

Indoor Air Quality Impacts
of Residential HVAC Systems
Phase II.A Report: Baseline
and Preliminary Simulations

Steven J. Emmerich Andrew K. Persily

Building and Fire Research Laboratory Gaithersburg, MD 20899

United States Department of Commerce Technology Administration

Institute of Standards and Technology

QC 100 .U56 NO.5559 1995

Indoor Air Quality Impacts
of Residential HVAC Systems
Phase II.A Report: Baseline
and Preliminary Simulations

Steven J. Emmerich Andrew K. Persily

January 1995 Building and Fire Research Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899

U. S. Department of Commerce
Ronald H. Brown, Secretary
Mary L. Good, Under Secretary for Technology
National Institute of Standards and Technology
Arati Prabhakar, Director

Prepared for:

U.S. Consumer Product Safety Commission
Directorate for Engineering Sciences
Division of Mechanical Engineering
Bethesda, MD 20814

Abstract

NIST has completed Phase II.A of a project to study the impact of HVAC systems on residential indoor air quality and to assess the potential for using residential forced-air systems to control indoor pollutant levels. In this effort, NIST is performing whole building airflow and contaminant dispersal computer simulations with the program CONTAM93 to assess the ability of modifications of central forced-air heating and cooling systems to control pollutant sources relevant to the residential environment. This report summarizes the results of Phase II.A of this project, which consisted of three major efforts: baseline simulations of contaminant levels without indoor air quality (IAQ) controls, design of the IAQ control retrofits, and preliminary simulations of contaminant levels with the IAQ control retrofits. In Phase II.B of the study, all of the baseline cases will be modified to incorporate the IAQ control retrofits. The retrofit results will then be compared to the baseline results to evaluate the effectiveness of the retrofits.

The pollutant concentrations in a building depend on many factors including the configuration of the building zones, the air leakage of the building envelope and of interior partitions, wind pressure profile on the building envelope, pollutant source strengths and temporal profiles, heating and cooling system airflow rates, furnace filter efficiency, characteristics of reversible pollutant sinks in the building, individual pollutant decay or deposition rates, and ambient weather and pollutant concentrations. This report describes the input data used to model the baseline houses with CONTAM93 and presents the results of the baseline simulations in the form of the transient pollutant concentrations for selected simulations and a summary of peak and average concentrations for all baseline simulations. Three indoor air quality control technologies were then selected for incorporation into the baseline house models to determine their effectiveness in controlling the modeled pollutant sources. The technologies include the following: electrostatic particulate filtration, heat recovery ventilation, and an outdoor air intake damper on the forced-air system return. Selected baseline cases were then modified to implement these indoor air quality control retrofits, and preliminary simulations were performed to demonstrate the ability of the program to model the control technologies.

Key Words: airflow modeling, building technology, computer simulation, filtration, heat recovery ventilator, HVAC system, indoor air quality, infiltration, residential buildings, ventilation

Acknowledgements

This work was sponsored by the U.S. Consumer Product Safety Commission under Interagency Agreement No. CPSC-IAG-93-1124. The authors wish to acknowledge the efforts of Roy Deppa and Lori Saltzman of CPSC in support of this project. The authors also express appreciation to Cherie Bulala for her assistance in performing simulations for the project.

Table of Contents

Abstract	. iii
Acknowledgements	. v
Introduction	1
Contents of Report	. 1
Baseline Simulations	. 3
Baseline Simulation Input Data	. 3
Baseline Simulation Results	13
Indoor Air Quality Controls	20
Electrostatic Particulate Filtration	20
Heat Recovery Ventilator	21
Outdoor Intake Duct	24
Preliminary Simulation of IAQ Control Retrofits	31
IAQ Control Retrofits	31
Results of Preliminary Simulation of IAQ Control Retrofits	32
Summary	36
References	38
Appendices	•••
A Airflow Modeling Results	41
B Baseline and Preliminary Simulation Results	

Introduction

Despite the increasing interest in residential indoor air quality (IAQ) problems, only limited research has been conducted which integrates the analysis of pollutant sources, residential heating and cooling system operation, and building characteristics. While central forced-air heating and cooling systems may provide solutions to some IAQ problems, such an integrated approach is required to analyze these options. Because large quantities of indoor air circulate through these systems, they offer the potential for treating the indoor air and then distributing this treated air through the system ductwork to the building. Also, outdoor air brought into the building by the forced-air system can be distributed throughout the building by this ductwork. Most modeling studies of IAQ in residential buildings have employed very simple models of the building and its systems, ignoring the multizone nature of the airflows involved. The use of such simple analytical procedures has limited our understanding of the impact of central forced-air heating and cooling systems on residential IAQ and the possibility of using these and other systems to mitigate IAQ problems.

The National Institute of Standards and Technology (NIST) is conducting a study for the U.S. Consumer Product Safety Commission (CPSC) to assess the potential effectiveness of existing heating, ventilating, and air conditioning (HVAC) technology to reduce the levels of selected pollutants in single-family residential buildings. This effort is employing a new multizone airflow and contaminant dispersal modeling program, CONTAM93 (1). In this effort, NIST is performing whole building airflow and contaminant dispersal computer simulations to assess the ability of modifications of central forced-air heating and cooling systems to control pollutant sources relevant to the residential environment. Phase I of the project included conducting a literature review, developing a detailed simulation plan, and hosting a workshop to discuss the project, and was described in a previous report (2). This report summarizes the results of Phase II.A which consisted of three major tasks: baseline simulations of contaminant levels without IAQ controls, design of the IAQ control retrofits, and preliminary simulations of contaminant levels with the IAQ control retrofits in place.

In Phase II.B of the study, the baseline HVAC systems will be modified to incorporate the IAQ control technologies described in this report and simulations will be performed for all conditions under which baseline simulations were performed. The Phase II.B simulation results will be compared with the results presented here to determine the effectiveness of the IAQ modifications at controlling the selected pollutant sources.

Contents of Report

The first section of the report describes the baseline simulations performed. The program CONTAM93 (1) was used to calculate airflows and pollutant distributions for the houses and pollutant sources described in the report on Phase I of the project (2). The houses modeled are not based on real buildings but are intended to be representative of typical buildings. This first section presents the input data used to describe the houses, HVAC systems, pollutants, sources, and boundary conditions in the baseline simulations. In addition, this section summarizes the

results of the baseline simulations including transient pollutant concentrations for selected simulations and a summary of peak and average concentrations for all baseline simulations.

The second section describes the indoor air quality control technologies that will be evaluated in the computer simulations during Phase II.B. These technologies will be incorporated into the baseline house models to determine their effectiveness in controlling the selected pollutant sources. The three technologies described in this section include electrostatic particulate filtration, heat recovery ventilation, and an outdoor air intake damper on the forced-air system return. This section describes each of these technologies and includes revisions of the baseline house duct drawings. In addition, this section contains an estimate of the equipment and installation costs and a revision of the thermal load calculations based on the modifications. Finally, the impacts of each of these technologies on "other contaminants" are discussed qualitatively. These other contaminants, as described in the original project work statement, include contaminants that have typically been of concern to designers of residential ventilation systems including cooking odors, tobacco smoke, moisture, outdoor pollen, outdoor odors and ozone.

The third section presents the results of preliminary simulations of the IAQ control retrofits. These simulations involved modifying selected baseline simulation cases with the three IAQ control retrofits. The preliminary simulations were performed to demonstrate the ability of the program to model the IAQ control technologies.

The report includes two appendices. The first appendix describes modeling performed to characterize the airflow in the houses including the results of fan pressurization simulations and whole house infiltration simulations. The second appendix includes summary tables of the baseline and preliminary simulation results.

Baseline Simulations

This section of the report describes the baseline simulations performed in Phase II.A. This section presents the input data describing the houses, HVAC systems, pollutants, sources, and boundary conditions modeled in the baseline simulations. In addition, this section summarizes the results of the baseline simulations including transient pollutant concentrations for selected simulations and a summary of peak and average concentrations for all baseline simulations.

Baseline Simulation Input Data

Calculating airflow rates and contaminant concentrations with CONTAM93 or any other multizone model requires the following input: the configuration and volume of the building zones, the air leakage paths through the building envelope and interior walls, wind pressure profile on the building envelope, pollutant source strengths and temporal profiles, HVAC system flows, furnace filter efficiency, characteristics of reversible pollutant sinks, individual pollutant decay or deposition rates, and ambient weather and pollutant concentrations. This section describes the input data used in the baseline simulations.

The study included eight building models - a ranch and a two-story house, located in two sites (Miami and Minneapolis), with typical and low values of airtightness. The Phase I NISTIR (2) described the layout and dimensions of each house and contained floorplan drawings. Simulations were performed under three sets of weather conditions (cold, mild, and hot) for each building. Each simulation was performed for a one-day cycle repeated until peak concentrations converged to a specified tolerance. Referring to all pollutant sources modeled for a single building as one simulation, there were a total of 24 baseline simulation cases. Table 1 lists the baseline simulations by house type, location, airtightness and weather condition.

Table 1 - Baseline simulations

Simulation	House type	Location Location	Airtightness	Weather
SIM1FLC	ranch	Miami	typical	cold
SIM1FLM	ranch	Miami	typical	mild
SIM1FLH	ranch	Miami	typical	hot
SIM1FTC	ranch	Miami	tight	cold
SIM1FTM	ranch	Miami	tight	mild
SIM1FTH	ranch	Miami	tight	hot
SIM1MLC	ranch	Minneapolis	typical	cold
SIM1MLM	ranch	Minneapolis	typical	mild
SIM1MLH	ranch	Minneapolis	typical	hot
SIM1MTC	ranch	Minneapolis	tight	cold
SIM1MTM	ranch	Minneapolis	tight	mild
SIM1MTH	ranch	Minneapolis	tight	hot
SIM2FLC	two-story	Miami	typical	cold
SIM2FLM	two-story	Miami	typical	mild
SIM2FLH	two-story	Miami	typical	hot
SIM2FTC	two-story	Miami	tight	cold
SIM2FTM	two-story	Miami	tight	mild
SIM2FTH	two-story	Miami	tight	hot
SIM2MLC	two-story	Minneapolis	typical	cold
SIM2MLM	two-story	Minneapolis	typical	mild
SIM2MLH	two-story	Minneapolis	typical	hot
SIM2MTC	two-story	Minneapolis	tight	cold
SIM2MTM	two-story	Minneapolis	tight	mild
SIM2MTH	two-story	Minneapolis	tight	hot

Detailed information on building component leakage of the houses is not available as the houses modeled were not based on real buildings. However, since there is no attempt to compare predictions with experimental data, the building leakage modeled needs only to be reasonable in magnitude and distribution. Table 2 shows all of the leakage paths between the zones of the Miami ranch house (see Figure 1 for the ranch house floorplan and zone labeling and Figure 2 for the two-story house floorplan and zone labeling). The Minneapolis houses have basements (zone label BMT) that are not shown in the figures. Table 3 lists the values for those leakage paths for both the typical and tight cases. The Table 3 leakage areas are for a reference pressure difference of 4 Pa and a discharge coefficient of 1.0 and are based on values listed in Table 23-3 of ASHRAE (3) unless otherwise noted. The typical values were generally based on "best estimate" and/or uncaulked entries in the ASHRAE table, while the tight values were based on minimum and/or caulked entries. All doors connecting zones other than closets were modeled as open. The same leakage values were used for the other houses, although the paths connecting the zones differed depending on the house configurations.

Figure 1 - Ranch house floorplan and zones

Figure 2 - Two-story house floorplan and zones

Table 2 - Air leakage paths for Miami ranch house

	MBR	BR2	BR3	MBA	BA2	UCL	KIT	LDA	HAL	GAR	ATC
BR2	INTW OUTL	11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	. a.e.s		in the second						
BR3		INTW OUTL						3.40			
MBA	INTD INTW				latin.	e services States Services					
BA2	INTW OUTL			INTW OUTL		-	7.26				
UCL	INTW				INTW						
KIT				INTW OUTL	INTW OUTL						
LDA			INTW OUTL				INTW INTD OUTL			1885 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
HAL	INTD INTW	INTD INTW	INTD INTW OUTL		INTD INTW	CLD INTW	INTD INTW OUTL	HAD			
GAR								EXTD EXW OUTL			
ATC	CEIL CPEN	CEIL CPEN	CEIL CPEN	CEIL CPEN PIP	CEIL CPEN PIP	CEIL	CEIL CPEN	CEIL CPEN CPEN	CEIL ATD		
AMB	WIN EXW OUTL	WIN EXW OUTL	WIN EXW OUTL	EXV EXW OUTL	EXV		WIN EXV EXW OUTL	SGD EXTD WIN EXW OUTL		GAD GARF EXW	VNT
	MBR	BR2	BR3	MBA	BA2	UCL	KIT	LDA	HAL	GAR	ATC

The infiltration through a building's envelope also depends on the static pressure distribution created by the wind on the building's exterior surfaces. The relationship between wind and surface pressures are characterized by wind pressure coefficients which depend on the wind direction, the building shape, the position on the building surface, and the presence of shielding near the building. The surface pressure coefficients for the building walls were based on Equation 23-8 of ASHRAE (3). The coefficient for the flat garage roof was based on Figure 14-6 of ASHRAE (3). The ASHRAE wind pressure coefficients do not include shielding effects and no modifier for shielding effects was used, however, recent studies have reported on the shielding effects of trees (4) and rows of houses (5).

Table 3 - Air leakage values

Name	Description	Typical	Tight
ATD	Attic door	30 cm ² /ea	18 cm ² /ea
CEIL	Ceiling [Based on general ceiling]	1.8 cm ² /m ²	$0.79 \text{ cm}^2/\text{m}^2$
CLD	Closet door (closed) [Based on interior door]	0.9 cm ² /m	0.25 cm ² /m
	Closet door frame [Based on general door frame]	25 cm²/ea	12 cm²/ea
CPEN	HVAC ceiling penetration [Based on kitchen vent with damper closed]	5 cm ² /ea	1 cm ² /ea
EXTD	Exterior door [Single]	21 cm²/ea	12 cm²/ea
	Door frame [Wood]	$1.7 \text{ cm}^2/\text{m}^2$	$0.3 \text{ cm}^2/\text{m}^2$
EXV	Bathroom exhaust vent	20 cm²/ea	10 cm²/ea
	Kitchen exhaust vent	40 cm ² /ea	5 cm ² /ea
EXW	Ceiling-wall joint	1.5 m ² /m	0.5 m ² /m
	Floor-wall joint	4 cm ² /m	0.8 cm ² /m
	Wall-wall joint [Based on ceiling-wall joint]	1.5 m ² /m	0.5 m ² /m
GAD	Garage door [Based on general door (2 m x 4 m)]	0.45 cm ² /m	$0.31 \text{ cm}^2/\text{m}$
	Garage door frame [Wood]	$1.7 \text{ cm}^2/\text{m}^2$	$0.3 \text{ cm}^2/\text{m}^2$
GARF	Garage roof [Based on general ceiling]	$1.8 \text{ cm}^2/\text{m}^2$	$0.79 \text{ cm}^2/\text{m}^2$
HAD	Hall doorway	2.4 m²/ea	2.4 m²/ea
INTD	Interior door (closed) [Based on Table 4.2 of Klote and Milke (6)]	140 cm ² /ea	75 cm²/ea
	Interior door (open)	2.1 m²/ea	2.1 m²/ea
INTW	Interior wall [Based on gypsum board on stud wall (Shaw et al. 7)]	2.0 cm ² /m ²	2.0 cm ² /m ²
OUTL	Electric outlet	2.5 cm ² /ea	0.5 cm ² /ea
PIP	Piping penetrations	6 cm ² /ea	2 cm²/ea
SGD	Sliding glass door	22 cm²/ea	3 cm ² /ea
VNT	Attic vent [Based on Table 21-1 of 3]	$1 \text{ cm}^2 / 300 \text{ cm}^2$	$1 \text{ cm}^2 / 300 \text{ cm}^2$
WIN	Double hung window	2.5 cm ² /m	0.65 cm ² /m
	Window framing [Wood]	1.7 cm ² /m ²	$0.3 \text{ cm}^2/\text{m}^2$

The building HVAC systems were designed in Phase I of the study and are described in the Phase I report (2). This earlier report contains the heating and cooling equipment types and descriptions, overall and individual supply and return airflow rate design values for both heating and cooling, and drawings showing the system equipment and duct locations and duct sizes. In addition to this information, CONTAM93 requires information on the system operation, specifically, an on-off schedule. The schedule was determined by calculating the fractional on-time required to meet the cooling or heating load for each 3-hour period of the day. A control profile incorporating this schedule was then input for each simulation. For the baseline simulations, the HVAC systems included standard furnace filters with constant efficiencies of 5% for fine particles and 90% for coarse particles. Fine particles are defined as having a diameter less than 2.5 μ m (the efficiency is based on a diameter of 0.6 μ m); coarse particles are defined as having a diameter greater than 2.5 μ m (the efficiency is based on a diameter of 6 μ m). These

efficiency values are based on assumed arrestance for these filters of about 90% and a review of manufacturers' test data. No outdoor air intake is included for the baseline HVAC systems.

Another important consideration for the HVAC systems is duct leakage. Since the duct system itself is not modeled in these simulations, duct leakage is modeled by including an additional system supply or return point and reducing the other supply and return flows by the corresponding amount rather than by an effective leakage area. Cummings et al. 1991 (8) tested duct leakage in 160 houses in Florida and found that return leaks were dominant in the majority of homes. They reported an average return leak fraction of 10.7% (based on ratio of leakage flow to total system flow). For the Minneapolis houses, a return leak of 10% was included in the basement. For the Miami ranch house, a supply leak of 10% was included in the attic because the system has a central return. For the Miami two-story house, no leaks were included because all ducts and equipment are internal. The air distribution system layouts were designed based on guidelines published by the National Association of Home Builders (9) and drawings are included in the Phase I report (2).

The ambient boundary conditions required by CONTAM93 include weather and outdoor pollutant concentrations. The weather conditions were chosen by selecting a hot, mild, and cold day for each location from Weather Year for Energy Calculation (WYEC) data (10). The WYEC data is presented in Tables 5 and 6 for Miami and Minneapolis, respectively, and includes temperature, wind speed, and wind direction from north.

Table 5 - Miami weather data

		Cold	uoio s		Mild		Hot		
Hour	T (°C)	V _{wind} (m/s)	Dir (°)	T (°C)	V _{wind} (m/s)	Dir (°)	T (°C)	V _{wind} (m/s)	Dir (°)
0	2.8	2.3	320	13.3	3.9	360	26.7	0	0
1	2.8	2.3	300	13.3	2.7	360	26.1	1.2	200
2	2.8	3.5	310	13.3	3.5	360	26.1	1.2	200
3	2.8	2.7	320	13.9	1.9	20	25.6	1.6	200
4	2.2	2.3	310	13.3	2.7	20	25.6	1.9	200
5	2.2	3.5	310	13.9	1.6	360	26.1	1.9	230
6	2.8	2.7	320	13.3	2.3	340	25.6	1.9	200
7	3.3	3.5	300	14.4	2.3	340	26.7	1.6	230
8	4.4	2.3	290	16.1	2.7	340	27.2	1.9	200
9	6.1	2.7	330	21.1	4.7	70	30.6	2.3	200
10	8.9	3.1	320	23.3	4.7	70	31.7	2.3	230
11	11.7	2.3	320	23.3	5.1	70	32.8	0	0
12	13.9	2.7	330	23.3	5.4	70	33.3	2.3	200
13	14.4	2.7	350	22.8	5.1	70	33.3	3.9	140
14	16.1	2.3	360	22.8	5.4	70	32.8	4.3	180
15	17.2	0.8	40	22.2	4.7	70	31.7	4.7	160
16	17.8	2.7	40	21.7	3.9	90	30.6	1.9	290
17	17.2	3.5	20	21.7	3.1	90	31.7	3.1	140
18	16.7	1.9	340	21.7	4.3	70	30.6	2.3	160
19	16.1	2.3	340	21.1	4.3	90	27.8	1.6	50
20	15	1.6	350	21.1	2.7	90	27.8	1.2	50
21	14.4	1.9	350	21.1	3.1	90	27.2	1.6	200
22	16.1	2.3	30	21.7	1.2	90	26.1	2.3	230
23	16.1	2.3	60	21.7	2.3	90	26.1	1.2	250
24	17.2	3.5	60	20.6	3.1	50	26.1	0	0

Table 6 - Minneapolis weather data

	Cold			Mild			Hot		
Hour	T (°C)	V _{wind} (m/s)	Dir (°)	T (°C)	V _{wind} (m/s)	Dir (°)	T (°C)	V _{wind} (m/s)	Dir (°)
0	-21.1	1.6	330	7.8	1.9	60	21.1	3.1	180
1	-21.1	1.6	330	7.8	1.9	40	20	2.7	180
2	-21.1	3.1	350	7.8	3.1	90	18.9	2.7	180
3	-21.1	3.1	350	7.2	1.9	100	17.8	1.9	180
4	-21.1	3.1	350	7.2	4.7	130	18.3	1.6	158
5	-21.1	3.1	350	7.2	3.9	130	17.2	2.7	135
6	-21.7	3.5	350	7.2	3.1	120	17.8	3.5	158
7	-21.7	2.7	340	7.2	3.9	140	20	1.9	158
8	-21.7	2.7	350	7.8	2.7	120	24.4	4.7	180
9	-21.1	3.9	340	8.9	3.1	130	26.1	5.8	180
10	-20.6	3.9	310	7.8	4.3	130	28.3	6.6	203
11	-20.6	4.7	310	8.3	4.7	130	30	6.2	203
12	-20.6	3.9	320	8.9	4.3	140	30.6	6.2	203
13	-20.6	4.3	320	8.9	4.7	140	31.1	7	203
14	-20	5.1	300	8.3	6.2	120	31.1	7.4	203
15	-20	4.7	290	8.9	6.2	110	31.1	6.6	203
16	-20.6	4.3	310	8.9	5.8	130	31.1	6.6	203
17	-21.1	3.5	290	9.4	5.1	130	28.9	4.7	203
18	-22.8	3.1	280	9.4	5.4	130	29.4	4.7	180
19	-23.3	2.7	280	11.1	5.4	160	27.8	4.7	180
20	-24.4	3.1	300	11.7	5.8	170	26.1	4.3	180
21	-25	3.1	280	11.1	6.2	180	24.4	3.9	180
22	-25.6	2.7	280	11.1	5.8	200	23.9	3.9	180
23	-27.2	2.3	240	10.6	6.2	220	23.3	4.7	158
24	-28.9	2.3	240	7.8	2.7	240	22.8	4.3	180

Outdoor pollutant concentrations vary by location and over time at any one location. The concentrations used as boundary conditions for the indoor sources in the simulations were selected as typical outdoor conditions and are not meant to represent the actual conditions at any specific location. The values used were specified per the schedules in Table 7. The CO and NO₂ concentrations were chosen based on review of US EPA air quality documents (11, 12, 13). They were chosen to have a diurnal pattern with morning and afternoon peaks. The selected CO and NO₂ concentration schedules are very similar to values measured outside a research house in Chicago (Figure 3.2 of 14). Fine particles and TVOCs are not discussed in the EPA documents. The ambient fine particle concentration was chosen based on the average of reported average measurements for four US cities (Table 4 of 15). The TVOC concentration chosen is in the

middle of the reported range of 10 to 211 μ g/m³ measured at 68 sites in the US (16). The fine particle and TVOC concentrations were assumed to be constant throughout the day.

In addition to the ambient concentrations in Table 7 that served as the boundary conditions for the indoor sources, elevated levels of CO, coarse particles, and NO₂ were simulated in order to evaluate the effect of the IAQ control technologies on pollutants brought into residences from the outdoors. These elevated pollutant concentrations were selected based on review of US EPA air quality documents (11, 12, 13) and were specified per the schedules in Table 8.

Table 7 - Outdoor pollutant concentration schedules

	A				
Hour of day	0 - 7	7-9	9 -17	17 - 19	19 - 24
CO (ppm)	1	2	1.5	3	1.5
NO ₂ (ppm)	0.02	0.04	0.02	0.04	0.02
Fine particles (µg/m³)	13	13	13	13	13
TVOCs (μg/m³)	100	100	100	100	100

Table 8 - Elevated outdoor pollutant concentrations schedule

Hour of day	0 - 7	7-9	9 -17	17 - 19	19 - 24
CO (ppm)	4	8	7	12	6
NO ₂ (ppm)	0.2	0.4	0.2	0.4	0.2
Coarse particles (µg/m³)	75	75	75	75	75

The Phase I report (2) described the pollutant sources considered for inclusion in the study. The pollutant sources used in the baseline simulations included several VOC burst sources (medium strength source based on a polish and high strength source based on a spray carpet cleanser (17)), a constant VOC area source (based on a PVC flooring material with high emissions (18)), and combustion sources (based on medium source strengths for ovens and space heaters (19)) of CO, NO₂, and fine particles. While the source strength used for the flooring material isbased on a material with high emissions, it is only moderately higher than the range of 0.17 to 2.11 mg/m²h recently reported in 5 day emission tests of finished particleboard (20). Table 9 lists detailed information on these sources including the zones (see Figures 1 and 2 for zone labels, also BMT is the basement zone) in which they are located, source strengths, and schedules.

Table 9 - Pollutant sources

Source name	Pollutant	Zone(s)	Source strength	Schedule
Burst (medium)	TVOCs	Several	300 mg/h	9 - 9:30 am 7 - 7:30 p.m.
Burst (high)	TVOCs	GAR and BMT	1100 mg/h	9 - 10 am 7 - 8 p.m.
Flooring material	TVOCs	All but GAR, ATC	7.0 mg/h m ²	constant
Oven	СО	KIT (ranch house), KFA (two-story house)	1900 mg/h	7 - 7:30 am 6 - 7 p.m.
Oven	NO ₂	KIT (ranch house), KFA (two-story house)	160 mg/h	7 - 7:30 am 6 - 7 p.m.
Oven	Fine particles	KIT (ranch house), KFA (two-story house)	0.2 mg/h	7 - 7:30 am 6 - 7 p.m.
Heater	СО	GAR and BMT	1000 mg/h	7 - 10 am (GAR) 7 - 9 p.m. (BMT)
Heater	NO ₂	GAR and BMT	250 mg/h	7 - 10 am (GAR) 7 - 9 p.m. (BMT)
Heater	Fine particles	GAR and BMT	2 mg/h	7 - 10 am (GAR) 7 - 9 p.m. (BMT)

In addition to the sources listed in Table 9, the simulation plan in the Phase I report (2) included a newly-finished floor as a floor-area based decaying source of VOCs. A test simulation with a medium strength source, modeled as a first order exponential decay source with initial emission rate of 17400 mg/m²h and decay constant of 1.24 h⁻¹ (based on a stain product (21)) was performed for the Miami ranch house. This source resulted in extremely high concentrations of TVOCs with a peak concentration of over 2 g/m³ and a concentration of 37 mg/m³ at the end of the day. None of the IAQ control retrofits being evaluated can be expected to have a significant impact on the extremely high concentrations from this source during the one-day simulation period. Therefore, this source was not included in the remaining baseline simulations. Decaying high-strength sources such as this one are of interest and may be studied in the future with simulations of longer duration.

Reversible sink effects for the VOCs were modeled with sink elements based on a boundary layer diffusion controlled (BLDC) model with a linear adsorption isotherm. The BLDC adsorption model is described by Axley (22). The parameters required for this sink model are the film mass transfer coefficient, the adsorbent mass, and the isotherm partition coefficient, and these parameters would vary over time and by location within a house. However, since little real data is available for these parameters (which depend on factors such as gas diffusion properties, airflow rates, and adsorbent material) and because the goal was to obtain a reasonable estimate of the reversible sink effects, constant values were used for all of the parameters and only the adsorbent mass was varied by zone. The film mass transfer coefficient used was 35 μ m/s and was calculated from equation 3.17a of Axley (22) with an assumed air velocity of 0.001 m/s, effective length of 4 m, Schmidt number of 1.0, and binary diffusion coefficient of 1.0 x 10⁻⁵ m²/s. The partition coefficient used was 0.5 g-air/g-sorbent and was estimated from parameters reported for

an empirical sink model for an experimental case of alkanes emitted by a wood stain in a test house (23). The adsorbent mass used was based on a mass of 6 kg per m² of adsorbent surface area which was assumed to be equal to half of the zone interior surface area.

Nitrogen dioxide decay and particle deposition were modeled as single-reactant first order reactions with a single, constant value in all rooms of the houses. Nitrogen dioxide decay depends strongly on the materials present in a house (e.g., floor and wall coverings, furnishings, etc.) and a wide range of measured values have been reported including a range of 0.09 - 13.74 h⁻¹ by Lee et al. (24). Other studies have reported average NO₂ decay rates of 0.17, 0.29, 0.65, 0.8, 0.82, and 2.07 h⁻¹ (25, 26, 27, 28, 29, 24). The kinetic rate coefficient used for NO₂ decay was 0.87 h⁻¹ and is based on the average of measurements in a contemporary research house reported by Leslie et al. (14).

Particle deposition depends on the size and type of particles, particle concentration, airflow conditions, and surfaces available for deposition. The particle decay rate used for fine particles was 0.08 h⁻¹ and was reported by Traynor et al. (30) for combustion products from a wood-burning stove in a test house. Offerman et al. (31) reported a similar mass-averaged value of 0.1 h⁻¹ for tobacco smoke particles in a research house. The decay rate can be calculated as the product of an average deposition velocity and a room surface-to-volume ratio. Assuming a room surface-to-volume ratio of 2 m⁻¹ (the actual value will depend on room geometry, furnishings, and surface finishes), a decay rate of 0.08 h⁻¹ corresponds to a deposition velocity of approximately 0.001 cm/s. Sinclair et al. (32, 33) reported higher average deposition velocities of 0.005 cm/s for fine-mode sulfate in telephone equipment buildings. However, the nature of the indoor environment, and especially the airflow conditions, in a detached single-family home and a commercial building are very different. Nazaroff et al. (34) discusses the use of deposition velocity and warns that "Deposition velocities determined for one indoor environment can only be applied to another to the extent that the air flow conditions are similar."

In the only report of coarse particle deposition rates in a test house found in the literature, Byrne et al. (35) reported values of 1.51 and $2.10~h^{-1}$ for 4 μm particles in an unfurnished and furnished room, respectively. The reported mean deposition velocities of 0.027 to 0.038 cm/s fall within the range of approximately .01 to 0.1 cm/s calculated from a natural convection deposition model by Nazaroff and Cass (36). The actual decay rate for the coarse outdoor air particles modeled in the simulations would depend on the size distribution of the particles. Since no specific distribution has been assumed , a decay rate of 1.5 h^{-1} was chosen based on the lower value reported by Byrne.

Baseline Simulation Results

The results of each of the 24 simulations listed in Table 1 include pollutant concentrations for up to 18 pollutants in each of the building zones for each 15-minute time step of the 24-hour simulation period. The complete transient simulation results are not presented here but are available in spreadsheet files. Instead, this section presents examples of the transient pollutant concentrations for selected simulations. Figures 3 through 6 show the pollutant concentrations in Zone LDA resulting from selected pollutant sources for simulation SIM1FLC (the typical Miami

ranch house in cold weather). Figures 7 through 10 show the corresponding results for SIM1FTC (the tight Miami ranch house in cold weather). Although these figures are only examples of transient results, some observations can be made into trends and factors affecting the predicted contaminant concentrations. A complete summary of peak and 24-hour, 4-hour, and 1-hour average concentrations for all baseline simulations are included in Tables 1a through 24e of Appendix B.

