Labbrapport Digital design-IE1204 KTH

Namn: Tegar Björkdahl

Program: CINTE22

Email: tegar@kth.se

Personnummer: 031014-6758

Syfte

Syftet med labben i modul 1 var att bygga en tre ingångars AND-grind med transistorerna p-MOS och n-MOS från det givna i labbkittet.

Metod

Ett kretsschema, för en tre ingångars AND-grind uppbyggd av p-MOS och n-MOS, ritades (se figur 1). Sanningstabellen för tre ingångars AND-grind framställdes (se figur 1). Sedan byggdes kretsen på brödskivan; då parallellkopplades p-MOS:arna, n-MOS:arna seriekopplades och tre knappar kopplades till varsin p-MOS och n-MOS. Parallellkopplingen och seriekoppling sammanfogades sedan och fördes vidare till en inverterare som bestod av en p-MOS och en n-MOS enligt figur 1. Utgången från inverteraren kopplades sedan till en ljusdiod som användes som en utsignal för att indikera om kretsen stämde överens med sanningstabellen (se figur 2).

Figur 1: Kretsschema för en tre ingångars AND-grind uppbyggd av p-MOS och n-MOS och sanningstabell för en tre ingångars AND-grind.

Figur 2: Brödskiva med kretsen från figur 1 uppbyggd.

Syfte

Syftet med labben i modul 2 var att bygga en krets med 16-bitars utsignaler som motsvarade laborantens födelsedatum i binära tal.

Metod

En tabell framställdes från datumet 20031014 där årets, månadens och dagens siffra konverterades till binära tal, med ytterligare tre bestämda bitar (001) (se figur 3). I årsbiten konverterades enbart den sista siffran i årtalet (i detta fall 3). Från denna tabell framställdes sedan en sanningstabell (se figur 4) som sedan användes för att ta fram en K-map (se figur 5). Från denna K-map användes inringningarna av 1:orna med SOP-form för att få fram det booleska uttrycket:

$$\bar{C}D + \bar{B}D + AB\bar{C} + \bar{A}\bar{B}C$$

Från detta uttryck användes rätt grindar för att framställa ett kretsschema som testades i logisim(se figur 6). Kretsen byggdes sedan på brödskivan med motsvarande grindar (se figur 7).

Yearbits			Monthbits			FIXED bits		Daybits								
3	2	1	0	3	2	1	0	2	1	0	4	3	2	1	0	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Rad
0	0	1	1	1	0	1	0	0	0	1	0	1	1	1	0	YDOB
																binärt

Figur 3: Tabell med år, månad, bestämd och dag bitar för datumet 20031014

Rad	D	С	В	Α	Υ
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	0

Figur 4: Tabell med år, månad, bestämd och dag bitar för datumet 20031014

CD/ AB	00	01	11	10	
00	0	1	1	1	
01	0	1	0	0	
11	1	1	0	0	
10	0	1	1	0	

Figur 5: K map för sanningstabell i tabell 2 med 1:orna inringade.

Figur 6: Krets från booleska uttrycket i Logisim.

Figur 7: Brödskiva med kretsen från figur 6.

Syfte

Syftet med labben i modul 3 var att bygga en FSM (finite state machine) utifrån ett state diagram som var beroende av laborantens födelsedatum.

Metod

State diagram version 21 användes då laborantens födelsedag är 14:e oktober (se figur 8). Från detta diagram framställdes en K-map för nästa tillstånd (se figur 9). Denna K-map resulterade i ytterligare två andra K-maps, en för Q_0 nästa tillstånd (Q_0^+) och en för Q_1 nästa tillstånd (Q_1^+) (se figur 10). Utifrån dessa K-maps framställdes ett kretsschema med multiplexers som sedan testades i logisim (se figur 11). Kretsen byggdes sedan på brödskivan med motsvarande integrerade kretsar (se figur 12 och 13).

October 1-15 Version 21 \

Figur 8: State diagram version 21

Figur 9: K-map för state diagrammet i figur 8

Figur 10: K-map för Q_0^+ och Q_1^+

Figur 11: Kretsschema i logisim utifrån K-maps i figur 10

Figur 12: Brödskiva med kretsen från figur 11

Figur 13: Brödskiva med kretsen från figur 11 från sidan

Syfte

Syftet med labben i modul 4 var att bygga en krets med ROM minne och en 7-segment display som visar laborantens födelsedatum.

Metod

Först skrevs laborantens födelsedatum (20031014) om till binära tal (se figur 14). Sedan kopplades 7-segment decoder (CD4543B) till 7-segment display, decoder (74HC138) och counter med klocka (74HC161) på brödskivan enligt instruktionerna i labben med laborantens födelsedatum integrerad i kretsen (se figur 15).

Segment	D	С	В	А
0	0	0	1	0
1	0	0	0	0
2	0	0	0	0
3	0	0	1	1
4	0	0	0	1
5	0	0	0	0
6	0	0	0	1
7	0	1	0	0

Figur 14: 20031014 i bära tal

Figur 15: Brödskiva med 7-segment display utifrån tabellen i figur 14