Revisão Sistemática e Meta-Análise

Marcelo Weber & Nicholas Marino github.com/nacmarino/maR

### Recapitulando

- **Meta-Análise**: "é a análise estatística de uma ampla coleção de resultados de estudos com o propósito de integrar a evidência disponível". (*Glass, 1976*)
- · Em uma meta-análise, é essencial calcularmos ou extrairmos uma métrica de tamanho de efeito e também a sua variância, para que o peso de cada estudo seja proporcional à sua precisão.
- · Não existe o melhor modelo para a sua meta-análise, mas sim o modelo que descreve melhor seus objetivos e perguntas.
- · Documente todas as decisões e escolhas que você fizer durante o processo de seleção de trabalhos, extração de dados, cálculo de effect size e escolha dos modelos.

### Rodar um modelo não é ter um modelo

- Existem certos pressupostos que você precisa verificar para saber se o que o modelo promete é de fato real.
  - Distribuição dos resíduos segue distribuição normal;
  - Variância dos resíduos é homogênea entre grupos ou ao longo de um gradiente (válido somente quando incluímos moderadores);
  - Os resultados não estão sendo tendenciados por observações aberrantes.
- Além disso, o modelo de meta-análise possui métricas específicas que devem ser verificadas para determinar:
  - Extensão da heterogeneidade entre observações;
  - Extensão da heterogeneidade dentro das observações;
  - Heterogeneidade total e heterogeneidade explicada pelo modelo;
  - Heterogeneidade explicada por cada moderador;
  - Diferença entre os níveis do mesmo *moderador*.
- · O que vale para modelos de ANOVA, Regressão, e etc, valem e funcionam de forma semelhante aqui.

- · A promessa do modelo é real ou furada?
- · Vamos trabalhar com essa ideia usando um exemplo prático diretamente no R, com os dados que temos trabalhado no metafor.

```
library(metafor)
dat <- dat.bcg
dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)
model1 <- rma(yi = yi, vi = vi, data = dat)</pre>
```

#### Normalidade dos Resíduos

· Método gráfico vs método estatístico.

```
qqnorm.rma.uni(model1)
hist(rstudent.rma.uni(model1)$resid, xlab = "Resíduos", main = "Distribuição dos Resíduos")
boxplot(resid(model1), ylab = "Resíduos", main = "Distribuição dos Resíduos em um Box Plot")
```







### Influência das Observações

- · Diversos métodos disponíveis:
  - **Leave-One-Out**: exclui uma observação por vez, e determina como esta exclusão afeta a estimativa do parâmetro de interesse, bem como o ajuste do modelo.

leavelout.rma.uni(model1)

| ids      | estimate         | se    | zval             | pval | ci.lb  | ci.ub  | Q                  | Qp | tau2  | 12               | H2     |
|----------|------------------|-------|------------------|------|--------|--------|--------------------|----|-------|------------------|--------|
| 1        | -0.707           |       | -3.722           | 0    |        |        | 151.583            | 0  |       | 93.226           |        |
| 2<br>3   | -0.654<br>-0.686 | 0.186 | -3.620<br>-3.692 | 0    | -1.050 | -0.322 | 145.318<br>150.197 | 0  | 0.321 | 92.254<br>92.935 | 14.155 |
| 4<br>5   | -0.628<br>-0.764 | 01.77 | -3.558<br>-3.984 | 0    |        |        | 96.563<br>151.320  | 0  |       | 90.412<br>92.763 |        |
| 6        | -0.711           | 0.200 | -3.550           | 0    | -1.103 | -0.318 | 128.187            | 0  | 0.360 | 90.912           | 11.003 |
| 7<br>8   | -0.655<br>-0.795 | 00    | -3.631<br>-4.418 | 0    |        |        | 145.830<br>67.986  | 0  |       | 92.278<br>87.031 |        |
| 9<br>10  | -0.741<br>-0.653 |       | -3.769<br>-3.544 | 0    |        |        | 152.205<br>139.827 | 0  | 0.0.5 | 93.213<br>92.232 |        |
| 11       | -0.758           | 0.196 | -3.871           | 0    | -1.142 | -0.374 | 151.466            | 0  | 0.340 | 91.811           | 12.211 |
| 12<br>13 | -0.760<br>-0.778 | 01.0_ | -4.173<br>-4.191 | 0    |        | 00     | 150.787<br>149.788 | 0  |       | 92.678<br>92.344 |        |

