{5}{7}\right) \left(\frac{2}{7}\right)^2 = \frac{60}{343}$$

$$P(X=2) = \frac{3!}{2!1!} \frac{5}{7} \frac{5}{7} \frac{2}{7} = 3 \left(\frac{5}{7}\right)^2 \left(\frac{2}{7}\right) = \frac{150}{343}$$

$$P(X = 3) = \frac{5}{7} \frac{5}{7} \frac{5}{7} = \left(\frac{5}{7}\right)^3 = \frac{125}{343}$$

$$p p p$$

$$f(x) = \frac{n!}{x!(n-x)!} p^x q^{n-x}$$

$$f(x) = \binom{n}{x} p^x q^{n-x}$$

Considere o experimento: retiram-se 3 bolas da urna (com reposição). Define-se uma v.a. X cujos valores representam o número total de bolas vermelhas dentre as 3 escolhidas.

X: {0, 1, 2, 3}

$$f(x) = \binom{n}{x} p^x q^{n-x}$$

$$E(X) = ?$$

$$Var(X) = ?$$

Analisando o caso particular onde n = 1:

Bernoulli

Considere o experimento: retira-se uma bola da urna. Define-se uma $v.a.\ X$ cujos valores são 1 se a bola escolhida for vermelha (sucesso) e O caso contrário (fracasso).

X: {0, 1}

$$P(X=0)=2/7=q$$
 (probabilidade de fracasso, $q=1-p$)

$$P(X = 1) = 5/7 = p$$
 (probabilidade de sucesso)

$$f(x) = p^x q^{1-x}$$

$$E(X) = ?$$

$$Var(X) = ?$$

Considere o experimento: retira-se uma bola da urna. Define-se uma $v.a.\ X$ cujos valores são 1 se a bola escolhida for vermelha (sucesso) e O caso contrário (fracasso).

$$E(X) = \sum_{x=0}^{1} x P(X = x)$$

$$P(X = 0) = 2/7$$

 $P(X = 1) = 5/7$

$$E(X) = 0q + 1p$$

 $f(x) = p^x q^{1-x}$

$$E(X) = p$$

Considere o experimento: retira-se uma bola da urna. Define-se uma $v.a.\ X$ cujos valores são 1 se a bola escolhida for vermelha (sucesso) e O caso contrário (fracasso).

$$P(X=0)=2/7$$

$$P(X=1)=5/7$$

$$f(x) = p^x q^{1-x}$$

$$E(X) = p$$

$$Var(X) = E(X^2) - [E(X)]^2$$

$$E(X^{2}) = \sum_{x=0}^{1} x^{2} P(X = x)$$

$$E(X^2) = 0^2 q + 1^2 p$$

$$E(X^2) = p$$

Considere o experimento: retira-se uma bola da urna. Define-se uma $v.a.\ X$ cujos valores são 1 se a bola escolhida for vermelha (sucesso) e O caso contrário (fracasso).

$$P(X=0)=2/7$$

$$P(X = 1) = 5/7$$

$$f(x) = p^x q^{1-x}$$

$$E(X) = p$$

$$Var(X) = E(X^2) - [E(X)]^2$$

$$Var(X) = p - p^2$$

$$Var(X) = p(1-p)$$

$$Var(X) = pq$$

Considere o experimento: retira-se uma bola da urna. Define-se uma $v.a.\ X$ cujos valores são 1 se a bola escolhida for vermelha (sucesso) e 0 caso contrário (fracasso).

$$f(x) = p^{x}q^{1-x} = \left(\frac{5}{7}\right)^{x} \left(\frac{2}{7}\right)^{1-x}$$
 X: {0, 1}

$$E(X) = p = \frac{5}{7} = 0,714$$

$$Var(X) = pq = \frac{5}{7} \frac{2}{7} = \frac{10}{49} = 0,204$$

Exemplos

Em que situação a média e a variância são maiores?

Considere o experimento: retiram-se 3 bolas da urna (com reposição). Define-se uma v.a. X cujos valores representam o número total de bolas vermelhas dentre as 3 escolhidas.

$$f(x) = \binom{n}{x} p^x q^{n-x}$$

$$E(X) = ?$$

 $Var(X) = ?$

A v.a. Binomial pode ser entendida como uma somatória de n v.a. Bernoulli, já que, para cada evento (tirar uma bola), há uma probabilidade p de sucesso (tirar bola vermelha) e q de fracasso (tirar bola azul).

$$X = \sum_{i=1}^{n} Y_i$$
 onde cada Y_i tem distribuição Bernoulli (0 ou 1)

$$Y_1 = 0$$
 $Y_2 = 1$ $Y_3 = 1$
Por exemplo: Q P $\Rightarrow X = 2$ (sucessos)

$$E(X) = E\left(\sum_{i=1}^{n} Y_i\right) = \sum_{i=1}^{n} E(Y_i) = \sum_{i=1}^{n} p = np$$

$$Var(X) = Var\left(\sum_{i=1}^{n} Y_{i}\right) = \sum_{i=1}^{n} Var(Y_{i}) = \sum_{i=1}^{n} pq = npq$$

Considere o experimento: retiram-se 3 bolas da urna (com reposição). Define-se uma v.a. X cujos valores representam o número total de bolas vermelhas dentre as 3 escolhidas.

$$p = 5/7$$

$$q = 2/7$$

$$n = 3$$

$$f(x) = \binom{n}{x} p^x q^{n-x} = \binom{3}{x} \left(\frac{5}{7}\right)^x \left(\frac{2}{7}\right)^{3-x} \qquad X: \{0, 1, 2, 3\}$$

$$E(X) = np = 3\frac{5}{7} = \frac{15}{7} = 2,143$$

$$Var(X) = npq = 3\frac{5}{7}\frac{2}{7} = \frac{30}{49} = 0,612$$

Exemplos

$$E(X) = np$$

$$Var(X) = npq$$

Exemplo: retiram-se 3 bolas da urna (com reposição). Define-se uma v.a. X cujos valores representam o número total de bolas vermelhas dentre as 3 escolhidas.

Qual a probabilidade de se obter 2 ou mais bolas vermelhas?

$$p = 5/7$$

$$q = 2/7$$

$$n = 3$$

$$X: \{0, 1, 2, 3\}$$

$$P(X \ge 2) = P(X = 2) + P(X = 3)$$

$$P(X=2) = {3 \choose 2} \left(\frac{5}{7}\right)^2 \left(\frac{2}{7}\right) = \frac{3!}{2!1!} \frac{25}{49} \frac{2}{7} = \frac{6}{2} \frac{25}{49} \frac{2}{7} = \frac{150}{343}$$

$$P(X=3) = {3 \choose 3} \left(\frac{5}{7}\right)^3 \left(\frac{2}{7}\right)^0 = \frac{125}{343}$$

$$P(X \ge 2) = \frac{150}{343} + \frac{125}{343} = \frac{275}{343} \cong 0,802$$

Considere o experimento: retiram-se bolas da urna (com reposição), até que se consiga uma bola vermelha. Define-se uma v.a. X cujos valores representam o número total de bolas azuis (fracassos) retiradas da urna até obter uma bola vermelha (sucesso).

$$X: \{0, 1, 2, ..., \infty\}$$

O experimento envolve de 1 a infinitos eventos independentes. Para cada evento:

```
P(vermelha) = 5/7 = p (probabilidade de sucesso)
P(azul) = 2/7 = q (probabilidade de fracasso, q = 1 - p)
```


Considere o experimento: retiram-se bolas da urna (com reposição), até que se consiga uma bola vermelha. Define-se uma v.a. X cujos valores representam o número total de bolas azuis (fracassos) retiradas da urna até obter uma bola vermelha (sucesso).

