De-Quantizing Quantum Algorithms by Retrodictive Execution

Jacques Carette McMaster University Gerardo Ortiz* Indiana University Amr Sabry Indiana University

February 15, 2022

Abstract

The quantum circuit model consists of two classes of gates: (i) quantum counterparts to classical reversible gates (e.g., Toffoli gates), and (ii) genuine quantum gates with no classical counterpart (e.g., Hadamard and phase gates). We make the remarkable observation, that, for a number of well-established quantum algorithms, judicious reasoning about the classical components, ignoring all the quantum gates, is sufficient. Put differently, in those cases, the quantum gates serve no fundamental purpose and are actually distracting from an underlying efficient classical algorithm. The result relies on the ability to symbolically execute circuits, especially in a retrodictive fashion, i.e., by making partial observations at the output site and proceeding backwards to infer the implied initial conditions.

13 Main

10 11

12

14

15

16

17

18

19

22

23

24

You can't connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in your future. Steve Jobs

Retrodictive quantum theory [3], retrocausality [1], and the time-symmetry of physical laws [11] suggest that partial knowledge about the future can be exploited to understand the present. We demonstrate the even stronger proposition that, in concert with the computational concepts of demand-driven lazy evaluation [6] and symbolic partial evaluation [5], retrodictive reasoning can be used as a computational resource to dequantize some quantum algorithms, i.e., to provide efficient classical algorithms inspired by their quantum counterparts.

Figure 1: Template quantum circuit

Many quantum algorithms can be expressed using circuits consisting of three stages: preparation, unitary evolution, and measurement in the Hadamard / Fourier basis as shown in Fig. 1(a). The unitary evolution block is typically a quantum oracle U_f that encapsulates a classical function f to be analyzed. In the conventional execution model of quantum circuits, which is the conventional way to use quantum mechanics as a predictive theory, the U_f block receives both inputs and evolves in the forward direction to produce the outputs. Retrodictive reasoning suggests more creative ways to execute the U_f block as shown in Fig. 1(b). In this model, a forward execution is performed to determine a possible measurement result for the bottom

Figure 3: Equations generated by retrodictive execution of $a^x \mod 15$ starting from observed result 1 and unknown $x_8x_7x_6x_5x_4x_3x_2x_1x_0$. The solution for the unknown variables is given in the last column.

register; using this information, a retrodictive execution is performed to determine the initial states of the first register that are consistent with this measurement. These states are then propagated forward to the measurement process.

In order to assess whether this idea works for a broad class of situations including different algorithms and different circuit sizes, we implemented the demand-driven symbolic partial evaluator and ran it on a variety of circuits. As we demonstrate below, it turns that retrodictive symbolic evaluation provides additional *classical* computational resources that are powerful enough to solve instances of Deutsch-Jozsa, Bernstein-Vazirani, and Simon problems, as well as some instances of Grover's and Shor's algorithms. In all the problems below, let $[\mathbf{n}]$ denote the finite set $\{0,1,\ldots,(n-1)\}$. The parameter n determines the problem size and the goal is to solve the problem using resources that do not grow exponentially in n.

Shor 15. The circuit in Fig. 2 uses a hand-optimized implementation of the modular exponentiation $4^x \mod 15$ to factor 15 using Shor's algorithm. In a conventional forward execution, the state at step (3) is:

29

30

31

32

33

34

35

36

37

$$\frac{1}{2\sqrt{2}}((|0\rangle+|2\rangle+|4\rangle+|6\rangle)\,|1\rangle+(|1\rangle+|3\rangle+|5\rangle+|7\rangle)\,|4\rangle)$$

At this point, the bottom register is measured. The result of the measurement can be either $|1\rangle$ or $|4\rangle$. In either case, 40 the top register snaps to a state of the form $\sum_{r=0}^{3} |a+2r\rangle$ 41 whose QFT has peaks at $|0\rangle$ or $|4\rangle$. If we measure $|0\rangle$ for 42 the top register, we repeat the experiment; otherwise we 43 infer that the period is 2. Instead of this forward execution, 44 we can reason as follows. Since $x^0 = 1$ for all x, we know 45 that $|1\rangle$ is a possible measurement of the second register. We 46 47 can therefore proceed in a retrodictive fashion with the state $|x_2x_1x_0\rangle|001\rangle$ at step (2) and compute backwards. The first 48

Figure 2: Finding the period of $4^x \mod 15$

CX-gate changes the state to $|x_2x_1x_0\rangle|x_001\rangle$ and the second CX-gate produces $|x_2x_1x_0\rangle|x_00x_0\rangle$. At that 49 point, we reconcile the retrodictive result of the second register $|x_00x_0\rangle$ with the initial condition $|000\rangle$ to conclude that $x_0 = 0$. In other words, in order to observe $e_2e_1e_0 = 001$, the first register must be initialized 51 to a superposition of the form $|??0\rangle$ where the least significant bit must be 0 and the other two bits are 52 unconstrained. Expanding the possibilities, the first register needs to be in a superposition of the states 53 $|000\rangle$, $|010\rangle$, $|100\rangle$ or $|110\rangle$ and we have just inferred using purely classical but retrodictive reasoning that 54 the period is 2. Significantly, this approach is robust and does not require small hand-optimized circuits. 55 Indeed, following the methods for producing quantum circuits for arithmetic operations from first principles 56 using adders and multipliers [10], our implementation for $a^x \mod 15$ has 56538 generalized Toffoli gates over 57 9 qubits, and yet the equations resulting from the retrodictive execution in Fig. 3 are trivial and immediately 58 solvable as they only involve either the least significant bit x_0 (when $a \in \{4, 11, 14\}$) or the least significant two bits x_0 and x_1 (when $a \in \{2, 7, 8, 13\}$). When the solution is $x_0 = 0$, the period is 2. When the solution is $x_0 = 0, x_1 = 0$, the period is 4.

Figure 4: Circuit for Bernstein-Vazirani Algorithm (n = 8, s = 92, least significant bit is the top wire)

Deutsch. The problem is to determine if a given function $[2] \to [2]$ is constant or balanced. It is assumed that the function is embedded in a quantum circuit U_f , typically composed of x and cx gate, and the goal is to use U_f just once. The textbook quantum algorithm prepares a quantum superposition that propagates through the quantum oracle U_f in the forward direction and then performs a measurement that deterministically solves the problem. Instead, we fix the ancilla output to a possible boundary condition, say $|0\rangle$, provide a symbolic state $|x\rangle$ for the top register, and perform a retrodictive execution of the quantum oracle. The execution starts from the output side with the state $|x\rangle |0\rangle$ and terminates on the input side with a state $|x\rangle |y\rangle$ where y is a symbolic expression that captures the necessary initial conditions to produce the partial observation $|0\rangle$ on the ancilla register. Running the experiment, we get one of the following four 70 symbolic expressions $0, 1, x, \text{ or } 1 \oplus x$ depending on the function f. In the first two cases, the observation of 71 the ancilla is independent of x, i.e. the function is constant. In the last two cases, the ancilla depends on x72 (or its negation), and the function must be balanced. 73

63

65

66

67

68

69

Deutsch-Jozsa. The problem is a generalization of the previous one: we are given a function $[n] \to [2]$ 74 that is promised to be constant or balanced and we need to decide distinguish the two cases. Again, we 75 fix the ancillary output to a possible boundary condition, say $|0\rangle$, and perform a retrodictive execution 76 of the circuit to calculate a symbolic expression. Running the experiment for the two constant functions, 77 the result is 0 or 1 indicating no dependency of the ancilla on the input. For three examples of balanced 78 functions with n=6, the resulting expression was x_0 in one case, $x_0 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5$ in another, and 79 ลก $x_0x_2 \oplus x_0x_2x_3x_5 \oplus x_0x_2x_4x_5 \oplus x_0x_3 \oplus x_0x_3x_4x_5 \oplus x_0x_3x_5 \oplus x_1x_2x_3x_5 \oplus x_1x_2x_4x_5 \oplus x_1x_3x_4x_5 \oplus x_1x_3x_5 \oplus x_1x_2x_4x_5 \oplus x_1x_3x_4x_5 \oplus x_1x_3x_5 \oplus x_1x_2x_4x_5 \oplus x_1x_3x_4x_5 \oplus x_1x_2x_4x_5 \oplus x_1x_2x_5 \oplus x_1x_2x$ 81 $x_1x_5 \oplus x_2x_3x_4x_5 \oplus x_2x_3x_5 \oplus x_2x_4 \oplus x_3x_4x_5 \oplus x_3x_5$ in the last. In the first case, the function is balanced 82 because its output depends on just one variable (which is 0 half the time); in the second case the output of 83 the function is the exclusive-or of all the input variables which is an easy instance of a balanced function. The last case is a cryptographically strong balanced function whose output pattern is, by design, difficult to 85 discern [4]. Since we are promised the function is either constant or balanced, then any output that depends on at least one symbolic variable is incompatible with a constant function; the details of the dependency are 87 not relevant.

Bernstein-Vazirani. We are given a function $f:[\mathbf{2^n}] \to [\mathbf{2}]$ that hides a secret number $s \in [\mathbf{2^n}]$. We are promised the function is defined using the binary representations $\sum_i^{n-1} x_i$ and $\sum_i^{n-1} s_i$ of x and s respectively

Figure 5: Example of Quantum Oracle for Simon's Algorithm

```
w = 0
                                                           1 \oplus x_0 \oplus x_0 x_1 \oplus x_0 x_1 x_2 \oplus x_0 x_1 x_2 x_3 \oplus x_0 x_1 x_3 \oplus x_0 x_2 \oplus x_0 x_2 x_3 \oplus x_0 x_3 \oplus x_1 \oplus x_1 x_2 \oplus x_0 x_1 \oplus x_1 
                                                                        x_1x_2x_3 \oplus x_1x_3 \oplus x_2 \oplus x_2x_3 \oplus x_3
w = 1
                                                           x_0 \oplus x_0 x_1 \oplus x_0 x_1 x_2 \oplus x_0 x_1 x_2 x_3 \oplus x_0 x_1 x_3 \oplus x_0 x_2 \oplus x_0 x_2 x_3 \oplus x_0 x_3
                                                           x_0x_1 \oplus x_0x_1x_2 \oplus x_0x_1x_2x_3 \oplus x_0x_1x_3 \oplus x_1 \oplus x_1x_2 \oplus x_1x_2x_3 \oplus x_1x_3
w=2
w = 3
                                                           x_0x_1 \oplus x_0x_1x_2 \oplus x_0x_1x_2x_3 \oplus x_0x_1x_3
                                                           x_0x_1x_2 \oplus x_0x_1x_2x_3 \oplus x_0x_2 \oplus x_0x_2x_3 \oplus x_1x_2 \oplus x_1x_2x_3 \oplus x_2 \oplus x_2x_3
w = 4
w = 5
                                                           x_0x_1x_2 \oplus x_0x_1x_2x_3 \oplus x_0x_2 \oplus x_0x_2x_3
w = 6
                                                           x_0x_1x_2 \oplus x_0x_1x_2x_3 \oplus x_1x_2 \oplus x_1x_2x_3
w = 7
                                                           x_0x_1x_2 \oplus x_0x_1x_2x_3
w = 8
                                                           x_0x_1x_2x_3 \oplus x_0x_1x_3 \oplus x_0x_2x_3 \oplus x_0x_3 \oplus x_1x_2x_3 \oplus x_1x_3 \oplus x_2x_3 \oplus x_3
w = 9
                                                           x_0x_1x_2x_3 \oplus x_0x_1x_3 \oplus x_0x_2x_3 \oplus x_0x_3
w = 10
                                                           x_0x_1x_2x_3 \oplus x_0x_1x_3 \oplus x_1x_2x_3 \oplus x_1x_3
w = 11
                                                           x_0x_1x_2x_3 \oplus x_0x_1x_3
w = 12
                                                           x_0x_1x_2x_3 \oplus x_0x_2x_3 \oplus x_1x_2x_3 \oplus x_2x_3
w = 13
                                                           x_0x_1x_2x_3 \oplus x_0x_2x_3
w = 14
                                                           x_0x_1x_2x_3 \oplus x_1x_2x_3
w = 15
                                                           x_0x_1x_2x_3
```

Figure 6: Result of retrodictive execution for the Grover oracle $(n = 4, w \text{ in the range } \{0..15\})$.

as $f(x) = \sum_{i=0}^{n-1} s_i x_i \mod 2$. The goal is to determine the secret number s. The circuit in Fig. 4 solves the problem for n=8 and a hidden number 92 (= 00111010 in binary notation with the rightmost bit at index 0). The gates between slice (1) and slice (2) collect the sum of the x_i at positions that match the occurrences of 1 in the secret string. The retrodictive execution proceeds from slice (2) backwards with the state $|x_0x_1x_2x_3x_4x_5x_6x_70\rangle$; upon termination the last qubit has the symbolic value $x_1 \oplus x_3 \oplus x_4 \oplus x_5$. The indices $\{1,3,4,5\}$ are exactly the positions in which the secret string has a 1.

Simon. We are given a 2-1 function $f: [2^n] \to [2^n]$ with the property that there exists an a such $f(x) = f(x \oplus a)$ for all x; the goal is to determine a. The circuit in Fig. 5 demonstrates the situation when n=2 and a=3. In order to perform retrodictive execution, we need a possible final value for a_1a_0 with which to initiate the backwards execution. For that we simply classically execute the circuit once in the forward direction with a random choice of x_1x_0 (say $x_1x_0 = 11$) and an initial condition $a_1a_0 = 00$. This execution results in $a_1a_0 = 00$ giving us a possible future observation. The goal now is to find the other possible value for x_1x_0 that produces this observation and for that we simply run backwards with the symbolic state $|x_0x_100\rangle$. The result is the equation $x_0 \oplus x_1 = 0$ whose only two solutions are $x_1x_0 = 00$ or $x_1x_0 = 11$.

Grover. We are given a function f; [2ⁿ] \rightarrow [2] with the property that there exists only one input w such f(wx) = 1. The goal is to find w. The conventional presentation of the quantum algorithm does not exactly fit the template of Fig. 1. But it is possible to construct a quantum oracle U_f from the given f and perform retrodictive execution. The resulting equations for n = 4 and w in the range $\{0..15\}$ are in Fig. ??. In some

cases (e.g. w = 15) the equations immediately reveal w; in others non-trivial steps would be needed to solve the equations.

Shor 21. The sample examples presented so far demonstrate that some instances of quantum algorithms can be solved via classical symbolic retrodictive execution. We now show an instance that glaringly shows the limitations of the basic retrodictive execution, do a theoretical analysis, and show how to tune the basic idea to solve more and more instances of quantum algorithms. As is already apparent in some examples, running retrodictive execution may produce large equations. To appreciate how large these equations may be, we include the full set of equations producing for a retrodictive execution of Shor's algorithm for factoring 21. Unlike the number 15 and the rare occurrences of products of Fermat primes which result in a period that is a power of 2 and hence trivial to represent by equations of binary numbers, the period of 21 is not easily representable as a system of equations over binary numbers. See Sec. 2.

Figure 7: The pre-image of 4 under $f(x) = 7^x \mod 15$.

Retrodictive Executions, Function Pre-images, and NP-Complete Problems. We now express the computational problems above uniformly as queries over function pre-images. Given finite sets A and B, a function $f: A \to B$ and an element $y \in B$, we define $\{\cdot \xleftarrow{f} y\}$, the pre-image of y under f, as the set $\{x \in A \mid f(x) = y\}$. For example, let $A = B = \{0, 1, \dots, 15\}$ and let $f(x) = 7^x \mod 15$, then the collection of values that f maps to f(x) = 1, we observe that the quantum algorithm can be decomposed into: (a) the

Referring back to Fig. 1, we observe that the quantum algorithm can be decomposed into: (a) the computation up to step (3) which just computes the pre-image of the ancilla measurement under f, and (b) a module performing Hadamard of QFT to analyze this pre-image. For example, the pre-image of 4 under $f(x) = 7^x \mod 15$ displayed in Fig. 7 would be represented as the superposition $|\psi\rangle = 1/2(|2\rangle + |6\rangle + |10\rangle + |14\rangle$) at step (3) of Shor's algorithm. What is crucial is that although the quantum state $|\psi\rangle$ is not directly observable, this is of no concern. Shor's algorithm does not actually care about the full description of the pre-image, only about a global property of the pre-image: its period. Indeed, in the quantum algorithms we discussed, the full calculation of pre-image is never needed: each algorithm computes a particular global property of the corresponding pre-image. The Deutsch and Deutsch-Jozsa algorithms only need to distinguish whether the pre-image of either 1 or 0 is empty, contains half the elements, or the entire set. The Bernstein-Vazirani algorithm only needs n queries over the pre-image of either 1 or 0: query i asks whether 2^i is a member of the pre-image and the answer determines bit i of the secret s. Indeed, by definition, $f(2^i) = s_i$ and hence s_i is 1 iff 2^i is a member of the pre-image of i. In the case of the Simon problem, we calculate f(x) = w for some x and query the pre-image of w to get the other value in the pre-image.

