

Intelligenza Artificiale e al Machine Learning

Clustering: classificazione non supervisionata

Cosa è la Clustering analysis

Ricerca di gruppi di oggetti tali che gli oggetti appartenenti a un gruppo siano "simili" tra loro e differenti dagli oggetti negli altri gruppi

Applicazioni delle analisi dei cluster

Comprendere

✓ Gruppi di documenti correlati per favorire la navigazione, gruppi di geni e proteine che hanno funzionalità simili, gruppi di azioni che hanno fluttuazioni simili

	Discovered Clusters	Industry Group
1	Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN	Technology1-DOWN
2	Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, Computer-Assoc-DOWN,Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, Schlumberger-UP	Oil-UP

Riassumere

✓ Ridurre la dimensione di data set grandi

Cosa non è la Clustering analysis

- Classificazione supervisionata
 - ✓ Parte dalla conoscenza delle etichette di classe
- Segmentazione
 - ✓ Suddividere gli studenti alfabeticamente in base al cognome
- Risultati di una query
 - ✓ Il raggruppamento si origina in base a indicazioni esterne

La nozione di cluster può essere ambigua

Tipi di clustering

- Un clustering è un insieme di cluster. Una distinzione importante è tra:
 - ✓ Clustering partizionante: una divisione degli oggetti in sottoinsiemi (cluster) non sovrapposti. Ogni oggetto appartiene esattamente a un cluster.

✓ Clustering gerarchico: un insieme di cluster annidati organizzati come un albero gerarchico

Clustering gerarchico tradizionale

Dendrogramma

Altre distinzioni tra insiemi di cluster

Esclusivo vs non esclusivo

- ✓ In un clustering non esclusivo, i punti possono appartenere a più cluster.
- ✓ Utile per rappresentare punti di confine o più tipi di classi.

Fuzzy vs non-fuzzy

- ✓ In un fuzzy clustering un punto appartiene a tutti i cluster con un peso tra 0 e 1.
- ✓ La somma dei pesi per ciascun punto deve essere 1.
- ✓ I clustering probabilistici hanno caratteristiche similari.

Parziale vs completo

✓ In un clustering parziale alcuni punti potrebbero non appartenere a nessuno dei cluster.

Eterogeneo vs omogeneo

✓ In un cluster eterogeneo i cluster possono avere dimensioni, forme e densità molto diverse.

Tipi di cluster: Well-Separated

- Well-Separated Cluster:
 - ✓ Un cluster è un insieme di punti tali che qualsiasi punto nel cluster è più vicino (più simile a) ogni altro punto del cluster rispetto a ogni altro punto che non appartenga al cluster.

3 well-separated cluster

Tipi di cluster: Center-Based

Center-based

- ✓ Un cluster è un insieme di punti tali che un punto nel cluster è più vicino (o più simile a) al "centro" del cluster, piuttosto che al centro di ogni altro
- ✓ Il centro di un cluster è chiamato centroide, la media di tutti i punti che appartengono al cluster, oppure medioide, il punto più "representativo" del cluster

4 center-based cluster

Tipi di cluster: Contiguity-Based

- Cluster contigui (Nearest neighbor o Transitive)
 - ✓ Un cluster è un insieme di punti tali che un punto nel cluster è più vicino (o più simile) ad almeno uno dei punti del cluster rispetto a ogni punto che non appartenga al cluster.

8 contiguous cluster

Tipi di cluster: Density-Based

Density-based

- ✓ Un cluster è una regione densa di punti, che è separata da regioni a bassa densità, dalle altre regioni a elevata densità.
- ✓ Utilizzata quando i cluster hanno forma irregolare o "attorcigliata", oppure in presenza di rumore o di outliers

6 density-based cluster

Tipi di cluster: Cluster concettuali

- Cluster con proprietà condivise o in cui la proprietà condivisa deriva dall'intero insieme di punti (rappresenta un particolare concetto)
 - Sono necessarie tecniche sofisticate in grado di esprimere il concetto sotteso

2 cerchi sovrapposti

K-means Clustering

- Si tratta di una tecnica di clustering partizionante
- Ogni cluster è associato a un centroide
- Ogni punto è assegnato al cluster con il cui centroide è più vicino
- Il numero di cluster, K, deve essere specificato
 - 1: Select K points as the initial centroids.
 - 2: repeat
 - 3: Form K clusters by assigning all points to the closest centroid.
 - 4: Recompute the centroid of each cluster.
 - 5: **until** The centroids don't change

