Variedades Complejas (tarea 3)

Eduardo León (梁遠光)

Setiembre 2020

Ejercicio 1. (Toros de dimensión 1) Sea $\Lambda \subset \mathbb{C}$ un retículo y sea $X = \mathbb{C}/\Lambda$ el toro complejo asociado.

- a) Muestre que X es difeomorfo a $S^1 \times S^1$.
- b) Muestre que todo isomorfismo de toros $\varphi: X \to X'$ que fija el origen se puede levantar a un único automorfismo $\tilde{\varphi}: \mathbb{C} \to \mathbb{C}$ de la forma $\tilde{\varphi}(z) = \alpha z$, donde $\alpha \in \mathbb{C}^*$ satisface $\alpha \Lambda = \Lambda'$.

 Sugerencia. Los automorfismos de \mathbb{C} son las transformaciones lineales afines.
- c) Muestre que X es biholomorfo a un toro de la forma $X(\tau) = \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$ para algún $\tau \in \mathbb{H}$.
- d) Identifique cada $\tau \in \mathbb{H}$ con su inversa $1/\tau$. Considere la acción de $SL(2,\mathbb{Z})$ sobre \mathbb{H} definida por

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \tau = \frac{a\tau + b}{c\tau + d}$$

Muestre que existe una identificación natural entre las órbitas de esta acción y las clases de isomorfía de toros complejos unidimensionales.

Solución.

a) Expresemos el retículo dado como $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. Sea L_i la recta real generada por ω_i . Puesto que ω_1, ω_2 forman una base real de \mathbb{C} , podemos definir la aplicación $\pi : \mathbb{C} \to S^1 \times S^1$ por

$$\pi(t_1\omega_1 + t_2\omega_2) = (e^{2\pi i t_1}, e^{2\pi i t_2})$$

Esta aplicación es un homomorfismo sobreyectivo de grupos de Lie cuyo núcleo es Λ . Por lo tanto, π desciende a un isomorfismo de grupos de Lie $\varphi: X \to S^1 \times S^1$. En particular, φ es un difeomorfismo, si ignoramos la estructura algebraica.

b) Nuestra tarea es construir la flecha quebrada del siguiente diagrama:

$$\begin{array}{ccc}
\mathbb{C} & & & \mathbb{C} \\
\downarrow^{\pi} & & & \downarrow^{\pi'} \\
X & \xrightarrow{\varphi} & X'
\end{array}$$

Empecemos por lo topológico. Como no está en duda que $\varphi \circ \pi$ está bien definido, suprimamos X en el diagrama. Tenemos el problema de levantamiento

Una vez fijados los puntos de referencia $0 \in \mathbb{C}$ y $0 \in X'$, este problema de levantamiento admite una única solución continua, porque \mathbb{C} es simplemente conexo. Tanto $\varphi \circ \pi$ como π' son biholomorfismos locales, así que $\tilde{\varphi}$ también es un biholomorfismo local.

Puesto que φ es un homeomorfismo, $\varphi \circ \pi$ también es un recubrimiento universal de X' por la copia izquierda de \mathbb{C} . Entonces $\tilde{\varphi}$ es un morfismo de recubrimientos entre recubrimientos universales. Por ende, $\tilde{\varphi}$ es un homeomorfismo. Por ende, $\tilde{\varphi}$ es un biholomorfismo (global).

Finalmente, recordemos que los automorfismos biholomorfos de \mathbb{C} son las transformaciones lineales afines $\psi(z) = \alpha z + \beta$, donde $\alpha \in \mathbb{C}^*$, $\beta \in \mathbb{C}$. Entonces,

- Puesto que $\tilde{\varphi}$ fija el origen, $\tilde{\varphi}(z) = \alpha z$ es un isomorfismo de grupos.
- Puesto que \mathbb{C} es abeliano, los retículos Λ, Λ' son subgrupos normales de \mathbb{C} , los toros X, X' son grupos abelianos por cuenta propia y φ, π, π' son homomorfismos de grupos de Lie.
- Puesto que el diagrama original conmuta, $\alpha \Lambda \subset \Lambda'$.
- Puesto que el diagrama también conmuta si revertimos las flechas horizontales, $\alpha \Lambda \supset \Lambda'$.
- c) Sea $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ un retículo arbitrario. Intercambiando los generadores ω_1, ω_2 si es necesario, se puede conseguir que $\tau = \omega_2/\omega_1$ esté en el semiplano superior \mathbb{H} . Aplicando la rotación por $\alpha = 1/\omega_1$, enviamos Λ al retículo $\Lambda' = \mathbb{Z} + \mathbb{Z}\tau$. Entonces, el isomorfismo de sucesiones exactas

nos otorga el isomorfismo de toros solicitado $\varphi: \mathbb{C}/\Lambda \to \mathbb{C}/\Lambda'$.