To summarize, quantum algorithms compute "simple queries" over pre-images, and in fact, unless P = NP, such simple queries are the only possibility since the full calculation of a pre-image is an NP-complete problem, and it is believed that even full fledged quantum computers cannot solve NP-complete problems. To appreciate the difficulty of computing pre-images in general, note that finding the pre-image of a function is subsumes several challenging computational problems such as pre-image attacks on hash functions [9],

predicting environmental conditions that allow certain reactions to take place in computational biology [2, 7], and finding the pre-image of feature vectors in the space induced by a kernel in neural networks [8]. More to the point, the boolean satisfiability problem SAT is expressible as a boolean function over the input variables and solving a SAT problem is asking for the pre-image of true. Indeed, based on the conjectured existence of one-way functions which itself implies $P \neq NP$, all these pre-images calculations are believed to be computationally intractable in their most general setting.

The obvious question to ask now is whether the retrodictive execution can be tuned to only produce the required statistics instead producing the full description of pre-images.

```
insight 1: qft does not care about 0+2+4.... vs 1+3+5....
0 0 ? 0 1 ? 1 0 ? 1 1 ?
equiv no matter what ? is ? is used in the computation (don't care about value) others not used so we
```

just need to keep track of which vars are used run experiments with PEX and PEY

2. Hadamard basis: Tofffoli + Hadamard is universal so we "just" need to understand how to run in X basis.

Get rid of all quantum gates and run just the reversible classical part but with different taint analyses

Essentially we have two colors and we do taint analysis

Blue and Red; when blue interacts with red it gets tainted

We have two operations +red (add red) -red (remove red)

Remember cx(+,-) = (-,-)

Some interactions (Toffoli) want to create more refined operations +/-(1/2)(red) +/-(red) The more you do these operations the more precise it wants to be +/-(1/4)(red) +/-(1/2) red +/-(red)

And so on

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171 172

173

175 176

177

178

179

180

181

182

185

186

187

189

191

192

193

196

197

198

You can truncate at the desired level of accuracy

The taint analysis groups variables in "waves" (superpositions) of things that have the same color so the values we

propagate are "red: phase=p; frequency=f; involved variables=x1,x2,..."

Seems that naive taint analysis is just keep track of which variable is used

run again; refined pe; var used; if used twice then disappears

go back to that stupid paper about logic programming and xor

The equations turn out to be trivial when the period is a power of 2. This occurs when the number to factor is a product of Fermat primes: 3, 5, 17, 257, 65537, The equations generated for some of these cases are in Fig. ??.

need stats only PEX, PEY ...

core of many quantum algos is quantum oracle uf two inputs; two outputs system; ancilla; normal eval; control ancilla; system unknown; so throw in complete superposition and eval forward

Retrodictive QFT. only need number of vars!!!!

solve other problems with just knowing which vars are involved

Discussion. Normal quantum evolution: from present to future

Now what if I had partial knowledge about the future; what can you say about the present? (And then about the rest of the unknown future)

Can this help flow of information, complexity, etc?

In some cases, partial knowledge about the future is enough to predict the present accurately enough

to then predict everything about the future; in some cases it is not enough

Possibility that collapse of wave function is information flow back from measured future to present unknown initial conditions and then back to rest of wave that was not measured

Provide a general introduction to the topic and a brief non-technical summary of your main results and their implication.

200 words ??

main text 2000-2500 words 3-4 figures 30-50 references

Methods section 3000 words more references ok

Author contributions

Code available

https://quantumalgorithmzoo.org

every quantum circuit can be written using Toffoli and Hadamard retro just go through Toffoli; ignore
Had; but of course we are using symbolic eval

```
can H be moved past Toffoli?
universe uses lazy evaluation?
algebra of Toffoli and Hadamard ZX calculus
fourier transform classical efficient in some cases
Ewin Tang papers
kochen specker ??
```

References

207

- Yakir Aharonov and Lev Vaidman. "The Two-State Vector Formalism: An Updated Review". In: *Time* in Quantum Mechanics. Ed. by J.G. Muga, R. Sala Mayato, and Í.L. Egusquiza. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 399–447.
- Tatsuya Akutsu, Morihiro Hayashida, Shu-Qin Zhang, Wai-Ki Ching, and Michael K Ng. "Analyses and algorithms for predecessor and control problems for Boolean networks of bounded indegree". In: *Information and Media Technologies* 4.2 (2009), pp. 338–349.
- 214 [3] Stephen M. Barnett, John Jeffers, and David T. Pegg. "Quantum Retrodiction: Foundations and Controversies". In: Symmetry 13.4 (2021).
- Linda Burnett, William Millan, Edward Dawson, and Andrew Clark. "Simpler Methods for Generating Better Boolean Functions with Good Cryptographic Properties". In: Australasian Journal of Combinatorics 29 (2004), pp. 231–247.
- Yoshihiko Futamura. "Partial computation of programs". In: *RIMS Symposia on Software Science*and Engineering. Ed. by Eiichi Goto, Koichi Furukawa, Reiji Nakajima, Ikuo Nakata, and Akinori
 Yonezawa. Berlin, Heidelberg: Springer Berlin Heidelberg, 1983, pp. 1–35.
- Peter Henderson and James H. Morris. "A Lazy Evaluator". In: *Proceedings of the 3rd ACM SIGACT-SIGPLAN Symposium on Principles on Programming Languages*. POPL '76. Atlanta, Georgia: Association for Computing Machinery, 1976, pp. 95–103.
- Johannes Georg Klotz, Martin Bossert, and Steffen Schober. "Computing preimages of Boolean networks". In: *BMC Bioinformatics* 14.10 (Aug. 2013), S4.
- ²²⁷ [8] J.T.-Y. Kwok and I.W.-H. Tsang. "The pre-image problem in kernel methods". In: *IEEE Transactions* on Neural Networks 15.6 (2004), pp. 1517–1525.
- Phillip Rogaway and Thomas Shrimpton. "Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance". In: Fast Software Encryption. Ed. by Bimal Roy and Willi Meier. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 371–388.
- Vlatko Vedral, Adriano Barenco, and Artur Ekert. "Quantum networks for elementary arithmetic operations". In: *Phys. Rev. A* 54 (1 July 1996), pp. 147–153.
- [11] Satosi Watanabe. "Symmetry of Physical Laws. Part III. Prediction and Retrodiction". In: Rev. Mod. Phys. 27 (2 Apr. 1955), pp. 179–186.

237 **2** Methods

Lazy Evaluation. Consider a program that searches for three different numbers x, y, and z each in the range [1..n] and that sum to s. A well-established design principle for solving such problems is the *generate-and-test* computational paradigm. Following this principle, a simple program to solve this problem in the programming language Haskell is:

```
generate :: Int -> [(Int,Int,Int)]
generate n = [(x,y,z) | x <- [1..n], y <- [1..n], z <- [1..n]]
```

```
244
245 test :: Int -> [(Int,Int,Int)] -> [(Int,Int,Int)]
246 test s nums = [(x,y,z) | (x,y,z) <- nums, x /= y, x /= z, y /= z, x+y+z == s]
247
248 find :: Int -> Int -> (Int,Int,Int)
249 find s = head . test s . generate
```

The program consists of three functions: generate that produces all triples (x,y,z) from (1,1,1) to (n,n,n); test that checks that the numbers are different and that their sum is equal to s; and find that composes the two functions: generating all triples, testing the ones that satisfy the condition, and returning the first solution. Running this program to find numbers in the range [1..6] that sum to 15 immediately produces (4,5,6) as expected.

But what if the range of interest was [1..10000000]? A naïve execution of the generate-and-test method would be prohibitively expensive as it would spend all its time generating an enormous number of triples that are un-needed. Lazy demand-driven evaluation as implemented in Haskell succeeds in a few seconds with the result (1,2,12), however. The idea is simple: instead of eagerly generating all the triples, generate a process that, when queried, produces one triple at a time on demand. Conceptually the execution starts from the observer site which is asking for the first element of a list; this demand is propagated to the function test which itself propagates the demand to the function generate. As each triple is generated, it is tested until one triple passes the test. This triple is immediately returned without having to generate any additional values.

Partial Evaluation. Below is a Haskell program that computes a^n by repeated squaring:

When both inputs are known, e.g., a = 3 and n = 5, the program evaluates as follows:

```
power 3 5

273 = 3 * power 3 4

274 = 3 * (let r1 = power 3 2 in r1 * r1)

275 = 3 * (let r1 = (let r2 = power 3 1 in r2 * r2) in r1 * r1)

276 = 3 * (let r1 = (let r2 = 3 in r2 * r2) in r1 * r1)

277 = 3 * (let r1 = 9 in r1 * r1)

278 = 243
```

Partial evaluation is used when we only have partial information about the inputs. Say we only know n=5. A partial evaluator then attempts to evaluate power with symbolic input a and actual input n=5. This evaluation proceeds as follows:

```
power a 5

283 = a * power a 4

284 = a * (let r1 = power a 2 in r1 * r1)

285 = a * (let r1 = (let r2 = power a 1 in r2 * r2) in r1 * r1)

286 = a * (let r1 = (let r2 = a in r2 * r2) in r1 * r1)

287 = a * (let r1 = a * a in r1 * r1)

288 = let r1 = a * a in a * r1 * r1
```

All of this evaluation, simplification, and specialization happens without knowledge of a. Just knowing n was enough to produce a residual program that is much simpler.

The evolution of a quantum system is typically understood as proceeding forwards in time — from the present to the future. As shown in Fig. 1(a),

Since the conventional execution starts with complete ignorance about the future, the initial state is prepared as a superposition that includes every possibility. In a well-designed algorithm, , by the time the computation reaches the measurement stages, the relative phases and probability amplitudes in that enormous superposition have become biased towards states of interest which are projected to produce the final answer.

Data Availability. available 298

289

290

291

292

293

294

295

296

297

299

300

301

302

303

304

305

307

308

309

311

312

313

314

315

316

317

318

319

320

321

322

323

Discussion. Possibility that collapse of wave function is information flow back from measured future to present unknown initial conditions and then back to rest of wave that was not measured

transactional interpretation?

Luckily, the problems of concern to us are quite special: (i) the functions are not arbitrary but have additional structure that can be exploited, and (ii) we never need access to all the elements in the pre-image; we just need to answer aggregate queries about the pre-images. Quantum algorithms somehow exploit these properties along with some physical principles to solve these problems efficiently. To understand the precise way in which this is happening, we start with the template of the quantum circuit used for solving all the problems above in Fig. 1.

The core of the circuit is the U_f block which can be assumed to be implemented using only generalized To foli gates. The block implements the unitary transformation: $U_f(|x\rangle|y\rangle) = |x\rangle|f(x) \oplus y\rangle$ where \oplus is the (bitwise) exclusive-or operation; it defines the function of interest whose pre-image properties are to be calculated. The inputs of the U_f block are grouped in two registers: the top register contains an equal superposition of all possible inputs to f; the second register is prepared in initial states that depend on the specific algorithm. Thus, the state at slice (1) in the figure is:

$$\frac{1}{\sqrt{2^{n}}\sqrt{2^{m}}}\sum_{x=0}^{2^{n}-1}\sum_{y=0}^{2^{m}-1}\ |x\rangle\,|y\rangle$$

This is transformed by U_f to:

$$\frac{1}{\sqrt{2^{n}}\sqrt{2^{m}}} \sum_{x=0}^{2^{n}-1} \sum_{y=0}^{2^{m}-1} |x\rangle |f(x) \oplus y\rangle$$

So far, nothing too interesting is happening: we have just produced a superposition of states where each state is a possible input to f, say x, tensored with $f(x) \oplus y$, the result of applying f to this particular input adjusted by the second register y. At slice (3), something remarkable occurs; the result w of measuring the second register "kicks back" information to the first register whose state becomes a superposition of those values x that are consistent with the measurement, i.e., the pre-image of w under f! That pre-image representation is then analyzed using the Quantum Fourier Transform (QFT) to produce the final result.

Quantum algorithms typically operate on a black box holding a classical function whose properties need to be computed. The general structure of these algorithms is to (i) create a superposition of values to be passed as inputs to the black box, (ii) apply the operation inside the black box, and (iii) post-process the output of the black box. We observe that, in quite a few cases, steps (i) and (iii) are actually unnecessary and that the entire "quantum" algorithm can be executed by forward or backward, full or partial, efficient classical symbolic execution of the black box.

typical use: superposition, Uf, measure second register; we only care about which x has f(x) = r

By default all functions are reversible.

To make them irreversible you fix h and delete g. If you delete too much the function becomes very expensive to reverse. So one way functions emerge

simplify function has polynomial realization and we want statistics about the kernel (not necessarily compute it exactly)

collect assumptions:

important that no matter what measurement we do on w, properly we want is the same since we say that algos related to pre-images lets do naive thing and eval backwards

assumptions we have a rev circuit efficient forward two inputs: first is full superposition; second whatever first output same as first input; but that is only at point 2; at point 3 explain kick back; misleading to think it is the same after 3 second output is result of function; measure; have element of range; go back with that elem if we knew first output as well as w then eval backwards same complexity but we only know w and we don't know first output; because we are starting at 3 not 2

we have no use for H block; it was only there for the forward exec to express our complete ignorance of the future; prepared with every x but if we have knowledge about future (w measured) we go back to find the values of x in the present that would be consistent with w so general circuit reduces to:

...

fix pics to have amplitudes with y (most general)

To what extent are the quantum algorithms above taking advantage of non-classical features. We posit that pre-image computation can be, at least for some of the some of the algorithms, be performed classically. The main insight needed for that is to perform the execution *symbolically*. We illustrate the idea with two examples.

We need to explain ideas about time-reversal, prediction and retrodiction in physics. The laws of computation and the laws of physics are intimately related. When does knowing something about the future help us unveil the structure or symmetries of the past? It is like a detective story, but one with ramifications in complexity and/or efficiency. Problems involving questions where answers demand a Many(past)-to-one(future) map are at the root of our proposal.... Difference between exploiting or not entanglement in the unitary evolution.

As we demonstrate, the family of quantum algorithms initiated by Deutsch's algorithm and culminating with Shor's algorithm (i) solves variants of the pre-image problem efficiently, and, in that context, (ii) answering queries about pre-images is closely related to *retrodictive quantum theory* [2], retrocausality [1], and the time-symmetry of physical laws [4].

- Retrodictive execution more efficient in some cases. What cases?
- Here are three examples: Deutsch-Jozsa, Simon, Shor when period is close to a power of 2
- Symbolic (retrodictive) evaluation as a broader perspective to classical computation
- Symbolic execution allows you to express/discover interference via shared variables
- When interference pattern is simple symbolic execution reveals solutions faster (and completely classically)
- Symbolic execution as a "classical waves" computing paradigm

to represent unequal superpositions do multiple runs with vars the first has $x1 \ x2$ etc the second has $y1 \ 2y2$ etc or y2/2 etc, or with various patterns of negative weights.... And then the punchline would be to interpret the negative backwards. So instead of all forward or all retro we have some values going forward and then backwards

Start with the story about function many to one etc why superpositions because we don't know which values so we try all easy to represent by unknown vars so we can represent superpositions as vars and equations between them but at the end we want stats about superpositions slow way is to generate all equations and solve faster way is generate many sets of equations with different weights and sum to get your stats

Partial Symbolic Evaluation with Algebraic Normal Form (ANF). The resulting expressions are in algebraic normal form [3] where + denotes exclusive-or.

