

Application No.: 09/483,110

First Named Inventor: Faisal Haq

Title: Implementing Access Control Lists Using A Balanced
Hash Table of Access Control List Binary Comparison Trees

Title: Implementing Access Control Lists Using A Balanced Hash Table of Access Control List Binary Comparison Trees

FIG. 6A	FIG. 6B	FIG. 6C
FIG. 6D	FIG. 6E	FIG. 6F

Key To FIG. 6

Application No.: 09/483,110

First Named Inventor: Faisal Haq
Title: Implementing Access Control Lists Using A Balanced
Hash Table of Access Control List Binary Comparison Trees

15/33

Simplified Example of Ordered ACL Rule Set Typically Entered by a Network Administrator	oically Entered by a Network Administrator
ACL Rules in an Ordered ACL Rule Set expressed as plain english statements	Examples of Coded Versions of ACL Rules Which Are Typically Utilized Within an ACL Rule Set
Permit TCP protocol packets from any	PERMIT TCP ANY HOST 28.16.31.10 EQ 28
source IP address going to host having an IP address of 28.16.31.10 and a port identifier equal to 28.	
Deny TCP protocol packets from any source IP address going to host having an IP address of 28.16.31.10 and a port identifier greater than 23.	DENY TCP ANY HOST 28.16.31.10 GT 23
Deny UDP protocol packets from any source IP address going to host having an IP address of 30.22.12.5 and a part identifier equal to 11.	DENY UDP ANY HOST 30.22.21.5 EQ 11
Permit UDP protocol packets from any source IP address going to host having an IP address of 30.22.12.X, where X indicates any number, or "don't care".	PERMIT UDP ANY HOST 30.22.21.X
Deny all packets having source IP address of 23.20.7.0 and any destination address (indicated by address X.X.X.X, where X indicates any number, or "don't care").	DENY TCP 23.20.7.0 X.X.X.X.
Permit TCP protocol packets from any source IP address going to host having an IP address of 28.16.32.10.	PERMIT TCP ANY HOST 28.16.31.10

Application No.: 09/483,110

First Named Inventor: Faisal Haq

Title: Implementing Access Control Lists Using A Balanced

Hash Table of Access Control List Binary Comparison Trees

Example of the Creation of an Exemplar Bit String Subsequent Creation of Bit Strings for each ACL R	leader Field Utilized by at Least One ACI he Created Exemplar
Construct Exemplar Bit String Based On Packet Protocol Header Fields Utilized by ACL Rule Set Rules 10	Source Destination Destination Address Address Port
Bit String, based on exemplar, for ACL Rule 1 with string "01001" associated with TCP protocol for sake of example.	01001.XXXXX.XXXXX.XXXXX.11100.10000.11111.01010.10111
Bit String, based on exemplar, for ACL Rule 2 with string "01001" associated with TCP protocol for sake of example.	01001.XXXXX.XXXXX.XXXXX.11100.10000.11111.01010.11100
Bit String, based on exemplar, for ACL Rule 3 with string "1111" associated with UDP protocol for sake of example.	11111.XXXXX.XXXXX.XXXXX.XXXXX.11110.10110.10101.00101.01011
Bit String, based on exemplar, for ACL Rule 4 with string "1111" associated with UDP protocol for sake of example.	11111.XXXXX.XXXXX.XXXXX.11110.10110.10101.XXXXX.XXXXXX
	01001.10111.10101.00111.00000.XXXXX.XXXXX.XXXXX.XXXXX.XXXXX
	01001.XXXXX.XXXXX.XXXXX.11100.10000.11111.01010.XXXXX
	0000000011111111122222222233333333334444444444
however, those skilled in the art will recognize that ordinarily such periods are not counted as	1, the second, 2, the thi
	the eleventh, 1, and the fifty-ninth, 9.

