Aufgabe 1 (Frühjahr 2014). Seien $a, b \in \mathbb{Q}$, und sei K der Zerfällungskörper des Polynoms

$$p = x^3 + x + b \in \mathbb{Q}[x].$$

Wir nehmen an, daß p keine Nullstelle in $\mathbb Q$ hat. Zeigen Sie:

- (a) p ist irreduzibel in $\mathbb{Q}[x]$ und hat keine mehrfache Nullstellen in K.
- (b) Die Galoisgruppe $G = \operatorname{Gal}(K/\mathbb{Q})$ ist eine Untergruppe von \mathfrak{S}_3 .
- (c) G hat entweder 3 oder 6 Elemente.
- (d) Sei $\delta = (\alpha_1 \alpha_2)(\alpha_1 \alpha_3)(\alpha_2 \alpha_3)$, wobei $\alpha_1, \alpha_2, \alpha_3 \in K$ die Nullstellen von p sind. Dann gilt für $\sigma \in G$ stets $\sigma(\delta) = \delta$ oder $\sigma(\delta) = -\delta$.
- (e) Gilte $\sigma(\delta) = \delta$ für alle $\sigma \in G$, dann ist G zyklische und hat Ordnung 3. Andernfalls ist $G = \mathfrak{S}_3$.

Lösung. Zu (a): Da p ein Polynom vom Grad 3 über \mathbb{Q} ist, und keine Nullstelle in \mathbb{Q} hat, ist es irreduzibel über \mathbb{Q} . Für eine Zerlegung in nichttriviale normierte Faktoren p = fg mit $f, g \in \mathbb{Q}[x]$ gilt nämlich

$$3 = \deg(p) = \deg(f) + \deg(g).$$

Die natürliche Zahl 3 hat aber nur die Zerlegungen 2+1=3=1+2, also wäre eines der beiden Polynome f oder g linear, und dann hätter p eine Nullstelle in \mathbb{Q} , Widerspruch.

Da $\mathbb Q$ von Charakteristik 0 ist, ist jedes irreduzible Polynom über $\mathbb Q$ separabel. Insbesondere hat das irreduzible Polynom p über keinem Zerfällungskörper mehrfache Nullstellen.

Zu (b): Sei $N = \{\alpha_1, \alpha_2, \alpha_3\}$ die Menge der Nullstellen von p. Die Galoisgruppe eines Zerfällungskörpers von p operiert transitiv auf dieser Menge durch

$$\operatorname{Gal}(K/\mathbb{O}) \times N \to N, (\sigma, \alpha) \mapsto \sigma(\alpha).$$

(Es ist klar, daß für eine Nullstelle $\alpha \in N$ von p, $\sigma(\alpha)$ wieder eine Nullstelle von p ist, denn $\sigma(p) = p$, und $p(\sigma(\alpha)) = \sigma(p)(\sigma(\alpha)) = \sigma(p(\alpha)) = \sigma(0) = 0$.)

Weiterhin ist die Abbildung $\operatorname{Gal}(K/\mathbb{Q}) \to \mathfrak{S}_N, \sigma \mapsto (\alpha \mapsto \sigma(\alpha))$ ein injektiver Gruppenhomomorphismus. Denn gilt für $\sigma, \tau \in \operatorname{Gal}(K/\mathbb{Q})$ daß $\sigma(\alpha) = \tau(\alpha)$ für alle $\alpha \in N$, so ist bereits $\tau = \alpha$. Aber $\mathfrak{S}_N \cong \mathfrak{S}_3$, die Permutationsgruppe von drei Elementen. Damit kann man $\operatorname{Gal}(K/\mathbb{Q})$ als Untergruppe von \mathfrak{S}_3 ansehen.

Zu (c): Nach (b) ist $\operatorname{Gal}(K/\mathbb{Q})$ zu einer Untergruppe von \mathfrak{S}_3 isomorph, welche Ordnung 6 hat. Also $|\operatorname{Gal}(K/\mathbb{Q})||6$. Es ist eine Folgerung des Fortsetzungssatzes, daß $\operatorname{Gal}(K/\mathbb{Q})$ transitiv auf N operiert. INsbesondere gibt es für je zwei Elemente $\alpha, \beta \in N$ ein Element $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ mit $\sigma(\alpha) = \beta$. Zum Beispiel gibt es für jedes $i \in \{1, 2, 3\}$ ein $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ mit $\sigma(\alpha_1) = \alpha_i$, also mindestens drei St $\tilde{\mathbf{A}}_4^1$ ck. Aus

$$3 \leq |\operatorname{Gal}(K/\mathbb{Q})||6$$

folgt also $|\operatorname{Gal}(K/\mathbb{Q})| \in \{3, 6\}.$

Zu (d): Sei $\mathcal{P} = \{\{1,2\},\{1,3\},\{2,3\}\}$ die Menge der zweielementigen Teilmengen von $\{1,2,3\}$ (bei Mengen ist die Reihenfolge unrelevant, es gilt also $\{1,2\} = \{2,1\}$). Jede Permutation $\sigma \in \mathfrak{S}_3$ induziert eine bijektive Abbildung auf \mathcal{M} .

