ANTOAN& BAOMAT THÔNG TIN

Giảng viên: Ths Phạm Thanh Bình Bộ môn Kỹ thuật máy tính & mạng http://dhthuyloi.blogspot.com

Chương 2:

MẬT MÃ ĐỐI XƯNG

- Những vấn đề cơ bản của mật mã
- Các kỹ thuật mã hoá cổ điển
- Chuẩn mã hoá dữ liệu DES
- Chuẩn mã hoá cải tiến AES

Bài 2.1 - Những vấn đề cơ bản của mật mã

- Mật mã là công cụ cơ bản để bảo vệ sự bí mật và toàn vẹn của dữ liệu
- Mật mã có thể biến đổi dữ liệu từ dạng ban đầu sang một dạng khác khó đọc hơn, nhằm bảo vệ sự bí mật của dữ liệu.
- Một số kỹ thuật mật mã có thể giúp chứng minh được nguồn gốc và sự toàn vẹn của dữ liệu
- Mật mã cũng được ứng dụng trong các giao thức mạng, nhằm bảo vệ dữ liệu khi lưu thông trên mạng

The Imitation Game Film received eight nominations at the 87th Oscar

Bài tập 1: V

- Lập trình nhập một chuỗi kí tự từ bàn phím, cộng mỗi phần tử của chuỗi với 37 Hiện chuỗi mới ra màn hình.
- Lập trình khôi phục lại chuỗi ban đầu.

Bài tập 2:

- Lập trình nhập một chuỗi kí tự từ bàn phím, cộng mỗi phần tử của chuỗi với (K) K là một giá trị nhập từ bàn phím). Hiện chuỗi mới ra màn hình.
- Lập trình khôi phục lại chuỗi ban đầu.

Muốn khôi phục được chuỗi ban đầu thì cần phải biết K.

- Trong kĩ thuật mật mã, K được gọi là "Khoá" (Key) dùng để mã hoá và giải mã.
- Chuỗi ban đầu được gọi là "bản rõ" (Plain text)
- Chuỗi sau khi mã hoá được gọi là "bản mã" (Cipher text)
- Cách thức biến bản rõ thành bản mã được gọi là "thuật toán mã hoá".
- Cách thức biến bản mã thành bản rõ được gọi là "thuật toán giải mã".

Quá trình mã hoá và giải mã

Trong đó:

- ♦ P là bản rõ
- \diamondsuit K_E là khoá mã hoá (Encryption Key)
- ◆ C là bản mã
- ◆ E là thuật toán mã hoá (hay hàm mã hoá)
- $igotimes C = E(P, K_E)$ là công thức định nghĩa sự mã hoá. Bản mã được tạo ra nhờ áp dụng thuật toán mã hoá E, tác động vào bản rõ P, với khoá mã hoá K_E làm tham số.

- $ightharpoonup K_D$ là khoá giải mã (Decryption Key)
- ◆ D là thuật toán giải mã (hay hàm giải mã)
- ♦ $P = D(C, K_D)$ là công thức định nghĩa sự giải mã. Thuật toán D sẽ tác động lên bản mã C với K_D là tham số, nó sẽ biến bản mã C trở về dạng ban đầu là bản rõ P.

- Nếu $K_D = K_E$ (tức là khoá giải mã và khoá mã hoá giống nhau), ta gọi đây là "mật mã dối xứng". Khoá này phải được giữ bí mật.
- Ngược lại, nếu $K_D \neq K_E$, đây là "mật mã bất đối xứng".

Bài 2.2 - Các kỹ thuật mã hoá cổ điển

- Kỹ thuật thay thế
- Kỹ thuật chuyển dịch hoán vị

Kỹ thuật thay thế

- Thuật toán mã hoá sẽ thay thế mỗi kí tự trong
 bản rõ bằng một kí tự khác
- Một số mật mã tiêu biểu:
 - Mật mã CAESAR
 - Mật mã Affine
 - Mật mã Monoalphabetic
 - Mật mã Polyalphabetic...

