Chapter 3: Joint Distributions

- 1 JOINT DISTRIBUTIONS FOR MULTIPLE RANDOM VARIABLES
 - Very often, we are interested in more than one random variables simultaneously.
 - For example, an investigator might be interested in both the height (*H*) and the weight (*W*) of an individual from a certain population.
 - Another investigator could be interested in both the hardness (*H*) and the tensile strength (*T*) of a piece of cold-drawn copper.

DEFINITION 1

- Let E be an experiment and S be a corresponding sample space.
- Let X and Y be two functions each assigning a real number to each $s \in S$.
- We call (X,Y) a two-dimensional random vector, or a two-dimensional random variable.

Similarly to one-dimensional situation, we can denote the **range space** of (X,Y) by

$$R_{X,Y} = \{(x,y) | x = X(s), y = Y(s), s \in S\}.$$

The definition above can be extended to more than two random variables.

DEFINITION 2

Let $X_1, X_2, ..., X_n$ be n functions each assigning a real number to every outcome $s \in S$. We call $(X_1, X_2, ..., X_n)$ an n-dimensional random variable (or an n-dimensional random vector).

We define the discrete and continuous two-dimensional RVs as follows.

DEFINITION 3

1 (X,Y) is a **discrete** two-dimensional RV if the number of possible values of (X(s),Y(s)) are finite or countable.

That is the possible values of (X(s), Y(s)) may be represented by

$$(x_i, y_j), i = 1, 2, 3, \dots; j = 1, 2, 3, \dots$$

2 (X,Y) is a **continuous** two-dimensional RV if the possible values of (X(s),Y(s)) can assume any value in some region of the Euclidean space \mathbb{R}^2 .

REMARK:

we can view X and Y separately to judge whether (X,Y) is discrete or continuous.

forward and backwards are true

- If both X and Y are discrete RVs, then (X,Y) is a discrete RV.
- Likewise, if both *X* and *Y* are continuous random variables, then (*X*, *Y*) is a continuous RV.
- Clearly, there are other cases. For example, *X* is discrete, but *Y* is continuous. These are not our focus in this module.

EXAMPLE 4 ((DISCRETE RANDOM VECTOR))

- Consider a TV set to be serviced.
- Let

 $X = \{ age to the nearest year of the set \};$

 $Y = \{ \text{# of defective components in the set} \}.$

- (X,Y) is a discrete 2-dimensional RV.
- $R_{X,Y} = \{(x,y)|x=0,1,2,...;y=0,1,2,...,n\}$, where n is the total number of components in the TV.
- (X,Y) = (5,3) means that the TV is 5 years old and has 3 defective components.

L-example 3.1

 A fast food restaurant operates a drive-up facility and a walk-up window.

- On a day, Let
 - X = the proportion of time that the **drive-up facility** is in use;

Y =the proportion of time that the **walk-up window** is in use.

- Then $R_{X,Y} = \{(x,y) | 0 \le x, 0 \le y \le 1\}.$
- (X,Y) is a continuous 2-dimensional RV.

Joint Probability Function

- We introduce the probability function for the discrete and continuous RVs separately.
- For discrete random vector, similar to the one-dimensional case, we define its probability function by associate a number with each possible value of the RV.

DEFINITION 5 (JOINT PROBABILITY FUNCTION FOR DISCRETE RV) Let (X,Y) be a 2-dimensional discrete RV, the joint probability (mass) function is defined by

$$f_{X,Y}(x,y) = P(\mathbf{v} = x, \mathbf{Y} = y),$$

for x, y being possible values of X and Y, or in the other words $(x, y) \in R_{X,Y}$. the set $\{X=x\}$ is a subset of S, in the sense: $\{X=x\} = \{S \in S : X(s) = x\}$

The joint probability mass function has the following properties:

- (1) $f_{X,Y}(x,y) \ge 0$ for any $(x,y) \in R_{X,Y}$.
- (2) $f_{X,Y}(x,y) = 0$ for any $(x,y) \notin R_{X,Y}$.

(3)
$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} f_{X,Y}(x_i, y_j) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} P(X = x_i, Y = y_j) = 1;$$
or equivalently
$$\sum_{(x,y) \in R_{X,Y}} f(x,y) = 1.$$

(4) Let A be any subset of $R_{X,Y}$, then

$$P((X,Y) \in A) = \sum \sum_{(x,y) \in A} f_{X,Y}(x,y).$$

EXAMPLE 6

Find the value of k such that f(x,y) = kxy for x = 1,2,3 and y = 1,2,3 can serve as a joint probability function.

