Pong from Pixels

Deep RL Bootcamp

e.g.,

height width

[80 x 80] array of

height width
[80 x 80]
array


```
h = np.dot(W1, x) # compute hidden layer neuron activations
h[h<0] = 0 # ReLU nonlinearity: threshold at zero
logp = np.dot(W2, h) # compute log probability of going up
p = 1.0 / (1.0 + np.exp(-logp)) # sigmoid function (gives probability of going up)</pre>
```

height width
[80 x 80]
array

E.g. 200 nodes in the hidden network, so:

$$[(80*80)*200 + 200] + [200*1 + 1] = ~1.3M$$
 parameters
Layer 1 Layer 2

Network does not see this. Network sees 80*80 = 6,400 numbers. It gets a reward of +1 or -1, some of the time. Q: How do we efficiently find a good setting of the 1.3M parameters?

Problem is easy if you want to be inefficient...

1. Repeat Forever:

- 2. Sample 1.3M random numbers
- 3. Run the policy for a while
- 4. If the performance is best so far, save it
- 5. Return the best policy

Problem is easy if you want to be inefficient...

Problem is easy if you want to be inefficient...

Policy Gradients

Suppose we had the training labels... (we know what to do in any state)

```
(x1,UP)
(x2,DOWN)
(x3,UP)
```

Suppose we had the training labels... (we know what to do in any state)

(x1,UP) (x2,DOWN) (x3,UP) ...

Suppose we had the training labels... (we know what to do in any state)

(x1,UP)

maximize:

 $\sum_{i} \log p(y_i|x_i)$

Except, we don't have labels...

Should we go UP or DOWN?

Except, we don't have labels...

"Try a bunch of stuff and see what happens. Do more of the stuff that worked in the future."

-RL

Let's just act according to our current policy...

Rollout the policy and collect an episode

WIN

Collect many rollouts...

4 rollouts:

Not sure whatever we did here, but apparently it was good.

Not sure whatever we did here, but it was bad.

Pretend every action we took here was the correct label.

maximize: $\log p(y_i \mid x_i)$

Pretend every action we took here was the wrong label.

maximize: $(-1) * log p(y_i \mid x_i)$

maximize:

$$\sum_{i} \log p(y_i|x_i)$$

For images x_i and their labels y_i.

maximize:

$$\sum_{i} \log p(y_i|x_i)$$

For images x_i and their labels y_i.

Reinforcement Learning

maximize:

$$\sum_{i} \log p(y_i|x_i)$$

For images x_i and their labels y_i.

Reinforcement Learning

1) we have no labels so we sample:

$$y_i \sim p(\cdot|x_i)$$

maximize:

$$\sum_{i} \log p(y_i|x_i)$$

For images x_i and their labels y_i.

Reinforcement Learning

1) we have no labels so we sample:

$$|y_i \sim p(\cdot|x_i)|$$

2) once we collect a batch of rollouts: maximize:

$$\sum_{i} A_{i} * \log p(y_{i}|x_{i})$$

maximize:

$$\sum_{i} \log p(y_i|x_i)$$

For images x_i and their labels y_i.

Reinforcement Learning

1) we have no labels so we sample:

$$y_i \sim p(\cdot|x_i)$$

2) once we collect a batch of rollouts: maximize:

$$\sum_{i} A_{i} * \log p(y_{i}|x_{i})$$

We call this the **advantage**, it's a number, like +1.0 or -1.0 based on how this action eventually turned out.

maximize:

$$\sum_{i} \log p(y_i|x_i)$$

For images x_i and their labels y_i.

Reinforcement Learning

1) we have no labels so we sample:

$$|y_i \sim p(\cdot|x_i)|$$

2) once we collect a batch of rollouts: maximize:

$$\sum_{i} A_i * \log p(y_i|x_i)$$

+ve advantage will make that action more likely in the future, for that state.

-ve advantage will make that action less likely in the future, for that state.

Discounting

Blame each action assuming that its effects have exponentially decaying impact into the future.

Discounting

Blame each action assuming that its effects have exponentially decaying impact into the future.

