Dividir y Conquistar

Técnicas de Diseño de Algoritmos (Ex Algoritmos y Estructuras de Datos III)

Basada en trabajos previos de Esteban Feuerstein, Fernando Schapachnik y Flavia

10 de abril de 2024

• Esta técnica es conocida como

- Esta técnica es conocida como
 - Divide & Conquer

- Esta técnica es conocida como
 - Divide & Conquer
 - Dividir y Conquistar

- Esta técnica es conocida como
 - Divide & Conquer
 - Dividir y Conquistar
 - Divide y Reinarás

- Esta técnica es conocida como
 - Divide & Conquer
 - Dividir y Conquistar
 - Divide y Reinarás
 - D&C

- Esta técnica es conocida como
 - Divide & Conquer
 - Dividir y Conquistar
 - Divide y Reinarás
 - D&C
 - etc.

• Se basa en:

- Se basa en:
 - Dividir un problema en subproblemas del mismo tipo que el original.

- Se basa en:
 - Dividir un problema en subproblemas del mismo tipo que el original.
 - Resolver los problemas más pequeños.

- Se basa en:
 - Dividir un problema en subproblemas del mismo tipo que el original.
 - Resolver los problemas más pequeños.
 - Combinar las soluciones.

- Se basa en:
 - Dividir un problema en subproblemas del mismo tipo que el original.
 - Resolver los problemas más pequeños.
 - Combinar las soluciones.
- ¿Cuáles de estos son D&C?

- Se basa en:
 - Dividir un problema en subproblemas del mismo tipo que el original.
 - Resolver los problemas más pequeños.
 - Combinar las soluciones.
- ¿Cuáles de estos son D&C?
 - Pintar una pared:

- Se basa en:
 - Dividir un problema en subproblemas del mismo tipo que el original.
 - Resolver los problemas más pequeños.
 - Combinar las soluciones.
- ¿Cuáles de estos son D&C?
 - Pintar una pared:

- Se basa en:
 - Dividir un problema en subproblemas del mismo tipo que el original.
 - Resolver los problemas más pequeños.
 - · Combinar las soluciones.
- ¿Cuáles de estos son D&C?
 - Pintar una pared: sí
 - Construir una casa:

- Se basa en:
 - Dividir un problema en subproblemas del mismo tipo que el original.
 - Resolver los problemas más pequeños.
 - Combinar las soluciones.
- ¿Cuáles de estos son D&C?
 - Pintar una pared: sí
 - Construir una casa:

- Se basa en:
 - Dividir un problema en subproblemas del mismo tipo que el original.
 - Resolver los problemas más pequeños.
 - Combinar las soluciones.
- ¿Cuáles de estos son D&C?
 - Pintar una pared: sí
 - Construir una casa: no
 - Buscar al máximo en una matriz recursivamente:

- Se basa en:
 - Dividir un problema en subproblemas del mismo tipo que el original.
 - Resolver los problemas más pequeños.
 - Combinar las soluciones.
- ¿Cuáles de estos son D&C?
 - Pintar una pared: sí
 - Construir una casa: no
 - Buscar al máximo en una matriz recursivamente:

- Se basa en:
 - Dividir un problema en subproblemas del mismo tipo que el original.
 - Resolver los problemas más pequeños.
 - Combinar las soluciones.
- ¿Cuáles de estos son D&C?
 - Pintar una pared: sí
 - Construir una casa: no
 - Buscar al máximo en una matriz recursivamente: sí
- Algunas características de algoritmos D&C:

- Se basa en:
 - Dividir un problema en subproblemas del mismo tipo que el original.
 - Resolver los problemas más pequeños.
 - Combinar las soluciones.
- ¿Cuáles de estos son D&C?
 - Pintar una pared: sí
 - Construir una casa: no
 - Buscar al máximo en una matriz recursivamente: sí
- Algunas características de algoritmos D&C:
 - Las subpartes tienen que ser más pequeñas.

- Se basa en:
 - Dividir un problema en subproblemas del mismo tipo que el original.
 - Resolver los problemas más pequeños.
 - Combinar las soluciones.
- ¿Cuáles de estos son D&C?
 - Pintar una pared: sí
 - Construir una casa: no
 - Buscar al máximo en una matriz recursivamente: sí
- Algunas características de algoritmos D&C:
 - Las subpartes tienen que ser más pequeñas.
 - Y ser el mismo tipo de tarea.

- Se basa en:
 - Dividir un problema en subproblemas del mismo tipo que el original.
 - Resolver los problemas más pequeños.
 - Combinar las soluciones.
- ¿Cuáles de estos son D&C?
 - Pintar una pared: sí
 - Construir una casa: no
 - Buscar al máximo en una matriz recursivamente: sí
- Algunas características de algoritmos D&C:
 - Las subpartes tienen que ser más pequeñas.
 - Y ser el mismo tipo de tarea.
 - Dividir y combinar pueden no ser nulas, pero no tienen que ser demasiado costosas.

• F(X)

- F(X)
 - Si X es suficientemente chico o simple, solucionar de manera ad hoc.

- F(X)
 - Si X es suficientemente chico o simple, solucionar de manera ad hoc.
 - Si no,

- F(X)
 - Si X es suficientemente chico o simple, solucionar de manera ad hoc.
 - Si no,
 - Dividir a X en X_1, X_2, \ldots, X_k

- F(X)
 - Si X es suficientemente chico o simple, solucionar de manera ad hoc.
 - Si no,
 - Dividir a X en X_1, X_2, \ldots, X_k
 - $\forall i \leq k$, hacer $Y_i = F(X_i)$

- F(X)
 - Si X es suficientemente chico o simple, solucionar de manera ad hoc.
 - Si no,
 - Dividir a X en X_1, X_2, \ldots, X_k
 - $\forall i \leq k$, hacer $Y_i = F(X_i)$
 - Combinar los Y_i en un Y que es una solución para X.

