Rolls Royce AE3007A

Group 5

Jahnavi Gupta - 22AE10015 Devanshi Dadoo - 22AE30007 Rahul Ranwa - 22AE10032 Arghadeep Das - 22AE10003 Vijay Kumar - 22AE10045



#### **AIM**

To convert this 2-Spool Unmixed Flow Fixed Bypass ratio
Turbofan Engine to 2-Spool Mixed Flow Variable Bypass ratio
Geared Turbofan Engine

## **Key features & Applications of RR AE3007A Engine**

#### Key Features:-

- 1. <u>High Efficiency</u>: The AE 3007A has a high bypass ratio, meaning it can provide significant thrust while maintaining good fuel efficiency. This is critical for both commercial airliners and business jets.
- 2. <u>Low Noise</u>: The engine is designed to be relatively quiet, which is important for both environmental standards and passenger comfort, especially in business jets.
- 3. **Thrust Range**: It typically provides around 8,000 to 9,000 pounds of thrust, which is suitable for smaller regional jets and mid-size business jets.

#### Applications:-

- 1. <u>Business Jets</u>: The RR AE 3007A is used in the **Cessna Citation X**, one of the fastest business jets in the world. This engine helps provide the aircraft with exceptional speed and range.
- 2. <u>Regional Airliners</u>: It powers the **Embraer ERJ 145** family of regional jets, which are used by airlines for short to medium-haul routes. The engine's efficiency is critical for airlines looking to keep operational costs low while maintaining reliable service.
- 3. <u>Unmanned Aerial Vehicles (UAVs)</u>: Variants of the AE 3007A are used in military applications, such as in the **Northrop Grumman RQ-4 Global Hawk**, a high-altitude long-endurance (HALE) UAV. This showcases the engine's reliability and capability in long-endurance, high-altitude flight missions.

## **Plan of Action**

#### **Thrust Optimization**

• <u>Variable Bypass Ratio</u>: Gasturb can model different bypass ratios to determine an optimal configuration for military missions, balancing thrust and fuel efficiency.

#### **Fuel Efficiency Enhancement**

• <u>TSFC Reduction</u>: Analyze ways to reduce the Thrust Specific Fuel Consumption (TSFC) by simulating improvements in **turbine** and **compressor efficiencies**. This is crucial for **long-endurance military missions**, especially in UAVs.

## **Engine Parameters**

| Take-off Thrust (kN)    | 30.33 kN                |
|-------------------------|-------------------------|
| OPR                     | 23                      |
| Bypass ratio            | 5                       |
| Length (m)              | 2.92 m                  |
| Fan Diameter (m)        | 0.98 m                  |
| Fan                     | 24 Blades               |
| Compressor              | Single stage fan, 14 HP |
| Turbine                 | 2 Stage HP, 3 Stage LP  |
| Burner Exit Temperature | 1194-1243 K             |
| Fan Shaft RPM           | 7,716-8,248 rpm         |

## **Ground Condition Analysis**

| Altitude                        |       | 0       | $\neg$ |
|---------------------------------|-------|---------|--------|
|                                 | m     |         | -      |
| Delta T from ISA                | K     | 0       | -      |
| Relative Humidity [%]           |       | 0       | 4      |
| Mach Number                     |       | 0       |        |
|                                 |       |         |        |
| Intake Pressure Ratio           |       | 0.99    |        |
| No (0) or Average (1) Core dP/P |       | 1       |        |
| Inner Fan Pressure Ratio        |       | 1.2     |        |
| Outer Fan Pressure Ratio        |       | 1.2     |        |
| Compr. Interduct Press. Ratio   | 8     | 0.99    |        |
| HP Compressor Pressure Ratio    |       | 19.36   |        |
| Bypass Duct Pressure Ratio      |       | 0.98    |        |
| Turb. Interd. Ref. Press. Ratio |       | 0.98    |        |
| Design Bypass Ratio             |       | 5       |        |
| Burner Exit Temperature         | K     | 1200    |        |
| Burner Design Efficiency        |       | 0.9995  |        |
| Burner Partload Constant        |       | 1.6     |        |
| Fuel Heating Value              | MJ/kg | 42.0755 |        |
| Overboard Bleed                 | kg/s  | 0       |        |
| Power Offtake                   | kW    | 0       |        |
| HP Spool Mechanical Efficiency  |       | 0.99    |        |
| LP Spool Mechanical Efficiency  |       | 1       |        |
| Burner Pressure Ratio           |       | 0.97    |        |
| Turbine Exit Duct Press Ratio   |       | 0.98    |        |

