CS2102 Lecture 12 Review

What you've learned in CS2102

- How to use relational database systems (RDBMS)
- Relational Data model
 - Database = data + constraints
 - Data represented as collections of tables
 - How to define a relational database schema
 - How to update a relational database
 - How to use SQL & transactions
 - How to reason with SQL using formal query languages
 - Relational algebra
 - Relational calculus
- Database Design
 - How to design a ER data model to capture application's data requirements
 - How to map ER data model to relational data model
 - How to refine relational schema using normal forms
- How to develop RDBMS applications

CS2102: Sem 2, 2017/18 Review Lecture 2

Schema Refinement

movie	rating	cinema	area	time
John Wick 2	M18	JCube	west	1400
Logan	M18	JCube	west	1700
Kong: Skull Island	PG13	Vivocity	south	1130
Logan	M18	Vivocity	south	1700
Silent Voice	PG	Lido	central	1400
Kong: Skull Island	PG13	Lido	central	2130

- Each movie has a rating: {movie} → {rating}
- Each cinema is located in one area: $\{cinema\} \rightarrow \{area\}$
- Each cinema screens at most one movie at any time:
 {cinema, time} → {movie}

Schema Refinement (cont.)

MovieList

movie	rating	cinema	area	time
John Wick 2	M18	JCube	west	1400
Logan	M18	JCube	west	1700
Kong: Skull Island	PG13	Vivocity	south	1130
Logan	M18	Vivocity	south	1700
Silent Voice	PG	Lido	central	1400
Kong: Skull Island	PG13	Lido	central	2130

- Problems with this schema design:
 - Insertion anomaly: We can't store information about a new movie if the screening cinema and time are not known
 - Deletion anomaly: If we delete all M18-rated movies, we lose information about the cinema JCube
 - Update anomaly: If the rating of a movie changes, we have to be careful of inconsistent updates

Schema Refinement (cont.)

MovieList

movie	rating	cinema	area	time
John Wick 2	M18	JCube	west	1400
Logan	M18	JCube	west	1700
Kong: Skull Island	PG13	Vivocity	south	1130
Logan	M18	Vivocity	south	1700
Silent Voice	PG	Lido	central	1400
Kong: Skull Island	PG13	Lido	central	2130

Movies

movie	rating
John Wick 2	M18
Logan	M18
Kong: Skull Island	PG13
Silent Voice	PG

Cinemas

cinema	area
JCube	west
Vivocity	south
Lido	central

Screenings

cinema	time	movie	
JCube	1400	John Wick 2	
JCube	1700	Logan	
Vivocity	1130	Kong: Skull Island	
Lido	1400	Silent Voice	
Lido	2130	Kong: Skull Island	
	JCube JCube Vivocity Lido	JCube 1400 JCube 1700 Vivocity 1130 Lido 1400	

Trivial, Non-trivial, Completely Non-trivial FDs

• Consider $R = \{A, B, C\}$ with FDs $F = \{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}\}$

Completely Non-trivial FDs in F^+ $\{A\} o \{B\} \{B\} o \{C\}$ $\{A\} o \{C\} \{A,B\} o \{C\}$ $\{A\} o \{B,C\} \{A,C\} o \{B\}$

