ECE 2101L Lab #9 Band Stop Filter

Kyler Martinez and Daniel Ruiz – Group 2 December 11th, 2020

Objective

The objective of the lab is to explore band stop filters and the magnitude responses that they produce, as well as be able to find the transfer function of a circuit designed to produce a band stop response.

Materials

The necessary equipment needed for the lab are as follows

- 1. Breadboard
- 2. 4 BNC Clip Connectors
- 3. Clip Leads
- 4. $2.0475681\mu F$ and one $.0951362\mu F$ Capacitor
- 5. 4 1k Ω , 2 736.3 Ω , and one 500 Ω Resistors
- 6. 2 Op Amps
- 7. LCR Meter
- 8. Digital Multimeter
- 9. Oscilloscope
- 10. Function Generator

Pre-Lab

Figure 1: MATLAB Plot

Procedure

Figure 3: PSPICE Circuit For Magnitude Response (Post Lab)

Results

Figure 4: Plot For The Response For Various Frequencies (Not Used)

Figure 5: Plot For Magnitude For Various Frequencies

_		
CURSOR 1,2	MAX(V(U2:OUT))/MAX(V(V1:+))	985.345m
	MAX(V(U2:OUT))/MAX(V(V1:+))	746.182m
	MAX(V(U2:OUT))/MAX(V(V1:+))	707.376m
	MAX(V(U2:OUT))/MAX(V(V1:+))	1.4366m
	MAX(V(U2:OUT))/MAX(V(V1:+))	562.762m
	MAX(V(U2:OUT))/MAX(V(V1:+))	705.626m
	MAX(V(U2:OUT))/MAX(V(V1:+))	842.613m
	MAX(V(U2:OUT))/MAX(V(V1:+))	987.523m
1		

Figure 6: Measurement For Magnitude For Various Frequencies

Figure 7: MATLAB Plot With Data In Black

Data Table For Frequencies & Corresponding Gain

f [Hz]	$ H(j*2*\pi) $	
1k	985.345m	
2.5k	746.182m	
2.5774k	707.376m	
3.3471k	1.4366m	
4k	562.762m	
4.3379k	705.626m	
5k	842.613m	
12k	987.523m	

Analysis

We can see from our data that as we increase the frequency the gain decreases until f=3.3471 kHz, where the gain is incredibly small, about .0014, which is close enough to 0 for practical purposes. The gain then increases once more as we increase the frequency past this stopping point. The 3dB frequencies were found at about 2.5774kHz and 4.3379kHz and the band width of the filter would be 0Hz <= f <= 2.5774 kHz and 4.3379 kHz <= f. Our data closely matches the theoretical magnitude response since we used PSPICE to collect our data which is heavily based on theoretical calculations.

Problems

a.

$$\frac{\sqrt{1 - Vin}}{\sqrt{1 + \frac{1}{c_1 s}}} + \frac{\sqrt{1 - Vc}}{\sqrt{1 - s}} + \frac{\sqrt{1 - Vc}}{\sqrt{1 + s}} = 0$$

$$\frac{6}{1k} + \frac{V_b - V_c}{1k} + \frac{V_b}{c_{zs}} = 0$$

$$\frac{C_1}{\frac{1}{C_1S}} + \frac{V_C - V_b}{1K} = 0$$

$$\frac{C_2}{736.3} + \frac{V_c}{1k} = 0$$

$$H(s) = \frac{s^2 + 441900000}{s^2 + 11090 s + 441900000}$$

b. Write a Spice program to find the magnitude of the transfer function of your circuit. Run your program and compare with your experimental results.

Figure 8: Magnitude of Transfer Function Using PSPICE

Appendix

```
%MATLAB Code
syms s va vi vb vc vd vo
spec = 'k.';
%Metric Units
k = 10^3;
m = 10^{-3};
u = 10^{-6};
%Plots Used In THe Lab
H_TH(s) = (s^2 + 4.41940645 * 10^8)/(s^2 + 11087.0258*s + 4.41940645 * 10^8);
f = linspace(0,12*1000,10000);
plot(f,abs(H TH(j*2*pi*f)))
xlabel('f [Hz]'); ylabel('Gain'); title('Gain vs Frequency');
hold on;
%Data Points
plot (1*k,985.345*m, spec)
plot (2.5*k,746.182*m, spec)
plot (3.3471*k,1.4366*m, spec)
plot (4*k,562.762*m, spec)
plot (5*k,842.613*m, spec)
plot (12*k,987.523*m, spec)
plot (2.5774*k,707.376*m, spec)
plot (4.3379*k,705.626*m, spec)
%Cap Values
C1 = .0475681*u;
C2 = .0951362*u;
ZC1 = 1/(C1*s);
ZC2 = 1/(C2*s);
%Definitions of nodal eqn
node_a = (va-vi)/ZC1 + (va-vc)/ZC1 + (va-vd)/500 == 0;
node_b = (vb-vi)/k + (vb-vc)/k + (vb)/ZC2 == 0;
node_c = (vc-va)/ZC1 + (vc-vb)/k == 0;
node_d = (vc-vd)/736.3 + (vc)/k == 0;
node_e = (vo-vd)/736.3 + (vo)/k == 0;
%Solving Nodal Eqn
sol = solve(node_a,node_b,node_c,node_d,node_e,[va,vb,vc,vd,vo]);
%This was done to get H(s) in a format I can compare to the lab
```

H_TEMP =

 $201841737789622195590519928784765625 \, s^2 + 89202980794122492566142873090593446023921664$

 $201841737789622195590519928784765625\ s^2 + 2237872282269982398721431028295956168704\ s + 89202980794122492566142873090593446023921664$

 $n = 201841737789622195590519928784765625 s^2 + 89202980794122492566142873090593446023921664$

d =

 $201841737789622195590519928784765625\ s^2 + 2237872282269982398721431028295956168704\ s + 89202980794122492566142873090593446023921664$

$H_num = vpa(n/201841737789622195590519928784765625,4)$

 $H_num = 1.0 s^2 + 4.419e + 8$

H den = vpa(d/201841737789622195590519928784765625,4)

 $H_{den} = 1.0 s^2 + 11090.0 s + 4.419e + 8$

$$H(s) = (s^2 + 4.419e+8)/(s^2 + 11090 *s + 4.419e+8)$$

H(s) =

 $\frac{s^2 + 441900000}{s^2 + 11090 \, s + 441900000}$