Title: Implementing Access Control Lists Using A Balanced Hash Table of Access Control List Binary Comparison Trees

17/33

											13	133													_
40440.01000.01010.11000.11111.00035.05335.02020.41313.11111 00000.55555.55555.55555.5555.11111.11111111	40440.56555.56565.66555.66666.11146.16446.13131.63535.44444	26226.10111.10101.00111.00000.55520.50220.53535.03131.22222	26226.65666.65656.55666.5555.66631.61331.64645.25353.5555	46446.66666.66666.66666.66666.66646.66446.64645.6555.5555					20226.55555.55555.55555.5555.11131.11331.13131.23333.44444					Number of Unspecified Pointers of Bit Selection Vector = 4 For sake of example,	assume hash table index having a bit length of 4 is specified.		d d dd d	Note: The row columns 1, 3, 34, 39, 41, and 46 of the Larger Total Count" row had the smallest entries	(i.e., the base 10 number "4"), and thus the bit positions associated with row columns 1, 3, 34, 39, 41,	and 46 of the "Larger Total Count" row are designated as potential candidate bits "P."	R RR	Note: The row columns 1, 3, and 4 of the Smaller Total Count row, carresponding with the selected row	columns of the Larger Total Count" row, had the smallest entries (i.e., the base 10 number"2"), and thus the	bit positions associated with row columns 1, 3, and 4 of the "Smaller Total Count" row are redesignated as	
"O" Count in Each Bit Postion: "X" Count in Each Bit Postion:	Total of "0" + " X" Counts:	"1" Count in Each Bit Postion: "Y" Count in Each Rit Doction:	Total of "1" + "X" Counts:	Construct a "Larger Total Count" row having one row entry	corresponding to each bit position in the strings which were	constructed from the ACL rules; fill each row entry with the	larger of either the lotal of 0' + X' Counts' or Total of 1' +	X Counts for the bit position corresponding to that row entry.	Construct a "Smaller Total Count" row having one row entry	corresponding to each bit position in the strings which were	constructed from the ACL rules; fill each row entry with the	smaller of either the "fotal of '0' + 'X' Counts" or Total of 'i' +	'X' Counts" for the bit position corresponding to that row entry.	Set number of unspecified pointers of bit selection vector =	specified bit length of hash table index	Select the row entries in the Larger Total Count Row columns	having the smallest number entries; designate the bit positions	corresponding to the selected row columns as potential, "P,"	candidate columns which might be utilized as the pointers	of the bit selection vector	Since there are more potential, "P," candidate columns than	number of unspecified pointers of bit selection vector, refine	the selection by examining the columns of the Smaller Total		

Example of the Creation of a Bit Selection Vector

Title: Implementing Access Control Lists Using A Balanced
Hash Table of Access Control List Binary Comparison Trees

	18/33	, 	
candidate bits "R".	K KK Note: The number of unspecified pointers of bit selection vector is currently equal to 4, and the number of redesignated potential candidates, "R," is 3, which is less than the number of unspecified pointers of bit selection vector; thus, all "R" potential candidates are specified actual, "K," bit selection vector pointer indication columns, whose corresponding bit positions in the respective fields from which the respective bit strings were constructed will thereafter be pointed at by pointers of the bit selection vector.	Number of unspecified pointers of bit selection vector = number of unspecified pointers of bit selection vector (i.e., 4) — number of specified actual, "K," bit selection vector pointer indication columns, whose corresponding bit positions in the respective fields from which the repective bit strings were constructed will thereafter be pointed at by pointers of the bit selection vector specified in preceding step (i.e., 3) thereafter be pointer left unspecified	*** Note: Row columns 1, 3, and 4 are marked with asterisks to indicate that since these row columns have already been designated as candidates "K," bit selection vector pointer indication columns, whose corresponding bit positions in the respective fields from which the respective bit strings were constructed will thereafter be pointed at by pointers of the bit selection vector.
Count Row, with such examined Smaller Total Count Row columns being those corresponding to the Larger Total Count Row columns designated as potential, "P," candidate columns, redesignate as potential, "R," candidate columns which might be utilized as the pointers of the bit selection vector, those examined Smaller Total Count Row columns with the smallest number entries	Since the number or redesignated potential candidates, "R," is less than the number of unspecified pointers of bit selection vector, designate all redesignated, "R," candidates as actual, "K," bit selection vector Pointer Indication Columns, whose corresponding bit positions in the respective fields from which the respective bit strings were constructed will thereafter be pointed at by pointers of the bit selection vector	Substract the number of specified actual, "K," bit selection vector pointer indication columns, whose corresponding bit positions in the respective fields from which the respective bit strings were constructed will thereafter be pointed at by pointers of the bit selection vector, from number of unspecified pointers of bit selection vector	Since the number of unspecified pointers of bit selection vector is still non-zero, mark specified "K," bit selection vector pointer indication columns, whose corresponding bit positions in the respective fields from which the respective bit strings were constructed will thereafter be pointed at by

