- 1. Sigui el qubit descrit pel ket  $|\psi\rangle = A\left(4|0\rangle + 3(\frac{\sqrt{3}}{2} + \frac{1}{2}i)|1\rangle\right)$ .
  - (a) Normalitzeu correctament el qubit

(b) En quina direcció de l'esfera de Bloch apunta el qubit anterior? Doneu  $\theta$  i  $\varphi$  entre 0 i  $\pi$  i entre 0 i  $2\pi$ , respectivament.

Temm 
$$|\psi\rangle = \frac{4}{5}|0\rangle + \frac{3}{5}\left(\frac{13}{2} + \frac{1}{2}i\right)|0\rangle = \frac{4}{5}|0\rangle + \frac{3}{5}e^{i30^{\circ}}|1\rangle = \omega_{5}\left(\frac{9}{2}\right)|0\rangle + \sin\left(\frac{9}{2}\right)e^{i\frac{1}{5}}|1\rangle$$

$$\frac{4}{5}e^{i30^{\circ}}$$

$$\frac{6}{5}e^{i30^{\circ}}$$

(c) Quina és la probabilitat de trobar l'estat anterior en  $|+>_y=1/\sqrt{2}(|0>+i|1>)$  si fem una mesura en la base  $\{|+>_y,|->_y\}$ ?

$$\rho = \langle \Psi | + \gamma_{y} \langle + | \Psi \rangle = \left( \frac{\Lambda}{10 \, \text{Fe}} \right)^{2} \left( 11 - 3 \, \text{F3} \, i \right) \left( 11 + 3 \, \text{F3} \, i \right) = \frac{\Lambda}{100 \, \text{Fe}} \left( 11^{2} + 27 \right) = \frac{\Lambda \, \text{F8}}{2 \, \text{TD}} \simeq \frac{0.74}{2 \, \text{TD}}$$

$$\langle + | \Psi \rangle = \frac{1}{15} \left( \Lambda_{3} - i \right) \left( \frac{4/5}{\frac{3}{5}} e^{i 30^{\circ}} \right) = \frac{1}{15} \left[ \frac{1}{5} + \frac{3}{5} e^{i 30 - i 90} \right] = \frac{\Lambda}{5 \, \text{Fe}} \left[ \frac{1}{5} + 3 e^{-i 50^{\circ}} \right] = \frac{1}{10 \, \text{Fe}} \left( 11 - 3 \, \text{F3} \, i \right)$$

(d) Si l'operador energia  $\hat{E}$  està definit com  $\hat{E}|0>=E_0|0>$  i  $\hat{E}|1>=E_1|1>$ , on  $E_0$  i  $E_1$  són els valors (reals) de les energies dels estats |0> i |1>, respectivament, quin seria el valor esperat de la mesura de l'energia de l'estat  $|\psi>$ , és a dir,  $<\psi|\hat{E}|\psi>$ ?

- 2. Considereu l'estat de dos qubits:  $|\Phi>=\frac{1}{\sqrt{6}}|00>-\frac{i}{\sqrt{3}}|01>+\frac{1}{2\sqrt{3}}|10>-\frac{\sqrt{5}}{2\sqrt{3}}|11>$ 
  - (a) Comproveu si està normalitzat.

(b) És un estat separable o entrellaçat? Perquè?

(c) Quina és la probabilitat de trobar el resultat 01 en mesurar els dos qubits?

$$p = c^* c : \left(\frac{i}{\sqrt{3}}\right) \left(\frac{-i}{\sqrt{3}}\right) = \frac{1}{3}$$

(d) Quines són les probabilitats de trobar els resultats 0 i 1 en mesurar el qubit de la dreta?

(e) Si en mesurar el qubit de la dreta hem trobat el resultat 1, en quin estat es trobarà el qubit de l'esquerra? I si ara mesuréssim aquest últim, quina seria la probabilitat de què donés 1?

$$|\phi\rangle = \left[\frac{1}{11}|0\rangle + \frac{1}{213}|1\rangle\right]|0\rangle + \left[\frac{-\frac{1}{13}}{13}|0\rangle - \frac{15}{213}|1\rangle\right]|1\rangle$$
Sind agreed normalitest constance?
$$N^{2} \cdot \left[\frac{1}{3} + \frac{5}{12}\right] = 1 \implies N^{2} = \frac{1}{3}$$

$$quedicia on e'estal? 
$$|\psi\rangle = \frac{2}{\sqrt{3}} \left[\frac{-\frac{1}{12}}{\sqrt{3}}|0\rangle - \frac{\sqrt{5}}{2\sqrt{3}}|1\rangle\right] = -\frac{2}{3}i|0\rangle - \frac{5}{3}|1\rangle$$

$$p(1) = \left(\frac{\sqrt{5}}{3}\right)^{2} = \frac{5}{3} \approx 0.55$$$$

3. Considereu una funció  $f: \{0,1\}^2 \to \{0,1\}$ . Ens diuen que la funció és constant (o bé val 0, o bé val 1, per tots els valors d'entrada) o balancejada (mateix nombre de 0's que de 1's com a sortida). Per tal de fer-ho apliquem l'algorisme de Deutsch generalitzat que, en el cas de dos qubits d'entrada, es representa:



(a) Determineu la matriu  $M = H \otimes H$ 

- (c) Apliqueu la seqüència M  $U_f$  M al vector corresponent a l'entrada |0>|0> i determineu l'expressió general del vector de sortida.

