CONCOURS COMMUN POLYTECHNIQUE (ENSI)

FILIERE MP

MATHEMATIQUES 2

EXERCICE 1 : points à coordonnées entières sur une hyperbole

1. Allure de \mathcal{H}

Les tangentes aux sommets sont les droites d'équations respectives x=1 et x=-1. Les asymptotes sont les droites d'équations respectives $x=\frac{1}{\sqrt{13}}$ et $x=-\frac{1}{\sqrt{13}}$.

2. Algorithme.

Variables x et y sont des entiers Début

Pour y variant de 0 à 200, faire $x = \operatorname{sqrt}(1 + 13*y \land 2)$ Si $x = \operatorname{int}(x)$, alors

Afficher (x, y)Fin de Si

Fin de faire

Fin

3. On trouve les couples (1,0) et (649,180).

Problème: matrices « toutes-puissantes »

Partie I: quelques exemples

1. (a) Soit $a \in T_1(\mathbb{R})$. Alors il existe $b \in \mathbb{R}$ tel que $a = b^2$. Par suite, $a \in [0, +\infty[$. Ceci montre que $T_1(\mathbb{R}) \subset [0, +\infty[$. Soit $a \in [0, +\infty[$. Soit $b = \sqrt[n]{a}$. Alors $b \in \mathbb{R}$ et $b^n = a$. Par suite, $a \in T_1(\mathbb{R})$. Ceci montre que $[0, +\infty[\subset T_1(\mathbb{R})]$. Finalement

$$T_1(\mathbb{R}) = [0, +\infty[.$$

- (b) Puisque $b \neq 0$, b admet exactement n racines n-ièmes deux à deux distinctes. Les racines n-ièmes de b sont les nombres complexes de la forme $\sqrt[n]{r}e^{i\left(\frac{\theta}{n}+\frac{2k\pi}{n}\right)}$, $k \in [0,n-1]$.
- (c) Soit $a \in \mathbb{C}$. Soit $n \in \mathbb{N}^*$. Si a = 0, alors $0^n = a$ et si $a \neq 0$, d'après la question précédente, il existe $b \in \mathbb{C}$ tel que $b^n = a$. Donc $a \in T_1(\mathbb{C}$. Ceci montre que $\mathbb{C} \subset T_1(\mathbb{C})$. Comme d'autre part, $T_1(\mathbb{C} \subset \mathbb{C})$, on a montré que

$$T_1(\mathbb{C}) = \mathbb{C}.$$

2. (a) Soit $A \in T_p(\mathbb{K})$. Soit $n \in \mathbb{N}^*$. Il existe $B \in \mathscr{M}_p(\mathbb{K})$ telle que $B^n = A$. Mais alors, $\det(A) = \det(B^n) = (\det(B))^n$. De plus, $\det(B) \in \mathbb{K}$.

Ainsi, pour tout $n \in \mathbb{N}^*$, il existe $b \in \mathbb{K}$ tel que $b^n = \det(A)$ et donc $\det(A) \in T_1(\mathbb{K})$.

- (b) Soit $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. $\det(A) = -1 < 0$ et donc $\det(A) \notin T_1(\mathbb{R})$ d'après la question 1). Mais alors, $A \notin T_2(\mathbb{R})$ d'après la question précédente.
- **3.** $\det(A) = 2 \in T_1(\mathbb{R}).$

Soit $B \in \mathcal{M}_2(\mathbb{R})$. Posons $\mathrm{Sp}_{\mathbb{C}}(B) = (\lambda, \mu)$. Si $B^2 = A$, alors $(\lambda^2, \mu^2) = (-1, -2)$ et donc

$$(\lambda,\mu) \in \left\{ \left(i,i\sqrt{2}\right), \left(-i,i\sqrt{2}\right), \left(i,-i\sqrt{2}\right), \left(-i,-i\sqrt{2}\right) \right\}.$$

Ceci est impossible car, B étant une matrice réelle, si B admet une valeur propre α non réelle, alors B admet aussi $\overline{\alpha}$ pour valeur propre. Il n'existe donc pas de matrice $B \in \mathcal{M}_2(\mathbb{R})$ telle que $B^2 = A$. On en déduit que $A \notin T_2(\mathbb{R})$.

