

Full wwPDB X-ray Structure Validation Report (i

May 6, 2020 – 04:10 PM EDT

PDB ID : 6OWW

Title : Crystal structure of a Human Cardiac Calsequestrin Filament Complexed with

Ytterbium

Deposited on : 2019-05-12

Resolution : 3.84 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report.

This report is produced by the wwPDB biocuration pipeline after annotation of the structure.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : 4.02b-467

Mogul: 1.8.5 (274361), CSD as541be (2020)

Xtriage (Phenix) : 1.13 EDS : 2.11

Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)

Refmac: 5.8.0158

CCP4 : 7.0.044 (Gargrove)
Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)

Validation Pipeline (wwPDB-VP) : 2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 3.84 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\# \mathrm{Entries})$	Similar resolution $(\#\text{Entries}, \text{resolution range}(\mathring{\mathbf{A}}))$
R_{free}	111664	1018 (4.08-3.60)
Clashscore	122126	1087 (4.08-3.60)
Ramachandran outliers	120053	1050 (4.08-3.60)
Sidechain outliers	120020	1044 (4.08-3.60)
RSRZ outliers	108989	1002 (4.10-3.58)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	/ ^	207	/ 36%		
1	A	387	65%	19%	15%
1	В	387	68%	17%	15%
		7	28%		
/ 1	C	387 /	67%	17% •	15%
		204	32%		
1	D	387	71%	14%	15%
	V-	/	30%		
1	E	/387	66%	19%	15%

Mol	Chain	Length		Qua	lity of chain		
	-	0.0-	27%		/		/
1	F	387		70%	/	15%	15%
	61		26%				
1	G	387		68%	/	17%	15%
			36%			7	
1	Н	387		64%	/ 4	21%	15%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	SO4	A	410	-	/-	-	/ X
3	SO4	F	408	-	//		/ X

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 21808 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Calsequestrin-2.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
1	A	329	Total C N O S 2715 1771 416 522 6	0	0	0
1	В	329	Total C N O S 2715 1771 416 522 6	0	0	0
1	С	329	Total C N O S 2715 1771 416 522 6	0/	0	0
1	D	329	Total C N O S 2715 1771 416 522 6	0	0	0
1	E	329	Total C N O S 2715 1771 416 522 6	0	0	0
1	F	329	Total C N O S 2715 1771 416 522 6	0	0	0
1	G	329	Total C N O S 2715 1771 416 522 6	0	0	0
1	Н	329	Total C N O S 2715 1771 416 522 6	0	0	0

There are 40 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	1/3	GLY	+	expression tag	UNP O14958
A	/14	HIS	/ -	expression tag	UNP O14958
A	15	MET	_	expression tag	UNP O14958
A	16	ALA	-	expression tag	UNP O14958
A /	17	SER	ı	expression tag	UNP O14958
В	13	GLY	-	expression tag	UNP O14958
B	14	HIS	-	expression tag	UNP O14958
/ B	15	MET	ı	expression tag	UNP O14958
В	16	ALA	-	expression tag	UNP O14958
В	17	SER	-	expression tag	UNP O14958
C	13 /	GLY	-	expression tag	UNP O14958
C	14 /	HIS	-	expression tag	UNP O14958
C	15/	MET	-	expression tag	UNP O14958

Continued from previous page...

	<i>y</i> 1	vious page			
Chain	Residue	Modelled	Actual	Comment	Reference
С	16	ALA	-	expression tag	UNP O14958
С	17	SER	-	expression tag	UNP O14958
D	13	GLY	-	expression tag	UNP/O14958
D	14	HIS	-	expression tag	UNP O14958
D	15	MET	-	expression tag	UNP O14958
D	16	ALA	-	expression tag	UNP O14958
D	17	SER	-	expression tag	UNP O14958
Е	13	GLY	-	expression tag	UNP O14958
Е	14	HIS	-	expression/tag	UNP O14958
Е	15	MET	-	expression tag	UNP O14958
Е	16	ALA	-	expression tag	UNP O14958
Е	17	SER	-	expression tag	UNP O14958
F	13	GLY	-	expression tag	UNP O14958
F	14	HIS	-	expression tag	UNP O14958
F	15	MET	-	expression tag	UNP Ø14958
F	16	ALA	- /	expression tag	UNP O14958
F	17	SER	- /	expression tag	UNP O14958
G	13	GLY	+	expression tag	UNP O14958
G	14	HIS	/ -	expression tag	UNP O14958
G	15	MET	/ -	expression tag	UNP O14958
G	16	ALA /	_	expression tag	UNP O14958
G	17	SER /		expression tag	UNP O14958
Н	13	GLY	_	expression tag	UNP O14958
Н	14	HIS		expression tag	UNP O14958
Н	15	MET	-	expression tag	UNP O14958
Н	16	ALA	-	expression tag	UNP O14958
Н	17	SER -)-	expression tag	UNP O14958

• Molecule 2/is YTTERBIUM (III) ION (three-letter code: YB) (formula: Yb) (labeled as "Ligand of Interest" by author).

Mol	Chain	Residues	Atøi	ns	ZeroOcc	AltConf
2	G	8	Total 8	Yb 8	0	0
2	D	8	Total 8	Yb 8	0	0
$\sqrt{2}$	E	9	Total 9	Yb 9	0	0
2	Н	6	Total 6	Yb 6	0	0
2	В	7	Total 7	Yb 7	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	С	9	Total Yb 9 9	0	0
2	A	9	Total Yb 9 9	0	0
2	F	7	Total Yb 7 7	0	0

 \bullet Molecule 3 is SULFATE ION (three-letter code: SO4) (formula: O₄S).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	A	1	Total O S 5 4 1	0	0
3	В	1	Total O S 5 4 1	0	0
3	D	1	Total O S 5 4 1	0	0
3	F	1	Total O S 5 4 1	0	0
3 /	Н	1	Total O S 5 4 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	85.83Å 86.02Å 214.34Å	Donositon
a, b, c, α , β , γ	90.00° 89.91° / 90.00°	Depositor
Resolution (Å)	214.34 - 3.84	Depositor
resolution (11)	214.34 /- 3.84	EDS
% Data completeness	98.4 (214.34-3.84)	Depositor
(in resolution range)	98.0 (214.34-3.84)	EDS
R_{merge}	(Not available)	Depositor
R_{sum}	(Not available)	Depositor
$< I/\sigma(I) > 1$	1.62 (at 3.89Å)	Xtriage
Refinement program	PHENIX 1.15.2_3472	Depositor
D D.	0.290 , 0.340	Depositor
R, R_{free}	0.296 , 0.351	DCC
R_{free} test set	1440 reflections (4.82%)	wwPDB-VP
Wilson B-factor $(Å^2)$	79.7	Xtriage
Anisotropy	0.919/	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.41 , 81.2	EDS
L-test for twinning ²	$< L > = 0.38, < L^2> = 0.21$	Xtriage
	0.266 for k,h,-l	
Estimated twinning fraction	0.266 for -k,-h,-l	Xtriage
	0,266 for h,-k,-l	
F_o, F_c correlation	0.86	EDS
Total number of atoms	21808	wwPDB-VP
Average B, all atoms (Å ²)	98.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 14.30% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: YB, SO4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Во	ond angles
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	A	0.38	0/2779	0.56	1/3758 (0.0%)
1	В	0.40	0/2779	0.57	0/3758
1	С	0.40	0/2779	0.58	1/3758 (0.0%)
1	D	0.39	0/2779	0.57/	$1/3758 \ (0.0\%)$
1	Е	0.40	0/2779	0.56	0/3758
1	F	0.40	0/2779	0.58	0/3758
1	G	0.40	0/2779	/0.56	0/3758
1	Н	0.39	0/2779	0.57	0/3758
All	All	0.40	0/22232	0.57	3/30064 (0.0%)

There are no bond length outliers.

All (3) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	$/\mathbf{Z}$	$Observed(^o)$	$Ideal(^{o})$
1	A	72/	LEU	CA-CB-CG	5.98	129.05	115.30
1	D	72	LEU	CA-CB-CG	5.54	128.04	115.30
1	С	/72	LEU	CA-CB-CG	5.13	127.11	115.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	2715	0	2653	49	/0
1	В	2715	0	2653	45	0
1	С	2715	0	2653	49	0
1	D	2715	0	2653	37	0
1	Ε	2715	0	2653	48	0
1	F	2715	0	2653	42 /	0
1	G	2715	0	2653	41/	0
1	Н	2715	0	2653	53	0
2	A	9	0	0	/0	0
2	В	7	0	0	0	0 /
2	С	9	0	0	0	0 /
2	D	8	0	0 /	0	0 /
2	Ε	9	0	0 /	0	0
2	F	7	0	0/	0	/ 0
2	G	8	0	0	0	/ 0
2	Н	6	0	/ 0	0	/ 0
3	A	5	0	0	0	/ 0
3	В	5	0	0	0	0
3	D	5	0 /	0	0 /	0
3	F	5	0 /	0	0 /	0
3	Н	5	0 /	0	0	0
All	All	21808	0	21224	346	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

All (346) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:C:211:MET:O	1:C:230:LYS:NZ	2.19	0.76
1:F:211:MET:O	1:F:230:LYS:NZ	2.19	0.73
1:H:342:VAL:HG11	1:H:370:ILE:HG23	1.70	0.71
1:C:164:TYR:HD2	1:C:253:ARG:HH22	1.38	0.71
1:A:152:LYS:HB3	1:A:206:LYS:HE3	1.73	0.69
1:B:211:MET:O	1:B:230:LYS:NZ	2.25	0.69
1:G:211:MET:O	1:G:230:LYS:NZ	2.22	0.68
1:D:250:ARG:NH1	1:D:302:SER:OG	2.26	0.68
1:G:342:VAL:HG11	1:G:370:ILE:HG23	1.76	0.67
1:E:342:VAL:HG11	/ 1:E:370:ILE:HG23	1.77	0.66
1:F:164:TYR:HD2	1:F:253:ARG:HH22	1.42	0.66
1:D:342:VAL:HG11	1:D:370:ILE:HG23	1.77	0.66
1:E:250:ARG:NH1	1:E:302:SER:OG	2.29	0.66