### Influência das Observações

- · Diversos métodos disponíveis:
  - **Externally Standardized Residuals**: é o desvio entre o desvio observado para o caso *i* e aquele predito pelo modelo, após este caso ter sido excluído (resíduo muito grande indica que o caso não se ajusta ao modelo).

| ids | rstudent | dffits | cook.d | cov.r | tau2.del | QE.del | hat  | weight | dfbs  |
|-----|----------|--------|--------|-------|----------|--------|------|--------|-------|
| 1   | -0.22    | -0.04  | 0.00   | 1.12  | 0.34     | 151.58 | 0.05 | 5.06   | -0.04 |
| 2   | -1.29    | -0.34  | 0.11   | 1.01  | 0.29     | 145.32 | 0.06 | 6.36   | -0.35 |
| 3   | -0.75    | -0.16  | 0.03   | 1.07  | 0.32     | 150.20 | 0.04 | 4.44   | -0.16 |
| 4   | -1.45    | -0.52  | 0.23   | 0.97  | 0.26     | 96.56  | 0.10 | 9.70   | -0.51 |
| 5   | 0.85     | 0.27   | 0.08   | 1.14  | 0.33     | 151.32 | 0.09 | 8.87   | 0.27  |
| 6   | -0.12    | -0.02  | 0.00   | 1.24  | 0.36     | 128.19 | 0.10 | 10.10  | -0.02 |
| 7   | -1.30    | -0.34  | 0.11   | 1.01  | 0.29     | 145.83 | 0.06 | 6.03   | -0.34 |
| 8   | 1.45     | 0.48   | 0.20   | 1.00  | 0.27     | 67.99  | 0.10 | 10.19  | 0.47  |
| 9   | 0.41     | 0.14   | 0.02   | 1.20  | 0.35     | 152.21 | 0.09 | 8.74   | 0.14  |
| 10  | -1.13    | -0.35  | 0.12   | 1.05  | 0.30     | 139.83 | 0.08 | 8.37   | -0.35 |
| 11  | 0.67     | 0.23   | 0.06   | 1.19  | 0.34     | 151.47 | 0.10 | 9.93   | 0.23  |
| 12  | 1.29     | 0.25   | 0.06   | 1.03  | 0.31     | 150.79 | 0.04 | 3.82   | 0.25  |
| 13  | 1.19     | 0.35   | 0.12   | 1.07  | 0.30     | 149.79 | 0.08 | 8.40   | 0.35  |

### Influência das Observações

- · Diversos métodos disponíveis:
  - **dffits**: estima quantas unidades de desvio padrão o efeito do predito pelo caso *i* muda após sua exclusão durante o ajuste do modelo.
  - **dfbetas**: estima quantas unidades de desvio padrão o coeficiente predito muda após a exclusão do caso *i*.

| ids | rstudent | dffits | cook.d | cov.r | tau2.del | QE.del | hat  | weight | dfbs  |
|-----|----------|--------|--------|-------|----------|--------|------|--------|-------|
|     |          |        |        |       |          |        |      |        |       |
| 1   | -0.22    | -0.04  | 0.00   | 1.12  | 0.34     | 151.58 | 0.05 | 5.06   | -0.04 |
| 2   | -1.29    | -0.34  | 0.11   | 1.01  | 0.29     | 145.32 | 0.06 | 6.36   | -0.35 |
| 3   | -0.75    | -0.16  | 0.03   | 1.07  | 0.32     | 150.20 | 0.04 | 4.44   | -0.16 |
| 4   | -1.45    | -0.52  | 0.23   | 0.97  | 0.26     | 96.56  | 0.10 | 9.70   | -0.51 |
| 5   | 0.85     | 0.27   | 0.08   | 1.14  | 0.33     | 151.32 | 0.09 | 8.87   | 0.27  |
| 6   | -0.12    | -0.02  | 0.00   | 1.24  | 0.36     | 128.19 | 0.10 | 10.10  | -0.02 |
| 7   | -1.30    | -0.34  | 0.11   | 1.01  | 0.29     | 145.83 | 0.06 | 6.03   | -0.34 |
| 8   | 1.45     | 0.48   | 0.20   | 1.00  | 0.27     | 67.99  | 0.10 | 10.19  | 0.47  |
| 9   | 0.41     | 0.14   | 0.02   | 1.20  | 0.35     | 152.21 | 0.09 | 8.74   | 0.14  |
| 10  | -1.13    | -0.35  | 0.12   | 1.05  | 0.30     | 139.83 | 0.08 | 8.37   | -0.35 |
| 11  | 0.67     | 0.23   | 0.06   | 1.19  | 0.34     | 151.47 | 0.10 | 9.93   | 0.23  |
| 12  | 1.29     | 0.25   | 0.06   | 1.03  | 0.31     | 150.79 | 0.04 | 3.82   | 0.25  |
| 13  | 1.19     | 0.35   | 0.12   | 1.07  | 0.30     | 149.79 | 0.08 | 8.40   | 0.35  |

