Chromatic and Temperley-Lieb algebras

> Lawrence Hook

Chromatic and Temperley-Lieb algebras A homomorphism

Lawrence Hook

University of Virginia

MATH 4840 - 2016

Overview

Chromatic and Temperley-Lieb algebras

> Lawrence Hook

- Introduce
 - Chromatic algebra
 - Temperley-Lieb algebra
- Define a map Φ: Chromatic → Temperley-Lieb
- Prove Φ is well-defined & preserves trace
- Further applications knotted graph invariant

Terminology

Chromatic and Temperley-Lieb algebras

> Lawrence Hook

Definition

A **trivalent** graph is a graph in which all vertices have three associated edges

Definition

Given a planar graph G, the **dual** graph \hat{G} , is obtained as shown below.

Free Algebra Definition

Chromatic and Temperley-Lieb algebras

> Lawrence Hook

Definition

The **free algebra** in degree n, \mathcal{F}_n over $\mathbb{C}[\mathcal{Q}]$ Elements are linear combinations of trivalent graphs contained in a rectangle, with n endpoints on both the top and the bottom.

Chromatic and Temperley-Lieb algebras

> Lawrence Hook

Definition

The **chromatic algebra** in degree n, C_n is the algebra over $\mathbb{C}[Q]$ given by the quotient of the free algebra \mathcal{F}_n by I_n

Sometimes denoted C_n^Q . Set $C = \bigcup_n C_n$

The ideal I_n is generated by the "H-I relation" and the fact that "tadpoles" vanish.

Also note, the value of a simple, closed curve is set to $\mathcal{Q}-1$

Chromatic Polynomial

Chromatic and Temperley-Lieb algebras

> Lawrence Hook

Definition

The chromatic polynomial $\chi_{\Gamma}(\mathcal{Q})$ of a graph Γ , $\mathcal{Q} \in \mathbb{Z}^+$

is the number of colorings of the vertices of Γ with $\mathcal Q$ colors where no adjacent vertices have the same color.

Chromatic Polynomial definition

Chromatic and Temperley-Lieb algebras

Lawrence Hook

Properties:

- **2** if Γ has no edges and V vertices, then $\chi_{\Gamma}(Q) = Q^{V}$
- **3** if Γ contains a loop, then $\chi_{\Gamma}(\mathcal{Q}) = 0$

These properties allow us to generalize the chromatic polynomial from \mathbb{Z}^+ to \mathbb{C}

Chromatic Polynomial

State space formula

Chromatic and Temperley-Lieb algebras

> Lawrence Hook

An explicit formula can be derived from the preceding properties. This formula is called the **state space forumla** and is given by:

$$\chi_G(\mathcal{Q}) = \sum_{s \subseteq E(G)} (-1)^{|s|} \mathcal{Q}^{k(s)}$$

where $\mathbf{k}(\mathbf{s})$ is the number of connected components of G.

Lawrence Hook

Definition

Trace $tr_{\chi}: \mathcal{C}^{\mathcal{Q}} \to \mathbb{C}$

Defined on the additive generators, i.e. a graph G Connect the endpoints of the rectangle and denote the result \bar{G} Now, evaluate

$$tr_{\chi}(G) = \mathcal{Q}^{-1} \cdot \chi_{\hat{G}}(\mathcal{Q})$$

Lawrence Hook

Definition

The Temperley-Lieb algebra in degree n, TL_n is an algebra over $\mathbb{C}[d]$ (d is some complex number) generated by $\{1, E_1, ..., E_{n-1}\}$ with relations:

$$E_i^2 = E_i$$
 $E_i E_{i\pm 1} E_i = rac{1}{d^3} E_i$ $E_i E_j = E_j E_i$ for $|i-j| \ge 1$

Temperley-Lieb Geometric

Chromatic and Temperley-Lieb algebras

The generators of TL_3

Temperley-Lieb

Chromatic and Temperley-Lieb algebras

> Lawrence Hook

Definition

Trace $tr_d: TL_n^d \to \mathbb{C}$

Connect the endpoints and evaluate $d^{\#circles}$

Homomorphism

Chromatic and Temperley-Lieb algebras

Lawrence

Definition

Define a homomorphism $\Phi: \mathcal{F}_n \to TL_n^d$

Chromatic and Temperley-Lieb algebras

> Lawrence Hook

Theorem

Φ induces a well-defined algebra homomorphism

$$C_n^{\mathcal{Q}} \to TL_{2n}^d$$

where
$$Q = d^2$$

Chromatic and Temperley-Lieb algebras

> Lawrence Hook

Suffices to show that the relations in $C_n^{\mathcal{Q}}$ hold in TL_{2n}^d Namely, check the following

- H-I relation
- Tadpoles vanish
- Simple closed curves go to Q 1 (= $d^2 1$)

Let G be a trivalent planar graph. Then

$$\mathcal{Q}^{-1}\chi_{\hat{G}}(\mathcal{Q})=\Phi(G)$$

where $Q = d^2$.

