Angabe Donnerstag - Determinanten und Eigenwerte

26. März 2011

Aufgabe 1: Zum Aufwärmen

- (1) Zeige, dass eine nilpotente Endomorphismus nur die Null als Eigenwert hat. Hinweis: Ein Endomorphismus heißt nilpotent, falls es ein $k \in \mathbb{N}$ gibt, so dass $F^k = 0$.
- (2) Zeige, dass eine symmetrische 2×2 -Matrix in $\mathbb R$ nur reelle Eigenwerte hat.
- (3) Zeige, dass ähnliche Matrizen das gleiche charakteristische Polynom haben. Hinweis: Zwei Matrizen A, \tilde{A} heißen zu einander ähnlich, falls es eine Matrix $S \in Gl(n, \mathbb{K})$ gibt, so dass $\tilde{A} = SAS^{-1}$.
- (4) Sei V ein endlich-dimensionaler Vektorraum und $F \in \text{End}(V)$. Zeige

$$P_F(0) \neq 0 \Leftrightarrow F \text{ ist isomorph}$$

(5) Zeige, das für $A, B \in M(n \times n, \mathbb{K})$

$$\det(A+B) = \det(A) + \det(B)$$

im Allgemeinen nicht gilt.

(6) Zeige, dass für ein invertierbares $A \in Gl(n, \mathbb{K})$ gilt

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

Aufgabe 2: Determinanten

(1) Zeige, dass zu einer für meine Matrix $A \in \mathcal{M}(n \times n, \mathbb{K})$ gilt

$$\det(A^T) = \det(A)$$

Hinweis: Verwende die Leibniz-Formel.

(2) Berechnen Sie die folgenden Determinanten.

$$(1) \det \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

$$(2) \det \begin{pmatrix} 3 & 6 & 3 \\ 0 & 5 & 1 \\ -2 & 1 & 0 \end{pmatrix}$$

$$(3) \det \begin{pmatrix} 4 & 3 & 0 & 3 \\ 0 & 1 & -2 & 1 \\ 2 & 2 & 1 & 5 \\ 1 & -1 & 2 & 1 \end{pmatrix}$$

$$(4) \det \begin{pmatrix} 3 & -2 & -5 & 4 \\ -5 & 2 & 8 & -5 \\ -2 & 4 & 7 & -3 \\ 2 & -3 & -5 & 8 \end{pmatrix}$$

(3) Berechne die folgenden Determinanten

$$(1) \det \begin{pmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{pmatrix}$$

$$(2) \det \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$$

(3)
$$\det \begin{pmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ac & bc & c^2 + 1 \end{pmatrix}$$

(4)
$$\det \begin{pmatrix} t+3 & -1 & 1 \\ 5 & t-3 & 1 \\ 6 & -6 & t+4 \end{pmatrix}$$

(4) Sei $x=(x_1,\ldots,x_n)^T$, $y=(y_1,\ldots,x_n)^T\in\mathbb{R}^n$. Zeige, dass Folgendes gilt:

$$x$$
 und y sind linear abhängig $\Leftrightarrow \det \begin{pmatrix} x_i & y_i \\ x_j & y_j \end{pmatrix} = 0 \ \forall i, j \in \{1, \dots, n\}$

Aufgabe 3: Eigenwerte

- (1) Sei λ ein Eigenwert zu einem invertierbaren $F \in \text{End}(V)$, dann gilt λ^{-1} ist Eigenwert zu F^{-1} .

 Hinweis: Kann ein invertierbarer Endomorphismus Null als Eigenwert haben?
- (2) 1 Zeige: Falls AB einen Eigenwert gleich Null hat, dann gilt, dass A oder B einen Eigenwert gleich Null hat. Gilt die Umkehrung ebenfalls?
 - 2 Seien $A, B \in M(n \times n, \mathbb{K})$, dann zeige, dass AB und BA die selben Eigenwerte haben.
- (3) Berechne das charakteristische Polynom der folgenden Matrizen und finde mit jenem deren Eigenwerte.

$$(1) \ A = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix}$$

$$(2) B = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 & -1 \\ -1 & 1 & 4 \end{pmatrix}$$

(3)
$$C = \begin{pmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{pmatrix}$$

- (4) Ist die Matrix $A = \begin{pmatrix} 1 & \frac{1}{2} \\ 2 & 1 \end{pmatrix}$ invertierbar?
- (5) Zeige, ob die folgenden Matrizen diagonalisierbar sind und gebe gegebenenfalls die Ähnlichkeitstransformation an.

2

$$(1) \ A = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}$$

(2)
$$B = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$$

(3)
$$C = \begin{pmatrix} -3 & 0 & 0 \\ 2a & b & a \\ 10 & 0 & 2 \end{pmatrix}$$
 , $a, b \in \mathbb{R}$

Hinweis: Hier ist keine Transformationmatrix anzugeben!

(6) Gib alle Eigenwerte und eine Basis jedes Eigenraumes des Endomorphismus $F \in \text{End}(\mathbb{R}^3)$ an, welcher durch

$$F(x,y,z) := \begin{pmatrix} 2x+y\\ y-z\\ 2y+4z \end{pmatrix}$$

gegeben ist. Ist F diagonalisierbar?

(7) Berechnen Sie die Jordan-Normalform der folgenden Matrizen und geben sie die Jordanbasis an.

$$(1) \ A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$

$$(2) B = \begin{pmatrix} -3 & 5 \\ -5 & 7 \end{pmatrix}$$

(3)
$$C = \begin{pmatrix} 0 & 3 & 1 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}$$

Hinweis: Die Aufgabe aus der Vorlesung!