Figures 3 and 7 show the CO concentrations in Zone LDA resulting from the oven and heater sources (CO.1 and CO.2 in Tables 1 and 4 of Appendix B) for SIM1FLC and SIM1FTC, respectively. Both graphs show two daily peaks due to the operation of the oven. For the tight house, the peaks are shifted to a slightly later time due to reduced outdoor airflow into the house which resulted in less mixing of CO from the kitchen into the rest of the house. The heater source causes much lower concentrations than the oven source due to the low airflow rate from the garage into the house and the lower source emission rate. The resulting CO concentrations for the heater source are influenced primarily by the outdoor level. There is more damping of the outdoor variations in the tight house than the typical house due to the reduced air infiltration rate.

Figures 4 and 8 show the NO, concentrations (NO2.1 and NO2.2 in Tables 1 and 4 of Appendix B) in Zone LDA resulting from the oven and heater sources for SIM1FLC and SIM1FTC. The NO, concentrations show some of the same characteristics as the CO concentrations, with two peaks from the oven and a damped dependence on the outdoor concentration for the heater. However, the NO₂ peaks in the tight house are significantly less than in the typical house despite the reduced outdoor airflow into the house. In fact, the whole-house average NO₂ concentrations are lower in the tight house than in the typical house (0.025 ppm vs. 0.026 ppm for the oven source, and 0.003 ppm vs. 0.008 ppm for the heater source). These results may seem surprising as one might expect the reduced infiltration to result in higher NO₂ concentrations in the tight house. However, these results may be explained by the impact of NO, decay. The NO, in the house is either generated by the indoor sources or brought in from outside. During much of the day, when the combustion appliances are not operated, the outdoor air is the source of indoor NO, and, due to NO, decay, the indoor concentrations are lower than the outdoor concentration. Therefore, reducing the infiltration actually results in lower indoor NO, concentrations. When there is an indoor source of NO₂, a lower infiltration rate may still result in lower NO₂ concentrations in the zones without the source. However, the source-zone will have higher NO, concentrations when the infiltration rate is lower (the peak kitchen concentration from the oven is 1.686 ppm for the tight house and 1.434 ppm for the typical house). It is important to note that this result of lower NO₂ concentrations in tighter houses cannot be generalized to all cases. If the NO, decay rate was lower, the indoor NO, generation rate was higher, or the outdoor NO, concentration was lower, the tighter house could have higher concentrations. See Tables 1b and 4b of Appendix B for the peak and average NO₂ concentrations results for these simulations.

The TVOC concentrations in Zone LDA resulting from the burst source located in the LDA Zone (VOC4 in Tables 1 and 4 of Appendix B) are shown in Figures 5 and 9 for SIM1FLC and SIM1FTC. As expected, this source results in two daily peaks due to the source schedule and higher concentrations in the tight house due to the reduced airflow into the house.

Figures 6 and 10 show the CO and coarse particle concentrations (CO.3 and PART.3 of Tables 1 and 4 in Appendix B) for SIM1FLC and SIM1FTC, respectively, due to the elevated outdoor pollutant concentrations of Table 8. The CO concentration in the typical house tracks the outdoor concentration with a time lag based on the building time constant (related to the inverse of the building air change rate). The particle concentration shows the effect of the HVAC system cycling which changes the air change rate of the house and filters particles from the air. When the furnace is on, the concentration of coarse particles decreases due to the impact of the furnace filter. The tight house results exhibit damped CO peaks and valleys due to the longer time constants. Because the particles come from outdoors, the lower air change rates result in lower particle concentrations.

Indoor Air Quality Controls

This section describes the indoor air quality control technologies that will be evaluated in the study. These technologies will be incorporated into the baseline house models to determine their effectiveness in controlling the selected pollutant sources. The three technologies described in this section include the following:

Electrostatic particulate filtration

Heat recovery ventilation

Outdoor air intake damper on the forced-air system return

This section describes each of these technologies and includes revisions of the baseline house duct drawings. In addition, this section contains an estimate of the equipment and installation costs and a revision of the thermal load calculations based on the modifications. Finally, the impacts of each of these technologies on "other contaminants" are discussed. These other contaminants, as described in the original project work statement, include contaminants that have typically been of concern to designers of residential ventilation systems including cooking odors, tobacco smoke, moisture, outdoor pollen, outdoor odors, and ozone.

Electrostatic Particulate Filtration

The first IAQ control technology is increased particulate filtration through the installation of passive, electrostatic particulate filters. These filters were chosen based on the availability of performance data. In addition, the low pressure drop through these filters enables their installation without modification of the existing forced-air distribution system. The baseline houses are assumed to have standard furnace filters with an ASHRAE dust spot efficiency of less than 20% and an arrestance of 90%. These values are based on tests conducted in accordance with ASHRAE Standard 52.1 (37). The increased filtration is based on the use of electrostatic filters with an ASHRAE dust spot efficiency of 30% and an arrestance of 95%.

Although the efficiencies of particulate filters change over time as they become loaded, the computer simulations in this project will employ a constant filter efficiency. The efficiencies of the baseline and improved filters used in the simulations will be as follows:

	Baseline	Control #1
Particles <2.5 μm in diameter	5%	30%
Particles between 2.5 and 10 µm in diameter	90%	95%

The improved filters are installed in place of the regular furnace filters. Their location is indicated in the revised duct drawings showing all of the IAQ control technologies, Figures 13 through 16.

The installation of the improved filters are assumed not to affect the thermal loads of the houses. Due to a higher pressure drop through the filters, they may cause a slight reduction in the airflow rate through the system, which could affect the pressures across the building envelope and the resultant building infiltration rates. However, this effect is expected to be small, and the thermal load calculations were not modified for this control technology.

The cost of this first control technology includes the cost of the filters themselves and their installation. For comparison, the furnace filters in the baseline houses are assumed to cost \$2 each and to be changed every month. Therefore, the annual cost of the baseline filters is \$24. The improved filters are assumed to cost \$15 each and to be changed every 2 months. Therefore, the annual cost of the improved filters is \$90.

The installation of improved filters will reduce the concentrations of the so-called "other contaminants" in the houses to the degree that the filtration of each contaminant is increased. The concentrations of particulate contaminants with outdoor sources (pollen) will be reduced due to the increased particulate filtration. The concentrations of VOCs associated with outdoor odors will not be decreased. The increased filtration will not affect indoor ozone levels due to outdoor sources, since ozone removal rates will be unaffected by the new filters. In addition, these electrostatic filters are not sources of ozone themselves. The concentrations of other contaminants with indoor sources will also be affected to the degree that the filtration of each contaminant is increased. The levels of cooking odors and tobacco smoke will be decreased based on the increased filter efficiency for both fine and coarse particulates. Indoor moisture levels will be unaffected by the new filters because the outdoor air change rates will not be affected and because the improved filters have no humidification or dehumidification impacts.

Electronic air cleaners are also of interest and may be investigated in follow-up work. The existence of reliable performance data is being investigated.

Heat Recovery Ventilator

The second IAQ control technology is the installation of a heat recovery ventilator (HRV) in conjunction with the forced-air distribution system. As seen in Figure 11, the device brings outdoor air into the building where it exchanges heat with an airstream leaving the return side of the forced air system. Under heating conditions, the outdoor air is warmed by the outgoing airstream, and under cooling the outdoor air is cooled. The outgoing airstream is exhausted to the outdoors after leaving the heat recovery ventilator. The airstream from outdoors flows into the return side of the forced-air system after leaving the HRV.

Figure 11 - Schematic of Heat Recovery Ventilator

The HRV specifications are based on a commercially-available model designed for residential use and installation in conjunction with forced-air systems. The airflow rate capacity of the device was selected to obtain an air change rate of at least 0.5 air changes per hour (ach) at full flow. The actual outdoor airflow rate during operation was selected to provide 0.35 ach through the HRV. The actual whole building air change rate will also include envelope infiltration, which in turn depends on the airtightness of the house, weather conditions and ventilation equipment operation. The HRV specifications for the four houses are as follows:

Miami, 2-story

Airflow capacity: 30 to 60 L/s (65 to 127 cfm), roughly 0.25 to 0.5 ach

Airflow rate during operation: 44 L/s (93 cfm)

Efficiency: 69% at 0 °C (32 °F), 60% at -25 °C (-13 °F)

Maximum power consumption: 115 W

No defrost

Miami, Ranch

Airflow capacity: 30 to 60 L/s (65 to 127 cfm), roughly 0.4 to 0.8 ach

Airflow rate during operation: 26 L/s (55 cfm)

Efficiency: 69% at 0 °C (32 °F), 60% at -25 °C (-13 °F)

Maximum power consumption: 115 W

No defrost

Minneapolis, 2-story

Airflow capacity: 55 to 95 L/s (115 to 200 cfm), roughly 0.3 to 0.5 ach

Airflow rate during operation: 66 L/s (140 cfm)

Efficiency: 68% at 0 °C (32 °F), 61% at -25 °C (-13 °F)

Maximum power consumption: 216 W

Defrost cycle

Minneapolis, Ranch

Airflow capacity: 30 to 70 L/s (65 to 150 cfm), roughly 0.2 to 0.5 ach

Airflow rate during operation: 52 L/s (110 cfm)

Efficiency: 76% at 0 °C (32 °F), 56% at -25 °C (-13 °F)

Maximum power consumption: 105 W

Defrost cycle

The defrost cycle involves closing the outdoor air dampers for 5 minutes when the outdoor temperature is below -5 °C (23 °F). For outdoor temperatures between -5 and -30 °C (23 and -22 °F), each 5-minute defrost cycle is followed by a 35 minute period of air exchange before the next defrost cycle. For outdoor temperatures below -30 °C (-22 °F), each 5-minute defrost cycle is followed by 20 minutes of air exchange.

The HRV can be operated in several different control modes. The operation of the device and the fan speed (high or low) can be controlled by a timer, manually by the occupant or by a dehumidistat.

The installation of the HRV in each of the four houses is indicated in the revised duct drawings in Figures 13 through 16.

The thermal loads of the houses are affected by the installation and operation of the HRV due to the increased outdoor air change rate of the house when the devices are in operation. The air change rate due to the HRV operation is assumed to be additive to the baseline infiltration rate of 0.75 ach assumed for the design thermal load calculations. The thermal loads are increased by only a fraction of the increased outdoor air change rate based on the heat exchange efficiencies of the devices. For an additional air change rate of 0.35 ach and the rated heat exchange efficiencies of the HRVs, the revised design thermal loads for the four houses are given below. The baseline design thermal loads are described in detail in the Phase I report (2).

Baseline	With HRV
2.87 kW	$3.14 \mathrm{kW}$
6.43 kW	6.60 kW
Baseline	With HRV
1.83 kW	1.99 kW
5.76 kW	$5.88 \mathrm{kW}$
יו די	337°41 TID37
	With HRV
12.64 kW	13.59 kW
6.21 kW	6.36 kW
Baseline	With HRV
	9.86 kW
4.89 kW	4.97 kW
	2.87 kW 6.43 kW Baseline 1.83 kW 5.76 kW Baseline 12.64 kW 6.21 kW Baseline 9.25 kW

The cost of the HRVs includes the cost of the equipment and installation, the operating costs for the fans in the devices and the increased energy consumption due to the additional outdoor air change of the building. The cost of the equipment is \$500 for both of the Miami houses, \$600 for the Minneapolis ranch house and \$700 for the Minneapolis two-story house. These are list prices from the manufacturer of the HRV on which the specifications are based. The installation costs are more variable, based on the layout of the house and local labor rates, and they can range from \$200 to \$500. The cost of the energy consumed by the device and by the additional outdoor air change rate requires detailed thermal modeling of the building and system. As discussed in the Phase I report of the project, such modeling is beyond the scope of this project.

The installation of the HRV will impact the so-called "other contaminants" in the houses due to the increased outdoor air change rate. Due to the additional outdoor airflow into the houses, the concentrations of contaminants with outdoor sources (pollen, outdoor odors and ozone) will increase. For a simple, nonreactive and unfiltered contaminant, there will be an increased contaminant load equal to the outdoor concentration multiplied by the outdoor airflow rate. The impact of particulates will be reduced based on the efficiency of the filters in the HRV and of the furnace filter. The impact of outdoor ozone will be reduced somewhat by losses on the interior surfaces of the HRV ductwork. The concentrations of other contaminants with indoor sources (cooking odors and tobacco smoke) will be reduced based on the increased air change rate of the building. The impact of the additional ventilation on moisture will depend on the building location, indoor moisture sources, and season. Indoor humidity levels will be reduced when there are large indoor sources and low relative humidity outdoors, but will be increased when the outdoor humidity is higher than the indoor level. Detailed modeling of moisture transport is required to assess these impacts and is beyond the scope of the current project.

Outdoor Intake Duct

The third IAQ control technology is the installation of an outdoor air intake duct on the return side of the forced air distribution system. As seen in Figure 12, the system consists of an intake, a duct, a motorized damper, and a volume damper for adjusting the airflow rate, and is connected to the return side of the return duct. The maximum airflow rate capacity of the intake is 78 L/s (165 cfm), which corresponds to the following air change rates for the four houses:

Miami, 2-story: 0.62 ach Miami, Ranch: 1.05 ach

Minneapolis, 2-story: 0.41 ach Minneapolis, Ranch: 0.53 ach

Figure 12 - Schematic of Outdoor Air Intake Duct

The actual airflow rate through the intake depends on the position of the volume damper, the overall airflow resistance of the intake system, and the pressure developed by the forced-air fan. In the computer simulations, it is assumed that the volume damper is adjusted such that the intake system provides 0.35 ach to the building when the furnace fan is in operation. This air change rate corresponds to the following outdoor air intake rates for the four buildings:

Miami, 2-story: 44 L/s (93 cfm) Miami, Ranch: 26 L/s (55 cfm)

Minneapolis, 2-story: 66 L/s (140 cfm) Minneapolis, Ranch: 52 L/s (110 cfm)

The motorized damper can be controlled in several different ways. It is generally interlocked with the forced-air system fan so that it opens only when the forced-air fan is operating. The motorized damper can also be controlled to open based on a timer, dehumidistat or pollutant (e.g. carbon monoxide or carbon dioxide) sensor.

The installation of the outdoor air intake duct in each of the four houses is indicated in the revised duct drawings in Figures 13 through 16.

The thermal loads of the houses are affected by the installation and operation of the outdoor air intake duct due to the increased outdoor air change rate of the house when the devices are in operation. The air change rate due to the HRV operation is assumed to be additive to the baseline infiltration rate of 0.75 ach assumed for the design thermal load calculations. Based on an additional air change rate of 0.35 ach and no heat exchange, the design thermal loads for the four houses are given below. The baseline thermal loads were described in detail in the Phase I report (2).

Miami, 2-story	Baseline	With OAID
Heating	2.87 kW	3.54 kW
Cooling	6.43 kW	6.96 kW
Miami, Ranch	Baseline	With OAID
Heating	1.83 kW	2.23 kW
Cooling	5.76 kW	6.09 kW
Minneapolis, 2-story	Baseline	With OAID
Heating	12.64 kW	15.00 kW
Cooling	6.21 kW	6.71 kW
Minneapolis, Ranch	Baseline	With OAID
Heating	9.25 kW	10.73 kW
Cooling	4.89 kW	5.18 kW

The cost of the outdoor air intake duct includes the cost of the equipment and installation and the increased energy consumption due to the additional outdoor air change of the building. The cost of the equipment, including the controls and the motorized dampers, is \$750 based on list prices from the manufacturer of the outdoor air intake duct on which the specifications are based. The installation costs are more variable, based on the layout of the house and local labor rates, and they can range from \$100 to \$300. The cost of the energy consumed by the device and by the additional outdoor air change rate requires detailed thermal modeling of the building and system. As discussed in the Phase I report of the project (2), such modeling is beyond the scope of this project.

The installation of the outdoor air intake duct will impact the so-called "other contaminants" in the houses. Due to the additional outdoor airflow into the houses, the concentrations of contaminants with outdoor sources (pollen, outdoor odors and ozone) will increase. For a simple, nonreactive and unfiltered contaminant, the impact will be an increased contaminant load equal to the outdoor concentration multiplied by the outdoor airflow rate. The impact of particulates will be lessened based on the removal efficiency of the furnace filter. The impact of ozone will be lessened by losses on the interior surfaces of the ductwork. The concentrations of other contaminants with indoor sources (cooking odors and tobacco smoke) will be reduced based on the increased air change rate of the building. As in the case of the HRV, the impact of the additional ventilation on moisture will depend on the building location, indoor moisture sources, and season.

Figure 13 - IAQ Controls for Minneapolis Ranch House

Figure 14 - IAQ Controls for Minneapolis 2-Story House

Figure 15 - IAQ Controls for Miami Ranch House

Figure 16 - IAQ controls for Miami 2-Story House

Preliminary Simulation of IAQ Control Retrofits

This section describes the preliminary simulations of the IAQ control retrofits. These simulations involved modifying selected baseline simulation cases with the IAQ control retrofits described above. The preliminary simulations were performed to verify the ability of the program to model the control technologies. In Phase II.B of the study, all of the baseline cases will be modified to incorporate each of the IAQ control retrofits.

IAQ Control Retrofits

The IAQ control retrofits selected for modeling in this study are an electrostatic particulate filter, a heat recovery ventilator, and an outdoor air intake damper installed on the forced-air system return. These three technologies were described in detail in the previous section. This section discusses only the details important to modeling them with CONTAM93 (1).

The electrostatic particulate filters selected for the study have a filter efficiency of 30% for fine particles (emitted by the combustion sources in these simulations) and 95% for coarse particles (associated with the elevated outdoor air concentrations). The filters will be modeled by replacing the standard furnace filters in the baseline HVAC systems with the electrostatic filters. The filter efficiency will be modeled as constant over time and impacts on airflow through the system will be neglected.

The second IAQ control retrofit is the installation of a heat recovery ventilator (HRV) in conjunction with the HVAC system. The HRV draws air from the return side of the forced-air system and replaces it with outdoor air drawn through the heat exchanger. The outdoor airflow rate supplied will be 44 L/s for the Miami 2-story house, 26 L/s for the Miami ranch house, 66 L/s for the Minneapolis 2-story house, and 52 L/s for the Minneapolis ranch house. The HRV will be modeled by setting the outdoor airflow rate for each HVAC system to the appropriate fraction of the total system supply airflow rate. Thus, the desired amount of outdoor air will be supplied whenever the HVAC system is operating. The HVAC systems will be operated on the same schedules determined for the baseline simulations based on thermal loads. Other possible control options (such as constant operation or demand control) will not be studied.

Other considerations in modeling the HRV include filtration of the incoming outdoor air and the HRV defrost cycle. A standard furnace filter (with efficiencies of 5% for fine particles and 90% for coarse particles) will be included in the outdoor air intake path of the HRV. The HRV employs a defrost cycle in cold weather which involves periodically closing the outdoor air damper. However, operation of the defrost cycle will be neglected in the simulations.

The third IAQ control retrofit is the installation of an outdoor air intake duct on the return side of the HVAC system, which draws outdoor air into the return side of the forced-air system whenever it is operating. This retrofit will be modeled similar to the HRV. The baseline HVAC system will be modified to include a constant fraction of outdoor air whenever the HVAC system is operating. The outdoor air supply airflow rates will be the same as listed above for the HRV, and a standard furnace filter will be included in the outdoor air intake path. The primary

difference between the outdoor air intake damper and the HRV is that the outdoor air intake damper does not include an exhaust duct. Therefore, the outdoor airflow will tend to pressurize the house. This effect will be modeled by reducing the HVAC return flows by an amount equal to the outdoor air supplied to the system.

Results of Preliminary Simulation of IAQ Control Retrofits

The baseline case selected for modification with the IAQ control retrofits was SIM1FLC, the Miami ranch house with typical airtightness in cold weather. The simulations with the electrostatic particulate filtration, the HRV, and the outdoor air intake damper are referred to as SIM1FLCF, SIM1FLCH, and SIM1FLCO, respectively.

The results of each simulation includes pollutant concentrations for up to 18 pollutants in each of the building zones for each 15 minute time step of the 24 hour simulation period. As was the case for the baseline simulations, the complete transient simulation results are not presented here but are available in spreadsheet files. Figures 17 through 20 show examples of the transient pollutant concentrations and Tables 25a through 27e of Appendix B present a complete summary of peak and 24-hour, 4-hour, and 1-hour average concentrations for the preliminary IAQ control retrofit simulations as described for the baseline simulations.

Figure 17 shows total volatile organic compound (TVOC) concentrations in Zone LDA resulting from the constant floor source (VOC2 of Tables 1, 26, and 27 of Appendix B) for SIM1FLC, SIM1FLCH, and SIM1FLCO. Since SIM1FLCF differs from SIM1FLC by improved particle filtration efficiency, all VOC concentrations in SIM1FLCF are identical to SIM1FLC and are not shown. Both outdoor air intake devices result in modest reductions in the TVOC concentrations in the zone, with the HRV having a slightly greater effect. The HRV may have a greater effect because it has a neutral effect on indoor pressure (compared to the outdoor air intake damper which pressurizes the building) resulting in a greater average air change rate. The 24-hour average TVOC concentration in Zone LDA is 6040 μ g/m³, 5545 μ g/m³, and 5720 μ g/m³ for SIM1FLCH, and SIM1FLCO, respectively (see Tables 1c, 26c, and 27c of Appendix B).

Figure 18 shows TVOC concentrations in Zone LDA resulting from a burst VOC source in the garage (VOC5 of Tables 1, 26, and 27 of Appendix B). The VOC concentrations for SIM1FLC and SIM1FLCH are nearly identical while the concentrations for SIM1FLCO are somewhat lower. The 24 hour average TVOC concentration in Zone LDA for this source is 141 μ g/m³, 140 μ g/m³, and 132 μ g/m³ for SIM1FLC, SIM1FLCH, and SIM1FLCO, respectively (see Tables 1c, 26c, and 27c of Appendix B). The slightly reduced concentrations for SIM1FLCO is due to the effect of the outdoor air pressurizing the interior of the house which reduces the transport of the contaminant from the garage.

Figure 19 shows fine particle concentrations in the kitchen resulting from the oven source (PART.1 of Tables 1, 25, 26, and 27 of Appendix B). The improved filtration in case SIM1FLCF resulted in lower concentrations while the outdoor air intake devices had very little impact, possibly because the outdoor air particle concentration of 13 µg/m³ is close to the 24 hour

average baseline concentration. The 24 hour average fine particle concentration in Zone KIT is $11.4 \,\mu\text{g/m}^3$, $9.8 \,\mu\text{g/m}^3$, $11.6 \,\mu\text{g/m}^3$, and $11.6 \,\mu\text{g/m}^3$ for SIM1FLC, SIM1FLCF, SIM1FLCH, and SIM1FLCO, respectively (see Tables 1c, 25c, 26c, and 27c of Appendix B).

Figure 20 shows coarse particle concentrations in Zone LDA resulting from elevated outdoor levels (PART.3 of Tables 1, 25, 26, and 27 of Appendix B). None of the IAQ control retrofits resulted in a significant impact on the coarse particle concentrations. The 24 hour average coarse particle concentration in Zone LDA is 13.7 μg/m³, 13.6 μg/m³, 13.8 μg/m³, and 13.5 μg/m³ for SIM1FLCF, SIM1FLCH, and SIM1FLCO, respectively (see Tables 1c, 25c, 26c, and 27c of Appendix B). Possible explanations for the small changes include the relatively small increase in filtration efficiency for the electrostatic particulate filter (from 90% to 95%) and the inclusion of a standard filter in the outdoor air intake path for both the HRV and the outdoor air intake damper. The outdoor air intake filter limits the number of particles brought in with the outdoor air.

Summary

The National Institute of Standards and Technology (NIST) has completed Phase II.A of a project for the U.S. Consumer Product Safety Commission (CPSC) to study the impact of HVAC systems on residential indoor air quality and to assess the potential for using residential forced-air systems to control indoor pollutant levels. In this effort, NIST is performing whole building airflow and contaminant dispersal computer simulations with the program CONTAM93 to assess the ability of modifications of central forced-air heating and cooling systems to control pollutant sources relevant to the residential environment. During Phase II.A of this project, three major efforts were completed: baseline simulations of contaminant levels without IAQ controls, design of the IAQ control retrofits, and preliminary simulations of contaminant levels with the IAQ control retrofits.

It is important to note that the project is essentially a scoping study to conduct a preliminary assessment, using computer simulation, of the potential for using forced-air HVAC systems to improve residential IAQ. The project results are also limited by the lack of high quality input data for some simulation inputs and the lack of a thorough empirical evaluation of the model's predictive capability. Despite these limitations, the project is expected to identify key issues for further analysis and experimental work to meet the overall goal of cost-effective IAQ control in residential buildings.

This report described the input data used to model the baseline houses with CONTAM93 including the configuration of the building zones, the air leakage of the building envelopes and of interior partitions, wind pressure profile on the building envelope, pollutant source strengths and temporal profiles, heating and cooling system flows, furnace filter efficiency, pollutant sinks, pollutant decay or deposition, and ambient weather and pollutant concentrations. The results of the baseline simulations including transient pollutant concentrations for selected simulations and a summary of peak and average concentrations for all baseline simulations were also presented. It should be noted that the results for any one simulation may be counter-intuitive and should not be generalized to all cases.

Three indoor air quality control technologies were then selected for incorporation into the baseline house models to determine their effectiveness in controlling the modeled pollutant sources. The technologies selected include the following: an electrostatic particulate filter with efficiencies of 30% for fine particles and 95% for coarse particles, a heat recovery ventilator (HRV) providing an actual outdoor airflow of 0.35 ach, and an outdoor air intake damper on the forced-air system return also providing an actual outdoor airflow of 0.35 ach. The annual cost of the filters was estimated at \$90. The estimated installation and equipment costs of the HRV and of the outdoor air intake duct were \$700 to \$1200 and \$850 to \$1050, respectively. Detailed thermal modeling of the building and system would be required to determine the annual energy costs of these devices and is beyond the scope of this project.

Selected baseline cases were then modified to implement these IAQ control retrofits and preliminary simulations were performed to verify the ability of the program to model the control technologies. The results for the IAQ control retrofits are presented as examples only and are not

intended to be used to evaluate the effectiveness of the controls. In Phase II.B of the study, all of the baseline cases will be modified to incorporate each of the IAQ control retrofits. The Phase II.B simulation results will be compared to the baseline simulation results to determine the effectiveness of the IAQ control technologies at reducing contaminant levels in single-family residential buildings.

References

- 1. Walton GN. CONTAM93 User Manual (1994) NISTIR 5385, National Institute of Standards and Technology.
- 2. Emmerich SJ and Persily AK. *Indoor Air Quality Impacts of Residential HVAC Systems Phase I Report: Computer Simulation Plan* (1994) NISTIR 5346, National Institute of Standards and Technology.
- 3. ASHRAE. <u>1993 Handbook of Fundamentals</u> (1993) American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.
- 4. Strathopoulos T, Chiovitti D, and Dodaro L. "Wind Shielding Effects of Trees on Low Buildings" (1994) Building and Environment 29:141-150.
- 5. Walker IS and Wilson DJ. "Practical Methods for Improving Estimates of Natural Ventilation Rates" (1994) Proceedings of the 15th AIVC Conference.
- 6. Klote JH and Milke JA. <u>Design of Smoke Management Systems</u> (1992) American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. and Society of Fire Protection Engineers.
- 7. Shaw CY, Magee RJ, and Rousseau J. "Overall and Component Airtightness Values of a Five-story Apartment Building (1991) ASHRAE Transactions, Vol. 97, Pt. 2.
- 8. Cummings JB, Tooley, Jr. JJ, Moyer N. *Investigation of Air Distribution System Leakage and Its Impact in Central Florida Homes Final Report* (1991) Report No. FSEC-CR-397-91, Florida Solar Energy Center.
- 9. Yingling RK, Luebs DF, and Johnson RJ. Residential Duct Systems Selection and Design of Ducted HVAC Systems (1981) National Association of Home Builders of the United States.
- 10. Crow LW. Development of hourly data for weather year for energy calculations (WYEC), including solar data, at 29 stations throughout the United States and 5 stations in southern Canada (1983) ASHRAE RP 364, Bulletin.
- 11. EPA. National Air Quality and Emissions Trends Report, 1992 (October 1993) U.S. Environmental Protection Agency.
- 12. EPA. Air Quality Criteria for Carbon Monoxide (December 1991) U.S. Environmental Protection Agency.
- 13. EPA. Air Quality Criteria for Oxides of Nitrogen, Volume I of III (August 1993) U.S. Environmental Protection Agency.

- 14. Leslie NP, Ghassan PG and Krug EK. Baseline Characterization of Combustion Products at the GRI Conventional Research House (1988) GRI-89/0210, Gas Research Institute.
- 15. Sinclair JD, Psota-Kelty LA, Weschler CJ and Shields HC. "Measurement and Modeling of Airborne Concentrations and Indoor Surface Accumulation Rates of Ionic Substances at Neenah, Wisconsin" (1990) Atmospheric Environment 24A:627-638.
- 16. Shields HC and Fleischer DM. VOC Survey: Sixty-eight Telecommunication Facilities (1993) Proceedings of Indoor Air '93, Vol. 2.
- 17. Colombo A, de Bortoli M, Pecchia E, Schauenburg H, Schlitt H and Vissers H. "Chamber Testing of Organic Emission from Building and Furnishing Materials" (1990) The Science of the Total Environment 91:237-249.
- 18. Saarela K and Sandell E. "Comparative Emission Studies of Flooring Materials with Reference to Nordic Guidelines" (1991) Proceedings of ASHRAE IAQ 91.
- 19. DOE. Indoor Air Quality Environmental Information Handbook: Combustion Sources (1990) DOE/EH/79079-H1, U.S. Department of Energy.
- 20. Hoag M and Cade D. "Particleboard and MDF VOC Emissions Testing" (1994) presented at the 28th International Particleboard/Composite Materials Symposium.
- 21. Tichenor BA and Guo Z. "The Effect of Ventilation on Emission Rates of Wood Finishing Materials" (1991) Environment International 17:317-323.
- 22. Axley JW. "Adsorption Modeling for Macroscopic Contaminant Dispersal Analysis" (1990) NIST-GCR-90-573, National Institute of Standards and Technology.
- 23. Chang JCS and Guo Z. "Modeling of Alkane Emissions from a Wood Stain" (1993) Proceedings of Indoor Air '93, Vol. 2.
- 24. Lee K, Yanagisawa Y, Spengler JD, and Billick IH. "Determination of Nitrogen Dioxide Generation and Decay Rates using Mass Balance Model" (1993) Proceedings of Indoor Air '93, Vol. 3.
- 25. Leslie NP and Billick IH. "Examination of Combustion Products in an Unoccupied Research House" (1990) Proceedings of Indoor Air '90.
- 26. Ozkaynak H, Ryan PB, Allen GA, and Turner WA. "Indoor Air Quality Modeling: Compartmental Approach with Reactive Chemistry" (1982) Environment International 8:461-471.

