

BUSINESS SCHOOL

MGMT5504

SEMESTER 2 2022- LECTURE 2

What Does Statistics Mean?

→ Descriptive statistics

Collecting, presenting and describing data

- E.g., number of people, trends in employment
- Numerical and graphical tools

> Inferential statistics

Make an inference (draw conclusions and/or make decisions) about a population from a sample

- Population Parameter vs Sample Statistics
- Estimation
- Hypothesis testing

Sampling Method

Probability Sampling

Simple Random sampling

Stratified Random sampling

Cluster sampling

Non-probability Sampling

Snowball sampling

Convenience sample

Types of Data/Variables

- ∠ Cross-sectional and timeseries/longitudinal
- ∠ Categorical nominal, ordinal
- ∠ Continuous/Numerical interval, ratio

Descriptive Analysis-graphic analysis

Example 1: Categorical variable

Weather	Days in Feb
Cloudy	1
Rainy	20
Sunny	7

Example 2: Categorical variable

Adidas's net sales by region (millions of euros)

Region	2000	2009
Europe	2860	4384
North America	1906	2360
Aisa	875	2614
Latin America	171	1006
Total	5812	10364

Adidas's net sale by region, 2000

Adidas's net sale by region, 2009

Example: Quantitate variable

House sales prices in Warrnambool, 2014

349	435	525	315
349	399.9	229	335
299	331.1	331.1	480
330	299.9	339	239
289.9	375	399.9	330
629	315	695	209
595	355	355	519
339.9	385	329	520
595	449.9	499.9	399.9

Difference between Categorical and quantitative data

Stem and Leaf Diagram

- A simple way to see distribution details for quantitative data
- Separate the sorted data series into leading digits (stem) and trailing digits (leaves)
- ∠ List all stems from low to high
- y For each stem, list all associated leaves

 y € 1. The stem is a second to the stem is a second
- Example: 12, 13, 17, 21, 24, 26, 27, 28, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58

Stem	Le	ave	es				
1		3					
2	1	4	4	6	7	8	
3		2					
4	1	3	4	6			
5	3	8					

Numbers, numbers...

☐ Go to www.menti.com and enter the code 5122 0377

Descriptive Statistics

- ☑ Central tendency
 - Mean
 - Median
 - Mode
 - Percentile
 - Quartile

- → Measures of dispersion
 - Range
 - Variance and standard deviation
 - Coefficient of variation

$$= \frac{standard\ deviation}{mean}$$

Calculation for central location

 \triangle Mode = 40,000

 \triangleright Percentile (p^{th} percentile)

$$L_p = (n+1)\frac{p}{100}$$

$$L_{50} = (7+1)\frac{50}{100} = 4$$
, thus Median=\$90,000

□ Quartile (25th percentile, 50th percentile, 75th percentile)

$$L_{25} = (7+1)\frac{25}{100} = 2$$
, thus 1st Quartile=\$40,000

$$L_{50} = (7+1)\frac{50}{100} = 4$$
, thus 2nd Quartile=\$90,000

$$L_{75} = (7+1)\frac{75}{100} = 6$$
, thus 3rd Quartile=\$150,000

Title	Salary (\$)
Administrative assistant	40,000
Research assistant	40,000
Computer programmer	65,000
Senior research associate	90,000
Senior sales associate	145,000
Chief financial officer	150,000
President (and owner)	550,000

Question: Calculate and interpret the 60^{th} percentile salary of employees. $L_{60}=4.8$, thus 60% of employees' salary is below \$134,000

Box-Whisker plot

- ∠ Minimum
- → 1st Quartile
- ✓ Median (2nd Quartile)
- → 3rd Quartile
- ☑ Maximum

To determine the outlier

Smaller than 1.5×Interquartile Range below the 1st Quartile, OR

Larger than 1.5×Interquartile Range above the 3rd Quartile

Where Interquartile range (IQR)= Value of 3rd Quartile – Value of 1st Quartile

Calculation for measures of dispersion

- Range=max value-min value =\$550,000-\$40,000=\$510,000
- Variance and standard deviation

Variance for sample:
$$s^2 = \frac{\sum (X_i - \overline{X})^2}{n-1}$$

Variance for population:
$$\sigma^2 = \frac{\sum (X_i - \mu)^2}{N}$$

Title	Salary (\$)
Administrative assistant	40,000
Research assistant	40,000
Computer programmer	65,000
Senior research associate	90,000
Senior sales associate	145,000
Chief financial officer	150,000
President (and owner)	550,000

$$\sigma^2 = \frac{(40000 - 154286)^2 + (40000 - 154286)^2 + (65000 - 154286)^2 + \dots + (550000 - 154286)^2}{7}$$
=27845918367

Standard deviation: $\sigma = \sqrt{\sigma^2} = 166870$

Empirical Rule

Symmetric and bell-shaped distribution:

68% of observations fall in the interval $\mu \pm \sigma$

95% of observations fall in the interval $\mu \pm 2\sigma$

99.7% of observations fall in the interval $\mu \pm 3\sigma$

Example: 280 students in one lecture class with a mean sore 74 and a standard deviation of 8 (assuming distribution is symmetric and bell-shaped).

- 1. Approximately how many students scored between 58 and 90?
- 2. Approximately how many students scored more than 90?

7	To summarise qualitative data the suitable graphical tools to use are
7	For a relatively symmetric and bell-shaped distribution, approximately of all observations fall in the interval including 2 standard deviations from the mean.
7	Range = difference between and
7	To display a relationship between two variables one can use
Z	is a relative measure of dispersion.

You are given the following parameters for two populations:

 $\mu 1 = 700$ $\mu 2 = 29,000$

Which population has data values more variable relative to the size of population mean?

Apply the empirical rule to find out:

68% R: [700-150,700+150]

95% R: [700-2*150, 700-2*150]

99.7% R: [250,1150]

Break

