18/5/8
DIALOG(R)File 351:Derwent WPI (c) 2001 Derwent Info Ltd. All rts. reserv.

009177505

WPI Acc No: 1992-304940/199237

XRAM Acc No: C92-135798

Synthetic gene for prepn. of human serum albumin - comprises synthetic DNA contg. gene coding the albumin using coding in Escherichia coli. Patent Assignee: AJINOMOTO KK (AJIN)

Number of Countries: 001 Number of Patents: 001

Patent Family:

JP 4211375

Patent No Kind Date Applicat No Kind Date Week
JP 4211375 A 19920803 JP 9114600 A 19910205 199237 B

Priority Applications (No Type Date): JP 9025682 A 19900205 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes

37 C12N-015/14

Abstract (Basic): JP 4211375 A

A synthetic DNA contg. a gene coding human serum albumin (I) designed by frequently using codons used frequently in E coli, pref. having a specified restriction enzyme map, is new. A plasmid contg. the above synthetic DNA, a microbe transformed by the plasmid, and the prepn. of (I) in which the microbe is cultured in medium and (I) is isolated from the microbe body or the cultured in medium and (I) is isolated from the microbe body or the culture, are claimed. USE/ADVANTAGE - (I) productivity in E coli is 4 mhanced

Dwg.0/0
Title Terms: SYNTHETIC; GENE; PREPARATION; HUMAN; SERUM; ALBUMIN; COMPRISE;
SYNTHETIC; DNA; CONTAIN; GENE; CODE; ALBUMIN; CODE; ESCHERICHIA; COLI
Derwent Class: B04; D16
International Patent Class (Main): C12N-015/14

International Patent Class (Madificonal): C12N-013/14
International Patent Class (Additional): C12N-001/21; C12P-021/02; C12R-001-19; C12R-001-125; C12R-001-08

File Seament: CPI

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開平4-211375

(43)公開日 平成4年(1992)8月3日

(51) Int.Cl.5	識別記号	庁内整理番号	F I	技術表示箇所
C 1 2 N 15/14	ZNA			
1/21		7236-4B		
C 1 2 P 21/02	С	8214-4B		
# (C12N 1/21				
		8828-4B	C 1 2 N	
			審査請求 未請求	: 請求項の数9(全37頁) 最終頁に続く
(21) 出願番号	特順平3-14600		(71) 出願人	000000066
				味の素株式会社
(22) 出顧日	平成3年(1991)2	月5日		東京都中央区京橋1丁目15番1号
			(72) 発明者	橋口 賢一
(31)優先権主張番号	特願平2-25682			神奈川県川崎市川崎区鈴木町1番1号味の
(32)優先日	平2 (1990) 2月5	н		素株式会社中央研究所内
(33)優先権主張国	日本 (JP)	-	(72)発明者	児島 宏之
(33) 使尤惟土景国	D4 (J F)		(12)	神奈川県川崎市川崎区鈴木町1番1号味の
				素株式会社中央研究所内
			(72)発明者	
			(12)969346	神奈川県川崎市川崎区鈴木町1番1号味の
	. '			秦株式会社中央研究所内
			(74)代理人	弁理士 湯浅 恭三 (外4名)

(54)【発明の名称】 合成遺伝子及びそれを用いたヒト血清アルブミンの製造法

(57)【要約】

【構成】 大鵬館で多用されるコドンを展用して設計した、ヒト血情アルブミン蛋白をコードする遺伝子を含む

を成りれる色験する。この合成DNAをプラスミドに

組み込み、整生物に導入して試験生物を形質転換する。

最後に、この形質転換体を培地中で培養し、完善の適体内

または培地中からヒト血情アルブミンを単離する。

【効果】 大鵬勝等においてのヒト血情アルブミン生産量

を構築的に増加させることができる。

【特許請求の範囲】

【請求項1】 大腸菌で多用されるコドンを矯用して設 計した、ヒト血清アルプミン蛋白をコードする遺伝子を 含む合成DNA。

【請求項2】 合成DNAがヒト血清アルプミン蛋白の*

*N末端付近をコードする領域に単一の制限酵素切断部位 を保持することを特徴とする請求項1記載の合成DN [請求項3] 合成DNAが下記に示す制限酵素地図を

有するものである請求項1記載の合成DNA。

Poxi .	PetI	3.11	Sphi	Ibal	5-11	Kenî	Xb al	Bon#1
•								1.8 kb

【請求項4】 合成DNAが配列表の配列番号1で示さ 10 ている。 れる配列を有するものである請求項1記載の合成DN Α.

【簡求項5】 合成DNAが配列表の配列番号2で示さ れる配列を有するものである請求項1記載の合成DN

【請求項6】 請求項1ないし5記載の合成DNAを含 有するプラスミド。

【請求項7】 請求項6記載のプラスミドで形質転換さ れた微生物。

【請求項8】 微生物がエシェリシア・コリ (E. co 20 11), パチルス・サチルス (B. subtilis) またはパチルス・プレビス (B. brevis) である 請求項7記載の微生物。...

【請求項9】 請求項7または8記載の微生物を培地中 で培養し、その微生物菌体または培地中からヒト血清ア ルプミンを単離することを特徴とするヒト血清アルプミ ンの製造法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はヒト血清アルブミン(H 30 SA)をコードする遺伝子を含む合成DNA、合成DN Aを有するプラスミド、該プラスミドにより形質転換さ れた微生物及び該微生物を培養してヒト血清アルプミン を製造する方法に関する。

[0002]

【従来の技術】組換えDNA技術の進歩によって、大腸 菌等の微生物において高等真核生物由来の遺伝子を発現 させ、その目的遺伝子産物を微生物を培養することによ って取得する技術が発展してきた。一般に高等真核生物 の遺伝子は、mRNAを調製して、逆転写酵素によって 40 作製したcDNAからクローニングすることによって得 られている。ヒト血清アルプミンについても、例えば特 開昭58-56684等にcDNAの調製法が開示され ている。

【0003】蛋白質をコードする遺伝子はその蛋白質の アミノ酸配列を1アミノ酸につきDNAの3塩基からな る潜伝暗号 (コドン) によってコードしているが、ある アミノ酸に対応する遺伝暗号は必ずしも1つではない。 そして、大量に発現している遺伝子では生物種によって 使用されている遺伝暗号に偏りがみられることが知られ 50 制限酵素部位を設ける。

【0004】従って、前記の方法で調製されたcDNA からなる遺伝子は高等真核生物において多用される遺伝 暗号からなる遺伝子であり、必ずしも大陽蘭等の原核生 物である微生物における発現に好適なものではない。

[0005]また、遺伝子を発現させるには適当な発現 制御系に接続する必要があり、より好適な発現制御系に 接続することによって同じ遺伝子の発現効率を飛躍的に 高めることが出来ることが知られている。遺伝子をより 好適な発現制御系に接続するためには、遺伝子中に存在 する無関離素部位等が適切に配置されていることが操作 上望ましく、特にコードする蛋白質のN末端付近の領域 に単一の制限酵素部位が存在することが望ましい。しか しながら、c DNAにおいては遺伝子中に存在する制限 酵素部位は全くランダムと言ってよく、操作上好適な配 置をとっている場合は極めて希である。

[0006]

[発明が解決しようとする課題] 上述の如く、高等真核 生物由来の蛋白質を原核生物である微生物を培養するこ とによって工業的に有利に生産するためには、目的遺伝 子をより好適な発現制御系に接続することとともに、遺 伝子本体もまた宿主たる原核生物である微生物において より効率よく発現するDNA配列を持ったものであるこ とが望まれる。また、より好適な発現系に接続するにあ たっての便宜上、適当な制限酵素部位が、適切に配置さ わていることが望まれる。本発明の目的は、cDNAを 用いて高等真核生物由来の蛋白質を原核生物である微生 物に生産せしめる方法の不完全さを是正し、より効率的 な遺伝子発現、蛋白質生産を行なうための技術を提供す ることにある。

[0007]

【観顧を解決するための手段】本発明者らは、高等真核 生物であるヒト由来の蛋白質であるヒト血清アルブミン を大腿菌等の原核生物である微生物においてより効率的 に生産するために、ヒト血清アルプミンのアミノ酸配列 をコードするDNA配列を、

①アミノ酸配列を変化させない。

②操作上有用と思われる制限酵素部位を残し、不用な制 関酵素部位を除く。

③目的蛋白質のN末端をコードする領域に単一の有用な

④安定な2次構造を取らないようにする。 ⑤大腸菌で多用されている遺伝暗号 (コドン) を用い

について考慮しながら設計し、化学合成したDNAのオ リゴマーから実際にヒト血清アルブミンを大腸菌等の原 核生物である微生物において著量生産させ得る合成DN Aを構築するとともに、この合成DNAを含有するプラ スミドで形質転換された微生物を培地中で培養すること により目的のヒト血清アルブミンを生産することがで き、本発明を完成するに至った。

[0008] さて、cDNAを用いて大腸菌(E. co 1 i) 、枯草菌 (B. subtilis) 等の微生物で ヒト血清アルプミンを生成する方法は、特開昭58-5 6684、特開昭58-150517、特開昭61-2 75229、特別昭62-215393などに関示され ている。しかしこれらは遺伝暗号(コドン)の選択の余 地の無いCDNAの持つ性格の故に、その発現効率、従 って生産量には自ずと限界があるものである。大腸菌等 においてのヒト血清アルブミン生産量の飛躍的な増加 は、本発明によって初めて可能となった。また、特開昭 62-29985には特定のアミノ酸配列から類推され るDNA配列一般が開示されているが、本発明のアミノ 融配列は特期図62-29985に開示されているアミ ノ酸配列とは多くの相違点がある。

【0009】本発明者らは原核生物に適したコドンに注 目して、ヒト血清アルプミンをコードするDNAをデザ インして化学合成した。

【0010】なお、オリゴヌクレオチドの合成にはトリ エステル法 (Nuc. Acid. Res. <u>10</u>, 655 3 (1982)) や、ホスホアミダイト法 (Tetra 30 hedron Letters 22, 1859 (198 1)) 等の方法がすでに開発されており、いずれの方法 を用いてもよい。

【0011】また、近年、合成に必要なヌクレオチドや 試薬のキット更には自動合成機器も市販されいるので、 当然これらを用いてもよい。

【0012】次にこの合成DNAを宿主に導入し、増 殖、発現させるために適当なプラスミドに組み込む。

【0013】本発明において用いられるプラスミドは特 に限定されないが大腸菌を宿主とする場合は通常よく利 40 用されるpSC101, pBR322, pUC19, p UC18, pHSG298, pHSG299, pHSG 398, pHSG399等を用いればよい。

【0014】また枯草菌を宿主とする場合には、pUB 110, pC194, pE194等を用いればよい。 【0015】パチルス・プレビスを宿主とする場合は、 pHY500, pNU200 (Proc. Natl. A cad. Sci. USA, <u>86,</u> 3589 (198 9)) 等を用いればよい。もちろん、繰り返し述べる が、本発明は上記プラスミドベクターに限定されるもの 50 ③N末端のなるべく近くに遺伝子内で単一の制限酵素部

ではない。

【0016】次に、このようにして得た組み換えDNA で宿主を形質転換するのである。形質転換法として①細 胞を塩化カルシウム、塩化ルビジウム、または燐酸カル シウムで処理する方法(塩化カルシウム、塩化ルビジウ ム、または燐酸カルシウム法)、②電気パルスによる方 法 (エレクトロポーレーション法)、3プロトプラスト を利用する方法 (プロトプラスト法) 等の方法がある が、いずれの方法を用いてもよい。またその他の方法を

用いてもよい。最後にこの形質転換体を培地中で培養し て菌体内に生産もしくは培地中に分泌させ、それを精製 するのであるが、このプロセスは通常用いられる以下の 方法に従えばよい。