- F(X)
 - Si X es suficientemente chico o simple, solucionar de manera ad hoc.
 - Si no,
 - Dividir a X en X_1, X_2, \ldots, X_k
 - $\forall i \leq k$, hacer $Y_i = F(X_i)$
 - Combinar los Y_i en un Y que es una solución para X.
 - Devolver Y

• ¿Cómo calculamos la complejidad de un algoritmo D&C?

- ¿Cómo calculamos la complejidad de un algoritmo D&C?
- El costo de un algoritmo D&C de tamaño n se puede expresar como T(n), que debe considerar:

- ¿Cómo calculamos la complejidad de un algoritmo D&C?
- El costo de un algoritmo D&C de tamaño n se puede expresar como T(n), que debe considerar:
 - Dividir el problema en a subproblemas de tamaño máximo

- ¿Cómo calculamos la complejidad de un algoritmo D&C?
- El costo de un algoritmo D&C de tamaño n se puede expresar como T(n), que debe considerar:
 - Dividir el problema en a subproblemas de tamaño máximo

- ¿Cómo calculamos la complejidad de un algoritmo D&C?
- El costo de un algoritmo D&C de tamaño n se puede expresar como T(n), que debe considerar:
 - Dividir el problema en a subproblemas de tamaño máximo n/c, siempre que $n/c > n_0$.
 - El costo de efectivamente hacer la subdivisión y luego unir los resultados.

- ¿Cómo calculamos la complejidad de un algoritmo D&C?
- El costo de un algoritmo D&C de tamaño n se puede expresar como T(n), que debe considerar:
 - Dividir el problema en a subproblemas de tamaño máximo n/c, siempre que $n/c > n_0$.
 - El costo de efectivamente hacer la subdivisión y luego unir los resultados.
 - Además hay que resolver los subproblemas: aT(n/c).

- ¿Cómo calculamos la complejidad de un algoritmo D&C?
- El costo de un algoritmo D&C de tamaño n se puede expresar como T(n), que debe considerar:
 - Dividir el problema en a subproblemas de tamaño máximo n/c, siempre que $n/c > n_0$.
 - El costo de efectivamente hacer la subdivisión y luego unir los resultados.
 - Además hay que resolver los subproblemas: aT(n/c).
 - Vamos a utilizar otra función g(n) tal que $g(n) \ge T(n)$ para cualquier valor de n.

(5) ¿Y cuánto tarda?

- ¿Cómo calculamos la complejidad de un algoritmo D&C?
- El costo de un algoritmo D&C de tamaño n se puede expresar como T(n), que debe considerar:
 - Dividir el problema en a subproblemas de tamaño máximo n/c, siempre que $n/c > n_0$.
 - El costo de efectivamente hacer la subdivisión y luego unir los resultados.
 - Además hay que resolver los subproblemas: aT(n/c).
 - Vamos a utilizar otra función g(n) tal que $g(n) \ge T(n)$ para cualquier valor de n.
 - Sea $b'n^d$, para algún d, una cota superior del costo de dividir en subproblemas y combinar los resultados para un problema de tamaño n. Definimos $g(1) = b = max\{b', T(1)\}$.

(5) ¿Y cuánto tarda?

- ¿Cómo calculamos la complejidad de un algoritmo D&C?
- El costo de un algoritmo D&C de tamaño n se puede expresar como T(n), que debe considerar:
 - Dividir el problema en a subproblemas de tamaño máximo n/c, siempre que $n/c > n_0$.
 - El costo de efectivamente hacer la subdivisión y luego unir los resultados.
 - Además hay que resolver los subproblemas: aT(n/c).
 - Vamos a utilizar otra función g(n) tal que $g(n) \ge T(n)$ para cualquier valor de n.
 - Sea $b'n^d$, para algún d, una cota superior del costo de dividir en subproblemas y combinar los resultados para un problema de tamaño n. Definimos $g(1) = b = max\{b', T(1)\}$.
- Es decir, $T(n) = aT(n/c) + b'n^d \le g(n) = ag(n/c) + bn^d$.

• Supongamos que $n = c^k$ para algún k y analicemos la recurrencia.

- Supongamos que $n = c^k$ para algún k y analicemos la recurrencia.
- $T(n) \le g(n) = ag(n/c) + bn^d$

- Supongamos que $n = c^k$ para algún k y analicemos la recurrencia.
- $T(n) \leq g(n) = ag(n/c) + bn^d$
- $\bullet = g(c^k) = ag(c^{k-1}) + b(c^k)^d$

- Supongamos que $n = c^k$ para algún k y analicemos la recurrencia.
- $T(n) \le g(n) = ag(n/c) + bn^d$
- $\bullet = g(c^k) = ag(c^{k-1}) + b(c^k)^d$
- $\bullet = a(ag(c^{k-2}) + (b c^{(k-1)d})) + bc^{kd}$

- Supongamos que $n = c^k$ para algún k y analicemos la recurrencia.
- $T(n) \leq g(n) = ag(n/c) + bn^d$
- $\bullet = g(c^k) = ag(c^{k-1}) + b(c^k)^d$
- $\bullet = a(ag(c^{k-2}) + (b c^{(k-1)d})) + bc^{kd}$
- $\bullet = a^2 g(c^{k-2}) + abc^{(k-1)d} + bc^{kd}$

- Supongamos que $n = c^k$ para algún k y analicemos la recurrencia.
- $T(n) \le g(n) = ag(n/c) + bn^d$
- $\bullet = g(c^k) = ag(c^{k-1}) + b(c^k)^d$
- $\bullet = a(ag(c^{k-2}) + (b c^{(k-1)d})) + bc^{kd}$
- $\bullet = a^2 g(c^{k-2}) + abc^{(k-1)d} + bc^{kd}$
- $\bullet = a^3 g(c^{k-3}) + a^2 b(c^{k-2})^d + abc^{(k-1)d} + bc^{kd}$

- Supongamos que $n = c^k$ para algún k y analicemos la recurrencia.
- $T(n) \leq g(n) = ag(n/c) + bn^d$
- $\bullet = g(c^k) = ag(c^{k-1}) + b(c^k)^d$
- $\bullet = a(ag(c^{k-2}) + (b c^{(k-1)d})) + bc^{kd}$
- $\bullet = a^2 g(c^{k-2}) + abc^{(k-1)d} + bc^{kd}$
- $\bullet = a^3 g(c^{k-3}) + a^2 b(c^{k-2})^d + abc^{(k-1)d} + bc^{kd}$
- ...

