Set-D

प्रादर्श-प्रश्न पत्र

(Model Question Paper)

कक्षा – दसवीं

(Class - 10th)

विषय - गणित

(Sub - Mathematics)

समय- 3 घन्टे

पूर्णाक - 100

निर्देश-

- 1. सभी प्रश्न हल करना अनिवार्य है।
- 2. प्रश्नपत्र में दो खण्ड दिये गये है खण्ड 'अ' एवं 'ब'
- 3. खण्ड 'अ' में 1 से 5 तक वस्तुनिष्ठ प्रश्न है व प्रत्येक में 1 अंक निर्धारित है।
- 4. प्रश्न क्र. 6 से 10 तक प्रत्येक प्रश्न पर 2 अंक है
- 5. प्रश्न क्र. 11 से 17 तक प्रत्येक प्रश्न पर 4 अंक है
- 6. प्रश्न क्र. 18 से 22 तक प्रत्येक प्रश्न पर 5 अंक है
- 7. प्रश्न क्र. 23 व 24 पर 6 अंक निर्धारित है।

Instruction:

- 1. All question are compulasory.
- 2. Question Paper has two section 'A' and 'B'.
- 3. In Section 'A' Q. No. 1 to 5 is objective type each question carries 1 mark.
- 4. Q. No. 6 to 10 carries 2 Marks each.
- 5. Q. No. 11 to 17 carries 4 Marks each.
- 6. Q. No. 18 to 22 carries 5 Marks each.
- 7. Q. No. 23 and 24 carries 6 Marks each.

खण्ड (अ)

प्र. 1 सही विकल्प चुनकर लिखिए

Choose the Correct option.

- (i) समीकरण निकाय $a_1x + b_1y = c_1, a_2x + b_2y = c_2$ का कोई हल नहीं हैं यदिः
 - (a) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$

(b) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

(c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

(d) इनमें से कोई नहीं

System of equation $a_1x + b_1y = c_1$, $a_2x + b_2y = c_2$ Will have no Solution if.

(a) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$

(b) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

(c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

- (d) none of these
- (ii) $x + \frac{1}{x}$ का योज्य प्रतिलोम होगा
 - (a) $x \frac{1}{x}$

(b) $-x - \frac{1}{x}$

(c) $x + \frac{1}{x}$

(d) $-x + \frac{1}{x}$

The additive inverse of $x + \frac{1}{x}$ is-

(a) $x - \frac{1}{x}$

(b) $-x - \frac{1}{x}$

(c) $x + \frac{1}{x}$

- (d) $-x + \frac{1}{x}$
- (iii) यदि a और c का मध्यानुपाती b है तब
 - (a) $b^2 = ac$

(b) $a^2 = bc$

(c) $c^2 = ab$

(d) इनमें से कोई नहीं

If mid propartion of 'a' and 'c' is b then:

(a) $b^2 = ac$

(b) $a^2 = bc$

(c) $c^2 = ab$

- (d) none of these
- (iv) वर्ग समीकरण $2x^2 + 5x 25 = 0$ का विविक्तकर होगा
 - (a) 225

(b) 175

(c) 25

(d) 200

Discrimnant of quadratic equation $2x^2 + 5x - 25 = 0$ will be.

(a) 225

(b) 175

(c) 25

(d) 200

(v)	5000	र. के टेलीविजन का मूल्य 10% व	ार्षिक घ	ासारे की दर से 2 वर्ष बाद क्या होगा।
	(a)	4030 ক.	(b)	4050 ₹.
	(c)	4060 रु.	(d)	4090 ₹.
		t will be the price of a television al rate of depreciation.	castin	g Rs. 5000 after two year at 10%
	(a)	Rs. 4030	(b)	Rs. 4050
	(c)	Rs. 4060	(d)	Rs. 4090
ਸ਼. 2	सही 1	विकल्प चुनकर लिखिए		
	Choo	ose the Correct option.		
(i)	प्रथम	छः प्राकृत संख्याओं का समान्तर माध्	य है:	
	(a)	4	(b)	3
	(c)	3.5	(d)	4.5
	The 1	mean of first six natural number is	S.	
	(a)	4	(b)	3
	(c)	3.5	(d)	4.5
(ii)		पूर्व में 3 मीटर जाता है और फिर उत्त गी दूर हैः	नर में 4	मीटर जाता है, तो वह प्रांरभिंक बिन्दु से
	(a)	5 मीटर	(b)	15 मीटर
	(c)	9 मीटर	(d)	16 मीटर
		ham moves 3 meter toward eas	st and	4 meter towards north. Then his
	(a)	5 m	(b)	15 m
	(c)	9 m	(d)	16 m
(iii)	एक द	वृत्त का व्यास 16 सेमी है तो उसकी	त्रिज्या	होगी :
	(a)	2 सेमी.	(b)	4 सेमी.
	(c)	8 सेमी.	(d)	16 सेमी.
	The o	diameter of the circle is 16 cm. th	en its r	adius will be
	(a)	2 c.m.	(b)	4 c.m.
	(c)	8 c.m.	(d)	10 <i>c.m.</i>
(iv)	$\frac{1}{\cos e}$	$\frac{1}{c^2\theta} + \frac{1}{\sec^2\theta}$ का मान होगा		
	(a)	1	(b)	0

(c) $\sin^2\theta$

(d) $\cos^2\theta$

The value of $\frac{1}{\cos ec^2\theta} + \frac{1}{\sec^2\theta}$ will be.

(a) 1

(b) 0

(c) $\sin^2\theta$

(d) $\cos^2\theta$

(v) अप्रत्यक्ष कर है:

(a) आयकर

(b) व्यावसायिक कर

(c) समपत्ति कर

(d) बिक्री कर

Indirect tax is:

(a) Income tax

(b) Commercial tax

(c) welth Tax

(d) sales tax

प्र. 3 रिक्त स्थानों की पूर्ति कीजिए:

- (i)त्रिभुज सदैव समरूप होगें।
- (ii) मशीनरी पर समयानुसार होने वाली मूल्य में कमी कहलाती है।
- (iii) तीन असमरेख बिन्दुओं से अधिकतमवृत खीचे जा सकते हैं।
- (iv) दो रैखिक समीकरण निकाय का कोई हल नहीं होगा तब रेखाएंहोगी।
- (v) $x + \frac{1}{x}$ का परिमेय व्यंजक रूपहै।

Fill in The blanks-

- (i)Triangles are similar.
- (ii) The loss in the cost of machinary with the time is called
- (iii) From Three non-Collinear points maximum......circle can be draw.
- (iv) Systum of two linear equation have no solution then the line are
- (v) Rational expression form of expression $x + \frac{1}{x}$ is

प्र. 4 सत्य/असत्य छाँटकर लिखिए-

- 1. शंकु के आधार का क्षेत्रफल πr^2 होता है।
- 2. $\sin^2\theta + \cos^2\theta = -1$
- 3. सूचकांक के पाँच प्रकार होते हैं।
- 4. $\cot^2\theta + \cos\theta = \sin^2\theta$
- 5. संख्या 3, 6, 10, 12, 7, 15, 5 की मध्यका का मान 7 होगा।

Write true/false

Area of base of a cone is πr^2 . 1.

2.
$$\sin^2\theta + \cos^2\theta = -1$$

There are 5 Types of index. 3.

4.
$$\cot^2\theta + \cos\theta = \sin^2\theta$$

Midian of the data 3, 6, 10, 12, 7, 15, 5 is 7.

प्र. 5 सही जोडी बनाइए

(ब)

1.
$$\frac{px}{qx}$$
 को योज्य प्रतिलोम

 $\cos\theta$

2.
$$\sin (90 - \theta)$$

5

3.
$$\sin\theta \times \csc\theta$$

$$-\frac{px}{qx}$$

4. 2, 4, 6, 8 का माध्य
$$\pi h (r_1^2 - r_2^2)$$

$$\pi h (r_1^2 - r_2^2)$$

Match the correct pair

'B'

1. Additive inverse of
$$\frac{px}{qx}$$

 $\cos\theta$

2.
$$\sin (90 - \theta)$$

5

3.
$$\sin\theta \times \csc\theta t$$

$$-\frac{px}{qx}$$

4. Mean of 2, 4, 6, 8
$$\pi h (r_1^2 - r_2^2)$$

$$\pi h (r_1^2 - r_2^2)$$

5. Volume of a hollow cylinder

खण्ड 'ब' SACTION 'B'

प्र. 6 यदि निम्न आकृति में DE||BC, $\frac{AD}{DB} = \frac{3}{5}$ तथा भुजा AC = 6 सेमी है तो AE का मान ज्ञात कीजिए।

If in the Following Figure DE||BC, $\frac{AD}{DB} = \frac{3}{5}$ and side AC = 6 c.m., then find value of AE.

