

SDR Based NavIC and GPS Receiver

Source: <u>TechCrunch</u>

Shubham, Tanay Kumar, Jitu Sanwale, Mangal Kothari

Presenter: Tanay Kumar

Contents

- 1.Introduction
- 2.Paper Contribution
- 3. Problem Formulation
- 4. Hardware Architecture

- 5. Software Architecture
- 6. Experimental Setup
- 7. Result and Analysis
- 8. Conclusion and Future Work

Introduction Software Defined Radio (SDR)

Aim: Build a high-performance, upgradeable, and flexible navigation system using SDR.

SDR	Advantages	Limitations Limited RF performance, Latency issues, Low processing power	
ADALM-PLUTO	Affordable, Portable, Broad frequency range, Versatile		
USRP	High RF performance, Wide bandwidth, Low latency	Expensive, Bulky, High power consumption	
HackRF One	Affordable, Portable, Open-source support	Limited RF performance, Lower sampling rate, Noisy hardware	
RTL-SDR	Affordable, Easy to use, Broad frequency range	Limited frequency precision, Low sampling rate	

Paper Contributions

Challenges Addressed:

- High Performance and low latency.
- Multi-constellation navigation support.
- Cost effectiveness and scalability.
- Compatibility with new GNSS protocols.

Proposed Solution:

- RISC-V architecture for cost-effective, open-standard hardware and customizable SDR implementation.
- Developing custom algorithms for enhanced signal acquisition, tracking, and decoding.

Problem Formulation

NAIN INSTITUTE OF TECHNOLOGY OF THE PROPERTY O

Why RISC-V?

Aspect	RISC-V	ARM	
Architecture	 Open Source and modular. Easily customizable for SDR-specific needs. 	 Proprietary and fixed. Limited customization for application-specific designs. 	
Cost	No licensing fees.Ideal for cost-effective development.	 Requires licensing fees, increasing development costs. 	
Flexibility	 Fully adaptable for GNSS protocols (e.g., NavIC, GPS, Galileo). 	 Adaptation limited by pre-defined IP and licensing restrictions. 	
Performance	 Optimized for specific GNSS functions (acquisition, tracking, navigation). 	 General-purpose cores may require additional optimization layers for SDR applications. 	
Upgradability	 Firmware updates allow rapid upgrades for evolving GNSS standards 	 Limited by vendor-defined architecture and firmware policies 	

Problem Formulation

Sapphire SoC

- Built on VexRiscv core.
- Quantum® architecture enables dynamic optimization of logic and routing resources.
- Power-conscious design suitable for SDR applications.
- Integrates processing cores, memory, and I/O subsystems, optimized for highperformance applications

Hardware Architecture

Key Components

- •NT1066 EVK RF IC: Supports multi-GNSS signal reception, including NavIC, GPS, GLONASS, and Galileo.
- **Trion T120 FPGA Board:** Enables real-time processing of GNSS signals with high precision.
- Low Voltage Differential Signaling (LVDS): Maintains signal integrity and reliability in high-speed data transmission.

Trion T120 BGA324 Board

Hardware Architecture

Software Architecture

Signal Processing Stages

Acquisition

Tracking

Data Decoding

Implementation

- FPGA handles baseband processing.
- Custom Python modules compute navigation data and PVT solutions.
- Real-time data managed by Direct Memory Access (DMA) controller.

Flow graph of the developed receiver

Experimental Setup

System Components

- Host PC: Windows 10, Intel Core i5 processor, 8GB RAM, serving as the central control and data processing unit.
- FPGA Board: Efinix Trion T120 for efficient real-time signal processing.
- NT1066 RF IC: Connected via an LVDS expansion card to ensure high-speed and reliable signal acquisition.

Integration

- USB interface establishes seamless communication between the host PC and FPGA board.
- All necessary drivers and processing modules are configured for smooth and efficient operation.

