Правоъгълен триъгълник

Бележка:

Навсякъде в долните формули се използват следните означения: AB=c, AC=b, BC=a, \prec A= α , \prec B= β , \prec C= γ , m_a , m_b , m_c — медиани към съответните страни; l_a , l_b , l_c — ъглополовящи към съответните страни; h_a , h_b , h_c — височини към съответните страни; r - радиуса на вписаната окръжност; r — периметър, r — лице.

І. Теоретични бележки

♦ Aκο <A=30 0 , το

(1):
$$a = \frac{1}{2}c$$

и обратно, ако е изпълнено (1) следва, че $\angle A=30^{\circ}$.

◆ Ако СС₁ е медиана към хипотенузата с, то

(2):
$$CC_1 = \frac{1}{2}c$$

и обратно, ако е изпълнено (2) следва, че CC_1 е медиана към хипотенузата.

- ♦ Питагорова теорема: $a^2 + b^2 = c^2$.
- ♦ Определяне вида на триъгълник:
 - О Правоъгълен триъгълник Ако $a^2 + b^2 = c^2 \Leftrightarrow \gamma = 90^0$.
 - О Тъпоъгълен триъгълник Ако $a^2 + b^2 < c^2 \Leftrightarrow \gamma > 90^0$.
 - О Остроъгълен триъгълник Ако $a^2 + b^2 > c^2$ ⇔ $\gamma < 90^0$.
- ♦ Ако $CC_1 = h_c$ е височина, а $AC_1 = b_1$ и $BC_1 = a_1$ са проекциите съответно на катетите b и а върху хипотенузата с (Фиг. 1), то

(3):
$$a^2 = c.a_1$$
;

(4):
$$b^2 = c.b_1$$
;

(5):
$$h_c^2 = a_1.b_1$$
;

(6): h.c = a.b;

- (7): c = 2R.
- ♦ Допирателни до окръжност:

О Права АС е допирателна до окръжност тогава и само тогава, когато е перпендикулярна на радиуса г в общата точка на правата и окръжността (Фиг.2), т.е.

Ако AC – допирателна до к \Leftrightarrow AC \perp r, където r = OM.

О Допирателните от външна точка към окръжността са равни (Фиг. 2), т.е.

Ако AM и AP – допирателни \Rightarrow AM=AP.

• Окръжност вписана в правоъгълен триъ-

О Ако точките M и N са донирните точки на окръжността до правоъгълния ΔABC (Фиг.2), т. O – център на вписаната окръжност, а т. C – връх с правъгъл, то ONCM – квадрат, т.е. OM = ON = CM = CN = r.

о За г имаме изпълнено (Фиг.2)

(8):
$$r = p - c = \frac{a + b - c}{2}$$
.

♦ Тригонометрични функции (Фиг.1):

(9):
$$\sin \alpha = \frac{a}{c}$$
; (10): $\cos \alpha = \frac{b}{c}$; (11): $tg \alpha = \frac{a}{b}$; (12): $\cot \alpha = \frac{b}{a}$;

♦ Лице на правоъгълен триъгълник (Фиг. 1).

(13):
$$S = \frac{a.b}{2} = \frac{c.h_c}{2}$$
.

II. Основни типове задачи:

Зад. 1:В правоъгълен триъгълник (Фиг. 1) при дадени два от елементите $a, b, c, a_1, b_1, h_c, R, r$, намерете всички останали:

a)
$$a_1 = \sqrt{2}$$
, $b_1 = 2\sqrt{2}$;

6)
$$a = 1, b_1 = \frac{3}{2}$$
;

в)
$$c = 2$$
, $h_c = \frac{\sqrt{3}}{2}$, при $a < b$;

$$\Gamma$$
) $r = 2$, $R = 5$;

Решение:

a)
• Ot (5) \Rightarrow $h_c^2 = a_1.b_1 = \sqrt{2} .2 \sqrt{2} = 4 \Rightarrow h_c = 2;$

