Regression Error Metrics

Regression Error Metrics

Mean Absolute Error (MAE):

$$\frac{1}{n}\sum_{i=1}^{n}|y_i-\mathring{y}_i|$$

Mean Squared Error (MSE):

$$\frac{1}{n}\sum_{i=1}^{n}(y_{i}-\hat{y}_{i})^{2}$$

• Root Mean Squared Error (RMSE): $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$$

Regression Error Metrics

MAE:
$$\frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$$

MSE:
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

RMSE:
$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$$

Example

- Ground truth: 100, 120, 110
- Predictions: 105, 120, 120
- MAE: (|100-105| + |120-120| + |110-120|) / 3 = 15 / 3 = 5
- MSE: $((100-105)^2 + (120-120)^2 + (110-120)^2) / 3 = 125 / 3 \approx 42$
- RMSE: $root(MSE) = root(42) \approx 6.5$
- Compare with:
- Ground truth mean: (100 + 120 + 110) / 3 = 110
- Ground truth standard deviation: 10

MAE:
$$\frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$$

MSE:
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

RMSE:
$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$$