Professional Development Short Course On:

Satellite Communications Design & Engineering

Instructor:

Christopher DeBoy

ATI Course Schedule:

ATI's Satellite Communications Systems Engineering:

http://www.ATIcourses.com/schedule.htm

http://www.aticourses.com/satellite_communications_systems.htm

Applied Technology Institute (ATI)

Stay Current In Your Field • Broaden Your Knowledge • Increase Productivity

349 Berkshire Drive • Riva, Maryland 21140

888-501-2100 • 410-956-8805

Website: www.ATIcourses.com • Email: ATI@ATIcourses.com

www.ATIcourses.com

Boost Your Skills with On-Site Courses Tailored to Your Needs

349 Berkshire Drive

Riva, Maryland 21140

Telephone 1-888-501-2100 / (410) 965-8805

Fax (410) 956-5785

Email: ATI@ATIcourses.com

The Applied Technology Institute specializes in training programs for technical professionals. Our courses keep you current in the state-of-the-art technology that is essential to keep your company on the cutting edge in today's highly competitive marketplace. Since 1984, ATI has earned the trust of training departments nationwide, and has presented on-site training at the major Navy, Air Force and NASA centers, and for a large number of contractors. Our training increases effectiveness and productivity. Learn from the proven best.

For a Free On-Site Quote Visit Us At: http://www.ATlcourses.com/free_onsite_quote.asp

For Our Current Public Course Schedule Go To: http://www.ATIcourses.com/schedule.htm

Outline

PART 1: THE SPACECRAFT AND ITS ORBIT

- 1. Mission Analysis
- 2. Transfer Orbit
- 3. Orbital Perturbations and Stationkeeping
- 4. The Spacecraft Environment
- 5. Earth-Satellite Geometry
- 6. Constellation Design

PART 2: PRINCIPLES OF SATELLITE COMMUNICATION

- 7. Signals and Spectra
- 8. Analog Modulation
- 9. Digital Modulation
- 10. Coding
- 11. The Electromagnetic Spectrum
- 12. The RF Link
- 13. Earth Stations
- 14. Multiple Access
- 15. Antennas
- 16. System Temperature
- 17. Polarization
- 18. Rain Loss

PART 3: APPLICATIONS TO SATELLITE COMMUNICATION SYSTEMS

- 19. Link Budgets for Geostationary Satellites
- 20. Link Budgets for Nongeostationary Satellites

The RF Link

(Excerpt)

Antenna pattern, beamwidth, and gain

Beamwidth shows size of beam.

HPBW =
$$\alpha = k \frac{\lambda}{D} = 70^{\circ} \frac{\lambda}{D}$$
 where $k =$ antenna taper factor

An isotropic antenna radiates equally in all directions like a light bulb $\Omega = 4 \ \pi$

Gain shows relative strength of radiation. The maximum (boresight) gain is

$$G = \eta * \frac{4\pi}{\Omega_A} = \eta' \frac{4\pi}{\Omega} = \frac{29,000}{\alpha^2} = \eta \frac{4\pi}{\lambda^2} A = \eta \left(\frac{\pi D}{\lambda}\right)^2 \text{ where } \eta^*, \ \eta', \ \eta = \text{measures of antenna efficiency}$$

Gain and beamwidth are linked: As the gain increases, the beamwidth decreases, and vice versa.

Example: Earth terminal antenna

Prime Focus Feed; 5 meter reflector; Tx and Rx C-Band gain 46 dB; Beamwidth = 1° Ku-Band gain 54 dB; Beamwidth = 0.4°

Ku band downlink frequency f = 12 GHz

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8 \text{ m/s}}{12 \times 10^9 \text{ Hz}} = 0.025 \text{ m}$$

HPBW =
$$\alpha = 70^{\circ} \frac{\lambda}{D} = 70^{\circ} \frac{0.025 \text{ m}}{5.0 \text{ m}} = 0.35^{\circ}$$

$$G = \eta \left(\frac{\pi D}{\lambda}\right)^2 = 0.60 \left(\frac{\pi 5.0 \text{ m}}{0.025 \text{ m}}\right)^2 = 237,000$$

$$[G] = 10 \log_{10}(237,000) = 53.7 \text{ dB}$$

Equivalent isotropic radiated power (EIRP)

The equivalent isotropic radiated power (EIRP) is the transmit power of a hypothetical antenna radiating equally in all directions (like a light bulb) so as to have the same power flux density over the coverage area as the actual antenna.

