UNIVERSIDAD SAN CARLOS DE GUATEMALA **FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA**

MSc. Ing. Edgar Darío Álvarez Cotí, Coordinador Guatemala 11 octubre del año 2020

SEGUNDO EXAMEN PARCIAL FISICA 2

INSTRUCCIONES GENERALES:

El examen consta de siete problemas. Para los cálculos realizados en el examen se pide utilizar todos los decimales y la respuesta debe aproximarla a 2 decimales. Debe dejar constancia en sus cálculos, suposiciones y referencias en la solución de cada problema. El problema que no tenga el procedimiento de solución será anulado. Debe enviar su procedimiento al correo indicado.

Tiempo de examen 100 minutos

NOMBRE	CARNE

PROBLEMA 1: (10 puntos)

Una varilla se dobla en forma de un segmento circular, la cual tiene una carga uniforme de densidad 4.0 nC/m, es colocada a lo largo del segmento circular mostrado, de radio R. Cuál es el potencial eléctrico (en V) en el punto "p" (considere el potencial cero en el infinito) :

Respuesta: 25.13 tolerancia ± 0.03

b) Si en la varilla existiera en el punto "p" una relación de campo eléctrico de $E = 3 x^2$ (i)(N/C) donde x esta metros, Si V=0 en X=0, calcular la diferencia de potencial Va-Vb (en \lor) que existiría entre los puntos Xa = 2 m y Xb = 3 m

Respuesta: 19.00 tolerancia ± 0.01

PROBLEMA 2: (10 puntos)

a) Dos esferas conductoras, una de radio r_1 = 6 cm y otra de radio r_2 (desconocido), se encuentran separadas y aisladas. La carga inicial en la esfera r_1 es Q_1 = 12 nC y en la esfera r_2 es Q_2 = -4 nC. Al conectar las esferas con un alambre conductor se alcanza el equilibrio y la nueva carga en la esfera de radio r_1 es 3.0 nC. El radio r_2 (en cm) tiene un valor de:

Respuesta: 10 tolerancia ± 0.01

b) La densidad superficial de carga de la esfera de radio r_1 después de desconectar las esferas es (en nC/m²)

Respuesta: 66.31 tolerancia ± 0.03

PROBLEMA 3 (10 puntos, 5 puntos cada inciso)

a) Cuando se conecta un capacitor con aire de 360 nF a una fuente de potencial, la energía almacenada en el capacitor es de 1.85 x 10 ⁻⁵ J. Mientras el capacitor se mantiene conectado a la fuente de potencial, se inserta un trozo de material dieléctrico que llena por completo el espacio entre las placas. Esto incrementa la energía almacenada a 4.17 x 10⁻⁵ J. ¿Cuál es la diferencia de potencial entre las placas del capacitor? (en V)

Respuesta: 10.14 ± 0.03

b) ¿Cuál es la constante dieléctrica del trozo de material? (en unidades SI)

Respuesta: 2.25 ±0.03

PROBLEMA 4 (10 puntos, 5 puntos cada inciso)

a) Un conductor de 1.5 m de largo tiene 6.5 x 10 25 electrones/m3. En este medio los electrones se mueven a 4.0 x 10 ⁻⁴ m/s. ¿Cuantos electrones por segundo pasan a través de la sección de 1.5 mm²?

Respuesta 3.9 x 10 ¹⁶ tolerancia ± 0.05

b) Si a una temperatura de 20 °C la resistividad del conductor es 3.7 x 10 ⁻³ Ωm, el campo eléctrico (en unidades SI) es Respuesta 15.39 tolerancia ± 0.05

PROBLEMA 5: (20 puntos, 10 puntos cada inciso)

El circuito que se muestra en la figura se conecta a una fem \mathcal{E} . Se mide el voltaje en el capacitor de $3\mu F$ y es 2V con la polaridad indicada. Calcular:

a) La energía (en μJ) que almacena el capacitor 2μF

Respuesta: 64.00 tolerancia ± 0.01

b) El valor de fem \mathcal{E} (en V)

Respuesta: 10.00 tolerancia ± 0.01

TEMARIO 26

PROBLEMA 6 (20 puntos, 5 puntos cada inciso)

a) En el circuito mostrado determine la resistencia R (en Ω) cuando I= 0.5 A.

Respuesta: 28.00 tolerancia ± 0.01

b) ¿Que potencia (en W) entrega al circuito la batería de 50V?

Respuesta: 37.50 tolerancia ± 0.01

PROBLEMA 7 (20 puntos)

a) El circuito mostrado se conecta a una fem de 18 V, en el cual $C=4\mu F$ está inicialmente descargado. Al cerrar el interruptor S, ¿Qué potencia inicial (en W)

suministra la fem al circuito?

Respuesta: 54.00 tolerancia ± 0.01

b) ¿Cuál es la máxima carga (en μC) que almacena el capacitor?

Respuesta: 24.00 tolerancia ± 0.01

