

The Delphion Integrated View

Get Now: PDF More choices		Tools: Add to Work File: Create new
View: INPADOC Jump to: Top	Go to: Derwent	

₹Title: JP6248224A2: FLUORORESIN COATING COMPOSITION

PDerwent Title: Fluoro-resin coating compsn. giving long-term protection of base coat - based on fluorine-

contg. copolymer, UV absorbent and/or light stabiliser, organic solvent and crosslinking agent

[Derwent Record]

8 Country: **JP** Japan

% Kind: A (See also: <u>JP7031502U2</u>)

Inventor: IIDA AKIHITO; NISHIO TATSUO;

MARUKI ETSUZO; INUKAI HIROSHI;

Passignee: TOAGOSEI CHEM IND CO LTD

News, Profiles, Stocks and More about this company

Published / Filed: 1994-09-06 / 1993-02-27

Papplication Number: JP1993000062879

PIPC Code: <u>C09D 127/12</u>; <u>C09D 127/12</u>; <u>C08F 214/18</u>;

Priority Number: 1993-02-27 **JP1993000062879**

Abstract: PURPOSE: To provide a coating composition as a coating of excellent

weatherability and chemical resistance, comprising a fluorocopolymer produced by copolymerization of specific kinds of monomers, an ultraviolet light absorber, a light stabilizer, an organic solvent and a cross-linking agent.

CONSTITUTION: The composition comprising (A) a fluorocopolymer produced by

copolymerization among (1) 40-60mol% fluororesin monomer (pref.

chlorotrifluoroethylene), (2) 3-30mol% hydroxyalkyl crotonate monomer (pref. 2-hydroxyethyl crotonate) and (3) 10-67mol% another copolymerizable vinyl monomer (e.g. carboxylic vinyl ester), (B) an ultraviolet light absorber (e.g. benzophenone-based compound) and a light stabilizer (e.g. hindered amine-based compound), (C) an organic solvent (e.g. toluene) and (D) a cross-linking agent reactive with hydroxyl

group (e.g. hexamethylene diisocyanate). COPYRIGHT: (C)1994,JPO&Japio

₹ INPADOC Legal Status:

None Get Now: Family Legal Status Report

Family: Show 2 known family members

Prorward References: Go to Result Set: Forward references (1)

PDF	Patent	Pub.Date	Inventor	Assignee	Title
*	<u>US6629059</u>	2003-09-30	Borgeson; Dale W.		Hand held diagnostic and communic with automatic bus detection

Other Abstract Info: DERABS C94-322384 DERC94-322384

Nominate this for the Gallery...

© 1997-2004 Thomson Research Subscriptions | Privacy Policy | Terms & Conditions | Site Map | Contact Us | Help

(19)日本国特許庁 (J P) (12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平6-248224

技術表示箇所

(43)公開日 平成6年(1994)9月6日

(51) Int.Cl.⁵

識別記号 庁内整理番号

PFH

9166-4 J

PFJ

9166 - 4 J

// C08F 214/18

C 0 9 D 127/12

MKK

9166-4 J

審査請求 未請求 請求項の数1 FD (全 6 頁)

(21)出願番号

特願平5-62879

(22)出願日

平成5年(1993)2月27日

(71)出願人 000003034

東亞合成化学工業株式会社

東京都港区西新橋1丁目14番1号

(72)発明者 飯田 晃人

名古屋市港区船見町1番地の1 東亞合成 化学工業株式会社名古屋総合研究所内

(72)発明者 西尾 竜生

名古屋市港区船見町1番地の1 東亞合成

化学工業株式会社名古屋総合研究所内

(72)発明者 丸木 悦造

名古屋市港区船見町1番地の1 東亞合成

化学工業株式会社名古屋総合研究所内

(74)代理人 弁理士 幸田 全弘

最終頁に続く

(54) 【発明の名称】 フッ素樹脂塗料組成物

(57)【要約】

【目的】 金属、プラスチック、セメント、モルタル等 の基材に、クリア塗膜あるいは着色顔料による低濃度の カラークリア塗膜として塗布した場合に、長期にわたっ て下地保護性を発揮するフッ素樹脂塗料組成物を提供す る。

