Graph Convolutional Network

Heting Gao

University of Illinois at Urbana-Champaign hgao17@illinois.edu

November 10, 2018

Overview

- Graph Convolution
 - Preliminary
 - Graph Fourier Transform
 - Graph Spectral Filtering
 - Fast Localized Spectral Filtering
 - Convolutional Graph Network

Preliminaryⁱ

- ullet A connected undirected graph is represented as $\mathcal{G} = \{\mathcal{V}, \mathcal{E}, \mathbf{W}\}$
 - V is the set of vertices and |V| = N.
 - ullet E is the set of edges.
 - W is the weighted adjacency matrix.
 - $W_{i,j}$ is the weight of the edge e = (i,j) connecting vertex i and j.
 - $W_{i,j} = 0$ if the edge does not exist.
 - If the weight of the graph is not naturally defined, a common way to define the weight is

$$W_{i,j} = egin{cases} \expig(-rac{[\mathit{dist}(i,j)]^2}{2 heta}ig) & ext{if } \mathit{dist}(i,j) \leq \kappa \ 0 & ext{otherwise} \end{cases}$$

for some parameter κ and θ . dist(i,j) can be the actual distance on the graph between vertex i and j, or the distance between features of vertex i and j

i(IEEE-2012) [David i Shuman] The Emerging Field of Signal Processing on Graphs 🕡 🔊 🔻 🗦 🔻 💆 🔻 🗸

Heting Gao (UIUC) Short title November 10, 2018 3 / 27

Preliminary

- A signal or a function on the graph $f: \mathcal{V} \to \mathbb{R}$ can be represented as a vector $\mathbf{f} \in \mathbb{R}^N$. $\mathbf{f}_i = f(v_i)$ is the function value on vertex $v_i \in \mathcal{V}$
- ullet The Non-Normalized Graph Laplacian ${f L}={f D}-{f W}$
 - **W** is the weight matrix.
 - **D** is the degree matrix. It is a diagonal matrix and diagonal element is the sum of all the incident edge weights.
 - $\bullet \ \mathbf{D}_{i,i} = \sum_{j=1}^{N} \mathbf{W}_{i,j}$
- The Graph Laplacian **L** is a difference operator. $\forall f \in \mathbb{R}^N$,

$$(\mathbf{L}f)(i) = \sum_{j \in \mathcal{N}_i} \mathbf{W}_{i,j}[f(i) - f(j)]$$
$$(\mathbf{L}\mathbf{f})_i = \sum_{j \in \mathcal{N}_i} \mathbf{W}_{i,j}(\mathbf{f}_i - \mathbf{f}_j)$$

where \mathcal{N}_i denote the set of neighbor nodes of vertex i.

Laplacian

1-D Laplacian operator Δ

$$f'(t) = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h}$$

$$\Delta f(t) = \frac{\partial^2}{\partial t^2} f(t)$$

$$= \frac{\partial}{\partial t} f'(t)$$

$$= \lim_{h \to 0} \frac{f'(t+h) - f'(t)}{h}$$

Laplacian

• 1-D discrete Laplacian operator Δ

$$f'[n] = f[n+1] - f[n]$$

$$\Delta f[n] = f'[n+1] - f'[n]$$

$$= (f[n+1] - f[n]) - (f[n] - f[n-1])$$

$$= f[n+1] + f[n-1] - 2f[n]$$

ullet 2-D discrete Laplacian operator Δ

$$\Delta f[n, m] = f[n+1, m] + f[n-1, m] + f[n, m+1] + f[n, m-1] -4f[n, m]$$

Laplacian

• The Graph Laplacian **L** is a discrete Laplaican operator on the graph signals.

$$(\mathbf{Lf})_i = \sum_{j \in \mathcal{N}_i} \mathbf{W}_{i,j} (\mathbf{f}_i - \mathbf{f}_j)$$

 $-\Delta \mathbf{f} = \mathbf{Lf}$

Fourier Transform

• For a given function f(t), its Fourier transform F at a given frequency $2\pi k$ is

$$F(\Omega) = \langle f(t), e^{j\Omega t} \rangle = \int_{\mathbb{R}} f(t)e^{-j\Omega t}dt$$

• The Laplacian of the basis $e^{j\Omega t}$ is in form of itself.

