Introdução

AUTOMAÇÃO

PROF. GUILHERME FRÓES SILVA

https://guilhermepucrs.github.io/automacao

POLITÉCNICA

ESCOLA

Índice

Objetivos

Avaliação

Introdução à disciplina

Introdução ao Laboratório

Objetivos

A disciplina de Automação Industrial tem como objetivo atualizar os profissionais com conceitos e tecnologias normalmente encontradas em ambientes fabris. Desta forma, são discutidos tópicos atuais relativos a automação industrial e as tecnologias atualmente utilizadas na solução de problemas de controle na indústria, tendências para o futuro, vantagens e desvantagens relacionadas à implantação e operação de processos automatizados. Assim, ao final deste curso o aluno será capaz de compreender e interagir com processos automatizados de qualquer natureza.

Avaliação

Número Máximo de Faltas (25%)

8 faltas

Cálculo do G1:

$$G_1 = (P_1 + P_2) \times 0.5 + L \times 0.5$$

Prova de Substituição (PS)

- Toda matéria
- Só pode ser realizada por quem faltou uma das provas

Provas

- Sem consulta (se necessário, um formulário será fornecido pelo professor)
- Proibido usar calculadoras gráficas (50g, Texas, etc.)

Introdução à Disciplina

Definição

Automação: Qualquer sistema, apoiado em computadores, que substitua o trabalho humano em favor da segurança das pessoas, da qualidade dos produtos, da rapidez da produção ou da redução de custos.

Decorre de necessidades tais como

- Maior nível de qualidade
- Maior flexibilidade de modelos
- Maior segurança pública e dos operários
- Menores perdas materiais e de energia
- Mais disponibilidade e qualidade da informação
- Melhor planejamento e controle de produção
- Controle por especificações numéricas de tolerância
- Reduzir custos de produção

Introdução ao Laboratório

Disposição das Bancadas

Arquitetura dos Controladores

Atividades Práticas

Disposição das Bancadas

Disposição das Bancadas

Bancada 1

- CompactLogix L32E (slots)
- IHM PanelView Plus 600
- Inversor PowerFlex 40
- RSLogix 5000

Bancada 2 à 6

- CompactLogix L23E
- IHM PanelView Plus 400
- Inversor PowerFlex 40 (3 e 5)
- RSLogix 5000

Bancada 7 e 8

- CompactLogix L27ERM
- IHM PanelView Plus 600
- Inversor PowerFlex 525
- Studio 5000

Arquitetura das Bancadas

CompactLogix L23E

I/Os "embutidos" já conectados na bancada

CompactLogix L32E

ESCOLA POLITÉCNICA

DC Input

DC Output

Analog I/O

High Speed Counter (I/O)

CompactLogix L27ERM

PanelView Plus 600

PanelView Plus 400

Inversor de Frequência PowerFlex 40

Inversor de Frequência PowerFlex 525

Motor de Indução Trifásico

Atividades Práticas

Proteção e Acionamento (Estrela – Triângulo)

Cancela Automotiva

Esteira Transportadora

Projeto de Controle de Ventilação

Supervisores (IHM)

Prática de Introdução

Criar uma rede de comunicação

Criar um simples programa em Ladder

Fazer "download" do programa no CLP

Criar uma rede de comunicação

Abrir o software *RSLinx Classic*

Criar uma nova rede:

- Communications → Configure Drivers
- Driver Type: "Ethernet/IP Driver"
- Utilizando o adaptador Intel

Criar uma rede de comunicação

Conferir o IP "192.168.1.##"

- Primeiro digito # refere-se à bancada
- Segundo digito # refere-se ao dispositivo
 - 1 Controlador
 - ∘ 2 IHM
 - 3 Inversor de Frequência

Verificar se os controladores foram identificados.

Criar um simples programa em Ladder

Abrir o software correspondente ao Controlador da sua bancada

- RSLogix 5000 para as bancadas 1 até 6
- Studio 5000 para as bancadas 7 e 8

Criar um novo programa, escrever lógica Ladder que realize o seguinte:

Ao pressionar o Botão 5, a Saída (LED) 5 irá acender.

Fazer "download" do programa no CLP

No mesmo software, encontrar o CLP acessando a rede que foi criada no primeiro passo.

Clicar em "download".

Próximo Lab

CONTROLADORES PROGRAMÁVEIS

Obrigado ©

ATÉ A PRÓXIMA AULA

