

A-

Α-

Webaula 2

Linguagens Livres de Contexto

GLC sem regras simples

Se uma linguagem L é gerada por uma gramática livre de contexto (GLC) G, dizemos que L é uma linguagem livre de contexto (LLC).

Um exemplo clássico de LLC é a linguagem sobre o alfabeto $\Sigma = \{a,b\}$, definida como $L_R = \{w \mid w^R = w\}$, onde w^R significa a cadeia revertida (de trás para a frente). L_R é uma LLC porque é gerada pela GLC: $S \to aSa \mid bSb \mid a \mid b \mid \epsilon$.

Outro exemplo de LLC é a linguagem $\overline{L_R}=\left\{w\mid w^R
eq w
ight\}$, complemento da linguagem L_R . O leitor deve tentar construir uma GLC que gere L_R antes de ler a solução a seguir, pois se trata de um exercício interessante.

Apresentamos agora a GLC que gera a linguagem: L_R .

$$S
ightarrow aSa\mid bSb\mid aAb\mid bAa \ A
ightarrow aAa\mid bAb\mid aAb\mid bAa\mid a\mid b\mid \epsilon$$

Para entender o funcionamento dessa gramática, observe que toda a forma sentencial (cadeia com terminais e variáveis) gerada possui exatamente uma variável: \boldsymbol{A} ou \boldsymbol{S} .

Além disso, uma **derivação** a partir de S apresentará, até determinada regra, apenas S como variável na forma sentencial, mas depois da aplicação de uma das regras $S \to aAb$ ou $S \to bAa$, as formas sentenciais terão apenas A como variável.

Α-

Dado o alfabeto $oldsymbol{\varSigma} = \{a,b\}$, considere a linguagem sobre $oldsymbol{\varSigma}$ definida como

$$L_1 = ig\{ a^n b^{2n} \mid n \geq 1 ig\}$$
. Podemos dizer que L_1 é uma LLC porque é gerada pela GLC abaixo:

Por exemplo, para gerar *aabbbb*, podemos fazê-lo através da derivação:

$$S\Rightarrow aSbb\Rightarrow aabbbb$$

Α-

A partir da definição de LLC, podemos deduzir que as LLC são fechadas em relação à união. Isso significa que dadas duas LLC, L_1 e L_2 , a linguagem L_1 U L_2 sempre é livre de contexto. Isso porque se L_1 é gerada por uma GLC G1 com símbolo inicial S1 e L2 é gerada por uma GLC G2 com símbolo inicial S2.

Podemos criar um novo símbolo inicial, S, acrescentar as regras $S o S_1 \mid S_2$ à união das regras das duas gramáticas e obter assim uma GLC G3 que gera $L_1 \cup L_2$.

Quando essa construção é realizada, é preciso ter cuidado para que G1 e G2 não tenham variáveis com o mesmo nome. Entretanto, isso não é problema, porque podemos renomeá-las quando necessário.

Você já conhece o Saber?

Aqui você tem na palma da sua mão a biblioteca digital para sua formação profissional.

Estude no celular, tablet ou PC em qualquer hora e lugar sem pagar mais nada por isso.

Mais de 475 livros com interatividade, vídeos, animações e jogos para você.

Android: https://goo.gl/yAL2Mv

iPhone e iPad - IOS: https://goo.gl/OFWqcq

A-

Bons estudos!

