

УДК 576.895 : 597.583.1

ПАРАЗИТОФАУНА ОКУНЕВЫХ (PERCIDAE) ВОДОЕМОВ КОЛЬСКОГО РЕГИОНА

© В. К. Митенев, Б. С. Шульман

Приводятся результаты паразитологического исследования 2 видов окуневых рыб (окунь *Perca fluviatilis* и ерш *Gymnocephalus cernuus*), обитающих в водоемах Кольского региона. Представлены данные по зараженности их паразитами. У окуня в 16 водоемах, относящихся к Беломорскому и Баренцевоморскому бассейнам, выявлено 63 вида паразитов (Myxosporea — 3, Pleurostomata — 1, Suctoria — 2, Peritricha — 21, Protozoa incertae sedis — 1, Monogenea — 2, Cestoda — 6, Trematoda — 10, Nemadota — 8, Acanthocephala — 4, Hirudinea — 1, Bivalvia — 1, Crustacea — 3). У ерша в 5 водоемах Беломорского бассейна выявлено 33 вида паразитов (Cyrtostomata — 1, Hymenostomata — 1, Peritricha — 8, Monogenea — 2, Cestoda — 6, Trematoda — 9, Nemadota — 2, Acanthocephala — 2, Bivalvia — 1, Crustacea — 1). Показаны характер распределения паразитов по водоемам данного региона, экологические особенности в системе «паразит—хозяин».

Из семейства окуневых в водоемах Кольского региона обитают окунь *Perca fluviatilis* и ерш *Gymnocephalus cernuus*. Окунь распространен повсеместно кроме Восточного Мурмана. Ерш чаще встречается в некоторых реках и озерах Беломорского бассейна и в Ловозерской системе Баренцевоморского бассейна. Во многих озерах окунь считается многочисленным видом, ерш в некоторых водоемах также встречается в промысловом количестве. Однако в Кольском регионе, где основными промысловыми объектами служат сиги и лососи, окунь и ерш относятся к сорным рыбам, рекомендаемым к максимальному изъятию. Возможно поэтому биология этих рыб слабо изучена. Имеются лишь краткие морфобиологические сведения и некоторые указания по распространению окуня и ерша в регионе (Галкин и др., 1966; Ксензов, 1966). Что касается паразитологического исследования этих рыб, то первые находки некоторых гельминтов у окуня упоминаются в работе Маркевича (1960) и Юнчика (1966). В начале 1970-х годов появляются сведения по гельминтам и паразитам окуня и ерша некоторых водоемов региона (Казаков, 1973; Митенев, 1973). Позднее были проведены исследования паразитофауны окуня р. Пялица (Митенев, 1977), окуня и ерша Серебрянского водохранилища (Митенев и др., 1985), р. Умба (Митенев, Шульман, 1988), Экостровской и Бабинской Имандры (Митенев и др., 1998). Эти и другие сведения по паразитам окуня и ерша (Митенев, 1979, 1993, 1994а, б, 1997; Митенев, Шульман, 1999) носят разобщенный или фрагментарный характер. Более того, к настоящему времени накоплен и идентифицирован большой паразитологический материал по окуню и ершу многих водоемов

Кольского региона. Обобщение его позволит раскрыть некоторые экологические особенности паразитофауны этих рыб в заполярном природном регионе.

МАТЕРИАЛ И МЕТОДИКА

Методом полного паразитологического вскрытия исследовано 885 экз. окуня в водоемах Беломорского (озера Ковдозеро — 60, Имандра — 30, Колвицкое — 15, Умбозеро — 15, реки Умба — 15, Варзуга — 15, Пялица — 15, Поной — 49) и Баренцевоморского (реки Печенга — 15, Печь — 554, Верхнетуломское водохранилище — 60, Нижнетуломское водохранилище — 8, р. Териберка — 3, Серебрянское водохранилище — 15, озера Ловозеро — 15, Сейдозеро — 1) бассейнов, а также 114 экз. ерша, обитающего в 5 водоемах Беломорского (озера Ковдозеро — 15, Имандра — 24, Умбозеро — 15, реки Умба — 15, Варзуга — 15) и в двух водоемах Баренцевоморского (Серебрянское водохранилище — 15, оз. Ловозеро — 15) бассейнов. Сбор и обработка материала проводились по общепринятой методике (Догель, 1933; Быховская-Павловская, 1985) с учетом дополнений по миксоспоридиям (Донец, Шульман, 1973), перитрихам (Штейн, 1961; Банина, 1977), метацеркариям trematod (Шигин, 1986; Судариков и др., 2002). В анализе паразитофауны окуня и ерша приводятся экстенсивность инвазии (доля зараженных особей в процентах от общего числа исследованных рыб) и индекс обилия или средняя численность паразитов в исследованных водоемах (Бреев, 1972).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Паразитофауна окуня представлена 63 видами. Среди них Мухоспorea — 3, Pleurostomata — 1, Suctoria — 2, Peritricha — 21, Protozoa incertae sedis — 1, Monogenea — 2, Cestoda — 6, Trematoda — 10, Nematoda — 8, Acanthocephala — 4, Hirudinea — 1, Bivalvia — 1, Crustacea — 3 (табл. 1). Несмотря на видовое разнообразие, абсолютное большинство паразитов, обнаруженных у окуня, оказались редкими находками.