https://gist.github.com/karpathy/a4166c7fe253700972fcbc77e4ea32c5

130 line gist, numpy as the only dependency.

```
env = gym.make("Pong-v0")
    observation = env.reset()
     prev_x = None # used in computing the difference frame
     xs,hs,dlogps,drs = [],[],[],[]
     running reward - None
    episode_number = 0
      if render: env.render()
 # preprocess the observation, set input to network to be difference image
      cur x = prepro(observation)
      x = cur_x - prev_x if prev_x is not None else np.zeros(D)
      # forward the policy network and sample an action from the returned probability
      aprob, h = policy forward(x)
      action = 2 if np.random.uniform() < aprob else 3 # roll the dice!
      # record various intermediates (needed later for backprop)
      hs.append(h) # hidden state
      y = 1 if action == 2 else 0 # a "fake label"
      dlogos.append(v - aprob) # grad that encourages the action that was taken to be taken (see http://cs23ln.github.io/neural-networks-2/#los
      # step the environment and get new measurements
      observation, reward, done, info = env.step(action)
      reward sum += reward
      drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)
      if done: # an enisode finished
        episode number += 1
        # stack together all inputs, hidden states, action gradients, and rewards for this episode
        eph = np.vstack(hs)
        epdlogp = np.vstack(dlogps)
         epr = np.vstack(drs)
        xs,hs,dlogps,drs = [],[],[],[] # reset array memory
        # compute the discounted reward backwards through time
        discounted eor = discount rewards(eor)
        # standardize the rewards to be unit normal (helps control the gradient estimator variance)
        discounted_epr -= np.mean(discounted_epr)
         discounted_epr /= np.std(discounted_epr)
        epdlogp == discounted_epr # modulate the gradient with advantage (PG magic happens right here.)
        grad = policy_backward(eph, epdlogp)
        for k in model: grad buffer[k] += grad[k] # accumulate grad over batch
        # perform rmsprop parameter update every batch size episodes
        if episode number % batch size == 0:
          for k v in model iteritems():
           g = grad_buffer[k] # gradient
            rmsprop_cache[k] = decay_rate * rmsprop_cache[k] + (1 - decay_rate) * g**2
            model[k] += learning_rate * g / (np.sqrt(rmsprop_cache[k]) + 1e-5)
            grad_buffer[k] = np.zeros_like(v) # reset batch gradient buffer
        running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01
        print 'resetting env. episode reward total was %f. running mean: %f' % (reward sum, running reward)
       if episode number % 100 == 0; pickle.dump(model, open('save.p', 'wb'))
        observation = env.reset() # reset env
if reward != 8: # Pong has either +1 or -1 reward exactly when game ends.
        print ('ep %d: game finished, reward: %f' % (episode_number, reward)) + ('' if reward == -1 else ' | | | | | | | | | |
```

```
env = gym.make("Pong-v0")

observation = env.reset()

prev_x = None # used in computing the difference frame

xs,hs,dlogps,drs = [],[],[],[]

running_reward = None

reward_sum = 0

episode_number = 0

while True:
   if render: env.render()
```

Nothing too scary over here.

We use OpenAl Gym.

And start the main training loop.

```
env = gym.make("Pong-v@")
65 observation = env.reset()
   prev_x = None # used in computing the difference frame
    xs,hs,dlogps,drs = [],[],[],[]
    running_reward = None
    reward sum = 0
    episode_number = 0
if render: env.render()
      # preprocess the observation, set input to network to be difference image
      cur x = prepro(observation)
      x = cur_x - prev_x if prev_x is not None else np.zeros(D)
      # forward the policy network and sample an action from the returned probability
      aprob, h = policy forward(x)
      action = 2 if np.random.uniform() < aprob else 3 # roll the dice!
      # record various intermediates (needed later for backprop)
      hs.append(h) # hidden state
      y = 1 if action == 2 else 0 # a "fake label"
      dlogos.append(v - aprob) # grad that encourages the action that was taken to be taken (see http://cs23in.github.io/neural-networks-2/#los
      # step the environment and get new measurements
      observation, reward, done, info = env.step(action)
      reward sum += reward
      drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)
      if done: W an episode finished
        episode number += 1
       # stack together all inputs, hidden states, action gradients, and rewards for this episode
        eph = np.vstack(hs)
        endlogn = nn.vstack(dlogns)
        epr = np.vstack(drs)
        xs,hs,dlogps,drs = [],[],[],[] # reset array memory
       # compute the discounted reward backwards through time
        discounted eor = discount rewards(eor)
       # standardize the rewards to be unit normal (helps control the gradient estimator variance)
        discounted_epr -= np.mean(discounted_epr)
        discounted eor /= np.std(discounted eor)
        epdlogp == discounted_epr # modulate the gradient with advantage (PG magic happens right here.)
        grad = policy_backward(eph, epdlogp)
        for k in model: grad buffer[k] += grad[k] # accumulate grad over batch
       # perform rmsprop parameter update every batch size episodes
       if episode number % batch size == 0:
          for k,v in model.iteritems():
           g = grad buffer[k] # gradient
            rmsprop_cache[k] = decay_rate * rmsprop_cache[k] + (1 - decay_rate) * g**2
            model[k] += learning_rate * g / (np.sqrt(rmsprop_cache[k]) + 1e-5)
            grad_buffer[k] = np.zeros_like(v) # reset batch gradient buffer
        running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01
        print 'resetting env. episode reward total was %f. running mean: %f' % (reward sum, running reward)
       if episode number % 100 == 0; pickle.dump(model, open('save.p', 'wb'))
        observation = env.reset() # reset env
if reward != 0: # Pong has either +1 or -1 reward exactly when game ends.
        print ('ep %d: game finished, reward: %f' % (episode_number, reward)) + ('' if reward == -1 else ' | | | | | | | | | |
```

```
# preprocess the observation, set input to network to be difference image
cur_x = prepro(observation)
x = cur_x - prev_x if prev_x is not None else np.zeros(D)
prev_x = cur_x
```

```
def prepro(I):
    """ prepro 210x160x3 uint8 frame into 6400 (80x80) 1D float vector """
    I = I[35:195] # crop
    I = I[::2,::2,0] # downsample by factor of 2
    I[I == 144] = 0 # erase background (background type 1)
    I[I == 109] = 0 # erase background (background type 2)
    I[I != 0] = 1 # everything else (paddles, ball) just set to 1
    return I.astype(np.float).ravel()
```

