

Hypothesis Testing: Two sample test

Hypothesis Testing about the Difference in Two Sample Means

Two Sample Tests

Two Sample Tests

Population
Means,
Independent
Samples

Population Means, Dependent Samples

Population Proportions

Population Variances

Examples:

Group 1 vs. independent Group 2

Same group before vs. after treatment

Proportion 1 vs. Proportion 2

Variance 1 vs. Variance 2

Difference Between Two Means

σ_1^2 and σ_1^2 Known

Population means, independent samples

 σ_1^2 and σ_2^2 known

 σ_1^2 and σ_2^2 unknown

Assumptions:

- Samples are randomly and independently drawn
- both population distributions are normal
- Population variances are known

σ_1^2 and σ_2^2 Known

Population means, independent samples

 σ_1^2 and σ_2^2 known

 σ_1^2 and σ_2^2 unknown

When σ_x^2 and σ_y^2 are known and both populations are normal, the variance of 1-2 is

$$\sigma_{\overline{X}_1 - \overline{X}_2}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

...and the random variable

$$Z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

has a standard normal distribution

Test Statistic, σ_1^2 and σ_2^2 Known

Population means, independent samples

 σ_1^2 and σ_2^2 known

 σ_1^2 and σ_2^2 unknown

$$H_0: \mu_1 - \mu_2 = D_0$$

The test statistic for

$$\mu_1 - \mu_2$$
 is:

$$z = \frac{\left(\overline{x}_{1} - \overline{x}_{2}\right) - D_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

Hypothesis Tests for Two Population Means

Two Population Means, Independent Samples

Lower-tail test:

$$H_0: \mu_1 \ge \mu_2$$
 $H_1: \mu_1 < \mu_2$
i.e.,
 $H_0: \mu_1 - \mu_2 \ge 0$
 $H_1: \mu_1 - \mu_2 < 0$

Upper-tail test:

$$H_0: \mu_1 \le \mu_2$$
 $H_1: \mu_1 > \mu_2$
i.e.,
 $H_0: \mu_1 - \mu_2 \le 0$
 $H_1: \mu_1 - \mu_2 > 0$

Two-tail test:

$$H_0: \mu_1 = \mu_2$$
 $H_1: \mu_1 \neq \mu_2$
i.e.,
 $H_0: \mu_1 - \mu_2 = 0$
 $H_1: \mu_1 - \mu_2 \neq 0$

Decision Rules

Reject H_0 if $z < -z_{\alpha}$

Reject H_0 if $z > z_{\alpha}$

Reject H_0 if $z < -z_{\alpha/2}$ or $z > z_{\alpha/2}$

Hypothesis Testing about the Difference in Two Sample Means

Sampling Distribution of $\bar{x}_1 - \bar{x}_2$

Expected Value

$$E(\bar{x}_1 - \bar{x}_2) = \mu_1 - \mu_2$$

• Standard Deviation (Standard Error)

$$\sigma_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

where: σ_1 = standard deviation of population 1

 σ_2 = standard deviation of population 2

 n_1 = sample size from population 1

 n_2 = sample size from population 2

Interval Estimation of μ_1 - μ_2 : σ_1 and σ_2 Known

Interval Estimate

$$\bar{x}_1 - \bar{x}_2 \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

where: $1 - \alpha$ is the confidence coefficient

- A product developer is interested in reducing the drying time of a primer paint.
- Two formulations of the paint are tested; formulation 1 is the standard chemistry, and formulation 2 has a new drying ingredient that should reduce the drying time.
- From experience, it is known that the standard deviation of drying time is 8 minutes, and this inherent variability should be unaffected by the addition of the new ingredient.
- Ten specimens are painted with formulation 1, and another 10 specimens are painted with formulation 2; the 20 specimens are painted in random order.
- The two-sample average drying times are $\overline{x_1} = 121$ minutes and $\overline{x_2} = 112$ minutes, respectively.
- What conclusions can the product developer draw about the effectiveness of the new ingredient, using alpha = 0.05?

Source: Applied Probability and statistics for Engineers by Douglas C. Montgomery and George C. Runger John Wiley, 3rd Ed. 2003

- 1. The quantity of interest is the difference in mean drying times, $\mu_1 \mu_2$, and $\Delta_0 = 0$.
- 2. H_0 : $\mu_1 \mu_2 = 0$, or H_0 : $\mu_1 = \mu_2$.
- 3. H_1 : $\mu_1 > \mu_2$. We want to reject H_0 if the new ingredient reduces mean drying time.
- 4. $\alpha = 0.05$
- 5. The test statistic is

$$z_0 = \frac{\overline{x}_1 - \overline{x}_2 - 0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

where $\sigma_1^2 = \sigma_2^2 = (8)^2 = 64$ and $n_1 = n_2 = 10$.

- 6. Reject H_0 : $\mu_1 = \mu_2$ if $z_0 > 1.645 = z_{0.05}$.
- 7. Computations: Since $\bar{x}_1 = 121$ minutes and $\bar{x}_2 = 112$ minutes, the test statistic is

$$z_0 = \frac{121 - 112}{\sqrt{\frac{(8)^2}{10} + \frac{(8)^2}{10}}} = 2.52$$

$$t = \frac{(121 - 112) - 0}{\sqrt{8^2 \left(\frac{1}{10} + \frac{1}{10}\right)}} = 2.52$$

Decision:

Reject H_0 at $\alpha = 0.05$

Conclusion: There is evidence of a difference in means.

