Particle spectrograph

Wave operator and propagator

$\tau_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	$-\frac{i}{k r_5 + 2 k^3 r_5}$	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	0	$\frac{6k^2r_5+t_1}{(1+2k^2)^2r_5t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2} \; (k^2 \; r_5 + 2 \; k^4 \; r_5)}$	$\frac{6 k^2 r_5 + t_1}{2 (k+2 k^3)^2 r_5 t_1}$	0	$-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 r_5}$	$-\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$	0	$\frac{i}{k r_5 + 2 k^3 r_5}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}$		$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$\frac{\sqrt{2}}{t_1 + k^2 t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$_{1}^{\#1}+^{\alpha\beta}$	$r_{1}^{#2} + \alpha \beta$	$\frac{1}{1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_{1}^{#2} + ^{\alpha}$

$S_{F} == \begin{cases} S_{F} == \\ \iiint \left(\frac{1}{6} \left(-2 t_{1} \omega_{\kappa}^{\alpha \prime} \omega_{\kappa \alpha}^{\ \ \kappa} - 6 t_{1} \omega_{\kappa \lambda}^{\ \ \kappa \lambda} + 6 f^{\alpha \beta} t_{\alpha \beta} + 6 \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} - 6 r_{5} \partial_{\nu} \omega^{\kappa \lambda}_{\kappa} + 6 r_{5} \partial_{\mu} \omega_{\lambda}^{\alpha} \partial_{\mu} \omega^{\beta \kappa \lambda}_{\lambda} - 6 r_{5} \partial_{\mu} \omega_{\lambda}^{\alpha} \partial_{\mu} \omega^{\kappa \lambda \beta}_{\lambda} + 6 r_{5} \partial_{\mu} \omega_{\lambda}^{\alpha} \partial_{\mu} \omega^{\beta \kappa}_{\lambda} - 6 r_{5} \partial_{\mu} \omega_{\lambda}^{\alpha}_{\lambda} \partial_{\mu} \omega^{\kappa \lambda \beta}_{\lambda} + 6 r_{5} \partial_{\mu} \omega_{\lambda}^{\alpha}_{\lambda} \partial_{\mu} \omega^{\kappa \lambda}_{\lambda} + 6 r_{5} \partial_{\mu} \omega^{\kappa \lambda}_{\lambda} \partial_{\mu} \omega^{\kappa \lambda}_{\lambda} + 6 r_{5} \partial_{\mu} \omega^{\kappa \lambda}_{\lambda} \partial_{\mu} \omega^{\kappa \lambda}_{\lambda} + 2 r_{5} \omega^{\kappa \lambda}_{\lambda} \partial_{\mu} \psi^{\kappa \lambda}_{\lambda} + 2 r_{5} \omega^{\kappa \lambda}_{\lambda} \partial_{\mu}$
$\iiint \left(\frac{1}{6} \left(-2 t_1 \omega_{\kappa \alpha}^{\ \alpha'} \omega_{\kappa \alpha}^{\ \kappa'} - 6 t_1 \omega_{\kappa \lambda}^{\ \kappa'} + 6 f^{\alpha \beta} \tau_{\alpha \beta} + 6 \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} - 6 r_5 \partial_{\nu} \omega^{\kappa \lambda}_{\kappa} \right) \right.$ $ \left. \partial' \omega_{\lambda}^{\ \alpha} - 6 r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} + 6 r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} - 6 r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \beta} + \right.$ $ 12 r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \beta} - 3 t_1 \partial^{\alpha} f_{\beta \kappa} \partial^{\kappa} f_{\alpha}^{\ \beta'} - 3 t_1 \partial^{\alpha} f_{\kappa \beta} \partial^{\kappa} f_{\alpha}^{\ \beta'} - \right.$ $ 3 t_1 \partial^{\alpha} f^{\lambda}_{\ \kappa} \partial^{\kappa} f_{\alpha \lambda} + 2 t_1 \omega_{\kappa \alpha}^{\ \alpha} \partial^{\kappa} f'_{\ \mu} + 2 t_1 \omega_{\kappa \lambda}^{\ \lambda} \partial^{\kappa} f'_{\ \mu} + 2 t_1 \omega_{\kappa \lambda}^{\ \lambda} \partial^{\kappa} f'_{\ \mu} + 2 t_1 \omega_{\kappa \lambda}^{\ \lambda} \partial^{\kappa} f'_{\ \mu} + 4 t_1 \partial^{\alpha} f_{\kappa \alpha} \partial^{\kappa} f'_{\ \mu} - \right.$
