Chapter 6: Scoring, term weighting, and the vector space model

- Boolean queries are good for users with very precise undertstanding of their needs, and the collection.
 - Often results in either too few or too many results.
- Alternative: Free-text queries and Rank-order the documents
 - Free-text queries: Rather than a query language of operators and expressions, the user's query is just one or more words in a human language.
- Three ideas:
 - 1. Parametric and zone indexes
 - To index and retrieve documents
 - Simple means of scoring
 - 2. Weighting importance of a term in a document, using statistics of occurrence
 - 3. Viewing each document as a vector of weights
 - Vector space scoring: to compute a score between a query and each document

6.1 Parametric and zone indexes

- Digital documents often have metadata
- One parametric index for each field
 - Support querying ranges on ordered values: Structures like B-tree may be used for the field's dictionary
- Zones: Similar to fields, but the contents can be arbitrary free text
 - Document titles, abstracts, etc.
 - The dictionary for a zone index must structure whatever vocabulary stems from the text of that zone.
- We can directly encode the zone in which a term occurs in the postings, and reduce the dictionary size
 - Also allows efficient computation of weighted zone scoring

6.1.1 Weighted zone scoring

- Given a boolean query q and a document d, weighted zone scoring assigns to the pair (q, d) a score in the interval [0, 1]
 - By computing a *linear* combination of **zone scores**: each zone of the document contributes a Boolean value.
 - The Boolean score from a zone would be 1 if all the query terms occur in that zone.
- $-\sum_{i=1}^{l} g_i \cdot s_i$, where g_i are weights given for each zone, and s_i is the score from each zone. Weighted zone scoring is also referred to as **ranked Boolean retrieval**.

6.1.2 Learning weights

- How do we set the weights??
- Used to be set by 'experts,' but nowadays we learn them from curated training examples
- Machine-learned relevance

6.1.3 The optimal weight q

• Differentiation of total error

6.2 Term frequency and weighting

- A document or zone that mentions a query term *more often* should be given higher scores.
- Free text query: Terms are given without any connecting search operators we simply view them as a set of words
 - Then we could simply compute the total score by summing up over each term a match score between each query term and the document
- We need to assign weights to each term in the document
 - The simplest approach: Use term frequency Weights to be equal to the number of occurrences of term t in the document d.
- Bag of Words Model: Having number of occurrences as weights is a quantitative digest of the document; ignores the exact ordering of the terms
 - Intuitive that two documents with similar bag of words representations would be similar in content.

6.2.1 Inverse document frequency

• Using plain term frequency could be problematic when certain terms have very little or no discriminating power in determining relevance

- Simple Solution: Scale down the term weights of terms with high collection frequency (total number of occurrences within the entire collection)
- Document frequency: The number of documents in the collection that contain the term
 - Document frequency and collection frequency could behave quite differently
- Inverse document frequency (idf): $idf_t = log \frac{N}{df_t}$

6.2.2 Tf-idf weighting

- Produce a composite weight for each term in each document, using term frequency and idf
- $tf\text{-}idf_{t,d} = tf_{t,d} \cdot idf_t$, where t is a term and d is a document
 - Highest when t occurs many times within a small number of documents (thus lending high discriminating power to those documents)
 - Lower when the term occurs fewer times in a document, or occurs in many documents
 - Lowest when the term occurs in virtually all documents
- \bullet We can now consider a document to be a vector
 - with one component corresponding to each term in the dictionary
 - together with a tf-idf for each component
- Overlap score measure: Sum up the tf-idf of each term in d

6.3 The vector space model for scoring

• Basic ideas underlying vector space scoring

6.3.1 Dot products

- How do we quantify the similarity between two documents?
- Simple idea: Measure the magnitude of the vector difference between the two
 - Drawback: Difference could be big, just because one is much longer than the other, even though the *contents* are quite
 - * The relative distribution of terms could be quite similar, even when the absolute frequencies of one may be far larger.
- $V(d1) \cdot V(d2)$ • Cosine similarity: $\frac{V(d1)\cdot V(d2)}{|V(d1)|\cdot |V(d2)|}$
 - The numerator is the dot product: The cosine of the angle Θ between the two vectors
 - The denominator is the product of their Euclidean lengths: length-normalization
- **Term-Document Matrix**: $M \times N$ matrix
 - -M terms
 - N documents
- Terms should be stemmed before indexing

