FINITE ELEMENTS IN ENGINEERING (MAE 598)

PROJECT 1 REPORT

Prof. Jay Oswald

SUBMITTED BY

Varun Agrawal

(1215318065)

	P(m+pr) - P(v) + F = Dr g Acotrom P + load, for very small element, Ar = 0,				
	=> P(x+AI) = EA dw for merch				
	of the second of				
	& P(r) = EAdu for our com				
not the	MEN IN HOLL AND SO WOLL				
	F = MAR w2 (Body force)				
49.0	2 A (2) - 7 driver - 7				
FW SNIE	=> d(EA du) = - SAw2 r dr				
	order der har boneste en souret				
701 10	time sent				
	Boundary Conditions:				
	. It departs interest subsistent a				
(1)	E de =0 [No torce at tree end]				
	(of 1 = 2) (of 1) He deligh				
	x0301 - 021-6 .				
(11)	u(a) so asplacement at fined point				
	1021 + 50201 = 7 30				
(117)					
	EA dy - F (Timp property)				
	Here, f= Mrm wo2				
(0000)8.	1095 placement at m on both stales is equal.				
(10)	u(rmt) = u(rm)				
	u('m') = u('m')				
THE RESERVE OF THE PERSON NAMED IN					

Scanned with CamScanner

Analytical Solution

```
(*dudr1 = strain from r = 0 to rm, dudr2 = strain from r = rm to R*)
  \ln[2]:= dudr1 = \frac{1}{VM \cdot A} \left( Integrate \left[ -rho * A * w^2 * r, r \right] + c1 \right);
                dudr2 = \frac{1}{VM + A} (Integrate[-rho * A * w<sup>2</sup> * r, r] + c2);
                  (*T is the given variation of temperature in the rod,
                YM is the given young's modulus varying through the rod*)
   ln[4]:= T = T0 + dTdr * r;
                YM = Y0 + dYdT * T;
                  (*u1 is the displacement from r = 0 to rm, u2 is the displacement from r = rm to R*)
                u1 = Integrate[dudr1, r] + c3;
                u2 = Integrate[dudr2, r] + c4;
                  (*boundary conditions*)
   ln[8] = bc1 = (u1 / . r \rightarrow 0) = 0;
                bc2 = (dudr2 /. r \rightarrow R) == 0;
                bc3 = (u1/.r \rightarrow rm) = (u2/.r \rightarrow rm);
                bc4 = (YM * A * dudr1 / . r \rightarrow rm) = (YM * A * dudr2 / . r \rightarrow rm) + M * rm * w<sup>2</sup>;
                  (*Solving for constants c1, c2, c3, c4 using boundary conditions*)
                 soln = Simplify[Solve[bc1&& bc2&& bc3&& bc4, {c1, c2, c3, c4}][[1]]];
                  (* R = Radius of rod, rm = radius at which collar is attached to the rod,
                w = angular velocity of rod, rho = density of rod,
                A = cross-sectional area of rod, M = mass of collar*)
                  (*value of the parameters*)
log[13] = param = \{T0 \rightarrow 150, dTdr \rightarrow 1050, Y0 \rightarrow 201.5 * 10^9, dYdT \rightarrow -0.056 * 10^9, dYd
                           R \rightarrow 1, rm \rightarrow 0.25, w \rightarrow 2000 * 2 * \frac{\pi}{60}, rho \rightarrow 8200, A \rightarrow 0.01<sup>2</sup> * \frac{\pi}{4}, M \rightarrow 10};
                  (*displacement in the rod or the displacement field*)
ln[14]:= u = Piecewise[{\{u1, r < rm\}}, u2] /. soln /. param;
                 (*Plot of the displacement field*)
```

```
ln[15]:= Plot[u, {r, 0, 1}, PlotLabel \rightarrow "Displacement Field",
       AxesLabel → {"Nodal Distance", "Displacement"}]
                         Displacement Field
       Displacement
      0.0025
      0.0020
Out[15]= 0.0015
      0.0010
      0.0005
                                                      1.0 Nodal Distance
                   0.2
                            0.4
                                     0.6
                                              8.0
       (*Strain in the rod or the strain field*)
In[16]:= strain = Piecewise[{{dudr1, r < rm}}, dudr2] /. soln /. param;</pre>
       (*Plot of the strain field*)
ln[17]:= Plot[strain, {r, 0, 1}, PlotLabel \rightarrow "Strain Field",
       AxesLabel → {"Nodal Distance", "Strain"}]
                            Strain Field
        Strain
      0.008
      0.006
Out[17]=
      0.004
      0.002
                                                      Nodal Distance
                           0.4
                                    0.6
                                             0.8
       (*defining stress with the varying r*)
```

```
In[18]:= stress1 = dudr1 * YM;
In[19]:= stress2 = dudr2 * YM;
          (*Stress in the rod*)
In[20]:= stress = Piecewise[{{stress1, r < rm}}, stress2] /. soln /. param;
          (*Plot of stress*)</pre>
```

