数学分析 II 习题课讲义

龚诚欣

gongchengxin@pku.edu.cn

2024年2月6日

目录

1	第 1 次习题课: 定积分的基本概念与可积性	3
	1.1 问题	3
	1.2 解答	3
2	第 2 次习题课: 定积分的性质与计算	4
	2.1 问题	4
	2.2 解答	4
3	第 3 次习题课: 定积分的应用与中值定理	5
	3.1 问题	5
	3.2 解答	6
4	第 4 次习题课: 广义积分的收敛性与计算	6
	4.1 问题	6
	4.2 解答	7
5	第 5 次习题课: 积分的综合运用	8
	5.1 问题	8
	5.2 解答	8
6	第 6 次习题课: 数项级数的基本概念与正项级数	10
	6.1 问题	10
	6.2 解答	10
7	第 7 次习题课: 任意项级数与数项级数的运算	11
	7.1 问题	11
	7.2 解答	11
8	第 8 次习题课: 无穷乘积与函数项级数的基本概念	12
	8.1 问题	12
	8.2 解答	13
9	第 9 次习题课: 函数项级数的一致收敛	14
	9.1 问题	14
	9.2 解答	15

10	第 10 次习题课: 一致收敛函数项级数的性质	15
	10.1 问题	15
	10.2 解答	16
11	第 11 次习题课: 幂级数的基本概念与性质	16
	11.1 问题	16
	11.2 解答	16
12	第 12 次习题课: 幂级数展开与多项式逼近	16
	12.1 问题	16
	12.2 解答	16
13	第 13 次习题课: 傅里叶级数的基本概念与性质	16
	13.1 问题	16
	13.2 解答	16
14	第 14 次习题课: 傅里叶级数的收敛性	16
	14.1 问题	16
	14.2 解答	16
15	致谢。	17

第 1 次习题课: 定积分的基本概念与可积性 1

1.1 问题

- 1. f(x) 在 [a,b] 的每一点处的极限都是 0, 证明 $f(x) \in R[a,b]$ 且 $\int_a^b f(x) \mathrm{d}x = 0$.
- 2. $f(x) \in R[a,b], \int_a^b f(x) dx > 0$. 证明 $\exists [\alpha,\beta] \subset [a,b], \text{s.t.} \forall x \in [\alpha,\beta], f(x) > 0$.
- 3. $f(x) \in R[a, b]$, 问 |f(x)| 是否一定 $\in R[a, b]$?
- 4. 讨论区间 [a,b] 上 $f,|f|,f^2$ 的可积性之间的关系.
- 5. 设非负函数 $f(x) \in C[a,b]$, 证明极限 $\lim_{n \to +\infty} \left(\int_a^b f^n(x) dx \right)^{\frac{1}{n}}$ 存在并求之.
- 6. $f(x) \ge 0, f''(x) \le 0, x \in [a, b]$. 证明 $\max_{x \in [a, b]} f(x) \le \frac{2}{b-a} \int_a^b f(x) dx$.
- 7. $n \in \mathbb{N}_{+}, f(x) \in C[a,b], \int_{a}^{b} x^{k} f(x) dx = 0, k = 0, 1, \cdots, n$. 证明 f(x) 在 (a,b) 内至少有 n+1 个零点.
 8. 计算极限 $\lim_{n \to +\infty} \frac{[1^{\alpha} + 3^{\alpha} + \cdots + (2n+1)^{\alpha}]^{\beta+1}}{[2^{\beta} + 4^{\beta} + \cdots + (2n)^{\beta}]^{\alpha+1}}$.
 9. $\lim_{n \to +\infty} \frac{a_{n}}{n^{\alpha}} = 1, \alpha > 0$, 求 $\lim_{n \to +\infty} \frac{1}{n^{1+\alpha}} (a_{1} + a_{2} + \cdots + a_{n})$.

- 10. (Hölder 不等式). 非负函数 $f(x), g(x) \in R[a, b], p, q > 1, \frac{1}{p} + \frac{1}{q} = 1$. 证明 $\int_a^b f(x)g(x) dx \le \left(\int_a^b f^p(x)\right)^{\frac{1}{p}} \left(\int_a^b g^q(x)\right)^{\frac{1}{q}}$. 11. $f(x) \in R[a, b], A = \inf_{x \in [a, b]} f(x), B = \sup_{x \in [a, b]} f(x), g(y) \in C[A, B]$, 证明 $G(x) := g(f(x)) \in R[a, b]$.
- 12. 己知 (0,1) 上的单调函数 f(x) 满足 $\lim_{n\to+\infty} \sum_{k=1}^{n-1} \frac{1}{n} f(\frac{k}{n})$ 存在, 问是否有 $f(x) \in R[0,1]$?

1.2 解答

- 1. 显然 f(x) 有界, 否则由聚点原理矛盾. 其次 $\forall \epsilon > 0, \forall x \in [a,b], \exists \delta_x > 0, \text{s.t.} \omega_{(x-\delta_x,x+\delta_x)} < \epsilon$. 由于 $\cup_{x \in [a,b]} (x-\delta_x,x+\delta_x)$ $\delta_x) \supset [a,b]$, 因此存在两两无包含关系的有限子覆盖 $\cup_{i=1}^n (x_i - \delta_i, x_i + \delta_i) \supset [a,b]$. 不妨设 $a \leq x_1 < \dots < x_n \leq b$. 可 取分割点 $y_i \in (x_i - \delta_i, x_i + \delta_i) \cap (x_{i+1} - \delta_{i+1}, x_i + \delta_{i+1})$, 对于这个分割, $\sum_{i=1}^n \omega_i \Delta x_i < \epsilon(b-a)$, 因此有可积性. 由于 $\left|\int_{a}^{b} f(x) dx\right| \leq \int_{a}^{b} |f(x)| dx \leq \sum_{i=1}^{n} \int_{y_{i-1}}^{y_{i}} |f(x)| dx \leq \epsilon(b-a), \epsilon$ 的任意性知 $\int_{a}^{b} f(x) dx = 0.$
- 2. 反证法. 如果每个区间都存在值小于等于 0, 那么任意分割我都取区间内那个小于等于 0 的点, 达布和始终小于等于 0, 其极限, 即积分值不可能大于 0.
- 3. $f(x) = -\text{Riemann}(x) \in R[0,1], |f(x)| = -\text{Dirichlet}(x) \notin R[0,1].$
- 4. $f \in R[a,b] \Rightarrow |f|, f^2 \in R[a,b]$, 因为 f 在 x_0 处连续 $\Rightarrow |f|, f^2$ 在 x_0 处连续.
- $|f| \in R[a,b] \Rightarrow f^2 \in R[a,b], \not\Rightarrow f \in R[a,b].$ |f| 在 x_0 处连续 $\Rightarrow f^2$ 在 x_0 处连续, 而对于 f 有反例 $f(x) = 1_{\mathbb{Q}} 1_{\mathbb{R}\setminus\mathbb{Q}}.$ $f^2 \in R[a,b] \Rightarrow |f| \in R[a,b], \not\Rightarrow f \in R[a,b]$. 理由与上一个相同.
- 5. 设 $M = \max_{x \in [a,b]} f(x), f(\xi) = M$. 由连续性, $\forall \epsilon > 0, \exists \delta > 0$ s.t. $\forall x \in (\xi \delta, \xi + \delta), f(x) > M \epsilon$. 因此当 n 足够大时成立

$$M + 2\epsilon > \left((b - a)M^n \right)^{\frac{1}{n}} \ge \left(\int_a^b f^n(x) \mathrm{d}x \right)^{\frac{1}{n}} \ge \left(\int_{\xi - \delta}^{\xi + \delta} f^n(x) \mathrm{d}x \right)^{\frac{1}{n}} > \left(2\delta (M - \epsilon)^n \right)^{\frac{1}{n}} > M - 2\epsilon \Rightarrow \left(\int_a^b f^n(x) \mathrm{d}x \right)^{\frac{1}{n}} \to M$$

$$M + 2\epsilon > ((b-a)M^n)^{\frac{1}{n}} \ge \left(\int_a^b f^n(x) dx\right)^{\frac{1}{n}} \ge \left(\int_{\xi-\delta}^{\xi+\delta} f^n(x) dx\right)^{\frac{1}{n}} > (2\delta(M-\epsilon)^n)^{\frac{1}{n}} > M - 2\epsilon \Rightarrow \left(\int_a^b f^n(x) dx\right)^{\frac{1}{n}} \to M.$$
6. 设 $f(\xi) = \max_{x \in [a,b]} f(x)$. 由题意知 $f(x)$ 是凹函数, 因此成立 $f(x) \ge \begin{cases} \frac{f(\xi) - f(a)}{\xi - a}(x - a) + f(a), & x \in [a,\xi] \\ \frac{f(b) - f(\xi)}{b - \xi}(x - \xi) + f(\xi), & x \in [\xi,b] \end{cases} \Rightarrow \text{RHS} \ge \frac{2}{b - a} \left(\int_a^\xi f(x) dx + \int_\xi^b f(x) dx\right) \ge \frac{2}{b - a} \left((\xi - a)\frac{f(\xi) + f(a)}{2} + (b - \xi)\frac{f(b) + f(\xi)}{2}\right) \ge \frac{2}{b - a}\frac{f(\xi)}{2}(\xi - a + b - \xi) = f(\xi) = \text{LHS}.$
7. $\int_a^b f(x) dx = 0 \Rightarrow \exists 1$ 零点, 记为 x_1 . $\int_a^b (x - x_1)f(x) dx = 0 \Rightarrow \exists 2$ 零点, 记为 x_2 . $\cdots \int_a^b \left[\prod_{i=1}^n (x - x_i)\right]f(x) dx = 0 \Rightarrow \exists 1$

$$\frac{2}{b-a} \left(\int_a^{\xi} f(x) dx + \int_{\xi}^b f(x) dx \right) \ge \frac{2}{b-a} \left((\xi - a) \frac{f(\xi) + f(a)}{2} + (b - \xi) \frac{f(b) + f(\xi)}{2} \right) \ge \frac{2}{b-a} \frac{f(\xi)}{2} (\xi - a + b - \xi) = f(\xi) = \text{LHS}.$$

8.

原式 =
$$2^{\alpha-\beta} \frac{\left[\frac{2}{n} \left(\frac{1}{n}\right)^{\alpha} + \frac{2}{n} \left(\frac{3}{n}\right)^{\alpha} + \dots + \frac{2}{n} \left(\frac{2n+1}{n}\right)^{\alpha}\right]^{\beta+1}}{\left[\frac{2}{n} \left(\frac{2}{n}\right)^{\beta} + \frac{2}{n} \left(\frac{4}{n}\right)^{\beta} + \dots + \frac{2}{n} \left(\frac{2n}{n}\right)^{\beta}\right]^{\alpha+1}} \xrightarrow{\stackrel{\text{定积分定义}}{}} 2^{\alpha-\beta} \frac{\left(\int_{0}^{2} x^{\alpha} dx\right)^{\beta+1}}{\left(\int_{0}^{2} x^{\beta} dx\right)^{\alpha+1}} = 2^{\alpha-\beta} \frac{(\beta+1)^{\alpha+1}}{(\alpha+1)^{\beta+1}}$$

9.
$$\forall \epsilon > 0, \exists N, \forall n > N, n^{\alpha}(1 - \epsilon) < a_n < n^{\alpha}(1 + \epsilon)$$
. 从而当 n 足够大时, $\frac{1}{n^{1+\alpha}}(1^{\alpha} + 2^{\alpha} + \dots + N^{\alpha}) < \epsilon, \frac{1}{n^{1+\alpha}}(a_1 + a_2 + \dots + a_N) < \epsilon, \left|\frac{1}{n^{1+\alpha}}[(a_{N+1} - (N+1)^{\alpha}) + \dots + (a_n - n^{\alpha})]\right| \leq \frac{\epsilon}{n^{1+\alpha}}[(N+1)^{\alpha} + \dots + n^{\alpha}] \leq \frac{\epsilon}{n^{1+\alpha}}\sum_{i=1}^{n}i^{\alpha} = \frac{\epsilon}{n}\sum_{i=1}^{n}(\frac{i}{n})^{\alpha} \leq \frac{\epsilon}{n^{1+\alpha}}\sum_{i=1}^{n}i^{\alpha} = \frac{\epsilon}{n}\sum_{i=1}^{n}i^{\alpha} = \frac$

$$\epsilon \int_0^1 x^{\alpha} dx + \epsilon = \frac{\epsilon}{\alpha+1} + \epsilon \le 2\epsilon$$
. 这意味着 $\left| \frac{1}{n^{1+\alpha}} \left(\sum_{i=1}^n a_i - \sum_{i=1}^n i^{\alpha} \right) \right| \le 4\epsilon \Rightarrow 原极限 = \lim_{n \to +\infty} \frac{1}{n^{1+\alpha}} \sum_{i=1}^n i^{\alpha} = \frac{1}{\alpha+1}$.

10. WLOG $\left(\int_a^b f^p(x)\mathrm{d}x\right)^{\frac{1}{p}} = \left(\int_a^b g^q(x)\mathrm{d}x\right)^{\frac{1}{q}} = 1$, 则原命题的结论可改写为 $\int_a^b f(x)g(x)\mathrm{d}x \le 1$. 由 $\ln x$ 的凹性,我们有 $\alpha \ln a + (1-\alpha) \ln b \le \ln(\alpha a + (1-\alpha)b) \Leftrightarrow a^\alpha b^{1-\alpha} \le \alpha a + (1-\alpha)b$. 令 $\alpha = \frac{1}{p}, 1-\alpha = \frac{1}{q}, a = x^p, b = y^q \Rightarrow xy \le 1$ $\frac{x^p}{p} + \frac{y^q}{q} \Rightarrow \int_a^b f(x)g(x)dx \le \int_a^b \frac{f(x)^p}{p} + \frac{g(x)^q}{q}dx = \frac{1}{p} + \frac{1}{q} = 1.$

本题也可以将积分离散化后使用离散版本的 Hölder 不等式.

11. 证法 a: G(x) 的间断点集合是 f(x) 间断点集合的子集, 因此其 Lebesgue 测度为 0, 从而可积.

证法 b: 由于 g(y) 一致连续, 因此 $\forall \epsilon > 0, \exists \delta > 0$, 使得 $\forall |y_1 - y_2| < \delta, |g(y_1) - g(y_2)| < \frac{\epsilon}{2(b-a)}$. 由于 $f(x) \in R[a,b]$, 因 此 $\exists [a,b]$ 的分割 Δ ,使得 $\sum_{i=1}^n \omega_i(f) \Delta x_i < \frac{\delta \epsilon}{4M}$,其中 $M = \sup_{y \in [A,B]} |g(y)|$.若 $\omega_i(f) < \delta$,则 $\omega_i(G) < \frac{\epsilon}{2(b-a)}$.若 $\omega_i(f) \geq \delta$,

其区间长度 $\sum_{i:\omega_i(f)\geq \delta} \Delta x_i$ 不会超过 $\frac{\epsilon}{4M}$. 因此 $\sum_{i=1}^n \omega_i(G) \Delta x_i = \sum_{i:\omega_i(f)<\delta} \omega_i(G) \Delta x_i + \sum_{i:\omega_i(f)\geq \delta} \omega_i(G) \Delta x_i < \frac{\epsilon}{2} + 2M \frac{\epsilon}{4M} = \epsilon$.

这样对于任意 $\epsilon > 0$ 我们都找到了一个分割 Δ 使得 $\sum_{i=1}^{n} \omega_i(G) \Delta x_i < \epsilon$.

12. 考虑 $f(x) = \tan(\pi x - \frac{\pi}{2})$. $\lim_{n \to +\infty} \sum_{k=1}^{n-1} \frac{1}{n} f(\frac{k}{n}) = 0$, 但是 $\int_0^1 f(x) dx$ 不存在.

