

Pathways Analysis: databases and methods for genetics.

DR. GEROME BREEN

UPDATED BY: HELENA A. GASPAR

Institute of Psychiatry at the Maudsley

Outline

- 1. What are pathways?
- 2. Pathway Resources
- 3. Pathways Analysis and GWAS
- 4. PGC CDG GWAS Pathway Analysis
- 5. Drug/GWAS Pathway Analysis

1. What are pathways?

A series of actions among molecules leading to a product or a change.

A typical pathway: WNT Signalling

A typical pathway: WNT Signalling

Wnt ligand binds to to a Fz receptor

ļ

(...)
Unphosphorylated
B-catenin
translates into the
nucleus

Regulation of target genes

Image from Suzuki et al 2002 Nature Genetics 32 166

Pathways v.s. Networks

Pathway: series of actions among molecules leading to a product or a change.

Network: a collection of nodes (molecules) and edges (type of interaction).

Pathways v.s. Networks

In biology, everything is interconnected in a network. But pathways provide intuitive views.

Pathways v.s. Networks

Early pathways were built by studying biochemical reactions of individual proteins, measuring the activity, learning the substrates and products, joining them to the next enzyme.

New technologies allow simultaneous measurement of *tens of thousands* of different molecules.

This reveals that many biological pathways are interconnected. They can work together or against each other.

Scientists who study these large scale interactions sometimes refer to the field as 'systems biology'.

When multiple biological pathways interact = a biological network.

Biologists often work with canonical pathways, those that represent the well-understood part of the entire network.

Different types of pathways

Metabolic pathways:

provide the energy and materials

Signalling pathways:

sense the outside, coordinate activities within and between cells

Gene regulatory pathways:

 control processes, set limits, control the molecular composition of cells

Different representations for one pathway

2. Pathway resources: private companies

e.g. Ingenuity Pathway Analysis & GeneGO

Manually curated

Subset of literature covered

Pre-generated networks

Make own networks

Pathway resources: free databases

Metabolic pathways:

Reactome, GO, KEGG, Pathway Commons (...)

Signalling pathways:

Reactome, GO, Panther (...)

Gene regulatory networks:

ConsensusPath-DB, GeneMania (...)

Diagrams:

WikiPathways, KEGG, BioCarta, (...)

Other databases for protein-protein interactions, protein-compound interactions...

Pathway resources: free databases

Main resources:

- REACTOME
- Gene Ontology (GO)

Reactome

Free, online & open-source

Curated resource of core pathways and reactions in human biology

Authored by expert biological researchers

Maintained by the Reactome editorial staff

Cross-referenced to

- NCBI Entrez Gene, Ensembl and UniProt databases
- <u>UCSC</u> and <u>HapMap</u> Genome Browsers
- KEGG Compound and ChEBI small molecule databases
- PubMed, and GO

Human data used to <u>infer orthologous events</u> in 22 non-human species

Tools for data analysis include **Skypainter** and **Biomart**

Encoding Journal Information

Nature 407(6805):770-6. The Biochemistry of Apoptosis.

"Caspase-8 is the key initiator caspase in the death-receptor pathway. Upon ligand binding, death receptors such as CD95 (Apo-1/Fas) aggregate and form membrane-bound signalling complexes (Box 3). These complexes then recruit, through adapter proteins, several molecules of procaspase-8, resulting in a high local concentration of zymogen. The induced proximity model posits that under these crowded conditions, the low intrinsic protease activity of procaspase-8 (ref. 20) is sufficient to allow the various proenzyme molecules to mutually cleave and activate each other (Box 2). A similar mechanism of action has been proposed to mediate the activation of several other caspases, including caspase-2 and the nematode caspase CED-3 (ref. 21)."

How can I access the pathway described here and reuse it?

Encoding Figures

A picture:

- Just pixels!
- Omits key details
- Facts or hypothesis?

Reactome is like many other databases...

Extensively cross-referenced

Tools for data analysis – Pathway Analysis, Expression Overlay, Species Comparison, Biomart...

Used to infer orthologous events in 20 other species.

Data Expansion – Projecting to Other Species

No orthologue - Protein not interred

Reactome: Theory - Reactions

Reactome: Exportable Protein-Protein Interactions (PPIs)

Inferred from complexes and reactions

Interactions between proteins in the same complex, reaction, or adjoining reaction

Lists available from **Downloads**

Gene Ontology Consortium

http://
geneontology.org/

Largest and best known (at least in the USA).

Reactome and GO probably the two best.

3. Pathway Analysis

Your favorite gene set

Pathway Analysis

Your favorite gene set

20 genes, 9 positive. Is that finding significant?

