Quantum Simulation Training

Table of contents

- I) Theoretical introduction of the concepts
- II) XX & ZZ stabilizers
- III) Repetition code
- IV) Minimal surface code

Ī.

Classical computer

classical bits: 0 or 1

semiconductor physics : -band theory

classical algorithm classical error correction : -bit flip : $0 \rightarrow 1$

Quantum computer

quantum bits : α |0>+ β |1>

quantum physics :
-superposition of states
-entanglement

quantum algorithm

quantum error correction:

-bit flip :
$$\alpha$$
|0>+ β |1> $\rightarrow \alpha$ |1>+ β |0>
- phase flip : α |0>+ β |1> $\rightarrow \alpha$ |0>- β |1>

I. quantum bit = 2 level system : $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$, with $|\alpha|^2+|\beta|^2=1$

measurement in a basis : computational basis {|0> ; |1>}
Hadamard basis {|+> ; |->}

$$|+> = (|0>+|1>)/\sqrt{2}$$

 $|-> = (|0>-|1>)/\sqrt{2}$

Example: measurement of $|\psi\rangle$ in the computational basis

Result	0	1
Probability	$ \alpha ^2$	$ eta ^2$

Quantum logic gate:

1 qubit

Pauli gates:

$$-\mathbf{x}$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

bit flip

$$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$-\mathbf{z}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Hadamard gate:

$$-$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

2 qubits

CNOT gate:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Density matrix : $\rho = |\psi\rangle\langle\psi|$

Bloch sphere:

1 qubit case : $\rho \rightarrow$ 2x2 matrix

$$\rho = (I_2 + \alpha X + \beta Y + \gamma Z)/2$$

$$\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} \rightarrow \text{Bloch vector}$$

Example:
$$\rho_{10} = |0 < 0| = (l_2 + Z)/2$$

Example:
$$\rho_{|0>} = |0><0| = (I_2 + Z)/2$$

Bloch vector $\rightarrow \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

- **I.** Stabilizer: Gate S such that $S|\psi\rangle = |\psi\rangle$
 - For 1 qubit

	0>	1>	+>	->
S	Z	-Z	X	-X

• For 2 qubits

	00>	11>	++>	>
S	Z_1Z_2		X_1X_2	

With:
$$X_1 = X \otimes I_2$$
, $X_2 = I_2 \otimes X$, $Z_1 = Z \otimes I_2$, $Z_2 = I_2 \otimes Z$

I. How to avoid errors?

Classical computer	Quantum computer
Adding redundancy 0 → 000 1 → 111	No cloning theorem (1982)
Error correction code 010 → 0 011 → 1	Quantum error correction

II. ZZ stabilizer: 2 qubits

$$|\Psi_1\rangle = \alpha_1|0\rangle + \beta_1|1\rangle$$

$$|\Psi_2\rangle = \alpha_2|0\rangle + \beta_2|1\rangle$$

$$|\Psi_c\rangle=|0\rangle$$

$$|\Psi_1\rangle = \alpha_1|0\rangle + \beta_1|1\rangle$$

$$|\Psi_2\rangle = \alpha_2|0\rangle + \beta_2|1\rangle$$

$$|\Psi_c\rangle = \alpha_1|0\rangle + \beta_1|1\rangle$$

$$|\Psi_1\rangle = \alpha_1|0\rangle + \beta_1|1\rangle$$

$$|\Psi_2\rangle = \alpha_2|0\rangle + \beta_2|1\rangle$$

$$|\Psi_c\rangle = (\alpha_1\alpha_2 + \beta_1\beta_2)|0\rangle + (\alpha_1\beta_2 + \beta_1\alpha_2)|1\rangle$$

