MQE: Economic Inference from Data: Odds and Ends

Claire Duquennois

2020

Odds and Ends

- Non-Standard Standard Errors
 - Robust standard errors
 - Clustered standard errors
 - Newey West Standard Errors
 - Conley Standard errors
- Confidence intervals for prediction

Non-standard standard errors

A standard error estimates the uncertainty around an estimated parameter.

Formally we have

$$se = \sqrt{\widehat{Var(\hat{\beta})}}.$$

Just like calculating point estimates, it is incredibly important to get your standard errors right.

You have to know what you don't know!

- Robust standard errors
- Clustered standard errors

Using the diamonds data set from ggplot2:

knitr::kable(head(diamonds))

carat	cut	color	clarity	depth	table	price	X	у	z
0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43
0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31
0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31
0.29	Premium	- 1	VS2	62.4	58	334	4.20	4.23	2.63
0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75
0.24	Very Good	J	VVS2	62.8	57	336	3.94	3.96	2.48

Regress price on carats and depth.

```
reg1<-felm(price-carat+depth, diamonds)
summary(reg1)</pre>
```

```
##
## Call:
     felm(formula = price ~ carat + depth, data = diamonds)
##
## Residuals:
       Min
                 10
                    Median
                                          Max
## -18238.9 -801.6 -19.6
                               546.3 12683.7
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4045.333 286.205 14.13 <2e-16 ***
## carat
              7765 141
                       14 009 554 28 <2e-16 ***
              -102.165 4.635 -22.04 <2e-16 ***
## depth
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1542 on 53937 degrees of freedom
## Multiple R-squared(full model): 0.8507 Adjusted R-squared: 0.8507
## Multiple R-squared(proj model): 0.8507 Adjusted R-squared: 0.8507
## F-statistic(full model):1.536e+05 on 2 and 53937 DF, p-value: < 2.2e-16
## F-statistic(proj model): 1.536e+05 on 2 and 53937 DF, p-value: < 2.2e-16
```

Cool.

Plot the data to check OLS assumptions:

```
myPlot <- ggplot(data = diamonds, aes(y = price, x = carat)) +
geom_point(color = "gray50", shape = 21)</pre>
```


You should have the econometric heebie jeebies.

Homoskedastic assumption needed for OLS is not valid!

- ▶ The higher the carat, the greater the variance in price.
- ightharpoonup \Rightarrow OLS standard errors are likely to be wrong.

Thankfully all is not lost!

Lets relax the homoskedasticity assumption and allow for the variance to depend on the value of x_i .

We know that

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})^2 \sigma^2}{(\sum_{i=1}^n (x_i - \bar{x})^2)^2}$$

With heteroskedasticity σ^2 is no longer constant and becomes a function of the particular value of x_i an observation has, so

$$Var(u_i|x_i) = \sigma_i^2$$

Where are we going to find all these σ_i^2 for each individual observation?

Eicker, Huber and White to the rescue!

Econometricians Eicker, Huber and White figured out a way to do this by basically using the square of the estimated residual of each observation, \hat{u}_i^2 , as a stand-in for σ_i^2 .

With this trick, a valid estimator for $Var(b\hat{eta}_1)$, with heteroskedasticity of **any** form (including homoskedasticity), is

$$Var(\hat{\beta}_1) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 \hat{u}_i^2}{(\sum_{i=1}^{n} (x_i - \bar{x})^2)^2}$$

We commonly call the resulting standard errors "robust", or "heteroskedasticity-robust".

How can we find these in R?

```
reg1<-felm(price~carat+depth, diamonds)
summary(reg1, robust=TRUE)
##
## Call:
     felm(formula = price ~ carat + depth, data = diamonds)
##
## Residuals:
       Min
                1Q Median
                                          Max
## -18238 9 -801 6 -19 6
                               546.3 12683.7
##
## Coefficients:
              Estimate Robust s.e t value Pr(>|t|)
## (Intercept) 4045.333
                        369.176 10.96 <2e-16 ***
## carat
           7765.141
                       25.105 309.31 <2e-16 ***
            -102.165
                       5.946 -17.18 <2e-16 ***
## depth
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1542 on 53937 degrees of freedom
## Multiple R-squared(full model): 0.8507 Adjusted R-squared: 0.8507
## Multiple R-squared(proj model): 0.8507 Adjusted R-squared: 0.8507
## F-statistic(full model, *iid*):1.536e+05 on 2 and 53937 DF, p-value: < 2.2e-16
## F-statistic(proj model): 4.878e+04 on 2 and 53937 DF, p-value: < 2.2e-16
```

Or if you want to put them in a stargazer table:

```
stargazer(reg1, type = "latex" , se = list(reg1$rse), header=FALSE)
```

Table 2

	Dependent variable:		
	price		
carat	7,765.141***		
	(25.105)		
depth	-102.165***		
	(5.946)		
Constant	4,045.333***		
	(369.176)		
Observations	53,940		
R^2	0.851		
Adjusted R ²	0.851		
Residual Std. Error	1,541.649 (df = 53937)		
Note:	*p<0.1; **p<0.05; ***p<0.01		

Note: robust standard errors are larger than regular standard errors, and thus more conservative (which is the right thing to be... you want to know what you don't know).

