

Foundation of Computer Engineering

Lesson 02 - Boolean Switching Functions Continued

1. Use truth tables to show whether the following Boolean equations are for equivalent functions

a.
$$xyz + x'y' + z' = xyz' + x'y'z' + x'y'z + xy + x'yz' + xy'z'$$

Below is the required truth table.

x	у	z	xyz + x'y' + z'	xyz' + x'y'z' + x'y'z + xy + x'yz' + xy'z'
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	1	1
1	1	1	1	1

Below are the SOP form of the two expressions:

Left hand side =
$$xyz + x'y'z + x'y'z' + x'yz' + xy'z' + xyz' = sigma(0, 1, 2, 4, 6, 7)$$

Right hand side = $xyz + xyz' + xy'z' + x'yz' + x'y'z + x'y'z' = sigma(0, 1, 2, 4, 6, 7)$

Which agrees exactly with the above truth table.

b. xy + z = xyz' + z

Below is the required truth table.

x	у	z	xy + z	xyz' + z
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Since

Left hand side =
$$(xyz + xyz') + z = xyz' + (xyz + z) = xyz' + (xy + 1)z = xyz' + z = Right$$

This also confirms the conclusion from the above truth table.

c. (x+y)(x+z) = x + yz + xyz

Below is the required truth table.

X	у	Z	(x+y)(x+z)	x + yz + xyz
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	1	1

x	у	Z	(x+y)(x+z)	x + yz + xyz
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Since

```
Left hand side = (x'y' + x'z')' = (sigma(0, 1, 2))' = sigma(3, 4, 5, 6, 7)

Right hand size = x + xyz + x'yz + xyz = x + xyz + x'yz = x(1 + yz) + x'yz = x + x'yz = sigma(3, 4, 5, 6, 7)
```

This agrees very well with the above truth table.

2. Consider the following encoding for binary coded decimal (BCD) numbers (left) and associated 7-segment display (right). Using truth tables, don't care conditions and K-maps, create minimized SOP equations for the following segments of the 7-segment display (b, c, g). For example, segments b and c would be illuminated for the BCD code 0001. All segments would be illuminated for the BCD code 1000.

Decim al	digit BCD	
Decimal	wxyz	
0	0 0 0 0	
1	0 0 0 1	а
2	0 0 1 0	
3	0 0 1 1	f b
4	0 100	g
5	0 1 0 1	e c
6	0 110	d
7	0 111	
8	1 000	
9	1 0 0 1	

Below is the required truth table

w	x	у	z	а	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0

w	x	у	z	а	b	С	d	е	f	g
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

a. K-map for output channel a (ABCD := wxyz)

Karnaugh Map

So a = w + y + xz + x'z'

b. K-map for output channel b (ABCD := wxyz)

Karnaugh Map

So b = x' + y'z' + yz

c. K-map for output channel c (ABCD := wxyz)

Karnaugh Map

So c = x + y' + z

d. K-map for output channel d (ABCD := wxyz)

Karnaugh Map

So d = w + x'z' + x'y + yz' + xy'z

e. K-map for output channel e (ABCD := wxyz)

Karnaugh Map

So e = x'z' + yz'

f. K-map for output channel f (ABCD := wxyz)

Karnaugh Map

So f = w + y'z' + xz' + xy'

g. K-map for output channel g (ABCD := wxyz)

So g = w + xy' + x'y + yz'

Output Summary

a = w + y + xz + x'z' b = x' + y'z' + yz c = x + y' + z d = w + x'z' + x'y + yz' + xy'z e = x'z' + yz' f = w + y'z' + xz' + xy' g = w + xy' + x'y + yz'

3. Problem 7.1 in the Kohavi and Jha text

a. Question A

First is the truth table for this unit:

х1	x2	х3	х4	w1	w2	w3	w4	z=sigma(xi*wi)	Т	f
0	0	0	0	-1	2	2	-3	0	-1/2	1
0	0	0	1	-1	2	2	-3	-3	-1/2	0
0	0	1	0	-1	2	2	-3	2	-1/2	1
0	0	1	1	-1	2	2	-3	-1	-1/2	0
0	1	0	0	-1	2	2	-3	2	-1/2	1
0	1	0	1	-1	2	2	-3	-1	-1/2	0
0	1	1	0	-1	2	2	-3	4	-1/2	1
0	1	1	1	-1	2	2	-3	1	-1/2	1
1	0	0	0	-1	2	2	-3	-1	-1/2	0
1	0	0	1	-1	2	2	-3	-4	-1/2	0
1	0	1	0	-1	2	2	-3	1	-1/2	1

x 1	x2	х3	х4	w1	w2	w3	w4	z=sigma(xi*wi)	Т	f
1	0	1	1	-1	2	2	-3	-2	-1/2	0
1	1	0	0	-1	2	2	-3	1	-1/2	1
1	1	0	1	-1	2	2	-3	-2	-1/2	0
1	1	1	0	-1	2	2	-3	3	-1/2	1
1	1	1	1	-1	2	2	-3	0	-1/2	1

