HANI FARA:	
DE VOIR NOTE	MATHS 02
On considéree l'équation différenti-	Transfer and the second
On considère l'équation différenti- elle linéaire (E)	soté: le solution particulière y
	y = y + yp
4 y + y = 3 e = -1	N. = Be 4 & DI KER
Conditions initiales: y(0)=1	yp = K(x) e h x
	On dérive :
(4) Donnant l'équation Romagène (H) vorsocié:	On dérive: $y'p = K'(x) e^{-\frac{1}{h}x} - \frac{1}{4}e^{-\frac{1}{4}x}K(x)$
4 y 2 + y = 0	4 y'p + yp = 3 e = -1 4 (K'(x) e- = -1 e = = K(x) + K(x) e = = = =
	4 (K'(x) e-4x-1e-4x K(x)+ K(x) e+2
(2) talculons yH, la solution de	29 4 5 9 % m
de senaration (H) gran to methode	$4 K'(x) e^{-\frac{1}{h}x} - e^{-\frac{1}{h}x} K(x) + K(x) e^{\frac{1}{h}x}$
(2) Calculons yH, la solution de l'équation (H) your la méthode de séparation des variable. 4 y' + y = 0	
	4 K'(x) e-1x = 3 e = -1
1 dy + y = 0	$K'(\infty) = \frac{3e^{\frac{2\pi}{2}} - 1}{4e^{-\frac{1}{4}}}$ $K'(\infty) = \frac{3}{4}e^{\frac{2\pi}{4} + \frac{1}{4}} - \frac{1}{4}e^{+\frac{1}{4}}$
4 dy = - y dx	4 e - 4 2 m
	K'(x) = 3 e x + 1x - 1 e + 1x
$\int \frac{1}{y} dy = -\frac{1}{4} \int dx$	4 4 4
4	$K'(x) = \frac{3}{4} e^{\frac{3}{4}x} - \frac{1}{4} e^{\frac{1}{4}x}$
$\ln y + c_1 = -\frac{1}{4}x + c_2$	$\int K'(x) dx = \frac{3}{4} \int e^{\frac{3}{4}x} dx - \frac{1}{4} \int e^{\frac{1}{4}x} dx$
lny = - 1/x + ln K	7 0
1 4	$K(x) + C_1 = \frac{3}{4} \int e^{\frac{3}{4}x} dx - \frac{1}{4} \int e^{\frac{1}{4}x} dx$
$y_{H} = e^{-\frac{1}{4}x} \frac{1}{8}$	
9 H = & e - 1/2	(K(x)+C1-x-x-x-xx-xx+e+x+c
000 0 -0+ - tio	K(2)+C, -2 -7 -7 4 6 + +C
3) Cafale d'une solution porticu	K(x) - e hx - e hx + 2
s) Calcule d'une soullon partitu lière de (E) you la méthode la variation de la constante	Va - K(x) = - 1x.
Wa variation are	A b - 1 (m) c