Pathway Analysis

All your genes Your favourite gene set

Contingency Table

$$\begin{array}{|c|c|c|c|c|c|}\hline 11 & 9 & P = 1x & 10^{-9} \\ 1950 & 50 & & & & \\ \hline \end{array}$$

Gene Set Enrichment Analysis

http://www.broadinstitute.org/gsea/

GWAS Pathway Analysis

Classical GWAS studies focus on the analysis of single genetic variants:

Is a genetic variant associated to a trait of interest?

The more powerful pathway-based approaches also use information on known biological pathways

• Are some genes in the same pathway associated to the trait of interest?

Genome-Wide Association Studies (GWAS)

Genome-Wide Association Studies (GWAS)

The design of GWAS is based on information capture via LD tagging

Linkage disequilibrium (LD) = nonrandom association of alleles at different loci

Several genes can be mapped to one association

The design of GWAS is based on information capture via LD tagging

Although only Single Nucleotide Polymorphisms (SNP) are assayed, much information about common

- Variable Number Tandem Repeats (VNTR)
- Copy Number Polymorphisms (CNPs)
- Insertion/Deletions (Indel)
- Inversions

is captured by GWAS arrays.

GWAS research suggests that complex diseases are affected by many variants with small effects

Phenotypic score or polygenic risk score

GENOME-WIDE ASSOCIATION STUDIES — OPINION

Common disorders are quantitative traits

Robert Plomin, Claire M. A. Haworth and Oliver S. P. Davis

Abstract | After drifting apart for 100 years, the two worlds of genetics — quantitative genetics and molecular genetics — are finally coming together in genome-wide association (GWA) research, which shows that the heritability of complex traits and common disorders is due to multiple genes of small effect size. We highlight a polygenic framework, supported by recent GWA research, in which qualitative disorders can be interpreted simply as being the extremes of quantitative dimensions. Research that focuses on quantitative traits — including the low and high ends of normal distributions — could have far-reaching implications for the diagnosis, treatment and prevention of the problematic extremes of these traits.

Genes in GWAS Data show evidence of multiple signals and high correlation between SNPs

GWAS pathway analysis: two main routes

Gene-wise

Derive a gene-wide statistic.

Then assess gene sets using many possible methods:

- Correct min p-value (e.g. Sidak)
- Threshold
- Combine p-values (e.g. Fisher's method)

Direct gene-set analyses

Treat a pathway as one large gene.

GWAS Pathway Analysis Software

MAGMA

INRICH

ALIGATOR

FORGE

MAGENTA

• • •

Using a method designed for gene expression data on genetic variation (GWAS data). Axon Guidance comes up strongly.

WTCCC Bipolar Disorder

Best p-value per gene

Pathway	Nominal P	FDR				
G00007411	< 1e-3	0.003	Axon growth cone guidance			
hsa04510	< 1e-3	0.005	Focal adhesion			
hsa00040	< 1e-3	0.006	Pentose and glucuronate interconversions			
GO0019198	< 1e-3	0.006	The catalysis of phosphate removal from a phosphotyrosine using aspartic acid as a nucleophile in a metal-dependent manner			
GO0003779	< 1e-3	0.028	Membrane associated actin binding			
hsa04512	< 1e-3	0.031	ECM-receptor interaction			

Sklar et al.

Pathway	Nominal P	FDR	
GO0007411	< 1e-3	0.025	Axon growth cone guidance

Axon Guidance significant across all human disorders and diseases!

	T1D	T2D	RA	HT	CAD	CD	ВР
G00007411	0.004	0	0.004	0.001	0	0.002	0
hsa04510	0.081	0.037	0.143	0.001	0.021	0.003	0.095

- The results were being driven by pathways having very large average gene sizes.
- Lesson: Always use software written for GWAS pathway analysis.
- Reliable methods correct for LD, gene size, and other issues.

