

Efasmus HOGESCHOOL BRUSSEL

IT Essentials

Deel II: Hardwarecomponenten

3: Processoren

INHOUD

- Wat is een processor?
- Geschiedenis
- Bouw van een processor
- Werking
- Registers

WAT IS EEN PROCESSOR?

- Een processor voert bevelen uit
 - Een mogelijk bevel is bv.: x = y+z
 - programma: verzameling bevelen die in een bepaalde volgorde moeten worden uitgevoerd
 - Wordt eerst ingelezen vanop een harde schijf (of eventueel ander opslagmedium) naar het werkgeheugen.
 - Daarna kan het worden uitgevoerd, stukje bij beetje naar het cachegeheugen en zo door de processor.
 - Voert door de "gebruiker" gegeven instructies uit, en geeft als resultaat een bepaalde output.

WAT IS EEN PROCESSOR?

- Een processor voert bevelen uit
 - De taal die een processor spreekt noemt men "Assembly", dit is een laag-niveau programmeertaal. (met alleen zeer eenvoudige instructies)
 - Programmeertalen zoals C, C++, ... maken gebruik van compiler om de code (hoog-niveau) om te zetten naar uitvoerbare code (machinecode)

- Algemene evolutie:
 - Eerste CPU's gebouwd uit elektronenbuizen
 - Later transistoren
 - Nog later IC's (Integrated Circuits)
 - Tegenwoordig 1 enkele siliciumchip

- Intel 4004 processor
 - **1970**
 - Eerste microprocessor
 - 4-bits
 - 108 740 KHz
 - 10 µm

- **-** 1974
- 8-bits
- 2MHz

- **1978**
- 16-bits processor

- Intel 8088
 - **-** 1979
 - 4 MHz
 - 1 MB RAM adresseerbaar (20 bit adresbus)
- Intel 80186
 - **1980**
 - 8-bit en 16-bit versies
- Intel 80286
 - 1982, 16-bits processor
 - 6-14 MHz
 - 16 MB RAM adresseerbaar (24 bit adresbus)

- Intel 386
 - **1988**
 - 20-33 Mhz
 - 32-bits processor (!)
 - 4 GB werkgeheugen aanspreken
 - Coprocessor

- 1991
- 16-120 MHz (Texas Instruments versie)
- Een van de meest populaire processoren
- Koeling vereist
- Pipelining
- On-die caching

- AM386 en AM486
 - **-** 1991
 - 100% compatibele kloon van Intel's 80386 en 80486
- ADVANCED MICRO DEVICES AM386**DE-33GC
 B 9616APA

 ® AM0
- Later uitgekomen, maar lager geprijsd en daardoor ook zeer populair
- Intel Pentium
 - 1993
 - Naamsverandering wegens marketing redenen, is eigenlijk een 80586

- Intel Pentium Pro
 - **-** 1995
 - Vooral voor servers en workstations

Intel Pentium MMX

1997
 De Pentium architectuur wordt uitgebreid met MMX technologie voor multi-media toepassingen

Pentium II en III

De evolutie wordt verdergezet met nog meer transistors en verdere uitbreiding van de instructiesets in de Pentium II (1998) en III (1999)

- AMD-K6
 - 1997
 - Directe competitie voor de Pentium II, maar aan lagere prijs
 - Opgevolgd door de AMD-K6 2 in 1998

- **-** 1998
- Gericht op servers en workstations

- Intel Celeron
 - **-** 1998
 - Gericht op de budgetmarkt

- AMD Athlon en Duron
 - **1999**
 - De Athlon is een rechtstreekse concurrent van de Pentium en doorbreekt helemaal het Intel monopolie
 - De Duron is de tegenhanger van de Celeron en richt zicht dus op de budgetmarkt

- Huidige markt: de evolutie en concurrentie wordt verdergezet
- Intel
 - Intel i3 (budget), i5 (standaard), i7 (high end), i9 (ultra high end)
 - TICK-TOCK: Afwisselend verkleining architectuur (nieuw productieproces -> nieuwe architectuur -> verkleining -> ...
 - Laatste generaties uitgebreid met optimalisatiefase
 - Sinds eind 2021 nieuwe architectuur: Golden Cove (Intel 7 "nm")
 - tick: Alder Lake (eind 2021)
 - Tock: Raptor Lake (eind 2022)
 - Intel Xeon (servers en workstations)