K-means Clustering - Dettagli

- L'insieme iniziale di centroidi è normalmente scelto casualmente
 - ✓ I cluster prodotti variano ad ogni esecuzione
- Il centroide è (tipicamente) la media dei punti del cluster.
- La 'prossimità' può essere misurata dalla distanza euclidea, cosine similarity, correlazione, ecc.
- L'algoritmo dei K-means converge per le più comuni misure di similarità e la convergenza si verifica nelle prime iterazioni
 - ✓ L'algoritmo può convergere a soluzioni sub-ottime
 - Spesso la condizione di stop è rilassata e diventa 'continua fino a che un numero ridotto di punti passa da un cluster a un altro'
- La complessità dell'algoritmo è O(n*K*I*d)
 - ✓ n = numero di punti, K = numero di cluster,
 I = numero di iterazioni, d = numero di attributi

Valutazione della bontà dei cluster K-means

- La misura più comunemente utilizzata è lo scarto quadratico medio (SSE - Sum of Squared Error)
 - ✓ Per ogni punto l'errore è la distanza dal centroide del cluster a cui esso è assegnato.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- ✓ x è un punto appartenente al cluster C_i e m_i è il rappresentante del cluster C_i
 - è possibile dimostrare che il centroide che minimizza SSE quando si utilizza come misura di prossimità la distanza euclidea è la media dei punti del cluster.

$$m_i = \sum_{x \in C_i} x$$

- ✓ Ovviamente il valore di SSE si riduce incrementando il numero dei cluster K
 - Un buon clustering con K ridotto può avere un valore di SSE più basso di un cattivo clustering con K più elevato

Convergenza e ottimalità

- C'è soltanto un numero finito di modi di partizionare n record in k gruppi. Quindi c'è soltanto un numero finito di possibili configurazioni in cui tutti i centri sono centroidi dei punti che possiedono.
- Se la configurazione cambia in una iterazione, deve avere migliorato la distorsione. Quindi ogni volta che la configurazione cambia, deve portare in uno stato mai visitato prima
 - ✓ Il riassegnamento dei record ai centroidi è fatto sulla base delle distanze minori
 - ✓ Il calcolo dei nuovi centroidi minimizza il valore di SSE per il cluster
- Quindi l'algoritmo deve arrestarsi per non disponibilità di ulteriori configurazioni da visitare
- Non è detto tuttavia che la configurazione finale sia quella che in assoluto presenta il minimo valore di SSE come evidenziato nella seguente slide
 - ✓ Spostare un centroide della soluzione sul lato destro comporta sempre un aumento di SSE, ma la configurazione sul lato sinistro presenta un SSE minore

Convergenza e ottimalità

Clustering ottimale

Clustering sub-ottimale

Iteration 1

Iteration 2

Problema della selezione dei centroidi iniziali

- Se ci sono K cluster reali la probabilità di scegliere un centroide da ogni cluster è molto limitata
 - ✓ Se i cluster hanno la stessa cardinalità n:

$$P = \frac{\text{# modi di scegliere un centroide per cluster}}{\text{# modi di scegliere un centroide}} = \frac{K!n^K}{(Kn)^K} = \frac{K!}{K^K}$$

- \checkmark K = 10, la probabilità è 10!/10¹⁰ = 0.00036
- ✓ Alcune volte i centroidi si riposizioneranno correttamente altre no...

Partendo con cluster con 2 centroidi e cluster con 0 centroidi

Partendo con cluster con 2 centroidi e cluster con 0 centroidi

Partendo con coppie di cluster con 3 centroidi e coppie di cluster con 1 centroide

Partendo con coppie di cluster con 3 centroidi e coppie di cluster con 1 centroide

Soluzione ai problemi indotti dalla scelta dei centroidi iniziali

- Esegui più volte l'algoritmo con diversi centroidi di partenza
 - ✓ Può aiutare, ma la probabilità non è dalla nostra parte!
- Esegui un campionamento dei punti e utilizza una tecnica di clustering gerarchico per individuare k centroidi iniziali
- Seleziona più di k centroidi iniziali e quindi seleziona tra questi quelli da utilizzare
 - ✓ Il criterio di selzione è quello di mantenere quelli maggiormente "separati"
- Utilizza tecniche di post-processing per eliminare i cluster erronemante individuati
- Bisecting K-means
 - ✓ Meno suscettibile al problema