Signal Acquisition

NavIC Acquisition Results

GPS Acquisition Results

Signal Quality (Tracking)

NavIC Carrier to noise density ratio

GPS Carrier to noise density ratio

Position Scatter Plots

NavIC Latitude-Longitude-Altitude Scatter Plot

GPS Latitude-Longitude-Altitude Scatter Plot

WGS84 Plots

NavIC WGS84 X-Y-Z

GPS WGS84 X-Y-Z

ENU Position Error Variation

NavIC ENU Position Error Variation

GPS ENU Position Error Variation

Performance Analysis

Performance measures	IRNSS	GPS
No. of Satellites	5	8
GDOP	4.11	2.15
HDOP	3.08	1.59
TDOP	2.16	0.99
VDOP	1.67	1.04
PDOP	3.50	1.90

Conclusion

- Presented a real-time SDR-based GNSS receiver for IRNSS/NavIC and GPS using RISC-V and Sapphire SoC.
- Demonstrated multi-constellation support for accurate and reliable navigation.
- Highlighted flexibility and upgradeability for GNSS applications, ensuring future-proof design.

Future Work

Hardware and Software Optimization

- Improve integration for enhanced system performance.
- Leverage complete IRNSS/NavIC broadcast data for better accuracy.

Precise Positioning

Utilize atmospheric and dual-frequency corrections for refined navigation solutions.

Real-Time Performance

Enhance speed and responsiveness for real-time applications.

Precise Positioning

Expand compatibility to include additional GNSS constellations...

References

- Mitola, J., "Software radios-survey, critical evaluation, and future directions,", 1992. https://doi.org/10.1109/NTC.1992.267870
- "Software Defined Radio Forum,", Accessed: 15 May 2024. URL http://www.sdrforum.org.
- "Analog Devices ADALM-PLUTO Overview,", Accessed 15 May 2024. URL https://wiki.analog.com/university/tools/pluto
- "Universal Software Radio Peripheral,", Accessed 15 May 2024. URL https://en.wikipedia.org/wiki/Universal_Software_Radio_Peripheral.
- "HackRF Documentation,", Accessed 15 May 2024. URL https://hackrf.readthedocs.io/en/latest/index.html
- "About RTL-SDR,", Accessed 15 May 2024. URL https://www.rtl-sdr.com/about-rtl-sdr/
- "Sapphire RISC-V SoC,", Accessed 15 May 2024. URL https://www.efinixinc.com/products-riscv.html
- "Efinix,", Accessed 15 May 2024. URL https://www.efinixinc.com/index.html.
- "NT1066 EVK RF IC Evaluation Kit," Online, Accessed: 18 May 2024. URL https://ntlab.lt/product/nt1066-evk-evaluation kit-2/.

References

- "Trion T120 BGA324 Board,", Accessed 16 May 2024. URL https://www.efinixinc.com/products-devkits-triont120bga324. html.
- Borre, K., and Akos, D., "A software-defined GPS and Galileo receiver: single-frequency approach," Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), 2005, pp. 1632–1637.
- Gold, R., "Optimal binary sequences for spread spectrum multiplexing (Corresp.)," IEEE Transactions on Information Theory, Vol. 13, No. 4, 1967, pp. 619–621. https://doi.org/10.1109/TIT.1967.1054048.
- Betz, J. W., Engineering satellite-based navigation and timing: global navigation satellite systems, signals, and receivers, John Wiley & Sons, 2015.
- "Efinity Software,", Accessed 15 May 2024. URL https://www.efinixinc.com/products-efinity.html.
- "Efinity® RISC-V Embedded Software IDE,", Accessed 15 May 2024. URL https://www.efinixinc.com/products-efinity-riscv ide.html.
- Fernandez-Prades, C., Arribas, J., and Closas, P., "Assessment of software-defined gnss receivers,"
 2016 8th ESA Workshop on Satellite Navigation Technologies and European Work

Thank you for your time!

Please feel free to contact me