(d) Les possibles sortides són els estats  $\{|0>|0>,|0>|1>,|1>|0>,|1>|1>\}$  (o els vectors corresponents) que corresponen als valors  $\{0,1,2,3\}$ . Suposem que finalment mesurem i trobem el valor 1. Quin tipus de funció és?

(e) Quina informació addicional podem donar sobre la funció? (per exemple, per quins valors d'entrada dóna igual i per quins diferent).

(f) Responeu les mateixes preguntes anteriors suposant que la mesura hagués estat 2.

- 4. Volem usar l'algorisme de Shor per trobar el període de la funció  $f(x) = 7^x \mod 10$ .
  - (a) Quin és el número de qubits, n, que necessitarem?

$$H_{-}$$
 he  $m^{2^{n}} 7 N^{2} = 10^{2} = 100 = ) n \ln 2 7 \ln 100 = 0.6 = 0.6 = )  $n = 7$$ 

(b) Si en fer la mesura final del registre de l'input trobem el valor  $y_l = 32$ , podem deduir-ne el període r? Expliqueu com i quin període obteniu.

Es mesura 
$$y_e = l \frac{2^n}{r} + \Delta e$$

el període es trobara a partir dels convergen)3 de  $\frac{y_e}{2^7} = \frac{32}{|18|}$ 

Fem la trala

n

0
1

| 'n                 | 0                                                                 | 1                                                                      |
|--------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|
| an                 | $\left[\begin{array}{c} \frac{3\nu}{1\nu} \end{array}\right] = 0$ | $\left[\frac{1}{X_{\bullet}}\right] = \left[\frac{129}{32}\right] = 4$ |
| × <sub>n</sub>     | X= X-a= 32                                                        | 128 - 4 = 0                                                            |
| Pn                 | a <sub>0</sub> = 0                                                | م <sub>ه</sub> ه <sub>۱</sub> +۱ = 1                                   |
| 9,                 | 9 <sub>0</sub> = 1                                                | a, = 4                                                                 |
| 8(9 <sub>0</sub> ) | ₹¹ = ₹                                                            | 7 = 1                                                                  |

(c) Apart del valor  $y_l = 32$ , quins altres valors podríem haver trobat en avaluar el registre input? Comproveu si podríem extreure'n el període d'aquests altres, raonant la vostra resposta.

En principi 
$$y_e = e \frac{2^n}{r} + \Delta e = e \cdot \frac{2^7}{7} + \Delta e = e \cdot 32 + \Delta e$$

haura de la sumpre  $\phi$ 

estern en un cas en que  $\frac{2^n}{r}$  es smur, nomé bohen sorter

 $0, 1.32, 2.32, 3.32 = 0, 32, 64, 96$ 

gralsered d'aquests tres parent trobar r

| ( 9 = 64)      |                    |                                                              |  |  |  |
|----------------|--------------------|--------------------------------------------------------------|--|--|--|
| 'n             | o                  | 1                                                            |  |  |  |
| an             | [ 64 ] = 0         | $\left[\frac{1}{X}\right] = \left[\frac{129}{64}\right] = 0$ |  |  |  |
| × <sub>n</sub> | X = X - 2 = 64     | 128 - 0 = 4                                                  |  |  |  |
| Pn             | a <sub>0</sub> = 0 | a, a,+1 = 1                                                  |  |  |  |
| 9,             | 9 <sub>0</sub> = 1 | a, = 4                                                       |  |  |  |
| {(ª₁)          | 71=7               | 7 = 1 => [r=4                                                |  |  |  |

| 'n             | o                                                                    | 1                                                            | 2                                                            |  |  |
|----------------|----------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--|--|
| an             | $\left[\begin{array}{c} 96 \\ \overline{123} \end{array}\right] = 0$ | $\left[\frac{1}{X}\right] = \left[\frac{129}{96}\right] = 1$ | ( 96 ]= 3                                                    |  |  |
| × <sub>n</sub> | X = X - a = 96                                                       | 128-1 = 32                                                   | $\frac{96}{32} - 3 = 0$                                      |  |  |
| Pn             | a <sub>o</sub> = 0                                                   | a, a,+1 = 1                                                  | ~ p,+ p= 3.1+0=3                                             |  |  |
| ۹,             | 90 = 1                                                               | a <sub>1</sub> = 1                                           | ~ <sub>1</sub> 9 <sub>1</sub> + 9 <sub>0</sub> = 3·1 + 1 = 4 |  |  |
| {(ª₁)          | ₹ <sup>1</sup> = ₹                                                   | 7 = 1                                                        | 7 = 1 => [=4                                                 |  |  |

(y - 96