**Topic**: Tangent lines of circles

**Question**: In the circle in the figure (with center at P), the radius is 6 and  $\overline{CS}$  is tangent to the circle at K. If  $\overline{AC}=4$ , how long is  $\overline{CK}$ ?



# **Answer choices**:

**A** 5

B 6

**C** 7

D 8

#### Solution: D

A radius drawn to K will be perpendicular to  $\overline{CK}$ , making a right triangle. Let  $X = \overline{CK}$ , and label the segments as shown in the figure.



Use the Pythagorean theorem to find x.

$$(\overline{CK})^2 + (\overline{PK})^2 = (\overline{PC})^2$$

$$(\overline{CK})^2 + (\overline{PK})^2 = (\overline{PA} + \overline{AC})^2$$

$$x^2 + 6^2 = 10^2$$

$$x^2 + 36 = 100$$

$$x^2 = 64$$

$$x = 8$$

**Topic**: Tangent lines of circles

**Question**: In the circle in the figure (with center at O),  $\overline{CN}$  is tangent to the circle at C. If  $\overline{CN}=20$  and  $\overline{RN}=10$ , what is the radius of the circle?



# **Answer choices:**

**A** 15

B 12

**C** 9

D 6

## **Solution**: A

A radius drawn to C will be perpendicular to  $\overline{CN}$ , forming a right triangle.



Let  $x = \overline{OC}$  (and therefore that  $\overline{OR} = x$  as well) and use the Pythagorean theorem.

$$x^2 + 20^2 = (x + 10)^2$$

$$x^2 + 400 = x^2 + 20x + 100$$

Subtract  $x^2$  and 100 from each side.

$$300 = 20x$$

$$x = 15$$

**Topic**: Tangent lines of circles

**Question**: In the circle in the figure, the center (point O) is at (6,5), F is at (9,9), and G is at (13,6).  $\overline{EG}$  is tangent to the circle at F. How long is  $\overline{MG}$ ?



### **Answer choices:**

A 
$$5\sqrt{2}$$

B 
$$5\sqrt{2} + 5$$

C 
$$2\sqrt{5}$$

C 
$$2\sqrt{5}$$
D  $5\sqrt{2}-5$ 

#### Solution: D

Notice that  $\overline{OF}$  is the hypotenuse of a right triangle with legs of length 4 and 3.

The leg with length 4 is the vertical line segment from O, which is at (6,5), to the point at (6,9); those two points are 4 units apart. The leg with length 3 is the horizontal line segment from the point at (6,9) to F, which is at (9,9); those two points are 3 units apart.



We can find  $\overline{OF}$  by applying the Pythagorean theorem to that right triangle.

$$4^2 + 3^2 = (\overline{OF})^2$$

$$16 + 9 = (\overline{OF})^2$$

$$25 = (\overline{OF})^2$$



$$5 = \overline{OF}$$

Since  $\overline{EG}$  is tangent to the circle at F, that makes  $\overline{OF}$  a radius of the circle, so the radius is 5.



Also notice that  $\overline{FG}$  is the hypotenuse of a different right triangle with legs of length 4 and 3. That makes  $\overline{FG}=5$  also.



Now focus on  $\triangle FOG$ , and notice that  $\overline{OF} \perp \overline{FG}$  ( $\overline{OF}$  is perpendicular to  $\overline{FG}$ ), making  $\triangle FOG$  a right triangle with legs  $\overline{OF}$  and  $\overline{FG}$  and hypotenuse  $\overline{OG}$ .

Using the Pythagorean theorem, we can find the length of  $\overline{OG}$ .

$$(\overline{OF})^2 + (\overline{FG})^2 = (\overline{OG})^2$$

$$5^2 + 5^2 = (\overline{OG})^2$$

$$25 + 25 = (\overline{OG})^2$$

$$50 = (\overline{OG})^2$$

$$\sqrt{50} = \overline{OG}$$

$$\sqrt{25 \cdot 2} = \overline{OG}$$

$$5\sqrt{2} = \overline{OG}$$



Notice that  $\overline{OG} = \overline{OM} + \overline{MG}$ , and that  $\overline{OM}$  is a radius of the circle (so  $\overline{OM} = 5$ ). Therefore,

$$5\sqrt{2} = 5 + \overline{MG}$$
$$\overline{MG} = 5\sqrt{2} - 5$$

$$\overline{MG} = 5\sqrt{2} - 5$$

