

Social Network Analysis

(SNA)

Dr. Rathachai Chawuthai

Department of Computer Engineering
Faculty of Engineering
King Mongkut's Institute of Technology Ladkrabang

Agenda

- Introduction
- SNA Properties
- Community Detection

Data Science Process

Introduction

Ref:

Definitions - Graph

A generalization of the simple concept of a set of dots, links, <u>edges</u> or arcs.

Representation: Graph G = (V, E) consists set of vertices denoted by V, or by V(G) and set of edges E, or E(G)

Edge Type

Directed: Ordered pair of vertices. Represented as (u, v) directed from vertex u to v.

Undirected: Unordered pair of vertices. Represented as {u, v}. Disregards any sense of direction and treats both end vertices interchangeably.

Edge Type

■ Loop: A loop is an edge whose endpoints are equal i.e., an edge joining a vertex to it self is called a loop. Represented as {u, u} = {u}

Multiple Edges: Two or more edges joining the same pair of vertices.

Ref:

Graph Type

Multigraph: G(V,E), consists of set of vertices V, set of Edges E and a function f from E to $\{\{u, v\} | u, v \mid V, u \neq v\}$. The edges e1 and e2 are called multiple or parallel edges if f (e1) = f (e2).

Representation Example: $V = \{u, v, w\}, E = \{e_1, e_2, e_3\}$

Graph Type

Directed Multigraph: G(V,E), consists of set of vertices V, set of Edges E and a function f from E to $\{\{u, v\} | u, v \ V\}$. The edges e1 and e2 are multiple edges if f(e1) = f(e2)

Representation Example: $V = \{u, v, w\}, E = \{e_1, e_2, e_3, e_4\}$

Ref:

Representation- Adjacency Matrix

• Example: Undirected Graph G (V, E)

	V	u	w
٧	0	1	1
u	1	0	1
W	1	1	0

Representation- Adjacency Matrix

• Example: Directed Graph G (V, E)

	V	u	w
٧	0	1	0
u	0	0	1
w	1	0	0

Representation- Adjacency Matrix

Example: Weighted Graph G (V, E, w)

	0	1	2	3	4	5
0				15	20	
1						25
2						
3	15	25				
4			30			10
5		25				

Ref:

Representation- Adjacency List

• Each node (vertex) has a list of which nodes (vertex) it is adjacent

Example: undirectd graph G (V, E)

node	Adjacency List
u	V,W
V	w, u
W	u,v

Complete Graph

Complete graph: K_n, is the simple graph that contains exactly one edge between each pair of distinct vertices.

Representation Example: K₁, K₂, K₃, K₄

Title

■ Cycle: C_n , $n \ge 3$ consists of n vertices v_1 , v_2 , v_3 ... v_n and edges $\{v_1, v_2\}$, $\{v_2, v_3\}$, $\{v_3, v_4\}$... $\{v_{n-1}, v_n\}$, $\{v_n, v_1\}$

Representation Example: C₃, C₄

Bipartite Graphs

In a simple graph G, if V can be partitioned into two disjoint sets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex V_2 (so that no edge in G connects either two vertices in V_1 or two vertices in V_2)

Application example: Representing Relations

Representation example: $V_1 = \{v_1, v_2, v_3\}$ and $V_2 = \{v_4, v_5, v_6\}$,

Complete Bipartite Graph

 \blacksquare $K_{m,n}$ is the graph that has its vertex set portioned into two subsets of m and n vertices, respectively There is an edge between two vertices if and only if one vertex is in the first subset and the other vertex is in the second subset.

Representation example: K_{2,3,} K_{3,3}

 $K_{3,3}$

Subgraphs

■ A subgraph of a graph G = (V, E) is a graph H =(V', E') where V' is a subset of V and E' is a subset of E

Application example: solving sub-problems within a graph

More Graphs

Go to

http://www.orbifold.net/Mathematica/Networks/

Properties

Degree

Degree

- Min Degree
- Max Degree
- Average Degree

Degree Distribution

Degree distribution in large-scale networks often follows a power law, that is, the fraction *p*(*x*) of nodes in the network having *x* connections to other nodes goes for large values of *x* as:

$$p(x) = Cx^{-\alpha}, \ x \ge x_{min}, \ \alpha > 1$$

A.k.a. long tail distribution, scale-free distribution

Degree Distribution

Degree distribution in large-scale networks often follows a power law, that is, the fraction *p*(*x*) of nodes in the network having *x* connections to other nodes goes for large values of *x* as:

$$p(x) = Cx^{-\alpha}, \ x \ge x_{min}, \ \alpha > 1$$

A.k.a. long tail distribution, scale-free distribution

Log-Plot

Power law distribution becomes a straight line if plotted in a log-log scale

Dense/Sparse

Density

• In mathematics, a dense graph is a graph in which the number of edges is close to the maximal number of edges. The opposite, a graph with only a few edges, is a sparse graph. The distinction between sparse and dense graphs is rather vague, and depends on the context.

$$D = \frac{2|E|}{|V| (|V| - 1)}$$

$$D = \frac{|E|}{|V| (|V| - 1)}$$

Centrality

Content

Closeness Centrality

• In a connected graph, the normalized closeness centrality (or closeness) of a node is the average length of the shortest path between the node and all other nodes in the graph. Thus the more central a node is, the closer it is to all other nodes. Closeness was defined by Bavelas (1950) as the reciprocal of the farness, that is:

$$C(x) = \frac{N-1}{\sum_{y} d(y, x)}$$

- where **d(x,y)** is the distance between vertices **x** and **y**. However, when speaking of closeness centrality, people usually refer to its normalized form, generally given by the previous formula multiplied by **N-1**, where **N** is the number of nodes in the graph. This adjustment allows comparisons between nodes of graphs of different sizes.
- Taking distances from or to all other nodes is irrelevant in undirected graphs, whereas it can produce totally different results in directed graphs (e.g. a website can have a high closeness centrality from outgoing link, but low closeness centrality from incoming links).

