- 1 Pubertal Development and Body Mass Index are associated with Dorsolateral Prefrontal Cortex
- 2 Activation in Response to Unhealthy Food Cues

3

- 4 Authors: Floor van Meer^{1,2}, Laura N. van der Laan³, Gabriele Eiben^{4,5}, Lauren Lissner⁴, Maike
- Wolters⁶, Stefan Rach⁶, Manfred Herrmann⁷, Peter Erhard⁷, Denes Molnar⁸, Gergely Orsi^{9,10},
- 6 Roger A.H. Adan¹¹, Paul A.M. Smeets^{1,12} On behalf of the I.Family Consortium

- 8 Author affiliations: ¹Image Sciences Institute, UMC Utrecht Brain Center, Utrecht University,
- 9 Utrecht, The Netherlands; ²Wageningen Food Safety Research, Wageningen University &
- 10 Research, Wageningen, The Netherlands, ³Tilburg University, Department of Communication
- and Cognition, Tilburg, The Netherlands; ⁴Section for Epidemiology and Social Medicine,
- Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ⁵Department of Public
- Health, School of Health Sciences, University of Skövde, Skövde, Sweden; ⁶Leibniz Institute for
- 14 Prevention Research and Epidemiology BIPS, Bremen, Germany; ⁷Department of
- 15 Neuropsychology and Behavioral Neurobiology, University of Bremen, Bremen, Germany;
- ⁸Department of Paediatrics, Medical School, University of Pécs, Pécs, Hungary; ⁹HUN-REN-PTE
- 17 Clinical Neuroscience MR Research Group, Pecs, Hungary, ¹⁰Department of Neurology, Medical
- 18 School, University of Pécs, Pécs, Hungary, ¹¹Translational Neuroscience, Brain Center Rudolf
- 19 Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; ¹²Division of Human
- 20 Nutrition & Health, Wageningen University & Research, Wageningen, The Netherlands.

- 21 Corresponding author: Floor van Meer, Wageningen Food Safety Research, Wageningen
- 22 University & Research, PO box 230, 6700 AE Wageningen, The Netherlands. Email:
- 23 <u>floor.vanmeer@wur.nl</u>

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Abstract

Unhealthy food cues are omnipresent and promote overconsumption. Although childhood obesity rates are increasing, there is no strict regulation of the marketing of unhealthy foods towards children. This is problematic since children's brains, especially areas important for cognitive control, do not mature until their early 20s. It is not known in how far the brain response to unhealthy food cues varies with body mass index and age. To investigate this, 168 children (10-17 y; 71 prepubertal children, 97 pubertal children) and 182 adults (30-67 y) from the European IDEFICS cohort were scanned with fMRI while viewing pictures of healthy and unhealthy foods. Pubertal children exhibited lower activation in the right dorsolateral prefrontal cortex (dIPFC) compared to adults when exposed to unhealthy food cues. Across all age groups, individuals with higher body mass demonstrated reduced activation in the middle cingulum in response to unhealthy food stimuli. Lastly, the relation between body mass index and brain activation in response to unhealthy compared with healthy food stimuli varied with development: in prepubertal children, higher body mass index was correlated with decreased activation in right anterior insula and right dIPFC, whereas no such relationship was observed in pubertal children or adults. These findings suggest that pubertal children and prepubertal

children with higher body mass index may be particularly vulnerable to unhealthy food cues. In this light, the lack of regulation regarding unhealthy food marketing targeted at is concerning, especially considering the global increase in obesity rates.

1. Introduction

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

The constant exposure to unhealthy foods in modern society is thought to be a major contributing factor to the worldwide rise in obesity (Lawrence et al., 2012). Children may be more susceptible to unhealthy food cues than adults, as they were shown to have heightened attention for these cues (Soetens & Braet, 2007; Werthmann et al., 2015) and a lower ability to inhibit their responses towards them (Junghans et al, 2015). The combination of higher attention and lower inhibition may make children more sensitive to unhealthy food cues encountered in food marketing than adults are. Nevertheless, there has been little government regulation to limit the marketing of unhealthy foods targeting children (Lobstein et al., 2015). There have been several industry-led pledges aimed at limiting food advertising directed at children under the age of twelve, such as the EU-pledge (EU Pledge, 2023) in Europe and the Children's Food & Beverage Advertising Initiative (Enright & Eskenazi, 2022) in North America. However, these voluntary food industry initiatives are frequently criticized because of weak standards and commitments, and a lack of both transparency and enforcement mechanisms (Swinburn et al, 2015; Bryden et al., 2013; Hawkes & Harris, 2011; Galbraith-Emami & Lobstein, 2013). Children's increased susceptibility to unhealthy food cues may be explained by their brains still developing, a process that continues until the early twenties (Booth et al., 2003). Not all brain

areas mature at the same rate; between age 8 and 21 greater changes have been found in the prefrontal cortex (PFC) relative to other brain regions for synaptogenesis (Huttenlocher & Dabholkar, 1997), gray matter reduction (Sowell et al., 1999), myelination increases (Giedd et al., 1999) and resting level metabolism. Examining how children's brains respond to food cues may shed light on the mechanism behind their increased susceptibility. This is important, since brain reactivity to food cues in reward related areas predicted future weight gain in adolescent girls (Yokum & Stice, 2011), and women (Demos et al., 2012) as well as food choice (Van der Laan et al., 2012; Mehta et al., 2012), snack consumption (Lawrence et al, 2012), weight status in women (Killgore et al., 2013), and outcome in a weight-loss program (Murdaugh et al., 2012). However, very little is known about how these neural responses towards foods change over the course of adolescence, i.e., in the transition from child to adolescent to adulthood. An activation-likelihood estimation meta-analysis indicated that children may have lower activation in the lingual gyrus, a visual processing area, in response to food cues (van Meer et al., 2015). This meta-analysis included studies with a wide age range of children (8-18 years old) and compared these with studies in adults. Another study showed that children (10-12 years old) had stronger activation in response to unhealthy foods compared to adults in a brain area involved in motivated action, the precentral gyrus (Van Meer et al., 2016). While these studies offer intriguing insights into how children's and adults' brain responses to food cues differ, the developmental trajectory of these brain responses remains unclear. Another factor that may influence children's susceptibility to unhealthy food cues is their body mass index (BMI). Several studies suggest that children with a higher body mass index have altered brain responses to (unhealthy) food cues, although the direction of these effects vary