Continued from prev		Interatomic	Clash
Atom-1	Atom-2	$\begin{array}{c} \text{interationne} \\ \text{distance (Å)} \end{array}$	overlap (Å)
1:A:164:TYR:HD2	1:A:253:ARG:HH22	1.45	0.65
1:A:342:VAL:HG11	1:A:370:ILE:HG23	1.79	0.64
1:B:164:TYR:HD2	1:B:253:ARG:HH22	1.45	0.64
1:G:161:ILE:O	1:G:166:LYS:NZ	2.23	0.64
1:B:52:LEU:HB2	1:B:117:LEU:HB2	1.79	0.63
1:F:287:ILE:HG22	1:F:358:LEU:HD12	1.79	0.63
1:B:287:ILE:HG22	1:B:358:LEU:HD12	1.81	0.62
1:F:342:VAL:HG11	1:F:370:ILE:HG23	1.81/	0.62
1:H:212:ASN:HB3	1:H:231:PRO:HB3	1.80	0.62
1:C:52:LEU:HB2	1:C:117:LEU:HB2	1.81	0.62
1:C:287:ILE:HG22	1:C:358:LEU:HD12	1.82	0.61
1:A:251:ARG:NH2	1:A:310:ASP:OD2	2.28	0.60
1:A:218:GLU:OE1	1:A:247:PRO:HB3	2.02	0.60
1:B:37:LEU:HD11	1:B:42:PHE:HA	1.84	0.60
1:B:342:VAL:HG11	1:B:370:ILE:HG23	1.84	0.59
1:A:54:LEU:HG	1:A:92:VAL:HG23	1.84	0.59
1:F:168:ILE:HG23	1:F:209:LEU:HD11	1.84	0.59
1:H:250:ARG:NH1	1:H:302:SER:OG	2.36	0.59
1:A:72:LEU:HD12	1:A:73:LYS:HG3	1.85	0.59
1:C:218:GLU:OE1	1:C:247:PRO:HB3	2.03	0.59
1:E:72:LEU:HD12	1:E:73:LYS:HG3	1.85	0.58
1:E:126:ASP:HB3	1:E:258:PHE:HB3	1.85	0.58
1:H:121:ARG:NH1	1:H:123:ILE:HD11	2.18	0.58
1:A:80:VAL:HG21	1:A:134:LEU:HD23	1.86	0.58
1:E:247:PRO:HD2	1:E:250:ARG:HD3	1.86	0.58
1:B:149:ILE:HG23	1:B:154:GLU:HB3	1.85	0.58
1:D:247:PRO:HD2	1:D:250:ARG:HD3	1.85	0.58
1:G:152:LYS:HB3	1:G:206:LYS:HE3	1.86	0.58
1:C:149:ILE:HG23	1:C:154:GLU:HB3	1.86	0.57
1:E:218:GLU:OE1	1:E:247:PRO:HB3	2.03	0.57
1:F:218:GLU:OE1	1:F:247:PRO:HB3	2.05	0.57
1:B:72:LEU:HD12	1:B:73:LYS:HG3	1.86	0.57
1:H:72;LEU:HD12	1:H:73:LYS:HG3	1.86	0.57
1:G:168:ILE:HG23	1:G:209:LEU:HD11	1.85	0.57
1:C:342:VAL:HG11	1:C:370:ILE:HG23	1.85	0.57
1:G:287:ILE:HG22	1:G;358:LEU:HD12	1.85	0.57
1:B:152:LYS:HB3	1/B:206:LYS:HE3	1.87	0.56
1:A:84:LEU:HD22	/1:A:87:LYS:HG3	1.85	0.56
1:F:52:LEU:HB2	1:F:117:LEU:HB2	1.86	0.56
1:B:367:SER:O	1:F:236:GLU:HA	2.04	0.56
1:D:72:LEU:HD12	1:D:73:LYS:HG3	1.87	0.56

Continued from prev		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:G:28:TYR:CE1	1:G:78:GLU:HB3	2.40	0.56
1:H:149:ILE:HG23	1:H:154:GLU:HB3	1.88	0.56
1:A:283:GLU:O	1:A:287:ILE:HG12	2.06	0.56
1:A:126:ASP:HB3	1:A:258:PHE:HB3	1.88	0.55
1:D:54:LEU:HG	1:D:92:VAL:HG23	1.88	0.55
1:G:164:TYR:HD2	1:G:253:ARG:HH22	1.53	0.55
1:C:168:ILE:HG23	1:C:209:LEU:HD11	1.88	0.55
1:D:218:GLU:OE1	1:D:247:PRO:HB3	2.06	0.55
1:B:28:TYR:CE1	1:B:78:GLU:HB3	2.41	0.55
1:F:149:ILE:HG23	1:F:154:GLU:HB3	1.89	0.55
1:C:152:LYS:HB3	1:C:206:LYS:HE3	1.88	0.55
1:F:152:LYS:HB3	1:F:206:LYS:HE3	1.88	0.55
1:H:126:ASP:HB3	1:H:258:PHE:HB3	1.89	0.55
1:C:72:LEU:HD12	1:C:73:LYS:HG3	1.88	0.54
1:H:218:GLU:OE1	1:H:247:PRO:HB3	2.07	0.54
1:G:37:LEU:HD11	1:G:42:PHE:HA	1.89	0.54
1:G:149:ILE:HG23	1:G:154:GLU:HB3	1.88	0.54
1:G:52:LEU:HB2	1:G:117:LEU/HB2	1.88	0.54
1:B:141:LEU:HD23	1:B:190:GLN:HG2	1.90	0.54
1:C:45:VAL:HG13	1:C:49:TYR:CE2	2.43	0.53
1:H:80:VAL:HG21	1:H:134;LEU:HD23	1.89	0.53
1:A:149:ILE:HG23	1:A:154:GLU:HB3	1.91	0.53
1:E:287:ILE:HG22	1:E:358:LEU:HD12	1.91	0.53
1:H:54:LEU:HG	1:H:92:VAL:HG23	1.91	0.53
1:A:287:ILE:HG22	1:A:358:LEU:HD12	1.91	0.53
1:E:168:ILE:HG23	1:E:209:LEU:HD11	1.90	0.53
1:G:308:PRO:HA	1:G:315:VAL:HG21	1.91	0.53
1:G:328:ARG:NH1		2.41	
1:H:37:LEU:HD11	1:G:346:ILE:O 1:H:42:PHE:HA		0.53 0.53
1:E:54:LEU:HG	1:E:92:VAL:HG23	1.91	0.52
1:C:34:LEO:HG 1:C:344:MET:HG3	1:E:92:VAL:nG25 1:C:361:TRP:CD1	1.91	0.52
/	1:E:42:PHE:HA	2.44	
1:E:37:LEU:HD11		1.91	0.52
1:F:37:LEU:HD11	1:F:42:PHE:HA	1.91	0.52
1:B:236:GLU:HA	1:F:367:SER:O	2.10	0.52
1:H:247:PRO:HD2	1:H:250:ARG:HD3	1.91	0.52
1:F:268:ILE:HD12	1:F:335:ASN:HA	1.91	0.52
1:D:126:ASP:HB3	1:D:258:PHE:HB3	1.92	0.52
1:H:287:ILE:HG22	1:H:358:LEU:HD12	1.92	0.52
1:G:218:GLU:OE1	1:G:247:PRO:HB3	2.09	0.52
1:E:212:ASN:HB3	1:E:231:PRO:HB3	1.92	0.52
1:G:72:LEU:HD12	1:G:73:LYS:HG3	1.92	0.52

Continued from prev		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:344:MET:HG3	1:B:361:TRP:CD1	2.45	0.52
1:F:72:LEU:HD12	1:F:73:LYS:HG3	1.92	0.51
1:F:114:LEU:HD23	1:F:134:LEU:HD11	1.92	0.51
1:C:37:LEU:HD11	1:C:42:PHE:HA	1.92	0.51
1:G:57:HIS:ND1	1:G:111:GLU:OE2	2.43	0.51
1:H:251:ARG:NH2	1:H:310:ASP:OD2	2.38	0.51
1:E:252:LEU:HD13	1:E:304:LEU:HD21	1.91	0.51
1:F:344:MET:HG3	1:F:361:TRP:CD1	2.46	0.51
1:C:328:ARG:NH1	1:C:346:ILE:O	2.37	0.50
1:E:45:VAL:HG13	1:E:49:TYR:CE2	2.45	0.50
1:A:37:LEU:HD11	1:A:42:PHE:HA	1.94	0.50
1:C:45:VAL:HG13	1:C:49:TYR:HE2	1.74	0.50
1:C:28:TYR:CE1	1:C:78:GLU:HB3	2.46	0.50
1:D:252:LEU:HD13	1:D:304:LEU:HD21	1.92	0.50
1:F:328:ARG:NH1	1:F:346:ILE:O	2.35	0.50
1:B:308:PRO:HA	1:B:315:VAL:HG21	1.94	0.50
1:E:149:ILE:HG23	1:E:154:GLU:HB3	1.94	0.50
1:D:25:PHE:CZ	1:G:128:GLU:HB2	2.48	0.49
1:C:128:GLU:HB2	1:H:25:PHE:CZ	2.47	0.49
1:G:307:ASP:HB3	1:G:310:ASP:OD2	2.12	0.49
1:H:28:TYR:CE1	1:H:78:GLU:HB3	2.12	0.49
1:A:164:TYR:CE1	1:A:166:LYS:HG2	2,48	0.49
1:B:350:ASP:CG	1:E:150:SER:HB2	2.33	0.49
1:D:247:PRO:HG2	1:D:250:ARG:HB3	1.94	0.49
1:A:247:PRO:HD2	1:A:250:ARG:HD3	1.94	0.48
1:B:295:ASN:HB2	1:B:301:LEU:HD23	1.94	0.48
1:F:45:VAL:HG13	1:F:49:TYR:CE2	2.49	0.48
1:G:114:LEU:HD23			
1:G:54:LEU:HD13	1:G:134:LEU:HD11 1:G:117:LEU:HG	1.95	0.48
1:F:28:TYR:HA	1:F:82:GLN:OE1	1.94 2.13	0.48
1:H:163:ASP:HB3	1:H:253:ARG:HH21		0.48
/		1.78	
1:C:210:LYS:HB3	1:C:230:LYS:HZ1	1.79	0.48
1:C:307:ASP:HB3	1:C:310:ASP:OD2	2.12	0.48
1:E:80:VAL:HG21	1:E:134:LEU:HD23	1.95	0.48
1:F:200:ASP:OD1	1:G:347:PRO:HB3	2.13	0.48
1:D:37:LEU:HD11	1:D:42:PHE:HA	1.96	0.48
1:G:45:VAL:HG13	1:G:49:TYR:CE2	2.49	0.48
1:C:250:ARG:NH1	1:C:302:SER:OG	2.47	0.48
1:H:192:TYR:CE1	1:H:256:GLU:HA	2.49	0.48
1:A:289:LYS:HB3	1:A:293:ARG:HH12	1.79	0.47
1:E:45:VAL:HG13	1:E:49:TYR:HE2	1.78	0.47

