

Supplementary Figure 1. Comparison of seed-related traits in different subgroups of soybean germplasm. (a-c) 100-seed weight (a), fatty acid content (b), and protein content (c) of mature seeds in G. soja, landraces, and cultivars. (d) 100-seed weight plots against fatty acid content. (e) 100-seed weight plots against protein content. DW, dry weight. Box edges depict interquartile range. The median is marked by a black line within the box. Number of samples in each haplotype (n) is shown under the haplotype label. The letters a, b and c indicate significant differences. P < 0.05 (Student's t-test).

(b)

Sampling time		Developmental stage and events	Fresh weight	
S1	Six to 7 days post flowering	Heart stage: Cotyledons begin development and are just visible	NA	
S2	Fourteen to 16 days post flowering	Seed filling stage 1: Endosperm is completely assimilated, embryo occupies whole cavity of seed coat. Seed filling is just beginning.	10-20 mg	
S3	Twenty to 22 days post flowering	Seed filling stage 2: Green seeds with 90-100mg fresh weight (around 1/3 of final size); accumulation in nutrients, oil, storage protein in cotyledon	90-100 mg	
S4	Twenty-seven to 30 days post flowering	Seed filling stage 3: Green seeds with 140-160 mg fresh weight (around 1/2 of final size)	140-160 mg	
S5	Fourty-two to 48 days post flowering	Full seed stage: Green seeds that fills the pod cavity	350-380 mg	

Supplementary Figure 2. Sampling timepoints. (a) Longitudinal sections of the development seeds at different stages. Scale bars, 1 mm. (b) Description of sampling timepoints.

Supplementary Figure 3. Comparison of seed-related traits in two haplotype populations of cultivated soybean (G. max). (a-c) 100-seed weight (a), fatty acid content (b), and protein content (c) of mature seeds in two haplotype populations. DW, dry weight. Box edges depict interquartile range. The median is marked by a black line within the box. Number of samples in each haplotype (n) is shown under the haplotype label. **P < 0.01 (Student's t-test).

Supplementary Figure 4. Phenotypes of sw10a;10b mutants. (a) Genotypes of the sw10a;10b mutants generated by CRISPR/Cas9 system in the Williams 82 background. The red arrows indicate the target site in the conserved region of the 3^{rd} exon of GmSWEET10a and GmSWEET10b. Changes in the DNA sequence in the targeted region and amino acid sequence of the sw10a;10b mutants are highlighted in red. Numbers inside the brackets indicate the number of amino acids coded by the sequence. (b-c) 100-seed weight (b), fatty acid content (c) and protein content (d) of mature seeds from wild type (W82) and sw10a;10b mutants grown in the field. (e) Genotypes of the sw10a;10b mutants generated by CRISPR/Cas9 system in Huachun 6 background. The red arrows indicate the target site in the conserved region of the 5^{th} exon of GmSWEET10a and GmSWEET10b. Changes in the DNA sequence in the targeted region and amino acid sequence of the sw10a;10b mutants are highlighted in red. (f-h) 100-seed weight (f), fatty acid content (g) and protein content (h) of mature seeds from wild type (HC6) and sw10a;10b mutants grown in field. DW, dry weight. W82, Williams 82. HC6, Huachun 6. Data are means \pm s.d. (b, n = 10; c and d, n = 5; f-h, n = 10). **P < 0.01 (Student's t-test).

Supplementary Figure 5. Transcript abundance of GmSWEET13a/b/c/d and -14a/b in seed coats at different stages. The expression was detected by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Transcript levels were calculated relative to soybean cyclophilin 2 (GmCYP2). DAF, days after fertilization. Data are means \pm s.d.

Supplementary Figure 6. Phenotypes of plant architecture-related traits. (a) Seed weight per plant in GmSWET10a and GmSWET10b overexpression lines grown in field. Data are means \pm s.d. (n = 9). *P < 0.05 (Student's t-test). (b-d) Shoot height (b), branch (c) and pod (d) number of WT and all transgenic plants used in this study grown in the field. Data are means \pm s.d. (n = 10). n.s., not significant (Student's t-test).

Supplementary Table 1. QTLs information.

