Differentiable Manifolds and the Hairy Ball Theorem

Jonathan Lau

March 6, 2023

1 Manifolds and Tangent Spaces

Definition 1.1. The upper half space is

$$\mathcal{H}^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_n \ge 0\}.$$

Its boundary is $\partial \mathcal{H}^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_n = 0\}$, and its interior is $\mathcal{H}^n \setminus \partial \mathcal{H}^n$.

Definition 1.2 (Smooth maps). Let S be a subset of \mathbb{R}^n . A map $f: S \to \mathbb{R}^m$ is smooth at p if there exists a neighborhood U of p and a smooth function $f': U \to \mathbb{R}^m$ such that f' = f on $U \cap S$. If f is smooth at every $p \in S$, then f is smooth on S. In addition, if F is bijective and F^{-1} is smooth, then F is called a diffeomorphism.

Many properties of smooth maps on open sets also hold for smooth maps on arbitrary subsets. We will not prove them.

Definition 1.3. Let M be a Hausdorff, second countable topological space. A chart on M is a pair (U,ϕ) where U is open in M and $\phi:U\to\mathcal{H}^n$ is a homeomorphism onto its image. Two charts $(U,\phi),(V,\psi)\in\mathcal{A}$ are compatible if the functions $\psi\circ\phi^{-1}$ and $\phi\circ\psi^{-1}$ are smooth on $\phi(U\cap V)$ and $\psi(U\cap V)$ respectively. An atlas \mathcal{A} on M is a collection of pairwise compatible charts that cover M.

Theorem 1.4. Each atlas is contained in a unique maximal atlas. That is, for each atlas \mathcal{A} on M, there exists a unique atlas \mathcal{U} on M such that if $\mathcal{U} \subset \mathcal{U}'$, then $\mathcal{U}' = \mathcal{U}$.

Proof. Let \mathcal{A} be an atlas on M. Let \mathcal{U} be the set of charts that are compatible with every chart in \mathcal{A} . Let $(U, \phi), (V, \psi) \in \mathcal{U}$, and let $p \in U \cap V$. There exists $(W, \sigma) \in \mathcal{A}$ such that $p \in W$. So, $\psi \circ \sigma^{-1}$ and $\sigma \circ \phi^{-1}$ are smooth at $\sigma(p)$ and $\phi(p)$ respectively. Therefore,

$$\psi \circ \phi^{-1} = (\psi \circ \sigma^{-1}) \circ (\sigma \circ \phi^{-1})$$

is smooth at $\phi(p)$. As p was arbitrary, $\psi \circ \phi^{-1}$ is smooth on $\phi(U \cap V)$. Similarly, $\phi \circ \psi^{-1}$ is smooth on $\psi(U \cap V)$, so $(U, \phi), (V, \psi)$ are compatible, and \mathcal{U} is indeed an atlas.

If $\mathcal{U} \subset \mathcal{U}'$, then every chart in \mathcal{U}' is compatible with every chart in \mathcal{U} , in particular, with every chart in \mathcal{A} . By construction of \mathcal{U} , these charts are in \mathcal{U} , so $\mathcal{U}' \subset \mathcal{U}$, and \mathcal{U} is maximal.

Suppose \mathcal{V} is a maximal atlas containing \mathcal{A} . Then, every chart in \mathcal{V} is compatible with \mathcal{A} , so $\mathcal{V} \subset \mathcal{U}$. Similarly, $\mathcal{U} \subset \mathcal{V}$. This shows uniqueness, and concludes the proof.

Definition 1.5. A n dimensional manifold M is a Hausdorff, second countable topological space together with a maximal atlas.

By Theorem 1.4, to construct a manifold, we only need to specify a topological space and an atlas. We write M instead of (M, \mathcal{A}) for manifolds. From now on, when we say a chart on M, we mean a chart in \mathcal{A} .

Theorem 1.6 (Smooth invariance of domain). Let $f: U \to S$ be a diffeomorphism, where U is open in \mathbb{R}^n and $S \subset \mathbb{R}^n$ is an arbitrary subset. Then S is open in \mathbb{R}^n .

