Willingness-to-pay for Warnings: Some Tables

A. Gaduh, P. McGee and A. Ugarov

November 1, 2021

Research Question

- How much do people value alerts (signals) about potential preventable threats?
- How do signal's probabilistic characteristics affect the willingness-to-pay for it and the welfare gains from using it?
- Applications:
 - Natural disaster warnings (tornados, floods, earthquakes)
 - Medical tests for treatable conditions
 - Investing in research on likelihood of catastrophic events (rogue Al, global warming, pandemics)
- Note: most real-life applications provide little practice with using the signal

Overview of the Experiment

- An insurance experiment:
 - ullet Two states of the world: bad $(\omega=1)$ and good $(\omega=0)$
 - Probability of a bad state is $P(\omega = 1) = \pi$
 - Bad state \implies loss of \$L
 - ullet A perfectly protective insurance can be purchased for $\$
- Subject can purchase a signal s before purchasing the insurance:
 - A signal is characterized by its true-positive ($P(s=1|\omega=1)$) and true-negative rates ($P(s=0|\omega=0)$)

Research objective

How do signal characteristics affect the WTP?

If losses are rare $(\pi L << c)$

- Theoretically, what should be the WTP for a signal?
- If bad states are a priori rare ($\pi L << c$) \implies never protect without a signal
- The theoretical WTP b for an expected utility maximizer given a signal s is a solution b^* to the following:

$$P(s=1)u(Y_0 - b^* - c) + \pi P(s=0|\omega=1)u(Y_0 - b^* - L) +$$
$$+(1-\pi)P(s=0|\omega=0)u(Y_0 - b^*) = (1-\pi)u(Y_0) + \pi u(Y_0 - L)$$

A risk-neutral agent then pays:

$$b^* = \pi(1 - P(s = 0 | \omega = 1))L - P(s = 1)c$$

- The formulas become more complicated if subjects can protect without a signal (bad state are not rare enough)
- The theoretical WTP b for an expected utility maximizer given a signal s is a solution b^* to the following:

$$P(s=1)u(Y_0-b^*-c)+\pi P(0|1)u(Y_0-b^*-L)+(1-\pi)P(0|0)u(Y_0-b^*)=$$

$$=\min[(1-\pi)u(Y_0)+\pi u(Y_0-L),u(Y_0-c)]$$

A risk-neutral agent then pays:

$$b^* = \min[\pi L, c] - \pi(1 - P(s = 0 | \omega = 1))L - P(s = 1)c$$

Hypotheses

- Conditional on the signal's value for risk-neutral subjects, false positive and false negative rates reduce the perceived value of the signal (WTP)
- 2 Conditional on the signal's value for risk-neutral subjects, false positive and false negative rates increase expected costs
- Extra: how much of these disrepancies result from belief updating issues or risk aversion?

WTP for signals

• Higher average WTP for more valuable signals

WTP for a signal vs predicted value

WTP for the Signal

• Extra effect of false positive and false negative rates

Table: WTP for Information

	(1)	(2)	(3)	(4)
	OLS	OLS	OLS	OLS
value	.475***	.24**	.119	.109
	(5.1)	(2.2)	(0.9)	(8.0)
Prior prob.		1.76***	1.85***	1.86***
		(2.7)	(2.8)	(2.8)
honest_treatment		.759***		.306
		(2.7)		(1.0)
False neg. rate			-2.13***	-1.64**
			(-2.8)	(-2.1)
False pos. rate			-2.34***	-1.83***
			(-3.5)	(-3.0)
Constant	.54***	.214	1.19***	.981**
	(3.6)	(0.9)	(3.1)	(2.4)
Observations	150	150	150	150
Adjusted \mathbb{R}^2	0.14	0.21	0.22	0.22

t statistics in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

WTP for the Signal (Risk Aversion)

 Does accounting for risk aversion based on blind protection choices helps to explain WTP?

