

Data Intelligence

Field-aware Factorization Machine

U Kang Seoul National University

In This Lecture

- Field-aware Factorization Machine
 - Click-Through Rate (CTR) prediction problem
 - Comparison with other methods (LM, Poly2, FM)
 - Optimization
 - Experiments

Outline

□ CTR Prediction □ Models ☐ Linear Model Degree-2 Polynomial Mapping ☐ Factorization Machine ☐ Field-aware Factorization Machine Optimization Experiments □ Conclusion

Click-Through Rate Prediction (1)

- Learn: P(y|x)
 - \Box x features
 - y click or not

Mor Map Redo search when map moved

Hay market 19 14 6 mo yadway 20 18 8 7 moor 15 moo

Ads by Google

III trivago.com.au ▼

Hotels in Sydney from \$70 - 783 Hotels to choose from.

Hotels in **Sydney** - Find Yours with trivago™ and Save up to 78%!

Fast and Simple · 1.300.000+ Hotels

Ratings: Fees 9/10 - Prices 9/10 - Travel info 9/10

Click-Through Rate Prediction (2)

An example

Clicked (Y)	Publisher (X1)	Advertiser (X2)	Gender (X3)
Yes	ESPN	Nike	Male
No	NBC	Adidas	Female

Learn

P(y|x)

Predict

Clicked (Y)	Publisher (X1)	Advertiser (X2)	Gender (X3)
?	ESPN	Adidas	Male
?	NBC	Nike	Female
•••			

U Kang

5

Outline

- CTR Prediction
- □ Models
 - ☐ Linear Model
 - Degree-2 Polynomial Mapping
 - ☐ Factorization Machine
 - ☐ Field-aware Factorization Machine
 - Optimization
 - Experiments
 - □ Conclusion

6

Logistic Regression

- How can we define the CTR prediction?
 - The logistic regression

$$P(y = 1|x) = \frac{1}{1 + e^{-\phi(w,x)}}$$

where

x is the feature y is the label w is a parameter of the model ϕ is a logit

Optimization

- Given a dataset with m instances $\{(y_i, x_i)\}_{i=1}^m$
 - \Box where x_i is the feature
 - $y_i \in \{1, -1\}$ is the label
 - \square m is the number of instances
- The model is trained by the optimization problem:

$$\min_{w} \frac{\lambda}{2} \|w\|_{2}^{2} + \sum_{i=1}^{m} \log(1 + \exp(-y_{i}\phi(w, x_{i})))$$

Models (1)

How can we define the model?

$$P(y = 1|x) = \frac{1}{1 + e^{-\phi(w,x)}}$$

- □ Linear Model (slide 11~14 pages)
 - - ullet where C_1 is the non-zero elements in x
- Poly2 (slide 15~17 pages)
 - - \square where C_2 is the 2-combination of non-zero elements in x

Models (2)

How can we define the model?

$$P(y = 1|x) = \frac{1}{1 + e^{-\phi(w,x)}}$$

- □ Factorization Machine (slide 18~21 pages)
 - - \square where w_{i_1} and w_{i_2} are two vectors with length k
- □ Field-aware Factorization Machine (slide 22~38 pages)
 - - \square where f_1 and f_2 are respectively fields of j_1 and j_2
 - \square w_{j_1,f_2} and w_{j_2,f_1} are two vectors with length k

Outline

- CTR Prediction
- Models
- - Degree-2 Polynomial Mapping
 - ☐ Factorization Machine
 - ☐ Field-aware Factorization Machine
 - Optimization
 - Experiments
 - ☐ Conclusion

Linear Model (1)

- Linear Model (LM) captures the patterns in a linear way
- For the LM:
 - - where C_1 is the non-zero elements in x

Toy Example

Consider a data instance:

- where we have two kinds of features *Publisher* and *Advertiser*
- An advertisement from NIKE displayed on ESPN

Linear Model (2)

- - \square where $w_{ESPN}, w_{NIKE} \in \mathbb{R}$
- Two weights learn the average behavior of ESPN and NIKE, respectively
- LM cannot learn the effect of a feature conjunction
 - If the CTR of the ads from NIKE on ESPN is particularly high or low, it cannot learn this effect well

