Homework 3

** Problem 1. Let R be an integral domain. Show that $(\widetilde{R},+,\cdot)$ is a field.

** Problem 1.1 Show that + and \cdot are well-defined. That is if $(a_1,b_1) \sim (c_1,d_1)$ and $(a_2,b_2) \sim (c_2,d_2)$ then

$$(a_1b_2 + a_2b_1, b_1b_2) \sim (c_1d_2 + c_2d_1, d_1d_2)$$

and

$$(a_1a_2, b_1b_2) \sim (c_1c_2, d_1d_2)$$

.

Proof. Let $(a_1,b_1) \sim (c_1,d_1)$ and $(a_2,b_2) \sim (c_2,d_2)$. Then we have

$$a_1d_1 = b_1c_1$$

and

$$a_2d_2 = b_2c_2.$$

We multiply the first equation by b_2d_2 so we have

$$a_1b_2d_1d_2 = b_1b_2c_1d_2$$

and we multiply the second equation by b_1d_1 so we have

$$a_2b_1d_1d_2 = b_1b_2c_2d_1.$$

Now we add the two new equations together so we have

$$a_1b_2d_1d_2 + a_2b_1d_1d_2 = b_1b_2c_1d_2 + b_1b_2c_2d_1$$

and so

$$(a_1b_2 + a_2b_1)d_1d_2 = (c_1d_2 + c_2d_1)b_1b_2$$

which implies

$$(a_1b_2 + a_2b_1, b_1b_2) \sim (c_1d_2 + c_2d_1, d_1d_2).$$

Similarly, if we multiply $a_1d_1 = b_1c_1$ and $a_2d_2 = b_2c_2$ together we have

$$a_1 a_2 d_1 d_2 = b_1 b_2 c_1 c_2$$

and so

$$(a_1a_2, b_1b_2) \sim (c_1c_2, d_1d_2).$$

** Problem 1.2 (Associativity of Addition) For all $p,q,r\in\widetilde{R}$ we have (p+q)+r=p+(q+r).

Proof. Let $p,q,r \in \widetilde{R}$ such that $(p_1,p_2) \in p$, $(q_1,q_2) \in q$ and $(r_1,r_2) \in r$. Then we see that

$$\begin{split} (p+q)+r &= \left(\overline{(p_1,p_2)}+\overline{(q_1,q_2)}\right)+\overline{(r_1,r_2)}\\ &=\overline{(p_1q_2+p_2q_1,p_2q_2)}+\overline{(r_1,r_2)}\\ &=\overline{((p_1q_2+p_2q_1)r_2+p_2q_2r_1,p_2q_2r_2)}\\ &=\overline{(p_1q_2r_2+p_2q_1r_2+p_2q_2r_1,p_2q_2r_2)}\\ &=\overline{((q_1r_2+q_2r_1)p_2+p_1q_2r_2,p_2q_2r_2)}\\ &=p+\overline{(q_1r_2+q_2r_1,q_2r_2)}\\ &=p+(q+r). \end{split}$$

** Problem 1.3 (Commutativity of Addition) For all $p, q \in \widetilde{R}$ we have p + q = q + p.

Proof. Let $p, q \in \widetilde{R}$ such that $(p_1, p_2) \in p$ and $(q_1, q_2) \in q$. Then we have

$$p+q=\overline{(p_1,p_2)}+\overline{(q_1,q_2)}=\overline{(p_1q_2+p_2q_1,p_2q_2)}=\overline{(q_1p_2+q_2p_1,q_2p_2)}=\overline{(q_1,q_2)}+\overline{(p_1,p_2)}=q+p.$$

** Problem 1.4 (Additive Identity) There exists an $n \in \widetilde{R}$ such that for all $p \in \widetilde{R}$ we have n + p = p.

Proof. We see that if we let $n \in \widetilde{R}$ such that $n = \overline{(0,1)}$ and if we let $(p_1, p_2) \in p$ for some $p \in \widetilde{R}$ then we have

$$n+p=\overline{(0,1)}+\overline{(p_1,p_2)}=\overline{((0)p_2+(1)p_1,(1)p_2)}=\overline{(p_1,p_2)}=p.$$

** Problem 1.5 (Additive Inverse) For all $p \in \widetilde{R}$ there exists $q \in \widetilde{R}$ such that p + q = 0.

Proof. Let $p \in \widetilde{R}$ such that $(p_1, p_2) \in p$. Then we choose $q = \overline{(-p_1, p_2)}$ for $q \in \widetilde{R}$. Then we have

$$p+q=\overline{(p_1,p_2)}+\overline{(-p_1,p_2)}=\overline{(p_1p_2+-p_1p_2,p_2p_2)}=\overline{(0,p_2p_2)}=\overline{(0,1)}=0$$

since
$$(0)p_2p_2 = (0)(1)$$
.

