

Attentive Group Recommendation

Da Cao¹, Xiangnan He², Lianhai Miao¹, Yahui An³, Chao Yang¹, Richang Hong⁴

July 11, 2018 @ SIGIR 2018

1 Hunan University
 2 National University of Singapore
 3 University of Electronic Science and Technology of China
 4 Hefei University of Technology

Examples:

- A group of travelers work together to plan a trip on *Mafengwo*.
- A group of teenagers organize a social party on Meetup.
- A group of researchers discuss a paper on *Mendeley*.

Limitations:

- Statistic aggregation strategies, such as average, least misery, maximum satisfaction, expertise, and so on.
- Mainly optimize group-item interactions, ignore significant useritem interactions.

Group Recommendation

Deep Learning

Related Work

Group Recommendation

- Memory-based (e.g., preference aggregation, average, least misery, maximum satisfaction, expertise, and so on)
- Model-based (e.g., COM [SIGKDD 2014], DLGR [AAAI 2014])

Deep Learning-Based Recommendation

- Deep neural network (NCF [WWW 2017], NFM [SIGIR 2017])
- Attention mechanism (ACF [SIGIR 2017], AFM [IJCAI 2017])

Problem formulation

- Group-item interactions
- User-item interactions
- Group-user interactions

Proposed Methods

- Group representation learning which represents a group based on its members aggregation and its general preference
- Interaction learning with NCF which recommends items for both users and groups.

Group Representation Learning

Group representation:

$$\mathbf{g}_l(j) = \underbrace{\sum_{t \in \mathcal{K}_l} \alpha(j,t) \mathbf{u}_t}_{\text{term}} + \underbrace{\mathbf{q}_l}_{\text{group preference embedding}}$$
 user embedding aggregation

Attention network:

$$o(j,t) = \mathbf{h}^T \text{ReLU}(\mathbf{P}_v \mathbf{v}_j + \mathbf{P}_u \mathbf{u}_t + \mathbf{b}),$$

$$\alpha(j,t) = \text{softmax}(o(j,t)) = \frac{\exp o(j,t)}{\sum_{t' \in \mathcal{K}_l} \exp o(j,t')},$$

Interaction Learning with NCF

Pooling layer:

$$\mathbf{e}_{0} = \varphi_{pooling}(\mathbf{g}_{l}(j), \mathbf{v}_{j}) = \begin{bmatrix} \mathbf{g}_{l}(j) \odot \mathbf{v}_{j} \\ \mathbf{g}_{l}(j) \\ \mathbf{v}_{j} \end{bmatrix}$$

Shared hidden layer:

$$\begin{cases} \mathbf{e}_1 = \text{ReLU}(\mathbf{W}_1 \mathbf{e}_0 + \mathbf{b}_1) \\ \mathbf{e}_2 = \text{ReLU}(\mathbf{W}_2 \mathbf{e}_1 + \mathbf{b}_2) \\ \dots \\ \mathbf{e}_h = \text{ReLU}(\mathbf{W}_h \mathbf{e}_{h-1} + \mathbf{b}_h) \end{cases}$$

Prediction layer:

$$\begin{cases} \hat{r}_{ij} = \mathbf{w}^T \mathbf{e}_h, & \text{if } \mathbf{e}_0 = \varphi_{pooling}(\mathbf{u}_i, \mathbf{v}_j) \\ \hat{y}_{lj} = \mathbf{w}^T \mathbf{e}_h, & \text{if } \mathbf{e}_0 = \varphi_{pooling}(\mathbf{g}_l(j), \mathbf{v}_j) \end{cases}$$

Optimization:

$$\mathcal{L}_{user} = \sum_{(i,j,s) \in O} (r_{ijs} - \hat{r}_{ijs})^2 = \sum_{(i,j,s) \in O} (\hat{r}_{ij} - \hat{r}_{is} - 1)^2, \ \mathcal{L}_{group} = \sum_{(l,j,s) \in O'} (y_{ljs} - \hat{y}_{ljs})^2 = \sum_{(l,j,s) \in O'} (\hat{y}_{lj} - \hat{y}_{ls} - 1)^2,$$

Two real-world datasets from Mafengwo and CAMRa2011:

Statistics of the evaluation datasets

Dataset	User#	Group#		User-Item Interactions	Group-Item Interactions
Mafengwo	5,275	995	1,513	39,761	3,595
CAMRa2011	602	290	7,710	116,344	145,068

- Evaluation protocols:
 - Leave-one-out: randomly remove one interaction of each user for testing, and pair it with 100 negative samples.
 - Top-N evaluation
 - The ranked list are evaluated by Hit Ratio and NDCG.

Baselines

State-of-the-art:

- NCF [WWW 2017]
- Popularity [RecSys 2010]
- COM [SIGKDD 2014]
- GREE [variance]

Aggregation strategies:

- NCF+avg [average]
- NCF+lm [least misery]
- NCF+ms [maximum satisfaction]
- NCF+exp [expertise]

