Math 151A: Midterm

Owen Jones

May 3rd, 2023

Problem 1: Solution

- a) $g(x) = x^{\frac{1}{5}}$. $g \in C[\frac{1}{5^{\frac{5}{4}}}, \frac{3}{2}]$. g assumes a minimum of $5^{-\frac{1}{4}}$ at the endpoint $x = \frac{1}{5^{\frac{5}{4}}}$ and a maximum of $(\frac{3}{2})^{\frac{1}{5}}$ at the endpoint $x = \frac{3}{2}$, so $g(x) \in [\frac{1}{5^{\frac{5}{4}}}, \frac{3}{2}]$ for all $x \in [\frac{1}{5^{\frac{5}{4}}}, \frac{3}{2}]$. |g'(x)| exists $\forall x \in (\frac{1}{5^{\frac{5}{4}}}, \frac{3}{2})$, and $|g'(x)| < 1 \ \forall x \in (\frac{1}{5^{\frac{5}{4}}}, \frac{3}{2})$ because |g'(x)| assumes a maximum of 1 at the endpoint $x = \frac{1}{5^{\frac{5}{4}}}$, and |g'(x)| is strictly decreasing over the interval $\left[\frac{1}{5^{\frac{1}{5}}}, \frac{3}{2}\right]$. It follows by density of the real numbers, for each $x \in \left(\frac{1}{5^{\frac{1}{5}}}, \frac{3}{2}\right)$, there exists k s.t $|g'(x)| \le k < 1$. By Theorem 2.3, there exists a unique fixed point in $\left[\frac{1}{5^{\frac{5}{4}}}, \frac{3}{2}\right]$. In addition, Theorem 2.4 states that for any $p_0 \in \left[\frac{1}{5^{\frac{5}{4}}}, \frac{3}{2}\right]$, the sequence $p_n = g(p_{n-1}), n \ge 1$, converges to the unique fixed point in $\left[\frac{1}{5}, \frac{3}{4}, \frac{3}{2}\right]$.
- b) $\lim_{n \to \infty} p_n = \lim_{n \to \infty} p_n^{\frac{1}{5}} = 1^{\frac{1}{5}} = 1.$

 p_n converges linearly to the point 1 if $\lim_{n\to\infty} \left| \frac{g(p_n) - g(1)}{p_n - 1} \right| = \lambda$ for some $\lambda < 1$.

It follows
$$\lim_{n \to \infty} \left| \frac{g(p_n) - g(1)}{p_n - 1} \right| = \lim_{n \to \infty} \left| \frac{p_n^{\frac{1}{5}} - 1}{p_n - 1} \right|$$

$$= \lim_{n \to \infty} \left| \frac{p_n^{\frac{1}{5}} - 1}{(p_n^{\frac{1}{5}} - 1)(p_n^{\frac{4}{5}} + p_n^{\frac{3}{5}} + p_n^{\frac{1}{5}} + p_n^{\frac{1}{5}} + 1)} \right|$$

$$= \lim_{n \to \infty} \left| \frac{1}{p_n^{\frac{4}{5}} + p_n^{\frac{3}{5}} + p_n^{\frac{1}{5}} + p_n^{\frac{1}{5}} + 1} \right|$$

$$= \lim_{n \to \infty} \left| \frac{1}{p_n^{\frac{4}{5}} + p_n^{\frac{3}{5}} + p_n^{\frac{1}{5}} + p_n^{\frac{1}{5}} + 1} \right|$$

$$= \left| \frac{1}{1^{\frac{4}{5}} + 1^{\frac{3}{5}} + 1^{\frac{2}{5}} + 1^{\frac{1}{5}} + 1} \right| = \frac{1}{5}$$
Thus, there exists a $\lambda = \frac{1}{5} < 1$