X:
$$\{0, 1, 2, ..., \infty\}$$
 $p = 5/7$ $q = 2/7$

$$P(X=0) = \frac{5}{7} = 0,714$$

$$P(X=3) = \frac{2}{7} \frac{2}{7} \frac{2}{7} \frac{5}{7} = \left(\frac{2}{7}\right)^3 \left(\frac{5}{7}\right) = \frac{40}{2401} = 0,017$$

$$q \ q \ p$$

$$P(X = 1) = \frac{2}{7} \frac{5}{7} = \frac{10}{49} = 0,204$$

$$q p$$

$$f(x) = pq^x$$

$$P(X=2) = \frac{2}{7} \frac{2}{7} \frac{5}{7} = \left(\frac{2}{7}\right)^2 \left(\frac{5}{7}\right) = \frac{20}{343} = 0,058$$

$$q \, q \, p$$

Considere o experimento: retiram-se bolas da urna (com reposição), até que se consiga uma bola vermelha. Define-se uma v.a. X cujos valores representam o número total de bolas azuis (fracassos) retiradas da urna até obter uma bola vermelha (sucesso).

$$X: \{0, 1, 2, ..., \infty\}$$

$$E(X) = \sum_{x=0}^{\infty} x P(X = x)$$

$$E(X) = pq \frac{d}{dq} \left(\frac{q}{1 - q} \right) = \frac{1}{p^2}$$

$$E(X) = pq \frac{1}{q} \frac{1}{q}$$

$$f(x) = pq^x$$

$$E(X) = \sum_{x=0}^{\infty} xpq^{x}$$

$$E(X) = pq \sum_{x=1}^{\infty} xq^{x-1} = \frac{dq^{x}}{da}$$

$$E(X) = \frac{q}{p}$$

$$E(X) = ?$$

$$Var(X) = ?$$

$$E(X) = pq \sum_{x=1}^{\infty} \frac{dq^{x}}{dq}$$

$$E(X) = pq \frac{d}{dq} \sum_{x=1}^{\infty} q^{x} = \frac{q}{1-q}$$

Considere o experimento: retiram-se bolas da urna (com reposição), até que se consiga uma bola vermelha. Define-se uma v.a. X cujos valores representam o número total de bolas azuis (fracassos) retiradas da urna até obter uma bola vermelha (sucesso).

$$X: \{0, 1, 2, ..., \infty\}$$

$$Var(X) = E(X^2) - [E(X)]^2$$

$$f(x) = pq^x$$

$$E(X^2) = \sum_{x=0}^{\infty} x^2 P(X = x)$$

$$f(x) = pq^{x}$$

$$E(X^2) = \sum_{x=0}^{\infty} x^2 p q^x$$

$$E(X) = \frac{q}{p}$$

$$E(X^2) = \frac{q^2 + q}{p^2}$$

Considere o experimento: retiram-se bolas da urna (com reposição), até que se consiga uma bola vermelha. Define-se uma v.a. X cujos valores representam o número total de bolas azuis (fracassos) retiradas da urna até obter uma bola vermelha (sucesso).

$$X: \{0, 1, 2, ..., \infty\}$$

$$Var(X) = E(X^2) - [E(X)]^2$$

$$f(x) = pq^x$$

$$Var(X) = \frac{q^2 + q}{p^2} - \frac{q^2}{p^2}$$

$$Var(X) = \frac{q}{p^2}$$

$$E(X) = \frac{q}{p}$$

Considere o experimento: retiram-se bolas da urna (com reposição), até que se consiga uma bola vermelha. Define-se uma $v.a.\ X$ cujos valores representam o número total de bolas azuis (fracassos) retiradas da urna até obter uma bola vermelha (sucesso).

$$p = 5/7$$
$$q = 2/7$$

$$f(x) = pq^x = \frac{5}{7} \left(\frac{2}{7}\right)^x$$
 $X: \{0, 1, 2, ..., \infty\}$

$$E(X) = \frac{q}{p} = \frac{27}{75} = \frac{2}{5} = 0.4$$

$$Var(X) = \frac{q}{p^2} = \frac{2}{7} \frac{49}{25} = \frac{14}{25} = 0,56$$

Importante:

Algumas vezes, esta v.a. refere-se ao número total de tentativas até se conseguir o sucesso. Nesse caso Y = X + 1

$$Y: \{1, 2, ..., \infty\}$$

$$f(y) = pq^{y-1}$$

$$E(Y) = \frac{1}{p}$$

$$E(Y) = \frac{1}{p}$$
 $Var(Y) = \frac{q}{p^2}$

Exemplos

Exemplo: retiram-se bolas da urna (com reposição), até que se consiga uma bola vermelha. Define-se uma v.a. X cujos valores representam o número total de bolas azuis (fracassos) retiradas da urna até obter uma bola vermelha (sucesso).

Qual a probabilidade de se obter a bola vermelha somente na 3ª tentativa?

$$p = 5/7$$
$$q = 2/7$$

$$X: \{0, 1, ..., \infty\}$$

← evento desejado: 2 fracassos seguido de 1 sucesso

$$P(X = 2) = \left(\frac{5}{7}\right)\left(\frac{2}{7}\right)^2 = \frac{5}{7}\frac{4}{49} = \frac{20}{343} \approx 0,058$$

Considere o experimento: retiram-se bolas da urna (com reposição), até que se consiga 3 bolas vermelhas. Define-se uma v.a. X cujos valores representam o número total de bolas azuis (fracassos) retiradas da urna até obter as 3 bolas vermelhas (sucessos).

$$X: \{0, 1, 2, ..., \infty\}$$

O experimento envolve de 3 a infinitos eventos independentes. Para cada evento:

```
P(vermelha) = 5/7 = p (probabilidade de sucesso)
P(azul) = 2/7 = q (probabilidade de fracasso, q = 1 - p)
```


Considere o experimento: retiram-se bolas da urna (com reposiçã até que se consiga 3 bolas vermelhas. Define-se uma v.a. X cujos valores representam o número total de bolas azuis (fracassos) Considere o experimento: retiram-se bolas da urna (com reposição), retiradas da urna até obter as 3 bolas vermelhas (sucessos).

$$X: \{0, 1, 2, ..., \infty\}$$
 $p = 5/7$ $q = 2/7$ $r = 3$

$$P(X = 0) = \frac{5}{7} \frac{5}{7} \frac{5}{7} = \left(\frac{5}{7}\right)^3 = 0,364$$

$$p p p$$

$$f(x) = \begin{pmatrix} x + r - 1 \\ x \end{pmatrix} p^r q^x$$

$$P(X = 1) = \frac{3!}{1!2!} \frac{2}{7} \frac{5}{7} \frac{5}{7} \frac{5}{7} = 3\frac{2}{7} \left(\frac{5}{7}\right)^3 = 0,312$$

$$q p p p$$

$$P(X=2) = \frac{4!}{2!2!} \frac{2}{7} \frac{5}{7} \frac{5}{7} \frac{5}{7} = 6 \left(\frac{2}{7}\right)^2 \left(\frac{5}{7}\right)^3 = 0,178$$

$$q \ q \ p \ p \ p$$

Considere o experimento: retiram-se bolas da urna (com reposição), até que se consiga 3 bolas vermelhas. Define-se uma v.a. X cujos valores representam o número total de bolas azuis (fracassos) retiradas da urna até obter as 3 bolas vermelhas (sucessos).

