Grupos Hungerford

Pablo Brianese

30 de agosto de 2021

Teorema 1. Si G es un monoide, entonces el elemento identidad e es único. Si G es un grupo, entonces

- 1. cc = c implica c = e, para todo $c \in G$;
- 2. para todo $a, b, c \in G$, ab = ac implica b = c y ba = ca implica b = c (cancelación a izquierda y a derecha);
- 3. para cada $a \in G$, el elemento inverso a^{-1} es único;
- 4. para cada $a \in G$, $(a^{-1})^{-1} = a$;
- 5. para $a, b \in G$, $(ab)^{-1} = b^{-1}a^{-1}$:
- 6. para $a, b \in G$, las ecuaciones ax = b e ya = b tienen soluciones únicas en G: $x = a^{-1}b$ e $y = ba^{-1}$.

Demostración. Si G es un monoide y e, e' son identidades bilaterales, entonces e = ee' = e'.

Demostración. 1. Porque e es la identidad $c = cc \Rightarrow ce = (cc)e = cc$. Por la existencia de inversos en el grupo, podemos decir que $ce = cc \Rightarrow c^{-1}(ce) = c^{-1}(cc)$. La asociatividad de la operación del grupo implica $c^{-1}(ce) = c^{-1}(cc) \Rightarrow (c^{-1}c)e = (c^{-1}c)c$. Por definición del inverso c^{-1} , se sigue $(c^{-1}c)e = (c^{-1}c)c \Rightarrow ee = ec$. Nuevamente, porque e es la identidad del grupo, $ee = ec \Rightarrow e = c$. \square

Demostración. 2. Suponemos ab = ac. La existencia de inversos en el grupo implica $a^{-1}(ab) = a^{-1}(ac)$. La asociatividad de la operación del grupo implica $(a^{-1}a)b = (a^{-1}a)c$. Por definición del inverso a^{-1} , se sigue eb = ec. Porque e es la identidad, concluímos b = c.

Suponemos ba = ca. La existencia de inversos en el grupo implica $(ba)a^{-1} = (ca)a^{-1}$. La asociatividad de la operación del grupo implica $b(aa^{-1}) = c(aa^{-1})$. Por definición del inverso a^{-1} , se sigue be = ce. Porque e es la identidad, concluímos b = c.

Demostración. 3. Sea b tal que ab = ba = e. Por la existencia de inversos en el grupo, podemos decir que $(ba)a^{-1} = ea^{-1}$. La asociatividad de la operación del grupo implica $b(aa^{-1}) = ea^{-1}$. Por definición del inverso a^{-1} , se sigue $be = ea^{-1}$. Porque e es la identidad, concluímos $b = a^{-1}$.

Demostración. 4 Sea $b=a^{-1}$. Por definición del inverso a^{-1} , tenemos ab=ba=e. Por definición del inverso b^{-1} tenemos $b^{-1}b=bb^{-1}=e$. Por unicidad del inverso (ver 3) $a=b^{-1}$.

Demostración. 5 Por la unicidad del elemento inverso (ver 3) basta con calcular los productos $(ab)(b^{-1}a^{-1})$ y $(b^{-1}a^{-1})(ab)$.

Usando la asociatividad del producto deducimos $(ab)(b^{-1}a^{-1}) = a(b(b^{-1}a^{-1}))$ y $a(b(b^{-1}a^{-1})) = a((bb^{-1})a^{-1})$. Por la definición del inverso $a((bb^{-1})a^{-1}) = a(ea^{-1})$. Porque e es la identidad del grupo $a(ea^{-1}) = aa^{-1}$. Por la definición del inverso $aa^{-1} = e$. Concluímos $(ab)(b^{-1}a^{-1}) = e$.

Usando la asociatividad del producto deducimos $(b^{-1}a^{-1})(ab) = b(a(a^{-1}b^{-1}))$ y $b(a(a^{-1}b^{-1})) = b((aa^{-1})b^{-1})$. Por la definición del inverso $b((aa^{-1})b^{-1}) = b(eb^{-1})$. Porque e es la identidad del grupo $b(eb^{-1}) = bb^{-1}$. Por la definición del inverso $bb^{-1} = e$. Concluímos $(b^{-1}a^{-1})(ab) = e$.

Proposición 1. Sea G un semigrupo. Entonces G es un grupo si y solo si se verifican las siguientes condiciones

- 1. existe un elemento $e \in G$ tal que ea = a para todo $a \in G$ (elemento identidad izquierdo).
- 2. para cada $a \in G$, existe un elemento $a^{-1} \in G$ tal que $a^{-1}a = e$ (inversos izquierdos).