Outline

- CTR Prediction
- Models
 - Linear Model
- Polynomial-2
 - ☐ Factorization Machine
 - ☐ Field-aware Factorization Machine
 - Optimization
 - □ Experiments
 - ☐ Conclusion

Degree-2 Polynomial Mapping (1)

- Degree-2 Polynomial Mapping (Poly2) learns the effect of a feature conjunction
- For the Poly2:
 - $\phi(w,x) = \sum_{j_1,j_2 \in C_2} w_{j_1,j_2} x_{j_1} x_{j_2}$
 - where C_2 is the 2-combination of non-zero elements in x

Degree-2 Polynomial Mapping (2)

- - □ where $w_{ESPN,NIKE} \in \mathbb{R}$
 - The weight learns the conjunction pattern between ESPN and NIKE
 - Poly2 cannot learn any patterns in unseen pairs
 - It cannot infer any information about a pair (ESPN, Gucci) even if it has learned pairs (ESPN, NIKE) and (Vogue, Gucci)

Outline

- CTR Prediction
- ✓ Models
 - Linear Model
 - Polynomial-2
- Factorization Machine
 - ☐ Field-aware Factorization Machine
 - Optimization
 - Experiments
 - ☐ Conclusion

Factorization Machine (1)

- Factorization Machine (FM) learns the feature conjunction in a latent space
- For the FM:
 - - where w_{j_1} and w_{j_2} are two vectors with length user-defined k

Factorization Machine (2)

- - \square where $w_{ESPN}, w_{NIKE} \in \mathbb{R}^k$
 - k is a pre-defined dimensionality
- Factorization Machine (FM) has a benefit in the case of predicting on unseen data (see the next slide for the concrete example)
- It shares a single latent vector for a feature in all fields

Poly2 vs. Factorization Machine

	Publisher	Advertiser	Poly2	FM
Train	ESPN	NIKE	wespn,nike	$\mathbf{w}_{\mathrm{ESPN}}$ · $\mathbf{w}_{\mathrm{NIKE}}$
114111	Vogue	Gucci	w _{Vogue} ,Gucci	$oldsymbol{w}_{Vogue}$ · $oldsymbol{w}_{Gucci}$
Test	ESPN	Gucci	wespn,Gucci	w_{ESPN} · w_{Gucci}

- There is no (ESPN, Gucci) pair in the training data
- For Poly2, there is no way to learn the weight $W_{ESPN,Gucci}$
- However, FM is able to do reasonable prediction on $w_{EPSN}^T w_{Gucci}$ since it learns w_{ESPN} from the (ESPN, NIKE) pair and w_{Gucci} from the (Vogue, Gucci) pair

Outline

- CTR Prediction
- Models
 - Linear Model
 - Polynomial-2
- Field-aware Factorization Machine
 - Optimization
 - Experiments
 - □ Conclusion

2803

Field-aware Factorization Machine

- Field-aware Factorization Machine (FFM) learns the feature conjunction in a field-wise latent space
 - FFM splits the latent space into many smaller latent spaces
 - Latent effect of a feature (e.g., male) could be different for different fields (e.g., publisher and advertiser)

For the FFM:

- where f_1 and f_2 are respectively fields of j_1 and j_2
- w_{j_1,f_2} and w_{j_2,f_1} are two vectors with length user-defined k

Toy Example

Consider a data instance:

- where we have three kinds of features *Publisher*,
 Advertiser and Gender
- An advertisement from NIKE displayed on ESPN was clicked by a male

FM vs. FFM

For FM:

For FFM:

- A feature (e.g., male) is associated with two different latent vectors for different fields (e.g., publisher and advertiser)

Poly2 vs. FM vs. FFM (1)

- Illustration of the toy example (Poly2):
 - A dedicated weight is learned for each feature pair

Publisher (P)	Advertiser (A)	Gender (G)
ESPN	NIKE	Male

$$\phi(\mathbf{w}, \mathbf{x}) = igoplus + igoplus w_{\mathrm{ESPN,NIKE}} + igoplus w_{\mathrm{NIKE,Male}}$$

