

Respuesta de sistema eléctrico de primer orden Análisis de sistemas de control - MR2002B

Alumno

Ricardo Sierra Roa A01709887

Profesor:

Claudia Alejandra Pérez Pinacho Christopher Diego Cruz Ancona Fernando Gómez Salas

Instituto Tecnológico y de Estudios Superiores de Monterrey Campus Queretaro

Fecha de entrega:

20 de agosto de 2024

Índice

Índice	2
Modelo matemático y Función de transferencia	3
Circuito	3
Procedimiento	3
Resultados	5
Sistema con constantes	6
Procedimiento	6
Resultados	6
Amplitud de 6 [V]	7
Función	7
Matlab	7
Código	7
Gráfica y resultado	8
Indique de la gráfica, ¿cuál es el valor final en el voltaje del capacitor?	9
Valores del voltaje del capacitor	10
Código	
Gráfica	11
Conclusiones	12

Modelo matemático y Función de transferencia

Circuito

Procedimiento

$$|V(t)| = V_{R_1} + V_{R_2} + V_{C_1}(t)$$

$$V_{R_1} + R_{S_1}i_{C_1}(t) + V_{C_2}(t)$$

$$R_{I_1}i_{R_1} + R_{S_2}C_1(t) + V_{C_2}(t) + V_{C_2}(t)$$

$$|R_1| = i_{C_1}t_{I_{R_2}}$$

$$|R_2| = V_{R_3} + V_{C_2}(t)$$

$$|R_2| = V_{R_3} + V_{C_2}(t)$$

$$|R_2| = V_{R_3} + \frac{V_{C_2}(t)}{R_2}$$

$$|R_2| = V_{R_3} + \frac{V_{C_2}(t)}{R_2}$$

$$|R_2| = V_{R_3} + \frac{V_{C_2}(t)}{R_2}$$

$$|R_2| = V_{R_3}(t) + \frac{V_{C_2}(t)}{R_2}$$

$$Simplificar \frac{V_{c}(s)}{V(s)} = \frac{1}{(R_{c}s + \frac{R_{c}s_{c}}{R_{c}}s + \frac{R_{c}}{R_{c}} + R_{c}Cs + 1)}$$

$$R_{c}Cs + \frac{R_{c}R_{c}C}{R_{2}}s + \frac{R_{c}}{R_{2}} + R_{c}Cs + 1$$

$$\frac{R_{2}R_{c}Cs}{R_{2}} + \frac{R_{c}R_{c}Cs}{R_{2}} + \frac{R_{c}R_{c}}{R_{2}} + \frac{R_{c}}{R_{2}}$$

$$(\frac{R_{2}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C}{R_{2}})s + \frac{R_{1}s_{c}R_{c}}{R_{2}}$$

$$\frac{(R_{2}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C)}{(R_{c}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C)}s + 1$$

$$\frac{(R_{2}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C)}{(R_{c}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C)}s + 1$$

$$\frac{(R_{2}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C)}{(R_{c}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C)}s + 1$$

$$\frac{V_{C}(s)}{V(s)} = \frac{\frac{R_{2}}{R_{c}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C}}{(R_{c}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C + R_{c}R_{c}C)}s + 1$$

Resultados

- Modelo matemático

$$V(t) = R_{1} \left(C \frac{d}{dt} V_{c}(t) + \frac{R_{3}}{R_{2}} C \frac{d}{dt} V_{c}(t) + \frac{V_{c}(t)}{R_{2}} \right) + R_{3} C \frac{d}{dt} V_{c}(t) + V_{c}(t)$$

- Función de transferencia

$$\frac{V_c(s)}{V(s)} = \frac{\frac{R_2}{R_1 + R_2}}{(\frac{R_2 R_1 C + R_1 R_3 C + R_2 R_3 C}{R_1 + R_2})s + 1}$$

Sistema con constantes

Si $R_1 = R_2 = R_3 = 100 \text{k} \Omega$ y $C = 0.22 \mu\text{F}$, indique el valor de la constante de tiempo (τ), la ganancia del sistema (k) y el polo del sistema (verifique si el sistema es estable).

Procedimiento

Resultados

- Constante de tiempo $\tau = \frac{33}{1000} = 0.033$
- Ganancia del sistema $k = \frac{1}{2}$
- Polo del sistema $s = -33\frac{10}{33} = -\frac{1000}{33}$ (estable)

Amplitud de 6 [V]

Función

$$G(s) = \frac{\frac{1}{2}}{(\frac{33}{1000})s+1}$$
, $u(t) = 6$

Matlab

- Código

```
num = [6*(1/2)];
den = [(33/1000) 1];
sys = tf(num, den)

[y, t] = step(sys);
plot(t, y);
xlabel('Tiempo (s)');
ylabel('Respuesta (V)');
title('Respuesta al escalón');
grid on;

disp('Tiempo (s) Respuesta (V)');
disp([t y]);
```

- Gráfica y resultado

Continuous-time transfer function. Model Properties

Tiempo (s)	Respuesta (V)
0.1656	2.9802
0.1672	2.9811
0.1687	2.9819
0.1702	2.9827
0.1717	2.9835
0.1732	2.9843
0.1748	2.9850
0.1763	2.9856
0.1778	2.9863
0.1793	2.9869
0.1808	2.9875
0.1824	2.9881
0.1839	2.9886
0.1854	2.9891
0.1869	2.9896
0.1884	2.9901
0.1900	2.9905
0.1915	2.9909

Indique de la gráfica, ¿cuál es el valor final en el voltaje del capacitor?

$$G(s) = \frac{\frac{1}{2}}{(\frac{33}{1000})s+1}$$
, $u(t) = 6$

$$\lim_{t \to \infty} = \lim_{s \to 0} G(s) = \frac{6^*(\frac{1}{2})}{(\frac{33}{1000})(0) + 1} = 3$$

Valores del voltaje del capacitor

Código

```
num = [6 * 1/2];
tau = 33 / 1000;
den = [tau 1];
sys = tf(num, den);
[y, t] = step(sys);
plot(t, y);
hold on;
legend labels = {};
for i = 1:5
  tau value = i * tau;
  xline(tau value, '--r');
   [\sim, idx] = min(abs(t - tau value));
  plot(t(idx), y(idx), 'ro', 'MarkerFaceColor', 'r');
  legend_labels{end+1} = sprintf('%d\\tau: (%0.3f seg, %0.3f
Volts)', i, t(idx), y(idx));
  text(t(idx), y(idx), sprintf('\\tau_%d', i), 'VerticalAlignment',
'bottom', 'HorizontalAlignment', 'right');
end
```

```
legend(legend_labels, 'Location', 'southeast');
xlabel('Tiempo (s)');
ylabel('Respuesta (V)');
title('Voltaje del Capacitor');
grid on;
hold off;
```

Gráfica

Conclusiones

El sistema eléctrico de primer orden, representado por un circuito RC, demostró un comportamiento estable, alcanzando un valor final de 3V en la respuesta al escalón, lo cual es coherente con la ganancia del sistema $k=\frac{1}{2}$ y una entrada de 6V. Además, se observó que la constante de tiempo τ , conforme aumenta su valor se acerca al valor final de 3V, tal y como se evidencia en la gráfica anterior, donde podemos observar los distintos valores de voltaje de salida, dependiendo del valor de τ que tengamos.

