SCS 3208 - Software Project Management

Topic 4 Risk Management

1

Intended Learning Outcomes

- At the end of this topic, you'll be able to;
 - Identify potential risks in software projects
 - Categorize and prioritize risks
 - Quantify the likely effect of risks
 - Decide on the risk actions
 - Make plans to deal with risks

3

What is a risk?

- An uncertain event or condition that has an effect on the project objectives.
- An unforeseen event that can cause a negative or positive impact on the project's cost, schedule, or quality.
- · Relates to the future
- Measured in terms of probability of occurrence (high-low) and consequences (loss: high-low)
- Involves cause and effect
- Risk Categories
 - Known/Predictable/Unpredictable

Risk Management (RM)

- An attempt to minimize the chances of failure caused by unplanned events/risks.
- Aim to identify, quantify and take actions to minimize the effect of risks on the project
- Risk management involves additional cost
 - RM is cost effective only if the cost of RM is considerably less than the loss incurred
- It's not easy to measure the value of RM.
- Involves two key components:
 - risk assessment and
 - risk control

A framework for dealing with risks

- 1. Risk identification
- 2. Risk estimation (analysis and prioritization)
- 3. Risk planning
- 4. Risk monitoring
- 5. Risk resolution

8

Risk Identification

- · Two main approaches;
 - 1. Checklist
 - Lists a set of risks that have been found more likely to occur and
 - Suggests countermeasures for each risk
 - 2. Brainstorming
 - Representatives of the main stakeholders discuss and identify the problems that might occur

			Likelihood					
- 22	Qualitative Descriptors		Rare	Unlikely	Possible	Likely	Certain	
	Descriptors	Quantitative Scales	< 0.0001	0.001	0.01	0.1	1	
	Very High Severity	50,000,000						
ce	High Severity	5,000,000				54		
Consequence	Medium Severity	500,000			EASINGA			
Ö	Low Severity	50,000		INCR				
	Very Low Severity	< 5000	1					

Risk Assessment

• Risk Exposure: **Expected Value** of the loss for the risk

Risk Exposure = Risk Likelihood x Risk Impact $RE(R) = Prob(R) \times Loss(R)$

- Risk Likelihood: The probability of a risk.
- Risk Impact: The total loss incurred if the risk happens.

Risk Assessment Contd....

• E.g.

A project depends on a data center which is vulnerable to fire. It is estimated that there is a 1 in 1000 chance fire actually happening. If a fire occurred a new computer configuration could be established for Rs.500,000. Find the risk exposure.

RE= Rs.500,000x1/1000 =Rs.500 This is the minimum sum an insurance company would require as a premium.

12

Calculating Risk Exposure

Factor	P	C	RE
Late delivery from COTS vendor ACME	0.25	28 days	7 days
ACME API integration delay	0.6	15 days	9 days
Additional unit testing needed; 3% more classes than first estimated	0.9	20 days	18 days
Beta test group reports that they may not be able to fit us into their pipeline until May 1 instead of April 1	0.5	30 days	15 days
TOTAL RISK EXPOSURE			49 days

Qualitative Method of Risk Estimation					
Probability Range					
High	Greater than 50% chance of happening				
Significant	30-50% chance of happening				
Moderate	10-29% chance of happening				
Low	Less than 10% chance of happening				
Qualitative d	escriptors of risk probability and associated range values				
Impact Level	Range				
High	More than 30% above budget expenditure				
1 11911	Significant 20-29% above budget expenditure				
ŭ	20-29% above budget expenditure				
Significant	20-29% above budget expenditure10-19% above budget expenditure				
ŭ	- '				

Risk Planning

How to deal with risks?

- Risk Acceptance (Tolerate)
 - Approval of operations under exposure to the risk, according to the organizations policies and criteria for risk acceptance
 - Should also involve provision for recovery under business continuity management
- Risk Avoidance (Terminate)
 - Changing of re-engineering the business process
 - Terminate the activity giving rise to risk

17

Risk Planning ...contd.

- Risk Reduction (Treat)
 - Application of security controls
 - Treat risk with appropriate control measures and mechanisms
- Risk Transfer
 - Transfer the risk to another party
 - Insurance or outsourcing

A framework for dealing with risks

- 1. Risk identification
- 2. Risk estimation (analysis and prioritization)
- 3. Risk planning
- 4. Risk monitoring and resolution

19

Maintaining the Risk Register

RISK F	RECORD				
Risk id	T	Risk title	- 7		
Owner		Date raised		Status	I .
Risk desc	ription				
Impact d	lescription	i			
Recomm	ended risk	mitigation			
Probabili	ty/impact	values			
Probabili	ty/impact	T T		Impact	
		values Probability	Cost	Impact Duration	Quality
Pre-mitig	ation	T T	Cost		Quality
Pre-mitig	jation igation	Probability -	Cost		Quality
Pre-mitig Post-mit	ation	Probability -	Cost		Quality
Pre-mitig Post-mit Incident/	ation igation action his	Probability -	Cost		
Pre-mitig Post-mit Incident/	ation igation action his	Probability —		Duration	
Pre-mitig Post-mit Incident/	ation igation action his	Probability —		Duration	
Pre-mitig Post-mit Incident/	ation igation action his	Probability —		Duration	
Pre-mitig Post-mit Incident/	ation igation action his	Probability —		Duration	
Pre-mitig Post-mit	ation igation action his	Probability —		Duration	

- Refer to the project plan and record the most threatening risks in a risk register.
- After starting the project, all emerging risks need to be added.
- Review and amend the register at regular intervals.
- Close the entry once the relevant risky activities are completed.