$$X: \{0, 1, 2, ..., \infty\}$$

$$f(x) = {x+r-1 \choose x} p^r q^x$$

$$E(X) = ?$$
$$Var(X) = ?$$

A v.a. Binomial Negativa pode ser entendida como uma somatória de r v.a. Geométricas.

$$X = \sum_{i=1}^{r} Y_i$$
 onde cada Y_i tem distribuição Geométrica

$$Y_1 = 2$$
 $Y_2 = 4$ $Y_3 = 3$

Por exemplo: $q q p q q q p q q q p \Rightarrow X = 9$ (fracassos)

$$E(X) = E\left(\sum_{i=1}^{r} Y_i\right) = \sum_{i=1}^{r} E(Y_i) = \sum_{i=1}^{r} \frac{q}{p} = \frac{rq}{p}$$

$$Var(X) = Var\left(\sum_{i=1}^{r} Y_i\right) = \sum_{i=1}^{r} Var(Y_i) = \sum_{i=1}^{r} \frac{q}{p^2} = \frac{rq}{p^2}$$

Considere o experimento: retiram-se bolas da urna (com reposição), até que se consiga 3 bolas vermelhas. Define-se uma v.a. X cujos valores representam o número total de bolas azuis (fracassos) retiradas da urna até obter as 3 bolas vermelhas (sucessos).

$$p = 5/7$$

$$q = 2/7$$

$$r = 3$$

$$f(x) = {x+r-1 \choose x} p^r q^x = {x+2 \choose x} \left(\frac{5}{7}\right)^3 \left(\frac{2}{7}\right)^x \qquad X: \{0, 1, 2, ..., \infty\}$$

$$E(X) = \frac{rq}{p} = 3\frac{2}{7}\frac{7}{5} = \frac{6}{5} = 1,2$$

$$Var(X) = \frac{rq}{p^2} = 3\frac{2}{7}\frac{49}{25} = \frac{42}{25} = 1,68$$

Importante:

Algumas vezes, esta v.a. refere-se ao número total de tentativas até se conseguir r sucessos. Nesse caso Y = X + r

$$Y: \{r, r+1, ..., \infty\}$$
 $f(y) = {y-1 \choose r-1} p^r q^{y-r}$ $E(Y) = \frac{r}{p}$ $Var(Y) = \frac{rq}{p^2}$

Distribuição Binomial Negativa

Exemplos

Considere o experimento: retiram-se 3 bolas da urna (se reposição). Define-se uma v.a. X cujos valores represento número total de bolas vermelhas dentre as 3 escolhidas. Considere o experimento: retiram-se 3 bolas da urna (sem reposição). Define-se uma v.a. X cujos valores representam o

número de bolas retiradas da urna

$$n=3$$

$$M=7$$

$$\{2,3\}$$
 $n=3$ $M=7$ $K=5$ número de bolas vermelhas na urna não é possível obter 3 bolas azuis! número total de bolas na urna

$$P(X = 0) = \frac{210}{765} = 0$$
a a a

$$P(X = 1) = \frac{3!}{1!2!} \frac{5}{7} \frac{2}{6} \frac{1}{5} = 3 \frac{2}{42} = \frac{1}{7}$$

$$v \ a \ a$$

$$P(X=2) = \frac{3!}{2!1!} \frac{5}{7} \frac{4}{6} \frac{2}{5} = 3 \frac{8}{42} = \frac{4}{7}$$

$$P(X=3) = \frac{5}{7} \frac{4}{6} \frac{3}{5} = \frac{12}{42} = \frac{2}{7}$$

$$f(x) = \frac{n!}{x!(n-x)!} \frac{\frac{K!}{(K-x)!} \frac{(M-K)!}{[(M-K)-(n-x)]!}}{\frac{M!}{(M-n)!}}$$

$$f(x) = \frac{\binom{K}{x} \binom{M - K}{n - x}}{\binom{M}{n}}$$

Considere o experimento: retiram-se 3 bolas da urna (sem reposição). Define-se uma v.a. X cujos valores representam o número total de bolas vermelhas dentre as 3 escolhidas.

X: {1, 2, 3}

$$f(x) = \frac{\binom{K}{x} \binom{M - K}{n - x}}{\binom{M}{n}}$$

$$E(X) = ?$$

 $Var(X) = ?$

$$E(X) = n\frac{K}{M}$$

$$Var(X) = n \frac{K}{M} \frac{M - K}{M} \frac{M - n}{M - 1}$$

OBS: se M for muito grande:

$$\frac{K}{M} \rightarrow p$$
 (probabilidade de sucesso)

$$\frac{M-K}{M} \rightarrow q$$
 (probabilidade de fracasso)

$$\frac{M-n}{M-1} \to 1 \quad \therefore \quad E(X) = np \quad Var(X) = npq$$

Hipergeométrica \rightarrow Binomial

$$M = 7$$

$$K = 5$$

$$n = 3$$

Considere o experimento: retiram-se 3 bolas da urna (se reposição). Define-se uma v.a. X cujos valores representa número total de bolas vermelhas dentre as 3 escolhidas. Considere o experimento: retiram-se 3 bolas da urna (sem reposição). Define-se uma v.a. X cujos valores representam o

$$f(x) = \frac{\binom{K}{x} \binom{M - K}{n - x}}{\binom{M}{n}} = \frac{\binom{5}{x} \binom{2}{3 - x}}{\binom{7}{3}} \qquad X: \{1, 2, 3\}$$

$$E(X) = n \frac{K}{M} = 3 \frac{5}{7} = 2{,}143$$
 (mesmo que Binomial)

$$Var(X) = n\frac{K}{M}\frac{M-K}{M}\frac{M-n}{M-1} = 3\frac{5}{7}\frac{24}{6} = \frac{120}{294} = 0,408$$

(variância da Binomial * fator de correção)

Exemplos

Suponha que uma central telefônica recebeu 270 chamadas num período de 3 horas, ou seja, 1,5 chamadas por minuto. Deseja-se calcular a probabilidade de que nos próximos 3 minutos sejam recebidas 0, 1, 2, etc chamadas.

Considere que a qualquer instante, uma chamada é tão provável de ocorrer como em qualquer outro instante e assim, a probabilidade permanece constante.

Pode-se considerar cada intervalo como uma Bernoulli, sendo sucesso receber uma chamada e fracasso não receber nenhuma chamada.

Sendo assim, quanto vale p = P(sucesso)?

$$E(X) = 4.5$$

(X é o número de chamadas recebidas em 3 minutos)

como
$$n = 9$$
, então $np = 4.5$ portanto $p = 0.5$

$$f(x) = \binom{9}{x} (0,5)^x (0,5)^{9-x} = \binom{9}{x} (0,5)^9$$

Problema: não considera a possibilidade de 2 ou mais chamadas dentro do mesmo intervalo!

