Industrial Organization, Week 5 Hotelling

Dio Mavroyiannis †

Milestone Institute

03 March 2021

- Big picture
- 2 Hotelling
- 3 Location only
- 4 Price and location: linear costs
- 5 Price and location: quadratic costs

Dynamic

- ► Plan: We look at our third dynamic model today
- ▶ The idea of Hotelling is that firms can choose how much to differentiate
- ▶ We will look at the imlication of this with dynamic and static competition

- Big picture
- 2 Hotelling
- 3 Location only
- 4 Price and location: linear costs
- 5 Price and location: quadratic costs

Harold Hotelling

- ► American Mathematician, Born in 1895, Columbia/Stanford/Washington
- ► "Stability in Competition" in Economic Journal in 1929
- ► Georgist

- 1 Big picture
- 2 Hotelling
- 3 Location only
- 4 Price and location: linear costs
- 5 Price and location: quadratic costs

Utility function

- ▶ Cost function of consumer: $\tau(|x l_i|) = t|x l_i|$
- ightharpoonup Pleasure to consumer: r
- ▶ Utility: $v_i(x) = r t|x I_i|$
- ightharpoons

Profit function

$$\pi_{i}(l_{i}, l_{j}) = \begin{cases} (\overline{p} - c)(l_{i} - l_{j})/2 & \text{if } l_{i} < l_{j} \\ (\overline{p} - c)/2 & \text{if } l_{i} = l_{j} \\ (\overline{p} - c)[1 - (l_{i} - l_{j})/2] & \text{if } l_{i} > l_{j}0 \end{cases}$$

General conclusion

- ► If firms do not choose their prices:
- ► They choose not to differentiate

- 1 Big picture
- 2 Hotelling
- 3 Location only
- Price and location: linear costs
- 5 Price and location: quadratic costs

Choosing prices and location

- ightharpoonup t = 0: Firms choose where to locate
- ightharpoonup t = 1: Firms choose prices
- ightharpoonup t = 2: Consumers go shopping
- ► Therefore to solve the problem we proceed in this way:
- ► Step 1: Find the indifferent consumer
- ► Step 2: Use the indifferent consumer to find the optimal price
- ► Step 3: Use the optimal price and indifferent consumer to find the location

Linear costs

The indifferent consumer is found here:

$$r - \tau(\hat{x} - l_1) - p_1 = r - \tau(l_2 - \hat{x}) - p_2 \tag{1}$$

$$\hat{x} = \frac{l_1 + l_2}{2} - \frac{p_1 - p_2}{2\tau} \tag{2}$$

(3)

We have two conditions for the indifferent consumer to be between the two other firms. $\hat{x} > h_1 \leftrightarrow p_1 < p_2 + \tau(h_2 - h_1)$

$$\begin{cases} \hat{x} \geq l_1 \leftrightarrow p_1 \leq p_2 + \tau(l_2 - l_1) \\ \hat{x} \leq l_2 \leftrightarrow p_1 \geq p_2 + \tau(l_2 - l_1) \end{cases}$$

Indifference point

Figure 5.1 Consumer choice in the linear Hotelling model

Choosing prices and location

$$\pi_{i}(p_{1}, p_{2}; l_{1}, l_{2}) = \begin{cases} 0 & \text{if } p_{1} > p_{2} + \tau(l_{2} - l_{1}) \\ (p_{1} - c)(\frac{l_{1} + l_{2}}{2} + \frac{p_{2} - p_{1}}{2}) & \text{if } |p_{1} - p_{2}| \leq \tau(l_{2} - l_{1}) \\ (p_{1} - c) & \text{if } p_{1} < p_{2} - \tau(l_{2} - l_{1}) \end{cases}$$

Indifference point

Figure 5.2 Profit function in the linear Hotelling model

Complicated conclusion

- ▶ Differentiation does not neccesarily predict a single outcome
- ▶ if firms are far enough apart, there is a unique equilibrium
- ▶ But they have a tendency to prefer moving to the center

- Big picture
- 2 Hotelling
- 3 Location only
- 4 Price and location: linear costs
- 5 Price and location: quadratic costs

Quadratic cost

The cost function

The indifferent consumer

The profit

After we take the derivative

And plug it back into

If we optimize wrt to the location, we find that l=0

$$t(|x - l_i|) = \tau(x - l_i)^2$$

 $\rightarrow \hat{x}(p_1, p_2) = \frac{l_1 + l_2}{2} - \frac{p_1 - p_2}{2\tau(l_1 - l_2)}$
 $\pi_1 = (p_2 - c)[\hat{x}(p_1, p_2)]$
 $p_1^* = c + \frac{\tau}{3}(l_2 - l_1)(2 + l_1 + l_2)$

 $\pi_1^* = \frac{1}{18} \tau (I_2 - I_1)(2 + I_1 + I_2)^2$

Conclusion

- ▶ Effect 1: Want to be close to center to increase market size
- ► Effect 2: Differentiation decreases competition