<u>Modified version</u> of the presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

(2,4) Trees

Multi-Way Search Tree

- A multi-way search tree is an ordered tree such that
 - Each internal node has at least two children and stores d-1 key-element items (k_i, o_i) , where d is the number of children
 - For a node with children $v_1 v_2 \dots v_d$ storing keys $k_1 k_2 \dots k_{d-1}$
 - keys in the subtree of v₁ are less than k₁
 - keys in the subtree of v_i are between k_{i-1} and k_i (i = 2, ..., d-1)
 - keys in the subtree of v_d are greater than k_{d-1}
 - The leaves store no items and serve as placeholders

Multi-Way Inorder Traversal

- We can extend the notion of inorder traversal from binary trees to multi-way search trees
- Namely, we visit item (k_i, o_i) of node v between the recursive traversals of the subtrees of v rooted at children v_i and v_{i+1}
- An inorder traversal of a multi-way search tree visits the keys in increasing order

Multi-Way Searching

- Similar to search in a binary search tree
- lacktriangle A each internal node with children $v_1 v_2 \dots v_d$ and keys $k_1 k_2 \dots k_{d-1}$
 - $k = k_i$ (i = 1, ..., d 1): the search terminates successfully
 - $k < k_1$: we continue the search in child v_1
 - $k_{i-1} < k < k_i$ (i = 2, ..., d 1): we continue the search in child v_i
 - $k > k_{d-1}$: we continue the search in child v_d
- Reaching an external node terminates the search unsuccessfully
- Example: search for 30

(2,4) Trees

- A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way search with the following properties
 - Node-Size Property: every internal node has at most four children
 - Depth Property: all the external nodes have the same depth
- Depending on the number of children, an internal node of a (2,4) tree is called a 2-node, 3-node or 4-node

Height of a (2,4) Tree

- Theorem: A (2,4) tree storing n items has height $O(\log n)$ Proof:
 - Let h be the height of a (2,4) tree with n items
 - Since there are at least 2^i items at depth i = 0, ..., h-1 and no items at depth h, we have

$$n \ge 1 + 2 + 4 + \dots + 2^{h-1} = 2^h - 1$$

- Thus, $h \leq \log (n+1)$
- Searching in a (2,4) tree with n items takes $O(\log n)$ time

Insertion

- We insert a new item (k, o) at the parent v of the leaf reached by searching for k
 - We preserve the depth property but
 - We may cause an overflow (i.e., node ν may become a 5-node)
- Example: inserting key 30 causes an overflow

Overflow and Split

- \bullet We handle an overflow at a 5-node ν with a split operation:
 - let $v_1 \dots v_5$ be the children of v and $k_1 \dots k_4$ be the keys of v
 - node v is replaced by nodes v' and v''
 - v' is a 3-node with keys $k_1 k_2$ and children $v_1 v_2 v_3$
 - v'' is a 2-node with key k_4 and children $v_4 v_5$
 - key k_3 is inserted into the parent u of v (a new root may be created)
- \bullet The overflow may propagate to the parent node u

Analysis of Insertion

Algorithm put(k, o)

- 1. We search for key *k* to locate the insertion node *v*
- 2. We add the new entry (k, o) at node v
- 3. while overflow(v)

if isRoot(v)

create a new empty root above *v*

 $v \leftarrow split(v)$

- Let T be a (2,4) tree with n items
 - Tree *T* has $O(\log n)$ height
 - Step 1 takes O(log n)
 time because we visit
 O(log n) nodes
 - Step 2 takes *O*(1) time
 - Step 3 takes $O(\log n)$ time because each split takes O(1) time and we perform $O(\log n)$ splits
- Thus, an insertion in a (2,4) tree takes O(log n) time

Deletion

- We reduce deletion of an entry to the case where the item is at the node with leaf children
- We replace the entry with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter entry
- Example: to delete key 24, we replace it with 27 (inorder successor)

Underflow and Fusion

- lacktriangle Deleting an entry from a node v may cause an underflow, where node v becomes a 1-node with one child and no keys
- lacktriangledown To handle an underflow at node v with parent u, we consider two cases
- \bullet Case 1: the adjacent siblings of ν are 2-nodes
 - Fusion operation: we merge v with an adjacent sibling w and move an entry from u to the merged node v'
 - After a fusion, the underflow may propagate to the parent u

Underflow and Transfer

- lacktriangle To handle an underflow at node v with parent u, we consider two cases
- \bullet Case 2: an adjacent sibling w of v is a 3-node or a 4-node
 - Transfer operation:
 - 1. we move a child of w to v
 - 2. we move an item from u to v
 - 3. we move an item from w to u
 - After a transfer, no underflow occurs

Analysis of Deletion

- \bullet Let T be a (2,4) tree with n items
 - Tree T has $O(\log n)$ height
- In a deletion operation:
 - We visit $O(\log n)$ nodes to locate the node from which to delete the entry
 - We handle an underflow with a series of $O(\log n)$ fusions, followed by at most one transfer
 - Each fusion and transfer takes O(1) time
- Thus, deleting an item from a (2,4) tree takes $O(\log n)$ time

<u>Modified version</u> of the presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Red-Black Trees

From (2,4) to Red-Black Trees

- A red-black tree is a representation of a (2,4) tree by means of a binary tree whose nodes are colored red or black
- ◆ In comparison with its associated (2,4) tree, a red-black tree has
 - same logarithmic time performance
 - simpler implementation with a single node type

