$$(1) \quad (2) \quad \times [n] = [cos(+ \frac{3}{10} n)] = \times [n + (1)] = cos(+ \frac{3}{10} (n+1))$$

$$= \frac{(82) \left(11 \cdot \frac{3}{10} + 11 \cdot \frac{3}{10} \right)}{(20)(40)(60)}$$

b).
$$\chi[N] = COS(7.2.T.N)$$
 $\chi[N+N] = COS(7.2.T.N+7.2.T.N)$
 $N = 10$
 $N = 5$

$$X \{u+N\} = cos(3.4)$$
 $X \{u+N\} = sin(3.4)$
 $X \{u+N\} = sin(3.4)$
 $X \{u+N\} = sin(3.4)$

c).
$$X[n] = Sim(3m)$$

$$X[n+M] = Sim(3m+3M)$$

$$X[N+N] = \sin\left(\frac{1}{2} + \cos\left(\frac{3}{4}\right)\right)$$

$$X[N+N] = \sin\left(\frac{1}{2} + \frac{1}{2}\right) + \cos\left(\frac{3}{4} + \frac{3}{4}\right)$$

$$2K_{2}T$$

$$2K_{2}T$$

$$N_{2} = 4$$

$$X[M] = \overline{SM} \left(\frac{||M|}{2} \right) + B \left(\frac{||M|}{3} \right)$$

$$N_1 = 4 \qquad N_2 = 6$$

$$(2) \quad \chi_{\alpha}(t) = (1 + 0.5 \cdot \cos(400 \text{ T} t)) \cdot \cos(8000 \cdot \text{T} \cdot t)$$

$$2 \text{T} = \frac{1}{2} t$$

$$= \frac{1}{2} = 4000 \text{ Hz}$$

$$(0) a \cdot (0) b = (0) \left(a + b \right) + (0) \left(a - b \right)$$

$$= \cos(8000Tt) + 0.5 \cos(400Tt) \cdot \cos(8000Tt)$$

$$= \cos(8000Tt) + 0.5 \frac{1}{2}\cos(8400Tt) + 0.5 \cdot \frac{1}{2}\cos(7600Tt)$$

$$\frac{\chi(n)-2}{t} \rightarrow x. t_s = \frac{m}{t_s}$$

R). Reconstruct:
$$m \rightarrow t \cdot f_{s}_{g000}$$

 $x_{n}(t) = cos(T t \cdot 8000) + 0.25 cos(2T (-0.475) - 8000 t) + 0.25 cos($\frac{7.6}{8}$ T t · 8000)$