- प्र. 7 किसी $\triangle ABC$ में AD, BC पर लंब है तो सिद्ध कीजिए कि, $AB^2 + CD^2 = BD^2 + AC^2$ In $\triangle ABC$, AD is perpendicular to BC, then Prove that $AB^2 + CD^2 = BD^2 + AC^2$
- प्र. 8 20 मी. लंबी एक सीढ़ी एक भवन की खिड़की तक पहुँचती है, जो भूमि से 15 मीटर की ऊँचाई पर है भवन से सीढ़ी के निचले सिरे की दूरी ज्ञात कीजिए।

A 20 metre long ladder reaches upto window of a building which is 15 metre high above the ground find distance of lower end of ledder from buelding.

प्र. 9 नि.लि. मानों की मध्यिका ज्ञात कीजिए।

15, 35, 18, 26, 19, 25, 29, 20, 27

Find the midian of the following observation

15, 35, 18, 26, 19, 25, 29, 20, 27

प्र. 10 यदि एक लीप वर्ष का यादृच्छिक चयन किया गया हो तो इस वर्ष में 53 रविवार होने की प्रयिकता ज्ञात कीजिए।

A leap year is taken at random, find out the probability of 53 sunday in this leap year.

प्र. 11 $\triangle ABC$ में $\angle C = 2\angle B = \angle A + \angle B + 20$ त्रिभुज के तीनों कोण ज्ञात कीजिए। In $\triangle ABC$, $\angle C = 2\angle B = \angle A + \angle B + 20$ find all the angles of the triangle.

चक्रीय चतुर्भुज ABCD में $\angle A = (2x + 7)^{\circ}$, $\angle B = (y + 3)^{\circ}$, $\angle C = (2y + 7)^{\circ}$, $\angle D = (4x - 5)^{\circ}$ होतो चारों कोण ज्ञात करे।

In a cyclic quadriateral ABCD, $\angle A = (2x + 7)^{\circ}$, $\angle B = (y + 3)^{\circ}$, $\angle C = (2y + 7)^{\circ}$, $\angle D = (4x - 5)^{\circ}$ Find all four angles.

प्र. 12 a का मान ज्ञात कीजिए जिनके लिए निकाय ax + y = 5, 3x + y = 1 का

- (i) एक अद्वितीय हल हो।
- (ii) कोई हल न हो।

Find the value of "a" for which system of equation ax + y = 5, 3x + y = 1 has

- (i) Unique solution
- (ii) no solution.

सिद्ध कीजिए कि C का एक ऐसा मान है जिसके लिए निकाय

$$Cx + 2y = C - 2$$

$$8x + Cy = C$$

के अनंत अनेक हल होते हैं। इस मान को ज्ञात कीजिए।

Prove that there is a value of C for which the systam

$$Cx + 2y = C - 2$$

$$8x + Cy = C$$

has infinitly many solution find this value.

प्र. 13 यदि a, b, c एवं d विततानुपात में हो तो सिद्ध कीजिए कि,

$$\frac{a^2 + ab + b^2}{b^2 + bc + c^2} = \frac{a}{c}$$

If a, b, c and d are in continued proporation then prove that

$$\frac{a^2 + ab + b^2}{b^2 + bc + c^2} = \frac{a}{c}$$

एक थैली में 3150 सिक्के है जिनमें 1 रु., 2 रु. तथा 5 रु. के सिक्के है। जिनके सिक्कों का अनुपात क्रमशः 3 : 2 : 5 है तो प्रत्येक प्रकार के सिक्कों की संख्या ज्ञात कीजिए।

A bag contains 3150 coins. There are 1 rupee coins, 2 rupees coins and 5 rupees coins in bag. The ratio of each coin is 3:2:5 respectively then calculate the number of each coin.

प्र. 14 दो क्रमागत प्राकृत संख्याएं ज्ञात कीजिए जिनके वर्गों का योग 313 है।

Find The two consecutive natural mumber whose squars have the sum 313.

एक संख्या और उनके व्युत्क्रम का योग $\frac{50}{7}$ है संख्या ज्ञात कीजिए।

The sum of a number and its reciprocal is $\frac{50}{7}$ find the number.

प्र. 15 2500 मीटर ऊँचाई पर उड रहे एक हवाई जहाज से एक नदी के दो किनारो पर स्थित सम्मुख बिन्दुओं के अवनमन कोण 45° और 60° है नदी की चौड़ाई ज्ञात कीजिएः

On a river an aeroplane at the height of 2500 m. observes the angles of depression of opposite points on the two banks of river to be 45° and 60° respectively find the width of river.

एक भवन के ऊपर झण्डा लगा हुआ है। भवन के आधार से 20 मीटर की दूरी से भवन और झण्डे के शिखर के उन्नयन कोण 45° व 60° के है। भवन की ऊँचाई तथा झण्डे की लंबाई ज्ञात कीजिए।

A building is surmounted by a flag, from a point on the ground 20 m away from the foot of a building the angle of elevation of the top of building and flag are 45° and 60° find the height of the building and the length of the flag.

प्र. 16 तीन ठोस गोले जिनकी त्रिज्याएँ क्रमशः 3, 4 व 5 सेमी. है उन्हें पिघलाकर एक गोला बनाया गया है, गोले की त्रिज्या एवं आयतन ज्ञात कीजिए।

Three solid balls whose raddi are 3, 4 and 5 respectively are melted and converted into a sphere find the radius and volume of the sphere.

तीन धातु के घन जिनकी कोरें क्रमशः 5, 4 व 3 सेमी हैं को पिघलाकर एक नये घन में बदल दिया गया है। इस प्रकार बने घन की कोर क्या होगी।

Three cube of metal whose edges are 5 are 4 and 3 c.m. melted to form a new cube what will be the edge of New cube.

प्र. 17 एक रोलर का व्यास 80 से.मी. व लम्बाई 126 से.मी. है। एक खेल के मैदान को बार—बार पूर्णतः समतल करने में 750 बार चक्कर लगाता है। खेल के मैदान का क्षेत्रफल ज्ञात कीजिए।

The diameter of a roller 126 cm. length 80 cm. if it takes 750 complete revolution to level a playground. find the area of the playground.

यदि एक शंकु की ऊँचाई दो गुनी कर दी जाये और आधार की त्रिज्या वही रखते हुए उसका आयतन कितना गुना हो जायेगा।

If the height of the cone is double and keeping the same radius, how many times the volume will increase.

प्र. 18 गुणनखण्ड ज्ञात कीजिएः,

Factorize:

$$a^{2}(b+c)+b^{2}(c+a)+c^{2}(a+b)+2abc$$

अथवा / "OR"

यदि
$$\frac{x}{b+c} = \frac{y}{c+a} = \frac{z}{a+b}$$
 तो सिद्ध कीजिए कि

$$(b-c)x + (c-a)y + (a-b)z = 0$$

If
$$\frac{x}{b+c} = \frac{y}{c+a} = \frac{z}{a+b}$$
 then prove that

$$(b-c)x + (c-a)y + (a-b)z = 0$$

प्र. 19
$$\sqrt{25-x^2} = x-1$$
 समी. को हल कीजिए।

Solve equation

$$\sqrt{25-x^2} = x-1$$

यदि α , β समीकरण $x^2 + 3x + 2 = 0$ के मूल हो तो $\alpha^2 + \beta^2$ का मान ज्ञात कीजिए। If α , β are roots of quadratic equation $x^2 + 3x + 2 = 0$ then find the value of $\alpha^2 + \beta^2$.

प्र. 20 एक घड़ी 960 रु. नगद या 480 रु. आंशिक भुगतान और 245 रु. की दो समान किश्तों पर दी गई। किस्त योजना की ब्याज की दर ज्ञात कीजिएः

A watch is given either in cash payment of Rs. 960 or in instalment payment scheme by partial payment of Rs. 480 and two equal instalment of Rs. 245 find rate of interest of the instalment plan.

प्रवीण की मासिक आय 12125 रु. है। वह 1000 रु. मासिक भविष्य निधि में जमा करता है वह 1500 रु. व्यावसायिक कर देता है तो वर्ष में उसे कितना आयकर देना होगा।

Praveen's monthly salary is Rs. 12125. He contributed Rs. 1000 per month towards his provident fund. compute the income tax for the year if he pays. Rs. 1500 as professional tax.