Get the current image and preprocess it.

```
env = gym.make("Pong-v@")
65 observation = env.reset()
 56 prev_x = None # used in computing the difference frame
    xs,hs,dlogps,drs = [],[],[],[]
 8 running_reward = None
 9 reward_sum = 0
    episode_number = 0
72 if render: env.render()
74 # preprocess the observation, set input to network to be difference image
75 cur x = prepro(observation)
76 x = cur_x - prev_x if prev_x is not None else np.zeros(D)
77 prev_x = cur_x
      # forward the policy network and sample an action from the returned probability
      aprob, h = policy forward(x)
      action = 2 if np.random.uniform() < aprob else 3 # roll the dice!
      # record various intermediates (needed later for backprop)
85 hs.append(h) # hidden state
86 y = 1 if action == 2 else 0 # a "fake label"
      dlogos.append(v - aprob) # grad that encourages the action that was taken to be taken (see http://cs23in.github.io/neural-networks-2/#los
      # step the environment and get new measurements
      observation, reward, done, info = env.step(action)
      reward sum += reward
      drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)
      if done: # an episode finished
        episode number += 1
        # stack together all inputs, hidden states, action gradients, and rewards for this episode
        eph = np.vstack(hs)
        endlogn = nn.vstack(dlogns)
        epr = np.vstack(drs)
        xs,hs,dlogps,drs = [],[],[],[] # reset array memory
       # compute the discounted reward backwards through time
        discounted_epr = discount_rewards(epr)
       # standardize the rewards to be unit normal (helps control the gradient estimator variance)
        discounted_epr -= np.mean(discounted_epr)
        discounted_epr /= np.std(discounted_epr)
        epdlogp *= discounted_epr # modulate the gradient with advantage (PG magic happens right here.)
        grad = policy_backward(eph, epdlogp)
        for k in model: grad buffer[k] += grad[k] # accumulate grad over batch
        # perform rmsprop parameter update every batch size episodes
        if episode number % batch size == 0:
          for k,v in model.iteritems():
           g = grad_buffer[k] # gradient
            rmsprop_cache[k] = decay_rate * rmsprop_cache[k] + (1 - decay_rate) * g**2
            model[k] += learning_rate * g / (np.sqrt(rmsprop_cache[k]) + 1e-5)
            grad_buffer[k] = np.zeros_like(v) # reset batch gradient buffer
        running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01
        print 'resetting env. episode reward total was %f. running mean: %f' % (reward sum, running reward)
       if episode number % 100 == 0; pickle.dump(model, open('save.p', 'wb'))
       observation = env.reset() # reset env
if reward != 8: # Pong has either +1 or -1 reward exactly when game ends.
        print ('ep %d: game finished, reward: %f' % (episode_number, reward)) + ('' if reward == -1 else ' ||||||||')
```

```
# forward the policy network and sample an action from the returned probability
aprob, h = policy_forward(x)
action = 2 if np.random.uniform() < aprob else 3 # roll the dice!</pre>
```

```
def policy_forward(x):
  h = np.dot(model['W1'], x)
  h[h<0] = 0 # ReLU nonlinearity
  logp = np.dot(model['W2'], h)
  p = sigmoid(logp)
  return p, h # return probability of taking action 2, and hidden state</pre>
```

```
def sigmoid(x):
    return 1.0 / (1.0 + np.exp(-x)) # sigmoid "squashing" function to interval [0,1]
```

```
env = gym.make("Pong-v@")
65 observation = env.reset()
66 prev_x = None # used in computing the difference frame
    xs,hs,dlogps,drs = [],[],[],[]
   running reward = None
    reward sum = 0
    episode_number = 0
72 if render: env.render()
74 # preprocess the observation, set input to network to be difference image
75 cur x = prepro(observation)
76 x = cur_x - prev_x if prev_x is not None else np.zeros(D)
79 # forward the policy network and sample an action from the returned probability
      aprob, h = policy forward(x)
     action = 2 if np.random.uniform() < aprob else 3 # roll the dice!
      # record various intermediates (needed later for backprop)
      hs.append(h) # hidden state
      y = 1 if action == 2 else 0 # a "fake label"
      dlogos.append(v - aprob) # grad that encourages the action that was taken to be taken (see http://cs23in.github.jo/neural-networks-2/#10
      # step the environment and get new measurements
      observation, reward, done, info = env.step(action)
      reward sum += reward
      drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)
      if done: If an enisode finished
        episode number += 1
       # stack together all inputs, hidden states, action gradients, and rewards for this episode
        eph = np.vstack(hs)
        endlogn = nn.vstack(dlogns)
        epr = np.vstack(drs)
        xs,hs,dlogps,drs = [],[],[],[] # reset array memory
       # compute the discounted reward backwards through time
        discounted eor = discount rewards(eor)
       # standardize the rewards to be unit normal (helps control the gradient estimator variance)
        discounted_epr -= np.mean(discounted_epr)
        discounted epr /= np.std(discounted epr)
        epdlogo *= discounted eor # modulate the gradient with advantage (PG magic happens right here.)
        grad = policy backward(eph, epdlogo)
        for k in model: grad buffer[k] += grad[k] # accumulate grad over batch
       # perform rmsprop parameter update every batch size episodes
       if episode number % batch size == 0:
          for k v in model iteritors():
           g = grad buffer[k] # gradient
            rmsprop_cache[k] = decay_rate * rmsprop_cache[k] + (1 - decay_rate) * g**2
            model[k] += learning_rate * g / (np.sqrt(rmsprop_cache[k]) + 1e-5)
           grad_buffer[k] = np.zeros_like(v) # reset batch gradient buffer
        running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01
       print 'resetting env. episode reward total was %f. running mean: %f' % (reward sum, running reward)
       if episode number % 100 == 0; pickle.dump(model, open('save.p', 'wb'))
       observation = env.reset() # reset env
if reward != 8: # Pong has either +1 or -1 reward exactly when game ends.
        print ('ep %d: game finished, reward: %f' % (episode_number, reward)) + ('' if reward == -1 else ' !!!!!!!!')
```

```
# record various intermediates (needed later for backprop)
xs.append(x) # observation
hs.append(h) # hidden state
y = 1 if action == 2 else 0 # a "fake label"
dlogps.append(y - aprob) # grad that encourages the action that was taken to be taken
```

