Задание к семинару №10

Решить двумерное однородное уравнение теплопроводности с граничными условиями Дирихле

$$\begin{cases} \frac{\partial u}{\partial t} = k \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right), \\ u(x, y, 0) = \mu(x, y), \\ u(0, y, t) = \mu(0, y), u(a, y, t) = \mu(a, y), \\ u(x, 0, t) = \mu(x, 0), u(x, b, t) = \mu(x, b), \end{cases}$$

$$(1)$$

В Области $(x, y, t) \in [0; a] \times [0; b] \times [0; T]$.

Функция $\mu(x,y)$ задается следующим образом (х и у — вектора, содержащие координаты узлов прямоугольной сетки):

```
function z = mu(x,y)
z = zeros(length(y),length(x));
for i=1:length(x)
        for j=1:length(y)
        z(j,i) = -0.01*sin(x(i))+0.05*sin(y(j));
    end
end
```

Параметры области: $a=6\pi$, $b=4\pi$, T=10. Выбрать равномерную сетку с $h_x=h_y=\frac{\pi}{30}$ и шагом по времени $\tau=0.1$. Коэффициент теплопроводности k=0.2.

Отображать двумерное решение на каждом временном слое с помощью функции mesh.

Указания

Для решения использовать эволюционно-факторизованную схему

$$\begin{cases}
\left(E - \frac{\tau}{2} \Lambda_{x}\right) v = \Lambda_{x} u + \Lambda_{y} u, \\
\left(E - \frac{\tau}{2} \Lambda_{y}\right) \Delta u = v, \\
\hat{u} = u + \tau \Delta u.
\end{cases} \tag{2}$$

Здесь Λ_x и Λ_y - операторы пространственного дифференцирования. Проблем с промежуточным граничным условием здесь не возникает, так как u на границе не меняется со временем, а значит на границе $\hat{u} - u = 0$ и v = 0.

Операторы $P_x = E - \frac{\tau}{2} \Lambda_x$ и $P_y = E - \frac{\tau}{2} \Lambda_y$ могут быть записаны в матричной форме с помощью замены Λ_x и Λ_y на соответствующие матрицы пространственного дифференцирования L_x и L_y . При этом надо помнить, что

$$\Lambda_{x}u = uL_{x},
\Lambda_{y}u = L_{y}u,$$
(3)

т.е. матрицы пространственного дифференцирования L_x и L_y умножаются на матрицу значений в узлах сетки u с разных сторон. Аналогично при обращении операторов P_x и P_y надо использовать правое и левое матричное деление соответственно.

Не следует применять операторы пространственного дифференцирования Λ_x и Λ_y к крайним строкам и столбцам матрицы u, так как в таком случае в Δu в крайних строках и столбцах будут содержаться ненулевые значения, что приведет к нарушению граничных условий в расчете.