In the Claims

Claims 1-11 (Cancelled)

12. (Previously Presented) The cardiac assist system as claimed in claim 16, wherein said

plurality of electrical leads have a second shielding therearound, said second shielding

preventing said electrical leads from conducting stray electromagnetic interference.

13. (Original) The cardiac assist system as claimed in claim 12, wherein said second

shielding is a metallic sheath to prevent said electrical leads from conducting stray

electromagnetic interference.

14. (Original) The cardiac assist system as claimed in claim 12, wherein said second

shielding is a carbon composite sheath to prevent said electrical leads from conducting stray

electromagnetic interference.

15. (Original) The cardiac assist system as claimed in claim 12, wherein said second

shielding is a polymer composite sheath to prevent said electrical leads from conducting stray

electromagnetic interference.

16. (Previously Presented) A cardiac assist system, comprising:

a primary device housing;

said primary device housing having a control circuit therein;

a shielding formed around said primary device housing to shield said primary device

housing and any circuits therein from electromagnetic interference;

a plurality of electrical leads to transmit and receive signals between a heart and said

primary device housing; and

an electrode located on an end of one of said electrical lead;

said electrode having an anti-antenna geometrical shape, said anti-antenna geometrical

shape preventing said electrode from picking up and conducting stray electromagnetic

interference.

-2-

17. (Original) The cardiac assist system as claimed in claim 16, wherein said plurality of

electrical leads have a second shielding therearound, said second shielding preventing said

electrical leads from conducting stray electromagnetic interference.

18. (Original) The cardiac assist system as claimed in claim 17, wherein said second

shielding is a metallic sheath to prevent said electrical leads from conducting stray

electromagnetic interference.

19. (Original) The cardiac assist system as claimed in claim 17, wherein said second

shielding is a carbon composite sheath to prevent said electrical leads from conducting stray

electromagnetic interference.

20. (Original) The cardiac assist system as claimed in claim 17, wherein said second

shielding is a polymer composite sheath to prevent said electrical leads from conducting stray

electromagnetic interference.

21. (Previously Presented) The cardiac assist system as claimed in claim 16, wherein

each electrical lead includes an electrical filter, said electrical filter removing stray

electromagnetic interference from a signal being received from said electrical lead.

22. (Original) The cardiac assist system as claimed in claim 21, wherein said plurality of

electrical leads have a second shielding therearound, said second shielding preventing said

electrical leads from conducting stray electromagnetic interference.

23. (Original) The cardiac assist system as claimed in claim 22, wherein said second

shielding is a metallic sheath to prevent said electrical leads from conducting stray

electromagnetic interference.

-3-

- 24. (Original) The cardiac assist system as claimed in claim 22, wherein said second shielding is a carbon composite sheath to prevent said electrical leads from conducting stray electromagnetic interference.
- 25. (Original) The cardiac assist system as claimed in claim 22, wherein said second shielding is a polymer composite sheath to prevent said electrical leads from conducting stray electromagnetic interference.

Claims 26-29 (Cancelled)

- 30. (Original) The cardiac assist system as claimed in claim 12, wherein said second shielding is covered with a biocompatible material.
- 31. (Original) The cardiac assist system as claimed in claim 16, wherein said electrical leads are covered with a biocompatible material.
- 32. (Original) The cardiac assist system as claimed in claim 17, wherein said second shielding is covered with a biocompatible material.
- 33. (Original) The cardiac assist system as claimed in claim 21, wherein said electrical leads are covered with a biocompatible material.
- 34. (Original) The cardiac assist system as claimed in claim 22, wherein said second shielding is covered with a biocompatible material.

Claims 35-37 (Cancelled)

38. (Original) The cardiac assist system as claimed in claim 29, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.

- 39. (Original) The cardiac assist system as claimed in claim 30, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.
- 40. (Original) The cardiac assist system as claimed in claim 31, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.
- 41. (Original) The cardiac assist system as claimed in claim 32, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.
- 42. (Original) The cardiac assist system as claimed in claim 33, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.
- 43. (Original) The cardiac assist system as claimed in claim 34, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.
- 44. (Previously Presented) The cardiac assist system as claimed in claim 16, wherein said primary device housing includes a microprocessor integrated circuit for controlling the operations of the cardiac assist system.
- 45. (Original) The cardiac assist system as claimed in claim 44, wherein said primary device housing includes circuitry to detect and isolate cross talk between device pulsing operations and device sensing operations.
- 46. (Original) The cardiac assist system as claimed in claim 44, wherein said microprocessor integrated selecting a mode of operation for the cardiac assist system based on predetermined sensed parameters.
- 47. (Previously Presented) The cardiac assist system as claimed in claim 16, further comprising a battery power source and a battery power source measuring circuit;

said microprocessor integrated circuit automatically adjusting a value for determining an elective replacement indication condition of a battery power source such that the value is

automatically adjusted by said microprocessor integrated circuit in response to a measured level of a state of said battery power source, the measured level generated by said battery power source measuring circuit connected to said battery power source.

