発展

教師付き学習

川田恵介

Table of contents

ķ	様々なアルゴリズム	1
	実例: 取引価格予測	2
	実例: 改築予測	2
	司則付き線形モデル	2
	推定方法	3
	複雑性の測定	3
	余談: 良性の過剰適合	3
	余談: NeuralNet/DeepLearning	3
ò	快定木	4
	Boosting	4
	Boosting: Algorithm	4
	Boosting: HyperParameter	4
	Bayesian Additive Regression Tree (BART)	4
	BART	Į.
	BART: Algorithm	
	Reference	F

様々なアルゴリズム

- 以下を紹介
 - 線形モデル系統: LASSO/Ridge/ElasticNet
 - 決定木系統: Boosting/BART
- 注意: 決定木系統は、少し計算時間が長い

実例: 取引価格予測

```
task id
                                                learner_id resampling_id
  nr
1: 1 select(Data, -Reform)
                                                  regr.lm
                                                                 holdout
2: 2 select(Data, -Reform) mutate.scale.regr.glmnet.tuned
                                                                 holdout
3: 3 select(Data, -Reform)
                                              regr.ranger
                                                                 holdout
4: 4 select(Data, -Reform)
                                       regr.xgboost.tuned
                                                                 holdout
5: 5 select(Data, -Reform)
                                                 regr.bart
                                                                 holdout
   iteration regr.rsq
          1 0.8372302
1:
2:
           1 0.8504372
3:
           1 0.8504834
4:
           1 0.8692617
           1 0.8660880
5:
```

Hidden columns: uhash, task, learner, resampling, prediction

実例: 改築予測

	nr	task_id		lea	arner_id r	esampling_id			
1:	1 select(Data,	-Price)			regr.lm	holdout			
2:	2 select(Data,	-Price)	mutate.scale	e.regr.glmn	et.tuned	holdout			
3:	3 select(Data,	-Price)		reg	r.ranger	holdout			
4:	4 select(Data,	-Price)		regr.xgboos	st.tuned	holdout			
5:	5 select(Data,	-Price)		re	egr.bart	holdout			
iteration regr.rsq									
1: 1 0.1365180									
2: 1 0.1406397									
3:	3: 1 0.1363812								
4:	1 0.1560	0419							
5:	1 0.1593	3486							
Hidden columns: uhash, task, learner, resampling, prediction									

罰則付き線形モデル

- 線形モデルの OLS 推定は、X が数が多くなると (経験則としてサンプルサイズの 1/3 以上) と性能低下
 - モデルが複雑になりすぎる
 - 複雑性への"課税"(罰則)が有効

推定方法

- 以下を最小化するように線形モデル $g(X) = \beta_0 + .. + \beta_L X_L$ を推定
 - モデルへの不適合度(二乗誤差) $+\lambda \times$ モデルの複雑さ
- λ : HyperParameter (複雑性への課税)
 - 交差推定により決定可能

複雑性の測定

- LASSO: $|\beta_1| + ... + |\beta_L|$
- Ridge: $\beta_1^2 + ... + \beta_L^2$
- Elasticnet:
 - $\ \alpha \big[|\beta_1| + \ldots + |\beta_L| \big] + (1-\alpha) \big[\beta_1^2 + \ldots + \beta_L^2 \big]$
 - α も HyperParameter (交差推定で推定可能)

余談: 良性の過剰適合

- Parameter > 事例数でかつ、 $\lambda \to 0$ であれば、データへの適合度は最大 (二乗誤差が 0) になる
 - ただし推定は可能
 - データへの適合度を最大にする制約内で、複雑性が最小になるようにモデルを推定する
- 予測性能が高い場合もある!!!
 - 良性の過剰適合: Spiess, Imbens, and Venugopal (2023)
 - ただしまだまだよくわかっていない現象だそうです

余談: NeuralNet/DeepLearning

- 線形モデルの拡張: 入れ子型のモデルを推定
- NeuralNet

 $g(X) = G(\beta_0 + .. + \beta_M \times g_M(X))$

 $g_m(X) = G(\beta_0 + ..\beta_L \times X_L)$

-G := リンク関数 (Logit など)

• DeepLearning: 入れ込み構造が多段

- HyperParameter の調整方法について、膨大な議論が存在

決定木

• 決定木の集計方法に様々な提案

Boosting

- RandomForest: 複雑すぎる決定木の予測を集計し、安定させる (分散を削減する)
- Boosting: 単純すぎる決定木を徐々に複雑化する(ゆっくり学ぶ)
 - 特に伝統的なデータ (非テキスト/画像) に対して、パフォーマンスが高い場合が多いと主張される
 - Einav et al. (2018) でも採用

Boosting: Algorithm

- 1. 初期予測モデル g(X)=0 を設定し、予測誤差 $r_i=Y_i-g(X)=Y_i$ を計算
- 2. $r_i \sim X$ を推定 (浅い決定木 $g'(X_i)$ を構築)
- 3. 予測モデルを更新 $g(X) \leftarrow g(X) + \lambda g'(X)$
- 4. 予測誤差を更新 $r_i \leftarrow r_i g(X)$
- 5. 2-4 を繰り返す

Boosting: HyperParameter

- 個々の木の深さ、繰り返す回数、λなど
- 交差推定で決定可能

Bayesian Additive Regression Tree (BART)

• Irreducible Error が大きい場合にも有効と主張される

- mlr3extralearner (github 経由でインストール可能) に実装
 - 分類問題にも活用可能
- RandomForest: 各決定木を独立して推定
- BART:

BART

- 各更新過程での予測モデル: $f^b(X_i) = \sum_k f_k(X_i)$
- 最終予測モデル: $\sum_{b=L+1}^B f^b(X_i)$

BART: Algorithm

- 1. 初期の予測モデル $g_k^1 = \frac{1}{nK} \sum_i^n Y_i$
- 2. kth tree の更新: $r_i \sim X$ ただし

$$r_i = Y_i - \sum_{k' < k} f'_{k'}(X_i) - \sum_{k' > k} f_{k'}(X_i)$$

- 3. 2を繰り返す
- 各更新は、(1) 新しい分割の追加/選定、(2) 各サブグループの予測値、のどちらかを行う

Reference

Einav, Liran, Amy Finkelstein, Sendhil Mullainathan, and Ziad Obermeyer. 2018. "Predictive Modeling of US Health Care Spending in Late Life." *Science* 360 (6396): 1462–65.

Spiess, Jann, Guido Imbens, and Amar Venugopal. 2023. "Double and Single Descent in Causal Inference with an Application to High-Dimensional Synthetic Control." arXiv Preprint arXiv:2305.00700.