Mật mã CAESAR

- Mỗi kí tự trong bảng chữ cái được thay thế bởi một kí tự khác cùng bảng, cách sau nó ba vị trí
- Dây là một trong những mật mã ra đời sớm nhất, do Julius Caesar phát minh.

Quy tắc thay thế:

- Plaintext:
- abcdefghijklmnopqrstuvwxyz
- Ciphertext:

DEFGHIJKLMNOPQRSTUVWXYZABC

Ví dụ:

Plaintext:

meet me after the toga party

Ciphertext:

PHHW PH DIWHU WKH WRJD SDUWB

Dể tiện cho việc tính toán, ta sẽ gán mỗi ký tự với một số nguyên tương ứng:

		L L		٦		E	~	L			1.	1	•••	
	đ	D	C	Q	е	L	g	[]	L		K	T		
	<u> </u>	4		9					0		10	11	10	
	U		Z	5	4	3	0		l 8	9	I IU	77		
-														

 <u>n</u>	0	p	q	r	S	1	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

- Như vậy, mọi phép toán mã hoá và giải mã đều được thực hiện trong một tập hợp 26 số nguyên từ 0 đến 25 (gọi là "Vành 26" hay Z_{26}).
- Công thức mã hoá:

$$C = E(P, 3) = (P + 3) \mod 26$$

Công thức giải mã:

$$P = D(C, 3) = (C - 3) \mod 26$$

Ví dụ:

Mã hoá:

- \diamond Với P = 'A' = 0 thì $C = (0 + 3) \mod 26$
 - $C = 3 \mod 26 = 3 = 'D'$
- \diamond Với P = 'X' = 23 thì $C = (23+3) \mod 26$
 - $C = 26 \mod 26 = 0 = \text{`A'}$

Giải mã:

- \diamond Với C = 'A' = 0 thì $P = (0 3) \mod 26$
 - $P = -3 \mod 26 = -3$
- \diamond Chú ý: Đối với a thuộc Z_{26} thì a + 26 = a

$$P = -3 + 26 = 23 = 'X'$$

- Tổng quát hoá mật mã Caesar bằng cách thay thế một kí tự ban đầu bởi kí tự đứng sau nó K vị trí.
- Công thức mã hoá:

$$C = E(P, K) = (P + K) \mod 26$$

Công thức giải mã:

$$P = D(C, K) = (C - K) \mod 26$$

Ví dụ: với *K*=6

Mã hoá:

 \diamond Với P = 'X' = 23 thì $C = (23+6) \mod 26$

 $C = 29 \mod 26 = 3 = 'D'$

Giải mã:

 \diamond Với C = 'D' = 3 thì $P = (3 - 6) \mod 26$

$$\rightarrow P = -3 + 26 = 23 = 'X'$$

Ưu nhược điểm:

- Mật mã Caesar đơn giản, dễ thực hiện
- Độ an toàn không cao, dễ bị bẻ khoá bởi tấn công Brute-force do số lượng khoá quá ít (chỉ có 25 khoá)

(Brute-force là hình thức tấn công bằng cách thử tất cả các khả năng của khoá để tìm ra khoá đúng)

Bài tập 1:

- Lập trình nhập một chuỗi kí tự từ bàn phím, mã hoá chuỗi bằng thuật toán CAESAR tổng quát với khoá K nhập từ bàn phím. Hiện chuỗi mới ra màn hình.
- Lập trình giải mã để khôi phục lại chuỗi ban đầu.

Bài tập 2:

Lập trình bẻ khoá mật mã Caesar bằng phương pháp Brute-force.

- Đầu vào chương trình là chuỗi kí tự cipher text thu được từ Bài tập 1.
- Hãy xác định khoá K đã sử dụng và nội dung của plain text ban đầu.

