Podstawy techniki cyfrowej zima 2020

Wykład

dr inż. Rafał Walkowiak

6.10.2020

Literatura

- 1. Układy cyfrowe, Barry Wilkinson, WKiŁ 2001
- 2. Podstawy projektowania układów logicznych i komputerów, M.M.Mano, Ch.R.Kime, WNT 2007
- 3. Komputerowe projektowanie układów cyfrowych, T.Łuba, B.Zbierzchowski, WKiŁ, 2000
- 4. Podstawy projektowania układów cyfrowych, Cezary Zieliński, PWN 2012
- 5. Język VHDL: projektowanie programowalnych układów logicznych, Kevin Shakill, WNT 2004
- 6. Układy cyfrowe, Zbiór zadań z rozwiązaniami, J.Tyszer, G.Mrugalski, Wydawnictwo PP
- 7. Układy Scalone TTL w systemach cyfrowych, J. Pienkos, J. Turczyński, WkiŁ, 1994

Zakres przedmiotu

- Wstęp: arytmetyka binarna, algebra Boole'a, kody binarne, BCD, podstawowe funkcje logiczne, sposoby przedstawiania funkcji logicznych postacie kanoniczne, minimalizacja funkcji logicznych, łączna minimalizacja funkcji logicznych, hazard.
- Technologie CMOS,TTL i ich wpływ na właściwości użytkowe układów, bramki logiczne.
- Układy kombinacyjne: multipleksery i demultipleksery; komparatory, łączenie komparatorów; kodery, dekodery, translatory kodów; sumatory: sumatory binarne, dziesiętne.
- Podstawowe elementy sekwencyjne: zatrzask RS, zatrzask D, przerzutniki: D, JK, T; parametry czasowe, rejestry szeregowe, równoległe, przesuwne, rejestry liczące.
- Liczniki: synchroniczne i asynchroniczne, binarne, dziesiętne; łączenie liczników, synteza liczników, skracanie liczników, taktowanie systemów cyfrowych, częstotliwości maksymalne liczników;
- Automaty synchroniczne: Moora, Mealego, graf i tablica przejść automatu, minimalizacja stanów, kodowanie stanów, funkcje przejść i wyjść i implementacja automatu na przerzutnikach.
- Język opisu sprzętu VHDL: jednostki projektowe, obiekty, typy, typy rozstrzygalne, instrukcje współbieżne i sekwencyjne, komponenty, strukturalny i behawioralny opis układów, przykładowe realizacje układów kombinacyjnych, sekwencyjnych, automatów.
- Układy programowalne: ROM, PLD, PLA, PAL, FPGA.
- Synteza wyższego poziomu: implementacja układów cyfrowych dla realizacji algorytmów przetwarzania danych; , opisy układu: sieć działań algorytmu, diagram synchronicznego układu sekwencyjnego, diagram synchronicznego układu sekwencyjnego ze zintegrowaną ścieżką danych; projekt: schemat strukturalny, opis układu cyfrowego w języku opisu sprzętu.
- Układy mikroprogramowalne w sterowaniu układami cyfrowymi.
- Pamięci: statyczne i dynamiczne, RAM, CAM, łączenie pamięci, parametry, cykle zapisu i odczytu.
- Współpraca układów cyfrowych z otoczeniem; wprowadzanie i wyprowadzanie danych, wyświetlanie statyczne i dynamiczne.
- Sposoby organizacji systemów cyfrowych: iteracja w czasie i przestrzeni.
- Automaty asynchroniczne, minimalizacja liczby stanów i kodowanie stanów, przykłady implementacji.

Podstawowe informacje organizacyjne

- Zaliczenie: 2 sprawdziany z materiału ćwiczeń i egzaminu w trakcie semestru oraz egzamin
- Ocena średnia ważona (2 składniki ćwiczenia, 3 składniki – egzamin).
- Sprawdziany z określonego materiału ćwiczeń i wykładów w trakcie semestru.
- Egzamin w sesji.
- Warunki konieczne do zwolnienia z egzaminu: bardzo dobre zaliczenie ćwiczeń i min 80 % obecności na ćwiczeniach i wykładach ze sprawdzaną obecnością.