Trivial FDs in F^+					
$\emptyset o \emptyset$	$\{B,C\} o\emptyset$				
$\{{\it A}\} \to \emptyset$	$\{B,C\} o \{B\}$				
$\{A\} o \{A\}$	$\{{\it B},{\it C}\} ightarrow \{{\it C}\}$				
$\{\mathit{B}\}\to\emptyset$	$\{\mathit{B},\mathit{C}\} o \{\mathit{B},\mathit{C}\}$				
$\{B\} o \{B\}$	$\{ extit{A}, extit{B}, extit{C}\} ightarrow \emptyset$				
$\{\mathit{C}\} \to \emptyset$	$\{A,B,C\} o \{A\}$				
$\{\mathit{C}\} \to \{\mathit{C}\}$	$\{{\it A},{\it B},{\it C}\} ightarrow \{{\it B}\}$				
$\{ extsf{A}, extsf{B}\} o \emptyset$	$\{{\it A},{\it B},{\it C}\} ightarrow \{{\it C}\}$				
$\{A,B\} o \{A\}$	$\{A,B,C\} o \{A,B\}$				
$\{A,B\} o \{B\}$	$\{A,B,C\} ightarrow \{A,C\}$				
$\{A,B\} \rightarrow \{A,B\}$	$\{A,B,C\} o \{B,C\}$				
$\{A,C\} o \emptyset$	$\{A,B,C\} \rightarrow \{A,B,C\}$				
$\{A,C\} \rightarrow \{A\}$					
$\{A,C\} \rightarrow \{C\}$					
$\{A,C\} \rightarrow \{A,C\}$					
$\{A, B\} \rightarrow \{A\}$ $\{A, B\} \rightarrow \{B\}$ $\{A, B\} \rightarrow \{A, B\}$ $\{A, C\} \rightarrow \emptyset$ $\{A, C\} \rightarrow \{A\}$ $\{A, C\} \rightarrow \{C\}$	$\{A, B, C\} \rightarrow \{A, B\}$ $\{A, B, C\} \rightarrow \{A, C\}$ $\{A, B, C\} \rightarrow \{B, C\}$				

Reasoning about FDs

- Let R be a relational schema & F be a set of FDs that hold on R
- Closure of F (denoted by F^+) = set of all FDs that must hold on R given F
 - A FD $X \to Y \in F^+$ iff F implies $X \to Y$
- Two sets of FDs F & G are equivalent (denoted by $F \equiv G$) if $F^+ = G^+$
- Armstrong's Axioms: Let X, Y, Z be subsets of attributes in relational scheme R

Reflexivity: If $Y \subseteq X$, then $X \to Y$

Augmentation: If $X \to Y$, then $X \cup Z \to Y \cup Z$

Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$

Reasoning about FDs (cont.)

- Let X be a subset of attributes of relational scheme R with FDs
- Attribute closure of X (denoted by X^+) is the set of all attributes of R that are functionally determined by X (w.r.t. F)
 - $X^+ = \{A | A \text{ is an attribute of } R, X \to \{A\} \in F^+\}$
- $X \rightarrow Y \in F^+$ iff $Y \subseteq X^+$ (w.r.t. F)

Superkeys, Candidate Keys & Prime Attributes

- Let X be a subset of attributes of relational scheme R with FDs
- X is a superkey of R if $X^+ = R$
- X is a candidate key of R if
 - (1) X is a superkey of R, and
 - (2) $\forall Y \subset X, Y^+ \neq R$
- An attribute $A \in R$ is a prime attribute if A is contained in some candidate key of R; otherwise, it is a nonprime attribute

Minimal Covers

- Let R be a relational schema with FDs F
- A minimal cover for F is a set G of FDs with the following properties
 - 1. $G \equiv F$
 - 2. For every FD $X \rightarrow Y$ in G, Y consists of a single attribute
 - 3. For every FD $X \rightarrow Y$ in G, X has no redundant attributes
 - An attribute $A \in X$ is redundant in the FD $X \to Y$ if $(G \{X \to Y\}) \cup \{X \{A\} \to Y\} \equiv G$
 - $A \in X$ is redundant in the FD $X \to Y$ if $Y \subseteq (X \{A\})^+$ w.r.t. G
 - 4. There are no redundant FDs in G
 - A FD $X \to Y \in G$ is redundant if $G \{X \to Y\} \equiv G$
 - $X \to \{B\} \in G$ is redundant if $B \in X^+$ w.r.t. $G \{X \to \{B\}\}$
- A extended minimal cover is obtained from a minimal cover by combining FDs with the same left-hand side

Schema Decompositions

• The decomposition of schema R is a set of schemas $\{R_1, R_2, \dots, R_n\}$ such that each $R_i \subseteq R$ and $R = R_1 \cup R_2 \cup \dots \cup R_n$

• Each R_i is called a fragment

MovieList

movie	rating	cinema	area	time
John Wick 2	M18	JCube	west	1400
Logan	M18	JCube	west	1700
Kong: Skull Island	PG13	Vivocity	south	1130
Logan	M18	Vivocity	south	1700
Silent Voice	PG	Lido	central	1400
Kong: Skull Island	PG13	Lido	central	2130