प्र. 21 त्रिभुज ABC का परिवृत खीजिए, जहाँ AB=4 सेमी. BC=5 सेमी. AC=6 सेमी। Construct a circucircle of $\triangle ABC$ in which AB=4 cm, BC=5 cm. and AC=6 cm.

अथवा / (OR)

एक चक्रीय चतुर्भुज की रचना कीजिए जिसमें AC = 4 सेमी. $\angle B = 90^{\circ}, AB = 1.5$ सेमी. AD = 2 सेमी.

Construct a cyclic quadrilateral in Which AC = 4 cm., $\angle B = 90^{\circ}$, AB = 1.5 cm. and AD = 2cm.

प्र. 22 सिद्ध कीजिए कि,

$$\tan^2\theta - \sin^2\theta = \tan^2\theta \cdot \sin^2\theta$$

Prove that

$$\tan^2\theta - \sin^2\theta = \tan^2\theta \cdot \sin^2\theta$$

सर्वसिमका $1 + \tan^2\theta = \sec^2\theta$ को सिद्ध कीजिए

Prove the identity $1 + \tan^2\theta = \sec^2\theta$

प्र. 23 5 सेमी. अर्द्धव्यास के एक वृत्त में दो जीवाएँ क्रमशः 9 सेमी. और 6 सेमी. लंबाई की है दोनों जीवाए समान्तर और केन्द्र के एक ही ओर है। दोनों जीवाओं के बीच की दूरी ज्ञात कीजिए। Two chords in a circle of semi-diameter 5 c.m. are of lenght 8 c.m. and 6 c.m. Both chords are parellel and in the same side of centre find distance between

these two chords.

अथवा / (OR)

सिद्ध कीजिए, कि किसी चाप द्वारा वृत्त के केन्द्र पर बना कोण, इसी चाप द्वारा वृत्त की परिधि के किसी बिन्दु पर बने कोण का दुगुना होता है।

Prove that angle formed by any arc of a circle at its centre is twice of the angle formed by the same arc at any point at its perimeter.

प्र. 24 निम्नलिखित बारम्बारता तालिका का माध्य 57.6 है किन्तु बारम्बारता f_1 एवं f_2 अज्ञात है। अतः f_1 व f_2 का मान ज्ञात कीजिए।

वर्ग अन्तराल	0 - 20	20 - 40	40 – 60	60 - 80	80 - 100	100 - 120	योग
बारम्बारता	7	f_1	12	f_2	8	5	50

The mean of the following distribution is 57.6 frequencies f_1 and f_2 are unknown then find the values of f_1 and f_2

Class Interval	0 - 20	20 – 40	40 – 60	60 – 80	80 - 100	100 - 120	Total
Frequency	7	f_1	12	f_2	8	5	50

अथवा / (OR) निम्न आकड़ों से वर्ष 2000 के आधार पर वर्ष 2005 का निर्वाह खर्च सूचकांक ज्ञात कीजिए।

वस्तु	मात्रा कि.ग्रा.	2000 में मूल्य प्रति किग्रा	2005 में मूल्य प्रति किग्रा
- गेहूँ	30	6	12
चावल	10	14	20
शक्कर	10	12	16
चाय	1	80	120
दाल	3	20	40

From following data find survival expenditure index of year 2005 based on yeas 2000.

Item	Quantity (Kg)	Price per Kg in 2000	Price per kg in 2005
Wheat	30	6	12
Rice	10	14	20
Sugar	10	12	16
Tea	1	80	120
Puls	3	20	40

अंक योजना

Mark Dirsbution 2013-14

प .	क्र. इकाई एवं विषय वस्तु	इकाई पर	वस्तुनिष्ट	2	3	4	5	6	कुल
		आबटित	प्रश्न	अं क	प्रश्न				
		अं क	1 अंक						
1.	दो चर राशियों के रेखिक समी	10	2	_	_	2	_	_	2
2.	बहुपद एवं परिमेय व्यंजक	7	2		_		1	_	1
3.	अनुपात एवं समानुपात	5	1	ı	_	1	_		1
4.	वर्ग समीकरण	10	1	_	_	1	1	_	2
5.	वाणिज्य गणित	8	3	_	_	_	1	_	1
6.	समरुप त्रिभुज	8	2	3	_	_	_	_	3
7.	वृत्त	10	4	_	_	_	_	1	1
8.	रचनाएं	5	_	_	_	_	1	_	1
9.	त्रिकोणमिति	10	5	_	_	_	1	_	1
10.	ऊचाई एवं दूरी	5	1	_	_	1	_	_	1
11.	क्षेत्रमिति	10	2			2			2
12.	सांख्यिकीय प्रायिकता	12	2	2	_	_	_	1	3
	योग	100	25	5		7	5	2	19 + 5

= 24

निर्देश : प्रश्नपत्र निर्माण हेतु विशेष निर्देश

- 1. प्रश्न क्र. 1 से 5 तक 5 प्रकार के वस्तुनिष्ठ प्रश्न होगें। जिसके अंतर्गत एक शब्द में उत्तर मेंचिग, सही विकल्प तथा रिक्त स्थानों की पूर्ति के प्रश्न होंगे। प्रत्येक प्रश्न के लिए 1 अंक निर्धारित हो यह प्रश्न प्रत्येक छात्र को हल करना अनिवार्य है।
- 2. प्रश्न क्र. 6 से 24 प्रत्येक प्रकार के प्रश्नों की उत्तर सीमा नि. होगी

अतिलघुउत्तरीय प्रश्न 02 अंक लगभग 30 शब्द

लघुउत्तररीय प्रश्न 04 अंक लगभग 75 शब्द

दीर्घउत्तरीय प्रश्न 05 अंक लगभग 120 शब्द

निबंधात्मक प्रश्न 06 अंक लगभग 150 शब्द

- 3. वस्तुनिष्ठ प्रश्नों को छोड़कर शेष सभी प्रश्नों में विकल्प योजना रहेगी।
- 4. विकल्प के प्रश्नों उसी ईकाई से समान कठिनाई वाले तथा पाठयक्रम अनुसार होना चाहिये।
- 5. कठिनाई स्तरः 40 सरल प्रश्न 45 सामान्य प्रश्न 15 कठिन

Set-D

प्रादर्श-प्रश्न पत्र

(Model Question Paper)

कक्षा – दसवीं

(Class - 10th)

विषय - गणित

(Sub - Mathematics)

समय- 3 घन्टे

पूर्णाक - 100

निर्देश-

- 1. सभी प्रश्न हल करना अनिवार्य है।
- 2. प्रश्नपत्र में दो खण्ड दिये गये है खण्ड 'अ' एवं 'ब'
- 3. खण्ड 'अ' में 1 से 5 तक वस्तुनिष्ठ प्रश्न है व प्रत्येक में 1 अंक निर्धारित है।
- 4. प्रश्न क्र. 6 से 10 तक प्रत्येक प्रश्न पर 2 अंक है
- 5. प्रश्न क्र. 11 से 17 तक प्रत्येक प्रश्न पर 4 अंक है
- 6. प्रश्न क्र. 18 व 22 तक प्रत्येक प्रश्न पर 5 अंक है।
- 7. प्रश्न क्र. 23 व 24 पर 6 अंक निर्धारित है।

Instruction:

- 1. All question are compulaory.
- 2. Question Paper has two section 'A' and 'B'.
- 3. In Section 'A' Q. No. 1 to 5 is objective type each question carries 1 mark.
- 4. Q. No. 6 to 10 carries 2 Marks
- 5. Q. No. 11 to 17 carries 4 Marks.
- 6. Q. No. 18 to 22 carries 5 Marks.
- 7. Q. No. 23 and 24 carries 6 Marks.