【0017】培地は適当な炭素源、窒素源、無機塩類、 使用菌株が特に要求する物質を含んだものを用いればよ い。培養時間は使用菌株によって多少異なり特に限定さ れないが、通常5時間から100時間程度でよい。

[0018] 生成物の取り上げ方法は、菌体内に颗粒状 に生産させた場合は、集菌後菌体をリゾチーム、超音波 等で処理して破砕し、低速遠心によって顆粒を沈豫、採

取し、尿素や塩酸グアニジン等で処理して可溶化する。 それを希釈や透析等によって巻き戻しを行い、通常よく 用いられるHPLC法等によって精製すればよい。培地 に分泌生産した場合は、菌体を除去後、培地から通常よ く用いられるHPLC法等によって精製すればよい。

【0019】以下、本発明を実施例に従って具体的に説 明する。

[0020] 【実施例1】

[全合成ヒト血清アルブミン遺伝子の構築]

遺伝子の設計 現在の合成DNA技術と、本発明者らの採用している精

別法では安定して得られるDNA鎖は最大70塩基程度 である。ヒト血清アルプミンは585アミノ酸であるの で1755塩基の遺伝子が少なくとも必要であり、少な くとも25本程度に分割して合成する必要がある。また 2本鎖としてプラスミドに組み込む必要があるので、そ の2倍のDNAを合成する必要がある。またプラスミド に組み込んだ時点で塩基配列の確認が必要なので確実に 塩基配列が確認できる長さに分けてプラスミドに組み込 む方が操作上都合がよい。従って全体を一度に組み立て るのではなく、8つ程度の部分に分けてフラグメントの 集合を行い、そこで塩基配列の確認を行ってから全体を 構築することにした。

[0021]以上の前提条件をもとに、

①ヒト血清アルプミンのアミノ酸配列を変化させない。 ②集合させる時に用いる制限酵素の認識部位を必要なだ け持たせる。

【0022】 (不必要な認識部位を除く。)

位を1つ特たせる。(様々な発現システムへ容易に遺伝子を接続することを可能にする。)

の安定な2次構造を取らないようにする。

⑤大腸菌で汎用されている遺伝子暗号をなるべく用いる。

の順番に条件を考慮しながら遺伝子の設計を行った。ヒ ト血情アルブミンのアミノ酸配列は複数の文献によって 開示されているが、それらは互いに少しずつの指象があ る (FEBS LETTERS <u>58</u>, 134, (19 75)、Nucleic Acids Researc h <u>9</u>, 6103, (1981)、Proc. Nat 1. Acad. Sci. USA, <u>79</u>, 71, (198 2)、J. Biol. Chem. <u>261</u>, 6747, (1986)

 $[0\,0\,2\,3]$ 本発明者らは、一般にDNAの配列を求める方がアミノ酸の配列を求めるよりも信頼性が高いと考えられること、報告されている年次が新しいことの2つの理由により、アミノ酸配列そのものを決定した文献ではなく、mRNAより件製したcDNAの塩基配列を決定することによってアミノ酸配列を報告してめ上較的20新しい文献、即ち、Nucleic Acids Research 9、6103 (1981) 及びProc.Natl. "Acad. Scl. USA、79、7

1、(1982)を主に参考にした。

[0024] しかし、上述の2つの文献に示されたCD NAから頻推されるアミノ酸配列にも2ヶ所の相違点が ある。すなわち1つは始児の肝臓から取ったmRNAから頻解したもの(Nucleic Aclds Res earch 9,6103(1981))、もうしは 成人の肝臓から取ったmRNAから頻推したもの(Pr oc. Natl. Acad. Scl. USA, 79、 71、(1982))である。

(0025) 本発明者らは実用性を考えて成人の配列を 採用した。コンピュータを用いてアミノ酸配列から取り 得る耐限酵素能位を検索し、それをもとにして大腸菌で 汎用されているコドンを選びながら制限酵素部位の取締 選択を行い、DNA配列の最初の候補を作成した。

[0026] その候補配列をコンピュータの高次構造検 紫ブログラムに入力し、著しい二次構造を検索し、取り 除いた。最終的に決定した遺伝子の塩基配列を図1に示

【0027】この設計した遺伝子でのコドンの使用割合 ウを以下に示した。 【0028】

(表1)

TIT-Pho 1(0.17%) TCT-Ser15(2.56%) TAT-Tyr 0(0.00%) TGT-Cy 0 (0.00%) TTC-Ph=30(5.13%) TCC-Ser 8(1.37%) TAC-Tyr 18 (3.08%) TGC-Cy=35 (5.98%) TT&-Leu 0(0.00%) TCA-Ser 1(0.17%) TAL-*** 0(0.00%) 164---- 0(0.00%) 7CG-Ser 0(0.00%) TTC-Low 0(0.00%) TAG-+-- 0(0.00%) TGG-Tro 1 (0.17%) CCT-Pre 0(0.00%) CTT-Las 3(0.51%) CGT-Ara13(2,22%) CAT-UI: 0(0.00%) CTC-Les 1(0.17%) CCC-Pre 0(0.00%) CAC-81+16(2.74%) CGC-AralO(1.71%) CT4-Les 3(0.51%) CCs-Pro 1(0.17%) CAA-Gla 1(0.17%) CGA-Arg 1(0.17%) CTG-Lax54 (9.23%) CCG-Pro23(3.93%) CCC-Are 0(0.00%) CaC-Gla19(3.25%) ATT-114 0 (0.00%) ACT-Thr 7(1.20%) ACT Ser 0(8.00%) 44T-4se 0(0.00%) --ACC-Th+21(3.59%)_ ATC-11e 8(1.37%) A4C-Ase17(2.91%) ACC-Ser 0(0.00%) ATA-11= 0 (0.00%) 4C4-Thr 0(0.00%) 444-Lys58(9.91%) 4C4-4r4 0(0.00%) ATG-Ret 8(1.03%) ACE-Thr 0(0,00%) 446-Lys 2(0.34%) ACC-Are 0(0.00%) 577-V-V17(2.91%)_ GCT-A1+22(3,76%) GAT-829 1(0.1736) set-cly 9(1.54%) GTC-Val 1(0.17%) CCC-A1. ((0.00%) EAG-#= p35 (5.98%) sec-st. 3(0.5(%) STA-Tail3(2.22%) GGA-A1+22(3.76%) GAA-61+57(9.74%) GGA-G1y 0(0.00%) GCG-A1+18 (3.08%) GTG-Yall0(1.71%) EAG-GI 4 ((0.68%) EGG-E17 0(0.00%)

[0029] 下線を施した部分は、大腸菌で大量に発現 するとされている遺伝子に広く用いられているコドン (メジャーコドン)と、一種類しかない、メチオニン、 トリプトファン、それにコドンユーセージ上片寄りが見 られないシステインのコードである(参考文献:細胞工 学, 2, 1541(1983))。上記のようにほとび ビメジャーコドンを用いて遺伝子を設計することができ た。アミノ酸配列のもとにした文献のヒト血槽アルブミンをコードするエクソン部分のDNA配列について同じことを行なうと以下のようになり、大鵬衛におけるメジャーコドンの使用頻度はむしろ低いことが判明した。 (0030]

【表2】

,	0,
TTT-Ph=21(3.58%)	161-Ser 3(0.51%)
TAT-Tyr12(2.05%)	IGT-G++15 (2.56%)
77C-Pb=10(1.71%)	ICC-Ser 5(0.85%)
IAC-Tyr 6(1,02%)	fGC-C+=20 (3.41 %)
TTA-Lea10(1.71%)	fC4-Ser 6(1.02%)
TA4 1(0.17%)	TG4-+++ 0(0.00%)
TTG-Let 12(2.05%)	TCG-Ser 2(0.34%)
TAG 0(0.00%)	IGS-Tre 1(0.17%)
CTT-Louis(3.07%)	CCT-Pre10(1.7)%)
CAT-B1+11(1.88%)	EGT-Are 2(0.34%)
CTC-Las S (0.85%)	CCC-Pre 6(1.02%)
CAC-81: 5(0.85%)	GEC-Are 1(0.17%)
C74-Les 4(0.68%)	CCA-Pro 7(1.19%)
CAA-61:10(1.71%)	CGA-Ars 2(0.34%)
CIG-Lex12(2.05%)	CCG-Pro 1 (0.17%)
CaG-G1-10(1.71%)	CGG-are 2(0.34%)
ATT-[14 3(0.51%)	ACT- Tar T(1.19%)
AAT-Asa10(1.71%)	AET-Ser 8(1.02%)
ATC-11a 4(0.68%)	ACC-The 7(1,1996)
AAC-Asa 7(1.19%)	1GC-Ser 2(0.34%)
ATA-[1=)(0.1756)	ACA-Thr12(2.05%)
444-Lys41(7,00%)	a6a-ara13(2.22%)
ATE-Hat 5(1,02%)	ACE-Thr 2(0.34%)
44G-Lys19(3.24%)	ASS-Ara 4(0.68%)
GTT-Y=111(1.88%)	SCT-A1=29(4.95%)
GAT-44,25 (4.27 %)	SET-SIX 2 (0.34%)
6TC-7a1 7(1.19%)	GCC-11=14(2.39%)
CAC-A-p11(1,88%)	### (0.51%)
STA-Val 7(1.19%)	GC4-41+17(2,90%)
GAA-Glu31(8.31%)	EE4-Gly 6(1.02%)

【0031】さて、図1に示した配列において、最初に あるAAGCTTのHindIII部位は遺伝子構築の 便宜上、付加したものである。またN末端近くにユニー クな制限酵素部位を導入する目的で、認識部位と切断部 位とが觸れているFoklを図2のように減入して切り 離すようにした。

686-61+24(4.10%)

【0032】Fok I は認識部位の9塩基/13塩基 (上側鎖/下側鎖) 3 側を切断するので、認識部位を 40 図2のようにアミノ酸配列の5'に隣接して置くことに より血清アルプミン遺伝子のN末端近くで切断できるよ うになる。ただしこのためには、遺伝子中のFok I 認 職配列を全て除いておく必要がある。

【0033】遺伝子全体の構築に用いる制限酵素はHi ndlii, Koni, Sali, Psti, Xba I, Sphi, BamHiとした。これらの酵素での切 断点地図を図3に示した。

【0034】 DNAの化学合成

トに分割し、Applied Biosystems社 のDNA合成機を用いて各々のフラグメントの両鎖をホ スポアミダイト法 (Tetrahedron Lett ers 22, 1859 (1981)) によりそれぞ れ合成した。

[0035] 遺伝子の構築

606-41- 2(0.34%)

GGG-61+ 1(0,17%)

合成したDNAの260nmの吸光度を測定して濃度を 決定した後に、1回の操作で約100ピコモルを用い た。図3、4に示した制限酵素で8つのブロックにわ け、各プロックを構成する各断片の両鎖をアニールし、 T4リガーゼでライゲーションして各プロックに相当す る断片を生成させ、それらをpUC18もしくはpUC 19にクローン化した。クローン化した各プロックのD NA配列をジデオキシ法 (Science, 214, 1 205 (1981)) によって少なくとも2回にわたっ て確認した後、各プロックの断片を調製した。次に各断 片約1μgとpUC18またはpUC19約1μgを用 設計したDNA配列(図1)を図4のようにフラグメン 50 いてライゲーションを行い、ブロック1, 2, 3とプロ 11

ック4,5と、プロック6,7,8とをそれぞれ避結した中間的プロックをpUC18またはpUC19での一つがした。 最後に3つの中間的プロック約1 μ gとpUC19約1 μ gとpUC19約1 μ gとpUC19約1 μ gとpUC19約1 μ gとpUC19約1 μ gとpUC19約1 μ gとpUC19pUP19pUC19p

[0036]

[実施例2]

