♦ Part 9: Dimensionality Reduction

- 透過降維(Dimensionality Reduction)的方法進行特徵萃取(Feature extraction)
- Principal Component Analysis(PCA) \ Linear Discriminant Analysis(LDA) \ kernel PCA
- 一 分別使用 PCA、LDA、kernel PCA 進行特徵萃取後,搭配一個線性模型(這邊是用羅吉斯回歸)進行預測

◇ 為什麼要降維度?

資料的特徵(Feature)太多,會使模型過於複雜,影響訓練速度及效能,且很難透過視覺化 圖形呈現,所以需要進行降維的處理

♦ Feature Selection 和 Feature Extraction 差異

Feature Selection	Feature Extraction
Backward Elimination	PCA
Forward Selection	LDA
Bidirectional Elimination	Kernel PCA
Score Comparison	

- Feature Selection:從特徵集合中挑選一組解釋變量最大的特徵子集,達到降維的效果
- Feature Extraction:將現有特徵進行轉換,建構出維度較低的新特徵

◇ 方法介紹

Principal Component Analysis(PCA)

- 透過降維的方法來進行特徵萃取,適用於處理線性的資料,此方法為 unsupervised,主要是透過某種線性投影,將高維的數據映射到低維的空間中,映射時不考慮數據內的分類 資訊,將數據轉換成各不相關並相互獨立的主成分,藉此能使用較少的數據維度,同時保留住較多的原數據點的特性。

From the m independent variables of your dataset, PCA extracts $p \le m$ new independent variables that explain the most the variance of the dataset, regardless of the dependent variable.

• Linear Discriminant Analysis(LDA)

— 與 PCA 類似,但差別在於此方法為 supervised,在映射的過程中**同時考慮到數據內的分**

類變數,使映射過後的數據按類別區分開

From the n independent variables of your dataset, LDA extracts $p \le n$ new independent variables that separate the most the classes of the dependent variable.

◇ 資料集說明

■ dataset - DataFrame

	1						
Index	Proanthocyanins	Color_Intensity	Hue	OD280	Proline	Customer_Segment	^
0	2.290	5.640	1.040	3.920	1065	1	
1	1.280	4.380	1.050	3.400	1050	1	
2	2.810	5.680	1.030	3.170	1185	1	
3	2.180	7.800	0.860	3.450	1480	1	
4	1.820	4.320	1.040	2.930	735	1	

情境:使用 Wine 資料預測新品種的酒要推薦給哪個 CUSTOMER_SEGMENT, 從現有數據中用

降維的方法找出適合的特徵進行預測

◆ 程式碼

Applying PCA

from sklearn.decomposition import PCA

pca = PCA(n_components = None)

X_train = pca.fit_transform(X_train)

X_test = pca.transform(X_test)

explained_variance = pca.explained_variance_ratio_

Applying LDA

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA

lda = LDA(n_components = None)

X_train = Ida.fit_transform(X_train, y_train)

X_test = Ida.transform(X_test)

- 透過 PCA/LDA 方法找出 Components · Components 的組成是由 feature 萃取而成
- 一開始先將參數設定為 None
- 執行 explained_variance_ratio_後·萃取出來的 Components 會依照解釋變異量大小進行 排序·由操作者依照不同情況·設定百分比變異量閥值(如下圖)

◇ 訓練模型

Fitting Logistic Regression to the Training set

from sklearn.linear_model import LogisticRegression

classifier = LogisticRegression(random_state = 0)

classifier.fit(X_train, y_train)

— 用羅吉斯跑訓練資料集(沒有限制使用哪個模型來跑,只要是線性模型都可以)

◇ 混淆矩陣分析結果

Making the Confusion Matrix

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, y_pred)

Confusion Matrix 主要目的為分析預測結果,並觀測筆數分布狀況,x 軸為預測,y 軸為實際發生狀況,而斜對角代表預測正確筆數,其他區塊皆為異常狀態,從下圖中可觀察出 PCA 有1 筆為異常,而 LDA 全數正確

<Confusion Matrix of PCA>

<Confusion Matrix of LDA>

◇ 方法介紹

Kernel PCA

因為資料難以在線性空間進行分類,利用 Kernel 轉換之後在更高的維度上找到合適的分類
平面,簡單來說,就是在更高維的空間中做 PCA,在更高維的空間裡,把原始數據向不同的方向投影,再進行分類,適用於處理非線性的資料。

◇ 資料集說明

Index	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19.000	19000.000	0
1	15810944	Male	35.000	20000.000	0
2	15668575	Female	26.000	43000.000	0
3	15603246	Female	27.000	57000.000	0

情境:預測使用者是否點擊廣告

◆ 程式碼

Applying Kernel PCA

from sklearn.decomposition import KernelPCA

kpca = KernelPCA(n_components = 2, kernel = 'rbf')

X_train = kpca.fit_transform(X_train)

X_test = kpca.transform(X_test)

在機器學習中高斯徑向基函數核(rbf),是一種表現好且常被使用的核函數。

◇ 混淆矩陣分析結果