It follows that the following diagram commutes

$$\begin{array}{ccc}
C_n^{\mathcal{Q}} & \xrightarrow{\Phi} & TL_{2n}^d \\
\downarrow tr_{\chi} & & \downarrow tr_{\alpha} \\
\mathbb{C} & \xrightarrow{=} & \mathbb{C}
\end{array}$$

Theorem 2 Example

Chromatic and Temperley-Lieb algebras

> Lawrence Hook

Example

$$Q^{-1}\chi_Q(\widehat{G}) = (Q-1)(Q-2) = d^4 - 3d^2 + 2 = \Phi(G).$$

Theorem 2 Example

Chromatic and Temperley-Lieb algebras

> Lawrence Hook

$$d \left(\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \end{array} \right) + \left(\begin{array}{c} \\ \end{array} \right) + \left(\begin{array}{c} \\ \end{array} \right) \\ + \frac{1}{d^2} \left(\begin{array}{c} \\ \end{array} \right) - \frac{1}{d^2} \left(\begin{array}{c} \\ \end{array} \right)$$

Chromatic and Temperley-Lieb algebras

Lawrence Hook First assume G connected, and recall the state sum forumla of the chromatic polynomial, here applied to the dual graph \hat{G}

$$\chi_{\hat{G}}(\mathcal{Q}) = \sum_{s \subseteq E(\hat{G})} (-1)^{|s|} \mathcal{Q}^{k(s)}$$

Now, since $\Phi(G)$ maps the edges of G to a binary sum, the total number of summands of $\Phi(G)$ is $2^{|E(G)|}$.

This power of two is precisely the number of terms in the state sum forumla above, and hints toward a potential correspondence. Indeed! $\Phi(G)$ can be parameterized by the subsets of the edge set of \hat{G} . (i.e. the same indexing of chromatic state-sum)

State sum of Φ (v1)

$$\Phi(G) = d^{V(G)/2} \sum_{s \subseteq E(\hat{G})} (-1)^{|s|} \frac{1}{d^{|s|}} d^{k(s) + n(s)}$$

- $\mathbf{k}(\mathbf{s})$ is the number of connected components.
- $\mathbf{n}(\mathbf{s})$ is "the rank of the first homology of $\hat{G}_{\mathbf{s}}$ "

The number of edges remaining after the removal of a spanning tree. Also, called "circuit rank"

Quick aside Euler characteristic

Chromatic and Temperley-Lieb algebras

Lawrence Hook

The **Euler characteristic** is a topological invariant.

In particular, for planar connected graphs it is defined to be V - E + F and always equals 2.

Lawrence Hook Since we restricted ourselves to trivalent graphs, \hat{G} is a triangulation.

$$\implies 2V(\hat{G}) = F(\hat{G}) + 4$$
, derived from Euler characteristic $= V(G) + 4$, by construction of \hat{G} $\implies V(G)/2 = V(\hat{G}) - 2$

State sum of Φ (v2)

$$\Phi(G) = \sum_{s \subseteq E(\hat{G})} (-1)^{|s|} d^{V(\hat{G})-2+k(s)+n(s)-|s|}$$

Claim:
$$V(\hat{G}) = k(s) - n(s) + |s|$$

Proof: True for s = 0, and the addition of one edge either decrements k(s) or increments n(s).

State sum of Φ (v3)

$$\Phi(G) = \sum_{s \subseteq E(\hat{G})} (-1)^{|s|} d^{2k(s)-2}$$

Substituting Q for d^2 , we get

$$\begin{aligned} \Phi(G) &= \mathcal{Q}^{-1} \sum_{s \subseteq E(\hat{G})} (-1)^{|s|} \mathcal{Q}^{k(s)} \\ &= \mathcal{Q}^{-1} \chi_{\hat{G}}(\mathcal{Q}) \end{aligned}$$

This concludes the proof for connected graphs.

The proof for unconnected graphs is not difficult.

If
$$G = G_1 \sqcup G_2$$
 then $\phi(G) = \phi(G_1)\phi(G_2)$ and $\chi_{\hat{G}}(Q) = Q^{-1}\chi_{\hat{G}_1}(Q)\chi_{\hat{G}_2}(Q)$

Knotted Graph Invariant

Chromatic and Temperley-Lieb algebras

> Lawrence Hook

Using the Φ constructed above, we can now map knotted graphs to the Jones polynomial.

$$d = -A^2 - A^{-2}$$

This turns out to be an invariant of knotted graphs! So, with Φ , we can extend the application of the Jones polynomial beyond knots.

For Further Reading I

Chromatic and Temperley-Lieb algebras

Lawrence Hook

P. Fendley, V. Krushkal. Tutte Chromatic Identities from the Temperley-Lieb Algebra

19 July 2008

L. Kauffman, S. Lins
Temperley-Lieb Recoupling Theory and Invariants of
3-Manifolds
1994