Package 'cofad'

July 5, 2024

Type Package

Title Contrast Analyses for Factorial Designs

Version 0.3.0

Description Contrast analysis for factorial designs provides an alternative to the traditional ANOVA approach, offering the distinct advantage of testing targeted hypotheses. The foundation of this package is primarily rooted in the works of Rosenthal, Rosnow, and Rubin (2000, ISBN: 978-0521659802) as well as Sedlmeier and Renkewitz (2018, ISBN: 978-3868943214).

License LGPL (>= 3)

URL https://github.com/johannes-titz/cofad

Depends R (>= 3.1.0)

Imports dplyr, Hmisc, magrittr, readr, rhandsontable, rlang, shiny, shinydashboard, shinyjs, stringr, tibble, utils

Suggests rmarkdown, shinytest2, testthat (>= 3.0.0)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

NeedsCompilation no

Author Johannes Titz [aut, cre], Markus Burkhardt [aut], Mirka Henninger [ctb],

Simone Malejka [ctb]

Maintainer Johannes Titz < johannes.titz@gmail.com>

Repository CRAN

Date/Publication 2024-07-05 11:20:05 UTC

2 akan

Contents

	akan																				2
	calc_contrast																				3
	calc_contrast_aggreg	gated																			5
	calc_r_alerting																				6
	calc_r_alerting_from	<u>f</u> .																			6
	calc_r_contrast																				7
	calc_r_effectsize .																				7
	furr_p4																				8
	haans_within1by4.																				8
	lambda_diff																				9
	print.cofad_bw																				10
	print.cofad_mx																				10
	print.cofad_wi																				11
	rosenthal_chap5_q2																				11
	rosenthal_p141																				12
	rosenthal_tbl31																				12
	rosenthal_tbl53																				13
	rosenthal_tbl59																				13
	rosenthal_tbl68																				14
	run_app																				14
	schwoebel																				15
	sedlmeier_p525																				15
	sedlmeier_p537																				16
	summary.cofad_bw																				16
	summary.cofad_mx																				17
	summary.cofad_wi																				17
	testing_effect																				18
	-																				
Index																					19
akan		Data	fron	n A	kar	ı et	al.	(20	018	8),	ехр	er	ime	ent	2 <i>E</i>	?					

Description

Data contains information from a within-subjects experiment with N=90 participants. The goal of the experiment was to investigate the benefits of retrieval practice on memory performance. For the entire dataset and analysis scripts see: https://osf.io/bqr5f/. The data was licsensed under CC-BY 4.0 Melisa Akan, Aaron Benjamin.

Usage

data(akan)

calc_contrast 3

Format

```
a data frame with 270 rows and 3 variables:

subject subject id

condition experimental condition (test, restudy, control)

recalled dependent variable
```

Source

Akan, M., Stanley, S. E., & Benjamin, A. S. (2018). Testing enhances memory for context. Journal of Memory and Language, 103, 19–27. doi:10.1016/j.jml.2018.07.003

calc_contrast

Calculate contrast analysis for factorial designs

Description

Calculate contrast analysis for factorial designs

Usage

```
calc_contrast(
  dv,
  between = NULL,
  lambda_between = NULL,
  within = NULL,
  lambda_within = NULL,
  ID = NULL,
  id = NULL,
  data = NULL
)
```

Arguments

dv dependent variable. Values must be numeric.

between independent variable that divides the data into independent groups. Vector must

be a factor.

lambda_between contrast weights must be a named numeric. Names must match the levels of

between. If lambda_between does not sum up to zero, this will be done auto-

matically.

within independent variable which divides the data into dependent groups. This must

be a factor.

lambda_within contrast must be a named numeric. Names must match the levels of between. If

lambda_between does not sum up to zero, this will be done automatically.

ID deprecated, use id instead

id identifier for cases or subjects is needed for within- and mixed contrast analysis.

data optional argument for the data. frame containing dv and groups.

4 calc_contrast

Details

For multi-factorial designs, the lambda weights of the factors must be connected.

Note that cofad returns one-sided p-values for t-tests.

Value

an object of type cofad_bw or cofad_wi or cofad_mx, including p-value, F-value, contrast weights, different effect sizes. Call summary on this object to get a nice overview of all relevant statistics. Call print to get a short text that can be used for a report.

References

Rosenthal, R., Rosnow, R.L., & Rubin, D.B. (2000). Contrasts and effect sizes in behavioral research: A correlational approach. New York: Cambridge University Press.