Movies

movie	rating
John Wick 2	M18
Logan	M18
Kong: Skull Island	PG13
Silent Voice	PG

Cinemas

cinema	area
JCube	west
Vivocity	south
Lido	central

Screenings

cinema time		movie	
JCube	1400	John Wick 2	
JCube 1700		Logan	
Vivocity	1130	Kong: Skull Island	
Lido 1400		Silent Voice	
Lido	2130	Kong: Skull Island	

Properties of Schema Decompositions

- Two important properties:
 - 1. Decomposition must preserve information
 - Data in original relation = Data in decomposed relations
 - Crucial for correctness!
 - 2. Decomposition should preserve FDs
 - FDs in original schema \equiv FDs in decomposed schemas
 - Facilitates checking of FD violations without performing joins

MovieList

movie	rating	cinema	area	time
John Wick 2	M18	JCube	west	1400
Logan	M18	JCube	west	1700
Kong: Skull Island	PG13	Vivocity	south	1130
Logan	M18	Vivocity	south	1700
Silent Voice	PG	Lido	central	1400
Kong: Skull Island	PG13	Lido	central	2130

Movies

movie	rating
John Wick 2	M18
Logan	M18
Kong: Skull Island	PG13
Silent Voice	PG

Cinemas

cinema	area
JCube	west
Vivocity	south
Lido	central

Screenings

cinema	time	movie
JCube	1400	John Wick 2
JCube	1700	Logan
Vivocity	1130	Kong: Skull Island
Lido	1400	Silent Voice
Lido	2130	Kong: Skull Island

Lossless Decompositions

• It is important that a decomposition *preserves information*; i.e., we can reconstruct the relation from its decomposed fragments

Property: If $\{R_1, R_2, \dots, R_n\}$ is a decomposition of R, then for any relation r of R, $r \subseteq \pi_{R_1}(r) \bowtie \pi_{R_2}(r) \bowtie \cdots \bowtie \pi_{R_n}(r)$

- A decomposition of R (with FDs F) into $\{R_1, R_2, \dots, R_n\}$ is a lossless decomposition if for every relation r of R that satisfies F, $\pi_{R_1}(r) \bowtie \pi_{R_2}(r) \bowtie \cdots \bowtie \pi_{R_n}(r) = r$
- A decomposition that is not lossless is a lossy decomposition

Lossless Decompositions: Example

- Consider R(A, B, C) with FDs $F = \{\{A\} \rightarrow \{B\}\}$
- **Example 1**: Decomposition of R into $\{R_1(A, B), R_2(B, C)\}$ is lossy

	r	
Α	В	С
a ₁	<i>b</i> ₁	<i>C</i> ₁
a 2	<i>b</i> ₁	<i>C</i> ₂

r	1
Α	В
<i>a</i> ₁	<i>b</i> ₁
a_2	<i>b</i> ₁

r	2
В	С
<i>b</i> ₁	<i>C</i> ₁
<i>b</i> ₁	<i>C</i> ₂

I	$r_1 \bowtie r_2$	2
Α	В	О
a ₁	<i>b</i> ₁	<i>C</i> ₁
a_1	<i>b</i> ₁	<i>C</i> ₂
a_2	<i>b</i> ₁	<i>C</i> ₁
a_2	<i>b</i> ₁	<i>C</i> ₂

• **Example 2**: Decomposition of *R* into $\{R_1(A, B), R_3(A, C)\}$ is lossless

	r	
Α	В	С
a ₁	<i>b</i> ₁	<i>C</i> ₁
a_2	<i>b</i> ₁	<i>C</i> ₂

$$\begin{array}{c|cc}
r_3 \\
\hline
A & C \\
\hline
a_1 & c_1 \\
a_2 & c_2
\end{array}$$

	$r_1 \bowtie r_3$	3
Α	В	C
a ₁	<i>b</i> ₁	<i>C</i> ₁
a_2	b_1	<i>C</i> ₂

Lossless Decompositions

Property 1: The decomposition of R (with FDs F) into $\{R_1, R_2\}$ is a lossless decomposition (w.r.t. F) if and only if

$$R_1 \cap R_2 \rightarrow R_1 \in F^+$$
 or $R_1 \cap R_2 \rightarrow R_2 \in F^+$

