USSR/ Physical Chemistry - Crystals

Abs Jour : Referst Zhur - Khimiya, No 4, 1957, 10929

analogous to polyhedrons in structures of PtSni, PdPbi, AuSni, CuAl2, CoGe2.

Bi atoms have coordination number 11 (9 atoms Bi and 2 atoms Rh). Interatomic distance Bi-Rh is 2.80 A, and is less by 3% than sum of atomic radii.

mic distance Bi-Rh is 7.80 A, and is less by 3% than sum of atomic radii.

Distance Bi-Bi is from 2.80 to 3.50 A; three of them are close to least distance, and six to greatest distance in pure Bi. The question concerning tance, and six to greatest distance in pure Bi. The question concerning analogy in structure of alpha-Bijih and garnet Ca2Al2Si3Ol2 is discussed.

APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R002064620006-5"

PA - 2040 The Displacement of Atoms in Solids under the Effect of Radiation. (Russian) Uspekhi Fizicheskikj Nauk, 1956, Vol 60, Nr 4, pp 590-615 (U.S.S.R.) AUTHOR TITLE This is the Russian translation of articles 2 and 3 of the survey by the PERIODICAL above mentioned authors (under the editorship of G.S.ZDANOV), Reports on Progress in Physics, 18, 1 (1955), this survey is arranged as follows. ABSTRACT I. The production of displaced atoms. 1) energetical deliberations. The energy of displacement. (It is to be expected, that an energy that is higher than 5 eV is needed for the displacement of an atom from its position in the lattice of a solid, the threshold values of radiation energy are given in a table for the displacement energy of 25 eV which is assumed for all further cases). 2) The number of displaced atoms. The moved atoms, bases of the theory, collisions of solid spheres, Rutherford's collisions, moved atoms which are slowed down to a full stop, fast neutrons, electrons gamma rays. 3) The distribution of the displaced atoms and vacancies. a) The models based upon the investigation of collisions. b) "displacement wedges" and "thermal wedges". 4) Effects in compounds. Collisions that lead to the displacement of atoms, dissolution of order. II. Restoration of defects. In most cases the physical properties return to their original values if the temperature of the sample is increased after irradiation. As a rule it may be expected that also in the case of irradiation a certain restoration of defects takes place by heating, usually in several stages with different values of activation energy in Card 1/2

THE RESIDENCE OF STREET PROPERTY OF STREET PA - 2040 The Displacement of Atoms in Solids under the Effect of Radiation. the various temperature intervals. The course taken by the restoration process may be described by the equation $dn/dt = -cn^{\gamma} \exp(-\epsilon/kT)$. Here "n" denotes the number of the defects participating in the restoration process, & the activation energy, \u03c4 the so-called "order of reaction". The II. section is arranged as follows. 1) Recombination of impressed atoms and vacancies. Pairs of atoms and vacancies located close to each other, the disordered distribution of impressed atoms and vacancies. 2) Additional processes 3) the accumulation of destructions h)saturation 5) Annealing by radiation. Not given ASSOCIATION PRESENTED BY SUBMITTED Library of Congress AVAILABLE Card 2/2

The National Committee for Crytallography of the USSR, Moscow
"Automatic Synthesis of Two-Dimensional Crystal Structure Patterns"

(Section 1(1)-8, a paper submitted at the General Assembly and International Congress of Crystallography, 10-19 Jul 57, Montreal, Canada.

C-3,800,89

	k of the Elect					1t."
report presen imeni L. Ya.	ted at Scienti Karpov, Acad.	fic Conference Sci. USSR, Nov	at the Inst	. for Physic	cal Chemistry	

ZHDANOV, G.S. Ozerov, R.P., Gol'der, G.A. and Zhdanov, G.S. 70-2-3/24 An X-ray structural investigation of the oxygen vanadium bronzes of sodium and potassium Me 0.33 205. (Rentgenograf-AUTHOR: icheskoye issledovaniye struktury kislorodnykh vanadiyevykh TITIE: bronz natriya i kaliya Me 0.33 V 205.) "Kristallografiya" (Crystallography), 1957, Vol.2, ABSTRACT: Experimental. The valency state of V in bronzes and in PERIODICAL: vanadium-sulphur-oxygen catalysts is particularly of interest. Crystals of composition (K,Na)20.V204.5V205 were obtained as black laths having a blue metallic lustre. They showed a large number of faces including the simple forms 102, 101, 100, 001 variously developed. X-ray photographs assigned them to the Java along 2/m - C them to the laue class 2/m = C2h. Weissenberg and oscill-

ation photographs (11.456 cm diameter camera) with Fe radiation gave unit cell dimensions a=10.039, b=3.605, c=15.335 A tion gave unit cell dimensions a=10.039, for the sodium compound (all ± 0.003 A) and $\beta = 109$ 12' ± 3 ', for the sodium compound (all ± 0.003 A) and $\beta = 109$ 12' ± 3 ', for the compound $E_2V_12^0_30$ Na $_{0.33}V_2^{0}_5$. This gives V=524.2 A). $0.97 \le 7$ making $z = 1 (0.97) \cdot d_{calc}$. Card 1/3 Library of Congress Available:

CIA-RDP86-00513R002064620006-5"

APPROVED FOR RELEASE: 07/19/2001

70-2-3/24 An X-ray structural investigation of the oxygen vanadium bronzes of sodium and potassium Me_{0.33}V₂O₅ (Cont.)

The possible space groups (from the extinctions) were A2/m, A/2 and Am. On the basis of a knowledge of the crystal chemistry of the oxides of V, Mo and W and of the W bronzes the group of the oxides of V, Mo and W and of the W bronzes the group of the oxides of V, Mo and W and of the W bronzes the group of the oxides of V, Mo and W and of the W bronzes the group of the expectation of octahedra or trigonal bipyramids leads to the expectation of octahedra or trigonal bipyramids (see R.P. Ozerov - Usp. Khim.24, 951, 1955). Using Mo radia-(see

jection. Projections for both Na and K bronzes were several atoms overlap and this was one reason for repeating Wadsley's work. The Fourier section at y = 0 was calculated Wadsley's work. The Fourier section at y = 0 was calculated giving co-ordinates for the K bronze very close to those found by Wadsley (Acta Crystallography, 8, 695, 1955) for the Na by Wadsley (Acta Crystallography, 8, 695, 1955) for the Na bronze. A table of interatomic distances is given. Slight bronze. A table of interatomic distances (as observed differences naturally occur in the Me-O distances (as observed differences naturally occur in the Me-O distances (as observed for K bronze first followed by Wadsley's value for the Na bronze); Me-O₈ (2.50, 2.46); Me-O₈ (2.49, 2.75); Me-O₄ (2.56, 2.51);

Card 2/3

70-2-3/24

An X-ray structural investigation of the oxygen vanadium bronzes of sodium and potassium Me_{0.33}V₂O₅. (Cont.)

新教教徒主义的经用统利强制,国际政策等等的关系是对关系的关系的关系的关系,并不是是对关系是的现在分词。

Me-0₆ (2.57, 2.51); Me-Me (1.68, 2.22). The geometry of the structure is discussed. The structure is built from strongly distorted VO₆ octahedra. The distortion is so great that certain groupings are better regarded as trigonal bipyramids. The polyhedra differ greatly among themselves V-0 distances oscillating to 1.55, 1.79, 1.89, 2.00 and 2.68 A. There is a strong correspondence with the structure of the V oxides. The alkali atoms lie in canals between the octahedra each surrounded by seven oxygens. Seven-fold co-ordination is rare but is also found in the ion (NaF₇)⁻² and in Bi₂Ni.

Card 3/3 There are 5 figures, 2 tables and 20 references, 10 of which are Slavic.

ASSOCIATION: Ya.V. Samoylov Scientific Institute for Fertilisers and Insecto-fungicides. (Nauchnyy Institut po Udobreniyam i Insekto-fungisidam im Ya.V. Samoylova)

SUBMITTED: September 21, 1956.

AVAILABLE: Library of Congress

ZHOANOV, G.S.

AUTHOR: Zhdanov. G.S., Zhuravlev, N.N., Stepanova, A.A. and Umanskiy, M.M. TITIE: The crystal chemistry of metal hexaborides. (Kristallo-

khimiya geksaboridov metallov)

"Kristallografiya" (Grystallography), 1957, Vol. (U.S.S.R.)

The MeB6 structure consists of a three-dimensional framework of B atoms with Me atoms in the interstices and is work of B atoms with Me atoms in the interstices and is
formally like the CsCl structure with B6 and Me units. In
formally like the CsCl structure with B6 and Me units. In
group II, Be, Mg, Ca, Sr and Ba form hexaborides as do Y, Ia,
group II, Be, Mg, Ca, Sr and Ba form hexaborides as do Y, Ia,
group II, Be, Mg, Ca, Sr and Ba form hexaborides can also be
group II, Be, Nd, Gd, Er, Yb in group III. The formation by the
group II, Be, Nd, Gd, Er, Yb in group III. The formation by
the group II. SiB, and ThB, are known. When the
predicted. In group IV. SiB, and ThB, are PERTODICAL: ABSTRACT: remaining tanthaniaes and by ac of nexaborides can also be when the predicted. In group IV, SiB6 and ThB6 are known. When the unit cell sizes are plotted against atomic radii the compounds that three series corresponding to the three groups. measured by X-ray diffraction (5.9 and 6.5 x 10-65, respectively and are added to the measurements already made (A.A.Stepanova and M.M. Umanskiy, Trudy soveshchaniya po khimii bora i ego and M.M. Umanskiy, Trudy soveshchaniya po 1955) for Ce, Ie and soedineniy. Fiz.-Khim. in-t. im. Karpova, 1955) for Ce, Ie and soedineniy. Fiz.-Khim. in-t. respectively). The coefficient Ba (7.3, 6.4 and 6.8 x 10-6, respectively).

70-3-6/20 Automatic synthesis of two-dimensional crystal structure Vlasenko, V.I. and Zhdanov, G.S. patterns (Avtomaticheskiy sintez dvumernykh izobrazheniy AUTHOR: TITLE: "Kristallografiya" (Crystallography), 1957, atomykh struktur) Vol. 2, No. 3, Pp. 358 - 365 (U.S.B.R.) By means of high speed digital computers it is possible to summate Fourier series and thus compute numerical tables PERIODICAL: within a short time. However, digital computers are unsuitable for further analysis; for this purpose, an automatic machine is required. The first problem is to convert the numerical ABSTRACT: is required. The first problem is to convert the numerical tables into a more readily usable form.