Gestione dei Cluster vuoti

- L'algoritmo K-means può determinare cluster vuoti qualora, durante la fase di assegnamento, ad un centroide non venga assegnato nessun elemento.
 - ✓ Questa situazione può determinare un SSE elevato poichè uno dei cluster non viene "utilizzato"
- Sono possibili diverse strategie per individuare un centroide alternativo
 - Scegliere il punto che maggiormente contribuisce al valore di SSE
 - ✓ Scegliere un elemento del cluster con il maggior SSE. Normalmente ciò determina lo split del cluster in due cluster che includono gli elementi più vicini.

Gestione degli outlier

- La bontà del clustering può essere negativamente influenzata dalla presenza di outlier che tendono a "spostare" il centroide dei cluster al fine di ridurre l'aumento dell'SSE determinato indotto dall'outlier
 - ✓ Dato che SSE è un quadrato di una distanza, i punti molto lontani incidono pesantemente sul suo valore
- Gli outlier se identificati possono essere eliminati in fase di preprocessing
 - ✓ Il concetto di outlier dipende dal dominio di applicazione
 - ✓ Studieremo opportune tecniche per la loro definizione

Scelta di K: the elbow method

- Consiste nell'eseguire più volte k-means con valori crescenti di k
 - ✓ Il valore di SSE tenderà a diminuire
 - ✓ k< #ClusterNaturali SSE include distante inter-cluster</p>
 - √ k>= #ClusterNaturali SSE include distanze intra-cluster
 - ✓ Il "gomito" si presenta poichè SSE diminuisce lentamente quando questo è generato solo da distanze intra-cluster

K-means: Limitazioni

- L'algoritmo k-means non raggiunge buoni risultati quando i cluster naturali hanno:
 - ✓ Diverse dimensioni
 - ✓ Diversa densità
 - ✓ Forma non globulare
 - ✓ I dati contengono outlier

Limitazioni di k-means: differenti dimensioni

Il valore di SSE porta a identificare i centroidi in modo da avere cluster delle stesse dimensioni se i cluster non sono wellseparated

Punti orignali

K-means (3 Cluster)

Limitazioni di k-means: differenti densità

 Cluster più densi comportano distanze intra-cluster minori, quindi le zone meno dense richiedono più mediani per minimizzare il valore totale di SSE

Punti originali

K-means (3 Cluster)

Limitazioni di k-means: forma non globulare

 SSE si basa su una distanza euclidea che non tiene conto della forma degli oggetti

Punti originali

K-means (2 Cluster)

K-means: possibili soluzioni

- Una possibile soluzione è quella di utilizzare un valore di k più elevato individuando così porzioni di cluster.
- La definizione dei cluster "naturali" richiede poi una tecnica per mettere assieme i cluster individuati

Punti originali

K-means Clusters

K-means: possibili soluzioni

Punti originali

K-means Cluster

K-means: possibili soluzioni

Punti originali

K-means Cluster

Esercizio

- Indicare la suddivisione in cluster e la posizione approssimata dei centroidi scelta dall'algoritmo k-means assumendo che:
 - ✓ I punti siano equamente distriubiti
 - ✓ La funzione distanza sia SSE
 - ✓ Il valore di K è indicato sotto le figure

Se ci possono essere più soluzioni, quali sono ottimi globali?

DBSCAN

- DBSCAN è un approccio basato sulla densità
 - ✓ Densità = numero di punti all'interno di un raggio Eps specificato
 - ✓ Core point sono i punti la cui densità è superiore a una soglia MinPts
 - Questi punti sono interni a un cluster
 - ✓ Border point hanno una densità minore di MinPts, ma nelle loro vicinanze (ossia a distanza < Eps) è presente un core point
 - ✓ Noise point tutti i punti che non sono Core point e Border point

DBSCAN: Core, Border e Noise Point

Algoritmo DBSCAN

- 1. // Input:Dataset **D**, MinPts, Eps
- 2. // Insieme dei cluster C
- 3. Classifica i punti in D come core, border o noise
- 4. Elimina tutti i punti di tipo noise
- 5. Assegna al cluster c_i i punti core che abbiano distanza < di Eps da almeno uno degli altri punti assegnato al cluster
- 6. Assegna i punti border a uno dei cluster a cui sono associati i corrispondenti punti core

DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

DBSCAN: pro e contro

- Pro
 - ✓ Resistente al rumore
 - ✓ Può generare cluster con forme e dimensioni differenti
- Contro
 - ✓ Dati con elevata dimensionalità
 - Rende difficile definire efficacemente il concetto di densità a causa dell'elevata sparsità
 - ✓ Dataset con densità variabili

MinPts = 4Eps=9.92

MinPts = 4Eps = 9.75

DBSCAN: scelta di EPS e MinPts

- L'idea di base è che per i core point i k-esimi nearest neighbor siano circa alla stessa distanza e piuttosto vicini
- I noise point avranno il k-esimo nearest neighbor più lontano
- Visualizziamo i punti ordinati in base alla distanza del loro k-esimo vicino. Il punto p in cui si verifica un repentino cambio della distanza misurata segnala la separazione tra core point e noise point
 - ✓ Il valore di Eps è dato dall'ordinata di p
 - ✓ Il valore di MinPts è dato da k
 - ✓ Il risultato dipende dal valore di k, ma l'andamento della curva rimane similare per valori sensati di k
 - ✓ Un valore di k normalmente utilizzato per dataset bidimensionali è 4

Validità dei Cluster

- Per le tecniche di classificazione supervisionata esistono più misure per valutare la bontà dei risultati basate sul confronto tra le label note per il test set e quelle calcolate dall'algoritmo
 - ✓ Accuracy, precision, recall
- Le motivazioni per la valutazione di un clustering
 - 1. Valutare, senza l'utilizzo di informazioni esterne, come il risultato del clustering modella i dati
 - 2. Determinare che si sia determinato il "corretto" numero di cluster
 - 3. Verificare la clustering tendency di un insieme di dati, ossia identificare la presenza di strutture non-randomiche
 - 4. Valutare, utilizzando informazioni esterne (etichette di classe), come il risultato del clustering modella i dati
 - 5. Comparare le caratteristiche di due insiemi di cluster per valutare quale è il migliore
 - 6. Comparare le caratteristiche di due algoritmi di clustering per valutare quale è il migliore
- I punti 1,2,3 non richiedono informazioni esterne
- I punti 5 e 6 possono essere basati sia su informazioni interne, sia esterne

Misure di validità

- I quantificatori numerici utilizzati per valutare i diversi aspetti legati alla validità dei cluster sono classificati in:
 - ✓ Misure esterne o supervisionate: calcolano in che misura le label dei cluster corrispondono alle label delle classi
 - Entropia
 - ✓ Misure interne o non supervisionate: misurano la bontà di un clustering senza utilizzare informazioni esterne
 - Somma al quadrato degli errori (SSE)
 - ✓ Misure relative: utilizzate per comparare due diversi clustering o cluster
 - Possono basarsi sia su misure interne, sia su misure esterne.

Misure interne: Coesione e Separazione

- Coesione e separazione possono essere calcolati sia per rappresentazioni basate su grafi...
 - ✓La coesione è la somma dei pesi degli archi tra i nodi appartenenti a un cluster
 - ✓La separazione è la somma dei pesi degli archi tra i nodi appartenenti a cluster distinti

- sia per rappresentazioni basate su prototipi
 - ✓La coesione è la somma dei pesi degli archi tra i nodi appartenenti a un cluster e il relativo centroide
 - ✓La separazione è la somma dei pesi degli archi tra i centroidi

Misure interne: Coesione e Separazione

Coesione e separazione possono essere calcolate sia per rappresentazioni basate su grafi...