Application No.: 09/483,110

First Named Inventor: Faisal Haq
Title: Implementing Access Control Lists Using A Balanced
Hash Table of Access Control List Binary Comparison Trees

9/33
* ** Note: Row columns 1, 3, and 4 are marked with asterisks to indicate that since the bit positions associated with these row columns have already been designated as candidates.
Thereafter, repeat the "select the row entries in the Larger Total Count" Row having smallest number entries " operation above upon the row columns which have not yet been designated as candidate "K," bit selection vector pointer indication columns, whose corresponding bit positions in the respective fields from which the respective bit strings were constructed will thereafter be pointed at by pointers of the bit selection vector

Since there are more candidates, "P," than number of unspecified pointers of bit selection vector (at this point, 3 pointers have been specified as "K," meaning that one additional pointer is necessary to have the pointers required to completely point out the 4 bit hash table index), repeat the refine the selection operation above

R RR RR

Note: Since all entries in the "Smaller Total Count" Row columns, corresponding with the selected row columns of the "Larger Total Count" Row, were the same number (i.e., the base ten number "3"), all P row columns are redesignated as candidates R".

Since after redesignation there are still more candidates
"R" than the number of unspecified pointers of bit
selection vector, all "R," candidates are deemed equally good
choices; consequentially, the number of actual, "K," bit
selection vector pointer indication columns, whose
corresponding bit positions in the respective fields from
which the respective bit strings were constructed will
thereafter be pointed at by pointers of the bit selection
vector necessary to completely point out the hash table
index value (i.e., in the present example, one more
pointer is needed) may be selected at random
from the designated "R" row columns.

K

Note: Select row column 34 at random.

There are now specified actual, "K," bit selection vector pointer indication columns, whose corresponding bit positions in the respective fields from which the respective bit strings were constructed will thereafter be pointed at by pointers of the bit selection vector equal in number to the bit length of the hash table index; consequently, all pointers of the bit selection vector, which will be utilized to point to bit positions used to form a hash table index value which will be used to "key into"

l K KK

Note: These actual, "K," bit selection vector pointer indication columns, whose corresponding bit positions in the respective fields from which the respective bit strings were constructed will thereafter be pointed at by pointers of the bit selection vector indicate that the first, third, and fourth leftmost bit positions within the "protocol ID" field, and the fourth leftmost bit positions within the "destination address" field will be utilized as the hash table index bits.

Application No.: 09/483,110

First Named Inventor: Faisal Haq

Title: Implementing Access Control Lists Using A Balanced

Hash Table of Access Control List Binary Comparison Trees

the hash table, have been fully specified.	
Definition of the bit selection vector (pointer pointer point	Bit Selection Vector = (pointer to first leftmost bit position within the "protocol ID" field; pointer to third leftmost bit position within the "protocol ID" field; pointer to fourth leftmost bit position within the "protocol ID" field; pointer to fourth leftmost bit position within the "destination address" field)

Title: Implementing Access Control Lists Using A Balanced Hash Table of Access Control List Binary Comparison Trees

DEFAULT DENY ESS: Dest. Addr.
 28.16.31.10 match -DEFAULT DENY Example showing the creation of a Binary Comparison Tree for First In Sequence ACL. Rule in Rule Set DEFAULT DENY miss. Protocol = TCP? <u>match</u> -PERMIT TCP ANY HOST 28.16.31.10 EQ 28

Example showing the construction of Balanced Hash Table of ACL. Binary Comparison Trees

Example showing the addition of a Binary Comparison Tree constructed for the first in Sequence Rule in ACL Rule Set into the Hash Table

22/33										
Protocol = 1CP? match —— Dest. Addr. = 28.16.31.10 match —— Dest. Port = 28.16.31.10 miss = 28 match —— PERMIT PACKET miss miss miss miss miss DEFAULT DENY D										
0000	1000	0100	1100	0010	1010	0110	0111	1000	1001	UIUI
Select bit string constructed from first ACL rule in Rule Set, utilizing the contents of those bit positions (1, 3, 4, and 34) pointed at by the Hash-Table-Balancing Bit Selection Vector, enter hash table at entry corresponding to the bits at bit positions serving as hash key index (e.g., bit position 1 contains "0"; bit position 3 contains "0"; bit position 34 contains "0"; and bit position 34 contains "0"; and build binary Comparison Tree indicative of this first selected ACL rule										

