Computational Graphics: Lecture 1b

Alberto Paoluzzi

Mon, Feb 3, 2016

Outline: pyplasm

Introduction to pyplasm

2 Matrices

Introduction to pyplasm

PLaSM = Geometric extension of the FL language by Backus (developed at IBM Research in the '80)

Backus' 1977 ACM Turing Award Lecture

geometric calculus in FL-style

PLaSM = Geometric extension of the FL language by Backus (developed at IBM Research in the '80)

Backus' 1977 ACM Turing Award Lecture

- geometric calculus in FL-style
- 2 dimension independence

PLaSM = Geometric extension of the FL language by Backus (developed at IBM Research in the '80)

Backus' 1977 ACM Turing Award Lecture

- geometric calculus in FL-style
- 2 dimension independence
- dynamic typing

PLaSM = Geometric extension of the FL language by Backus (developed at IBM Research in the '80)

Backus' 1977 ACM Turing Award Lecture

- geometric calculus in FL-style
- 2 dimension independence
- dynamic typing
- higher-level operators

 ${\sf PLaSM}={\sf Geometric}$ extension of the ${\sf FL}$ language by ${\sf Backus}$ (developed at IBM Research in the '80)

Backus' 1977 ACM Turing Award Lecture

- geometric calculus in FL-style
- dimension independence
- dynamic typing
- higher-level operators
- arity: always 1 (number of arguments of functions)

PLaSM = Geometric extension of the FL language by Backus (developed at IBM Research in the '80)

Backus' 1977 ACM Turing Award Lecture

- geometric calculus in FL-style
- dimension independence
- dynamic typing
- higher-level operators
- arity: always 1 (number of arguments of functions)
- small set of predefined functionals

 ${\sf PLaSM}={\sf Geometric}$ extension of the ${\sf FL}$ language by ${\sf Backus}$ (developed at IBM Research in the '80)

Backus' 1977 ACM Turing Award Lecture

- geometric calculus in FL-style
- dimension independence
- dynamic typing
- higher-level operators
- arity: always 1 (number of arguments of functions)
- o small set of predefined functionals
- names of functions: all-caps

PLaSM Basics (AA: Apply-to-All)

```
>>> AA(SUM)([[1,2,3],[4,5,6]])
[6,15]
```

PLaSM Basics (AA: Apply-to-All)

```
>>> AA(SUM)([[1,2,3],[4,5,6]])
[6,15]
>>> mat = [[1,2,3],[4,5,6]]
>>> [sum(v) for v in mat]
[6,15]
```

PLaSM Basics (DISTL: DISTribute-Left)

```
>>> DISTL([2,[1,2,3]])
[[2,1],[2,2],[2,3]]
```

PLaSM Basics (DISTL: DISTribute-Left)

```
>>> DISTL([2,[1,2,3]])
[[2,1],[2,2],[2,3]]
>>> DISTL([2,[]])
[]
```

PLaSM Basics (TRANS: TRANSpose)

```
>>> TRANS([[1,2,3],[10,20,30],[100,200,300]])
[[1,10,100],[2,20,200],[3,30,300]]
```

PLaSM Basics (TRANS: TRANSpose)

```
>>> TRANS([[1,2,3],[10,20,30],[100,200,300]])
[[1,10,100],[2,20,200],[3,30,300]]
>>> TRANS([[1,2,3,4,5],[10,20,30,40,50]])
[[1,10],[2,20],[3,30],[4,40],[5,50]]
```

PLaSM Basics (TRANS: TRANSpose)

```
>>> TRANS([[1,2,3],[10,20,30],[100,200,300]])
[[1,10,100],[2,20,200],[3,30,300]]
>>> TRANS([[1,2,3,4,5],[10,20,30,40,50]])
[[1,10],[2,20],[3,30],[4,40],[5,50]]
>>> TRANS([[],[]])
[]
```

```
>>> PROD([3,4])
12
```

```
>>> PROD([3,4])
12
>>> PROD([[1,2,3],[4,5,6]])
32.0
```

```
>>> PROD([3,4])
12
>>> PROD([[1,2,3],[4,5,6]])
32.0
>>> SUM([3,4])
7
```

```
>>> PROD([3,4])
12
>>> PROD([[1,2,3],[4,5,6]])
32.0
>>> SUM([3,4])
>>> SUM([[1,2,3],[4,5,6]])
[5, 7, 9]
```

