Confidence Estimation for Trustworthy and Efficient Speech Systems

Machine Analysis of Data for Human Audition and Vision

Part 1: Theory (85 min)

Break (10 min)

Part 2: Applications (85 min)

Confidence Estimation for Trustworthy and Efficient Speech Systems

Part 1: Theory

Vipul Arora

Outline

- Introduction
- Assessment
- Why mis-calibration happens?
- Confidence calibration: post hoc methods and Bayesian methods
- Disentangling sources of uncertainty: Epistemic and Aleatoric

Future of Al

Current AI

https://voicebot.ai/

Wikipedia.com

Wikipedia.com

- Future AI
 - AGI
 - Human-Machine Collaboration

Dreamstime.com

Mistakes and Trust

Hello, I am
giving the
stock

Take paracetamol

Weather Tomorrow 8 AM

16°C ±1.2 °C

Need

- Self-driving: obstruction or not? Defer to human driver
- Healthcare: Operate or not? Defer to human doctor
- Finance: invest money or not? Defer to human expert
- Screening: accept or not? Defer to human examiner
- Annotation: annotate or not? Reduce manual effort

For Classification

Deep Networks

Output class

$$y = \arg \max_{j} o_{j}$$

Confidence, P(output=correct)

How to assess the calibration?

Guo et al., On Calibration of Modern Neural Networks, ICML 2017

Intuitively

- Large confidence implies correct output
- Small confidence implies incorrect output

Notations

- input: *X*
- ground truth: $Y \in \mathcal{Y} = \{1, ..., K\}$
- output: $\hat{Y} = f_{\theta} \left(f_{\phi}(X) \right)$
- output class: $\hat{Y}^* = \operatorname{argmax}_k \hat{Y}[k] \times \phi$ F.E. ϕ CLASSIFIER θ
- confidence: $\hat{C} = f_{\psi} \left(f_{\phi}(X) \right)$

CONF.

Calibration

- **Que**: When is the model perfectly calibrated, $P(\hat{Y}^* = Y | \hat{C} = c) = ?$
- $P(\hat{Y}^* = Y | \hat{C} = c) = c, \forall c \in [0,1]$
- Que: what terms above are functions of X?
- Y, \hat{Y}^*, \hat{C}
- Que: what terms above are independent variables?
- C
- Que: How do you compute $P(\hat{Y}^* = Y | \hat{C} = c)$ from samples?
- = # of correct / total #, for all samples with $\hat{C} = c$

Problem

$$P(\hat{Y}^* = Y | \hat{C} = c) = c, \forall c \in [0,1]$$

- c is a continuous variable. How many X in a finite database can have $\hat{C} = c$
- So, we need approximation
- E.g., binning of *c*

Reliability Diagrams

- Accuracy vs confidence
- Let B_m be the set of samples with \hat{C} falling in mth bin

• Accuracy,
$$\operatorname{acc}(B_m) = \frac{1}{|B_m|} \sum_{i \in B_m} 1(\hat{y}_i^* = y_i)$$

- Confidence, $conf(B_m) = \frac{1}{|B_m|} \sum_{i \in B_m} \hat{C}_i$
- For perfectly calibrated model, $acc(B_m) = conf(B_m) \forall m = \{1, ... M\}$

Exercise

For a flower classification task,

$$Y = \{RRRR \, JJJJ \, LLLL\}$$

$$\hat{Y}^* = \{RLRR \, JLJR \, LLRJ\}$$

$$\hat{C} = \{.8, .7, .4, .7, .7, .7, .8, .8, .4, .8, .7, .4, .4\}$$

Draw the reliability diagram.

Expected Calibration Error

Average over the reliability diagram

• ECE =
$$\mathbb{E}_{\hat{C}}[|P(\hat{Y}^* = Y | \hat{C} = c) - c|]$$

Que: write the Monte Carlo approximate of ECE

• ECE =
$$\sum_{m=1}^{M} \frac{|B_m|}{n} |\operatorname{acc}(B_m) - \operatorname{conf}(B_m)|$$

Maximum Calibration Error

Take max error over the reliability diagram

• MCE =
$$\max_{c \in [0,1]} |P(\hat{Y}^* = Y | \hat{C} = c) - c|$$

Que: write the Monte Carlo approximate of MCE

• MCE =
$$\max_{m \in \{1,\dots,M\}} |\operatorname{acc}(B_m) - \operatorname{conf}(B_m)|$$

Real world systems

Confidence = probability of being correct

Confidence

Why are Deep Networks Mis-calibrated?