Из 3 видов слизистых споровиков только широкоспецифичный для семейства окуневых рыб *Henneguya creplini* отмечен в большинстве водоемов. К числу случайных находок можно отнести карпового паразита *Zschokkella nova*, обнаруженного у окуня в оз. Ковдозеро. Весьма редким для водоемов Европейского Севера является обнаруженный у окуня в р. Умба *Muxobolus giuyenoti*. Ранее этот паразит был известен у окуня и бычка-подкаменщика в р. Преголь и Женевском оз. (из: Донец, Шульман, 1984).

Среди инфузорий абсолютное большинство составляют перитрихи (21 вид). Почти все они относятся к эврибионтным широкоспецифичным видам, паразитирующими на рыбах различных семейств и отрядов. У окуня в водоемах Кольского региона эта группа паразитов не получила широкого распространения и экстенсивность инвазии рыбы в большинстве случаев незначительна. И только специфичный окуневой паразит *Trichodina urinaria* отмечен у окуня почти повсеместно (табл. 1). Единичную находку у окуня *Hemiphrys branchiarum* из класса Pleurostomata можно считать случайной. Также редким исключением для окуня оказалась находка *Erastophrya chattoni* из класса Suctoria, и лишь *Capriniana piscium* (из этого же класса) была обна-

Таблица 1

Паразитофауна окуня водоемов Кольского региона
Table 1. Parasite fauna of perch in the waterbodies of Kola Region

Паразиты	Беломорский бассейн							Баренцевоморской бассейн								
	оз. Ковдозеро	оз. Имандря	оз. Колвицкое	оз. Умбозеро	р. Умба	р. Варзуга	р. Пялица	р. Поной	р. Печenga	р. Печа	Верхнетулумское водороганилище	Нижнетулумское водороганилище	р. Териберка	Серебрянское водороганилище	оз. Ловозеро	оз. Сейдозеро
<i>Zschokkella nova</i>	4.9*															
<i>Myxobolus guyenoti</i>																
<i>Henneguya creplini</i>	66.6		6.6	40.0	6.6									20.0	26.6	
<i>Hemiphryys branchiarum</i>														6.6		
<i>Erastophrya chattoni</i>	2.5															
<i>Capriniana piscium</i>		6.6		26.6										46.6		
<i>Scyphidia</i> sp.	2.5	3.3														
<i>Epistylis lwoffii</i>	15.0			6.6	6.6											
<i>Apiosoma conicum</i>	27.5	3.3		13.3	13.3									13.3		
<i>A. campanulatum typica</i>	30.0	10.0												60.0	13.3	
<i>A. amoebae typica</i>		3.3												6.6	6.6	

Таблица 1 (продолжение)

Паразиты	Беломорский бассейн							Баренцевоморской бассейн							
	оз. Ковдозеро	оз. Иманпра	оз. Колвицкос	оз. Умбозеро	р. Умба	р. Варзуга	р. Пялица	р. Поной	р. Печenga	р. Печа	Верхнетуломское водохранилище	Нижнетуломское водохранилище	р. Териберка	Серебрянское водохранилище	оз. Ловозеро
<i>Aplosoma peculifforme</i>															
<i>A constrictum</i>	5.0 +				6.6 +					22.4 +					
<i>A. robustum</i>	15.0 +	10.0 +		33.3 +	6.6 +								1 из 3 +		
<i>A. piscicolum typica</i>	22.5 +													6.6 +	
<i>A. phoxini</i>															
<i>A. baueri</i>	22.5 +	6.6 +	13.3 +		13.3 +	66.6 +		10.2 +		2.1 +	25.0 +			13.3 +	
<i>A. incertum</i>				26.6 +						1.1 +					
<i>A. minimicronucleatum</i>	10.0 +	3.3 +			6.6 +					2.1 +	18.3 +			73.3 +	6.6 +
<i>A. megamicronucleatum</i>	2.5 +										8.3 +				
<i>Trichodina esocis</i>	2.5 +									0.2 +				13.3 +	
<i>T. pediculus</i>										8.3 +	6.6 +	6 из 8 +			
<i>T. urinaria</i>	46.6 +	13.3 +	40.0 +	6.6 +	6.6 +	26.6 +	6.6 +	32.6 +	33.3 +	36.8 +	15.0 +		1 из 3 +	46.6 +	46.6 +

