SRAM_Controller_SPEC

core_mem_r_value[15:0] (O)	使用者從library(mem)讀取的資訊值
core_mem_w_value[15:0] (I)	使用者寫入library(mem)的資訊值
core_mem_addr[19:0] (I)	使用者使用記憶的位址
core_mem_wr (I)	寫入signal low, 讀出signal high
core_mem_request (I)	core請求讀寫
core_wait (O)	寫入或讀取後,有latency,告訴core等待。low才能再次 讀寫
o_SRAM_ADDR (O)	使用記憶記憶體位址
io_SRAM_DQ (IO)	讀取記憶體值或是寫入記憶體值
o_SRAM_WE_N (O)	記憶體寫入有效訊號, low for write, high for read
o_SRAM_CE_N (O)	低電位表示啟用 SRAM
o_SRAM_OE_N (O)	低電位表示 SRAM 可以驅動資料輸出總線
o_SRAM_LB_N (O)	低電位表示啟用 SRAM 的低 8-bit
o_SRAM_UB_N (O)	低電位表示啟用 SRAM 的高 8-bit

Lab3 的 Memory access 使用連續寫入, 連續讀取

```
assign o_SRAM_ADDR = (state_r == S_RECD) ? addr_record : addr_play[19:0];
assign io_SRAM_DQ = (state_r == S_RECD) ? data_record : 16'dz; // sram_dq as output
assign data_play = (state_r != S_RECD) ? io_SRAM_DQ : 16'd0; // sram_dq as input
assign o_SRAM_WE_N = (state_r == S_RECD) ? 1'b0 : 1'b1;

assign o_SRAM_CE_N = 1'b0;
assign o_SRAM_OE_N = 1'b0;
assign o_SRAM_LB_N = 1'b0;
assign o_SRAM_UB_N = 1'b0;
```

Final Project 的 寫入讀取的 spec

T:core要求寫入記憶體,位址14數值1

T0:等記憶體latency,告訴core等待,不要傳送讀寫要求

T1: 剛等完記憶體處理, core於posedge clk見到core_wait = 0 才能讀寫, 所以再等一周期

T2: core要求寫入記憶體, 位址29數值33

T3:等記憶體

T4: 剛等完記憶體處理, core於posedge clk見到core wait = 0 才能讀寫, 所以再等一周期

T5: core要求讀取記憶體. 位址76

T6: 等記憶體

T7: 剛等完記憶體處理, core於posedge clk見到core wait = 0 才能讀寫

T8:讀取值99,知道mem[79]=99,並要求寫入記憶體,位址32數值66

T9:等記憶體

T10: 剛等完記憶體處理, core於posedge clk見到core_wait = 0 才能讀寫, 所以再等一周期

T11:: core要求讀取記憶體, 位址25

備註:

A. 為了設計可讀性,所以core_mem_value分成兩read and write兩種。

B. 為更嚴謹要求讀寫記憶體時間點, 使用core_mem_wr和core_mem_reques控制。

C.core_wait就是看sram的latency多久能做完, 我們lab3就卡在這裡, 實驗抓出data valid的時間點即可。