Лабораторная работа № 6

Тема: Исследование индуктивности (дросселя)

Цель работы: Изучить основные характеристики и зависимости индуктивности в цепи.

Основные понятия:

1. Индуктивность:

- Определение: Индуктивность это мера способности элемента электрической цепи создавать индуктивное электрическое поле при прохождении через него переменного тока. Обозначается символом L и измеряется в генри (H).
- **Физическая интерпретация:** Индуктивность возникает в катушке (соленоиде) или проводнике, когда изменяется ток. Это приводит к возникновению электромагнитного поля, которое воздействует на саму цепь, препятствуя изменению тока.

Дроссель:

- **Определение:** Дроссель это электрический компонент, предназначенный для создания индуктивности в электрической цепи. Обычно представляет собой катушку из провода или другого материала. Дроссель может использоваться для фильтрации сигналов, подавления помех, а также в регулировочных источниках питания.
- Примеры применения: Дроссели широко применяются в электронике, в том числе в источниках питания, фильтрах для устранения помех, а также в электромагнитных реле.

3. Время постоянства (время заряда/разряда):

- **Определение:** Время постоянства индуктивной цепи (или времени заряда/разряда) это время, за которое текущий ток в индуктивной цепи изменяется на 63.2% от своего конечного значения при заряде или на 36.8% при разряде.
- **Формула:** Время постоянства τ связано с индуктивностью L и сопротивлением R формулой $\tau = L/R$.
- Примечание: Время постоянства важно при анализе переходных процессов в цепях с индуктивностью, таких как зарядка и разрядка.

Важно отметить, что индуктивность и дроссель часто используются взаимозаменяемо в разговоре, так как дроссель, как правило, представляет собой компонент с индуктивностью.

Индуктивность играет важную роль в электрических цепях, внося свои особенности в поведение тока и напряжения. Вот несколько ключевых аспектов роли индуктивности:

1. Задержка в изменении тока:

• Когда в индуктивной цепи меняется ток, индуктивность создает электромагнитное поле, которое препятствует резкому изменению тока. Это приводит к тому, что ток меняется постепенно, а не мгновенно, и вызывает задержку в отклике цепи.

2. Фильтрация сигналов:

• Индуктивность может использоваться для фильтрации сигналов. Например, в цепях переменного тока (АС), индуктивность может предотвращать прохождение высокочастотных компонентов сигнала, что приводит к фильтрации высоких частот.

3. Хранение энергии:

• Индуктивность способна накапливать энергию в своем магнитном поле. Это свойство используется, например, в индуктивных элементах хранения энергии, таких как катушки индуктивности в импульсных источниках питания.

4. Сопротивление переменному току:

• Индуктивность представляет собой сопротивление переменному току (реактивное сопротивление). Это сопротивление зависит от частоты переменного тока, и индуктивность может влиять на фазовые отношения между напряжением и током в цепи.

5. **Защита от помех:**

• В электрических цепях индуктивность может играть роль фильтра, предотвращая прохождение высокочастотных помех. Это особенно важно в схемах, где важна чистота сигнала, например, в аудио- или радиосистемах.

6. Использование в устройствах с высоким напряжением:

• В высоковольтных приложениях индуктивность часто используется для контроля тока и создания магнитных полей, что может быть важно для стабильности и эффективности работы устройства.

Индуктивность, будучи одним из базовых элементов электрических цепей, оказывает существенное влияние на их характеристики и поведение. Это свойство используется в различных областях электроники и электротехники для достижения определенных эффектов и контроля параметров цепей.

Наименование единиц измерения индуктивности:

Индуктивность измеряется в генри (Н) в системе Международных единиц (СИ).

Символ для генри - буква Н.

Дробные единицы измерения индуктивности также могут быть использованы. Например: миллигенри (mH), что равно 1/1000 генри микрогенри (µH), что равно 1/1,000,000 генри.

Практика:

Соберите схему:

Что бы добавить индуктивность в список компонентов, в окне поиска наберите inductor:

Измерение фазового сдвига:

Подготовьте схему:

Установите два канала осциллоскопа:

Подключите один канал к точке, где измеряется напряжение на индуктивности.

Подключите второй канал к точке, где измеряется напряжение на резисторе.

Измеряйте фазовый сдвиг:

Определите момент времени, соответствующий определенной точке сигнала (например, начало цикла или пиковое значение).

Измерьте временной интервал между этой точкой на первом и втором каналах. Этот интервал будет представлять собой фазовый сдвиг между сигналами.

Фазовый сдвиг измеряется в угловых единицах, таких как градусы (°) или радианы (rad).

Обычно, фазовый сдвиг измеряется в пределах одного полного периода сигнала, который соответствует 360 градусам или 2π радианам.

Если сигнал сдвигается на половину периода, это соответствует фазовому сдвигу в 180 градусов.

Если сигнал сдвигается на четверть периода, это будет 90 градусов.

На примере выше, фазовый сдвиг меньше четверти периода, т.е. примерно 75°.

2. LR-фильтры. LR – фильтр нижних частот.

Импеданс катушки индуктивности увеличивается с увеличением частоты. Этот высокий импеданс последовательно, как правило, блокирует попадание высокочастотных сигналов на нагрузку. Соберите схему фильтра низких частот:

Исходя из своего варианта, установите частоты источников тока и значение R4

Частота среза определяется формулой:

$$f_c = \frac{R}{2\pi L}$$

Рассчитайте величину L2, для частоты среза равной частоте НЧ - источника. Установите рассчитанное значение и запустите симуляцию. Высокочастотная составляющая выходного сигнала должна значительно ослабнуть.

Увеличьте частоту на 10Гц, пересчитайте значение L2 и проверьте, запустив симуляцию.

Nº	R4, Om	Частота НЧ сигнала, Гц	Частота ВЧ сигнала, Гц
варианта		(Амплитуда – 12В)	(Амплитуда – 3В)
1 (9)	200	40, 50	800
2 (10)	200	60, 70	1000
3 (11)	200	80, 90	1200
4 (12)	200	100, 110	1500
5 (13)	300	40, 50	800
6 (14)	300	60, 70	1000
7 (15)	300	80, 90	1200
8 (16)	300	100, 110	1500

Заполните таблицу:

Fc, Гц	R4, Om	L2, mH

3. LR-фильтры. LR – фильтр верхних частот.

Импеданс катушки индуктивности уменьшается с уменьшением частоты. Низкий импеданс при параллельном подключении приводит к тому, что низкочастотные сигналы не попадают в нагрузку.

Формула для расчета частоты среза:

$$f_c = \frac{R}{2\pi L}$$

Соберите схему:

Исходя из своего варианта, установите частоты источников тока и значение R4.

Nº	R4, OM	Частота НЧ сигнала, Гц	Частота ВЧ сигнала, Гц
варианта		(Амплитуда — 12В)	(Амплитуда – 3В)
1 (9)	250	80, 90	1200
2 (10)	250	100, 110	1500
3 (11)	250	40, 50	800
4 (12)	250	60, 70	1000
5 (13)	150	80, 90	1200
6 (14)	150	100, 110	1500
7 (15)	150	40, 50	800
8 (16)	150	60, 70	1000

Рассчитайте параметры L2 для частоты среза равной частоте BЧ - источника. Запустите симуляцию, убедитесь, что высокочастотная составляющая выходного сигнала значительно подавлена.

Заполните таблицу:

Fc, Гц	R4, Om	L2, mH

Отчет по лабораторной работе должен содержать:

- скриншоты рабочего пространства программы Proteus со схемами;
- таблицы с результатами измерений;
- выводы.