UDAAN 2025

Maths

Quadratic Equations

DHA: 04

- **91** Find roots of the equation $a^2x^2-3abx+2b^2=0$ by the method of completing the square.
- (B) $-\frac{2b}{a}, \frac{b}{a}$ (D) $\frac{2b}{a}, -\frac{b}{a}$
- G2 Find the roots of the equation $5x^2-6x-2=0$ by the method completing the square.

- Q3 The number of real roots of the equation $2(a^2+b^2)x^2+2(a+b)x+1=0, a
 eq b$ is (A) 2 (**C**) 0 (D) None of these
- Q4 If the roots of the equation $(b-c)x^2+(c-a)x+(a-b)=0$ equal, then prove that 2b = a + c.
- Q5 Find the value of k for which the equation $2x^2 + 3x + k$ =0 will have real roots.

Answer Key

(A) Q1

(A) Q2

(C) Q3

Q4 To Prove

For the given equation to have real roots Q5

 $\mathbf{D}{\geq 0}$

Hints & Solutions

Q1 Text Solution:

$$a^2x^2 - 3abx + 2b^2 = 0$$
 $x^2 - \frac{3bx}{a} + \frac{2b^2}{a^2} = 0$
 $x^2 - 2\left(\frac{3b}{2a}\right)x = -\left(\frac{2b^2}{a^2}\right)$
 $x^2 + \frac{9b^2}{4a^2} - 2\left(\frac{3b}{2a}\right)x = \frac{9b^2}{4a^2} - \frac{2b^2}{a^2}$
 $\left(x - \frac{3b}{2a}\right)^2 = \frac{9b^2 - 8b^2}{4a^2}$
 $\left(x - \frac{3b}{2a}\right)^2 = \frac{b^2}{4a^2}$
 $\left(x - \frac{3b}{2a}\right) = \pm \frac{b}{2a}$
 $x = \frac{2b}{a}, \frac{b}{a}$

Video Solution:

Q2 Text Solution:

$$5x = \pm\sqrt{19}$$

 $5x = 3 + \sqrt{19}$, $5x = 3 - \sqrt{19}$
 $x = (3 + \sqrt{19})/5$, $x = (3 - \sqrt{19})/5$

Therefore $(3 + \sqrt{19})/5$ and $(3 - \sqrt{19})/5$ are the roots of the given quadratic equation.

Video Solution:

Q3 Text Solution:

Since D < 0, no real roots exist

Video Solution:

Q4 Text Solution:

If, D=0, real and equal roots

Here,
$$D=(c-a)^2-4\Big(b-c\Big)\Big(a-b\Big)$$
 $D=c^2+a^2-2ca-4\Big(ba-b^2-ca+bc\Big)$ $=c^2+a^2+4b^2+2ca-4ba-4bc$ $=(c+a-2b)^2$ $As\ D=0$ $(c+a-2b)^2=0$ $Taking\ square\ root\ on\ both\ sides;$ $\Big(c+a-2b\Big)=0$ $c+a=2b$

Taking square root on both sides;

Video Solution:

Q5 Text Solution:

$$egin{aligned} D &\geq 0 \ b^2 - 4ac &\geq 0 \ (3)^2 - 4 imes 2 imes k \geq 0 \ 9 - 8k &\geq 0 \ k &\leq rac{9}{8} \end{aligned}$$

Video Solution:

