Лекция 3: проклятие размерности, переобучение, оценка и выбор модели

Пример (Python)

Data Set Characteristics:

```
Number of
              442
Instances:
Number of
              First 10 columns are numeric predictive values
Attributes:
Target:
              Column 11 is a quantitative measure of disease progression one year after baseline
Attribute
               • age age in years
Information:
               sex

    bmi body mass index

                                                                    plt.scatter(range(len(y test)), y test, color="blue")
               • bp average blood pressure
               • s1 tc, total serum cholesterol
                                                                    plt.plot(KNN.predict(X_test), color="green")
               • s2 ldl, low-density lipoproteins
                                                                    plt.xlim([100, 150])
               • s3 hdl, high-density lipoproteins

    s4 tch, total cholesterol / HDL

               • s5 ltg, possibly log of serum triglycerides level
               • s6 glu, blood sugar level
```

from sklearn.neighbors import KNeighborsRegressor
from sklearn.datasets import load_diabetes

```
N = 200
data = load_diabetes()
X, X_test = data.data[:N], data.data[N:]
y, y_test = data.target[:N], data.target[N:]

# weights="uniform" is default
```

```
# weights="uniform" is default
# weights="distance" is for KWNN
# weights as user function: distances -> weight (implement DAN)
KNN = KNeighborsRegressor(n_neighbors=5, weights="distance")
KNN.fit(X, y)
pass
```


Пример (Python)

```
KNN = KNeighborsRegressor(n_neighbors=3, weights="distance")
KNN.fit(X, y)
y_pred=KNN.predict(X_test)
rs=pd.DataFrame([y_pred, y_test]).T
rs.sort_values(1,inplace=True)
plt.scatter(range(len(rs[0])), [rs[0]], color="blue")
plt.plot(range(len(rs[1])),rs[1], color="green")
```

```
350 -

300 -

250 -

200 -

150 -

100 -

50 -

0 50 100 150 200 250
```

```
KNN = KNeighborsRegressor(n_neighbors=30, weights="distance")
KNN.fit(X, y)
y_pred=KNN.predict(X_test)
rs=pd.DataFrame([y_pred, y_test]).T
rs.sort_values(1,inplace=True)
plt.scatter(range(len(rs[0])), [rs[0]], color="blue")
plt.plot(range(len(rs[1])),rs[1], color="green")
```


м

Свойства метрических методов

■ Основные свойства:
□ «Ленивая модель» - не надо ничего обучать
□ Обязательно нужна хорошая метрика и значимые признаки
 □ Есть критические метапараметры, определяющие сложность модели (гладкость границы или изолиний)
■ Достоинства:
□ Простота реализации
□ Один из самых точных методов (при корректной настройке)
□ Легко адаптируется под сложные типы «откликов», включая ранжирование, многотемность и т.д.
□ Можно интегрировать экспертные знания, задавая веса у примеров, или параметры у метрики
■ Недостатки:
«черный ящик» - результат не интерпретируемый совсем
□ Достаточно вычислительно трудоемкие
□ «Проклятие размерности»

Проклятие размерности

- Суть проблемы: экспоненциальный рост числа необходимых наблюдений при линейном росте размерности пространства
- Пример: ближайшие соседи как правило расположены далеко при больших размерностях пространства признаков.

Например, нам нужно получить значительную часть выборки, чтобы сгладить границу и снизить случайность в усредненном прогнозе, пусть 10%. 10% соседей для случая больших размерностей не может быть локализована, так что мы уже не можем оценить отклик на основе локального усреднения.

Модельный пример, демонстрирующий проклятие размерности

- r=K/N
- \blacksquare $E_p(r)=r^{1/p}$
- \blacksquare E₁₀(0.01)=0.63
- \blacksquare E₁₀(0.1)=0.8

Сложность модели

Сложность модели

Проблема недообучения и переобучения

Модельный пример.

- Красные точки наблюдения, синяя поверхность истинная зависимость $income = f(education, seniority) + \epsilon$
- Желтая поверхность линейная модель

$$\hat{f}_L(ext{education}, ext{seniority}) = \hat{eta}_0 + \hat{eta}_1 imes ext{education} + \hat{eta}_2 imes ext{seniority}$$

Плохая точность приближения

Проблема недообучения и переобучения

Модельный пример.

- Более сложные модели (сплайны или полиномиальные регрессии или нейронные сети или еще что-то)
- Справа модель не допускает ошибок на обучающем наборе.
- Это хорошо? Нет!

w

Недообучение vs переобучение

Основная п	роблема	машинного	обу	учения!!!
			_	

- Недообучение низкое качество (большой эмпирический риск) на тренировочном наборе и на этапе скоринга
- □ Переобучение высокое качество (маленький эмпирический риск) на тренировочном наборе и плохое качество на этапе скоринга (большой эмпирический риск)

■ Причины:

- □ Сложность модели: например, для параметрических моделей много степеней свободы (параметров модели) или слишком сложное уравнение или большая норма вектора параметров
- Плохое качество данных: шум и выбросы, малый объем или несбалансированность тренировочной выборки
- □ Зависимости в пространстве признаков

■ Обобщающая способность:

- □ способность алгоритма «качественно» прогнозировать отклик для объектов одной природы (из одной генеральной совокупности), которых не было в тренировочном наборе
- □ Как оценить?

v

Борьба с переобучением

- Ограничить сложность модели (например, регуляризация)
- Преобразовать данные (удалять шум, уменьшать размерность и тд.)
- Использовать теоретические оценки обобщающей способности для некоторых методов обучения (обычно бесполезно, т.к. это оценки сверху)
- Эмпирически оценивать обобщающую способность с помощью тестовой выборки (или процедуры, имитируя проверку на тестовой выборке):
 - Строим модель на обучающем наборе данных и хотим, чтобы она была наилучшей.
 - \square Можем взять, например, квадратичную функцию потерь и оценить ее через среднеквадратичную ошибку MSE_{Tr}
 - □ Оценка может быть смещена в сторону более сложных моделей.
 - \square Поэтому мы вычисляем оценку MSE_{Te} , используя тестовый набор данных, который не участвовал в обучении модели

Оценка качества модели (сложная зависимость, много шума)

- Кривая, обозначенная черным цветом, истинные значения.
- Красная кривая на правом рисунке MSE_{Te} , серая кривая MSE_{Tr} .
- Оранжевая, голубая и зеленая кривые соответствуют подгонке моделей различной сложности.
- Простые модели недообучены, сложные модели переобучены

Оценка качества модели (простая зависимость, много шума)

- Простые модели дают высокую обощающую способность
- Сложные модели переобучены

7

Оценка качества модели (сложная зависимость, мало шума)

- Простые модели недообучены
- Сложные обладают хорошей обобщающей способностью

1

MSE декомпозиция

$$MSE = E[(a(x) - y(x))]^2 = E[a(x)^2] + E[y(x)^2] - E[2a(x)y(x)] =$$
 $= (Var(a(x)) + (Var(y(x)) + (E[a(x)] - E[y(x)])^2)$ Дисперсия прогноза Дисперсия шума (не зависит от модели)

Компромисс: Дисперсией vs Смещение!!!!

Сложнее модель => точнее приближение => меньше смещение +++

Сложнее модель => больше параметров => больше дисперсия --
... и наоборот ...