Continued from previous page				
Atom-1	Atom-2	Interatomic	Clash	
	1 1 0 O I I I - Z	$\operatorname{distance}\left(\operatorname{\AA}\right)$	overlap (Å)	
1:G:295:ASN:HB2	1:G:301:LEU:HD23	1.96	0.47	
1:B:45:VAL:HG13	1:B:49:TYR:CE2	2.50	0.47	
1:E:145:PRO:HB2	1:E:186:ALA:HB1	1.95	0.47	
1:B:210:LYS:HB3	1:B:230:LYS:NZ	2.30	0.47	
1:A:212:ASN:HB3	1:A:231:PRO:HB3	1.96	0.47	
1:A:275:GLU:HG2	1:A:308:PRO:HD2	1.95	0.47	
1:H:54:LEU:HD23	1:H:94:VAL:HG21	1.97	0.47	
1:A:328:ARG:O	1:A:330:GLN:HG2	2.15	0.47	
1:D:210:LYS:HB3	1:D:230:LYS:HZ3	1.80	0.47	
1:D:287:ILE:HG22	1:D:358:LEU:HD12	1.95	0.47	
1:E:54:LEU:HD13	1:E:117:LEU:HG	1.96	0.47	
1:A:328:ARG:NH1	1:A:346:ILE:O	2.47	0.47	
1:D:93:MET:HB3	1:D:93:MET:HE2	1.73	0.47	
1:C:145:PRO:HG2	1:C:187:GLU:HG2	1.96	0.47	
1:A:54:LEU:HD13	1:A:117:LEU:HG	1.97	0.47	
1:D:145:PRO:HB2	1:D:186:ALA:HB1	1.96	0.47	
1:B:57:HIS:ND1	1:B:111:GLU:OE2	2.48	0.47	
1:D:54:LEU:HD22	1:D:108:PHE:HZ	1.80	0.47	
1:F:141:LEU:HD23	1:F:190:GLN:HG2	1.97	0.47	
1:H:164:TYR:CE1	1:H:166:LYS:HG2	2.50	0.47	
1:H:247:PRO:HG2	1:H:250:ARG:HB3	1.97	0.47	
1:A:54:LEU:HD22	1:A:108:PHE:HZ	1,80	0.46	
1:F:54:LEU:HD22	1:F:108:PHE:HZ	1.79	0.46	
1:G:268:ILE:HD12	1:G:335:ASN:HA	1.96	0.46	
1:G:344:MET:HG3	1:G:361:TRP:CD1	2.49	0.46	
1:E:54:LEU:HD23	1:E:94:VAL:HG21	1.97	0.46	
1:G:54:LEU:HD22	1:G:108:PHE:HZ	1.80	0.46	
1:C:114:LEU:HD23	1:C:134:LEU:HD11	1.97	0.46	
1:C:54:LEU:HG	1:C:92:VAL:HG23	1.97	0.46	
1:G:291:VAL:HG13	1:G:359:GLU:HG3	1.98	0.46	
1:A:168:ILE:HA	1:A:196:PHE:O	2.16	0.46	
1:G:72:LEU:HD12	1:G:73:LYS:N	2.31	0.46	
1:H:152:LYS:HB3	1:H:206:LYS:HE3	1.97	0.46	
1:D:212:ASN:HB3	1:D:231:PRO:HB3	1.98	0.46	
1:G:54:LEU:HD22	1:G:108:PHE:CZ	2.51	0.46	
1:G:141:LEU:HD23	1:G:190:GLN:HG2	1.98	0.46	
1:H:40:LYS:NZ	1/:H:44:GLN:OE1	2.49	0.46	
1:C:54:LEU:HD13	/1:C:117:LEU:HG	1.98	0.45	
1:G:361:TRP:O	1:G:365:VAL:HG23	2.15	0.45	
1:B:34:VAL:HG12	1:B:93:MET:HG2	1.97	0.45	
1:B:93:MET:HE2	1:B:93:MET:HB3	1.85	0.45	
		·		

Continued from prev	ious page		
Atom-1	Atom-2	$\mathbf{Interatomic}$	Clash
		distance (Å)	overlap (Å)
1:E:163:ASP:HB3	1:E:253:ARG:HH21	1.81	0.45
1:E:230:LYS:HB3	1:E:232:TYR:OH	2.16	0.45
1:F:54:LEU:HG	1:F:92:VAL:HG23	1.98	0.45
1:A:93:MET:HE2	1:A:93:MET:HB3	1.76	0.45
1:E:283:GLU:O	1:E:287:ILE:HG12	2.16	0.45
1:F:54:LEU:HD22	1:F:108:PHE:CZ	2.51	0.45
1:D:121:ARG:NH1	1:D:123:ILE:HD11	2.32	0.45
1:A:81:ALA:HA	1:A:91:PHE:CE1	2.51	0.45
1:A:94:VAL:HG13	1:A:99:GLU:HB2	1.98	0.45
1:B:218:GLU:OE1	1:B:247:PRO:HB3	2.17	0.45
1:D:361:TRP:O	1:D:365:VAL:HG23	2.17	0.45
1:H:81:ALA:HA	1:H:91:PHE:CE1	2.52	0.45
1:A:295:ASN:HB2	1:A:301:LEU:HD23	1.99	0.45
1:A:284:PHE:HB2	1:A:352:LEU:HD13	1.99	0.45
1:D:54:LEU:HD23	1:D:94:VAL:HG21/	1.99	0.45
1:H:181:ALA:HB1	1:H:234:GLU:N	2.32	0.45
1:B:192:TYR:CE1	1:B:256:GLU:HA	2.51	0.45
1:E:361:TRP:O	1:E:365:VAL;HG23	2.17	0.45
1:E:51:LEU:HB2	1:E:89:ILE:HG12	1.99	0.45
1:F:54:LEU:HD13	1:F:117:LEU:HG	1.98	0.45
1:G:273:PHE:O	1:G:329:PRO:HA	2.17	0.45
1:D:230:LYS:HB3	1:D:232:TYR:OH	2,16	0.45
1:E:295:ASN:HB2	1:E:301:LEU:HD23	1.97	0.45
1:F:145:PRO:HG2	1;F:187:GLU:HG2	1.99	0.45
1:H:283:GLU:O	1:H:287:ILE:HG12	2.17	0.45
1:H:93:MET:HE2	1:H:93:MET:HB3	1.72	0.45
1:B:166:LYS:HB2/	1:B:217:TYR:HB2	1.98	0.45
1:F:28:TYR:CE1	1:F:78:GLU:HB3	2.52	0.45
1:G:81:ALA:HA	1:G:91:PHE:CE1	2.52	0.45
1:H:95:ASP:HB3	1:H:98:LYS:HB3	1.98	0.45
1:D:52:LEU:HB2	1:D:117:LEU:HB2	1.98	0.44
1:E:52:LEU:HB2	1:E:117:LEU:HB2	1.98	0.44
1:F:45;VAL:HG13	1:F:49:TYR:HE2	1.81	0.44
1:B:126:ASP:HB3	1:B:258:PHE:HD2	1.83	0.44
1:B:361:TRP:O	1:B:365:VAL:HG23	2.17	0.44
1:C:168:ILE:HA	1:C:196:PHE:O	2.18	0.44
1:C:84:LEU:HD12	1:C:91:PHE:HZ	1.82	0.44
1:E:54:LEU:HD22	/1:E:108:PHE:HZ	1.82	0.44
1:E:284:PHE:CG	1:E:329:PRO:HB3	2.53	0.44
1:F:295:ASN:HB2	1:F:301:LEU:HD23	2.00	0.44
1:D:283:GLU:OE1	1:G:154:GLU:HG3	2.17	0.44
			<u> </u>

Continued from prev			
Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	$\operatorname{distance}\ (ext{Å})$	overlap (Å)
1:C:350:ASP:CG	1:H:150:SER:HB2	2.38	0.44
1:F:126:ASP:HB3	1:F:258:PHE:CD2	2.52	0.44
1:C:350:ASP:O	1:H:151:SER:HB2	2.18	0.44
1:H:230:LYS:HB3	1:H:232:TYR:OH	2.17	0.44
1:B:308:PRO:HB3	1:B:315:VAL:HG11	2.00	0.44
1:H:52:LEU:HB2	1:H:117:LEU:HB2	1.99	0.44
1:C:268:ILE:HG22	1:C:269:HIS:ND1	2.33	0.44
1:E:121:ARG:NH1	1:E:123:ILE:HD11	2.33	0.44
1:G:166:LYS:HB2	1:G:217:TYR:HB2	1.98	0.44
1:G:54:LEU:HG	1:G:92:VAL:HG23	2.00	0.44
1:G:54:LEU:HD23	1:G:94:VAL:HG21	2.00	0.44
1:B:25:PHE:CZ	1:E:128:GLU:HB2	2.53	0.44
1:F:126:ASP:HB3	1:F:258:PHE:HD2	1.83	0.44
1:F:192:TYR:CE1	1:F:256:GLU:HA	2.53	0.44
1:H:183:GLU:O	1:H:187:GLU:HG3/	2.18	0.44
1:A:247:PRO:HG2	1:A:250:ARG:HB3	2.00	0.43
1:A:163:ASP:HB3	1:A:253:ARG:HH21	1.83	0.43
1:H:168:ILE:HA	1:H:196:PHE:O	2.18	0.43
1:A:28:TYR:CE1	1:A:78:GLU:HB3	2.53	0.43
1:A:54:LEU:HG	1:A:92:VAL:CG2	2.49	0.43
1:B:72:LEU:HD12	1:B:73:LYS:N	2.33	0.43
1:C:361:TRP:O	1:C:365:VAL:HG23	2,19	0.43
1:D:51:LEU:HB2	1:D:89:ILE:HG12	2.01	0.43
1:E:28:TYR:CE1	1/E:78:GLU:HB3	2.53	0.43
1:H:52:LEU:HD23	1:H:52:LEU:HA	1.79	0.43
1:D:24:ASN:HB3	1:D:25:PHE:H	1.69	0.43
1:E:93:MET:HE2/	1:E:93:MET:HB3	1.73	0.43
1:H:54:LEU:HD22	1:H:108:PHE:HZ	1.83	0.43
1:A:361:TRP:O	1:A:365:VAL:HG23	2.19	0.43
1:E:141:LEU:HD23	1:E:190:GLN:HG2	2.00	0.43
1:A:95:ASP:HB3	1:A:98:LYS:HB3	2.00	0.43
1:H:211:MET:O	1:H:230:LYS:NZ	2.47	0.43
1:D:170:PHE:O	1:D:212:ASN:N	2.43	0.43
1:F:268:ILE:HG22	1:F:269:HIS:ND1	2.33	0.43
1;F:361:TRP:O	1:F:365:VAL:HG23	2.19	0.43
1:A:45:VAL:HG13	1:A:49:TYR:CE2	2.54	0.43
1:D:54:LEU:HD13	1/:D:117:LEU:HG	2.00	0.43
1:E:183:GLU:O	1:E:187:GLU:HG3	2.19	0.43
1:C:25:PHE:CZ	1:H:128:GLU:HB2	2.54	0.43
1:B:150:SER:HB2	1:E:350:ASP:CG	2.38	0.42
1:B:145:PRO:HG2	1:B:187:GLU:HG2	2.02	0.42
	I .	I.	I .