Poly2 vs. FM vs. FFM (2)

- Illustration of the toy example (FM):
 - Each feature has one latent vector, which is used to interact with other latent vectors

27

Poly2 vs. FM vs. FFM (3)

- Illustration of the toy example (FFM):
 - Each feature has several latent vectors, one of them is used depending on the field of the other feature

Consider the example:

User (Us)	Movie (Mo)	Genre (Ge)	Pr (Pr)
YuChin (YC)	3ldiots (3I)	Comedy, Drama (Co, Dr)	\$9.99

Note that *User*, *Movie*, and *Genre* are categorical variables,
 and *Price* is a numerical variable

• For LM, $\phi(w, x)$ is:

$$w_{\mathsf{Us-Yu}} \cdot x_{\mathsf{Us-Yu}} + w_{\mathsf{Mo-3I}} \cdot x_{\mathsf{Mo-3I}} + w_{\mathsf{Ge-Co}} \cdot x_{\mathsf{Ge-Co}} + w_{\mathsf{Ge-Dr}} \cdot x_{\mathsf{Ge-Dr}} + w_{\mathsf{Pr}} \cdot x_{\mathsf{Pr}}$$

- where $x_{US-YU} = x_{Mo-3I} = x_{Ge-Co} = x_{Ge-Dr} = 1$ and $x_{Pr} = 9.99$
- Note that because *User*, *Movie*, and *Genre* are categorical variables, the values are all ones

For Poly2, $\phi(w, x)$ is:

$$\begin{array}{l} w_{\text{Us-Yu-Mo-3I}} \cdot x_{\text{Us-Yu}} \cdot x_{\text{Mo-3I}} + w_{\text{Us-Yu-Ge-Co}} \cdot x_{\text{Us-Yu}} \cdot x_{\text{Ge-Co}} + w_{\text{Us-Yu-Ge-Dr}} \cdot x_{\text{Us-Yu}} \cdot x_{\text{Ge-Dr}} \\ + w_{\text{Mo-3I-Ge-Co}} \cdot x_{\text{Mo-3I}} \cdot x_{\text{Ge-Co}} + w_{\text{Mo-3I-Ge-Dr}} \cdot x_{\text{Mo-3I}} \cdot x_{\text{Ge-Dr}} \\ + w_{\text{Mo-3I-Pr}} \cdot x_{\text{Mo-3I}} \cdot x_{\text{Pr}} \\ + w_{\text{Ge-Co-Ge-Dr}} \cdot x_{\text{Ge-Co}} \cdot x_{\text{Ge-Dr}} + w_{\text{Ge-Co-Pr}} \cdot x_{\text{Ge-Co}} \cdot x_{\text{Pr}} \\ + w_{\text{Ge-Dr-Pr}} \cdot x_{\text{Ge-Dr}} \cdot x_{\text{Pr}} \end{array}$$

• For FM, $\phi(w, x)$ is:

$$\begin{split} \left\langle \boldsymbol{w}_{\text{Us-Yu}}, \boldsymbol{w}_{\text{Mo-3I}} \right\rangle \cdot x_{\text{Us-Yu}} \cdot x_{\text{Mo-3I}} + \left\langle \boldsymbol{w}_{\text{Us-Yu}}, \boldsymbol{w}_{\text{Ge-Co}} \right\rangle \cdot x_{\text{Us-Yu}} \cdot x_{\text{Ge-Co}} + \left\langle \boldsymbol{w}_{\text{Us-Yu}}, \boldsymbol{w}_{\text{Ge-Dr}} \right\rangle \cdot x_{\text{Us-Yu}} \cdot x_{\text{Ge-Dr}} \\ + \left\langle \boldsymbol{w}_{\text{Mo-3I}}, \boldsymbol{w}_{\text{Ge-Co}} \right\rangle \cdot x_{\text{Mo-3I}} \cdot x_{\text{Ge-Co}} + \left\langle \boldsymbol{w}_{\text{Mo-3I}}, \boldsymbol{w}_{\text{Ge-Dr}} \right\rangle \cdot x_{\text{Mo-3I}} \cdot x_{\text{Ge-Dr}} \\ + \left\langle \boldsymbol{w}_{\text{Mo-3I}}, \boldsymbol{w}_{\text{Pr}} \right\rangle \cdot x_{\text{Mo-3I}} \cdot x_{\text{Pr}} \\ + \left\langle \boldsymbol{w}_{\text{Ge-Co}}, \boldsymbol{w}_{\text{Ge-Dr}} \right\rangle \cdot x_{\text{Ge-Co}} \cdot x_{\text{Ge-Dr}} \\ + \left\langle \boldsymbol{w}_{\text{Ge-Co}}, \boldsymbol{w}_{\text{Pr}} \right\rangle \cdot x_{\text{Ge-Dr}} \cdot x_{\text{Pr}} \end{split}$$