(契集的2) [発金成と上海前アルブミン遺伝子の大陽前での発現] 前出の方法と合成機を用いて図5に示すような合成DN D D を作成した。 28、同陸の、50 記りポケーム発台館 位を表す。次にこの合成DNAと先ほど作成したプラスミドの15 S (N c o) (J. B i o c he m. , 104, 3 o (1988)) とから図6に示すように発現プラスミドの5 S (N c o) は、工業技術機能をあ工業研究所に寄託されいる保持 歯株 A J 1 2 4 4 7 (FERM P-10757) かち 調響した。

[0037] この発現プラスミドpSDHSA4の開設 20 の評細は以下の通りである。即ち、pHSAをFokI とBamil で切断し、最も大きな断片(合成とト血情 アルブミン遺伝子の大部分を含む約1.8 kb断片)を 開製する。一方、pT13s (Nco)をC1aIとB amH1で切断し、大きい方の断片(trpプロモーター、ターミネーター、アンピシリン耐性遺伝子を含む約 2.6 kbm片)を調製する。この両者と聞るに示した 合成DNAとをT4リガーゼでライゲーションしてpS DHSA4を構築した。

[0038] このようにして得られたプラスミドpSD 30 HSA4は、trpプロモーター・オペレーターの制御 下、Met残器に成熟型HSAが直接連結した蛋白を発 現するように設計されており、転写ターミネーターとし てtrpAターミネーターを備えている。

[0039] 次にこの発現プラスミドpSDHSA4で 通常よく用いられる塩化ルビジウム技を用いて大幅層片 B101株を形質転換し、形質転換株HB101/pS DHSA4を得た。この株をグルコーズ、酵母エキス、 KHPO、NHC1, MgSO、CaC1, ビタ ミンB1を含む地位で増美した。増美開放後4時間でイ シドールアクリル酸による誘導をかけ、誘導後的15時 間略養したところ。循体内に開始が生態していた。

[0040] 集階後、20mM TrisーHCI 3 0mM NaCI 0.5M EDTAバッフアーに懸 層し、0.25mg/mlリゾチームで0で1時間処理 後、超音波破砕した。顕粒を低速遊沈後、20mM T risーHCI 30mMNaCI 0.5M EDT Aパッフアーにて洗浄、再び遊沈し、10mM EDT A冷液に影響し、軽粒回分とした。

[0041] 図7 (A) はHB101, HB101/p 50 シン耐性を賦与する(図9)。

SDHSA4の全菌体蛋白及び顆粒画分をSDSポリア クリルアミド電気泳動した図である。図中の1,2, 3、Mの略号は以下の通りである。

[0042] 1. HB101全菌体蛋白 2. HB101/pSDHSAE12全菌体蛋白 3. HB101/pSDHSAE12顆粒画分

M. 分子量マーカー

HB101/pSDHSA4の薄体蛋白には、宿主のH B101には見られない分子量約67 Kのパンドが認め の られ、それは、顆粒配分に回収されている。とかは ルブミンの分子量は約67 Kであり、予定された分子量 の蛋白が顆粒として生成していることがわかった。

[0043] 図7 (A) と同様の電気泳動後(蛋白量は 1/30)、抗HSA杭体でウェスタンブロッテイング を行なうと図7 (B) のようなパターンになり、颗粒状 生成した蛋白は抗ヒト血情アルブミン抗体と反応するこ とが示された。

【0044】 顆粒をの地域的グアニシンで可称化し、ジ チオスレイトールを加えて(f1nal 0.1M) 1 00で29処理後、逆相HPLでて顆粒蛋白を精製した。これをアミノ酸シークエンサーにかけ、N末端付近 のアミノ酸配列を調べたところ、図ののように、調べた 167ミノ酸残基の全てが一致した。なお、同図中、O bservedは実際に観察された配列を、Predi ctedは予定した配列をそれでれずる。

【0045】以上のことから、大陽菌においてN末端に Met残基の付加した形でヒト血清アルブミンを顆粒状 に生成することができたことが示唆された。

[0046] 形質転換株HB101/pSDHSA4 (AJ12498) は、工業技術院微生物工業研究所に 寄託されている(FERM P-11208)。

[0047] 顆粒を6Mグアニジンで可溶化係、1Mジ オオレイトールを1/10量加えて100℃2分で選 元を行い、逆相1F1とによって定量したところ本培養 によるヒト血精アルブミンの生成量は15~20mg/ L/O、Dであった、特開配61~27529には、 大勝菌における最高生成量5~10mg/L/O、Dが 記載されている。本発明による生成量は、この最高生成 量を2倍以上に関るめである。

(0 [0048] 【実施例3】

[ヒト血清アルプミンの枯草菌における分泌生産]

本発明者らは、まず枯草菌のベクターとして多用される pUB110 (J. Bacteriol. 134, 31 8 (1978)) と大腸菌のベクターpBR327 (G ene 9, 287 (1980)) とをEcoRI部位 で連結し、大腸菌と枯草菌の両方で微型可能なシャトル ベクターpBU4371を構築した。pBU4371 は、大腸菌ではアンビシリン耐性、枯草菌ではカテマイ さいたけた生性する (280)

【0049】枯草菌のα-アミラーゼ遺伝子amvEの うち、α-アミラーゼの発現と分泌に必要な部分は、約 4kbの領域に存在しており、大腸菌β-lact amaseを枯草菌で分泌するプラスミドpTUB25 6 (Biochem, Biophys, Res. Com mun. 134, 624, (1986)) では、この領 域が0.4kb HIndIII断片として得られる。 【0050】図10は、α-アミラーゼの分泌に必須で あり分泌時には切り離されるシグナルペプチドの切断点 (A 1 a 3 3) 付近のアミノ酸配列及びDNA配列を示 10 している。任意のタンパク質の遺伝子を介在配列なしに シグナルペプチド切断点の直後に連結するためには、切 断点の直前と目的遺伝子のN末端の直後に、アミノ酸配 列を変えることなくユニークな制限酵素部位を配置し、 その間を切断点とN末端を丁度つなげるようなアミノ酸 配列をコードする合成DNAで連結するとよい。切断点 付近のアミノ酸配列から考えられるDNA配列をもとに 可能な制限酵素部位を検索したところ、HanII部位 の直後、Ala30をコードする配列をGCTからGC Cに置換することによって唯一のNot I部位が導入で 20 きることが判った。

【0051】そこで、図11のような合成DNAをAp nlied Blosvstems社製のDNA合成機 を用いて作製し、次に図12のようにして汎用分泌ペク ターpASECIを構築した。pASECIは、これを NotlとSmalで切断し、任意の目的遺伝子の3' 末端を平滑化してN末端付近の適当な制限酵素Eで切断 しておき、両者を5'末端がNot! cohesiv eで3'末端が制限酵素Eに合うような合成DNAで連 紡することによって、amvEのシグナルペプチド切断 30 点と任意の目的蛋白とが直接連結した遺伝子を構築する ことができるようになっている。

【0052】<u>HSA分泌プラスミドの構築</u>

まず図13に示すような2本の合成DNAを作製した。 この2つの合成DNAと実施例1で構築した全合成ヒト 血清アルプミン遺伝子を含むプラスミドpHSA(図3 参照) 及びプラスミドp UC19とから、プラスミドp UC33HSAを構築した(図13)。

【0053】 このプラスミドpUC33HSAの構築の 詳細を以下に示す。

[0054] 即ち、pHSAをFokIとBamHIで 切断し、最も大きな断片(合成ヒト血清アルプミン遺伝 子の大部分を含む1.8kb断片)を顕製する。一方、 pUC19をBamHIとHindIIIで切断してお く、これらと関13中に示した2本の合成DNAとをT 4 リガーゼで連結し、目的のプラスミドpUC33HS Aを構築した。

【0055】 さて次にプラスミドpUC33HSAを制 閉酵素BamHIで処理した後にクレノウ処理し、次い の断片と、プラスミドpASECIをNot1, Sma I で処理して得た7.5kbの断片とをT4リガーゼを 用いて結合させた。このようにして得られたプラスミド がヒト血清アルプミン分泌プラスミドpAMY33HS A 4 である (図14)。

【0056】 枯草菌によるヒト血清アルプミンの分泌 当業者ならば容易に入手し得る枯草菌1A510株 (J. Bacteriol. 165, 934 (198 3) を上述のプラスミドpAMY33HSA4でプロ トプラスト法により形質転換し、形質転換株1A510 /nAMY33HSA4を得た。

【0057】 このようにして得た形質転換株1A510 **ノ**pAMY33HSA4とコントロールとしてプラスミ ドn B U 4 3 7 1 を有する形質転換株 1 A 5 1 0 / p B U4371との両方をトリプトン、酵母エキス、NaC 1、カゼインを含む培地で37℃で振盪培養した。1 16.18時間で培養液をサンプリングし、培養上 清を1μ1ずつ1回及び5回ナイロンメンプランにスポ ットして抗ヒト血清アルプミン抗体を用いてドットイム ノブロッテイングを行なったところ、図15に示すよう に、ヒト血清アルブミンが培地に分泌生成していたこと が確認された。なお、同図中においてStandard stt, SIGMADEssentialgloblin free HUMAN Albuminを用いた。B rothの位置には、培地をスポットした。図中の1. 2. 4. 5の位置には1A510/pAMY33HSA 4を、3、6の位置には1A510/pBU4371を それぞれスポットした。

【0058】形質転換株1A510/pAMY33HS A4 (AJ12493) &1A510/pBU4371 (A J 1 2 4 9 2) は、工業技術院微生物工業研究所に 寄託されている。その寄託番号は、1A510/pAM Y33HSA4#FERMP-11207T, 1A51 0/pBU4371がFERM P-11206であ

[0059]

(宝施例4)

[全合成ヒト血清アルプミン遺伝子の構築] 遺伝子の設計

40 実施例1と同様の順番に条件を考慮しながら遺伝子の設 計を行った。ヒト血清アルプミンのアミノ酸配列は複数 の文献によって開示されているが、それらは互いに少し ずつの相違がある (FEBS LETTERS 58. 134, (1975), Nucleic Acids Research 9, 6103, (1981), Pr oc. Nat 1. Acad. Sci. USA, 79, 7 1, (1982). J. Bioi. Chem. 261, 6747, (1986)).

【0060】本発明者らは、一般にDNAの配列を求め でNot1で処理することによって得られた1.8kb 50 る方がアミノ酸の配列を求めるよりも信頼性が高いと考 えられること、mRNAから逆転写によって作成される cDNAでは、逆転写の際に塩基の間違いが生じ易いこ と、報告された年次が新しいことの3つの理由により、 ヒト染色体上のアルプミン遺伝子のDNA塩基配列とア ミノ酸配列を決定した文献に報告されているアミノ酸配 列が最も信頼性が高いと判断し、J. Biol. Che m. 261, 6747, (1986) に報告されたアミ ノ酸配列を採用した。

【0061】コンピュータを用いてアミノ酸配列から取 り得る制限酵素部位を検索し、それをもとにして大腸菌* *で汎用されているコドンを選びながら制限酵素部位の取 **捨選択を行い、DNA配列の最初の候補を作成した。**

【0062】その候補配列をコンピュータの高次構造検 索プログラムに入力し、著しい二次構造を検索し、取り 除いた。最終的に決定した遺伝子の塩基配列を図16に 示した。

【0063】この設計した遺伝子でのコドンの使用割合 を以下に示した。

[0064] 【表3】

【0065】下線を施した部分は、大腸菌で大量に発現 20%た。アミノ酸配列のもとにした文献のヒト血清アルブミ するとされている遺伝子に広く用いられているコドン (メジャーコドン)と、一種類しかない、メチオニン、 トリプトファン、それにコドンユーセージに片寄りが見 られないシステインのコードである(参考文献:細胞工 学、2、1541(1983))。上記のようにほとん どメジャーコドンを用いて遺伝子を設計することができ※

ンをコードするエクソン部分のDNA配列について同じ ことを行なうと以下のようになり、大腸菌におけるメジ ャーコドンの使用頻度はむしろ低いことが判明した。 100661