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

between studies (Davids et al., 2010; Bruce et al., 2010; Yokum & Stice, 2011; Stice et al., 2008; Van Meer et al., 2016; Batterink et al., 2010). It is unknown in how far the brain responses to food cues vary with body mass index in children and adults in the same way. A recent review and meta-analysis found differences between individuals with overweight/obesity and individuals with normal weight in the left insula and left fusiform gyrus in response to viewing food vs. non-food pictures (Morys et al., 2023). However, the group differences in both these regions were age dependent: in children there were weight group differences in left insula activation but less so in older adults, while in adults there was a bigger weight group difference in fusiform gyrus activation than in children. These findings suggest that the relationship between body mass index and food cue reactivity may be age dependent, but given the modest sample size of the studies included and the fact that the average age per participant group was used to study the effect of age, a more thorough examination is warranted. In the present study, we aimed to determine in how far neural food cue reactivity varies with body mass index and pubertal development. We hypothesized that with the maturation of the prefrontal cortex, activation in response to unhealthy foods in areas involved in cognitive control such as the dIPFC and the ventrolateral PFC (vIPFC) will increase over adolescence, while it will decrease in the precentral gyrus (Hypothesis 1). We expected that adults still have stronger responses in the prefrontal gyrus and weaker responses in the precentral gyrus than pubertal children. Furthermore, we hypothesized that individuals with a higher body mass index will have weaker activation in response to unhealthy foods in areas involved in cognitive control (Hypothesis 2). Lastly, we hypothesized that body weight and development interact,

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

such that in prepubertal children the association between body mass index and activation in inhibitory brain areas will be stronger than in pubertal children or adults (Hypothesis 3).

2. Methods

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

2.1 Participants

190 children (10-17 y, mean age 13.3) and 187 adults (30-67 y, mean age 44.8; the sex-matched parents of the children) in Germany, Hungary and Sweden were scanned with fMRI while they viewed healthy and unhealthy foods. Children were part of the IDEFICS/I.Family cohort; which has been described in detail elsewhere (Ahrens et al., 2016). In- and exclusion criteria were the same as van Meer et al. (2019). All children provided assent and their parents provided written informed consent for themselves and their children before participation, as approved by the Scientific and Research Ethics Committee of the Medical Research Council of Pécs (TUKEB), the Ethics Committee of the University of Bremen and the Regional Ethics Committee of the University of Gothenburg. All procedures performed were in accordance with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The data of 22 children and 5 adults could not be used for analysis, because of excess movement (n=16 children), missing weight and height measurement on the scan day (n=3 adults) or insufficient scan quality (n=8 children, n=2 adults). This left a final sample of 168 children and 182 adults (see Table 1 for demographics). The pubertal stage of the children was assessed based on menarche in girls and the onset of voice change in boys (Carskadon & Acebo, 1993). There were 71 prepubertal children and 97 pubertal children. There were no statistically significant differences in the number of boys and girls per child group (prepubertal and pubertal; (t(166) = 1.34, p =0.18).

Table 1: Mean (SD or %) of demographic variables per age group

	Prepubertal children (n=71)			Pubertal children (n=97)			Adults (n=182)		
	Mean	SD	Range	Mean	SD	Range	Mean	SD	Range
Sex (n, %) ¹	44 F (62%)			50 F (51.5%)			96F (52.5%)		
Age (y)	11.8	1.15	9.9-14.6	14.5	1.29	11.42- 17.42	44.8	5.2	30-67
(SDS) BMI ²	0.23	0.91	-1.40- 2.87	0.56	1.02	-2.83-2.87	26.9	5.37	17.6- 46.8

¹The number of boys and girls did not statistically significantly differ between the children groups.

2.2 Study procedures

In a visit prior to the scan, children were familiarized with the study procedures. Participants were asked not to eat or drink anything (except water) for the two hours before the scan. At arrival, their height and weight were measured. This was followed by the scan session, in which participants completed a food choice and food viewing task (in this order) in the MRI scanner. Only the results of the food viewing task are presented in this paper, results of the food choice task in children have been reported elsewhere (Van Meer et al., 2019). After the scan, participants were asked to rate the healthiness and tastiness of a subset of the pictures of the food viewing task (80%) on a five-point scale (*How much do you like the product?* 1, not at all – 5, very much; How healthy do you think the product is? 1, not healthy at all – 5, very healthy) in a computerized rating task.

2.3 Food viewing fMRI task

²BMI in kg/m² is reported for adults, BMI standard deviation score (SDS BMI) is reported for children based Cole & Lobstein (2012). F = female

The food viewing task (8-min; as used in Van Meer et al., 2016) consisted of 8 blocks of healthy and 8 blocks of unhealthy food pictures with 8 pictures per block (block duration 24 s; total number of pictures 128; no repetitions). Blocks of healthy and unhealthy pictures were alternated in the same order for all participants. Picture presentation lasted 2.5 s with a 0.5 s inter-stimulus interval. Between blocks a crosshair was presented for 3 to 9 s. Stimuli were presented on a screen (viewed via a mirror) or on goggles with use of the PRESENTATION software (Neurobehavioral Systems Inc., Albany, CA, USA). Participants were told that a picture recall test would follow after the scan, so they had to pay attention to the food pictures in the task. Standardized food pictures from the Full4Health Image Collection (Charbonnier et al., 2016) were used as stimuli. To quantify the healthiness of the foods used the Nutrient Rich Food (NRF) index (Drewnowski, 2010) was utilized. Because of local differences in food familiarity a different set of pictures was used in each country. The mean NRF index was 149.3 (SD 235.8) in Germany, 160.0 (SD 243.8) in Hungary and 159.4 (SD 236.2) in Sweden for the pictures in healthy blocks and -3.9 (SD 10.3) in Germany, -1.6 (SD 11.6) in Hungary and -3.7 (SD 10.7) in Sweden for the pictures in unhealthy blocks.

163

164

165

166

167

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

2.4 Rating analysis

In order to compare the difference between the age groups in taste and health ratings for the pictures in the healthy and unhealthy blocks, t-tests, paired t-tests and ANOVA's were used depending on the comparison.

168

169

2.5 MRI data acquisition and preprocessing

MRI scans were conducted across three centers using 3T MRI scanners: a Siemens Skyra in Germany, Siemens Trio in Hungary (Siemens AG, Erlangen, Germany), and GE Discovery MR750w in Sweden (GE Healthcare Systems, Milwaukee, USA). A 32-channel head coil was utilized in Germany and Sweden, while Hungary employed a 12-channel head coil. A T₁weighted structural image was acquired with a resolution of 1 × 1 × 1 mm, consisting of 176 sagittal slices and a field of view measuring 256 × 256. Specific acquisition parameters varied between centers. In Germany, the repetition time (TR) was 1900 ms, echo time (TE) was 2.07 ms, and the flip angle was 9°. In Hungary, TR was 2530 ms, TE was 3.37 ms, and the flip angle was 7°. In Sweden, TR was 6.928 ms, TE was 2.53 ms, and the flip angle was 7°. The functional scan employed a T₂*-weighted gradient echo 2D-echo planar imaging sequence with consistent parameters across sites: TR/TE of 2000/30 ms, flip angle of 76°, 36 axial slices, and voxel size of $3 \times 3 \times 3$ mm. Data preprocessing and analysis were carried out using SPM12 (update nr 7219), developed by the Wellcome Department of Imaging Neuroscience in London, United Kingdom, executed with MATLAB R2015b (The MathWorks Inc., Natick, MA, USA). Following slice time correction with the middle slice as reference, the functional images underwent realignment to the first volume. Subsequent steps included gray and white matter segmentation and the creation of a custom anatomical template using Diffeomorphic Anatomical Registration through Exponentiated Lie algebra (DARTEL). After coregistration, DARTEL facilitated the normalization of both the template and functional scans to MNI space (Montreal Neurological Institute-International Consortium for Brain Mapping). Further processing involved applying a 6 mm full-width at half maximum isotropic Gaussian kernel for data smoothing. The Volume Artefact tool provided by