II. Ideal case simulation and real device extended results

II. Ideal case simulation and real device results

II. ZZ stabilizer: 4 qubits

After all CNOT gates:

$$|\Psi_{c}\rangle = \left(\left(\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4} \right) + \left(\beta_{1}\beta_{2}\beta_{3}\beta_{4} \right) + \sum \left(\alpha_{i}\alpha_{j}\beta_{k}\beta_{l} \right) \right) |0\rangle$$
$$+ \left(\sum \left(\alpha_{i}\alpha_{j}\alpha_{k}\beta_{l} \right) + \sum \left(\alpha_{i}\beta_{j}\beta_{k}\beta_{l} \right) \right) |1\rangle$$

$$i,j,k,l \in \{1,2,3,4\}$$

$$a \neq b; a, b \in \{i, j, k, l\}$$

II. Real device extended results

II. Real device results

II. XX stabilizer: 2 qubits

$$|+\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right)$$

$$|-\rangle = \frac{1}{\sqrt{2}} \big(|0\rangle - |1\rangle \big)$$

$$|0\rangle = \frac{1}{\sqrt{2}}(|+\rangle + |-\rangle)$$

$$|1\rangle = \frac{1}{\sqrt{2}} (|+\rangle - |-\rangle)$$

$$q_1$$
 q_2
 H
 Q_2
 Q_3
 Q_4
 Q_5
 Q_6
 Q_7
 Q_8
 Q_8
 Q_8
 Q_9
 Q_9

$$|\Psi_1\rangle = \alpha_1|+\rangle + \beta_1|-\rangle$$

$$|\Psi_2\rangle = \alpha_2|+\rangle + \beta_2|-\rangle$$

$$|\Psi_c\rangle = |+\rangle$$

$$|\Psi_1\rangle = \alpha_1|+\rangle + \beta_1|-\rangle$$

$$|\Psi_2\rangle = \alpha_2|+\rangle + \beta_2|-\rangle$$

$$|\Psi_c\rangle = \alpha_1|+\rangle + \beta_1|-\rangle$$

$$|\Psi_1\rangle = \alpha_1|+\rangle + \beta_1|-\rangle$$

$$|\Psi_2\rangle = \alpha_2|+\rangle + \beta_2|-\rangle$$

$$|\Psi_c\rangle = (\alpha_1\alpha_2 + \beta_1\beta_2)|+\rangle + (\beta_1\alpha_2 + \alpha_1\beta_2)|-\rangle$$

II. Real device extended results

II. Real device results

II. XX stabilizer: 4 qubits

After all CNOT gates:

$$|\Psi_{c}\rangle = \left(\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4} + \beta_{1}\beta_{2}\beta_{3}\beta_{4} + \sum \left(\alpha_{i}\alpha_{j}\beta_{k}\beta_{l}\right)\right)|+\rangle$$

$$+ \left(\sum \left(\alpha_{i}\alpha_{j}\alpha_{k}\beta_{l}\right) + \sum \left(\alpha_{i}\beta_{j}\beta_{k}\beta_{l}\right)\right)|-\rangle$$

$$i,j,k,l \in \{1,2,3,4\}$$

$$a \neq b; a, b \in \{i,j,k,l\}$$

II. Real device extended results

II. Real device results

III. Repetition code

Principle of the repetition code

Classical error correction

Repetition of the same bit to form a new logical bit.

$$\begin{array}{c} 0 \xrightarrow{Logical} 000 \xrightarrow{Error} 100 \xrightarrow{Correction} 0 \\ 1 \xrightarrow{Logical} 111 \xrightarrow{Error} 101 \xrightarrow{Correction} 1 \end{array}$$

Going Quantum

No Cloning Theorem

There is no unitary operator, U, such that:

$$U(|\phi\rangle|e\rangle) \rightarrow |\phi\rangle|\phi\rangle$$

Idea: Use Bell states and Stabilizers.

$$|\psi\rangle = \alpha |0\rangle + \beta |0\rangle \xrightarrow{\textit{Encoding}} |\psi\rangle_{\textit{L}} = \alpha |000\rangle + \beta |111\rangle$$

Principle of the repetition code

1. Bell state encoding:

$$|\psi_1\rangle = \alpha |000\rangle + \beta |111\rangle$$

2. First stabilizer measurement

$$|\psi_{\mathcal{S}_1}\rangle = Z_1 Z_2 |\psi_1\rangle$$

3. Second stabilizer measurements

$$|\psi_{S_2}\rangle = Z_2 Z_3 |\psi_1\rangle$$

Introducing error on single qubits:

	Z_1Z_2	Z_2Z_3	
$\overline{\mathcal{E}(q_0)}$	1	0	
$\mathcal{E}(q_1)$	1	1	
$\mathcal{E}(q_2)$	0	1	

We know where the error come from !