Ref:

Closeness Centrality

$$C(x) = \frac{N-1}{\sum_{y} d(y,x)}$$

$$C(A) = \frac{5 - 1}{d(B, A) + d(C, A) + d(D, A) + d(E, A)}$$

$$C(A) = \frac{4}{1+2+1+1} = \frac{4}{5} = 0.8$$

Ref:

Other Centrality

- Degree centrality
- Closeness Centrality
- Harmonic centrality
- Betweenness centrality
- Eigenvector centrality
- Katz centrality
- PageRank centrality
- Percolation centrality
- Cross-clique centrality
- Freeman Centralization

Similarity

Similarity

Jaccard Index

$$w(f1, f2) = \frac{|\Gamma(f1) \cap \Gamma(f2)|}{|\Gamma(f1) \cup \Gamma(f2)|} = \frac{|\{h1, h2\} \cap \{h2\}|}{|\{h1, h2\} \cup \{h2\}|} = \frac{|\{h2\}|}{|\{h1, h2\}|}$$

$$=\frac{1}{2}$$
 = 0.50

Similarity Indices

 $\Gamma(n)$ is a function that returns a set of nodes that interact with the node n. Example: $\Gamma(f2) = \{ h1, h2 \}$

- Common Neighbors (CN): $|\Gamma(x) \cap \Gamma(y)|$
- Jaccard Index: $\frac{|\Gamma(x) \cap \Gamma(y)|}{|\Gamma(x) \cup \Gamma(y)|}$
- Sørensen index: $\frac{|\Gamma(x) \cap \Gamma(y)|}{|\Gamma(x)| + |\Gamma(y)|}$
- Hub Depressed Index (HDI): $\frac{|\Gamma(x) \cap \Gamma(y)|}{\max(\Gamma(x), \Gamma(y))}$
- Resource Allocation Index (RA) : $\sum_{Z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{|z|}$

Similarity

.

Projection

Bipartite Graph

Community Detection

Modularity Maximization

- Modularity is a measure of the network structure.
- It was designed to evaluate the strength of division of a network into modules (also called groups, clusters or communities).
- Networks with high modularity have dense connections between the nodes within modules but sparse connections between nodes in different modules.
- Modularity is often used in optimization methods for detecting community structure in networks
- A simple calculation is good for unweighted and undirected graphs

Community Structure in SNA

• (image)

Community Structure in SNA

• (image)

Community Structure in SNA

$$Q = \frac{1}{2m} \sum_{i,j \in C} \left(A_{i,j} - \frac{d_i d_j}{2m} \right)$$

$$Q = \frac{1}{2m} \sum_{i,j \in C} \left(A_{i,j} - \frac{d_i d_j}{2m} \right)$$

Every pairs of nodes i and j being in the same community

$$Q = \frac{1}{2m} \sum_{i,j \in C} \left(A_{i,j} - \frac{d_i d_j}{2m} \right)$$

m is the number of links

$$Q = \frac{1}{2m} \sum_{i,j \in C} \left(A_{i,j} - \frac{d_i d_j}{2m} \right)$$

Adjacency matrix

If having link, $A_{i,j} = 1$ If having no link, $A_{i,i} = 0$

$$Q = \frac{1}{2m} \sum_{i,j \in C} \left(A_{i,j} - \frac{d_i d_j}{2m} \right)$$

probability a random edge would go between i and j

d is a degree of a node === number of edges connected

How To Calculate

$$A_{i,j} - \frac{d_i d_j}{2m} = 1 - \frac{4 \times 2}{2 \times 12} = 0.67$$

12 edges

$$m = 12$$

After Calculate

All edges have own Modularity Score

After Calculate

$$Q = ((0.75 + 0.75 + 0.63) + (0.5 + 0.5 + 0.63 + 0.67 + 0.75 - 0.75))/2m$$
$$= 0.184$$

Next Iteration

Candidate - A

$$Q = ((0.75 + 0.75 + 0.63) + (0.5 + 0.5 + 0.63 + 0.67 + 0.75 - 0.5 - 0.67 - 0.75))/2m$$
$$= 0.135$$

Candidate - B

$$Q = ((0.75 + 0.75 + 0.63 - 0.67) + (0.5 + 0.5 + 0.63 + 0.67 + 0.75 - 0.75))/2m$$
$$= 0.156$$
(B)

We Choose

$$Q = 0.156$$

Other Example

Cumulative Modularity Score for the two Communities: 2.67 + 2.87 = 5.54

Total Modularity Score for

Community [2, 3, 6, 8]

2.67

0 - (3)(4)/(2*15) = -0.40

2 - 4

Total Modularity Score for

Community [1, 2, 3, 4]

Ref:

(a)

Q = 5.54/2m

Cumulative Modularity Score for the two Communities: 0.23 + 0.23 = 0.46

(b)

Q = 0.44/2m

1 - (3)(3)/(2*15) = 0.70

2.87

Walk Trap

Random Walk

Calculate Whole Modularity in every iteration

Every once in a while, a new technology, an old problem, and a big idea turn into an innovation.

99

Dean Kamen