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

ArtRepair (available at http://cibsr.stanford.edu/tools/human-brainproject/artrepair-software.html) was employed to identify and rectify abnormally noisy volumes. Specifically, volumes exhibiting movements exceeding 1 mm per TR were corrected. Notably, 16 children were excluded from the analysis because more than 25% of their volumes required correction.

2.6 Subject level analyses

For each participant, data were high-pass filtered using a 128-s cutoff and statistical maps were generated by fitting a boxcar function to the voxel time series which was convolved with the canonical hemodynamic response function (HRF). Viewing healthy foods and viewing unhealthy foods were modeled as two separate conditions. Contrast images were generated by subtracting the mean brain response during unhealthy blocks from the mean brain response during healthy blocks.

2.7 Group level analyses

To examine the effect of development on the brain responses to unhealthy and healthy food viewing, a one-way ANOVA was performed to compare prepubertal children, pubertal children and adults. A covariate was added for standardized BMI. This zBMI score was calculated by standardizing the children's BMI Cole SDS and the adults' BMI scores within their respective groups to a z-distribution, and then combining these standardized scores into a single variable. This ensures that the within group variation in BMI is examined and that between group variation in BMI or range differences do not play a role. Two dummy variables to encode the three countries were added as covariates of no interest in all

analyses. To determine whether the effect of BMI was dependent on development, a regression analysis was done to examine the interaction of BMI and development.

Predictors were two dummy variables for group and variables for BMI per group. A cluster level threshold of *p*<0.05 Family Wise Error (FEW) corrected for multiple comparisons across the whole brain was derived using Monte Carlo simulations (10,000 iterations) of random noise distribution in the whole brain mask using 3dClustSim in AFNI (Cox, 1996; Forman et al., 1995). This approach combines an individual voxel probability threshold with a minimum cluster size to estimate the probability of a false positive. The resulting threshold was p<0.001 with a cluster extent k≥21 voxels.

2.8 Psychophysiological interaction

As a last step, psychophysiological interaction (PPI) analysis was conducted to identify regions showing different correlation during the unhealthy compared to the healthy blocks. Methods and results are reported in the Supplemental Information.

2.9 Data availability

- All single-subject t-maps and group-level t-maps can be found on NeuroVault at
- 231 https://neurovault.org/collections/DOWRYIVG/.

3. Results

3.1 Picture ratings

To examine the perceived healthiness of the food pictures for prepubertal children, pubertal children and adults the healthiness ratings of a subset of the pictures in the healthy and

unhealthy blocks were compared. All groups rated a subset of the pictures in the healthy blocks as statistically significantly healthier than a subset of the pictures from the unhealthy blocks (Table 2; paired sample t-test, prepubertal children: t(1,69) = 26.6, p < 0.001; pubertal children: t(1,95) = 39.6, p < 0.001; adults: t(1,179) = 71.8, p < 0.001). However, there was an interaction between group and picture type on health rating: adults had a bigger difference in their health rating of the healthy and unhealthy pictures than children (F(2,343) = 59.4, p < 0.001). All participants provided tastiness ratings of the food pictures as well. Adults preferred the taste of the foods in the healthy blocks, while for prepubertal and pubertal children there was no difference between blocks (Table 2; paired sample t-test, prepubertal children: t(1,69) = -0.53, p = 0.60; pubertal children: t(1,95) = 1.61, p = 0.11; adults: t(1,179) = 15.8, p < 0.001). There was an interaction between group and picture type in their effect on taste rating as well: adults had a bigger difference in their taste rating of the healthy and unhealthy pictures than prepubertal and pubertal children (F(2,343) = 59.4, p < 0.001).

Table 2: Mean and SD of food picture ratings per age group

	Prepubertal children (n=71)		Pubertal children (n=97)		Adults (n=182)	
	Mean	SD	Mean	SD	Mean	SD
Health rating healthy foods	4.06	0.45	4.17	0.36	4.24	0.31
Health rating unhealthy foods	2.21	0.48	2.11	0.46	1.70	0.46
Taste rating healthy foods	3.71	0.61	3.85	0.62	4.10	0.48
Taste rating unhealthy foods	3.75	0.64	3.72	0.60	3.22	0.64

3.2 Brain responses to unhealthy and healthy foods

In order to test Hypothesis 1 and examine differences in the brain responses to unhealthy compared to healthy foods between prepubertal children, pubertal children and adults a one-way ANOVA was done. There was an effect of group in the right opercular and triangular part of the inferior frontal gyrus and the right middle frontal gyrus (dIPFC; Table 3 & Figure 1).

Figure 1. Group difference in the unhealthy > healthy contrast in the right dIPFC. Peaks (MNI) listed are statistically significant at the p < 0.05 level based cluster level corrections across the whole brain (individual voxel threshold = p < 0.001, cluster extent threshold k ≥ 21 , 3 × 3 x 3 mm voxels). * denotes statistically significant difference between the means of the groups, † denotes means statistically significantly differ from 0.

Post-hoc tests comparing the groups showed that in these areas, adults had stronger activation in the unhealthy compared with healthy foods contrast than pubertal children. Post-hoc analyses within the groups showed that pubertal children had stronger activation in response to healthy foods compared with unhealthy foods in these areas while adults had stronger activation in response to unhealthy foods compared with healthy foods (Table S1). In

prepubertal children there were no statistically significant differences in the response to unhealthy compared with healthy foods or vice versa in these areas.

To test Hypothesis 2 we examined whether BMI was correlated with brain responses to unhealthy compared with healthy foods over all participants. A negative correlation between zBMI and activation to unhealthy compared with healthy foods was found in the right side of the middle cingulum (Table 3).