6.3.2 Queries as vectors

- We can view queries as vectors in the same vector space as the document collection
- The number of dimensions will equal the vocabulary size M.
- A document may have a high cosine score for a query even if it does not contain all query terms.
- Computing similarities in tens of thousands of dimensions could be expensive

6.3.3 Computing vector scores

- We seek the K documents of the collection with the highest vector space scores on the given query.
- Term-at-a-time scoring or accumulation: Need to be maintaining weight values of each term t for document d, which could be wasteful as they are floating point values
- We could instead simply store $\frac{N}{\mathrm{df}_t}$ at the head of postings for t and $\mathrm{tf}_{t,d}$ for each postings entry Select the top K scores would require a priority queue structure, often using a heap
- - -2N comparisons to construct
 - each of K scores can be extracted from the heap at a cost of $O(\log N)$ comparisons
- Document-at-a-time: We might be able to traverse the postings lists of the various query terms concurrently We would then compute the scores, one document at a time

6.4 Variant tf-idf functions

6.4.1 Sublinear tf scaling

- It is questionable whether 20 times the occurrence necessarily indicates 20 times the importance
- Alternative: Use the logarithm of the term frequency
- $\operatorname{wf}_{t,d} = 1 + \log \operatorname{tf}_{t,d}$ if $\operatorname{tf}_{t,d} > 0$, 0 otherwise
- wf-idf $_{t,d}$

6.4.2 Maximum tf normalization

- Normalize the tf weights of all terms occuring in a document by the maximum tf in that document.
- Let $\operatorname{tf}_{\max}(d) = \max_{\tau \in d} \operatorname{tf}_{\tau,d}$, where τ range over all terms in d.
- $\operatorname{ntf}_{t,d} = a + (1-a) \cdot \frac{\operatorname{tf}_{t,d}}{\operatorname{tf}_{\max}(d)}$
 - -a is a *smoothing term*; values between 0 and 1 and is generally set to 0.4. *Dampens* the contribution of the second term * We want to avoid a *large swing* in ntf from modest changes in $\mathrm{tf}_{t,d}$.
- We want to use this because we want to deal with the cases of higher term frequencies in longer documents: longer ones tend to repeat the same words over and over again
- This method could be unstable in the cases like the following:
 - when the list of stop words changes
 - A document may contain an outlier term with an unusually large number of occurrences
 - If the most frequent term appears roughly as often as many other terms, compared to having a more skewed distribution, that should be treated differently.

6.4.3 Document and query weighting schemes

- \bullet SMART notation
- ddd.qqq: ddd represents the term weighting of the document vector; qqq indicates the weighting for the query vector
 - the first letter: term frequency
 - the second: document frequency
 - the third: normalization
- Quite common to apply different normalization to d and q

6.4.4 Pivoted normalized document length

- Normalizing each document vector by the Euclidean length...
 - Masks some subtleties about *longer* documents
 - * Higher tf values
 - * More distinct terms
- The nature of longer documents
 - 1. Verbose documents that essentially repeat the same content: the length does not alter the relative weights of different terms
 - 2. Documents covering multiple different topics: Search terms probably match small segments of the document but not all of it
 - Relative weights of terms are quite different from a single short document that matches the query terms
 - Need normalization that is independent of term and document frequencies
- Resulting normalized documents to be not necessarily of unit length
- Pivoted document length normalization: when computing dot product score with a (unit) query vector, the score is skewed to account for the effect of document length on relevance.
- Suppose that we have a document collection with an ensemble of queries
 - and Boolean judgments of whether or not each d is relevant to each query q.
- Then we could calculate a probability of relevance: a function of document length, averaged over all queries in the ensemble.
 - (Imagine an upward-sloping curve here)
- Cosine normalization equation has a tendency to distort the true relevance, at the expense of longer documents.
 - **Pivot length** l_p : the point where distortion trend changes
- Want to adjust this to match more closely to the true relevance curve: rotate the cosine normalization curve counter-clockwise about p
 - Use normalization factor larger than the Euclidean length for each documents shorter than l_p
 - Use normalization factor smaller than the Euclidean length for each documents longer than l_p
- Simple implementation: $a \cdot |V(d)| + (1-a) \cdot \text{piv}$, where piv is the cosine normalization value at which the two curves intersect.
 - Still linear in |V(d)|, but slope < 1