FIG. 7D1

Application No.: 09/483,110

First Named Inventor: Faisal Haq

Title: Implementing Access Control Lists Using A Balanced

Hash Table of Access Control List Binary Comparison Trees

|--|

11(11 30 01 10 11

Application No.: 09/483,110

First Named Inventor: Faisal Haq
Title: Implementing Access Control Lists Using A Balanced
Hash Table of Access Control List Binary Comparison Trees

			24/33			
Table of ACL Binary Comparison Trees (cont.) n Tree for Second In Sequence Rule in Rule Set	Protocol = 1CP? $\frac{\text{match}}{\text{match}}$ —— Dest. Addr. = 28.16.31.10 $\frac{\text{match}}{\text{miss}}$ > 23 $\frac{\text{match}}{\text{miss}}$ DEFAULT DENY PACKET	Example Showing the Addition of a Binary Comparison Tree Constructed for the Second In Sequence Rule in ACL Rule Set into the Hash Table	Protocol			
CL Binar Second	Protoc = TCP	structed	0000 0000 0000 0000 0000 0000 0000 0000 0000	9 9 9 9	<u>9</u>	<u> </u>
Example Showing the Construction of Balanced Hash Table of ACL Binary Comparison Trees (cont.) Example Showing the Creation of a Binary Comparison Tree for Second In Sequence Rule in Rule Set	DENY TCP ANY HOST 28.16.31.10 GT 23	Example Showing the Addition of a Binary Comparison Tree Cons	Select bit string constructed from second ACL rule in Rule Set, utilizing the contents of those bit positions (1, 3, 4, and 34) pointed at by the Hash-Table-Balancing Bit Selection Vector, enter hash table at entry corresponding to the bits at bit positions serving as hash key index (e.g., bit position 1 contains "0"; bit position 3 contains "0"; bit position 3 contains "0"; and build binary Comparison Tree indicative of this second selected ACL rule, building on any tree that may already be present for the hash table index.			

Application No.: 09/483,110

First Named Inventor: Faisal Haq
Title: Implementing Access Control Lists Using A Balanced
Hash Table of Access Control List Binary Comparison Trees

1010	1011	1100	101	1110	1111	

Example Showing the Construction of Balanced Hash Table of ACL Binary Comparison Trees (cont.) Example Showing the Creation of a Binary Comparison Tree for Third In Sequence ACL Rule in Rule Set

DENY UDP ANY HOST 30.22.21.5 EQ 11	Protocol
	= UDP? match ———— Dest. Addr.
	miss
	DEFAULT DENY
	DEFAULT DENY
	DEFAULT DENY

Example Showing the Addition of a Binary Comparison Tree Constructed for the Third In Sequence Rule in ACL Rule Set into the Hash Table

26/33					
Dest. Addr. Protocol = 1CP? match					
0000	1000	00100	100	0100	33

FIG 705

Application No.: 09/483,110

First Named Inventor: Faisal Haq

Title: Implementing Access Control Lists Using A Balanced
Hash Table of Access Control List Binary Comparison Trees

27/33

									27/33
									Protocol = UDP? match — Dest. Addr. = 30.22.21.5 match — Dest. Port = 30.22.21.5 match — DENY PACKET miss
0110	0111	1000 0001	1001	1010	1011	1100	1101	1110	IIII
									Select bit string constructed from third ACL rule in Rule Set, utilizing the contents of those bit positions (1, 3, 4, and 34) pointed at by the Hash-Table-Balancing Bit Selection Vector, enter hash table at entry corresponding to the bits at bit positions serving as hash key index (e.g., bit position 1 contains "1"; bit position 3 contains "1"; bit position 3 contains "1" and build binary Comparison Tree indicative of this third selected ACL rule

Title: Implementing Access Control Lists Using A Balanced
Hash Table of Access Control List Binary Comparison Trees

