PERSONALIZED
HEALTH INSURANCE
PREDICTION USING
ACTIVITY TRACKER

INTRODUCTION

THE IDEA

INTEGRATING DOMAINS

PROBLEM DEFINITION

By combining advanced analytics with wearable technology & personal information; insurers can give customers opportunities to take charge of their health insurance premium costs

DATASETS

TECHNOLOGIES

Fitbit Web API

Anaconda Navigator
-Numpy, Pandas, Seaborn, Matplotlib

Healthcare Dataset

APACHE SPARK 2.1.0

-Spark ML, SparkMLLib, SparkSQL

-pyspark

Docker

Zeppelin

Tableau

SYSTEM OVERVIEW

PROPOSED SYSTEM

EXTRACTION

HEALTHCARE DATASET

"age", "sex", "weight (in lbs)", "BMI", "no of dependents", "smoker?"

"heart-rate per minute", "weight-logs", "calories", "daily-activities", "active-minutes (very active, moderately active, fairly-active, sedentary-active)"

DataFrame				
Col1	Col2	Col3		

FEATURE IMPORTANCE

Mapping only fairly and very active minutes as they significantly contribute to the activity tracker and are relevant for insurance

FEATURE IMPORTANCE

Weight & BMI for each unique participant

Health insurance cost mapped across age & smoker attribute

ANALYSIS: THE PHASES

Fetched cleaned, structured & pre-processed data as an input

Performed Linear Regression by parameter tuning which best fits our model

thereby retaining only relevant features

PREDICTION & EVALUATION

INFORMATION VISUALIZATION

```
Number of records accounted for prediction
res661: Long = 31505
predictions: org.apache.spark.sql.DataFrame = [features: vector, label: int ... 1 more field]
+------+
| features|label| prediction|
+-----+
|[0.0,18.0,1.0,134...|21345|20936.050129858322|
```

RMSE as the evaluation metric to measure the accuracy

```
+-----+
only showing top 20 rows
rmse: Double = 324.8371506522351
324.8371506522351
Took 7 min 53 sec. Last updated by anonymous at May 06 2018, 5:49:17 PM. (outdated)
```

SCALABILITY

Helped the system to ingest and output larger data.

Scalable Linear Regression in large-scale environments.

CHALLENGES AND LIMITATIONS

Highly sensitive Data.

Data not readily available.

Use of consumer wearables within a clinical population is limited.

FUTURE SCOPE

Customization of medical treatment.

Identify whether the drivers are likely to be involved in an accident, or have their car stolen.

Chronic Disease management.

THANK YOU.