 p_n only converges linearly if $\lim_{n\to\infty} \frac{|g(p_n)-g(1)|}{|p_n-1|^{\alpha}}$ diverges for all $\alpha>1$. $\lim_{n\to\infty} \frac{|g(p_n)-g(1)|}{|p_n-1|^{\alpha}} = \lim_{n\to\infty} \frac{\frac{|g(p_n)-g(1)|}{|p_n-1|}}{|p_n-1|^{\alpha-1}} \text{ where } \alpha>1.$

$$\lim_{n \to \infty} \frac{|g(p_n) - g(1)|}{|p_n - 1|^{\alpha}} = \lim_{n \to \infty} \frac{\frac{|g(n) - g(1)|}{|p_n - 1|}}{|p_n - 1|^{\alpha - 1}} \text{ where } \alpha > 1.$$

$$= \lim_{n \to \infty} \frac{\frac{1}{5}}{|p_n - 1|^{\alpha - 1}} = \infty \text{ because } |p_n - 1|^{\alpha - 1} \text{ converges to } 0.$$

Problem 2: Solution

a)
$$\lim_{n \to \infty} \frac{|g(p_n) - 1|}{|p_n - 1|} = \lim_{n \to \infty} \frac{\left|\frac{1}{2}e^{-p_n + 1}(\cos(\pi p_n)^2 + 1) - 1\right|}{|p_n - 1|}$$

$$= \frac{\left|\frac{1}{2}e^0(\cos(\pi)^2 + 1) - 1\right|}{|1 - 1|} = \frac{1}{|1 - 1|} \Rightarrow \text{ zero over zero.}$$

$$\text{By L'H} = \lim_{x \to 1} \frac{\left|-\frac{1}{2}e^{1 - x}(\cos(\pi x)^2 + 1) - \pi e^{1 - x}\cos(\pi x)\sin(\pi x)\right|}{|1|}$$

$$= \left|-\frac{1}{2}e^0(\cos(\pi)^2 + 1) - \pi e^0\cos(\pi)\sin(\pi)\right| = 1 \text{ (sublinearly)}$$

- b) $g(x) = x \frac{e^{1-x}(\cos(\pi x)^2+1)-2x}{-e^{1-x}(\cos(\pi x)^2+2\pi\sin(\pi x)\cos(\pi x)+1)+2}$ (at least quadratically by Newton's method)
- c) $\lim_{n \to \infty} \frac{|g(p_n) 1|}{|p_n 1|} = \lim_{n \to \infty} \frac{\left|\frac{19}{20}p_n + \frac{1}{40}e^{-p_n + 1}(\cos(\pi p_n)^2 + 1) 1\right|}{|p_n 1|} \text{ (zero over zero)}$ $\text{By L'H} = \lim_{x \to 1} \left|\frac{19}{20} \frac{1}{40}e^{-x + 1}(\cos(\pi x)^2 + 2\pi\sin(\pi x)\cos(\pi x) + 1)\right| = \frac{18}{20} \text{ (linearly)}$
- d) $\lim_{n \to \infty} \frac{|g(p_n) 1|}{|p_n 1|} = \lim_{n \to \infty} \frac{|3p_n e^{-p_n + 1}(\cos(\pi p_n)^2 + 1) 1|}{|p_n 1|} \text{ (zero over zero)}$ $\text{By L'H} = \lim_{x \to 1} |3 + e^{-x + 1}(\cos(\pi x)^2 + 2\pi \sin(\pi x)\cos(\pi x) + 1)| = 5 \text{ (diverges)}$
- b) fastest, c) second, a) third, d) slowest.

Problem 3: Solution

a) table

b) $g(x) = x - \frac{P_4(x)}{P'_4(x)}$. Starting at x = 1.211 we get $p_{100} = 0.500$.