Sei für $\{i, j\} \in \mathcal{P}$

$$\alpha_{\{i,j\}} := (\alpha_i - \alpha_j)^2 = (\alpha_j - \alpha_i)^2.$$

Dann ist für $\sigma \in \operatorname{Gal}(K/\mathbb{Q} \subset \mathcal{S}_3)$

$$\sigma(\alpha_{\{i,j\}}) = \sigma(\alpha_i - \alpha_j)^2 = (\sigma(\alpha_i) - \sigma(\alpha_j))^2 = (\alpha_{\sigma(i)} - \alpha_{\sigma(j)})^2 = \alpha_{\sigma(\{i,j\})}.$$

Also

$$\sigma(\delta)^2 = \sigma(\delta^2) = \sigma\left(\prod_{\{i,j\}\in\mathcal{P}}\alpha_{\{i,j\}}\right) = \prod_{\{i,j\}\in\mathcal{P}}\alpha_{\sigma(\{i,j\})} = \prod_{\{i,j\}\in\mathcal{P}}\alpha_{\{i,j\}} = \delta^2$$

Es folgt $\sigma(\delta) = \pm \delta$.

Zu (e): Wir zeigen, daß $Gal(K/\mathbb{Q}) \subset \mathfrak{S}_3$ genau dann eine echte Untergruppe ist, wenn $\sigma(\delta) = \delta$ für alle

Angenommen $\operatorname{Gal}(K/\mathbb{Q})$ ist eine echte Untergruppe, dann muß diese nach (c) Ordnung drei haben. Die einzige Untergruppe der Ordnung drei von \mathfrak{S}_3 ist die zyklische Gruppe $\{id, (123), (213)\} = \langle (123) \rangle$. Für diese Permutationen gilt

$$id(\delta) = \delta$$

$$(123)(\delta) = (123) ((\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_3)) = (\alpha_2 - \alpha_3)(\alpha_2 - \alpha_1)(\alpha_3 - \alpha_1) = \delta$$

$$(231)(\delta) = (213) ((\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_3)) = (\alpha_3 - \alpha_1)(\alpha_3 - \alpha_2)(\alpha_1 - \alpha_2) = \delta$$

Angenommen $\operatorname{Gal}(K/\mathbb{Q}) \cong \mathfrak{S}_3$, so enhält $\operatorname{Gal}(K/\mathbb{Q})$ Elemente der Ordnung 2, nämlich $\{(12), (23), (13)\}$. Für diese gilt

$$(12)(\delta) = (12)((\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_3)) = (\alpha_2 - \alpha_1)(\alpha_2 - \alpha_3)(\alpha_1 - \alpha_3) = -\delta$$

$$(23)(\delta) = (23)((\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_3)) = (\alpha_1 - \alpha_3)(\alpha_1 - \alpha_2)(\alpha_3 - \alpha_2) = -\delta$$

$$(13)(\delta) = (13)((\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_3))(\alpha_3 - \alpha_2)(\alpha_3 - \alpha_1)(\alpha_2 - \alpha_1) = -\delta$$

Gilt also $\sigma(\delta) = \delta$ für alle $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ so muß $\operatorname{Gal}(K/\mathbb{Q}) \subseteq \mathfrak{S}_3$.

Aufgabe 2. Für $k \in \mathbb{Z}$ sei $a = k^2 + k + 7$. Man zeige: Das Polynom $X^3 - aX + a$ ist irreduzibel über \mathbb{Q} und hat Galoisgruppe isomorph zu A_3 .

Lösung. Für jede ganze Zahl k ist $k^2 + k + 7$ ungerade, denn da entweder k oder k + 1 gerade ist, ist

$$k^2 + k + 7 = k(k+1) + 7 \equiv 0 + 1 \mod 2.$$

Für jede beliebige ungerade Zahl a nun ist

$$X^3 - aX + a \equiv X^3 + X + 1 \mod 2.$$

Und dies ist irreduzibel in \mathbb{F}_2 , da es dort keine Nullstelle hat. Nach dem Reduktionskriterium ist also $X^3 - aX + a$ irreduzibel in \mathbb{Z} und somit in \mathbb{Q} .

