

Sequence Listing

- <110> Baker, Kevin Botstein, David Eaton, Dan Ferrara, Napoleone Filvaroff, Ellen Gerritsen, Mary Goddard, Audrey Godowski, Paul Grimaldi, Christopher Gurney, Austin Hillan, Kenneth Kljavin, Ivar Napier, Mary Roy, Margaret Tumas, Daniel Wood, William
- <120> SECRETED AND TRANSMEMBRANE POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE SAME
- <130> P2548P1C1
- <150> 60/067,411
- <151> December 3, 1997
- <150> 60/069,334
- <151> December 11, 1997
- <150> 60/069335
- <151> December 11, 1997
- <150> 60/069,278
- <151> December 11, 1997
- <150> 60/069,425
- <151> December 12, 1997
- <150> 60/069,696
- <151> December 16, 1997
- <150> 60/069,694
- <151> December 16, 1997
- <150> 60/069,702
- <151> December 16, 1997
- <150> 60/069,870
- <151> December 17, 1997
- <150> 60/069,873
- <151> December 17, 1997
- <150> 60/068,017
- <151> December 18, 1997
- <150> 60/070,440

- <151> January 5, 1998
- <150> 60/074,086
- <151> February 9, 1998
- <150> 60/074,092
- <151> February 9, 1998
- <150> 60/075,945
- <151> February 25, 1998
- <150> 60/112,850
- <151> December 16, 1998
- <150> 60/113,296
- <151> December 22, 1998
- <150> 60/146,222
- <151> July 28, 1999
- <150> PCT/US98/19330
- <151> September 16, 1998
- <150> PCT/US98/25108
- <151> December 1, 1998
- <150> 09/216,021
- <151> December 16, 1998
- <150> 09/218,517
- <151> December 22, 1998
- <150> 09/254,311
- <151> March 3, 1999
- <150> PCT/US99/12252
- <151> June 22, 1999
- <150> PCT/US99/21090
- <151> September 15, 1999
- <150> PCT/US99/28409
- <151> November 30, 1999
- <150> PCT/US99/28313
- <151> November 30, 1999
- <150> PCT/US99/28301
- <151> December1, 1999
- <150> PCT/US99/30095
- <151> December 16, 1999
- <150> PCT/US00/03565
- <151> February 11, 2000
- <150> PCT/US00/04414
- <151> February 22, 2000

- <150> PCT/US00/05841
- <151> March 2, 2000
- <150> PCT/US00/08439
- <151> March 30, 2000
- <150> PCT/US00/14042
- <151> May 22, 2000
- <150> PCT/US00/20710
- <151> July 28, 2000
- <150> PCT/US00/32678
- <151> December 1, 2000
- <150> PCT/US01/06520
- <151> February 28, 2001
- <160> 120
- <210> 1
- <211> 2454
- <212> DNA
- <213> Homo Sapien
- <400> 1
- ggactaatct gtgggagcag tttattccag tatcacccag ggtgcagcca 50 caccaggact gtgttgaagg gtgttttttt tcttttaaat gtaatacctc 100 ctcatctttt cttcttacac agtgtctgag aacatttaca ttatagataa 150 gtagtacatg gtggataact tctactttta ggaggactac tctcttctga 200 cagtoctaga ctggtcttct acactaagac accatgaagg agtatgtgct 250 cctattattc ctggctttgt gctctgccaa acccttcttt agcccttcac 300 acategeact gaagaatatg atgetgaagg atatggaaga cacagatgat 350 gatgatgatg atgatgatga tgatgatgat gatgaggaca actctctttt 400 tccaacaaga gagccaagaa gccatttttt tccatttgat ctgtttccaa 450 tgtgtccatt tggatgtcag tgctattcac gagttgtaca ttgctcagat 500 ttaggtttga cctcagtccc aaccaacatt ccatttgata ctcgaatgct 550 tgatcttcaa aacaataaaa ttaaggaaat caaagaaaat gattttaaag 600 gactcacttc actttatggt ctgatcctga acaacaacaa gctaacgaag 650 attoacccaa aagcetttet aaccacaaag aagttgcgaa ggetgtatet 700 gtcccacaat caactaagtg aaataccact taatcttccc aaatcattag 750 cagaactcag aattcatgaa aataaagtta agaaaataca aaaggacaca 800

ttcaaaggaa tgaatgcttt acacgttttg gaaatgagtg caaaccctct 850 tgataataat gggatagagc caggggcatt tgaaggggtg acggtgttcc 900 atatcagaat tgcagaagca aaactgacct cagttcctaa aggcttacca 950 ccaactttat tggagcttca cttagattat aataaaattt caacagtgga 1000 acttgaggat tttaaacgat acaaagaact acaaaggctg ggcctaggaa 1050 acaacaaaat cacagatatc gaaaatggga gtcttgctaa cataccacgt 1100 gtgagagaaa tacatttgga aaacaataaa ctaaaaaaaa tcccttcagg 1150 attaccagag ttgaaatacc tccagataat cttccttcat tctaattcaa 1200 ttgcaagagt gggagtaaat gacttctgtc caacagtgcc aaagatgaag 1250 aaatetttat acagtgcaat aagtttatte aacaaceegg tgaaataetg 1300 ggaaatgcaa cctgcaacat ttcgttgtgt tttgagcaga atgagtgttc 1350 agcttgggaa ctttggaatg taataattag taattggtaa tgtccattta 1400 atataagatt caaaaatccc tacatttgga atacttgaac tctattaata 1450 atggtagtat tatatataca agcaaatatc tattctcaag tggtaagtcc 1500 actgacttat tttatgacaa gaaatttcaa cggaattttg ccaaactatt 1550 gatacataag gggttgagag aaacaagcat ctattgcagt ttcctttttg 1600 egtacaaatg atettacata aateteatge ttgaccatte etttetteat 1650 aacaaaaaag taagatattc ggtatttaac actttgttat caagcacatt 1700 ttaaaaagaa ctgtactgta aatggaatgc ttgacttagc aaaatttgtg 1750 ctctttcatt tgctgttaga aaaacagaat taacaaagac agtaatgtga 1800 agagtgeatt acactattet tattetttag taaettgggt agtaetgtaa 1850 tatttttaat catcttaaag tatgatttga tataatctta ttgaaattac 1900 cttatcatgt cttagagccc gtctttatgt ttaaaactaa tttcttaaaa 1950 taaagccttc agtaaatgtt cattaccaac ttgataaatg ctactcataa 2000 gagctggttt ggggctatag catatgcttt ttttttttta attattacct 2050 gatttaaaaa tctctgtaaa aacgtgtagt gtttcataaa atctgtaact 2100 cgcattttaa tgatccgcta ttataagctt ttaatagcat gaaaattgtt 2150 aggetatata acattgecae tteaacteta aggaatattt ttgagatate 2200 cctttggaag accttgcttg gaagagcctg gacactaaca attctacacc 2250

- <210> 2
- <211> 379
- <212> PRT
- <213> Homo Sapien
- <400> 2
- Met Lys Glu Tyr Val Leu Leu Leu Phe Leu Ala Leu Cys Ser Ala 1 5 10 15
- Lys Pro Phe Phe Ser Pro Ser His Ile Ala Leu Lys Asn Met Met
 20 25 30
- Leu Lys Asp Met Glu Asp Thr Asp Asp Asp Asp Asp Asp Asp Asp 35 40 45
- Asp Asp Asp Asp Glu Asp Asn Ser Leu Phe Pro Thr Arg Glu
 50 55 60
- Pro Arg Ser His Phe Phe Pro Phe Asp Leu Phe Pro Met Cys Pro 65 70 75
- Phe Gly Cys Gln Cys Tyr Ser Arg Val Val His Cys Ser Asp Leu 80 85 90
- Gly Leu Thr Ser Val Pro Thr Asn Ile Pro Phe Asp Thr Arg Met
 95 100 105
- Leu Asp Leu Gln Asn Asn Lys Ile Lys Glu Ile Lys Glu Asn Asp 110 115 120
- Phe Lys Gly Leu Thr Ser Leu Tyr Gly Leu Ile Leu Asn Asn Asn 125 130 135
- Lys Leu Thr Lys Ile His Pro Lys Ala Phe Leu Thr Thr Lys Lys 140 145 150
- Leu Arg Arg Leu Tyr Leu Ser His Asn Gln Leu Ser Glu Ile Pro 155 160 165
- Leu Asn Leu Pro Lys Ser Leu Ala Glu Leu Arg Ile His Glu Asn 170 175 180
- Lys Val Lys Lys Ile Gln Lys Asp Thr Phe Lys Gly Met Asn Ala 185 190 195
- Leu His Val Leu Glu Met Ser Ala Asn Pro Leu Asp Asn Asn Gly
 200 205 210

Ile	Glu	Pro	Gly	Ala 215	Phe	Glu	Gly	Val	Thr 220	Val	Phe	His	Ile	Arg 225
Ile	Ala	Glu	Ala	Lys 230	Leu	Thr	Ser	Val	Pro 235	Lys	Gly	Leu	Pro	Pro 240
Thr	Leu	Leu	Glu	Leu 245	His	Leu	Asp	Tyr	Asn 250	Lys	Ile	Ser	Thr	Val 255
Glu	Leu	Glu	Asp	Phe 260	Lys	Arg	Tyr	Lys	Glu 265	Leu	Gln	Arg	Leu	Gly 270
Leu	Gly	Asn	Asn	Lys 275	Ile	Thr	Asp	Ile	Glu 280	Asn	Gly	Ser	Leu	Ala 285
Asn	Ile	Pro	Arg	Val 290	Arg	Glu	Ile	His	Leu 295	Glu	Asn	Asn	Lys	Leu 300
Lys	Lys	Ile	Pro	Ser 305	Gly	Leu	Pro	Glu	Leu 310	Lys	Tyr	Leu	Gln	Ile 315
Ile	Phe	Leu	His	Ser 320	Asn	Ser	Ile	Ala	Arg 325	Val	Gly	Val	Asn	Asp 330
Phe	Суѕ	Pro	Thr	Val 335	Pro	Lys	Met	Lys	Lys 340	Ser	Leu	Tyr	Ser	Ala 345
Ile	Ser	Leu	Phe	Asn 350	Asn	Pro	Val	Lys	Tyr 355	Trp	Glu	Met	Gln	Pro 360
Ala	Thr	Phe	Arg	Cys 365	Val	Leu	Ser	Arg	Met 370	Ser	Val	Gln	Leu	Gly 375
Asn	Phe	Gly	Met											
<210 × <211 × <212 × <213 ×	> 20 > DN		cial	Sam	lenci	3								
<220>		ÇILI.	ciai	seq	uenc.	=								
<223>		nthe	tic (Olig	onuc:	leot	ide 1	Prob	е					
<400> ggaa		agt (gcaa	accci	tc 2	0								
<210> 4 <211> 24 <212> DNA <213> Artificial Sequence														
<220> <223> Synthetic Oligonucleotide Probe														
<400> 4 tcccaagctg aacactcatt ctgc 24														


```
<210> 5
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 5
gggtgacggt gttccatatc agaattgcag aagcaaaact gacctcagtt 50
<210> 6
<211> 3441
<212> DNA
<213> Homo Sapien
<400> 6
 eggacgegtg ggeggacgeg tgggeceges geacegeee eggeceggee 50
 ctccgccctc cgcactcgcg cctccctccc tccgcccgct cccgcgccct 100
 cetecetece teetececag etgtecegtt egegteatge egageetece 150
 ggccccgccg gccccgctgc tgctcctcgg gctgctgctg ctcggctccc 200
 ggccggcccg cggcgccggc ccagagcccc ccgtgctgcc catccgttct 250
 gagaaggagc cgctgcccgt tcggggagcg gcaggctgca ccttcggcgg 300
 gaaggtctat gccttggacg agacgtggca cccggaccta gggcagccat 350
 teggggtgat gegetgegtg etgtgegeet gegaggegee teagtggggt 400
 cgccgtacca ggggccctgg cagggtcagc tgcaagaaca tcaaaccaga 450
 gtgcccaacc ccggcctgtg ggcagccgcg ccagctgccg ggacactgct 500
 gccagacctg cccccaggag cgcagcagtt cggagcggca gccgagcggc 550
 ctgtccttcg agtatccgcg ggacccggag catcgcagtt atagcgaccg 600
 cggggagcca ggcgctgagg agcgggcccg tggtgacggc cacacggact 650
 tegtggeget getgacaggg eegaggtege aggeggtgge aegageeega 700
 gtctcgctgc tgcgctctag cctccgcttc tctatctcct acaggcggct 750
 ggaccgccct accaggatcc gcttctcaga ctccaatggc agtgtcctgt 800
 ttgagcaccc tgcagccccc acccaagatg gcctggtctg tggggtgtgg 850
 cgggcagtgc ctcggttgtc tctgcggctc cttagggcag aacagctgca 900
 tgtggcactt gtgacactca ctcacccttc aggggaggtc tgggggcctc 950
 tcatccggca ccgggccctg gctgcagaga ccttcagtgc catcctgact 1000
```

ctagaaggcc ccccacagca gggcgtaggg ggcatcaccc tgctcactct 1050

gaccggaget ggcgggcage gggtacgegg tggcacceeg ttgtgccccc 2550 ctttggctta attaagtgtg'ctgtctgcac ctgcaagggg ggcactggag 2600 aggtgcactg tgagaaggtg cagtgtcccc ggctgqcctg tgcccagcct 2650 gtgcgtgtca accccaccga ctgctgcaaa cagtgtccag tggggtcggg 2700 ggcccacccc cagctggggg accccatgca ggctgatggg ccccggggct 2750 geogttttge tgggeagtgg tteecagaga gteagagetg geaeceetca 2800 gtgccccctt ttggagagat gagctgtatc acctgcagat gtggggcagg 2850 qqtqcctcac tqtqaqcqqq atqactqttc actqccactq tcctqtqqct 2900 cqqqqaaqqa qaqtcqatqc tqttcccqct qcacqqccca ccqqcqqccc 2950 ccagagacca gaactgatcc agagctggag aaagaagccg aaggctctta 3000 qqqaqcaqcc aqaqqqccaa qtqaccaaqa qqatqqqqcc tqaqctqqqq 3050 aaggggtggc atcgaggacc ttcttgcatt ctcctgtggg aagcccagtg 3100 cetttgetee tetgteetge etetaeteee acceccaeta cetetgggaa 3150 ccacagetee acaaggggga gaggcagetg ggccagaccg aggtcacage 3200 caetecaagt eetgeeetge caecetegge etetgteetg gaagececae 3250 ccctttcctc ctgtacataa tgtcactggc ttgttgggat ttttaattta 3300 tottoactoa geaccaaggg coccegacae tecacteetg etgeceetga 3350 gctgagcaga gtcattattg gagagttttg tatttattaa aacatttctt 3400 tttcagtcaa aaaaaaaaa aaaaaaaaaa a 3441

