MIS780 Advanced AI For Business - Assignment 2 - T2 2022

Example 3: Recurrent Neural Network - Predicting Stock Prices for Tesla Inc.

Student Name: Pranitha Gaddam

Student ID: 221183244

Table of Content

- 1. Data Description
- 2. Data Preprocessing
- 3. Model Construction
- 4. Model Execution
- 5. Experiments Report

Executive Summary

In this notebook,we will deal with predicting the stock price for the company Tesla Inc. Since, the future is unpredictable, no matter how good our analysis is, it is only as good as the information that is available right now. We cannot know for certain what will happen tomorrow, and we cannot predict all the contingencies. Moreover, stock prices are highly dynamic and have non-linear relationships and are dependent on many factors at the same time. However, AI in the stock market can help perform technical, fundamental analysis and recognize patterns better than humans. Which is why ,the purpose of this notebook is to analyse the capability of a neural network to solve this problem efficiently. Recurrent neural network has showcased a reasonable predictive capability of addressing these complex time series issues. The selected dataset has been acquired from Yahoo Finance from 2010-08-02 until 2022-09-02. In this instance, I have used the Date, Closing price, Adjusted Closing Price, High, Low prices and Volume of the stock that determine the Open price. I have implemented a multivariate model based on RNN architecture which applies a feedforward neural network to process sequences of inputs. The method applied is LSTM (Long short-term memory) as it is appropriate to classify, process and predict time series given time lags of unknown duration. It trains the model by using back-

propagation in order to find the temporal dependencies and help in forecasting stock values for Tesla Inc. It is proven that deep learning algorithms have the ability to identify existing patterns and exploiting them by using a soft learning process. Additionally, multivariate prediction models are more efficient and faster to train and deploy in a business environment. For instance, Goldman Sachs, a renowned bank in USA, led a \$72.5 million funding round to integrate AI models in its equities trading business so as to benefit from the stock market. I have proposed a 3-level methodology for conducting analysis. First, it involves data pre-processing in order to make the data multidimensional and suitable for RNN architecture. Next, we split the data into train and test sets to perform modelling on the training data. Finally, we make predictions using the models trained in the previous step on test data to analysze various error matrices.

1. Data Description

The selected dataset has been retrieved from Yahoo Finance for RNN prediction dated from 2010-08-02 to 2022-09-02 (12 year historical prices). It has five variables which are High, Low, Close, Adjusted Close and Volume of the shares traded to predict the Open price. Open: The price of the stock when the market opens in the morning Close: The price of the stock when the market closes in the evening High: Highest price of the stock in the day Low: Lowest price of the stock traded during the day Adjusted Close: Stock's closing price amended after certain corporate actions Volume: Total unit of stocks traded during a particular day

- 1. Open: The price of the stock when the market opens in the morning
- 2. Close: The price of the stock when the market closes in the evening
- 3. High: Highest price of the stock in the day
- 4. Low: Lowest price of the stock traded during the day
- 5. Adjusted Close: Stock's closing price amended after certain corporate actions
- 6. Volume: Total unit of stocks traded during a particular day

