

CIENCIA DE LA COMPUTACIÓN

TRABAJO DE INVESTIGACIÓN E IMPLEMENTACIÓN DE ALGORITMOS QUE PERMITAN GENERAR NÚMEROS ALEATORIOS GRANDES Y ALGORITMOS QUE PRUEBEN LA PRIMALIDAD DE UN NÚMERO GRANDE

ÁLGEBRA ABSTRACTA

DANIELA CHAVEZ AGUILAR

GIULIA NAVAL FERNANDEZ

PAOLO DELGADO VIDAL

RODRIGO TORRES SOTOMAYOR

PABLO CARAZAS BARRIOS

AÑO 2021

RESUMEN

En el presente trabajo se muestra un análisis y comparación de diversas versiones algoritmos de generación de números aleatorios y de primalidad.

Aleatorios:

- Blum-blum-shub
- Micali-Schnorr
- RSA PRBG

Test Primos:

- Fermat
- Solovay-Strassen
- Miller-Rabin
- Criba de Eratóstenes

1. INTRODUCCIÓN

Analice cada uno de los algoritmos y determine las ventajas y desventajas de cada uno de ellos, ¿determine cuál de todos es el más eficiente?, Es decir quién converge más rápido. Cuál demora menos tiempo. Quién soporta trabajar con la mayor cantidad de bits.

CONTENIDO TEÓRICO

ALGORITMOS DE ALEATORIEDAD

a.Blum-blum-shub

Definición: el algoritmo Blum-Blum-Shub es un algoritmo generador de números pseudo-aleatorios propuesto por Lenore Blum, Manuel Blum y Michael Shub. Mediante una serie de exponenciaciones modulares y números primos de Blum (números primos congruentes a 3 módulo 4) generan una secuencia de bits.

Pseudocódigo:

ENTRADA: Tamaño de bits

SALIDA: Número Random

- ZZ p, q, n, seed, randnum
- string resultado
- p←random_blum_prime
- q←random_blum_prime
- seed←seed_generator(bits)
- n←p*q
- Mientras bits sea mayor que 0:
 - \circ randnum ← (seed*seed)mod n
 - seed ← randnum
 - resultado ← randnum mod 2
 - o bits--
- return strint2ZZ(resultado)

Seguimiento:

Randomnum	bit
2987	1
23994	0
16292	0
4793	1
31736	0
29714	0
28694	0
21771	1
Resultado = 137	Resultado = 10010001

Código C++:

```
ZZ random_numberBBS(ZZ bits){
  ZZ p,q,n,seed,nextRandNum;
  string resultado="";
  p = random_blum_prime(bits);
  q = random_blum_prime(bits);
  seed = seed_generator(bits);
  n = p*q;
  resultado += "1";
  while(bits != 1){
    nextRandNum = divi((seed*seed),n);
    seed = nextRandNum;
    resultado += Num2Str(par(nextRandNum));
    bits--;
  }
```

return binary2ZZ(resultado);}

b. Micali-Schnorr

Definición: Es más eficiente que el RSA PRBG desde [N (1-2/e) bits se generan por exponenciación por e.

Pseudo Algoritmo:

Input: n (bits

Outcome: Secuencia pseudoaleatoria de n bits

- 1. Setup: generar claves p, q, n, phi(n) y e. Con ellas definir N=cantidad de bits de n, k=floor(N(1-2/e)) y r=N-k.
- 2. Generar una semilla aleatoria de r bits para x₀
- 3. Por cada i entre 1 y l:

a.
$$y_i = x_{i-1}^e \mod n$$

b. $x_i = los \ r \ MSB \ de \ y_i$

c. $z_i = los \ k \ LSB \ de \ y_i$

4. Retornar $z_1 \parallel z_2 \parallel z_3 \parallel \ldots \parallel z_l$ (\parallel denota concatenación)

Código C++

```
ZZ micali_schnorr(long N){

Generar_claves(N);

ZZ k=N*(1-ZZ(2)/e);

long r=N-k;

long l=N/k;

vector<ZZ> y, z;

vector<ZZ> x;
```

```
x[0] = RandomBnd(power_ZZ(2,N)-1);

for (long i=1; i<l; i++){
      y[i]= right2left_binary_modexp(x[i-1],e,n);
      x[i]= y[i]>>(N-r);

      z[i]= y[i]<<(N-r);
}

return vector2num(z);
}</pre>
```

c. RSA PRBG

Definición: El generador RSA es un generador de algoritmos criptográficamente seguro, asumiendo que el problema del RSA es intratable (romper el algoritmo).