The power flux density of the actual antenna is

$$\Phi = \frac{P}{S} = \frac{\eta^* P_{in}}{\Omega_A d^2} = \eta^* \frac{4\pi}{\Omega_A} \frac{P_{in}}{4\pi d^2} = G_t \frac{P_{in}}{4\pi d^2}$$

where η^* is the antenna power loss efficiency, $P = \eta^* P_{in}$ is the transmitted power, S is the total coverage area at distance d, Ω_A is the antenna beam solid angle, and $G_t = \eta^* (4\pi / \Omega_A)$ is the transmit gain.

By the definition of EIRP

$$\Phi = \frac{\text{EIRP}}{4\pi d^2}$$

Therefore,

$$EIRP = G_t P_{in}$$

The EIRP is the product of the antenna transmit gain and the power applied to the *input* terminals of the antenna. The antenna efficiency η^* is absorbed in the definition of gain.

Example 1

numeric form	logarithmic (dB) form
$G_t = 100$	$[G_t] = 10 \log_{10}(100) = 20.0 \text{ dB}$
$P_{in} = 50 \text{ W}$	$[P_{in}] = 10 \log_{10} (50 \text{ W}) = 17.0 \text{ dBW}$
$EIRP = G_t P_{in}$	$[EIRP] = [G_t] + [P_{in}]$
= (100)(50 W)	= 20.0 dB + 17.0 dBW
= 5000 W	= 37.0 dBW

 $10 \log_{10}(5000 \text{ W}) = 37.0 \text{ dBW}$

Example 2

$$[P_{HPA}] = 10 \log_{10}(100 \text{ W}) = 20 \text{ dBW}$$

$$[P_{in}] = [P_{HPA}] - [L] = 20 \text{ dBW} - 1 \text{ dB} = 19 \text{ dBW}$$

$$[EIRP] = [G_t] + [P_{in}] = 60 \text{ dB} + 19 \text{ dBW} = 79 \text{ dBW}$$

Figure of Merit (G / T)

The ratio of the receive antenna gain *G* to the total system temperature *T* is called the "figure of merit."

$$[G/T] = [G] - [T]$$
 (dB/K)

where

[G] = receive antenna gain (dB)

[T] = total system temperature (dBK)

The figure of merit is independent of the point where it is calculated. However, the gain and system temperature must be specified at the same point.

Example: Suppose the antenna gain is 53.7 dB and the system temperature is 150 K. Then

$$[T] = 10 \log_{10}(150 \text{ K}) = 21.7 \text{ dBK}$$

$$[G/T] = [G] - [T] = 53.7 \text{ dB} - 21.7 \text{ dBK} = 32.0 \text{ dB/K}$$

Satellite communications payload architecture

Transponder

Satellite transponder frequency plan (C-band)

Typical satellite data

Telstar 5 97° W C/Ku band

Began service: 7/97

Mission Life 12 years	
Transponders: 24 C-band @	

Station-keeping ± 0.05 degrees

4 Ku-band @ 54 MHz 24 Ku-band @ 27 MHz

Coverage: Continental US, Alaska, Hawaii, Puerto Rico, the

Caribbean, and into Canada and Latin America.