ln[21]:= Plot[stress, {r, 0, 1}, PlotLabel \rightarrow "Stress Field", AxesLabel → {"Nodal Distance", "Stress"}]

Displacement and Strain Field for Analytical, MATLAB, and ABAQUS on same plot for 20 linear elements

Figure 1

Figure 2

Displacement and Strain Field for Analytical, MATLAB, and ABAQUS on same plot for 20 quadratic elements

Figure 3

Figure 4

Displacement field for 4 Linear Elements

Strain field for 4 Linear Elements

Displacement field for 20 Linear Elements

Strain field for 20 Linear Elements

Displacement field for 4 Quadratic Elements

Strain field for 4 Quadratic Elements

Displacement field for 8 Quadratic Elements

Strain field for 8 Quadratic Elements

Displacement field for 1 Cubic Element

Strain field for 1 Cubic Element

Displacement field for 4 Cubic Elements

Strain field for 4 Cubic Elements

ASSEMBLY TIME (in seconds) COMPARISON (for 1000 elements)

TYPE OF ELEMENT	FULL STORAGE	SPARSE STORAGE
Linear	0.2091	1.1933
Quadratic	0.0860	0.1249
Cubic	0.0837	0.0850

SOLVING TIME (in seconds) COMPARISON (for 1000 elements)

TYPE OF ELEMENT	FULL STORAGE	SPARSE STORAGE
Linear	0.1778	0.2400
Quadratic	0.3406	0.0016
Cubic	0.9477	5.9641*10^-4