Mật mã Affine

★ Kí tự P ban đầu được thay thế bởi kí tự C theo công thức:

$$C = E(P, \{a,b\}) = (aP + b) \mod 26$$

Công thức giải mã:

$$P = D(C, \{a,b\}) = a^{-1}(C-b) \mod 26$$

Trong đó khoá K chính là cặp 2 số nguyên $\{a,b\}$ thuộc Z_{26}

Nếu a =1 thì mật mã Affine sẽ trở thành mật mã Caesar tổng quát

Điều kiện:

- Để có thể giải mã được thì a phải nguyên tố với 26, tức là ước số chung lớn nhất của a và 26 bằng 1: USCLN(a, 26) = 1
- ♦ Vì chỉ khi USCLN(a, 26) = 1 thì mới tồn tại $a^{-1} \in Z_{26}$ để tính P
- \bullet a⁻¹ là một số thuộc Z_{26} thoả mãn: a.a⁻¹ = a⁻¹.a = 1 (trong Z_{26})

Bài tập:

 \bigstar Xác định các giá trị có thể có của a trong Z_{26} , và tính a^{-1} tương ứng

Đáp số:

- Các giá trị của a:
 - 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25
- ♦ Các a⁻¹ tương ứng:
 - 1, 9, 21, 15, 3, 19, 7, 23, 11, 5, 17, 25

Bài tập 1:

- Lập trình nhập một chuỗi kí tự từ bàn phím, mã hoá chuỗi bằng thuật toán Affine với cặp số {a,b} nhập từ bàn phím. Hiện chuỗi mới ra màn hình.

Bài tập 2:

Lập trình giải mã Affine để khôi phục lại chuỗi ban đầu:

- Đầu vào chương trình là cặp số {a,b} và chuỗi kí tự cipher text từ Bài tập 1.
- Đầu ra chương trình là chuỗi kí tự plain text

Bẻ khoá mật mã Affine

igodelthicolor Có tất cả bao nhiều cặp số nguyên $\{a,b\}$ trong Z_{26} có thể dùng làm khoá của mật mã Affine?

- Có 12 giá trị của a
- Có 26 giá trị của b
- \diamondsuit Tổng cộng có $12 \times 26 = 312$ cặp số $\{a,b\}$

Nhận xét:

- Mật mã Affine có độ phức tạp lớn hơn mật mã Caesar tổng quát, số lượng khoá cũng nhiều hơn
- Độ an toàn chưa cao, dễ bị phá bởi tấn công Brute-force do số lượng khoá chưa nhiều (chỉ có 312 khoá)

Bài tập 3:

Lập trình bẻ khoá mật mã Affine bằng phương pháp Brute-force:

- Đầu vào chương trình là chuỗi kí tự cipher text thu được từ Bài tập 1.
- Hãy xác định cặp số {a,b} đã sử dụng và nội dung của plain text ban đầu.

Mật mã Monoalphabetic

- Mỗi kí tự trong bảng chữ cái được thay thế bởi một kí tự bất kì khác cùng bảng
- Trong ví dụ sau, các kí tự A được thay bằng Q, B được thay bằng W, C được thay bằng E...

- Bån rõ:ABCDEFGHIJKLMNOPQRSTUVWXYZ
- Bån mã:
 QWERTYUIOPASDFGHJKLZXCVBNM

Bài tập 1:

- Lập trình nhập một chuỗi kí tự từ bàn phím, mã hoá chuỗi bằng thuật toán Monoalphabetic với khoá K nhập từ bàn phím (Khoá K là một chuỗi gồm 26 chữ cái có trật tự bất kì). Hiện chuỗi mới ra màn hình.

Bài tập 2:

Lập trình giải mã Monoalphabetic để khôi phục lại chuỗi ban đầu:

- Đầu vào chương trình là khoá K và chuỗi kí tự cipher text từ Bài tập 1.
- Đầu ra chương trình là chuỗi kí tự plain text

Bẻ khoá mật mã Monoalphabetic

Có tất cả bao nhiêu chuỗi bất kì gồm 26 chữ cái có thể dùng làm khoá của mật mã Monoalphabetic?