Table 3. Brain regions that show an effect of group, zBMI or an interaction effect for unhealthy compared with healthy food viewing

Brain region	Side	Cluster size	х	У	Z	Z-value ¹			
Effect of group									
Inferior frontal gyrus opercular part*	R	74	57	12	12	4.13			
Inferior frontal gyrus triangular part			45	21	6	3.93			
Middle frontal gyrus	R	22	33	39	21	3.73			
Middle frontal gyrus			36	48	24	3.53			
Negative correlation with zBMI over groups									
Middle cingulum	R	26	9	-36	45	3.78			
Group differences in the correlation with zBMI	Group differences in the correlation with zBMI								
Linear effect of development on correlation with	zBMI								
Insula*	R	95	45	21	-3	4.06			
Insula	R		42	15	-2	3.98			
Insula	R		33	24	0	3.70			
Children stronger negative correlation between BMI and activation than adults (post-hoc)									
Middle frontal gyrus	R	37	36	42	6	4.15			
Insula*	R	65	45	21	-3	3.92			
Inferior frontal gyrus opercular part	R		54	18	6	3.57			
Insula	R		33	24	0	3.44			

¹ Peaks (in MNI space) listed are statistically significant at the p < 0.05 level based cluster level corrections across the whole brain (individual voxel threshold = p < 0.001, cluster extent threshold k ≥ 21 , 3 × 3 x 3 mm voxels),

^{*} indicates p < 0.05 FWE corrected at cluster level; L, left; R, right.

To test Hypothesis 3 we used linear regression to examine whether there was an interaction between group and standardized BMI on the brain responses to unhealthy compared with healthy foods. Although no overall difference between the three groups was found, there was instead a linear effect of pubertal development on the correlation between standardized BMI and activation in the right anterior insula (Table 3, Figure 2). Post-hoc tests showed that there was a stronger correlation between zBMI and activation in the right middle frontal gyrus (dIPFC) and right anterior insula/frontal operculum in prepubertal children than in adults (Table 3). There were no statistically significant differences between pubertal children and adults or pubertal children and prepubertal children. For the sake of completeness, we report the results for the unhealthy compared with healthy food viewing contrast and vice versa per group and the correlation with BMI per group in Table S1 in the Supplementary information. Finally, PPI analyses were done to examine regions showing different correlation during the unhealthy compared to the healthy blocks and group differences and correlations with BMI. The clusters in the right dIPFC, where an effect of group was found, were used as seeds. An effect of group on the difference in connectivity with the right dIPFC (57, 12, 12) in response to unhealthy compared with healthy foods was found in the right precuneus (see Table S2). Posthoc analyses showed that this effect was driven by a stronger connectivity in adults than pubertal children. An effect of group on the difference in connectivity with the right dIPFC (33, 39, 21) in response to unhealthy compared with healthy foods was found in the left rolandic operculum and left superior temporal/supramarginal gyrus. Post-hoc analyses showed that this

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

effect was driven by a stronger connectivity in pubertal children than prepubertal children (see Table S2).

Figure 2. Group difference in the correlation with BMI and activation in the unhealthy > healthy contrast in the right anterior insula. Peaks (MNI) listed are statistically significant at the p < 0.05 level based cluster level corrections across the whole brain (individual voxel threshold = p < 0.001, cluster extent threshold $k \ge 21$, $3 \times 3 \times 3$ mm voxels).

4. Discussion

We examined in how far neural food cue reactivity varies with pubertal development and body mass index by comparing brain activation differences between prepubertal children, pubertal children and adults in response to viewing unhealthy and healthy food pictures. We found that pubertal children had weaker activation than adults in response to unhealthy compared to healthy food pictures in two areas in the right dIPFC. Furthermore, over the groups, standardized BMI correlated negatively with activation in response to unhealthy compared to healthy food pictures in the middle cingulum. BMI did not affect all groups to the same extent: there was a stronger negative correlation between BMI and activation in response to unhealthy

compared with healthy foods in prepubertal than adults in the right anterior insula and the right dIPFC.

Association with pubertal stage

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

Contrary to our Hypothesis 1, brain activation in inhibitory areas in response to unhealthy foods did not increase over adolescence. In fact, activation of the dIPFC, an area involved in inhibition, was higher in response to viewing healthy compared with unhealthy food pictures in both groups of children. Although there was no difference in activation between prepubertal children and adults, for pubertal children activation in the right dIPFC was stronger when viewing healthy compared to unhealthy foods, but for adults activation was stronger when viewing unhealthy compared to healthy foods. In contrast, in prepubertal children there was no difference in dIPFC activation between unhealthy and healthy food pictures. Previous studies have found both linear positive associations between development and dIPFC activation in response to rewarding cues (Giuliani & Pfeifer, 2015; Martin et al., 2019) and non-linear positive associations (Somerville et al., 2010). A study in adolescents showed that testosterone levels correlated negatively with dIPFC activation during a reward task and in girls estradiol was related to weaker connectivity between dIPFC and nucleus accumbens (Poon et al., 2019). This is in line with our findings that pubertal children seem to have lower dIPFC activation than prepubertal children in response to unhealthy food cues. Crone and Steinbeis (2017) suggested that the effects of development on dIPFC activation depend on the task. For tasks that depended on complex deliberative processes, dIPFC activation increased linearly over childhood to adulthood, while for more stimulus-driven tasks both increases and decreases in activation were found in different parts of the dIPFC. They suggest that this may reflect a

difference in strategy use (Crone & Steinbeis, 2017). The current study involved passive viewing (cue exposure) with instructions to pay attention due to a later recall task. This task could be viewed as stimulus-driven and so the differences in the activation of the dIPFC between pubertal children and adults may indicate different strategies for sustained attention or memory. However, it is difficult to determine this conclusively without a more explicit performance aspect to the task. However, studies using food choice paradigms have consistently shown the involvement of the dIPFC in food choice, with several relating higher dIPFC activation to healthier choices (Chen et al., 2018; van Meer et al., 2019; Petit et al., 2016). The dIPFC has been implicated in cognitive control, appetite regulation and response inhibition (Hare et al., 2011; Fregni et al., 2008, Menon et al., 2001). Recently, the question has been raised whether dIPFC activation in response to rewarding stimuli reflects cognitive control or rather value-based evidence accumulation (Hutcherson & Tusche, 2022). Taken together, pubertal children have lower right dIPFC activation in response to unhealthy food cues than adults. This could be due to increases in circulating sex hormones, brain development and changes in strategies deployed in stimulus-driven tasks. In light of the previous findings emphasizing that stronger dIPFC activation is related to healthier food choices, regardless of whether this reflects cognitive control or evidence accumulation, the stronger dIPFC activation during our task may indicate a greater susceptibility to unhealthy food cues especially for pubertal children. PPI analyses showed differences in connectivity between the right dIPFC clusters and areas involved in visual processing and attention (precuneus, rolandic operculum, superior temporal/supramarginal gyrus). This underscores the effect development may have on the processing of unhealthy food cues. Contrary to our hypothesis and previous findings (van

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

Meer et al., 2016), we did not find an association between development and precentral gyrus activation in response to unhealthy compared with healthy foods.