- 27. Borrazzo JE, Osborn JF, Fortmann RC, Keefer RL, and Davidson CI. "Modeling and Monitoring of CO, NO and NO₂ in a Modern Townhouse" (1987) Atmospheric Environment 21:299-311.
- 28. Spicer CW, Coutant RW, Ward GF, Joseph DW, Gaynor AJ, and Billick IH. "Rates and Mechanisms of NO2 Removal from Indoor Air by Residential Materials" (1989) Environment International 15:643-654.
- 29. Tamura GT. "Measurement of Combustion Products from Kerosene Space Heaters in a Two-Story House" (1987) ASHRAE Transactions V. 94, Pt. 1.
- 30. Traynor GW, Apte MG, Carruthers AR, Dillworth JF, Grimsrud DT, and Gundel LA. "Indoor Air Pollution due to Emissions from Wood-Burning Stoves" (1987) Environ. Sci. Technol. 21:691-697.
- 31. Offerman FJ, Sextro RG, Fisk WJ, Grimsrud DT, Nazaroff WW, Nero AV, Revzan KL, and Yater J. "Control of Respirable Particles in Indoor Air with Portable Air Cleaners" (1985) Atmospheric Environment 19:1761-1771.
- 32. Sinclair JD, Psota-Kelty LA, and Weschler CJ. "Indoor/outdoor Ratios and Indoor Surface Accumulations of Ionic Substances at Newark, New Jersey" (1988) Atmospheric Environment 22:461-469.
- 33. Sinclair JD, Psota-Kelty LA, and Weschler CJ. "Indoor/outdoor Concentrations and Indoor Surface Accumulations of Ionic Substances" (1985) Atmospheric Environment 19:315-323.
- 34. Nazaroff WW, Gadgil AJ, and Weschler CJ. "Critique of the Use of Deposition Velocity in Modeling Indoor Air Quality" (1993) *Modeling of Indoor Air Quality and Exposure* by American Society for Testing and Materials.
- 35. Byrne MA, Lange C, Goddard AJH, and Roed J. "Indoor Aerosol Deposition Measurements for Exposure Assessment Calculations" (1993) Proceedings of Indoor Air '93.
- 36. Nazaroff WW and Cass GR. "Mass-transport Aspects of Pollutant Removal at Indoor Surfaces" (1989) Environment International 15:567-584.
- 37. ASHRAE. Gravimetric and Dust Spot Procedures for Testing Air Cleaning Devices Used in General Ventilation for Removing Particulate Matter (1992) ASHRAE Standard 52.1-1992.

Appendix A Airflow Modeling Results

CONTAM93 was used to analyze airflow in the houses using two approaches: simulated fan pressurization tests and directly calculated whole building air change rates under a range of wind speed and indoor - outdoor temperature differences.

Fan pressurization tests in the houses were simulated with CONTAM93 by including a constant flow element in the door of each house and adjusting the flow until a pressure differences of 4 and 50 Pa was achieved. The airflow rates at 50 Pa were divided by the interior volumes of the houses to determine the 50 Pa air change rates, and the 4 Pa flows were converted to effective leakage areas using Equation 27 in Chapter 23 of ASHRAE (3). The results of the fan pressurization simulations are shown in Table 1. The difference between the Miami and Minneapolis houses is due primarily to the existence of the basement in the Minneapolis houses. In terms of both measures of airtightness, the tight houses are about 66% tighter than the houses of typical leakage.

Table 1 - Fan pressurization simulation results

House	ach ₅₀ (hr ⁻¹)	Leakage area (cm²)
Typical Miami ranch	13.2	680
Tight Miami ranch	4.1	220
Typical Minneapolis ranch	6.6	720
Tight Minneapolis ranch	2.2	230
Typical Miami 2 story	12.9	1,120
Tight Miami 2 story	4.6	390
Typical Minneapolis 2 story	8.8	1,170
Tight Minneapolis 2 story	3.1	410

CONTAM93 was used to calculate whole building air change rates for wind speeds from 0 to 10 m/s and indoor-outdoor temperature differences from -10 to 30 °C. The wind direction was held constant throughout the simulations. These simulations were performed with the HVAC systems both on and off. Whole building air change rates were calculated by adding the airflow entering the conditioned space of the house through all leakage paths. The results of these airflow simulations are shown in Tables 2 through 9 for the system off.

Several general trends are shown by these tables. Using 'tight' values for the airflow elements vs. 'typical' or best estimate values reduced the whole building air change rate by up to a factor of four as compared to a factor of three for the fan pressurization results. Also, over the range considered here, the wind speed had a much greater impact on the whole building air change rate than the temperature difference. However, the tight airflow elements reduced the impact of the wind speed more than the impact of the temperature difference.

Table 2 - Whole house air change rate for typical Miamiranch house (ach)

Tin - Tout (K)	- 10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.33	0.21	0.00	0.22	0.35	0.46	0.57	0.67	0.76
2	0.40	0.32	0.33	0.38	0.47	0.54	0.65	0.74	0.84
4	0.75	0.78	0.82	0.85	0.89	0.94	1.00	1.08	1.15
6	1.3 1	1.34	1.38	1.42	1.46	1.50	1.54	1.61	1.67
8	1.92	1.96	2.01	2.06	2.11	2.16	2.21	2.27	2.33
10	2.57	2.63	2.69	2.75	2.81	2.87	2.94	3.01	3.08

Table 3 - Whole house air change rate for tight Miamiranch house (ach)

							•		
Tin - Tout (K)	- 10	-5	0	5	10	15	20	25	30
Wind speed (m/s)				- · · - ·					
0	0.10	0.07	0.00	0.07	0.11	0.14	0.17	0.20	0.23
2	0.11	0.09	0.08	0.10	0.14	0.17	0.20	0.23	0.26
4	0.18	0.18	0.19	0.21	0.22	0.24	0.26	0.28	0.31
6	0.30	0.31	0.32	0.33	0.34	0.36	0.38	0.39	0.42
8	0.44	0.46	0.47	0.48	0.49	0.51	0.53	0.54	0.57
10	0.60	0.61	0.63	0.64	0.65	0.67	0.69	0.71	0.73

Table 4 - Whole house air change rate for typical Minneapolis ranch house (ach)

						A		`	
Tin - Tout (K)	- 10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.25	0.16	0.00	0.16	0.26	0.34	0.42	0.49	0.56
2	0.29	0.23	0.18	0.23	0.31	0.39	0.46	0.53	0.59
4	0.45	0.41	0.44	0.47	0.50	0.54	0.59	0.64	0.69
6	0.69	0.72	0.75	0.78	0.81	0.83	0.87	0.91	0.95
8	1.03	1.06	1.09	1.12	1.16	1.19	1.22	1.26	1.29
10	1.39	1.43	1.46	1.50	1.54	1.57	1.62	1.66	1.70

Table 5 - Whole house air change rate for tight Minneapolis ranch house (ach)

Tin - Tout (K)	- 10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.09	0.06	0.00	0.06	0.10	0.13	0.16	0.19	0.21
2	0.09	0.07	0.04	0.07	0.11	0.14	0.17	0.20	0.22
4	0.13	0.10	0.11	0.12	0.14	0.16	0.19	0.21	0.24
6	0.17	0.18	0.19	0.19	0.21	0.22	0.23	0.25	0.27
8	0.25	0.26	0.27	0.28	0.29	0.30	0.31	0.33	0.34
10	0.34	0.35	0.36	0.37	0.38	0.39	0.41	0.42	0.44

Table 6 - Whole house air change rate for typical Miami 2 story house (ach)

Tin - Tout (K)	- 10	- 5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.38	0.24	0.00	0.25	0.40	0.53	0.64	0.76	0.87
2	0.44	0.34	0.36	0.42	0.51	0.62	0.72	0.81	0.91
4	0.82	0.86	0.89	0.93	0.96	1.02	1.08	1.15	1.2 1
6	1.43	1.47	1.5 1	1.55	1.60	1.64	1.68	1.74	1.80
8	2.10	2.15	2.20	2.25	2.30	2.36	2.41	2.47	2.53
10	2.82	2.88	2.94	3.01	3.07	3.14	3.21	3.28	3.35

Table 7 - Whole house air change rate for tight Miami 2 story house (ach)

Tin - Tout (K)	- 10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.13	0.08	0.00	0.09	0.14	0.18	0.22	0.26	0.30
2	0.14	0.10	0.09	0.12	0.16	0.21	0.25	0.28	0.32
4	0.20	0.22	0.23	0.24	0.26	0.28	0.30	0.34	0.38
6	0.36	0.37	0.38	0.40	0.41	0.43	0.44	0.47	0.49
8	0.53	0.54	0.56	0.57	0.59	0.60	0.62	0.64	0.66
10	0.71	0.73	0.75	0.76	0.78	0.80	0.82	0.84	0.86

Table 8 - Whole house air change rate for typical Minneapolis 2 story house (ach)

Tin - Tout (K)	- 10	- 5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.25	0.15	0.00	0.17	0.27	0.35	0.43	0.50	0.58
2	0.30	0.24	0.25	0.28	0.34	0.42	0.48	0.54	0.61
4	0.57	0.60	0.62	0.64	0.66	0.70	0.74	0.78	0.83
6	0.99	1.02	1.05	1.08	1.10	1.13	1.16	1.20	1.24
8	1.46	1.49	1.52	1.56	1.60	1.63	1.67	1.7 1	1.75
10	1.95	2.00	2.04	2.08	2.12	2.17	2.22	2.27	2.32

Table 9 - Whole house air change rate for tight Minneapolis 2 story house (ach)

Tin - Tout (K)	-10	-5	0	5	10	15	20	25	30
Wind speed (m/s)							-		
0	0.09	0.06	0.00	0.06	0.09	0.12	0.15	0.18	0.20
2	0.10	0.07	0.06	0.08	0.11	0.14	0.17	0.19	0.21
4	0.14	0.15	0.16	0.17	0.18	0.19	0.21	0.23	0.26
6	0.25	0.26	0.27	0.28	0.29	0.30	0.31	0.33	0.34
8	0.37	0.38	0.39	0.40	0.41	0.42	0.44	0.45	0.47
10	0.50	0.51	0.53	0.54	0.55	0.56	0.58	0.59	0.61

Tables 10 through 17 present the results of the airflow simulations with the HVAC system on. Operation of the HVAC system increased the building air change rate as much as 0.31 ach at zero wind speed and temperature difference due to supply duct leakage in the attic. The effect of the system fan was less than 0.07 ach at high wind speeds (> 4 m/s) and temperature differences (> 10 °C).

Table 10 - Whole house air change rate for typical Miami ranch house with system on (ach)

Tin - Tout (K)	-10	-5	0	5	10	15	20	25	30
Wind speed (m/s)								-	
0	0.45	0.38	0.31	0.39	0.52	0.63	0.73	0.83	0.93
2	0.59	0.52	0.41	0.50	0.63	0.74	0.84	0.93	1.03
4	0.86	0.81	0.85	0.89	0.95	102	1.10	1.17	1.24
6	1.34	1.37	141	145	149	1.55	161	1.67	173
8	1.95	199	2.04	2.09	2.14	2.19	2.25	2.30	2.38
10	2.60	2.66	2.72	2.78	2.84	2.91	2.97	3.04	3.11

Table 11- Whole house air change rate for tight Miami ranch house with system on (ach)

Tin - Tout (K)	-10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.29	0.29	0.30	0.30	0.30	0.31	0.31	0.33	0.37
2	0.30	0.30	0.30	0.30	0.30	0.31	0.32	0.36	0.39
4	0.37	0.36	0.34	0.33	0.31	0.32	0.36	0.41	0.44
6	0.46	0.45	0.44	0.43	0.41	0.40	0.42	0.46	0.49
8	0.56	0.55	0.53	0.52	0.53	0.55	0.57	0.58	0.61
10	0.65	0.64	0.64	0.66	0.69	0.71	0.73	0.75	0.77

Table 12 - Whole house air change rate for typical Minneapolis ranch house with system on (ach)

Table II Whole I	COUC WI	omango i		P					011 (4411)
Tin - Tout (K)	-10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.24	0.16	0.00	0.15	0.25	0.33	0.41	0.48	0.55
2	0.28	0.22	0.18	0.22	0.30	0.38	0.45	0.52	0.58
4	0.44	0.41	0.44	0.47	0.50	0.53	0.59	0.64	0.68
6	0.69	0.72	0.75	0.78	0.80	0.83	0.87	0.91	0.94
8	1.03	1.06	1.09	1.12	1.16	1.19	1.22	1.26	1.29
10	1.39	1.42	1.46	1.50	1.53	1.57	1.61	1.65	1.70

Table 13 - Whole house air change rate for tight Minneapolis ranch house with system on (ach)

Tin - Tout (K)	-10	-5	0	5	10	15	20	25	30
Wind speed (m/s)				-					
0	0.09	0.05	0.00	0.05	0.09	0.12	0.15	0.18	0.21
2	0.08	0.06	0.04	0.06	0.10	0.13	0.16	0.19	0.21
4	0.12	0.10	0.11	0.12	0.13	0.15	0.18	0.21	0.23
6	0.17	0.18	0.18	0.19	0.20	0.22	0.23	0.25	0.26
8	0.25	0.26	0.27	0.28	0.29	0.30	0.31	0.32	0.34
10	0.34	0.35	0.36	0.37	0.38	0.39	0.40	0.42	0.43

Table 14 - Whole house air change rate for typical Miami 2 story house with system on (ach)

Tm - Tout (K)	-10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.38	0.24	0.00	0.25	0.40	0.53	0.64	0.76	0.87
2	0.44	0.34	0.36	0.42	0.51	0.62	0.72	0.81	0.91
4	0.82	0.86	0.89	0.93	0.96	102	108	1.15	1.21
6	143	147	1.52	156	160	164	168	174	180
8	2.10	2.15	2.20	2.25	2.31	2.36	2.41	2.47	2.53
10	2.82	2.88	2.94	3.00	3.07	3.14	3.21	3.28	3.35

Table 15 - Whole house air change rate for tight Miami 2 story house with system on (ach)

30
0.30
0.32
0.38
0.49
0.66
0.87
((

Table 16 - Whole house air change rate for typical Minneapolis 2 story house with system on (ach)

				•					
Tin - Tout (K)	-10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.25	0.16	0.01	0.17	0.27	0.35	0.43	0.51	0.58
2	0.31	0.24	0.25	0.29	0.35	0.42	0.48	0.55	0.61
4	0.57	0.60	0.62	0.64	0.66	0.70	0.74	0.79	0.83
6	0.99	102	105	108	1.11	1.13	1.16	1.20	124
8	146	149	1.53	156	160	163	167	171	175
10	195	2.00	2.04	2.08	2.13	2.17	2.22	2.27	2.32

Table 17 - Whole house air change rate for tight Minneapolis 2 story house with system on (ach)

Tin - Tout (K)	-10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.09	0.06	0.00	0.06	0.09	0.12	0.15	0.18	0.20
2	0.10	0.07	0.06	0.08	0.11	0.14	0.17	0.19	0.21
4	0.15	0.15	0.16	0.17	0.18	0.19	0.21	0.23	0.26
6	0.26	0.26	0.27	0.28	0.29	0.30	0.31	0.33	0.34
8	0.38	0.38	0.39	0.40	0.41	0.42	0.44	0.45	0.47
10	0.50	0.51	0.53	0.54	0.55	0.56	0.58	0.59	0.61

Appendix B Baseline and Preliminary Simulation Results

Tables 1a through 24e of Appendix B summarize the results of all 24 baseline simulations. Tables 25a through 27e summarize the results of the 3 preliminary simulations of the IAQ control retrofits. Tables 1a through 27a show the overall peak concentrations (excluding the basement, attic, garage and closet zones), the location of that overall peak, and the whole house 24-hour average concentrations (excluding the basement, garage, and attic zones). Tables 1b through 27b show the individual zone peak concentrations for the main living space zones. Tables 1c through 27c show the individual zone 24-hour average concentrations. Tables 1d through 27d show the individual zone 4-hour average concentrations. The 4-hour average was calculated for the VOC burst sources from 7 p.m. to 11 p.m., for the oven from 6 p.m. to 10 p.m., and for the heater from 7 am to 11 am. No 4-hour average was calculated for either the floor VOC source or the outdoor air pollutants. Tables 1e through 27e show the individual zone 1-hour average CO concentrations. The 1-hour average was calculated for the oven from 7 p.m. to 8 p.m. and for the heater from 9 am to 10 am.

	PART.3	(µg/m³)	14.63			PART.3	(µg/m³)	8.89	22.93	16.59	26.34	23.95	19.44	33.43	35.53
	NO2.3	(PPM)	0.079			NO2.3	(PPM)	0.104	0.165	0.107	0.166	0.140	0.132	0.191	0.210
	CO.3	(PPM)	6.77			CO.3	(PPM)	9.48	9.84	9.65	10.15	10.00	10.03	10.35	10.34
	PART.2	(μg/m³)	10.75			PART.2	(µg/m³)	10.40	11.47	10.41	11.86	11.57	11.18	12.14	12.14
	N02.2	mdd	0.008			N02.2	(PPM)	0.010	0.017	0.011	0.017	0.014	0.013	0.019	0.021
	CO.2	mdd	1.60			CO.2	(PPM)	2.25	2.35	2.30	2.46	2.41	2,42	2.51	2.51
	PART.1	(µg/m³)	10.86			PART.1	(µg/m³)	10.42	11.47	10.43	11.88	15.67	11.19	12.14	12.16
	N02.1	mdd	0.026			N02.1	(PPM)	0.056	0.047	0.046	0.083	1.434	0.089	0.054	0.045
	CO.1	mdd	2.75			CO.1	(PPM)	4.93	4.10	4.57	5.50	44.43	6.14	3.92	3.33
	V0C9	$(\mu g/m^3)$	205			VOC9	(µg/m³)	281	234	4099	407	236	215	247	214
	800C8	$(\mu g/m^3)$	217			VOC8	(µg/m³)	13163	253	274	330	258	237	566	221
	V0C7	(µg/m³)	219			V0C7	(mg/m ₃)	347	271	354	296	255	258	9360	752
	9200	(mg/m ₃)	225			920A	(µg/m³)	393	314	347	462	4332	482	312	256
ntrations	VOCS	(µg/m³)	117		SI	VOCS	(µg/m³)	131	126	126	171	160	416	125	120
vg conce	VOC4	(μg/m³)	183		entration	VOC4	(µg/m³)	232	197	506	303	274	1593	208	178
1 24-hr a	VOC3	(μg/m³)	218		seak con	VOC3	(µg/m³)	645	384	672	1630	297	337	293	2430
C overal	VOC2	(µg/m³)	2909		C zone	VOC2	(µg/m³)	11815	9465	10907	1961	7974	7537	6409	6516
Table 1a - SIM1FLC overall 24-hr avg concentrations	V0C1	(µg/m³)	265		Table 1b - SIM1FLC zone peak concentrations	VOCI	(µg/m³)	303	185	164	333	141	138	142	155
Table 1a			24 hr avg		Table 1b			BA2	BR2	BR3	HAL	КП	LDA	MBA	MBR

Table BA2 BR2 BR3 HAL KIT	Table C - SIMIFLC zone 24-hr avg concentrations VOC1 VOC2 VOC3 VOC4 VOC5 VOC5	FLC zone VOC2 (µg/m³) 8418 6422 8211 5249 5540	24-hr avg VOC3 (µg/m³) 255 172 252 316	2 concent VOC4 (µg/m³) 138 124 132 128	rations VOC5 (μg/m³) 109 106 107 108	VOC6 (µg/m³) 190 157 178 177 647	VOC7 (μg/m³) 200 155 196 223	VOC8 (µg/m³) 1915 149 165 155	VOC9 (μg/m³) 160 137 727 145	CO.1 (PPM) 2.38 2.09 2.30 2.32 6.59	NO2.1 (PPM) 0.009 0.010 0.009 0.016	PART.1 (μg/m³) 9.84 10.66 10.01 11.10	CO.2 (PPM) 1.61 1.61 1.62 1.60	NO2.2 (PPM) 0.005 0.007 0.005 0.009	PART.2 (µg/m³) 9.78 10.62 9.96 11.04	CO.3 (PPM) 6.80 6.81 6.82 6.77	NO2.3 (PPM) 0.047 0.075 0.050 0.086	PART.3 (µg/m³) 3.65 13.18 5.27 16.19
LDA	901	6040	162	312	141	506	147	141	131	2.62	0.018	10.84	1.61	0.008	10.75	6.77	0.076	13.73
MBA	104	4130	136	116	103	136	1051	133	125	1.92	0.013	11.41	1.59	0.010	11.38	6.71	0.105	22.41
MBR	107	3982	345	113	103	129	256	127	122	1.85	0.012	11.54	1.59	0.011	11.52	6.72	0.108	24.49

T.2	m³)		2	0.	22	6	*	- 13	2
PART.2	(grl)	10.1	Ξ	10.2	11.3	10.5	10.8	11.3	11.7
NO2.2	(PPM)	0.007	0.012	0.007	0.012	0.011	0.010	0.013	0.015
CO.2	(PPM)	1.55	1.66	1.54	1.65	1.60	1.59	1.64	1 69
PART.1	$(\mu g/m^3)$	9.50	10.23	9.75	10.98	13.06	10.85	11.30	11 33
N02.1	(PPM)	0.015	0.012	0.015	0.036	0.515	0.046	0.013	0.012
CO.1	(PPM)	3.51	2.93	3.36	4.21	23.65	5.09	2.59	2.47
620A	(µg/m³)	504	167	1958	213	191	151	152	152
VOC8	(µg/m³)	5479	175	130	200	170	160	159	150
V0C7	(µg/m³)	274	202	249	394	168	164	3126	551
900V	(µg/m³)	276	509	243	327	1808	325	174	45
VOCS	(µg/m³)	118	113	114	126	126	244	108	108
VOC4	(µg/m³)	170	145	153	168	181	298	137	133
	(µg/m³)								
VOC2	(µg/m³)	NA	NA	Ν	NA	Ν	ΑN	NA	Ϋ́
VOCI VOC2	(µg/m³)	147	114	114	138	<u>1</u>	105	102	108
		BA2	BR2	BR3	HAL	KIT	LDA	MBA	MBR

r avg concentrations						HAL 3.54 1.66				
C zone 1-n	CO.2	(PPM)	1.67	1.68	1.65	1.66	1.64	1.65	1.63	1.64
e - SIMILLI	CO.1	(PPM)	2.54	2.52	2.58	3.54	33.72	3.87	2.55	2.52
l able 1			BA2	BR2	BR3	HAL	KIT	LDA	MBA	MBR

VOCI	Burst - UCL	CO.1	Oven
VOC2	Floor	N02.1	Oven
VOC3	Burst - MBR	PART.1	Oven
V0C4	Burst - LDA	CO.2	Heater
VOCS	Burst - GAR	NO2.2	Heater
900A	Burst - KIT	PART.2	Heater
VOC7	Burst - MBA	CO.3	Outdoor air
VOC8	Burst - BA2	NO2.3	Outdoor air
VOC9	Burst - BR3	PART.3	Outdoor air

Table 2a	- SIMIF	LM over	all 24-hr	LM overall 24-hr avg concentrations	entrations										
	VOCI VOC2 V	VOC2	VOC3	V0C4	VOCS	NOC6	VOC7	VOC8	VOC9	CO.1	N02.1	PART.1	CO.3	N02.3	PART.3
	(µg/m³)	μg/m³) (μg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	$(\mu g/m^3)$	(µg/m³)	(µg/m³)	(mg/m ₃)	mdd	mdd	$(\mu g/m^3)$	mdd	mdd	(µg/m³)
24 hr avg	24 hr avg 235	4899	165	152	86	506	189	218	183	2.50	0.025	11.41	89.9	0.086	18.45
Table 2b	Table 2b - SIMIFLM zone pea	'LM zone	peak cor	ncentratio	sus										
	VOCI	VOC	2	VOC4	VOCS	VOC6	VOC7	VOC8	600A	20	NO2 I	PART 1	CO 3	NO2 3	NO23 PART3

1 able	20 - SIMIL	LIM Zone	beak cor	centratio	us										
	VOCI VOC2	VOC2		VOC4	VOC5	900A	VOC7	VOC8	V0C9	CO.1	NO2.1	PART.1	CO.3	N02,3	PART.3
	$(\mu g/m^3)$	(µg/m³)	\sim	$(\mu g/m^3)$	(µg/m³)	(µg/m³)	$(\mu g/m^3)$	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
BA2	800	9379		117	66	091	148	9702	134	2.72	0.022	12.12	11.12	0.177	29.63
BR2	507	7813		114	66	260	270	647	127	2.78	0.021	11.89	10.54	0.143	27.41
BR3	325	9145		113	66	193	198	403	3875	2.54	0.021	11.69	10.20	0.124	22.57
HAL	1408	9289	672	160	101	455	442	2077	197	3.53	0.053	12.29	11.02	0.198	35.18
KIT	276	7162		129	101	3953	139	350	127	40.62	1.386	15.94	10.28	0.152	30.25
LDA	291	7014		1400	108	477	147	369	121	6.04	0.106	12.03	10,38	0.139	25.94
MBA	147	5037		115	66	151	8783	149	129	2.74	0.022	12.45	11.17	0.204	39.74
MBR	437	0869		110	66	140	1232	321	123	2.52	0.021	12.28	10.42	0.201	34.94

- SIMIF	Table 2c - SIM1FLM zone	CA)	g concent	trations										
	V0C2		V0C4	VOC5	900A	V0C7	VOC8	VOC9	CO.1	NO2.1	PART.1	CO.3	N02.3	PART.3
	(µg/m³)	_	(mg/m_3)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	$(\mu g/m^3)$	(PPM)	(PPM)	(µg/m³)
	5128		001	86	Ξ	112	1283	10	1.67	0.00	11.18	6.61	0.081	16.87
	5523	130	100	86	126	131	228	107	1.72	800.0	11.12	6.74	0.077	15.28
	9969		001	86	122	125	151	737	1.72	0.007	10.85	6.72	990.0	12.77
	3811		101	86	138	148	373	117	1.76	0.013	11.70	6.61	0.105	24.06
	4728		101	86	689	104	153	105	6.77	0.125	11.92	99'9	0.089	19.02
	4874		569	66	202	109	172	105	2.50	0.019	11.42	99.9	0.085	18.28
	3127		66	86	103	1070	104	101	1.61	0.012	11.88	6.65	0.114	26.70
	4115	406	66	86	5	292	142	104	15	0.010	11.59	671	0.098	21 74

Table 7d	- SIMIL	LIM Zone	4-hr avg	concent	anons							
	V0C1	V0C2	VOC3	VOC4	VOC5	900A	V0C7	VOC8	VOC9	C0.1	NO2.1	PART.1
	(µg/m ₃)	(µg/m³)	(µg/m³)	(µg/m³)	(mg/m ₃)	(µg/m³)	(µg/m³)	$(\mu g/m^3)$	$(\mu g/m^3)$	(PPM)	(PPM)	$(\mu g/m^3)$
BA2	581	Ϋ́	66	86	86	100	901	3284	66	2.01	0.012	11.95
BR2	293	Ϋ́	105	86	86	104	105	358	113	2.20	0.011	11.48
BR3	112	ΝA	<u>8</u>	86	86	103	104	112	2074	2.13	0.00	11.21
HAL	842	VΑ	104	86	86	103	108	1058	160	5.09	0.018	12.12
KIT	241	VΑ	901	66	86	1835	90	294	109	21.12	0.466	13.49
LDA	255	VΑ	101	631	86	330	101	311	110	4.93	0.052	11.73
MBA	66	ΝA	66	86	86	66	3306	66	66	2.03	0.012	11.93
MBR	370	VΑ	1131	86	86	901	489	271	108	2.10	0.00	11.43

rations									
Fable 2e - SIM1FLM zone 1-hr avg concentrations									
M zone 1-hr									
CO.1	(PPM)	2.61	2.70	2.49	3.10	32.42	4.42	2.63	2.48
Table 2e		BA2	BR2	BR3	HAL	KIT	LDA	MBA	MBR

LEGEND	_			
V0C1	Burst - UCL	CO.1	Oven	_
V0C2	Floor	N02.1	Oven	
VOC3	Burst - MBR	PART.1	Oven	
V0C4	Burst - LDA	CO.2	Heater	
VOCS	Burst - GAR	N02.2	Heater	
900A	Burst - KIT	PART.2	Heater	
V0C7	Burst - MBA	CO.3	Outdoor air	
VOC8	Burst - BA2	N02.3	Outdoor air	
VOC9	Burst - BR3	PART.3	Outdoor air	

able 3a	- SIMIF	"H overa	Il 24-hr a	vg concer	ntrations										
	VOCI	VOC2	VOC3	V0C4		900V	VOC7	NOC8	6200	CO.1	NO2.1	PART.1	CO.3	NO2.3	PART.3
	(µg/m³) (µg/m³	(µg/m³)	(µg/m³)	(μg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(mg/m³)	mdd	mdd	(µg/m³)	mdd	mdd	(µg/m³)
hravg	319	6289	195	199	191	196	201	198	198	2.54	0.023	8.93	6.97	0.078	7.52

	6.	<u>.</u>		_						
	PART	(µg/m³)	11.05	15.21	16.14	15.70	7.45	17.28	10.81	12.49
	NO2.3	(PPM)	0.153	0.162	0.167	0.157	0.149	0.164	0.151	0.140
	CO.3	(PPM)	10.59	19.01	10.65	10.59	10.59	10.65	10.58	10.53
	PART.1	(µg/m³)	9.71	10.24	10.35	10.14	11.81	10.49	89.6	9.81
	NO2.1	(PPM)	0.157	0.142	0.145	0.190	0.932	0.133	0.149	0.132
	CO.1	(PPM)	6.94	6.64	69.9	7.73	24.57	6.35	6.70	6.32
	620A	(mg/m ₃)	522	429	2923	299	489	453	512	469
	VOC8	(µg/m³)	7594	206	208	774	516	465	240	483
	VOC7	(µg/m³)	470	456	459	529	420	429	6299	1062
	00C6	(µg/m³)	534	200	202	298	2923	477	524	469
ns	VOC5	(µg/ш ₃)	292	569	271	336	338	498	291	282
centration	VOC4	(mg/m ₃)	466	449	452	546	581	1327	464	438
peak con	VOC3	(µg/ш ₃)	494	466	469	292	462	439	485	2037
LH zone	VOC2	(µg/m³)	6896	8185	8101	8797	9684	8157	9804	9722
- SIMIF	VOC1 VOC2	(µg/m³)	453	293	295	574	295	586	295	315
Table 3b			BA2	BR2	BR3	HAL	KIT	LDA	MBA	MBR

Table 3	c - SIMIF	TH zone	24-hr av	g concent	rations										
	VOC1 VOC2	V0C2	VOC3	V0C4	VOC5	9200	V0C7	VOC8	620A	CO.1	NO2.1	PART.1	CO.3	NO2.3	PART.3
	(µg/m³)	(mg/m ₃)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(m/grl)	(PPM)	(PPM)	$(\mu g/m^3)$	(PPM)	(PPM)	(µg/m³)
BA2	232	6505	81	190	185	194	189	430	193	2.51	0.020	8.59	6.97	0.074	3.99
BR2	186	5918	183	183	174	186	181	188	185	2.44	0.020	80.6	6.97	0.084	9.40
BR3	187	2997	184	184	175	188	183	189	284	2.46	0.020	9.01	6.97	0.083	8.81
HAL	213	6197	196	194	188	198	193	203	198	2.53	0.022	8.94	96'9	0.079	7.64
KIT	194	6570	189	199	195	274	188	195	192	3.31	0.054	8.74	6.97	0.072	4.40
LDA	184	926	181	526	215	185	180	186	183	2.43	0.019	60'6	6.97	0.082	9.25
MBA	195	6510	130	189	184	193	406	195	192	2.49	0.020	8.61	96.9	0.074	4.37
MBR	203	6604	253	187	182	161	238	192	190	2.47	0.019	89.8	96.9	0.072	5.26