2 第 2 次习题课: 定积分的性质与计算

2.1 问题

- 1. 设函数 f(x) 在 \mathbb{R} 上有定义且内闭可积, 证明 $\forall a,b \in \mathbb{R}, \lim_{h \to 0} \int_a^b [f(x+h) f(x)] \mathrm{d}x = 0.$
- 2. (Riemann-Lebesgue 引理). $f \in R[a,b], g \in R[0,T], g(x+T) = g(x)$, 则 $\int_a^b f(x)g(nx)dx \to \int_a^b f(x)dx \cdot \frac{1}{T} \int_0^T g(x)dx$.
- 3. 求积分 $I = \int_{-1}^{1} \frac{\mathrm{d}x}{x^2 2x \cos \alpha + 1}, \alpha \in (0, \pi).$
- 4. 求积分 $I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\cos^2 x}{1 + e^{-x}} dx$.
- 5. 求积分 $I = \int_0^{\frac{\pi^4}{2}} \sin x \ln \sin x dx$. 6. 求积分 $I_n = \int_0^{\frac{\pi}{2}} \frac{\sin^2 nx}{\sin x} dx$, 并求极限 $\lim_{n \to +\infty} \frac{I_n}{\ln n}$.
- 7. $f(x) \in C[a,b]$, 且对于任意的 $[\alpha,\beta] \subset [a,b]$, $\exists \delta > 0, M > 0$, s.t. $\left| \int_{\alpha}^{\beta} f(x) \mathrm{d}x \right| \leq M(\beta \alpha)^{1+\delta}$. 证明 $f(x) \equiv 0$.
- 8. $f(x) \in C(\mathbb{R})$, 定义 $g(x) = f(x) \int_0^x f(t) dt$. 证明若 g(x) 单调递减, 则 $f(x) \equiv 0$.
- 9. f(x) 在 \mathbb{R} 上有定义且内闭可积, 且 f(x+y)=f(x)+f(y). 证明 f(x)=xf(1).
- 10. f(x) 在 $(0, +\infty)$ 上是凸函数. 证明 $f(x) \in R[0, x], \forall x \in (0, +\infty), 且 F(x) = \frac{1}{x} \int_0^x f(t) dt$ 也是 $(0, +\infty)$ 上的凸函数. 11. $f(x) \in C[-1, 1]$, 证明 $\lim_{n \to +\infty} \frac{\int_{-1}^1 (1-x^2)^n f(x) dx}{\int_{-1}^1 (1-x^2)^n dx} = f(0)$.
- 12. f(x) 在 [0,1] 上非负连续, 且 $f^2(t) \le 1 + 2 \int_0^t f(s) ds$. 证明 $f(t) \le 1 + t$.

2.2 解答

- 1. WLOG h < 1. 由可积函数性质, 存在 [a,b+1] 上的连续函数 g(x) 使得 $\int_a^{b+1} |f(x)-g(x)| \mathrm{d}x < \epsilon$, 且 $\exists \delta > 0$ 使得 $\forall x,y \in [a,b+1], |x-y| < \delta, \; \text{Rec} |g(x)-g(y)| \leq \frac{\epsilon}{b-a}. \; \text{Mem} \left| \int_a^b [f(x+h)-f(x)] \mathrm{d}x \right| \leq \int_a^b |f(x+h)-g(x+h)| \mathrm{d}x + \int_a^b |g(x+h)-g(x)| \mathrm{d}x + \int_a^b |g(x)-f(x)| \mathrm{d}x \leq \int_a^{b+1} |f(x)-g(x)| \mathrm{d}x + \int_a^b \frac{\epsilon}{b-a} \mathrm{d}x + \int_a^{b+1} |f(x)-g(x)| \mathrm{d}x \leq 3\epsilon.$
- 2. WLOG 设 $\int_0^T g(x) dx = 0$, 否则考虑 $h(x) = g(x) \frac{1}{T} \int_0^T g(x) dx$.

由 Riemann 积分定义, $\forall \epsilon > 0$,存在阶梯函数 $s_{\epsilon}(x) = \begin{cases} C_1 & a = x_0 \leq x < x_1 \\ C_2 & x_1 \leq x < x_2 \\ \cdots \\ C_m & x_{m-1} \leq x \leq x_m = b \end{cases}$ 使得 $\int_a^b |f(x) - s_{\epsilon}(x)| \mathrm{d}x < \epsilon$. 设

 $M = \sup_{x \in [0,T]} |g(x)|. \quad \text{则} \mid \int_a^b f(x)g(nx) dx| = |\int_a^b (f(x) - s_{\epsilon}(x))g(nx) dx + \int_a^b s_{\epsilon}(x)g(nx) dx| \leq \int_a^b |f(x) - s_{\epsilon}(x)|g(nx) dx + \int_a^b s_{\epsilon}(x)g(nx) dx| \leq \int_a^b |f(x) - s_{\epsilon}(x)|g(nx) dx + \int_a^m C_i \int_{x_{i-1}}^{x_i} g(nx) dx < M\epsilon + \frac{1}{n} \sum_{i=1}^m C_i \int_{nx_{i-1}}^{nx_i} g(x) dx \leq M\epsilon + \frac{1}{n} \sum_{i=1}^m C_i MT.$ 其中最后一个等式利用了 $\int_0^T g(x) dx = 0$, 这意味着 $\int_c^d g(x) dx = \int_c^{c+T} g(x) dx + \int_{c+T}^{c+2T} g(x) dx + \dots + \int_{c+kT}^d g(x) dx$ (设 $c+kT \leq d < c+(k+1)T$) = $\int_{c+kT}^d g(x) dx \leq MT$. 选择一个足够大的 n, 使得 $\frac{1}{n} \sum_{i=1}^m C_i MT < \epsilon$. 从而 $|\int_a^b f(x)g(nx) dx| \leq (M+1)\epsilon$.

3.
$$I = \int_{-1}^{1} \frac{\mathrm{d}x}{(x-\cos\alpha)^2+\sin^2\alpha} = \frac{1}{\sin^2\alpha} \int_{-1}^{1} \frac{\mathrm{d}x}{\left(\frac{x-\cos\alpha}{\sin\alpha}\right)^2+1} = \frac{1}{\sin\alpha} \arctan\left(\frac{x-\cos\alpha}{\sin\alpha}\right) \Big|_{-1}^{1} = \frac{\pi}{2\sin\alpha}.$$
4. $I = \int_{-\frac{\pi}{4}}^{0} \frac{\cos^2x}{1+e^{-x}} \mathrm{d}x + \int_{0}^{\frac{\pi}{4}} \frac{\cos^2x}{1+e^{-x}} \mathrm{d}x = \int_{0}^{\frac{\pi}{4}} \frac{\cos^2(-x)}{1+e^{-x}} \mathrm{d}x + \int_{0}^{\frac{\pi}{4}} \frac{\cos^2x}{1+e^{-x}} \mathrm{d}x = \int_{0}^{\frac{\pi}{4}} \cos^2x \mathrm{d}x = \frac{\pi}{8} + \frac{1}{4}.$
5. $I = \int_{0}^{\frac{\pi}{2}} \ln\sin x \mathrm{d}(1-\cos x) = (1-\cos x) \ln\sin x \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} (1-\cos x) \mathrm{d}(\ln\sin x) = -\int_{0}^{\frac{\pi}{2}} (1-\cos x) \frac{\cos x}{\sin x} \mathrm{d}x = -\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{1+\cos x} \mathrm{d}x = \int_{0}^{\frac{\pi}{2}} \left(-\sin x + \frac{\sin x}{1+\cos x}\right) \mathrm{d}x = \left[\cos x - \ln(1+\cos x)\right] \Big|_{0}^{\frac{\pi}{2}} = \ln 2 - 1.$
6. 利用三角函数公式,

$$\begin{split} I_n &= \int_0^{\frac{\pi}{2}} \frac{1 - \cos(2nx)}{2\sin x} \mathrm{d}x = \int_0^{\frac{\pi}{2}} \frac{1 - \cos[(2n-2)x]\cos 2x + \sin[(2n-2)x]\sin 2x}{2\sin x} \mathrm{d}x \\ &= \int_0^{\frac{\pi}{2}} \frac{1 - \cos[(2n-2)x](1 - 2\sin^2 x) + 2\sin[(2n-2)x]\sin x \cos x}{2\sin x} \mathrm{d}x \\ &= \int_0^{\frac{\pi}{2}} \frac{1 - \cos[(2n-2)x]}{2\sin x} \mathrm{d}x + \int_0^{\frac{\pi}{2}} \frac{2\sin^2 x \cos[(2n-2)x] + 2\sin[(2n-2)x]\sin x \cos x}{2\sin x} \mathrm{d}x \\ &= I_{n-1} + \int_0^{\frac{\pi}{2}} \sin x \cos[(2n-2)x] + \sin[(2n-2)x]\cos x \mathrm{d}x = I_{n-1} + \int_0^{\frac{\pi}{2}} \sin(2n-1)x \mathrm{d}x \\ &= I_{n-1} - \frac{1}{2n-1} \cos[(2n-1)x] \Big|_0^{\frac{\pi}{2}} = I_{n-1} + \frac{1}{2n-1} \end{split}$$

由于
$$I_1 = 1$$
, 因此 $I_n = \sum_{i=1}^n \frac{1}{2i-1}$, 从而 $\lim_{n \to +\infty} \frac{I_n}{\ln n} = \lim_{n \to +\infty} \frac{\sum_{i=1}^n \frac{1}{i}}{\ln n} - \lim_{n \to +\infty} \frac{1}{2} \frac{\sum_{i=1}^n \frac{1}{i}}{\ln n} = \frac{1}{2}$.

7. 假设 $\exists f(x_0) > 0$. 由连续性, $\exists \delta > 0$, s.t. $\forall x \in (x_0 - \delta, x_0 + \delta)$, $f(x) > \frac{f(x_0)}{2}$, 从而 $\forall [\alpha, \beta] \subset (x_0 - \delta, x_0 + \delta)$, $\left| \int_{\alpha}^{\beta} f(x) dx \right| > \frac{f(x_0)}{2} (\beta - \alpha) > M(\beta - \alpha)^{1+\delta}$ (最后一个大于号成立只需令 $\beta - \alpha < \left(\frac{f(x_0)}{2M} \right)^{\frac{1}{\delta}}$), 矛盾.

8. 构造 $G(x) = \frac{1}{2} \left(\int_0^x f(t) dt \right)^2$, G'(x) = g(x) 单调递减, g(0) = 0, 因此 G(x) 在 $(0, +\infty)$ 上单调递减, 在 $(-\infty, 0)$ 上单 调递增, 且 G(0) = 0, $G(x) \ge 0$ 恒成立 $\Rightarrow G(x) \equiv 0 \Rightarrow \int_0^x f(t) dt \equiv 0 \Rightarrow f(x) \equiv 0$.

9. 只需证明对无理数点成立. 考察 $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. 由有理数点的稠密性, $\int_0^\alpha f(x) \mathrm{d}x = \frac{\alpha^2}{2} f(1)$. 由集合 $\{q\alpha: q \in \mathbb{Q}\}$ 的稠密

性且 $f(q\alpha) = qf(\alpha)$, $\int_0^\alpha f(x) \mathrm{d}x = f(\alpha) \frac{\alpha}{2}$. 因此 $f(\alpha) \frac{\alpha}{2} = \frac{\alpha^2}{2} f(1) \Rightarrow f(\alpha) = \alpha f(1)$.

10. 凸函数开区间上连续 \Rightarrow 闭区间上可积. 做变换 $F(x) = \frac{1}{x} \int_0^x f(t) \mathrm{d}t = \int_0^x f(\frac{t}{x} \cdot x) \mathrm{d}\frac{t}{x} = \int_0^1 f(ux) \mathrm{d}u$, 从而

够大的 n 使得 $|I_2|<\epsilon$. 类似地放缩 I_3 , 从而 $|I_1+I_2+I_3|<3\epsilon$.

12. 原命题条件 $\Rightarrow \underbrace{\frac{f(t)}{\sqrt{1+2\int_0^t f(s)\mathrm{d}s}}} \leq 1 \Rightarrow \int_0^x \frac{f(t)}{\sqrt{1+2\int_0^t f(s)\mathrm{d}s}} \mathrm{d}t \leq \int_0^x 1 \mathrm{d}t \Rightarrow \sqrt{1+2\int_0^t f(s)\mathrm{d}s} \Big|_0^x \leq x \Rightarrow \sqrt{1+2\int_0^x f(s)\mathrm{d}s} \leq x \Rightarrow \sqrt{1+2\int_0^x f(s)\mathrm{d}$ $1 + x \Rightarrow f(x) \le \sqrt{1 + 2 \int_0^x f(s) ds} \le 1 + x.$

第 3 次习题课: 定积分的应用与中值定理

3.1 问题

- 1. f(x) 是 [0,1] 上的递减正函数,证明对于 $\forall 0 < \alpha < \beta \le 1$ 都有 $\beta \int_0^{\alpha} f(x) dx \ge \alpha \int_{\alpha}^{\beta} f(x) dx$.
- 2. f(x) 在 \mathbb{R} 上有定义且内闭可积, f(x+y) = f(x) + f(y) + xy(x+y), 求 f(x).
- 3. 已知 A > 0, $AC B^2 > 0$, 求椭圆 $Ax^2 + 2Bxy + Cy^2 = 1$ 的面积.
- 4. 证明极坐标下曲线 $r=r(\theta)$ 与 $\theta=\alpha,\theta=\beta$ 所围平面图形绕极轴旋转一周所得立体体积为 $V=\frac{2\pi}{3}\int_{\alpha}^{\beta}r^{3}(\theta)\sin\theta\mathrm{d}\theta$.
- 5. 求双扭线 $r^2=2a^2\cos2\theta$ 绕轴 $\theta=\frac{\pi}{4}$ 旋转一周所得的曲面的面积.
- $6. \ f(x) \in C^1[0,1], f(x) \in [0,1], f(0) = f(1) = 0, f'(x)$ 单调递减. 证明曲线 y = f(x) 在 [0,1] 上的弧长不大于 3.
- 7. 半径为 R 的球正好有一半沉入水中, 球的密度为 1. 现将球从水中匀速取出, 需要做多少功?

- 8. 求质量分布均匀的对数螺旋线 $r=e^{\theta}$ 在 $(r,\theta)=(1,0)$ 和 $(r,\theta)=(e^{\phi},\phi)$ 之间一段的重心坐标.
- 9. 求圆的渐伸线 $\begin{cases} x = a(\cos t + t \sin t) \\ y = a(\sin t t \cos t) \end{cases}$ $,t\in [0,2\pi]$ 上 $A(a,0),B(a,-2\pi a)$ 之间部分与直线 \overline{AB} 围成图形的面积.
- 10. 试求由抛物线 $y^2 = 2x$ 与过其焦点的弦所围的图形面积的最小值.
- 11. f(x) 在 [a,b] 上单调递增,用定积分第二中值定理证明 $\int_a^b x f(x) dx \ge \frac{a+b}{2} \int_a^b f(x) dx$.
- 12. (Dirichlet 判别法). 设 f(x) 在 $(a, +\infty)$ 上单调, $\lim_{x\to +\infty} f(x) = 0$. $\forall A \geq a, g(x) \in R[a, A]$ 且 $|\int_a^A g(x) dx| \leq M$ 恒成
- 立. 证明极限 $\lim_{A\to +\infty} \int_a^A f(x)g(x)dx$ 存在.

- 1. LHS = $\beta \int_0^{\alpha} f(x) dx \ge \beta \alpha f(\alpha) \ge \alpha (\beta \alpha) f(\alpha) \ge \alpha \int_{\alpha}^{\beta} f(x) dx = RHS.$
- 2. 等式左右两边对 x 积分,得到 $\int_y^{x+y} f(t) dt = \int_0^x f(t) dt + x f(y) + \frac{x^3 y}{3} + \frac{x^2 y^2}{2}$. 类似有 $\int_x^{x+y} f(t) dt + \int_0^y f(t) dt + y f(x) + \frac{x y^3}{3} + \frac{x^2 y^2}{2}$. 两式相减得 $x f(y) + \frac{x^3 y}{3} = y f(x) + \frac{x y^3}{3}$,即是 $\frac{f(x)}{x} \frac{x^2}{3} = \frac{f(y)}{y} \frac{y^2}{3}$. 从而 $\frac{f(x)}{x} \frac{x^3}{3} \equiv C \Rightarrow f(x) = \frac{x^3}{3} + Cx$. 经验证符合题意.
- 3. 设矩阵 $\begin{pmatrix} A & B \\ B & C \end{pmatrix}$ 有相似标准型 $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, 其中 λ_1, λ_2 是方程 $\lambda^2 (A+C)\lambda + (AC-B^2) = 0$ 的两个根. 则原椭

圆在新坐标系下的方程为 $\lambda_1 x^2 + \lambda_2 y^2 = 1$, 面积 $S = \pi \sqrt{\frac{1}{\lambda_1 \lambda_2}} = \pi \sqrt{\frac{1}{AC-B^2}}$.

- 4. 对应 $[\theta, \theta + \mathrm{d}\theta]$ 的扇形面积 $\mathrm{d}S = \frac{1}{2}r^2(\theta)\mathrm{d}\theta$, 其质心位于 $\frac{2}{3}r(\theta)$ 处. 由 Guldin 第二定理, 此扇形绕极轴旋转体体积为 $dV = \frac{1}{2}r^2(\theta)d\theta 2\pi \frac{2}{3}r(\theta)\sin\theta = \frac{2\pi}{3}r^3(\theta)\sin\theta d\theta$. 两边积分得到结果.
- 5. 原命题等价于 $r^2 = 2a^2 \sin 2\theta$ 绕极轴旋转一周所得的曲面的面积. 改写成平面坐标系 $\begin{cases} x = a\sqrt{2\sin 2\theta}\cos \theta \\ y = a\sqrt{2\sin 2\theta}\sin \theta \end{cases}$

面积 $S = 2 \int_0^{\frac{\pi}{2}} 2\pi y(\theta) \sqrt{x'(\theta)^2 + y'(\theta)^2} d\theta = 8\pi a^2$.