Bookkeeping so that we can do backpropagation later. If you were to use PyTorch or something, this would not be needed.

```
env = gym.make("Pong-v@")
65 observation = env.reset()
56 prev_x = None # used in computing the difference frame
    xs,hs,dlogps,drs = [],[],[],[]
    running reward = None
    reward sum = 0
    episode_number = 0
72 If pendent any penden()
74 # preprocess the observation, set input to network to be difference image
     cur x = prepro(observation)
76 x = cur_x - prev_x if prev_x is not None else np.zeros(D)
79 # forward the policy network and sample an action from the returned probability
      aprob, h = policy forward(x)
     action = 2 if np.random.uniform() < aprob else 3 # roll the dice!
      # record various intermediates (needed later for backprop)
      hs.append(h) # hidden state
      y = 1 if action == 2 else 0 # a "fake label"
      dlogos.append(v - aprob) # grad that encourages the action that was taken to be taken (see http://cs23in.github.jo/neural-networks-2/#10
      # step the environment and get new measurements
      observation, reward, done, info = env.step(action)
      reward sum += reward
      drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)
      if done: If an enisode finished
        episode number += 1
       # stack together all inputs, hidden states, action gradients, and rewards for this episode
        eph = np.vstack(hs)
        endlogn = nn.vstack(dlogns)
        epr = np.vstack(drs)
        xs,hs,dlogps,drs = [],[],[],[] # reset array memory
       # compute the discounted reward backwards through time
        discounted eor = discount rewards(eor)
       # standardize the rewards to be unit normal (helps control the gradient estimator variance)
        discounted_epr -= np.mean(discounted_epr)
        discounted epr /= np.std(discounted epr)
        epdlogp == discounted_epr # modulate the gradient with advantage (PG magic happens right here.)
        grad = policy backward(eph, epdlogo)
        for k in model: grad buffer[k] += grad[k] # accumulate grad over batch
       # perform rmsprop parameter update every batch size episodes
       if episode number % batch size == 0:
          for k v in model iteritors():
           g = grad buffer[k] # gradient
            rmsprop_cache[k] = decay_rate * rmsprop_cache[k] + (1 - decay_rate) * g**2
            model[k] += learning_rate * g / (np.sqrt(rmsprop_cache[k]) + 1e-5)
            grad_buffer[k] = np.zeros_like(v) # reset batch gradient buffer
        running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01
        print 'resetting env. episode reward total was %f. running mean: %f' % (reward sum, running reward)
       if episode number % 100 == 0; pickle.dump(model, open('save.p', 'wb'))
        observation = env.reset() # reset env
if reward != 8: # Pong has either +1 or -1 reward exactly when game ends.
        print ('ep %d: game finished, reward: %f' % (episode_number, reward)) + ('' if reward == -1 else ' | | | | | | | | | |
```

```
# record various intermediates (needed later for backprop)
xs.append(x) # observation
hs.append(h) # hidden state
y = 1 if action == 2 else 0 # a "fake label"
dlogps.append(y - aprob) # grad that encourages the action that was taken to be taken
```

A small piece of backprop:

Derivative of the [log probability of the taken action given this image] with respect to the [output of the network (before sigmoid)]

recall: loss:

$$\sum_{i} A_i * \log p(y_i|x_i)$$

$$s = W_2 f(W_1 x)$$

$$p = 1/(1 + e^{-s})$$

$$y \sim p$$

```
env = gym.make("Pong-v0")
   observation = env.reset()
   prev_x = None # used in computing the difference frame
    xs,hs,dlogps,drs = [],[],[],[]
    running reward = None
    reward sum = 0
    episode_number = 0
    if render: env.render()
# preprocess the observation, set input to network to be difference image
     cur x = prepro(observation)
     x = cur_x - prev_x if prev_x is not None else np.zeros(D)
     # forward the policy network and sample an action from the returned probability
     action = 2 if np.random.uniform() < aprob else 3 # roll the dice!
      # record various intermediates (needed later for backprop)
      hs.append(h) # hidden state
      y = 1 if action == 2 else 0 # a "fake label"
      dlogos.append(v - aprob) # grad that encourages the action that was taken to be taken (see http://cs23ln.github.io/neural-networks-2/#1
     # step the environment and get new measurements
      observation, reward, done, info = env.step(action)
      reward sum += reward
      drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)
      if done: If an enisode finished
       episode number += 1
       # stack together all inputs, hidden states, action gradients, and rewards for this episode
        eph = np.vstack(hs)
        endlogn = nn.vstack(dlogns)
        epr = np.vstack(drs)
        xs,hs,dlogps,drs = [],[],[],[] # reset array memory
       # compute the discounted reward backwards through time
        discounted eor = discount rewards(eor)
       # standardize the rewards to be unit normal (helps control the gradient estimator variance)
        discounted_epr -= np.mean(discounted_epr)
        discounted epr /= np.std(discounted epr)
        epdlogp == discounted_epr # modulate the gradient with advantage (PG magic happens right here.)
       grad = policy backward(eph, epdlogo)
        for k in model: grad buffer[k] += grad[k] # accumulate grad over batch
       # perform resprop parameter update every batch size episodes
       if episode number % batch size == 0:
         for k v in model iteritors():
           g = grad_buffer[k] # gradient
           rmsprop_cache[k] = decay_rate * rmsprop_cache[k] + (1 - decay_rate) * g**2
           model[k] += learning_rate * g / (np.sqrt(rmsprop_cache[k]) + 1e-5)
           grad_buffer[k] = np.zeros_like(v) # reset batch gradient buffer
        running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01
       print 'resetting env. episode reward total was %f. running mean: %f' % (reward sum, running reward)
       if episode number % 100 == 0; pickle.dump(model, open('save.p', 'wb'))
        observation = env.reset() # reset env
     if reward != 8: # Pong has either +1 or -1 reward exactly when game ends.
       print ('ep %d: game finished, reward: %f' % (episode_number, reward)) + ('' if reward == -1 else ' ||||||||')
```

```
# record various intermediates (needed later for backprop)
xs.append(x) # observation
hs.append(h) # hidden state
y = 1 if action == 2 else 0 # a "fake label"
dlogps.append(y - aprob) # grad that encourages the action that was taken to be taken
```

