Ancestral Reconstruction

Phil Hughes (12346487), Saya Maratova (12344373), Alexander Veith

Background

Example Case

What is Ancestral Reconstruction?

Why do we do it?

What do you need?

explain/mention packages (phangorn, ape)

Example Case

- ASR Completed
- Enzyme activity screened, with predictions
- Stereocontrol mechanism of AzaH revealed
- Residues changed in enzyme to switch enantiomeric preference

Deciphering the Evolution of Flavin-Dependent Monooxygenase Stereoselectivity Using Ancestral Sequence Reconstruction

What is AR?

- Extant sequences compared
- PhylogeneticTreeconstructed
- Predictions made for ancestors

Why do we do it?

- Produce likely functional proteins
- Different properties
- Base for further protein engineering
- Identify mutations leading to different properties
- Chiral Products

Node	5	5	9	9	1 1 9	2 0 6	2 2 6	2 2 8	2 3 5	2 3 7	2 3 9	2 5 0	2 5 2	3 2 9	3 3 0	3 3 1	3 3 2	3 9 7	4 2 6	(R)-11: (S)-11
311	1	Α	L	W	F	R	Q	М	Н	L	F	V	F	Р	Н	Н	G	Υ	W	
311a	1	Α	L	W	F	R	Q	М	Н	L	F	٧	F	Р	Н	Н	G	Υ	W	
312	1	Α	L	W	F	R	Q	М	Н	L	F	٧	F	P	Н	Н	G	Υ	W	
312a	1	Α	L	W	F	R	Q	М	Н	L	F	٧	F	Р	Н	Н	G	Υ	W	
321	1	Α	L	W	F	R	Q	М	Н	L	F	٧	F	Р	Н	Н	G	Υ	W	
321a	1	Α	L	W	F	R	Q	М	Н	L	F	٧	F	Р	Н	Н	G	Υ	W	
331	1	Α	L	W	F	R	Q	М	Н	L	F	٧	F	Р	Н	Н	G	Y	W	
331a	1	Α	L	W	F	R	Q	М	Н	L	F	٧	F	Р	Н	Н	G	Υ	W	
332	1	Α	L	W	F	R	Q	М	Н	L	F	٧	F	Р	Н	Н	G	Υ	W	
332a	1	Α	L	W	F	R	Q	М	Н	L	F	٧	F	Р	Н	Н	G	Υ	W	
333	1	Α	L	W	F	R	Q	M	Н	L	Υ	Т	F	Р	Н	Н	G	Υ	W	
333a	1	Α	L	W	F	R	Q	M	Н	T	Υ	Т	F	Р	Н	Н	G	Υ	W	
334a	1	Α	L	W	F	R	Q	М	Н	1	Υ	Т	F	Р	Н	Н	G	Υ	W	
346	1	Α	L	W	F	R	Q	M	Н	1	Υ	Т	F	Р	Н	Н	G	Y	W	
346a	1	Α	L	W	F	R	Q	1	Н	1	Υ	Т	F	Р	Н	Н	G	Y	W	
TropB	М	Α	L	W	F	R	L	М	Н	1	Υ	Α	F	Р	Н	Н	G	Y	W	N/A
335	1	Α	L	W	F	R	Q	М	Н	1	Υ	Т	F	Р	Н	Н	G	Υ	W	
335a	3	Α	L	W	F	R	Q	М	Н	1	Υ	Т	F	Р	Н	Н	G	Υ	W	
354a	1	Α	L	W	F	R	F	N	N	L	Υ	Т	F	Р	Н	Н	G	Н	W	
366	1	Α	Υ	Υ	F	R	Q	M	Н	L	F	V	F	Р	F	Н	G	Υ	W	
367	1	Α	N	Y	F	R	Q	M	Н	L	Y	V	F	Р	F	Н	G	Y	W	
367a	1	Α	N	Υ	F	R	Q	M	Н	L	Υ	V	F	Р	F	Н	G	Υ	W	1
368	F	Α	N	Υ	F	R	Q	М	Н	L	Y	V	F	Р	F	Н	G	Y	W	
368a	F	Α	N	Υ	F	R	Q	M	Н	L	Y	٧	F	Р	F	Н	G	Υ	W	
369	F	Α	N	Υ	F	R	Q	М	Н	L	Y	V	F	P	F	Н	G	Y	W	
369a	F	Α	N	Υ	F	R	Q	М	Н	L	Y	V	F	P	F	Н	G	Υ	W	
382	F	Α	N	Υ	Υ	R	Q	М	Н	L	Y	V	F	Р	F	Н	G	Y	W	
382a	F	Α	N	Υ	Y	R	Q	М	Н	L	Y	V	F	P	F	Н	G	Y	W	T Y
370	F	Α	N	Υ	F	R	Q	М	Н	L	Y	V	F	Р	F	Н	G	Y	W	N/A
371	F	Α	V	Υ	F	R	Q	М	Н	V	F	F	F	Р	F	Н	G	Υ	W	N/A
373	F	Α	V	Υ	F	R	Q	М	Н	V	F	F	F	Р	F	Н	G	Y	W	U.S. CO.
374	F	A	V	Y	Y	R	Q	A	Н	V	F	F	F	P	F	Н	G	Y	W	
AfoD	F	A	V	Y	Y	R	Q	A	Н	V	F	F	F	P	F	Н	G	Y	W	

Requirements for AR

- Suitable library of existing sequences (nucleotide or Amino acid)
- A matrix; assessing the likelihood of different changes occurring
- Predicting Deletions, Insertions,
 Substitutions etc
- Software!

Alignment of AfoD (green) with FAD (crystal structure against an Alphafold generated protein structure of Anc311(blue), aligned in PYMOL. (AA sequence from paper supplementary)

Parsimony

- Tries to generate a tree that is the most likely; with the fewest nodes and least extreme or unlikely changes; minimal steps
- Trees constructed with nodes; 'deeper' in the tree are 'internal nodes'
- Maximum parsimony; formation of a tree with the fewest evolutionary changes (most economical evolutionary path)

Gap occurrences (deletions, insertions); major evolutionary events

Gap may be treated as a character or 'additional state'; how they are treated will affect tree topology

Appropriate 'Matrix' must be selected that gives appropriate significance to gap events

Marginal Reconstruction vs Joint Reconstruction

Joint Reconstruction- 'Maximise the overall likelihood' over the whole tree; works it out simultaneously; selects the joint most likely

- Focus is the 'whole tree'; individual nodes are considered less important
- Can lead to inaccuracy for individual nodes
- Best for looking at full genomes or gene sequences

Marginal Reconstruction- Most likely on a node-by-node, or site-by-site basis individually

- Reconstructions for nodes may not jointly all fit together
- 'Up the tree and back again'
- Best for looking at particular positions or sites (Cysteine residues later!)

Both aspects of Maximum Likelihood