$$-\Delta e^{j\Omega t} = -\frac{\partial^2}{\partial t^2} e^{j\Omega t} = \Omega^2 e^{j\Omega t}$$

• For graph Fourier transform, we also want to find a set of analogous basis. Let $\mathbf{u} \in \mathbb{R}^{\mathbb{N}}$ be a basis for graph transform, we want

$$-\Delta \mathbf{u} = \mathbf{L}\mathbf{u} = \lambda \mathbf{u}$$

This is eigenvalue decomposition

Graph Fourier Transform

- Let $\mathbf{U} = [\mathbf{u}_I]_{I=1,...,N}$ denote the matrix of eigenvectors of \mathbf{L}
- Let $\Lambda = [\lambda_I]_{I=1,...,N}$ denote the diagonal matrix of eigenvalues of L
- For a given signal \mathbf{f} , its Fourier transform $\mathbf{F}(\lambda_l)$ at the given frequency λ_l is

$$\mathbf{F}(\lambda_I) = <\mathbf{f}, \mathbf{u}_I> = \sum_{i=1}^N \mathbf{f}_i \mathbf{u}_{I,i}^*$$

• The inverse Fourier transform is then

$$\mathbf{f}_i = \sum_{l=1}^N \mathbf{F}(\lambda_l) \mathbf{u}_{l,i}$$

• Let $\mathbf{F} \in \mathbb{R}^N$ denote the Fourier transform vector of the given graph signal $\mathbf{f} \in \mathbb{R}^N$, we have the following matrix form of Fourier transform.

$$F = U^T f$$

 $f = UF$

Graph Spectral Filtering

- Let $\mathcal{F}: \mathbb{R}^N \to \mathbb{R}^N$ denote the graph Fourier transform Let $\mathcal{F}^{-1}: \mathbb{R}^N \to \mathbb{R}^N$ denote the inverse graph Fourier transform.
- Let $\mathbf{h} \in \mathbb{R}^N$ denote the filter function on the graph.
- Let $\mathbf{H} \in \mathbb{R}^N$ denote the Fourier transform of the filter function.
- Let $\mathbf{y} \in \mathbb{R}^N$ denote the function after filtering on the graph.

$$\begin{aligned} \mathbf{y} &= \mathbf{h} * \mathbf{f} \\ &= \mathcal{F}^{-1}[\mathcal{F}(\mathbf{h}) \odot \mathcal{F}(\mathbf{f})] \\ &= \mathbf{U}[\mathbf{U}^T \mathbf{h} \odot \mathbf{U}^T \mathbf{f}] \\ &= \mathbf{U}[\mathbf{H} \odot \mathbf{U}^T \mathbf{f}] \\ &= \mathbf{U} \begin{bmatrix} \mathbf{H}(\lambda_1) & & & \\ & \ddots & & \\ & & \mathbf{H}(\lambda_I) \end{bmatrix} \mathbf{U}^T \mathbf{f} \end{aligned}$$

Graph Spectral Filtering

Define H(L) the spectral filter as

$$\mathbf{H}(\mathbf{L}) = \mathbf{U} egin{bmatrix} \mathbf{H}(\lambda_1) & & & & \\ & \ddots & & & \\ & & \mathbf{H}(\lambda_I) \end{bmatrix} \mathbf{U}^T$$

- The adjustable parameter would be $[\mathbf{H}_I]_{I=1,2,...,N}$
- Let $\theta = [\mathbf{H}(\lambda_I)]_{I=1,2,...,N}$.
- Let $g_{\theta}(\mathbf{\Lambda}) = diag(\theta)$ We can define the convolutional layer as

$$\mathbf{y} = \sigma(\mathbf{U}g_{\theta}(\mathbf{\Lambda})\mathbf{U}^{T}\mathbf{f})$$

Fast Localized Spectral Filteringii

If we define the convolutional layer as

$$\mathbf{y} = \sigma(\mathbf{U}g_{\theta}(\mathbf{\Lambda})\mathbf{U}^{T}\mathbf{f})$$

- There are however 3 limitations.
 - The convolution is not localized. With arbitrary θ , the signal **f** can be propagated to any other nodes.
 - $\theta \in \mathbf{R}^N$ means that we need N parameter.
 - Eigen decomposition has a computational complexity of $\mathcal{O}(N^3)$ and every forward propagation has complexity of $\mathcal{O}(N^2)$

ii (NIPS-2016) [Michal Defferrard] Convolutional Neural Networks on Graphs with East Localized Spectral Filtering