Wir berechnen nun die Diskriminante. Für ein beliebiges Polynom in $\mathbb{Q}[X]$ von folgender Form

$$X^{3} + aX + b = (X - x_{1})(X - x_{2})(X - x_{3}) = X^{3} - X^{2}(x_{1} + x_{2} + x_{3}) + X(x_{1}x_{2} + x_{2}x_{3} + x_{1}x_{3}) - x_{1}x_{2}x_{3}$$

gilt $x_1 + x_2 + x_3 = 0$, $x_1x_2 + x_2x_3 + x_1x_3 = a$, $-x_1x_2x_3 = b$. Damit gilt für die Diskriminante

$$D = (x_1 - x_2)^2 (x_1 - x_3)^2 (x_2 - x_3)^2 = -4a^3 - 27b^2.$$

Die Diskriminante des Polynoms $X^3 - aX + a$ ist

$$D = -4(-a)^3 - 27a^2 = a^2(4a - 27).$$

Die Galoisgruppe von $X^3 - aX + a$ ist genau dann isomorph zu A_3 , wenn D ein Quadrat in \mathbb{Q} ist. Dies ist der Fall, wenn 4a-27 ein Quadrat ist. Wir berechnen

$$4a - 27 = 4(k^2 + k + 7) - 27 = 4k^2 + 4k + 1 = (2k + 1)^2$$
.

Aufgabe 3 (Frühjahr 1978). (a) Jede endliche abelsche Gruppe ist isomorph zu einer Faktorgruppe der Gruppe

$$\prod_{p} \mathbb{Z}/(p-1)\,\mathbb{Z},$$

wobei p alle Primzahlen durchläuft.

Hinweis: Man benutze den Dirichletschen Primzahlsatz: Zu jeder natürlichen Zahl n gibt es unendlich viele Primzahlen mit $p \equiv 1 \mod n$.

- (b) Jede endliche abelsche Gruppe ist isomorph zu einer Faktorgruppe der Gruppe $(\mathbb{Z}/n\mathbb{Z})^{\times}$ der teilerfremden Reste modulo n, wenn n passend gewählt wird.
- (c) Zu jeder endlichen abelschen Gruppe A gibt es eine Galois'sche Erweiterung K/\mathbb{Q} , deren Galoisgruppe $\operatorname{Gal}(K/\mathbb{Q})$ zu A isomorph ist.
- (z) Man konstruiere eine Galoiserweiterung K/\mathbb{Q} deren Galois
gruppe isomorph zu einer abelschen Gruppe der Ordnung 2019 ist.

Hinweis: 2693 ist prim in \mathbb{Z} .

Lösung. Zu (a): Sei A eine endliche abelsche Gruppe. Nach dem Hauptsatz über endliche abelsche Gruppen gibt es Primzahlpotenzen q_1,\ldots,q_r mit $A\cong\prod_{i=1}^r\mathbb{Z}/q_i\mathbb{Z}$. Nach dem Dirichlet'schen Primzahlsatz enthält jede Restklasse $1+q_i\mathbb{Z}, 1\leqslant i\leqslant r$, unendlich viele Primzahlen. Also gibt es paarweise verschiedene Primzahlen p_1,\ldots,p_r mit $p_i\equiv 1\mod q_i, 1\leqslant i\leqslant r$. Die Abbildung

$$\gamma: \prod_{i=1}^{r} \mathbb{Z}/(p_i-1)\mathbb{Z} \to \prod_{i=1}^{r} \mathbb{Z}/q_i\mathbb{Z}, z_i + (p_i-1)\mathbb{Z} \mapsto z_i + q_i\mathbb{Z}$$

ist surjektiver Gruppenhomomorphismus.

Sei weiter $\pi: \prod_{p} \mathbb{Z}/(p-1) \mathbb{Z} \to \prod_{i=1}^{r} \mathbb{Z}/(p_i-1) \mathbb{Z}$ die kanonische Projektion. Dann ist die Komposition

$$\gamma' = \gamma \circ \pi : \prod_{p} \mathbb{Z}/(p-1) \mathbb{Z} \to \prod_{i=1}^{r} \mathbb{Z}/(p_i - 1 \mathbb{Z}) \to \prod_{i=1}^{r} \mathbb{Z}/q_i \mathbb{Z}$$

ebenso surjektiv und $G \cong \prod_{i=1}^r \mathbb{Z}/q_i \mathbb{Z} \cong \left(\prod_p \mathbb{Z}/(p-1)\mathbb{Z}\right)/\ker(\gamma')$ ist eine Darstellung von A als Faktorgruppe von $\prod_p \mathbb{Z}/(p-1)\mathbb{Z}$.