PLaSM Basics (product scalar by vector)

```
>>> SCALARVECTPROD([3,[1,2,3]])
[3, 6, 9]
```

PLaSM Basics (product scalar by vector)

```
>>> SCALARVECTPROD([3,[1,2,3]])
[3, 6, 9]
>>> SCALARVECTPROD([[10,20,30],4])
[40, 80, 120]
```

Pyplasm: Exercise 1 (INNERPROD)

The inner (or scalar) product of $a, b \in \mathbb{R}^m$ is a number

INNERPROD:
$$\mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}: (\mathbf{u}, \mathbf{v}) \mapsto \sum_{i=1}^m u_i v_i$$

Pyplasm: Exercise 1 (INNERPROD)

The inner (or scalar) product of $a, b \in \mathbb{R}^m$ is a number

$$\texttt{INNERPROD}: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}: (\mathbf{u}, \mathbf{v}) \mapsto \sum_{i=1}^m u_i v_i$$

```
>>> u = [1,2,3]
>>> v = [10,20,30]
>>> INNERPROD([u, v])
140
```

Pyplasm: Exercise 1 (INNERPROD)

The inner (or scalar) product of $a, b \in \mathbb{R}^m$ is a number

INNERPROD:
$$\mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$$
: $(\mathbf{u}, \mathbf{v}) \mapsto \sum_{i=1}^m u_i v_i$

>>> $\mathbf{u} = [1,2,3]$
>>> $\mathbf{v} = [10,20,30]$
>>> INNERPROD($[\mathbf{u}, \mathbf{v}]$)
140

>>> \det INNERPROD(args):
... $[\mathbf{u},\mathbf{v}] = \operatorname{args}$
... return SUM($\operatorname{AA}(\operatorname{PROD})(\operatorname{TRANS}([\mathbf{u},\mathbf{v}]))$)

Pyplasm: Exercise 2 (VECTNORM)

The norm of a vector $a \in \mathbb{R}^m$ is a number.

$$\mathtt{VECTNORM}: \mathbb{R}^m \to \mathbb{R}: \mathbf{v} \mapsto \sqrt{\sum_{i=1}^m \mathbf{v}_i^2}$$

Pyplasm: Exercise 2 (VECTNORM)

The norm of a vector $a \in \mathbb{R}^m$ is a number.

$$\mathtt{VECTNORM}: \mathbb{R}^m \to \mathbb{R}: \mathbf{v} \mapsto \sqrt{\sum_{i=1}^m \mathbf{v}_i^2}$$

Pyplasm: Exercise 2 (VECTNORM)

The norm of a vector $a \in \mathbb{R}^m$ is a number.

$$extsf{VECTNORM}: \mathbb{R}^m o \mathbb{R}: v \mapsto \sqrt{\sum_{i=1}^m \mathbf{v}_i^2}$$

```
>>> a = [1,2,3]
>>> VECTNORM(a)
3.7416574954986572
>>> def VECTNORM(vect):
... return SQRT(SUM(AA(SQR)(vect)))
```

Pyplasm: Exercise 3 (UNITVECT)

The unit vector is a function

$$\mathtt{UNITVECT}: \mathbb{R}^m \to \mathbb{R}^m: v \mapsto \frac{v}{|v|}$$

Pyplasm: Exercise 3 (UNITVECT)

The unit vector is a function

$$\mathtt{UNITVECT}: \mathbb{R}^m \to \mathbb{R}^m: v \mapsto \frac{v}{|v|}$$

```
>>> v = [1,2,3]
```

>>> UNITVECT(v)

[0.26726123690605164, 0.5345224738121033, 0.8017836809158325]

Pyplasm: Exercise 3 (UNITVECT)

