Data Science and Social Inquiry: HW3

Yu-Chang Chen

October 27, 2023

Question 1: K-means clustering by hand

Suppose that we would like group three data points $(x_{i1}, x_{i2}) = (0, 0), (3, 0), (0, 4)$ into K = 2 clusters by K-means clustering. Answer the following questions.

(a) (1 pt) What is the optimal clustering that minimizes the total within-cluster sum of squared Euclidean distance?

$$\sum_{k=1}^{2} \sum_{i \in C_k} \sum_{j=1}^{2} (x_{ij} - \bar{x}_{kj})^2$$

- (b) (1 pt) Suppose that we run the iterative K-means clustering algorithm (see p. 519 in the textbook) with the initial cluster assignments $(0,0), (0,4) \in C_1$ and $(3,0) \in C_2$. What would be the clustering the algorithm converges to? Is it the same as what you found in part (a)?
- (c) (1 pt) What is the probability of converging to the global optimum if we run the algorithm again with random initial assignments? ¹

Question 2: OLS is Sample Mean

Consider the data in Table 1 and the following OLS estimators:²

$$\begin{split} new_births_{ct} &= \alpha_0 + \alpha_1 year_t + \epsilon_{ct} \\ new_births_{ct} &= \beta_1 \mathbb{1} \{ year_t = 2020 \} + \beta_2 \mathbb{1} \{ year_t = 2021 \} + \beta_3 \mathbb{1} \{ year_t = 2022 \} + \epsilon_{ct} \\ new_births_{ct} &= \gamma_0 + \gamma_1 \mathbb{1} \{ year_t = 2021 \} + \gamma_2 \mathbb{1} \{ year_t = 2022 \} + \epsilon_{ct} \end{split}$$

(a) (1 pt) What are $\hat{\alpha}_0$ and $\hat{\alpha}_1$?

¹Ignore the case when all points are assigned to one clusters in the initial assignment.

²Subscript c stands for city and t for time.

city	year	new_births
Taipei	2020	18000
Taipei	2021	16000
Taipei	2022	14000
New Taipei	2020	22000
New Taipei	2021	20000
New Taipei	2022	18000

Table 1: Mock data

- (b) (1 pt) What are $\hat{\beta}_1$, $\hat{\beta}_2$, and $\hat{\beta}_3$?
- (c) (1 pt) What are $\hat{\gamma}_0$, $\hat{\gamma}_1$, and $\hat{\gamma}_2$?
- (d) (1 pt) Define $X=\mathbb{1}\{year\geq 2022\}$ and $Z=\mathbb{1}\{city=Taipei\}$. Recall that the conditional expectation

$$E[new_births \mid X, Z]$$

is a random variable. How many values (at most) would it possibly take? Hint: the variables $\mathbb{1}\{year \geq 2022\}$, $\mathbb{1}\{city = Taipei\}$ are both 0, 1.

(e) (1 pt) Consider the regression:

$$new_births_{ct} = \delta_0 + \delta_1 X_{ct} + \delta_2 Z_{ct} + \delta_3 X_{ct} Z_{ct} + \epsilon_{ct}.$$

If the coefficients δ_0 , δ_1 , δ_2 , δ_3 are known, what would be the fitted value of new birth for Taipei in 2021?

Question 3: Selection and shrinkage

Suppose that we want to fit the following linear model:

$$y = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \epsilon$$

with the data set given in Table 2.

- (f) (1 pt) What is the OLS estimate?
- (g) (1 pt) What is the LASSO estimate with penalty term $\lambda = 12$?
- (h) (1 pt) How does the size of the penalty term affect our LASSO estimates? Plot the LASSO estimates $(\hat{\beta}_1^L, \hat{\beta}_2^L, \hat{\beta}_3^L, \hat{\beta}_4^L)$ as functions of $\lambda \in [0, 50]$.
- (i) (1 pt) What happens when the penalty term gets larger? Can you see where the name "Least absolute and Shrinkage and Selection Operator" comes from?

y	x_1	x_2	x_3	x_4
2	0	1	0	0
1	1	0	0	0
5	0	0	1	0
2	0	1	0	0
4	0	0	0	1
6	0	0	0	1
3	1	0	0	0
3	0	0	1	0
5	0	1	0	0
5	0	0	0	1

Table 2: The data set