Lecture 2. Low complexity bounds and Sorting algorithms.

Dmitri Shmelkin

Math Modeling Competence Center at Moscow Research Center of Huawei Shmelkin.Dmitri@huawei.com

February 6, 2023

Overview

1 Low bounds for the problems considered

Sorting Algorithms

3 Low bounds for algorithms with Decision Trees

Low bounds need the algorithm class to be fixed

- In the first lecture we considered the Maximum problem and gave **Brute Force** quadratic and **Natural** linear algorithm to solve it.
- May a faster, e.g., a logarithm compexity algorithm exist?
- This is the question of **low bound** for the problem itself.
- To prove a bound, we have to make the class of algorthms explicit.

Definition 1

Algorithm is called **deterministic** if the sequence of steps is fully determined by the input and moreover, if for two different inputs first k steps are the same and the auxillary data stored after k steps are equal, then k+1-th step is the same.

In every specific problem, to prove a low bound for deterministic algorithms we have to define the possible steps of an algorithm in a more or less specific terms.

Reducing Maximum to Weighing

- First of all, let's assume that the input is read to the array D of size n (why?).
- Let's narrow down the class of algorithms in the Maximum problem to those, which may only ask to compare $D[i] \leq D[j]$ and get the bit of answer.
- This is the classical statement of finding the heaviest coin by weighing.

Theorem 2

There is no any deterministic algorithm of weighing n coins that always finds the heaviest coins in less than n-1 steps.

Corollary 3

Maximum is a problem of $\Theta(n)$ complexity class.

Proof of the Theorem 2

- Assume a correct algorithm exists with < n-1 comparison for every input
- Every input determines the sequence of comparisons made by the algorithm
- Assign to the input a graph with nodes related to coins and an edge i j if coins $D[i] \ge D[j]$ be compared by the algorithm.

Lemma 4

A connected graph on n nodes has at least n-1 edges.

- \bullet Consider an input and let i_0 be the index of the maximum found
- Take a connected component, C, that does not contain i_0 and add some positive number, M, to D[j] for each $j \in C$. Conisider this new input.
- By Definition 1, the output for this new input is the same, $D[i_0]$.
- For *M* large enough get a contradiction.

Element Query low bound

- Consider the element query in a sorted array D of integers (or another set with linear order) that returns the index, i(q), of the input number q, in the set.
- Consider a stronger form used in the range query, with an additional Boolean variable *ShiftDown* that applies when the number, q, is not in the set. In that case the query returns the nearest element smaller/larger than q, if ShiftDown = 1/0.
- Consider the algorithms, which only may check inequalities $i(q) \le j$ or $i(q) \ge j$; this ability is due to the array is sorted so comparison of q with elements od D is done by the data structure, but no direct access to the elements of D is allowed.
- ullet As an important presolve, the algorithm may and will ensure $q \in [D[1], D[n]]$.
- Binary Element Query comply with the above rules

Theorem 5

For a set of n indexes there is no a deterministic algorithm that might do query for any q and both 0/1 values of ShiftDown in less than $\lceil \log_2(n) \rceil$ inequality checks.

Corollary 6

Element query with inequality checks is a problem of $\Theta(\log_2(n))$ complexity class.

Proof of the Theorem 5

- Assume that a correct algorithm with $k < \lceil \log_2(n) \rceil$ checks exists
- Let S(q) be the inequality checks results, a sequence of at most k of 0/1
- Notice that if $S(q_1) = S(q_2)$ for $q_1 < q_2$, then $i(q_1) = i(q_2)$ and q_1, q_2 belong to the interval $[D[i(q_1)], D[i(q_1) + 1])$ closed from the left side, if ShiftDown = 1 and to $(D[i(q_1) 1], D[i(q_1)]]$, if ShiftDown = 0
- ullet In particular, the map $q o \mathcal{S}(q)$ is injective on the subset considered
- However, there are at most $2^k < n$ different sequences.
- Remark The proof is based on a so-called cardinality argument.