ERROR NORM PLOTS FOR LINEAR ELEMENTS

ERROR NORM PLOTS FOR QUADRATIC ELEMENTS

MATLAB CODE

```
clc
clear
close all
% Given parameters, in SI units
A = (pi/4)*0.01^2: %Area of the rod, diameter of the rod = 0.01m
rho = 8200; %density of rod material, kg/m^3
w = 2000*2*pi/60; %angular velocity of the rod, rad/s
M = 10; %mass of the collar attached to the rod, kg
L = 1; %Length of the rod, m
% Code to approximate the stress and displacement in the rod
etype = 'linear';
r = 0;
for ne = 20
  r = r + 1;
  size(r) = 1/ne;
if strcmp(etype, 'linear')
  nn = ne + 1:
  mesh.conn = [1:ne; 2:nn];
  qpts = [1/sqrt(3), -1/sqrt(3); 1, 1];
  shape = @shape2;
elseif strcmp(etype, 'quadratic')
  nn = 2*ne + 1;
  mesh.conn = [1:2:nn-2; 2:2:nn-1; 3:2:nn];
  %Integration points
  z1 = sqrt(3/7-2/7*(sqrt(6/5)));
  z2 = sqrt(3/7+2/7*(sqrt(6/5)));
  %weights
  w1 = (18 + sqrt(30))/36;
  w2 = (18-sqrt(30))/36;
  qpts=[-z2,-z1,z1,z2; w2,w1,w1,w2];
  shape = @shape3;
elseif strcmp(etype, 'cubic')
  nn = 3*ne + 1:
  mesh.conn = [1:3:nn-3; 2:3:nn-2; 3:3:nn-1; 4:3:nn];
  %Integration points
  z1 = sqrt(3/7-2/7*(sqrt(6/5)));
  z2 = sqrt(3/7+2/7*(sqrt(6/5)));
```

```
%weights
  w1 = (18 + sqrt(30))/36;
  w2 = (18-sqrt(30))/36;
  qpts=[-z2,-z1,z1,z2; w2,w1,w1,w2];
  shape = @shape4;
end
%Radius matrix with number of nodes
rad = zeros(1, nn);
%Temperature matrix, T = 150 degree C at r = 0 and T = 1200 degree C at L=1
T = zeros(1, nn);
%Modulus of Elasticity matrix
YM = zeros(1, nn);
%Defining value of radius for every element
for i = 2:nn
  rad(1,1) = 0;
  rad(1,i) = rad(1, i-1) + L/(nn-1);
end
%Temperature and Modulus of elasticity at every node
for i = 1:nn
  T(1,i) = 1050*rad(1,i) + 150; %varying linearly along the rod
  YM(1,i) = (-0.056*T(1,i) + 201.5) * 10^9; %given Young's Modulus varying with
temperature. MPa
end
x = linspace(0,1,nn);
tic()
K = zeros(nn); %stiffness matrix
F= zeros(nn,1); %force matrix
for c = mesh.conn
  xe = x(:,c);
  Ke = zeros(length(c));
  %Fe = zeros(length(c));
  for q = qpts
    [N, dNdp] = shape(q(1));
    J = xe*dNdp;
    YMv = YM(c)*N;
    dNdx = dNdp/J;
    Ke = Ke + dNdx*YMv*A*dNdx'*J*q(2);
    b = rho^*A^*(xe^*N)^*w^2; %body force per unit length on the rod
```

```
Fe = N^*b^*J^*q(2); %Elemental force
     F(c) = F(c) + Fe;
  end
  K(c,c) = K(c,c) + Ke;
assemblytime=toc();
%for the cubic element at 0.25
Fn = xe(length(xe));
p = -0.5;
[N,dNdp]=shape4(p);
if ((xe(1)<0.25)&&(Fn>0.25))
  F(c)=F(c)+N*M*w^2*0.25;
end
Rm = find(x==0.25); %Rm = radius at which collar is attached
F(Rm) = F(Rm) + M*0.25*w^2;
%At the fixed end of the rod
fixed = 1;
K(:,fixed) = 0;
K(fixed,:) = 0;
K(fixed, fixed) = eye(length(fixed));
F(1,1) = 0;
%Displacement in the rod
tic()
d = K \setminus F:
solvingtime=toc();
%for the coordinates in parent coordinate system
xp = [];
%for the displacement in parent coordinate system
dispp = [];
%for the strain in parent coordinate system
strainp = [];
for c = mesh.conn
  de = d(c)';
  xe = x(c);
  for ep = linspace(-1,1,100)
     [N,dNdp] = shape(ep);
     J = xe*dNdp;
     dNdx = dNdp/J;
```

```
xp(end+1) = xe*N;
    dispp(end+1) = de*N;
    strainp(end+1) = de*dNdx;
  end
end
%Plot of displacement field
figure(1)
plot(xp,dispp)
title('Displacement field for 4 Cubic Elements')
xlabel('Nodal Distance(m)'); ylabel('Displacement(m)');
%Plot of strain field
figure(2)
plot(xp,strainp)
title('Strain field for 4 Cubic Element')
xlabel('Nodal Distance(m)'); ylabel('Strain');
%Code for displacement error norm and energy error norm
eL2num=0:
eL2den=0:
eennum=0;
eenden=0;
for c=mesh.conn
  xe=x(:,c);
  fe=d(c,1)';
  for q=qpts
    [N,dNdp]=shape(q(1));
    J=xe*dNdp;
    fh=fe*N:
    eL2num = eL2num + ((u(xe*N)-fh))^2*J*q(2);