Problem 4: Solution

- a) Let $g(x) = \frac{1}{2}(x + \frac{\alpha}{x})$. $g \in C[\min\{p_0, \frac{\sqrt{3\alpha}}{3}\}, \max\{p_0, g(p_0), \frac{2\sqrt{3\alpha}}{3}\}]$. g assumes a minimum of $\sqrt{\alpha}$ at $x = \sqrt{\alpha}$ when g'(x) = 0, and g assumes a maximum of $\frac{2\sqrt{3\alpha}}{3}$ when $\frac{\sqrt{3\alpha}}{3} \leq p_0 \leq \sqrt{3a}$ and a maximum of $g(p_0)$ otherwise. Thus, g maps onto itself. Want to show $|p_{n+1} \sqrt{\alpha}| \leq |p_n \sqrt{\alpha}|$ for all n > 1. $|p_{n+1} \sqrt{\alpha}| = |\frac{1}{2}(p_n + \frac{\alpha}{p_n}) \sqrt{\alpha}| = |\frac{p_n \sqrt{\alpha}}{2p_n}||p_n \sqrt{\alpha}|$. This implies $|p_{n+1} \sqrt{\alpha}| \leq |p_n \sqrt{\alpha}|$ if $|\frac{p_n \sqrt{\alpha}}{2p_n}| \Rightarrow p_n > \frac{\sqrt{a}}{3}$. If $p_0 \leq \frac{\sqrt{a}}{3}$, then $p_1 = \frac{1}{2}(p_0 + \frac{\alpha}{p_0}) > \frac{\alpha}{2\frac{\sqrt{a}}{3}} = \frac{3\sqrt{a}}{2} > \frac{\sqrt{a}}{3}$. By induction $|p_n \sqrt{\alpha}| = |\frac{p_{n-1} \sqrt{\alpha}}{2p_{n-1}}||p_{n-1} \sqrt{\alpha}| = \dots = \prod_{i=1}^{n-1} |\frac{p_i \sqrt{\alpha}}{2p_i}||p_1 \sqrt{\alpha}|$. $|\frac{p_i \sqrt{\alpha}}{2p_i}| = |\frac{p_{i-1} \sqrt{\alpha}}{2p_{i-1}}||\frac{p_{i-1} \sqrt{\alpha}}{p_{i-1} + \frac{\alpha}{p_{i-1}}}| \leq |\frac{p_{i-1} \sqrt{\alpha}}{2p_{i-1}}|$ because $|\frac{p_{i-1} \sqrt{\alpha}}{p_{i-1} + \frac{\alpha}{p_{i-1}}}| < 1$ ($-\sqrt{\alpha} < \frac{\alpha}{p_{i-1}}$, $p_{i-1} > \sqrt{\alpha}$ and $\sqrt{\alpha} p_{i-1} < p_{i-1} + \frac{\alpha}{p_{i-1}}$, $p_{i-1} < \sqrt{\alpha}$).
 - It follows $\left|\frac{p_1-\sqrt{\alpha}}{2p_1}\right|$ is an upper bound for $\left|\frac{p_n-\sqrt{\alpha}}{2p_n}\right|$
 - Thus, $\lim_{n\to\infty}|p_n-\sqrt{\alpha}|\leq |\frac{p_1-\sqrt{\alpha}}{2p_1}|^{n-1}|p_1-\sqrt{\alpha}|=0$ by the squeeze theorem. Hence p_n converges for all $p_0>0$.
- b) If $p_0 < 0$, p_n converges to $-\sqrt{\alpha}$. The proof is similar to how we show p_n converges to $\sqrt{\alpha}$ for $p_0 > 0$. $g \in C[\min\{p_0, g(p_0), -\frac{2\sqrt{3}\alpha}{3}, \max\{p_0, -\frac{\sqrt{3}\alpha}{3}\}\}]$. g assumes a maximum of $\sqrt{\alpha}$ and minimum of $g(p_0)$ or $-\frac{2\sqrt{3}\alpha}{3}$. Then, we show $|\frac{p_1+\sqrt{\alpha}}{2p_1}| < 1$ and an upper bound for $|\frac{p_n+\sqrt{\alpha}}{2p_n}|$ for n > 1. Then, we use the squeze theorem as we did previously to show $\lim_{n\to\infty} |p_n+\sqrt{\alpha}|$ converges to 0.