Zu (b):Sei A wie oben und $n = p_1 \cdots p_r$ das Produkt der paarweise verschiedenen Prizahlen aus (a). Dann gibt es nach dem chinesischen Restsatz einen Ringisomorphismus

$$\mathbb{Z}/n\mathbb{Z} \xrightarrow{\sim} \prod_{i=1}^r \mathbb{Z}/p_i\mathbb{Z}$$

und einen Gruppenisomorphismus

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \xrightarrow{\prod_{i=1}^{r}} (\mathbb{Z}/p_i\mathbb{Z})^{\times} \cong \prod_{i=1}^{r} \mathbb{Z}/(p_i-1)\mathbb{Z},$$

wobei die letzte Isomorphie daraus folgt, daß für jede Primzahl $p (\mathbb{Z}/p\mathbb{Z})^{\times}$ zyklisch von der Ordnung p-1 ist.

Die Komposition des obigen Isomorphismus mit der surjektiven Abbildung γ aus (a) ergibt einen surjektive Gruppenhomomorphismus

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \cong \prod_{i=1}^{r} \mathbb{Z}/(p_i-1)\mathbb{Z} \xrightarrow{\gamma} \prod_{i=1}^{r} \mathbb{Z}/q_i\mathbb{Z} \cong A,$$

und damit lässt sich A als Faktorgruppe von $(\mathbb{Z}/n\mathbb{Z})^{\times}$ darstellen.

Zu (c): Sei wieder A eine endliche abelsche Gruppe, q_1, \ldots, q_r und $n = p_1 \cdots p_r$ wie zuvor. Betrchte den n^{te} Kreisteilungskörper $\mathbb{Q}^{(n)}$ über \mathbb{Q} . Man hat die Gruppenhomomorphismen

$$\operatorname{Gal}(\mathbb{Q}^{(n)}/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times} \cong \prod_{i=1}^{r} (\mathbb{Z}/p_i\mathbb{Z})^{\times} \cong \prod_{i=1}^{r} \mathbb{Z}/(p_i-1)\mathbb{Z} \xrightarrow{\gamma} \prod_{i=1}^{r} \mathbb{Z}/q_i\mathbb{Z} \cong A.$$

Die Komposition dieser Homomorphismen ist surjektiv. Sei N der Kern dieser Komposition, $K = \operatorname{Fix}_{\mathbb{Q}^{(n)}}(N)$. Da N Normalteiler ist, ist K/\mathbb{Q} Galois'sch mit $\operatorname{Gal}(K/\mathbb{Q}) \cong \operatorname{Gal}(\mathbb{Q}^{(n)}/\mathbb{Q})/N \cong A$.

Zu (z): Die Primfaktorzerlegung von 2019 ist 2019 = $3 \cdot 673$ (siehe Einführung: es ist klar, daß 3 eine Primzahl ist; um zu zeigen, daß 673 eine Primzahl ist, testen wir alle Primzahlen bis $\sqrt{673} < \sqrt{676} = 26$). Es gibt bis auf Isomorphie genau eine abelsche Gruppe der Ordnung 2019, nämlich $\mathbb{Z}/2019\mathbb{Z} \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/673\mathbb{Z}$.

Nun finden wir Primzahlen p_1, p_2 mit $p_1 \equiv 1 \mod (3)$ und $p_2 \equiv 1 \mod (673)$. Es ist leicht zu sehen, daß man $p_1 = 7$ wählen kann. Weiterhin berechnet man, daß $2693 \equiv 1 \mod (673)$ ist und nach Angabe ist 2693 prim. Wähle also $p_2 = 2693$.

