Algèbre linéaire pour Microtechnique

Commençons par rappeler les notations qui ont été introduites dans le cours du 27.10.2020.

Soit
$$A \in M_{n \times m}(\mathbb{R})$$
. Alors l'application $T_A : \mathbb{R}^m \to \mathbb{R}^n$ telle que $T_A((\alpha_1, \dots, \alpha_m)) = A \cdot \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_m \end{pmatrix}$ est

l'unique application linéaire de \mathbb{R}^m dans \mathbb{R}^n telle que sa représentation matricielle par rapport aux bases canoniques des deux espaces est égale à A. Noter ici qu'on identifie \mathbb{R}^n avec les matrices $M_{n\times 1}(\mathbb{R})$.

Définition/Notation On définit ker A comme étant ker T_A et Im A comme étant Im T_A .

On rappelle aussi la définition d'un isomorphisme d'espaces vectoriels (voir §5.4 du MOOC) : Soient V et W des espaces vectoriels. Une application linéaire $f:V\to W$ est appelée un isomorphisme si f est bijective, c'est-à-dire, injective et surjective. S'il existe un isomorphisme $f:V\to W$ alors on dit que V et W sont isomorphes.

Si V est un espace vectoriel de dimension finie, dim V=n, alors V est isomorphe à \mathbb{R}^n .

Exercice 1. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ la transformation linéaire donnée par $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x-y \\ 3x+y \end{pmatrix}$. Donner la matrice de f par rapport à la base $B = \{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \}$ de \mathbb{R}^2 .

Exercice 2. Soit T l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 dont la matrice par rapport à la base canonique E est

$$[T]_{EE} = \begin{pmatrix} 2 & 1 & -1 \\ 3 & 4 & -5 \\ 3 & 3 & -4 \end{pmatrix}$$

 $Soit \ E' = (e'_1, e'_2, e'_3) \ où \ e'_1 = (1, 1, 1), \ e'_2 = (1, -1, 0), \ et \ e'_3 = (0, 0, 1). \ Calculer \ [T]_{E'E'}.$

Exercice 3. Soit

$$A = \begin{pmatrix} 1 & 0 & 0 & 3 \\ 3 & -1 & 2 & 1 \\ 2 & -1 & 0 & 2 \end{pmatrix}.$$

Soit $T_A: \mathbb{R}^4 \to \mathbb{R}^3$ l'application linéaire dont la matrice de T_A par rapport aux bases canoniques de \mathbb{R}^4 et \mathbb{R}^3 soit la matrice A.

- 1. Sachant que $\begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$ sont linéairement indépendant que peut-on conclure concernant $\ker(T_A)$?
- 2. Trouver une base de ker T_A
- 3. Trouver une base de $\operatorname{Im} T_A$.
- 4. Est-ce que l'application linéaire T_A est injective? Et surjective?

Exercice 4. On considère l'application $T: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^2$ définie par

$$T(p) = \begin{pmatrix} p(0) \\ p(0) \end{pmatrix}$$

1. Vérifier que T est linéaire.

- 2. Trouver la dimension et une base de Im(T).
- 3. Appliquer le Théorème du rang pour trouver la dimension de ker(T).
- 4. Vérifier le résultat de (c) en trouvant une base de ker(T).

Exercice 5. Considérons l'application $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par

$$f(x, y, z) = (2x - 4y + 2z, 5x + 3y - 2z)$$

ainsi que $g: \mathbb{R}^2 \to \mathbb{R}^4$ définie par g(x,y) = (x, x+y, x-y, y).

- 1. Ecrire la matrice A de f et la matrice B de g, par rapport aux bases canoniques des différents espaces vectoriels.
- 2. Calculez $g \circ f : \mathbb{R}^3 \to \mathbb{R}^4$, de deux façons différentes.
- 3. Trouver une base de $\ker(g \circ f)$ et de $\operatorname{Im}(g \circ f)$ et déduire $\operatorname{rang}(g \circ f)$.

Exercice 6. Soient

$$\overrightarrow{w} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \quad et \quad A = \begin{bmatrix} 1 & 3 & -5/2 \\ -3 & -2 & 4 \\ 2 & 4 & -4 \end{bmatrix}.$$

Soit $T: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire dont la représentation matricielle par rapport à la base canonique de \mathbb{R}^3 est donnée par A. Déterminer si \overrightarrow{w} est dans ImT, dans KerT ou bien dans les deux.