Replication of the given ground conditions

# Variation of Fan Diameter keeping TIT & BPR Constant

|                              | W                                             | T                                 | P                    | WRstd<br>kg/s                                                                            |                 |              |          |        |     |
|------------------------------|-----------------------------------------------|-----------------------------------|----------------------|------------------------------------------------------------------------------------------|-----------------|--------------|----------|--------|-----|
| Station                      | ka/s                                          | K                                 | kPa                  | kg/s                                                                                     | FN              | =            | 30.33    | kN     |     |
| amb                          |                                               | 288.15                            | 101.325              |                                                                                          | maa             |              |          | 100000 |     |
| 1                            | 201 513                                       | 288 15                            | 101 325              |                                                                                          | TSEC            | =            | 11 9756  | 0/1    | k-N |
| 2                            | 201.513                                       | 288.15                            | 100.312              | 203.548                                                                                  | WF              |              | 0.36322  | ka     | 8   |
| 13                           | 167 927                                       | 381 85                            | 246 943              | 79 319                                                                                   | BDD             | =            | 5 0000   | 1197   |     |
| 21                           | 22 525                                        | 205 46                            | 120.374              | 29 107                                                                                   | e NOv           | -            | 0.7000   |        |     |
| 25                           | 33 585                                        | 305.46                            | 110 170              | 29 401                                                                                   | Core Fff        | =            | 0.7000   |        |     |
| 2                            | 22 570                                        | 752 67                            | 2200 000             | 2 221                                                                                    | Drop Pff        | _            | 0.2314   |        |     |
| 21                           | 20 540                                        | 753.67                            | 2299.900             | 2.321                                                                                    | DO /DO          | <u> </u>     | 22 03    |        |     |
| 21                           | 20.340                                        | 1200.00                           | 2239.900             | 2 (77                                                                                    | P3/P2           | =            | 0 0000   |        |     |
| 41                           | 28.911                                        | 1176 61                           | 2230.989             | 2.6//                                                                                    | P2/P1           | _            | 0.9900   |        |     |
| 41                           | 30.590                                        | 11/6.61                           | 2230.989             | 2.805                                                                                    | P16/P13         | =            | 0.9800   |        |     |
| 43                           | 30.590                                        | 732.03                            | 236.794              | 203.548<br>79.319<br>29.107<br>29.401<br>2.321<br>2.677<br>2.805                         | P25/P21         | -            | 0.9900   |        |     |
| 44                           | 32.605                                        | 733.36                            | 236.794              | 00.001                                                                                   | P45/P44         | =            | 0.9800   |        |     |
| 45                           | 32.605                                        | 733.36                            | 232.059              | 22.694                                                                                   | P6/P5           | =            | 0.9800   | _      |     |
| 49                           | 32.605                                        | 288.15                            | 1.585                |                                                                                          | AB              | =            | 0.09679  | m²     |     |
| 5                            | 33.613                                        | 296.98                            | 1.585                | 2180.169                                                                                 | A18             | =            | 0.34384  | m²     |     |
| 8                            | 33.613                                        | 296.98                            | 1.553                | 2224.663                                                                                 | P8/Pamb         | =            | 0.01533  |        |     |
| 18                           | 167.927                                       | 381.85                            | 242.004              | 80.938                                                                                   | P18/Pamb        | =            | 2.38839  |        |     |
| Bleed                        | 0.336                                         | 753.67                            | 2299.987             |                                                                                          | WBld/W25        | =            | 0.01000  |        |     |
| Pfficio                      | ncies                                         | isentr r                          | oluty B              | 80.938<br>NNI P/P<br>90 2.462<br>90 1.200<br>97 19.300<br>0.970<br>31 9.422<br>59146.437 | CD0             |              | 0.76303  |        |     |
| LILICIE                      | incres:                                       | o coco                            | OTATE B              | INT 5/5                                                                                  | CDIS            |              | 1.04644  |        |     |
| Outer                        | LPC                                           | 0.9000                            | .9110 0.9            | 90 2.462                                                                                 | AM6             | _            | 1.94644  |        |     |
| inner                        | LPC                                           | 0.0300 0                          | 0105 1 0             | 90 1.200                                                                                 | AMIS            | ,_           | 1.00000  |        |     |
| nr Cor                       | upressor                                      | 0.0700                            | .9105 1.0            | 9/ 19.300                                                                                | V10/V8,10       | u-           | -0.35568 |        |     |
| Burner                       | 1                                             | 0.9995                            | 0450 4 0             | 0.970                                                                                    | Loading         | _            | 100.00   | - 6    |     |
| ne Tur                       | ibine .                                       | 0.8800 0                          | .0452 4.2            | 51 9.422                                                                                 | eqqq th         | =            | 0.8451/  | 2-7-7  |     |
|                              | rbine                                         |                                   | .//86 0./            |                                                                                          | PWX             | =            | 0.00     | KW     |     |
| UD Spec                      | l mach F                                      | ff 0 0000                         | Now Smd              | 14000 ****                                                                               | WT al /W25      | _            | 0.02000  |        |     |
| T.P. Spoo                    | ol mech E                                     | ff 1 0000                         | Nom Spd              | 14000 rpm<br>8000 rpm                                                                    | WHc1/W25        | _            | 0.05000  |        |     |
| Dr Spoo                      | or meen b                                     | 11 1.0000                         | Nom Spa              | oooo ipm                                                                                 | MICI/ NZO       |              | 0.00000  |        |     |
|                              |                                               |                                   |                      |                                                                                          |                 |              |          |        |     |
| hum [%]                      | war                                           | 0 FH<br>0 42.07                   | V Fuel               |                                                                                          |                 |              |          |        |     |
| 0.0                          | 0.0000                                        | 0 42.07                           | 6 JP-10              |                                                                                          |                 |              |          |        |     |
|                              |                                               |                                   |                      |                                                                                          |                 |              |          |        |     |
|                              | and Walne                                     | s:                                |                      |                                                                                          |                 |              |          |        |     |
| Compos                       |                                               | = 1 20000                         | 0                    |                                                                                          |                 |              |          |        |     |
| Compos                       | anDia                                         |                                   |                      |                                                                                          |                 |              |          |        |     |
| Compos<br>1:                 | FanDia                                        | - 1.20000                         |                      |                                                                                          |                 |              |          |        |     |
| 1: 1                         | FanDia                                        | -1-1                              |                      |                                                                                          |                 |              |          |        |     |
| 1: 1                         | FanDia                                        | -1-1                              | tio (1               | 5)                                                                                       | = 2.4           | 6175         | 5        |        |     |
| 1: 1                         | FanDia                                        | -1-1                              | tio (1               | 5) 500)                                                                                  | = 2.4           | 6175         | j.       |        |     |
| 1: 1                         | FanDia                                        | -1-1                              | tio (1<br>td kg/s (1 | 5)<br>0500)                                                                              | = 2.4<br>= 203  | 6175<br>.548 |          |        |     |
| 1: I<br>Iterat<br>Out<br>Inl | FanDia<br>sion Vari<br>ser Fan P<br>let Corr. | ables:<br>ressure Ra<br>Flow W2Rs | tio (1<br>td kg/s (1 | 5)                                                                                       | = 2.40<br>= 203 | 6175<br>.548 |          |        |     |
| 1: I Iterat Out Inl          | FanDia                                        | ables:<br>ressure Ra<br>Flow W2Rs | tio (1<br>td kg/s (1 | 5)                                                                                       | = 2.4<br>= 203  |              |          |        |     |

```
Station kg/s
                             kPa
                                      kg/s
                                                 FN
                                                                 30.33 kN
                  288.15
                          101.325
       145.526
                  288.15
                          101.325
                                                              12.1160 g/(kN*s)
       145.526
                  288.15
                          100.312
                                                               0.36744 kg/s
                 305.52
                          120.374
                                     29.498
25
       34.033
                         119.170
                                     29.796
                                                 Core Eff =
                 305.52
        33.012
                 754.46 2307.138
                                                  Prop Eff =
                                                               0.0000
        28.928
                         2307.138
2237.924
                 1200.00 2237.924
1176.65 2237.924
        30.998
                                                  P16/P13 =
        30.998
                          236.304
       33.040
                          236.304
                                                  P45/P44
       33.040
                  732.67
                          231.578
                                                 P6/P5
       33.040
                 661.42
                          148.549
                                                              0.16549 m<sup>e</sup>
       34.061
                 659.01
                          148.549
       34.061
                 659.01 145.578
                                     35.824
                                                 P8/Pamb = 1.43674
      111.493
                 305.72 117.967
                                                 P18/Pamb =
                 754.46 2307.137
Efficiencies: isentr polytr RNI
                                                             0.93409
Outer LPC
               0.8768 0.8800 0.990 1.200
                                                 XM8
                                                              0.74558
               0.8871 0.8900 0.990 1.200
                                                 XM18
 Inner LPC
 HP Compressor 0.8700 0.9106 1.097 19.360
                                                 V18/V8,id=
                                      0.970
                                                 Loading =
Burner
               0.9995
 HP Turbine
               0.8800 0.8451 4.244 9.471
                                                 e444 th = 0.84513
LP Turbine
               0.8810 0.8747 0.759 1.559
HP Spool mech Eff 0.9900 Nom Spd 14000 rpm
LP Spool mech Eff 1.0000 Nom Spd 8000 rpm
                                                 WLc1/W25 = 0.03000
                                                 WHc1/W25 = 0.06000
____
            waro
                              Fuel
  0.0 0.00000
                   42.076
 Composed Values:
  2: Fan diameter
 Iteration Variables:
    Inlet Corr. Flow W2Rstd kg/s (10...300)
                                                    = 146.996
    Design Bypass Ratio (0...10)
 Iteration Targets:
                                                    = 30.33
    Net Thrust
                                                    = 0.98
    cp_val2
```