- Supongamos que $n = c^k$ para algún k y analicemos la recurrencia.
- $T(n) \leq g(n) = ag(n/c) + bn^d$

$$\bullet = g(c^k) = ag(c^{k-1}) + b(c^k)^d$$

$$\bullet = a(ag(c^{k-2}) + (b c^{(k-1)d})) + bc^{kd}$$

$$\bullet = a^2 g(c^{k-2}) + abc^{(k-1)d} + bc^{kd}$$

- . . .
- $\bullet = a^{j}g(c^{k-j}) + \sum_{i=0}^{j-1} a^{i}bc^{(k-i)d}$

- Supongamos que $n = c^k$ para algún k y analicemos la recurrencia.
- $T(n) \leq g(n) = ag(n/c) + bn^d$

$$\bullet = g(c^k) = ag(c^{k-1}) + b(c^k)^d$$

$$\bullet = a(ag(c^{k-2}) + (b c^{(k-1)d})) + bc^{kd}$$

$$\bullet = a^2 g(c^{k-2}) + abc^{(k-1)d} + bc^{kd}$$

- ...
- = $a^{j}g(c^{k-j}) + \sum_{i=0}^{j-1} a^{i}bc^{(k-i)d}$
- $\bullet = a^{j}g(c^{k-j}) + b\sum_{i=0}^{j-1}a^{i}c^{(k-i)d}$

•
$$g(c^k) = a^j g(c^{k-j}) + b \sum_{i=0}^{j-1} a^i c^{(k-i)d}$$

- $g(c^k) = a^j g(c^{k-j}) + b \sum_{i=0}^{j-1} a^i c^{(k-i)d}$
- Seguimos teniendo una recurrencia. ¿Cuál es el caso base?

- $g(c^k) = a^j g(c^{k-j}) + b \sum_{i=0}^{j-1} a^i c^{(k-i)d}$
- Seguimos teniendo una recurrencia. ¿Cuál es el caso base?

- $g(c^k) = a^j g(c^{k-j}) + b \sum_{i=0}^{j-1} a^i c^{(k-i)d}$
- Seguimos teniendo una recurrencia. ¿Cuál es el caso base? g(1)
- $c^{k-j} = 1$, es decir $c^k/c^j = 1$, es decir, hasta que $j = k = \log_c n$

- $g(c^k) = a^j g(c^{k-j}) + b \sum_{i=0}^{j-1} a^i c^{(k-i)d}$
- Seguimos teniendo una recurrencia. ¿Cuál es el caso base? g(1)
- $c^{k-j} = 1$, es decir $c^k/c^j = 1$, es decir, hasta que $j = k = \log_c n$
- $\bullet = a^k g(1) + b \sum_{i=0}^{k-1} a^i c^{(k-i)d}$

- $g(c^k) = a^j g(c^{k-j}) + b \sum_{i=0}^{j-1} a^i c^{(k-i)d}$
- Seguimos teniendo una recurrencia. ¿Cuál es el caso base? g(1)
- $c^{k-j}=1$, es decir $c^k/c^j=1$, es decir, hasta que $j=k=\log_{\mathcal{C}} n$
- $\bullet = a^k g(1) + b \sum_{i=0}^{k-1} a^i c^{(k-i)d}$
- ullet Si tenemos en cuenta que g(1)=b, nos queda

- $g(c^k) = a^j g(c^{k-j}) + b \sum_{i=0}^{j-1} a^i c^{(k-i)d}$
- Seguimos teniendo una recurrencia. ¿Cuál es el caso base? g(1)
- $c^{k-j} = 1$, es decir $c^k/c^j = 1$, es decir, hasta que $j = k = \log_c n$
- $\bullet = a^k g(1) + b \sum_{i=0}^{k-1} a^i c^{(k-i)d}$
- Si tenemos en cuenta que g(1) = b, nos queda
- $\bullet = a^k b + b \sum_{i=0}^{k-1} a^i c^{(k-i)d}$

- $g(c^k) = a^j g(c^{k-j}) + b \sum_{i=0}^{j-1} a^i c^{(k-i)d}$
- Seguimos teniendo una recurrencia. ¿Cuál es el caso base? g(1)
- $c^{k-j} = 1$, es decir $c^k/c^j = 1$, es decir, hasta que $j = k = \log_c n$
- $\bullet = a^k g(1) + b \sum_{i=0}^{k-1} a^i c^{(k-i)d}$
- Si tenemos en cuenta que g(1) = b, nos queda
- $\bullet = a^k b + b \sum_{i=0}^{k-1} a^i c^{(k-i)d}$
- $\bullet = b \sum_{i=0}^{k} a^{i} c^{(k-i)d}$

- $g(c^k) = a^j g(c^{k-j}) + b \sum_{i=0}^{j-1} a^i c^{(k-i)d}$
- Seguimos teniendo una recurrencia. ¿Cuál es el caso base? g(1)
- $c^{k-j} = 1$, es decir $c^k/c^j = 1$, es decir, hasta que $j = k = \log_c n$
- $\bullet = a^k g(1) + b \sum_{i=0}^{k-1} a^i c^{(k-i)d}$
- Si tenemos en cuenta que g(1) = b, nos queda
- $\bullet = a^k b + b \sum_{i=0}^{k-1} a^i c^{(k-i)d}$
- $\bullet = b\sum_{i=0}^{k} a^i c^{(k-i)d}$
- $\bullet = b\sum_{i=0}^{k} a^{i} c^{dk-di}$