• For FFM, $\phi(w, x)$ is:

$$\langle \mathbf{w}_{\mathsf{Us-Yu,Mo}}, \mathbf{w}_{\mathsf{Mo-3I,Us}} \rangle \cdot x_{\mathsf{Us-Yu}} \cdot x_{\mathsf{Mo-3I}} + \langle \mathbf{w}_{\mathsf{Us-Yu,Ge}}, \mathbf{w}_{\mathsf{Ge-Co,Us}} \rangle \cdot x_{\mathsf{Us-Yu}} \cdot x_{\mathsf{Ge-Co}} + \langle \mathbf{w}_{\mathsf{Us-Yu,Ge}}, \mathbf{w}_{\mathsf{Ge-Dr,Us}} \rangle \cdot x_{\mathsf{Us-Yu}} \cdot x_{\mathsf{Ge-Dr}} \\ + \langle \mathbf{w}_{\mathsf{Mo-3I,Ge}}, \mathbf{w}_{\mathsf{Ge-Co,Mo}} \rangle \cdot x_{\mathsf{Mo-3I}} \cdot x_{\mathsf{Ge-Co}} + \langle \mathbf{w}_{\mathsf{Mo-3I,Ge}}, \mathbf{w}_{\mathsf{Ge-Dr,Mo}} \rangle \cdot x_{\mathsf{Mo-3I}} \cdot x_{\mathsf{Ge-Dr}} \\ + \langle \mathbf{w}_{\mathsf{Ge-Co,Ge}}, \mathbf{w}_{\mathsf{Ge-Dr,Ge}} \rangle \cdot x_{\mathsf{Ge-Co}} \cdot x_{\mathsf{Ge-Dr}} \\ + \langle \mathbf{w}_{\mathsf{Ge-Co,Pr}}, \mathbf{w}_{\mathsf{Pr,Ge}} \rangle \cdot x_{\mathsf{Ge-Co}} \cdot x_{\mathsf{Pr}} \\ + \langle \mathbf{w}_{\mathsf{Ge-Dr,Pr}}, \mathbf{w}_{\mathsf{Pr,Ge}} \rangle \cdot x_{\mathsf{Ge-Dr}} \cdot x_{\mathsf{Pr}}$$

In practice we need to map these features into numbers. Consider the following mapping:

Field name		Field index	Feature name		Feature index
User	\rightarrow	field 1	User-YuChin	\rightarrow	feature 1
Movie	\rightarrow	field 2	Movie-3Idiots	\rightarrow	feature 2
Genre	\rightarrow	field 3	Genre-Comedy	\rightarrow	feature 3
Price	\rightarrow	field 4	Genre-Drama	\rightarrow	feature 4
			Price	\rightarrow	feature 5

- After transforming to the LIBFFM format, the data becomes: 1:1:1 2:2:1 3:3:1 3:4:1 4:5:9.99
 - A red number is an index of field, a blue number is an index of feature, and a green number is the value of the feature