    eL2den = eL2den + (u(xe*N))^2*J*q(2);
     dNdx=dNdp/J;
     dfh=fe*dNdx:
     eennum = eennum + ((du(xe^*N)-dfh))^2 J^*q(2);
     eenden = eenden + (du(xe^*N))^2 J^*q(2);
  end
end
e1(r) = sqrt(eL2num/eL2den);
e2(r) = sqrt(eennum/eenden);
end
```

```
%log-log plot for L2 displacement error norm v/s element size
figure(3)
plot(log(size), log(e1))
title('L2 Displacement Error Norm for Quadratic Elements')
xlabel('Log of Element size'); ylabel('Log of Displacement Error Norm');
%log-log plot for energy error norm v/s element size
figure(4)
plot(log(size), log(e2))
title('Energy Error Norm for Quadratic Elements')
xlabel('Log of Element size'); ylabel('Log of Energy Error Norm');
%Displacement and strain field plots of Analystical, MATLAB, and ABAQUS on
%same plot
i=1;
for r=0:0.01:1
exactx(i)=r;
  exactu(i)=u(r);
  exacts(i)=du(r);
  i=i+1;
end
%Plot of displacement field
load('abaqusu')
figure(5)
plot(xp(1:25:end), dispp(1:25:end), '-o', exactx, exactu, abaqusx, abaqusu)
title('Comparision with exact displacement');
xlabel('Nodal Distance(m)'); ylabel('Displacement(m)');
legend('MATLAB', 'Analytical', 'ABAQUS');
%Plot of strain field
load('abastrain')
figure(6)
plot(xp(1:100:end), strainp(1:100:end), '-o', exactx, exacts, abaSX, abaSS)
title('Comparision with exact strain');
xlabel('Nodal Distance(m)'); ylabel('Strain');
legend('MATLAB', 'Analytical', 'ABAQUS');
```

```
%Linear Shape Function
function [N, dNdp] = shape2(p)
N = [(1-p)/2; (1+p)/2];
dNdp = [-1/2; 1/2];
end
%Quadratic Shape Function
function [N, dNdp] = shape3(p)
N = [p^{*}(p-1)/2; (p+1)^{*}(1-p); p^{*}(p+1)/2];
dNdp = [(2*p-1)/2; -2*p; (2*p+1)/2];
end
%Cubic Shape Function
function [N, dNdp] = shape4(p)
N = \frac{(3*p+1)*(3*p-1)*(p-1)/(-16)}{(9)*(p+1)*(3*p-1)*(p-1)/16} \cdot \frac{(9)*(p+1)*(3*p+1)*(p-1)}{(9)*(p+1)*(3*p+1)*(p-1)/16} \cdot \frac{(9)*(p+1)*(3*p+1)*(p-1)/(-16)}{(9)*(p+1)*(3*p-1)*(p-1)/(-16)} \cdot \frac{(9)*(p+1)*(3*p-1)*(p-1)/(-16)}{(9)*(p+1)*(3*p-1)*(p-1)/(-16)} \cdot \frac{(9)*(p+1)*(3*p-1)*(p-1)/(-16)}{(9)*(p+1)*(3*p-1)*(p-1)/(-16)} \cdot \frac{(9)*(p+1)*(3*p-1)*(p-1)/(-16)}{(9)*(p+1)*(3*p-1)*(p-1)/(-16)} \cdot \frac{(9)*(p+1)*(3*p-1)*(p-1)/(-16)}{(9)*(p+1)*(3*p-1)*(p-1)/(-16)} \cdot \frac{(9)*(p+1)*(3*p-1)}{(9)*(p+1)*(3*p-1)} \cdot \frac{(9)*(p+1)*(3*p-1)}{(9)*(p+1)*(3*p-1)
 1)/(-16); (3*p+1)*(3*p-1)*(p+1)/(16)];
dNdp = [(27*p^2-18*p-1)/(-16); (9/16)*(9*p^2-2*p-3); (-9/16)*(9*p^2+2*p-3);
(27*p^2+18*p-1)/(16)];
end
%Displacement Function
          function [ur] = u(r)
                      A = (pi/4)*0.01^2; rho = 8200; w = 2000*2*pi/60;
                      dTdr = 1050; T0 = 150; Y0 = 201.5*10^9; dYdT = -0.056*10^9; rm = 0.25; R
= 1; %rm and R in metres
                     if r < = 0.25
                                 ur=-0.16064110451297722+(A*dTdr*dYdT*r*(-
(dTdr^*dYdT^*r)+2^*(dYdT^*T0+Y0))^*rho^*w^2-2^*(-
247574.7054440367*dTdr^2*dYdT^2+A*(dYdT*T0+Y0)^2*rho*w^2)*log(dTdr*dY
dT*r+dYdT*T0+Y0))/(4*A*dTdr^3*dYdT^3);
                                 ur = -0.7758350930553184 + (A*dTdr*dYdT*r*(-(dTdr*dYdT*r) + Cartesian - Cart
2*(dYdT*T0+Y0))*rho*w^2-2*(-
28250.1631976065*dTdr^2*dYdT^2+A*(dYdT*T0+Y0)^2*rho*w^2)*log(dTdr*dYd
T*r+dYdT*T0+Y0))/(4*A*dTdr^3*dYdT^3);
                      end
           end
%Strain Function
           function [dur] = du(r)
                      A = (pi/4)*0.01^2; rho = 8200; w = 2000*2*pi/60; M = 10;
```

```
dTdr = 1050; \ T0 = 150; \ Y0 = 201.5*10^9; \ dYdT = -0.056*10^9; \ rm = 0.25; \ R = 1; \\ if \ r <= 0.25 \\ dur = (-(A*r^2*rho*w^2)/2 + ((2*M*rm + A*R^2*rho)*w^2)/2)/(A*(dYdT*(dTdr*r + T0) + Y0)); \\ else \\ dur = (-(A*r^2*rho*w^2)/2 + (A*R^2*rho*w^2)/2)/(A*(dYdT*(dTdr*r + T0) + Y0)); \\ end \\ end
```

