Appendix

A Simplified Smets and Wouters (2003) Model Skelton

A.1 Model Description (Log-linearized version)

A.1.1 Consumer/Investor's Equilibrium Conditions

1. Consumption Euler equation:

$$\hat{c}_t = \frac{\theta}{1+\theta} \hat{c}_{t-1} + \frac{1}{1+\theta} E_t \hat{c}_{t+1} - \frac{1-\theta}{(1+\theta)\sigma_c} (\hat{R}_t - E_t \hat{\pi}_{t+1}) + \frac{1-\theta}{(1+\theta)\sigma_c} (1-\rho^c) u_t^c$$
(2.29)

where we set $E_t u_{t+1}^c = \rho^c u_t^c$.

2. Investment Euler equation:

$$\widehat{inv}_t = \frac{1}{1+\beta} \widehat{inv}_{t-1} + \frac{\beta}{1+\beta} E_t \widehat{inv}_{t+1} + \frac{\varphi}{1+\beta} \hat{q}_t + \frac{\beta}{1+\beta} (1-\rho^{inv}) u_t^{inv}$$
 (2.30)

where we set $E_t u_{t+1}^{inv} = \rho^{inv} u_t^{inv}$.

3. Asset pricing Euler equation:

$$\hat{q}_t = -(\hat{R}_t - E_t \hat{\pi}_{t+1}) + \frac{1 - \tau}{1 - \tau + \bar{r}^k} E_t \hat{q}_{t+1} + \frac{\bar{r}^k}{1 - \tau + \bar{r}^k} E_t \hat{r}_{t+1}^k + \varepsilon_t^q$$
 (2.31)

4. Wage setting equation.:

$$\hat{w}_{t} = \frac{\beta}{1+\beta} E_{t} \hat{w}_{t+1} + \frac{1}{1+\beta} \hat{w}_{t-1} + \frac{\beta}{1+\beta} E_{t} \hat{\pi}_{t+1} - \frac{1+\beta \gamma_{w}}{1+\beta} \hat{\pi}_{t} + \frac{\gamma_{w}}{1+\beta} \hat{\pi}_{t-1} - \frac{1}{1+\beta} \Psi_{w} \left[\hat{w}_{t} - \sigma_{L} \hat{L}_{t} - \frac{\sigma_{c}}{1-\theta} \left(\hat{c}_{t} - \theta \hat{c}_{t-1} \right) - u_{t}^{L} - \varepsilon_{t}^{w} \right]$$
(2.32)

where
$$\Psi_w = \frac{(1-\beta\xi_w)(1-\xi_w)}{\left(1+\frac{(1+\lambda_w)\sigma_L}{\lambda_w}\right)\xi_w}$$

A.1.2 Firm's Equilibrium Conditions

1. Production function:

$$\hat{y}_t = \phi u_t^a + \phi \alpha \hat{k}_{t-1} + \phi \alpha \psi \hat{r}_t^k + \phi (1 - \alpha) \hat{L}_t$$
(2.35)

2. Labor demand:

$$\hat{L}_t = -\hat{w}_t + (1+\psi)\hat{r}_t^k + \hat{k}_{t-1}$$
(2.34)

3. Price setting equation.:

$$\hat{\pi}_t = \frac{\beta}{1 + \beta \gamma_p} E_t \hat{\pi}_{t+1} + \frac{\gamma_p}{1 + \beta \gamma_p} \hat{\pi}_{t-1} + \frac{1}{1 + \beta \gamma_p} \Psi_p \left[\alpha \hat{r}_t^k + (1 - \alpha) \hat{w}_t - u_t^a + \varepsilon_t^p \right]$$

$$(2.36)$$
where $\Psi_p = \frac{(1 - \beta \xi_p)(1 - \xi_p)}{\xi_p}$

A.1.3 Miscellaneous Equilibrium Conditions

1. Resource constraint:

$$\hat{y}_t = (1 - \tau k_y - g_y)\hat{c}_t + \tau k_y \widehat{inv}_t + \bar{r}^k \psi k_y r_t^k + g_y u_t^g$$
(2.38)

