For reference: in the below, $G(z) = z \prod_{n=1}^{\infty} (1 + \frac{z}{n}) e^{-z/n}$. I don't know if this is standard, so it's worth including.

Problem 1:

Consider $\sum_{n=1}^{\infty} \frac{1}{n^s}$, where Re(s) > 1.

The sum converges if and only if the integral $\int_{1}^{\infty} \frac{1}{n^s} dn$ does.

Moreover, $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ is holomorphic on Re(s) > 1:

Problem 2:

Consider
$$\frac{\sin(\pi z)}{\pi z} = \prod_{n=1}^{\infty} (1 - \frac{z^2}{n^2}).$$

The taylor coefficients attached to z^2 and z^4 of $\frac{\sin(\pi z)}{\pi z}$ are $-\pi/6$ and $\pi^2/120$, respectively, because $\frac{\sin(\pi z)}{\pi z} = \frac{\sum_{n=1}^{\infty} \frac{(-1)^n (\pi z)^{2n+1}}{(2n+1)!}}{\pi z} = \sum_{n=1}^{\infty} \frac{(-1)^n (\pi z)^{2n}}{(2n+1)!}$.

The taylor coefficients attached to z^2 and z^4 of $\prod_{n=1}^{\infty} (1 - \frac{z^2}{n^2})$ are $-\sum_{n=1}^{\infty} \frac{1}{n^2}$ and something, respectively; these follow by multiplying the product out (Each $\frac{z^2}{n^2}$ c

Therefore, $\sum_{n=1}^{\infty} \frac{1}{n^2} = \pi/6$ and $\sum_{n=1}^{\infty} \frac{1}{n^4} = something$.

Problem 3:

First: note that $\Gamma(n+1) = n\Gamma(n)$, and $\Gamma(1) = 1$; as discussed in class,

$$\Gamma(1) = \frac{e^{-\gamma}}{G(1)}$$

$$= \frac{e^{-\gamma}}{\prod\limits_{n=1}^{\infty} (1+1/n)e^{-1/n}}$$

$$= \frac{e^{-\gamma}}{e^{-(\sum\limits_{n=1}^{\infty} 1/n - something)}}$$

$$= \frac{e^{-\gamma}}{e^{-\gamma}}$$

$$= 1$$

So $\Gamma(n) = (n-1)!$, by a relatively clear induction argument, recreated below so the problem doesn't look too short:

First, $\Gamma(1) = 1!$.

Next, if $\Gamma(n)=(n-1)!$, then $\Gamma(n+1)=n\Gamma(n)=n!$. So by induction, we have our result.

Problem 4:

Consider $\Gamma(z)\Gamma(z-1)$.

$$\Gamma(z)\Gamma(1-z) = \frac{e^{-\gamma z}e^{-\gamma+\gamma z}}{G(z)G(1-z)}$$
$$= \frac{e^{-\gamma}}{G(z)G(1-z)}$$
$$= stuff$$
$$= \frac{\pi}{\sin(\pi z)}$$

Thus, $\Gamma(1/2)\Gamma(1 - 1/2) = \frac{\pi}{\sin(\pi/2)} = \pi$.

That is, $\Gamma(1/2) = \sqrt{\pi}$. (Note that $\Gamma(z) > 0$ if z > 0, so $\Gamma(1/2) \neq -\sqrt{\pi}$).

Problem 5:

Problem 6:

Problem 7:

Define $S_{a,b} = \{z \in \mathbb{C} : a < \arg(z) < b\}$. The function $f: S_{\alpha,\beta} \to S_{2\alpha,2\beta}$ given by $f(z) = z^2$ is biholomorphic when $\beta - \alpha \le \pi$.