Problema n° 815

14.- Medianas multicolores

Érase una vez un triángulo ABC cuyas medianas BM y CN eran perpendiculares. Cada uno de sus tres lados era también el lado de un cuadrado exterior al triángulo. Estos cuadrados estaban coloreados respectivamente, de azul, rosa y amarillo, dependiendo de si su base era BC, CA o AB. ¿Cuántos cuadrados azules se necesitarán para obtener una superficie igual a la de los cuadrados rosa y amarillo juntos? Tu turno: Berrondo- Agrell, M. (2006): 100 enigmas de geometría (pag. 100).

Solution proposée par Philippe Fondanaiche

Réponse: la somme des aires des carrés de couleurs "touge" et "jaune" vaut cinq fois l'aire du carré bleu On pose BC = a, CA = b et AB = c.

Le rapport de la somme des aires des carrés de couleurs "touge" et "jaune" à l'aire du carré bleu vaut donc ($b^2 + c^2$)/ a^2

Soient G le centre le gravité du triangle ABC et α = angle(CBG).

Comme le triangle BCG est rectangle en G, on a les relations $BG = a.\cos(\alpha)$ et $CG = a.\sin(\alpha)$.

D'où BM = $3BG/2 = 3a.\cos(\alpha)/2$ et CM= $3a.\sin(\alpha)/2$. Or on a les relations bien connues donnant les longueurs des médianes d'un triangle en fonction des longueurs des côtés: $2BM^2 = a^2 + c^2 - b^2/2$ et $2CN^2 = a^2 + b^2 - c^2/2$.

BM 2 + CN 2 = [a^2 + c^2 - b^2 /2 + a^2 + b^2 - c^2 /2]/2 soit BM 2 + CN 2 = a^2 + b^2 /4 + c^2 4

Par ailleurs

BM $^2 + CN^2 = 9a^2(\cos^2(\alpha) + \sin^2(\alpha))/4 = 9a^2/4$

Il en résulte: $5a^2 = b^2 + c^2$. Cqfd