2. Capital accumulation equation:

$$\hat{k}_t = (1 - \tau)\hat{k}_{t-1} + \tau \widehat{inv}_{t-1} \tag{2.33}$$

3. Monetary policy rule:

$$\hat{R}_t = \rho_m \hat{R}_{t-1} + (1 - \rho_m) \left[\mu_\pi \hat{\pi}_{t-1} + \mu_u \hat{y}_t \right] + \varepsilon_t^m$$
(2.39)

Persistent Shocks

1. : preference shock: $u_t^c = \rho^c u_{t-1}^c + \varepsilon_t^c$

2. : investment shock: $u_t^{inv} = \rho^{inv} u_{t-1}^{inv} + \varepsilon_t^{inv}$

3. : labor shock: $u_t^L = \rho^L u_{t-1}^L + \varepsilon_t^L$

4. : productivity shock: $u_t^a = \rho^z u_{t-1}^a + \varepsilon_t^a$

5. : government spending shock: $u_t^g = \rho^g u_{t-1}^g + \varepsilon_t^g$

Forecast Errors

1. Inflation forecast error: $\hat{\pi}_t = E_{t-1}\hat{\pi}_t + \eta_t^{\pi}$

2. Wage forecast error: $\hat{w}_t = E_{t-1}\hat{w}_t + \eta_t^w$

3. Q forecast error: $\hat{q}_t = E_{t-1}\hat{q}_t + \eta_t^q$

4. Investment forecast error: $\widehat{inv_t} = E_{t-1}\widehat{inv_t} + \eta_t^{inv}$

5. Consumption forecast error: $\hat{c}_t = E_{t-1}\hat{c}_t + \eta_t^c$

6. Capital cost forecast error: $\hat{r}_t^k = E_{t-1} \hat{r}_t^k + \eta_t^{rk}$

A.1.4 Endogenous Variables

 y_t : output

 π_t : inflation rate

 w_t : nominal wage

 k_t : capital stock

 q_t : shadow price of capital stock

 inv_t : physical investment

 c_t : consumption

 R_t : nominal interest rate

 r_t^k : rental rate on capital (cost of capital)

 L_t : labor input

 $u_t^c, u_t^{inv}, u_t^L, u_t^a, u_t^g$: persistent shocks to consumption, investment, labor, productivity, and government spending, respectively.

A.1.5 Exogenous Shock Variables, (i.i.d. Normal distribution)

 ε_t^c : preference shock

 ε_t^{inv} : investment shock

 ε_t^q : equity premium shock

 ε_t^L : labor shock

 ε_t^w : wage mark-up shock

 ε_t^a : productivity shock

 ε_t^p : price mark-up shock

 ε_t^g : government spending shock

 $\varepsilon_t^m:$ monetary policy shock

A.1.6 Forecast Errors

 η_t^{π} : forecast error of inflation

 η_t^w : forecast error of real wage

 η_t^q : forecast error of equity premium

 η_t^{inv} : forecast error of investment

 η_t^c : forecast error of consumption

 η_t^{rk} : forecast error of rental rate

A.2 Preliminary Settings

A.2.1 Estimated Parameters

 θ : habit formation, σ_c : inverse long-run IES, σ_L : inverse labor supply elasticity, ϕ : fixed cost share, ψ : capital utilization cost, φ : inverse adj.cost, γ_p : price γ_w : wage indexation, ξ_p : Calvo price no-revise prob., ξ_w : Calvo indexation, wage no-revise prob., ρ_m : lagged interest rate, μ_{π} : reaction on inflation, ρ_c : persistence, preference, ρ_{inv} : persistence, investment, reaction on output, persistence, labor supply, ρ_a : persistence, productivity, ρ_g : persistence, government $\varepsilon_c \!\!: \text{ S.D., preference shock, } \quad \varepsilon_{inv} \!\!: \text{ S.D., investment shock, }$ spending, equity premium shock, ε_L : S.D, labor supply shock, ε_w : S.D., wage markup shock, ε_z : S.D., productivity shock, ε_p : S.D., price markup shock, ε_g : S.D., gov. spending shock, ε_m : S.D., monetary policy shock.