	VOCI	VOC2	VOC3	VOC4	VOCS	VOC6	VOC7	VOC8	VOC9	000	NO2 1	PART
	(µg/m³)	(PPM)	(PPM)	(µg/m³)								
BA2	337	NA	322	318	224	334	320	1011	321	4.82	0.060	8.94
BR2	240	NA	310	304	208	322	305	322	308	4.75	0.057	9.12
BR3	242	NA	313	307	212	325	308	325	645	4.76	0.058	9.11
HAL	315	NA	345	331	236	350	338	368	334	4.95	0.067	9.20
KIT	249	NA	320	346	249	809	317	331	319	7.38	0.169	9.76
LDA	235	NA	303	447	305	318	298	313	301	4.63	0.054	9.24
MBA	249	NA	318	313	222	329	1019	328	317	4.73	0.058	9.05
MBR	267	AN	525	307	215	323	482	322	310	4.70	0.054	9.01

Table 3e - SIM1FLH zone 1-hr avg concentrations										
- SIMIFLE	CO.1	(PPM)	5.25	2.00	5.03	5.92	14.73	4.85	5.15	4.85
Table 36			BA2	BR2	BR3	HAL	KIT	LDA	MBA	MBR

LEGEND			
V0C1	Burst - UCL	CO.1	Oven
VOC2	Floor	N02.1	Oven
VOC3	Burst - MBR	PART.1	Oven
VOC4	Burst - LDA	CO.2	Heater
VOC5	Burst - GAR	N02.2	Heater
900A	Burst - KIT	PART.2	Heater
VOC7	Burst - MBA	CO.3	Outdoor air
VOC8	Burst - BA2	NO2.3	Outdoor air
VOC9	Burst - BR3	PART.3	Outdoor air

CO.2 NO2.2 PART.2 CO.3 NO2.3	(μg/m³) ppm ppm (μg/m³) (PPM) (PPM) (μg/m³)	7000 0000 0000		CO.2 NO2.2 PART.2 CO.3 NO2.3 I	(PPM) (PPM) (μg/m³) (PPM) (PPM)	1.94 0.006 7.72 7.84 0.050	1.95 0.008 8.56 7.98 0.071	1.92 0.005 7.64 7.81 0.047	8.68 2.02 0.008 8.57 8.23 0.064 8.40	2.03 0.007 8.53 8.17 0.058	2.11 0.012 8.16 8.14 0.056	2.07 0.007 9.37 8.47 0.073	2.06 0.009 9.50 8.47 0.092
-	(gr) mdd								0.093 8.6				
CO.1	ppm 4 63			CO.1	(PPM)	6.93	5.78	60.9	8.69	55.25	99.9	6.25	5.17
V0C9	(µg/m³) 449			VOC9	(µg/m³)	999	480	4999	700	480	442	495	412
VOC8	(μg/m³) 453			VOC8	(µg/m³)	15042	518	550	735	517	476	535	445
V0C7	(µg/m³) 477			V0C7	(µg/m³)	499	435	480	781	434	429	12243	1262
900A	(µg/m³) 460			9200	(µg/m³)	651	547	583	786	5238	575	267	468
voc5) (μg/m³) (μ 181		ıs	VOC5	(µg/m³)	202	188	961	242	227	514	188	175
vg conce VOC4	(µg/m³) 407		entration	VOC4	(µg/m³)	473	403	427	595	564	2037	417	349
VOC3	(µg/m³) 451		peak con	VOC3	(mg/m ₃)	663	540	604	1664	528	206	543	3273
VOC2	(µg/m³)		TC zone	VOC2	(µg/m³)	26616	24005	27100	21531	21679	22088	19220	18640
Table 4a - SIMIFIC overall 24-hr avg concentrations VOC1 VOC2 VOC3 VOC4 VOC5	(mg/m³)	8	Table 4b - SIM1FTC zone peak concentrations	VOCI	(µg/m³)	745	506	263	295	245	241	245	304
Table 4a	24 hr avo	9.11.12	Table 4b			BA2	BR2	BR3	HAL	KIT	LDA	MBA	MBR

l able 4	C - SIMILE	IC Zone	24-nr avg	concent	ranons													
	VOC1 VOC2 VOC3 VOC4 VOC5	VOC2	VOC3	V0C4	VOC5	9000	VOC7	VOC8	VOC9	CO.1	NO2.1	PART.1	CO.2	N02.2	PART.2	CO.3	l l	PART.3
	$(\mu g/m^3)$	(µg/m³)	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)		(µg/m³)
BA2	370	21831	435	332	167	423	397	5389	392	4.15	0.007	7.06	1.64	0.002	96.9	6.63		1.17
BR2	199	19345	360	287	154	361	337	355	336	3.64	0.007	7.76	1.63	0.003	7.68	6.63	0.031	4.72
BR3	215	22228	425	320	163	407	387	336	1368	4.01	9000	7.05	1.64	0.002	96.9	6.62		1.72
HAL	244	18147	559	310	164	393	453	382	362	4.01	0.011	8.08	1.65	0.003	7.98	69.9		4.62
KIT	192	18356	347	332	691	1182	324	344	326	11.45	0.156	8.80	1.65	0.004	7.92	6.67		5.42
LDA	195	19336	359	653	237	404	331	345	327	4.09	0.011	7.79	1.72	0.003	7.77	19.9		4.36
MBA	184	16010	325	264	148	328	2220	322	307	3.46	0.00	8.52	1.63	0.005	8.44	6.70		7.87
MBR	203	15191	782	241	141	296	579	291	777	3.17	0 008	8 80	1 63	0.005	8 74	699		0 21

l able 4	d - SIMIL	I C zone	4-hr avg	$\mathbf{\mathcal{Q}}$	ations										
	VOC1 VOC2 VOC3	VOC2	VOC3	V0C4	VOC5	900A	VOC7	VOC8	V0C9	CO.1	NO2.1	PART.1	CO.2	NO2.2	PART.2
	(µg/m³)	(μg/m³)	(µg/m³)	$\overline{}$	(mg/m^3)	$(\mu g/m^3)$	(µg/m³)	(µg/m³)	$(\mu g/m^3)$	(PPM)	(PPM)	$(\mu g/m^3)$	(PPM)	(PPM)	(µg/m³)
BA2	409	Ν	534		181	502	429	7730	450	4.26	0.010	19'9	1.47	0.004	7.42
BR2	203	ΝA	421		16	417	361	403	378	3.71	0.008	7.18	1.52	9000	8.34
BR3	216	ΑN	495		173	461	405	443	3063	3.95	0.008	6.64	1.46	0.003	7.42
HAL	264	Ϋ́	926		187	522	538	465	451	5.07	0.021	7.76	1.52	0.005	8.29
KIT	188	ΥN	392		192	2859	336	387	363	37.17	0.675	11.35	1.50	0.002	8.13
LDA	190	Ν	390		363	419	334	372	350	5.01	0.025	7.64	1.54	0.007	8.03
MBA	179	Ν	387		156	382	5928	368	346	3.70	0.010	8.35	1.52	9000	8.52
MBR	208	Ϋ́	1828		148	339	882	328	310	3 34	0000	8 40	1.55	0.007	0.07

I-hr avg concentrations						HAL 3.25 1.56				
I.C zone	CO.2	(PPM)	1.52	1.55	1.51	1.56	1.54	1.61	1.55	
e - SIMIF	CO.1	(PPM)	3.02	2.91	3.02	3.25	39.33	3.41	2.81	
Table 4			BA2	BR2	BR3	HAL	KIT	LDA	MBA	1

	Oven	Oven	Oven	Heater	Heater	Heater	Outdoor air	Outdoor air	Outdoor air
	CO.1	N02.1	PART.1	CO.2	NO2.2	PART.2	CO.3	N02.3	PART,3
_	Burst - UCL	Floor	Burst - MBR		Burst - GAR	Burst - KIT	Burst - MBA	Burst - BA2	Burst - BR3
LEGEND	VOCI	V0C2	VOC3	V0C4	VOCS	900A	VOC7	VOC8	VOC9

le 5a	able 5a - SIMIFTM	TM over	ıll 24-hr	avg conce	ntrations										
	VOCI	VOC2	V0C3	VOC4	VOCS	900A	VOC7	VOC8	VOC9	CO.1	NO2.1	PART.1	CO.3	NO2.3	PART.3
	(µg/m³)	(μg/m³)	_	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	mdd	mdd	(µg/m³)	mdd	mdd	(µg/m³)
Ir avg	682	21165	485	407	136	525	207	202	510	4.18	0.025	9.23	6.94	0.039	7.32

	ART.3	(µg/m³)	3.30	9.94	8.70	4.15	1.10	1.07	5.94	3.82	
	~	(PPM)								ĺ	
-	CO.3	(PPM)	9.23	8.79	8.52	10.22	8.75	8.88	9.19	8.60	
	PART.1	(μg/m³)	10.39	88.6	9.50	11.39	15.24	10.26	10.73	10.04	
	NO2.1	(PPM)	0.025	0.021	0.021	0.037	1.558	0.071	0.025	0.020	
	CO.1	(PPM)	4.48	3.89	4.04	5.32	50.31	5.98	4.15	3.66	
	VOC9	(µg/m³)	473	381	5598	276	394	369	403	328	
	VOC8	(μg/m³)	16764	406	429	673	419	394	428	349	
	VOC7	(µg/m³)	482	353	453	989	364	362	12871	985	
	900A	(µg/m³)	535	426	482	640	5588	282	451	365	
	VOC5	(µg/m³)	136	127	130	154	148	321	130	122	
	VOC4	(µg/m³)	338	278	308	414	393	2126	293	244	
	VOC3	(µg/m³)	889	423	288	1694	447	480	422	3333	
	VOC2	(µg/m³)	33912	26965	33256	22311	22296	24215	17811	17054	
	VOCI	(µg/m³)	649	991	168	468	143	145	143	202	
			BA2	BR2	BR3	HAL	KIT	LDA	MBA	MBR	

	_	_		_					-	_
	PART.	(µg/m³)	91.9	5.94	4.88	13.40	7.31	7.09	10.40	8.23
	NO2.3	(PPM)	0.037	0.034	0.028	0.062	0.040	0.038	0.052	0.043
	CO.3	(PPM)	7.05	7.04	7.00	6.92	88.9	6.93	6.84	6.82
	PART.1	(µg/m³)	8.98	8.79	8,37	9.93	10.26	9.25	9.76	9.31
	NO2.1	(PPM)	0.005	0.004	0.004	0.008	0.163	0.012	9000	0.005
	CO.1	(PPM)	2.50	2.41	2.51	2.51	14.24	4.01	2.20	2.19
	VOC9	(µg/m³)	355	270	2356	290	250	257	222	199
	VOC8	(µg/m³)	5792	285	320	325	259	271	229	504
	V0C7	(µg/m³)	410	276	377	491	249	277	3606	209
	900V	(µg/m³)	400	298	369	320	1948	452	237	211
trations	VOC5	(µg/m³)	122	114	119	117	122	182	109	107
g concen	VOC4	(µg/m³)	259	207	244	224	247	845	175	191
: 24-nr av	VOC3	(µg/m³)	531	314	473	765	275	328	242	994
· I M zone	VOC2	(µg/m³)	28144	21431	28226	18383	19565	21558	15095	14002
- SIMIL	VOCI	(µg/m³)	324	138	152	HAL 186 18383	127	134	121	142
I able 50			BA2	BR2	BR3	HAL	KIT	LDA	MBA	MBR

laore	I IMIC - DC	JIM ZOIIC	4-III avg	CONCOR	attons							
	VOCI	VOC2	VOC3	V0C4	VOC5	900A	VOC7	VOC8	VOC9	CO.1	NO2.1	PART.1
	(μg/m³)	(µg/m³)	$(\mu g/m^3)$	(µg/m³)	(µg/m³)	(µg/m³)	(mg/m ₃)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
BA2	346	Ϋ́	617	258	124	\$	422	11952	347	2.09	900.0	10.21
BR2	137	Ϋ́	318	205	911	290	280	273	263	2.13	0.004	9.49
BR3	153	Ϋ́	495	241	121	362	377	334	4424	2.14	0.004	9.10
HAL	184	N A	1277	255	121	462	207	286	316	2.03	0.00	11.21
KIT	122	N A	246	238	124	4094	223	228	222	35.41	0.623	13.13
VO	130	Ϋ́	294	1637	232	420	253	242	234	5.23	0.039	10.05
MBA	115	NA	234	152	107	194	8311	188	184	2.10	900.0	10.17
MBR	142	NA	2236	150	107	188	703	181	179	2.08	0.004	9.38
MAIN	74.	1	25.00	251	2	1	3		COV	101 607	(11)	00.7

able 6a.	SIMIF,	l'H overa	II 24-hr a	ivg concei	ntrations										
	VOCI	VOC2	VOC3	V0C4	VOC5	900A	V0C7	VOC8	V0C9	CO.1	N02.1	PART.1	CO.3	NO2.3	PART.3
	(µg/m³) (µg/m³	(µg/m³)	$(\mu g/m^3)$	(µg/m³)	(µg/m³)	(μg/m³)	(µg/m³)	(μg/m³)	(µg/m³)	mdd	udd	(µg/m³)	mdd	mdd	(µg/m³)
4 hr avg	465	9517	239	243	507	237	249	237	240	2.91	0.022	7.55	66.9	0.056	4.57

Table 6	D - SIMIL	·IH zone	peak con	centration	us										
	VOCI VOC2	VOC2		VOC4	VOC5	900A	VOC7	VOC8	VOC9	CO.1	NO2.1	PART.1	CO.3	NO2.3	PART.3
	(µg/m³)	$(\mu g/m^3)$		(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
BA2	450	13490		538	069	593	533	8105	557	7.26	0.167	8.15	9.63	0.108	4.59
BR2	303	12531		206	671	534	464	533	519	6.74	0.147	8.17	9.63	0.110	6.50
BR3	306	12882		516	879	546	504	545	3081	6.84	0.150	8.14	9.63	0.111	6.77
HAL	357	12933		209	728	099	574	629	635	7.93	0.197	8.54	9.63	0.110	9.25
KIT	304	13565		631	737	3067	209	552	532	25.60	0.974	10.40	9.62	0.106	4.10
LDA	295	12422		1409	870	210	475	209	200	6.48	0.136	8.39	9.65	0.114	8.85
MBA	305	13392	548	532	089	279	7217	278	543	7.05	0.160	8.24	9.64	0.109	2.00
MBR	325	13358		505	699	531	1187	530	519	6.62	0.139	8.21	9.60	0.103	5.71

Fable 6	c - SIMIF	TH zone	24-hr av	g concent	rations											
	VOC1 VOC2	VOC2	VOC3	VOC4	VOCS	900A	V0C7	VOC8	V0C9	CO.1	NO2.1	PART.1	CO.3	NO2.3	PART.3	
	$(\mu g/m^3)$	(µg/m³)	(µg/m³)	$(\mu g/m^3)$	(mg/m^3)	(µg/m³)	(µg/m³)	(µg/m³)	$(\mu g/m^3)$	(PPM)	(PPM)	$(\mu g/m^3)$	(PPM)	(PPM)	(µg/m³)	
BA2	298	9617	235	235	488	236	237	480	236	2.89	0.020	7.29	6.99	0.054	2.63	
BR2	231	9354	230	229	468	230	231	230	230	2.84	0.019	7.55	86.9	0.057	4.83	
BR3	233	9446	231	231	473	232	233	232	334	2.86	0.019	7.48	66.9	0.056	4.32	
HAL	248	9378	240	240	504	240	242	241	240	2.92	0.022	7.54	86.9	0.056	4.75	
KIT	235	9590	233	243	515	317	234	233	233	3.72	0.055	7.47	66.9	0.053	3.16	
LDA	225	9084	224	270	581	224	225	224	224	2.79	0.018	7.68	6.99	0.058	5.65	
MBA	237	9504	234	233	483	234	467	234	234	2.87	0.020	7.37	86.9	0.055	3.34	
MBR	251	9639	300	231	475	231	288	231	231	2.84	0.018	7.43	86.9	0.054	3.95	

Table 60	d - SIMIF	TH zone	4-hr avg	concentra	utions							
	VOCI	V0C2	VOC3	VOC4	VOC5	920A	V0C7	VOC8	VOC9	CO.1	NO2.1	PART.1
	$(\mu g/m^3)$	$(\mu g/m^3)$	(µg/m³)	$(\mu g/m^3)$	(µg/m³)	$(\mu g/m^3)$	$(\mu g/m^3)$	(µg/m³)	(μg/m³)	(PPM)	(PPM)	(µg/m³)
BA2	368	Y.	382	376	489	385	376	1201	380	5.28	0.064	7.73
BR2	254	NA	370	364	464	374	362	372	369	5.15	090'0	7.87
BR3	257	NA	375	369	472	378	367	377	721	5.19	0.061	7.83
HAL	288	Ν	400	391	520	399	393	405	395	5.40	0.072	8.00
KIT	258	NA	376	404	533	664	368	377	374	7.89	0.177	8.11
LDA	247	NA	358	209	663	363	350	360	326	2.00	0.056	8.03
MBA	260	NA	376	371	480	380	1142	378	375	5.20	0.062	7.83
MBR	284	Ϋ́	009	362	463	372	542	370	367	5.11	0.058	7.87

cone 1-hr avg concentrations										MBR 4.80
S-SIMIFIH	CO.1	(PPM)	5.33	4.95	5.02	00.9	15.11	4.77	5.20	4.80
l able of			BA2	BR2	BR3	HAL	KIT	LDA	MBA	MBR

LEGEND	١.		
100 100	Burst - OCL		Oven
VOC2	Floor	N02.1	Oven
VOC3	Burst - MBR	PART.1	Oven
VOC4	Burst - LDA	CO.2	Heater
VOC5	Burst - GAR	N02.2	Heater
NOC6	Burst - KIT	PART.2	Heater
VOC7	Burst - MBA	CO.3	Outdoor air
VOC8	Burst - BA2	N02.3	Outdoor air
000 N	Burst - BR3	PART.3	Outdoor air

	CO.1 NO2.1 PART.1 CO.2 NO2.2 PART,2 CO.3 NO2.3	(μg/m³) (PPM) (μg/m³) (PPM) (μg/m³) (PPM) (μg/m³) (PPM) (μg/m³) (144 2.01 0.020 10.23 1.84 0.018 10.58 6.70 0.102 14.46	2.01 0.020 10.23 1.84 0.018 10.58 6.70 0.102	CO.1 NO2.1 PART.1 CO.2 NO2.2 PART.2 CO.3 NO2.3 I	(PPM) (PPM) (µg/m³) (PPM) (PPM) (µg/m³) (PPM) (PPM)	5.27 0.108 9.84 3.37 0.112 11.96 10.02 0.129	4.33 0.081 11.16 2.85 0.083 12.23 10.87 0.198	4.81 0.092 10.36 3.15 0.096 11.94 10.12 0.139	4.56 0.082 11.42 2.98 0.082 12.04 10.59 0.170	14,70 0.544 11.41 3.12 0.095 12.02 10.26 0.180	5.28 0.112 10.66 3.09 0.095 12.02 10.24 0.168	294 4.78 0.095 11.38 3.08 0.097 12.16 10.46 0.216 33.26	0000 3011 3001 3000 300 1011 2000 000
	VOC8	µg/m³) (µg/m³) () 143 364	364	VOC8	(μg/m³)	1237	924	===	963	1061	1065	6114 1034	988
rations	920A	(µg/m³) (145	145	C5 VOC6	(µg/m³)	380	303	331	279	2864	413	201 308 (757
r avg concent	VOC4 V	(µg/m³) (µ 140 1	140 oncentrations	VOC4 V	(µg/m³)	342	276	300	252	280	1079	281	236
C overall 24-h	VOC2 VOC3	(μg/m³) (μg/m³) (μg/m³) (μg/m³) (μg/m³) 24 hr avg 182 2767 144 140 127	24 hr avg 182 2767 144 140 15 Table 7b - SIM1MLC zone peak concentrations	VOC2 VOC3								2890 298	
7a - SIMIML	VOCI	(µg/m³) (µg/m²) (µg/m²	'g 182 'b - SIM1ML	VOCI	_							86	
Table		24 hr av	24 hr avg Table 7b			BA2	BR2	BR3	HAL	KIT	LDA	MBA	MRP

Table ;	7c - SIMIR	ALC zone	24-hr av	g concen	trations													
	VOC1 VOC2 VOC3 VOC4 VOC5	VOC2	VOC3	VOC4	VOCS	900A	VOC7	VOC8	VOC9	CO.1	NO2.1	PART.1	CO.2	NO2.2	PART.2	CO.3	NO2.3	PART.3
	(µg/m³)	(mg/m ₃)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
BA2	86	3213	143	140	128	143	134	452	140	2.01	910.0	9,43	1.91	0.018	68.6	6.70	0.080	2.24
BR2	86	2582	127	128	119	130	122	343	127	1.89	0.017	10.38	1.81	0.018	69.01	69.9	0.108	16.86
BR3	86	3157	138	136	124	138	131	412	251	1.96	0.016	9.76	1.86	0.017	10.14	89.9	0.087	7.32
HAL	86	2741	159	128	121	130	144	347	128	1.91	0.016	10.35	1.84	0.017	69.01	6.72	0.103	15.64
KIT	86	2738	134	132	123	237	127	379	132	2.65	0.048	10.23	1.86	0.019	10.53	6.72	0.101	13.38
LDA	86	2719	135	165	142	140	128	379	132	1.97	0.018	10.12	1.86	0.020	10.51	69.9	0.099	12,39
MBA	86	2396	129	129	121	131	339	359	129	16.1	0.018	10.40	1.84	0.020	10.76	6.72	0.113	17.71
MBR	86	2166	179	122	117	124	155	301	122	1.85	0.017	10.87	1.79	0.019	11.16	6.72	0.125	24.87

RT.2	/m³)	03	09	61	11.35	24	56	14	- 19
-									
N02.2	(PPM	0.062	0.047	0.054	0.047	0.054	0.053	0.054	0.044
CO.2	(PPM)	2.98	2.52	2.79	2.63	2.78	2.73	2.71	2.45
PART.1	(µg/m³)	9.15	10.33	9.59	6.67	89.6	9.76	9.87	10.50
NO2.1	(PPM)	0.022	0.020	0.021	0.020	0.030	0.022	0.021	0.020
CO.1	(PPM)	2.91	2.48	2.78	2.63	3.03	2.73	2.62	2.41
VOC9	(µg/m³)	205	171	554	180	188	187	184	164
VOC8	(µg/m³)	865	620	763	664	750	731	719	577
V0C7	(µg/m³)	181	152	168	500	171	168	875	256
VOC6	(µg/m³)	500	174	195	180	523	207	187	167
VOC5	(µg/m³)	161	191	178	991	177	270	174	156
VOC4	(µg/m³)	203	170	190	176	187	291	183	163
VOC3									
VOC2	(µg/m³)	٧	٧	VV	Ϋ́	Ν	VΑ	۷V	٧X
VOCI VOC2	$(\mu g/m^3)$	86	86	86	86	86	86	86	86
		BA2	BR2	BR3	HAL	KIT	FDA	MBA	MBR

	CO.1	CO.2	CO.1 CO.2
	(PPM)	(PPM)	
BA2	4.46	1.73	
BR2	3.87	1.70	
BR3	4.09	1.73	
HAL	3.88	1.69	
KIT	12.99	1.69	
LDA	4.61	1.71	
MBA	4.18	1.67	
MBR	3.77	1.65	

(PPM)	1.73	1.70	1.73	1.69	1.69	1.71	1.67	1.65
(PPM)	4.46	3.87	4.09	3.88	12.99	4.61	4.18	3.77

LECEND			
VOCI	Burst - UCL	CO.1	Oven
VOC2	Floor	NO2.1	Oven
VOC3	Burst - MBR	PART.1	Oven
VOC4	Burst - LDA	CO.2	Heater
VOC5	Burst - GAR	NO2.2	Heater
900A	Burst - KIT	PART,2	Heater
VOC7	Burst - MBA	CO.3	Outdoor air
VOC8	Burst - BMT	NO2.3	Outdoor air
VOC9	Burst - BR3	PART.3	Outdoor air

PART.3 (μg/m³) 18.68	PART.3 (µg/m³) 16.43 45.70 47.60 40.18 24.40 44.53 21.86 32.30	PART.3 (µg/m³) 4.72 24.28 25.98 19.41 10.09 24.12 7.02 12.51		
NO2.3 (PPM) 0.096	NO2.3 (PPM) 0.118 0.205 0.225 0.185 0.133 0.213	NO2.3 (PPM) 0.060 0.111 0.017 0.074 0.012 0.065		
CO.3 (PPM) 6.69	CO.3 (PPM) 10.02 11.10 11.26 10.97 10.61 11.21 10.37	CO.3 (PPM) 6.66 6.72 6.75 6.70 6.66 6.60		
PART.2 (μg/m³) 11.32	PART.2 (μg/m³) 12.82 12.97 13.00 12.82 15.32 15.32 15.32 15.32 15.32 15.32	РАКТ.2 (µg/m³) 10.39 11.45 11.45 11.41 10.94 11.86 10.55	РАКТ.2 (µg/m³) 11.78 12.54 12.59 12.44 12.07 12.54 11.84	
NO2.2 (PPM) 0.018	NO2.2 (PPM) 0.076 0.052 0.052 0.068 0.064 0.134 0.072	NO2.2 (PPM) 0.013 0.014 0.015 0.016 0.026 0.013	NO2.2 (PPM) 0.028 0.022 0.022 0.021 0.025 0.026	
CO.2 (PPM) 1.93	CO.2 (PPM) 2.72 2.74 2.78 2.83 2.96 3.66 2.66	CO.2 (PPM) 2.03 1.83 1.83 1.92 2.00 1.99 1.97	CO.2 (PPM) 2.26 1.81 1.79 1.84 2.10 2.20 2.20	Oven Oven Oven Heater Heater Heater Outdoor air Outdoor air
PART.1 (μg/m³) 10.85	РАКТ.1 (µg/m³) 11.44 12.57 12.64 12.48 14.11 12.57 11.62	PART.1 (μg/m³) 9.80 11.16 11.26 10.96 10.58 11.22 11.22	РАКТ.1 (µg/m³) 10.98 12.24 12.31 12.14 11.66 12.20 11.16	CO.1 NO2.1 PART.1 CO.2 NO2.2 PART.2 CO.3 NO2.3
NO2.1 (PPM) 0.020	NO2.1 (PPM) 0.045 0.037 0.038 0.119 1.042 0.039 0.050	NO2.1 (PPM) 0.010 0.013 0.019 0.019 0.013 0.011	NO2.1 (PPM) 0.016 0.016 0.016 0.019 0.060 0.018	Burst - UCL Floor Burst - MBR Burst - LDA Burst - GAR Burst - KIT Burst - MBA Burst - BMT
CO.1 (PPM) 1.99	CO.1 (PPM) 3.59 2.80 2.84 5.27 28.52 2.83 4.20	CO.1 (PPM) 1.87 1.70 1.93 3.77 1.69 1.86	CO.1 (PPM) 2.29 1.76 1.73 1.94 3.77 1.75 2.35	LEGEND VOC1 VOC2 VOC3 VOC6 VOC6 VOC6 VOC6 VOC6
VOC9 (µg/m³) 153	VOC9 (µg/m³) 399 253 3319 986 301 264 427	VOC9 (µg/m³) 152 115 289 175 116 114 114 153 162	VOC9 (µg/m³) 214 124 409 237 149 123 222	<u> </u>
VOC8 (µg/m³) 325	VOC8 (µg/m³) 1012 693 693 723 896 755 971	VOC8 (µg/m³) 476 285 276 308 391 430 354	VOC8 (µg/m³) 471 225 217 242 369 243 420	
VOC7 (µg/m³) 133	VOC7 (µg/m³) 172 148 149 141 160 153 9352	VOC7 (µg/m³) 111 104 103 105 107 103 103 636 134	VOC7 (µg/m³) 118 105 104 105 112 105 165	
VOC6 (μg/m³) 145	VOC6 (µg/m³) 334 241 240 559 3773 253 320	VOC6 (µg/m³) 139 112 112 136 112 112 113	VOC6 (µg/m³) 178 123 120 148 555 121 172	
VOCS (μg/m³) 176	OC5 V/m³) 94 88 88 88 94 94	1		ations
VOC1 VOC2 VOC3 VOC4 VOC5 (μg/m³) (μg/m³) (μg/m³) (μg/m³) (μg/m³) (μg/m³) (μg/m³) (μg/m³) (μg/m³) (μg/m²) (μg/	Centratio VOC4 (µg/m³) 341 243 241 625 596 1286 327	g concent VOC4 (µg/m³) 143 115 114 114 157 174 174 140	Concentry VOC4 (µg/m³) 186 124 121 166 215 223 182	concentra
VOC3 (μg/m³)	yeak con VOC3 (μg/m³) 276 210 208 208 205 246 219 913	24-hr avg VOC3 (µg/m³) 122 109 108 110 115 115 171	4-hr avg VOC3 VOC3 150 117 115 118 134 116 252	1-hr avg
VOC2 (µg/m³) 3489	LM zone VOC2 (µg/m³) 6676 5570 5680 6043 4923 6702	LM zone VOC2 (µg/m³) 4709 2946 2755 3281 4031 2539 4537	LM zone VOC2 (µg/m³) NA NA NA NA NA NA NA NA NA	LM zone CO.2 (PPM) 2.43 2.00 2.00 2.06 3.39 2.37
VOC1 (µg/m³) 265	- SIMIMLM zone peak concentrations VOC1 VOC2 VOC3 VOC4 V((µg/m³) (µg/m³) (µ	SIM1MI VOC1 (µg/m³) 107 99 99 99 99 101	- SIMIMI VOCI (µg/m³) 100 98 99 99 99 99	- SIM1MLM zone 1-hr avg concentrations CO.1 CO.2 (PPM) (PPM) 2.99 2.43 2.60 2.03 4.80 2.66 2.409 2.76 2.61 3.39 3.23 2.37
24 hr avg	Table 8b - BA2 BR3 BR3 HAL KIT LDA MBA	Table 8c - SIMIMLM zone 24-hr avg concentrations VOC1 VOC3 VOC3 VOC4 VOC5 VOC1 (VOC2 VOC3 VOC4 VOC5 VOC4 VOC5 VOC4 VOC5 BA2 (107 4709 122 H3) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) 107 4709 122 H3 169 125 H3 BR3 99 2755 108 114 122 HAL 104 3281 110 143 169 (µg/m³) (Table 8d - SIMIMLM zone 4-hr avg concentrations VOC1 VOC2 VOC3 VOC4 VOC5 VOC1 VOC2 VOC3 VOC4 VOC5 (µg/m³) (µg/m³)	Table 8e - BA2 BR2 BR3 HAL KIT LDA MBA