Table: WTP for Information (Accounting for Risk Aversion)

·	(1)	(2)	(3)	(4)	(5)
	OLS	OLS	OLS	OLS	OLS
value	.475***				
	(5.1)				
value_ra		.236**	.0615	.0615	112
		(2.1)	(0.4)	(0.4)	(-0.7)
honest_treatment			.734*	.734*	.132
			(1.7)	(1.7)	(0.3)
False neg. rate					-2.92**
					(-2.1)
False pos. rate					-2.13 ^{**}
•					(-2.3)
Constant	.54***	.793***	.886***	.886***	2.02***
	(3.6)	(3.6)	(3.8)	(3.8)	(3.5)
Observations	150	78	78	78	78
Adjusted \mathbb{R}^2	0.14	0.04	0.07	0.07	0.09

t statistics in parentheses

^{*} n < () 1() ** n < () ()5 *** n < ()

A. Gaduh, P. McGee and A. Ugarov

WTP for the Signal (Uniform Risk Aversion)

 Risk aversion measurements are noisy. What if we assume the same risk aversion for everybody?

θ	R^2
0	.17
0.5	.15
1	.1
1.5	.07
Observations	150

Actual Costs vs Theoretical Costs

- Calculate actual costs based on decisions made in the Informed Protection treatment and actual posterior probabilities of losses.
- Each reported participant's strategy s is a tuple of numbers (r_w, r_b) representing protection responses correspondingly to white and black hints
- Then the expected cost of each decision are:

$$EC(s) = \pi(P(0|1)(1 - r_w) + P(1|1)(1 - r_b))L +$$

$$+ (P(s = 0)r_w + P(s = 1)r_b)c$$

 Regress expected costs on minimal theoretical costs and other signal characteristics

Actual Costs vs Theoretical Costs

Table: Actual Exp. Costs vs Theoretical Costs

(1) OLS 1.04***	(2) OLS	(3) OLS	(4) FF	(5) FE	(6)
		OLS	FF		
1.04***			. –	ГС	FE
	.842***	.592	1.04***	.879***	1.13***
(9.4)	(4.3)	(1.3)	(10.7)	(4.1)	(9.3)
	-2.19	-3.69		-2.07	
	(-1.1)	(-1.2)		(-1.1)	
		-2.68			696
		(-1.6)			(-0.6)
		.713			2.51
		(0.4)			(1.4)
888***	733**	662**	875***	684***	918***
(-3.3)	(-2.6)	(-2.2)	(-4.0)	(-3.3)	(-4.3)
150	150	150	150	150	150
0.34	0.35	0.36	0.41	0.42	0.43
	(9.4) 888*** (-3.3) 150	-2.19 (-1.1) 888***733** (-3.3) (-2.6) 150 150	(9.4) (4.3) (1.3) -2.19 -3.69 (-1.1) (-1.2) -2.68 (-1.6) .713 (0.4)888***733**662** (-3.3) (-2.6) (-2.2) 150 150 150	(9.4) (4.3) (1.3) (10.7) -2.19 -3.69 (-1.1) (-1.2) -2.68 (-1.6) .713 (0.4)888***733**662**875*** (-3.3) (-2.6) (-2.2) (-4.0) 150 150 150 150	(9.4) (4.3) (1.3) (10.7) (4.1) -2.19 -3.69 -2.07 (-1.1) (-1.2) (-1.1) -2.68 (-1.6) .713 (0.4)888***733**662**875***684*** (-3.3) (-2.6) (-2.2) (-4.0) (-3.3) 150 150 150 150 150

t statistics in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Additional Complementary Tables

- Factors affecting informed protection responses
- How well do participants update their beliefs?

Informed Protection: Correlation

Table: Informed Protection

Table. Illioilled i fotection					
	(1)	(2)	(3)	(4)	
	All	All	Smart	Smart	
Posterior prob.	.663***	.114	.692***	.126	
	(8.5)	(0.9)	(9.4)	(8.0)	
Prior prob.		.467***		.519***	
		(3.5)		(3.1)	
Gremlin says Black		.497***		.506***	
		(5.8)		(5.0)	
Constant	.235***	.0872**	.233***	.0678	
	(7.3)	(2.2)	(7.7)	(1.6)	
Observations	300	300	228	228	
Adjusted R^2	0.35	0.41	0.36	0.42	