The simplest method of this synthesis is the construction of a mosaic image. In this case each number in the table is replaced by a round or a square spot with the colour corresreplaced by a round or a square spot with the Colour spots gives ponding to this number. The whole of the colour spots gives a visual mosaic image of the electron density. This is due to the ability of the eye to integrate discrete elements in Another method is that of the model section; it is a better method but a more difficult one. In this case it is necessary to construct a model of the two-dimensional function Card 1/3

70-3-6/20

Automatic synthesis of two-dimensional crystal structure

of the electron density, then to dissect the model with a series of planes parallel to XY on different levels and to patterns. (Cont.)

register on a flat screen the intersection lines. The model is constructed by two-dimensional interpolation first along the X axis, and then along the Y axis. The results of the first (X-axis) interpolation is recorded in a results of the first (X-axis) interpolation is recorded in a special storage device and represents the initial data for the

The first interpolation is performed by electronic circuits, second (Y axis) interpolation. the results being recorded in parallel circular tracks on a the results being recorded in parallel circular tracks on a rotating magnetic drum. The second (Y axis) interpolation of these results, along the drum axis, as well as all other operations are also made by the electronic circuits ations are also made by the electronic circuits.

The results of the second interpolation can be considered as being a curve, representing the distribution of electronic density along the Y axis (drum axis). An amplitude discriminator automatically dissects this curve parallel to the Y axis by a series of straight lines, representing the given Bet of electron-density values. The intersection points are recorded as light spots on a CRT screen whereby the coordinates of tes of these spots correspond to the position of the

card 2/3

排品類

APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R002064620006-5"

17.14服性2

70-3-6/20

Automatic synthesis of two-dimensional crystal structure

patterns. (Cont.)

intersection points. Thus, during one revolution of the magnetic drum the light spots form dotted lines, representing

the whole electron-density map.

The use of the magnetic drum and electronic circuits for the above mentioned purposes allows obtaining an electron-density map on a CRT screen within a few seconds after ending the summation of the Fourier series on the high-speed computer.

There are 8 figures and 7 references, 2 of which are Slavic.

Physico-chemical Institute im. I.Ya.Karpov. ASSOCIATION:

(Fiziko-khimicheskiy Institut im. L.Ya. Karpova)

February 22, 1957. SUBMITTED:

Library of Congress AVAIIABIE:

Card 3/3

1111年 新年 12年 1 1111年 新年 12年 1

Zhdanov, G.S., Solov'yev, S.P. and Venevtsev, Yu.N.

The Structural Coefficients of the Internal Field in Ferroelectrics with the Perovskite-type Structure. (Strukturny)e koeffitsiyenty vnutrennego polya v segnetoelekti kakh so ATITHORS: TITIE:

strukturoy tipa perovskita)

Kristallografiya, 1957, Vol.2, No.5, pp. 639-645 (USSR) ABSTRACT: Data published in the literature for the values of the structural coefficients of the internal field in perovskite-type crystals are critically examined. Relations are set up type crystals are critically examined. Relations are set up between the idealised cubic perovskite and the cases in which there are dipoles in the [001], [01] or [111] directions. The structural coefficients are calculated for the tetragonal cell attractions of the ionic discount of th of PoTio, at room temperature taking account of the ionic dis-

The field at the i-th ion is:

d at the
$$\frac{1-6h}{m}$$
 $\left(\frac{4\pi}{3} + C_{1k}\right)^{p_k}$

where m is the number of sub-lattices each consisting of the where m is the k-th sort, E is the external field, Pk

Card1/4

70-5-12/31

The Structural Coefficients of the Internal Field in Ferroelectrics with the Perovskite-type Structure.

dipole moment of the k-type of ions, C_{ik} are the structural coefficients. In the case where the dipoles are in the z-direction:

$$c_{ik} = \sum_{j} \frac{2z_{jk}^2 - x_{jk}^2 - y_{jk}^2}{\left(\frac{z_{jk}^2 + y_{jk}^2 + z_{jk}^2}{2}\right)^{5/2}}$$

where x_{jk}, y_{jk}, z_{jk} are the co-ordinates of the j-th dipole of the k-th sort relative to a dipole of the i-th sort and summation is over each dipole of the i-th sort and summation is over each dipole of the i-th sort and summation is over each dipole of the k-th sort. For the cubic cell, the C_{ik} can be expressed the cubic cell, the cubic cell

card2/4

70-5-12/31

The Structural Coefficients of the Internal Field in Ferroelectrics Tith the Perovskite-type Structure.

Q Q There are 5 sub-lattices P P for the ABO3 formula.
Q Q are the values for 0 -2Q Cik for the ABO, formula. truly cubic cell.

Where the distortions of the cubic cell are small (1%) the Cik are different from the Cik only by 2-3%. Even for PoTiO3 where the distortions are large, these do not differ by more than 20%. The actual values of the coefficients for te tragonal PbTiO3 where c/a = 1.064 are calculated and tabulated with those of McKeehan (cubic, by Ewald's method) and of Hagendorn (BaTiO₃ with c/a = 1.010) (Zeit.f.Physik, 133, 394-421, 1952). There are 1 figure, 3 tables and 14 references, 2 of which are Slavic.

ASSOCIATION: Karpov Physico -chemical Institute (Fiziko-khimicheskiy Institut im. L.Ya. Karpova) Uard 3/4

The Structural Coefficients of the Internal Field in Ferroelectrics with the Perovskite-type Structure.

SUBMITTED: May 31, 1957.

AVAILABLE: Library of Congress

Card 4/4

ZHDANOV, G.S. Venevtsev, Yu.N. and Zhdanov, G.S. Crystallochemistry of Ferroelectrics of Perovskite AUTHORS: Structure. (Kristallokhimiya segnetoelektrikov so TITLE: strukturoy tipa perovskita) Izvestiya Akademii Nauk SSSR, Vol. XX1, #2, pp 275 -285, 1957, USSR, Serlya fizicheskaya PERIODICAL: The data available on some ferroelectrics and antiferroelectrics make it presently possible to classify these compounds by their structural properties and to ABSTRACT: determine relations between the structure and the character of spontaneous elec polarization. For crystallic structure of ferroelectrics with ABO, composition of the perceskite type, the existence of BO6 octahedrals joined by their vertices is a characteristic feature; empty gaps between them are occupied by A-type lons. The structure of the perovskite type depends mainly up on the ratios of radii of constituent ions. The valence of A ions may be 1,2,3 and that of B ions Card 1/5

> CIA-RDP86-00513R002064620006-5" **APPROVED FOR RELEASE: 07/19/2001**

TITLE:

Crystallochemistry of Ferroelectrics of Perovskite Structure. (Kristallokhimiya segnetoelektrikov so strukturoy tipá perovskita)

- 5,4,3 respectively. When A ions and oxygen ions have equal radii, these ions form a densely packed cubic structure. Within the oxygen octahedrals of this structure, B-ions may possess a maximum radius equal to 0.414 of the oxygen ion radius, i.e. 0.56 A. Thus an ideal contact of adjacent ions takes place when the ratio $t = \frac{1}{\sqrt{2}(r_a + r_s)}$ is equal to is equal to 1.

According to Megaw (8) and Naray-Szabo (9) it is sufficient to take into account co-ordination numbers

of ions for evaluating the factor t by the formula: $\frac{R_{A}(n) + R_{0}}{\sqrt{2} (R_{0} + R_{0})}$ where R_{A} , R_{B} and R_{0} are tabular values of A_{0} , B_{0} ion radii, and subscript (12) means tabular value of the A ion radius corrected for the case of co-ordination number 12.

Card 2/5

TITLE:

Crystallochemistry of Ferroelectrics of Perovskite Structure. (Kristallokhimiya segnetoelektrikov so strukturoy tipa perovskita)

Peculiar properties of BaTiO, are connected with the fact that the titanium ion has a "free" space in the BaTiO, cell. The main condition for the ferroactivity BaTiO, cell. The main condition for the ferroactivity of an ion is that free space in the cell must be available.

Classification results of ferroelectrics and antiferroelectrics of the BaTiO, group are presented in Table 1. Inspection of this table shows a definite regularity between the t-value and elec polarization character. between the t-value considerably less than 1, the compound if t has a value considerably less than 1, the compound

Ferroactive cations (A or B) are displaced at a certain temperature (lower than Curie point) from their symmetric positions and thereby bring about the polar rebuilding of the whole cell.

Card 3/5

TITLE:

in to 自由的是否就是数据的证明,这一种证明,这一种目前是对话,可以可以通过的。 Had successed and a contract of the successed and the succ

Crystallochemistry of Ferroelectrics of Ferovskite Structure. (Kristallokhimiya segnetoelektrikov so strukturoy tipa perovskita)

Displacements of B and A ferroactive cations are observed along the axes of the 2nd and 3rd and 4th orders, which result in monoclinic, rhombohedral and tetragonal distortions respectively. In the cells of antiferroelectrics, antiparallel displacements of ferroactive A cations along the axis of the 2nd order are observed.

Co-ordination numbers of A and B ferroactive cations characterizing their displacements along various axes are given in Table 2.

Ferroelectrics with t>1 and accompanied by temperature changes perform 3-phase transitions. Ferroelectric PbTiO, with t<1 and lowering of the temperature performs only a one-phase transition. None of the known ferroelectrics and antiferroelectrics with t<1 has shown thus far subsequent displacements of the A

Card 4/5

TITLE:

Crystallochemistry of Ferroelectrics of Perovskite Structure. (Kristallokhimiya segnetoelektrikov so

strukturoy tipa perovskita)

cation along the 3 possible directions of displacements.

Ferroelectrics possessing the perovskite structure are compounds with principally ionic character of bonds.

The article given 3 figures and 2 tables. The bibliography contains 46 references, of which 10 are Slavic

and 1 Hungarian.

INSTITUTION:

Physico-Chemical Institute imeni L.Ya. Karpov

PRESENTED BY:

SUBMITTED:

No date

AVAILABLE:

At the Library of Congress.

Card 5/5

ZHDANOL

PHASE I BOOK EXPLOITATION

SOV/1916

Vsesoyuznoye soveshchaniye po khimii bora, 1955

Bor; trudy Konferentsii po khimii bora i yego soyedineniy (Boron; Transactions of the Conference on the Chemistry of Boron and Its Coumpounds) Moscow, Goskhimizdat, 1958. 189 p. inserted. 2,400 copies printed.

Ed.: G.P. Luchinskiy; Tech. Ed.: M.S. Lur'ye.

PURPOSE: This book is intended for chemists, as well as for industrial personnel working with boron and its compounds.