Table 9a	- SIMIN	1LH over	all 24-hr	avg conce	entrations										
	VOCI	VOC2	VOC3	VOC4	VOCS	900A	VOC7	VOC8	V0C9	CO.1	NO2.1	PART.1	CO.3	NO2.3	PART.3
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(hg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(μg/m³)	(PPM)	(PPM)	(µg/m³)
24 hr avg	243	3171	132	137	131	136	128	333	141	1.94	0.020	10.59	19.9	0.099	23.44

	NO2.1 PART.1 CO.3 NO2.3 I	(PPM) (PPM) (µg/m³) (PPM) (µg/m³)	0.099 10.49 10.29 0.136	0.076 12.13 11.15 0.214	0.076 12.32 11.31 0.231	0.080 12.03 11.09 0.197	0.889 12.17 10.34 0.136	0.080 12.20 11.23 0.218	0.096 10.50 10.31 0.134	0.085 1130 1039 0.135
	CO.3	(PPM)	10.29	11.15	11.31	11.09	10.34	11.23	10.31	10 39
	PART.1	(µg/m³)	10.49	12.13	12.32	12.03	12.17	12.20	10.50	11 30
	NO2.1	(PPM)	0.099	0.076	0.076	0.080	0.889	0.080	960.0	0.085
	CO.1	(PPM)	4.91	4.12	4.05	4.39	23.57	4.20	4.87	4.63
	VOC9	(µg/m³)	413	308	2211	739	375	329	411	491
	VOC8	(µg/m³)	1285	938	947	1049	1230	1031	1273	1142
	VOC7	(µg/m³)	242	199	197	509	229	506	6040	776
	NOC6	(µg/m³)	369	294	293	300	2743	309	361	320
ons	VOCS	(µg/m³)	272	228	224	282	316	514	270	265
ncentrativ	V0C4	(µg/m³)	365	290	586	336	394	946	326	328
e peak co		(µg/m³)								1556
MLH zon	VOC2	(µg/m³)	8561	4467	3891	4786	7059	3559	6896	7578
- SIMIN	VOC1 VOC2	(µg/m³)	86	86	86	86	86	86	86	98
Table 9			BA2	BR2	BR3	HAL	KIT	LDA	MBA	MRR

	RT.3	(µg/m³)	.53	.54	4	.93	.31	09:	.80	.02
	NO2.3	(PPM)	0.070	0.117	0.123	0.103	0.077	0.115	0.068	0.079
	CO.3	(PPM)	87.9	6.63	19.9	6.63	6.73	6.63	6.81	6.71
	PART.1	$(\mu g/m^3)$	99.6	11.05	11.16	10.75	10.12	10.95	9.64	10.14
	NO2.1	(PPM)	0.014	0.016	0.016	0.016	0.062	0.016	0.013	0.013
	CO.1	(PPM)	1.94	1.75	1.73	1.81	3.10	1.76	1.94	1.87
	VOC9	(µg/m³)	144	123	194	153	137	124	14	145
	VOC8	(µg/m³)	445	287	279	316	399	300	436	374
	VOC7	(µg/m³)	122	112	Ξ	114	119	112	324	145
	NOC6	(µg/m³)	137	121	120	126	227	122	137	132
trations	VOC5	(µg/m³)	134	116	115	125	137	4	134	129
'g concen	VOC4	(μg/m³)	140	122	121	130	140	149	140	135
24-hr av	VOC3	(μg/m³)	131	118	117	121	128	118	142	178
1LH zone	VOC2	(µg/m³)	4263	2533	2298	2839	3858	2271	4543	3920
Table 9c - SIMIMLH z	VOCI	(µg/m³)	86	86	86	86	86	86	86	86
Table 9c			BA2	BR2	BR3	HAL	KIT	LDA	MBA	MBR

	VOCI	VOC2	VOC3	VOC4	VOC5	900A	VOC7	VOC8	VOC9	CO.1	NO2.1	PART.1
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	$(\mu g/m^3)$	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
3A2	86	×	179	202	207	197	155	811	216	2.64	0.019	9.63
BR2	86	Ϋ́	147	158	156	157	132	498	163	2.19	0.018	11.05
3R3	86	Ϋ́	143	154	152	152	129	465	394	2.12	0.018	11.23
IAL	86	×	152	186	161	170	135	534	260	2.30	0.019	10.81
E	86	٧N	173	213	226	504	150	727	200	3.08	0.035	10.01
ΡĄ	86	ž	146	243	275	156	131	491	162	2.16	0.018	11.10
/IBA	86	ΥN	230	202	506	197	807	800	218	2.67	0.019	9.65
ABR	86	Ž	337	195	198	186	230	879	234	2.56	0.019	10.07

ILH zone I-I		
Table 9e - SIMIMLH zone I-hr avg concentration	CO.1	(PPM)

Table 20 Similaria cone in a 6 concent										
2011	CO.1	(PPM	3.92	3.48	3.46	3.77	17.02	3.54	3.85	3.73
, acou			BA2	BR2	BR3	HAL	KIT	LDA	MBA	MBR

LECEND			
VOC1	Burst - UCL	CO.1	Oven
VOC2	Floor	N02.1	Oven
VOC3	Burst - MBR	PART.1	Oven
VOC4	Burst - LDA	CO.2	Heater
VOC5	Burst - GAR	NO2.2	Heater
00Ce	Burst - KIT	PART.2	Heater
VOC7	Burst - MBA	CO.3	Outdoor air
VOC8	Burst - BMT	N02.3	Outdoor air
VOC9	Burst - BR3	PART.3	Outdoor air

PART.3 (μg/m³)	4.30	PART.3	(µg/m³)	0.80	10.48	0.70	0.74	8 93	11.46	15.41		PART.3	(µg/m³)	0.71	0.00	2.59	5.55 4.38	4.32	5.75	9.05																			
NO2.3 (PPM)	Cto.o	NO2.3	(PPM)	0.059	0.063	0.00	200.0	0.078	0.092	0.098		NO2.3	(PPM)	0.035	0.049	0.039	0.040	0.0	0.049	0.057																			
CO.3 (PPM)		CO.3	(PPM)	8.24	8.30	0.00	9.34	8.35	8.35	8.72		CO.3	(PPM)	99.9	6.67	6,03	0.07	6.65	6.67	89.9																			
PART.2 (μg/m³)	1.02	PART.2	(µg/m³)	9.94	0.00	080	0.07	10.01	10.06	10.14		PART.2	$(\mu g/m^3)$	7.18	7.75	7.54	7.58	7.61	7.73	8.11		PART.2	(µg/m³)	0.73	8.83	8.74	8.84	8.97	9.17										
NO2.2 (PPM)	200	NO2.2	(PPM)	0.128	0.107	0.10	0.102	0.115	0.121	0.102		N02.2	(PPM)	0.017	0.016	0.010	0.013	0.018	0.018	0.016		NO2.2	(PPM)	0.073	990'0	0.060	0.067	0.066	0.060										
CO.2 (PPM)	C+:7	C0.2	(PPM)	3.06	5,90 4.11	4.11	4.10	4.07	4.13	3.93		CO.2	(PPM)	2.51	2.41	2.40	24.7 44.0	2.43	2.43	2.36		CO.2	(PPM)	3.30	3.43	3.39	3.45	3.40	3.25		Oven	Oven	Oven	Heater	Heater	Outdoor air	Outdoor air	Outdoor air	
PART.1 (μg/m³)	600	PART.1	(µg/m³)	0.01	6.32	737	21.8	7.39	7.71	8.33		PART.1	(µg/m³)	6.30	6.98	20.0	6.86	6.79	6.92	7.37		PART.1	(µg/m³)	6.12	6.43	6.43	6.45	6.61	7.00		CO.1	N02.1	PART.1	CO.2	PART 2	CO.3		PART.3	
NO2.1 (PPM)	200	N02.1	(PPM)	0.121	0.102	0.107	0.607	0.126	0.115	0.098		NO2.1	(PPM)	0.015	0.014	0.014	0.013	0.016	0.015	0.015		NO2.1	(PPM)	0.027	0.026	0.026	0.040	0.027	0.025		Burst - UCL	Floor	Burst - MBR	Burst - LDA	Burst - CAK	Burst - MBA	Burst - BMT	Burst - BR3	
CO.1 (PPM)	61.7	CO.1	(PPM)	5.30	5.50	5.30	16.44	5.98	5.68	5.22		CO.1	(PPM)	2.80	2.66	47.7 CT C	3.54	2.72	5.69	2.60		CO.1	(PPM)	3.90	4.09	4.12	4.53	40.4	3.86	FGEND	VOCI	VOC2	VOC3	VOC4	000 000 000	VOC7	VOC8	V0C9	
VOC9 (µg/m³)	001	V0C9	(µg/m³)	363	3067	307	378	376	382	342		V0C9	(µg/m³)	183	169	505 170	175	171	173	164		V0C9	(mg/m³)	234	639	261	249	238	229	_									
VOC8 (µg/m³)	07/	VOC8	(µg/m³)	1447	1550	1523	1565	1485	1549	1402		VOC8	(µg/m³)	826	50/	753	756	726	739	999		VOC8	(µg/m³)	1101	1193	1173	1213	1139	1068										
VOC7 (µg/m³)	G C	V0C7	(µg/m³)	300	327	481	328	331	6987	1052		V0C7	(μg/m³)	02:	158	<u> </u>	163	91	421	210		V0C7	(µg/m³)	200	219	254	221	217	363										
1S VOC6 (μg/m³)		900A	(µg/m³)	370	390	537	3104	420	394	348		900A	(µg/m³)	185	0 2	1/0	299	174	174	165		900A	(µg/m³)	236	249	270	631	242	231										
VOC5 (µg/m³)		VOC5	(µg/m³)	300	423	455	433	762	426	392	ntrations	VOC5	(μg/m³)	267	239	757	253	311	246	230	trations	VOCS	(µg/m³)	336	358	367	371	360	328	rations									
voc4 (µg/m³)	ncentrati	VOC4	(µg/m³)	355	374	463	30,	1182	381	334	vg conce	V0C4	(µg/m³)	98:	1/1	181	179	211	175	166	g concen	VOC4	(µg/m³)	236	249	264	260	357	231	g concen	۵								
rall 24-h VOC3 (μg/m³)	e neak co	VOC3	(µg/m³)	360	380	623	378	380	392	2073	e 24-hr a	V0C3	(µg/m³)	182	16/	5 20	173	169	172	241	e 4-hr av	V0C3	(µg/m³)	231	244	292	247	250	473	e 1-hr av									
MTC ove VOC2 (µg/m³)	MTC zon	VOC2	(µg/m³)	6328	6145	5983	9085	5581	5458	5135	MTC zon	V0C2	(µg/m³)	5530	4967	2866	5206	4859	4923	4729	MTC zon	V0C2	(µg/m³)	Z Z	Ϋ́	Ν	×:	₹ 2	Y V	MTC zon	CO.2	(PPM)	2.13	2.08	2.12	2.08	2.16	2.06	2.02
a - SIMII VOCI (μg/m³)	IMIS-C	V0C1	(µg/m³)	8 8	8 8	2 %	2 8	86	86	86	s - SIMII	V0C1	$(\mu g/m^3)$	8 8	8 8	8 8	8 8	8 %	86	98	1 - SIM11	VOCI	(µg/m³)	8 8	86	86	8 8	8 8	88	s - SIMII	CO.1	(PPM)	4.67	4.24	4.33	14.42	4.81	4.54	4.14
Table 10a - SIM1MTC overall 24-hr avg concentrations VOC1 VOC2 VOC3 VOC4 VOC5 VOC4 VOC6 VOC6 VOC6 VOC6 VOC6 VOC6 VOC6 VOC6	Table 10	VOC1 VOC2 VOC3 VOC4 VOC5		BA2 BD2	BR3	HAI	E	LDA	MBA	MBR	Table 100			BA2	BK2	BRS	X	LDA 98 4859 169 211 311 1	MBA	MBR	Table 100		DAJ	BR2	BR3	HAL	KIT.	MBA	MBR 98 NA 473 231 328	Table 10k	CO.1 CO.2		BA2	BR2	HAI.	KT	LDA	MBA	MBK

CO.2 NO2.2 PART.2 CO.3 NO2.3	1 ³ (PPM) (PPM) (μg/n1 ³) (PPM) (PPM) (μg/m3) (2.79 0.012 8.91 6.72 0.041 6.67		CO.2 NO2.2 PART.2 CO.3 NO2.3	(PPM) (PPM) (µg/m³) (PPM) (PPM)	3.50 0.084 11.03 8.12 0.046	3.38 0.063 11.58 8.88 0.084	3.37 0.064 11.56 9.05 0.094	3.45 0.050 11.34 8.85 0.070	3.48 0.071 11.03 8.46 0.045	3.87 0.076 11.87 9.20 0.103	3.49 0.079 10.82 8.09 0.044 6.87	3 47 0 050 10 70 8 32 0 0 048
_	(PPM) (μg/m³) 0.021 7.84		_								0.060 8.42	
C0.1	(PPM) 2.85		CO.1	(PPM)	5.22	4.11	4.14	8.41	44.53	4.34	2.07	5 33
VOC9	(µg/m³) 270		V0C9	(µg/m³)	494	377	4320	801	425	406	454	210
VOC8	(μg/m³) 1144		VOC8	(µg/m³)	1944	1617	1603	1655	1833	1630	1917	1704
VOC7	(μg/m³) 231		VOC7	(µg/m³)	301	264	263	564	287	264	11599	1193
	(μg/m³) 254			_							448	
VOC5	(μg/m³) 295	tions	VOCS	(µg/m³)	427	351	348	290	604	959	408	424
	(μg/m³) 257		VOC4	(µg/m³)	467	375	379	731	534	1721	450	430
VOC3		ne peak c	VOC3	(µg/m³)	424	339	341	323	379	353	730	3046
VOC2	(μg/m³) 10674	MTM zo	VOC2	(µg/m³)	14022	11897	12009	12553	13682	09111	14489	14684
VOCI	(μg/m³) 526	b - SIMI	VOCI	(µg/m³)	316	611	119	267	126	123	131	108
	24 hr avg	Table 11			BA2	BR2	BR3	HAL	KIT	LDA	MBA	MRR

	-	_								
	PART.	(µg/m³)	1.07	8.83	9.51	5.56	2.37	10.38	1.47	2.63
	NO2.3	(PPM)	0.023	0.048	0.051	0.037	0.027	0.055	0.023	0.025
	CO.3	(PPM)	6.72	6.72	6.74	6.72	6.71	6.74	6.70	6.68
	PART.2	(µg/m³)	8.14	6.07	9.19	8.90	8.42	9.70	8.09	8.24
	NO2.2	(PPM)	0.010	0.010	0.010	0.010	0.010	0.017	0.010	0.008
	CO.2	(PPM)	2.99	2.65	2.65	2.79	2.92	2.78	2.95	2.87
	PART.1	(µg/m³)	6.90	8.15	8.27	7.84	19.7	8.46	6.89	7.15
	NO2.1	(PPM)	0.009	0.008	0.00	0.019	0.113	0.009	0.008	0.010
	CO.1	(PPM)	2.68	2.31	2.30	2.82	90.9	2.28	2.66	2.69
	VOC9	(µg/m³)	262	208	544	290	238	199	259	265
	VOC8	(µg/m³)	1397	1068	1050	1139	1297	1024	1380	1278
	VOC7	(µg/m³)	192	991	164	172	183	091	1054	306
	900A	(µg/m³)	246	200	197	246	280	195	244	241
entrations	VOC5	(µg/m³)	288	230	227	292	312	352	283	284
ovg conc	VOC4	(µg/m³)	254	202	504	254	566	302	252	249
nc 24-nr	VOC3	(µg/m³)	219	185	183	192	202	177	275	435
M I M 201	VOC2	(µg/m³)	11788	9704	9391	10512	11433	8585	12025	12037
c - SIMI	VOCI	(µg/m³)	120	104	103	115	105	103	107	Ξ
l able 11	VOC1 VOC2 VOC3 VOC4 VOC5 V		BA2	BR2	BR3	HAL	KIT	LDA	MBA	MBR

_	d - SIMI	MTM zo.		vg concer	ntrations										
	VOCI	VOC1 VOC2	VOC3	VOC4	VOCS	VOC6	VOC7	VOC8	VOC9	CO.1	NO2.1	PART.1	CO.2	NO2.2	PART.2
	(µg/m³)	(µg/m³)		(µg/m³)	$(\mu g/m^3)$	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
	108	N N		343	344	337	222	1344	368	4.04	0.023	8.07	2.99	0.033	9.47
	102	٧		231	219	228	171	830	234	2.83	0.017	9.87	2.43	0.025	10.70
	102	٧		224	214	221	168	961	933	2.76	0.017	10.07	2.40	0.025	10.90
	<u>5</u>	N N		323	383	316	176	911	416	3.91	0.034	9.64	2.52	0.024	10.45
	104	V.		373	435	1037	202	1160	293	9.51	0.137	9.29	2.81	0.029	9.85
	102	٧×		419	295	211	191	778	215	2.68	0.017	10.29	2.42	0.028	11.20
	107	٧		340	332	334	2020	1357	363	4.06	0.021	7.81	2.98	0.030	9.15
	901	٧		330	346	324	496	1152	379	4.16	0.025	8.45	2.75	0.024	9.44

	CO.1	CO.2	
	(PPM)	(PPM)	(PPM) (PPM)
BA2	2.67	3.03	
BR2	2.43	2.76	
BR3	2.46	2.73	
HAL	5.98	3.10	
KIT	34.20	3.08	
LDA	2.49	3.62	
MBA	2.46	3.01	
MBR	3.13	2.99	

|--|

VOC5	VOC4	VOC4
(µg/m³)	(μg/m³)	(μg/m³)
205	232	232
		VOC3 (μg/m³) (227

Table 1	2b - SIMI	MIH ZO	ne peak c	concentrat	lons										
	VOC1 VOC2	VOC2		V0C4	VOC5	900A	VOC7	VOC8	V0C9	CO.1	N02.1	PART.1	CO.3	NO2.3	PART.3
	$(\mu g/m^3)$	(µg/m³)		(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
BA2	86	17962		476	296	491	414	2195	495	5.80	0.121	6.81	8.62	0.060	9.92
BR2	86	12331		423	273	435	381	1972	437	5.25	0.103	9.33	9.02	0.000	16.85
BR3	86	11254		423	272	435	380	1992	2863	5.26	0.104	9.79	9.18	0.100	18.47
HAL	86	12252		467	326	464	391	2056	889	5.73	0.104	9.19	8.78	0.071	11.52
KIT	86	15709		477	338	3169	406	2158	485	27.39	1.028	9.12	8.63	0.058	9.44
LDA	86	10416	431	1194	208	478	384	2024	455	5.70	0.120	10.16	9.31	0.107	20.27
MBA	86	20365		471	294	485	7540	2188	489	5.73	0.118	6.75	8.59	0.058	9.74
MBR	86	17774		440	292	451	1209	2105	459	5.43	0.104	7.04	8.56	0.054	10.02

Table 1.	2c - SIM1	MTH 201	ne 24-hr a	avg conce.	ntrations											
	VOC1 VOC2	VOC2	Ι.	VOC4	VOCS	900A	VOC7	VOC8	VOC9	CO.1	NO2.1	PART.1	CO.3	NO2.3	PART.3	
	$(\mu g/m^3)$	(µg/m³)	$\overline{}$	$(\mu g/m^3)$	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	$(\mu g/m^3)$	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	
BA2	86	10703		247	506	244	224	1229	250	2.90	0.013	6.39	7.10	0.029	4.90	
BR2	86	8615		213	170	210	195	626	214	2.53	0.013	7.78	6.82	0.051	11.21	
BR3	86	8217	202	209	991	207	192	930	318	2.48	0.013	7.95	6.77	0.055	12.03	
HAL	86	9052		226	504	223	202	1019	244	2.67	0.014	7.42	6.83	0.040	7.48	
KIT	86	10245		240	216	344	215	1144	239	4.27	0.068	6.93	6.99	0.031	5.35	
LDA	86	7433		238	230	504	188	106	506	2.46	0.014	8.08	6.74	0.057	12.57	
MBA	86	11316		252	207	249	484	1266	254	2.98	0.012	6.17	7.19	0.028	4.72	
MPD	80	10069		243	206	230	276	1176	346	200	0.010	75 7	7.06	0000	4 0.7	

Table 1	2d - SIMI	MTH zor	ne 4-hr av	'g concen	trations							
	V0C1	VOC2	VOC3	VOC4	V0C5	900A	V0C7	VOC8	VOC9	CO.1	NO2.1	PART.1
	$(\mu g/m^3)$	(µg/m³)	(µg/m³)	(mg/m³)	(µg/m³)	(µg/m³)	(μg/m³)	(μg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
BA2	86	Ϋ́	326	337	254	338	300	1598	349	4.16	0.026	6.41
BR2	86	NA	287	295	218	297	265	1305	303	3.73	0.024	7.51
BR3	86	ΝA	281	289	215	290	260	1268	629	3.65	0.024	7.71
HAL	86	ΝA	298	327	569	324	274	1362	388	3.98	0.027	7.11
KIT	86	ΝA	319	342	272	703	293	1527	343	4.83	0.047	6.67
LDA	86	ΝA	275	398	383	293	254	1230	293	3.61	0.025	7.89
MBA	86	Ν	355	339	251	340	1138	1604	349	4.19	0.026	6.34
MBR	86	Ν	581	335	251	336	476	1530	352	4.20	0.026	6.42

Table 12e - SIM1MTH zone 1-hr avg concentrations									
2e - SIMI	CO.1	(PPM)	4.15	3.81	3.84	4.31	19.10	4.12	4.06
Table 1			BA2	BR2	BR3	HAL	КП	LDA	MBA

LEGEND	0		
VOCI	Burst - UCL	CO.1	Oven
VOC2	Floor	NO2.1	Oven
VOC3	Burst - MBR	PART.1	
V0C4	Burst - LDA	CO.2	
VOCS	Burst - GAR	NO2.2	Heater
900A	Burst - KIT	PART.2	Heater
V0C7	Burst - MBA	CO.3	Outdoor air
VOC8	Burst - BMT	NO2.3	Outdoor air
VOC9	Burst - BR3	PART.3	Outdoor air

	_		,		_	_			_									_,
	PART.3	(µg/m³)			PART.3	(mg/m ₃)	8.28	1.51	30.38	32.69	37.53	35.29	31.87	33.37	30.18	27.91	7.17	17.67
	NO2.3	(PPM)			N02.3	(PPM)	0.120	0.127	0.200	0.179	0.217	0.226	0.196	0.193	0.182	0.191	0.120	0.131
	CO.3	(PPM)			CO.3	(PPM)	19.6	9.78	10.40	10.38	10.92	10.33	10.55	10.36	10.28	10.15	9.62	9.90
	PART.2	(µg/m³)			PART.2	(µg/m³)	10.65	10.61	11.88	11.99	12.28	12.13	11.74	11.98	11.99	11.88	10.63	11.21
	N02.2	(PPM)			NO2.2	(PPM)	0.014	0.015	0.020	0.018	0.022	0.023	0.023	0.019	0.021	0.019	0.014	0.014
	CO.2	(PPM)			CO.2	(PPM)	2.31	2.19	2.52	2.52	5.66	2.51	2.57	2.50	2.50	2.45	2.30	2.37
	PART.1	(µg/m³) 10.87			PART.1	(µg/m³)	10.73	10.73	11.89	11.99	12.28	12.32	11.76	11.97	12.93	11.94	10.73	11.22
	N02.1	(PPM) 0.019			N02.1	(PPM)	0.064	0.073	0.055	0.056	0.057	0.155	0.061	0.050	0.486	0.076	0.064	0.038
į	C0.1	(PPM) 2.26			CO.1	(PPM)	4.22	3.78	3.35	3.39	3.47	7.21	5.45	2.00	15.55	5.73	3.92	4.49
	VOC9	(µg/m³)			VOC9	(µg/m³)	304	271	188	4046	235	167	203	632	178	168	279	377
	VOC8	(µg/m³)			VOC8	(µg/m³)	18	991	165	162	153	228	457	297	452	981	168	188
	V0C7	(µg/m³)			V0C7	(µg/m³)	11511	529	170	171	185	152	178	464	129	151	216	182
	900x	(µg/m³)			900A	(µg/m³)	325	320	244	257	566	629	434	373	1627	471	314	296
entranons	VOCS	(µg/m³) 149		suc	VOCS	(µg/m³)	412	700	146	153	234	211	1234	853	153	1525	372	548
avg conc	VOC4	(µg/m³)	3	Table 13b - SIM2FLC zone peak concentrations	V0C4	(µg/m³)	384	259	182	193	226	1912	855	90	465	1005	334	498
C Overall 24-nr	VOC3	(µg/m³)		peak cor	VOC3	(µg/m³)	101	108	5	901	101	105	105	129	103	102	879	1529
TC OVER	V0C2	(µg/m³)		FLC zone	V0C2	(µg/m³)	12014	14271	6456	6820	9859	8979	7662	6514	6064	8057	12781	8299
able 13a - SIMZFL	V0C1	(µg/m³)		SIM2I	V0C1	(µg/m³)	461	120	901	801	8	108	154	126	105	118	114	116
1 able 1 35		24 hr avo	9.00	Table 131			BA2	BA3	BR2	BR3	BR4	DR	ENT	HAL	ΚFΛ	E E	MBA	MBR

	_								_		_		_	_
	PART.3	(µg/m³)	3.47	0.91	19.84	16.80	17.01	25.71	15.18	16.50	21.48	17.82	3.03	10.15
	N02.3	(PPM)	0.056	0.050	0.101	0.093	0.095	0.114	0.087	0.092	0.104	0.092	0.053	690.0
	CO.3	(PPM)	6.79	6.78	97.9	6.71	6.78	89.9	6.73	6.78	6.70	6.70	18.9	6.81
	PART.2	(µg/m³)	10.13	69.6	11.33	11.18	11.21	11.65	11.13	11.21	11.48	11.29	10.05	10.70
	NO2.2	(PPM)	900.0	0.005	0.010	0.000	0.010	0.011	0.009	0.009	0.011	0.009	0.005	0.00
	CO.2	(PPM)	1.61	09:1	99.1	1.59	1.61	1.58	09.1	1.61	1.59	1.59	191	1.62
	PART.1	(µg/m³)	10.17	9.74	11.35	11.20	11.23	11.72	11.17	11.24	11.62	11.35	10.09	10.74
	N02.1	(PPM)	0.011	0.011	0.013	0.013	0.013	0.024	0.016	0.015	0.047	0.017	0.010	0.011
	CO.1	(PPM)	2.22	2.24	1.87	1.90	1.92	2.33	2.20	2.10	3.04	2.24	2.20	2.12
	VOC9	(µg/m³)	163	144	111	536	123	Ξ	111	173	113	113	158	163
	VOC8	(mg/m³)	121	119	10	110	108	120	140	123	14	911	119	120
	V0C7	(µg/m³)	1336	135	113	115	116	108	113	126	110	0 =	128	119
	900A	(µg/m³)	191	174	128	133	134	189	169	153	569	176	163	153
trations	VOCS	(mg/m³)	8	129	108	8	911	9	506	171	108	218	154	172
g concen	V0C4	(µg/m³)	16	145	116	118	122	237	200	173	129	210	158	169
: 24-hr av	V0C3	(mg/m³)	101	101	8	8	8	66	8	10	66	66	189	228
-LC zone	V0C2	(µg/m³)	1728	8222	4375	4681	4581	3657	4991	4770	4010	4726	8309	6353
c - SIM2	V0C1	(µg/m³)	285	011	103	103	104	101	901	101	102	103	108	901
Table 13			BA2	BA3	BR2	BR3	BR4	DR	ENT	HAL	ΚĿΛ	LR	MBA	MBR

Table	3d - SIM2	FLC zone	e 4-hr avg	g concent	rations											
	VOCI	V0C2	VOC3	VOC4	VOCS	900x	VOC7	VOC8	VOC9	C0.1	N02.1	PART.1	CO.2	NO2.2	PART.2	_
_	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	_
BA2	377	×	103	258	272	221	4308	153	246	3.72	0.023	9.94	2.17	0.005	9.80	_
BA3	112	٧	103	169	157	208	144	140	156	3.63	0.023	90.6	2.12	0.003	8.92	_
BR2	102	٧V	101	128	113	149	117	126	125	2.63	0.018	11.23	2.06	0.009	11.18	_
BR3	102	٧X	101	128	115	155	121	124	1585	2.63	0.018	11.33	2.03	0.009	11.27	_
BR4	103	٧X	101	126	911	150	120	118	128	2.76	0.019	11.22	2.10	0.00	11.16	_
DR	101	٧	8	228	115	420	Ξ	191	115	5.11	890.0	11.85	86:1	0.011	11.52	_
ENT	104	٧X	8	430	447	295	112	255	911	4.27	0.037	11.19	2.07	800.0	10.97	_
HAL	<u>10</u>	٧X	103	347	364	239	129	981	310	3.88	0.030	Ξ.Ξ	2.10	0.008	10.93	
ΚFΛ	101	٧X	8	129	Ξ	692	113	258	117	8.07	0.163	12.00	2.01	0.010	11.34	_
Z.	101	Ϋ́	8	478	465	339	9	136	114	4.51	0.043	11.43	2.05	0.009	11.18	
MBA	601	×	404	232	246	504	132	142	226	3.51	0.020	9.82	2.18	0.004	9.70	_
MBR	105	٧X	512	315	337	216	117	9	275	3.65	0.021	10.56	2.17	9000	10.42	_

1-nr avg concenuations			BA2 3.36 1.76		
TLC ZONE	CO.2	(PPM)	1.76	1.71	071
e - 51M2	CO.1	(PPM)	3.36	3.52	, ,
l anic 13			BA2	BA3	200

Table 13e - SIMZFLC zone 1-hr avg concentrations	,														
-LC zone	CO.2	(PPM)	1.76	1.77	1.68	1.68	1.70	1.66	1.71	1.71	1.68	1.70	1.75	1.73	
3e - SIM21	CO.1	(PPM)	3.36	3.52	3.14	3.16	3.27	4.98	3.40	3.23	11.90	3.56	3.27	2.94	
apic			BA2	BA3	BR2	BR3	BR4	DK DK	ENT	HAL	ΚFΛ	~	MBA	MBR	

VOC1	Burst - CLO	CO.1	Oven
V0C2	Floor	N02.1	Oven
VOC3	Burst - MBR	PART.1	Oven
V0C4	Burst - DR	CO.2	Heater
VOC5	Burst - L.R	N02.2	Heater
900x	Burst - KFA	PART.2	Heater
V0C7	Burst - BA2	CO.3	Outdoor air
000 000	Burst - GAR	N02.3	Outdoor air
000	Burst - BR3	PART.3	Outdoor air

Fable 14	a - SIM2i	FLM ove	rall 24-hr	avg con	centralion	ns									
	VOCI	V0C2	V0C3	V0C4	VOCS	900A	V0C7	800x	6207	CO.1	NO2.1	PART.1	CO.3	N02.3	PART.
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
24 hr avg	189	7974	135	137	134	145	167	8	153	1.94	0.017	11.22	09'9	0.092	20.38