【表4】

TT-Pho210		TCT-Ser 3(.511)	TAT-Tyr12(2.052)	TGT-Cyal&(2.56%)
TTC-Ph=10(TCC-Ser 51	.853)	TAC-Tre 6(1.02%)	TGC-Cym20(3.41%)
TTA-Lee10		TCA-Ser B(1.021)	T44-+++ 1 (. 178)	164:000 0(.001)
110-Low120	2.051)	160-3er 20	.341)	TAG-040 0	.00%)	TGG-Tre 1	.17%)
CTT-Leu171	2.90%)	CCT-Pro100	1.7131	CAT-B1-11 (1.88%)	CGT-Arz 21	.3433
CTC-Leu 8	1.02%)	CCC-Pro 8(1.021)	CAC-His 50	. 85%)	CGC-Arg 1	.1787
CTA-Leu 4	(.Bax)	CCA-Pro 71	1.10%	Can-Glalle	1.6821	CGA-Are 20	.3421
CIG-Louiz	(Z.05%)	CCG-Pro 10	.1711	CAG-GIn 9	1.54%	CGG-Are 20	.34%)
ATT-110 3	.5121	ACT The 70	11021	Idi-Inell		AGT-Ser 60	1.025
ATC-II- A	(208.	ACC-The 80	114576	AAC-Asn B	1.0241	AGC-Ser 20	341)
1 12:11: 1	1725	ACA-Thrill		AAA-Lys40		AGA-Arel3	2.222)
ATR-Nat E	(1.D7%)	ACG-Thr 20		AAG-Lys19		AGG-Are 40	.88%)
GTT-Val12	(2.051)	GCT Alaze	4.85%)	GAT-Asp25	4.27%)	GGT-G1y 20	.34X)
GTC Val 7	(1.193)	GCC-Alai4	2.391)	GAC-Ampli		GGC-G1+ 31	.51%)
GIA-Yal 7	(1,191)	GCA-Alai7	2.901)	GAA-GLu38		GGA-GIY B	1.0283

【0067】さて、図16に示した配列において、最初 にあるAAGCTTのHindlll部位は遺伝子構築 の便宜上、付加したものである。またN末端近くにユニ ークな制限酵素部位を導入する目的で、認識部位と切断 40 部位とが離れているFoklを図2のように導入して切 り離すようにした。

【0068】FokIは認識部位の9塩基/13塩基 (上側鎖/下側鎖) 3' 側を切断するので、認識部位を 図2のようにアミノ酸配列の5°に隣接して置くことに より血清アルプミン遺伝子のN末端近くで切断できるよ うになる。ただしこのためには、遺伝子中のFok I 認 職配列を全て除いておく必要がある。

【0069】遺伝子全体の構築に用いる制限酵素はHi

I. Sphi. BamHiとした。これらの酵素での切 断点地図を図17に示した。

【0070】 DNAの化学合成

設計したDNA配列(図16)を図18のようにフラグ メントに分割し、Applied Biosystem s 社のDNA合成機を用いて各々のフラグメントの両鎖 をホスホアミダイト法 (Tetrahedron Le tters 22, 1859 (1981)) によりそ れぞれ合成した。

【0071】遺伝子の構築

合成したDNAの260nmの吸光度を測定して濃度を 決定した後に、1回の操作で約100ピコモルを用い た。図17、18に示した制限酵素で8つのプロックに nd III. Kpn I. Sal I. Pst I. Xba 50 わけ、各プロックを構成する各断片の両鎖をアニール

し、T4リガーゼでライゲーションして各プロックに相 当する断片を生成させ、それらをpUC18もしくはp UC19にクローン化した。クローン化した各プロック のDNA配列をシデオキシ法(Science, 21 4, 1205 (1981)) によって少なくとも2回に わたって確認した後、各プロックの断片を顕製した。次 に各断片約1μgとpUC18またはpUC19約1μ gを用いてライゲーションを行い、プロック1, 2, 3 とブロック4, 5と、ブロック6, 7, 8とをそれぞれ 連結した中間的プロックをpUC18またはpUC19 10 にクローン化した。最後に3つの中間的プロック約1 μ gとpUC19約1μgを用いてライゲーションを行 い、全プロックを連結した目的の遺伝子を含むプラスミ ドpHSAE2を構築した(図17)。

[0072] 【実施例5】 「全合成ヒト血清アルブミン遺伝子の大腸 菌での発現 (1)]

前出の方法と合成機を用いて図5に示すような合成DN Aを作成した。なお、同図中、SDはリポソーム結合部 位を表す。次にこの合成DNAと先ほど作成したプラス 20 ミドpHSAE2及びプラスミドpT13s (Nco) (J. Blochem., 104, 30 (1988)) とから図19に示すように発現プラスミドpSDHSA E12作成した。なお、プラスミドpT13s (Nc o) は、工業技術院微生物工業研究所に寄託されている 保持菌株AJ12447 (FERMP-10757) か ら調製した。

【0073】この発現プラスミドpSDHSAE12の 調製の詳細は以下の通りである。即ち、pHSAE2を FoklとBamHIで切断し、最も大きな断片(合成 30 ヒト血清アルプミン遺伝子の大部分を含む約1.8kb 断片) を開製する。一方、pT13s (Nco) をC1 a I とB amH I で切断し、大きい方の断片(trpプ ロモーター、ターミネーター、アンピシリン耐性遺伝子 を含む約2.6kb断片)を調製する。この両者と図5 に示した合成DNAとをT4リガーゼでライゲーション してpSDHSAE12を構築した。

【0074】 このようにして得られたプラスミドpSD HSAE12は、trpプロモーターーオペレーターの 制御下、Met残基に成熟型HSAが直接連結した蛋白 40 を発現するように設計されており、転写ターミネーター としてtrpAターミネーターを備えている。

【0075】次にこの発現プラスミドpSDHSAE1 2で通常よく用いられる塩化ルビジウム法を用いて大腸 菌HB101株を形質転換し、形質転換株HB101/ pSDHSAE12を得た。この株をグルコース、酵母 T+Z, KH2PO, NH4C1, MgSO, CaC1 1, ビタミンB1を含む培地で培養した。培養開始後4 時間でインドールアクリル酸による誘導をかけ、誘導後 約15時間培養したところ、繭体内に顆粒が生成してい 50 【0084】

[0076] 集菌後、20mM Tris-HC1 3 0mM NaCl 0.5M EDTAパッフアーに懸 獨し、0. 25mg/mlリゾチームで0℃1時間処理 後、超音波破砕した。顆粒を低速遮沈後、20mM T ris-HCl 30mMNaCl 0.5M EDT Aパッフアーにて洗浄、再び遠沈し、10mM EDT A溶液に懸濁し、顆粒両分とした。

[0077] 図7 (A) はHB101、HB101/p SDHSAE12の全菌体蛋白及び顆粒両分をSDSボ リアクリルアミド電気泳動した図である。図中の1. 2. 3. Mの略号は以下の通りである。

- [0078]
- 1. HB101全藤体蛋白
- HB101/pSDHSAE12全南体蛋白
- 3. HB101/pSDHSAE12顆粒画分
- M. 分子量マーカー

HB101/pSDHSAE12の菌体蛋白には、宿主 のHB101には見られない分子量約67Kのパンドが 認められ、それは、顆粒画分に回収されている。ヒト血 情アルプミンの分子量は約6.7Kであり、予定された分 子量の蛋白が顕粒として生成していることがわかった。

【0079】図7(A)と同様の電気泳動後(蛋白量は 1/30)、抗HSA抗体でウェスタンプロッテイング を行なうと図7 (B) のようなパターンになり、頸粒状 生成した蛋白は抗ヒト血清アルプミン抗体と反応するこ とが示された。

【0080】類粒を6M塩酸グアニジンで可溶化し、ジ チオスレイトールを加えて (final 0.1M) 1 00℃2分処理後、逆相HPLCで顆粒蛋白を精製し た。これをアミノ酸シークエンサーにかけ、N末端付近 のアミノ酸配列を調べたところ、図8のように、調べた 16アミノ酸残基の全てが一致した。なお、同図中、O bservedは実際に観察された配列を、Predi c t e dは予定した配列をそれぞれ示す。

【0081】以上のことから、大腸菌においてN末端に Me t 残基の付加した形でヒト血清アルプミンを顆粒状 に生成することができたことが示唆された。 [0082] 形質転換株HB101/pSDHSAE1

2 (A J 1 2 5 7 6) は、工業技術院微生物工業研究所 に寄託されている (FERM P-11804)。 【0083】 類粒を6Mグアニジンで可溶化後、1Mジ チオスレイトールを1/10最加えて100℃2分で潤 元を行い、逆相HPLCによって定量したところ本培養 によるヒト血清アルプミンの生成量は15~20mg/ L/O. Dであった。特開昭61-275229には、 大腸菌における最高生成量5~10mg/L/O. Dが 配載されている。本発明による生成量は、この最高生成 量を2倍以上上回るものである。

【実施例6】

[ヒト血清アルブミンの枯草蘭における分泌生産] 本発明着らは、まず枯草菌のベクターとして多用される PUB110 (1. Bacteriol. 134, 318 (1978))と大腸菌のベクターpBR327 (Gene 9.287 (1980))とそにのRIの位で連絡し、大腸皮と枯草剤の両方で複製可能なシャトルベクターpBU4371を構築した。pBU4371は、大腸菌ではアンビシリン耐性、枯草菌ではカナマイシン耐性を易やする (図9)。

【0085】枯草菌のα-アミラーゼ遺伝子amyEの うち、α-アミラーゼの発現と分泌に必要な部分は、約 4kbの領域に存在しており、大陽南8-1act amaseを枯草繭で分泌するプラスミドnTUB25 6 (Biochem, Biophys, Res. Com mun. 134, 624, (1986))では、この領 域が0.4kb HindIII断片として得られる。 【0086】図10は、α-アミラーゼの分泌に必須で あり分泌時には切り離されるシグナルペプチドの切断点 (Ala33) 付近のアミノ酸配列及びDNA配列を示 している。任意のタンパク質の遺伝子を介在配列なしに シグナルペプチド切断点の直後に連結するためには、切 断点の直前と目的遺伝子のN末端の直後に、アミノ酸配 列を変えることなくユニークな制限酵素部位を配置し、 その間を切断点とN末端を丁度つなげるようなアミノ酸 配列をコードする合成DNAで連結するとよい。切断点 付近のアミノ酸配列から考えられるDNA配列をもとに 可能な制限酵素部位を検索したところ、HapII部位 の直後、Ala30をコードする配列をGCTからGC Cに置換することによって唯一のNoti部位が導入で 30 きることが判った。

【0087】モこで、図11のような合成DNAをApplied BlosystemsがののNA合成機を用いて作製し、水区図12のよう板のDNA合成機クーカス5EC1は、まれをNot1とSmalT切断し、任意の目的遺伝子の3、末端を平滑化して下水端付近の適当な傾倒酵素とで切断しておき、両者を5、末端がNot1 Cohesiver3、末端が開酵素を1でもような合成DNAで連結することによって、amyEのシグナルベブチド切断の点と低の目的取日とが直接変換した遺伝子を構築することができるようになっている。

【0088】 H S A 分泌プラスミドの構築

まず図20に示すような2本の合成DNAを作製した。 この2つの合成DNAと実施例4で構築した全合成ヒト 血清アルブラン造伝子を含むブラスミドpHSAE 2 (図17参照)及びブラスミドpUC19とから、ブラスミドpUC33HSAEを構築した(図20)。 [0089]このブラスミドpUC33HSAEの構築の評価を以下に示す。 【0090】即ち、pHSAE2をFok IとBamH Iで切断し、最も大きな断片(含成ヒト血精アルブミン 遺伝子の大部分を含む1.8kb 所分)を調整する。一 方、pUC19をBamHIとHIndIIIで切断し ておく。これらと図20中に示した2本の合成DNAと をT4リガーゼで連結し、目的のプラスミドpUC33 HSAEを構築した。

