

Ayudantía 3 - Satisfactibilidad y modelacíon

Hector Núñez, Paula Grune, Manuel Irarrázaval

Resumen

- Conceptos importantes de lógica proposicional:
 - Tautología: Una fórmula es una tautología si su valor de verdad es siempre 1, para cualquier valuación.
 - Contradicción: Una fórmula es una contradicción si su valor de verdad es siempre 0, para cualquier valuación.
 - Forma normal conjuntiva (CNF): Una fórmula está en forma normal conjuntiva si es una conjunción de disyunciones de literales. Es decir, es de la forma $C_1 \wedge C_2 \wedge \ldots \wedge C_k$, donde cada C_i es una disyunción de literales, es decir, $C_i = (l_{i1} \vee \ldots \vee l_{iki})$.
 - Forma normal disyuntiva (DNF): Una fórmula está en forma normal disyuntiva si es una disyunción de conjunciones de literales. Es decir, es de la forma $B_1 \vee B_2 \vee \ldots \vee B_k$, donde cada B_i es una conjunción de literales, es decir, $B_i = (l_{i1} \wedge \ldots \wedge l_{iki})$.
- Satisfacibilidad: Un conjunto de fórmulas Σ es satisfacible si existe una valuación σ tal que $\sigma(\Sigma) = 1$. En caso contrario, Σ es inconsistente.

1. Funcionalidad completa

Demuestre que el conectivo ↑ (también conocido como NAND) es funcionalmente completo. Su tabla de verdad es la siguiente:

p	$\mid q \mid$	$p \uparrow q$
0	0	1
0	1	1
1	0	1
1	1	0

2. DNF y CNF

Encuentre fórmulas en DNF y CNF que sean lógicamente equivalentes a $(p \lor q) \to (r \leftrightarrow q)$.

3. Equivalencia lógica e inconsistencia

Demuestre que $\Sigma = \{p \Leftrightarrow q, p \veebar q\}$, con ' \veebar ' la disyunción exclusiva, es inconsistente.

Observación: La disyunción exclusiva es similar a la disyunción, la única diferencia es que cuando los dos valores $(p \ y \ q)$ son verdad, esta es falsa.

Tabla de verdad de la disyunción exclusiva:

$$\begin{array}{c|cccc} p & q & p \veebar q \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

4. Modelación

Considere M médicos, P pabellones y C cirugías agendadas para un día dado. Queremos asignar a los médicos disponibles a las distintas cirugías, suponiendo que el día tiene 24 bloques de 1 hora, durante los cuales los pabellones están disponibles y que las cirugías duran una cantidad entera de horas dada por T_c para cada cirugía c, con $1 \le c \le C$. Además, contamos con una tabla de compatibilidad cirugía-pabellón. Para cada cirugía c, con $1 \le c \le C$, y pabellón p, con $1 \le p \le P$, definimos:

$$K_{c,p} := \begin{cases} 1 & \text{si la cirug\'ia } c \text{ puede ser realizada en el pabell\'on } p \\ 0 & \text{en caso contrario} \end{cases}$$

Para construir una fórmula φ tal que φ sea satisfactible si y sólo si existe una calendarización adecuada de todas las cirugías, considere las siguientes variables proposicionales:

- $x_{m,c,p,t}$: Será verdadera si el médico m realiza la cirugía c en el pabellón p durante la hora t.
- $k_{c,p}$: Deberá representar nuestras constantes $K_{c,p}$.

Modele las siguientes restricciones en lógica proposicional:

- (a) Inicialización de las variables $k_{c,p}$.
- (b) Las cirugías solo pueden ser realizadas en pabellones adecuados para ellas.
- (c) Los médicos solo pueden ser asignados a una cirugía a la vez.
- (d) Si un médico es asignado a una cirugía, debe seguir asignado a la cirugía durante toda su duración.
- (e) Si un médico es asignado a una cirugía, no podrá realizar otra cirugía por al menos 8 horas desde el término de la cirugía.
- (f) Todas las cirugías deben tener exactamente un médico asignado durante su duración.