<210> 7

<211> 954

<212> PRT

<213> Homo Sapien

<400> 7

Met Pro Ser Leu Pro Ala Pro Pro Ala Pro Leu Leu Leu Gly
1 5 10 15

Leu Leu Leu Gly Ser Arg Pro Ala Arg Gly Ala Gly Pro Glu 20 25 30

Pro Pro Val Leu Pro Ile Arg Ser Glu Lys Glu Pro Leu Pro Val
35 40 45

Arg Gly Ala Ala Gly Cys Thr Phe Gly Gly Lys Val Tyr Ala Leu
50 55 60

Asp Glu Thr Trp His Pro Asp Leu Gly Gln Pro Phe Gly Val Met 65 70 75

Arg	Cys	Val	Leu	Cys 80	Ala	Cys	Glu	Ala	Pro 85	Gln	Trp	Gly	Arg	Arg 90
Thr	Arg	Gly	Pro	Gly 95	Arg	Val	Ser	Cys	Lys 100	Asn	Ile	Lys	Pro	Glu 105
Cys	Pro	Thr	Pro	Ala 110	Cys	Gly	Gln	Pro	Arg 115	Gln	Leu	Pro	Gly	His 120
Cys	Cys	Gln	Thr	Cys 125	Pro	Gln	Glu	Arg	Ser 130	Ser	Ser	Glu	Arg	Gln 135
Pro	Ser	Gly	Leu	Ser 140	Phe	Glu	Tyr	Pro	Arg 145	Asp	Pro	Glu	His	Arg 150
Ser	Tyr	Ser	Asp	Arg 155	Gly	Glu	Pro	Gly	Ala 160	Glu	Glu	Arg	Ala	Arg 165
Gly	Asp	Gly	His	Thr 170	Asp	Phe	Val	Ala	Leu 175	Leu	Thr	Gly	Pro	Arg 180
Ser	Gln	Ala	Val	Ala 185	Arg	Ala	Arg	Val	Ser 190	Leu	Leu	Arg	Ser	Ser 195
Leu	Arg	Phe	Ser	Ile 200	Ser	Tyr	Arg	Arg	Leu 205	Asp	Arg	Pro	Thr	Arg 210
Ile	Arg	Phe	Ser	Asp 215	Ser	Asn	Gly	Ser	Val 220	Leu	Phe	Glu	His	Pro 225
Ala	Ala	Pro	Thr	Gln 230	Asp	Gly	Leu	Val	Cys 235	Gly	Val	Trp	Arg	Ala 240
Val	Pro	Arg	Leu	Ser 245	Leu	Arg	Leu	Leu	Arg 250	Ala	Glu	Gln	Leu	His 255
Val	Ala	Leu	Val	Thr 260	Leu	Thr	His	Pro	Ser 265	Gly	Glu	Val	Trp	Gly 270
Pro	Leu	Ile	Arg	His 275	Arg	Ala	Leu	Ala	Ala 280	Glu	Thr	Phe	Ser	Ala 285
Ile	Leu	Thr	Leu	Glu 290	Gly	Pro	Pro	Gln	Gln 295	Gly	Val	Gly	Gly	Ile 300
Thr	Leu	Leu	Thr	Leu 305	Ser	Asp	Thr	Glu	Asp 310	Ser	Leu	His	Phe	Leu 315
Leu	Leu	Phe	Arg	Gly 320	Leu	Leu	Glu	Pro	Arg 325	Ser	Gly	Gly	Leu	Thr 330
Gln	Val	Pro	Leu	Arg 335	Leu	Gln	Ile	Leu	His 340	Gln	Gly	Gln	Leu	Leu 345
Arg	Glu	Leu	Gln	Ala 350	Asn	Val	Ser	Ala	Gln 355	Glu	Pro	Gly	Phe	Ala 360
Glu	Val	Leu	Pro	Asn	Leu	Thr	Val	Gln	Glu	Met	Asp	Trp	Leu	Val

	365		370		375
Leu Gly Glu Le	u Gln Met 380	Ala Leu G	Glu Trp Al 385	a Gly Arg	Pro Gly 390
Leu Arg Ile Se	r Gly His 395	Ile Ala A	Ala Arg Ly 400	s Ser Cys	Asp Val 405
Leu Gln Ser Va	l Leu Cys 410	Gly Ala F	Asp Ala Le 415	u Ile Pro	Val Gln 420
Thr Gly Ala Al	a Gly Ser 425	Ala Ser I	Leu Thr Le 430	u Leu Gly	Asn Gly 435
Ser Leu Ile T	r Gln Val 440	Gln Val V	Val Gly Th 445	r Ser Ser	Glu Val 450
Val Ala Met Th	ır Leu Glu 455	Thr Lys I	Pro Gln Ar 460	g Arg Asp	Gln Arg 465
Thr Val Leu Cy	vs His Met 470	Ala Gly 1	Leu Gln Pr 475	o Gly Gly	His Thr 480
Ala Val Gly I	le Cys Pro 485	Gly Leu (Gly Ala Ar 490	g Gly Ala	His Met 495
Leu Leu Gln A	sn Glu Leu 500	Phe Leu i	Asn Val Gl 505	y Thr Lys	Asp Phe 510
Pro Asp Gly G	lu Leu Arg 515	Gly His	Val Ala Al 520	a Leu Pro	Tyr Cys 525
Gly His Ser A	la Arg His 530	Asp Thr	Leu Pro Va 535	l Pro Leu	Ala Gly 540
Ala Leu Val L	eu Pro Pro 545	Val Lys	Ser Gln Al 550	a Ala Gly	His Ala 555
Trp Leu Ser L	eu Asp Thr 560	His Cys	His Leu Hi 565	s Tyr Glu	Val Leu 570
Leu Ala Gly L	eu Gly Gly 575	Ser Glu	Gln Gly Th 580	er Val Thr	Ala His 585
Leu Leu Gly P	ro Pro Gly 590	Thr Pro	Gly Pro Ar 595	g Arg Leu	Leu Lys 600
Gly Phe Tyr G	ly Ser Glu 605	Ala Gln	Gly Val Va 610	al Lys Asp	Leu Glu 615
Pro Glu Leu L	eu Arg His 620	Leu Ala	Lys Gly Me 625	et Ala Ser	Leu Met 630
Ile Thr Thr L	ys Gly Ser 635	Pro Arg	Gly Glu Le 640	eu Arg Gly	Gln Val 645
His Ile Ala A	sn Gln Cys 650	Glu Val	Gly Gly Le 655	eu Arg Leu	Glu Ala 660

Ala	Gly	Ala	Glu	Gly 665	Val	Arg	Ala	Leu	Gly 670	Ala	Pro	Asp	Thr	Ala 675
Ser	Ala	Ala	Pro	Pro 680	Val	Val	Pro	Gly	Leu 685	Pro	Ala	Leu	Ala	Pro 690
Ala	Lys	Pro	Gly	Gly 695	Pro	Gly	Arg	Pro	Arg 700	Asp	Pro	Asn	Thr	Cys 705
Phe	Phe	Glu	Gly	Gln 710	Gln	Arg	Pro	His	Gly 715	Ala	Arg	Trp	Ala	Pro 720
Asn	Tyr	Asp	Pro	Leu 725	Cys	Ser	Leu	Cys	Thr 730	Cys	Gln	Arg	Arg	Thr 735
Val	Ile	Cys	Asp	Pro 740	Val	Val	Cys	Pro	Pro 745	Pro	Ser	Cys	Pro	His 750
Pro	Val	Gln	Ala	Pro 755	Asp	Gln	Cys	Сув	Pro 760	Val	Cys	Pro	Glu	Lys 765
Gln	Asp	Val	Arg	Asp 770	Leu	Pro	Gly	Leu	Pro 775	Arg	Ser	Arg	Asp	Pro 780
Gly	Glu	Gly	Cys	Tyr 785	Phe	Asp	Gly	Asp	A rg 790	Ser	Trp	Arg	Ala	Ala 795
Gly	Thr	Arg	Trp	His 800	Pro	Val	Val	Pro	Pro 805	Phe	Gly	Leu	Ile	Lys 810
Cys	Ala	Val	Cys	Thr 815	Cys	Lys	Gly	Gly	Thr 820	Gly	Glu	Val	His	Cys 825
Glu	Lys	Val	Gln	Cys 830	Pro	Arg	Leu	Ala	Cys 835	Ala	Gln	Pro	Val	Arg 840
Val	Asn	Pro	Thr	Asp 845	Cys	Cys	Lys	Gln	Cys 850	Pro	Val	Gly	Ser	Gly 855
Ala	His	Pro	Gln	Leu 860	Gly	Asp	Pro	Met	Gln 865	Ala	Asp	Gly	Pro	Arg 870
Gly	Cys	Arg	Phe	Ala 875	_	Gln	Trp	Phe	Pro 880		Ser	Gln	Ser	Trp 885
His	Pro	Ser	Val	Pro 890		Phe	Gly	Glu	Met 895		Cys	Ile	Thr	Cys 900
Arg	Cys	Gly	Ala	Gly 905		Pro	His	Cys	Glu 910	_	Asp	Asp	Cys	Ser 915
Leu	Pro	Leu	Ser	Cys 920	-	Ser	Gly	. Lys	Glu 925		Arg	Сує	Cys	Ser 930
Arg	Cys	Thr	Ala	His 935		Arg	Pro	Pro	Glu 940		Arg	Thr	. Asb	Pro 945
Glu	Leu	Glu	Lys	Glu	Ala	Glu	Gly	Ser	<u>-</u>					-

```
<210> 8
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide probe
 <210> 9
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 9
 eggacgegtg gggeetgege acceaget 28
<210> 10
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 10
geegeteece gaacgggeag eggeteette teagaa 36
<210> 11
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 11
 ggcgcacagc acgcagcgca tcaccccgaa tggctc 36
<210> 12
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
```

<400> 12

<210> 13

gtgctgccca tccgttctga gaagga 26

- <211> 22 <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 13
- gcagggtgct caaacaggac ac 22
- <210> 14
- <211> 3231
- <212> DNA
- <213> Homo Sapien
- <400> 14 ggeggageag cectageege caeegteget etegeagete tegtegeeae 50 tgccaccgcc geogeogtca ctgcgtectg getccggctc ccgcgccctc 100 ceggeeggee atgeageece geegegeeca ggegeeeggt gegeagetge 150 tgcccgcgct ggccctgctg ctgctgctgc tcggagcggg gccccgaggc 200 agetecetgg ceaaceeggt geeegeegeg ceettgtetg egeeegggee 250 gtgegeegeg cageeetgee ggaatggggg tgtgtgeace tegegeeetg 300 ageeggacee geageaceeg geeceegeeg gegageetgg ctacagetge 350 acetgeeceg cegggatete eggegeeaac tgeeagettg ttgeagatee 400 ttgtgccagc aaccettgtc accatggcaa ctgcagcagc agcagcagca 450 gcagcagcga tggctacctc tgcatttgca atgaaggcta tgaaggtccc 500 aactgtgaac aggcacttcc cagtctccca gccactggct ggaccgaatc 550 catggcaccc cgacagette ageotgttee tgetaeteag gageotgaca 600 aaatootgoo togototoag gcaacggtga cactgootac ctggcagccg 650 aaaacagggc agaaagttgt agaaatgaaa tgggatcaag tggaggtgat 700 cccagatatt gcctgtggga atgccagttc taacagctct gcgggtggcc 750 gcctggtatc ctttgaagtg ccacagaaca cctcagtcaa gattcggcaa 800 gatgccactg cctcactgat tttgctctgg aaggtcacgg ccacaggatt 850 ccaacagtgc teceteatag atggacgaag tgtgaccece etteaggett 900 cagggggact ggtcctcctg gaggagatgc tcgccttggg gaataatcac 950

tttattggtt ttgtgaatga ttctgtgact aagtctattg tggctttgcg 1000

cttaactctg gtggtgaagg tcagcacctg tgtgccgggg gagagtcacg 1050

tgtgaaacct atagacgatg ttttaatgta ccttcagetc tctaaactgt 2550 gtgcttctac tagtgtgtgc tcttttcact gtagacacta tcacgagacc 2600 cagattaatt tctgtggttg ttacagaata agtctaatca aggagaagtt 2650 tctgtttgac gtttgagtgc cggctttctg agtagagtta ggaaaaccac 2700 gtaacgtagc atatgatgta taatagagta tacccgttac ttaaaaagaa 2750 gtctgaaatg ttcgtttgt ggaaaagaaa ctagttaaat ttactattcc 2800 taacccgaat gaaattagcc tttgccttat tctgtgcatg ggtaagtaac 2850 ttatttctgc actgtttgt tgaactttgt ggaaacattc tttcgagttt 2900 gttttgtca tttcgtaac agtcgtcgaa ctaggcctca aaaacatacg 2950 taacgaaaag gcctagcgag gcaaattctg attgattga atctatattt 3000 ttctttaaaa agtcaagggt tctatattgt gagtaaatta aatttacatt 3050 tgagttgtt gttgctaaga ggtagtaaat gtaagagagt actggtcct 3100 tcagtagtga gtatttctca tagtgcagct ttatttatct ccaggatgtt 3150 tttgtggctg tatttgattg atagtgct cttctgattc ttgctaattt 3200 ccaaccatat tgaataaatg tgatcaagtc a 3231

<210> 15

<211> 737

<212> PRT

<213> Homo Sapien

<400> 15

Met Gln Pro Arg Arg Ala Gln Ala Pro Gly Ala Gln Leu Leu Pro 1 5 10 15

Ala Leu Ala Leu Leu Leu Leu Leu Gly Ala Gly Pro Arg Gly
20 25 30

Ser Ser Leu Ala Asn Pro Val Pro Ala Ala Pro Leu Ser Ala Pro 45

Gly Pro Cys Ala Ala Gln Pro Cys Arg Asn Gly Gly Val Cys Thr
50 55 60

Ser Arg Pro Glu Pro Asp Pro Gln His Pro Ala Pro Ala Gly Glu 65 70 75

Pro Gly Tyr Ser Cys Thr Cys Pro Ala Gly Ile Ser Gly Ala Asn 80 85 90

Cys Gln Leu Val Ala Asp Pro Cys Ala Ser Asn Pro Cys His His 95 100 105

Gly Asn Cys Ser Ser Ser Ser Ser Ser Ser Ser Asp Gly Tyr Leu

														100
				110					115					120
Cys	Ile	Cys	Asn	Glu 125	Gly	Tyr	Glu	Gly	Pro 130	Asn	Cys	Glu	Gln	Ala 135
Leu	Pro	Ser	Leu	Pro 140	Ala	Thr	Gly	Trp	Thr 145	Glu	Ser	Met	Ala	Pro 150
Arg	Gln	Leu	Gln	Pro 155	Val	Pro	Ala	Thr	Gln 160	Glu	Pro	Asp	Lys	Ile 165
Leu	Pro	Arg	Ser	Gln 170	Ala	Thr	Val	Thr	Leu 175	Pro	Thr	Trp	Gln	Pro 180
Lys	Thr	Gly	Gln	Lys 185	Val	Val	Glu	Met	Lys 190	Trp	Asp	Gln	Val	Glu 195
Val	Ile	Pro	Asp	Ile 200	Ala	Cys	Gly	Asn	Ala 205	Ser	Ser	Asn	Ser	Ser 210
Ala	Gly	Gly	Arg	Leu 215	Val	Ser	Phe	Glu	Val 220	Pro	Gln	Asn	Thr	Ser 225
Val	Lys	Ile	Arg	Gln 230	Asp	Ala	Thr	Ala	Ser 235	Leu	Ile	Leu	Leu	Trp 240
Lys	Val	Thr	Ala	Thr 245	Gly	Phe	Gln	Gln	Cys 250	Ser	Leu	Ile	Asp	Gly 255
Arg	Ser	Val	Thr	Pro 260	Leu	Gln	Ala	Ser	Gly 265	Gly	Leu	Val	Leu	Leu 270
Glu	Glu	Met	Leu	Ala 275	Leu	Gly	Asn	Asn	His 280	Phe	Ile	Gly	Phe	Val 285
Asn	Asp	Ser	Val	Thr 290	Lys	Ser	Ile	Val	Ala 295	Leu	Arg	Leu	Thr	Leu 300
Val	Val	Lys	Val	Ser 305	Thr	Cys	Val	Pro	Gly 310	Glu	Ser	His	Ala	Asn 315
Asp	Leu	Glu	Cys	Ser 320		Lys	Gly	Lys	Cys 325	Thr	Thr	Lys	Pro	Ser 330
Glu	Ala	Thr	Phe	Ser 335	_	Thr	Cys	Glu	Glu 340	Gln	Tyr	Val	Gly	Thr 345
Phe	Cys	Glu	Glu	Tyr 350	_	Ala	Cys	Gln	Arg 355	Lys	Pro	Cys	Gln	Asn 360
Asn	Ala	Ser	Суѕ	Ile 365	_	Ala	Asn	Glu	Lys 370	Gln	. Asp	Gly	Ser	Asn 375
Phe	Thr	Cys	Val	Cys 380		Pro	Gly	Tyr	Thr 385	Gly	Glu	Leu	Cys	Gln 390
Ser	Lys	Ile	Asp	Tyr 395		Ile	Leu	Asp	Pro 400	Cys	Arg	Asn	Gly	Ala 405

