Poznámky

7.března 2021

1 Výpočet spektra

Z (Iachello, Oss - Algebraic approach to molecular spectra: Two-dimensional problems) máme

$$\langle N, n+1, l \pm 1 | \hat{D}_{\pm} | N, n, l \rangle = \pm \sqrt{n \pm l + 2} \sqrt{N - n},$$

kde výraz platí pro oba operátory \hat{D}_{\pm} (\pm nealternuje). Dále pracujeme s hamiltoniánem

$$\hat{H} = (1 - \xi)\hat{n} - \frac{\xi}{N - 1} \left[\frac{1}{2} \left(\hat{D}_{+} \hat{D}_{-} + \hat{D}_{-} \hat{D}_{+} \right) + \hat{l}^{2} \right] - \varepsilon \left[\frac{1}{2} (\hat{D}_{+} + \hat{D}_{-}) \right].$$

Ten jsme sestavili ve dvou bázích $|N,n,l\rangle$ a $|N,l,n\rangle$

Obrázek 1: Hamiltoniány ve dvou bázích

1.1 Diagonalizace

- eigen() zatím nejrychlejší, ale neumí pracovat se sparse maticemi
- eigs () z ArPack, umí sparse matice, ale řádově pomalejší
- ArnoldiMethod Arnoldi, Krylov zatím nejpomalejší, sparse matice

Obrázek 2: Závislost hladin na ξ

1.2 Úprava spektra

- degenerace
- polynomiální fit
- cut
- \bullet unfolding
- \bullet spacing

Obrázek 3: Polynomiální fit spektra

Obrázek 4: Hustota hladin

Obrázek 5: Natažení spektra

1.3 Indikátory chaosu

1.3.1 NNS - Brodyho parametr

Brodyho parametr β získáváme fitem spektra NNS

$$P_B(s) = (\beta + 1)bs^{\beta}e^{-bs^{\beta+1}}, \quad b = \left[\Gamma\left(\frac{\beta+2}{\beta+1}\right)\right]^{\beta+1}$$

 $\beta \to 0$ je Poissonovo rozdělení (regulární) a $\beta \to 1$ je Wignerovo rozdělení (chaotické).

Obrázek 6: Hustota hladin NNS s fitem

Obrázek 7: Hustota hladin NNS s fitem

1.3.2 η

$$\eta \equiv \frac{\overline{\min(1/r,r)} - I_P}{I_{\rm WD} - I_P}$$

 \boldsymbol{r} - podíl dvou nejbližších NNS bez unfoldingu

1.3.3 Delokalizace v bázi

Vlastní stavy jsou vyjádřeny v bázi $\{|\phi_j\rangle\}_{j=0}^{D-1}$ jako $|\psi_i\rangle=\sum a_{ij}\,|\phi_j\rangle$. Definujeme

$$\xi_E(i) = \left(\sum_{j=0}^{D-1} |a_{ij}|^4\right)^{-1}$$

$$\bar{\xi}_E = \frac{1}{D\xi_E^{\text{deloc}}} \sum_{i=0}^{D-1} \xi_E(i),$$

kde $\xi_E^{
m deloc} \approx Dim/3$.

Obrázek 8: Indikátory chaosu - bez degenerace

Obrázek 9: Indikátory chaosu - s degeneraci