Deciding Risk Reduction Action

- Risks that cannot be avoided or reduced immediately can have more than one countermeasure.
 - Consider Cost vs. Benefits
- Risk Reduction Leverage (RRL)measures the ROI or the risk reduction technique

RE before - RE after
RRL = -----Risk Reduction Cost

21

Activity

•ABA association needs to find the total risk exposure to their project. The following table lists two major risks that ABA has identified, the probability of each risk, and the estimated delay each can cause. Complete the following table by calculating the total risk exposure.

Risk Factor	Probability	Delay (Days)	Risk Exposure
Delay in purchasing required software to develop the media elements	0.8	45	
2. Video recording delay	0.5	15	
Total risk exposure			

23

The following table lists some countermeasures identified to reduce the impact of the risks described in question 3(b). Suppose that the organization has to spend Rs 1000 per delayed date. Calculate the Risk Reduction Leverage of each solution and complete the following table.

	Countermeasures	Cost	New Risk	New	New Risk	_
		(Rs.)	Probabili ty	total delay	Exposur e (days)	Reduction Leverage
1.	A. Start the procurement process early by spending the deposits.	10,000	0.6	30 days		
	B. Obtain software from software-as-a service	50,000	0.7	35 days		
2.	C. Hire expert cameraman	75,000	0.3	7 days		
	D. Recruit another cameraman	50,000	0.4	10 days		

Evaluate the effects of uncertainty

- Techniques to take account of the uncertainties in the duration of activities within a project
 - PERT (Program/Project Evaluation Review Technique)
 - Monte Carlo /Probability simulation
 - Critical Chain Management

25

Using PERT

- Most likely time (m)
- Optimistic time (a)
- Pessimistic time (b)
- (Single) Expected time (t_e)

$$t_e = (a + 4m + b)/6$$

Activity Standard Deviation (s)

$$s = (b - a)/6$$

s \propto (b-a) is used to rank the measure of degree of uncertainty or risk of activity

Exercise 1

Activity	a (wk)	m (wk)	b (wk)	t _e (wk)	S (wk)
Α	5	6	8	6.17	0.50
В	3	4	5	F	0.3%
С	2	3	3	2.83	0.17
D	3.5	4	5	4.08	9.12
Е	1	3	4	2.83	0.50
F	8	10	15	7.01	1.16
G	2	3	4	3	D.82
Н	2	2	2.5	2.08	0.08

27

Calculating expected duration

- Use the same method as in the CPM technique
- · Carry out forward pass through a network
- Calculated event dates are the dates by which we expect to achieve those events

Finding Standard Deviation for each project event

- Use forward pass method
- The standard deviation of the first event is always 0
- When there are 2 SDs to be considered in a path, then SD = $\sqrt{SD1^2 + SD2^2}$
- If an event has only one path (depends only on one activity), the standard deviation of the event is the same as the standard deviation of the activity.
- If there is more than one path, calculate the SD for each path and select the highest SD.

30

Probability of meeting/missing targets

- The entire project as well as events may have target dates. Also, certain tasks may have to be completed by a target date
- Three step method of calculating the probability of meeting/missing the target.
 - 1. Calculate the standard deviation for each event
 - 2. Calculate the z value for each event having a Target Date
 - 3. Convert the z values into probabilities

33

Calculating z value

- Calculated for each node that has a target date
- Equivalent to the number of standard deviations between node's expected and target dates

e.g., Z value for event 6 is; Z = (15-13.5)/1.22 = 1.23

Exercise 2

 Calculate the z values for each of the events 4 and 5 and find the probability of missing the target dates.

Exercise 3

(a) Calculate the $T_{\rm e}$ and S (b) Draw the PERT chart (c) Explain the possibility of meeting the following target dates.

Target Dates: Project completion: 46, Event 5: 30 & Event 6: 38

Activity	Dependency	T _a	T _m	T _b	T _e	S
Α	-	8	10	12		
В	Α	5	7	9		
С	Α	1	2	3		
D	В	6	8	10		
E	C, D	2	3	5		
F	-	11	13	17		
G	E, F	4	6	8		
Н	G	9	11	14		

38

Exercise 4

• Describe the pros and cons of using PERT technique to identify project risks.