Cuenta corriente en una economía grande y abierta Jonathan Garita*

1 Motivación

- Hasta ahora, las decisiones de ahorro e inversión de la economía no afectaban la tasa de interés mundial.
 - Economía pequeña y abierta no influye en la tasa de interés r^*
- Pero las decisiones de una economía grande si puede generar fluctuaciones en el mercado financiero internacional.
 - Ejemplo: incrementos en el endeudamiento o ahorro de EE.UU. y China afectarían el mercado mundial de fondos prestables y, por ende, r^*
- Aunque Costa Rica es una economía pequeña y abierta, entender el comportamiento de las economías más grandes es central para anticipar choques en el entorno mundial

Modelo de economía abierta con economía grande

• Suponga que el mundo se divide en dos regiones, Estados Unidos (US) y el resto del mundo (RW).

^{*}Basado en capítulo 7 de SUW

• Suponga que el hogar representativo en cada país tiene la función de utilidad:

$$\ln C_1^{US} + \ln C_2^{US}$$
$$\ln C_1^{RW} + \ln C_2^{RW}$$

- Sea las dotaciones denotadas por Q_t^{US} y Q_t^{RW} para t=1,2. Asuma libre movilidad de capitales, por lo que ambos países intercambian activos financieros a una misma tasa de interés.
- Sea B_t^{US} y B_t^{RW} para t=0,1,2 la cantidad de bonos que el país mantiene en el respectivo período. Suponga que $B_0^{US}=B_0^{RW}=0$ y considere que $B_2^{US}=B_2^{RW}=0$.
- La restricción presupuestaria intertemporal para EE.UU. viene dada por:

$$C_1^{US} + \frac{C_2^{US}}{1+r_1} = Q_1^{US} + \frac{Q_2^{US}}{1+r_1}$$

• Simplificando el problema de optimización utilizando la restricción anterior, se deriva que, en equilibrio:

$$C_1^{US} = \frac{1}{2} \left(Q_1^{US} + \frac{Q_2^{US}}{1 + r_1} \right)$$

• Dado que la cuenta corriente es el cambio en la posición financiera neta, $CA_1^{US} = B_1^{US} - B_0^{US}$, se tiene que $CA_1^{US} = Q_1^{US} - C_1^{US}$. Por tanto, en equilibrio:

$$CA^{US}(r_1) = \frac{1}{2}Q_1^{US} - \frac{1}{2}\frac{Q_2^{US}}{1+r_1}$$
(1)

• De igual forma,

$$CA^{RW}(r_1) = \frac{1}{2}Q_1^{RW} - \frac{1}{2}\frac{Q_2^{RW}}{1+r_1}$$
 (2)

• Es decir, la cuenta corriente es una función creciente de la tasa de interés:

$$CA_1^{US} = CA^{US} \begin{pmatrix} r_1 \\ + \end{pmatrix}$$
$$CA_1^{RW} = CA^{RW} \begin{pmatrix} r_1 \\ + \end{pmatrix}$$

• La cuenta corriente mundial siempre debe ser cero:

$$CA^{US}\left(r^{*}\right) + CA^{RW}\left(r^{*}\right) = 0$$

Figure 1: Determinación de la cuenta corriente para una economía grande

• De acuerdo al gráfico anterior, el equilibrio se da en la intersección de las cuentas corrientes de ambas economías. El gráfico muestra una situación donde EE.UU. es deficiatrio en $CA^{US*} < 0$, mientras que el resto del mundo es superavitario en $-CA^{US*} > 0$.

Ajuste a un incremento en la inversión en EE.UU.

- Suponga que en el período 1, EE.UU. adopta nuevas tecnologías que incrementan la productividad del capital.
- Tal shock induce a las empresas quieran invertir más para cualquier nivel de tasa de interés.
- Los hogares esperan un ingreso mayor en el período 2. Reducen su ahorro actual a cualquier tasa de interés. La cuenta corriente en el período 1, por tanto, se torna más deficitaria (desplazamiento hacia la izquierda).

Figure 2: Ajuste a un incremento en la inversión en EE.UU.