Markets: Strong broadcast and syndication neighborhood anchored by ABC and FOX; host to SNG, data, business television, Internet, direct-to-home programming and digital data applications

Orbital Location	Transponders	Useable Bandwidth	Power
97 degrees W	24 C-band	36 MHz	20 W nominal
	4 Ku-band	54 MHz	100 W nominal
	24 Ku-band	27 MHz	100 W nominal

Saturation Flux Density - Typical CONUS

-71 to -92 (dBW/m²) at C-band adjustable in 1 dB steps

-75 to -96 (dBW/m²) at Ku-band adjustable in 1 dB steps

Polarization

Orthogonal linear polarization at C-band and Ku-band.

Frequency Band

4/6 GHz and 12/14 GHz

Ku-band Optional "Automatic Level Control" Mode

Mitigates the effects of uplink rain fade by maintaining the transponder at a specific fixed operating point between saturation and 8 dB input backoff.

EIRP (dBW)	C- band	Ku- band
CONUS	38.8	48.3
Alaska	33.7	39.1
Hawaii	33.8	46.4
Puerto Rico/U.S. Virgin Islands	34.0	44.9
Mexico	35.9	43.6
Southern Canada	37.0	44.3
Caribbean	34.3	43.4

G/T (dB/K)	C- band	Ku- band
CONUS	0.4	1.2
Alaska	-8.2	-5.9
Hawaii	-5.2	0.6
Puerto Rico/U.S. Virgin Islands	-3.7	0.7
Mexico	-3.5	-3.5
Southern Canada	-2.3	-0.6
Caribbean	-3.5	-2.3

Satellite EIRP footprint

$$P = 100 \text{ W}$$
 [P] = 20 dBW [G] = 30 dB

$$[EIRP] = [G] + [P] = 30 dB + 20 dBW = 50 dBW (COC)$$

Satellite Figure of Merit *G / T*

$$T = 630 \text{ K}$$

$$T = 630 \text{ K}$$
 [T] = 28 dBK [G] = 30 dB

$$[G] = 30 \text{ dB}$$

$$[G/T] = [G] - [T] = 30 dB - 28 dBK = 2 dB/K (COC)$$

Earth-satellite geometry

Telstar 5 97° W C / Ku band

City/Country	Latitude	W Longitude	Azimuth	Elevation	
Anchorage, AK/USA	61.22	149.90	123.52	8.3	Example: Earth terminal in Los Angeles
Boston, MA/USA	42.21	71.03	215.82	34.6	
Calgary/Canada	51.08	114.08	158.45	29.3	$\cos \gamma = \cos \phi \cos \Delta \lambda$
Dallas, TX/USA	32.46	96.47	180.37	52.2	$=\cos(34.03^{\circ})\cos(118.14^{\circ}-97.0^{\circ})$
Guatemala City/Guatemala	14.63	90.47	204.71	71.2	=0.7730
·					- 0.1750
Halifax/Canada	44.65	63.60	223.21	28.8	$\gamma = 39.38^{\circ}$
Havana/Cuba	23.12	82.42	213.52	58.3	7 37.30
Honolulu, HI/USA	21.32	157.83	101.44	18.8	$\sin \Delta \lambda$
Houston, TX/USA	29.45	95.21	183.28	55.6	$\sin Az = \frac{\sin \Delta \lambda}{\sin \gamma}$
Jacksonville, FL/USA	30.19	81.39	208.53	50.9	,
Los Angeles, CA/USA	34.03	118.14	145.36	44.4	$=\frac{\sin(118.14^{\circ}-97.0^{\circ})}{\sin(39.38^{\circ})}$
Merida/Mexico	20.97	89.62	199.81	64.0	sin(39.38°)
Mexico City/Mexico	19.42	99.17	173.65	67.1	=0.5685
Miami, FL/USA	25.46	80.11	214.78	54.8	
Nassau/Bahamas	25.08	77.33	220.17	53.3	$Az = 180^{\circ} - 34.64^{\circ} = 145.36^{\circ}$
New York, NY/USA	40.43	74.01	213.10	37.6	$\cos v - R / r$
Reno, NV/USA	39.53	119.82	146.53	38.5	$\tan \theta = \frac{\cos \gamma - R_E / r}{\sin \gamma}$
San Francisco, CA/USA	37.46	122.25	142.19	39.1	~ /
San Juan/Puerto Rico	18.48	66.13	242.07	48.8	$= \frac{\cos(39.38^\circ) - (6378 \text{ km})/(42,164 \text{ km})}{\sin(39.38^\circ)}$
Seattle, WA/USA	47.60	122.33	147.34	30	sin(39.38°)
Toronto/Canada	43.70	79.42	204.71	36.6	=0.9799
Vancouver/Canada	49.22	123.10	147.10	28.3	0 44 420
Washington, DC/USA	38.53	77.02	210.99	40.7	$\theta = 44.42^{\circ}$
			16		Satellite Engineering Research Corporatio

