

TABLE OF CONTENTS

01

DATA
UNDERSTANDING
AND EXPLORATION

02

DATA PREPROCESSING

03

MODELING

04

CONCLUSIONS

+ UNDERSTANDING AND EXPLORATION

DATASET OVERVIEW

- df_binary: Large imbalanced dataset containing binary diabetes classification
 - **Size:** 253,680 observations
 - Purpose: Used for initial analysis and understanding patterns

- df_5050: Balanced dataset for model training
 - **Size:** 88,146 observations
 - Purpose: Used for model development to avoid bias

+

KEY FEATURE DETAILS

- Health Indicators:
 - HighBP, HighChol: Diagnosed conditions (0=No, 1=Yes)
 - BMI: Body Mass Index (continuous value)
 - Stroke, HeartDiseaseorAttack: Medical history
- Lifestyle Factors:
 - PhysActivity: Regular exercise (0=No, 1=Yes)
 - Smoker: Smoking history
 - Fruits/Veggies: Daily consumption
- Demographic Information
 - Age: 14 categories
 - Education: 6 levels
 - o Income: 8 categories

DATA QUALITY ASSESSMENT

Completeness:

- No missing values in the dataset
- Duplicates were identified and removed

Consistency:

- Data types standardized to int64
- Categorical variables properly structured

• Validity:

- All values within expected ranges
- No anomalous entries detected
- Consistent encoding across categories

STATISTICAL SUMMARY AND DISTRIBUTION ANALYSIS

KEY HEALTH INDICATORS ANALYSIS

LIFESTYLE FACTORS ANALYSIS

LIFESTYLE FACTORS ANALYSIS

DEMOGRAPHIC ANALYSIS

DEMOGRAPHIC ANALYSIS

DATA PREPROCESSING

DATA CLEANING AND PREPARATION

- Data Type Standardization:
 - a. All features converted to int64 type
 - b. Ensures consistent data handling
- 2. Duplicate Removal:
 - a. Duplicates identified and removed
 - b. Ensures data quality
- 3. **Feature Selection:** Based on correlation analysis, removed features with correlation < 0.05:
 - a. Smoker
 - b. Veggies
 - c. AnyHealthcare
 - d. Fruits
 - e. NoDocbcCost

CORRELATION INSIGHTS:

- GenHlth shows strongest correlation with diabetes
- BMI and HighBP are strong predictors
- Behavioral factors show moderate correlations
- Some features show weak or negligible correlations

MODELING

1. Random Forest Classifier:

- a. Selected for its ability to handle non-linear relationships
- b. Provides built-in feature importance ranking
- c. Robust to outliers and overfitting
- d. Well-suited for mixed data types

2. Logistic Regression:

- a. Chosen for its interpretability
- b. Provides clear feature coefficients
- c. Efficient for binary classification
- d. Good baseline model for comparison

3. K-Nearest Neighbors (KNN):

- a. Selected for its non-parametric approach
- b. No assumptions about data distribution
- c. Effective for local pattern detection
- d. Simple and intuitive algorithm

MODEL PERFORMANCE ANALYSIS*

MÖDEL PERFORMANCE ANALYSIS[†]

MODEL PERFORMANCE ANALYSIS[†]

CONCLUSIONS

+

KEY FINDINGS HEALTH INDICATORS

1. Cardiovascular Health:

- a. High blood pressure increases diabetes risk by over 25%.
- b. Heart disease patients have double the diabetes rate.
- c. Combined BP and cholesterol issues significantly increase risk.

2. Body Mass Index (BMI):

- a. Higher BMI correlates strongly with diabetes risk.
- b. Emphasizes the importance of weight management.

3. General Health Status:

- a. Strong predictor of diabetes.
- b. Progressive increase in risk with declining health.
- c. Highlights potential for early intervention.

KEY FINDINGS LIFESTYLE FACTORS

1. Physical Activity:

- a. Reduces diabetes risk by 25%.
- b. Most significant modifiable factor.

2. Diet and Nutrition:

- a. Healthy diets, particularly fruits and vegetables, lower diabetes risk.
- b. Combined dietary habits show additive protective effects.

3. Behavioral Factors:

- a. Smoking has a moderate correlation with diabetes.
- b. Alcohol consumption less significant but still relevant.

KEY FINDINGS DEMOGRAPHIC PATTERNS

1. Age and Gender:

- a. Risk increases steadily with age, highest in elderly populations.
- b. Gender differences are minimal but age-specific patterns vary.

2. Socioeconomic Factors:

- a. Higher income and education reduce risk.
- b. Better healthcare access leads to improved outcomes.

MODEL PERFORMANCE SUMMARY

1. Best Performing Model:

- a. Random Forest Classifier achieved 75% accuracy.
- b. Balanced precision and recall make it suitable for diabetes risk screening.

2. Feature Importance:

- a. General Health Status: Most significant predictor.
- b. BMI and Age: Strong predictors.
- c. Cardiovascular factors (BP, cholesterol) also highly relevant.