QTL name	Chromosome 15 (Mb)	Trait name	Reference
Seed volume 1-1	1.30~4.41	Seed size	25
q100SW15	3.72~4.05	Seed size	28
Seed length 1-1	1.30~4.41	Seed width	25
Seed protein 30-3	3.31~6.84	Protein content	24
qPro15	3.72~4.05	Protein content	28
cqSeed oil-007/010	3.31~3.99	Oil content	27
qOil15	3.72~4.05	Oil content	28
Seed oil 32-1	3.44~6.84	Oil content	26

Supplementary Table 2. Expression profiles of sugar metabolism related genes in early development seeds. The data was extracted from Gene Networks in Seed Development (http://seedgenenetwork.net/soybean) (RPKM > 1). SUT, sucrose transporters; SUF, sucrose facilitator.

	Gene name			A	(is				Cotyledo	n		Seed Coat			
		Shoot Meristem	Plumule	Parenchyma	Root Meristem	Vascular Bundle	Epidermis	Adaxial Parenchyma	Vascular Bundle	Adaxial Epidermis	Aleurone	Parenchyma	Hourglass	Palisade	Hilum
	GmSWEET10b	20.7	0.8	0.6	3.2	0.7	4.4	8.7	7.4	54.7	135.9	10895.3	139.1	7.1	70.8
	GmSWEET10a	0.4	0.0	0.0	0.0	0.1	0.1	1.1	0.1	9.9	23.6	1362.5	4.5	8.0	0.1
	GmSWEET14a	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.1	0.3	0.2	1235.8	6.7	0.4	0.0
	GmSWEET14b	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.5	0.3	1134.3	7.7	0.9	0.0
	GmSWEET13a	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	297.6	0.9	0.0	0.2
	GmSWEET13b	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.1	261.5	2.4	0.0	0.1
	GmSWEET13c GmSWEET13d	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	44.4 33.8	0.6 0.2	0.0	0.0 0.0
Η.	GmSWEET7	68.9	11.3	56.3	36.5	13.1	220.9	40.5	10.9	284.4	196.0	3.2	0.2	0.0	0.0
GmSWEET	GmSWEET11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	3.3	0.5	290.6
×	GmSWEET1c	0.0	3.8	5.6	0.0	0.0	0.4	1.4	0.0	0.1	0.0	0.2	59.8	0.6	0.3
m	GmSWEET2a	2.6	1.4	1.1	3.1	0.7	1.5	1.0	0.6	1.4	1.0	1.6	0.2	1.5	0.8
O	GmSWEET2b	3.2	1.2	2.5	2.2	1.9	1.3	1.7	2.6	1.4	1.1	1.0	1.4	2.3	3.1
	GmSWEET2c	3.4	1.3	2.6	1.0	4.7	2.0	2.5	11.4	5.9	2.5	7.2	5.1	2.3	3.0
	GmSWEET3a	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	0.0	0.0	0.0
	GmSWEET3b	0.0	0.2	0.0	0.0	1.2	0.0	0.0	9.6	0.0	0.0	3.6	0.0	0.0	0.0
	GmSWEET6	0.2	0.6	0.0	0.2	0.1	0.3	0.1	0.0	2.0	0.3	7.0	71.1	0.6	0.0
	GmSWEET17	0.5	0.2	0.1	0.1	0.6	0.3	8.0	1.5	1.6	0.4	1.1	2.8	3.3	1.3
	GmSWEET15a	0.1	0.0	0.1	0.7	0.0	0.0	0.1	0.2	2.6	332.3	0.6	0.0	0.1	0.0
	GmSWEET15b	0.1	0.0	0.2	0.1	0.0	0.1	0.0	0.0	2.0	215.6	0.2	0.1	0.0	0.0
GmSUT / SUF	Glyma02g08250	1.5	0.8	0.2	0.4	0.0	5.9	4.3	1.1	3.6	63.4	20.9	60.3	8.1	1.9
	Glyma02g08260	2.8	1.6	5.9	0.2	0.1	6.4	10.7	2.3	9.6	0.4	1.1	0.1	0.0	0.0
	Glyma02g38300	2.6	2.7	2.3	2.9	3.1	1.7	1.6	4.1	1.8	4.2	7.8	2.8	8.0	4.6
5	Glyma04g09460	1.6	1.7	1.9	2.5	2.2	3.2	3.3	3.9	3.3	3.1	1.2	1.9	1.2	2.0
m	Glyma08g40980	8.6	3.0	3.8	6.2	4.1	6.1	5.5	8.5	5.3	5.6	5.2	9.9	7.4	12.3
G	Glyma10g36200	3.9	0.5	1.5	11.0	0.0	60.1	0.2	0.7	171.1	16.4	0.2	0.4	0.2	0.2
	Glyma16g27320	0.0	0.0	0.0	0.1	0.0	0.1	0.1	0.0	0.3	5.7	0.1	0.0	0.0	0.0

