Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	[@KLWKS_BOT THANOS]

Experiment Title: SHELL SCRIPTING

Experiment Title: Shell Scripting

Aim/Objective: The student should be able to understand, how to write Shell Scripts, uses of Shell Scripts, different shells available, shell comment, and the Shell Variables.

Description:

The A shell script is a type of computer program developed to be executed by a Unix shell, which is also known as a command-line interpreter. Several shell script dialects are treated as scripting languages. Classic operations implemented by shell scripts contain printing text, program execution, and file manipulation. A script configures the environment, and executes the program.

Prerequisite:

- Basic functionality of Unix Commands.
- Complete idea of Disk Operating System and Batch Files

Pre-Lab Task:

Shell Scripting terms	FUNCTIONALITY		
Batch File	A script file containing a series of commands executed sequentially.		
Shell Scripting	Writing scripts to automate tasks in a shell environment.		

Course Title	OPERATING SYSTEMS	ACADEMIC YEAR: 2024-25
Course Code(s)	23CS2104A	Page 170 of 226

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	[@KLWKS_BOT THANOS]

Shell Scripting terms	FUNCTIONALITY
Shell Variables	Variables used to store data within scripts.
Shell Types	Different types of shells (e.g., Bash, Zsh) used for scripting.
Ch. II Comment	Non avagatable lines in societs for de aumontation
Shell Comments	Non-executable lines in scripts for documentation.

Course Title	OPERATING SYSTEMS	ACADEMIC YEAR: 2024-25
Course Code(s)	23CS2104A	Page 171 of 226

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	[@KLWKS_BOT THANOS]

In Lab

1. Write a Shell Script to accept a number and find Even or ODD

```
#!/bin/bash
echo "Enter a number: "
read number

if [ $((number % 2)) -eq 0 ]; then
    echo "The number $number is even."
else
    echo "The number $number is odd."
fi
```

Course Title	OPERATING SYSTEMS	ACADEMIC YEAR: 2024-25
Course Code(s)	23CS2104A	Page 172 of 226

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	[@KLWKS_BOT THANOS]

2. Write a Shell Script to find the Factorial of a given number.

```
#!/bin/bash
echo "Enter a number: "
read number
factorial=1
for ((i = 1; i <= number; i++)); do
    factorial=$((factorial * i))
done
echo "Factorial of $number is $factorial"</pre>
```

Course Title	OPERATING SYSTEMS	ACADEMIC YEAR: 2024-25
Course Code(s)	23CS2104A	Page 173 of 226

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	[@KLWKS_BOT THANOS]

3. Write a Shell Script to find the Greatest of the given Three numbers.

```
#!/bin/bash
```

```
echo "Enter the first number: "
read num1
echo "Enter the second number: "
read num2
echo "Enter the third number: "
read num3
greatest=$num1

if [ $num2 -gt $greatest ]; then
    greatest=$num2
fi
if [ $num3 -gt $greatest ]; then
    greatest=$num3
fi
```

echo "The greatest number among \$num1, \$num2, and \$num3 is \$greatest"

Course Title	OPERATING SYSTEMS	ACADEMIC YEAR: 2024-25
Course Code(s)	23CS2104A	Page 174 of 226

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	[@KLWKS_BOT THANOS]

4. Write a Shell Script to accept numbers and print sorted numbers.

```
#!/bin/bash
numbers=()
echo "Enter numbers (separate with spaces, e.g., 5 3 8 1): "
read -a input_numbers
for number in "${input_numbers[@]}"; do
    numbers+=("$number")
done
sorted_numbers=($(printf "%s\n" "${numbers[@]}" | sort -n))
echo "Sorted numbers: ${sorted_numbers[*]}"
```

Course Title	OPERATING SYSTEMS	ACADEMIC YEAR: 2024-25
Course Code(s)	23CS2104A	Page 175 of 226

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	[@KLWKS_BOT THANOS]