Proof. Let $p \in U$. Since f^{-1} is smooth, there exists a neighborhoog V of f(p) and a smooth function $g: V \to \mathbb{R}^n$ such that $g|_{V \cap S} = f^{-1}$. Then, $g \circ f$ is the identity on $f^{-1}(V)$, which is open. So,

$$(Jq(f(p)))(Jf(p)) = I$$

, and $\det(Jf(p)) \neq 0$. By the inverse function theorem, there are neighborhoods $U_p \subset U, V_{f(p)} \subset V$ such that $f: U_p \to V_{f(p)}$ is a diffeomorphism. We also have

$$V_{f(p)} = f(U_p) \subset f(U) = S.$$

For each $p \in U$, we can find an open set $V_{f(p)}\mathbb{R}^n$ such that $V_{f(p)} \subset S$. So, S is open.

Corollary 1.7. Let U and V be open subsets of \mathcal{H}^n , and let $f: U \to V$ be a diffeomorphism. Then, f maps interior points to interior points and boundary points to boundary points.

Proof. Suppose $p \subset U$ is an interior point. Then, it has an neighborhood U_p open in \mathbb{R}^n . By the above theorem, f(p) lies in the open set $f(U_p)$, so f(p) is an interior point. Similarly, if f(p) is an interior point, $f^{-1}(f(p)) = p$ is an interior point.

Definition 1.8. Let M be a manifold. A point $p \in M$ is a boundary point if for some chart (U, ϕ) , $\phi(p) \in \partial \mathcal{H}^n$. The set of all boundary points is the boundary ∂M .

Suppose $(U, \phi), (V, \psi)$ are charts containing p, with $\phi(p) \in \partial \mathcal{H}^n$. By Corollary 1.7, $\psi(p) = \psi \circ \phi^{-1}(\phi(p))$ is also a boundary point. Thus, $\psi(p)$ is a boundary point for all charts (V, ψ) . If the boundary of a manifold is empty, then for any chart $(U, \phi), \phi(U)$ is open in \mathbb{R}^n .

Proposition 1.9. Let M be a manifold with non empty boundary. Then, ∂M is a manifold with empty boundary.

Proof. Let \mathcal{A} be an atlas on M. For each $(U, \phi) \in \mathcal{A}$, we construct a chart $(U \cap \partial M, \phi|_{\partial M})$ on ∂M . These charts are compatible, and map into \mathbb{R}^{n-1} , so ∂M is a manifold of dimension n-1.

Definition 1.10 (Smooth Functions). Let N, M be manifolds. A continuous function $F: N \to M$ is smooth if for all charts (U, ϕ) on N and (V, ψ) on M, $\psi \circ F \circ \phi^{-1}$ is smooth. If F is bijective and F^{-1} is also smooth, then F is a diffeomorphism.

Unless stated otherwise, all functions are smooth.

Definition 1.11 (Partial derivatives). Let $f: M \to \mathbb{R}$ and (U, x_1, \dots, x_n) be a chart. The partial derivative of f with respect to x_i at p is the derivative with respect to standard coordinates

$$\frac{\partial}{\partial x_i}\Big|_p f = \frac{\partial}{\partial r_i}\Big|_{\phi(p)} (f \circ \phi^{-1}).$$

Definition 1.12 (Germs of functions). Let M be a manifold, and $p \in M$. Let S be the set of all smooth functions defined on a neighborhood of p. For $f, g \in S$, we define an equivalence relation by $f \sim g$ if there is a neighborhood of p on which f = g. These equivalence classes are the germs of M at p, denoted $C_p^{\infty}(M)$.

Definition 1.13. Let M be a manifold, and $p \in M$. A derivation at p is a linear map $D: C_p^{\infty}(M) \to \mathbb{R}$ such that D(fg) = D(f)g(p) + f(p)D(g).

Definition 1.14. A tangent vector at p is a derivation at p. The tangent space of M at p is the set of all derivations, denoted T_pM .

 $\frac{\partial}{\partial x_1}|_p, \dots, \frac{\partial}{\partial x_n}|_p$ are examples of tangent vectors.

Definition 1.15. Let $F:N\to M$ be a smooth function. We define the differential of F to be a function

$$F_*: T_pN \to T_{F(p)}M$$

defined by

$$F_*(X_p)(f) = X_p(f \circ F)$$
 for $f \in C^{\infty}_{F(p)}(M)$.

