- CC1-S2 -

- 2018-2019

Correction - Géométrie –

Exercice 1

On se place dans le plan affine euclidien $\mathscr P$ muni d'un repère orthonormé $(O;\vec\imath,\vec\jmath)$.

Soit \mathscr{C} la conique d'équation cartésienne

$$y^{2} - \sqrt{3}xy - 2\sqrt{3}x + \left(4 - 3\sqrt{3}\right)y + 6 - 6\sqrt{3} = 0$$

- 1. Soit la matrice $A = \begin{pmatrix} 0 & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & 1 \end{pmatrix}$.
 - a. Calculer les valeurs propres de A. Trouver deux vecteurs propres \vec{u} et \vec{v} tels que (\vec{u}, \vec{v}) soit une base orthonormée directe de \mathbb{R}^2 .

A est symétrique donc diagonalisable dans une base orthonormée directe.

On a
$$\chi_A = (X - \frac{3}{2})(X + \frac{1}{2})$$
 puis $Sp(A) = \left\{\frac{3}{2}, -\frac{1}{2}\right\}$.

On trouve
$$E_{-\frac{1}{2}}(A) = \operatorname{Ker}\left(A + \frac{1}{2}I_2\right) = \operatorname{Vec}\left(\binom{\sqrt{3}}{1}\right)$$
, puis on prend $\vec{u} = \left(\frac{\sqrt{3}}{2}; \frac{1}{2}\right)$.

Les sous-espaces propres étant orthogonaux, $\vec{v} = \left(-\frac{1}{2}; \frac{\sqrt{3}}{2}\right)$ est tel que la famille de vecteurs propres (\vec{u}, \vec{v}) est une base orthonormée directe de \mathbb{R}^2 .

b. Quelle isométrie de \mathbb{R}^2 transforme le base $(\vec{\imath}, \vec{\jmath})$ en la base (\vec{u}, \vec{v}) ?

$$P = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} = \begin{pmatrix} \cos\frac{\pi}{6} & -\sin\frac{\pi}{6} \\ \sin\frac{\pi}{6} & \cos\frac{\pi}{6} \end{pmatrix} \text{ donc l'isométrie en question est la rotation d'angle } \frac{\pi}{6}.$$

2. Déterminer la nature de la conique ainsi que ses éléments caractéristiques.

det(A) < 0, on en déduit que la conique est du genre hyperbole.

Si on note $f:(x,y)\mapsto y^2-\sqrt{3}xy-2\sqrt{3}x+\left(4-3\sqrt{3}\right)y+6-6\sqrt{3}$, les coordonnées de son centre dans le repère $(O;\vec{\imath},\vec{\jmath})$ sont données par :

$$\begin{cases} \frac{\partial f}{\partial x}(x_0, y_0) = 0\\ \frac{\partial f}{\partial y}(x_0, y_0) = 0 \end{cases}$$

On trouve le point Ω de coordonnées (-3,-2) dans le repère $(O;\vec{\imath},\vec{\jmath})$.

Une équation de la conique dans le repère $(\Omega, \vec{u}, \vec{v})$ est $:-\frac{1}{2}X^2 + \frac{3}{4}Y^2 = f(-3, -2)$ c'est-à-dire :

$$\frac{X^2}{2^2} - \frac{Y^2}{\left(\frac{2}{\sqrt{3}}\right)^2} = 1$$

Finalement, $\mathscr C$ est l'hyperbole de centre Ω , telle que, dans le repère $(\Omega; \vec u, \vec v)$, les sommets sont A(2,0) et A'(-2,0), et les asymptotes sont $\Delta: Y = \frac{1}{\sqrt{3}}X$ et $\Delta': Y = -\frac{1}{\sqrt{3}}X$.

