### Single phase transformer

#### Types of transformer Core:-



Fig. Hollow Core



Fig. Shell Type Core

- The composition of transformer core depends on voltage ,current and frequency
- The core material used are soft iron and steel
- Air core transformers are used when the voltage source has a high frequency(above 20KHz)
- Iron core transformers are used when the source frequency is a low (below 20KHz)
- In most transformers the core is constructed of laminated steel to provide a continuous magnetic path.
- The steel used for constructing the core is high grade silicon steel called soft steel where hysteresis loss is very low.
- Due to alternating flux certain currents are induced in the core, called as eddy current.
- These current cause considerable loss in the core, called eddy current loss.
- Silicon content in the steel increases it's resistivity to eddy current loss.
- To reduce eddy current losses further, the core is laminated by a light coat of varnish or by an oxide layer on the surface.
- The two main shapes of cores are as shown in fig.

#### **Transformer Winding**



Shell Type Transformer



Core Type Transformer

- A transformer consists of two coils, called windings which are wrapped around a core.
- The winding in which electrical energy is fed is called the primary winding.
- The winding which is connected to the load is called the secondary winding.
- The primary and secondary winding are made up of an insulated copper conductor in the form of a round wire and strip.
- These windings are then placed around the limbs of the core.
- The winding are insulated from each other and the core using cylinders of insulating materials such as press board or Bakelite.

#### Comparison of core type and shell type transformer

#### **Core type transformer**

- It consist of magnetic frame with two limbs
- It has a single magnetic circuit
- The windings encircles the core.
- It consists of cylindrical windings.
- It is easy to repaired
- It provides better cooling since windings are uniformly distributed in two limbs
- It is preferred for low voltage transformers.

#### Shell type transformer

- It consist of magnetic frame with three limbs
- It has a two magnetic circuit
- The core encircles most part of the windings.
- It consists of sandwich type windings.
- It is not easy to repair.
- It does not provides effective cooling as the windings are surrounded by the core
- It is preferred for high voltage transformers. Ref. R.V. Singh Basic Electrical engineering

# Working principle

- When an alternating voltage  $V_1$  is applied to a primary winding , an alternating current  $I_1$  flows in it producing an alternating flux in the core.
- As per Faraday's laws of electromagnetic induction , an emf  $e_1$  is induced in the primary winding.

$$e_1 = -N_1 \frac{d\phi}{dt}$$

Where  $N_1$  is the number of turns in the primary winding.

EMF induced in the secondary winding is

$$e_2 = -N_2 \frac{d\phi}{dt}$$

Where N<sub>2</sub> is the number of turns in the secondary winding.



If number of turns in the secondary winding  $N_2$  is greater than the number of turns in the primary winding N1, the transformer is called a step up transformer.

- If N<sub>2</sub> less than N1, the transformer is called a step down transformer.
- Step up transformer is used to increase the voltage at the output and step down or decrease the voltage at the output

## **EMF** Equation

$$\phi = \phi_m \sin \omega t$$

As per Faraday's laws of electromagnetic induction, an emf  $e_1$  is induced in the primary winding.

$$e_1 = -N_1 \frac{d\phi}{dt}$$

$$= -N_1 \frac{d}{dt} (\phi_m \sin \omega t)$$

$$= -N_1 \phi_m \omega \cos \omega t$$

$$= N_1 \phi_m \omega \sin (\omega t - 90^\circ)$$

$$= 2\pi f \phi_m N_1 \sin (\omega t - 90^\circ)$$

$$E_2 = 4.44 f \phi_m N_2$$

$$\frac{E_1}{N_1} = \frac{E_2}{N_2} = 4.44 f \, \phi_m$$

Thus, emf per turn is same in primary and secondary windings and an equal emf is induced in each turn of the primary and secondary windings.