Systemy cyfrowe

- <u>System cyfrowy</u> to układ powiązanych ze sobą elementów projektowany w celu realizacji takich zadań jak:
 - przetwarzanie informacji (w tym obliczenia)
 - sterowanie urządzeniami i innymi systemami i obiektami (np. silniki, zawory, piece itp.)
- Przetwarzane informacje zapisane są za pomocą wartości z określonego ograniczonego zbioru (np. liczb w różnych systemach liczbowych).

Systemy liczbowe

- Pozycyjne systemy liczbowe np. dziesiętny, dwójkowy (czyli binarny), ósemkowy, szesnastkowy systemy o podstawie zliczania 10, 2, 8 lub 16 zawierają zbiór cyfr o liczności równej tzw. podstawie systemu.
- W pozycyjnym systemie liczbowym znaczenie cyfry zależy od miejsca w zapisie liczby.
- W systemie niepozycyjnym stałe jest znaczenie cyfry np. system rzymski XLV
- W zapisie pozycyjnym występują wagi pozycji od najmniej znaczącej do najbardziej znaczącej.
- W stosowanych najczęściej w układach cyfrowych systemach liczbowych, podstawa może mieć wartość **2, 8, 10, 16.**Mówimy wtedy odpowiednio o zapisie (systemie liczbowym): dwójkowym (binarnym) (ang. binary), cyfry 0,1 ósemkowym (oktalnym) (ang. octal), cyfry 0,1,2,3,4,5,6,7 dziesiętnym (decymalnym) (ang. decimal), szesnastkowym (heksadecymalnym) (ang. hexadecdimal), cyfry 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

Systemy liczbowe

NKB – naturalny kod binarny (typ kodu binarnego)

- System pozycyjny o podstawie systemu równej 2
- Liczby określone są bez znaku tylko wartości dodatnie np. 1010 to dziesiętnie 10 poszczególne bity to $b_1 = b_3 = 1$ $b_2 = b_0 = 0$, cyfra (bit) b_0 to cyfra (bit) najmniej znacząca, cyfra b_3 to cyfra najbardziej znacząca.
- Wartość dziesiętna liczby binarnej (N- długość słowa kodowego, b_i cyfra pozycji i) = \sum (i=0, N-1) $2^i \cdot b_i$
- Wartość cyfry b_i zależy zatem od jej pozycji w liczbie
- wartość $b_i = 2^i$ (i numerowanie od zera)
- 2^N różnych wartości kodu (NKB to kod pełny wszystkie zapisy zerojedynkowe są wykorzystane)

Konwersja liczb całkowitych między systemem binarnym i dziesiętnym.

Systemy liczbowe uzupełnieniowe

System liczbowy "Uzupełnienie do K" (uzupełnienie do podstawy zliczania K)

Uzupełnienie do K liczby **N** o **n** cyfrach zapisanej w systemie o podstawie K definiujemy jako liczbę równą:

K^n-N

Zatem liczba w kodzie **Uzupełnienie do K** jest reprezentowana przez wartość różnicy Kⁿ i N – wartość ta jest wyrażona w systemie o podstawie K (czyli za pomocą K cyfr)

Liczba w systemie uzupełnienie do K służy do zapisu liczb dodatnich.

Np. ciąg 345 to może być liczba dziesiętna trzycyfrowa K=10 n=3

liczba z systemu dziesiętnego 345 zapisana w systemie uzupełnienie do 10 może mieć postać 655,

liczba 345 w systemie dziesiętnym: 345=000345 (zera nieznaczące)

Liczba dziesiętna 345 w systemie uzupełnienie do 10: 655=99655 (dziewiątki nieznaczące)

Liczba w NKB 101 (dziesiętnie 5) w systemie **uzupełnienie do 2** (U2) ma postać 011 lub przykładowo 111011 (jedynki są nieznaczące); wartość 3 (to 011) uzupełnia 5 do 8, a wartość 59 (to 111011) uzupełnia 5 do 64.

