```
In [1]: import pandas as pd
        import numpy as np
        import os
In [2]: def get_data(comb_stock_codes):
            raw_data_list = []
            for r,d,fs in os.walk('.../data/csmar_close'):
                for f in fs:
                    if (not ('[DES]' in f)) and ('txt' in f):
                        file_path = os.path.join(r,f)
                        #print(file_path)
                        raw_data_list.append(pd.read_csv(file_path,
                                     sep='\t',
                                     dtype={'Stkcd': str})[['Trddt','Stkcd','Adjprcwd']])
            working_data = pd.concat(raw_data_list,axis=0).set_index(['Trddt','Stkcd']
            workding_df = working_data.unstack('Stkcd')
            df = workding_df.T.dropna().T
            df.columns = df.columns.get_level_values(1)
            return df[comb_stock_codes]
In [ ]:
In [3]: comb_stock_codes = ['000001','002330','000607','000021','600448',
                             '688233','000901','600722','900948','601208']
In [4]: price_df = get_data(comb_stock_codes)
        price_df.index = pd.to_datetime(price_df.index)
In [5]: price_df
```

Out[5]:	Stkcd	000001	002330	000607	000021	600448	688233	00
	Trddt							
	2020- 09-16	1646.285839	14.443544	15.971281	307.211266	9.074784	49.345117	73.49
	2020- 09-17	1660.147054	14.156722	15.933163	311.504821	9.052917	51.380277	72.84
	2020- 09-18	1713.459419	14.279646	16.047516	317.130859	9.031050	51.129642	74.14
	2020- 09-21	1691.068226	14.218184	16.199986	319.647771	9.140385	50.026846	75.90
	2020- 09-22	1660.147054	13.951849	15.818810	318.611396	9.009183	47.460338	73.36
	•••	•••	•••		•••		•••	
	2025- 09-09	1483.463745	10.015122	18.618745	310.673487	7.609705	32.888059	104.55
	2025- 09-10	1485.988790	10.200587	18.541808	307.098955	7.850242	32.735328	105.27
	2025- 09-11	1496.088969	10.283016	18.310997	322.795815	7.784641	34.354276	107.30
	2025- 09-12	1479.676179	10.200587	18.464871	338.803503	7.675306	35.494667	106.71
	2025- 09-15	1470.838523	11.230949	17.926312	340.046819	7.828375	35.179023	105.53

1212 rows × 10 columns

In [6]: return_df = np.log(price_df.shift(-1)/price_df)

In [7]: return_df

Out[7]:	Stkcd	000001	002330	000607	000021	600448	688233	000901
	Trddt							
	2020- 09-16	0.008384	-0.020058	-0.002390	0.013879	-0.002413	0.040416	-0.008913
	2020- 09-17	0.031608	0.008646	0.007151	0.017900	-0.002418	-0.004890	0.017747
	2020- 09-18	-0.013154	-0.004313	0.009456	0.007905	0.012034	-0.021805	0.023469
	2020- 09-21	-0.018454	-0.018910	-0.023811	-0.003248	-0.014458	-0.052665	-0.034079
	2020- 09-22	0.003846	0.005857	0.000000	0.026142	0.019231	0.019455	0.003549
	•••							
	2025- 09-09	0.001701	0.018349	-0.004141	-0.011572	0.031120	-0.004655	0.006869
	2025- 09-10	0.006774	0.008048	-0.012526	0.049850	-0.008392	0.048272	0.019107
	2025- 09-11	-0.011031	-0.008048	0.008368	0.048400	-0.014145	0.032656	-0.005510
	2025- 09-12	-0.005991	0.096228	-0.029600	0.003663	0.019747	-0.008932	-0.011111
	2025- 09-15	NaN						

