Tutorial de Deep Learning

Luiz Gustavo Hafemann

LIVIA

École de Technologie Supérieure - Montréal

Organização do tutorial

• Dia 1:

- Introdução à aprendizagem de máquina
- Computação simbólica com Theano

• Dia 2

- Redes neurais convolucionais
- Biblioteca Lasagne

Dia 3

Transfer Learning

Introdução à Redes Neurais

Neurônio artificial:

Combinação linear da entrada: $\mathbf{w}^\mathsf{T}\mathbf{x} = w_1x_1 + w_2x_2...w_mx_m$ Aplicação de uma função não linear: saída = $f(\mathbf{w}^\mathsf{T}\mathbf{x} + b)$

Usando funçao sigmoid → Regressão logística

Introdução à Redes Neurais

Que tipo de problemas podem ser resolvidos?

Problemas lineares

(Figura: Hugo Larochelle)

Introdução à Redes Neurais

Não resolve problemas não lineares (e.g: XOR):

A não ser que use uma melhor representação da entrada

(Figura: Hugo Larochelle)

Redes Neurais com múltiplas camadas

Modelos que utilizaram várias camadas de neurônios

Permite "aprender as representações"

Aprendem funções não-lineares da entrada. Ponto negativo: otimização não-convexa

Redes Neurais com múltiplas camadas

Idéia chave: aprendizado baseado em gradiente

- Define-se uma função de custo diferenciável
- Calcula-se o gradiente (derivadas parciais do custo referente à cada peso do modelo)

Idéia principal: usar arquiteturas que explorem características presentes em imagens:

Conexões locais (explora a correlação dos pixels em 2D)

Pesos compartilhados (mesmo detector é usado em partes diferentes da imagem)

$$y_{11} = X_{11}w_{11} + X_{12}w_{12} + X_{21}w_{21} + X_{22}w_{22}$$

$$y_{12} = X_{12}w_{11} + X_{13}w_{12} + X_{22}w_{21} + X_{23}w_{22}$$

$$y_{13} = X_{13}w_{11} + X_{14}w_{12} + X_{23}w_{21} + X_{24}w_{22}$$

Outras características:

- Operação é linear, e diferenciável
- Computacionalmente caro, mas facilmente paralelizável em GPUs
- Compartilhamento de pesos resulta em poucos pesos a serem aprendidos, o que facilita o processo de treinamento (mais robusto à overfitting)

Exemplo de rede convolucional

Lenet-5: usado para reconhecimento de dígitos/letras manuscritas:

Introdução ao Lasagne

Introdução ao Lasagne

- Usa Theano como back-end, e contém implementações de funcionalidades úteis para Deep Learning:
 - Camadas convolucionais, max-pooling
 - Funções de custo comuns, e.g. cross-entropy
 - Algoritmos de otimização: gradient descent, RMSProp, Adam

Introdução ao Lasagne

- Usa Theano como back-end, e contém implementações de funcionalidades úteis para Deep Learning:
 - Camadas convolucionais, max-pooling
 - Funções de custo comuns, e.g. cross-entropy
 - Algoritmos de otimização: gradient descent, RMSProp, Adam
- Outros frameworks: Keras, Tensorflow, Torch, Caffe
 - https://github.com/zer0n/deepframeworks/blob/master/READ ME.md

Camada (layer):

 Representa uma camada da rede neural, especificando o tipo de computação (e.g. convolução) e hiperparâmetros (e.g. tamanho do filtro da convolução).

Camada (layer):

- Representa uma camada da rede neural, especificando o tipo de computação (e.g. convolução) e hiperparâmetros (e.g. tamanho do filtro da convolução).
- Exemplo:

```
data = InputLayer((None, 100))
hid = DenseLayer(data, 10)
hid2 = DenseLayer(hid, 1, nonlinearity=sigmoid)
```

- Não possui conceito de "modelo":
 - A última camada possui toda a informação necessária para construir o grafo

Não possui conceito de "modelo":

- A última camada possui toda a informação necessária para construir o grafo
- A prática comum é de colocar as camadas em um dicionário de python:

Funções e atributos:

Os atributos (e.g. pesos e bias) são acessados dessa forma:
 net['hid'].W # Variável simbólica que representa os pesos dessa camada

Funções e atributos:

- Os atributos (e.g. pesos e bias) são acessados dessa forma:
 net['hid'].W # Variável simbólica que representa os pesos dessa camada
- A saída de uma camada é computado como:
 net_output = lasagne.layers.get_output(net['out']) # Retorna uma variável simbólica que contém o resultado da operação da rede

Funções e atributos:

- Os atributos (e.g. pesos e bias) são acessados dessa forma:
 net['hid'].W # Variável simbólica que representa os pesos dessa camada
- A saída de uma camada é computado como:
 net_output = lasagne.layers.get_output(net['out']) # Retorna uma variável simbólica que contém o resultado da operação da rede
- Exemplo: uma função para obter a saída da rede (i.e. \hat{y}): input_var = net['data'].input_var predicted = lasagne.layers.get_output(net['out'], inputs=input_var) get_predictions = **theano.function([input_var], predicted)** y pred = get_predictions(x)

Principais camadas

Principais camadas

Principais Camadas:

- DenseLayer: Camada "fully-connected"
- Conv2DLayer: Camada de convolução
- MaxPool2DLayer: Camada de max-pooling

Principais camadas

Principais Camadas:

- DenseLayer: Camada "fully-connected"
- Conv2DLayer: Camada de convolução
- MaxPool2DLayer: Camada de max-pooling

· Principais não-linearidades:

- ReLU: REctified Linear Unit (padrão)
- Sigmoid: interpretado como p(y|x) em problemas binários
- Softmax: interpretado como p(y|x) em problemas com várias classes

Objetivos

Objetivos

Após definirmos a architetura da rede, precisamos definir a função de custo:

- binary_crossentropy: para funções de classificação de 2 classes
- categorical_crossentropy: para funções de classificação de várias classes
- squared error: para problemas de regressão

Objetivos

Após definirmos a architetura da rede, precisamos definir a função de custo:

- binary_crossentropy: para funções de classificação de 2 classes
- categorical_crossentropy: para funções de classificação de várias classes
- squared error: para problemas de regressão

Exemplo:

output var)

```
input_var = net['data'].input_var

output_var = T.vector()

predicted = lasagne.layers.get_output(net['out'], inputs=input_var)

loss = lasagne.objectives.categorical_crossentropy(predicted,
```

Algoritmo de otimização

Algoritmo de otimização

Após definir a função de custo, escolhemos um algorithmo de otimização (e.g. SGD):

```
params = lasagne.layers.get_all_params(net['out'])
updates = lasagne.updates.sgd(loss, params, lr)
```

Algoritmo de otimização

Após definir a função de custo, escolhemos um algorithmo de otimização (e.g. SGD):

```
params = lasagne.layers.get_all_params(net['out'])
updates = lasagne.updates.sgd(loss, params, lr)
```

Podemos então compilar a função de treinamento:

```
train_fn = theano.function([input_var, output_var], loss, updates=updates)
```

Loop de treinamento

Para treinar a rede, basta chamar a função de treinamento iterativamente.

Usando toda a base de treinamento (batch)

Ou usando poucos exemplos da base de treinamento por vez (mini-batch)

Vamos explorar as duas opções durante o exercício

Sumário

Em resumo, precisamos:

- 1)Definir uma arquitetura
- 2)Definir uma função de custo
- 3)Escolher um algoritmo de otimização
- 4)Compilar a função de treinamento
- 5)Chamar a função de treinamento até convergência

Prática

Links úteis

Curso de CNNs da Stanford:

http://cs231n.stanford.edu/syllabus.html

Livro de Deep Learning:

http://www.deeplearningbook.org/

Biblioteca		Prós	Contras
Lasagne + Theano	Python	Derivação automática Acesso fácil ao Theano Bom suporte à modelos pré-treinados	Demanda mais trabalho para implementar loop de treinamento
Keras + Theano	Python	Fácil de implementar	"Esconde" o Theano: mais difícil de implementar algo novo
Tensorflow	C++, Python	Derivação automática Fácil de paralelizar	Sintaxe mais complicada se for usar apenas uma GPU;
Torch	Lua	Rápido Não precida "tempo de compilação" para os modelos	Curva de aprendizado mais longa Mais difícil acesso à bibliotecas de imagem, etc (por ser em lua)
Caffe	C++	Rápido Bom suporte à modelos pré-treinados	Mais "engessado" - necessita descrever modelos em arquivos e