### Influência das Observações

- · Diversos métodos disponíveis:
  - **Cook's Distance**: variação na possibilidade de valores que uma parâmetro pode assumir, uma vez que o caso *i* seja excluído.
  - **Hatvalues**: influência de cada caso *i* na estimativa do parâmetro de interesse.

| ids | rstudent | dffits | cook.d | cov.r | tau2.del | QE.del | hat  | weight | dfbs  |
|-----|----------|--------|--------|-------|----------|--------|------|--------|-------|
| 1   | -0.22    | -0.04  | 0.00   | 1.12  | 0.34     | 151.58 | 0.05 | 5.06   | -0.04 |
| 2   | -1.29    | -0.34  | 0.11   | 1.01  | 0.29     | 145.32 | 0.06 | 6.36   | -0.35 |
| 3   | -0.75    | -0.16  | 0.03   | 1.07  | 0.32     | 150.20 | 0.04 | 4.44   | -0.16 |
| 4   | -1.45    | -0.52  | 0.23   | 0.97  | 0.26     | 96.56  | 0.10 | 9.70   | -0.51 |
| 5   | 0.85     | 0.27   | 0.08   | 1.14  | 0.33     | 151.32 | 0.09 | 8.87   | 0.27  |
| 6   | -0.12    | -0.02  | 0.00   | 1.24  | 0.36     | 128.19 | 0.10 | 10.10  | -0.02 |
| 7   | -1.30    | -0.34  | 0.11   | 1.01  | 0.29     | 145.83 | 0.06 | 6.03   | -0.34 |
| 8   | 1.45     | 0.48   | 0.20   | 1.00  | 0.27     | 67.99  | 0.10 | 10.19  | 0.47  |
| 9   | 0.41     | 0.14   | 0.02   | 1.20  | 0.35     | 152.21 | 0.09 | 8.74   | 0.14  |
| 10  | -1.13    | -0.35  | 0.12   | 1.05  | 0.30     | 139.83 | 0.08 | 8.37   | -0.35 |
| 11  | 0.67     | 0.23   | 0.06   | 1.19  | 0.34     | 151.47 | 0.10 | 9.93   | 0.23  |
| 12  | 1.29     | 0.25   | 0.06   | 1.03  | 0.31     | 150.79 | 0.04 | 3.82   | 0.25  |
| 13  | 1.19     | 0.35   | 0.12   | 1.07  | 0.30     | 149.79 | 0.08 | 8.40   | 0.35  |

### Influência das Observações

- · Diversos métodos disponíveis:
  - Weights: peso de cada estudo no modelo (em %) (pouco relevante se você explicitamente determinou os pesos à serem usados).
  - **Covariance Ratio**: efeito do caso *i* na variânca do modelo (valores > 1 indicam que estudo aumenta variância do modelo).