We should use two prototypical examples to illustrate main ideas before going to the complex ones. The examples I have in mind are: Deutsch-Jozsa and Simon (precursor of Shor's). There are prior works on dequantization of the first problem and should make contact with their resolution. Perhaps we can show that they are as efficient classically? That would justify retrodiction alone. The more complex (and important) case of factorization should be the natural follow up.

The idea of symbolic execution is not tied to forward or backward execution. We should introduce it in a way that is independent of the direction of execution. What the idea depends on however is that the wave function, at least in the cases we are considering, can be represented as equations over booleans.

Wave Functions as Equations over Booleans

in the typical scenario for using quantum oracles, we can represent wave function as equations over booleans; equations represent the wave function but the solution is unobservable just like the components of the superposition in the wave function are not observable; just like we don't directly get access to the components of the wave function; we don't directly get access to the solution of the equations; need to "observe" the equations

we can go backwards with an equation (representing a wave function sigma x where f(x) = r and go back towards the present to calculate the wave function (represented as equations again)

Musing: how to explain complementarity when wave function is represented as an equation? Kochen specker;

or contextuality

observer 1 measures wires a,b; obs2 measures wires b,c; not commuting; each obs gives partial solution to equations; but partial solutions cannot lead to a global solution

KS suggests that equations do not have unique solutions; only materialize when you measure; can associate a probability with each variable in a equation: look at all solutions and see the contribution of each variable to these solutions.

³⁹⁵ Complexity Analysis. one pass over circuit BUT complexity of normalizing to ANF not trivial; be careful

Supplementary Information. Equations generated by retrodictive execution of $4^x \mod 21$ starting from observed result 1 and unknown x. The circuit consists of 9 qubits, 36400 CX-gates, 38200 CCX-gates, and 4000 CCCX-gates. There are only three equations but each equation is exponentially large.

