

CSCE 633: Machine Learning

Lecture 7

- Perceptron
 - Representation
 - Learning
 - Examples
- Multilayer Perceptron
 - Representation
 - Learning: Backpropagation
 - Practical issues
 - Activation Function

- Perceptron
 - Representation
 - Training
 - Examples
- Multilayer Perceptron
 - Representation
 - Learning: Backpropagation
 - Practical issues
 - Activation Function

Perceptron: Basic processing unit

- Inputs $x_d \in \mathbb{R}, d = 1, \dots, D$
 - might come from the environment
 - might be the output of other perceptrons
- Associated with a connection weight $w_d \in \mathbb{R}, d = 1, ..., D$
- Output is some function of the linear combination of inputs

•
$$y = s\left(\sum_{j=1}^{D} w_d x_d + w_0\right) = s(\mathbf{w}^T \mathbf{x})$$

where $s(\alpha) = 1$, if $\alpha > 0$, $s(\alpha) = 0$, otherwise
e.g. sigmoid activation: $s(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$

• can be used for classification, i.e. choose C_1 , if $s(\alpha) > 0.5$

Perceptron: Basic processing unit

- Multiclass: K > 2 outputs
 - $y_k = s\left(\sum_{d=1}^D w_{kd}x_d + w_{k0}\right) = s(\mathbf{w_k}^T\mathbf{x})$ where w_{kj} is the weight from input x_j to output y_k e.g. $s(\mathbf{x}, \mathbf{w_1}, \dots, \mathbf{w_K}) = \frac{\exp(\mathbf{w_k}^T\mathbf{x})}{1 + \sum_{k=1}^K \exp(\mathbf{w_k}^T\mathbf{x})}$
 - 0/1 encoding for output vector
 - e.g. in a 4-class problem: if class=3, then y = [0, 0, 1, 0]

- Perceptron
 - Representation
 - Training
 - Examples
- Multilayer Perceptron
 - Representation
 - Learning: Backpropagation
 - Practical issues
 - Activation Function

Perceptron: Training

Online training

- Cost-efficient (computationally and memory-wise)
- Nature of data can change over time
- Error function expressed in terms of individual samples
- Weight update performed after each instance is seen

Perceptron: Training

Online training

- Evaluation: cross-entropy function for 1 instance (\mathbf{x}_n, y_n) $\mathcal{E}(\mathbf{w}) = -y_n \log \left[\sigma(\mathbf{w}^T \mathbf{x}_n) \right] - (1 - y_n) \log \left[1 - \sigma(\mathbf{w}^T \mathbf{x}_n) \right]$ $\mathcal{E}(\mathbf{w}_1, \dots, \mathbf{w}_K) = -\sum_{k=1}^K y_{nk} \log p(y_{nk} = 1 | \mathbf{w}_1, \dots \mathbf{w}_K)$
- Optimization: gradient descent $\frac{\vartheta \mathcal{E}(\mathbf{w})}{\vartheta w_d} = \left(\sigma(\mathbf{w}^T \mathbf{x_n}) y_n\right) x_{nd}$ $\frac{\vartheta \mathcal{E}(\mathbf{w})}{\vartheta w_{kd}} = \left(\sigma(\mathbf{w}^T \mathbf{x_n}) y_{nk}\right) x_{nd}$

- Perceptron
 - Representation
 - Training
 - Examples
- Multilayer Perceptron
 - Representation
 - Learning: Backpropagation
 - Practical issues
 - Activation Function

Approximating linear functions

Example: Boolean AND

x_1	x ₂	r
0	0	0
0	1	0
1	0	0
1	1	1

Example of a perceptron implementing AND

$$y = s(x_1 + x_2 - 1.5)$$

$$\mathbf{w} = [-1.5 \ 1 \ 1]^T$$

$$\mathbf{x} = [1 \ x_1 \ x_2]^T$$

The above weights were empirically selected, but we could have also learned them through gradient descent

Approximating linear functions

Example: Boolean XOR

$egin{array}{c c c} 0 & 0 & 0 \\ 0 & 1 & 1 \\ \hline \end{array}$	
- - -	
1 0 1	
$1 \mid 1 \mid 0 \mid$	