It is straightforward to check that T_pM is a vector space, and that F_* is a linear map.

Theorem 1.16 (Chain rule). Let $F: N \to M, G: M \to P$, and $p \in N$. Then, $(G \circ F)_* = G_* \circ F_*$.

Proof. Let $X_p \in T_pN$ and f be a smooth function in a neighborhood of G(F(p)). Then

$$(G \circ F)_*(X_p)f = X_p(f \circ G \circ F) = (F_*X_p)(f \circ G) = (G_* \circ F_*(X_p))f.$$

Theorem 1.17. Let (U, x_1, \ldots, x_n) be a chart. Then,

$$\left. \frac{\partial}{\partial x_1} \right|_p, \dots, \left. \frac{\partial}{\partial x_n} \right|_p$$

is a basis for T_pM .

Proof. By the chain rule, id = $(\phi^{-1} \circ \phi)_* = \phi_*^{-1} \circ \phi_*$, so ϕ_* is an isomorphism. We see that

$$\phi_* \left(\frac{\partial}{\partial x_i} \bigg|_p \right) f = \frac{\partial}{\partial x_i} \bigg|_p (f \circ \phi) = \frac{\partial}{\partial r_i} \bigg|_{\phi(p)} (f \circ \phi \circ \phi^{-1}) = \frac{\partial}{\partial r_i} \bigg|_{\phi(p)} f.$$

It remains to show that $\frac{\partial}{\partial r_i}|_{\phi(p)}$ is a basis of $T_{\phi(p)}\mathbb{R}^n$. For simplification, we replace $\phi(p)$ by p.

Suppose $\sum_{i=1}^{n} a_i \frac{\partial}{\partial r_i}|_p = 0$. Applying to the coordinate functions r_i , we see that $a_i = 0$.

Next, we show that they span the space. Let D be a derivation, and f a smooth function. We technically require f to be a germ, but the argument still holds. By Taylor's theorem,

$$f(x) = f(p) + \sum_{i=1}^{n} (x_i - p_i)g_i(x)$$
 $g(p) = \frac{\partial f}{\partial x_i}(p).$

Using the Leibniz rule and linearity,

$$Df(x) = \sum_{i=1}^{n} Dx_i g_i(p) = \sum_{i=1}^{n} Dx_i \frac{\partial}{\partial r_i} \Big|_{p} f.$$

We have cancelled the terms Df(p) and Dp_i since

$$D(1) = D(1 \cdot 1) = 1D(1) + D(1)1 = 2D(1),$$

so D(1) = 0 and D(c) = 0 by linearity. Thus,

$$Df = \sum_{i=1}^{n} Dx_i \frac{\partial}{\partial r_i} \bigg|_{p}.$$

Definition 1.18. A k-form is a map that sends $p \in M$ to $\omega_p \in \Lambda^k T_p M$.

We define $(dx_1)_p, \ldots, (dx_n)_p$ to be the dual basis of $\frac{\partial}{\partial x_1}|_p, \ldots, \frac{\partial}{\partial x_n}|_p$. By a result in multilinear algebra, $\{(dx_{i_1})_p \wedge \cdots \wedge (dx_{i_k})_p \mid 1 \leq i_1 < \cdots < i_n \leq n\}$ is a basis for $\Lambda^k T_p M$. If we fix a chart (U, x_1, \ldots, x_n) , then we can write $\omega = \sum a_I dx_I$, where a_I are real valued functions on U.

Definition 1.19. Let ω be a k-form. We say that ω is smooth if for every chart (U, x_1, \ldots, x_n) , the coefficients a_I in $\omega = \sum a_I dx_I$ are smooth. The set of smooth k-forms is denoted by $\Omega^k(M)$. The graded algebra $\bigoplus \Omega^k(M)$ is denoted $\Omega^*(M)$.

Definition 1.20. A vector field X on M is a function that assigns to each $p \in M$ a tangent vector $X_p \in T_pM$. A vector field is smooth if for every chart (U, x_1, \ldots, x_n) , the coefficients a_i in $X = \sum_{i=1}^n a_i \frac{\partial}{\partial x_i}|_p$ are smooth. Given a 1-form ω , we define $\omega(X): M \to \mathbb{R}, p \mapsto \omega_p(X_p)$.

