Lattice Green's functions

Andriy Zhugayevych, zhugayevych@iop.kiev.ua February 14, 2012

Contents

1	Lattices and their Green's functions	1
	1.1 Definitions	1
	1.2 Fourier transform	3
	1.3 Primitive lattices	3
	1.4 Series representation	4
	1.5 Continual approximation	4
	1.6 Evaluation of lattice Green's functions	4
	1.7 Estimates and inequalities for $s \ge 0$	5
2	Hypercubic lattice	5
	2.1 General statements	5
	2.2 Series at infinity	6
	2.3 Asymptotic expansion in $ x \sqrt{s}$	7
	2.4 Large x approximation	7
3	One-dimensional lattices	8
4	Square lattice	10
5	Simple cubic lattice	11
	5.1 Series at infinity	11
	5.2 Exact results	11
	5.3 Complex variable method	11
	5.4 Other	12
6	Other lattices	12
	6.1 Triangular lattice	12
	6.2 Face-centered cubic lattice	12
	6.3 Diamond lattice	12
	6.4 Body-centered cubic lattice	13
	6.5 Decorated lattices	13
7	Periodic simple hypercubic lattice	13
\mathbf{A}	Some properties of finite difference operators on $\mathbb Z$	14

1 Lattices and their Green's functions

1.1 Definitions

Graph is a collection of points (enumerable set X) and bonds (subset of symmetrized X^2) with finite coordination number, which is the maximum number of bonds attached to a point (i.e. simple undirected finite-dimensional graph). In what follows we consider only connected graphs and denote a graph simply by the set of its points X. The bonding between points establishes the metrics as the length of the shortest path between two points.