Open, High, Low, Close and Adjusted Close columns have float values, whereas Volume is an integer and Date is an object. The shape of the data is 3425 rows and 7 columns. This data would be used for further preprocessing by using various seaborn packages and matplotlib packages in order to visualise the relationships between the variables. Furthermore, there are no missing values in the dataset.

```
#mount drive to import the dataset
from google.colab import drive
drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.n

https://colab.research.google.com/drive/14QBUT7gdaQHRa5bW-kLrCvgDXx5G7Pbw#printMode=true

#import the necessary packages
import numpy as np
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense, Dropout
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.preprocessing import StandardScaler
import seaborn as sns
from datetime import datetime

Tesla = pd.read_csv('/content/drive/MyDrive/MIS780/TSLA-2.csv')

Tesla.head(10)

	Date	Open	High	Low	Close	Adj Close	Volume
0	2010-08-02	1.366667	1.398000	1.355333	1.394667	1.394667	10771500
1	2010-08-03	1.400000	1.463333	1.388000	1.463333	1.463333	18457500
2	2010-08-04	1.463333	1.478667	1.390000	1.417333	1.417333	13695000
3	2010-08-05	1.436000	1.436667	1.336667	1.363333	1.363333	11943000
4	2010-08-06	1.340000	1.344000	1.301333	1.306000	1.306000	11128500
5	2010-08-09	1.326667	1.332000	1.296667	1.306667	1.306667	12190500
6	2010-08-10	1.310000	1.310000	1.254667	1.268667	1.268667	19219500
7	2010-08-11	1.246000	1.258667	1.190000	1.193333	1.193333	11964000
8	2010-08-12	1.186667	1.193333	1.159333	1.173333	1.173333	10365000
9	2010-08-13	1.212000	1.230000	1.177333	1.221333	1.221333	9510000

Tesla.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3045 entries, 0 to 3044
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Date	3045 non-null	object
1	0pen	3045 non-null	float64
2	High	3045 non-null	float64
3	Low	3045 non-null	float64
4	Close	3045 non-null	float64
5	Adj Close	3045 non-null	float64
6	Volume	3045 non-null	int64
44	Cl+C4	/F\ : n+C1/1\	L 1 / 1 \

dtypes: float64(5), int64(1), object(1)

memory usage: 166.6+ KB

Tesla.describe()

	Open	High	Low	Close	Adj Close	Volume
count	3045.000000	3045.000000	3045.000000	3045.000000	3045.000000	3.045000e+03
mean	55.121257	56.355361	53.773551	55.096358	55.096358	9.378067e+07
std	93.322476	95.474544	90.896401	93.212331	93.212331	8.256072e+07
min	1.186667	1.193333	1.159333	1.173333	1.173333	1.777500e+06
25%	8.838000	8.998000	8.465333	8.660000	8.660000	4.177020e+07
50%	16.022667	16.265333	15.712667	16.041332	16.041332	7.578150e+07
75%	23.570000	23.899332	23.213333	23.518000	23.518000	1.176747e+08
max	411.470001	414.496674	405.666656	409.970001	409.970001	9.140820e+08

```
Tesla.shape
```

Tesla.isnull().sum()

(3045, 7)

Date 0
Open 0
High 0
Low 0
Close 0
Adj Close 0
Volume 0
dtype: int64

▼ 2. Data Preprocessing

Data preprocessing involves creating visualisations between the variables to detect patterns occurring over a period of time. Moreover, it is crucial to also standardise the data to make it fit for training inside the RNN architecture.

```
data = Tesla.loc[:,["High", "Low", "Close", "Adj Close"]].copy()
```

We use seaborn package to visualise the features that are going to predict the Open price. The package used is matplotlib.pyplot and the style use is seaborn.

```
data.plot(figsize=(25,8), fontsize = 18)
plt.xlabel("Date", fontsize = 20)
plt.legend(fontsize = 20)
plt.style.use("seaborn")
plt.show()
```


Trend Analysis: It is evident that the years leading upto the recent years, there has been a growth in the market valuation of the Tesla shares, the price ranging between \$1.3 and 1.39. It is more likely because the advent of AI in automotive industries that has influenced the company to proliferate and compound its revenue over time. Additionally, it could be due to management's decisions (Elon Musk and his executive team's decisions) that impacts the overall company standing. Moreover, we can see a lot of fluctuations in the trend due to the Covid period where market sales crashed in 2020 and 2021. The stock is seen to have significantly dropped, however, due to a quick overturn of events and a positive outlook as mentioned in the Tesla company financial reports, the stock price rose up again. The plot fails to convert the x-axis of Date to Datetime period, although, in further calculation the date will be split for plotting purposes.