【0091】もて次にプラスミドpUC33HSAEを 制限酵素BamH1で処理した後にクレノウ処理し、次 のい下ので1で処理することによって得られた1.8k bの断片と、プラスミドpASEC1をNで11,8m aIで処理して得た7.5kbの断片とをT4リガーゼ を用いて結合させた。このようにして得られたプラスミ ドがヒト血清アルブミン分格プラスミドpAMY33H SAE2である「図21)。

【0092】枯草菌によるヒト血清アルプミンの分泌

当業者ならば容易に入手し得る枯草蘭 1 A 5 1 0 株 (J. Bacteriol. <u>165</u>, 934 (198 3)) を上述のプラスミド p A M Y 3 3 H S A E 2 でプ ロトプラスト法により形質転換し、形質転換株 1 A 5 1

0/pAMY33HSAE2を得た。
[0093] このようにして得た形質転換株1A510
/pAMY33HSAE2にコントロールとしてプラス
ミドpBU4371との両方をトリアン、酵母エキス、Na
C1、カゼインを含む培地で37℃で製造酵養した。1
4、16、18時間で増養被をサンプリングし、増養上
(清を1ヵ1号71回及び5回イイロンメンプランにスポットして抗ヒト血精アルプミン抗体を周15でデオティース・スカースプロッティングを行なったところ、図15に示すよう
、ヒト血精アルブミンが様に分泌生成していたこと

が確認された。なお、同図中においてStandard skt、SIGMAのEssentlalgloblin free HUMAN Albuminを用いた。Brothの位置には、増進をスポットした。図中の1, 2, 4, 5の位置には1A510/pAMY33HSAE2を、3,6の位置には1A510/pBU4371をそれぞれよかとした。

【0094】形質転換株1A510/pAMY33HS Ø AE2 (A112578)と1A510/pBU437 1 (AJ12492)は、工業技術院療生物工業研究所 に寄託されている。その部託番号は、1A510/pA MY33HSAE2がFERM P−11806で、1 A510/bBU4371がFERM P−11206

[0095]

【実施例7】 [全合成ヒト血清アルブミン遺伝子の大勝 第での発理(2)]

大腸菌でのもう1つの発現プラスミドを図22のように 50 して構築した。即ち、まず実施例5で構築したプラスミ

ドゥSDHASE12のtrpAターミネーターを含む 0.3kb BamHI-Hincli断片をpHSG 299のBamHI-HinclIサイトに連結し、p KT91を構築する。次にpSDHASE12のtrp プロモーターを含む80bp EcoRI-ClaI断 片と、ヒト血清アルブミン遺伝子を含む1.8kb C laI-BamHI断片とをpKT91のEcoRI-BamHIサイトに連結し、目的のプラスミドpKT9 1HSAE4を得た。

【0096】次にこの発現プラスミドpKT91HSA 10 E 4 で通常よく用いられる塩化ルビジウム法を用いて大 脳菌HB101株を形質転換し、形質転換株HB101 / pKT91HSAE4を得た。この株を実施例5と同 様な培地で培養を行ったところ、やはり菌体内に顆粒が 生成した.

【0097】実施例5と同様に顆粒を調剪し、同様にヒ ト血清アルブミンの定量を行ったところ、生成量は80 ~90mg/L/O. Dであり、実施例5の生成量をさ らに4倍以上上回るものであった。

[0098] HB101/pKT91HSAE4 (AJ 20 配列 12577) は、工業技術院微生物工業研究所に寄託さ

れている (FERM P-11805) . 100991

【発明の効果】原核生物が好んで用いるコドンを多用す るようにしてデザインした合成DNAを用いて目的とす るヒト血清アルプミンを生産させる本発明は、cDNA を用いてヒト血清アルブミンを微生物に生産させる従来 の方法の不完全さを是正し、より効率的な蛋白質生産を 行う上で極めて重要なものである。

[0100] 【配列表】配列番号:1

配列の長さ:1781 配列の型:核酸 鎖の数:二本鎖 トポロジー: 直鎖状 配列の種類:他の核酸 合成DNA

配列の特徴 特徴を表す記号: cleavage-site

存在位置:21..26 特徴を決定した方法:S

[0 1 0 1]

99

-配列表(配列番号1)

10 20 3

5' AA GCTTGGGATG GAC GCT CAC AAA TCC GAA GTT GCG CAC CGT TTT AAA Asp Ala Bis Lys Ser Glu Val Ala Bis Arg Phe Lys

50 60 70 80 90 90 9AC CTG GGT GAG GAA AAC TTC AAA GGG CTG GTT CTG ATC GCT TTC GCT ASp Leu Gly Gle Gln Asn Phe Lys Ala Leu Yal Leu Ile Ala Phe Ala

100 110 120 130 140
CAG TAC CIT CAG CAG TEC CGG TTC GAG GAC CAG GTT AAA CTG GTA AAC
Gla Tyr Leu Gln Gln Cys Pro Phe Glu Asp Bis Val Lys Leu Tal Asa

160 180 170 180 190 GAA GTA ACC GAA TTC GCT AAA ACC 19C GTA GCT GAC GAA TCT GCA GAA GTA TCT GCA GAA TC

200 210 220 230 240 AAC TGC GAC AAA TGC CTG CAC ACC CTG TTC GGT GAC AAA CTG TGC ACT ASD Cys Asp Lys Ser Leu Bis Thr Leu Phe Gly-Asp Lys Leu Cys Thr

250 260 270 280

TT OCC ACC CTC CCC GAA ACC TAC GOT GAA ATC GCT GAC TGC GCT Val Ala Tar Leu Arg Glu Tar Tyr Gly Glu Net Ala Asp Cys Cys Ala
250 300 310 320 320 320 320

AAA CAG GAA COG GAA COC AAC GAA TOC TTC CTT CAG CAC AAA GAC GAC Lys Cin Cin Pro Ciu Arg Asn Ciu Cys Phe Leu Cin Ris Lys Asp Asp

AAC CCG AAC CTG CCG CCC CTG CTT CCT CCG GAA CTC GAC CTA ATG TGC
Asn Pro Asn Leu Pro Arg Leu Val Arg Pro Glu Val Asp Val Het Cys

390 400 410 420 430
ACC GCA TTC CAC GAC AAC GAA GAA ACC TTC CTG AAA AAA TAC CTG TAC
Thr Als Phe His Asp Asn Glo Glo Thr Phe Leu Lys Lys Tyr Leu Tyr

440 450 460 470 480
GAA ATC GCA CGC CGC CAC CCG TAC TTC TAC GCA CCG GAA CTC CTG TTC
Glu Ile Ala Arg Arg Eis Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe

[0102]

5 490 500 510

490 500 510 520

TTC GCT AAA CGT TAC AAA GCA GCT TTC ACT GAA TGC TGC CAG GCG
Phe Ala Lys Arg Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala

530. 540 550 560 570 GCT GAC AAA GCG GCA TGC CTG CTG CCG AAA CTG GAC GAA CTG CGT GAC

Ala Asp Lys Ala Ala Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp 580 590 500 610 620

SHU SHU SHU SHU SHO SEC STORM SHOWN SHOWN

630 640 650 660 CAG AAA TTC GGT GAA CGT GCA TTC AAA GGG TGG GCA GTT GCG CGC CTG Gin Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu

670 680 690 700 710
TOC CAG CGC TTC CGC AAA GCA GAA TTC GCA GAA GTG TCT AAA CTG GTT
Ser Gln Arg Phe Pro Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val

720 730 740 750 760

ACT GAC CTG ACC AAA GII CAC ACC GAA TGC TGC CAC GGC GAC CTI CTA
Thr Asm Leu Thr Lys Val His Thr Glu Cys Cys His Gly Asp Leu Leu

770 780 790 800 810
GAG IGC GCA GAC GAC CGT GCG GAC CTG GCG AAA TAC ATC IGC GAA AAC
Glu Cys Ala Asp Asp Arg Ala Asp Leu Ala Lys Tyr IIe Cys Glu Asn

820 830 840 850 860 CAG GAC TOC ATC TOT AAA CTG AAA GAA TGC TGC GAA AAA CCG CTG GIn Asp Ser Ile Ser Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu

870 880 890 900 CTG GAA AAA TCT CAC TGC ATC GCA GAA GTA GAA AAC GAC GAA ATG CCC Leu Glu Lys Ser Ris Cys Ile Ala Glu Val Glu Ass Asp Glu Het Pro

910 920 930 940 950 GCG GAT CTG CCG TCT CTG GCG GCT GAC TTC GTT GAA TCA AAA GAC GTG Ala Asp Leu Pro Ser Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val

[0103]

980 970 980 990 1000
TGC AAA AAC TAC 9CA GAA GCA AAA GAC GTA TTC CTA GGT ATG TTC CTG
Cys Lys Asn Tyr Ala Glu hia Lys Asp Tal Phe Leu Gly Net Phe Leu

1010 1020 1030 1040 1050
TAC GAA TAC GCT CGT CGA CAC CCC GAC TAC TCT GTG GTT CTC CTC CTC
Tyr Glu Tyr Ala Arg Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu

,1060 1070 1080 1090 1100
CCC CTG GCA AAA ACC TAC GAA ACT ACC CTG GAA AAA TGC TGC GCA GCG
ATY Leu Ala Lys Thr Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala

1110 1120 1130 1140 1150
GCT GAC CCA CAC GAA TGC TAC GCA AAA GTG TTC GAC GAA TTC AAA CCG CTG
Ala Asp Pro Bis Glu Cys Tyr Ala Lys Yal Phe Asp Glu Phe Lys Pro Leu

1160 1170 1180 1190 1200 GTT GAA GAA CCG CAG AAC CTG ATC AAA CAG AAC TGC GAA CTG TTC AAA Val Glu Glu Pro Glu Asn Leu Ile Lys Glu Asn Cys Glu Leu Phe Lys

1210 1220 1230 1240

CAS CTC GGT GAA TAC AAA TTC CAG AAC GGT CTG CTG GTT CGC TAC ACC
Gin Leu Gly Giu Tyr Lys Phe Gin Asn Ale Leu Leu Vai Arg Tyr Tar

1250 . 1280 1270 1280 1290

AAA AAG GTA CCG CAG GTG TCT ACT CCG ACC CTG GTG GAA GTA TCC CGT

Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg

1300 1310 1320 1330 1340
AAC CTG GGT AAA GTT GGC TCT AAA TGC TGC AAA CAC CCG GAA GCC AAA
Asn Len Gly Lya Yal Gly Ser Lys Cys Cys Lys Eis Pro Glu Ala Lys

1350 1360 1370 1380 1390
COT ATG COG TGC GCG GAA GAC TAC CTG TCC GTG GTG CTG AAC CAG CTG
Arg Met Pro Cys Ala Glu Asp Tyr Leu Ser Val Val Leu Asn Gla Leu

1400 1410 1420 1430 1440
TGC GTT CTG CAC GAA AAA ACC CCG GTT TCT GAC CGT GTA ACT AAA TGC
Cys Vel Leu Bis Glu Lys Tor Pro Vel Ser Asp Arg Vel Tor Lys Cys

[0104]

20

1450 1460 1470 1480
TOC ACC GAA TOT OTG GTT AAC COC COT CCG TGC TTC TCC GCT CTA GAG
Cys Thr Glu Ser Leu Val Asa Arg Arg Pro Cys Phe Ser Ala Leu Glu

1490 1500 1510 1520 1530
GII GAC GAA ACC IAC GTA CCG AAA GAA TIC AAC GCA GAA ACC TIC ACT
Fal ASD Glu Thr Tyr Yal Pro Lys Glu Phe Asn Ala Glu Tar Phe Thr

1540 1550 1560 1570 1580
TTC CAC GCG GAC ATC TGC ACC CTG TCC GAA AAA GAA CGC CAG ATC AAA
Pbe His Als Ass Ile Cys Thr Leu Ser Glu Lys Glu Arw Gln Ile Lys