Association with body mass index

Body mass index was negatively correlated with activation in the middle cingulum in response to unhealthy compared to healthy foods, which aligns with previous work in which individuals with obesity had lower activation than individuals with normal weight in the middle cingulum in response to food compared with non-food images (Dimitropoulos et al., 2012). Previous research has highlighted the role of the middle cingulate gyrus in representing reward value as opposed to saliency (Litt et al., 2011). Activation in the middle cingulate gyrus has been found to be stronger in hungry than satiated states (Holsen et al., 2005) and stronger activation in response to high calorie compared with low calorie foods has been described in this area (English et al., 2017). More generally, the middle cingulum has an important role in attentional control (see Bubb et al., 2018 for a review). Taken together, this could indicate that lower activation in the middle cingulum in individuals with a higher BMI in response to unhealthy food pictures reflects altered reward value or attentional control towards unhealthy foods. In contrast to Hypothesis 2, higher body mass index was not related to lower activation in inhibitory areas in response to unhealthy compared to healthy food cues across age groups.

Effect of body mass over the course of pubertal development

In accordance with Hypothesis 3, the association between body mass and brain activation in response to unhealthy compared with healthy foods depended on development. The correlation between body mass index and right anterior insula activation in response to

unhealthy foods changed linearly over development: prepubertal children had a negative correlation between body mass and activation and right insula activation while this correlation was no longer there for pubertal children and adults. This is in line with Morys et al. (2023), who found in their meta-analysis that the correlation between body mass and insula activation became weaker with increased age (although they found this in the left insula). The insula is involved in taste processing and interoceptive awareness, i.e. the cognitive-emotional processing of bodily states, such as hunger/appetite signals from the body (Brooks et al., 2013). Additionally, comparisons between the groups showed a statistically significant difference in the dIPFC between prepubertal children and adults: in prepubertal children body mass correlated negatively with right dIPFC activation in response to unhealthy compared to healthy foods while in adults there was no correlation. Our previous study using the same task in a separate group of children and adults similarly found a negative correlation between body mass and dIPFC activation in children, but not adults (van Meer et al., 2016). Many studies have reported lower dIPFC activation in overweight and obesity (see Gluck et al., 2017 for a review; although a recent meta-analysis found no such differences (Morys et al. 2023). Adolescents who successfully maintained weight loss had stronger activation in the right dIPFC in response to viewing high- compared to low calorie foods (Jensen & Kirwan, 2015). In sum, right anterior insula and right dIPFC activation in response to unhealthy foods was correlated with body mass in prepubertal children but not pubertal children and adults. The negative correlation between body mass and anterior insula activation in response to unhealthy foods became linearly weaker over the development groups. This suggests that prepubertal children with higher body mass may be more susceptible to unhealthy food cues.

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

Strengths, limitations and future directions

The current study was performed in a large sample of 350 individuals over three European countries with a wide range of body mass. The design of including children and their parents ensures a gap between the children and adult groups, since the oldest child was 17 and the youngest adult 30. However, this could also be viewed as a weakness, since changes between 18 and 30 are unknown, and there is no such gap between the prepubertal and pubertal children. Ideally, future studies should have a longitudinal instead of a cross-sectional design to better untangle development over time from between person differences.

Conclusions

We determined the associations between pubertal development and body mass with neural reactivity to unhealthy food cues. Pubertal children had less activation in an area involved in cognitive control than adults in response to unhealthy foods. Across all developmental groups, individuals with a higher body mass had less activation in an area involved in attention and attentional control in response to unhealthy foods. Finally, the effect of body mass was depended on development: in prepubertal children body mass correlated negatively with activation in response to unhealthy foods in areas involved in interoceptive awareness and cognitive control while no such relationships were found in pubertal children or adults. Taken together, pubertal children and prepubertal children with a higher body mass index may be more susceptible to unhealthy food cues. This observation is particularly relevant given the absence of regulations governing unhealthy food marketing directed at children over the age of twelve (EU Pledge, 2023; Enright & Eskenazi, 2022). This is concerning in light of the rising

global prevalence of obesity. The implications of these findings underscore the importance of addressing the possible influence of unhealthy food cues on vulnerable populations, especially during critical developmental stages, to mitigate their adverse impact on public health.

Funding Sources:

This work was done as part of the I.Family Study (http://www.ifamilystudy.eu/). We gratefully acknowledge the financial support of the European Union within the Seventh RTD Framework Programme Contract No. 266044.

Declarations of interest:

433 none

Author contributions:

Floor van Meer: Formal analysis, Writing - Original Draft, Project administration. Laura N. van der Laan: Supervision, Writing - Review & Editing. Gabriele Eiben: Investigation, Resources, Writing - Review & Editing. Lauren Lissner: Resources, Funding acquisition, Writing - Review & Editing. Maike Wolters: Investigation, Resources, Writing - Review & Editing. Stefan Rach: Investigation, Resources, Writing - Review & Editing. Manfred Herrmann: Investigation, Resources, Writing - Review & Editing. Peter Erhard: Investigation, Resources, Writing - Review & Editing. Denes Molnar: Funding acquisition, Resources, Writing - Review & Editing. Roger A.H. Adan: Funding acquisition, Supervision, Writing - Review & Editing. Paul A.M. Smeets: Conceptualization, Funding acquisition, Supervision, Writing - Review & Editing.

References

Ahrens, W., Bammann, K., de Henauw, S., Halford, J., Palou, A., Pigeot, I., ... & IDEFICS consortium. (2016).

Cohort Profile: The transition from childhood to adolescence in European children—how I. Family extends the IDEFICS cohort. International Journal of Epidemiology, dyw317.

Batterink, L., Yokum, S., & Stice, E. (2010). Body mass correlates inversely with inhibitory control in response to food among adolescent girls: An fMRI study. NeuroImage, 52, 1696-1703.

- Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Trommer, B. L., Davenport, N. D., ... & Mesulam, M. M. (2003). Neural development of selective attention and response inhibition. NeuroImage, 20, 737-751.
- Booth, J. R., et al. (2003). Neural development of selective attention and response inhibition. Neuroimage, 20, 737-751.
- Brooks, S. J., Cedernaes, J., & Schiöth, H. B. (2013). Increased prefrontal and parahippocampal activation with reduced dorsolateral prefrontal and insular cortex activation to food images in obesity: a meta-analysis of fMRI studies. PloS one, 8(4), e60393.
- Brooks, S. J., Cedernaes, J., & Schiöth, H. B. (2013). Increased prefrontal and parahippocampal activation with reduced dorsolateral prefrontal and insular cortex activation to food images in obesity: A meta-analysis of fMRI studies. PLoS One, 8, e60393.
- Bruce, A. S., et al. (2010). Obese children show hyperactivation to food pictures in brain networks linked to motivation, reward and cognitive control. International Journal of Obesity, 34, 1494-1500.
- Bruce, A. S., Holsen, L. M., Chambers, R. J., Martin, L. E., Brooks, W. M., Zarcone, J. R., ... & Savage, C. R. (2010). Obese children show hyperactivation to food pictures in brain networks linked to motivation, reward and cognitive control. International Journal of Obesity, 34, 1494-1500.
- Bryden, A., Petticrew, M., Mays, N., Eastmure, E., & Knai, C. (2013). Voluntary agreements between government and business—a scoping review of the literature with specific reference to the Public Health Responsibility Deal. Health Policy, 110, 186-197.
- Bryden, A., Petticrew, M., Mays, N., Eastmure, E., & Knai, C. (2013). Voluntary agreements between government and business—a scoping review of the literature with specific reference to the Public Health Responsibility Deal. Health Policy, 110, 186-197.
- Bubb, E. J., Metzler-Baddeley, C., & Aggleton, J. P. (2018). The cingulum bundle: anatomy, function, and dysfunction. Neuroscience & Biobehavioral Reviews, 92, 104-127.
- Carskadon MA, Acebo C (1993) A self-administered rating scale for pubertal development J Adolesc Health 14:190-195.
- Charbonnier, L., van Meer, F., van der Laan, L. N., Viergever, M. A., & Smeets, P. A. (2016). Standardized food images: A photographing protocol and image database. Appetite, 96, 166-173.
- Chen, F., He, Q., Han, Y., & Gao, X. (2018). Increased BOLD signals in dIPFC is associated with stronger self-control in food-related decision-making. Frontiers in psychiatry, 9, 391723.
- Cole, T. J., & Lobstein, T. (2012). Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatric obesity, 7(4), 284-294.
- Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162-173.
- Crone, E. A., & Steinbeis, N. (2017). Neural perspectives on cognitive control development during childhood and adolescence. Trends in cognitive sciences, 21(3), 205-215.

- Davids, S., et al. (2010). Increased dorsolateral prefrontal cortex activation in obese children during observation of food stimuli. International Journal of Obesity, 34, 94-104.
- Davids, S., Lauffer, H., Thoms, K., Jagdhuhn, M., Hirschfeld, H., Domin, M., ... & van Elst, L. T. (2010). Increased dorsolateral prefrontal cortex activation in obese children during observation of food stimuli. International Journal of Obesity, 34, 94-104.
- Demos, K. E., Heatherton, T. F., & Kelley, W. M. (2012). Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. Journal of Neuroscience, 32, 5549-5552.
- Demos, K. E., Heatherton, T. F., & Kelley, W. M. (2012). Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. Journal of Neuroscience, 32, 5549-5552.
- Dimitropoulos, A., Tkach, J., Ho, A., & Kennedy, J. (2012). Greater corticolimbic activation to high-calorie food cues after eating in obese vs. normal-weight adults. Appetite, 58(1), 303-312.
- Drewnowski, A. (2010). The Nutrient Rich Foods Index helps to identify healthy, affordable foods. American Journal of Clinical Nutrition, 91, 1095S-1101S.
- Enright, M., & Eskenazi, L., (2022). Children's Food and Beverage Advertising Initiative & Children's Confection Advertising Initiative Annual Report 2021.
- EU Pledge, 2022 Monitoring report. EU Pledge, (2023).
- Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold.

 Magnetic Resonance in Medicine, 33, 636-647.
- Fregni, F., Orsati, F., Pedrosa, W., Fecteau, S., Tome, F. A., Nitsche, M. A., ... & Boggio, P. S. (2008). Transcranial direct current stimulation of the prefrontal cortex modulates the desire for specific foods. Appetite, 51(1), 34-41.
- Galbraith-Emami, S., & Lobstein, T. (2013). The impact of initiatives to limit the advertising of food and beverage products to children: A systematic review. Obesity Reviews, 14, 960-974.
- Galbraith-Emami, S., & Lobstein, T. (2013). The impact of initiatives to limit the advertising of food and beverage products to children: a systematic review. Obesity Reviews, 14, 960-974.
- Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., ... & Rapoport, J. L. (1999).

 Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience, 2, 861-863.
- Giuliani, N. R., & Pfeifer, J. H. (2015). Age-related changes in reappraisal of appetitive cravings during adolescence. NeuroImage, 108, 173-181.
- Gluck, M. E., Viswanath, P., & Stinson, E. J. (2017). Obesity, appetite, and the prefrontal cortex. Current obesity reports, 6, 380-388.
- Hare, T. A., Malmaud, J., & Rangel, A. (2011). Focusing attention on the health aspects of foods changes value signals in vmPFC and improves dietary choice. Journal of neuroscience, 31(30), 11077-11087.

- Hawkes, C., & Harris, J. L. (2011). An analysis of the content of food industry pledges on marketing to children. Public Health Nutrition, 14, 1403-1414.
- Hawkes, C., & Harris, J. L. (2011). An analysis of the content of food industry pledges on marketing to children. Public Health Nutrition, 14, 1403-1414.
- Hutcherson, C. A., & Tusche, A. (2022). Evidence accumulation, not 'self-control', explains dorsolateral prefrontal activation during normative choice. Elife, 11, e65661.
- Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex.

 Journal of Comparative Neurology, 387, 167-178.
- Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex.

 Journal of Comparative Neurology, 387, 167-178.
- Jensen, C. D., & Kirwan, C. B. (2015). Functional brain response to food images in successful adolescent weight losers compared with normal-weight and overweight controls. Obesity, 23(3), 630-636.
- Junghans, A. F., Hooge, I. T., Maas, J., Evers, C., & De Ridder, D. T. (2015). UnAdulterated—Children and adults' visual attention to healthy and unhealthy food. Eating Behaviors, 17, 90-93.
- Killgore, W. D., Young, A. D., Femia, L. A., Bogorodzki, P., Rogowska, J., & Yurgelun-Todd, D. A. (2003). Cortico-limbic responsiveness to high-calorie food images predicts weight status among women. International Journal of Obesity, 37, 1435-1442.
- Killgore, W., et al. (2013). Cortico-limbic responsiveness to high-calorie food images predicts weight status among women. International Journal of Obesity, 37, 1435-1442.
- Kishinevsky, F. I., Cox, J. E., Murdaugh, D. L., Stoeckel, L. E., Cook III, E. W., & Weller, R. E. (2012). fMRI reactivity on a delay discounting task predicts weight gain in obese women. Appetite, 58, 582-592.
- Kochs, S., Franssen, S., Pimpini, L., van den Hurk, J., Valente, G., Roebroeck, A., ... & Roefs, A. (2023). It is a matter of perspective: Attentional focus rather than dietary restraint drives brain responses to food stimuli. NeuroImage, 273, 120076.
- Lawrence, N. S., Hinton, E. C., Parkinson, J. A., & Lawrence, A. D. (2012). Nucleus accumbens response to food cues predicts subsequent snack consumption in women and increased body mass index in those with reduced self-control. Neuroimage, 63, 415-422.
- Litt, A., Plassmann, H., Shiv, B., & Rangel, A. (2011). Dissociating valuation and saliency signals during decision-making. Cerebral cortex, 21(1), 95-102.
- Lobstein, T., Jackson-Leach, R., Moodie, M. L., Hall, K. D., Gortmaker, S. L., Swinburn, B. A., & James, W. P. T. (2015). Child and adolescent obesity: Part of a bigger picture. The Lancet, 385, 2510-2520.
- Martin, R. E., Silvers, J. A., Hardi, F., Stephano, T., Helion, C., Insel, C., ... & Ochsner, K. N. (2019). Longitudinal changes in brain structures related to appetitive reactivity and regulation across development.