- Số lượng hoán vị của chuỗi dài 26 chữ cái là: $26! \approx 4.10^{26}$ (trên 4.10^{26} khoá!)
- Giả sử một máy tính cá nhân tốc độ 4 GHz (thực hiện 4 tỷ phép tính/1 giây) có thể kiểm tra được
 1 khoá trong 1 phép tính.
- ♦ Để kiểm tra hết 4.10²⁶ khoá sẽ cần tới:

$$\frac{4.10^{26}}{4.10^9.3600.24.365} \approx 3 \text{ tỉ năm!}$$

Nhận xét:

- Mật mã Monoalphabetic có số lượng khoá rất lớn, khó bẻ khoá bằng phương pháp Brute -force
- Tuy nhiên vẫn có thể bẻ khoá mật mã này dựa trên các thống kê về các đặc điểm tự nhiên của ngôn ngữ

Ví dụ:

Hãy giải mã thông điệp tiếng Anh dưới đây (được mã hoá bởi phương pháp Monoalphabetic):

YIFQFMZRWQFYVECFMDZPCVMRZWNMD ZVEJBTXCDDUMJNDIFEFMDZCDMQZKCE YFCJMYRNCWJCSZREXCHZUNMXZNZUCD RJXYYSMRTMEYIFZWDYVZVYFZUMRZCR WNZDJJXZWGCHSMRNMDHNCMEQCHZ JMXJZWIEJYUCFWDJNZDIR

Bảng thống kê xác suất xuất hiện của các kí tự trong tiếng Anh

Kí tự	Xác suất	Kí tự	Xác suất	Kí tự	Xác suất
A	0.082	J	0.002	S	0.063
B	0.015	K	0.008	T	0.091
	0.028	L	0.040	U	0.028
D	0.043	M	0.024	V	0.010
<u> </u>	0.127	N	0.067	W	0.023
	0.022	O	0.075	X	0.001
lG	0.020	P	0.019	Y	0.020
H	0.061	Q	0.001	Z	0.001
I	0.070	R	0.060		

Có thể chia 26 chữ cái thành 5 nhóm sau:

- E có xác suất cao nhất: 0.127
- ◆ T, A, O, I, N, S, H, R có xác suất từ 0.060 đến 0.090
- D và L có xác suất khoảng 0.04
- ◆ C, U, M, W, F, G, Y, P, B có xác suất từ 0.015 đến 0.028.
- V, K, J, X, Q, Z có xác suất dưới 0.01

Ba mươi cặp kí tự tiếng Anh có xác suất xuất hiện cao nhất (từ cao xuống thấp) là:

TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI, OF

Mười hai bộ 3 kí tự tiếng Anh có xác suất xuất hiện cao nhất (từ cao xuống thấp) là:

THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, FOR, DTH

Tần suất xuất hiện các chữ cái trong thông điệp đã cho:

Chữ cái	Tần suất	Chữ cái	Tần suất	Chữ cái	Tần suất
A	0	J	11	S	3
B	1	K	1	T.	2
	15	L	0	Ū	5
D	13	M	16	V	5
Е	7	N	9	W	8
<u> </u>	11	0	0	X	6
l G	1	P	1	Y	10
H	4	Q	4	Z	20
Ī	5	R	10		

Phân tích:

- ♦ Z xuất hiện nhiều nhất: có thể Z là e
- ◆ C, D, F, J, M, R, Y xuất hiện trên 10 lần: có thể ứng với t, a, o, i, n, s, h, r

Xét các cặp kí tự có thể chứa e, chúng có dạng Z- hoặc -Z:

- DZ, ZW xuất hiện 4 lần
- NZ, ZV xuất hiện 3 lần
- ♦ RZ, HZ, XZ, FZ, ZR, ZV, ZC, ZD, ZJ xuất hiện 2 lần