- 48. (Original) The cardiac assist system as claimed in claim 44, wherein said microprocessor integrated circuit isolates physiological signals using a noise filtering circuit.
- 49. (Original) The cardiac assist system as claimed in claim 44, wherein said microprocessor integrated circuit isolates physiological signals using digital noise filtering.
- 50. (Original) The cardiac assist system as claimed in claim 44, wherein the cardiac assist system is implantable and said microprocessor integrated circuit is programmable from a source external of the cardiac assist system.
- 51. (Original) The cardiac assist system as claimed in claim 44, wherein the cardiac assist system is implantable and said microprocessor integrated circuit provides physiological diagnostics to a source external of the cardiac assist system.
- 52. (Original) The cardiac assist system as claimed in claim 44, wherein the cardiac assist system is implantable and said microprocessor integrated circuit provides circuit diagnostics to a source external of the cardiac assist system.
- 53. (Original) The cardiac assist system as claimed in claim 44, wherein the cardiac assist system is implantable and said microprocessor integrated circuit is programmable from a source external of the cardiac assist system and provides circuit diagnostics to a source external of the cardiac assist system.
- 54. (Previously Presented) The cardiac assist system as claimed in claim 16, wherein said electrical leads are unipolar leads.

55. (Previously Presented) The cardiac assist system as claimed in claim 16, wherein said

electrical leads are bipolar leads.

56. (Previously Presented) The cardiac assist system as claimed in claim 16, wherein said

electrical leads are a combination of unipolar and bipolar leads.

Claims 57-64 (Cancelled)

65. (Previously Presented) The cardiac assist system as claimed in claim 16, wherein said

lead system includes a sensing and stimulation system at an epicardial-lead interface with a

desired anatomical cardiac tissue region.

66. (Previously Presented) The cardiac assist system as claimed in claim 65, further

comprising a sensing and stimulation system including optical sensing components to detect

physiological signals from the desired anatomical cardiac tissue region.

67. (Previously Presented) The cardiac assist system as claimed in claim 65, further

comprising a sensing and stimulation system including optical sensing components to detect

physiological signals from the desired anatomical cardiac tissue region and electrical sensing

components to detect physiological signals from the desired anatomical cardiac tissue region.

68. (Previously Presented) The cardiac assist system as claimed in claim 65, further

comprising a sensing and stimulation system including electrical sensing components to detect

physiological signals from the desired anatomical cardiac tissue region.

69. (Previously Presented) The cardiac assist system as claimed in claim 65, further

comprising a sensing and stimulation system including optical pulsing components to deliver a

stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region.

-7-

- 70. (Original) The cardiac assist system as claimed in claim 66, wherein said sensing and stimulation system includes optical pulsing components to deliver a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region.
- 71. (Original) The cardiac assist system as claimed in claim 67, wherein said sensing and stimulation system includes optical pulsing components to deliver a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region.
- 72. (Original) The cardiac assist system as claimed in claim 68, wherein said sensing and stimulation system includes optical pulsing components to deliver a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region.
- 73. (Previously Presented) The cardiac assist system as claimed in claim 65, further comprising a sensing and stimulation system including electrical pulsing components to deliver a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region.
- 74. (Original) The cardiac assist system as claimed in claim 66, wherein said sensing and stimulation system includes electrical pulsing components to deliver a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region.
- 75. (Original) The cardiac assist system as claimed in claim 67, wherein said sensing and stimulation system includes electrical pulsing components to deliver a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region.
- 76. (Original) The cardiac assist system as claimed in claim 68, wherein said sensing and stimulation system includes electrical pulsing components to deliver a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region.
- 77. (Previously Presented) The cardiac assist system as claimed in claim 65, further comprising a sensing and stimulation system including optical pulsing components to deliver a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region

and electrical pulsing components to deliver a stimulus of a predetermined duration and power to

the desired anatomical cardiac tissue region.

78. (Original) The cardiac assist system as claimed in claim 66, wherein said sensing and

stimulation system includes optical pulsing components to deliver a stimulus of a predetermined

duration and power to the desired anatomical cardiac tissue region and electrical pulsing

components to deliver a stimulus of a predetermined duration and power to the desired

anatomical cardiac tissue region.

79. (Original) The cardiac assist system as claimed in claim 67, wherein said sensing and

stimulation system includes optical pulsing components to deliver a stimulus of a predetermined

duration and power to the desired anatomical cardiac tissue region and electrical pulsing

components to deliver a stimulus of a predetermined duration and power to the desired

anatomical cardiac tissue region.

80. (Original) The cardiac assist system as claimed in claim 68, wherein said sensing and

stimulation system includes optical pulsing components to deliver a stimulus of a predetermined

duration and power to the desired anatomical cardiac tissue region and electrical pulsing

components to deliver a stimulus of a predetermined duration and power to the desired

anatomical cardiac tissue region.