Pseudo Algoritmo:

```
Input: n (bits)
```

Outcome: Secuencia pseudoaleatoria de n bits

- 1. Setup: generar claves p, q, n, phi(n) y e.
- 2. Generar una semilla aleatoria entre 1 y n-1 para x₀
- 3. Por cada i entre 1 y l:

a.
$$x_i = x_{i-1}^e \mod n$$

b. $z_i = LSB \ de \ x_i$

4. Retornar $z_1 \parallel z_2 \parallel z_3 \parallel \ldots \parallel z_l$ (\parallel denota concatenación)

Código c++:

```
long RSA_PRNG(long N){
Generar_claves(N);
vector<long> y, z;
vector<long> x [0] = divi(seed_generator(N),n);
```

```
for (long i=1; i<N; i++){
            x[i]= rigth2left_modexp(x[i-1],e,n);
            z[i]=x[i]-((x[i]>>1)<<1);
}
return vector2num(z);
}</pre>
```

ALGORITMOS DE PRIMALIDAD

a. Fermat

Definición: Según el Teorema de Fermat, si un número n es primo y a es un entero entre 1 y n-1, entonces $a^{n-1} \equiv 1 \mod n$. A partir de esto, tenemos que, dado un número n cuya primalidad está en cuestión, basta encontrar un entero a en dicho rango que no cumpla la igualdad, para demostrar que n es compuesto.

Pseudo-algoritmo:

}

}

return true;

b. Solovay-Strassen

Definición: La prueba de primalidad probabilística de Solovay-Strassen fue la primera prueba de este tipo popularizada por la advenimiento de la criptografía de clave pública, en particular el criptosistema RSA. Ya no hay ningún motivo para utilizar esta prueba, porque hay una alternativa disponible (la prueba de Miller-Rabin) que es más eficiente y siempre al menos tan correcta.

Pseudo Algoritmo:

- 1. Input: n>=3 y que sea impar, t>=1
- 2. Output: Es primo true, no es primo False
 - ZZ a, r
 - Mientras 2<=a<=n-2
 - a=número aleatorio
 - r=a^((n-1)/2) mod n
 - Si r != 1 y r != n-1, retorna falso
 - ZZ s = Jacobi(a,n)
 - Si r != s mod , retorna falso
 - Retorna true

Código c++

```
bool Solovan_Strassen(ZZ n, ZZ t)
{
    if(n>=3 && divi(n,conv<ZZ>(2))!=0 && t>=1)
    {
        ZZ a, r;
        while(a>=2 && a<=n-2){
            a=RandomBnd(); }
        r = divi(power ZZ(a,(n-1)/2),n);</pre>
```

```
if(r!=1 && r!=n-1) return false; //composite

ZZ s;

s = Jacobi(a,n);

if(r!=divi(s,n) return false; //composite

return true; //prime
}
```

c. Miller-Rabin

Definición: es un test de primalidad, es decir, un algoritmo para determinar si un número dado es primo, similar al test de primalidad de Fermat. Su versión original fue propuesta por G. L. Miller, se trataba de un algoritmo determinista, pero basado en la no demostrada hipótesis generalizada de Riemann; Michael Oser Rabin modificó la propuesta de Miller para obtener un algoritmo probabilístico que no utiliza resultados no probados.

Pseudocódigo:

- 1. Input: n y t
- 2. Output: Si es primo true si no false
 - ZZ a, y, i, j, s, r
 - Mientras n>1
 - o n se divide entre 2
 - o s se aumenta en 1
 - Mientras i<=t
 - a=número aleatorio mayor a 2 y menor a n-2
 - y=a^r mod n
 - Si y != 1 y y != n 1
 - ∘ j=1
 - Mientras j<=s-1 y y != n-1
 - y=y^y mod n
 - Si y = 1, retorna false
 - y se aumenta en 1
 - SI y != n-1, retorna false
 - Retorna true

