Tablouri unidimensionale

vectori

Exemplu

Presupunem că vrem să citim un şir de numere pe care să-l afişăm în ordine inversă citirii. Dacă şirul ar fi format din puţine valori (ex. 5) atunci am putea folosi ceva de genul: int a1,a2, a3, a4, a5;

 Dar dacă numărul de elemente e mare avem nevoie de o structură de date capabilă să memoreze informaţiile dorite de noi.

Tablouri - noțiuni introductive

- Programele, în general, operează cu volume mari de date ce trebuie memorate "undeva": în structuri de date.
- Definiţie: o structură de date reprezintă un ansamblu de date organizate după anumite reguli, reguli ce depind de tipul de structură.

Tablouri

 Definiţie: Un tablou este o colecţie de date de acelaşi tip, memorate într-o zonă de memorie continuă, reunite sub un nume comun (numele tabloului)

Declararea:

tip nume[Nr elemente]

Structura internă

Un tablou declarat: tip nume[nr_elem]

nume

0 1 2 3 nr_elem-1

tip - îmi spune <u>ce</u> pot să pun în tablou

nume – mă ajută să identific tabloul

nr_elem – îmi spune <u>câte</u> elemente are tabloul

Deoarece elementele sunt în ordine, unul după altul, un element poate fi accesat prin intermediul numărului său de ordine (indice), primul element având numărul de ordine 0.

Exemplu

int a[10]; // am declarat un tablou cu 10 elemente Elementele acestuia sunt: a[0], a[1], a[2], ..., a[9]

Dacă facem atribuirile:

a[2]=5;

a[6]=9;

a[0]=3;

Observații

- Dimensiunea tabloului se calculează la compilarea programului: dimensiunea=nr_elem*sizeof(tip).
- Dimensiunea maximă a unui tablou este limitată de compilator.
- Putem iniţializa un tablou chiar de la declarare:
 - int p3[5] = {1, 3, 9, 27, 81}; //puterile lui 3
 - int p3[] = $\{1, 3, 9, 27, 81\}$;
 - cele două declaraţii de mai sus sunt echivalente

Vector - matrice

- Un tablou pentru care la declarare este specificată o singură dimensiune se numeşte tablou unidimensional sau vector.
 - Ex. int a[100]; // vector cu 100 de elemente
- Un tablou pentru care la declarare sunt specificate două dimensiuni se numeşte tablou bidimensional sau matrice.
- Ex. int x[3][5]; // matrice cu 3 linii şi 5 coloane

Citirea/afișarea elementelor unui vector

```
#include <iostream>
using namespace std;
int a[20], i, n;
int main()
{ cout<<"Dati nr. de elemente:"; cin>>n;
 for(i=0;i<n;i++) cin>>a[i];
 cout<<"Elementele vectorului sunt:";
 for(i=0;i<n;i++) cout<<a[i];
 return 0;
```

Ordonarea elementelor unui vector

```
#include <iostream>
using namespace std;
int n, i, ok;
double a[100], aux;
int main()
{ cin>>n; for(i=1;i<=n;i++)cin>>a[i]; // citim elementele vectorului
 do{ok=1; // presupunem că vectorul este ordonat
     for(i=1;i<n;i++) // parcurgem vectorul
      if(a[i]>a[i+1]) // verificăm dacă 2 elem. nu resp. regula
       {aux=a[i]; a[i]=a[i+1]; a[i+1]=aux; ok=0;} // le interschimbăm
 \wedge while (ok==0);
  for(i=1;i<=n;i++)cout<<a[i]<<" ";
  return 0;
```

Interclasarea a doi vectori

Avem 2 vectori ordonaţi pe care vrem să-i unim obţinând un al treilea vector ordonat.

```
#include <iostream>
using namespace std;
int a[100], b[100], c[200], na, nb, nc, ia, ib, ic, INF=32000;
int main()
{ cin>>na; for(ia=1;ia<=na; ia++)cin>>a[ia]; a[na+1]=INF;
 cin>>nb; for(ib=1;ib<=nb; ib++)cin>>b[ib]; b[nb+1]=INF;
 nc=na+nb; ia=1; ib=1;
 for(ic=1;ic<=nc;ic++)
  if(a[ia]<b[ib])c[ic]=a[ia++]; else c[ic]=b[ib++];
 for(ic=1;ic<=nc;ic++)cout<<c[ic]<<" ";
 return 0;
```