Solution:
$$R_{X,Y} = \{(x,y)|x = 1,2,3; y = 1,2,3\}.$$

$$f(1,1) = k, \quad f(1,2) = 2k, \quad f(1,3) = 3k,$$

$$f(2,1) = 2k, \quad f(2,2) = 4k, \quad f(2,3) = 6k,$$

$$f(3,1) = 3k, \quad f(3,2) = 6k, \quad f(3,3) = 9k.$$

Based on property (3), we have
$$1 = \sum_{x=1}^{\infty} \sum_{y=1}^{3} kxy = k \sum_{x=1}^{3} \sum_{y=1}^{4} kxy = k \sum_{x=1}^{3} \sum_{y=1}^{4} x \sum_{y=1}^{4} y = k \sum_{x=1}^{3} \sum_{y=1}^{4} x \sum_{y=1}^{4} x \sum_{y=1}^{4} y = k \sum_{x=1}^{4} x \sum_{y=1}^{4} x \sum$$

which results in k = 1/36.

L-example 3.2

- A company has 2 production lines, *A* and *B*, which produce at most 5 and 3 machines respectively.
- Let

X = number of machines produced by line A Y = number of machines produced by line B.

- The joint probability function f(x,y) for (X,Y) is given in the table, where each entry represents $f(x_i,y_j) = P(X = x_i,Y = y_j)$.
- What is the probability that in a day line *A* produces more machines than line *B*?

Table for the joint probability function f(x,y)

		Row					
<u> </u>	0	1	2	3	4	5	Total
0	0	0.01	0.02	0.05	0.06	0.08	0.22
1	0.01	0.03	0.04	0.05	0.05	0.07	0.25
2	0.02	0.03	0.05	0.06	0.06	0.07	0.29
3	0.02	0.04	0.03	0.04	0.06	0.05	0.24
Column Total	0.05	0.11	0.14	0.20	0.23	0.27	1

Consider the event

 $A = \{ \text{line } A \text{ produces more machines than line } B \} = \{ X > Y \}.$

Then we have

$$P(A) = P(X > Y)$$

$$= P((X,Y) = (1,0) \text{ or } (X,Y) = (2,0) \text{ or } (X,Y) = (2,1) \text{ or } \dots \text{ or } (X,Y) = (5,3))$$

$$= P((X,Y) = (1,0)) + \dots + P((X,Y) = (5,3))$$

$$= f(1,0) + f(2,0) + \dots + f(5,3) = 0.73.$$

L-example 3.3

- A company has 9 executives; 4 are married, 3 have never married, and 2 are divorced.
- Three executives are to be randomly selected for promotion.
- Among the selective executives, let

X = {number of married executives}Y = {number of never married executives}.

• Find the joint probability function of *X* and *Y*.

<u>Solution</u>: Note that the executives are selected randomly; so every possible selection of the executives are equally likely.

- The total number of ways to select 3 executives out of 9 is $\binom{9}{3}$.
- The possible values of x and y are constrained by x, y = 0, 1, 2, 3 and $1 \le x + y \le 3$. The number of ways to select x married and y never married is given by $\binom{4}{x}\binom{3}{y}\binom{2}{3-x-y}$.
- Therefore, the joint probability function of (X,Y) is given by

$$f_{X,Y}(x,y) = P(X = x, Y = y) = \frac{\binom{4}{x}\binom{3}{y}\binom{2}{3-x-y}}{\binom{9}{3}},$$

for x, y = 0, 1, 2, 3 such that $1 \le x + y \le 3$ and $f_{X,Y}(x,y) = 0$ otherwise.

• This joint p.f. can be summarized as a table.

		Row			
X	0	1	2	3	Total
0	0	3/84	6/84	1/84	10/84
1	4/84	24/84	12/84	0	40/84
2	12/84	18/84	0	0	30/84
3	4/84	0	0	0	4/84
Column Total	20/84	45/84	18/84	1/84	1

DEFINITION 7 (JOINT PROBABILITY FUNCTION FOR CONTINUOUS RV) Let (X,Y) be a 2-dimensional continuous RV; its joint probability (density) function is a function $f_{X,Y}(x,y)$ such that

$$P((X,Y) \in D) = \int \int_{(x,y) \in D} f_{X,Y}(x,y) dy dx,$$

for any $D \subset \mathbb{R}^2$ *. More specifically,*

$$P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f_{X,Y}(x,y) dy dx.$$

The joint probability density function has the following properties:

- (1) $f_{X,Y}(x,y) \ge 0$, for any $(x,y) \in R_{X,Y}$.
- (2) $f_{X,Y}(x,y) = 0$, for any $(x,y) \notin R_{X,Y}$.

