Homicídios por 100mil habitantes em gráficos

Estado de São Paulo e Capital - (2000 - 2010) Raul de Sá Durlo* 18 janeiro 2018

Abstract

Série de gráficos da taxa de homicídios por cem mil habitantes nas localidades: i) Estado de São Paulo (Capital, Interior e Região Metropolitana - exclusive Capital), do ano 2000 até o ano 2010 e ii) na Capital (Município de São Paulo, Distritos Policiais e Seccionais), somente nos anos 2003 e 2013.

^{*}Mestre em Economia - Unesp/FCLAr

1 códigos: Introdução e pacotes utilizados

O objetivo deste projeto é reescrever minha dissertação de mestrado em ambiente 100% R. O relatório é gerado em Rmarkdown e tem como output um arquivo .pdf.

A primeira parte deste documento apresenta os códigos rodados para obtenção do texto final. O texto final está na segunda parte.

Os seguintes pacotes foram utilizados:

- readr: para ler extensão .rds;
- tidyverse: para manipular data.frames;
- huxtable: para montar tabelas;
- lubridate: para séries temporais.
- ggpubr: para organizar figuras
- ggrepel: para lidar com labels em obj's. ggplot
- treemapify: para criar gráficos de área
- spdep: para análises com econometria espacial
- wesanderson: para uma paleta de cores estilosa

```
library(readr)
library(tidyverse)
library(huxtable)
library(lubridate)
library(ggpubr)
library(ggrepel)
library(treemapify)
library(spdep)
library(wesanderson)
```

2 códigos: Estado de São Paulo

2.1 Carregando arquivo:

2.1.1 Para taxas anuais de homicídio por 100mil habitantes

O código abaixo carrega dados anuais de homicídios e população por região no estado de São Paulo, onde:

- ano é o ano de registro,
- população é a contagem da população residente.
- homicidio é o número total de registros de homicídio doloso e
- local são as localidades, com:
 - Capital: município de São Paulo,
 - Grande SP: para os municípios da região Metropolitana de São Paulo (exclusive MSP),
 - Interior: para os demais municípios e
 - Total: Todo o estado de São Paulo.

```
# lendo .rds
estado_sp <- read_rds("C:\\Users\\rauld\\Google Drive\\meu_projeto\\dados e scripts\\tabelas_output\\ta</pre>
# subset
estado_sp <- estado_sp[,seq(4)]
# agregando
estado_sp <- estado_sp
                                                        %>%
               group_by(ano)
                                                        %>%
               summarise(populacao = sum(populacao),
                          homicidio = sum(homicidio))
                                                        %>%
                                                        %>%
               ungroup()
               mutate(local = rep("Total", 11))
                                                        %>%
               bind_rows(estado_sp)
```

2.1.1.1 Adicionando variáveis

A taxa de homicídio é calculada com o código:

```
estado_sp$tx_homicidio <- (estado_sp$homicidio/estado_sp$populacao)*100000
```

O resultado no objeto tibble:

2.1.2 Para números totais de homicídios, por trimestre:

O código abaixo carrga dados absolutos das Estatíticas Trimestrais da Secretaria de Segurança Pública.

A variável trimestre apresenta valores correspondentes aos trimestres do ano de referência (p.e. trimestre = "1" \rightarrow 1° Trimestre) e a periodicidade total é de 3° Trimestre de 1995 até 1° Trimestre de 2016:

```
# arq .rds
estado_sp_trim <- read_rds(</pre>
  "C:\\Users\\rauld\\Google Drive\\meu_projeto\\dados e scripts\\tabelas_output\\tab_análise_1\\tab_tri
# subset
estado_sp_trim <- estado_sp_trim[,seq(4)]</pre>
# agregando
estado_sp_trim <- estado_sp_trim
                                                             %>%
                    group_by(trimestre, ano)
                                                             %>%
                    summarise(homicidio = sum(homicidio))
                                                             %>%
                                                             %>%
                    ungroup()
                    mutate(local = rep("Total", 83))
                                                             %>%
                    bind_rows(estado_sp_trim)
                                                             %>%
                    arrange(local, ano, trimestre)
```

Aplicamos lubridate::quarter() e lubridate::ymd() para lidar com anos e trimestres:

O resultado em uma tibble

```
estado_sp_trim
```

```
## # A tibble: 332 x 5
##
     local trimestre
                       ano data homicidio
##
     <chr>
                <dbl> <int> <dbl>
                                     <dbl>
                                      1134
## 1 Capital
                 3.00 1995 1995
## 2 Capital
                 4.00 1995 1995
                                      1142
                 1.00 1996 1996
## 3 Capital
                                      1331
## 4 Capital
                 2.00 1996 1996
                                      1109
## 5 Capital
                 3.00 1996 1996
                                      1150
## 6 Capital
                 4.00 1996 1996
                                      1092
## 7 Capital
                 1.00 1997 1997
                                      1140
## 8 Capital
                 2.00 1997 1997
                                      1051
## 9 Capital
                 3.00 1997 1997
                                      1145
## 10 Capital
                 4.00 1997 1997
                                      1217
## # ... with 322 more rows
```

2.2 Estatísticas descritivas

2.2.1 Agrupando os dados com dplyr

Agrupa-se a taxa de homicídio segundo as localidades:

```
estat_descr <- estado_sp</pre>
                                                   %>%
 group_by(local)
                                                   %>%
  # summarize() define as variáveis
  summarise(`Média`
                   = mean(tx homicidio),
            `Desvio padrão` = sd(tx_homicidio),
            Mediana = median(tx homicidio),
                          = IQR(tx_homicidio),
            `IQR`
            `Mínimo`
                          = min(tx homicidio),
            `Máximo`
                          = max(tx_homicidio))
                                                   %>%
  ungroup()
                                                   %>%
  rename("Localidade" = local)
```

2.2.2 Figura 1: estatísticas trimestrais

Os gráficos com dados por trimestre são gerados a partir da função homic_trimestre(), que aceita como argumentos as variáveis de estado_sp_trim\$local:

```
homic trimestre <- function(x) { # x:("Capital", "Interior", "Grande SP", "total")
  ggplot(filter(estado_sp_trim, local == x), aes(x = trim, y = homicidio, fill = local)) +
            geom line() +
            theme(plot.title = element text(size = 10),
                  axis.text.x = element_text(angle = 90, size = 6.5, color = 'black'),
                  axis.text.y = element_text(size = 6.5, color = 'black'),
                  axis.line.x = element_line(size = .3),
                  axis.line.y = element_line(size = .3),
                  panel.background = element_blank(),
                  axis.title.x = element_text(size = 7.5),
                  axis.title.y = element_text(size = 7.5)) +
            labs(title = paste(x),
                     = "",
                 У
                      = "Ano") +
            geom vline(aes(xintercept = trim[34]),
                       linetype = "dashed", color = wes_palette("Cavalcanti")[5]) +
            geom vline(aes(xintercept = trim[47]),
                       linetype = "dashed", color = wes_palette("Cavalcanti")[1])
         } # don't know haw to add breaks and labels in x-axis
```

Utilizamos o ggpubr::ggarrange para enquadrar as localidades.

```
nrow = 2,
align = "hv",
legend = "top",
common.legend = TRUE)
```

Com ggpubr::annotate_figure edita-se o quadro:

2.2.3 Figura 2: Distribuição percentual de ocorrências de homicídio e da população residente

A função perc(y,z) aceita argumentos do vetor de interesse (\$homicidio ou \$populacao) e sua posição (2=homicidios e 3=populacao):

```
perc <- function(y,z) { # y: .$homicidio; .$populacao;</pre>
                            # z: 3=homicidio; 2=populacao;
  ggplot(estado_sp[-seq(11),], aes(x = as.character(ano),
                                         y = as.numeric(y),
                                         color = 'black', fill = local)) +
      geom_bar(stat = "identity", position = 'fill', alpha = .7,
                color = 'black', size = .2) +
      theme(legend.position = c(.8, .75),
             legend.title = element_text(size = 7.5),
             legend.key.size = unit(.3,"cm"),
             axis.ticks = element_blank(),
                              = element_text(size = 7.5),
             legend.text
            plot.title = element_text(size = 8, hjust = 0.5),
axis.text.x = element_text(angle = 90, size = 7.5, color = 'black'),
axis.text.y = element_text(size = 7.5, color = 'black'),
axis.line.x = element_line(),
axis.line.y = element_blank(),
             panel.background = element_blank(),
             axis.title.x = element_text(size = 6.5),
                               = element_text(size = 7.5)) +
             axis.title.y
     labs(x
                 = "Ano",
                = '',
           fill = "Região:") +
    scale_fill_manual(values = c(wes_palette("Moonrise1")))
```

Gerando o quadro:

Editando o quadro:

2.2.4 Tabela 1: estatísticas descritivas

```
Cria a tabela huxtable::hux():
```

```
ht <- hux(estat_descr, add_colnames = TRUE)
```