Da, B

Фиг.1

🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solema.hit.bg : E-mail: solema@gbg.bg

- От Питагорова теорема за $\triangle ADC \Rightarrow b^2 = b_1^2 + h_2^2 = (2\sqrt{2})^2 + 4 = 12 \Rightarrow b = 12$ $2\sqrt{3}$:
- От Питагорова теорема за $\triangle BDC \Rightarrow a^2 = a_1^2 + h_c^2 = (\sqrt{2})^2 + 4 = 8 \Rightarrow a = 2\sqrt{2}$
- $c = a_1 + b_1 = \sqrt{2} + 2\sqrt{2} = 3\sqrt{2}$;
- OT (7) \Rightarrow R = $\frac{c}{2} = \frac{3\sqrt{2}}{2}$;
- OT (8) \Rightarrow r = $\frac{a+b-c}{2} = \frac{\sqrt{2}+2\sqrt{3}-3\sqrt{2}}{2} = \sqrt{3}-\sqrt{2}$.
- б) Нека $a_1 = x$.
 - $c = b_1 + a_1 = \frac{3}{2} + x$
 - OT (3) $\Rightarrow a^2 = c.a_1 = \left(\frac{3}{2} + x\right)x \Rightarrow 1 = \left(\frac{3}{2} + x\right)x \Rightarrow 2x^2 + 3x 2 = 0; x_1 = \frac{1}{2}, x_2 = -2$ $< 0 \notin AM_x \Rightarrow a_1 = x_1 = \frac{1}{2};$
 - $c = a_1 + b_1 = \frac{1}{2} + \frac{3}{2} = 2$;
 - OT (5) \Rightarrow $h_c^2 = a_1.b_1 = \frac{1}{2}.\frac{3}{2} = \frac{3}{4} \Rightarrow h_c = \frac{\sqrt{3}}{2};$
 - От Питагорова теорема за $\triangle ABC \Rightarrow c^2 = a^2 + b^2 \Rightarrow 2^2 = 1^2 + b^2 \Rightarrow b = \sqrt{3}$;
 - OT (7) \Rightarrow R = $\frac{c}{2} = \frac{2}{2} = 1$;
- От (8) \Rightarrow $\mathbf{r} = \frac{a+b-c}{2} = \frac{1+\sqrt{3}+2}{2} = \frac{\sqrt{3}-1}{2}$ в) Нека $\mathbf{a}_1 = \mathbf{x}$, тогава $\mathbf{b}_1 = \mathbf{c} \mathbf{a}_1 = 2 \mathbf{x}$.
- - OT (5) \Rightarrow $h_c^2 = a_1.b_1 \Rightarrow \left(\frac{\sqrt{3}}{2}\right)^2 = (2-x)x \Rightarrow 4x^2 8x + 3 = 0, D = 4,$ $x_1 = \frac{1}{2}, x_2 = \frac{3}{2},$ т.е. $a_1 = \frac{1}{2}$ и $a_1 = \frac{3}{2}$. Тогава $b_1 = 2 - x = 2 - \frac{1}{2} = \frac{3}{2}$ и $b_1 = 2 - x = 2 - \frac{3}{2} = \frac{3}{2}$ и $b_2 = 2 - x = 2 - \frac{3}{2} = \frac{3}{2}$ и $b_3 = 2 - x = 2 - \frac{3}{2} = \frac{3}{2}$ и $b_4 = 2 - x = 2 - \frac{3}{2} = \frac{3}{2}$ и $b_4 = 2 - x = 2 - \frac{3}{2} = \frac{3}{2}$ и $b_4 = 2 - x = 2 - \frac{3}{2} = \frac{3}{2}$ и $b_4 = 2 - x = 2 - \frac{3}{2} = \frac{3}{2}$ и $b_4 = 2 - x = 2 - \frac{3}{2} = \frac{3}{2}$ и $b_4 = 2 - x = 2 - \frac{3}{2} = \frac{3}{2}$ и $b_5 = 2 - x = 2 - \frac{3}{2} = \frac{3}{2}$ и b_5
 - От Питагорова теорема за $\triangle ADC \Rightarrow b^2 = b_1^2 + b_2^2 = \left(\frac{3}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = 3 \Rightarrow b$

$$b^{2} = b_{1}^{2} + h_{c}^{2} = \left(\frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2} = 1 \Rightarrow b = 1;$$