Table 14b - SIM2FLM zone peak concentrations

_	_	_	_					_	_		_	_	
PART.3	(µg/m³)	33.01	3.77	31.16	36.96	48.18	35.67	40.48	43.68	34.16	28.72	37.42	35.81
NO2.3	(PPM)	0.189	0.092	0.186	0.185	0.259	0.203	0.219	0.238	0.184	0.157	0.213	0.206
CO.3	(PPM)	11.20	7.93	10.73	10.13	11.92	10.56	11.56	11.56	9.53	11.08	19.11	11.62
PART.1	(µg/m³)	12.22	10.33	12.13	12.21	12.69	12.20	12.42	12.53	12.47	12.02	12.42	12.40
NO2.1	(PPM)	0.078	0.000	0.064	990.0	0.067	0.071	0.063	0.056	0.539	0.049	0.078	0.039
CO.1	(PPM)	3.19	3.50	2.86	2.95	2.96	3,43	2.89	2.86	16.60	2.94	3.18	2.87
VOC9	(µg/m³)	139	140	203	4174	811	244	471	542	155	360	137	991
VOC8	(µg/m³)	102	102	101	101	102	102	112	105	011	101	102	102
7007	(µg/m³)	8926	141	238	157	911	358	543	648	260	428	123	126
00Ce	(µg/m³)	151	176	142	143	133	145	136	159	1685	132	148	123
V0C5	(µg/m³)	112	611	110	110	108	841	132	119	453	1347	112	114
V0C4	(µg/m³)	126	138	121	121	911	2301	130	118	740	132	124	113
V0C3	(µg/m³)	113	111	221	148	601	325	529	621	231	396	114	1323
V0C2	(mg/m³)	8960	21975	6493	7895	5537	8080	7190	6320	11894	7409	1116	7527
V0C1	(mg/m³)	278	979	108	601	801	8	500	132	182	<u>8</u>	126	123
		BA2	BA3	BR2	BR3	BR4	DR	ENT	HAL	KFA	LR	MBA	MBR

(µg/m²) (µg/m²) <t< th=""><th></th><th>-</th><th>V0C7</th><th>800x</th><th>VOC9</th><th>CO.1</th><th>NO2.1</th><th>PART.1</th><th>CO.3</th><th>N02.3</th><th>PART.3</th></t<>		-	V0C7	800x	VOC9	CO.1	NO2.1	PART.1	CO.3	N02.3	PART.3
152 116 102 104 103 104 104 104 105 104 105	(µg/m³)	_	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(ug/m³)
388 13935 106 114 102 4340 120 102 102 4705 108 102 102 103 105 105 105 105 105 105 105 105 105 105	2		1270	8	107	1.72	0.012	11.31	6.58	0.089	18.41
102 4340 120 102 102 4705 108 102 101 2719 100 100 143 4960 135 268 159 3933 136 104 106 3449 138 103 154 4700 138 105		126	122	8	114	1.88	0.007	86.8	6.53	0.032	2.11
102 4705 108 102 101 2719 100 100 143 4906 135 268 159 3933 136 104 106 138 103 103 134 6617 126 211 154 4700 138 105	102		134	83	113	1.67	0.011	11.59	99'9	0.099	21.35
101 2719 100 100 143 4966 135 268 159 3933 136 104 106 3449 138 103 154 4700 138 105	102		113	8	713	1.67	0.011	11.48	6.65	960.0	21.07
143 4960 135 268 159 3933 136 104 106 3449 138 103 134 6617 126 211 154 4700 138 105	001		102	8	101	<u>2</u> .	0.015	12.09	95'9	0.131	33.23
159 3933 136 104 106 3449 138 103 134 6617 126 211 154 4700 138 105	268		157	8	811	1.75	0.012	11.46	6.65	0.089	17.98
106 3449 138 103 134 6617 126 211 154 4700 138 105	2		191	8	130	1.67	0.013	11.77	6.59	0.110	25.79
134 6617 126 211 154 4700 138 105	103		170	8	138	1.65	0.014	11.89	6.58	0.118	29.31
154 4700 138 105	211		1	90	113	3.21	0.046	11.13	6.72	0.072	13.93
	105		<u>8</u>	8	126	1.69	0.011	11.54	6.62	0.091	18.31
, 108 4838 103 103	103		90	8	901	1.70	0.012	11.43	6.57	0.095	20.56
4239 205 102	102		105	8	107	1.64	0.011	11.63	6.57	0.09	22.15

	V0C1	V0C2	V0C3	V0C4	VOCS	00C6	V0C7	800x	VOC9	CO.1	NO2.1	PART
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
BA2	90	٧X	8	8	8	9	3223	86	8	2.00	0.012	12.0
BA3	<u>1</u>	٧X	<u>5</u>	110	105	120	119	8	Ξ	1.83	0.002	8.26
BR2	8	٧	174	8	8	8	161	86	101	2.07	0.010	11.7
BR3	8	٧V	133	8	8	<u>8</u>	143	86	2006	2.05	0.009	11.3
BR4	86	٧X	86	86	86	8	8	86	86	1:90	0.015	12.4
DR	184	Ν	238	443	380	9	277	86	105	2.11	0.008	11.4
ENT	201	٧×	237	8	8	8	262	86	901	1.95	0.014	12.2
HAL	8	٧×	241	8	8	8	300	86	001	1.92	0.014	12.3
KFA	174	٧×	196	480	320	697	218	8	113	8.79	0.175	Ξ
۳	193	۷×	544	8	346	8	162	86	102	2.05	0.010	11.8
MBA	9	×	8	83	8	8	8	86	8	1.96	0.014	12.2
MBR	8	< Z	377	8	8	8	8	86	8	1 97	0.013	12.2

f zone 1-hr avg concentratio		
FLM zone		
14e - SIM2FLM	1.00	(Anna)
Table		

3	(PPM)	2.62	1.84	2.56	2.40	2.64	2.49	5.66	2.62	13.76	5.66	5.69
		BA2	BA3	BR2	BR3	BR4	DR	ENT	HAL	KFA	<u> </u>	MBA

V0C1	Burst - CLO	CO.1	Oven
V0C2	Floor	N02.1	Oven
VOC3	Burst - MBR	_	Oven
V0C4	Burst - DR	CO.2	Heater
VOCS	Burst - LR	_	Heater
00C	Bursi - KFA	_	Heater
VOC7	Burst - BA2	_	Outdoor air
VOC8	Burst - GAR		Outdoor als
0000	Burst - BR3		Outdoor air

	NOCI	VOC2	VOC3	VOC4	VOCS	900x	VOC7	800x	000 000	CO.1	NO2.1	PART.1	CO.3	NO2.3	PAR
	(mg/m³)	(µg/m³)	(µg/m³)	(hg/m³)	(µg/nr³)	(mg/m³)	(mg/m³)	(µg/m³)	(hg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
hr ave	4	13042	186	178	178	181	189	102	185	2.37	9100	8,49	6.93	0.063	7.9

	NOCI	VOC2	VOC3	VOC4	VOC5	900A	VOC7	800x	6007	CO.1	NO2.1	PART.1	CO.3	NO2.3	PART.3
	(µg/m³)	(mg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m²)	(PPM)	(PPM)	(µg/m³)						
BA2	203	13237	\$	404	373	426	1771	124	394	5.82	0.123	9.46	10.00	0.119	12.20
BA3	227	13888	459	436	397	489	469	124	420	6.30	0.138	9.04	9.93	0.102	1.05
BR2	188	12399	375	379	341	410	393	123	379	5,54	0.111	9.65	68.6	0.103	13.36
BR3	261	13589	\$	360	366	438	424	123	3161	2.60	0.113	9.30	68.6	0.103	10.62
BR4	188	13277	403	397	365	437	422	122	382	5.30	0.107	9.82	10.00	0.131	16.86
DR.	220	12860	381	1799	702	398	418	121	412	5.46	0.099	10.09	10.00	0.114	15.55
I:NT	307	11544	414	381	343	411	485	129	472	5.47	0.108	89:01	10.32	0.168	26.90
IM	981	12202	294	356	328	381	632	120	6 0	5,14	0.097	10.06	90.01	0.140	17.84
KFA	215	13914	388	169	553	1289	410	130	403	11.40	0.377	9.71	9.94	0.103	9.48
L.R	246	12010	383	373	1402	398	425	121	420	5.47	0.097	10.51	10.02	0.135	22.72
MBA	187	13071	400	389	368	420	429	124	387	5.71	0.120	9.76	10.06	0.129	14.65
MBR	167	10972	1472	324	286	345	329	911	323	4.86	0.081	10.23	10 29	0 148	16.88

	VOCI	VOC2	VOC3	VOC4	VOCS	VOC6	V0C7	VOC8	0000	CO.1	NO2.1	PART.1	CO.3	NO2.3	PART.3
	(µg/m²)	(µg/n ¹)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(hg/m²)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(mg/m³)
BA2	191	9417	185	182	175	187	460	103	186	2.44	0.016	8.22	7.00	0.058	4.18
BA3	178	1000	193	189	182	195	198	103	194	2.52	0.016	7.87	7.03	0.050	0.55
BR2	191	9223	182	179	172	184	187	103	182	2.40	0.015	8.39	86.9	0.061	00.9
BR3	165	9845	187	184	171	681	192	103	312	2.45	0.015	8.08	6.9	0.053	3.16
BR4	163	9490	184	180	174	185	188	103	184	2.41	0.015	8.28	6.9	0.058	5.11
DR	182	9450	185	225	504	184	<u>8</u>	103	981	2.43	0.015	8.43	7.03	0.058	16'5
ENI.	213	8485	184	173	991	178	188	103	184	2.35	0.016	8.86	6.9	0.073	10.88
HAL	156	8820	161	172	991	171	661	102	195	2.33	0.014	8.69	6.97	0.065	7.86
ΚFΛ	183	9966	188	504	195	516	193	8	189	2.76	0.027	8.19	7.04	0.051	3.23
¥.	187	8980	183	176	516	181	188	103	184	2.39	0.015	8.67	7.03	0.065	8.55
MBA	162	8816	182	179	173	184	187	103	183	2.41	0.016	8.34	6.9	0.000	4.89
MBR	147	7850	226	191	156	165	167	102	20	2.23	0.014	9.25	96.9	0.075	12.09

3.42	VOC1 (µg/m³) 172	VOC2 (µg/m³) NA	VOC3 (µg/m²) 273	VOC1 VOC2 VOC3 VOC4 (µg/m²) (µg/m²) (µg/m²) (µg/m²) A2 172 NA 273 281	VOC5 (µg/m²) 253	VOC6 (µg/m²) 297	VOC7 (µg/m³) 1173	VOC8 (µg/m²) 101	VOC9 (µg/n²) 290	CO.1 (PPM) 4.30	200	NO2.1 (PPM) 0.047
BA3	161	ž	290	300	268	317	312	<u>=</u>	309	4.57	õ	150
3R2	167	ž	263	272	244	288	282	10	280	4.24	ŏ	72
383	172	ź	274	282	254	297	262	<u>=</u>	685	4.27	0.0	45
3R4	691	ž	565	272	246	586	282	8	281	4.08	Ö	£3
×	197	ž	277	432	347	290	596	101	294	4.31	0.0	43
.K	244	ź	588	263	236	278	300	8	306	4.10	0.0	Ê
Į,	191	ź	316	526	231	270	326	8	330	3.98	0.0	9
KFA	961	×	281	351	313	403	305	<u></u>	300	5.33	0.0	84
×	207	ź	278	267	404	284	297	<u>=</u>	295	4.23	0.0	12
MBA	169	ź	267	275	247	290	285	8	283	4.21	Ó.	9
JARR	153	×Z	ASK	233	1110	246	146	201	220	37.6	0.02	

0.1	PM)	53	8	33	39	21	91	22
O	5	BA2 4.	BA3 4.	BR2 4.	BR3 4.	BR4 4.	DR 4.	ENT 4.
	CO.1	CO.1 (PPM)	CO.1 (PPM) N2 4.53	CO.1 (PPM) V2 4.53 V3 4.90	CO.1 (PPM) (A2 4.53 (A3 4.90 (A2 4.33	CO.1 (PPM) N2 4.53 N3 4.90 N3 4.39 N3 4.39	CO.1 (PPM) (PPM) (12 4.33 (2 4.33 (3 4.39 (4 4.21	CO.1 (PPM) BA.2 4.33 BA.3 4.90 BR.2 4.33 BR.3 4.39 BR.4 4.11 DR.4 4.16

VOCI	Burst - CLO	C0.1	Oven
X0C2	Floor	NO2.1	Oven
VOC3	Burst - MBR	PART.1	Oven
VOC4	Burst - DR	CO.2	Heater
VOCS	Burst - 1.R	NO2.2	Heater
9.00	Burst - KFA	PART.2	Heater
VCX7	Burst - BA2	CO.3	Outdoor air
X.X.X	Burst - GAR	NO2.3	Outdoor air
VCKY	Burd - BR1	PART.3	Outdox air

Table	JC - 311112	TELL CORE I'll avg concentiations	CEOCIAD
	CO.1		VOC1 Burst -
	(PPM)		VOC2 Flox
BA2	4.53		VOC3 Burst - 1
BA3	4.90		VOC4 Burst -
BR2	4.33		VOC5 Burst-
BR3	4.39		VCC Burst
BR4	4.21		VCX7 Burst B
J.K	4.16		V(X'N Burst
ENT	4.22		VCKW Burd.
IV.	3.99		
KI:A	7.74		
E.	4.11		
MBA	4.46	MBA 4.46	
MBR	3.76		

	PART.3	(µg/m³)	5.24
	NO2.3	(PPM)	0.034
	CO.3	(PPM)	6.49
	PART.2	(µg/m³)	7.82
	N02.2	(PPM)	0.004
	CO.2	(PPM)	1.62
	PART.1	(µg/m³)	7.89
	N02.1	(PPM)	0.017
	CO.1	(PPM)	3.41
	V0C9	(µg/m³)	300
	VOC8	(µg/m³)	504
	V0C7	(µg/m³)	278
ns	00Ce	(µg/m³)	325
centration	VOC5	(µg/m³)	322
r avg con	V0C4	(µg/m³)	337
rall 24-h	VOC3	(µg/m³)	214
PTC ove	V0C2	(µg/m³)	30356
5a - SIM	VOCI	(µg/m³)	2600
Table 16			24 hr avg

	_	-		_		_	_	_	_			_		
	PART.3	(µg/m³)	2.08	0.48	12.26	12.10	15.85	15.10	14.88	11.93	10.06	9.16	2.42	4.78
	NO2.3	(PPM)	0.045	0.049	0.088	0.071	0.095	0.104	0.093	0.073	0.073	0.073	0.045	0.046
	CO.3	(PPM)	7.76	1.67	8.33	8.37	8.69	8.27	8.55	8.26	8.20	7.99	1.77	7.87
	PART.2	(µg/m³)	7.81	7.88	9.26	9.24	89.6	9.50	9.11	00.6	9.14	8.85	7.81	8.02
	N02.2	(PPM)	9000	0.007	0.009	0.007	0.010	0.010	0.014	600.0	0.010	800.0	9000	0.005
	CO.2	(PPM)	1.96	1.95	2.05	5.06	2.11	5.06	2.31	2.08	5.09	2.00	1.95	1.98
	PART.1	(µg/m³)	7.97	8.07	9.27	9.25	9.64	9.58	8.77	8.94	10.22	8.87	7.98	8.10
	N02.1	(PPM)	0.065	0.075	0.054	0.056	0.056	0.076	0.052	0.045	0.595	0.038	0.065	0.034
	CO.1	(PPM)	5.56	2.98	4.60	4.75	4.82	8.07	5.34	4.62	19.92	5.44	5.47	4.26
	V0C9	(µg/ш³)	430	432	328	2008	361	291	360	989	307	300	411	405
	VOC8	(µg/m³)	586	288	247	761	564	262	96	426	225	273	280	273
	V0C7	(µg/m³)	13893	451	320	340	349	283	342	169	300	288	396	351
	900A	(µg/ш³)	210	242	401	434	443	300	456	69	5096	451	205	385
ons	VOCS	(µg/m³)	401	328	282	298	311	949	1380	<u>8</u>	419	2373	366	579
ncentrati	V0C4	(µg/m³)	420	431	339	361	371	3198	834	879	993	1089	410	374
e peak co	VOC3	(µg/m³)	224	230	188	961	201	175	197	351	181	178	745	2050
FIC zon	V0C2	(µg/m³)	26390	27089	19706	19400	18977	20469	20894	20719	19654	23040	27016	25423
b - SIM2	VOCI	(µg/m³)	288	138	119	121	122	125	233	157	122	142	140	147
Table 16			BA2	BA3	BR2	BR3	BR4	DR	ENT	HAL	KFA	LR	MBA	MBR

		-		_	_		_	_	_	_		_		_
	PART.3	(µg/m³)	0.57	0.24	7.42	6.15	91.9	9.47	5.23	4.97	7.01	5.35	99.0	2.72
	N02.3	(PPM)	0.019	0.020	0.043	0.039	0.040	0.049	0.035	0.034	0.041	0.034	0.019	0.023
	CO.3	(PPM)	6.57	6.55	6.65	99.9	9.70	19.9	6.59	6.64	6.62	6.58	6.57	0.90
	PART.2	(µg/m³)	7.14	7.11	8.50	8.34	8.36	8.74	8.16	8.11	8.54	8.15	7.14	7.45
	NO2.2	(PPM)	0.002	0.002	0.004	0.004	0.004	0.005	0.004	0.004	0.004	0.004	0.002	0.002
	CO.2	(PPM)	2.	1.64	1.63	1.64	1.65	1.64	1.71	1.66	1.69	29.1	20.1	1.65
	PART.1	(µg/m³)	7.18	7.16	8.53	8.38	8.40	8.82	8.10	8.12	8.76	8.18	7.18	7.47
	N02.1	(PPM)	0.00	0.010	0.00	0.00	0.00	0.015	0.00	800.0	0.056	0.00	800.0	9000
	CO.1	(PPM)	3.35	3.45	2.87	2.97	2.97	3.43	3.06	3.00	5.24	3.15	3.31	3.04
	6000	(mg/m³)	596	287	529	1034	237	211	241	340	516	526	588	298
	800x	(µg/ш ₂)	206	202	174	178	171	185	273	213	247	161	202	200
	V0C7	(µg/m³)	2335	275	218	526	227	203	227	276	210	216	267	254
	900A	(hg/m³)	326	337	259	569	268	314	284	276	515	230	320	287
trations	VOCS	(µg/m³)	287	277	519	224	225	303	443	331	564	269	280	304
g concen	V0C4	(µg/ш³)	303	310	242	249	249	584	323	295	327	429	30	290
24-hr av	V0C3	(mg/m³)	170	171	148	151	151	141	152	174	4	147	283	459
TC zone	V0C2	(µg/m³)	20782	20431	15821	16388	16266	15286	17436	17474	16002	17655	21096	20388
: - SIM2l	V0C1	(µg/m³)	194	120	Ξ	112	113	112	125	119	112	115	124	122
Table 16c			BA2	BA3	BR2	BR3	BR4	DR	ENT	HAL	KFA	LR	MBA	MBR
								_						

VOC	_		VOC4	VOCS	00Ce	V0C7	VOC8	6000	CO.1	NO2.1	PART.1	CO.2	NO2.2	PART.2
n/gu)	_	_	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
			329	346	367	7259	241	343	3.94	0.019	6.70	1.93	0.001	6.65
			328	305	393	302	240	316	4.24	0.022	6.59	1.92	0.001	6.52
			238	221	278	526	187	236	3.31	910.0	8.41	1.96	0.004	8.37
			239	222	285	231	189	2892	3.38	0.017	8.52	1.96	0.004	8.47
			234	218	279	228	185	237	3.44	0.017	8.56	2.01	0.004	8.50
			1455	339	528	201	221	500	5.97	0.049	8.90	1.96	0.004	8.60
√T 123	٧N	146	555	881	317	219	472	230	3.70	0.018	7.88	2.04	0.003	7.91
			391	280	295	304	304	200	3.51	0.015	7.76	2.01	0.003	1.77
KFA 110			365	569	1251	210	410	218	13.89	0.230	9.45	2.04	0.004	8.36
			817	1235	329	211	213	220	4.07	0.020	7.96	1.95	0.003	7.88
_			314	319	358	284	229	325	3.83	0.018	69.9	1.92	0.001	6.64
_			324	427	204	150	230	360	375	1100	200	100	000	200

- SIM2FTC zone 1-hr avg concentrations				
TC zone	C0.2	(PPM)	1.54	1.54
e - SIM2F	CO.1	(PPM)		3.67
Table 16			BA2	BA3

7.00	(PPM)	1.54	1.54	1.56	1.54	1.53	1.56	09:1	1.56	1.58	1.56	1.53	1 53
2.03	(PPM)	3.46	3.67	3.13	3.18	3.23	3.70	3.13	3.07	13.79	5.96	3.44	100
		BA2	BA3	BR2	BR3	BR4	DR	ENT	HAL	KFA	LR	MBA	MAD

70CI	Burst - CLO	CO.1	Oven
V0C2	Floor	N02.1	Oven
VOC3	Burst - MBR	_	Oven
V0C4	Burst - DR	_	Heater
VOCS	Burst - L.R	_	Heater
90C	Burst - KFA		Heater
V0C7	Burst - BA2	_	Outdoor at
00C8	Burst - GAR	N02.3	Outdoor at
000	Burst - BR3	PART.3	Outdoor at

2	VOCI	VOC2	VOC3	VOC4	VOCS	920A	V0C7	VOC8	V0C9	00.1	N02.1	PART.1	CO.3	N02.3	PART.3
	(µg/m³)	(hg/m³)	(mg/m²)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m²)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(mg/m³)
hr ave	1828	23498	213	222	228	211	282	901	272	2.59	0.015	9.13	6.78	0.044	8.64

Table 1	7b - SIM2														
	VOCI	V0C2	VOC3	VOC4	VOCS	900A	V0C7	VOC8	V0C9	C0.1	NO2.1	PART.1	CO.3	NO2.3	PART.3
	(mg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m²)	(µg/m³)	(µg/m³)	(µg/m²)	(PPM)	(PPM)	(hg/m²)	(PPM)	(PPM)	(µg/m²)
BA2	236	21076	173	238	208	235	12903	124	249	3.87	0.078	10.69	9.43	0.097	15.49
BA3	888	36409	197	281	243	279	298	124	297	4.18	0.090	8.47	7.22	0.033	1.31
BR2	150	17017	216	216	161	215	252	117	246	3.32	0.062	10.02	8.78	0.082	11.93
BR3	150	18630	991	223	196	221	232	811	5374	3.43	990:0	9.87	8.47	0.074	14.95
BR4	148	16245	155	202	181	202	500	118	211	3.42	990.0	99:11	10.11	0.133	24.68
DK CK	287	18201	387	2777	984	250	345	120	321	3.29	0.053	6.67	8.96	0.087	14.37
ENT	328	19333	179	213	283	202	553	171	443	3.39	0.060	11.37	10.12	0.113	19.59
HAL	207	18377	934	187	202	981	638	14	69	3.19	0.051	09:11	10.22	0.133	22.69
KFA	264	25048	529	860	228	1911	309	155	280	19.69	0.591	10.07	8.29	0.067	11.83
Z,	303	18320	201	224	1953	681	41	120	346	3.10	0.042	10.41	9.37	0.059	8.94
MBA	991	20691	182	223	196	520	556	122	235	3.87	0.078	11.73	10.52	0.140	22.45
MBR	168	18961	1698	174	179	168	224	122	282	2.98	0.038	11.72	10.54	0.135	21.07

	NOCI	VOC2	VOC3	VOC4	VOCS	VOC6	VOC7	VOC8	VOC9	CO.1	NO2.1	PART.1	CO.3	NO2.3	PART.3
	(µg/m³)	(µg/m³)	(mg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(mg/m³)
2	156	14281	139	154	120	152	3166	90	175	2.23	8000	9.22	6.97	0.043	2.80
3	557	26445	891	504	193	203	236	Ξ	227	2.55	9000	6.88	6.55	0.013	69.0
BR2	127	14220	165	145	141	4	161	5	165	2.11	0.007	9.26	88.9	0.043	7.99
3	129	15092	140	120	145	149	171	105	1655	2.13	0.007	6.07	97.9	0.042	8.05
4	119	9904	122	132	130	131	143	103	140	2.00	0.009	10.27	98.9	0.067	14.55
	229	15696	225	203	388	156	244	<u>8</u>	185	2.24	9000	10.6	6.95	0.032	5.29
_	268	12081	797	143	154	137	281	91	192	2.07	800.0	9.87	6.97	0.054	10.45
_	135	10890	259	136	139	133	288	901	228	2.03	800.0	80.01	6.94	0.061	13.05
_	210	19163	161	416	306	228	224	112	193	5.28	0.054	8.54	6.78	0.024	3.70
	252	14696	254	155	410	145	270	9	188	2.14	0.005	9.24	10.7	0.033	5.02
<	131	11236	135	139	137	138	156	105	156	2.10	600.0	9.94	6.97	0.057	11.47
2	130	10736	343	130	132	128	151	25	150	1 98	8000	10.07	809	0.058	11 \$6

	VOCI	V0C2	VOC3	V0C4	VOCS	00C6	V0C7	800x	6000	1.00	NO2.1	PART.1
	(µg/m³)	(µg/m³)	(µg/m²)	(µg/m³)	(µg/ш²)	(µg/m³)	(µg/m²)	(µg/nr³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
BA2	120	×z	14	120	611	120	7479	101	128	2.07	0.007	10.52
BA3	864	٧X	9	193	182	26	223	801	216	2.11	0.001	6.45
BR2	113	٧	8	120	811	611	196	<u>=</u>	132	2.05	0.002	9.74
BR3	111	٧	142	128	125	127	155	<u>-</u> 01	3786	2.03	0.004	9.18
BR4	5	Ý	2	101	92	101	91	8	801	2.07	0.00	11.21
DR	281	×	312	1001	770	611	282	<u>10</u>	143	2.07	0.002	9.43
EM,	316	×	202	101	801	101	4	8	1117	2.11	0.008	11.17
HAL	901	Ý	254	105	105	105	467	8	113	2.08	0.000	11.41
KFA	260	Ϋ́	504	753	447	1189	222	5	174	13.18	0.226	9.12
LR	298	×	415	114	825	112	355	<u>.</u>	130	2.14	0.004	10.23
MBA	107	¥	<u>8</u>	101	101	101	Ξ	8	Ξ	2.08	0.010	11.54
MBR	90	Ž	697	103	12	20	101	8	103	3.00	0000	11 53

Table 1 /e - SIMZF I M ZORE I III avg concentration														
/e - SIM12F	CO.1	(PPM)	2.29	2.12	2.13	2.11	2.41	06:1	2.43	2.45	15.11	2.11	2.52	2.52
1 anne 1			BA2	BA3	DR2	BR3	BR4	DR	ENT	HAL	KFA	LR	MBA	MBR

		Burst - (盈					Burst - (
1	CECEND	100x	VOC2	VOC3	V0C4	VOCS	00C	V0C7	00C8	VOC9
	ons									

=	Burst - CLO		
Ş	Floor		
S	Burst - MBR	PART.1	Oven
2	Burst - DR		
SS	Burst - LR		
200	Burst - KFA		
23	Burst - BA2		_
VOC8	Burst - GAR		_
වූ	Burst - BR3		_

Table 18	a - SIM2l	TH over	all 24-hr	avg conc	entration	S									
	VOCI	V0C2	VOC3	V0C4	VOC5	900A	V0C7	00C8	V0C9	CO.1	N02.1	PART.1	CO.3	N02.3	PART,3
	(mg/m³)	(µg/m³)	(µg/m³)	(hg/m³)	(µg/ш ₃)	(µg/m³)	(µg/m³)	(hg/m³)	(hg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
24 hr avg	3979	39385	370	329	360	329	369	122	367	3.92	0.015	4.94	7.00	0.024	5.89

	VOCI	VOC2	VOC3	VOC4	VOCS	9000	V0C7	VOC8	VOC9	CO.1	N02.1	PART.1	CO.3	NO2.3	PART.
	(µg/m³)	(hg/m³)	(µg/m³)	(µg/m³)	(mg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
Λ2	312	34060	899	624	583	993	8491	891	613	6.70	0.136	5.57	8.16	0.044	4.12
A3	339	34237	615	638	296	069	662	168	628	7.03	0.147	5.34	8.16	0.035	0.28
R2	311	33445	579	286	263	619	613	991	289	6.41	0.121	5.48	8.12	0.036	3.88
83	312	34488	294	919	579	638	630	99	3636	6.44	0.124	5.56	8.11	0.036	3.17
R4	311	34373	594	615	579	637	679	165	605	6.36	0.123	5.84	8.14	0.046	4.98
×	337	33619	579	2102	626	265	99	168	583	6.29	0.105	5.75	8.15	0.039	5.26
M	518	32782	297	299	292	613	632	187	910	6.49	0.121	6.54	8.37	0.072	12.24
AL	304	33496	174	579	547	866	820	163	808	6.20	0.108	6.03	8.29	0.051	5.75
FΛ	331	34270	582	826	732	1464	909	180	287	12.35	0.399	5.95	8.14	0.035	2.93
2	326	32917	579	579	1773	595	09	170	585	6.31	0.102	91.9	8.16	0.045	8.50
MBA	310	33730	280	614	572	655	979	168	604	6.57	0.132	6.12	8.37	0.055	5.89
IBR	200	32125	1739	\$28	506	545	538	158	523	577	0.00	6 53	8 55	0.057	633

RT.3	/m3)	24	4	8	68	1.36	63	3	12	88	28	9	90
PA	gr/)	=	0	T	0	-	-	4.0	2.	0	2.	Ĩ	·
N02.3	(PPM)	0.00	0.017	0.021	0.018	0.020	0.020	0.028	0.022	0.017	0.033	0.022	5000
CO.3	(PPM)	7.17	7.18	7.16	7.18	7.18	7.18	7.15	7.16	7.18	7.17	7.16	
PART.1	(µg/m³)	4.55	4.38	4.61	4.47	4.55	4.65	5.03	4.82	4.55	4.81	4.72	6 24
N02.1	(PPM)	0.015	0.016	0.014	0.014	0.014	0.013	0.015	0.013	0.027	0.013	0.015	
CO.1	(PPM)	4.18	4.24	4.15	4.20	4.17	4.14	4.04	4.06	4.50	4.10	4.11	,0,0
000 000	(µg/m³)	387	393	384	524	386	384	375	396	388	379	379	250
000 000	(ug/m²)	125	125	124	125	125	125	126	124	126	125	124	
V0C7	(µg/m³)	879	397	388	393	330	388	379	388	392	383	383	250
000 V	(µg/m²)	384	391	382	386	384	380	368	372	416	375	377	030
VOC5	(hg/m³)	374	380	371	376	373	405	358	362	396	425	366	240
VOC4	(hg/m³)	380	386	377	382	379	426	364	368	405	370	372	2110
VOC3	(µg/m³)	386	393	384	389	386	383	375	368	388	379	379	107
V0C2	(µg/m³)	29482	29983	29446	29938	29667	29545	28088	28835	30058	29031	28852	23111
100A	(µg/m³)	290	566	286	290	288	305	340	280	306	300	284	2770
		3A2	3A3	3R2	3R3	BR4	J.R	ENT	TVF	KFA	.R	MBA	007

