Югорский государственный университет Институт цифровой экономики

Отчёт по проекту D

На тему «Агентная модель распространения инфекции (SIR)»

Выполнил:

Аббазов Валерьян Ринатович

Группа: 1191б\1

г. Ханты-Мансийск 2022 г.

Оглавление

Введение	3
2. Концептуальная модель реального процесса	4
3. Формализация	5
4. Компьютерная модель	7
5. Эксперименты	10
Заключение:	17
Список использованных источников	18

Введение

В настоящее время в условиях эпидемии в результате распространения коронавируса стала актуальной задача прогнозирования размеров, сроков пика и окончания распространения эпидемии, а также оценки эффективности возможных управленческих решений, направленных на предотвращение распространения эпидемии.

На помощь в этом случае могут прийти математические модели, описывающие данные процессы. Существует несколько подходов к моделированию распространения эпидемии, которые могут быть использованы для анализа протекающих процессов. В данной работе будет рассмотрена агентная модель распространения инфекции (SIR), разработанная в 1927 года шотландскими эпидемиологами Кермаком и Маккендриком.

2. Концептуальная модель реального процесса

Рассматривается процесс распространения инфекционного заболевания (эпидемия) среди населения некоторого региона. Предполагается, что изначально население восприимчиво к заболеванию. Эпидемия распространяется, поскольку заражённые люди контактируют и передают заболевание восприимчивым. Через определённое время после заражения человек выздоравливает и вырабатывает иммунитет к заболеванию. Имитационная модель процесса эпидемии разрабатывается с целью получить ответы на ряд вопросов: как процесс развивается во времени? Как изменяется численность заболевших и выздоровевших?

Цель моделирования: анализ распространения инфекционного заболевания.

Определим следующие задачи:

- 1. Выявить время окончания инфекции
- 2. Оценить число восприимчивых людей
- 3. Оценить число зараженных людей
- 4. Оценить число людей с иммунитетом

3. Формализация

Население региона условно разделяется на три категории в соответствии с их состоянием:

- Susceptible восприимчивые к заболеванию
- Infection зараженные
- Recovered выздоровевшие

По мере того, как люди заражаются, они перемещаются из категории Susceptible в категорию Infectious, и затем, по мере выздоровления - в категорию Recovered.

Переход из первого состояния (восприимчивый к заболеванию) во второе (зараженный) происходит в результате взаимодействия людей между собой. Переход из второго состояния (зараженный) в третье (выздоровевший) и из третьего (выздоровевший) в первое (выздоровевший) происходит по таймауту. Люди общаются друг с другом с определённой известной интенсивностью. Если заражённый человек контактирует с восприимчивым к заболеванию, то последний заражается с заданной вероятностью. Люди контактируют только с теми, кто находятся в окрестности определённого радиуса.

Единицей модельного времени являются дни. Продолжительность эксперимента 1 год (365 дней)

Модель имеет следующие входные данные:

Формальное обозначение	Сокращенное обозначение	Полное обозначение	Название
X ₁	P	Population	Количество населения (тыс. человек)
X ₂	I	Intensive	Интенсивность заражения (частота рассылки сообщений в день)
X ₃	NatI	Nature_of_Infection	Характер заражения
X4	CR	Contact_Radius	Радиус контакта (размер окрестности, в которой может происходить взаимодействие)

X ₅	TIR	QueueClerk*	Время перехода из состояния «Infection» в состояние «Recovered» (в днях)
X ₆	TRS	ParametrClerk*	Время перехода из состояния «Recovered» в состояние «Susceptible» (в днях)

Табл. 1 — входные данные эксперимента

* Так указано в индивидуальном варианте. Полагаю это опечатка и должно быть что-то вроде: Time_ Infection_to_ Recovered, Time_ Recovered _to_ Susceptible.