Thr Cys Ile S	Ser Ser Le 410	u Ser G		Thr Cys 415	Gln Cys	Pro	Glu 420
Gly Tyr Phe (Gly Ser Al 425	a Cys G		Lys Val 430	Asp Pro	Cys	Ala 435
Ser Ser Pro (Cys Gln As 440	n Asn G	-	Cys Tyr 445	Val Asp	Gly	Val 450
His Phe Thr	Cys Asn Cy 455	s Ser F	_	Phe Thr 460	Gly Pro	Thr	Cys 465
Ala Gln Leu	Ile Asp Ph 470	e Cys A	Ala Leu	Ser Pro 475	Cys Ala	His	Gly 480
Thr Cys Arg	Ser Val G 485	y Thr S	Ser Tyr	Lys Cys 490	Leu Cys	Asp	Pro 495
Gly Tyr His (Gly Leu Ty 500	r Cys G	Glu Glu	Glu Tyr 505	Asn Glu	Cys	Leu 510
Ser Ala Pro	Cys Leu As 515	n Ala A	Ala Thr	Cys Arg 520	Asp Leu	Val	Asn 525
Gly Tyr Glu	Cys Val Cy 530	s Leu A	Ala Glu	Tyr Lys 535	Gly Thr	His	Cys 540
Glu Leu Tyr	Lys Asp Pi 545	o Cys A	Ala Asn	Val Ser 550	Cys Leu	Asn	Gly 555
Ala Thr Cys	Asp Ser As 560	sp Gly I	Leu Asn	Gly Thr 565	Cys Ile	Cys	Ala 570
Pro Gly Phe	Thr Gly G 575	u Glu (Cys Asp	Ile Asp 580	Ile Asr	Glu	Cys 585
Asp Ser Asn	Pro Cys H: 590	s His (Gly Gly	Ser Cys 595	Leu Asp	Gln	Pro 600
Asn Gly Tyr	Asn Cys H: 605	s Cys I	Pro His	Gly Trp 610	Val Gly	Ala	Asn 615
Cys Glu Ile	His Leu G 620	n Trp I	Lys Ser	Gly His 625	Met Ala	Glu	Ser 630
Leu Thr Asn	Met Pro A: 635	g His S	Ser Leu	Tyr Ile 640	Ile Ile	e Gly	Ala 645
Leu Cys Val	Ala Phe II 650	le Leu M	Met Leu	Ile Ile 655	Leu Ile	· Val	Gly 660
Ile Cys Arg	Ile Ser A	g Ile (Glu Tyr	Gln Gly 670	Ser Ser	Arg	Pro 675
Ala Tyr Glu	Glu Phe Ty 680	yr Asn (Cys Arg	Ser Ile 685	Asp Ser	Glu	Phe 690
Ser Asn Ala	Ile Ala S	er Ile A	Arg His	Ala Arg	Phe Gly	Lys	Lys

695 700 705

Ser Arg Pro Ala Met Tyr Asp Val Ser Pro Ile Ala Tyr Glu Asp 710 715 720

Tyr Ser Pro Asp Asp Lys Pro Leu Val Thr Leu Ile Lys Thr Lys
725 730 735

Asp Leu

- <210> 16
- <211> 43
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic Oligonucleotide Probe
- <400> 16

tgtaaaacga cggccagtta aatagacctg caattattaa tct 43

- <210> 17
- <211> 41
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic Oligonucleotide Probe
- <400> 17

caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41

- <210> 18
- <211> 508
- <212> DNA
- <213> Homo Sapien
- <400> 18
 - ctctggaagg tcacggccac aggattccaa cagtgctccc tcatagatgg 50
 - acgaaagtgt gaccccctt tcaggctttc agggggactg gtcctcctgg 100
 - aggagatget egeettgggg aataateaet ttattggttt tgtgaatgat 150
 - tetgtgaeta agtetattgt ggetttgege ttaaetetgg tggtgaaggt 200
 - cagcacctgt gtgccggggg agagtcacgc aaatgacttg gagtgttcag 250
 - gaaaaggaaa atgcaccacg aagccgtcag aggcaacttt ttcctgtacc 300
 - tgtgaggagc agtacgtggg tactttctgt gaagaatacg atgcttgcca 350
 - gaggaaacct tgccaaaaca acgcgagctg tattgatgca aatgaaaagc 400
 - aagatgggag caatttcacc tgtgtttgcc ttcctggtta tactggagag 450
 - ctttgccaac cgaactgaga ttggagcgaa cgacctacac cgaactgaga 500

taggggag 508

- <210> 19
- <211> 508
- <212> DNA
- <213> Homo Sapien
- <400> 19
- ctctggaagg tcacggccac aggattccaa cagtgctccc tcatagatgg 50
- acgaaagtgt gacccccctt tcaggctttc agggggactg gtcctcctgg 100
- aggagatgct cgccttgggg aataatcact ttattggttt tgtgaatgat 150
- tctgtgacta agtctattgt ggctttgcgc ttaactctgg tggtgaaggt 200
- cagcacctgt gtgccggggg agagtcacgc aaatgacttg gagtgttcag 250
- gaaaaggaaa atgcaccacg aagccgtcag aggcaacttt ttcctgtacc 300
- tgtgaggagc agtacgtggg tactttctgt gaagaatacg atgcttgcca 350
- gaggaaacct tgccaaaaca acgcgagctg tattgatgca aatgaaaagc 400
- aagatgggag caatttcacc tgtgtttgcc ttcctggtta tactggagag 450
- ctttgccaac cgaactgaga ttggagcgaa cgacctacac cgaactgaga 500

taggggag 508

- <210> 20
- <211> 23
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic Oligonucleotide Probe
- <400> 20
- ctctggaagg tcacggccac agg 23
- <210> 21
- <211> 24
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 21
- ctcagttcgg ttggcaaagc tctc 24
- <210> 22
- <211> 69
- <212> DNA
- <213> Artificial Sequence
- <220>

<223> Synthetic oligonucleotide probe

<400> 22
cagtgctccc tcatagatgg acgaaagtgt gacccccctt tcaggcgaga 50
gctttgccaa ccgaactga 69

<210> 23

<211> 1520

<212> DNA

<213> Homo Sapien

<400> 23

getgagtetg etgeteetge tgetgetget ceageetgta acetgtgeet 50 acaccacgee aggeeecece agageeetea ecacgetggg egeeeceaga 100 geccacacca tgeegggeac ctaegeteec tegaccacac teagtagtee 150 cagcacccag ggcctgcaag agcaggcacg ggccctgatg cgggacttcc 200 egetegtgga eggeeacaae gaeetgeeee tggteetaag geaggtttae 250 cagaaagggc tacaggatgt taacctgcgc aatttcagct acggccagac 300 cagectggae aggettagag atggeetegt gggegeeeag ttetggteag 350 cetatgtgcc atgccagacc caggaccggg atgccctgcg cetcaccetg 400 gageagattg accteatacg eegcatgtgt geeteetatt etgagetgga 450 gettgtgace teggetaaag etetgaaega eacteagaaa ttggeetgee 500 teateggtgt agagggtgge eactegetgg acaatageet etceatetta 550 cgtaccttct acatgctggg agtgcgctac ctgacgctca cccacacctg 600 caacacaccc tgggcagaga gctccgctaa gggcgtccac tccttctaca 650 acaacatcag cgggctgact gactttggtg agaaggtggt ggcagaaatg 700 aaccgcctgg gcatgatggt agacttatcc catgtctcag atgctgtggc 750 acggcgggcc ctggaagtgt cacaggcacc tgtgatcttc tcccactcgg 800 ctgcccgggg tgtgtgcaac agtgctcgga atgttcctga tgacatcctg 850 cagettetga agaagaaegg tggegtegtg atggtgtett tgtecatggg 900 agtaatacag tgcaacccat cagccaatgt gtccactgtg gcagatcact 950 tegaceaeat caaggetgte attggateea agtteategg gattggtgga 1000 gattatgatg gggccggcaa attccctcag gggctggaag acgtgtccac 1050 atacccggtc ctgatagagg agttgctgag tcgtggctgg agtgaggaag 1100 agetteaggg tgteettegt ggaaacetge tgegggtett cagacaagtg 1150

gaaaaggtac aggaagaaaa caaatggcaa agccccttgg aggacaagtt 1200 cccggatgag cagctgagca gttcctgcca ctccgacctc tcacgtctgc 1250 gtcagaagaca gagtctgact tcaggccagg aactcactga gattcccata 1300 cactggacag ccaagttacc agccaagtgg tcagtctcag agtcctcccc 1350 ccacatggcc ccagtccttg cagttgtggc caccttccca gtccttattc 1400 tgtggctctg atgacccagt tagtcctgcc agatgtcact gtagcaagcc 1450 acagacaccc cacaaagttc ccctgttgtg caggcacaaa tatttcctga 1500 aataaatgtt ttggacatag 1520

<210> 24

<211> 433

<212> PRT

<213> Homo Sapien

<400> 24

Met Pro Gly Thr Tyr Ala Pro Ser Thr Thr Leu Ser Ser Pro Ser

1 5 10 15

Thr Gln Gly Leu Gln Glu Gln Ala Arg Ala Leu Met Arg Asp Phe
20 25 30

Pro Leu Val Asp Gly His Asn Asp Leu Pro Leu Val Leu Arg Gln
35 40 45

Val Tyr Gln Lys Gly Leu Gln Asp Val Asn Leu Arg Asn Phe Ser 50 55 60

Tyr Gly Gln Thr Ser Leu Asp Arg Leu Arg Asp Gly Leu Val Gly 65 70 75

Ala Gln Phe Trp Ser Ala Tyr Val Pro Cys Gln Thr Gln Asp Arg 80 85 90

Asp Ala Leu Arg Leu Thr Leu Glu Gln Ile Asp Leu Ile Arg Arg 95 100 105

Met Cys Ala Ser Tyr Ser Glu Leu Glu Leu Val Thr Ser Ala Lys
110 115 120

Ala Leu Asn Asp Thr Gln Lys Leu Ala Cys Leu Ile Gly Val Glu 125 130 135

Gly Gly His Ser Leu Asp Asn Ser Leu Ser Ile Leu Arg Thr Phe
140 145 150

Tyr Met Leu Gly Val Arg Tyr Leu Thr Leu Thr His Thr Cys Asn 155 160 165

Thr Pro Trp Ala Glu Ser Ser Ala Lys Gly Val His Ser Phe Tyr 170 175 180

<220>

<223> Synthetic oligonucleotide probe

Asn	Asn	Ile	Ser	Gly 185	Leu	Thr	Asp	Phe	Gly 190	Glu	Lys	Val	Val	Ala 195
Glu	Met	Asn	Arg	Leu 200	Gly	Met	Met	Val	Asp 205	Leu	Ser	His	Val	Ser 210
Asp	Ala	Val	Ala	Arg 215	Arg	Ala	Leu	Glu	Val 220	Ser	Gln	Ala	Pro	Val 225
Ile	Phe	Ser	His	Ser 230	Ala	Ala	Arg	Gly	Val 235	Cys	Asn	Ser	Ala	Arg 240
Asn	Val	Pro	Asp	Asp 245	Ile	Leu	Gln	Leu	Leu 250	Lys	Lys	Asn	Gly	Gly 255
Val	Val	Met	Val	Ser 260	Leu	Ser	Met	Gly	Val 265	Ile	Gln	Cys	Asn	Pro 270
Ser	Ala	Asn	Val	Ser 275	Thr	Val	Ala	Asp	His 280	Phe	Asp	His	Ile	Lys 285
Ala	Val	Ile	Gly	Ser 290	Lys	Phe	Ile	Gly	Ile 295	Gly	Gly	Asp	Tyr	Asp 300
Gly	Ala	Gly	Lys	Phe 305	Pro	Gln	Gly	Leu	Glu 310	Asp	Val	Ser	Thr	Tyr 315
Pro	Val	Leu	Ile	Glu 320	Glu	Leu	Leu	Ser	Arg 325	Gly	Trp	Ser	Glu	Glu 330
Glu	Leu	Gln	Gly	Val 335	Leu	Arg	Gly	Asn	Leu 340	Leu	Arg	Val	Phe	Arg 345
Gln	Val	Glu	Lys	Val 350	Gln	Glu	Glu	Asn	Lys 355	Trp	Gln	Ser	Pro	Leu 360
Glu	Asp	Lys	Phe	Pro 365	Asp	Glu	Gln	Leu	Ser 370	Ser	Ser	Cys	His	Ser 375
Asp	Leu	Ser	Arg	Leu 380	Arg	Gln	Arg	Gln	Ser 385	Leu	Thr	Ser	Gly	Gln 390
Glu	Leu	Thr	Glu	Ile 395	Pro	Ile	His	Trp	Thr 400	Ala	Lys	Leu	Pro	Ala 405
Lys	Trp	Ser	Val	Ser 410	Glu	Ser	Ser	Pro	His 415		Ala	Pro	Val	Leu 420
Ala	Val	Val	Ala	Thr 425	Phe	Pro	Val	Leu	Ile 430		Trp	Leu		
<210> 25 <211> 22														
<212			oi - 1	C		_								
<213	> AT	CILI	CIAL	seq	uenc	_								

23

```
<400> 25
agttctggtc agcctatgtg cc 22
<210> 26
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 26
cgtgatggtg tctttgtcca tggg 24
<210> 27
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 27
ctccaccaat cccgatgaac ttgg 24
<210> 28
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 28
gagcagattg acctcatacg ccgcatgtgt gcctcctatt ctgagctgga 50
<210> 29
<211> 1416
<212> DNA
<213> Homo Sapien
<400> 29
 aaaacctata aatattccgg attattcata ccgtcccacc atcgggcgcg 50
 gateegegge egegaattet aaaccaacat geegggeace taegeteect 100
 cgaccacact cagtagtccc agcacccagg gcctgcaaga gcaggcacgg 150
 gecetgatge gggaetteee getegtggae ggecacaaeg acetgeeeet 200
 ggtcctaagg caggtttacc agaaagggct acaggatgtt aacctgcgca 250
 atttcagcta cggccagacc agcctggaca ggcttagaga tggcctcgtg 300
 ggcgcccagt tetggtcage ctatgtgcca tgccagacec aggaceggga 350
```

tgccctgcgc ctcaccctgg agcagattga cctcatacgc cgcatgtgtg 400

cctcctattc tqaqctqqaq cttqtqacct cqqctaaaqc tctqaacqac 450 acteagaaat tggcctgcct categgtqta gagggtgqcc actegctgga 500 caatageete tecatettae gtaeetteta eatgetggga gtgegetaee 550 tgacgeteae ecacacetge aacacaceet gggcagagag etcegetaag 600 ggcgtccact ccttctacaa caacatcagc gggctgactg actttggtga 650 gaaggtggtg gcagaaatga accgcctggg catgatggta gacttatccc 700 atgtctcaga tgctgtggca cggcgggccc tggaagtgtc acaggcacct 750 qtqatcttct cccactcggc tgcccggggt gtgtgcaaca gtgctcggaa 800 tqttcctqat qacatcctqc aqcttctqaa qaaqaacqqt qqcgtcgtga 850 tqqtqtcttt qtccatqqqa qtaatacagt gcaacccatc agccaatgtg 900 tocactqtqq caqatcactt cgaccacatc aaggctgtca ttggatccaa 950 gttcatcggg attggtggag attatgatgg ggccggcaaa ttccctcagg 1000 ggctggaaga cgtgtccaca tacccggtcc tgatagagga gttgctgagt 1050 cgtggctgga gtgaggaaga gcttcagggt gtccttcgtg gaaacctgct 1100 gcgggtcttc agacaagtgg aaaaggtaca ggaagaaaac aaatggcaaa 1150 geceettgga ggacaagtte eeggatgage agetgageag tteetgecae 1200 tocqacctet caegtetqeq teaqaqacaq agtetgactt caggecagga 1250 acteactgag atteccatac actggacage caagttacca gccaagtggt 1300 cagteteaga gteeteece caecetgaca aaacteacac atgeecaceg 1350 tgcccagcac ctgaactcct ggggggaccg tcagtcttcc tcttcccccc 1400 aaaacccaag gacacc 1416

