«Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники (ФПИиКТ)

Лабораторная работа

Перевод чисел между различными системами счисления Вариант 21

Выполнил

Григорьев Даниил Александрович

Группа 3116

Принял В.В. Пономарев

Санкт-Петербург 2024

Содержание

Задание	3
Основные этапы вычисления	5
Код программы для дополнительного задания №1:	8
Заключение	9
Список использованных источников	13

Задание

Текст задания представлен на Рисунок 1

1.1 Порядок выполнения работы

- 1. Перевести число "А", заданное в системе счисления "В", в систему счисления "С". Числа "А", "В" и "С" взять из представленных ниже таблиц. Вариант выбирается как сумма последних двух цифр в номере группы и номера в списке группы согласно ISU. Т.е. 13-му человеку из группы P3102 соответствует 15-й вариант (=02 + 13). Если полученный вариант больше 40, то необходимо вычесть из него 40. Т.е. 21-му человеку из группы P3121 соответствует 2-й вариант (=21 + 21 40).
- 2. Обязательное задание (позволяет набрать до 85 процентов от максимального числа баллов БаРС за данную лабораторную). Всего нужно решить 13 примеров. Для примеров с 5-го по 7-й выполнить операцию перевода по сокращенному правилу (для систем с основанием 2 в системы с основанием 2^k). Для примеров с 4-го по 6-й и с 8-го по 9-й найти ответ с точностью до 5 знака после запятой. В примере 11 группа символов {^1} означает -1 в симметричной системе счисления.
- 3. Дополнительное задание №1 (позволяет набрать +15 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая бы на вход получала число в системе счисления "С" из примера 11, а на выходе вы выдавала это число в системе счисления "В" из примера 11. В случае выполнения этого задания предоставить листинг программы в отчёте.
- 4. Оформить отчёт по лабораторной работе исходя из требований.

Рисунок 1

Входные данные для заданий 1-5 представлены на Рисунок 2

Для заданий 6-7 представлены на Рисунок 3

Для заданий 10-11 на Рисунок 4

Для заданий 12-13 на Рисунок 5

	1					2			3			4			5
#	Α	В	C	Α	В	C	Α	В	С	Α	В	С	Α	В	С
21	34106	10	15	16116	7	10	21104	5	15	51,96	10	2	41,6C	16	2

Рисунок 5

	6					7			8			9
#	Α	В	С	Α	В	С	Α	В	С	Α	В	С
21	14,67	8	2	0,001101	2	16	0,001011	2	10	1B,08	16	10

Рисунок 4

			10			11
#	Α	В	С	А	В	С
21	42	10	Фиб	147	-10	10

Рисунок 3

			12			13
#	Α	В	С	Α	В	С
1, 11, 21, 31	1000010101	Фиб	10	1678	-10	10

Рисунок 2

Основные этапы вычисления

Fruigible Da	une P3116	2/ bajuanin	(15+6)
Frugeth Da	Demen	Me:	ambun.
A B C	34106115	34106,	= A18B15
5/34106 10 1	34106145 34085[2173 5 11 216	1 (51 15 10 10 10 10 10 10 10 10 10 10 10 10 10	
2) 16116 7 10	16116, 2 1. 4	1	45210
3	- 45D	(0	10
3) 21104 5 15	1) 2,1104 = 2.	5 + 1.5 + 1.5 + 0.5 + 4.50 =	0 % 1101000014
	z 1404 ₁₀		659,5
	2) 1404 115	15 1404,02635,15	0 11 4051 1
1	3		
4) 51, 96 10 2	Ull aums:	50 25 12	
3		1 12 6 2	12
	51,0 = 1100		
	opastias tac	0,96,020,11110	110011,1111,
	.1, 92		,
	1,84		
	1, 6 8 2	1,96/10-110011,1111	
	0, 72		
2	Whaperener: 5	1,9660-110011,1111	2

Рисунок 7

Рисунок 8

Код программы для дополнительного задания №1:

```
def calculate():
    a = int(input()) # Исходное число
    b = -10 #
               Будущая СС
    c = 10 #
                Исходная СС
   m = ""
    while True:
        if (a > 0): # Если делимое положительно, а делитель -10 (по дефолту)
            chastnoe = (abs(a)//abs(b)) # ничего прибавлять не надо, чтобы
выполнялось корректное деление полож. на отриц. с остатком
            m = str(a + chastnoe*b) + m
            a = -chastnoe # делаем так из-за того, что chastnoe - это
результат деления модулей двух чисел и должен быть отрицательным или 0
        elif (a < 0): # Если делимое отрицательно, а делитель -10 (по
дефолту)
            chastnoe = (abs(a)//abs(b))+1 # прибавляем 1, чтобы было
корректно деление отрицательного на отрицательное с остатком
            m = str(a - chastnoe*b) + m
            a = chastnoe #частное от деления чисел равных знаков положительно
или 0
        if abs(a) < abs(b) and a > 0: # Выход из цикла, если частное
положительно и меньше делителя
            m = str(abs(a)) + m
            break
    print(m)
if __name__ == "__main__":
    calculate()
```

Заключение

Я понял, как переводить целые и дробные числа между различными системами счисления. Я разобрался в том, как работает система счисления Бергмана, Цекендорфа, факториальная, симметричная и нега-позиционная. Я освоил сокращенный метод перевода чисел из системы счисления п в п^k и наоборот при условии принадлежности п множеству натуральных чисел. Решение задач я выполнил и представил в полном объеме.

Ответы на вопросы

Рисунок 9

Рисунок 10

Рисунок 11

Список использованных источников

- 1. [Балакшин, П. В. Информатика / П. В. Балакшин, В. В. Соснин, Е. А. Машина. СПБ : Университет ИТМО, 2020. 143 с.]
- 2. [ГОСТ 7.32-2017 «Отчет о научно-исследовательской работе. Структура и правила оформления» : дата введения 2017 25 09. Москва : Стандартинформ, 2017. 32 с.]
- 3. ГОСТ 7.1 2003 «Библиографическая запись. Библиографическое описание. Общие требования и правила составления»: дата введения 01.07.2004. Москва: ИПК Издательство стандартов, 2003. 57 с.