$\begin{array}{c} \textbf{Analyse und Verifikation} \\ \textbf{(185.276, VU 2.0, ECTS 3.0)} \end{array}$

Übungsblatt 2

Bernhard Urban

Matr.Nr.: 0725771 KNZ: 067 937

lewurm@gmail.com

05.04.2011

Aufgabe 1:

• Fall 1: Sei $b \equiv \text{true}$, true $\in \mathbb{B}$, dann

$$[\![b]\!]_B(\sigma) = [\![\mathsf{true}]\!]_B(\sigma) = \mathsf{true} = [\![\mathsf{true}]\!]_B(\sigma') = [\![b]\!]_B(\sigma')$$

Analog für false. (Induktionsanfang)

• Fall 2: Sei $b \equiv \neg b_1, b_1 \in \mathbf{Bexpr}, dann$

$$[b]_{B}(\sigma)$$

$$= [\neg b_{1}]_{B}(\sigma)$$

$$= neg([b_{1}]_{B}(\sigma))$$

$$= neg([b_{1}]_{B}(\sigma')) \qquad \text{(Hypothese für } b_{1})$$

$$= [\neg b_{1}]_{B}(\sigma')$$

$$= [b]_{B}(\sigma')$$

• Fall 3: Sei $b \equiv b_1 \wedge b_2, \ b_1, b_2 \in \mathbf{Bexpr}, \ \mathrm{dann}$

Analog für \vee .

• Fall 4: Sei $b \equiv a_1 = a_2, \ a_1, a_2 \in \mathbf{Aexpr}, \ \mathrm{dann}$

Analog für <, \leq , etc.

Bedeutung: Bestehen zwei Zustände σ und σ' aus den selben Wertzuweisungen für deren freien Variablen, so führt die Auswertung eines Ausdrucks b unter σ bzw. σ' zum selben Ergebnis.

Aufgabe 2:

$Strukturell\ Operationelle\ Semantik$

$$\langle \pi_{1}; (\pi_{2}; \pi_{3}), \sigma \rangle$$

$$\Rightarrow \langle \pi_{2}; \pi_{3}, \langle \pi_{1}, \sigma \rangle \rangle$$

$$\Rightarrow \langle \pi_{3}, \langle \pi_{2}, \langle \pi_{1}, \sigma \rangle \rangle \rangle$$

$$\Rightarrow \langle \pi_{3}, \langle \pi_{1}; \pi_{2}, \sigma \rangle \rangle$$

$$\Rightarrow \langle (\pi_{1}; \pi_{2}); \pi_{3}, \sigma \rangle$$
folgt aus $\langle p; q, \sigma \rangle = \langle q, \langle p, \sigma \rangle \rangle$

Annahme: $\langle \pi_1, \sigma \rangle$ und $\langle \pi_2, \langle \pi_1, \sigma \rangle \rangle$ bzw. $\langle \pi_1; \pi_2, \sigma \rangle$ terminieren regulär.

Natürliche Semantik

 $\langle \pi_1; (\pi_2; \pi_3), \sigma \rangle$:

$$\frac{\langle \pi_1, \sigma \rangle \to \sigma' \quad \langle \pi_2, \sigma' \rangle \to \sigma'' \quad \langle \pi_3, \sigma'' \rangle \to \sigma'''}{\langle \pi_1; (\pi_2; \pi_3), \sigma \rangle \to \sigma'''} [\text{comp}_{ns}]} [\text{comp}_{ns}]$$

 $\langle (\pi_1; \pi_2); \pi_3, \sigma \rangle$:

$$\frac{\langle \pi_1, \sigma \rangle \to \sigma' \quad \langle \pi_2, \sigma' \rangle \to \sigma''}{\frac{\langle \pi_1; \pi_2, \sigma \rangle \to \sigma''}{\langle (\pi_1; \pi_2); \pi_3, \sigma \rangle \to \sigma'''}} [\text{comp}_{ns}] \quad \langle \pi_1, \sigma'' \rangle \to \sigma'''}{\langle (\pi_1; \pi_2); \pi_3, \sigma \rangle \to \sigma'''} [\text{comp}_{ns}]$$

Aufgabe 3:

$Strukturell\ Operationelle\ Semantik$

Sei

- $\sigma \in \Sigma$ mit $\sigma(x) = 13$ und $\sigma(y) = 5$
- $\pi \in \mathbf{Prg}$ mit

$$\pi \equiv z := 0$$
; while $y \le x$ do $z := z + 1$; $x := x - y$ od

 $\langle z := 0; \text{ while } y \leq x \text{ do } z := z + 1; \ x := x - y \text{ od}, \sigma \rangle$