8. Conclusion: Since $z_0 = 2.52 > 1.645$, we reject H_0 : $\mu_1 = \mu_2$ at the $\alpha = 0.05$ level and conclude that adding the new ingredient to the paint significantly reduces the drying time. Alternatively, we can find the *P*-value for this test as

$$P$$
-value = $1 - \Phi(2.52) = 0.0059$

Therefore, H_0 : $\mu_1 = \mu_2$ would be rejected at any significance level $\alpha \ge 0.0059$.


```
In [2]: import pandas as pd
        import numpy as np
        import math
        from scipy import stats
In [6]: def Z_and_p(x1,x2,sigma1,sigma2,n1,n2):
            z = (x1-x2)/(math.sqrt(((sigma1**2)/n1)+((sigma2**2)/n2)))
            if(z < 0):
             p = stats.norm.cdf(z)
            else:
             p = 1 - stats.norm.cdf(z)
             print (z,p)
In [7]: Z_and_p(121,112,8,8,10,10)
        2.5155764746872635 0.00594189462107364
```


Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed
- Population variances are unknown but assumed equal

- The population variances are assumed equal, so use the two sample standard deviations and pool them to estimate σ
- use a t value with $(n_1 + n_2 2)$ degrees of freedom

Test Statistic, σ_1^2 and σ_2^2 Unknown, Equal

The test statistic for

$$\mu_1 - \mu_2$$
 is:

$$t = \frac{\left(\overline{x}_{1} - \overline{x}_{2}\right) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{s_{p}^{2}}{n_{1}} + \frac{s_{p}^{2}}{n_{2}}}}$$

Where t has $(n_1 + n_2 - 2)$ d.f.,

and

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Decision Rules

Two Population Means, Independent Samples, Variances Unknown

Lower-tail test:

$$H_0: \mu_1 - \mu_2 \ge 0$$

 $H_1: \mu_1 - \mu_2 < 0$

Upper-tail test:

$$H_0: \mu_1 - \mu_2 \le 0$$

 $H_1: \mu_1 - \mu_2 > 0$

Two-tail test:

$$H_0$$
: $\mu_1 - \mu_2 = 0$
 H_1 : $\mu_1 - \mu_2 \neq 0$

Decision Rules

Reject H_0 if $t < -t_{(n1+n2-2), \alpha}$

Reject H_0 if $t > t_{(n1+n2-2), \alpha}$

Reject H₀ if

$$t < -t_{(n1+n2-2), \alpha/2}$$
 or

$$t > t_{(n1+n2-2), \alpha/2}$$

- Two catalysts are being analyzed to determine how they affect the mean yield of a chemical process.
- Specifically, catalyst 1 is currently in use, but catalyst 2 is acceptable.
- Since catalyst 2 is cheaper, it should be adopted, providing it does not change the process yield.
- A test is run in the pilot plant and results in the data shown in table.
- Is there any difference between the mean yields?
- Use 0.05, and assume equal variances.

Observation Number	Catalyst 1	Catalyst 2
1	91.50	89.19
2	94.18	90.95
3	92.18	90.46
4	95.39	93.21
5	91.79	97.19
6	89.07	97.04
7	94.72	91.07
8	89.21	92.75
	\bar{x} 1= 92.255	$\bar{x}_1 = 92.733$
	$S_1 = 2.39 S_2$	=2.98

- 1. The parameters of interest are μ_1 and μ_2 , the mean process yield using catalysts 1 and 2, respectively, and we want to know if $\mu_1 \mu_2 = 0$.
- 2. H_0 : $\mu_1 \mu_2 = 0$, or H_0 : $\mu_1 = \mu_2$
- 3. $H_1: \mu_1 \neq \mu_2$
- 4. $\alpha = 0.05$
- 5. The test statistic is

$$t_0 = \frac{\bar{x}_1 - \bar{x}_2 - 0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

- **6.** Reject H_0 if $t_0 > t_{0.025,14} = 2.145$ or if $t_0 < -t_{0.025,14} = -2.145$.
- 7. Computations: From Table 10-1 we have $\bar{x}_1 = 92.255$, $s_1 = 2.39$, $n_1 = 8$, $\bar{x}_2 = 92.733$, $s_2 = 2.98$, and $n_2 = 8$. Therefore

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} = \frac{(7)(2.39)^2 + 7(2.98)^2}{8 + 8 - 2} = 7.30$$
$$s_p = \sqrt{7.30} = 2.70$$

and

$$t_0 = \frac{\overline{x}_1 - \overline{x}_2}{2.70\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{92.255 - 92.733}{2.70\sqrt{\frac{1}{8} + \frac{1}{8}}} = -0.35$$

8. Conclusions: Since $-2.145 < t_0 = -0.35 < 2.145$, the null hypothesis cannot be rejected. That is, at the 0.05 level of significance, we do not have strong evidence to conclude that catalyst 2 results in a mean yield that differs from the mean yield when catalyst 1 is used.


```
In [12]: b =[ 89.19,90.95,90.46,93.21,97.19,97.04,91.07 , 92.75]
In [13]: a = [91.5, 94.18,92.18,95.39,91.79,89.07,94.72,89.21]
In [14]: stats.ttest_ind(a, b, equal_var = True)
Out[14]: Ttest_indResult(statistic=-0.3535908643461798, pvalue=0.7289136186068217)
In [21]: stats.t.ppf(0.025,14) #critical t value
Out[21]: -2.1447866879169277
```


Thank You