Below is the corresponding K-map:

The final minimal SOP expression is:

$$f = w'z' + xz' + yz' + xy$$

b. Question B

First is the truth table for this unit:

x1	x2	х3	х4	gw1	gw2	gw3	gw4	zg=sigma(xi*gwi)	Т	g	fw1	fw2
0	0	0	0	-2	-2	1	1	0	-1/ 2	1	2	2
0	0	0	1	-2	-2	1	1	1	-1/ 2	1	2	2
0	0	1	0	-2	-2	1	1	1	-1/ 2	1	2	2
0	0	1	1	-2	-2	1	1	2	-1/ 2	1	2	2
0	1	0	0	-2	-2	1	1	-2	-1/ 2	0	2	2
0	1	0	1	-2	-2	1	1	-1	-1/ 2	0	2	2
0	1	1	0	-2	-2	1	1	-1	-1/ 2	0	2	2
0	1	1	1	-2	-2	1	1	0	-1/ 2	1	2	2
1	0	0	0	-2	-2	1	1	-2	-1/ 2	0	2	2
1	0	0	1	-2	-2	1	1	-1	-1/ 2	0	2	2
1	0	1	0	-2	-2	1	1	-1	-1/ 2	0	2	2
1	0	1	1	-2	-2	1	1	0	-1/ 2	1	2	2
1	1	0	0	-2	-2	1	1	-4	-1/ 2	0	2	2

		0						!!\	_		ca	
x 1	x2	х3	х4	gw1	gw2	gw3	gw4	zg=sigma(xi*gwi)	Т	g	fw1	fw2
1	1	0	1	-2	-2	1	1	-3	-1/ 2	0	2	2
1	1	1	0	-2	-2	1	1	-3	-1/ 2	0	2	2
1	1	1	1	-2	-2	1	1	-2	-1/ 2	0	2	2

Below is the corresponding K-map:

The final minimal SOP expression is:

f = w'x' + wx + yz

4. Problem 4.1, parts a and b in the Kohavi and Jha text

a. f = sigma(0, 1, 2, 3, 4, 6, 8, 9, 10, 11) (ABCD := wxyz)

Karnaugh Map

So f = x' + w'z'

b. f = sigma(0, 1, 5, 7, 8, 10, 14, 15) (ABCD := wxyz)

Karnaugh Map

So f = x'y'z' + w'y'z + xyz + wyz'

5. Problem 4.2, part b in the Kohavi and Jha text

Karnaugh Map

So f = w'y' + xy'z' + x'y'z + xyz + x'yz'

6. Problem 4.14 in the Kohavi and Jha text

Below is the original map:

Karnaugh Map

a. Use the map to obtain the set of all prime implicants and indicate specifically the essential ones

First is the map with essential prime implicants marked out:

They are:

- 1. w'xy'
- 2. wx'y'
- 3. wxy

Then are the three non-essential prime implicants:

They are:

- 1. w'z
- 2. yz
- 3. x'z

So the final set of all prime implicants is:

b. Find three distinct minimal expression for T

1. First (ABCD := wxyz)

Karnaugh Map

T = w'z + yz + w'xy' + wx'y' + wxy

2. Second (ABCD := wxyz)

Karnaugh Map

T = x'z + yz + w'xy' + wx'y' + wxy

3. Third (ABCD := wxyz)

Karnaugh Map

T = x'z + w'z + w'xy' + wx'y' + wxy

c. Find the complement T' directly from the map

Below is the map for the complement T'

T' = w'x'z' + wxy' + w'yz' + x'yz'

d. Assume that only unprimed variables are available and construct a circuit that realizes T and requires no more than 13 gate inputs and two NOT gates

Sorry up to now I have no clue. Still working on it.

7. Problem 4.18 in the Kohavi and Jha text

a. Let f(x1, x2, ..., xn) be equal to 1 if and only if exactly k of the variables equal 1. How many prime implicants does this function have?

Sorry up to now I have no clue. Still working on it.

b. Repeat (a) for the case where f assumes the value 1 if and only if k or more of the variables are equal to 1

Sorry up to now I have no clue. Still working on it.

8. Problem 4.19 in the Kohavi and Jha text

a. Let T(A, B, C, D) = A'BC + B'C'D. Prove that any expression for T must contain at least one instance of the literal D or of the literal D'

Sorry up to now I have no clue. Still working on it.

b. If in a minimal sum-of-products expression, each variable appears either in a primed form or in an unprimed form but not in both then the function is said to be unate. Prove that the minimal sum-of-products form of a unate function is unique.

Sorry up to now I have no clue. Still working on it.

c. Is the converse true, i.e., if the minimal sum-of-products expression is unique then the function is unate?

Sorry up to now I have no clue. Still working on it.