- ♦ Vì ZW xuất hiện 4 lần, WZ không xuất hiện, và W xuất hiện ít, nên có thể W là d, và ZW là ed
- ♦ Vì DZ xuất hiện 4 lần, ZD xuất hiện 2 lần, nên D có thể là một trong 3 kí tự r, s, t

- Vì bộ ba ZRW, RZW xuất hiện ở đầu bản mã, và cặp RW còn xuất hiện sau đó, và R xuất hiện khá nhiều trong bản mã, nên có thể R là n
- Như vậy ZRW có thể là end, RZW là ned, RW là nd

- ♦ Vì cặp NZ hay xuất hiện, còn cặp ZN thì không, nên có thể N là h, NZ là he
- ♦ Vì M xuất hiện nhiều thứ 2 sau Z, bộ ba RNM có dạng nh-, nên M có thể là một nguyên âm (a, o, hoặc i)

- ♦ Bộ ba NMD xuất hiện 2 lần
- ♦ M có thể là a, o, i
- D có thể là r, s, t
 - Vậy NMD có thể là his hoặc has (với dự đoán D là s, M là i hoặc a)

- ◆ Cụm NCMF có dạng h-i- hoặc h-a- gợi ý F là một phụ âm (t, n, r)
- ♦ Khá hợp lý nếu NCMF là hair, hay M là i và F là r, suy ra C là a?
- ♦ Như vậy cụm HNCMF có thể là chair, hay H là c

- ♦ Lúc trước ta dự đoán: C, D, F, J, M, R, Y xuất hiện trên 10 lần: có thể ứng với t, a, o, i, n, s, h, r
- Vậy o có thể là Y hoặc J.
- Sau khi thay thế vào văn bản ta thấy Y là o hợp lý hơn, còn lại J là t:

o-r-riend-ro--arise-a-inedhise--t---ass-it YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ hs-r-riseasi-e-a-orationhadta-en--ace-hi-e NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ he-asnt-oo-in-i-o-redso-e-ore-ineandhesett NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ -ed-ac-inhischair-aceti-ted--to-ardsthes-n XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR Tiếp tục suy luận ta thu được bản rõ: "Our friend from Paris examined his empty glass with surprise, as if evaporation had taken place while he wasn't looking. I poured some more wine and he settled back in his chair, face tilted up towards the sun"

Bài tập:

Lập trình nhập một chuỗi kí tự từ bàn phím. Đếm xem kí tự đầu tiên của chuỗi xuất hiện bao nhiều lần trong chuỗi?

Bài tập:

Lập trình tính tần suất xuất hiện của các kí tự trong một đoạn văn bản cho trước.

Bài tập:

Hãy giải mã thông điệp tiếng Anh dưới đây (được mã hoá bởi phương pháp Monoalphabetic):

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFP ESXUDBMETSXAIZVUEPHZHMDZSHZOW SFPAPPDTSVPQUZWYMXUZUHSXEPYEPOP DZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

Gợi ý: Tần suất xuất hiện các chữ cái trong thông điệp đã cho (%):

P 13,33	H 5,83	F 3,33	В 1,67	C 0,00
Z 11,67	D 5,00	W 3,33	G 1,67	K 0,00
S 8,33	E 5,00	Q 2,50	Y 1,67	L 0,00
U 8,33	V 4,17	T 2,50	I 0,83	N 0,00
O 7,50	X 4,17	A 1,67	J 0,83	R 0,00
M 6,67				

Nhận xét

- Mật mã Monoalphabetic dễ bẻ vì không che giấu được tần xuất suất hiện của các kí tự trong văn bản
- Dể khắc phục có thể áp dụng mã hoá đa kí tự, hoặc sử dụng nhiều bảng mã thay thế (Polyalphabetic)...

Hết Phần 2 1