Suponha que uma central telefônica recebeu 270 chamadas num período de 3 horas, ou seja, 1,5 chamadas por minuto. Deseja-se calcular a probabilidade de que nos próximos 3 minutos sejam recebidas 0, 1, 2, etc chamadas.

Considere que a qualquer instante, uma chamada é tão provável de ocorrer como em qualquer outro instante e assim, a probabilidade permanece constante.

$$E(X) = 4.5$$

como $n = 18$, então
 $p = 0.25$

$$f(x) = {18 \choose x} (0,25)^x (0,75)^{18-x}$$

Problema: não considera a possibilidade de 2 ou mais chamadas dentro do mesmo intervalo!

Suponha que uma central telefônica recebeu 270 chamadas num período de 3 horas, ou seja, 1,5 chamadas por minuto. Deseja-se calcular a probabilidade de que nos próximos 3 minutos sejam recebidas 0, 1, 2, etc chamadas.

Considere que a qualquer instante, uma chamada é tão provável de ocorrer como em qualquer outro instante e assim, a probabilidade permanece constante.

$$E(X) = 4, 5 = \mu = np$$
então
$$p = \frac{\mu}{n}$$

$$f(x) = \binom{n}{x} \left(\frac{\mu}{n}\right)^x \left(1 - \frac{\mu}{n}\right)^{n-x}$$

Se $n \to \infty$, então $p \to 0$ e f(x) tende para:

$$f(x) = \frac{e^{-\mu}\mu^x}{x!}$$
 (distribuição de Poisson)

$$E(x) = \mu$$
 $Var(x) = \mu$

Suponha que uma central telefônica recebeu 270 chamadas num período de 3 horas, ou seja, 1,5 chamadas por minuto. Deseja-se calcular a probabilidade de que nos próximos 3 minutos sejam recebidas 0, 1, 2, etc chamadas.

Considere que a qualquer instante, uma chamada é tão provável de ocorrer como em qualquer outro instante e assim, a probabilidade permanece constante.

Dica para identificação: eventos em que somente é possível contar os sucessos mas não os fracassos

Resumo Distribuições Discretas

Distribuição	f(x)	E(X)	Var(X)	
Uniforme	$f(x) = \frac{1}{N}$	$\frac{N+1}{2}$	$\frac{N^2-1}{12}$	$X = \{1, 2,, N\}$
Bernoulli	$f(x) = p^x q^{1-x}$	p	pq	$X = \{0,1\}$
Binomial	$f(x) = \binom{n}{x} p^x q^{n-x}$	np	npq	$X = \{0, 1, 2,, n\}$
Geométrica	$f(x) = pq^{x}$	$\frac{q}{p}$	$\frac{q}{p^2}$	$X = \{0,1,2,\ldots\}$
Binomial Negativa	$f(x) = \binom{x+r-1}{x} p^r q^x$	$\frac{rq}{p}$	$\frac{rq}{p^2}$	$X = \{0,1,2,\ldots\}$
Hipergeométrica	$f(x) = \frac{\binom{K}{x} \binom{M - K}{n - x}}{\binom{M}{n}}$	$n\frac{K}{M}$	$n\frac{K}{M}\frac{M-K}{M}\frac{M-n}{M-1}$	$X = {\max(0, n - M + K), \dots, \min(n, K)}$
Poisson	$f(x) = \frac{e^{-\mu}\mu^x}{x!}$	μ	μ	$X = \{0,1,2,\ldots\}$

Uma variável aleatória X tem distribuição Uniforme no intervalo [a,b] se sua função densidade de probabilidade for dada por:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{se } a \le x \le b \\ 0 & \text{caso contrário} \end{cases}$$

$$E(X) = ?$$

$$Var(X) = ?$$

$$a \le x \le b$$

$$f(x) = \frac{1}{b-a}$$

$$E(X) = ?$$

$$E(X) = \int_{a}^{b} x f(x) dx$$

$$E(X) = \int_{a}^{b} xf(x)dx$$
$$E(X) = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \int_{a}^{b} x dx$$

$$E(X) = \frac{1}{b-a} \frac{x^2}{2} \bigg|_a^b = \frac{1}{b-a} \left(\frac{b^2 - a^2}{2} \right)$$

$$E(X) = \frac{b^2 - a^2}{2(b - a)} = \frac{(b - a)(b + a)}{2(b - a)} = \boxed{\frac{a + b}{2}}$$

$$a \le x \le b$$

$$f(x) = \frac{1}{b-a}$$

$$E(X) = \frac{a+b}{2}$$

$$Var(X) = ?$$

$$Var(X) = E(X^{2}) - [E(X)]^{2}$$

$$E(X^{2}) = \int_{a}^{b} x^{2} f(x) dx$$

$$E(X^{2}) = \int_{a}^{b} x^{2} \frac{1}{b-a} dx = \frac{1}{b-a} \int_{a}^{b} x^{2} dx$$

$$E(X^{2}) = \frac{1}{b-a} \frac{x^{3}}{3} \Big|_{a}^{b} = \frac{1}{b-a} \left(\frac{b^{3} - a^{3}}{3} \right)$$

$$E(X^{2}) = \frac{b^{3} - a^{3}}{3(b-a)}$$

$$a \le x \le b$$

$$f(x) = \frac{1}{b - a}$$

$$E(X) = \frac{a+b}{2}$$

$$Var(X) = ?$$

$$Var(X) = E(X^{2}) - [E(X)]^{2}$$

$$Var(X) = \frac{b^{3} - a^{3}}{3(b - a)} - \frac{(a + b)^{2}}{4}$$

$$Var(X) = \frac{4(b^{3} - a^{3}) - 3(b - a)(a + b)^{2}}{12(b - a)}$$

$$Var(X) = \frac{4b^{3} - 4a^{3} - 3b^{3} - 3ab^{2} + 3a^{2}b + 3a^{3}}{12(b - a)}$$

$$Var(X) = \frac{b^{3} - 3ab^{2} + 3a^{2}b - a^{3}}{12(b - a)} = \frac{(b - a)^{3}}{12(b - a)} = \frac{(b - a)^{2}}{12}$$

50

Uma variável aleatória X tem distribuição Uniforme no intervalo [a,b] se sua função densidade de probabilidade for dada por:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{se } a \le x \le b \\ 0 & \text{caso contrário} \end{cases}$$

$$E(X) = \frac{a+b}{2}$$

$$Var(X) = \frac{(b-a)^2}{12}$$

Exemplo: $X \sim U(5,10)$ $\Rightarrow 5 \le x \le 10$

$$P(7 < X < 9) = \int_{7}^{9} f(x)dx$$
$$= (9-7).\frac{1}{5} = \frac{2}{5} = 0,4$$

Distribuição Normal ou Gaussiana

Uma variável aleatória X tem distribuição Normal se sua função densidade de probabilidade for dada por:

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} -\infty \le x \le +\infty$$

$$E(X) = \mu$$

$$Var(X) = \sigma^2$$

Exemplo: $X \sim N(10,4) \implies \mu = 10 \quad \sigma^2 = 4$

$$P(8 < X < 11) = \int_{8}^{11} f(x) dx$$

Distribuição Normal ou Gaussiana

Propriedade: se $X \sim N(\mu, \sigma^2)$ e Y = aX + b então $Y \sim N(a\mu + b, a^2\sigma^2)$

$$Z = \frac{X - \mu}{\sigma}$$

$$E(Z) = E\left(\frac{X-\mu}{\sigma}\right) = \frac{1}{\sigma}E(X-\mu) = \frac{1}{\sigma}(E(X)-\mu) = \frac{1}{\sigma}(\mu-\mu) = 0$$

$$Var(Z) = Var\left(\frac{X-\mu}{\sigma}\right) = \frac{1}{\sigma^2}Var(X-\mu) = \frac{1}{\sigma^2}Var(X) = \frac{\sigma^2}{\sigma^2} = 1$$

$$Z \sim N(0,1)$$

 $Z \sim N(0,1)$ \Rightarrow Distribuição Normal Padrão

(valores de probabilidade podem ser tabelados!)