Econometricians Haiku

T-stats looks too good

Try cluster standard errors significance gone.

from Angrist and Pischke 2008

Suppose that every observation belongs to (only) one of G groups.

The assumption we make when we cluster:

- there is no correlation across groups
- we allow for arbitrary within-group correlation.

Example: consider individuals within a village.

It may be reasonable to think that individuals' error terms are:

- correlated within a village
- aren't correlated across villages

I will spare you the matrix math needed to dive deeper into this.

Suffice to say that "cluster-robust" estimates allow for a more complicated set of correlations to exist within observations within a cluster.

One thing to be aware of though is that you will need to have a fairly large number of clusters (40+) for the estimate to be credible.

Clustering in R:

I use the NOxEmissions dataset from the robustbase package.

- ▶ hourly NO_x readings, including NO_x concentration, auto emissions and windspeed.
- use the observation date as our cluster variable.

This allows for arbitrary dependence between observations in the same day, and zero correlation across days.

Is this reasonable? ... Maybe. But we'll go with it for now:

Table 3

	Dependent variable:				
	LNOx				
	(1)	(2)			
sqrtWS	-0.864***	-0.864***			
	(0.020)	(0.048)			
Constant	5.559***	5.559***			
	(0.029)	(0.065)			
Note:	Vote: *p<0.1; **p<0.05; ***p<0				

Here, the regular standard errors are smaller than the clustered standard errors.

This need not necessarily be the case and depends on the correlation between observations within a cluster.

Newey West Standard Errors

For time series data.

Conley Standard Errors

For spatial data.

Confidence intervals for predictions

You know how to "predict" a value of the dependent variable, y, given certain values of the independent variables.

This prediction is just a guess, with uncertainty.

We can construct a confidence interval to give a range of possible values for this prediction.

There are two kinds of predictions we can make:

- ▶ A confidence interval for the **average** y given $x_1, x_2, ..., x_k$.
- ▶ A confidence interval for a **particular** y given $x_1, x_2...x_k$.

Confidence intervals for predictions

Using Wooldridge's birth weight data:

$$bweight = \beta_0 + \beta_1 Ifaminc + \beta_2 meduc + \beta_3 parity + u$$

- bwght is birth weight in ounces,
- ▶ Ifaminc is the log of family income in \$1000s,
- meduc is the education of the mother in years,
- parity is the birth order of the child.

Confidence intervals for predictions

Estimating this equation in R, we get the following results:

```
#using the bught data from the wooldridge package
reg1<-lm(bwght~lfaminc+motheduc+parity, bwght)
summary(reg1)
##
## Call:
## lm(formula = bwght ~ lfaminc + motheduc + parity, data = bwght)
##
## Residuals:
              1Q Median 3Q
      Min
                                    Max
## -94 533 -11 888 0 779 13 136 151 477
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 105.5652 3.3666 31.356 < 2e-16 ***
## lfaminc
             2.1313 0.6506 3.276 0.00108 **
## motheduc 0.3172 0.2520 1.259 0.20829
## parity
           1.5261
                         0.6119 2.494 0.01275 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.21 on 1383 degrees of freedom
    (1 observation deleted due to missingness)
## Multiple R-squared: 0.01633, Adjusted R-squared: 0.0142
## F-statistic: 7.654 on 3 and 1383 DF. p-value: 4.482e-05
```

Our model gives us the expected value:

 $E[bweight|faminc, meduc, parity] = \beta_0 + \beta_1 log(faminc) + \beta_2 meduc + \beta_3 parity$ and our regression gives us an estimate of this:

 $\hat{\mathcal{E}}[\mathit{bweight}|\mathit{faminc},\mathit{meduc},\mathit{parity}] = \hat{y} = \hat{eta}_0 + \hat{eta}_1 log(\mathit{faminc}) + \hat{eta}_2 meduc + \hat{eta}_3 parity$

 \hat{y} is the expected value of y given the particular values for the explanatory variables.

