Introduction to Machine Learning

Multiclass Classification and Losses

Learning goals

- Know what multiclass means and which types of classifiers exist
- Know the MC 0-1-loss
- Know the MC brier score
- Know the MC logarithmic loss

MULTICLASS CLASSIFICATION

Scenario: Multiclass classification with g > 2 classes

$$\mathcal{D} \subset (\mathcal{X} \times \mathcal{Y})^n, \mathcal{Y} = \{1, ..., g\}$$

Example: Iris dataset with g = 3

REVISION: RISK FOR CLASSIFICATION

Goal: Find a model $f: \mathcal{X} \to \mathbb{R}^g$, where g is the number of classes, that minimizes the expected loss over random variables $(\mathbf{x}, \mathbf{y}) \sim \mathbb{P}_{\mathbf{x}\mathbf{y}}$

$$\mathcal{R}(f) = \mathbb{E}_{xy}[L(y, f(\mathbf{x}))] = \mathbb{E}_{x}\left[\sum_{k \in \mathcal{Y}} L(k, f(\mathbf{x})) \mathbb{P}(y = k | \mathbf{x} = \mathbf{x})\right]$$

The optimal model for a loss function $L(y, f(\mathbf{x}))$ is

$$\hat{f}(\mathbf{x}) = \operatorname{arg\,min}_{f \in \mathcal{H}} \sum_{k \in \mathcal{Y}} L(k, f(\mathbf{x})) \mathbb{P}(y = k | \mathbf{x} = \mathbf{x})$$
.

Because we usually do not know \mathbb{P}_{xy} , we minimize the **empirical risk** as an approximation to the **theoretical** risk

$$\hat{f} = \operatorname{arg\,min}_{f \in \mathcal{H}} \mathcal{R}_{\mathsf{emp}}(f) = \operatorname{arg\,min}_{f \in \mathcal{H}} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right).$$

TYPES OF CLASSIFIERS

- We already saw losses for binary classification tasks. Now we will consider losses for multiclass classification tasks.
- For multiclass classification, loss functions will be defined on
 - vectors of scores

$$f(\mathbf{x}) = (f_1(\mathbf{x}), ..., f_g(\mathbf{x}))$$

vectors of probabilities

$$\pi(\mathbf{x}) = (\pi_1(\mathbf{x}), ..., \pi_g(\mathbf{x}))$$

hard labels

$$h(\mathbf{x}) = k, k \in \{1, 2, ..., g\}$$

ONE-HOT ENCODING

• Multiclass outcomes y with classes $1, \ldots, g$ are often transformed to g binary (1/0) outcomes using

with
$$\mathbb{1}_{\{y=k\}} = \begin{cases} 1 & \text{if } y = k \\ 0 & \text{otherwise} \end{cases}$$

 One-hot encoding does not lose any information contained in the outcome.

Example: Iris

Species	Species.setosa	Species.versicolor	Species.virginica
versicolor	0	1	0
virginica	0	0	1
versicolor	0	1	0
versicolor	0	1	0
setosa	1	0	0
setosa	1	0	0

0-1-Loss

0-1-LOSS

We have already seen that optimizer $\hat{h}(\mathbf{x})$ of the theoretical risk using the 0-1-loss

$$L(y,h(\mathbf{x})) = \mathbb{1}_{\{y \neq h(\mathbf{x})\}}$$

is the Bayes optimal classifier, with

$$\hat{h}(\mathbf{x}) = \operatorname{arg\,max}_{I \in \mathcal{Y}} \mathbb{P}(y = I \mid \mathbf{x} = \mathbf{x})$$

and the optimal constant model (featureless predictor)

$$h(\mathbf{x}) = k, k \in \{1, 2, ..., g\}$$

is the classifier that predicts the most frequent class $k \in \{1, 2, ..., g\}$ in the data

$$h(\mathbf{x}) = \mathsf{mode}\left\{y^{(i)}\right\}.$$

MC Brier Score

MC BRIER SCORE

The (binary) Brier score generalizes to the multiclass Brier score that is defined on a vector of class probabilities $(\pi_1(\mathbf{x}), ..., \pi_g(\mathbf{x}))$

$$L(y, \pi(x)) = \sum_{k=1}^{g} (\mathbb{1}_{\{y=k\}} - \pi_k(\mathbf{x}))^2.$$

The optimal constant model $\pi(\mathbf{x}) = (\theta_1, ..., \theta_g)$ (outputting a vector of constant class probabilities) is

$$\pi_k(\mathbf{x}) = \arg\min_{\theta_k} \mathcal{R}_{\text{emp}}(\theta) = \arg\min_{\theta_k} \left(\sum_{i=1}^n \sum_{k=1}^g \left(\mathbb{1}_{\{y^{(i)} = k\}} - \theta_k \right)^2 \right)$$