• El equilibrio se alcanza en el punto A' del gráfico anterior. La tasa de interés internacional de equilibrio es más alta y EE.UU. es más deficitario.

Tasa de interés mundial de equilibrio

• Concretamente, utilizando las condiciones (1) y (2), se puede despejar para r^* :

$$r^* = \frac{Q_2^{US} + Q_2^{RW}}{Q_1^{US} + Q_1^{RW}} - 1 \tag{3}$$

- Es decir, la tasa de interés r^* es creciente en la tasa de crecimiento de la dotación mundial
 - Si la dotación mundial en el período 2 es más alta, relativo a la dotación mundial en el período 1, los hogares van a querer traer parte de esa mayor riqueza al presente y así suavizar su consumo. ¿Cómo? Endeudándose.
 - Pero este mayor endeudamiento es imposible. El mundo no puede endeudarse. Entonces la tasa de interés debe aumentar para garantizar un nivel de endeudamiento mundial de cero
- En este modelo, r*depende de las dotaciones mundiales, no de la distribución de las dotaciones entre países

Cuenta corriente de equilibrio

• Utilizando la expresión (3), se desprende que:

$$CA_1^{US} = \frac{1}{2} \frac{Q_1^{RW} Q_2^{RW}}{Q_2^{US} + Q_2^{RW}} \left(\frac{Q_1^{US}}{Q_1^{RW}} - \frac{Q_2^{US}}{Q_2^{RW}} \right)$$

- El término en paréntesis determina el signo de la cuenta corriente de EE.UU.
 - La cuenta corriente es superavitaria cuando la dotación en EE.UU. es relativamente más abundante que en el resto del mundo en el período 1 que en el período 2:

$$\frac{Q_1^{US}}{Q_1^{RW}} > \frac{Q_2^{US}}{Q_2^{RW}}$$

- Si la dotación relativa de EE.UU. con respecto al resto del mundo en el período 1 es mayor a la del período 2, entonces los hogares estadounidenses buscarán compartir parte de este exceso con el resto del mundo (mediante el ahorro)
- Es decir, lo que importa es las dotaciones relativas transversal y temporalmente

Transmisión internacional de shocks país-específicos

- Suponga un incremento en la dotación de EE.UU. en el período 1. ¿Cómo se transmite dicho shock al resto de países?
- Dada la condición de equilibrio (3), la tasa de interés mundial cae.
- EE.UU. experimenta un incremento en el consumo actual gracias a $\uparrow Q_1^{US}$ y $\downarrow r^*$. El resto del mundo solo experimenta un incremento en consumo por $\downarrow r^*$. Un comovimiento positivo.
- Considere el caso de un incremento esperado en Q_2^{US} . Esto aumenta r^* .
- $\uparrow r^*$ deprime el consumo privado en el resto del mundo en el período 1. Dado que $Q_1^{US} + Q_1^{RW}$ no cambia, la caída en C_1^{RW} implica que C_1^{US} debe incrementarse.
- Es decir, un comovimiento negativo.

Importancia del tamaño de la economía en la transmisión internacional de shocks

- Suponga que la población (tamaño) de EE.UU. es N^{US} y la del resto del mundo es N^{ROW}
- La cuenta corriente en EE.UU. es:

$$CA_1^{US} = N^{US}B_1^{US}$$

• Es decir:

$$CA_1^{US} = N^{US} \left(Q_1^{US} - C_1^{US} \right)$$

• Por tanto:

$$CA^{US}(r_1) = \frac{N^{US}}{2} \left(Q_1^{US} - \frac{Q_2^{US}}{1 + r_1} \right)$$

• Similar para el resto del mundo:

$$CA^{RW}(r_1) = \frac{N^{RW}}{2} \left(Q_1^{RW} - \frac{Q_2^{RW}}{1 + r_1} \right)$$