- 6. 设 f'(M) = 0. 则周长 $C = \int_0^1 \sqrt{1 + f'(x)^2} \mathrm{d}x \le \int_0^1 (1 + |f'(x)|) \mathrm{d}x = 1 + \int_0^M f'(x) \mathrm{d}x \int_M^1 f'(x) \mathrm{d}x = 1 + 2f(M) \le 3$.
- 7. 球心向上移动距离 h 时, 球位于水外的体积为 $V(h) = \frac{1}{2} \frac{4}{3} \pi R^3 + \int_0^h \pi (\sqrt{R^2 z^2})^2 dz = \frac{2}{3} \pi R^3 + \pi (R^2 h \frac{1}{3} h^3)$. 对应
- 位移 [h, h + dh] 所做的微功 $dW = gV(h)\rho dh$. 从而 $W = g\int_0^R V(h)dh = g(\frac{2}{3}\pi R^4 + \frac{5}{12}\pi R^4) = \frac{13}{12}g\pi R^4$. 8. $\bar{x} = \frac{\int_0^{\phi} e^{2\theta} \cos\theta d\theta}{\int_0^{\phi} e^{\theta} d\theta} = \frac{e^{2\phi}(\sin\phi + 2\cos\phi) 2}{5(e^{\phi} 1)}, \bar{y} = \frac{\int_0^{\phi} e^{2\theta} \sin\theta d\theta}{\int_0^{\phi} e^{\theta} d\theta} = \frac{e^{2\phi}(2\sin\phi \cos\phi) + 1}{5(e^{\phi} 1)}$. 9. 直线 AB 的参数方程 $\begin{cases} x = \phi(t) = a \\ y = \psi(t) = t \end{cases}, t \in [-2\pi a, 0].$ 于是 $S = -\int_0^{2\pi} y(t) dx(t) \int_{-2\pi a}^0 \psi(t) d\phi(t) = -\int_0^{2\pi} a(\sin t t) dt = 0$.

 $t\cos t a(t\cos t)dt + 0 = \frac{4}{3}\pi^3 a^2 + \pi a^2$

- 10. 焦点为 $(\frac{1}{2},0)$,设过焦点的直线为 $x-\frac{1}{2}=ky$,与抛物线交点为 y_1,y_2 ,则围成的面积为 $S=\int_{y_1}^{y_2}\left(ky+\frac{1}{2}-\frac{y^2}{2}\right)\mathrm{d}y=\frac{k}{2}(y_2-y_1)(y_2+y_1)+\frac{1}{2}(y_2-y_1)-\frac{1}{6}(y_2-y_1)(y_2^2+y_1y_2+y_1^2)$. 联立直线与抛物线,由韦达定理知 $y_1+y_2=2k,y_1y_2=-1$. 则 $S = \frac{2}{3}(k^2 + 1)^{\frac{3}{2}}$. 因此 k = 0 时面积最小, 为 $\frac{2}{3}$.
- 11. f(x) 单调, $g(x) = x \frac{a+b}{2}$. 由定积分第二中值定理, $\int_a^b (x \frac{a+b}{2}) f(x) dx = f(a) \int_a^\xi (x \frac{a+b}{2}) dx + f(b) \int_\xi^b (x \frac{a+b}{2}) dx = f(a) \int_a^b (x \frac{a+b}{2}) dx + (f(b) f(a)) \int_\xi^b (x \frac{a+b}{2}) dx = (f(b) f(a)) \frac{1}{2} (b \xi) (\xi a) \ge 0.$
- 12. 由极限定义, $\forall \epsilon > 0, \exists X > a, \text{s.t.} \forall x \geq X, |f(x)| \leq \frac{\epsilon}{4M}$. 从而 $\forall A', A'' \geq X, |\int_{A'}^{A''} f(x)g(x) dx| = |f(A') \int_{A'}^{\xi} g(x) dx + \int_{A''}^{A''} f(x)g(x) dx| = |f(A') \int_{A'}^{\xi} g(x) dx|$ $f(A'')\int_{\xi}^{A''}g(x)\mathrm{d}x|\leq 2M(|f(A')|+|f(A'')|)\leq\epsilon$. 由柯西收敛定理知极限存在.

第 4 次习题课: 广义积分的收敛性与计算

4.1 问题

- 1. $f(x)>0, x\in(1,+\infty)$, $\lim_{x\to+\infty}\frac{\ln f(x)}{\ln x}=-\lambda, \lambda>1$, 试判断 $\int_1^{+\infty}f(x)\mathrm{d}x$ 的收敛性.
- 2. (Euler 积分). 求积分 $I = \int_0^{\pi/2} \ln \sin x dx$.
- 3. (Dirichlet 积分). 求积分 $I = \int_0^{+\infty} \frac{\sin x}{x} dx$.
- 4. 证明 $\lim_{x \to 0} \int_0^1 \cos^n \frac{1}{x} dx = 0.$

- 5. 计算 $I(\alpha) = \int_0^{+\infty} \frac{dx}{(1+x^2)(1+x^{\alpha})}$.
- 6. f(x) 在 \mathbb{R} 上内闭可积, $f(+\infty) = A$, $f(-\infty) = B$. 证明 $\forall a \in \mathbb{R}$, 广义积分 $\int_{-\infty}^{+\infty} [f(x+a) f(x)] dx$ 收敛, 并求其值.

- 7. 讨论广义积分 $\int_{0}^{+\infty} \frac{x dx}{1+x^{6} \sin^{2} x}$ 的收敛性.
 8. 讨论广义积分 $\int_{0}^{+\infty} \frac{e^{x} \sin 2x}{x^{p}} dx$ 的收敛性和绝对收敛性.
 9. 讨论广义积分 $\int_{0}^{+\infty} \frac{\cos ax}{1+x^{p}} dx, p \geq 0, a \in \mathbb{R}$ 的收敛性.
 10. 讨论广义积分 $\int_{0}^{+\infty} \frac{x^{p}}{1+x^{q}|\sin x|^{r}} dx, p, q, r > 0$ 的收敛性.
- 11. $f(x) \in C^1[0,1]$ 且 f'(x) > 0, 证明广义积分 $\int_0^1 \frac{f(x) f(0)}{x^p} \mathrm{d}x$ 在 p < 2 时收敛, 在 $p \ge 2$ 时发散.
- 12. $\int_{-\infty}^{+\infty} f(x) dx$ 收敛, 证明 $\int_{-\infty}^{+\infty} f(x \frac{1}{x}) dx$ 收敛.

- 1. 由极限定义, $\exists X > 1$, s.t. $\forall x > X$, $\frac{\ln f(x)}{\ln x} < -\frac{\lambda+1}{2} \Leftrightarrow f(x) < x^{-\frac{\lambda+1}{2}}$. 由比较判别法知无穷积分收敛.
- 2. 由对称性, $I = \frac{1}{2} \int_0^{\pi} \ln \sin x dx$. 做两倍变换, $I = \int_0^{\frac{\pi}{2}} \ln \sin 2x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{2}} \ln \sin x dx + \int_0^{\frac{\pi}{2}} \ln \cos x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{2}} \ln \sin x dx + \int_0^{\frac{\pi}{2}} \ln \cos x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{2}} \ln \sin x dx + \int_0^{\frac{\pi}{2}} \ln \cos x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{2}} \ln \sin x dx + \int_0^{\frac{\pi}{2}} \ln \cos x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{2}} \ln \sin x dx + \int_0^{\frac{\pi}{2}} \ln \cos x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{2}} \ln \sin x dx + \int_0^{\frac{\pi}{2}} \ln \cos x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{2}} \ln \sin x dx + \int_0^{\frac{\pi}{2}} \ln \cos x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{2}} \ln \sin x dx + \int_0^{\frac{\pi}{2}} \ln \cos x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{2}} \ln \sin x dx + \int_0^{\frac{\pi}{2}} \ln \cos x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{$
- 3. 注意到 $\frac{\sin(n+\frac{1}{2})x}{2\sin\frac{x}{2}} = \frac{1}{2} + \sum_{k=1}^{n} \cos kx$, 从而 $\int_{0}^{\pi} \frac{\sin(n+\frac{1}{2})x}{2\sin\frac{x}{2}} \mathrm{d}x = \frac{\pi}{2}$. 定义 $f(x) = \frac{1}{x} \frac{1}{2\sin\frac{x}{2}}$. 由于 $x \to 0$ 时 f(x) = O(x), 因

- 此 $f(x) \in R[0,\pi]$, 由 Riemann-Lebesgue 引理 (2.1.2) 知 $\lim_{n \to +\infty} \int_0^{\pi} f(x) \sin(n + \frac{1}{2})x dx = 0$, 即是 $\lim_{n \to +\infty} \int_0^{\pi} \frac{\sin(n + \frac{1}{2})x}{x} dx = \lim_{n \to +\infty} \int_0^{\pi} \frac{\sin(n + \frac{1}{2})x}{x} dx = \lim_{n \to +\infty} \int_0^{\pi} \frac{\sin(n + \frac{1}{2})x}{x} dx = \int_0^{(n + \frac{1}{2})\pi} \frac{\sin x}{x} dx \to \int_0^{+\infty} \frac{\sin x}{x} dx$ 立得结论.

 4. 做变换 $t = \frac{1}{x}$, 则 $\int_0^1 \cos^n \frac{1}{x} dx = \int_1^{+\infty} \frac{\cos^n t}{t^2} dt = \int_1^A \frac{\cos^n t}{t^2} dt + \int_A^{+\infty} \frac{\cos^n t}{t^2} dt := I_1 + I_2$. 对于 I_1 , 由定积分第二中值定理 知 $\exists \xi_A \in [1,A] \text{ s.t.} I_1 = \int_1^{\xi_A} \cos^n t dt$. 因此对于任意固定的 $A, n \to +\infty$ 时 $I_1 \to 0$. 对于 I_2 , 成立 $|I_2| \leq \int_A^{+\infty} \frac{1}{t^2} dt = \frac{1}{A}$.

- 因此 $\forall \epsilon > 0$,选择 $A = \frac{2}{\epsilon}$,则 $|I_2| \le \frac{\epsilon}{2}$,并选择充分大的 n 使得 $|I_1| < \frac{\epsilon}{2}$,此时 $|I| \le \epsilon$,由极限定义知结论成立.

 5. 做倒数变换,知 $I(\alpha) = \int_{+\infty}^{0} \frac{\mathrm{d} \frac{1}{x}}{(1+x^{-2})(1+x^{-\alpha})} = I(-\alpha)$. 又由于 $I(\alpha) + I(-\alpha) = \int_{0}^{+\infty} \frac{\mathrm{d} x}{1+x^2} = \frac{\pi}{2}$,因此 $I(\alpha) = \frac{\pi}{4}$.

 6. $\int_{M}^{N} [f(x+a) f(x)] \mathrm{d} x = \int_{N}^{N+a} f(x) \mathrm{d} x \int_{M}^{M+a} f(x) \mathrm{d} x \to (A-B)a$.

 7. 函数恒正,只需讨论有界性。令 $u_k = \int_{(k-1)\pi}^{k\pi} \frac{x \mathrm{d} x}{1+x^6 \sin^2 x}$,则 $u_k \le k\pi \int_{(k-1)\pi}^{k\pi} \frac{\mathrm{d} x}{1+(k-1)^6 \pi^6 \sin^2 x} = k\pi \int_{0}^{\pi} \frac{\mathrm{d} x}{1+(k-1)^6 \pi^6 \sin^2 x} \le 2k\pi \int_{0}^{\frac{\pi}{2}} \frac{\mathrm{d} x}{1+4(k-1)^6 \pi^6 \sin^2 x} = \frac{k}{\pi} \int_{0}^{(k-1)^3 \pi^3} \frac{\mathrm{d} t}{1+t^2} \sim \frac{1}{2k^2}$. 由于 $\int_{0}^{n\pi} = \sum_{k=1}^{n} u_k \sim \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k^2} < +\infty$,因 此原广义积分收敛.
- 8. 先考虑积分收敛性. 显然当 $p \le 0$ 时原积分发散. 当 p > 0 时,由于 $|\int_a^A e^{\sin x} \sin 2x dx| = 2|\int_{\sin a}^{\sin A} e^{\sin x} \sin x d\sin x| = 2|e^{\sin A}(\sin A 1) e^{\sin a}(\sin a 1)| < 8e, \frac{1}{x^p}$ 单调递减趋于 0,因此由 Dirichlet 判别法, $\int_1^{+\infty} \frac{e^x \sin 2x}{x^p} dx$ 收敛,我们只需考察积分在 0 处的性质. 由于当 $x \to 0$ 时 $\frac{e^{\sin x} \sin 2x}{x^p} \sim \frac{2}{x^{p-1}}$,因此 $p \ge 2$ 时原积分发散, p < 2 时原积分收敛. 再考虑绝对收敛性. 当 $1 时,<math>\left|\frac{e^{\sin x} \sin 2x}{x^p}\right| \le \frac{e}{x^p}$,因此绝对收敛. 当 $0 时,<math>\left|\frac{e^{\sin x} \sin 2x}{x^p}\right| \ge \frac{2^p}{e} \left|\frac{\sin 2x}{(2x)^p}\right| \ge \frac{1}{e} \left|\frac{\sin^2 2x}{(2x)^p}\right| = 1$ $\frac{1}{2e}\left(\frac{1-\cos 4x}{(2x)^p}\right)$, 而 $\int_0^{+\infty}\frac{\cos 4x}{(2x)^p}\mathrm{d}x$ 收敛, $\int_0^{+\infty}\frac{1}{(2x)^p}\mathrm{d}x$ 发散, 因此原积分条件收敛.
- 9. 当 $a\neq 0, p>0$ 时, $\frac{1}{1+x^p}$ 单调递减趋于 $0, \int_0^N \cos ax \mathrm{d}x$ 有界, 由 Dirichlet 判别法知收敛. 当 $a\neq 0, p=0$ 时显然发 散. 当 a = 0, p > 1 时显然收敛. 当 $a = 0, 0 \le p \le 1$ 时显然发散.
- 10. 显然当 $q \le p+1$ 时原积分发散. 当 q > p+1 时, 一方面,

$$I = \sum_{k=0}^{+\infty} \int_0^{\pi} \frac{(k\pi + t)^p}{1 + (k\pi + t)^q |\sin t|^r} dt \le 2 \sum_{k=0}^{+\infty} (k+1)^p \pi^p \int_0^{\pi} \frac{dt}{1 + (k\pi)^q |\frac{2}{\pi}t|^r} \le C_1 \sum_{k=0}^{+\infty} \frac{(k+1)^p}{k^{\frac{q}{r}}} \int_0^{2(k\pi)^{\frac{q}{r}}} \frac{dt}{1 + t^r} dt$$

另一方面

$$I = \sum_{k=0}^{+\infty} \int_0^{\pi} \frac{(k\pi + t)^p}{1 + (k\pi + t)^q |\sin t|^r} dt \ge \sum_{k=0}^{+\infty} (k\pi)^p \int_0^{\pi} \frac{dt}{1 + [(k+1)\pi]^q |t|^r} \ge C_2 \sum_{k=0}^{+\infty} \frac{k^p}{(k+1)^{\frac{q}{r}}} \int_0^{\pi[(k+1)\pi]^{\frac{q}{r}}} \frac{dt}{1 + t^r} dt$$

- $r>1, \int_0^A \frac{\mathrm{d}t}{1+t^r}$ 一致有界. $r=1, \int_0^A \frac{\mathrm{d}t}{1+t^r} \sim \ln A$. $r<1, \int_0^A \frac{\mathrm{d}t}{1+t^r} \sim A^{1-r}$. 因此原积分收敛 iff $q>(p+1)\max(r,1)$. 11. 由柯西微分中值定理, $\exists \xi \in (0,x)$ s.t. $\frac{f(x)-f(0)}{x^p} = \frac{f'(\xi)}{x^{p-1}}$. 由于 f'(x) 连续且大于 0, 因此 $\exists 0 < m < M$ s.t. m< f'(x) < MM 对 $\forall x \in [0,1]$ 均成立, 即 $\frac{m}{x^{p-1}} < \frac{f(x) - f(0)}{x^p} < \frac{M}{x^{p-1}}$. 从而 $p \ge 2$ 时发散, p < 2 时收敛.
- 12. $\int_0^{+\infty} f(x \frac{1}{x}) dx = \int_{-\infty}^{+\infty} \frac{x^2}{x^2 + 1} f(x \frac{1}{x}) d(x \frac{1}{x}) = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{t + \sqrt{t^2 + 4}}{\sqrt{t^2 + 4}} f(t) dt$. 由于 $\int_{-\infty}^{+\infty} f(t) dt$ 收敛, $\frac{t + \sqrt{t^2 + 4}}{\sqrt{t^2 + 4}}$ 单调有界, 由 Abel 判别法知 $\int_0^{+\infty} f(x \frac{1}{x}) dx$ 收敛. 另一侧同理.