Claim 81 (Cancelled)

82. (Previously Presented) The cardiac assist system as claimed in claim 16 further

comprising:

sensors to detect a heart signal and to produce a sensor signal therefrom; and

a modulator to modulate said sensor signal to differentiate said sensor signal from

electromagnetic interference.

-9-

83. (Previously Presented) The cardiac assist system as claimed in claim 16, further comprising:

sensors to detect a heart signal and to produce a sensor signal therefrom; and

a sampling circuit to sample said sensor signal multiple times to differentiate said sensor signal from electromagnetic interference, undesirable acoustic signals, large muscle contractions,

or extraneous infrared light.

84. (Original) The cardiac assist system as claimed in claim 21, wherein said electrical

filter comprises capacitive and inductive filter elements adapted to filter out predetermined

frequencies of electromagnetic interference.

85. (Original) The cardiac assist system as claimed in claim 48, wherein said noise

filtering circuit comprises capacitive and inductive filter elements adapted to filter out

predetermined frequencies of electromagnetic interference.

86. (Previously Presented) The cardiac assist system as claimed in claim 65, further

comprising a sensing and stimulation system including hydrostatic pressure sensing components

to detect physiological signals from the desired anatomical cardiac tissue region.

Claim 87 (Cancelled)

88. (Previously Presented) The cardiac assist system as claimed in claim 101, further

comprising:

a shielding formed around said primary device housing to shield said primary device

housing and any circuits therein from electromagnetic interference.

89. (Original) The cardiac assist system as claimed in claim 88, wherein said shielding is

a metallic sheath to shield said primary device housing and any circuits therein from

electromagnetic interference.

-10-

90. (Original) The cardiac assist system as claimed in claim 88, wherein said shielding is

a carbon composite sheath to shield said primary device housing and any circuits therein from

electromagnetic interference.

91. (Original) The cardiac assist system as claimed in claim 88, wherein said shielding is

a polymer composite sheath to shield said primary device housing and any circuits therein from

electromagnetic interference.

Claim 92-96 (Cancelled)

97. (Previously Presented) The cardiac assist system as claimed in claim 101, wherein

said plurality of electrical leads have a second shielding therearound, said second shielding

preventing said electrical leads from conducting stray electromagnetic interference.

98. (Original) The cardiac assist system as claimed in claim 97, wherein said second

shielding is a metallic sheath to prevent said electrical leads from conducting stray

electromagnetic interference.

99. (Original) The cardiac assist system as claimed in claim 97, wherein said second

shielding is a carbon composite sheath to prevent said electrical leads from conducting stray

electromagnetic interference.

100. (Original) The cardiac assist system as claimed in claim 97, wherein said second

shielding is a polymer composite sheath to prevent said electrical leads from conducting stray

electromagnetic interference.

-11-

101. (Previously Presented) A cardiac assist system, comprising:

a primary device housing;

said primary device housing having a control circuit therein;

a pluarilty of electrical leads to transmit and receive signals between a heart and said primary device housing;

a detection circuit, located in said primary device housing, to detect an electromagnetic interference insult upon the cardiac assist system; and

said control circuit placing the cardiac assist system in an asynchronous mode upon detection of the electromagnetic interference insult by said detection system;

an electrode located on an end of one of said electrical lead;

said electrode having an anti-antenna geometrical shape, said anti-antenna geometrical shape preventing said electrode from picking up and conducting stray electromagnetic interference.

102. (Original) The cardiac assist system as claimed in claim 101, wherein said plurality of electrical leads have a second shielding therearound, said second shielding preventing said electrical leads from conducting stray electromagnetic interference.

103. (Original) The cardiac assist system as claimed in claim 102, wherein said second shielding is a metallic sheath to prevent said electrical leads from conducting stray electromagnetic interference.

104. (Original) The cardiac assist system as claimed in claim 102, wherein said second shielding is a carbon composite sheath to prevent said electrical leads from conducting stray electromagnetic interference.

105. (Original) The cardiac assist system as claimed in claim 102, wherein said second shielding is a polymer composite sheath to prevent said electrical leads from conducting stray electromagnetic interference.

106. (Previously Presented) The cardiac assist system as claimed in claim 101, wherein each electrical lead includes an electrical filter, said electrical filter removing stray

electromagnetic interference from a signal being received from said electrical lead.

107. (Original) The cardiac assist system as claimed in claim 106, wherein said plurality

of electrical leads have a second shielding therearound, said second shielding preventing said

electrical leads from conducting stray electromagnetic interference.

108. (Original) The cardiac assist system as claimed in claim 107, wherein said second

shielding is a metallic sheath to prevent said electrical leads from conducting stray

electromagnetic interference.

109. (Original) The cardiac assist system as claimed in claim 107, wherein said second

shielding is a carbon composite sheath to prevent said electrical leads from conducting stray

electromagnetic interference.