4. (a)
$$\chi_A = \begin{vmatrix} -X & 3 & 2 \\ -2 & 5 - X & 2 \\ 2 & -3 & -X \end{vmatrix} = (-X)(X^2 - 5X + 6) + 2(-3X + 6) + 2(2X - 4) = -X(X - 2)(X - 3) - 6(X - 2) + 4(X - 2) = -X(X - 2)(X - 3) - 2(X - 2) + 2(X - 2)(X - 3) - 2(X - 2)(X -$$

 $(X-2)(-X(X-3)-2) = (X-2)(-X^2+3X-2) = -(X-1)(X-2)^2$. Le polynôme caractéristique de A est scindé sur \mathbb{R} . A admet 1 pour valeur propre simple et 2 pour valeur propre double. Par suite,

A est diagonalisable sur $\mathbb{R} \Leftrightarrow \dim (\operatorname{Ker}(A - 2I_3)) = 2 \Leftrightarrow \operatorname{rg}(A - 2I_3) = 1$.

$$\text{Or, } A - 2I_3 = \left(\begin{array}{ccc} -2 & 3 & 2 \\ -2 & 3 & 2 \\ 2 & -3 & -2 \end{array} \right) \text{. } C_2 = -\frac{2}{3}C_1 \text{, } C_3 = -C_1 \text{ et } C_1 \neq 0 \text{. Donc } \operatorname{rg}(A - 2I_3) = 1 \text{. On en d\'eduit que }$$

A est diagonalisable sur \mathbb{R} .

(b) Par suite, il existe une matrice $P \in GL_3(\mathbb{R})$ telle que $A = PDP^{-1}$ où $D = \operatorname{diag}(1,2,2)$. Soient $\mathfrak{n} \in \mathbb{N}^*$ puis $B = \operatorname{Pdiag}\left(1, \sqrt[n]{2}, \sqrt[n]{2}\right)P^{-1}$. B est une matrice réelle et

$$\mathsf{B}^{\mathfrak{n}} = \left(\mathsf{P}\mathrm{diag}\left(1,\sqrt[n]{2},\sqrt[n]{2}\right)\mathsf{P}^{-1}\right)^{\mathfrak{n}} = \mathsf{P}\left(\mathrm{diag}\left(1,\sqrt[n]{2},\sqrt[n]{2}\right)\right)^{\mathfrak{n}}\mathsf{P}^{-1} = \mathsf{P}\mathsf{D}\mathsf{P}^{-1} = \mathsf{A}.$$

Ceci montre que A est $TP\mathbb{R}$.

(c) On peut prendre
$$P = \begin{pmatrix} 1 & 3 & 1 \\ 1 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$
 puis $P^{-1} = \begin{pmatrix} 2 & -3 & -2 \\ -1 & 2 & 1 \\ 2 & -3 & -1 \end{pmatrix}$.

Soit $B_2 = P \operatorname{diag}\left(1, \sqrt{2}, \sqrt{2}\right) P^{-1}$.

$$\begin{split} B_2 &= \left(\begin{array}{ccc} 1 & 3 & 1 \\ 1 & 2 & 0 \\ -1 & 0 & 1 \end{array} \right) \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{ccc} 2 & -3 & -2 \\ -1 & 2 & 1 \\ 2 & -3 & -1 \end{array} \right) = \left(\begin{array}{ccc} 1 & 3\sqrt{2} & \sqrt{2} \\ 1 & 2\sqrt{2} & 0 \\ -1 & 0 & \sqrt{2} \end{array} \right) \left(\begin{array}{ccc} 2 & -3 & -2 \\ -1 & 2 & 1 \\ 2 & -3 & -1 \end{array} \right) \\ &= \left(\begin{array}{ccc} 2 - \sqrt{2} & -3 + 3\sqrt{2} & -2 + 2\sqrt{2} \\ 2 - 2\sqrt{2} & -3 + 4\sqrt{2} & -2 + 2\sqrt{2} \\ -2 + 2\sqrt{2} & 3 - 3\sqrt{2} & 2 - \sqrt{2} \end{array} \right). \end{split}$$