5. Write a Shell Script for an Arithmetic Calculator using CASE

```
#!/bin/bash
addition() {
  result=$((num1 + num2))
subtraction() {
  result=$((num1 - num2))
multiplication() {
  result=$((num1 * num2))
}
division() {
  if [ $num2 -eq 0 ]; then
    echo "Division by zero is not allowed."
    exit 1
  fi
  result=$(awk "BEGIN {printf \"%.2f\", $num1 / $num2}")
}
echo "Enter the first number: "
read num1
echo "Enter the second number: "
read num2
echo "Arithmetic Calculator Menu:"
echo "1. Addition"
echo "2. Subtraction"
echo "3. Multiplication"
echo "4. Division"
echo "Enter your choice (1/2/3/4): "
read choice
```

Course Title	OPERATING SYSTEMS	ACADEMIC YEAR: 2024-25
Course Code(s)	23CS2104A	Page 176 of 226

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	[@KLWKS_BOT THANOS]

case \$choice in

- 1) addition ;;
- 2) subtraction;;
- 3) multiplication;;
- 4) division ;;
- *) echo "Invalid choice"; exit 1;;

esac

echo "Result: \$result"

Course Title	OPERATING SYSTEMS	ACADEMIC YEAR: 2024-25
Course Code(s)	23CS2104A	Page 177 of 226

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	[@KLWKS_BOT THANOS]

POST LAB

1. Write a Shell Script to accept a year and find Leap Year or Not

```
#!/bin/bash
echo "Enter a year: "
read year

if [$((year % 4)) -eq 0] && [$((year % 100)) -ne 0] || [$((year % 400)) -eq 0]; then
    echo "$year is a leap year."
else
    echo "$year is not a leap year."
fi
```

Course Title	OPERATING SYSTEMS	ACADEMIC YEAR: 2024-25
Course Code(s)	23CS2104A	Page 178 of 226

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	[@KLWKS_BOT THANOS]

2. Write a Shell Script to check whether a given number is a prime number or not.

```
#!/bin/bash
isPrime() {
  if [$1 -le 1]; then
    return 1
  fi
  if [$1 -le 2]; then
    return 0
  fi
  for ((i = 2; i * i <= $1; i++)); do
    if [ $((num % i)) -eq 0 ]; then
      return 1
    fi
  done
  return 0
}
echo "Enter a number: "
read num
isPrime $num
if [$? -eq 0]; then
  echo "$num is a prime number."
else
  echo "$num is not a prime number."
fi
```

Course Title	OPERATING SYSTEMS	ACADEMIC YEAR: 2024-25
Course Code(s)	23CS2104A	Page 179 of 226

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	[@KLWKS_BOT THANOS]

Sample VIVA-VOCE Questions (In-Lab):

- 1. Explain in detail about shell script.
 - A shell script automates tasks by combining shell commands into a file.
- 2. Explain in detail about Advantages of Shell Script.
 - Automates tasks, reduces errors, improves efficiency, and is portable and lightweight.
- 3. What are the different variables available in the shell script?
 - User-defined variables, positional parameters (\$1,\$2), special variables (\$\$,\$?,\$#).

Course Title	OPERATING SYSTEMS	ACADEMIC YEAR: 2024-25
Course Code(s)	23CS2104A	Page 180 of 226

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	[@KLWKS_BOT THANOS]

4. Write down the syntax of Loops in Shell Scripting.

5. Write down the syntax of nested if in the shell scripting.

bash		☐ Copy code
if condition1; then	<pre>if condition2; then commands;</pre>	fi; fi

Evaluator Remark (if any):	
	Marks Secured out of 50
	Signature of the Evaluator with Date

Note: Evaluator MUST ask Viva-voce before signing and posting marks for each experiment.

Course Title	OPERATING SYSTEMS	ACADEMIC YEAR: 2024-25
Course Code(s)	23CS2104A	Page 181 of 226