Not linearly separable

Need combination of more than one perceptrons \rightarrow multilayer perceptrons

- Perceptron
 - Representation
 - Learning
 - Examples
- Multilayer Perceptron
 - Representation
 - Learning: Backpropagation
 - Practical issues
 - Activation Function

Multilayer Perceptron

- Type of feedforward neural network
- Can model non-linear associations
- "Multi-level combination" of many perceptrons

Multilayer Perceptron: Representation

Terminology

 $W_{ij}^{(I)}$: connection between unit j in layer I to unit i in layer I+1

 $\alpha_i^{(I)}$: activation of unit *i* in layer *I*

 $b_i^{(l)}$: bias connected with unit i in layer l+1

Forward propagation: The process of propagating the input to the output through the activation of inputs and hidden units to each node

Multilayer Perceptron: Representation

Matrix notation

$$\mathbf{W}^{(1)} = \begin{bmatrix} W_{11}^{(1)} & W_{12}^{(1)} & W_{13}^{(1)} \\ W_{21}^{(1)} & W_{22}^{(1)} & W_{23}^{(1)} \\ W_{31}^{(1)} & W_{32}^{(1)} & W_{33}^{(1)} \end{bmatrix}, \ \mathbf{b}^{(1)} = [b_1^{(1)} \ b_2^{(1)} \ b_3^{(1)}], \ \text{etc.}$$

Multilayer Perceptron: Representation

Alternative architectures

2 hidden layers, multiple output units e.g. medical diagnosis: different outputs might indicate presence or absence of different diseases

Multilayer Perceptron

Non-linear feature learning

Multilayer Perceptron: Approximating non-linear functions

Example: Boolean XOR with multilayer perceptrons

<i>x</i> ₁	<i>x</i> ₂	z_1	<i>z</i> ₂	r
0	0	0	1	1
0	1	0	0	0
1	0	0	0	0
1	1	1	0	1

Multilayer Perceptron

Question: How many parameters does this network have to learn?

- A) 20
- B) 26
- C) 6
- D) 12

Multilayer Perceptron

Question: How many parameters does this network have to learn?

- A) 20
- B) 26
- C) 6
- D) 12

The correct answer is B

$$[3 \times 4] + [4 \times 2] = 20$$
 weights, $4 + 2 = 6$ biases

- Perceptron
 - Representation
 - Learning
 - Examples
- Multilayer Perceptron
 - Representation
 - Learning: Backpropagation
 - Practical issues
 - Activation Function

Multilayer Perceptron: Representation

- Input: $\mathbf{x} \in \mathbb{R}^D$
- Output:

$$y \in \{0,1\}$$
 or $y \in \{1,\ldots,K\}$ (classification) $y \in \mathbb{R}$ or $y \in \mathbb{R}^K$ (regression)

- Training data: $\mathcal{D}^{train} = \{(\mathbf{x_1}, y_1), \dots, (\mathbf{x_N}, y_N)\}$
- Model: h_{W,b}(x) represented through forward propagation (see previous slides)
- Model parameters: weights $\mathbf{W}^{(1)}, \dots, \mathbf{W}^{(L)}$ and biases $\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(L)}$

Multilayer Perceptron: Evaluation criterion

$$\begin{split} J(\mathbf{W}, \mathbf{b}, \mathcal{D}^{train}) &= \frac{1}{2} \|h_{\mathbf{W}, \mathbf{b}}(\mathbf{x}) - y\|_2^2 \text{ (regression)} \\ J(\mathbf{W}, \mathbf{b}, \mathcal{D}^{train}) &= y \log h_{\mathbf{W}, \mathbf{b}}(\mathbf{x}) + (1 - y) \log(1 - h_{\mathbf{W}, \mathbf{b}}(\mathbf{x})) \text{ (classification)} \end{split}$$