110. (Original) The cardiac assist system as claimed in claim 107, wherein said second

shielding is a polymer composite sheath to prevent said electrical leads from conducting stray

electromagnetic interference.

111. (Original) The cardiac assist system as claimed in claim 88, wherein said shielding

is covered with a biocompatible material.

Claims 112-114 (Cancelled)

115. (Original) The cardiac assist system as claimed in claim 97, wherein said second

shielding is covered with a biocompatible material.

116. (Original) The cardiac assist system as claimed in claim 101, wherein said electrical

leads are covered with a biocompatible material.

-13-

- 117. (Original) The cardiac assist system as claimed in claim 102, wherein said second shielding is covered with a biocompatible material.
- 118. (Original) The cardiac assist system as claimed in claim 106, wherein said electrical leads are covered with a biocompatible material.
- 119. (Original) The cardiac assist system as claimed in claim 107, wherein said second shielding is covered with a biocompatible material.
- 120. (Original) The cardiac assist system as claimed in claim 111, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.

Claims 121-123 (Cancelled)

- 124. (Original) The cardiac assist system as claimed in claim 115, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.
- 125. (Original) The cardiac assist system as claimed in claim 116, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.
- 126. (Original) The cardiac assist system as claimed in claim 117, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.
- 127. (Original) The cardiac assist system as claimed in claim 118, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.
- 128. (Original) The cardiac assist system as claimed in claim 119, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.

129. (Original) The cardiac assist system as claimed in claim 88, wherein said primary device housing includes a microprocessor integrated circuit for controlling the operations of the cardiac assist system.

130. (Original) The cardiac assist system as claimed in claim 129, wherein said primary device housing includes circuitry to detect and isolate cross talk between device pulsing operations and device sensing operations.

- 131. (Original) The cardiac assist system as claimed in claim 129, wherein said microprocessor integrated selecting a mode of operation for the cardiac assist system based on predetermined sensed parameters.
- 132. (Original) The cardiac assist system as claimed in claim 88, further comprising a battery power source and a battery power source measuring circuit;

said microprocessor integrated circuit automatically adjusting a value for determining an elective replacement indication condition of a battery power source such that the value is automatically adjusted by said microprocessor integrated circuit in response to a measured level of a state of said battery power source, the measured level generated by said battery power source measuring circuit connected to said battery power source.

- 133. (Original) The cardiac assist system as claimed in claim 129, wherein said microprocessor integrated circuit isolates physiological signals using a noise filtering circuit.
- 134. (Original) The cardiac assist system as claimed in claim 129, wherein said microprocessor integrated circuit isolates physiological signals using digital noise filtering.
- 135. (Original) The cardiac assist system as claimed in claim 129, wherein the cardiac assist system is implantable and said microprocessor integrated circuit is programmable from a source external of the cardiac assist system.

136. (Original) The cardiac assist system as claimed in claim 129, wherein the cardiac

assist system is implantable and said microprocessor integrated circuit provides physiological

diagnostics to a source external of the cardiac assist system.

137. (Original) The cardiac assist system as claimed in claim 129, wherein the cardiac

assist system is implantable and said microprocessor integrated circuit provides circuit

diagnostics to a source external of the cardiac assist system.

138. (Original) The cardiac assist system as claimed in claim 129, wherein the cardiac

assist system is implantable and said microprocessor integrated circuit is programmable from a

source external of the cardiac assist system and provides circuit diagnostics to a source external.

of the cardiac assist system.

Claims 139-141 (Cancelled)

142. (Original) The cardiac assist system as claimed in claim 88, wherein said leads

system is a combination of a fiber optic based communication system and electrical leads.

143. (Original) The cardiac assist system as claimed in claim 142, wherein said electrical

leads are unipolar leads.

144. (Original) The cardiac assist system as claimed in claim 142, wherein said electrical

leads are bipolar leads.

145. (Original) The cardiac assist system as claimed in claim 142, wherein said electrical

leads are a combination of unipolar and bipolar leads.

Claims 146-149 (Cancelled)

-16-

150. (Previously Presented) The cardiac assist system as claimed in claim 88, further comprising a sensing and stimulation system at an epicardial-lead interface with a desired

anatomical cardiac tissue region.

151. (Original) The cardiac assist system as claimed in claim 150, wherein said sensing

and stimulation system includes optical sensing components to detect physiological signals from

the desired anatomical cardiac tissue region.

152. (Original) The cardiac assist system as claimed in claim 150, wherein said sensing

and stimulation system includes optical sensing components to detect physiological signals from

the desired anatomical cardiac tissue region and electrical sensing components to detect

physiological signals from the desired anatomical cardiac tissue region.

153. (Original) The cardiac assist system as claimed in claim 150, wherein said sensing

and stimulation system includes electrical sensing components to detect physiological signals

from the desired anatomical cardiac tissue region.