Para Editar a tabela, basta alterar os parâmetros no código abaixo:

```
ht <- ht
  set_bold(1, everywhere, TRUE)
                                                  %>% # negrito
  set_number_format(3)
                                                  %>% # casas decimais
  set_top_border(1, everywhere, 1)
                                                 %>% # borda superior
  set_top_border(1, everywhere, 1) %>% # borda superior set_bottom_border(c(1,5), everywhere, 1) %>% # borda inferior
  set_align(everywhere, everywhere, 'center') %>% # alinhamento de texto na célula
  set_right_padding(3)
                                                  %>% # para posicionar
  set_left_padding(3)
                                                  %>% # para posicionar
  set_width(.9)
                                                  %>% # para posicionar no pdf
  set_position('center')
                                                  %>% # para posicionar no pdf
  set_caption(
'Estatísticas descritivas - homicídios por 100.000 habitantes no Estado de São Paulo - Capital, RMSP e
```

2.2.5 Figura 3: Taxa de homicídios anuais - de 2000 até 2010

O Código abaixo faz os gráficos de taxas de homicídio anuais, novamente temos uma função(homic_tx(x)). Ela aceita como argumento as localidades "Capital", "Interior", "Grande SP" e "Total":

```
homic_tx <- function(x){</pre>
   # x: nome da Localidade
        ggplot(filter(estado_sp, local == x),
               aes(x = as.factor(anual), y = tx_homicidio, group = rep(1,11))) +
           geom_line() +
           geom_point(size = .5) +
           geom text(aes(label = round(tx homicidio,2)), size = 2,
                         hjust = -0.1, vjust = 0, angle = 30) +
           theme(plot.title
                                 = element_text(size = 10),
                 axis.text.x
                                 = element_text(angle = 90, size = 6.5, color = 'black',
                                             hjust = 1, vjust = .5),
                 axis.text.y = element_text(size = 6.5, color = 'black'),
                 axis.line.x = element_line(size = .3),
axis.line.y = element_line(size = .3),
                 panel.background = element_blank(),
                 axis.title.x = element_text(size = 7.5),
                                = element_text(size = 7.5)) +
                 axis.title.y
           labs(title = paste(x), x="", y="") +
           scale_y_continuous(limits = c(0,60),
                              breaks = seq(0,60, by = 15)) +
           geom_vline(aes(xintercept = as.numeric(as.factor(anual)[4])),
                      linetype = "dashed", color = wes_palette("Cavalcanti")[5]) +
           geom_vline(aes(xintercept=as.numeric(as.factor(anual)[7])),
                      linetype = "dashed", color = wes_palette("Cavalcanti")[1])
  }
```

Para gerar o quadro, analogamente às figuras anteriores:

Editando o quadro:

fig.lab.face = NA)

3 códigos: Município de São Paulo

3.1 carregando arquivo:

```
# lê os dados
msp <- read_rds("C:\\Users\\rauld\\Google Drive\\meu_projeto\\dados e scripts\\tabelas_output\\tab_FINA

# subset
msp <- msp %>%
    select(ano, distrito, dpol = distrito_num, seccional, homicidio, populacao)

# taxa de homicídio
msp$tx_homicidio <- (msp$homicidio/msp$populacao)*100000</pre>
```