(3)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1;$$
 or equivalently
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1.$$

EXAMPLE 8

Find the value c such that f(x,y) below can serve as a joint p.d.f. for a RV (X,Y):

$$f(x,y) = \begin{cases} \frac{cx(x+y)}{0}, & 0 \le x \le 1; 1 \le y \le 2\\ 0, & \text{elsewhere} \end{cases}$$

Solution: In order for f(x,y) to be a p.d.f., we need

$$1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dy dx = \int_{0}^{1} \int_{1}^{2} cx(x + y) dy dx = c \int_{0}^{1} x \left(x + \frac{1}{2} y^{2} \Big|_{1}^{2} \right) dx$$
$$= c \int_{0}^{1} x(x + 1.5) dx = c \left(\frac{1}{3} x^{3} + 1.5 \cdot \frac{1}{2} x^{2} \right) \Big|_{0}^{1} = c \cdot \frac{13}{12},$$

which implies c = 12/13.

L-example 3.4

Reuse the p.d.f. of Example 8:

$$f(x,y) = \begin{cases} \frac{12}{13}x(x+y), & 0 \le x \le 1; 1 \le y \le 2\\ 0, & \text{elsewhere} \end{cases}.$$

Assume that it is the joint p.d.f. of (X,Y). Let $A = \{(x,y) | 0 < x < 1/2; 1 < y < 2\}$. Compute $P((X,Y) \in A)$.

- Set *A* corresponds to the shaped area in the gigure on the right.
- We have

$$P((X,Y) \in A) = P(0 < X < 1/2; 1 < Y < 2)$$

$$= \int_{0}^{1/2} \int_{1}^{2} \frac{12}{13} x(x+y) dy dx \qquad 1$$

$$= \frac{12}{13} \int_{0}^{1/2} x(x+1.5) dx$$

$$= \frac{12}{13} \left(\frac{1}{3} x^{3} + 1.5 \cdot \frac{1}{2} x^{2}\right) \Big|_{0}^{1/2}$$

$$= \frac{11}{52}.$$

MARGINAL AND CONDITIONAL DISTRIBUTIONS **DEFINITION 1 (MARGINAL PROBABILITY DISTRIBUTION)**

Let (X,Y) be a two-dimensional RV with joint p.f. $f_{X,Y}(x,y)$. We define the marginal distribution for X as follows.

• If Y is a discrete RV, then for any x,

$$f_X(x) = \sum_{y} f_{X,Y}(x,y).$$

• If Y is a continuous RV, then for any x,

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy.$$

REMARK:

• $f_Y(y)$ for Y is defined in the same way as that of X.

- We can view the marginal distribution as the "projection" of the 2D function $f_{X,Y}(x,y)$ to the 1D function.
- More intuitively, it is the distribution of *X* by ignoring the presence of

For example, consider a person of a certain community,

- suppose X = body weight, Y = height. (X,Y) has a joint distribution $f_{X,Y}(x,y)$.
- the marginal distribution $f_X(x)$ of X is the **distribution of body** weights for all people in the community.
- $f_X(x)$ should not involve the variable y; this can be viewed from its definition: y is either summed out or integrated over.
- $f_X(x)$ is a **probability function** so it satisfies all the properties of the probability function.

EXAMPLE 2

- Revisit Example 6. The joint p.f. is given by $f(x,y) = \frac{1}{36}xy$ for x = 1,2,3 and y = 1,2,3.
- Note that *X* has three possible values: 1, 2, and 3. The marginal distribution for *X* is given by

- for
$$x = 1$$
, $f_X(1) = f(1,1) + f(1,2) + f(1,3) = 6/36 = 1/6$.

- for
$$x = 2$$
, $f_X(2) = f(2,1) + f(2,2) + f(2,3) = 12/36 = 1/3$.

- for
$$x = 3$$
, $f_X(3) = f(3,1) + f(3,2) + f(3,3) = 18/36 = 1/2$.