"Reprezentacja uzupełnieniowa"

- Binarna liczba **dodatnia** jest zapisywana w NKB na wystarczającej liczbie pozycji i uzupełniana zerami na pozycjach bardziej znaczących: $(3)_{10}$ = $(011)_2$ = $(0011)_2$ najstarsze zero jest bitem znaku
- Binarna liczba **ujemna** jest zapisywana:
 - w kodzie uzupełnienie do 2 i
 - poprzedzona 1 (dodatkowo jeśli potrzeba) na pozycji znaku i
 - uzupełniona jedynkami na pozycjach bardziej znaczących: (-3)₁₀= (101)_{UZ} = (1101)_{UZ}
 - Gdy najstarszy bit kodu U2 = 1 to staje się bitem znaku i nie potrzeba umieszczać 1 przed kodem U2 dla $-8_D = 1000_{UZ}$
- Notacja uzupełnieniowa liczb binarnych pozwala na dodawanie liczb dodatnich i ujemnych realizowane przez sumator zaprojektowany dla liczb wyrażonych w NKB.
- Por. Układy cyfrowe Wilkinson 1.3.2

Reprezentacje liczb binarnych ze znakiem

- Reprezentacja liczby binarnej znak moduł (ZM) najstarszy bit określa znak liczby, pozostałe bity w NKB, bit znaku 0 (liczba dodatnia) lub 1(liczba ujemna)
- Reprezentacja uzupełnieniowa liczby binarnej (RU) korzysta z U2
 - bit znaku (0) i moduł liczby dodatniej w NKB,
 - bit znaku (1) i moduł liczby ujemnej w kodzie U2 (najbardziej znaczące jedynki można usunąć z zapisu)
 - Przykład -8, moduł 8 u2(8)=1000 -8= RU(11000)=RU(1000) 8=RU(01000)

N1	ZM(N1)	RU(N1)	N2	ZM(N2)=RU(N2)
-8	11000	1000	7	0111
-7	1111	1001	6	0110
-6	1110	1010	5	0101
-5	1101	1011	4	0100
-4	1100	1100	3	0011
-3	1011	1101	2	0010
-2	1010	1110	1	0001
-1	1001	1111	0	0000

PTC wykład 1 10

Dodawanie liczb ujemnych wykorzystanie notacji UZ

-3	1101
+(-2)	1110
= -5	(1)1011

1101	-3
0010	+2
1111	= -1

1101	-3
0101	+5
(1)0010	= 2

Przeniesienie jest ignorowane, wynik poprawny gdy dwa przeniesienia: na najstarszy bit i z najstarszego bitu są jednakowe. Reprezentacja uzupełnieniowa pozwala na jednakowe traktowanie liczb dodatnich i ujemnych w operacji dodawania – tj. dodanie dwóch jedynek daje wynik 0 na bieżącej pozycji i zwiększa wartość pozycji następnej o 1.

Odejmowanie liczb – dodawanie liczby przeciwnej

0011 (3d) + 1011 (-5d)	Binarna liczba ujemna – w uzupełnieniu do 2	bit znaku i liczba binarna
	00010110	= 22 (d)
1110 (-2d)	Wyznaczenie liczby w ko	dzie U2 –
,	Metoda 1:	
0101 (5d)	Etap 1: 11101001 negacj	ja bitów
+ 1101 (-3d)	Etpa 2: 11101010 dodan	ie jedynki = -22 (d)
	Metoda 2:	
0010 (2d)	Negacja bitów bardziej z najmniej znaczący bit	naczących - starszych niż równy 1.
	UWAGA:	
	100 -> 100 dodatkowy b	it niepotrzebny dla -4
	101-> 011 konieczny dod	datkowy bit dla -5 ->1011