Classification

Feature Extraction

- height = x_1
- diameter = x_2

 x_1

Que: confidence?

 x_1

Hard Classification

$$\blacksquare$$
 = \bigstar

Soft Classification

$$P(\blacksquare = \bigstar) = 0.6$$

$$P(\blacksquare = \bullet) = 0.4$$

$$\hat{c} = 0.6$$

Maths

Que: What is the output of a binary classifier?

•
$$P(y = 1|x) = \frac{1}{1 + \exp(-z)} = \sigma(z)$$

• Que: Keeping the class boundary same, what decides this P?

•
$$P(y = 1|x) = \sigma(w) \times (w_2x_2 + w_1x_1 + b)$$

Why mis-calibration

• Que: What is the loss function?

• Loss =
$$-\mathbb{E}[y \ln \hat{y} + (1 - y) \ln(1 - \hat{y})]$$

- It is min if $\hat{y} = y \in \{0,1\}$
- The loss does not favor fractional \hat{y}
- w is untuned

Confidence Calibration

Guo et al., On Calibration of Modern Neural Networks, ICML 2017

Goal

Ŷ

• Derive \hat{C} using \hat{Y}, \hat{Y}^*, Z, X

$$\hat{C}(\hat{Y}, \hat{Y}^*, Z, X)$$

Y = 2

- Can't use Y during testing
- Let's focus on binary classification
- Que: Draw \hat{Y} vs Z

Estimating $\hat{C}(\hat{Y})$

- **Que**: Draw typical P(Y = 1) vs \hat{Y}
- Que: What should be $\hat{C}(\hat{Y})$ if you know $P(Y_{0.50})^{\frac{1}{2}}$ 0.50 = 1) curve?

1. Histogram Binning Method

- to estimate $\hat{C}(\hat{Y})$
- Divide $\hat{Y} \in [0,1]$ into M bins
- Let $P(Y = 1) = \theta_m$ if \hat{Y} falls in bin m

• **Que**: What is the optimal θ_m ?

•
$$\theta_m = \frac{\sum_i 1(\hat{Y}_i \in \text{bin } m)Y_i}{\sum_i 1(\hat{Y}_i \in \text{bin } m)}$$

2. Isotonic Regression Method

- to estimate $\hat{C}(\hat{Y})$
- One can learn P(Y = 1) as a function of \hat{Y} using simple regression models

3. Platt Scaling Method

- to estimate $\hat{C}(Z)$ Z is logit
- Que: Draw typical P(Y = 1) vs Z
- Approximate this with a sigmoid as

$$P(Y = 1) = \sigma(aZ + b)$$

• If b = 0, it is called Temperature Scaling method with

$$a = 1/T$$

3. Platt Scaling Method

$$P(Y = 1) = \sigma(aZ + b)$$

- a and b are estimated using MLE over validation data
- Que: Could you write the loss function?
- Loss = $-\sum_{i} \delta_{y_{i},1} \ln \sigma(aZ + b) + \delta_{y_{i},0} \ln(1 \sigma(aZ + b))$

4. True Class Probability (TCP)

- $\hat{C}(X)$
- Train ψ as a regressor

• Loss =
$$\mathbb{E}\left[\left(C(X) - \hat{C}(X)\right)^2\right]$$

- What should be the target?
- Use $C(X) = \widehat{Y}[k]$; k = Y

Corbiere, et al., "Addressing failure prediction by learning model confidence," NeurIPS 2019.

4. Normalized TCP

• $\hat{C}(X)$

• Loss =
$$\mathbb{E}\left[\left(C(X) - \hat{C}(X)\right)^2\right]$$
 $X \longrightarrow \begin{bmatrix} F.E. \\ \phi \end{bmatrix}$
CLASSIFIER 0
 0
 0

• When number of classes is large, $\hat{Y}[k]$ gets smaller

• Use
$$C(X) = \frac{\hat{Y}[k]}{\max_{k'} \hat{Y}[k']}$$
; $k = Y$

Corbiere, et al., "Addressing failure prediction by learning model confidence," NeurIPS 2019.

CONF.