Distribuição Normal Padrão

$$P(Z > 2,17) = 0,0150$$

								_		
z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641
0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247
0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,3483
0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776
0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,2148
0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,1170
1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985
1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,0823
1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0721	0,0708	0,0694	0,0681
1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,0455
1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367
1,8	0,0359	0,0351	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,0233
2,0	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0.0192	0,0188	0,0183
2,1	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0154	0,0150	0,0146	0,0143
2,2	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,0110
2,3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084
2,4	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064
2,5	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0048
2,6	0,0047	0,0045	0,0044	0,0043	0,0041	0,0040	0,0039	0,0038	0,0037	0,0036
2,7	0,0035	0,0034	0,0033	0,0032	0,0031	0,0030	0,0029	0,0028	0,0027	0,0026
2,8	0,0026	0,0025	0,0024	0,0023	0,0023	0,0022	0,0021	0,0021	0,0020	0,0019
2,9	0,0019	0,0018	0,0018	0,0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,0014
3,0	0,0013	0,0013	0,0013	0,0012	0,0012	0,0011	0,0011	0,0011	0,0010	0,0010

Distribuição Normal Padrão (Exemplos)

$$P(Z < -1,5) = ?$$

$$P(Z < -1,5) = P(Z > 1,5) = 0,0668$$

Distribuição Normal Padrão (Exemplos)

$$P(0 > Z > 1,5) = ?$$

$$P(0 > Z > 1,5) = 0,5-0,0668 = 0,4332$$

Distribuição Normal Padrão (Exemplos)

$$P(1 < Z < 2) = ?$$

$$P(1 < Z < 2) = 0.1587 - 0.0228 = 0.1359$$

Distribuição Normal (Exemplos)

$$X \sim N(10,4)$$

$$P(8 < X < 11) = ?$$

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

$$P(8-10 < X-10 < 11-10) = ?$$

$$P(\frac{8-10}{2} < \frac{X-10}{2} < \frac{11-10}{2}) = ?$$

$$P(-1 < Z < 0.5) = ?$$

Distribuição da Soma de Variáveis Aleatórias

$$X_1 \sim N(\mu_1, \sigma_1^2)$$

$$X_2 \sim N(\mu_2, \sigma_2^2)$$

$$X_3 \sim N(\mu_3, \sigma_3^2)$$
 3 v.a. independentes com distribuições normal

$$Y = X_1 + X_2 + X_3$$

Qual a distribuição de Y?

$$Y \sim N(\mu_1 + \mu_2 + \mu_3, \sigma_1^2 + \sigma_2^2 + \sigma_3^2)$$

$$E(Y) = E(X_1 + X_2 + X_3) = E(X_1) + E(X_2) + E(X_3) = \mu_1 + \mu_2 + \mu_3$$

$$Var(Y) = \sigma_1^2 + \sigma_2^2 + \sigma_3^2$$

Distribuição da Soma de Variáveis Aleatórias

$$X_1 \sim ?(\mu_1, \sigma_1^2)$$

$$X_2 \sim ?(\mu_2, \sigma_2^2)$$

$$\vdots$$

$$X_n \sim ?(\mu_n, \sigma_n^2)$$

$$n \text{ v.a. independentes com distribuições desconhecidas}$$

$$Y = X_1 + X_2 + ... + X_n = \sum_{i=1}^{n} X_i$$

Qual a distribuição de Y?

se *n* for grande:

$$Y \sim N\left(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2\right)$$
 Teorema do Limite Central

Teorema do Limite Central

A soma de n v.a. independentes tende para uma Normal a medida que $n \to \infty$

$$Y = \sum_{i=1}^{n} X_i$$

Se $X_i \sim N(\mu_i, \sigma_i^2)$ então $Y \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$ para qualquer valor de n

"A soma de normais independentes é sempre uma normal!"

Se
$$X_i \sim ?(\mu_i, \sigma_i^2)$$
 então $Y \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$ somente se n for grande!!!! (TLC válida)

Esta convergência acontece mais rapidamente quanto mais parecida for a forma da distribuição original (desconhecida) da normal

Aproximação da Binomial à Normal

Se Y tem uma distribuição binomial com parâmetros n e p:

$$Y = \sum_{i=1}^{n} X_i$$
 onde cada X_i tem distribuição Bernoulli (X_i : {0, 1}) com $\mu = p$ e $\sigma^2 = pq$

Então, se n for grande, pelo TLC, Y tende a uma Normal, ou seja,

$$Y \sim N(np, npq)$$

$$E(Y) = \sum_{i=1}^{n} E(X_i) = np$$

$$Var(Y) = \sum_{i=1}^{n} Var(X_i) = npq$$

OBS: Se p = 0.5, a distribuição Binomial é simétrica e, portanto, rapidamente converge para Normal.

Aproximação da Binomial à Normal

Exemplo

Considere o experimento: retiram-se 100 bolas da urna (com reposição). Define-se uma v.a. X cujos valores representam o número total de bolas vermelhas dentre as 100 escolhidas.

Calcule: $P(30 \le X \le 51)$

$$n = 100 \qquad p = \frac{2}{5} = 0,4$$

$$f(x) = {100 \choose x} 0, 4^x 0, 6^{100-x}$$

$$P(30 \le X \le 51) = \sum_{x=30}^{51} {100 \choose x} 0, 4^{x}0, 6^{100-x}$$

(valor exato)

Aproximação da Binomial à Normal

Exemplo

Considere o experimento: retiram-se 100 bolas da urna (com reposição). Define-se uma v.a. X cujos valores representam o número total de bolas vermelhas dentre as 100 escolhidas.

Calcule: $P(30 \le X \le 51)$

$$n = 100 \qquad p = \frac{2}{5} = 0,4$$

$$E(X) = np = 100 * 0, 4 = 40$$

$$Var(X) = npq = 100 * 0, 4 * 0, 6 = 24$$

Pelo TLC: $X \sim N(40, 24)$

P(29,5 < X < 51,5) = ? (correção de continuidade)

$$P\left(\frac{29,5-40}{\sqrt{24}} < Z < \frac{51,5-40}{\sqrt{24}}\right) = P\left(-2,143 < Z < 2,347\right) = 0,9745$$

(valor exato para Binomial $\Rightarrow 0.9752$)

Distribuição Normal ou Gaussiana

Resumindo...