【構成】 フルオロオレフイン単量体を主成分とする特 定種類の単量体の共重合によって得られた含フッ素共重 合体、紫外線吸収剤及び/又は光安定剤、有機溶剤なら びに架橋剤を混合して有機溶剤型のフッソ樹脂塗料組成 物とする。

1

【特許請求の範囲】

【請求項1】 下記(1)~(4)で示される成分から なることを特徴とするフッ素樹脂塗料組成物。

- (1) a) フルオロオレフィン単量体単位:30~60 モル%
- b) クロトン酸ヒドロキシアルキル単量体単位:3~3 0モル%
- c) 上記以外の共重合可能なビニル単量体単位:10~ 67モル%から構成される含フッ素共重合体
- (2) 紫外線吸収剤及び/又は光安定剤
- (3) 有機溶剤
- (4) 水酸基と反応可能な架橋剤

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、含フッ素共重合体、 紫外線吸収剤及び/又は光安定剤および架橋剤を含有し た有機溶剤型のフッ素樹脂塗料組成物に関するものであ る。

[0002]

フッ素共重合体と硬化剤とからなるフッ素樹脂塗料は従 来より知られている。一方、この発明の発明者等は、プ ラスチック、セメント、モルタル等の基材に対する密着 性に優れたフッ素樹脂塗料について研究開発し、特開平 3-231906号および特願平3-146860号の 発明を提案した。

[0003]

【発明が解決しようとする課題】前記特開平3-231 906号および特願平3-146860号で提案したフ ッ素樹脂塗料は、これをクリア塗料や顔料濃度の低いカ 30 ラークリア塗料として、プラスチック、セメント、モル タル等の基材に塗布して、クリア塗膜乃至顔料濃度の低 いカラークリア塗膜を形成せんとする場合には、高い顔 料濃度の塗膜に比べて長期間に亘る下地保護性が必ずし も充分なものではなかった。すなわち、塗膜を透過して 下地に達する太陽光線などによる下地の劣化を十分に抑 制できないという問題点を有し、具体的には基材が次第 に劣化したり、金属基材の場合には錆が発生したり、セ メント、モルタル等のコンクリート系の下地においては 下塗り塗料の劣化が認められるなどの問題があった。

【0004】この発明はかゝる現状に鑑み、クリア塗膜 の形成や低い顔料濃度のカラークリア塗膜を形成する場 合にも下地保護性を長期に亘って維持することができる フッ素樹脂塗料組成物を提供せんとすることを目的とす るものである。

[0005]

【発課題を解決するための手段】この発明のフッ素樹脂 塗料組成物は、

(1) a) フルオロオレフィン単量体単位:30~60 モル%

- b) クロトン酸ヒドロキシアルキル単量体単位:3~3 0モル%
- c) 上記以外の共重合可能なビニル単量体単位:10~ 67モル%から構成される含フッ素共重合体
- (2) 紫外線吸収剤及び/又は光安定剤
- (3) 有機溶剤および
- (4) 水酸基と反応可能な架橋剤

の4つの成分からなることを特徴とするものである。

【0006】この発明において、前記(1)で示される 10 含フッ素共重合体は、発明者が先に提案した特開平3-231906号に開示された含フッ素共重合体で、具体 的には、フルオロオレフィン単量体、クロトン酸ヒドロ キシアルキル単量体および前記以外の共重合可能なビニ ル単量体から構成される。この含フッ素共重合体を構成 する前記a)のフルオロオレフィン単量体は、具体的に はモノフルオロエチレン、ジフルオロエチレン、トリフ ルオロエチレン、テトラフルオロエチレン、クロロトリ フルオロエチレン、ヘキサフルオロプロピレン等であっ て、その中でもクロロトリフルオロエチレンが共重合性 【従来の技術】耐候性、耐薬品性に優れた塗料として含 20 の容易なことや、取扱いの点で好適に使用することがで きる。かゝるフルオロオレフィン単量体は、含フッ素共 重合体を構成する全単量体に対する割合として30~6 0モル%の範囲で含まれるもので、30モル%を下回る と塗料としてのフッ素樹脂組成物の耐候性が低下し、6 0モル%を超えて多量の場合には溶剤への溶解性が低下 するので、より好ましい量は40~60モル%である。

