Comparison of Introductory Zero-Knowledge Proof Examples

By Navid Roux

, 2020-06-10.

Latest version always at https://github.com/ComFreek/zero-knowledge-proofs-comparison-table. This work is licensed under a "CC BY-SA 4.0" license.

	Sudoku	3-COL	Hamiltonian Cycle	Any "hard" Graph Property	Discrete Log (variant) Let \mathbb{G} of order q and $y \in \mathbb{Z}_q$ be fixed.	Discrete Log (Schnorr variant) Let \mathbb{G} of order q and $y \in \mathbb{G}$ be fixed.
	Partial sudoku Ψ is solvable	Graph G is 3-colorable	Graph G is Hamiltonian ¹	Let $L \in NP$ be any graph-isomorphism-invariant graph property believed to be hard. ³	I know $x \in \mathbb{Z}_q$ such that $[x] = y$	I know $x \in \mathbb{Z}_q$ such that $[x] = y$
				Graph $G \in L$	[] A	[] 9
	Solution $\overline{\Psi}$	3-coloring w	Hamiltonian cycle w	Certificate w	x	x
Iteration						
1. Rerandomization by P of	Pick set isomorphism $i: \{1, \dots, 9\} \rightarrow \{1, \dots, 9\}$	Pick color permutation $i: \{1, 2, 3\} \rightarrow \{1, 2, 3\}$	Pick graph isomorphism $i: G \to G'$ (just relabel vertices)	Pick graph isomorphism $i: G \to G'$ (just relabel vertices)		
1. Problem Statement	1. $\Psi' := i[\Psi]$ is solvable	1/-(choose same graph G)	1. $G' := i[G]$ is Hamiltonian	$1. G' := i[G] \in L$	Pick $r \leftarrow \mathbb{Z}_q$ uniformly at random	Pick $r \leftarrow \mathbb{Z}_q$ uniformly at random
2. Solution	2. $\overline{\Psi'} := i[\overline{\Psi}]$ is solution to Ψ'	2. $w' := i[w]$ is alternative 3-coloring for G	2. $w' := i[w]$ is Hamiltonian cycle for G'^2	2. $w' := i[w]$ is certificate for G'		
2. Commitment by P			Send all of	Send all of		
	Send all of	Send all of	• G	• G	Send all of	
	• $\left(\operatorname{com}(\overline{\Psi'}_{j,k})\right)_{1 \leq j,k \leq 9}$	• G	• G'	• G'	• $\hat{g}:=[r]$	Send $[r]$
	• $com(\Psi')$	• $(\operatorname{com}(w'_v))_{v \in V(G)}$ – coloring of each vertex	• $com(i)$	• $com(i)$	• com(r)	Source [1]
		cach volver	• $com(w')$	• $com(w')$		
	Ask for one of					
3. Pose Challenge by V	• the nine permuted rows	Pick edge $(u,v) \leftarrow E(G)$ uniformly at random and ask for coloring of u and v	Ask for one of	Ask for one of	Ask for one of	Pick $c \leftarrow \mathbb{Z}_q$ uniformly at random. Ask for $cx + r$ and denote response by resp.
	• the nine permuted columns		• isomorphism $i: G \to G'$	• isomorphism $i: G \to G'$	• r	
	• the nine permuted squares		• Hamiltonian cycle w' in G'	• certificate w' for $G' \in L$	• x+r	
	• permuted statement				and denote response by resp.	
	In total, this gives $9 + 9 + 9 + 1 = 28$ challenge types					
4. Respond to challenge by P			canonical: respond exac	etly with what was asked		
5. Verify response by V	Check	Check that coloring of u and v are distinct	Check	Check	Check	
	• that no numbers occur twice in		• conditions on isomorphism,		• that indeed $\hat{g} = [\text{resp.}]$	
	row, column, or square,or that the permuted statement is in fact a permutation		• or check that cycle is indeed Hamiltonian	 conditions on isomorphism, or check that certificate is valid 		Check that [resp.] = $cy + [r]$
Completeness			Cinco atom 4 shows is cononical m	garang can convince with push of 1		
P can convince V in case P actually had a solution			Since step 4 above is canonical, pr	rovers can convince with prob. of 1		
Soundness						
P cannot convince V for statements not in the language. Shown are the success prob. of still trying to do so	$\left(\frac{27}{28}\right)^{\text{\#iter}}$	$\left(\frac{ E(G) -1}{ E(G) }\right)^{\text{\#iter}}$	$\left(\frac{1}{2}\right)^{\text{\#iter}}$	$\left(\frac{1}{2}\right)^{\text{\#iter}}$	-/-	-/-
Soundness of Knowledg	e e					
P cannot convince V without having a witness. Shown are the success prob. of still trying to do so	-/-	-/-	-/-	-/-	$\left(\frac{1}{2}\right)^{\text{\#iter}}$	$\left(\frac{1}{2}\right)^{\text{\#iter}}$
Zero Knowledge V doesn't learn anything about the witness	In each round, V learns $either$ a Sudoku "building block" (row, column, square) of the permuted solution or the permuted solution statement. The second case is obviously useless. In the first case, V only learns what the round's permutation i does on the numbers that the original puzzle Ψ had already prefilled in the corresponding row, column, or square. In particular, nothing is learned about the solution entries, i.e. $\overline{\Psi'} \setminus \Psi'$, due to the Sudoku property of every number (mapping) occurring exactly once in such a building block.	In each round, V just learns the round-dependent colorings of two nodes: w'_u and w'_v . This is useless information as such and can furthermore – due to the rerandomization – not be correlated with colorings learnt in other rounds. Note that if V asked instead for colorings of three vertices, then the learned colorings could very well possess more information content. Namely, it isn't granted anymore that all three vertices must have pairwise distinct colors attached to them.	In each round, V learns $either$ a useless isomorphism or a Hamiltonian cycle in $G' \cong G$. Since the graph isomorphism problem is believed to be hard, learning about such a cycle in G' without learning the isomorphism is useless as well.	Same argument as in the cell to the left.	In each round, V learns $either$ a useless random r or $x+r$. In the latter case, however, since $r \sim \mathcal{U}(\mathbb{Z}_q)$, we also have $(x+r) \sim \mathcal{U}(\mathbb{Z}_q)^4$	In each round, V only learns $[r]$ and $cx + r$ for a c chosen by them. Due to DLOG assumed to be hard in \mathbb{G} , in the eyes of V we have $r \sim \mathcal{U}(\mathbb{Z}_q)$ and hence $(cx + r) \sim \mathcal{U}(\mathbb{Z}_q)^4$.

