

🧲 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE181114702

FCC REPORT (BLE)

Applicant: Interglobe Connection Corp

Address of Applicant: 8228 NW 30th Terrace. Doral, Miami, FL 33122

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: EKO Star 4.0 G40

Trade mark: EKO

FCC ID: 2AC7IEKONG40

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 30 Nov., 2018

Date of Test: 30 Nov., to 30 Dec., 2018

Date of report issued: 31 Dec., 2018

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	31 Dec., 2018	Original

Tested by: Mike OU Date: 31 Dec., 2018

Test Engineer

Reviewed by: Date: 31 Dec., 2018

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3	CON	TENTS	3
4	TES ⁻	「SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	6
	5.8	TEST INSTRUMENTS LIST	7
6	TES	FRESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2		
7	TEST	SETUP PHOTO	32
Q	FIIT	CONSTRUCTIONAL DETAILS	2/

4 Test Summary

Test Items	Section in CFR 47	Result		
Antenna requirement	15.203 & 15.247 (c)	Pass		
AC Power Line Conducted Emission	15.207	Pass		
Conducted Peak Output Power	15.247 (b)(3)	Pass		
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass		
Power Spectral Density	15.247 (e)	Pass		
Band Edge	15.247 (d)	Pass		
Spurious Emission	15.205 & 15.209	Pass		
Pass: The EUT complies with the essential requirements in the standard.				

N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Interglobe Connection Corp	
Address:	8228 NW 30th Terrace. Doral, Miami, FL 33122	
Manufacturer/Factory:	INTERGLOBE CONNECTION LTD	
Address:	RM 1101 11F SAN TOI BLDG 139 CONNAUGHT RD CENTRAL HK	

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	EKO Star 4.0 G40
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-2.93 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-1400mAh
AC adapter:	Model: Ara 5.7 B5719 Input: AC100-240V, 50/60Hz, 0.15A Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Report No: CCISE181114702

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 6 of 34

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		b
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019	
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cable	HP	10503A	N/A	03-07-2018	03-06-2019	
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is -2.93 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15	.207		
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	,	Limit	(dBuV)	
Liiiit.	Frequency range (MHz)		Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logar			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test setup:	Reference Plane LISN 40cm 80cm Filter AC power Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test Instruments:	Refer to section 5.8 for det	tails		
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Product name:	Mobile Phone	Product model:	EKO Star 4.0 G40
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	₫₿uŸ	Œ	₫B	₫₿u₹	dBu∇	<u>d</u> B	<u> </u>
1	0.154	41.11	0.18	10.78	52.07	65.78	-13.71	QP
1 2 3 4 5 6 7 8	0.154	25.91	0.18	10.78	36.87	55.78	-18.91	Average
3	0.194	34.89	0.15	10.76	45.80	63.84	-18.04	QP
4	0.194	21.35	0.15	10.76	32.26	53.84	-21.58	Average
5	0.234	33.45	0.14	10.75	44.34	62.30	-17.96	QP
6	0.567	21.31	0.12	10.76	32.19	46.00	-13.81	Average
7	0.585	32.56	0.12	10.76	43.44	56.00	-12.56	QP
8	0.779	18.18	0.13	10.80	29.11	46.00	-16.89	Average
9	1.619	15.87	0.14	10.93	26.94	46.00	-19.06	Average
10	2.678	20.41	0.16	10.93	31.50	46.00	-14.50	Average
11	2.721	27.11	0.16	10.93	38.20	56,00	-17.80	QP
12	4.525	26.19	0.20	10.87	37.26	56.00	-18.74	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Mobile Phone	Product model:	EKO Star 4.0 G40
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	₫₿u₹		₫B	₫₿u₹	dBu∜	<u>ab</u>	9 <u>-20-50-00-00-00-00-00-00-00-00-00-00-00-00</u>
1 2	0.158 0.159	42.02 30.86	0.70 0.70	10.77 10.77	53.49 42.33		-12.07 -13.19	QP Average
2	0.198	38.64	0.66	10.76	50.06	63.71	-13.65	QP
4 5 6	0.201 0.238	24.52 34.15	0.66 0.65	10.76	35.94 45.55		-17.64 -16.62	Average OP
6	0.277	33.18	0.65	10.74	44.57	60.90	-16.33	QP
7 8 9	0.318 0.510	20.98 32.58	0.64 0.61	10.74	32.36 43.95	56.00	-12.05	
	0.518	25.34	0.61	10.76	36.71			Average
10 11 12	0.595 2.721 2.736	19.43 19.60 26.80	0.63 0.68 0.68	10.77 10.93 10.93	30.83 31.21 38.41	46.00		Average Average QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	4.31		
Middle	3.87	30.00	Pass
Highest	3.34		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	>500kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.768			
Middle	0.756	>500	Pass	
Highest	0.756			
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.086			
Middle	1.086	N/A	N/A	
Highest	1.086			

