

- Aristoteles (& Platon): geosentrisme
 - Det supralunare sfæren består av et femte element, eter.
 - Jorden ligger i universets sentrum, ubevegelig
 - Begrunnelse: observasjon
 - Himmellegemene beveger seg i (evige og uforanderlige) perfekte sirkelbaner rundt jorden
 - Stjernehimmelen: den ytterste sfæren

Aristoteles (& Platon): geosentrisme

- Problemer med geosentrisme:
 - Planetene ser ut til å bli «større» og «mindre» på himmelen.
 - Retrograd bevegelse

- Aristark (ca 310-230): heliosentrisme
- Solen og stjernesfæren er ubevegelige, mens jorden og planetene beveger seg i sirkler rudnt solen; jorden dreier om sin egen akse.
 - Forklarer regrograd bevegelse:
 https://www.youtube.com/watch?v=72FrZz_zJFU
 - Ble ikke godtatt:
 - Problem 1: Hvorfor varierer stjærnesfæren ikke i utseende?
 - Problem 2: Hvorfor merker vi ikke jordens bevegelse?

- Ptolemaios (85-165)
- To premisser:
 - Geosentrisme:
 - Jorden befinner seg i sentrum
 - Planetene beveger seg i sirkler
 - Sirkelbevegelse er «naturlig»
- Men kanskje har ikke alle sirkelbanene jorden som sitt sentrum?

• Episykler: planetene beveger seg i sirkelbaner rundt punkter som selv går i sirkelbaner

- Ptolemaios «reddet» det aristoteliske verdensbildet:
 - Geosentrisme
 - Sirkulære baner
- Systemet ga (relativt) nøyaktige prediksjoner, men det var lite troværdig som et realistisk verdensbilde
 - «ad hoc forklaring»
 - Instrumentalisme vs vitenskapelig realisme
 - Ptolemaios: det er «åpenbart at disse [dvs metafysikk *og* fysikk] bare kan gi plass for et spekulativt og ikke vitenskapelig studium».

- 1500- og 1600-tallene, en radikal endring i verdensbildet
 - Midderalderens verdensbilde:
 - Syntese av kristendom og aristotelisk filosofi
 - Teleologisk
 - Nytt verdensbilde
 - Preget av naturvitenskapene
 - Mekanistisk

- Fokus på teknologi og menneskets evne til å manipulere omgivelsene
 - Francis Bacon (1561-1626):
 - «Kunnskap er makt»
 - Teoretisk interesse → teknisk interesse

- Teknologiske framskritt både førte til økt interesse i fysikk og muliggjorde den nye fysikken/astronomien
 - Trykkekunsten
 - Ny kunnskap kunne spres mer effektivt
 - Sjøfart og navigasjon
 - Instrumenter til å bestemme ens posisjon
 - Kart over stjernehimmelen
 - Krigføring
 - Oppfinnelse av kanoner (\rightarrow ballistikk).
 - Økt presisjon
 - Teleskop
 - Målingsteknologi, f eks Galileis «vann-ur»

- Kjernen av DVR: den nye fysikken
 - Astronomi
 - Kopernikus, Kepler, Galilei
 - Bevegelseslære
 - Galilei, Newton
- Syntese av de to: Newton

Nikolas Kopernikus (1473-1543)

- Fant uoverensstemmelse mellom Ptolemaios' system og månens bevegelse.
- Studerte antikkens heliosentriske teorier
- De revolutionibus orbium coelestium 1543: heliosentrisk modell

Nikolas Kopernikus (1473-1543)

- Forord av presten Andreas Osiander:
 - «Disse hypotesene trenger ikke være sanne, ikke engang sannsynlige; for hvis de gir en regnemetode i overensstemmelse med observasjonene, er det alene tilstrekkelig ... Hva hypoteser angår, kan ingen vente sikkerhet fra astronomien.»
 - Instrumentalisme igjen!