• От Питагорова теорема за $\triangle BDC \Rightarrow a^2 = a_1^2 + h_c^2 = \left(\frac{3}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = 3 \Rightarrow a = \sqrt{3}$

$$\text{ W } \text{ a}^2 = \text{a}_1^2 + \text{h}_c^2 = \left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = 1 \Rightarrow a = 1;$$

- По условие $a < b \Rightarrow a = 1, b = \sqrt{3}, a_1 = \frac{1}{2}, b_1 = \frac{3}{2};$
- OT (8) \Rightarrow r = $\frac{a+b-c}{2} = \frac{1+\sqrt{3}-2}{2} = \frac{\sqrt{3}-1}{2}$.
- OT (7) \Rightarrow c = 2R = 2.5 = 10;
- OT (8) \Rightarrow $r = \frac{a+b-c}{2} \Rightarrow 2 = \frac{a+b-10}{2} \Rightarrow a+b=14 \Rightarrow (1)$: a = 14-b;
- От Питагорова теорема за $\triangle ABC \Rightarrow c^2 = a^2 + b^2 \Rightarrow a^2 + b^2 = 100$ и от (1) \Rightarrow $(14-b)^2 + b^2 = 100 \Rightarrow b^2 - 14b + 48 = 0, D = 1, b_1 = 6, b_2 = 8;$
- Тогава от (1) \Rightarrow $a_1 = 14 b_1 = 14 6 = 8$ и $a_2 = 14 8 = 6$:
- Страните са 6 ст, 8 ст и 10 ст;
- OT (6) \Rightarrow h_c .c = a.b \Rightarrow 10h_c = 6.8 \Rightarrow h_c = 4,8 cm;
- Ако a=6 cm, b=8 cm от Питагорова теорема за $\Delta ADC \Rightarrow b^2=b_1^2+h_2^2 \Rightarrow$ $8^2 = b_1^2 + 4.8^2 \Rightarrow b_1^2 = 40.96 \Rightarrow b_1 = 6.4 \text{ cm}$
- От Питагорова теорема за $\Delta BDC \Rightarrow a^2 = {a_1}^2 + {h_c}^2 \Rightarrow 6^2 = {a_1}^2 + 4.8^2 \Rightarrow {a_1}^2 = 12.96$ \Rightarrow a₁ = 3,6 cm;

Зад. 2: Даден е правоъгълен триъгълник. Попълнете таблицата:

a	b	c	h _c	cos α	tg α	cotg a	sin β	cos β	tg β	cotg β
		10			3					
					4					
4								$2\sqrt{13}$		
								13		

Решение:

Учебен център "СОЛЕМА"

обучение по математика, физика, български и английски език, компютър

адрес: гр.София, ж.к. Надежда, бл. 335 🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solema.hit.bg ; E-mail: solema@gbg.bg

а) От (11) \Rightarrow tg $\alpha = \frac{a}{b} \Rightarrow \frac{3}{4} = \frac{a}{b}$. Тогава a = 3x, b = 4x.

- От Питагорова теорема за $\triangle ABC \Rightarrow a^2 + b^2 = c^2 \Rightarrow (3x)^2 + (4x)^2 = 10^2 \Rightarrow x^2 = \frac{100}{25} \Rightarrow x = 2;$
- a = 3x = 3.2 = 6, b = 4x = 4.2 = 8;
- OT (6) \Rightarrow h_c.c = a.b \Rightarrow 10h_c = 6.8 \Rightarrow h_c = 4,8;
- $\cos \alpha = \frac{b}{c} = \frac{8}{10} = \frac{4}{5}$; $\cot g \alpha = \frac{b}{a} = \frac{8}{6} = \frac{4}{3}$;
- $\sin \beta = \frac{b}{c} = \frac{8}{10} = \frac{4}{5}$; $\cos \beta = \frac{a}{c} = \frac{6}{10} = \frac{3}{5}$; $tg\beta = \frac{b}{a} = \frac{8}{6} = \frac{4}{3}$; $\cot g\beta = \frac{a}{b} = \frac{6}{8} = \frac{3}{4}$.