 $x_0x_1x_2x_5x_8 \oplus x_0x_1x_2x_5x_9 \oplus x_0x_1x_2x_6 \oplus x_0x_1x_2x_6x_7 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8x_9 \oplus x_0x_1x_2x_6x_8x_9 \oplus x_0x_1x_2x_6x_9 \oplus x_0x_1x_2x$ $x_0x_1x_3x_4x_5x_7x_8x_9 \oplus x_0x_1x_3x_4x_5x_8x_9 \oplus x_0x_1x_3x_4x_5x_9 \oplus x_0x_1x_3x_4x_6 \oplus x_0x_1x_3x_4x_6x_7x_8 \oplus x_0x_1x_3x_4x_6x_7x_9 \oplus x_0x_1x_3x_4x_6x_7x_8 \oplus x_0x_1x_5x_6x_8 \oplus x_0x_1x_5x_6x_8 \oplus x_0x_1x_6x_8 \oplus x_0x_1x$ $x_0x_1x_3x_5x_7x_8 \oplus x_0x_1x_3x_5x_7x_9 \oplus x_0x_1x_3x_5x_8 \oplus x_0x_1x_3x_5x_8x_9 \oplus x_0x_1x_3x_6x_7 \oplus x_0x_1x_3x_6x_7x_8x_9 \oplus x_0x_1x_3x_6x_7x_8 \oplus x_0x_1x_6x_8 \oplus x_0x_1x$

```
418
419
                                                                        x_0x_1x_4x_5x_6 \oplus x_0x_1x_4x_5x_6x_7x_8 \oplus x_0x_1x_4x_5x_6x_7x_9 \oplus x_0x_1x_4x_5x_6x_8 \oplus x_0x_1x_4x_5x_6x_8x_9 \oplus x_0x_1x_4x_5x_7 \oplus x_0x_1x_4x_5x_7x_8x_9 \oplus x_0x_1x_4x_5x_6x_8x_9 \oplus x_0x_1x_6x_9 \oplus x_0x_1x_4x_5x_6x_8x_9 \oplus x_0x_1x_4x_5x_6x_9 \oplus x_0x_1x_6x_9 \oplus x_0x_1x_6x_9 \oplus x_0x_1x_5x_6x_9 \oplus x_0x_1x_5x_6x_9 \oplus x_0x_1x_5x_6x_9 \oplus x_0x_1x_6x_9 \oplus x_0x
                                                                        x_0x_1x_4x_5x_7x_9 \oplus x_0x_1x_4x_5x_8 \oplus x_0x_1x_4x_5x_9 \oplus x_0x_1x_4x_6 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_4x_6x_7x_8 \oplus x_0x_1x_4x_6x_7x_8x_9 \oplus x_0x_1x_4x_6x_7x_8 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_4x_6x_7x_8 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_6x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_6x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_7 \oplus x
420
                                                                        x_0x_1x_4x_6x_8x_9 \oplus x_0x_1x_4x_6x_9 \oplus x_0x_1x_4x_7x_8 \oplus x_0x_1x_4x_7x_9 \oplus x_0x_1x_4x_8 \oplus x_0x_1x_4x_8x_9 \oplus x_0x_1x_5 \oplus x_0x_1x_5x_6x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_5x
421
                                                                        x_0x_1x_5x_6x_7x_8x_9 \oplus x_0x_1x_5x_6x_7x_9 \oplus x_0x_1x_5x_6x_8 \oplus x_0x_1x_5x_6x_9 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_5x_7x_8 \oplus x_0x_1x_5x_7x_8x_9 \oplus x_0x_1x_5x_7x_8 \oplus x_0x_1x_5x_8 \oplus x_0x_1x_1x_5x_8 \oplus x_0x_1x_5x_8 \oplus x
422
                                                                        x_0x_1x_5x_8x_9 \oplus x_0x_1x_5x_9 \oplus x_0x_1x_6 \oplus x_0x_1x_6x_7x_8 \oplus x_0x_1x_6x_7x_9 \oplus x_0x_1x_6x_8 \oplus x_0x_1x_6x_8 \oplus x_0x_1x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_7x_8x_9 \oplus x_0x_1x_6x_8 \oplus x
423
                                                                        x_0x_1x_7x_9 \oplus x_0x_1x_8 \oplus x_0x_1x_9 \oplus x_0x_2 \oplus x_0x_2x_3 \oplus x_0x_2x_3x_4 \oplus x_0x_2x_3x_4x_5 \oplus x_0x_2x_3x_4x_5x_6 \oplus x_0x_2x_3x_4x_5x_6x_7 \oplus x_0x_2x_3x_4x_5x_6 \oplus x_0x_2x_3x_4x_5 \oplus x_0x_2x_3x_4 \oplus x_0x_2x_3x_4 \oplus x_0x_2x_3x_4x_5 \oplus x_0x_2x_3x_4 \oplus x_0x_2x_2x_3x_4 \oplus x_0x_2x_3x_4 \oplus x_0x
424
                                                                        x_0x_2x_3x_4x_5x_6x_7x_8 \oplus x_0x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_0x_2x_3x_4x_5x_6x_9 \oplus x_0x_2x_3x_4x_5x_6x_9 \oplus x_0x_2x_3x_4x_5x_7x_8 \oplus x_0x_2x_3x_4x_5x_7x_9 \oplus x_0x_2x_3x_4x_5x_6x_9 \oplus x_0x_2x_5x_6x_9 \oplus x_0x_2x_3x_4x_5x_6x_9 \oplus x_0x_2x_3x_4x_5x_6x_9 \oplus x_0x_2x_5x_6x_6x_5x_6x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_5x_6x_5x_6x_5x_5x_6x_5x_5x_6x_5x_5x_6x_5x_5x_6x_5x_5x_6x_5x_5x_5x_6x_5x_5x_5x_6x_5x_5x_5x_6x_5x_5x_6x_5x_5x_6x_5x_5x_6x_5x_6x_5x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x
425
                                                                        426
                                                                           427
                                                                        428
                                                                        x_0x_2x_3x_5x_7x_9 \oplus x_0x_2x_3x_5x_8 \oplus x_0x_2x_3x_5x_9 \oplus x_0x_2x_3x_6 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_3x_6x_7x_8x_9 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_7 
429
                                                                        x_0x_2x_3x_6x_8x_9 \oplus x_0x_2x_3x_6x_9 \oplus x_0x_2x_3x_7x_8 \oplus x_0x_2x_3x_7x_9 \oplus x_0x_2x_3x_8 \oplus x_0x_2x_3x_8x_9 \oplus x_0x_2x_4x_5 \oplus x_0x_2x_4x_5 \oplus x_0x_2x_4x_5 \oplus x_0x_2x_3x_6x_9 \oplus x_0x_2x_6x_9 \oplus x_0x_2x_3x_6x_9 \oplus x_0x_2x_3x_6x_9 \oplus x_0x
430
                                                                        431
                                                                        432
                                                                           x_0x_2x_4x_6x_8x_9 \oplus x_0x_2x_4x_7 \oplus x_0x_2x_4x_7x_8x_9 \oplus x_0x_2x_4x_7x_9 \oplus x_0x_2x_4x_8 \oplus x_0x_2x_4x_9 \oplus x_0x_2x_5 \oplus x_0x_2x_5x_6 \oplus x_0x_2x_5 \oplus x_0x_5 \oplus x
433
                                                                        434
                                                                        x_0x_2x_5x_8 \oplus x_0x_2x_5x_8x_9 \oplus x_0x_2x_6x_7 \oplus x_0x_2x_6x_7x_8x_9 \oplus x_0x_2x_6x_7x_9 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_6x_9 \oplus x_0x_2x_7 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_6x_9 \oplus x_0x_2x_6x
435
436
                                                                        x_0x_3x_4x_5x_6x_8 \oplus x_0x_3x_4x_5x_6x_8x_9 \oplus x_0x_3x_4x_5x_7 \oplus x_0x_3x_4x_5x_7x_8x_9 \oplus x_0x_3x_4x_5x_7x_9 \oplus x_0x_3x_4x_5x_8 \oplus x_0x_3x_4x_5x_9 \oplus x_0x_3x_4x_5x_8 \oplus x_0x_3x_4x_5x_9 \oplus x_0x_3x_4x_5x_8 \oplus x_0x_3x_4x_5x_9 \oplus x_0x_5x_9 \oplus x_0x
437
                                                                        x_0x_3x_4x_6 \oplus x_0x_3x_4x_6x_7 \oplus x_0x_3x_4x_6x_7x_8 \oplus x_0x_3x_4x_6x_7x_8x_9 \oplus x_0x_3x_4x_6x_8x_9 \oplus x_0x_3x_4x_6x_9 \oplus x_0x_3x_4x_7x_8 \oplus x_0x_3x_4x_6x_9 \oplus x_0x_3x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x
438
                                                                        439
                                                                        440
                                                                        x_0x_3x_6x_7x_9 \oplus x_0x_3x_6x_8 \oplus x_0x_3x_6x_8x_9 \oplus x_0x_3x_7 \oplus x_0x_3x_7x_8x_9 \oplus x_0x_3x_7x_9 \oplus x_0x_3x_8 \oplus x_0x_3x_9 \oplus x_0x_4 \oplus x_0x_4x_5 \oplus x_0x_3x_6x_8 \oplus x_0x_3x_6x_8 \oplus x_0x_3x_6x_8 \oplus x_0x_3x_7 \oplus x_0x_7 
441
442
                                                                           x_0x_4x_5x_6 \oplus x_0x_4x_5x_6x_7 \oplus x_0x_4x_5x_6x_7x_8 \oplus x_0x_4x_5x_6x_7x_8x_9 \oplus x_0x_4x_5x_6x_8x_9 \oplus x_0x_4x_5x_6x_9 \oplus x_0x_4x_5x_7x_8 \oplus x_0x_4x_5x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x
                                                                        x_0x_4x_5x_7x_9 \oplus x_0x_4x_5x_8 \oplus x_0x_4x_5x_8x_9 \oplus x_0x_4x_6x_7 \oplus x_0x_4x_6x_7x_8x_9 \oplus x_0x_4x_6x_7x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_4x_6x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_4x_6x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_4x_6x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_6x_8 \oplus x
443
                                                                        444
                                                                        x_0x_5x_6x_8x_9 \oplus x_0x_5x_7 \oplus x_0x_5x_7x_8x_9 \oplus x_0x_5x_7x_9 \oplus x_0x_5x_8 \oplus x_0x_5x_9 \oplus x_0x_6 \oplus x_0x_6x_7 \oplus x_0x_6x_7x_8 \oplus x_0x_6x_7x_8x_9 \oplus x_0x_6x_9x_9 \oplus x_0x_6x_9 \oplus x_0x_9 
445
                                                                           x_0x_6x_8x_9 \oplus x_0x_6x_9 \oplus x_0x_7x_8 \oplus x_0x_7x_9 \oplus x_0x_8 \oplus x_0x_8x_9 \oplus x_1 \oplus x_1x_2x_3 \oplus x_1x_2x_3x_4x_5 \oplus x_1x_2x_5 \oplus x_1x_5 
446
447
                                                                        x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_9 \oplus x_1x_2x_3x_4x_5x_6x_8 \oplus x_1x_2x_3x_4x_5x_6x_9 \oplus x_1x_2x_3x_4x_5x_7 \oplus x_1x_2x_3x_4x_5x_7x_8 \oplus x_1x_2x_3x_4x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_3x_4x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_6x_7x_9 \oplus x_1x_2x_5x_6x_6x_7x_9 \oplus x_1x_2x_5x_6x_7x_9 \oplus x_1x_2x_7x_7x_9 \oplus x_1x_2x_5x_7x_9 \oplus x_1x_2x_5x_7x_9 \oplus x_1x_2x_5x_7x_9 \oplus x
                                                                           x_1x_2x_3x_4x_5x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_8x_9 \oplus x_1x_2x_3x_4x_5x_9 \oplus x_1x_2x_3x_4x_6 \oplus x_1x_2x_3x_4x_6x_7x_8 \oplus x_1x_2x_3x_4x_6x_7x_9 \oplus x_1x_2x_3x_4x_6x_7x_8 \oplus x_1x_2x_3x_4x_6x_7x_9 \oplus x_1x_2x_3x_4x_6x_7x_8 \oplus x_1x_2x_3x_4x_6x_8 \oplus x_1x_2x_3x_4x_6x_8 \oplus x_1x_2x_3x_4x_6x_7x_8 \oplus x_1x_2x_3x_4x_6x_7x_8 \oplus x_1x_2x_3x_4x_6x_7x_8 \oplus x_1x_2x_3x_4x_6x_7x_8 \oplus x_1x_2x_3x_6x_7x_8 \oplus x_1x_2x_5x_6x_8 \oplus x_1x_2x_7x_8 \oplus x_1x_2x_5x_8 \oplus x_1x_2x_3x_8 \oplus x_1x_2x_8 
448
                                                                        449
                                                                        x_1x_2x_3x_5 \oplus x_1x_2x_3x_5x_6 \oplus x_1x_2x_3x_5x_6x_7 \oplus x_1x_2x_3x_5x_6x_7x_8 \oplus x_1x_2x_3x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_5x_6x_8x_9 \oplus x_1x_2x_3x_5x_6x_7x_8 \oplus x_1x_2x_5x_6x_7x_8x_9 \oplus x_1x_2x_6x_7x_8x_9 \oplus x_1x_2x_6x_7x_8x_9 \oplus x
450
451
                                                                        x_1x_2x_3x_5x_7x_8 \oplus x_1x_2x_3x_5x_7x_9 \oplus x_1x_2x_3x_5x_8 \oplus x_1x_2x_3x_5x_8x_9 \oplus x_1x_2x_3x_6x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_3x_6x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_3x_6x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x
                                                                        x_1x_2x_3x_6x_8 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_3x_7x_8 \oplus x_1x_2x_3x_7x_8x_9 \oplus x_1x_2x_3x_8x_9 \oplus x_1x_2x_3x_9 \oplus x
452
                                                                        x_1x_2x_4x_5x_6 \oplus x_1x_2x_4x_5x_6x_7x_8 \oplus x_1x_2x_4x_5x_6x_7x_9 \oplus x_1x_2x_4x_5x_6x_8 \oplus x_1x_2x_4x_5x_6x_8x_9 \oplus x_1x_2x_4x_5x_7 \oplus x_1x_2x_4x_5x_7x_8x_9 \oplus x_1x_2x_4x_5x_6x_8x_9 \oplus x_1x_2x_6x_8x_9 \oplus x_1x_2x_6x_8x_9 \oplus x_1x_2x_6x_8x_9 \oplus x_1x_2x_6x_8x_9 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_6x_9 \oplus x_1x_2x
453
                                                                        x_1x_2x_4x_5x_7x_9 \oplus x_1x_2x_4x_5x_8 \oplus x_1x_2x_4x_5x_9 \oplus x_1x_2x_4x_6 \oplus x_1x_2x_4x_6x_7 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7x_8x_9 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7 \oplus x_1x_2x_4x_6 \oplus x_1x_2x_4x_6x_7 \oplus x_1x_2x_4x_6 \oplus x_1x_2x_6 \oplus x
454
                                                                        x_1x_2x_4x_6x_8y \oplus x_1x_2x_4x_6x_9 \oplus x_1x_2x_4x_7x_8 \oplus x_1x_2x_4x_7x_9 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_8y \oplus x_1x_2x_5 \oplus x_1x_2x_5x_6x_7 \oplus x_1x_2x_4x_6x_9 \oplus x_1x_2x_4x_6x_9 \oplus x_1x_2x_4x_6x_9 \oplus x_1x_2x_4x_6x_9 \oplus x_1x_2x_4x_7x_8 \oplus x_1x_2x_4x_7x_9 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_8x_9 \oplus x_1x_2x_5 \oplus x_1x_2x_5x_6x_7 \oplus x_1x_2x_4x_6x_9 \oplus x_1x_2x_4x_7x_8 \oplus x_1x_2x_4x_7x_9 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_8x_9 \oplus x_1x_2x_5 \oplus x_1x_2x_5x_6x_7 \oplus x_1x_2x_4x_8 \oplus x_
455
                                                                        456
                                                                           x_1x_2x_5x_8x_9 \oplus x_1x_2x_5x_9 \oplus x_1x_2x_6 \oplus x_1x_2x_6x_7x_8 \oplus x_1x_2x_6x_7x_9 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_8x_9 \oplus x_1x_2x_7 \oplus x_1x_2x_7x_8x_9 \oplus x_1x_2x_6x_8x_9 \oplus x_1x_2x_6x_9 \oplus x_1x
457
                                                                        x_1x_2x_7x_9 \oplus x_1x_2x_8 \oplus x_1x_2x_9 \oplus x_1x_3 \oplus x_1x_3x_4 \oplus x_1x_3x_4x_5 \oplus x_1x_3x_4x_5x_6 \oplus x_1x_3x_4x_5x_6x_7 \oplus x_1x_3x_4x_5x_6x_7x_8 \oplus x_1x_5x_6x_7x_8 \oplus x_1x_5x_6x
458
459
                                                                        x_1x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_3x_4x_5x_6x_8x_9 \oplus x_1x_3x_4x_5x_6x_9 \oplus x_1x_3x_4x_5x_7x_8 \oplus x_1x_3x_4x_5x_7x_9 \oplus x_1x_3x_4x_5x_8 \oplus x_1x_3x_4x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_9 \oplus x_1x_5x
                                                                        x_{1}x_{3}x_{4}x_{5}x_{8}x_{9} \oplus x_{1}x_{3}x_{4}x_{6}x_{7} \oplus x_{1}x_{3}x_{4}x_{6}x_{7}x_{8}x_{9} \oplus x_{1}x_{3}x_{4}x_{6}x_{7}x_{9} \oplus x_{1}x_{3}x_{4}x_{6}x_{8} \oplus x_{1}x_{3}x_{4}x_{6}x_{9} \oplus x_{1}x_{3}x_{4}x_{7} \oplus x_{1}x_{3}x_{4}x_{6}x_{7} \oplus x_{1}x_{7} 
460
                                                                        461
                                                                        x_1x_3x_5x_6x_8x_9 \oplus x_1x_3x_5x_7 \oplus x_1x_3x_5x_7x_8x_9 \oplus x_1x_3x_5x_7x_9 \oplus x_1x_3x_5x_8 \oplus x_1x_3x_5x_9 \oplus x_1x_3x_6 \oplus x_1x_3x_6x_7 \oplus x_1x_5x_6x_7 \oplus x_1x_5x_7 \oplus x
462
                                                                        x_1x_3x_6x_7x_8 \oplus x_1x_3x_6x_7x_8x_9 \oplus x_1x_3x_6x_8x_9 \oplus x_1x_3x_6x_9 \oplus x_1x_3x_7x_8 \oplus x_1x_3x_7x_9 \oplus x_1x_3x_8 \oplus x_1x_3x_8x_9 \oplus x_1x_4x_5 \oplus x_1x_3x_6x_7x_8 \oplus x_1x_3x_6x_7 \oplus x_1x_3x_6x_8 \oplus x_1x_6x_6x_8 \oplus x_1x_6x_6x_8 \oplus x_1x_6x_6x_8 \oplus x_1x_6x_6x_8 \oplus x_1x_6x_6x_8 \oplus x_1x_6x_8 \oplus x_1x_6x
463
                                                                        x_1x_4x_5x_6x_7 \oplus x_1x_4x_5x_6x_7x_8x_9 \oplus x_1x_4x_5x_6x_7x_9 \oplus x_1x_4x_5x_6x_8 \oplus x_1x_4x_5x_6x_9 \oplus x_1x_4x_5x_7 \oplus x_1x_4x_5x_7x_8 \oplus x_1x_4x_5x_6x_7 \oplus x_1x_4x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_6x_9 \oplus x_1x_5x_6x_6x_9 \oplus x_1x_5x_6x_6x_9 \oplus x_1x_5x_6x_6x_9 \oplus x_1x_5x_6x
464
                                                                        x_1x_4x_5x_7x_8x_9 \oplus x_1x_4x_5x_8x_9 \oplus x_1x_4x_5x_9 \oplus x_1x_4x_6 \oplus x_1x_4x_6x_7x_8 \oplus x_1x_4x_6x_7x_9 \oplus x_1x_4x_6x_8 \oplus x_1x_4x_6x_8x_9 \oplus x_1x_4x_6x_8 \oplus x_1x
465
                                                                        x_1x_4x_7 \oplus x_1x_4x_7x_8x_9 \oplus x_1x_4x_7x_9 \oplus x_1x_4x_8 \oplus x_1x_4x_9 \oplus x_1x_5 \oplus x_1x_5x_6 \oplus x_1x_5x_6x_7 \oplus x_1x
466
                                                                        x_1x_5x_6x_8x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_7x_8 \oplus x_1x_5x_7x_9 \oplus x_1x_5x_8 \oplus x_1x_5x_8x_9 \oplus x_1x_6x_7 \oplus x_1x_6x_7x_8 \oplus x_1x_6x_7x_9 \oplus x_1x_6x
467
                                                                        x_1x_6x_8 \oplus x_1x_6x_9 \oplus x_1x_7 \oplus x_1x_7x_8 \oplus x_1x_7x_8x_9 \oplus x_1x_8x_9 \oplus x_1x_9 \oplus x_2 \oplus x_2x_3x_4 \oplus x_2x_3x_4x_5x_6 \oplus x_2x_3x_4x_5x_6x_7x_8 \oplus x_1x_6x_8 \oplus x_1x_6x_9 \oplus x_1x_7 \oplus x_1x_7x_8 \oplus x_1x_8 \oplus x_1x_7x_8 \oplus x_1x_8 \oplus x_1x_8 \oplus x_1x_8 \oplus x_1x_8 \oplus x_1x_8 \oplus x_1x
```

```
x_2x_3x_4x_5x_6x_7x_9 \oplus x_2x_3x_4x_5x_6x_8 \oplus x_2x_3x_4x_5x_6x_8x_9 \oplus x_2x_3x_4x_5x_7 \oplus x_2x_3x_4x_5x_7x_8x_9 \oplus x_2x_3x_4x_5x_7x_9 \oplus x_2x_3x_4x_5x_7x_8x_9 \oplus x_2x_3x_4x_5x_7x_9 \oplus x_2x_3x_4x_5x_7x_8x_9 \oplus x_2x_3x_4x_5x_8x_9 \oplus x_2x_5x_8x_9 \oplus x_2x_5x_9 \oplus x_2x_5x_8x_9 \oplus x_2x_5x_8x_9 \oplus x_2x_5x_9 \oplus x_2x_5x
469
470
                                                                              x_2x_3x_4x_5x_8 \oplus x_2x_3x_4x_5x_9 \oplus x_2x_3x_4x_6 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_8 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_5x_8 \oplus x_2x_5x_8 \oplus x_2x_5x_8 \oplus x_2x_5x_8 \oplus x_2x_5x_8 \oplus x_2x_5x_8 
                                                                              x_2x_3x_4x_6x_9 \oplus x_2x_3x_4x_7x_8 \oplus x_2x_3x_4x_7x_9 \oplus x_2x_3x_4x_8 \oplus x_2x_3x_4x_8x_9 \oplus x_2x_3x_5 \oplus x_2x_3x_5x_6x_7 \oplus x_2x_3x_5x_6x_7x_8x_9 \oplus x_2x_3x_5x_6x_7 \oplus x_2x_3x_5x_6x_7x_8x_9 \oplus x_2x_3x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_7 \oplus x_2x_7 
471
                                                                              x_2x_3x_5x_6x_7x_9 \oplus x_2x_3x_5x_6x_8 \oplus x_2x_3x_5x_6x_9 \oplus x_2x_3x_5x_7 \oplus x_2x_3x_5x_7x_8 \oplus x_2x_3x_5x_7x_8x_9 \oplus x_2x_3x_5x_8x_9 \oplus x_2x_3x_5x_9 \oplus x_2x_3x_5x_6x_9 \oplus x_2x_3x_5x_6x_9 \oplus x_2x_3x_5x_6x_9 \oplus x_2x_3x_5x_6x_9 \oplus x_2x_3x_5x_7 \oplus x_2x_3x_5x_7x_8 \oplus x_2x_3x_5x_7x_8 \oplus x_2x_3x_5x_7 \oplus x_2x_5x_7 \oplus x_2x_7 \oplus x_2x
472
                                                                              x_2x_3x_6 \oplus x_2x_3x_6x_7x_8 \oplus x_2x_3x_6x_7x_9 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_7 \oplus x_2x_3x_7 \oplus x_2x_3x_7x_8 \oplus x_2x_3x_7x_9 \oplus x_2x_3x_8 \oplus x_2x_3x_6x_7x_8 \oplus x_2x_3x_6x_7x_8 \oplus x_2x_3x_6x_7x_8 \oplus x_2x_3x_6x_7x_8 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_7 \oplus x_2x_7 \oplus x
473
                                                                                  x_2x_3x_9 \oplus x_2x_4 \oplus x_2x_4x_5 \oplus x_2x_4x_5x_6 \oplus x_2x_4x_5x_6x_7 \oplus x_2x_4x_5x_6x_7x_8 \oplus x_2x_4x_5x_6x_7x_8x_9 \oplus x_2x_4x_5x_6x_8x_9 \oplus x_2x_4x_5x_6x_9 \oplus x_2x_4x_5x_9 \oplus x_2x_4x_5x_9 \oplus x_2x_4x_5x_6x_9 \oplus x_2x_4x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_7 
474
                                                                              x_2x_4x_5x_6x_9 \oplus x_2x_4x_5x_7x_8 \oplus x_2x_4x_5x_7x_9 \oplus x_2x_4x_5x_8 \oplus x_2x_4x_5x_8x_9 \oplus x_2x_4x_6x_7 \oplus x_2x_4x_6x_7x_8 \oplus x_2x_4x_6x_7x_9 \oplus x_2x_6x_7x_9 \oplus x_2x_4x_6x_7x_9 \oplus x_2x_6x_7x_9 \oplus x_2x_4x_6x_7x_9 \oplus x_2x_4x_6x_7x_9 \oplus x_2x_4x_7x_9 \oplus x_2x_4x_6x_7x_9 \oplus x_2x_4x_7x_9 \oplus x_2x_7x_9 \oplus x_2x_7x
475
                                                                              x_2x_4x_6x_8 \oplus x_2x_4x_6x_9 \oplus x_2x_4x_7 \oplus x_2x_4x_7x_8 \oplus x_2x_4x_7x_8x_9 \oplus x_2x_4x_8x_9 \oplus x_2x_4x_9 \oplus x_2x_5x_6 \oplus x_2x_5x_6x_7x_8 \oplus x_2x
476
                                                                              x_2x_5x_6x_7x_9 \oplus x_2x_5x_6x_8 \oplus x_2x_5x_6x_8y \oplus x_2x_5x_7 \oplus x_2x_5x_7x_8x_9 \oplus x_2x_5x_7x_9 \oplus x_2x_5x_8 \oplus x_2x_5x_9 \oplus x_2x_6 \oplus x_2x_6x_7 \oplus x_2x_5x_8 \oplus x_2x_5x_8
477
                                                                                  x_2x_6x_7x_8 \oplus x_2x_6x_7x_8x_9 \oplus x_2x_6x_8x_9 \oplus x_2x_6x_9 \oplus x_2x_7x_8 \oplus x_2x_7x_9 \oplus x_2x_8 \oplus x_2x_8x_9 \oplus x_3 \oplus x_3x_4x_5 \oplus x_3x_4x_5x_6x_7 \oplus x_3x_4x_5 \oplus x_3x_5 \oplus x_5 \oplus x
478
                                                                              479
                                                                              x_3x_4x_5x_8x_9 \oplus x_3x_4x_5x_9 \oplus x_3x_4x_6 \oplus x_3x_4x_6x_7x_8 \oplus x_3x_4x_6x_7x_9 \oplus x_3x_4x_6x_8 \oplus x_3x_4x_6x_8 \oplus x_3x_4x_7 \oplus x_3x_7 \oplus x_7 \oplus x
480
                                                                              481
482
                                                                                  x_3x_5x_6x_9 \oplus x_3x_5x_7x_8 \oplus x_3x_5x_7x_9 \oplus x_3x_5x_8 \oplus x_3x_5x_8x_9 \oplus x_3x_6x_7 \oplus x_3x
                                                                              483
                                                                                  x_4x_5x_7 \oplus x_4x_5x_7x_8x_9 \oplus x_4x_5x_7x_9 \oplus x_4x_5x_8 \oplus x_4x_5x_9 \oplus x_4x_6 \oplus x_4x_6x_7 \oplus x_4x_6x_7x_8 \oplus x_4x_6x_7x_8x_9 \oplus x_4x_6x_8x_9 \oplus x_4x_6x_9 \oplus x_6x_9 
484
                                                                              x_4x_6x_9 \oplus x_4x_7x_8 \oplus x_4x_7x_9 \oplus x_4x_8 \oplus x_4x_8x_9 \oplus x_5 \oplus x_5x_6x_7 \oplus x_5x_6x_7x_8x_9 \oplus x_5x_6x_7x_9 \oplus x_5x_6x_8 \oplus x_5x_6x_9 \oplus x_5x_7 \oplus x_5x_6x_7 \oplus x_5x_6x
485
                                                                              x_5x_7x_8 \oplus x_5x_7x_8x_9 \oplus x_5x_8x_9 \oplus x_5x_8 \oplus x_6 \oplus x_6x_7x_8 \oplus x_6x_7x_9 \oplus x_6x_8 \oplus x_6x_8x_9 \oplus x_7 \oplus x_7x_8 \oplus x_9 \oplus x_7x_9 \oplus x_8 \oplus x_9 = 1
486
487
```

