Listing of the Claims

- 1. (Original) A gradient coil system for magnetic resonance imaging systems, comprising at least two X primary coil-like elements, at least two Y primary coil-like elements and one Z primary coil-like element providing a modular gradient coil system, wherein the at least two X primary coil-like elements have mutually different linearity volumes by themselves or in combination with each other, the at least two Y primary coil-like elements have mutually different linearity volumes by themselves or in combination with each other, and the one Z primary coil-like element is placed between the X primary coil-like elements and the Y primary coil-like elements.
- 2. (Currently Amended) A gradient coil system according to claim 1, characterized in that wherein the one Z primary coil-like element is placed between the X primary coil-like elements and the Y primary coil-like elements in such a way that at both sides of the Z primary coil-like element there is arranged at least one X primary coil-like element and at least one Y primary coil-like element.
- 3. (Currently Amended) A gradient coil system according to claim 2, characterized in that wherein the one Z primary coil-like element (Z_{PC}) is placed between the two X primary coil-like elements and the two Y primary coil-like elements in such a way that at one side of the Z primary coil-like element (Z_{PC}) there is arranged a first X primary coil-like element (X_{PC}) and a first Y primary coil-like element (X_{PC}), and that at the other side of the Z primary coil-like element (X_{PC}) there is arranged a second X primary coil-like element (X_{PC}) and a second Y primary coil-like element (X_{PC}).
- 4. (Currently Amended) A gradient coil system according to claim 1, characterized by wherein at least two X shield coil-like elements, at least two Y shield coil-like elements and one Z shield coil-like element, wherein the one Z shield coil-like element is placed between the X shield coil-like elements and the Y shield coil-like elements.

- 5. (Currently Amended) A gradient coil system according to claim 4, characterized in that wherein the one Z shield coil-like element is placed between the X shield coil-like elements and the Y shield coil-like elements in such a way that at both sides of the Z shield coil-like element there is arranged at least one X shield coil-like element and at least one Y shield coil-like element.
- 6. (Currently Amended) A gradient coil system according to claim 5, characterized in that wherein the one Z shield coil-like element (\mathbb{Z}_{SC}) is placed between the two X shield coil-like elements and the two Y shield coil-like elements in such a way that at one side of the Z shield coil-like element (\mathbb{Z}_{SC}) there is arranged a first X shield coil-like element (\mathbb{Z}_{SC}) and a first Y shield coil-like element (\mathbb{Z}_{SC}), and at the other side of the Z shield coil-like element (\mathbb{Z}_{SC}) there is arranged a second X shield coil-like element (\mathbb{Z}_{SC}) and a second Y shield coil-like element (\mathbb{Z}_{SC}).
- 7. (Currently Amended) A gradient coil system according to claim 1, characterized in that wherein the one Z primary coil-like element (\mathbb{Z}_{PC}) is made from hollow conductors, and that the one Z primary coil-like element (\mathbb{Z}_{PC}) is directly cooled by a cooling fluid flowing through said hollow conductors.
- 8. (Currently Amended) A gradient coil system according to claim 7, characterized in that wherein the two X primary coil-like elements $(X1_{PC}, X2_{PC})$ and the two Y primary coil-like elements $(Y1_{PC}, Y2_{PC})$ positioned at both sides of the one Z primary coil-like element (Z_{PC}) are indirectly cooled by said directly cooled Z primary coil-like element (Z_{PC}) .
- 9. (Currently Amended) A gradient coil system according to claim 4, characterized in that wherein the one Z shield coil-like element (Z_{SC}) is made from hollow conductors, and that the one Z shield coil-like element (Z_{SC}) is directly cooled by a cooling fluid flowing through said hollow conductors.

- 10. (Currently Amended) A gradient coil system according to claim 9, characterized in that wherein the two X shield coil-like elements $(X1_{SC}, X2_{SC})$ and the two Y shield coil-like elements $(Y1_{SC}, Y2_{SC})$ positioned around the one Z shield coil-like element (Z_{SC}) are indirectly cooled by the directly cooled Z shield coil-like element (Z_{SC}) .
- 11. (Currently Amended) A gradient coil system according to claim 4, characterized in that wherein the two X primary coil-like elements (X1_{PC}, X2_{PC}), the two Y primary coil-like elements (Y1_{PC}, Y2_{PC}) and the one Z primary coil-like element (Z_{PC}) provide an inner coil arrangement, that the two X shield coil-like elements (X1_{SC}, X2_{SC}), the two Y shield coil-like elements (Y1_{SC}, Y2_{SC}) and the one Z shield coil-like element (Z_{SC}) provide an outer coil arrangement, and that a layer (17) comprising epoxy with filler material and/or a GRP tube layer (18) are positioned between the inner coil arrangement and the outer coil arrangement.
- 12. (Currently Amended) A gradient coil system according to claim 11, eharacterized in thatwherein the layer (17)-is positioned adjacent the inner coil arrangement, and that the GRP tube layer (18)-is positioned adjacent the outer coil arrangement.
- 13. (Currently Amended) A gradient coil system according to claims 3, 6 and 11, eharacterized in that wherein the second X primary coil-like element $(X2_{PC})$ and the second Y primary coil-like element $(Y2_{PC})$ are positioned between the one Z primary coil-like element $(X2_{PC})$ and the epoxy or glass layer, and that the second X shield coil-like element $(X2_{PC})$ and the second Y shield coil-like element $(Y2_{PC})$ are positioned between the one Z shield coil-like element $(Z2_{PC})$ and the GRP tube.
- 14. (Currently Amended) A magnetic resonance imaging system, comprising a main magnet system, a gradient coil system, a RF system and a signal processing system, characterized in that wherein the gradient coil system is a gradient coil system according to any one of the preceding claims 1-to 13.