Change (step)	Fabrication process	Micro- architecture	Code names for step	Intel generation desktop	Release	e date
Tick (new fabrication process)	65 nm	P6, NetBurst	Presler,	•	1995-11-1 (P6),	
		·			2000-11-20	
			Cedar Mill,		(Netburst)	
			Yonah			
Tock (new micro-						
architecture		Core	Merom			27/07/2006
Tick	45 nm		Penryn			11/11/2007
Tock		Nehalem	Nehalem		1	17/11/2008
Tick	32 nm		Westmere		1	04/01/2010
Tock		Sandy Bridge	Sandy Bridge		2	09/01/2011
Tick	22 nm		Ivy Bridge		3	29/04/2012
Tock		Haswell	Haswell		4	02/06/2013
Refresh			Haswell Refresh,		4	11/05/2014
			Devil's Canyon			02/06/2014
Tick	14 nm		Broadwell		5	05/09/2014
Tock		Skylake	Skylake		6	05/08/2015
			Kaby Lake		7	03/01/2017
			Kaby Lake R		8	21/08/2017
Optimizations			Coffee Lake	8	3,9	05/10/2017
(refreshes)			Whiskey Lake,			
			Amber Lake		8	28/08/2018
			Comet Lake		10	21/08/2019
Process	10 nm		Cannon Lake		8	16/05/2018
Architecture		Sunny Cove	Ice Lake		10	01/08/2019
Optimization			Tiger Lake		11	
Process	7 nm		Sapphire Rapids			
Architecture			Granite Rapids			
Optimization						
Process	5 nm					
Architecture						

En.wikipedia.org. (2020). *Tick-tock model*. [online] Available at: https://en.wikipedia.org/wiki/Tick-tock_model [Accessed 26 Oct. 2020]. 14

AMD

- AMD Athlon II (desktop)
- AMD Turion (low power consumption)
- AMD Phenom II (multicore)
- AMD Opteron (servers)
- AMD Mobile Athlon

- AMD Zen microarchitectuur
 - Volledig nieuwe architectuur
 - CPU sockets:
 - Desktops: AM4
 - High-end desktops (Threadripper): TR4
 - Servers (Epyc): SP3
 - SMT: Simultaneous Multithreading
 - DDR4

- AMD Zen microarchitectuur
 - Zen Generaties:
 - Zen (03/2017): 14nm, Ryzen 1000
 - Zen+ (04/2018): 12nm, Ryzen 2000
 - Quasi gelijk aan Zen wat architectuur betreft, maar met ruimte tussen transistors voor betere warmteverspreiding en energieverbruik
 - 10% sneller dan Zen
 - Zen 2 (07/2019): 7nm, Ryzen 3000
 - Chiplet design: meerdere chiplets op 1 chip:
 - » links I/O (GlobalFoundries) die, op grotere en daardoor goedkoper nm-procedé: 12nm (desktop) of 14nm (server).
 - » rechts 8 core chiplet die (TSMC) bestaande uit 2 core complexes (CCX) van 4 cores. Een extra core chiplet kan hieronder toegevoegd worden. I/O die op grotere en daardoor goedkoper nm-procedé: 12nm (desktop) of 14nm (server).
 - L3: 32MiB

- AMD Zen microarchitectuur
 - Zen Generaties:
 - Zen 2(,5?) (2020) 7nm, Ryzen 4000
 - Enkel voor laptops en business desktop (OEM only)
 - Ingebouwde gpu
 - Zen 3 (11/2020 4/2022), 7nm, Ryzen 5000
 - 8 cores per chiplet, met gedeelde LLC over al de cores (32 MB 70MB)
 - Verlaagde TDP
 - Sterk verhoogde single-thread performantie
 - Hogere kloksnelheid
 - Zen 4 (27/9/2022) 5nm, Ryzen 7000
 - Verhoogde TDP
 - Ruimere cache
 - Hogere kloksnelheid
 - AM5 en DDR5