| ids | rstudent | dffits | cook.d | cov.r | tau2.del | QE.del | hat  | weight | dfbs  |
|-----|----------|--------|--------|-------|----------|--------|------|--------|-------|
| 1   | -0.22    | -0.04  | 0.00   | 1.12  | 0.34     | 151.58 | 0.05 | 5.06   | -0.04 |
| 2   | -1.29    | -0.34  | 0.11   | 1.01  | 0.29     | 145.32 | 0.06 | 6.36   | -0.35 |
| 3   | -0.75    | -0.16  | 0.03   | 1.07  | 0.32     | 150.20 | 0.04 | 4.44   | -0.16 |
| 4   | -1.45    | -0.52  | 0.23   | 0.97  | 0.26     | 96.56  | 0.10 | 9.70   | -0.51 |
| 5   | 0.85     | 0.27   | 0.08   | 1.14  | 0.33     | 151.32 | 0.09 | 8.87   | 0.27  |
| 6   | -0.12    | -0.02  | 0.00   | 1.24  | 0.36     | 128.19 | 0.10 | 10.10  | -0.02 |
| 7   | -1.30    | -0.34  | 0.11   | 1.01  | 0.29     | 145.83 | 0.06 | 6.03   | -0.34 |
| 8   | 1.45     | 0.48   | 0.20   | 1.00  | 0.27     | 67.99  | 0.10 | 10.19  | 0.47  |
| 9   | 0.41     | 0.14   | 0.02   | 1.20  | 0.35     | 152.21 | 0.09 | 8.74   | 0.14  |
| 10  | -1.13    | -0.35  | 0.12   | 1.05  | 0.30     | 139.83 | 0.08 | 8.37   | -0.35 |
| 11  | 0.67     | 0.23   | 0.06   | 1.19  | 0.34     | 151.47 | 0.10 | 9.93   | 0.23  |
| 12  | 1.29     | 0.25   | 0.06   | 1.03  | 0.31     | 150.79 | 0.04 | 3.82   | 0.25  |
| 13  | 1.19     | 0.35   | 0.12   | 1.07  | 0.30     | 149.79 | 0.08 | 8.40   | 0.35  |

### Influência das Observações

- · Diversos métodos disponíveis:
  - $\tau^2$ : heterogeneidade entre estudos (between-study variance) quando o caso *i* é excluído.
  - **QE**: heterogeneidade residual quando caso *i* é excluído (veremos mais sobre QE a seguir).

| ids    | rstudent       | dffits         | cook.d       | cov.r        | tau2.del     | QE.del           | hat  | weight       | dfbs           |
|--------|----------------|----------------|--------------|--------------|--------------|------------------|------|--------------|----------------|
| 1      | -0.22          | -0.04          | 0.00         | 1.12         | 0.34         | 151.58           | 0.05 | 5.06         | -0.04          |
| 2<br>3 | -1.29<br>-0.75 | -0.34<br>-0.16 | 0.11<br>0.03 | 1.01<br>1.07 | 0.29<br>0.32 | 145.32<br>150.20 | 0.06 | 6.36<br>4.44 | -0.35<br>-0.16 |
| 4      | -1.45          | -0.52          | 0.23         | 0.97         | 0.26         | 96.56            | 0.10 | 9.70         | -0.51          |
| 5      | 0.85           | 0.27           | 0.08         | 1.14         | 0.33         | 151.32           | 0.09 | 8.87         | 0.27           |
| 6      | -0.12          | -0.02          | 0.00         | 1.24         | 0.36         | 128.19           | 0.10 | 10.10        | -0.02          |
| 7      | -1.30          | -0.34          | 0.11         | 1.01         | 0.29         | 145.83           | 0.06 | 6.03         | -0.34          |
| 8      | 1.45           | 0.48           | 0.20         | 1.00         | 0.27         | 67.99            | 0.10 | 10.19        | 0.47           |
| 9      | 0.41           | 0.14           | 0.02         | 1.20         | 0.35         | 152.21           | 0.09 | 8.74         | 0.14           |
| 10     | -1.13          | -0.35          | 0.12         | 1.05         | 0.30         | 139.83           | 0.08 | 8.37         | -0.35          |
| 11     | 0.67           | 0.23           | 0.06         | 1.19         | 0.34         | 151.47           | 0.10 | 9.93         | 0.23           |
| 12     | 1.29           | 0.25           | 0.06         | 1.03         | 0.31         | 150.79           | 0.04 | 3.82         | 0.25           |
| 13     | 1.19           | 0.35           | 0.12         | 1.07         | 0.30         | 149.79           | 0.08 | 8.40         | 0.35           |

### Influência das Observações

- · Algumas diretrizes para considerar estudos influentes (n = graus de liberdade, p = número de coeficientes no modelo, k = número de estudos):
  - dffits >  $3\sqrt{\frac{p}{k-p}}$
  - dfbetas > 1
  - Cook's Distance corta mais que 50% da área da cauda de uma distribuição  $\chi^2$  com n graus de liberdade;
  - Hatvalues >  $3\frac{p}{k}$
- · Estas diretrizes não são uma receita de bolo, e julgamento crítico dos valores deve ser exercitado.