1212 rows × 10 columns

1

In [8]: return_df.cov()

```
Out[8]:
           Stkcd
                  000001
                            002330
                                     000607
                                              000021
                                                        600448
                                                                 688233
                                                                          000901
                                                                                    60
           Stkcd
         000001 0.000339 0.000089 0.000074 0.000070 0.000052 0.000049 0.000065 0.00
         002330 0.000089 0.000646 0.000283 0.000172 0.000239 0.000212 0.000186 0.00
         000607 0.000074 0.000283 0.000870 0.000264 0.000291 0.000318 0.000251 0.00
         000021 0.000070 0.000172 0.000264 0.000751 0.000154 0.000501 0.000287 0.00
         600448 0.000052 0.000239 0.000291 0.000154 0.000643 0.000249 0.000167 0.00
         688233 0.000049 0.000212 0.000318 0.000501 0.000249 0.001436 0.000345 0.00
         000901 0.000065 0.000186 0.000251 0.000287 0.000167 0.000345 0.000639 0.00
         600722 0.000105 0.000220 0.000252 0.000181 0.000255 0.000268 0.000250 0.00
         900948 0.000088 0.000082 0.000084 0.000075 0.000080 0.000072 0.000106 0.00
         601208 0.000068 0.000156 0.000184 0.000313 0.000160 0.000441 0.000269 0.00
In [9]: return df.mean()
Out[9]:
         Stkcd
         000001
                 -0.000093
         002330
                 -0.000208
                0.000095
         000607
         000021
                0.000084
         600448
                 -0.000122
                -0.000279
         688233
         000901
                0.000299
                  0.000450
         600722
         900948
                  0.001279
                  0.000992
         601208
         dtype: float64
         (a)若假设X_t服从正态,记上述方差协方差矩阵为\Sigma,均值\mu,联合分布为N(\mu,\Sigma)
         (b) 给出组合 b = (1/10, 1/10, 1/10, ..., 1/10)' 由 则
         W_t \sim N(-V_t b^{'} \mu, {V_t}^2 b^{'} \Sigma b)
         (c)随机模拟结果如下
        b = np.array([1/10 for i in range(10)])
In [10]:
         loss_df = ((price_df.shift(-1)-price_df)*b).sum(axis=1)
         sim rounds = 1000
         sim_list = []
         for i in range(sim_rounds):
             idx = np.random.randint(len(loss_df))
             sim list.append(loss df.iloc[idx])
```

```
In [11]: sim_df = pd.Series(sim_list)
In [12]: print(f'估计均值为{sim_df.mean():.5f}')
         print(f'估计方差为{sim_df.var():.5f}')
       估计均值为0.12623
       估计方差为14.11890
In [13]: import matplotlib.pyplot as plt
         w_values = sim_df.sort_values()
         # 计算累积概率
         cumulative_prob = np.arange(1, len(w_values) + 1) / len(w_values)
         # 绘制经验分布图
         plt.plot(w_values, cumulative_prob, marker='.', linestyle='none')
         plt.title('(ECDF)')
         plt.xlabel('W')
         plt.ylabel('p')
         plt.grid(True)
         plt.show()
```


In []:

若改为月度的, 重采样后得到结果

```
In [14]: month_price_df = price_df.resample('M').last()
```

/var/folders/qb/_zmdxt6n29n5h6hxbt7v0v0c0000gn/T/ipykernel_9360/2731593369.py:1: FutureWarning: 'M' is deprecated and will be removed in a future version, please use 'ME' instead.

month_price_df = price_df.resample('M').last()

In [15]:	month	price	df
----------	-------	-------	----

Out[15]:	Stkcd	000001	002330	000607	000021	600448	688233	00
	Trddt							
	2020- 09-30	1617.497162	13.869900	15.285163	305.582676	8.549977	45.916424	70.55
	2020- 10-31	1892.588966	13.624052	15.018341	313.725626	8.703046	45.034186	63.97
	2020- 11-30	2104.772177	14.423057	16.276224	304.546303	8.593710	44.803602	68.14
	2020- 12-31	2062.122283	13.746977	15.018345	281.449936	8.025169	43.831137	65.53
	2021- 01-31	2461.965023	12.087507	14.217875	306.174891	6.997423	43.921366	60.12
	•••	•••		•••	•••		•••	
	2025- 05-31	1415.602597	9.355690	15.079645	265.645520	7.872105	26.654952	77.43
	2025- 06-30	1523.864458	9.438120	17.580096	291.246683	7.631571	32.348407	81.43
	2025- 07-31	1544.064815	9.685407	18.003250	288.760050	7.237966	32.765872	86.01
	2025- 08-31	1521.339415	10.015123	17.003070	339.425161	7.303567	37.225616	130.17
	2025- 09-30	1470.838523	11.230949	17.926312	340.046819	7.828375	35.179023	105.53

