

Python Lab #1: Korean COVID-19 New Cases by Region

Sunglok Choi, Assistant Professor, Ph.D. Computer Science and Engineering Department, SEOULTECH sunglok@seoultech.ac.kr | https://mint-lab.github.io/

Overview

Prerequisite

Anaconda (Individual Edition)

Practice) Korean COVID-19 New Cases by Region

- Motivation
- Data collection
- Expected results
- Practice with the given skeleton code

Assignment

- Mission: Complete the given skeleton code

Prerequisite

- Anaconda (Individual Edition)
 - Download: https://www.anaconda.com/products/individual
 - I will use <u>Spyder IDE</u> included in Anaconda.
 - Note) You can use other editors and <u>Google Colab</u> instead of Anaconda/Spyder.

Motivation

I want to know regional COVID-19 new cases per 1 million people.

4

- Data collection
 - Population by region
 - The number of new cases by region

Expected results (with a Markdown editor or <u>Markdown Live Preview</u> or <u>Github</u>)

• Total new cases: 1714			
Region	New Cases	Ratio (%)	New Cases / 1M
Seoul	644	37.6	67.4
Gyeongi	529	30.9	39.1
Busan	38	2.2	11.3
Gyeongnam	29	1.7	8.7
Incheon	148	8.6	50.4
Gyeongbuk	28	1.6	10.6
Daegu	41	2.4	17.1
Chungnam	62	3.6	29.3
Jeonnam	23	1.3	12.5
Jeonbuk	27	1.6	15.1
Chungbuk	27	1.6	16.9
Gangwon	33	1.9	21.5
Daejeon	16	0.9	11.0
Gwangju	40	2.3	27.7
Ulsan	20	1.2	17.8
Jeju	5	0.3	7.4

The given skeleton code (covid19_statistics_skeleton.py)

```
def normalize data(n cases, n people, scale):
   # TODO) Calculate the number of cases per its population
   norm cases = []
   for idx, n in enumerate(n cases):
       norm cases.append(0)
   return norm cases
regions = ['Seoul', ...]
n people = [9550227, ...] # 2021-08
n covid = [ 644, ...] # 2021-09-21
sum people = 0 # TODO) Compute the total number of people
sum covid = 0 # TODO) Compute the total number of new cases
norm covid = normalize data(n covid, n people, 1000000) # The new cases per 1 million people
# Print population by region
print('### Korean Population by Region')
print('* Total population:', sum people)
print()
print('| Region | Population | Ratio (%) |')
print('| ----- | ------ | ')
for idx, pop in enumerate(n people):
   ratio = 0 # TODO) Calculate the ratio of new cases to each region's population
    print('| %s | %d | %.1f |' % (regions[idx], pop, ratio))
print('')
# TODO) Print COVID-19 new cases by region
```

Assignment

Mission

- Complete the given skeleton code (covid19_statistics_skeleton.py)
- Submit your code (covid19_statistics.py) and its output copy (covid19_statistics.md)
 - You need to copy and paste your printed output to a text file (covid19_statistics.md).

Condition

- Please follow the above filename convention.
- You can start from scratch (without using the given skeleton code).
 - However, you should use the same data shown in the slide 5.
- You can freely change the given skeleton code if necessary.

Submission

- Deadline: September 17, 2025 23:59 (firm deadline; no extension)
- Where: e-Class > Assignments
- Score: Max 10 points