<i>T. acuta</i>														
<i>T. domerguei domerguei</i>	<u>2.5</u> +													
<i>Trichodinella epizootica</i>														
<i>T. percarum</i>		<u>20.0</u> +												
<i>Dermocystidium percae</i>	<u>10.0</u> +		<u>13.3</u> +											
<i>Ancyrocephalus percae</i>	<u>23.3</u> 0.3	<u>3.3</u> 0.06	<u>6.6</u> 0.7											
<i>Gyrodactylus luciopercae</i>	<u>9.7</u> 0.2													
<i>Triaenophorus nodulosus</i> ad.														
<i>T. nodulosus</i> pl.	<u>1.7</u> 0.02	<u>10.1</u> 0.1												
<i>Eubothrium</i> sp. pl.														
<i>Diphyllobothrium latum</i>	<u>6.4</u> 0.07													
<i>Cyathocephalus truncatus</i>	<u>1.6</u> 0.02		<u>66.6</u> 5.9		<u>6.6</u> 0.07									
<i>Proteocephalus percae</i>	<u>1.6</u> 0.02	<u>46.6</u> 3.0	<u>20.0</u> 1.3	<u>73.3</u> 11.1	<u>40.0</u> 1.0									
<i>Proteocephalus</i> sp.														
<i>Bunodera luciopercae</i>	<u>16.6</u> 3.6	<u>13.3</u> 0.4	<u>46.6</u> 2.5	<u>13.3</u> 0.4	<u>33.3</u> 7.4	<u>60.0</u> 4.1	<u>60.0</u> 24.8	<u>34.7</u> 6.1						
<i>Azygia lucii</i>	<u>3.3</u> 0.1		<u>6.6</u> 0.1	<u>20.0</u> 0.9		<u>20.0</u> 0.2	<u>26.6</u> 1.5	<u>2.0</u> 0.02						
<i>A. mirabilis</i>														

Таблица 1 (продолжение)

Паразиты	Беломорский бассейн						Баренцевоморской бассейн									
	оз. Ковдозеро	оз. Имандря	оз. Колвицкое	оз. Умбозеро	р. Умба	р. Варзуга	р. Пялиша	р. Поной	р. Печенга	р. Печка	Верхнетуломское водохранилище	Нижнетуломское водохранилище	р. Териберка	Серебрянское водохранилище	оз. Ловозеро	оз. Сейдозеро
<i>Allocreadium transversale</i>																
<i>Diplostomum rutili</i>	36.6 0.8	20.0 0.3	6.6 0.07	73.3 3.9	26.6 0.9					4.1 0.4	6.6 0.07			40.0 1.1		
<i>D. gasterostei</i>	17.1 0.9	96.6 31.2	100 62.3	100 25.5	93.3 15.1									13.3 0.7	100 34.1	
<i>D. volvens</i>	2.4 0.02															
<i>Tylodelphys clavata</i>	2.4 0.02	33.3 1.3														
<i>Ichthyocotylurus variegatus</i>	93.5 15.9	100 72.9	93.3 26.9	93.3 35.1	66.6 23.7	40.0 3.7	77.5 53.8	93.3 3.3	99.6 126.0	15.0 6.4	8 из 8 70.5				93.3 22.4	
<i>Apatemon annuligerum</i>	43.3 0.9	13.3 0.2	20.0 0.3	40.0 0.7							3 из 8 1.1				6.6 0.07	
<i>Eustrongylides excisus</i>			6.6 0.07							6.5 0.08						
<i>Rhabdochona denudata</i>	3.3 0.03									0.2 0.002						
<i>Cystidicoloides tenuissima</i>					6.6 0.1		6.1 0.1									
<i>Desmidocercella numidica</i>	14.6 0.1		6.6 0.2							0.2 0.002						