t statistics in parentheses

 $^{^{\}ast}$ p < 0.10 , ** p < 0.05 , *** p < 0.01

Informed Protection: Determinants

Table: Informed Protection: Response to Reported Beliefs

	(1)	(2)	(3)
	All	All	Smart
Belief	.746***	.358**	.462**
	(7.8)	(2.4)	(2.5)
Posterior prob.		.424***	.367**
		(3.5)	(2.6)
Constant	.206***	.189***	.178***
	(5.3)	(4.8)	(4.6)
Observations	300	300	228
Adjusted R^2	0.32	0.38	0.40

t statistics in parentheses

 $^{^{\}ast}$ p < 0.10 , ** p < 0.05 , *** p < 0.01

Informed Protection: Do Subject's Beliefs Matter?

Table: Informed Protection: Response to Reported Beliefs

	(1)	(2)	(3)
	All	All	Smart
Belief	.746***	.358**	.462**
	(7.8)	(2.4)	(2.5)
Posterior prob.		.424***	.367**
		(3.5)	(2.6)
Constant	.206***	.189***	.178***
	(5.3)	(4.8)	(4.6)
Observations	300	300	228
Adjusted R^2	0.32	0.38	0.40

t statistics in parentheses

 $^{^{\}ast}$ p < 0.10 , ** p < 0.05 , *** p < 0.01

Belief Updating

- A bit more correlation with actual posterior probabilities!
- Even more if we exclude everybody scoring less than 7 out of 9 quiz questions

Belief Updating: Correlation

Table: Belief Elicitation: Belief vs Posterior				
	(1)	(2)	(3)	
	All	Not_honest	Good quiz	
Posterior prob.	.649***	.68***	.477***	
	(16.6)	(15.6)	(8.5)	
Constant	.138***	.128***	.212***	
	(9.7)	(7.9)	(10.5)	
Observations	300	228	200	
Adjusted R^2	0.55	0.57	0.34	

t statistics in parentheses

 $^{^{\}ast}$ p < 0.10 , ** p < 0.05 , *** p < 0.01

What Affects Beliefs?

lable: Beliet	Elicitation:	Determ	ınants
	(1)	(2)	(3)
	OLS	FE	Smart, FE
Posterior prob.	.0528	.114	.126
	(0.4)	(0.9)	(8.0)
Prior prob.	.347**	.467***	.519***
	(2.0)	(3.5)	(3.1)
Gremlin says Black	.542***	.497***	.506***
	(5.3)	(5.8)	(5.0)
Constant	.123**	.0872**	.0678

(2.3)

300

0.34

t statistics in parentheses

Observations

 $\mathsf{Adjusted}\ R^2$

(2.2)

300

0.41

(1.6)

228

0.42

 $^{^{\}ast}$ p < 0.10 , ** p < 0.05 , *** p < 0.01

Belief Updating: Decomposition

• Posterior probability $\mu = P(B|S=x)$ that the ball is black conditional on a hint S=x can be written as:

$$\ln\left(\frac{\mu}{1-\mu}\right) = \lambda_0 + S_B + S_W$$

- With $\lambda_0 \equiv \ln(p/(1-p))$ representing (transformed) prior beliefs
- And S_B , S_W describing the effect of new evidence:

$$S_B \equiv I(S = B) \ln(P(s = B|B)/P(s = B|W))$$

 $S_W \equiv I(S = W) \ln((1 - P(s = B|B))/(1 - P(s = B|W))$

Belief Updating: Decomposition

Table: Belief Elicitation: Decomposition				
	(1)	(2)	(3)	
	OLS	FE	Smart, FE	
lt_prior	.178	.205**	.231**	
	(1.4)	(2.5)	(2.2)	
signalB	0835	.735**	.988**	
	(-0.2)	(2.5)	(2.5)	
signalW	.818***	0	0	
	(2.8)	(.)	(.)	
Constant	.332	471**	577**	
	(0.9)	(-2.7)	(-2.6)	
Observations	68	68	52	
Adjusted \mathbb{R}^2	0.16	0.20	0.25	

t statistics in parentheses

 $^{^{\}ast}$ p<0.10, ** p<0.05, *** p<0.01