1590 1600 1610 1620 1630

AAA CAG ACC GCT CTG GTG GAA CTG GTA AAA CAC AAA CCG AAA GCA ACC
Lys Gln Thr Ala Leu Val Glu Leu Vai Lys Bis Lys Pro Lys Ala Thr

1640 1650 1660 1670 1680

AAA GAA CAA CTG AAA GCG GTG ATG GAC GAC TTC GCA GCT TTC GTA GAA

Lys Glu Gin Leu Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu

1690 1700 1710 1720

AAA TGC TGC AAA GCT CAC CAC AAA CAA ACC TGC TTC CCT GAA CAA CCT
Lys Cys Cys Lys Ala Asp Asp Lys Glu Tbr Cys Pbe Ala Glu Glu Glu

1730 . 1740 1750 1780 1770

AAA AAA CTG GTA GCT GCG TCT CAG GCT GCA CTG GGC CTG TAATGATAGG

Lys Lys Leu Val Ala Ala Ser Gln Ala Ala Leu Gly Leu

1780 ATCC 8

【0105】配列番号:2 配列の長さ:1781 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状

マホロシー: 直頭仏 配列の種類: 他の核酸 合成DNA 配列の特徴

特徵を表す記号:cleavage-site

存在位置: 21..26 特徴を決定した方法: S

30 配列 [0106]

21

配列表(配列番号2)

10 20 30 40 5' AA GCTIGGGATG GAC GCT CAC AAA TCC GAA GTT GCG CAC CGT TIT AAA

AA GCTTGGGATG GAC GCT CAC AAA TCC GAA GTT GCG CAC CGT TTI AAA Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys

50 70 80 90
GAC CTG GGT GAG GAA AAC TTC AAA GCG CTG GTT CTG ATC GCT TTC GCT
ASD Leu Gly Glu Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala

100 110 120 130 140
CAG TAC CTT CAG CAG TGC CCG TTC GAG GAC CAC GTT AAA CTG GTA AAC
GIn Tyr Leu Gin Gin Cys Pro Phe Giu Asp His Val Lys Leu Val Asa

250 250 270 280
GIT GOG ACC CTG CGC GAA ACC TAC GGT GAA ATG GCT GAC TGC TGC GCT
Yal Ala Thr Leu Arg Glu Thr Tyr Gly Glu Net Ala Asp Cys Cys Ala

290 . 300 310 320 330

AAA CAG GAA CCG GAA CGC AAC GAA TGC TTC CTT CAG CAC AAA GAC GAC
Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp

340 350 360 370 380

AAC CCC AAC CTC CCC CCC CTT CCT CCC GAA GTC GAC GTA ATG TGC
Asn Pro Asn Leu Pro Arg Leu Val Arg Pro Glu Val Asp Val Net Cys

390 400 410 420 430
ACC GCA TTC CAC GAC AMC GAA GAA ACC TTC CTC AAA AAA TAC CTC TAC
Thr Als Phe His Amp Ann Glu Glu Thr Phe Leu Lys Lys Tyr Leu Tyr

440 450 460 470 480

GAA ATC CCA CCC CCT CAC CCC TAC TTC TAC CCA CCC GAA CTC CTC TTC

GIU Ile Ale Arg Arg His Pro Tyr Phe Tyr Ale Pro Giu Leu Leu Phe

[0107]

.3.3

490 500 510 520
TTC GCT AAA CGT TAC AAA GCA GCT TTC ACT GAA TGC TGC CAG GCG
Phe Ala Lys Arg Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Aia

530 540 550 560 570 GCT GAC AAA GCG GCA TGC CTG CCG AAA CTG GAC GAA CTG CGT GAC Ala Asp Lys Ala Ala Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp

580 590 600 510 620
GAA GGT AAG GCG TCT TCT GCA AAA CAG CGT CTG AAA TGC GCT TCT CTC
Glu Gly Lys Ala Ser Ser Ala Lys Gla Arg Leu Lys Cys Ala Ser Leu

630 640 650 660 CAG AAA TTC GGT GAA CGT GCA TTC AAA GCG TGG GCA GTT GCG CGC CTG GIn Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu

670 680 690 700 710
TCC CAG CGC TTC CCG AAA GCA GAA TTC GCA GAA GTG TCT AAA CTG GTT
Ser Gln Arg Phe Pro Lys Ale Glu Phe Ale Glu Val Ser Lys Leu Val

720 730 740 750 760
ACT GAC CTG ACC AAA GTT CAC ACC GAA TGC TGC CAC GGC GAC CTT CTA
Thr Asp Leu Thr Lys Val Bis Thr Glu Cys Cys Bis Gly Asp Leu Leu

770 780 790 800 810
CAG TGC GCA GAC GGC GGC GGC GAC ATA TAC ATC TGC GAA AAC
Glu Cys Ala Asp Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn

820 830 840 850 860 CAG GAC TOC ATC TOT ANA CTG AAA GAA TGC TGC GAA AAA CCG CTG Glm Asp Ser Ile Ser Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu

870 880 890 900 CTG GAA AAA TCT CAC TGC ATC GCA GAA GTA GAA AAC GAC GAA ATG CCG Leu Glu Lys Ser His Cys Ile Ala Glu Val Glu Asn Asp Glu Net Pro

910 920 930 940 950
GCG GAT CTG CCG TCT CTG GCG GCT GAC TTC GTT GAA TCA AAA GAC GTG
Ala Asp Lou Pro Ser Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val

[0108]

35 960 970 980 990 1000 TGC AAA AAC TAC GCA GAA GCA AAA GAC GTA TTC CTA GGT ATG TTC CTG

TGC AAA AAC TAC GCA GAA GCA AAA GAC GTA TTC CTA GGT ATG TTC CTG Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Net Phe Leu

1010 1020 1030 1040 1050
TAC GAA TAC GCT CGT CGA CAC CCG GAC TAC TCT GTG GTT CTG CTG CTG
Tyr Glu Tyr Ala Arg Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu

1060 1070 1080 1090 1100
CGC CTG GCA AMA ACC TAC GAA ACT ACC CTG GAA AMA TGC TGC GCA GCG
Arg Leu Ala Lys Thr Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala

1110 1120 1130 1140 1150
GCT GAC CCA CAC GAA TGC TAC GCA AAA GTG TTC GAC GAA TTC AAA CCG CTC
Ala Asp Pro His Glu Cys Tyr Ala Lys Yal Phe Asp Glu Phe Lys Pro Leu

1150 1170 1180 1190 1200
GTT GAA GAA COG CAG AAC CTG ATC AAA CAG AAC TGC GAA CTG TTC GAA
Va1 Glu Glu Pro Glu Ash Leu He Lrs Glu Ash Cys Glu Leu Phe Glu

1210 1220 1230 1240
CAG CTG GGT GAA TAC AAA FTC CAG AAC GCT CTG CTG GTT CGC TAC ACC
GIn Leu Gly Glu Tyr Lys Phe Gin Asn Ala Leu Leu Val Arg Tyr Thr

1250 . 1250 1270 1280 1290

AAA AAG GTA CCG CAG GTG TCT ACT CCG ACC CTG GTG GAA GTA TCC CCT
Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg

1300 1310 1320 1330 1340

AAC CTG GGT AAA GTT GGC TCT AAA TGC TCC AAA CAC CCC GAA GCC AAA
Ann Leu Cly Lys Val Gly Ser Lys Cys Cys Lys His Pro Gin Ala Lys

1350 1360 1370 1380 1390
CGT ATG CGG TGC GGG GAA GAC TAC CTG TGC GTG GTG CTG AAC CAG CTG
Arg Net Pro Cys Ala Glu Asp Tyr Leu Ser Val Val Leu Asp Glu Leu

1400 1410 1420 1430 1440
TGC GTT CTG CAC GAA AAA ACC CCG GTT TCT GAC CGT GTA ACT AAA TGC
Cys Yal Leu Eis Glu Lys Thr Pro Yal Ser Asp Arg Yal Thr Lys Cys

[0109]

1450 1460 1470 1480 TGC ACC GAA TCT CTG GTT AAC CGC CGT CCG TGC TTC TCC GCT CTA GAG Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu Glu

1490 1500 1510 1520 GTT GAC GAA ACC TAC GTA CCG AAA GAA TTC AAC GCA GAA ACC TTC ACT Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Asa Ala Glu Thr Phe Thr

1540 1560 1570 TIC CAC GCG GAC ATC TGC ACC CTG TGC GAA AAA GAA CGC CAG ATC AAA

Pho His Ala Asp Ile Cys Thr Leu Ser Glu Lys Glu Arg Glm Ile Lys 1590 1600 1610 1620 1630

AAA CAG ACC GCT CTG GTG GAA CTG GTA AAA CAC AAA CCG AAA GCA ACC Lys Gin Thr Ala Leu Val Glu Leu Val Lys His Lys Pro Lys Ala Thr

1640 1650 1660 1670 AAA GAA CAA CTG AAA GCG GTG ATG GAC GAC TTC GCA GCT TTC GTA GAA Lys Glu Glu Leu Lys Ala Val Net Asp Asp Phe Ala Ala Phe Val Glu

1890 1700 1710 1720 AAA TGC TGC AAA GCT GAC GAC AAA GAA ACC TGC TTC GCT GAA GAA GGT Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly

1730 . 1740 1750 1760 1770 AAA AAA CTG GTA GCT GCG TCT CAG GCT GCA CTG GGC CTG TAATGATAGG Lys Lys Leu Val Alm Alm Ser Glm Alm Alm Leu Gly Leu

1780 ATCC 3"

【図面の簡単な説明】

【図1】本発明者らが設計し、実際に全合成して構築し た、ヒト血清アルプミンをコードするDNA配列を示す 図である。

【図2】ヒト血清アルプミンのN末端付近に単一の制限 30 酵素切断部位を導入するために配置したFokI窓識部 位と切断部位を示す図である。

【図3】遺伝子中の制限酵素部位の配置を示す図であ る。なお、矢印はプロック1からプロック8条々の領域 と、3つの中間的プロックの領域、及びpHSAが保持 する領域を示す。

【図4】図4Aはヒト血清アルプミン遺伝子構築のた め、DNA合成機で合成したDNAオリゴマーのブロッ ク1から3を示す図である。図4Bはヒト血清アルブミ ン遺伝子構築のため、DNA合成機で合成したDNAオ 40 リゴマーのブロック4、5を示す図である。図4 Cはヒ ト血清アルプミン遺伝子構築のため、DNA合成機で合 成したDNAオリゴマーのブロック6から8を示す図で ある.

