

- 1 Prise de contact / Nettoyage des données
- 2 Analyses univariées (corrections)
- 3 Analyses bivariées (corrélations entre var.)
- 4 Utilisation d'un modèle ML (complétion de data)
- 5 Réalisation d'un prototype de moteur de rec.
- 6 Conclusion & Perspectives

Phase 1: Prise de contact et premier nettoyage

df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1443749 entries, 0 to 1443748

Columns: 181 entries, code to carnitine_100g

dtypes: float64(123), int64(2), object(56)

memory usage: 1.9+ GB

Phase 1: Prise de contact et premier nettoyage

Sélection des variables en deux étapes :

- a) Pertinence Quantité de données renseignées
- b) Choix Redondances

Détail de la sélection par tranches :

- 1- Infos. Gén.: 'code', 'url', 'product_name'
- 2- Tags : 'countries_en', 'brands'
- **3- Misc. Ingr.:** 'allergens', 'nova_group', 'additives_en', 'additives_n', ingredients_from_palm_oil_n',
 - 'ingredients_that_may_be_from_palm_oil_n', 'nutriscore_score', '**nutriscore_grade'**
- **4- Nutrition**: 'energy-kcal_100g', 'energy_100g', 'fat_100g', 'saturated-fat_100g', 'trans-fat_100g', 'cholesterol_100g', 'carbohydrates_100g', 'sugars_100g', 'fiber_100g', 'proteins_100g', 'salt_100g', 'sodium_100g', 'vitamin-a_100g', 'vitamin-c_100g', 'calcium_100g', iron_100g'

181

29

- 1 Prise de contact / Nettoyage des données
- 2 Analyses univariées (corrections)
- 3 Analyses bivariées (corrélations entre var.)
- 4 Utilisation d'un modèle ML (complétion de data)
- 5 Réalisation d'un prototype de moteur de rec.
- 6 Conclusion & Perspectives

Phase 2: Analyses UNIVARIÉES

Var. Qualitatives Texte et "Nova Group"

Phase 2 : Analyses UNIVARIÉES

Var. Quantitatives Discontinue

	additives_n	$ingredients_from_palm_oil_n$	ingredients_that_may_be_from_palm_oil_n
count	640108.000000	640108.000000	640108.000000
mean	2.010467	0.020811	0.069804
std	2.846657	0.144587	0.302400
min	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000
50%	1.000000	0.000000	0.000000
75%	3.000000	0.000000	0.000000
max	49.000000	3.000000	6.000000

CORRECTION: ÉLIMINATION D'OUTLIERS

additives_n > 30

Phase 2 : Analyses UNIVARIÉES

Var. Quantitatives

Var. Énergétiques

Var. Nutritionnelles 100g

	energy-kcal_100g	energy_100g
count	1.094588e+06	1.163787e+06
mean	7.944650e+06	5.727473e+36
std	8.309733e+09	6.178739e+39
min	0.000000e+00	0.000000e+00
25%	1.010000e+02	4.180000e+02
50%	2.640000e+02	1.092000e+03
75%	4.000000e+02	1.674000e+03
max	8.693855e+12	6.665559e+42

	fat_100g	saturated- fat_100g	trans- fat_100g	cholesterol_100g	carbohydrates_100g	sugars_100g	fiber_100g
count	1.154305e+06	1.107510e+06	263902.000000	267888.000000	1.153760e+06	1.132704e+06	445640.000000
mean	1.381774e+01	1.227980e+08	0.046625	0.046948	2.850017e+01	1.386366e+01	2.940072
std	1.716359e+02	1.292305e+11	1.062264	1.459132	2.856277e+01	2.008663e+01	5.000099
min	0.000000e+00	0.000000e+00	0.000000	0.000000	0.000000e+00	-1.000000e+00	-20.000000
25%	6.000000e-01	1.000000e-01	0.000000	0.000000	3.570000e+00	7.000000e-01	0.000000
50%	6.900000e+00	1.900000e+00	0.000000	0.000000	1.570000e+01	3.900000e+00	1.560000
75%	2.142857e+01	7.220000e+00	0.000000	0.022000	5.357000e+01	2.000000e+01	3.600000
max	1.536795e+05	1.360000e+14	369.000000	300.000000	2.916670e+03	1.350000e+03	439.000000

CORRECTION: ÉLIMINATION D'OUTLIERS

energy_kcal > 1500

energy_100g > 6200

val_nutri > 100

val_nutri < 0

P2_2_EDA_2_Ana_Uni.ipynb

Phase 2 : Analyses UNIVARIÉES

Nutriscore : Score & Grade

N.Score

	nutriscore_score
count	582888.000000
mean	9.173872
std	8.914258
min	-15.000000
25%	1.000000
50%	10.000000
75%	16.000000
max	40.000000