- for other values of x, $f_X(x) = 0$.
- Alternatively, for each $x \in \{1, 2, 3\}$,

$$f_X(x)$$
 = $\sum_{y} f(x,y) = \sum_{y=1}^{3} \frac{1}{36} xy$
 = $\frac{1}{36} x \sum_{y=1}^{3} y = \frac{1}{6} x$.

L-example 3.5

We reuse the joint p.f. of (X,Y) derived in L–Example 1:

		Row			
X	0	1	2	3	Total
0	0	3/84	6/84	1/84	10/84
1	4/84	24/84	12/84	0	40/84
2	12/84	18/84	0	0	30/84
3	4/84	0	0	0	4/84
Column Total	20/84	45/84	18/84	1/84	1

Can we read out the marginal p.f. of *X* and *Y* from the table directly?

L-example 3.6

Reuse the p.d.f. of Example 8:

$$f(x,y) = \begin{cases} \frac{12}{13}x(x+y), & 0 \le x \le 1; 1 \le y \le 2\\ 0, & \text{elsewhere} \end{cases}.$$

Assume that it is the joint p.d.f. of (X,Y). Find the marginal distribution of X.

Solution: (X,Y) is a continuous RV. For each $x \in [0,1]$, we have

$$f_X(x) = \int_{-\infty}^{\infty} f(x,y)dy = \int_{1}^{2} \frac{12}{13}x(x+y)dy$$
$$= \frac{12}{13}x\left(x+\int_{1}^{2} ydy\right)$$
$$= \frac{12}{13}x(x+1.5);$$

and for $x \notin [0,1]$, $f_X(x) = 0$.

DEFINITION 3 (CONDITIONAL DISTRIBUTION)

Let (X,Y) be a RV with joint p.f. $f_{X,Y}(x,y)$. Let $f_X(x)$ be the marginal p.f. for X. Then for any x such that $f_X(x) > 0$, the **conditional probability function of** Y **given** X = x is defined to be

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_{X}(x)}.$$

REMARK:

 For any y such that f_Y(y) > 0, we can similarly define the conditional distribution of X given Y = y:

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}.$$

• $f_{Y|X}(y|x)$ is defined only for x such that $f_X(x) > 0$; likewise $f_{X|Y}(x|y)$ is defined only for *y* such that $f_Y(y) > 0$.

$$f^{(\lambda)}(\lambda) = \frac{f^{(\lambda)}(x)}{f^{(\lambda)}(x)} = 0$$

The practical meaning of $f_{Y|X}(y|x)$: the distribution of Y given that the random variable X is observed to take the value x.

• Considering y as the variable (x as a fixed value), $f_{Y|X}(y|x)$ is a p.f., so it must satisfy all the properties of p.f..

• But $f_{Y|X}(y|x)$ is not a p.f. $f_{X|X}(y|x)$ this means that there is **NO** requirement

$$\sum_{x} f_{x}(x|x) = \frac{\sum_{x} f_{x,y}(x,y)}{f_{x}(x)}$$

$$= \frac{f_{x}(x)}{f_{x}(x)} = |$$

- $=\frac{f_{X}(x)}{f_{X}(x)} = \int_{-\infty}^{\infty} f_{Y|X}(y|x)dx = 1 \text{ for } X \text{ continuous or } \sum_{x} f_{Y|X}(y|x) = 1 \text{ for } X \text{ discrete.}$
 - With the definition, we immediately have

- If
$$f_X(x) > 0$$
, $f_{X,Y}(x,y) = f_X(x)f_{Y|X}(y|x)$

- If
$$f_Y(y) > 0$$
, $f_{X,Y}(x,y) = f_Y(y) f_{X|Y}(x|y)$.

• One immediate application of the conditional distribution is to compute, for continuous RV,

$$P(Y \le y | X = x) = \int_{-\infty}^{y} f_{Y|X}(y|x) dy;$$

$$E(Y|X = x) = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy.$$

Their practical meanings are clear: the former is the probability that $Y \le y$, given X = x; the latter is the average value of Y given X = x.

For discrete case, the computation is similarly established based on $f_{Y|X}(y|x)$; please fill in the details on your own.

EXAMPLE 4

Revisit Examples 6 and 2.

- The joint p.f. for (X,Y) is given by $f(x,y) = \frac{1}{36}xy$ for x = 1,2,3and y = 1, 2, 3.
- The marginal p.f. for *X* is $f_X(x) = \frac{1}{6}x$ for x = 1, 2, 3.
- Therefore, $f_{Y|X}(y|x)$ is defined for any x = 1, 2, or 3:

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{(1/36)xy}{(1/6)x} = \frac{1}{6}y,$$

for y = 1, 2, 3.