Fan Dia = 1.2 m

Fan Diameter = 0.98 m

#### **Parametric Analysis (Ground Condition)**





**BPR VS Net Thrust with TIT Contour** 

**TSFC VS Net Thrust with FHV Contour** 





**BPR**, TSFC vs Net thrust (Ground Condition)

BPR, TSFC vs Net thrust (h = 5 km)

## **Cruise Condition Analysis**

| Altitude                        | m     | 12000   |
|---------------------------------|-------|---------|
| Delta T from ISA                | K     | 10      |
| Relative Humidity [%]           |       | 0       |
| Mach Number                     |       | 0.8     |
|                                 |       |         |
| ntake Pressure Ratio            |       | 0.99    |
| No (0) or Average (1) Core dP/P |       | 1       |
| nner Fan Pressure Ratio         |       | 1.2     |
| Outer Fan Pressure Ratio        |       | 1.2     |
| Compr. Interduct Press. Ratio   |       | 0.99    |
| HP Compressor Pressure Ratio    |       | 19.36   |
| Bypass Duct Pressure Ratio      |       | 0.98    |
| Turb. Interd. Ref. Press. Ratio |       | 0.98    |
| Design Bypass Ratio             |       | 2.82973 |
| Burner Exit Temperature         | K     | 1200    |
| Burner Design Efficiency        |       | 0.9995  |
| Burner Partload Constant        |       | 1.6     |
| Fuel Heating Value              | MJ/kg | 42.0755 |
| Overboard Bleed                 | kg/s  | 0       |
| Power Offtake                   | kW    | 0       |
| HP Spool Mechanical Efficiency  |       | 0.99    |
| LP Spool Mechanical Efficiency  |       | 1       |
| Burner Pressure Ratio           |       | 0.97    |
| Turbine Exit Duct Press Ratio   |       | 0.98    |

