```
In [1]: import pandas as pd
    df = pd.read_csv('https://gist.githubusercontent.com/curran/a08a1080b88344b0c8a7/raw/0e7a9b0a5d22642a06d3d5b9bcbad9890
    c8ee534/iris.csv')
    df
```

Out[1]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

```
In [2]: #Removing duplicates from the data frame
df = df.drop_duplicates()
```

```
In [3]: #Seperating the target variable(value to be predicted)
Y = df['species'] #Variable to be predicted
X = df[['petal_length','petal_width','sepal_length','sepal_width']]
```

```
In [4]: from sklearn import preprocessing
    columns_tb_scaled = []
    for i in X.columns:
        if X[i].mean()!=0 and X[i].std()!=1:
            columns_tb_scaled.append(i)

X = pd.DataFrame(preprocessing.scale(X[columns_tb_scaled]),columns=columns_tb_scaled) #Scaling the appropriate data
        X
```

Out[4]:

	petal_length	petal_width	sepal_length	sepal_width
0	-1.357737	-1.335700	-0.915509	1.019971
1	-1.357737	-1.335700	-1.157560	-0.128082
2	-1.414778	-1.335700	-1.399610	0.331139
3	-1.300696	-1.335700	-1.520635	0.101529
4	-1.357737	-1.335700	-1.036535	1.249582
142	0.809831	1.444682	1.020892	-0.128082
143	0.695748	0.915085	0.536792	-1.276136
144	0.809831	1.047484	0.778842	-0.128082
145	0.923913	1.444682	0.415766	0.790361
146	0.752789	0.782686	0.052691	-0.128082

147 rows × 4 columns

In [5]: from sklearn.model_selection import train_test_split X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.25) #Splitting the data for testing(25%) and training (75%)

```
In [6]: #Training the model on our training data
    from sklearn.tree import DecisionTreeClassifier
    tree = DecisionTreeClassifier()
    tree.fit(X_train,Y_train)
```

```
In [7]: #Displaying decision tree
import pydotplus
from IPython.display import Image
from sklearn.tree import export_graphviz,export_text

graph = export_graphviz(tree,feature_names=X.columns,class_names=Y.unique(),filled=True)
graph = pydotplus.graph_from_dot_data(graph)
Image(graph.create_png())
```


4, 'support': 37}}


```
In [8]: from sklearn.metrics import accuracy score, confusion matrix, classification report
        Y pred = tree.predict(X test)
        print("Accuracy of the tree:",accuracy score(Y test,Y pred)*100)
        print("Confusion matrix:")
        mat = confusion matrix(Y test,Y pred)
        print(mat)
        report=classification report(Y test,Y pred,target names=Y.unique(), output dict=True)
        print("Classification report", report)
```

```
Accuracy of the tree: 97.2972972973
Confusion matrix:
[[10 0 0]
 [ 0 14 0]
 [ 0 1 12]]
Classification report {'setosa': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 10}, 'versicolor': {'p
recision': 0.933333333333333, 'recall': 1.0, 'f1-score': 0.9655172413793104, 'support': 14}, 'virginica': {'precisio
n': 1.0, 'recall': 0.9230769230769231, 'f1-score': 0.96000000000001, 'support': 13}, 'accuracy': 0.972972972972973,
'macro avg': {'precision': 0.97777777777777, 'recall': 0.9743589743589745, 'f1-score': 0.9751724137931035, 'suppor
t': 37}, 'weighted avg': {'precision': 0.9747747747747, 'recall': 0.972972972973, 'f1-score': 0.972898415657036
```

In [9]: !pip install mlxtend --upgrade --no-deps
 from mlxtend.plotting import plot_confusion_matrix
 import numpy as np
 plot_confusion_matrix(conf_mat=mat, colorbar=True, show_absolute=True, show_normed=True, class_names=Y.unique())

Requirement already up-to-date: mlxtend in /usr/local/lib/python3.7/dist-packages (0.18.0)


```
In [10]: import seaborn as sns
sns.heatmap(pd.DataFrame(report).T,annot=True)
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x7f83aee656d0>


```
In [11]: #Random sampling
limit=15
Ratio=0.25
acc=[]
for i in range(limit):
    X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=Ratio)
    clf=DecisionTreeClassifier(criterion="entropy")
    clf=clf.fit(X_train,Y_train)
    Y_pred=clf.predict(X_test)
    acc.append(accuracy_score(Y_test,Y_pred))
print(sum(acc)/limit*100)
```

93.6936936936937