Say we are interested in a confidence interval for the **average birthweight** for babies with:

- ightharpoonup a family income of \$14,500 (ln(14.5)=2.674),
- ▶ mothers with 12 years of education,
- 2 older siblings (parity=3).

```
\begin{split} \hat{E}[\textit{bweight} | \textit{faminc} &= 14.5, \textit{meduc} = 12, \textit{parity} = 3] = 105.66 + 2.13 \textit{ln}(\textit{faminc}) + 0.317 \textit{meduc} + 1.53 \textit{parity} \\ \hat{y}_{\textit{faminc} = 14.5, \textit{meduc} = 12, \textit{parity} = 3} &= 105.66 + 2.13 (2.674) + 0.317 (12) + 1.53 (3) \\ &= 119.75 \textit{ounces} \end{split}
```

How do we find a standard error for \hat{y} at these particular values of the explanatory variables?

This standard error is complicated because $\widehat{bweight}$ is a function of our $\hat{\beta}$'s which are all random variables.

To avoid this computation, we want to transform our data.

Recall that we have the following regression in mind

$$bweight = \beta_0 + \beta_1 Ifaminc + \beta_2 meduc + \beta_3 parity + u$$

Then

$$\hat{eta}_0 = \hat{E}(\textit{bweight}|\textit{Ifaminc} = 0, \textit{meduc} = 0, \textit{parity} = 0)$$

If we modify the regression by subtracting our particular values from the independent variables, we get

$$\textit{bweight} = \beta_0 + \beta_1(\textit{Ifaminc} - 2.674) + \beta_2(\textit{meduc} - 12) + \beta_3(\textit{parity} - 3) + u$$

Then

$$\hat{\beta}_0 = \hat{E}(bweight|lfaminc = 2.674, meduc = 12, parity = 3).$$

The new intercept is the predicted birthweight for babies with the particular values we are interested in.

If we run this regression in R, we can then grab the standard errors for the intercept.

So step by step we need to:

- 1) Generate new variables: $\tilde{x}_j = x_j \alpha_j$
- 2) Run the regression: $y = \tilde{\beta}_0 + \tilde{\beta}_1 \tilde{x}_1 + ... + \tilde{\beta}_k \tilde{x}_k + \tilde{u}$
- 3) Then $\hat{E}[y|x_1 = \alpha_1, ..., x_k = \alpha_k] = \tilde{\beta}_0$
- 4) Plug these values into the formula for confidence intervals and interpret.

```
#Step 1: generate new variables
bwght$lfaminc_0<-bwght$lfaminc-2.674
bwght$motheduc 0<-bwght$motheduc-12
bwght$parity_0<-bwght$parity-3
#step 2: run the new regression
reg2<-lm(bwght~lfaminc 0+motheduc 0+parity 0.bwght)
summary(reg2)
##
## Call:
## lm(formula = bwght ~ lfaminc_0 + motheduc_0 + parity_0, data = bwght)
##
## Residuals:
              1Q Median 3Q
      Min
## -94.533 -11.888 0.779 13.136 151.477
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 119.6491 1.0066 118.864 < 2e-16 ***
## lfaminc_0 2.1313 0.6506 3.276 0.00108 **
## motheduc_0 0.3172 0.2520 1.259 0.20829
## parity_0 1.5261
                          0.6119 2.494 0.01275 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.21 on 1383 degrees of freedom
    (1 observation deleted due to missingness)
## Multiple R-squared: 0.01633, Adjusted R-squared: 0.0142
## F-statistic: 7.654 on 3 and 1383 DF. p-value: 4.482e-05
```

The 95% confidence interval for the average birthweight for babies given a family income of \$14,500, a mother with 12 years of education and with 2 older siblings is:

[119.64 - 1.96(1.007), 119.64 + 1.96(1.007)] = [117.6653, 121.6158]

A confidence interval for a particular average is not the same as a confidence interval for a particular individual.

For individual observations, we must account for the variance in the unobserved error, u_i , which measures our ignorance of the unobserved factors that affect y_i .

We want a confidence interval for $bweight_{i=1}$, the birthweight of baby i=1, with

$$bweight_{i=1} = \beta_0 + \beta_1 Ifaminc_{i=1} + \beta_2 meduc_{i=1} + \beta_3 parity_{i=1} + u_{i=1}$$

Our best prediction of $bweight_{i=1}$ is $\widehat{bweight}_{i=1}$ where

$$\widehat{\text{bweight}}_{i=1} = \hat{\beta}_0 + \hat{\beta}_1 \text{Ifaminc}_{i=1} + \hat{\beta}_2 \text{meduc}_{i=1} + \hat{\beta}_3 \text{parity}_{i=1}$$

There is some error, $\hat{u}_{i=1}$, associated with using $\hat{bweight}_{i=1}$ to predict $bweight_{i=1}$ where

$$\begin{split} \hat{u}_{i=1} &= \textit{bweight}_{i=1} - \textit{bweight}_{i=1} \\ &= \left(\beta_0 + \beta_1 \textit{Ifaminc}_{i=1} + \beta_2 \textit{meduc}_{i=1} + \beta_3 \textit{parity}_{i=1} + u_{i=1}\right) \\ &- \left(\hat{\beta}_0 + \hat{\beta}_1 \textit{Ifaminc}_{i=1} + \hat{\beta}_2 \textit{meduc}_{i=1} + \hat{\beta}_3 \textit{parity}_{i=1}\right) \end{split}$$