	VOCI	VOC2	VOC3	V0C4	VOCS	VOC6	VOC7	VOC8	VOC9	CO.1	N02.1	PART.1
	(µg/m³)	(µg/m³)	(hg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
3.72	294	ž	478	483	458	495	1448	126	490	5.63	0.053	5.15
BA3	308	Ϋ́	491	496	470	208	208	126	503	5.78	0.056	4.92
3R2	162	ž	469	475	449	487	486	125	481	5.56	0.050	5.13
3R3	295	ž	477	483	457	495	464	126	936	5.59	0.051	2.09
3R4	292	ž	473	478	453	490	489	125	484	5.53	0.050	5.25
JR.	319	٧	473	949	265	485	490	126	484	5.53	0.047	5.04
INI	374	¥	485	466	4	478	498	125	493	5.47	0.050	5.35
١٧٢	283	ž	534	457	433	469	533	125	531	5.35	0.046	5.47
ΈĀ	318	ź	478	552	225	286	464	127	489	6.57	0.091	5.07
æ,	328	Ϋ́	473	467	645	480	489	126	483	5.49	0.046	5.13
MBA	288	ž	466	471	446	482	481	125	417	5.51	0.052	5.39
MBR	267	ź	999	423	400	434	432	123	427	5.03	0.041	86.5

_		BA2	BA3	500
	(PPM)	5.11	5.37	7 0 7

CO.1 (PPM)	5.11	5.37	4.84	4.91	4.85	4.55	4.80	4.53	8.39	4.51	5.02
	BA2	BA3	BR2	BR3	BR4	DR	ENT	HAL	ΚFΛ	LR.	MBA

2 2 2	Burst - CLO	 00	Oven
V0C2	Floor	N02.1	Oven
VOC3	Burst - MBR	PART.1	Oven
VOC4	Burst - DR	CO.2	Heater
VOCS	Burst - LR	N02.2	Heater
900A	Burst - KFA	PART.2	Heater
V0C7	Burst - BA2	CO.3	Outdoor air
VOC8	Burst - GAR	N02.3	Outdoor air
2002	Burst - BR3	PART.3	Outdoor air

Table 19	a - S1M2	MI.C ove	rall 24-hr	avg conc	entration	S												
	VOCI	VOC2	VOC3	VOC4	VOCS	VOC6	VOC7	VOC8	40C9	CO.1	NO2.1	PART.1	CO.2	NO2.2	PART.2	CO.3	NO2.3	PART.3
	(µg/m³)	(m/grl) (ug/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(hg/m³)	(µg/m³)	(hg/m³)	(PPM)	(PPM)	(mg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(mg/m³)
24 hr avg	248	3586	115	126	124	128	116	141	121	1.86	0.018	10.67	1.76	0.019	10.92	6.73	0.114	16.48

PART.3	(mg/m³)	9.57	1.85	34.86	24.45	21.04	40.54	34.30	31.13	32.26	33.88	7.44	20.45
NO2.3	(PPM)	0.161	0.163	0.188	0.183	0.179	0.241	0.229	0.213	0.222	0.229	0.159	0.173
CO.3	(PPM)	10.70	10.70	10.93	10.71	10.77	11.36	11,36	11.23	10.94	11.37	10.68	10.90
PART.2	(µg/m³)	12,31	12.38	12,38	12.28	12.29	12.48	12.45	12.40	12.58	12.48	12.31	12.27
NO2.2	(PPM)	0.110	0.114	0.093	0.102	0.100	0.075	0.077	0.079	0.083	0.071	0.110	0.082
C0.2	(PPM)	3.18	3.20	2.91	3.09	3.05	2.79	2.79	2.75	2.76	2.79	3.18	2.84
PART.1	(µg/m³)	10.48	10.45	11.83	11.23	11.12	12.06	11.67	11.51	11.73	11.84	10.46	11.20
N02.1	(PPM)	0.082	980.0	0.071	0.077	0.076	0.128	0.071	890.0	0.271	0.079	0.082	0.063
CO:1	(PPM)	4.46	4.52	4.12	4.35	4.33	5.31	4.00	4.04	8.91	4.18	4.46	3.98
000 000	(mg/m³)	300	308	265	1593	278	225	241	339	242	218	300	292
00C8	(µg/m³)	313	314	276	308	316	326	330	383	620	273	312	316
V0C7	(mg/m³)	3491	506	185	240	586	164	167	669	173	162	214	374
00C	(µg/m³)	320	330	281	303	301	407	303	285	758	322	320	271
VOCS	(µg/m³)	596	304	761	295	307	222	444	404	238	683	596	305
V0C4	(µg/m³)	308	317	272	298	302	861	401	320	247	484	308	285
VOC3	(µg/m³)	229	234	506	217	214	180	183	981	161	175	231	742
VOC2	(µg/m³)	3319	3448	2903	3285	3133	2134	2188	2472	2407	2171	3548	2845
VOCI	(µg/m³)	993	1001	845	943	916	999	710	751	748	649	993	801
		BA2	BA3	BR2	BR3	BR4	DR	ENT	HAL	KFA	1.R	MBA	MBR

	RT.3	/m³)	22	1.38	11:	16	64	.55	.04	.47	.83	41	11	8
	L	_												
	NO2.	(PPM	0.09	0.097	0.116	0.107	0.107	0.137	0.127	0.118	0.124	0.132	0.09	0.105
	CO3	(PPM)	6.75	6.75	6.75	91.9	6.75	6.73	6.71	6.72	6.74	6.72	6.75	6.73
	PART.2	(µg/m³)	10.47	10.38	10.98	10.77	10.77	11.52	11.33	11.18	11.30	11.44	10.44	10.90
	NO2.2	(PPM)	0.020	0.020	0.020	0.020	0.020	0.021	0.021	0.020	0.022	0.019	0.020	0.018
	CO.2	(PPM)	1.81	1.83	1.78	1.80	1.79	1.73	1.74	1.75	1.77	1.72	1.82	1.77
	PART.1	(µg/m³)	10.14	10.03	10.70	10.46	10.47	11.31	11.08	10.92	11.05	11.24	10.10	10.62
	NO2.1	(PPM)	0.015	0.016	0.016	0.016	0.016	0.021	0.017	0.016	0.029	0.019	0.015	0.015
	CO.1	(PPM)	1.85	98.1	18.1	1.84	1.83	1.85	1.78	1.79	2.05	1.80	1.86	1.81
	VOC9	(µg/m³)	123	124	118	194	120	113	114	119	115	113	123	120
	VOC8	(µg/m³)	142	142	133	139	140	135	145	144	9	129	141	140
	VOC7	(mg/m³)	588	112	9	112	114	106	107	132	107	106	113	121
	VOC6	(µg/m³)	128	129	121	125	125	126	121	122	148	122	129	123
ntralions	VOCS	(µg/m³)	125	126	119	122	123	113	130	127	91	138	125	124
vg conce	VOC4	(µg/m³)	127	127	120	123	124	145	126	125	117	131	127	124
c 24-hr a	VOC3	(µg/m³)	13	114	011	112	112	107	108	8	801	107	911	140
MLC zon	VOC2	(µg/m³)	2761	2700	2306	2517	2528	1787	1988	2222	2018	1942	2862	2624
e - SIM2	VOCI	(µg/m³)	303	320	260	285	282	218	233	243	239	219	310	261
Table 19			BA2	BA3	BR2	BR3	BR4	DR	ENT	HAI.	KI:V	1.1.	MBA	MBR

VOCT VOCZ VOCZ <th< th=""><th>Table 1</th><th>7MIS - DK</th><th>MLC ZOI</th><th>ne 4-nr av</th><th>g concent</th><th>trations</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Table 1	7MIS - DK	MLC ZOI	ne 4-nr av	g concent	trations										
(lig/m ¹) (lig/m ²		VOC1	VOC2	VOC3	VOC4	VOCS	VOC6	VOC7	VOC8	VOC9	C0.1	NO2.1	PART.1	CO.2	NO2.2	PART.2
644 NA 142 176 172 181 531 251 165 305 0.033 675 NA 143 178 174 184 139 250 168 3.09 0.034 554 NA 135 178 174 184 139 250 168 3.09 0.034 619 NA 138 174 172 179 145 249 340 3.02 0.032 426 NA 138 174 172 179 145 249 340 3.02 0.032 426 NA 125 216 142 178 152 242 139 2.99 0.034 434 NA 125 170 175 152 282 140 2.71 0.032 440 NA 129 170 175 162 200 274 144 2.71 0.031 482 NA 124 186 198 163 121 211 138 2.76 0.034 618 NA 124 186 198 163 121 211 138 2.76 0.034 618 NA 124 186 198 163 121 211 138 2.76 0.034 618 NA 128 177 173 182 140 249 165 385 0.033 618 NA 128 177 144 2.85 0.033		(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
675 NA 143 178 174 184 139 250 168 309 0034 554 NA 143 163 159 167 131 220 155 2.84 0030 596 NA 138 174 175 172 176 151 259 130 0.032 426 NA 128 174 172 176 151 229 130 2.99 0.032 436 NA 125 176 172 172 242 139 2.99 0.032 460 NA 128 170 176 152 282 140 2.71 0.032 440 NA 129 170 175 162 200 274 144 2.71 0.031 445 NA 129 152 149 123 125 144 2.71 0.031 445 NA 124 186	BA2	644	ž	142	176	172	181	531	251	165	3.05	0.033	86.6	1.84	0.022	10.50
554 NA 135 163 159 167 131 220 155 284 0.000 619 NA 140 175 179 145 249 340 302 0.032 596 NA 138 174 172 179 145 249 140 2.99 0.042 436 NA 125 216 142 178 122 242 139 2.99 0.044 460 NA 128 170 175 162 200 274 144 2.71 0.031 482 NA 128 170 175 162 200 274 144 2.77 0.031 482 NA 128 170 175 162 200 274 144 2.77 0.031 483 NA 128 198 163 153 357 146 3.85 0.074 484 NA 145	BA3	675	ž	143	178	174	184	139	250	168	3.09	0.034	9.87	1.83	0.021	10.39
619 NA 140 175 172 179 145 249 340 3.02 0.032 356 NA 138 174 172 176 151 254 160 2.99 0.032 426 NA 138 174 172 176 151 254 160 2.99 0.032 434 NA 125 170 175 152 282 140 2.71 0.032 460 NA 128 170 175 162 200 274 144 2.77 0.031 482 NA 129 132 149 232 125 357 146 3.85 0.077 415 NA 124 186 198 163 121 211 138 2.76 0.034 164 NA 124 186 198 163 124 211 138 2.76 0.034 175 185 180 180 180 180 180 180 180 180 180 180	BR2	554	ž	135	163	159	167	131	220	155	2.84	0.030	10.45	1.79	0.021	10.11
596 NA 138 174 172 176 151 254 160 2.99 0.032 426 NA 125 216 142 178 122 242 139 2.99 0.034 434 NA 125 170 176 159 122 140 2.71 0.032 480 NA 128 170 175 162 200 274 144 2.77 0.031 415 NA 129 152 149 232 125 357 146 3.85 0.071 415 NA 124 186 198 163 121 211 138 2.76 0.034 516 NA 208 169 167 164 248 151 285 0.009	BR3	619	ž	140	175	172	179	145	249	340	3.02	0.032	10.06	1.80	0.021	10.89
426 NA 125 216 142 178 122 242 139 2.99 0.044 434 NA 125 170 175 152 282 140 2.71 0.032 446 NA 128 170 175 162 200 274 144 2.77 0.031 482 NA 129 152 149 2.32 125 357 146 3.85 0.077 415 NA 124 186 198 163 121 211 138 2.76 0.034 648 NA 144 177 173 182 140 249 166 3.06 0.033 156 NA 208 169 167 164 248 151 2.85 0.029	BR4	296	ž	138	174	172	176	151	254	991	2.99	0.032	10.17	1.81	0.022	10.86
434 NA 125 170 176 159 122 282 140 2.71 0.002 460 NA 128 170 175 162 200 274 144 2.77 0.031 482 NA 129 122 149 232 125 357 146 3.85 0.077 415 NA 124 186 198 163 121 211 138 2.76 0.034 648 NA 145 177 173 182 140 249 165 306 0.033 516 NA 208 169 167 164 248 151 2.85 0.029	DR	426	ž	125	216	142	178	122	242	139	2.99	0.044	11.15	1.85	0.027	11.68
460 NA 128 170 175 162 200 274 144 2.77 0.031 482 NA 129 152 149 232 125 357 146 3.85 0.077 415 NA 124 186 198 163 121 211 138 2.76 0.034 648 NA 145 177 173 182 140 249 166 3.06 0.033 516 NA 208 168 169 167 164 248 151 2.85 0.029	ENT	434	×	125	170	176	129	122	282	140	2.71	0.032	11.05	1.92	0.032	11.51
482 NA 129 152 149 232 125 357 146 3.85 0.077 415 NA 124 186 198 163 121 211 138 2.76 0.034 648 NA 145 177 173 182 140 249 166 3.06 0.033 516 NA 208 169 167 164 248 151 2.85 0.029	HAL	460	٧	128	170	175	162	200	274	144	2.77	0.031	10.85	1.90	0.029	11.31
415 NA 124 186 198 163 121 211 138 2.76 0.034 (648 NA 145 177 113 182 140 249 165 306 0.033 151 NA 208 169 167 164 248 151 2.85 0.029	ΚFΛ	482	×	129	152	149	232	125	357	146	3.85	0.077	10.86	1.95	0.035	11.67
648 NA 145 177 173 182 140 249 166 3.06 0.033 151 816 NA 208 168 169 167 164 248 151 2.85 0.029	×	415	٧	124	186	861	163	121	211	138	2.76	0.034	11.16	1.83	0.024	11.50
NA 208 168 169 167 164 248 151 2.85 0.029	MBA	648	×	145	111	173	182	140	249	991	3.06	0.033	9.94	1.83	0.021	10.46
	MBR	516	٧X	208	168	691	167	164	248	151	2.85	0.029	10.50	1.86	0.024	10.97

	CO.1	CO.2	
	(PPM)	(PPM)	
BA2	4.00	1.89	
BA3	4.12	1.88	
BR2	3.70	1.80	
BR3	3.92	1.81	
BR4	3.90	1.83	
DR	4.71	1.78	
ENT	3.69	1.89	
HAL	3.67	1.88	
ΚFΛ	7.57	1.87	
LR	3.91	1.79	
MBA	3.99	1.89	
MBR	3.60	1.90	

100A	Burst - BMT	CO.1	Oven
VOC2	Floor	N02.1	Oven
VOC3	Burst - MBR	PART.1	Oven
VOC4	Burst - DR		Heater
VOCS	Burst - LR		Heater
000 V	Burst - KFA		Heater
VOC7	Burst - BA2		Outdoor air
VOC8	Burst - GAR		Outdoor air
VOC9	Burst - BR3		Outdoor als

Table 20a	- SIM2	MLM ove	erall 24-h	r avg con	centration	JS												
	VOCI	VOC2	VOC3	VOC4	VOCS	900x	V0C7	80C8	VOC9	CO.1	NO2.1	PART.1	CO.2	NO2.2	PART.2	CO.3	N02.3	PART.3
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(μg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
24 hr avg	269	6490	129	125	911	136	127	159	126	1.88	0.017	10.76	1.82	0.017	11.12	9.90	0.095	19.19

	VOCI	VOC2	VOC3	VOC4	VOC5	900x	V0C7	800x	VOC9	CO.1	N02.1	PART.1	CO.2	N02.2	PART.2	CO.3	N02.3	PART.3
	(µg/m³)	(μg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)						
BA2	1046	4254	246	247	793	280	3371	334	277	3.13	0.037	11.51	3.03	0.098	13.39	9.84	0.122	20.92
BA3	1093	7502	251	260	267	396	251	308	293	3.21	0.039	10.68	3.10	0.101	13.20	68.6	0.130	3.28
BR2	852	5415	257	218	253	246	199	271	242	2.87	0.034	12.27	2.85	0.087	13.46	10.93	0.191	37.26
BR3	905	5851	244	225	251	257	543	282	4128	2.96	0.035	11.94	2.87	0.088	13.42	10.67	0.156	27.11
BR4	820	3792	215	222	228	250	233	245	248	2.90	0.037	12.56	2.86	0.086	13.40	11.59	0.243	46.16
DR	823	5659	504	2591	344	633	506	320	229	3.60	0.056	12.45	2.68	0.068	12.97	10.91	0.171	40.51
ENT	1005	3797	252	178	241	216	804	515	195	2.73	0.035	12.61	2.72	0.088	14.33	11.08	0.241	50.78
HAL	630	3798	410	176	416	681	1610	287	189	2.87	0.030	12.46	2.87	0.083	14.22	11.61	0.266	45.96
KFA	802	4961	504	213	215	1731	203	1337	235	15.68	0.501	12.54	4.01	0.131	14.54	10.54	0.128	19.57
LR	735	3666	213	238	876	203	916	353	187	2.79	0.034	12.62	2.77	0.050	13.03	11.25	0.226	46.09
MBA	1010	6354	362	247	254	281	238	292	278	3.14	0.037	11.68	2.94	0.093	13.27	9.92	0.122	24.00
MBR	641	5708	1704	178	188	208	248	223	195	2.64	0.029	12.42	2.60	0.059	13.14	10.67	0.172	30 04

	I DOW	2007	2023	NOON	NOCE	NOOR	1007	0007	0007	5	- COIN	DADT	000	NO33	DADE
	3	725	3	3	3	3	3	3	3	3	1.70	L. LYW.	7.00	NO2.2	FAK1.2
	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)								
BA2	430	V	117	119	175	124	487	183	122	2.27	0.014	10.82	1.96	0.022	10.20
BA3	999	Ν	165	170	169	061	991	501	182	2.59	0.014	10.06	1.92	0.019	9.82
BR2	432	ΥN	133	131	152	140	275	180	136	2.15	0.015	11.58	2.01	0.028	===
BR3	458	Ν	136	134	152	44	249	179	547	2.21	0.015	11.44	1.98	0.025	10.75
BR4	394	Ϋ́	128	130	134	138	147	155	135	2.20	0.017	11.75	1.84	0.020	11.14
DK DK	412	ž	126	475	178	139	130	178	134	2.18	0.015	11.67	1.96	0.024	10.60
ENT	536	Ν	100	601	011	112	119	225	Ξ	1.92	0.017	12.22	2.31	0.062	12.60
HAL	390	ΥN	122	115	148	611	335	176	118	1.95	0.017	12.17	2.12	0.044	12.26
KFA	384	Ϋ́	131	142	135	395	132	909	141	6.32	0.146	11.55	2.83	0.078	12.38
۳	374	N	8	60	193	112	115	176	Ξ	1.97	0.017	12.25	1.88	0.022	11.37
MBA	443	¥	207	145	145	157	148	162	152	2.25	0.014	10.91	16.1	0.019	10.04
MBR	220	٧X	111	911	117	120	128	124	0	200	9100	11 96	1 03	0.03	11 12

	CO.1	CO.2	CO.1 CO.2
	(PPM)	(PPM)	
BA2	2.44	2.17	
BA3	2.50	2.15	
BR2	2.59	2.23	
BR3	5.60	2.21	
BR4	2.66	1,92	
DR	5.64	2.20	
ENT	2.40	2.57	
HAL	2.47	2.27	
ΚFΛ	13.01	3.52	
LR	2.55	1.95	
MBA	2.45	2.12	
MBR	2 52	200	

				_			air	air	-i-
							Outdoor air	_	_
	CO.1	N02.1	PART.1	CO.2	N02.2	PART.2	CO.3	N02.3	PART.3
_	Burst - BMT	Floor	Burst - MBR	Burst - DR	Burst - L.R	Burst - KFA	Burst - BA2	Burst - GAR	Burst - BR3
EGEN	V0C1	V0C2	VOC3	VOC4	VOCS	00C6	V0C7	VOC8	800A
_									

	VOCI	VOC2	VOC3	VOC4	VOCS	VOC6	VOC7	800x	0000	CO.1	N02.1	PART.1	CO.3	N02.3	PART.3
	(ug/m³)	(ug/m³)	(mg/m³)	(µg/m³)	(µg/m³)	(µg/n ²)	(µg/m²)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(mg/m³)	(PPM)	(PPM)	(µg/m³)
4 hr ave	284	7364	123	125	134	127	128	132	123	1.87	0.017	10.73	6.71	0.00	17.87

	VOCI	V0C2	VOC3	VOC4	VOCS	VOC6	V0C7	VOC8	6200	CO.1	NO2.1	PART.1	CO.3	NO2.3	PART.3
	(µg/m³)	(hg/m²)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)							
BA2	1022	9242	253	268	323	282	10646	272	289	4.19	690.0	10.58	10.45	0.134	16.10
BA3	9901	17117	197	576	334	167	234	500	297	4.33	0.074	10.44	10.44	0.138	2.13
BR2	976	6416	233	242	288	253	373	280	260	3.86	0.058	11.50	10.55	0.148	23.34
DR3	943	7141	238	244	262	257	366	276	3512	3.94	0.061	11.34	10.53	0.138	22.21
DR4	924	6545	236	239	285	251	413	276	257	3.89	090.0	11.59	10.58	0.146	25.75
DR	308	1816	500	9061	879	231	194	516	237	3.69	0.052	11.86	10.77	0.157	30.02
ENT	787	3931	171	184	212	161	164	474	194	3.14	0.048	12.34	11.57	0.268	49.47
HAL	799	4200	251	500	231	506	1479	418	211	3,31	0.044	12.06	11.13	0.229	43.53
KI:V	885	9414	221	451	295	1576	210	908	252	14.55	0.481	1.64	10.56	0.130	12.44
LR	268	5276	172	179	1503	981	163	504	061	3.12	0.043	12.38	11.28	0.223	45.09
MBA	166	10210	899	268	323	282	227	253	289	4.19	0.069	10.93	10.48	0.134	16.37
MBR	819	5028	1430	161	222	8	176	961	204	3.27	0.044	12.08	10.88	0.192	36.85

	NO2.1 PART.1 CO.3 NO2.3	(PPM) (µg/m²) (PPM) (PPM)	0.011 10.17 6.81 0.072	0.010 9.06 7.27 0.057 1.22	0.012 10.76 6.78 0.089	0.011 10.55 6.77 0.081	0.012 10.78 6.73 0.090	0.012 10.91 6.80 0.091	0.016 11.72 6.73 0.143	0.014 11.43 6.68 0.122	0.039 10.34 6.85 0.067	0.014 11.71 6.65 0.128	0.011 10.27 6.75 0.072	0.013 11.39 6.67 0.113
				2.08 0.010										
		_		133										
		_		128 148										
SL		_		136										
ncentration		_		145										
24-hr avg co		_		127 131										
ALH zone 2-		_		7162 12										ı
IC - SIMZN		_		517										
Table 2			DA2	DA3	BR2	BR3	BR4	DR	ENT	HVL	ΚFΛ	I.R	MBA	MBR

	VOCI	VOC2	VOC3	VOC4	VOCS	NOC6	VOC7	VOC8	0000	CO.	NO2.1	PART.
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(mg/m ₂)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m²)	(PPM)	(PPM)	(µg/m²
3.42	169	ž	4	149	173	129	1783	202	154	2.89	0.025	10.20
143	808	ž	152	162	192	174	155	500	168	3.06	0.027	68.6
IR2	609	ž	132	140	158	146	189	506	142	5.69	0.022	10.58
BR3	624	ž	134	141	191	149	181	506	703	2.74	0.023	10.52
IR4	289	ž	132	138	156	146	182	202	141	2.67	0.023	10.68
8	448	ž	127	446	306	139	128	158	136	2.58	0.021	10.89
L.	528	ź	Ξ	114	122	117	112	239	115	2.14	0.020	11.90
M	529	ž	911	118	127	121	246	525	120	2.26	0.020	11.58
ΈĀ	549	ź	136	220	961	459	137	427	147	5.51	0.117	10.65
Z,	304	ž	115	118	360	121	115	140	119	2.24	0.020	11.73
ΨPV	620	ź	526	148	172	157	145	181	153	2.87	0.024	10.23
ABR	363	×	366	123	135	127	127	146	125	233	0.00	11 36

ZMLH zone 1-hr avg c	Able 21e - SinzamLH zone 1-nr avg concentrations
SI ~	116 - 510 COO.1 CPPM 3.37 3.23 3.21 3.21 3.21 2.82 2.82 2.82 2.83 2.83 2.84 2.84

VOCI	Burst - BMT	CO.1	Oven
V0C2		N02.1	Oven
VOC3		PART,1	Oven
VOC4		CO.2	Heater
VOCS		N02.2	Heater
000 000		PART.2	Heater
V0C7		CO.3	Outdoor air
VOC8		NO2.3	Outdoor a
000	Burst - BR3	PART.3	Outdoor a

VOCI	V0C2	VOC3	V0C4	VOCS	900A	V0C7	VOC8	V0C9	CO.1	N02.1	PART.1	CO.2	NO2.2	PART.2	CO.3	N02.3	PART.3
(g/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(mg/m³)	(mg/m³)	(µg/m³)	(µg/m³)	(mg/m ₃)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
640	11745	160	183	182	183	166	302	175	2.29	0.015	7.60	2.15	0.017	8.22	6.72	0.053	5.62

7-077																	
×	70C1 VOC2	32 VOC3	VOC4	VOC5	VOC6	V0C7	800x	6000	CO.1	N02.1	PART.1	CO.2	NO2.2	PART.2	CO.3	N02.3	PART.3
gn)	_	_	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(μg/m³)	(PPM)	(PPM)	(μg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
15			372	384	373	3583	520	376	4.76	0.083	7.59	4.00	0.129	10.42	8.93	0.073	1.49
15			384	395	385	308	521	387	4.81	0.087	7.62	4.01	0.134	10.48	8.93	0.075	0.56
14			353	354	352	287	503	346	4.51	0.074	8.83	3.84	0.116	10.51	00.6	0.083	13.96
15			365	367	365	300	517	1779	4.67	0.078	8.23	3.97	0.122	10.35	8.92	0.085	9.17
15	1510 8599	3 292	365	367	365	309	517	360	4.67	0.078	8.01	3.97	0.122	10.36	8.92	0.083	7.72
13			1197	327	459	790	206	316	5.63	0.121	9.30	3.64	0.104	10.68	9.35	0.118	18.43
13			369	392	334	270	648	325	4.26	0.070	8.96	3.63	0.108	10.75	9.36	0.115	17.47
14			352	358	346	1670	592	475	4.48	0.063	8.51	3.85	0.105	10.49	8.99	0.097	12.73
13			337	338	875	275	753	327	11.22	0.347	8.70	3.74	0.108	10.47	00.6	0.098	11.02
12			287	984	355	256	469	309	4.60	0.073	8.76	3.60	960.0	10.62	9.27	0.104	12.62
15			372	384	373	336	270	376	4.74	0.083	7.60	4.00	0.129	10.40	8.93	0.073	1.28
14			338	343	117	483	211	346	4 42	0.061	7 05	3.85	0 100	10 27	8 02	0 0 0	5 78

Table 2	2c - SIM2	MTC zor	ITC zone 24-hr av	vg conce.	ntrations													
	VOC1	V0C2	VOC3	4	VOCS	900A	V0C7	800A	VOC9	CO.1	N02.1	PART.1	CO.2	N02.2	PART.2	CO.3	N02.3	PART.3
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(μg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(mg/m³)
BA2	715	2609	158	185	184	185	349	303	178	2.31	0.012	7.24	2.24	0.019	7.95	6.81	0.045	0.60
BA3	719	7505	158	185	184	185	162	303	179	2.31	0.013	7.23	2.24	0.019	7.94	6.81	0.045	0.42
BR2	654	7085	152	176	175	176	155	285	171	2.26	0.013	7.74	2.19	0.018	8.39	6.82	0.056	5.57
BR3	685	7352	155	180	180	181	129	293	261	2.28	0.013	7.52	2.21	0.018	8.20	6.81	0.051	3.50
BR4	069	7422	156	181	181	181	160	295	175	2.29	0.012	7.47	2.21	0.018	8,15	6.81	0.049	2.98
DR	290	6411	146	219	191	179	149	283	162	2.28	0.017	8.31	2.13	0.018	8.89	6.79	0.069	10.63
ENT	609	6473	148	174	171	171	151	333	165	2.18	0.013	8.12	2.15	0.020	8.78	91.9	0.063	8.39
HAL	651	7260	152	178	179	177	228	312	171	2.23	0.012	7.72	2.18	810'0	8.38	6.78	0.051	4.66
KFA	626	9119	120	172	172	212	152	344	167	2.57	0.028	7.98	2.18	0.020	8.63	6.79	0.057	6.41
LR	299	0929	147	190	213	174	120	273	164	2.22	0.014	8.18	2.12	0.017	8.75	6.79	0.063	86.8
MBA	715	7680	160	185	184	185	163	302	179	2.31	0.012	7.23	2,24	0.018	7.94	6.81	0.044	0.58
au v	(1)	2222	9	100	100	100	170	000	176			2 40	000	2100	21.0	00 /	2100	200

								0000	00000	. 00					1
	200	7 0 0	VOC3	۲ د	VOC5	2 C C		Š	ري د د د	 	NO2.1	PART.	C0.7	NO2.2	PARI
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/ш³)	(µg/m³)	(μg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
BA2	1211	ž	220	270	270	177	632	423	259	3.82	0.036	7.01	16.1	0.017	7.88
BA3	1226	¥	220	271	27.1	272	226	422	260	3.84	0.037	7.00	16.1	0.017	7.87
BR2	1127	Ϋ́	211	257	257	258	215	392	247	3.66	0.034	7.41	1.87	0.016	8.34
BR3	1193	ž	218	267	267	268	224	414	466	3.78	0.035	7.05	1.89	0.017	8.25
BR4	1190	ž	218	267	267	268	224	416	256	3.78	0.035	7.06	1.89	0.017	8.16
DR	666	Ϋ́	197	363	238	270	201	418	229	3.87	0.046	8.04	1.92	0.021	8.97
ENT	186	٧	195	244	249	238	198	576	226	3.44	0.032	8.02	2.11	0.035	80.6
HAL	1061	V	504	254	256	251	437	419	251	3.59	0.031	7.49	1.98	0.023	8.44
ΚFΛ	1052	٧	203	246	246	344	207	909	237	5.03	0.093	7.78	2.09	0.033	9.01
E E	983	V	961	594	347	250	199	371	228	3.59	0.035	8.01	1.89	0.017	8.70
MBA	1210	٧	224	270	270	27.1	228	418	259	3.82	0.036	7.00	1.91	0.017	7.87
MRP	1105	Z	325	757	258	257	171	412	240	3 65	0.00	7 7	5	6100	0

CO.1 CO.2													
C0.2	(PPM)	2.08	5.08	2.01	2.03	5.04	5.04	2.23	2.11	2.23	2.02	2.08	200
CO.1	(PPM)	3.81	3.92	3.61	3.70	3.70	4.59	3.48	3.38	8.42	3.65	3.79	3 35
		BA2	BA3	BR2	BR3	BR4	DR	ENT	HAL	KFA	LR	MBA	MRD

これのこれ			
VOCI	Burst - BMT	CO.1	Oven
V0C2	Floor	N02.1	Oven
V0C3	Burst - MBR	PART.1	Oven
V0C4	Burst - DR	CO.2	Heater
VOC5	Burst - LR	N02.2	Heater
00Ce	Burst - KFA	PART.2	Heater
VOC7	Burst - BA2	CO.3	Outdoor air
VOC8	Burst - GAR	NO2.3	Outdoor air
VOC9	Burst - DR3	PART.3	Outdoor air