 $x_0x_1x_2x_3x_4x_5x_8x_9 \oplus x_0x_1x_2x_3x_4x_5x_9 \oplus x_0x_1x_2x_3x_4x_6 \oplus x_0x_1x_2x_3x_4x_6x_7x_8 \oplus x_0x_1x_2x_3x_4x_6x_7x_9 \oplus x_0x_1x_2x_3x_4x_6x_8 \oplus x_0x_1x_2x_3x_4x_6x_7x_8 \oplus x_0x_1x_2x_3x_4x_6x_8 \oplus x_0x_1x_2x_3x_4x_6 \oplus x_0x$ $x_0x_1x_2x_3x_6x_7x_8x_9 \oplus x_0x_1x_2x_3x_6x_7x_9 \oplus x_0x_1x_2x_3x_6x_8 \oplus x_0x_1x_2x_3x_6x_9 \oplus x_0x_1x_2x_3x_7 \oplus x_0x_1x_2x_3x_7x_8 \oplus x_0x_1x_2x_3x_6x_7x_8 \oplus x_0x_1x_2x_3x_6x_7x_8 \oplus x_0x_1x_2x_3x_6x_7x_8 \oplus x_0x_1x_2x_3x_6x_7x_8 \oplus x_0x_1x_2x_3x_6x_8 \oplus x_0x_1x_2x_6x_8 \oplus x_0x_1x_2x_6x_6x_8 \oplus x_0x_1x_2x_6x_8 \oplus x_0x_1x_1x_2x_2x_6x_6x_8 \oplus x_0x_1x_1x_2x_2x_6x_6x_6x_6x_1x_1x_2x_6x_6x_6x_6x_6x_6x_6x_6x_6x_6x_6x_6x$ $x_0x_1x_2x_3x_7x_8x_9 \oplus x_0x_1x_2x_3x_8x_9 \oplus x_0x_1x_2x_3x_9 \oplus x_0x_1x_2x_4 \oplus x_0x_1x_2x_4x_5x_6 \oplus x_0x_1x_2x_4x_5x_6x_7x_8 \oplus x_0x_1x_2x_1x_2x_4x_5x_6x_7x_8 \oplus x_0x_1x_2x_4x_5x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x$ $x_0x_1x_2x_4x_5x_9 \oplus x_0x_1x_2x_4x_6 \oplus x_0x_1x_2x_4x_6x_7 \oplus x_0x_1x_2x_4x_6x_7x_8 \oplus x_0x_1x_2x_4x_6x_7x_8x_9 \oplus x_0x_1x_2x_4x_6x_8x_9 \oplus x_0x_1x_2x_4x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x$ $x_0x_1x_2x_4x_6x_9 \oplus x_0x_1x_2x_4x_7x_8 \oplus x_0x_1x_2x_4x_7x_9 \oplus x_0x_1x_2x_4x_8 \oplus x_0x_1x_2x_4x_8x_9 \oplus x_0x_1x_2x_5 \oplus x_0x_1x_2x_5x_6x_7 \oplus x_0x_1x_2x_4x_8x_9 \oplus x_0x_1x_2x_5 \oplus x_0x_1x_2x$ $x_0x_1x_3x_4x_5 \oplus x_0x_1x_3x_4x_5x_6 \oplus x_0x_1x_3x_4x_5x_6x_7 \oplus x_0x_1x_3x_4x_5x_6x_7x_8 \oplus x_0x_1x_3x_4x_5x_6x_7 \oplus x_0x_1x_3x_4x_5x_6x_7x_8 \oplus x_0x_1x_3x_4x_5x_6x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_1x_7 \oplus x_0x_1x_1x_1x_1x_1x_1x$ $x_0x_1x_3x_8 \oplus x_0x_1x_3x_8x_9 \oplus x_0x_1x_4x_5 \oplus x_0x_1x_4x_5x_6x_7 \oplus x_0x_1x_4x_5x_6x_7x_8x_9 \oplus x_0x_1x_4x_5x_6x_7x_9 \oplus x_0x_1x_4x_5x_6x_8 \oplus x_0x_1x_3x_8 \oplus x_0x_1x_4x_5 \oplus x_0x_1x_4 \oplus x_0x_1x_4$ $x_0x_1x_6x_8 \oplus x_0x_1x_6x_9 \oplus x_0x_1x_7 \oplus x_0x_1x_7x_8 \oplus x_0x_1x_7x_8x_9 \oplus x_0x_1x_8x_9 \oplus x_0x_1x_9 \oplus x_0x_2 \oplus x_0x_2x_3x_4 \oplus x_0x_2x_3x_4$ $x_0x_2x_3x_4x_5x_7x_9 \oplus x_0x_2x_3x_4x_5x_8 \oplus x_0x_2x_3x_4x_5x_9 \oplus x_0x_2x_3x_4x_6 \oplus x_0x_2x_3x_4x_6x_7 \oplus x_0x_2x_3x_4x_6x_7x_8 \oplus x_0x_2x_3x_4x_6x_7x_8x_9 \oplus x_0x_2x_3x_4x_6x_7x_9 \oplus x_0x_2x_3x_4x_6x_7x_9 \oplus x_0x_2x_3x_4x_6x_7x_9 \oplus x_0x_2x_3x_4x_6x_7x_9 \oplus x_0x_2x_3x_4x_6x_7x_8x_9 \oplus x_0x_2x_3x_4x_6x_7x_8x_9 \oplus x_0x_2x_3x_4x_6x_7x_8x_9 \oplus x_0x_2x_3x_4x_6x_7x_8x_9 \oplus x_0x_2x_3x_4x_8x_9 \oplus x_0x_2x_3x_4x_8x_9 \oplus x_0x_2x_3x_4x_8x_9 \oplus x_0x_2x_3x_4x_8x_9 \oplus x_0x_2x_3x_4x_5x_9 \oplus x_0x_2x_3x_4x_5x$ $x_0x_2x_3x_5x_7x_8 \oplus x_0x_2x_3x_5x_7x_8x_9 \oplus x_0x_2x_3x_5x_8x_9 \oplus x_0x_2x_3x_5x_9 \oplus x_0x_2x_3x_6 \oplus x_0x_2x_3x_6 \oplus x_0x_2x_3x_6x_7x_9 \oplus x_0x_2x_3x_6x_9 \oplus x_0x_2x_3x_6x_7x_9 \oplus x_0x_2x_3x_6x_9 \oplus x_0x_2x_3x_6x_7x_9 \oplus x_0x_2x_6x_7x_9 \oplus x_0x_2x_7x_9 \oplus x_0x_2x_2x_9 \oplus x_0x_2x_9 \oplus x_0x_2x_2x_9 \oplus x_0x_2x_2x_9$ $x_0x_2x_3x_6x_8 \oplus x_0x_2x_3x_6x_8x_9 \oplus x_0x_2x_3x_7 \oplus x_0x_2x_3x_7x_8x_9 \oplus x_0x_2x_3x_7x_9 \oplus x_0x_2x_3x_8 \oplus x_0x_2x_3x_9 \oplus x_0x_2x_4 \oplus x_0x_2x_3x_1 \oplus x_0x_2x_1 \oplus x_0x_1 \oplus x_0x_1 \oplus x_0x_2x_1 \oplus x_0x_1 \oplus x$ $x_0x_2x_4x_5 \oplus x_0x_2x_4x_5x_6 \oplus x_0x_2x_4x_5x_6x_7 \oplus x_0x_2x_4x_5x_6x_7x_8 \oplus x_0x_2x_4x_5x_6x_7x_8x_9 \oplus x_0x_2x_4x_5x_6x_8x_9 \oplus x_0x_2x_4x_5x_6x_9 \oplus x_0x_2x_4x_5x_6x_7x_8 \oplus x_0x_2x_4x_5x_6x_7x_8x_9 \oplus x_0x_2x_6x_9 \oplus x$

```
520
521
                                                                                    x_0x_2x_4x_6x_8 \oplus x_0x_2x_4x_6x_9 \oplus x_0x_2x_4x_7 \oplus x_0x_2x_4x_7x_8 \oplus x_0x_2x_4x_7x_8x_9 \oplus x_0x_2x_4x_8x_9 \oplus x_0x_2x_4x_9 \oplus x_0x_2x_5x_6 \oplus x_0x_2x_4x_8x_9 \oplus x_0x_2x_4x_8x_9 \oplus x_0x_2x_4x_8 \oplus x_0x_2x_4x
                                                                                    x_0x_2x_5x_6x_7x_8 \oplus x_0x_2x_5x_6x_7x_9 \oplus x_0x_2x_5x_6x_8 \oplus x_0x_2x_5x_6x_8x_9 \oplus x_0x_2x_5x_7 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_9 \oplus x_0x_2x_7x_9 \oplus x_0x_2x_5x_7x_9 \oplus x_0x_2x_5x_7x_9 \oplus x_0x_2x_7x_9 \oplus x_0x_2x_7x
522
                                                                                    x_0x_2x_5x_8 \oplus x_0x_2x_5x_9 \oplus x_0x_2x_6 \oplus x_0x_2x_6x_7 \oplus x_0x_2x_6x_7x_8 \oplus x_0x_2x_6x_7x_8 \oplus x_0x_2x_6x_7x_8 \oplus x_0x_2x_6x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x
523
                                                                                    x_0x_2x_7x_9 \oplus x_0x_2x_8 \oplus x_0x_2x_8x_9 \oplus x_0x_3 \oplus x_0x_3x_4x_5 \oplus x_0x_3x_4x_5x_6x_7 \oplus x_0x_3x_4x_5x_6x_7x_8x_9 \oplus x_0x_3x_4x_5x_6x_7x_9 \oplus x_0x_5x_6x_7x_9 \oplus x_0x_6x_7x_9 \oplus x_0x_9x_9 \oplus x_0x_9x_9x_9 \oplus x_0x_9x_9 \oplus x_0x_9x_9 \oplus x_0x_9x_9 \oplus x_0x_9x_9 \oplus x_0x_9x_9x_9 \oplus x_0x_9x_9 \oplus x_0x_9x
524
                                                                                       x_0x_3x_4x_5x_6x_8 \oplus x_0x_3x_4x_5x_6x_9 \oplus x_0x_3x_4x_5x_7 \oplus x_0x_3x_4x_5x_7x_8 \oplus x_0x_3x_4x_5x_7x_8x_9 \oplus x_0x_3x_4x_5x_8x_9 \oplus x_0x_8x_9 \oplus x_0x_9 
525
                                                                                    526
                                                                                    527
                                                                                    x_0x_3x_5x_6x_8x_9 \oplus x_0x_3x_5x_6x_9 \oplus x_0x_3x_5x_7x_8 \oplus x_0x_3x_5x_7x_9 \oplus x_0x_3x_5x_8 \oplus x_0x_3x_5x_8x_9 \oplus x_0x_3x_6x_7 \oplus x_0x_6x_7 \oplus x_0x_7 \oplus x
528
                                                                                       x_0x_3x_6x_7x_9 \oplus x_0x_3x_6x_8 \oplus x_0x_3x_6x_9 \oplus x_0x_3x_7 \oplus x_0x_3x_7x_8 \oplus x_0x_3x_7x_8x_9 \oplus x_0x_3x_9 \oplus x_0x_3x_9 \oplus x_0x_4 \oplus x_0x_4x_5x_6 \oplus x_0x_3x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x
529
                                                                                    x_0x_4x_5x_6x_7x_8 \oplus x_0x_4x_5x_6x_7x_9 \oplus x_0x_4x_5x_6x_8 \oplus x_0x_4x_5x_6x_8x_9 \oplus x_0x_4x_5x_7 \oplus x_0x_4x_5x_7x_8x_9 \oplus x_0x_4x_5x_7x_9 \oplus x_0x_4x_5x_7x_8 \oplus x_0x_4x_5x_8 \oplus x_0x_5x_8 \oplus x_0x_8 \oplus x
530
                                                                                    531
                                                                                    532
                                                                                       x_0x_5x_7 \oplus x_0x_5x_7x_8 \oplus x_0x_5x_7x_8x_9 \oplus x_0x_5x_8x_9 \oplus x_0x_5x_9 \oplus x_0x_6 \oplus x_0x_6x_7x_8 \oplus x_0x_6x_7x_9 \oplus x_0x_6x_8 \oplus x_0x_6x_8x_9 \oplus x_0x_6x_9 \oplus x
533
                                                                                    x_0x_7 \oplus x_0x_7x_8x_9 \oplus x_0x_7x_9 \oplus x_0x_8 \oplus x_0x_9 \oplus x_1 \oplus x_1x_2 \oplus x_1x_2x_3 \oplus x_1x_2x_3x_4 \oplus x_1x_2x_3x_4x_5 \oplus x_1x_2x_3x_4 \oplus x_1x_2x_4 \oplus x
534
                                                                                       x_1x_2x_3x_4x_5x_6x_7 \oplus x_1x_2x_3x_4x_5x_6x_7x_8 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_6x_9 \oplus x_1x_2x_5x_6x_6x_9 \oplus x_1x_2x_5x_6x_6x_7x_6x_9 \oplus x_1x_2x_6x_6x_7x_6x_9 \oplus x_1x_5x_6x_6x_7x_6x_9 \oplus x_1x_5x_6x_7x_6x_9 \oplus x_1x_2x_5x_6x_7x
535
                                                                                    x_1x_2x_3x_4x_5x_7x_9 \oplus x_1x_2x_3x_4x_5x_8 \oplus x_1x_2x_3x_4x_5x_8x_9 \oplus x_1x_2x_3x_4x_6x_7 \oplus x_1x_2x_3x_4x_6x_7x_8 \oplus x_1x_2x_3x_4x_6x_7x_9 \oplus x_1x_2x_3x_4x_7x_9 \oplus x_1x_2x_3x_4x_7x_9 \oplus x_1x_2x_3x_4x_7x_9 \oplus x_1x_2x_7x_9 \oplus x_1x_2x_7x_9 \oplus x_1x_2x_7x_9 \oplus x_1x_2x_7x_9 \oplus x_1x_2x
536
                                                                                    x_1x_2x_3x_4x_6x_8 \oplus x_1x_2x_3x_4x_6x_9 \oplus x_1x_2x_3x_4x_7 \oplus x_1x_2x_3x_4x_7x_8 \oplus x_1x_2x_3x_4x_7x_8x_9 \oplus x_1x_2x_3x_4x_8x_9 \oplus x_1x_2x_3x_4x_9 \oplus x_1x_2x_3x
537
538
                                                                                    x_1x_2x_3x_5x_6 \oplus x_1x_2x_3x_5x_6x_7x_8 \oplus x_1x_2x_3x_5x_6x_7x_9 \oplus x_1x_2x_3x_5x_6x_8 \oplus x_1x_2x_3x_5x_6x_8x_9 \oplus x_1x_2x_3x_5x_7 \oplus x_1x_2x_3x_5x_7x_8x_9 \oplus x_1x_2x_3x_5x_6x_8x_9 \oplus x_1x_2x_5x_6x_8x_9 \oplus x_1x_2x_5x_8x_9 \oplus x_1x_2x_5x_6x_8x_9 \oplus x_1x_2x_5x_8x_9 \oplus x_1x_2x_5x_9 \oplus x_1x
                                                                                    x_{1}x_{2}x_{3}x_{5}x_{7}x_{9} \oplus x_{1}x_{2}x_{3}x_{5}x_{8} \oplus x_{1}x_{2}x_{3}x_{5}x_{9} \oplus x_{1}x_{2}x_{3}x_{6} \oplus x_{1}x_{2}x_{3}x_{6}x_{7} \oplus x_{1}x_{2}x_{3}x_{6}x_{7}x_{8} \oplus x_{1}x_{2}x_{3}x_{6}x_{7}x_{8}x_{9} \oplus x_{1}x_{2}x_{3}x_{5}x_{9} \oplus x_{1}x_{2}x_{3}x_{5}x_{9} \oplus x_{1}x_{2}x_{3}x_{6}x_{7}x_{8} \oplus x_{1}x_{2}x_{3}x_{6}x_{7}x_{8}x_{9} \oplus x_{1}x_{2}x_{3}x_{6}x_{7}x_{8} \oplus x_{1}x_{2}x_{3}x_{6}x_{7}x_{8}x_{9} \oplus x_{1}x_{2}x_{3}x_{8}x_{9} \oplus x_{1}x_{2}x_{3}x_{8
539
                                                                                    x_1x_2x_3x_6x_8x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_7x_8 \oplus x_1x_2x_3x_7x_9 \oplus x_1x_2x_3x_8 \oplus x_1x_2x_3x_8x_9 \oplus x_1x_2x_4x_5 \oplus x_1x_2x_4x_5 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_3x_6x
540
