Vector Calculus - Final Exam

December 20, 2018

- 1. Evaluate the following integrals:
 - $(1) \int_0^1 \int_y^1 x^2 \sin xy \, \mathrm{d}x \, \mathrm{d}y$
 - (2) $\int_0^2 \int_{\frac{\pi}{2}}^{\frac{x}{2}+1} x^5 (2y-x) e^{(2y-x)^2} \, \mathrm{d}y \, \mathrm{d}x$
- 2. Find the volume of the solid bounded by $z = 2 y^2$ and $4x^2 + y^2 = z$.
- 3. Consider a region bounded by $(z-8)^2=4(x^2+y^2)$ and z=0. Find the centroid of this region.
- 4. Explain the numerical integration with the Simpson's rule (or 2-point Gaussian quadrature rule, if you prefer) and use it to compute the integration:

$$\int_0^2 e^x \sin x \, \mathrm{d}x.$$

You don't need to make a finer partition for the interval [0,2].

- 5. Let F be a vector field in \mathbb{R}^3 given by $F(x,y,z)=(e^x\sin y-yz,e^x\cos y-xz,z-xy)$. Suppose $\mathbf{x}\colon [0,1]\to\mathbb{R}^3$ be a curve such that $\mathbf{x}(t)=(t,t^2,t^3)$. Evaluate the work done by F along the path \mathbf{x} .
- 6. Let D be a closed, bounded region in \mathbb{R}^2 where ∂D is a simple, closed, C^1 curve. Let F be a C^1 vector field defined on \mathbb{R}^2 .
 - (1) State the Green's theorem and the divergence theorem.
 - (2) Prove the divergence theorem using the Green's theorem.
- 7. Let S be a surface defined by $S = \{(x, y, z) \in \mathbb{R}^3 : z = 4e^{-(x^2+y^2)} 1, z \ge 0\}$. The surface S is oriented by the normal vector \mathbf{n} such that $\mathbf{n} \cdot \mathbf{k} \ge 0$. Let F be a vector field defined in \mathbb{R}^3 such that $F(x, y, z) = (e^{y+z} 2y, xe^{y+z} + y, e^{x+y})$. Then, evaluate the integration:

$$\iint_{S} \nabla \times F \cdot \mathrm{d}S.$$

8. Let S be a surface defined by $S = \{(x,y,z) \in \mathbb{R}^3 : \frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{16} = 1\}$ and **n** be the outward unit normal vector on S. Let f be a function defined on $\mathbb{R}^3 \setminus \{0\}$ such that $f(x,y,z) = \log(x^2 + y^2 + z^2)$. Then, evaluate the integration:

$$\iint_{S} \nabla f \cdot \mathbf{n} \, \mathrm{d}S.$$

1