<i>Camallanus lacustris</i>	56.1 1.7	33.3 1.2	80.0 9.4	26.6 0.5	93.3 4.6	26.6 0.8	100 18.5	4.1 0.1	48.7 1.7	36.6 0.9	1 из 8 0.1	6.6 0.1	20.0 1.2
<i>C. truncatus</i>												6.6 0.1	
<i>Haplonema hamulatum</i>								2.0 0.04					
<i>Raphidascaris acus</i> ad.					13.3 0.1	20.0 0.2	3.1 0.4	8.2 0.2		5.0 0.1			
<i>R. acus</i> l.	3.3 0.03		6.6 0.07		20.0 0.2	40.0 0.7	24.5 6.7	26.6 0.4	2.5 0.1	3.3 0.07	1 из 3 0.3	13.3 0.3	20.0 0.5
<i>Neoechinorhynchus rutili</i>	12.2 0.3	3.3 0.1			6.6 0.07	33.3 0.8	40.0 2.5	14.3 0.3	39.3 2.0	20.0 0.7			6.6 0.2
<i>Pseudoechinorhynchus borealis</i>								2.0 0.1	20.0 0.2				
<i>Metechinorhynchus salmonis</i>	39.0 1.9	20.0 0.7	53.3 5.9	6.6 0.1					0.2 0.04				
<i>Acanthocephalus lucii</i>	20.3 3.3												
<i>Piscicola geometra</i>	6.6 0.06								0.9 0.01				
<i>Unionidae</i> gen. sp.					6.6 0.7								
<i>Ergasilus sieboldi</i>						6.6 0.07		6.1 0.1					
<i>Achtheres percarum</i>	21.9 0.3	6.6 0.03	73.3 3.7	80.0 5.5	53.3 1.6	13.3 0.1	33.3 1.3		58.1 3.0	20.0 0.7	1 из 3 0.3	33.3 0.9	33.3 2.4
<i>Argulus foliaceus</i>	2.4 0.02								0.9 0.01			1 из 1 0.6	

Примечание. Здесь и в табл. 2: * — над чертой — экстенсивность инвазии, % от 15 и более исследованных рыб; под чертой — индекс обилия. *Ancyrocephalus percae*, *Camallanus lacustris* в оз. Сейдозеро обнаружены Б. Е. Казаковым (1973).

ружена в 5 водоемах региона (табл. 1). Из простейших неопределенного положения специфичный паразит *Dermocystidium percae* выявлен только в 4 водоемах. Экстенсивность инвазии была незначительной.

Из 2 видов моногеней специфичный для окуня *Ancyrocephalus percae* отмечен лишь в 7 водоемах из 16 исследованных. Зараженность окуня этим паразитом была относительно выше в водоемах Беломорского бассейна. Специфичный для семейства окуневых рыб *Gyrodactylus luciopercae* оказался весьма редким видом для Кольского региона и был обнаружен у окуня только в оз. Ковдозеро.

Из цестод обнаружены плероцеркоиды *Triaenophorus nodulosus*, *Eubothrium* sp., а также *Diphyllobothrium latum* и специфичный для семейства окуневых *Proteocephalus percae*. Эти находки свидетельствуют о значительном присутствии в рационе окуня копеподной группы зоопланктона. Особенно это проявляется на примере высокой инвазии рыбы *P. percae* в озерах Умбозеро, Имандра и Серебрянском водохранилище. Однако не является исключением для окуня и хищничество. На это указывают неоднократно обнаруженные у него кишечные формы *T. nodulosus*. Окунь также активно использует в питании амфипод, которые являются промежуточными хозяевами *Cyathocephalus truncatus*, который отмечен в большинстве исследованных водоемов (табл. 1).

Из 10 видов трематод 6 представлены метацеркариями родов *Diplostomum*, *Tylodelphys*, *Ichthyocotylurus*, *Apatemon*, которые приобретаются рыбой в результате активного проникновения церкарий через покровы. Среди них наиболее широко распространенным в регионе и при весьма высокой зараженности окуня является *I. variegatus*. 2 вида рода *Azygia* попадают в рыбу путем заглатывания свободно плавающих церкарий. Из них *A. mirabilis* является редким. Редкой оказалась и находка в р. Поной *Allocreadium transversale*, которым окунь мог заразиться при поедании ручейников или поденок, служащих вторыми промежуточными хозяевами этой трематоды. И только широкоспецифичный окуневой паразит *Bunodera luceopercae*, инвазирующий рыбу через ветвистоусых раков, получил наиболее широкое распространение у окуня в водоемах Кольского региона (табл. 1).

Наиболее пеструю картину заражения окуня дают нематоды. Из 8 видов только *Camallanus lacustris*, инвазирующий окуня при питании копеподной группой зоопланктона, и личинки *Raphidascaris acus*, попадающие в рыб при использовании в пищу бентосных личинок различных насекомых, представлены почти повсеместно. Однако обнаружение у окуня в ряде водоемов кишечной формы *R. acus* (аналогично кишечной форме цестоды *T. nodulosus*) свидетельствует о его хищничестве. Остальные нематоды оказались весьма редкими паразитами окуня.

