DNA cloning

Matsapume Detcharoen 2/2564

DNA cloning

- DNA cloning is a technique for reproducing DNA fragments.
- A vector is required to carry the DNA fragment of interest into the host cell.
- DNA cloning allows a copy of any specific part of a DNA sequence to be selected among many others and produced in an unlimited amount.

DNA cloning

- Massive amplification of DNA sequences
- Stable propagation of DNA sequences
- A single DNA molecule can be amplified allowing it to be:
 - Studied sequenced
 - Manipulated mutagenized or engineered
 - Expressed generation of protein

Cloning vectors

- Cloning vectors are DNA molecules that are used to "transport" cloned sequences between biological hosts and the test tube.
- Cloning vectors share four common properties
 - 1. Ability to promote autonomous replication.
 - 2. Contain a genetic marker (usually dominant) for selection.
 - 3. Unique restriction sites to facilitate cloning of insert DNA.
 - 4. Minimum amount of nonessential DNA to optimize cloning.

Plasmids

- Bacterial cells may contain extrachromosomal DNA called plasmids.
- Plasmids are usually represented by small, circular DNA.
- Some plasmids are present in multiple copies in the cell

Plasmid vectors

- Plasmid vectors are ≈1.2–3 kb and contain:
 - origin of replication (ORI) sequence
 - a gene that permits selection,
 - Here the selective gene is *amp*^r; it encodes the enzyme b-lactamase, which inactivates ampicillin.

Selective marker

- Selective marker is required for maintenance of plasmid in the cell.
- Because of the presence of the selective marker the plasmid becomes useful for the cell.
- Under the selective conditions, only cells that contain plasmids with selectable marker can survive
- Genes that confer resistance to various antibiotics are used.
- Genes that make cells resistant to ampicillin, neomycin, or chloramphenicol are used

Multiple cloning site

- Many cloning vectors contain a multiple cloning site or polylinker: a DNA segment with several unique sites for restriction endo- nucleases located next to each other
- Restriction sites of the polylinker are not present anywhere else in the plasmid.
- Cutting plasmids with one of the restriction enzymes that recognize a site in the polylinker does not disrupt any of the essential features of the vector

Multiple cloning site

 Gene to be cloned can be introduced into the cloning vector at one of the restriction sites present in the polylinker

Cloning Plasmid/DNA	NEB#	Features
pBR322 Vector	N3033S/L	Commonly used cloning vectors Tet, Amp resistance
pUC19 Vector	N3041S/L	Commonly used cloning vectors Amp resistance
M13mp18 RF I DNA	N4018S	 Phage vectors derived from bacteriophage M13 DNA, covalently closed circular 13 Unique RE sites with β-gal gene Blue-white selection

Cloning process

- Gene of interest is cut out with RE
- Host plasmid is cut with same RE
- Gene is inserted into plasmid and ligated with ligase
- New plasmid inserted into bacterium (transform)

PCR cloning considerations

- Nature of the Insert: not all PCR fragments will clone with the same efficiency into the same vector.
- Insert size: The size of the fragment being cloned is a primary contributor
 to the overall cloning efficiency. Large fragments of DNA (≥ 5 kb) are
 amenable to cloning in high-copy number vectors, yet at a much lower
 efficiency.
- Vector-to-insert ratio: Optimization of molar concentration ratios of the vector to insert is critical to ensure efficient cloning. Vector to insert ratio of 1 to 3 is common.

Plasmid cloning strategy

5 steps

- 1. Restriction Enzyme digest of DNA sample.
- 2. Restriction Enzyme digest of DNA plasmid vector.
- 3. Ligation of DNA sample products and plasmid vector.
- 4. Transformation with the ligation products.
- **5. Growth** on agar plates with selection for antibiotic resistance.

Step 1 RE digestion of DNA sample

Step 2 RE digestion of plasmid DNA

Step 3 Ligation of DNA sample and plasmid DNA

Step 4 Transformation of ligation products

- The process of transferring exogenous DNA into cells is call "transformation"
- There are basically two general methods for transforming bacteria. The first is a chemical method utilizing CaCl₂ and heat shock to promote DNA entry into cells.
- A second method is called electroporation based on a short pulse of electric charge to facilitate DNA uptake.