The unit vector is a function

$$\mathtt{UNITVECT}: \mathbb{R}^m \to \mathbb{R}^m: v \mapsto \frac{v}{|v|}$$

```
>>> v = [1,2,3]
>>> UNITVECT(v)
[0.26726123690605164, 0.5345224738121033, 0.8017836809158325]
>>> VECTNORM(UNITVECT(v))
0.9999999403953552 1
```

Pyplasm: Exercise 4 (SUM)

SUM adds m vectors in \mathbb{R}^n , i.e. the rows of a matrix in \mathbb{R}_n^m :

```
>>> a = [1,2,3]

>>> a

[1, 2, 3]

>>> b = [10,20,30]

>>> b

[10, 20, 30]

>>> SUM([a,b])

[11, 22, 33]
```

Pyplasm: Exercise 5 (SUM)

```
>>> a = range(10)
>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> b = [10*k \text{ for } k \text{ in range}(10)]
>>> b
[0, 10, 20, 30, 40, 50, 60, 70, 80, 90]
>>> SUM([a,b])
[0, 11, 22, 33, 44, 55, 66, 77, 88, 99]
>>> c = [100*k for k in range(10)]
>>> c
[0, 100, 200, 300, 400, 500, 600, 700, 800, 900]
>>> SUM([a,b,c])
[0, 111, 222, 333, 444, 555, 666, 777, 888, 999]
```

Pyplasm: Exercise 6 (MATSUM)

Assignment

Write a function that adds any two matrices [A], [B] (compatible by sum). Both [A], [B] must belong to the same linear space \mathbb{R}_n^m

Pyplasm: Exercise 6 (MATSUM)

Assignment

Write a function that adds any two matrices [A], [B] (compatible by sum). Both [A], [B] must belong to the same linear space \mathbb{R}_n^m

```
>>> def MATSUM(args):
... return AA(AA(SUM)) (AA(TRANS)(TRANS(args)))

>>> A = [ [1,2,3], [4,5,6], [7,8,9] ]
>>> B = [ [10,20,30], [40,50,60], [70,80,90] ]
```

Pyplasm: Exercise 6 (MATSUM)

Assignment

Write a function that adds any two matrices [A], [B] (compatible by sum). Both [A], [B] must belong to the same linear space \mathbb{R}_n^m

```
>>> def MATSUM(args):
       return AA(AA(SUM)) (AA(TRANS)(TRANS(args)))
>>> A = [[1,2,3], [4,5,6], [7,8,9]]
>>> B = [[10,20,30], [40,50,60], [70,80,90]]
>>> MATSUM([A,B])
[ [11,22,33], [44,55,66], [77,88,99] ]
>>> MATSUM([A,B,A])
[ [12,24,36], [48,60,72], [84,96,108] ]
>>> MATSUM([A,B,B,A])
[ [22,44,66], [88,110,132], [154,176,198] ]
```

Pyplasm: Exercise 7 (MATPROD)

Write a function that multiplies two matrices (compatible by product)
Remember that

$$A \in \mathbb{R}_{p}^{m}$$
, $B \in \mathbb{R}_{p}^{n}$, and $C = AB \in \mathbb{R}_{p}^{m}$,

with

$$C = (c_j^i) = (\mathbf{A}^i \mathbf{B}_j), \qquad 1 \le i \le m, 1 \le j \le p,$$

where A^i is the *i*-th row of A, and B_i is the *j*-th column of B.

Pyplasm: Exercise 7 (MATPROD) – Solution

Write a function that multiplies two compatible matrices

```
>>> def MATPROD(args):
... A,B = args
... return AA(AA(INNERPROD)) (AA(DISTL) (DISTR ([A, TRANS (B)])))
```

