應用資料探勘探討轉錄因子與選擇性剪切的潛在模式

吳旻昇、林子傑

分子生物學的中心教條

- DNA (遺傳訊息) →
 RNA (抄本) →
 蛋白質 (生理功能)
- 高等生物有非常複雜的生理功能
- 基因數量與複雜程度沒有絕對的正相關

選擇性剪切 (Alternative Splicing)

- 在真核生物中並非基因的全部都會轉譯 (translate) 成蛋白質
- Exon (外顯子)
 - 最後會轉譯成蛋白的元件
- Intron (內含子)
 - 在轉錄 (transcription) 後的修飾過程中被剪接去除 (mRNA splicing)
- 透過剪切不同的Exon與Intron組合就可以製造出不同的蛋白

Modes of Alternative Splicing

Cartegni, L., Chew, S. L., & Krainer, A. R.5 (2002). *Nature Reviews Genetics*, 3(4) 285.

Gene structure

Regulation of Alternative Splicing

- *cis*-acting elements
 - Exon splicing enhancer (ESE)
 - Exon splicing silencer (ESS)
 - Intron splicing enhancer (ISE)
 - Intron splicing silencer (ISS)
- *trans*-acting elements
 - Alternative Splicing Factor
 - Transcription Factor

Matlin, A. J., Clark, F., & Smith, C. W. (2005). Nature reviews. Molecular cell biology, 6(5), 386.

深度學習預測選擇性剪切

Regulation of Alternative Splicing

- cis-acting elements
 - Exon splicing enhancer (ESE)
 - Exon splicing silencer (ESS)
 - Intron splicing enhancer (ISE)
 - Intron splicing silencer (ISS)
- *trans*-acting elements
 - Alternative Splicing Factor
 - Transcription Factor

Keren, H., Lev-Maor, G., & Ast, G. (2010). *Nature Reviews Genetics*, 11(5), 345.

Distal DNA Element can influence AS

- Chromatin is organized in a 3D struction
- Distal DNA element may have tightly connection
- Hi-C Sequencing reveal complex 3D chromatin structure in nucleolus

CTCF Promote Alternative mRNA

Ong, C. T., & Corces, V. G. (2014). *Nature reviews. Genetics*, 15(4), 234.

目標

Gene expression is regulated by TF. How about alternative splicing?

資料來源

- Drosophila melanogaster (果蠅)
- Genomic data
 - Ensembl BDGP6
 - https://www.ensembl.org/Drosophila_melanogaster/Info/Index
- Annotation
 - o BDGP6.90
- FAIRE-Seq & RNA-Seq from NCBI GEO Database
 - GES38727, GSE40739 ,GSE62558
 - https://www.ncbi.nlm.nih.gov/geo/

Ensembl

Next Generation Sequencing

- Procs
 - 高通量 (High-Through)
 - 單位成本低廉
- Concs
 - 短讀長 (short reads)
 - 相對低的準確率
- 需要有效率演算法來處理數據

FAIRE-Seq

- 與轉錄因子結合的DNA區域, 染色質會呈現打開的狀態 (chromatin-accessible)
- 利用formaldehyde固定具有Protein-DNA interaction的區域
- 分離chromatin-accessible的DNA

Tsompana, M., & Buck, M. J. (2014). *Epigenetics & chromatin*, 7(1), 33.

RNA-Seq

- 利用定序來定量以及定性基因的表現量
- 直接定序不同的 Isoform
- 可用來研究選擇性剪切

Wang, Z., Gerstein, M., & Snyder, M. (2009). Nature reviews genetics, 10(1), 57.

資料前處理

- RAW NGS data
 - Trimmomaitc (QC)
- RNA-Seq
 - HISAT2 (Short Reads Mapping)
 - CATANA (AS events from annotation)
 - MISO (Quantify AS events)
- FAIRE-Seq
 - Bowtie2 (Short Reads Mapping)
 - MACS2 (Peak Calling)
 - CIS-BP (Motif Database)
 - RAST: Matrix-SCAN (Find TF Binding sites in Peak)

Feature extraction

Targets

- 只取一個基因的第一個Exon Skipping Event
- 利用MISO計算PSI值
- 依PSI值分成H/L兩類
 - H > 0.7, L < 0.1

