AA 274A Principles of Robot Autonomy I

Open-source Automated Driving Stack "Autoware Hands-on"

Agenda

- Localization
- Path planning

Localization pipeline

- Map loader [points_map_loader]
 - PCD loader from map
- Voxel Grid Filter [voxel_grid_filter]
 - Downsampling lidar data
 - Leaf size: $2m (60MB/s \rightarrow ^{\sim}1MB/s)$
- Lidar based localization [ndt_matching]
 - NDT matching
 - Input: /filtered_points, /vehicle/twist
 - Output: /ndt_pose
- EKF Localization Fusion [ekf_localizer]
 - Input: /ndt_pose, /vehicle/twist
 - Output: /ekf_pose_with_covariance

https://gitlab.com/autowarefoundation/autoware.ai/core perception/tree/master/lidar localizer/nodes/ndt matching

Localization / Roborace / Croix-en-Ternois

Autonomous Racing Graz

EKF Lo

EKF Localizer / Interface

Input:

```
/devbot/twist ... twist from Devbot (velocity, yaw_rate)
/ndt_pose ... position from localization (lidar or noisy GPS data)
```

Output:

```
/ekf_pose_with_covariance ... output from the EKF for localization
```

Ground truth: /gps_local/pose

Localization modes

1) GPS based localization with noisy gps data:

```
localization_pose: /ndt_pose (gps_pose + noise)
lidar_localization_active: false
```

2) Lidar based localization (localization running online)

Localization_pose: /ndt_pose (ndt_localization)

lidar_localization_active: true

Localization mode: vifware_launch/launch/localization_devbot/Devbot_localization.launch EKF localizer setting: vifware_launch/launch/localization_devbot/ekf_localizer.launch

After every change in a launch file you need to rebuild the source!

Tasks

- 1) Localization only with Odometry
- 2) Localization with GPS without noise + Odometry stddev x y: 0, mu x y: 0
- 3) Localization with GPS with noise + Odometry stddev_x_y: 1, mu_x_y: 0
- 4) Localization with GPS with noise incl. bias + Odometry stddev_x_y: 1, mu_x_y: 1
- 5) Localization with lidar + Odometry
 - →parameter tuning (lidar pose has an unknown time delay and unknown noise)
 - **Goal:** the ekf_pose should match the gps_local/pose

Path Planning / Trajectory Tracking

Path planning

- Global planner [op_global_planner]
- Local planner [op_trajectory_generator, op_motion_predictor, op_trajectory_evaluator, op_behavior_selector]
 - Input: /tracked_objects, /global_path
 - Output: /final_waypoints
- Trajectory Tracking [pure_pursuit or mpc_follower, twist_filter]
 - Input: /final waypoints
 - Output: /twist_cmd
- Autoware Simulator [wf_simulator]
 - Input: /twist_cmd
 - Output: /simulated objects

Thanks for your attention! Questions?

Daniel Watzenig, Markus Schratter

daniel.watzenig@v2c2.at

markus.schratter@v2c2.at