Pyplasm: Exercise 7 (MATPROD) – Solution

Write a function that multiplies two compatible matrices

Pyplasm: Exercise 7 (MATPROD) – Solution

Write a function that multiplies two compatible matrices

```
>>> def MATPROD(args):
   A,B = args
        return AA(AA(INNERPROD)) (AA(DISTL) (DISTR ([A, TRANS (B)])))
>>> A = [[1.2.3], [4.5.6], [7.8.9]]
>>> B = [[1,2,3],[4,5,6],[7,8,9]]
>>> MATPROD ([A.B])
[ [30, 36, 42], [66,81,96], [102,126,150] ]
>>> C = [[1,2,3],[4,5,6]]
>>> D = [[1,2],[4,5],[7,8]]
>>> MATPROD ([C,D])
[ [30,36], [66,81] ]
```

```
>>> N(3) (0) # REPEAT [0,0,0] 
>>> N(3) ([0,1]) 
[ [0,1], [0,1], [0,1] ]
```

```
>>> N(3) (0) # REPEAT
[0,0,0]
>>> N(3) ([0,1])
[ [0,1], [0,1], [0,1] ]
>>> NN(3) ([0,1]) # REPeat LIST & CAtenate -- REPLICA
[ 0,1, 0,1, 0,1 ]
```

```
>>> N(3) (0) # REPEAT
[0,0,0]
>>> N(3) ([0,1])
[ [0,1], [0,1], [0,1] ]

>>> NN(3) ([0,1]) # REPeat LIst & CAtenate -- REPLICA
[ 0,1, 0,1, 0,1 ]

>>> AR ([ [0,0,0], 1 ]) # Append Rigth
[0,0,0,1]
```

```
>>> N(3) (0) # REPEAT
[0,0,0]
>>> N(3) ([0,1])
[0.1], [0.1], [0.1]
>>> NN(3) ([0.1]) # REPeat LIst & CAtenate -- REPLICA
[0,1,0,1,0,1]
>>> AR ([ [0,0,0], 1 ]) # Append Rigth
[0,0,0,1]
>>> AL ([ 1, [0,0,0] ]) # Append Left
[1,0,0,0]
```

Pyplasm: Exercise 9 (VECTPROD)

the vector product \boldsymbol{w} of vectors in \mathbb{R}^3 id defined as the function

$$\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3 : (\mathbf{u}, \mathbf{v}) \mapsto \det \begin{pmatrix} \mathbf{e}_0 & \mathbf{e}_1 & \mathbf{e}_2 \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{pmatrix}$$

Therefore we can write, for the vector product of two 3D vector:

Pyplasm: Exercise 9 (VECTPROD)

the vector product \boldsymbol{w} of vectors in \mathbb{R}^3 id defined as the function

$$\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3 : (\mathbf{u}, \mathbf{v}) \mapsto \det \begin{pmatrix} \mathbf{e}_0 & \mathbf{e}_1 & \mathbf{e}_2 \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{pmatrix}$$

Therefore we can write, for the vector product of two 3D vector:

```
>>> from random import random
>>> def randomPoints(m, sx=1, sy=1):
...     def point():
...     return [random() * sx, random() * sy]
...     return [point() for k in range(m)]
```

```
>>> from random import random
>>> def randomPoints(m, sx=1, sy=1):
...     def point():
...     return [random() * sx, random() * sy]
...     return [point() for k in range(m)]
>>> verts = randomPoints(200, 2*PI, 2)
>>> obj = MKPOL([verts, AA(LIST)(range(200)), None])
```

```
>>> from random import random
>>> def randomPoints(m, sx=1, sy=1):
        def point():
            return [random() * sx, random() * sy]
        return [point() for k in range(m)]
>>> verts = randomPoints(200, 2*PI, 2)
>>> obj = MKPOL([verts, AA(LIST)(range(200)), None])
>>> VIEW(obj)
```


Figure 1:200 random points in $[0,2\pi] \times [0,2] \subset \mathbb{E}^2$

coordinate functions

```
>>> def x (p):
...     u,v = p
...     return v * COS(u)

>>> def y (p):
...     u,v = p
...     return v * SIN(u)
```

coordinate functions

coordinate functions

Pyplasm: Exercise 12 (4/4)

Figure 2:200 random points within the 2D "ball" of radius 2

From PLaSM to Pyplasm

application (binary infix operator :) to (...)