Поиск баланса между точностью и сложностью = поиск компромисса между смещением и дисперсией

٠,

MSE декомпозиция (примеры)

$$y = y(x) + \varepsilon$$

y – наблюдения отклика, y(.) – истинная зависимость, ε – шум $N(0,\sigma)$

■ KNN (k-число соседей):

$$MSE = \sigma^2 + \frac{\sigma^2}{k} + \left[\frac{1}{k} \sum_{i \in N_k(x)} E[a(x)] - y(x)\right]^2$$

Линейная регрессия (р-размерность пространства признаков, I – размер выборки):

$$MSE = \sigma^2 + \frac{p}{l}\sigma^2 + \frac{1}{l}\sum_{x} [E[a(x)] - y(x)]^2$$

Компромис отклонения и смещения для трех примеров

M

Качество на обучающем и тестовом наборе

Prediction Error

Low High

Валидация, кросс-валидация и бутстреппинг

- Эти методы позволяют:
 - оценить ошибки прогнозирования тестового набора
 - □ найти оценки параметров модели
 - □ выбрать лучшую модель
- Различия между ошибкой тестирования и ошибкой обучения:
 - □ Ошибка тестирования это усредненная ошибка, которая возникает в результате применения модели машинного обучения для прогнозирования отклика на новом наблюдении, которое не было задействовано в процессе обучения.
 - Ошибка обучения вычисляется после применения алгоритма машинного обучения к наблюдениям, используемым в обучении.

м

Применение валидационного набора

 Разделим случайным образом имеющийся набор образцов на две части: обучающую и валидационную выборки.

- Построим модель на обучающем наборе и используем ее для прогнозирования откликов наблюдений в валидационном наборе.
- Полученная ошибка на валидационном множестве дает оценку тестовой ошибки.

$$HO(\mu, Z, Z_{val}) = Q(\mu(Z \backslash Z_{val}), Z_{val})$$

Использование валидационного набора данных

Training Data inputs target includes a limit of the control of t

Основные методы генерации валидационного набора:

- Случайная выборка
- Стратифицированная выборка (сохраняем распределение выбранных переменых)
- Кластерная выборка (сохраняем пропорции кластеров)

Оценка моделей

Training Data

Validation Data

Оценка качества моделей на валидационном наборе

Сложность Валидационная модели оценка

Выбор модели

Training Data

Validation Data

Самая простая модель среди самых лучших на валидационном наборе

Сложность Валидационая модели оценка

Пример (Python)

```
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
```

```
plt.hist(iris.target, color="red")
plt.hist(y_train, color="green")
plt.hist(y_test, color="blue")
pass
```

Для кластерной выборки передаем в качестве stratify метки кластеров

Пример

- Хотим сравнить регрессионные модели с разными степенями полиномима
- Разделим случайным образом 392 наблюдения на две группы: обучающий набор, содержащий 196 объектов и валидационный набор, содержащий оставшиеся 196 объектов.

Слева показано одиночное разбиение, справа - множественное

Недостатки подхода применения валидационного набора

- Если плохое разбиение:
 - □ Валидационная оценка ошибки тестирования может сильно варьироваться в зависимости от того, какие именно наблюдения включены в обучающий наборе, а какие в валидационный.
- Не вся информация используется при обучении:
 - □ При валидационный подходе только подмножество наблюдений (те, которые включены в обучающий набора, а не в валидационный) используются для построения модели.
- Чрезмерный оптимизм:
 - □ Ошибка на валидационном наборе может иметь тенденцию переоценивать ошибку тестирования

M

Кросс-валидация

- *Широко используемый подход* для оценки ошибки тестирования.
- Оценки могут быть использованы для:
 - □ выбора оптимальной модели,
 - □ оценки тестовой ошибки результирующей выбранной модели.
- Идея разделить данные на *K* частей равного размера. Мы удаляем часть *k*, строим модель на оставшихся частях, а затем получаем прогнозы для удаленной *k*-ой части.

Validation Train Train Train Train

• Это делается в свою очередь для каждой части k = 1, 2, ..., K, а затем результаты объединяются.

٧

Кросс-валидация для оценки ошибки

Обозначим К частей как $Z_1, ..., Z_K$, где Z_k - наблюдения в части
 $k.\ l_k$ - наблюдений в части k, удобно брать $l_k = l/K$

■ Вычислим: $CV_Z(\mu) = \sum_{k=1}^K \frac{l_k}{l} Q(\mu(Z \backslash Z_k), Z_k)$

■ При K = l имеем l папок или кросс-валидацию с попеременным исключением одного наблюдения — скользящий контроль ($leave-one\ out\ cross-validation,\ LOOCV$).