- $g(c^k) = a^j g(c^{k-j}) + b \sum_{i=0}^{j-1} a^i c^{(k-i)d}$
- Seguimos teniendo una recurrencia. ¿Cuál es el caso base? g(1)
- $c^{k-j}=1$, es decir $c^k/c^j=1$, es decir, hasta que $j=k=\log_c n$
- $\bullet = a^k g(1) + b \sum_{i=0}^{k-1} a^i c^{(k-i)d}$
- Si tenemos en cuenta que g(1) = b, nos queda
- $\bullet = a^k b + b \sum_{i=0}^{k-1} a^i c^{(k-i)d}$
- $\bullet = b\sum_{i=0}^{k} a^i c^{(k-i)d}$
- $\bullet = b\sum_{i=0}^{k} a^{i} c^{dk-di}$
- $\bullet = bc^{dk} \sum_{i=0}^{k} a^i c^{-di}$

- $g(c^k) = a^j g(c^{k-j}) + b \sum_{i=0}^{j-1} a^i c^{(k-i)d}$
- Seguimos teniendo una recurrencia. ¿Cuál es el caso base? g(1)
- $c^{k-j}=1$, es decir $c^k/c^j=1$, es decir, hasta que $j=k=\log_c n$
- $\bullet = a^k g(1) + b \sum_{i=0}^{k-1} a^i c^{(k-i)d}$
- Si tenemos en cuenta que g(1) = b, nos queda
- $\bullet = a^k b + b \sum_{i=0}^{k-1} a^i c^{(k-i)d}$
- $\bullet = b\sum_{i=0}^{k} a^{i} c^{(k-i)d}$
- $\bullet = b\sum_{i=0}^{k} a^{i} c^{dk-di}$
- $\bullet = bc^{dk} \sum_{i=0}^{k} a^{i} c^{-di}$
- ¿Y esto cuánto es?

•
$$T(n) \leq g(n) = ag(n/c) + bn^d$$

- $T(n) \leq g(n) = ag(n/c) + bn^d$
- $\bullet = bc^{dk} \Sigma_{i=0}^k a^i c^{-di} = bn^d \Sigma_{i=0}^k a^i c^{-di}$

- $T(n) \leq g(n) = ag(n/c) + bn^d$
- $\bullet = bc^{dk} \Sigma_{i=0}^k a^i c^{-di} = bn^d \Sigma_{i=0}^k a^i c^{-di}$
- Si a = 1 y d = 0, es decir,

- $T(n) \leq g(n) = ag(n/c) + bn^d$
- $\bullet = bc^{dk} \Sigma_{i=0}^k a^i c^{-di} = bn^d \Sigma_{i=0}^k a^i c^{-di}$
- Si a = 1 y d = 0, es decir,

- $T(n) \leq g(n) = ag(n/c) + bn^d$
- $\bullet = bc^{dk} \sum_{i=0}^{k} a^i c^{-di} = bn^d \sum_{i=0}^{k} a^i c^{-di}$
- Si a=1 y d=0, es decir, 1 subproblema, combinar tiene costo constante: $b\Sigma^{\log_c n}1=O(\log_c n)$
- Si d = 1, es decir,

- $T(n) \leq g(n) = ag(n/c) + bn^d$
- $\bullet = bc^{dk} \sum_{i=0}^{k} a^i c^{-di} = bn^d \sum_{i=0}^{k} a^i c^{-di}$
- Si a=1 y d=0, es decir, 1 subproblema, combinar tiene costo constante: $b\Sigma^{\log_c n}1=O(\log_c n)$
- Si d = 1, es decir,

- $T(n) \leq g(n) = ag(n/c) + bn^d$
- $\bullet = bc^{dk} \sum_{i=0}^{k} a^i c^{-di} = bn^d \sum_{i=0}^{k} a^i c^{-di}$
- Si a=1 y d=0, es decir, 1 subproblema, combinar tiene costo constante: $b\Sigma^{\log_c n}1 = O(\log_c n)$
- Si d = 1, es decir, división + unión tiene costo lineal.
- g(n) queda como $bn\sum_{i=0}^{\log_c n} (a/c)^i$

- $T(n) \leq g(n) = ag(n/c) + bn^d$
- $\bullet = bc^{dk} \sum_{i=0}^{k} a^i c^{-di} = bn^d \sum_{i=0}^{k} a^i c^{-di}$
- Si a=1 y d=0, es decir, 1 subproblema, combinar tiene costo constante: $b\Sigma^{\log_c n}1 = O(\log_c n)$
- Si d = 1, es decir, división + unión tiene costo lineal.
- g(n) queda como $bn\sum_{i=0}^{\log_c n} (a/c)^i$
 - Si a < c ("pocos subproblemas"), a/c < 1, por ende, la serie converge:

- $T(n) \leq g(n) = ag(n/c) + bn^d$
- $\bullet = bc^{dk} \sum_{i=0}^{k} a^i c^{-di} = bn^d \sum_{i=0}^{k} a^i c^{-di}$
- Si a=1 y d=0, es decir, 1 subproblema, combinar tiene costo constante: $b\Sigma^{\log_c n}1 = O(\log_c n)$
- Si d = 1, es decir, división + unión tiene costo lineal.
- g(n) queda como $bn\sum_{i=0}^{\log_c n} (a/c)^i$
 - Si a < c ("pocos subproblemas"), a/c < 1, por ende, la serie converge:
 - Cuando $n \to \infty$:

- $T(n) \leq g(n) = ag(n/c) + bn^d$
- $\bullet = bc^{dk} \sum_{i=0}^{k} a^i c^{-di} = bn^d \sum_{i=0}^{k} a^i c^{-di}$
- Si a=1 y d=0, es decir, 1 subproblema, combinar tiene costo constante: $b\Sigma^{\log_c n}1 = O(\log_c n)$
- Si d = 1, es decir, división + unión tiene costo lineal.
- g(n) queda como $bn\sum_{i=0}^{\log_c n} (a/c)^i$
 - Si a < c ("pocos subproblemas"), a/c < 1, por ende, la serie converge:
 - Cuando $n \to \infty$:
 - $bn\sum_{i=0}^{\log_c n} (a/c)^i \to bn$ cte = O(n)

- $T(n) \leq g(n) = ag(n/c) + bn^d$
- $\bullet = bc^{dk} \sum_{i=0}^{k} a^i c^{-di} = bn^d \sum_{i=0}^{k} a^i c^{-di}$
- Si a=1 y d=0, es decir, 1 subproblema, combinar tiene costo constante: $b\Sigma^{\log_c n}1 = O(\log_c n)$
- Si d = 1, es decir, división + unión tiene costo lineal.
- g(n) queda como $bn\sum_{i=0}^{\log_c n} (a/c)^i$
 - Si a < c ("pocos subproblemas"), a/c < 1, por ende, la serie converge:
 - Cuando $n \to \infty$:
 - $bn\sum_{i=0}^{\log_c n} (a/c)^i \rightarrow bn$ cte = O(n)
 - Si a = c:

- $T(n) \leq g(n) = ag(n/c) + bn^d$
- $\bullet = bc^{dk} \sum_{i=0}^{k} a^i c^{-di} = bn^d \sum_{i=0}^{k} a^i c^{-di}$
- Si a=1 y d=0, es decir, 1 subproblema, combinar tiene costo constante: $b\Sigma^{\log_c n}1=O(\log_c n)$
- Si d = 1, es decir, división + unión tiene costo lineal.
- g(n) queda como $bn\sum_{i=0}^{\log_c n} (a/c)^i$
 - Si a < c ("pocos subproblemas"), a/c < 1, por ende, la serie converge:
 - Cuando $n \to \infty$:
 - $bn\sum_{i=0}^{\log_c n} (a/c)^i \rightarrow bn$ cte = O(n)
 - Si a = c:
 - $bn\Sigma^{\log_c n}1 = O(n \log_c n)$

- $T(n) \leq g(n) = ag(n/c) + bn^d$
- $\bullet = bc^{dk} \sum_{i=0}^{k} a^i c^{-di} = bn^d \sum_{i=0}^{k} a^i c^{-di}$
- Si a=1 y d=0, es decir, 1 subproblema, combinar tiene costo constante: $b\Sigma^{\log_c n}1 = O(\log_c n)$
- Si d = 1, es decir, división + unión tiene costo lineal.
- g(n) queda como $bn\sum_{i=0}^{\log_c n} (a/c)^i$
 - Si a < c ("pocos subproblemas"), a/c < 1, por ende, la serie converge:
 - Cuando $n \to \infty$:
 - $bn\sum_{i=0}^{\log_c n} (a/c)^i \rightarrow bn$ cte = O(n)
 - Si a = c:
 - $bn\Sigma^{\log_c n}1 = O(n \log_c n)$
 - Si a > c ("muchos subproblemas")

- $T(n) \leq g(n) = ag(n/c) + bn^d$
- $\bullet = bc^{dk} \sum_{i=0}^{k} a^i c^{-di} = bn^d \sum_{i=0}^{k} a^i c^{-di}$
- Si a=1 y d=0, es decir, 1 subproblema, combinar tiene costo constante: $b\Sigma^{\log_c n}1=O(\log_c n)$
- Si d = 1, es decir, división + unión tiene costo lineal.
- g(n) queda como $bn\sum_{i=0}^{\log_c n} (a/c)^i$
 - Si a < c ("pocos subproblemas"), a/c < 1, por ende, la serie converge:
 - Cuando $n \to \infty$:
 - $bn\sum_{i=0}^{\log_c n} (a/c)^i \rightarrow bn$ cte = O(n)
 - Si a = c:
 - $bn\Sigma^{\log_c n}1 = O(n \log_c n)$
 - Si a > c ("muchos subproblemas")
 - Recordemos que $\sum_{i=0}^{x} y^i = \frac{y^{x+1}-1}{y-1}$ (1)

• Caso
$$d=1$$
, $a>c$, $g(n)=bn\sum_{i=0}^{\log_c n}(a/c)^i$

- Caso d = 1, a > c, $g(n) = bn\sum_{i=0}^{\log_c n} (a/c)^i$
- Usando (1) nos queda

- Caso d = 1, a > c, $g(n) = bn\sum_{i=0}^{\log_c n} (a/c)^i$
- Usando (1) nos queda
- $T(n) \le g(n) = bn \frac{(a/c)^{\log_c n+1} 1}{a/c 1}$

- Caso d = 1, a > c, $g(n) = bn\sum_{i=0}^{\log_c n} (a/c)^i$
- Usando (1) nos queda
- $T(n) \le g(n) = bn \frac{(a/c)^{\log_c n+1} 1}{a/c 1}$
- Aplicando O() queda como $O(n(\frac{a}{c})^{\log_c n})$

- Caso d = 1, a > c, $g(n) = bn\sum_{i=0}^{\log_c n} (a/c)^i$
- Usando (1) nos queda
- $T(n) \le g(n) = bn \frac{(a/c)^{\log_c n+1} 1}{a/c 1}$
- Aplicando O() queda como $O(n(\frac{a}{c})^{\log_c n})$
- $\bullet = O(n \frac{a^{\log_C n}}{c^{\log_C n}})$