$$\text{La matrice } B_2 = \left(\begin{array}{ccc} 2 - \sqrt{2} & -3 + 3\sqrt{2} & -2 + 2\sqrt{2} \\ 2 - 2\sqrt{2} & -3 + 4\sqrt{2} & -2 + 2\sqrt{2} \\ -2 + 2\sqrt{2} & 3 - 3\sqrt{2} & 2 - \sqrt{2} \end{array} \right) \text{ est une matrice réelle telle que } B_2^2 = A. \text{ En remplaçant } \sqrt{2} \text{ par } \frac{\sqrt[3]{2}}{\sqrt[3]{2}}, \text{ la matrice } B_3 = \left(\begin{array}{ccc} 2 - \sqrt[3]{2} & -3 + 3\sqrt[3]{2} & -2 + 2\sqrt[3]{2} \\ 2 - 2\sqrt[3]{2} & -3 + 4\sqrt[3]{2} & -2 + 2\sqrt[3]{2} \\ -2 + 2\sqrt[3]{2} & 3 - 3\sqrt[3]{2} & 2 - \sqrt[3]{2} \end{array} \right) \text{ est une matrice réelle telle que } B_3^3 = A.$$

- 5. (a) On munit \mathbb{R}^2 de sa structure euclidienne usuelle et de son orientation usuelle. A est alors la matrice dans la base canonique de -Id qui est la rotation d'angle π .
- (b) Soient $n \in \mathbb{N}^*$ puis $B = \begin{pmatrix} \cos\left(\frac{\pi}{n}\right) & -\sin\left(\frac{\pi}{n}\right) \\ \sin\left(\frac{\pi}{n}\right) & \cos\left(\frac{\pi}{n}\right) \end{pmatrix}$. Alors, B^n est la matrice dans la base canonique de la rotation d'angle $n \times \frac{\pi}{n} = \pi$ et donc $B^n = A$. Ceci montre que A est $TR\mathbb{R}$.
- 6. (a) Il existe $k \in \mathbb{N}^*$ tel que $N^k = 0$. Donc le polynôme X^k est annulateur de N. On sait que les valeurs propres de N dans \mathbb{C} sont à choisir parmi les racines de ce polynôme annulateur. Donc, 0 est l'unique valeur propre de N.

Le polynôme caractéristique de N est le polynôme de coefficient dominant $(-1)^p$, de degré p, admettant 0 pour unique racine. On en déduit que $\chi_N = (-1)^p X^p$.

D'après le théorème de Cayley-Hamilton, $\chi_N(N) = 0$ ce qui fournit $N^p = 0$.

(b) Supposons de plus que N soit TPK. Il existe une matrice $B \in \mathcal{M}_p(\mathbb{R})$ telle que $N = B^2$. Mais alors, $B^{2p} = N^p = 0$. La matrice B est donc nilpotente. La question précédente fournit alors $N = B^p = 0$. On a montré que si N est TPK, alors N = 0.

Partie II : le cas où le polynôme caractéristique est scindé

7. D'après le théorème de Cayley-Hamilton, $\chi_{\mathfrak{u}}(\mathfrak{u})=0$ ou encore $\prod_{i=1}^p (\mathfrak{u}-\lambda_i \mathrm{Id}_{\mathbb{K}^p})^{r_i}=0$. De plus, les polynômes $(X-\lambda_i)^{r_i}, 1\leqslant i\leqslant k$, sont deux à deux premiers entre eux. D'après le théorème de décomposition des noyaux,

$$\mathbb{K}^p = \operatorname{Ker} \left(\mathfrak{u} - \lambda_1 \operatorname{Id}_{\mathbb{K}^p} \right)^{r_1} \oplus \ldots \operatorname{Ker} \left(\mathfrak{u} - \lambda_k \operatorname{Id}_{\mathbb{K}^p} \right)^{r_k} = C_1 \oplus \ldots \oplus C_k.$$

8. (a) Puisque ν commute avec u, ν commute avec tout polynôme en u et donc ν commute avec Q(u). On sait alors que $\operatorname{Ker}(Q(u))$ est stable par ν . Redémontrons-le.

Soit $x \in \text{Ker}(Q(u))$. Alors Q(u)(x) = 0 puis

$$Q(u)(v(x)) = V(Q(u)(x)) = v(0) = 0,$$

et donc $v(x) \in \text{Ker}(Q(u))$.