<210> 30

<211> 446

<212> PRT

<213> Homo Sapien

<400> 30

Met Pro Gly Thr Tyr Ala Pro Ser Thr Thr Leu Ser Ser Pro Ser
1 5 10 15

Thr Gln Gly Leu Gln Glu Gln Ala Arg Ala Leu Met Arg Asp Phe
20 25 30

Pro Leu Val Asp Gly His Asn Asp Leu Pro Leu Val Leu Arg Gln 35 40 45

Val Tyr Gln Lys Gly Leu Gln Asp Val Asn Leu Arg Asn Phe Ser

				50					55					60
Tyr	Gly	Gln	Thr	Ser 65	Leu	Asp	Arg	Leu	Arg 70	Asp	Gly	Leu	Val	Gly 75
Ala	Gln	Phe	Trp	Ser 80	Ala	Tyr	Val	Pro	Cys 85	Gln	Thr	Gln	Asp	Arg 90
Asp	Ala	Leu	Arg	Leu 95	Thr	Leu	Glu	Gln	Ile 100	Asp	Leu	Ile	Arg	Arg 105
Met	Cys	Ala	Ser	Tyr 110	Ser	Glu	Leu	Glu	Leu 115	Val	Thr	Ser	Ala	Lys 120
Ala	Leu	Asn	Asp	Thr 125	Gln	Lys	Leu	Ala	Cys 130	Leu	Ile	Gly	Val	Glu 135
Gly	Gly	His	Ser	Leu 140	Asp	Asn	Ser	Leu	Ser 145	Ile	Leu	Arg	Thr	Phe 150
Tyr	Met	Leu	Gly	Val 155	Arg	Tyr	Leu	Thr	Leu 160	Thr	His	Thr	Cys	Asn 165
Thr	Pro	Trp	Ala	Glu 170	Ser	Ser	Ala	Lys	Gly 175	Val	His	Ser	Phe	Tyr 180
Asn	Asn	Ile	Ser	Gly 185	Leu	Thr	Asp	Phe	Gly 190	Glu	Lys	Val	Val	Ala 195
Glu	Met	Asn	Arg	Leu 200	Gly	Met	Met	Val	Asp 205	Leu	Ser	His	Val	Ser 210
Asp	Ala	Val	Ala	Arg 215	Arg	Ala	Leu	Glu	Val 220	Ser	Gln	Ala	Pro	Val 225
Ile	Phe	Ser	His	Ser 230	Ala	Ala	Arg	Gly	Val 235	Cys	Asn	Ser	Ala	Arg 240
Asn	Val	Pro	Asp	Asp 245	Ile	Leu	Gln	Leu	Leu 250	Lys	Lys	Asn	Gly	Gly 255
Val	Val	Met	Val	Ser 260	Leu	Ser	Met	Gly	Val 265	Ile	Gln	Cys	Asn	Pro 270
Ser	Ala	Asn	Val	Ser 275	Thr	Val	Ala	Asp	His 280	Phe	Asp	His	Ile	Lys 285
Ala	Val	Ile	Gly	Ser 290	Lys	Phe	Ile	Gly	Ile 295	Gly	Gly	Asp	Tyr	Asp 300
Gly	Ala	Gly	Lys	Phe 305	Pro	Gln	Gly	Leu	Glu 310	Asp	Val	Ser	Thr	Tyr 315
Pro	Val	Leu	Ile	Glu 320	Glu	Leu	Leu	Ser	Arg 325	Gly	Trp	Ser	Glu	Glu 330
Glu	Leu	Gln	Gly	Val 335	Leu	Arg	Gly	Asn	Leu 340	Leu	Arg	Val	Phe	Arg 345

Glu Asp Lys Phe Pro Asp Glu Glu Asn Lys Trp Gln Ser Pro Leu 360

Glu Asp Lys Phe Pro Asp Glu Gln Leu Ser 370

Asp Leu Ser Arg Leu Arg Gln Arg Gln Ser Leu Thr Ser Gly Gln 380

Glu Leu Thr Glu Ile Pro Ile His Trp Thr Ala Lys Leu Pro Ala 405

Lys Trp Ser Val Ser Glu Ser Ser Pro His Pro Asp Lys Thr His 420

Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser 435

Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr

<210> 31 <211> 1790 <212> DNA

<213> Homo Sapien

<400> 31 cgcccagcga cgtgcgggcg gcctggcccg cgccctcccg cgcccggcct 50 gegteeegeg eeetgegeea eegeegeega geegeageee geegegegee 100 cceggcageg ceggceccat gceegeegge egeeggggee cegeegeeca 150 atecgegegg eggeegeege egttgetgee eetgetgetg etgetetgeg 200 teetegggge geegegagee ggateaggag cecacacage tgtgateagt 250 ceccaggate ccaegettet categgetee teeetgetgg ccaeetgete 300 agtgcacgga gacccaccag gagccaccgc cgagggcctc tactggaccc 350 tcaacgggeg ccgcctgccc cctgagctct cccgtgtact caacgcctcc 400 accttggctc tggccctggc caacctcaat gggtccaggc agcggtcggg 450 ggacaacete gtgtgecaeg ceegtgaegg cageateetg getggeteet 500 geetetatgt tggeetgeee eeagagaaac eegteaacat eagetgetgg 550 tccaagaaca tgaaggactt gacctgccgc tggacgccag gggcccacgg 600 ggagacette etecacacea actaeteeet caagtacaag ettaggtggt 650 atggccagga caacacatgt gaggagtacc acacagtggg gccccactcc 700 tgccacatcc ccaaggacct ggctctcttt acgccctatg agatctgggt 750 ggaggccacc aaccgcctgg gctctgcccg ctccgatgta ctcacgctgg 800

<210> 32

<211> 422

<212> PRT

<213> Homo Sapien

<400> 32

Met Pro Ala Gly Arg Arg Gly Pro Ala Ala Gln Ser Ala Arg Arg
1 5 10 15

Pro Pro Pro Leu Leu Pro Leu Leu Leu Leu Cys Val Leu Gly
20 25 30

Ala Pro Arg Ala Gly Ser Gly Ala His Thr Ala Val Ile Ser Pro 35 40 45

Gln Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Leu Ala Thr Cys
50 55 60

Ser Val His Gly Asp Pro Pro Gly Ala Thr Ala Glu Gly Leu Tyr Trp Thr Leu Asn Gly Arq Arq Leu Pro Pro Glu Leu Ser Arg Val Leu Asn Ala Ser Thr Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln Arg Ser Gly Asp Asn Leu Val Cys His Ala Arg Asp 110 Gly Ser Ile Leu Ala Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Val Asn Ile Ser Cys Trp Ser Lys Asn Met Lys Asp Leu Thr Cys Arg Trp Thr Pro Gly Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys Tyr Lys Leu Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His Thr Val Gly Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe Thr Pro Tyr Glu Ile Trp Val Glu Ala Thr Asn Arg Leu Gly Ser Ala Arg Ser Asp Val Leu Thr Leu Asp Ile Leu Asp Val Val Thr Thr Asp Pro Pro Pro Asp Val His Val Ser Arg Val Gly Gly Leu Glu Asp Gln Leu Ser Val Arg Trp Val Ser Pro Pro Ala Leu Lys Asp Phe Leu Phe Gln Ala 270 Lys Tyr Gln Ile Arg Tyr Arg Val Glu Asp Ser Val Asp Trp Lys Val Val Asp Asp Val Ser Asn Gln Thr Ser Cys Arg Leu Ala Gly 290 300 Leu Lys Pro Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe Gly Ile Tyr Gly Ser Lys Lys Ala Gly Ile Trp Ser Glu Trp 330 Ser His Pro Thr Ala Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly Pro Gly Gly Gly Ala Cys Glu Pro Arg Gly Gly Glu Pro Ser Ser

350 355 360 Gly Pro Val Arg Arg Glu Leu Lys Gln Phe Leu Gly Trp Leu Lys 365 Lys His Ala Tyr Cys Ser Asn Leu Ser Phe Arg Leu Tyr Asp Gln 380 385 Trp Arg Ala Trp Met Gln Lys Ser His Lys Thr Arg Asn Gln Asp 395 Glu Gly Ile Leu Pro Ser Gly Arg Arg Gly Thr Ala Arg Gly Pro 410 Ala Arg <210> 33 <211> 23 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 33 cccgcccgac gtgcacgtga gcc 23 <210> 34 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 34 tgagccagcc caggaactgc ttg 23 <210> 35 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 35 caagtgcgct gcaacccctt tggcatctat ggctccaaga aagccgggat 50 <210> 36 <211> 1771 <212> DNA <213> Homo Sapien <400> 36 cccacgcgtc cgctggtgtt agatcgagca accctctaaa agcagtttag 50

agtggtaaaa aaaaaaaaa acacaccaaa cgctcgcagc cacaaaaggg 100 atgaaatttc ttctggacat cctcctgctt ctcccgttac tgatcgtctg 150 ctccctagag tccttcgtga agctttttat tcctaagagg agaaaatcag 200 tcaccggcga aatcgtgctg attacaggag ctgggcatgg aattgggaga 250 ctgactgcct atgaatttgc taaacttaaa agcaagctgg ttctctggga 300 tataaataag catggactgg aggaaacage tgccaaatge aagggactgg 350 gtgccaaggt tcataccttt gtggtagact gcagcaaccg agaagatatt 400 tacagetetg caaagaaggt gaaggeagaa attggagatg ttagtatttt 450 agtaaataat gctggtgtag tctatacatc agatttgttt gctacacaag 500 atcctcagat tgaaaagact tttgaagtta atgtacttgc acatttctgg 550 actacaaagg catttcttcc tgcaatgacg aagaataacc atggccatat 600 tgtcactgtg gcttcggcag ctggacatgt ctcggtcccc ttcttactgg 650 cttactgttc aagcaagttt gctgctgttg gatttcataa aactttgaca 700 gatgaactgg ctgccttaca aataactgga gtcaaaacaa catgtctgtg 750 tectaattte gtaaacactg getteateaa aaatecaagt acaagtttgg 800 gacccactct ggaacctgag gaagtggtaa acaggctgat gcatgggatt 850 ctgactgagc agaagatgat ttttattcca tcttctatag cttttttaac 900 aacattggaa aggatccttc ctgagcgttt cctggcagtt ttaaaacgaa 950 aaatcagtgt taagtttgat gcagttattg gatataaaat gaaagcgcaa 1000 taagcaccta gttttctgaa aactgattta ccaggtttag gttgatgtca 1050 tctaatagtg ccagaatttt aatgtttgaa cttctgtttt ttctaattat 1100 ccccatttct tcaatatcat ttttgaggct ttggcagtct tcatttacta 1150 ccacttgttc tttagccaaa agctgattac atatgatata aacagagaaa 1200 tacctttaga ggtgacttta aggaaaatga agaaaaagaa ccaaaatgac 1250 tttattaaaa taatttccaa gattatttgt ggctcacctg aaggctttgc 1300 aaaatttgta ccataaccgt ttatttaaca tatattttta tttttgattg 1350 cacttaaatt ttgtataatt tgtgtttctt tttctgttct acataaaatc 1400 agaaacttca agctctctaa ataaaatgaa ggactatatc tagtggtatt 1450 teacaatgaa tateatgaac teteaatggg taggttteat eetaeceatt 1500

<210> 37

<211> 300

<212> PRT

<213> Homo Sapien

<400> 37

Met Lys Phe Leu Leu Asp Ile Leu Leu Leu Pro Leu Leu Ile 1 5 10 15

Val Cys Ser Leu Glu Ser Phe Val Lys Leu Phe Ile Pro Lys Arg
20 25 30

Arg Lys Ser Val Thr Gly Glu Ile Val Leu Ile Thr Gly Ala Gly
35 40 45

His Gly Ile Gly Arg Leu Thr Ala Tyr Glu Phe Ala Lys Leu Lys
50 55 60

Ser Lys Leu Val Leu Trp Asp Ile Asn Lys His Gly Leu Glu Glu 65 70 75

Thr Ala Ala Lys Cys Lys Gly Leu Gly Ala Lys Val His Thr Phe 80 85 90

Val Val Asp Cys Ser Asn Arg Glu Asp Ile Tyr Ser Ser Ala Lys 95 100 105

Lys Val Lys Ala Glu Ile Gly Asp Val Ser Ile Leu Val Asn Asn 110 115 120

Ala Gly Val Val Tyr Thr Ser Asp Leu Phe Ala Thr Gln Asp Pro 125 130 135

Gln Ile Glu Lys Thr Phe Glu Val Asn Val Leu Ala His Phe Trp
140 145 150

Thr Thr Lys Ala Phe Leu Pro Ala Met Thr Lys Asn Asn His Gly
155 160 165

His Ile Val Thr Val Ala Ser Ala Ala Gly His Val Ser Val Pro 170 175 180

Phe Leu Leu Ala Tyr Cys Ser Ser Lys Phe Ala Ala Val Gly Phe 185 190 195

His Lys Thr Leu Thr Asp Glu Leu Ala Ala Leu Gln Ile Thr Gly

- Val Lys Thr Thr Cys Leu Cys Pro Asn Phe Val Asn Thr Gly Phe 215 220 225
- Ile Lys Asn Pro Ser Thr Ser Leu Gly Pro Thr Leu Glu Pro Glu 230 235 240
- Glu Val Val Asn Arg Leu Met His Gly Ile Leu Thr Glu Gln Lys 245 250 255
- Met Ile Phe Ile Pro Ser Ser Ile Ala Phe Leu Thr Thr Leu Glu 260 265 270
- Arg Ile Leu Pro Glu Arg Phe Leu Ala Val Leu Lys Arg Lys Ile 275 280 285
- Ser Val Lys Phe Asp Ala Val Ile Gly Tyr Lys Met Lys Ala Gln 290 295 300
- <210> 38
- <211> 23
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 38
- ggtgaaggca gaaattggag atg 23
- <210> 39
- <211> 24
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 39
- atcccatgca tcagcctgtt tacc 24
- <210> 40
- <211> 48
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 40
- gctggtgtag tctatacatc agatttgttt gctacacaag atcctcag 48
- <210> 41
- <211> 1377
- <212> DNA
- <213> Homo Sapien

