# Shortest Paths among Obstacles in 2D(problem 21)

#### Shuvra Kanti Nath

Parasol Lab, Texas A&M University

http://maven.smith.edu/~orourke/TOPP/P21.html#Problem.21



### Problem description



Can shortest paths among h obstacles in the plane, with a total of n vertices, be found in optimal  $O(n + h \log h)$  time using O(n) space?



## Proof of lower bound $\Omega(n+hlogh)$ (Reduction from sorting)



- Sorting to shortest path reduction example:
- Problem: Sort the numbers 5, 2, 1, 4.



Point x ->triangle( (2x+1,c) (2x+1,-c) (2x+2,0) Here c=5) Source s(0,0) Target t(2x<sub>max</sub>+3,0) c is arbitrary +ve number

- Mapping from sorting to shortest path problem takes O(h) time for h points
- Shortest path calculation from s to t O(?) time
- Transform back from shortest path to sorted points O(h) time.
- Lower bound of sorting is O(hlogh)
- Reading the polygon co-ordinates take O(n). So, lower bound is  $\Omega(n + hlogh)$

### **Application**



- Robotics
- Geographic Information Systems
- Shipping/distribution problem
- VLSI design/wire routing
- Military mission planning
- Regional planning
- Game development

## Characteristics of a shortest path



• **Theorem:** Any shortest path between *s* and *t* among a set *S* of disjoint polygonal obstacles is a polygonal path whose inner vertices are vertices of *S*.



#### Visibility Graph



- Visibility: Two vertices v and w are mutually visible if <u>vw</u> does not intersect the interior of any obstacle; segment <u>vw</u> is a visibility edge.
- Visibility Graph V(G): It contains all the nodes of the graph G and all the edges which are visible
- Edges: O(n²) edges



- Naïve computation: O(n³)
- Rotational plane sweep: O(n²logn)
- Output sensitive algorithm :O(E + nlogn) (E is number of edges in graph)

### Shortest path from visibility graph



- 1. Construct visibility graph
- 2. Shortest path is found by running Dijkstra's shortest path algorithm on the resulting graph
- Dijkstra's algorithm: O(E+nlogn)
- Total running time: O(n²logn) and O(n²) space ->large
- Improved General Approach:
  - 1. Contraction of the region/graph.
  - 2. Visibility graph is computed from the contracted region/graph.

#### Related work



- S. Kapoor, S. N. Maheshwari, and Joseph S. B. Mitchell, 1997
- Approach: Contraction of region by building hourglasses and computing visibility graph from that.
- Running time: O(n+h²logn)
- Space: O(n)





- Running time: Computation of VG'(Q') takes O(n+h<sup>2</sup>logn) time.
- Triangulation; O(n+hlog<sup>1+ε</sup>h) time
- Dijsktra's algorithm: O(hlogh)

 Note: One convex polygon has O(h) tangent segment. Any tangent segment can be computed in O(logn) time. There are O(h) polygons. So, running time is O(n+h²logn).



- John Hershberger and Subhash Suri, 1999
- Approach: Contraction of region by quad-tree style subdivision of the region and wavefront propagation on the contracted region.
- Running time: O(nlogn). Building subdivision considering vertices of obstacles. Inserting obstacle edges into cells. Subdivision computation takes O(nlogn) time.
- Space: O(nlogn)

#### **Quadtree/Octree Data Structures**





- α Conforming subdivision:
- 1) Each point of P is in separate cell
- 2) O(1) cells within distance of  $\alpha |e|$  of every subdivision edge e. So, there may be non-obstacle edges(transparent edge) and obstacle edge(opaque edge).
- Well-covering property of internal edges(transparent):
  - (W1) There exists a set of cells  $C(e) \subseteq S$  such that e lies in the interior of their union. The union is denoted  $U(e) = \{c \mid c \in C(e)\}.$
  - (W2) The total complexity of all the cells in C(e) is  $O(\alpha)$ .
  - (W3) If f is an edge on the boundary of the union U(e), then the Euclidean distance between e and f is at least  $\alpha \cdot \max(|e|, |f|)$ .



Fig. . Part of a 1-conforming subdivision of free space. The shaded region is the well-covering region  $\mathcal{U}(e).$ 



- Construction of subdivision:
- 1. Consider only the vertices of obstacles
- 2. Insert the obstacle edges
- Subdivision algorithm takes O(nlogn) time.
- Shortest path from conforming subdivision:
- Propagate wavefronts through the cells of conforming subdivision and it can only go through transparent edges.



Figure : A shortest path map with respect to source point s within a polygonal domain with h=3. The heavy dashed path indicates the shortest s-t path, which reaches t via the root r of its cell.



- Danny Z. Chen, Haitao Wang, March 2011(curved obstacle)
- Approach: Contraction of graph into hourglasses and use "Good pseudo triangulation"
- Running time:O(n+k+hlogh) (k is number of free common tangents). Relevant visibility graph computation O(n + k+hlogh)
- Space: O(n)



Figure : Illustrating a bounded degree decomposition of F Figure : Illustrating an open hourglass (left) and (with dashed segments) and the corridors (with red solid arcs). There are two junction regions indicated by large (red) points the apices x and y of the two funnels. The dashed inside them, connected by three solid (red) arcs. Removal of these two junction regions results in three corridors.



a closed hourglass (right) with a corridor path linking segments are diagonals. The paths  $\pi(a,b)$  and  $\pi(c,d)$ are shown with thick solid curves.



Figure : A splinegon (solid curves) defined on a polygon (red or dashed segments).

#### Parasol

Step 2: Computation of relevant visibility graph by flipping edge of good psuedo triangulation. O(n+k+hlogh)



Figure: The relevant visibility graph of three convex objects.

Compute good psuedo triangulation

Psuedo triangulation: Sub-division of free space by maximum number of bi-tangents(common tangent of two obstacles)

Good psuedo triangulation(T): Triangulation for which there is a way to assign every bi-tangent a direction such that a partial order on the bi-tangents has properties: 1) Partial order corresponds to the point-slope order on  $B(\sigma(T))$  with respect to  $b_T$  2) Direction of bi-tangents is compatible with both of its end-points, 3) For any bi-tangent bsB -B(T), all bi-tangents in B(T) intersecting b crosses the directed b from left to right.

B(T) is set of all free bi-tangents of T.  $\sigma(T)$  is boundary of T.  $b_T$  has min slope.



- Starts with 1 good psuedo triangulation( construction takes O(n+hlogh) time
- Now flip minimum bi-tangent(smallest slope) at each iteration( k times)



Figure : A flip operation on a free bi- Figure : The common tangent b: (a) The dashed bitangent is b tangent line of two pseudobefore the flip; (b) the dashed bitangent triangles. is  $\varphi(b)$  after the flip.

- Flipping takes O(n+k) time
- So total running time of the algorithm is  $O(n + k + h \log h)$

## Summary



S. Kapoor, S. N. Maheshwari, and Joseph S. B. Mitchell, 1997

Running time: O(n+h²logn)

Space: O(n)

• John Hershberger and Subhash Suri, 1999

Running time: O(nogn)

Space: O(nogn)

• Danny Z. Chen, Haitao Wang, March 2011(curved obstacle)

Running time: O(n+k+hlogh)

Space: O(n)

Achievement of optimal  $O(n + h \log h)$  time using O(n) space still remains an open problem.