- 1 This means it contains a so-called Hamiltonian cycle that is a path visiting every node exactly once. The problem of finding such a cycle is NP-complete.
- 2 Here, v is effectively a sequence of edges, on which the isomorphism is applied elementwise.
- 3 Take for example HAMILTONIAN, 3-COL, or CLIQUE. From $L \in \mathsf{NP}$ it follows that for every $G \in L$ there is a certificate w for membership of length poly(|G|) that can be verified in poly(|G|) time.
- By graph-isomorphism invariance we demand that for $G \cong G'$ witnessed by an isomorphim $i: G \to G'$, certificates w for $G \in L$ can be transformed to certificates w' for $G' \in L$. We denote the latter by i[w]. 4 This is a simple lemma holding for arbitrary groups. The security of the OTP is based on this,

Useful Links

• Sudoku (slightly different challenges are given, though)

usually phrased in the language of the group $(\{0,1\}^n, \oplus)$.

- https://manishearth.github.io/blog/2016/08/10/interactive-sudoku-zero-knowledge-proof/
- https://manishearth.github.io/sudoku-zkp/zkp.html
- 3-COL: [GMW91]
- Hamiltonian Cycle: [Wik20b], originally due to [Blu86]
- Any "hard" Graph Property: sketched on my own; [Blu86] describes this, too
- Discrete Log (variant): [Wik20a]
- Discrete Log (Schnott variant)
 - Lecture Notes by Prof. Schröder on "Privacy-Preserving Cryptocurrencies" (currently non-public; only accessible to students enrolled in their course)
 - [Sch90]

References

- Manuel Blum. "How to Prove a Theorem So No One Else Can Claim It". In: Proceedings of the International Congress of Mathematicians. Berkeley, California, USA: Almquist & Wiksell, 1986, pp. 1444-1451. URL: http://citeseerx.ist.psu.edu/viewdoc/download?
- doi=10.1.1.469.9048&rep=rep1&type=pdf. [GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. "Proofs That Yield Nothing but Their Validity or All Languages in NP Have Zero-Knowledge Proof Systems". In: J. ACM 38.3 (July 1991), pp. 690–728. ISSN: 0004-5411. DOI: 10.1145/116825.116852. URL: https://doi.org/10.1145/116825.116852.
- C. P. Schnorr. "Efficient Identification and Signatures for Smart Cards". In: Advances in Cryptology CRYPTO' 89 Proceedings. Ed. by Gilles Brassard. New York, NY: Springer New York, 1990, pp. 239–252. ISBN: 978-0-387-34805-6. [Sch 90]
- Wikipedia contributors. Zero-knowledge proofs (Discrete log of a given value) Wikipedia, The Free Encyclopedia. [Online; accessed 2020-05-21]. 2020. URL: https://en.wikipedia.org/w/index.php?title=Zero-knowledge_proof&oldid=957331895#Discrete_ [Wik20a] log_of_a_given_value.
- Wikipedia contributors. Zero-knowledge proofs (Hamiltonian cycle for a large graph)— Wikipedia, The Free Encyclopedia. [Online; accessed 2020-05-21]. 2020. URL: https://en.wikipedia.org/w/index.php?title=Zero-knowledge_proof&oldid=957331895# [Wik20b] Hamiltonian_cycle_for_a_large_graph.