

ADF

Smart Contract Security Audit

V1.0

No. 202305101830

Contents

Summary of Audit Results		1
1 Overview		3
1.1 Project Overview	199 BEOSIN	3
1.2 Audit Overview		
2 Findings		4
[ADF-1] The risk of centralized coin issuance	<u> </u>	5
[ADF-2] An unused constant parameter		6
3 Appendix		
3.1 Vulnerability Assessment Metrics and Status in Smar	t Contracts	7
3.2 Audit Categories		9
3.3 Disclaimer		11
3.4 About Beosin	(PALEEOSIN (P)	12

Summary of Audit Results

After auditing, 1 Medium and 1 Info risk items were identified in the ADF project. Specific audit details will be presented in the Findings section. Users should pay attention to the following aspects when interacting with this project:

*Notes:

• Risk Description:

1. Contracts can mint tokens using the admin role to add a new mint role. But the project side said they would not use this way to mint.

• Project Description:

1. Basic Token Information

Token name	Art De Finance Token
Token symbol	ADF
Decimals	18
Pre-mint	1 billion
Total supply	1 billion
Token type	ERC-20

Table 1 ADF Token info

2. Business overview

This audit includes two parts, one is the ERC20 token contract, and the other is the multi-wallet contract.

ADF Token implements standard ERC20 contracts and has minting, burnable, pause, signature-authorized transfers, and role management function. The contract designs three roles: admin role, pause role and minter role. The admin role has the highest authority and can grant or revoke the admin role to a user. The pause role has the right to pause/un pause the contract. When the pause function is enabled, the contract cannot be transferred, minted or burned. The mint role can mint tokens. When the token contract starts, 1 billion tokens are minted to the admin role, grant the deployer to the contract pause role and grant the multi-signer to the mint role. Users can also renounce their own personas. Users can burn their own tokens or authorize the burn of tokens.

Multi signer contract belongs to the Gnosis type of multi signer contract. The function is that anyone can add the transaction, which is confirmed by the wallet owner. When the confirmed quantity meets the requirement, the transaction can be executed. At the beginning of multi signer contracts, set the owner of the wallet and the number of transaction confirmations.

1 Overview

1.1 Project Overview

Project Name	ADF
Platform	Polygon Blackchain Security
Contract Address	0x6BD10299f4f1d31b3489Dc369eA958712d27c81b 0xba78d7b25098759230cd8421d45253427cbac231

1.2 Audit Overview

Audit work duration: May 9, 2023 - May 10, 2023

Audit methods: Formal Verification, Static Analysis, Typical Case Testing and Manual Review.

Audit team: Beosin Security Team.

2 Findings

Index	Risk description	Severity level	Status
ADF-1	ADF-1 The risk of centralized coin issuance		Acknowledged
ADF-2	An unused constant parameter Info		Acknowledged

Status Notes:

- 1. ADF-1 is unfixed, Contracts can mint tokens using the admin role to add a new mint role.
- 2. ADF-1 is unfixed and may not cause any issue.

Finding Details:

[ADF-1] The risk of centralized coin issuance

Severity Level	Medium		
Type	Business Security		
Lines	ArtdeFinanceToken.sol#L2661		
Description	The project side has transferred the token to the multi signer contract and set the multi signer contract to minter. The project can still add new minter to mint ADF tokens using the admin role. The new minter can mint tokens unlimited.		

```
constructor(address admin, address multisig)
    ERC20(NAME, SYMBOL)
    ERC20Permit(NAME)
{
    mint(admin, 1 000 000 000 * 10 ** decimals());
    _grantRole(DEFAULT_ADMIN_ROLE, admin);
    _grantRole(PAUSER_ROLE, msg.sender);
    _grantRole(MINTER_ROLE, multisig);
}
```

Figure 1 Source code of constructor function

Ö	Recommendations	The project side relinquishes the admin role authority to avoid the intention of arbitrarily minting tokens.
	Status	Acknowledged. The project side said they would not use this way to mint.

Status

Acknowledged.

Severity Level	Info	
Туре	Coding Conventions	
Lines	MultiSigWallet.sol#L30	
Description ADDRESS_ZERO parameter is not used. Using constants saves gas more that variables.		
	<pre>* Constants */ uint constant public MAX_OWNER_COUNT = 50; address constant ADDRESS_ZERO = address(0x0);</pre>	
	Figure 2 Source code of ADDRESS_ZERO parameter	
Recommendations	It is recommended to use the constant ADDRESS_ZERO as the 0x0 address argument or delete.	

3 Appendix

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts

3.1.1 Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to CVSS 3.1 (Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels: "critical", "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the severity level.

