DM 1

Lei Bichang

March 14, 2025

1 Short vertices

Question 1.1. To prove that the bound is tight, we will construct a lattice Λ with $\lambda_1(\Lambda) = \sqrt{\frac{2}{\sqrt{3}} \text{vol}(\Lambda)}$. Consider the lattice

$$\Lambda := \mathbb{Z}v_1 + \mathbb{Z}v_2, \quad v_1 = (1,0), \ v_2 = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right).$$

For each $x \in \mathbb{Z}$, we have

$$||v_2 + xv_1|| = \sqrt{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} \ge 1 = ||v_2|| = ||v_1||.$$

So the basis (v_1, v_2) for Λ is LG-reduced. Therefore $\lambda_1(\Lambda) = ||v_1|| = 1$ and $\operatorname{vol}(\Lambda) = \frac{\sqrt{3}}{2}$ as desired.

2 Proving primality

Question 2.1. We shall prove by contadiction. Suppose that N is not a prime.

Let $y^2z = x^3 + ax^2z + bz^3$ be an equation that defines E, $a, b \in \mathbb{Z}/N\mathbb{Z}$, $\Delta(E) = -16(4a^3 + 27b^2) \in (\mathbb{Z}/N\mathbb{Z})^{\times}$. Let $p \leq \sqrt{N}$ be a prime dividing N, and E_p be the curve over \mathbb{F}_p defined by $y^2z = x^3 + (a \mod p)x^2z + (b \mod p)z^3$. Then $\Delta(E_p) = (\Delta(E) \mod p) \in \mathbb{F}_p^{\times}$, so E' is an elliptic curve over \mathbb{F}_p . Let

$$E(\mathbb{Z}/N\mathbb{Z}) \to E_p(\mathbb{F}_p), \quad Q = [x:y:z] \mapsto \tilde{Q} := [\tilde{x}:\tilde{y}:\tilde{z}]$$

be the reduction modulo p map. It sends O to O, and points in $E(\mathbb{Z}/N\mathbb{Z}) \setminus E^s(\mathbb{Z}/N\mathbb{Z})$ to $E(\mathbb{F}_p) \setminus \{O\}$. Since $2P \notin E^s(\mathbb{Z}/N\mathbb{Z})$ and 2qP = O, the reduction $\widetilde{2P} \neq O$ and has order q. For the same reason, $qP \in E_p(\mathbb{F}_p)$ has order P. Hence $P \in E_p(\mathbb{F}_p)$ has order P. By Hasse theorem,

$$2q \le \#E_p(\mathbb{F}_p) \le (p+1) + 2\sqrt{p} = (\sqrt{p} + 1)^2.$$

However,

$$2q > (N^{\frac{1}{4}} + 1)^2 \ge (\sqrt{p} + 1)^2.$$

This is a contadiction.

Question 2.2. Assume that the prime $q \neq 2$, so that $E(\mathbb{F}_p) \simeq \mathbb{Z}/2q\mathbb{Z}$ and there exist \mathbb{F}_p -points of order 2q. There are q-1 generators in $\mathbb{Z}/2q\mathbb{Z}$, so a uniformly random point in $\mathbb{Z}/2q\mathbb{Z}$ has the chance of $\frac{q-1}{2q}$ to have order 2q. Therefore, we can use the following algorithm.

(1) Generate a random point $P \in E(\mathbb{F}_p)$. Expected cost: $2p/\#E(\mathbb{F}_p) = p/q$ times of a constantly many \mathbb{F}_p -operations.

1

- (2) Check if P = O, P has order 2 (i.e. P = (x, 0) for some x) or P has order q. Cost: the time of q-multiplication, which is $O(\log q)$ times of \mathbb{F}_p -operations.
- (3) If one of the three conditions in step (2) is satisfied, we go back to step (1). Otherwise P has order 2q.