Continued from previous page				
Atom-1	Atom-2	${\bf Interatomic}$	Clash	
Atom-1	Atom-2	$\operatorname{distance}\ (ext{\AA})$	overlap (Å)	
1:C:217:TYR:CZ	1:C:224:PRO:HB3	2.54	0.42	
1:B:328:ARG:NH1	1:B:346:ILE:O	2.38	0.42	
1:B:54:LEU:HD22	1:B:108:PHE:CZ	2.54	0.42	
1:D:168:ILE:HA	1:D:196:PHE:O	2.18	0.42	
1:F:72:LEU:HD12	1:F:73:LYS:N	2.33	0.42	
1:B:45:VAL:HG13	1:B:49:TYR:HE2	1.84	0.42	
1:C:252:LEU:HB2	1:C:304:LEU:HD11	2.01	0.42	
1:E:284:PHE:CD2	1:E:329:PRO:HB3	2.54	0.42	
1:E:72:LEU:HD12	1:E:73:LYS:N	2.34	0.42	
1:H:45:VAL:HG13	1:H:49:TYR:CE2	2.54	0.42	
1:D:54:LEU:HD22	1:D:108:PHE:CZ	2.54	0.42	
1:B:128:GLU:HB2	1:E:25:PHE:CZ	2.53	0.42	
1:A:114:LEU:HD23	1:A:134:LEU:HD11	2.02	0.42	
1:B:170:PHE:HA	1:B:198:THR:O	2.19	0.42	
1:B:283:GLU:O	1:B:287:ILE:HG12/	2.19	0.42	
1:E:247:PRO:HG2	1:E:250:ARG:HB3	2.01	0.42	
1:D:164:TYR:CE1	1:D:166:LYS:HG2	2.55	0.42	
1:E:213:GLU:HB2	1:E:230:LYS:HD3	2.02	0.42	
1:H:284:PHE:CG	1:H:329:PRO:HB3	2.55	0.42	
1:H:94:VAL:HG13	1:H:99:GLU:HB2	2.02	0.42	
1:C:319:GLU:HG2	1:C:324:ILE:O	2.18	0.42	
1:E:164:TYR:CE1	1:E:166:LYS:HG2	2,55	0.42	
1:G:45:VAL:HG13	1:G:49:TYR:HE2	1.85	0.42	
1:H:164:TYR:HD2	1:H:253:ARG:HH22	1.66	0.42	
1:C:150:SER:HB2	1:H:350;ASP:CG	2.40	0.42	
1:C:126:ASP:HB3	1:C:258:PHE:HD2	1.85	0.42	
1:D:94:VAL:HG13/	1:D:99:GLU:HB2	2.01	0.42	
1:H:252:LEU:HD13	1:H:304:LEU:HD21	2.01	0.42	
1:A:24:ASN:HB3	1:A:25:PHE:H	1.68	0.42	
1:D:284:PHE:CG	1:D:329:PRO:HB3	2.55	0.42	
1:F:24:ASN:HB3	1:F:25:PHE:H	1.69	0.42	
1:B:126:ASP:HB3	1:B:258:PHE:CD2	2.54	0.42	
1:C:268:ILE:HD12	1:C:335:ASN:HA	2.02	0.42	
1:D:35:VAL:O	1:D:92:VAL:HA	2.20	0.42	
1:B:83:VAL:HG21	1:E:31/3:LEU:HD11	2.01	0.42	
1:H:51:LEU:HB2	1:H:89:ILE:HG12	2.01	0.42	
1:C:126:ASP:HB3	1;C:258:PHE:CD2	2.55	0.41	
1:C:364:ASP:O	1:C:369:LYS:HB2	2.19	0.41	
1:C:52:LEU:HD23	1:C:52:LEU:HA	1.79	0.41	
1:E:114:LEU:HD23	1:E:134:LEU:HD11	2.01	0.41	
1:F:93:MET:HB3	1:F:93:MET:HE2	1.95	0.41	
		0		

Continued from previous page				
Atom-1	Atom-2	Interatomic	Clash	
Atom-1	Atom-2	${\rm distance}({\rm \AA})$	overlap (Å)	
1:G:45:VAL:HG12	1:G:52:LEU:HD21	2.02	0.41	
1:A:281:GLY:HA2	1:A:329:PRO:HG3	2.01	0.41	
1:B:210:LYS:HB3	1:B:230:LYS:HZ1	1.86	0.41	
1:A:289:LYS:HB3	1:A:293:ARG:NH1	2.36	0.41	
1:C:72:LEU:HD12	1:C:73:LYS:N	2.35	0.41	
1:E:362:ILE:O	1:E:366:LEU:HG	2.21	0.41	
1:F:54:LEU:O	1:F:114:LEU:HD12	2.20	0.41	
1:A:158:PHE:HE1	1:A:196:PHE:CD1	2.39	0.41	
1:A:284:PHE:CD2	1:A:329:PRO:HB3	2.55	0.41	
1:F:250:ARG:NH1	1:F:302:SER:OG	2.53	0.41	
1:D:164:TYR:HD2	1:D:253:ARG:HH22	1.68	0.41	
1:A:121:ARG:NH1	1:A:123:ILE:HD11	2.36	0.41	
1:C:295:ASN:HB2	1:C:301:LEU:HD23	2.02	0.41	
1:C:358:LEU:HD23	1:C:358:LEU:HA	1.86	0.41	
1:F:200:ASP:CG	1:G:347:PRO:HB3/	2.41	0.41	
1:C:282:TYR:OH	1:H:160:ARG:HD3	2.21	0.41	
1:A:274:ALA:HB1	1:A:281:GLY;O	2.20	0.41	
1:A:291:VAL:HG13	1:A:359:GLU:HG3	2.03	0.41	
1:B:54:LEU:HD23	1:B:94:VAL:HG21	2.02	0.41	
1:H:295:ASN:HB2	1:H:301:LEU:HD23	2.02	0.41	
1:H:328:ARG:O	1:H:330:GLN:HG2	2.20	0.41	
1:A:126:ASP:HB3	1:A:258:PHE:CD2	2,56	0.41	
1:C:37:LEU:HD21	1:C:42:PHE:HD1	1.86	0.41	
1:D:217:TYR:CZ	1;D:224:PRO:HB3	2.56	0.41	
1:E:146:VAL:HG13	1:E:182:PHE:HE2	1.86	0.41	
1:G:192:TYR:CE1	1:G:256:GLU:HA	2.55	0.41	
1:H:72:LEU:HD12	1:H:73:LYS:N	2.36	0.41	
1:A:52:LEU:HD23	1:A:52:LEU:HA	1.86	0.40	
1:B:54:LEU:HD13	1:B:117:LEU:HG	2.02	0.40	
1:D:45:VAL:HG13	1:D:49:TYR:CE2	2.55	0.40	
1:B:307:ASP:HB3	1:B:310:ASP:OD2	2.20	0.40	
1:B:57:HIS:CE1	1:B:97:LYS:HE2	2.56	0.40	
1:F:247:PRO:HD2	1:F:250:ARG:HD3	2.02	0.40	
1:A:31:LYS:HB3	1:A:33;ARG:NH1	2.36	0.40	
1:C:28:TYR:HA	1:C:82:GLN:OE1	2.21	0.40	
1:E:170:PHE:O	1:E:212:ASN:N	2.46	0.40	
1:H:210:LYS:HB3	1.H:230:LYS:HZ3	1.87	0.40	
1:H:185:ALA:N	1:H:234:GLU:HG3	2.36	0.40	
1:C:208:SER:OG	1:D:98:LYS:HE3	2.21	0.40	
1:C:247:PRO:HG2	1:C:250:ARG:HB3	2.03	0.40	
1:C:93:MET:HE2	1:C:93:MET:HB3	1.94	0.40	
	I	~ .		

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$	$\begin{array}{c} \text{Clash} \\ \text{overlap } (\text{\AA}) \end{array}$
1:F:34:VAL:HG12	1:F:93:MET:HG2	2.04	0.40
1:H:289:LYS:HB3	1:H:293:ARG:HH12	1.86	0.40
1:A:54:LEU:HD23	1:A:94:VAL:HG21	2.02	0.40
1:E:192:TYR:CE1	1:E:256:GLU:HA	2.57	0.40
1:H:54:LEU:HD13	1:H:117:LEU:HG	2.04	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percenti	iles
1	A	323/387 (84%)	309 (96%)	14/(4%)	0	100 10	00
1	В	323/387 (84%)	310 (96%)	13 (4%)	0	100 10	00
1	С	323/387 (84%)	310 (96%)	13 (4%)	0	100 10	00
1	D	323/387 (84%)	310 (96%)	13 (4%)	0	100 10	00
1	E	323/387 (84%)	309 (96%)	14 (4%)	0	100 10	00
1	F	323/387 (84%)	310 (96%)	13 (4%)	0	100 10	00
1	G /	323/387~(84%)	310 (96%)	13 (4%)	0	100 10	00
1	H	323/387 (84%)	310 (96%)	13 (4%)	0	100 10	00
All	All	2584/3096 (84%)	2478 (96%)	106 (4%)	0	100 10	00

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	A	297/351~(85%)	295 (99%)	2 (1%)	85	93
1	В	297/351 (85%)	295 (99%)	2 (1%)	85	93
1	C	297/351 (85%)	295 (99%)	2 (1%)	85	93
1	D	297/351~(85%)	295 (99%)	2 (1%)	85	93
1	${ m E}$	297/351~(85%)	295 (99%)	2 (1%)	85	93
1	F	297/351~(85%)	295 (99%)	2/(1%)	85	93
1	G	297/351 (85%)	295 (99%)	2 (1%)	85	93
1	Н	297/351 (85%)	295 (99%)/	2 (1%)	85	93
All	All	$2376/2808 \; (85\%)$	2360 (99%)	16 (1%)	85	93

All (16) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	A	239	GLU
1	A	269	HIS
1	В	239	GLU /
1	В	269	HIS
1	С	239	GLÚ
1	С	269	HIS
1	D	239	GLU
1	D	269	HIS
1	Е	239/	GLU
1	Е	269	HIS
1	F	/239	GLU
1	F /	269	HIS
1	G /	239	GLU
1	Ģ	269	HIS
1	/H	239	GLU
1	/ H	269	HIS

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (2) such sidechains are listed below:

ĺ	Mol	Chain	Res	Type
	1 🙇	C	57/	HIS
	1	F	188	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

Of 68 ligands modelled in this entry, 63 are monoatomic - leaving 5 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Tuno	Chain	Res	Link	В	ond leng	gths	В	ond ang	gles
IVIOI	Type	Chain	nes	Lilik	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
3	SO4	В /	408	△- >	4,4,4	0.15	0	6,6,6	0.06	0
3	SO4	H/	407	-	4,4,4	0.16	0	6,6,6	0.19	0
3	SO4	Ď	409	77	4,4,4	0.17	0	6,6,6	0.12	0
3	SO4	F	408) -	A,4,4	0.14	0	6,6,6	0.08	0
3	SO4	A	410	2	4,4,4	0.15	0	6,6,6	0.15	0

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<rsrz></rsrz>	#RSR2	Z>:	2	$OWAB(\AA^2)$	Q < 0.9
1	A	329/387~(85%)	2.15	139 (42%)	0	0	69, 99, 134, 141	0
1	В	329/387~(85%)	1.46	101 (30%)	0	0	54, 89, 137, 152	0
1	С	329/387~(85%)	1.53	110 (33%)	0	0	51, 87, 132, 154	0
1	D	329/387~(85%)	1.79	125 (37%)	0	0	57, 99, 133, 146	0
1	E	329/387~(85%)	1.64	116 (35%)	0	0	56, 97, 137, 148	0
1	F	329/387~(85%)	1.43	105 (31%)	0	0	48, 91, 133, 160	0
1	G	329/387~(85%)	1.40	99 (30%)	0	0	50, 92, 132, 156	0
1	Н	329/387 (85%)	2.01	139 (42%)	0	0	61, 96, 133, 143	0
All	All	2632/3096~(85%)	1.68	934 (35%)	0	0	48, 94, 135, 160	0

All (934) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	A	226	ALA	13.0
1	Н	1/15	TYR	11.6
1	Н	/150	SER	10.5
1	D /	257	MET	10.4
1	A/	96	ALA	10.4
1	E	248	THR	9.6
1	/H	113	SER	/9.3
1	/ E	257	MET	9.3
1 /	C	127	GLY/	8.9
1/	Н	114	LEÚ	8.9
/1	C	92	VAL	8.7
/ 1	A	114	/LEU	8.7
1	D	190 /	GLN	8.6
1 4	C	128	GLU	8.6
1	A	169	GLY	8.6
1	C	/93	MET	8.4

Continued from previous page...