COVERAGE: This collection contains 24 studies on the chemistry, crystalline structure, physicochemical properties, and technology of boron and its compounds. Twenty-two of the studies were presented at the All-Union Conference on Boron Chemistry, held at the Nauchno-issledovatel skiy fizikokhimicheskiy institut im. L. Ya. Karpova (Scientific Research Physicochemical Institute im. L. Ya. Karpov) in

card 1/6

CIA-RDP86-00513R002064620006-5" APPROVED FOR RELEASE: 07/19/2001

Boron; Transactions of the Conference (Cont.) SOV/1916	
December 1955. Two of these articles deal with the the chemistry of boron. The two studies on "borundum" production are being published for the first time. The sare well illustrated and accompanied by bibliographies	-
PABLE OF CONTENTS:	
Preface	3
Ormont, B.F. Present State of the Thermochemistry and Thermodynamics of Boron and of Certain Borides	5
Chdanov, G.S., V.A. Epel'baum, and N.G. Sevast'yanov. Crystal Chemistry of Boron and Its Compounds	19
Sevryugova, N.N., O.V. Uvarov, and N.M. Zhavoronkov. Separation of Stable Boron Isotopes	30
Markovskiy, L. Ya., V.I. L'vova, and Yu. D. Kondrashev. Production of Elementary Boron by the Mothed of	
Electric Glow Discharge	36
ard 2/6	

•	Boron; Transactions of the Conference (Cont.) SOV/1916		
	Kotel'nikov, R.B. About the Formation of Continuous Solid Solutions in Systems of Borides, Carbides, Nitrides, and Silicides of Transition Metals	46	
	Meyerson, G.A., and G.V. Samsonov. Conditions for Boron Carbide Production	52	
	Meyerson, G.A., G.V. Samsonov, R.B. Kotel'nikov, M.S. Voynova, I.P. Yevteyeva, and S.D. Krasnenkova. Certain Properties of Boride Alloys of High-melting Transition Metals	58	
	Samsonov, G.V. Activation Energy of Boron, Carbon, Nitrogen, and Silicon Diffusion in High-melting Transition Metals	74	
	Markovskiy, L. Ya., I.P. Tverdovskiy, and Z.N. Mazur. Surface Properties of Elementary Boron	90	
	Card 3/6		

1985年 1985年 (1985年) 1985年 | 1985年 |

Boran; Transactions of the Conference (Cont.) SOV	
Epel'baum, V.A., and M.I. Starostina. Thermochemica Study of Boron and of Certain Borides	97
Stepanova, A.A., and M.M. Umanskiy. Parameters of the Elementary Nuclei of Metallic Hexaborides	102
Kudintseva, G.A., B.M. Tsarev, and V.A. Epel'baum. Borides of Transition Metals and Their Electron Emissive Properties	106
Kudintseva, G.A., V.A. Epel'baum, and B.M. Tsarev. Synthesis of the Hexaborides of Certain Rare Ear Metals and Their Electron Emissive Properties	th 112
Sheverdina, N.I., M.M. Nad' [Deceased], and K.A. Kooshkov. Sodium Borohydride as Reducing Agent of Organization Compounds	che- anic 120
Kurman, I.M. Present State and Future Prospects for Expanding the Raw Material Base of Boron	r 124
Berlin, L. Ye. Methods for Converting Natural Bora Into Boric Acid and Fertilizers of Boron Content	tes 128
Card 4/6	

我的感染的表示,我们的现在分词,我们也没有更好的事实,你就是别性的意思,我是是自然的意思的话,我们的技术技术的奇术也们的现在分词,但是这种的人,也可以在他们的,"他可以

Boron; Transactions of the Confere	The state of the s	
Polyak, A.M., Ye. N. Pinayevskaya, N.I. Kozlova, and L.I. Devyatovska Production by the Decomposition Borates With Mixtures of Nitric	of Inderskive	135
Mezentsev, V.P. Processing of Bor Chemical Kombinat		141
Ratobyl'skaya, L.D. Beneficiation Ores	n of Certain Boric	145
Nikolayev, A.V., and A.G. Kurnako of Boric Acid	va. Extraction	157
Shvarts, Ye. M. State of Borates Solution	in an Aqueous	162
Krapivner, S.L. A Technical and of the New Methods for Boric A Inderskiye Borates Card 5/6	Economic Comparison cid Production from	170

Ormont, B.F., V.A. Epel'baum, and I.G. Shafran. Stuor of the Boron-Carbon-Silicon System and the Production of "Borundum"	ld y 177
Ormont, B.F., V.A. Epel'baum, and I.G. Shafran. An Experiment in Commercial Production of "Borundum' and in Testing Its Properties	182
AVAILABLE: Library of Congress TM/rj 6-22-59	
Card 6/6	

AUTHOR:

Preobrazhenskiy, Yu.A., Zhdanov, 3

113-58-7-2/25

TITLE:

The Economy of Smelt-Model Casting (Ob ekonomike lit'ya po

vyplavlyayemym modelyam)

PERIODICAL:

Avtomobil'naya promyshlennost', 1958, Nr 7, pp 4-5 (USSR)

ABSTRACT:

In 1956, NIITAvtoprom established a catalogue of 500 individual parts used in automobile, motorcycle and bicycle production. Reduction of this list to 175 parts is possible by a very accurate method of evaluation. First, the parts are grouped by weight, intricacy and design, and the possibility of reducing the amount of mechanical machining is considered. Accurate casting to desired shape must then be effected wherever it is possible. The economy obtained by smelt-model casting of rocker arm yokes is demonstrated in a table. In the automobile building industry, this economy, by the smelt-model casting process, applies to forgings and rolled iron parts of up to 350 grams, which are later subjected to machining by cutting. In most cases, a transfer of parts made of machined rods to automats or semi-automats does not pay. The introduction of shell casting in the Moskovskiy zavod malolitrazhnykh avtomobiley (Moscow Light Car Plant) has resulted in a reduction of operators and a diminished consumption of electric

Card 1/2

CIA-RDP86-00513R002064620006-5"

APPROVED FOR RELEASE: 07/19/2001

The Bookomy	of Smelt-Model Casting power. There is 1 table.	11 11	3-58-7-2/25
ASSOCIATION:	NIITAvtoprom (NIITAvtoprom)		
	1. Metals—Casting 2. Castings—Econom	ic aspects	
Card 2/2			

70-3-2-1/26

Vlasenko, V.I. and Zhdanov, G.S. AUTHORS:

Optical Methods of Summing Fourier Series (Opticheskiye

metody summirovaniya ryadov Fur'ye) TITLE:

Kristallografiya, 1958, Vol 3, Nr 2, pp 135 - 140 (USSR) The various optical methods of summing Fourier series PERIODICAL: are classified according to their characteristics: sequential ABSTRACT: simultaneous, one mask/ set of masks, white/ coloured light, cinematographic/static. The properties of the photographic materials used in the Bragg-Huggins masks and in the von Eller photosommateur are discussed with reference to range of linearity and to maximum density. A new method (possibly not yet realised) is described. The Huggins masks, translated to give correct phases, pass in turn before a lamp (presumably modulated) in rapid succession so that all merge, owing to the persistence of vision, to give a summation. Cinema technique is required for this apparatus but it uses only one projecting lens and the resulting summation can be very easily recorded photographically. A machine where each mask is projected

simultaneously onto a white screen and the resulting pattern of weak or strongillumination represents the summation is also described, but appears rather impracticable. The von

Card1/2 Eller machine is commended.

CIA-RDP86-00513R002064620006-5" APPROVED FOR RELEASE: 07/19/2001

Optical Methods of Summing Fourier Series

70-3-2-1/26

There are 4 figures and 12 references, 5 of which are Soviet, 4 French and 3 English.

ASSOCIATION: Fiziko-khimicheskiy institut im. L.Ya. Karpova (Physics-chemical Institute; lm.J.L. Ya. Karpov)

SUBMITTED:

February 1, 1957

Card 2/2

Verbitskaya, T.N., Zhdanov, G.S., Venevtsev, Yu.N. AUTHORS: and Solov'yev, S.P.

TITLE:

Electrical and X-ray Investigations of the System BaTiO3 - BaZrO3 (Elektricheskiye i rentgenograficheskiye

issledovaniya sistemy BaTiO3 - BaZrO3)

PERIODICAL: Kristallografiya, 1958, Vol. 3, Nr 2, pp 186 - 196

ABSTRACT: Various solid solutions of BaTiO3 - BaZrO3 were (USSR). prepared, having up to 30 mol% of the latter, by heating appropriate mixtures of BaCO3, TiO2 and ZrO2 at 1 400 The resulting materials were examined by the Debye-Scherrer method with a camera of diameter 11.4 cm and Cr or Cu radiation. With Cr radiation the lines 310 and 222 occur at a sufficiently high angle to give accurate cell dimensions. (For Cu radiation the appropriate lines are 501 and 431) The significance of the splitting of the lines under the distortions observed is explained. Dimensional measurements were made to + 0.001 A, monoclinic angle to + 1.5', rhombohedral angle to + 1' and

Card1/3 For the pure compounds the cell dimensions were found to be:-

Electrical and X-ray Investigations of the System Bario, a = 3.990, c = 4.027, c/a = 1.0093, V = 64.12; a = 4.186 and V = 73.35. From 0 to 2 mol% of zirconate the dimensions of the tetragonal phase approached each other slightly. From 2 to 6.5% the solid solution was pseudo-monoclinic with a = c and the monoclinic angle decreasing from 90° 08.5' to 90°04.0'. From 6.5 to 20 mol%, the solution was rhombohedral with the rhombohedral angle equal to 89°57' and increasing from 4.0177 to 4.0440. Above 20% the solution was cubic with an increasing from 4.0447 to 4.0616 at 30%. Over the whole range the volume of the unit cell increased linearly from 64.12 to 67.00 A with no breaks at the phase transitions. In pure BaTiO3 three phase transitions (all with hysteresis) are observed on changing its temperature. They are at 120, 0-5 and -70 to -80 °C. These transition points were measured for a range of compositions. Below 10% zirconate all four phases occur at appropriate temperatures, between 10 and 15% there is a confused region and above 15% only the cubic and rhombohedral phases occur. Measurements were also made of the dielectric constant of the material at various temperatures Card 2/3

Electrical and X-ray Investigations of the System BaTiO3 - BaZrO3

and compositions.

The phase diagram constructed is like that found for BaTiO3 BaSnO₂ by Smolenskiy and Isupov (DAN, 1954, Vol 96, 53) and not like that drawn up by Kell and Hellicar (Akustika, 1956, Vol 6, Nr 2, p 232).

There are 8 figures, 2 tables and 26 references, 10 of which are Soviet, 2 German and 14 English.