Выходные данные включают следующие пункты:

Формальное обозначение	Сокращенное обозначение	Полное обозначение	Название
y 1	A	Appearance	Внешний вид распространения инфекции
y ₂	СТ	Cessation_time	Время прекращения инфекции
У3	NS	Number_ Susceptible	Число восприимчивых людей по прошествии заданного времени
У4	NI	Number_Infection	Число зараженных людей по прошествии заданного времени
y 5	NR	Number_ Recovered	Число людей с иммунитетом по прошествии заданного времени

Табл. 2 — выходные данные эксперимента

4. Компьютерная модель

Компьютерная модель построена в среде AnyLogic. Модель имеет следующий вид:

Рис. 1 — Модель

Модель представляет собой диаграмму состояний, состоящую из трёх состояний:

- S восприимчивые к заболеванию
- **I** зараженные
- R выздоровевшие

Модель имеет два перехода $\mathbf{S} \to \mathbf{I}$, которые происходят при получении сообщений "Inf0" (отправляется при запуске модели, заражение первого

человека) и "Inf" (отправляется с заданной интенсивностью, отправка происходит внутри состояния I).

Из $\mathbf{I} \to \mathbf{R}$ ведёт переход, срабатывающий по таймауту. Таймаут соответствует времени протекания болезни. Аналогичный переход — $\mathbf{R} \to \mathbf{S}$, ссоответствует времени сохранения иммунитета.

Для сбора данных по кол-ву людей в каждом состоянии в агенте people создан ряд функций (рис. 3). Эти данные отображаются на временном графике.

Имя:	Susceptible
Тип:	О Кол-во ○ Сумма ○ Среднее ○ Мин. ○ Макс.
Условие:	item.InfectionStatechart.isStateActive(item.S)
Имя:	Infective
Тип:	О Кол-во ○ Сумма ○ Среднее ○ Мин. ○ Макс.
Условие:	item.InfectionStatechart.isStateActive(item.I)
Имя:	Recovered
Тип:	О Кол-во ○ Сумма ○ Среднее ○ Мин. ○ Макс.
Условие:	item.InfectionStatechart.isStateActive(item.R)

Рис. 2 — Функции сборки статистики

Для выявления времени прекращения инфекции добавлено событие getInfectiveEnd (рис. 4), сохраняющий день, когда кол-во заражённых равно 0 в параметр y_2 .

Рис. 3 — Событие прекращения инфекции

Для выявления числа восприимчивых людей по прошествии заданного времени (под заданным временем понимается время окончания эксперимента, т.е. 365 день) добавлено событие getSusceptible (рис. 4), сохраняющий кол-во восприимчивых, когда текущее время эксперимента равно времени окончания эксперимента (параметр ExperimentTime) в параметр у₃. Аналогично работают события getInfective и getRecovered для сбора кол-ва заражённых и выздоровевших соответственно.

Рис. 4 — Событие выявления числа восприимчивых

Для выявления общего числа заражённых в состоянии **I** (заражён) при входе в параметр Total_infective добавляется единица (рис. 5).

Рис. 5 — сбор данных об общем числе заражённых

5. Эксперименты

5.1 Эксперимент 1

Задачи:

- 1. Подсчитать значения выходных данных у=(у1,...,у5).
- 2. Построить графики, отображающих динамику изменения численности агентов, находящихся в состоянии «восприимчивых», «инфицированных» и «выздоровевших».
- 3. Представить скриншот карты распространения инфекции в популяции в день максимального значения численности инфицированных.

Данные эксперимента, согласно варианту 1:

Формальное обозначение	Обозначение	Название	Значение
\mathbf{x}_1	P	Количество населения	15
Λ1	1	(тыс. человек)	13
		Интенсивность	
\mathbf{x}_2	I	заражения (частота	0,5
A 2	1	рассылки сообщений	0,5
		в день)	
X3	NatI	Характер заражения	ALL*
		Радиус контакта	
		(размер окрестности,	
X4	CR	в которой может	5
		происходить	
		взаимодействие)	
		Время перехода из	
		состояния «Infection»	
X5	TIR	в состояние	14
		«Recovered»	
		(в днях)	
		Время перехода из	
V	TRS	состояния	
		«Recovered» в	30
X ₆		состояние	30
		«Susceptible»	
		(в днях)	

^{*} При использовании данного параметра заражение происходит мгновенно в первый же день. Исходя из-этого для эксперимента использован стандартный sendToAllConnected