	nued from			
Mol	Chain	Res	Type	RSRZ
1	A	215	ASP	8.4
1	G	54	LEU	8.2
1	A	95	ASP	8.0
1	G	73	LYS	8.0
1	A	116	ILE	7.9
1	Н	53	CYS	7.9
1	A	23	LEU	7.9
1	С	257	MET	7.8
1	Е	128	GLU	7.8
1	A	115	TYR	7.8
1	Н	102	LEU	7.7
1	Н	112	GLY	7.7
1	Н	54	LEU	7.6
1	G	92	VAL	7.6
1	В	71	GLN	7.6
1	D	128	GLU	7.6
1	Н	212	ASN	7.5
1	D	248	THR	7.4
1	A	102	LEU	7.4
1	A	113	SER	7.3
1	Н	88	ALA	7.3
1	D	53	CYS	7.2
1	A	97	LYS	7.2
1	G	116	ILÉ	7.2
1	A	55	TYR	7.2
1	Е	249	/LEU	7.1
1	В	55 /	TYR	7.1
1	Н	129	PHE	7.0
1	A	227	ILE	7.0
1	A	150	SER	7.0
1	Н /	169	GLY	6.9
1	H/	96	ALA	6.9
1	/D	302	SER	6.9
1	/ D	191	PRO	6.7
1	Е	190	GLN	6.6
1/	A	283	GLU	6.6
1	A	198	THR	6.6
/1	F	191	PRO	6.5
1	G	55	/TYR	6.5
1	Н	149/	ILE	6.5
1	G	94	VAL	6.4
1	Н	/92	VAL	6.4
		/ 5 =	,,,,,,,	

Continued from previous page...

	nued from			
Mol	Chain	Res	Type	RSRZ
1	A	54	LEU	6.4
1	F	108	PHE	6.4
1	F	315	VAL	6.4
1	С	71	GLN	6.3
1	G	53	CYS	6.3
1	Н	302	SER	6.2
1	D	71	GLN	6.2
1	A	149	ILE	6.2
1	Е	192	TYR	6.2
1	G	93	MET	6.2
1	Н	44	GLN	6.2
1	D	192	TYR	6.1
1	D	90	GLY	6.1
1	Н	226	ALA	6.0
1	D	256	GLU	6.0
1	F	128	GLU	6.0
1	В	94	VAL	6.0
1	F	318	TRP	6.0
1	С	269	HIS	6.0
1	Н	215	ASP	6.0
1	D	102	LEU	5.9
1	G	70	PHE	5.9
1	A	216	PHE	5.9
1	A	117	LEU	5.9
1	Н	248	THR	5.8
1	D	91	/PHE	5.8
1	Е	108/	PHE	5.8
1	Н	168	ILE	5.8
1	A	355	ALA	5.8
1	A	225	ILE	5.7
1	G /	56	TYR	5.7
1	E	226	ALA	5.7
1	Æ	283	GLU	5.7
1	C	37	LEU	5.7
1	F	94	VAL	5.7
1/	D	324	ILE/	5.7
1	Н	55	TYR	5.7
/1	D	74	GLU	5.7
1	E	193	/ILE	5.7
1	В	92 /	VAL	5.6
1	Е	367	SER	5.6
1	A	214	VAL	5.6
	1	/	1	

Continued from previous page...

Conti	Continued from previous page								
Mol	Chain	Res	Type	RSRZ					
1	A	301	LEU	5.6					
1	С	94	VAL	5.5					
1	G	114	LEU	5.5					
1	Н	296	THR	5.5					
1	С	334	VAL	5.5					
1	С	258	PHE	5.5					
1	F	192	TYR	5.5					
1	Е	191	PRO	5.4					
1	С	54	LEU	5.4					
1	В	96	ALA	5.4					
1	В	149	ILE	5.4					
1	D	268	ILE	5.4					
1	В	23	LEU	5.4					
1	С	192	TYR	5.4					
1	Н	198	THR	5.4					
1	В	95	ASP	5.4					
1	В	91	PHE	5.4					
1	A	359	GLU	5.3 /					
1	С	75	ILE	5.3					
1	C	191	PRO	5.3					
1	D	301	LEU	/5.3					
1	Н	116	ILE	5.3					
1	D	129	PHE	5.2					
1	Е	130	ALA	5.2					
1	A	129	PHE	5.2					
1	Е	102	/LEU	5.2					
1	Н	119/	GLY	5.2					
1	D	70	PHE	5.1					
1	G	/76	VAL	5.1					
1	G	212	ASN	5.1					
1	C /	91	PHE	5.1					
1	F/	314	LEU	5.1					
1	Á	286	GLU	5.1					
1	B	102	LEU	5.1					
1 ,	G	102	LEU	5.1					
1/	Н	237	LEU	5.1					
1	E	141	LEU	5.1					
/1	C	333	VAL	5.1					
1	E	131	ALA	5.1					
1	D	42 /	PHE	5.1					
1	F	257	MET	5.1					
1	D	125	PHE	5.0					
		/		1					

Continued from previous page...

	nued fron			
Mol	Chain	Res	Type	RSRZ
1	С	129	PHE	5.0
1	С	318	TRP	5.0
1	D	39	GLU	5.0
1	F	95	ASP	5.0
1	В	114	LEU	4.9
1	A	132	ASP	4.9
1	Е	109	ASP	4.9
1	Е	41	ASN	4.9
1	В	54	LEU	4.9
1	D	249	LEU	4.9
1	A	125	PHE	4.9
1	В	38	SER	4.9
1	Н	117	LEU	4.9
1	Н	301	LEU	4.9
1	В	196	PHE	4.9
1	G	52	LEU	4.9
1	A	100	ALA	4.9
1	Н	56	TYR	4.9
1	A	358	LEU	4.9
1	A	303	ILE	4.9
1	F	190	GLN	4.9
1	В	116	ILE	4.9
1	F	50	ASP/	4.8
1	A	112	GLY	4.8
1	Е	40	LYS	4.8
1	F	107	/GLY	4.8
1	Е	366/	LEU	4.8
1	D	226	ALA	4.8
1	A	248	THR	4.8
1	D	73	LYS	4.8
1	D /	130	ALA	4.8
1	A/	123	ILE	4.8
1	A	357	GLU	4.8
1	A	91	PHE	4.7
1	В	106	LEU	4.7
1/	Е	292	ALA	4.7
1	A	295	AŞN	4.7
/1	В	72	ĻEU	4.7
1	A	39	GLU	4.7
1	D	88 /	ALA	4.7
1	G	11/5	TYR	4.7
1	A	339	ALA	4.7
			l	

Continued from previous page...

	nued fron			
Mol	Chain	Res	Type	RSRZ
1	F	313	LEU	4.7
1	В	354	THR	4.7
1	Н	99	GLU	4.7
1	D	250	ARG	4.7
1	Н	216	PHE	4.6
1	Н	303	ILE	4.6
1	D	54	LEU	4.6
1	В	361	TRP	4.6
1	В	99	GLU	4.6
1	С	53	CYS	4.6
1	Е	149	ILE	4.5
1	A	53	CYS	4.5
1	A	136	GLU	4.5
1	G	77	LEU	4.5
1	Н	52	LEU	4.5
1	С	324	ILE	4.5
1	Н	23	LEU	4.5
1	D	215	ASP	4.5
1	A	302	SER	4.5
1	G	74	GLU	4.5
1	Н	245	GLN	/4.5
1	Е	296	THR	4.4
1	D	141	LEU	4.4
1	D	194	LYS	4.4
1	С	38	\$ER	4.4
1	Н	238	/VAL	4.4
1	Н	151/	SER	4.4
1	G	11/7	LEU	4.4
1	Н	163	ASP	4.4
1	В	318	TRP	4.4
1	D /	106	LEU	4.4
1	D/	227	ILE	4.3
1	Ć	125	PHE	4.3
1	E	103	ALA	4.3
1	A	84	LEU	4.3
1/	F	26	PRO	4.3
1	В	197	ALA	4.3
/1	D	89	ИE	4.2
1	H	43	LYS	4.2
1	F	333/	VAL	4.2
1	В	370	ILE	4.2
1	F	/92	VAL	4.2
				- _

Continued from previous page...

	Continued from previous page						
Mol	Chain	Res	Type	RSRZ			
1	Е	194	LYS	4.2			
1	Н	337	THR	4.2			
1	D	298	ASN	4.2			
1	Е	295	ASN	4.2			
1	Н	217	TYR	4.2			
1	A	298	ASN	4.2			
1	Е	50	ASP	4.1			
1	С	55	TYR	4.1			
1	D	50	ASP	4.1			
1	F	245	GLN	4.1			
1	A	94	VAL	4.1			
1	Е	370	ILE	4.1			
1	F	37	LEU	4.1			
1	Е	250	ARG	4.1			
1	D	96	ALA	4.1			
1	D	72	LEU	4.1			
1	Н	160	ARG	4.1			
1	D	316	ALA	4.0 /			
1	Е	23	LEU	4.0			
1	Н	249	LEU	4.0			
1	D	114	LEU	4.0			
1	В	70	PHE	4.0			
1	A	217	TYR	4.0			
1	G	176	SER	4.0			
1	A	249	LEU	4.0			
1	В	93	MET	4.0			
1	С	82 /	GLN	4.0			
1	Е	123	ILE	4.0			
1	G	217	TYR	4.0			
1	Е	161	ILE	4.0			
1	A /	354	THR	3.9			
1	A/	284	PHE	3.9			
1	Á	168	ILE	3.9			
1	В	332	GLY	3.9			
1	F	337	THR	3.9			
1/	C	126	ASP	3.9			
1	G	95	ASP	3.9			
1	A	87	LYS	3.9			
1	H	111	GLU	3.9			
1	Н	355/	ALA	3.9			
1	A	88	ALA	3.9			
1	E	145	PRO	3.9			
		/110	1100	5.5			

Continued from previous page...

	nued fron			
Mol	Chain	Res	Type	RSRZ
1	D	161	ILE	3.9
1	A	141	LEU	3.9
1	A	257	MET	3.9
1	F	91	PHE	3.9
1	G	241	VAL	3.9
1	В	84	LEU	3.9
1	С	313	LEU	3.9
1	Е	160	ARG	3.8
1	Е	368	GLY	3.8
1	В	284	PHE	3.8
1	G	169	GLY	3.8
1	A	154	GLU	3.8
1	В	117	LEU	3.8
1	D	52	LEU	3.8
1	A	352	LEU	3.8
1	С	72	LEU	3.8
1	D	269	HIS	3.8
1	A	197	ALA	3.8
1	F	193	ILE	3.8
1	Н	89	ILE	3.8
1	A	332	GLY	/3.8
1	Е	227	ILE	3.8
1	A	368	GLY/	3.8
1	Е	198	THR	3.8
1	G	257	MET	3.8
1	A	44	/GLN	3.8
1	С	190/	GLN	3.8
1	F	11/2	GLY	3.8
1	С	325	ASP	3.8
1	D	137	PHE	3.8
1	F /	322	PHE	3.7
1	A/	289	LYS	3.7
1	Ġ	72	LEU	3.7
1	F	103	ALA	3.7
1	D	131	ALA	3.7
1/	Е	365	VAL	3.7
1	F	366	LEU	3.7
/1	D	244	HIS	3.7
1	C	76	/VAL	3.7
1	D	369/	LYS	3.7
1	В	241	VAL	3.7
1	C	315	VAL	3.7
			<u> </u>	

Continued from previous page...