第 5 次习题课: 积分的综合运用 5

5.1 问题

- 1. 证明 π 是无理数. 你可以按照以下步骤: (1) 设 $\pi = \frac{a}{b}, a, b \in \mathbb{Z},$ 定义 $f(x) = \frac{b^n x^n (\pi x)^n}{n!},$ 证明 $\forall i \in \mathbb{N}_+, f^{(i)}(0), f^{(i)}(\pi)$ 都是整数. (2) 证明定积分 $\int_0^{\pi} f(x) \sin x dx$ 也是整数. (3) 证明 $0 < \int_0^{\pi} f(x) \sin x dx < 1$, 得到矛盾.
- 2. $f(x) \in C^2[0,1], f(0) = f(1) = f'(0) = 0, f'(1) = 1$, 证明 $\int_0^1 (f''(x))^2 dx \ge 4$, 取等号当且仅当 $f(x) = x^3 x^2$.
- 3. 设函数 f(x) 在区间 [a,b] 上恒正, 且满足 Lipschitz 条件 $|f(x_1)-f(x_2)| \le L|x_1-x_2|$. 又已知对于 $a \le c \le d \le b$ 成 立 $\int_c^d \frac{\mathrm{d}x}{f(x)} = \alpha$, $\int_a^b \frac{\mathrm{d}x}{f(x)} = \beta$. 证明积分不等式 $\int_a^b f(x) \mathrm{d}x \le \frac{e^{2L\beta} - 1}{2L\alpha} \int_c^d f(x) \mathrm{d}x$.
- 5. $f(x) \in C[0, +\infty)$ 且平方可积, $g(x) = \int_0^x f(t) dt$. 证明 $\int_0^{+\infty} \frac{g^2(x)}{x^2} dx \le 4 \int_0^{+\infty} f^2(x) dx$. 5. (Euler-Poisson 积分). 利用数列 $\left\{ \left(1 \frac{t^2}{n}\right)^n \right\}$ 的极限, 求积分 $I = \int_0^{+\infty} e^{-t^2} dt$. (你也许需要用到如下命题: 当 $a \ge 1$ 时, $0 \le e^{-x} - \left(1 - \frac{x}{a}\right)^a \le \frac{x^2}{a} e^{-x}$ 在区间 [0, a] 上恒成立. 这由导数知识容易验证.) 6. 求积分 $I = \int_0^{+\infty} \frac{\ln x}{(x^2+1)(x^2+4)} \mathrm{d}x$.
- 7. a, b > 0, 广义积分 $\int_0^{+\infty} f(ax + \frac{b}{x}) dx$ 收敛, 证明 $\int_0^{+\infty} f(ax + \frac{b}{x}) dx = \frac{1}{a} \int_0^{+\infty} f(\sqrt{t^2 + 4ab}) dt$. 8. $f(x) \in C^2[a, b]$, 证明存在 $\xi \in (a, b)$ 使得 $\int_a^b f(x) dx (b a) f(\frac{a + b}{2}) = \frac{f''(\xi)(b a)^3}{24}$.
- 9. $f'(x) \in R[0,1]$, $\not\equiv X$ $A_n = \int_0^1 f(x) dx \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n})$. iE $\lim_{n \to +\infty} nA_n = \frac{1}{2} (f(0) f(1))$.
- 10. (等周问题). 长为 L 的曲线何时围成的区域面积最大? 你可以假设围成的区域是凸域且边界足够光滑, 以及其他正 则性条件.
- 11. 广义积分 $\int_0^{+\infty} f(x) dx$ 收敛, 且 $\forall k = 1, 2, \dots, n, u_k(x)$ 均单调有界. 证明 $\int_0^{+\infty} f(x) \prod_{k=1}^n u_k(x) dx$ 收敛.
- 12. $f(x) \in C[0, +\infty), a > 0$, $\lim_{x \to +\infty} (f(x) + a \int_0^x f(t) dt) = A < \infty$, 证明 $f(+\infty) = 0$.

5.2 解答

- 1. (1) f(x) 是一个次数从 n 到 2n 的多项式. 至于 $f^{(i)}(0)$ 是不是整数, 我们只需讨论求导后的非零常数项. 此时 $i \ge n$, 求导后得到的非零常数值是 i!c, 且 c 是整数除以 n! 得到的有理数, 从而 i!c 是整数. 由于 $f(x) = f(\pi - x) \Rightarrow f^{(i)}(\pi) =$ $(-1)^n f^{(i)}(0)$, 因此 $f^{(i)}(\pi)$ 也是整数.
- (2) 由分部积分, $\int_0^{\pi} f(x) \sin x dx = f(x)(-\cos x)|_0^{\pi} + \int_0^{\pi} f'(x) \cos x dx = f(0) + f(\pi) + f'(x) \sin x|_0^{\pi} \int_0^{\pi} f''(x) \sin x dx = f(0) + f(\pi) + f'(\pi) +$ $f(0) + f(\pi) - \int_0^{\pi} f''(x) \sin x dx$. f(x) 是 2n 此多项式, 重复以上过程, 最后的结果是 $\int_0^{\pi} f(x) \sin x dx = f(0) + f(\pi) - f(\pi)$ $f''(0) - f''(\pi) + \cdots + (-1)^n f^{(2n)}(0) + (-1)^n f^{(2n)}(\pi)$, 因此是整数.
- (3) 在区间 $[0,\pi]$ 上成立 $0 \le a bx = b(\pi x) \le a$, 因此 $0 \le f(x) = \frac{x^n (a bx)^n}{n!} \le \frac{\pi^n a^n}{n!}$, 从而 $0 < \int_0^\pi f(x) \sin x \mathrm{d}x \le a$ $\int_0^{\pi} f(x) dx < \frac{\pi^{n+1} a^n}{n!}. \, \, \underline{\exists} \, \, n \, \, \text{足够大时}, \, \frac{\pi^{n+1} a^n}{n!} < 1.$
- 2. 令 $p(x) = x^3 x^2$, 从而有 $\int_0^1 [(f''(x))^2 (p''(x))^2] dx = \int_0^1 [f''(x) p''(x)]^2 dx + 2 \int_0^1 f''(x) p''(x) dx 2 \int_0^1 [p''(x)]^2 dx \ge 1$ $0 + 2f'(x)p''(x)|_0^1 - 2\int_0^1 f'(x)p'''(x)dx - 8 = 2f'(1)p''(1) - 2f(x)p'''(x)|_0^1 + 2\int_0^1 f(x)p''''(x)dx - 8 = 0.$
- 3. 设 $m = \inf_{x \in [a,b]} f(x) = f(x_0)$, 从而 $m \le f(x) \le m + L|x x_0|$, $\frac{1}{m + L|x x_0|} \le \frac{1}{f(x)} \le \frac{1}{m}$. 两边积分,得到

$$m(b-a) \le \int_a^b f(x) dx \le m(b-a) + \frac{L}{2} [(x_0 - a)^2 + (x_0 - b)^2]$$
$$\frac{b-a}{m} \ge \int_a^b \frac{1}{f(x)} dx = \beta \ge \frac{1}{L} \ln \frac{(x_0 + \frac{m}{L} - a)(-x_0 + \frac{m}{L} + b)}{(\frac{m}{L})^2}$$

因此

$$\int_{a}^{b} f(x) dx \le \sup_{x_0 \in [a,b]} \left\{ m(b-a) + \frac{L}{2} [(x_0 - a)^2 + (x_0 - b)^2] \right\} = m(b-a) + \frac{L}{2} (b-a)^2$$
$$\beta \ge \inf_{x_0 \in [a,b]} \left\{ \frac{1}{L} \ln \frac{(x_0 + \frac{m}{L} - a)(-x_0 + \frac{m}{L} + b)}{(\frac{m}{L})^2} \right\} \Rightarrow b - a \le \frac{(e^{L\beta} - 1)m}{L}$$

从而

$$\int_{a}^{b} f(x) dx \le m \left(\frac{(e^{L\beta} - 1)m}{L} \right) + \frac{L}{2} \left(\frac{(e^{L\beta} - 1)m}{L} \right)^{2} = \frac{(e^{2L\beta} - 1)m^{2}}{2L}$$

对比欲证结论, 只需证明

$$\int_{c}^{d} f(x) dx \ge \alpha m^{2} = m^{2} \int_{c}^{d} \frac{dx}{f(x)} \Leftrightarrow \frac{\int_{c}^{d} f(x) dx}{\int_{c}^{d} \frac{1}{f(x)} dx} \ge m^{2}$$

这由 $f(x) \ge m, \frac{1}{f(x)} \le \frac{1}{m}$ 立得.

4. 由 L'Hospital, $\lim_{x\to 0+0} \frac{g^2(x)}{x} = \lim_{x\to 0+0} 2g(x)f(x) = 0$. 因此 $\int_0^A \frac{g^2(x)}{x^2} dx = \int_0^A g^2(x)d(-\frac{1}{x}) = -\frac{g^2(A)}{A} + 2\int_0^A \frac{f(x)g(x)}{x} dx$. 再 曲 Cauchy 不等式, $\left(\int_0^A \frac{f(x)g(x)}{x} dx\right)^2 \le \int_0^A f^2(x) dx \int_0^A \frac{g^2(x)}{x^2} dx \Rightarrow \left(\int_0^A \frac{g^2(x)}{x^2} dx + \frac{g^2(A)}{A}\right)^2 \le 4 \int_0^A f^2(x) dx \int_0^A \frac{g^2(x)}{x^2} dx \Rightarrow \int_0^A f^2(x) dx \int_0^A \frac{g^2(x)}{x^2} dx = \int_0^A \frac{g^2(x)}{x^2} d$ $\left(\int_0^A \frac{g^2(x)}{x^2} dx \right)^2 \le 4 \int_0^A f^2(x) dx \int_0^A \frac{g^2(x)}{x^2} dx \Rightarrow \int_0^A \frac{g^2(x)}{x^2} dx \le 4 \int_0^A f^2(x) dx. \ \ \diamondsuit \ A \to +\infty \ \ \square \ \square.$

5. 记 $I_n = \int_0^{\sqrt{n}} \left(1 - \frac{t^2}{n}\right)^n dt$. 做变换 $t = \sqrt{n} \sin x$ 知 $I_n = \sqrt{n} \int_0^{\frac{\pi}{2}} \cos^{2n+1} x dx = \sqrt{n} \frac{(2n)!!}{(2n+1)!!} \rightarrow \frac{\sqrt{\pi}}{2}$. 由于 $\int_0^{+\infty} e^{-t^2} dt = \int_0^{+\infty} e^{-t^2} dt$ $\lim_{n \to +\infty} \int_0^{\sqrt{n}} e^{-t^2} \mathrm{d}t, \, \text{因此只需求出极限} \lim_{n \to +\infty} \int_0^{\sqrt{n}} \left[e^{-t^2} - \left(1 - \frac{t^2}{n} \right)^n \right] \mathrm{d}t. \, \text{ 在提示中令 } x = t^2, a = n, \, \text{得到估计式 } 0 \leq \int_0^{\sqrt{n}} \left[e^{-t^2} - \left(1 - \frac{t^2}{n} \right)^n \right] \mathrm{d}t \leq \frac{\int_0^{\sqrt{n}} t^4 e^{-t^2} \mathrm{d}t}{n}. \, \text{ 当 } n \to +\infty \, \text{时右边分子上的广义积分收敛, 因此右边极限为 } 0, \, \text{由夹逼原理}$ 知欲求极限存在且为 0. 从而 $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$

6. $I = \frac{1}{3} \int_{0}^{+\infty} \frac{\ln x}{x^2 + 1} dx - \frac{1}{3} \int_{0}^{+\infty} \frac{\ln x}{x^2 + 4} dx = \frac{1}{3} \int_{0}^{+\infty} \frac{\ln x}{x^2 + 1} dx - \frac{1}{3} \int_{0}^{+\infty} \frac{\ln (2x)}{(2x)^2 + 4} d(2x) = \frac{1}{6} \int_{0}^{+\infty} \frac{\ln x}{x^2 + 1} dx - \frac{\ln 2}{6} \int_{0}^{+\infty} \frac{1}{x^2 + 1} dx = \frac{e^t}{e^{2t} + 1} dt - \frac{te^t}{e^{2t} + 1} dt - \frac{\pi \ln 2}{12} = -\frac{\pi \ln 2}{12}.$ 7. $\Leftrightarrow t = ax - \frac{b}{x}$, M $x = \frac{t + \sqrt{t^2 + 4ab}}{2a}$, $ax + \frac{b}{x} = \sqrt{t^2 + 4ab}$, $dx = \frac{t + \sqrt{t^2 + 4ab}}{2a\sqrt{t^2 + 4ab}} dt$, M M

$$\begin{split} \int_0^{+\infty} f(ax + \frac{b}{x}) \mathrm{d}x &= \frac{1}{2a} \int_{-\infty}^{+\infty} f(\sqrt{t^2 + 4ab}) \frac{t + \sqrt{t^2 + 4ab}}{\sqrt{t^2 + 4ab}} \mathrm{d}t \\ &= \frac{1}{2a} \int_{-\infty}^0 f(\sqrt{t^2 + 4ab}) \frac{t + \sqrt{t^2 + 4ab}}{\sqrt{t^2 + 4ab}} \mathrm{d}t + \frac{1}{2a} \int_0^{+\infty} f(\sqrt{t^2 + 4ab}) \frac{t + \sqrt{t^2 + 4ab}}{\sqrt{t^2 + 4ab}} \mathrm{d}t \\ &= \frac{1}{2a} \int_0^{+\infty} f(\sqrt{t^2 + 4ab}) \frac{\sqrt{t^2 + 4ab} - t}{\sqrt{t^2 + 4ab}} \mathrm{d}t + \frac{1}{2a} \int_0^{+\infty} f(\sqrt{t^2 + 4ab}) \frac{\sqrt{t^2 + 4ab} + t}{\sqrt{t^2 + 4ab}} \mathrm{d}t \\ &= \frac{1}{a} f(\sqrt{t^2 + 4ab}) \mathrm{d}t \end{split}$$

8. $\int_{a}^{\frac{a+b}{2}} f(x) \mathrm{d}x = \int_{a}^{\frac{a+b}{2}} f(x) \mathrm{d}(x-a) = f(\frac{a+b}{2}) \frac{b-a}{2} - \int_{a}^{\frac{a+b}{2}} f'(x) \mathrm{d}\frac{(x-a)^2}{2} = f(\frac{a+b}{2}) \frac{b-a}{2} - f'(\frac{a+b}{2}) \frac{(b-a)^2}{8} + \int_{a}^{\frac{a+b}{2}} \frac{(x-a)^2}{2} f''(x) \mathrm{d}x = f(\frac{a+b}{2}) \frac{b-a}{2} - f'(\frac{a+b}{2}) \frac{(b-a)^2}{8} + f''(\xi_1) \int_{a}^{\frac{a+b}{2}} \frac{(x-a)^2}{2} \mathrm{d}x.$ 同理 $\int_{a+b}^{b} f(x) \mathrm{d}x = f(\frac{a+b}{2}) \frac{b-a}{2} + f'(\frac{a+b}{2}) \frac{(b-a)^2}{8} + f''(\xi_2) \int_{\frac{a+b}{2}}^{b} \frac{(x-b)^2}{2} \mathrm{d}x.$ 两式相加得 $\int_{a}^{b} f(x) \mathrm{d}x = f(\frac{a+b}{2})(b-a) + (f''(\xi_1) + f''(\xi_2)) \frac{(b-a)^3}{48} = f(\frac{a+b}{2})(b-a) + f''(\xi) \frac{(b-a)^3}{24}.$ 最后一步用了 Darboux

9. 注意到 $A_n = \int_0^1 f(x) dx - \frac{1}{n} \sum_{k=1}^n \frac{f(\frac{k-1}{n}) + f(\frac{k}{n})}{2} + \frac{1}{2n} (f(0) - f(1)) = \sum_{k=1}^n \left(\int_{\frac{k-1}{n}}^{\frac{k}{n}} f(x) dx - \frac{f(\frac{k-1}{n}) + f(\frac{k}{n})}{2n} \right) + \frac{1}{2n} (f(0) - f(1)).$ 设 $|f'(x)| \leq M, \text{ iff } \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(x) \mathrm{d}x = \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(x) \mathrm{d}(x - \frac{2k-1}{2n}) = f(x)(x - \frac{2k-1}{2n}) |\frac{\frac{k}{n}}{\frac{k-1}{n}} - \int_{\frac{k-1}{n}}^{\frac{k}{n}} (x - \frac{2k-1}{2n}) f'(x) \mathrm{d}x = \frac{f(\frac{k-1}{n}) + f(\frac{k}{n})}{2n} - B_n,$ 其中 $B_n := \int_{\frac{k-1}{2n}}^{\frac{k}{n}} (x - \frac{2k-1}{2n}) f'(x) dx = \int_{\frac{k-1}{2n}}^{\frac{2k-1}{2n}} (x - \frac{2k-1}{2n}) f'(x) dx + \int_{\frac{2k}{2n}}^{\frac{k}{n}} (x - \frac{2k-1}{2n}) f'(x) dx = f'(\xi_{k,1}) \int_{\frac{k-1}{n}}^{\frac{2k-1}{2n}} (x - \frac{2k-1}{2n}) dx + \int_{\frac{k-1}{2n}}^{\frac{k}{n}} (x - \frac{2k-1}{2n}) f'(x) dx$ $f'(\xi_{k,2}) \int_{\frac{2k-1}{2n}}^{\frac{k}{n}} (x - \frac{2k-1}{2n}) \mathrm{d}x = -\frac{f'(\xi_{k,1})}{8n^2} + \frac{f'(\xi_{k,2})}{8n^2}.$ 综上所述, 我们有 $nA_n = \sum_{k=1}^n \frac{f'(\xi_{k,2}) - f'(\xi_{k,1})}{8n} + \frac{f(0) - f(1)}{2} \Rightarrow \lim_{n \to +\infty} nA_n = \frac{f'(\xi_{k,2}) - f'(\xi_{k,2})}{8n}$ $\frac{1}{8} \left(\int_0^1 f'(x) dx - \int_0^1 f'(x) dx \right) + \frac{f(0) - f(1)}{2} = \frac{f(0) - f(1)}{2}.$