$$f: x \to f(x)$$

composition (binary infix operator) to COMP

$$f \sim g \rightarrow COMP([f,g])$$

construction (of a vector function) to CONS

$$[f,g]: x \to CONS([f,g])(x)$$

sequence (arrow parentheses < . . . >) to list

$$f:\langle x_1,x_2,\ldots,x_n\rangle\to f([x_1,x_2,\ldots,x_n])$$

From PLaSM to Pyplasm

The original FL syntax

```
hpc = MAP:f:dom
WHERE
    f = [COS~S1, SIN~S1],
    dom = INTERVALS: (2*PI): 24
END;
DRAW:hpc
```

Ported syntactically to python

```
>>> f = CONS([ COMP([COS,S1]), COMP([SIN,S1]) ])
>>> dom = INTERVALS(2*PI)(24)
>>> hpc = MAP(f)(dom)
>>> VIEW(hpc)
```

Using properly the Python syntax

The function to be mapped is from *d*-points to lists of coordinate functions $\mathbb{R}^d \to \mathbb{R}$

```
>>> def circle(p):
... alpha = p[0]
... return [COS(alpha), SIN(alpha)]
```

Using properly the Python syntax

The function to be mapped is from d-points to lists of coordinate functions $\mathbb{R}^d \to \mathbb{R}$

```
>>> def circle(p):
... alpha = p[0]
... return [COS(alpha), SIN(alpha)]
>>> obj = MAP(circle)(INTERVALS(2*PI)(32))
>>> VIEW(obj)
```

In case of a curve, d=1

Current plasm.js Library

a subset of pyplasm: see fenvs.py)

AA	EMBED	LIST	SET
AL	EXPLODE	MAP	SIMPLEX
APPLY	EXTRUDE	MAT	
AR	FIRST	MATPROD	SIMPLEXGRID SimplicialComplex
BIGGER	FREE	MATSUM	SKELETON
BIGGEST	Graph	MUL	SMALLER
BOUNDARY	GRAPH	PointSet	SMALLEST
BUTLAST	HELIX	POLYLINE	SORTED
CART	ID	POLYMARKER	SUB
CAT	IDNT	PRECISION	SUM
CENTROID	IDNT	PRINT	T
CIRCLE	INNERPROD	PROD	TAIL
CLONE	INSL	PROGRESSIVE_SUM	Topology
CODE	INSR	QUADMESH	TORUSSOLID
COMP	INTERVALS	R	TORUSSURFACE
CONS	INV	REPEAT	TRANS
CUBE	ISFUN	REPLICA	TREE
CUBOID	ISNUM	REVERSE	TRIANGLEARRAY
CYLSOLID	K	S	TRIANGLEFAN
CYLSURFACE	LAST	S0	TRIANGLESTRIP
DISK	LEN	S1	UNITVECT
DISTL	LINSPACE1D	S2	VECTNORM
DISTR	LINSPACE2D	S3	VECTPROD
DIV	LINSPACE3D	S4	VECTINOD

Matrices

Efficient matrix calculus with NumPy and SciPy

docs.scipy.org

NumPy for Matlab Users

'array' or 'matrix'? Which should I use?

Use arrays

• They are the standard vector/matrix/tensor type of numpy. Many numpy function return arrays, not matrices.

The only disadvantage of using the array type is that you will have to use dot instead of * to multiply (reduce) two tensors (scalar product, matrix vector multiplication etc.).

'array' or 'matrix'? Which should I use?

Use arrays

- They are the standard vector/matrix/tensor type of numpy. Many numpy function return arrays, not matrices.
- There is a clear distinction between element-wise operations and linear algebra operations.

The only disadvantage of using the array type is that you will have to use dot instead of * to multiply (reduce) two tensors (scalar product, matrix vector multiplication etc.).

'array' or 'matrix'? Which should I use?

Use arrays

numpy function return arrays, not matrices.

There is a clear distinction between element-wise operations and linear

They are the standard vector/matrix/tensor type of numpy. Many

- There is a clear distinction between element-wise operations and linear algebra operations.
- You can have standard vectors or row/column vectors if you like.

The only disadvantage of using the array type is that you will have to use dot instead of * to multiply (reduce) two tensors (scalar product, matrix vector multiplication etc.).

Assignments

READ:

NumPy: The Numpy array object

References

Python Scientific Lecture Notes

