Prof. G. Pelosi, S. Selleri - Laboratorio di Elettromagnetismo Numerico Dipartimento di Elettronica e Telecomunicazioni – Università di Firenze

Lezione 20

Antenne per Misure di EMC

Giuseppe Pelosi - Stefano Selleri Dipartimento di Elettronica e Telecomunicazioni Università di Firenze

Sommario della Lezione

- Introduzione
- ❖ Antenna Biconica
- ❖ Antenna Log-Periodica
- ❖ Altri Sensori

Introduzione

La FCC prevederebbe di usare un dipolo risonante per la misura di campo.

Se però desideriamo frare misure su un'ampia banda (30MHz-1GHz e più) la soluzione a dipolo risonante non è pratica.

Inoltre alla frequenza inferiore della banda (30MHz) la lunghezza d'onda è 10m e di conseguenza l'antenna sarebbe di 5m.

Per non parlare della difficoltà di fare le misure previste a quota da 1m a 4m!!!

La via più pratica è quella di usare un'antenna a *larga banda* che funzioni su tutta la gamma di frequenze di interesse.

Introduzione

il "che funzioni su tutta la gamma di frequenze di interesse" merita di essere spiegato.

L'antenna deve:

- 1. Avere un'impedenza di ingresso ragionevolmente costante su tutta la banda
- 2. Avere un pattern di radiazione ragionevolmente costante su tutta la banda

La misura viene quindi effettuata utilizzando un'*antenna biconica* nel range 30-200MHz e un'*antenna log-periodica* da 200MHz a 1GHz

Antenna Biconica

L'antenna biconica è, idealmente, una struttura infinita formata da due coni perfettamente conduttori opposti al vertice

Compatibilità Elettromagnetica I A. A. 2006-07

Si può supporre, data la simmetria della struttura, che i campi *non* dipendano da φ.

Supponiamo inoltre che la struttura del campo sia

$$\mathbf{E} = E(r, \theta)\mathbf{i}_{\theta}$$

$$\mathbf{H} = H(r, \theta) \mathbf{i}_{\phi}$$

Questa scelta è plausibile in quanto soddisfa le condizioni al contorno.

Le equazioni di Maxwell, come ricorderete, dicono:

$$\nabla \times \mathbf{E} = -j\omega \mu \mathbf{H}$$

$$\nabla \times \mathbf{H} = j\omega \varepsilon \mathbf{E}$$

Compatibilità Elettromagnetica I A. A. 2006-07

Antenna Biconica

In coordinate sferiche il rotore è

$$\nabla \times \mathbf{A} = \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} \left(A_{\phi} \sin \theta \right) - \frac{\partial}{\partial \phi} A_{\theta} \right) \mathbf{i}_{r} + \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \phi} A_{r} - \frac{\partial}{\partial r} (r A_{\phi}) \right) \mathbf{i}_{\theta} + \frac{1}{r} \left(\frac{\partial}{\partial r} (r A_{\theta}) - \frac{\partial}{\partial \theta} A_{r} \right) \mathbf{i}_{\phi}$$

Con l'ipotesi considerata:

$$\frac{1}{r\sin\theta} \frac{\partial}{\partial \phi} E_{\theta} = 0 \implies E_{\theta} \quad \text{non dipende da } \phi$$

$$\frac{1}{r} \frac{\partial}{\partial r} (rE_{\theta}) = -j\omega\mu H_{\phi} \implies \frac{\partial}{\partial r} (rE_{\theta}) = -j\omega\mu r H_{\phi}$$

$$\frac{1}{r\sin\theta} \frac{\partial}{\partial \theta} (H_{\phi}\sin\theta) = 0 \implies \frac{\partial}{\partial \theta} (H_{\phi}\sin\theta) = 0$$

$$-\frac{1}{r} \frac{\partial}{\partial r} (rH_{\phi}) = j\omega\varepsilon E_{\theta} \implies \frac{\partial}{\partial r} (rH_{\phi}) = -j\omega\varepsilon r E_{\theta}$$