✓La coesione è la somma dei pesi degli archi tra i nodi appartenenti a un cluster

✓La separazione è la somma dei pesi degli archi tra i nodi appartenenti a cluster distinti

$$cohesion(C_i) = \sum_{\mathbf{x} \in C_i} \sum_{\mathbf{y} \in C_i} proximity(\mathbf{x}, \mathbf{y})$$

$$separation(C_i, C_j) = \sum_{\mathbf{x} \in C_i} \sum_{\mathbf{y} \in C_j} proximity(\mathbf{x}, \mathbf{y})$$

- sia per rappresentazioni basate su prototipi
 - ✓La coesione è la somma dei pesi degli archi tra i nodi appartenenti a un cluster e il relativo centroide
 - ✓La separazione è la somma dei pesi degli archi tra i centroidi

$$cohesion(C_i) = \sum_{\mathbf{x} \in C_i} proximity(\mathbf{x}, \mathbf{c_i})$$

$$separation(C_i, C_j) = proximity(\mathbf{c_i}, \mathbf{c_j})$$

$$separation(C_i) = proximity(\mathbf{c_i}, \mathbf{c})$$

✓La separazione tra due prototipi e tra un prototipo e il centroide dell'intero dataset sono correlati

Misure interne: Coesione e Separazione

 Le formule precedenti vanno poi generalizzate per considerare tutti i cluster che compongono il clustering

$$validity\ measure = \sum_{i=1}^{K} w_i \cdot validity(C_i)$$

- Diverse sono le misure di prossimità utilizzabili. Se si utilizza SSE, in una rappresentazione basata su centroidi, le formule precedenti diventano:
 - ✓ SSB= Sum of Squared Between group

$$SSE = \sum_{i} cohesion(C_i) = \sum_{i} \sum_{\mathbf{x} \in C_i} dist(\mathbf{x}, \mathbf{c_i})^2$$

$$SSB = \sum_{i} separation(C_i) = |C_i| dist(\mathbf{c_i}, \mathbf{c})^2$$

■ E' possibile dimostrare che SSE+SSB=costante. Quindi minimizzare la coesione corrisponde a massimizzare la separazione

Misure interne: silhouette

- Combina la misura di coesione e separazione
- Dato un punto i appartenente al cluster C

$$a_i = \underset{j \in C}{\operatorname{avg}}(\operatorname{dist}(i, j))$$
 $b_i = \underset{C' \neq C}{\min}(\operatorname{avg}(\operatorname{dist}(i, j)))$

Il coefficiente di silhouette per il punto i è

$$s_i = (b_i - a_i) / \max(a_i, b_i)$$

- ✓ Varia tra -1 and 1.
- ✓ E' auspicabile che il coefficiente sia quanto più possibile vicino a 1 il che implica a_i piccolo (cluster coesi) e b_i grande (cluster ben separati)

 Il coefficiente può essere mediato su tutti i punti per calcolare la silhouette dell'intero clustering

Misurare la validità per mezzo della correlazione

- Si utilizzano due matrici
 - ✓ Proximity Matrix
 - Matrice delle distanze tra gli elementi
 - ✓ "Incidence" Matrix
 - Una riga e una colonna per ogni elemento
 - La cella è posta a 1 se la coppia di punti corrispondenti appartiene allo stesso cluster
 - La cella è posta a 0 se la coppia di punti corrispondenti appartiene a cluster diversi
- Si calcola la correlazione tra le due matrici
- Una correlazione elevata indica che punti che appartengono allo stesso cluster sono vicini
- Non rappresenta una buona misura per cluster non sferici (ottenuti con algoritmi density based o con misure di contiguità)
 - ✓ In questo caso le distanze tra i punti non sono correlate con la loro appartenenza allo stesso cluster

Misurare la validità per mezzo della correlazione

- Correlazione tra matrice di incidenza e matrice di prossimità per il risultato dell'algoritmo k-means sui seguenti data set.
 - ✓ La correlazione è negativa perché a distanze piccole nella matrice di prossimità corrispondono valori grandi (1) nella matrice di incidenza
 - ✓ Ovviamente, se si fosse usata la matrice delle distanze al posto della matrice di similarità la correlazione sarebbe stata positiva

Corr = -0.9235

Corr = -0.5810

Misurare la validità per mezzo della matrice di similarità

La visualizzazione si ottiene ordinando la matrice di similarità in base ai raggruppamenti dettati dai cluster.

Misurare la validità per mezzo della matrice di similarità

Se i dati sono distribuiti uniformemente la matrice è più "sfumata"

DBSCAN

K-means

Complete link

Esercizio

Associa le matrici di similarità ai data set

Cluster trovati in dati random

Commento finale sull'analisi della validità dei cluster

"The validation of clustering structures is the most difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage."

Algorithms for Clustering Data, Jain and Dubes