

第9章神经网络

Neural Networks

- 1957: 感知机(Perceptron, 线性模型)
- 1980s: 多层感知器 (Multi-Layer Perceptron, MLP)
 与现在的DNN没有显著差异
- 1986: 反向传播 (Backpropagation)
- 1994: LeNet5
- 2006: 深度置信网络(Deep Belief Nets)
- 2010: 使用GPU加速端到端BP神经网络
- 2011: 在语音识别领域开始流行
- 2012: AlexNet 在ImageNet图像分类大赛上完胜

仿生学派与数理学派

1. 神经元结构

➤ MP模型

1943年,心理学家W. S. McCulloch和数理逻辑学家W. Pitts基于神经元的生理特征,建立了单个神经元的数学模型(MP模型)。

神经元生理结构示意图

神经元的数学模型示意图

$$y_k = \varphi\left(\sum_j w_j x_j + b\right) = \varphi(W^T X + b)$$

神经元的数学模型示意图

➤ 感知机(perceptron)

1957年, $Frank\ Rosenblatt$ 从纯数学的度重新考察MP模型,指出能够从一些输入输出对(X,y)中通过学习算法自动的获得权重 W 和b 。

问题: 给定一些输入输出对(X,y), 其中 $y=\pm 1$, 求一个

函数, 使: f(X) = y

感知机算法:设定 $f(X) = sign(W^TX + b)$,从一堆输入输出中自动学习,获得W和b。

Frank Rosenblatt 1928-1971

感知机算法 (Perceptron Algorithm):

- (1) 随机选择W和b。
- (2) 取一个训练样本 (X,y)

(i) 若
$$W^T X + b > 0$$
且 $y = -1$,则:

$$W = W - X$$
 $b = b - 1$

(ii) 若
$$W^T X + b < 0$$
且 $y = +1$, 则:

$$W = W + X$$
 $b = b + 1$

- (3) 再取另一个(X,y) ,回到(2)
- (4) 终止条件: 直到所有输入输出对 都不满足(2)

感知机结构

感知机算法的意义和局限

- 单层感知机只能处理线性问题,无法处理非线性问题
- 单层感知机处理线性问题,一般情况没有SVM效果好

> 两层神经网络

$$z_1 = w_{11}x_1 + w_{12}x_2 + b_1$$

 $z_2 = w_{21}x_1 + w_{22}x_2 + b_2$
 $a_1 = \varphi(z_1)$
 $a_2 = \varphi(z_2)$
 $\hat{y} = (w_1a_1 + w_2a_2 + b_3)$
(注意: 其中 $\varphi(*)$ 为非线性函数)

输入 (X,Y), 其中 $X=\begin{bmatrix}x_1\\x_2\end{bmatrix}$, Y 是标签值(label), 即我们希望改变 w 和 b ,使得标签值 Y 与实际的网络输出值 g 尽量接近。

定义目标函数: $Minimize: L(\omega, b) = \frac{1}{2} (Y - \hat{y})^2$

> 多层神经网络

设计神经网络的结构

将训练数据输入网络中

估计网络代求参数

以神经网络为基础的深度学习网络

◆ 神经元结构

◆前馈全连接神经网络DNN

• 网络结构

• 模型训练: 反向传播

卷积神经网络

2. 前馈全连接神经网络

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}\right) = \begin{bmatrix} 0.62 \\ 0.83 \end{bmatrix} \quad f\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 0.51 \\ 0.85 \end{bmatrix}$$

・矩阵操作

$$y = f(x)$$
 可采用并行计算加快矩阵操作

$$= \sigma(\boldsymbol{W^{(L)}} \cdots \sigma(\boldsymbol{W^{(2)}}) \sigma(\boldsymbol{W^{(1)}} \times \boldsymbol{b^{(1)}}) + \boldsymbol{b^{(2)}}) \cdots + \boldsymbol{b^{(L)}})$$