MATLAB CODE FOR CALCULATING ASSEMBLY AND SOLVING TIME

```
clc
clear
close all
% Given parameters, in SI units
A = (pi/4)*0.01^2; %Area of the rod, diameter of the rod = 0.01m
rho = 8200; %density of rod material, kg/m^3
w = 2000*2*pi/60; %angular velocity of the rod, rad/s
M = 10; %mass of the collar attached to the rod, kg
L = 1; %Length of the rod, m
elementtype=["linear" "quadratic" "cubic"]
% Code to approximate the stress and displacement in the rod
r = 0:
for k1=1:2
for eno=1:3
for ne = 1000
etype = elementtype(eno);
  r = r+1;
  size(r) = 1/ne;
if strcmp(etype, 'linear')
  nn = ne + 1;
  mesh.conn = [1:ne; 2:nn];
  qpts = [1/sqrt(3), -1/sqrt(3); 1, 1];
  shape = @shape2;
elseif strcmp(etype, 'quadratic')
```

```
nn = 2*ne + 1:
  mesh.conn = [1:2:nn-2; 2:2:nn-1; 3:2:nn];
  %Integration points
  z1 = sqrt(3/7-2/7*(sqrt(6/5)));
  z2 = sqrt(3/7+2/7*(sqrt(6/5)));
  %weights
  w1 = (18 + sqrt(30))/36;
  w2 = (18-sqrt(30))/36;
  qpts=[-z2,-z1,z1,z2; w2,w1,w1,w2];
  shape = @shape3;
elseif strcmp(etype, 'cubic')
  nn = 3*ne + 1;
  mesh.conn = [1:3:nn-3; 2:3:nn-2; 3:3:nn-1; 4:3:nn];
  %Integration points
  z1 = sqrt(3/7-2/7*(sqrt(6/5)));
  z2 = sqrt(3/7+2/7*(sqrt(6/5)));
  %weights
  w1 = (18 + sqrt(30))/36;
  w2 = (18-sqrt(30))/36;
  qpts=[-z2,-z1,z1,z2; w2,w1,w1,w2];
  shape = @shape4;
end
%Radius matrix with number of nodes
rad = zeros(1, nn);
%Temperature matrix, T = 150 degree C at r = 0 and T = 1200 degree C at L=1
T = zeros(1, nn);
%Modulus of Elasticity matrix
YM = zeros(1, nn);
%Defining value of radius for every element
for i = 2:nn
  rad(1,1) = 0;
  rad(1,i) = rad(1, i-1) + L/(nn-1);
end
%Temperature and Modulus of elasticity at every node
for i = 1:nn
  T(1,i) = 1050*rad(1,i) + 150; %varying linearly along the rod
  YM(1,i) = (-0.056*T(1,i) + 201.5) * 10^9; %given Young's Modulus varying with
temperature, MPa
end
```

```
x = linspace(0,1,nn);
tic()
if k1 = = 1
K = zeros(nn); %stiffness matrix
else
K = spalloc(nn,nn,5*nn); %stiffness matrix bolo tararararaaa
end
F= zeros(nn,1); %force matrix
for c = mesh.conn
  xe = x(:,c);
  Ke = zeros(length(c));
  %Fe = zeros(length(c));
  for q = qpts
     [N, dNdp] = shape(q(1));
     J = xe*dNdp;
     YMv = YM(c)*N;
     dNdx = dNdp/J;
     Ke = Ke + dNdx*YMv*A*dNdx'*J*q(2);
     b = rho^*A^*(xe^*N)^*w^2; %body force per unit length on the rod
     Fe = N^*b^*J^*q(2); %Elemental force
     F(c) = F(c) + Fe;
  end
  K(c,c) = K(c,c) + Ke;
end
asmblytime=toc();
%for the cubic element at 0.25
Fn = xe(length(xe));
p = -0.5;
[N,dNdp]=shape4(p);
if ((xe(1)<0.25)&&(Fn>0.25))
  F(c)=F(c)+N*M*w^2*0.25;
end
Rm = find(x==0.25); %Rm = radius at which collar is attached
F(Rm) = F(Rm) + M*0.25*w^2;
