Anonymization

27 October 2019 13:29

Pseudonymization:

- secret function to map direct identifiers
- can approximate polynomials
- use cryptographic hash instead
 - o can be broken using lookup table
 - with guessing of hash function
 - length of original direct id
 - o assume hash function known:
 - o add salt to original direct identifier
 - Salt: fixed string of arbitrary length (but long!) that is added to the identifier before hashing it -must be kept a secret

Sensitive information: trying to protect

Identifier: directly identifies a person

Quasi-identifier:

- · does not directly identify a person
- multiple taken together could uniquely identify a person

Auxiliary information: information known to an attacker

Uniqueness w.r.t A:

 fraction of the dataset that is uniquely identified by the set of A of quasi-identifiers

k-anonymous:

 every record in the table is indistinguishable from at least k-1 other records, with respect to every set of quasi identifiers

Equivalence class:

 set of records that have the same values for all the quasi-identifiers

Achieving k-anonymity:

- Non-perturbative methods
 - generalization replace attribute values with more general ones
 - e.g. 43221 -> 4322* -> 43***
 - Suppression: delete a column or row
- Perturbative methods
 - o add noise
 - data swapping
 - swap attributes between individuals

Homogeneity attacks:

- individuals in the same equivalence class all have the same sensitive attribute value
- prevention: $\ell Diversity$
 - \circ an equivalence class is ℓ -diverse if it contains at least ℓ distinct values for the sensitive attributes
 - \circ a table is ℓ -diverse if every equivalence class is ℓ -diverse

Semantic attacks:

• sensitive attributes of individuals in an equivalence class are distinct but *semantically* similar

Skewness attacks:

• the distribution of sensitive attributes in a class in skewed

t-closeness:

- distance between the distribution of a sensitive attribute in the equivalence class and the distribution of this attribute in the whole table in nor more than a threshold t
- table has t-closeness if all classes have t-closeness

Big Data Anonymization

27 October 2019

13:30

- no sensitive attribute
- no quasi-identifier

Unicity ϵ_n :

 average fraction of the users in the dataset that are uniquely identified by p random points

Estimating unicity:

- Random set on N users
- for u in users
 - o draw **p** points at random
 - o is the trace unique?

Reducing with generalization:

- coarsen the data by reducing resolution
- helps, but is not sufficient

Matching Attacks:

- auxiliary info might not directly match data
 - o noise, missing, multiple matches
- between two datasets
 - Anonymized dataset
 - Dataset with direct identifiers
- Rely on
 - o measure of *distance* between two points
 - o linking algorithm

Matching attack: location data

- Assumption number of actions a user performs in a region at a time interval: $A(u, l, t) \sim Po(\lambda_{l,t})$
- Location anonymized
- Actions directly identifiable
- Step 1:
 - \circ for each u_{DI} and v_{anon} compute a **score**
- Step 2:
 - Compute max weight matching between U and V users, using Hungarian Algorithm
- Step 3:
 - An edge for user U_{DI} is only considered a match if it is **significant** ($score > \epsilon * \sigma_{Udi\ edges}$)

Profiling Attacks:

- Identifying users in an anonymous dataset using an identified dataset collected at a different time
- Step 1:
 - Extract a profile of the user in the identified dataset
 - o through a profiling distance/algorithm
 - Jensen-Shannon divergence
 - Dot product
 - Cosine similarity
 - *L*₁
- Step 2:
 - Compare the profiles of known users to users in the anonymous dataset
 - o to identify them using a linking algorithm
 - 1. Compute histograms in both datasets
 - 2. Compute the distance between each pair of histograms
 - 3. Use Hungarian algorithm to fin the max weight matching
 - 1) same condition for 'good' match

Query-Based Systems

07 November 2019 12:53

QBS:

- Don't share the database.
- Provide aggregates for statistical purposes
 - o e.g. counting queries
- Just QBS
 - o Susceptible to uniqueness attacks

Query Size Reduction:

- Query set must be over a certain threshold
- If not, don't return value
- Susceptible to intersection attacks

Bounded Noise Addition:

- Perturb output of every query
- If adding non biased noise

$$\circ \ \tilde{A} = A + [-N, +N]$$

$$\circ E(\tilde{A}) = A$$

- Attacker Knows the bound
 - Calc diff between two queries
 - Make use of unique Aux info
 - Figure out *A* and *A*
- Groups
 - o If Group share a secret attribute
 - Can find out the value of the secret

Unbounded:

- Solves above two issues
- Centered at 0 don't introduce bias
- Bayes' Theorem

$$\circ P[A = x | \tilde{A} = 0]
= \frac{P[\tilde{A} = 0 | A = x] * P[A = x]}{P[\tilde{A} = 0]}$$

- Averaging Attacks
 - o CLT
 - Bayes' also gives posterior distribution
 - Required number of queries:

$$n \geq 4\sigma^2 z_\alpha^2$$

$$z_{0.05} = 1.96, z_{0.01} = 2.58$$

- Defend
 - Add consistent noise
 - Cache query return cached value
 - Seeded PRNG
- Get around defense
 - Semantic averaging attacks
 - Logically Equivalent Query but expressed differently

