一、预处理的一些通用方法

- 1、get_params([deep]):返回模型的参数。
 - deep: 如果为True,则可以返回模型参数的子对象。
- 2、set_params(**params):设置模型的参数。
 - params: 待设置的关键字参数。
- 3、fit(X[, y]): 获取预处理需要的参数(如:特征的最大值、最小值等),不同的预处理方法需要的参数不同。
 - X: 训练集样本集合。通常是一个NumPy数组,每行代表一个样本,每列代表一个特征。
 - y: 训练样本的标签集合。它与X的每一行相对应。
- 4、transform(X[, copy]): 执行预处理,返回处理后的样本集。
 - X: 训练集样本集合。通常是一个NumPy数组,每行代表一个样本,每列代表一个特征。
 - copy: 一个布尔值, 指定是否拷贝数据。
- 5、fit_transform(X[, y]): 获取预处理需要的参数并执行预处理, 返回处理后的样本集。
 - X: 训练集样本集合。通常是一个NumPy数组,每行代表一个样本,每列代表一个特征。
 - y: 训练样本的标签集合。它与X的每一行相对应。

二、预处理的一些通用参数

- 1、copy:一个布尔值,指定是否拷贝数据。
 - 如果为False则执行原地修改。此时节省空间,但修改了原始数据。

三、特征处理

3.1 二元化

- 1、原型为sklearn.preprocessing.Binarizer(threshold=0.0, copy=True)
 - threshold: 浮点数,指定转换阈值,低于此阈值的值为0,高于此阈值的值为1。
 - copy: 一个布尔值, 指定是否拷贝数据。
- 2、方法有fit、transform、fit_transform
 - fit(X[, y]):不作任何事情,主要用于为流水线Pipeline提供接口。
 - transform(X[, copy]): 将每个样本的特征二元化。
 - fit_transform(X[, y]): 将每个样本的特征二元化。

3.2 独热编码

1、原型为sklearn.preprocessing.OneHotEncoder(n_values='auto', categorical_features='all', dtype=<class 'float'>, sparse=True, handle_unknown='error')

- n_vlaues:字符串'auto'(自动从训练数据中推断特征值取值上界)或者一个整数(指定所有特征取值的上界)。
 界)或者一个整数数组(每个元素依次指定每个特征取值的上界)。指定样本每个特征取值的上界。
- categorical_features:字符串'all'(所有特征都独热编码)或者下标数组(指定下标的特征独热编码)或者一个mask(对应为True的特征独热编码),指定哪些特征需要独热编码。所有非categorical_features的特征都将被安排在categorical_features特征的右边。
- dtype: 一个类型, 指定独热编码的数值类型, 默认为np.float。
- sparse: 一个布尔值,指定编码结果是否作为稀疏矩阵。
- handle_unknown: 一个字符串,指定转换过程中遇到未知的categorical_features时的异常处理策略。'error'抛出异常, 'ignore'忽略。
- 2、属性有active_features_、feature_indices_、n_values_
 - active_features_: 一个索引数组,存放转换后的特征中哪些是由独热编码而来。仅当n_values='auto'时该属性有效。
 - feature_indices_: 一个索引数组,存放原始特征和转换后特征位置的映射关系。第i个原始特征将被映射到转换后的[feature_indices_[i], feature_indices_[i+1]]之间的特征。
 - n_values_: 一个计数数组,存放每个原始特征取值的种类。一般为训练数据中该特征取值最大值加1(默认每个特征取值是从0开始的)。
- 3、方法有fit、transform、fit_transform
 - fit(X[, y]): 训练编码器。
 - transform(X[, copy]): 执行独热编码。
 - fit_transform(X[, y]): 训练编码器并执行独热编码。

3.3 标准化

3.3.1 MinMaxScaler

- 1、原型为sklearn.preprocessing.MinMaxScaler(feature_range=(0, 1), copy=True)
 - feature_range: 一个元组(min, max), 指定执行变换后特征的取值范围。
 - copy: 一个布尔值, 指定是否拷贝数据。
- 2、属性有min_、scale_、data_min_、data_max_、data_range_
 - min_: 一个数组,给出每个特征的原始最小值的调整值。设特征j的原始最小值j(min),原始最大值j(max),那么特征j的原始最小值的调整值为j(min) / (j(max) j(min))。
 - scale_: 一个数组,给出每个特征的缩放倍数。
 - data min : 一个数组,给出每个特征的原始最小值。
 - data_max_: 一个数组,给出每个特征的原始最大值。
 - data_range_: 一个数组,给出每个特征的原始范围。(范围=最大值-最小值)。
- 3、方法有fit、transform、fit_transform、inverse_transform、partial_fit
 - fit(X[, y]): 计算每个特征的最小值和最大值, 为后续转换做准备。

- transform(X[, copy]): 执行特征标准化。
- fit transform(X[, y]): 计算每个特征的最小值和最大值并执行特征标准化。
- inverse transform(X): 逆标准化, 还原成原始数据。
- partial_fit(X[, y]): 学习部分数据,计算每个特征的最小值和最大值,为后续转换做准备。它支持批量学习,对内存更友好。

3.3.2 MaxAbsScaler

- 1、原型为sklearn.preprocessing.MaxAbsScaler(copy=True)
 - copy: 一个布尔值, 指定是否拷贝数据。
- 2、属性有scale_、max_abs_、n_sample_seen_
 - scale_: 一个数组,给出每个特征的缩放倍数的倒数。
 - max abs: 一个数组,给出每个特征的绝对值的最大值。
 - n_sample_seen_: 一个整数,给出当前已处理的样本数(用于分批训练)。
- 3、方法参考MinMaxScaler

3.3.3 StandardScaler

- 1、原型为sklearn.preprocessing.StandardScaler(copy=True, with_mean=True, with_std=True)
 - copy: 一个布尔值, 指定是否拷贝数据。
 - with_mean: 一个布尔值,指定是否去中心化。为True时,缩放前先将每个特征中心化(即特征值减去该特征的均值)。若元素数据是稀疏矩阵形式,则不能指定with_mean=True。
 - with_std: 一个布尔值, 指定是否方差归一化。为True时, 缩放每个特征到单位方差。
- 2、属性有scale_、mean_、var_、n_sample_seen
 - scale_: 一个数组,给出每个特征的缩放倍数的倒数。
 - mean_: 一个数组,给出原始数据每个特征的均值。
 - var_: 一个数组, 给出原始数据每个特征的方差。
 - n_sample_seen: 一个整数,给出当前已处理的样本的数据(用于分批训练)。
- 3、方法参考MinMaxScaler

3.4 正则化

- 1、原型为sklearn.preprocessing.Normalizer(norm='l2', copy=True)
 - norm: 一个字符串,指定正则化方法。'l1'采用L1范数正则化,'l2'采用L2范数正则化,'max'采用L∞范数正则化。 化。
 - copy: 一个布尔值, 指定是否拷贝数据。
- 2、方法有fit、transform、fit_transform
 - fit(X[, y]):不作任何事情,主要用于为流水线Pipeline提供接口。
 - transform(X[, copy]): 将每个样本正则化为范数等于单位1。