Código C++

```
bool miller_rabin(ZZ n,long t){
  if (n<2) return false;
  if (n==2 || n==3) return true;
  //if(par(n)) return false;//ahorrar trabajo si es par
  ZZ a,y,i,j,s,r;
  s=0;
  r=n-1;
  while(r>1 && par(r)){
     r>>=1;
     s++;
  }
  for(i=1;i<=t;i++){
     a=ZZ(2)+divi(seed_generator(bitz), n-3);
     y=right2left_binary_modexp(a,r,n);
     if(y!=1 && y!=n-1)
     {
       j=1;
       while(j<=s-1 && y!=n-1)
       {
          y=divi(y*y,n);
          if(y==1)return false;
          j++;
       if(y!=n-1)return false;
     }
```

```
}
return true;
}
```

d. Criba de Eratóstenes

Definición: es un algoritmo que permite hallar todos los números primos menores que un número natural dado. Se forma una tabla con todos los números naturales comprendidos entre 2 y n, y se van tachando los números que no son primos de la siguiente manera: Comenzando por el 2, se tachan todos sus múltiplos; comenzando de nuevo, cuando se encuentra un número entero que no ha sido tachado, ese número es declarado primo, y se procede a tachar todos sus múltiplos, así sucesivamente. El proceso termina cuando el cuadrado del siguiente número confirmado como primo es mayor que n.

Código C++:

```
vector<bool> isPrime;
vector<long long> primes3;
void criba3(long long n) {
    primes3.push_back(2);
    primes3.push_back(3);
    for (long long i=5; i<n; i=i+2) {if (divi(i,3)!=0) primes3.push_back(i);}
    for (long long i=2; (primes[i])*(primes[i])<n; i++) {
        for (long long k=i+7; k<primes3.size(); k++) {if (divi(primes3[k],i)== 0){
        primes3.erase(primes3.begin()+k-1);primes3.resize(primes3.size());primes3.shrink_to_fit();}
    }
}</pre>
```

ANÁLISIS DE ALGORITMOS

Para los algoritmos utilizamos: Codeblocks usando la librería NTL para probar

con los distintos números de bits. **Sistema Operativo:** Windows 10

Algoritmos de aleatoriedad

	Blum-blum-shub			Mical	i-Schnorr
Bits	Número #1	Número #2		Número #1	Número #2
8	137	231		171	182
16	50525	33609		49914	57606
32	2251637947	761555861		4209612127	3542448294
64	111853381811892 85525	1273661772684 8423495		9797513821929 039567	9535944148482861 307
128	338566200913088 282816198675824 456666445	3270409805155 8049391055971 4654050581653		2370013029632 7500888051390 9949532676811	61281701206208644
256	771964585164050 615269171948464 190843311069846 080389270850272 816720843956578 69	8230424151931 9681463307098 0009033377427 4033686330000 1421277095875 554348778865		8259959051012 4009456390007 4827205325648 9102063942394 11161140197098 04182312591	27743133640186700
512	937450714132612 182764590800574 412697837967595 116743002956201 753550876010812 644062090690304 574458414714475 433513419297976 024050097709674 592474091457264 1212	1336387261513 9082476408901 77252732721187 2997357693591 6887497957834 6455245624641 3252185007653 5207135892387 9926373947523 51717981132769 8248471868406 3253576487		7430591099248 5723771247912 4704667440576 9250668221169 9470043174585 0766095344692 1473684907501 3628766838371 9122062569368 3430664232774 3825362935113 80628245016)5889674383796837
1024	169635026845994 978752912352416	1579639961245 1229288980666	Micali-Schn orr	1312530189181 8416765602493	42581742696225177 51951723171939165