A small piece of backprop:

Derivative of the [log probability of the taken action given this image] with respect to the [output of the network (before sigmoid)]

recall: loss:

$$\sum_{i} A_{i} * \log p(y_{i}|x_{i})$$

$$s = W_2 f(W_1 x)$$

$$p = 1/(1 + e^{-s})$$

$$y \sim p$$

if
$$y = 1, L = \log p, dL/ds = 1 - p$$

if $y = 0, L = \log(1 - p), dL/ds = -p$

More compact:

$$L = y \log(p) + (1 - y) \log(1 - p)$$

$$dL/ds = y - p$$

```
env = gym.make("Pong-v0")
65 observation = env.reset()
66 prev_x = None # used in computing the difference frame
    xs,hs,dlogps,drs = [],[],[],[]
    running_reward = None
    reward sum = 0
    episode_number = 0
72 if render: env.render()
74 # preprocess the observation, set input to network to be difference image
75 cur x = prepro(observation)
76 x = cur_x - prev_x if prev_x is not None else np.zeros(D)
79 # forward the policy network and sample an action from the returned probability
      aprob, h = policy forward(x)
      action = 2 if np.random.uniform() < aprob else 3 # roll the dice!
83 # record various intermediates (needed later for backprop)
85 hs.append(h) # hidden state
86 y = 1 if action == 2 else 0 # a "fake label"
      dlogos.append(y - aprob) # grad that encourages the action that was taken to be taken (see http://cs23in.github.io/neural-networks-2/#lo-
      observation, reward, done, info = env.step(action)
      reward sum += reward
      drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)
      if done: # an episode finished
        episode number += 1
        # stack together all inputs, hidden states, action gradients, and rewards for this episode
        eph = np.vstack(hs)
        endlogn = nn.vstack(dlogns)
         epr = np.vstack(drs)
        xs,hs,dlogps,drs = [],[],[],[] # reset array memory
        # compute the discounted reward backwards through time
         discounted_epr = discount_rewards(epr)
        # standardize the rewards to be unit normal (helps control the gradient estimator variance)
        discounted_epr -= np.mean(discounted_epr)
         discounted_epr /= np.std(discounted_epr)
        epdlogp == discounted_epr # modulate the gradient with advantage (PG magic happens right here.)
        grad = policy_backward(eph, epdlogp)
        for k in model: grad buffer[k] += grad[k] # accumulate grad over batch
        # perform rmsprop parameter update every batch size episodes
        if episode number % batch size == 0:
          for k,v in model.iteritems():
           g = grad_buffer[k] # gradient
            rmsprop_cache[k] = decay_rate * rmsprop_cache[k] + (1 - decay_rate) * g**2
            model[k] += learning_rate * g / (np.sqrt(rmsprop_cache[k]) + 1e-5)
            grad_buffer[k] = np.zeros_like(v) # reset batch gradient buffer
        running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01
        print 'resetting env. episode reward total was %f. running mean: %f' % (reward sum, running reward)
       if episode number % 100 == 0; pickle.dump(model, open('save.p', 'wb'))
        observation = env.reset() # reset env
if reward != 8: # Pong has either +1 or -1 reward exactly when game ends.
        print ('ep %d: game finished, reward: %f' % (episode_number, reward)) + ('' if reward == -1 else ' | | | | | | | | | |
```

```
# step the environment and get new measurements
observation, reward, done, info = env.step(action)
reward_sum += reward

drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)
```