Heting Gao(UIUC) Short title <u>November 10, 2018</u>

12 / 27

Fast Localized Spectral Filtering

We can instead define

$$g_{ heta}(\mathbf{\Lambda}) = \sum_{k=1}^K \theta_k \mathbf{\Lambda}^k$$

• We get the new convolutional layer as

$$\mathbf{y} = \sigma(\mathbf{U}g_{\theta}(\mathbf{\Lambda})\mathbf{U}^{T}\mathbf{f})$$

$$= \sigma(\mathbf{U}(\sum_{k=1}^{K} \theta_{k}\mathbf{\Lambda}^{k})\mathbf{U}^{T}\mathbf{f})$$

$$= \sigma(\sum_{k=1}^{K} \theta_{k}\mathbf{U}\mathbf{\Lambda}^{k}\mathbf{U}^{T}\mathbf{f})$$

$$= \sigma(\sum_{k=1}^{K} \theta_{k}\mathbf{L}^{K}\mathbf{f})$$

Fast Localized Spectral Filtering

The new definition of a convolutional layer is

$$\mathbf{y} = \sigma(\sum_{k=1}^K \theta_k \mathbf{L}^k \mathbf{f})$$

- It have three advantage
 - The convolution is localized and is exactly K-hop localized we are using at most K's power of \mathbf{L}
 - We need only K parameters
 - We do not need to decompose L and the forward propagation can be approximated using Chebyshev polynomials (I do not understand this part but I will still try to describe the steps described in the paper).

Chebychev Polynomial

Chebychev Polynomial Expansion

$$T_0(y) = 1$$

 $T_1(y) = y$
 $T_k(y) = 2yT_{k-1} - T_{k-2}$

• These polynomials forms an orthogonal basis for $x \in L^2([-1,1],\frac{dy}{\sqrt{1-y^2}})$, the Hilbert space of square integrable functions with respect to the measure $\frac{dy}{\sqrt{1-y^2}}$

$$\int_{-1}^{1} \frac{T_{I}(y) T_{m}(y)}{\sqrt{1 - y^{2}}} dy = \begin{cases} \delta_{I,m} \pi/2 & m, l > 0\\ \pi & m = l = 0 \end{cases}$$

Chebychev Polynomial

• In particular, $\forall h \in L^2([-1,1], \frac{dy}{\sqrt{1-y^2}})$, h has the following chebychev polynomial expansion.

$$h(y) = \frac{1}{2}c_0 + \sum_{k=1}^{\infty} c_k T_k(y)$$

• Since $\lambda \in [0, \lambda_{max}]$ plug in $y = \mathbf{U}(\frac{2\mathbf{\Lambda}}{\lambda_{max}} - \mathbf{I})\mathbf{U}^T = \frac{2\mathbf{L}}{\lambda_{max}} - \mathbf{I}$,

$$g_{\theta}(\mathbf{L}) = \sum_{k=1}^{K} \theta_k \mathbf{L}^k = \frac{1}{2} c_0 + \sum_{k=1}^{\infty} c_k T_k(y)$$

where $T_k(y)$ can be computed recursively as

$$T_k(y) = 2yT_{k-1}(y) + T_{k-2}(y)$$

Chebychev Polynomial

• Let $\bar{\mathbf{f}}_k = T_k(y)\mathbf{f}$ can be computed recursively as

$$\mathbf{\bar{f}}_{k} = T_{k}(y)\mathbf{f}$$

$$T_{k}(y)\mathbf{f} = 2yT_{k-1}(y)\mathbf{f} + T_{k-2}(y)\mathbf{f}$$

$$= 2y\overline{\mathbf{f}}_{k-1} + \overline{\mathbf{f}}_{k-2}$$

$$= 2(\frac{2\mathbf{L}}{\lambda_{max}} - \mathbf{I})\overline{\mathbf{f}}_{k-1} + \overline{\mathbf{f}}_{k-2}$$

