5.14 Huffman code. Find the (a) binary and (b) ternary Huffman codes for the random variable X with probabilities

$$p = \left(\frac{1}{21}, \frac{2}{21}, \frac{3}{21}, \frac{4}{21}, \frac{5}{21}, \frac{6}{21}\right).$$

- (c) Calculate $L = \sum p_i l_i$ in each case.
- **5.15** Huffman codes
 - (a) Construct a binary Huffman code for the following distribution on five symbols: $\mathbf{p} = (0.3, 0.3, 0.2, 0.1, 0.1)$. What is the average length of this code?
 - (b) Construct a probability distribution \mathbf{p}' on five symbols for which the code that you constructed in part (a) has an average length (under \mathbf{p}') equal to its entropy $H(\mathbf{p}')$.
- **5.16** Huffman codes. Consider a random variable X that takes six values $\{A, B, C, D, E, F\}$ with probabilities 0.5, 0.25, 0.1, 0.05, 0.05, and 0.05, respectively.
 - (a) Construct a binary Huffman code for this random variable. What is its average length?
 - **(b)** Construct a quaternary Huffman code for this random variable [i.e., a code over an alphabet of four symbols (call them *a*, *b*, *c* and *d*)]. What is the average length of this code?
 - (c) One way to construct a binary code for the random variable is to start with a quaternary code and convert the symbols into binary using the mapping $a \to 00$, $b \to 01$, $c \to 10$, and $d \to 11$. What is the average length of the binary code for the random variable above constructed by this process?
 - (d) For any random variable X, let L_H be the average length of the binary Huffman code for the random variable, and let L_{QB} be the average length code constructed by first building a quaternary Huffman code and converting it to binary. Show that

$$L_H \le L_{OB} < L_H + 2. \tag{5.146}$$

- (e) The lower bound in the example is tight. Give an example where the code constructed by converting an optimal quaternary code is also the optimal binary code.
- (f) The upper bound (i.e., $L_{QB} < L_H + 2$) is not tight. In fact, a better bound is $L_{QB} \le L_H + 1$. Prove this bound, and provide an example where this bound is tight.