ASSOCIATION: Fiziko-khimicheskiy institut im. L. Ya. Karpova (Karpov Physico-chemical Institute) and NII MRTP

SUBMITTED: July 18, 1957

Card 3/3

一种子型的种种量 地名美国英国里斯特 经一种保险的地位的联系目标的自身设置 网络西拉拉斯 国际科技 医红斑 医红斑 医红斑

AUTHORS: Yezhkova, Z.I., Zhdanov, G.S. and Umanskiy, M.M. 70-3-2-18/26 X-ray Determination of the Thermal Expansion Coefficients of Guanidine Aluminium Sulphate Hexahydrate - C(NH2)3[A1(H20)6]. - (GASH) (Rentgenograficheskoye opredeleniye koeffitsiyentov termicheskogo rasshireniya guanidin-alyuminiy-sul'fata geksagidrata - C(NH₂)₃[Al(H₂O)₆].[SO₄]₂ PERIODICAL: Kristallografiya, 1958, Vol 3, Nr 2, pp 231-232 (USSR) ABSTRACT: The lattice parameters of GASH at 25 °C were found to be a=11.7159 + 0.0007 KX, c=8.9335 + 0.0007 KX and the coefficients of thermal expansion were determined as for the \underline{a} axis, α_{perp} . = $10.0 \pm 0.4 \times 10^{-6}$ per deg. C for the c axis, apar. $93.3 \pm 1.0 \times 10^{-6}$ per deg. C The expansion was measured over the range 25-55 °C. and the 009 reflections were used with Cu and Fe radiations, Cardl/1 respectively. There are 1 figure and 2 Soviet and 2 English refs. Moskovskiy gosudarstvennyy universitet im.M.V.Lomonosova (Moscow State University im. M.V.Lomonosov) July 3, 1957. SUBMITTED:

AUTHORS:

Belov, N.V., Belyayev, L.M., Bokiy, G.B., Bronnikova, Ye.G., Vaynshteyn, B.K., Zhdanov, G.S., Iveronova, V.I., Kitaygorod-skiy, A.I. and Pinsker, Z.G.

TITLE:

The Fourth International Congress of Crystallography (IV mezhdunarodnyy kongress kristallografov) (Montreal, July 10-19, 1957)

PERIODICAL: Kristallografiya, 1958, Vol 3, Nr 2, pp 250 - 260

ABSTRACT:

Outline of the scientific proceedings of the

conference.

Card 1/1

USCOMM-DC-60577

SOURCE SEE DESCRICTE BURESHIESENERS FOR THE STREET STREET SEED OF THE STREET STREET

70--3-3-23/36 AUTHORS: Varfolomeyeva, L.A., Zhdanov, G.S. and Umanskiy, M.M. TITLE: The Determination in Principal of the Structure of the Isomorphous Group of Compounds [C(NH2)3 | M(H20)6 2, E04 2 Where M = Al or Cr and E = S or Se (Printsipial'naya rasshifrovka struktury izomorfnoy gruppy soyedineniy $[C(NH_2)_3][M(H_2O)_6]_2, [EO_4]_2, M = Al, Cr; E = B, Se)$ PERIODICAL: Kristallografiya, 1958, Vol 3, Nr 3, pp 368 - 371 (USSR). ABSTRACT: From packing considerations possible positions for the various structural groups in compounds of the GASH type are suggested: M(H2O)6 at (0,0,0), (1/3, 2/3, Z1) and $(2/3, 1/3, z_1)$; $C(NH_2)_3$ at $(0,0,z_2)$, (1/3, 2/3, 0) and (2/3, 1/3, 0); $E0_4$ at (1/3, 1/3, 1/4), (0, 2/3, 1/4), (2/3, 0, 1/4), (2/3, 2/3, 3/4), (0, 1/3, 3/4) and (1/3, 0, 3/4). Patterson projections P(x,y) and P(x,z) were calculated from Weissenberg photographs for the compounds with (Al, S) and (Al, Se). These largely confirm the suggested model. There are 3 figures and 3 tables and 3 References, 1 of which Card1/2

The Determination in Principal of the Structure of the Isomorphous Group of Compounds $[C(NH_2)_3][M(H_20)_6]_2$, $[E0_4]_2$ Where M = Al or Cr and E = S or Se and E = S or Se

is Soviet and 2 English.

Moskovskiy gosudarstvennyy universitet imeni M.V. Lomonosova (Moscow State University imeni M.V. Lomonosov) ASSOCIATION:

SUBMITTED: February 22, 1958

Card 2/2

AUTHORS: Zhdanov, G.S., Zhuravlev, N.N., Kuz'min, R.N. and

Soklakov, A.I.

TITIE: The Establishment by X-ray Crystallography of a New Compound BizRh in the System Bi-Rh (Rentgenograficheskoye ustanov-

leniye novogo soyedineniya BizRh v sisteme Bi-Rh)

PERIODICAL: Kristallografiya, 1958, Vol 3, Nr 3, pp 373 - 374 (USSR).

ABSTRACT: Bi₄Rh has been supposed to occur in three polymorphic modifications α, β and γ. Goniometric and X-ray observations have been made on β-Bi₄Rh. Its habit is identical with that of Bi₃Ni and its cell dimensions a=9.1, b=4.2, c=11.4 A are close to those of Bi₃Ni (a=8.875, b=4.115, c=11.477). Both have the space group Pnma = D_{2h} · d_{obs}. = 10.7 ± 0.2 gm/cm³. gives Z nearly equal to 3 if the formula Bi₄Rh is used. It seems clear that the formula should be Bi₃Rh giving z=4 and powder photographs also confirm this Cardl/2 resemblance to Bi₃Ni .

ursomarasiassa responsessimates with the six with the six with the responsibility with the six with the six

70-3-3-26/36 The Establishment by X-ray Crystallography of a New Compound Bi3Rh in the System Bi-Rh

There are 7 Soviet references.

ASSOCIATION:

Moskovskiy gosudarstvennyy universitet imeni M.V. Lomonosova (Moscow State University imeni M.V. Lomonosov)

SUBMITTED:

July 11, 1957

Card 2/2

78-3-3-36/47 AUTHORS: Zhdanov, G. S. , Zhuravlev, N. N. , Kuz'min, R. N. TITLE: An Investigation of the System Bi-Rh (Issledovaniye sistemy Bi-Rh) PERIODICAL: Zhurnal Neorganioheskoy Khimii, 1958, Vol. 3, Nr 3, pp. 750-754 (USSR) ABSTRACT: By X-ray analysis some compounds of bismuth and rhodium. especially BiARh and Bi2Rh were investigated. The crystals of β -Bi4Rh and α -Bi2Rh were investigated. The β -Bi4Rh--crystals are rhombic and have the following lattice constants: $a = 11.4 \pm 0.2 \text{ Å}$, $b = 9.0 \pm 0.2 \text{ Å}$, $c = 4.2 \pm 0.1 \text{ Å}$. The density of the crystals is $\sigma = 10.7 \pm 0.2$ g/cm². The compound α -Bi₂Rh crystallizes in the monoclinic system with periods a = 26,7 Å, b = 6,8 Å, c = 6,9 Å. The system CoSb was investigated at the same time and on the basis of X-ray analyses it was found that \alpha-Bi_Rh and CoSb_ are isomorphous compounds. The crystals &-BigRh can be classi-Card 1/2 fied with the structural type of markasite. During the melt-

78-3 -3-36/47

An Investigation of the System Bi-Rh

ing of antimony with cobalt, rhodium and iridium crystals of CoSb₂, RhSb₂ and IrSb₂ were determined. These crystals have a monoclinic structure. The unit cells of the compounds CoSb₂, RhSb₂ and IrSb₂ were calculated by the roentgengonometric method.

CoSb₂: a = 6.5 Å, b = 6.5 Å, c = 6.5 Å, $\beta = 118\pm1$, $\delta = 8.3 \text{ g/cm}^3$, Z=4 RhSb₂: a = 6.6 Å, b = 6.5 Å, c = 6.7 Å, $\beta = 117\pm1$, $\delta = 9.0 \text{ g/cm}^3$, Z=4

Irsb₂: a = 6,6 Å, b =6,5 Å, c=6,7 Å, β =116±1, σ =10,85g/cm³,Z=4 B₁₂Rh: a = 6,7 Å, b =6,8 Å, c=6,9 Å, β =117±2, σ =12 g/cm³,Z=4

A new group of isomorphous compounds CoSb, & RhSb, IrSb, and & Bi, Rh was produced. There are 5 figures, 1 table, and 12 references, 11 of which are Soviet.

ASSOCIATION: Moskovskiy gosudarstvenny universitet im. M. V. Lomonosova

(Moscow State University imeni M. V. Lomonosov)

SUBMITTED: June 25, 1957

Card 2/2

SOV/70-3-4-11/26 Venevtsev, Yu.N., Zhdanov, G.S., Solov'yev, B.P. and AUTHORS: Zubov, Yu.A. The Internal Fields in Certain Febro-electrics with TITIE: Structures of the Perovskite Type (Vnutrenniye polya v nekotorykh segnetoelektrikakh so strukturoy tipa perovskita) PERIODICAL: Kristallografiya, 1958, Vol 3, Nr 4, pp 473-479 (USSR) ABSTRACT: An analysis of the methods of calculating the internal field in ferro-electrics of the perovskite type is made. The internal fields and the spontaneous polarisation in the tetragonal modifications of BaTiO3 and PbTiO3 calculated and the influence of certain cation parameters on these quantities is estimated. The structure was assumed, as a first approximation, to be built up of point charges and point dipoles. Kozlovskiy's method (Zh.Tekh. Fiz., Vol 21, ur 11, p 1388, 1951) where the five different ions are attached to five separate sub-lattices

was used. In BaTiO₃ the Ba ion was taken as the origin but in the PbTiO₃ the Ti in view of the reported displacements (Shirane, Pepinsky and Danner, Acta Crystall, 1956, Vol 9, p 131). Published polarisabilities were used.

cardl/3

SOV/70-3-4-11/26 The Internal Fields in Certain Ferro-electrics with Structures of the Perovskite Type

As the effective ionic charges were not known, a coefficient of charging γ(0 ≤ γ ≤ 1), identical for all ions, was introduced. If for BaTiO₃ γ was taken as 1, then the calculated, spontaneous polarisation was twice the observed value. The value γ = 1/2 was therefore used for both BaTiO₃ and PbTiO₃. The spontaneous polarisation when calculated was then near to the observed value and the internal fields were found to be BaTiO₃: Ba, 0.04; Ti, 4.84; O₁, 3.66; O₁₁ and O₁₁₁, 0.55. PbTiO₃: Pb, 1.83; Ti, 8.62; O₁ = 7.02; O₁₁ and O₁₁₁, 2.23: in each case X 10⁸ V/cm. As the calculations were carried out with structure coefficients C_{1k} appropriate to a cubic structure, the approximation will be much better in the case of BaTiO₃ with c/a=1.01 than for PbTiO₃ with c/a=1.01 than for PbTiO₃

Card 2/3

The Internal Fields in Certain Ferro-electrics with Structures of the Perovskite Type

variations in certain of the parameters. For BaTiO 3 a was varied 4.2 and to 3.9 A; α (polarisability) of the Ti was doubled and halved; the charge distribution was tried as Ba+1/2 , Ti+2.5; the polarisability $\alpha_{\rm Ba}$ of the Ba ions was doubled and halved. Similar variations were made for PbTiO 3. The relative influences of the various contributory effects were then apparent. The effects on the spontaneous polarisation were also found. The results are compared with those of other authors. There are 3 tables and 33 references, 13 of which are Soviet, 15 English and 5 German.