Sei $n = p_1 \cdot p_2 = 7 \cdot 2693 = 18851$. Wir betrachten den 18851sten Kreiteilungskörper $\mathbb{Q}^{(18851)}$ über \mathbb{Q} . Nach (c) gibt es einen kanonischen surjektiven Gruppenhomomorphismus

$$\operatorname{Gal}(\mathbb{Q}^{(18851)}/\mathbb{Q}) \cong \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2692\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/673\mathbb{Z} \cong \mathbb{Z}/2019\mathbb{Z}.$$

Der Kern der Abbildung $\mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$ ist $3\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z}$. Der Kern der Abbildung $\mathbb{Z}/2692\mathbb{Z} \to \mathbb{Z}/673\mathbb{Z}$ ist $673\mathbb{Z}/2692\mathbb{Z} \cong \mathbb{Z}/4\mathbb{Z}$. Also ist der Kern von $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2692\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/673\mathbb{Z}$ gegeben durch $3\mathbb{Z}/6\mathbb{Z} \times 673\mathbb{Z}/2692\mathbb{Z}$ und hat Ordnung 8. Sei N das Urbild von $3\mathbb{Z}/6\mathbb{Z} \times 673\mathbb{Z}/2692\mathbb{Z}$ in $\operatorname{Gal}(\mathbb{Q}^{(18851)}/\mathbb{Q})$. Dann ist $N = N_1 \times N_2$ wobei N_1 das Urbild von $3\mathbb{Z}/6\mathbb{Z}$ ist und N_2 das Urbilds von $673\mathbb{Z}/2692\mathbb{Z}$. Sei $K = \operatorname{Fix}_{\mathbb{Q}^{(18851)}}(N)$, dann hat die Erweiterung K/\mathbb{Q} die Galoisgruppe $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/673\mathbb{Z}$. Wollen wir dies genauer bestimmen, so genügt es die Fixkörper $K_1 = \operatorname{Fix}_{\mathbb{Q}^{(7)}}(N_1)$ und $K_2 = \operatorname{Fix}_{\mathbb{Q}^{(2693)}}(N_2$ zu bestimmen.

Im ersten Fall müssen wir also einen Zwischenkörper $\mathbb{Q} \subset K_1 \subset \mathbb{Q}^{(7)} = \mathbb{Q}(\zeta_7)$ bestimmen, der Grad 3 über \mathbb{Q} hat. Wir wissen von Blatt 19 Aufgabe 3, daß $[\mathbb{Q}(\zeta_7 + \zeta_7^{-1}) : \mathbb{Q}] = \frac{1}{2}\varphi(7) = 3$. Dies ist also der gesuchte Zwischenkörper.

Im zweiten Fall geht dies wohl über den Stoff für das Examen hinaus.

Aufgabe 4 (Herbst 1992). Es sei $f = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 \in K[X]$ ein nichtkonstantes separables Polynom mit $a_0 a_n \neq 0$. Sei $g = a_0 X^n + a_1 X^{n-1} + \ldots + a_{n-1} X + a_n$ das sogenannte "reziproke" Polynom zu f. Zeigen Sie:

f und g haben die gleiche Galoisgruppe über K.

Lösung. Wir bemerken zunächst: da $a_0 \neq 0$ ist 0 keine Nullstelle von f. Ebendso ist 0 keine Nullstelle von g, weil $a_n \neq 0$. Sei L ein Zerfällungskörper von f und $x \in L$ eine Nullstelle von f. Dann ist auch $\frac{1}{x} \in L \setminus \{0\}$ und es ist klar, daß $\frac{1}{x} \in L$ eine Nullstelle von g ist:

$$g\left(\frac{1}{x}\right) = a_0 \left(\frac{1}{x}\right)^n + a_1 \left(\frac{1}{x}\right)^{n-1} + \dots + a_{n-1} \left(\frac{1}{x}\right) + a_n$$
$$= \left(\frac{1}{x}\right)^n (a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n)$$
$$= \left(\frac{1}{x}\right)^n f(x) = 0$$

Seien $x_1, \ldots, x_n \in L \setminus \{0\}$ die Nullstellen von f. Dann ist nach Definition $L = K(x_1, \ldots, x_n)$. Nach obiger Rechnung sind $\frac{1}{x_1}, \ldots, \frac{1}{x_n} \in L \setminus \{0\}$ die Nullstellen von g. Und $K(\frac{1}{x_1}, \ldots, \frac{1}{x_n})$ ist ein Zerfällungskörper von g. Es ist aber klar, daß

$$K(x_1, \dots, x_n) = K(\frac{1}{x_1}, \dots, \frac{1}{x_n}).$$

Da die Galoisgruppe eines Polynoms die Galoisgruppe eines Zerfällungskörpers ist, folgt

$$G(f) = \text{Gal}(K(x_1, \dots, x_n)/K) = \text{Gal}(L/K) = \text{Gal}(K(\frac{1}{x_1}, \dots, \frac{1}{x_n})/K) = G(g)$$

was zu zeigen war.