· O output de um modelo de meta-análise: parte a parte.

#### model1

```
## Random-Effects Model (k = 13; tau^2 estimator: REML)
## tau^2 (estimated amount of total heterogeneity): 0.3132 (SE = 0.1664)
## tau (square root of estimated tau^2 value):
                                                 0.5597
## I^2 (total heterogeneity / total variability):
                                                 92.22%
## H^2 (total variability / sampling variability): 12.86
##
## Test for Heterogeneity:
## Q(df = 12) = 152.2330, p-val < .0001
##
## Model Results:
## estimate
                       zval pval
                                       ci.lb ci.ub
                se
## -0.7145 0.1798 -3.9744 <.0001 -1.0669 -0.3622
                                                          ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

#### Estimativas do Modelo

| estimate | se   | zval   | pval | ci.lb  | ci.ub  |
|----------|------|--------|------|--------|--------|
| -0.715   | 0.18 | -3.974 | 0    | -1.067 | -0.362 |

- · Estimate: é a estimativa do efeito que você está interessado.
- **SE**: é o valor do erro associado à estimativa do efeito (utilizado para os testes de significância e cálculo do intervalo de confiança).
- · zval: valor do teste estatístico deste termo no modelo.
- **pval**: valor de *p* para o teste estatístico.
- CI: intervalo de confiança inferior (ci.lb) e superior (ci.lb) da estimativa do efeito.

#### Variância dos Random-Effects

| estimate | se   | zval   | pval | ci.lb  | ci.ub  | tau2  | se.tau2 |
|----------|------|--------|------|--------|--------|-------|---------|
| -0.715   | 0.18 | -3.974 | 0    | -1.067 | -0.362 | 0.313 | 0.166   |

 $<sup>\</sup>tau^2$ : variância entre estudos (between-study variance) e erro associado à esta estimativa (se.tau2).

- ·  $\tau^2$  é estimado por REML, por conta disso, possui um erro associado à ela.
- · Você pode verificar o ajuste de  $\tau^2$  com o log-likelihood usando a função profile.rma.uni: deve haver um pico no gráfico.

#### Testes de Heterogeneidade

- Uma estimativa de heterogeneidade na meta-análise é dada pela estatística Q, medida de forma similar à soma dos quadrados em uma ANOVA.
- · A heterogeneidade total em um modelo de meta-análise é denotado por Q<sub>TOTAL</sub> ou Q<sub>T</sub>.
- $Q_T$  é a estatística de teste da hipótese nula ( $H_0$ ) de que todos os estudos formam uma amostra homogênea de uma população com efeito real  $\mu$  isto é, não existe heterogeneidade nos estudos.
  - Aceita H<sub>0</sub>: não existe heterogeneidade;
  - Rejeita H<sub>0</sub>: existe evidência de heterogeneidade nos estudos.
- ·  $Q_T$  é testado com base em uma distribuição do  $\chi^2$  com k 1 graus de liberdade.
- · Importante (mais sobre esses tópicos à seguir):
  - Q<sub>T</sub> representa a heterogeneidade oriunda da varibilidade de dentro (within-study variance) dos estudos em um fixed-effects model, e variabilidade oriunda de dentro (within-study variance) e entre (between-study variance) os estudos em um random-effects model.
  - Q<sub>T</sub> não deveria ser estatisticamente significativo em um random-effects model, pois toda a heterogeneidade adicional está sendo 'jogada' para a variabilidade entre estudos.

#### Testes de Heterogeneidade

- · No output que estamos trabalhando, o valor de Q não representa o valor de  $Q_T$ , mas sim o de Q causado por variância dentro dos estudos ( $Q_E$ ).
- · A estatística Q não é comparável entre meta-análises e, por ser uma análise estatística, seu poder depende da quantidade de estudos incluídos.
- ' Uma alternativa complementar de medida de heterogeneidade é o l<sup>2</sup>, que quantifica a porcentagem total da heterogeneidade que pode ser atribuído à variabilidade entre estudos.

$$I^2$$
:  $max$  (100 x  $\frac{Q_T - (K-1)}{Q_T}$ , 0) (onde K é o número de estudos/graus de liberdade)

| estimate | se   | zval   | pval | ci.lb  | ci.ub  | tau2  | se.tau2 | QE      | QEp | 12     |
|----------|------|--------|------|--------|--------|-------|---------|---------|-----|--------|
| -0.715   | 0.18 | -3.974 | 0    | -1.067 | -0.362 | 0.313 | 0.166   | 152.233 | 0   | 92.221 |

### Testes de Heterogeneidade

\* Por fim, H<sup>2</sup> é uma outra métrica complementar de heterogeneidade que representa o quanto cada estudo está contribuindo para a heterogeneidade do do modelo.

$$H^2$$
:  $\frac{Q_T}{K-1}$ 

| estimate | se   | zval   | pval | ci.lb  | ci.ub  | tau2  | se.tau2 | QE      | QEp | 12     | H2     |
|----------|------|--------|------|--------|--------|-------|---------|---------|-----|--------|--------|
| -0.715   | 0.18 | -3.974 | 0    | -1.067 | -0.362 | 0.313 | 0.166   | 152.233 | 0   | 92.221 | 12.856 |

## Diagnóstico do Modelo: Mixed-effects model