|                                                                             | W                                                                        | T                                                                                                    | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WRstd                                   |                                        |                   |                                            |           |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|-------------------|--------------------------------------------|-----------|
| Station                                                                     | ka/s                                                                     | K                                                                                                    | kPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ka/s                                    | FN                                     | =                 | 6.30                                       | kN        |
| amb                                                                         |                                                                          | 226.65                                                                                               | 19.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 m                                    | BUREN                                  |                   | (NO. CO. CO. CO. CO. CO. CO. CO. CO. CO. C |           |
| 1                                                                           | 44 940                                                                   | 255 72                                                                                               | 29 474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | TEFC                                   |                   | 22 5167                                    | a//hnt    |
| 2                                                                           | 44.040                                                                   | 255.72                                                                                               | 20.170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 147 010                                 | TOPO                                   |                   | 0 14016                                    | g/ (AIV S |
| . 2                                                                         | 44.940                                                                   | 255.72                                                                                               | 29.179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 147.012                                 | WE                                     | -                 | 0.14816                                    | kg/s      |
| 13                                                                          | 33.205                                                                   | 271.34                                                                                               | 35.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93.244                                  | BPR                                    | =                 | 2.8297                                     |           |
| 21                                                                          | 11.734                                                                   | 271.16                                                                                               | 35.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32.941                                  | s NOx                                  | =                 | 0.2852                                     |           |
| 25                                                                          | 11.734                                                                   | 271.16                                                                                               | 34.665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33.273                                  | Core Eff                               | =                 | 0.4358                                     |           |
| 3                                                                           | 11.382                                                                   | 674.94                                                                                               | 671.108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.630                                   | Prop Eff                               | =                 | 0.7754                                     |           |
| 31                                                                          | 9.974                                                                    | 674.94                                                                                               | 671.108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | P3/P2                                  | =                 | 23.00                                      |           |
| 4                                                                           | 10.122                                                                   | 1200.00                                                                                              | 650.974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.212                                   | P2/P1                                  | =                 | 0.9900                                     |           |
| 41                                                                          | 10 709                                                                   | 1172 82                                                                                              | 650 974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 360                                   | P16/P13                                | =                 | 0 9800                                     |           |
| 43                                                                          | 10 709                                                                   | 780 08                                                                                               | 94 449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000                                   | D25/D21                                | =                 | 0.9900                                     |           |
| 4.4                                                                         | 10.709                                                                   | 700.00                                                                                               | 04.440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | F25/F21                                | 20                | 0.9900                                     |           |
| 44                                                                          | 11.413                                                                   | 773.74                                                                                               | 94.448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | P45/P44                                | -                 | 0.9800                                     |           |
| 45                                                                          | 11.413                                                                   | 773.74                                                                                               | 92.559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.454                                  | P6/P5                                  | =                 | 0.9800                                     |           |
| 49                                                                          | 11.413                                                                   | 718.07                                                                                               | 66.646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | A8                                     | =                 | 0.12245                                    | m²        |
| 5                                                                           | 11.765                                                                   | 712.31                                                                                               | 66.646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28.098                                  | A18                                    | =                 | 0.40641                                    | m²        |
| 8                                                                           | 11.765                                                                   | 712.31                                                                                               | 65.313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28.671                                  | P8/Pamb                                | =                 | 3.37878                                    |           |
| 18                                                                          | 33.205                                                                   | 271.34                                                                                               | 34.315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95.147                                  | P18/Pamb                               | =                 | 1.77516                                    |           |
| Bleed                                                                       | 0.117                                                                    | 674 94                                                                                               | 671.108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | WB1d/W25                               | =                 | 0.01000                                    |           |
|                                                                             |                                                                          |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | CDS                                    | =                 | 0.98000                                    |           |
| Inner I<br>HP Comp<br>Burner<br>HP Turk                                     | LPC<br>pressor                                                           | 0.8871<br>0.8700<br>0.9995<br>0.8800                                                                 | P kPa 19.330 29.474 29.179 35.015 34.665 671.108 650.974 650.974 650.974 650.974 666.646 66.646 65.313 34.315 671.108 20.8800 0.33: 0.8800 0.33: 0.8801 0.38510 0.8510 0.8510 0.8510 0.8510 0.8510 0.8510 0.8510 0.8510 0.8510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 1.200<br>8 19.360<br>0.970<br>9 6.892 | XM18<br>V18/V8,i<br>Loading<br>e444 th | =<br>d=<br>=<br>= | 0.94359<br>0.44063<br>100.00<br>0.84891    | 8         |
| LP Turk                                                                     | oine                                                                     | 0.0010                                                                                               | 0.0701 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 2.002                                 | FWA                                    |                   | 0.00                                       | V.M.      |
| HP Spool<br>LP Spool<br><br>hum [%]                                         | l mech E<br>l mech E<br>war<br>0.0000                                    | ff 0.9900<br>ff 1.0000<br><br>0 F1<br>0 42.0                                                         | Nom Spd 1<br>Nom Spd 1<br>HV Fuel<br>76 JP-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4000 rpm<br>8000 rpm                    | PWX<br>WLc1/W25<br>WHc1/W25            | =                 | 0.03000                                    | KW.       |
| HP Spool LP Spool hum [%] 0.0 Compose 1: A 2: Fa                            | l mech E<br>l mech E<br>war<br>0.0000<br>ed Value<br>ltitude<br>an_diame | ff 0.9900<br>ff 1.0000<br>0 Fi<br>0 42.0<br>s:<br>= 1                                                | Nom Spd 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4000 rpm<br>8000 rpm                    | WLc1/W25<br>WHc1/W25                   | = =               | 0.03000                                    | .w        |
| HP Spool LP Spool hum [%] 0.0  Compose 1: A 2: Fe Iterat: Inle Des: Iterat: | l mech E<br>l mech E<br>war<br>0.0000<br>ed Value<br>ltitude<br>an_diame | ff 0.9900<br>ff 1.0000<br>0 Fi<br>0 42.0<br>s:<br>= 1:<br>ter = :<br>ables:<br>Flow W2R:<br>ss Ratio | Nom Spd 1- | 4000 rpm<br>8000 rpm                    | WLc1/W25<br>WHc1/W25                   | .012              | 0.03000                                    |           |