Chemical transformation with calcium chloride

Transformation by electroporation

Step 5 Growth on agar plates

Blue-white screening

Conclusion: A white colony consists of bacteria carrying a recombinant plasmid.

Figure 19-8 part 2

Genetics: A Conceptual Approach, Third Edition

© 2009 W. H. Freeman and Company

Figure 19-6
Genetics: A Conceptual Approach, Third Edition
© 2009 W. H. Freeman and Company

- X-gal is used to test activity of the enzyme β-galactosidase.
- X-gal is an analogue of lactose and may be hydrolyzed by the β -galactosidase which cleaves the β -glycosidic bond in D-lactose.

IPTG is an inducer enzyme for X-Gal

Autoclaved LB agar

+ X-Gal

+ IPTG

No insert – *lacZ* expressed – enzyme – blue colony

Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Figure 19-8

Genetics: A Conceptual Approach, Third Edition
© 2009 W. H. Freeman and Company

 Blue colonies represent Ampicillin-resistant bacteria that contain pVector and express a functional alpha fragment from an intact LacZ alpha coding sequence.

 White colonies represent Ampicillin-resistant bacteria that contain insert and do not produce LacZ alpha fragment

Terms used in cloning

- DNA recombination: The DNA fragment to be cloned is inserted into a vector.
- Transformation: The recombinant DNA enters into the host cell and proliferates.
- Selective amplification
- Isolation of desired DNA clones

PCR cloning strategies

Cloning methods for PCR products are divided into three types:

- Blunt-end cloning
- Sticky-end cloning
- TA cloning

TA Cloning

- When DNA fragments are generated Taq polymerase adds 1 or 2 extra adenines onto the end of 3' end of blunt ds DNA
- Several commercially available kits take advantage of this ability
- Use a plasmid vector with thymidine residues linked onto the 3' ends of linearized plasmid DNA

Analysis of cloned DNA

- Is it the one you wanted?
- What are its molecular characteristics?
- Gel electrophoresis: separates DNA fragments by molecular weight
- DNA sequencing: provides complete order of bases in a DNA fragment
- Colony PCR

Use the solution as template for PCR with gene specific primers

Aseptic technique Good microbiology techniques Pour plates Spread plate

pipette inoculum onto the surface

of agar plate

. . .

spread evenly over the agar surface

incubate

- PCR products
- Cloning vector
- DNA ligase (T4)
- Competent cells *E. coli*
- LB agar plates + X-Gal + IPTG
- SOC broth/LB broth
- Shaker
- Incubator
- Water bath

LB agar plates

- Autoclave LB agar, cool down
- For 1 ml LB: Add 0.2 mg X-Gal + 1 mM IPTG + antibiotic, mix
- Pour plate
- Plate can be stored at 4 °C, remember to warm the plate at 37 °C before use.
- Spread the transformed competent cells (better to split into 2 different volume, e.g. 100 and 50 μl)

Protocol

- 1. Clean your PCR products (from gel, clean with column, do not use enzymes)
- 2. Thor competent cells **on ice**

Protocol

- 3. Ligate cloning vector with your PCR product
 - Vector:insert = 1:3
 - PCR product 524 ng/μl, 498 bp
 - pTZ57R/T vector 2886 bp
 - Use 165 ng vector (3 μl)
 - Use calculator
 http://www.insilico.uni-duesseldorf.de/Lig_Input.html
 - Use 85.4 ng PCR product, = 0.16μ l
 - 1 μl vector + 0.16 μl product + 2 μl 5x buffer + 6.5 μl water
 + 0.3 μl T4 ligase
 - Ligate overnight (16-18 hours)

Protocol

- 4. 50 μl competent cells + 2.5 μl ligation mixture
- 5. On ice for 20 min
- 6. 42 °C 50 sec
- 7. On ice for 5 min
- 8. Add 900 µl SOC medium
- 9. Incubate at 37 °C for an hour, shake
- 10. Spread plates (split into 2 different volumes e.g. 50 and 100 µl)
- 11. Grow overnight
- 12. Collect white colonies, colony PCR