ASSOCIATION:

Fiziko-khimicheskiy institut im. L. Ya. Karpova (Institute of Physical Chemistry imeni L. Ya. Karpov)

SUBMITTED:

July 18, 1957.

Card 3/3

国家 网络美国人民共享 1955年1955 (1955年1955年) 1955年(1955年) 1955年(1955年) 1955年(1955年) 1955年(1955年) 1955年(1955年) 1955年(1955年)

SOV/70-3-6-11/25

AUTHORS: Zhdanov, G.S., Zubov, V.G., Ivanov, A.T. and Firsova, M.M.

TITIE: On the Elastic Properties of Quartz Irradiated by Neutrons (Ob uprugikh svoystvakh kvartsa, obluchennogo neytronami)

PERIODICAL: Kristallografiya, 1958, Vol 3, Nr 6, pp 720-725 (USSR)

ABSTRACT: The elastic constants of quartz, irradiated in a reactor by fast neutrons, have been measured by the mthod of Bergmann and Schaeffer. After irradiation by

2.10¹⁹ neutrons/cm² increasing errors which lay in the limits of 0.9 to 1.7% for a relative decrease in the density of quartz of 0.18% were found in the experiment for measuring the elastic constants. Comparison with the temperature variation of the elastic constants showed that the temperature and radiation changes in the elastic constants corresponding to the same change in density were sharply distinguished. The results agree qualitatively with the work of Mayer and Gigon (J. Phys.Rad., 1957, Vol 18, p 109) on the elastic moduli of irradiated quartz. Measurements were made on blocks about 20 x 20 x 4 mm cut perpendicular to the crystallographic axes. Four series each of three plates were used, careful controls being kept. The frequencies used were 8-10 Mc/s. Wittels and Sherill (Phil.Mag., 1957, Vol 48, p 24) contrasted the

Card1/2

SOV/70-3-6-11/25 On the Elastic Properties of Quartz Irradiated by Neutrons

> changes in the elastic constants produced by thermal and radiation-produced expansion of the crystal lattice. Although qualitatively the anistropy is the same the actual values for it are quite different. This is shown experimentally. The structural meaning of the results obtained is not discussed. Acknowledgments to Academician I.K. Kikoin and V.L. Karpov. There are 4 tables. There are 11 references, 3 of which are Soviet, 8 English.

ASSOCIATION: Moskovskiy gosudarstvennyy universitet im.

M. V. Lomonosova (Moscow State University imeni M. V. Lomonosov) June 12, 1958

SUBMITTED:

Card 2/2

507/70-3-6-19/25

AUTHOR:

Venetsev, Yu.N. and Zhdanov, G.S.

TITLE:

Crystal-chemical Analysis of the Temperature Phase Transitions in Ferro- and Antiferro-electrics with Structures of the Perovskite Type (Kristallokhimicheskiy analiz temperaturnykh fazovykh perekhodov v segneto-i analiz temperaturnykh so strukturov tipa perovskita)

PERIODICAL: Kristallografiya, 1958, Vol 3, Nr 6, pp 751-752 (USSR)

ABSTRACT: It is known that the phase transitions undergone by BaTiO₂ and PbTiO₃ on cooling follow different sequences

(cubic-tetragonal-monoclinic-pseudorhombohedral and (cubic-rhombohedral-monoclinic, respectively). Perovskites cubic-rhombohedral-monoclinic, respectively). Perovskites can be crystallo-chemically characterised by the values of the tolerance factors t relating to their packings. In BaTiO₂ t is greater than 1 and Ti is the

ferro-electric ion. In PbZrO₃ t is less than 1 and the ferro-electric one. The co-ordinations and Pb ion is the ferro-electric one. The co-ordinations and situations of the two types of ion are quite different and therefore so are the displacements which the structure can undergo on cooling. Earlier observations on this point undergo on cooling is recalled. In it the sequence by the present authors is recalled. In it the sequence

Card1/2

SOV/70-3-6-19/25

Crystal-chemical Analysis of the Temperature Phase Transitions in Ferro- and Antiferro-electrics with Structures of the Perovskite Type

of deformations was discussed as a function of t (Kristallografiya, 1957, Vol 2, p 233). There 11 references, 7 of which are Soviet, 3 English

and 1 French. ASSOCIATION:

Fiziko-khimicheskiy institut im. L.Ya. Karpova (L.Ya. Karpov Physico-chemical Institute)

July 18, 1957 SUBMITTED:

Card 2/2

CIA-RDP86-00513R002064620006-5" APPROVED FOR RELEASE: 07/19/2001

医水面引动变感 李红星到达沙里道湖北多河。 化自然位形试验 法动机 打经 海州 医膝手段引引 [18] 14 [18] 14 [18] 14 [18] 15 [18]

507/78-3-11-19/23

AUTHORS':

Epel'baum, V. A., Sevast'yanov, N. G., Gurevich, M. A.,

Ormont, B. F., Zhdanov, G. S.

TITLE:

IL. On the Phases Formed in the System Chromium-Boron (II. O

fazakh, obrazuyushohikhsya v sisteme khrom-bor)

PERIODICAL:

Zhurnal neorganicheskoy khimii, 1958, Vol 3, Nr 11, pp 2545-2552

(USSR)

ABSTRACT:

The compounds formed in the system chromium-boron are investigated. The investigations were carried out by means of chemical, radiographic, and metallographic methods in the region of the phase diagram of the system chromium-boron and in the range CrB_{0,35}-CrB₃. Purest boron (99,6%) produced by the thermal dis-

sociation of diboranes served as initial components for the production of the chromium-boron phases. The results of the chemical and radiographic analyses of the samples were obtained by heating at 1150°C in vacuum and then at 1300°C in an argon atmosphere for 36 hours. The results are given in table 2. It was found that the y-phase occurs with a rhombic lattice in the sample with a boron content of CrB_{0,35}-CrB_{0,58}. In the samples

Card 1/3

edeliti i 1714 iliki isi desiderilik rikekwamendikeni dan badikatini dikilidi dibili demendiketankek

507/78-3-11-19/23

II. On the Phases Formed in the System Chromium-Boron

with a boron content of CrBO,41-CrBO,51 only the f-phase exists. In the samples with a boron content of CrB0,55-CrB1,05 the δ-phase (Cr₅B₃-phase) is formed. In the samples with a boron content of $CrB_{0,59}$ - $CrB_{0,63}$ only the δ -phase is formed. In the samples with a boron content of CrB 0,68-CrB 1,50 the f-phase occurs (CrB with rhombic lattice). In the samples of the composition CrB_{0,96}-CrB_{1,13} no other phases were found besides the £-phase. In the sample with a boron content of CrB1.20 CrB 1:90 a 5-phase with rhombic lattice is formed. In the sample of the composition CrB 150-CrB 1,65 no other phases were found to exist besides the 5-phase. In the samples with CrB 1.70 and CrB 1.90 only the n-phase is formed. There are 2 figures, 5 tables, and 27 references, 1 of which is

Card 2/3

SOV/48-22-12-17/33 Venevtsev, Yu. N., Zhdanov, G. S., 24(2),24(3) Effect of Various Factors Upon the Curie Temperature of Soloviyev, S. P. AUTHORS: Piezoelectrics With the Structure of the Perovskite Type (Vlivaniye razlichnykh faktorov na temperaturu Kyuri segnetoelektrikov so strukturoy tipa perovskita) TITLE: Izvestiya Akademii nauk SSSR. Seriya fizicheskaya, 1958, Vol 22, Nr 12, pp 1476-1482 (USSR) The question concerning the Curie (Kyuri) Tk temperature of PERIODICAL: piezoelectrics having a perovskite structure, was already investigated earlier (Refs 1-7 and 8-11). The analysis of these papers shows that there is no uniform opinion on this problem. ABSTRACT: The conclusions drawn from references 1-7 are based on the assumption that in the investigated piezo- and antipiezoelectrics the cations of the B-type are piezoactive. Actually, in some piezoelectrics the B-cations and in others the A-cations are piezoactive (Refs 8, 9, 13). As it was already stated (Ref 10), the results given in references 1-7 must be subjected to further examinations, because of the reason mentioned above. The classification of the piezo- and anti-piezoelectrics with perovskite structure depending on the Card 1/3

Effect of Various Factors Upon the Curie Temperature SOV/48-22-12-17/33 of Piezoelectrics With the Structure of the Perovskite Type

type of the piezoactive cation, as proposed in references 8, 9, 13 promotes the solution of the problem discussed. Therefore, they have been investigated again in this paper. It was attempted to explain the differences of the Curie temperature in piezoelectrics with perovskite structure in the same way, by using only such characteristics as polarizability, charges and radii. The degree of covalence of the bindings in the respective compounds was neglected. The authors started from an approximate theoretical estimation. They used the results from references 15, 16, determined in the investigation of the effect of various parameters of cations upon the internal field of piezoelectrics with perovskite structure. The conclusions drawn on the basis of theoretical estimations agree with the few experimental results obtained by the authors of this article and Sawaguchi (Ref 7). As soon as new experimental data will be obtained it will be possible to check also the theoretical results still improved.

Card 2/3

Effect of Various Factors Upon the Curie Temperature of Piezoelectrics With the Structure of the Perovskite Type 807/48-22-12-17/33

There are 2 tables and 26 references, 12 of which are Soviet.

ASSOCIATION: Fiziko-khimicheskiy institut im. L. Ya. Karpova (Physico-Chemical Institute imeni L. Ya. Karpova

Card 3/3

VIAS	HNKO, V.I.; ZHDANOV, G.S.			
	Using calculating machines 10 no.5:634-636 158.		Zav. lab. 24 (MIRA 11:6)	
	l. Fiziko-khimicheskiy instit (Radiography) (Mectronic o	out im, L.Ya. Karpova. calculating machines)		

rossolert esa esta dalle de de la delle di de la delle de la colte ela deste elegación de la deste esta esta elegación de la deste esta esta elegación de la deste elegación de la della della

AUTHORS:

Zhdanov, G. S., Kefeli, L. M.