Exon Skip Percent Splice In (PSI): 8 / 10 = .8 (Exon 2 included in 80% of transcripts)

Spliced: 2071 Retained: 1715

Deep Learning Model

- Activation Function: ELU with Batch Normalization
- CNN
 - Conv1D -> Max Pooling -> Flatten -> FC1 -> FC2 -> Output (Softmax)
 - o Dropout (rate): 0.5
- DNN
 - Flatten -> FC1 -> FC2 -> FC3 -> FC4 -> Output (Softmax)
 - Dropout (rate)
 - FC1,2: 0.5
 - FC3,4: 0.2

Deep Learning Model

- Mini Batch training
 - o Batch size: 128
- Initial learning rate: 0.001
- L2 regularization
 - Wight decay
 - CNN: 0.01
 - DNN: 0.001
- Optimizer: Adam
- Train/Validation/Test: 2832/246/708

Training

Orange: DNN, Blue: CNN

10-fold Cross Validation

CNN

- o Loss: 0.310 +- 0.032
- Accuracy: 87.13 +- 1.59%

DNN

- o Loss: 0.631 +- 0.104
- Accuracy: 90.16 +- 0.96%

模型評估

- 從PSI轉換成H/L類別 (Spliced/Retained) 時沒有平衡兩個類別
- 所以分類的混淆矩陣兩個類別稍有不平衡

XGBoost

- Deep Learning很強大, 但是不能夠解釋究竟那個Feature (TF)是影響選擇性剪切的關鍵
- XGBoost
 - A Scalable Tree Boosting System
 - 實際上除了Boosting, XGBoost同時也做了Bagging
 - 同時利用一階導數及二階導數來優化權重
 - 可以利用Information Gain來找出Feature Importance

XGBoost

- N_estimators: 500
- Learning_rate: 0.1
- Max_deepth: $sqrt(n_TF) = \sqrt{307}$
- Train/Test split: 0.8/0.2
- Performance
 - Accuracy: 81.66%
 - o AUROC: 0.92

模型評估

稍微Unbalance

5-fold Cross-Validation

Accuracy: 83.44 +- 0.93%

• AUC: 0.924 +- 0.009

- 因爲TF在每個Fold中的Feature Importance有時變化很大
 - 利用5個Fold的Rank做平均
 - 避免訓練時Stochastic的影響

Top 50 Feature importances

Top-10 TF

- 1. T106105_1.02 (0.014262) (Hsf)
- 2. T109678_1.02 (0.014078) (Adf1)
- 3. T057697 1.02 (0.013909) (lola)
- 4. T057669_1.02 (0.013463) (hb)
- 5. T057730_1.02 (0.012457) (jim)
- 6. T057664_1.02 (0.012262) (Cf2)
- 7. T060516_1.02 (0.011338) (rn)
- 8. T000289_1.02 (0.011273) (br)
- 9. T057806_1.02 (0.010726) (CTCF, CCCTC-binding factor)
- 10. T142244_1.02 (0.010704) (Mad)

Previous study

ARTICLE

doi:10.1038/nature10442

CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing

Sanjeev Shukla¹, Ersen Kavak^{2,3}, Melissa Gregory¹, Masahiko Imashimizu⁴, Bojan Shutinoski¹, Mikhail Kashlev⁴, Philipp Oberdoerffer¹, Rickard Sandberg^{2,3} & Shalini Oberdoerffer¹

Shukla S et al. (2011) Nature. 479:74-79

Kornblihtt AR (2012) Cell Res. 22(3):450-2

結論

- 透過深度學習以及XGBoost發現轉錄因子與選擇性剪切存在潛在的Pattern
- 轉錄因子極有可能是調控選擇性剪切的因子之一。
 - CTCF已經被證實能夠調控Exon Skipping (哺乳類)
 - CTCF在果蠅都發現可能存在調控 AS功能
 - TF調控AS的機制具有廣泛性,因此可能在很早期的真核生物就已經存在 (待更多證據)
- 沒有少數重要的TF,所以Combiorial Effect是需要被考慮的
- 資料探勘協助發現潛在的生物問題與機制

生物問題 Title Title

產生資料與結果

Data-Driven Biological Research

重新分析

生物學家

給予生物學家Inslight

