Analysis of piggyBac mediated integration in the porcine genome

John K. Everett, Ph.D. and Frederic Bushman, Ph.D.

April 05, 2018

Contents

Introduction	1
Attrition of sequencing reads	2
Characterization of identified integration sites	3

Introduction

The primary focus of this analysis is to assess the integration efficiency of a piggyBac transposon system targeting the porcine genome where both the transposon and appropriate transposase are delivered via adenovirus vectors. Eleven (11) porcine tissue samples, each with three replicates, were analyzed with the INSPIIRED¹ integration site pipeline where only sequencing from the 3' end of integrated transposons would yield porcine genomic sequences required to map integration positions (Figure 1).

Figure 1

Attrition of sequencing reads

Table 1 below details the attrition of sequencing reads where technical replicates have been combined. The unusally high number of reads that do not match the transposon vector and which do not align to the susScr3 reference genome requires additional investigation.

Sequencing reads originating from the 3' end of the targeted transposons were clustered with a sequence identity threshold of 90% and the 20 most abundant clusters which include 84.1% of sequenceing reads are shown in Figure 2. The 20 sequence clusters, except for cluster 18 (possibly from Candidatus Fluviicola) and cluster 20 (no clear source), map to different adenovirus sequence variants. The representative sequence for each cluster is provided in Table S1. Alternatively, this observation can be appreciated by reviewing the most frequent read sequences and how they align to one another (Table S2).

Table 1. INSPIIRED pipeline read attrition

Subject	Sample	Filtered reads	Non-vector like reads	Reads aligning to genome	intSites (reps. combined)
p1166	Trachea	923939	29430	208	23
p1166	Lung	1319372	56023	50	44
p1168	Trachea	977030	355806	4	4
p1168	Lung	1201110	214530	16	15
p1169	Trachea	1289543	157285	8183	36
p1169	Lung	387593	14122	2677	7
p1171	Trachea	1052996	72905	5492	86
p1171	Lung	1130648	855182	31	13
p9846	Trachea	1130931	61204	1123	13
p9850	Trachea	680004	28962	491	19
p9851	Trachea	962963	145217	402	4

Figure 2. Most abundant clusters of similar reads (90% seq id) with cumulative percentages of all reads.

Characterization of identified integration sites

Figure 3 below shows the distribution of integration sites across the porcine genome while Figure 4 shows the upstream and downstream consensus sequence motifs adjacent to those sites. Differences between the genomic environments of identified sites and the same number of randomly selected sites from a published lentiviral trial to correct Wiskott-Aldrich syndrome (WAS) from which no adverse events have been reported is shown as a heat map in Figure S1².

The TTAA motif immediately following the identified sites (20.6% of sites) was expected given transposase's affinity for this sequence though the AGGG motif immediately upstream (33.7% of sites) was not expected. This finding suggests that a number of integration sites may be false positives arising from mis-priming against endogenous piggyBac/LOOPER elements in the porcine genome which are known to end in AGGG.

Figure 3. Distribution of identified integration sites.

Figure 4.

Concensus upstream (pos. 1-12) and downstream (pos. 13-24) sequence motifs adjacent to integration sites.

Suplimentary figures and tables

Figure S1.

ROC heatmap comparing the genomic environments of integration sites found in this analysis to those found in a published lentiviral study

Table S1. Sequence representatives from the most abundant read clusters.

