Environnemental Sensing

Présentation

Structure

Interopérabilité et données environnementales

Trois niveaux

- Technique « pouvoir communiquer » : format des données, protocoles (ex. Json, LoRa, Xarray, Tiff)
- Syntaxique « savoir communiquer » : mode de formatage et de codage des données (ex. Fichier, API, Payload)
- Sémantique « savoir se comprendre » : signification des données échangées (ex. modèle de données)

Principes

interleaved

Time	Space	Variable	Data

Domaine-range

Modélisation – cas d'usage

Intégration de tous les cas d'usage

- Mesures multiples
- Capteurs mobiles
- Historique de relevés
- Mesures surfaciques / volumiques (grid)
- Tracking
- Résultats de modèles
- inventaires

resultat	location	datation	usage	type	
aucune	aucune	configuration : données de parmétrage	config		
	unique	top d'indication de fonctionnement	top		
		multiple	multi-top d'information	multiTop	
		aucune	geo localisation de l'émetteur	point	
	unique	unique	localisation ponctuelle de l'émetteur (tracking)	track	
aucune		multiple	localisation fixe	fixedTrack	
		aucune	zoning : délimitation d'une zone	zoning	
	and the sta	unique	localisation d'un device réparti	multiTrack	
	multiple		zone spatiotemporelle (déformable dans le temps)	timeLoc	
		multiple	localisations multiples sur un trajet		
		aucune	information sans dimension spatiale ou temporelle	measure	
	aucune	unique	relevé de valeur	record	
		multiple	relevé de valeur moyen	meanRecord	
		aucune	caractéristique locale	feature	
	unique		mesure ou information ponctuelle	obsUnique	
unique	unique '	multiple	mesure moyenne d'un capteur fixe	obsMeanFixed	
		aucune	caractéristique d'une zone géographique	areaFeature	
	multiple	unique	mesure moyenne sur une zone / grille (device réparti)	obsMeanArea	
		multiple	mesure moyenne sur un trajet	Ti	
		multiple	mesure moyenne sur une zone dans le temps	meanTimeLoc	
	aucune		serie de mesures sans contexte	multiMeasure	
			mesure échantillonnée non localisée	multiRecord	
		multiple	historique de mesures	measureHistory	
	unique		mesures locales variables	featureVariation	
			mesure échantillonée ponctuelle et localisée	obsSampled	
			séquence de mesure d'un capteur fixe	obsSequence	
multiple	multiple aucune	mesure sur une zone (device réparti)			
		mesure sur une grille (device réparti)	measureLoc		
		mesure sur un profil vertical			
	unique	observation sur une zone (device réparti)			
		observation sur une grille (device réparti)	obsLoc		
	multiple		observation sur un profil vertical		
		observation d'un trajet			
		multiple	observation sur une zone dans le temps	ohsTimal as	
			observation sur un profil vertical dans le temps	obsTimeLoc	
			observation d'une grille dans le temps	Confidential C	

Connecteurs

- > Bibliothèque de connecteurs
 - Toutes fonctions
 - Extensible

- Assemblage de connecteurs
 - Inter-connexions
 - Intégration applicative

Principes

Modélisation - indexation

Interleaved						
Data	ition	Loc	cation	Prop	perty	Result
D1 name	D1 time	L1 lat	L1 lon	P1 name	P1 unit	R1
D1 name	D1 time	L2 lat	L2 Ion	P1 name	P1 unit	R2
D2 name	D2 time	L2 lat	L2 Ion	P2 name	P2 unit	R3
D2 name	D2 time	L2 lat	L2 Ion	P3 name	P3 unit	R4

> Représentation tabulaire

- Facilement lisible
- Un seul tableau
- Mais:
 - Duplication d'information (risque d'erreur)
 - Complexité d'exploitation et de mise à jour

