Math 111 Chapter 1: Precalculus Review

Ways that we might describe a function:	
Relationships that are <i>not</i> functions	
(NOTATION)	
If $f(x) = \frac{x}{2} - 1$ and $g(p) = p^2 + 2$	
_	
Then $f(4) =$	g(3) =
Then $J(4)$	g(0) —

g(p+h) =

(DEFINITION)

A function is:

(EXAMPLES)

f(a) =

Relationships that we might think of as a function:

(DEFINITION)

The **domain** of a function is:

(DEFINITION)

The **range** of a function is:

(DEFINITION)

The **graph** of a function is:

(EXAMPLES)

What are the domain and range of the following functions? Sketch the graph and label two points on the graph.

$$y(x) = \sqrt{x - 5}$$

$$f(x) = \frac{1}{x^2 - 9}$$

$$p(x) = \sqrt{4 - x^2}$$

Linear functions

(DEFINITIONS)

A function f is **linear** if:

Slope

(EXAMPLES)

Let C be a temperature measured in degrees Celsius and F be the same temperature measured in degrees Fahrenheit. We know F is a linear function of C and that F(0) = 32 and F(100) = 212. Find a formula for F(C).

- 1. Find a formula for F(C).
- 2. Give an interpretation of the slope. What are the units?

Let T(t) represent the temperature of a lake as a function of time. T is measured in degrees Celsius and t is measured in hours. Suppose that we know that T is a linear function and that T(4) = 6 and T(8) = 7.

- 1. Find T(t) and give an interpretation of the slope. What are the units?
- 2. How much does T change in 10 hours?

For small mammals it has been determined that body mass is proportional to heart mass. If a 4.7 kg dog has a heart mass of 33 g, find the mass of a 1.8 kg cat. Present your solution in terms of a linear function.

Piecewise defined functions

In some cases it is useful to describe functions by giving different output rules depending on (EXAMPLES)

$$g(x) = \begin{cases} x^2 & x \ge 1\\ 2 - x & x < 1 \end{cases}$$

$$f(x) = \begin{cases} x - 1 & x > 0 \\ 3 & -2 \le x \le 0 \\ 2 - x & x < -2 \end{cases}$$

$$h(x) = |x|$$

(EXAMPLES) Some situations where piecewise defined functions might make sense:

Algebra of functions

If f and g are functions, then so are f+g, f-g, fg, and $\frac{f}{g}$ for the appropriate domain (EXAMPLE)

Suppose $a(t) = t^2 + 1$ represents the population of fish species A, $b(t) = \frac{500}{1 + 2t}$ represents the population of fish species B, and p(t) represents the average individual mass of a fish of species A, then:

1. (a+b)(t) =

and represents

2. (a-b)(t) =

and represents

3. (ap)(t) =

and represents

If f and g are functions, then so does $f \circ g$ on the appropriate domain

(EXAMPLE)

1. Suppose r(x) = 100(1 - 1/x) represents a rabbit population as a function of x, the amount of edible vegetation in a habitat and $f(r) = \sqrt{r}$ represents the population of foxes as a function of the rabbit population, then:

 $f \circ r =$

and represents

2. If $f(x) = \frac{x}{x+3}$ and $g(x) = \frac{1}{x}$, then $f(g(x)) = \frac{1}{x}$

g(f(x)) =

with domain

with domain

3. If $f(x) = \sqrt{x}$ and $g(x) = x^2 + 3x$, then f(g(x)) = with domain

g(f(x)) =

with domain

Inverse functions

(DEFINITION) If f is a one-to-one function, then f^{-1} is the function that 'undoes' f

(EXAMPLES)

1. Let C be a temperature measured in degrees Celsius and F be the same temperature measured in degrees Fahrenheit. Let f be the function that associates C to F. We found earlier that $f(C) = \frac{9}{5}C + 32$. Suppose now we know the temperature is 45 degrees Fahrenheit and want to compute the

temperature in degrees Celsius. We can make use of f^{-1} .

2. If
$$g(x) = x^3$$
 then $g^{-1}(x) =$

If
$$h(w) = 3w$$
 then $g^{-1}(w) =$

If
$$f(y) = \frac{1}{y}$$
 then $f^{-1}(y) =$

3. If
$$g(x) = x^3 + 4$$
 then $h^{-1}(x) =$

4. If
$$h(x) = \frac{4x-1}{2x+3}$$
 then $h^{-1}(x) =$

5. If
$$f(x) = x^2 - x$$
 for $x \ge \frac{1}{2}$, then $f^{-1}(x) =$