Cluster	Representative.sequence
Cluster 1	${\tt TTAAAAGATCTGGAAGGTGCTGAGGTCCGATGAGACCCGCACCAGGTGCA}$
Cluster 2	ATTAATACGCAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAG
Cluster 3	TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGAAGTCCCTTAAGCGGA
Cluster 4	TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGTCCCT
Cluster 5	${\tt TTAAAAGATCTGGAAGGTGCTGAGGTACGAGTCCCTTAAGCGGAGGCTAC}$
Cluster 6	CTAAAAGAGCTGGAAGGTGCTGAGGTACGATAAGACCCGAACCAGGTGCA
Cluster 7	ATTAATACGCAGATCTGGAAGGTGCTGAGGTACGATGGGTCCCTTAAGCG
Cluster 8	ATTAATACGCAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGGGTCCC
Cluster 9	${\tt TTAAAAGATCTGGAAGGTGCTGAGGTAAGTCCCTTAAGCGGAGTAAATCG}$
Cluster 10	${\tt TTAAAAGATCTGGAAGGTGCTGAGGTAGTCCCTTAAGCGGAGGTCGGCCG}$
Cluster 11	${\tt TTAAAGGATCTGGAAGGTGCTGAGGTACGGTGAGACCAGCACCGGGTGCA}$
Cluster 12	TTAAAAGCTCTGGAAGGTGCTGCGGTACGATGCGACCAGCCCCAGGTGCA
Cluster 13	ATTAATACGCAGATCTGGAAGGTGCTGAGGTAGTCCCTTAAGCGGAGACC
Cluster 14	TTAAAAGATCCGGAAGGTGCTGAGGCAAGATGAGACCCGCACTAGGTGCA
Cluster 15	${\tt TTAAAAGGTCTGTAAGGCGCTGAGGTACGCTGAGACCCGCACCAGGTGCA}$
Cluster 16	TTAAAAGATCTGGAAGGTGCTGAGGTACGAGGTCCCTTAAGCGGAGAGCC
Cluster 17	${\tt TTAAAAGACCTGGAAGGTGCTGAGGTACGCTGAGACTCGCCCCAGGTGCA}$
Cluster 18	AGGCTCCGGTTGATTTGACTGCCGACAATTACCATAGCGTCAGTCCTGGT
Cluster 19	GTAACAGATCTGGAAGGTGCTGAGGGACGATGAGACCCGCACAAGGTGCA
Cluster 20	TTGTTGGCCGGGGCTGAGACTCGTTACATAGAACAATTACCATAGCGTCA

Table S2. Most abundant transposon 3' reads (ITR seqs removed)

Genomic sequence	nReads	Cumm. %reads	Transpon vector position	Transpos vector position
ATTAATACGCAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAG	1305206	67.12	NA	NA
TTAAAAGAGCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	36877	67.43	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCAGTCCCTTAAGC	32231	67.70	NA	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGTCCCT	31541	67.97	NA	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCG	28122	68.21	2997	NA
CTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	27473	68.44	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGCACGATGAGACCCGCACCAGGTGCA	26538	68.66	2997	NA
TTAAAAGATCTGGAGGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	26425	68.88	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGTA	26348	69.10	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGCGCA	25893	69.32	2997	NA
TTAAAGGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	25378	69.53	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGGCCCGCACCAGGTGCA	24603	69.74	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCAGTCCCTTAAGCG	23819	69.94	NA	NA
TTAAAAGATCTGGAAGGTGCCGAGGTACGATGAGACCCGCACCAGGTGCA	23700	70.14	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGGGACCCGCACCAGGTGCA	22740	70.33	2997	NA
TTAAAAGCTCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	22651	70.52	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTAGT	22234	70.71	NA	NA
TTAAAAGATCTGGAAGGCGCTGAGGTACGATGAGACCCGCACCAGGTGCA	22124	70.90	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCAGTCCCTTAA	21821	71.08	NA	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCGGGTGCA	21630	71.26	2997	NA
TTAAAAGATCCGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	21112	71.44	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCGCCAGGTGCA	20804	71.62	2997	NA
TTACAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	20361	71.79	2997	NA
TTAAAAGGTCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	20337	71.96	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGACGAGACCCGCACCAGGTGCA	20153	72.13	2997	NA

Table S2. Most abundant transposon 3' reads (ITR seqs removed) (continued)

