Theorem 1. With ℓ and s in O(polylog(|V|)), csav algorithm computes a k-node placement $M \subseteq V$ in time $\tilde{O}(k^2|E|)$.

Proof. With polylogarithmically many pivots, the complexity of rand algorithm is $\tilde{O}(|E|)$; this is the time used to approximate penalty and generate the initial candidate S_1 . The score procedure takes $O(|E| + |V| \log |V|)$ and since the ℓ -confined celf repeats for k iterations each running score once, the total time of performing candidate selection in celf-r is $O(k(|E| + |V| \log |V|))$. Due to the limited search space, the add-candidate procedure evaluates marginal reward at most $k^2\ell$ times, each of which takes time O(|E|). Thus we spend $O(k^2\ell \cdot |E|)$ time on updating rewards. In conclusion, the total complexity of the first phase is $\tilde{O}(k^2\ell|E|+k|V|\log|V|+|E|)=\tilde{O}(k^2|E|)$.

In the iterative improvement algorithm, each round takes $O(k(|E|+|V|\log|V|))$ to generate candidates and $O(k\ell \cdot |E|)$ to evaluate marginal reward. Thus in s rounds, it takes $O(sk(|V|\log|V|+\ell|E|)) = \tilde{O}(k|E|)$. Therefore the overall time of the algorithm is $\tilde{O}(k^2|E|)$.