Antenna Biconica

Derivo la quarta e vi sostituisco la seconda

$$\frac{\partial^{2}}{\partial r^{2}} (rH_{\phi}) = -j\omega\varepsilon \frac{\partial}{\partial r} (rE_{\theta}) = -\omega^{2}\varepsilon\mu (rH_{\phi})$$

ovvero

$$\frac{\partial^2}{\partial r^2} \left(r H_{\phi} \right) + k^2 \left(r H_{\phi} \right) = 0$$

Che è un'onda in *r*:

$$rH_{\phi} = f(\theta) \Big(A^{+} e^{jkr} + A^{-} e^{-jkr} \Big)$$

Una funzione di θ

Onda che dall'infinito va ai morsetti Onda che dai morsetti va all'infinito

Prof. S. Selleri - Laboratorio di Elettromagnetismo Numerico Dinartimento di Elettronica e Telecomunicazioni – Università di Firen

Compatibilità Elettromagnetica I A. A. 2006-07

EM

Antenna Biconica

Quindi

$$H_{\phi} = f(\theta)A^{-}\frac{e^{-jkr}}{r}$$

Dalla terza

$$\frac{\partial}{\partial \theta} \left(H_{\phi} \sin \theta \right) = 0 \quad \Rightarrow \quad \frac{\partial}{\partial \theta} \left(f(\theta) A^{-} \frac{e^{-jkr}}{r} \sin \theta \right) = 0 \quad \Rightarrow \quad f(\theta) \sin \theta = \cos t$$

Quindi

$$H_{\phi} = A^{-} \frac{e^{-jkr}}{r \sin \theta}$$

E

$$E_{\theta} = \frac{k}{\omega \varepsilon} A^{-} \frac{e^{-jkr}}{r \sin \theta} = \zeta_{0} H_{\phi}$$

. s. senen - Laboratorio di Elettroniagnetismo numerico artimento di Elettronica e Telecomunicazioni – Università di F

Compatibilità Elettromagnetica I A. A. 2006-07

Antenna Biconica

L'onda è quindi TEM (i campi sono ortogonali fra loro e ortogonali alla direzione di propagazione)

Posso quindi definire tensione e corrente!

La tensione la integro su un percorso a r (e ϕ) costante

$$V = \int_{\pi-\theta_h}^{\theta_h} \mathbf{E} \cdot d\mathbf{l} = \zeta_0 A^{-} \frac{e^{-jkr}}{r} \int_{\pi-\theta_h}^{\theta_h} \frac{1}{\sin \theta} r d\theta =$$
$$= \zeta_0 A^{-} e^{-jkr} 2 \ln(\cot(\theta/2))$$

Analogamente la corrente

$$I = \int_{0}^{2\pi} \mathbf{H} \cdot \mathbf{r} dl = A^{-} \frac{e^{-jkr}}{r \sin \theta} \int_{0}^{2\pi} r d\phi =$$
$$= 2\pi A^{-} e^{-jkr}$$

Antenna Biconica

Evidentemente l'impedenza è

$$Z_0 = \frac{V}{I} = \frac{\zeta_0 A^- e^{-jkr} 2 \ln(\cot(\theta_h/2))}{2\pi A^- e^{-jkr}} = \frac{\zeta_0}{\pi} \ln(\cot(\theta_h/2)) = 120 \ln(\cot(\theta_h/2))$$

Questa, oltre a essere l'impedenza della struttura guidante, valendo ovunque è anche evidentemente l'impedenza di ingresso dell'antenna.

Essa è puramente reale e indipendente dalla frequenza!

