$\int x^n \mathrm{d}x = \frac{x^{n+1}}{n+1} + c ; \ n \neq -1$	
$\int \frac{1}{x} \mathrm{d}x = \ln x + c$	
$\int e^x dx = e^x + c$	
e T	Pravidla pro integrování
$\int a^x \mathrm{d}x = \frac{a^x}{\ln a} + c$	$\int a f(x) dx = a \int f(x) dx$
$\int \sin x \mathrm{d}x = -\cos x + c$	$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$
$\int \cos x \mathrm{d}x = \sin x + c$	Vnitřní složka je lineární = pokud nechceme dělat substituci $\int f(ax+b)\mathrm{d}x = \tfrac{1}{a}F(ax+b) + C$
J	Derivace spodku je vršek! První co u zlomku kontroluji!
$\int \frac{1}{(\sin x)^2} \mathrm{d}x = -\cot x + c$	$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + C$
0 1	Metoda per partes = integrace SOUČINU
$\int \frac{1}{(\cos x)^2} \mathrm{d}x = \operatorname{tg} x + c$	$\int u' v dx = u v - \int u v' dx$
$\int \frac{1}{x^2 + a^2} \mathrm{d}x = \frac{1}{a} \arctan \frac{x}{a} + c$	Integrace složené funkce - substituce t = volíme tak, aby po dosazení vypadla nezámá x. $\int f(\varphi(x)) \ \varphi'(x) \ \mathrm{d}x = \int f(t) \ \mathrm{d}t$

$\int x^n \mathrm{d}x = \frac{x^{n+1}}{n+1} + c ; \ n \neq -1$	
$\int \frac{1}{x} \mathrm{d}x = \ln x + c$	
$\int e^x dx = e^x + c$	
a	Pravidla pro integrování
$\int a^x \mathrm{d}x = \frac{a^x}{\ln a} + c$	$\int a f(x) dx = a \int f(x) dx$
$\int \sin x \mathrm{d}x = -\cos x + c$	$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$
C	Vnitřní složka je lineární = pokud nechceme dělat substituci
$\int \cos x \mathrm{d}x = \sin x + c$	$\int f(ax+b) \mathrm{d}x = \frac{1}{a}F(ax+b) + C$
$\int \frac{1}{(\sin x)^2} \mathrm{d}x = -\cot x + c$	Derivace spodku je vršek! První co u zlomku kontroluji! $\int \frac{f'(x)}{f(x)} \; \mathrm{d}x = \ln f(x) + C$
0 1	Metoda per partes = integrace SOUČINU
$\int \frac{1}{(\cos x)^2} \mathrm{d}x = \operatorname{tg} x + c$	$\int u'v dx = uv - \int uv' dx$
$\int \frac{1}{x^2 + a^2} \mathrm{d}x = \frac{1}{a} \arctan \frac{x}{a} + c$	Integrace složené funkce - substituce t = volíme tak, aby po dosazení vypadla nezámá x. $\int f(\varphi(x))\varphi'(x)\;\mathrm{d}x = \int f(t)\;\mathrm{d}t$