Analysis and Prediction of Patient-Hospital Experience in US Medicare Hospitals

HANIEH MIRZAEE

Roadmap

- Problem at hand
- Who cares?
- Project Data
- Data Curation and Wrangling
- Exploratory Data Analysis
- Predictive Modeling
- Conclusion and Remarks

Problem at Hand Medicare.gov Hospital Compare

- Hospital Compare a consumer oriented website
 - Provides information on the hospitals quality of care
 - Helps patients make informed decision on their healthcare plans
- **Consumers can select hospitals and compare performance measures**
- Medicare additionally provides patient satisfaction 5-star ratings based on patient surveys

Problem at Hand

* Hospitals must have at least 100 completed surveys before they can be assigned a rating

Questions:

Is there a relationship between survey ratings and hospital characteristics?

Can we somehow **predict these ratings** with confidence without

performing the surveys?

Who Cares?

Consumers of the hospital Compare Website

• It would be valuable for the consumer to be able to query the website for such survey results

Medicare

They'd need this information to estimate the payments to hospitals

* Hospital owners and local county governments

- They'd need this information to estimate the Medicare reimbursements
- Can exploit the information to improve the quality of care

Project Data

- Hospital Compare Datasets
 - Flat files downloadable in .zip format

Ambulatory Surgical Measures-Facility.csv Ambulatory Surgical Measures-National.csv Ambulatory Surgical Measures-State.csv Complications and Deaths - Hospital.csv Complications and Deaths - National.csv Complications and Deaths - State.csv FINAL CJR Quality PR - PY1 File Values_October.csv Footnote Crosswalk.csv FY2015_Distribution_of_Net_Change_in_Base_Op_DRG_Payment_Amt.csv FY2015_Net_Change_in_Base_Op_DRG_Payment_Amt.csv FY2015_Percent_Change_in_Medicare_Payments.csv FY2015 Value Based Incentive Payment Amount.csv HBIPS Oct2017 19SEP.csv HCAHPS - Hospital.csv IN HCAHPS - National.csv HCAHPS - State.csv Healthcare Associated Infections - Hospital.csv Healthcare Associated Infections - National.csv Healthcare Associated Infections - State.csv | Hospital General Information.csv | Hospital Returns - Hospital.csv | Hospital Returns - National.csv

| Hospital Returns - State.csv

Project Data

67 .csv files with around 100 hospital characteristics (measures)

Data Curation and Wrangling

- Only hospital-level flat files were selected for further analysis:
 - 1. Hospital General Informations.csv
 - 2. HCAHPS Hospital.csv \rightarrow contains the patient survey information
 - 3. Complications and Deaths- Hospital.csv
 - 4. Healthcare associated infections- Hospital.csv
 - 5. Medicare Hospital Spending per Patient.csv
 - 6. Outpatient Imaging Efficiency- Hospital.csv
 - 7. Structural Measures- Hospital.csv
 - 8. Timely and Effective Care- Hospitals.csv

Data Curation and Wrangling

- Star rating distribution:
 - 1322 hospitals were removed since no rating was available
 - All hospital level measures were extracted and combined into one big flat file
 - Each row contains per hospital measures

3	1380
4	1335
Not Available	1322
2	525
5	195
1	55

Exploratory Data Analysis (EDA)

- ❖ Total of 3490 hospitals
 - Most hospitals have ratings 3 and 4
 - Average rating: 3.3

Number of Hospitals: 3490

3 0.395415

4 0.382521

2 0.150430

5 0.055874

1 0.015759

EDA: How are hospitals distributed in the US?

- * Texas (TX) and California (CA) with Most Hospitals
 - TX has more higher rated (4&5) hospitals than CA

Medicare hospitals distribution

EDA: What is the average rating per State?

Middle states towards north have generally a higher average rating

Mean star ratings by state

- Could this be related to population?
- Less populated states have better hospital ratings?

EDA: How is the national level measures related to star ratings?

- Generally better ranked hospitals performed better in ratings
- We observe a noticeable trend in Timeliness of care

Summary star rating

EDA: Some Interesting Measures

- Score should be interpreted according to the context
- When considering timerelated measures, a lower score is better
- ❖Again we observe higher rated hospitals are performing better

Predictive Modeling: Can we predict the ratings based on hospital measures?

- ❖3490 hospitals and 121 measures (after accounting for categorical measures)
- ❖ Test data constitutes 20% of the original data set (698 hospitals)
 - Ordinal and Logistic regression yield the best performance metrics

Model	Accuracy on Test data	Ave. Precision	Ave. Recall	Average f1-score	Model performance via nested CV
Ridge Classifier	54%	0.55	0.54	0.53	0.55 ± 0.017
SVC	55%	0.55	0.55	0.53	0.56 ± 0.022
Random Forest	55%	0.56	0.55	0.52	0.56 ± 0.018
SVM	58%	0.59	0.58	0.56	0.57 ± 0.02
KNN	53%	0.53	0.53	0.50	0.33 ± 0.023
Gradient Boosting	55%	0.57	0.55	0.53	0.56 ± 0.011
xgboost	57%	0.58	0.57	0.56	0.57 ± 0.016
Ordinal Regression	58%	0.61	0.58	0.57	0.60 ± 0025
Logistic Regression	58%	0.58	0.58	0.57	0.60 ± 0.022

Predictive Modeling: How would a dummy classifier perform?

❖ Accuracy on test data: 32%

accuracy:	0.3194842406876791				
		precision	recall	f1-score	support
	1	0.00	0.00	0.00	11
	2	0.13	0.17	0.15	105
	3	0.41	0.36	0.38	276
	4	0.40	0.40	0.40	267
	5	0.00	0.00	0.00	39
avg / tota	al	0.33	0.32	0.33	698

Predictive Modeling: Can we improve the class imbalance?

- As we suffer from huge class imbalance, how about combining the ratings?
 - Still class imbalance, but less dramatic

Summary star rating	Number of hospitals
1	55
2	525
3	1380
4	1335
5	195

❖ We consider the new ratings, as a notion of average (rate 2), above average (3), and below average (1) classification

Predictive Modeling: Performance using the combined ratings

- Similar and improved performance among the different algorithms
 - Logistic regression classifier still performs slightly better

Model	Accuracy on Test data	Model performance via nested CV	Average f1-score on the test data
SVM	61%	0.63 ± 0.020	0.61
Gradient Boosting	65%	0.62 ± 0.009	0.65
xgboost	62%	0.62 ± 0.009	0.61
Ordinal Regression	62%	0.62 ± 0.011	0.61
Logistic Regression	62%	0.63 ± 0.006	0.62

Predictive Modeling: What if we make up for class imbalance synthetically?

- SMOTE algorithm was used to upsample the underdamped classes
 - Average accuracy on 3 different test datasets is reported
 - Gradient Boosting performs slightly better

Model	seed=12	seed=20	seed=42	Average	
SVM	0.61	0.62	0.63		0.62
Gradient Boosting	0.64	0.62	0.65		0.64
Logistic Regression	0.61	0.62	0.62		0.62

Predictive Modeling: Are there particular hospital measures that are driving these results?

Predictive Modeling: Are there particular hospital measures that are driving these results?

- ❖ Top 10 measures with relative higher importance:
 - 1. HAI 1 SIR: Central line-associated blood stream infections in ICUs and select wards
 - 2. MSPB_1: Medicare spending per beneficiary
 - 3. EDAC_30_HF: Hospital return days for heart failure patients
 - 4. OP_20: Average time patients spent in the emergency department before they were seen by a healthcare professional
 - 5. OP 21: Average (median) time patients who came to the emergency department with broken bones had to wait before getting pain medication
 - 6. OP_5: Average (median) number of minutes before outpatients with chest pain or possible heart attack got an ECG
 - 7. MORT_30_PN: Death rate for pneumonia patients
 - 8. READM_30_PN: Rate of readmission for pneumonia patients
 - 9. EDAC_30_AMI: Hospital return days for heart attack patients
- 10. HAI_2_SIR: Catheter-associated urinary tract infections in ICUs and select wards
- * Infections, Medicare spending, Readmission, and Waiting times are noticeable

Predictive Modeling: How can we improve the modeling performance?

- More data could help
 - The cross-validation score has not converged yet

Learning curve computed based on the training data and the logistic regression classifier

Predictive Modeling: How can we improve the modeling performance?

- Collect data for the missing values, specially for most important features
 - The imputation strategy might not be accurate enough

- Number of occurrence (not missing)
 - ➤ There are many measures with more than 500 missing values

Predictive Modeling: How can we improve the modeling performance?

- Use additional data sources
 - We observed that time-related measures are among the drivers of the modeling results
 - Timing can be related to denser hospitals
 - Cold we use state/city population data as another measure?

Conclusion and Remarks

- On average our developed model can predict the rating of a new hospital with 60-65% accuracy
 - Note that this is a multi-classification problem which is generally not easy
 - A dummy classifier would only result in 32% accuracy,
- * Hospitals could use this model as an annual health check to get a better idea (higher confidence comparing to a random guess) of their estimated ratings
- As the survey ratings are comptued based on human behavior, we should not forget the impact of human bias which could complicate the classification problem
 - Two different patients might go through exactly similar procedures and have different opinions about their quality of care

Conclusion and Remarks

- Improvement on common sense measures such as lowering Infections and waiting times can potentially improve patient experience and consequently the ratings
- More data would help developing a better model
 - Considering other relevant measures such as population data
 - Better estimation of missing values
 - More hospitals with ratings
- Clustering algorithms are worth trying here to investigate similarity patterns between equallyrated hospitals