खण्ड (अ)

ਸ਼. 1

हलः सही विकल्प के उत्तर (Answer the correct option):

5 अंक

(i) (b)
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

(ii) (b)
$$-x - \frac{1}{x}$$

(iii) (a)
$$b^2 = ac$$

```
(iv) (a) 225
        (v) (b) 4050
ਸ਼. 2
       सही विकल्प के उत्तर (Answer the correct option):
                                                                                5 अंक
हलः
        (i) (c) 3.5
        (ii) (c) 5 मीटर
        (iii) (c) 8 से.मी.
        (iv) (a) 1
        (v) (d) बिक्रीकर
Я. 3
       खाली स्थान भरो (के उत्तर) Fill in the blank (Ans)
                                                                               5 अंक
हल:
               समबाहु Euilateral
        (i)
               घसारा Depreciation
        (ii)
        (iii)
               एक One
        (iv)
             समान्तर Parallel
        (v)
ਸ਼. 4
       सत्य / असत्य
                                                                                5 अंक
हलः
               सत्य True
        (i)
        (ii)
              असत्य False
        (iii)
             असत्य False
        (iv)
             असत्य False
        (v)
               सत्य True
Я. 5
       सही जोड़ी (के उत्तर) Math the column:
                                                                               5 अंक
हलः
                \frac{p(x)}{q(x)} का योज्य प्रतिलोम -\frac{p(x)}{q(x)}
        (i)
                \sin (90 - \theta)
        (ii)
                                                     \cos \theta
        (iii)
               \sin \theta \times \csc \theta
                                                     1
               2, 4, 6, 8 का माध्य
```

(iv)

5

(v) खोखले बेलन का आयतन
$$\pi h \ ({r_1}^2 - {r_2}^2)$$
 Math the column :

(i) Additive inverse of
$$\frac{p(x)}{q(x)}$$
 $-\frac{p(x)}{q(x)}$

(ii)
$$\sin (90 - \theta)$$
 $\cos \theta$

(iii)
$$\sin \theta \times \csc \theta$$

(v) Volume of holo cylinder
$$\pi h (r_1^2 - r_2^2)$$

खण्ड 'ब' SACTION 'B'

प्र. 6 हलः

दिया है ΔABC में $DE \parallel BC$

$$\frac{AD}{DB} = \frac{3}{5}$$
, $AC = 6$ सेमी.

ज्ञात करना है

$$AE=x$$

ਵਰ : △ABC ਜੋ $DE \parallel BC$

थेल्स प्रमेय से (By Theils theorem)

1 अंक

$$\frac{AD}{DB} = \frac{AE}{EC}$$

$$\frac{AD}{DB} = \frac{AE}{AC - AE}$$

$$\frac{3}{5} = \frac{x}{6-x}$$

$$3(6-x)=5x$$

$$18 - 3x = 5x$$

$$18 = 5x + 3x$$
 $18 = 8x$
 $8x = 18$

$$x = \frac{18}{8}$$

$$x = 2.25 \ \text{सेमी}.$$

ਸ਼. 7

हलः दिया है : समकोण त्रिभुज ΔADB [In right angle triangle ΔADB] पाइथागोरस प्रमेय से

$$AB^2 = AD^2 + BD^2$$
 ...(1)

समकोण त्रिभुज ΔADC [In right angle Triangle ΔADC] पाइथागोरस प्रमेय से

$$AC^2 = AD^2 + CD^2$$
 ...(2) (1 अंक)

समीकरण (1) में से (2) घटाने पर

Equation (1) is subtracted by Eq. (2)

$$AB^2 - AC^2 = (AD^2 + BD^2) - (AD^2 + CD^2)$$

 $AB^2 - AC^2 = AD^2 + BD^2 - AD^2 - CD^2$
 $AB^2 - AC^2 = BD^2 - CD^2$
 $AB^2 + CD^2 = BD^2 + AC^2$ (Proved) (1 अंक)

दिया है : सीढ़ी की लम्बाई =AB=20 मी. खिड़की की जमीन से ऊँचाई =AC=15 मी. माना सीढ़ी के निचले सिरे की दीवार से दूरी =BC=x मी. समकोण त्रिभुज ΔABC में पाइथागोरस प्रमेय से

$$AB^2 = AC^2 + BC^2$$
 $20^2 = (15)^2 + x^2$
 $400 = 225 + x^2$
 $400 - 225 = x^2$
 $175 = x^2$
 $x^2 = 175$
 $x = \sqrt{175}$
 $x = \sqrt{5 \times 5 \times 7}$
 $x = 5\sqrt{7}$
(1 अंक)

अतः भवन से सीढ़ी के निचले सिरे की दूरी $= x = 5\sqrt{7}$ मी.

Я. 8

हल:

Given: Length of ladder = AB = 20 m.

Hieght of window = AC = 15 m.

Suppose distance of lower end of ladder

from building = BC = x m.

In a right angled $\triangle ABC$

$$AB^2 = AC^2 + BC^2$$
 1 अंक
 $(20)^2 = (15)^2 + x^2$
 $400 = 225 + x^2$
 $400 - 225 = x^2$
 $175 = x^2$
 $x^2 = 175$
 $x = \sqrt{175}$
 $x = \sqrt{5 \times 5 \times 7}$
 $x = 5\sqrt{7}$ m. (1 अंक)

Hence distance of lower end of ladder from building = $5\sqrt{7}$ metre.

Я. 9

माध्यिका
$$=$$
 $\left(\frac{n+1}{2}\right)$ वॉ पद $\left(1 \text{ अंक}\right)$ $=$ $\left(\frac{9+1}{2}\right)$ वॉ पद

On arranging in increasing order

15, 18, 19, 20, 25, 26, 27, 29, 35

Here no. of term = n = 9 (odd)

Median = Value of
$$\left(\frac{n+1}{2}\right)$$
 Term (1 अंक)

= Value of
$$\left(\frac{9+1}{2}\right)$$
 Term

= Value of 5th Term

ਸ਼. 10

हलः एक लीप वर्ष में दिनों की संख्या = 366 दिन 52 सप्ताह में दिनों की संख्या = 52 × 7 = 364 शेष दिनों की संख्या = 366 – 364

=02

शेष दिनों का बार={(सोमवार व मंगल), (मंगल व बुध), (बुध व गुरुवार)
(गुरुवार व शुक्रवार), (शुक्रवार व शनिवार),
(शनिवार व रविवार), (रविवार व सोमवार)}

कुल ७ स्थितियाँ समसम्भावी है। (1 अंक)

n(S)=7 अनुकूल स्थितियाँ=02

n(A) = 02

अभीष्ट प्रायिकता= $P(E) = \frac{n(A)}{n(S)}$

अभीष्ट प्रायिकता = $\frac{2}{7}$ (1 अंक)

Total no. of days in a leap year = 366 days no. of days in 52 weeks = $52 \times 7 = 364$ days Extra days = 366 - 364 = 02 days Extra days in the following pair (i) Monday and Tuesday

(ii) Tuesday and Wednesdays

(iii) Wednesday and Thursday (iv) Thursday and Friday

(v) Friday and Saturday

(vi) Saturday and Sun.

(vii) Sunday and Monday

(1 mark)

No. of condition equally possible = n(S) = 07

No. of favarable condition = n(A) = 02

Require probability = $\frac{n(A)}{n(S)}$

$$P(E) = \frac{2}{7}$$
 (1 mark)

Proved.

Я. 11

In Triangle $\triangle ABC$ त्रिभुज $\triangle ABC$ में हलः

$$\angle C = 2\angle B = \angle A + \angle B + 20$$

$$\therefore$$
 $\angle C = 2 \angle B$...(1)

$$\therefore \qquad 2\angle B = \angle A + \angle B + 20$$

$$2\angle B - \angle B = \angle A + 20$$

$$\angle B = \angle A + 20$$

$$\angle A = \angle B - 20$$
 ...(2)

$$\therefore \qquad \angle C = \angle A + \angle B + 20 \qquad \dots (3)$$

(1 अंक)

We know that sum of the all three angle of triangle is 180° हम जानते हैं कि त्रिभूज के तीनों कोणों का योग 180° होता है

$$\angle A + \angle B + \angle C = 180^{\circ}$$
 (1 अंक)

$$\angle B - 20 + \angle B + 2\angle B = 180$$

$$4\angle B = 180 + 20$$

$$\angle B = \frac{400}{4}$$

$$\angle B = 50^{\circ}$$
 (1 अंक)

Put $\angle B = 50^\circ$ in Equation (1) and (2) (समी. (1) व (2) में मान रखने पर)

$$\angle C = 2 \angle B$$

$$\angle C = 2 \times 50^{\circ}$$

$$\angle C = 100^{\circ}$$
 $\angle A = \angle B - 20$
 $= 50 - 20$
 $\angle A = 30^{\circ}$
अथवा / (OR)

हल:

Given: In cyclic quadrilateral ABCD

चक्रीय चतुर्भुज ABCD में

$$\angle A = (2x + 7)^{\circ}, \quad \angle B = (y + 3)^{\circ}$$

 $\angle C = 2y + 7, \qquad \angle D = (4x - 5)^{\circ}$

We know that sum of opposite angle in cyclic quad. is 180°

हम जानते हैं चक्रीय चतुर्भुज के सम्मुख कोणों के प्रत्येक युग्म का योगफल 180° होता है।