154. (Original) The cardiac assist system as claimed in claim 150, wherein said sensing

and stimulation system includes optical pulsing components to deliver a stimulus of a

predetermined duration and power to the desired anatomical cardiac tissue region.

155. (Original) The cardiac assist system as claimed in claim 151, wherein said sensing

and stimulation system includes optical pulsing components to deliver a stimulus of a

predetermined duration and power to the desired anatomical cardiac tissue region.

156. (Original) The cardiac assist system as claimed in claim 152, wherein said sensing

and stimulation system includes optical pulsing components to deliver a stimulus of a

predetermined duration and power to the desired anatomical cardiac tissue region.

-17-

- 157. (Original) The cardiac assist system as claimed in claim 153, wherein said sensing and stimulation system includes optical pulsing components to deliver a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region.
- 158. (Original) The cardiac assist system as claimed in claim 150, wherein said sensing and stimulation system includes electrical pulsing components to deliver a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region.
- 159. (Original) The cardiac assist system as claimed in claim 151, wherein said sensing and stimulation system includes electrical pulsing components to deliver a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region.
- 160. (Original) The cardiac assist system as claimed in claim 152, wherein said sensing and stimulation system includes electrical pulsing components to deliver a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region.
- 161. (Original) The cardiac assist system as claimed in claim 153, wherein said sensing and stimulation system includes electrical pulsing components to deliver a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region.
- 162. (Original) The cardiac assist system as claimed in claim 150, wherein said sensing and stimulation system includes optical pulsing components to deliver a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region and electrical pulsing components to deliver a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region.
- 163. (Original) The cardiac assist system as claimed in claim 151, wherein said sensing and stimulation system includes optical pulsing components to deliver a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region and electrical pulsing components to deliver a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region.

164. (Original) The cardiac assist system as claimed in claim 152, wherein said sensing

and stimulation system includes optical pulsing components to deliver a stimulus of a

predetermined duration and power to the desired anatomical cardiac tissue region and electrical

pulsing components to deliver a stimulus of a predetermined duration and power to the desired

anatomical cardiac tissue region.

165. (Original) The cardiac assist system as claimed in claim 153, wherein said sensing

and stimulation system includes optical pulsing components to deliver a stimulus of a

predetermined duration and power to the desired anatomical cardiac tissue region and electrical

pulsing components to deliver a stimulus of a predetermined duration and power to the desired

anatomical cardiac tissue region.

166. (Previously Presented) The cardiac assist system as claimed in claim 101, wherein

said control circuit places the cardiac assist system in the asynchronous mode for a duration of

the electromagnetic interference insult and places the cardiac assist system in a synchronous

mode upon detection of an absence of an electromagnetic interference insult by said detection

system.

167. (Previously Presented) The cardiac assist system as claimed in claim 101, wherein

said detection circuit is a thermistor heat detector.

168. (Previously Presented) The cardiac assist system as claimed in claim 101, wherein

said detection circuit is a high frequency interference detector.

169. (Previously Presented) The cardiac assist system as claimed in claim 101, wherein

said detection circuit is a high voltage detector.

170. (Previously Presented) The cardiac assist system as claimed in claim 101, wherein

said detection circuit is an excess current detector.

-19-

171. (Original) The cardiac assist system as claimed in claim 106, wherein said electrical filter comprises capacitive and inductive filter elements adapted to filter out predetermined frequencies of electromagnetic interference.

172. (Original) The cardiac assist system as claimed in claim 131, wherein said noise filtering circuit comprises capacitive and inductive filter elements adapted to filter out predetermined frequencies of electromagnetic interference.

173. (Original) The cardiac assist system as claimed in claim 150, wherein said sensing and stimulation system includes hydrostatic pressure sensing components to detect physiological signals from the desired anatomical cardiac tissue region.

174. (Previously Presented) A cardiac assist system, comprising:

a primary device housing;

said primary device housing having a control circuit therein;

a shielding formed around said primary device housing to shield said primary device housing and any circuits therein from electromagnetic interference;

an fiber optic based lead system to receive signals at said primary housing from a heart;

an electrical based lead system to transmit signals to the heart from said primary device housing; and

an electrode located on an end of an electrical lead;

said electrode having an anti-antenna geometrical shape, said anti-antenna geometrical shape preventing said electrode from picking up and conducting stray electromagnetic interference.

175. (Original) The cardiac assist system as claimed in claim 174, wherein said shielding is a metallic sheath to shield said primary device housing and any circuits therein from electromagnetic interference.