Modélisation - Dimension

> Dimension 1

- Relevé d'un paramètre sur un trajet, dans le temps ou dans l'espace
 - Ex. station de mesure fixe
 - Ex. Relevé satellite
 - Ex. Relevé en mobilité
- Relevé ponctuel d'un ensemble de paramètres
 - Ex. Bilan annuel

> Dimension 2

- Evolution d'un paramètre dans l'espace et dans le temps
- Ex. Réseau de station de mesure fixe mono-paramètre
- Ex. Relevé satellite multi-paramètres
- Ex. Relevé satellite temporel mono-paramètre
- Ex. Relevé en mobilité de plusieurs paramètres
- Evolution d'un ensemble de paramètres dans l'espace, dans le temps ou sur un trajet

> Dimension 3

- Evolution d'un ensemble de paramètres dans l'espace et dans le temps
 - Ex. Réseau de station de mesure fixe multi-paramètres
 - Ex. Relevé satellite temporel multi-paramètres

Modélisation - formats

Formats multiples

- Formats binaire (ex. payload 12 octets)
- Formats imposés (ex. bluetooth)
- Formats texte json (réduit / étendu)
- Formats fichiers (ex. Tiff / GeoTIFF)

Standards appliqués

- / ISO: 0&M
- OGC : Coverage, sensorML,
 Timeseries, GeoTIFF
- IETF: json, geo-json
- Bluetooth: Environnemental sensing
- LoRa

>Exemple json

 mesure en deux points à deux instants (4 valeurs)

```
"observation": [
  "phenomenonTime": "5-04-2021H12:05"
  "coordinates": [14,42.299999],
  "measureId": "PM10",
  "resultValue": 45},
  "phenomenonTime": "5-04-2021H12:05",
  "coordinates": [24,52.900002],
  "measureId": "PM10",
  "resultValue": 0.5},
  "phenomenonTime": "5-04-2021H13:05",
  "coordinates": [14,42.299999],
  "measureId": "PM10",
  "resultValue": 40},
  "phenomenonTime": "5-04-2021H13:05",
  "coordinates": [24,52.900002],
  "measureId": "PM10",
   "resultValue"
                 Réduit / Interleaved
```

```
"observation": {
                                   Etendu / Domaine
"type": "obsGridSequence",
                                   range
"attributes": {
  "timeStamp": {
    "type": "datMultiple",
    "phenomenonTime": ["5-04-2021H12:05", "5-04-2021H13:05"]
  "geometrv": {
    "type": "multiPoint",
    "coordinates": [[14,42.299999],[24,52.900002]]
  "measure": {
    "type": "measUnique",
    "measureId": "PM10"
  "result": {
    "type": "resMultiple",
    "resultValue": [45, 0.5, 40, 2]
```

Connecteur Sensor

- Utilisation des fonctions d'extension pour agréger les données envoyées en plusieurs étapes
- Cette approche minimise les flux de données et maximise la complétude

> Phase déclaration

Définition du contexte

> Phase d'initialisation

Envoi par le capteur des méta-données liées au dispositif d'acquisition

> Phase opération

- Envoi par le capteur des données spécifiques à chaque mesure
- Reconstitution d'une observation complète à partir
 - Des méta-données capteur
 - Des métadonnées du contexte
 - Des données mesurées

Mise en oeuvre

- > Mettre à disposition un standard fédérateur
 - Représentation unifiée des données
 - Faire converger les standards
- Fournir des services liés aux données environnementales
 - Fourniture de connecteurs spécifiques pour des applications clientes
 - Fourniture de technologies de traitement (filtrage, prédiction, assimilation, représentation)
 - Fourniture d'extracteurs d'informations
- Construire des applications dédiées aux données environnementales
 - Hébergement de données issues de réseaux de capteurs
 - Réalisation d'études et d'analyses
 - Intégration dans les environnements clients

Clients

Fournisseurs de plateformes et de services Fournisseurs de logiciel de conception, d'étude et d'exploitation

