Perfect Cipher

Gianluca Dini
Dept. of Ingegneria dell'Informazione
University of Pisa
gianluca.dini@unipi.it

1

Towards a secure cipher

- · Attacker's ability: (one) cipher-text only attack
- Security requirements
 - Attacker cannot recover the secret key
 - Attacker cannot recover the plaintext
- · Intuition of perfectly secure cipher
 - Regardless of any prior information the attacker has about the plaintext, the cyphertext should leak no additional information about the plaintext

March 22

Perfect cipher

2

Preliminaries

- · Random variable, probability distribution
- Conditional probability
 - $Pr[A|B] = Pr[A \land B]/Pr[B]$
- · Law of total probability
 - {E_i} are a *partition* of all possible events
 - For all i, j, i ≠j, E_i and E_i are pairwise impossible
 - At least some E_i occurs
 - For any event A, $Pr[A] = \sum_{i} Pr[A \wedge E_{i}] = \sum_{i} Pr[A \mid E_{i}] \times Pr[E_{i}]$
- Bayes' Theorem
 - $Pr[A|B] = Pr[B|A] \times Pr[A]/Pr[B]$

March 22 Perfect cipher

3

A probabilistic approach

- Message M is a random variable
 - Plaintext distribution
 - Example
 - Pr[M = "attack today"] = 0.7
 - Pr[M = "don't attack] = 03
 - Prior knowledge of the attacker
- Gen() defines a probability distribution over K
 - $Pr[K = k] = Pr[k \leftarrow Gen()]$
- Random variables M and K are independent

March 22 Perfect cipher 4

4

A probabilistic approach

- Ciphertext generation process
 - Choose a message m
 - Generate a key k, k ← Gen()
 - Compute c \leftarrow E_k(m)
- The ciphertext is a random variable C
- Encryption defines a distribution over the ciphertext C

March 22

Perfect cipher

5

5

Perfect secrecy (informal)

- We formalize «information about the plaintext» in terms of probability distribution
- The adversary's a-priori knowledge of the plaintext distribution, i.e. before observing a ciphertext, and the adversary's a-posteriori knowledge of the plaintex distribution, i.e. after observing the ciphertext, must be equal

March 22

Perfect cipher

ь

6

Perfect secrecy (Shannon, 1949)

Definition of Perfect secrecy – For every distribution over M, every p in M, every c in C, with Pr[C = c] > 0, it holds Pr[M = m | C = c] = Pr[M = m]

March 22 Perfect cipher

7

Shannon's Theorem

- Shannon's Theorem In a perfect cipher, |K| ≥ |M|
 - i.e., the number of keys cannot be smaller than the number of messages
 - Proof. By contradiction.
 - a) Let |**K**|<|**M**|
 - b) It must be $|C| \ge |M|$ or, otherwise, the cipher is not invertible
 - c) Therefore, |C| > |K|
 - d) Select m in \mathbf{M} , s.t., $\Pr[M = m] \neq 0$; $c_i \leftarrow E(k_i, m)$ for all k_i in \mathbf{K}
 - e) Because of c), there exists at least one c s.t. $c \neq c_i$, for all i
 - f) Therefore Pr[M = m | C = c] = 0, that is different of Pr[M = m]

March 22 Perfect cipher 8

8

Unconditional security

- Perfect secrecy is equivalent to unconditional security
 - An adversary is assumed to have infinite computing resources
 - Observation of the CT provides the adversary no information whatsoever
- Necessary conditions
 - Key bits are truly randomly chosen
 - Key len ≥ msg len (Shannon theorem)

March 22 Perfect cipher

9

Perfect indstinguishability

- Definition An encryption scheme Π = (G, E, D) over (K, M, C) has perfect indistinguishability iff
 - For all $m_1, m_2 \in P$, $|m_1| = |m_2|$
 - with k ← Gen() (uniform)
 - For all $c \in C$, $Pr[E(k, m_1) = c] = Pr[E(k, m_2) = c]$
- Fact Π has perfectly indistinguishability iff it is perfectly secure

March 22 Perfect cipher 10

10

Perfect Cipher

ONE-TIME PAD

March 22 Perfect cipher

11

One Time Pad

- Patented in 1917 by Vernam
 - Known 35 years earlier
- Proven perfect by Shannon in 1949
- Moscow-Washington "red telephone"
 - In reality a secure direct communication link
 - Teletype, fax machine, secure computer link (email)
 - Never a telephone (not even red)

March 22 Perfect cipher 12

12

Preliminary

- Or-exclusive (xor)
 - Truth table

x	у	z = x ⊕ y
0	0	0
0	1	1
1	0	1
1	1	0

- Matematically
 - $z = x \oplus y = (x + y) \mod 2$

March 22

Perfect cipher

13

13

One Time Pad

- Assumptions
 - − Let x be a t-bit message, i.e., $x \in \{0,1\}^t$
 - Let k be a t-bit key stream, $k \in \{0, 1\}^t$, where each bit is truly random chosen
- Encryption
 - For all i in [1,...,t], $y_i = m_i \bigoplus k_i$ i.e., $y_i = m_i + k_i \mod 2$
- Decryption
 - For all i in [1,..., t], $x_i = c_i \oplus k_i$, i.e., $x_i = y_i + k_i \mod 2$
- Consistency property can be easily proven