Sorting (or Ordering) Problem

- We gave more than one example of usability of sorting as a method to build efficient data structures to solve query problems. But how to solve sorting itself?
- Besides so many different algorithms availble, also the problem statement may have important additional requirements:
- **On-line** (or incremental) problem requires to be able to work with the set being delivered element-by-element or batch-by-batch.
- ullet Off-line algorithms may start when the whole set is stored in an array. Then, in-place problem requires to use only the memory occupied initially, plus some O(1) memory for computations.
- Usually the set to be sorted consists of numbers. However, a-priori knowledge about the possible numbers may become crucial, as we will see today.
- The algorithms of course apply to any set with linear order, C++ programmers may say that sorting applies to a **template** enabled with the comparison method.

Insertion Sorting

- The idea of insertion sorting is quite natural: to sort first 2, then first 3, etc. elements of the array. Every step j is incremental and consists in insertion of D[j] into the previously ordered $D[1], \dots, D[j-1]$.
- Those who played cards, may remember doing so when getting her card set **Insertion Sorting 1.** For j = 2, ..., n do sort the segment [1, j]:
- **2.** Set v := D[j]
- **2.** For i = j 1, j 2, ..., 1 do:
- **3.** If D[i] > v, D[i+1] := D[i]
- **4.** else D[i+1] := v; break the *i*-loop

Theorem 7

Insertion sorting is of $\Theta(n^2)$ complexity

Proof.

- It is obvious that in the worst case the number of steps **3** is j-1 so totally
- $1+2+\cdots+n-1=\frac{n(n-1)}{2}$.
- For the input array $D[j] = n + 1 j, j = 1, \dots, n$, all these step be done.

Online Sorting Low Bound

- The Insertion Sorting is an on-line algorithm: it takes a new element of the array and incrementally sorts the larger array at every read-on step.
- Although the Insertion Sorting looks naïve it is an optimal on-line Sorting:

Theorem 8

The on-line sorting problem is of $\Theta(n^2)$ complexity

Proof.

- Since Insertion sorting is of $\Theta(n^2)$ complexity, we just need to prove that a smaller compexity algorithm may not solve on-line sorting
- ullet Every on-line algorithm has n incremental step and it is enough to prove that that the incremental problem of adding an element to a sorted array with m elements belongs to $\Omega(m)$ class
- The latter statement holds true for the worst case of D[j] = n + 1 j because any algorithm at least needs to copy m elements to new places.

Divide and Conquer. Recursion

- We need to return to the principle introduced and illlustrated by Binary search
- Unlike Binary search, in most cases application needs recursive call of the same function for the subproblems.
- Assume that a recursive function divides the input of size n into p>0 problems of size $\lceil n/q \rceil, q>1$ and uses $O(n^d), d\geq 0$ complexity to both split into subproblems and then, combine their solutions to the one for the whole problem. Then the recursive eqiality holds for the complexity T(n)

$$T(n) = pT(\lceil n/q \rceil) + f(n), f \in O(n^d)$$
 (1)

Theorem 9

If T(n) fulfills equation (1), then holds

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_q(p) \\ O(n^d \log_2(n)), & \text{if } d = \log_q(p) \\ O(n^{\log_q(p)}), & \text{if } d < \log_q(p) \end{cases}$$

Proof of Theorem 9

- We first give the proof for the case when $n = q^r, r \in \mathbb{N}, f(n) = Cn^d$
- inserting (1) to itself, we get:

$$T(n) = Cn^{d} + pT(n/q) = Cn^{d} + Cpn^{d}/q^{d} + p^{2}T(n/q^{2}) =$$

$$= Cn^{d} + Cpn^{d}/q^{d} + Cp^{2}n^{d}/q^{2d} + p^{3}T(n/q^{3}) = Cn^{d}\sum_{j=0}^{r}(p/q^{d})^{j}$$
(2)