Impact Likelihood	Severe	High	Medium	Low
Probable	Critical	High	Medium	Low
Possible	High	High	Medium	Low
Unlikely	Medium	Medium	Low	Info
Rare	Low	Low	Info	Info

3.1.2 Degree of impact

Severe

Severe impact generally refers to the vulnerability can have a serious impact on the confidentiality, integrity, availability of smart contracts or their economic model, which can cause substantial economic losses to the contract business system, large-scale data disruption, loss of authority management, failure of key functions, loss of credibility, or indirectly affect the operation of other smart contracts associated with it and cause substantial losses, as well as other severe and mostly irreversible harm.

High

High impact generally refers to the vulnerability can have a relatively serious impact on the confidentiality, integrity, availability of the smart contract or its economic model, which can cause a greater economic loss, local functional unavailability, loss of credibility and other impact to the contract business system.

Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the confidentiality, integrity, availability of the smart contract or its economic model, which can cause a small amount of economic loss to the contract business system, individual business unavailability and other impact.

Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract, which can pose certain security threat to the contract business system and needs to be improved.

3.1.4 Likelihood of Exploitation

Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no special exploitation threshold, and the vulnerability can be triggered consistently.

Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.

Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation conditions are very demanding and the vulnerability is highly difficult to trigger.

Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the conditions for exploitation are extremely difficult to achieve.

3.1.5 Fix Results Status

Status Description			
Fixed The project party fully fixes a vulnerability.			
Partially Fixed The project party did not fully fix the issue, but only mitigated the i			
Acknowledged	The project party confirms and chooses to ignore the issue.		

3.2 Audit Categories

No.	Categories	Subitems
		Compiler Version Security
	OSIN	Deprecated Items
1 Block	Coding Conventions	Redundant Code
		require/assert Usage
		Gas Consumption
IN	FOR BEOSIN	Integer Overflow/Underflow
	Massalinin Studios	Reentrancy
		Pseudo-random Number Generator (PRNG)
	OSIN	Transaction-Ordering Dependence
	chain Security	DoS (Denial of Service)
		Function Call Permissions
2	General Vulnerability	call/delegatecall Security
		Returned Value Security
	BEOSIN	tx.origin Usage
		Replay Attack
		Overriding Variables
	OSIN	Third-party Protocol Interface Consistency
p BIOCH		Business Logics
		Business Implementations
3	REOSIN	Manipulable Token Price
	Business Security	Centralized Asset Control
		Asset Tradability
	OSIN	Arbitrage Attack

Beosin classified the security issues of smart contracts into three categories: Coding Conventions, General Vulnerability, Business Security. Their specific definitions are as follows:

Coding Conventions

Audit whether smart contracts follow recommended language security coding practices. For example, smart contracts developed in Solidity language should fix the compiler version and do not use deprecated keywords.

• General Vulnerability

General Vulnerability include some common vulnerabilities that may appear in smart contract projects. These vulnerabilities are mainly related to the characteristics of the smart contract itself, such as integer overflow/underflow and denial of service attacks.

Business Security

Business security is mainly related to some issues related to the business realized by each project, and has a relatively strong pertinence. For example, whether the lock-up plan in the code match the white paper, or the flash loan attack caused by the incorrect setting of the price acquisition oracle.

^{*}Note that the project may suffer stake losses due to the integrated third-party protocol. This is not something Beosin can control. Business security requires the participation of the project party. The project party and users need to stay vigilant at all times.

3.3 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement. The Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used within the conditions and scope agreed in the service agreement. Other third parties shall not transmit, disclose, quote, rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or wording contained therein shall not be interpreted as affirmation or confirmation of the project, nor shall any warranty or guarantee be given as to the absolute flawlessness of the code analyzed, the code team, the business model or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the technology currently available to Beosin. However, due to the technical limitations of any organization, and in the event that the code provided by the Served Party is missing information, tampered with, deleted, hidden or subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be utilized as investment suggestions of any type. This report represents an extensive evaluation process designed to help our customers improve code quality while mitigating the high risks in blockchain.

3.4 About Beosin

Beosin is the first institution in the world specializing in the construction of blockchain security ecosystem. The core team members are all professors, postdocs, PhDs, and Internet elites from world-renowned academic institutions. Beosin has more than 20 years of research in formal verification technology, trusted computing, mobile security and kernel security, with overseas experience in studying and collaborating in project research at well-known universities. Through the security audit and defense deployment of more than 2,000 smart contracts, over 50 public blockchains and wallets, and nearly 100 exchanges worldwide, Beosin has accumulated rich experience in security attack and defense of the blockchain field, and has developed several security products specifically for blockchain.

Official Website

https://www.beosin.com

Telegram

https://t.me/+dD8Bnqd133RmNWN1

Twitter

https://twitter.com/Beosin_com

Email