- 176. (Original) The cardiac assist system as claimed in claim 174, wherein said shielding is a carbon composite sheath to shield said primary device housing and any circuits therein from electromagnetic interference.
- 177. (Original) The cardiac assist system as claimed in claim 174, wherein said shielding is a polymer composite sheath to shield said primary device housing and any circuits therein from electromagnetic interference.
- 178. (Original) The cardiac assist system as claimed in claim 174, wherein said fiber optic based lead system contains at least one channel within a multi-fiber optic bundle.
- 179. (Original) The cardiac assist system as claimed in claim 174, wherein said fiber optic based lead system is coated with electromagnetic interference resistant material.
- 180. (Original) The cardiac assist system as claimed in claim 178, wherein said multifiber optic bundle is coated with electromagnetic interference resistant material.
- 181. (Original) The cardiac assist system as claimed in claim 174, wherein said electrical based lead system comprises a plurality of electrical leads.
- 182. (Original) The cardiac assist system as claimed in claim 181, wherein said plurality of electrical leads have a second shielding therearound, said second shielding preventing said electrical leads from conducting stray electromagnetic interference.
- 183. (Original) The cardiac assist system as claimed in claim 182, wherein said second shielding is a metallic sheath to prevent said electrical leads from conducting stray electromagnetic interference.
- 184. (Original) The cardiac assist system as claimed in claim 182, wherein said second shielding is a carbon composite sheath to prevent said electrical leads from conducting stray electromagnetic interference.

185. (Original) The cardiac assist system as claimed in claim 182, wherein said second shielding is a polymer composite sheath to prevent said electrical leads from conducting stray

electromagnetic interference.

Claims 186 (Cancelled)

187. (Previously Presented) The cardiac assist system as claimed in claim 174, wherein

said plurality of electrical leads have a second shielding therearound, said second shielding

preventing said electrical leads from conducting stray electromagnetic interference.

188. (Original) The cardiac assist system as claimed in claim 187, wherein said second

shielding is a metallic sheath to prevent said electrical leads from conducting stray

electromagnetic interference.

189. (Original) The cardiac assist system as claimed in claim 187, wherein said second

shielding is a carbon composite sheath to prevent said electrical leads from conducting stray

electromagnetic interference.

190. (Original) The cardiac assist system as claimed in claim 187, wherein said second

shielding is a polymer composite sheath to prevent said electrical leads from conducting stray

electromagnetic interference.

191. (Original) The cardiac assist system as claimed in claim 181, wherein each electrical

lead includes an electrical filter, said electrical filter removing stray electromagnetic interference

from a signal being received from said electrical lead.

192. (Original) The cardiac assist system as claimed in claim 191, wherein said electrical

filter comprises capacitive and inductive filter elements adapted to filter out predetermined

frequencies of electromagnetic interference.

-22-

193. (Original) The cardiac assist system as claimed in claim 191, wherein said plurality of electrical leads have a second shielding therearound, said second shielding preventing said electrical leads from conducting stray electromagnetic interference.

194. (Original) The cardiac assist system as claimed in claim 193, wherein said second shielding is a metallic sheath to prevent said electrical leads from conducting stray electromagnetic interference.

195. (Original) The cardiac assist system as claimed in claim 193, wherein said second shielding is a carbon composite sheath to prevent said electrical leads from conducting stray electromagnetic interference.

196. (Original) The cardiac assist system as claimed in claim 193, wherein said second shielding is a polymer composite sheath to prevent said electrical leads from conducting stray electromagnetic interference.

- 197. (Original) The cardiac assist system as claimed in claim 174, wherein said shielding is covered with a biocompatible material.
- 198. (Original) The cardiac assist system as claimed in claim 174, wherein said fiber optic based lead system is covered with a biocompatible material.
- 199. (Original) The cardiac assist system as claimed in claim 178, wherein said multifiber optic bundle is covered with a biocompatible material.
- 200. (Original) The cardiac assist system as claimed in claim 181, wherein said electrical leads are covered with a biocompatible material.
- 201. (Original) The cardiac assist system as claimed in claim 182, wherein said second shielding is covered with a biocompatible material.

- 202. (Previously Presented) The cardiac assist system as claimed in claim 174, wherein said electrical leads are covered with a biocompatible material.
- 203. (Original) The cardiac assist system as claimed in claim 187, wherein said second shielding is covered with a biocompatible material.
- 204. (Original) The cardiac assist system as claimed in claim 191, wherein said electrical leads are covered with a biocompatible material.
- 205. (Original) The cardiac assist system as claimed in claim 193, wherein said second shielding is covered with a biocompatible material.
- 206. (Original) The cardiac assist system as claimed in claim 197, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.
- 207. (Original) The cardiac assist system as claimed in claim 198, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.
- 208. (Original) The cardiac assist system as claimed in claim 199, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.
- 209. (Original) The cardiac assist system as claimed in claim 200, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.
- 210. (Original) The cardiac assist system as claimed in claim 201, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.
- 211. (Original) The cardiac assist system as claimed in claim 202, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.