N.Grade

df.nutriscore_grade.value_counts()

d 180667

c 122401

e 110512

94450

b 74858

Name: nutriscore_grade, dtype: int64

Phase 2 : Analyses UNIVARIÉES

Du Nutriscore_Score au Nutriscore_Grade

	Points	
Solid foods	Beverages	Logo
Min to -1	Waters	A B C D E
0 - 2	Min - 1	NUTRI-SCORE A B C D E
3 - 10	2 - 5	NUTRI-SCORE A B C D E
11 - 18	6 - 9	NUTRI-SCORE A B C DE
19 - max	10 - max	NUTRI-SCORE

- 1 Prise de contact / Nettoyage des données
- 2 Analyses univariées (corrections)
- 3 Analyses bivariées (corrélations entre var.)
- 4 Utilisation d'un modèle ML (complétion de data)
- 5 Réalisation d'un prototype de moteur de rec.
- 6 Conclusion & Perspectives

Retour THÉORIQUE 1/3

Recherche de corrélations linéaires entre 2 variables X et Y

(et un peu de correction, encore...)

Est-ce que le fait d'être dans telle ou telle fourchette de valeurs de X fait, ou semble faire, qu'on a plus de chance d'être dans telle ou telle fourchette de valeur de Y?

Retour THÉORIQUE 2/3

Cas de deux variables QUANTITATIVES

Graph utilisé : scatterplot ou nuage de points :

Indicateur numérique : Coefficient de Pearson

$$r_{XY} = rac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^n (X_i - \overline{X})^2} \sqrt{\sum_{i=1}^n (Y_i - \overline{Y})^2}}$$

-1 < r <1

La fonction **pearsonr** du module **scipy.stats** nous fournira à la fois ce **coefficient** ainsi que la **p-value** du test statistique.

Retour THÉORIQUE 3/3

Variable QUANTITATIVE et Variable QUALITATIVE : ANOVA

Indicateurs numériques : **Table ANOVA et valeur R2** obtenus grâce au script **anova.py** et la fonction **ols** du module **statsmodel.formula.api**

```
TABLE ANOVA nutriscore_grade en fonction additives_n

df sum_sq mean_sq F PR(>F)
Q(vqual) 4.0 2.473285e+05 61832.116508 7554.113932 0.0
Residual 441325.0 3.612344e+06 8.185224 NaN NaN
SCT 3.859673e+06
R2 = 0.06408016805367707
```


RAPPEL:

SST = Total Sum of Squares SSB = Sum of Squares Between SSW = Sum of Squares Within

0 < R2 < 1

P2_2_EDA_2_Ana_Uni.ipynb

Phase 3 : Analyses Bivariées

Nutriscore Score & Grade: correction

```
df[df.nutriscore grade == "a"]["nutriscore score"].describe()
         94450.000000
count
            -3.396379
mean
std
             2.307783
min
           -15.000000
25%
            -5.000000
50%
            -3.000000
75%
            -1.000000
            26.000000
max
Name: nutriscore score, dtype: float64
len(df[(df.nutriscore score > -1) & (df.nutriscore grade == "a")])
2282
```

Nutriscore Score & Grade: ANOVA

Test Statistique / Table ANOVA, avec le script anova.py

```
anova(df, "nutriscore_grade", "nutriscore_score")
TABLE ANOVA nutriscore_grade en fonction nutriscore_score
                                                              PR(>F)
                          sum sq
                                       mean sq
Q(vqual)
                   4.221583e+07
                                  1.055396e+07
                                                1.499432e+06
                                                                 0.0
Residual
          582883.0
                    4.102700e+06
                                  7.038635e+00
                                                         NaN
                                                                 NaN
SCT
                            4.631853e+07
R2 = 0.9114242011779303
```

Table de Corrélations

Corrélations entre Var. QUANTITATIVES

Corrélations entre Var. QUANTITATIVES

40

carbohydrates 100g

80

100

Énergie et Sel

Redondances! On élimine:

- "energy-kcal_100g"
- "sodium_100g"

Graisses et Sucres

Corrections Création de n.var :

- **TSu**
- **TGsat**

Var. QUANTITATIVES avec Var. QUALITATIVES - ANOVA

But : Trouver les var. les plus corrélées au Nutriscore_Grade

TABLE ANOVA nutriscore_grade en fonction saturated-fat_100g

	df	sum_sq	mean_sq	F	PR(>F)
Q(vqual)	4.0	1.037441e+07	2.593602e+06	65072.039909	0.0
Residual	575531.0	2.293917e+07	3.985739e+01	NaN	NaN
SCT		3.331	.357e+07		
R2 = 0.31	1416837764	31395			

TABLE ANOVA nutriscore_grade en fonction energy_100g

	df	sum_sq	mean_sq	F	PR(>F)
Q(vqual)	4.0	9.231485e+10	2.307871e+10	53129.95376	0.0
Residual	575592.0	2.500270e+11	4.343823e+05	NaN	NaN
SCT		3.423	419e+11		
R2 = 0.26	9656933171	54726			