Результаты эксперимента:

Формальное	Название	Значение
обозначение		
y 1	Внешний вид распространения инфекции	Рис 6 (в день максимального значения численности Инфицированных)
y 2	Время прекращения инфекции	294 день
уз	Число восприимчивых людей по прошествии заданного времени	15000
у4	Число зараженных людей по прошествии заданного времени	0
y 5	Число людей с иммунитетом по прошествии заданного времени	0

Рис. 6 — Внешний вид распространения инфекции, 150 день

Рис. 7 — график распространения

Вывод: единовременно болела небольшая часть населения в результате чего на рисунке 7 видно, что число заражённых и иммунных было стабильным (пусть и не очень высоким) в течении большей части года, в результате чего переболела ~69% населения (10301 человек).

5.2 Эксперимент 2

Исследовать зависимость динамики количества инфицированных от интенсивности заражения (частота рассылки сообщений). Запись [a; b; h] означает интервал от, а (начальное значение) до b (конечное) с шагом h.

Задачи:

1. Проанализируйте влияние параметра x_2 на динамику количества инфицированных.

Данные эксперимента, согласно варианту 1:

Формальное	Обозначение	Название	Значение
обозначение			
X1	P	Количество населения (тыс. человек)	15
X2	I	Интенсивность заражения (частота рассылки сообщений в день)	[0,5; 2; 0,5]
X 3	NatI	Характер заражения	RANDOM_NEIGHBOR*
X4	CR	Радиус контакта (размер окрестности, в которой может происходить взаимодействие)	5
X5	TIR	Время перехода из состояния «Infection» в состояние «Recovered» (в днях)	14
X6	TRS	Время перехода из состояния «Recovered» в состояние «Susceptible» (в днях)	30

^{*} При использовании функции sendToRandomNeighbor("Inf"); получаем ошибку (d != com.anylogic.engine.MessageDeliveryType). Использован стандартный sendToAllConnected("Inf");

 ${\bf X}_2 = {\bf 0.5}$: Динамика количества инфицированных:

 $X_2 = 1$:
 Динамика количества инфицированных:

 $X_2 = 1.5$: Динамика количества инфицированных:

 $X_2 = 2$:
Динамика количества инфицированных:

Вывод: с увеличением интенсивности заражения увеличиваются темпы заражения. Из-за этого пик заражения также увеличивается. Но поскольку большое кол-во людей быстрее заражается, популяция, с увеличением интенсивности заражения, быстрее получает иммунитет и следовательно, эпидемия быстрее оканчивается.

5.3 Эксперимент 3

В ходе эксперимента используются входные данные первого эксперимента (кроме параметра радиус контакта (х4))

Задачи:

1. Найти такой радиус контакта (х4), чтобы доля инфицированных составляла не менее 40% (6000 человек), не позже, чем за 1 год

x4	5	2.5	3.75	4,375	4.6875	4,843	4.922	4.96	4.98	4.99
						75				
Доля	69%	0.04%	0.04%	0.06%	0.06%	0.06%	0.06%	0.06%	0.06%	69%

^{*} поиск радиуса проводился по принципу бинарного поиска

Вывод: доля инфицированных составляет не менее 40% (а именно 69%) при радиусе равно 4.99. При меньшем радиусе не удаётся инфицировать значимое кол-во человек.

Заключение:

Проведён анализ распространения инфекционного заболевания.

Выявлена зависимость между динамикой количества инфицированных и интенсивности заражения. Чем больше интенсивность, тем быстрее растёт колво инфицированных, однако вместе с этим ускоряется появление иммунных к болезни и следовательно, уменьшается время эпидемии.

Также выявлена зависимость доли инфицированных от радиуса заражения. При недостаточном радиусе не удаётся заразить значимое кол-во людей.

Список использованных источников

- 1. https://eluniver.ugrasu.ru/pluginfile.php/386538/mod_resource/content/1/Прое кт%20D%20Модель%20распространения%20инфекции.pdf
- 2. https://help.anylogic.ru/
- 3. https://futurepubl.ru/ru/nauka/article/37206/view