6) OT (10) $\Rightarrow \cos \beta = \frac{a}{c} \Rightarrow \frac{2\sqrt{13}}{13} = \frac{4}{c} \Rightarrow c = 2\sqrt{13}$.

- От Питагорова теорема за $\triangle ABC \Rightarrow a^2 + b^2 = c^2 \Rightarrow 4^2 + b^2 = (2\sqrt{13})^2 \Rightarrow b^2 = 36$ $\Rightarrow b = 6$:
- Ot (6) \Rightarrow h_c.c = a.b \Rightarrow $2\sqrt{13}$ h_c = 6.4 \Rightarrow h_c = $\frac{12\sqrt{13}}{13}$;
- $\sin \alpha = \frac{a}{c} = \frac{4}{2\sqrt{13}} = \frac{2\sqrt{13}}{13}$; $\cos \alpha = \frac{b}{c} = \frac{6}{2\sqrt{13}} = \frac{3\sqrt{13}}{13}$; $tg\alpha = \frac{a}{b} = \frac{2}{3}$; $\cot g\alpha = \frac{b}{a} = \frac{3}{2}$
- $\sin \beta = \frac{b}{c} = \frac{6}{2\sqrt{13}} = \frac{3\sqrt{13}}{13}$; $tg\beta = \frac{b}{a} = \frac{6}{4} = \frac{3}{2}$; $\cot g\beta = \frac{a}{b} = \frac{2}{3}$.

Зад. 3: Ъглополовящата на остър ъгъл на правоъгълен триъгълник дели срещулежащия катет на части равни на 5 сm и 4 сm. Намерете:

- а) радиусите на описаната и вписаната окръжности;
- б) разстоянието между центровете на описаната и вписаната окръжности.

Решение: a) BC = a = 4 + 5 = 9 cm.

• AL – ъглополовяща $\Rightarrow \frac{BL}{CL} = \frac{AB}{AC} \Rightarrow \frac{AB}{AC} = \frac{5}{4} \Rightarrow$

AB = c = 5x, AC = b = 4x;

- От Питагорова теорема за $\triangle ABC \Rightarrow BC^2 + AC^2 = AB^2 \Rightarrow 9^2 + (4x)^2 = (5x)^2 \Rightarrow x^2 = 9 \Rightarrow x = 3;$
- AC = b = 4x = 12 cm, AB = c = 5x = 15 cm;
- OT (7) \Rightarrow R = $\frac{c}{2} = \frac{15}{2} = 7.5$ cm;

• OT (8)
$$\Rightarrow$$
 r = $\frac{9+12-15}{2}$ = 3 cm.

- б) Нека т. О център на описаната окръжност, а т. P център на вписаната окръжност, тогава търсеното разстояние е OP, но PD = PH = r = 3 cm, AO = R = 7.5 cm.
 - AH = AC CH = 12 = 3 = 9 cm:
 - т. D и т. H са допирните точки на окръжността съответно до страните AB и AC на триъгълника ⇒ AD = AH = 9 cm (от Теорема за допирателни до окръжност);
 - OD = AO AD = 9 7.5 = 1.5 cm:
 - От Питагорова теорема за $\Delta ODP \Rightarrow OP^2 = OD^2 + PD^2 = 1,5^2 + 3^2 = 1,125 \Rightarrow OP = 1,5\sqrt{5}$ cm.