Examples

```
# Example for between-subjects design Table 3.1 from
# Rosenthal, Rosnow and Rubin (2001)
data(rosenthal_tbl31)
contr_bw <- calc_contrast(</pre>
  dv = dv,
   between = between,
  lambda_between = c("A" = -3, "B" = -1, "C" = 1, "D" = 3),
   data = rosenthal_tbl31)
contr_bw
summary(contr_bw)
# Example for within-subjects design Calculation 16.6 from
# Sedlmeier and Renkewitz (2018, p. 537)
data(sedlmeier_p537)
contr_wi <- calc_contrast(</pre>
   dv = reading_test,
   within = music,
   id = participant,
   lambda_within = c(
     "without music" = 1.25,
     "white noise" = 0.25,
     "classic" = -0.75,
     "jazz" = -0.75
  ),
   data = sedlmeier_p537
contr_wi
summary(contr_wi, ci = .90)
# Example for mixed-design Table 5.3 from
# Rosenthal, Rosnow and Rubin (2001)
```

calc_contrast_aggregated

Calculate between contrast analysis from aggregated data (means, sds and ns)

Description

Calculate between contrast analysis from aggregated data (means, sds and ns)

Usage

```
calc_contrast_aggregated(means, sds, ns, between, lambda_between, data)
```

Arguments

means	numeric vector of mean values for every condition
sds	numeric vector of standard deviation values for every condition
ns	numeric vector of sample size values for every condition
between	factor for the independent variable that divides the data into independent groups
lambda_between	numeric vector for contrast weights. Names must match the levels of between. If lambda_between does not sum up to zero, this will be done automatically (centering).
data	optional argument for the data. frame containing all variables except for lambda_between

Value

an object of type cofad_bw, including p-value, F-value, contrast weights, different effect sizes

References

Rosenthal, R., Rosnow, R.L., & Rubin, D.B. (2000). Contrasts and effect sizes in behavioral research: A correlational approach. New York: Cambridge University Press.

Examples

calc_r_alerting

Calculate r_alerting from r_contrast and r_effectsize

Description

Convenience function to transform effect sizes in contrast analyses.

Usage

```
calc_r_alerting(r_contrast, r_effectsize)
```

Arguments

```
calc_r_alerting_from_f
```

Calculate r_alerting from F-values

Description

Convenience function to calculate effect sizes in contrast analyses.

Usage

```
{\tt calc\_r\_alerting\_from\_f(f\_contrast,\ f\_between,\ df\_between)}
```

Arguments

f_contrast F value from contrast analysis

f_between F value from ANOVA (one between variable!)

df_between degrees of freedom of ANOVA

calc_r_contrast 7

calc_r_contrast

Calculate r_contrast from r_alerting and r_effectsize

Description

Convenience function to transform effect sizes in contrast analyses.

Usage

```
calc_r_contrast(r_alerting, r_effectsize)
```

Arguments

```
r_alerting what it says r_effectsize what it says
```

calc_r_effectsize

Calculate r_effectsize from r_contrast and r_alerting

Description

Convenience function to transform effect sizes in contrast analyses.

Usage

```
calc_r_effectsize(r_alerting, r_contrast)
```

Arguments

r_alerting what it says
r_contrast what it says

8 haans_within1by4

furr_p4

Empathy data set by Furr (2004)

Description

fictitious data set on empathy ratings of students from different majors

Usage

```
data(furr_p4)
```

Format

```
a data frame with 20 rows and 2 columns
```

```
empathy Empathy rating
major major of student
```

Source

Furr, R. M. (2004). Interpreting effect sizes in contrast analysis. Understanding Statistics, 3, 1–25. https://doi.org/10.1207/s15328031us0301_1

haans_within1by4

Haans within data example

Description

Fictitious data set from Haans, A. (2018). Contrast Analysis: A Tutorial. https://doi.org/10.7275/7DEY-ZD62

Usage

```
data(haans_within1by4)
```

Format

```
a data frame with 20 rows and 3 variables:
```

```
person person idname group name (sitting row 1 to 4)value dv, final exam grade
```

lambda_diff 9

lambda_diff

Calculate lambdas for two competing hypotheses

Description

If you want to test two competing hypotheses, you can use this helper function to create the correct difference lambdas. There is no magic here. The two contrasts are z-standardized first and then subtracted (lambda_preferred - lambda_competing). You can use the new difference lambdas as the input for calc_contrast.

Usage

```
lambda_diff(lambda_preferred, lambda_competing, labels = NULL)
```

Arguments

lambda_preferred

Lambdas of the preferred hypothesis. Has to be a named vector with the names corresponding with the groups in the analyzed data set. Alternatively, use the parameter labels.

lambda_competing

Lambdas of the competing hypothesis. Has to be a named vector with the names corresponding with the groups in the analyzed data set. Alternatively, use the parameter labels.

labels

If you provide lambdas without names, you can set the group labels for both contrasts here.