Therefore
$$\angle A + \angle C = 180^{\circ}$$
 $2x + 7 + 2y + 7 = 180$
 $2x + 2y = 180 - 14$
 $2(x + y) = 166$

$$x + y = \frac{166}{2}$$

$$x + y = 83$$
...(1)

Again
$$\angle B + \angle D = 180^{\circ}$$

 $y + 3 + 4x - 5 = 180^{\circ}$
 $4x + y - 2 = 180$

$$4x + y = 180 + 2$$

 $4x + y = 182$...(2)
(1 अंक)

Subtracting Eq. (3) from Eq. (4)

$$x + y = 83$$

$$4x + y = 182$$

$$- - -$$

$$- 3x + 0 = -99$$

$$- 3x = -99$$

$$x = \frac{-99}{-3}$$

$$x = 33^{\circ}$$

Put x = 33 in eq. (1)

$$x + y = 83$$

 $33 + y = 83$
 $y = 83 - 33$
 $y = 50^{\circ}$ (1 अंक)

Putting the value

$$\angle A = 2x + 7 = 2 \times 33 + 7 = 66 + 7 = 73^{\circ}$$

 $\angle B = y + 3 = 50 + 3 = 53^{\circ}$
 $\angle C = 2y + 7 = 2 \times 50 + 7 = 100 + 7 = 107$
 $\angle D = 4x - 5 = 4 \times 33 - 5 = 132 - 5 = 127^{\circ}$

Angles of cyclic quad. are

अतः चक्रीय चतुर्भुज के कोण

ਸ਼. 12

हलः दिया है समीकरण Given equations are

$$3x + y = 1$$
 ...(2)

तुलना करने पर Comparing these equations with

$$a_1x + b_1y = c_1$$

$$a_2x + b_2y = c_2$$

$$a_1 = a$$
 $b_1 = 1$ $c_1 = 5$ $a_2 = 3$ $b_2 = 1$ $c_2 = 1$ (1 अंक)

(i) जब निकाय का अद्वितीय हल होगा When the system of equation has unique solution

$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

$$\frac{a}{3} \neq \frac{1}{1}$$

$$a \neq 3$$

अतः $a \neq 3$ की स्थिति में अद्वितीय हल है। Therefore $a \neq 3$ system has a unique solution.

(ii) जब निकाय का कोई भी हल नहीं है। When the system has a no. solution

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

$$\frac{a}{3} = \frac{1}{1} \neq \frac{5}{1}$$

$$\frac{a}{3} = \frac{1}{1}$$
(1 अंक)

अतः a=3 की स्थिति में कोई हल नहीं है।

Therefore a = 3 system has a no solution.

अथवा / (OR)

हलः दिया है समीकरण Given a equation are

$$cx + 2y = c - 2$$
$$8x + cy = c$$

तुलना करने पर Comparing the equation with

$$a_1x + b_1y = c_1$$
 $a_2x + b_2y = c_2$
 $a_1 = c$
 $b_1 = 2$
 $c_1 = c - 2$
 $a_2 = 8$
 $c_2 = c$
(1 अंक)

जब निकाय के अन्ततः अनेक हल होते हैं

When the system of equation has infinite solution then

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

$$\frac{c}{8} = \frac{2}{c} = \frac{c-2}{c} \qquad (1 \ \ 3i\sigma)$$

$$\therefore \qquad \frac{c}{8} = \frac{2}{c}$$

$$c \times c = 2 \times 8$$

$$c^2 = 16$$

$$c = \pm \sqrt{16}$$

$$c = \pm 4 \qquad (1 \ \ 3i\sigma)$$
Again
$$\frac{2}{c} = \frac{c-2}{c}$$

$$2 = \frac{c-2}{c} \times c$$

$$2 = c - 2$$

$$2 + 2 = c$$

$$c = 4 \qquad (1 \ \ 3i\sigma)$$

अतः c = +4 दोनों स्थिति में समान है

Clearly c = 4 is a common value in both case

c=4

$$\therefore$$
 $c=4$

Я. 13

दिया है a, b, c, d विततानुपात में है हल: a, b, c, d continued proportions

$$\frac{a}{b} = \frac{b}{c} = \frac{c}{d} = k$$
Then $a = bk$, $b = ck$, $c = dk$

$$a = ck \cdot k \qquad b = dk \cdot k \cdot c = dk$$

$$a = dk \cdot k \cdot k \qquad b = dk^2$$

$$a = dk^3 \qquad (1 3i\varphi)$$

Show that
$$\frac{a^2 + ab + b^2}{b^2 + bc + c^2} = \frac{a}{c}$$

L.H.S.
$$= \frac{a^2 + ab + b^2}{b^2 + bc + c^2}$$
 (1 अंक)

$$= \frac{(dk^3)^2 + dk^3 \cdot dk^2 + (dk^2)^2}{(dk^2)^2 + dk^2 \times dk + (dk)^2}$$

$$=\frac{d^2k^6+d^2k^5+d^2k^4}{d^2k^4+d^2k^3+d^2k^2}$$

$$=\frac{d^2k^4[k^2+k+1]}{d^2k^2[k^2+k+1]} \tag{1 3 ign}$$

$$=k^2$$

R.H.S.
$$\frac{a}{c} = \frac{dk^3}{dk}$$
 (1 अंक)

L.H.S. = R.H.S.

अथवा / (OR)

हलः माना थैली में 3 रुपये, 2 रुपये व 5 रुपये के सिक्के क्रमशः 3x, 2x एवं 5x है।

तब प्रश्नानुसार

सिक्कों की संख्या=3150 (2 अंक)
$$3x + 2x + 5x = 3150$$
$$10x = 3150$$

$$x = \frac{3150}{10}$$
 $x = 315$ (2 अंक)

अतः एक रुपये के सिक्के $3x = 3 \times 315 = 945$

दो रुपये के सिक्के=
$$2x = 2 \times 315 = 630$$

5 रुपये के सिक्के= $5x = 5 \times 315 = 1575$ Ans.

Sol. Suppose the number of coins of 3 rupees 2 rupee sand 5 rupees are 3x, 2x and 5x respectively

According to question

Number of coin=3150

$$3x + 2x + 5x = 3150$$

 $10x = 3150$
 $x = \frac{3150}{10}$
 $x = 315$

Number of coin 3 rupees = $3x = 3 \times 315 = 945$

Number of coins 2 rupees= $2x = 2 \times 315 = 630$

Number of coins 5 rupees= $5x = 5 \times 315 \ 1575$

Ans.

ਯ. 14

हलः माना दो क्रमागत संख्याँ x व x+1 है तो प्रश्नानुसार

$$x^{2} + (x + 1)^{2} = 313$$

$$x^{2} + x^{2} + 2x + 1 = 313$$

$$2x^{2} + 2x + 1 - 313 = 0$$

$$2x^{2} + 2x - 312 = 0$$

$$x^{2} + x - 156 = 0$$

$$x^{2} + 13x - 12x - 156 = 0$$

$$x (x - 13) - 12 (x + 13) = 0$$

$$(x + 13) (x - 12) = 0$$

$$x = -13 \ \overline{q} \ x = 12$$

किन्तु – 13 प्राक्रत संख्या नहीं है।

$$\therefore x = 12 \ \overline{q} \ x + 1 = 12 + 1 = 13$$
 (2 अंक)

Sol. Let the two consecutive natural number's be x and x + 1 According to question

$$x^{2} + (x + 1)^{2} = 313$$

$$x^{2} + x^{2} + 2x + 1 = 313$$

$$2x^{2} + 2x + 1 - 313 = 0$$

$$2x^{2} + 2x - 313 = 0$$

$$x^{2} + x - 156 = 0$$

$$x^{2} + 13x - 12x - 156 = 0$$
(2 mark)

$$x (x - 13) - 12 (x + 13) = 0$$

 $(x + 13) (x - 12) = 0$
 $x = -13, x = 12$

But -13 is not natural number.

$$x = 12 \text{ and } x+1 = 12+1 = 13$$
 (2 mark) Ans. अथवा/(OR)

हलः एक संख्या ओर उनके व्युत्क्रम का योग $\frac{50}{7}$ है।

माना संख्या x व $\frac{1}{x}$ है

प्रश्नानुसार,

$$x + \frac{1}{x} = \frac{50}{7}$$

$$\frac{x^2 + 1}{x} = \frac{50}{7}$$

$$7x^2 + 7 = 50x$$

$$7x^2 - 50x + 7 = 0$$

$$7x^2 - 49x - x + 7 = 0$$

$$7x (x - 7) - 1 (x - 7) = 0$$

$$x - 7 = 0 \implies x = 7$$

$$7x - 1 \implies x = \frac{1}{7}$$
(2 अंक) Ans.