Primer name	Sequence (5' to 3')	Primer use				
For genotype identification						
10aF	TTGATTTTGAAATTCAAATCC	Genotyping for GmSWEET10awith				
10aR	ACTTGGCAATTAATCCTTGGC	different haplotypes				
CAS9-10aF	CATTTGCAATTCTCGGGTCAT	Genotyping for GmSWEET10ain the				
CAS9-10aR	TAAGGAATGGAATTTTTGACTC	mutant (W82 background)				
CAS9-10b-F	TTTCTTAACAGGCGAATGCT	Genotyping for GmSWEET10bin the				
CAS9-10b-R	CTTGCATCCTTGTGCGCATA	mutant (W82 background)				
GmSWEET10a-F	GTGTCACTAGCAAGCTAACTCTC	Genotyping for GmSWEET10ain the				
GmSWEET10a-R	CCTTCTCACTCTCACCGCCG	mutant (HC6 background)				
GmSWEET10b-F	TGGATTTGTGACGCCGTTTCA	Genotyping for GmSWEET10b in the				
GmSWEET10b-R	CCTTCTCACTCTCACTGCCC	mutant (HC6 background)				
For RT-qPCR						
10a-QRT-F1	GCAAGCTTTAGCTGAAGGAGCGAT	RT-qPCR for GmSWEET10a				
10aQRT-R1	TCATCCACTTCCTCTGCGATTGAA	RI-qPCR 101 GIIISWEET TOA				
10b-QRT-F	CCTGCTGAAGTCTTCCCAAT	DT DOD for Con CIA/EFT40b				
10b-QRT-R	GGCAATCATCCTTGGCTTCC	RT-qPCR for GmSWEET10b				
13a/b/c/d-QRT-F	GGTTCTTCTATGGCCTTCTC	RT-qPCR for GmSWEET13a/b/c/d				
13a/b/c/d-QRT-R	ATAAACCAAATACAGCACCATC	Tri qi diribi dinavezi rodibida				
14a/b-QRT-F	GCTGTTATGTGGTTCTTCTATG	RT-qPCR for GmSWEET14a/b				
14a/b-QRT-R	GCGTTTCTGTACATCAAATACA	TT-qi Ottioi Omoweet 144/5				
CYP2-QRT-F	CGGGACCAGTGTGCTTCTTCA	DT =DOD for CmCVD2				
CYP2-QRT-R	CCCCTCCACTACAAAGGCTCG	RT-qPCR for GmCYP2				
For in situ hybridization						
antisense GmSWEET10a-F	CATCCCCATTCATTCACAAG	To amplify the entirence prober				
antisense GmSWEET10a-R	GTAATACGACTCACTATAGGGC- TATTCATGGCCGCGAATAGC	To amplify the antisense probe of GmSWEET10a				
antisense GmSWEET10b-F	AAGGGCAGTGAGAGTGAGAAG					
antisense GmSWEET10b-R	GTAATACGACTCACTATAGGGC- GAGGAGCAGAATGAAGTAAAG	To amplify the antisense probe of GmSWEET10b				
sense <i>GmSWEET10a</i> -F	GTAATACGACTCACTATAGGGC- CATCCCCCATTCATTCACAAG	To amplify the sense probe of				
sense <i>GmSWEET10a</i> -R	TATTCATGGCCGCGAATAGC	GmSWEET10a				
senseGmSWEET10b-F	GTAATACGACTCACTATAGGGC- AAGGGCAGTGAGAGTGAGAAG	To amplify the sense probe of				
sense <i>GmSWEET10b</i> -R	GAGGAGCAGAATGAAGTAAAG	GmSWEET10b				
For vector construction of overexpression						
p10a-g10a-F	gtcgactctagagctagagTAAGCGTCAAGACAGGTTT					
p10a-g10a-R	cggggaaattcgagctcgTCATCCACTTCCTCTGCGATTG	pGmSWEET10a-gGmSWEET10a vector				
· -						
p10b-g10b-F	gcatgcctgcaggtcgactTGCACATAACACAAATAGCA	pGmSWEET10b-gGmSWEET10b vector				
p10b-g10b-R	cggggaaattcgagctcgTCACACTGGGCAATCATCCTT					