## P3 Report By Keegan Goecke

## Initial Code:

.data

.text

HALT

## main:

| DADDI     | R3,R0,8    |
|-----------|------------|
| DADDI     | R1,R0,1024 |
| DADDI     | R2,R0,1024 |
| Loop: L.D | F0,0(R1)   |
| MUL.D     | F0,F0,F2   |
| L.D       | F4,0(R2)   |
| ADD.D     | F0,F0,F4   |
| S.D       | F0,0(R2)   |
| DSUB      | R1,R1,R3   |
| DSUB      | R2,R2,R3   |
| BNEZ      | R1,Loop    |
|           |            |

(a) Enable forwarding (check under the Configure tab). Run the code. How many stalls do you see? Can you identify where these stalls occur (the pair of instructions) that cause this stall. Hint: Run in Single Cycle mode using F7. What is the CPI?

| Stalls               |      |
|----------------------|------|
| RAW                  | 1024 |
| WAW                  | 0    |
| WAR                  | 0    |
| Structual            | 128  |
| Branch Taken         | 127  |
| Branch Misprediction | 0    |

Total Stalls: 1279

| Execution                    |                   |
|------------------------------|-------------------|
| Number of Cycles             | 1799 Cycles       |
| Number of Instructions       | 1028 Instructions |
| Cycles Per Instruction (CPI) | 1.750             |



(b) Execute the code by enabling Enable Branch Target Buffer (check under the Configure tab). How many stalls do you see? How many stalls do you see and what exactly does the Enable Branch Target Buffer do? What is the CPI and what is the speedup when compared to (a)?

| Stalls               |      |
|----------------------|------|
| RAW                  | 1024 |
| WAW                  | 0    |
| WAR                  | 0    |
| Structual            | 128  |
| Branch Taken         | 2    |
| Branch Misprediction | 2    |

Total Stalls: 1156

Enable Branch Target Buffer predicts the address of the target instruction that follows the branch which in return can eliminate stalls as shown below:



| Execution                    |                   |
|------------------------------|-------------------|
| Number of Cycles             | 1676 Cycles       |
| Number of Instructions       | 1028 Instructions |
| Cycles Per Instruction (CPI) | 1.630             |

Speedup when compare to (a):

Program 1 = 1.750 \* 1028 = 1799

Program 2 = 1.630 \* 1028 = 1667

Speedup = 1799 / 1667 = 1.07918

(c) Execute the code by enabling Enable Delay Slot (check under the Configure tab). You will need to put one instruction to be executed, else HALT instruction will stop the code from executing. What is the CPI and the speedup compared to (a). Which scheme is better, branch target buffer or delay slot?

DADDI R3,R0,8
DADDI R1,R0,1024
DADDI R2,R0,1024
L.D F0,0(R1)
MUL.D F0,F0,F2
L.D F4,0(R2)
ADD.D F0,F0,F4
S.D F0,0(R2)
DSUB R1,R1,R3
DSUB R2,R2,R3
BNEZ R1,Loop
NOP
HALT

| Stalls               |      |
|----------------------|------|
| RAW                  | 1024 |
| WAW                  | 0    |
| WAR                  | 0    |
| Structual            | 128  |
| Branch Taken         | 0    |
| Branch Misprediction | 0    |

Total Stalls: 1152

| Execution                    |                   |
|------------------------------|-------------------|
| Number of Cycles             | 1800 Cycles       |
| Number of Instructions       | 1156 Instructions |
| Cycles Per Instruction (CPI) | 1.557             |

Speedup = 1799/1800 = .999444

Both the CPI and Speedup compared to (a) are worse, it is better to use BTB in this example.

(d) Re-arrange the loop without unrolling. You can move individual instructions, however the output of this dummy loop should be exactly the same i.e. adjust the offset for memory instructions (load/store). Can you reduce the stalls for this code? What is the new CPI and the speedup when compared to (a)?

Re-arranged loop:

```
.data
    .text
main:
    DADDI R3, R0, 8
    DADDI R1, R0, 1024
    DADDI R2, R0, 1024
Loop:
    L.D F0,0(R1)
    L.D F4,0(R2)
    MUL.D F0, F0, F2
    ADD.D F0, F0, F4
    DSUB R1,R1,R3
    S.D F0,0(R2)
    DSUB R2, R2, R3
    BNEZ R1, Loop
    HALT
```

| Stalls               |     |
|----------------------|-----|
| RAW                  | 768 |
| WAW                  | 0   |
| WAR                  | 0   |
| Structual            | 128 |
| Branch Taken         | 127 |
| Branch Misprediction | 0   |

Total Stalls:  $\frac{1023}{1023}$  (original was 1279) Stalls reduced by:  $1279 - 1023 = \frac{256}{1023}$ 

| Execution                    |                   |
|------------------------------|-------------------|
| Number of Cycles             | 1671 Cycles       |
| Number of Instructions       | 1028 Instructions |
| Cycles Per Instruction (CPI) | 1.625             |

Speedup = 1799 / 1671 = 1.06463

(e) Now, transform the loop by unrolling the loop, reschedule the instructions, enable delay slot or branch target buffer to completely minimize the stalls. What is the CPI and what is the speedup when compared to (a)?

Unrolled the loop 4 times with re-arranged instructions as well as BTB enabled:

DADDI R3,R0,8 DADDI R1,R0,1024 DADDI R2,R0,1024 L.D F0,0(R1) L.D F4,0(R2) MUL.D F0,F0,F2 ADD.D F0,F0,F4 DSUB R1,R1,R3 S.D F0,0(R2) DSUB R2,R2,R3 L.D F0,0(R1) L.D F4,0(R2) MUL.D F0,F0,F2 ADD.D F0,F0,F4 DSUB R1,R1,R3 S.D F0,0(R2) DSUB R2, R2, R3 L.D F0,0(R1) L.D F4,0(R2) MUL.D F0,F0,F2 ADD.D F0,F0,F4 DSUB R1,R1,R3 S.D F0,0(R2) DSUB R2,R2,R3 L.D F0,0(R1) L.D F4,0(R2) MUL.D FO, FO, F2 ADD.D F0,F0,F4 DSUB R1,R1,R3 S.D F0,0(R2) DSUB R2,R2,R3 BNEZ R1, Loop

| Stalls               |     |
|----------------------|-----|
| RAW                  | 768 |
| WAW                  | 0   |
| WAR                  | 0   |
| Structual            | 128 |
| Branch Taken         | 2   |
| Branch Misprediction | 2   |

Total Stalls: 900

ExectionNumber of Cycles1452 CyclesNumber of Instructions932 InstructionsCycles Per Instruction (CPI)1.558

Speedup = 1799/1452 = 1.23898