- d) Sea $\Lambda(\tau) = \mathbb{Z} + \mathbb{Z}\tau$. Observemos que $\tau \cdot \Lambda(1/\tau) = \Lambda(\tau)$. Entonces podemos identificar τ con $1/\tau$, sin malograr la buena definición de la clase de isomorfía de $X(\tau)$. Por ende, las siguientes proposiciones son equivalentes:
 - $X(\tau')$ es un toro isomorfo a $X(\tau)$.
 - Existe $\alpha \in \mathbb{C}^*$ tal que $\alpha \cdot \Lambda(\tau) = \Lambda(\tau')$.
 - Existe $\alpha \in \mathbb{C}^*$ tal que $\{\alpha, \alpha\tau\}$ generan el mismo retículo que $\{1, \tau'\}$.
 - Existe una matriz $A \in SL(2,\mathbb{Z})$ que envía $\{\alpha,\alpha\tau\}$ a $\{1,\tau'\}$ para algún $\alpha \in \mathbb{C}^*$.
 - Existe una matriz $A \in SL(2, \mathbb{Z})$ tal que $A \cdot \tau = \tau'$.

Ejercicio 2. (Encaje de Plücker) Recuerde el teorema de Chow: Toda variedad compleja compacta X que admite un encaje $X \hookrightarrow \mathbb{P}^n$ es algebraica, i.e., se puede describir como el conjunto de ceros de una cantidad finita de polinomios homogéneos.

Sea V un espacio vectorial complejo de dimensión finita y sea $k \in \mathbb{N}$. En la tarea anterior, definimos el grassmanniano $Gr_k(V)$ como una variedad compleja cuyos puntos se identifican de manera natural con los k-planos $W \subset V$ que pasan por el origen. El encaje de Plücker es la aplicación

$$\psi: \operatorname{Gr}_k(V) \longrightarrow \mathbb{P}\left(\bigwedge^k V\right)$$

que envía el k-plano generado por u_1, \ldots, u_k a la recta generada por $u_1 \wedge \cdots \wedge u_k$.

- a) Muestre que ψ es una aplicación holomorfa bien definida.
- b) Muestre que ψ es un encaje cerrado y, por ende, $\operatorname{Gr}_k(V)$ es una variedad proyectiva.
- c) Verifique explícitamente que, para $V = \mathbb{C}^4$, la imagen de $\operatorname{Gr}_2(V)$ en $\mathbb{P}\left(\bigwedge^2 V\right) \cong \mathbb{CP}^5$ es la variedad cuádrica de Klein definida por $X_{12}X_{34} X_{13}X_{24} + X_{14}X_{23} = 0$.

Solución. Al igual que en la tarea anterior, identificaremos $V \cong \mathbb{C}^n$. Antes de resolver el ejercicio, daremos algunos preliminares de álgebra multilineal:

■ El producto alternante $\bigwedge^k V$ satisface la siguiente propiedad universal. Dada una aplicación k-lineal alternante $f: V \times \cdots \times V \to W$, existe una única aplicación 1-lineal $\tilde{f}: \bigwedge^k V \to W$ que, compuesta con la incrustación canónica $\varphi: V \times \cdots \times V \to \bigwedge^k V$, reproduce f. Diagramáticamente,

En la categoría de \mathbb{C} -espacios vectoriales, es suficiente verificar esta propiedad para $W = \mathbb{C}$.

■ De manera natural, toda base e_1, \ldots, e_n de V induce una base de $\bigwedge^k V$ conformada por los tensores alternantes simples $f_J = e_{j_1} \wedge \cdots \wedge e_{j_k}$, donde $J = (j_1, \ldots, j_k)$ es un multi-índice cuyas componentes satisfacen $j_1 < \ldots < j_k$. Esto significa que toda k-forma alternante sobre V se expresa de una única manera como suma de k-formas sobre cada k-plano coordenado.

Si representamos una k-tupla $(v_1, \ldots, v_k) \in V^k$ como una matriz $k \times n$, entonces el k-vector dual f_J^* es el funcional k-lineal que envía la matriz $A \in \mathbb{C}^{k \times n}$ al determinante del menor A_J . Por lo tanto, la representación de φ en coordenadas es

$$\varphi(v_1,\ldots,v_n)=\varphi(A)=(\det A_1,\ldots,\det A_N)$$

donde A_1, \ldots, A_N forman una enumeración de los menores de $k \times k$ de A.

Tras estos preparativos, podemos resolver el ejercicio.

a) Sea $M \subset \mathbb{C}^{k \times n}$ el espacio de matrices de rango k. Sea N el espacio vectorial $\bigwedge^k V$ menos un agujero en el origen. La acción de $G = \mathrm{GL}(k,\mathbb{C})$ sobre M satisface $\varphi(PA) = \det P \cdot \varphi(A)$. Por lo tanto, cada G-órbita en M es enviada a una única \mathbb{C}^* -órbita en N. Entonces φ desciende a una aplicación

$$\psi: \operatorname{Gr}_k(V) \longrightarrow \mathbb{P}\left(\bigwedge^k V\right)$$

bien definida entre los espacios de órbitas. Para cada multi-índice J, consideremos

- El subconjunto abierto de $Gr_k(V)$ en el cual A_J es invertible. Cada punto de este abierto tiene un representante canónico para el cual A_J es la matriz identidad.
- El subconjunto abierto de $\mathbb{P}\left(\bigwedge^k V\right)$ en el cual z_J no se anula. Cada punto de este abierto tiene un representante canónico para el cual $z_J = 1$.