Nikolas Kopernikus (1473-1543)

- Ikke umiddelbart empirisk overlegen mot Ptolemaios' teori
- Men: enklere beskrivelse av universet
 - Occam's Razor
- Kopernikus beholdt sirkulære baner
 - Også han måtte ty til episykler
 - Reduserte antallet episykler fra 80 til 32

Giordano Bruno (1548-1600)

- Universet er uendelig
- Selv ikke solen ligger i sentrum
- Hver stjerne representerer et eget solsystem, muligens med befolkede planeter
- Mennesket har ingen privilegert plass?
- Brent på bålet

- Først og fremst en eksperimentalist, ikke en teoretiker
- De mest presise observasjonene før oppfinnelsen av teleskopet.
- Forsvarte geosentrisme

 Solen og stjernehimmelen beveger seg rundt jorden; planetene beveger seg rundt solen

NOVA MVNDANI SYSTEMATIS HYPOTYPOSIS AB AUTHORE NUPER ADINUENTA, QUA TUM VETUS ILLA PTOLEMAICA REDUNDANTIA & INCONCINNITAS, TUM ETIAM RECENS COPERNIANA IN MOTU TERRÆ PHYSICA ABSURDITAS, EXCLU-DUNTUR, OMNIAQUE APPAREN-TIIS CŒLESTIBUS APTISSIME CORRESPONDENT.

- Begrunnelse: man kunne ikke observere parallaksen
 - (Parallakse ble først målt i 1838.)

 Tychos nøyaktige observasjoner (om en nova i 1572 og en komet i 1577) bidro til at det heliosentriske verdensbildet ble etablert

Johannes Kepler (1571-1630)

- Tycho Brahes assistent
- Hastigheten av planetene varierer med avstanden fra solen
 - − Kjennskap til magnetisme
 → hypotesen om at
 planetene er påvirket av
 en kraft fra solen

Johannes Kepler (1571-1630)

- Keplers tre lover:
 - 1) Planetenes baner er ellipser med solen i det ene brennepunktet
 - 2) Baneradiene sveiper over like store flater på like lange tider
 - 3) R3/T2=konstant, hvor R=middelavstand fra Solen, T=omløpstiden

- «Naturens bok er skrevet med matematikkens tegn»
- Var den første å bruke teleskopet i astronomi
- Utviklet den eksperimentelle metoden
 - Passiv observasjon → aktiv manipulasjon

- Astronomi:
 - Så fjellkjeder og dalsøkk på månen
 - Oppdaget tre av Jupiters måner
 - Uforenelig med aristotelisk astronomi
- Boka *Dialog om de to store verdenssystemer* forsvarte heliosentrisme
 - Kirken tvang Galilei til å trekke tilbake en realistisk fortolkning av systemet.

- Ny bevegelseslære
 - Galilei grunnla moderne matematisk og eksperimentell naturvitenskap med skråplanforsøkene.

- Aristoteles: alle legemer har en fallhastighet som er proporsjonal med vekten
 - Stemmer med dagliglivets erfaring
- Galilei: alle legemer faller like hurtig, uansett vekt
 - Stemmer med laboratorie-erfaring; idealisering
- Nøyaktige målinger, samt idealisering som abstraherer bort fra tilfeldige forstyrrelser → mulig å gi hypotesene en presis matematisk formulering

- Treghet:
 - Aristoteles: det trenges en kraft for å holde et legeme i gang når det er i bevegelse
 - Galilei: når et legeme først er satt i bevegelse, kreves det påvirkning for å stoppe det.
- Men: Galilei mente fortsatt at legemer naturlig beveger seg i sirkler (som følger jordoverflaten)

Isaac Newton (1642-1727)

- Newtons første lov: et legeme fortsetter i sin tilstand av ro eller jevn, rettlinjet bevegelse så lenge summen av kreftene som virker på det er null.
- Ikke bare endring i hastighet, men også endring i retning krever påvirkning
- Bevegelse i sirkelbaner (eller ellipsebaner) forutsetter at en eller annen kraft påvirker på legemet.

Isaac Newton (1642-1727)

- Newtons store syntese: himmellegemenes og jordiske legemers bevegelse kan forklares av de samme prinsippene (samme naturlovene).
- Problematiske aspekter:
 - «Fjernkraft»: solen påvirker planetene uten mekanisk formidling
 - Absolutt bevegelse (absolutt tid og rom)

DVR: Oppsummering

- Det aristoteliske/ptolemeiske verdensbildet ble tilbakevist, litt etter litt:
 - Kopernikus:
 - geosentrisme → heliosentrisme
 - Kepler:
 - sirkelbaner → ellipsebaner
 - planetene påvirket av en kraft fra solen
 - Galilei:
 - treghetsprinsipp
 - Newton:
 - endring i retning krever påvirkning
 - ett sett med naturlover