                                                                                    x_1x_2x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_4x_5x_6x_7x_9 \oplus x_1x_2x_4x_5x_6x_8 \oplus x_1x_2x_4x_5x_6x_9 \oplus x_1x_2x_4x_5x_7 \oplus x_1x_2x_4x_5x_7x_8 \oplus x_1x_2x_4x_5x_6x_7 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_7 \oplus x_1x
541
                                                                                    x_1x_2x_4x_5x_7x_8x_9 \oplus x_1x_2x_4x_5x_8x_9 \oplus x_1x_2x_4x_5x_9 \oplus x_1x_2x_4x_6 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7x_9 \oplus x_1x_2x_4x_6x_8 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7x_9 \oplus x_1x_2x_4x_6x_8 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_8 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_8 \oplus x_1x_2x_4x_6x_8 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_8 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x
542
                                                                                    x_1x_2x_4x_6x_8x_9 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_4x_7x_8x_9 \oplus x_1x_2x_4x_7x_9 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_9 \oplus x_1x_2x_5 \oplus x_1x_2x_5x_6 \oplus x_1x_2x_5 \oplus x_1x_5 
543
544
                                                                                       x_1x_2x_5x_6x_7 \oplus x_1x_2x_5x_6x_7x_8 \oplus x_1x_2x_5x_6x_7x_8x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_7x_8 \oplus x_1x_2x_5x_7x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_7x_8 \oplus x_1x_2x_5x_7x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_7 \oplus x_1x_2x_5x_6x_7 \oplus x_1x_2x_5x_6x_7 \oplus x
                                                                                    x_1x_2x_5x_8 \oplus x_1x_2x_5x_8x_9 \oplus x_1x_2x_6x_7 \oplus x_1x_2x_6x_7x_8x_9 \oplus x_1x_2x_6x_7x_9 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_7 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_6x
545
                                                                                    x_1x_2x_7x_8 \oplus x_1x_2x_7x_8x_9 \oplus x_1x_2x_8x_9 \oplus x_1x_2x_9 \oplus x_1x_3x_4 \oplus x_1x_3x_4x_5x_6 \oplus x_1x_3x_4x_5x_6x_7x_8 \oplus x_1x_3x_4x_5x_6x_7x_9 \oplus x_1x_5x_7x_9 \oplus x_1x_5x_7x_9 \oplus x_1x_5x_9 \oplus x_1x
546
                                                                                    x_1x_3x_4x_5x_6x_8 \oplus x_1x_3x_4x_5x_6x_8x_9 \oplus x_1x_3x_4x_5x_7 \oplus x_1x_3x_4x_5x_7x_8x_9 \oplus x_1x_3x_4x_5x_7x_9 \oplus x_1x_3x_4x_5x_8 \oplus x_1x_3x_4x_5x_9 \oplus x_1x_3x_4x_5x_8 \oplus x_1x_3x_5x_8 \oplus x_1x_3x_5x_8 \oplus x_1x_5x_8 \oplus x_1x
547
                                                                                    x_1x_3x_4x_6 \oplus x_1x_3x_4x_6x_7 \oplus x_1x_3x_4x_6x_7x_8 \oplus x_1x_3x_4x_6x_7x_8x_9 \oplus x_1x_3x_4x_6x_8x_9 \oplus x_1x_3x_4x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x
548
549
                                                                                    x_1x_3x_4x_7x_9 \oplus x_1x_3x_4x_8 \oplus x_1x_3x_4x_8x_9 \oplus x_1x_3x_5 \oplus x_1x_3x_5x_6x_7 \oplus x_1x_3x_5x_6x_7x_8x_9 \oplus x_1x_3x_5x_6x_7x_9 \oplus x_1x_3x_5x_6x_8 \oplus x_1x_3x_5x_6x_7x_8 \oplus x_1x_3x_5x_6x_7x_8x_9 \oplus x_1x_3x_5x_6x_7x_9 \oplus x_1x_5x_7x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_9 \oplus x_1x
                                                                                    x_1x_3x_5x_6x_9 \oplus x_1x_3x_5x_7 \oplus x_1x_3x_5x_7x_8 \oplus x_1x_3x_5x_7x_8x_9 \oplus x_1x_3x_5x_8x_9 \oplus x_1x_3x_5x_9 \oplus x_1x_3x_6 \oplus x_1x_3x_6x_7x_8 \oplus x_1x_3x_5x_6x_9 \oplus x_1x_3x_5x_8 \oplus x_1x_5x_8 \oplus x_1x
550
                                                                                    x_1x_3x_6x_7x_9 \oplus x_1x_3x_6x_8 \oplus x_1x_3x_6x_8 \oplus x_1x_3x_7 \oplus x_1x_3x_7 \oplus x_1x_3x_7x_8 x_9 \oplus x_1x_3x_7 x_9 \oplus x_1x_3x_8 \oplus x_1x_3x_9 \oplus x_1x_4 \oplus x_1x_4x_5 \oplus x_1x_3x_6x_8 \oplus x_1x_3x_6x_8 \oplus x_1x_3x_6 \oplus x_1x_3x_7 \oplus x_1x_7 \oplus
551
                                                                                    x_1x_4x_5x_6 \oplus x_1x_4x_5x_6x_7 \oplus x_1x_4x_5x_6x_7x_8 \oplus x_1x_4x_5x_6x_7x_8x_9 \oplus x_1x_4x_5x_6x_8x_9 \oplus x_1x_4x_5x_6x_9 \oplus x_1x_4x_5x_6x_7x_8 \oplus x_1x_4x_5x_6x_7x_8x_9 \oplus x_1x_5x_6x_7x_8x_9 \oplus x_1x_5x_6x_7x_8x_9 \oplus x_1x_5x_6x_7x_8x_9 \oplus x_1x_5x_9x_9 \oplus x_1x_5x_9x_9 \oplus x_1x_5x_9x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_9 \oplus x_1x
552
                                                                                    x_{1}x_{4}x_{5}x_{7}x_{9} \oplus x_{1}x_{4}x_{5}x_{8} \oplus x_{1}x_{4}x_{5}x_{8}x_{9} \oplus x_{1}x_{4}x_{6}x_{7} \oplus x_{1}x_{4}x_{6}x_{7}x_{8}x_{9} \oplus x_{1}x_{4}x_{6}x_{7}x_{9} \oplus x_{1}x_{4}x_{6}x_{8} \oplus x_{1}x_{4}x_{6}x_{9} \oplus x_{1}x_{4}x_{6}x_{
553
                                                                                    x_1x_4x_7 \oplus x_1x_4x_7x_8 \oplus x_1x_4x_7x_8x_9 \oplus x_1x_4x_8x_9 \oplus x_1x_4x_9 \oplus x_1x_5x_6 \oplus x_1x_5x_6x_7x_8 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_6x_8 \oplus x_1x_5x_6x_7x_8 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_6x_8 \oplus x_1x_5x_6x_7x_8 \oplus x_1x_5x_6x_7x_9 \oplus x_1x
554
                                                                                    x_1x_5x_6x_8x_9 \oplus x_1x_5x_7 \oplus x_1x_5x_7x_8x_9 \oplus x_1x_5x_7x_9 \oplus x_1x_5x_8 \oplus x_1x_5x_9 \oplus x_1x_6 \oplus x_1x_6x_7 \oplus x_1x_6x_7x_8 \oplus x_1x_6x_7x_8x_9 \oplus x_1x_6x_7x_9 \oplus x_1x_6x_9x_9 \oplus x_1x_6x_9x_9x_9 \oplus x_1x_6x_9x_9 \oplus x_1x_6x
555
                                                                                    x_1x_6x_8x_9 \oplus x_1x_6x_9 \oplus x_1x_7x_8 \oplus x_1x_7x_9 \oplus x_1x_8 \oplus x_1x_8x_9 \oplus x_2x_3 \oplus x_2x_3x_4x_5 \oplus x_2x_3x_4x_5x_6x_7 \oplus x_2x_3x_4x_5 \oplus x_2x_3x_5 \oplus x_2x_3x_4x_5 \oplus x_2x_3x_5 \oplus x_2x_5 
556
                                                                                    x_2x_3x_4x_5x_6x_7x_9 \oplus x_2x_3x_4x_5x_6x_8 \oplus x_2x_3x_4x_5x_6x_9 \oplus x_2x_3x_4x_5x_7 \oplus x_2x_3x_4x_5x_7x_8 \oplus x_2x_3x_4x_5x_7x_8y \oplus x_2x_3x_4x_5x_6x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_6x_9
557
                                                                                       x_2x_3x_4x_5x_9 \oplus x_2x_3x_4x_6 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_6x_7x_9 \oplus x_2x_3x_4x_6x_8 \oplus x_2x_3x_4x_6x_8 \oplus x_2x_3x_4x_7 \oplus x_2x_3x_7 \oplus x_2x_7 \oplus x
558
                                                                                       x_2x_3x_4x_7x_9 \oplus x_2x_3x_4x_8 \oplus x_2x_3x_4x_9 \oplus x_2x_3x_5 \oplus x_2x_3x_5x_6 \oplus x_2x_3x_5x_6x_7 \oplus x_2x_3x_5x_6x_7x_8 \oplus x_2x_3x_5x_6x_7x_8x_9 \oplus x_2x_3x_5x_6x_7x_8x_9 \oplus x_2x_3x_5x_6x_7x_8x_9 \oplus x_2x_3x_5x_6x_7x_8x_9 \oplus x_2x_3x_5x_6x_7x_8x_9 \oplus x_2x_3x_5x_6x_7x_8 \oplus x_2x_5x_6x_7x_8 \oplus x_2x_5x_7x_8 \oplus x_2x_5x_6x_7x_8 
559
                                                                                    x_2x_3x_5x_6x_8x_9 \oplus x_2x_3x_5x_6x_9 \oplus x_2x_3x_5x_7x_8 \oplus x_2x_3x_5x_7x_9 \oplus x_2x_3x_5x_8 \oplus x_2x_3x_5x_8x_9 \oplus x_2x_3x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_7 \oplus x_2x_7 \oplus x_2x
560
561
                                                                                    x_2x_3x_6x_7x_9 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_7 \oplus x_2x_3x_7x_8 \oplus x_2x_3x_7x_8x_9 \oplus x_2x_3x_8x_9 \oplus x_2x_3x_9 \oplus x_2x_4 \oplus x_2x_4x_5x_6 \oplus x_2x_3x_6x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_6x_9 \oplus x
                                                                                    x_2x_4x_5x_6x_7x_8 \oplus x_2x_4x_5x_6x_7x_9 \oplus x_2x_4x_5x_6x_8 \oplus x_2x_4x_5x_6x_8x_9 \oplus x_2x_4x_5x_7 \oplus x_2x_4x_5x_7x_8x_9 \oplus x_2x_4x_5x_7x_9 \oplus x_2x_4x_5x_7x_8 \oplus x_2x_4x_5x_8 \oplus x_2x_5x_8 
562
                                                                                    x_2x_4x_5x_8 \oplus x_2x_4x_5x_9 \oplus x_2x_4x_6 \oplus x_2x_4x_6x_7 \oplus x_2x_4x_6x_7x_8 \oplus x_2x_4x_6x_7x_8 \oplus x_2x_4x_6x_9 \oplus x_2x_4x_6x_9 \oplus x_2x_4x_6x_7x_8 \oplus x_2x_4x_6x_7 \oplus x_2x_4x_7 \oplus x_2x_7 \oplus x
563
                                                                                    564
                                                                                    565
                                                                                    x_2x_7 \oplus x_2x_7x_8x_9 \oplus x_2x_7x_9 \oplus x_2x_8 \oplus x_2x_9 \oplus x_3 \oplus x_3x_4 \oplus x_3x_4x_5 \oplus x_3x_4x_5x_6 \oplus x_3x_4x_5x_6x_7 \oplus x_3x_4x_5x_6x_7x_8 \oplus x_3x_4x_5x_6x_7 \oplus x_3x_5x_6x_7 \oplus x_3x_5x_7 \oplus x_3x_5x_6x_7 \oplus x_3x_5x_7 \oplus x_3x_7 \oplus x
566
                                                                                    567
                                                                                    x_3x_4x_6x_7 \oplus x_3x_4x_6x_7x_8 \oplus x_3x_4x_6x_7 x_9 \oplus x_3x_4x_6x_8 \oplus x_3x_4x_6x_9 \oplus x_3x_4x_7 \oplus x_3x_4x_7x_8 \oplus x_3x_4x_7x_8x_9 \oplus x_3x_4x_6x_9 \oplus x_3x_6x_9 \oplus x_3x_6
568
                                                                                    x_3x_4x_9 \oplus x_3x_5x_6 \oplus x_3x_5x_6x_7x_8 \oplus x_3x_5x_6x_7x_9 \oplus x_3x_5x_6x_8 \oplus x_3x_5x_6x_8x_9 \oplus x_3x_5x_7 \oplus x_3x_5x_7x_8x_9 \oplus x_3x_5x_7x_9 \oplus x_3x_5x_6x_8x_9 \oplus x_3x_6x_6x_8x_9 \oplus x_3x_6x_8x_9 \oplus x_3x_6x_8x_9 \oplus x_3x_6x_8x_9 \oplus x_3x_6x_8x_9 \oplus x_3x_6x_8x_9 \oplus x_3x_6x_8x_9 \oplus x_3x_6x_9 \oplus x_3x
569
```