• We can compute

$$\begin{split} P(Y=2|X=1) &= f_{Y|X}(2|1) = \frac{1}{6} \cdot 2 = 1/3; \\ P(Y\leq 2|X=1) &= P(Y=1|X=1) + P(Y=2|X=1) \\ &= f_{Y|X}(1|1) + f_{Y|X}(2|1) = 1/6 + 1/3 = 1/2; \\ E(Y|X=2) &= 1 \cdot f_{Y|X}(1|2) + 2 \cdot f_{Y|X}(2|2) + 3 \cdot f_{Y|X}(3|2) \\ &= 1 \cdot (1/6) + 2 \cdot (2/6) + 3 \cdot (3/6) = 7/3. \end{split}$$

L-example 3.7

We reuse the joint p.f. of (X,Y) derived in L–Example 1:

		Row			
<i>X</i>	0	1	2	3	Total
0	0	3/84	6/84	1/84	10/84
1	4/84	24/84	12/84	0	40/84
2	12/84	18/84	0	0	30/84
3	4/84	0	0	0	4/84
Column Total	20/84	45/84	18/84	1/84	1

Can we read out the conditional p.f. $f_{X|Y}(x|y)$ and $f_{Y|X}(y|x)$ from the table directly? How to compute E(Y|X=x)?

L-example 3.8 Reuse Examples 8 and L-Example 2.

• The joint p.f. for (X,Y) is given by

$$f(x,y) = \begin{cases} \frac{12}{13}x(x+y), & 0 \le x \le 1; 1 \le y \le 2\\ 0, & \text{elsewhere} \end{cases}.$$

• The marginal p.f. for *X* is given by

$$f_X(x) = \frac{12}{13}x(x+1.5),$$

for $x \in [0, 1]$.

• For each $x \in [0,1]$, the conditional p.f. $f_{Y|X}(y|x)$,

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{(12/13)x(x+y)}{(12/13)x(x+1.5)}$$
$$= \frac{x+y}{x+1.5},$$

for $y \in [1, 2]$.

• We can compute

$$P(Y \le 1.5 | X = 0.5) = \int_{1}^{1.5} \frac{0.5 + y}{0.5 + 1.5} dy = 0.5625.$$

• Furthermore

$$E(Y|X = 0.5) = \int_{1}^{2} y \frac{0.5 + y}{0.5 + 1.5} dy$$
$$= \frac{1}{2} \int_{1}^{2} (0.5y + y^{2}) dy$$
$$= \frac{1}{2} \left(\frac{3}{4} + \frac{7}{3} \right) = 37/24.$$

3 INDEPENDENT RANDOM VARIABLES

DEFINITION 1 (INDEPENDENT RANDOM VARIABLES)

• Random variables X and Y are **independent** if and only if for **any** x and y,

$$f_{X,Y}(x,y) = f_X(x) f_Y(y).$$

• Random variables $X_1, X_2, ..., X_n$ are **independent** if and only if for any $x_1, x_2, ..., x_n$,

$$f_{X_1,X_2,...,X_n}(x_1,x_2,...x_n) = f_{X_1}(x_1)f_{X_2}(x_2)\cdots f_{X_n}(x_n).$$

REMARK:

- The above definition is applicable no matter whether (X,Y) is continuous or discrete.
- The "product feature" in the definition implies one necessary condition for independence: $R_{X,Y}$ needs to be a product space. In the sense that if X and Y are independent, for any $x \in R_X$ and any $y \in R_Y$, we have

$$f_{XY}(x,y) = f_X(x) f_Y(y) > 0,$$

implying $R_{X,Y} = \{(x,y)|x \in R_X; y \in R_y\} = R_X \times R_Y$.

Conclusion: if $R_{X,Y}$ is not a product space, then X and Y are not independent!

Properties of Independent Random Variables

Suppose X, Y are independent RVs.