- 3 cases for the geometric progression with $r = \log_q(n)$ terms in (2):
- ullet if $p>q^d\Leftrightarrow d<\log_q(p)$, then the last term $\mathit{Cp}^{\log_q(n)}=\mathit{Cn}^{\log_q(p)}$ is the largest
- ullet if $p=q^d\Leftrightarrow d=\log_q(p)$, then all $\log_q(n)$ terms equal to Cn^d yield $\mathit{Cn}^d\log_q(n)$
- if $p < q^d \Leftrightarrow d > \log_q(p)$, then the first term Cn^d is the largest.
- The general case is reduced to the above one: T(n) for $f < Cn^d$ is smaller than or equal to $T(q^{\lceil log_q(n) \rceil})$ for $f = Cn^d$.

Merging Sorted Arrays

- Merge Sort algorithm could also be called Divide-and-Sort. It is a recursive algorithm that splits array into two halves, calls itself for the halves and then merges two sorted arrays into one.
- To merge two sorted arrrays is the central idea. It is convenient to think the input as a single segment in an array composed of two sorted sub-segments.
- So as input, Merge takes a "left" array, L and 3 indices, $iBegin \leq iMiddle \leq iEnd$ within limits of L. Output goes to "right" array, R to the same indices:

```
Merge: 1. i = iBegin, j = iMiddle, k = iBegin //throughout, the least of <math>L[i] and L[j] is written to R[k]
```

- **2.** while $(k \le iEnd)$
- **3.** if $(i < iMiddle \text{ and } (j \ge iEnd \text{ or } L[i] \le L[j]))$: R[k] := L[i]; i = i + 1;
- **4.** else: R[k] := L[j]; j = j + 1;
- **5.** k = k + 1

Lemma 10

Complexity of Merge is $\Theta(iEnd - iBegin)$.

Merge Sort

- For simplicity, consider a version that makes copies while computations: **MergeSort:** Input is an array A and limits, *iBegin*, *iEnd* to order the elements of the segment A[*iBegin*: *iEnd*] without changing other elements.
- 1. if ($iEnd iBegin \le 1$): return // 1-element array is sorted
- **2.** iMiddle = |(iBegin + iEnd)/2|
- **3.** Make a copy, B := A[iBegin : iEnd]
- **4.** *MergeSort*(*B*, *iBegin*, *iMiddle*)
- **5.** MergeSort(B, iMiddle + 1, iEnd)
- **6.** Merge(B, iBegin, iMiddle, iEnd, A)// merge sorted subsegments in B to A **Remark:** Merge Sort is NOT an in-place algorithm but there is an elegant version that only uses the initial array memory and one copy of it.

Lemma 11

The total complexity of the lines 1,2,3,6 is O(iEnd - iBegin).

Merge Sort Complexity

Theorem 12

MergeSort is of $O(n \log(n))$ complexity.

Proof: MergeSort is a recursion that splits a problem of size n into p=2 problems of size $\lceil n/q \rceil$, q=2. According to the Lemma 11, it uses $O(n^d)$, d=1 complexity to split the problem an combine their solutions into the one for the whole problem. So the equality $d=\log_q(p)$ holds, hence, by the Theorem 9, the complexity of Merge sort is $O(n\log(n))$.

Decision Tree of Algorithms (very informal)

- Consider a problem with input vector $\overrightarrow{in} \in \mathbb{R}^b$ and output, $\overrightarrow{out} \in \mathbb{R}^c$.
- In general, every algorithm is a finite sequence of operators L_1, L_2, \dots, L_M , where each operator is either an arithmetic function $L_i = f_i(\overrightarrow{in})$ or an if-operator with operands computed by previous operators and stored in memory.
- We may assume that every if-operator is binary, so has two cases
- So we may think of any algorithm as an oriented graph with the root and the nodes (except the root) having incoming degree 1 and either outgoing degree 1 (for arithmetic) or 2 (for if-operators).
- Every oriented path of arithmetic nodes either leads to a leaf or to a if-operator -in the former case, we combine all operators to a single *leaf function* -in the latter case, we collapse the sequence with the subsequent if-operator to a
- Such a graph may have oriented cycles and we exclude these cases by requiring that the oriented graph has no oriented cycles, hence, is a finite binary tree.