3.2 Estatísticas descritivas

3.2.1 Figura 1: Histograma e boxplot da taxa de homicídios por ano de referência:

```
msp$ano <- as.character(msp$ano)</pre>
histograma <- ggplot(msp, aes(x = tx_homicidio)) +
    geom_histogram(aes(y = ..density.., fill = ano, color = ano),
                           alpha = .3, size=.2, position = "identity", bins = 80) +
    theme(plot.title
                             = element_text(hjust = .5, size = 10, family = "Times"),
            legend.position = 'bottom',
           legend.title = element_text(size = 7.5),
           legend.key.size = unit(.3, "cm"),
           axis.ticks = element_line(size=.2),
legend.text = element_text(size = 7.5),
axis.text.x = element_blank(),
axis.text.y = element_text(size = 7.5, color = 'black'),
axis.line.x = element_line(size = .3, linetype = '1F'),
axis.line.y = element_line(size = .2),
panel_background = alement_line(size = .2),
           panel.background = element_blank(),
           axis.title.x = element_blank(),
           axis.title.y = element_text(size = 7.5)) +
    labs(x = "",
                = "Densidade",
          fill = "Ano",
          color = "Ano") +
     geom_rug(aes(color = ano), size = .2) +
    scale_color_manual(values = c(wes_palette("GrandBudapest")[4],
                                         wes_palette("Moonrise1")[4])) +
    scale_fill_manual(values = c(wes_palette("Cavalcanti")[1],
                                       wes_palette("Moonrise1")[4])) +
    geom vline(data = filter(msp,ano == "2003"),
                  aes(xintercept = mean(tx_homicidio), color = ano), linetype = "dashed") +
    geom_vline(data = filter(msp,ano == "2013"),
                  aes(xintercept = mean(tx_homicidio), color = ano), linetype = "dashed") +
    scale x continuous(limits = c(0,255),
                               breaks = c(seq(0,250,by=25)))
```

```
is_outlier <- function(x) {</pre>
  return(x < quantile(x, 0.25) - 1.5 * IQR(x) | x > quantile(x, 0.75) + 1.5 * IQR(x))
}
                                                               %>%
boxplot <- msp
                                                               %>%
  group by (ano)
  mutate(outlier = ifelse(is_outlier(tx_homicidio),
                            distrito, as.character(NA)))
                                                              %>%
  ggplot(., aes(x = ano, y = tx_homicidio, color = ano) ) +
  geom_boxplot(aes(fill = ano), size=.3, alpha = .3, outlier.size = 1, notch = TRUE) +
      scale_color_manual(values = c(wes_palette("GrandBudapest")[4],
                                       wes_palette("Moonrise1")[4]) ) +
      scale_fill_manual(values = c(wes_palette("Cavalcanti")[1],
                                      wes_palette("Moonrise1")[4]) ) +
      theme(plot.title
                              = element_text(hjust = .5, size = 7.5, family="Times"),
            axis.text.x = element_text(size = 6, color = 'black'),

axis.text.y = element_text(size = 7.5, color = 'black'),

axis.title = element_text(colour = "black", size = 7.5),

axis.ticks = element_line(size = .2),
             axis.line.x
                             = element_line(size = .2),
             axis.line.y
                              = element_blank(),
             panel.background = element_rect(fill = "white"),
             legend.position = "none") +
      labs(y = "Taxa de homicídio",
            x = "",
            fill = "Ano",
            color = "Ano") +
     geom_text_repel(aes(label = outlier, color = ano), na.rm = TRUE, hjust = -0.3,
                       size = 2, min.segment.length = .3, segment.size = .07) +
     scale_y_continuous(limits = c(0,255),
                            breaks = c(seq(0,250,by=25))) +
     coord_flip()
E a figura
quadro_msp_aed <- ggarrange(histograma, boxplot,</pre>
                       ncol = 1,
                       nrow = 2,
                       align = "hv",
                       common.legend = TRUE,
                       legend= "bottom",
                       heights = c(1, .75))
quadro_msp_aed <- annotate_figure(quadro_msp_aed,</pre>
                 top = text_grob(
"Taxa de Homicídios (100000 habitantes) - Município de São Paulo\n(2003 e 2013)",
                                   color = "black",
                                   vjust = .5,
                                   size = 10,
                                   family = "Times", just = "center"),
                 bottom = NA,
```

msp\$ano <- as.character(msp\$ano)</pre>

```
left = NA,
right = NA,
fig.lab = NA,
fig.lab.face = NA
)
```

3.2.2 Figura 2: Taxas de homicídio por seccional (2000 e 2010):

A função abaixo é criada para ordenar as barras dos gráficos da maior para a menor, isso permite uma visualização mais adequada, ressaltando os maiores e menores valores da taxa de homicídios por Seccional:

Uma função para gerar as 8 seccionais:

```
homic_seccional <- function(x, y, z){
     ggplot(data = filter(msp, seccional == x),
                      aes(x = distrito, y = tx_homicidio, fill = ano)) +
       scale_x_discrete(limits = as_vector(limits(x))) +
                           = "identity",
       geom bar(stat
                            = "dodge",
                position
                show.legend = y,
                alpha = .5,
                           = "black") +
                color
       theme(plot.title
                            = element_text(hjust = .5),
             plot.subtitle = element_text(hjust = .5, margin = margin(b = -10)),
             axis.text = element_text(colour = "black"),
axis.text.x = element_text(size = 10, angle = 90, hjust = 1,vjust = .3),
axis.text.y = element_text(size = 10),
                             = element_line(),
             axis.ticks
                             = element line(size = .3,colour = "black"),
             axis.line
                             = element_blank(),
             axis.title.x
             axis.title.y = element_text(size = 10),
             panel.background = element_rect(fill = "white")) +
       labs(fill
                    = "Ano:",
                   = "Ano:",
            color
            subtitle = paste("Seccional: ", x),
                     = z) +
       scale_fill_manual(values = c(wes_palette("GrandBudapest")[4],
                                     wes_palette("Moonrise1")[4])) +
       scale_color_manual(msp$ano, values = c(wes_palette("GrandBudapest")[4],
                                                wes_palette("Moonrise1")[4])) +
       scale_y_continuous(limits = c(0,255),
```

```
breaks = c(seq(0,250,by=25)))
}
```