The approximated convolutional layer is as

$$y = \sigma(g_{\theta}(\mathbf{L})\mathbf{f}) = \sigma(\sum_{k=0}^{K} \theta_k \bar{\mathbf{f}}_k)$$

with
$$\bar{\mathbf{f}}_0 = \mathbf{f}$$
, and $\bar{\mathbf{f}}_1 = y\mathbf{f} = (\frac{2\mathbf{L}}{\lambda_{max}} - \mathbf{I})\mathbf{f}$

- Instead of using K-hop localized filter, set K = 1, but instead stack multiple layers.
- Use symmetric normalized Laplacian

$$\mathbf{L}^{\mathit{sym}} = \mathbf{D}^{-rac{1}{2}}\mathbf{L}\mathbf{D}^{-rac{1}{2}} = \mathbf{I} - \mathbf{D}^{-rac{1}{2}}\mathbf{W}\mathbf{D}^{-rac{1}{2}}$$
 iii.

• The entries of L^{sym} are

$$\mathbf{L}_{i,j}^{\mathit{sym}} = egin{cases} 1 & \text{, } i = j \\ rac{1}{\sqrt{d_i d_j}} & \text{, } i
eq j \text{ and vertex } i \text{ and} j \text{ are connected} \\ 0 & \text{, otherwise} \end{cases}$$

The equation is equivalent to

$$(\mathbf{L}^{\textit{sym}}\mathbf{f})_i = rac{1}{\sqrt{d_i}} \sum_{j \in \mathcal{N}_i} \mathbf{W}_{i,j} (rac{\mathbf{f}_i}{\sqrt{d_i}} - rac{\mathbf{f}_j}{\sqrt{d_j}})$$

• The eigenvalues $[\lambda_I]_{I=1,2,...,N}$ of \mathbf{L}^{sym} is in the range of [0,2]

iv (ICLR-2017) [Thomas N. Kipf] Semi-Supervised Classification with Graph Convolutional Networks 🕟 🔻 📑 🕨

Heting Gao (UIUC) Short title November 10, 2018 18 / 27

 $[\]overset{\text{iii}}{\overset{}{\overset{}}{\overset{}}{\overset{}}}$ Kipf's paper uses **A** to represent the weight matrix. I will stick to **W** to be consistent in this presentation

• Then the convolutional layer can be approximated as

$$\begin{array}{ll} y & = & \sigma(g_{\theta}(\mathbf{L})\mathbf{f}) \\ & \approx & \sigma(\theta_{0}\mathbf{f} + \theta_{1}y\mathbf{f}) \\ & = & \sigma(\theta_{0}\mathbf{f} + \theta_{1}(\frac{2\mathbf{L}^{sym}}{\lambda_{max}} - \mathbf{I})\mathbf{f}) \\ & = & \sigma[(\theta_{0} - \theta_{1})\mathbf{f} + \theta_{1}\mathbf{L}^{sym}\mathbf{f}] \; (\text{assume } \lambda_{max} = 2) \\ & = & \sigma[(\theta_{0} - \theta_{1})\mathbf{f} + \theta_{1}(\mathbf{I} - \mathbf{D}^{-\frac{1}{2}}\mathbf{W}\mathbf{D}^{-\frac{1}{2}})\mathbf{f}] \\ & = & \sigma(\theta_{0}\mathbf{f} - \theta_{1}\mathbf{D}^{-\frac{1}{2}}\mathbf{W}\mathbf{D}^{-\frac{1}{2}})\mathbf{f}) \end{array}$$

The approximated output layer

$$y = \sigma(\theta_0 \mathbf{f} - \theta_1 \mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}}) \mathbf{f})$$

• The number of parameters is further reduced to 1 in the paper by assuming $\theta=\theta_0=-\theta_1$

$$y = \sigma(\theta(\mathbf{I} + \mathbf{D}^{-\frac{1}{2}}\mathbf{W}\mathbf{D}^{-\frac{1}{2}})\mathbf{f})$$

- The matrix $\mathbf{I} + \mathbf{D}^{-\frac{1}{2}}\mathbf{W}\mathbf{D}^{-\frac{1}{2}}$ has eigenvalues $\lambda \in [0,2]$. Repeated application on this matrix can result in numerical instability.
- Renormalize $\mathbf{I} + \mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}}$ to $\widetilde{\mathbf{D}}^{-\frac{1}{2}} \widetilde{\mathbf{W}} \widetilde{\mathbf{D}}^{-\frac{1}{2}}$

$$\widetilde{\mathbf{W}} = \mathbf{W} + \mathbf{I}$$
 $\widetilde{\mathbf{D}}_{i,i} = \sum_{j} \widetilde{\mathbf{W}}_{i,j}$