** Problem 1.6 (Associativity of Multiplication) For all $p,q,r\in\widetilde{R}$ we have $(p\cdot q)\cdot r=p\cdot (q\cdot r)$.

Proof. Let $p,q,r \in \widetilde{R}$ such that $(p_1,p_2) \in p, (q_1,q_2) \in q$ and $(r_1,r_2) \in r$. Then we have

$$(p\cdot q)\cdot r = \left(\overline{(p_1,p_2)}\cdot \overline{(q_1,q_2)}\right)\cdot \overline{(r_1,r_2)} = \overline{(p_1q_1,p_2q_2)}\cdot \overline{(r_1,r_2)} = \overline{(p_1q_1r_1,p_2q_2r_2)} = p\cdot \overline{(q_1r_1,q_2r_2)} = p\cdot$$

** Problem 1.7 (Commutativity of Multiplication) For all $p, q \in \widetilde{R}$ we have $p \cdot q = q \cdot p$.

Proof. Let $p, q \in \widetilde{R}$ such that $(p_1, p_2) \in p$ and $(q_1, q_2) \in q$. Then

$$p\cdot q=\overline{(p_1,p_2)}\cdot \overline{(q_1,q_2)}=\overline{(p_1q_1,p_2q_2)}=\overline{(q_1p_1,q_2p_2)}=\overline{(q_1,q_2)}\cdot \overline{(p_1,p_2)}=q\cdot p.$$

** Problem 1.8 (Multiplicative Identity) There exists $e \in \widetilde{R}$ such that for all $p \in \widetilde{R}$ we have $e \cdot p = p$.

Proof. Let $p \in \widetilde{R}$ such that $(p_1, p_2) \in p$ and let $e \in \widetilde{R}$ such that $e = \overline{(1, 1)}$. Then we have

$$e \cdot p = \overline{(1,1)} \cdot \overline{(p_1,p_2)} = \overline{(p_1(1),p_2(1))} = p.$$

** Problem 1.9 (Multiplicative Inverse) For all $p \in \widetilde{R}$ with $p \neq 0$ there exists $q \in \widetilde{R}$ such that $p \cdot q = 1$.

Proof. Let $p \in \widetilde{R}$ such that $(p_1, p_2) \in p$ and since $p_1 \neq 0$ let $q \in \widetilde{R}$ such that $(p_2, p_1) \in q$. Then we see that

$$p \cdot q = \overline{(p_1, p_2)} \cdot \overline{(p_2, p_1)} = \overline{(p_1 p_2, p_1 p_2)} = \overline{(1, 1)} = 1.$$

** Problem 1.10 (Distributivity) For all $p, q, r \in \widetilde{R}$ we have $p \cdot (q+r) = p \cdot q + p \cdot r$.

Proof. Let $p,q,r \in \widetilde{R}$ such that $(p_1,p_2) \in p$, $(q_1,q_2) \in q$ and $(r_1,r_2) \in r$. Then we have

$$\begin{aligned} p \cdot (q+r) &= \overline{(p_1, p_2)} \cdot \left(\overline{(q_1, q_2)} + \overline{(r_1, r_2)} \right) \\ &= \overline{(p_1, p_2)} \cdot \overline{(q_1 r_2 + q_2 r_1, q_2 r_2)} \\ &= \overline{(p_1 q_1 r_2 + p_1 q_2 r_1, p_2 q_2 r_2)} \\ &= \overline{(p_1 q_1 r_2 + p_1 q_2 r_1, p_2 q_2 r_2)} \cdot \overline{(p_2, p_2)} \\ &= \overline{(p_1 p_2 q_1 r_2 + p_1 p_2 q_2 r_1, p_2 p_2 q_2 r_2)} \\ &= \overline{(p_1 q_1, p_2 q_2)} + \overline{(p_1 r_1, p_2 r_2)} \\ &= \overline{(p_1, p_2)} \cdot \overline{(q_1, q_2)} + \overline{(p_1, p_2)} \cdot \overline{(r_1, r_2)} \\ &= p \cdot q + p \cdot r. \end{aligned}$$

Since all the field axioms have been met for $(\widetilde{R}, +, \cdot)$ we see that it is a field.