Given :The sum of a number and its reciprocal is $\frac{50}{7}$ suppose the number are x and $\frac{1}{x}$

According the question

$$x + \frac{1}{x} = \frac{50}{7}$$
$$\frac{x^2 + 1}{x} = \frac{50}{7}$$
$$7x^2 + 7 = 50x$$

$$7x^2 - 50x + 7 = 0$$
 (2 अंक)
 $7x^2 - 49x - x + 7 = 0$
 $7x(x - 7) - 1(x - 7) = 0$
 $(x - 7)(7x - 1) = 0$
 $x - 7 = 0, x = 7$
 $7x - 1 = x = \frac{1}{7}$ (2 अंक) **Ans.**

Given :The sum of a number and its reciprocal is $\frac{50}{7}$ suppose the number are x and $\frac{1}{x}$

According the question

$$x + \frac{1}{x} = \frac{50}{7}$$

$$\frac{x^2 + 1}{x} = \frac{50}{7}$$

$$7x^2 + 7 = 50x$$

$$7x^2 - 50x + 7 = 0$$

$$7x^2 - 49x - x + 7 = 0$$

$$7x (x - 7) - 1 (x - 7) = 0$$

$$x - 7 = 0 \Rightarrow x = 7$$

$$7x - 1 \Rightarrow 0, x = \frac{1}{7}$$
Ans.

ਸ਼. 15

हलः माना A एक हवाई जहाज है तथा CD नदी है माना नदी की चौड़ाई X मीटर है।

समकोण ΔABC में

$$\frac{BC}{AB} = \cot 60^{\circ}$$
 $BC = AB \cot 60^{\circ}$
 $BC = \frac{2500}{\sqrt{3}}$
 $= \frac{2500}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
 $BC = \frac{2500 \times 1.732}{3}$
 $= \frac{4330}{3}$
 $BC = 1443.33$ ਸੀਵਲ

और समकोण $\triangle ABD$ में

$$\frac{BD}{AB} = \cot 45^{\circ}$$
 $BD = AB \cot 45^{\circ}$
 $BC + CD = 2500 \times 1$
 $1443.33 + x = 2500$
 $x = 1056.57$ (2 अंक)

अतः नदी की चौड़ाई = 1056.57 मीटर है।

Sol. Let A be an aeroplane and CD be a river Let x metre be the width of the river

In right angle $\triangle ABC$

$$\frac{BC}{AB} = \cot 60^{\circ}$$

$$BC = AB \cot 60^{\circ}$$

$$BC = \frac{2500}{\sqrt{3}}$$

$$BC = \frac{2500}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$BC = \frac{2500 \times 1.732}{3}$$

$$BC = \frac{4330}{3} \tag{2 marks}$$

BC = 1443.33 metre

and in right angled $\triangle ABD$

$$\frac{BD}{AB} = \cot 45^{\circ}$$

$$BD = AB \cot 45^{\circ}$$

$$BC + CD = 2500 \times 1$$

$$1443.33 - x = 2500$$

$$x = 2500 - 1443.44$$

$$x = 1056.67$$

Hence width of river is 1056.67 metre.

(2 marks)

हलः माना भवन AB है जिसके ऊपर झण्डा लगा है बिन्दु D से B व C के उन्नयन कोण क्रमशः 45° व 60° है।

प्रश्नानुसार

$$AD = 20$$
 मीटर

अब समकोण *ΔABC* में

$$\frac{AB}{AD} = \tan 45^{\circ}$$

$$\frac{AB}{20} = 1$$

$$AB=20$$
 मीटर (2 अंक)

अतः मकान की ऊँचाई 20 मीटर है।

$$\frac{AC}{AD} = \tan 60^{\circ}$$

$$AC=AD \tan 60^{\circ}$$

$$AC = 20\sqrt{3}$$
$$= 20 \times 1.732$$

$$AC = 34.64$$

अतः झण्डे की लम्बाई

$$BC=AC - AB$$

= 34.64 - 20
= 14.64 मीटर (2 अंक)

Sol. Let AB be the building at which flag BC is posted from point D angles of elevation of point B and C are respectively 45° and 60°

By quustion, AD

$$=20$$
 metre

Now in right angled ΔBAD

$$\frac{AB}{AD} = \tan 45^{\circ}$$

$$\frac{AB}{20} = \tan 45^{\circ}$$

$$\frac{AB}{20} = 1$$

$$AB = 20$$
(2 marks)

Hence height of building is 20 metre.

And right angle ΔCAD

$$\frac{AC}{AD} = \tan 60^{\circ}$$

$$AC = AD \tan 60^{\circ}$$

$$AC = 20\sqrt{3} = 20 \times 1.732$$

$$AC = 34.64$$

Hence height of flag BC = AC - AB

$$34.64 - 20$$

ਸ਼. 16

माना ठोस गोले की त्रिज्या r सेमी. है तब गोले का आयतन = तीनों ठोस गोले हलः का आयतन

$$\frac{4}{3} \pi r^3 = \frac{4}{3} \pi (3)^3 + \frac{4}{3} \pi (4)^3 + \frac{4}{3} \pi (5)^3$$

$$\frac{4}{3} \pi r^3 = \frac{4}{3} \pi (3^3 + 4^3 + 5^3) \qquad (2 \ 3ip)$$

$$r^3 = [27 + 64 + 125]$$

$$r^3 = 6^3$$

$$r = 6 \ सेमी. \qquad (2 \ 3ip)$$

Let the radius of the solid sphere is r cm. Sol.

:. Volume of solid sphere = sum of volumes of all three solid spheres.

$$\frac{4}{3} \pi r^{3} = \frac{4}{3} \pi (3)^{3} + \frac{4}{3} \pi (4)^{3} + \frac{4}{3} \pi (5)^{3}$$

$$\frac{4}{3} \pi r^{3} = \frac{4}{3} \pi (3^{3} + 4^{3} + 5^{3})$$

$$r^{3} = (27 + 64 + 125)$$

$$r^{3} = 216$$

$$r^{3} = 6^{3}$$

$$r = 6 \text{ am}$$

$$4 \text{ ns} \qquad (2 \text{ marks})$$

r=6 cm. (2 marks) Ans.

हलः माना नये घन की कोर a सेमी. है Let the edge of new cube is a cm. प्रश्नानुसार,

नये घन का आयतन=पहले घन का आयतन $+2^{nd}$ का आयतन $=3^{rd}$ का आयतन

Volume of New cube=Vol. of first cube + Vol. of second cube + Vol. of third cube

$$a^3 = 5^3 + 4^3 + 3^3$$
 (2 अंक)
 $a^3 = 125 + 64 + 27$
 $a^3 = 216$
 $a^3 = 6^3$
 $a = 6$ m. **Ans.** (2 अंक)

ਸ਼. 17

हलः दिया है (Given)

रोलर का व्यास (Diameter of rollar) = 80 cm.

अतः रोलर की त्रिज्या (Its radius) = $\frac{80}{2}$ = 40 cm.

रोलर की लम्बाई (Length of rollar) = 126 cm.

