# **IOT & Hardware Documentation**

# for the Design and Implementation of a Secure, Decentralized Early Warning System for Disasters and Crises

#### Prepared by

Reem Nazeh – IoT & Hardware Track Lead

Computer Science Department – Future Academy

Academic Year: 2024/2025

#### **About This File**

This documentation focuses specifically on the **IoT and Hardware Implementation** part of the graduation project. The complete system consists of multiple integrated tracks (Sensor Network , AI, Backend, Frontend, Mobile,Web , Smart Contract ), and this document explains the circuit design, sensor configuration, and embedded software development done using ESP32 and Arduino IDE.

## **Executive Summary:**

The goal of EWS (Early Warning Systems) is to detect problems early and enable rapid, automated responses to minimize risks.

The system relies on environmental sensors to collect real-time data. This data is processed locally to trigger an initial response, then passed to an Al model that validates the alert's accuracy before forwarding it to the software applications.

#### 1. Project Overview

A real-time monitoring system using ESP32 to detect:

- Toxic gases (MQ2)
- Carbon Monoxide (MQ7)
- Temperature/Humidity (DHT11)
- Flame (IR sensor)

Data is streamed to Blynk Web/Mobile Dashboards and a custom API for alerts.

# 2. Hardware Components

| Component      | Specification                  | Purpose                   |
|----------------|--------------------------------|---------------------------|
| ESP32          | Wi-Fi                          | Main controller           |
| MQ2 Gas Sensor | Analog output (LPG, smoke)     | Detect flammable gases    |
| MQ7 Gas Sensor | Analog output (CO)             | Detect carbon<br>monoxide |
| DHT11          | Digital output                 | Measure temp/humidity     |
| Flame Sensor   | Digital output (HIGH on flame) | Fire detection            |
| LED            | 5mm Red                        | Visual alarm              |

## **Wiring Diagram**



#### **ESP32 Pins:**

- MQ2 → GPIO34 (Analog)
- MQ7 → GPIO35 (Analog)
- DHT11 → GPIO22
- Flame Sensor → GPIO13 (Digital )
- LED  $\rightarrow$  GPIO23 (with 220 $\Omega$  resistor)

## 3. Software Requirements

- **Arduino IDE** (v2.3.2+)
- Libraries:
  - o BlynkSimpleEsp32
  - o DHT sensor library
  - MQUnifiedsensor
  - Arduinojson
  - WiFi
- Blynk IoT App (Android/iOS)
- Blynk.Console WebDashboard

## 4. Troubleshooting

| Issue      | Solution                      |
|------------|-------------------------------|
|            |                               |
| No Blynk   | Check Auth Token/Wi-Fi signal |
| connection |                               |
|            |                               |

MQ7 always reads 0 Verify analog pin & 5V power

## 5. Blynk IoT

#### WebDashBoard



#### • Hardware Testing



## MobileApp



#### 6. References

- MQ2 Datasheet [ https://www.pololu.com/file/0J309/MQ2.pdf ]
- MQ7 DataSheet [https://cdn.sparkfun.com/assets/b/b/b/3/4/MQ-7.pdf]
- DHT11 DataSheet [https://www.alldatasheet.com/datasheet-pdf/pdf/1132088/ETC2/DHT11.html]
- Blynk Documentation[ <a href="https://docs.blynk.io/">https://docs.blynk.io/</a> ]
- GitHub Repository[ https://github.com/your-repo]

## **Project Achievements**

This system is part of a graduation project that was awarded **First Place** in the qualifying round of **the Summit Forum for Scientific and Engineering** Innovations at the level of **the Ministry of Higher Education Institutes**.

#### Full Project Documentation.

Full Repo Link

#### **Contact**

#### Reem Nazeh

reem1nazeh@gmail.com | GitHub: Reemnazeeh | LinkedIn: Reem Nazeh

#### Final Note

This IoT subsystem is a crucial component of a larger, integrated solution addressing disaster and crisis management.

It combines embedded systems, real-time data processing, and wireless communication to provide actionable alerts and support rapid decision-making.

For more technical details, full system design, and sub systems integrations, please refer to the full project documentation or contact the team via the links above