Genomic sequence	nReads	Cumm. %reads	Transpon	Transposa
			position	position
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGAG	19495	72.29	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTGCGATGAGACCCGCACCAGGTGCA	18282	72.44	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGAGTCCCTTAAGCGGAG	18216	72.59	NA	NA
TTAAAAGATCTGGAAGGTGCTGGGGTACGATGAGACCCGCACCAGGTGCA	17542	72.74	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACAGTCCCTTAAGCGG	17337	72.89	NA	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGAGTCCCTTAAG	16814	73.03	NA	NA
TTAAAAGACCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	16457	73.17	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGGTGAGACCCGCACCAGGTGCA	16137	73.31	2997	NA
TTAGAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	15674	73.44	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAAGTCCC	15558	73.57	NA	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGAGTC	14669	73.69	NA	NA
AGGCTCCGGTTGATTTGACTGCCGACAATTACCATAGCGTCAGTCCTGGT	14610	73.81	NA 2007	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCACACCAGGTGCA	14587	73.93	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCCAGGTGCA	14204	74.05	2997	NA
TTAAAAAAT	13511 12890	74.16	2997	NA
TTAAAAGATCTGGAAGGTGTTGAGGTACGATGAGACCCGCACCAGGTGCA		74.27	2997	NA NA
TTAAAAGATCTGGGAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	12311	74.37	2997	NA
TTAAAAGATCTGGAAGGTACTGAGGTACGATGAGACCCGCACCAGGTGCA	11687	74.47	2997	NA NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGTACCAGGTGCA TTAAAAGATCTGGAAGGTGCTGAGGTATGATGAGACCCGCACCAGGTGCA	11611 11530	74.57 74.67	2997 2997	NA NA
TTAAAAGATCTGGAAGGTGCTGAGGTATGATGAGACCCGCACCAGGTGCA	11391	74.77	2997 NA	NA NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGAGTCC	11172	74.77	NA 2997	NA NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTACA	10666	74.86	2997	NA NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGATCCGCACCAGGTGCA	10000	75.04	2997	NA NA
TTAAAAGATCTGGAAGGTGCTGAGGTACAATGAGACCCGCACCAGGTGCA	10293	75.13	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGAGTCCCTTAAGCGGAGTTACA	10269	75.13	NA	NA NA
TCAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	9960	75.21	2997	NA NA
TTGTTGGCCGGGGCTGAGACTCGTTACATAGAACAATTACCATAGCGTCA	9338	75.37	NA	NA
ATTAATACGCAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGGGTCCC	9275	75.45	NA	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGATGCA	8587	75.52	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCAAGTCCCTTA	8561	75.59	NA	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCATCAGGTGCA	8504	75.66	2997	NA
TTTAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	8096	75.73	2997	NA
TTCAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	7748	75.80	2997	NA
TTGAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	7705	75.86	2997	NA
TTAAAAGATCTGGAAGGTGCTGAAGTACGATGAGACCCGCACCAGGTGCA	7639	75.92	2997	NA
ATTAATACGCAGATCTGGAAGGTGCTGAGGTACGATGAGAAGTCCCTTAA	7471	75.98	NA	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACAGTCCCTT	7430	76.04	NA	NA
TTAAGAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	7412	76.10	2997	NA
TTAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCAG	7287	76.16	2998	NA
ATTAATACGCAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCAGTCC	7174	76.22	NA	NA
TTATAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	7074	76.28	2997	NA
ATTAATACGCAGATCTGGAAGGTGCTGAGGTACGACGAGACCCGCACCAG	6883	76.34	NA	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGAAGTCCCTTAAGCGGA	6807	76.40	NA	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACTAGGTGCA	6762	76.46	2997	NA
TTAAAAGATCTGGAATGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	6611	76.52	2997	NA
ATTAATACGCAGATCTGGAAGGTGCTGAGGTACGATGAGAGTCCCTTAAG	6453	76.57	NA	NA
ATTAATACGCAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGAGTCCC	6401	76.62	NA	NA
ATTAATACGCAGATCTGGAAGGCGCTGAGGTACGATGAGACCCGCACCAG	6265	76.67	NA	NA
TTAAAAGATTTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	6098	76.72	2997	NA
ATTAATACGCAGATCTGGAAGGTGCTGAGGTACGATGAGACAGTCCCTTA	6001	76.77	NA	NA
ATTAATACGCAGATCTGGAAGGTGCTGAGGCACGATGAGACCCGCACCAG	5965	76.82	NA	NA
TTAAAAGATCTGGAAGGTGCTGTGGTACGATGAGACCCGCACCAGGTGCA	5924	76.87	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAAGTGCA	5582	76.92	2997	NA

