Vertex of the Quadratic

Given a quadratic $n(c)=a\,c^2+b\,c+c$ compute its value at $c_1=-\frac{b}{2\,a}$ namely $n(c_1)=c-\frac{b^2}{4\,a}$ Now compute the same quadratic at c_1+h , namely

Now compute the same quadratic at c_1+h , namely $n(c_1+h) = -\frac{b^2}{4a} + ah^2 + c$

Compute $\triangle = n(c_1+h) - n(c_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum!

Example 1.

 $n(c) = 4c^2 - 24c - 35$

