Database Management System – 35 Database design – Minimal Set of Functional Dependencies and Keys

Ajay James
Asst. Prof in CSE
Government Engineering College Thrissur

Outline

- Minimal Set of Functional Dependencies
- Algorithm to find minimal cover
- Example
- Algorithm to find key

Minimal Sets of Functional Dependencies

- We applied inference rules to expand on a set
 F of FDs to arrive at F⁺ (closure)
- Now think in the opposite direction to see if we could shrink or reduce the set F to its minimal form
 - so that the minimal set is still equivalent to the original set F

Minimal Sets of Functional Dependencies

- Informally, a minimal cover of a set of functional dependencies E is a set of functional dependencies F that satisfies the property that every dependency in E is in the closure F⁺ of F
- F must have no redundancies in it
- Dependencies in F are in a standard form

Extraneous attribute - definition

- An attribute in a functional dependency is considered an extraneous attribute if we can remove it without changing the closure of the set of dependencies
- Given F, the set of functional dependencies, and a functional dependency X → A in F,
 - attribute Y is extraneous in X if $Y \subset X$,
 - and F logically implies (F (X \rightarrow A) ∪ { (X Y) \rightarrow A })

Extraneous attribute example

- R(A, B, C)
- $F = \{AB \rightarrow C, A \rightarrow C\}$
- $F^+ = \{AB \rightarrow C, A \rightarrow C\}$
- B is extraneous
- A → C, which means A alone can determine C, the use of B is unnecessary (redundant)
- Given F, the set of functional dependencies, and a functional dependency X → A in F,
 - attribute Y is extraneous in X if Y ⊂ X,
 - and F logically implies (F (X → A) \cup { (X Y) → A }

How to find extraneous attribute? Case 1

- $\alpha \rightarrow \beta$. Assume that α and β are set of one or more attributes.
- Case 1 (LHS): To find if an attribute A in α is extraneous or not
- Step 1: Find $({\alpha} A)^+$ using the dependencies of F
- Step 2: If $({\alpha} A)^+$ contains all the attributes of β , then A is extraneous.

Extraneous attribute example case 1

- $F = \{P \rightarrow Q, PQ \rightarrow R\}$. Is Q extraneous in $PQ \rightarrow R$?
- Step 1: Find $(\{\alpha\} A)^+$ using the dependencies of F
 - $-\alpha$ is PQ. So find (PQ Q)+, ie., P+
 - $P^+ = \{PQR\}$
- Step 2: If $(\{\alpha\} A)^+$ contains all the attributes of β , then A is extraneous.
 - (PQ Q)⁺ contains R. Hence, Q is extraneous in PQ \rightarrow R.
 - $-\{P\rightarrow Q, P\rightarrow R\}$

How to find extraneous attribute? Case 2

- $\alpha \rightarrow \beta$. Assume that α and β are set of one or more attributes
- Case 2 (RHS): To find if an attribute A in β is extraneous or not
- Step 1: Find α^+ using the dependencies in F' where F' = (F { $\alpha \rightarrow \beta$ }) U { $\alpha \rightarrow (\beta A)$ }.
- **Step 2**: If α^+ contains A, then A is extraneous.

Extraneous attribute example case 2

- $F = \{P \rightarrow QR, Q \rightarrow R\}$. Is R extraneous in $P \rightarrow QR$?
- **Step 1**: Find α^+ using the dependencies in F' where F' = (F { $\alpha \rightarrow \beta$ }) U { $\alpha \rightarrow (\beta A)$ }
 - $-F' = (\{P \rightarrow QR, Q \rightarrow R\} \{P \rightarrow QR\}) \cup \{P \rightarrow (QR-R)\} = (\{Q \rightarrow R\} \cup \{P \rightarrow Q\})$
 - $-F' = \{Q \rightarrow R, P \rightarrow Q\}$
 - Here, α is P. So find (P)+, using the F'
 - Closure of P is {PQR}
- **Step 2**: If α^+ contains A, then A is extraneous.
 - P+ contains R. Hence, R is extraneous in P \rightarrow QR
 - $-F = \{P \rightarrow Q, Q \rightarrow R\}.$

Minimal set of FDs conditions

- 1. Every dependency in F has a single attribute for its right-hand side. (canonical/standard form)
- We cannot replace any dependency X → A in F with a dependency Y → A, where Y is a proper subset of X, and still have a set of dependencies that is equivalent to F
- 3. We cannot remove any dependency from F and still have a set of dependencies that is equivalent to F.

Minimal cover algorithm

- Input: A set of functional dependencies E.
- 1. Set F:=E.
- 2. Replace each functional dependency $X \to \{A_1, A_2, ..., A_n\}$ in F by the n functional dependencies $X \to A_1, X \to A_2, ..., X \to A_n$
- 3. For each functional dependency $X \to A$ in F for each attribute B that is an element of X if $\{ \{F \{X \to A\} \} \cup \{(X \{B\}) \to A\} \}$ is equivalent to F then replace $X \to A$ with $(X \{B\}) \to A$ in F. (* The above constitutes a removal of the extraneous attribute B from X *)
- 4. For each remaining functional dependency $X \to A$ in F if $\{F \{X \to A\}\}$ is equivalent to F, then remove $X \to A$ from F.
 - (* The above constitutes a removal of the redundant dependency $X \rightarrow A$ from F *)

Example 1

- $E: \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$
- Step 1 canonical form
- Step 2 extraneous attributes in LHS
 - Check for $AB \rightarrow D$
 - Remove A, find B⁺
 - $-B^{+} = \{BAD\}, B^{+}$ contains D, so A is extraneous
 - $-E: \{B \rightarrow A, D \rightarrow A, B \rightarrow D\}$
- Step 3: Redundant FD
 - $-B \rightarrow D$, $D \rightarrow A$ implies $B \rightarrow A$ (transitivity rule)
- $F=\{D \rightarrow A, B \rightarrow D\}$ (minimal cover)

Example 2

- G: $\{A \rightarrow BCDE, CD \rightarrow E\}$.
- Step 1: G: $\{A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow E, CD \rightarrow E\}$
- Step 2: Redundant/extraneous attribute in LHS
 - $-CD \rightarrow E$, remove C
 - $Find D^+ = \{D\}$
 - $-CD \rightarrow E$, remove D
 - $Find C^+ = \{C\}$
 - So, C and D are not redundant attributes

Example 2 contd...

- G: $\{A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow E, CD \rightarrow E\}$
- A \rightarrow C, A \rightarrow D implies A \rightarrow CD
- A \rightarrow CD and CD \rightarrow E implies A \rightarrow E
- So A → E is redundant
- Minimal cover
 - $-F = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, CD \rightarrow E\}$
 - Or F= {A \rightarrow BCD, CD \rightarrow E}

Algorithm to find key of a relation

- Input: A universal relation R and a set of functional dependencies F on the attributes of R
- 1. Set K := R;
- 2. For each attribute A in K
 {
 Compute (K -A)+ with respect to F;
 If (K -A)+ contains all the attributes in R,
 then set K := K -{A};
 }

Reference

 Elmasri R. and S. Navathe, Database Systems: Models, Languages, Design and Application Programming, Pearson Education 6th edition and 7th edition

Thank you