MODUL MATA KULIAH

ANALISIS DAN DESAIN ALGORITMA

PG167 - 3 SKS

INIVERSITE BUDE

FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS BUDI LUHUR

TIM PENYUSUN

Atik Ariesta, S.Kom., M.Kom Ita Novita, S.Kom., M.T.I Dr. Achmad Solichin, S.Kom., M.T.I

JAKARTA SEPTEMBER 2019

MODUL PERKULIAHAN #3 **DASAR PEMROGRAMAN**

Capaian Pembelajaran	:	Mahasiswa memahami konsep dasar dalam			
		Bahasa pemrograman			
Sub Pokok Bahasan	:	1.1. Bahasa Pemrograman			
		1.2. Variabel			
		1.3. Konstanta			
		1.4. Tipe Data			
		1.5. Operator			
Daftar Pustaka	:	1. Gaddis, nd.2011. Starting Out with C++			
		from Control Structures through Objects			
		.8th. Boston: Addison-Wesley.			
		2. Institue of Distance & Open Learning,			
		n.d. UNIT Algorithms, Flowcharts &			
		Program Design in: INTRODUCTION TO			
		C++. p. 205			
		3. Sjukani, Moh . 2014. Algoritma			
		(Algoritma & Struktur Data 1) Dengan			
		C, C++, dan Java Edisi 9", Mitra			
		Wacana Media.			

DASAR PEMROGRAMAN

1.1. BAHASA PEMROGRAMAN

Program adalah kumpulan instruksi-instruksi yang diberikan kepada komputer untuk melaksanakan suatu tugas atau pekerjaan.

Program adalah algoritma yang ditulis dalam suatu Bahasa yang dikenal oleh komputer yang disebut Bahasa pemrograman (programming language)

Contoh Bahasa pemrograman yang sering digunakan di Indonesia antara lain Java, C, PHP, Visual Basic, Phyton, C++, JavaScript, C#, Objective-C, ActionScript.

CONTOH IMPLEMENTASI FLOWCHART DALAM BEBERAPA BAHASA PEMROGRAMAN
Tuliskan program (penggalan program) untuk menyatakan Algoritma yang
digambarkan pada flowchart berikut:

Analisis dan Desain Algoritma (PG167)

2019/2020

BAHASA MANUSIA VS BAHASA PEMROGRAMAN

Komputer hanya mengerti bahasanya sendiri yaitu Bahasa mesin. Sebuah pseudocode tidak dipahami oleh komputer oleh karena itu diperlukan sebuah Bahasa pemrograman agar dapat dimengerti oleh komputer.

No	Bahasa Manusia	Bahasa Pemrograman	
1	Diajarkan oleh manusia ke manusia	Diajarkan oleh manusia ke komputer	
2	Sebagai sarana komunikasi antara	Sebagai sarana manusia	
	manusia	"memerintah" komputer	
3	Terdiri dari sekumpulan kalimat	Terdiri dari sekumpulan perintah	
4	Kalimat diakhiri dengan simbol .	Perintah diakhiri dengan ; (titik	
	(titik)	koma) atau simbol lain sesuai	
		dengan Bahasa pemrogramannya	
5	Memiliki aturan tata Bahasa	Memiliki aturan tata Bahasa program	
	(grammar)		

JENIS-JENIS BAHASA PEMROGRAMAN

Terdapat 4 Jenis Bahasa pemrograman, yaitu:

- 1. Bahasa Mesin, yaitu Bahasa yang memberikan perintah kepada komputer dengan memakai kode Bahasa biner
- 2. Bahasa Tingkat Rendah, Bahasa yang memberikan perintah kepada komputer dengan memakai instruksi-instruksi tingkat rendah. Contoh: Bahasa Rakitan (Assembly)
- 3. Bahasa Tingkat Menengah, Bahasa komputer yang memakai campuran instruksi dalam kata-kata Bahasa manusia dan instruksi yang bersifat simbolik. Contoh: Bahasa C
- 4. Bahasa Tingkat Tinggi, Bahasa komputer yang memakai instruksi berasal dari unsur kata-kata Bahasa manusia. Komputer dapat mengerti Bahasa manusia tersebut dengan menggunakan compiler atau interpreter. Contoh: Java, C++, PHP, C#, Visual Basic, DII.

1.2. VARIABEL

Variabel adalah suatu simbol atau lambing yang mempunyai nilai. Dalam pemrograman, variabel termasuk pengenal (identifier).

Secara teknis, variabel adalah area atau tempat didalam memory komputer yang isinya dapat diubah-ubah.

Variabel harus diberi nama yang berbeda satu dengan lainnya, masing-masing variabel memiliki alamatnya sendiri dalam memory. Komputer akan dapat menemukan alamat variabel atau alamat data pada memory hanya dengan menyebutkan nama variabel pada Bahasa pemrograman.