Observación 1. Cambiando la condición del elemento identidad izquierdo por una condición del "elemento identidad derecho", o cambiando la condición de los inversos izquierdos por una condición de los "inversos derechos", se obtienen resultados análogos que siguen siendo verdaderos.

Demostraci'on. Las condiciones 1 y 2 se deducen fácilmente cuando G es un grupo. La implicación recíproca sí tiene interés.

Supongamos 1 y 2. Entonces aa=a implica a=e para todo $a\in G$. En efecto, suponiendo aa=a se deduce

$$aa = a \Rightarrow a^{-1}(aa) = a^{-1}a$$
 por 2 (1)

$$\Rightarrow (a^{-1}a)a = a^{-1}a$$
 por asociatividad (2)

$$\Rightarrow ea = e$$
 por 2 (3)

$$\Rightarrow a = e \qquad \text{por 1} \tag{4}$$

Este hecho es muy importante. Por qué? Porque para todo elemento $a \in G$

$$(aa^{-1})(aa^{-1}) = a(a^{-1}(aa^{-1}))$$
 por asociatividad (5)

$$= a((a^{-1}a)a^{-1})$$
 por asociatividad (6)

$$= a(ea^{-1}) \qquad \text{por } 2 \tag{7}$$

$$= aa^{-1}$$
 por 1 (8)

Lo cual nos permite deducir $aa^{-1}=e$, cuando en un principio sólo sabíamos $a^{-1}a=e$ por la condición 2. Es decir que los inversos izquierdos son inversos bilaterales. Habiendo completado la propiedad de los inversos bilaterales podemos deducir la bilateralidad del elemento identidad e como sigue

$$ae = a(a^{-1}a) por 1 (9)$$

$$=(aa^{-1})a$$
 por asociatividad (10)

$$= ea$$
 porque los inversos son bilaterales (11)

$$= a por 1 (12)$$

Teorema 2. Sea R (\sim) una relación de congruencia sobre un monoide G, es decir, una relación de equivalencia tal que $a_1 \sim a_n$ y $b_1 \sim b_2$ implican $a_1b_1 \sim a_2b_2$ para todo $a_i, b_i \in G$. Entonces el conjunto G/R formado por todas las clases de equivalencia de G bajo R es un monoide bajo la operacion binaria definida por $\overline{ab} = \overline{ab}$, donde \overline{x} denota la clase de equivalencia de $x \in G$. Si G es un grupo [abeliano], entonces también lo es G/R.

Demostración. Lo primero que debemos probar es que la operación binaria propuesta está bien definida, es decir que el producto $\overline{ab} = \overline{ab}$ es independiente de la elección de elementos representativos a,b. Por eso tomamos un par de elementos $a_1,a_2 \in G$ tales que $\overline{a_1} = \overline{a_2}$, y otro par $b_1,b_2 \in G$ con $\overline{b_1} = \overline{b_2}$. Se sigue que $a_1 \sim a_2$ y $b_1 \sim b_2$, por propiedades elementales de las relaciones de equivalencia. Por ser R una relación de congruencia deducimos $a_1b_1 \sim a_2b_2$. Usando, nuevamente, propiedades elementales de las relaciones de equivalencia deducimos $\overline{a_1b_1} = \overline{a_2b_2}$.

Esta operación en G/R hereda su asociatividad de G. Si $a,b,c\in G$ entonces $\overline{a}(\overline{b}\overline{c})=\overline{abc}=\overline{a(bc)}=\overline{(ab)c}=\overline{ab}\overline{c}=(\overline{a}\overline{b})\overline{c}$. También hereda su elemento neutro. Si $a\in G$ entonces $\overline{e}\cdot\overline{a}=\overline{ea}=\overline{a}$ y $\overline{a}\cdot\overline{e}=\overline{ae}=\overline{a}$, lo cual hace de \overline{e} el elemento neutro de G/R. Por lo tanto G/R es un monoide, dado que G lo es.

Si G es un grupo, entonces G/R hereda los elementos inversos del primero. Si $a \in G$, entonces $\overline{a}a^{-1} = \overline{a}a^{-1} = \overline{e}$ y $\overline{a^{-1}}\overline{a} = \overline{a}^{-1}a = \overline{e}$ de modo tal que $\overline{a^{-1}} = \overline{a}^{-1}$. Esto hace de G/R un grupo.

Si G es conmutativo, entonces también G/R es conmutativo. Si $a,b \in G$ entonces $\overline{ab} = \overline{ab} = \overline{ba} = \overline{ba}$.