Maximum value of induced emf =  $2\pi f \phi_m N_1$ 

Hence, rms value of induced emf in primary winding is given by

$$E_1 = \frac{E_{\text{max}}}{\sqrt{2}} = \frac{2\pi f \phi_m N_1}{\sqrt{2}} = 4.44 f \phi_m N_1$$

Similarly, rms value of induced emf in the secondary winding is given by Electrical engineering

#### Transformation Ratio(K)

$$E_{1} = 4.44 f \phi_{m} N_{1}$$

$$E_{2} = 4.44 f \phi_{m} N_{2}$$

$$\frac{E_{2}}{E_{1}} = \frac{\tilde{N}_{2}}{N_{1}} = K$$

where *K* is called the *transformation ratio*.

Neglecting small primary and secondary voltage drops,

$$V_1 \approx E_1$$
  $V_2 \approx E_2$ 

$$\frac{E_2}{E_1} = \frac{V_2}{V_1} = \frac{N_2}{N_1} = K$$

In a transformer, losses are negligible. Hence, input and output can be approximately equated.

$$V_1 I_1 = V_2 I_2$$

$$\frac{I_1}{I_2} = \frac{V_2}{V_1} = K$$

For step-up transformers,

$$N_2 > N_1$$
  $K > 1$ 

For step-down transformers,

$$N_2 < N_1$$
  
Ref. R.V. Singh Basic Electrical engineering  $K < 1$ 

### **Losses in Transformer**

- Types of losses in transformer
- 1) Iron or core loss
- 2) Copper loss
- Iron loss:-
- This loss is due to the reversal of flux in the core.
- It is subdivided into two losses
- i) Hysteresis loss
- ii)Eddy current loss
- Hysteresis loss:
- This loss occurs due to setting of an alternating flux in the core.
- It depends on the following factors
- i)Area of the hysteresis loop of magnetic material which again depends upon the flux density
- ii) Volume of the core
- iii) Frequency of the magnetic flux reversal

- Eddy current loss:
- This loss occur due to the flow of eddy currents in the core caused by induced emf in the core

It depends on following factors

- i) Thickness of laminated core.
- ii) Frequency of the magnetic flux reversal
- iii) Maximum value of flux density in the core
- Iv) volume of the core
- v ) Quality of magnetic material used
- Eddy current losses are reduced by decreasing the thickness of laminated and by adding silicon to steel
- Copper loss:-
- This loss due to the resistances of primary and secondary windings

$$W_{Cu} = I_1^2 R_1 + I_2^2 R_2$$

where

R<sub>1</sub>= primary winding resistance

R<sub>2</sub>= secondary winding resistance

Copper loss depends upon the load on the transformer and is proportional to square of load current of kVA rating of the transformer.

### Ideal and practical transformer





### Phasor diagram of transformer on no load



$$I_{\mu} = I_0 \sin \phi_0$$

$$I_w = I_0 \cos \phi_0$$

$$\overline{I}_0 = \overline{I}_\mu + \overline{I}_w$$

$$I_0=\sqrt{I_\mu^2+I_w^2}$$

#### Phasor diagram of transformer on load



$$\overline{V_1} = \overline{I_1 R_1} + \overline{I_1 X_1} + (-\overline{E_1})$$

$$\overline{E_2} = \overline{I_2 R_2} + \overline{I_2 X_2} + \overline{V_2}$$

where 
$$\overline{I_1} = \overline{I_0} + \overline{I'_2}$$

#### Steps for drawing phasor diagram

- 1. First draw  $\overline{V_2}$  and then  $\overline{I_2}$ . The phase angle between  $\overline{I_2}$  and  $\overline{V_2}$  will depend on the type of load.
- 2. To  $\overline{V_2}$ , add the resistive drop  $\overline{I_2R_2}$ , parallel to  $\overline{I_2}$  and the inductive drop  $\overline{I_2X_2}$ , leading  $\overline{I_2}$  by 90° such that

$$\overline{E_2} = \overline{V_2} + \overline{I_2 R_2} + \overline{I_2 X_2}$$

- 3. Draw  $\overline{E_1}$  on the same side such that  $E_1 = \frac{E_2}{K}$
- 4. Draw  $-\overline{E_1}$  equal and opposite to  $\overline{E_1}$ .
- 5. For drawing  $\overline{I_1}$ , first draw  $\overline{I_0}$  and  $\overline{I_2}$  such that