PTC wykład 1

Odejmowanie binarne

- D dodatnia
- U ujemna
- D U= D+D=D (sprawdzenie przepełnienia)
- D1 D2 = D gdy (D1>D2) lub U gdy (D1<D2)
- U-D= U + U = U (sprawdzenie przepełnienia)

Testy poprawności wyniku dodawania:

- Wynik niepoprawny (przepełnienie, nadmiar) gdy podczas dodawania wartości przeniesienia na najwyższą pozycję i z najwyższej pozycji są różne.
- Wynik niepoprawny gdy nieparzysta liczba jedynek 4 bitów: najstarszych bitów argumentów i wyniku oraz przeniesienia z najstarszego bitu

Dodawanie liczb a przepełnienie

```
0011 (3d)
                                1101 (-3)
+ 0011 (3d)
                              + 1101 (-3)
  0110 (6d) wynik dodatni –
                                1010 (-6) wynik ujemny –
  poprawnie
                                poprawnie
  0101 (5d)
                                1011 (-5)
                              + 1011 (-5)
+ 0101 (5d)
  1010 -(6d) Wynik ujemny
                                0110 (6) wynik dodatni -
  - niepoprawny
                                niepoprawny
```

PTC wykład 1 14

Kody dwójkowe niewagowe

pozycja binarna nie posiada wagi

Kod cyfra	Z nadmiarem 3	Graya	Wattsa	Johnsona	Wskaźników 7 segmentowych
0	0011	0000	0000	00000	0111111 7
1	0100	0001	0001	00001	0000110 2 6
2	0101	0011	0011	00011	1011011 1
3	0110	0010	0010	00111	1001111 3 5
4	0111	0110	0110	01111	1100110 4
5	1000	0111	1110	11111	1101101
6	1001	0101	1010	11110	1111100
7	1010	0100	1011	11100	0000111
8	1011	1100	1001	11000	1111111
9	1100	1101	1000	10000	1100111
			PTC wykład 1		15

PTC wykład 1

Kody dwójkowo-dziesiętne

- Do reprezentacji cyfr dziesiętnych
- 10 cyfr dziesiętnych (0,1,2,3,4,5,6,7,8,9)
 zakodowanych za pomocą ciągu 4 bitów (ciąg ten
 dostarcza 16 kombinacji na 4 bitach) 6
 kombinacji jest niewykorzystanych.

Warianty kodów dwójkowo-dziesiętnych:

- Kody wagowe pozycja binarna posiada przypisaną wagę
- Kody niewagowe pozycja binarna nie posiada wagi

Kody dwójkowo-dziesiętne wagowe

kod	Naturalny NKB		Aikena		
Wagi	8421	2*421	2421	7421	84-2-1
cyfra					
0	0000	0000	0000	0000	0000
1	0001	0001	0001	0001	0111
2	0010	0010	0010	0010	0110
3	0011	0011	0011	0011	0101
4	0100	0100	0100	0100	0100
5	0101	0101	1011	0101	1011
6	0110	0110	1100	0110	1010
7	0111	0111	1101	1000	1001
8	1000	1110	1110	1001	1000
9	1001	1111	1111	1010	1111
		PTC wy	/kład 1		

Kody detekcyjne

kod	1 z 10	2 z 5	2 z 7	Bin z Bitem parzystości
Wagi-> cyfra	9876543210	niewagowy	5043210	8421 BP
0	000000001	00011	0100001	0000 0
1	000000010	00101	0100010	0001 1
2	000000100	01001	0100100	0010 1
3	000001000	10001	0101000	0011 0
4	0000010000	00110	0110000	0100 1
5	0000100000	01010	1000001	0101 0
6	0001000000	10010	1000010	0110 0
7	0010000000	01100	1000100	0111 1
8	0100000000	10100	1001000	1000 1
9	100000000	11000	1010000	1001 0

Kody z kontrolą parzystości i ze stałą liczbą jedynek pozwalają na wykrycie pewnych błędów przy przesyłaniu słów kodowych.

