DISZKRÉT MATEMATIKA I.

10. előadás

Logika: Normálformák, teljes függvényrendszerek

BEVEZETŐ PÉLDÁK

$$A \longrightarrow B = (\neg A) \vee B$$

$$A \longleftrightarrow B = (A \longrightarrow B) \land (B \longrightarrow A) = (\neg A \lor B) \land (\neg B \lor A)$$

\overline{A}	B	$A \rightarrow B$	$\neg A \lor B$	$A \leftrightarrow B$	$A \to B$	$B \to A$	\land
i	i	i	i	i	i	i	$\mid i \mid$
i	$\mid h \mid$	h	h	h	h	i	$\mid h \mid$
h	$\mid i \mid$	i	i	h	i	h	$\mid h \mid$
h	h	i	i	i	i	i	$\mid i \mid$

Kérdés: bármely művelet (függvény) kifejezhető-e ilyen módon? (\neg, \lor, \land)

harpoonup i = 1, h = 0

x_1	0	0	0	1	0	1	1	1
x_2	0	0	1	0	1	0	1	1
x_3	0	1	0	0	1	1	0	1
$f(x_1, x_2, x_3)$	0	0	1	1	0	0	1	0

 $f(x_1, x_2, x_3) = ?$

 $^{\bullet}_{\bullet} i = 1, h = 0$

x_1	0	0	0	1	0	1	1	1
x_2	0	0	1	0	1	0	1	1
x_3	0	1	0	0	1	1	0	1
$f(x_1, x_2, x_3)$	0	0	1	1	0	0	1	0

$$f(x_1, x_2, x_3) = (\neg x_1 \land x_2 \land \neg x_3) \lor (x_1 \land \neg x_2 \land \neg x_3) \lor (x_1 \land x_2 \land \neg x_3).$$

" konjunkciók diszjunkciója:) "

$$harpoonup i = 1, h = 0$$

$$g(x_1, x_2, x_3, x_4) = \begin{cases} 1, & \text{ha pontosan 2 változó értéke igaz} \\ 0, & \text{egyébként} \end{cases}$$

$$g(x_1, x_2, x_3, x_4) = (\neg x_1 \wedge \neg x_2 \wedge x_3 \wedge x_4) \vee (\neg x_1 \wedge x_2 \wedge \neg x_3 \wedge x_4) \vee (\neg x_1 \wedge x_2 \wedge x_3 \wedge \neg x_4) \vee (x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge x_4) \vee (x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg x_4) \vee (x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg x_4).$$

DISZJUNKTÍV NORMÁL FORMA

DNF alapja: konjunkciók diszjunkciója pontosan akkor igaz, ha valamelyik tagja igaz. Az egyes tagok pontosan akkor igazak, ha a benne szereplő mindegyik kifejezés igaz.

$$\vee \left(\wedge_i \neg_{x_i}^{x_i} \right)$$

1. TESZT !!!

Melyik DNF és melyik nem DNF?

•
$$\neg (A \land B) \lor C$$

•
$$(\neg A \land B) \lor C$$

•
$$(A \lor B) \land \neg C$$

•
$$(A \wedge B) \longrightarrow C$$

1. TESZT !!!

Melyik DNF és melyik nem DNF?

• $\neg (A \land B) \lor C$, NEM

• $(\neg A \land B) \lor C$, IGEN

• $(A \lor B) \land \neg C$, NEM

• $(A \wedge B) \longrightarrow C$, NEM

harpoonup i = 1, h = 0

x_1	0	0	0	1	0	1	1	1
x_2	0	0	1	0	1	0	1	1
x_3	0	1	0	0	1	1	0	1
$f(x_1, x_2, x_3)$	0	0	1	1	0	0	1	0

 $f(x_1, x_2, x_3) = ?$

$$\frac{1}{4}$$
 $i = 1$, $h = 0$

x_1	0	0	0	1	0	1	1	1
x_2	0	0	1	0	1	0	1	1
x_3	0	1	0	0	1	1	0	1
$f(x_1, x_2, x_3)$	0	0	1	1	0	0	1	0

$$f(x_1, x_2, x_3) = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land$$

" diszjunkciók konjunkciója:) "

KONJUNKTÍV NORMÁL FORMA

KNF alapja: diszjunkciók konjunkciója pontosan akkor hamis, ha valamelyik tagja hamis. Az egyes tagok pontosan akkor hamisak, ha a benne szereplő mindegyik kifejezés hamis.

$$\land \left(\lor_i \ \lnot_{x_i}^{x_i} \right)$$

TELJES FÜGGVÉNYRENDSZER

Adottak: logikai függvények. Ha velük minden függvény kifejezhető, akkor teljes függvényrendszert alkotnak.

Például: ¬, ∧, ∨.

Megjegyzés: $A \lor B = \neg (\neg A \land \neg B)$, ezért \neg , \land is teljes függvényrendszer.

KÉTVÁLTOZÓS BOOLE FÜGGVÉNYEK (16 DB)

A	B	\mathcal{I}	V			\rightarrow		\leftrightarrow	\land		W						$ \mathcal{H} $
i	i	i	i	i	i	i	i	i	$\mid i \mid$	h	h	h	h	h	h	h	h
$\mid i \mid$	$\mid h \mid$	$\mid i \mid$	$\mid i \mid$	$\mid i \mid$	$\mid i \mid$	h	h	h	$\mid h \mid$	i	$\mid i \mid$	$\mid i \mid$	$\mid i \mid$	h	h	h	$\mid h \mid$
h	$\mid i \mid$	$\mid i \mid$	$\mid i \mid$	h	h	$\mid i \mid$	$\mid i \mid$	h	$\mid h \mid$	i	$\mid i \mid$	$\mid h \mid$	$\mid h \mid$	$\mid i \mid$	i	h	$\mid h \mid$
h	$\mid h \mid$	$\mid i \mid$	h	$\mid i \mid$	h	$\mid i \mid$	h	$\mid i \mid$	$\mid h \mid$	i	h	$\mid i \mid$	h	$\mid i \mid$	h	$\mid i \mid$	$\mid h \mid$

SHEFFER-MÜVELET

A	B	$A \mid B$
i	$\mid i \mid$	h
$\mid i \mid$	$\mid h \mid$	i
h	$\mid i \mid$	i
h	h	i

spec.
$$\Longrightarrow$$

A	$A \mid A$
i	h
h	i

SHEFFER MÜVELET MINT TELJES FV.RENDSZER

x_1	x_2	$x_1 \mid x_2$
1	1	0
1	0	1
0	1	1
0	0	1

Teljes függvényrendszert alkot, mert

- $\bullet \ \neg x_1 = (x_1 \mid x_1),$
- $x_1 \wedge x_2 = \neg(x_1 \mid x_2) = (x_1 \mid x_2) \mid (x_1 \mid x_2)$.