CURSUL 9: INELE

G. MINCU

1. Inele

Definiția 1. Fie M o mulțime și două legi de compoziție, \triangle și \star , pe M.

Spunem că \star este distributivă la stânga în raport cu \triangle dacă pentru orice $a, b, c \in M$ avem $a \star (b \triangle c) = (a \star b) \triangle (a \star c)$.

Spunem că \star este distributivă la dreapta în raport cu \triangle dacă pentru orice $a, b, c \in M$ avem $(b \triangle c) \star a = (b \star a) \triangle (c \star a)$.

Spunem că \star este distributivă în raport cu \triangle dacă \star este distributivă și la stânga și la dreapta în raport cu \triangle .

Definiția 2. Numim **inel** orice triplet (R, \triangle, \star) format dintr-o mulțime R și două legi de compoziție, \triangle și \star , pe R cu proprietățile:

- (G) (R, \triangle) este grup abelian,
- (\mathbf{S}) (R,\star) este semigrup, și
- (D) \star este distributivă în raport cu \triangle .

Definiția 3. Spunem că inelul (R, \triangle, \star) este **comutativ** dacă operația \star este comutativă.

Spunem că inelul (R, \triangle, \star) este **unitar** dacă operația \star admite element neutru.

Exemplul 4. Conform proprietăților cunoscute de la școala generală sau de la liceu, $(\mathbb{Z}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, $(\mathbb{C}, +, \cdot)$ sunt inele comutative și unitare. $(\mathbb{N}, +, \cdot)$ nu este inel, deoarece $(\mathbb{N}, +)$ nu este grup!

Observația 5. Ținând cont de faptul că în exemplele "standard" prezentate mai sus rolul operațiilor \triangle și \star este jucat de adunare, respectiv de înmulțire, convenim ca din acest moment să utilizăm în toate inelele cu care vom lucra notația "+" și denumirea de "adunare" pentru "prima lege" și notația "·" și denumirea de "înmulțire" pentru "cea de-a doua lege". Continuând paralela cu legile din exemplul anterior, dat fiind inelul $(R, +, \cdot)$, vom nota cu 0 elementul neutru al lui R în raport cu +, cu -a simetricul elementului $a \in R$ în raport cu +, și cu 1 elementul neutru al lui R în raport cu operația \cdot (dacă acesta există!).

G. MINCU

Dacă operațiile de inel sunt subînțelese în context, vom spune uneori ,,inelul R" în loc de ,,inelul $(R, +, \cdot)$ ".

Propoziția 6. (Reguli de calcul în inele):

Fie R un inel. Atunci:

- i) $\forall a \in R \quad a \cdot 0 = 0 \cdot a = 0.$
- ii) $\forall a, b \in R \quad a(-b) = (-a)b = -ab; (-a)(-b) = ab.$
- iii) $\forall n \in \mathbb{Z} \ \forall a, b \in R \ (na)b = a(nb) = n(ab).$

$$\text{iv)} \quad \forall m,n \in \mathbb{N}^* \ \forall a_i,b_j \in R \quad \left(\sum_{i=1}^m a_i\right) \left(\sum_{j=1}^n b_j\right) = \sum_{i=1}^m \sum_{j=1}^n a_i b_j.$$

v)
$$\forall a, b \in R \quad ab = ba \Rightarrow \forall n \in \mathbb{N}^* \quad (a+b)^n = a^n + \sum_{k=1}^{n-1} \binom{n}{k} a^{n-k} b^k + b^n.$$

vi)
$$\forall a, b \in R \quad ab = ba \Rightarrow \forall n \in \mathbb{N}^* \setminus \{1\}$$

 $a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1}).$

Definiția 7. Fie R un inel, iar S o submulțime nevidă a lui R. Spunem că S este **subinel** al lui R dacă sunt îndeplinite condițiile:

- i) $\forall x, y \in S \quad x y \in S$ şi
- ii) $\forall x, y \in S \ xy \in S$.

Exemplul 8. Dacă R este un inel, atunci R şi $\{0\}$ sunt subinele ale lui R.