• For LM, $\phi(w, x)$ is:

$$w_1 \cdot 1 + w_2 \cdot 1 + w_3 \cdot 1 + w_4 \cdot 1 + w_5 \cdot 9.99$$

• For Poly2, $\phi(w, x)$ is:

$$w_{1,2} \cdot 1 \cdot 1 + w_{1,3} \cdot 1 \cdot 1 + w_{1,4} \cdot 1 \cdot 1 + w_{1,5} \cdot 1 \cdot 9.99$$
 $+ w_{2,3} \cdot 1 \cdot 1 + w_{2,4} \cdot 1 \cdot 1 + w_{2,5} \cdot 1 \cdot 9.99$
 $+ w_{3,4} \cdot 1 \cdot 1 + w_{3,5} \cdot 1 \cdot 9.99$
 $+ w_{4,5} \cdot 1 \cdot 9.99$

Further Example

• For FM, $\phi(w, x)$ is:

$$\langle \mathbf{w}_{1}, \mathbf{w}_{2} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{1}, \mathbf{w}_{3} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{1}, \mathbf{w}_{4} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{1}, \mathbf{w}_{5} \rangle \cdot 1 \cdot 9.99$$

$$+ \langle \mathbf{w}_{2}, \mathbf{w}_{3} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{2}, \mathbf{w}_{4} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{2}, \mathbf{w}_{5} \rangle \cdot 1 \cdot 9.99$$

$$+ \langle \mathbf{w}_{3}, \mathbf{w}_{4} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{3}, \mathbf{w}_{5} \rangle \cdot 1 \cdot 9.99$$

$$+ \langle \mathbf{w}_{4}, \mathbf{w}_{5} \rangle \cdot 1 \cdot 9.99$$

Further Example

• For FFM, $\phi(w, x)$ is:

$$\langle \mathbf{w}_{1,2}, \mathbf{w}_{2,1} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{1,3}, \mathbf{w}_{3,1} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{1,3}, \mathbf{w}_{4,1} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{1,4}, \mathbf{w}_{5,1} \rangle \cdot 1 \cdot 9.99$$

$$+ \langle \mathbf{w}_{2,3}, \mathbf{w}_{3,2} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{2,3}, \mathbf{w}_{4,2} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{2,4}, \mathbf{w}_{5,2} \rangle \cdot 1 \cdot 9.99$$

$$+ \langle \mathbf{w}_{3,3}, \mathbf{w}_{4,3} \rangle \cdot 1 \cdot 1 + \langle \mathbf{w}_{3,4}, \mathbf{w}_{5,3} \rangle \cdot 1 \cdot 9.99$$

$$+ \langle \mathbf{w}_{4,4}, \mathbf{w}_{5,3} \rangle \cdot 1 \cdot 9.99$$

Outline

- CTR Prediction
- **Models**
 - Linear Model
 - Polynomial-2
 - ▼ Factorization Machine
 - Field-aware Factorization Machine
- **→** □ Optimization
 - Experiments
 - □ Conclusion

39

Optimization (1)

- Given a dataset with m instances $\{(y_i, x_i)\}_{i=1}^m$
 - \Box where x_i is the feature
 - $y_i \in \{1, -1\}$ is the label
 - \square m is the number of instances
- FFM is trained by the optimization problem:

$$\min_{w} f(w) = \min_{w} \frac{\lambda}{2} ||w||_{2}^{2} + \sum_{i=1}^{m} \log(1 + \exp(-y_{i}\phi_{FFM}(w, x_{i})))$$

Optimization (2)

How can we train a Field-aware Factorization Machine (FFM) to optimize the following problem?

$$\min_{w} f(w) = \min_{w} \frac{\lambda}{2} \|w\|_{2}^{2} + \sum_{i=1}^{m} \log(1 + \exp(-y_{i} \phi_{FFM}(w, x_{i})))$$
where $\phi_{FFM}(w, x) = \sum_{j_{1}, j_{2} \in C_{2}} \langle w_{j_{1}, f_{2}}, w_{j_{2}, f_{1}} \rangle x_{j_{1}} x_{j_{2}}$

Stochastic Gradient Descent

Stochastic Gradient Descent

Weights are updated incrementally based on their gradients about the loss

Solving the Optimization Problem (1)

$$\min_{w} f(w) = \min_{w} \frac{\lambda}{2} ||w||_{2}^{2} + \sum_{i=1}^{m} \log(1 + \exp(-y_{i}\phi_{FFM}(w, x_{i})))$$