```
In [12]: #K-cross validation
         from sklearn.model_selection import cross_val_score
         k=10
         score = cross_val_score(DecisionTreeClassifier(),X,Y,cv=k)
         print("Accuracy of 10 splits:",score*100)
         print("Mean accuracy:",score.mean()*100)
         Accuracy of 10 splits: [100.
                                               93.3333333 100.
                                                                        93.3333333 93.33333333
           86.6666667 93.3333333 92.85714286 100.
                                                              100.
         Mean accuracy: 95.28571428571428
In [13]: #For naive bayes classifer
         from sklearn.naive bayes import GaussianNB
         nb = GaussianNB()
In [14]: #For K-nearest neighours
         from sklearn.neighbors import KNeighborsClassifier
         kn = KNeighborsClassifier(n neighbors = 3)
```

```
In [15]: #Scatterplot for iris dataset
sns.pairplot(df,hue='species')
```

Out[15]: <seaborn.axisgrid.PairGrid at 0x7f83ad27b210>


```
In [16]: from sklearn.metrics import classification_report

def Accu_conf(clf,X,Y):
    #For holdout method
    X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.25)
    clf.fit(X_train,Y_train)

    Y_pred = clf.predict(X_test)
        report=classification_report(Y_test,Y_pred,target_names=Y.unique(), output_dict=True)

    print("Accuracy:",accuracy_score(Y_test,Y_pred)*100)
    print("Confusion_matrix:")
    print(confusion_matrix(Y_test,Y_pred))
    print("Classification_report:\n",report)
```

```
In [17]: #Accuracy and confusion matrix for different classifiers
    print("For K-nearest neighours:")
    Accu_conf(kn,X,Y)

    print("\nFor Naive-Bayes classifier")
    Accu_conf(nb,X,Y)

    print("\nFor Decision tree classifier")
    Accu_conf(tree,X,Y)
```

```
For K-nearest neighours:
Accuracy: 91.8918918919
Confusion matrix:
[[15 0 0]
[ 0 10 1]
[0 2 9]]
Classification report:
{'setosa': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 15}, 'versicolor': {'precision': 0.83333333
33333334, 'recall': 0.9090909090909091, 'f1-score': 0.8695652173913043, 'support': 11}, 'virginica': {'precision': 0.
9, 'recall': 0.8181818181818182, 'f1-score': 0.8571428571428572, 'support': 11}, 'accuracy': 0.9189189189199, 'macr
o avg': {'precision': 0.911111111111111, 'recall': 0.90909090909090, 'f1-score': 0.9089026915113871, 'support': 3
7}, 'weighted avg': {'precision': 0.9207207207207209, 'recall': 0.918918918919, 'f1-score': 0.9187510491858317, 's
upport': 37}}
For Naive-Bayes classifier
Accuracy: 86.48648648648
Confusion matrix:
[[10 0 0]
[ 0 11 1]
[ 0 4 11]]
Classification report:
{'setosa': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 10}, 'versicolor': {'precision': 0.73333333
33333333, 'recall': 0.91666666666666666, 'f1-score': 0.8148148148148, 'support': 12}, 'virginica': {'precision': 0.
2, 'support': 37}, 'weighted avg': {'precision': 0.8797297297297296, 'recall': 0.8648648648648649, 'f1-score': 0.8648
648648648649, 'support': 37}}
For Decision tree classifier
Accuracy: 97.2972972973
Confusion matrix:
[[11 0 0]
[ 0 13 1]
 [ 0 0 12]]
Classification report:
{'setosa': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11}, 'versicolor': {'precision': 1.0, 'reca
11': 0.9285714285714286, 'f1-score': 0.962962962962963, 'support': 14}, 'virginica': {'precision': 0.923076923076923
1, 'recall': 1.0, 'f1-score': 0.960000000000001, 'support': 12}, 'accuracy': 0.972972972973, 'macro avg': {'preci
sion': 0.9743589743589745, 'recall': 0.9761904761904763, 'f1-score': 0.9743209876543211, 'support': 37}, 'weighted av
g': {'precision': 0.9750519750519752, 'recall': 0.9729729729737, 'f1-score': 0.9730130130130131, 'support': 37}}
```

```
In [18]: def k_fold_acc(clf,X,Y):
    score = cross_val_score(clf,X,Y,cv=10)
    return score.mean()*100
```