%At the fixed end of the rod
fixed = 1:
K(:,fixed) = 0;
K(fixed,:) = 0;
```

```
K(fixed, fixed) = eye(length(fixed));
F(1,1) = 0;
%Displacement in the rod
tic()
d = K \setminus F;
slvngtime=toc();
%for the coordinates in parent coordinate system
xp = [];
%for the displacement in parent coordinate system
dispp = [];
%for the strain in parent coordinate system
strainp = [];
for c = mesh.conn
  de = d(c)';
  xe = x(c);
  for ep = linspace(-1,1,100)
     [N,dNdp] = shape(ep);
     J = xe*dNdp;
     dNdx = dNdp/J;
     xp(end+1) = xe*N;
     dispp(end+1) = de*N;
     strainp(end+1) = de*dNdx;
  end
end
AssemblyTime(eno,k1)=asmblytime;
SolvingTime(eno,k1)=slvngtime;
end
end
end
%Linear Shape Function
function [N, dNdp] = shape2(p)
N = [(1-p)/2; (1+p)/2];
dNdp = [-1/2; 1/2];
end
%Quadratic Shape Function
function [N, dNdp] = shape3(p)
N = [p^*(p-1)/2; (p+1)^*(1-p); p^*(p+1)/2];
```

```
dNdp = [(2*p-1)/2; -2*p; (2*p+1)/2];
end
%Cubic Shape Function
function [N, dNdp] = shape4(p)
N = [(3*p+1)*(3*p-1)*(p-1)/(-16); (9)*(p+1)*(3*p-1)*(p-1)/16; (9)*(p+1)*(3*p+1)*(p-1)/16; (9)*(p+1)*(p-1)/16; (9)*(p-1)/16; (9)*(p
 1)/(-16); (3*p+1)*(3*p-1)*(p+1)/(16)];
dNdp = [(27*p^2-18*p-1)/(-16); (9/16)*(9*p^2-2*p-3); (-9/16)*(9*p^2+2*p-3);
(27*p^2+18*p-1)/(16)];
end
%Displacement Function
          function [ur] = u(r)
                    A = (pi/4)*0.01^2; rho = 8200; w = 2000*2*pi/60;
                    dTdr = 1050; T0 = 150; Y0 = 201.5*10^9; dYdT = -0.056*10^9; rm = 0.25; R
= 1; %rm and R in metres
                    if r < = 0.25
                              ur=-0.16064110451297722+(A*dTdr*dYdT*r*(-
(dTdr^*dYdT^*r)+2^*(dYdT^*T0+Y0))^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*rho^*w^2-2^*(-1)^*(-1)^*rho^*w^2-2^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^*(-1)^
247574.7054440367*dTdr^2*dYdT^2+A*(dYdT*T0+Y0)^2*rho*w^2)*log(dTdr*dY
dT*r+dYdT*T0+Y0))/(4*A*dTdr^3*dYdT^3);
                             ur=-0.7758350930553184+(A*dTdr*dYdT*r*(-(dTdr*dYdT*r)+
2*(dYdT*T0+Y0))*rho*w^2-2*(-
28250.1631976065*dTdr^2*dYdT^2+A*(dYdT*T0+Y0)^2*rho*w^2)*log(dTdr*dYd
T*r+dYdT*T0+Y0)/(4*A*dTdr^3*dYdT^3);
                    end
          end
%Strain Function
          function [dur] = du(r)
                    A = (pi/4)*0.01^2; rho = 8200; w = 2000*2*pi/60; M = 10;
                    dTdr = 1050: T0 = 150: Y0 = 201.5*10^9: dYdT = -0.056*10^9: rm = 0.25: R
= 1;
                    if r < = 0.25
                             dur=(-
(A*r^2*rho*w^2)/2+((2*M*rm+A*R^2*rho)*w^2)/2)/(A*(dYdT*(dTdr*r+T0)+Y0));
                    else
                             dur=(-(A*r^2*rho*w^2)/2+(A*R^2*rho*w^2)/2)/(A*(dYdT*(dTdr*r+T0)+Y0));
                    end
          end
```