Зад. 4: Хипотенузата AB на правоъгълния \triangle ABC се разделя от височината CD към нея на две части: AD = 16 cm и DB = 9 cm. Правата минаваща през върха В и средата M на CD пресича AC в точка E. Да се намери:

- а) катетите на ΔАВС;
- б) височината от върха С в ДЕВС;
- в) дължината на отсечката ВЕ.

Решение: а)

- OT (5) \Rightarrow CD² = AD.BD = 16.9 \Rightarrow CD = 12 cm;
- От Питагорова теорема за $\Delta DBC \Rightarrow BC^2 = BD^2 + CD^2 = 9^2 + 12^2 = 225 \Rightarrow BC = 5\sqrt{5}$ сm. От Питагорова теорема за $\Delta ADC \Rightarrow AC^2 = AD^2 + CD^2 = 16^2 + 12^2 = 400 \Rightarrow AC = 20$ cm.

• т. M – среда на CD \Rightarrow DM = CM = $\frac{1}{2}$ CD \Rightarrow

DM = CM = 6 cm;

- От Питагорова теорема за $\Delta DBM \Rightarrow BM^2 = DM^2 + BD^2 = 6^2 + 9^2 \Rightarrow BM = \sqrt{117} = 3\sqrt{13}$ cm;
- ΔНМС ~ ΔDMB (по I признак, защото
 ≼H = ≼D = 90⁰ и ∢HMC = ∢DMB като връхни ъгли) ⇒

 $\frac{HM}{DM} = \frac{CM}{BM} \Rightarrow \frac{HM}{6} = \frac{6}{3\sqrt{13}} \Rightarrow HM = \frac{12}{\sqrt{13}} \text{ и освен}$ това CH = CM = CH = 6

TOBA
$$\frac{CH}{DB} = \frac{CM}{BM} \Rightarrow \frac{CH}{9} = \frac{6}{3\sqrt{13}} \Rightarrow CH = \frac{18}{\sqrt{13}}$$
 cm.

B) BH = BM + HM = $3\sqrt{13} + \frac{12}{\sqrt{13}} = \frac{51}{\sqrt{13}}$

• OT (5) 3a
$$\triangle EBC \Rightarrow CH^2 = BH.EH \Rightarrow \left(\frac{18}{\sqrt{13}}\right)^2 = \frac{51}{\sqrt{13}}EH \Rightarrow EH = \frac{108}{17\sqrt{13}}$$

• BE = BH + HE =
$$\frac{51}{\sqrt{13}} + \frac{108}{17\sqrt{13}} \Rightarrow BE = \frac{975}{17\sqrt{13}}$$
 cm.

Зад. 5: \triangle ABC има страни AB = 5, BC = 4 и CA = 3.

- а) Да се определи вида на триъгълника.
- б) Точка D лежи на страната AB. Ако \angle ACD = φ , да се пресметнат радиусите r_A и r_B на окръжностите, които са вписани съответно в \triangle ADC и \triangle BDC като функция на $\cot g \frac{\varphi}{2}$.
- в) Намерете най-голямата стойност на произведението $r_A r_B$. (УАСГ, 1997)

<u>Решение:</u> а) $5^2 = 4^2 + 3^2 \Rightarrow AB^2 = BC^2 + AC^2$, т.е. $\triangle ABC$ е правоъгълен.

б) т. O_1 и т. O_2 са центровете на окръжностите вписани съответно в $\triangle ADC$ и $\triangle BDC$, тогава $O_1P=r_A$ и $O_2Q=r_B$. Освен това $\blacktriangleleft BAC = \alpha$ и $\blacktriangleleft ABC = \beta$.