For multi-class classification

- Treat it as K one-vs-all problems
- Estimate P(Y = k) for all k using Z[k] or Z
- Hence, get $\hat{C}[k]$
- Que: Why not treat it as a full multi-class problem?
- Curse of dimensionality

Bayesian Methods

Gal and Ghahramani, Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, ICML 2016

Bayesian Neural Network

Typical NN

$$\hat{p}(Y|X) = \hat{Y} = f_{\theta} \left(f_{\phi}(X) \right)$$
F.E.
$$\phi$$
CLASSIFIER
$$0$$
.7

• In Bayesian NN, ϕ , θ are also random variables; so, we get

$$p(Y|X) = \iint p(Y|X,\theta,\phi)p(\theta,\phi)d\theta d\phi$$

Monte Carlo Estimation

•
$$p(Y|X) = \iint p(Y|X,\theta,\phi)p(\theta,\phi)d\theta d\phi$$

•
$$p(Y|X) = \mathbb{E}_{\theta,\phi\sim p(\theta,\phi)}[p(Y|X,\theta,\phi)]$$

•
$$\hat{p}(Y|X) \approx \frac{1}{N} \sum_{i} p(Y|X, \theta_{i}, \phi_{i}); \quad \theta_{i}, \phi_{i} \sim p(\theta, \phi)$$

Monte Carlo Dropouts

•
$$\hat{p}(Y|X) \approx \frac{1}{N} \sum_{i=1}^{N} p(Y|X, \theta_i, \phi_i)$$
; $\theta_i, \phi_i \sim p(\theta, \phi)$

• θ , $\phi \sim p(\theta, \phi)$ is approximated using dropout

•
$$\mu = \frac{1}{N} \sum_{i} \hat{Y}_{i}$$

•
$$\Sigma = \frac{1}{N} \sum_{i} (\widehat{Y}_{i} - \mu)^{\mathsf{T}} (\widehat{Y}_{i} - \mu)$$

- Indicators of uncertainty:
 - Total variance = $\sum_{k,l} \Sigma_{kl}$
 - Entropy = $-\sum_{k} \mu[k] \ln \mu[k]$

Ensemble Method

- $\hat{p}(Y|X) \approx \frac{1}{N} \sum_{i} p(Y|X, \theta_{i}, \phi_{i}); \quad \theta_{i}, \phi_{i} \sim p(\theta, \phi)$
- θ , $\phi \sim p(\theta, \phi)$ is a model trained using stochastic optimization algorithms
- We train N different models and use them to estimate uncertainty

Input Perturbation Method

•
$$p(Y|X) = \int p(Y|\tilde{X})p(\tilde{X}|X)d\tilde{X}$$

•
$$\hat{p}(Y|X) \approx \frac{1}{N} \sum_{i} p(Y|\tilde{X}_{i}); \quad \tilde{X}_{i} = X + \epsilon_{i}$$

• Here, ϵ_i is noise or systematic perturbation of input X

Regression

Kuleshov et al., Accurate Uncertainties for Deep Learning Using Calibrated Regression, ICML 2018

Regression

• Output $\hat{Y} \in \mathbb{R}^d$

How do we define confidence?

- Let us estimate the pdf of output, instead of point estimate. Let y be the output random variable.
- Now, true value Y can lie anywhere

• Example: Let y_2 be such that

$$\int_{-\infty}^{y_2} p(y|X)dy = 0.5$$

- Now, empirically $P(Y \le y_2 | X)$ should be 0.5
- This is true for only one X, how to generalize

- Let us define an interval in terms of probability mass
- Example: Let y_2 be a point such that

$$\int_{-\infty}^{y_2} p(y|X)dy = 0.5$$

- Thus, $y_2 = F_Y^{-1}(0.5|X)$
- y₂ is a function of X

•
$$y_2 = F_Y^{-1}(0.5|X)$$

Now, for a calibrated regression model, empirically

$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{I}\{Y_i \le F_Y^{-1}(0.5|X)\} = ?$$

 $\bullet = 0.5$

 In general, for a calibrated regression model,

$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{I}\{Y_i \le F_Y^{-1}(c|X)\} = c$$

 Even more general, for a calibrated regression model,

$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{I}\{F_{Y}^{-1}(c_{2}|X) \le Y_{i} \le F_{Y}^{-1}(c_{2}|X)\} = c_{2} - c_{1}$$

• $(c_2 - c_1)$ is the confidence interval

Summary

- Confidence calibration is possible when we estimate the complete pdf p(Y|X) instead of just a point estimate \hat{Y}
- We need to estimate CDF $F_Y(y|X)$ and inverse CDF $F_Y^{-1}(c|X)$ to get confidence intervals

It is common to assume output to be Gaussian

$$p(y|X) = \mathcal{N}(y; \mu(X), \sigma^2(x))$$

• $\mu(X)$, $\sigma(x)$ are estimated using NNs

Sources of Uncertainty

- Kendall and Gal, What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?, NeurIPS 2017
- Hüllermeier and Waegeman, Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods, Machine Learning 2021

Calibration is not enough

Two kinds of uncertainty:

- Model is limited, not trained on this data or class. Epistemic Uncertainty
- 2. Data ambiguous, even if model has been trained on similar data. Aleatoric Uncertainty

Should we distinguish?