 Developmental cognitive neuroscience, 38, 100675.

- Mehta, S., et al. (2012). Regional brain response to visual food cues is a marker of satiety that predicts food choice. American Journal of Clinical Nutrition, 96, 989-999.
- Mehta, S., Melhorn, S. J., Smeraglio, A., & Tyagi, V. (2012). Regional brain response to visual food cues is a marker of satiety that predicts food choice. American Journal of Clinical Nutrition, 96, 989-999.
- Menon, V., Adleman, N. E., White, C. D., Glover, G. H., & Reiss, A. L. (2001). Error-related brain activation during a Go/NoGo response inhibition task. Human brain mapping, 12(3), 131-143.
- Morys, F., García-García, I., & Dagher, A. (2023). Is obesity related to enhanced neural reactivity to visual food cues? A review and meta-analysis. Social Cognitive and Affective Neuroscience, 18(1), nsaa113.
- Murdaugh, D. L., Cox, J. E., Cook III, E. W., & Weller, R. E. (2012). fMRI reactivity to high-calorie food pictures predicts short- and long-term outcome in a weight-loss program. Neuroimage, 59, 2709-2721.
- Murdaugh, D. L., Cox, J. E., Cook III, E. W., & Weller, R. E. (2012). fMRI reactivity to high-calorie food pictures predicts short-and long-term outcome in a weight-loss program. NeuroImage, 59, 2709-2721.
- Peeler, C., Kolish, E., Enright, M., & Burke, C. (2010). The children's food & beverage advertising initiative in action: A report on compliance and implementation during 2009.
- Peeler, C., Kolish, E., Enright, M., & Burke, C. (2010). The children's food & beverage advertising initiative in action: A Report On Compliance And Implementation During 2009.
- Petit, O., Merunka, D., Anton, J. L., Nazarian, B., Spence, C., Cheok, A. D., ... & Oullier, O. (2016). Health and pleasure in consumers' dietary food choices: Individual differences in the brain's value system. PloS one, 11(7), e0156333.
- Poon, J. A., Niehaus, C. E., Thompson, J. C., & Chaplin, T. M. (2019). Adolescents' pubertal development: Links between testosterone, estradiol, and neural reward processing. Hormones and behavior, 114, 104504.
- Pursey, K. M., Stanwell, P., & Callister, R. J. (2014). Neural responses to visual food cues according to weight status: A systematic review of functional magnetic resonance imaging studies. Frontiers in Nutrition, 1.
- Soetens, B., & Braet, C. (2007). Information processing of food cues in overweight and normal weight adolescents. British Journal of Health Psychology, 12, 285-304.
- Somerville, L. H., Jones, R. M., & Casey, B. J. (2010). A time of change: behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain and cognition, 72(1), 124-133.
- Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience, 2, 859-861.
- Stice, E., Spoor, S., Bohon, C., Veldhuizen, M. G., & Small, D. M. (2008). Relation of reward from food intake and anticipated food intake to obesity: A functional magnetic resonance imaging study. Journal of Abnormal Psychology, 117, 924-935.
- Stice, E., Spoor, S., Bohon, C., Veldhuizen, M. G., & Small, D. M. (2008). Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. Journal of Abnormal Psychology, 117, 924-935.

- Swinburn, B., et al. (2015). Strengthening of accountability systems to create healthy food environments and reduce global obesity. The Lancet, 385, 2534-2545.
- Swinburn, B., Kraak, V., Rutter, H., Vandevijvere, S., Lobstein, T., Sacks, G., ... & Kelly, B. (2015). Strengthening of accountability systems to create healthy food environments and reduce global obesity. The Lancet, 385, 2534-2545.
- Van der Laan, L. N., De Ridder, D. T. D., Viergever, M. A., & Smeets, P. A. M. (2012). Appearance matters: Neural correlates of food choice and packaging aesthetics. PLoS One, 7, e41738.
- Van der Laan, L. N., de Ridder, D. T., & Viergever, M. A. (2012). Appearance matters: Neural correlates of food choice and packaging aesthetics. PloS One, 7, e41738.
- van Meer, F., et al. (2016). Developmental differences in the brain response to unhealthy food cues: An fMRI study of children and adults. American Journal of Clinical Nutrition, 104, 1515-1522.
- van Meer, F., van der Laan, L. N., Charbonnier, L., Viergever, M. A., & Smeets, P. A. (2016). Developmental differences in the brain response to unhealthy food cues: An fMRI study of children and adults. American Journal of Clinical Nutrition, 104, 1515-1522.
- van Meer, F., van der Laan, L. N., Charbonnier, L., Viergever, M. A., & Smeets, P. A. (2019). Development and body mass inversely affect children's brain activation in dorsolateral prefrontal cortex during food choice.

 Neuroimage, 201, 116016.
- Werthmann, J., Roefs, A., Nederkoorn, C., Mogg, K., Bradley, B. P., & Jansen, A. (2015). Food through the child's eye: An eye-tracking study on attentional bias for food in healthy-weight children and children with obesity. Health Psychology, 34, 1123-1132.
- Yokum, S., Ng, J., & Stice, E. (2011). Attentional bias to food images associated with elevated weight and future weight gain: An fMRI study. Obesity, 19, 1775-1783.
- Yokum, S., Ng, J., & Stice, E. (2011). Attentional Bias to Food Images Associated With Elevated Weight and Future Weight Gain: An fMRI Study. Obesity, 19, 1775-1783.

Supplementary information

Supplementary Methods

Psychophysiological Interaction (PPI)

PPI analysis was conducted to identify regions showing different correlation during the unhealthy compared to the healthy blocks. The specific coordinates in the right dIPFC (57 12 12 and 33 39 21) were determined based on the effect of group on the difference between brain responses to unhealthy compared with healthy blocks. All analyses were done for both dIPFC clusters. First, for each participant, the BOLD time-series within an 8-mm sphere centered on the dIPFC ROI was extracted. Second, a general linear model was estimated for each participant, incorporating three regressors: the interaction between neural activity in the right dIPFC and the difference between unhealthy and healthy blocks convolved with the canonical HRF, the difference between unhealthy and healthy blocks convolved with the HRF and the extracted time-series from the dIPFC. Single-subject contrasts were then calculated after estimating the general linear model.

