Due Date: 10 October 2014, Friday (10:30).

Homework 1

1) Let $x_1[n] = \cos(\omega_1 n)$ and $x_2[n] = \cos(\omega_2 n)$. Find two "frequencies" ω_1 and ω_2 such that $\omega_1 \neq \omega_2 + k2\pi$ for any integer k, and $x_1[n]$ and $x_2[n]$ are both periodic with fundamental period N=13.

2) A linear, time invariant and causal system is described by the following linear constant coefficient difference equation (LCCDE),

$$y[n]-a^2y[n-2]=x[n]$$

- a) Find the condition on a for the stability of this system.
- **b)** Find the impulse response h[n].

3) The impulse response and the input of an LTI system are given. Find and plot the output signal, y[n].

4) The input-output relationship of a discrete-time system is described by

$$y[n] = x[n] + \frac{1}{2}x[n+1] - 6x[n-9] + \delta[n-1]$$
 ($\delta[n]$: unit sample sequence)

- a) Is this a linear system? Why?
- b) Is this a time-invariant system? Why?

5) Consider $x[n] = \delta[n-1] - \delta[n-5]$; let its DTFT be expressed as $X(e^{j\omega}) = A(\omega) e^{jB(\omega)}$.

Find the <u>real-valued</u> functions $A(\omega)$ and $B(\omega)$ in their <u>simplest</u> forms.

6) A real-valued sequence, x[n], and its DTFT, $X(e^{j\omega})$, are known. $V(e^{j\omega}) = \text{Re}\{X(e^{j\omega})\}$, is the real part of $X(e^{j\omega})$. Find v[n] in terms of x[n].

7) The values of x[n] at n = -2, -1, 0, 1, 2 are given as $x[n] = \begin{bmatrix} -1 & 2 & 7 & 2 & -1 \end{bmatrix}$. Assume that the DTFT of x[n] is equal to $X(e^{j\omega})$. Find the following: n = 0

a)
$$X(e^{j0})$$
 b) Phase of $X(e^{j\omega})$, $\angle X(e^{j\omega})$ c) $\int_{-\pi}^{\pi} X\left(e^{j\omega}\right) d\omega$ d) $X(e^{j\pi})$ e) $\int_{-\pi}^{\pi} \left|X\left(e^{j\omega}\right)\right|^2 d\omega$

- **8)** Find DTFT of the sequence $x[n] = n a^{n-3} u[n-3]$.
- 9) A real LTI system has the following input and output,

$$e^{j2\pi n/8} \longrightarrow h[n] \qquad 2e^{-j2\pi/3} e^{j2\pi n/8}$$

- a) Find the system output for the input $e^{-j2\pi n/8}$
- **b)** Find the system output, when the input sequence is $\cos(2\pi n/8 + 2\pi/5)$.

- **EE 430** Digital Signal Processing (Fall 2014), Electrical and Electronics Engineering Department, Middle East Technical University
- 10) Type "help cony" in MATLAB command window to read about the command.

You can find more by visiting the "conv" page in the help menu.

a) Let
$$x[n] = \{ 1 2 3 4 5 6 7 6 5 4 3 2 1 \}$$
 in $n = [-3:9]$.

Let h[n]=1/5*[1111] in n=[0:4]. Convolve h[n] with x[n]. Let $r[n]=\operatorname{conv}(h[n],x[n])$. Plot the output sequence r[n]. Comment on the smoothing effect of the filter h[n]. Plot $\operatorname{abs}(X(e^{jw}))$ and $\operatorname{abs}(R(e^{jw}))$. Comment on the differences of these signals in the frequency domain.

b) Let N be an integer. Apply Fourier transformations to find the output of the same system in part-a, by using z=ifft(fft(x,N).*fft(h,N)) command in MATLAB and compare z[n] with r[n] for different values of N. Determine the value of N, where r[n]=z[n]. Is this value unique?