

What is claimed is:

- 1 1. A method of efficiently serving objects in a computing network, comprising steps of:
 - 2 receiving a request for an object stored on network-attached storage (“NAS”); and
 - 3 evaluating predetermined criteria to see if the stored object should be served from the
 - 4 NAS through a recipient of the received request.
- 1 2. The method according to Claim 1, wherein the evaluating step further comprises steps of:
 - 2 serving the stored object through the recipient of the received request when the selected
 - 3 criteria are not met; and
 - 4 informing a sender of the received request that a subsequent connection should be
 - 5 established for serving the stored object when the selected criteria are met.
- 1 3. The method according to Claim 2, wherein the subsequent connection bypasses the
- 2 recipient of the received request.
- 1 4. The method according to Claim 2, wherein the informing step uses a redirect code of an
- 2 existing protocol.
- 1 5. The method according to Claim 4, wherein the existing protocol is Hypertext Transfer
- 2 Protocol.
- 1 6. The method according to Claim 4, wherein the existing protocol is Wireless Session

2 Protocol.

1 7. The method according to Claim 4, wherein receipt of the redirect code by the sender of
2 the received request automatically causes the sender to request establishment of the subsequent
3 connection.

1 8. The method according to Claim 1, wherein the predetermined criteria include a size of the
2 stored object.

1 9. The method according to Claim 8, wherein evaluating the predetermined criteria
2 comprises comparing the size of the stored object to a statically-specified number.

1 10. The method according to Claim 9, wherein the statically-specified number is specified by
2 an administrator using a configuration interface.

1 11. The method according to Claim 8, wherein evaluating the predetermined criteria
2 comprises comparing the size of the stored object to a dynamically-determined number.

1 12. The method according to Claim 11, wherein the dynamically-determined number is
2 determined in view of current network conditions.

1 13. The method according to Claim 1, wherein the predetermined criteria include a naming

2 extension of the stored object.

1 14. The method according to Claim 13, wherein evaluating the predetermined criteria
2 comprises determining whether the naming extension matches an element in a statically-specified
3 set of naming extensions.

1 15. The method according to Claim 14, wherein the statically-specified set of naming
2 extensions is specified by an administrator using a configuration interface.

1 16. The method according to Claim 13, wherein evaluating the predetermined criteria
2 comprises determining whether the naming extension matches an element in a set of dynamically-
3 determined set of naming extensions.

1 17. The method according to Claim 16, wherein the dynamically-determined set of naming
2 extensions is determined in view of current network conditions.

1 18. The method according to Claim 1, wherein the predetermined criteria include a name of
2 the stored object.

1 19. The method according to Claim 18, wherein evaluating the predetermined criteria
2 comprises determining whether the object name matches an element in a statically-specified set of
3 object names.

1 20. The method according to Claim 19, wherein the statically-specified set of object names is
2 specified by an administrator using a configuration interface.

1 21. The method according to Claim 18, wherein evaluating the predetermined criteria
2 comprises determining whether the object name matches an element in a set of dynamically-
3 determined set of object names.

1 22. The method according to Claim 21, wherein the dynamically-determined set of object
2 names is determined in view of current network conditions.

1 23. The method according to Claim 1, wherein the predetermined criteria include a content
2 type of the stored object.

1 24. The method according to Claim 23, wherein evaluating the predetermined criteria
2 comprises determining whether the content type matches an element in a statically-specified set of
3 content types.

1 26. The method according to Claim 23, wherein evaluating the predetermined criteria

2 comprises determining whether the content type matches an element in a set of dynamically-
3 determined set of content types.

1 27. The method according to Claim 26, wherein the dynamically-determined set of content
2 types is determined in view of current network conditions.

1 28. The method according to Claim 1, wherein the predetermined criteria includes use of one
2 or more wildcards which may operate to match more than one stored object.

1 29. A method of deploying objects to improve efficiency of serving large objects in network
2 computing environments which include network-attached storage (“NAS”), comprising steps of:

3 receiving a deployment request for a particular object;

4 deploying the particular object on the NAS;

5 evaluating characteristics of the particular object;

6 creating a redirect link on one or more servers from which the particular object may be

7 requested, if the evaluated characteristics of the particular object meet predetermined criteria; and

8 creating an object serving link on the one or more servers if the evaluated characteristics

9 of the particular object do not meet the predetermined criteria.

