Questão 1. Considere a equação diferencial autônoma

$$X'(t) = F(X(t)), \ \forall t \in I; \tag{1}$$

onde $X: I \subset \mathbb{R} \to \mathbb{R}^n$ é um campo suave e $F: \mathbb{R}^n \to \mathbb{R}^n$ é suave. Defina $\Phi: I \times \mathbb{R}^n \to \mathbb{R}^n$ da seguinte maneira: para cada $v \in \mathbb{R}^n$, seja $I \ni t \mapsto \Phi(t,v) \doteq \Phi^t(v) \in \mathbb{R}^n$ a única solução da equação diferencial autônoma (1) com condição inicial $\Phi^0(v) = v$. Prove que sejam quais forem $s,t \in I$ tais que $s+t \in I$, vale

$$\Phi^{t+s}(v) = \Phi^t(\Phi^s(v)), \ \forall v \in \mathbb{R}^n.$$

Solução: Fixe $v \in \mathbb{R}^n$ arbitrariamente e seja $s_0 \in I$ tal que $s_0 + t \in I$ seja qual for $t \in I$. Definamos $\psi, \eta : I \to \mathbb{R}^n$ por

$$\psi(t) \doteq \Phi^{t+s_0}(v)$$
, e $\eta(t) \doteq \Phi^t(\Phi^{s_0}(v))$.

Por definição, η é a única solução do seguinte PVI:

$$\begin{cases} X'(t) = F(X(t)), \ \forall t \in I; \\ X(0) = \Phi^{s_0}(v). \end{cases}$$

Verificaremos agora que ψ também é solução de tal PVI, o que implicará o resultado desejado, a saber, $\psi \equiv \eta$. De fato, evidentemente $\psi(0) = \Phi^{s_0}(v) = \eta(0)$, e, além disso, dado qualquer $t_0 \in I$ tal que $t_0 + s_0 \in I$, temos:

$$\frac{\mathrm{d}\psi}{\mathrm{d}t}\Big|_{t=t_0} = \frac{\mathrm{d}\Phi}{\mathrm{d}t}\Big|_{t=t_0+s_0} = F\left(\Phi^{t_0+s_0}(v)\right) = F(\psi(T)).$$

Questão 2. Mostrar que σ é uma aplicação aberta

Solução:

Lema (L.1). Let $f: M \to N$ be a continuous map which admits a local section. Then f is open.

Given any $q \in f(W)$, we'll prove there exists a neighbourhood U_q of q which is contained in f(W), which will guarantee f(W) is open.

Demonstração: Let $W \subset M$ be an open map. Fix any $q \in f(W)$ and consider a local section $\psi : V_q \to M$.

MATHEUS A. R. M. HORÁCIO