	nued from			
Mol	Chain	Res	Type	RSRZ
1	D	121	ARG	3.7
1	D	150	SER	3.7
1	G	168	ILE	3.7
1	С	102	LEU	3.7
1	В	52	LEU	3.7
1	A	24	ASN	3.7
1	F	342	VAL	3.7
1	G	167	LEU	3.6
1	Н	91	PHE	3.6
1	Н	165	ILE	3.6
1	Н	232	TYR	3.6
1	Е	333	VAL	3.6
1	G	222	ASP	3.6
1	В	74	GLU	3.6
1	A	241	VAL	3.6
1	Н	73	LYS	3.6
1	С	147	GLU	3.6
1	С	33	ARG	3.6
1	A	99	GLU	3.6
1	С	149	ILE	3.6
1	D	368	GLY	3.6
1	Н	39	GLU	3.6
1	Н	213	GLU	3.6
1	Н	76	VAL	3.6
1	С	317	ŢŶR	3.6
1	Е	324	/ILE	3.6
1	D	123/	ILE	3.6
1	D	76	VAL	3.6
1	Е	182	PHE	3.6
1	G	245	GLN	3.6
1	C /	120	ASP	3.6
1	A/	52	LEU	3.6
1	Ć	36	SER	3.6
1	/ H	167	LEU	3.6
1	В	245	GLN	3.6
1/	Е	113	SER	3.5
1	D	313	LE/U	3.5
$\frac{1}{1}$	H	220	PHE	3.5
1	В	244	HIS	3.5
1	C	197/	ALA	3.5
1	A	240	PHE	3.5
1	A	119	GLY	3.5
_	1 1	/110		5.0

Continued from previous page...

	nued fron			
Mol	Chain	Res	Type	RSRZ
1	С	312	PRO	3.5
1	D	303	ILE	3.5
1	Н	80	VAL	3.5
1	Н	93	MET	3.5
1	Н	132	ASP	3.5
1	Н	171	PHE	3.5
1	Н	49	TYR	3.5
1	Е	97	LYS	3.5
1	Е	313	LEU	3.5
1	В	353	PRO	3.5
1	Е	254	PRO	3.5
1	Н	257	MET	3.5
1	Н	97	LYS	3.5
1	Н	288	LEU	3.5
1	Е	96	ALA	3.5
1	С	130	ALA	3.4
1	F	248	THR	3.4
1	D	120	ASP	3.4
1	В	115	TYR	3.4
1	G	237	LEU	3.4
1	D	299	PRO	3.4
1	Н	94	VAL	3.4
1	В	317	TYR	3.4
1	С	196	РНЕ	3.4
1	В	331	ÆЕ	3.4
1	D	136	/GLU	3.4
1	В	312/	PRO	3.4
1	Е	305	TRP	3.4
1	D	169	GLY	3.4
1	Н	154	GLU	3.4
1	E /	203	VAL	3.4
1	C/	134	LEU	3.4
1	,G	343	TRP	3.4
1	E	252	LEU	3.4
1	E	369	LYS	3.4
1/	В	215	ASP	3.4
1	C	347	PRO	3.4
$\frac{1}{1}$	E	83	VAL	3.4
1	E	195	/PHE	3.4
1	E	298/	ASN	3.4
1	A	285	LEU	3.4
1	A	362	ILE	3.4
	1 1	/552	1111	5.1

Continued from previous page...

	Continued from previous page					
Mol	Chain	Res	Type	RSRZ		
1	G	149	ILE	3.4		
1	H	123	ILE	3.4		
1	A	160	ARG	3.4		
1	D	198	THR	3.3		
1	В	150	SER	3.3		
1	F	131	ALA	3.3		
1	A	268	ILE	3.3		
1	G	355	ALA	3.3		
1	Н	90	GLY	3.3		
1	С	343	TRP	3.3		
1	G	332	GLY	3.3		
1	F	269	HIS	3.3		
1	Е	268	ILE	3.3		
1	D	122	THR	3.3		
1	Е	167	LEU	3.3		
1	Н	106	LEU	3.3		
1	Н	225	ILE	3.3		
1	В	125	PHE	3.3		
1	С	323	LYS	3.3		
1	В	222	ASP	3.3		
1	В	168	ILE	/3.3		
1	С	268	ILE	3.3		
1	Н	48	LYS	3.3		
1	G	313	LEU	3.3		
1	A	213	GLU	3.3		
1	С	250	ARG	3.3		
1	D	222/	ASP	3.3		
1	A	101	LYS	3.3		
1	Е	312	PRO	3.2		
1	F	335	ASN	3.2		
1	Α /	42	PHE	3.2		
1	D/	193	ILE	3.2		
1	Æ	362	ILE	3.2		
1	F	341	SER	3.2		
1	В	56	TYR	3.2		
1/	A	287	ILE/	3.2		
1	Е	215	ASP	3.2		
/1	H	162	GLU	3.2		
1	D	367	SER	3.2		
1	F	249/	LEU	3.2		
1	В	216	PHE	3.2		
1	Е	339	ALA	3.2		
		/	l	l		

Continued from previous page...

Continued from previous page					
Mol	Chain	Res	Type	RSRZ	
1	A	288	LEU	3.2	
1	С	115	TYR	3.2	
1	F	250	ARG	3.2	
1	A	89	ILE	3.2	
1	A	361	TRP	3.2	
1	G	129	PHE	3.2	
1	D	214	VAL	3.2	
1	Е	122	THR	3.2	
1	В	128	GLU	3.2	
1	С	314	LEU	3.2	
1	G	287	ILE	3.2	
1	Н	196	PHE	3.2	
1	В	69	GLN	3.2	
1	G	215	ASP	3.2	
1	A	106	LEU	3.2	
1	F	33	ARG	3.1	
1	A	279	PRO	3.1	
1	Н	95	ASP	3.1 /	
1	D	41	ASN	3.1	
1	Н	282	TYR	3.1	
1	Е	189	PHE	/3.1	
1	С	249	LEU	3.1	
1	С	326	LEU/	3.1	
1	F	141	LEÚ	3.1	
1	В	77	LEU	3.1	
1	G	274	/ALA	3.1	
1	D	220/	PHE	3.1	
1	В	34	VAL	3.1	
1	Е	110	GLU	3.1	
1	G	196	PHE	3.1	
1	D /	126	ASP	3.1	
1	D/	162	GLU	3.1	
1	A	118	LYS	3.1	
1	/ H	30	GLY	3.1	
1	F	99	GLU	3.1	
1/	A	254	PRO	3.1	
1	C	70	РНЕ	3.1	
/1	D	216	PHE	3.1	
1	A	271	/VAL	3.1	
1	D	334/	VAL	3.1	
1	G	69	GLN	3.1	
1	C	316	ALA	3.1	
		/	1		

Continued from previous page...

Continued from previous page				
Mol	Chain	Res	Type	RSRZ
1	A	229	ASN	3.0
1	D	333	VAL	3.0
1	D	279	PRO	3.0
1	В	330	GLN	3.0
1	С	108	PHE	3.0
1	Е	91	PHE	3.0
1	Ε	158	PHE	3.0
1	Н	224	PRO	3.0
1	В	53	CYS	3.0
1	A	369	LYS	3.0
1	D	116	ILE	3.0
1	Н	103	ALA	3.0
1	A	296	THR	3.0
1	В	357	GLU	3.0
1	F	34	VAL	3.0
1	Н	42	PHE	3.0
1	A	223	GLU	3.0
1	С	322	PHE	3.0 /
1	F	147	GLU	3.0
1	F	102	LEU	3.0
1	F	331	ILE	3.0
1	D	77	LEU	3.0
1	A	92	VAL/	3.0
1	С	161	ILE	3.0
1	G	108	PHE	3.0
1	Н	197	/ALA	3.0
1	Н	273/	PHE	3.0
1	F	31/7	TYR	3.0
1	С	90	GLY	2.9
1	F	199	PHE	2.9
1	В	287	ILE	2.9
1	C/	256	GLU	2.9
1	Æ	26	PRO	2.9
1	E	299	PRO	2.9
1	G	99	GLU	2.9
1/	C	86	HIS	2.9
1	В	141	LEU	2.9
1	H	177	GLU	2.9
1	H	125	/PHE	2.9
1	Н	284/	PHE	2.9
1	В	123	ILE	2.9
1	E	256	GLU	2.9

Continued from previous page...

	Continued from previous page					
Mol	Chain	Res	Type	RSRZ		
1	D	92	VAL	2.9		
1	С	131	ALA	2.9		
1	G	175	ASP	2.9		
1	В	355	ALA	2.9		
1	F	96	ALA	2.9		
1	Н	289	LYS	2.9		
1	Е	106	LEU	2.9		
1	G	232	TYR	2.9		
1	A	270	ILE	2.9		
1	В	37	LEU	2.9		
1	D	135	VAL	2.9		
1	D	315	VAL	2.9		
1	Н	214	VAL	2.9		
1	Н	31	LYS	2.9		
1	G	223	GLU	2.9		
1	Н	158	PHE	2.9		
1	Е	269	HIS	2.9		
1	F	312	PRO	2.9		
1	A	105	LYS	2.9		
1	A	90	GLY	2.9		
1	В	288	LEU	2.9		
1	F	279	PRO	2.9		
1	G	361	TRP	2.9		
1	Н	352	LEU	2.9		
1	Н	313	LEU	2.9		
1	Е	38	SER	2.8		
1	G	331/	ILE	2.8		
1	F	12/7	GLY	2.8		
1	A	337	THR	2.8		
1	В	352	LEU	2.8		
1	C /	270	ILE	2.8		
1	C/	304	LEU	2.8		
1	C	69	GLN	2.8		
1	C	329	PRO	2.8		
1	Е	199	PHE	2.8		
1/	G	284	PHE	2.8		
1	Н	370	ILE	2.8		
/1	E	214	VAL	2.8		
1	A	73	LYS	2.8		
1	D	79 /	LEU	2.8		
1	В	7,3	LYS	2.8		
1	C	/39	GLU	2.8		
			l	I		

Continued from previous page...

Continued from previous page				
Mol	Chain	Res	Type	RSRZ
1	D	139	LEU	2.8
1	Н	74	GLU	2.8
1	Н	241	VAL	2.8
1	В	169	GLY	2.8
1	F	56	TYR	2.8
1	F	334	VAL	2.8
1	A	122	THR	2.8
1	F	189	PHE	2.8
1	G	353	PRO	2.8
1	Е	255	GLU	2.8
1	Е	274	ALA	2.8
1	F	332	GLY	2.8
1	С	137	PHE	2.8
1	D	103	ALA	2.8
1	F	252	LEU	2.8
1	F	316	ALA	2.8
1	Н	227	ILE	2.7
1	A	220	PHE	2.7
1	В	249	LEU	2.7
1	В	343	TRP	2.7
1	F	106	LEU	2.7
1	С	35	VAL	2.7
1	Е	42	PHE	2.7
1	С	85	GĻÚ	2.7
1	В	103	ALA	2.7
1	F	326	/LEU	2.7
1	Н	108/	PHE	2.7
1	С	114	LEU	2.7
1	G	/91	PHE	2.7
1	Н	28	TYR	2.7
1	E /	245	GLN	2.7
1	F/	158	PHE	2.7
1	Æ	270	ILE	2.7
1	/ H	148	ILE	2.7
1	A	367	SER	2.7
1/	Е	288	LEU	2.7
1	Н	87	LYS	2.7
$\sqrt{1}$	G	288	LEU	2.7
1	G	270	ILE	2.7
1	E	79 /	LEU	2.7
1	C	135	VAL	2.7
1	G	135	VAL	2.7
_	<u> </u>	/-50	,,,,,,	,

Continued from previous page...