Finding the expected value, we get:

$$\begin{split} E[\hat{u}_{i=1}] &= E[\textit{bweight}_{i=1} - \textit{bweight}_{i=1}] \\ &= \left(\beta_0 + \beta_1 \textit{Ifaminc}_{i=1} + \beta_2 \textit{meduc}_{i=1} + \beta_3 \textit{parity}_{i=1} + E[u_{i=1}]\right) \\ &- \left(E[\hat{\beta}_0] + E[\hat{\beta}_1] \textit{Ifaminc}_{i=1} + E[\hat{\beta}_2] \textit{meduc}_{i=1} + E[\hat{\beta}_3] \textit{parity}_{i=1}\right) \\ &= 0 \end{split}$$

Finding the variance we get

$$\begin{aligned} Var(\hat{u}_{i=1}) &= Var(bweight_{i=1} - bweight_{i=1}) \\ &= Var(\beta_0 + \beta_1 Ifaminc_{i=1} + \beta_2 meduc_{i=1} + \beta_3 parity_{i=1} + u_{i=1} - bweight_{i=1}) \\ &= Var(bweight_{i=1}) + Var(u_{i=1}) \\ &= Var(bweight_{i=1}) + \sigma^2 \\ \widehat{Var(\hat{u}_{i=1})} &= Var(bweight_{i-1}) + \hat{\sigma}^2 \end{aligned}$$

There are two sources of variation in $\hat{u}_{i=1}$.

- ▶ the sampling error in $\widehat{bweight}_{i=1}$ which arises because we have estimated the population parameters β .
- ▶ the variance of the error in the population $(u_{i=1})$.

We can compute:

- ► $Var(\widehat{bweight}_{i=1})$ exactly the way we did before.
- ightharpoonup $\hat{\sigma}^2$ from our regression output.

The 95% confidence interval for $bweight_{i=1}$ is then

$$\hat{y} \pm 1.96 * se(\hat{u}_{i=1})$$

Steps in computing a confidence interval for a particular y when $x_j = \alpha_j$:

- 1) Generate new variables: $\tilde{x}_j = x_j \alpha_j$
- 2) Run the regression: $y = \tilde{\beta_0} + \tilde{\beta_1}\tilde{x_1} + ... + \tilde{\beta_k}\tilde{x_k} + \tilde{u}$
- 3) Then $\hat{E}[y|x_1 = \alpha_1, ..., x_k = \alpha_k] = \tilde{\beta}_0$ and the standard error of the estimate is $se(\tilde{\beta}_0)$
- 4) Get an estimate for the variance of $\hat{u} = \hat{\sigma}^2$ from the R output
- 5) compute the standard error: $\sqrt{se(\tilde{\beta}_0)^2 + \hat{\sigma}^2}$
- Plug these values into the formula for confidence intervals and interpret.

```
#Step 1: generate new variables
bwght$1faminc_0<-bwght$1faminc_0<-for4
bwght$motheduc_0<-bwght$motheduc-12
bwght$parity_0<-bwght$parity-3

#step 2: run the new regression
reg2<-lm(bwght-lfaminc_0+motheduc_0+parity_0,bwght)
summary(reg2)</pre>
```

```
##
## Call:
## lm(formula = bwght ~ lfaminc 0 + motheduc 0 + parity 0, data = bwght)
##
## Residuals:
##
     Min
             10 Median
                           30
                                 Max
## -94.533 -11.888 0.779 13.136 151.477
##
## Coefficients:
##
            Estimate Std. Error t value Pr(>|t|)
## lfaminc_0 2.1313 0.6506 3.276 0.00108 **
## motheduc 0 0.3172 0.2520 1.259 0.20829
## parity_0 1.5261 0.6119 2.494 0.01275 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.21 on 1383 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.01633. Adjusted R-squared: 0.0142
## F-statistic: 7.654 on 3 and 1383 DF, p-value: 4.482e-05
```

```
#step 4: get the estimate of the variance
summary(lm(bwght~lfaminc_0+motheduc_0+parity_0,bwght))$sigma^2
```

[1] 408.5987

The 95% confidence interval for a particular baby's birthweight with:

- ► family income of \$14,500 (ln(14.5=2.674)),
- a mother with 12 years of education
- 2 older siblings is:

$$SE = \sqrt{se(\tilde{\beta}_0)^2 + \hat{\sigma}^2} = \sqrt{(1.007^2) + 408.59} = 20.239$$

$$CI = [119.64 - 1.96 * (20.239); 119.64 + 1.96 * (20.239)]$$

$$= [79.972; 159.308]$$