Table	23b - SIM2h	~	TM zone peak concentrate	oncentral	0													
	VOCI	VOC2	VOC3	V0C4	VOCS	900x	V0C7	800x	V0C9	CO.1	N02.1	PART.1	CO.2	N02.2	PART.2	CO.3	N02.3	PART.3
	(µg/m³)	(mg/m³)	(mg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
BA2	1707	15689	302	346	397	370	13124	424	376	4.38	0.051	8.82	3.57	0.102	11.41	8.26	0.047	7.39
BA3	1743	16091	316	364	418	389	302	416	395	4.56	0.055	8.49	3.68	0.10	11.43	8.24	0.050	0.91
BR2	1608	14434	275	314	360	337	201	422	341	4.11	0.045	88.6	3.40	0.00	11.32	8.75	0.059	14.61
BR3	1643	14994	283	323	370	346	419	418	4196	4.18	0.047	9.20	3.44	0.093	11.29	8.52	0.050	7.38
BR4	1512	12830	276	315	361	337	327	404	343	4.14	0.047	10.21	3.41	0.092	11.45	9.13	0.107	20.59
ř	1541	15668	526	3476	201	426	273	453	319	5.04	0.064	10.12	3.24	0.076	11.18	8.55	0.062	15.10
ENT	1431	11637	253	277	322	302	297	7117	308	3.60	0.041	11.53	3.36	0.088	13.36	10.23	0.178	34.97
HAL	1357	12353	270	253	290	279	2848	642	346	3.36	0.032	11.27	3.08	0.075	13.04	10.16	0.161	28.44
KI:V	1991	15547	263	318	342	2074	270	1392	324	22.62	0.664	10.05	3.87	0.077	10.86	8.30	0.042	5.87
ĭ	1355	13042	230	387	2415	588	281	317	274	3.57	0.037	10.93	2.82	0.063	11.64	9.28	0.104	22.24
MBA	1702	16257	489	345	396	369	340	408	376	4.38	0.051	9.21	3.53	0.101	11.41	8.27	0.050	10.49
MARD	1300	14206	2003	386	200	202	466	370	276	3 48	0.034	10 69	2 05	0.068	11.85	8 75	0.076	18 07

Table	3c - SIM2	MIM zor	nc 24-hr	avg concc	niralions													
	VOCI	VOC2	VOC3	VOC4	VOCS	VOC6	VOC7	VOC8	6200	CO.1	NO2.1	PART.1	CO.2	NO2.2	PART.2	CO.3	NO2.3	PART.3
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(mg/m³)
BA2	1058	12987	173	961	214	500	1060	256	195	2.44	0.00	7.32	2.63	0.011	8.41	6.70	0.025	1.68
BA3	1116	13257	179	204	222	218	194	258	203	2.52	0.00	7.07	5.69	0.012	8.21	6.72	0.021	0.34
BR2	952	12009	<u>3</u>	184	701	195	211	247	184	2.35	0.007	7.82	2.54	0.011	8.81	6.75	0.033	4.21
BR3	1001	12559	168	189	207	701	506	252	522	2.39	0.00	7.57	2.59	0.011	8.62	6.73	0.029	2.82
BR4	861	10654	157	176	161	187	176	225	175	2.31	800.0	8.38	2.46	0.012	9.28	08.9	0.049	8.43
NY C	932	12638	165	420	231	218	179	248	184	2.61	0.010	7.69	2.52	0.010	8.61	6.71	0.030	3.67
ENT	160	7367	137	150	167	155	191	259	148	2.05	0.010	9.53	2.42	0.023	10.58	6.77	0.082	19.95
HAI,	748	8603	143	155	171	191	274	241	157	5.09	0.00	9.28	2.39	0.018	10.21	6.77	0.071	15.82
KFA	186	13086	168	195	207	375	181	402	189	4.17	0.054	7.65	2.73	0.016	8.79	69.9	0.03	1.76
1,R	757	10206	148	180	342	173	<u>2</u>	211	162	2.20	800.0	8.71	2.34	0.010	9.46	6.75	0.054	10.53
MBA	1017	12951	701	192	210	202	193	246	191	2.41	0.00	7.42	2.59	0.011	8.45	6.70	0.026	1.92
MBR	821	11368	303	169	184	178	190	226	691	2.21	0.00	8.32	2.41	0.010	9.17	6.71	0.042	7.50

Г	_	_			_	-			_	_		_	_	-
DADE	LAK 1.2	(µg/m³)	7.23	7.12	7.55	7.37	8.00	7.38	10.58	9.57	8.90	8.27	7.17	7 88
NIO 2	7.70	(PPM)	0.010	0.010	0.011	0.011	0.011	0.012	0.023	0.05	0.045	0.013	0.010	1100
000	7.00	(PPM)	2.44	2.45	2.43	2.43	2.31	2.48	2.81	2.52	3.06	2.34	2.43	336
DADTI	1.174	(µg/m³)	8.16	7.72	8.71	8.50	9.07	8.32	10.79	10.46	9.05	9.94	8.29	90
NO.3	1.70	(PPM)	0.017	0.018	0.015	910.0	0.017	0.022	0.016	0.015	0.212	0.015	0.016	0.014
100	5	(PPM)	3.24	3.53	3.08	3.13	3.11	3.84	2.35	2.43	10.47	2.69	3.14	196
0000	2	(µg/m³)	252	278	232	947	229	239	156	170	236	182	242	187
0.507	3	(µg/m³)	328	313	324	325	301	314	387	372	811	212	298	281
CANA	3	(µg/m³)	1931	238	281	897	235	205	146	426	204	163	252	256
NOCK	2	(µg/m³)	263	293	240	249	239	313	162	171	940	193	252	102
VOCE	3	(µg/m³)	283	306	262	270	258	335	208	213	258	564	569	213
S COLLCE	3	(mg/m ₃)	247	272	228	235	226	854	162	691	236	229	237	184
1007	3	(µg/m³)	802	228	193	861	192	661	140	146	197	159	303	442
COOM TALL	700	(µg/m³)	ž	ž	ž	ž	ž	ž	ž	×	ž	¥	ž	YZ
7 100/1	3	(µg/m³)	1164	1274	1040	1087	1003	982	814	843	993	646	1074	770
I and 27			BA2	BA3	BR2	BR3	BR4	DR	ENT	IIAL.	ΚFΛ	LR R	MBA	MRP

	CO.1	C0.2	CO.1 CO.2
	(PPM)	(PPM)	
BA2	2.24	2.51	
BA3	2.26	2.52	
DR2	2.30	2.52	
BR3	2.27	2.51	
BR4	2.40	2.35	
DK DK	2.29	2.58	
ENT	2.38	3.12	
IM	2.40	2.70	
ΚΓΛ	16.55	3.44	
LR	2.39	2.39	
MBA	2.23	2.49	
MBR	2.27	2.43	

VOCI	Burst - BMT	CO.1	Oven
VOC2	Floor	NO2.1	Oven
VOC3	Burst - MBR	PART.1	Oven
VOC4	Burst - DR		Heater
VOCS	Burst - LR		Heater
VOC6	Burst - KI'A	PART.2	Heater
VOC7	Burst - BA2		Outdoor air
VOC8	Burst - GAR		Outdoor air
VOC9	Burst - BR3	_	Outdoor air

able 24	a - SIM2l	MTH ove	rall 24-hr	avg conc	entration	S									
	VOCI	V0C2	VOC3	VOC4	VOCS	900v	V0C7	VOC8	VOC9	CO.1	NO2.1	PART.1	CO.3	NO2.3	PART.
	(µg/m³)	(µg/m³)	(mg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	$\overline{}$	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
4 hr ave	802	21581	184	205	218	218 210	200	232	197	2.60	0.015	7.78	6.83	0.041	6.13

	VOCI	VOC2	VOC3	VOC4	VOCS	VOC6	VOC7	VOC8	VOC9	CO.1	NO2.1	PART.1	CO.3	NO2.3	PART.3
	(mg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)							
3A2	1787	19708	326	372	416	383	12685	328	393	4.62	0.082	7.48	8.61	0.053	3.56
BA3	1802	25067	336	383	430	396	347	330	405	4.81	0.089	7.42	8.61	0.055	0.67
3R2	1662	16995	313	356	389	364	389	319	364	4.36	0.070	8.46	8.60	0.059	7.29
383	1756	18378	320	365	398	373	407	321	4725	4.40	0.073	8.13	8.60	0.052	5.14
3R4	1742	16877	318	362	396	370	462	320	370	4.37	0.073	8.42	8.61	0.053	7.60
Z.	1644	22011	302	3309	477	411	314	347	354	5.02	0.094	7.98	8.59	0.055	7.50
IN	1412	11711	268	302	329	308	349	630	309	3.89	0.064	11.09	9.93	0.171	34.59
-tvr	1657	13536	300	337	372	345	2583	490	362	3.97	0.049	10.87	9.21	0.137	25.87
CFA	1748	19698	310	380	387	2024	320	750	329	17.63	0.591	8.81	8.66	0.049	2,21
R	1396	14588	267	375	2259	312	273	562	307	3.77	0.055	10.14	9.15	0.097	17.64
MBA	1783	18821	451	371	416	382	342	322	392	4.62	0.082	8.21	8.62	0.053	3.88
MBR	1497	13989	1857	313	343	321	369	284	321	3.84	0.051	0.07	888	0.087	15 43

	_	_	_							_				_
	PART.3	(µg/m³)	1.14	0.42	3.12	1.80	2.91	2.68	20.82	10.76	1.01	11.14	1.26	8.31
	NO2.3	(PPM)	0.028	0.024	0.033	0.029	0.033	0.029	0.088	0.00	0.025	0.058	0.028	0.050
	CO.3	(PPM)	7.12	7.42	7.04	7.06	7.01	7.20	6.77	6.73	7.19	6.85	7.02	18.9
	PART.1	(µg/m³)	7.13	6.41	7.58	7.35	7.55	7.20	65.6	8.84	7.20	8.83	7.36	8.57
	N02.1	(PPM)	0.009	0.010	0.009	0.00	0.00	0.010	0.012	0.010	0.044	0.010	0.009	0.009
	CO.1	(PPM)	2.67	3.00	2.52	2.57	2.53	2.81	2.06	2.14	3.90	2.23	2.57	2,22
	V0C9	(µg/m³)	204	220	192	431	195	199	153	169	199	991	861	170
	800x	(mg/m ₃)	215	219	211	214	506	232	212	208	404	172	202	183
	V0C7	(µg/m³)	745	208	961	201	200	187	152	536	187	91	194	180
	00Ce	(µg/m³)	210	228	197	203	200	223	156	168	327	171	203	173
niralions	VOCS	(mg/m ₃)	221	240	503	215	211	239	691	182	216	293	214	183
ivg conce	V0C4	(µg/m³)	202	222	193	661	195	392	155	191	207	184	199	171
nc 24-hr a	VOC3	(µg/m³)	181	195	172	177	174	178	142	152	178	152	200	260
M I H 201	VOC2	(µg/m³)	13039	14423	12080	12648	12158	13781	6335	8265	13172	9781	12832	9882
tc - SIMZ	VOCI	(µg/m³)	992	1109	903	946	910	905	662	743	910	649	676	717
Table 74			BA2	BA3	BR2	BR3	BR4	DR	ENT	HAL	KFA	1.R	MBA	MBR

4 2000	2010 - DL7 2100 I		111 COUC T- III G	· B collect	and and							
	VOCI	VOC2	VOC3	VOC4	VOCS	00Ce	V0C7	00C8	VOC9	CO.1	NO2.1	PART.
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(mg/m ₃)	(µg/m³)	(µg/n³)	(PPM)	(PPM)	(µg/m³)
BA2	1252	ž	226	566	298	277	2261	271	271	3.88	0.031	7.14
BA3	1332	×	235	278	309	290	250	267	280	3.97	0.033	7.07
BR2	1164	×	217	255	285	265	279	797	260	3.74	0.027	7.23
BR3	1187	×	220	258	586	569	276	268	1116	3.77	0.028	7.22
3R4	1162	×	217	254	285	265	277	265	260	3.74	0.028	7.32
DR	1116	٧X	216	920	329	303	226	564	256	4.12	0.034	7.25
EN.	825	٧X	155	176	216	178	184	405	176	2.84	0.024	9.71
HAL	880	ž	171	195	230	661	546	347	212	3.13	0.022	8.67
ΚFΛ	1099	٧V	214	592	278	119	223	1119	253	7.69	0.151	7.74
R	812	×Z	180	252	655	216	193	220	208	3.23	0.023	8.62
MBA	1205	٧×	301	262	292	273	250	252	266	3.84	0.030	7.19
MAD	888	YZ	2,60	214	230	222	250	231	220	3 30	0.00	8 14

|--|--|--|--|--|--|--|

מכנות			
100A	Burst - BMT	CO.1	Oven
V0C2	Floor	N02.1	Oven
VOC3	Burst - MBR	PART.1	Oven
VOC4	Burst - DR	CO.2	Heater
VOC5	Burst - LR	NO2.2	Heater
VOC6	Burst - KFA	PART.2	Heater
V0C7	Burst - BA2	_	Outdoor at
00C8	Burst - GAR	N02.3	Outdoor ai
VOC9	Burst - BR3	PART.3	Outdoor ai

Table 25s	- SIMIF	LCF over	Table 25a - SIM IFLCF overall 24-hr avg concentration	avg conc	entrations	S												
	VOCI	V0C2	VOC3	VOC4	VOC5	900A	V0C7	800X	VOC9	CO.1	N02.1	PART.1	CO.2	NO2.2	PART.2	CO.3	NO2.3	PART.3
	(µg/m³)	(µg/m³)	(mg/m ₃)	(mg/m ₃)	(µg/m³)	(µg/m³)	(mg/m³)	(µg/m³)	(µg/m³)	mdd	mdd	(µg/m³)	mdd	udd	(µg/m³)	(PPM)	(PPM)	(µg/m³)
24 hr avg	265	2909	218	183	117	225	219	217	205	2.75	0.026	9.26	1.60	800.0	9.17	6.77	0.079	14.52
T.L. OCL. CIMIEI OF and and acceptant	CINCIL	TOTAL	1000															

U	VOC2	VOC3	VOCI VOC2 VOC3 VOC4 VOC	VOCS	900A	VOC7	VOC8	VOC9	CO.1	N02.1	PART.1	CO.2	NO2.2	PART.2	CO.3	NO2.3	PART.3
ug/m³)		(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
1815		645	232	131	393	347	13163	281	4.93	0.056	8.31	2.25	0.010	8.31	9.48	0.104	8.89
9465		384	197	126	314	271	253	234	4.10	0.047	10.14	2.35	0.017	10.13	9.84	0.165	22.86
1060		672	506	126	347	354	274	4099	4.57	0.046	9.36	2.30	0.011	9.36	9.65	0.107	16.59
1961		1630	303	177	462	296	390	407	5.50	0.083	11.36	2.46	0.017	11.35	10.15	991.0	26.29
7974		297	274	091	4332	255	258	236	44.43	1.434	14.46	2.41	0.014	11.07	10.00	0.140	23.94
7537		337	1593	416	482	258	237	215	6.14	0.089	10.64	2.42	0.013	10.68	10.03	0.132	19.44
\$409		293	208	125	312	9360	500	247	3.92	0.054	11.93	2.51	0.019	11.93	10.35	0.191	33.43
5516		2430	178	120	256	752	221	214	3.33	0.045	11.80	2.51	0.021	11.80	10 34	0.210	35 40

Table 250	C - SIMIF	LCF zone	3 24-hr av	'g concer	trations													
VOC1 VOC2 VOC3 VOC4 VOC5 V	VOCI	VOC2	VOC3	VOC4	VOCS	920A	VOC7	NOC8	VOC9	CO.1	NO2.1	PART.1	CO.2	NO2.2	PART.2	CO.3	NO2.3	PART.3
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/in³)	(mg/m ₃)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(FPM)	(µg/m³)
BA2	134	8418	255	138	109	130	200	1915	160	2.38	0.000	7.13	19.1	0.005	7.09	08.9	0.047	3.48
BR2	112	6422	172	124	901	157	155	149	137	2.09	0.010	8.98	19.1	0.007	8.95	6.81	0.075	13.07
BR3	113	8211	252	132	107	178	961	165	727	2.30	0.00	7.73	1.62	0.005	7.69	6.82	0.000	5.13
HAL	123	5249	316	128	108	177	223	155	145	2.32	910.0	9.75	1.60	0.00	9.70	6.77	0.086	16.09
KIT	105	5540	149	133	109	647	142	142	132	6.59	0.124	9.80	1.60	0.008	9.28	6.74	0.084	15.70
LDA	901	6040	162	312	141	206	147	141	131	2.62	0.018	9.26	19.1	0.008	9.18	6.77	0.076	13.63
MBA	104	4130	136	911	103	136	1021	133	125	1.92	0.013	10.03	1.59	0.010	10.02	6.71	0.105	22.29
MRR	107	3082	345	113	103	120	256	127	122	1.85	0.012	10.54	1 50	1100	10.52	677	0 108	24.41

Table 25	able 25d - SIMIFLCF	LCF zon	e 4-hr av	g concent,	rations										
	VOCI	VOC2	VOC3	VOC4	VOC5	900A	VOC7	VOC8	VOC9	CO.1	NO2.1	PART.1	CO.2	NO2.2	PART.2
	(µg/m³)	(mg/m ₃)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
BA2	147	Ν	449	170	811	276	274	5479	504	3.51	0.015	7.27	1.55	0.007	6.82
BR2	114	Ν	289	145	113	500	202	175	191	2.93	0.012	8.78	99.1	0.012	9.20
BR3	114	¥	426	153	114	243	249	190	1958	3.36	0.015	7.98	1.54	0.007	7.27
HAL	138	Ν	170	168	126	327	394	200	213	4.21	0.036	68.6	1.65	0.012	99.6
KIT	104	Ϋ́	981	181	126	1808	891	170	191	23.65	0.515	11.79	1.60	0.011	8.84
LDA	105	Ϋ́	204	168	244	325	<u>2</u>	160	151	5.09	0.046	99.6	1.59	0.010	8.71
MBA	102	Ϋ́	181	137	801	174	3126	159	152	2.59	0.013	10.23	1.64	0.013	9.52
MBR	108	NA	922	133	108	164	551	150	152	2.47	0.012	10.50	1.69	0.015	10.54

one 1-hr avg concentration	2	<u> </u>						LDA 3.87 1.65		
LCF z	CO.7	(PPM	1.67	1.68	1.65	1.66	1.6	1.65	1.63	
25e - SIMIF	CO.1	(PPM)	2.54	2.52	2.58	3.54	33.72	3.87	2.55	0,00
Table 2			BA2	BR2	BR3	HAL	KIT	LDA	MBA	2000

LEGEND	0		
VOCI	Burst - UCL	CO.1	Oven
VOC2	Floor	N02.1	Oven
VOC3	Burst - MBR	PART.1	Oven
VOC4	Burst - LDA	CO.2	Heater
VOCS	Burst - GAR	NO2.2	Heater
NOC6	Burst - KIT	PART.2	Heater
VOC7	Burst - MBA	CO.3	Outdoor air
VOC8	Burst - BA2	N02.3	Outdoor air
VOC9	Burst - BR3	PART.3	Outdoor air

				1											_
	PART.3	(µg/m³)	14.74			PART.3	(µg/m³)	8.90	22.99	16.59	26.38	23.95	19.44	33.44	35.56
	NO2.3	(PPM)	0.084			NO2.3	(PPM)	0.134	0.179	0.124	0.171	0.154	0.141	0.191	0.213
	CO.3	(PPM)	6.79			CO.3	(PPM)	9.73	10.04	98.6	10.32	10.19	10.20	10.57	10.50
	PART.2	(mg/m ₃)	10.92			PART.2	(mg/m ₃)	10.73	11.58	10.70	11.91	11.62	11.25	12.16	12.19
	NO2.2	mdd	0.008			NO2.2	(PPM)	0.013	0.018	0.012	0.017	0.015	0.014	0.019	0.021
	CO.2	mdd	19.1			CO.2	(PPM)	2.32	2.40	2.36	2.50	2.46	2.47	2.57	2.55
	PART.1	(µg/m³)	11.02			PART.1	(µg/m³)	10.74	11.59	10.72	11.93	15.81	11.32	12.16	12.19
	NO2.1	mdd	0.026			NO2.1	(PPM)	0.051	0.044	0.042	0.080	1.435	0.000	0.050	0.042
	CO.1	mdd	2.68			CO.1	(PPM)	4.49	3.78	4.24	5.21	44.46	91.9	3.54	3.06
	V0C9	(µg/m³)	199			V0C9	(µg/m³)	249	210	4094	330	212	195	221	200
	VOC8	(µg/m³)	208			VOC8	(µg/m³)	13153	225	245	365	230	212	236	199
	V0C7	$(\mu g/m^3)$	211			V0C7	(µg/m³)	319	247	332	594	231	236	9358	750
S	920A	(µg/m³)	216			900A	(µg/m³)	347	279	310	431	4328	478	275	228
entration	VOCS	(µg/m³)	116		ons	VOCS	(µg/m³)	125	123	121	174	157	414	120	118
avg con	VOC4	$(\mu g/m^3)$	178		oncentrati	VOC4	$(\mu g/m^3)$	500	180	189	287	257	1591	189	26
rall 24-h	VOC3	(μg/m³)	509		e peak co	V0C3	(µg/m³)	638	352	999	1627	268	313	261	2428
LCH ove	VOC2	(mg/m³)	5563		LCH zon	VOC2	(µg/m³)	10953	8668	10390	7338	7348	7200	2807	2909
Table 26a - SIM1FLCH overall 24-hr avg concentrations	VOCI	(µg/m³)	263		Fable 26b - SIM1FLCH zone peak concentrations	VOCI	(µg/m³)	302	184	156	332	134	131	134	149
Table 26s			24 hr avg		Table 26t			BA2	BR2	BR3	HAL	KIT	LDA	MBA	MBR

Table 26	c - SIMIF	LCH zon	e 24-hr a	vg conce	ntrations													
	VOCI VOC2 VOC3 VOC4	V0C2	V0C3	V0C4	VOCS	900A	VOC7	VOC8	V0C9	CO.1	NO2.1	PART.1	CO.2	NO2.2	PART.2	CO.3	NO2.3	PART.3
	(µg/m³)	$(\mu g/m^3)$	(µg/m³)	(µg/m ⁻³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	$(\mu g/m^3)$	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
BA2	132	7558	240	131	107	173	186	1899	148	2.26	0.009	10.11	1.62	900.0	10.05	6.84	0.056	3.83
BR2	Ξ	5888	162	119	105	147	146	140	130	2.01	0.010	10.82	1.61	0.008	10.79	6.83	0.080	13.30
BR3	==	7485	240	126	106	165	184	153	717	2.19	0.009	10.23	1.62	9000	10.19	6.85	0.057	5.41
HAL	121	4824	309	124	107	169	216	148	139	2.25	0.016	11.24	1.60	0.009	11.18	6.78	0.000	16.29
KIT	104	5032	140	129	108	638	134	133	126	6.51	0.124	11.59	1.60	0.009	11.06	91.9	0.089	15.95
LDA	104	5545	154	308	140	161	139	133	125	2.55	0.019	10.99	1.62	0.008	10.01	6.79	0.081	13.84
MBA	103	3712	129	113	102	128	1044	126	120	1.85	0.013	11.54	1.59	0.011	11.52	6.72	0.110	22.54
MBR	901	3669	339	110	102	123	251	121	118	1.80	0.013	11.64	1.59	0.011	11.62	6.73	0.112	24.58

Table 26d	- SIMIF	LCH zon	e 4-hr avg	g concent	rations										
VOCI VOC2 V	VOCI	V0C2	VOC3	VOC4	VOCS	900v	VOC7	VOC8	V0C9	CO.1	NO2.1	PART.1	C0.2	NO2.2	PART.2
	(µg/m³)	(µg/m³)	(mg/m ₃)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(mg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
BA2	145	Ν	426	158	115	251	256	5458	186	3.41	0.015	9.74	1.59	0.008	10.44
BR2	113	NA	274	138	Ξ	193	190	162	156	2.86	0.012	10.39	1.68	0.013	11.30
BR3	112	NA	408	14	112	224	235	174	1945	3.29	0.015	9.95	1.58	0.008	10.46
HAL	137	NA	757	162	125	313	384	189	204	4.14	0.036	11.10	1.67	0.013	11.47
KIT	103	Ν	172	173	124	1793	157	158	150	23.57	0.515	13.20	1.63	0.012	11.18
LDA	<u>8</u>	Ν	192	191	243	311	155	149	142	5.03	0.046	10.98	1.61	0.011	11.03
MBA	102	NA	169	130	106	191	3116	148	143	2.51	0.013	11.41	1.66	0.014	11.55
MBR	108	NA	912	127	107	153	543	141	4	2.41	0.012	11.42	1.70	0.016	11.87

: 1-hr avg concentrations	•									MBR 2.54 1.64
CH zone	CO.2	(PPM)	1.70	1.69	1.68	1.67	1.66	1.67	1.6	1.64
- SIMIF	CO.1	(PPM)	2.58	2.55	2.62	3.56	33.75	3.90	2.58	2.54
Table 26e			BA2	BR2	BR3	HAL	KIT	LDA	MBA	MBR

LEGEND	0			
100V	Burst - UCL	CO.1	Oven	
VOC2	Floor	N02.1	Oven	
VOC3	Burst - MBR	PART.1	Oven	
VOC4	Burst - LDA	CO.2	Heater	
VOCS	Burst - GAR	NO2.2	Heater	
NOC6	Burst - KIT	PART.2	Heater	
VOC7	Burst - MBA	CO.3	Outdoor air	
VOC8	Burst - BA2	NO2.3	Outdoor air	
VOC9	Burst - BR3	PART.3	Outdoor air	

	-	(PPM) (µg/m³)			_	(PPM) (µg/m³)								
		(PPM) 6.78				(PPM)								
		(μg/m³)			Γ	(µg/m³)								
	N02.2	ppm 0 000			N02.2	(PPM)	0.013	0.017	0.012	0.017	0.015	0.014	0.019	
	C0.2	mdd 1 60			C0.2	(PPM)	2.28	2.37	2.33	2.47	2.43	2.44	2.54	1
	PART.1	(μg/m³) 10 97			PART.1	(µg/m³)	10.71	11.56	10.66	11.92	15.75	11.29	12.16	0
	N02.1	mdd 0.056			N02.1	(PPM)	0.051	0.044	0.042	0.081	1.437	0.090	0.050	
	CO.1	ppm 2.7.1			C0.1	(PPM)	4.54	3.86	4.30	5.34	44.51	91.9	3.60	
	VOC9	(µg/m³)			V0C9	(µg/m ₃)	252	214	4097	396	216	198	224	000
	0008 0008	(μg/m³) 211			800X	(µg/m³)	13162	237	252	380	238	218	246	000
	V0C7	(μg/m³) 214			VOC7	(µg/m³)	323	255	336	594	235	240	9359	1
5		(µg/m³)	1		900A	(µg/m³)	354	289	319	448	4332	480	283	100
⊆۱		(µg/m³)		rations	VOCS	(µg/m ₃)								
-hr avg c	VOC4	(µg/m³) (µg/m³)		concent	VOC4	_								
verall 24			1	one peak	VOC3	(µg/m³)								
FLCHO ((µg/m³)	1	FLCH0 2	VOC2	(µg/m³)								
a - SIMI	VOCI	(µg/m³)	1	Table 27b - SIM1FLCHO zone peak concentrations	VOCI	(µg/m³)	288	179	151	318	131	129	132	
Table 27		24 hr ava	9.11 11.2	Table 27			BA2	BR2	BR3	HAL	KIT	LDA	MBA	

Table 7/	C-SIMIL	LCHU ZO	ne 24-nr	avg conc	entrations													
	VOCI	VOC2	V0C3	V0C4	VOCS		V0C7	VOC8	620A	CO.1	NO2.1	PART.1	CO.2	N02.2	PART.2	CO.3	N02.3	PART.3
	m/gn) (εm/gn) (εm/gn) (εm/gn) (εm/gn)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(μg/m³)	(µg/m³)	(μg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(μg/m³)	(PPM)	(PPM)	(mg/m³)
BA2	127	7754	245	129	194		190	1907	150	2.28	0.00	10.05	1.61	0.005	66.6	6.82	0.054	3.64
BR2	109	6075	991	118	103		149	143	131	2.04	0.010	10.76	19.1	800.0	10.73	6.82	0.078	12.91
BR3	109	7704	245	125	<u>\$</u>		188	157	722	2.22	600.0	10.17	1.62	900.0	10.12	6.84	0.055	5.08
HAL	119	4968	313	123	105		219	151	141	2.27	910.0	11.19	1.60	600.0	11.13	6.77	0.089	15.92
KIT	103	5158	142	125	105		136	136	127	6.61	0.125	11.56	1.60	0.00	11.02	6.75	0.088	15.64
LDA	103	5720	157	308	132		141	136	126	2.58	0.019	10.94	1.61	0.008	10.86	6.78	0.079	13.46
MBA	102	3834	131	112	101		1050	128	121	1.87	0.013	11.50	1.59	0.011	11.48	6.71	0.109	22.14
MBR	105	3784	343	110	101		254	123	119	1.81	0.012	11.60	1.59	0.011	11.58	6.72	0.111	24.17

Table 27c	1-SIMIE	LCHO zc	one 4-hr	wg conce	ntrations										
	VOCI	VOC2	V0C3	V0C4	VOC5	900A	V0C7	VOC8	620A	CO.1	N02.1	PART.1	CO.2	N02.2	PART.2
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(PPM)	(PPM)	(µg/m³)	(PPM)	(PPM)	(µg/m³)
BA2	138	NA N	433	156	108	256	260	5468	189	3.40	0.014	9.65	1.59	0.008	10.41
BR2	==	Ϋ́	281	137	107	198	194	168	158	2.87	0.012	10.31	1.68	0.013	11.26
BR3	110	NA	417	143	107	230	240	181	1955	3.30	0.015	98.6	1.57	0.008	10.41
HAL	134	NA	765	160	116	320	389	195	506	4.16	0.036	11.05	1.67	0.013	11.44
KIT	103	Ϋ́	177	163	114	1819	160	163	152	23.74	0.516	13.16	1.63	0.012	11.15
LDA	103	Ν	197	764	214	318	158	154	143	5.05	0.046	10.92	19.1	0.010	10.99
MBA	101	Ν	173	129	103	164	3125	152	14	2.52	0.013	11.37	99.1	0.014	11.51
MBR	107	NA	920	127	104	156	548	145	146	2.41	0.012	11.38	1.70	0.015	11.84

Table 27e - SIM I FLCHO zone 1-hr avg concentrations										
CHO zon	CO.2	(PPM)	1.70	1.69	1.68	1.67	1.66	1.66	2.5	<u>2</u> .
- SIMIF	CO.1	(PPM)	2.55	2.53	2.59	3.54	33.82	3.88	2.56	2.52
Table 276			BA2	BR2	BR3	HAL	KIT	LDA	MBA	MBR

Q	Burst - UCL CO.1 Oven		Burst - MBR	Burst - LDA CO.2	Burst - GAR		CO.3 O	Burst - BA2 NO2.3 Outdoor air	Burst - BR3 PART.3 Outdoor air
LEGEN	VOCI	VOC2	VOC3	VOC4	VOCS	900A	VOC7	VOC8	VOC9

