

ZXTN08400BFF 400V, SOT23F, NPN medium power high voltage transistor

Summary

 $BV_{CEX} > 450V$

 $BV_{CEO} > 400V$

 $BV_{ECO} > 6V$

 $I_{C(cont)} = 0.5A$

V_{CE(sat)} < 175mV @ 500mA

 $P_{D} = 1.5W$

Complementary part number ZXTP08400BFF

Description

This NPN transistor has been designed for applications requiring high voltage blocking. The SOT23F package is pin compatible with the industry standard SOT23 foot print but offers lower profile and higher dissipation for applications where power density is of utmost importance.

Features

- · High voltage
- · Low saturation voltage
- Low profile small outline package

Applications

- Modems
- Telecoms line switching

Ordering information

Device	Reel size (inches)	Tape width (mm)	Quantity per reel	
ZXTN08400BFFTA	7	8	3000	

Device marking

1D5

Pinout - top view

Absolute maximum ratings

Parameter	Symbol	Limit	Unit
Collector-base voltage	V _{CBO}	450	V
Collector-emitter voltage (forward blocking)	V _{CEX}	450	V
Collector-emitter voltage	V _{CEO}	400	V
Emitter-collector voltage (reverse blocking)	V _{ECO}	6	V
Emitter-base voltage	V _{EBO}	7	V
Continuous collector current ^(c)	I _C	0.5	Α
Peak pulse current	I _{CM}	1	Α
Base current	I _B	0.2	Α
Power dissipation at T _{amb} =25°C ^(a)	P _D	0.84	W
Linear derating factor		6.72	mW/°C
Power dissipation at T _{amb} =25°C ^(b)	P _D	1.34	W
Linear derating factor		10.72	mW/°C
Power dissipation at T _{amb} =25°C ^(c)	P _D	1.5	W
Linear derating factor		12.0	mW/°C
Power dissipation at T _{amb} =25°C ^(d)	P _D	2.0	W
Linear derating factor		16.0	mW/°C
Operating and storage temperature range	T _j , T _{stg}	- 55 to 150	°C

Thermal resistance

Parameter	Symbol	Limit	Unit
Junction to ambient ^(a)	$R_{\Theta JA}$	149	°C/W
Junction to ambient ^(b)	$R_{\Theta JA}$	93	°C/W
Junction to ambient ^(c)	$R_{\Theta JA}$	83	°C/W
Junction to ambient ^(d)	$R_{\Theta JA}$	60	°C/W

NOTES:

⁽a) For a device surface mounted on 15mm x 15mm x 1.6mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions

⁽b) Mounted on 25mm x 25mm x 1.6mm FR4 PCB with a high coverage of single sided 2 oz copper in still air conditions. (c) Mounted on 50mm x 50mm x 1.6mm FR4 PCB with a high coverage of single sided 2 oz copper in still air conditions. (d) As (c) above measured at t<5secs.