E a figura

Editando a figura

```
quadro_msp_secc <- annotate_figure(quadro_msp_secc,</pre>
                top = text_grob(
"Taxa de Homicídios (100000 habitantes) - Seccionais do Município de São Paulo (2003 e 2013)",
                                color = "black",
                                vjust = .5,
                                size = 16,
                                family = "Times", just = "center"),
                bottom = text_grob("Fonte: SSP/SP",
                                    color = "black",
                                    face = "italic",
                                    size = 10),
                left
                       = NA,
                right = NA,
                fig.lab = NA,
                fig.lab.face = NA
```

3.2.3 Análise Exploratória de Dados Espaciais (AEDE)

Carrega os dados:

```
# subset
msp <- msp %>%
  select(ano, distrito, dpol, seccional, homicidio, populacao)
# taxa de homicídio
msp$tx_homicidio <- (msp$homicidio / msp$populacao) * 100000</pre>
glimpse(msp)
## Observations: 160
## Variables: 7
                 <chr> "2003", "2013", "2013", "2003", "2013", "2003", "...
## $ ano
## $ distrito <chr> "SÉ", "SÉ", "BOM RETIRO", "BOM RETIRO", "CAMPOS E...
## $ dpol
                 <int> 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9...
## $ seccional
                 <chr> "1 CENTRO", "1 CENTRO", "1 CENTRO", "1 CENTRO", "...
## $ homicidio
                 <dbl> 53, 20, 4, 6, 9, 45, 4, 4, 4, 20, 5, 13, 5, 18, 1...
                 <dbl> 21079, 24654, 35567, 28656, 58784, 50595, 128196,...
## $ populacao
## $ tx homicidio <dbl> 251.435078, 81.122739, 11.246380, 20.938023, 15.3...
```

3.2.3.1 Matriz de contiguidade:

A matriz de vizinhança é calculada à partir de uma matriz esparsa criada manualmente. O comando abaixo carrega o arquivo .txt

```
# diretório
queen <- read.table("C:\\Users\\rauld\\Google Drive\\meu_projeto\\dados e scripts\\tabelas_output\\plan
dim(queen) # 80x80

## [1] 80 80
queen <- as.matrix(queen) # matriz feita à mão
is.matrix(queen)</pre>
```

[1] TRUE

As linhas e as colunas em uma matriz de vizinhança são as localidades, nesse caso elas serão referenciadas pelo número do distrito policial:

Após criar o objeto, é possível checar sua estrutura com summary()

```
# objeto 'listw', style="W" (padronizada na linha)
w <- mat2listw(queen, row.names = NULL, style="M")</pre>
```

```
listw <- nb2listw(w$neighbours, glist=NULL, style="W", zero.policy=NULL)
summary(listw)</pre>
```

```
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 80
## Number of nonzero links: 414
## Percentage nonzero weights: 6.46875
## Average number of links: 5.175
## Link number distribution:
##
  1 2 3 4 5 6 7 8 9 10
## 1 4 8 11 23 18 10 2 2 1
## 1 least connected region:
## 25 with 1 link
## 1 most connected region:
## 3264 with 10 links
## Weights style: W
## Weights constants summary:
##
     n nn SO
                     S1
                              S2
## W 80 6400 80 33.77879 329.0915
```

Agora que temos a matriz pronta no R, trabalharemos com objetos listw, nb

3.2.3.2 Variáveis defasadas espacialmente:

Aqui temos:

- tx_homicidio_z: é a taxa de homicídio por 100000 habitantes mos distritos, centrada na média $Z = \frac{(x-\mu)}{2}$,
- lag_tx_homicidio_z: é a taxa de homicídio por 100000 habitantes defasada pela matriz de contiguidade de ordem 1,
- I_moran: é a estatística I de Moran calculada globalmente,
- local_moran: é o índice local de Moran,
- local_moran_pvalor: é a significância estatística a 5% do indicador de Moran local,
- quad_sig: é uma variável categórica criada para identificar os *clusters* calculados pelo *I de Moran* local.