 Transformações lineares de uma Normal não alteram sua distribuição, apenas sua média e variância

$$Y = aX + b$$
 Se $X \sim N(\mu, \sigma^2)$ então $Y \sim N(a\mu + b, a^2\sigma^2)$

 A soma de v.a. independentes com distribuição Normal resulta numa nova v.a. cuja distribuição também é Normal com média igual a soma das médias e variância igual a soma das variâncias

Se
$$X_i \sim N(\mu_i, \sigma_i^2)$$
 então $Y \sim \sum_{i=1}^n X_i \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$

 A soma de um grande número de v.a. independentes com distribuição desconhecida resulta numa nova v.a. cuja distribuição tende a uma Normal com média igual a soma das médias e variância igual a soma das variâncias

Se
$$X_i \sim ?(\mu_i, \sigma_i^2)$$
 então $Y \sim \sum_{i=1}^n X_i \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$ se n grande

Distribuição χ^2

Uma variável aleatória X tem distribuição χ^2 se sua função densidade de probabilidade for dada por:

$$f(x) = \frac{1}{2^{g/2} \Gamma(g/2)} x^{g/2-1} e^{-x/2} \qquad x \ge 0$$

$$g = \{1, 2, 3, ...\}$$

$$\left. \begin{array}{c} E(X) = g \\ Var(X) = 2g \end{array} \right\} \quad X \sim \chi_g^2$$

Propriedades:

a) se
$$Z \sim N(0,1)$$
, então $Z^2 \sim \chi_1^2$

b) se
$$X_i \sim \chi_1^2$$
, então $\sum_{i=1}^n X_i \sim \chi_n^2$

Distribuição χ^2

$P(\chi_{10}^2)$	> 3	,25)	=?
- \\\(\(\)\(\)		, — ~ <i>,</i>	•

$$P(\chi_{10}^2 > 3, 25) = 0,975$$

	g	0,005	0,010	0,025	0,050	0,100	0,900	0,900 0,950		0,990	0,995	
4	1	7,88	6,63	5,02	3,84	2,71	0,016	0,0039	0,0010	0,00016	0,00004	
	2	10,60	9,21	7,38	5,99	4,61	0,21	0,10	0,051	0,020	0,010	
	3	12,84	11,34	9,35	7,81	6,25	0,58	0,35	0,22	0,11	0,072	
	4	14,86	13,28	11,14	9,49	7,78	1,06	0,71		0,30	0,21	
	5	16,75	15,09	12,83	11,07	9,24	1,61	1,15	(3	0,55	0,41	
	6	18,55	16,81	14,45	12,59	10,64	2,20	1,64	4	0,87	0,68	
	7	20,28	18,48	16,01	14,07	12,02	2,83	2,17	1 9	1,24	0,99	
	8	21,95	20,09	17,53	15,51	13,36	3,49	2,73	2,18	1,65	1,34	
	9	23,59	21,67	19,02	16,92	14,68	4,17	3,33	2,70	2,09	1,73	
	1 0	25,19	23,21	20,48	18,31	15,99	4,87	3,94	3,25	2,56	2,16	
1	11	26,76	24,72	21,92	19,68	17,28	5,58	4,57	3,82	3,05	2,60	
	12	28,30	26,22	23,34	21,03	18,55	6,30	5,23	4,40	3,57	3,07	
	13	29,82	27,69	24,74	22,36	19,81	7,04	5,89	5,01	4,11	3,57	
	14	31,32	29,14	26,12	23,68	21,06	7,79	6,57	5,63	4,66	4,07	
	15	32,80	30,58	27,49	25,00	22,31	8,55	7,26	6,26	5,23	4,60	
1	16	34,27	32,00	28,85	26,30	23,54	9,31	7,96	6,91	5,81	5,14	
	17	35,72	33,41	30,19	27,59	24,77	10,09	8,67	7,56	6,41	5,70	
	18	37,16	34,81	31,53	28,87	25,99	10,86	9,39	8,23	7,01	6,26	
	19	38,58	36,19	32,85	30,14	27,20	11,65	10,12	8,91	7,63	6,84	
	20	40,00	37,57	34,17	31,41	28,41	12,44	10,85	9,59	8,26	7,43	
	21	41,40	38,93	35,48	32,67	29,62	13,24	11,59	10,28	8,90	8,03	
	22	42,80	40,29	36,78	33,92	30,81	14,04	12,34	10,98	9,54	8,64	
	23	44,18	41,64	38,08	35,17	32,01	14,85	13,09	11,69	10,20	9,26	
	24	45,56	42,98	39,36	36,42	33,20	15,66	13,85	12,40	10,86	9,89	
	25	46,93	44,31	40,65	37,65	34,38	16,47	14,61	13,12	11,52	10,52	
	26	48,29	45,64	41,92	38,89	35,56	17,29	15,38	13,84	12,20	11,16	
	27	49,64	46,96	43,19	40,11	36,74	18,11	16,15	14,57	12,88	11,81	
	28	50,99	48,28	44,46	41,34	37,92	18,94	16,93	15,31	13,56	12,46	
	29	52,34	49,59	45,72	42,56	39,09	19,77	17,71	16,05	14,26	13,12	
	30	53,67	50,89	46,98	43,77	40,26	20,60	18,49	16,79	14,95	13,79	
	40	66,77	63,69	59,34	55,76	51,81	29,05	26,51	24,43	22,16	20,71	
	50	79,49	76,15	71,42	67,50	63,17	37,69	34,76	32,36	29,71	27,99	
	60	91,95	88,38	83,30	79,08	74,40	46,46	43,19	40,48	37,48	35,53	
	70	104,21	100,43	95,02	90,53	85,53	55,33	51,74	48,76	45,44	43,28	
	80	116,32	112,33	106,63	101,88	96,58	64,28	60,39	57,15	53,54	51,17	
	90	128,30	124,12	118,14	113,15	107,57	73,29	69,13	65,65	61,75	59,20	
	100	140,17	135,81	129,56	124,34	118,50	82,36	77,93	74,22	70,06	67,33	