	932823746548105	3693901673209	6170653250261	
	971590145416992	4923050816927	4722744307219	
	703776670171977	4472025592186	7892984311190	
	333085596363277	3134168669243	7640782238993	
	893739420647806	0132224140064	4360696280605	
	245632012952276	7582927181317	7366952405637	
	357042607844580	6375031294265	5441609872964	
	226314373766962	2750336428667	6046538858437	
	738565248106086	2077720103416	5373720763700	
	579521151365651	55119020437052	8136053495172	
	907883650639997	1585684373416	0502637138413	
	711247615630207	0691723279694	9681649008421	
	164918006697941	17321187666057	7374012172382	
	344827381570619	5393910250666	3713141522114	
	542889625797798	89954083655611	5252330325801	
	474920782219783	6957413750397	3593637940338	
	544361192274192	6777148446624	6598996723827	
	965692556694147	3846862055028	9786468482629	
	754606970	73085584311901	1440791070809	
		1297107695914	2824259500144	
		7916103177884	5155051841398	
		096567	3621366461	
	168471953358133	2375873548584		
	315829067843526	5561012527006		
	322310001704885	1942051695837		
	725881689239905			
	907414566388223	4765668980410		
	755142931817670	8995214680934		
	315641610736177	82460927711976		
	724821887638386	11456061388752		
	392324408665900	1929434761851		
	241732339155549	7286541786428		
		91531106208521		
	753469041333937	5471410607349		
	109866289897291	5184357051219		
	074056630039933			
	598011522711745	1898649398743		
	351173469765606	67249211879398		
	945948941928229	5325887908918		
	154387956664778	7139487834225		
	636075742608263	0986298364781		
	724234125260252	7826279057800		
	691148806559459	2172953064091		
	761473660797548			
	001945157544400	3343338365108		
	325288682790942	4750676007060		
	143071682514576	5314100350606		
	366534257356045		09714167674667	
	665883824724239	1661516772128	95106985879838	
	334067856497756	3135961843868	69184164648850	
2048	059179405873470	2421398758202	185562859562708	

	140267174899879			
	764608517485894	5930133598897		
	573261850792147	3727559938515		
	454835238065582	1947073462079		
	007852959980972	2947042062328		
	582320485362876	6755805253838		
	531284695748530	7770347168893		
	981332272533523	4595676339745		
	776704369512722	3465641748746		
	026657368603239	9820197997761		
	081241812506005			
	712153904807644	1943360498005		
	44	0824404441250		
		7108544584662		
		8359134494872		
		92364113257006		
		7689431083627		
		9547391342879		
		4		
Promedi				
0	750562869,7	253863233,7	1403220737	1180835361

	Blum-blum-shu b	Micali-Schnorr
Loops	1	1
Variables	5	6

Aleatorios

PRIMALIDAD

	Solovay-Strassen	Miller-Rabin
Loops	1	3
Variables	5	8

Loops y Variables

CONCLUSIONES GENERALES

Como conclusión obtuvimos que el algoritmo más eficiente de aleatoriedad es el Blum-Blum-Shub ya que después de hacerle las pruebas respectivas esta se encuentra dentro del promedio. Y para el algoritmo de primalidad el más eficiente es el test de Miller-Rabin.

REFERENCIAS

Generación de números aleatorios:

Handbook of Applied Cryptography, Menezes, Oorschot, Vanstone. CRC Press, New York, fifth edition (2001). http://www.cacr.math.uwaterloo.ca/hac/

Capítulo 4: Public key parameters. Random search for probable primes. Página 145. http://www.cacr.math.uwaterloo.ca/hac/about/chap4.pdf

Capítulo 5: Pseudorandom Bits and Sequences http://cacr.uwaterloo.ca/hac/about/chap5.pdf MARTON, Kinga; SUCIU, Alin; IGNAT, Iosif. (2010) Randomness in digital cryptography: A survey. Romanian Journal of Information Science and Technology, vol. 13, no 3, p. 219-240. http://romjist.ro/content/pdf/kmarton.pdf

STIPČEVIĆ, Mario; KOÇ, Çetin Kaya. True random number generators. En Open Problems in Mathematics and Computational Science. Springer, Cham, 2014. p. 275-315. http://cetinkayakoc.net/docs/b08.pdf

Generación de primos:

Breve Reseña sobre la Hipótesis de Riemann, Primalidad y el Algoritmo AKS http://www.criptored.upm.es/guiateoria/gt_m117j.htm

Probabilidad, Números Primos y Factorización de Enteros. Implementaciones en Java y VBA para Excel. Revista digital Matemática, Educación e Internet

https://tecdigital.tec.ac.cr/revistamatematica/HERRAmInternet/v8n2-DIC007/Probabilidad_Primos Factorizacion.pd

Los enigmáticos números primos

https://www.yumpu.com/es/document/read/14281137/los-enigmaticos-numeros-primoscinve sta