

Library Indian Institute of Science Education and Research Mohali

DSpace@IISERMohali (/jspui/)

- / Publications of IISER Mohali (/jspui/handle/123456789/4)
- / Research Articles (/jspui/handle/123456789/9)

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/3420

Title: Taking Toll on Membranes: Curious Cases of Bacterial β-Barrel Pore-Forming Toxins

Authors: Mondal, A.K. (/jspui/browse?type=author&value=Mondal%2C+A.K.)

 $Chat topadhyay, K.\ (/jspui/browse?type=author\&value=Chat topadhyay\%2C+K.)$

Keywords: Proteins

Cell membranes

Transmembrane oligomeric pores

Issue 20

Date:

Publisher: American Chemical Society

Citation: Biochemistry 59(2), pp. 163-170

Abstract:

A wide variety of bacterial pathogens secrete a unique class of proteins that attack target cell membranes and form transmembrane oligomeric pores with distinct β -barrel structural scaffolds. Owing to their specific mode of action and characteristic structural assembly, these proteins are termed as β -barrel pore-forming toxins (β -PFTs). The most obvious consequence of such poreforming activity of bacterial β-PFTs is the permeabilization of cell membranes, which eventually leads to cell death. Bacterial β-PFTs have been studied extensively for nearly past four decades, and their mechanisms of actions have revealed some of the most enigmatic aspects of the protein structure-function paradigm. In most of the cases, β-PFTs are released by the bacteria as watersoluble monomeric precursors, which upon encountering target cell membranes assemble into membrane-inserted oligomeric pores. Structural descriptions are now documented for the watersoluble precursor forms, as well as for the membrane-anchored oligomeric pores of many β -PFTs. These studies have revealed that $\beta\text{-PFTs}$ undergo a series of well-orchestrated structural rearrangements during membrane pore formation. Nevertheless, mechanisms that trigger and regulate distinct steps of the pore-formation processes still remain obscure. Here, we discuss our current understanding regarding structure–function mechanisms in the β-PFT family, with particular emphasis on some of the unsolved issues associated with the β -barrel pore-formation mechanism.

URI:

https://pubs.acs.org/doi/10.1021/acs.biochem.9b00783 (https://pubs.acs.org/doi/10.1021/acs.biochem.9b00783)

http://hdl.handle.net/123456789/3420 (http://hdl.handle.net/123456789/3420)

Appears in Collections:

Research Articles (/jspui/handle/123456789/9)

Files in This Items

Files in This Item:				
File	Description	Size	Format	
Need to add pdf.odt (/jspui/bitstream/123456789/3420/1/Need%20to%20add%20pdf.odt)		8.63 kB	OpenDocument Text	View/Open (/jspui/bitstream/12345

Show full item record (/jspui/handle/123456789/3420?mode=full)

II (/jspui/handle/123456789/3420/statistics)

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.