- Caso d = 1, a > c, $g(n) = bn\sum_{i=0}^{\log_c n} (a/c)^i$
- Usando (1) nos queda
- $T(n) \le g(n) = bn \frac{(a/c)^{\log_c n+1}-1}{a/c-1}$
- Aplicando O() queda como $O(n(\frac{a}{c})^{\log_c n})$
- $\bullet = O(n^{\frac{a^{\log_C n}}{c^{\log_C n}}})$
- $\bullet = O(n^{\frac{a^{\log_c n}}{n}})$

- Caso d = 1, a > c, $g(n) = bn\sum_{i=0}^{\log_c n} (a/c)^i$
- Usando (1) nos queda
- $T(n) \le g(n) = bn \frac{(a/c)^{\log_c n+1} 1}{a/c 1}$
- Aplicando O() queda como $O(n(\frac{a}{c})^{\log_c n})$
- $\bullet = O(n^{\frac{a^{\log_C n}}{c^{\log_C n}}})$
- $\bullet = O(n^{\frac{a^{\log_c n}}{n}})$
- $\bullet = O(a^{\log_a n \cdot \log_c a})$

- Caso d = 1, a > c, $g(n) = bn\sum_{i=0}^{\log_c n} (a/c)^i$
- Usando (1) nos queda
- $T(n) \le g(n) = bn \frac{(a/c)^{\log_c n+1} 1}{a/c 1}$
- Aplicando O() queda como $O(n(\frac{a}{c})^{\log_c n})$
- $\bullet = O(n^{\frac{a^{\log_c n}}{c^{\log_c n}}})$
- $\bullet = O(n^{\frac{a^{\log_c n}}{n}})$
- $\bullet = O(a^{\log_a n \cdot \log_c a})$
- $\bullet = O((a^{\log_a n})^{\log_c a})$

• Caso
$$d = 1$$
, $a > c$, $g(n) = bn\sum_{i=0}^{\log_c n} (a/c)^i$

- Usando (1) nos queda
- $T(n) \le g(n) = bn \frac{(a/c)^{\log_c n+1}-1}{a/c-1}$
- Aplicando O() queda como $O(n(\frac{a}{c})^{\log_c n})$

$$\bullet = O(n^{\frac{a^{\log_C n}}{c^{\log_C n}}})$$

$$\bullet = O(n^{\frac{a^{\log_c n}}{n}})$$

$$\bullet = O(a^{\log_a n \cdot \log_c a})$$

$$\bullet = O((a^{\log_a n})^{\log_c a})$$

$$\bullet = O(n^{\log_c a})$$

• Permite resolver relaciones de recurrencia de la forma:

$$T(n) = \begin{cases} a T(n/c) + f(n) & \text{si} \quad n > 1 \\ 1 & \text{si} \quad n = 1 \end{cases}$$

• Permite resolver relaciones de recurrencia de la forma:

$$T(n) = \begin{cases} a T(n/c) + f(n) & \text{si} \quad n > 1 \\ 1 & \text{si} \quad n = 1 \end{cases}$$

• Si $f(n) = O(n^{\log_c a - \epsilon})$ para $\epsilon > 0$, entonces $T(n) = \Theta(n^{\log_c a})$

• Permite resolver relaciones de recurrencia de la forma:

$$T(n) = \begin{cases} a T(n/c) + f(n) & \text{si} \quad n > 1 \\ 1 & \text{si} \quad n = 1 \end{cases}$$

- Si $f(n) = O(n^{\log_c a \epsilon})$ para $\epsilon > 0$, entonces $T(n) = \Theta(n^{\log_c a})$
- Si $f(n) = \Theta(n^{\log_c a})$, entonces $T(n) = \Theta(n^{\log_c a} \log n)$

• Permite resolver relaciones de recurrencia de la forma:

$$T(n) = \begin{cases} a T(n/c) + f(n) & \text{si} \quad n > 1 \\ 1 & \text{si} \quad n = 1 \end{cases}$$

- Si $f(n) = O(n^{\log_c a \epsilon})$ para $\epsilon > 0$, entonces $T(n) = \Theta(n^{\log_c a})$
- Si $f(n) = \Theta(n^{\log_c a})$, entonces $T(n) = \Theta(n^{\log_c a} \log n)$
- Si $f(n) = \Omega(n^{\log_c a + \epsilon})$ para $\epsilon > 0$ y af(n/c) < kf(n) para k < 1 y n sufficientemente grandes, entonces $T(n) = \Theta(f(n))$

• ¿Cuál es la complejidad de multiplicar dos números enteros?

- ¿Cuál es la complejidad de multiplicar dos números enteros?
- Si tienen n dígitos en base b la complejidad es $O(n^2)$.

- ¿Cuál es la complejidad de multiplicar dos números enteros?
- Si tienen n dígitos en base b la complejidad es $O(n^2)$.
- ¿Puedo hacer algo mejor?

- ¿Cuál es la complejidad de multiplicar dos números enteros?
- Si tienen n dígitos en base b la complejidad es $O(n^2)$.
- ¿Puedo hacer algo mejor?
- Podemos expresarlos como una suma donde cada sumando tiene la mitad de los dígitos (aprox).

- ¿Cuál es la complejidad de multiplicar dos números enteros?
- Si tienen n dígitos en base b la complejidad es $O(n^2)$.
- ¿Puedo hacer algo mejor?
- Podemos expresarlos como una suma donde cada sumando tiene la mitad de los dígitos (aprox).
- $x = x_1 b^{n/2} + x_0$ y $y = y_1 b^{n/2} + y_0$.