<400> 41 gactagttct cttggagtct gggaggagga aageggagec ggcagggagc 50 gaaccaggac tggggtgacg gcagggcagg gggcgcctgg ccggggagaa 100 gegegggge tggagcacca ccaactggag ggtccggagt agegagcgcc 150 ccgaaggagg ccatcgggga gccgggaggg gggactgcga gaggaccccg 200 gcgtccgggc tcccggtgcc agcgctatga ggccactcct cgtcctgctg 250 ctoctgggcc tggcggccgg ctcgcccca ctggacgaca acaagatccc 300 cagectetge eeggggeace eeggeettee aggeacgeeg ggecaccatg 350 geagecaggg cttgccgggc cgcgatggcc gcgacggccg cgacggcgcg 400 cccggggctc cgggagagaa aggcgagggc gggaggccgg gactgccggg 450 acctcgaggg gaccccgggc cgcgaggaga ggcgggaccc gcggggccca 500 ccgggcctgc cggggagtgc tcggtgcctc cgcgatccgc cttcagcgcc 550 aagegeteeg agageegggt geeteegeeg tetgaegeae eettgeeett 600 cgaccgcgtg ctggtgaacg agcagggaca ttacgacgcc gtcaccggca 650 agtteacetg ccaggtgeet ggggtetact acttegeegt ccatgecace 700 gtctaccggg ccagcctgca gtttgatctg gtgaagaatg gcgaatccat 750 tgcctctttc ttccagtttt tcggggggtg gcccaagcca gcctcgctct 800 cgggggggc catggtgagg ctggagcctg aggaccaagt gtgggtgcag 850 gtgggtgtgg gtgactacat tggcatctat gccagcatca agacagacag 900 caccttetee ggatttetgg tgtacteega etggeacage tececagtet 950 ttgcttagtg cccactgcaa agtgagctca tgctctcact cctagaagga 1000 gggtgtgagg ctgacaacca ggtcatccag gagggctggc ccccctggaa 1050 tattgtgaat gactagggag gtggggtaga gcactctccg tcctgctgct 1100 ggcaaggaat gggaacagtg gctgtctgcg atcaggtctg gcagcatggg 1150 gcagtggctg gatttctgcc caagaccaga ggagtgtgct gtgctggcaa 1200 gtgtaagtcc cccagttgct ctggtccagg agcccacggt ggggtgctct 1250 cttcctggtc ctctgcttct ctggatcctc cccacccct cctgctcctg 1300 gggccggccc ttttctcaga gatcactcaa taaacctaag aaccctcata 1350 aaaaaaaaa aaaaaaaa 1377

<210> 42

<211> 243

<212> PRT

<213> Homo Sapien

<400> 42

Met Arg Pro Leu Leu Val Leu Leu Leu Gly Leu Ala Ala Gly
1 5 10 15

Ser Pro Pro Leu Asp Asp Asn Lys Ile Pro Ser Leu Cys Pro Gly
20 25 30

His Pro Gly Leu Pro Gly Thr Pro Gly His His Gly Ser Gln Gly

Leu Pro Gly Arg Asp Gly Arg Asp Gly Ala Pro Gly
50 55 60

Ala Pro Gly Glu Lys Gly Glu Gly Gly Arg Pro Gly Leu Pro Gly

Pro Arg Gly Asp Pro Gly Pro Arg Gly Glu Ala Gly Pro Ala Gly 80 85 90

Pro Thr Gly Pro Ala Gly Glu Cys Ser Val Pro Pro Arg Ser Ala 95 100 105

Phe Ser Ala Lys Arg Ser Glu Ser Arg Val Pro Pro Pro Ser Asp 110 115 120

Ala Pro Leu Pro Phe Asp Arg Val Leu Val Asn Glu Gln Gly His
125 130 130

Tyr Asp Ala Val Thr Gly Lys Phe Thr Cys Gln Val Pro Gly Val \$140\$ \$145\$ \$150

Tyr Tyr Phe Ala Val His Ala Thr Val Tyr Arg Ala Ser Leu Gln
155 160 165

Phe Asp Leu Val Lys Asn Gly Glu Ser Ile Ala Ser Phe Phe Gln
170 175 180

Phe Phe Gly Gly Trp Pro Lys Pro Ala Ser Leu Ser Gly Gly Ala 185 190 195

Met Val Arg Leu Glu Pro Glu Asp Gln Val Trp Val Gln Val Gly
200 205 210

Val Gly Asp Tyr Ile Gly Ile Tyr Ala Ser Ile Lys Thr Asp Ser 215 220 225

Thr Phe Ser Gly Phe Leu Val Tyr Ser Asp Trp His Ser Ser Pro 230 235 240

Val Phe Ala

<210> 43</1>

<212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 43 tacaggccca gtcaggacca gggg 24 <210> 44 <211> 18 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 44 agccagcete getetegg 18 <210> 45 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 45 gtctgcgatc aggtctgg 18 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 46 gaaagaggca atggattcgc 20 <210> 47 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 47 gacttacact tgccagcaca gcac 24 <210> 48 <211> 45 <212> DNA <213> Artificial Sequence

ctcttttgtc caccagccca gcctgactcc tggagattgt gaatagctcc 50 atccagcetg agaaacaage egggtggetg agecaggetg tgeacggage 100 acctgacggg cccaacagac ccatgctgca tccagagacc tcccctggcc 150 gggggcatct cctggctgtg ctcctggccc tccttggcac cacctgggca 200 gaggtgtggc caccccagct gcaggagcag gctccgatgg ccggagccct 250 gaacaggaag gagagtttct tgctcctctc cctgcacaac cgcctgcgca 300 gctgggtcca gcccctgcg gctgacatgc ggaggctgga ctggagtgac 350 agcctggccc aactggctca agccagggca gccctctgtg gaatcccaac 400 cccgagcctg gcatccggcc tgtggcgcac cctgcaagtg ggctggaaca 450 tgcagctgct gcccgcgggc ttggcgtcct ttgttgaagt ggtcagccta 500 tggtttgcag aggggcagcg gtacagccac gcggcaggag agtgtgctcg 550 caacgccacc tgcacccact acacgcagct cgtgtgggcc acctcaagcc 600 agetgggetg tgggeggeac etgtgetetg eaggeeagae agegatagaa 650 geetttgtet gtgeetaete eeeeggagge aactgggagg teaacgggaa 700 gacaatcatc ccctataaga agggtgcctg gtgttcgctc tgcacagcca 750 gtgtctcagg ctgcttcaaa gcctgggacc atgcaggggg gctctgtgag 800 gtccccagga atccttgtcg catgagctgc cagaaccatg gacgtctcaa 850 catcagcacc tgccactgcc actgtccccc tggctacacg ggcagatact 900 gccaagtgag gtgcagcctg cagtgtgtgc acggccggtt ccgggaggag 950 gagtgctcgt gcgtctgtga catcggctac gggggagccc agtgtgccac 1000 caaggtgcat tttcccttcc acacctgtga cctgaggatc gacggagact 1050 getteatggt gtetteagag geagacacet attacagage caggatgaaa 1100 tgtcagagga aaggcggggt gctggcccag atcaagagcc agaaagtgca 1150

ggacatecte gcettetate tgggeegeet ggagaceaec aacgaggtga 1200 etgacagtga ettegagace aggaacttet ggateggget cacetacaag 1250 accegecaagg acteetteeg etgggeeaea ggggageaec aggeetteae 1300 eagttttgee tttgggeage etgacaaeea egggetggtg tggetgagtg 1350 etgecatggg gtttggeaae tgegtggage tgeaggette agetgeette 1400 aactggaaeg accagegetg eaaaaecega aacegttaca tetgecagtt 1450 tgeecaggag eacateteee ggtggggeee agggteetga ggeetgaeea 1500 eatggeteee tegeetgeee tgggageaee ggetetgett acctgtetge 1550 ecacetgtet ggaaeaaggg ecaggttaag accaeatgee teatgteeaa 1600 agaggeteta gacettgeae aatgeeagaa gttgggeaga gagaggeagg 1650 gaggeeagtg agggeeaggg agtgattaa attagatgee gaaggagagg 1750 acaeegeeag tggteeaaaa aggetgete etteeaeetg geecagaeee 1800 tgtggggeag eggagettee etgggaatg aaceecaegg ggtattaaat 1850 tatgaateag etgaaaaaaa aaaaaa 1876

<210> 50

<211> 455

<212> PRT

<213> Homo Sapien

<400> 50

Met Leu His Pro Glu Thr Ser Pro Gly Arg Gly His Leu Leu Ala 1 5 10 15

Val Leu Leu Ala Leu Leu Gly Thr Thr Trp Ala Glu Val Trp Pro 20 25 30

Pro Gln Leu Gln Glu Gln Ala Pro Met Ala Gly Ala Leu Asn Arg 35 40 45

Lys Glu Ser Phe Leu Leu Ser Leu His Asn Arg Leu Arg Ser 50 55 60

Trp Val Gln Pro Pro Ala Ala Asp Met Arg Arg Leu Asp Trp Ser
65 70 75

Asp Ser Leu Ala Gln Leu Ala Gln Ala Arg Ala Ala Leu Cys Gly
80 85 90

Ile Pro Thr Pro Ser Leu Ala Ser Gly Leu Trp Arg Thr Leu Gln
95 100 105

Val Gly Trp Asn Met Gln Leu Leu Pro Ala Gly Leu Ala Ser Phe

				110					115					120
Val	Glu	Val	Val	Ser 125	Leu	Trp	Phe	Ala	Glu 130	Gly	Gln	Arg	Tyr	Ser 135
His	Ala	Ala	Gly	Glu 140	Cys	Ala	Arg	Asn	Ala 145	Thr	Cys	Thr	His	Tyr 150
Thr	Gln	Leu	Val	Trp 155	Ala	Thr	Ser	Ser	Gln 160	Leu	Gly	Cys	Gly	Arg 165
His	Leu	Cys	Ser	Ala 170	Gly	Gln	Thr	Ala	Ile 175	Glu	Ala	Phe	Val	Cys 180
Ala	Tyr	Ser	Pro	Gly 185	Gly	Asn	Trp	Glu	Val 190	Asn	Gly	Lys	Thr	Ile 195
Ile	Pro	Tyr	Lys	Lys 200	Gly	Ala	Trp	Cys	Ser 205	Leu	Cys	Thr	Ala	Ser 210
Val	Ser	Gly	Cys	Phe 215	Lys	Ala	Trp	Asp	His 220	Ala	Gly	Gly	Leu	Cys 225
Glu	Val	Pro	Arg	Asn 230	Pro	Cys	Arg	Met	Ser 235	Cys	Gln	Asn	His	Gly 240
Arg	Leu	Asn	Ile	Ser 245	Thr	Cys	His	Сув	His 250	Cys	Pro	Pro	Gly	Tyr 255
Thr	Gly	Arg	Tyr	Cys 260	Gln	Val	Arg	Cys	Ser 265	Leu	Gln	Суѕ	Val	His 270
Gly	Arg	Phe	Arg	Glu 275	Glu	Glu	Cys	Ser	Cys 280	Val	Cys	Asp	Ile	Gly 285
Tyr	Gly	Gly	Ala	Gln 290	Cys	Ala	Thr	Lys	Val 295	His	Phe	Pro	Phe	His 300
Thr	Cys	Asp	Leu	Arg 305	Ile	Asp	Gly	Asp	Cys 310	Phe	Met	Val	Ser	Ser 315
Glu	Ala	Asp	Thr	Tyr 320	Tyr	Arg	Ala	Arg	Met 325	Lys	Cys	Gln	Arg	Lys 330
Gly	Gly	Val	Leu	Ala 335	Gln	Ile	Lys	Ser	Gln 340	Lys	Val	Gln	Asp	Ile 345
Leu	Ala	Phe	Tyr	Leu 350	Gly	Arg	Leu	Glu	Thr 355	Thr	Asn	Glu	Val	Thr 360
Asp	Ser	Asp	Phe	Glu 365	Thr	Arg	Asn	Phe	Trp 370	Ile	Gly	Leu	Thr	Tyr 375
Lys	Thr	Ala	Lys	Asp 380		Phe	Arg	Trp	Ala 385		Gly	Glu	His	Gln 390
Ala	Phe	Thr	Ser	Phe 395	Ala	Phe	Gly	Gln	Pro	Asp	Asn	His	Gly	Leu 405

Val Trp Leu Ser Ala Ala Met Gly Phe Gly Asn Cys Val Glu Leu 410 415 Gln Ala Ser Ala Ala Phe Asn Trp Asn Asp Gln Arg Cys Lys Thr 425 Arg Asn Arg Tyr Ile Cys Gln Phe Ala Gln Glu His Ile Ser Arg Trp Gly Pro Gly Ser 455 <210> 51 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 51 aggaacttct ggatcgggct cacc 24 <210> 52 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 52 gggtctgggc caggtggaag agag 24 <210> 53 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 53 gccaaggact cetteegetg ggccacaggg gagcaccagg cette 45 <210> 54 <211> 2331 <212> DNA <213> Homo Sapien <400> 54 cggacgcgtg ggctgggcgc tgcaaagcgt gtcccgccgg gtccccgagc 50 gtcccgcgcc ctcgccccgc catgctcctg ctgctggggc tgtgcctggg 100

gctgtccctg tgtgtggggt cgcaggaaga ggcgcagagc tggggccact 150

cttcggagca ggatggactc agggtcccga ggcaagtcag actgttgcag 200

aggetgaaaa ecaaacettt gatgacagaa tteteagtga agtetaceat 250 catttcccgt tatgccttca ctacggtttc ctgcagaatg ctgaacagag 300 cttctgaaga ccaggacatt gagttccaga tgcagattcc agctgcagct 350 ttcatcacca acttcactat gcttattgga gacaaggtgt atcagggcga 400 aattacagag agagaaaaga agagtggtga tagggtaaaa gagaaaagga 450 ataaaaccac agaagaaaat ggagagaagg ggactgaaat attcagagct 500 tctgcagtga ttcccagcaa ggacaaagcc gcctttttcc tgagttatga 550 ggagettetg eagaggegee tgggeaagta egageaeage ateagegtge 600 ggccccagca gctgtccggg aggctgagcg tggacgtgaa tatcctggag 650 agegegggea tegeatecet ggaggtgetg eegetteaca acageaggea 700 gaggggeagt gggegeggg aagatgatte tgggeeteee ceatetactg 750 tcattaacca aaatgaaaca tttgccaaca taatttttaa acctactgta 800 gtacaacaag ccaggattgc ccagaatgga attttgggag actttatcat 850 tagatatgac gtcaatagag aacagagcat tggggacatc caggttctaa 900 atggctattt tgtgcactac tttgctccta aagaccttcc tcctttaccc 950 aagaatgtgg tattcgtgct tgacagcagt gcttctatgg tgggaaccaa 1000 actooggoag accaaggatg coetetteac aattotecat gaceteegac 1050 cccaggaccg tttcagtatc attggatttt ccaaccggat caaagtatgg 1100 aaggaccact tgatatcagt cactccagac agcatcaggg atgggaaagt 1150 gtacattcac catatgtcac ccactggagg cacagacatc aacggggccc 1200 tgcagagggc catcaggctc ctcaacaagt acgtggccca cagtggcatt 1250 ggagaccgga gcgtgtccct catcgtcttc ctgacggatg ggaagcccac 1300 ggtcggggag acgcacaccc tcaagatcct caacaacacc cgagaggccg 1350 cccgaggcca agtctgcatc ttcaccattg gcatcggcaa cgacgtggac 1400 ttcaggctgc tggagaaact gtcgctggag aactgtggcc tcacacggcg 1450 cgtgcacgag gaggaggacg caggctcgca gctcatcggg ttctacgatg 1500 aaatcaggac cccgctcctc tctgacatcc gcatcgatta tccccccagc 1550 tcagtggtgc aggccaccaa gaccctgttc cccaactact tcaacggctc 1600 ggagatcatc attgcgggga agctggtgga caggaagctg gatcacctgc 1650