10. 设曲线方程为 $\Gamma: \left\{ egin{aligned} x = x(s) \\ y = y(s) \end{aligned} \right. \in C^1[0,L],$ 此处选择 Γ 的弧长为参数, 则 $x'(s)^2 + y'(s)^2 = 1,$

且 D 的面积为 $A = \int_0^L x dy = \int_0^L x(s) y'(s) ds$. 又设 $C: \left\{ \begin{array}{ll} x = \varphi(s) = x(s) \\ u = \psi(s) \end{array} \right.$ 是以 O 为中心,R 为

半径的圆, 此处仍选择 Γ 的弧长为参数, 则 C 的面积为 $\pi R^2 = -\int_0^L y \mathrm{d}x = -\int_0^L \psi(s) x'(s) \mathrm{d}s$. 从 而由 Cauchy 不等式, $A + \pi R^2 = \int_0^L (x(s)y'(s) - \psi(s)x'(s)) \mathrm{d}s \leq \int_0^L \sqrt{(x(s)y'(s) - \psi(s)x'(s))^2} \mathrm{d}s \leq \int_0^L \sqrt{(x(s)y'(s) - \psi(s)x'(s))^2} \mathrm{d}s$ $\int_0^L \sqrt{(x'(s)^2 + y'(s)^2)(x(s)^2 + \psi(s)^2)} \mathrm{d}s = RL. \ \, 因此我们成立 \, \, 2\sqrt{A}\sqrt{\pi R^2} \, \leq A + \pi R^2 \, \leq RL \Rightarrow$ $A \leq \frac{L^2}{4\pi}$. 其中等号成立当且仅当以上每步相等,尤其是 $(x(s)y'(s) - \psi(s)x'(s))^2 = (x'(s)^2 + \psi(s)^2)^2$ $y'(s)^2)(x(s)^2+\psi(s)^2)$. 用右边减去左边得到 $(x(s)x'(s)+\psi(s)y'(s))^2=0$. 由于 $x(s)^2+\psi(s)^2=R^2$, 两边求导得 $x(s)x'(s) + \psi(s)\psi'(s) = 0 \Rightarrow \psi'(s) = y'(s), \psi(s) = y(s) + y_0$, 即 Γ 方程为 $x^2 + (y - y_0)^2 = R^2$, 圆也!

11. 由 Abel 判别法,
$$\int_0^{+\infty} f(x)u_1(x)dx$$
 收敛, 而 $u_2(x)$ 单调有界, 因此 $\int_0^{+\infty} f(x)u_1(x)u_2(x)dx$ 收敛, 依此类推.
12. 记 $F(x) = \int_0^x f(t)dt$. 由 L'Hospital 法则, $\lim_{x \to +\infty} F(x) = \lim_{x \to +\infty} \frac{e^{ax}F(x)}{e^{ax}} = \lim_{x \to +\infty} \frac{e^{ax}(aF(x)+f(x))}{ae^{ax}} = \frac{A}{a}$, 故 $\lim_{x \to +\infty} f(x) = A - a \cdot \frac{A}{a} = 0$.

第 6 次习题课: 数项级数的基本概念与正项级数

6.1 问题

- 1. 判断级数 $\sum_{n=1}^{+\infty} \frac{n^{n+\frac{1}{n}}}{(n+\frac{1}{n})^n}$ 的收敛性.
- 2. 判断级数 $\sum_{n=1}^{+\infty} (\frac{(2n)!!}{(2n+3)!!})^p$ 的收敛性.
- 3. 判断级数 $\sqrt{2} + \sqrt{2 \sqrt{2}} + \sqrt{2 \sqrt{2 + \sqrt{2}}} + \sqrt{2 \sqrt{2 + \sqrt{2}}} + \cdots$ 的收敛性.
- 4. 计算 $\sum_{k=2}^{+\infty} \arctan \frac{2}{4k^2 4k + 1}$.
- 5. 证明 $\sum_{n=1}^{k=2} \frac{1}{\sqrt[p]{n}(n+1)} \le p, p \ge 1.$ 6. $a_n > 0$, 证明 $\lim_{n \to +\infty} n(\frac{1+a_{n+1}}{a_n} 1) \ge 1.$
- 7. $a_n > 0$, 级数 $\sum_{n=1}^{+\infty} \frac{1}{a_n}$ 收敛, 证明 $\sum_{n=1}^{+\infty} \frac{n}{a_1 + a_2 + \dots + a_n}$ 收敛.
- 8. $0 < a_1 < \frac{\pi}{2}, a_n = \sin a_{n-1}$, 判断级数 $\sum_{n=1}^{+\infty} a_n^p$ 的收敛性.
- 9. (Bertrand 判别法). 对于正项级数, 证明: $\begin{cases} \frac{\varliminf}{n \to +\infty} \ln n[n(\frac{a_n}{a_{n+1}}-1)-1] > 1 \Rightarrow \sum\limits_{n=1}^{+\infty} a_n 收敛 \\ \overline{\lim}_{n \to +\infty} \ln n[n(\frac{a_n}{a_{n+1}}-1)-1] < 1 \Rightarrow \sum\limits_{n=1}^{+\infty} a_n 发散 \end{cases}$
- 10. 正项级数 a_n 单调递减, 证明 $\sum_{n=1}^{+\infty} a_n$ 与 $\sum_{n=1}^{+\infty} 2^k a_{2^k}$ 同敛散 11. 是否存在部分和序列有界但通项趋于 0 的发散级数?
- 12. $a_n > 0$, $\sum_{n=1}^{+\infty} a_n$ 收敛, $a_n a_{n+1}$ 单调下降. 证明 a_n 单调区域趋于 0, 且 $\lim_{n \to +\infty} \left(\frac{1}{a_{n+1}} \frac{1}{a_n} \right) = +\infty$.

6.2 解答

- 1. $\lim_{n \to +\infty} \frac{n^{n+\frac{1}{n}}}{(n+\frac{1}{n})^n} = \lim_{n \to +\infty} \frac{n^{\frac{1}{n}}}{(1+\frac{1}{n^2})^n} = 1$, 因此原级数发散. 2. 考虑 Rabbe 判别法. $n(\frac{a_n}{a_{n+1}}-1) = n[(\frac{2n+5}{2n+2})^p-1] = n[(1+\frac{3}{2n+2})^p-1] = n[1+\frac{3p}{2n+2}+o(\frac{1}{n})-1] \to \frac{3}{2}p$, 因此 $p > \frac{2}{3}$ 时收敛, $p < \frac{2}{3}$ 时发散. $p = \frac{2}{3}$ 时, 记 $f(x) = (1+x)^{\frac{2}{3}}$,则 $\frac{a_n}{a_{n+1}} = (1+\frac{3}{2(n+1)})^{\frac{2}{3}} = 1+\frac{1}{n+1}+\frac{f''(\xi)}{2!}(\frac{3}{2(n+1)})^2 < 1+\frac{1}{n+1} = \frac{\frac{1}{n+1}}{\frac{1}{n+2}} := \frac{b_n}{b_{n+1}}$.
- 由 $\sum_{n=1}^{+\infty} b_n = +\infty$ 知 $\sum_{n=1}^{+\infty} a_n = +\infty$, 即级数发散.
- 3. $\sqrt{2} = 2\sin\frac{\pi}{4}, \sqrt{2-\sqrt{2}} = \sqrt{2-2\cos\frac{\pi}{4}} = 2\sin\frac{\pi}{8}, \sqrt{2-\sqrt{2+\sqrt{2}}} = \sqrt{2-\sqrt{2+2\cos\frac{\pi}{4}}} = \sqrt{2-2\cos\frac{\pi}{8}} = 2\sin\frac{\pi}{16},$ 依此类推, 再利用 $\sin x \sim x$ 知原级数收敛.
- 4. 注意到 $\arctan\frac{2}{4k^2-4k+1}=\arctan\frac{1}{2k-1}-\arctan\frac{1}{2k}$, 从而 $\sum_{k=2}^{+\infty}\arctan\frac{2}{4k^2-4k+1}=\arctan\frac{1}{2}$.
- 5. $\frac{1}{\sqrt[p]{n}(n+1)} = n^{\frac{p-1}{p}} \left[\left(\frac{1}{\sqrt[p]{n}} \right)^p \left(\frac{1}{\sqrt[p]{n+1}} \right)^p \right]^{f(x) = x^p}$ 的微分中值定理 $n^{\frac{p-1}{p}} p \left(\frac{1}{\sqrt[p]{n+\theta}} \right)^{p-1} \left(\frac{1}{\sqrt[p]{n}} \frac{1}{\sqrt[p]{n+1}} \right) \leq p \left(\frac{1}{\sqrt[p]{n}} \frac{1}{\sqrt[p]{n+1}} \right)$. 两边累加. 6. 反证法. 若 $\overline{\lim}_{n \to +\infty} n \left(\frac{1+a_{n+1}}{a_n} 1 \right) < 1$. 则 $\exists N > 0, \text{s.t.} \forall n \geq N, n \left(\frac{1+a_{n+1}}{a_n} 1 \right) < 1 \Leftrightarrow \frac{1}{n+1} < \frac{a_n}{n} \frac{a_{n+1}}{n+1}$. 两边累加,知

 $\sum_{i=1}^{+\infty} \frac{1}{N+i} < \frac{a_N}{N}$, 这与调和级数的发散性矛盾.

- 7. $\sum_{n=1}^{+\infty} \frac{1}{a_n}$ 收敛 $\Rightarrow \frac{1}{a_n} \to 0 \Rightarrow a_n \to +\infty$. 因此可按从小到大顺序将 $\{a_n\}$ 重排为 $a_{\phi(1)} \leq a_{\phi(2)} \leq \cdots \leq a_{\phi(n)} \leq \cdots$. 令

又因为 $\frac{n}{a_1+\cdots+a_n} \leq b_n$, 因此 $\sum_{n=1}^{+\infty} \frac{n}{a_1+\cdots+a_n}$ 收敛.

- 8. 上学期例题已证 $\lim_{n \to +\infty} na_n^2 = 3$, 因此 $a_n \sim \sqrt{\frac{3}{n}}, a_n^p \sim (\frac{3}{n})^{\frac{p}{2}}$, 从而当 $p \leq 2$ 时级数发散, p > 2 时级数收敛.
- 9. 先证明第一种情况. 由条件知 $\exists N_1 > 0, \text{s.t.} \forall n > N_1, \ln n[n(\frac{a_n}{a_{n+1}} 1) 1] > r_1 > 1 \Leftrightarrow \frac{a_{n+1}}{a_n} < \frac{n \ln n}{(n+1) \ln n + r_1}.$ 可以验证当 $1 时,<math>\frac{n \ln n}{(n+1) \ln n + r_1} < \frac{n \ln^p n}{(n+1) \ln^p (n+1)} \Leftrightarrow \frac{(n+1)[\ln^p (n+1) \ln^p n]}{\ln^{p-1} n} < r_1.$ 利用 $f(x) = x^p$ 的微分中值定理,知 LHS $= \frac{(n+1)p \ln^{p-1} (n+\theta)[\ln(n+1) \ln n]}{\ln^{p-1} n}$

因此有 $\exists N_2 > N_1$, s.t. $\forall n > N_2$, $\frac{a_{n+1}}{a_n} < \frac{n \ln^p n}{(n+1) \ln^p (n+1)} \Rightarrow a_n < \frac{C}{n \ln^p n}$. 由于 $\sum_{n=1}^{+\infty} \frac{C}{n \ln^p n}$ 收敛, 因此 $\sum_{n=1}^{+\infty} a_n$ 收敛. 再证明第二种情况. 由条件知 $\exists N_3 > 0$, s.t. $\forall n > N_3$, $\ln n [n(\frac{a_n}{a_{n+1}} - 1) - 1] < 1 \Rightarrow \frac{a_{n+1}}{a_n} > \frac{n \ln n}{(n+1) \ln n + 1} > \frac{n \ln n}{(n+1) \ln (n+1)} \Rightarrow$ $a_n > \frac{C}{n \ln n}$. 由于 $\sum_{n=1}^{+\infty} \frac{C}{n \ln n}$ 发散, 因此 $\sum_{n=1}^{+\infty} a_n$ 发散.

$$10. \sum_{n=2}^{+\infty} a_n = \sum_{n=1}^{+\infty} \sum_{k=0}^{2^n - 1} a_{2^n + k} \le \sum_{n=1}^{+\infty} 2^n a_{2^n} = 2 \sum_{n=1}^{+\infty} 2^{n-1} a_{2^n} \le 2 \sum_{n=1}^{+\infty} \sum_{k=1}^{2^{n-1}} a_{2^{n-1} + k} = 2 \sum_{n=2}^{+\infty} a_n.$$

$$10. \sum_{n=2}^{+\infty} a_n = \sum_{n=1}^{+\infty} \sum_{k=0}^{2^n - 1} a_{2^n + k} \le \sum_{n=1}^{+\infty} 2^n a_{2^n} = 2 \sum_{n=1}^{+\infty} 2^{n-1} a_{2^n} \le 2 \sum_{n=1}^{+\infty} \sum_{k=1}^{2^{n-1}} a_{2^{n-1} + k} = 2 \sum_{n=2}^{+\infty} a_n.$$

$$11.$$
 存在. 一个例子为 $1, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{3}, \frac{1}{3}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, \cdots.$

$$12.$$
 前者显然. 对于后者, $\frac{1}{a_{n+1}} - \frac{1}{a_n} = \frac{a_n - a_{n+1}}{a_n a_{n+1}} \ge \frac{a_n - a_{n+1}}{a_n^2} = \frac{a_n - a_{n+1}}{\sum_{k=n}^{+\infty} (a_k^2 - a_{k+1}^2)} = \frac{a_n - a_{n+1}}{\sum_{k=n}^{+\infty} (a_k - a_{k+1})(a_k + a_{k+1})} \ge \frac{a_n - a_{n+1}}{\sum_{k=n}^{+\infty} (a_n - a_{n+1})(a_k + a_{k+1})} \ge \frac{1}{\sum_{k=n}^{+\infty} (a_n - a_{n+1})(a_k + a_{k+1})} \ge \frac{1}{\sum_$

第 7 次习题课: 任意项级数与数项级数的运算

7.1 问题

- 1. 讨论级数 $\sum_{n=0}^{+\infty} \frac{\sin n}{\ln n}$ 的收敛性和绝对收敛性.
- 2. 讨论级数 $\sum_{n=1}^{\infty} \frac{(-1)^{\sqrt{n}}}{n}$ 的收敛性.
- 3. p,q>0, 讨论级数 $1-\frac{1}{2^q}+\frac{1}{3^p}-\frac{1}{4^q}+\cdots+\frac{1}{(2n-1)^p}-\frac{1}{(2n)^q}+\cdots$ 的收敛性与绝对收敛性.
- 4. 讨论级数 $\sum_{n=2}^{+\infty} \ln[1 + \frac{(-1)^n}{n^p}]$ 的收敛性与绝对收敛性.
- 5. 级数 $\sum_{n=2}^{+\infty} (a_n a_{n-1})$ 绝对收敛, $\sum_{n=1}^{+\infty} b_n$ 收敛, 证明 $\sum_{n=1}^{+\infty} a_n b_n$ 收敛.
- 6. $\sum_{n=1}^{+\infty} a_n$ 收敛, 数列 $p_n > 0$ 且单调递增趋于 $+\infty$. 证明 $\lim_{n \to +\infty} \frac{\sum_{k=1}^{n} p_k a_k}{p_n} = 0$.
- 7. 计算级数 $\sum_{n=0}^{+\infty} \frac{\sin(\sqrt{5}n)}{n}$.
- 8. p > 0, 证明 $\sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{n^p} > \frac{2^p}{2^p+1}$.
- 9. $\sum_{n=0}^{+\infty} a_n = A$ 且绝对收敛, $\sum_{n=0}^{+\infty} b_n = B$ 且条件收敛, 证明 Cauchy 乘积收敛且 $\sum_{n=0}^{+\infty} c_n = AB$.
- 10. 如果对任意以 0 为极限的数列 $\{x_n\}$ 都有 $\sum_{n=1}^{+\infty} a_n x_n$ 收敛, 证明 $\sum_{n=1}^{+\infty} a_n$ 也收敛. 绝对收敛性呢?
- 11. 对于两个发散级数, 它们的 Cauchy 乘积是否一定发散?
- 12. (1) 对于收敛级数和发散级数, 它们的 Cauchy 乘积是否一定发散?
- (2) 对于正项收敛级数和正项发散级数, 它们的 Cauchy 乘积是否一定发散?