- ¿Cuál es la complejidad de multiplicar dos números enteros?
- Si tienen n dígitos en base b la complejidad es $O(n^2)$.
- ¿Puedo hacer algo mejor?
- Podemos expresarlos como una suma donde cada sumando tiene la mitad de los dígitos (aprox).
- $x = x_1 b^{n/2} + x_0$ y $y = y_1 b^{n/2} + y_0$.
- Entonces xy es $x_1y_1b^n + (x_0y_1 + x_1y_0)b^{n/2} + x_0y_0$

- ¿Cuál es la complejidad de multiplicar dos números enteros?
- Si tienen n dígitos en base b la complejidad es $O(n^2)$.
- ¿Puedo hacer algo mejor?
- Podemos expresarlos como una suma donde cada sumando tiene la mitad de los dígitos (aprox).
- $x = x_1 b^{n/2} + x_0$ y $y = y_1 b^{n/2} + y_0$.
- Entonces xy es $x_1y_1b^n + (x_0y_1 + x_1y_0)b^{n/2} + x_0y_0$
- Todavía no gané nada, pero qué pasa si defino:

- ¿Cuál es la complejidad de multiplicar dos números enteros?
- Si tienen n dígitos en base b la complejidad es $O(n^2)$.
- ¿Puedo hacer algo mejor?
- Podemos expresarlos como una suma donde cada sumando tiene la mitad de los dígitos (aprox).
- $x = x_1 b^{n/2} + x_0$ y $y = y_1 b^{n/2} + y_0$.
- Entonces xy es $x_1y_1b^n + (x_0y_1 + x_1y_0)b^{n/2} + x_0y_0$
- Todavía no gané nada, pero qué pasa si defino:
- $m_1 = x_0 y_0$, $m_2 = x_1 y_1$ y $m_3 = (x_0 x_1)(y_1 y_0)$

- ¿Cuál es la complejidad de multiplicar dos números enteros?
- Si tienen n dígitos en base b la complejidad es $O(n^2)$.
- ¿Puedo hacer algo mejor?
- Podemos expresarlos como una suma donde cada sumando tiene la mitad de los dígitos (aprox).
- $x = x_1 b^{n/2} + x_0$ y $y = y_1 b^{n/2} + y_0$.
- Entonces xy es $x_1y_1b^n + (x_0y_1 + x_1y_0)b^{n/2} + x_0y_0$
- Todavía no gané nada, pero qué pasa si defino:
- $m_1 = x_0 y_0$, $m_2 = x_1 y_1$ y $m_3 = (x_0 x_1)(y_1 y_0)$
- La multiplicación se vuelve $xy = m_2b^n + (m_1 + m_2 + m_3)b^{n/2} + m_1$

- ¿Cuál es la complejidad de multiplicar dos números enteros?
- Si tienen n dígitos en base b la complejidad es $O(n^2)$.
- ¿Puedo hacer algo mejor?
- Podemos expresarlos como una suma donde cada sumando tiene la mitad de los dígitos (aprox).
- $x = x_1 b^{n/2} + x_0$ y $y = y_1 b^{n/2} + y_0$.
- Entonces xy es $x_1y_1b^n + (x_0y_1 + x_1y_0)b^{n/2} + x_0y_0$
- Todavía no gané nada, pero qué pasa si defino:
- $m_1 = x_0 y_0$, $m_2 = x_1 y_1$ y $m_3 = (x_0 x_1)(y_1 y_0)$
- La multiplicación se vuelve $xy = m_2b^n + (m_1 + m_2 + m_3)b^{n/2} + m_1$
- Esto se llama algoritmo de Karatsuba.

• $xy = m_2b^n + (m_1 + m_2 + m_3)b^{n/2} + m_1$

- $xy = m_2b^n + (m_1 + m_2 + m_3)b^{n/2} + m_1$
- Pensémoslo algorítmicamente.

- $xy = m_2b^n + (m_1 + m_2 + m_3)b^{n/2} + m_1$
- Pensémoslo algorítmicamente.
- Karatsuba(x, y)

- $xy = m_2b^n + (m_1 + m_2 + m_3)b^{n/2} + m_1$
- Pensémoslo algorítmicamente.
- Karatsuba(x, y)
 - Si son suficientemente chicos, multiplicarlos "a mano" y retornar.

- $xy = m_2b^n + (m_1 + m_2 + m_3)b^{n/2} + m_1$
- Pensémoslo algorítmicamente.
- Karatsuba(x, y)
 - Si son suficientemente chicos, multiplicarlos "a mano" y retornar.
 - 2) Separar a x en x_1 y x_0 .

- $xy = m_2b^n + (m_1 + m_2 + m_3)b^{n/2} + m_1$
- Pensémoslo algorítmicamente.
- Karatsuba(x, y)
 - Si son suficientemente chicos, multiplicarlos "a mano" y retornar.
 - 2) Separar a x en x_1 y x_0 .
 - 3) Separar a y en y_1 y y_0 .

- $xy = m_2b^n + (m_1 + m_2 + m_3)b^{n/2} + m_1$
- Pensémoslo algorítmicamente.
- Karatsuba(x, y)
 - Si son suficientemente chicos, multiplicarlos "a mano" y retornar.
 - 2) Separar a x en x_1 y x_0 .
 - 3) Separar a y en y_1 y y_0 .
 - 4) Calcular m_1 , m_2 y m_3 mediante llamadas recursivas.

- $xy = m_2b^n + (m_1 + m_2 + m_3)b^{n/2} + m_1$
- Pensémoslo algorítmicamente.
- Karatsuba(x, y)
 - Si son suficientemente chicos, multiplicarlos "a mano" y retornar.
 - 2) Separar a x en x_1 y x_0 .
 - 3) Separar a y en y_1 y y_0 .
 - 4) Calcular m_1 , m_2 y m_3 mediante llamadas recursivas.
 - 5) Sumar m_2 desplazado n b-bits + $(m_1 + m_2 + m_3)$ desplazado n/2 b-bits + m_1 .