A.2.2 Values of Calibrated Parameters

discount factor: $\beta = 0.99$,

depriciation rate of capital: $\tau = 0.025$,

share of capital: $\alpha = 0.3$,

capital-output ratio: $k_y = 2.2$,

government spending-output ratio: $g_y = 0.2$,

wage markup: $\lambda_w = 0.05$,

steady-state rental rate: $\bar{r}^k = \frac{1}{\beta} - 1 + \tau$, (Smets and Wouters 2003, p1135)

A.3 Canonical LRE Form

$$\begin{bmatrix} y_t \\ \pi_t \\ w_t \\ k_t \\ q_t \\ inv_t \\ c_t \\ R_t \\ r_t^k \\ L_t \\ E_t m_{t+1} \\ E_t w_{t+1} \\ E_t c_{t+1} \\ E_t c_{t+1} \\ E_t c_t \\ u_t^{inv} \\ u_t$$

where coefficient matrices Γ_0, Γ_1, Ψ , and Π are set as follows.

u_t^g	0	0	0	0	0	0	0	$-g_y$	0	0	0	0	0	0	0	0	0	0	0	0	П
u_t^a	0	0	0	0	ϕ	0	$\frac{\Psi_p}{1+\beta\gamma_p}$	0	0	0	0	0	0	0	0	0	0	0	0	П	0
u_t^L	0	0	0	$-rac{\Psi_w}{1+eta}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\vdash	0	0
u_t^{inv}	0	$-rac{eta(1- ho^{inv})}{1+eta}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	П	0	0	0
u_t^c	$-rac{(1- heta)(1- ho^c)}{(1+ heta)\sigma_c}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	П	0	0	0	0
$E_t r_{t+1}^k$	0	0	$-\frac{Rk^*}{1- au+Rk^*}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$E_t c_{t+1}$	$-\frac{1}{1+\theta}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E_tinv_{t+1}	0	$-\frac{\beta}{1+\beta}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E_tq_{t+1}	0	0	$-rac{1- au}{1- au+Rk^*}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$E_t w_{t+1}$	0	0	0	$-\frac{\beta}{1+\beta}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$E_t\pi_{t+1}$	$-rac{1- heta}{(1+ heta)\sigma_c}$	0	-1	$-\frac{\beta}{1+\beta}$	0	0	$-rac{eta}{1+eta\gamma_p}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
L_t	0	0	0	$-rac{\sigma_L\Psi_w}{1+eta}$	$-\phi(1-\alpha)$	П	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r_t^k	0	0	0	0	$-\phi \alpha \psi$	$-(1+\psi)$	$-rac{\Psi_{p}lpha}{1+eta\gamma_{p}}$	$-Rk^*\psi k_y$	0	0	0	0	0	0	0	\vdash	0	0	0	0	0
											6										

R_{t-1}	0	0	0	0	0	0	0	0	0	ρ_m	0	0	0	0	0	0	0	0	0	0	0
c_{t-1}	$\frac{\theta}{1+\theta}$	0	0	$-rac{\sigma_c\Psi_w heta}{(1+eta)(1- heta)}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
inv_{t-1}	0	$\frac{1}{1+eta}$	0	0	0	0	0	0	٢	0	0	0	0	0	0	0	0	0	0	0	0
q_{t-1}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
k_{t-1}	0	0	0	0	$\phi \alpha$	1	0	0	$1 - \tau$	0	0	0	0	0	0	0	0	0	0	0	0
w_{t-1}	0	0	0	$\frac{1}{1+\beta}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
π_{t-1}	0	0	0	$\frac{\gamma w}{1+\beta}$	0	0	$\frac{\gamma_p}{1+eta\gamma_p}$	0	0	$(1-\rho_m)\mu_\pi$	0	0	0	0	0	0	0	0	0	0	0
y_{t-1}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
										ا ا	 										

g	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ρ_g
<i>1</i>					0																
u_{t-1}^L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$ ho_T$	0	0
$u_{t-1}^{inv} \\$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$ ho^{inv}$	0	0	0
u_{t-1}^c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ρ_c	0	0	0	0
$E_{t-1}r_t^k$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
$E_{t-1}c_t$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
$E_{t-1}inv_t$	0	0	0	0	0	0	0	0	0	0	0	0	0	П	0	0	0	0	0	0	0
$E_{t-1}q_t$	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
$E_{t-1}w_t$	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
$E_{t-1}\pi_t$	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
L_{t-1}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r_{t-1}^k	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Ť