• 符号表示

 $z_i^{(l)}$: input of the activation function for neuron i at layer l

z^(j): input of the activation function all the neurons in layer I

$$z_{i}^{(l)} = w_{i,1}^{(l)} a_{1}^{(l-1)} + w_{i,2}^{(l)} a_{2}^{(l-1)} \dots + w_{i,j}^{(l)} a_{j}^{(l-1)} \dots + b_{i}^{(l)}$$

$$= \sum_{j=1}^{N_{l-1}} w_{i,j}^{(l)} a_j^{(l-1)} + b_i^{(l)}$$

$$\mathbf{z}^{(l)} = \mathbf{W}^{(l)}\mathbf{a}^{(l-1)} + \mathbf{b}^{(l)}$$

• 相邻层输出之间的关系

l-1 层 N_{l-1} 个结点

 $l = N_l$ 层 N_l 个结点

$$\mathbf{z}^{(l)} = \mathbf{W}^{(l)}\mathbf{a}^{(l-1)} + \mathbf{b}^{(l)}$$

$$\mathbf{z}^{(l)} = \mathbf{W}^{(l)} \mathbf{a}^{(l-1)} + \mathbf{b}^{(l)}$$

$$a_i^{(l)} = \sigma(\mathbf{z}_i^{(l)})$$

$$\mathbf{a}^{(l)} = \sigma(\mathbf{z}^{(l)})$$

$$= \sigma(\mathbf{W}^{(l)} \mathbf{a}^{(l-1)} + \mathbf{b}^{(l)})$$

✓ 训练数据

✓ 损失函数

损失函数根据任务要求定义: 如交叉熵损失

✓ 目标函数

目标函数:

$$J(\mathbf{\theta}) = \sum_{i=1}^{N} L_i(\mathbf{\theta})$$

找到使得目标函数 最小的网络参数 **θ***

➤ 模型训练:反向传播 (Back Propogation, BP)算法

$$\mathbf{\theta} = \{\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \mathbf{W}^{(2)}, \mathbf{b}^{(2)}, \cdots \mathbf{W}^{(L)}, \mathbf{b}^{(L)}\}$$

Ink \rightarrow 1 No ink \rightarrow 0 设置网络参数θ,使得:

输入: y_1 是最大值

輸入: ス → y2 是最大値

✓ 常规优化算法: 梯度下降

网络参数:
$$\boldsymbol{\theta} = \left\{ \mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \mathbf{W}^{(2)}, \mathbf{b}^{(2)}, \cdots \mathbf{W}^{(L)}, \mathbf{b}^{(L)} \right\}$$

初始参数:
$$\theta^{(0)}$$
 $\theta^{(1)}$ $\theta^{(2)}$

$$\nabla J(\mathbf{\theta})$$

$$\begin{bmatrix} \partial J(\mathbf{\theta})/\partial \mathbf{W}(1) \\ \partial J(\mathbf{\theta})/\partial b(1) \\ \vdots \\ \partial J(\mathbf{\theta})/\partial \mathbf{W}(2) \\ \partial J(\mathbf{\theta})/\partial b(2) \\ \vdots \end{bmatrix}$$

$$\mathbf{\Theta}^{(1)} = \mathbf{\Theta}^{(0)} - \eta \nabla L (\mathbf{\Theta}^{(0)})$$

$$\mathbf{\theta}^{(2)} = \mathbf{\theta}^{(1)} - \eta \nabla L(\mathbf{\theta}^{(1)})$$

百万数量级的参数

2014年 Facebook提出的Deepface人脸识别算法, 通过400多万张人脸图片,求出1800多万个参数分量

反向传播: 更有效地计算梯度

神经网络符号表示

- x: 输入向量
- $w_{i,j}^{(l)}$: 连接第(l-1)层的第j个神经元到第l层的第i个神经元的权重
- $b_i^{(l)}$: 第l层的第i个神经元的权重
- $z_i^{(l)}$: 第l层的第i个神经元的激活函数的输入 $z_i^{(l)} = \sum_{i=1}^{N_{l-1}} w_{i,j}^{(l)} a_j^{(l-1)} + b_i^{(l)}$
- σ(.): 激活函数
- $a_i^{(l)}$: 第l层的第i个神经元的激活函数的输出 $a_i^{(l)} = \sigma\left(z_i^{(l)}\right)$
- $\hat{\mathbf{y}}$: 输出向量 $\hat{y}_i = a_i^{(L)}$
- y: 真实标签
- \mathbf{y} · 只太你验 $J = \sum_{n=1}^{N} L_n(\hat{\mathbf{y}}, \mathbf{y})$
- $\delta_i^{(l)}$: 第l层的第i个神经元的误差函数