- намираме г_А
 - О $\triangle ABC$ правоъгълен ($\angle C = 90^{\circ}$) $\Rightarrow \cos \alpha = \frac{AC}{AB} = \frac{3}{5}$; $\sin \alpha = \frac{BC}{AB} = \frac{4}{5}$

$$OT Tp.\Phi.(5.15) \Rightarrow \cot g \frac{\alpha}{2} = \frac{1 + \cos \alpha}{\sin \alpha} = \frac{1 + \frac{3}{5}}{\frac{4}{5}} = 2$$

О От правоъгълният $\Delta O_1 PC$ ($\sphericalangle P = 90^0$) $\Rightarrow \cot g \frac{\varphi}{2} = \frac{CP}{PO_1} = \frac{CP}{r_A} \Rightarrow CP = r_A \cot g \frac{\varphi}{2}$;

О От правоъгълният
$$\Delta O_1 PA \ (\not \sim P = 90^0) \Rightarrow$$
 $\cot g \frac{\alpha}{2} = \frac{AP}{PO_1} = \frac{AP}{r_A} \Rightarrow AP = r_A \cot g \frac{\alpha}{2} = 2r_A;$

$$OAP + PC = AC \Rightarrow 2r_A + r_A \cot g \frac{\varphi}{2} = 3 \Rightarrow r_A = \frac{3}{2 + \cot g \frac{\varphi}{2}}$$

- По подобен начин намираме r_в:
 - $\bigcirc \blacktriangleleft BCD = 90^0 \blacktriangleleft DCA = 90^0 \varphi$, но CO_2 ъглополовяща \Rightarrow $\blacktriangleleft BDO_2 = \frac{1}{2} \blacktriangleleft BCD = \frac{90^0 \varphi}{2}$. От $Tp.\Phi.(4.6) \Rightarrow$

$$\cot g \frac{90^{0} - \varphi}{2} = \cot g \left(45^{0} - \frac{\varphi}{2} \right) = \frac{\cot g 45^{0} \cot g \frac{\varphi}{2} + 1}{\cot g \frac{\varphi}{2} - \cot g 45^{0}} = \frac{\cot g \frac{\varphi}{2} + 1}{\cot g \frac{\varphi}{2} - 1};$$

- О \triangle ABC правоъгълен (∢C = 90^0) \Rightarrow $\cos \beta = \frac{BC}{AB} = \frac{4}{5}$; $\sin \beta = \frac{AC}{AB} = \frac{3}{5}$;
- $O \text{ Tr.}\Phi.(5.15) \Rightarrow \cot g \frac{\beta}{2} = \frac{1 + \cos \beta}{\sin \beta} = \frac{1 + \frac{4}{5}}{\frac{3}{5}} = 0$
- О От правоъгълният $\Delta O_2 QC$ ($\angle Q = 90^0$) \Rightarrow

$$\cot g \frac{90^{0} - \varphi}{2} = \frac{CQ}{QO_{2}} = \frac{CQ}{r_{B}} \Rightarrow CQ = r_{B} \cot g \frac{90^{0} - \varphi}{2} = r_{B} \frac{\cot g \frac{\varphi}{2} + 1}{\cot g \frac{\varphi}{2} - 1};$$

О От правоъгълният ΔO_2QB ($\angle Q = 90^0$) ⇒

$$\cot g \frac{\beta}{2} = \frac{BQ}{QO_2} = \frac{BQ}{r_B} \Rightarrow BQ = r_B \cot g \frac{\beta}{2} = 3r_B;$$

$$OBQ + QC = BC \Rightarrow 3r_B + r_B \cdot \frac{\cot g \frac{\varphi}{2} + 1}{\cot g \frac{\varphi}{2} - 1} = 4 \Rightarrow r_B = 2 \frac{\cot g \frac{\varphi}{2} - 1}{2 \cot g \frac{\varphi}{2} - 1}$$

в) Полагаме cotg $\frac{\varphi}{2}=$ х. По условие $\varphi\in(0^0;90^0)$ затова $\frac{\varphi}{2}$ $\in(0^0;45^0)$ и Д M_x : $x\in(1;+\infty)$

$$f(x) = r_A \cdot r_B = \frac{3}{2 + \cot g \frac{\varphi}{2}} \cdot 2 \frac{\cot g \frac{\varphi}{2} - 1}{2 \cot g \frac{\varphi}{2} - 1} = 6 \frac{x - 1}{(2 + x)(2x - 1)} = 6 \frac{x - 1}{2x^2 + 3x - 2}$$

