# X Education - Lead Scoring Case Study

AIM: Detection of Hot Leads to concentrate more of marketing

efforts on them, improving conversion rates for X

Education.

**AUTHOR:** GONDESI RUDRA DEEPAK

**COURSE:** DATA SCEINCE ADVANCED BOOTCAMP (BATCH: DEC-2022)

### | Table of Contents

- Background of X Education Company
- Problem Statement & Objective of the Study
- Suggested Ideas for Lead Conversion
- Analysis Approach
- Data Cleaning
- EDA
- Data Preparation
- · Model Building (RFE & Manual fine tuning)
- Model Evaluation
   Recommendations

### I Background of X Education Company

- An education company named X Education sells online courses to industry professionals.
- On any given day, many professionals who are interested in the courses land on their website and browse for courses.
- The company markets its courses on several websites and search engines like Google.
- Once these people land on the website, they might browse the courses or fill up a form for the course or watch some videos.
- When these people fill up a form providing their email address or phone number, they are classified to be a lead.
- Once these leads are acquired, employees from the sales team start making calls, writing emails, etc.
- Through this process, some of the leads get converted while most do not
- The typical lead conversion rate at X education is around 30%.

### | Problem Statement & Objective of the Study

#### **Problem Statement:**

- X Education gets a lot of leads, its lead conversion rate is very poor at around 30%
- X Education wants to make lead conversion process more efficient by identifying the most potential leads, also known as Hot Leads
- Their sales team want to know these potential set of leads, which they will be focusing more on communicating rather than making calls to everyone.

#### **Objective of the Study:**

- To help X Education select the most promising leads, i.e., the leads that are most likely to convert into paying customers.
- The company requires us to build a model wherein we need to assign a lead score to each of the leads such
  that the customers with a higher lead score have a higher conversion chance and the customers with a lower
  lead score have a lower conversion chance.
- The CEO has given a ballpark of the target lead conversion rate to be around 80%.

### | Suggested Ideas for Lead Conversion



#### **Leads Grouping**

- Leads are grouped based on their propensity or likelihood to convert.
- This results in a focused group of hot leads.



#### **Better Communication**

 We could have a smaller pool of leads to communicate with, which would allow us to have a greater impact.

#### **Boost Conversion**

We would have a greater conversion rate and be able to hit the 80% objective since we concentrated on hot leads that were more likely to convert.



Since we have a target of 80% conversion rate, we would want to obtain a high **sensitivity** in obtaining hot leads.

### | Analysis Approach



### | Data Cleaning

- "Select" level represents null values for some categorical variables, as customers did not choose any option from the list.
- Columns with over 40% null values were dropped.
- · Missing values in categorical columns were handled based on value counts and certain considerations.
- Drop columns that don't add any insight or value to the study objective (tags, country)
- Imputation was used for some categorical variables.
- Additional categories were created for some variables.
- Columns with no use for modeling (Prospect ID, Lead Number) or only one category of response were dropped.
- Numerical data was imputed with mode after checking distribution.

### | Data Cleaning

- Skewed category columns were checked and dropped to avoid bias in logistic regression models.
- Outliers in TotalVisits and Page Views Per Visit were treated and capped.
- Invalid values were fixed and data was standardized in some columns, such as lead source.
- · Low frequency values were grouped together to "Others".
- Binary categorical variables were mapped.
- Other cleaning activities were performed to ensure data quality and accuracy.
  - Fixed Invalid values & Standardizing Data in columns by checking casing styles, etc. (lead source has Google, google)

### | EDA

• Data is imbalanced while analyzing target variable.

#### **Leads Converted**



Conversion rate is of 38.5%, meaning only 38.5% of the people have converted to leads.(Minority)

While 61.5% of the people didn't convert to leads. (Majority)

### | EDA

• Univariate Analysis - Categorical Variables



• **Lead Source:** 58% Lead source is from Google & Direct Traffic combined.



Last Activity: 68% of customers contribution SMS Sent & Email Opened activities.

### | EDA

#### • Univariate Analysis - Categorical Variables



• **Lead Origin:** "Landing Page Submission" identified 53% of customers, "API" identified 39%.



• Current\_occupation: It has 90% of the customers as Unemployed.





#### **Lead Origin:**

- Around 52% of all leads originated from "Landing Page Submission" with a lead conversion rate (LCR) of 36%.
- The "API" identified approximately 39% of customers with a lead conversion rate (LCR) of 31%.

#### Current\_occupation Countplot vs Lead Conversion Rates



#### Current\_occupation:

- Around 90% of the customers are Unemployed, with lead conversion rate (LCR) of 34%.
- While Working Professional contribute only 7.6% of total customers with almost 92% Lead conversion rate (LCR).



#### Do Not Email:

• 92% of the people has opted that they don't want to be emailed about the course & 40% of them are converted to leads.