ATURAN PENAMAAN VARIABEL

Nama variabel ditentukan atau dikarang sendiri oleh pembuat program dengan syarat sebagai berikut:

- 1. Tidak boleh sama dengan nama atau kata yang sudah disiapkan oleh komputer (reserved word) seperti keyword, dan function.
- 2. Harus berbeda dengan nama label atau konstanta yang dibuat oleh pemrogram.
- 3. Setiap Bahasa pemrograman memiliki maksimum panjang variabel yang berbeda-beda, contohnya Bahasa C memiliki nilai maksimum 32 karakter, bila lebih dari 32 karakter, maka karakter selebihnya tidak diperhatikan komputer.
- 4. Setiap bahasa pemrograman memiliki aturan khusus penamaan variabel.
 - a. Case Sensitive, artinya huruf besar dan huruf kecil berbeda
 - b. Case Insensitive, artinya huruf besar dan huruf kecil sama.
- 5. Karakter pertama harus huruf atau karakter garis bawah (underscore), dan karakter berikutnya boleh huruf, angka, atau karakter garis bawah.
- 6. Tidak boleh mengandung spasi atau blank.

PENAMAAN VARIABEL YANG	PENAMAAN VARIABEL YANG
BENAR	SALAH
Α	1A
A1	Nilai-1
Nilai	Harga Satuan
NILAI	Benar/Salah
nilai	Switch
HargaSatuan	Long
Harga_Satuan	Harga-Satuan
HS	
_Harga	
SWITCH	

Pada saat memberikan nama variabel disesuaikan dengan data yang akan disimpan pada variabel, contohnya variabel yang digunakan untuk menyimpan data Luas Segitiga maka bisa diberikan nama variabel Luas atau L.

1.3. KONSTANTA

Konstanta adalah variabel yang nilainya tetap dan tidak dapat diubah selama program berjalan.

Contoh: PI = 3.14

1.4. TIPE DATA

Bentuk data bermacam-macam, ada angka, huruf, dan simbol-simbol lain yang dikenal sebagai karakter. Ada lagi sederetan angka yang menyatakan suatu nilai tertentu seperti 12475 atau 254.75.

Dalam penggunaan komputer umumnya, pemrograman khususnya, data dibedakan empat tipe yaitu:

- 1. Karakter, adalah tipe data yang disimpan dalam 1 karakter, biasanya data diapit dengan simbol ` ` (kutip satu). Contoh: char A='A', char A=127.
- 2. Numerik, tipe data numerik dibedakan menjadi dua macam yaitu:
 - a. Integer (bilangan bulat), contoh: int A=127, int harga=3000
 - b. real (floating-point) yang mengandung bilangan pecahan. Contoh: float Nilai=9.5, float suhu=30.5.
- 3. String, adalah tipe data yang disimpan terdiri dari banyak karakter yang biasanya diapit dengan simbol " " (kutip dua). Contoh: char A[7]="Jakarta", char B[10]="abcd".
- 4. Boolean, adalah tipe data yang disimpan dengan nilai True (1) atau False (1).

MEMILIH TIPE DATA

Ketika akan memilih tipe data untuk sebuah variabel harus memperhatikan hal-hal berikut:

- 1. Perhatikan ukuran dan jangkauan (range) tipe data. Sesuai dengan Bahasa pemrograman yang digunakan.
- 2. Sesuaikan kebutuhan data yang akan disimpan
- 3. Semakin besar ukuran tipe data, maka program semakin "gemuk"

1.5. OPERATOR

JENIS JENIS OPERATOR:

1. Operator Penugasan

Operator penugasan merupakan operator yang digunakan untuk mengisi sebuah variabel atau meng-assign suatu nilai kedalam sebuah variabel. Simbol operator penugasan adalah = (sama dengan).

Contoh: A = 5, Harga=3000, Grade='A', NilaiAkhir=Absen+Tugas+UTS+UAS

2. Operator Aritmatika

No	Simbol	Keterangan	
1	+	Penjumlahan	
2	-	Pengurangan	
3	*	Perkalian	
4	/	Pembagian	
5	%	Sisa hasil	
		pembagian	

Dalam sebuah Bahasa pemrograman jika dalam suatu ekspresi aritmatika memiliki lebih dari satu operator yang berbeda maka ketika mengerjakan komputer akan dimulai dari tingkatan (hirarki) paling tinggi ke rendah. Adapaun urutannya dimulai dari tingkat paling atas sebagai berikut.