- 212. (Original) The cardiac assist system as claimed in claim 203, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.
- 213. (Original) The cardiac assist system as claimed in claim 204, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.
- 214. (Original) The cardiac assist system as claimed in claim 205, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.
- 215. (Original) The cardiac assist system as claimed in claim 181, wherein said electrical leads are unipolar leads.
- 216. (Original) The cardiac assist system as claimed in claim 181, wherein said electrical leads are bipolar leads.
- 217. (Original) The cardiac assist system as claimed in claim 181, wherein said electrical leads are a combination of unipolar and bipolar leads.
- 218. (Original) The cardiac assist system as claimed in claim 174, wherein said fiber optic based lead system includes a sensing and stimulation system at an epicardial-lead interface with a desired anatomical cardiac tissue region.
- 219. (Original) The cardiac assist system as claimed in claim 218, wherein said sensing and stimulation system includes hydrostatic pressure sensing components to detect physiological signals from the desired anatomical cardiac tissue region.
- 220. (Original) The cardiac assist system as claimed in claim 218, wherein said sensing and stimulation system includes optical sensing components to detect physiological signals from the desired anatomical cardiac tissue region.

221. (Original) The cardiac assist system as claimed in claim 218, wherein said sensing and stimulation system includes electrical sensing components to detect physiological signals from the desired anatomical cardiac tissue region and electro-optical converting devices to convert the detected electrical signals to optical signals.

- 222. (Original) The cardiac assist system as claimed in claim 220, wherein said optical sensing components detect physiological signals by measuring a displacement of a mirror.
- 223. (Original) The cardiac assist system as claimed in claim 220, wherein said optical sensing components detect physiological signals by measuring a change in a refractive index of a section of cladding.
- 224. (Original) The cardiac assist system as claimed in claim 220, wherein said optical sensing component is an optical strain gauge to detect physiological signals.
- 225. (Original) The cardiac assist system as claimed in claim 220, wherein said optical sensing component is an optical-pressure sensor to detect physiological signals.
- 226. (Original) The cardiac assist system as claimed in claim 225, wherein said optical-pressure sensor includes a hollow porous sheath.
- 227. (Original) The cardiac assist system as claimed in claim 174, wherein said electrical based lead system includes a sensing and stimulation system at an epicardial lead interface with a desired anatomical cardiac tissue region.
- 228. (Original) The cardiac assist system as claimed in claim 227, wherein said sensing and stimulation system includes electrical pulsing components to deliver a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region.

229. (Previously Presented) A cardiac assist system, comprising:

a primary device housing;

said primary device housing having a control circuit therein;

- a shielding formed around said primary device housing to shield said primary device housing and any circuits therein from electromagnetic interference;
- a fiber optic based lead system to receive signals at said primary housing from a heart and to transmit signals to the heart from said primary device housing; and

an electrode operatively connected to said fiber optic based lead system;

said electrode having an anti-antenna geometrical shape, said anti-antenna geometrical shape preventing said electrode from picking up and conducting stray electromagnetic interference.

230. (Original) The cardiac assist system as claimed in claim 229, wherein said primary device housing further includes an electronic signal generator and a controlled laser light pulse generator linked to said electronic signal generator;

said fiber optic based lead system including,

- a fiber optic light pipe for receiving the laser light pulse from said controlled laser light pulse generator at a proximal end of said fiber optic light pipe,
- a photodiode, at a distal end of said fiber optic light pipe, to convert the laser light pulse back into an electrical pulse, and

electrically driven cardiac electrodes coupled to said photodiode and to a cardiac muscle.

- 231. (Original) The cardiac assist system as claimed in claim 229, wherein said shielding is a metallic sheath to shield said primary device housing and any circuits therein from electromagnetic interference.
- 232. (Original) The cardiac assist system as claimed in claim 229, wherein said shielding is a carbon composite sheath to shield said primary device housing and any circuits therein from electromagnetic interference.

233. (Original) The cardiac assist system as claimed in claim 229, wherein said shielding is a polymer composite sheath to shield said primary device housing and any circuits therein from electromagnetic interference.

- 234. (Original) The cardiac assist system as claimed in claim 229, wherein said fiber optic based lead system contains at least one channel within a multi-fiber optic bundle.
- 235. (Original) The cardiac assist system as claimed in claim 229, wherein said fiber optic based lead system is coated with electromagnetic interference resistant material.
- 236. (Original) The cardiac assist system as claimed in claim 234, wherein said multifiber optic bundle is coated with electromagnetic interference resistant material.
- 237. (Original) The cardiac assist system as claimed in claim 229, wherein said shielding is covered with a biocompatible material.
- 238. (Original) The cardiac assist system as claimed in claim 229, wherein said fiber optic based lead system is covered with a biocompatible material.
- 239. (Original) The cardiac assist system as claimed in claim 234, wherein said multifiber optic bundle is covered with a biocompatible material.
- 240. (Original) The cardiac assist system as claimed in claim 237, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.
- 241. (Original) The cardiac assist system as claimed in claim 238, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.
- 242. (Original) The cardiac assist system as claimed in claim 239, wherein said biocompatible material is a non-permeable diffusion resistant biocompatible material.

243. (Original) The cardiac assist system as claimed in claim 229, wherein said fiber optic based lead system includes a sensing and stimulation system at an epicardial-lead interface with a desired anatomical cardiac tissue region.