Gradients:

$$egin{aligned} oldsymbol{g}_{j_1,f_2} &\equiv
abla_{oldsymbol{w}_{j_1,f_2}} f(oldsymbol{w}) = \lambda \cdot oldsymbol{w}_{j_1,f_2} + \kappa \cdot oldsymbol{w}_{j_2,f_1} x_{j_1} x_{j_2} \ oldsymbol{g}_{j_2,f_1} &\equiv
abla_{oldsymbol{w}_{j_2,f_1}} f(oldsymbol{w}) = \lambda \cdot oldsymbol{w}_{j_2,f_1} + \kappa \cdot oldsymbol{w}_{j_1,f_2} x_{j_1} x_{j_2} \end{aligned}$$

where

$$\kappa = \frac{\partial \log(1 + \exp(-y\phi_{\text{FFM}}(\boldsymbol{w}, \boldsymbol{x})))}{\partial \phi_{\text{FFM}}(\boldsymbol{w}, \boldsymbol{x})} = \frac{-y}{1 + \exp(y\phi_{\text{FFM}}(\boldsymbol{w}, \boldsymbol{x}))}$$

43

Solving the Optimization Problem (2)

• For each coordinate d = 1, ..., k:

$$(G_{j_1,f_2})_d \leftarrow (G_{j_1,f_2})_d + (g_{j_1,f_2})_d^2$$
$$(G_{j_2,f_1})_d \leftarrow (G_{j_2,f_1})_d + (g_{j_2,f_1})_d^2$$

Finally, the parameters are updated by:

$$(w_{j_1,f_2})_d \leftarrow (w_{j_1,f_2})_d - \frac{\eta}{\sqrt{(G_{j_1,f_2})_d}} (g_{j_1,f_2})_d$$
$$(w_{j_2,f_1})_d \leftarrow (w_{j_2,f_1})_d - \frac{\eta}{\sqrt{(G_{j_2,f_1})_d}} (g_{j_2,f_1})_d$$

 $lue{}$ where η is a user-specified learning rate

Outline

- CTR Prediction
- Models
 - Linear Model
 - Polynomial-2

 - Field-aware Factorization Machine
- Optimization
- **⇒** □ Experiments
 - ☐ Conclusion

Evaluation Criterion

For the evaluation criterion:

$$\log \log = \frac{1}{m} \sum_{i=1}^{m} \log(1 + \exp(-y_i \phi(\boldsymbol{w}, \boldsymbol{x}_i)))$$

 \square where m is the number of test instances

Experimental Results

- Performance comparison between LM, Poly2, FM, FFM
 - Lower logloss indicates the better performance

	statistics			logloss			
Data set	# instances	# features	# fields	LM	Poly2	${ m FM}$	FFM
KDD2010-bridge	20,012,499	651,166	9	0.27947	0.2622	0.26372	0.25639
KDD2012	149,639,105	$54,\!686,\!452$	11	0.15069	0.15099	0.15004	0.14906
phishing	11,055	100	30	0.14211	0.11512	0.09229	0.1065
adult	48,842	308	14	0.3097	0.30655	0.30763	0.30565
cod-rna (dummy fields)	331,152	8	8	0.13829	0.12874	0.12580	0.12914
cod-rna (discretization)	331,152	$2,\!296$	8	0.16455	0.17576	0.16570	0.14993
ijcnn (dummy fields)	141,691	22	22	0.20093	0.08981	0.07087	0.0692
ijcnn (discretization)	141,691	$69,\!867$	22	0.21588	0.24578	0.20223	0.18608

Table 4: Comparison between LM, Poly2, FM, and FFMs. The best logloss is underlined.

Outline

- CTR Prediction
- Models
 - Linear Model
 - Polynomial-2

 - Field-aware Factorization Machine
- Optimization
- Experiments
- **→** □ Conclusion

What you should know

- CTR prediction problem
 - □ To learn P(y|x) where x is a feature and y is a response
- Four methods for the problem
 - Linear Model
 - Degree-2 Polynomial Mapping
 - Factorization Machine
 - □ Field-aware Factorization Machine

Questions?