## **Productivity and Efficiency Analysis**

#### 1) Introduction

b) Taxonomy of frontier estimation methods

#### **Timo Kuosmanen**

Aalto University School of Business

https://people.aalto.fi/timo.kuosmanen

### **Productivity and efficiency: basic concepts**

#### Productivity growth depends on

- Technical progress
- Efficiency improvement
  - Technical efficiency
  - Scale efficiency
  - Allocative efficiency
- Structural change
  - Entry and exit
  - Reallocation of resources

### **Productivity and efficiency: basic concepts**

#### Productivity growth depends on

- Technical progress = frontier shift over time
- Efficiency improvement relative to frontier
  - Technical efficiency
  - Scale efficiency
  - Allocative efficiency
- Structural change
  - Entry and exit
  - Reallocation of resources

#### **Unified frontier model**

$$y_i = f(\mathbf{x}_i) - u_i + v_i, \quad i = 1, ..., n$$

where

 $y_i$  is output of firm i

f is frontier production function

 $\mathbf{x}_i$  is input vector of firm i

 $u_i$  is asymmetric inefficiency term of firm i

 $v_i$  is random noise term of firm i

Kuosmanen, Johnson & Saastamoinen (2014) Stochastic nonparametric approach to efficiency analysis: A Unified Framework, in J. Zhu (Ed) *Handbook on DEA Vol. 2*, Springer.



# **Taxonomy of methods**

based on Kuosmanen & Johnson (2010), Operations Research

|               |                | Parametric             | Nonparametric          |                           |
|---------------|----------------|------------------------|------------------------|---------------------------|
|               |                |                        | Local averaging        | Axiomatic                 |
|               |                | OLS                    | Kernel regression      | Convex regression         |
|               |                | Gauss (1795),          | Nadaraya (1964),       | Hildreth (1954),          |
| Average curve |                | Legendre (1805)        | Watson (1964)          | Hanson and Pledger (1976) |
|               | Deterministic  | Parametric programming | Nonparametric          | DEA                       |
|               | (Sign constr.) | Aigner and Chu (1968)  | programming            | Farrell (1957),           |
|               |                |                        | Post et al. (2002)     | Charnes et al. (1978)     |
|               | Deterministic  | Corrected OLS          | Corrected kernel       | Corrected CNLS            |
|               | (2-stage)      | Winsten (1957)         | Kneip and Simar (1996) | Kuosmanen and             |
| Frontier      |                | Greene (1980)          |                        | Johnson (2010)            |
|               | Stochastic     | SFA                    | Semi-nonparametric SFA | StoNED                    |
|               |                | Aigner et al. (1977)   | Fan, Li and Weersink   | Kuosmanen and             |
|               |                | Meeusen and van den    | (1996)                 | Kortelainen (2012)        |
|               |                | Broeck (1977)          |                        | -                         |

# **Taxonomy of methods**

based on Kuosmanen & Johnson (2010), Operations Research

|               |                | Parametric             | Nonparametric          |                       |
|---------------|----------------|------------------------|------------------------|-----------------------|
|               |                |                        | Local averaging        | Axiomatic             |
|               |                | OLS                    | Kernel regression      | Convex regression     |
| Average curve |                | Gauss (1795),          | Nadaraya (1964),       | Hildreth (1954),      |
|               |                | Legendre (1805)        | Watson (1964)          | Hanson and Pledger    |
|               |                |                        |                        | (1976)                |
|               | Deterministic  | Parametric programming | Nonparametric          | DEA                   |
|               | (Sign constr.) | Aigner and Chu (1968)  | programming            | Farrell (1957),       |
|               |                |                        | Post et al. (2002)     | Charnes et al. (1978) |
|               | Deterministic  | Corrected OLS          | Corrected kernel       | Corrected CNLS        |
|               | (2-stage)      | Winsten (1957)         | Kneip and Simar (1996) | Kuosmanen and         |
| Frontier      |                | Greene (1980)          |                        | Johnson (2010)        |
|               | Stochastic     | SFA                    | Semi-nonparametric SFA | StoNED                |
|               |                | Aigner et al. (1977)   | Fan, Li and Weersink   | Kuosmanen and         |
|               |                | Meeusen and van den    | (1996)                 | Kortelainen (2012)    |
|               |                | Broeck (1977)          |                        | •                     |

# **Taxonomy of methods**

based on Kuosmanen & Johnson (2010), Operations Research

|               |                | Parametric             | Nonparametric          |                           |
|---------------|----------------|------------------------|------------------------|---------------------------|
|               |                |                        | Local averaging        | Axiomatic                 |
|               |                | OLS                    | Kernel regression      | Convex regression         |
|               |                | Gauss (1795),          | Nadaraya (1964),       | Hildreth (1954),          |
| Average curve |                | Legendre (1805)        | Watson (1964)          | Hanson and Pledger (1976) |
|               | Deterministic  | Parametric programming | Nonparametric          | DEA                       |
|               | (Sign constr.) | Aigner and Chu (1968)  | programming            | Farrell (1957),           |
|               |                |                        | Post et al. (2002)     | Charnes et al. (1978)     |
|               | Deterministic  | Corrected OLS          | Corrected kernel       | Corrected CNLS            |
|               | (2-stage)      | Winsten (1957)         | Kneip and Simar (1996) | Kuosmanen and             |
| Frontier      |                | Greene (1980)          |                        | Johnson (2010)            |
|               | Stochastic     | SFA                    | Semi-nonparametric SFA | StoNED                    |
|               |                | Aigner et al. (1977)   | Fan, Li and Weersink   | Kuosmanen and             |
|               |                | Meeusen and van den    | (1996)                 | Kortelainen (2012)        |
|               |                | Broeck (1977)          |                        |                           |

#### **DEA** model

$$y_i = f(\mathbf{x}_i) - u_i, i = 1,...,n$$

where

 $y_i$  is output of firm i

f is production function

 $\mathbf{x}_i$  is input vector of firm i

 $u_i$  is asymmetric inefficiency term of firm i

 $v_i$  is random noise term of firm i

Banker (1993): Maximum likelihood, consistency and data envelopment analysis: a statistical foundation, *Management Science*.



#### **SFA** model

$$y_i = \beta' \mathbf{x}_i - u_i + v_i, \quad i = 1,...,n$$

where

 $y_i$  is output of firm i

β is parameter vector

 $\mathbf{x}_i$  is input vector of firm i

 $u_i$  is asymmetric inefficiency term of firm i

 $v_i$  is random noise term of firm i

Aigner, Lovell & Schmidt (1977): Formulation and estimation of stochastic frontier production function models, *Journal of Econometrics*.



#### **Next lesson**

1c) Productivity analysis in action: Incentive regulation of electricity distribution networks