```
(model2 <- rma(yi = yi, vi = vi, data = dat, mods = ~ ablat))</pre>
## Mixed-Effects Model (k = 13; tau^2 estimator: REML)
## tau^2 (estimated amount of residual heterogeneity):
                                                          0.0764 \text{ (SE} = 0.0591)
## tau (square root of estimated tau^2 value):
                                                          0.2763
## I^2 (residual heterogeneity / unaccounted variability): 68.39%
## H^2 (unaccounted variability / sampling variability):
                                                          3.16
## R^2 (amount of heterogeneity accounted for):
                                                          75.62%
##
## Test for Residual Heterogeneity:
## QE(df = 11) = 30.7331, p-val = 0.0012
##
## Test of Moderators (coefficient(s) 2):
## OM(df = 1) = 16.3571, p-val < .0001
## Model Results:
##
           estimate
                         se
                                zval
                                        pval
                                                ci.lb ci.ub
## intropt 0.2515 0.2491 1.0095 0.3127 -0.2368 0.7397
## ablat -0.0291 0.0072 -4.0444 <.0001 -0.0432 -0.0150 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

#### Estimativas do Modelo

- · Note algumas diferenças no modelo de meta-regressão (mixed-effects model):
  - Você agora recebe um valor para o intercepto e slope do efeito da latitude;
  - <sup>-</sup> Assim como em um regressão, você tem acesso à uma estimativa de R<sup>2</sup> (explicação do modelo);
  - O output agora te dá uma estimativa de QM (ou  $Q_b$ , between-study variance) e QE (ou  $Q_w$ , within-study variance);
  - Todas as estimativas de variabilidade não explicada caíram:  $\tau^2$ ,  $I^2$  e  $Q^2$ .

| modelo                                                             | variav  | el  | estin               | nate       | S   | e        | zval  | pval  | ci.lk                         | ci.u  | np                 |
|--------------------------------------------------------------------|---------|-----|---------------------|------------|-----|----------|-------|-------|-------------------------------|-------|--------------------|
| random-effects model<br>mixed-effects model<br>mixed-effects model | Intecep | oto | -0.7<br>0.2<br>-0.0 | 51         | 0.2 | 249      | 1.009 | 0.313 | 0 -1.06<br>3 -0.23<br>0 -0.04 | 7 0.7 | 40                 |
| tipo                                                               | tau2    | se. | tau2                | QN         | 1   | QM       | lp    | QE    | QEp                           | 12    | H2                 |
| random-effects model<br>mixed-effects model                        |         | ٠.  | 166<br>059          | NA<br>16.3 | •   | N.A<br>0 |       |       |                               |       | 112.856<br>3 3.164 |