Property 2: If $X \to Y$ is a completely non-trivial FD that holds on R, then the decomposition of R into $\{R - Y, X \cup Y\}$ is a lossless decomposition

Property 3: If $\{R_1, R_2, \dots, R_n\}$ is a lossless decomposition of R, and $\{R_a, R_b\}$ is a lossless decomposition of R_1 , then $\{R_a, R_b, R_2, \dots, R_n\}$ is a lossless decomposition of R

Projected Functional Dependencies

- Let $\{R_1, \dots, R_n\}$ be a decomposition of R with FDs F
- Let F_i denote the set of FDs that hold on R_i

$$F_i = \{X \rightarrow Y \in F^+ \mid X, Y \subseteq R_i\}$$

 Each F_i is a set of projected functional dependencies for fragment R_i

Dependency Preserving Decompositions

- A decomposition $\{R_1, \dots, R_n\}$ of R is dependency preserving if $F_1 \cup \dots \cup F_n \equiv F$
 - If there exists a FD $X \to Y \in F$ such that $X \to Y \notin (F_1 \cup \cdots \cup F_n)^+$, then $\{R_1, \cdots, R_n\}$ is not a dependency preserving of R; otherwise, $\{R_1, \cdots, R_n\}$ is a dependency preserving decomposition of R
- A dependency-preserving decomposition is desirable because it guarantees that for each update to a decomposed relation r_i , FD violations for r_i can be detected without computing joins

Example: R(A, B, C) with FDs $F = \{\{B\} \rightarrow \{C\}, \{A, C\} \rightarrow \{B\}\}$

- The decomposition $\{R_1(A,B),R_2(B,C)\}$ is not dependency-preserving as $\{A,C\} \rightarrow \{B\}$ is not preserved
 - The completely non-trivial FDs in $F_1 = \emptyset$
 - The completely non-trivial FDs in $F_2 = \{\{B\} \rightarrow \{C\}\}$
 - $(F_1 \cup F_2)^+ \equiv \{\{B\} \to \{C\}\} \not\equiv F$
- Consider the following instance of R:

	r			<u> </u>	1	-	r	2
Α	В	С		Α	В		В	С
a ₁	<i>b</i> ₁	C ₁	\longrightarrow	a ₁	<i>b</i> ₁		<i>b</i> ₁	C ₁
a_2	b_2	<i>C</i> ₁		a_2	b_2		<i>b</i> ₂	C ₁

- Inserting the new tuple (a_1,b_2,c_1) into r would violate $\{A,C\} \to \{B\}$
- But inserting (a_1, b_2) into r_1 does not violate any FD in F_1 & inserting (b_2, c_1) into r_2 does not violate any FD in F_2
- Need to compute $r_1 \bowtie r_2$ to detect violations of $\{A, C\} \rightarrow \{B\}$!

Normal Forms

- A normal form restricts the set of data dependencies that are allowed to hold on a schema to avoid certain undesirable redundancy and update problems in the database
- Two normal forms based on FDs: Boyce-Codd Normal Form (BCNF) and Third Normal Form (3NF)
- Let R be a relational schema with FDs F
- R is in BCNF if for every non-trivial FD $X \to \{A\}$ in F^+ , X is a superkey of R
- A non-trivial FD $X \to \{A\} \in F^+$ violates BCNF of R if X is not a superkey of R
- R is in 3NF if for every non-trivial FD $X \to \{A\}$ in F^+ , either X is a superkey of R or A is a prime attribute of R
- A non-trivial FD $X \to \{A\} \in F^+$ violates 3NF of R if X is not a superkey of R and A is a nonprime attribute of R

BCNF Decomposition Algorithm

Input: A lossless decomposition $S = \{R_1, \dots, R_n\}$ of R with FDs F

Output: A lossless BCNF decomposition of R

- 01. while (not every R_i in S is in BCNF)
- 02. let $R_i \in S$ be a schema that is not in BCNF w.r.t. F_i
- 03. let $X \to Y \in F_i$ be a completely non-trivial FD that violates BCNF of R_i
- 04. let $R' = X^+$ (w.r.t. F_i) and $R'' = R_i R' \cup X$
- 05. $S = S \{R_i\} \cup \{R', R''\}$
- 06. return S