We solve this by setting the derivative w.r.t. θ_k to 0

$$\frac{\partial \mathcal{R}_{emp}(\theta)}{\partial \theta_k} = -2 \cdot \sum_{i=1}^n (\mathbb{1}_{\{y^{(i)}=k\}} - \theta_k) = 0$$
$$\hat{\pi}_k(\mathbf{x}) = \hat{\theta}_k = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{y^{(i)}=k\}},$$

being the fraction of class-k observations.

MC BRIER SCORE

Claim: For g=2 the MC Brier score is exactly twice as high as the binary Brier score, defined as $(\pi_1(\mathbf{x}) - y)^2$.

Proof:

$$L(y, \pi(x)) = \sum_{k=0}^{1} (\mathbb{1}_{\{y=k\}} - \pi_k(\mathbf{x}))^2$$

For y = 0:

$$L(y, \pi(x)) = (1 - \pi_0(\mathbf{x}))^2 + (0 - \pi_1(\mathbf{x}))^2 = (1 - (1 - \pi_1(\mathbf{x})))^2 + \pi_1(\mathbf{x})^2$$

= $\pi_1(\mathbf{x})^2 + \pi_1(\mathbf{x})^2 = 2 \cdot \pi_1(\mathbf{x})^2$

For y = 1:

$$\begin{split} L(y,\pi(x)) &= (0-\pi_0(\mathbf{x}))^2 + (1-\pi_1(\mathbf{x}))^2 = (-(1-\pi_1(\mathbf{x})))^2 + (1-\pi_1(\mathbf{x}))^2 \\ &= 1-2\cdot\pi_1(\mathbf{x}) + \pi_1(\mathbf{x})^2 + 1-2\cdot\pi_1(\mathbf{x}) + \pi_1(\mathbf{x})^2 \\ &= 2\cdot(1-2\cdot\pi_1(\mathbf{x}) + \pi_1(\mathbf{x})^2) = 2\cdot(1-\pi_1(\mathbf{x}))^2 = 2\cdot(\pi_1(\mathbf{x})-1)^2 \\ L(y,\pi(x)) &= \begin{cases} 2\cdot\pi_1(\mathbf{x})^2 & \text{for } y=0 \\ 2\cdot(\pi_1(\mathbf{x})-1)^2 & \text{for } y=1 \end{cases} = 2\cdot(\pi_1(\mathbf{x})-y)^2 \end{split}$$

Logarithmic Loss

LOGARITHMIC LOSS (LOG-LOSS)

The generalization of the Binomial loss (logarithmic loss) for two classes is the multiclass **logarithmic loss** / **cross-entropy loss**:

$$L(y, \pi(x)) = -\sum_{k=1}^{g} \mathbb{1}_{\{y=k\}} \log (\pi_k(\mathbf{x})),$$

with $\pi_k(\mathbf{x})$ denoting the predicted probability for class k.

The optimal constant model $\pi(\mathbf{x}) = (\theta_1, ..., \theta_g)$ (outputting a vector of constant class probabilities) is

$$\pi_k(\mathbf{x}) = \theta_k = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{y^{(i)} = k\}},$$

being the fraction of class-k observations.

Proof: Exercise.

In the upcoming section we will see how this corresponds to the (multinomial) **softmax regression**.

LOGARITHMIC LOSS (LOG-LOSS)

Claim: For g = 2 the log-loss is equal to the Bernoulli loss, defined as

$$L_{0,1}(y, \pi_1(\mathbf{x})) = -ylog(\pi_1(\mathbf{x})) - (1-y)log(1-\pi_1(\mathbf{x}))$$

Proof:

$$L_{0,1}(y, \pi_1(\mathbf{x})) = -ylog(\pi_1(\mathbf{x})) - (1 - y)log(1 - \pi_1(\mathbf{x}))$$

$$= -ylog(\pi_1(\mathbf{x})) - (1 - y)log(\pi_0(\mathbf{x}))$$

$$= -\mathbb{1}_{\{y=1\}}log(\pi_1(\mathbf{x})) - \mathbb{1}_{\{y=0\}}log(\pi_0(\mathbf{x}))$$

$$= -\sum_{k=0}^{1} \mathbb{1}_{\{y=k\}}\log(\pi_k(\mathbf{x})) = L(y, \pi(x))$$