APPLICATIONS OF MATLAB IN ENGINEERING

Yan-Fu Kuo Fall 2015

Dept. of Bio-industrial Mechatronics Engineering National Taiwan University

Today:

- Basic plotting
- Graphical object properties

Basics

 MATLAB has a powerful plotting engine that can generate a wide variety of plots

Plot from "Data"

MATLAB does not understand functions

$$f(t) = \sin(2\pi t)$$

Strategies:

- Generate the numeric values of a function over a specific range
- 2. Display the data "points" in a graphical way

plot()

- plot(x,y) plots each vector pairs (x, y)
- plot (y) plots each vector pairs (x, y),

where x=[1...n], n=length(y)

Example:

```
plot(cos(0:pi/20:2*pi));
```

What do you see after this script?

```
plot(cos(0:pi/20:2*pi));
plot(sin(0:pi/20:2*pi));
```


hold on/off

Use hold on to have both plots in one figure

```
hold on
plot(cos(0:pi/20:2*pi));
plot(sin(0:pi/20:2*pi));
hold off
```


Plot Style

• plot(x,y,'str') plots each vector pairs (x,y)
using the format defined in str (check linespec)

Data markers		Line types		Colors	
Dot (.)	•	Solid line	_	Black	k
Asterisk (*)	*	Dashed line		Blue	b
Cross (×)	X	Dash-dotted line		Cyan	С
Circle (○)	0	Dotted line	:	Green	g
Plus sign (+)	+			Magenta	m
Square (□)	S			Red	r
Diamond (\$)	d			White	W
Five-pointed star (☆)	р			Yellow	У
Triangle (down ∇)	V				
Triangle (up Δ)	^				
Triangle (left ▷)	<				
Triangle (right <1)	>				
hexagram	Н				

legend()

Add legend to graph

```
legend('L1',...)
```

Position adjustment


```
x=0:0.5:4*pi;
y=sin(x); h=cos(x); w=1./(1+exp(-x));
g=(1/(2*pi*2)^0.5).*exp((-1.*(x-2*pi).^2)./(2*2^2));
plot(x,y,'bd-',x,h,'gp:',x,w,'ro-',x,g,'c^-');
```

```
legend('sin(x)','cos(x)','Sigmoid','Gauss function');
```

title() and ?label()

- title()
- xlabel()
- ylabel()
- zlabel()


```
x = 0:0.1:2*pi; y1 = sin(x); y2 = exp(-x);
plot(x, y1, '--*', x, y2, ':o');
xlabel('t = 0 to 2\pi');
ylabel('values of sin(t) and e^{-x}')
title('Function Plots of sin(t) and e^{-x}');
legend('sin(t)', 'e^{-x}');
```

text() and annotation()

 Text with mathematical expression using <u>LaTex</u>


```
x = linspace(0,3); y = x.^2.*sin(x); plot(x,y);
line([2,2],[0,2^2*sin(2)]);
str = '$$ \int_{0}^{2} x^2\sin(x) dx $$';
text(0.25,2.5,str,'Interpreter','latex');
annotation('arrow','X',[0.32,0.5],'Y',[0.6,0.4]);
```

Exercise

 Plot f as a black line and g as a series of red circles for the range t = 1 to 2 in one figure

$$f = t^2$$
 and $g = \sin(2\pi t)$

Label each axis, and add title and legend

Figure Adjustment

- Several properties:
 - Font
 - Font size
 - Line width
 - Axis limit
 - Tick position
 - Tick label
- But how?

Graphical Objects

A figure is composed of many objects

Hierarchy **Figure** Axes Line Text Surface

```
x = linspace(0, 2*pi, 1000); y = sin(x);
plot(x,y); set(gcf, 'Color', [1 1 1]);
```

Figure Properties

http://www.mathworks.com/help/matlab/ref/figure-properties.html

Modifying Properties of An Object

- Strategy:
 - 1. Identify the "handle" of an object
 - 2. Fetch or modify the object's properties
- For example, to change the limits of the x-axis:
 - 1. Find the handle of the x-axis
 - 2. Modify the limits

1. Identifying the Handle of An Object

Function	Purpose
gca	Return the handle of the "current" axes
gcf	Return the handle of the "current" figure
allchild	Find all children of specified objects
ancestor	Find ancestor of graphics object
<u>delete</u>	Delete an object
findall	Find all graphics objects

Fetching or Modifying Properties

To fetch properties, use

```
get()
```

To modify properties, use

```
set()
```

Getting Object Properties

- Getting properties of a graphical object: get()
- What do you see after running?

```
x = linspace(0, 2*pi, 1000);
y = sin(x); h = plot(x,y);
get(h)
```

• What do you see?

```
get(gca)
```

 Where do we modify the limits of the x-axis?