#### **Lead Source:**

- Google has LCR of 40% out of 31% customers,
- Direct Traffic contributes 32% LCR with 27% customers, which is lower than Google,
- Organic Search also gives 37.8% of LCR, but the contribution is by only 12.5% of customers,
- Reference has LCR of 91%, but there are only around 6% of customers through this Lead Source.



#### **Last Activity:**

- 'SMS Sent' has high lead conversion rate of 63% with 30% contribution from last activities,
- 'Email Opened' activity contributed 38% of last activities performed by the customers, with 37% lead conversion rate.

#### Specialization Countplot vs Lead Conversion Rates



• Marketing Management, HR Management, Leads conversion than other specialization.

Finance Management shows good contribution in



 Past Leads who spends more time on the Website have a higher chance of getting successfully converted than those who spends less time as seen in the box-plot

### | Data Preparation before Model building

- Binary level categorical columns were already mapped to 1 / 0 in previous steps
- Created dummy features (one-hot encoded) for categorical variables Lead Origin, Lead Source, Last Activity,
   Specialization, Current\_occupation
- Splitting Train & Test Sets
  - o 70:30 % ratio was chosen for the split
- Feature scaling
  - o Standardization method was used to scale the features
- Checking the correlations
  - Predictor variables which were highly correlated with each other were dropped (Lead Origin\_Lead Import and Lead Origin Lead Add Form).

### | Model Building

#### **Feature Selection**

- The data set has lots of dimension and large number of features.
- This will reduce model performance and might take high computation time.
- Hence it is important to perform Recursive Feature Elimination (RFE) and to select only the important columns.
- Then we can manually fine tune the model.
- RFE outcome
  - o Pre RFE 48 columns & Post RFE 20 columns

### | Model Building

- Manual Feature Reduction process was used to build models by dropping variables with p value greater than 0.05.
- Model 7 looks stable after seven iteration with:
- o significant p-values within the threshold (p-values < 0.05) and o No sign of multicollinearity with VIFs less than 5
- Henc logm7 will be our final model, and we will use it for Model Evaluation which further will be used to make predictions.

#### **Model Evaluation**

### Confusion Matrix & Evaluation Metrics with 0.35 as cutoff

#### **Train Data Set**

It was decided to go ahead with 0.35 as cutoff after checking evaluation metrics coming from both plots

| Dep. Variable:                                          | Converted        | No. Observation   | ns:  |       | 6351          |    |        |       |        |        |     |
|---------------------------------------------------------|------------------|-------------------|------|-------|---------------|----|--------|-------|--------|--------|-----|
| Model:                                                  | GLM              | Df Residu         | als: |       | 6335          |    |        |       |        |        |     |
| Model Family:                                           | Binomial         | Df Model:         |      |       | 15            |    |        |       |        |        | 1.0 |
| Link Function:                                          | Logit            | Sc                | ale: | 1.    | 0000          |    |        |       |        |        |     |
| Method:                                                 | IRLS             | Log-Likeliho      | od:  | -25   | 80.7          |    |        |       |        |        | 0.8 |
| Date:                                                   | Tue. 23 May 2023 | Deviar            | ice: | 51    | 61.3          |    |        |       |        |        |     |
| Time:                                                   | 19:06:36         | Pearson c         | hi2: | 6 36  | e <b>+0</b> 3 |    |        |       |        |        | 0.6 |
| No. Iterations:                                         | 7                | Pseudo R-squ. (C  | S):  |       | 4057          |    |        |       |        |        |     |
| Covariance<br>Type:                                     |                  |                   |      | coei  | std e         | rr | z      | P> z  | [0.025 | 0.975] | 0.4 |
| .,,,,,                                                  | ,                | const             | -0.  | .1406 | 0.127         | ,  | -1.108 | 0 268 | -0.389 | 0.108  | 0.4 |
|                                                         |                  | Do Not Email      | -1.  | .6984 | 0.191         |    | -8.887 | 0.000 | -2.073 | -1.324 | 0.2 |
|                                                         | Total Time       | Spent on Website  | 1.   | .1171 | 0.040         | ,  | 27.686 | 0.000 | 1.038  | 1.196  |     |
| Lead Origin Landing Page Submission                     |                  |                   | -1.  | .1961 | 0.128         |    | -9.339 | 0.000 | -1.447 | -0.945 | 0.0 |
| Lead Source Olark Chat                                  |                  |                   | 1.   | .1430 | 0.124         |    | 9.242  | 0.000 | 0.901  | 1.385  |     |
| Lead Source Reference                                   |                  |                   | 3.   | .4019 | 0.243         |    | 14.026 | 0.000 | 2.927  | 3.877  |     |
| Lead SourceWelingak Website                             |                  |                   | 5.   | .9684 | 0.732         | :  | 8.158  | 0.000 | 4.535  | 7.402  |     |
| Last Activity Olark Chat Conversation                   |                  |                   | -1.  | .0216 | 0.173         | ;  | -5.914 | 0.000 | -1.360 | -0.683 |     |
| Last ActivityOtherActivity                              |                  |                   | 2.   | .1646 | 0.461         |    | 4.691  | 0.000 | 1.260  | 3.069  |     |
| Last Activity SMS Sent                                  |                  |                   | 0.   | .7940 | 0.157         | '  | 5.047  | 0.000 | 0.486  | 1.102  |     |
| Last ActivityUnreachable                                |                  |                   | 0.   | .7494 | 0.310         | )  | 2.415  | 0.016 | 0.141  | 1.358  |     |
| Last ActivityUnsubscribed                               |                  |                   | 1.   | .4180 | 0.480         | •  | 2.952  | 0.003 | 0.476  | 2.360  |     |
| SpecializationOthers                                    |                  |                   | -1.  | .1989 | 0.126         | ;  | -9.514 | 0.000 | -1.446 | -0.952 |     |
| What is your current occupation working<br>Professional |                  |                   | 2.   | .6042 | 0.195         |    | 13.337 | 0.000 | 2.221  | 2.987  |     |
|                                                         | Last Notable     | Activity Modified | -0.  | .6922 | 0.097         |    | -7.138 | 0.000 | -0.882 | -0.502 |     |
|                                                         | Last Notable     | Activity SMS Sent | 0.   | .6910 | 0.177         | ,  | 3.894  | 0.000 | 0.343  | 1.039  |     |