76-32-3-26/43

TITLE:

An Investigation of the Texture of Copper Obtained in the

Leaching of CuAl 2 by the Method of Pole Figures

(Issledovaniye tekstury medi pri vyshchelachivanii CuAl2

metodom polyusnykh figur)

PERIODICAL:

Zhurnal Fizicheskoy Khimii, 1958, Vol 32, Nr 3,

pr 666 - 669 (USSR)

ABSTRACT:

It was noticed that copper in a polycrystalline, dispersed form remains behind in the leaching out of aluminium from alloys. Radiographic investigations showed condensed spots which indicate a certain orientation of the copper crystals, The method mentioned in the title was employed for the investigation of the crystal orientation, because it is convenient and objective. A schematically drawn representation of the arrangement in the method of investigation according to the pole figures is given. From the data of the method of investigation, follows that the crystal sample was leached for 1-10 minutes with a 20% lye at 40-50°C. For obtaining

Card 1/2

76-32-3-26/43

An Investigation of the Texture of Copper Obtained in the Leaching of CuAl 2 by the method of Pole Figures

the polar points a series of X-ray photographs was taken, where the sample was turned in a circle by 10° (around the 001 axis). From the considerations, it follows that in leaching out the monocrystal CuAl₂, on the one hand, the formation of polycrystalline CuAl₂ takes place, and on the other hand that of copper, where the two crystals form a texture. The texture of copper is characterized by the following data: CuAl₂/001/, /100/, /010/; Cu /011/, ~/111/. Which are Soviet.

SUBMITTED:

December 11, 1956

Card 2/2

56-34-4-5/60

AUTHORS:

Zhuravlev, N. N., Mingazin, T. A., Zhdanov, G. S.

TITLE:

The Structure of Superconductors. XII (Struktura sverkhprovodnikov. XII) The Investigation of Bismuth - Rubidium Alloys

(Issledovaniye splavov vismuta s rubidiyen)

PERIODICAL:

Zhurnal eksperimental noy i teoreticheskoy fiziki, 1958,

Vol. 34, Nr 4, pp. 820 - 826 (USSR)

ABSTRACT:

According to thermal, microscopical, and radiographic data the test diagram (probnaya diagramma) of the fusibility of the system Bi-Rb is constructed. The investigation of this system is connected with the solution of various methodical problems. The main difficulties mainly are connected with the high chemical activity of metallic rubidium and also with the great difference of the physical-chemical properties of bismuth and rubidium. The whole investigation was performed at small quantities (~3g) of rubidium which required the working out of micromethods for the production of the alloys and their physical-chemical analysis. First the production

Card 1/4

The Structure of Superconductors, XII. The Investi- 56-34-4-5/60 gation of Bismuth-Rubidium Alloys

of the alloys is discussed, the apparatus used for this are discussed by means of figures. The melting was performed in small resistance furnaces. Then the authors report on the thermal analysis of the alloys. The curves of heating and cooling were taken by an automatic electron potentiometer unto a temperature of 50 - 100°C. The results of the thermal analysis obtained are illustrated in a diagram and subsequently discusced. At the bismuth-rich alloys (to the composition BigRb) also a metallographical investigation was performed. According to this the number of the crystals of the compound Bi2Rb increases with increasing rubidium content in the alloy. The alloy with 15,8 per cent by weight rubidium according to its composition resembles the compound Bi,Rb (17 per cent by weight;) it contains a small quantity of eutexic and is almost homogeneous. In the system Bi-Rb the various phases differ by their color. Then the authors report on the determination of the structure of the superconductive compound BigRb. By

Card 2/4

The Structure of Superconductors. XII. The Investi- 56-34-4-5/60 gation of Bismuth-Rubidium Alloys

exact determination of the lattice period of Bi_Rb the value a = 9,590 ± 0,002 kX was obtained. The distances between the lattice planes, computed from these data agree well with the measured results. The Rb atoms in the structure of the Bi_Rb are distributed according to the diamond law. Some conclusions are: In the system bismuth-rubidium 4 compounds were stated: Bi_Rb, BiRb_3, and two compounds of the probable composition

Bi_Rb_3 and BiRb_2. The maxima in the fusibility diagram correspond to the compounds Bi_Rb and BiRb_3. These compounds form in the fusion of the components with high heat emission. The two other compounds form according to the peritectic reaction. The superconductive compound Bi_Rb crystallizes in isometric syngony with a = 9,590 ± 0,002 kX and has a structure of the type of Cu_Ms. The increase of the minimum interatomic distances in the Bi_Rb leads to an increase of the temperature of the transition into the superconductive state. Finally the author

Card 3/4

The Structure of Superconductors. XII. The Investi- 56-34-4-5/60 gation of Bismuth-Rubidium Alloys

thanks Professor N. Ye. Alekseyevskiy for his valuable advice in the performance of this work, and R. N. Kuzimin for his assistance in the performance of the experiments.— There are 6 figures and 10 references, 9 of which are Soviet.

ASSOCIATION: Moskovskiy gosudarstvennyy universitet (Moscow State University)

SUBMITTED: November 15, 1957

1. Bismuth alloys--Analysis 2. Superconductors--Structural analysis

Card 4/4

AUTHORS:

Gol'der, G. A., Zhdanov, G. S.

20-118-6-23/43

RANGER LER OF FIRM IN THE RESULT IN THE STATE WHEN THE TRANSPORT OF THE STATE OF TH

TITLE:

A Radiographic Structural Examination of Naphthazarine

(Rentgenostrukturnoye issledovaniye naftazarina)

PERIODICAL:

Doklady Akademii Nauk SSSR, 1958, Vol. 118, Nr 6,

pp. 1131-1133 (USSR).

ABSTRACT:

Naphthazarine is widely spread amongst the hydroxy ketone dyes, the naphthoquinone-derivates (5,8-dioxy-1,4 naphthaquinone). The authors give a survey on the literature of the radiographic investigation (reference 1), as well as of the investigation of magnetic anisotropy (reference 2). There exist 2 modifications of naphthazarine: 1) dark-green pins, 2) dark-red prisms; the authors obtained a third modification by crystallization in ben-zene, viz. 3) light-red platelets. Their radiographic data are given in table 1. If and when all 3 modifications precipitate from the solution, well-facetted crystals of the 3rd modification occur most frequently. The modifications 1) and 2) were formed by sublimation. The belonging of the crystals of the 1st modification to the spatial group $C_{2h}^{2} = P_{2h}^{2}/c$ and the presence of 2 molecules

Card 1/4

A Radiographic Structural Examination of Naphthazarine

20-118-6-23/43

in the elementary mesh conform the assumption (reference 1) that a center of symmetry exists in the molecule of the crystals of the 1st modification. The introduction of an inner hydrogen compound 0 . . . H-O in the conjugated bond-system must have caused an essential change of the m-electronic interaction in the whole molecule. This must, in return, lead to a redistribution of the electronic density in the molecule. A complete radiographic analysis of the crystals of this modification was interesting therefore. The lengths of the bonds between the atoms in the molecule were computed (II) from the atomic coordinates computed from P (Okl)(table 2). The computations of the distances between the atoms were carried out under the assumption that the molecule of the surface yz lies parallel. The angle formed by the bond-line C₉ - C_{lo} with the y-axis of the mesh, is 50°. The smallest distance between the carbon- and oxygen-atoms in various molecules is 3, lo A. The results of the radiographic structural analysis confirm the presence of a center of symmetry in the 1st modification of naphtha-zarine. As mentioned above, all 3 modifications precipitate simultaneously with the crystallization of the solution: 2 centrosymmetrical ones (A), and a none-centro-symmetrical one (B). The

Card 2/4

A Radiographic Structural Examination of Naphthazarine 20-118-6-23/43

recrystallization of each of these modifications leads in return to the formation of all these 3 modifications, though one of them prevails largely. It may thus be presumed that the transition of an isomer of an A-structure into an isomer of a B-structure (and viceversa) takes place. This transition is explained with scheme III and was presumed in reference 4. The orientation in space of the molecule in the yz.surface achieved by the authors, is very similar to that for the centro-symmetrical modification 2) given in reference 3. A three-dimensional synthesis is required for determining the 3rd coordinate x and for defining precisely the obtained results.

There are 1 figure, 2 tables, and 4 references, 1 of which is Slavic.

ASSOCIATION:

Physico-Chemical Institute imeni L. Ya. Karpov (Fiziko-khimicheskiy institut im. L. Ya. Karpova)

PRESENTED:

November 20, 1957, by N. V. Belov, Academician.

SUBMITTED:

August 16, 1957.

Card 3/4

CIA-RDP86-00513R002064620006-5 "APPROVED FOR RELEASE: 07/19/2001

20-119-1-23/52

AUTHORS:

Dokunikhin, N. S., Gol'der, G. A., Zhdanov, G. S.

TITLE:

The Radiographic Investigation of 1,4-di-Anilido-Anthraquinone and 1,4-Dimesido-Anthraquinone (Rentgenograficheskoye issledovaniye 1,4-dianilidoantrakhinona i 1,4-dimezido-

antrakhinona)

PERIODICAL: Doklady Akademii Nauk SSSR, 1958, Vol. 119, Nr 1, Pp. 87 - 89 (USSR)

ABSTRACT:

Sulfo acids of 1,4-di-(arylamino)-anthraquinone form an important group of solid dyes for wool. The majority of the 1,4-di-(arylamino)-substitutes of anthraquinone are green. An exception is made by the derivatives in which all hydrogen atoms, in an ortho-position, of the aryl-residues are substituted. Such compounds as well as the corresponding alkylamino-and hydro-aryl-amino-derivatives have an intensive bright-blue color. In the presence of methyl-ethyl-groups or of bromine atoms in all ortho-positions of the phenyl residues or in the position of 2,3-anthraquinone respectively

Card 1/6

20-119-1-23/52

The Radiographic Investigation of 1,4-di-Anilido-Anthraquinone and 1,4-Dimesido-Anthraquinone

the absorption in the short-wave range of light is absent and the chief maximum is displaced in the direction of the short waves, when the light absorption is measured by CCl4-solutions of 1,4-di-(arylamino)-anthraquinone in the visible and in the ultraviolet range of the spectrum (Reference 1). The appearance of an additional principal band and the deepening of the principal band in the absence of spatial disturbances might logically be considered a consequence of the coplanarity of the molecule. This is also indicated by the comparison of the absorption frequencies in the infrared spectral region (Reference 2). These data indicate the weakening of the inner-molecular hydrogen bond of the carbonyl-oxygen with the hydrogen of the amino groups in the presence of spatial obstacles of a coplanar orientation of the benzene nuclei. This bond is weakened by the increased distance due to the leaving of the plane of the anthraquinone-