```
Vol = Tesla.loc[:,"Volume"].copy()

Vol.plot(figsize=(25,8), fontsize = 18)
plt.xlabel("Date", fontsize = 20)
plt.legend(fontsize = 20)
plt.style.use("seaborn")
plt.show()
```


Tesla.head(10)

	Date	Open	High	Low	Close	Adj Close	Volume
0	2010-08-02	1.366667	1.398000	1.355333	1.394667	1.394667	10771500
1	2010-08-03	1.400000	1.463333	1.388000	1.463333	1.463333	18457500
2	2010-08-04	1.463333	1.478667	1.390000	1.417333	1.417333	13695000
3	2010-08-05	1.436000	1.436667	1.336667	1.363333	1.363333	11943000
4	2010-08-06	1.340000	1.344000	1.301333	1.306000	1.306000	11128500
5	2010-08-09	1.326667	1.332000	1.296667	1.306667	1.306667	12190500
6	2010-08-10	1.310000	1.310000	1.254667	1.268667	1.268667	19219500
7	2010-08-11	1.246000	1.258667	1.190000	1.193333	1.193333	11964000
8	2010-08-12	1.186667	1.193333	1.159333	1.173333	1.173333	10365000
9	2010-08-13	1.212000	1.230000	1.177333	1.221333	1.221333	9510000

This variation in the plot depicts the volume of shares traded from the start and the end date. There was a stark increase in the 2017, followed by frequent fluctuations in the volume traded.

#seperate dates for future plotting using pd.to_datetime, extracting the training dates in
Train_dates = pd.to_datetime(Tesla['Date'])

#Extract the columns we would like to use as variables for training model purposes. cols = list(Tesla)[1:6] #exclude the volume

df_for_training = Tesla[cols].astype(float) #convert values to float to not lose values in

df_for_plot = df_for_training.tail(5000)
df_for_plot.plot.line()

<matplotlib.axes._subplots.AxesSubplot at 0x7fc439d7b450>

df_for_training

	Open	High	Low	Close	Adj Close
0	1.366667	1.398000	1.355333	1.394667	1.394667
1	1.400000	1.463333	1.388000	1.463333	1.463333
2	1.463333	1.478667	1.390000	1.417333	1.417333
3	1.436000	1.436667	1.336667	1.363333	1.363333
4	1.340000	1.344000	1.301333	1.306000	1.306000
3040	282.829987	287.739990	280.700012	284.820007	284.820007
3041	287.869995	288.480011	272.649994	277.700012	277.700012
3042	280.619995	281.250000	271.809998	275.609985	275.609985
3043	272.579987	277.579987	266.149994	277.160004	277.160004
3044	281.070007	282.350006	269.079987	270.209991	270.209991

3045 rows × 5 columns

The values in the dataframe change drastically, hence its important to perform standardisation. Moreover, LSTM uses sigmoid and tanh functions that are sensitive to magnitude so the values need to be normalized.

```
#Standardisation
scaler = StandardScaler()
scaler = scaler.fit(df_for_training)
df_for_training_scaled = scaler.transform(df_for_training)
```

As needed, the LSTM neural network required to reshape an input data into n_samples x timesteps. In this instance, the n_features is 2 and timesteps = 3. The resultant n_samples = 5, as the input data has 9 rows.

```
trainX = []
trainY = []
n_future = 1 #number of days we want to predict in future
n_past = 14
              #number of days we want to use to predict the future
for i in range(n_past, len(df_for_training_scaled) - n_future + 1):
  trainX.append(df_for_training_scaled[i- n_past:i, 0:df_for_training.shape[1]])
  trainY.append(df_for_training_scaled[i + n_future - 1:i + n_future, 0])
trainX, trainY = np.array(trainX), np.array(trainY)
trainY
     array([[-0.57742546],
            [-0.57711108],
            [-0.57699677],
            [ 2.41673587],
            [ 2.33056875],
            [ 2.42155878]])
print('trainX shape == {}.'.format(trainX.shape))
print('trainY shape == {}.'.format(trainY.shape))
     trainX shape == (3031, 14, 5).
     trainY shape == (3031, 1).
```

3. Model Construction

For model construction, I have used 64 units for LSTM in the first layer, with relu being the activation function. ReLu is the rectified linear activation function which will output the input directly if it is positive, otherwise zero. The input shape for trainX is (14,5). Since it is a stacked LSTM, we have return_sequences = True in the first instance.