- \Rightarrow (while $y \le x$ do z := z + 1; x := x y od, $\sigma[0/z]$)
- \Rightarrow (if $y \le x$ then z := z + 1; x := x y; while $y \le x$ do z := z + 1; x := x y od else skip fi, $\sigma[0/z]$)
- $\Rightarrow \langle z := z+1; \ x := x-y; \ \text{while} \ y \leq x \ \text{do} \ z := z+1; \ x := x-y \ \text{od}, \sigma[0/z] \rangle$
- $\Rightarrow \langle x := x y; \text{ while } y \leq x \text{ do } z := z + 1; \ x := x y \text{ od}, \sigma[1/z] \rangle$
- \Rightarrow (while $y \le x$ do z := z + 1; x := x y od, $(\sigma[1/z])[8/x]$)
- \Rightarrow (if $y \le x$ then z := z+1; x := x-y; while $y \le x$ do z := z+1; x := x-y od else skip fi, $(\sigma[1/z])$ [8/x]
- $\Rightarrow \langle z := z+1; \ x := x-y; \ \text{while} \ y \leq x \ \text{do} \ z := z+1; \ x := x-y \ \text{od}, (\sigma[1/z])[8/x] \rangle$
- $\Rightarrow \langle x := x y; \text{ while } y \leq x \text{ do } z := z + 1; \ x := x y \text{ od}, (\sigma[8/x])[2/z] \rangle$
- \Rightarrow (while $y \le x$ do z := z + 1; x := x y od, $(\sigma[2/z])[3/x]$)
- \Rightarrow (if $y \le x$ then z := z + 1; x := x y; while $y \le x$ do z := z + 1; x := x y od else skip fi, $(\sigma[2/z])[3/x]$)
- $\Rightarrow \langle \mathsf{skip}, (\sigma[2/z])[3/x] \rangle$
- $\Rightarrow (\sigma[2/z])[3/x]$

Natürliche Semantik

Sei $\sigma \in \Sigma$ mit $\sigma(x) = 13$ und $\sigma(y) = 5$, dann gilt:

$$\langle z := 0$$
; while $y \le x$ do $z := z + 1$; $x := x - y$ od $\rangle \to \sigma[2/z][5/y][3/x]$

$$\frac{-}{V = \langle \mathsf{while} \ y \leq x \ \mathsf{do} \ z := z+1; \ x := x-y \ \mathsf{od}, \sigma[2/z][3/x] \rangle \rightarrow \sigma[2/z][5/y][3/x]} \ \ \mathsf{while}_{ns}^{ff}$$

$$\frac{\overline{\langle z := z + 1, \sigma[1/z][8/z] \rangle} \rightarrow \sigma[2/z][8/x]}{\langle z := z + 1; \ x := x - y, \sigma[1/z][8/x] \rangle} \frac{\overline{\langle x := x - y, \sigma[2/z][8/z] \rangle} \rightarrow \sigma[2/z][3/x]}{\langle z := z + 1; \ x := x - y, \sigma[1/z][8/x] \rangle} \frac{\langle z := z + 1; \ x := x - y, \sigma[1/z][8/x] \rangle}{T = \langle \text{while } y \le x \text{ do } z := z + 1; \ x := x - y \text{ od, } \sigma[1/z][8/x] \rangle} \frac{|S|}{|S|} \rightarrow \sigma[2/z][5/y][3/x]} \text{ while }_{ns}^{tt}$$

$$\frac{-}{\langle z := z+1, \sigma[0/z] \rangle \rightarrow \sigma[1/z]} \underset{\text{ass}_{ns}}{\overset{-}{\underbrace{\langle z := z+1, \sigma[0/z] \rangle \rightarrow \sigma[1/z]}}} \underset{\text{comp}_{ns}}{\overset{-}{\underbrace{\langle z := z+1, \sigma[0/z] \rangle \rightarrow \sigma[1/z]}}} \underset{\text{comp}_{ns}}{\overset{-}{\underbrace{\langle z := z+1, \sigma[0/z] \rangle \rightarrow \sigma[1/z]}}} \underset{\text{while } y \le x \text{ do } z := z+1; \ x := x-y \text{ od, } \sigma[0/z] \rangle \rightarrow \sigma[0/z] \rangle \rightarrow \sigma[0/z]} \underset{\text{comp}_{ns}}{\overset{-}{\underbrace{\langle z := z+1, \sigma[0/z] \rangle \rightarrow \sigma[0/z] \rangle \rightarrow \sigma[0/z]}}} \underset{\text{comp}_{ns}}{\overset{-}{\underbrace{\langle z := z+1, \sigma[0/z] \rangle \rightarrow \sigma[0/z] \rangle \rightarrow \sigma[0/z]}}} \underset{\text{comp}_{ns}}{\overset{-}{\underbrace{\langle z := z+1, \sigma[0/z] \rangle \rightarrow \sigma[0/z] \rangle \rightarrow \sigma[0/z]}}} \underset{\text{comp}_{ns}}{\overset{-}{\underbrace{\langle z := z+1, \sigma[0/z] \rangle \rightarrow \sigma[0/z]}}}} \underset{\text{comp}_{ns}}{\overset{-}{\underbrace{\langle z := z+1, \sigma[0/z] \rangle \rightarrow \sigma[0/z]}}} \underset{\text{comp}_{ns}}{\overset{-}{\underbrace{\langle z := z+1, \sigma[0/z] \rangle \rightarrow \sigma[0/z]}}} \underset{\text{comp}_{ns}}{\overset{-}{\underbrace{\langle z := z+1, \sigma[0/z] \rangle \rightarrow \sigma[0/z]}}} \underset{\text{comp}_{ns}}{\overset{-}{\underbrace{\langle z := z+1, \sigma[0/z] \rangle \rightarrow \sigma[0/z]}}}} \underset{\text{comp}_{ns}}{\overset{-}{\underbrace{\langle z := z+1, \sigma[0/z] \rangle \rightarrow \sigma[0/z]}}}} \underset{\text{comp}_{ns}}{\overset{-}{\underbrace{\langle z := z+1, \sigma[0/z] \rangle \rightarrow \sigma[0/z]}}}} \underset{\text{comp}_{ns}}{\overset{-}{\underbrace{\langle z := z+1, \sigma[0/z] \rangle \rightarrow \sigma[0/z]}}} \underset{\text{comp}_{ns}}{\overset{-}{\underbrace{\langle z := z+1, \sigma[0/z] \rangle \rightarrow \sigma[0/z]}}} \underset{\text{comp}_{ns}}{\overset{-}{\underbrace{\langle z := z+1, \sigma[0/z] \rangle \rightarrow \sigma[0/z]}}}} \underset{\text{comp}_{ns}}{\overset{-}\underbrace{\langle z := z+1, \sigma[0/z] \rangle \rightarrow \sigma[0/z]}}}} \underset{\text{comp}_{ns}}{\overset{-}{\underbrace{\langle z$$