Встречающийся у окуня чаще других скребней *Neoechinorhynchus rutuli* указывает на присутствие в его рационе ракушковых раков. Другие 2 вида скребней *Pseudoechinorhyncus borealis* и *Metechinorhynchus salmonis* приобретаются окунем при питании амфиподной группой бентоса. Высокая зараженность окуня *M. salmonis* (индекс обилия 5.9) в оз. Колвицкое не исключает присутствия в его рационе рыбы, в частности корюшки. Зараженность *M. salmonis* в этом водоеме достигает 60 % (Митенев, Шульман, 1999). Обнаружение у окуня *Acanthocephalus lucii* в оз. Ковдозеро является результатом использования в пищу рыбой водяного ослика — промежуточного хозяина данного скребня.

Пиявка *Piscicola geometra* и глохидии неопределенного вида — весьма редкие для окуня паразиты. Из 3 видов паразитических раков, обнаружен-

ных у окуня, почти повсеместно распространенным по водоемам Кольского региона паразитом является широкоспецифичный для окунеобразных рыб *Achtherers percsrum*. Другие виды (*Ergasilus sieboldi* и *Argulus foliaceus*) встречаются у окуня очень редко (табл. 1).

Паразитофауна ёрша в отличие от таковой окуня значительно обеднена и представлена 33 видами, относящимися к 10 классам: Cyrtostomata — 1, Hymenostomata — 1, Peritricha — 8, Monogenea — 2, Cestoda — 6, Trematoda — 9, Nematoda — 2, Acanthocephala — 2, Bivalvia — 1, Crustacea — 1 (табл. 2). Как видно из таблицы, абсолютное большинство видов паразитов, обнаруженных у ёрша, оказались редкими находками в водоемах Кольского региона.

Таблица 2
Паразитофауна ёрша водоемов Кольского региона
Table 2. Parasite fauna of ruff in the waterbodies of Kola Region

Паразиты	Беломорский бассейн					Баренцевоморской бассейн	
	оз. Ковдозеро	оз. Имандра	оз. Умбозеро	р. Умба	р. Варауга	Серебрянское водохранилище	оз. Ловозеро
<i>Chilodonella piscicola</i>				<u>13.3*</u> +			
<i>Ichthyophthirius multifiliis</i>		<u>6.6</u> +					
<i>Epistylis lwoffii</i>				<u>6.6</u> +			
<i>Apiosoma conicum</i>			<u>6.6</u> +	<u>13.3</u> +			
<i>A. campanulatum typica</i>		<u>4.2</u> +					
<i>A. amoebae typica</i>							<u>6.6</u> +
<i>A. piscicolum typica</i>			<u>13.3</u> +			<u>6.6</u> +	
<i>A. baueri</i>		<u>3.3</u> +		<u>6.6</u> +			
<i>A. minimicronucleatum</i>				<u>6.6</u> +			
<i>Trichodinella subtilis</i>	<u>13.3</u> +	<u>43.3</u> +	<u>80.0</u> +	<u>93.3</u> +	<u>20.0</u> +	<u>100</u> +	<u>100</u> +
<i>Dactylogyrus amphibothrium</i>	<u>6.6</u> 0.1	<u>50.0</u> 6.2	<u>100</u> 65.7	<u>60.0</u> 5.3	<u>40.0</u> 6.3	<u>40.0</u> 7.3	<u>80.0</u> 12.4
<i>D. hemiamphibothrium</i>	<u>6.6</u> 0.1	<u>4.2</u> 0.04	<u>13.3</u> 0.1	<u>40.0</u> 1.0			<u>33.3</u> 1.1
<i>Triaenophorus nodulosus</i> pl.		<u>83.3</u> 4.7	<u>80.0</u> 2.4		<u>66.6</u> 1.5		<u>46.6</u> 0.7

Таблица 2 (продолжение)