1 30. The method according to Claim 29, wherein the redirect link enables returning a redirect
2 status code to a requester of the object.

1 31. The method according to Claim 30, wherein receiving the redirect status code causes the
2 requester of the object to automatically request establishment of a subsequent connection for
3 retrieving the particular object directly from the NAS.

1 32. The method according to Claim 30, wherein contents of the redirect link are
2 programmatically created.

1 33. The method according to Claim 30, wherein contents of the redirect link are manually
2 created.

1 34. A method of efficiently serving large objects in network computing environments which
2 include network-attached storage (“NAS”), comprising steps of:

3 receiving a deployment request for a particular object;
4 deploying the particular object on the NAS;
5 creating a redirect link on one or more servers from which the particular object may be
6 requested;
7 creating an object serving link on the one or more servers; and
8 delaying until run-time a decision on whether to serve the particular object directly from
9 the NAS using the redirect link or through a selected one of the servers using the object serving
10 link.

1 35. A system for efficiently serving objects in a computing network, comprising:

2 means for receiving a request for an object stored on network-attached storage (“NAS”);

3 and

4 means for evaluating predetermined criteria to see if the stored object should be served
5 from the NAS through a recipient of the received request.

1 36. The system according to Claim 35, wherein the means for evaluating further comprises:

2 means for serving the stored object through the recipient of the received request when the
3 selected criteria are not met; and

4 means for informing a sender of the received request that a subsequent connection should
5 be established for serving the stored object when the selected criteria are met.

1 37. The system according to Claim 36, wherein the subsequent connection bypasses the
2 recipient of the received request.

1 38. The system according to Claim 36, wherein the means for informing uses a redirect code
2 of an existing protocol, and wherein receipt of the redirect code by the sender of the received
3 request automatically causes the sender to request establishment of the subsequent connection.

1 39. A system for deploying objects to improve efficiency of serving large objects in network
2 computing environments which include network-attached storage (“NAS”), comprising:

3 means for receiving a deployment request for a particular object;
4 means for deploying the particular object on the NAS;

5 means for evaluating characteristics of the particular object;

6 means for creating a redirect link on one or more servers from which the particular object

7 may be requested, if the evaluated characteristics of the particular object meet predetermined

8 criteria; and

9 means for creating an object serving link on the one or more servers if the evaluated

10 characteristics of the particular object do not meet the predetermined criteria.

1 40. A computer program product for efficiently serving objects in a computing network, the

2 computer program product embodied on one or more computer-readable media and comprising:

3 computer readable program code means for receiving a request for an object stored on
4 network-attached storage (“NAS”); and

5 computer readable program code means for evaluating predetermined criteria to see if the
6 stored object should be served from the NAS through a recipient of the received request.

1 41. The computer program product according to Claim 40, wherein the computer readable

2 program code means for evaluating further comprises:

3 computer readable program code means for serving the stored object through the recipient
4 of the received request when the selected criteria are not met; and

5 computer readable program code means for informing a sender of the received request
6 that a subsequent connection should be established for serving the stored object when the selected
7 criteria are met.

1 42. The computer program product according to Claim 41, wherein the subsequent
2 connection bypasses the recipient of the received request.

1 43. The computer program product according to Claim 41, wherein the computer readable
2 program code means for informing uses a redirect code of an existing protocol, and wherein
3 receipt of the redirect code by the sender of the received request automatically causes the sender
4 to request establishment of the subsequent connection.

0
1 44.
2 A computer program product for efficiently serving large objects in network computing
3 environments which include network-attached storage (“NAS”), the computer program product
4 embodied on one or more computer-readable media and comprising:
5 computer readable program code means for receiving a deployment request for a
6 particular object;
7 computer readable program code means for deploying the particular object on the NAS;
8 computer readable program code means for creating a redirect link on one or more servers
9 from which the particular object may be requested;
10 computer readable program code means for creating an object serving link on the one or
11 more servers; and
12 computer readable program code means for delaying until run-time a decision on whether
13 to serve the particular object directly from the NAS using the redirect link or through a selected
one of the servers using the object serving link.