Third, group-level contrast images were generated based on the single-subject contrast values using one-sample t-tests, and group differences were examined one-way to compare prepubertal children, pubertal children and adults. A covariate was added for standardized BMI.

465 Supplementary Results

Table S1. Brain regions that show an effect for unhealthy compared with healthy food viewing per group and correlation with (z)BMI

COTTCIALION WILL (2) BIVII						
Brain region	Side	Cluster size	Х	У	Z	Z-value
Prepubertal children						
Unhealthy > Healthy						
Middle occipital gyrus	R	1238	33	-81	9	7.61
Inferior temporal gyrus	R		48	-63	-9	7.15
Middle occipital gyrus	R		30	-69	27	6.88
Inferior occipital gyrus	L	1724	-42	-69	-3	7.21
Inferior temporal gyrus	L		-45	-60	-9	7.01
Superior occipital gyrus	L		-24	-87	24	6.68
Precentral gyrus	R	156	42	3	30	5.53
Postcentral gyrus	R		51	-9	33	3.89
Postcentral gyrus	R		60	-6	39	3.44
Hippocampus	R	147	15	-9	-12	5.04
Hippocampus	R		24	-3	-18	4.49
Lingual gyrus	R		15	-36	-3	4.32
Postcentral gyrus	L	120	-48	-9	54	3.99
Precentral gyrus	L		-42	0	33	3.83
Postcentral gyrus	L		-45	-12	39	3.66
Negative correlation with zBMI						
Middle frontal gyrus	R	23	36	45	6	4.01
Insula	R	32	45	21	0	3.76
Inferior frontal gyrus opercular part	R		54	18	6	3.40
Pubertal children						
Healthy > Unhealthy						
Middle frontal gyrus	L	118	-39	39	24	5.20
Middle frontal gyrus	L		-27	33	24	4.13
Middle frontal gyrus	R	183	33	42	21	5.16
Middle frontal gyrus	R		39	36	33	4.12
Middle frontal gyrus	R		27	57	27	4.07

Supramarginal gyrus	R	325	63	-30	27	4.44
Rolandic operculum	R		60	-18	15	4.27
Supramarginal gyrus	R		54	-39	33	4.12
Inferior frontal gyrus opercular part	R	52	57	12	9	4.23
Middle cingulum	R	44	6	-33	45	4.21
Precuneus	R	78	9	-60	51	4.13
Precuneus	R		3	-51	57	3.54
Supramarginal gyrus	L	127	-63	-36	30	3.88
Supramarginal gyrus	L		-54	-21	24	3.78
Middle temporal gyrus	L		-54	-48	24	3.77
Middle frontal gyrus	R	60	27	9	45	3.74
Middle frontal gyrus	R		27	24	45	3.55
Superior frontal gyrus	R		21	15	54	3.41
Middle temporal gyrus	L	25	-57	-54	0	3.68
Unhealthy > Healthy						
Middle occipital gyrus	R	452	33	-84	15	6.51
Inferior temporal gyrus	R		48	-60	-9	5.96
Middle occipital gyrus	R		27	-72	30	4.93
Middle occipital gyrus	L	183	-39	-87	9	4.91
Inferior occipital gyrus	L		-36	-78	-3	4.44
Middle occipital gyrus	L		-33	-90	18	4.42
Fusiform gyrus	R	68	30	-45	-15	4.57
Fusiform gyrus	R		30	-60	-3	3.48
Hippocampus	R	26	21	-3	-18	4.09
Adults						
Healthy > Unhealthy						
Middle occipital gyrus	L	32	-12	-99	3	6.15
Precuneus	L	84	-6	-57	57	4.63
Thalamus	R	53	21	-39	15	4.59
Thalamus	R		12	-30	18	3.94
Medial frontal gyrus orbital part	R	110	12	48	-3	4.52
Middle cingulum	R	298	6	-36	45	4.46

Precuneus	R		9	-63	30	4.42
Middle cingulum	L		-9	-33	42	4.26
Supramarginal gyrus	L	29	-60	-33	30	4.11
Supramarginal gyrus	L		-63	-33	39	3.91
Unhealthy > Healthy						
Inferior temporal gyrus	R	2859	48	-60	-9	Inf
Middle occipital gyrus	R		33	-84	15	Inf
Middle occipital gyrus	R		39	-84	3	Inf
Inferior frontal gyrus opercular part	R	606	45	9	24	7.34
Inferior frontal gyrus triangular part	R		48	30	21	5.89
Inferior frontal gyrus triangular part	R		54	21	15	4.86
Insula	R	159	33	24	-3	6.30
Inferior frontal gyrus orbital part	R		30	33	-9	4.92
Inferior frontal gyrus orbital part	R		45	24	-6	4.20
Supplementary motor area	L	149	-6	15	54	5.58
Supplementary motor area	L		-3	24	51	5.30
Supplementary motor area	R		9	21	48	4.29
Insula	L	630	-30	24	0	5.17
Inferior frontal gyrus opercular part	L		-42	6	27	4.99
Precentral gyrus	L		-45	0	45	4.83
Medial superior frontal gyrus	L	57	-6	51	36	4.54
Superior frontal gyrus	L		-12	57	27	3.71
Hippocampus	R	137	24	-12	-12	4.43
Putamen	R		33	-9	-6	4.38
Amygdala	R		33	0	-21	4.13
Hippocampus	L	36	-21	-9	-18	4.40
Paracentral lobule	R	66	6	-27	60	4.29
Precentral gyrus	R		15	-27	63	3.79
Paracentral lobule	L		-6	-24	54	3.71
Precentral gyrus	R	26	36	-3	48	4.15
Precentral gyrus	R		36	-12	48	3.44

Table S2. Psychophysiological interaction with dIPFC seeds for the contrast unhealthy compared to healthy foods

Brain region	Side	Cluster size	х	У	Z	Z-value ¹
Seed 57 12 12						
Effect of group						
Precuneus*	R	74	15	-63	30	3.84
Precuneus	R		45	21	6	3.93
Seed 33 39 21						
Effect of group						
Rolandic operculum	L	21	-57	6	6	4.18
Superior temporal gyrus*	L	38	-63	-12	12	3.60
Supramarginal gyrus	L		-57	-21	15	3.57

¹ Peaks (in MNI space) listed are statistically significant at the p < 0.05 level based cluster level corrections across the whole brain (individual voxel threshold = p < 0.001, cluster extent = 22 voxels, 3 × 3 x 3 mm voxels, * indicates p < 0.05 FWE corrected at cluster level); L, left; R, right.

¹ Peaks (in MNI space) listed are statistically significant at the p < 0.05 level based cluster level corrections across the whole brain (individual voxel threshold = p < 0.001, cluster extent = 22 voxels, 3 × 3 x 3 mm voxels); L, left; R, right.