 $x_{3}x_{5}x_{8} \oplus x_{3}x_{5}x_{9} \oplus x_{3}x_{6} \oplus x_{3}x_{6}x_{7} \oplus x_{3}x_{6}x_{7}x_{8} \oplus x_{3}x_{6}x_{7}x_{8} \oplus x_{3}x_{6}x_{9} \oplus x_{3}x_{6}x_{9} \oplus x_{3}x_{7}x_{8} \oplus x_{3}x_{7}x_{9} \oplus x_{3}x_{8} \oplus x_{1}x_{1} \oplus$

```
x_4x_5x_7x_8x_9 \oplus x_4x_5x_8x_9 \oplus x_4x_5x_9 \oplus x_4x_6 \oplus x_4x_6x_7x_8 \oplus x_4x_6x_7x_9 \oplus x_4x_6x_8 \oplus x_4x_6x_8x_9 \oplus x_4x_7 \oplus x_4x_7x_8x_9 \oplus x_4x_6x_8x_9 \oplus x_4x_6x_9 \oplus x_4x_6x_8x_9 \oplus x_4x_6x_9 \oplus x_6x_9 \oplus x_6x
                                                     x_{4}x_{7}x_{9} \oplus x_{4}x_{8} \oplus x_{4}x_{9} \oplus x_{5} \oplus x_{5}x_{6} \oplus x_{5}x_{6}x_{7} \oplus x_{5}x_{6}x_{7}x_{8} \oplus x_{5}x_{6}x_{7}x_{8}x_{9} \oplus x_{5}x_{6}x_{9} \oplus x_{5}x_{6}x_{9} \oplus x_{5}x_{7}x_{8} \oplus x_{5}x_{6}x_{9} \oplus x_{5}x_{9} \oplus x_{5}x_{9
573
                                                     x_5x_7x_9 \oplus x_5x_8 \oplus x_5x_8x_9 \oplus x_6x_7 \oplus x_6x_7x_8x_9 \oplus x_6x_7x_9 \oplus x_6x_8 \oplus x_6x_9 \oplus x_7 \oplus x_7x_8 \oplus x_7x_8x_9 \oplus x_8x_9 \oplus x_9 = 0
574
                                                                                                  575
                                                     576
                                                     577
                                                       578
                                                     579
                                                     580
                                                     581
                                                     582
                                                       x_0x_1x_2x_4x_5x_6x_7x_9 \oplus x_0x_1x_2x_4x_5x_6x_8 \oplus x_0x_1x_2x_4x_5x_6x_9 \oplus x_0x_1x_2x_4x_5x_7 \oplus x_0x_1x_2x_4x_5x_7x_8 \oplus x_0x_1x_2x_4x_5x_6x_9 \oplus x_0x_1x_2x_6x_9 
583
                                                     584
                                                     585
                                                     x_0x_1x_2x_5x_6 \oplus x_0x_1x_2x_5x_6x_7 \oplus x_0x_1x_2x_5x_6x_7x_8 \oplus x_0x_1x_2x_5x_6x_7x_8x_9 \oplus x_0x_1x_2x_5x_6x_8x_9 \oplus x_0x_1x_2x_5x_6x_9 \oplus x_0x_1x_2x_5x_9 \oplus x
586
                                                       587
                                                     588
589
                                                       x_0x_1x_3x_4x_5x_6 \oplus x_0x_1x_3x_4x_5x_6x_7x_8 \oplus x_0x_1x_3x_4x_5x_6x_7x_9 \oplus x_0x_1x_3x_4x_5x_6x_8 \oplus x_0x_1x_3x_4x_5x_6x_8 \oplus x_0x_1x_3x_4x_5x_6 \oplus x_0x_1x_5x_6 
                                                     x_0x_1x_3x_4x_5x_7x_8x_9 \oplus x_0x_1x_3x_4x_5x_7x_9 \oplus x_0x_1x_3x_4x_5x_8 \oplus x_0x_1x_3x_4x_5x_9 \oplus x_0x_1x_3x_4x_6 \oplus x_0x_1x_3x_4x_6x_7 \oplus x_0x_1x_5x_6x_7 \oplus x_0x_1x_5x_6x_7 \oplus x_0x_1x_5x_6x_7 \oplus x_0x_1x_5x_6x_7 \oplus x_0x_1x_5x_6x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_7 \oplus x
590
                                                     591
                                                     x_0x_1x_3x_4x_8 \oplus x_0x_1x_3x_4x_8y \oplus x_0x_1x_3x_5 \oplus x_0x_1x_3x_5 + x_0x_1x_3x_5x_6x_7 \oplus x_0x_1x_3x_5x_6x_7x_8y \oplus x_0x_1x_3x_5x_6x_7y \oplus x_0x_1x_3x_5x_6x_7x_6x_7y \oplus x_0x_1x_3x_5x_6x_7x_6x_7y \oplus x_0x_1x_3x_5x_6x_7x_6x_7y \oplus x_0x_1x_3x_5x_6x_7x_6x_7y \oplus x_0x_1x_3x_5x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x_7x_6x
592
                                                     593
594
                                                     595
                                                     596
                                                       597
                                                     598
                                                     x_0x_1x_5x_7x_8x_9 \oplus x_0x_1x_5x_7x_9 \oplus x_0x_1x_5x_8 \oplus x_0x_1x_5x_9 \oplus x_0x_1x_6 \oplus x_0x_1x_6x_7 \oplus x_0x_1x_6x_7x_8 \oplus x_0x_1x_6x_7x_8x_9 \oplus x_0x_1x_6x_7x_8 \oplus x_0x_1x_6x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_6x_7 \oplus x_0x_1x_6x_7 \oplus x_0x_1x_6x_7 \oplus x_0x_1x_6x_7 \oplus x
599
600
                                                     x_0x_1x_6x_8x_9 \oplus x_0x_1x_6x_9 \oplus x_0x_1x_7x_8 \oplus x_0x_1x_7x_9 \oplus x_0x_1x_8 \oplus x_0x_1x_8x_9 \oplus x_0x_2x_3 \oplus x_0x_2x_3x_4x_5 \oplus x_0x_2x_5 \oplus x_0x_5 \oplus x_0x
                                                     601
602
                                                       x_0x_2x_3x_4x_5x_7x_8x_9 \oplus x_0x_2x_3x_4x_5x_8x_9 \oplus x_0x_2x_3x_4x_5x_9 \oplus x_0x_2x_3x_4x_6 \oplus x_0x_2x_3x_4x_6x_7x_8 \oplus x_0x_2x_3x_4x_6x_7x_9 \oplus x_0x_2x_3x_4x_6x_7x_9 \oplus x_0x_2x_3x_4x_6x_7x_9 \oplus x_0x_2x_3x_4x_6x_7x_9 \oplus x_0x_2x_3x_4x_6x_7x_9 \oplus x_0x_2x_3x_4x_6x_7x_8 \oplus x_0x_2x_3x_4x_6x_7x_9 \oplus x_0x_2x_3x_4x_9 \oplus x_0x_2x_3x_3x_3x_3x_3x_3x_3x
                                                     x_0x_2x_3x_4x_6x_8 \oplus x_0x_2x_3x_4x_6x_8y \oplus x_0x_2x_3x_4x_7 \oplus x_0x_2x_3x_4x_7x_8x_9 \oplus x_0x_2x_3x_4x_7x_9 \oplus x_0x_2x_3x_4x_8 \oplus x_0x_2x_3x_4x_9 \oplus x_0x_2x_3x_4x_8 \oplus x_0x_2x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_3x_4x_3x_3x_4x_3x_3x_3x_4x_3x_3x_3x_3x_3x_3x_3x_3x_3x_3
603
                                                       x_0x_2x_3x_5 \oplus x_0x_2x_3x_5x_6 \oplus x_0x_2x_3x_5x_6x_7 \oplus x_0x_2x_3x_5x_6x_7x_8 \oplus x_0x_2x_3x_5x_6x_7x_8x_9 \oplus x_0x_2x_3x_5x_6x_8x_9 \oplus x_0x_2x_3x_5x_6x_9 \oplus x_0x_2x_3x_5x_6x_7x_8 \oplus x_0x_2x_5x_6x_7x_8 \oplus x_0x_2x_5x_6x_7x_8x_9 \oplus x_0x_5x_6x_7x_6x_7x_8x_9 \oplus x_0x_5x_6x_7x_6x_7x_8x_9 \oplus x_0x_5x_6x_7x_6x_7x_8x_9x_7x_9x_9x_9x_9x_9x_9x_9x
604
                                                     x_0x_2x_3x_5x_7x_8 \oplus x_0x_2x_3x_5x_7x_9 \oplus x_0x_2x_3x_5x_8 \oplus x_0x_2x_3x_5x_8 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7x_8x_9 \oplus x_0x_2x_3x_6x_7x_9 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_7 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_3x_5x_6x_7 \oplus x_0x_2x_5x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_5x_7 \oplus x_0x_2x_5x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x
605
606
                                                       x_0x_2x_3x_6x_8 \oplus x_0x_2x_3x_6x_9 \oplus x_0x_2x_3x_7 \oplus x_0x_2x_3x_7x_8 \oplus x_0x_2x_3x_7x_8x_9 \oplus x_0x_2x_3x_8x_9 \oplus x_0x_2x_3x_9 \oplus x_0x_2x_4 \oplus x_0x_2x_3x_1 \oplus x_0x_2x_1 \oplus x_0x_2x_1 \oplus x_0x_2x_1 \oplus x_0x_2x_1 \oplus x_0x_2x_1 \oplus x_0x_1 \oplus x_0x_2x_1 \oplus x_0x_2x_1 \oplus x_0x_1 \oplus x
                                                     x_0x_2x_4x_5x_6 \oplus x_0x_2x_4x_5x_6x_7x_8 \oplus x_0x_2x_4x_5x_6x_7x_9 \oplus x_0x_2x_4x_5x_6x_8 \oplus x_0x_2x_4x_5x_6x_8x_9 \oplus x_0x_2x_4x_5x_7 \oplus x_0x_2x_4x_5x_7x_8x_9 \oplus x_0x_2x_4x_5x_6x_8x_9 \oplus x_0x_2x_6x_9 \oplus x_0x_2x_4x_5x_6x_6x_6x_9 \oplus x_0x_2x_6x_6x_9 \oplus x_0x_2x_6x_6x_9 \oplus x_0x_6x_6x_6x_6x_6x_9x_6x_9 \oplus x_0x_6x_6x_6x_6x_6x_9 \oplus x_0x_6x_6x_6x_6x_6x_6x_6x_6x_6x
607
                                                     x_0x_2x_4x_5x_7x_9 \oplus x_0x_2x_4x_5x_8 \oplus x_0x_2x_4x_5x_9 \oplus x_0x_2x_4x_6 \oplus x_0x_2x_4x_6x_7 \oplus x_0x_2x_4x_6x_7x_8 \oplus x_0x_2x_4x_6x_7x_8x_9 \oplus x_0x_2x_4x_6x_7x_8 \oplus x_0x_2x_6x_7x_8 \oplus x_0x_2x_6x_8 \oplus x
608
                                                     x_0x_2x_4x_6x_8y_9 \oplus x_0x_2x_4x_6x_9 \oplus x_0x_2x_4x_7x_8 \oplus x_0x_2x_4x_7x_9 \oplus x_0x_2x_4x_8 \oplus x_0x_2x_4x_8x_9 \oplus x_0x_2x_5 \oplus x_0x_2x_5x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7 \oplus x
609
                                                     x_0x_2x_5x_6x_7x_8x_9 \oplus x_0x_2x_5x_6x_7x_9 \oplus x_0x_2x_5x_6x_8 \oplus x_0x_2x_5x_6x_9 \oplus x_0x_2x_5x_7 \oplus x_0x_2x_5x_7x_8 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_6x_7 \oplus x_0x_2x_5x_7x_8 \oplus x_0x_2x_5x_6x_7 \oplus x_0x_2x_5x_7 \oplus x_0x_5x_7 \oplus x_0x
610
                                                     x_0x_2x_5x_8x_9 \oplus x_0x_2x_5x_9 \oplus x_0x_2x_6 \oplus x_0x_2x_6x_7x_8 \oplus x_0x_2x_6x_7x_9 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7x_8x_9 \oplus x_0x_2x_6x_8 \oplus x
611
                                                     612
                                                     x_0x_3x_4x_5x_6x_7x_8x_9 \oplus x_0x_3x_4x_5x_6x_8x_9 \oplus x_0x_3x_4x_5x_6x_9 \oplus x_0x_3x_4x_5x_7x_8 \oplus x_0x_3x_4x_5x_7x_9 \oplus x_0x_3x_4x_5x_8 \oplus x_0x_3x_4x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_6x_9 \oplus x_0x_5x_6x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x
613
                                                     x_0x_3x_4x_5x_8x_9 \oplus x_0x_3x_4x_6x_7 \oplus x_0x_3x_4x_6x_7x_8x_9 \oplus x_0x_3x_4x_6x_7x_9 \oplus x_0x_3x_4x_6x_8 \oplus x_0x_3x_4x_6x_9 \oplus x_0x_3x_4x_7 \oplus x_0x_3x_4x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x
614
                                                     615
                                                     x_0x_3x_5x_6x_8x_9 \oplus x_0x_3x_5x_7 \oplus x_0x_3x_5x_7x_8x_9 \oplus x_0x_3x_5x_7x_9 \oplus x_0x_3x_5x_8 \oplus x_0x_3x_5x_9 \oplus x_0x_3x_6 \oplus x_0x_3x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_6x_7 \oplus x_0x_7 \oplus x_0x
616
617
                                                     x_0x_3x_6x_7x_8 \oplus x_0x_3x_6x_7x_8x_9 \oplus x_0x_3x_6x_8x_9 \oplus x_0x_3x_6x_9 \oplus x_0x_3x_7x_8 \oplus x_0x_3x_7x_9 \oplus x_0x_3x_8 \oplus x_0x_3x_8x_9 \oplus x_0x_4x_5 \oplus x_0x_3x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x
                                                     x_0x_4x_5x_6x_7 \oplus x_0x_4x_5x_6x_7x_8x_9 \oplus x_0x_4x_5x_6x_7x_9 \oplus x_0x_4x_5x_6x_8 \oplus x_0x_4x_5x_6x_9 \oplus x_0x_4x_5x_7 \oplus x_0x_4x_5x_7x_8 \oplus x_0x_4x_5x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_6x_7 \oplus x_0x_7 \oplus x_0x
618
                                                     x_0x_4x_5x_7x_8x_9 \oplus x_0x_4x_5x_8x_9 \oplus x_0x_4x_5x_9 \oplus x_0x_4x_6 \oplus x_0x_4x_6x_7x_8 \oplus x_0x_4x_6x_7x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_4x_6x_8x_9 \oplus x_0x_4x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x
619
                                                     x_0x_4x_7 \oplus x_0x_4x_7x_8x_9 \oplus x_0x_4x_7x_9 \oplus x_0x_4x_8 \oplus x_0x_4x_9 \oplus x_0x_5 \oplus x_0x_5x_6 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7x_8 \oplus x_0x_5x_6x_7x_8 \oplus x_0x_5x_6x_7x_8 \oplus x_0x_5x_6x_7x_8 \oplus x_0x_5x_6x_7 \oplus x_0x_5x
620
                                                       x_0x_5x_6x_8x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_7x_8 \oplus x_0x_5x_7x_9 \oplus x_0x_5x_8 \oplus x_0x_5x_8x_9 \oplus x_0x_6x_7 \oplus x_0x_6x_7x_8x_9 \oplus x_0x_6x_7x_9 \oplus x_0x_6x_9 \oplus x_0x_6x
621
```