Red-Black Trees

- A red-black tree can also be defined as a binary search tree that satisfies the following properties:
 - Root Property: the root is black
 - External Property: every leaf is black
 - Internal Property: the children of a red node are black
 - Depth Property: all the leaves have the same black depth

Height of a Red-Black Tree

Theorem: A red-black tree storing n items has height $O(\log n)$

Proof:

- The height of a red-black tree is at most twice the height of its associated (2,4) tree, which is $O(\log n)$
- The search algorithm for a binary search tree is the same as that for a binary search tree
- lacktriangleday By the above theorem, searching in a red-black tree takes $O(\log n)$ time

Insertion

- To insert (k, o), we execute the insertion algorithm for binary search trees and color the newly inserted node $\operatorname{red} z$ unless it is the root
 - We preserve the root, external, and depth properties
 - If the parent v of z is black, we also preserve the internal property and we are done
 - Else (v is red) we have a double red (i.e., a violation of the internal property), which requires a reorganization of the tree
- Example where the insertion of 4 causes a double red:

Remedying a Double Red

lacktriangle Consider a double red with child z and parent v, and let w be the sibling of v

Case 1: w is black

- The double red is an incorrect replacement of a 4-node
- Restructuring: we change the 4-node replacement

Case 2: w is red

- The double red corresponds to an overflow
- Recoloring: we perform the equivalent of a split

Restructuring

- A restructuring remedies a child-parent double red when the parent red node has a black sibling
- It is equivalent to restoring the correct replacement of a 4-node

The internal property is restored and the other properties are preserved

Restructuring

There are four restructuring configurations depending on whether the double red nodes are left or right children

Recoloring

- A recoloring remedies a child-parent double red when the parent red node has a red sibling
- The parent v and its sibling w become black and the grandparent u becomes red, unless it is the root
- ◆ It is equivalent to performing a split on a 5-node
- \bullet The double red violation may propagate to the grandparent u

There is no need to re-color the root since a black node can have red and black children.

Furthermore, the root is traversed in any case so the depth property is preserved

Analysis of Insertion

Algorithm insert(k, o)

- 1. We search for key **k** to locate the insertion node **z**
- 2. We add the new entry (k, o) at node z and color z red
- 3. while doubleRed(z)
 if isBlack(sibling(parent(z)))
 z ← restructure(z)
 return
 else { sibling(parent(z) is red }

 $z \leftarrow recolor(z)$

- Recall that a red-black tree has $O(\log n)$ height
- Step 1 takes O(log n) time because we visit O(log n) nodes
- Step 2 takes O(1) time
- Step 3 takes O(log n) time because we perform
 - $O(\log n)$ recolorings, each taking O(1) time, and
 - at most one restructuring taking O(1) time
- Thus, an insertion in a redblack tree takes $O(\log n)$ time

Deletion

- lacktriangle To perform operation remove(k), we first execute the deletion algorithm for binary search trees
- lacktriangle Let v be the internal node removed, w the external node removed, and r the sibling of w
 - If either v of r was red, we color r black and we are done
 - Else (v and r were both black) we color r double black, which is a violation of the depth property requiring a reorganization of the tree
- Example where the deletion of 8 causes a double black:

Remedying a Double Black

The algorithm for remedying a double black node w with sibling y considers three cases

Case 1: y is black and has a red child

 We perform a restructuring, equivalent to a transfer, and we are done (figure 11.29)

Case 2: y is black and its children are both black

 We perform a recoloring, equivalent to a fusion, which may propagate up the double black violation (figure 11.30)

Case 3: y is red

- We perform an adjustment, equivalent to choosing a different representation of a 3-node, after which either Case 1 or Case 2 applies (figure 11.31)
- \bullet Deletion in a red-black tree takes $O(\log n)$ time

Red-Black Tree Reorganization

Insertion remedy double red				
Red-black tree action	(2,4) tree action	result		
restructuring	change of 4-node representation	double red removed		
recoloring	split	double red removed or propagated up		

Deletion remedy double black				
Red-black tree action	(2,4) tree action	result		
restructuring	transfer	double black removed		
recoloring	fusion	double black removed or propagated up		
adjustment	change of 3-node representation	restructuring or recoloring follows		

Notes

RB Tree Visualization:

http://www.cs.usfca.edu/~galles/visualization/RedBlack.html

- 2-4 Trees and RB Trees go hand in hand
- ◆ I suggest you go over chapters 11.4 and 11.5 together
 - Figures are especially helpful!
 - The book also has source code
- In practice, most of the time RB trees are used instead of 2-4 trees.
- But why use RB Trees if we have AVL Trees?

AVL vs RB Trees

	Height	Search	Insert	Delete
AVL	~1.44log n	O(log n)	Search + Rebalance O(log n) + O(1)	Search + Rebalance O(log n) + O(log n)
RB	~2log n		Search + Recolor* + Restructure O(log n) + O(log n) + O(1)	Search + Recolor* + Restructure O(log n) + O(log n) + O(1)

- The worst case recoloring is O(log n) but it is actually amortized O(1)! Even though deletion is still O(log n) in both cases, RB trees run faster. Furthermore, recoloring has a much smaller constant than tree rotations. Thus RB trees are preferred for removal intensive applications (which also implies insertion intensive since you cannot delete non-existent nodes)
- Even though both heights are O(log n), AVL trees are shorter making searching faster thus they should be used for lookup intensive applications OR when n gets very large to such that searching dominates the complexity

28