Step the environment

(execute the action, get new state and record the reward)

```
env = gym.make("Pong-v@")
65 observation = env.reset()
 56 prev_x = None # used in computing the difference frame
    xs,hs,dlogps,drs = [],[],[],[]
    running_reward = None
    reward sum = 0
    episode_number = 0
72 if render: env.render()
74 # preprocess the observation, set input to network to be difference image
75 cur x = prepro(observation)
76 x = cur_x - prev_x if prev_x is not None else np.zeros(D)
79 # forward the policy network and sample an action from the returned probability
      action = 2 if np.random.uniform() < aprob else 3 # roll the dice!
83 # record various intermediates (needed later for backgron
85 hs.append(h) # hidden state
86 y = 1 if action == 2 else 0 # a "fake label"
      dlogos.append(v - aprob) # grad that encourages the action that was taken to be taken (see http://cs23in.github.io/neural-networks-2/#lo-
      # step the environment and get new measurements
      observation, reward, done, info = env.step(action)
      reward sum += reward
      drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)
      if done: # an episode finished
        # stack together all inputs, hidden states, action gradients, and rewards for this episode
        eph = np.vstack(hs)
        endlogn = nn.vstack(dlogns)
        xs,hs,dlogps,drs = [],[],[],[] # reset array memory
        # compute the discounted reward backwards through time
        discounted_epr = discount_rewards(epr)
        # standardize the rewards to be unit normal (helps control the gradient estimator variance)
        discounted_epr -= np.mean(discounted_epr)
        epdlogp == discounted_epr # modulate the gradient with advantage (PG magic happens right here.)
        grad = policy_backward(eph, epdlogp)
        for k in model: grad buffer[k] += grad[k] # accumulate grad over batch
        # perform rmsprop parameter update every batch size episodes
        if episode number % batch size == 0:
          for k,v in model.iteritems():
           g = grad buffer[k] # gradient
            rmsprop_cache[k] = decay_rate * rmsprop_cache[k] + (1 - decay_rate) * g**2
            model[k] += learning_rate * g / (np.sqrt(rmsprop_cache[k]) + 1e-5)
            grad_buffer[k] = np.zeros_like(v) # reset batch gradient buffer
        running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01
        print 'resetting env. episode reward total was %f. running mean: %f' % (reward sum, running reward)
       if episode number % 100 == 0; pickle.dump(model, open('save.p', 'wb'))
        observation = env.reset() # reset env
if reward != 8: # Pong has either +1 or -1 reward exactly when game ends.
        print ('ep %d: game finished, reward: %f' % (episode_number, reward)) + ('' if reward == -1 else ' !!!!!!!!')
```

```
if done: # an episode finished
  episode_number += 1

# stack together all inputs, hidden states, action gradients, and rewards for this episode
  epx = np.vstack(xs)
  eph = np.vstack(hs)
  epdlogp = np.vstack(dlogps)
  epr = np.vstack(drs)
  xs,hs,dlogps,drs = [],[],[],[] # reset array memory
```

Once a rollout is done, Concatenate together all images, hidden states, etc. that were seen in this batch.

Again, if using PyTorch, no need to do this.

```
env = gym.make("Pong-v0")
65 observation = env.reset()
   prev_x = None # used in computing the difference frame
    xs,hs,dlogps,drs = [],[],[],[]
   running_reward = None
    reward_sum = 0
    episode_number = 0
if render: env.render()
74 # preprocess the observation, set input to network to be difference image
75 cur x = prepro(observation)
76 x = cur_x - prev_x if prev_x is not None else np.zeros(D)
79 # forward the policy network and sample an action from the returned probability
      aprob, h = policy forward(x)
      action = 2 if np.random.uniform() < aprob else 3 # roll the dice!
     # record various intermediates (needed later for backprop)
     hs.append(h) # hidden state
86 y = 1 if action == 2 else 0 # a "fake label"
      dlogos.append(v - aprob) # grad that encourages the action that was taken to be taken (see http://cs23in.github.io/neural-networks-2/#los
     # step the environment and get new measurements
      observation, reward, done, info = env.step(action)
      reward sum += reward
      drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)
      if done: # an episode finished
        episode number += 1
       # stack together all inputs, hidden states, action gradients, and rewards for this episode
        eph = np.vstack(hs)
        endlogn = nn.vstack(dlogns)
        epr = np.vstack(drs)
        xs,hs,dlogps,drs = [],[],[],[] # reset array memory
        # compute the discounted reward backwards through time
        discounted eor = discount rewards(eor)
        # standardize the rewards to be unit normal (helps control the gradient estimator variance)
        discounted_epr -= np.mean(discounted_epr)
        discounted_epr /= np.std(discounted_epr)
        epdlogp == discounted_epr # modulate the gradient with advantage (PG magic happens right here.)
        grad = policy_backward(eph, epdlogp)
        for k in model: grad buffer[k] += grad[k] # accumulate grad over batch
       # perform rmsprop parameter update every batch_size episodes
        if episode number % batch size == 0:
          for k,v in model.iteritems():
           g = grad_buffer[k] # gradient
            rmsprop_cache[k] = decay_rate * rmsprop_cache[k] + (1 - decay_rate) * g**2
            model[k] += learning_rate * g / (np.sqrt(rmsprop_cache[k]) + 1e-5)
            grad_buffer[k] = np.zeros_like(v) # reset batch gradient buffer
        running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01
        print 'resetting env. episode reward total was %f. running mean: %f' % (reward sum, running reward)
       if episode number % 100 == 0; pickle.dump(model, open('save.p', 'wb'))
        observation = env.reset() # reset env
if reward != 8: # Pong has either +1 or -1 reward exactly when game ends.
       print ('ep %d: game finished, reward: %f' % (episode_number, reward)) + ('' if reward == -1 else ' ||||||||')
```

```
# compute the discounted reward backwards through time
discounted_epr = discount_rewards(epr)
# standardize the rewards to be unit normal (helps control the gradient estimator variance)
discounted_epr -= np.mean(discounted_epr)
discounted_epr /= np.std(discounted_epr)
```

```
def discount_rewards(r):
    """ take 1D float array of rewards and compute discounted reward """
    discounted_r = np.zeros_like(r)
    running_add = 0
    for t in reversed(xrange(0, r.size)):
        if r[t] != 0: running_add = 0 # reset the sum, since this was a game boundary (pong specific!)
        running_add = running_add * gamma + r[t]
        discounted_r[t] = running_add
    return discounted_r
```



```
env = gym.make("Pong-v0")
65 observation = env.reset()
    prev_x = None # used in computing the difference frame
    xs,hs,dlogps,drs = [],[],[],[]
    running_reward = None
    reward sum = 0
    episode_number = 0
if render: env.render()
74 # preprocess the observation, set input to network to be difference image
      cur x = prepro(observation)
     x = cur_x - prev_x if prev_x is not None else np.zeros(D)
     # forward the policy network and sample an action from the returned probability
      action = 2 if np.random.uniform() < aprob else 3 # roll the dice!
      # record various intermediates (needed later for backgron
      hs.append(h) # hidden state
      y = 1 if action == 2 else 0 # a "fake label"
      dlogps.append(v - aprob) # grad that encourages the action that was taken to be taken (see http://cs23in.github.io/neural-networks-2/#lo-
      # step the environment and get new measurements
      observation, reward, done, info = env.step(action)
      reward sum += reward
      drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)
      if done: # an episode finished
        episode number += 1
       # stack together all inputs, hidden states, action gradients, and rewards for this episode
        eph = np.vstack(hs)
        endlogn = nn.vstack(dlogns)
        epr = np.vstack(drs)
        xs,hs,dlogps,drs = [],[],[],[] # reset array memory
       # compute the discounted reward backwards through time
        discounted eor = discount rewards(eor)
        # standardize the rewards to be unit normal (helps control the gradient estimator variance)
        discounted_epr -= np.mean(discounted_epr)
        discounted epr /= np.std(discounted epr)
        epdlogo *= discounted eor # modulate the gradient with advantage (PG magic happens right here.)
        grad = policy_backward(eph, epdlogp)
        for k in model: grad buffer[k] += grad[k] # accumulate grad over batch
       # perform rmsprop parameter update every batch size episodes
       if episode number % batch size == 0:
          for k,v in model.iteritems():
           g = grad buffer[k] # gradient
            rmsprop_cache[k] = decay_rate * rmsprop_cache[k] + (1 - decay_rate) * g**2
            model[k] += learning_rate * g / (np.sqrt(rmsprop_cache[k]) + 1e-5)
            grad_buffer[k] = np.zeros_like(v) # reset batch gradient buffer
        running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01
        print 'resetting env. episode reward total was %f. running mean: %f' % (reward sum, running reward)
       if episode number % 100 == 0; pickle.dump(model, open('save.p', 'wb'))
        observation = env.reset() # reset env.
if reward != 8: # Pong has either +1 or -1 reward exactly when game ends.
        print ('ep %d: game finished, reward: %f' % (episode_number, reward)) + ('' if reward == -1 else ' !!!!!!!!')
```

```
epdlogp *= discounted_epr # modulate the gradient with advantage (PG magic happens right here.)
grad = policy_backward(eph, epdlogp)
for k in model: grad_buffer[k] += grad[k] # accumulate grad over batch
```

```
\sum_{i} A_{i} * \log p(y_{i}|x_{i})
```