Satellite Engineering Research Corporation

Free space loss

The free space loss takes into account that electromagnetic waves spread out into spherical wavefronts as they propagate through space due to diffraction.

$$L_{s} = \left(\frac{4\pi d}{\lambda}\right)^{2} = \left(\frac{4\pi d f}{c}\right)^{2}$$

$$[L_s] = 10 \log_{10} \left(\frac{4\pi d}{\lambda}\right)^2 = 20 \log_{10} \left(\frac{4\pi d}{\lambda}\right)$$

For a geostationary satellite, the free space loss is on the order of 200 dB (or a factor of 10²⁰).

The received power at the earth terminal is typically on the order of tens of *pico*watts.

Example

Problem: Determine the free space loss for a Ku band downlink between Telstar 5 at 97° W Longitude and Los Angeles if the frequency is 12 GHz and the angle of elevation is 44.4°.

Solution: The wavelength is

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8 \text{ m/s}}{12 \times 10^9 \text{ Hz}} = 0.025 \text{ m}$$

The slant range is

$$d = \sqrt{r^2 - (R_E \cos \theta)^2} - R_E \sin \theta$$

$$= \sqrt{(42,164 \text{ km})^2 - (6378 \text{ km} \times \cos 44.4^\circ)^2} - 6378 \text{ km} \times \sin 44.4^\circ$$

$$= 37,453 \text{ km}$$

$$r = \text{orbit radius}$$

$$R_E = \text{Earth's radius}$$

$$\theta = \text{elevation angle}$$

Thus

$$L_s = \left(\frac{4\pi d}{\lambda}\right)^2 = \left(\frac{4\pi \times 37,453,000 \text{ m}}{0.025 \text{ m}}\right)^2 = 3.544 \times 10^{20}$$

$$[L_s] = 10 \log_{10}(3.544 \times 10^{20}) = 205.5 \text{ dB}$$

Received carrier power

Received carrier power

$$C = \frac{A_e}{S} \frac{P}{L} = \Phi A_e$$

Transmit gain

$$G_{t} = \eta * \frac{4\pi}{\Omega_{A}} = \eta * \frac{4\pi d^{2}}{S}$$

Footprint area

$$S = \eta * \frac{4\pi d^2}{G_t}$$

Receive gain

$$G_r = \frac{4\pi}{\lambda^2} A_e$$

Receiver equivalent area

$$A_e = G_r \, \frac{\lambda^2}{4\pi}$$

Received carrier power

$$C = \frac{G_r (\lambda^2 / 4\pi)}{4\pi d^2 / G_t} \frac{P}{\eta^*} \frac{1}{L} = \frac{(G_t P_{in}) G_r}{(4\pi d / \lambda)^2 L} = \frac{\text{EIRP } G_r}{L_s L}$$

Equivalent isotropic radiated power

$$EIRP = G_t P_{in}$$

Free space loss

$$L_{s} = \left(\frac{4\pi d}{\lambda}\right)^{2}$$

Example

Problem: Determine the received carrier power for the Ku band downlink between Telstar 5 and an Earth terminal in Los Angeles if the frequency is 12 GHz and the antenna has an efficiency of 0.60 and a diameter of 5.0 m. Allow a rain attenuation loss of 1.9 dB, a gaseous atmospheric loss of 0.1 dB, and a pointing loss of 0.2 dB.