** Problem 2. Show that the ordering axioms hold for < on an integral domain R.

Proof. Let $P \subseteq R$ be a set such that for $a \in R$ exactly one of $a \in P$, a = 0, $-a \in P$ holds and for $a, b \in P$ we have $a + b, ab \in P$. Let $a, b \in R$. Suppose first that a < b. Then $(b - a) \in P$ and $(b - a) \neq 0$. Therefore $b \neq a$. Also, we know -(b - a) = a - b is not in P so b is not less than a. If a = b, then a - b = b - a = 0 so $(a - b), (b - a) \notin P$ and b is not less than a nor is a less than b. Finally, if b < a then $(a - b) \in P$ and so $a - b \neq 0$ so $b \neq a$. Also -(a - b) = b - a is not in P. Thus a is not less than b. Therefore either a < b, a = b or a > b.

Let $a, b, c \in R$ such that a < b and b < c. Then $(b - a), (c - b) \in P$. Since P is closed under addition, (b - a) + (c - b) = c - a is in P. Thus a < c.

Suppose again that a < b. Then $(b - a) \in P$. Note that

$$b-a = b-a+c-c = (b+c)-(a+c)$$

so $(b + c) - (a + c) \in P$. Then a + c < b + c.

Finally let a < b and c > 0. Then $(b - a) \in P$ and since P is closed under multiplication, (b - a)c = bc - ac is in P. Thus ac < bc.

** **Problem 3.** On \widetilde{R} define $\overline{(a,b)} \in P$ if $ab \in P$ in R. Show that this is well defined and gives an ordering on \widetilde{R} .

Proof. Let $\overline{(a,b)}, \overline{(c,d)} \in \widetilde{R}$ such that $(a,b) \sim (c,d)$ and $\overline{(a,b)} \in P$. Then $ab \in P$ in and ad = bc in R. Multiplying both sides by ac we have

$$a^2cd = abc^2.$$

Since ab > 0 and $c^2 > 0$ we know that $abc^2 > 0$ so $a^2cd > 0$. Also, since $a^2 > 0$, we see that cd > 0 so $\underline{cd} \in P$ and $\overline{(c,d)} \in P$. This shows that the definition is well defined. An ordering on \widetilde{R} is defined by $\overline{(a_1,b_1)} < \overline{(a_2,b_1)}$ if $\overline{(a_2,b_2)} + \overline{(-a_1,b_1)} \in P$. We now show the ordering axioms are met for this relation and elements $a = \overline{(a_1,a_2)}$, $b = \overline{(b_1,b_2)}$, $c = \overline{(c_1,c_2)}$ in \widetilde{R} .

First let a < b. Then

$$\overline{(a_2b_1 - a_1b_2, a_2b_2)} \in P$$

so

$$(a_2b_1 - a_1b_2)a_2b_2 \in P$$

and

$$(a_2b_1 - a_1b_2)a_2b_2 \neq 0.$$

Since $a_2b_2 \neq 0$, we see that

$$a_2b_1 \neq a_1b_2$$

SC

$$\overline{(a_1, a_2)} \neq \overline{(b_1, b_2)}.$$

Also,

$$-((a_2b_1 - a_1b_2)a_2b_2) = (a_1b_2 - a_2b_1)a_2b_2$$

is not in P so

$$\overline{(a_1b_2 - a_2b_1, a_2b_2)} = \overline{(a_1, a_2)} + \overline{(-b_1, b_2)}$$

is not in P in \widetilde{R} . Thus b is not less than a. If b < a it follows similarly that $a \neq b$ and a is not less than b. Finally, if a = b then $(a_1, a_2) \sim (b_1, b_2)$ and

$$a_1b_2 = a_2b_1.$$

Thus

$$(a_1b_2 - a_2b_1) = 0$$

and

$$(a_1b_2 - a_2b_1)a_2b_2 = 0$$

which implies

$$\overline{(a_1b_2 - a_2b_1, a_2b_2)} = \overline{(b_1, b_2)} + \overline{(-a_1, a_2)}$$

is not in P. Thus a is not less than b. A similar argument shows that b is not less than a.