Card 2/6

20-119-1-23/52

The Radiographic Investigation of 1,4-di-Anilido-Anthraquinone and 1,4-Dimesido-Anthraquinone

cycles by hydrogen and is caused by the disturbance of the conjugation -system (Reference 3). It would be desirable to find a direct proof of the flat structure of the molecules of 1,4-di-(arylamino)-anthraquinone in the absence of spatial difficulties. For the purpose of deciding the problem of coplanarity of the benzene nuclei with the plane of the basic part of the molecule, crystals of both compounds mentioned in the title were radiographically measured. The results are given in table 1. From the dimensions of the elementary cell of the first compound can be assumed that the basic part of the molecule is here entirely or almost parallel with the ac-plane, as axis b is the shortest one (8,73 Å). From the conditions of symmetry of the spatial

Card 3/6

 $c_{2h}^5 - P2_1/c$

20-119-1-23/52

The Radiographic Investigation of 1,4-di-Anilido-Anthraquinone and 1,4-Dimesido-Anthraquinone

follows that a slip plane with a displacement along axis cruns vertical to axis b. Thereby the 4 molecules occurring in the unit cell are orientated in layers which are perpendicular to axis b. A variant of this orientation is shown by figure 1. It admits a slight turn of the benzene nucleus in relation to the other part of the molecule as well as a certain possible turn of the entire molecule in relation to the plane ac. Thus the packing of the molecules in the crystal does not require an additional change of the angle of rotation of the benzene nucleus as compared to the free molecule. The shortest axis in the crystal of the second compound is the a-axis (7,98 Å). Its lenght corresponds to the dimensions of the benzene nucleus an to the CH₂-groups connected with it (8,8 Å). A solid packing of molecules in the crystal and the fulfilment of the conditions of symmetry of the spatial group for molecules of the second compound

Card 4/6

20-119-1-23/52

The Radiographic Investigation of 1,4-di-Anilido-Anthraquinone and 1,4-Dimesido-Anthraquinone

of the methyl groups to all meta-positions of the benzene nucleus creates so great spatial difficulties that the coming out with the anthraquinone cycles from the coplanarity amounts to almost 90°. Thereby the inner-molecular linkage is considerably weakened. There are 2 figures, 1 table, and 5 references, all of which are Soviet.

ASSOCIATION: Nauchno-issledovatel'skiy institut organicheskikh poluproduktov i krasiteley im. K. Ye. Voroshilova (Scientific Research Institute of Organic Semiproducts and Dyes imeni K. Ye. Voroshilov). Nauchno-issledovatel'skiy fizikokhimicheskiy institut im. L. Ya. Karpova (Scientific Physical-Chemical Research Institute in Institu

PRESENTED: Sical-Chemical Research Institute imeni L. Ya. Karpov)
Sciences. USSR

Sical-Chemical Research Institute imeni L. Ya. Karpov)
Sciences. USSR

SUBMITTED: August 16, 1957

Card 6/6

Position, Tynasay istuminate and within the least bunders. Extern Tynical and the control of the	2	.HC	AN	ر۷٥	G. 5	5,				#:3 F21#4	1818 1231	HIIIB	385111161	IN CHEE			1831	THE BE	Liste I	BISH]	sile #3
Moscow Mo		Withislitel' mays telmins (Computer Techniques) Moscow, Mashgir, 1959. 350 p. (Series: No. 2) 2,000 com. Trainist telminteshops uchilishche.	Md.: 3.V. Animinor, Candidate of Pechnical Sciences; Fech. Eds.: Machine Building and A.P. Dvarves; Managing Ed. for Literature on Maghner.	FURNOR: This book may be useful to Aptrants and other students end emphasizing in computer technology, and also to designer and computers.	ment Bauman) in honor of the 40th anniver- Bavolution. The articles contain the rest experimental studies on the performance of	of electronic computers. Among the topin: Forage, control devices, the connection is an algorithm and a machine, etc. The 4 moments to the control of technological	to discussed. "daistor, h.V., Cast. Tech. Sel/ and late of Technical Sciences. Analysis of the Quantity Discrete Element	Dobrov, Te.T., Engineer. The Effect of Block Diegram Parameters on the Territhmines Quality of a Tabeless Direct Current Operations, "6 Amplifier	<u>.</u>	"Made, fundidate of Fryston! and Mathematical Solonous, setion Detween the Parameters of an Algorithm and of a	B.V., Condidite of Probateal Sciences, V.H. Colubida, A.C. Technical Sciences and A.T., 1884-1791. Engineer or the Control of Ascording of Information on Augusts Exp.	Vasil'yry, O.F., Enginer. Analysis of Certain Relationships for an Sconcaios, Selection of the Dimensions of a Nagnatic Drum.	Anistmov, B.V., Candidate of Technical Sciences, and Di. V. Winggradov, Engineer. On the Problem of the Exattmen of the Hs. Speechtaiton of Continuously Varying Values in a Ruserical Code. 86	4	Harkov, O.Ve., Enginesr, Certain Considerations on the Preventive Control of Electronic Computers	8		the Rational	hnical Sciences. Circuit			

经延存资本基础 "接受的,我们们还不要'我是自我现象目的现在分词,但我在经验经验的建筑。""们我们是否实现的自然和的时间,我们们的特殊的时间,但我们们有"有效不是行"的"有效不动"。 68047 24,77*00* 4 (3), 10 (6) 80V/55-59-3-15/32 G. S., Zhuravlev, N. N. AUTHORS: Zhdanov, TITLE: The Problem of the Superconductivit; With Alkali Metals Vestnik Moskovskogo universiteta. Seriya matematiki, mekhaniki, astronomii, fiziki, khimil, 1959, Nr 3, pp 113 - 115 (USSR) PERIODICAL: ABSTRACT: By analysis of the critical temperature of bismuth-alkali compounds a linear dependence between the critical temperature To of the compound and the atomic radius of the alkali metal was found. This linear dependence does not hold for the LiBi compound; it possibly holds for the compounds with alkaline earth metals. A comparison between To and the atomic radius is quite permitted for the isomorphic compounds KBi, RbBi, CsBi, but less for NaBi, which has a different type of lattice. With an increase in the critical temperature To the minimum interatomic spacings in the transition from KBi, to CsBi, increase, the dependence between the minimum distance and T_c being linear. By means of a relationship between dH_k/dT and γ (the coefficients Card 1/2

68048

The Crystal Chemistry of Superconductive Bismuth Compounds

of To. Bismuth compounds with transition metals show the reverse effect. The minimum interatomic spacings bismuth-bismuth vary within a wide range in the case of the various bismuth compounds. Bismuth compounds with small and also with large bismuth-bismuth spacings are not superconductive, but all compounds in which bismuth-bismuth spacings are within the "optimum" interval (3.1 to 3.8 A) are superconductive. The superconductive modification of bismuth probably has a facecentered elementary cell. A large table shows the atomic-crystalline structural properties of bismuth compounds with nonsuperconductive elements. The experiments made by N. B. Brandt (Ref 56) are indicative of a decrease of the anisotropy of the crystal structure of ordinary bismuth in the case of compression. There are 3 figures, 4 tables, and 56 references, 40 of

ASSOCIATION:

Kafedra fiziki gverdogo tela (Chair for Solid-state Physics)

SUBMITTED:

February 27, 1959

Card 3/3

Yezhkova, Z.I., Zhdanov, G.S. and Umanskiy, M.M. The Thermal Expansion of Crystals of Triglycinesulphate AUTHORS: in the Region of Their Ferro-electric Transition TITLE: (Termicheskoye rasshireniye kristalla triglitsinsul'fata v oblasti segnetoelektricheskogo perekhoda) PERIODICAL: Kristallografiya, 1959, Vol 4, Nr 2, pp 249-253 (USSR) $(CH_2NH_2COOH)_3H_2SO_4$ is monoclinic with a = 9.15, b = 12.69, c = 5.73 \pm 0.03 Å, β = 105°40' \pm 20' with space group P2₁ below the Curie point at 47° and ABSTRACT: P_{1}^{2} above. Z = 2 d_{obs} = 1.69 and the ferro-electric axis is [010] (according to Wood and Holden - Ref 6). Here, the thermal expansion of single crystals has been measured from X-ray single-crystal oscillation photographs. The most accurate values were obtained from dg00 (FeKa) with $\Theta \sim 81^{\circ}$, $d_{007}(Cu K_{\alpha})$ with $e \sim 78^{\circ}$, $d_{505}(Ni K_{\alpha})$ with $\theta \sim 81^{\circ}$ and $d_{0,14,0}(Co K_{\alpha})$ with 0~83°. Absorption corrections (for the 0.4 mm dia Card1/3

soy70-4-2-24/36

The Thermal Expansion of Crystals of Triglycinesulphate in the Region of Their Ferro-electric Transition

crystal were not applied. The accuracy was estimated at ± 0.0015 kK. β was calculated. The components of the thermal expansion tensor (principal components) were calculated as follows, where φ is the angle of α_{11} to the a axis of the crystal. At 25 °C $\alpha_{11} = -37$, $\alpha_{22} = 5$, $\alpha_{33} = 142$ (in each case $\deg^{-1} \times 10^{-6}$) and $\varphi = 22^{\circ}$. At 42.5 $\alpha_{11} = -20$, $\alpha_{22} = 36.5$, $\alpha_{33} = 119$ and $\varphi = 7^{\circ}20^{\circ}$. Between 51 and 75° $\alpha_{11} = 40$, $\alpha_{22} = 64$, $\alpha_{33} = -12^{\circ}5$ and $\varphi = 5^{\circ}40^{\circ}$. The cell volume changes smoothly over the whole temperature range. It is concluded that the phase transition is of the second order and that a marked redistribution of the hydrogen bonds parallel to the ac plane occurs at the ferro-electric transition. There are 4 figures, 3 tables and 7 references, 2 of which are Soviet, 4 English and 1 international.