7.2 解答

- 1. $\frac{1}{\ln n}$ 单调递减趋于 0, $\sum_{n=2}^k \sin n$ 对于 $\forall k \geq 1$ 有一致上界, 由 Dirichlet 判别法知收敛. 由于 $\left|\frac{\sin n}{\ln n}\right| \geq \frac{\sin^2 n}{\ln n} = \frac{1-\cos 2n}{2\ln n} = \frac{1-\cos 2n}{2\ln n}$ $\frac{1}{2 \ln n} - \frac{\cos 2n}{\ln n}$, 而 $\sum_{n=2}^{+\infty} \frac{\cos 2n}{\ln n}$ 收敛, $\sum_{n=2}^{+\infty} \frac{1}{2 \ln n}$ 发散, 因此不绝对收敛.
- 2. 合并同号项, 级数改写为 $\sum_{k=1}^{+\infty} (-1)^k b_k$, 其中 $b_k = \frac{1}{k^2} + \frac{1}{k^2+1} + \dots + \frac{1}{(k+1)^2-1} \leq \frac{2k+1}{k^2} \to 0$. 另一方面, $b_k \geq \int_0^1 \frac{1}{k^2+x} \mathrm{d}x + \frac{1}{k^2+1} + \dots + \frac{1}{(k+1)^2-1} \leq \frac{2k+1}{k^2} \to 0$. $\int_{1}^{2} \frac{1}{k^{2}+x} dx + \dots + \int_{2k}^{2k+1} \frac{1}{k^{2}+x} dx = \int_{0}^{2k+1} \frac{1}{k^{2}+x} dx = \ln \frac{(k+1)^{2}}{k^{2}}, \ \overrightarrow{\text{mi}} \ b_{k+1} \leq \int_{-1}^{0} \frac{1}{(k+1)^{2}+x} dx + \dots + \int_{2k+1}^{2k+2} \frac{1}{(k+1)^{2}+x^{2}} dx = \ln \frac{(k+1)^{2}}{k^{2}}, \ \overrightarrow{\text{mi}} \ b_{k+1} \leq \int_{-1}^{0} \frac{1}{(k+1)^{2}+x} dx + \dots + \int_{2k+1}^{2k+2} \frac{1}{(k+1)^{2}+x^{2}} dx = \ln \frac{(k+1)^{2}}{k^{2}}, \ \overrightarrow{\text{mi}} \ b_{k+1} \leq \int_{-1}^{0} \frac{1}{(k+1)^{2}+x} dx + \dots + \int_{2k+1}^{2k+2} \frac{1}{(k+1)^{2}+x^{2}} dx = \ln \frac{(k+1)^{2}}{k^{2}}, \ \overrightarrow{\text{mi}} \ b_{k+1} \leq \int_{-1}^{0} \frac{1}{(k+1)^{2}+x} dx + \dots + \int_{2k+1}^{2k+2} \frac{1}{(k+1)^{2}+x^{2}} dx = \ln \frac{(k+1)^{2}}{k^{2}}, \ \overrightarrow{\text{mi}} \ b_{k+1} \leq \int_{-1}^{0} \frac{1}{(k+1)^{2}+x} dx + \dots + \int_{2k+1}^{2k+2} \frac{1}{(k+1)^{2}+x^{2}} dx = \ln \frac{(k+1)^{2}}{k^{2}}, \ \overrightarrow{\text{mi}} \ b_{k+1} \leq \int_{-1}^{0} \frac{1}{(k+1)^{2}+x} dx + \dots + \int_{2k+1}^{2k+2} \frac{1}{(k+1)^{2}+x^{2}} dx = \ln \frac{(k+1)^{2}}{k^{2}}, \ \overrightarrow{\text{mi}} \ b_{k+1} \leq \int_{-1}^{0} \frac{1}{(k+1)^{2}+x} dx + \dots + \int_{2k+1}^{2k+2} \frac{1}{(k+1)^{2}+x^{2}} dx = \ln \frac{(k+1)^{2}}{k^{2}}, \ \overrightarrow{\text{mi}} \ b_{k+1} \leq \int_{-1}^{0} \frac{1}{(k+1)^{2}+x} dx + \dots + \int_{2k+1}^{2k+2} \frac{1}{(k+1)^{2}+x^{2}} dx = \ln \frac{(k+1)^{2}}{k^{2}}, \ \overrightarrow{\text{mi}} \ b_{k+1} \leq \int_{-1}^{0} \frac{1}{(k+1)^{2}+x} dx + \dots + \int_{2k+1}^{2k+2} \frac{1}{(k+1)^{2}+x^{2}} dx = \ln \frac{(k+1)^{2}}{k^{2}}, \ \overrightarrow{\text{mi}} \ b_{k+1} \leq \int_{-1}^{0} \frac{1}{(k+1)^{2}+x} dx + \dots + \int_{2k+1}^{2k+2} \frac{1}{(k+1)^{2}+x^{2}} dx = \ln \frac{(k+1)^{2}}{k^{2}}, \ \overrightarrow{\text{mi}} \ b_{k+1} \leq \int_{-1}^{0} \frac{1}{(k+1)^{2}+x} dx + \dots + \int_{2k+1}^{2k+2} \frac{1}{(k+1)^{2}+x^{2}} dx = \ln \frac{(k+1)^{2}}{k^{2}}, \ \overrightarrow{\text{mi}} \ b_{k+1} \leq \int_{-1}^{0} \frac{1}{(k+1)^{2}+x^{2}} dx + \dots + \int_{2k+1}^{2k+2} \frac{1}{(k+1)^{2}+x^{2}} dx = \ln \frac{(k+1)^{2}}{k^{2}}, \ \overrightarrow{\text{mi}} \ b_{k+1} \leq \int_{-1}^{0} \frac{1}{(k+1)^{2}+x^{2}} dx + \dots + \int_{2k+1}^{2k+2} \frac{1}{(k+1)^{2}+x^{2}} dx = \ln \frac{(k+1)^{2}}{k^{2}}, \ \overrightarrow{\text{mi}} \ b_{k+1} \leq \int_{-1}^{0} \frac{1}{(k+1)^{2}+x^{2}} dx + \dots + \int_{2k+1}^{2k+2} \frac{1}{(k+1)^{2}+x^{2}} dx = \ln \frac{(k+1)^{2}}{k^{2}}$

$$\begin{split} &\int_{-1}^{2k+2} \frac{1}{(k+1)^2+x^2} \mathrm{d}x = \ln \frac{(k+1)^2+2(k+1)}{k(k+2)} \Rightarrow b_k - b_{k+1} \geq \ln \frac{k(k+1)}{(k+2)(k+3)} \geq 0. \text{ 由 Leibniz 判别法知收敛.} \\ &3. \text{ (a) } \exists \ p > 1, q > 1 \text{ 时, } |a_n| \leq \frac{1}{n^{\min(p,q)}}, \text{ 因此绝对收敛. (b) } \exists \ 0$$

 $p > 1, 0 < q \le 1$ 或 0 1 时,级数正部(或负部)收敛,负部(或正部)发散,因此发散。(d)当 $0 时,由 <math>\lim_{n \to +\infty} \frac{\frac{1}{(2n-1)^p} - \frac{1}{(2n)^q}}{\frac{1}{(2n-1)^p}} = 1$ 知级数发散。(e)当 $0 < q < p \le 1$ 时,由 $\lim_{n \to +\infty} \frac{-\frac{1}{(2n)^q} + \frac{1}{(2n+1)^p}}{-\frac{1}{(2n)^q}} = 1$ 知级数发散。

4. (a) p > 1 时,由 $\left| \ln[1 + \frac{(-1)^n}{n^p}] \right| < \frac{1}{n^p}$ 知绝对收敛. (b)由 Taylor 展开, $\ln(1 + \frac{(-1)^n}{n^p}) = \frac{(-1)^n}{n^p} - \frac{1}{2(1+\xi_n)^2} \frac{1}{n^{2p}}$,因此 $\frac{1}{2} 时级数条件收敛, <math>0 时级数发散.$

5. 记 $S_{n,n+p} = \sum_{k=0}^{n+p} b_k, M = \sum_{n=2}^{+\infty} |a_n - a_{n-1}|$. 由收敛性, $\exists N > 0$, s.t. $\forall n > N$, $|S_{n,n+p}| < \frac{\epsilon}{2M}$. 从而有 $\forall n > N$, $|\sum_{k=0}^{n+p} a_k b_k| = \frac{\epsilon}{2M}$ $\left| \sum_{k=n}^{n+p} a_k (S_{n,k} - S_{n,k-1}) \right| = \left| a_{n+p} S_{n,n+p} + \sum_{k=n}^{n+p-1} (a_k - a_{k+1}) S_{n,k} \right| \le \left| a_{n+p} \right| \left| S_{n,n+p} \right| + \sup_{n \le k \le n+p-1} \left| S_{n,k} \right| \sum_{k=n}^{n+p-1} \left| a_{k+1} - a_k \right| \le \left| a_{n+p} \right| \left| S_{n,k} \right|$

 $\sup_{n < k < n+p} |S_{n,k}| \left[|a_{n+p}| + \sum_{k=n}^{n+p-1} |a_{k+1} - a_k| \right] \leq \frac{\epsilon}{2M} 2M = \epsilon. \text{ 由 Cauchy 判别准则知} \sum_{n=1}^{+\infty} a_n b_n 收敛.$

 $S_n - \sum_{k=1}^{n-1} S_k \frac{p_{k+1} - p_k}{p_n} = (S_n - S) - \sum_{k=1}^{n-1} (S_k - S) \frac{p_{k+1} - p_k}{p_n} + S \frac{p_1}{p_n}.$ 显然 $S_n - S \to 0, S \frac{p_1}{p_n} \to 0.$ 对于第二项, 设 $|S_n| \le M$, 由极

限定义, $\exists N_1 > 1$, s.t. $\forall n \geq N_1$, $|S_n - S| < \frac{\epsilon}{2}$. 从而有估计 $|\sum_{k=1}^{n-1} (S_k - S) \frac{p_{k+1} - p_k}{p_n}| \leq 2M \sum_{k=1}^{N_1} \frac{p_{k+1} - p_k}{p_n} + \frac{\epsilon}{2} \sum_{k=N_1+1}^{n-1} \frac{p_{k+1} - p_k}{p_n} \leq 2M \sum_{k=1}^{n-1} \frac{p_{k+1} - p_k}{p_n} + \frac{\epsilon}{2} \sum_{k=N_1+1}^{n-1} \frac{p_{k+1} - p_k}{p_n} \leq 2M \sum_{k=1}^{n-1} \frac{p_{k+1} - p_k}{p_n} + \frac{\epsilon}{2} \sum_{k=N_1+1}^{n-1} \frac{p_{k+1} - p_k}{p_n} \leq 2M \sum_{k=1}^{n-1} \frac{p_{k+1} - p_k}{p_n} + \frac{\epsilon}{2} \sum_{k=N_1+1}^{n-1} \frac{p_{k+1} - p_k}{p_n} \leq 2M \sum_{k=1}^{n-1} \frac{p_{k+1} - p_k}{p_n} + \frac{\epsilon}{2} \sum_{k=N_1+1}^{n-1} \frac{p_{k+1} - p_k}{p_n} \leq 2M \sum_{k=1}^{n-1} \frac{p_{k+1} - p_k}{p_n} + \frac{\epsilon}{2} \sum_{k=N_1+1}^{n-1} \frac{p_{k+1} - p_k}{p_n} \leq 2M \sum_{k=1}^{n-1} \frac{p_{k+1} - p_k}{p_n} + \frac{\epsilon}{2} \sum_{k=N_1+1}^{n-1} \frac{p_{k+1} - p_k}{p_n} \leq 2M \sum_{k=1}^{n-1} \frac{p_{k+1} - p_k}{p_n} + \frac{\epsilon}{2} \sum_{k=N_1+1}^{n-1} \frac{p_{k+1} - p_k}{p_n} \leq 2M \sum_{k=1}^{n-1} \frac{p_{k+1} - p_k}{p_n} + \frac{\epsilon}{2} \sum_{k=N_1+1}^{n-1} \frac{p_{k+1} - p_k}{p_n} \leq 2M \sum_{k=1}^{n-1} \frac{p_{k+1} - p_k}{p_n} + \frac{\epsilon}{2} \sum_{k=1}^{n-1} \frac{p_{k+1} - p_k}{p_n} \leq 2M \sum_{k=1}^{n-1} \frac{p_k}{p_k} + \frac{\epsilon}{2} \sum_{k=1}^{n-$

 $2M^{\frac{p_{N_1+1}-p_1}{p_n}} + \frac{\epsilon}{2}$. 又由极限定义, $\exists N_2 > N_1$, s.t. $\forall n \geq N_2$, $\frac{p_{N_1+1}-p_1}{p_n} \leq \frac{\epsilon}{4M}$. 此时 $|\sum_{k=1}^{n-1} (S_k - S)^{\frac{p_{k+1}-p_k}{p_n}}| < \epsilon$, 即 $\sum_{k=1}^{n-1} (S_k - S)^{\frac{p_{k+1}-p_k}{p_n}}| < \epsilon$

7. $S_n = \sum_{k=1}^n \frac{\sin\sqrt{5}k}{k} = -\int_{\sqrt{5}}^{\pi} \sum_{k=1}^n \cos kt dt = -\int_{\sqrt{5}}^{\pi} \frac{\sin(n+\frac{1}{2})t - \sin\frac{t}{2}}{2\sin\frac{t}{2}} dt = -\int_{\sqrt{5}}^{\pi} \frac{1}{2\sin\frac{t}{2}} \sin(n+\frac{1}{2})t dt + \frac{1}{2}(\pi-\sqrt{5}) \stackrel{\text{R-L}}{\to} \frac{1}{2}(\pi-\sqrt{5}).$

8. 利用函数 $f(x) = \frac{1}{x^p}$ 的凸性, 成立 $\frac{1}{(4k-1)^p} - \frac{1}{(4k)^p} + \frac{1}{(4k+1)^p} - \frac{1}{(4k+2)^p} > \frac{1}{(4k+2)^p}$, 从而 $S_{4n+2} > 1 - \frac{1}{2^p} + \frac{1}{2^p} (1 - S_{2n})$, 两边取极限知 $S > 1 - \frac{S}{2^p}$, 即 $S > \frac{2^p}{2^p+1}$.

10. 不妨设 $a_n > 0$, 否则可将对应 x_n 反号, 题目条件与绝对收敛性结论不变. 采用反证法, 如果 $\sum_{n=0}^{+\infty} a_n$ 发散, 则可以归

纳构造数列 A_n , 满足 $A_0 = 0$, $A_n = \inf_{k \in \mathbb{N}_+} \sum_{i=A_n-1+1}^k a_i \ge n$. 从而可定义 $\{x_n\}$ 为 $A_1 - A_0$ 个 1, $A_2 - A_1$ 个 $\frac{1}{2}$, \cdots , $A_n - A_{n-1}$

个 $\frac{1}{n}$, ... 的依次排列, 满足 $\lim_{n\to+\infty} x_n = 0$, 而 $\sum_{n=1}^{+\infty} a_n x_n > 1 + 1 + \cdots = +\infty$. 因此 $\sum_{n=1}^{+\infty} a_n$ 绝对收敛.

11. 不一定, 反例是 $a_0 = 1$, $a_n = -(\frac{3}{2})^n$ 和 $b_0 = 1$, $b_n = (\frac{3}{2})^{n-1}(2^n + \frac{1}{2^{n+1}})$. 显然 $\sum_{n=0}^{+\infty} a_n$, $\sum_{n=0}^{+\infty} b_n$ 均发散, 但它们的 Cauchy

乘积 $c_n = (\frac{3}{2})^{n-1}(2^n + \frac{1}{2^{n+1}}) - (\frac{3}{2})^{n-1}(2^{n-1} + \frac{1}{2^n}) - \dots - (\frac{3}{2})^{n-1}(2^1 + \frac{1}{2^2}) - (\frac{3}{2})^n = (\frac{3}{4})^n \Rightarrow \sum_{n=0}^{+\infty} c_n$ 收敛.

12. (1) 不一定, 反例是 $a_n \equiv 0$ 和 $b_n \equiv 1$. 当然也不一定收敛, 如 $a_n = \frac{1}{n^2}, b_n = n$.

(2) 一定. 设 $\sum_{n=1}^{+\infty} a_n$ 收敛, $\sum_{n=1}^{+\infty} b_n$ 发散, 则 $c_n = \sum_{n=1}^{\infty} a_k b_{n-k} \ge a_1 b_{n-1}$, 由比较判别法知 $\sum_{n=1}^{+\infty} c_n$ 发散.