Table S2. Most abundant transposon 3' reads (ITR seqs removed) (continued)

Genomic sequence	nReads	Cumm. %reads	Transpon vector position	Transposa vector position
TTAAAAGATCTGGAAGATGCTGAGGTACGATGAGACCCGCACCAGGTGCA	5421	76.97	2997	NA
TTAAAAGATCTGGAAAGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	5359	77.02	2997	NA
TTAAAAGATCTGAAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	5265	77.06	2997	NA
ATTAATACGCAGATCTGGAAGGTGCTGAGGTACGATAGTCCCTTAAGCGG	5225	77.10	NA	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCTGGTGCA	5028	77.14	2997	NA
ATTAATACGCAGATCTGGAGGGTGCTGAGGTACGATGAGACCCGCACCAG	4972	77.18	NA	NA
ATTAATACTCAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAG	4970	77.22	NA	NA
ATTAATACGCAGATCCGGAAGGTGCTGAGGTACGATGAGACCCGCACCAG	4866	77.26	NA	NA
TTAAACGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	4796	77.30	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGATACGATGAGACCCGCACCAGGTGCA	4778	77.34	2997	NA
ATTAATACGCAGATCTGGAAGGTGCTGAGGTACGATGAGGCCCGCACCAG	4775	77.38	NA	NA
TTAAAAGATCTGGAAGGTGCTAAGGTACGATGAGACCCGCACCAGGTGCA	4681	77.42	2997	NA
TTAAAAGATCTAGAAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	4647	77.46	2997	NA
ATTAATACGCAGATCTGGAAGGTGCTGAGGTACGATGAGACCAGTCCCTT	4608	77.50	NA	NA
ATTAATACGCAGATCTGGAAGGTGCCGAGGTACGATGAGACCCGCACCAG	4595	77.54	NA	NA
TTAAAAGATCTGGTAGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	4551	77.58	2997	NA
ATTAATACGCAGATCTGGAAGGTGCTGAGGTAAGATGAGACCCGCACCAG	4512	77.62	NA	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATGCGACCCGCACCAGGTGCA	4469	77.66	2997	NA
TTAAAAGATCTGGACGGTGCTGAGGTACGATGAGACCCGCACCAGGTGCA	4431	77.70	2997	NA
TTAAAAGATCTGGAAGGTGCTGAGGTACGATAAGACCCGCACCAGGTGCA	4373	77.74	2997	NA

References

- 1. INSPIIRED: A Pipeline for Quantitative Analysis of Sites of New DNA Integration in Cellular Genomes. Sherman E, Nobles C, Berry CC, et al. Molecular Therapy Methods & Clinical Development. 2017;4:39-49. doi:10.1016/j.omtm.2016.11.002.
- 2. Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome. Hacein-Bey Abina S, Gaspar HB, Blondeau J, Caccavelli L, Charrier S, Buckland K, Picard C, Six E, Himoudi N, Gilmour K, McNicol AM, Hara H, Xu-Bayford J, Rivat C, Touzot F, Mavilio F, Lim A, Treluyer JM, Héritier S, Lefrère F, Magalon J, Pengue-Koyi I, Honnet G, Blanche S, Sherman EA, Male F, Berry C, Malani N, Bushman FD, Fischer A, Thrasher AJ, Galy A, Cavazzana M. JAMA. 2015 Apr 21;313(15):1550-63.