रोलर का क्षेत्रफल (Area of rollar) = $2\pi rh$

$$=2 \times \frac{22}{7} \times 40 \times 126$$

= 31680 cm² (2 अंक)

∵ यह 750 चक्कर लगाता है। अतः

It takes 750 revolution therefore

मैदान का क्षेत्रफल (Area of playground) = 31680×750

हलः माना शंकु की ऊँचाई और आधार की त्रिज्या r है।

$$\therefore$$
 शंकु का आयतन= $\frac{1}{3} \pi r^2 h$ (2 अंक)

ऊँचाई दुगनी करने पर $=\frac{1}{3}$ $\pi r^2 imes 2h$

$$=2\frac{1}{3}\pi r^2h$$

अतः ऊँचाई दुगनी करने पर आयतन दुगना हो जायेगा। (2 अंक)

Sol. Let height of cone is h and radius of base is r volume of cone = $\frac{1}{3} \pi r^2 h$

When height is doubled then volume = $\frac{1}{3} \pi r^2 \times 2h$

$$=2 \times \frac{1}{3} \pi r^2 h$$

so when height is doubled the volume also become double

ਸ਼. 18

हल:
$$a^2 (b+c) + b^2 (c+a) + c^2 (a+b) + 2abc$$

$$= a^2b + a^2c + b^2c + b^2a + c^2a + c^2b + 2ab$$

$$= a^2b + a^2c + b^2a + c^2a + 2abc + b^2c + c^2b$$

$$= a^2 (b+c) + a (b^2 + c^2 + 2ab) + bc (b+c)$$

$$= a^2 (b+c) + a (b+c)^2 + bc (b+c)$$

$$= (b+c) [a^2 + a (b+c) + bc]$$

$$= (b+c) (a^2 ab + ac + bc)$$

$$= (b+c) [a(a+b) + c (a+b)]$$

$$= (b+c) (a+b) (a+c)$$

$$= (a+b) (b+c) (c+a)$$
 Ans. (2 अंक)

हलः दिया है Given

(2 अंक)

अतः Hence
$$= \text{L.H.S.} = (b-c)x + (c-a)y + (a-b)z$$

$$= (b-c)(b+c)k + (c-a)(c+a)k +$$

$$(a-b)(a+b)k$$

$$= k[b^2-c^2+c^2-a^2+a^2-b^2]$$

$$k \times 0 = 0 = \text{R.H.S.}$$
 (3 अंक) **Proved.**

Я. 19

हल:
$$\sqrt{25-x^2} = x - 1$$

दोनों पक्षों का वर्ग करने पर

Squaring both sides

$$25 - x^{2} = (x - 1)^{2}$$

$$25 - x^{2} = x^{2} - 2x - 1$$

$$25 - x^{2} - x^{2} + 2x - 1 = 0$$

$$-2x^{2} + 2x + 24 = 0$$

$$-2(x^{2} - x - 12) = 0$$

$$x^{2} - x - 12 = 0$$

$$x^{2} - 4x + 3x - 12 = 0$$

$$x(x - 4) + 3(x - 4) = 0$$

$$(x - 4)(x + 3) = 0$$

$$x - 4 = 0$$

$$x = 4$$

$$x + 3 = 0$$

$$(1 3 i \overline{\phi})$$

$$(2 3 i \overline{\phi})$$

अथवा / (OR)

हलः दिया गया समी. (The given equation is) = $x^2 + 3x + 2 = 0$ यहाँ (Here) a=1 b=3 c=2

x = -3

x=4.

$$\therefore \qquad \qquad \alpha + \beta = \frac{-b}{a} = \frac{-3}{1} = -3 \qquad (2 \quad \text{sip})$$

और (and)
$$\alpha \cdot \beta = \frac{c}{a} = \frac{2}{1} = 2$$

अतः (Hence)
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \cdot \beta$$

$$=(-3)^2 = -2 \times 2$$

9 - 4=5. (3 अंक) **Ans.**

ਸ਼. 20

हलः घड़ी का नगद मूल्य =960 रु.

किश्त योजना में आंशिक भुगतान=480 रु.

भुगतान हेतु शेष राशि=960 - 480 = 480 रु.

कुल ली गई राशि= $245 \times 2 = 490$ रु.

किश्त योजना में भुगतान किया गया ब्याज

$$=490 - 480 = 10 \ \text{ }$$
 (2 346)

पहले माह का मूलधन=480

दूसरे माह का मूलधन=480 - 245 = 235

एक माह का कुल मूलधन=480 + 235 = 715 रु.

माना किश्त योजना में ब्याज की दर

ब्याज =
$$\frac{\text{मूलधन} \times \text{दर} \times \text{समय}}{100}$$
 (1 अंक)

$$10 = \frac{715 \times r \frac{1}{12}}{100}$$

$$1000 = \frac{715r}{12}$$

$$r = \frac{1000 \times 12}{715}$$

Sol. Cash price of watch = Rs. 960

Partial payment in instalment scheme = Rs. 480

Remaining amount for payment = Rs. 960 - 480 = 480

Total amount taken in instalment

$$2 \times 245 = 490 \text{ Rs.}$$

Interest paid in instalment scheme

$$=490 - 480$$

= 10 (2 marks)

Principal of first month=480

Principal of second month= 480 - 245 = 235

:. Total principal for one month = 480 + 235 = 715

Let rate of interest in instalment plane be r %

Per annum

Formula : interest =
$$\frac{\text{Principal} \times \text{Rate} \times \text{Time}}{100}$$
 (1 marks)

$$10 = \frac{715 \times r \frac{1}{12}}{100}$$

$$1000 = \frac{715r}{12}$$

r = 16.78% (2 marks) Ans.

अथवा / (OR)

हलः सकल वार्षिक आय $= 12,125 \times 12$ रु.

 $=145,500 \ \overline{\nabla}$.

व्यावसायिक कर घटाने पर आय=145500 - 1,500 रु.

बचत संबंधी विवरण

भविष्य निधि $\dot{H} = 12 \times 1000 = 12000$ रु.

कर योग्य आय=144000 - 12000 = 132000 रु.

गणना करने पर आयकर=1,10,000 से अधिक राशि का 10% (1 अंक)

$$=(132000-1,10,000)\times 10\%$$

 $22,000 \times 10\% = 2,200 \ \ \overline{\Diamond}.$

3% शिक्षा उपकर=2200 का 3% = 66 रु.

कुल आयकर=2200 + 66 = 2266 रु.

Sol. Gross income = $12 \times 12,125$

=1.45500

Income after deduction of professional tax

$$=145,500-1,500$$

$$= 144000$$
 (2 marks)

Detail of amount admissible for tax rebates

Provident fund= $12 \times 1000 = Rs. 12,000$

Total rebate=Rs. 12,000

Taxable income = 1,44,000 - 12,000 = Rs. 1,32,000

Computation of tax = 10% of (1,32,000 - 1,10,000)

=10% of 22,000 (1 marks)

=Rs. 2,200

Less (3% of income tax = 3% of 2200)

Total income tax = 2200 + 66 = 2266

Thus the required tax=Rs. 2,266

(2 marks) Ans.

ਸ਼. 21

हलः रचना के पदः $\triangle ABC$ बनाया जिसमें AB=4 सेमी.

BC = 5 सेमी. और AC = 6 सेमी. है। AB और

BC का लम्बार्द्धक खींचा जो O पर मिले।

O परिगत वृत्त का केन्द्र और BO उसकी त्रिज्या है।

...

(3 अंक)

(2 अंक)

- Sol. (i) Draw $\triangle ABC$ in which AB = 4 cm., BC = 5 cm. and AC = 6 cm.
 - (ii) Draw the perpendicular bisectors of AB and BC meeting at O
 - (iii) Draw the circle with O as centre and OB as radius. This circle is the required circumcircle.

(3 marks)

अथवा / (**OR**)

हलः रचना के पद:

- (i) AC = 4 सेमी. खींचा
- (ii) ∠*CAK* = 90° बनाया
- (iii) AC की लम्बार्द्धक रेखा PQ खींचा जो AC को M पर समद्विभाजित करती है
- (iv) M को केन्द्र मानकर MA त्रिज्या का वृत्त खींचा
- (v) A को केन्द्र मानकर AB = 1.5 सेमी. का चाप खींचा जो वृत्त को बिन्दु B पर मिलता है।
- (vi) A को केन्द्र मानकर AD=2 सेमी. का चाप खींचा जो वृत्त को बिन्दु D पर मिलता है।

- (vii) AD को मिलाया
- (viii) BC और CD को मिलाया

अतः चतुर्भुज ABCD अभीष्ट चक्रीय चतुर्भुज है। पूर्व प्रमेय

$$\angle CAN = \angle ABC = 90^{\circ}$$
 (3 अंक)

...