Exercice 7. On considère l'application $T: \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ définie par

$$T(a+bt+ct^{2}+dt^{3}) = (a+b+c+d) + (a+b)t + (c+d)t^{2}.$$

On admet que T est une application linéaire.

- (a) Trouver la dimension et une base de ImT.
- (b) Trouver la dimension et une base de KerT.
- (c) Vérifier que le polynôme $7 + 5t + 2t^2$ est bien dans l'image de T et donner ses coordonnées dans la base trouvée en (a).
- (d) Vérifier que le polynôme $2-2t-5t^2+5t^3$ est bien dans le noyau de T et donner ses coordonnées dans la base trouvée en (b).

Exercice 8. Soient les matrices $\mathbf{A} = \begin{pmatrix} 1 & 4 & 5 & 6 \\ 0 & 1 & 2 & 1 \\ 2 & 7 & 8 & 11 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ et $\mathbf{B} = \begin{pmatrix} 1 & -1 \\ 0 & 0 \\ 2 & -2 \\ 0 & 0 \end{pmatrix}$. Considérons l'application linéaire

$$T: \mathbb{R}^6 \to \mathbb{R}^4 \ où \ T(v_1, v_2, v_3, v_4, v_5, v_6) = (\mathbf{A} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix})^t + (\mathbf{B} \begin{pmatrix} v_5 \\ v_6 \end{pmatrix})^t.$$

- 1. T est-elle injective? T est-elle surjective?
- 2. Quelle est la dimension de ker(T)? Quelle est la dimension de Im(T)?
- 3. Trouver une base de ker(T). Trouver une base de Im(T).
- 4. L'équation T(v) = (1, -1, 1, 0) possède-t-elle une solution?
- 5. Déterminer $si(1,0,2,0,-1,2) \in ker(T)$ ou non.

Exercice 9. Soit W l'ensemble des vecteurs de $(x, y, z) \in \mathbb{R}^3$ vérifiant l'équation

$$x + 2y + z = 0.$$

1. Donner une base de ce sous-espace.

2.	$D\acute{e}crire~W~c$	comme le noyau d'un	e application	linéaire T	$\vec{\cdot}:\mathbb{R}^3$ -	$\to \mathbb{R}^1$.	$\mathit{Est}\text{-}\mathit{ce}$	que l'application	n linéaire T
est injective		? Et surjective?							

3. Décrire W comme l'image d'une application linéaire $S: \mathbb{R}^2 \to \mathbb{R}^3$. Est-ce que l'application linéaire S associée à S est injective? Et surjective?

Exercice 10. Questions à choix multiples (une seule réponse correcte)

Les lignes de A sont linéairement indépendantes.