Suppose now that a < b and b < c. Then

$$\overline{(a_2b_1 - a_1b_2, a_2b_2)} \in P$$

and

$$\overline{(b_2c_1-b_1c_2,b_2c_2)} \in P.$$

Thus

$$(a_2b_1 - a_1b_2)a_2b_2 > 0$$

and

$$(b_2c_1 - b_1c_2)b_2c_2 > 0.$$

Multiply the first equation by c_2^2 and the second by a_2^2 and add them to obtain

$$0 < (a_2^2b_2^2c_1c_2 - a_2^2b_1b_2c_2^2) + (a_2^2b_1b_2c_2^2 - a_1a_2b_2^2c_2^2) = a_2^2b_2^2c_1c_2 - a_1a_2b_2^2c_2^2.$$

Then

$$(a_2c_1 - a_1c_2)a_2c_2 > 0$$

which means

$$a = \overline{(a_1, a_2)} < \overline{(c_1, c_2)} = c.$$

Still supposing that a < b, we have again

$$(a_2b_1 - a_1b_2)a_2b_2 > 0.$$

Multiplying both sides by c_2^4 we can write

$$c_2^2(a_2b_1 - a_1b_2)a_2b_2c_2^2 = (a_2b_1c_2^2 + a_2b_2c_1c_2 - (a_1b_2c_2^2 + a_2b_2c_1c_2))a_2b_2c_2^2 > 0$$

which simplifies to

$$((b_1c_2 + b_2c_1)a_2c_2 - (a_1c_2 + a_2c_1)b_2c_2)a_2b_2c_2^2 > 0.$$

Thus

$$a+c = \overline{(a_1,a_2)} + \overline{(c_1,c_2)} = \overline{(a_1c_2 + a_2c_1, a_2c_2)} < \overline{(b_1c_2 + b_2c_1, b_2c_2)} = \overline{(b_1,b_2)} + \overline{(c_1,c_2)} = b+c.$$

Finally, assume that a < b and c > 0. Then

$$(a_2b_1 - a_1b_2)a_2b_2 > 0$$

and $c_1c_2 > 0$. Then we have

$$0 < (a_2b_1 - a_1b_2)a_2b_2(c_1c_2)(c_2^2) = (a_2b_1c_1c_2 - a_1b_2c_1c_2)a_2b_1c_2^2$$

which means

$$ac = \overline{(a_1, a_2)} \cdot \overline{(c_1, c_2)} = \overline{(a_1c_1, a_2c_2)} < \overline{(b_1c_1, b_2c_2)} = \overline{(b_1, b_2)} \cdot \overline{(c_1, c_2)} = bc.$$

** **Problem 4.** Show that for a polynomial $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ the definition $p(x) \in P$ if $a_n > 0$ holds for the above definition.

Proof. Note that if $a_n > 0$ in R then $a_n \neq 0$ and $-a_n > 0$. Thus $p(x) \neq 0$ and $-p(x) \in P$. Also, if we let $q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots b_1 x + b_0$ such that $q(x) \in P$, then $p(x) + q(x) \in P$ because p(x) + q(x) either has leading term $\max(a_n, b_m)$ or $a_n + b_m$. Likewise $p(x)q(x) \in P$ since it has leading term $a_n b_m > 0$.

Lemma 1. Let $a \in \mathbb{Q}$ such that 0 < a < 1. Then $a^2 < a$. Likewise, if a > 1, then $a^2 > a$.

Proof. Let 0 < a < 1 such that $a = \overline{(a_1, a_2)}$. Then $a^2 = \overline{(a_1^2, a_2^2)}$ and

$$a - a^2 = \overline{(a_1, a_2)} + \overline{(-a_1^2, a_2^2)} = \overline{(a_1 a_2^2 - a_1^2 a_2, a_2^3)}.$$

Since a > 0, we can assume that both $a_1, a_2 > 0$. Then $a_2^3 > 0$. Also, since a < 1 we have 1 - a > 0 so $a_2 - a_1 > 0$ and $a_1 < a_2$. Then $a_1(a_1a_2) < a_2(a_1a_2)$. This shows that

$$(a_1a_2^2 - a_1^2a_2)(a_2^3) > 0$$

which means $a^2 < a$. A similar proof is used to show that for a > 1, $a^2 > a$.

Problem 1. Let a be a positive rational number. Let $A = \{x \in \mathbb{Q} \mid x^2 < a\}$. Show that A is bounded in \mathbb{Q} .