Advantage modulation

```
def policy_backward(eph, epdlogp):
    """ backward pass. (eph is array of intermediate hidden states) """
    dW2 = np.dot(eph.T, epdlogp).ravel()
    dh = np.outer(epdlogp, model['W2'])
    dh[eph <= 0] = 0 # backpro prelu
    dW1 = np.dot(dh.T, epx)
    return {'W1':dW1, 'W2':dW2}</pre>
```

backprop!!!!!1

```
env = gym.make("Pong-v@")
65 observation = env.reset()
   prev_x = None # used in computing the difference frame
    xs,hs,dlogps,drs = [],[],[],[]
    running reward = None
    reward sum = 0
    episode_number = 0
72 If pendent any penden()
# preprocess the observation, set input to network to be difference image
75 cur x = prepro(observation)
76 x = cur_x - prev_x if prev_x is not None else np.zeros(D)
79 # forward the policy network and sample an action from the returned probability
      aprob, h = policy forward(x)
      action = 2 if np.random.uniform() < aprob else 3 # roll the dice!
     # record various intermediates (needed later for backprop)
     hs.append(h) # hidden state
86 y = 1 if action == 2 else 0 # a "fake label"
      dlogos.append(v - aprob) # grad that encourages the action that was taken to be taken (see http://cs23in.github.io/neural-networks-2/#los
     # step the environment and get new measurements
      observation, reward, done, info = env.step(action)
      reward sum += reward
      drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)
      if done: If an enisode finished
        episode number += 1
       # stack together all inputs, hidden states, action gradients, and rewards for this episode
        eph = np.vstack(hs)
        endlogn = nn.vstack(dlogns)
        epr = np.vstack(drs)
        xs,hs,dlogps,drs = [],[],[],[] # reset array memory
       # compute the discounted reward backwards through time
        discounted eor = discount rewards(eor)
       # standardize the rewards to be unit normal (helps control the gradient estimator variance)
        discounted_epr -= np.mean(discounted_epr)
        discounted epr /= np.std(discounted epr)
        epdlogp == discounted_epr # modulate the gradient with advantage (PG magic happens right here.)
        grad = policy backward(eph, epdlogo)
        for k in model: grad buffer[k] += grad[k] # accumulate grad over batch
        # perform rmsprop parameter update every batch size episodes
        if episode number % batch size == 0:
          for k v in model iteritors():
           g = grad buffer[k] # gradient
            rmsprop_cache[k] = decay_rate * rmsprop_cache[k] + (1 - decay_rate) * g**2
            model[k] += learning_rate * g / (np.sqrt(rmsprop_cache[k]) + 1e-5)
            grad_buffer[k] = np.zeros_like(v) # reset batch gradient buffer
        running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01
        print 'resetting env. episode reward total was %f. running mean: %f' % (reward sum, running reward)
       if episode number % 100 == 0; pickle.dump(model, open('save.p', 'wb'))
        observation = env.reset() # reset env
if reward != 8: # Pong has either +1 or -1 reward exactly when game ends.
```