Continued from previous page				
Mol	Chain	Res	Type	RSRZ
1	В	24	ASN	2.7
1	D	159	GLU	2.7
1	В	217	TYR	2.7
1	F	365	VAL	2.7
1	Н	131	ALA	2.7
1	В	98	LYS	2.7
1	В	335	ASN	2.7
1	Н	223	GLU	2.7
1	Н	203	VAL	2.7
1	Н	128	GLU	2.7
1	D	189	PHE	2.7
1	D	326	LEU	2.7
1	F	244	HIS	2.7
1	A	251	ARG	2.7
1	D	132	ASP	2.7
1	F	38	SER	2.7
1	Е	337	THR	2.7
1	В	194	LYS	2.7 /
1	В	371	ASN	2.7
1	D	212	ASN	2.7
1	Н	166	LYS	2.7
1	G	37	LEU	2.6
1	Н	322	PHE	2.7
1	A	370	ILÉ	2.6
1	F	330	ĢĹN	2.6
1	С	284	PHE	2.6
1	С	148/	ILE	2.6
1	С	370	ILE	2.6
1	С	/73	LYS	2.6
1	F	254	PRO	2.6
1	G /	29	ASP	2.6
1	E	39	GLU	2.6
1	H	362	ILE	2.6
1	A	77	LEU	2.6
1	A	163	ASP	2.6
1/	D	255	GLU	2.6
1	G	283	GLU	2.6
/1	F	324	ИЕ	2.6
1	C	167	LEU	2.6
1	D	312/	PRO	2.6
1	F	298	ASN	2.6
1	A	45	VAL	2.6
	-	/ -		_

Continued from previous page...

	Continued from previous page					
Mol	Chain	Res	Type	RSRZ		
1	В	131	ALA	2.6		
1	A	74	GLU	2.6		
1	A	108	PHE	2.6		
1	Е	216	PHE	2.6		
1	Е	346	ILE	2.6		
1	С	237	LEU	2.6		
1	A	293	ARG	2.6		
1	В	39	GLU	2.6		
1	Е	253	ARG	2.6		
1	A	331	ILE	2.6		
1	Е	116	ILE	2.6		
1	F	168	ILE	2.6		
1	D	241	VAL	2.6		
1	В	50	ASP	2.6		
1	A	43	LYS	2.6		
1	Н	141	LEU	2.6		
1	С	42	PHE	2.6		
1	D	325	ASP	2.6		
1	F	200	ASP	2.6		
1	С	157	ALA	2.6		
1	Е	282	TYR	/2.5		
1	G	38	SER	2.5		
1	В	132	ASP/	2.5		
1	D	156	GLN	2.5		
1	Е	279	PRO	2.5		
1	G	103	/ALA	2.5		
1	С	141/	LEU	2.5		
1	Е	129	PHE	2.5		
1	G	349	ASP	2.5		
1	D	108	PHE	2.5		
1	E /	84	LEU	2.5 /		
1	G/	358	LEU	2.5		
1	Ď	26	PRO	2.5		
1	F	343	TRP	2.5		
1	В	225	ILE	2.5		
1/	A	137	PHE	2.5		
1	E	166	LYS	2.5		
/1	H	156	GLN	2.5		
1	C	342	/VAL	2.5		
1	G	148/	ILE	2.5		
1	В	33	ARG	2.5		
1	В	337	THR	2.5		
			l			

Continued from previous page...

Continued from previous page				
Mol	Chain	Res	Type	RSRZ
1	С	245	GLN	2.5
1	Е	171	PHE	2.5
1	D	163	ASP	2.5
1	G	164	TYR	2.5
1	G	134	LEU	2.5
1	В	270	ILE	2.5
1	Н	155	VAL	2.5
1	G	200	ASP	2.4
1	A	237	LEU	2.4
1	Н	358	LEU	2.4
1	A	239	GLU	2.4
1	G	39	GLU	2.4
1	G	166	LYS	2.4
1	F	255	GLU	2.4
1	Н	164	TYR	2.4
1	Е	303	ILE	2.4
1	G	197	ALA	2.4
1	Е	343	TRP	2.4 /
1	G	220	PHE	2.4
1	G	105	LYS	2.4
1	A	165	ILE	2.4
1	A	299	PRO	2.4
1	F	161	ILE/	2.4
1	F	222	ASP	2.4
1	Н	287	ИE	2.4
1	В	226	ALA	2.4
1	A	305/	TRP	2.4
1	A	80	VAL	2.4
1	A	147	GLU	2.4
1	F	241	VAL	2.4
1	F /	284	PHE	2.4
1	H/	312	PRO	2.4
1	H	211	MET	2.4
1	B	237	LEU	2.4
1	Н	51	LEU	2.4
1/	C	31	LYS	2.4
1	C	371	AŞN	2.4
$\frac{1}{1}$	D	119	GLY	2.4
1	E	316	ALA	2.4
1	Н	157/	ALA	2.4
1	G	249	LEU	2.4
1	G	233	THR	2.4
_	<u> </u>			

Continued from previous page...

\underline{Conti}	Continued from previous page				
Mol	Chain	Res	Type	RSRZ	
1	G	154	GLU	2.4	
1	D	188	HIS	2.4	
1	G	71	GLN	2.4	
1	A	182	PHE	2.4	
1	С	303	ILE	2.4	
1	D	118	LYS	2.4	
1	С	51	LEU	2.4	
1	F	69	GLN	2.4	
1	С	123	ILE	2.4	
1	Е	76	VAL	2.4	
1	F	283	GLU	2.4	
1	F	329	PRO	2.4	
1	F	363	GLU	2.4	
1	G	195	PHE	2.4	
1	С	332	GLY	2.4	
1	D	160	ARG	2.4	
1	С	169	GLY	2.4	
1	D	51	LEU	2.4	
1	Н	46	LEU	2.4	
1	С	327	PHE	2.4	
1	D	300	ASP	2.4	
1	Е	132	ASP	2.4	
1	F	55	TYR	2.4	
1	F	370	ILÉ	2.3	
1	F	347	PRO	2.3	
1	В	211	MET	2.3	
1	С	116/	ILE	2.3	
1	G	163	ASP	2.3	
1	G	312	PRO	2.3	
1	C	198	THR	2.3	
1	D /	358	LEU	2.3	
1	A/	244	HIS	2.3	
1	B	127	GLY	2.3	
1	B	285	LEU	2.3	
1	D	43	LYS	2.3	
1/	Н	24	ASN	2.3	
1	F	274	ALA	2.3	
1	G	338	ASP	2.3	
1	Н	331	ILE	2.3	
1	В	291/	VAL	2.3	
1	C	302	SER	2.3	
1	E	169	GLY	2.3	
		/			

Continued from previous page...

	Continued from previous page					
Mol	Chain	Res	Type	RSRZ		
1	D	322	PHE	2.3		
1	F	296	THR	2.3		
1	A	304	LEU	2.3		
1	С	34	VAL	2.3		
1	D	37	LEU	2.3		
1	Н	365	VAL	2.3		
1	В	240	PHE	2.3		
1	F	362	ILE	2.3		
1	В	76	VAL	2.3		
1	D	314	LEU	2.3		
1	F	210	LYS	2.3		
1	Н	293	ARG	2.3		
1	Е	358	LEU	2.3		
1	G	34	VAL	2.3		
1	Н	347	PRO	2.3		
1	D	196	PHE	2.3		
1	D	75	ILE	2.3		
1	Н	118	LYS	2.3 /		
1	A	103	ALA	2.3		
1	A	272	ALA	2.3		
1	В	90	GLY	/2.3		
1	С	56	TYR	2.3		
1	A	356	GLU	2.2		
1	С	220	PHE	2.3		
1	A	335	ASN	2.2		
1	D	343	/TRP	2.2		
1	В	232/	TYR	2.2		
1	G	25	PHE	2.2		
1	В	275	GLU	2.2		
1	D	34	VAL	2.2		
1	Е /	315	VAL	2.2 /		
1	F/	148	ILE	2.2		
1	Æ	237	LEU	2.2		
1	/ H	84	LEU	2.2		
1	F	216	PHE	2.2		
1/	C	166	LYS	2.2		
1	G	339	ALA	2.2		
/1	H	130	ALA	2.2		
1	F	164	TYR	2.2		
1	G	24 /	ASN	2.2		
1	A	224	PRO	2.2		
1	В	339	ALA	2.2		
			l	l		

Continued from previous page...

Continued from previous page				
Mol	Chain	Res	Type	RSRZ
1	G	23	LEU	2.2
1	Е	104	LYS	2.2
1	A	238	VAL	2.2
1	D	167	LEU	2.2
1	Е	112	GLY	2.2
1	В	201	LYS	2.2
1	D	199	PHE	2.2
1	G	244	HIS	2.2
1	G	254	PRO	2.2
1	Н	50	ASP	2.2
1	Н	72	LEU	2.2
1	A	49	TYR	2.2
1	В	220	PHE	2.2
1	Е	328	ARG	2.2
1	F	82	GLN	2.2
1	С	295	ASN	2.2
1	D	133	VAL	2.2
1	Е	80	VAL	2.2 /
1	Н	353	PRO	2.2
1	В	338	ASP	2.2
1	D	166	LYS	2.2
1	С	50	ASP	2.2
1	G	158	PHE	2.2
1	В	358	LEU	2.2
1	F	167	LEU	2.2
1	G	250	ARG	2.2
1	F	258/	PHE	2.2
1	С	367	SER	2.2
1	D	100	ALA	2.2
1	G	131	ALA	2.2
1	E	133	VAL	2.2
1	F/	134	LEU	2.2
1	B	362	ILE	2.2
1	F	25	PHE	2.2
1	Н	25	PHE	2.2
1/	G	214	VAL	2.2
1	Е	148	ILE	2.2
$\sqrt{1}$	E	165	KLE	2.2
1	F	361	TRP	2.2
1	Н	101/	LYS	2.2
1	C	255	GLU	2.2
1	F	100	ALA	2.1
-	1	/=00		

Continued from previous page...

Conti	Continued from previous page				
Mol	Chain	Res	Type	RSRZ	
1	D	304	LEU	2.1	
1	Н	38	SER	2.1	
1	D	305	TRP	2.1	
1	F	273	PHE	2.1	
1	Н	292	ALA	2.1	
1	D	213	GLU	2.1	
1	С	365	VAL	2.1	
1	G	51	LEU	2.1	
1	G	285	LEU	2.1	
1	G	27	THR	2.1	
1	G	150	SER	2.1	
1	Н	107	GLY	2.1	
1	A	72	LEU	2.1	
1	Е	347	PRO	2.1	
1	Е	56	TYR	2.1	
1	Е	168	ILE	2.1	
1	F	70	PHE	2.1	
1	Н	161	ILE	2.1 /	
1	A	131	ALA	2.1	
1	G	146	VAL	2.1	
1	A	70	PHE	2.1	
1	Е	319	GLU	2.1	
1	Е	126	ASP/	2.1	
1	F	76	VAL	2.1	
1	D	195	PHE	2.1	
1	F	247	/PRO	2.1	
1	A	40 /	LYS	2.1	
1	A	232	TYR	2.1	
1	F	196	PHE	2.1	
1	A	50	ASP	2.1	
1	Е/	98	LYS	2.1	
1	A/	37	LEU	2.1	
1	É	134	LEU	2.1	
1	/ B	320	LYS	2.1	
1	D	-31	LYS	2.1	
1/	D	38	SER	2.1	
1	A	109	AŞP	2.1	
$\sqrt{1}$	D	225	ИE	2.1	
1	Е	341	SER	2.1	
1	C	77 /	LEU	2.1	
1	Е	342	VAL	2.1	
1	A	317	TYR	2.1	
		/			

Continued from previous page...