244. (Original) The cardiac assist system as claimed in claim 243, wherein said sensing and stimulation system includes hydrostatic pressure sensing components to detect physiological signals from the desired anatomical cardiac tissue region.

245. (Original) The cardiac assist system as claimed in claim 243, wherein said sensing and stimulation system includes optical sensing components to detect physiological signals from the desired anatomical cardiac tis sue region.

246. (Original) The cardiac assist system as claimed in claim 243, wherein said sensing and stimulation system includes electrical sensing components to detect physiological signals from the desired anatomical cardiac tissue region and electro-optical converting devices to convert the detected electrical signals to optical signals.

- 247. (Original) The cardiac assist system as claimed in claim 245, wherein said optical sensing components detect physiological signals by measuring a displacement of a mirror.
- 248. (Original) The cardiac assist system as claimed in claim 245, wherein said optical sensing components detect physiological signals by measuring a change in a refractive index of a section of cladding.
- 249. (Original) The cardiac assist system as claimed in claim 245, wherein said optical sensing component is an optical strain gauge to detect physiological signals.
- 250. (Original) The cardiac assist system as claimed in claim 245, wherein said optical sensing component is an optical-pressure sensor to detect physiological signals.

251. (Original) The cardiac assist system as claimed in claim 250, wherein said optical-pressure sensor includes a hollow porous sheath.

252. (Original) The cardiac assist system as claimed in claim 243, wherein said sensing and stimulation system includes optical pulsing components to deliver a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region.

253. (Original) The cardiac assist system as claimed in claim 252, wherein said optical pulsing components include an opto-electrical circuit for converting a light signal into an electrical signal, said electrical signal being delivered as a stimulus of a predetermined duration and power to the desired anatomical cardiac tissue region.

Claim 254 (Cancelled)

- 255. (Previously Presented) A cardiac assist system, comprising:
- a primary device housing including a power supply and a light source; said primary device housing having a control circuit therein;
- a shielding formed around said primary device housing to shield said primary device housing and any circuits therein from electromagnetic interference;
 - a cardiac assist device associated with a heart;
- a photonic lead system to transmit between said primary device housing and the cardiac assist device, both power and control signals in the form of light; and

an electrode operatively connected to said cardiac assist device;

said electrode having an anti-antenna geometrical shape, said anti-antenna geometrical shape preventing said electrode from picking up and conducting stray electromagnetic interference.

256. (Original) The cardiac assist system of claim 255, wherein said cardiac assist device includes:

a photoresponsive device for converting the light transmitted by the photonic lead system into electrical energy, and for sensing variations in the light energy to produce control signals;

a charge accumulating device for receiving and storing the electrical energy produced by the photoresponsive device; and

a discharge control device, responsive to the control signals, for directing the stored electrical energy from the charge accumulating device to the cardiac assist device associated with the heart.

257. (Original) The cardiac assist system as claimed in claim 256, wherein said photoresponsive device is a small surface area photodiode and a large surface area photodiode, said small surface area photodiode sensing variations in the light energy to produce control signals, said large surface area photodiode converting the light transmitted by said photonic lead system into electrical energy.

258. (Original) The cardiac assist system as claimed in claim 256, wherein said photoresponsive device is an array of photodiodes having a first section of photodiodes and a second section of photodiodes, said first section of photodiodes sensing variations in the light energy to produce control signals, said second section of photodiodes converting the light transmitted by said photonic lead system into electrical energy.

259. (Original) The cardiac assist system as claimed in claim 256, wherein said photoresponsive device includes a charge transfer control circuit and a photodiode, said charge transfer control circuit controlling a discharging of a photodiode capacitance in two separate discharge periods during an integration period of the photodiode such that a first discharge period of the photodiode capacitance provides the sensing of variations in the light energy to produce control signals and a second discharge period of the photodiode capacitance provides the converting the light transmitted by said photonic lead system into electrical energy.

- 260. (Original) The cardiac assist system as claimed in claim 259, wherein the first discharge period is completed before the second discharge period.
- 261. (Original) The cardiac assist system as claimed in claim 259, wherein the first discharge period is a shorter time duration that the time duration of the second discharge period.
- 262. (Original) The cardiac assist system as claimed in claim 259, wherein the integration period corresponds to the sampling period of the light to derive control data.
- 263. (Original) The cardiac assist system as claimed in claim 259, wherein during the first discharge period, a control signal sensing circuit is connected to said photodiode, and during the second discharge period, said charge accumulating device is connected to said photodiode.
- 264. (Original) The cardiac assist system as claimed in claim 256, wherein said charge accumulating device is a capacitor.
- 265. (Original) The cardiac assist system as claimed in claim 256, wherein said charge accumulating device is a rechargeable battery.
- 266. (Original) The cardiac assist system as claimed in claim 256, wherein said discharge control device is a controllable switch.