Gestionnaires de flottes de capteurs Intégrateurs de systèmes de mesure

Principes complémentaires

Modélisation: structures

> Gestion d'équivalence de structures de données

Exemple : mesure en quatre points à cinq instants

^{*} Format réduit dates, points : référence + unité + écart (entier « int32 »)

^{**} Si AP ou AT constant

Xarray - mapping

Xarray

- Data : matrice de données (ex. numpy ndarray)
- Coords: matrice des index sous la forme: (dims, data, attrs)
- Dims: nom des dimensions
- Attrs: dictionnaire d'attribut (pour data ou coord)
- Name

Mapping

- Dims: dat/loc/prp ou réduite si nombre d'axes < 3
- Data : matrice de Result recalculée suivant la dimension choisie
- Coords: listes de datation/location/property
- Attrs: attributs positionnés
- Name : obs name

Modélisation – Classes UML

GATT Specification Supplement

Bluetooth® Specification

Revision: v5

Revision Date: 2021-09-14

Group Prepared By: Bluetooth Architectural Review Board (BARB)

Abstract:

This specification contains the normative definitions for all GATT characteristics and characteristic descriptors, with the exception of those defined in the Bluetooth Core Specification or in Bluetooth Service specifications.

v1.1 to v2	Incorporated GSS CR – Physical Activity Monitor Profile
	Incorporated errata E14879, E15402
	Incorporated issues ID15016, ID15178, ID15183, ID15184, ID15202, ID15229, ID15285, ID15329, ID15337, ID15414, ID15415, ID15416, ID15427, ID15501
v2 to v3	Incorporated GSS CR – Device Time Service
	Incorporated GSS CR - Telephone Bearer Service (TBS)
v3 to v4	Incorporated errata: E14848, E15863
	Incorporated issue: ID15921
v4 to v5	Incorporated GSS CR – ESS Characteristics Related to Air Pollutants (ESSAPC)
	Incorporated GSS CR – Addition of Fitness Machine Service Characteristics (AFMSC)
	Incorporated errata: E16439, E16440, E16520, E16545, E17001, E17134, E17135, E17136, E17151
	Incorporated issues: ID15912, ID16816, ID16895, ID16896

Contributors

Name	Company		
Philippe Thomy	A Lab in the Air		
Rasmus Abildgren	Bose Corporation		
Daniel Sisolak	Bose Corporation		
Robert Hulvey	Broadcom Corporation		
Satomi Michitsuta	Casio Computer Co. Ltd.		
Craig Carlson	F. Hoffmann-La Roche AG (formerly Roche Diabetes Care AG)		
Wolfgang Heck	F. Hoffmann-La Roche AG (formerly Roche Diabetes Care AG)		
Robert Hughes	Intel Corporation		
Javier Espina	Koninklijke Philips N.V.		
Erik Moll	Koninklijke Philips N.V.		
Frank Yerrace	Microsoft Corporation		
Leif-Alexandre Aschehoug	Nordic Semiconductor ASA		
Frank Bemtsen	Nordic Semiconductor ASA		
Asbjørn Sæbø	Nordic Semiconductor ASA		
Scott Walsh	Plantronics		
Chris Church	Qualcomm Technologies International, Ltd.		
Robin Heydon	Qualcomm Technologies International, Ltd.		
Laurence Richardson	Qualcomm Technologies International, Ltd.		
Jonathan Tanner	Qualcomm Technologies International, Ltd.		
Shunsuke Koyama	Seiko Epson Corporation		
Piotr Węgliński	Silvair, Inc.		
Szymon Słupik	Silvair, Inc.		
Piotr Pacewicz	Silvair, Inc.		
Izabela Komorowska	Silvair, Inc.		

Liens

- Intégration des données air dans le profil Bluetooth « environnemental sensing »
- Blog sur l'analyse des données de mesures
- Exemple assimilation
- Exemple prédiction
- Page animée sur wikipedia (Compression de courbe)
- Capteur open-source
- Module arduino de mesure

18