Exemplul 9. \mathbb{Z} este subinel al lui $(\mathbb{Q}, +, \cdot)$,

 \mathbb{Q} este subinel al lui $(\mathbb{R}, +, \cdot)$,

 \mathbb{R} este subinel al lui $(\mathbb{C}, +, \cdot)$.

(Temă: demonstrați aceste afirmații!)

Exemplul 10. Dacă R este un inel, atunci $C(R) \stackrel{\text{not}}{=} \{a \in R : \forall x \in R \ ax = xa\}$ este subinel al lui R (Temă: demonstrați această afirmație!). C(R) se numește **centrul** inelului R.

Observația 11. Dacă S este subinel al inelului R, atunci S are o structură de inel în raport cu legile induse.

Exemplul 12. Pentru orice $n \in \mathbb{N}^* \setminus \{1\}$, $(n\mathbb{Z}, +, \cdot)$ este inel comutativ, dar neunitar.

Exemplul 13. Pentru orice $n \in \mathbb{N}$, $(\mathbb{Z}_n, +, \cdot)$ este inel comutativ şi unitar (aici + şi · desemnează adunarea, respectiv înmulţirea modulo n).

Exemplul 14. Dacă M este o mulţime nevidă, iar R este un inel (comutativ, unitar), mulţimea $\mathcal{F}(M,R)$ a funcţiilor definite pe M cu valori în R are o structură de inel (comutativ, unitar) în raport cu

adunarea și înmulțirea definite astfel: (f+g)(x) = f(x) + g(x) pentru orice $x \in M$ și (fg)(x) = f(x)g(x) pentru orice $x \in M$. (Temă: demonstrați această afirmație!)

Exemplul 15. Fie (G, +) un grup abelian arbitrar. Atunci, mulţimea $\operatorname{End}(G)$ a endomorfismelor lui G capătă o structură de inel unitar în raport cu adunarea definită prin (f+g)(x) = f(x) + g(x) pentru orice $x \in G$ şi cu compunerea. (Temă: demonstraţi această afirmaţie!)

Exemplul 16. Fie (G, +) un grup abelian arbitrar. Dacă definim pe G o nouă operație prin xy = 0 pentru orice $x, y \in G$, atunci $(G, +, \cdot)$ este un inel comutativ. Dacă G are mai mult de un element, acest inel nu admite element unitate. (Temă: demonstrați această afirmație!)

Exemplul 17. Fie $(R, +, \cdot)$ un inel (unitar). Atunci $(R, +, \star)$, unde $x \star y = yx$ pentru orice $x, y \in R$, este un inel (unitar). $(R, +, \star)$ se numește **inelul opus al lui** $(R, +, \cdot)$.

2. CARACTERISTICA UNUI INEL

Definiția 18. Prin **caracteristica** inelului unitar R înțelegem numărul natural

$$\operatorname{car} R = \begin{cases} \operatorname{ord}_{(R,+)}(1), & \operatorname{dac\check{a}} \operatorname{acesta} \operatorname{este} \operatorname{finit} \\ 0, & \operatorname{altfel} \end{cases}$$

Exemplul 19. Inelele $(\mathbb{Z},+,\cdot)$, $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$, $(\mathbb{C},+,\cdot)$ sunt de caracteristică zero.

$$\operatorname{car} \mathbb{Z}_n = n.$$

$$\operatorname{car} \mathbb{Z}_6 \times \mathbb{Z}_8 = 24.$$

3. Elemente interesante din inele

Fie $(R, +, \cdot)$ un inel.

Definiția 20. Spunem că $a \in R$ este divizor al lui zero la stânga dacă există $b \in R \setminus \{0\}$ astfel încât ab = 0.

Spunem că $a \in R$ este divizor al lui zero la dreapta dacă există $b \in R \setminus \{0\}$ astfel încât ba = 0.

Spunem că $a \in R$ este divizor al lui zero dacă el este divizor al lui zero la stânga și la dreapta.

Observația 21. În orice inel nenul, 0 este divizor al lui zero.