- 32 vs 64 bits
 - Grootte van interne registers is nu 64 bits breed
 - Vooral voordeel voor aanspreken geheugen
 - Max. 4 GB bij 32-bits architectuur
- Multicore: dual-core, quad-core, octacore,...
 - Meer interne microprocessors
 - Meerdere threads tegelijk uitvoeren
- Overzicht van moderne processoren
 - http://en.wikipedia.org/wiki/Comparison of Intel processors

Nehalem (1^{ste} generatie)

Sandy bridge (2^{de} generatie)

Ivy Bridge (3^{de} generatie)

Haswell (4^{de} generatie)

Broadwell (5^{de} generatie)

Skylake (6^{de} generatie)

Skylake (7^{de} generatie)

- Skylake (6^{de} gen) en Kaby Lake (7^{de} gen) vergelijking:
 - 2 verschillende generaties zelfde architectuur

AMD Zen 2 core (Ryzen 3000)

AMD Zen 2 CCX

AMD Zen 2 core

Onderdelen

- ALU: arithmetic/logic unit
 - optellen, aftrekken, vermenigvuldigen en delen van gehele getallen
- FPU: floating point unit:
 - bewerkingen op floating point getallen
 - Was vroeger niet geïntegreerd op processor, een aparte coprocessor kon worden geïnstalleerd om FP bewerkingen uit te voeren

Registers

- Tijdelijke opslagplaats voor gegevens en resultaten
- Soort kladblok voor de processor
- Snelste geheugen (en duurste...)
- Tegenwoordig 64-bits processoren
 - Besturingssysteem kan 32-bits of 64-bits zijn
- Optimaal aantal registers: momenteel 32 registers (absolute minimum: 2 registers)

Onderdelen

- Control unit
 - De primaire component in de processor
 - "brain within the brain"
 - Controleert en coördineert de informatie-flow in de processor en tussen andere componenten
 - Control-unit stuurt bewerkingen heen en weer, maar kan zelf niets vasthouden (daarvoor dienen de registers)

Bus unit:

- Tussen de processor en de rest van de computer zijn een aantal invoer- en uitvoerkanalen
- Deze kanalen noemen we bussen
- De bus unit bestaat controleert het verkeer tussen processor en andere componenten

- Transistor density (transistor dichtheid)
 - Nieuwere processoren hebben ook meer transistors
 - Meer transistors leidt tot kleinere transistors
 - Om processor niet te groot te maken
 - Om processor van voeding te kunnen voorzien
 - Eerste processoren: 10 micron (µm, 10⁻⁶) tussen transistors
- Van 1 μ m (10⁻⁶)-> 7 nm (10⁻⁹)
 - Jaren 70: 10 μm productieproces
 - Later evolutie tot 65 nm proces
 - Huidige standaard: 5 nm proces
 - 2018: 10 nm (Intel Cannonlake Icelake architectuur)
 - Dit zal verder blijven dalen

Bouw van een processor

Hoe wordt een processor gemaakt?
 https://www.youtube.com/watch?v=g8Qav3vIv9s

Koeling

Actieve koeling

Passieve koeling (heatsink)

Ook waterkoeling is een optie

WERKING

- Processorcyclus
- 5 stappen
 - Instructie inlezen
 - Instructie decoderen
 - Gegevenstoegang
 - Instructie uitvoeren
 - Bewaren resultaten
- Soms afgekort tot3 stappen
 - Instructie inlezen
 - Instructie decoderen
 - Instructie uitvoeren

- Snelheid van een processor
 - MHz/GHz: Kloksnelheid weergegeven door aantal MHz (of GHz)
 - Geeft weer hoeveel kloktikken (of cycli) er per seconde zijn
 - Bij elke kloktik wordt een deel van een instructie uitgevoerd
 - 1Hz = 1 cycle per seconde
 - 1GHz: 1 miljard cycles per seconde
 - Per cycle een (deel)bewerking uitvoeren