Running the program on the IBMQ simulator

It's what we expect from an error occuring on qubit 1.

Running the code on a real machine

Why is it that bad?

What can we improve?

We can use a different architecture, to improve the connectivity.

Running the circuits without artificial error

Phase Correction

- 1. Encoding (GHZ state)
- 2. We go to Hadamard space.
- 3. Artificially induced phase error.
- 4. X₀X₁ and X₁X₂ stabilizer measurements.
- We go back to the computational basis
- → $X_0X_1 = 0 X_1X_2 = 1$ there is a phase error on qubit 2.

5 qubits code

Analysis of the 5 qubits code

Let's now start from the result

Z_4Z_5	Z_5Z_6	Z_6Z_7	Z_7Z_8
0	1	1	0

The stabilizers Z_5Z_6 and Z_6Z_7 both detect an error.

→ There is an error on qubit 6.

Advantage of the 5 qubits code

We can now detect single and double errors.

	Z_4Z_5	Z_5Z_6	Z_6Z_7	Z_7Z_8
$\mathcal{E}(q_4)$	1	0	0	0
$\mathcal{E}(q_5)$	1	1	0	0
$\mathcal{E}(q_6)$	0	1	1	0
$\mathcal{E}(q_7)$	0	0	1	1
$\mathcal{E}(q_8)$	0	0	0	1
$\mathcal{E}(q_4,q_5)$	0	1	0	0
$\mathcal{E}(q_4,q_6)$	1	1	1	0
$\mathcal{E}(q_4,q_7)$	1	0	1	1
$\mathcal{E}(q_4,q_8)$	1	0	0	1
$\mathcal{E}(q_5,q_6)$	1	0	1	0
$\mathcal{E}(q_5,q_7)$	1	1	1	1
$\mathcal{E}(q_5,q_8)$	1	1	0	1
$\mathcal{E}(q_6,q_7)$	0	1	0	1
$\mathcal{E}(q_6,q_8)$	1	0	0	1
$\mathcal{E}(q_7,q_8)$	0	0	1	0

Simple error model

An error happens when more than half of the qubits are flipped.

$$p_{error} = \sum_{n=(N+1)/2}^{N} {N \choose n} p_{flip}^n (1-p_{flip})^{N-n}$$

 p_{flip} is the probability that one spin flips

The more qubits there are, the less error probability there is.

Conclusion

- +. We can detect errors and correct them using Bell states, stabilizer measurements and syndromes.
- +. The more qubits there are, the less the system is prone to an error.

IV. Minimal Surface Code

Surface Codes

- Easy to scale up.
- One logical qubit is encoded using many physical qubits.
- The more physical qubits (and stabilizing measurements) used, the more robust the logical qubit is.

Fundamental Plaquette

4-plaquettes code: [[5,1,2]]

4-plaquettes code encoding

4-plaquettes code results without noise

4-plaquettes code filtered results with noise

Experimental Results by Andersen et al.

arXiv:1912.09410

Logical qubit definition

- All physical qubits must be measured.
- Stabilizing
 measurements do
 not affect a logical
 qubit state.

$$Z_L = Z_{D1} Z_{D2}, \quad \text{or} \quad Z_L = Z_{D3} Z_{D4},$$
 $X_L = X_{D1} X_{D3}, \quad \text{or} \quad X_L = X_{D2} X_{D4},$

$$|0\rangle_L = \frac{1}{\sqrt{2}} (|0000\rangle + |1111\rangle),$$

$$|1\rangle_L = \frac{1}{\sqrt{2}} (|0101\rangle + |1010\rangle).$$

Fidelity measurements

Fidelity: 70.3% 98.2% 94.2% 94.8% 97.3%