The expected time of iterations is $\frac{2q}{q-1}$. So the total complexity is

$$\frac{2q}{q-1}\frac{p}{q}O(\log q) = \frac{2p}{q-1}O(\log q)$$

times of \mathbb{F}_p -operations. Since $2q \in [(\sqrt{p}-1)^2, (\sqrt{p}+1)^2]$, the complexity is about

$$\frac{2p}{\frac{p}{2} - \sqrt{p} - \frac{1}{2}} O(\log(\sqrt{p} + 1)) \approx O(\log p).$$

Question 2.3. In the other file, I defined a function test_conjecture(p, N) that generates N curves over \mathbb{F}_p as in the conjecture and then returns the proportion P(p) of elliptic curves of order 2q for some prime q. Then I generated some primes $p_0 < p_1 < \cdots < p_n$, such that $\log(p_{i+1}) - \log(p_i) \approx d$, and repeated the following procedure several times.

- (1) For each prime p_i , run test_conjecture (p_i, N) and get the proportion $P(p_i)$.
- (2) Use linear regression to get c_1, c_2 such that

$$\log P(p) \approx \log c_1 - c_2 \log(\log p).$$

These constants should be larger than the actual constants if the conjecture is true.

After several trials, I would guess that $c_1 = 0.2$, $c_2 = 0.7$.

Question 2.4. We can use the following algorithm.

- (1) Pick uniformly random $a, b \in \mathbb{F}_p$ and let $E : y^2 = x^3 + ax + b$ over \mathbb{F}_p . If E is not an elliptic curve, redo step (1).
- (2) Compute $N := \#E(\mathbb{F}_p)$. If N is divided by 2, go back to step (1). Cost: polynomial in $\log p$ many \mathbb{F}_p -operations.
- (3) Run the Miller-Rabin test k-times to check if q := N/2 is a prime. If we find q to be composite, go back to step (1). Cost: at most $k \cdot O(\log p)$ many \mathbb{F}_p -operations.
- (4) Use the algorithm decribed in Question 2.2 to get a point $P \in E(\mathbb{F}_p)[2q]$. Expected cost: $O(\log p)$ many \mathbb{F}_p -operations.

We run Miller-Rabin test k-times in step (3), so the probability of misclassifying a composite number as prime is 4^{-k} , and q has the chance of $1 - 4^{-k}$ to be a prime.

If Conjecture 1 holds, the expected time of iterations is less than $(\log p)^{c_2}/c_1$. So the expected times of \mathbb{F}_p -operations is polynomial in $\log p$.

Question 2.5. We can use the following algorithm, which is a variant of the one in Question 2.4.

- (1) Pick uniformly random $a, b \in \mathbb{Z} \cap [0, \dots, N-1]$ and let $\Delta := -16(4a^3 + 27b^2)$.
 - If $gcd(\Delta, N) \notin \{0, 1\}$, return composite.
 - If $gcd(\Delta, N) = 0$, go back to the start of the algorithm step (1).

- Otherwise define the elliptic curve $E: y^2 = x^3 + ax + b$ over $\mathbb{Z}/N\mathbb{Z}$.
- (2) Pretend that N is a prime and use the algorithm for elliptic curves over finite fields to compute $M := \#E(\mathbb{Z}/N\mathbb{Z})$.
 - If the program throws an exception, return composite.
 - Otherwise if M is divided by 4, or $M \leq (N^{\frac{1}{4}} + 1)^2$, go back to step (1).
- (3) Run the Miller-Rabin test k-times to check if q := M/2 is a prime. If we find q to be composite, go back to step (1).
- (4) Pretend that N is a prime and use the algorithm decribed in Question 2.2 to get some $P \in E(\mathbb{Z}/N\mathbb{Z})[2q]$.
 - If the program throws an exception, return composite.
- (5) Use the formulae for elliptic curves over fields to compute 2P and qP.
 - If the program throws an exception, return composite.
 - Otherwise return prime.

Assume first that N is a prime. By the analysis in Question 2.4, the algorithm cost polynomial time in $\log N$. If N is composite, then the algorithm will terminate with probability $> 1-4^{-k}$ in step (1) - (3), so the cost is smaller than it when N is prime. Therefore, the complexity is polynomial in $\log N$ many $\mathbb{Z}/N\mathbb{Z}$ -operations.

Question 2.6. Please see the function primality_test in other file. I have implemented most of the functions, but I failed to realize Schoof's algorithm (the computation of trace modulo primes).