COMP220: Graphics & Simulation

3: Mathematics for graphics

Learning outcomes

By the end of this session, you should be able to:

- Explain the role of vectors and matrices in computer graphics
- Calculate basic transformation matrices using the GLM library
- Explain the constituents of the model-view-projection matrix

Vectors

Vectors

A vector has components

A vector also has **direction** and **magnitude** (or **length**)

The **origin** is the point represented by the vector (0,0,...)

Radians

- We often measure angles in radians
- $\pi = 3.14159...$
- \blacktriangleright π radians = 180 degrees = half a circle
- $\frac{\pi}{2}$ radians = 90 degrees = right angle
- Careful! Some things in OpenGL work in degrees, others in radians (just to confuse you...)

Right hand rule

OpenGL uses a right-handed coordinate system

- ► The x-axis points towards the right-hand side of the screen
- ► The y-axis points towards the top of the screen
- ► The z-axis points out of the screen

Homogeneous coordinates

- ► In 3D graphics, it is useful to represent a point in 3D space as a 4-dimensional vector
- \blacktriangleright The extra coordinate is called w
- Simple explanation: w should always equal 1 for points in 3D space; having w there makes certain calculations easier
 - (Actually, a point (x, y, z) can be represented as a vector $(x \times w, y \times w, z \times w, w)$ for any $w \neq 0$)
- ► In homogeneous coordinates, the origin is (0,0,0,1) not (0,0,0,0)!

Matrices

Welcome to the Matrix, Neo.

Matrices

An m x n matrix is a rectangular array of numbers, having m rows and n columns

$$\begin{pmatrix} 3 & 0 & 2.4 \\ 1.7 & -6 & -4.5 \end{pmatrix} \qquad \leftarrow A \ 2 \times 3 \ \text{matrix}$$

- Note: the plural of matrix is matrices
- ► In computer graphics we mostly work with square matrices (number of rows = number of columns)

Multiplying vectors and matrices

- ► Two n × n matrices can be multiplied, giving a new n × n matrix
- An n x n matrix and an n-vector can be multiplied, giving a new n-vector
- ► See https://www.khanacademy.org/math/ precalculus/precalc-matrices/ multiplying-matrices-by-matrices/v/ matrix-multiplication-intro
- (But you don't really need to know how to calculate these manually...)

Commutativity

- Multiplication of numbers is commutative
 - \triangleright $a \times b = b \times a$
 - e.g. $2 \times 3 = 3 \times 2$
- Multiplication of matrices is not commutative
 - ▶ In general, $A \times B \neq B \times A$
 - ▶ There may be some matrices where $A \times B = B \times A$, but they are the exception

Transformations

Transformations and matrices

- A transformation is a mathematical function that changes points in space
- ► E.g. shifts them, rotates them, scales them, ...
- Many useful transformations can be represented by matrices
- Multiplying these matrices together combines the transformations
- Multiplying a vector by the matrix applies the transformation

GLM

- We will use the GLM library to do matrix calculations for us
- ▶ http://glm.g-truc.net/
- ► GLM aims to mirror GLSL data types (vec4, mat4 etc) in C++
- Lets us perform calculations with vectors and matrices in C++
- GLM types can be passed into shaders as uniforms, e.g.

```
// transformLocation points to a uniform of type 
    mat4
glm::mat4 transform = ...;
glUniformMatrix4fv(transformLocation, 1, GL_FALSE 
, glm::value_ptr(transform));
```

Identity

The identity transformation does not change anything

```
// Default constructor for glm::mat4 creates an \leftarrow identity matrix glm::mat4 transform;
```

Translation

Translation shifts all points by the same vector offset

```
transform = glm::translate(transform, glm::vec3(0.3f, \leftarrow 0.5f, 0.0f));
```

Scaling

Scaling moves all points closer or further from the origin by the same factor

```
transform = glm::scale(transform, glm::vec3(1.2f, 0.5f \hookleftarrow , 1.0f));
```

Rotation

- ▶ How do we represent a rotation in 3 dimensions?
- One way is by specifying the axis (as a vector) and the angle (in radians)
- Axis always runs through the origin

```
float angle = glm::pi<float>() * 0.5f;
glm::vec3 axis(0, 0, 1);
transform = glm::rotate(transform, angle, axis);
```

Combining transformations

- ► Transformations do not commute in general changing the order will change the result
- ► The order they are applied is the reverse of what you might think — i.e. the above rotates then translates

Euler angles

- Any orientation of an object in 3D space can be described by three rotations around:
 - ► The x-axis (1,0,0)
 - ► The y-axis (0, 1, 0)
 - ► The z-axis (0,0,1)
- These angles are sometimes called roll, pitch and yaw

Gimbal lock

https://youtu.be/rrUCBOlJdt4?t=1m55s

Model, View, Projection

Model, View, Projection

Drawing a 3D object on screen generally involves **three** transformations:

- ▶ Model: translate, rotate and scale the object into its place in the scene
- View: translate and rotate the scene to put the observer at the origin
- Projection: convert points in 3D space to points on the 2D screen

The model-view-projection (MVP) matrix:

$$M_{MVP} = M_{projection} \times M_{view} \times M_{model}$$

(remember, multiplication goes in reverse order)

The model matrix

Exactly what we've been doing so far today...

The view matrix

Need to translate and rotate the scene so that the "camera" is at (0,0,0) and looking in the negative z direction

- eye is the position of the camera
- centre is a point for the camera to look at
- up is which direction is "up" for the camera (usually the positive y-axis)

Types of projection

- ► Generally use **perspective** for 3D graphics
- ➤ Orthographic is useful for 2D or pseudo-2D graphics (e.g. isometric perspective)

The projection matrix

- ► Field of view (FOV): how "wide" or "narrow" the view is
- ► Aspect ratio: should be screenWidth / screenHeight
- Near and far clip planes: fragments that fall outside this range of distances from the camera are not drawn

Also available: glm::ortho for orthographic projection

The view frustum

- Defined by the near and far clipping planes and the edges of the screen
- ▶ Nothing outside the view frustum is visible

Live Coding - Transformations

Exercise

- Using the following link, first implement model transformations and then view and projection
 - http://www.opengl-tutorial.org/ beginners-tutorials/tutorial-3-matrices/
- Play around with the order of the Model Transformation, what happens when you do this?
- Use the keyboard to move, rotate and scale the triangle
- Use the Keyboard to move the camera
- Stretch Goal: Create an FPS camera using the mouse and keyboard