<210> 55

<211> 694

<212> PRT

<213> Homo Sapien

<400> 55

Met Leu Leu Leu Gly Leu Cys Leu Gly Leu Ser Leu Cys Val 1 5 10 15

Gly Ser Gln Glu Glu Ala Gln Ser Trp Gly His Ser Ser Glu Gln

Asp Gly Leu Arg Val Pro Arg Gln Val Arg Leu Leu Gln Arg Leu 35 40 45

Lys Thr Lys Pro Leu Met Thr Glu Phe Ser Val Lys Ser Thr Ile
50 55 60

Ile Ser Arg Tyr Ala Phe Thr Thr Val Ser Cys Arg Met Leu Asn 65 70 75

Arg Ala Ser Glu Asp Gln Asp Ile Glu Phe Gln Met Gln Ile Pro 80 85 90

Ala Ala Ala Phe Ile Thr Asn Phe Thr Met Leu Ile Gly Asp Lys 95 100 105

Val Tyr Gln Gly Glu Ile Thr Glu Arg Glu Lys Lys Ser Gly Asp 110 115 120

Arg	Val	Lys	Glu	Lys 125	Arg	Asn	Lys	Thr	Thr 130	Glu	Glu	Asn	Gly	Glu 135
Lys	Gly	Thr	Glu	Ile 140	Phe	Arg	Ala	Ser	Ala 145	Val	Ile	Pro	Ser	Lys 150
Asp	Lys	Ala	Ala	Phe 155	Phe	Leu	Ser	Tyr	Glu 160	Glu	Leu	Leu	Gln	Arg 165
Arg	Leu	Gly	Lys	Tyr 170	Glu	His	Ser	Ile	Ser 175	Val	Arg	Pro	Gln	Gln 180
Leu	Ser	Gly	Arg	Leu 185	Ser	Val	Asp	Val	Asn 190	Ile	Leu	Glu	Ser	Ala 195
Gly	Ile	Ala	Ser	Leu 200	Glu	Val	Leu	Pro	Leu 205	His	Asn	Ser	Arg	Gln 210
Arg	Gly	Ser	Gly	Arg 215	Gly	Glu	Asp	Asp	Ser 220	Gly	Pro	Pro	Pro	Ser 225
Thr	Val	Ile	Asn	Gln 230	Asn	Glu	Thr	Phe	Ala 235	Asn	Ile	Ile	Phe	Lys 240
Pro	Thr	Val	Val	Gln 245	Gln	Ala	Arg	Ile	Ala 250	Gln	Asn	Gly	Ile	Leu 255
Gly	Asp	Phe	Ile	Ile 260	Arg	Tyr	Asp	Val	Asn 265	Arg	Glu	Gln	Ser	Ile 270
Gly	Asp	Ile	Gln	Val 275	Leu	Asn	Gly	Tyr	Phe 280	Val	His	Tyr	Phe	Ala 285
Pro	Lys	Asp	Leu	Pro 290	Pro	Leu	Pro	Lys	Asn 295	Val	Val	Phe	Val	Leu 300
Asp	Ser	Ser	Ala	Ser 305	Met	Val	Gly	Thr	Lys 310	Leu	Arg	Gln	Thr	Lys 315
Asp	Ala	Leu	Phe	Thr 320	Ile	Leu	His	Asp	Leu 325	Arg	Pro	Gln	Asp	Arg 330
		Ile		335					340	-		_	_	345
His	Leu	Ile	Ser	Val 350	Thr	Pro	Asp	Ser	Ile 355	Arg	Asp	Gly	Lys	Val 360
Tyr	Ile	His	His	Met 365	Ser	Pro	Thr	Gly	Gly 370	Thr	Asp	Ile	Asn	Gly 375
Ala	Leu	Gln	Arg	Ala 380	Ile	Arg	Leu	Leu	Asn 385	Lys	Tyr	Val	Ala	His 390
Ser	Gly	Ile	Gly	Asp 395	Arg	Ser	Val	Ser	Leu 400	Ile	Val	Phe	Leu	Thr 405
Asp	Gly	Lys	Pro	Thr	Val	Gly	Glu	Thr	His	Thr	Leu	Lys	Ile	Leu

				410					415					420
Asn	Asn	Thr	Arg	Glu 425	Ala	Ala	Arg	Gly	Gln 430	Val	Cys	Ile	Phe	Thr 435
Ile	Gly	Ile	Gly	Asn 440	Asp	Val	Asp	Phe	Arg 445	Leu	Leu	Glu	Lys	Leu 450
Ser	Leu	Glu	Asn	Cys 455	Gly	Leu	Thr	Arg	Arg 460	Val	His	Glu	Glu	Glu 465
Asp	Ala	Gly	Ser	Gln 470	Leu	Ile	Gly	Phe	Tyr 475	Asp	Glu	Ile	Arg	Thr 480
Pro	Leu	Leu	Ser	Asp 485	Ile	Arg	Ile	Asp	Tyr 490	Pro	Pro	Ser	Ser	Val 495
Val	Gln	Ala	Thr	Lys 500	Thr	Leu	Phe	Pro	Asn 505	Tyr	Phe	Asn	Gly	Ser 510
Glu	Ile	Ile	Ile	Ala 515	Gly	Lys	Leu	Val	Asp 520	Arg	Lys	Leu	Asp	His 525
Leu	His	Val	Glu	Val 530	Thr	Ala	Ser	Asn	Ser 535	Lys	Lys	Phe	Ile	Ile 540
Leu	Lys	Thr	Asp	Val 545	Pro	Val	Arg	Pro	Gln 550	Lys	Ala	Gly	Lys	Asp 555
Val	Thr	Gly	Ser	Pro 560	Arg	Pro	Gly	Gly	Asp 565	Gly	Glu	Gly	Asp	Thr 570
Asn	His	Ile	Glu	Arg 575	Leu	Trp	Ser	Tyr	Leu 580	Thr	Thr	Lys	Glu	Leu 585
Leu	Ser	Ser	Trp	Leu 590	Gln	Ser	Asp	Asp	Glu 595	Pro	Glu	Lys	Glu	Arg 600
Leu	Arg	Gln	Arg	Ala 605	Gln	Ala	Leu	Ala	Val 610	Ser	Tyr	Arg	Phe	Leu 615
Thr	Pro	Phe	Thr	Ser 620	Met	Lys	Leu	Arg	Gly 625	Pro	Val	Pro	Arg	Met 630
Asp	Gly	Leu	-Glu	Glu 635	Ala	His	Gly	Met	Ser 640	Ala	Ala	Met	Gly	Pro 645
Glu	Pro	Val	Val	Gln 650	Ser	Val	Arg	Gly	Ala 655	Gly	Thr	Gln	Pro	Gly 660
Pro	Leu	Leu	Lys	Lys 665	Pro	Asn	Ser	Val	Lys 670	Lys	Lys	Gln	Asn	Lys 675
Thr	Lys	Lys	Arg	His 680	Gly	Arg	Asp	Gly	Val 685	Phe	Pro	Leu	His	His 690
Len	Glv	Tle	Ara											

Leu Gly Ile Arg

```
<210> 56
  <211> 24
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic oligonucleotide probe
  <400> 56
   gtgggaacca aactccggca gacc 24
  <210> 57
  <211> 18
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic oligonucleotide probe
  <400> 57
   cacatcgage gtctctgg 18
  <210> 58
<211> 24
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic oligonucleotide probe
  <400> 58
   agccgctcct tctccggttc atcg 24
  <210> 59
  <211> 48
  <212> DNA
  <213> Artificial Sequence
  <223> Synthetic oligonucleotide probe
  <400> 59
   tggaaggacc acttgatatc agtcactcca gacagcatca gggatggg 48
  <210> 60
  <211> 1413
  <212> DNA
  <213> Homo Sapien
  <400> 60
   cggacgcgtg gggtgcccga catggcgagt gtagtgctgc cgagcggatc 50
   ccagtgtgcg gcggcagcgg cggcggcggc gcctcccggg ctccggcttc 100
   tgctgttgct cttctccgcc gcggcactga tccccacagg tgatgggcag 150
   aatctgttta cgaaagacgt gacagtgatc gagggagagg ttgcgaccat 200
```


cagttgccaa gtcaataaga gtgacgactc tgtgattcag ctactgaatc 250 ccaacaggca gaccatttat ttcagggact tcaggccttt gaaggacagc 300 aggitticagt tgctgaattt ttctagcagt gaactcaaaq tatcattgac 350 aaacgtctca atttctgatg aaggaagata cttttgccag ctctataccg 400 atcccccaca ggaaagttac accaccatca cagtcctggt cccaccacgt 450 aatetgatga tegatateea gaaagaeact geggtggaag gtgaggagat 500 tgaagtcaac tgcactgcta tggccagcaa gccagccacg actatcaggt 550 ggttcaaagg gaacacagag ctaaaaggca aatcggaggt ggaagagtgg 600 tcagacatgt acactgtgac cagtcagctg atgctgaagg tgcacaagga 650 ggacgatggg gtcccagtga tctgccaggt ggagcaccct gcggtcactg 700 gaaacctgca gacccagcgg tatctagaag tacagtataa gcctcaagtg 750 cacattcaga tgacttatcc tctacaaggc ttaacccggg aaggggacgc 800 gcttgagtta acatgtgaag ccatcgggaa gccccagcct gtgatggtaa 850 cttgggtgag agtcgatgat gaaatgcctc aacacgccgt actgtctggg 900 cccaacctgt tcatcaataa cctaaacaaa acagataatg gtacataccg 950 ctgtgaagct tcaaacatag tggggaaagc tcactcggat tatatgctgt 1000 atgtatacga tecceccaca actatecete eteccacaac aaccaccace 1050 accaccacca ccaccaccac caccatectt accateatea cagatteecg 1100 agcaggtgaa gaaggctcga tcagggcagt ggatcatgcc gtgatcggtg 1150 gegtegtgge ggtggtggtg ttegecatge tgtgettget eateattetg 1200 gggcgctatt ttgccagaca taaaggtaca tacttcactc atgaagccaa 1250 aggageegat gaegeageag aegeagaeae agetataate aatgeagaag 1300 gaggacagaa caactccgaa gaaaagaaag agtacttcat ctagatcagc 1350 ctttttgttt caatgaggtg tccaactggc cctatttaga tgataaagag 1400 acagtgatat tgg 1413

- <210> 61
- <211> 440
- <212> PRT
- <213> Homo Sapien
- <400> 61
- Met Ala Ser Val Val Leu Pro Ser Gly Ser Gln Cys Ala Ala Ala 1 5 10 15

Ala Ala Ala Ala Pro Pro Gly Leu Arg Leu Leu Leu Leu Phe Ser Ala Ala Ala Leu Ile Pro Thr Gly Asp Gly Gln Asn Leu Phe Thr Lys Asp Val Thr Val Ile Glu Gly Glu Val Ala Thr Ile Ser Cys Gln Val Asn Lys Ser Asp Asp Ser Val Ile Gln Leu Leu Asn Pro Asn Arg Gln Thr Ile Tyr Phe Arg Asp Phe Arg Pro Leu Lys Asp Ser Arg Phe Gln Leu Leu Asn Phe Ser Ser Glu Leu Lys Val Ser Leu Thr Asn Val Ser Ile Ser Asp Glu Gly Arg Tyr 110 Phe Cys Gln Leu Tyr Thr Asp Pro Pro Gln Glu Ser Tyr Thr Thr Ile Thr Val Leu Val Pro Pro Arg Asn Leu Met Ile Asp Ile Gln Lys Asp Thr Ala Val Glu Gly Glu Glu Ile Glu Val Asn Cys Thr Ala Met Ala Ser Lys Pro Ala Thr Thr Ile Arg Trp Phe Lys Gly 175 Asn Thr Glu Leu Lys Gly Lys Ser Glu Val Glu Glu Trp Ser Asp Met Tyr Thr Val Thr Ser Gln Leu Met Leu Lys Val His Lys Glu Asp Asp Gly Val Pro Val Ile Cys Gln Val Glu His Pro Ala Val Thr Gly Asn Leu Gln Thr Gln Arg Tyr Leu Glu Val Gln Tyr Lys 230 Pro Gln Val His Ile Gln Met Thr Tyr Pro Leu Gln Gly Leu Thr Arg Glu Gly Asp Ala Leu Glu Leu Thr Cys Glu Ala Ile Gly Lys Pro Gln Pro Val Met Val Thr Trp Val Arg Val Asp Asp Glu Met 275 Pro Gln His Ala Val Leu Ser Gly Pro Asn Leu Phe Ile Asn Asn Leu Asn Lys Thr Asp Asn Gly Thr Tyr Arg Cys Glu Ala Ser Asn

305 310 315

Ile Val Gly Lys Ala His Ser Asp Tyr Met Leu Tyr Val Tyr Asp 320 325 330

Pro Pro Thr Thr Ile Pro Pro Pro Thr Thr Thr Thr Thr Thr 335

Thr Thr Thr Thr Thr Ile Leu Thr Ile Ile Thr Asp Ser Arg
350 355 360

Ala Gly Glu Glu Gly Ser Ile Arg Ala Val Asp His Ala Val Ile 365 370 375

Gly Gly Val Val Ala Val Val Phe Ala Met Leu Cys Leu Leu 380 385 390

Ile Ile Leu Gly Arg Tyr Phe Ala Arg His Lys Gly Thr Tyr Phe
395
400
405

Thr His Glu Ala Lys Gly Ala Asp Asp Ala Ala Asp Ala Asp Thr 410 415 420

Ala Ile Ile Asn Ala Glu Gly Gly Gln Asn Asn Ser Glu Glu Lys 425 430 435

Lys Glu Tyr Phe Ile

<210> 62

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 62

ggettetget gttgetette teeg 24

<210> 63

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 63

gtacactgtg accagtcage 20

<210> 64

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

```
<400> 64
 atcatcacag attcccgage 20
<210> 65
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 65
 ttcaatctcc tcaccttcca ccqc 24
<210> 66
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 66
atagctgtgt ctgcgtctgc tgcg 24
<210> 67
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 67
 cgcggcactg atccccacag gtgatgggca gaatctgttt acgaaagacg 50
<210> 68
<211> 2555
<212> DNA
<213> Homo Sapien
<400> 68
 ggggcgggtg gacgcggact cgaacgcagt tgcttcggga cccaggaccc 50
 cctcgggccc gacccgccag gaaagactga ggccgcggcc tgccccgccc 100
 ggctccctgc gccgccgccg cctcccggga cagaagatgt gctccagggt 150
 ccctctgctg ctgccgctgc tcctgctact ggccctgggg cctggggtgc 200
 agggetgeee atceggetge cagtgeagee agecacagae agtettetge 250
 actgecegee aggggaceae ggtgeceega gaegtgecae eegacaeggt 300
 ggggctgtac gtctttgaga acggcatcac catgctcgac gcaagcagct 350
 ttgccggcct gccgggcctg cagctcctgg acctgtcaca gaaccagatc 400
```


gegggtetga gtgtgaggtg ceaeteatgg getteeeagg geetggeete 1900 cagteacece tecaegeaaa geectacate taageeagaa agagacaggg 1950 cagetgggge egggetetea geeagtgaga tggecageee ceteetgetg 2000 ceaeaceaegg taagteetea gteecaaeet eggggatgtg tgeagacagg 2050 getgtgtgae caeagetggg ceetgtteee tetggacete ggteteetea 2100 tetgtgagat getgtggeee agetgacgag eeetaaegte eeeagaaeeg 2150 agtgeetatg aggacagtgt eegeeetgee eteegeaaeg tgeagteeet 2200 gggeaeggeg ggeeetgeea tgtgetggta aegeatgeet gggeeetget 2250 gggeteteee aeteeaggeg gaeeetggga geeagtgaag gaageteeeg 2300 gaaagagaeg agggagaegg ggtaggegge tgtgtgaete tagtettgge 2350 eeeaggaage gaaggaaeaa aagaaaetgg aaaggaagat getttaggaa 2400 catgttttge tttttaaaa tatatata tttataagag ateettteee 2450 atttattetg ggaagatgtt ttteaaaete agagacaagg acttttggttt 2500 ttgtaagaea aacgatgata tgaaggeett ttgtaagaaa aaataaaaaa 2550 aaaaa 2555