(1) If *A* and *B* are arbitrary subsets of \mathbb{R} , the events $X \in A$ and $Y \in B$ are independent events in *S*. Thus

$$P(X \in A; Y \in B) = P(X \in A)P(Y \in B).$$

In particular, for any real numbers x, y,

$$P(X \le x; Y \le y) = P(Y \le x)P(Y \le y).$$

- (2) For arbitrary functions $g_1(\cdot)$ and $g_2(\cdot)$, $g_1(X)$ and $g_2(Y)$ are independent. For example,
 - X^2 and Y are independent.
 - sin(X) and cos(Y) are independent.
 - e^X and $\log(Y)$ are independent.
- (3) Independence is connected with conditional distribution.
 - If $f_X(x) > 0$, then $f_{Y|X}(y|x) = f_Y(y)$.
 - Likewise, if $f_Y(y) > 0$, then $f_{X|Y}(x|y) = f_X(x)$.

EXAMPLE 2

The joint p.f. of (X,Y) is given below.

x		$f_X(x)$		
X	1	3	5	$\int JX(\lambda)$
2	0.1	0.2	0.1	0.4
4	0.15	0.3	0.15	0.6
$f_Y(y)$	0.25	0.5	0.25	1

Are *X* and *Y* independent?

Solution:

• We need to check that for every *x* and *y* combination, whether we have

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

For example, from the table, we have $f_{X,Y}(2,1) = 0.1$; $f_X(2) = 0.4$, $f_Y(1) = 0.25$. Therefore

$$f_{X,Y}(2,1) = 0.1 = 0.4 \times 0.25 = f_X(2) f_Y(1).$$

• In fact, we can check for each $x \in \{2,4\}$ and $y \in \{1,3,5\}$ combination, the equality holds.

• We conclude that *X* and *Y* are independent.

L-example 3.9 Given that

$$f_{X,Y}(x,y) = \begin{cases} 2(x+y), & \text{for } 0 \le x \le 1, 0 < y < x \\ 0 & \text{elsewhere} \end{cases}$$

Are *X* and *Y* independent? Solution:

• The direct way of checking the independence is to check whether

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

holds for every (x,y) combination. The detail of this method is left as an exercise.

• For this question, we can immediately conclude that X and Y are not independent by checking that $R_{X,Y}$ is not a product space.

L–example 3.10 Suppose that (X,Y) is a discrete RV. The joint p.f. is given by

x		fre(x)			
<i>x</i>	0	1	2	3	$f_X(x)$
0	1/8	1/4	1/8	0	1/2
1	0	1/8	1/4	1/8	1/2
$f_Y(y)$	1/8	3/8	3/8	1/8	1

Are *X* and *Y* independent?

Solution:

The zero entries in the table indicate that $R_{X,Y}$ is not a product space. Therefore, X and Y are not independent.

L–example 3.11 We have a handy way to check independence when $f_{X,Y}(x,y)$ has an explicit formula in $R_{X,Y}$.

X and *Y* are independent if and only if both of the following hold:

- $R_{X,Y}$, the range that the p.f. is positive, is a product space.
- For any $(x,y) \in R_{X,Y}$, we have $f_{X,Y}(x,y) = C \cdot g_1(x)g_2(y)$; that is, it can be "factorized" as the product of two functions g_1 and g_2 , where the former **depends on** x **only**, the latter **depends on** y **only**, and C is a constant not depending on both x and y.

Note: $g_1(x)$ and $g_2(y)$ on their own are NOT necessarily p.f.s.

- We use the joint p.d. in Example 6 to illustrate: $f(x,y) = \frac{1}{36}xy$ for x = 1,2,3 and y = 1,2,3.
- $A_1 = \{1,2,3\}$ and $A_2 = \{1,2,3\}$, so the $R_{X,Y}$ is a product space.
- $f_{X,Y}(x,y) = \frac{1}{36} \cdot (x) \cdot (y)$: C = 1/36, $g_1(x) = x$, $g_2(y) = y$.
- We conclude that *X* and *Y* are independent.
- The advantage of this method is that we don't need to find the marginal distributions $f_X(x)$ and $f_Y(y)$ and check $f_{X,Y}(x,y) = f_X(x)f_Y(y)$.

Following this strategy, we can get $f_X(x)$ and $f_Y(y)$ by standardizing $g_1(x)$ and $g_2(y)$. Consider $f_X(x)$ for illustration; $f_Y(y)$ is obtained similarly.

