REAL ANALYSIS

Show that for any $a, b \in \mathbb{Q}$, we have $||a| - |b|| \le |a - b|$.

Proof. Since $a, b \in \mathbb{Q}$,

$$|a+b| < |a| + |b|$$

So

$$|a| = |a - b + b| \le |a - b| + |b|$$

$$|b| = |a + b - a| \le |b - a| + |a|$$

These can be rewritten as

$$|a| - |b| \le |a - b|$$

$$|b| - |a| < |b - a|$$

Since |a - b| = |b - a| and if $t \ge x$ and $t \ge -x$ then $t \ge |x|$, therefore

$$||a| - |b|| \le |a - b|$$

Exercise 1.5.5

If a sequence $(a_k)_{k\in\mathbb{N}}$ converges in \mathbb{Q} show that $(a_k)_{k\in\mathbb{N}}$ is a Cauchy sequence in \mathbb{Q} .

Proof. By definition if $(a_k)_{k \in \mathbb{N}}$ converges in Q given any rational number r > 0 there exists an integer N such that if $n \geq N$ then $|a_n - a| < r$.

Suppose $(a_k)_{k \in \mathbb{N}}$ converges to $a, a \in \mathbb{Q}$. Let r > 0, since $(a_k)_{k \in \mathbb{N}}$ converges to a, $\exists N$ such that $\forall n \geq N$, $|a_n - a| < \frac{r}{2}$.

Then $\forall n, m > N$

$$|a_n - a_m| = |a_n - a + a - a_m| \le |a_n - a| + |a - a_m|$$

Let n, m > N

$$|a_n-a|<\frac{r}{2}$$

and

$$|a-a_m|=|a_m-a|<\frac{r}{2}$$

therefore

$$|a_n-a_m|<\frac{r}{2}+\frac{r}{2}=r$$

Absolute values on Q satisfy the Triangle Inequality

Show that the limit of a convergent sequence is unique.

Proof. Suppose $(a_k)_{k \in \mathbb{Q}}$ converges in \mathbb{Q} to L and M. Choose L and M, $L \neq M$ and let $r = \frac{|L-M|}{2}$. Then $\exists N_1 \in \mathbb{Z}$ such that if $n \geq N_1$ then

$$|a_n - L| < r$$

and $\exists N_2 \in \mathbb{Z}$ such that if $n \geq N_2$ then

$$|a_n - M| < r$$

Let $N = max(N_1, N_2)$. If $n \ge N$ then

$$|L-M| = |l-a_n + a_n - M| \le |L-a_n| + |a_n - M| < 2(\frac{|L-M|}{2}) = |L-M|$$

Reducing the above, we have |L-M| < |L-M| a contradiction, $\Rightarrow \Leftarrow$. Therefore, L=M.

Exercise 1.5.9

Show that the sum of two Cauchy sequences in Q is a Cauchy sequence in Q.

Proof. Let $(a_k)_{k\in\mathbb{N}}$ and $(b_k)_{k\in\mathbb{N}}$ be Cauchy sequences \mathbb{Q} . Let r>0, $\exists N_1$ such that if $n,m\geq N_1$ then

$$|a_n-a_m|<\frac{r}{2}$$

and $\exists N_2$ such that if $n, m \geq N_2$ then

$$|b_n-b_m|<\frac{r}{2}$$

Let $N = max(N_1, N_2)$. If $n, m \ge N$ then

$$|a_n - a_m| + |b_n - b_m| < \frac{r}{2} + \frac{r}{2} = r$$

$$|a_n - a_m + b_n - b_m| \le |a_n - a_m| + |b_n - b_m|$$

Therefore

$$|(a_n + b_n) - (a_m + b_m)| < r$$

Show that if a Cauchy sequence $(a_k)_{k\in\mathbb{N}}$ does not converge to 0, all the terms of the sequence eventually have the same sign.

Lem.: 1.5.12 *Suppose* $(a_k)_{k\in\mathbb{N}} \in \mathcal{C} \setminus \mathcal{I}$, then there exists a positive rational number r and an integer N such that $|a_n| \ge r$ for all $n \ge N$.

Proof. Suppose $(a_k)_{k\in\mathbb{N}}$ is a Cauchy sequence that does not converge to 0. Therefore given any r > 0 there exists an integer N such that if $n, m \ge N$, then $|a_n - a_m| < r$. From Lemma 1.5.2, we can choose r > 0and N such that $|a_n| \ge r$ for all $n \ge N$.

Let r > 0 and $n, m \ge N$. Therefore

$$|a_n - a_m| < r \le |a_n|$$

Suppose $a_n > 0$ and $a_m < 0$

$$|a_n - (-a_m)| = |a_n + a_m| < |a_n| \Rightarrow \Leftarrow$$

Likewise, suppose $a_n < 0$ and $a_m > 0$

$$|a_n - a_m| = |a_m - a_n|$$

$$|a_m - (-a_n)| = |a_m + a_n| < |a_n| \Rightarrow \Leftarrow$$

Therefore, all terms must eventually be the same sign.