Por construcción, si A es el representante canónico de su propia G-órbita, entonces $\varphi(A)$ también es el representante canónico de su propia \mathbb{C}^* -órbita. Esto significa que ψ se representa en coordenadas locales como la restricción de φ al plano $A_J = I$ (en M) y al hiperplano $z_J = 1$ (en N), que es, por supuesto, una aplicación polinomial. Por lo tanto, ψ es una aplicación holomorfa.

b) Primero demostaremos que ψ es inyectiva, i.e., $\psi(W_1) = \psi(W_2)$ si y solamente si $W_1, W_2 \subset V$ son el mismo k-plano. Tomemos en este preciso orden: (a) una base de $W_1 \cap W_2$, (b) una base de cada W_i que extiende la base de $W_1 \cap W_2$, (c) una base de V que extiende la base obtenida de $W_1 + W_2$.

Ahora que W_1, W_2 son k-planos coordenados, basta verificar que $\psi(W_1) = \psi(W_2)$ si y sólo si W_1, W_2 son el mismo k-plano coordenado. Pero esto es trivial: por definición, ψ es la proyectivización (quizá es más preciso decir "grassmannianización") de φ , que envía cada k-plano coordenado de V a un eje coordenado distinto de $\bigwedge^k V$.

A continuación demostraremos que ψ es una inmersión, i.e., el diferencial

$$d\psi_p: T_p\operatorname{Gr}_k(V) \longrightarrow T_{\psi(p)}\mathbb{P}\left(\bigwedge^k V\right)$$

es inyectivo para todo $p \in Gr_k(V)$. Nuevamente, mediante un cambio de base, hagamos que p sea un k-plano coordenado, digamos, asociado al multi-índice J. Entonces,

- \blacksquare El atlas estándar de $Gr_k(V)$ contiene una única carta definida en una vecindad de p.
- El atlas estándar de $\mathbb{P}\left(\bigwedge^k V\right)$ contiene una única carta definida en una vecindad de $\psi(p)$.

Restringiendonos a estas cartas, ψ es ahora la aplicación que envía la matriz

$$A = \begin{bmatrix} 1 & \dots & 0 & x_{11} & \dots & x_{1,n-k} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 1 & x_{k1} & \dots & x_{k,n-k} \end{bmatrix}$$

al vector $\varphi(A) = (z_1, \dots, \widehat{z_J}, \dots, z_N)$, donde $z_I = \det A_I$. Tomemos una coordenada local x, i.e., una entrada de la parte derecha de A. La fila y la columna de x corresponden a dos índices $a \in J$, $b \notin J$, respectivamente. Sea I_x el multi-índice obtenido sustituyendo $J[a \mapsto b]$ y aplicando una permutación $\sigma_x \in S_k$ para restaurar el orden creciente de las componentes. Entonces,

$$\frac{\partial z_I}{\partial x} = \begin{cases} \operatorname{sign}(\sigma_x), & \text{si } I = I_x \\ 0, & \text{otro caso} \end{cases}$$

Si x, y son entradas distintas de A, entonces I_x, I_y también son multi-índices distintos. Esto significa que $d\psi_p$ envía la base $\{\partial/\partial x_{ij}\}$ a un conjunto linealmente independiente. Entonces $d\psi_p$ es inyectivo. Puesto que p es un punto arbitario, $d\psi$ es globalmente inyectivo, i.e., ψ es una inmersión.

Finalmente, demostraremos que ψ es un encaje analítico. Como ya sabemos que ψ es una inmersión inyectiva, sólo nos falta demostrar que ψ envía abiertos (resp. cerrados) de $Gr_k(V)$ a abiertos (resp. cerrados) de su imagen. Para ello, es suficiente demostrar que $Gr_k(V)$ es compacto.

Equipemos a V con un producto interno arbitrario e identifiquémoslo con el producto interno usual sobre \mathbb{C}^n mediante un isomorfismo lineal. Entonces las bases ortonormales de V corresponden a las filas de una matriz unitaria. En particular, las primeras k filas generan un k-plano, mientras que las n-k restantes generan su (único) complemento ortogonal. Las matrices de la forma

$$P = \begin{bmatrix} P_1 & 0 \\ 0 & P_2 \end{bmatrix}, \qquad P_1 \in U(k), \qquad P_2 \in U(n-k)$$

actúan sobre U(n) rotando ambas bases, pero fijando el k-plano el (n-k)-plano asociado a ellas, así que podemos identificar el espacio de órbitas de esta acción

$$Gr_k(V) \cong \frac{U(n)}{U(k) \times U(n-k)}$$

con el grassmanniano. Puesto que U(n) es un grupo compacto, $Gr_k(V)$ es un espacio compacto. Por ende, ψ es un encaje analítico y $Gr_k(V)$ es una variedad algebraica proyectiva.

c) Pendiente.