Secure Communications

Real World Stream Ciphers

MSc in Information Security & Digital Forensics.

Mark Cummins

- Used in HTTPS and WEP
- Weaknesses:
 - 1. Bias in initial output: $Pr[2^{nd} byte = 0] = 2/256$
 - 2. Prob. of (0,0) is $1/256^2 + 1/256^3$
 - 3. Related key attacks

Mark Cummins

CSS (Old hardware example, badly broken)

Linear feedback shift register (LFSR):

DVD encryption (CSS): 2 LFSRs

GSM encryption (A5/1,2): 3 LFSRs

Bluetooth (E0): 4 LFSRs

All Broken

Mark Cummins

CSS (Old hardware example, badly broken)

CSS: seed = 5 bytes = 40 bits

Easy to break in 2¹⁷

Mark Cummins

Cryptananalysis of CSS

Linear feedback shift register (LFSR):

Encrypted Movie

Prefix

CSS Prefix

- For all possible initial settings of 17-bit LFSR do:
 - Run 17-bit LFSR to get 20 bytes of output
 - Subtract from CSS prefix ⇒ candidate 20 bytes output of 25-bit LFSR
 - If consistent with 25-bit LFSR, found correct initial settings of both !!

Using key, generate entire CSS output

Mark Cummins

Modern Stream Ciphers - EStream

PRG:
$$\{0,1\}^s \times R \longrightarrow \{0,1\}^n$$
Seed Nonce

Nonce: a non-repeating value for a given key.

$$E(k, m; r) = m \bigoplus PRG(k; r)$$

The pair (k,r) is never used more than once.

Mark Cummins

EStream - Salsa20

Salsa20:
$$\{0,1\}^{128 \text{ or } 256} \times \{0,1\}^{64} \longrightarrow \{0,1\}^n$$
 (max n = 2⁷³ bits)

Salsa20(k;r) := H(k, (r, 0)) || H(k, (r, 1)) || ...

 t_1
 t_2
 t_1
 t_2
 t_3
 t_4
 t_4
 t_5
 t_4
 t_5
 t_5
 t_6
 t_7
 t_8
 t_8
 t_9
 t_9

h: invertible function. Designed to be fast on x86 (SSE2)

64 bytes

32 bytes

64 bytes

Mark Cummins

Is Salsa20 Secure?

Unknown: no known provably secure PRGs

In reality: no known attacks better than exhaustive search

Mark Cummins

Generating Randomness (keys, IV)

Pseudo random generators in practice: (e.g. /dev/random)

- Continuously add entropy to internal state
- Entropy sources:
 - Hardware RNG: Intel RdRand inst. (Ivy Bridge). 3Gb/sec.
 - Timing: hardware interrupts (keyboard, mouse)

NIST SP 800-90: NIST approved generators

Mark Cummins

Secure Communications

Thank You!

End of Section

Mark Cummins