第 8 次习题课: 无穷乘积与函数项级数的基本概念

8.1 问题

- 1. 证明 $a_n = \frac{n!e^n}{n^{n+\frac{1}{2}}}$ 当 $n \to +\infty$ 时极限存在, 并求其值. (请不要用 Stirling 公式)
- 3. (Euler 公式). 证明 $\sin x = x \prod_{n=1}^{+\infty} (1 \frac{x^2}{n^2 \pi^2})$. 你可以将 $\sin[(2n+1)\phi]$ 写成关于 $\sin \phi$ 的多项式, 并利用零点求解之.

- 4. 讨论无穷乘积 $\prod_{i=0}^{+\infty} \left[\frac{1}{e} \left(1 + \frac{1}{n}\right)^n\right]$ 的收敛性.
- 5. 讨论无穷乘积 $\prod_{n=n_0}^{n+1} \frac{(\alpha+n)(\beta+n)}{(1+n)(\gamma+n)}$ 的收敛性, 其中取 n_0 足够大使得每一项都是正数. 6. 计算无穷乘积 $2(\frac{2}{1})^{\frac{1}{2}}(\frac{2}{3}\cdot\frac{4}{3})^{\frac{1}{4}}(\frac{4}{5}\cdot\frac{6}{5}\cdot\frac{6}{7}\cdot\frac{8}{7})^{\frac{1}{8}}\cdots$ 你可以先写出通项公式, 然后逐步化简.
- 7. $f(x) \in D[1, +\infty)$, 且 $\int_{1}^{+\infty} |f'(x)| dx$ 收敛, 证明广义积分 $\int_{1}^{+\infty} f(x) dx$ 与无穷级数 $\sum_{n=1}^{+\infty} f(n)$ 同敛散.
- 8. 试构造两个单调递减且发散的正项级数 $\sum_{n=1}^{+\infty} a_n, \sum_{n=1}^{+\infty} b_n$, 使得 $\sum_{n=1}^{+\infty} \min(a_n, b_n)$ 收敛.
- 9. 级数 $\sum_{n=1}^{+\infty} na_n$ 收敛, 证明: (1) $\forall k \in \mathbb{N}_+, \sum_{n=1}^{+\infty} na_{n+k}$ 收敛; (2) $\lim_{k \to +\infty} \sum_{n=1}^{+\infty} na_{n+k} = 0$.
- 10. $0 0, a_{n+1} = \frac{a_n}{1+a_n^p}$, 证明 $\sum_{n=1}^{+\infty} a_n$ 收敛.
- 11. 讨论函数项级数 $\sum_{n=1}^{+\infty} \frac{x^n}{1-x^n}$ 的收敛域.
- 12. 讨论函数项级数 $\sum_{n=1}^{+\infty} (1+\frac{1}{n})^{-n^2} e^{-nx}$ 的收敛域.

1.
$$\frac{a_{n+1}}{a_n} = \frac{e}{(1+n)^{n+\frac{1}{2}}} \Rightarrow \ln \frac{a_{n+1}}{a_n} = 1 - (n+\frac{1}{2})\ln(1+\frac{1}{n}) = 1 - (n+\frac{1}{2})(\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + o(\frac{1}{n^3})) = -\frac{1}{12n^2} + o(\frac{1}{n^2}).$$
 因此有 $a_n = \exp(\ln a_1 + \sum_{k=1}^{n-1} \ln \frac{a_{k+1}}{a_k}) = \exp\{\ln a_1 + \sum_{k=1}^{n-1} [-\frac{1}{12k^2} + o(\frac{1}{k^2})]\} \Rightarrow \lim_{n \to +\infty} a_n$ 存在,并记为 $a \neq 0$. 另一方面,由 Wallis 公式, $a = \frac{a^2}{a} = \lim_{n \to +\infty} \frac{a_n^2}{a_{2n}} = \lim_{n \to +\infty} \frac{(n!)^2}{n^{2n+1}} \frac{(2n)^{2n+\frac{1}{2}}}{(2n)!} = \sqrt{2} \lim_{n \to +\infty} \frac{(2^n n!)^2}{\sqrt{n}(2n)!} = \sqrt{2} \lim_{n \to +\infty} \frac{(2n)!!}{\sqrt{n}(2n-1)!!} = \sqrt{2\pi}.$

2.
$$\prod_{n=1}^{+\infty} (1+x^n) = \prod_{n=1}^{+\infty} \prod_{i=0}^{+\infty} (1+x^{2^i(2n-1)}) = \prod_{n=1}^{+\infty} (1-x^{2n-1})^{-1}.$$

n=1 n=1 i=0 n=1 i=0 n=1 3. 注意到 $\sin[(2n+1)\phi]$ 可展开为 $\sin\phi$ 的 2n+1 次多项式, 且只含奇次幂项, 因此 $\sin[(2n+1)\phi] = \sin\phi P(\sin^2\phi)$, 其中 $P(\cdot)$ 是 n 次多项式. 由极限关系知 P(0) = 2n+1, 且 LHS 全部零点为 $x_k = \frac{k\pi}{2n+1}, k = 1, \dots, n$, 因此 P(t) = (2n+1)

$$1) \prod_{k=1}^{n} \left(1 - \frac{t}{\sin^2(\frac{k\pi}{2n+1})} \right) \Rightarrow \sin[(2n+1)\phi] = (2n+1)\sin\phi \prod_{k=1}^{n} \left(1 - \frac{\sin^2\phi}{\sin^2(\frac{k\pi}{2n+1})} \right) \Rightarrow \sin x = (2n+1)\sin\frac{x}{2n+1} \prod_{k=1}^{n} \left(1 - \frac{\sin^2\frac{x}{2n+1}}{\sin^2(\frac{k\pi}{2n+1})} \right).$$

现在, 问题变为求 RHS 在 $n \to +\infty$ 时的极限. 记 $U_m = (2n+1)\sin\frac{x}{2n+1}\prod_{k=1}^m\left(1-\frac{\sin^2\frac{x}{2n+1}}{\sin^2(\frac{k\pi}{2n+1})}\right), V_m = \prod_{k=-m+1}^n\left(1-\frac{\sin^2\frac{x}{2n+1}}{\sin^2(\frac{k\pi}{2n+1})}\right).$

$$\lim_{n \to +\infty} U_m = x \prod_{k=1}^m \left(1 - \frac{x^2}{k^2 \pi^2} \right), 1 > V_m \ge \prod_{k=m+1}^n \left(1 - \frac{\left(\frac{x}{2n+1} \right)^2}{\frac{4}{\pi^2} \frac{k^2 \pi^2}{(2n+1)^2}} \right) = \prod_{k=m+1}^n \left(1 - \frac{x^2}{4k^2} \right) > \prod_{k=m+1}^{+\infty} \left(1 - \frac{x^2}{4k^2} \right) \stackrel{m \to +\infty}{\to} 1.$$
 因此

由夹逼原理, $\sin x = \lim_{n \to +\infty} (2n+1) \sin \frac{x}{2n+1} \prod_{k=1}^{n} \left(1 - \frac{\sin^2 \frac{x}{2n+1}}{\sin^2 (\frac{k\pi}{2n+1})}\right) = x \prod_{k=1}^{+\infty} \left(1 - \frac{x^2}{k^2 \pi^2}\right).$

$$4. \ \frac{1}{e} \left(1 + \frac{1}{n}\right)^n - 1 = \frac{1}{e} e^{n \ln(1 + \frac{1}{n})} - 1 \sim n \ln(1 + \frac{1}{n}) - 1 \sim -\frac{1}{2n}$$
,因此该无穷乘积发散

- 4. $\frac{1}{e} \left(1 + \frac{1}{n}\right)^n 1 = \frac{1}{e} e^{n \ln(1 + \frac{1}{n})} 1 \sim n \ln(1 + \frac{1}{n}) 1 \sim -\frac{1}{2n}$, 因此该无穷乘积发散. 5. $\frac{(\alpha + n)(\beta + n)}{(1 + n)(\gamma + n)} 1 = \frac{\alpha \beta \gamma + (\alpha + \beta \gamma 1)n}{(1 + n)(\gamma + n)}$. 因此该无穷乘积收敛当且仅当 $\alpha + \beta \gamma 1 = 0$.
- 6. 主要难点在于如何写成通式.

$$\begin{split} P_n &= 2\sqrt{2} \prod_{k=2}^n \left\{ \frac{1}{2} \left[\frac{(2^{k-1}-1)!!(2^k)!!}{(2^{k-1})} \right]^2 \right\}^{\frac{1}{2^k}} \overset{(2^n-1)!! = \frac{(2^n)!}{2^{2^{n-1}}(2^{n-1})!}}{=} 2\sqrt{2} \prod_{k=2}^n \left[\frac{1}{\sqrt{2}} \frac{\frac{(2^{k-1})!}{2^{2^{k-2}}(2^{k-2})!} \cdot 2^{2^{k-1}}(2^{k-1})!}{2^{2^{k-1}}(2^{k-1})!} \right]^{\frac{1}{2^{k-1}}} \\ &= 2\sqrt{2} \prod_{k=2}^n \left[2^{2^{k-1} - \frac{1}{2}} \frac{((2^{k-1})!)^3}{((2^{k-2})!)^2(2^k)!} \right]^{\frac{1}{2^{k-1}}} = 2\sqrt{2} \prod_{k=2}^n \left[2^{1 - \frac{1}{2^k}} \frac{\left(\frac{(2^{k-1})!}{(2^k)!} \right)^{\frac{1}{2^{k-1}}}}{\left(\frac{(2^{k-2})!}{(2^{k-1})!} \right)^{\frac{1}{2^{k-1}}}} \right] = 2\sqrt{2} \cdot 2^{n-1 - \sum_{k=2}^n \frac{1}{2^k}} \frac{1}{\frac{1}{2}} \left[\frac{(2^{n-1})!}{(2^n)!} \right]^{\frac{1}{2^{n-1}}} \\ &= 2 \cdot 2^{n+\frac{1}{2^n}} \left[\frac{(2^{n-1})!}{(2^n)!} \right]^{\frac{1}{2^{n-1}}} = 2\left\{ 2^{n2^n+1} \left[\frac{(2^{n-1})!}{(2^n)!} \right]^2 \right\}^{\frac{1}{2^n}} \xrightarrow{\text{Stirling}} 2\left[2^{n2^n+1} \frac{2\pi 2^{n-1} \left(\frac{2^{n-1}}{e} \right)^{2^n}}{2\pi 2^n \left(\frac{2^n}{e} \right)^{2^{n+1}}} \right]^{\frac{1}{2^n}} = e \end{split}$$

7. 只需注意到
$$\left|\sum_{k=m}^{n-1} - \int_{m}^{n} f(x) dx\right| \leq \sum_{k=m}^{n-1} \int_{k}^{k+1} |f(k) - f(x)| dx \leq \sum_{k=m}^{n-1} \int_{k}^{k+1} \int_{k}^{x} |f'(t)| dt dx \leq \sum_{k=m}^{n-1} \int_{k}^{k+1} \int_{k}^{k+1} |f'(t)| dt dx \leq \sum_{k=m}^{n-1} \int_{k}^{n} |f'(t)| dt dx \leq \sum_{k=m}^{n} \int_{k}$$

8. 一个例子如下.

$$\sum_{n=1}^{+\infty} a_n = \underbrace{\frac{1}{1^2}}_{1^2 \uparrow} + \underbrace{\frac{1}{2^2} + \dots + \frac{1}{5^2}}_{1^2 \uparrow} + \underbrace{\frac{1}{6^2} + \dots + \frac{1}{6^2}}_{6^2 \uparrow} + \underbrace{\frac{1}{42^2} + \dots + \frac{1}{1805^2}}_{1805^2} + \dots$$

$$\sum_{n=1}^{+\infty} b_n = \underbrace{\frac{1}{1^2}}_{2^2 \uparrow} + \underbrace{\frac{1}{2^2} + \dots + \frac{1}{2^2}}_{2^2 \uparrow} + \underbrace{\frac{1}{6^2} + \dots + \frac{1}{41^2}}_{42^2 \uparrow} + \underbrace{\frac{1}{42^2} + \dots + \frac{1}{42^2}}_{42^2 \uparrow} + \dots$$

显然 $\sum_{n=0}^{+\infty} \min(a_n, b_n) = \sum_{n=0}^{+\infty} \frac{1}{n^2}$ 收敛.

9. (1) $\sum_{n=1}^{+\infty} (n+k)a_{n+k}$ 收敛, $\frac{n}{n+k}$ 随 n 单调有界, 由 Abel 判别法知收敛. (2) 记 $R_n = \sum_{n=1}^{+\infty} ka_k$. 则

- 10. 容易看出 a_n 单调递减. $a_{n+1}-a_n=-a_{n+1}a_n^p\Rightarrow a_{n+1}=\frac{a_n-a_{n+1}}{a_n^p}<\frac{a_n-a_{n+1}}{\xi_n^p}$ 常分中值定理 $\frac{1}{1-p}(a_n^{1-p}-a_{n+1}^{1-p})$. 两边累加
- 11. 显然收敛域为 -1 < x < 1.

 12. 原级数可改写为 $\sum_{n=1}^{+\infty} \left(\frac{1}{e^x \left(1 + \frac{1}{n}\right)^n}\right)^n$,而 $\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$,因此当 x > -1 时收敛,当 x < -1 时发散. 而当 x = -1 时, $\lim_{n \to +\infty} \frac{e^n}{\left(1 + \frac{1}{n}\right)^{n^2}} = \lim_{n \to +\infty} e^{n-n^2 \ln(1 + \frac{1}{n})} = e^{\frac{1}{2}}$,因此原幂级数发散.

第 9 次习题课: 函数项级数的一致收敛

9.1问题

- 1. $f_0(x) \in R[0,a], f_n(x) = \int_0^x f_{n-1}(t) dt$, 讨论 $\{f_n(x)\}$ 在区间 [0,a] 上的一致收敛性.
- 2. 讨论函数项级数 $\sum_{n=1}^{+\infty} \frac{\sin nx}{n}$ 在区间 [0,1] 上的一致收敛性.
- 3. 讨论函数列 $f_n(x) = \sqrt[n]{1+x^n}$ 在 $[0,+\infty)$ 上的一致收敛性.
- 4. 函数列 $\{f_n\}$, $\{g_n\}$ 在区间 I 上一致收敛, 且对于 $\forall n, f_n, g_n$ 在 I 上有界. 讨论函数列 $\{f_ng_n\}$ 在 I 上的一致收敛性.
- 5. 讨论函数项级数 $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}x^2}{(1+x^2)^n}$ 在 \mathbb{R} 上的绝对收敛性、一致收敛性和绝对一致收敛性.
- 6. 讨论函数项级数 $\sum_{1}^{+\infty} \frac{(1-x)x^n}{1-x^{2n}} \sin nx$ 在区间 $(\frac{1}{2},1)$ 上的一致连续性.
- 7. $f(x) \in D[0, \frac{1}{2}], f(0) = 0, f'(x) \ge 0$, 讨论 $\sum_{n=1}^{+\infty} (-1)^n f(x^n)$ 在区间 $[0, \frac{1}{2}]$ 上一致收敛性. 8. $f(x) \in C^1(a,b)$, 定义 $F_n(x) = \frac{n}{2} \left[f(x + \frac{1}{n}) f(x \frac{1}{n}) \right]$, 证明函数列 $\{F_n\}$ 在 (a,b) 上内闭一致收敛.
- 9. 函数列 $f_n(x) = \cos nx$ 是否存在 \mathbb{R} 上内闭一致收敛的子列?
- 10. $f_n(x)$ 在 \mathbb{R} 上可积一致收敛到 f(x), 且存在 \mathbb{R} 上的可积函数 F(x) 满足 $|f_n(x)| \leq F(x)$. 证明 $\lim_{n \to +\infty} \int_{-\infty}^{+\infty} f_n(x) dx =$ $\int_{-\infty}^{+\infty} f(x) \mathrm{d}x.$
- 11. a_n 单调递减趋于 0, 证明 $\sum_{n=1}^{+\infty} a_n \sin nx$ 在 $[0,+\infty)$ 上一致收敛的充要条件是 $a_n = o(\frac{1}{n})$.
- 12. $\forall n \in \mathbb{N}_+, \{u_n(x)\}$ 在 [a, b] 上均单调递增, $\sum_{n=1}^{+\infty} u_n(a)$, $\sum_{n=1}^{+\infty} u_n(b)$ 绝对收敛,证明 $\sum_{n=1}^{+\infty} u_n(x)$ 在 [a, b] 上一致收敛.

