Leftmost Derivation & Rightmost Derivation

Definition 4.16 Leftmost and Rightmost Derivations

A derivation in a context-free grammar is a *leftmost* derivation (LMD) if, at each step, a production is applied to the leftmost variable-occurrence in the current string. A rightmost derivation (RMD) is defined similarly.

Example (Leftmost Derivation)

Rightmost Derivation

Leftmost Derivation & Rightmost Derivation

Theorem 4.17

If G is a context-free grammar, then for every $x \in L(G)$, these three statements are equivalent:

- 1. x has more than one derivation tree.
- 2. x has more than one leftmost derivation.
- 3. x has more than one rightmost derivation.

E > E + E | G * E | a (2 Leftmost Derivations) E Y E E+E |-a |* a+EG+6 +6 a+ E + E atE *E at at E

Ambiguous Grammar

A context-free grammar G is ambiguous if for at least one $x \in L(G)$, x has more than one derivation tree (or, equivalently, more than one leftmost derivation).

Ambiguous Grammar

EXAMPLE 4.20

Ambiguity in the CFG for Expr in Example 4.2

In the grammar G in Example 4.2, with productions

$$S \rightarrow a \mid S + S \mid S * S \mid (S)$$

the string a + a * a has the two leftmost derivations

$$S \Rightarrow S + S \Rightarrow a + S \Rightarrow a + S \Rightarrow a + a * S \Rightarrow a + a * a$$

$$S \Rightarrow S * S \Rightarrow S + S * S \Rightarrow a + S * S \Rightarrow a + a * S \Rightarrow a + a * a$$

which correspond to the derivation trees in Figure 4.22.

a-3

Two Left-most Derivation Trees

Tol

Show that following grammars are Ambiguous

Ambiguous Grammar

Show that the CFG with productions

$$S \rightarrow a \mid Sa \mid bSS \mid SSb \mid SbS$$

is ambiguous. baaa

S
bSS
bSS
bSaS
bSaS
baaa
baaa
baaa

Ambiguous Grammar

EXAMPLE 4.19

The Dangling else

In the C programming language, an if-statement can be defined by these grammar rules:

$$S \rightarrow \text{if } (E) S \mid$$
if $(E) S \text{ else } S \mid$
 OS

OS = Other Statement

Dangling "Else" Problem S if (e1) if (e2) f(); esse 90;

1f (Dangling "Else" Problem if (e1) if (e2) f(); else \$();

Top-Down Parsing

 We can eliminate non-Determinism upto some extent by re-writing the grammar rules

- There are two main techniques :
 - 1. Left-Factoring of Grammar
 - 2. Elimination of Left Recursion

A non-terminal with two or more productions, whose right-hand sides start with the same grammar symbols, adds non-determinism to the Parser

Replace productions
$$A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \mid \alpha \beta_n \mid \gamma$$
 with $A \rightarrow \alpha A_R \mid \gamma$ $A_R \rightarrow \beta_1 \mid \beta_2 \mid \mid \beta_n$

Replace productions

with
$$A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \dots \mid \alpha \beta_n \mid \gamma$$
$$A \rightarrow \alpha A_R \mid \gamma$$
$$A_R \rightarrow \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$$

Consider the grammar:

E→ T+ E | T-E | T

$$T \rightarrow F *T \mid F$$

$$F \rightarrow a$$

Left-factored Grammar:

$$E \rightarrow TE_{R}$$

$$E_{R} \rightarrow +E \mid -E \mid ^{*}$$

$$T \rightarrow FT_{R}$$

$$T_{R} \rightarrow *T \mid ^{*}$$

$$F \rightarrow a$$

Suppose you want to derive 'a' in the previous grammar

(=	ra	m	m	2	r.
$\mathbf{\mathbf{\mathcal{U}}}$	ıa			ч	

$$E \rightarrow TE_{R}$$

$$E_{R} \rightarrow +E \mid -E \mid ^{*}$$

$$T \rightarrow FT_{R}$$

$$T_{R} \rightarrow *T \mid ^{*}$$

$$F \rightarrow a$$

Original Grammar (Non-Deterministic)	Left- Factored Grammar (Deterministic)
E	E
T+ E or T-E or T (Trial and Error)	TE _R
T	FT_RE_R
F*T or F (Trial and Error)	aT_RE_R
F	a E _R
а	а

Left —factoring of Grammar (Example-2)

Replace productions

with
$$A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \dots \mid \alpha \beta_n \mid \gamma$$
$$A \rightarrow \alpha A_R \mid \gamma$$
$$A_R \rightarrow \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$$

Consider the grammar:

Left-factored Grammar:

$$S \rightarrow iEtSeS \mid iEtS \mid a$$
 $S \rightarrow iEtSS_R \mid a$ $S_R \rightarrow eS \mid ^*$ $E \rightarrow b$

Suppose you want to derive 'ibtibtaea' in the previous grammar

Here, Grammar is Ambiguous

Original Grammar (Non-Deterministic)	Left- Factored Grammar (Deterministic)
S	S
iEtSeS or iEtS (Trial and Error)	iEtSS _R
	ibtSS _R
	ibtiEtSS _R S _R
	ibtibtSS _R S _R
	ibtibta <mark>S_RS_R</mark>
	ibtibtaeSS _R or ibtibtaS _R
	ibtibtaeaS _R or ibtibtaeS
	Ibtibtaea or ibtibtaea

Grammar:

$$S \rightarrow iEtSS_R \mid a$$

 $S_R \rightarrow eS \mid ^$
 $E \rightarrow b$

Left –factoring of Grammar (Example-3)

Replace productions

$$A \rightarrow \alpha \beta_1 | \alpha \beta_2 | \dots | \alpha \beta_n | \gamma$$

with

$$A \to \alpha A_R \mid \gamma$$

$$A_R \to \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$$

$$S \rightarrow T \$$$

$$T \rightarrow [T] [T] T [T] T [T]$$

$$S \rightarrow T \$$$

$$T \rightarrow [T_R$$

$$T_R \rightarrow T] [T] T [T] T [T]$$

Left –factoring of Grammar (Example-3)