Value

Lambdas for difference between lambda_preferred and lambda_competing

Examples

10 print.cofad_mx

print.cofad_bw

Output of between-subject design contrast analysis

Description

Output of between-subject design contrast analysis

Usage

```
## S3 method for class 'cofad_bw'
print(x, ...)
```

Arguments

x output of calc_contrast

... further arguments

Value

Displays the significance of the contrast analysis. The contrast weights, the corresponding group and an effectsize are given.

print.cofad_mx

Output of a mixed design contrast analysis

Description

Output of a mixed design contrast analysis

Usage

```
## S3 method for class 'cofad_mx'
print(x, ...)
```

Arguments

x output of calc_contrast... further arguments

Value

Displays the significance of the contrast analysis. The contrastweights, the corresponding group and an effectsize are given.

print.cofad_wi 11

print.cofad_wi

Output of a within subject design contrast analysis

Description

Output of a within subject design contrast analysis

Usage

```
## S3 method for class 'cofad_wi'
print(x, ...)
```

Arguments

x output of calc_contrast

... further arguments

Value

Displays the significance of the contrast analysis. The contrastweights, the corresponding group and an effectsize are given.

rosenthal_chap5_q2

Complexity data set by Rosenthal and Rosnow (2000)

Description

Exercise 2 from Chapter 5 (table on p. 147) in Rosenthal and Rosnow (2000)

Usage

```
data(rosenthal_chap5_q2)
```

Format

a data frame with 12 rows and 4 columns

dv dependent variable: rating of degree of complexity of social interaction from a series of clips

id unique identifier of participant

within within variable: complexity of interaction (low, medium high)

between between variable: cognitive complexity of participant (high or low)

Source

Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and Effect Sizes in Behavioral Research: A Correlational Approach. Cambridge University Press.

rosenthal_tbl31

rosenthal_p141

Data set by Rosenthal and Rosnow (2000)

Description

Fictitious example corresponding to aggregated data set on p. 141 in Rosenthal and Rosnow (2000)

Usage

```
data(rosenthal_p141)
```

Format

a data frame with 12 rows and 4 columns

id unique identifier of participant

dv dependent variable

within within variable

between between variable

Source

Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and Effect Sizes in Behavioral Research: A Correlational Approach. Cambridge University Press.

rosenthal_tbl31

Data set by Rosenthal and Rosnow (2000)

Description

Table 3.1 in Rosenthal and Rosnow (2000) on p. 38.

Usage

```
data(rosenthal_tbl31)
```

Format

a data frame with 20 rows and 2 columns

dv dependent variable

between group (A, B, C, D))

Source

Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and Effect Sizes in Behavioral Research: A Correlational Approach. Cambridge University Press.

rosenthal_tbl53

rosenthal_tbl53

Children data set by Rosenthal and Rosnow (2000)

Description

Table 5.3 in Rosenthal and Rosnow (2000) on p. 129.

Usage

```
data(rosenthal_tbl53)
```

Format

a data frame with 36 rows and 4 columns

dv dependent variable

between age group (8, 10, 12 years)

id unique identifier for child

within measurement (1, 2, 3, 4)

Source

Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and Effect Sizes in Behavioral Research: A Correlational Approach. Cambridge University Press.

rosenthal_tbl59

Therapy data set by Rosenthal and Rosnow (2000)

Description

Table 5.9 in Rosenthal and Rosnow (2000)

Usage

```
data(rosenthal_tbl59)
```

Format

```
a data frame with 12 rows and 4 columns
```

id unique identifier

dv dependent variable

med within variable: medication (treatment or placebo)

pt between variable: psychotherapy (treatment or placebo)

run_app

Source

Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and Effect Sizes in Behavioral Research: A Correlational Approach. Cambridge University Press.

rosenthal_tbl68

Data set by Rosenthal and Rosnow (2000)

Description

Fictitious example of children ability, Table 6.8 in Rosenthal and Rosnow (2000)

Usage

```
data(rosenthal_tbl68)
```

Format

a data frame with 8 rows and 4 columns

id unique identifier of participant

dv dependent variable

within within variable

between between variable

Source

Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and Effect Sizes in Behavioral Research: A Correlational Approach. Cambridge University Press.

run_app

Starts the mimosa shiny app

Description

Starts the mimosa shiny app

Usage

run_app()

schwoebel 15

schwoebel

Data from Schwoebel et al. (2018)

Description

For the entire dataset and analysis scripts see:

Usage

data(schwoebel)

Format

a data frame with 64 rows and 2 variables:

condition experimental condition (massed-same, massed-different, spaced-same, spaced-different)
percent_recalled dependent variable

Source

Schwoebel, J., Depperman, A. K., & Scott, J. L. (2018). Distinct episodic contexts enhance retrieval-based learning. Memory, 26(9), 1291–1296. doi:10.1080/09658211.2018.1464190

sedlmeier_p525

Problem solving data set by Sedlmeier & Renkewitz (2018)

Description

Example 16.2, table 16.1 in Sedlmeier & Renkewitz (2018). Fictitious data set with 15 boys divided into three groups (no training, boys-specific material, girls-specific training material). The DV is the number of solved problem (similar to the training).