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 1 sur 6

Autre méthode:

On pose
$$X = PX_1$$
 avec $X_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ et $X = \begin{pmatrix} x \\ y \end{pmatrix}$. Ce qui nous donne
$$\begin{cases} x = \frac{\sqrt{3}}{2}x_1 - \frac{1}{2}y_1 \\ y = \frac{1}{2}x_1 + \frac{\sqrt{3}}{2}y_1 \end{cases}$$
, et ainsi $y = \frac{1}{2}x_1 + \frac{\sqrt{3}}{2}y_1$

$$y^{2} - \sqrt{3}xy - 2\sqrt{3}x + \left(4 - 3\sqrt{3}\right)y + 6 - 6\sqrt{3} = 0 \iff -\frac{1}{2}x_{1}^{2} + \frac{3}{2}y_{1}^{2} - \left(1 + \frac{3\sqrt{3}}{2}\right)x_{1} + \left(3\sqrt{3} - \frac{9}{2}\right)y_{1} + 6 - 6\sqrt{3} = 0$$

$$\iff -\frac{1}{2}\left(x_{1} + 1 + \frac{3\sqrt{3}}{2}\right)^{2} + \frac{3}{2}\left(y_{1} + \sqrt{3} - \frac{3}{2}\right)^{2} = -2$$

$$\iff \frac{\left(x_{1} + 1 + \frac{3\sqrt{3}}{2}\right)^{2}}{2^{2}} - \frac{\left(y_{1} + \sqrt{3} - \frac{3}{2}\right)^{2}}{\left(\frac{2}{\sqrt{3}}\right)^{2}} = 1$$

Dans le repère $(O; \vec{u}, \vec{v})$, si on pose Ω le point de coordonnées $\left(-1 - \frac{3\sqrt{3}}{2}, -\sqrt{3} + \frac{3}{2}\right)$, alors on retrouve que l'équation réduite de la conique $\mathscr C$ dans le repère $(\Omega; \vec{u}, \vec{v})$ est

$$\frac{X^2}{2^2} - \frac{Y^2}{\left(\frac{2}{\sqrt{3}}\right)^2} = 1$$

3. Tracer la conique \mathscr{C} dans le repère $(0, \vec{\imath}, \vec{\jmath})$. On prendra $\sqrt{3} \approx 1$, 732.

Exercice 2

Soit E un espace euclidien. On suppose $\dim(E) \geq 2$.

On note (u|v) le produit scalaire des vecteurs u et v, et ||u|| la norme du vecteur u.

On se donne un vecteur w de E de norme 1 et, pour tout réel $\alpha \neq 0$, on pose , pour tout $x \in E$:

$$f_{\alpha}(x) = x + \alpha(x|w)w$$

1. Vérifier que f_{α} est un endomorphisme de E.

 $\forall x, y \in E, \ \forall \lambda \in \mathbb{R}, \ f_{\alpha}(x + \lambda y) = x + \lambda y + \alpha(x + \lambda y|w) \ w = x + \lambda y + \alpha(x|w)w + \lambda \alpha(y|w)w = f_{\alpha}(x) + \lambda f_{\alpha}(y)$ et donc f_{α} est linéaire.

De plus, comme $\forall x \in E, f_{\alpha}(x) = x + \alpha(x|w)w \in \text{Vect}\{x, w\} \subset E$, on peut en déduire que f_{α} est un endomorphisme de E.

2. Montrer que pour tous réels non nuls α, β , on a :

$$f_{\alpha} \circ f_{\beta} = f_{\beta} \circ f_{\alpha}$$

 $\operatorname{Sp\'{e}}\operatorname{PT}$

$$\forall x \in E, \ f_{\alpha} \circ f_{\beta}(x) = x + \beta(x|w)w + \alpha(x + \beta(x|w)w|w) w$$

$$= x + \beta(x|w)w + \alpha(x|w)w + \alpha\beta(x|w)\underbrace{(w|w)}_{=1} w$$

$$= x + (\beta + \alpha + \alpha\beta)(x|w)w$$

$$= f_{\beta+\alpha+\alpha\beta}(x)$$

$$= f_{\beta} \circ f_{\alpha}(x)$$

3. Montrer que pour tous vecteurs x et y, on a

$$(x|f_{\alpha}(y)) = (f_{\alpha}(x)|y)$$

On a
$$(x|f_{\alpha}(y)) = (x|y + \alpha(y|w)w) = (x|y) + \alpha(y|w)(x|w)$$
 et $(f_{\alpha}(x)|y) = (y|f_{\alpha}(x)) = (y|x + \alpha(x|w)w) = (y|x) + \alpha(x|w)(y|w)$, donc $(x|f_{\alpha}(y)) = (f_{\alpha}(x)|y)$.