Diffix:

- Sticky noise
 - For each condition
 - Add static
 - Random value
 - Seeded
 - \Box hash(C, salt)
 - Add dynamic
 - Seed hash
 - □ Static seed
 - ☐ Unique ID of all conditions in the Query
- Bucket Suppression (QSR)
 - o Dynamic, noisy threshold
 - If $Q(D) \le 1 \rightarrow suppress$
 - \circ Else $T \sim N(4, 0.5)$
 - Seeded hash
 - Salt and UID of C in Q
 - Suppress if Q(D) < T
- Split Averaging Attacks
 - o Pair of Semantically same query
 - Across Range of an attribute
 - Average these to get desired
- Diffix blocks by having static on each condition

Differential Privacy

12 November 2019 13:28

$$1 - \epsilon \leq \frac{\Pr(output = y \mid x \in D)}{\Pr(output = y \mid x \notin D)} \leq 1 + \epsilon$$

Neighboring Dataset:

• D1 neighbors D2 if they differ by only one row

Formal DP:

•
$$Pr(M(D) = y) \le e^{\epsilon} Pr(M(D') = y)$$

• $e^{\pm \epsilon} \approx 1 + \epsilon$

Hard to protect against group attacks with DP

• Scale with group size $(k\epsilon)$

Achieving DP:

•
$$f_X(x|\mu, b) = \frac{1}{2b} exp\left(-\frac{|x-\mu|}{b}\right)$$

 $\sigma = 2b^2$

Like a sharper Gaussian

•
$$Lap(b) = f_X(x|0,b)$$

• For one query

 \circ Add $Lap(1/\epsilon)$

Protect against Averaging attacks - Composability:

- Releasing output of any two queries protected by $\epsilon-DP$
- Same as releasing one query protected by ϵDP

Privacy Budget

- Add $Lap(1/\epsilon_i)$ to Q_i
- With the constraint: $\epsilon = \sum_{i=1}^{n} \epsilon_{i}$

Optimizing DP: **Histograms** (counts):

- Add $Lap(1/\epsilon)$ to every bucket, as opposed to multiple queries
 - Since a user only contributes to one bucket
 - Don't need to split budget

Optimizing DP Function Sensitivity:

- Global sensitivity of a function f
 - $\circ \Delta f = \max |f(D) f(D')|$ (for any D and D')
- Add noise $Lap\left(\frac{\Delta f}{\epsilon}\right)$

Local DP:

- User gives randomizes response
- $\Pr(M(r_1) = r) \le e^{\epsilon} \Pr(M(r_2) = r)$

Computing on Encrypted Data

01 December 2019 20:49

Secure Multi-Party Computation:

- Private inputs
- Jointly compute over a function
- One or more decrypt output

Multiparty Addition Protocol

- Split shares
- Send to parties not named in share
- Broadcast partial sums

Yao's Millionaire problem:

$$Z[i] = Priv_A(Pub_A(r_{bsecret} - b) + i) \mod p_{rand}$$

- z[i] += 1 for i > a
- Z values all differ by at least 2 from each other
 - So that post increment they differ by at least 1

Honest but curious

- Follows protocol but opportunistic (can collude)

Malicious

- Deviates from protocol (can collude)

Asynchronous Communication

- Results sent asynchronously

Fair

- Secure against not forwarding last message

Oblivious Transfer Protocol (1 from 2):

- A->B Two public keys
- B choses one, and send symmetric K
- A decrypts twice, sends $K(m1), K_{bad}(m2)$
 - o Other way round if B chose 2nd pubA
- Bob decrypts, with K, same choice

Yao Garbled Gates (B doesn't know gate function)

- A create two random keys for each wire
- A computes truth table, sends shuffled one to B
- A sends choice of A keys to B, (A inputs)
- Using an OT, B selects a KBX for each wire
- A tells B final K mappings
- k[w, 0]p[w] encrypts a 0
- k[w, 1]not p[w] encypts a 1
- Permute bits index the table
- Perform gate on encoded values
- Selects new permute
- B just index's and is told what keys to use to decrypt

One Time Memory:

- Store secret KO and K1
- Select with input
- Third bit, x, says if used

One Time Program:

- Convert to Yao Garbled Circuit
- Use OTM to store k[]'s

Extending Yao to two circuits:

- Want to compute $f_B(a, b)$ as well as $f_A(a, b)$
- B computes
- $f(a,b,k) = k \oplus f_A(a,b) f_B(a,b)$
- B sends first part to A
- A decrypts by XOR'ing with secret bit k

Computing on Untrusted Servers

03 December 2019 15:43

CryptDB:

- encrypt query
- Query made on encrypted data
- · results decrypted
- Onions of Encryptions
 - o multiple layers of encryption
 - CryptDB has different onions for different operators
 - an attribute might have multiple onioned values depending on application
- based on secret key shared by clients
 - (decrypt results)
- hard to remove a user

Proxy-based encryption:

- Key server generates a master RSA key par
 - \circ (e,n),(d,n)
- For each user
 - o a pair for user (e1, n), (d1, n)
 - o a pair sent to DB server (e2, n), (d2, n)
 - $\circ e1 * e2 = e \mod (p-1)(q-1)$
 - 0 d1 * d2 = d mod (p-1)(q-1)

Symmetric Bilinear Pairings:

- pair two elements from one group to an element of a second group
- G_1 , G_2 are two cyclic groups of prime order q
- g is a generator for G_1
- bilinear pairing $G_1 * G_1 \rightarrow G_2$
 - $\circ \quad \text{for all } u, v \in G_1, \quad a, b \in \mathcal{Z}_q$
 - $\circ \ e(u^a, v^b) = e(u, v)^{ab}$
 - \circ $e(g,g) \neq 1$
 - \circ e(u,v) computable

Anonymous Communication I

03 December 2019 15:44

Chaum Mixes (Mix-Nets):

- Mixer T trusted
 - Forwards to A
 - $\circ K_t(a,K_a(m))$
 - o reorders outbound forward
 - adds delay
- Listener knows number of inward and outbound, but can't match them
- ullet Improve by doing $A o t1 o t_2 o B$
 - $\circ K_{t1}\left(t_2,K_{t2}\left(b,K_b(m)\right)\right)$
- Anonymous Reply
 - $\circ K_t \left(b, K_b \left(m, \frac{K_t(a, K_x)}{k_t(a, K_x)}, K_y \right) \right)$
 - o K_x , K_y one time pair, or symmetric

Onion Routing:

- relay nodes
- e.g. $K_{r1}(r2, K_{r2}(...(B, m)))$

Tor:

- clients creates virtual circuits with relay nodes
- Inter relay encrypted using TLS
- 512 byte cell size

Controls Cells

- CID(2): Circuit ID for the link
- CMD(1):
 - CreateCreated/Destroy circuit
- PAYLOAD(509):
 - o additional control data

Relay Cells:

- CID(2)
- CMD(1) = Relay
- Next encrypted with AES session key for this link (made during control)
 - MIsc(10)
 - o CMD(1)
 - extend/extended
 - sends new AES keys for next relay back to A
 - begin/connected (TCP connection)
 - Data
 - o Payload(498)

Circuit Construction:

- P is tor proxy for A
- P -> R1 Create
- R1-> P Created (AES K1)
- P -> R1 Relay, Extend R2
- R1 -> R2 Create
- R2 -> R1 Created (AES K2)
- R1 -> P Relay, Extended (K2)

TCP

- P -> R1 Relay (R2, Begin B)
- R1 -> R2 Relay (Begin B)
- R2 -> R1 TCP handshake B
- R2 -> R1 Relay Connected
- R1 -> P Relay Connected

Location-Hidden Services:

- B creates Tor circuit to Introduction Relays
 - o Inform of **Long-term Public** key
- Publish Name, Public Key, and IR's to lookup service
- A finds this then
 - O Asks via IR for B to connect to A via
 - a rendezvous relay V (separate from IRs)

Anonymous Communication II

03 December 2019 23:57

Attacks against Tor:

- Global traffic analysis
 - fingerprint B/W over time
- Active interference attacks
 - congest victim to relay
 - monitor which relay to public server flow is affected
 - Overcome Collective Control Plane (CCP)
 - DC-nets for secret inputs to public outputs
 - managed by CCP Policy Oracle
 - □ control when/ how much to send
- Denial-of-service
 - on lookup service
- Intersection attacks
 - Intersects with users in non Tor that match quasiidentifiers
 - That also used Tor at a certain time
 - Buddies
 - Policy Oracle reports metrics on simulated intersection attacks
 - Possinymity: possibilistic deniability
 - intersection of users for a Nym for a time period
 - Indinymity: probabilistic indistinguishabiliity

DC-Nets:

- Dining Cryptographers
- **XOR** on left, right, + your secret
- Send to middle another XOR
- Doesn't scale well
- If 1 user leaves, have to restart
- 1 Malicious user can jam communication

- De-anonymizing exploits
 - attack the browser
- Accountability provisions
 - Before Unmasking as last resort
 - threat of censure
 - o give an opportunity to retract
 - expulsion from group

Privacy Policies

04 December 2019 10:56

S4P Language:

- assumes user trust service providers to enforce user policies
- supports policy evolution

User:

- may assertion -> gives permission
- will query -> asks for promise

Service:

- may query -> asks for permission
- will assertion -> gives promise

For satisfactions, compare mays and wills (queries to assertions)

Both a user privacy preference and service privacy policy consist of a set of assertions and a query.

```
Assertion
                                                     Delegation of authority
    E says f0 if f1, ..., fn where c
Fact
    f ::= a | e may b | e will b | e can say f
Query
    q := e \text{ says } f? \mid c? \mid \neg q \mid q1 \land q2 \mid q1 \lor q2 \mid exists x: q
                        Typically principals e.g. Alice, Bob, Service Provider
    constant
```

Constant or variable expression

constraint Constraint on variables occurring in assertion

Predicate written in infix notation e.g. 'Alice is a nicePerson' atom

behaviour atom Service behaviours e.g. 'delete email within 1 yr'