$\partial' \omega_{\lambda}^{\alpha} - 6r_{5} \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} + 6r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} - 6r_{5} \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} +$ $12r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} - 3t_{1} \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\theta} - 3t_{1} \partial^{\alpha} f_{\kappa \theta} \partial^{\kappa} f_{\alpha}^{\theta} -$ $3t_{1} \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\alpha \lambda} + 2t_{1} \omega_{\kappa \alpha}^{\alpha} \partial^{\kappa} f'_{\mu} + 2t_{1} \omega_{\kappa \lambda}^{\lambda} \partial^{\kappa} f'_{\mu} + 4t_{1} \partial^{\alpha} f_{\kappa \alpha}^{\mu} \partial^{\kappa} f'_{\mu} -$
$12r_5\partial_\theta\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - 3t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_\alpha^{\ \theta} - 3t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_\alpha^{\ \theta} - 3t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_\alpha^{\ \theta} - 3t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\kappa\alpha}^{\ \lambda} + 2t_1\omega_{\kappa\alpha}^{\ \alpha}\partial^\kappa f_{\kappa\alpha}^{\ \prime} + 2t_1\omega_{\kappa\lambda}^{\ \lambda}\partial^\kappa f_{\kappa\lambda}^{\ \prime} + 4t_1\partial^\alpha f_{\kappa\alpha}\partial^\kappa f_{\kappa\alpha}^{\ \prime} - 3t_1\partial^\alpha f_{\kappa\alpha}\partial^\kappa f_{\kappa\alpha}^{\ \prime} + 2t_1\omega_{\kappa\alpha}^{\ \alpha}\partial^\kappa f_{\kappa\lambda}^{\ \prime} + 2t_1\omega_{\kappa\lambda}^{\ \lambda}\partial^\kappa f_{\kappa\lambda}^{\ \prime} + 2t_1\omega_{\kappa\alpha}^{\ \lambda}\partial^\kappa f_{\kappa\lambda}^{\ \prime} + 2t_1\omega_{\kappa\lambda}^{\ \lambda}\partial^\kappa f_{\kappa\lambda}^{\ \lambda}\partial^\kappa f_{\kappa\lambda}^{\ \lambda}\partial^\kappa f_{\kappa\lambda}^{\ \lambda} + 2t_1\omega_{\kappa\lambda}^{\ \lambda}\partial^\kappa f_{\kappa\lambda}^{\ \lambda}\partial^\kappa f_{\kappa\lambda}^{\ \lambda}\partial^\kappa f_{\kappa\lambda}^{\ \lambda} + 2t_1\omega_{\kappa\lambda}^{\ \lambda}\partial^\kappa f_{\kappa\lambda}^{\ \lambda}\partial^\kappa f_{\kappa\lambda}^{\ \lambda}\partial^\kappa f_{\kappa\lambda}^{\ \lambda} + 2t_1\omega_{\kappa\lambda}^{\ \lambda}\partial^\kappa f_{\kappa\lambda}^{\ \lambda}\partial^\kappa f_{\kappa\lambda}^{\ \lambda}\partial^\kappa f_{\kappa\lambda}^{\ \lambda} + 2t_1\omega_{\kappa\lambda}^{\ \lambda}\partial^\kappa f_{\kappa\lambda}^{\ \lambda}\partial^\kappa f_{\kappa\lambda}^{\ \lambda}\partial^\kappa f_{\kappa\lambda}^{\ \lambda} + 2t_1\omega_{\kappa\lambda}^{\ \lambda}\partial^\kappa f_{\kappa\lambda}^{\ \lambda}\partial^\kappa$
$3t_1\partial^{\alpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\lambda} + 2t_1\omega_{\kappa\alpha}^{\alpha}\partial^{\kappa}f'_{\prime} + 2t_1\omega_{\kappa\lambda}^{\lambda}\partial^{\kappa}f'_{\prime} + 4t_1\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{\prime} -$
$2t_1\partial_{\kappa}f^{\lambda}_{\lambda}\partial^{\kappa}f^{\prime}_{\prime}+12t_1\omega_{\prime\kappa\theta}\partial^{\kappa}f^{\prime\theta}-2t_1\omega_{\prime\alpha}\partial^{\kappa}f^{\prime}_{\kappa}-2t_1\omega_{\prime\lambda}\partial^{\kappa}f^{\prime}_{\kappa}+$
$3t_1\partial^\alpha f^\lambda_{\kappa}\partial^\kappa f_{\lambda\alpha} + 3t_1\partial_\kappa f_{\lambda}^{\lambda}\partial^\kappa f_{\lambda}^{\theta} + 3t_1\partial_\kappa f^\lambda_{\theta}\partial^\kappa f_{\lambda}^{\theta} - 2t_1\partial^\alpha f^\lambda_{\alpha}\partial^\kappa f_{\lambda\kappa} +$
$6r_5\partial_{lpha}\omega_{\lambda}^{a}_{}\partial^{\lambda}\omega^{\theta\kappa}_{\kappa}-6r_5\partial_{ heta}\omega_{\lambda}^{a}_{}\partial^{\lambda}\omega^{\theta\kappa}_{}))[t,x,y,z]dzdydxdt$