Учебен център "СОЛЕМА"

обучение по математика, физика, български и английски език, компютър

🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solema.hit.bg ; E-mail: solema@gbg.bg

адрес: гр.София, ж.к. Надежда, бл. 335

• Изследваме функцията f(x) за НГС (най-голяма стойност) при $x \in (1; +\infty)$:

O
$$f' = 6 \frac{-2x^2 + 4x + 1}{(x-1)^2 (2x-1)^2};$$

$$0 \text{ f } ' \ge 0 \Rightarrow 6 \frac{-2x^2 + 4x + 1}{(x-1)^2 (2x-1)^2} \ge 0 \Rightarrow -2x^2 + 4x + 1 \ge 0 \mid . (-1) \Rightarrow 2x^2 - 4x - 1 \ge 0,$$

$$D = 6, \ \sqrt{D} = \sqrt{6}, \ x_1 = \frac{2 - \sqrt{6}}{2}, \ x_2 = \frac{2 + \sqrt{6}}{2} \Rightarrow x \in \left(\frac{2 - \sqrt{6}}{2}; \frac{2 + \sqrt{6}}{2}\right);$$

O Д M_x е $x \in (1; +\infty)$, но $x_1 = \frac{2 - \sqrt{6}}{2} < 1$ и затова този корен отпада. Резултатите нанасяме в таблицата:

	1		$2 + \sqrt{6}$		+∞
			2		
f' (x)		+++	0		
f(x)		*		×	100
			max		1

0 От таблицата виждаме, че при $_{r}=\frac{2+\sqrt{6}}{}$ имаме локален max. Разглежданият интервал $x \in (1; +\infty)$ е отворен от двете страни, т.е. f(x) има найголяма стойност при $_{r} = \frac{2 + \sqrt{6}}{}$ и тя е

$$f\left(\frac{2+\sqrt{6}}{2}\right) = 6\frac{\frac{2+\sqrt{6}}{2}-1}{2\left(\frac{2+\sqrt{6}}{2}\right)^2 + 3\left(\frac{2+\sqrt{6}}{2}\right) - 2} = \frac{6\sqrt{6}}{12+7\sqrt{6}} = \frac{6}{25}\left(7-2\sqrt{6}\right)$$

• Най-голямата стойност на произведението r_A r_B е $\frac{6}{25}(7-2\sqrt{6})$

Зад. 6:За произволен правоъгълен триъгълник, да се окаже, че:

a)
$$S = r(r + 2R);$$

б)
$$l_c = \frac{\sqrt{2}\,ab}{a+b}\,$$
 (lc е ъглополовяща на правия ъгъл)

Решение: а) ДАВС е описан правоъгълен триъгълник и от $(8) \Rightarrow r = p - c \Rightarrow p = r + c$, но $(7) \Rightarrow$ c = 2R, тогава p = r + 2R.

- OT $(\Gamma \Phi. 28) \Rightarrow S = pr = r(r + 2R)$.
- б) Нека CL ъглополовяща на ∢ACB ⇒

$$\angle ACL = \angle BCL = 45^{\circ}$$
.

III. Задачи за упражнение:

Тестови задачи:

- (ТУ, 2010): В ДАВС симетралата на страната АС пресича АВ в т. N. Ако т. М е средата на AC и CN = a, то радиусът на описаната около Δ ANM окръжност е равен на:
 - A) a;
- B) $\frac{a}{4}$;
- Γ) 2a;
- (ТУ, 2011): В правоъгълен ДАВС точка М е среда на хипотенузата АВ и
- A) 60° :
- Б) 69⁰:

 \checkmark CMB = 42° . Големината на \checkmark ABC e:

- B) 30° :
- Γ) 45⁰:
- Π) 48 0 .
- (ТУ, 2011): Даден е правоъгълен триъгълник с хипотенуза 10 cm и лице 24 cm². Радиусът на вписаната в този триъгълник окръжност е:
 - A) 1 cm:
- Б) $\sqrt{2}$ cm;
- B) $\sqrt{3}$ cm; Γ) 2 cm;
- Д) 4 cm.
- (ТУ, 2011): В правоъгълен триъгълник сумата от катетите е 14 см, а хипотенузата е 10 ст. Лицето на триъгълника е:
 - A) 24 cm^2 ;
- Б) 48 cm²;
- B) 12 cm²:
- Γ) 6 cm²:
- Π) 36 cm².