- 1. 不妨设 $|f_0(x)| \le M$, 则 $f_1(x) \le Mx, \dots, f_n(x) \le \frac{Mx^n}{n!}$, 由最值判别法知一致收敛.
- 2. $\sum_{k=n+1}^{2n} u_k(\frac{1}{2n}) = \sum_{k=n+1}^{2n} \frac{\sin \frac{k}{2n}}{k} \ge \frac{1}{2} \sin \frac{1}{2}$, 因此不一致收敛.
- 3. 显然 $f_n(x) \to \max(1,x)$. 在 [0,1] 上, $|f_n(x)-1| \le \sqrt[n]{2}-1$; 在 $[1,+\infty)$ 上, $|f_n(x)-x| \le \sqrt[n]{2}-1$ (因为 $(f_n(x)-x)' < 0$). 因此由最值判别法知一致收敛.
- 4. 先证一致有界性. 由一致收敛性, $\exists N \in \mathbb{N}_+$, s.t. $\forall m, n \geq N, \forall x \in I, |f_n(x) f_m(x)| \leq 1$. 从而对于 $\forall n \in \mathbb{N}_+, |f_n(x)| \leq 1$ $\sup_{1 \le k \le N} |f_k(x)| + 1 := M_f,$ 因此一致有界. 同理 $\forall n \in \mathbb{N}_+, |g_n(x)| \le M_g.$ 从而 $|f_m(x)g_m(x) - f_n(x)g_n(x)| \le |f_m(x)g_m(x) - f_n(x)g_n(x)|$ $f_m(x)g_n(x)| + |f_m(x)g_n(x) - f_n(x)g_n(x)| \le M_f|g_m(x) - g_n(x)| + M_g|f_m(x) - f_n(x)|. \ \forall \epsilon > 0, \exists N', \text{s.t.} \forall m, n > N', |f_n - g_n(x)| \le M_f|g_m(x) - g_n(x)| + M_g|f_m(x) - g_n(x)|.$ $|f_m| < \frac{\epsilon}{2M_n}, |g_n - g_m| < \frac{\epsilon}{2M_f}.$ Mff $|f_m(x)g_m(x) - f_n(x)g_n(x)| < \epsilon.$
- 5. 绝对 (一致) 收敛性: $\left| \frac{(-1)^{n-1}x^2}{(1+x^2)^n} \right| \begin{cases} = 0, & x = 0 \\ \leq \frac{1}{(1+x^2)^{n-1}}, & x \neq 0 \end{cases}$ 知绝对收敛, $\left[\sum_{k=n}^{2n} \left| \frac{(-1)^{k-1}x^2}{(1+x^2)^k} \right| \right]_{x^2 = \frac{1}{n}} = \frac{(1+\frac{1}{n})^{n+1}-1}{(1+\frac{1}{n})^{2n}} > \frac{e-1}{e^2}$ 知不

- 绝对一致收敛. 一致收敛性: $\sum_{n=1}^{+\infty} (-1)^{n-1}$ 有界, $\frac{x^2}{(1+x^2)^n}$ 随 n 单调递减且一致趋于 0, 由 Dirichlet 判别法知一致收敛. 6. 记 $f_n(x) = \frac{(1-x)^n}{1-x^{2n}}$. 则 $f_n(x) \geq f_{n+1}(x) \Leftrightarrow (1-x)(1+x^{2n+1}) \geq 0$ 恒成立, 且 $f_n(x) = \frac{x^n}{(1+x^n)(1+x+x^2+\cdots+x^{n-1})} \leq \frac{1}{2n} \Rightarrow 0$, 而 $\sum_{n=1}^{N} \sin nx$ 关于 $x \in (\frac{1}{2}, 1)$ 一致有界, 因此由 Dirichlet 判别法, 知原级数一致收敛.
- 7. $\sum_{n=1}^{N} (-1)^n$ 一致有界, $f(x^n)$ 随 n 单调递减且一致趋于 0, 有 Dirichlet 判别法知一致收敛.
- 8. 由导数定义, $\lim_{n\to+\infty} F_n(x) = \frac{1}{2} \lim_{n\to+\infty} \left[\frac{f(x+\frac{1}{n})-f(x)}{\frac{1}{n}} + \frac{f(x-\frac{1}{n})-f(x)}{-\frac{1}{n}} \right] = f'(x)$. 另一方面, 考虑闭区间 [c,d], 则有 $|F_n(x)-f'(x)| = \frac{1}{2} \left[\frac{f(x+\frac{1}{n})-f(x)}{\frac{1}{n}} + \frac{f(x-\frac{1}{n})-f(x)}{-\frac{1}{n}} 2f'(x) \right] = \frac{1}{2} [(f'(\xi_1)-f'(x))+(f'(\xi_2)-f'(x))] \le \sup_{|x-y|<\frac{1}{n}} |f'(x)-f'(y)| \to 0$, 其中最后一步利用了 f'(x) 在区间 $\left[\frac{a+c}{2}, \frac{b+d}{2}\right]$ 上的一致连续性.
- 9. 不存在. 假设 $f_{n_k} = \cos n_k x$ 在 \mathbb{R} 上内闭一致收敛. 由收敛性, $\forall \epsilon > 0, \exists N, \text{s.t.} \forall m > k > N, \forall x \in [-1,1], |\cos n_k x n_k x|$
- 11. 记 $S_{n,p}(x) = \sum_{k=n}^{p} a_k \sin kx$. 先证必要性. $o(1) = S_{n,2n}(\frac{\pi}{4n}) = \sum_{k=n}^{2n} a_k \sin \frac{k\pi}{4n} \ge \frac{n}{2}(a_{2n-1} + a_{2n}) \sin \frac{\pi}{4} \Rightarrow a_n = o(\frac{1}{n})$. 再证

充分性. 定义单调递减数列 $b_n = \sup_{\substack{m \geq n \\ m}} \{ma_m\} = o(1)$. (a) 当 $0 \leq x \leq \frac{\pi}{p}$ 时, $|S_{n,p}(x)| \leq \sum_{k=n}^p ka_k x \leq pb_n x \leq b_n \pi \overset{n \to +\infty}{\to} 0$.

(b) 当 $x \geq \frac{\pi}{n}$ 时,由于 $\forall m > n$, $\left|\sum_{k=n}^{m} \sin kx\right| \leq \frac{1}{\sin(\frac{x}{2})} \leq \frac{\pi}{x} \leq n$,利用 Abel 变换可知 $\left|S_{n,p}(x)\right| \leq na_n \leq b_n \overset{n \to +\infty}{\to} 0$. (c)

当 $\frac{\pi}{p} < x < \frac{\pi}{n}$ 时, 取 $q = \lfloor \frac{\pi}{x} \rfloor$, 则 $|S_{n,p}(x)| \le |S_{n,q}(x)| + |S_{q+1,p}(x)| \le b_n \pi + b_{q+1} \le (\pi+1)b_n \stackrel{n \to +\infty}{\longrightarrow} 0$. 从而由 Cauchy

12. $\forall \epsilon > 0, \exists N > 0, \text{s.t.} \forall m \geq n \geq N, |\sum_{k=n}^{m} u_k(a)| < \epsilon, |\sum_{k=n}^{m} u_k(b)| < \epsilon.$ 从而对 $\forall x \in [a,b], -\epsilon \leq \sum_{k=n}^{m} u_k(a) \leq \sum_{k=n}^{m} u_k(x) \leq \sum_{k=n}^{m} u_k(a) \leq \sum_{k=n}^{m} u$ $\sum_{k=0}^{m} u_k(b) \le \epsilon$, 然后用 Cauchy 收敛准则.

第 10 次习题课: 一致收敛函数项级数的性质

10.1 问题

- 1. 设连续函数序列 $f_n(x)$ 在区间 [a,b] 上一致收敛于 f(x) 且 f(x) 没有零点. 证明 $\frac{1}{f_n(x)}$ 也一致收敛. 2. 证明 $f_n(x) = nx(1-x)^n$ 在区间 [0,1] 上不一致收敛,但是 $\lim_{n \to +\infty} \int_0^1 f_n(x) \mathrm{d}x = \int_0^1 \lim_{n \to +\infty} f_n(x) \mathrm{d}x$.
- 3. 证明 $\int_0^1 x^{-x} dx = \sum_{n=1}^{+\infty} \frac{1}{n^n}$.

4.

1. $f(x) \in C[a,b]$ 且没有零点, 因此不妨设 f(x) > 2m > 0, 从而 $\exists N > 0$, s.t. $\forall n > N$, $\forall x \in [a,b]$, $f_n(x) > m$, $|f_n(x) - m|$ $f(x)| \le m^2 \epsilon$. 这样就有 $|\frac{1}{f_n(x)} - \frac{1}{f(x)}| = \frac{1}{f_n(x)f(x)}|f_n(x) - f(x)| < \epsilon$ 恒成立 \Rightarrow 一致收敛. 2. $f_n(\frac{1}{n}) = (1 - \frac{1}{n})^n \ge \frac{1}{4}$ 在 $n \ge 2$ 时恒成立,因此不一致收敛. 但是 $f_n(x) \to 0$,且 $\int_0^1 f_n(x) dx = \frac{n}{(n+1)(n+2)} \to 0$.

2.
$$f_n(\frac{1}{n}) = (1 - \frac{1}{n})^n \ge \frac{1}{4}$$
 在 $n \ge 2$ 时恒成立, 因此不一致收敛. 但是 $f_n(x) \to 0$, 且 $\int_0^1 f_n(x) dx = \frac{n}{(n+1)(n+2)} \to 0$.

3.
$$x^{-x} = e^{-x \ln x} = 1 + \sum_{n=1}^{+\infty} \frac{(-1)^n (x \ln x)^n}{n!}$$
. 一致收敛可交换极限积分顺序,因此 $\int_0^1 x^{-x} dx = \int_0^1 1 + \sum_{n=1}^{+\infty} \frac{(-1)^n (x \ln x)^n}{n!} dx = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{(-1)^n (x \ln x)^n}{n!} dx$

 $1 + \sum_{n=1}^{+\infty} \int_0^1 \frac{(-1)^n (x \ln x)^n}{n!} dx = 1 + \sum_{n=1}^{+\infty} \frac{1}{(n+1)^{n+1}} = \sum_{n=1}^{+\infty} \frac{1}{n^n}.$ 4.

第 11 次习题课: 幂级数的基本概念与性质 11

11.1 问题

1. $\sum_{n=1}^{+\infty} a_n = A$, $\sum_{n=1}^{+\infty} b_n = B$. 证明若 Cauchy 乘积级数 $\sum_{n=1}^{+\infty} c_n$ 收敛, 则它必收敛于 AB.

11.2 解答

1. 设
$$f(x) = \sum_{n=1}^{+\infty} a_n x^n, g(x) = \sum_{n=1}^{+\infty} b_n x^n.$$
 $f(1), g(1)$ 收敛 $\Rightarrow \forall |x| < 1, \sum_{n=1}^{+\infty} |a_n x^n|, \sum_{n=1}^{+\infty} |b_n x^n|$ 收敛 $\Rightarrow \forall |x| < 1, \sum_{n=1}^{+\infty} c_n x^n = \left(\sum_{n=1}^{+\infty} a_n x^n\right) \left(\sum_{n=1}^{+\infty} b_n x^n\right).$ 这三个级数都在 $x = 1$ 处收敛,因此左连续,令 $x \to 1 - 0$ 得 $\sum_{n=1}^{+\infty} c_n = \left(\sum_{n=1}^{+\infty} a_n\right) \left(\sum_{n=1}^{+\infty} b_n\right).$

第 12 次习题课: 幂级数展开与多项式逼近

- 12.1 问题
- 12.2 解答

第 13 次习题课: 傅里叶级数的基本概念与性质

- 13.1 问题
- 13.2 解答

第 14 次习题课: 傅里叶级数的收敛性

问题 14.1

1. 证明余元公式 $\operatorname{Beta}(p,1-p) := \int_0^1 x^{p-1} (1-x)^{-p} \mathrm{d}x = \int_0^{+\infty} \frac{x^{p-1}}{1+x} \mathrm{d}x = \frac{\pi}{\sin p\pi} (0 ,并计算积分 <math>I_1 = \int_0^{+\infty} \frac{x^{\alpha}}{1+x^{\beta}} \mathrm{d}x$ 和 $I_2 = \int_0^{+\infty} \frac{\sin x}{x} \mathrm{d}x$. (提示: 可参考教材习题十二第 12 题)

14.2 解答

1. 第一个等式: $\int_0^1 x^{p-1} (1-x)^{-p} \mathrm{d}x \stackrel{x=\frac{t}{1+t}}{=} \int_0^{+\infty} \frac{t^{p-1}}{(1+t)^{p-1}} (1+t)^p \frac{1}{(1+t)^2} \mathrm{d}t = \int_0^{+\infty} \frac{t^{p-1}}{1+t} \mathrm{d}t.$ 第二个等式: 利用变量替换 $x=\frac{1}{t}$ 有 $\int_1^{+\infty} \frac{x^{p-1}}{1+x} \mathrm{d}x = \int_0^1 \frac{x^{-p}}{1+x} \mathrm{d}x \Rightarrow \mathrm{Beta}(p,1-p) = \int_0^1 \frac{x^{p-1}+x^{-p}}{1+x} \mathrm{d}x.$ 将 $\frac{1}{1+x}$ 展成幂级数,

$$\operatorname{Beta}(p, 1 - p) = \lim_{r \to 1 - 0} \int_0^r \frac{x^{p - 1} + x^{-p}}{1 + x} dx = \lim_{r \to 1 - 0} \int_0^r \left[\sum_{k = 0}^{+\infty} (-1)^k x^{k + p - 1} + \sum_{k = 0}^{+\infty} (-1)^k x^{k - p} \right] dx$$
$$= \lim_{r \to 1 - 0} \left[\sum_{k = 0}^{+\infty} \frac{(-1)^k}{k + p} r^{k + p} + \sum_{k = 0}^{+\infty} \frac{(-1)^k}{k - p + 1} r^{k - p + 1} \right] = \sum_{k = 0}^{+\infty} \frac{(-1)^k}{k + p} + \sum_{k = 0}^{+\infty} \frac{(-1)^k}{k - p + 1}$$

$$= \frac{1}{p} + \sum_{k=1}^{+\infty} (-1)^k \left(\frac{1}{k+p} + \frac{1}{p-k} \right) = \frac{1}{p} + \sum_{k=1}^{+\infty} (-1)^k \frac{2p}{p^2 - k^2}$$

由于 $\cos px$ 的 Fourier 级数 $\cos px = \frac{\sin p\pi}{\pi} \left[\frac{1}{p} + \sum_{k=1}^{+\infty} (-1)^k \frac{2p}{p^2 - k^2} \cos kx \right]$ 在 $|x| \le \pi$ 处处收敛, 令 x = 0 得 $\operatorname{Beta}(p, 1 - p) = \frac{1}{p} + \sum_{k=1}^{+\infty} (-1)^k \frac{2p}{p^2 - k^2} = \frac{\pi}{\sin p\pi}$.

先求
$$I_1$$
. $I_1 = \int_0^{+\infty} \frac{x^{\alpha}}{1+x^{\beta}} dx \stackrel{t=\frac{1}{1+x^{\beta}}}{=} \frac{1}{\beta} \int_0^1 t^{-\frac{\alpha+1}{\beta}} (1-t)^{\frac{\alpha+1}{\beta}-1} dt = \frac{1}{\beta} \operatorname{Beta}(1-\frac{\alpha+1}{\beta},\frac{\alpha+1}{\beta}) = \frac{1}{\beta} \frac{\pi}{\sin\frac{\alpha+1}{\beta}\pi}.$

再求 I_2 . 令 $p = \frac{x}{\pi}, 0 < x < \pi$,得到 $\frac{\pi}{\sin x} = \frac{\pi}{x} + \sum_{n=1}^{+\infty} (-1)^n \frac{2x\pi}{x^2 - n^2\pi^2}$,即 $1 = \frac{\sin x}{x} + \sum_{n=1}^{+\infty} (-1)^n \frac{2x \sin x}{x^2 - n^2\pi^2}$. 两边从 0 到 π 积分有 $\pi = \int_0^\pi \frac{\sin x}{x} dx + \sum_{n=1}^{+\infty} (-1)^n \int_0^\pi \frac{2x \sin x}{x^2 - n^2\pi^2} dx$. 从而

$$I_{2} = \int_{0}^{+\infty} \frac{\sin x}{x} dx = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \frac{1}{2} \sum_{n=0}^{+\infty} \left[\int_{n\pi}^{(n+1)\pi} \frac{\sin x}{x} dx + \int_{-(n+1)\pi}^{-n\pi} \frac{\sin x}{x} dx \right]$$

$$= \frac{1}{2} \sum_{n=0}^{+\infty} \left[\int_{0}^{\pi} \frac{\sin(t+n\pi)}{t+n\pi} dt + \int_{0}^{\pi} \frac{\sin[t-(n+1)\pi]}{t-(n+1)\pi} dt \right] = \frac{1}{2} \left[\int_{0}^{\pi} \frac{\sin t}{t} dt + \sum_{n=1}^{+\infty} (-1)^{n} \int_{0}^{\pi} \frac{2t \sin t}{t^{2} - n^{2}\pi^{2}} dt \right] = \frac{\pi}{2}$$

15 致谢

感谢北京大学数学科学学院的王冠香教授和刘培东教授, 他们教会了笔者数学分析的基本知识, 他们的课件和讲义也成为了笔者的重要参考. 感谢选修 2024 春数学分析 II 习题课 3 班的全体同学, 他们提供了很多有意思的做法和反馈.