Determining the relationship between hanging masses and the angle of a frictionless plane

Noah Alexiou April 2025

Contents

1	Introduction							2
	1.1	Research Question					2	
1.2 Rationale						2		
		1.2.1	Hypothesis					2
1.3 Methodology								
		1.3.1	Modifications					2
			Materials					
		1.3.3	$Method \dots \dots \dots \dots \dots$					2
		1.3.4	Risk Assessment					2
2	Results and Evaluation							2
	2.1	1 Results						2
	2.2	2.2 Discussion						2
3	Conclusion							2

1 Introduction

1.1 Research Question

When the mass of an object on a frictionless plane is altered, and the mass of a hanging object adjusted so equilibrium is achieved, Can this be used to find the angle of the plane?

1.2 Rationale

1.2.1 Hypothesis

1.3 Methodology

1.3.1 Modifications

1.3.2 Materials

- Angle gun
- Frictionless plane
- Brass weights
- Blue tack
- Scale
- Carriage

1.3.3 Method

- 1. Set up slope at a constant angle. It will remain at this angle for the entire duration of the experiment.
- 2. Set the hanging mass for the respective set of trials (m_2) .
- 3. Alter the cart mass (m_1) until equilibrium with m_2 is achieved.
- 4. Measure m_1 and m_2
- 5. Repeat for set number of trials and m_2 values.

1.3.4 Risk Assessment

2 Results and Evaluation

2.1 Results

2.2 Discussion

3 Conclusion