Multilayer Perceptron: Evaluation criterion

Regression

$$J(\mathbf{W}, \mathbf{b}) = \frac{1}{N} \sum_{n=1}^{M} \frac{1}{2} \|h_{\mathbf{W}, \mathbf{b}}(\mathbf{x}_{\mathbf{n}}) - y_n\|_2^2 + \frac{\lambda}{2} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (W_{ji}^{(l)})^2$$

 s_l : # nodes in l^{th} layer

Classification

$$J(\mathbf{W}, \mathbf{b}) = \frac{1}{N} \sum_{n=1}^{M} (y_n \log h_{\mathbf{W}, \mathbf{b}}(\mathbf{x}_n) + (1 - y_n) \log(1 - h_{\mathbf{W}, \mathbf{b}}(\mathbf{x}_n)))$$
$$+ \frac{\lambda}{2} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{i=1}^{s_{l+1}} (W_{ji}^{(l)})^2$$

We will perform gradient descent

Gradient descent for regression

$$J(\mathbf{W}, \mathbf{b}) = \frac{1}{N} \sum_{n=1}^{M} \frac{1}{2} \|h_{\mathbf{W}, \mathbf{b}}(\mathbf{x}_{\mathbf{n}}) - y_n\|_2^2 + \frac{\lambda}{2} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (W_{ji}^{(l)})^2$$

$$W_{ij}^{(I)} := W_{ij}^{(I)} - \alpha \frac{\vartheta J(\mathbf{W}, \mathbf{b})}{\vartheta W_{ij}^{(I)}}$$
$$b_i^{(I)} := b_i^{(I)} - \alpha \frac{\vartheta J(\mathbf{W}, \mathbf{b})}{\vartheta b_i^{(I)}}$$

Note: Initialize the parameters randomly → symmetry breaking

Use backpropagation to compute partial derivatives $\frac{\vartheta J(\mathbf{W},\mathbf{b})}{\vartheta W_{ij}^{(l)}}$ and $\frac{\vartheta J(\mathbf{W},\mathbf{b})}{\vartheta b_{i}^{(l)}}$

Intuition

- Given a training example $(\mathbf{x_n}, y_n)$, we run a "forward pass" to compute all the activations
- For each node i in layer I, we compute an error term $\delta_i^{(I)}$ that measures how much that node was "responsible" for any errors in the output
 - Output node: difference between activation and target value
 - Hidden nodes: weighted average of the error terms of the nodes from the previous layer (i.e. l+1)

Backpropagation Implementation

- For each node i in output layer L
 δ_i^(L) = (α_i^(L) y_n)f'(z_i^(L))
- For each node i in layer $l = L 1, L 2, \dots, 2$
 - Hidden nodes: $\delta_i^{(l)} = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)}\right) f'(z_i^{(l)})$
- Compute the desired partial derivatives as: $\frac{\vartheta J(\mathbf{W},\mathbf{b})}{\vartheta W_0^{(j)}} = \alpha_j^{(l)} \delta_i^{(l+1)} \frac{\vartheta J(\mathbf{W},\mathbf{b})}{\vartheta h^{(j)}} = \delta_i^{(l+1)}$
- Update the weights as: $W_{ij}^{(I)} := W_{ij}^{(I)} \alpha \frac{\vartheta J(\mathbf{W}, \mathbf{b})}{\vartheta W_{ij}^{(I)}}$ $b_{i}^{(I)} := b_{i}^{(I)} \alpha \frac{\vartheta J(\mathbf{W}, \mathbf{b})}{\vartheta b_{i}^{(I)}}$

[Detailed solution of example in Handouts]

Implementation

- Given a training example $(\mathbf{x_n}, y_n)$, we run a "forward pass" to compute all the activations
- For each node *i* in output layer *L*

•
$$\delta_i^{(L)} = (y_n - \alpha_i^{(L)})f'(z_i^{(L)})$$

• For each node i in layer $l = L - 1, L - 2, \dots, 2$

• Hidden nodes:
$$\delta_i^{(I)} = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(I)} \delta_j^{(I+1)}\right) f'(z_i^{(I)})$$

• Compute the desired partial derivatives as:

$$\frac{\partial J(\mathbf{W}, \mathbf{b})}{\partial W_{ij}^{(l)}} = \alpha_j^{(l)} \delta_i^{(l+1)}$$
$$\frac{\partial J(\mathbf{W}, \mathbf{b})}{\partial b_i^{(l)}} = \delta_i^{(l+1)}$$

- Perceptron
 - Representation
 - Learning
 - Examples
- Multilayer Perceptron
 - Representation
 - Learning: Backpropagation
 - Practical issues
 - Activation Function

Implementation

- The capacity of the network (i.e. the number of representable functions) increases as we increase the number of layers
- How to avoid overfittting?

How to avoid overfitting

- Limit # layers and #hidden units per layers
- Early stopping: start with small weights and stop learning early
- Weight decay: penalize large weights (regularization)
- Noise: add noise to the weights

The effects of regularization strength: Each neural network above has 20 hidden neurons, but changing the regularization strength makes its final decision regions smoother with a higher regularization. You can play with these examples in this ConNNetsJS demo.

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

How to avoid overfitting

- An alternative method that complements the above is dropout
- While training, dropout keeps a neuron active with some probability p (a hyperparameter), or sets it to zero otherwise

https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/

How to chose the number of layers and nodes

- No general rule of thumb, this depends on:
 - Amount of training data available
 - Complexity of the function that is trying to be learned
 - Number of input and output nodes
- If data is linearly separable, you don't need any hidden layers at all
- Start with one layer and hidden nodes proportional to input size
- Gradually increase

- Perceptron
 - Representation
 - Learning
 - Examples
- Multilayer Perceptron
 - Representation
 - Learning: Backpropagation
 - Activation Function

Transforms the activation level of a node (weighted sum of inputs) to an output signal

- Sigmoid: $\sigma(x) = \frac{1}{1+e^{-x}}$
- Hyperbolic tangent: $s(x) = \tanh(x) = 2\sigma(2x) 1$
- Rectified Linear Unit (ReLU): $f(x) = \max(0, x)$
- Leaky ReLU: $f(x) = (ax) \cdot \mathbb{I}(x < 0) + (x) \cdot \mathbb{I}(x \ge 0)$ (e.g. a = 0.01)

Sigmoid:
$$s(x) = \frac{1}{1+e^{-x}}$$

- Transforms a real-valued number between 0 and 1
- Large negative numbers become 0 (not firing at all)
- Large positive numbers become 1 (fully-saturated firing)
- Used historically because of its nice interpretation
- Saturates gradients: The gradient at either extremes (0 or 1) is almost zero, "killing" the signal will flow
- Non-zero centered output: Can be problematic during training, since it can bias outputs toward being always positive or always negative, causing unnecessary oscillations during the optimization

Hyperbolic tangent: $s(x) = \tanh(x) = 2\sigma(2x) - 1$

- Scaled version of sigmoid
- Transforms a real-valued number between -1 and 1
- Saturates gradients: Similar to sigmoid
- Output is zero-centered, avoiding some oscillation issues

Rectified Linear Unit (ReLU): f(x) = max(0, x)

- Activation simply thresholded at zero
- Very popular during the last years
- Accelerates convergence (e.g. a factor of 6, see bellow) compared to the sigmoid/tanh (due to its linear, non-saturating form)
- Cheap implementation by simply thresholding at zero
- Activation can "die": a large gradient flowing through a ReLU neuron could cause the weights to update in such a way that the neuron will never activate on any datapoint again, proper adjustment of learning rate can mitigate that

Leaky ReLU:
$$f(x) = (ax) \cdot \mathbb{I}(x < 0) + (x) \cdot \mathbb{I}(x \ge 0)$$

- Instead of the function being zero when x < 0, leaky ReLU will have a small negative slope (e.g. a = 0.01)
- Some successful results, but not always consistent

What have we learnt so far

- Perceptrons are the basic processing unit of neural networks
- Simulate the "neural connectivity"
- Implemented by the linear combination of input features followed by an activation function, e.g. sigmoid
- Online learning
 - updating weights based on one sample at a time
- Examples implementing boolean functions
 - XOR: non-linear \rightarrow impossible to implement with single perceptron

What have we learnt so far

- Multilayer perceptron is the basic feedforward neural network
- Hidden nodes simulate non-linear associations
- Backpropagation to find network weights
- Different activation functions
- Readings: Alpaydin 11.1-11.8.2