Cyfry dziesiętne kodowane w NKB – kod BCD 8421

- Dziesiętny charakter informacji lecz kodowanie cyfr w NKB
- 2345 (10)= 0010 0011 0100 0101(BCD) 4 pozycje (4 bitowe) cyfr dziesiętnych
- Dodawanie liczb w kodzie BCD realizowane tak jak dodawanie liczb binarnych, lecz:
 - wystąpienie podczas dodawania liczb przeniesienia na pozycję kolejnej cyfry dziesiętnej (kolejne 4 bity) wymaga skorygowania (czyli dodania wartości 6) na tej pozycji, z której przeniesienie wystąpiło
 - wystąpienie wyniku na 4 bitach (jednaj pozycji cyfry dziesiętnej) spoza zakresu (10-15) wymaga skorygowania wyniku czyli dodania wartości 6 na tej pozycji cyfry dziesiętnej, która nie jest poprawna; może wystąpić przeniesienie, które należy uwzględnić na kolejnej pozycji (ale bez korekcji pozycji bieżącej), możliwa również propagacja przeniesienia np. dla liczb 3456 +6545.

Dodawanie w kodzie BCD

Por. Układy cyfrowe Wilkinson 1.3.3

PTC wykład 1 20

Kody alfanumeryczne

- Kody służące do kodowania znaków w systemach cyfrowych, w urządzeniach współpracujących z komputerem, np. drukarki, ekrany alfanumeryczne.
- Przykładami kodów alfanumerycznych są kody: ASCII ISO-7, ISO 8859, Unicode, Windows-1250.
- Kod ASCII ISO-7 7 bitowy pełny zbiór zawiera 128 znaków, pierwsze 33 znaki służą do sterowania systemem drukowania lub wyświetlania, pozostałe znaki to: duże i małe litery, cyfry, znaki przestankowe i inne.

b5 b6 b5 b4 b3 b2 b1	0 0 0	0 0 1	0	0	1	1	1	1
bs b4 b3 b2 b1			1					1
b4 b3 b2 b1	0			1	0	0	1	1
1	The state of the s		0	1	0	1	0	1
0 0 0 0			8					
	NUL	DLE	SPACE ²)	O ²)	@ ¹⁾	P	\1)	Р
0 0 0 1	SOH	DC1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	A	0	a	q
0 0 1 0	STX	DC2	350,030	2	В	R	ь	r
0 0 1 1	ETX	DC3	≠	3	С	S	c	s
0 1 0 0	EOT	STOP	S1)	4	D	T	d	t
0 1 0 1	ENQ	NAK	%	5	E	Ü	e	u
0 1 1 0	ACK	SYN	&	6	F	V	f	V
0 1 1 1	BEL	ETB	-	7	G	W		
1000	BS	CAN	(8	Н	X	g h	W
1 0 0 1	HT	EM)	9	1	Ŷ	i	X
1 0 1 0	LF	SUB	*		1	Z		y
1 0 1 1		ESC	+		K	[1)	İ	1
1 1 0 0	FF	FS	,, T				k	{1) 1)
1 1 0 1		GS		<	L	\1)	1.	
1 1 1 0	so	RS			M]	m	}
1111		US	HO.,	> 7	N	A 1)	n	
2.00 (80 (80))	3	03	1	,	0		0	DEL
HT — tabulacja F — zmiana v	rmacji nagłówka tekstu ekstu ransmisji e dź pozytywn: vrotny, cofar		DLI DC DC: STC NA SYN ETE CAI EM SUE ESC	1 — stei 2 — stei 3 — stei DP — stoi K — odp N — syn B — kor — kor 3 — zasi — prz	rowanie urz rowanie urz rowanie urz p powiedź neg chronizacja niec transmi ważny, anul niec zapisu, tapienie, po ełączenie, z	adzeniem 2 adzeniem 3 atywna sji bloku da owanie koniec nośr	anych nika infol wu znakóv	

Kod ISO-7

PTC wykład 1

Algebra Boole'a *

Narzędzie matematyki (algebra logiki) służąca do opisu i projektowania systemów cyfrowych.