4. Vérifier que w est un vecteur propre de f_{α} .

 $f_{\alpha}(w) = w + \alpha (w|w) w = w + \alpha w = (1 + \alpha)w$. De plus, comme w est de norme 1, on en déduit que $w \neq 0$.

Ainsi w est un vecteur propre de f_{α} associé à la valeur propre $1 + \alpha$.

5. a. Montrer que 1 est valeur propre de f_{α} .

Il s'agit de montrer que $\operatorname{Ker}(f_{\alpha}-\operatorname{Id}_{E})$ n'est pas réduit au vecteur nul.

Soit $x \in E$ alors $(f_{\alpha} - \operatorname{Id}_{E})(x) = x + \alpha(x|w)w - x = \alpha(x|w)w$.

Comme $\alpha \neq 0$ et $w \neq 0$, on conclut que $x \in \text{Ker}(f_{\alpha} - \text{Id}_{E})$ si, et seulement si (x|w) = 0, ce qui équivaut à

 $\operatorname{Ker}(f_{\alpha} - \operatorname{Id}_{E}) = (\operatorname{Vect}(w))^{\perp}$ qui est donc une hyperplan de E.

Ainsi Ker $(f_{\alpha} - \operatorname{Id}_{E})$ est de dimension $n - 1 \ge 1$, car $\dim(E) \ge 2$.

1 est bien valeur propre de f_{α} .

 ${\bf b.}\;\;$ Quel est le sous-espace propre associé à la valeur propre $1\,?$

On a montré dans la question précédente que $E_1(f_\alpha) = (\operatorname{Vect}(w))^{\perp}$ (et qu'il est de dimension n-1.)

c. L'endomorphisme f_{α} est-il diagonalisable?

On déduit de ce qui précède que f_{α} admet au moins deux valeurs propres distinctes 1 et $1 + \alpha$ (puisque $\alpha \neq 0$) de multiplicités respectives au moins égale à n-1 et 1.

Comme $\dim(E) = n$, on en déduit que les seules valeurs propres de f_{α} sont 1 et $1 + \alpha$ de multiplicités respectives n-1 et 1, et ainsi la somme des dimensions des sous-espaces propres est égale à la dimension de E. On conclut que f_{α} est diagonalisable.

Remarque : On peut également utiliser le fait que f_{α} est un endomorphisme symétrique réel (question 3) pour conclure qu'il est diagonalisable.

6. Pour quelles valeurs de α l'endomorphisme f_{α} est-il inversible? Calculer dans ce cas son inverse.

$$f_{\alpha}$$
 inversible $\iff 0 \notin \operatorname{Sp}(f_{\alpha})$
 $\iff 1 + \alpha \neq 0$
 $\iff \alpha \neq -1$

D'après la question 3, pour $\alpha \neq -1$, on cherche β tel que $f_{\alpha} \circ f_{\beta} = f_{\beta + \alpha + \alpha \beta} = \operatorname{Id}_E$; ceci équivaut à $\beta + \alpha + \alpha \beta = 0$, c'est à dire $\beta = -\frac{\alpha}{1+\alpha}$. On conclut que $\forall \alpha \neq -1$, $(f_{\alpha})^{-1} = f_{-\frac{\alpha}{1+\alpha}}$.

7. Pour quelles valeurs de α l'endomorphisme f_{α} est-il une isométrie? Caractériser dans ce cas cet endomorphisme.

Spé PT Page 3 sur 6

$$\forall x \in E, \|f_{\alpha}(x)\| = \|x\| \iff \forall x \in E, (f_{\alpha}(x)|f_{\alpha}(x)) = (x|x)$$

$$\iff \forall x \in E, 2\alpha(x|w)^{2} + \alpha^{2}(x|w)^{2} = 0$$

$$\iff \forall x \in E, (2\alpha + \alpha^{2})(x|w)^{2} = 0$$

$$\iff 2\alpha + \alpha^{2} = 0$$

$$\iff \alpha = -2(\operatorname{car} \alpha \neq 0)$$

Compte tenu des questions précédentes, $\operatorname{Sp}(f_{-2}) = \{1, -1\}$, 1 est de multiplicité n-1 alors que -1 est de multiplicité 1. Par conséquent, f_{-2} est la réflexion par rapport à l'hyperplan $(\operatorname{Vect}(w))^{\perp}$.

