院試過去問でわからなかったところの教科書まとめ

照屋佑喜仁*

2025年4月21日

院試に向けて自分用まとめ 順番は適当

目次

1	積分	1
1.1	テクニック	1
1.2	面積・長さ	1
2	線形代数	2
2.1	行列	2

1 積分

1.1 テクニック

Remark 1.1 $(\cos^2 x$ などの積分). 三角関数の累乗の積分は 2 倍角などで次数を下げるとうまくいくことがある.

1.2 面積・長さ

1.2.1 極座標

Definition (曲領域の面積). 極座標で $r=f(\theta)$ なる曲線と 2 直線 $\theta=a, \theta=b(a < b)$ とで囲まれる領域を曲領域という.

その面積Sを

$$S = \frac{1}{2} \int_a^b r^2 d\theta = \frac{1}{2} \int_a^b f(\theta)^2 d\theta$$

1.2.2 長さ

Definition. 閉曲線 C

$$x = x(t), y = y(t) \quad \alpha \le t \le \beta$$

^{*} 参考:斎藤微積

の長さ $\ell(C)$ は次で定める

$$\ell(C) = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx(t)}{dt}\right)^2 + \left(\frac{dy(t)}{dt}\right)^2} dt$$

特に, $t = x (a \le x \le b), y = f(x)$ で表される曲線の長さは

$$\int_{a}^{b} \sqrt{1 + \{f'(x)\}^2} dt$$

2 線形代数

2.1 行列

Theorem 2.1. 冪零行列の固有値は0のみ

Remark 2.2. 固有ベクトルは 0 では無い (定義) (あたりまえ)

Theorem 2.3. B を正則行列とすると, $x \neq 0 \implies Bx \neq 0$ 対偶を取るとわかる

Theorem 2.4. 実対称行列は直行行列によって対角化可能である. 証明はやばいかもしれない

2.1.1 一次独立

Theorem 2.5. 行列 A の階数 (rank) は、A の一次独立な列(行)ベクトルの最大数と一致する.

Theorem 2.6. $a_1 \cdots a_n$ が 1 次独立であることと $|a_1 \cdots a_n| \neq 0$ は同値. これは 1 次独立の定義と連立方程式が自明な解しか持たないこと,正則と行列式の関係を考えれば良い.