Simulation of Single Server Single Queue system

- 1. Develop the solution using C/C++/java/scilab/R/python
- 2. Calculate the six parameters given on slide-2
- 3. Compare the calculated values from table with the values obtained through direct formulae.
 - Suppose inter-arrival times are determined by rolling a die. If the numbers 6,1,4,3,6,5 are rolled this means that the customers arrive at times: 0,6,7,11,14,20,25
 - Suppose also that the service time for each customer is:
 2, 3, 1, 1, 1, 2
 - The following table represents the time spent by customers in the system

	Customer	Arrival time	Service begin	Service time	Service ends		Wait	ldle_server
•	1	0	0	2	2	•	0	6
	2	6	6	3	9	•	0	0
	3	7	9	1	10	•	2	0
	4	11	11	1	12	•	0	1
	5	14	14	1	15	•	0	2
	6	20	20	1	21	•	0	5
	7	25	25	2	27	•	0	4

The Customer 3 has to wait for 2 time units before being served since the server is still busy serving customer 2.

After serving customer 3(at time10) the server is idle for 1 time unit customer 4 arrives, which is then served immediately.

Exercise: Single queue, single server

In the example given on last slide, calculate

- 1. The average waiting time per customer:
 - 1. Total waiting time/number of customers
- 2. The probability of a customer to wait in the queue.:
 - 1. Total number of waiting customers/Total number of customers
- 3. The proportion of idle time for servers:
 - 1. idle time of server/total run time
- 4. The average service time:
 - 1. Total service time/number of customers
- 5. The average arrival time:
 - 1. Sum of interarrival times/ Total customers arrived
- 6. The average time that a customer has to spend in the system:
 - 1. Total time spent / number of customers

Equations of a single server Queue model

- If the items/customers arrive for service according to a Poisson distribution with mean $\underline{\lambda}$.
- Assume also FIFO, no balking and no limit on queue size.
- The service time is taken as following the negative exponential distribution, with mean service time μ .
- The system as per Kendal notional can be written as
 - $M/M/1/\infty$ where
 - Two M are two mean values of lamda and mu, 1 is one server and $\overline{\infty}$, is the length of the waiting queue/buffer length.

Average number in system,

$$\overline{S} = \frac{\lambda}{\mu - \lambda}$$

Average number in queue,

$$\overline{q} = \overline{S} - rac{\lambda}{\mu} = rac{\lambda^2}{\mu(\mu - \lambda)}$$

Average queueing,

$$\overline{W} = \overline{S} imes rac{1}{\mu} = rac{\lambda}{\mu(\mu - \lambda)}$$

Average time in system,

$$\overline{t} = \overline{W} + \frac{1}{\mu} = \frac{1}{\mu - \lambda}$$

Probability of no customer in system,

$$P(0) = 1 - \frac{\lambda}{\mu}$$

(it is required that $\lambda/\mu < 1$)

Average number in the queue when it is not empty,

$$\overline{q} = rac{\mu}{\mu - \lambda}$$