#### **I Model Evaluation**

#### **ROC Curve - Train Data Set**

- Area under ROC curve is 0.88 out of 1 which indicates a good predictive model.
- The curve is as close to the top left corner of the plot, which represents a model that has a high true positive rate and a low false positive rate at all threshold values.



### | Model Evaluation

0.7347391786903^41

Recall:

#### **Confusion Matrix & Metrics**

#### Train Data Set

```
[[3455
450]
; 693 1753]]
Accuracy: 0.S200283419933S69 Sensitivity:
0.7166802943581357
Specificity: 0.88^76312^1997439
Falsa Positivity Rate: 0.11523687580025609
Positive Predictive Value: 0.7957330912392192
Negative Predictive Value: 0.8329315332690453
Precision:
```

0.8119378577269011

#### **Test Data Set**

```
array([[1521, 213], [ 294, 695[], dtype=Int64)
```

After running the model on the test data, we obtained the following observations:

- · The accuracy of the model was 81 %.
- · The sensitivity of the model was 70%.
- · The specificity of the model was 87%.

- Using a cut-off value of 0.35, the model achieved a sensitivity 71% in the train set and 70% in the test set
- Sensitivity in this case indicates how many leads the model identify correctly out of all potential leads which are converting
- The CEO of X Education had set a tar sensitivity of around 70%.
- The model also achiev accuracy of 81%, which is in line with the study's objectives.

### | Recommendation based on Final Model

- As per the problem statement, increasing lead conversion is crucial for the growth and success of X Education. To achieve this, we have developed a regression model that can help us identify the most significant factors that impact lead conversion.
- We have determined the following features that have the highest positive coefficients, and these

| features should be given priority in our marketing and sales efforts to increase lead conversion. |                      |  |  |  |  |
|---------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|
| Lead Source_Welingak Website                                                                      | 5.914695             |  |  |  |  |
| Lead Source_Reference                                                                             | 3.392774             |  |  |  |  |
| What is your current oc cu part iom_Wor king Professional Last ActivityOtherActivity              | 2.613774<br>2.226927 |  |  |  |  |
| Last Activity_Unsubscribed                                                                        | 1.380067             |  |  |  |  |
| _ast ActivitySMS Sent                                                                             | 1.328999             |  |  |  |  |
| Lead Source_Olark Chat                                                                            | 1.141363             |  |  |  |  |
| Total Time Spent on Website                                                                       | 1.113245             |  |  |  |  |
| Last ActivityUhreachable                                                                          | 0.311973             |  |  |  |  |

• We have also identified features with negative coefficients that may indicate potential areas for improvement.

#### These include:

```
Last ActivityGlark Chat Conversation -0.922916

Lead Origin_Larding Page Submission -1.190922

Specialization Others -1.197650

Do Not Email -1.676398
```

#### | Recommendation based on Final Model

#### To increase our Lead Conversion Rates

- Focus on features with positive coefficients for targeted marketing strategies.
- Develop strategies to attract high-quality leads from top-performing lead sources.
- · Optimize communication channels based on lead engagement impact.
- Engage working professionals with tailored messaging.
- More budget/spend can be done on Welingak Website in terms of advertising, etc.
- Incentives/discounts for providing reference that convert to lead, encourage providing more references.
- Working professionals to be aggressively targeted as they have high conversion rate and will have better financial situation to pay higher fees too.

#### To identify areas of improvement

- Analyze negative coefficients in specialization offerings.
- Review landing page submission process for areas of improvement.

## THANK YOU