Definition 1.21. An exterior derivative on M is an \mathbb{R} -linear map $\Omega^*(M) \to \Omega^*(M)$ such that

- 1. $D(\omega \cdot \tau) = (D\omega) \cdot \tau + (-1)^k \omega \cdot D\tau$ for $\omega \in \Omega^k(M), \tau \in \Omega^\ell(M)$,
- 2. $D\omega \in \Omega^{k+1}(M)$ for $\omega \in \Omega^k(M)$,
- 3. $D \circ D = 0$,
- 4. if $f: M \to \mathbb{R}$ is smooth and X is a smooth vector field, then (Df)X = Xf.

Theorem 1.22. Let (U, x_1, \ldots, x_n) be a chart containing p. We define an operator $d_U : \Omega^*(U) \to \Omega^*(U)$ by

$$d_U f = \sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i, \ d_U \omega = \sum_I d_U f \wedge dx_I, \text{ where } \omega = \sum_I f_I dx_I.$$

Next, we define an operator $d: \Omega^*(M) \to \Omega^*(M)$ given by $(d\omega)_p = (d_U\omega)_p$ for some chart (U,ϕ) containing p. Then, d is well defined, and it is the unique exterior derivative on M.

Proof. See [Tu, Theorem 19.4, p.214].

Definition 1.23 (Pullback). Let $\omega_p \in \Lambda^k T_p M$ and $F: N \to M$. The pullback of ω_p by F is $F^*(\omega_p) \in \Lambda^k T_p N$, defined as

$$F^*(\omega_p)(v_1,\ldots,v_k) = \omega_p(F_*(v_1),\ldots,F_*(v_k)).$$

The pullback of a differential form ω is defined as $(F^*\omega)_p = F^*(\omega_p)$.

Proposition 1.24. $F^*d\omega = dF^*\omega$

Proposition 1.25. If $\omega \in \Omega^k(M)$, then $F^*\omega \in \Omega^k(N)$.

2 Integration of Differential *n*-Forms

From now on, we assume that for manifolds M and charts (U, ϕ) , M and U are path connected.

Let ω , τ be non-vanishing differential n-forms, and (U,ϕ) be a chart. That is, ω_p and τ_p are not the zero maps for all $p \in M$. Then, $\omega = \sum_{i=1}^n f dx_1 \wedge \cdots \wedge dx_n$ and $\tau = \sum_{i=1}^n g dx_1 \wedge \cdots \wedge dx_n$ for smooth functions f,g. Since ω,τ are non vanishing f,g are non vanishing. By path connectedness and the intermediate value theorem, we see that f and g are either positive or negative. Furthermore, $\omega = f/g\tau$ on U. This holds for all charts, so $\omega = f\tau$ for some positive or negative f.

Definition 2.1. Let $\omega \sim \tau$ if $\omega = f\tau$ for some positive f, where ω, τ are non vanishing differential n-forms. This is an equivalence relation, and the equivalence classes are called orientations. If a manifold has an orientation, it is orientable. A manifold together with an orientation is an oriented manifold.

Definition 2.2. An oriented atlas is an atlas \mathcal{A} such that for all $(U, \phi), (V, \psi) \in \mathcal{A}$, $\det(J(\psi \circ \phi^{-1})) > 0$.

Theorem 2.3.

Orientations \iff Oriented atlas

$$\omega \iff \omega_n(e_1,\ldots,e_n) > 0,$$

where e_1, \ldots, e_n is the basis induced by (U, ϕ) .

Definition 2.4. Let $f: S \to \mathbb{R}$ for some topological space S. The support of f, supp(f), is the closure of the set $\{p \in S \mid f(p) \neq 0\}$. Let $\omega \in \Omega^k(M)$. The support of ω is the closure of the set $\{p \in M \mid \omega_p \neq 0\}$.

Definition 2.5 (Integration on a \mathbb{R}^n). Let ω be a differential n-form with compact support on (U, ϕ) , where $U \subset \mathbb{R}^n$. Then $\omega = f(x)dx_1 \wedge \cdots \wedge dx_n$ for some smooth f. The integral of ω over U is $\int_U \omega = \int_U f$.