> 【0007】含フッ素共重合体を構成するb)のクロト ン酸ヒドロキシアルキル単量体は、具体的には2-ヒド ロキシエチルクロトネート、4-ヒドロキシブチルクロ トネート、2-ヒドロキシプロピルクロトネート等であ って、その中でもモノマーの入手が容易な2-ヒドロキ シエチルクロトネートが特に好ましく使用される。この クロトン酸ヒドロキシアルキル単量体は、含フッ素共重 合体を構成する全単量体に対する割合として3~30モ ル%の範囲で含まれるもので、3モル%未満であると架 橋剤との反応性が不十分となって得られた組成物の塗膜 強度が不足し、30モル%を超えて多量に配合されると 耐候性や耐水性が低下する。

【0008】上記a)のフルオロオレフィン単量体と、 40 b) のクロトン酸ヒドロキシアルキル単量体に配合され るc)の共重合可能なビニル単量体は、含フッ素共重合 体を構成する全単量体に対し10~67モル%の範囲で 使用するもので、かゝるビニル単量体としてはカルボン 酸ビニルエステル類、ビニルエーテル類、ノルボルナジ エン化合物等が望ましく使用される。

【0009】前記カルボン酸ビニルエルテル類として は、プロピオン酸ビニル、カプロン酸ビニル、ピバリン 酸ピニルおよびヴェオバー9、ヴェオバー10 (これら ヴェオパー9および10は、いずれもシェル化学社製の 50 カルボン酸ビニルエステルの商品名) 等の脂肪族ビニル

-178- ·

げることができる。

エステル類、シクロヘキサンカルボン酸ビニル、4-t - プチルシクロヘキサンカルボン酸ピニル等のシクロア ルカンカルボン酸ビニル類、安息香酸ビニル、p-t-プチル安息香酸等の芳香族カルボン酸ビニル等を挙げる ことができる。

【0010】また、ビニルエーテル類としては、エチル ビニルエーテル、プチルビニルエーテル等のアルキルビ ニルエーテル類、シクロヘキシルビニルエーテル等のシ クロアルキルビニルエーテル類を挙げることができ、ノ ルポルナジエンやそのアルキル置換体も共重合成分とし 10 て使用することができる。

【0011】なお、顔料分散性を向上させるために、含 フッ素共重合体(1)にクロトン酸を導入してもよく、 その量は含フッ素共重合体に対して5モル%以下であ る。

【0012】これらa)~c)の単量体の共重合によっ て得られる含フッ素共重合体の分子量は、形成する塗膜 の強度と塗料の取扱い性の観点から数平均分子量がGP Cのポリスチレン検算で1000~10000である ス転移点) は形成された塗膜が耐ブロッキング性を発現 するために10℃以上であることが望ましい。

【0013】この発明のフッ素樹脂塗料組成物は、前記 の含フッ素共重合体以外に、紫外線吸収剤及び/又は光 安定剤と、有機溶剤および水酸基と反応可能な架橋剤か らなるものであるが、前記紫外線吸収剤とは、400n m以下の紫外線領域の光を選択的に吸収する化合物であ って、具体的にはベンゾフェノン系化合物、ベンゾトリ アゾール系化合物、蓚酸アニリド系化合物等を挙げるこ とができる

前記ペンゾフェノン系化合物としては、2-ヒドロキシ -4-メトキシペンゾフェノン、2-ヒドロキシ-4-エトキシペンゾフェノン、2-ヒドロキシ-4-プトキ シベンソフェノン、2,4-ジヒドロキシベンゾフェノ ン等を挙げることができる。また、ベンゾトリアゾール 系化合物としては下記〔化1〕で示される構造式の化合 物を使用することができる。

[0014]

【化1】

$$\begin{array}{c|c}
C & N & C = C \\
\hline
C & N & C = C
\end{array}$$

$$\begin{array}{c|c}
R1 \\
C & C \\
N & C = C
\end{array}$$

【0015】前記〔化1〕における化合物としては、た とえば、X=H, R: =R2 =-C (CH:) 2 C2 H 50 量に使用すると前記含フッ素共重合体(1)、紫外線吸

5 である化合物、X=H, R1 = R2 = - C (CH3) 2 Phである化合物、X=H, R₁ = - C₁ 2 H₂ 5, $R_2 = Me$ である化合物、X = H, $R_1 = -t - Bu$, 化合物と、この化合物のコハク酸ジエステルの混合物、 X=H, $R_1 = -t - Bu$, $R_2 = -C_2 H_4 COOC$ ⁸ H₁ 1 である化合物、X=Cl, R₁ =-t-Bu, R₂ = - C₂ H₄ COOC₈ H₇である化合物などを挙

【0016】また、蓚酸アニリド系化合物としては、N - (2-エトキシフェニル)-N´-(4-イソドデシ ルフェニル) エタンジアミド、N-(2-エトキシフェ ニル) - N´- (2-エチルフェニル) エタンジアミ ド、N(2-エトキシ-5-t-プチルフェニル-N´ - (2-エチルフェニル) エタンジアミド等を使用する ことができる。

【0017】これら紫外線吸収剤の添加量は、形成され る塗膜の膜厚によって異なるが、おおむね含フッ素共重 合体と架橋剤を合わせた重量の1~20重量%である。 ことが望ましい。また、含フッ素共重合体のTg(ガラ 20 この添加量は、多量になると基材への密着性が損われた ましくない。さらに好ましい添加量は10重量%未満で あり、それ以上を添加する時はむしろ膜厚を厚くするこ とが望ましい。

> 【0018】かゝる紫外線吸収剤の種類は、基材によっ て選択することが好ましい。たとえば、セメント系の基 材に対して塗膜を形成する場合には、アルカリと反応す るフェノール性のヒドロキシル基を持たない蓚酸アニリ ド系化合物が好ましく、プラスチックの成形体やフィル 30 ム、シート等の基材に対する塗膜の形成には、ベンゾフ ェノン系化合物、ベンゾトリアゾール系化合物、蓚酸ア ニリド系化合物が好適に使用することができ、その中で も紫外線の吸収範囲の広いベンゾトリアゾール系化合物 の使用が特に好ましい。

> 【0019】前記光安定剤としては、ヒンダードアミン 系の化合物、たとえば、2-(3,5-ジ-t-プチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸 ピス (1, 2, 2, 6, 6-ペンタメチル-4-ピペリ ジル)、ビス(2,2,6,6-テトラメチルー4ーピ 40 ペリジル) セパケート、ビス (1, 2, 2, 6, 6 - ペ ンタメチルー4-ピペリジル)セバケート、8-アセチ ルー3-ドデシルー7,7,9,9-テトラメチルー 1. 3. 8 - トリアザスピロ(4、5) デカン-2, 4 ージオン、ピス(N-オクトキシー2, 2, 6, 6-テ トラメチルー4ーピペリジル)セパケート等を使用する ことができる。

【0020】から光安定剤の使用量は、前記の含フッ 素共重合体 (1) と架橋剤 (4) とを合わせた重量の5 重量%以下であることが望ましい。この光安定剤は、多

収剤及び/又は光安定剤(2)および有機溶剤(3)を 混合した溶液が経時的に着色され好ましくない。特に、 含フッ素共重合体(1)がカルボキシル基を有するもの である場合またはワニスが酸性であるときにその現象が 著しくなる。したがって、含フッ素共重合体がカルボキ シル基を有するとき、または、ワニスが酸性であるとき に使用する光安定剤としては、窒素の塩基性を低下させ たN-OR(Rはアルキル基)の構造を持つものが好ま しい。なお、この光安定剤は、前記の紫外線吸収剤と共 に用いることが望ましいが、光安定剤のみを使用するこ 10 素樹脂塗料組成物中の塗膜形成成分(含フッ素共重合体 ともできる。ただし、この場合は両者の併用によるより も下地保護性の向上が低いので、併用が最も好ましいも のである。

【0021】含フッ素共重合体を溶解する有機溶剤とし ては、沸点が60℃以上のものであることが望ましく、 具体的にはトルエン、キシレン、ソルベッソ等の芳香族 有機溶剤、酢酸エチル、酢酸プチル等のエステル類、メ チルエチルケトン、メチルイソプチルケトン、シクロヘ キサノン等のケトン類、n-ブタノール、i-プロパノ セロソルブ等のセロソルブ系を使用することができる。