Setting Axes Limits

```
set(gca, 'XLim', [0, 2*pi]);
set(gca, 'YLim', [-1.2, 1.2]);
```


Alternative:

```
xlim([0, 2*pi]);
ylim([-1.2, 1.2]);
```

Setting Font and Tick of Axes

```
set(gca, 'FontSize', 25);
```



```
set(gca, 'XTick', 0:pi/2:2*pi);
set(gca, 'XTickLabel', 0:90:360);
```

```
set(gca, 'FontName', 'symbol');
set(gca, 'XTickLabel', {'0', 'p/2', 'p', '3p/2', '2p'});
```

Line Specification

Line style and width:

```
set(h, 'LineStyle', '-.',...
   'LineWidth', 7.0, 'Color', 'g');
```

Alternative:

```
plot(x,y, '-.g',...
'LineWidth', 7.0);
```

• Try: delete(h);

Marker Specification

Face and edge colors of the markder

```
x=rand(20,1); set(gca, 'FontSize', 18);
plot(x,'-md','LineWidth', 2, 'MarkerEdgeColor', 'k',...
    'MarkerFaceColor', 'g', 'MarkerSize', 10);
xlim([1, 20]);
```


Exercise

Multiple Figures

Create a figure window by calling figure

```
x = -10:0.1:10;
y1 = x.^2 - 8;
y2 = exp(x);
figure, plot(x,y1);
figure, plot(x,y2);
```


 Be careful when using the gcf handle where there exists multiple figures

Figure Position and Size

```
figure('Position', [left, bottom, width, height]);
```


Several Plots in One Figure

Several small plots "in a figure"

subplot()


```
t = 0:0.1:2*pi; x = 3*cos(t); y = sin(t);
subplot(2, 2, 1); plot(x, y); axis normal
subplot(2, 2, 2); plot(x, y); axis square
subplot(2, 2, 3); plot(x, y); axis equal
subplot(2, 2, 4); plot(x, y); axis equal tight
```

Control of Grid, Box, and Axis

grid on/off	Make the grid visible or invisible
box on/off	Make the box visible or invisible
axis on/off	Make the axes visible or invisible
axis normal	Automatically adjust the aspect ratio of the axes and the relative scaling of the data units
axis square	Make the current axes region square
axis equal	Set the aspect ratio so that the data units are the same in every direction
axis equal tight	Set the axis limits to the range of the data
axis image	Let the plot box fits tightly around the data
axis ij	Place the origin of the coordinate system in the upper left corner
axis xy	Place the origin in the lower left corner

Saving Figures into Files

saveas(gcf,'<filename>','<formattype>');

Option	Bitmap Image Format
'jpeg'	JPEG 24-bit
'png'	PNG 24-bit
'tiff'	TIFF 24-bit (compressed)
'bmpmono'	BMP Monochrome
'bmp'	BMP 24-bit
'bmp256'	BMP 8-bit (256 color, uses a fixed colormap)
Option	Vector Graphics Format
'pdf'	Full page Portable Document Format (PDF) color
'eps'	Encapsulated PostScript (EPS) Level 3 black and white
'epsc'	Encapsulated PostScript (EPS) Level 3 color
'meta'	Enhanced Metafile (Windows only)
'svg'	SVG (scalable vector graphics)
'ps'	Full-page PostScript (PS) Level 3 black and white
'psc'	Full-page PostScript (PS) Level 3 color

To control size and resolution, use print instead: http://www.mathworks.com/help/matlab/ref/print.html#input argument formattype

End of Class