8. En utilisant la question 3, montrer que si F est un sous-espace vectoriel stable par f_{α} , alors F^{\perp} est également stable par f_{α} .

Soit $x \in F^{\perp}$. Montrons que $f_{\alpha}(x) \in F^{\perp}$:

Soit
$$y \in F$$
, on a: $(f_{\alpha}(x)|y) = (x|f_{\alpha}(y)) = \underbrace{\left(\underbrace{f_{\alpha}(y)}_{\in F}|\underbrace{x}_{\in F^{\perp}}\right)}_{\in F^{\perp}} = 0.$

Remarque : Pour les questions 5)c), 6 et 7, on peut au préalable déterminer la matrice que f_{α} dans une base

orthonormée adaptée à la décomposition
$$E = \operatorname{Vect}(w) \oplus (\operatorname{Vect}(w))^{\perp}$$
 qui est
$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 0 & 1 \end{pmatrix}.$$
On ainsi que f set diagonalisable que f set inversible si et seulement si $g \neq 1$ et que s'est une isomé

On ainsi que f_{α} est diagonalisable, que f_{α} est inversible si, et seulement si, $\alpha \neq -1$ et que c'est une isométrie si, et seulement si, $|1 + \alpha| = 1$, c'est à dire $\alpha = -2$ puisque $\alpha \neq 0$.

Exercice 3

On considère la courbe paramétrie Γ admettant pour représentation paramétrique :

$$\varphi:t\mapsto \left\{ \begin{array}{l} x(t)=t+\frac{1}{2t^2}\\ y(t)=\frac{t^2}{2}+\frac{1}{t} \end{array}\right.,t\in\mathbb{R}^*$$

1. Déterminer $\varphi\left(\frac{1}{t}\right)$ en fonction de $\varphi(t)$, et en déduire que l'on peut réduire le domaine d'étude de l'arc paramétré à $[-1,0[\cup]0,1]$.

On précisera quelle transformation permet d'obtenir la courbe en entier.

Pour
$$t \neq 0$$
, on a :
$$\begin{cases} x\left(\frac{1}{t}\right) = y(t) \\ y\left(\frac{1}{t}\right) = x(t) \end{cases}$$
.

On en déduit que l'on peut réduire le domaine d'étude de l'arc paramétré à $[-1,0[\cup]0,1]$. On obtient le reste de la courbe à l'aide d'une symétrie par rapport à la droite d'équation y=x.

2. Etudier φ et tracer Γ dans un repère orthonormé.

$$\left\{\begin{array}{l} x'(t)=\frac{t^3-1}{t^3}\\ y(t)=\frac{t^2-1}{t^2} \end{array}\right. \text{ On en déduit le tableau de variations suivant}:$$

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 4 sur 6

t	-1		()		1
x'(t)	2	+			-	0
			$+\infty$	$+\infty$		
x		7			\searrow	
	-1/2					3/2
y'(t)	-2	-			-	0
	-1/2			$+\infty$		
y		>			>	
			$-\infty$			3/2

Pour t = 1, on a un point singulier. x''(1) = 3 et y''(1) = 3; on en déduit qu'il s'agit d'un rebroussement.

L'axe de symétrie permet de dire qu'il est de première espèce. $\frac{y}{x} \sim 2t$. On en déduit que $\lim_{t\to 0} \left|\frac{y}{x}\right| = 0$, puis que la courbe admet une branche parabolique de direction (Ox). On obtient la courbe suivante :

Exercice 4

On munit le plan d'un repère orthonormé (O, \vec{i}, \vec{j}) .