March 22

Perfect cipher

14

14

15

Xor is a good encryption function

- Theorem Let X be a random variable over {0, 1}ⁿ, and K an independent uniform variable over {0,1}ⁿ. Then, $Y = X \oplus K$ is uniform over $\{0,1\}^n$.
 - Proof (for n = 1).
 - Let Pr[X = 0] = X0, Pr[X = 1] = X1, X0 + X1 = 1
 - Pr[Y = 0] = $= Pr[(X = 0) \land (K = 0)] + Pr[(X = 1) \land (K = 1)] =$ $= Pr[X = 0] \times Pr[K = 0] + Pr[X = 1] \times Pr[K = 1] =$ $= X0 \times 0.5 + X1 \times 0.5 = 0.5 \times (X0 + X1) =$ = 0.5

March 22 16 Perfect cipher

16

OTP has perfect secrecy

- Theorem OTP has perfect secrecy
 - Proof
 - a) $Pr[M = m \mid C = c] = (Bayes \mid aw)$ = $Pr[C = c \mid M = m] \times Pr[M = m]/Pr[C = c]$
 - b) Pr[C = c] = (Total probability law)= $\Sigma_i Pr[C = c | M = m_i] \times Pr[M = m_i] =$ = $\Sigma_i Pr[K = c \oplus m_i] \times Pr[M = m_i] =$ = $\Sigma i 2^{-k} \times Pr[M = m_i] = 2^{-k}$
 - c) Put b) into a) Pr[M = m | C = c] = $= Pr[K = c \oplus m] \times Pr[M = m]/2^{-k}$ $= 2^{-k} \times Pr[M = m]/2^{-k} =$ Pr[M = m]

March 22 Perfect cipher

17

17

19

Pros and Cons

- Pros
 - Unconditionally secure
 - A cryptosystem is unconditionally or information-theoretically secure if it cannot be broken even with infinite computational resources
 - Very fast enc/dec
 - Only one key maps m into c

March 22 Perfect cipher 20

20

Pros and Cons

- Cons
 - Long keys: unpractical!
 - Key len == msg len
 - Keys must be used once: avoid two-time pad!
 - Let C1 = M1 xor K and C2 = M2 xor K => C1 xor C2 = M1 xor M2
 - A Known-PlainText attack breaks OTP
 - Given (m, c) => k = m xor c
 - OTP is malleable
 - Modifications to cipher-text are undetected and have predictable impact on plain-text

March 22 Perfect cipher 21

Perfect cipher 10

21

22

Malleability

- Malleability
 - A crypto scheme is said to be malleable if the attacker is capable of transforming the ciphertext into another ciphertext which leads to a known transformation of the plaintext
 - The attacker does not decrypt the ciphertext but (s)he is able to manipulate the plaintext in a predictable manner

March 22 Perfect cipher 23

23

On OTP malleability

- Attack against integrity
 - Alice sends Bob: c = p ⊕ k
 - The adversary
 - · intercepts c and
 - transmits Bob c' = c \bigoplus r, with r called *perturbation*
 - Bob
 - · receives c'
 - Computes $p' = c' \oplus k = c \oplus r \oplus k = p \oplus k \oplus r \oplus k$ so obtaining $p' = p \oplus r$
 - · The perturbation goes undetected and
 - The perturbation has a predictable impact on the plaintext

March 22

Perfect cipher

24

24

Example 1

- Shift cipher
 - $K = \{0, ..., 26\}, Pr[K = k] = 1/26$
 - Pr[M = 'a'] = 0.7; Pr[M = 'z'] < 0.3 (a-priori distribution)
 - Compute Pr[C = 'b']
 - Result = 1/26

March 22

Perfect cipher

25

25

Example 2

- Shift cipher
 - $K = \{0, ..., 26\}, Pr[K = k] = 1/26$
 - m1 = «one», m2 = «ten»
 - Pr[M = m1] = Pr[M = m2] = 0.5 (a-priori distribution)
 - Compute Pr[C = «rqh»]
 - Result = 1/52

March 22

Perfect cipher

26

26

Example 3

- Shift cipher
 - $K = \{0, ..., 26\}, Pr[K = k] = 1/26$
 - m1 = «one», m2 = «ten»
 - Pr[M = m1] = Pr[M = m2] = 0.5 (a-priori distribution)
 - Compute Pr[M=«ten»|C = «rqh»]
 - Result = 0 that is different of Pr[M = «ten»]

March 22

Perfect cipher

27

27

Example 4

- · Shift cipher
- Message distribution
 - Pr[M = whi] = 0.3
 - Pr[M = «no»] = 0.2
 - Pr[M = «in»] = 0.5
- Compute Pr[M = «hi» | C = «xy»]
 - Pr[M=«hi»|C=«xy»] = (Bayes' law) = = Pr[C = «xy»|M=«hi»]·Pr[M=«hi»]/Pr[C=«xy»]
 - Pr[C = "xy" | M = "hi"] = Pr[K = 16] = 1/26 (continue)

March 22 Perfect cipher 28

28

Example 4 continued

- Compute Pr[M = «hi» | C = «xy»]

 - $Pr[M = \text{whi} | C = \text{wxy}] = (1/26) \cdot 0.3/(1/52) = 0.6$ $\neq Pr[M = \text{whi}]$
- Shift cipher is not perfect

March 22 Perfect cipher 29

29