**Replication of the given Cruise Conditions** 

```
WRstd
Station kg/s
                              kPa
                                                                     6.30 kN
                             19.330
        67.382
                             29.474
                                                                  21.7293 g/(kN*s)
                                                                  0.13689 kg/s
        67.382
                   255.72
                             29.179
13
21
25
        56.539
                   271.34
                             35.015
                                      158.768
                                                                  5.2145
        10.843
                   271.16
                             35.015
                                       30.437
                                                    s NOx
                                                                   0.2852
        10.843
                                       30.744
                                                    Core Eff =
       10.517
                  674.94
                            671.108
                                                    Prop Eff =
                                                                   0.8380
                                                    P3/P2
        9.216
                  674.94
                            671.108
                                                                    23.00
                 1200.00
                                                                   0.9900
         9.353
                            650.974
                                        2.968
                                                    P2/P1
        9.895
                                                                   0.9800
                 1172.82
                            650.974
                                                    P16/P13 =
        9.895
                  780.08
                                                    P25/P21 =
                                                                   0.9900
        10.546
                  773.74
                                                    P45/P44 =
                                                                   0.9800
       10.546
                  773.74
                                                    P6/P5 =
                                                                  0.9800
       10.546
                  682.90
                                                                 0.13744 m<sup>2</sup>
       10.871
                  678.05
                             53.466
                                       31.575
                                                                0.69200 m<sup>2</sup>
       10.871
                  678.05
                             52.396
                                       32.220
                                                                 2.71057
                                                    P8/Pamb =
                                                                 1.77516
       56.539
                  271.34
                           34.315
                                      162.008
                                                    P18/Pamb =
                          671.108
                                                    WB1d/W25 =
                                                                 0.98000
Efficiencies: isentr polytr
                                                                 0.97297
                0.8768
                        0.8800 0.332 1.200
                                                            =
                                                                 1.00000
 Outer LPC
                0.8871 0.8900 0.332 1.200
 Inner LPC
 HP Compressor 0.8700 0.9109 0.368 19.360
                                                    V18/V8,id=
                                                                 0.49225
                0.9995
                                                    Loading =
                                                                  100.00 %
 HP Turbine
                0.8800 0.8510 1.239 6.892
                                                    e444 th =
                                                                 0.84891
HP Spool mech Eff 0.9900 Nom Spd 14000 rpm
LP Spool mech Eff 1.0000 Nom Spd 8000 rpm
                                                    WLc1/W25 =
                                                                 0.03000
                                                    WHc1/W25 =
                                                                 0.06000
um [%]
            war0
                                Fuel
  0.0 0.00000
 Composed Values:
 1: Altitude
                     = 12000.000000
 2: Fan diameter
                    = 1.200000
 Iteration Variables:
    Inlet Corr. Flow W2Rstd kg/s (10...300)
                                                       = 220.427
   Design Bypass Ratio (0...10)
 Iteration Targets:
   Net Thrust
                                                       = 6.3
                                                       = 1.2
   cp_val2
```

```
WRstd
Station kg/s
                                                                    6.30 kN
                    K
                             kPa
                            19.330
                            29.474
        44.940
                                                                23.5167 g/(kN*s)
        44.940
                  255.72
                            29.179
                                                   WF
                                                                0.14816 kg/s
                  271.34
        33.205
                            35.015
                                                                 2.8297
                                       93.244
                                                   BPR
        11.734
                  271.16
                            35.015
                                       32.941
                                                   s NOx
                                                                 0.2852
       11.734
                  271.16
                            34.665
                                       33.273
                                                   Core Eff =
                                                                 0.4358
       11.382
                  674.94
                           671,108
                                                   Prop Eff =
                                                                 0.7754
        9.974
                  674.94
                           671.108
                                                                  23.00
        10.122
                 1200.00
                           650.974
                                                   P2/P1
                                                                 0.9900
       10.709
                 1172.82
                           650.974
                                                                 0.9800
                                                   P25/P21 =
                                                                 0.9900
       10.709
                  780.08
       11.413
                  773.74
                            94.448
                                                   P45/P44 =
                                                                 0.9800
       11.413
                  773.74
                            92.559
                                                                 0.9800
       11.413
                            66.646
       11.765
                  712.31
                                       28.098
                                                                0.40641 m2
       11.765
                  712.31
                            65.313
                                       28.671
                                                   P8/Pamb =
18
       33.205
                  271.34
                            34.315
                                      95.147
                                                   P18/Pamb = 1.77516
                                                   WB1d/W25 = 0.01000
                  674.94 671.108
                                                                0.98000
Efficiencies:
                isentr polytr
                                                                0.97297
                0.8768 0.8800 0.332 1.200
Outer LPC
                                                                1.00000
                0.8871 0.8900 0.332 1.200
Inner LPC
                                                   XM18 =
                                                                0.94359
 HP Compressor 0.8700 0.9109 0.368 19.360
                                                   V18/V8,id=
                                                                0.44063
                0.9995
                                       0.970
                                                   Loading =
Burner
                                                                 100.00
HP Turbine
                0.8800 0.8510 1.239 6.892
                                                   e444 th =
                0.8810 0.8764 0.285 1.389
 LP Turbine
                                                                   0.00 kW
HP Spool mech Eff 0.9900 Nom Spd 14000 rpm
LP Spool mech Eff 1.0000 Nom Spd 8000 rpm
                                                   WLc1/W25 = 0.03000
                                                   WHc1/W25 = 0.06000
                    FHV
42.076
            war0
  0.0 0.00000
 Composed Values:
                     = 12000.000000
 1: Altitude
 2: Fan diameter
 Iteration Variables:
    Inlet Corr. Flow W2Rstd kg/s (10...300)
    Design Bypass Ratio (0...10)
 Iteration Targets:
                                                      = 6.3
    Net Thrust
    cp val2
```