#### Testes de Heterogeneidade

- · QE está testando a hipótese nula de que não existe heterogeneidade nos estudos hipótese esta rejeitada no nosso exemplo.
- · QM está testando a significância dos termos no modelo, e não do modelo todo.

```
##
##
## Test of Moderators (coefficient(s) 2):
## QM(df = 1) = 16.3571, p-val < .0001</pre>
```

· A significância do modelo como um todo é dado por:

```
anova(model2, btt = c(1,2)) # o teste fala quais coeficientes estão sendo testados ## ## Test of Moderators (coefficient(s) 1,2): ## QM(df = 2) = 54.6601, p-val < .0001
```

```
(model3 <- rma(yi = yi, vi = vi, data = dat, mods = ~ alloc))</pre>
## Mixed-Effects Model (k = 13; tau^2 estimator: REML)
## tau^2 (estimated amount of residual heterogeneity):
                                                         0.3615 (SE = 0.2111)
## tau (square root of estimated tau^2 value):
                                                          0.6013
## I^2 (residual heterogeneity / unaccounted variability): 88.77%
## H^2 (unaccounted variability / sampling variability):
                                                          8.91
## R^2 (amount of heterogeneity accounted for):
                                                         0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 10) = 132.3676, p-val < .0001
##
## Test of Moderators (coefficient(s) 2,3):
## OM(df = 2) = 1.7675, p-val = 0.4132
## Model Results:
##
##
                   estimate
                                                      ci.lb ci.ub
                                 se
                                        zval
                                                pval
## intrcpt
                  -0.5180 0.4412 -1.1740 0.2404 -1.3827 0.3468
## allocrandom
                  -0.4478 0.5158 -0.8682 0.3853 -1.4588 0.5632
## allocsystematic
                    0.0890 0.5600
                                    0.1590 0.8737 -1.0086 1.1867
##
## ___
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- · Com moderadores categóricos, QM está medindo a diferença estatístico entre o intercepto e cada um dos níveis do moderador par-a-par:
  - Quem é o intercepto?
  - O que representam estas diferenças então?

- Existe diferença entre os níveis do moderador, mas esta diferença é mascarada pelo padrão que o metafor assume.
- · Uma alternativa é remover o intercepto do modelo: se cada nível do moderador é diferente de 0.
- · Outra opção é reordernar os níveis do fator, determinando qual você quer que seja considerado com o 'intercepto' (especialmente útil se você tem hipóteses pré-definidas à serem testadas).
- · Este problema é menor quando o moderador possui apenas 2 níveis.

model4 <- rma(yi = yi, vi = vi, data = dat, mods = ~ alloc - 1) # removendo o intercepto

| variavel              | estimate | se    | zval   | pval  | ci.lb  | ci.ub  |
|-----------------------|----------|-------|--------|-------|--------|--------|
| Allocation.Alternate  | -0.518   | 0.441 | -1.174 | 0.240 | -1.383 | 0.347  |
| Allocation.Random     | -0.966   | 0.267 | -3.614 | 0.000 | -1.490 | -0.442 |
| Allocation.Systematic | -0.429   | 0.345 | -1.243 | 0.214 | -1.105 | 0.247  |

· A função anova pode ser usada para fazer comparações par-a-par e até mesmo contrastes.

```
anova(model4, L = c(1, -1, 0)) # "Allocation.Alternate" vs "Allocation.Random"

##
## Hypothesis:
## 1: allocalternate - allocrandom = 0
##
## Results:
## estimate se zval pval
## 1: 0.4478 0.5158 0.8682 0.3853
##
## Test of Hypothesis:
## QM(df = 1) = 0.7537, p-val = 0.3853
```

· A função anova pode ser usada para fazer comparações par-a-par e até mesmo contrastes.