	-	$\sigma_{2}^{#1}$	αβ	$ au_{2}^{\#1}$	αβ	$\sigma_{2}^{\#1}$	αβχ			ω	$p_{2}^{\#1}$	$f_2^{\#}$	1 ⁺ αβ	$\omega_{2}^{\#1}$ α	βχ	
$\sigma_{2}^{\#1}$	$+^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2}$		$-\frac{2i\gamma}{(1+2k)}$		0		$\omega_2^{\#1}$	$\dagger^{\alpha\beta}$		<u>t</u> 1 2		$\frac{kt_1}{\sqrt{2}}$	0		
$ au_2^{\#1}$	$+^{\alpha\beta}$	$\frac{2i\sqrt{1+2k^2}}{(1+2k^2)^2}$	$\frac{\overline{2} k}{(2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2}$	$\frac{2}{(t_1)^2 t_1}$	0		$f_{2}^{#1}$	$\dagger^{\alpha\beta}$		<u>i kt</u> 1 √2	k^2	t_1	0		
$\sigma_2^{\#1}$	$\dagger^{\alpha\beta\chi}$	0		0		$\frac{2}{t_1}$	($\omega_{2}^{\#,1}$ †	αβχ		0	()	<u>t</u> 1 2		
$f_{1^{ ext{-}}lpha}^{\#2}$	0	0	0	<u>i kt1</u> 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$	$f_{0+}^{\#2} \omega_{0-}^{\#1}$			0 0	0 0	0 -t1			
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0	$f_{0}^{#1}$			0	0	0			$\sigma_{0^{+}}^{\#1} \dagger \tau_{0^{+}}^{\#1} \dagger$
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	1 <u>7</u>	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	$\omega_{0+0}^{\#1}$	(,)#1+		$f_0^{#1} + 0$	$f_0^{#2} + 0$	$\omega_{0}^{\#1} \uparrow 0$			$ au_{0}^{\#2} + \\ \sigma_{0}^{\#1} + \\$
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$k^2 r_5 + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \vec{l} kt_1		nerators	icities						
$\omega_{1}^{\#2}_{\alpha\beta} \ f_{1}^{\#1}_{\alpha\beta}$	$-\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0		age ge	Multiplicities	1	1	1	ω	m	m
$\omega_1^{\#2}{}_+ \alpha eta$	$\frac{2\sqrt{2}}{\sqrt{2}}$	0	0	0	0	0	0		nts/gaı					0 ==		0 ::
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$		0	0	0		Source constraints/gauge generators	rreps				$2ik \sigma_{1}^{\#2\alpha}$	0	$+ik \sigma_1^{\#2}\alpha\beta$
	$\omega_1^{\#1} +^{\alpha\beta}$	$\omega_{1}^{#2} + \alpha^{\beta}$	$f_1^{\#1} + ^{\alpha\beta}$	$\omega_{1^{-}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} + \alpha$	$f_{1}^{#2} + \alpha$		Source	SO(3) irreps	$\sigma_{0}^{\#1} == 0$	$\tau_{0}^{\#1} == 0$	$\tau_{0}^{\#2} == 0$	+	$\tau_1^{\#1}{}^{\alpha} ==$	

0

Massive and massless spectra

(No massive particles)

Unitarity conditions

 $r_5 < 0 \&\& t_1 < 0 || t_1 > 0$