Non solo, si può dimostrare che essa è anche la resistenza di radiazione!

nto di Elettronica e Telecomunicazioni – Università di Firenz

Compatibilità Elettromagnetica I A. A. 2006-07

EM

Antenna Biconica

Infatti

$$P_{rad} = \iint_{S} \frac{1}{2} \mathbf{E} \times \mathbf{H}^{*} dS = \int_{0}^{2\pi} \int_{\theta}^{\pi-\theta} \frac{\left|E_{\theta}\right|^{2}}{2\zeta_{0}} r^{2} \sin\theta d\theta d\phi =$$

$$= \frac{\pi}{\zeta_{0}} \int_{\theta}^{\pi-\theta} \left|\zeta_{0} A^{-} \frac{e^{-jkr}}{r \sin\theta}\right|^{2} r^{2} \sin\theta d\theta d\phi =$$

$$= \pi \zeta_{0} \left(A^{-}\right)^{2} \int_{\theta}^{\pi-\theta} \frac{1}{\sin\theta} d\theta d\phi =$$

$$= \pi \zeta_{0} \left(A^{-}\right)^{2} 2 \ln(\cot(\theta_{h}/2))$$

Ma, per definizione

$$P_{rad} = \frac{1}{2} |I(0)|^2 R_{rad} =$$

$$= \frac{1}{2} (2\pi A^{-})^2 R_{rad}$$

Quindi

$$Z_{in} = R_{rad}$$

Antenna Biconica

Impedenza di ingresso...

Antenna Biconica

Oltre all'impedenza anche il pattern è (teoricamente) indipendente dalla frequenza.

All'atto pratico però i coni non possono essere infiniti. Questo comporta che alla discontinuità geometrica del troncamento del cono nasca un'onda riflessa.

L'onda riflessa implica che l'impedenza d'ingresso non è più puramente reale ma presenta una parte immaginaria. Inoltre la stazionarietà che si genera implica che l'impedenza non sia più indipendente dalla frequenza.

Compatibilità Elettromagnetica I A. A. 2006-07 Prof. S. Selleri - Laboratorio di Elettromagnetismo Numerico

EM

Antenna Biconica

L'antenna biconica può essere realizzata a fili

Antenna Biconica

Altre variazioni sul tema sono l'antenna disco-cono, che è sbilanciata e quindi non necessita di BalUn, e l'antenna a farfalla

Antenna Log-Periodica

Un altro metodo per ottenere un'antenna a larga banda è quello di costruire una struttura *autoscalata* ovvero tale per cui, moltiplicando le dimensioni per un certo coefficiente l'antenna resti uguale a se stessa.

In questo modo al variare della frequenza vi sarà sempre una zona dell'antenna deputata alla radiazione, e questa zona avrà sempre la stessa forma e le stesse "condizioni al contorno"

Il concetto di autoscalatura tramitte un coefficiente implicache anche le caratteristiche elettriche risultino scalate di tale coefficiente.

Esse presentano quindi una periodicità che però non è lineare, ma logaritmica.

Di qui il nome di Antenne Log-Periodiche

Compatibilità Elettromagnetica I A. A. 2006-07 Prof. S. Selleri - Laboratorio di Elettromagnetismo Numerico

L'Antenna Log Periodica più semplice e intuitiva è la Log-Periodica a dipoli o *LPDA*:

È il coefficiente di scala

Prof. S. Selleri - Laboratorio di Elettromagnetismo Numerico

Compatibilità Elettromagnetica I A. A. 2006-07

Antenna Log-Periodica

Il metodo più intuitivo di alimentazione è

Ma non funziona bene!

Infatti l'onda, viaggiando da sinistra a destra alimenta i dipoli con una fase tale per cui la radiazione complessiva dovrebbe avere un massimo a destra.

La mutua interazione tra i dipoli è però alta, poiché essi sono vicini, e l'effetto delle correnti indotte sarebbe quello di avere un massimo di radiazione a sinistra!

Per farla funzionare...

Questo mette in "controfase" i dipoli e il massimo di radiazione sia per le correnti impresse che per quelle indotte è a sinistra!

Antenna Log-Periodica

Con Auto-BalUn..

