§3-3 數學歸納法與遞迴數列

(甲)數學歸納法

(1) 歸納法:

研究一個科學問題時,歸納法是很常用的方法,而歸納法常常從觀察開始。一個生物學家會觀察鳥類、昆蟲的生活,一個晶體學家會觀察晶體的形狀,當然一個對數論感興趣的數學家會觀察整數的一些性質。

從幾個例子說起:

例子:對於每個自然數 n, $1^3+2^3+3^3+...+n^3=(1+2+...n)^2$ 成立嗎?

例子:對於每個自然數 n, n^2 -n+41 都是質數?

例子:任何一個既不是質數也不是質數平方的偶數,是二個奇質數的和嗎?

從這幾個例子,可知經由觀察歸納得到的結果,只是一種猜想,不一定是對的,可是觀察歸納是自然科學中一個重要的手段,因爲這是許多偉大發明的起步。另一方面,即使每一個自然數代入檢查都正確,我們也還不能說這個命題對於所有的自然數都成立,因爲我們不可能將自然數逐一檢查。於是,接下來我們介紹一種方法—數學歸納法,可以證明某些性質,對於所有自然數都成立,雖然我們沒有一個一個去檢查。

(2)數學歸納法:

根據文獻記載,最早使用數學歸納法的作品是十六世紀的數學家 $\underline{F.Maurolico}(1494\sim1575)$ 。在 Arithmeticorum Libri Duo 一書中,他首先用數學歸納法來證明下面的例子猜測的結果是正確的。

例子:

1+3+5+...+(2n-1)=? 根據觀察 n=1 , n=2 , n=3 的結果,我們可能猜測答案是 n^2 。但由前面的說明可知在沒有妥善的求證之前,不可遽下定論。

而 F.Maurolico 的方法如下:

設 S_n 表示前 n 個奇數的和,

則 $S_1=1^2$, $S_2=2^2$, $S_3=3^2$, 假設 $S_k=k^2$ 成立 ,

則 $S_{k+1}=1+3+5+...+(2k-1)+(2k+1)=S_k+(2k+1)=k^2+2k+1=(k+1)^2$ 因此,由 S_1 可推得 S_2 ,再由 S_2 可推得 S_3 ,仿此過程我們就可以逐次推得對任何一個正整數 n 恆有 $S_n=n^2$ 。上面所引用的程序去證明一個推測的結果的方法就稱爲數學歸納法。

(3)數學歸納法的形式:

若要用數學歸納法證明「一個與自然數有關的命題 P(n)」是真的,有下列的形式:

第一步驟:證明 P(1)是真的。

第二步驟:假設 P(k)是真的,去證明 P(k+1)是真的。

注意:

- (a)有時候不一定從 n=1 開始,如果 P(n)是 n≥m 才會是真的,這時候將第一步 驟改爲證明 P(m)是真的。
- (b)不管用哪一個數學歸納法的形式,每一個步驟都缺一不可,我們用兩個例子 來說明。

例子:

證明「對於所有非負的整數 n , n=n+1998」的過程:

假設 n=k 時上述成立, 即 k=k+1998。

當 n=k+1 時,n=k+1=(k+1996)+1=(k+1)+1996=n+1996。

請問這個證明是否完成了數學歸納法的步驟,問題出在哪裡

例子:

證明:「對於每一個自然數n, $F_n=2^{2^n}+1$ 均爲質數?」的過程中,

當 n=1,2,3,4 時, $F_n=2^{2^n}+1$ 均為質數,但 n=5 時, $F_5=4294967297=641\times6700417$ 不為質數。

「例題1] 設 n∈N

- (1)利用歸納法求 $(1+\frac{3}{1})(1+\frac{5}{4})(1+\frac{7}{9})...(1+\frac{2n+1}{n^2})=?$
- (2)利用數學歸納法證明(1)的結果。 $Ans: (1)n^2$

[**例題2**] (1)請歸納 $1^3+2^3+...+n^3$ 的結果。

(2)用數學歸納法證明你的結果。

[例題3] 試證:不論 n 是任何的正整數, $10^n+3\cdot4^n+5$ 都可被 9 整除。

[**例題4**] 試證: $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$

[例題5] 證明:對於任意大於 3 的自然數 n 而言, $2^n \ge n^2$ 恆成立。

- (練習1) 試證明:任何n個人都一樣高。
 - (1°)當 n=1 時,命題變爲"任何一個人都一樣高"此結論顯然成立。
 - (2°) 若設 n=k 時,結論成立,即"任何 k 個人都一樣高"

則當 n=k+1 時,將 k+1 個人記爲 A_1 、 A_2 、...、 A_{k+1} ,由歸納假設, A_1 、 A_2 、...、 A_k 都一樣高,而 A_2 、 A_2 、...、 A_k 也都一樣高,故 A_1 、 A_2 、...、 A_{k+1} 都一樣高。

由 $(1^{\circ})(2^{\circ})$ 根據數學歸納法原理,任何n個人都一樣高。

這個例子顯然有誤,但問題出在那裡呢?