- Snelheid van een processor
 - MIPS: Million of instructions per second (bv.: 15 MIPS is 15 miljoen instructies per seconde)
 - Meet vooral de werking van de ALU (bewerkingen met integers)
 - Houdt geen rekening met pipelining, superscalar,...
 - "Meaningless indication of processor speed" (Bob Estall)
 - FLOPS: floating point operations per second
 - Meet vooral de werking van de FPU (bewerkingen met floating point getallen)
 - Blijft een benadering, maar door de veel voorkomende floating point bewerkingen, vaak beter dan MIPS

- Snelheid van een processor
 - IPC: instructions per cycle
 - Meestal beter dan MIPS en FLOPS doordat hier ook de factoren van pipeliningen e.a. in rekening worden gebracht
 - Wordt steeds meer gebruikt als maatstaf voor de performantie van een processor, in combinatie met de kloksnelheid

Geen enkele maatstaf is perfect

⇒ Vergelijk benchmarks voor de beoogde usecase!

- Wet van Moore
 - Oorspronkelijk: aantal transistors verdubbelt jaarlijks
 - Realiteit: om het 1,5 à 2 jaar (later aangepast door Moore)

- Buffers/cache geheugen (herhaling werkgeheugen)
 - Processor werkt veel te snel tov. werkgeheugen
 - Daarom buffers en cache geheugens (L1, L2 en L3 caches)
 - Buffer = tijdelijke opslagplaats voor instructies die nog niet volledig uitgevoerd zijn, of nog niet naar geheugen geschreven zijn
 - Buffer nodig om toekomstige instructies in op te slaan, om afgewerkte instructies op te slaan, ...
 - Wordt alsmaar belangrijker en daardoor ook groter

- Level 1 cache
 - Een deel voor instructies
 - Een deel voor gegevens
- Level 2 cache
 - Vroeger op moederbord (-> aan system bus snelheid)
 - Tegenwoordig op full clock speed van de CPU
- Level 3 cache (ook wel Last Level Cache genoemd)
 - Gedeeld gebruik door de verschillende cores

- Pipelining
 - Meerdere stappen uit de processorcyclus kunnen tegelijkertijd worden uitgevoerd
 - Vergelijkbaar met een lopende band

- Toekomstvoorspelling (branch prediction)
 - Voorspellen wat de volgende instructies zullen zijn, zodat de juiste instructies geladen worden in de buffers
 - Op die manier heeft de processor altijd werk en moet hij niet (minder) wachten op invoer data
 - Gebruik van ingewikkelde algoritmes om te voorspellen welke tak ("branch") zal worden gebruikt

- Toekomstvoorspelling
 - Voorbeeld van branch prediction

```
IF A=B THEN
DO C
ELSE
DO D
ENDIF
```

- Voorspellen (voordat de conditie A=B effectief getest wordt) welke tak zal genomen worden, C of D
- Mogelijkheid: THEN en ELSE tak beide klaarzetten en foute tak weggooien
 - ® meer buffers nodig
- Voorspelling
 - Op basis van eerdere waarden van A en B voorspellen welke tak genomen moet worden, en deze tak klaarzetten in de buffer
 - Indien foute tak gekozen, veel tijdverlies
 - Goede algoritmes nodig!!!
 - Algoritme bepaalt mee de snelheid vd. processor

- Toekomstvoorspelling
 - In 2017 kwamen meerdere vulnerabilities aan het licht die data het mogelijk maken om vanuit het ene proces data uit een ander proces te capteren via branch prediction
 - Spectre, Meltdown en varianten
 - Werkt in bepaalde gevallen zelfs over virtuele machines heen
 - Vereist in essentie een hardware aanpassing
 - Tijdelijke oplossing
 - uitzetten van branch prediction (1-25% performantieverlies)
 - Microcode updates via het Operating System

REGISTERS

- Geheugenplaatsen in de processor zelf
- Opslaan van gegevens
- Opslaan van adressen
- Opslaan van resultaten
- Ingebakken op processor (snelheid)

- Instructie-set:
 - Een instructieset is een verzameling instructies die een processor kan verstaan (en dus kan uitvoeren)
 - Alle processors bevatten een aantal basis-instructies in deze set ("gewoon" gebruik)
 - Tegenwoordig worden nieuwe instructies toegevoegd voor een bepaald toepassingsdomein