	ere reprise correcte					
1.	Soit A une matrice carrée et a un nombre réel. Alors					
	\Box A + I est inversible.					
	$\Box (A-I)(A+I) = A^2 - I.$ $\Box (A+I)(A+I) = A^2 + I.$					
	$\Box (A+I)(A+I) = A + I.$ $\Box (aA)^2 = a(A^2).$					
9	Soit A une matrice 7×8 et $T: V \to W$ l'application linéaire dont la représentation par rapport aux					
۵.	bases B_V et B_W de V , respectivement W , est donnéée par A . Alors					
	$\square \dim V = 7$					
	\square dim $V=8$					
	$\Box \dim W = 8$					
	$\Box \dim V = 15$					
3.	La matrice qui représente une application linéaire $T: M_{2\times 3}(\mathbb{R}) \to \mathbb{R}^3$ est de taille $\square \ 3 \times 3$					
	$\square \ 3 \times 9$					
	$\square \ 3 \times 6$					
	\square 6 × 3					
	$\begin{bmatrix} -1 & 3 \end{bmatrix}$					
4.	Soit $A = \begin{bmatrix} -2 & 6 \\ 4 & 12 \end{bmatrix}$.					
,	$Soit A = \begin{bmatrix} -1 & 3 \\ -2 & 6 \\ -4 & 12 \\ 3 & -9 \end{bmatrix}.$					
	\square KerA est un sous-espace de \mathbb{R}^4 de dimension 0.					
	\square KerA est un sous-espace de \mathbb{R}^2 de dimension 0.					
	\square KerA est un sous-espace de \mathbb{R}^4 de dimension 1.					
	\square KerA est un sous-espace de \mathbb{R}^2 de dimension 1.					
	$\begin{bmatrix} -1 & 3 \\ 2 & 3 \end{bmatrix}$					
5.	$Soit \ A = \begin{bmatrix} -1 & 3 \\ -2 & 6 \\ -4 & 12 \\ 2 & 0 \end{bmatrix}.$					
	$\begin{bmatrix} -4 & 12 \\ 3 & -9 \end{bmatrix}$					
	\square ImA est un sous-espace de \mathbb{R}^4 de dimension 0					
	\square ImA est un sous-espace de \mathbb{R}^2 de dimension 0					
	\square ImA est un sous-espace de \mathbb{R}^4 de dimension 1					
	\square ImA est un sous-espace de \mathbb{R}^2 de dimension 1					
6.	Soit A une matrice de taille $m \times n$.					
	\square Les colonnes de A engendrent le noyau de A^T . \square Le sous-espace engendré par les lignes de A est égal au sous-espace engendré par les colonnes de A .					
	Le sous-espace engendré par les lignes de A est isomorphe au sous-espace engendré par les colonnes					
	$de\ A.$					
	\Box La dimension du noyau de A est égale à la dimension du noyau de A^T .					
7.	Il existe une matrice A de taille 3×7 telle que :					
	\Box $dimKerA = 2$ et $dimImA \le 4$					
	$\Box \dim Ker A = 3 \text{ et } \dim Im A = 4$ $\Box \dim Ker A = 4 \text{ et } \dim Im A \leq 2$					
	$ \Box \ dimKerA = 4 \ et \ dimImA \le 2 $ $ \Box \ \ dimKerA = 5 \ et \ dimImA = 2 $					
8	Soit A une matrice inversible de taille 5×5 . Laquelle des affirmations suivantes est vraie?					
٠.	\square Les colonnes de A n'engendrent pas \mathbb{R}^5 .					

Exercice 11. On rappelle la formule pour la projection sur une droite dans \mathbb{R}^2 et la symétrie orthogonale par rapport à une droite, vus dans §5.2 du MOOC:

Soit $\vec{u} = (a,b) \in \mathbb{R}^2$ et soit $D = \text{Vect}(\vec{u})$ la droite dans \mathbb{R}^2 qui passe par l'origine définie par \vec{u} . La projection orthogonale de \mathbb{R}^2 sur D est donnée par $\text{proj}_{\vec{u}} : \mathbb{R}^2 \to \mathbb{R}^2$, où $\text{proj}_{\vec{u}}((x,y)) = \frac{ax + by}{a^2 + b^2}(a,b)$.

Ensuite, la symétrie orthogonal par rapport à cette droite est l'application $S_{\vec{u}}: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $S_{\vec{u}}(\vec{w}) = 2 \operatorname{proj}_{\vec{u}}(\vec{w}) - \vec{w}$. Fixons la base ordonnée B = ((1,1),(-1,1)) de \mathbb{R}^2 et la base canonique E = ((1,0),(0,1)).

1. Soit $\vec{u} = (1,1)$ et soit $p : \mathbb{R}^2 \to \mathbb{R}^2$ la projection orthogonale sur la droite définie par \vec{u} . Trouver les représentations matricielles suivantes :

$$[p]_{EE}; \quad [p]_{BB}; \quad [p]_{EB}; \quad [p]_{BE}.$$

- 2. Même question pour la symétrie orthogonal $S_{\vec{u}}: \mathbb{R}^2 \to \mathbb{R}^2$.
- 3. Soit $P: \mathbb{R}^3 \to \mathbb{R}^3$ la projection orthogonale sur le plan x=0. Soit E=((1,0,0),(0,1,0),(0,0,1)). Trouver la représentation matricielle de P par rapport à la base E.
- 4. On sait que $S_{\vec{u}} \circ S_{\vec{u}} = \mathrm{id}_{\mathbb{R}^2}$. Vérifier que la matrice $A = [S_{\vec{u}}]_{EE}$ est inversible et égal à son propre inverse.