【図5】構築したヒト血清アルプミンを大腸菌の発現べ クターに接続するために作製した合成DNAを示す図で ある。なお、SDは、リボソーム結合部位を表す。

【図6】構築したヒト血清アルブミンを大腸菌で発現す るプラスミドpSDHSA4の構築手腕を示す図であ trpプロモーターを含む公知のプラスミドである。 【図7】ポリアクリルアミド電気泳動図及びウェスタン

プロッテイング図である。詳細に述べると(A)はSD Sポリアクリルアミド電気泳動後、クーマシーブルーで タンパク質を染色した図である。また (B) は (A) の 1/30量の蛋白を用いて同様の電気泳動後、ゲル内の

蛋白をナイロンメンプランにエレクトロトランスファー し、抗ヒト血清アルプミン抗体を用いてウェスタンプロ ッテイングした図である。図中の1, 2, 3, Mの略号 は以下の通りである。

1. HB101全菌体蛋白

2. HB101/pSDHSAE12全菌体蛋白 3. HB101/pSDHSAE12顆粒画分 M. 分子量マーカー

【図8】精製顆粒蛋白のアミノ酸配列を示す図である。 Observedは実際に観察された配列、Predi ctedは予定した配列を示す。

【図9】シャトルペクターpBU4371の構築を示す 図である。

【図10】 α-アミラーゼの分泌に必須であり分泌時に は切り離される、amyEのシグナルペプチドの切断点 (Ala33)付近のアミノ酸配列及びDNA配列を示 す図である。なお、矢印は、A1a33をコードする配 列をGCTからGCCに置換することによってNotI る。なお、プラスミド p T 1 3 S (N c o) は、大腸菌 50 部位が生ずること、及びシグナルペプチド切断点を表わ

20

【図 1 1】 分泌ベクター構築のために作製した合成DN

- Aを示す図である。 【図12】分泌ベクターpASEC1の構築図である。
- 【図13】pASEC1に接続するためのヒト血清アルプミン遺伝子の構築図である。
- 【図14】ヒト血清アルブミンを枯草菌で分泌するため のプラスミドpAMY33HSA4の構築図である。
- 【図16】 本発明者らが設計し、実際に全合成して構築 した、ヒト血清アルブミンをコードするDNA配列を示 す図である。
- 【図17】遺伝子中の制限酵素部位の配置を示す図であ

る。なお、矢印はブロック1からブロック8各々の領域と、3つの中間的ブロックの領域、及びpHSAE2が保持する領域を示す。

- 【図18】図18Aはヒト血清アルブミン遺伝子構築のため、DNA合成機で合成したDNAオリゴマーのブロック1から3を示す間である。図18Bはヒト血清アルブミン遺伝子構築のため、DNA合成機で合成したDNAオリゴマーのブロック4、5を示す図である。図18 Cはヒト血清アルブミン遺伝子構築のため、DNA合成機ではしたDNAオリゴマーのブロック4。5を示す図である。図18
- 「図19] 柳楽したヒト血清アルブミンを大陽蘭で発現するブラスミドpSDHSAE12の柳楽手順を示す図
 - するプラスミドpSDHSAE120構築手順を示す図 である。なお、プラスミドpT13S(Nco)は、大 脚菌 t r p プロモーターを含む公知のプラスミドである。
 - 【図20】 pASECIに接続するためのヒト血清アル プミン遺伝子の構築図である。
- [図21] ヒト血情アルプミンを枯草菌で分泌するため 20 のプラスミド pAMY 3 3 H S A B 2 の構築図である。 [図22] 構築したヒト血情アルプミンを大腸菌で発現 するプラスミド p K T 9 1 H S A E 4 の構築手順を示す 図である。

【図1】

I' AACETTEGGA	TECACGETEA	CAAATCCCAA	GTTGCGCACC	GTTTTAAAGA	CCTGGGTCAG
CCTCTGAAAT	CCCCTTCTCT	CCACAAATTC	CCTGAACCTC	CATTERARDE	
					ACTCGTTACT
*********	AACTTCACAC	CCAATCCTCC	CAGGGGGACC	TTCTAGACTC	CCCACACOAC
********	TCCCCAAATA	CATCTCCGAA	AACCAGGACT	CCATETETTE	TAAAGTGAAA
C-+**C-***C	AAAAAGGGCT	GCTGCAAAAA	TCTCACTCCA	TCGGACAAGT	AGMANACGAC
					AGACCTCTCC
					ATACGETECT
					CTTCGACGAA
CEGNANCENA	AACCTCACGA	CALAGRARGE	TEGTTEGETE	AACAACCTAL	AAAACTCGTA
AAATCGTGGA	AACCICAGO	********	+CATAGCATC	C 3"	

[図2]

ヒト申用フルブミンのN京都

[図3]

[図5]

TAATCATTCCTCCAAATTTTACCTGGGAGTGTTTA

[図11]

[図7]

94K — — — — — — 67K 67K — — — — — — 67K 43K — — — — — — — 67K

(B)

Cis | cohesive

[234]

70 + 91

ILIUM ST. CONTROLLANTICIAMITTOSEMICITTIAMENTOSTICIAMI
METHOROGOGICI TAMON TOROGOGICI TAMON TOROGOGI

プロックス

TOTAL OFFICE A CONTROL OF THE ACTION OF THE

. □ 4 Λ SAT CONTROLLER GALLET CONTROLLER GALLET LICENT THOCALS CONTROLLER GALLET GALLET

® ⊿ b

```
crccannagI88I88E848E88I8486848848E8448E848E84868646E18II8868E44AAcrttoo
caccooc184414844418848488818188188188814848844448atac x...
70.71
00AZAG0cIEE1861864686881818881818884864444468888881818184888707AAC7A
ACATTCATFFIRELEEFEEFFIELEIREZITFFEEEEERLEELEELEELEELEELATC x**:
2414-cg119452442614681488844484411844688444681.c-c.a.a.c
CAAAAAC4848888888888888448484848484888844488
ACCAAACA488III8874888II8648848818684881888487777777400
Ø 4¢
```


【図12】

[図13]

図14]

[図15]

[図17]

[図16]

	AAGCTTGGGA	TEGAGGETCA	CAAATCGGAA	GTTCGGCACG	GTTTTAAAGA	GCTGGGTGAG	
	GAAAAGTTGA	AAGGGGTGGT	TGTGATCGCT'	TTCCGTGAGT	ACCTTGAGCA	STECCETTE	
	CAGCACCACC	TTAAAGTGGT	AAAGGAAGTA	AGGGAATTGG	CTANANCETE	CCTACGTGAC	
	CAATCTGEAG	AAAAGTGCGA	CARATCCCTC	CACAGGGTGT	TEGGTGAGAA	AGTGTGCACT	
	CTTGCGACCC	TEGEGGAAAC	CTAGGGTGAA	ATCCCTCAGT	GCTGCGCTAA	ACAGGAACCG	
	CAACCCAAGG	AATGCTTGGT	TEAGGAGAAA	GACGACAAGC	GGAACGTGCC	CGGGCTGGTT	
	CETCCGGAAG	TEGACGTAAT	GTGCAGGGGA	TTCGACGACA	ACCAAGAAAC	GTTGGTGAAA	
	AAATACCTGT	ACCAMATEC	AGGGCGTCAC	GCGTACTTCT	AGGCACCGGA	ACTECTETTE	
	TTCGCTAAAC	GTTACAAAGG	AGGTTTCAGT	CAATGCTGGG	AGGCCCCTCA	CANACGEGGA	
	TECCTOCTEC	CCALACTERA	CCAACTCGGT	GAGGAAGGTA		TOCAMACAG	
	CCTCTCAAAT	GGGGTTCTCT	CCACAAATTC	CCTGAACGTG	CATTCAAAGC		
	CCCCCGCTCT	GGGAGGGGTT	CCCCAAACCA	CAATTGCCAG	AAGTGTGTAA		
	GAGCTGACGA	AAGTTCACAC	CCAATCCTCC	CACOGCGAGG	TECTACACTO		
	CCTCCGGAGG	TEGEGRAATA	GATCTGGGAA	AACCACCACT	CGATGTCTTC	TAAAGTGAAA	
	CALTROTECO	AAAAAGGGCT	CGTGGAAAAA	TOTOAGTOCA	TGGCAGAAGT.	ABAAAACCAG	
	CATATEGEGG	CCCATCTOCC	GTCTGTGGGG	GCTGAGT.TCG	TTGAATCAAA		
	AAAAACTACG	GAGAAGCAAA	AGACCTATTO	CTAGGTATGT	TOTTOTAGOA		
	CCACACCCCG	AGTAGTETET	CETTCTCCTO	CTGGGGCTGG	CAAAAACGTA	CGAAACTACG	
	CTGGAAAAAT	CCTCCCCAGG	GCCTGAGCGA	CAGGAATGCT	ACGCAAAAGT		
	TTCALACCC	TESTTEALSA	ACCOGACAAC	GTGATCAAAG	ACAACTGCCA		
	CASCTEGETE	AATACAAATT	GCAGAAGGGT	CTOCTGGTTC	OCTACACCAA		
	CACOTOTOTA	CTCCGACGGT	GCTCC+AGTA	TEGGOTAAGE	TOGCTAAACT	TCCCTCTAAA	
	TECTEGALLE	ACCCGGAAGG	GAAAGGTATG	GCGTOGGCGG.	.AAGACTACCT	CTCCCTCGTC	
	GTGAACGAGG	TETECETTET	CCAGGAAAAA	ACCCCCCTTT	CTGAGCGTGT	AAGTAAATCO	
	TOCACCCAAT	CTOTECTTAA	CCCCCCTCCO	TESTTETES	CTCTAGAGGT		
	TACCTACCGA	AAGAATTGAA	COCADAAAGG	TICACTITICS	ACCCCCACAT		
	TECELALAG	AAGGGGAGAT	GAAAAACAG	ACCCCTCTCO	TOGRAGEGET		
	CCCAAACCAA	CCALADAAGA	AGTGAAAGEG	GTGATGGACG	ACTTGGGA'GE		
	ALLTOCTOCA	AAGETGAGGA	CAAACAAAGG	TECTTEGETO	AAGAAGGTAA	AAAACTGGTA	
	GGTCC GTCTG	AGGGTGGAGT	GEGGGTGTAA	TOATAGGATO	C 1.		

[図19]

[EST 2

[図18]

TO = 9 1

In a first control of the control of the

AMETTACHMERACTITELETEANTECTECCASCOGCITACAMAGGGCLTC ATOTTICGTCAMAGGGCTTACAMAGGGCLTC Ø 18 A

ctccann.418515558485858484586484584418814585444481811584584. caccroscIE44I4E444IIE84244EEBIEIEEIEEIEEIEEIA64448ETAC **** 70-77 E,.1 carc586488181818818884886188188446141888814488188814446770007 +c.xccax\$I++4185I884488888448888448884468I4I8888I8888844848I4cctctccc 70 - 71 TCACTTTCEAE665566416165646661816866444646668664641c++++++ ACGAAACA4844515444585154188458458118844851388148417777.co

【手統補正書】

【提出日】平成3年8月22日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】図面の簡単な説明

【補正方法】変更

【補正内容】

【図面の簡単な説明】

【図1】本発明者らが設計し、実際に全合成して構築し た、ヒト血清アルプミンをコードするDNA配列を示す 図である。

【図2】ヒト血情アルブミンのN末端付近に単一の制限 酵素切断部位を導入するために配置したFokI認識部 位と切断部位を示す図である。

【図3】遺伝子中の制限酵素部位の配置を示す図であ る。なお、矢印はブロック1からブロック8各々の領域 と、3つの中間的ブロックの領域、及びpHSAが保持 する領域を示す。

【図4A】図4Aはヒト血清アルブミン遺伝子構築のた め、DNA合成機で合成したDNAオリゴマーのブロッ

ク1を示す図である。

【図4B】図4Bはヒト血清アルブミン清伝子機等のた め、DNA合成機で合成したDNAオリゴマーのブロッ ク2を示す図である。

【図4C】図4Cはヒト血清アルプミン遺伝子構築のた め、DNA合成機で合成したDNAオリゴマーのプロッ ク3を示す図である。

【図4D】図4Dはヒト血清アルブミン遺伝子構築のた め、DNA合成機で合成したDNAオリゴマーのブロッ ク4を示す図である。

【図4E】図4Eはヒト血清アルブミン遺伝子構築のた め、DNA合成機で合成したDNAオリゴマーのブロッ ク5を示す図である。

【図4F】図4Fはヒト血清アルブミン遺伝子構築のた め、DNA合成機で合成したDNAオリゴマーのブロッ ク6を示す図である。

【図4G】図4Gはヒト血清アルブミン遺伝子模築のた め、DNA合成機で合成したDNAオリゴマーのブロッ ク7を示す図である。

【図4H】図4Hはヒト血槽アルブミン遺伝子構築のため、DNA合成機で合成したDNAオリゴマーのプロック8を示す図である。

【図5】構築したヒト血清アルブミンを大脳菌の発現ベ クターに接続するために作製した合成DNAを示す図で ある。なお、SDは、リポソーム結合部位を表す。

【図 6】 構築したヒト血清アルブミンを大腸菌で発現するブラスミド p S D H S A 4 の構築手履を示す図である。 なお、ブラスミド p T 1 3 S (N c o) は、大腸菌 t r p プロモーターを含む公知のブラスミドである。