Dipartimento di Elettronica e Telecomunicazioni – Università di Firenze

Compatibilità Elettromagnetica I A. A. 2006-07

Antenna Log-Periodica

EM

Antenna Log-Periodica

Compatibilità Elettromagnetica I A. A. 2006-07 Prof. S. Selleri - Laboratorio di Elettromagnetismo Numerico

Antenna Log-Periodica

L'Impedenza, funzione della frequenza, è

Compatibilità Elettromagnetica I A. A. 2006-07

Antenna Log-Periodica

La direttività è ragionevolmente costante in frequenza

Compatibilità Elettromagnetica I A. A. 2006-07 Prof. S. Selleri - Laboratorio di Elettromagnetismo Numerico

EM

Antenna Log-Periodica

Possiamo inoltre definire un fattore di spaziatura

$$\sigma = \frac{R_{n+1} - R_n}{2l_{n+1}}$$

Mentre l'angolo è

$$\alpha = \tan^{-1} \left(\frac{1 - \tau}{4\sigma} \right)$$

Compatibilità Elettromagnetica I A. A. 2006-07 Prof. S. Selleri - Laboratorio di Elettromagnetismo Numerico

Antenna Log-Periodica

Vi è una spaziatura ottima, relativamente alla direttività

Compatibilità Elettromagnetica I A. A. 2006-07 Prof. S. Selleri - Laboratorio di Elettromagnetismo Numerico Dipartimento di Elettronica e Telecomunicazioni – Università di Firenze

Altri Sensori

Compatibilità Elettromagnetica I A. A. 2006-07 Prof. S. Selleri - Laboratorio di Elettromagnetismo Numerico

Altri Sensori

Sensore di Campo	Campo di frequenza		Portata
Electric Field Probe EP-105	100 kHz - 1000 MHz	0.05 - 50 V/m	
Electric Field Probe EP-300	100 kHz - 3 GHz	0.1 - 300 V/m	
Electric Field Probe EP-330	100 kHz - 3 GHz	0.3 - 300 V/m	
Electric Field Probe EP-301	100 kHz - 3 GHz	1 - 1000 V/m	
Electric Field Probe EP-183	1 MHz – 18 GHz	0.8 - 800 V/m	
Electric Field Probe EP-408	1 MHz – 40 GHz	0.8 - 800 V/m	
Electric Field Probe EP-44M	100 kHz - 800 MHz	0.25 - 250 V/m	
Electric Field Probe EP-33M	700 MHz - 3 GHz	0.3 - 300 V/m	
Electric Field Probe EP-33A	925 MHz - 960 MHz	0.03 - 30 V/m	
Electric Field Probe EP-33B	1805 MHz - 1880 MHz	0.03 - 30 V/m	
Electric Field Probe EP-33C	2110 MHz - 2170 MHz	0.03 - 30 V/m	
Magnetic Field Probe HP-032	0.1 - 30 MHz	0.01 - 20 A/m	
Magnetic Field Probe HP-102	30 - 1000 MHz	0.01 - 20 A/m	
Magnetic Field Probe HP-050	10 Hz – 5 kHz	10 nT – 40 μT	
Magnetic Field Probe HP-051	10 Hz – 5 kHz	50 nT – 200 μT	
Electric and Magnetic Field Analyzers	5 Hz – 100 kHz	Α	100 mV/m - 100 kV/m
EHP50A/B/C			10 nT – 10 mT
	5 Hz – 100 kHz	B/ C	10 mV/m – 100 kV/m 1 nT – 10 mT

Altri Sensori

ELECTRIC FIELD PROBE EP-330

Campo di frequenza

Portata

0,3 - 300 V/m

Sovraccarico

Dinamica

Risoluzione

Sensibilità

0,3 V/m

Frrore assoluto © 50 MHz e 20 V/m

100 kHz - 3 GHz

0,3 - 300 V/m

> 600 V/m

> 60 dB

0,01 V/m

10.8 dB

Errore assoluto @ 50 MHz e 20 V/m \pm 0,8 dB Piattezza (10 - 300 MHz) \pm 0.5 dB Piattezza (3 MHz - 3 GHz) \pm 1.5 dB