• If *X* is a discrete RV, its p.m.f. is given by

$$f_X(x) = \frac{g_1(x)}{\sum_{t \in R_X} g_1(t)}.$$

• If *X* is a continuous RV, its p.d.f. is given by

$$f_X(x) = \frac{g_1(x)}{\int_{t \in R_X} g_1(t)} dt.$$

• We continue to use the example above to illustrate. Here X is a discrete RV, $R_X = A_1 = \{1, 2, 3\}$. We obtain its p.m.f.:

$$f_X(x) = \frac{g_1(x)}{\sum_{x \in R_X} g_1(x)} = \frac{x}{\sum_{x=1}^3 x} = x/6.$$

• Similarly, we get $f_Y(y) = y/6$.

L-example 3.12 Given that

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{3}x(1+y), & \text{for } 0 < x < 2, 0 < y < 1\\ 0, & \text{elsewhere} \end{cases}$$

Are *X* and *Y* independent? Solution:

• Set $A_1 = (0,2)$ and $A_2 = (0,1)$, then $R_{X,Y} = A_1 \times A_2$ is a product space.

- $f_{X,Y}(x,y)$ in $R_{X,Y}$ can be factorized by C=1/3, $g_1(x)=x$, $g_2(y)=1+y$. Therefore, we conclude that X and Y are independent.
- Furthermore,

$$f_X(x) = \frac{g_1(x)}{\int_{x \in A_1} g_1(x) dx} = \frac{x}{\int_0^2 x dx} = x/2;$$

$$f_Y(y) = \frac{g_2(y)}{\int_{y \in A_2} g_2(y) dy} = \frac{1+y}{\int_0^1 (1+y) dy} = \frac{2}{3} (1+y).$$

4 EXPECTATION AND COVARIANCE

DEFINITION 1 (EXPECTATION)

For any two variable function g(x,y),

• if(X,Y) is a discrete RV,

$$E(g(X,Y)) = \sum_{x} \sum_{y} g(x,y) f_{X,Y}(x,y);$$

• if(X,Y) is a continuous RV,

$$E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dy dx.$$

If we let

$$g(X,Y) = (X - E(X))(Y - E(Y)) = (X - \mu_X)(Y - \mu_y),$$

the expectation E[g(X,Y)] leads to the covariance of X and Y.

DEFINITION 2 (COVARIANCE)

The **covariance** of *X* and *Y* is defined to be

$$cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

$$= E[(Y - M_X)(Y - M_X)]$$

• If *X* and *Y* are discrete RVs,

$$cov(X,Y) = \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) f_{X,Y}(x,y).$$

• If *X* and *Y* are continuous RVs,

$$cov(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y) f_{X,Y}(x,y) dx dy.$$

The covariance has the following properties.

(1)
$$cov(X,Y) = E(XY) - E(X)E(Y)$$
.

$$= E\left[(x - \mu x)(y - \mu y)\right]$$
can take out miu outside of the expectation since its a constant

$$= E\left[x(-\mu y \cdot x - \mu x \cdot y + \mu x \mu y)\right]$$

$$= E(xy) - \mu y E(x) - \mu x E(y) + \mu x \mu y$$

$$= E_{xy} - \mu y \mu x - \mu x \mu y + \mu x \mu y$$

(2) If X and Y are independent, then cov(X,Y) = 0. However, cov(X,Y) = 0 does not imply that X and Y are independent.

(3)
$$cov(aX + b, cY + d) = ac \cdot cov(X, Y)$$
.
 $cov(X,Y) = cov(Y,X)$
 $cov(X+b, Y) = cov(X,Y)$
 $cov(aX,Y) = a cov(X,Y)$

$$V(ax) = a^2 V(X)$$
(4) $V(aX + bY) = a^2 V(X) + b^2 V(Y) + 2ab \cdot cov(X, Y)$. $V(X+Y) = V(X) + V(Y) + 2cov(X, Y)$

EXAMPLE 3 Given the joint distribution for (X, Y):

v		f (x)				
х	0	1	2	3	$f_X(x)$	
0	1/8	1/4	1/8	0	1/2	
1	0	1/8	1/4	1/8	1/2	
$f_Y(y)$	1/8	3/8	3/8	1/8	1	

- (a) Find E(Y X).
- (b) Find cov(X, Y).