Typical characteristics

Electrical characteristics (at T_{amb} = 25°C unless otherwise stated)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Collector-base breakdown voltage	BV _{CBO}	450	550		V	I _C = 100μA
Collector-emitter breakdown voltage (forward blocking)	BV _{CEX}	450	550		V	$I_C = 100 \mu A, R_{BE} < 1 k\Omega \text{ or}$ -1V < $V_{BE} < 0.25 V$
Collector-emitter breakdown voltage (base open)	BV _{CEO}	400	500		V	I _C = 10mA ^(*)
Emitter-collector breakdown voltage (reverse blocking)	BV _{ECX}	6	8.0		V	$I_E = 100 \mu A$, $R_{BC} < 1 k \Omega$ or $0.25 V > V_{BC} > -0.25 V$
Emitter-collector breakdown voltage (base open)	BV _{ECO}	6	8.5		V	$I_E = 100 \mu A$,
Emitter-base breakdown voltage	BV _{EBO}	7	8.1		V	I _E = 100μA
Collector-base cut-off current	I _{CBO}		<1	50 20	nA μA	V _{CB} = 360V, T _{amb} = 100°C
Collector-emitter cut-off current	I _{CEX}		<1	100	nA	$V_{CE} = 360V, R_{BE} < 1k\Omega \text{ or} -1V < V_{BE} < 0.25V$
Emitter-base cut-off current	I _{EBO}		<1	50	nA	V _{EB} = 5.6V
Collector-emitter saturation voltage	V _{CE(sat)}		70	85	mV	I _C = 20mA, I _B = 1mA ^(*)
			50	70	mV	$I_C = 50 \text{mA}, I_B = 5 \text{mA}^{(*)}$
			120	170	mV	$I_C = 300 \text{mA}, I_B = 30 \text{mA}^{(*)}$
			125	175	mV	$I_C = 500 \text{mA}, I_B = 100 \text{mA}^{(*)}$
Base-emitter saturation voltage	V _{BE(sat)}		865	950	mV	$I_C = 500 \text{mA}, I_B = 100 \text{mA}^{(*)}$
Base-emitter turn-on voltage	V _{BE(on)}		800	900	mV	I _C = 500mA, V _{CE} = 10V ^(*)
Static forward current transfer	h _{FE}	90	165			$I_C = 1mA, V_{CE} = 5V^{(*)}$
ratio		100	180	300		$I_C = 50 \text{mA}, V_{CE} = 5 V^{(*)}$
		10	20			$I_C = 500 \text{mA}, V_{CE} = 10 V^{(*)}$
Transition frequency	f _T		40		MHz	I _C = 10mA, V _{CE} = 20V f = 20MHz
Output capacitance	C _{OBO}		8	10	pF	V _{CB} = 20V, f = 1MHz ^(*)
Delay time	t _d		100		ns	V _{CC} = 100V.
Rise time	t _r		52		ns	$I_C = 100 \text{mA},$
Storage time	t _s		3122		ns	I _{B1} = 10mA, I _{B2} = 20mA.
Fall time	t _f		240		ns	

NOTES:

(*) Measured under pulsed conditions. Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

Typical characteristics

Package outline - SOT23F

Dim.	Millimeters		Inches		Dim.	Millimeters		Inches	
	Min.	Max.	Min.	Max.		Min.	Max.	Max.	Max.
Α	0.80	1.00	0.0315	0.0394	Е	2.30	2.50	0.0906	0.0984
A1	0.00	0.10	0.00	0.0043	E1	1.50	1.70	0.0590	0.0669
b	0.35	0.45	0.0153	0.0161	E2	1.10	1.26	0.0433	0.0496
С	0.10	0.20	0.0043	0.0079	L	0.48	0.68	0.0189	0.0268
D	2.80	3.00	0.1102	0.1181	L1	0.30	0.50	0.0153	0.0161
е	0.95 ref		0.0374 ref		R	0.05	0.15	0.0019	0.0059
e1	1.80	2.00	0.0709	0.0787	0	0°	12°	0°	12°

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches

Europe **Americas Asia Pacific Corporate Headquarters** Zetex Inc Zetex (Asia Ltd) Zetex Semiconductors plc Zetex GmbH Kustermann-park 700 Veterans Memorial Highway 3701-04 Metroplaza Tower 1 Zetex Technology Park, Chadderton Balanstraße 59 Hauppauge, NY 11788 Hing Fong Road, Kwai Fong Oldham, OL9 9LL D-81541 München Hong Kong United Kingdom Germany Telefon: (49) 89 45 49 49 0 Telephone: (1) 631 360 2222 Telephone: (852) 26100 611 Telephone: (44) 161 622 4444 Fax: (49) 89 45 49 49 49 Fax: (1) 631 360 8222 Fax: (852) 24250 494 Fax: (44) 161 622 4446 europe.sales@zetex.com usa.sales@zetex.com asia.sales@zetex.com hq@zetex.com

For international sales offices visit www.zetex.com/offices

Zetex products are distributed worldwide. For details, see www.zetex.com/salesnetwork

This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.