Паразиты	Беломорский бассейн					Баренцевоморской бассейн	
	оз. Ковзозеро	оз. Имандра	оз. Умбозеро	р. Умба	р. Варуга	Серебрянское водоражнище	оз. Ловозеро
<i>Eubothrium</i> sp.							13.3 0.2
<i>Diphyllobothrium dendriticum</i>				6.6 0.07			6.6 0.07
<i>Cyathocephalus truncatus</i>	30.0 0.5			13.3 0.1			
<i>Proteocephalus cernuae</i>	33.3 3.5				13.3 0.1		
<i>Proteocephalus</i> sp.			20.0 2.6	66.0 0.2			
<i>Bunodera luciopercae</i>	13.3 0.2			26.6 5.0	40.0 2.1	13.3 0.9	
<i>Phyllodistomum simile</i>				53.3 1.1			
<i>Ph. folium</i>			73.3 16.9		60.0 5.1	20.0 0.3	46.6 1.1
<i>Azygia lucii</i>			66.6 4.3				
<i>Diplostomum rutili</i>	46.6 2.8	100 6.7	93.3 12.0	6.6 0.07	33.3 1.1	100 18.5	
<i>D. gasterostei</i>	13.3 0.8	100 234.2	100 211.1	73.3 13.3		13.3 0.6	100 113.7
<i>Tylocephalys clavata</i>	6.6 0.1		20.0 2.2				6.6 0.2
<i>Ichthyocotylurus variegatus</i>			100 59.7	93.3 12.7	100 11.3		
<i>Apatemon annuligerum</i>			13.3 0.2				
<i>Camallanus lacustris</i>				26.6 0.3			
<i>Raphidascaris acus</i> ad.				26.6 2.3	66.6 10.2	60.0 4.3	
<i>R. acus</i> L.	46.6 1.3	100 32.9	100 11.7	100 5.8	80.0 10.6	100 31.3	
<i>Neoechinorhynchus rutili</i>				6.6 0.07			
<i>Metechinorhynchus salmonis</i>	24.9 0.4						
<i>Unionidae</i> gen. sp.				93.3 52.5			
<i>Argulus foliaceus</i>	8.3 0.01						

Ярким примером служит весьма редкая встречаемость у ерша паразитических простейших. У него совсем не обнаружены слизистые споровики. Среди инфузорий хотя и отмечено 10 видов, но почти все они у ерша представлены единичными находками в тех или иных водоемах. И только перитриха *Trichodinella subtilis* обнаружена во всех водоемах, в которых обитает ерш. В ряде водоемов зараженность рыбы достигает 100 % (табл. 2). Следует отметить, что *Trichodinella subtilis* — эврибионтный широкоспецифичный вид, паразитирующий на рыбах различных семейств и даже отрядов и получивший широкое распространение в Голарктике (Штейн, 1984). Однако в водоемах Кольского региона встречается главным образом у ерша, и только однажды был отмечен у щуки в р. Поной (Митенев, 1998; Митенев, Шульман, 1999).

Из двух видов специфичных для ерша моногеней доминирующими являются *Dactylogyrus amphibothrium*. Он отмечен у ерша во всех водоемах, и в таких озерах, как Умбозеро и Ловозеро зараженность рыбы достигает 100 и 80 % при индексе обилия 65.7 и 12.4 соответственно (табл. 2).

Среди цестод специфичным для ерша является *Proteocephalus cernuae*, которого он приобретает при питании копеподами. Но встречен этот паразит только в оз. Имандра и в р. Варзуга. Тем не менее нередко встречающиеся у ерша при высоких показателях зараженности *Triaenophorus nodulosus*, а также более редкие *Eubothrium* sp., *Diphyllobothrium dendriticum* и *Proteocephalus* sp. указывают на значительное присутствие в рационе ерша копеподной группы зоопланктона, в составе которой есть промежуточные хозяева этих паразитов. И только *Cyathocephalus truncatus*, обнаруженный в оз. Имандра и в р. Умба, свидетельствует об использовании ершом в пищу бокоплавов, промежуточных хозяев этого паразита.

Абсолютным большинством трематод ерш заражается помимо питания. Лишь *Bunodera luciopercae*, обнаруженная у ерша в ряде водоемов, приобретается им при употреблении в пищу ветвистоусых раков. Трематодами рода *Phyllodistomum* рыбы инвазируются при заглатывании дочерних споропластов с метацеркариями, а *Azygia lucii* — церкарий (Шульц, Гвоздев, 1972). Трематоды родов *Diplostomum*, *Tylodelphys*, *Ichthyocotylurus* и *Apatemon* инвазируют рыбу в результате активного проникновения в ее тело свободноплавающих церкарий. Наиболее часто в водоемах региона у ерша встречаются представители рода *Diplostomum*. Метацеркарии *I. variegatus* обнаружены только в оз. Умбозеро и реках Умба и Варзуга при зараженности рыбы до 100 %. Остальные виды встречаются у ерша реже и в незначительных количествах (табл. 2).

Из двух видов нематод основным для ерша является *Raphidascaris acus*. Личиночные формы этого паразита обнаружены у ерша при довольно высокой зараженности почти повсеместно, за исключением оз. Ковдозеро. Основными источниками инвазии личинками этого паразита служат бентосные личинки насекомых. Обнаруженные у ерша в ряде водоемов кишечные формы *R. acus* указывают на его хищничество. Отмеченный только в р. Умба *Camallanus lacustris* был приобретен ершом через копеподную группу зоопланктона.

Скребни у ерша редки. О наличии в рационе ершей остракод свидетельствует находка *Neoechinorhynchus rutili*, а при питании бокоплавами рыбы заражаются скребнем *Metechinorhynchus salmonis*. Оба вида скребней были обнаружены у ерша только в р. Умба и оз. Имандра.