Com a matriz de contiguidade pronta, podemos criar variáveis espacialmente defasadas. Na funçao abaixo isso é feito de acordo com o ano de referência:

```
defasando <- function(x) { # x: "2003" e "2013"
                                                                                      %>%
   filter(ano == x)
                                                                                      %>%
  arrange(dpol)
                                                                                      %>%
  mutate(tx_homicidio_z = (tx_homicidio - mean(tx_homicidio)) / sd(tx_homicidio),
          # lag.listw defasa uma varável qualquer de acordo com W
         lag_tx_homicidio = lag.listw(listw, tx_homicidio),
         lag_tx_homicidio_z = lag.listw(listw, tx_homicidio_z),
          # i de moran Global
          i moran
                             = rep(moran(tx_homicidio,
                                         listw=listw, 80, Szero(listw))[[1]],80))
                                                                                      %>%
   # os resultados do I de Moran local saem em um data.frame à parte:
```

```
bind_cols(., as_data_frame(localmoran(msp
                                                                                         %>%
                                           filter(ano == x)
                                                                                         %>%
                                                                                         %>%
                                           select(tx_homicidio)
                                           as_vector(), listw = listw)))
                                                                                         %>%
   select(-E.Ii, -Var.Ii, -Z.Ii)
                                                                                         %>%
   rename(local moran
          local_moran_pvalor = Pr(z > 0)
}
# Guarda os dados novamente na tabela
msp <- bind rows(defasando("2003"), defasando("2013"))</pre>
# identify the Local Moran plot quadrant for each observation this is some
# serious slicing and illustrate the power of the bracket
msp$quad_sig <- NA</pre>
msp[(msp$tx_homicidio_z >= 0 & msp$lag_tx_homicidio_z >= 0) &
      (msp$local_moran_pvalor <= 0.05), "quad_sig"] <- "Alto-alto"</pre>
msp[(msp$tx_homicidio_z <= 0 & msp$lag_tx_homicidio_z <= 0) &</pre>
      (msp$local_moran_pvalor <= 0.05), "quad_sig"] <- "Baixo-baixo"</pre>
msp[(msp$tx_homicidio_z >= 0 & msp$lag_tx_homicidio_z <= 0) &</pre>
      (msp$local moran pvalor <= 0.05), "quad sig"] <- "Alto-baixo"
msp[(msp$tx_homicidio_z <= 0 & msp$lag_tx_homicidio_z >= 0) &
      (msp$local_moran_pvalor <= 0.05), "quad_sig"] <- "Baixo-alto"</pre>
msp[(msp$local_moran_pvalor > 0.05), "quad_sig"] <- "Não sig."</pre>
glimpse(msp)
## Observations: 160
## Variables: 14
                        <chr> "2003", "2003", "2003", "2003", "2003", "20...
## $ ano
                        <chr> "SÉ", "BOM RETIRO", "CAMPOS ELÍSIOS", "CONS...
## $ distrito
## $ dpol
                        <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...
                        <chr> "1 CENTRO", "1 CENTRO", "1 CENTRO", "1 CENT...
## $ seccional
                        <dbl> 53, 6, 45, 4, 20, 13, 18, 23, 15, 17, 31, 3...
## $ homicidio
## $ populacao
                        <dbl> 21079, 28656, 50595, 120821, 64310, 31114, ...
                        <dbl> 251.435078, 20.938023, 88.941595, 3.310683,...
## $ tx_homicidio
## $ tx homicidio z
                        <dbl> 4.73573143, -0.52990521, 1.02361616, -0.932...
                        <dbl> 74.01164, 106.21720, 111.26871, 61.86524, 6...
## $ lag tx homicidio
## $ lag_tx_homicidio_z <dbl> 0.68254580, 1.41827228, 1.53367253, 0.40506...
## $ i moran
                        <dbl> 0.194438, 0.194438, 0.194438, 0.194438, 0.1...
                        <dbl> 3.27326949, -0.76106316, 1.58976404, -0.382...
## $ local_moran
## $ local_moran_pvalor <dbl> 1.080103e-22, 9.793767e-01, 3.635768e-05, 8...
                        <chr> "Alto-alto", "Não sig.", "Alto-alto", "Não ...
## $ quad_sig
```