<210> 69

<211> 598

<212> PRT

<213> Homo Sapien

<400> 69

Met Cys Ser Arg Val Pro Leu Leu Leu Pro Leu Leu Leu Leu 1 5 10 15

Ala Leu Gly Pro Gly Val Gln Gly Cys Pro Ser Gly Cys Gln Cys 20 25 30

Ser Gln Pro Gln Thr Val Phe Cys Thr Ala Arg Gln Gly Thr Thr 35 40 45

Val Pro Arg Asp Val Pro Pro Asp Thr Val Gly Leu Tyr Val Phe
50 55 60

Glu Asn Gly Ile Thr Met Leu Asp Ala Ser Ser Phe Ala Gly Leu 65 70 75

Pro Gly Leu Gln Leu Leu Asp Leu Ser Gln Asn Gln Ile Ala Ser 80 85 90

Leu Arg Leu Pro Arg Leu Leu Leu Leu Asp Leu Ser His Asn Ser 95 100 105

Leu Leu Ala Leu Glu Pro Gly Ile Leu Asp Thr Ala Asn Val Glu

				110					115					120
Ala	Leu	Arg	Leu	Ala 125	Gly	Leu	Gly	Leu	Gln 130	Gln	Leu	Asp	Glu	Gly 135
Leu	Phe	Ser	Arg	Leu 140	Arg	Asn	Leu	His	Asp 145	Leu	Asp	Val	Ser	Asp 150
Asn	Gln	Leu	Glu	Arg 155	Val	Pro	Pro	Val	Ile 160	Arg	Gly	Leu	Arg	Gly 165
Leu	Thr	Arg	Leu	Arg 170	Leu	Ala	Gly	Asn	Thr 175	Arg	Ile	Ala	Gln	Leu 180
Arg	Pro	Glu	Asp	Leu 185	Ala	Gly	Leu	Ala	Ala 190	Leu	Gln	Glu	Leu	Asp 195
Val	Ser	Asn	Leu	Ser 200	Leu	Gln	Ala	Leu	Pro 205	Gly	Asp	Leu	Ser	Gly 210
Leu	Phe	Pro	Arg	Leu 215	Arg	Leu	Leu	Ala	Ala 220	Ala	Arg	Asn	Pro	Phe 225
Asn	Cys	Val	Cys	Pro 230	Leu	Ser	Trp	Phe	Gly 235	Pro	Trp	Val	Arg	Glu 240
Ser	His	Val	Thr	Leu 245	Ala	Ser	Pro	Glu	Glu 250	Thr	Arg	Суѕ	His	Phe 255
Pro	Pro	Lys	Asn	Ala 260	Gly	Arg	Leu	Leu	Leu 265	Glu	Leu	Asp	Tyr	Ala 270
Asp	Phe	Gly	Cys	Pro 275	Ala	Thr	Thr	Thr	Thr 280	Ala	Thr	Val	Pro	Thr 285
Thr	Arg	Pro	Val	Val 290	Arg	Glu	Pro	Thr	Ala 295	Leu	Ser	Ser	Ser	Leu 300
Ala	Pro	Thr	Trp	Leu 305	Ser	Pro	Thr	Ala	Pro 310	Ala	Thr	Glu	Ala	Pro 315
Ser	Pro	Pro	Ser	Thr 320	Ala	Pro	Pro	Thr	Val 325	Gly	Pro	Val	Pro	Gln 330
Pro	Gln	Asp	Cys	Pro 335		Ser	Thr	Cys	Leu 340	Asn	Gly	Gly	Thr	Cys 345
His	Leu	Gly	Thr	Arg 350		His	Leu	Ala	Cys 355	Leu	Cys	Pro	Glu	Gly 360
Phe	Thr	Gly	Leu	Tyr 365	Cys	Glu	Ser	Gln	Met 370	Gly	Gln	Gly	Thr	Arg 375
Pro	Ser	Pro	Thr	Pro 380	Val	Thr	Pro	Arg	Pro 385	Pro	Arg	Ser	Leu	Thr 390
Leu	Gly	Ile	Glu	Pro 395	Val	Ser	Pro	Thr	Ser 400	Leu	Arg	Val	Gly	Leu 405

Gln	Arg	Tyr	Leu	Gln 410	Gly	Ser	Ser	Val	Gln 415	Leu	Arg	Ser	Leu	Arg 420
Leu	Thr	Tyr	Arg	Asn 425	Leu	Ser	Gly	Pro	Asp 430	Lys	Arg	Leu	Val	Thr 435
Leu	Arg	Leu	Pro	Ala 440	Ser	Leu	Ala	Glu	Tyr 445	Thr	Val	Thr	Gln	Leu 450
Arg	Pro	Asn	Ala	Thr 455	Tyr	Ser	Val	Cys	Val 460	Met	Pro	Leu	Gly	Pro 465
Gly	Arg	Val	Pro	Glu 470	Gly	Glu	Glu	Ala	Cys 475	Gly	Glu	Ala	His	Thr 480
Pro	Pro	Ala	Val	His 485	Ser	Asn	His	Ala	Pro 490	Val	Thr	Gln	Ala	Arg 495
Glu	Gly	Asn	Leu	Pro 500	Leu	Leu	Ile	Ala	Pro 505	Ala	Leu	Ala	Ala	Val 510
Leu	Leu	Ala	Ala	Leu 515	Ala	Ala	Val	Gly	Ala 520	Ala	Tyr	Суѕ	Val	Arg 525
Arg	Gly	Arg	Ala	Met 530	Ala	Ala	Ala	Ala	Gln 535	Asp	Lys	Gly	Gln	Val 540
Gly	Pro	Gly	Ala	Gly 545	Pro	Leu	Glu	Leu	Glu 550	Gly	Val	Lys	Val	Pro 555
Leu	Glu	Pro	Gly	Pro 560	Lys	Ala	Thr	Glu	Gly 565	Gly	Gly	Glu	Ala	Leu 570
Pro	Ser	Gly	Ser	Glu 575	Cys	Glu	Val	Pro	Leu 580	Met	Gly	Phe	Pro	Gly 585
Pro	Gly	Leu	Gln	Ser 590	Pro	Leu	His	Ala	Lys 595	Pro	Tyr	Ile		
<210: <211: <212:	> 22 > DN			_										
<213:	> Ar	citio	cial	Sequence										

- <220>
- <223> Synthetic oligonucleotide probe
- <400> 70
- cectecactg ecceacegae tg 22
- <210> 71
- <211> 24
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe

```
<400> 71
 cggttctggg gacgttaggg ctcq 24
<210> 72
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 72
 ctgcccaccg tccacctgcc tcaat 25
<210> 73
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 73
 aggactgccc accgtccacc tgcctcaatg ggggcacatg ccacc 45
<210> 74
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
 acgcaaagcc ctacatctaa gccagagaga gacagggcag ctggg 45
<210> 75
<211> 1077
<212> DNA
<213> Homo Sapien
<400> 75
 ggcactagga caacettett ecettetgea ceaetgeeeg taceettace 50
 egeceegeca eeteettget acceeactet tgaaaccaca getgttggca 100
 gggtccccag ctcatgccag cctcatctcc tttcttgcta gcccccaaag 150
 ggcctccagg caacatgggg ggcccagtca gagagccggc actctcagtt 200
```

gccctctggt tgagttgggg ggcagctctg ggggccgtgg cttgtgccat 250

ggctctgctg acccaacaaa cagagctgca gagcctcagg agagaggtga 300

geeggetgea ggggaeagga ggeeceteee agaatgggga agggtateee 350

tggcagagtc tcccggagca gagttccgat gccctggaag cctgggagaa 400

<210> 76

<211> 250

<212> PRT

<213> Homo Sapien

<400> 76

Met Pro Ala Ser Ser Pro Phe Leu Leu Ala Pro Lys Gly Pro Pro 1 5 10 15

Gly Asn Met Gly Gly Pro Val Arg Glu Pro Ala Leu Ser Val Ala
20 25 30

Leu Trp Leu Ser Trp Gly Ala Ala Leu Gly Ala Val Ala Cys Ala
35 40 45

Met Ala Leu Leu Thr Gl
n Gl
n Thr Glu Leu Gl
n Ser Leu Arg Arg 50 $\,$ 55 $\,$ 60

Glu Val Ser Arg Leu Gln Gly Thr Gly Gly Pro Ser Gln Asn Gly
65 70 75

Glu Gly Tyr Pro Trp Gln Ser Leu Pro Glu Gln Ser Ser Asp Ala 80 85 90

Leu Glu Ala Trp Glu Asn Gly Glu Arg Ser Arg Lys Arg Arg Ala 95 100 105

Val Leu Thr Gln Lys Gln Lys Gln His Ser Val Leu His Leu 110 115 120

Val	Pro	Ile	Asn	Ala 125	Thr	Ser	Lys	Asp	Asp 130	Ser	Asp	Val	Thr	Glu 135
Val	Met	Trp	Gln	Pro 140	Ala	Leu	Arg	Arg	Gly 145	Arg	Gly	Leu	Gln	Ala 150
Gln	Gly	Tyr	Gly	Val 155	Arg	Ile	Gln	Asp	Ala 160	Gly	Val	Tyr	Leu	Leu 165
Tyr	Ser	Gln	Val	Leu 170	Phe	Gln	Asp	Val	Thr 175	Phe	Thr	Met	Gly	Gln 180
Val	Val	Ser	Arg	Glu 185	Gly	Gln	Gly	Arg	Gln 190	Glu	Thr	Leu	Phe	Arg 195
Cys	Ile	Arg	Ser	Met 200	Pro	Ser	His	Pro	Asp 205	Arg	Ala	Tyr	Asn	Ser 210
Cys	Tyr	Ser	Ala	Gly 215	Val	Phe	His	Leu	His 220	Gln	Gly	Asp	Ile	Leu 225
Ser	Val	Ile	Ile	Pro 230	Arg	Ala	Arg	Ala	Lys 235	Leu	Asn	Leu	Ser	Pro 240

<210> 77

<211> 2849

<212> DNA

<213> Homo Sapien

His Gly Thr Phe Leu Gly Phe Val Lys Leu 245 250

<400> 77

 cactttetec
 ctectteet
 ttacttega
 gaaacegege
 ttecgettet
 50

 ggtcgcagag
 acctcggaga
 ccgcgccggg
 gagacggagg
 tgctgtgggt
 100

 gggggggacc
 tgtggctgct
 cgtaccgcc
 cccaccctcc
 tcttctgcac
 150

 tgccgtcctc
 cggaagacct
 tttcccctgc
 tctgtttcct
 tcaccgagtc
 200

 tgtgcatcgc
 cccggacctg
 gccgggagga
 ggcttggccg
 gcgggacgag
 300

 gaagatgggc
 tcccgtggac
 agggactctt
 gctggcgtac
 tgcctgcgca
 350

 ttgcctttgc
 ctctggcctg
 gtctgagtc
 gtgtgcccca
 tgtccagggg
 400

 gaacagcagg
 agtggaggg
 ctgcggtcg
 ctccggacca
 450

 tgccgagagg
 gctgaagaa
 ctccggacca
 500

 aggggctccc
 tgcttcccgg
 gctgtgaccc
 cggtacctcc
 550

 atgtacccgg
 cgaccgcgag
 accatcacta
 tcttgaagg
 600

 ggagaaagggt
 gaccgcggag
 accatcacta
 tcttgaagg
 600

caggetcage aggggecagg ggccacactg gacccaaagg gcagaagggc 700 tccatggggg cccctgggga gcggtgcaag agccactacg ccgccttttc 750 ggtgggccgg aagaagccca tgcacagcaa ccactactac cagacggtga 800 tettegacae ggagttegtg aacetetaeg accaetteaa catgtteaec 850 ggcaagttet actgetacgt geeeggeete taettettea geeteaaegt 900 gcacacctgg aaccagaagg agacctacct gcacatcatg aagaacgagg 950 aggaggtggt gatcttgttc gcgcaggtgg gcgaccgcag catcatgcaa 1000 agccagagcc tgatgctgga gctgcgagag caggaccagg tgtgggtacg 1050 cetetacaag ggegaaegtg agaaegeeat etteagegag gagetggaea 1100 cctacatcac cttcagtggc tacctggtca agcacgccac cgagccctag 1150 etggeeggee accteettte etetegeeae etteeaeeee tgegetgtge 1200 tgaccccacc gcctcttccc cgatccctgg actccgactc cctggctttg 1250 gcattcagtg agacgccctg cacacacaga aagccaaagc gatcggtgct 1300 cccagatccc gcagcctctg gagagagctg acggcagatg aaatcaccag 1350 ggcggggcac ccgcgagaac cctctgggac cttccgcggc cctctctgca 1400 cacatectea agtgaceeg caeggegaga egegggtgge ggeagggegt 1450 eccagggtge ggeacegegg etceagteet tggaaataat taggeaaatt 1500 ctaaaggtet caaaaggage aaagtaaace gtggaggaca aagaaaaggg 1550 ttgttatttt tgtctttcca gccagcctgc tggctcccaa gagagaggcc 1600 ttttcagttg agactctgct taagagaaga tccaaagtta aagctctggg 1650 gtcaggggag gggccggggg caggaaacta cctctggctt aattctttta 1700 agccacgtag gaactttett gagggatagg tggaccetga catecetgtg 1750 gccttgccca agggctctgc tggtctttct gagtcacagc tgcgaggtga 1800 tgggggctgg ggccccaggc gtcagcctcc cagagggaca gctgagcccc 1850 ctgccttggc tccaggttgg tagaagcagc cgaagggctc ctgacagtgg 1900 ccagggaccc ctgggtcccc caggcctgca gatgtttcta tgaggggcag 1950 ageteetigg tacatecatg tgtggetetg etecacecet gtgecacece 2000 agageeetgg ggggtggtet ceatgeetge caecetggea teggetttet 2050 gtgccgcctc ccacacaaat cagccccaga aggccccggg gccttggctt 2100