Definiția 22. Inelul $(R, +, \cdot)$ se numește **integru** dacă nu admite divizori ai lui zero nenuli.

Definiția 23. Numim domeniu de integritate orice inel comutativ, unitar și integru.

G. MINCU

Definiția 24. Spunem că $a \in R$ este **nilpotent** dacă există $n \in \mathbb{N}^*$ astfel încât $a^n = 0$.

Observația 25. În orice inel, 0 este element nilpotent

Notăm de obicei $\mathcal{N}(R) = \{a \in R : a \text{ este nilpotent}\}$. Conform observației anterioare, $0 \in \mathcal{N}(R)$, deci $\mathcal{N}(R) \neq \emptyset$.

Definiția 26. Inelul $(R, +, \cdot)$ se numește **redus** dacă nu are elemente nilpotente nenule.

Definiția 27. Spunem că $a \in R$ este **idempotent** dacă $a^2 = a$.

Fie $(R, +, \cdot)$ un inel unitar.

Definiția 28. Spunem că $a \in R$ este **inversabil la stânga** dacă există $b \in R$ astfel încât ba = 1. Orice element b care verifică relația anterioară se numește **invers la stânga** pentru a.

Spunem că $a \in R$ este **inversabil la dreapta** dacă există $b \in R$ astfel încât ab = 1. Orice element b care verifică relația anterioară se numește **invers la dreapta** pentru a

Spunem că $a \in R$ este inversabil dacă el este inversabil la stânga şi la dreapta.

Observația 29. Dacă elementul a al inelului R este inversabil, atunci el admite un unic invers la stânga și un unic invers la dreapta și, în plus, acestea coincid.

Definiția 30. Dacă elementul a al inelului R este inversabil, unicul element $b \in R$ cu proprietatățile ab = ba = 1 se numește **inversul lui** a și se notează a^{-1} .

Notăm $U(R) = \{a \in R : a \text{ este inversabil}\}.$

Observația 31. Pentru orice inel unitar R avem $1 \in U(R)$, deci $U(R) \neq \emptyset$.

Observația 32. Pentru orice inel unitar R, $(U(R), \cdot)$ este grup. El se numește **grupul unităților** lui R.

Observația 33. Niciun element inversabil (la stânga, la dreapta) dintrun inel nenul nu poate fi divizor al lui zero (la stânga, la dreapta) în acel inel.

Propoziția 34. Fie R un inel comutativ și unitar, $u \in R$ un element inversabil, iar $a \in R$ un element nilpotent. Atunci, $u \pm a$ este element inversabil al lui R.

Demonstrație: Fie $n \in \mathbb{N}^*$ cu proprietatea că $a^n = 0$. Atunci, $(u - a) \cdot [u^{-n}(u^{n-1} + u^{n-2}a + \cdots + ua^{n-2} + a^{n-1})] = u^{-n}(u^n - a^n) = 1$, deci $u - a \in U(R)$. Cum -a este și el nilpotent, obținem în mod similar și afirmația privitoare la inversabilitatea lui u + a. \square

4. MORFISME DE INELE

Definiția 35. Fie R și S două inele. Spunem că funcția $f: R \to S$ este **morfism de inele** dacă sunt îndeplinite condițiile:

- i) $\forall x, y \in R$ f(x+y) = f(x) + f(y) şi
- ii) $\forall x, y \in R \quad f(xy) = f(x)f(y).$

Definiția 36. Dacă R și S sunt inele unitare, atunci morfismul de inele $f: R \to S$ se numește **unitar** dacă f(1) = 1.

Exemplul 37. Dacă R este un inel (unitar), atunci $\mathbf{1}_R: R \to R$, $\mathbf{1}_R(x) = x$ este un morfism (unitar) de inele. El se numește **morfismul identic** al lui R.

Exemplul 38. Dacă R şi S sunt inele, atunci $f: R \to S$, f(x) = 0 este un morfism de inele. El se numește **morfismul nul** de la R la S.

Exemplul 39. Dacă S este subinel al inelului R, atunci $i: S \to R$, i(x) = x este morfism (injectiv) de inele.