Zmienne boolowskie – mogą przyjąć jedna z dwóch wartości – 0 lub 1 – są to zmienne binarne (jednobitowe)

Podstawowe funkcje algebry Boola –

- Iloczyn logiczny I (AND) "·",, △" (alternatywne oznaczenia)
- Suma logiczna LUB (OR) ,,+",, \cup " (alternatywne oznaczenia)
- Negacja NIE (NOT) "linia nad zmienną" " " (alternatywne oznaczenia)

Funkcja boolowska (logiczna, przełączająca) – jest działaniem na zmiennych boolowskich i przyjmuje wartości ze zbioru {0,1}.

Algebra Boole'a jest zgodna z następującymi postulatami:

^{*} Literatura Wilkinson 2.3 str. 35-53

Postulaty Huntingtona (1)

```
Notacja: Z = \{0,1\} - zbiór wartości
```

a, b – dowolne zmienne binarne

A1 Domknięcie działań: $a + b \subset Z A \cdot B \subset Z$

A2 Elementy stałe: Istnieją takie 0 i 1 : a+0=a i a·1=a

A3 Przemienność: a+b=b+a a·b= b·a

A4 Rozdzielność: $a \cdot (b+c)=a \cdot b+a \cdot c$ $a+(b\cdot c)=(a+b)\cdot (a+c)$ rozdzielność dodawania względem mnożenia

A5 Istnienie negacji: dla a istnieje a': a+a'=1 a·a'=0

Postulaty Huntingtona (2)

Zasada dualności:

Wyrażenie dualne powstanie poprzez zamianę operatorów binarnych i stałych: $+\rightarrow\cdot$, $\cdot\rightarrow$ +, $0\rightarrow1$, $1\rightarrow0$

Wartościowania (prawda, fałsz) wyrażenia prostego i dualnego jest jednakowe.

np wyrażenie proste: a·(b+c)=a·b+a·c

Wyrażenie dualne: $a+(b\cdot c)=(a+b)\cdot(a+c)$

PTC wykład 1

25

Przekształcanie funkcji logicznych

- Dla minimalizacji postaci wyrażeń (funkcji) boolowskich służą tożsamości i twierdzenia algebry boole'a.
- Minimalizacja pozwala na uzyskanie prostszej, tańszej implementacji funkcji – tańsza implementacja ma mniej składników oraz/lub składniki prostsze.

PTC wykład 1 26

Twierdzenia algebry Boole'a

Idempotentność (łac. taki sam) –

$$a+a=a$$
, $a \cdot a=a$

- Jednoznaczność negacji dla kazdego a istnieje tylko jeden element a
- Dominacja dla każdego a $a \cdot 0 = 0$ a+1=1
- Podwójna negacja dla kazdego a zachodzi a = a
- Pochłanianie a+(a·b)= a a·(a+b)= a

Twierdzenia algebry Boole'a

Uproszczenie

$$a + (\overline{a} \cdot b) = a + b \qquad a \cdot (\overline{a} + b) = a \cdot b$$

$$a(1+b) + a'b = a + b(a+a') = a + b$$

- Minimalizacja $a \cdot b + a \cdot \overline{b} = a$ $(a+b) \cdot (a+\overline{b}) = a$
- Łączność (a+b)+c=a+(b+c) (a⋅b) ⋅c=a ⋅(b ⋅c)
- Konsensus (zgoda) $a \cdot b + a \cdot c + b \cdot c = a \cdot b + a \cdot c$ Wystarczy jedno 0 dla b i c

 wystarczy jedno 0 dla b i c $(a+b) \cdot (a+c) \cdot (b+c) = (a+b) \cdot (a+c)$

Prawo de Morgana

$$\overline{a+b+c+...} = \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot \overline{c}$$

$$\overline{a \cdot b \cdot c \cdot ...} = \overline{a} + \overline{b} + \overline{c} +$$