- (練習2) 試證明: $1 \cdot 2^2 + 2 \cdot 3^2 + 3 \cdot 4^2 + \dots + n \cdot (n+1)^2 = \frac{1}{12} n(n+1)(n+2)(3n+5)$
- (練習3) 設 *n*∈N, *n*≥2

$$(1)$$
 \cancel{R} $(1-\frac{1}{4})(1-\frac{1}{9})(1-\frac{1}{16})...(1-\frac{1}{n^2})=?$ Ans $:\frac{n+1}{2n}$

(2)利用數學歸納法證明(1)的結果。

- (練習4) 根據例題 4 證明: $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + ... + \frac{1}{(2n+1)^2} \le \frac{3}{2} \frac{1}{4n}$ 。
- (練習5) 當 n 爲自然數時,證明: $1+2+3+...+(n-1)+n+(n-1)+...+3+2+1=n^2$ 。
- (練習6) 試證明:不論 n 是任何的正整數, $10^{2n}+5\cdot12^{n}-6$ 都可被 22 整除。
- (練習7) 試證對於自然數 n, 其中 n>2, 試證 $5^n>2^n+3^n$ 。

(乙)遞迴數列

(1)遞迴數列:

某些與自然數有關的問題,往往隱含固定的規律,

處理這一類的問題通常分成三個步驟:

- (a)依據題設條件構造一個數列 $\{a_n\}$ 。
- (b)建立相鄰幾項之間的遞迴關係式(亦稱遞迴方程式)。
- (c)解遞迴方程,求出一般項 a_n 。
- 以上這種處理問題的方法稱爲遞迴方法。

簡而言之,遞迴方法就是一種構造遞推式的解題法。

[例題6]河內塔問題

相傳在創世紀時代,河內(Hanoi)的一座寺廟中豎立著三根銀棒,有 64 個大小都不同的金盤(金盤正中央有一個小孔)「大盤在下,小盤在上」依序套在同一根銀棒上。造物主命僧侶把 64 個金盤全部移到另外一根銀棒上,並且規定:每一次只能移動一個金盤,在移動過程中,較大的金盤不可套在較小的金盤上。當金盤全數搬完,世界末日將降臨,忠誠者得到好報,不忠者受到懲罰。試問搬完 64 個金盤最少需多少次?

[解答]:

(1)構造數列 $\{a_n\}$:

設 a_n 代表搬完 n 個金盤所需的最少次數,列表計算,仔細 觀察、歸納:

金盤數 n					
次數 a _n					

(2)建立遞迴關係式:

[例題7] 兔子問題

假定養兔場中一開始有一對成年的兔子,一個月後生了一對小兔子,而這對小兔子經過一個月就長大成大兔子,此後每對大兔子每月生一對小兔子,而每對小兔子經過一個月就長成大兔子,如果不發生死亡,請問第 n 個月,養兔場中有多少對兔子?

[解答]:

(1)構造數列 $\{a_n\}$: 設請問第n個月,養兔場中有 a_n 對兔子

第 n 個月					
兔子數 a _n					

(2)建立遞迴關係式:

[例題8] 設AABC 是邊長爲 1 的正三角形。將三邊分別三等份,取中間段爲一邊向外側作一個正三角形,並且將中間這一段擦去,其次將剩下的每一邊再三等份,取中間段爲一邊向外作正三角形,再將中間這一段擦去。依此程序繼續下去,得到一系列的圖形,這種自我複製的圖形,稱爲**碎形**。試求(a)第 6次之碎形的周長。(b)第 n 次的周長。

[解答]:

(1)構造數列 $\{a_n\}$:設 a_n 代表第n個碎形的周長,列表計算,仔細觀察、歸納:

第n個碎形			
周長 a_n			

(2)建立遞迴關係式:

在上述三個例題中,我們發現數列 $\{a_n\}$ 前後項之間,均有一些關係,我們稱數列 $\{a_n\}$ 爲**遞歸數列**。

- (練習8) 平面上n條直線,任兩條都不互相平行,而且任三條都不共點,試問這n條直線把平面分割成多少個互不重疊的區域。
 - (1)構造數列 $\{a_n\}$: 設 n 條直線將平面分割成 a_n 個互不重疊的區域,列表計算,仔細觀察、歸納:

n 條直線			•••
分隔區域 a_n			

(2)建立關係式:

Ans: (2)關係式: $a_{n+1} = a_n + (n+1)$

(練習9) 給定數列 $\{a_n\}$: 1,3,6,10,15,21,...,找出 a_n 前後項之間的關係。 Ans: $a_{n+1}=a_n+(n+1)$

- (2)求遞迴數列 a_n 的一般式
- (a) $a_{n+1}=a_n+f(n)$ ⇒遞迴相加求 a_n

 $a_{n+1}=f(n)\times a_n$ ⇒遞迴相乘求 a_n

(b) a_{n+1} =α $a_n+k \Rightarrow$ 設計β,使得 a_{n+1} -β =α×(a_n -β)

[**例題9**] 設
$$a_1$$
=1,且 a_{n+1} = a_n + $3n^2$,求 a_n =? Ans: $\frac{1}{2}$ ($2n^3$ - $3n^2$ + n +2)

[**例題10**] 設
$$a_1$$
=1,且 a_{n+1} =3 a_n +1,求 a_n =? Ans: $\frac{1}{2}(3^n-1)$

[**例題11**] 一數列 $< a_n>$ 定義如下: $a_1=3$, $a_{n+1}=5a_n+4$,n 爲自然數,試求 a_n 的一般項,並用數學歸納法加以證明。 Ans: $a_n=4\cdot 5^{n-1}-1$

- (練習10) (1)有一階差數列 1,5,12,22,35,51,..., 設 a_1 =1, a_2 =5, a_3 =12, a_4 =22, a_5 =35, a_6 =51, 考慮 a_2 - a_1 =4, a_3 - a_2 =7, a_4 - a_3 =10, a_5 - a_4 =13, a_6 - a_5 =16,請寫出這 個數列的遞迴關係。
 - (2)求出此階差數列的第30項。
 - (3)求出此階差數列的第 n 項。

Ans:
$$(1)a_{n+1}-a_n=3n+1(2)1335(3)\frac{1}{2}(3n^2-n)$$

- (**練習**11) 例題 6 中的和內塔問題中,根據找出的遞迴式: $a_{n+1}=2a_n+1$, 請求出 a_n 的一般項,並用數學歸納法證明。 Ans: 2^n-1
- (練習12) 給定一個遞迴數列 $< a_n > : a_1 = \sqrt{2}$, $a_{n+1} = \sqrt{2 + a_n}$ (n 爲自然數) (1) 寫出 $a_2 \times a_3 \times a_4$ 。 (2) 用數學歸納法證明: $a_n < 2$ 對一切自然數 n 都成立。

Ans:
$$(1)a_2 = \sqrt{2 + \sqrt{2}}$$
, $a_3 = \sqrt{2 + \sqrt{2 + \sqrt{2}}}$

綜合練習

- (1) 若數列 $< a_n >$ 滿足 $a_1 = \frac{1}{7}$, $a_2 = \frac{3}{7}$ 及 $a_{n+1} = \frac{7}{2} a_n (1 a_n)$ ($n \ge 1$),則 $a_{101} a_{100} = ?$ (92 指定乙)

- (3) 試證: 1²·2¹+2²·2²+3²·2³+...+n²·2ⁿ=(n²-2n+3)·2ⁿ⁺¹-6
- (4) 證明對於所有的自然數 n

$$\frac{1 \cdot 2^{1}}{2 \cdot 3} + \frac{2 \cdot 2^{2}}{3 \cdot 4} + \frac{3 \cdot 2^{3}}{4 \cdot 5} + \dots + \frac{n \cdot 2^{n}}{(n+1)(n+2)} = \frac{2^{n+1}}{n+2} - 1 \circ$$

