Подготовил Дильдин И. Н.

Π ункт 1:

Для проведения эксперемента фиксировалась выборка размером 100, k равное 5 и d равное 0.2. α варьировалась от 0.5 до 10 с делением на 60 значений. Усреднение шло по 10 различным значениям, так как такое уже позволило понять форму большенства распределений.

 $Pисунок 1 - Зависимость числа компонент связности от <math>\alpha$ при распределении weibull

В случае анализа числа компонент связности в knn при обоих распределениях (рис. 1 и рис. 2) их распределение судя по всему независимо от α и имеет при наших условиях среднее около 12.5 в случае weibull и 11 в случае с exp.

Pисунок 2 – 3ависимость числа компонент связности от α npu распределении exp

 $Pucyнок 3 - 3 aвисимость максимальной клики от <math>\alpha$ npu pacnpedenehuu weibull

Pucyнok 4 — $Зависимость максимальной клики от <math>\alpha$ npu pacnpedenenuu exp

В случае же с максимальной кликой видно (рис. 3 и рис. 4), что распределение напоминает степенну функцию, но с совершенно разными степенями. По моим рассчетам при наших условиях степень составляет около в случае weibull и 2/5 в случае с \exp .

Пункт 2:

Для проведения эксперемента фиксировалась данное в задании α и значения k проходили от 2 до 20 с шагом 1, значения d проходили от 0.05 до 10 с делением на 60 участков и значения d проходили от 50 до 100 с шагом 2. Усреднение шло по 10 различным значениям аналогично первому пункту.

Тут можно отметить, что от k зависимость степенная с отрицательным коэффициентом в обоих случаях, от d зависимость степенная с коэффициентом меньше 0, а от n зависимость линейная положительная во всех случаях, при том с меньшей дисперсией при подсчете кликового числа.

Пункт 3:

После запуска функции мощность полученного A на выборке размером 300 и с количеством итераций 1000 всегда составляла 1, а ошибка лежала в диапазоне от 0.6 до 0.9, что говорит о плохом критерии мощности у нашего способа.

 $Pucyhok\ 5$ — $Зависимость максимальной клики от <math>\alpha$ npu pacnpedenehuu weibull nocne выравнивание возведением в cmenehb

Pисунок 6 – 3ависимость максимальной клики от α при распределении ехр после выравнивание возведением в степень

Pисунок 7 — 3ависимость числа компонент связности от k npu pacnpedeлении weibull

Pисунок 8 – 3ависимость числа компонент связности от k npu pасnpedелении exp

Pисунок 9 — Зависимость размера максимальной клики от d npu распределении weibull

Рисунок 10 – Зависимость размера максимальной клики от d при распределении exp

 $Pucyнok\ 11-3 aвисимость\ числа\ компонент\ связности\ n\ npu\ pacnpedeлeнии\ weibull$

Рисунок 12 – Зависимость числа компонент связности п при распределении ехр

 $Pucyнok\ 13-3$ ависимость размера максимальной клики от n npu pacnpedeлении weibull

Pисунок 14 — Зависимость размера максимальной клики от <math>n npu pacnpedenehuu exp