Definition 2.6 (Integration on a chart). Let ω be a differential *n*-form with compact support on (U, ϕ) . The integral of ω over U is $\int_U \omega = \int_{\phi(U)} (\phi^{-1})^* \omega$.

We show that the integral does not depend on ϕ . Let ϕ, ψ be two coordinate functions on U. By the change of variables formula, $\int_{\phi(U)} (\phi^{-1})^* \omega = \int_{\psi(U)}$

Definition 2.7. A collection $\{A_{\alpha}\}$ of subsets of a topological space S is said to be locally finite if every point q in S has a neighborhood that meets only finitely many of the sets $\{A_{\alpha}\}$.

Definition 2.8 (Partition of Unity). A partition of Unity on a manifold M is a collection of nonnegative smooth functions $\{\rho_{\alpha}: M \to \mathbb{R}\}_{\alpha \in A}$ such that

- (i) the collection of supports, $\{\operatorname{supp} \rho_{\alpha}\}_{{\alpha}\in A}$, is locally finite,
- (ii) $\sum_{\alpha \in A} \rho_{\alpha} = 1$.

Definition 2.9. Let $\{U_{\alpha}\}_{{\alpha}\in A}$ be a collection of subsets on M. A partition of unity $\{\rho_{\alpha}\}$ is subordinate to $\{U_{\alpha}\}$ if supp $\rho_{\alpha}\in U_{\alpha}$.

Theorem 2.10. Let $\{U_{\alpha}\}$ be an open cover of M. Then, there exists a partition of unity subordinate to $\{U_{\alpha}\}$.

Proof. See [Tu, Theorem 13.7, p.347]. \Box

Proposition 2.11. Let $\{\rho_{\alpha}\}_{{\alpha}\in A}$ be a collection of functions on M, and ω be a differential k-form with compact support. If $\{\text{supp }\rho_{\alpha}\}_{{\alpha}\in A}$ is locally finite, then $\rho_{\alpha}\omega\equiv 0$ for all but finitely many α .

Proof. For each $p \in \text{supp } \omega$, let U_p be a neighborhood of p that intersects finitely many supp ρ_{α} . Then the U_p is an open cover of supp ω , so there is a finite subcover U_{p_1}, \ldots, U_{p_k} . Each U_{p_i} only intersects finitely many supp ρ_{α} , so supp ω only intersects finitely many supp ρ_{α} . Finally, since

$$\{p \in M \mid \rho_{\alpha}(p)\omega_p\} \subset \{p \in M \mid \rho_{\alpha}(p) \neq 0\} \cap \{p \in M \mid \omega_p \neq 0\},$$

 $\operatorname{supp}(\rho_{\alpha}\omega)\subset\operatorname{supp}\rho_{\alpha}\cap\operatorname{supp}\omega.$ So, $\operatorname{supp}(\rho_{\alpha}\omega)$ is nonempty for finitely many α .

Definition 2.12 (Integration on a Manifold). Let ω be a differential n-form on an oriented manifold M, and let $\{\rho_{\alpha}\}$ be a partition of unity subordinate to the oriented atlas. The integral of ω over M, denoted by $\int_{M} \omega$, is defined to be $\sum_{\alpha \in A} \int_{U_{\alpha}} \rho_{\alpha} \omega$.

For the definition to make sense, we need to show that the integral does not depend on the atlas and the partition of unity.

Let $\{(U_{\alpha}, \phi_{\alpha})\}$ and $\{(V_{\beta}, \psi_{\beta})\}$ be oriented at lases and $\{\rho_{\alpha}\}, \{\chi_{\beta}\}$ be subordinate partitions of unity.

Theorem 2.13. Let ω be a smooth (n-1)-form on \mathcal{H}^n with compact support. Then $\int_{\mathcal{H}^n} d\omega = \int_{\partial \mathcal{H}^n} \omega$.

Theorem 2.14. Let ω be a smooth (n-1)-form on an oriented manifold with boundary M. Then $\int_M d\omega = \int_{\partial M} \omega$.