Учебен център "СОЛЕМА"

обучение по математика, физика, български и английски език, компютър

🕿: 897 99 54 вечер, г-н Станев: Web страница: www.solema.hit.bg : E-mail: solema@gbg.bg

5. (Матура, 2010): На чертежа СН е височината към хипотенузата АВ на правоъгълен триъгълник АВС. Ако АН = 36 и НВ = 64, дължината на катета АС е равна на:

A) 80: B) 48:

адрес: гр.София, ж.к. Надежда, бл. 335

6. (Матура, 2010): На чертежа СН е височината към хипотенузата AB на правоъгълен триъгълник ABC. Ако AH = 1 cm и CH = 2 cm. лицето на $\triangle ABC$ e:

A) 12 cm^2 :

Б) 10 cm²:

Б) 60:

Γ) 30.

B) 6 cm²:

 Γ) 5 cm².

7. (Матура, 2010): Триъгълникът АВС на чертежа е равнобедрен и правоъгълен. Дължината на медианата към катета е $\sqrt{10}$. Дължината на височината CD към хипотенузата е:

A) $\sqrt{2}$:

Б) 2:

B) $2\sqrt{2}$:

Γ) 4.

(Матура, 2011): На чертежа СН е височина в правоъгълния ∆АВС (∢АСВ =

90°). Ако CH = 6 и $\cos \alpha = \frac{2\sqrt{5}}{5}$, то BC е равна на:

A) 30;

(Матура, 2011): На чертежа СН е височина към хипотенузата АВ в правоъгълния \triangle ABC. Ако BC = 8 cm и BH = 6, 4 cm, то tg α е равен на:

H 6.4 cm B

10. (ТУ, 2012): Даден е правоъгълен $\triangle ABC$ с катети AC = 8 cm и BC = 6 cm. Ъглополовящата на правия ъгъл пресича хипотенузата АВ в точка L. Отсечката СL има дължина:

A) $\frac{7}{12}\sqrt{2}$; B) $\frac{24}{7}$; Γ) $\frac{7}{24}$;

 Π) $4\sqrt{2}$.

11. (ТУ, 2012): В правоъгълния ДАВС отсечката СD е височина към хипотенузата AB. Ако AD = 4 cm и DB = 5 cm. то лължината на катета AC в cm е:

A) 9:

Б) 36:

B) 5:

Γ) 6:

Л) 20.

12. (Матура, 2012): Върху хипотенузата AB на правоъгълния Δ ABC е взета точка H. така че \prec HCB = \prec CAB = α . Ако AC = b. то диаметърът на описаната окръжност около ∆НСВ е равен на:

A) b $\sin \alpha$;

 \mathbf{b}) b cos α :

B) b tg α ;

13. (Матура, 2012): Катетите на правоъгълен триъгълник са с дължини 6 ст и 10 ст. Радиусът на описаната около триъгълника окръжност е:

A) 4 cm:

Задачи за подробно решаване:

Следват 35 задачи групирани по сложност. Част от тях са давани на конкурсни изпити или на матури.

За съжаление те са авторски и не се разпространяват свободно. Използват се за подготовка на кандидат-студенти с учител от Учебен център "СОЛЕМА".

Учебен център "СОЛЕМА" подготвя ученици за кандидатстване във всички университети, а така също и за кандидатстване след 7 клас.

За цените и всичко свързано с подготовката на кандидатстудентите и учениците кандидатстващи след 7 клас по математика и физика, виж www.solemabg.com раздел "За нас".