Proof. Let $x \in A$. Note that if $x \le 0$ then $x \le 0 < a < a + 1$. If 0 < x < 1 then by Lemma 1, $x^2 < x < 1 < a + 1$ since a > 0. If $x \ge 1$ then by Lemma 1, $x \le x^2 < a < a + 1$. In all cases a + 1 serves as an upper bound for A.

Problem 2. Show that the least upper bound of a set is unique, if it exists.

Proof. Let A be set such that u and v are least upper bounds for A. Then u and v are upper bounds for A and each one is less than every other upper bound of A. Thus, it is not the case that u < v or v < u. Therefore u = v.

Problem 3. Show that any two ordered fields with the least upper bound property are order isomorphic.

Proof. Let F and F' be two ordered fields with the least upper bound property. We already know that F and F' contain the rationals as a subfield. Thus there exist injective maps $q_1: \mathbb{Q} \to Q$ and $q_2: \mathbb{Q} \to Q'$ where $Q \subseteq F$ and $Q' \subseteq F'$. Since both Q and Q' are both order isomorphic to \mathbb{Q} , we know there is an order isomorphism from Q to Q'. Thus there is an injective order homomorphism $f: Q \to F'$. Now let $A_r = \{x \in Q \mid x < r\}$ for $r \in F$. Since A_r is nonempty and bounded in F, it follows that $f(A_r)$ is nonempty and bounded in F'. Now define $g: F \to F'$ such that $g(x) = \sup(A_x)$. Define

$$A_{x+y} = \{a + b \in Q \mid a \in A_x, b \in A_y\}.$$

For multiplication define sets $P = \{p \in Q \mid p > 0\}$, $N = \{p \in Q \mid p \leq 0\}$ and the product of two sets A and B as $A * B = \{ab \mid a \in A, b \in B\}$. Then for x, y > 0 we have

$$A_{xy} = N \cup ((A \cap P) * (B \cap P))$$

and in general

$$A_{xy} = \begin{cases} 0 & \text{if } x = 0 \text{ or } y = 0 \\ A_{|x||y|} & \text{if } x > 0 \text{ and } y > 0 \text{ or } x < 0 \text{ and } y < 0 \\ -A_{|x||y|} & \text{if } x < 0 \text{ and } y > 0 \text{ or } x > 0 \text{ and } y < 0 \end{cases}$$

Here $-A_x = \{a \in Q \mid a < -x\}$. Using Problem 5 we can see that

$$g(x+y) = \sup(A_{x+y}) = \sup(A_x) + \sup(A_y) = g(x) + g(y)$$

and

$$q(xy) = \sup(A_{xy}) = \sup(A_x) \sup(A_y) = q(x)q(y).$$

Additionally, since f is an order preserving map from Q to F' we see that g is order preserving. Thus there exists an order homomorphism from Q to F'. Similarly, there exists an order homomorphism from Q' to F. Using the Schrder-Berstein Theorem, we can say that there is an order preserving isomorphism from F to F'.

Problem 4. Let n be a positive integer that is not a perfect square. Let $A = \{x \in \mathbb{Q} \mid x^2 < n\}$. Show that A is bounded in \mathbb{Q} , but has neither a greatest lower bound nor a least upper bound in \mathbb{Q} . Conclude that \sqrt{n} exists in \mathbb{R} , that is, there exists a real number a such that $a^2 = n$.

Proof. Problem 1 Shows that A is bounded in \mathbb{Q} by n+1. Suppose that u is an upper bound for A. Note that since $0 \in A$, we have u > 0. Then $u^2 > n$ and $u^2 - n > 0$. But then

$$\frac{u^2 - n}{u + n} > 0$$

and letting

$$v = u - \frac{u^2 - n}{u + n} = \frac{nu + n}{u + n}$$

we see that u - v > 0 so v < u. But

$$v^2 = \frac{n^2u^2 + 2n^2u + n^2}{u^2 + 2nu + n^2} > \frac{n^2u^2 + 2n^2u + n^2}{\frac{1}{n}(n^2u^2 + 2n^2u + n^2)} = n$$

since $n(u^2 - n) + n - u^2 > 0$ as n > 1. Thus v is also an upper bound for A. Therefore the least upper bound for A is not in \mathbb{Q} . But since A is nonempty and bounded, a least upper bound exists in \mathbb{R} .