- $\textbf{(b)} \ \mathrm{Soit} \ \mathfrak{i} \in \llbracket 1, k \rrbracket. \ \mathfrak{u} \ \mathrm{commute} \ \mathrm{avec} \ (\mathfrak{u} \lambda_{\mathfrak{i}} \mathrm{Id}_{\mathbb{K}^p})^{r_{\mathfrak{i}}} \ \mathrm{qui} \ \mathrm{est} \ \mathrm{un} \ \mathrm{polyn\^{o}me} \ \mathrm{en} \ \mathfrak{u}. \ \mathrm{Donc}, \ \mathfrak{u} \ \mathrm{laisse} \ \mathrm{stable} \ \mathrm{Ker} \ (\mathfrak{u} \lambda_{\mathfrak{i}} \mathrm{Id}_{\mathbb{K}^p})^{r_{\mathfrak{i}}} \ = C_{\mathfrak{i}}.$
- 9. Soit $i \in [1, k]$. Posons $v_i = u_{C_i} \lambda_i Id_{C_i}$. Soit $x \in C_i = \operatorname{Ker}(u \lambda_i Id_{\mathbb{K}^p})^{r_i} = \operatorname{Ker}(v_i)^{r_i}$. Par définition, $v_i^{r_i}(x) = 0$. Ainsi, $v_i^{r_i} = 0$ et donc v_i est nilpotent d'indice inférieur ou égal à r_i .

10. Soit \mathscr{B}' une base de \mathbb{K}^p adaptée à la décomposition $\mathbb{K}^p = C_1 \oplus \ldots \oplus C_p$ puis P la matrice de passage de \mathscr{B} à \mathscr{B}' . Posons $M = P^{-1}AP$.

D'après la question 8)a), les C_i sont stables par $\mathfrak u$. On en déduit que la matrice M est diagonale par blocs :

$$M = \begin{pmatrix} M_1 & 0 & \dots & 0 \\ 0 & M_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & M_k \end{pmatrix}$$

où pour tout $i \in [\![1,k]\!], \, M_i \in \mathscr{M}_{\mathfrak{p}_i}(\mathscr{K})$ avec $\mathfrak{p}_i = \mathrm{dim} C_i.$

Pour chaque $i \in [1, k]$, posons $N_i = M_i - \lambda_i I_{p_i}$ de sorte que $M_i = \lambda_i I_{p_i} + N_i$. D'après la question 9), la matrice N_i est une matrice nilpotente de $\mathcal{M}_{p_i}(\mathcal{M}_{p_i}(\mathcal{K}))$.

Finalement on a écrit A sous la forme A=P diag $(\lambda_1I_{p_1}+N_1,\ldots,\lambda_kI_{p_k}+N_k)$ P^{-1} où P est une matrice inversible de $\mathscr{M}_p(\mathbb{K})$ et pour tout $i\in [\![1,k]\!]$, $p_i=\dim C_i$ et N_i est une matrice nilpotente de $\mathscr{M}_{p_i}(\mathbb{K})$.

11. Supposons que pour tout $i \in [1, k]$, $\lambda_i Id_{p_i} + N_i$ soit TPK. Alors pour tout $i \in [1, k]$ et pour tout $n \in \mathbb{N}^*$, il existe une matrice $B_{i,n} \in \mathscr{M}_{p_i}(\mathbb{K})$ telle que $B_{i,n}^n = \lambda_i Id_{p_i} + N_i$.

Soit $n \in \mathbb{N}^*$. Soit $B_n = P \operatorname{diag}(B_{1,n}, \ldots, B_{k,n})P^{-1} \in \mathscr{M}_p(\mathbb{K})$.

$$\begin{split} B_n^n &= P \left(\operatorname{diag}(B_{1,n}, \dots, B_{k,n}) \right)^n P^{-1} \\ &= P \operatorname{diag}(B_{1,n}^n, \dots, B_{k,n}^n) P^{-1} \text{ (calcul par blocs)} \\ &= P \operatorname{diag}(\lambda_1 I_{\mathfrak{p}_1} + N_1, \dots, B\lambda_k I_{\mathfrak{p}_k} + N_k) P^{-1} = A. \end{split}$$

On en déduit que A est $TP\mathbb{K}$

Partie III: le cas des matrices unipotentes

12. (a) La division euclidienne de V par X^p fournit deux polynômes Q et R tels que $V = X^p \times Q + R$ et $\deg(R) \leqslant p-1$. Quand x tend vers 0, $V(x) = o(x^p)$ et en particulier, $V(x) = o(x^{p-1})$. D'autre part, $x^pQ(x) = o(x^{p-1})$. Donc, quand x tend vers 0, $R(x) = V(x) - x^pQ(x) = o(x^{p-1})$. Puisque R est de degré au plus p-1, cette dernière égalité s'écrit plus explicitement

$$R(x) + o(x^{p-1}) = 0 + o(x^{p-1}).$$

Par unicité des coefficients d'un développement limité, on en déduit que les coefficients de R sont nuls ou encore que R est nul. Finalement, il existe un polynôme Q tel que $V = X^p \times Q$.