【0022】この発明に用いられる水酸基と反応しうる 架橋剤は、前記の含フッ素共重合体を構成するクロトン 酸ヒドロキシアルキル単量体の水酸基との間で架橋して 組成物の硬化に寄与するもので、具体的には、ヘキサメ チレンジイソシアネート、イソホロンジイソシアネート およびそれらの2量体、3量体ならびにブロックイソシ アネート等のポリイソシアネート、メチル化メラミン、 プチル化メラミン、尿素樹脂、ペンゾグアナミン等のア ミノプラスト等である。これらの架橋剤に対して、ジブ 30 チル錫ジラウレートやp-トルエンスルホン酸等の硬化 促進剤を併用してもよい。

【0023】この発明のフッ素樹脂塗料用組成物は、架 橋剤として前記のメラミン、グアナミン等のアミノプラ ストおよびプロックイソシアネート等の常温で水酸基と 反応しない架橋剤を用いる時は、組成物を構成する前記 含フッ素共重合体、紫外線吸収剤及び/又は光安定剤、 有機溶剤および架橋剤を一度に混合することにより調製 することができる。しかし、ポリイソシアネート等の常 温でも水酸基と反応する架橋剤を用いるときには、前記 40 含フッ素共重合体、紫外線吸収剤及び/又は光安定剤、 有機溶剤をあらかじめ混合し、塗装時にこの混合物に架 橋剤を混合して調製することが必要である。

【0024】この発明のフッ素樹脂塗料用組成物は、主 としてクリア塗料として塗布することによって長期に亘 る下地保護性を維持するこきができるものであるが、か ゝるクリア塗料に少量の着色顔料を配合したカラークリ ア塗料としても充分に使用することができる。その際に 使用する着色顔料としては、通常の塗料に用いられてい る着色顔料を使用することができ、たとえば、酸化チタ 50 ロン酸ピニル/パーサチック酸ピニル/クロトン酸2-

ン、べんがら、黄色酸化鉄焼成顔料等の無機顔料やフタ ロシアニンブルー、キナクリドンレッド、イソインドリ ノン、カーボンプラック等の有機顔料も使用可能であ

6

【0025】この発明で得られるフッ素樹脂塗料組成物 は、その溶液中にレベリング剤、色別れ防止剤、酸化防 止剤、熱安定剤等の添加剤を加えてもよい。また、カラ ークリア塗料として用いる着色顔料を分散させる際には **顔料分酸剤を添加してもよい。かくして調製されるフッ** +紫外線吸収剤+光安定剤+架橋剤)の割合は、作業性 の点から20~70重量%の範囲であることが好まし ひょ

【0026】この発明のフッ素樹脂塗料組成物は、スプ レー塗装、ロールコーター、はけ塗り等の手段によっ て、ステンレススチール、アルミニウム、亜鉛鋼板など の金属からなる基材、ABS樹脂、FRP、ネリカーボ ネート樹脂、硬質塩化ビニル樹脂、ペークライトエポキ シ樹脂、アクリル樹脂、ポリウレタン等のプラスチック ール等のアルコール類、メチルセロソルブ、n-ブチル 20 からなる基材、木材、紙およびモルタル、打ち放しのコ ンクリートなどのセメント系基材等の塗装することがで

[0027]

【作用】この発明のフッ素樹脂塗料組成物は、含フッ素 共重合体に紫外線吸収剤及び/又は光安定剤および架橋 剤を配合して有機溶剤型の塗料組成物とすることによっ て、これをクリア塗料または顔料濃度の低いカラークリ ア塗料として使用した場合においても、長期的に下地を 保護することができるものである。

[0028]