$$\delta_i^{(l)} = \frac{\partial J}{Z_i^{(l)}}$$

Review: 链式法则 (Chain Rule)

$$z = f(x)$$
 \longrightarrow $y = g(x)$ $z = h(y)$

$$\begin{array}{ccc}
& g & h \\
& \Delta x & \rightarrow \Delta y & \rightarrow \Delta z
\end{array}$$

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$$

Case 2

$$z = f(s)$$
 $x = g(s)$ $y = h(s)$ $z = k(x, y)$

$$\frac{dz}{ds} = \frac{\partial z}{\partial x} \frac{dx}{ds} + \frac{\partial z}{\partial y} \frac{dy}{ds}$$

✓ BP算法

• 链式法则

$$\frac{\partial J}{\partial w_{i,j}^{(l)}} = \frac{\partial z_i^{(l)}}{\partial w_{i,j}^{(l)}} \frac{\partial J}{\partial z_i^{(l)}}$$

$$\begin{cases} a_j^{(l-1)} & l > 1 \\ x_j & l = 1 \end{cases}$$

Forward Pass

$$z^{(1)} = W^{(1)}x + b^{(1)}$$

$$\mathbf{a}^{(1)} = \sigma(\mathbf{z}^{(1)})$$

$$\mathbf{z}^{(l)} = \mathbf{W}^{(l)}\mathbf{a}^{(l-1)} + \mathbf{b}^{(l)}$$

$$\mathbf{a}^{(l-1)} = \sigma(\mathbf{z}^{(l-1)})$$

Backward Pass

Error signal

$$\boldsymbol{\delta}^{(L)} = \sigma'(\mathbf{z}^{(L)}) \odot \nabla_{\hat{\mathbf{v}}} J$$

 $\delta_i^{(l)}$

$$\boldsymbol{\delta}^{(L-1)} = \sigma'(\mathbf{z}^{(L-1)}) \odot (\mathbf{W}^{(L)})^T \boldsymbol{\delta}^{(L)}$$

$$\mathbf{\delta}^{(l)} = \sigma'(\mathbf{z}^{(l)}) \odot (\mathbf{W}^{(l+1)})^T \mathbf{\delta}^{(l+1)}$$

• $\partial J/\partial w_{ij}^{(l)}$ — 第**1**项

$$\frac{\partial J}{\partial w_{i,j}^{(l)}} = \frac{\partial z_i^{(l)}}{\partial w_{i,j}^{(l)}} \frac{\partial J}{\partial z_i^{(l)}}$$

• $\partial J/\partial w_{ij}^{(l)}$ —第**2**项

$$\frac{\partial J}{\partial w_{i,j}^{(l)}} = \frac{\partial z_i^{(l)}}{\partial w_{i,j}^{(l)}} \frac{\partial J}{\partial z_i^{(l)}} \longrightarrow \delta_i^{(l)}$$

- 1. 怎样计算 $\delta^{(L)}$
- 2. $\delta^{(l)}$ 和 $\delta^{(l+1)}$ 之间的关系

$$\frac{\partial J}{\partial w_{i,j}^{(l)}} = \frac{\partial z_i^{(l)}}{\partial w_{i,j}^{(l)}} \frac{\partial J}{\partial z_i^{(l)}} \longrightarrow \delta_i^{(l)}$$

- 1. 怎样计算 $\delta^{(L)}$
- 2. $\delta^{(l)}$ 和 $\delta^{(l+1)}$ 之间的关系

$$\delta_{n}^{(L)} = \frac{\partial J}{\partial z_{n}^{(L)}} \qquad \Delta z_{n}^{(L)} = \Delta a_{n}^{(L)} = \Delta \hat{y}_{n} \rightarrow \\ = \frac{\partial \hat{y}_{n}}{\partial z_{n}^{(L)}} \frac{\partial J}{\partial \hat{y}_{n}} \longrightarrow 5$$
 与目标函数有关
$$\sigma'(z_{n}^{(L)})$$

$$\frac{\partial J}{\partial w_{i,j}^{(l)}} = \frac{\partial z_i^{(l)}}{\partial w_{i,j}^{(l)}} \frac{\partial J}{\partial z_i^{(l)}} \longrightarrow \delta_i^{(l)}$$