- (5) 試化簡 $\frac{1}{1\cdot 3}$ + $\frac{1}{3\cdot 5}$ + $\frac{1}{5\cdot 7}$ +...+ $\frac{1}{(2n-1)(2n+1)}$ 的值, 並用數學歸納法證明這個結果。Ans: $1-\frac{1}{2n+1}$
- (6) 證明: $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\dots+\frac{1}{n} \ge \frac{2n}{n+1}$,(n 爲正整數)。
- (7) 證明不等式: $\frac{1\cdot 3\cdot 5\cdots (2n-1)}{2\cdot 4\cdot 6\cdots (2n)} < \frac{1}{\sqrt{2n+1}}$,對所有的自然數 n 都成立。
- (8) (a)k 是自然數,而且個位數字是 6,請用一個等式表示 k。 (b)請用數學歸納法證明對於任意自然數 n, 2^{4n+1} — 6^n 的個位數字恆爲 6。
- (9) 對自然數 n , $3^{2n+1}+2^{n+2}$ 是某一個質數 p 的倍數,試求出 p 並用數學歸納法加以證明。
- (10) 設 a 是固定的正數,觀察下列式子: $(1+a)^1=1+a$, $(1+a)^2=1+2a+a^2\geq 1+2a$, $(1+a)^3=1+3a+3a^2+a^3\geq 1+3a$,... 試問:對於任意自然數 n,不等式 $(1+a)^n\geq 1+na$ 是否恆成立? 如果不成立,舉一反例;如果成立,請給出證明。
- (11) 有一個數列 $\langle a_n \rangle$ 滿足 $a_1 = 1$, $a_{n+1} = a_n + 5(n-1)$, 試求此數列的第 n 項 a_n .
- (12) 一個邊長爲n 的大正方形中,共有 n^2 個單位正方形,如果每一個單位正方形的邊都恰有一根火柴棒,而此大正方形共用了 a_n 根火柴。
 - (a)利用歸納法求 $a_{n+1}-a_n=$?
 - (b)用(a)的結果,求 $a_n = ?$
 - (c)利用數學歸納法去驗證(a)的結果。
- (13) 有一種細胞,每隔一小時死亡 2 個,剩下的每個分別分裂成 2 個,設最初有 7 個細胞,n 小時後細胞有 a_n 個,
 - (a)請找出 a_n 與 a_{n+1} 的關係。(b) a_n 的一般項。
 - (c)幾個小時後細胞數目會超過 1000 個。
- (14) 平面上n 條直線,任兩條都不互相平行,而且任三條都不共點,設這n 條直線 把平面分割成 a_n 個互不重疊的區域。
 - (a)請找出 a_n 的遞迴式。
 - (b)求 a_n 的一般式。
 - (c)請用數學歸納法證明(b)的結果。
- (15) $\begin{tabular}{l} \upplus \begin{tabular}{l} \upplus \begin{tab$
- (16) 若 a_1 =3,5 a_{n+1} =3 a_n +2,則 a_n =? $\lim_{n\to\infty} a_n$ =?
- (17) 設有一數列 $\{a_n\}$,其中 a_1 =1, a_{n-1} - a_n = $n \cdot a_n \cdot a_{n-1}$ ($n \ge 2$),試求 (a) a_{10} =? (b) a_n 之一般式 (c)設 $S_n = \sum_{k=1}^n a_k$,求 $\lim_{n \to \infty} S_n$ =?

進階問題

- (18) 求階差數列 1,3,7,15,31,...的第 n 項。
- (19) 已知對於任意的 $n \in \mathbb{N}$, $a_n > 0$,且 $\sum_{i=1}^n a_i^3 = (\sum_{i=1}^n a_i)^2$,求證: $a_n = n$ 。
- (20) 證明: $1^2-2^2+3^2-4^2+\dots-(2n)^2=-n(2n+1)$,n 爲正整數。

$$1 = 1 \\
 1 - 4 = -(1+2)$$

- - (a) 設 n 爲自然數,試求 $1^2-2^2+3^2-4^2+...+(-1)^{n+1}n^2$ 的値。
 - (b)請用數學歸納法證明(1)的結果。
- (22) 設數列 $\{a_n\}$ 滿足關係: $a_1=\frac{1}{2}$, $a_1+a_2+\ldots+a_n=n^2a_n$, $(n\geq 1)$ 。試證:數列 $a_n=\frac{1}{n(n+1)}$ 。
- (23) (a)平面上經過一個定點的 n 個圓最多能將平面分成 a_n 個部分,請問 a_{n+1} $-a_n$ = ? (b)請求出 a_n=? (c)請用數學歸納法證明(b)的結果。
- (24) 設 a_1 =1, a_2 =2 且對於任意正整數 n 均滿足 a_{n+2} = a_{n+1} + a_n ,證明: a_n >($\frac{\sqrt{5-1}}{2}$) n 。
- (25) 令 $F(n) = \frac{1}{2^n} (n+1)(n+2)(n+3)...(n+n)$,其中 n 爲自然數, (a)試求出F(1)、F(2)、F(3), 並推測F(n)的一般式。 (b)請問(a)的結果證明 $\sum_{k=1}^{n} \frac{1}{F(k)} < \frac{3}{2}$ 。
- (26) 如圖,一單位長正方形,第一次將其平分成9塊(九格宮形),然後挖去中間一 塊。第二次再將剩餘各塊各平分成9塊,分別去掉中間各一塊。...

