ÁREAS

- 1. (J-97)Hallar el área limitada en el primer cuadrante por las gráficas de las funciones y = sen x, y = cos x y el eje de ordenadas
- 2. (J-98)Dibujar el recinto limitado por la curva $y = x e^x$, el eje OX y la recta paralela al eje OY que pasa por el punto donde la curva tiene su mínimo relativo. Hallar el área de dicho recinto.
- 3. (5-98)Comprobar que todas las funciones $f(x)=3x^5+10x^3+ax+b$ tienen un único punto de inflexión. Hallar a y b para que la tangente a la gráfica de dicha función en el punto de inflexión sea la recta y=x+2.
- 4. (5-98)Hallar el área del recinto limitado por las gráficas de las funciones f(x) = |x| y $f(x) = x^2 2$ [2,5 puntos]
- 5. (J-99)Dibujar el recinto limitado por las gráficas de las funciones $y = \frac{1}{x^2}$, y = x e y = 8x [1 punto]. Hallar el área de este recinto-
- 6. (5-00)Tenemos la función f definida para todo número real no negativo y dada por $f(x) = \begin{cases} 1 & \text{si } 0 \leq x \leq 1 \\ \frac{1}{x^2} & \text{si } x > 1 \end{cases}$

Se pide su representación gráfica [0,5 puntos], hallar $\int_0^3 f(x) dx$ [1,5 puntos] e interpretar geométricamente el resultado [0,5 puntos].

- 7. (S-01)Hallar el área del recinto limitado por las gráficas de las funciones $y = 2 x^4$ e $y = x^2$ [2,5 puntos].
- 8. (S-02)Sea la función $f(x) = x \cos x$.
- a) ¿Tiene límite en +∞? (justifica tu respuesta). [1 punto]
- b) Calcula la integral de f entre x = 0 y el primer cero positivo que tiene la función. [1,5 puntos]

Nota: Llamamos ceros de una función a aquellos puntos donde se anula.

- 9. (5-02)Sea la función f definida para todo número real x en la forma $f(x) = \begin{cases} x^2 + 3x + 1 & \text{si } x < 0 \\ \sin \beta x + \cos \beta x & \text{si } x \ge 0 \end{cases}$ Se pide:
 - a) Determinar el valor de β para que f sea derivable en x = 0.
 - b) Calcular la integral de f sobre el intervalo $\left(0, \frac{\pi}{3}\right)$.

Nota: Se entiende que la función f cuya integral se pide en la parte b) es la determinada previamente en la parte a). No obstante, si alguien no ha sabido calcular el valor de β , debe integrar f dejando β como parámetro.

- 10. (J-03) Sean las parábolas $y = x^2 4x + 13$ e $y = 2x^2 8x + 16$.
 - a) Representar sus gráficas.
 - b) Calcular los puntos donde se cortan entre sí ambas parábolas.
 - c) Hallar la superficie encerrada entre las dos parábolas.
- 11. (J-03)Sea la función $f(x) = xe^x$
 - a) Calcular la ecuación de su tangente en el origen de coordenadas
 - b) Determinar los extremos de la función f
 - c) Hallar el área encerrada entre la gráfica de esta curva, el eje de abscisas y la recta x=1
- 12. (S-03) Sea la parábola $y = x^2 4x + 3$.
 - a) Determinar los puntos de corte de la parábola con los dos ejes coordenados [0,5 puntos]
 - b) Calcular el área encerrada entre la parábola y el eje de abscisas
 - c) Calcular el área encerrada entre la parábola y el eje de ordenadas.
- 13. (5-03) Sea la función f(x) = x senx y sea T la recta tangente a su gráfica en $x = \pi$. Determinar:
 - a) La ecuación de T [1,5 puntos]
 - b) El área encerrada entre Ty los ejes coordenados [1 punto]
- 14. (S-03) Sea la función $f(x) = \frac{x}{x^2 + 1}$
 - a) Definir su dominio [0,5 puntos]
 - b) Calcular su límite en el infinito [0,5 puntos]
 - c) Determinar sus extremos [0,5 puntos]
 - d) Calcular el área encerrada por la gráfica de f entre las abscisas 0 y 1
- 15. (J-04) Calcular el área encerrada entre la gráfica de la función exponencial $f(x) = e^x$ y la cuerda a la misma que une los puntos de abscisas x = -1 y x = 1
- 16. (J-04) Sea la función f(x) = x sen x. Determinar:
 - a) El área encerrada entre su gráfica y el eje de abscisas entre los valores x = 0 y $x = \pi$ [1,5 puntos].
 - b) El área encerrada entre la tangente en x = π y los dos ejes coordenados [1 punto]
- 17. (S-04) Calcular el área encerrada entre las gráficas de la recta y=x+2 y la parábola $y=x^2$ [2,5 puntos]
- 18. (5-04) Sea la parábola $f(x) = x^2 6x + 9$.
 - a) Probar que es tangente a uno de los ejes coordenados, indicando a cual.
 - b) Calcular el área encerrada entre la gráfica de la parábola y los dos ejes coordenados.