(2 अंक)

Sol. Step of construction

- (i) Draw a line segment AC = 4 CM
- (ii) Draw $\angle CAK = 90^{\circ}$
- (iii) Draw perpendicular bisector PQ of AC meeting AC on M.
- (iv) With M as centre and radius AM draw a circle which passes through A and C
- (v) Draw an arc with centre A and radius AB = 1.5 cm inter secting the circle at B
- (vi) With A as centre and radius 2 CM draw an arc on the other side of AC at D
- (vii) Join AB, AD, DC, and BC

Thus ABCD is the required cyclic quadrilateral

By the proves theorem

$$\angle CAN = \angle ABC = 90^{\circ}$$

ਸ਼. 22

हल:

L.H.S.

$$\tan^2\theta - \sin^2\theta = \tan^2\theta \cdot \sin^2\theta$$

$$= \tan^2\theta - \sin^2\theta$$

$$\sin^2\theta$$

 $=\frac{\sin^2\theta}{\cos^2\theta} - \sin^2\theta \tag{2 3ip}$

$$=\sin^2\theta \left[\frac{1}{\cos^2\theta}-1\right]$$

$$=\sin^2\theta \left[\frac{1-\cos^2\theta}{\cos^2\theta}\right]$$

$$=\sin^2\theta \frac{\sin^2\theta}{\cos^2\theta} = \sin^2\theta \cdot \tan^2\theta$$

$$=\tan^2\theta \cdot \sin^2\theta = R.H.S.$$
 (3 अंक)

Sol. माना एक समकोण त्रिभुज है जिसमें $\angle B = 90^{\circ}$

और $\angle C = \theta$, $\triangle ABC$ में पायथागोस प्रमेय से

$$AB^2 + BC^2 = AC^2$$
 (2 अंक)

दोनों पक्षों में BC^2 का भाग देने पर

$$\frac{AB^2}{BC^2} + \frac{BC^2}{BC^2} = \frac{AC^2}{BC^2}$$

$$\left(\frac{AB^2}{BC}\right) + 1 = \left(\frac{AC}{AB}\right)^2$$

$$\tan^2 \theta + 1 = \sec^2 \theta$$
 (3 अंक)

ਸ਼. 23

हलः दिया है : AB = 8 सेमी., CD = 6 सेमी.

केन्द्र 0 को AB एवं CD के मध्य बिन्दु L व M से मिलाया।

Join L and M the mid point of CD and AB with 0

 $AB \parallel CD$, $OL \perp AB$, $OM \perp CD$

 \therefore AL = 4 सेमी., CM = 3 सेमी., AO = OC = 5 सेमी.

 ΔOAL में पायथागोस प्रमेय से (By Pythogoras theorem)

$$(OL)^2 + (AL)^2 + (OA)^2$$

$$(OL)^2 + (4)^2 + (5)^2$$

$$OL^2 = 25 - 16 = 9$$

$$OL = 3$$
 सेमी (2 अंक)

 ΔOCM में पायथागोस प्रमेय से (by Pythogoras theorem)

$$OM^2 + (CM)^2 = OC^2$$

$$OM^2 + 3^2 = 5^2$$

$$OM^2 = 25 - 9 = 16$$

$$OM = 4$$
 सेमी (2 अंक)

अब AB एवं CD के बीच की दूरी (Distance between AB and CD)

$$LM = OM - OL$$

अथवा / (OR)

हलः दिया है वृत्त c (o,r) का चाप PQ तथा वृत्त की परिधि पर एक बिन्दु R है।

सिद्ध करना है : $MPQ = 2 \angle PRQ$

रचना : R को 0 से मिलाया और इसे M तक आगे बढाया

उपपत्ति : $\angle QOM = \angle ORQ + \angle OQR$

$$(:: \angle QOM = \Delta ORQ$$
 का बहिष्कोण है।) (2 अंक)

 $POM = \angle ORP + \angle OPR$

$$OQ = OR = r$$
 और $OP = OR = r$

$$\angle OQR = \angle ORQ$$
 $\stackrel{\circ}{\text{MR}}$ $\angle OPR = \angle ORP$

 $\angle QOM = 2\angle ORQ$

 $\angle POM = 2\angle ORP$

$$\angle POM + \angle QOM = 2 \angle POQ$$
 (2 3 $\dot{\Phi}$)

$$\angle POQ = 2\angle ORP = 2\angle ORQ$$
 [समी. (1) व (2) से]
= $2[\angle ORP + \angle ORQ] = 2\angle PRQ$

$$MPQ = 2\angle PRQ$$
 यही सिद्ध करना था। (2 अंक)

Sol. Given

An arc PQ of circle C (o,r) and a point 'R' on the circumference

To prove : $m \widehat{PQ} = 2 \angle PRQ$

Construction: Join R, O and produce it to M

Proof:

$$\angle QOM = \angle ORQ + \angle OQR$$

2 अंक

$$\angle POM = \angle ORP + \angle ORP$$

$$OQ = OR = r$$
 and $OP = OR = r$

$$\angle OQR = \angle ORQ$$
 and $\angle OPR = \angle ORP$

 $\angle QOM = 2\angle ORQ$

 $\angle POM = 2\angle ORP$

$$\angle POM + \angle QOM = \angle POQ$$
 (2 3 $\dot{\Phi}$)

$$\angle POQ = 2\angle ORP + 2\angle ORQ$$
 [eq. (1) and (2)]

$$= 2[\angle ORP + \angle ORQ] = 2\angle PRQ$$

$$MPQ = 2\angle PRQ$$
] Proved (2 अंक)

ਯ. 24

हल:

वर्ग अन्तराल	बारम्बारता	मध्य र्	बेन्दु $f x$	
Class Interval	Frequency	Mid V	Value	
0-20	7	10	70	
20-40	f_1	30	30 f ₁	
40-60	12	50	600	
60-80	f_2	70	70 f ₂	
80-100	8	90	720	
100-120	5	110	550	
$\Sigma f =$	$= 32 + f_1 + f_2 = 50$)	$\Sigma fx = 30 \ f_1 + 70 f_2$	+1940
$\Sigma f = f_1 + f_2 + 32$	= 50		(3	3 अंक)
$= f_1 + f_2 = 50 -$	32			
$= f_1 + f_2 = 18$	(1)			
$\bar{x} = \frac{\Sigma f x}{\Sigma f}$			(1	। अंक)
$57.6 = \frac{30f_1 + 70f_2}{50}$	+1940			
$30f_1 + 70f_2 +$	1940 = 2880			
1 2	2880 – 1940			
$30f_1 + 70f_2 =$				(2)
$3f_1 + 7f_2 = 9$	4	السا	$(1) \times 2$ equation (1)	(2)
		[4741.	$(1) \times 3$ equation (1)	1) × 3]
$3f_1 + 3f_2 =$ (-) (-) (
$4f_2 =$	40			
f का मान सर्म	ो. (1) में रखने पर			
put the value	of 'f' in equation	(1)		
$f_1 + 10 = 18$				
$f_1 = 18 - 10$	= 8			
$Ans. f_1 = 8$				
0 10			1	- <u></u> \

(2 अंक)

 $f_2 = 10$

हल:

वस्तु	मात्रा (किग्रा)	2000 में मूल्य	2005 में मूल्य	qoi × poi	qoi × pli
	qoi	∕ किग्रा poi	pli		
गेहूँ	30	6	12	$30 \times 6 = 180$	$30 \times 12 = 360$
चावल	10	14	20	$10 \times 14 = 140$	$10 \times 20 = 200$
शक्कर	10	12	16	$10 \times 12 = 120$	$10 \times 16 = 160$
चाय	1	80	120	$1 \times 80 = 80$	$1 \times 120 = 120$
दाल	3	20	40	$3 \times 20 = 60$	$3 \times 40 = 120$
योग				580	960

निर्वाह खर्च सूचकांक
$$= \frac{\text{वर्तमान वर्ष में कुल खर्च}}{\text{आधार वर्ष में कुल खर्च}} \times 100 \tag{4 अंक}$$

$$= \frac{\sum qoi \times pli}{\sum qoi \times poi} \times 100 \tag{1 अंक}$$

$$= \frac{960}{580} \times 100$$

$$= 165.51 \tag{1 अंक}$$

Item	Quantity	Price in per	price in per	qoi × poi	qoi × pli
		kg in 2000	kg. 2005		
Wheat	30	6	12	$30\times 6=180$	$30 \times 12 = 360$
Rice	10	14	20	$10 \times 14 = 140$	$10 \times 20 = 200$
Sugar	10	12	16	$10 \times 12 = 120$	$10 \times 16 = 160$
Tea	1	80	120	$1 \times 80 = 80$	$1 \times 120 = 120$
Puls	3	20	40	$3\times20=60$	$3 \times 40 = 120$
Total				580	960

Index Number
$$= \frac{\text{Total expenditure in present year}}{\text{Total expenditure in base year}} \times 100$$

$$= \frac{qoi \times pli}{qoi \times poi} \times 100 \qquad (1 \ \ 3i\phi)$$
Index Number
$$= \frac{960}{580} \times 100 = 165.51$$
Ans.
$$= 165.51 \ \text{Ans}.$$

Ans.