1. 怎样计算
$$\delta^{(L)}$$

2. $\delta^{(l)}$ 和 $\delta^{(l+1)}$ 之间的关系

$$\delta_{n}^{(L)} = \frac{\partial J}{\partial z_{n}^{(L)}}$$

$$= \frac{\partial \hat{y}_{n}}{\partial z_{n}^{(L)}} \frac{\partial J}{\partial \hat{y}_{n}}$$

$$\sigma'(z^{(L)}) = \begin{bmatrix} \sigma'(z_{1}^{(L)}) \\ \sigma'(z_{2}^{(L)}) \\ \sigma'(z_{n}^{(L)}) \end{bmatrix}$$

$$\nabla J(\hat{y}) = \begin{bmatrix} \frac{\partial J}{\partial \hat{y}_{1}} \\ \frac{\partial J}{\partial \hat{y}_{2}} \\ \vdots \\ \frac{\partial J}{\partial \hat{y}_{n}} \\ \vdots \end{bmatrix}$$

$$= \sigma'(z_{n}^{(L)}) \frac{\partial J}{\partial \hat{y}_{n}}$$

$$\delta^{(L)} = \sigma'(\mathbf{z}^{(L)}) \odot \nabla J(\hat{y})$$

$$\boldsymbol{\delta}^{(L)} = \sigma'(\mathbf{z}^{(L)}) \odot \nabla J(\hat{\mathbf{y}})$$
按元素乘

$$\frac{\partial J}{\partial w_{i,j}^{(l)}} = \frac{\partial z_i^{(l)}}{\partial w_{i,j}^{(l)}} \frac{\partial J}{\partial z_i^{(l)}} \longrightarrow \delta_i^{(l)}$$

1. 怎样计算 $\delta^{(L)}$

$$2. \, \boldsymbol{\delta}^{(l)} \,$$
和 $\boldsymbol{\delta}^{(l+1)}$ 之间的关系

$$\frac{\partial J}{\partial w_{i,j}^{(l)}} = \frac{\partial z_i^{(l)}}{\partial w_{i,j}^{(l)}} \frac{\partial J}{\partial z_i^{(l)}} \longrightarrow \delta_i^{(l)}$$

Layer I Layer I+1

$$\Delta z_{1}^{(l)} \rightarrow \Delta a_{i}^{(l)} \qquad \Delta z_{2}^{(l+1)} \qquad \Delta J$$

$$\Delta z_{k}^{(l+1)} \rightarrow \Delta J$$

$$\delta_i^{(l)} = \frac{\partial a_i^{(l)}}{\partial z_i^{(l)}} \sum_k \frac{\partial z_k^{(l+1)}}{\partial a_i^{(l)}} \frac{\partial J}{\partial z_k^{(l+1)}} \longrightarrow \delta_k^{(l+1)}$$

$$\sigma'(z_i^{(l)}) \qquad z_k^{(l+1)} = \sum_i w_{k,i}^{(l+1)} a_i^{(l)} + b_k^{(l+1)}$$

$$\delta_i^{(l)} = \sigma'(z_i^{(l)}) \sum_k w_{ki}^{(l+1)} \delta_k^{(l+1)}$$

$$\frac{\partial J}{\partial w_{i,j}^{(l)}} = \frac{\partial z_i^{(l)}}{\partial w_{i,j}^{(l)}} \frac{\partial J}{\partial z_i^{(l)}} \longrightarrow \delta_i^{(l)}$$

$$\delta_i^{(l)} = \sigma'(z_i^{(l)}) \sum_k w_{k,i}^{(l+1)} \delta_k^{(l+1)}$$

Layer I Layer I+1

input

Layer
$$l$$
 Layer $l+1$

$$\delta_1^{(l)} \quad 1 \quad \delta_1^{(l+1)} \quad 1 \quad \times \sigma'(z_1^{(l+1)})$$