Solution: The satellite EIRP in Los Angeles is 49.2 dBW. At 12 GHz, the antenna gain is 53.7 dB and the free space loss is 205.5 dB. Therefore, the received carrier power is

$$[C] = [EIRP] + [G_r] - [L_s] - [L_r] - [L_a] - [L_p]$$

$$= 49.2 \text{ dBW} + 53.7 \text{ dB} - 205.5 \text{ dB}$$

$$-1.9 \text{ dB} - 0.1 \text{ dB} - 0.2 \text{ dB}$$

$$= -104.8 \text{ dBW}$$

Therefore,

$$C = 10^{-10.48} \text{ W} = 3.3 \times 10^{-11} \text{ W} = 33 \text{ pW}$$

Noise power

Thermal noise power in bandwidth B

$$N = N_0 B = k_B T B$$

where the spectral noise density is

$$N_0 = k_B T$$

for system temperature T and Boltzmann's constant is

$$k_B = 1.381 \times 10^{-23} \text{ W/K Hz}$$
 $[k_B] = -228.6 \text{ dBW/K Hz}$

Link budget equation

Carrier power

$$C = \frac{\text{EIRP } G_r}{L_s L_r L_o}$$

Noise power

$$N = k_B T B = N_0 B$$

Carrier to noise ratio

$$\frac{C}{N} = \text{EIRP} \frac{G}{T} \frac{1}{L_s} \frac{1}{L_r} \frac{1}{L_o} \frac{1}{k_B} \frac{1}{B}$$

Carrier to noise density ratio

$$\frac{C}{N_0} = \frac{C}{N}B = EIRP \frac{G}{T} \frac{1}{L_s} \frac{1}{L_r} \frac{1}{L_o} \frac{1}{k_B}$$

Link budget equation (continued)

The link budget equation is expressed in logarithmic (dB) form as follows (dB values indicated by brackets):

Uplink

$$\begin{split} [C/N_0] = & [\text{EIRP}] + [G/T] - [L_s] - [L_r] - [L_o] - [k_B] \\ \text{at satellite} & \text{E/S} \quad \text{satellite} \quad \text{at uplink frequency} \end{split}$$

Downlink

$$[C/N_0] = [\text{EIRP}] + [G/T] - [L_s] - [L_r] - [L_o] - [k_B]$$
at E/S satellite E/S at downlink frequency

Combined uplink and downlink

Only thermal noise (Average White Gaussian Noise)

$$\left(\frac{C}{N}\right)_{net}^{-1} = \left(\frac{C}{N}\right)_{un}^{-1} + \left(\frac{C}{N}\right)_{down}^{-1}$$
 (numeric)

Include interference

$$\left(\frac{C}{N}\right)_{net}^{-1} = \left(\frac{C}{N}\right)_{up}^{-1} + \left(\frac{C}{N}\right)_{down}^{-1} + \left(\frac{C}{I}\right)^{-1}$$

Noise power

$$N = N_0 B$$

$$\frac{C}{N} = \frac{C}{N_0} \frac{1}{B}$$

Power flux density

The EIRP of the uplink Earth station antenna must be adjusted to match an acceptable power flux density (PFD) at the satellite.

PFD =
$$\Phi = \frac{\text{EIRP}}{4\pi d^2} \frac{1}{L_r} \frac{1}{L} = \frac{\text{EIRP}}{L_s (\lambda^2 / 4\pi)} \frac{1}{L_r} \frac{1}{L}$$

$$[\Phi] = [EIRP] - [4\pi d^2] - [L_r] - [L]$$

or

$$[\Phi] = [EIRP] - [L_s] - [\lambda^2/4\pi] - [L_r] - [L]$$

Example

Problem: For an uplink between an Earth station in Washington, DC and Telstar 5, the EIRP is 79.0 dBW, the slant range is 37,722 km, the rain attenuation is 5.9 dB, and the antenna pointing loss is 0.2 dB. Determine the power flux density incident on the satellite.