Глохидиами ерш был сильно инвазирован в р. Умба. Рачок *Argulus foliaceus* дважды был отмечен в оз. Имандра.

В заключение следует отметить, что, несмотря на большое таксономичное разнообразие паразитов как у окуня, так и у ерша, абсолютное большинство их встречается в водоемах Кольского региона эпизодически или в незначительном количестве. У окуня лишь специфичные для него *Henneguya creplini*, *Trichodina urinaria*, *Proteocephalus percae*, *Bunoderia luciopercae*, *Achtheres percarum*, а также эврибионтные широкоспецифичные *Cyathocephalus truncatus*, *Azygia lucii*, *Tylodelphys clavata*, *Ichthyocotylurus variegatus*, *Camallanus lacustris*, *Raphidascaris acus*, *Neoechinorhynchus rutili* являются основными паразитами, отражающими экологическое состояние окуня в водных биоценозах Кольского региона. Потенциально опасными для окуня могут быть плероцеркоиды *Triaenophorus nodulosus*, но этот вид у окуня в регионе встречается относительно редко. Заметных патологических изменений печени и других внутренних органов не отмечено. Доминирующими паразитами у ерша являются специфичные для него 2 вида моногеней рода *Dactylogyrus*, а также широкоспецифичные *Trichodinella subtilis*, *Phyllodistomum folium*, *Diplostomum rutili*, *D. gasterostei*, *Raphidascaris acus*. Высокая зараженность рыб плероцеркоидами *Triaenophorus nodulosus* в озерах Имандра, Ловозеро, р. Умба и Серебрянском водохранилище свидетельствует о значительной роли ерша как второго промежуточного хозяина в увеличении численности *T. nodulosus* в этих водоемах.

Список литературы

- Банина Н. Н. Систематика инфузорий рода *Apilosoma* // Изв. ГосНИОРХ. 1977. Т. 119. С. 81–100.
- Бреев К. А. Применение негативного биноминального распределения для изучения популяционной экологии паразитов. Методы паразитологических исследований. Л.: Наука, 1972. Вып. 6. 70 с.
- Быховская-Павловская И. Е. Паразиты рыб. Руководство по изучению. Л.: Наука, 1985. 120 с.
- Галкин Г. Г., Колюшев А. И., Покровский В. В. Ихиофауна водохранилищ и озер Мурманской области // Рыбы Мурманской обл. Мурманск, 1966. С. 177–193.
- Догель В. А. Проблемы исследования паразитофауны рыб. Методика и проблематика ихтиопаразитологических исследований // Тр. Ленингр. общ-ва естествоисп. 1933. Т. 62, вып. 3. С. 247–268.
- Донец З. С., Шульман С. С. О методах исследования Мухоспоридия (Protozoa, Cnidosporidia) // Паразитология. 1973. Т. 7, вып. 2. С. 191–193.
- Донец З. С., Шульман С. С. Тип кнайдоспоридии // Определитель паразитов пресноводных рыб фауны СССР. Т. 1. Паразитические простейшие. Л.: Наука, 1984. С. 88–251.
- Казаков Б. Е. Гельминтофауна рыб пресных вод Кольского полуострова // Тр. Гельминтол. лаб. АН СССР. М.: Наука, 1973. Т. 23. С. 64–70.
- Ксензов Н. А. Ихиофауна и рыбохозяйственная характеристика Ловозера // Рыбы Мурманской обл. Мурманск, 1966. С. 213–238.
- Маркевич А. П. Материалы по фауне паразитов рыб Мурманской области // Тр. 3-й науч. конф. паразитологов УССР. Киев, 1960. С. 402–407.
- Митенев В. К. Паразитофауна рыб пресноводных водоемов Кольского полуострова: Автореф. дис. ... канд. биол. наук. Л., 1973. 23 с.
- Митенев В. К. Паразитофауна рыб р. Пялица // Тр. ПИНРО. 1977. Т. 32. С. 59–76.
- Митенев В. К. Эколо-географические особенности паразитофауны рыб Кольского полуострова // Болезни и паразиты рыб Ледовитоморской провинции (в пределах СССР). Томск, 1979. С. 119–132.
- Митенев В. К. Ленточные черви (Cestoda Rudolphi, 1808) рыб Кольской Субарктики // Паразитол. исслед. рыб Северного бассейна: Сб. науч. тр. ПИНРО. Мурманск, 1993. С. 83–97.