Кросс-валидация для оценки метапараметров (мета-обучение) и выбора модели

- Задают стратегию перебора вариантов метапараметров
- Запускают кросс-валидацию для разных значений метапараметров
- Рассчитывают кросс-валидационные ошибки для каждого варианта
- Выбирают лучшее значение метапараметра по кроссвалидационной ошибке
- Перестраивают модель на всей выборке с этим значением метапараметра

Кросс-валидация и валидация для выбора метапараметров (мета-обучение)

AutoML:

- □ Поиск по решетке
- □ Случайный поиск
- □ Латинский гиперкуб
- Эволюционные и генетические алгоритмы поиска
- □ «Мета» оптимизация
- □ Байесовская оптимизация

Оценка качества:

 □ Не обязательно (и даже как правило) оценка качества для выбора модели совпадает с функцией потерь для обучения модели

Пример (Python)

from sklearn.utils import resample

X, y = fetch_california_housing(return_X_y=True, as_frame=True)
X

	Medinc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25
20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48	-121.09
20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	-121.21
20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	-121.22
20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43	-121.32
20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37	-121.24

Пример – Grid Search (Python)

```
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.datasets import fetch_california_housing
X, y = fetch_california_housing(return_X y=True)
N = 5000
X, y = X[:N], y[:N]
X.shape, y.shape
((5000, 8), (5000,))
scaler = StandardScaler()
VT = VarianceThreshold() # Preprocessing
KNN = KNeighborsRegressor() # Regressor
# Combined model - encapsulates all stages
model = Pipeline([("scaler", scaler), ("VT", VT), ("KNN", KNN)])
```

Пример – Grid Search (Python)

```
# Parameters to cycle through
# Pipeline parameters are passed as <STAGE> <PARAMETER NAME>
parameters = {"KNN__n_neighbors": range(2, 20),
              "VT threshold": [0, 1]}
# 5-fold cross-validation
GSCV = GridSearchCV(model, parameters, cv=5)
GSCV.fit(X, y)
pass
GSCV.best params
{'KNN__n_neighbors': 4, 'VT__threshold': 0}
pred = GSCV.predict(X) # GSCV is equal to the best estimator
```

M

Пример – Grid Search (Python)

```
plt.scatter(*pd.DataFrame(GSCV.cv_results_["params"]).T.values, c=GSCV.cv_results_["mean_test_score"])
plt.gcf().set_size_inches(8, 2)
```


M

Пример – Случайный поиск (Python)

```
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint, uniform
```

Пример – Случайный поиск (Python)

```
RSCV.best_params_
{'KNN_n_neighbors': 4, 'VT_threshold': 0.5513147690828912}

pred = RSCV.predict(X) # RSCV is equal to the best estimator
```

plt.scatter(*pd.DataFrame(RSCV.cv_results_["params"]).T.values, c=RSCV.cv_results_["mean_test_score"])
plt.gcf().set_size_inches(8, 2)

Пример – Отбор (Python)

```
from sklearn.experimental import enable_halving_search_cv # Required import
from sklearn.model selection import HalvingGridSearchCV, HalvingRandomSearchCV
model = Pipeline([("scaler", scaler),
                  ("VT", VarianceThreshold()),
                  ("KNN", KNeighborsRegressor())])
distributions = {"KNN__n_neighbors": randint(2, 20),
                 "VT_threshold": uniform(0, 1)}
HRSV = HalvingRandomSearchCV(model, distributions, cv=5,
                             factor=2, # Candidate selection cut-off
                             # Resource increasing during selection:
                             resource="n samples",
                             min_resources=100)
HRSV.fit(X, y)
pass
```

.

Пример – Отбор (Python)

Размер отвечает за число семплов

Бутстрэппинг

■ Будет на лекции про беггинг ансамбли ...