Distribuição χ^2

$$P(\chi_{10}^2 > 3,25) = 0,975$$

$$P(\chi_{15}^2 > ?) = 0,9$$

$$P(\chi_{15}^2 > 8,55) = 0,9$$

g	0,005	0,010	0,025	0,050	0,100	0,900	0,950	0,975	0,990	0,995
1	7,88	6,63	5,02	3,84	2,71	0,016	0,0039	0,0010	0,00016	0,00004
2	10,60	9,21	7,38	5,99	4,61	0,21	0,10	0,051	0,020	0,010
3	12,84	11,34	9,35	7,81	6,25	0,58	0,35	0,22	0,11	0,072
4	14,86	13,28	11,14	9,49	7,78	1,06	0,71	0,48	0,30	0,21
5	16,75	15,09	12,83	11,07	9,24	1,61	1,15	0,83	0,55	0,41
6	18,55	16,81	14,45	12,59	10,64	1	1,64	1,24	0,87	0,68
7	20,28	18,48	16,01	14,07	12,02	1 3	2,17	1,69	1,24	0,99
8	21,95	20,09	17,53	15,51	13,36	3 9	2,73	2,18	1,65	1,34
9	23,59	21,67	19,02	16,92	14,68	₹	3,33	2,70	2,09	1,73
10	25,19	23,21	20,48	18,31	15,99	4,57	3,94	3,25	2,56	2,16
11	26,76	24,72	21,92	19,68	17,28	5,58	4,57	3,82	3,05	2,60
12	28,30	26,22	23,34	21,03	18,55	6,30	5,23	4,40	3,57	3,07
13	29,82	27,69	24,74	22,36	19,81	7,04	5,89	5,01	4,11	3,57
14	31,32	29,14	26,12	23,68	21,06	7,79	6,57	5,63	4,66	4,07
15	32,80	30,58	27,49	25,00	22,31	8,55	7,26	6,26	5,23	4,60
16	34,27	32,00	28,85	26,30	23,54	9,31	7,96	6,91	5,81	5,14
17	35,72	33,41	30,19	27,59	24,77	10,09	8,67	7,56	6,41	5,70
18	37,16	34,81	31,53	28,87	25,99	10,86	9,39	8,23	7,01	6,26
19	38,58	36,19	32,85	30,14	27,20	11,65	10,12	8,91	7,63	6,84
20	40,00	37,57	34,17	31,41	28,41	12,44	10,85	9,59	8,26	7,43
21	41,40	38,93	35,48	32,67	29,62	13,24	11,59	10,28	8,90	8,03
22	42,80	40,29	36,78	33,92	30,81	14,04	12,34	10,98	9,54	8,64
23	44,18	41,64	38,08	35,17	32,01	14,85	13,09	11,69	10,20	9,26
24	45,56	42,98	39,36	36,42	33,20	15,66	13,85	12,40	10,86	9,89
25	46,93	44,31	40,65	37,65	34,38	16,47	14,61	13,12	11,52	10,52
26	48,29	45,64	41,92	38,89	35,56	17,29	15,38	13,84	12,20	11,16
27	49,64	46,96	43,19	40,11	36,74	18,11	16,15	14,57	12,88	11,81
28	50,99	48,28	44,46	41,34	37,92	18,94	16,93	15,31	13,56	12,46
29	52,34	49,59	45,72	42,56	39,09	19,77	17,71	16,05	14,26	13,12
30	53,67	50,89	46,98	43,77	40,26	20,60	18,49	16,79	14,95	13,79
40	66,77	63,69	59,34	55,76	51,81	29,05	26,51	24,43	22,16	20,71
50	79,49	76,15	71,42	67,50	63,17	37,69	34,76	32,36	29,71	27,99
60	91,95	88,38	83,30	79,08	74,40	46,46	43,19	40,48	37,48	35,53
70	104,21	100,43	95,02	90,53	85,53	55,33	51,74	48,76	45,44	43,28
80	116,32	112,33	106,63	101,88	96,58	64,28	60,39	57,15	53,54	51,17
90	128,30	124,12	118,14	113,15	107,57	73,29	69,13	65,65	61,75	59,20
100	140,17	135,81	129,56	124,34	118,50	82,36	77,93	74,22	70,06	67,33
										,

Distribuição t de Student

Uma variável aleatória X tem distribuição t de Student se sua função densidade de probabilidade for dada por:

$$f(x) = \frac{\Gamma[(g+1)/2]}{\Gamma(g/2)\sqrt{\pi g}} \left(1 + \frac{x^2}{g}\right)^{-(g+1)/2} - \infty < x < \infty$$

$$g = \{1, 2, 3, ...\}$$

$$E(X) = 0$$

$$Var(X) = \frac{g}{g-2}$$

$$X \sim t_g$$

Propriedades:

a) se
$$Z \sim N(0,1)$$
 e $W \sim \chi_g^2$ então $\frac{Z}{\sqrt{\frac{W}{g}}} \sim t_g$

b) se
$$g \to \infty$$
 então $t_g \to N(0,1)$

Distribuição t de Student

Distribuição F (de Snedecor)

Uma variável aleatória X tem distribuição F se sua função densidade de probabilidade for dada por:

$$f(x) = \frac{\Gamma[(g_1 + g_2)/2]}{\Gamma(g_1/2)\Gamma(g_2/2)} \left(\frac{g_1}{g_2}\right)^{g_1/2} x^{g_1/2-1} \left(1 + \frac{g_1}{g_2}x\right)^{-(g_1 + g_2)/2} x \ge 0$$

$$g_1 = \{1, 2, 3, ...\}$$

$$g_2 = \{1, 2, 3, ...\}$$

$$g_3 = \{1, 2, 3, ...\}$$

$$E(X) = \frac{g_2}{g_2 - 2}$$

$$Var(X) = \frac{2g_2^2(g_1 + g_2 - 2)}{g_1(g_2 - 2)^2(g_2 - 4)}$$

$$X \sim F_{g_1,g_2}$$

$$X \sim F_{g_1,g_2}$$
(lê-se: X tem distribuição F com g_1 e g_2 graus de liberdade)

Propriedades:

a) se
$$U \sim \chi_{g_1}^2$$
 e $V \sim \chi_{g_2}^2$ então $\frac{U/g_1}{V/g_2} \sim F_{g_1,g_2}$

b) se
$$X \sim F_{g_1,g_2}$$
 então $\frac{1}{X} \sim F_{g_2,g_1} \implies P(F_{g_1,g_2} > F) = P(F_{g_2,g_1} < \frac{1}{F})$