3.2.3.3 Análise I de Moran Global

A função spdep::moran.mc() calcula a estatística *I de Moran* e testa sua aleatoriedade com simulações de Monte-Carlo. Veja os resíduos obtidos por 999 simulações:

moran_10\$res

moran_13\$res

O diagrama de dispersão de Moran pode ser visualizado rapidamente com a função spdep::moran.plot()

```
par(mfrow = c(1, 2))
moran.plot(as.vector(msp$tx_homicidio_z[msp$ano == "2003"]),
          listw,
          zero.policy = T,
          spChk = NULL,
          xlab = list("Taxa de homicidios", cex = .8),
          ylab = list("Taxa de homicidios defasada", cex = .8),
          labels = as.character(msp$distrito[msp$ano == "2003"]),
          quiet = NULL)
title(main = list("2003", cex = .8))
moran.plot(as.vector(msp$tx_homicidio_z[msp$ano == "2013"]),
          zero.policy = T,
          spChk = NULL,
          xlab = list("Taxa de homicidios", cex = .8),
          ylab = list(""),
          labels = paste(msp$distrito[msp$ano == "2013"]),
           quiet = NULL)
title(main=list("2013", cex = .8))
```


Também podemos tabelar os resultados regredindo a taxa de homicídios contra seus valores defasados espacialmente:

```
moran i <- function(x){
  lm(lag_tx_homicidio_z~tx_homicidio_z, data=msp, subset=(ano==x))
tabela moran <- huxreg("2003"=moran i("2003"),
                       "2013"=moran_i("2013"),
                       coefs = "tx_homicidio_z",
                       statistics ="r.squared")
                                                 %>%
  set_number_format(1, c(2,3), NA)
  set_bold(1, everywhere, TRUE)
                                                  %>% # negrito
  set_top_border(1, everywhere, 1)
                                                  %>% # borda superior
  set_right_padding(3)
                                                  %>% # para posicionar
  set_left_padding(3)
                                                  %>% # para posicionar
                                                  %>% # para posicionar no pdf
  set_width(.6)
  set position('center')
                                                  %>% # para posicionar no pdf
  set_align(everywhere,c(2,3), 'center')
                                                  %>% # alinhamento do texto na célula
  set_align(everywhere,1,'left')
                                                  %>% #
  set_escape_contents(4, 1, FALSE)
                                                  %>% # para aparecer potenciação no pdf
                                                  %>% # italico
  set_font_size(3,everywhere, 8)
  set_italic(3,everywhere, TRUE)
                                                  %>%
  set_caption(
'Tabela: Estatística I de Moran (2003 e 3013)'
```

```
tabela_moran[2,1] <- "Taxa de homicídios"
tabela_moran[4,1] <- "$R^2$"</pre>
```

O gráfico será gerado com os seguintes parâmetros:

```
moran_ggplot <- function(x){</pre>
  ggplot(filter(msp, ano==x),
         aes(x = tx_homicidio_z,
             y = lag_tx_homicidio_z, color = as.factor(quad_sig))) +
     geom_point(shape= 21,
                fill = "white",
                size = 1.2,
                stroke = .6) +
     theme_bw(base_size = 8) +
     theme(plot.title = element text(hjust = .5),
           plot.subtitle = element_text(hjust = .5, margin = margin(b = -10)),
           axis.text = element_text(colour = "black"),
                           = element_text(size = 6.5),
           axis.text.x
           axis.text.y = element_text(size = 6.5),
axis.ticks = element_line(size=.3),
axis.line = element_blank(),
           axis.title.x = element_blank(),
axis.title.y = element_text(size = 10),
           panel.background = element_rect(size = .3),
           panel.grid = element_blank()) +
     labs(title = paste(x),
               = "Taxa de homicidios",
          X
               = "",
          color = "I de Moran Local (p-valor<0,05)") +</pre>
     scale_y_continuous(limits = c(-2,2), breaks = seq(-2,2, by = .5)) +
     scale_x_continuous(limits = c(-8,8), breaks = seq(-8,8, by = 2)) +
     scale_color_manual(values=c('Alto-alto' = wes_palette("Royal1")[2],
                                   'Baixo-baixo' = wes_palette("Darjeeling2")[2],
                                   'Não sig.' = 'black')) +
     geom_vline(xintercept = 0, size = .3) +
     geom_hline(yintercept = 0, size = .3) +
     geom_abline(slope = ifelse(x == "2003", 0.194, 0.157),
                  intercept = ifelse(x == "2003", 0.012, 0.022), size = .5, linetype = 'dashed') +
     geom_text_repel(data = subset(msp, ano == x & quad_sig == "Alto-alto" | ano == x & quad_sig == "Ba
                      aes(label = distrito),
                          size = 2)+
     geom_label( label = "Alto-alto", x = 7, y = 2, size = 1.5, colour = "black") +
     geom_label( label = "Alto-baixo", x = 7, y = -2, size = 1.5, colour = "black") +
     geom_label( label = "Baixo-baixo", x = -6.8, y = -2, size = 1.5, colour = "black") +
     geom_label( label = "Baixo-alto", x = -7, y = 2, size = 1.5, colour = "black")
}
```