【実施例】以下に、実施例、比較例およびこれらで得た 塗料組成物の塗膜の物性評価による試験例を示してこの 発明をさらに具体的に説明する。

実施例1

クロロトリフルオロエチレン/プロピオン酸ピニル/バ ーサチック酸ビニル/クロトン酸2-ヒドロキシエチル から構成され、それぞれの比率が49/23/18/1 0 (モル%) である含フッ素共重合体 (Mn=1300 0、OHV (水酸基価) = 53、Tg=28℃)のキシ レン溶液(固形分60重量%)を10.0g、紫外線吸 収剤として2-ヒドロキシ-4-メトキシペンゾフェノ ンを 0. 14g (含フッ素共重合体+架橋剤に対し2重 量部)、架橋剤としてデュラネートTPA100 (旭化 成製) を1.05g (NCO/OH=1.0/1. 0)、シンナーとしてキシレン/メチルイソプチルケト ン (MIBK) の1/1の混合物6.5gを混合し、ク リア塗料を調製した。

【0029】実施例2

クロロトリフルオロエチレン/ピバリン酸ビニル/カプ

ヒドロキシエチルから構成され、それぞれの比率が47 /3/26/13/11 (モル%) である含フッ素共重 合体 (Mn=11000、OHV=44、Tg=23 ℃)のキシレン溶液(固形分60重量%)10.0g、 紫外線吸収剤としてベンゾトリアゾール系のチヌビン3 84 (チパーガイギ社製) を0. 13g (含フッ素共重 合体+架橋剤に対し2重量部)、架橋剤としてデュラネ ートTPA100 (旭化成製) を0.87g (NCO/ OH=1.0/1.0)、シンナーとしてキシレン/M を調製した。

【0030】実施例3

実施例2で使用した含フッ素共重合体溶液10.0g、 紫外線吸収剤としてペンゾトリアゾール系のチヌピン3 84 (チバーガイギ製) を0.13g (含フッ素共重合 体+硬化剤の2phr)、光安定剤としてチヌピン12 3 (チパーガイギ製)を0.07g(含フッ素共重合体 +架橋剤に対し1重量部)、架橋剤としてデュラネート TPA100 (旭化成製) を0.87g (NCO/OH Kの1/1混合物5.4gを混合し、クリア塗料を調製

【0031】実施例4

実施例2で使用した含フッ素共重合体溶液10.0g、 紫外線吸収剤として蓚酸アニリド系のサンデュボゥアS -3206 (サンド社製) を0.13g (含フッ素共重 合体+硬化剤に対し2重量部)、光安定剤としてチヌビ ン123 (チバーガイギ製) 0.07g (含フッ素共重 合体+架橋剤に対し1重量部)、架橋剤としてデュラネ ートTPA100 (旭化成製) を0.87g (NCO/ 30 OH=1.0/1.0)、シンナーとしてキシレン/M IBKの1/1混合物6.2gを混合し、クリア塗料を 調製した。

【0032】実施例5

実施例2で使用した含フッ素共重合体溶液10.0g、 紫外線吸収剤としてペンゾトリアゾール系のチヌビン3 84 (チパーガイギ製)を0.07g(含フッ素共重合 体+硬化剤に対し1重量部)、光安定剤としてチヌビン 123 (チバーガイギ製) 0.035g (含フッ素共重 ラネートTPA100 (旭化成製) を0.87g (NC O/OH=1. 0/1. 0)、シンナーとしてキシレン /MIBKの1/1混合物6.2gを混合し、クリア塗 料を調製した。

【0033】比較例1

前記実施例1で使用した含フッ素共重合体溶液10.0 g、架橋剤としてデュラネートTPA100(旭化成

製) を1.05g(NCO/OH=1.0/1.0)、 シンナーとしてキシレン/MIBKの1/1混合物6. 6 gを混合し、紫外線吸収剤、光安定剤を配合しないク リア塗料を調製した。

【0034】比較例2

前記実施例2で使用した含フッ素共重合体溶液10.0 g、架橋剤としてデュラネートTPA100(旭化成 製) を0.87g(NCO/OH=1.0/1.0)、 シンナーとしてキシレン/MIBKの1/1の混合物 IBKの1/1の混合物6.0gを混合し、クリア塗料 10 6.3gを混合し、紫外線吸収剤、光安定剤を配合しな いクリア塗料を調製した。