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	8 dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	3.30		
Middle	2.88	8.00	Pass
Highest	2.38		

Test plots as follow:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Consul Defense a Diago					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

6.6.2 Radiated Emission Method

0.0.2	5.2 Radiated Effission Method							
	Test Requirement:	FCC Part 15 C Section 15.205 and 15.209						
	Test Method:	ANSI C63.10: 2013 and KDB 558074						
	Test Frequency Range:	2.3GHz to 2.5	GHz					
	Test Distance:	3m						
	Receiver setup:	Frequency	uency Detector RBW VBW			/BW	Remark	
		Above 1GHz	Peak		1MHz		MHz	Peak Value
			RMS	1	1MHz		MHz	Average Value
	Limit:	Frequer	ncy	Lin	nit (dBuV/m @3 54.00	sm)	۸۰	Remark verage Value
		Above 10	GHz -		74.00			Peak Value
	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 					ce-receiving e-height antenna meters above ield strength. nna are set to d to its worst n 1 meter to 4 s to 360 degrees nction and 0 dB lower than d the peak values ons that did not sing peak, quasi-	
	Test setup:	AE (T	EUT Lumtable) Test Rei		Horn Antenna Reference Plane Pre- Amplifer Contr	Antenna 1	Tower S	
	Test Instruments:	Refer to section 5.8 for details						
	Test mode:	Refer to section 5.3 for details						
	Test results:	Passed						
		L						

Product Name:	Mobile Phone	Product model:	EKO Star 4.0 G40
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Freq	ReadAntenr Freq Level Facto							
MHz	—dBu7	<u>dB</u> /m	āĒ	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone	Product model:	EKO Star 4.0 G40
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Freq		Antenna Factor						
MHz	dBu7	<u>dB/</u> m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone	Product model:	EKO Star 4.0 G40		
Test By:	Mike	Test mode:	BLE Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

Freq	ReadAnter Freq Level Fact		Cable Loss	Preamp Factor	reamp Jactor Level		Over Limit	Remark	
MHz	₫BuŸ		āB	₫B	dBuV/m	dBuV/m	<u>dB</u>		
2483.500 2483.500									

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone	Product model:	EKO Star 4.0 G40		
Test By:	Mike	te Test mode: BLE Tx mode			
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq	Read/ Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu7		āB	<u>ab</u>	dBu7/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

6.7.2 Radiated Emission Method

6.7.2 Radiated Emission Test Requirement:	FCC Part 15 C	Section 15.2	05 and 15.209)		
Test Method:	ANSI C63.10:20)13				
Test Frequency Range:	9kHz to 25GHz					
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	VB	3W	Remark
Receiver setup.	30MHz-1GHz	Quasi-peak		3001		Quasi-peak Value
		Peak	1MHz	3M		Peak Value
	Above 1GHz	RMS	1MHz	3M	lHz	Average Value
Limit:	Frequency	/	_imit (dBuV/m @	23m)		Remark
	30MHz-88M	Hz	40.0		C	Quasi-peak Value
	88MHz-216M		43.5			Quasi-peak Value
	216MHz-960		46.0			Quasi-peak Value
	960MHz-1G	Hz	54.0			Quasi-peak Value
	Above 1GH	lz	54.0			Average Value
Test Procedure:			74.0	4	404in a	Peak Value table 0.8m(below
Toot cotup:	highest rad 2. The EUT antenna, w tower. 3. The antenr the ground Both horize make the n 4. For each s case and t meters and to find the n 5. The test-re Specified E 6. If the emiss the limit sp of the EUT have 10 dE peak or av sheet.	iation. was set 3 in hich was more and height is to determine the antique as the rota taken as in the rota taken a	meters away punted on the founted on the founted from one the maximular trical polarizatt. mission, the Evenna was tuned ading. em was set th Maximum Hamale the EUT in perfect the found of the found	from the top of a me met um valutions of EUT was do not be stoppwise the done be stoppwise the	er to for the arms arranged the arms arranged the arms arranged the arms arranged the arms are arms are arms are arms are arms arms arms arms arms arms arms arms	the position of the efference-receiving ole-height antenna four meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 tes to 360 degrees eect Function and a 10 dB lower than and the peak values assions that did not using peak, quasi-reported in a data
Test setup:	EUT	3m 4m 4m 0.8m 1m A			Antenna Search Antenna Test ceiver —	1

Measurement Data (worst case):

Below 1GHz:

Product Name:	Mobile Phone	Product model:	EKO Star 4.0 G40		
Test By:	Mike	Test mode:	BLE Tx mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq	KeadAntenna Uabl Level Factor Los							Remark
	MHz	dBu7		<u>ab</u>	<u>ab</u>	dBu√/m	dBuV/m	<u>ab</u>	
1	35.624	40.13	11.85	1.07	29.94	23.11	40.00	-16.89	QF
2	45.855	39.92	13.77	1.29	29.85	25.13	40.00	-14.87	QF
3	101.289	42.16	11.78	1.95	29.52	26.37	43.50	-17.13	QF
4 5	162.611	47.04	9.18	2.61	29.11	29.72	43.50	-13.78	QF
5	304.610	34.91	13.70	2.95	28.46	23, 10	46.00	-22.90	QF
6	142.259	29.83	20.82	4.33	28.51	26.47	46.00	-19.53	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone	Product model:	EKO Star 4.0 G40		
Test By:	Mike	Test mode:	BLE Tx mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq			Cable Preamp Loss Factor			Limit Line	Over Limit	Remark
-	MHz	dBu7	<u>dB</u> /m	dB	−−−−dB	dBu7/m	$\overline{dBuV/m}$	<u>d</u> B	
1	103.806	39.22	11.94	1.99	29.50	23, 65	43.50	-19.85	QF
2	163.182	49.27	9.20	2.61	29.11	31.97	43.50	-11.53	QP
2 3 4 5	187.753	41.50	10.89	2.78	28.92	26, 25	43.50	-17.25	QF
4	322.189	42.42	14.06	3.01	28.50	30.99	46.00	-15.01	QF
5	468.876	41.08	16.65	3.36	28.90	32.19	46.00	-13.81	QP
6	912.862	31.91	22.33	3.84	27.84	30, 24	46.00	-15.76	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 30 of 34

Above 1GHz

Test channel: Lowest channel										
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	47.28	30.85	6.80	41.81	43.12	74.00	-30.88	Vertical		
4804.00	46.89	30.85	6.80	41.81	42.73	74.00	-31.27	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
	37.24	30.85	6.80	41.81	33.08	54.00	-20.92	Vertical		
4804.00	37.24			l .						
4804.00 4804.00	36.98	30.85	6.80	41.81	32.82	54.00	-21.18	Horizontal		
			Test ch	nannel: Mido	lle channel	54.00	-21.18	Horizontal		
	36.98 Read Level	30.85 Antenna Factor	Test ch De Cable Loss	nannel: Mido tector: Peak Preamp Factor	lle channel	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00 Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Test ch De Cable Loss (dB)	nannel: Mido tector: Peak Preamp Factor (dB)	lle channel Value Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00 Frequency (MHz) 4884.00	Read Level (dBuV) 47.11	Antenna Factor (dB/m) 31.20	Test ch De Cable Loss (dB) 6.86	nannel: Mido tector: Peak Preamp Factor (dB) 41.84	Level (dBuV/m)	Limit Line (dBuV/m) 74.00	Over Limit (dB) -30.67	Polarization Vertical		
4804.00 Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Test ch De Cable Loss (dB) 6.86	pannel: Midd tector: Peak Preamp Factor (dB) 41.84 41.84	Level (dBuV/m) 43.33 42.71	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00 Frequency (MHz) 4884.00	Read Level (dBuV) 47.11	Antenna Factor (dB/m) 31.20	Test ch De Cable Loss (dB) 6.86	nannel: Mido tector: Peak Preamp Factor (dB) 41.84	Level (dBuV/m) 43.33 42.71	Limit Line (dBuV/m) 74.00	Over Limit (dB) -30.67	Polarization Vertical		
Frequency (MHz) 4884.00 4884.00 Frequency	Read Level (dBuV) 47.11 46.49 Read Level	Antenna Factor (dB/m) 31.20 31.20 Antenna Factor	Test ch De Cable Loss (dB) 6.86 6.86 Dete Cable Loss	Preamp Factor (dB) 41.84 41.84 ector: Averaç Preamp Factor	Level (dBuV/m) 43.33 42.71 ge Value	Limit Line (dBuV/m) 74.00 74.00 Limit Line	Over Limit (dB) -30.67 -31.29	Polarization Vertical Horizontal		

Test channel: Highest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	47.14	31.63	6.91	41.87	43.81	74.00	-30.19	Vertical		
4960.00	46.22	31.63	6.91	41.87	42.89	74.00	-31.11	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	38.12	31.63	6.91	41.87	34.79	54.00	-19.21	Vertical		
4960.00	37.66	31.63	6.91	41.87	34.33	54.00	-19.67	Horizontal		

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.