Fan Dia = 1.2 m

Fan Dia = 0.98 m

#### **Cruise Condition**





**Net Thrust VS Mach Number keeping TIT and OPR Constant**  BPR VS Net Thrust keeping TIT & OPR Constant

## **Geared Turbofan Engine**

| Altitude                        | m     | 0       |
|---------------------------------|-------|---------|
| Delta T from ISA                | K     | 0       |
| Relative Humidity [%]           |       | 0       |
| Mach Number                     |       | 0       |
|                                 |       |         |
| Intake Pressure Ratio           |       | 0.99    |
| No (0) or Average (1) Core dP/P |       | 1       |
| Inner Fan Pressure Ratio        | 1     | 1.34    |
| Outer Fan Pressure Ratio        |       | 5.47329 |
| Core Inlet Duct Press. Ratio    |       | 1       |
| IP Compressor Pressure Ratio    |       | 4       |
| Compr. Interduct Press. Ratio   |       | 0.98    |
| HP Compressor Pressure Ratio    | 1     | 4.42    |
| Bypass Duct Pressure Ratio      |       | 0.975   |
| Turb. Interd. Ref. Press. Ratio |       | 0.98    |
| Design Bypass Ratio             |       | 5       |
| Burner Exit Temperature         | K     | 1200    |
| Burner Design Efficiency        |       | 0.9995  |
| Burner Partload Constant        |       | 1.6     |
| Fuel Heating Value              | MJ/kg | 42.0755 |
| Overboard Bleed                 | kg/s  | 0       |
| Power Offtake                   | kW    | 0       |
| HP Spool Mechanical Efficiency  |       | 0.98    |
| Gear Ratio                      |       | 1       |
| LP Spool Mechanical Efficiency  |       | 1       |
| Burner Pressure Ratio           |       | 0.95    |
| Turbine Exit Duct Press Ratio   |       | 0.99    |