```
In [19]: import matplotlib.pyplot as plt

hist_acc=[]
hist_acc.append(k_fold_acc(tree,X,Y))
hist_acc.append(k_fold_acc(kn,X,Y))
hist_acc.append(k_fold_acc(nb,X,Y))

plt.ylim(90,100)
plt.bar(["Decision tree","K-nearest neighour","Naive bayes"],hist_acc)
```

Out[19]: <BarContainer object of 3 artists>


```
In [20]: X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.25)
    report = []
    tree.fit(X_train,Y_train)
    Y_pred = tree.predict(X_test)

    report.append(classification_report(Y_test,Y_pred,target_names=Y.unique(), output_dict=True))

    kn.fit(X_train,Y_train)
    Y_pred = kn.predict(X_test)

    report.append(classification_report(Y_test,Y_pred,target_names=Y.unique(), output_dict=True))

    nb.fit(X_train,Y_train)
    Y_pred = nb.predict(X_test)

    report.append(classification_report(Y_test,Y_pred,target_names=Y.unique(), output_dict=True))
    report.append(classification_report(Y_test,Y_pred,target_names=Y.unique(), output_dict=True))
    report.append(classification_report(Y_test,Y_pred,target_names=Y.unique(), output_dict=True))
```

```
Out[20]: [{'accuracy': 0.918918918918919,
           'macro avg': {'f1-score': 0.9253539253539254,
            'precision': 0.9208754208754208.
            'recall': 0.9315789473684211,
            'support': 37},
           'setosa': {'f1-score': 1.0, 'precision': 1.0, 'recall': 1.0, 'support': 8},
           'versicolor': {'f1-score': 0.918918918919,
            'recall': 0.8947368421052632,
            'support': 19},
           'virginica': {'f1-score': 0.8571428571428572,
            'precision': 0.81818181818182,
            'recall': 0.9,
            'support': 10},
           'weighted avg': {'f1-score': 0.9197537305645416,
            'precision': 0.9223314223314223,
            'recall': 0.918918918918919,
            'support': 37}},
          {'accuracy': 0.918918918918919,
            macro avg': {'f1-score': 0.9253539253539254,
            'precision': 0.9208754208754208,
            'recall': 0.9315789473684211,
            'support': 37},
           'setosa': {'f1-score': 1.0, 'precision': 1.0, 'recall': 1.0, 'support': 8},
           'versicolor': {'f1-score': 0.918918918919,
            'recall': 0.8947368421052632,
            'support': 19},
           'virginica': {'f1-score': 0.8571428571428572,
            'precision': 0.81818181818182,
            'recall': 0.9,
            'support': 10},
           'weighted avg': {'f1-score': 0.9197537305645416,
            'precision': 0.9223314223314223,
            'recall': 0.918918918918919,
            'support': 37}},
          {'accuracy': 0.918918918918919,
            'macro avg': {'f1-score': 0.9253539253539254,
            'precision': 0.9208754208754208,
            'recall': 0.9315789473684211,
            'support': 37},
```

```
'setosa': {'f1-score': 1.0, 'precision': 1.0, 'recall': 1.0, 'support': 8},
'versicolor': {'f1-score': 0.918918918918919,
   'precision': 0.944444444444444,
   'recall': 0.8947368421052632,
   'support': 19},
'virginica': {'f1-score': 0.8571428571428572,
   'precision': 0.81818181818182,
   'recall': 0.9,
   'support': 10},
'weighted avg': {'f1-score': 0.9197537305645416,
   'precision': 0.9223314223314223,
   'recall': 0.918918918919,
   'support': 37}}
```

```
In [21]:
    cat = ['setosa','versicolor','virginica']
    tree_prec=[]
    kn_prec=[]
    nb_prec=[]

    for i in cat:
        tree_prec.append(report[0][i]['precision'])
        kn_prec.append(report[1][i]['precision'])
        nb_prec.append(report[2][i]['precision'])

    plt.bar(cat,nb_prec,color='r',width=0.2,align='edge')
    plt.bar(cat,kn_prec,color='g',width=0.2,align='center')
    plt.bar(cat,tree_prec,color='b',width=0.1,align='edge')
    plt.ylim(0.8,1)
    plt.legend(['Naive bayes','K-nearest neighour','Decision tree'], loc ="upper center")
    plt.title('Precision for different classifiers')
```

Out[21]: Text(0.5, 1.0, 'Precision for different classifiers')