 $x_3x_8x_9 \oplus x_4x_5 \oplus x_4x_5x_6x_7 \oplus x_4x_5x_6x_7x_8x_9 \oplus x_4x_5x_6x_7x_9 \oplus x_4x_5x_6x_8 \oplus x_4x_5x_6x_9 \oplus x_4x_5x_7 \oplus x_4x_5x_7x_8 \oplus x_5x_6x_7 \oplus x_5x_6x_8 \oplus x_5x_6x_7 \oplus x_5x_6x_8 \oplus x_5x_6x_7 \oplus x_5x$

```
x_0x_6x_8 \oplus x_0x_6x_9 \oplus x_0x_7 \oplus x_0x_7x_8 \oplus x_0x_7x_8x_9 \oplus x_0x_8x_9 \oplus x_0x_9 \oplus x_1x_2 \oplus x_1x_2x_3x_4 \oplus x_1x_2x_3x_4x_5x_6 \oplus x_0x_1x_2x_3x_4 \oplus x_1x_2x_3x_4 \oplus x_1x_2x_3x
   622
   623
                                                                                  x_1x_2x_3x_4x_5x_7x_9 \oplus x_1x_2x_3x_4x_5x_8 \oplus x_1x_2x_3x_4x_5x_9 \oplus x_1x_2x_3x_4x_6 \oplus x_1x_2x_3x_4x_6x_7 \oplus x_1x_2x_3x_4x_6x_7x_8 \oplus x_1x_2x_3x_4x_6x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_3x_4x_6x_7 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_3x_4x_7 \oplus x_1x_2x_3x_4x_7 \oplus x_1x_2x_3x_4x
   624
                                                                                  x_1x_2x_3x_5x_6x_7 \oplus x_1x_2x_3x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_5x_6x_7x_9 \oplus x_1x_2x_3x_5x_6x_8 \oplus x_1x_2x_3x_5x_6x_9 \oplus x_1x_2x_3x_5x_7 \oplus x_1x_2x_3x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_7 \oplus x_1x_2x_5x_6x_7 \oplus x_1x_2x_5x_6x_7 \oplus x_1x_2x_5x_6x_7 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_7 
   626
                                                                                  x_1x_2x_3x_5x_7x_8 \oplus x_1x_2x_3x_5x_7x_8x_9 \oplus x_1x_2x_3x_5x_8x_9 \oplus x_1x_2x_3x_5x_9 \oplus x_1x_2x_3x_6 \oplus x_1x_2x_3x_6x_7x_8 \oplus x_1x_2x_3x_6x_7x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_9 \oplus x_1x_2x_9 \oplus x_1x_2x_3x_9 \oplus x_1x_2x
   627
                                                                                  x_{1}x_{2}x_{3}x_{6}x_{8} \oplus x_{1}x_{2}x_{3}x_{6}x_{8}x_{9} \oplus x_{1}x_{2}x_{3}x_{7} \oplus x_{1}x_{2}x_{3}x_{7}x_{8}x_{9} \oplus x_{1}x_{2}x_{3}x_{7}x_{9} \oplus x_{1}x_{2}x_{3}x_{8} \oplus x_{1}x_{2}x_{3}x_{9} \oplus x_{1}x_{2}x_{4} \oplus x_{1}x_{2}x_{3}x_{1}x_{2}x_{3}x_{1} \oplus x_{1}x_{2}x_{3}x_{1}x_{2}x_{3}x_{1} \oplus x_{1}x_{2}x_{3}x_{1} \oplus x_{1}x_{2}x
   628
                                                                                  x_1x_2x_4x_5 \oplus x_1x_2x_4x_5x_6 \oplus x_1x_2x_4x_5x_6x_7 \oplus x_1x_2x_4x_5x_6x_7x_8 \oplus x_1x_2x_4x_5x_6x_7x_8 \oplus x_1x_2x_4x_5x_6x_8x_9 \oplus x_1x_2x_4x_5x_6x_8 \oplus x_1x_2x_4x_5x_6x_8 \oplus x_1x_2x_4x_5x_6x_7 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x
   629
                                                                                  x_1x_2x_4x_5x_7x_8 \oplus x_1x_2x_4x_5x_7x_9 \oplus x_1x_2x_4x_5x_8 \oplus x_1x_2x_4x_5x_8 \oplus x_1x_2x_4x_6x_7 \oplus x_1x_2x_4x_6x_7x_8x_9 \oplus x_1x_2x_4x_6x_7x_9 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7 \oplus x_1x_2x_4x_6x_7 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_7 \oplus x_1x_7 \oplus x
   630
                                                                                     631
                                                                                  632
                                                                                  x_1x_2x_5x_8 \oplus x_1x_2x_5x_9 \oplus x_1x_2x_6 \oplus x_1x_2x_6x_7 \oplus x_1x_2x_6x_7x_8 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_8 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_8 \oplus x
   633
634
                                                                                  x_1x_2x_7x_9 \oplus x_1x_2x_8 \oplus x_1x_2x_8x_9 \oplus x_1x_3 \oplus x_1x_3x_4x_5 \oplus x_1x_3x_4x_5x_6x_7 \oplus x_1x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_3x_4x_5x_6x_7x_9 \oplus x_1x_5x_7x_9 
                                                                                  x_1x_3x_4x_5x_6x_8 \oplus x_1x_3x_4x_5x_6x_9 \oplus x_1x_3x_4x_5x_7 \oplus x_1x_3x_4x_5x_7x_8 \oplus x_1x_3x_4x_5x_7x_8x_9 \oplus x_1x_3x_4x_5x_8x_9 \oplus x_1x_3x_4x_5x_8 \oplus x_1x_5x_8 \oplus x_1x
   635
                                                                                  x_1x_3x_4x_6 \oplus x_1x_3x_4x_6x_7x_8 \oplus x_1x_3x_4x_6x_7x_9 \oplus x_1x_3x_4x_6x_8 \oplus x_1x_3x_4x_6x_8x_9 \oplus x_1x_3x_4x_7 \oplus x_1x_3x_4x_7x_8x_9 \oplus x_1x_3x_4x_6x_8x_9 \oplus x_1x_5x_8x_9 \oplus x_1x_5x_8x_9 \oplus x_1x_5x_8x_9 \oplus x_1x_5x_8x_9 \oplus x_1x_5x_8x_9 \oplus x_1x_5x_8x_9 \oplus x_1x_5x_9 
   636
                                                                                  637
                                                                                  x_1x_3x_5x_6x_8x_9 \oplus x_1x_3x_5x_6x_9 \oplus x_1x_3x_5x_7x_8 \oplus x_1x_3x_5x_7x_9 \oplus x_1x_3x_5x_8 \oplus x_1x_3x_5x_8x_9 \oplus x_1x_3x_6x_7 \oplus x_1x_3x_6x_7 \oplus x_1x_3x_6x_7 \oplus x_1x_3x_5x_8 \oplus x_1x_5x_8 
   638
                                                                                  x_1x_3x_6x_7x_9 \oplus x_1x_3x_6x_8 \oplus x_1x_3x_6x_9 \oplus x_1x_3x_7 \oplus x_1x_3x_7x_8 \oplus x_1x_3x_7x_8x_9 \oplus x_1x_3x_8x_9 \oplus x_1x_3x_9 \oplus x_1x_9 
   639
   640
                                                                                  x_1x_4x_5x_6 \oplus x_1x_4x_5x_6x_7x_8 \oplus x_1x_4x_5x_6x_7x_9 \oplus x_1x_4x_5x_6x_8 \oplus x_1x_4x_5x_6x_8x_9 \oplus x_1x_4x_5x_7 \oplus x_1x_4x_5x_7x_8x_9 \oplus x_1x_4x_5x_6x_8x_9 \oplus x_1x_5x_9 \oplus x_1x_5x
                                                                                  x_1x_4x_5x_7x_9 \oplus x_1x_4x_5x_8 \oplus x_1x_4x_5x_9 \oplus x_1x_4x_6 \oplus x_1x_4x_6x_7 \oplus x_1x_4x_6x_7x_8 \oplus x_1x_4x_6x_7x_8 \oplus x_1x_4x_6x_8x_9 \oplus x_1x_4x_6x_9 \oplus x_1x_4x_6x_8x_9 \oplus x_1x_4x_6x_9 \oplus x_1x
   641
                                                                                  x_{1}x_{4}x_{6}x_{9} \oplus x_{1}x_{4}x_{7}x_{8} \oplus x_{1}x_{4}x_{7}x_{9} \oplus x_{1}x_{4}x_{8} \oplus x_{1}x_{4}x_{8}x_{9} \oplus x_{1}x_{5} \oplus x_{1}x_{5}x_{6}x_{7} \oplus x_{1}x_{5}x_{6}x_{7}x_{8}x_{9} \oplus x_{1}x_{5}x_{6}x_{7}x_{9} \oplus x_{1}x_{7}x_{9} \oplus x_{1}x_{7}x_{9}
   642
                                                                                  x_1x_5x_6x_8 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_7 \oplus x_1x_5x_7x_8 \oplus x_1x_5x_7x_8x_9 \oplus x_1x_5x_8x_9 \oplus x_1x_5x_9 \oplus x_1x_6 \oplus x_1x_6x_7x_8 \oplus x_1x_6x_7x_9 \oplus x_1x_6x_9 \oplus x_1x_6x
   643
                                                                                  x_1x_6x_8 \oplus x_1x_6x_8x_9 \oplus x_1x_7 \oplus x_1x_7x_8x_9 \oplus x_1x_7x_9 \oplus x_1x_8 \oplus x_1x_9 \oplus x_2 \oplus x_2x_3 \oplus x_2x_3x_4 \oplus x_2x_3x_4x_5 \oplus x_2x_3x_4x_5x_6 \oplus x_1x_6x_8 \oplus x_1x_6x
                                                                                  645
   646
                                                                                     x_2x_3x_4x_5x_7x_9 \oplus x_2x_3x_4x_5x_8 \oplus x_2x_3x_4x_5x_8x_9 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_4x_6x_7x_8x_9 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_4x_6x_8 \oplus x_2x_5x_6 
                                                                                  647
                                                                                  x_2x_3x_5x_6x_7x_9 \oplus x_2x_3x_5x_6x_8 \oplus x_2x_3x_5x_6x_8x_9 \oplus x_2x_3x_5x_7 \oplus x_2x_3x_5x_7x_8x_9 \oplus x_2x_3x_5x_7x_9 \oplus x_2x_3x_5x_8 \oplus x_2x_3x_5x_9 \oplus x_2x_3x_5x_8 \oplus x_2x_5x_8 \oplus x
   648
                                                                                  x_2x_3x_6 \oplus x_2x_3x_6x_7 \oplus x_2x_3x_6x_7x_8 \oplus x_2x_3x_6x_7x_8x_9 \oplus x_2x_3x_6x_8x_9 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_7x_8 \oplus x_2x_3x_7x_9 \oplus x_2x_3x_6x_8x_9 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_6x_8x_9 \oplus x_2x_3x_6x_8x_9 \oplus x_2x_3x_6x_8x_9 \oplus x_2x_3x_6x_8x_9 \oplus x_2x_3x_6x_8x_9 \oplus x_2x_3x_6x_9 \oplus x_2x_6x_6x_9 \oplus x_2x_6x_6x_9 \oplus x_2x_6x_9 
   649
                                                                                     650
   651
                                                                                  x_2x_4x_5x_7 \oplus x_2x_4x_5x_7x_8 \oplus x_2x_4x_5x_7x_8x_9 \oplus x_2x_4x_5x_8x_9 \oplus x_2x_4x_5x_9 \oplus x_2x_4x_6 \oplus x_2x_4x_6x_7x_8 \oplus x_2x_4x_6x_7x_9 \oplus x_2x_4x_5x_7x_8 \oplus x_2x_5x_7x_8 \oplus x_2x_7x_8 \oplus x_2x_7x_8 \oplus x_2x_7x_8 \oplus x_2x_7x_8 \oplus x_2x_7x_8 \oplus x_2x_7x_8 
                                                                                     x_2x_4x_6x_8 \oplus x_2x_4x_6x_8x_9 \oplus x_2x_4x_7 \oplus x_2x_4x_7x_8x_9 \oplus x_2x_4x_7x_9 \oplus x_2x_4x_8 \oplus x_2x_4x_9 \oplus x_2x_5 \oplus x_2x_5x_6 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6 \oplus x_2x_6 
   652
                                                                                  x_2x_5x_6x_7x_8 \oplus x_2x_5x_6x_7x_8x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_7x_8 \oplus x_2x_5x_7x_9 \oplus x_2x_5x_8 \oplus x_2x_5x_8x_9 \oplus x_2x_6x_7 \oplus x_2x_5x_6x_9 \oplus x
   653
                                                                                  x_2x_6x_7x_8x_9 \oplus x_2x_6x_7x_9 \oplus x_2x_6x_8 \oplus x_2x_6x_9 \oplus x_2x_7 \oplus x_2x_7x_8 \oplus x_2x_7x_8x_9 \oplus x_2x_8x_9 \oplus x_2x_9 \oplus x_3x_4 \oplus x_3x_4x_5x_6 \oplus x_3x_5x_6 \oplus x_3x_6 \oplus x_5x_6 
   654
                                                                                  x_3x_4x_5x_6x_7x_8 \oplus x_3x_4x_5x_6x_7x_9 \oplus x_3x_4x_5x_6x_8 \oplus x_3x_4x_5x_6x_8x_9 \oplus x_3x_4x_5x_7 \oplus x_3x_4x_5x_7x_8x_9 \oplus x_3x_4x_5x_7x_9 \oplus x_3x_5x_7x_9 \oplus x_5x_7x_9 \oplus x_5x
   655
                                                                                  656
                                                                                  x_3x_4x_7x_9 \oplus x_3x_4x_8 \oplus x_3x_4x_8x_9 \oplus x_3x_5 \oplus x_3x_5x_6x_7 \oplus x_3x_5x_6x_7x_8x_9 \oplus x_3x_5x_6x_7x_9 \oplus x_3x_5x_6x_8 \oplus x_3x_5x_6x_9 \oplus x_3x_5x_6x_8 \oplus x_3x_5x_6x_9 \oplus x_3x_5x_6x_8 \oplus x_3x_5x_6x_9 \oplus x_3x_5x_6x_8 \oplus x_5x_6x_8 \oplus x_5x_6x
   657
                                                                                  x_{3}x_{5}x_{7} \oplus x_{3}x_{5}x_{7}x_{8} \oplus x_{3}x_{5}x_{7}x_{8}x_{9} \oplus x_{3}x_{5}x_{8}x_{9} \oplus x_{3}x_{5}x_{9} \oplus x_{3}x_{6} \oplus x_{3}x_{6}x_{7}x_{8} \oplus x_{3}x_{6}x_{7}x_{9} \oplus x_{3}x_{6}x_{8} \oplus x_{3}x_{6}x_{8} \oplus x_{9} \oplus x_{1}x_{1}x_{1}x_{2} \oplus x_{1}x_{1}x_{2} \oplus x_{1}x_{1}x_{2} \oplus x_{1}x_{1}x_{2} \oplus x_{1}x_{2} \oplus x_{2}x_{2} \oplus x_{3}x_{2} \oplus x_{2}x_{2} \oplus x_{3}x_{2} \oplus
   658
                                                                                  x_3x_7 \oplus x_3x_7x_8x_9 \oplus x_3x_7x_9 \oplus x_3x_8 \oplus x_3x_9 \oplus x_4 \oplus x_4x_5 \oplus x_4x_5x_6 \oplus x_4x_5x_6x_7 \oplus x_4x_5x_6x_7x_8 \oplus x_4x_5x_6x_7x_8x_9 \oplus x_5x_6x_7x_8x_9 \oplus x_5x_6x_7x_8 \oplus x
   659
                                                                                  x_4x_5x_6x_8x_9 \oplus x_4x_5x_6x_9 \oplus x_4x_5x_7x_8 \oplus x_4x_5x_7x_9 \oplus x_4x_5x_8 \oplus x_4x_5x_8x_9 \oplus x_4x_6x_7 \oplus x_4x_6x_7x_8x_9 \oplus x_4x_6x_7x_9 \oplus x_4x_6x_7x_8 \oplus x_4x_5x_8x_9 \oplus x_4x_6x_7x_8 \oplus x_4x_5x_8x_9 \oplus x_4x_6x_7x_8 \oplus x_4x_5x_8x_9 \oplus x_4x_6x_7x_8 \oplus x_4x_5x_8x_9 \oplus x_4x_6x_7 \oplus x_4x_6x_7x_8 \oplus x_4x_5x_8x_9 \oplus x_5x_8x_9 \oplus x_5x_9 \oplus x_5x
   660
                                                                                     x_{4}x_{6}x_{8} \oplus x_{4}x_{6}x_{9} \oplus x_{4}x_{7} \oplus x_{4}x_{7}x_{8} \oplus x_{4}x_{7}x_{8}x_{9} \oplus x_{4}x_{8}x_{9} \oplus x_{4}x_{9} \oplus x_{5}x_{6} \oplus x_{5}x_{6}x_{7}x_{8} \oplus x_{5}x_{6}x_{7}x_{9} \oplus x_{5}x_{6}x_{8} \oplus x_{6}x_{7}x_{9} \oplus x_{7}x_{7}x_{9} \oplus x_{7}x_{7}x_{9} \oplus x_{7}x_{7}x_{9} \oplus x_{7}x_{7}x_{9} \oplus x_{7}x_{7}x_{9} \oplus x_{7}x_{7}x_{7} \oplus x_{7}x_{7} 
                                                                                  x_5x_6x_8x_9 \oplus x_5x_7 \oplus x_5x_7x_8x_9 \oplus x_5x_7x_9 \oplus x_5x_8 \oplus x_5x_9 \oplus x_6 \oplus x_6x_7 \oplus x_6x_7x_8 \oplus x_6x_7x_8 \oplus x_6x_7 \oplus x_6x_9 \oplus x
   662
   663
                                                                                  x_7x_8 \oplus x_7x_9 \oplus x_8 \oplus x_8x_9 = 0
```

Author Contributions.

665 Competing Interests.

666 Materials & Correspondence.

667 References

- Yakir Aharonov and Lev Vaidman. "The Two-State Vector Formalism: An Updated Review". In: *Time in Quantum Mechanics*. Ed. by J.G. Muga, R. Sala Mayato, and Í.L. Egusquiza. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 399–447.
- [2] Stephen M. Barnett, John Jeffers, and David T. Pegg. "Quantum Retrodiction: Foundations and Controversies". In: Symmetry 13.4 (2021).
- [3] Natalia Tokareva. "Chapter 1 Boolean Functions". In: Bent Functions. Ed. by Natalia Tokareva.
 Boston: Academic Press, 2015, pp. 1–15.
- [4] Satosi Watanabe. "Symmetry of Physical Laws. Part III. Prediction and Retrodiction". In: Rev. Mod.
 Phys. 27 (2 Apr. 1955), pp. 179–186.