4. PGC CDG GWAS Pathway Analysis

5 methods

5 diseases

Schizophrenia

Manic Depression

Major Depression

Autism

ADHD

Nature Reviews | Genetics

Psychiatric Disorders

Table 1 Defining	Table 1 Defining features of nine psychiatric disorders*				
Name	Life prevalence	Heritability	Essential characteristics	Notable feature	
Alzheimer's disease	0.132	0.58	Dementia, defining neuropathology	Of the top ten causes of death in the United States, Alzheimer's disease alone has increasing mortality	
Attention-deficit hyperactivity disorder (ADHD)	0.053	0.75	Persistent inattention, hyperactivity, impulsivity	Costs estimated at ~\$US100 × 10° per year	
Alcohol dependence (ALC)	0.178	0.57	Persistent ethanol use despite tolerance, withdrawal, dysfunction	Most expensive psychiatric disorder (total costs exceed US\$225×10° per year)	
Anorexia nervosa	0.006	0.56	Dangerously low weight from self-starvation	Notably high standardized mortality ratio	
Autism spectrum disorder (ASD)	0.001	0.80	Markedly abnormal social interaction and communication beginning before age 3	Huge range of function, from people requiring complete daily care to exceptional occupational achievement	
Bipolar disorder (BIP)	0.007	0.75	Manic-depressive illness, episodes of mania, usually with major depressive disorder	As a group, nearly as disabling as schizophrenia	
Major depressive disorder (MDD)	0.130	0.37	Unipolar depression, marked and persistent dysphoria with physical and cognitive symptoms	Ranks number one in the burden of disease in the world	
Nicotine dependence (NIC)	0.240	0.67	Persistent nicotine use with physical dependence (usually cigarettes)	Major preventable risk factor for many diseases	
Schizophrenia (SCZ)	0.004	0.81	Long-standing delusions and hallucinations	Life expectancy decreased by 12–15 years	

Samples

The combined GWAS dataset of the five disorders comprised 60K cases and controls:

- Major Depression (9,227 / 7,383)
- Manic Depression (Bipolar Disorder) (6,990 / 4,820)
- Schizophrenia (9,370 / 7,736)
- Autism (4,949 / 5,314) Trios
- Attention Deficit Hyperactivity Disorder (ADHD) (2,787 / 2,635)
 Trios

Pathway Analysis Methods

Thresholded best/number in gene/region methods

- ALIGATOR
- INRICH
- MAGENTA

Gene-wide/Pathway-wide methods

- Set-screen test
- FORGE

INRICH

INRICH: *interval enrichment*

"Do we see more associated genes in set X compared to chance?"

Reshuffle intervals of association, to assess probability of seeing X target genes out of Y, given Z intervals, matching for total number of genes, gene size, interval size and SNP density

FORGE: gene p-values by LD corrected meta-analysis and GSA

Pedroso....Breen et al., Biol Psych 2012

Databases – lots of them and lots of work

Colm O`Dushlaine Lizzy Rossin

Database	# Genes covered	# Pathways	Median Pathway Size (min-max)
KEGG	5952	232	52 (1-1131)
GO	8589	7112	2 (1-2407)
Reactome	4539 5077	3526 (Reaction) 1086 (Pathway)	3 (1-434) 14 (1-934)
PANTHER	2170	140	16 (1-287)
OMIM	6983	4712	2 (1-22)
TargetScan	11095	162	173 (1-1240)

Comparing methods and disorders

Each method has its advantages...

Comparing Disorders:

- BIPOLAR, MDD, SCZ
- Autism and ADD (PGC1 versions) are less well powered, making comparisons difficult

Derive a combined p-value for three psychiatric disorders

Top Pathways

- Results from a combined analysis of 5 methods on the 5 PGC1 CDG datasets but we focused on the three adult disorders.
- Thus, the results reflect the average across the 5 methods used.
- Significant q-values (= FDR adjusted p-values) defined as < 0.05 and suggestive < 0.1.
- MHC region excluded (high-LD genes also in that region on chromosome 6).

Pathway results SCZ, BIP, MDD

# methods	Av. rank	p rank	q-value	Pathway ID	Description
				BIP	
5	17	1.01E-06	0.005	GO:51568	histone H3-K4 methylation
5	50.4	3.82E-05	0.093	path:hsa05218	Melanoma
5	79.2	1.16E-04	0.093	GO:7129	(chromosomal) synapsis
5	81.8	1.27E-04	0.093	path:hsa05213	Endometrial cancer
5	83.3	1.34E-04	0.093	P00003	Alzheimer_disease-amyloid_secretase_pathway
5	83.4	1.35E-04	0.093	path:hsa05215	Prostate cancer
5	87	1.50E-04	0.093	path:hsa05216	Thyroid cancer
4	89.5	1.59E-04	0.093	GO:90066	regulation of anatomical structure size
5	95.6	1.81E-04	0.093	path:hsa05214	Glioma
5	96.9	1.87E-04	0.093	GO:70192	chromosome organization involved in meiosis
				scz	
5	38.4	1.58E-05	0.078	GO:14069	postsynaptic density
5	68.6	7.15E-05	0.160	GO:45211	postsynaptic membrane
5	76.8	9.67E-05	0.160	GO:43197	dendritic spine
5	85.4	1.36E-04	0.168	GO:51568	histone H3-K4 methylation
5	95.8	1.74E-04	0.173	GO:33267	axon part
				MDD	
5	25.4	2.63E-06	0.012	GO:8601	protein phosphatase type 2A regulator activity
5	54.6	3.88E-05	0.092	GO:34330	cell junction organization
5	68.8	7.70E-05	0.094	GO:43297	apical junction assembly
5	70	7.92E-05	0.094	GO:45216	cell-cell junction organization
5	99.8	1.97E-04	0.186	GO:31056	regulation of histone modification

What are key differences in metaanalysis of pathway results?