```
anova(model4, L = c(1, -2, 1)) # "Allocation.Alternate" + "Allocation.Systematic" vs "Allocation.Random"

##
## Hypothesis:
## 1: allocalternate - 2*allocrandom + allocsystematic = 0

##
## Results:
## estimate se zval pval
## 1: 0.9847 0.7742 1.2719 0.2034
##
## Test of Hypothesis:
## QM(df = 1) = 1.6178, p-val = 0.2034
```

### Moderadores Categóricos e Contínuos

· Efeito principal dos dois moderadores.

rma(yi = yi, vi = vi, data = dat, mods = ~ alloc + ablat)

| variavel              | estimate | se    | zval   | pval  | ci.lb  | ci.ub  |
|-----------------------|----------|-------|--------|-------|--------|--------|
| Intercepto            | 0.293    | 0.405 | 0.724  | 0.469 | -0.501 | 1.087  |
| Allocation.Random     | -0.267   | 0.350 | -0.763 | 0.445 | -0.954 | 0.419  |
| Allocation.Systematic | 0.058    | 0.380 | 0.154  | 0.878 | -0.685 | 0.802  |
| Latitude              | -0.027   | 0.009 | -2.965 | 0.003 | -0.045 | -0.009 |

### Moderadores Categóricos e Contínuos

· Efeito principal e interação entre os dois moderadores.

rma(yi = yi, vi = vi, data = dat, mods = ~ alloc \* ablat)

| variavel                       | estimate | se    | zval   | pval  | ci.lb  | ci.ub |
|--------------------------------|----------|-------|--------|-------|--------|-------|
| Intercepto                     | 0.021    | 0.803 | 0.026  | 0.979 | -1.552 | 1.594 |
| Allocation.Random              | 0.007    | 0.969 | 0.007  | 0.994 | -1.892 | 1.906 |
| Allocation.Systematic          | 0.471    | 1.271 | 0.371  | 0.711 | -2.021 | 2.963 |
| Latitude                       | -0.018   | 0.024 | -0.766 | 0.444 | -0.065 | 0.029 |
| Allocation.Random:Latitude     | -0.010   | 0.028 | -0.352 | 0.725 | -0.064 | 0.045 |
| Allocation.Systematic:Latitude | -0.012   | 0.039 | -0.319 | 0.750 | -0.089 | 0.064 |

### Moderadores Categóricos e Contínuos

· Moderador categórico conforme modificado pelo contínuo.

```
rma(yi = yi, vi = vi, data = dat, mods = ~ alloc : ablat - 1)
```

| variavel                       | estimate | se    | zval   | pval  | ci.lb  | ci.ub  |
|--------------------------------|----------|-------|--------|-------|--------|--------|
| Allocation.Alternate:Latitude  | -0.018   | 0.008 | -2.370 | 0.018 | -0.033 | -0.003 |
| Allocation.Random:Latitude     | -0.027   | 0.005 | -5.769 | 0.000 | -0.036 | -0.018 |
| Allocation.Systematic:Latitude | -0.017   | 0.007 | -2.446 | 0.014 | -0.031 | -0.003 |

### metafor



### Resumindo

- · Independente do tipo de modelo que você escolher para trabalhar, é essencial que você garanta que o modelo cumpre com o que ele promete.
- · Existem diversos testes disponíveis para a validação dos modelos de meta-análise, muitos dos quais são similares aos usados em outros tipos de modelos estatísticos.
- · Após validar o modelo, você pode fazer o diagnóstico do mesmo, identificando a fonte de heterogeneidade nele e explorando esta heterogeneidade com moderaadores.
- · O metafor tem muitas funcionalidades que você pode usar nesta etapa sugiro que você explore o site do projeto, para se familiarizar com aquilo que será mais importante no seu trabalho.

### Literatura Recomendada

- 1. Adams et al, 1997, Ecology, Resampling tests for meta-analysis of ecological data
- 2. Nakagawa & Santos, 2012, Evol Ecol, Methodological issues and advances in biological meta-analysis
- 3. Harrison, 2011, Methods Ecol Evol, Getting started with meta-analysis
- 4. Rosenberg, 2013, Moment and least-squares based approaches to meta-analytic inference, In: Handbook of meta-analysis in ecology and evolution (Capítulo 9)
- 5. Viechtbauer, 2010, J Stat Soft, Conducting meta-analyses in R with the metafor package
- 6. Dúvidas gerais e dicas para o uso do metafor: http://www.metafor-project.org/doku.php/tips