- 19. (5-05)Sea Ω la región acotada encerrada entre las parábolas $f(x) = x^2 + 2x + 4$ y $g(x) = 2x^2 x + 6$.
 - a) Hallar la superficie de Ω [1,5 puntos].
 - b) Razonar (no valen comprobaciones con la calculadora) cuál de las dos parábolas está en la parte inferior de la región Ω [1 punto].
- 20.(S-05)Determinar el área encerrada por la gráfica de la función $f(x) = x^2 senx$ y el eje de abscisas entre el origen y el primer punto positivo donde f se anula [2,5 puntos].
- 21. (J-06)La función $f:[0,\infty)\to\mathbb{R}$ definida por

$$f(x) = \begin{cases} \sqrt{ax} & \text{si } 0 \le x \le 8 \\ \frac{x^2 - 32}{x - 4} & \text{si } x > 8 \end{cases}$$
 es continua en $[0, \infty)$.

- a) Hallar el valor de a que hace que esta afirmación es cierta.
- b) Calcular $\int_0^{10} f(x) dx$
- 22.(5-06)Dadas las funciones $f(x) = x^2$ y $g(x) = x^3$, determinar el área encerrada por las gráficas de ambas funciones entre las rectas:
 - a) x = 0 y x = 1. [1,25 puntos]
 - b) x = 1 y x = 2. [1,25 puntos]
- 23.(5-07)a)Utilizando el cambio de variable $t = \ln x$ calcular $\int_{e}^{e^2} \frac{dx}{x(4-\ln x)}$

24.(J-09)Sea
$$f(x) = \frac{1}{x - x^2}$$

- a) Determinar su dominio
- b) Estudiar si f(x) es una función simétrica respecto al origen de coordenadas
- c) Obtener el área encerrada por f(x) y el eje OX entre $x = \frac{1}{4} y x = \frac{3}{4}$
- 25.(J-10) Hallar el área encerrada entre la curva $y=x^3-3x$ y la recta y=x
- 26.(S-12) Considere las funciones $f(x)=e^{x+1}$ y $g(x)=e^{-x+5}$
 - a) Determine los posibles puntos de corte de esas dos funciones
 - b) Calcule el área encerrada entre esas dos funciones y las rectas x=1 y x=3

- 27.(J-13) Determine el área del recinto encerrado por las funciones $f(x)=-x^2+3$ y g(x)=1
- 28. (S-13) Considere las funciones: $f(x)=x^2+1$ y g(x)=3-x
 - a) Determine los puntos de corte de esas dos funciones
 - b) Determine el área encerrada entre esas dos funciones.
 - c) Determine, si existen, los máximos y mínimos relaticos, y los puntos de inflexión de la función: $h(x)=x^6+2$
- 29.(S-13) Considere las funciones: $f(x)=x^2+1$ y g(x)=3-x
 - a) Determine los puntos de corte de esas dos funciones
 - b) Determine el área encerrada entre esas dos funciones.
 - c) Determine, si existen, los máximos y mínimos relativos, y los puntos de inflexión de la función: $h(x)=x^6+2$