Card2/3

The Thermal Expansion of Crystals of Triglycinesulphate in the Region of Their Ferro-electric Transition

W: Moskovskiy gosudarstvennyy universitet imeni M.V. Lomonosova (Moscow State University imeni ASSOCIATION:

M.V. Lomonosov)

SUBMITTED: October 13, 1958

Card 3/3

CIA-RDP86-00513R002064620006-5" APPROVED FOR RELEASE: 07/19/2001

Venevtsev, Yu.N., Zhdanov, G.S., Solov, yev, S.P. and AUTHORS: Ivanova, V.V. On Internal Fields in Perroelectric PbTiO3 (O vnutrennikh TITLE: polyakh v segnetoelektrike PbTiO, PERIODICAL: Kristallografiya, 1959, Vol 4, Nr 2, pp 255-257 (USSR) Calculations of the internal fields in PbTiO3 crystals ABSTRACT: have been made by the Madelung-Hagedorn method (R. Hagedorn - Ref 3) which is more accurate than Kozlovskiy's method used before, according to the work of Yu.N. Venevtsev et al (Ref 1). These fields E are Pb 1.4, Ti 6.9, o_1 6.1 and o_{11} , o_{111} 1.8 x 10⁸ $\sqrt[7]{cm}$. The contributions of the separate ions to the spontaneous polarisation of 81 x 10⁻⁶ coulomb/cm² are tabulated. The internal fields for model crystals of the PbTiO₃ type but with ions of different polarisability are similarly calculated. For BaTiO3 the calculations by both methods

Card1/2

SOV/70-4-2-26/36 On Internal Fields in Ferroelectric PbTiO3 are in good quantitative agreement. Graphical examination of the parameters affecting the internal fields show their relative importance. In order they are: 1) lattice period; 2) charge on the ferroelectric cation; polarisability of the ions of the oxygen octahedra; polarisability of the ferroelectric cation; 5) polarisability of the non-ferroelectric cation. There are 1 figure, 2 tables and 5 references, 4 of which are Soviet and 1 Gorman. ASSOCIATION: Fiziko-khimicheskiy institut im. L.Ya. Karpova (Physical-Chemical Institute im. L. Ya. Karpov) SUBMITTED: November 14, 1958 Card 2/2

sov/70-4-4-17/34 S.P. and Zhdanov, G.S. Venevtsev, Yu.N., Solov'yev, On the Structural Coefficients of the Internal Field in AUTHORS: Ferroelectrics of the Perovskite Type Kristallografiya, 1959, Vol 4, Nr 4, pp 575-578 (USSR) TITLE: The notation is carried over from an article by the same authors (Ref 1). The values of the projection of the PERIODICAL: for different ABSTRACT: structural coefficients S₁(x,y,z) = C_{1k} orientations (cube edges, face or body diagonals) of the dipoles in a cubic perovskite-type cell are tabulated in terms of P and Q . (P = -15.04102 and Q = 4.33387). The coefficients Cik equal to the field strength, additional to the Lorentz field, due to the sub-lattice of unit dipoles of the k-th sort of ion and acting on the i-th sort of ion. The derivation of expressions such as: $s_2(0, 1/2, 1/2) = s_3(0, 1/2, 1/2) = 0/\sqrt{3}$ and Card1/2

On the Structural Coefficients of the Internal Field in Ferro-

 $S_2(1/2, 0, 0) = S_3(1/2, 0, 0) = P/\sqrt{3}$

is given but all the other values are tabulated.

There are 1 table and 1 Soviet reference.

ASSOCIATION:

Fiziko-khimicheskiy institut im. L.Ya. Karpova

Physico-chemical Institute imeni L. Ya, Karpov)

SUBMITTED:

June 23, 1958

Card 2/2

LIVE N 24.7000 75994 SOV/70-4-5-16/36 AUTHORS: Yezhkova, Z. I., Zhdanov, G. S., Umanskiy, M. M. TITLE: An X-Ray Diffraction Method for the Determination of the Thermal Expansion Tensors of the Crystals of Low Symmetry PERIODICAL: Kristallografiya, 1959, Vol 4, Nr 5, pp 723-726 (USSR) ABSTRACT: If the principal expansion directions, that determine the diagonal tensor a 11, are the orthogonal coordinate axes X', Y', Z', the thermal-expansion coefficient in 1 direction is described by $\Delta_i = \alpha_{11}c_{11}^2 + \alpha_{22}c_{21}^2 + \alpha_{33}c_{31}^2$ (3) where c₁₁, c₂₁, c₃₁ are direction cosines of 1. In cubic, tetragonal, hexagonal, rhombohedral and orthorhombic crystals, the expansion coefficients along one, two, or three crystallographic axes suffice to Card 1/6 determine the tensor. In monoclinic crystals only

An X-Ray Diffraction Method for the Determina- 75994 tion of the Thermal Expansion Tensors of the SOV/70 Crystals of Low Symmetry

X axis is described by

75994 SOV/70-4-5-16/36

Colo Coincides with one of the expansion tensor components, and in triclinic crystals, none. Consequently, the determination of the thermal expansion tensor in monoclinic crystals requires the data on the expansion of interplanar spacings of 4 different hkl, more conveniently of dolo and of three spacings of dhkl type, and in triclinic crystals of 6 different spacings, more conveniently of dolo, do

 $\Delta_{\varphi} = a_{11} \cos^2 \varphi + a_{32} \sin^2 \varphi + 2a_{13} \cos \varphi \cdot \sin \varphi. \quad (2a)$

Card 2/6

Here, the values are determined by the following three

An X-Ray Diffraction Method for the Determina- 75994 tion of the Thermal Expansion Tensors of the SOV/70-4-5-16/36 Crystals of Low Symmetry

equations:

$$2\alpha_{11} = a_{11} + a_{33} + \frac{11}{\cos 2\psi}; 2\alpha_{33} = a_{11} + a_{33} - \frac{11}{\cos 2\psi}$$

$$\tan 2\varphi = 2\alpha_{13}: (a_{11} - a_{33})$$

where ψ is the angle between α_{11} and X-axis. The orthogonal coordinate axes X,Y,Z for triclinic crystals must be chosen as follows: X coincides with the reciprocal-lattice axis a*, Y is in the a*b* plane, and Z is normal to that plane and coincides with c-axis. Referred to this set of coordinates, the thermal-expansion tensor is described by the expression:

$$a_{ik} = \begin{vmatrix} a_{11} & a_{13} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{vmatrix} . \tag{1}$$

Card 3/6

An X-Ray Diffraction Method for the Determina- 75994 tion of the Thermal Expansion Tensors of the SOV/70-4-5-16/36 Crystals of Low Symmetry

the 6 subscripts in which are determined by the thermal expansions of the mentioned 6 interplanar spacings as follows: $\Delta_{100} = \alpha_{11},$ $\Delta_{100} = \alpha_{11} \cos^2 \gamma^2 + a_{11} \sin^2 \gamma^2 + 2a_{12} \cos \gamma^2 \sin \gamma^2,$ $\Delta_{110} = a_{11} \cos^2 (a^2 H_{110}) + a_{22} \sin^2 (a^2 H_{110}) + 2a_{12} \sin (a^2 H_{110}) \cos (a^2 H_{110}),$ $\Delta_{001} = a_{11} \cos^2 (a^2 H_{110}) + a_{22} \sin^2 (a^2 H_{110}) + 2a_{12} \cos \beta^2 \cos (b^2 Y) + a_{13} \cos^2 (c Y) \sin (c^2 C),$ $\Delta_{101} = a_{11} \cos^3 (a^2 H_{101}) + a_{22} \cos^2 (H_{101} Y) + a_{33} \cos^2 (H_{101} C) + 2a_{12} \cos (a^2 H_{101} C),$ $\Delta_{101} = a_{11} \cos^3 (a^2 H_{101}) \cos (H_{101} Y) + 2a_{13} \cos (H_{101} C),$ $\Delta_{101} = a_{11} \cos^3 (a^2 H_{101}) \cos (H_{101} Y) \cos (H_{101} C),$ $\Delta_{101} = a_{11} \cos^3 (a^2 H_{101}) \cos (H_{101} Y) \cos (H_{101} C),$ (5)

$$\begin{split} \Delta_{011} &= a_{11} \cos^2{(H_{011}a^*)} + a_{22} \cos^2{(H_{011}Y)} + a_{33} \cos^2{(H_{011}c)} + \\ &+ 2a_{12} \cos{(H_{011}a^*)} \cos{(H_{011}Y)} + 2a_{13} \cos{(H_{011}a^*)} \cos{(H_{011}c)} + \\ &+ 2a_{23} \cos{(H_{011}Y)} \cos{(H_{011}c)}. \end{split}$$

Card 4/6

An X-Ray Diffraction Method for the Determination of the Thermal Expansion Tensors of the Crystals of Low Symmetry

75994 SOV/70-4-5-16/36

 $H_{\rm hkl}$ means reciprocal-lattice vector; $C_{\rm i}*, \beta*, \gamma*$ and other angles can be expressed in terms of the crystallographic interaxial angles according to known equations. The transformation of the found tensor $a_{\rm ik}$ into the diagonal tensor $a_{\rm ik}$, i.e. reference of the tensor to the set of X',Y',Z' axes, is achieved using

$$D(\alpha) = -\alpha^{3} + S_{1}\alpha^{2} - S_{2}\alpha + S_{3},$$

$$S_{1} = a_{11} + a_{22} + a_{33},$$

$$S_{2} = \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{13} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{vmatrix},$$

$$S_{3} = \begin{vmatrix} a_{11} & a_{12} & a_{12} \\ a_{12} & a_{21} & a_{22} \end{vmatrix}$$

Card 5/6

There are 3 figures; and 5 references, 4 Soviet, 1 U.K. The U.K. reference is: Y. A. Wooster, Textbook on Crystalphysics, Oxford, 1938.

a13 a23 a33

An X-Ray Diffraction Method for the Determination of the Thermal Expansion Tensors of the Crystals of Low Symmetry 75994 SOV/70-4-5-16/36

ASSOCIATION:

Moscow State University imeni M. V. Lomonosov (Moskovskiy gosudarstvennyy universitet imeni M. V. Lomonosova)

SUBMITTED:

May 21, 1959

Card 6/6

ering and the external programment of the contraction of the contracti

24.2800, 24.7700

77108 sov/70-4-6-9/31 AUTHORS:

Zhdanov, G. S., Solov'yev, S. P., Venevtsev, Yu. N.,

Ivanova, V. V.

TITLE:

Internal Fields in the Orthorhombic Modification of

BaT103

PERIODICAL:

Kristallografiya, 1959, Vol 4, N 6, pp 855-861 (USSR)

ABSTRACT:

Internal fields in orthorhombic (pseudomonoclinic) barium titanate are computed according to ionic-displacement data reported in Phys. Rev., 105, 3, 856, 1957. Computations are based on the assumption that point ionic charges are displaced parallel to the edges of monoclinic unit cells, twice as small as orthorhombic cells, and are superposed by the similarly displaced point dipole moments. The latter's magnitude is

point dipole moments. The latter's magnitude is determined as the product of ionic polarization and the affecting internal field. The known equation:

 $E_x = p_x \sum_{i=1}^{1} \frac{2x_i^2 - y_i^2 - z_i^2}{(x_i^2 + y_i^2 + z_i^2)^{1/s}} + p_y \sum_{i=1}^{3x_i y_i} \frac{3x_i y_i}{(x_i^2 + y_i^2 + z_i^2)^{1/s}} + p_z \sum_{i=1}^{3x_i z_i} \frac{3x_i z_i}{(x_i^2 + y_i^2 + z_i^2)^{1/s}}.$

Card 1/5

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064620006-5"