Exercise 1.5.15

Show that \sim defines an equivalence relation on $\mathcal C$ We need to show reflexivity, symmetry, and transitivity exist on Cauchy sequences that are equivalent.

$$(a_k) \sim (a_k)$$

For all $a_n \in (a_k)$, $|a_n - a_n| = 0$ This we can say that $(a_k - a_k)_{k \in \mathbb{N}}$ is in \mathcal{I}

$$(a_k) \sim (b_k)$$

Suppose that (a_k) and (b_k) are equivalent and r > 0. For all $N \in \mathbb{N}$ There exists $|(a_n) - (b_n)| < r$ and $|(b_n) - (a_n)| < r$ for $n \ge N$

$$(a_k) \sim (b_k), (b_k) \sim (c_k) \Rightarrow (a_k) \sim (c_k)$$

Let r > 0, $\exists N_1 \in \mathbb{N}$ such that $|a_n - b_n| < \frac{r}{2}$ for all $n \ge N$ and $\exists N_2 \in \mathbb{N}$ such that $|b_n - c_n| < \frac{2}{2}$ for all $n \geq N_2$. This implies

$$|a_n - c_c| = |a_n - b_n + b_n - c_n| \le |a_n - b_n| + |b_n - c_n| < \frac{r}{2} + \frac{r}{2} = r$$

for all $n = max(N_1, N_2)$

Where C denotes the set of all Cauchy sequences of rational numbers and ${\mathcal I}$ denotes the set of all Cauchy sequences that converge to 0.

In other words, they don't have the same sign.

Show that **R** is a commutative ring with 1, with \mathcal{I} as the additive identity and $[a_k]$ such that $a_k = 1$ for all k as the multiplicative identity.

We know that if (a_k) , (b_k) are Cauchy sequences, $(a_n)_{n\in\mathbb{N}}+(a_n)_{n\in\mathbb{N}}=(a_n+b_n)_{n\in\mathbb{N}}$ and $(a_n)_{n\in\mathbb{N}}(b_n)_{n\in\mathbb{N}}=(a_nb_n)_{n\in\mathbb{N}}$ are well-defined. Let $[a_k]$ be an equivalence class, it easily follows that $[a_k]+[a_k]=[a_k+a_k]$ and $[a_k][a_k]=[a_ka_k]$

As examples, consider $(a_k)_{k\in\mathbb{N}}$ and $(a_k')_{k\in\mathbb{N}}$ denoted as $\{a_k\}$ and $\{a_k'\}$, respectively. Likewise, $(b_k)_{k\in\mathbb{N}}$ and $(b_k')_{k\in\mathbb{N}}$ denoted as $\{b_k\}$ and $\{b_k'\}$

For addition, let $\{a_k\} \sim \{a_k'\}$, $\{b_k\} \sim \{b_k'\}$ and r>0. Then, $\exists N_2$ in $\mathbb N$ such that

$$|a_n - a_n'| < \frac{r}{2} \text{ for } n \ge N_1$$

and

$$|b_n - b_n'| < \frac{r}{2} \text{ for } n \ge N_2$$

This implies

$$|(a_n+b_n)-(a'_n+b'_n)|=|a_n-a'_n+b_n-b'_n|\geq |a_n-a'n|-|b_n-b'n|<\frac{r}{2}+\frac{r}{2}$$

for $n \geq max(N_1, N_2)$.

If $[i_k]$ is in \mathcal{I} then $\{i_k\} + \{i_k\} = 0$ for all $k \in \mathbb{N}$ Then it easily follows $[a_k] + [i_k] = [a_k]$

For multiplication, recall that $\{a_k\}$, $\{a_k'\}$, $\{b_k\}$ and $\{b_k'\}$ are bounded. $\exists M > 0$ such that $\{a_n\}$, $\{a_n'\}$, $\{b_n\}$, $\{b_n'\}$ $\leq M$ for all $n \in \mathbb{N}$ $\exists N \in \mathbb{N}$ such that

 $|a_n - a_n'| < \frac{r}{2M}$ for $n \ge N_1$

and

$$|b_n - b_n'| < \frac{r}{2M}$$
 for $n \ge N_2$

This implies

$$\begin{aligned} 2|a_{n}b_{n} - a'_{n}b'_{n}| &= |(a_{n} - a'_{n})(b_{n} + b'_{n}) + (a_{n} + a'_{n})(b_{n} - b'_{n})| \\ &\leq |(a_{n} - a'_{n})(b_{n} + b'_{n})| + |(a_{n} + a'n)(b_{n} - b'_{n})| \\ &= |a_{n} - a'n||b_{n} + b'_{n}| + |a_{n} + a'n||b_{n} - b'_{n}| \\ &\leq |a_{n} - a'n|(|b_{n}| + |b'_{n}|) + (|a_{n}| + |a'n|)|b_{n} - b'_{n}| \\ &\leq \frac{r}{2M}(2M) + \frac{r}{2M}(2M) \\ &= 2r \end{aligned}$$

Therefore $|a_nb_n - a'nb'_n| < r$ for all $n = max(N_1, N_2)$. If $[i_k]$ with $i_k = 1$ for all k is the multiplicative identity it follows that $[a_k][i_k] = [a_k]$

Lem.: 1.5.8. Let $(a_k)_{k\in\mathbb{N}}$ be a Cauchy sequence of rational numbers. Then $(a_k)_{k\in\mathbb{N}}$ is a bounded sequence

Show that order relation, defined below is well-defined and makes R and ordered field.

Def.: Let $a = [a_k]$ and $b = [b_k]$ be distinct elements of **R**. We define a < b if $[a_k] < [b_k]$ eventually and b > a if $[b_k] > [a_k]$ eventually.

Consider a and b as denoted above. Let them be distinct elements of **B**. They are not equivalent and therefore a - b is not in \mathcal{I} We need to satisfy

- (O1) **Trichotomy:** Since [a] [b] is not in \mathcal{I} , by definition either a < b or b > a.
- (O2) **Transitivity:** For sake of argument, let a < b and choose an additional arbitrary element of $\mathbf{R} [c_k] = c$. Let b < c. Then a < c