設第 n 次挖去之正方形面積總和爲 a_n ,請問:(a) a_n =? (b) $\sum_{i=1}^{\infty} a_n$

- (27) 一線段長 A_0A_1 長度爲 1 公尺,第一次將 A_0A_1 三等份,並將中間部分往垂直向上方向作一正方形,第二次則是將各水平方向線段(如線段 A_0A_2 、 A_2A_3 正方形上的邊、 A_3A_1)皆如第一次的作法(如圖所示),如此依序下去,設前 n 次所作的正方形面積總和爲 a_n
 - (a)請用 n 來表示 a_n - a_{n-1} 。(b)請用 n 表示 a_n ,並求出 $\lim_{n\to\infty} a_n$ =?

(28) 令 $A_n=0.999\cdots 9$,請利用數學歸納法證明 $A_n<1$,對於任何的自然數 n。請問根

據這個證明的結果是否推論出0.9<1,請說明理由。

綜合練習解答

 $(1)\frac{3}{7}$

[解法]:

依據遞迴式 $a_{n+1} = \frac{7}{2}a_n(1-a_n)$ $(n \ge 1)$ 真正去計算 $a_3,a_4,a_5,...$

可得
$$a_3 = \frac{7}{2} \ a_2(1-a_2) = \frac{7}{2} \times \frac{3}{7} \times (1-\frac{3}{7}) = \frac{6}{7}$$

$$a_4 = \frac{7}{2} \ a_3(1-a_3) = \frac{7}{2} \times \frac{6}{7} \times (1-\frac{6}{7}) = \frac{3}{7}$$

$$a_5 = \frac{7}{2} \ a_4(1-a_4) = \frac{7}{2} \times \frac{3}{7} \times (1-\frac{3}{7}) = \frac{6}{7} \cdot \dots$$

由上述操作可發現規律爲:k 爲奇數時, $a_k = \frac{6}{7}$;k 爲偶數時, $a_k = \frac{3}{7}$,(k>1)

$$\Rightarrow a_{101} - a_{100} = \frac{6}{7} - \frac{3}{7} = \frac{3}{7}$$

(2)56

[解法]:

設圖 E_k 中共有 a_k 個焊接點,

則
$$a_1$$
=1+(1+2), a_2 =1+(1+2)+(1+2+3), a_3 =1+(1+2)+(1+2+3)+(1+2+3+4),...
依此規律可知 a_5 =1+(1+2)+(1+2+3)+(1+2+3+4)+(1+2+3+4+5)+(1+2+3+4+5+6)
=1+3+6+10+15+21=56

- (3)略
- (4)略

- (5)略
- (6)略
- (7)略
- (8) (a)k=10m+6 (m 是非負整數) (b)設 n=k 時, $2^{4k+1}-6^k=10m+6$,去證明當 n=k+1 時, $2^{4k+5}-6^{k+1}=10m^l+6$ 。
- (9) p=7
- (10)略

$$(11)\frac{1}{2}(5n^2+5n-8)$$

- (12) (a)4n+4 (b) $2n^2+2n$
- (13)(a) $a_{n+1}=3(a_n-2)(b)3\cdot 2^n+4(c)9$ 小時

(14) (a)
$$a_n - a_{n-1} = n$$
 (b) $a_n = \frac{n^2 + n + 2}{2}$

 $(15)^{\frac{n+1}{2n}}$

(16)
$$a_n = 1 + 2(\frac{3}{5})^{n-1}$$
 $\lim_{n \to \infty} a_n = 1$

(17) (a)
$$\frac{2}{10 \times 11}$$
 (b) $\frac{2}{n(n+1)}$ (c) 2

[提示:遞迴式可化成 $\frac{1}{a_n} - \frac{1}{a_{n-1}} = n$,利用累加的方法,可得 $\frac{1}{a_n} = \frac{1}{a_1} + 2 + 3 + \ldots + n$]