$$\delta_2^{(l)} \quad 2 \quad \times \sigma'(z_2^{(l)}) \quad \times \sigma'(z_2^{(l+1)})$$

$$\vdots \quad \delta_i^{(l)} \quad m \quad 2 \quad \times \sigma'(z_n^{(l+1)})$$

$$\vdots \quad \times \sigma'(z_n^{(l)}) \quad \times \sigma'(z_n^{(l+1)})$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\delta_i^{(l)} = \sigma'(z_i^{(l)}) \sum_k w_{k,i}^{(l+1)} \delta_k^{(l+1)}$$

$$\sigma'(\mathbf{z}^{(l)}) = \begin{bmatrix} \sigma'\left(z_1^{(l)}\right) \\ \sigma'\left(z_2^{(l)}\right) \\ \vdots \\ \sigma'\left(z_n^{(l)}\right) \end{bmatrix}$$

$$\mathbf{\delta}^{l} = \sigma'(\mathbf{z}^{l}) \cdot \mathbf{W}^{(l+1)^{T}} \mathbf{\delta}^{(l+1)}$$

VS

前向

$$\frac{\partial J}{\partial w_{i,j}^{(l)}} = \frac{\partial z_i^{(l)}}{\partial w_{i,j}^{(l)}} \frac{\partial J}{\partial z_i^{(l)}} \frac{\partial J}{\delta z_i^{(l)}}$$

$$\boldsymbol{\delta}^{(L)} = \sigma'(\mathbf{z}^{(L)}) \cdot \nabla J(\widehat{\mathbf{y}})$$

2. $\delta^{(l)}$ 和 $\delta^{(l+1)}$ 之间的关系

$$\boldsymbol{\delta}^l = \sigma'(\boldsymbol{z}^l) \cdot \boldsymbol{W}^{(l+1)T} \boldsymbol{\delta}^{(l+1)}$$

✓ 激活函数

Sigmoid函数: $sigmoid(x) = \frac{1}{(1+e^{-x})}$

梯度消失问题

Tanh函数:
$$tanh(x) = \frac{1 - exp(-2x)}{1 + exp(-2x)} = 2sigmoid(x) - 1$$

 $\varphi'(x) = 1 - [\varphi(x)]^2$

收敛更快,减轻梯度消失现象

ReLU (Rectified Linear Unit)函数: ReLU(x) = max(x, 0)

计算量小,缓解过拟合,解决了梯度消失问题,收敛速度快

激活函数的选择

- · 首选ReLU, 速度快, 但是要注意学习速率
- 如果 ReLU 效果欠佳,尝试使用ReLU的改进版本:Leaky ReLU、 ELU 或 MaxOut 等
- 可以尝试使用 tanh
- Sigmoid 和 tanh 在 RNN (LSTM、注意力机制等)结构中作为门控或者概率值。其它情况下,减少 sigmoid 的使用

- ◆ 神经元结构 🦑
- ◆ 前馈全连接神经网络DNN
- ◆ 卷积神经网络CNN
 - · 卷积层 (Convolutional Layer)
 - · 池化层 (Pooing Layer)

3. 卷积神经网络(Convolutional Neural Network, CNN)

2012年,Hinton 组参加 ImageNet 竞赛,使用 CNN 模型以超过第二名 10个百分点的成绩夺得当年竞赛的冠军

• 全连接神经网络FCN

QLEER OF ELECTRONIC ENGINEERING

例:图像

Binary

Gray Scale

Color

Fully Connected Network

> 卷积层

COLLECTRONIC ENGINERRAL

• 卷积convolution

convolution

通过两个函数f和g生成第三个函数的一种数学算子

5X5 image

filter

feature map

1	1	1
1	1	1
1	1	1

filter kernel

CNN

- 使用感受野,而非整幅图;
- 稀疏连接,而非全连接;
- 参数共享

• 感受野

感受野大小: 3x3

Stride: 1

1	0	0	0	0	1
0	1	1 0 (1	0
0	0	1	1	0	0
1	0	0	0	1	0/
0	0	0	0	1	0

6 x 6 black & white picture image

6 x 6 RGB三个颜色通道

• 特征提取

1	-1	-1
1	1	-1
-1	-1	1

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	4	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