Exemplul 40. Pentru orice $n \in \mathbb{N}$, $\pi : \mathbb{Z} \to \mathbb{Z}_n$, $\pi(a) = \hat{a}$ este morfism unitar de inele.

Exemplul 41. Fie R_1, R_2, \ldots, R_n inele (unitare) și $R = R_1 \times R_2 \times \ldots \times R_n$ produsul lor direct. Atunci:

- Funcția $\sigma_i: R_i \to R$, $\sigma_i(a) = (0, 0, \dots, 0, a, 0, \dots, 0)$ este morfism de inele (Temă: demonstrați această afirmație!). Acest morfism se numește **injecția canonică** a lui R_i în R.
- Funcţia $\pi_i: R \to R_i, \ \pi_i(a_1, a_2 \dots, a_n) = a_i$ este morfism (unitar) de inele (Temă: demonstraţi această afirmaţie!). Acest morfism se numeşte **proiecţia canonică** a lui R pe R_i .

Exemplul 42. Dacă R este un inel, iar $n \in \mathbb{N}^*$, atunci $j : R \to \mathcal{M}_n(R)$,

$$j(a) = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & a & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a \end{pmatrix} \text{ este un morfism injectiv de inele.}$$

Propoziția 43. Dacă $f: R \to S$ și $g: S \to T$ sunt morfisme (unitare) de inele, atunci $g \circ f$ este morfism (unitar) de inele.

Definiția 44. Numim **endomorfism de inele** orice morfism de inele $f: R \to R$.

G. MINCU

Definiția 45. Morfismul de inele $f: R \to S$ se numește **izomorfism** de inele dacă:

- i) f este funcție inversabilă și
- ii) f^{-1} este morfism de inele.

Propoziția 46. Fie R și S două inele și o funcție $f: R \to S$. Atunci, f este izomorfism de inele dacă și numai dacă f este morfism bijectiv de inele.

Definiția 47. Inelele R și S se numesc **izomorfe** dacă există un izomorfism de inele între ele.

Exemplul 48. Fie $m, n \in \mathbb{N}^*$. Atunci, inelele $\mathbb{Z}_m \times \mathbb{Z}_n$ şi \mathbb{Z}_{mn} sunt izomorfe dacă şi numai dacă (m, n) = 1.

Demonstrație: " \Leftarrow ": Definim $f: \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$, $f(a + mn\mathbb{Z}) = (a + m\mathbb{Z}, a + n\mathbb{Z})$. Este imediat (temă!) că f este corect definită şi morfism injectiv de inele. Cum însă domeniul şi codomeniul lui f au ambele de cardinal mn, rezultă că f este bijecție.

,, \Rightarrow ": Cum caracteristica lui \mathbb{Z}_{mn} este mn, iar cea a lui $\mathbb{Z}_m \times \mathbb{Z}_n$ este [m, n], presupunerea de izomorfism ne conduce la egalitatea [m, n] = mn = m, n, de unde (m, n) = 1. \square

Definiția 49. Numim **automorfism de inele** orice izomorfism de inele $f: R \to R$.

Exemplul 50. Dacă R este un inel, atunci $\mathbf{1}_R$ este un automorfism de inele.

Notații:

Vom nota cu $\mathbf{Hom_{Rng}}(\mathbf{R}, \mathbf{S})$ mulţimea morfismelor de inele de la R la S.

Vom nota cu $\mathbf{End_{Rng}}(\mathbf{R})$ mulţimea endomorfismelor de inel ale lui R. Vom nota cu $\mathbf{Aut_{Rng}}(\mathbf{R})$ mulţimea automorfismelor de inel ale lui R. Dacă din context se subînţelege că este vorba de morfisme de inele, putem să omitem indicele Rng din notaţiile anterioare.

REFERENCES

- [1] T. Dumitrescu, Algebra, Ed. Universității din București, 2006.
- [2] I. D. Ion, N. Radu, Algebra, Ed. Universității din București, 1981.
- [3] C. Năstăsescu, C. Niţă, C. Vraciu, *Bazele algebrei*, Ed. Academiei, Bucureşti, 1986.