-PERMIT PACKET **DENY PACKET** $- Dest. Port = 28 \frac{match}{}$ Dest. Port > 23 match-Example Showing the Addition of a Binary Comparison Tree Constructed for the Fourth In Sequence Rule in ACL Rule Set into the Hash Table EISS. miss Si → PERMIT PACKETS Dest. Addr.
 30.22.21.X match DEFAULT DENY miss Example Showing the Creation of a Binary Comparison Tree for Fourth In Sequence ACL Rule in Rule Set Example Showing the Construction of Balanced Hash Table of ACL Binary Comparison Trees (cont.) DEFAULT DENY miss | 0000 | Protocol |= TCP? <u>motch</u> -|Protocol | = UDP? <u>match</u> -<u>miss</u> PERMIT UDP ANY HOST 30.22.21.X

FIG. 7D7

Application No.: 09/483,110
First Named Inventor: Faisal Haq
Title: Implementing Access Control Lists Using A Balanced

Hash Table of Access Control List Binary Comparison Trees

20/22

									29/33	
									Protocol = UDP? motch —— Dest. Addr. = 30.22.21.5 match —— Dest. Port = 11 match —— Deny Packet miss	
0110	<u>=</u>	1 00	1001	1010	101	1100	1101	1110	Ħ	
									Select bit string constructed from fourth ACL rule in Rule Set, utilizing the contents of those bit positions (1, 3, 4, and 34) pointed at by the Hash-Table-Balancing Bit Selection Vector, enter hash table at entry corresponding to the bits at bit positions serving as hash key index (e.g., bit position 1 contains "1"; bit position 3 contains "1"; bit position 4 contains "1"; and bit position 34 contains "1") and build binary Comparison Tree indicative of this fourth selected ACL rule, building on any tree that may already be present for the hash table index	

30/33

Example Showing the Construction of Balanced Hash Table of ACL Binary Comparison Trees (cont.)

Example Showing the Creation of a Binary Comparison Tree for Fifth In Sequence ACL Rule in Rule Set

Example Showing the Addition of a Binary Comparison Tree Constructed for the Fifth In Sequence Rule in ACL Rule Set into the Hash Table

Select bit string constructed from fifth ACL rule in Rule Set, utilizing the contents of those bit positions (1, 3, 4, and 34) pointed at by the Hash-Table-Balancing Bit Selection Vector, enter hash table at entry corresponding to the bits at bit positions serving as hash key index (e.g., bit position 1 contains "0"; bit position 3 contains "0"; bit position 4 contains "0"; and bit position 34 contains "X") and build binary Comparison Tree indicative of this fifth selected ACL rule, building on any tree that may already be present for the hash table index; however, since bit at bit position 34 is X, the rule will be appended at both 0000 and 0001, since bit position 34 may be either 0 or 1. In addition, since the rule itself applies to any destination address, the miss branch of all destination branches present must feed back into the source address compare instruction associated with this Fifth Rule.

FIG. 7D9

Application No.: 09/483,110

First Named Inventor: Faisal Haq

Title: Implementing Access Control Lists Using A Balanced

Hash Table of Access Control List Binary Comparison Trees

		31/33
Protocol = TCP? <u>match</u> —— Source Addr. <u>miss</u> = 23.20.7.0 <u>match</u> —— DENY PACKETS <u>miss</u> <u>miss</u> DEFAULT DENY DEFAULT DENY		Protocol = UDP? match —— Dest. Addr. = 30.22.21.5 match —— Dest. Port miss
1000	010000000000000000000000000000000000000	
Select bit string constructed from fifth ACL rule in Rule Set, utilizing the contents of those bit positions (1, 3, 4, and 34) pointed at by the Hash-Table-Balancing Bit Selection Vector, enter hash table at entry corresponding to the bits at bit positions serving as hash key index (e.g., bit position 1 contains "0"; bit position 3 c	bit position 34 contains "X") and build binary Comparison Tree indicative of this fifth selected ACL rule, building on any tree that may already be present for the hash table index; however, since bit at bit position 34 is X, the rule will be appended at both 0000 and 0001, since bit position 34 may be either 0 or 1.	

Title: Implementing Access Control Lists Using A Balanced

Hash Table of Access Control List Binary Comparison Trees

FIG. 7D11

Title: Implementing Access Control Lists Using A Balanced Hash Table of Access Control List Binary Comparison Trees