No	Tingkat
1	* (Perkalian)
	/ (Pembagian)
	% (Modulus)
	Memiliki tingkat hirarki sederajat dan paling tinggi dibandingkan operator
	yang lain.
2	+ (Penjumlahan)
	- (Pengurangan)
	Memilki tingkat hirarki sederajat pada tingkatan kedua
3	()
	Jika terdapat tanda kurung adalah satu kesatuan

3. Operator Hubungan (Perbandingan)

No	Operato r	Art i	Contoh	Keterangan
1	<	Kurang dari	X < Y	Apakah X kuran
				dari Y g
2	<=	Kurang dari	X <= Y	Apakah X kurang
		sama dengan		dari sama dengan Y
3	>	Lebih dari X > Y Apakah X I dari		Apakah X lebih dari
				Υ
4	>=	Lebih dari	X >= Y	Apakah X lebih
		sama dengan		besar sama
				dengan Y
5	==	Sama dengan	X == Y	Apakah X sama
				dengan Y
6	!=	Tidak sama	X != Y	Apakah X tidak
		dengan		sama dengan Y

4. Operator Logika

No	Simbol	Arti
1	&& atau AND	Logika AND (DAN)
2	atau OR	Logika OR (ATAU)
3	! atau NOT	Logika NOT (INGKARAN)

Tabel kebenaran Logika OR

No	Α	В	A OR B	Hasil
1	True	True	True OR True	True
2	True	False	True OR False	True
3	False	True	False OR True	True
4	False	False	False OR False	False

Tabel kebenaran Logika AND

No	A	В	B A AND B	
1	True	True	True AND True	True
2	True	False	True AND False	False
3	False	True	False AND True	False
4	False	False	False AND False	False

5. Operator Bitwise

No	Operator	Arti
1	<<	Pergerseran bit ke kiri
2	>>	Pergeseran bit ke kanan
3	&	Bitwise AND
4	^	Bitwise XOR (Exclusive OR)
5		Bitwise OR
6	~	Bitwise NOT

6. Operator Unary

No	Operato r	Arti/Maksud	Letak	Contoh	Equivalen
1	-	Unary minus	Sebelum	A + -B *	A + (-B) *
			operator	С	С
2	++	Peningkatan	Sebelum	A++	A=A+1
		dengan	dan		
		penambahan nilai	sesudah		
		1			
3		Penurunan	Sebelum	A	A=A=1
			dan		
		dengan	sesudah		
		pengurangan 1			
4	sizeof	Ukuran	Sebelum	Sizeof(I)	-
		operand			
		dalam byte			
5	!	Unary Not	Sebelum	!A	-

No	Operator	Arti/Maksud	Letak	Contoh	Equivalen
6	~	Bitwise Not	Sebelum	~A	-
7	&	Menghasilkan alamat memory operand	Sebelum	&A	-
8	*	Menghasilkan nilai dari pointer	Sebelum	*A	-

SOAL LATIHAN

- Buatlah algoritma / flowchart untuk menginputkan 3 buah bilangan bulat dan tampilkan bilangan TERBESAR diantara ketiganya (dianggap ketiga bilangan nilainya berbeda). TIDAK BOLEH MENGGUNAKAN OPERATOR LOGIKA.
- Buatlah algoritma / flowchart untuk menginputkan 3 buah bilangan bulat dan tampilkan bilangan TERBESAR diantara ketiganya (dianggap ketiga bilangan nilainya berbeda). BOLEH MENGGUNAKAN OPERATOR LOGIKA

b.

3. Apa yang tercetak bila program di bawah ini dijalankan?

```
#include "stdio.h"
a.
          void main()
       2
       3 ₽ {
       4
               int A=7, B, C;
       5
               B=A/2;
       6
               C=A%2;
       7
               printf("%i",B);
       8
               printf("%i",C);
       9 <sup>L</sup> }
```

```
#include "stdio.h"
 2
   void main()
 3 ₽ {
 4
        int A=25, B, C;
 5
        B=A/2;
 6
        C=A-B*2;
 7
        printf("%i",C);
 8
        A=B;
 9
        B=A/2;
10
        C=A-B*2;
        printf("%i",C);
11
12
        A=B;
13
        B=A/2;
14
        C=A-B*2;
15
        printf("%i",C);
16 L
```

KFSTMPUI AN

Dalam membuat perintah pada Bahasa Pemrograman maka perlu diperhatikan komponen-komponen yang terkait dalam Bahasa Pemrograman seperti:

- 1. Variabel
- 2. Tipe Data
- 3. Konstanta
- 4. Operator

FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS BUDI LUHUR

Jl. Raya Ciledug, Petukangan Utara, Pesanggrahan Jakarta Selatan, 12260

Telp: 021-5853753 Fax: 021-5853752

http://fti.budiluhur.ac.id