• Por tanto:

$$r^* = \frac{N^{US}Q_2^{US} + N^{RW}Q_2^{RW}}{N^{US}Q_1^{US} + N^{RW}Q_1^{RW}} - 1$$

ullet Sea $lpha \equiv N^{US}/\left(N^{US}+N^{RW}
ight)$ la proporción de la población de EE.UU. dentro del total mundial. Entonces:

$$r^* = \frac{\alpha Q_2^{US} + (1 - \alpha) Q_2^{RW}}{\alpha Q_1^{US} + (1 - \alpha) Q_1^{RW}} - 1$$

- Entre mayor sea α , más importante son los shocks de dotación en EE.UU. como determinantes de la tasa de interés mundial.
- Si el resto del mundo es pequeño $(1 \alpha \rightarrow 0)$, entonces:

$$r^* = \frac{Q_2^{US}}{Q_1^{US}} - 1$$

- Es decir, la tasa de interés mundial está exclusivamente determinada por economías grandes.
 - Cambios en el comportamiento macroeconómico de las grandes economías afectan a las pequeñas a través de la tasa de interés mundial

El caso estadounidense: El creciente déficit en cuenta corriente 1996-2006

• Entre 1996-2006, el déficit en cuenta corriente de EE.UU. aumentó de 1.5% del PIB a 6%

Figure 7.3: The U.S. Current Account Balance: 1960-2018

- La Gran Recesión de 2008 mejoró el desbalance, llevándolo a 3% del PIB para 2009-2012
- ¿Qué explica el marcado aumento en el déficit en cuenta corriente y su eventual reducción? ¿Factores externos o locales?

La hipótesis del exceso de ahorro mundial (Global Saving Glut Hypothesis)

- Hipótesis: El deterioro en la CA de EE.UU. se explica por factores externos
- Entre 1996 y 2006 el resto del mundo experimentó un fuerte deseo al ahorro
 - Los países emergentes empezaron a acumular reservas internacionales como precaución a crisis

- Algunas economías implementaron políticas cambiarias para depreciar sus monedas y promover las exportaciones (Ej. China)
- Algunos países desarrollados mostraron elevadas tasas de ahorro como preparación a una población envejeciendo

La hipótesis local (Made in the USA)

- El deterioro en la cuenta corriente se debe al comportamiento de los estadounidenses dentro de su país
 - Innovación financiera y regulación más laxa indujo a bajas tasas de ahorro y excesos de inversión en el mercado inmobiliario

Contrastando ambas hipótesis

- Un incremento en el ahorro mundial:
 - Mueve la curva CA^{RW} hacia abajo. La curva CA^{US} no cambia

- El nuevo equilibrio en *B* implica un deterioro de la cuenta corriente en EE.UU. y una caída de la tasa de interés mundial
- Intuitivamente, EE.UU. se endeudaría más con el resto del mundo solo si dicho endeudamiento es más barato
- Un movimiento de la curva CA^{US} hacia la derecha implica:
 - La curva CA^{US} no cambia
 - Un deterioro de la cuenta corriente en EE.UU.
 - El nuevo equilibrio en *B* implica un deterioro de la cuenta corriente en EE.UU. y un aumento de la tasa de interés mundial
- ¿Cuál hipótesis es la correcta?
 - Probablemente ambas
 - Pero ambas hipótesis implican un movimiento opuesto de r^*
 - ¿Qué dicen los datos?

Figure 7.5: The World Interest Rate: 1992-2018

Resurgimiento de la hipótesis "Made in the USA"

- A partir de 2007, la cuenta corriente en EE.UU. presentó una fuerte reversión
- ¿Por qué? Hipótesis de exceso de ahorro mundial:
 - La reversión se explicaría por un menor deseo de ahorro del resto del mundo
 - La reversión estaría acompañada por un patrón en V de la tasa de interés al alza
 - No se observa en los datos
- Entonces ¿la hipótesis local?
 - Estallido de la burbuja inmobiliaria llevó a incrementos en el ahorro y caídas en la inversión
 - Es decir, la curva CA^{US} se desplazó hacia abajo y la derecha
 - Dicho movimiento mejora la CA^{US} y reduce r^* , como sugieren los datos
 - Es decir, factores locales parecen explicar la dinámica de la cuenta corriente estadounidense a partir de la crisis financiera global