【0035】比較例3

この発明の含フッ素共重合体に代えて、塗料用アクリル 樹脂であるアクリディック56-719(大日本インキ 製) (固形分50wt%、OHV80)を10.0g、 紫外線吸収剤としてベンゾトリアゾール系のチヌピン3 84 (チバーガイギ製) を0.13g (含フッ素共重合 体+架橋剤に対し2重量部)、光安定剤としてチヌピン 123 (チパーガイギ製) を0.06g (含フッ素共重 =1.0/1.0)、シンナーとしてキシレン/MIB 20 合体+架橋剤に対し1重量部)、架橋剤としてデュラネ ートTPA100 (旭化成製) を1. 32g (NCO/ OH=1.0/1.0)、シンナーとしてキシレン/M IBKの1/1混合物4.0gを混合し、クリア塗料を 調製した。

【0036】試験例1

アルミニウム板(0.6mm厚)に白色アクリルウレタ ン塗料の塗膜(膜厚30μm)を形成させ、その上に前 記実施例1~5および比較例1~3で得た塗料組成物 を、それぞれ上塗りとしてバーコーターで塗布し、常温 で1週間放置して硬化させ(乾燥膜厚10 µm)、得ら れた塗膜の物性を下記の物性評価試験によって評価し

- 1) 初期密着性 JIS-K5400による碁盤目剥離 試験での残率を示す
- 2) 促進耐候性 QUV促進耐候性試験 (Bランプ) 試験条件

照射:63℃、50%RH×4時間

結露:50℃、>98%RH×4時間

の繰り返しを4000時間行なった後の60度光沢保持 合体+架橋剤に対し0.5重量部)、架橋剤としてデュ 40 率と△E値を示した。促進耐候性試験にはトップクリア を塗っていない塗板をブランクとして加えた。

> 3) 2次密着性 前項目のQUV促進耐候性試験後にお ける碁盤目剥離の残率を示す。

それらの結果を表1に示す。

〔以下余白〕

[0037]

【表1】

	ंगा संद्रा संदर्भ देखे.	促進耐候性		O Vertical Mr.	
	初期密着性	光沢60保持率	ΔΕ	2次密着性	
実施例1	100/100	92%	1. 7	100/100	
実施例2	100/100	90%	1. 5	100/100	
実施例3	100/100	95%	1. 8	100/100	
実施例4	100/100	90%	1. 4	100/100	
実施例5	100/100	89%	1. 2	100/100	
比較例1	100/100	81%	2. 8	100/100	
比較例2	100/100	79%	2. 5	100/100	
比較例3	100/100	4 %	2. 5	0/100	

【0038】試験例2

実施例2で調製したクリア塗料を用い、表面を脱脂した ステンレススチール (SUS304) 上に20 µmの塗 膜を作製した。そのSUS板で試験例1と同様の塗膜の 評価試験を実施した。その結果は下記のとおりであっ

初期密着性:100/100 促進耐候性:光沢60保持率92%

 $\Delta E = 1.9$

2次密着性:100/100

であった。なお、比較例2で調製した塗料組成物を用い て同様の塗装板を作製し、同様に試験を行ったところ、 促進耐候性試験で錆の発生が認められた。

【0039】試験例3

実施例3で調製したクリア塗料をABS樹脂板上に塗布 し、20μmの膜厚の塗膜を作製した。この塗装板を用 い、試験例1で示した方法によって試験を行った。その 結果は下記のとおりであった。

初期密着性:100/100 促進耐候性:光沢保持率85%

 $\Delta E = 2.4$

2次密着性:100/100

であった。なお、比較例2で調製した塗料組成物を用い て同様に塗装板を作製し、同様に試験を行ったところ、 促進耐候性後の2次密着性が20/100であった。

[0040]

30 【発明の効果】この発明のフッ素樹脂塗料組成物は、所 定の単量体の共重合による含フッ素共重合体、紫外線吸 収剤及び/又は光安定剤、有機溶剤ならびに架橋剤とを 配合した有機溶剤型としているので、耐水性、耐薬品性 に優れたフッ素樹脂塗料に、さらに紫外線に対する耐久 性が付与されている。したがって、これをクリア塗料ま たは顔料濃度の低いカラークリア塗料として使用した場 合においても、下地を長期に亘って持続して保護するこ とができるものである。

フロントページの続き

(72)発明者 犬飼 宏

名古屋市港区船見町1番地の1 東亞合成 化学工業株式会社名古屋総合研究所内