Solution:

$$[\Phi] = [EIRP] - [4\pi d^{2}] - [L_{r}] - [L]$$

$$= 79.0 \text{ dBW} - 10 \log_{10} \left\{ 4\pi (37,722,000 \text{ m})^{2} \right\} - 5.9 \text{ dB} - 0.2 \text{ dB}$$

$$= -89.6 \text{ dBW/m}^{2}$$

This PFD is within the specifications for Telstar 5.

Saturation Flux Density - Typical CONUS

-75 to -96 (dBW/m²) at Ku-band adjustable in 1 dB steps

Ku-band Optional "Automatic Level Control" Mode

Mitigates the effects of uplink rain fade by maintaining the transponder at a specific fixed operating point between saturation and 8 dB input backoff.

Example link budget

Signal architecture		
Information bit rate	Mbps	22.5
	dBHz	73.5
Modulation		QPSK
Coding		V(7,1/2)
Bits per symbol		2
Code rate		1/2
Percentage of raised cosine filtering		20
Noise bandwidth	MHz	22.5
Occupied bandwidth	MHz	27.0
BER		0.00001
Eb/No (uncoded)	dB	9.6
Coding gain	dB	5.1
Eb/No (ideal)	dB	4.5
Modem implementation loss	dB	0.5
Eb/No (required)	dB	5.0
C/No (required)	dBHz	78.5

Satellite

Name		Telstar 5
Longitude	deg	97.0
Transponder bandwidth	MHz	27.0
EIRP	dBW	49.2
G/T	dB/K	2.0

Example link budget (continued)

Uplink

Earth station transmit terminal			Link calculation		
			Frequency	GHz	14.0
City		Washington	Wavelength	m	0.0214
Longitude	deg	77.0	Earth station EIRP	dBW	79.0
Latitude	deg	38.5	Satellite G/T	dB/K	2.0
Earth central angle	deg	42.7	Free space loss	dB	206.9
Elevation angle	deg	40.8	Rain region		D2
Slant range	km	37722	Availability	percent	99.95
HPA Power	W	100.0	Rain attenuation	dB	5.9
	dBW	20.0	Antenna pointing error	deg	0.02
Antenna diameter	m	9.2	Antenna pointing loss	dB	0.2
Antenna half power beamwidth	deg	0.16	Boltzmann's constant	dBW/K Hz	-228.6
Antenna efficiency		0.55	C/No (uplink)	dBHz	96.6
Antenna transmit gain	dBW	60.0	Noise bandwidth	dBHz	73.5
Line loss	dB	1.0	C/N (uplink)	dB	23.1
EIRP	dBW	79.0	Power flux density	dBW/m²	-89.6

Example link budget (continued)

Downlink

Earth station receive terminal			Link calculation		
			Frequency	GHz	12.0
City		Los Angeles	Wavelength	m	0.025
Longitude	deg	118.1	Satellite EIRP	dBW	49.2
Latitude	deg	34.0	Earth station G/T (clear sky)	dB/K	32.0
Earth central angle	deg	39.4	Free space loss	dB	205.5
Elevation angle	deg	44.4	Rain region		F
Slant range	km	37453	Availability	percent	99.95
Antenna diameter	m	5.0	Rain attenuation	dB	1.9
Antenna half power beamwidth	deg	0.35	Degradation in G/T	dB	2.2
Antenna efficiency		0.60	Gaseous atmospheric loss	dB	0.1
Antenna receive gain	dB	53.7	Antenna pointing error	deg	0.05
Clear sky antenna noise temperature	K	25	Antenna pointing loss	dB	0.2
Receiver equivalent temperature	K	125	Boltzmann's constant	dBW/K Hz	-228.6
System temperature	K	150		dBHz	99.9
	dBK	21.8	C/No (downlink)		
C/T (cloor clus)			Noise bandwidth	dBHz	73.5
G/T (clear sky)	dB/K	32.0	C/N (downlink)	dB	26.3