TABLE ANOVA nutriscore_grade en fonction fat_100g

	df	sum_sq	mean_sq	F	PR(>F)
Q(vqual)	4.0	3.399460e+07	8.498651e+06	39831.726509	0.0
Residual	575545.0	1.228005e+08	2.133639e+02	NaN	NaN
SCT		1.567	951e+08		
R2 = 0.21	6809085676	87007			

TABLE ANOVA nutriscore_grade en fonction sugars_100g

	df	sum_sq	mean_sq	F	PR(>F
Q(vqual)	4.0	3.110646e+07	7.776615e+06	28352.255649	0.
Residual	575534.0	1.578607e+08	2.742856e+02	NaN	Na
SCT		1.889	671e+08		
R2 = 0.16	4613065053	34797			

Corrélations entre Var. QUALITATIVES

TEST CHI2 entre nova group & nutriscore grade

Table de contingence

Soustraction des "exp. values"

Heatmap

Indicateurs num. & test stat.

nova_group	1.0	2.0	3.0	4.0	Total
a	26297	222	18815	21228	66562
b	8583	174	13424	32095	54276
c	6249	1488	22304	55950	85991
d	2544	869	32135	91041	126589
е	1559	1151	12570	65325	80605
Total	45232	3904	99248	265639	414023

```
chi2, p, dof, exp = st.chi2_contingency(cont_tab)
87453.48413859907
0.0
20
```


- 1 Prise de contact / Nettoyage des données
- 2 Analyses univariées (corrections)
- 3 Analyses bivariées (corrélations entre var.)
- 4 Utilisation d'un modèle ML (complétion de data)
- 5 Réalisation d'un prototype de moteur de rec.
- 6 Conclusion & Perspectives

Phase 4 : Modèle

Modèle utilisé en vue de compléter la variable <u>nutriscore grade</u>

Modèle AD-HOC

Modèle "improvisé". On a gardé le premier avec des résultats "acceptables"

Variables choisies ("X")

["energy_100g", "fat_100g", "saturated-fat_100g", "TSu", 'proteins_100g', salt_100g", "sugars_100g"]

Algorithme

RandomForestClassifier() du module sklearn

Résultats

85 % de précision

Retrouvez le processus dans le Notebook :

- pré-processing
- modélisation
- prédiction / complétion

On obtient 447000 données nutriscore grade

- 1 Prise de contact / Nettoyage des données
- 2 Analyses univariées (corrections)
- 3 Analyses bivariées (corrélations entre var.)
- 4 Utilisation d'un modèle ML (complétion de data)
- 5 Réalisation d'un prototype de moteur de rec.
- 6 Conclusion & Perspectives

score

Tri du dataset en fonction de ce **SCORE**

words Jus d'Ananas à base de concentré Carrefour 0.856368 Jus d'ananas à base de concentré Carrefour 0.856368 Jus d'ananas à base de concentré Carrefour 0.856368 Jus d'Ananas Carrefour 0.789972 pase de concentré Carrefour, Groupe Carrefour Jus d'Ananas à Base de Concentré 0.764908 Phase 5 : Moteur

Prototype du moteur

Entrez votre recherche : Sau	mon fumé de Nor	vège		
product_name	nutriscore_grade	nova_group	fiber_100g	score
Saumon fumé Norvège	a	nan	nan	0.882435
Saumon fumé	a	nan	nan	0.687991
Saumon fumé	a	nan	nan	0.687991
Saumon fume	a	nan	nan	0.687991
Pavé de saumon de Norvège	a	nan	nan	0.582578
Saumon atlantique eleve en norvege	a	nan	nan	0.572049
Pavé de Saumon de Norvège	a	1.000000	nan	0.558376
Pavé saumon Norvège 2 × 120 g	a	nan	nan	0.558376
Pavé de saumon Norvège	a	nan	0.000000	0.555499

Phase 5 : Moteur

Prototype du moteur

	Entrez votre	recherche : Ca	viar		
[11]:	product_name	nutriscore_grade	nova_group	fiber_100g	score
	Caviar	d	nan	nan	1.000000
	En-K de caviar	d	nan	nan	1.000000
	Caviar	d	nan	nan	1.000000
	Caviar	d	nan	nan	1.000000
	Caviar	d	nan	nan	1.000000
	Caviar	d	nan	nan	1.000000
	Caviar	d	nan	nan	1.000000

- 1 Prise de contact / Nettoyage des données
- 2 Analyses univariées (corrections)
- 3 Analyses bivariées (corrélations entre var.)
- 4 Utilisation d'un modèle ML (complétion de data)
- 5 Réalisation d'un prototype de moteur de rec.
- 6 Conclusion & Perspectives

Phase 6: Conclusion

Avec une approche "data" et des manières "drastiques"...

Alors si en plus...

Conseil et expertise "métier" dans le domaine agro-alimentaire...

Approche plus réfléchie et meilleure utilisation des données et outils déjà à notre disposition...

Il y a matière à concevoir une application Open Food Search riche et attrayante. Nouveaux outils ouvrant de nouvelles perspectives...

Enrichissement des données, élargissement du cadre...

On a des résultats!