3NF Synthesis Algorithm

Input: Schema R with FDs F

Output: A dependency-preserving, lossless 3NF decomposition of R

- 01. Initialize $S = \emptyset$
- 02. let F' be an extended minimal cover of F
- 03. for each FD $X \rightarrow Y$ in F'
- 04. if no relational schema in S contains $X \cup Y$ then
- 05. insert a relational schema $X \cup Y$ into S
- 06. if no relational schema in S contains a candidate key of S then
- o7. insert a relational schema *K* into *S* where *K* is any candidate key of *R*
- 08. return S

Tuple Relational Calculus (TRC)

- An atomic formula has of one the following forms:
 - 1. $R \in Rel$
 - 2. R.a op S.b
 - 3. R.a op constant

where R & S are tuple variables, Rel is some relation, and op is one of $<,>\leq,\geq,=,\neq$

- A formula has one of the following forms:
 - 1. an atomic formula
 - **2.** $p \wedge q$, $p \vee q$, $\neg p$, $p \Rightarrow q$
 - 3. $\exists R(p)$
 - 4. $\forall R(p)$

where p and q are formulae; and R is a free variable in p

• A TRC query is of the form $\{T|p\}$ where T must be the only free variable in the formula p

Equivalence Rules

1.
$$\neg \neg p \equiv p$$
, $\neg (p \land q) \equiv \neg p \lor \neg q$, $\neg (p \lor q) \equiv \neg p \land \neg q$

2.
$$p \Rightarrow q \equiv \neg p \lor q$$

3.
$$\neg(\exists R(p)) \equiv \forall R(\neg p)$$

4.
$$\neg(\forall R(p)) \equiv \exists R(\neg p)$$

5.
$$\forall R(p \land q) \equiv (\forall R(p)) \land (\forall R(q))$$

6.
$$\exists R(p \lor q) \equiv (\exists R(p)) \lor (\exists R(q))$$

7. If *R* is not a free variable in *p*, then

7.1
$$p \lor (\forall R(q)) \equiv \forall R(p \lor q)$$

7.2
$$p \lor (\exists R(q)) \equiv \exists R(p \lor q)$$

7.3
$$p \land (\forall R(q)) \equiv \forall R(p \land q)$$

7.4
$$p \land (\exists R(q)) \equiv \exists R(p \land q)$$

7.5
$$p \Rightarrow (\forall R(q)) \equiv \forall R(p \Rightarrow q)$$

7.6
$$p \Rightarrow (\exists R(q)) \equiv \exists R(p \Rightarrow q)$$

Order of Quantifiers

- $\exists X \exists Y(p) \equiv \exists Y \exists X(p)$
- $\forall X \forall Y(p) \equiv \forall Y \forall X(p)$
- $\exists X \forall Y(p) \not\equiv \forall Y \exists X(p)$

CS2102: Sem 2, 2017/18 Tuple Relational Calculus 24

Example Database

Customers (<u>cname</u>, area)
Restaurants (<u>rname</u>, area)
Contains (<u>pizza</u>, ingredient)
Sells (<u>rname</u>, pizza, price)
Likes (<u>cname</u>, pizza)

$\exists X(p \land q) \text{ vs } \exists X(p \Rightarrow q)$

Question 1

Find restaurants located in the West area that sell some pizza that is liked by some customer.

Which of the following answers is correct?

Answer 1

```
\{T \mid \exists R(R \in Restaurants \land T.rname = R.rname \land R.area = "West" \land \exists S(S \in Sells \land S.rname = R.rname \land \exists L(L \in Likes \land L.pizza = S.pizza))\}
```

Answer 2

```
\{T \mid \exists \ R(R \in Restaurants \land T.rname = R.rname \land R.area = "West" \land \exists \ S(S \in Sells \land S.rname = R.rname \Rightarrow \exists \ L(L \in Likes \land L.pizza = S.pizza))\}
```

$\forall X(p \land q) \text{ vs } \forall X(p \Rightarrow q)$

Question 2

Find customers who like all the pizzas sold by Corleone.