Distribuição F

Distribuição F

Distribuição F

$P(F_{g_1,g_2} >$	F) =	0,025
-------------------	------	-------

 g_2

$$P(F_{25,5} < ?) = 0,025$$

$$P(F_{5,25} > ?) = 0,025$$

$$P(F_{5,25} > 3,13) = 0,025$$

$$P(F_{25,5} < \frac{1}{3,13}) = 0.025$$

$$P(F_{25.5} < 0.319) = 0.025$$

	\circ 1																		
	1	2	3	4	5	6	7	8	9	10	11	12	15	20	25	30	40	50	100
1	647.8	799.5	864.2	899.6	921.8	937.1	948.2	956.7	963.3	968.6	973.0	976.7	984.9	993.1	998.1	1001	1006	1008	1013
2	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40	39.41	39.41	39.43	39.45	39.46	39.46	39.47	39.48	39.49
3	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42	14.37	14.34	14.25	14,17	14.12	14.08	14.04	14.01	13.96
4	12.22	10.65	9.98	9.61	9.36	9.20	9.07	8.98	8.90	8.84	8.79	8.75	8,66	8.56	8.50	8.46	8.41	8.38	8.32
5	10.01	8.43	7.76	7.39	7.15	6.98	6.85	6.76	6.68	6.62	6.57	6.52	6.43	6.33	6.27	6.23	6.18	6.14	6.08
6	8.81	7.26	6.60	6.23	5.99	5.82	5.70	5.60	5.52	5.46	5.41	5.37	5.27	5.17	5.11	5.07	5.01	4.98	4.92
7	8.07	6.54	5.89	5.52	5.29	5.12	4,99	4.90	4.82	4.76	4.71	4.67	4.57	4.47	4.40	4.36	4.31	4.28	4.21
8	7.57	6.06	5.42	5.05	4.82	4.65	4.53	4.43	4.36	4.30	4.24	4.20	4.10	4.00	3.94	3.89	3.84	3.81	3.74
9	7.21	5.72	5.08	4.72	4.48	4.32	4.20	4.10	4.03	3.96	3.91	3.87	3.77	3.67	3.60	3.56	3.51	3.47	3.40
10	6.94	5.46	4.83	4.47	4.24	4.07	3.95	3.85	3.78	3.72	3.66	3.62	3.52	3.42	3.35	3.31	3.26	3.22	3.15
11	6.72	5.26	4.63	4.28	4.04	3.88	3.76	3.66	3.59	3.53	3.47	3.43	3.33	3.23	3.16	3.12	3.06	3.03	2.96
12	6.55	5.10	. 4,47	4.12	3.89	3.73	3.61	3.51	3.44	3.37	3.32	3.28	3.18	3.07	3.01	2.96	2.91	2.87	2.80
13	6.41	4.97	4.35	4.00	3.77	3.60	3.48	3.39	3.31	3.25	3.20	3.15	3.05	2.95	2.88	2.84	2.78	2.74	2.67
14	6.30	4.86	4.24	3.89	3.66	3.50	3.38	3.29	3.21	3.15	3.09	3.05	2.95	2.84	2.78	2.73	2.67	2.64	2.56
15	6.20	4.77	4.15	3.80	3.58	3.41	3.29	3.20	3.12	3.06	3.01	2.96	2.86	2.76	2.69	2.64	2.59	2.55	2,47
16	6.12	4.69	4.08	3.73	3.50	3.34	3.22	3.12	3.05	2.99	2.93	2.89	2.79	2.68	2.61	2.57	2.51	2.47	2.40
17	6.04	4.62	4:01	3.66	3.44	3.28	3.16	3.06	2.98	2.92	2.87	2.82	2.72	2.62	2.55	2.50	2.44	2.41	2.33
18	5.98	4.56	3.95	3.61	3.38	3.22	3.10	3.01	2.93	2.87	2.81	2.77	2.67	2.56	2.49	2.44	2.38	2.35	2.27
19	5.92	4.51	3.90	3.56	3.33	3.17	3.05	2.96	2.88	2.82	2.76	2.72	2.62	2.51	2.44	2.39	2.33	2.30	2.22
20	5.87	4.46	3.86	3.51	3.29	3.13	3.01	2.91	2.84	2.77	2.72	2.68	2.57	2.46	2.40	2.35	2.29	2.25	2.17
21	5.83	4.42	3.82	3.48	3.25	3.09	2.97	2.87	2.80	2.73	2.68	2.64	2.53	2,42	2.36	2.31	2.25	2.21	2.13
22	5.79	4.38	3.78	3.44	3.22	3.05	2.93	2.84	2.76	2.70	2.65	2.60	2.50	2.39	2.32	2.27	2.21	2.17	2.09
23	5.75	4.35	3.75	3.41	3.18	3.02	2.90	2.81	2.73	2.67	2.62	2.57	2.47	2.36	2.29	2.24	2.18	2.14	2.06
24	5.72	4.32	3.72	3.38	3.15	2.99	2.87	2.78	2.70	2.64	2.59	2.54	2.44	2.33	2.26	2.21	2.15	2.11	2.02
25	5.69	4.29	3.69	3.35	3.13	2.97	2.85	2.75	2.68	2.61	2.56	2.51	2.41	2.30	2.23	2.18	2.12	2.08	2.00
30	5.57	4.18	3.59	3.25	3.03	2.87	2.75	2.65	2.57	2.51	2.46	2.41	2.31	2.20	2.12	2.07	2.01	1.97	1.88
40	5.42	4.05	3.46	3.13	2.90	2.74	2.62	2.53	2.45	2.39	2.33	2.29	2.18	2.07	1.99	1.94	1.88	1.83	1.74
50	5.34	3.97	3.39	3.05	2.83	2.67	2.55	2.46	2.38	2.32	2.26	2.22	2.11	1.99	1,92	1.87	1.80	1.75	1.66
100	5.18	3.83	3.25	2.92	2.70	2.54	2,42	2.32	2.24	2.18	2.12	2.08	1.97	1.85	I.77	1.71	1.64	1.59	1.48

 g_1

Distribuição Exponencial

Uma variável aleatória X tem distribuição Exponencial se sua função densidade de probabilidade for dada por:

$$f(x) = \lambda e^{-\lambda x} \qquad \begin{array}{c} x \ge 0 \\ \lambda > 0 \end{array}$$

$$E(X) = \frac{1}{\lambda}$$

$$Var(X) = \frac{1}{\lambda^2}$$

$$X \sim Exp(\lambda)$$
 (lê-se: X tem distribuição exponencial com parâmetro λ)

Propriedade:

Se
$$X_i \sim Exp(\lambda)$$
 independentes então $\frac{X_i}{X_i + X_j} \sim U(0,1)$

Distribuição Rayleigh

Uma variável aleatória X tem distribuição Rayleigh se sua função densidade de probabilidade for dada por:

$$f(x) = \frac{x}{\alpha^2} e^{\frac{-x^2}{2\alpha^2}} \qquad \begin{array}{c} x \ge 0 \\ \alpha > 0 \end{array}$$

$$E(X) = \alpha \sqrt{\frac{\pi}{2}}$$

$$Var(X) = \left(2 - \frac{\pi}{2}\right)\alpha^{2}$$

$$X \sim Rayleigh(\alpha) \text{ (lê-se: } X \text{ tem distribuição } Rayleigh \text{ com parâmetro } \alpha\text{)}$$

Propriedades:

a) Se
$$X_i \sim N(0, \sigma^2)$$
 independentes então $\sqrt{X_i^2 + X_j^2} \sim Rayleigh(\sigma)$

b) Se
$$X \sim Exp(\lambda)$$
 então $\sqrt{X} \sim Rayleigh\left(\frac{1}{\sqrt{2\lambda}}\right)$

Distribuição Gamma

Uma variável aleatória X tem distribuição Gamma se sua função densidade de probabilidade for dada por:

$$f(x) = \frac{x^{\alpha - 1}e^{-\beta x}\beta^{\alpha}}{\Gamma(\alpha)} \qquad x \ge 0$$
$$\alpha, \beta > 0$$

$$f(x) = \frac{x^{\alpha - 1}e^{-\beta x}\beta^{\alpha}}{\Gamma(\alpha)} \qquad x \ge 0$$

$$\alpha, \beta > 0$$

$$\alpha = 1 \quad \beta = 2$$

$$\alpha = 3 \quad \beta = 0.7$$

$$\alpha = 9 \quad \beta = 0.5$$

$$E(X) = \frac{\alpha}{\beta}$$

$$Var(X) = \frac{\alpha}{\beta^2}$$

$$X \sim Gamma(\alpha, \beta) \quad \text{(lê-se: } X \text{ tem distribuição } Gamma \text{ com parâmetros } \alpha \in \beta\text{)}$$

Propriedades:

a) Se
$$X_i \sim Exp(\lambda)$$
 independentes então $\sum_{i=1}^N X_i \sim Gamma(N,\lambda)$
b) Se $X_i \sim Rayleigh(\alpha)$ independentes então $\sum_{i=1}^N X_i^2 \sim Gamma\left(N,\frac{1}{2\alpha^2}\right)$

b) Se
$$X_i \sim Rayleigh(\alpha)$$
 independentes então $\sum_{i=1}^{N} X_i^2 \sim Gamma\left(N, \frac{1}{2\alpha^2}\right)$