#### **Ground Condition**

### **Ground Condition Analysis**

|                                                                        | W                                                                            | T                                                      | P         | WRstd<br>kg/s<br>135.755<br>26.991<br>17.710<br>17.710<br>5.551 |                         |              |          |         |
|------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------|-----------|-----------------------------------------------------------------|-------------------------|--------------|----------|---------|
| Station                                                                | ka/s                                                                         | K                                                      | kPa       | kg/s                                                            | FN                      | =            | 30.33    | kN      |
| amb                                                                    |                                                                              | 288.15                                                 | 101.325   |                                                                 | TSFC                    | =            | 7.5514   | g/(kN*s |
| 2                                                                      | 124 209                                                                      | 299 15                                                 | 100 312   | 125 755                                                         | WE                      | =            | 0.2290   | ka/e    |
| 13                                                                     | 111 000                                                                      | 401 25                                                 | 540 025   | 26 001                                                          | a MOV                   | _            | 0.2233   | Ag, 5   |
| 21                                                                     | 22 400                                                                       | 216.00                                                 | 124 410   | 17 710                                                          | S NOA                   |              | 0.0441   |         |
| 21                                                                     | 22.400                                                                       | 316.99                                                 | 134.410   | 17.710                                                          | a = 55                  | -            | 0 2002   |         |
| 22                                                                     | 22.400                                                                       | 316.99                                                 | 134.418   | 17.710                                                          | Core EII                | _            | 0.2902   |         |
| 24                                                                     | 22.400                                                                       | 498.32                                                 | 537.671   | 5.551                                                           | Prop Eff                | -            | 0.0000   |         |
| 25                                                                     | 22.400                                                                       | 498.32                                                 | 526.918   | 5.664                                                           | BPR                     | =            | 5.0000   |         |
| 3                                                                      | 21.952                                                                       | 789.10                                                 | 2328.976  | 17.710<br>17.710<br>5.551<br>5.664<br>1.580<br>1.841<br>1.929   | P2/P1                   | =            | 0.9900   |         |
| 31                                                                     | 19.488                                                                       | 789.10                                                 | 2328.976  |                                                                 | P3/P2                   | =            | 23.22    |         |
| 4                                                                      | 19.717                                                                       | 1200.00                                                | 2212.527  | 1.841                                                           | P5/P2                   | =            | 0.0024   |         |
| 41                                                                     | 20.837                                                                       | 1178.82                                                | 2212.527  | 1,929                                                           |                         |              |          |         |
| 43                                                                     | 20 837                                                                       | 889 71                                                 | 613 103   |                                                                 | P16/P6                  | =22          | 80 45705 |         |
| 44                                                                     | 22 181                                                                       | 883 71                                                 | 613 103   |                                                                 | D16/D2                  | =            | 5 33645  |         |
| 45                                                                     | 22 101                                                                       | 000.71                                                 | 600 941   | 6 546                                                           | D6/D5                   | _            | 0.00010  |         |
| 49                                                                     | 22.101                                                                       | 200.71                                                 | 0 227     | 6.546<br>9803.362<br>9902.386<br>27.683                         | 20/20                   | =            | 0.93000  | 2       |
| 49                                                                     | 22.181                                                                       | 208.15                                                 | 0.237     | 0000 000                                                        | AO .                    | _            | 0.07396  | m-      |
| 5                                                                      | 22.629                                                                       | 296.58                                                 | 0.237     | 9803.362                                                        | A18                     | =            | 0.11782  | m=      |
| 8                                                                      | 22.629                                                                       | 296.58                                                 | 0.235     | 9902.386                                                        | XM8                     | =            | -2.18678 |         |
| 18                                                                     | 111.998                                                                      | 491.35                                                 | 535.309   | 27.683                                                          | XM18                    | =            | 1.00000  |         |
| Bleed                                                                  |                                                                              |                                                        |           |                                                                 |                         |              |          |         |
|                                                                        |                                                                              |                                                        |           |                                                                 | CD8                     | =            | 0.78046  |         |
| Efficie                                                                | ncv                                                                          | isentr p                                               | olvtr     | RNI P/P                                                         | CD18                    | =            | 0.97600  |         |
| Outer                                                                  | T.PC                                                                         | 0.8780 0                                               | 9029 0.   | 990 5.473                                                       | PWX                     | =            | 0.0      | kW      |
| Inner                                                                  | T.PC                                                                         | 0.8700 0                                               | .8753 0.  | RNI P/P<br>990 5.473<br>990 1.340<br>185 4.000<br>707 4.420     | V18/V8.1                | -1=          | -0.37933 |         |
| ID Com                                                                 | present                                                                      | 0.8400 0                                               | 9673 1    | 195 4 000                                                       | WRID/W22                | =            | 0.00000  |         |
| UD Com                                                                 | bressor                                                                      | 0.0400 0                                               | 0761 2    | 707 4 420                                                       | Wanni /W2               | ==           | 0.00000  |         |
| ne com                                                                 | bressor                                                                      | 0.0000                                                 | .0/61 2.  | 0.050                                                           | WIECI/WZ                | J-           | 100 00   |         |
| Burner                                                                 | Contract of                                                                  | 0.9995                                                 |           | 0.950                                                           | Loading                 | -            | 100.00   | ত       |
| HP Tur                                                                 | bine                                                                         | 0.9050 0                                               | .8900 4.  | 187 3.609                                                       | e444 th                 | =            | 0.86641  |         |
| LP Tur                                                                 | bine                                                                         | 0.9000 3                                               | .0668 1.  | 0.950<br>187 3.609<br>5822534.033                               | WBLD/W2                 | 5 =          | 0.00000  | D       |
|                                                                        |                                                                              |                                                        |           |                                                                 |                         |              |          |         |
|                                                                        |                                                                              |                                                        |           | 14000 rpm                                                       |                         |              |          |         |
| LP Spoo                                                                | 1 mech E                                                                     | ff 1.0000                                              | Nom Spd   | 8000 rpm                                                        | WHcl/W25                | =            | 0.06000  |         |
|                                                                        |                                                                              |                                                        |           |                                                                 |                         |              |          |         |
| P22/P21                                                                | =1.0000                                                                      | P25/P24=0.                                             | 9800 P45/ | P44=0.9800                                                      | P6/P5                   | =            | 0.9900   |         |
|                                                                        |                                                                              |                                                        |           |                                                                 | P16/P13                 | =            | 0.9750   |         |
|                                                                        |                                                                              |                                                        |           |                                                                 |                         |              |          |         |
|                                                                        |                                                                              | 0 FH                                                   | V Fue     | 1                                                               |                         |              |          |         |
| hum [%]                                                                | 1.19 7                                                                       |                                                        |           |                                                                 |                         |              |          |         |
| hum [%]                                                                | 0 0000                                                                       | 0 42 07                                                | 6 .TD=1   | n n                                                             |                         |              |          |         |
| hum [%]                                                                | 0.0000                                                                       | 0 42.07                                                | 6 JP-1    | ō                                                               |                         |              |          |         |
| 0.0                                                                    | 0.0000                                                                       | 0 42.07                                                | 6 JP-1    | ō                                                               |                         |              |          |         |
| 0.0                                                                    | 0.0000<br>ed Value                                                           | 0 42.07<br>s:                                          | 6 JP-1    | ō                                                               |                         |              |          |         |
| Compos<br>1: A                                                         | 0.0000<br>ed Value<br>ltitude                                                | 0 42.07<br>s:<br>= 0.000                               | 6 JP-1    | ō                                                               |                         |              |          |         |
| Compos<br>1: A                                                         | 0.0000<br>ed Value<br>ltitude                                                | 0 42.07<br>s:                                          | 6 JP-1    | ō                                                               |                         |              |          |         |
| 0.0<br>Compos<br>1: A<br>2: F                                          | 0.0000<br>ed Value<br>ltitude<br>anDia                                       | 0 42.07<br>s:<br>= 0.000<br>= 0.980                    | 6 JP-1    | ō                                                               |                         |              |          |         |
| 0.0<br>Compos<br>1: A<br>2: F                                          | 0.0000<br>ed Value<br>ltitude<br>anDia                                       | 0 42.07<br>s:<br>= 0.000<br>= 0.980                    | 6 JP-1    | 0                                                               |                         |              |          |         |
| 0.0<br>Compos<br>1: A<br>2: F                                          | 0.0000<br>ed Value<br>ltitude<br>anDia                                       | 0 42.07<br>s:<br>= 0.000<br>= 0.980                    | 6 JP-1    | 0                                                               | = 135                   | .755         | ı        |         |
| 0.0<br>Compos<br>1: A<br>2: F                                          | 0.0000<br>ed Value<br>ltitude<br>anDia                                       | 0 42.07<br>s:<br>= 0.000<br>= 0.980                    | 6 JP-1    | 50500)<br>.10)                                                  | = 135<br>= 5.4          | .755<br>7329 | ļ        |         |
| Compos<br>1: A<br>2: F<br>Iterat<br>Inl                                | 0.0000<br>ed Value<br>ltitude<br>anDia<br>ion Vari<br>et Corr.<br>er Fan P   | 0 42.07 s: = 0.000 = 0.980 ables: Flow W2Rs ressure Ra | 6 JP-1    | 0                                                               | = 135<br>= 5.4          | .755<br>7329 | ļ        |         |
| 0.0<br>Compos<br>1: A<br>2: F<br>Iterat<br>Inl<br>Out                  | 0.0000<br>ed Value:<br>ltitude<br>anDia<br>ion Varia<br>et Corr.<br>er Fan P | 0 42.07 s: = 0.000 = 0.980 ables: Flow W2Rs ressure Ra | 6 JP-1    | 0                                                               |                         |              | į.       |         |
| 0.0<br>Compos<br>1: A<br>2: F<br>Iterat<br>Inl<br>Out<br>Iterat<br>Net | 0.0000<br>ed Value<br>ltitude<br>anDia<br>ion Vari<br>et Corr.<br>er Fan P   | 0 42.07 s: = 0.000 = 0.980 ables: Flow W2Rs ressure Ra | 6 JP-1    | 0                                                               | = 135<br>= 5.4<br>= 30. | 33           | ļ        |         |

```
Fan Dia = 0.98 \text{ m}
```

```
Station kg/s
                           kPa
                 288.15
                         101.325
                                                            0.3434 kg/s
                288.15
                         100.312
      167.927
                431.72
                         359.612
                                              s NOX
                                                            0.8441
       33.585
                316.99
                         134.418
       33.585
                316.99
                         134.418
                                   26.554
                                               Core Eff =
       33.585
                498.32
                        537.671
                                               Prop Eff =
                                                            0.0000
       33.585
                498.32
                        526.918
                                                            5.0000
       32.914
                789.10
                       2328.976
                                                            0.9900
       29.219
                789.10
                                                           23.22
       29.563
                1200.00
                        2212.527
       31.242
                1178.82
       31.242
                889.71
                                               P16/P6 =1493.67632
                                               P16/P2
       33.257
                883.71
       33.257
                883.71
                        600.841
                                              P6/P5
       33.257
                288.15
                                                          0.11089 mª
       33.929
                296.58
                        0.237 14698.919
                                                    = 0.25252 m<sup>e</sup>
      33.929
                296.58
                         0.235 14847.393
      167.927
                431.72 350.622 59.401
                                              WBld/W2 =
Bleed
      0.000
                789.10 2328.974
                                                          0.00000
                                                          0.78046
Efficiency
Outer LPC
              0.8780 0.8975 0.990 3.585
                                                             0.0 kW
Inner LPC
              0.8700 0.8753 0.990 1.340
                                              V18/V8,id= -0.31564
IP Compressor 0.8400 0.8673 1.185 4.000
                                               WBLD/W22 = 0.00000
HP Compressor 0.8500 0.8761 2.707 4.420
                                               Wreci/W25= 0.00000
Burner
                                               Loading =
                                                          100.00 %
              0.9050 0.8900 4.187 3.609
HP Turbine
                                              e444 th = 0.86641
                                               WBLD/W25 = 0.00000
HP Spool mech Eff 0.9800 Nom Spd 14000 rpm
                                              WHNGV/W25= 0.05000
LP Spool mech Eff 1.0000 Nom Spd 8000 rpm
                                              WHc1/W25 = 0.06000
P22/P21=1,0000 P25/P24=0.9800 P45/P44=0.9800
                                              P6/P5 =
                                                           0.9900
                                              P16/P13 =
         war0
                            Fuel
  0.0 0.00000 42.076
                           JP-10
 Composed Values:
     Altitude
 2: FanDia
Iteration Variables:
   Inlet Corr. Flow W2Rstd kg/s (50...500)
                                                 = 203.548
   Outer Fan Pressure Ratio (1...10)
Iteration Targets:
                                                 = 30.33
   Net Thrust
    cp val2
                                                 = 1.2
```