(b) Un développement limité de $(1+x)^{1/n}$ en 0 à l'ordre p s'écrit

$$(1+x)^{1/n} = U(x) + o(x^p),$$

où U est un polynôme de degré inférieur ou égal à p. En élévant les deux membres à l'exposant n, on obtient

$$1 + x = _{x \to 0} (U(x) + o(x^{p}))^{n} = _{x \to 0} (U(x))^{n} + o(x^{p}),$$

(développement limité d'une composée).

- (c) Quand x tend vers 0, $1+x-(U(x))^n=o(x^p)$. D'après la question 12)a), il existe un polynôme Q tel que $1+X-U^n=X^p\times Q$ ou encore $1+X=U^n+X^p\times Q$.
- 13. (a) Soit $n \in \mathbb{N}^*$. D'après la question précédente, il existe deux polynômes U et Q (dépendant de n) tels que $1 + X = U^n + X^p \times Q$. En évaluant en la matrice N, on obtient

$$I_p + N = (U(N))^n + N^p \times Q(N) = (U(N))^n$$

car d'après la question 6)
a), $N^p = 0$.

Ainsi, pour chaque $n \in \mathbb{N}^*$, il existe une matrice $U(N) \in \mathscr{M}_p(\mathbb{K})$ telle que $B^n = I_p + N$. La matrice $I_p + N$ est donc $TP\mathbb{K}$.

(b) Soit $\lambda \in \mathbb{K} \setminus \{0\}$ tel que λ soit TP \mathbb{K} . Soit $n \in \mathbb{N}^*$. Il existe $\mu \in \mathbb{K}$ tel que $\mu^n = \lambda$.

D'autre part, la matrice $\frac{1}{\lambda}N$ est nilpotente car $\left(\frac{1}{\lambda}N\right)^p=\frac{1}{\lambda^p}N^p=0$. D'après la question précédente, il existe une matrice $B \in \mathscr{M}_p(\mathbb{K})$ telle que $B^n = I_p + \frac{1}{\lambda}N$.

Soit B' =
$$\mu$$
B. B' est dans $\mathcal{M}_p(\mathbb{K})$ et B'ⁿ = μ ⁿBⁿ = $\lambda \left(I_p + \frac{1}{\lambda}N\right) = \lambda I_p + N$. Ceci montre que $\lambda I_p + N$ est TPK.

- 14. (a) Soit $A \in GL_n(\mathbb{C})$. Alors les $\lambda_i, 1 \leqslant i \leqslant k$, de la partie II sont tous non nuls. D'autre part, chaque $\lambda_i, 1 \leqslant i \leqslant k$, est $TP\mathbb{C}$ d'après la question 1)c).
- D'après la question précédente, chaque matrice $\lambda_i I_{p_i} + N_i$, $1 \leq i \leq k$, de la partie II est TPC. La question 11) permet alors d'affirmer que A est $TP\mathbb{C}$.
- (b) Si $p \ge 2$, la matrice élémentaire $E_{1,2}$ est nilpotente et non nulle. La question 6)a) montre que la matrice $E_{1,2}$ n'est pas TPC. Donc, si $p \ge 2$, $T_p(\mathbb{C}) \ne \mathscr{M}_p(\mathbb{C})$. Par contre, d'après la question 1)c), $T_1(\mathbb{C}) = \mathscr{M}_1(\mathbb{C})$.
- **15.** Soit $A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} I_3 + N & 0_{3,1} \\ 0_{1,3} & 0 \end{pmatrix}$ où $N = E_{1,2}$. D'après la question 13)a), la matrice $I_3 + N$ est $TP\mathbb{R}$.

Maintenant, 0 est valeur propre de A et donc A n'est pas inversible. D'autre part, 1 est valeur propre triple de A mais $rg(A - I_3) = 2 > 1$ et donc A n'est pas diagonalisable.