ALGEBRE LINEAIRE

T.D. n°3

1. Est-ce que ces vecteurs sont linéairement dépendants (L.D.) ou indépendants (L.I.) ? Si ils sont L.D, donner la combinaison linéaire.

a)
$$\begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ -1 \\ 4 \end{pmatrix}$.b) $\begin{pmatrix} 1 \\ -2 \\ 3 \\ 8 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 5 \\ 3 \\ 2 \\ 1 \end{pmatrix}$.

2. Calculer le rang des matrices suivantes :

$$\begin{pmatrix} 0 & 3 & -2 \\ 1 & 4 & 2 \\ -1 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & -1 & 1 & 2 \\ 3 & 1 & -2 & 0 \\ 1 & 3 & -4 & -4 \end{pmatrix}.$$

- 3. Soit $U \in M_{p \times 1}(R)$. Quel est le rang de la matrice $U.U^T$?
- 4. Calculer le rang de la matrice suivante en fonction de $\lambda \in R$: $\begin{pmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{pmatrix}$.
- 5. Calculer les déterminants suivants : $\begin{vmatrix} 2 & 1 \\ 3 & -2 \end{vmatrix}$, $\begin{vmatrix} 1 & -2 & 3 \\ 2 & 4 & -1 \\ 1 & 5 & -2 \end{vmatrix}$, $\begin{vmatrix} 1 & 2 & 2 & 3 \\ 1 & 0 & -2 & 0 \\ 3 & -1 & 1 & -2 \\ 4 & 2 & 0 & 2 \end{vmatrix}$.
- 6. On appelle déterminant de Van der Monde les déterminants du type

$$D_{3} = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2} \end{vmatrix}, D_{4} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^{2} & b^{2} & c^{2} & d^{2} \\ a^{3} & b^{3} & c^{3} & d^{3} \end{vmatrix}. \text{ Démontrer que } D_{3} = (c-b)(c-a)(b-a) .$$

De la même manière, trouver D_4 Quelle serait la formule pour D_n , $n \in \mathbb{N}^*$?

- 7. Soit $A \in M_{nun}(R)$, et $\alpha \in R^*$. Démontrer que : $\det(\alpha A) = \alpha^n \det(A)$
- 8. Soit A une matrice orthogonale de dimension quelconque. Démontrer que $det(A) = \pm 1$.
- 9. Soit la matrice $A = \begin{bmatrix} 2 & 1 & -3 & 4 \\ 5 & -4 & 7 & -2 \\ 4 & 0 & 6 & -3 \\ 3 & -2 & 5 & 2 \end{bmatrix}$. Trouver le cofacteur de l'élément a_{23} .

 10. Calculer det(A) et A^{co} pour $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. Vérifier le résultat obtenu en calculant
- AA^{co} .

ALGEBRE LINEAIRE

- 12. Soit la matrice $M = \begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{pmatrix}$ où a,b,c,d sont des réels. Calculer MM^T .

Trouver alors le déterminant de M, sans le calculer directement.