Aufgabe 4:

Seien $\pi_1, \pi_2 \in \mathbf{Prg} \text{ und } \sigma, \sigma' \in \Sigma.$

Es ist folgende Implikation auf Gültigkeit zu untersuchen:

$$\langle \pi_1; \ \pi_2, \sigma \rangle \Rightarrow^* \langle \pi_2, \sigma' \rangle \succ \exists k \in \mathbb{N}_0. \ \langle \pi_1, \sigma \rangle \Rightarrow^k \sigma'$$

Gegenbeispiel

Annahmen:

- Für σ gilt $\sigma(x) = 0$
- π_1 ist ein regulär terminierendes Programm
- $\pi_2 \equiv$ while true do x := x + 1 od

Nachdem π_2 offensichtlich divergiert, dabei auch den Zustand verändert und wiederkehrend die Form π_2 annimmt, kann σ' der linken Seite der Implikation ungleich σ' der rechten Seite sein, da die Anzahl der Ableitungsschritte durch \Rightarrow^* nicht eingeschränkt ist. Veranschaulicht:

$$\langle \pi_1; \ \pi_2, \sigma \rangle \Rightarrow^* \langle \pi_2, \sigma' \rangle \Rightarrow^* \langle \pi_2, \sigma'' \rangle \Rightarrow^* \dots \Rightarrow^* \langle \pi_2, \sigma^{(n)} \rangle$$

kann zu

$$\langle \pi_1; \ \pi_2, \sigma \rangle \Rightarrow^* \langle \pi_2, \sigma^{(n)} \rangle$$

zusammengefasst werden und entspricht somit nicht mehr dem Zustand der rechten Seite. Daraus folgt, dass die Implikation falsch ist.

Aufgabe 5:

$Strukturell\ Operationelle\ Semantik$

$$\frac{-}{\langle \text{repeat } \pi \text{ until b end}, \sigma \rangle \Rightarrow \langle \pi; \text{ if } \neg \text{b then repeat } \pi \text{ until b end else skip fi}, \sigma \rangle} \text{ }^{\text{rep}_{sos}}$$

Natürliche Semantik

$$\frac{\langle \pi, \sigma \rangle \to \sigma' \quad \langle \text{repeat } \pi \text{ until b end}, \sigma' \rangle \to \sigma''}{\langle \text{repeat } \pi \text{ until b end}, \sigma \rangle \to \sigma''} \ \text{rep}_{ns}^{ff} \qquad \qquad \llbracket b \rrbracket_B(\sigma') = \text{false}$$

$$\frac{\langle \pi, \sigma \rangle \to \sigma'}{\langle \text{repeat } \pi \text{ until b end}, \sigma \rangle \to \sigma'} \ \text{rep}_{ns}^{tt} \qquad \qquad \llbracket b \rrbracket_B(\sigma') = \text{true}$$

Aufgabe 6:

Strukturell Operationelle Semantik

$$\frac{-}{\langle \text{for } x := a_1 \text{ to } a_2 \text{ do } \pi \text{ od}, \sigma \rangle \Rightarrow \langle x := a_1; \text{ while } x < a_2 \text{ do } \pi; \ x := x + 1 \text{ od}, \sigma \rangle} \text{ for}_{sos}$$

$Nat \ddot{u}rliche\ Semantik$

$$\frac{\langle x := a_1, \sigma \rangle \to \sigma' \quad \langle \text{while } x < a_2 \text{ do } \pi; \ x := x+1 \text{ od}, \sigma' \rangle \to \sigma''}{\langle \text{for } x := a_1 \text{ to } a_2 \text{ do } \pi \text{ od}, \sigma \rangle \to \sigma''} \text{ for}_{ns}$$