<210> 78

<211> 281

<212> PRT

<213> Homo Sapien

<400> 78

Met Gly Ser Arg Gly Gln Gly Leu Leu Leu Ala Tyr Cys Leu Leu 1 5 10 15

Leu Ala Phe Ala Ser Gly Leu Val Leu Ser Arg Val Pro His Val
20 25 30

Gln Gly Glu Gln Gln Glu Trp Glu Gly Thr Glu Glu Leu Pro Ser 35 40 45

Pro Pro Asp His Ala Glu Arg Ala Glu Glu Gln His Glu Lys Tyr
50 55 60

Arg Pro Ser Gln Asp Gln Gly Leu Pro Ala Ser Arg Cys Leu Arg
65 70 75

Cys Cys Asp Pro Gly Thr Ser Met Tyr Pro Ala Thr Ala Val Pro 80 $\,$ 85 $\,$ 90

Gln Ile Asn Ile Thr Ile Leu Lys Gly Glu Lys Gly Asp Arg Gly
95 100 105

Asp Arg Gly Leu Gln Gly Lys Tyr Gly Lys Thr Gly Ser Ala Gly

<210> 81

				110					115					120
Ala	Arg	Gly	His	Thr 125	Gly	Pro	Lys	Gly	Gln 130	Lys	Gly	Ser	Met	Gly 135
Ala	Pro	Gly	Glu	Arg 140	Cys	Lys	Ser	His	Tyr 145	Ala	Ala	Phe	Ser	Val 150
Gly	Arg	Lys	Lys	Pro 155	Met	His	Ser	Asn	His 160	Tyr	Tyr	Gln	Thr	Val 165
Ile	Phe	Asp	Thr	Glu 170	Phe	Val	Asn	Leu	Tyr 175	Asp	His	Phe	Asn	Met 180
Phe	Thr	Gly	Lys	Phe 185	Tyr	Cys	Tyr	Val	Pro 190	Gly	Leu	Tyr	Phe	Phe 195
Ser	Leu	Asn	Val	His 200	Thr	Trp	Asn	Gln	Lys 205	Glu	Thr	Tyr	Leu	His 210
Ile	Met	Lys	Asn	Glu 215	Glu	Glu	Val	Val	Ile 220	Leu	Phe	Ala	Gln	Val 225
Gly	Asp	Arg	Ser	Ile 230	Met	Gln	Ser	Gln	Ser 235	Leu	Met	Leu	Glu	Leu 240
Arg	Glu	Gln	Asp	Gln 245	Val	Trp	Val	Arg	Leu 250	Tyr	Lys	Gly	Glu	Arg 255
Glu	Asn	Ala	Ile	Phe 260	Ser	Glu	Glu	Leu	Asp 265	Thr	Tyr	Ile	Thr	Phe 270
Ser	Gly	Tyr	Leu	Val 275	Lys	His	Ala	Thr	Glu 280	Pro				
<210 <211 <212 <213	> 24 > DN		cial	Seq	uenc	e								
<220 <223		nthe	tic	olig	onuc!	leot	ide p	prob	e					
<400 tac		cca -	gtca	ggac	ca g	ggg :	24							
<211 <212	<210> 80 <211> 24 <212> DNA <213> Artificial Sequence													
<220> <223> Synthetic oligonucleotide probe														
	<400> 80 ctgaagaagt agaggcggg cacg 24													

- <211> 45
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 81
 cccggtgctt gcgctgctgt gaccccggta cctccatgta cccgg 45
 <210> 82
 <211> 2284
 <212> DNA
 <213> Homo Sapien
 <400> 82
 gcggagcatc cgctgcggtc ctcgccgaga cccccgcgcg gattcgccgg 50
 tccttcccgc gggcgcgaca gagctgtcct cgcacctgga tggcagcagg 106
 - teetteeege gggegegaca gagetgteet egeacetgga tggeageagg 100 ggcgccgggg tectetegae gecagagaga aateteatea tetgtgcage 150 cttcttaaag caaactaaga ccagagggag gattatcctt gacctttgaa 200 gaccaaaact aaactgaaat ttaaaatgtt cttcggggga gaagggagct 250 tgacttacac tttggtaata atttgcttcc tgacactaag gctgtctgct 300 agtcagaatt geetcaaaaa gagtctagaa gatgttgtca ttgacatcca 350 gtcatctctt tctaagggaa tcagaggcaa tgagcccgta tatacttcaa 400 ctcaagaaga ctgcattaat tcttgctgtt caacaaaaaa catatcaggg 450 gacaaagcat gtaacttgat gatcttcgac actcgaaaaa cagctagaca 500 acccaactgc tacctatttt tctgtcccaa cgaggaagcc tgtccattga 550 aaccagcaaa aggacttatg agttacagga taattacaga ttttccatct 600 ttgaccagaa atttgccaag ccaagagtta ccccaggaag attctctctt 650 acatggccaa ttttcacaag cagtcactcc cctagcccat catcacacag 700 attattcaaa gcccaccgat atctcatgga gagacacact ttctcagaag 750 tttggatcct cagatcacct ggagaaacta tttaagatgg atgaagcaag 800 tgcccagete ettgettata aggaaaaagg ccattetcag agttcacaat 850 tttcctctga tcaagaaata gctcatctgc tgcctgaaaa tgtgagtgcg 900 ctcccagcta cggtggcagt tgcttctcca cataccacct cggctactcc 950 aaagcccgcc accettetac ccaccaatgc ttcagtgaca cettetggga 1000 cttcccagcc acagetggcc accacagetc cacetgtaac cactgtcact 1050


```
teteageete ecaegaeeet eatttetaea gtttttaeae gggetgegge 1100
tacactccaa gcaatggcta caacagcagt tctgactacc acctttcagg 1150
cacctacgga ctcgaaaggc agcttagaaa ccataccgtt tacagaaatc 1200
tecaaettaa etttgaaeae agggaatgtg tataaeeeta etgeaettte 1250
tatgtcaaat gtggagtett ceactatgaa taaaactget teetgggaag 1300
qtaggqaggc cagtccaggc agttcctccc agggcagtgt tccagaaaat 1350
caqtacqqcc ttccatttga aaaatqqctt cttatcqqqt ccctqctctt 1400
tggtgteetg tteetggtga taggeetegt eeteetgggt agaateettt 1450
eggaateaet eegeaggaaa egttaeteaa gaetggatta titgateaat 1500
gggatctatg tggacatcta aggatggaac tcggtgtctc ttaattcatt 1550
tagtaaccag aagcccaaat gcaatgagtt tctgctgact tgctagtctt 1600
ageaggaggt tgtattttga agacaggaaa atgccccctt ctgctttcct 1650
ttttttttt ggagacagag tcttgctctg ttgcccaggc tggagtgcag 1700
tagcacgate teggetetea eegeaacete egteteetgg gttcaagega 1750
tteteetgee teagesteet aagtatetgg gattacagge atgtgecace 1800
acacctqqqt qatttttqta tttttaqtaq aqacqqqqtt tcaccatqtt 1850
ggtcaggctg gtctcaaact cctgacctag tgatccaccc tcctcggcct 1900
cccaaagtgc tgggattaca ggcatgagcc accacagctg gcccccttct 1950
gttttatgtt tggtttttga gaaggaatga agtgggaacc aaattaggta 2000
attttgggta atctgtctct aaaatattag ctaaaaacaa agctctatgt 2050
aaagtaataa agtataattg ccatataaat ttcaaaattc aactggcttt 2100
tatgcaaaga aacaggttag gacatctagg ttccaattca ttcacattct 2150
tggttccaga taaaatcaac tgtttatatc aatttctaat ggatttgctt 2200
ttetttttat atggatteet ttaaaaetta tteeagatgt agtteettee 2250
aattaaatat ttgaataaat cttttgttac tcaa 2284
```

<210> 83

<211> 431

<212> PRT

<213> Homo Sapien

<400> 83

Met Phe Phe Gly Gly Glu Gly Ser Leu Thr Tyr Thr Leu Val Ile 1 5 10 15

305 310 315 Ser Leu Glu Thr Ile Pro Phe Thr Glu Ile Ser Asn Leu Thr Leu Asn Thr Gly Asn Val Tyr Asn Pro Thr Ala Leu Ser Met Ser Asn 335 Val Glu Ser Ser Thr Met Asn Lys Thr Ala Ser Trp Glu Gly Arg 355 350 Glu Ala Ser Pro Gly Ser Ser Ser Gln Gly Ser Val Pro Glu Asn 365 Gln Tyr Gly Leu Pro Phe Glu Lys Trp Leu Leu Ile Gly Ser Leu Leu Phe Gly Val Leu Phe Leu Val Ile Gly Leu Val Leu Leu Gly 395 Arg Ile Leu Ser Glu Ser Leu Arg Arg Lys Arg Tyr Ser Arg Leu Asp Tyr Leu Ile Asn Gly Ile Tyr Val Asp Ile 425 <210> 84 <211> 30 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 84 agggaggatt atccttgacc tttgaagacc 30 <210> 85 <211> 18 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 85 gaagcaagtg cccagctc 18 <210> 86 <211> 18 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 86 egggteetg etetttgg 18

```
<210> 87
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 87
caccgtaget gggagegeae teae 24
<210> 88
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 88
 agtgtaagtc aagctccc 18
<210> 89
<211> 49
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 89
getteetgae actaaggetg tetgetagte agaattgeet caaaaagag 49
<210> 90
<211> 957
<212> DNA
<213> Homo Sapien
<400> 90
 cctggaagat gcgcccattg gctggtggcc tgctcaaggt ggtgttcgtg 50
 gtcttcgcct ccttgtgtgc ctggtattcg gggtacctgc tcgcagagct 100
 cattccagat gcacccctgt ccagtgctgc ctatagcatc cgcagcatcg 150
 gggagaggcc tgtcctcaaa gctccagtcc ccaaaaggca aaaatgtgac 200
 cactggacte cetgeceate tgacacetat geetacaggt tactcagegg 250
 aggtggcaga agcaagtacg ccaaaatctg ctttgaggat aacctactta 300
 tgggagaaca gctgggaaat gttgccagag gaataaacat tgccattgtc 350
 aactatgtaa ctgggaatgt gacagcaaca cgatgttttg atatgtatga 400
 aggcqataac tctqqaccqa tqacaaagtt tattcagagt gctgctccaa 450
  aatccctgct cttcatggtg acctatgacg acggaagcac aagactgaat 500
```


aacgatgcca agaatgccat agaagcactt ggaagtaaag aaatcaggaa 550 catgaaattc aggtctagct gggtatttat tgcagcaaaa ggcttggaac 600 teectteega aattcagaga gaaaagatca accactctga tgctaagaac 650 aacagatatt etggetggce tgeagagate eagatagaag getgeatace 700 caaagaacga agetgacact geagggteet gagtaaatgt gttetgtata 750 aacaaatgca getggaateg etcaagaate ttattttet aaatccaaca 800 geecatattt gatgagtatt ttgggtttgt tgtaaaccaa tgaacatttg 850 etagttgtat eaaatettgg taegeagtat ttttatacca gtatttatg 900 tagtgaagat gtcaattage aggaaactaa aatgaatgga aattettaaa 950 aaaaaaa 957

<210> 91

<211> 235

<212> PRT

<213> Homo Sapien

<400> 91

Met Arg Pro Leu Ala Gly Gly Leu Leu Lys Val Val Phe Val Val 1 5 10 15

Phe Ala Ser Leu Cys Ala Trp Tyr Ser Gly Tyr Leu Leu Ala Glu 20 25 30

Leu Ile Pro Asp Ala Pro Leu Ser Ser Ala Ala Tyr Ser Ile Arg
35 40 45

Ser Ile Gly Glu Arg Pro Val Leu Lys Ala Pro Val Pro Lys Arg
50 55 60

Gln Lys Cys Asp His Trp Thr Pro Cys Pro Ser Asp Thr Tyr Ala 65 70 75

Tyr Arg Leu Leu Ser Gly Gly Gly Arg Ser Lys Tyr Ala Lys Ile 80 85 90

Cys Phe Glu Asp Asn Leu Leu Met Gly Glu Gln Leu Gly Asn Val 95 100 105

Ala Arg Gly Ile Asn Ile Ala Ile Val Asn Tyr Val Thr Gly Asn 110 115 120

Val Thr Ala Thr Arg Cys Phe Asp Met Tyr Glu Gly Asp Asn Ser 125 130 135

Gly Pro Met Thr Lys Phe Ile Gln Ser Ala Ala Pro Lys Ser Leu 140 145 150

Leu Phe Met Val Thr Tyr Asp Asp Gly Ser Thr Arg Leu Asn Asn 155 160 165

Asp Ala Lys Asn Ala Ile Glu Ala Leu Gly Ser Lys Glu Ile Arg 175 170 Asn Met Lys Phe Arg Ser Ser Trp Val Phe Ile Ala Ala Lys Gly 190 185 Leu Glu Leu Pro Ser Glu Ile Gln Arg Glu Lys Ile Asn His Ser 200 Asp Ala Lys Asn Asn Arg Tyr Ser Gly Trp Pro Ala Glu Ile Gln 215 Ile Glu Gly Cys Ile Pro Lys Glu Arg Ser 230 <210> 92 <211> 20 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe 400> 92 aatgtgacca ctggactccc 20 <210> 93 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 93 aggettggaa eteeette 18 <210> 94 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe

Ţ

<400> 94 aagattettg agegatteea getg 24 <210> 95 <211> 47 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 95 aatccctgct cttcatggtg acctatgacg acggaagcac aagactg 47


```
<210> 96
  <211> 21
  <212> DNA
  <213> Artificial Sequence
   <220>
  <223> Synthetic oligonucleotide probe
   <400> 96
   ctcaagaagc acgcgtactg c 21
   <210> 97
   <211> 25
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 97
    ccaacctcag cttccgcctc tacga 25
  <210> 98
   <211> 18
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 98
    catccaggct cgccactg 18
210> 99
  <211> 20
   <212> DNA
   <213> Artificial Sequence
  <223> Synthetic oligonucleotide probe
   <400> 99
    tggcaaggaa tgggaacagt 20
   <210> 100
   <211> 25
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 100
    atgctgccag acctgatcgc agaca 25
   <210> 101
   <211> 19
   <212> DNA
```



```
<213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 101
   gggcagaaat ccagccact 19
   <210> 102
   <211> 18
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 102
   cccttcgcct gcttttga 18
   <210> 103
   <211> 27
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 103
   gccatctaat tgaagcccat cttccca 27
   <210> 104
  <211> 19
   <212> DNA
  <213> Artificial Sequence
How they
   <223> Synthetic oligonucleotide probe
   <400> 104
   ctggcggtgt cctctcctt 19
   <210> 105
   <211> 21
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 105
    cctcggtctc ctcatctgtg a 21
   <210> 106
   <211> 20
   <212> DNA
   <213> Artificial Sequence
   <220>
```

- <223> Synthetic oligonucleotide probe
 <400> 106
 tggcccagct gacgagccct 20
 <210> 107
 <211> 21
- <212> DNA <213> Artificial Sequence
- <223> Synthetic oligonucleotide probe
- ctcataggca ctcggttctg g 21
 <210> 108
- <210> 108
 <211> 19
 <212> DNA
 <213> Artificial Sequence
 <220>
- <223> Synthetic oligonucleotide probe
- tggctcccag cttggaaga 19
 <210> 109
 <211> 30

<400> 108

- <211> 30 <212> DNA <213> Artificial Sequence <220>
- <223> Synthetic oligonucleotide probe
- cagetettgg ctgtetecag tatgtaceca 30
 <210> 110
 <211> 21
- <212> DNA <213> Artificial Sequence
- <220>
 <223> Synthetic oligonucleotide probe
 <400> 110
 gatgcctctg ttcctgcaca t 21
- <210> 111 <211> 48 <212> DNA <213> Artificial Sequence <220>
- <223> Synthetic oligonucleotide probe
- <400> 111

- - West 27 2 7 15

0

```
ggattctaat acgactcact atagggctgc ccgcaacccc ttcaactg 48
<210> 112
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 112
 ctatgaaatt aaccctcact aaagggaccg cagctgggtg accgtgta 48
<210> 113
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
ggattetaat acgaeteact atagggeege eeegeeacet eet 43
<210> 114
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 114
 ctatgaaatt aaccctcact aaagggactc gagacaccac ctgaccca 48
<210> 115
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 ggattctaat acgactcact atagggccca aggaaggcag gagactct 48
<210> 116
 <211> 48
 <212> DNA
 <213> Artificial Sequence
 <223> Synthetic Oligonucleotide probe
```

ctatgaaatt aacceteact aaagggacta gggggtggga atgaaaag 48

<400> 116

<210> 117


```
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 117
ggattctaat acgactcact atagggcccc cctgagctct cccgtgta 48
<210> 118
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 118
 ctatgaaatt aaccctcact aaagggaagg ctcgccactg gtcgtaga 48
<210> 119
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 119
 ggattctaat acgactcact atagggcaag gagccgggac ccaggaga 48
<210> 120
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 120
 ctatgaaatt aacceteact aaagggaggg ggeeettggt getgagt 47
```