Isotropicità \pm 0.8 dB (Tipico \pm 0.5dB @ 930 e 1800 MHz)

Compatibilità Elettromagnetica I A. A. 2006-07

Altri Sensori

Probe EF0391	Electric (E-)Field	
Frequency range (b)	100 kHz to 3 GHz	
Type of frequency response	Flat	
Measurement range	0.2 to 320 V/m (CW) 0.2 to 10 V/m (True RMS)	10 nW/cm² to 27 mW/cm² (CW) 10 nW/cm² to 0.027 mW/cm² (True RMS)
Dynamic range	64 dB	
CW damage level	800 V/m	170 mW/cm ²
Peak damage level (c)	8 kV/m	17 W/cm²
Sensor type	Diode based system	
Directivity	Isotropic (Tri-axial)	
Readout mode / spatial assessment	3 separate axes	
UNCERTAINTY		
Flatness of frequency response (d) Calibration uncertainty not included	±1 dB (1 MHz to 1 GHz) ±1.25 dB (1 GHz to 2.45 GHz)	
Calibration uncertainty (e) @ 0.01 mW/cm² (6.14 V/m)	±1 dB (<400 MHz) ±1.5 dB (400 MHz to 1.8 GHz) ±1 dB (≥ 1.8 GHz)	
Linearity Referred to 0.01 mW/cm² (6.14 V/m)	±0.5 dB (1.2 to 200 V/m) ±0.7 dB (200 to 320 V/m)	±0.5 dB (0.00038 to 10.6 mW/cm²) ±0.7 dB (10.6 to 27 mW/cm²)
Isotropic response (f)	±1 dB	
Temperature response	+0.2/ -1 dB (±0.025 dB/K)	
GENERAL SPECIFICATIONS		
Calibration frequencies	0.1/ 0.2/ 0.3/ 1/ 3/ 10/ 27.12 MHz 0.1/ 0.2/ 0.3/ 0.5/ 0.75/ 1/ 1.8/ 2.45/ 2.7/ 3 GH:	Z
Recommended calibration interval	24 months	
Temperature range Operating Non-operating (transport)	0 °C to +50 °C -40 °C to +70 °C	
Humidity	5 to 95 % RH @ ≤25 °C	≤23 g/m³ absolute humidity
Size	318 mm x 66 mm Ø	
Weight	90 g	
Compatibility	NBM-500 series meters	

Prof. S. Selleri - Laboratorio di Elettromagnetismo Numerico

Compatibilità Elettromagnetica I A. A. 2006-07

Altri Sensori

Sensor Type Detection Dynamic Range Resolution Readout Units Frequency Response Accuracy

Isotropic Deviation Linearity Probe Response Time Overload Withstand

Physical Interface

Operating Range

Operating Time Battery Battery Charger

Dimensions

Mounting Weight

Electric Field

Isotropic (X, Y and Z Axis Readings) 0.5 - 800 V/m (>64 dB, Single Range)

0.01 V/m

V/m, V^2/m^2 , mW/cm^2 100 kHz - 6 GHz

+ 1 dB from 26 MHz - 2 GHz

± 0.5 dB at Calibration Frequencies

 $\pm 0.5 dB$ \pm 0.5 dB

5 isec (typical)

>1500 V/m Continuous Field

Duplex Optical Fiber (200 micron multimode)

FSMA Connectors 10°C to 40°C

5% to 95% Relative Humidity, Non-Condensing

10 Hours Continuous Use

Rechargeable NiMH

100-240 VAC Universal Input

2 Hour Charge Time from Fully-Depleted Battery

32mm x 32mm x 32mm Cubical Housing

43mm Sensor Protection Caps 1/4-20 UNC Internal Thread

80g