Procedure for an approximate solution using ABAQUS

1. A 1D truss component of 1m length was created with Wire as a base feature.

- 2. The component was given the density of 8200 kg/m^3 (nickel-based, super-alloy) and the temperature dependent Modulus of elasticity.
 - $E = 193.1 \text{ GPa at } 150^{\circ}\text{C} \text{ and } E = 134.3 \text{ GPa at } 1200^{\circ}\text{C}$
- 3. Truss section with the cross-section area = $7.85398 \times 10^{-5} \text{ m}^2$ (diameter = 0.01 m).
- 4. Mesh size was given as 0.05m.

Meshing using Linear Elements

Meshing using Quadratic Elements

5. A set was created at 0.25m for applying the concentrated load due to the 10 kg collar attached to the rod.

Red Arrow Indicating Concentrated Force

6. The rod was fixed from one end and given the angular velocity of 209.44 rad/s with z-axis as axis of rotation.

Red Arrows indicating Rotational Body Force

7. A predefined field was created to vary the temperature and modulus of elasticity with the radius of the rod.

Predefined Field

8. Pinned support was used at one end of the rod.

Results


```
Y
ODB: Job-16.odb Abaqus/Standard Student Edition 2018 Wed Mar 13 18:54:23 US Mountain Standard Time 2019
X Step: Step-1
Increment 1: Step Time = 1.000
Primary Var: U, Magnitude
```

Displacement using Linear Elements

Displacement Field for Linear Elements

Strain using Linear Elements

Strain Field for Linear Elements


```
ODB: Job-18.odb Abaqus/Standard Student Edition 2018 Wed Mar 13 19:38:35 US Mountain Standard Time 2019

X Step: Step-1
Increment 1: Step Time = 1.000
Primary Var: U, Magnitude
```

Displacement using Quadratic Elements

Displacement Field for Quadratic Elements


```
ODB: Job-18.odb Abaqus/Standard Student Edition 2018 Wed Mar 13 19:38:35 US Mountain Standard Time 2019

X Step: Step-1
Increment 1: Step Time = 1.000
Primary Var: E, Max. In-Plane Principal (Abs)
```

Strain using Quadratic Elements

Strain Field using Quadratic Elements