A Speckle Reduction Algorithm Using The À Trous Wavelet Transform

by
Stewart I. Fraser and Alastair R. Allen

Department of Engineering, University of Aberdeen, Scotland, UK

Introduction

- Speckle noise.
- Speckle reduction using the Orthogonal Discrete Wavelet Transform (ODWT).
- Speckle reduction using the À Trous WT.
- Quantitative filter results.
- Conclusions.

Speckle Noise

- Interference of coherent light/waves.
- Ultrasonic imaging, holography and radar.
- 'Blobs' of different shape, size and position.
- Engineers regard speckle as form of noise.
- Speckle noise is multiplicative in nature.

Speckle Reduction Using the ODWT

- Log transform, speckle to additive Gaussian noise.
- Donoho's optimal threshold calculation:

$$t = \gamma \sigma \sqrt{2 \log(n)/(n)}$$

Threshold applied globally to all coefficients.

Threshold Application

De-noised Images

Original

Noisy

Hard Thresh

Soft Thresh

The À Trous WT

- No decimation performed.
- B₃-spline scaling function used to smooth image.
- Sampling distance of the scaling function increases.
- Reconstruction:
 Residual+WL4+WL3+
 WL2+WL1 = Input Image.

Noise in the À Trous Wavelet Domain

- No decimation and smoothing performed.
- Noise measure within wavelet levels decreases as analysis becomes coarser.
- Global threshold inappropriate.
- Threshold for each wavelet level j required.
- Calculated by passing simulated noise image (STD = 1) through À Trous WT:

$$\sigma_j = \sigma_I \sigma_j^s$$

Quantifying Speckle Reduction

- Manually select a 7×7 box within a homogeneous region in the test image.
- Speckle strength defined as STD/mean ratio.
- Speckle Reduction (SR) given by:

$$SR = 1 - \frac{Speckle\ strength\ after\ filtering}{Speckle\ strength\ before\ filtering}$$

Quantifying Edge Sharpness

- Manually select a 7×7 box about an edge in the test image.
- Calculate the mean values either side of the edge.
- Edge sharpness (ES) defined as the absolute difference between means; quantified by:

$$ES = \frac{Edge\ sharpness\ after\ filtering}{Edge\ sharpness\ before\ filtering}$$

Quantifying Filter Performance

- Measure SR and ES three times in each image.
- Average each, giving SR and ES
- Both SR and ES will be bounded to range 0-1.
- Hence, the overall ability of a filter to reduce speckle and preserve edges can be quantified via the filter performance (FP):

$$FP = \sqrt{\overline{SR} \bullet \overline{ES}}$$

Parameters for Tested Filters

- Median filter parameters chosen to maximize the image smoothing.
- Lee and wavelet filter parameters chosen to give de-noised images that are visually clean and unblurred.
- De-noised images using Lee and wavelet filters have identical PSNR values.

Quantitative Results

Conclusions

- An iterative filtering algorithm for the shiftinvariant À Trous WT introduced.
- Filter performance metric established.
- Overall, the introduced filter algorithm was shown to outperform the Lee and median filters.

De-noised Lena Images

Original Lena

Lee Filter

Median Filter

Wavelet Filter

De-noised Pepper Images

Original Peppers

Lee Filter

Median Filter

Wavelet Filter

De-noised Ultrasound Images

Original

Wavelet Filter

Approximation (With Holes)

Edge Sharpness

PSNR Values for the Images

	Lena	Peppers	F16	Goldhill
original	24.16	22.9	19.94	23.59
median	25.03	24.35	21.91	23.63
Lee	29.32	28.22	25.92	26.75
wavelet	29.32	28.22	25.92	26.75

