Quiz, 3 questions

For **both** word representations we can take a **sum** of vectors corresponding to tokens of any text to obtain good features for this text for further usage in linear model.

Simple neural networks for text

Quiz,Yesy,ধ্বৰ্গাণ্ড frue. Don't forget to normalize these features row-wise!

For **both** word representations we can take a **weighted sum** of vectors corresponding to tokens of any text to obtain good features for this text for further usage in linear model. The **weight** for any token can be an IDF value for that token.

Correct

Yes, this is true. For BOW we effectively get bag of TF-IDF values, where TF is a binary variable. Don't forget to normalize these features row-wise!

2/2 points

2.

Let's recall 1D convolutions for words:

Word embeddings

cat	0.7	0.4
sitting	0.2	-0.1
there	-0.5	0.4
or	-0.1	0.8
here	-0.5	0.3

What is the result of 1D convolution + maximum pooling over time for the following kernel without padding?

1	0
0	1

0.6

Sirffple Regral networks for text That's it! Quiz, 3 questions

~	1 / 1 point
3.	
Let's re	call 1D convolutions for characters. Choose correct statements.
	One 1D convolutional layer for spotting character 3-grams is enough for solving a practical task.
Un-se	elected is correct
Corre This	1D convolutions work better than BOW for huge datasets. ect is true.
Corre That	1D convolutions for characters consume one-hot encoded vectors for characters. ect 's right, they are not that long, so this is okay.