3

6 x 6 image

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0 _	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

3*3*64 filter

卷积后Feature Map的宽度: $W_2 = \left\lfloor \frac{W_1 - F + 2P}{S} \right\rfloor + 1$

W2: 卷积后Feature Map的宽度

 W_1 : 卷积前的输入图像的宽度

F: 卷积核宽度

P: 单边填充区域列数

S: 步幅

• 参数共享

核的大小、滤波器的数目、步幅都是开发者需要确定的参数。

Fully Connected Layer

Receptive Field

Parameter Sharing

Convolutional Layer

➤ 池化层Pooling

Max Pooling

	1 -1 -1	-1 1 -1	-1 -1 1	Filter 1	-1 1 -1 1 -1 1	-1 -1 Filter 2 -1
-3	1		-3	-3	-1 -1 -1	-1 -1 -2 1
-3	-3		0 -2	-1	-1 -1 -1 0	-2 1 -4 3

1	0	0	0	0	1	
0	1	0	0	1	0	Conv
0	0	1	1	0	0	-1 1
1	0	0	0	1	0	
0	1	0	0	1	0	Max 0 3
0	0	1	0	1	0	Pooling
	6 :	x 6 i	mag	ge	X	2 x 2 image

> The whole CNN

Can repeat many times

➤ 卷积神经网络CNN演化

✓ LeNet5

C1、C3、C5为卷积层,S2、S4为池化层/下采样层,F6为全连接层,一个输出分类层 Output

C1: 卷积层, 共6个特征图 (对应6个卷积核)

• 输入x: 32×32

• 核**W**大小: 5×5

• 步幅(Stride): 1×1

• 无填充

• 输出大小: 28×28×6

$$\mathbf{a}_f^{(1)} = \sigma\left(\mathbf{W}_f^{(1)} * \mathbf{x} + \mathbf{b}_f^{(1)}\right), \qquad f = 1, 2, \dots, 6$$

$$\left| \frac{32 - 5 + 0}{1} \right| + 1 \Rightarrow 28$$

参数数目: (5x5+1)x6=156 (其中5x5对应kernel size, 1为bias, 6为feature map 数目)

S2: 下采样层

OLEGA OR SECTRONIC ENGINEERING

Kernel size: 2×2

• Stride: 2×2

• 把2×2的一个unit的所有数值相加,然后乘以系数,加上偏置bias,得出的结果再送入一个sigmoid函数作为最终这一层的输出。这里的系数和偏置都是可以训练的

参数数目: (1+1)x6=12个

C3: 卷积层

Input size: 14×14×6

Output channel: 16

Kernel size: 5×5

• Stride: 1×1

• Output size: 10×10×16

• C3与S2并不是全连接而是部分连接,通过这种方式提取更多特征

	0	1	2	3	4	5	6	7	8	9 10 11 12 13 14 15
-0	Х				Χ	Х	Χ			XXXXXXXX
1	X	Х				Χ	Χ	Χ		XXXXX
2	X	Х	Х				Χ	Х	Х	X X X X
3		Χ	Χ	Х			Χ	Χ	Х	X X X X
4			Χ	Χ	Χ			Χ	Χ	X X X X X X
5				Х	Х	Х			Х	X X X X X X

C3层参数数目:

 $+6+(5\times5\times3+1)\times6+(5\times5\times4+1)\times9+(5\times5\times6+1)$

= 1516

S4: 下采样层

C5: 卷积层 (120个卷积核)

• Input size: 5×5×16

• Output channel: 120

Kernel size: 5×5

• Stride: 1×1

• Output size: 1×1×120

参数数目: 120× (5×5×16+1) = 48120

F6: 全连接层

• 输入: 120

• 输出: 84

参数数目: (120+1) ×84=10164

输出层: 全连接

• 输入: 84

• 输出: 10

• 该层采用径向基函数(RBF)的网络连接方式,

卷积神经网络用于手写数字识别 [LeCun et al., 1998]