- $xy = m_2b^n + (m_1 + m_2 + m_3)b^{n/2} + m_1$
- Pensémoslo algorítmicamente.
- Karatsuba(x, y)
 - Si son suficientemente chicos, multiplicarlos "a mano" y retornar.
 - 2) Separar a x en x_1 y x_0 .
 - 3) Separar a y en y_1 y y_0 .
 - 4) Calcular m_1 , m_2 y m_3 mediante llamadas recursivas.
 - 5) Sumar m_2 desplazado n b-bits + $(m_1 + m_2 + m_3)$ desplazado n/2 b-bits + m_1 .
 - 6) Retornar esa suma.

- $xy = m_2b^n + (m_1 + m_2 + m_3)b^{n/2} + m_1$
- Pensémoslo algorítmicamente.
- Karatsuba(x, y)
 - Si son suficientemente chicos, multiplicarlos "a mano" y retornar.
 - 2) Separar a x en x_1 y x_0 .
 - 3) Separar a y en y_1 y y_0 .
 - 4) Calcular m_1 , m_2 y m_3 mediante llamadas recursivas.
 - 5) Sumar m_2 desplazado n b-bits + $(m_1 + m_2 + m_3)$ desplazado n/2 b-bits + m_1 .
 - 6) Retornar esa suma.
- ¿Cuál es la complejidad?

- $xy = m_2b^n + (m_1 + m_2 + m_3)b^{n/2} + m_1$
- Pensémoslo algorítmicamente.
- Karatsuba(x, y)
 - Si son suficientemente chicos, multiplicarlos "a mano" y retornar.
 - 2) Separar a x en x_1 y x_0 .
 - 3) Separar a y en y_1 y y_0 .
 - 4) Calcular m_1 , m_2 y m_3 mediante llamadas recursivas.
 - 5) Sumar m_2 desplazado n b-bits + $(m_1 + m_2 + m_3)$ desplazado n/2 b-bits + m_1 .
 - 6) Retornar esa suma.
- ¿Cuál es la complejidad?
- Separaciones, sumas y desplazados son lineales en *n*.

- $xy = m_2b^n + (m_1 + m_2 + m_3)b^{n/2} + m_1$
- Pensémoslo algorítmicamente.
- Karatsuba(x, y)
 - Si son suficientemente chicos, multiplicarlos "a mano" y retornar.
 - 2) Separar a x en x_1 y x_0 .
 - 3) Separar a y en y_1 y y_0 .
 - 4) Calcular m_1 , m_2 y m_3 mediante llamadas recursivas.
 - 5) Sumar m_2 desplazado n b-bits + $(m_1 + m_2 + m_3)$ desplazado n/2 b-bits + m_1 .
 - 6) Retornar esa suma.
- ¿Cuál es la complejidad?
- Separaciones, sumas y desplazados son lineales en *n*.
- Hay 3 llamadas recursivas.

- $xy = m_2b^n + (m_1 + m_2 + m_3)b^{n/2} + m_1$
- Pensémoslo algorítmicamente.
- Karatsuba(x, y)
 - Si son suficientemente chicos, multiplicarlos "a mano" y retornar.
 - 2) Separar a x en x_1 y x_0 .
 - 3) Separar a y en y_1 y y_0 .
 - 4) Calcular m_1 , m_2 y m_3 mediante llamadas recursivas.
 - 5) Sumar m_2 desplazado n b-bits + $(m_1 + m_2 + m_3)$ desplazado n/2 b-bits + m_1 .
 - 6) Retornar esa suma.
- ¿Cuál es la complejidad?
- Separaciones, sumas y desplazados son lineales en *n*.
- Hay 3 llamadas recursivas.
- $T(n) = 3T(\lceil n/2 \rceil) + cn + c'$

- $xy = m_2b^n + (m_1 + m_2 + m_3)b^{n/2} + m_1$
- Pensémoslo algorítmicamente.
- Karatsuba(x, y)
 - Si son suficientemente chicos, multiplicarlos "a mano" y retornar.
 - 2) Separar a x en x_1 y x_0 .
 - 3) Separar a y en y_1 y y_0 .
 - 4) Calcular m_1 , m_2 y m_3 mediante llamadas recursivas.
 - 5) Sumar m_2 desplazado n b-bits + $(m_1 + m_2 + m_3)$ desplazado n/2 b-bits + m_1 .
 - 6) Retornar esa suma.
- ¿Cuál es la complejidad?
- Separaciones, sumas y desplazados son lineales en *n*.
- Hay 3 llamadas recursivas.
- $T(n) = 3T(\lceil n/2 \rceil) + cn + c'$
- $T(n) = 3T(\lceil n/2 \rceil) + f(n) \operatorname{con} f(n) = O(n^{\log_2 3 \epsilon})$

- $xy = m_2b^n + (m_1 + m_2 + m_3)b^{n/2} + m_1$
- Pensémoslo algorítmicamente.
- Karatsuba(x, y)
 - Si son suficientemente chicos, multiplicarlos "a mano" y retornar.
 - 2) Separar a x en x_1 y x_0 .
 - 3) Separar a y en y_1 y y_0 .
 - 4) Calcular m_1 , m_2 y m_3 mediante llamadas recursivas.
 - 5) Sumar m_2 desplazado n b-bits + $(m_1 + m_2 + m_3)$ desplazado n/2 b-bits + m_1 .
 - 6) Retornar esa suma.
- ¿Cuál es la complejidad?
- Separaciones, sumas y desplazados son lineales en *n*.
- Hay 3 llamadas recursivas.
- $T(n) = 3T(\lceil n/2 \rceil) + cn + c'$
- $T(n) = 3T(\lceil n/2 \rceil) + f(n) \operatorname{con} f(n) = O(n^{\log_2 3 \epsilon})$
- Que por el Teorema Maestro tiene $\Theta(n^{\log_2 3})$, es decir aprox. $\Theta(n^{1,59})$.