Solution:

(a) Method 1:

$$E(Y-X) = (0-0)(1/8) + (1-0)(1/4) + (2-0)(1/8) + ... + (3-1)(1/8) = 1.$$

Method 2:

$$E(Y-X) = E(Y) - E(X) = 1.5 - 0.5 = 1,$$

where

$$E(Y) = 0 \cdot (1/8) + 1 \cdot (3/8) + 2 \cdot (3/8) + 3 \cdot (1/8) = 1.5$$

 $E(X) = 0 \cdot (1/2) + 1 \cdot (1/2) = 0.5.$

(b) We use cov(X,Y) = E(XY) - E(X)E(Y) to compute. Note that we have computed E(X) and E(Y) in Part (a).

$$E(XY) = (0)(0)(1/8) + (0)(1)(1/4) + (0)(2)(1/8) + ... + (1)(3)(1/8) = 1.$$

Therefore

$$cov(X,Y) = E(XY) - E(X)E(Y) = 1 - (0.5)(1.5) = 0.25.$$

L–example 3.13 Suppose that (X,Y) has the p.f.

$$f_{X,Y}(x,y) = \begin{cases} x^2 + \frac{xy}{3}, & \text{for } 0 \le x \le 1, 0 \le y \le 2\\ 0, & \text{otherwise} \end{cases}.$$

- (a) Find $f_X(x)$, $f_Y(y)$ and $f_{Y|X}(y|x)$.
- (b) Find cov(X, Y).

Solution:

(a) We first find the marginal density of X.

For
$$0 \le x \le 1$$
,

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy = \int_{0}^{2} \left(x^2 + \frac{xy}{3} \right) dy$$
$$= \left(x^2 y + \frac{xy^2}{6} \right) \Big|_{y=0}^{2} = 2x^2 + \frac{2x}{3}.$$

It is clear that $f_X(x) = 0$ for x < 0 or x > 1. Thus

$$f_X(x) = \begin{cases} 2x^2 + \frac{2x}{3}, & \text{for } 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}.$$

Similarly, the marginal density of *Y* is given as

$$f_Y(y) = \begin{cases} \frac{1}{3} + \frac{y}{6}, & \text{for } 0 \le y \le 2\\ 0, & \text{otherwise} \end{cases}$$
.

The conditional probability density function of *Y* given X = x when $0 \le x \le 1$ is then given as

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \begin{cases} \frac{x^2 + xy/3}{2x^2 + 2x/3}, & \text{for } 0 \le y \le 2\\ 0, & \text{otherwise} \end{cases}$$
$$= \begin{cases} \frac{3x + y}{2(3x + 1)}, & \text{for } 0 \le y \le 2\\ 0, & \text{otherwise} \end{cases}.$$

(b) We shall use the expression cov(X,Y) = E(XY) - E(X)E(Y).

Now

$$E(XY) = \int_0^2 \int_0^1 xy \left(x^2 + \frac{xy}{3} \right) dx dy$$

$$= \int_0^2 \int_0^1 \left(yx^3 + \frac{y^2x^2}{3} \right) dx dy$$

$$= \int_0^2 \left(y\frac{x^4}{4} + \frac{y^2x^3}{9} \right) \Big|_{x=0}^1 dy$$

$$= \int_0^2 \left(\frac{y}{4} + \frac{y^2}{9} \right) dy$$

$$= \frac{43}{54}.$$

We have computed the marginal distributions for X and Y in Part (a). Thus

$$E(X) = \int_0^1 x \left(2x^2 + \frac{2x}{3} \right) dx = \left(\frac{2x^4}{4} + \frac{2x^3}{9} \right) \Big|_{x=0}^1 = \frac{13}{18},$$

and

$$E(Y) = \int_0^2 y \left(\frac{1}{3} + \frac{y}{6}\right) dy = \left(\frac{y^2}{6} + \frac{y^3}{18}\right)\Big|_{y=0}^2 = \frac{10}{9}.$$

This gives

$$cov(X,Y) = E(XY) - E(X)E(Y) = \frac{43}{54} - \frac{13}{18} \times \frac{10}{9} = -\frac{1}{162}.$$

L-example 3.14

- Start from $V(X+Y) = V(X) + V(Y) + 2\operatorname{cov}(X,Y)$, we can have some interesting results.
- By induction, we have for any random variables X_1, X_2, \dots, X_n ,

$$V(X_1 + X_2 + \dots + X_n) = V(X_1) + V(X_2) + \dots + V(X_n) + 2\sum_{j>i} cov(X_i, X_j).$$

• If *X* and *Y* are independent, we have

$$V(X \pm Y) = V(X) + V(Y).$$

• By induction, we have if $X_1, X_2, ..., X_n$ are independent,

$$V(X_1 \pm X_2 \pm ... \pm X_n) = V(X_1) + V(X_2) + ... + V(X_n).$$