Fan Dia = 1.2 m

### **Cruise Condition Analysis**

```
Station kg/s
                226.65
                        19.330
                                                        17.4792 g/(kN*s)
                        29.179
                                                         0.1101 kg/s
      51.858
               523.35
                       290.955
      10.372
                281.39
                        39.100
                                 26.560
               281.39
                       39.100
                                 26.560
                                            Core Eff =
      10.372
      10.372
               443.13 156.399
                                  8.333
                                            Prop Eff =
                                                         0.8276
               443.13 153.271
                                  8.503
      10.372
                                                         5.0000
               772.68 919.629
                                                         0.9900
      10.164
31
               772.68 919.629
       9.133
              1200.00
                       873.647
              1178.03
                       873.647
43
               851.94
                                            P16/P6 =3143.19372
               847.24 200.326
                                            P16/P2
      10.274
               847.24 196.319
                                         P6/P5 = 0.99000
      10.274
               255.72
                        0.091
                                            A8
                                                    = 0.16318 m<sup>2</sup>
                                                  = 0.10629 m<sup>2</sup>
      10.482
                264.21
                        0.091 11147.031
                                            A18
                                            XM8 = -2.09448
XM18 = 1.00000
      10.482
                264.21
                         0.090 11259.627
               523.35 283.681 24.962
       51.858
                                            WBld/W2 = 0.00000
               772.68 919.629
      0.000
                                            CD8 = 0.78093
              isentr polytr RNI P/P
                                            CD18 = 0.97600
Efficiency
              0.8780 0.9100 0.332 9.971
                                            PWX = 0.0 kW
Outer LPC
Inner LPC
           0.8700 0.8753 0.332 1.340
                                            V18/V8,id= -0.55221
IP Compressor 0.8400 0.8674 0.397 4.000
                                            WBLD/W22 = 0.00000
HP Compressor 0.8500 0.8808 0.906 6.000
                                            Wreci/W25= 0.00000
              0.9995
                                 0.950
                                            Loading = 100.00 %
Burner
          0.9072 0.8900 1.654 4.361
HP Turbine
                                            e444 th = 0.86971
LP Turbine 0.9000 3.1112 0.5432153.470
                                           WBLD/W25 = 0.00000
                                          WHNGV/W25= 0.05000
HP Spool mech Eff 0.9800 Nom Spd 14000 rpm
LP Spool mech Eff 1.0000 Nom Spd 8000 rpm
                                         Whc1/W25 = 0.06000
                                            P16/P13 = 0.9750
  0.0 0.00000
                42.076 JP-10
 Composed Values:
     Altitude = 12000.00
Iteration Variables:
   Inlet Corr. Flow W2Rstd kg/s (50...500)
                                              = 203.571
   Outer Fan Pressure Ratio (1...10)
Iteration Targets:
                                               = 6.3
   Net Thrust
   cp val2
```

Fan Dia = 1.2 m

## Comparison

• Fan Diameter = 0.98 m

| TSFC              | RR AE3007A | Geared Turbofan |
|-------------------|------------|-----------------|
| Ground (h = 0 km) | 12.1160    | 7.5514          |
| Cruise (h = 5 km) | 23.5167    | -               |

• Fan Diameter = 1.2 m

| TSFC               | RR AE3007A | Geared Turbofan |
|--------------------|------------|-----------------|
| Ground (h = 0 km)  | 11.9756    | 11.3237         |
| Cruise ( h = 5 km) | 21.7293    | 17.4792         |

#### **Conclusion**

As the TSFC is lower for the "Geared Turbofan Engine" as compare to RR AE30007A engine, the "Geared Turbofan Engine" is better in terms of fuel economy.