$$I_2' = K I_2$$

6. Add  $\overline{I_0}$  and  $\overline{I_2'}$  using the parallelogram law of vector addition.

$$\overline{I_1} = \overline{I_0} + \overline{I_2'}$$

7. To  $-\overline{E_1}$ , add the resistive drop  $\overline{I_1R_1}$ , parallel to  $\overline{I_1}$  and the inductive drop  $\overline{I_1X_1}$ , leading  $\overline{I_1}$  by 90° such that

$$\overline{V_1} = -\overline{E_1} + \overline{I_1 R_1} + \overline{I_1 X_1}$$

8. Draw flux  $\phi$  such that  $\phi$  leads  $\overline{E_1}$  and  $\overline{E_2}$  by  $\overline{\Phi}$  sineering

#### Case (i) Resistive load (unity power factor)



Phasor diagram for resistive load

#### Case (ii) Inductive load (lagging power factor)



Phasor diagram for inductive load

Case (iii) Capacitive load (leading power factor)



Phasor diagram for capacitive load

### Equivalent circuit



Practical transformer



Practical transformer showing no-load current Io and its component



Modified circuit for primary winding



Modified circuit for primary winding





Equivalent circuit referred to primary winding

Equivalent circuit referred to secondary winding

## Voltage Regulation

• When a transformer is loaded, the secondary terminal voltage decreases due to a drop across secondary winding resistance and leakage reactance. This change in secondary terminal voltage from no load to full load conditions, expressed as a fraction of the noload secondary voltage is called regulation of the transformer.

$$\begin{aligned} \text{Regulation} &= \frac{\left( \text{Secondary terminal} \right) - \left( \text{Secondary terminal voltage} \right)}{\text{Secondary terminal voltage on no load}} \\ &= \frac{E_2 - V_2}{E_2} \\ \text{Percentage regulation} &= \frac{E_2 - V_2}{E_2} \times 100 \end{aligned}$$

## Efficiency of Transformer

Efficiency is defined as the ratio of output power to input power.

Efficiency 
$$\eta = \frac{\text{Output}}{\text{Input}} = \frac{\text{Output}}{\text{Output} + \text{Losses}} = \frac{\text{Output}}{\text{Output} + \text{Copper loss} + \text{Iron loss}}$$
Also, 
$$\eta = \frac{\text{Input} - \text{Losses}}{\text{Input}} = \frac{\text{Input} - \text{Copper loss} - \text{Iron loss}}{\text{Input}}$$

**Condition for Maximum Efficiency** We know that,

$$\eta = \frac{\text{Output}}{\text{Output} + \text{Losses}}$$

Considering secondary side of the transformer,

$$\eta = \frac{V_2 I_2 \cos \phi_2}{V_2 I_2 \cos \phi_2 + W_i + I_2^2 R_{02}}$$

Differentiating both the sides w.r.t.  $I_2$ ,

$$\frac{\mathrm{d}\eta}{\mathrm{d}I_2} = \frac{(V_2I_2\cos\phi_2 + W_i + I_2^2R_{02})V_2\cos\phi_2 - V_2I_2\cos\phi_2(V_2\cos\phi_2 + 2I_2R_{02})}{(V_2I_2\cos\phi_2 + W_i + I_2^2R_{02})^2}$$

For maximum efficiency,  $\frac{d\eta}{dI_2} = 0$ 

$$(V_2 I_2 \cos \phi_2 + W_i + I_2^2 R_{02}) V_2 \cos \phi_2 = V_2 I_2 \cos \phi_2 (V_2 \cos \phi_2 + 2I_2 R_{02})$$

$$V_2 I_2 \cos \phi_2 + W_i + I_2^2 R_{02} = V_2 I_2 \cos \phi_2 + 2I_2^2 R_{02}$$

$$W_i = I_2^2 R_{02}$$

Similarly on primary side,

$$W_i = I_1^2 R_{01}$$

Thus when copper loss = iron loss, the efficiency of the transformer is maximum.