【図8】精製颗粒蛋白のアミノ酸配列を示す図である。 Observedは実際に観察された配列、Predictedは予定した配列を示す。

【図9】シャトルベクターpBU4371の構築を示す 図である。

【図11】分泌ベクター構築のために作製した合成DN Aを示す図である。

【図12】分泌ベクターPASEC1の構築図である。 【図13】pASEC1に接続するためのヒト血清アル ブミン遺伝子の構築図である。

【図14】ヒト血清アルブミンを枯草菌で分泌するため のプラスミドpAMY33HSA4の構築図である。

【図 15] 1A510/pAMY33HSA4または1 A510/pAMY33HSAE2及び1A510/ BU43710均養14,16,18時間目の均養上清 1μ1を1回及び5回ナイロンメンブランにスポットし 抗とト血精アルブミン抗体でプロッテイングした図であ 5. Standardsは、SIGMAのEssent ial globlinfree HUMAN Alb uminを用いた。Brothの位置には、均地をスポットした。図中の1,2、4、50位置には1カ510 /pAMY33HSA4または1A510/pAMY3 3HSAE2を、3,6の位置には1A510/pBU 4371をそれぞれスポットした。

【図16】本発明者らが設計し、実際に全合成して構築 した、ヒト血清アルブミンをコードするDNA配列を示 す図である。

【図17】遺伝子中の制限酵素部位の配置を示す図である。 なお、矢印はプロック1からプロック8各々の領域 と、3つの中間的プロックの領域、及びpHSAE2が 保持する領域を示す。

【図18A】図18Aはヒト血清アルブミン遺伝子構築のため、DNA合成機で合成したDNAオリゴマーのブロック1を示す図である。

【図18B】図18Bはヒト血清アルブミン遺伝子構築のため、DNA合成機で合成したDNAオリゴマーのブロック2を示す図である。

[図18C] 図18Cはヒト血清アルブミン遺伝子構築のため、DNA合成機で合成したDNAオリゴマーのブロック3を示す図である。

【図18D】図18Dはヒト血清アルブミン遺伝子構築のため、DNA合成機で合成したDNAオリゴマーのブロック4を示す図である。

【図18E】図18Eはヒト血清アルブミン遺伝子構築のため、DNA合成機で合成したDNAオリゴマーのブロック5を示す図である。

【図18F】図18Fはヒト血清アルブミン遺伝子構築のため、DNA合成機で合成したDNAオリゴマーのブロック6を示す図である。

【図18G】図18Gはヒト血清アルブミン遺伝子構築のため、DNA合成機で合成したDNAオリゴマーのブロック7を示す図である。

【図18H】図18Hはヒト血清アルブミン遺伝子構築のため、DNA合成機で合成したDNAオリゴマーのブロック8を示す図である。

【図19】 構築したヒト血清アルブミンを大腸菌で発現 するプラスミド p S D H S A E 1 2 の構築手順を示す図 である。なお、プラスミド p T 1 3 S (N c o) は、大 脳苗 t r p プロモーターを含む公知のプラスミドであ

【図20】pASEC1に接続するためのヒト血清アルブミン遺伝子の構築図である。

【図21】ヒト血清アルプミンを枯草菌で分泌するため のプラスミドpAMY33HSAE2の構築図である。

【図22】 構築したヒト血清アルブミンを大腸菌で発現 するプラスミドpKT91HSAE4の構築手順を示す 図である。

【手統補正2】

【補正対象書類名】図面 【補正対象項目名】全図 【補正方法】変更 【補正内容】

[図1]

1 AAGGTTCGCA	TEGACOCTCA	CAAATCCGAA	**********	CTTTTALLC	
		TETGATECET			
		AAAGGAAGTA			
		CAAATECETS			
GTTGGGAGCC					
CHICCONCC		TEAGCACAAA	ATGGCTGACT	CCTCGCCTAA	ACAGGAACCC
		STEGACCECA			
		ACCCCCTGAC			
		AGCTTTCACT			
		CCAACTCCCT			
		CCAGAAATTC			
	CCCAGCGGTT			AACTGTCTAA	
		CGAATGCTCC		TTCTAGAGTG	
	TECCEAAATA	GATCTGGGAA		CCATGTCTTC	
	AAAAAGGGCT	GCTGGAAAAA	TCTCA'CTCCA	TEGEACAACT.	ACAAAACCAC
CAÄATGCCGG		STETETESCS		TTCAATCAAA	
AAAAACTACG	CACAACCAAA	ACACGTATTC	CTAGGTATCT	TECTETACEA	
CGACACCCGG	ACTACTCTGT	GGTTCTGCTG	CTGCGCCTGC	CARARACCTA	CGAAACTACG
CTCGAAAAAT	GCTGCGCACC	GGCTGACCGA	CACGAATGCT	ACCCARAGE	GTTCGACGAA
TTCAAACCGC	TECTTCAACA	VCCCCYCVTV.	CTCATCAAAC	ACAACTGCCA	ACTGTTCAAA
CACCTGGGTG	AATACAAATT			GCTACACCAA	
CACCTGTCTA	CTCCGACCCT	CCTGCAAGTA	TECEGTARES	TEGETAAACT	TESCTETAAA
TUCTUCAAAG	AGCCOGAAGC	CAAACGTATG	CCCTGCGGGG.	AACACTACCT	CTCCCTDGTG
CTEAACCACC	TETECETTET	CEACGAAAAA	ACCCCGOTTT	CTCACGGTGT	AACTAAATGC
TECACCCAAT	CTCTGGTTAA	CCGCGGTCCG	TGCTTCTCCC	CTCTAGAGGT	TOACGAAACC
TACCTACCCA	AACAATTCAA	GGCAGAAACC	TTCACTTTCC	AGGCGGACAT	CTGCACCCTG
TECGAAAAAG	AACGCGAGAT	CAAAAAACAC	ACCCCTCTOO	TEGAACTGET	AAAACACAAA
GGGAAAGGAA	CCAAAGAAGA	ACTGAAAGGG	GTGATGGAGG	ACTTCGCACG	TTTCTTAGAA
AAATGCTGCA	AAGCTGACCA	CAAACAAACG	TECTTCECTE	AAGAACGTAA	AAAACTCCTA
OCTOCOTETE	AGGCTGCACT	GGGCCTGTAA	TGATAGGATG	C 1"	

[図2]

ヒト血液アルブミンのドボタ

AAGCTTGGGATGGAGCTGCACAATTGCGGACGGTTTAAAAACACTGGGTGGA TTGGAACGCTACGACATTGCGACGGTTTAAAAAACACTGGGTGGAA TTGGAACGCTACGTGCGACTGTTTAAGCTTCAACGGGTGGGAAAATTTGCTGGACCCACTC 7812 B 8 C 9 B 8 C

[図3]

[図4A]

70-7

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10-18

10

[図4B]

[図4C]

[S] 4 D]

70 7 2 3

TTANCETTECCCANTEGECATEMACATECTECANGEMENTS ACCOUNTED A

CTAMACETTACAMACCACTTTCATTGATECTECCAGGCGCCTGACAMACGGCATE
ATGTTTCCTCCAULTCACTTACAACGTCCGCCGCTGACAMACGGCATE

ATGTTTCCTCCAULTCACTTACAACGTCCGCCGCTGCTTTCCCC

3-2-1

70,714

[図4E]

プロックラ

THE CTAGACTOCCAGACCACCCTCCGCCAAATACATCTCCGAAAACCAGCACTCCAT
TCACGCCTCTCGTGGGCCCCTCGACCCCTTTATGTACACCCTTTTTGGTCCTGAGGTAGAGAAA

CHETTIANTEAUNTINGOGULUNGGEGETERUNGTEN TEVELTOGULUNGETTE THE TEVELTOGULUNGGETERUNGTEN TEVELTOGULUNGGETERUNGTEN TEVELTOGULUNGGETERUNGGET

[図4F]

THE ACCOUNT OF THE PROPERTY OF

[図4G]

TAMES AND THE STATE OF THE SECRET OF THE SEC

[図4H]

70+71

[図10]

[図12]

FIRM 1 9 1

【図14】

(図15)

[5318A]

[図16]

```
P ANGETTEGGA TGRAGGETTA TARATCETA CTTGGGGGG STITTAMAGA CETGETAGA CANCELLA CTTGGGGGG STITTAMAGA CETGETAGA CANCELLA CTTGGGGGGG STITTAMAGA CETGETAGA CANCELLA C
```

[12] 1 7]

[B]18B]

PAIL

AMAZONEA MATEOTERIA METOTOTORIAL CAMPTONICATORIAL CAMPTONICATORIAL
AMAZONEA MATEOTERIA METOTORIAL MATEOTERIA METOTORIAL CONTROLLA
AMAZONEA MATEOTERIA MATEOTERIA CONTROLLA MATEOTERIA MATEOTERIA
COMMONICATIONI MATEOTERIA MATEOTERIA MATEOTERIA MATEOTERIA
COMMONICATIONI MATEOTERIA MATEOTERIA MATEOTERIA MATEOTERIA CONTROLLA
MATEORIA MATEORIA MATEORIA MATEORIA MATEORIA MATEORIA
MATEORIA MATEORIA MATEORIA MATEORIA MATEORIA MATEORIA
MATEORIA MATEORIA MATEORIA MATEORIA MATEORIA
MATEORIA MATEORIA MATEORIA MATEORIA MATEORIA MATEORIA
MATEORIA MATEORIA MATEORIA MATEORIA MATEORIA
MATEORIA MATEORIA MATEORIA MATEORIA MATEORIA
MATEORIA MATEORIA MATEORIA MATEORIA
MATEORIA MATEORIA MATEORIA
MATEORIA MATEORIA
MATEORIA MATEORIA
MATEORIA MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA
MATEORIA

ブロック2

[M18C]

(図18D)

70,13	
SAIE TOGACGTAATGTGGACGGCATTCCACGACAAGGA GCATTACACGTGGCGTAAGGTGCTGTTGCT	AGAAACCTTCCTGAAAAAATAC TCTTTGGAAGGACTTTTTTATGGACATGCT
CTOTAGGAAATGGCACGCCCTCACCCCTACTTCT TTAGCCTGCGCCATGGGCCATGAGA	AGGGAGGGGAACTGCTGTTCTTCG TGCGTGGCCTTCACGACAAGAACCGATTTCCA
CTAMAC OTT ACANAGCAGCTTTCACTGAATGCTG ATGTTTCGTCGANAGTGACTTACGAC	CENGGEGGETGACAAAGCGCCATG GGTCGGGGGCCTGTTTGCGG Sabii

PATE TRETOCERANT TRACEMENTAL CLASS TARGET TO TEACH AS THE TRETOCERANT TRACEMENT TO THE ARCHITECTURE ASSESSMENT TO THE ARCHIT

[図18E]

70 y 3 has the control of the contro

[図18F]

ALLIAGESEROSTASISEINETISISETESESSESISEENAMPSEINESPANTISEKAACHTTA
TTGGAAM-TESTESSESTESSESTENESSESTENESSINSSESTATUS TITGGAAM-TESTESSESTESSESTENESSINSSESTATUS TITGGAAM-TESTESSESTESSESTENESSINSSESTATUS TITGGAAM-TESTESSESTENESSENGSESTESSES

[図18G]

[X18H]

TAMATE TERMITE TERMINET TO THE TERMINET TERMINET THE TER

[図20]

[図21]

[図22]

フロントページの続き

(51) Int. Cl. 5		識別配号	庁内整理番号
C 1 2 R	1:19)		
(C 1 2 N	1/21		
C12R	1:125)		
(C12P	21/02		
C 1 2 R	1:19)		
(C12P	21/02		
C12R	1:125)		
(C12P	21/02		
C12R	1.08)		

-619-

FΙ