On considère la courbe paramétrée $\mathscr C$ admettant pour représentation paramétrique :

$$\begin{cases} x(t) = a \sin t \\ y(t) = a \frac{\sin^2 t}{\cos t} , \text{ où } a \in \mathbb{R}_+^* \end{cases}$$

1. a. Justifier que l'on peut réduire le domaine d'étude de l'arc paramétré à $\left[0, \frac{\pi}{2}\right[$. Les fonctions x et y sont 2π -périodiques, on peut donc réduire l'étude de l'arc à un intervalle de longueur

 2π , et on aura l'intégralité de la courbe.

x est impaire, et y est paire. On peut donc étudier l'arc sur $\left[0,\frac{\pi}{2}\right]\cup\left[\frac{\pi}{2},\pi\right]$, le reste de la courbe s'obtenant à l'aide d'une symétrie d'axe (Oy).

Enfin, $x(\pi - t) = x(t)$ et $y(\pi - t) = -y(t)$. On peut donc étudier l'arc sur $\left[0, \frac{\pi}{2}\right]$, la courbe correspondant à $t \in \left[\frac{\pi}{2}, \pi\right]$ s'obtenant à l'aide d'une symétrie d'axe (Ox).

$$\begin{cases} x'(t) = a \cos t \\ y(t) = a \frac{2 \sin t \cos^2 t + \sin^3 t}{\cos^2 t} = a \frac{\sin t (1 + \cos^2 t)}{\cos^2 t} \end{cases} . \text{ On en déduit le tableau de variations suivant :}$$

Spé PT Page 5 sur 6

t	0		$\pi/2$
x'(t)		+	0
			a
x		7	
	0		
y'(t)	0	+	
			$+\infty$
y		7	
	0		

La courbe admet une tangente horizontale pour t = 0 et une asymptote d'équation x = a. On obtient la courbe suivante :

- **2.** Pour $t \in \left]0, \frac{\pi}{2}\right[$, on note M(t) le point de $\mathscr C$ de coordonnées (x(t), y(t)).
 - **a.** Exprimer OM(t) à l'aide de a et de t.

$$OM(t) = a\sqrt{\sin^2 t + \frac{\sin^4 t}{\cos^2 t}} = a\sqrt{\frac{\sin^2 t \left(\cos^2 t + \sin^2 t\right)}{\cos^2 t}} = a\tan t, \text{ car } t \in \left]0, \frac{\pi}{2}\right[.$$

b. La perpendiculaire à (OM(t)) en M(t) coupe (0y) en N. Montrer que MN=a.

On note α l'angle $(\overrightarrow{OM(t)}, \overrightarrow{j})$. On a : $\tan(\alpha) = \frac{x(t)}{y(t)} = \frac{\cos t}{\sin t} = \frac{1}{\tan t}$

On a également (dans le triangle OMN rectangle en M) : $\tan(\alpha) = \frac{MN}{OM}$. On en déduit que MN = a.

c. Montrer que la perpendiculaire en O à (OM(t)), la parallèle à (Ox) en N et la normale à \mathscr{C} en M(t) sont concourantes.

La perpendiculaire en O à (OM(t)) a pour équation : x(t)x + y(t)y = 0, c'est à dire : $\cos t \, x + \sin t \, y = 0$, $\operatorname{car} t \in \left[0, \frac{\pi}{2}\right] \operatorname{donc} \cos t \sin t \neq 0.$

Le point N a pour ordonnée $\frac{a}{\cos t}$ (qui est donnée par exemple avec le théorème de Pythagore dans le triangle

OMN). La parallèle à (Ox) en N a donc pour équation $y=\frac{a}{\cos t}$. La perpendiculaire en O à (OM(t)) et la parallèle à (Ox) en N s'interceptent en le point K de coordonnées $\left(\frac{-a\sin t}{\cos^2 t}, \frac{a}{\cos t}\right)$.

Le vecteur \overrightarrow{MK} a pour coordonnées $\left(\frac{-a\sin t(1+\cos^2 t)}{\cos^2 t}, a\cos t\right)$; il est donc normal à la tangente à la courbe en M (dont un vecteur directeur est donné par (x'(t), y'(t))). On en déduit que la normale à $\mathscr C$ en M(t) passe par K.

Spé PT Page 6 sur 6