10 OLIMPIADA INTERNACIONAL DE FÍSICA HRADEC KRÁLOVÉ, CZECHOSLOVAKIA, 1977

Problema 1. La razón de compresión de un motor de combustión interna de cuatro tiempos es $\epsilon=9.5$. El motor se basa en el aire y el combustible gaseoso a una temperatura de 27°C a una presión de 1 atm = 100 kPa. La compresión sigue un proceso adiabático del punto 1 al punto 2, véase la fig. 1. La presión en el cilindro se duplica durante el arraque de la mezcla (2-3). El gas de escape caliente se expande adiabáticamente hasta el volumen V_2 empujando el pistón hacia abajo 3-4). Luego la válvula de escape se abre y la presión vuelve al valor inicial de 1 atm. Todos los procesos en el cilindro se supone que son ideales. La constante de Poisson (es decir, la razón de los calores específicos C_p/C_V) para la mezcla y el gas de escape es $\kappa=1.40$. (La razón de compresión es la razón entre el volumen del cilindro cuando el pistón está en la parte inferior y el volumen cuando el pistón está en la parte superior.)

Figure 1:

- a) ¿Qué procesos se ejecutan entre los puntos 0-1, 2-3, 4-1, 1-0?
- b) Determinar la presión y la temperatura en los estados 1, 2, 3 y 4.
- c) Determinar la eficiencia térmica del ciclo.
- d) Analizar los resultados obtenidos. ¿Son realistas?

Problema 2. Sumergir el marco en una solución de jabón, el jabón forma una película rectángulo de longitud b y altura h. La luz blanca cae sobre la película en un ángulo α (medido con respecto a la dirección normal). La luz reflejada se muestra en un color verde de la longitud de onda λ_0 .

- a) Averiguar si es posible determinar la masa de la película del jabón utilizando las escalas de laboratorio que cuenta con exactitud de calibración de 0.1 mg.
- b) ¿Qué color de la pantalla más delgada de película de jabón puede ser visto desde la dirección perpendicular? Deducir las ecuaciones relacionadas.

Las constantes y los datos dados: relación del índice de refracción n=1.33, la longitud de onda de la luz verde reflejada, $\lambda_0=500$ nm, $\alpha=30^\circ$, b=0.020 m, h=0.030 m, densidad $\varrho=1000$ kg m⁻³.

Problema 3. Un cañón de electrones T emite electrones acelerados por una diferencia potencial U en el vacío en la dirección de la línea a, como se muestra en la Fig. 2. El objetivo M se coloca a una distancia d desde el cañón de electrones de tal manera que el segmento de línea que conecta los puntos T y M y la línea a subtiende el ángulo α tal como se muestra en la Fig. 2. Encuentra la inducción magnética B del campo magnético uniforme

Figure 2:

- a) perpendicular al plano determinado por la línea a y el punto M
- b) paralelo al segmento TM

con el fin de que los electrones en el objetivo M. Primero encontrar la solución general y luego sustituir los siguientes valores: U=1000 V, $e=1.60\cdot 10^{-19}$ C, $m_e=9.11\cdot 10^{-31}$ kg, $\alpha=60^\circ$, d=5.0 cm, B<0.030 T.