1 E 89 ILE 2 1 B 334 VAL 2 1 C 159 GLU 2 1 E 138 LEU 2 1 A 292 ALA 2 1 C 288 LEU 2 1 H 233 THR 2 1 F 253 ARG 2 1 B 134 LEU 2 1 F 41 ASN 2 1 A 228 PRO 2 1 A 228 PRO 2 1 F 297 ASP 2 1 D 149 ILE 2 1 A 76 VAL 2 1 B 326 LEU 2 1 F 51 LEU 2 1 G<	RZ .1 .1 .1
1 B 334 VAL 2 1 C 159 GLU 2 1 E 138 LEU 2 1 A 292 ALA 2 1 C 288 LEU 2 1 H 233 THR 2 1 F 253 ARG 2 1 B 134 LEU 2 1 F 41 ASN 2 1 F 41 ASN 2 1 A 228 PRO 2 1 C 248 THR 2 1 F 297 ASP 2 1 D 149 ILE 2 1 A 76 VAL 2 1 B 326 LEU 2 1 F 51 LEU 2 1 G 106 LEU 2	.1
1 C 159 GLU 2 1 E 138 LEU 2 1 A 292 ALA 2 1 C 288 LEU 2 1 H 233 THR 2 1 F 253 ARG 2 1 B 134 LEU 2 1 F 41 ASN 2 1 A 228 PRO 2 1 C 248 THR 2 1 F 297 ASP 2 1 D 149 ILE 2 1 A 76 VAL 2 1 B 326 LEU 2 1 F 51 LEU 2 1 G 106 LEU 2	.1
1 E 138 LEU 2 1 A 292 ALA 2 1 C 288 LEU 2 1 H 233 THR 2 1 F 253 ARG 2 1 B 134 LEU 2 1 F 41 ASN 2 1 A 228 PRO 2 1 C 248 THR 2 1 F 297 ASP 2 1 D 149 ILE 2 1 A 76 VAL 2 1 B 326 LEU 2 1 F 51 LEU 2 1 G 106 LEU 2	
1 A 292 ALA 2 1 C 288 LEU 2 1 H 233 THR 2 1 F 253 ARG 2 1 B 134 LEU 2 1 F 41 ASN 2 1 A 228 PRO 2 1 C 248 THR 2 1 F 297 ASP 2 1 D 149 ILE 2 1 A 76 VAL 2 1 B 326 LEU 2 1 F 51 LEU 2 1 G 106 LEU 2	
1 C 288 LEU 2 1 H 233 THR 2 1 F 253 ARG 2 1 B 134 LEU 2 1 F 41 ASN 2 1 A 228 PRO 2 1 C 248 THR 2 1 F 297 ASP 2 1 D 149 ILE 2 1 A 76 VAL 2 1 B 326 LEU 2 1 F 51 LEU 2 1 G 106 LEU 2	
1 H 233 THR 2 1 F 253 ARG 2 1 B 134 LEU 2 1 F 41 ASN 2 1 A 228 PRO 2 1 C 248 THR 2 1 F 297 ASP 2 1 D 149 ILE 2 1 A 76 VAL 2 1 B 326 LEU 2 1 F 51 LEU 2 1 G 106 LEU 2	
1 F 253 ARG 2 1 B 134 LEU 2 1 F 41 ASN 2 1 A 228 PRO 2 1 C 248 THR 2 1 F 297 ASP 2 1 D 149 ILE 2 1 A 76 VAL 2 1 B 326 LEU 2 1 F 51 LEU 2 1 G 106 LEU 2	
1 B 134 LEU 2 1 F 41 ASN 2 1 A 228 PRO 2 1 C 248 THR 2 1 F 297 ASP 2 1 D 149 ILE 2 1 A 76 VAL 2 1 B 326 LEU 2 1 F 51 LEU 2 1 G 106 LEU 2	
1 F 41 ASN 2 1 A 228 PRO 2 1 C 248 THR 2 1 F 297 ASP 2 1 D 149 ILE 2 1 A 76 VAL 2 1 B 326 LEU 2 1 F 51 LEU 2 1 G 106 LEU 2	
1 A 228 PRO 2 1 C 248 THR 2 1 F 297 ASP 2 1 D 149 ILE 2 1 A 76 VAL 2 1 B 326 LEU 2 1 F 51 LEU 2 1 G 106 LEU 2	.0
1 C 248 THR 2 1 F 297 ASP 2 1 D 149 ILE 2 1 A 76 VAL 2 1 B 326 LEU 2 1 F 51 LEU 2 1 G 106 LEU 2	
1 F 297 ASP 2 1 D 149 ILE 2 1 A 76 VAL 2 1 B 326 LEU 2 1 F 51 LEU 2 1 G 106 LEU 2	.0
1 D 149 ILE 2 1 A 76 VAL 2 1 B 326 LEU 2 1 F 51 LEU 2 1 G 106 LEU 2	.0
1 A 76 VAL 2 1 B 326 LEU 2 1 F 51 LEU 2 1 G 106 LEU 2	.0
1 B 326 LEU 2 1 F 51 LEU 2 1 G 106 LEU 2	.0
1 F 51 LEU 2 1 G 106 LEU 2	.0
1 G 106 LEU 2	.0
	.0
1 B 274 ALA 2	.0 /
	.0
1 C 41 ASN 2	.0
1 E 247 PRO /2	.0
1 H 142 ILE 2	.0
1 C 150 SER 2	.0
1 D 127 GLY 2	.0
1 G 198 THR 2	.0
1 C 358 /LEU 2	.0
1 G 35 VAL 2	.0
	.0
1 D 319 GLU 2	.0
	.0
	.0
	.0
	.0
	.0
1 G 42 PHE 2	

6.2 Non-standard residues in protein, DNA, RNA chains i

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\operatorname{B-factors}(\mathring{\mathrm{A}}^2)$	Q < 0.9
2	YB	Е	403	1/1	0.48	0.14	133,133,133,133	1
2	YB	Е	407	1/1	0.53	0.16	115,115,115,115	1
2	YB	В	404	1/1	0.58	0.10	202,202,202,202	0
2	YB	В	402	1/1	0.59	0.10	124,124,124,124	1
3	SO4	A	410	5/5	0.68	0.61	119,129,144,148	0
2	YB	A	408	1/1	0.69	0.14	94,94,94,94	1
2	YB	F	404	1/1 /	0.71	0.17	129,129,129,129	1
2	YB	С	407	1/1/	0.73	0.14	/88,88,88,88	1
2	YB	Н	402	1/1	0.73	0.08	165,165,165,165	1
2	YB	Н	404	1/1	0.74	0.17 /	159,159,159,159	0
3	SO4	Н	407	/ 5/5	0.75	0.23	105,113,123,123	0
2	YB	G	407/	1/1 🙏	0.75	0,17	100,100,100,100	1
2	YB	F	402	1/1	0.76	0.11	135,135,135,135	1
2	YB	A	407	1/1	0.76	0.15	105,105,105,105	1
2	YB	C	405	1/1	0.76/	0.16	129,129,129,129	1
2	YB	G /	403	1/1	0.77	0.19	111,111,111,111	1
2	YB	H/	406	1/1	0.77	0.12	307,307,307,307	0
2	YB	A	404	1/1	/0.78	0.07	149,149,149,149	1
2	YB	/ F	405	1/1	0.78	0.27	116,116,116,116	1
2	YB	E	408	1/1 /	0.78	0.17	120,120,120,120	1
3	SO4	F	408	5/5	0.78	0.53	112,121,124,127	0
2	YB	G	406	1//1	0.78	0.12	182,182,182,182	1
2	ÝВ	D	408	/1/1	0.79	0.17	347,347,347,347	1
2	/ YB	В	407	/ 1/1	0.79	0.10	97,97,97,97	1
2 /	YB	F	403/	1/1	0.80	0.05	184,184,184,184	0
2/	YB	H	405	1/1	0.81	0.18	184,184,184,184	1
$\sqrt{2}$	YB	Е	405	1/1	0.81	0.09	170,170,170,170	0
2	YB	C /	402	1/1	0.81	0.07	149,149,149,149	1
2	YB	Н /	403	1/1	0.81	0.13	130,130,130,130	1
2 4	YB	Ą	403	1/1	0.82	0.16	123,123,123,123	1
$\frac{2}{2}$	YB	/G	408	1/1	0.82	0.31	169,169,169,169	1
2	YΒ	/ C	403	1/1	0.83	0.16	120,120,120,120	1
	-	/					Continued on ner	rt nage

Continued from previous page...

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\operatorname{B-factors}({ extstyle A}^2)$	Q<0.9
2	YB	A	402	1/1	0.84	0.11	134,134,134,134	1
2	YB	F	407	1/1	0.84	0.18	325,325,325,325	1
2	YB	В	401	1/1	0.85	0.14	127,127,127,127	0
2	YB	D	407	1/1	0.85	0.17	130,130,130,130	1
2	YB	A	406	1/1	0.85	0.14	115,115,115,115	1
2	YB	D	401	1/1	0.85	0.19	149,149,149,149	1 /
2	YB	Е	409	1/1	0.85	0.26	/116,116,116,116	1 /
2	YB	В	406	1/1	0.85	0.19/	109,109,109,109	1/
3	SO4	В	408	5/5	0.85	0.20	99,100,111,111	/0
2	YB	Е	402	1/1	0.86	0.08	148,148,148,148	/ 1
2	YB	D	403	1/1	0.87	/0.11	161,161,161,161	0
2	YB	В	405	1/1	0.87	0.12	123,123,123,123	1
3	SO4	D	409	5/5	0.87/	0.17	100,107,113,117	0
2	YB	A	409	1/1	0.87	0.14	315,315,315,315	0
2	YB	G	401	1/1	0.87	0.13	165,165,165,165	0
2	YB	С	408	1/1	/0.88	0.16	100,100,100,100	1
2	YB	D	404	1/1 /	0.88	0.11	166,166,166,166	1
2	YB	D	405	1/1/	0.88	0.16	85,85,85,85	1
2	YB	Е	401	1//1	0.90	0.11	153,153,153,153	1
2	YB	В	403	1//1	0.90	0.07	/150,150,150,150	1
2	YB	A	405	1/1	0.91	0.22/	92,92,92,92	1
2	YB	F	406	1/1	0.91	0.09	160,160,160,160	0
2	YB	С	401/	1/1	0.91	0.13	142,142,142,142	0
2	YB	G	404	1/1	0.91	/0.27	122,122,122,122	1
2	YB	Е	/406	1/1	0.92	0.09	94,94,94,94	1
2	YB	F /	401	1/1	0.92	0.13	134,134,134,134	0
2	YB	G/	405	1/1	0.93	0.17	129,129,129,129	1
2	YB	H	401	1/1	0.93	0.17	158,158,158,158	1
2	YB	/G	402	1/1	/ 0.93	0.09	162,162,162,162	0
2	YB	/ D	406	1/1 /	0.93	0.21	137,137,137,137	1
2	YB /	C	406	1/1/	0.93	0.07	130,130,130,130	1
2	YB	A	401	1//1	0.94	0.19	157,157,157,157	1
2	YΒ	E	404	1/1	0.94	0.06	92,92,92,92	1
2	/YB	C	404	/ 1/1	0.95	0.11	161,161,161,161	1
2	YB	D	402	1/1	0.96	0.19	115,115,115,115	1
2/	YB	C	409	1/1	0.96	0.14	130,130,130,130	1

6.5 Other polymers (i)

There are no such residues in this entry.