Usage

```
data(sedlmeier_p525)
```

Format

a data frame with 15 rows and 3 columns

lsg dv, number of solved exercises

between group, KT=no training, JT=boys-specific, MT=girls-specific

lambda lambdas used for this example

Source

Sedlmeier, P., & Renkewitz, F. (2018). Forschungsmethoden und Statistik für Psychologen und Sozialwissenschaftler (3rd ed.). Pearson Studium.

16 summary.cofad_bw

sedlmeier_p537

Music data set by Sedlmeier & Renkewitz (2018)

Description

Example 16.6, table 16.5 in Sedlmeier & Renkewitz (2018). Fictitious data set with 8 participants that listened to no music, white noise, classical music, and jazz music (within). The DV is a reading test.

Usage

```
data(sedlmeier_p537)
```

Format

```
a data frame with 32 rows and 3 columns reading_test dependent variable
```

participant unique id
music within variable

Source

Sedlmeier, P., & Renkewitz, F. (2018). Forschungsmethoden und Statistik für Psychologen und Sozialwissenschaftler (3rd ed.). Pearson Studium.

summary.cofad_bw

Summary of between subject design contrast analysis

Description

Summary of between subject design contrast analysis

Usage

```
## S3 method for class 'cofad_bw'
summary(object, ...)
```

Arguments

```
object output of calc_contrast ... further arguments
```

Value

Displays type of contrast analysis, lambdas, t-table, ANOVA table and typical effect sizes. If you assign this to a variable, it will be a list with the elements Lambdas, tTable, FTable, Effects.

summary.cofad_mx 17

summary.cofad_mx

Summary of a mixed design contrast analysis

Description

Summary of a mixed design contrast analysis

Usage

```
## S3 method for class 'cofad_mx'
summary(object, ...)
```

Arguments

object output of calc_contrast
... further arguments

Value

Displays type of contrast analysis, lambdas, t-table, ANOVA table and typical effect sizes. If you assign this to a variable, it will be a list with the elements Lambdas, tTable, FTable, Effects.

summary.cofad_wi

Summary of within subject design contrast analysis

Description

Summary of within subject design contrast analysis

Usage

```
## S3 method for class 'cofad_wi'
summary(object, ci = 0.95, ...)
```

Arguments

object output of calc_contrast

ci confidence intervall for composite Score (L-Values)

... further arguments

Value

Displays type of contrast analysis, lambdas, t-table and typical effect sizes. If you assign this to a variable, it will be a list with the elements Lambdas, tTable, Effects.

18 testing_effect

testing_effect

Testing Effect data

Description

This dataset originates from a study conducted as part of a research seminar in the Psychology B.Sc. program of the University of Cologne. The study participants learned a list of 20 non-associated word pairs. Each half of the word pair was associated with one of two sources (imaginating the word pair in the sky or underwater). The final memory test (cued recall) was conducted two days later. Cued recall means that one word of the word pair was presented, and the participant had to recall the other word. The participants were randomly assigned into one of three between-participant conditions: restudy, source test, item test.

Usage

data(testing_effect)

Format

a data frame with 60 rows and 3 variables:

subject the participant's id

condition the between-partipant condition

recalled the number of words recalled in the cued-recall test

Index

* datasets akan, 2 furr_p4, 8 haans_within1by4, 8 rosenthal_chap5_q2, 11 rosenthal_p141, 12 rosenthal_tb131, 12 rosenthal_tb153, 13 rosenthal_tb159, 13 rosenthal_tb168, 14 schwoebel, 15 sedlmeier_p525, 15 sedlmeier_p537, 16 testing_effect, 18	schwoebel, 15 sedlmeier_p525, 15 sedlmeier_p537, 16 summary.cofad_bw, 16 summary.cofad_mx, 17 summary.cofad_wi, 17 testing_effect, 18
akan, 2	
<pre>calc_contrast, 3 calc_contrast_aggregated, 5 calc_r_alerting, 6 calc_r_alerting_from_f, 6 calc_r_contrast, 7 calc_r_effectsize, 7</pre>	
furr_p4, 8	
haans_within1by4, 8	
lambda_diff,9	
<pre>print.cofad_bw, 10 print.cofad_mx, 10 print.cofad_wi, 11</pre>	
rosenthal_chap5_q2, 11 rosenthal_p141, 12 rosenthal_tbl31, 12 rosenthal_tbl53, 13 rosenthal_tbl59, 13 rosenthal_tbl68, 14 run_app, 14	