Problem 5. Suppose that A and B are bounded sets in \mathbb{R} . Prove or disprove the following:

- 1) The $\sup(A \cup B) = \max\{\sup(A), \sup(B)\}.$
- 2) If $A + B = \{a + b \mid a \in A, b \in B\}$, then $\sup(A + B) = \sup(A) + \sup(B)$.
- 3) If the elements of A and B are positive and $A \cdot B = \{ab \mid a \in A, b \in B\}$, then $\sup(A \cdot B) = \sup(A) \sup(B)$.
- 4) Formulate the analogous problems for the greatest lower bound.

Proof. Note the statements only make sense if A and B are nonempty. Otherwise the $\sup A$ and $\sup B$ do not exist. Hence, assume that A and B are nonempty, bounded subsets of $\mathbb R$ and let $a=\sup A$ and $b=\sup B$.

- 1) Let $x \in A$. Then $x \le a \le \max\{a,b\}$. Let $y \in B$. Then $y \le b \le \max\{a,b\}$. Thus every element in A or in B is less than or equal to $\max\{a,b\}$. Therefore $\max\{a,b\}$ is an upper bound for $A \cup B$. Suppose there exists $c < \max\{a,b\}$ such that c is an upper bound for $A \cup B$. Then c is an upper bound for A and an upper bound for B. Since $c < \max\{a,b\}$, c < a or c < b. Without loss of generality, assume that c < a. Then c is an upper bound for A which is less than $\sup A$. This is a contradiction and so there exists no upper bounds for $A \cup B$ which are less than $\max\{a,b\}$. Therefore $\sup(A \cup B) = \max\{a,b\}$.
- 2) Let $k \in A + B$. Then k = x + y where $x \in A$ and $y \in B$. Since $x \le a$ and $y \le b$ we know that $k = x + y \le a + b$. Thus a + b is an upper bound for A + B. Suppose there exists c < a + b such that c is an upper bound for A + B. Consider the value r = (a + b c)/2 > 0. Since a is the least upper bound for A, it must be the case that there exists some element $p \in A$ such that a r , otherwise <math>a r would be an upper bound for A which is less than a. Likewise, there exists a $q \in B$ such that $b r < q \le b$. Then $p + q \in A + B$ and

$$c = a + b - (a + b - c) = (a - r) + (b - r)$$

Thus there exists an element of A + B which is greater than c and so $\sup(A + B) = a + b$.

3) Let $k \in A \cdot B$. Then k = xy where $x \in A$ and $y \in B$. Since $0 < x \le a$ and $0 < y \le b$ we have $k = xy \le ab$. Thus ab is an upper bound for $A \cdot B$. Now suppose there exists c < ab such that c is an upper bound for $A \cdot B$. Let r = ab - c. Then there exists $x, y \in \mathbb{R}$ such that xy = ab - r/2. Let p = a - x and q = b - y. Then there exists $u \in A$ such that u > a - p/2 > x and there exists $v \in B$ such that

v > b - q/2 > y. But then $uv \in A \cdot B$, but uv > xy = ab - r/2 > c.

- 4) The analogous problems for the greatest lower bound are:
- 1) $\inf(A \cup B) = \min\{\inf(A), \inf(B)\}.$
- 2) If $A + B = \{a + b \mid a \in A, b \in B\}$ then $\inf(A + B) = \inf(A) + \inf(B)$.
- 3) If the elements of A and B are positive and $A \cdot B = \{ab \mid a \in A, b \in B\}$ then $\inf(A \cdot B) = \inf(A) \inf(B)$.

Problem 6. Let F be an Archimedean ordered field. Show that F is order isomorphic to a subfield of \mathbb{R} .

Proof. Note that since F is an ordered field, the rationals exist as a subfield which we will refer to as \mathbb{Q} . Define the function $f:\mathbb{Q}\to\mathbb{R}$ where $f(x)=\{p\in\mathbb{Q}\mid p< x\}$. Using the Archimedean property, we know that for all $x\in F$, $f(x)\neq\emptyset$. From here it's easy to see that for all $x\in F$, f(x) is a Dedekind cut. Using the definitions of addition and multiplication from Problem 3 for $p,q\in F$ we see that f(p+q)=f(p)+f(q) and f(pq)=f(p)f(q). Also, since the ordering of \mathbb{Q} holds in \mathbb{R} , f preserves the ordering of F. Finally, we can show that f is injective because if $p\neq q$ in \mathbb{Q} , there exists some number $f\in\mathbb{Q}$ such that f is Archimedean. Therefore $f(p)\neq f(q)$.