Each disorder gave promising but not statistically compelling evidence for pathway association.

Analyse each disorder's pathways and then combine and meta-analyse.

May be much more powerful than SNP meta analysis.

Robust to

- Allelic heterogeneity within GENES and within PATHWAYS across diseases.
- Allows for a multitude of weaker effects.
- Modulation of the pathways can differ across disorders.

Meta-analysis of the pathway results SCZ, BIP, MDD 16 pathways with FDR < 0.05, 49 with FDR < 0.1

BIP	MDD	SCZ	Combined P	Q Value	Pathway ID	Description
0	0.0592	0.0001	5.75E-08	0.0003	GO:51568	histone H3-K4 methylation
0.0004	0.05	0.0006	1.46E-05	0.0362	GO:16571	histone methylation
0.0004	0.1462	0.0011	4.73E-05	0.0414	GO:43414	macromolecule methylation
8000.0	0.063	0.0014	5.10E-05	0.0414	GO:34968	histone lysine methylation
0.42	0.0001	0.0023	5.58E-05	0.0414	GO:45216	cell-cell junction organization
0.0001	0.091	0.0064	5.69E-05	0.0414	P00003	Alzheimer_disease- amyloid_secretase_pathway
0.0007	0.0495	0.0024	5.86E-05	0.0414	P04393	Ras_Pathway
0.312	0	0.1286	7.12E-05	0.0422	GO:8601	protein phosphatase type 2A regulate activity
0.898	0.0001	0.0017	7.83E-05	0.0422	GO:43297	apical junction assembly
0.0013	0.0207	0.0055	9.25E-05	0.0422	P00052	TGF-beta_signaling_pathway
0.489	0.0203	0	9.53E-05	0.0422	GO:14069	postsynaptic density
0.0085	0.0009	0.0239	0.0001	0.0422	GO:32869	cellular response to insulin stimulus
0.0188	0.0054	0.0022	0.0001	0.045	P00010	B_cell_activation
0.0023	0.2988	0.0003	0.0001	0.045	GO:8757	S-adenosylmethionine-dependent methyltransferase activity
0.0073	0.008	0.0044	0.0001	0.0454	GO:23061	signal release
0.459	0	0.0168	0.0002	0.0473	GO:34330	cell junction organization

Multidimensional scaling plot of top 50 pathways with suggestive significance (FDR < 0.1)

5- Drug/GWAS Pathway Analysis

Using GWAS summary statistics, drug/gene information and pathway analysis tools to:

- Find new purposes for known drugs
- Find new potential leads for specific disorders

Mine Drug/Gene Interactions: DGIdb

http://dgidb.genome.wustl.edu/

The whole database can be downloaded.

Mine Drug/Gene Interactions: DGIdb

Drug-gene interactions mined from 15 databases:

- DrugBank
- therapeutic target database (TTD)
- PharmGKB
- Targeted agents in lung cancer (TALC)
- TdgClinicalTrial
- ChEMBL
- CancerCommons
- MyCancerGenome, MyCancerGenomeClinicalTrial
- CIViC
- ClearityFoundationBiomarkers
- ClearityFoundationClinicalTrail
- DoCM
- GuideToPharmacologyInteractions
- Trends in the Exploration of Novel Drug targets

GWAS Summary Statistics

AMD, Age-related macular degeneration CARDIoGRAM, Coronary Artery Disease CHIC, Childhood intelligence DIAGRAM, Diabetes EGG, Early growth ENIGMA, Brain volume GCAN, Anorexia Nervosa GEFOS, Osteoporosis

GIANT, Anthropometric traits
MAGIC, Glycaemic traits
GLGC, Lipids
PGC, Psychiatric disorders
ReproGen, Reproductive ageing
SSGAC, Social science outcomes
TAG, Tobacco
IMSGC, Multiple sclerosis
GPC, Personality traits

Drug/GWAS Pathway Analysis

Some key references

Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways:

http://www.ncbi.nlm.nih.gov/pubmed/25599223

Pathway analysis of genomic data: concepts, methods, and prospects for future development:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378813/