```
#Define the autoencoder models
from keras.layers import LSTM
model = Sequential()
model.add(LSTM (64, activation = 'relu', input_shape = (trainX.shape[1], trainX.shape[2]),
model.add(LSTM(32, activation = 'relu', return_sequences = False))
model.add(Dropout(0.2))
model.add(Dense(trainY.shape[1]))

model.compile(optimizer = 'adam', loss = 'mse')
model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 14, 64)	17920
lstm_1 (LSTM)	(None, 32)	12416
dropout (Dropout)	(None, 32)	0
dense (Dense)	(None, 1)	33

Total params: 30,369 Trainable params: 30,369 Non-trainable params: 0

The above output gives 30,369 parameters.


```
plt.plot(history.history['loss'], label = 'Training Loss')
plt.plot(history.history['val_loss'], label = 'Validation loss')
plt.legend()
```

<matplotlib.legend.Legend at 0x7fc435e59ad0>

▼ 5. Experiments Report

[1.7787008], [1.7280643],

```
[1.6852658],
[1.6739299],
[1.6442702],
[1.6171278],
[1.6391528],
[1.6762971],
[1.7026412],
[1.7391827],
[1.7720158],
[1.781821],
[1.7570847],
[1.7213385],
[1.6991439],
[1.684648],
[1.6875458],
[1.7120035],
[1.7541493],
[1.7777138],
[1.7734504],
[1.7632469],
[1.7608013],
[1.7645464],
[1.7764113],
[1.7889678],
[1.8084421],
[1.8585187],
[1.9218836],
[1.9656518],
[1.9787443],
[1.9974508],
[2.0240896],
[2.0701118],
[2.1344862],
[2.185794],
[2.240181],
[2.2842026],
[2.2766905],
[2.2640595],
[2.2318342],
[2.2191691],
[2.208087],
[2.2114763],
[2.2503557],
[2.2875865],
[2.3036675],
[2.3139696],
[2.300405],
[2.2670345],
[2.2474885],
[2.2473805],
[2.2504663],
[2.2409532],
[2.2095165],
[2.175377],
```

```
#Inverse transformation to rescale back to original stock price
future_copies = np.repeat(future, df_for_training.shape[1], axis = -1)
y_pred = scaler.inverse_transform(future_copies)[:,0]
```

These are the predicted values of the "Open" prices for Tesla, which is to be appended to the right dates in the dataframe.

```
#Append this to the right dates and plot this with original data
future_dates = []
for time_i in forecast:
    future_dates.append(time_i.date())

Tesla_forecast = pd.DataFrame({'Date': np.array(future_dates), 'Open' : y_pred})
Tesla_forecast['Date'] = pd.to_datetime(Tesla_forecast['Date'])

original = Tesla[['Date', 'Open']]
original['Date'] = pd.to_datetime(original['Date'])
original = original.loc[original['Date'] >= '2020-5-1']

sns.lineplot(original['Date'], original['Open'])
sns.lineplot(Tesla_forecast['Date'], Tesla_forecast['Open'])
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: SettingWithCopyWarnir A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7fc435d29150>

Summary of the Experiments - The green line in the above plot shows the prediction for 60 days in future greater than 2020-5-1. Henceforth, the RNN model solves the problem of stock price prediction considerably well, taking into account multiple factors (multivariate analysis). Overall, we can conclude that we can accurately predict the stock price 60 days ahead using this developed RNN-LSTM model.

Colab paid products - Cancel contracts here

X