Definition 13

The binary tree above is called *Decision tree* of the algorithm.

comparison of aggregate functions values.

Decision Tree and complexity

Theorem 14

The algorithm complexity is equal to the depth of its Decision tree and is not less than $\lceil \log_2(n_{leaf}) \rceil$, where n_{leaf} is the number of leaves.

Watch the example of decision tree: for some algorithm that sorts 3 numbers

Main Theorem

Definition 15

Decision tree is called *linear* if all if-operators look like $I(\overrightarrow{in}) \vee 0$, where \vee stands for either of $<, \leq, >, \geq$ operators and $I : \mathbb{R}^b \to \mathbb{R}$ is a linear function. Also leaf functions must be continuous.

Theorem 16

Let W be the image of \mathbb{R}^b in \mathbb{R}^c , that is, all possible outputs of the algorithm. Then the height of the tree is greater than or equal to $\lceil \log_2(n_W) \rceil$, where n_W is the number of connected components of W.

Proof: For every leaf y of the tree, let M_y be the pre-image, that is, all vectors in_v taken to y by the tree. Because of linearity assumption, M_y is convex, and continuos leaf function takes it to just one connected component of W. So we have: $n_{leaf} \geq n_W$ and we are done by Theorem 14

Remark: Theorem 16 is similar in statement and proof with the one of [Dobkin-Lipton, 1979], where the problem of recognition is considered.

February 6, 2023

Low bound for sorting problem

Theorem 17

The low bound of Sorting problem in the class of algorithms with linear decision tree is $\Omega(n \log(n))$.

Proof: Note that every solution of the sorting problem for an array A may provide, as a by product, the permutation of the indices of input elements that makes the numbers ordered. More precisely, the additional output is $\sigma:\{1,\cdots,n\}\to\{1,\cdots,n\}$ such that $A_{\sigma(1)}\leq A_{\sigma(2)}\leq \cdots \leq A_{\sigma(n)}$. Let us think of this permutation as the output $out_v\in\mathbb{R}^n$. There are precisely n! orders and each of them is the output for a suitable input. Theorems 14,16 imply that every sorting algorithm with linear decision tree belongs to $\Omega(\log(n!))$. We may apply an obvious inequality: $n!>n^{\lfloor n/2\rfloor}$, hence, $\log(n!)>\lfloor n/2\rfloor\log(n)\in\Omega(n\log(n))$ to get the result. Or we may apply Stierling formula:

$$n! \sim \sqrt{\pi(2n+\frac{1}{3})} n^n e^{-n}$$
 (3)

to get a more precise (in some sense) lower bound.

There exist O(n) complexity sorting algorithms

- Linear decision tree algorithms are interesting but there are algorithms efficiently solving problems with complexity below the low bound from Theorem 17
- In particular, in contrast to Theorem 17, there are sorting algorithms with linear complexity in n, the size of array, but in each case, subject to additional assumptions about the numbers to sort.
- For example, assume that A contains n natural numbers in the range [0, K].

Counting Sort: Input: array A, bound K. Output: sorted array B.

- 1. Allocate an additional array C of length K and initiate with 0.
- **2.** for i := 1 : n
- **3.** C[A[i]] = C[A[i]] + 1 //C[k] is the number of array elements equal to k
- **4.** for j := 2 : K
- **5.** C[j] = C[j] + C[j-1] //now C[k] is the number of array elements $\leq k$
- **6.** for i := n : 1
- **7.** B[C[A[i]]] = A[i]; C[A[i]] = C[A[i]] 1;

Theorem 18

Counting sort is of complexity O(n + K).

References

D.Dobkin and R.Lipton, On the complexity of computations under varyuing set of primitives, Journal of Computer and System Sciences 18 (1979), 86 -91.