Funkcje logiczne dwóch zmiennychi ich wartości zmienne binarne a b

Wartości	ab	ab	ab	ab	Równanie	Nazwa	Skrót
argumentów	00	01	10	11	funkcji	funkcji	Nazwy
	0	0	0	0	0	Stała Zero	
	0	0	0	1	a∙b	Iloczyn logiczny	AND
	0	0	1	0	a∙b'	Zakaz przez b	
	0	0	1	1	a	Identyczna z a	
	0	1	0	0	a'∙b	Zakaz przez a	
	0	1	0	1	b	Identyczna z b	
	0	1	1	0	(a'·b)+(a·b')	Suma modulo	XOR
Wartości	0	1	1	1	a+b	Suma logiczna	OR
funkcji	1	0	0	0	(a+b)'	Negacja sumy	NOR
	1	0	0	1	(a·b)+(a'·b')	Równoważność	EQU
	1	0	1	0	b'	Negacja b	
	1	0	1	1	a+b'	Implikacja b⇒a	
	1	1	0	0	a'	Implikacja a	
	1	1	0	1	a'+b	Implikacja a⇒b	
	1	1	1	0	(a∙b)'	negacja iloczynu	NAND
	1	1	1	1	1	Stała 1	
					PTC wykład 1		30

Popularne funkcje logiczne

- Szczególnie popularne AND, OR, NAND, NOR, XOR, NOT
- XOR wartość funkcji równa 1 dla różnych argumentów
- Zależności dla XOR (suma wyłaczna) i XNOR (równoważność):
 - $-a\oplus b=a'b+b'a=(a+b)(a'+b')$
 - $-(a \oplus b)'=a' \oplus b=b' \oplus a=ab+a'b'=(a'+b)(a+b')$
 - a ⊕1=a' a ⊕0=a
- Różne interpretacje logiczne wielowejściowych bramek XOR/XNOR. Najczęściej bramka wykrywa nieparzystą liczbę jedynek (XOR) lub parzystą liczbę jedynek XNOR.

PTC wykład 1

31

System funkcjonalnie pełny - SFP

- Zbiór funkcji pozwalający na przedstawienie, wyrażenie każdej innej funkcji logicznej.
- 3 przykłady S.F.P:
 - {NAND},
 - $-\{OR,NOT\},$
 - {AND, NOT},
 - $-\{NOR\}$

Sposoby przedstawiania funkcji logicznych

Tablica prawdy

 $2^n - 1$

Nr kombinacji	$\mathbf{X_0} \mathbf{X_1} \mathbf{X_2} *** \mathbf{X_{n-1}}$	f
0	000***0	
1	000***1	
2		
3		
4		Wartości
5		funkcji
*		

1 1 1 *** 1

np.

nr	Komb. Argum.	Wartość funkcji
0	00	1
1	01	1
2	10	1
3	11	0

- Nr kombinacji wejść, wartości kombinacji wejść, odpowiadające wejściu wartości na wyjściu
- Zawiera wszystkie kombinacje zero-jedynkowe zmiennych niezależnych i odpowiadające martości funkcji

Sposoby przedstawiania funkcji logicznych

- Tablice Karnaugha
- Kombinacji wejść odpowiada pole tablicy, w polu umieszczmy właściwą dla kombinacji wartość.
- Sąsiednie (w poziomie i pionie także cyklicznie) pola tablicy Karnaugha odpowiadają kombinacji argumentów różniącej się jedną wartością.
- Na rysunku zapisano kombinacje wejść nie wartości funkcji funkcji

		a	
b		0	1
	0	00	01
	1	10	11

		ba			
С		00	01	11	10
	0	000	001	011	010
	1	100	101	111	110

Reprezentacja funkcji logicznych za pomocą tablic Karnaugha

 \varnothing - oznaczenie wartości dowolnej na wyjściu

PTC wykład 1 35