Overall Performance Comparison

	Overall Performance Comparison (Mafengwo)													
	K=5							K=10						
		User		Group			User			Group				
	HR	NDCG	p-value	HR	NDCG	p-value	HR	NDCG	p-value	HR	NDCG	p-value		
NCF	0.6363	0.5432	4.46e-06	0.4291	0.3405	7.18e-09	0.7417	0.5733	3.68e-05	0.6181	0.4020	3.95e-08		
Popularity	0.4047	0.2876	2.02e-12	0.3115	0.2169	1.55e-11	0.4971	0.3172	2.09e-12	0.4251	0.2537	1.13e-11		
COM	_	_	_	0.4420	0.3297	6.54e-09	_	_	_	0.5434	0.3727	1.36e-09		
GREE	0.6306	0.5395	7.87 <i>e</i> -07	0.4513	0.3577	1.20e-07	0.7206	0.5687	1.74e-06	0.6151	0.4111	3.25e-07		
NCF+avg	_	_	_	0.4774	0.3669	2.86e-06	_	_	_	0.6222	0.4140	8.84e-07		
NCF+lm	_	_	_	0.4744	0.3631	5.67e-07	_	_	_	0.6302	0.4152	1.45e-06		
NCF+ms	_	_	_	0.4700	0.3616	3.46e-07	_	_	_	0.6281	0.4114	3.57e-07		
NCF+exp	_	_	_	0.4724	0.3647	1.03e-06	_	_	_	0.6251	0.4015	3.61e-08		
AGREE	0.6383	0.5502	_	0.4814	0.3747	_	0.7491	0.5775	_	0.6400	0.4244	_		

- 1. AGREE achieves the best performance w.r.t. HR and NDCG when K=5 and K=10.
- 2. Neural network-based solutions (i.e., NCF, GREE, NCF+avg, NCF+lm, NCF+ms, NCF+exp, and AGREE) beat Popularity and COM.
- 3. There is no obvious winner among the score aggregation based solutions (i.e., NCF+avg, NCF+lm, NCF+ms, and NCF+exp).

Effect of Attention

- 1. AGREE beats GREE w.r.t. both metrics.
- 2. AGREE and GREE converge rather fast, reach their stable performance around the 20th iteration.

Effect of Attention

	Model	User #805	User #806	User #807	ŷ
Venue #30	GREE	0.333	0.333	0.333	0.260
venue #30	AGREE	0.286	0.302	0.412	0.572
Venue #32	GREE	0.333	0.333	0.333	0.096
venue #32	AGREE	0.222	0.583	0.195	0.370
Venue #106	GREE	0.333	0.333	0.333	0.192
venue #100	AGREE	0.364	0.287	0.347	0.318
Venue #65	GREE	0.333	0.333	0.333	0.132
venue #65	AGREE	0.408	0.311	0.281	0.091
Venue #121	GREE	0.333	0.333	0.333	0.132
venue #121	AGREE	0.335	0.374	0.291	0.053
Venue #123	GREE	0.333	0.333	0.333	0.109
venue #123	AGREE	0.288	0.411	0.301	0.063

- 1. The attention weights of group members vary significantly in AGREE.
- 2. For positive venues (#30, #32, #106), the prediction scores of AGREE are larger than that of GREE and are closer to the target value of 1. For negative venues (#65, #121, #123),

	Component Performance Comparison (Mafengwo)											
	K=5 K=10											
	User Group					User			Group			
	HR	NDCG	p-value	HR	NDCG	p-value	HR	NDCG	p-value	HR	NDCG	p-value
AGREE-U	0.6220	0.5364	2.80e-07	0.4141	0.3322	2.99e-09	0.7309	0.5716	9.02e-06	0.5709	0.3832	3.39e-09
AGREE-G	0.6363	0.5432	4.46e-06	0.4291	0.3405	7.18e-09	0.7417	0.5733	3.68e-05	0.6181	0.4020	3.95e-08
AGREE	0.6383	0.5502	_	0.4814	0.3747	_	0.7491	0.5775	_	0.6400	0.4244	_

	Component Performance Comparison (CAMRa2011)											
K=5 K=10												
	User Group					User Gr			Group	Group		
	HR	NDCG	p-value	HR	NDCG	p-value	HR	NDCG	p-value	HR	NDCG	p-value
AGREE-U	0.6043	0.3945	1.12e-07	0.5793	0.3832	4.47e-07	0.7601	0.4465	4.09e-08	0.7441	0.4376	6.36e-08
AGREE-G	0.6119	0.4018	1.03e-06	0.5803	0.3896	9.02e-06	0.7894	0.4535	1.89e-07	0.7593	0.4448	3.92e-07
AGREE	0.6223	0.4118	_	0.5883	0.3955	_	0.7967	0.4687	_	0.7807	0.4575	_

- 1. AGREE consistently and significantly outperforms AGREE-U and AGREE-G on both datasets w.r.t. both metrics.
- 2. AGREE-G shows better performance that AGREE-U on both datasets w.r.t. both metrics.

New-User Cold-Start (Mafengwo)										
		K=5 K=10								
	HR	HR NDCG p-value HR NDCG p-value								
Popularity	0.3115	0.2169	1.22 <i>e</i> -12	0.4251	0.2537	8.18 <i>e</i> -13				
NCF+group	0.6576	0.4687	2.20e-09	0.7716	0.5512	9.62e-09				
AGREE	0.6989	0.5146	_	0.8013	0.5830	-				

- 1. AGREE outperforms Popularity and NCF+group.
- 2. Personalized methods (AGREE and NCF+group) achieve preferable results as compared with non-personalized method (Popularity).

Conclusion and Future Work

- We addressed the group recommendation problem under the neural network structure:
 - How to obtain a semantic representation for a group.
 - How to reinforce the recommendation performance of both group-item and user-item.
- Experiments show promising results:
 - Overall performance comparison.
 - Effect of attention.
 - Importance of components.
 - New-user cold-start.
- Future work:
 - The utility of social network.
 - Online learning.

Thanks!

Codes: https://github.com/LianHaiMiao/Attentive-Group-Recommendation