- Митенев В. К. Трематоды (Trematoda Rudolphi, 1808) Кольской Субарктики // Заполярная марикультура: Сб. науч. тр. ПИНРО. Мурманск, 1994а. С. 170—188.
- Митенев В. К. Нематоды (Nematoda Rudolphi, 1808) и скребни (Acanthocephala Rudolphi, 1808) рыб Кольской Субарктики // Там же. Мурманск, 1994б. С. 189—204.
- Митенев В. К. Паразиты пресноводных рыб Кольского Севера. Мурманск: Изд-во ПИНРО, 1997. 199 с.
- Митенев В. К. Паразитические инфузории (Ciliophora Doflein, 1901) пресноводных рыб Кольского Севера // Паразиты и болезни морских и пресноводных рыб Северного бассейна: Сб. науч. тр. ПИНРО. Мурманск, 1998. С. 50—66.
- Митенев В. К., Шульман Б. С. Эколого-фаунистический анализ паразитов рыб реки Умба // Эколого-популяционный анализ паразито-хозяинных отношений. Петрозаводск, 1988. С. 3—20.
- Митенев В. К., Шульман Б. С. Паразиты рыб водоемов Мурманской области: Систематический каталог. Мурманск: Изд-во ПИНРО, 1999. 70 с.
- Митенев В. К., Шульман Б. С., Кузьмин О. Г. Паразитофауна рыб Серебрянского водохранилища // Рыбохозяйственные исследования Верхнетуломского и Серебрянского водохранилища Мурманской обл.: Сб. науч. тр. ПИНРО. Мурманск, 1985. С. 126—141.
- Митенев В. К., Шульман Б. С., Карасев А. Б., Кузьмин О. Г. Паразиты рыб Экостровской и Бабинской Имандры // Паразиты и болезни морских и пресноводных рыб Северного бассейна: Сб. науч. тр. ПИНРО. Мурманск, 1998. С. 67—87.
- Судариков В. Е., Шигин А. А., Курочкин Ю. В., Ломакин В. В., Стенько Р. П., Юрлова Н. И. Метацеркарии трематод — паразиты пресноводных гидробионтов Центральной России. Сер. «Метацеркарии трематод — паразиты гидробионтов России». М.: Наука, 2002. Т. 1. 298 с.
- Сурков С. С. Общая характеристика особенностей видового состава ихтиофауны Мурманской области // Рыбы Мурманской обл. Мурманск, 1966. С. 147—151.
- Шигин А. А. Трематоды фауны СССР. М.: Наука, 1986. 253 с.
- Штейн Г. А. К систематике Urceolariidae (Infusoria, Peritrichia) // Зоол. журн. 1961. Т. 40, вып. 8. С. 1137—1142.
- Штейн Г. А. Тип ресничные. Подотряд Mobilina // Определитель паразитов пресноводных рыб фауны СССР. Т. 1. Паразитические простейшие. Л.: Наука, 1984. С. 321—381.
- Шульц Р. С., Гвоздев Е. В. Основы общей гельминтологии. М.: Наука, 1972. Т. 2. 515 с.
- Юнчис О. Н. Паразитофауна рыб Ковдозерского водохранилища и Имандры // Рыбы Мурманской обл. Мурманск, 1966. С. 130—134.

Полярный научно-исследовательский институт
морского рыбного хозяйства и океанографии,
Мурманск,
Институт биологии Карельского НЦ РАН,
Петрозаводск

Поступила 28 IV 2005

PARASITE FAUNA OF THE PERCH FISHES PERCIDAE IN WATERBODIES OF THE KOLA REGION

V. K. Mitenev, B. S. Shulman

Key words: fish parasites, *Perca fluviatilis*, *Gymnocephalus cernuus*, perch fishes, Kola Region.

SUMMARY

Results of the parasitological investigation of two species of perch fishes (perch *Perca fluviatilis* and ruff *Gymnocephalus cernuus*) from Kola Region are given. 63 species of parasites were found on perch in 16 waterbodies belonging to the White Sea and Barents Sea

basins (Myxosporea — 3, Pleurostomata — 1, Suctoria — 2, Peritricha — 21, Protozoa incertae sedis — 1, Monogenea — 2, Cestoda — 6, Trematoda — 10, Nemadota — 8, Acanthocephala — 4, Hirudinea — 1, Bivalvia — 1, Crustacea — 3). 33 species of parasites were found on ruff in 5 waterbodies belonging to the White Sea basin (Cyrtostomata — 1, Hymenostomata — 1, Peritricha — 8, Monogenea — 2, Cestoda — 6, Trematoda — 9, Nematoda — 2, Acanthospehala — 2, Bivalvia — 1, Crustacea — 1). Data on the infestation of perch and ruff by different parasite species are obtained, occurrence of the parasites in the examined waterbodies is shown.
