《数学分析(三)》期中试题

(2018年11月23日)

1. (18分,每题6分)判断下面级数收敛性,并给出证明。

母題 6分)列助下曲致致 (2)
$$\sum_{n=2}^{\infty} \frac{n^{(\ln n)^2}}{(\ln n)^n}$$
 (3) $\sum_{n=2}^{\infty} \frac{1}{\ln^2 n} \cos \frac{\pi n^2}{n+1}$

2. (12 分)给出级数 $\sum_{n=1}^{\infty} \frac{\cos nx}{n^p}$ 满足 (a) 绝对收敛, (b) 收敛, (c) 对 x 一致收敛, 参数 (x,p) 所满足

的条件,并证明之。(20分)求下面函数的幂级数展开,并给出收敛域(需要研究收敛域端点收敛性)。

(2)
$$f(x) = (1+x)^2 \arctan x$$
 (2) $f(x) = \ln(x + \sqrt{1+x^2})$

- 4. (20 分) 设 $f(x) = \begin{cases} x(1-x), & x \in [0,1] \\ x(1+x), & x \in [-1,0] \end{cases}$ 是周期为 2 的函数。
 - (1) 计算f(x)的 Fourier 级数 $S_f(x)$ 。
 - (2) $S_f(x)$ 对任意 $x \in \mathbb{R}$ 是否收敛,是否一致收敛?说明理由。

(3) 求下列级数和
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{\left(2n+1\right)^3}$$
, $\sum_{n=0}^{\infty} \frac{1}{\left(2n+1\right)^2}$, $\sum_{n=0}^{\infty} \frac{1}{\left(2n+1\right)^4}$, $\sum_{n=0}^{\infty} \frac{1}{\left(2n+1\right)^6}$, 并说明计算的依据和理由。

5. (20 分)设 $f \in R[-\pi,\pi]$ 是周期为 2π 的 Riemann 可积函数。

(1) 证明:
$$c_n(f) = \frac{1}{4\pi} \int_{-\pi}^{\pi} \left[f(x) - f\left(x + \frac{\pi}{n}\right) \right] e^{-inx} dx$$
, 其中 $c_n(f)$ 是 $f(x)$ 的 Fourier 系数。

- (2) 设 $f \in C[-\pi,\pi]$,且满足 Hölder 条件: $\forall x,h \in \mathbb{R}$,存在常数 C>0, $0<\alpha \le 1$,使得 $|f(x+h)-f(x)| \le Ch^\alpha \text{ 。证明: } c_n(f) = O\Big(n^{-\alpha}\Big) \text{ 。}$
- (3) 上面 $c_n(f)$ 阶数 $O(n^{-\alpha})$ 是最佳估计。考虑函数 $f(x) = \sum_{k=1}^{\infty} 2^{-k\alpha} e^{i2^k x}$, 其中 $0 < \alpha < 1$ 。证明:
 - (a) $\forall x,h \in \mathbb{R}$, $\left| f(x+h) f(x) \right| \le Ch^{\alpha}$, (b) $\exists N = 2^k$ 时,有 $c_N(f) = N^{-\alpha}$ 。
- 6. (10 分) $f(x) \in C(0,\infty)$, 满足 f(x) > 0, 单调递减, $\lim_{x \to \infty} \frac{e^x f(e^x)}{f(x)} = \gamma$ 。证明: 级数 $\sum_{n=1}^{\infty} f(n)$ 在 $\gamma < 1$ 时收敛,在 $\gamma > 1$ 时发散。