Example link budget (continued)

Combined uplink and downlink

C/N (uplink)	dB	23.1
C/N (downlink)	dB	26.3
C/I (adjacent satellite)	dB	20.0
C/I (cross polarization)	dB	24.0
C/N (net)	dB	16.7
Noise bandwidrh	dBHz	73.5
C/No (net)	dBHz	90.3
Information bit rate	dBHz	73.5
Eb/No (available)	dB	16.7
- 1.01.7		
Eb/No (required)	dB	5.0
C/No (required)	dBHz	78.5
Margin	dB	11.7

Power levels in satellite link

RF link (summary)

Antenna half power beamwidth

$$HPBW = \alpha = k \frac{\lambda}{D} = k \frac{c}{f D}$$

Antenna gain

$$G = \eta * \frac{4\pi}{\Omega_A} = \eta' \frac{4\pi}{\Omega} = \eta \frac{4\pi}{\lambda^2} A = \eta \left(\frac{\pi D}{\lambda}\right)^2$$

Free space loss

$$L_{s} = \left(\frac{4\pi d}{\lambda}\right)^{2} = \left(\frac{4\pi d f}{c}\right)^{2}$$

Carrier to noise density ratio

$$\frac{C}{N_0} = R_b \frac{E_b}{N_0} = \frac{G_t G_r}{L_s L} \frac{P_{in}}{k_B T} = \frac{\text{EIRP} (G_r / T)}{L_s L k_B}$$

 α = half power beamwidth

 λ = wavelength

f = frequency

c = speed of light

D = antenna diameter

k = antenna taper factor

 η^* , η' , η = antenna efficiency factors

 Ω_A = antenna beam solid angle

d =slant range

S = footprint area

A = antenna area

C = carrier power

 N_0 = noise density

 R_b = information bit rate

 E_b = energy per information bit

EIRP = equivalent isotropic radiated power

 G_t = transmit antenna gain

 G_r = receive antenna gain

 P_{in} = input power

 L_s = free space loss

L = net attenuative loss

T = system noise temperature

 k_B = Boltzmann's constant

32

Boost Your Skills with On-Site Courses Tailored to Your Needs

The Applied Technology Institute specializes in training programs for technical professionals. Our courses keep you current in the state-of-the-art technology that is essential to keep your company on the cutting edge in today's highly competitive marketplace. For 20 years, we have earned the trust of training departments nationwide, and have presented on-site training at the major Navy, Air Force and NASA centers, and for a large number of contractors. Our training increases effectiveness and productivity. Learn from the proven best.

ATI's on-site courses offer these cost-effective advantages:

- You design, control, and schedule the course.
- Since the program involves only your personnel, confidentiality is maintained. You can freely discuss company issues and programs. Classified programs can also be arranged.
- Your employees may attend all or only the most relevant part of the course.
- Our instructors are the best in the business, averaging 25 to 35 years of practical, real-world experience. Carefully selected for both technical expertise and teaching ability, they provide information that is practical and ready to use immediately.
- Our on-site programs can save your facility 30% to 50%, plus additional savings by eliminating employee travel time and expenses.
- The ATI Satisfaction Guarantee: You must be completely satisfied with our program.

We suggest you look at ATI course descriptions in this catalog and on the ATI website. Visit and bookmark ATI's website at http://www.ATIcourses.com for descriptions of all of our courses in these areas:

- Communications & Computer Programming
- Radar/EW/Combat Systems
- Signal Processing & Information Technology
- Sonar & Acoustic Engineering
- Spacecraft & Satellite Engineering

I suggest that you read through these course descriptions and then call me personally, Jim Jenkins, at (410) 531-6034, and I'll explain what we can do for you, what it will cost, and what you can expect in results and future capabilities.

Our training helps you and your organization remain competitive in this changing world.