- $(18) 2^n 1$
- (19)略
- (20)[提示:當 n 變成 n+1 時, $1^2-2^2+3^2-4^2+\dots-(2n)^2$ 會變成 $1^2-2^2+3^2-4^2+\dots-(2n)^2+(2n+1)^2-(2n+2)^2$]

(21) (a)
$$(-1)^{n+1}(1+2...+n) = (-1)^{n+1} \cdot \frac{n(n+1)}{2}$$

(22)略

(23) (a)
$$n+1$$
(b) $1+\frac{n(n+1)}{2}$

(24) 設
$$n=k-1$$
 , k 時 $a_k>(\frac{\sqrt{5}-1}{2})^k$ 且 $a_{k-1}>(\frac{\sqrt{5}-1}{2})^{k-1}$,再利用 $a_{k+1}=a_k+a_{k-1}$,

去證明
$$a_{k+1} > (\frac{\sqrt{5}-1}{2})^{k+1}$$
。

(25) (a)F(n)=1.3.5...(2n-1)

(b)
$$\sum_{k=1}^{n} \frac{1}{F(k)} = \sum_{k=1}^{n} \frac{1}{1 \cdot 3 \cdot 5 \cdots (2k-1)} < \sum_{k=1}^{n} \frac{1}{1 \cdot 3 \cdot 3 \cdots 3} = \sum_{k=1}^{n} \frac{1}{3^{k-1}} < \sum_{k=1}^{\infty} \frac{1}{3^{k-1}} = \frac{1}{1 - \frac{1}{3}} = \frac{3}{2}$$

(26) (a) $a_n = \frac{1}{9} (\frac{8}{9})^{n-1}$ (b)1

[解法]:

(a)如圖,

第一次挖去正方形的 $\frac{1}{9}$ $\Rightarrow a_1 = \frac{1}{9}$ 。

第二次挖去剩下的 $\frac{1}{9} \Rightarrow a_2 = \frac{1}{9} \times (1 - a_1) = \frac{1}{9} \times \frac{8}{9}$ 。

第三次挖去剩下的 $\frac{1}{9} \Rightarrow a_3 = \frac{1}{9} \times (1 - a_1 - a_2) = \frac{1}{9} \times (\frac{8}{9})^2$

.

第 n 次挖去剩下的 $\frac{1}{9}$ $\Rightarrow a_n = \frac{1}{9} (\frac{8}{9})^{n-1}$

(b)
$$\sum_{n=1}^{\infty} a_n = \frac{\frac{1}{9}}{1 - \frac{8}{9}} = 1$$

(27) (a)3⁻⁽ⁿ⁺¹⁾ (b)
$$a_n = \frac{1}{6} [1-(1/3)^n]$$
 , $\lim_{n\to\infty} a_n = 1/6$

[解法]:

(a)
$$a_1 = (\frac{1}{3})^2 = 3^{-2}$$
 $a_2 - a_1 = 3 \times (\frac{1}{3})^4 = 3^{-3}$ $a_3 - a_2 = 9 \times (\frac{1}{3})^6 = 3^{-4} \dots$ $a_n - a_{n-1} = 3^{n-1} \times (\frac{1}{3})^{2n} = 3^{-(n+1)}$

(b)因爲 $a_2-a_1=3^{-3}$ $a_3-a_2=3^{-4}$ $a_4-a_3=3^{-5}$

.....
$$a_n - a_{n-1} = 3^{-(n+1)}$$

以上冬式可得 $a_n - a_1 = 3^{-3} + 3^{-4} + 3^{-(n+1)}$

累加以上各式可得 $a_n - a_1 = 3^{-3} + 3^{-4} + \dots + 3^{-(n+1)}$

$$\Rightarrow a_n = \frac{1}{6}[1-(\frac{1}{3})^n]$$
 Fix $\lim_{n\to\infty} a_n = \frac{1}{6}$

(28) 利用數學歸納法證明應該很容易,但是證明了 $A_n<1$ 這個結果,只是表示對於任意的自然數 $0.999\cdots 9_{n@9}<1$,這個結果是對的,但是 $0.\bar{9}=\lim_{n\to\infty}A_n$, A_n , $A_n<1$, $\lim_{n\to\infty}A_n$ 不一

定會小於 1 可能會相等。反例 $a_n=1-\frac{1}{n}<1$,但是 $\lim_{n\to\infty}a_n=1$,因此這樣的推論不正確。