print ('ep %d: game finished, reward: %f' % (episode_number, reward)) + ('' if reward == -1 else ' | | | | | | | | | |

```
# perform rmsprop parameter update every batch_size episodes
if episode_number % batch_size == 0:
    for k,v in model.iteritems():
        g = grad_buffer[k] # gradient
        rmsprop_cache[k] = decay_rate * rmsprop_cache[k] + (1 - decay_rate) * g**2
        model[k] += learning_rate * g / (np.sqrt(rmsprop_cache[k]) + 1e-5)
        grad_buffer[k] = np.zeros_like(v) # reset batch gradient buffer
```

Use RMSProp for the parameter update.

RMSProp

Update rule:

$$R_t = \gamma R_{t-1} + (1 - \gamma) \nabla L_t(W_{t-1})^2$$

$$W_t = W_{t-1} - \alpha \frac{\nabla L_t(W_{t-1})}{\sqrt{R_t}}$$

Similar to AdaGrad but with an exponential moving average controlled by $\gamma \in [0,1)$ (smaller $\gamma \implies$ more emphasis on recent gradients).

```
env = gym.make("Pong-v@")
65 observation = env.reset()
66 prev_x = None # used in computing the difference frame
   xs,hs,dlogps,drs = [],[],[],[]
 8 running_reward = None
 59 reward_sum = 0
 70 episode_number = 0
72 if render: env.render()
74 # preprocess the observation, set input to network to be difference image
75 cur_x = prepro(observation)
76 x = cur_x - prev_x if prev_x is not None else np.zeros(D)
79 # forward the policy network and sample an action from the returned probability
80 aprob, h = policy forward(x)
81 action = 2 if np.random.uniform() < aprob else 3 # roll the dice!
83 # record various intermediates (needed later for backprop)
85 hs.append(h) # hidden state
86 y = 1 if action == 2 else 0 # a "fake label"
87 dlogos.append(v - aprob) # grad that encourages the action that was taken to be taken (see http://cs23in.github.io/neural-networks-2/#los
89 # step the environment and get new measurements
90 observation, reward, done, info = env.step(action)
     reward sum += reward
      drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)
      if done: # an episode finished
       episode number += 1
       # stack together all inputs, hidden states, action gradients, and rewards for this episode
        eph = np.vstack(hs)
        epdlogp = np.vstack(dlogps)
        epr = np.vstack(drs)
        xs,hs,dlogps,drs = [],[],[],[] # reset array memory
       # compute the discounted reward backwards through time
        discounted_epr = discount_rewards(epr)
       # standardize the rewards to be unit normal (helps control the gradient estimator variance)
        discounted_epr -= np.mean(discounted_epr)
        discounted_epr /= np.std(discounted_epr)
        epdlogp *= discounted_epr # modulate the gradient with advantage (PG magic happens right here.)
       grad = policy_backward(eph, epdlogp)
        for k in model: grad buffer[k] += grad[k] # accumulate grad over batch
       # perform rmsprop parameter update every batch size episodes
       if episode number % batch size == 0:
          for k,v in model.iteritems():
           g = grad_buffer[k] # gradient
            rmsprop_cache[k] = decay_rate * rmsprop_cache[k] + (1 - decay_rate) * g**2
            model[k] += learning_rate * g / (np.sqrt(rmsprop_cache[k]) + 1e-5)
            grad_buffer[k] = np.zeros_like(v) # reset batch gradient buffer
        # boring book-keeping
        running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01
        print 'resetting env. episode reward total was %f. running mean: %f' % (reward sum, running reward)
        if episode number % 100 == 0; pickle.dump(model, open('save.p', 'wb'))
        reward_sum = 0
        observation = env.reset() # reset env
      if reward != 8: # Pong has either +1 or -1 reward exactly when game ends.
       print ('ep %d: game finished, reward: %f' % (episode_number, reward)) + ('' if reward == -1 else ' !!!!!!!!')
```

```
# boring book-keeping
running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01
print 'resetting env. episode reward total was %f. running mean: %f' % (reward_sum, running_reward)
if episode_number % 100 == 0: pickle.dump(model, open('save.p', 'wb'))
reward_sum = 0
observation = env.reset() # reset env
prev_x = None

if reward != 0: # Pong has either +1 or -1 reward exactly when game ends.
print ('ep %d: game finished, reward: %f' % (episode_number, reward)) + ('' if reward == -1 else ' !!!!!!!')
```

prints etc

In summary

- 1. Initialize a policy network at random
- 2. Repeat Forever:
- 3. Collect a bunch of rollouts with the policy
- 4. Increase the probability of actions that worked well
- 5. ???
- 6. Profit.

Thank you! Questions?

$$\sum_{i} A_{i} * \log p(y_{i}|x_{i})$$