O quadro final do Diagrama de Dispersão de Moran:

4 Estado de São Paulo

4.1 Dados

Os dados referem-se ao número de ocorrências de homicídio registradas entre os anos de 2000 e 2010. Como a interpretação de ocorrências criminais é sensível à mudanças demográficas, os dados foram normalizados em relação à população residente, sendo calculado, portanto, uma taxa de homicídios por 100.000 habitantes:

$$txhomicdio_{ij} = \left(\frac{homicdio_{ij}}{populacao_{ij}}\right)100000$$

Na equação acima, a taxa de homicídio no período i é calculada para a localidade j por 100.000 habitantes.

- Os dados de ocorrências criminais são provenientes das Estatísticas Trimestrais¹ da Secretaria Estadual de Segurança Pública do Estado de São Paulo. para esta análise os dados trimestrais foram agrupados em anos.
- Já os dados da população residente foram extraídos das estimativas utilizadas pelo Tribunal de Contas da União para determinação das cotas do Fundo de Participação dos Municípios².

4.2 Estatísticas descritivas

Principais pontos:

- As estatísticas trimestrais mostram queda significativa dos registros de homicídio.
- As localidades no interior do estado apresentam um aumento na proporção de homicídios registrados.
- A distribuição da população nas localidades permaneceram relativamente estáveis.
- A queda da taxa de homicídios é persistente em todas as localidades. há uma pequena resistência no decréscimo da taxa de himicídio no interior, com aumento a partir do ano de 2008.

 $^{^{1} \}rm http://www.ssp.sp.gov.br/estatistica/trimestrais.aspx$

 $^{^2} http://tabnet.datasus.gov.br/cgi/deftohtm.exe?ibge/cnv/poptsp.deftoht$

4.2.1 Estatísticas Trimestrais da Secretaria de Segurança Pública.

O quadro abaixo apresenta a evolução da taxa de homicídio nas localidades:

Figura 1: Ocorrências de homicídios no Estado de São Paulo 3°Trim – 1995 até 1°Trim – 2016

4.2.2 Taxas de homicídio, por localidade, no período 2000 a 2010:

A evolução da população e das ocorrências de homicídios, em termos proporcionais, por localidade no período 2000-2010.

Figura 2: Proporção de ocorrências de homicídios e população residente por região (2000 até 2010)

Foram calculadas as taxas de homicídio por localidade. Os resultados estão na tabela 1:

Table 1: Estatísticas descritivas - homicídios por 100.000 habitantes no Estado de São Paulo - Capital, RMSP e Interior - no período de 2000 a 2010

Localidade	Média	Desvio padrão	Mediana	IQR	Mínimo	Máximo
Capital	27.756	16.323	22.593	29.021	10.636	53.221
Grande SP	27.130	13.242	22.477	24.174	12.221	46.173
Interior	14.099	4.734	12.843	9.172	8.511	20.354
Total	20.549	9.652	17.496	18.028	10.484	34.766

O quadro abaixo mostra a evolução da taxa de homicídios no período 2000-2010 por localidade:

Taxa de homicídios anuais — Estado de São Paulo 2000 até 2010

5 Município de São paulo

5.1 Análise Exploratória

$5.1.1\;$ Figura 1: Distribuição da taxa de homicídio no Município de São Paulo (2003 - 2013)

5.1.2 Figura 2: Taxas de homicídio por seccional (2003 e 2013):

5.2 Análise Exploratória de Dados Espaciais (AEDE)

Table 2: Tabela: Estatística I de Moran (2003 e 3013)

	2003	2013	
Taxa de homicídios	0.194 ***	0.157 **	
	(0.053)	(0.049)	
R^2	0.148	0.117	

^{***} p < 0.001; ** p < 0.01; * p < 0.05.

Figura: Diagramas de dispersão de Moran (2003/2013) Índice global e local