The final version of graph convolutional network is

$$\boldsymbol{Z} = \widetilde{\boldsymbol{D}}^{-\frac{1}{2}} \widetilde{\boldsymbol{W}} \widetilde{\boldsymbol{D}}^{-\frac{1}{2}} \boldsymbol{F} \boldsymbol{\Theta}$$

where

- $\mathbf{F} \in \mathbb{R}^{N \times C}$ is the signal matrix.
- $\Theta \in \mathbb{R}^{C \times F}$ is the learnable parameters of the filter.
- $\mathbf{Z} \in \mathbb{R}^{N \times F}$ is the output matrix.
- *C* is the number of input feature channels.
- *F* is the number of output feature channels.

 The paper performed semi-supervised node classification using the following GCN architecture

$$\mathbf{Z} = f(\mathbf{F}, \mathbf{W}) = \textit{softmax}(\hat{\mathbf{W}}\textit{ReLU}(\hat{\mathbf{W}}\mathbf{F}\boldsymbol{\Theta}^{(0)})\boldsymbol{\Theta}^{(1)})$$

where
$$\hat{\mathbf{W}} = \widetilde{\mathbf{D}}^{-\frac{1}{2}}\widetilde{\mathbf{W}}\widetilde{\mathbf{D}}^{-\frac{1}{2}}$$

ullet The loss function ${\cal L}$ is defined on all the labeled nodes

$$\mathcal{L} = -\sum_{I \in \mathcal{Y}_L} \sum_{f=1}^F \mathbf{Y}_{If} ln \mathbf{Z}_{If}$$

where \mathcal{Y}_L is the set of labeled node indices, \mathbf{Y} is the set of true labels.

The experiments are performed on the following dataset

Table 1: Dataset statistics, as reported in Yang et al. (2016).

Dataset	Type	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

• The results are

Table 2: Summary of results in terms of classification accuracy (in percent).

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb 28	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk 22	43.2	67.2	65.3	58.1
ICA 18	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)

GCN (rand. splits) 67.9 ± 0.5 80.1 ± 0.5 78.9 ± 0.7 58.4 ± 1.7

Model comparison

Table 3: Comparison of propagation models.

Description	Propagation model	Citeseer	Cora	Pubmed
Chebyshev filter (Eq. 5) $K = 3$ K = 2	$\sum_{k=0}^{K} T_k(\tilde{L}) X \Theta_k$	69.8 69.6	$79.5 \\ 81.2$	$74.4 \\ 73.8$
1 st -order model (Eq. <mark>6)</mark> Single parameter (Eq. <mark>7</mark>)	$X\Theta_0 + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta_1$ $(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})X\Theta$	68.3 69.3	80.0 79.2	77.5 77.4
Renormalization trick (Eq. 8)	$\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}X\Theta$	70.3	81.5	79.0
1 st -order term only Multi-layer perceptron	$D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta \\ X\Theta$	$68.7 \\ 46.5$	$80.5 \\ 55.1$	$77.8 \\ 71.4$

- The limitation of this paper
 - Memory requirement is high. Each iteration requires the entire adjacency matrix. Does not work for large dense graphs.
 - Directed edges and edge features cannot be naturally Incorporated into this model.
 - The adding of I to adjacency matrix ${\bf W}$ is assuming the equal importance of self-connection and edges to neighbor nodes. It might be useful to introduce a weight λ on self-loop

$$\widetilde{\mathbf{W}} = \mathbf{W} + \lambda \mathbf{I}$$

 The convolutional layer only captures 1-hop locality. The expressiveness of the filter is still limited.

Reference

- (IEEE-2012) [David i Shuman] The Emerging Field of Signal Processing on Graphs
- (NIPS-2016) [Michal Defferrard] Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
- (ICLR-2017) [Thomas N. Kipf] Semi-Supervised Classification with Graph Convolutional Networks
- This presentation follows the outline of this post https://www.zhihu.com/question/54504471

The End