- Epistemic Uncertainty
 - tells about out of domain data (new, unseen inputs) (useful for model adaptation and active learning)
 - tells about anomalies and outliers
 - tells about unseen classes (novel class discovery)
- Aleatoric Uncertainty
 - tells about difficult data which needs manual intervention. More training won't help.

Can we distinguish?

Yes

- Bayesian NN
- Evidential learning [Sensoy et al., Evidential Deep Learning to Quantify Classification Uncertainty, NeurlPS 2018]

Consider the Z space (logits)

Assume Gaussian output

$$Z \sim \mathcal{N}(\mu_z, \sigma_z^2); \mu_z \in \mathbb{R}^K, \sigma_z \in \mathbb{R}^K$$

where
$$\mu_Z$$
, $\sigma_Z = f_\theta \left(f_\phi(X) \right)$

• Output is as usual $\widehat{Y} = \operatorname{softmax}(Z)$ for classification and $\widehat{Y} = Z$ for regression

- σ_z quantifies the uncertainty in Z, but what kind of uncertainty?
- Let us perturb the model parameters

•
$$\mu_{z,i}$$
, $\sigma_{z,i} = f_{\theta_i} \left(f_{\phi_i}(X) \right)$

• Que: What is $\mathbb{E}[Z]$?

$$\mathbb{E}[Z] = \iint Zp(Z|X,w)p(w)dw dZ \; ; \quad w = \{\phi,\theta\}$$

$$= \int \mu_{z,w} \ p(w) dw$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \mu_{z,i}$$

• Que: What is $\operatorname{covar}[Z]$ or $\mathbb{E}[(Z - \mathbb{E}[Z])^{\mathsf{T}}(Z - \mathbb{E}[Z])]$?

$$\mathbb{E}[Z^{\mathsf{T}}Z] = \iint Z^{\mathsf{T}}Zp(Z|X,w)p(w)dw\ dZ$$

$$= \int (\sigma_{z,w}^2 I + \mu_{z,w}^{\mathsf{T}} \mu_{z,w}) p(w) dw$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \left(\sigma_{z,i}^{2} I + \mu_{z,i}^{\mathsf{T}} \mu_{z,i} \right)$$

• covar[Z]
$$\approx \frac{1}{N} \sum_{i=1}^{N} (\sigma_{z,i}^2 I + \mu_{z,i}^{\mathsf{T}} \mu_{z,i}) - \mathbb{E}[Z]^2$$

• =
$$\frac{1}{N} \sum_{i} \sigma_{z,i}^{2} I + \frac{1}{N} \sum_{i} \mu_{z,i}^{\dagger} \mu_{z,i} - \left(\frac{1}{N} \sum_{i=1}^{N} \mu_{z,i}\right)^{2}$$

Aleatoric Uncertainty **Epistemic Uncertainty**

Quick Introductions

Evidential Learning

- Treat μ_z , σ_z also as random variables
- $var[\mu_z]$ gives epistemic uncertainty
- $\mathbb{E}[\sigma_z^2]$ gives aleatoric uncertainty

Conformal Prediction

- Random samples from an unknown distribution are given
- What is the probability that the next sample falls between the 3rd and 4th samples on the line?
- Hint: draw the CDF
- This gives us the confidence intervals

Further Reading

- Lakshminarayanan et al., "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles," NeurIPS, 2017
- Seitzer, et al., "On the Pitfalls of Heteroscedastic Uncertainty Estimation with Probabilistic Neural Networks," ICLR 2022
- Sensoy et al., "Evidential Deep Learning to Quantify Classification Uncertainty", NeurIPS
 2018
- Angelopoulos and Bates, "A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification", 2022
- Ryan Tibshirani, "Conformal Prediction", Advanced Topics in Statistical Learning, Spring
 2023

Further Reading

- Nagarathna, Thishyan, Chaganti, Arora, "ASR Confidence
 Estimation using True Class Lexical Similarity Score", Interspeech
 2025
- Nagarathna, Thishyan and Arora, "TeLeS: Temporal Lexeme Similarity Score to Estimate Confidence in End-to-End ASR", IEEE TASLP 2024
- Saxena and Arora, "Interactive Singing Melody Extraction Based on Active Adaptation", IEEE TASLP 2024

Questions?

Next: Part 2