Which of the following answers is correct?

Answer 1

```
\{T \mid \exists \ C(C \in Customers \land T.cname = C.cname \land \ \forall \ S(S \in Sells \land S.rname = "Corleone" \land \ \exists \ L(L \in Likes \land L.cname = C.cname \land L.pizza = S.pizza)))\}
```

Answer 2

```
\{T \mid \exists \ C(C \in Customers \land T.cname = C.cname \land \ \forall \ S(S \in Sells \land S.rname = "Corleone" \Rightarrow \ \exists \ L(L \in Likes \land L.cname = C.cname \land L.pizza = S.pizza)))\}
```

SQL

- Schema constraints (NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY, CHECK, DEFAULT)
- Set Operations (UNION [ALL], INTERSECT [ALL], EXCEPT [ALL])
- Join operations (natural, inner, left/right/full outer)
- Comparison predicates (IS NULL, IS DISTINCT FROM)
- Subquery expressions (EXISTS, IN, ANY/SOME, ALL, UNIQUE)
- Aggregate functions (COUNT, SUM, AVG, MIN, MAX)
- Table Expressions & Common Table Expressions
- Views

Conceptual Evaluation of SQL Queries

select	distinct select-list
from	from-list
where	where-condition
group by	groupby-list
having	having-condition
order by	orderby-list
limit	limit-specification

- 1. Compute the cross-product of the tables in **from-list**
- 2. Select the tuples in the cross-product that evaluate to *true* for the where-condition
- 3. Partition the selected tuples into groups using the **groupby-list**
- 4. Select the groups that evaluate to *true* for the **having-condition** condition
- 5. For each selected group, generate an output tuple by selecting/computing the attributes/expressions that appear in the **select-list**
- 6. Remove any duplicate output tuples
- 7. Sort the output tuples based on the **orderby-list**
- 8. Remove the appropriate output tuples based on the limit-specification

GROUP BY Clause: Properties

- Each output tuple corresponds to one group
- For each column A in relation R that appears in the SELECT clause, one of the following conditions must hold:
 - 1. A appears in the GROUP BY clause,
 - 2. A appears in an aggregated expression in the SELECT clause (e.g., **min**(A)), or
 - 3. the primary (or a candidate) key of *R* appears in the GROUP BY clause
- If an aggregate function appears in the SELECT clause and there is no GROUP BY clause, then the SELECT clause must not contain any column that is not in an aggregated expression

HAVING Clause: Properties

- For each column *A* in relation *R* that appears in the HAVING clause, one of the following conditions must hold:
 - 1. A appears in the GROUP BY clause,
 - 2. A appears in an aggregated expression in the HAVING clause, or
 - 3. the primary (or a candidate) key of *R* appears in the GROUP BY clause

Relational Algebra

Unary operators

- ullet Selection σ
- Projection π
- Renaming ρ

Binary operators

- Union ∪
- Intersection ∩
- Difference —
- Cross-Product ×
- Natural Join ⋈
- Inner Join ⋈_c
- ullet Left Outer Join o_c
- Full Outer Join \leftrightarrow_c

Operators	SQL
$\sigma_c(R)$	select * from R where c
$\pi_{\ell}(R)$	select distinct ℓ from R
$R \cup S$	select * from R union select * from S
$R \cap S$	select * from R intersect select * from S
R-S	select * from R except select * from S
$R \times S$	select * from R cross join S
$R\bowtie S$	select * from R natural join S
$R\bowtie_c S$	select * from R join S on c

CS2102: Sem 2, 2017/18 Relational Algebra 32

Transactions: Serializable Executions

- Consider a set of transactions $S = \{T_1, \dots, T_n\}$
- An execution of S is serializable if it is equivalent to some serial execution of S
- Let E₁ & E₂ denote two executions of S
- E₁ and E₂ are equivalent executions of S if
 - 1. both executions produce the same final database state, &
 - 2. both executions retrieve the same values: for every value read by some T_i in E_1 , the corresponding read by T_i in E_2 returns the same value
- Serializable executions guarantee correctness of transaction executions

CS2102: Sem 2, 2017/18 Transactions 33