Test1 - 1 -

Discrete Mathematics – Test1

- $\text{1. Let} \quad V_1=< Z, +>, V_2=< Z_n, \oplus>, f:Z\to Z_n, f(x)=x \ \text{mod} \ n \quad , \quad \text{then} \quad f \quad \text{ is} \quad \text{a} \\ \text{homomorphism from} \quad V_1 \quad \text{onto} \quad V_2 \, .$
 - (Remark: Z is the set of all integers, $Z_n = \{0,1,...,n-2\}$, \oplus is said to be addition module n, defined by $x \oplus y = (x+y) \mod n$)
- 2. If $\langle S, * \rangle$ and $\langle T, *_1 \rangle$ are semigroup, then $\langle S \times T, *_2 \rangle$ is a semigroup, where $*_2$ defined by $\langle s_1, t_1 \rangle *_2 \langle s_2, t_2 \rangle = \langle s_1 *_2, t_1 *_1 t_2 \rangle$.
- 3. $\langle Z, + \rangle$ is a group, write the n_{th} power of every integer.
- 4. Let G be a group, G is a Abelian group if and only if $\forall a,b \in G, (ab) = (aa)(bb)$.
- 5. Let $S = \{a, b, c, d\}$, f(a) = b, f(b) = c, f(c) = d, f(d) = a, and $F = \{f^0, f^1, f^2, f^3\}$, then $\langle F, \circ \rangle$ is an Abelian group.