61 rows × 10 columns

month_return_df.cov()

In [16]: month_return_df = np.log(month_price_df.shift(-1)/month_price_df)
In [17]: #协方差矩阵为

```
Out[17]:
           Stkcd
                   000001
                              002330
                                        000607
                                                  000021
                                                            600448
                                                                      688233
                                                                                000901
           Stkcd
                                                 0.000386 0.001033 -0.000957
         000001
                  0.007001
                            0.001637
                                       0.001573
                                                                               0.000277
         002330
                  0.001637
                            0.009440
                                       0.004554
                                                -0.000041 0.003944
                                                                     0.002521
                                                                               0.001600
         000607
                  0.001573
                            0.004554
                                      0.008369
                                                 0.003209 0.003935
                                                                     0.005032
                                                                               0.002684
         000021
                  0.000386
                           -0.000041
                                       0.003209
                                                 0.013858 0.000975
                                                                     0.009923
                                                                               0.006311
         600448
                  0.001033
                            0.003944
                                                 0.000975 0.007956
                                                                               0.003701
                                      0.003935
                                                                     0.003732
                -0.000957
         688233
                            0.002521
                                       0.005032
                                                 0.009923 0.003732
                                                                     0.025177
                                                                               0.009116
         000901
                  0.000277
                            0.001600
                                                 0.006311 0.003701
                                      0.002684
                                                                     0.009116
                                                                               0.011745
         600722
                 -0.000380
                            0.003310
                                       0.005499
                                                 0.002870 0.005046
                                                                     0.005516
                                                                               0.004285
         900948
                  0.000404
                            -0.001604
                                      -0.001139
                                                -0.002047 0.000311
                                                                    -0.002894 -0.000258
         601208
                  0.001978
                            0.001680
                                       0.003306
                                                 0.005333 0.002721
                                                                     0.009977
                                                                               0.006277
In [18]: | #均值向量为
         month_return_df.mean()
Out[18]:
         Stkcd
         000001
                 -0.001584
         002330
                -0.003517
         000607
                0.002656
         000021
                  0.001781
         600448 -0.001470
         688233 -0.004440
         000901 0.006711
         600722
                 0.010571
                0.024885
         900948
         601208
                0.019777
         dtype: float64
In [19]: #随机模拟结果如下
         b = np.array([1/10 for i in range(10)])
         month_loss_df = ((month_price_df.shift(-1)-month_price_df)*b).sum(axis=1)
         sim_rounds = 5000
         sim_list = []
         for i in range(sim_rounds):
             idx = np.random.randint(len(month_loss_df))
             sim_list.append(month_loss_df.iloc[idx])
In [20]: month_sim_df = pd.Series(sim_list)
In [21]: | print(f'月度估计均值为{month_sim_df.mean():.5f}')
         print(f'月度估计方差为{month_sim_df.var():.5f}')
        月度估计均值为-0.47998
```

月度估计均值为-0.47998 月度估计方差为213.97543

```
import matplotlib.pyplot as plt

w_values = month_sim_df.sort_values()
# 计算累积概率
    cumulative_prob = np.arange(1, len(w_values) + 1) / len(w_values)

# 绘制经验分布图
plt.plot(w_values, cumulative_prob, marker='.', linestyle='none')
plt.title('month (ECDF)')
plt.xlabel('month W')
plt.ylabel('month p')
plt.grid(True)
plt.show()
```


In []: