機械学習 アンサンブル学習

管理工学科 篠沢佳久

資料の内容

- アンサンブル学習
 - □ バギング, ブートストラップ
 - ランダムフォレスト
- 実習
 - バギング(Breast Cancer Dataset)
 - ランダムフォレスト
 - クラス分類(Breast Cancer Dataset)
 - 回帰(Boston Dataset)

アンサンブル学習

線形分離不可能な問題①

	X ₁	X ₂	
X ₁	0	1	クラス1
X ₂	1	0	クラス1
X ₃	1	1	クラス2
X 4	0	0	クラス2

クラス1とクラス2を識別できる重みは存在しない

- → 線形分離不可能
- → パーセプトロンでは解けない問題

線形分離不可能な問題②

機械学習において対象となる問題は、線形分離 不可能な問題が占める

- パーセプトロンは役に立たない手法?
 - Marvin Minsky (1969)

線形識別関数を組み合わせることによって解決 が可能

線形識別関数を組み合わせた解法①

識別関数1

識別関数2

$$x_1 w_{21} + x_2 w_{22} = \theta_2$$

線形識別関数を組み合わせた解法②

識別関数1

新しい識別関数

$$F(\mathbf{x}) = \alpha_1 f_1(\mathbf{x}) + \alpha_2 f_2(\mathbf{x})$$

識別関数1

識別関数2

線形識別関数を組み合わせることによって新しい識別関数を構築

識別関数 $2 \mid x_1$

$$x_1 w_{21} + x_2 w_{22} = \theta_2$$

識別関数を組み合わせた解法

- アンサンブル学習(集合学習)
 - □ 識別関数(次頁)を複数個組み合わせ,複数個の予測結果を統合し、最終的な予測結果を求める

- ニューラルネットワーク(人工的神経回路網)
 - □ パーセプトロンを拡張
 - □ 誤差逆伝播則(一般化デルタルール)

^{*}クラス分類,回帰ともにできます

アンサンブル学習における識別関数

- 弱分類器, 仮説と呼ばれる
- どのような手法を利用しても良い*
 - ロジスティック回帰
 - □最近傍法
 - □ベイズ決定則
 - □ 決定木
 - □ 線形識別関数
 - サポートベクターマシン

アンサンブル学習の例(1)

クラス1とクラス2を分ける識別関数を求める

X ₁	X ₂	X 3	X 4	正解
1	0	1	1	クラス1
1	0	1	1	クラス1
1	1	1	1	クラス1
1	1	1	0	クラス2
1	0	1	0	クラス2
1	1	0	1	クラス2
1	0	0	1	クラス2
1	1	0	1	クラス2

アンサンブル学習の例②

識別関数1

$$f_1(\mathbf{x}) = \begin{cases} 1 & \text{if } x_3 = 1 \\ 0 & \text{if } x_3 = 0 \end{cases}$$

X ₁	X ₂	X 3	X ₄	正解	識別関数1
1	0	1	1	クラス1	1
1	0	1	1	クラス1	1
1	1	1	1	クラス1	1
1	1	1	0	クラス2	1
1	0	1	0	クラス2	1
1	1	0	1	クラス2	0
1	0	0	1	クラス2	0
1	1	0	1	クラス2	0

アンサンブル学習の例③

識別関数2

$$f_2(\mathbf{x}) = \begin{cases} 1 & \text{if } x_4 = 1 \\ 0 & \text{if } x_4 = 0 \end{cases}$$

X ₁	X ₂	X ₃	X ₄	正解	識別関数1	識別関数2
1	0	1	1	クラス1	1	1
1	0	1	1	クラス1	1	1
1	1	1	1	クラス1	1	1
1	1	1	0	クラス2	1	0
1	0	1	0	クラス2	1	0
1	1	0	1	クラス2	0	1
1	0	0	1	クラス2	0	1
1	1	0	1	クラス2	0	1

アンサンブル学習の例(4)

識別関数
$$F(\mathbf{x}) = f_1(\mathbf{x}) + f_2(\mathbf{x}) \Rightarrow \begin{cases} \mathbf{x} \in \omega_1 & \text{if } F(\mathbf{x}) = 2 \\ \mathbf{x} \in \omega_2 & \text{if } F(\mathbf{x}) \neq 2 \end{cases}$$

X ₁	X ₂	X ₃	X ₄	正解	識別関数1	識別関数2	最終結果
1	0	1	1	クラス1	1	1	クラス1
1	0	1	1	クラス1	1	1	クラス1
1	1	1	1	クラス1	1	1	クラス1
1	1	1	0	クラス2	1	0	クラス2
1	0	1	0	クラス2	1	0	クラス2
1	1	0	1	クラス2	0	1	クラス2
1	0	0	1	クラス2	0	1	クラス2
1	1	0	1	クラス2	0	1	クラス2

統合方法

■ 多数決による統合方法

■ 平均値による統合方法

$$F(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{N} f_i(\mathbf{x})$$

■ 重みづけによる統合方法

$$F(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i f_i(\mathbf{x})$$

多数決による統合方法①

識別関数1による予測結果

多数決による統合方法②

三個の識別関数による予測結果を用いて多数決を行なう

識別関数の出力値

1→クラス1 0→クラス2

識別関数1	識別関数2	識別関数3	最終結果
1	1	1	クラス1
1	1	0	クラス1
1	0	1	クラス1
0	1	1	クラス1
0	1	0	クラス2
1	0	0	クラス2
0	0	1	クラス2
0	0	0	クラス2

平均値による統合方法①*

*f_i(x)は確率(尤度)を考えた場合、{0,1}の離散値でない場合もあります

平均値による統合方法②

識別関数の出力値
$$F(\mathbf{x}) = \begin{cases} \mathbf{x} \in \omega_1 & \text{if } \mathbf{x} > 0.5 \\ \mathbf{x} \in \omega_2 & \text{if } \mathbf{x} < 0.5 \end{cases}$$

識別関数1	識別関数2	識別関数3	平均	最終結果
0.6	0.7	0.8	0.7	クラス1
0.8	0.7	0.2	0.566	クラス1
0.7	0.3	0.9	0.633	クラス1
0.2	1.0	0.6	0.6	クラス1
0.1	0.8	0.2	0.366	クラス2
0.9	0.3	0.4	0.533	クラス1
0.2	0.1	0.7	0.333	クラス2
0.1	0.2	0.2	0.166	クラス2

重みづけによる統合方法

アンサンブル学習の種類①

方法(1)

バギング

- □ 多数の識別関数を独立に学習
- □ 学習した識別関数全てを用いて予測し、多数決などにより 結果を判定

方法②

ブースティング

- □識別関数を学習
- □ その識別関数で誤分類したデータを正しく分類できるように、新しい識別関数を学習
- □ これを何度も繰り返す

アンサンブル学習の種類②

- バギング(Bagging)
 - □ 学習データを複数組作成(Bootstrap Sampling)
 - □ 作成した学習データごとに識別関数(弱分類器)を学習
 - □ 識別関数ごとにテストデータを予測, 結果を統合
- ブースティング (Boosting)
 - □ 学習データを用いて識別関数を学習
 - □ その識別関数によって誤分類したデータを対象に, 正しく 分類できる識別関数を別途学習
 - □ 複数回繰り返した後, 重み付けにより結果を統合

バギング①

ブースティング(1)

はデータに対する重み(誤認識の場合は大きい)

正しく学習できなかった場合、次の識別関数で訂正

 x_1 を識別関数1では正しく学習できなかった $\rightarrow x_1$ に対する重みを大きくし、次の識別関数 の学習の際、学習できるようにする x_2 を識別関数2では正しく学習できなかった $\rightarrow x_2$ に対する重みを大きくし、次の識別関数 の学習の際、学習できるようにする

ブースティング②

の学習の際、学習できるようにする

ブースティング③

バギング

ランダムフォレスト

バギング

Bagging (Bootstrap Aggregating)

- ブートストラップ (Bootstrap Sampling)
 - □ P個の学習データから, 重複を許し, P個のデータ*をサンプリング(復元抽出)
- out-of-bag samples (OOB)
 - ブートストラップにより選ばれなかったデータ
 - サンプリング後の任意のデータが元の学習データに含まれない割合は、((P-1)/P)^P
 - P→∞の場合、その割合は約0.368

復元抽出の場合、1/3のデータが学習に利用されない

ブートストラップ

バギング

ランダムフォレスト(1)

- 識別関数(弱分類器)
 - □決定木
- N回ブートスラップを行ない、N個の学習データを作成
 → 学習データごとにN個の決定木を学習
- 分類問題の場合
 - □ N個の決定木の結果を多数決
- 回帰問題の場合
 - □ N個の回帰木の結果の平均値

ランダムフォレスト2 決定木1 学習データ1 学習 学習データ 決定木2 学習データ2 ブートストラップ 学習データN 決定木N

ランダムフォレスト③

学習アルゴリズム

for i in range(N):

 $S_i \leftarrow ブートストラップ(S)$ 決定木 T_i の学習(S_i) S:学習データ

N:決定木の個数

決定木の学習(S_i):

if 停止条件を満たしている:

停止

通常の決定木の学習アルゴリズムとは異なる点

D個の特徴量中、d個をランダムに選ぶ

ゲインが最大となる特徴量

Sを分類するため、d個の中から最適な特徴量を選択

S_{iL}, S_{iR} ← 分類結果

決定木の学習(S₁₁)

決定木の学習(S_{iR})

S_{ii}: 左ノードで対象となるデータ

S_{iR}:右ノードで対象となるデータ

特徴の選択方法(復習)

- エントロピー(もじくはジニ係数)が最も小さくなる特徴を選択
- ゲイン

ゲインが最大となる特徴を選択

天気で分類した場合(復習)

晴れ

晴れでない

$$E(D_1) = -\frac{5}{7}\log\frac{5}{7} - \frac{2}{7}\log\frac{2}{7} = 0.863 \qquad E(D_2) = -\frac{4}{13}\log\frac{4}{13} - \frac{9}{13}\log\frac{9}{13} = 0.890$$

$$Gain(D) = E(D) - \frac{7}{20}E(D_1) - \frac{13}{20}E(D_2)$$

$$= 0.992 - \frac{7}{20} \times 0.863 - \frac{13}{20} \times 0.890 = 0.111$$

気温で分類した場合(復習)

寒くない

$$E(D_1) = -\frac{5}{14}\log\frac{5}{14} - \frac{9}{14}\log\frac{9}{14} = 0.940$$
 $E(D_2) = -\frac{4}{6}\log\frac{4}{6} - \frac{2}{6}\log\frac{2}{6} = 0.918$

$$Gain(D) = E(D) - \frac{14}{20}E(D_1) - \frac{6}{20}E(D_2)$$
$$= 0.992 - \frac{14}{20} \times 0.979 - \frac{6}{20} \times 0.811 = 0.059$$

寒い

$$E(D_2) = -\frac{4}{6}\log\frac{4}{6} - \frac{2}{6}\log\frac{2}{6} = 0.918$$

湿度で分類した場合(復習)

高い

$$E(D_1) = -\frac{2}{7}\log\frac{2}{7} - \frac{5}{7}\log\frac{5}{7} = 0.863$$

$$E(D_1) = -\frac{2}{7}\log\frac{2}{7} - \frac{5}{7}\log\frac{5}{7} = 0.863$$
 $E(D_2) = -\frac{7}{13}\log\frac{7}{13} - \frac{6}{13}\log\frac{6}{13} = 0.995$

$$Gain(D) = E(D) - \frac{7}{20}E(D_1) - \frac{13}{20}E(D_2)$$
$$= 0.992 - \frac{7}{20} \times 0.863 - \frac{13}{20} \times 0.995 = 0.043$$

講義で分類した場合(復習)

講義=yes

$$E(D_1) = -\frac{5}{9}\log\frac{5}{9} - \frac{4}{9}\log\frac{4}{9} = 0.991$$

$$E(D_1) = -\frac{5}{9}\log\frac{5}{9} - \frac{4}{9}\log\frac{4}{9} = 0.991$$
 $E(D_2) = -\frac{4}{11}\log\frac{4}{11} - \frac{7}{11}\log\frac{7}{11} = 0.945$

$$Gain(D) = E(D) - \frac{9}{20}E(D_1) - \frac{11}{20}E(D_2)$$
$$= 0.992 - \frac{9}{20} \times 0.991 - \frac{11}{20} \times 0.945 = 0.026$$

分類するための特徴選択(復習)

- ▼ 天気で分類した場合 → ゲイン = 0.111
- 最大
- 気温で分類した場合 → ゲイン = 0.059
- 湿度で分類した場合 → ゲイン = 0.043
- 講義で分類した場合 → ゲイン = 0.026

■ 天気で分類

特徴選択の改良①

- 特徴量
 - □ 同一の特徴量を用いた場合, 似た構造の決定木となる
 - □ 特徴選択の際、D個の特徴量中、ランダムにd個の特徴量 を選ぶ
 - □ 選ばれたd個の特徴量のゲインを計算

□ ゲインが最大の特徴量を用いて分類

特徴選択の改良②

- 特徴量
 - □ D=5(特徴量①,②,③,④,⑤), d=3

特徴の重要度

- N:決定木の個数
- A_i:OOBデータを予測対象とした場合,決定木iによる正解率
- A_{it}:OOBデータ中,特徴量tのみをランダムに並び替える
 →並び替えたデータを決定木iによって予測した場合の
 正解率
- I₁:特徴量tの重要度

$$I_{t} = \frac{1}{N} \sum_{i=1}^{N} (A_{i} - A_{it})$$

l_tが0に近い場合

- → 特徴量tを入れ替えても影響はない
- → 特徴量tは重要ではない

I,の値が大きい

- → 特徴量tを入れ替えると影響が生じる
- → 特徴量tは重要

バギングによるアンサンブル学習

バギング ランダムフォレスト

バギング (Cancer_Bagging.py)

- クラス分類
- データセット
 - breast cancer
- 利用する弱分類器
 - ロジスティック回帰
 - □ k近傍法
 - □ 決定木

用途	クラス分類
データ数	569
特徴量	30
目的変数	2
正例	212
負例	357

プログラムはscikit-learnのバージョンが 0.19.2用です. OOBの処理がバージョン によって異なっています.

- 弱分類器の個数:10
- 弱分類器ごとで学習に使用する特徴量の割合:0.5

import sys

import numpy as np

from sklearn import datasets

Cancer_Bagging.py

パッケージのimport

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report, accuracy_score, confusion_matrix

#識別関数(弱分類器)のimport

from sklearn.linear model import LogisticRegression

from sklearn.neighbors import KNeighborsClassifier

決定木

from sklearn import tree

ロジスティック回帰

k近傍法

バギングのimport

from sklearn.ensemble import BaggingClassifier / バギングを行なうために必要

データのロード

cancer = datasets.load breast cancer()

特徴量(30次元)

feature names=cancer.feature names

data = cancer.data

データの大きさ (569, 30)

```
#目的変数( malignant, benign )
name = cancer.target_names
                   データの大きさ
label = cancer.target
                   569次元
                                        ホールドアウト法
# 学習データ. テストデータ
train_data, test_data, train_label, test_label = train_test_split(data, label,
test_size=0.5, random_state=None)
print( '¥n [ 弱分類器の選択 ]' )
print('ロジスティック回帰 -> 1')
                             弱分類器の選択
print(' k近傍法 -> 2')
print(' 決定木
                    -> 3' )
ans = int( input( ' > ' ) )
#ロジスティック回帰
                          弱分類器(1)
if ans == 1:
                          ロジスティック回帰
  wc = LogisticRegression()
```

k近傍法 弱分類器② elif ans == 2: k近傍法 wc = KNeighborsClassifier() 弱分類器③ # 決定木(ランダムフォレスト?) 決定木 elif ans == 3: wc = tree.DecisionTreeClassifier(max_depth=3) bese estimator bootstrap 弱分類器を指定 デフォルトはTrue # バギング model = BaggingClassifier(base_estimator=wc, bootstrap=True, n_estimators=10, max_samples=1.0, max_features=0.5, oob_score=True) max features oob score max samples n estimators bootstrapする 利用する特徴量の割合 OOBエラーを求める場合 弱分類器の個数 \rightarrow True(デフォルトはFalse) データの割合 (30×0.5=15次元) # 学習 model.fit(train_data, train_label)

^{*}回帰用のメソッドは、BaggingRegressorです.参考文献②で調べてみて下さい

```
print( "¥n [ ブートストラップ ]" )
                                                estimators_samples_
print( " [ 0番目の弱分類器でサンプリングしたデータ ]" ) True:bootstrapで選ばれたデータ
                                                False:選ばれなかったデータ
print( model.estimators_samples_[0] )
                                          estimators_samples_[0]
                                          0番目の弱分類器で選ばれたデータ*
print( "¥n [ OOBデータの割合 ]" )
for i in range( model.n_estimators ):
  print( i , ":" , 1 - np.count_nonzero( model.estimators_samples_[i] ) /
  len( model.estimators_samples_[i] ) )
                                           Trueの個数
                OOBデータの割合の計算
# 使用した特徴
print( "¥n [ 選択された特徴量 ]" )
                                           estimators_features_
for i in range( model.n_estimators ):
                                           弱識別器で使用した特徴量
  print( i , ":" , model.estimators_features_[i] )
#予測
predict = model.predict(test_data)
```

^{*}scikit-learnのバージョンで動作が異なります(資料は0.19.2で作成しました)

```
print( "¥n [ OOB score ]" )
                            OOBデータに対する正解率
print( model.oob_score_ )
print( "¥n [ 予測結果 ]" )
                                                結果の表示
print( classification_report(test_label, predict) )
print( "\n [ 正解率 ]" )
print( accuracy_score(test_label, predict) )
print( "\n [ 混同行列 ]" )
print( confusion_matrix(test_label, predict) )
```

BaggingClassifier

bootstrapを行なう場合はTrue (デフォルトはTrue)

from sklearn.ensemble import BaggingClassifier

BaggingClassifier(base_estimator=弱分類器, bootstrap=True, n_estimators=弱分類器の個数, max_samples=ブートスラップに用いる割合, max_features=用いる特徴の割合, oob_score=True)

OOBエラーを求める場合はTrue (デフォルトはFalse)

弱分類器にロジスティック回帰

wc = LogisticRegression()

model = BaggingClassifier(base_estimator=wc, bootstrap=True, n_estimators=10, max_samples=1.0, max_features=0.5, oob_score=True)

実行結果①

実行結果(OOBについての注意)

実行結果②

実行結果③

ランダムフォレストのプログラム

- 分類木
 - □ breast cancerデータセット
 - Cancer_RF.py

用途	クラス分類
データ数	569
特徴量	30
目的変数	2
正例	212
負例	357

- 回帰木
 - □ Bostonデータセット
 - Boston_RF.py

用途	回帰
データ数	506
特徴量	13
目的変数	1

分類木の場合(Cancer_RF.py)

import numpy as np

from sklearn import datasets

パッケージのimport

Cancer_RF.py

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report, accuracy_score, confusion_matrix from sklearn.ensemble import RandomForestClassifier

ランダムフォレスト(クラス分類)を行なうために必要

データのロード

cancer = datasets.load_breast_cancer()

#特徵量

feature_names=cancer.feature_names

data = cancer.data

データの大きさ (569, 30)

#目的変数(malignant, benign)

name = cancer.target_names

label = cancer.target

データの大きさ 569次元

学習データ, テストデータ

ホールドアウト法

train_data, test_data, train_label, test_label = train_test_split(data, label, test_size=0.5, random_state=None)

n_estimators 決定木の個数 criterion

分類指標(デフォルトはジニ係数) エントロピーの場合, entropy

model = RandomForestClassifier(n_estimators=10, criterion="gini", max_features="sqrt", bootstrap=True, oob_score=True)

max_features 使用される特徴数 sqrt \rightarrow 全特徴数の平方根 $\log 2 \rightarrow \log_2$ 全特徴数 bootstrap デフォルトはTrue oob_score OOBエラーを求める場合 → True(デフォルトはFalse)

#学習

model.fit(train_data, train_label)

#予測

predict = model.predict(test_data)

print("¥n [OOB score]")
print(model.oob_score_)

OOBデータに対する正解率

```
print( "¥n [ 特徴の重要度 ]" )
for i in range(len(feature_names)):
                                                       feature_importances_
                                                       特徴の重要度
  print( " {0:25s} : {1:7.5f}".format( feature_names[i] ,
  model.feature_importances_[i]))
print( "¥n [ 予測結果 ]" )
print( classification_report(test_label, predict) )
                                                 結果の表示
print( "¥n [ 正解率 ]" )
print( accuracy_score(test_label, predict) )
print( "¥n [ 混同行列 ]" )
print( confusion_matrix(test_label, predict) )
```

RandomForestClassifier

from sklearn.ensemble import RandomForestClassifier

RandomForestClassifier(n_estimators=決定木の個数, criterion=分類指標, max_features=使用される特徴数, bootstrap=True, oob_score=True)

bootstrapを行なう場合はTrue (デフォルトはTrue) OOBエラーを求める場合はTrue (デフォルトはFalse)

criterion

分類指標(デフォルトはジニ係数) エントロピーの場合, entropy

model = RandomForestClassifier(n_estimators=10, criterion="gini", max_features="sqrt", bootstrap=True, oob_score=True)

max_features 使用される特徴数 sqrt \rightarrow 全特徴数の平方根 $\log 2 \rightarrow \log_2$ 全特徴数

実行結果①

実行結果②

回帰木の場合(Boston_RF.py)

import numpy as np from sklearn import datasets

パッケージのimport

Boston_RF.py

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report, accuracy_score, confusion_matrix

from sklearn.ensemble import RandomForestRegressor

import matplotlib.pyplot as plt

ランダムフォレスト(回帰)を行なうために必要

データのロード

boston = datasets.load_boston()

特徴量(13次元)

feature_names=boston.feature_names

data = boston.data

データの大きさ (506, 13)

#価格

price = boston.target

データの大きさ 506次元

学習データ, テストデータ

ホールドアウト法

train_data, test_data, train_price, test_price = train_test_split(data, price, test_size=0.5, random_state=None)

n_estimators 決定木の個数

criterion 分類指標(デフォルトはmse)

model = RandomForestRegressor(n_estimators=20, criterion="mse", max_features="sqrt", bootstrap=True, oob_score=True)

max_features

選択される特徴数

sqrt → 全特徴数の平方根

 $log2 \rightarrow log_2$ 全特徴数

bootstrap デフォルトはTrue

oob_score OOBエラーを求める場合 → True(デフォルトはFalse)

#学習

model.fit(train_data, train_price)

```
#予測
predict = model.predict(test_data)
print( "¥n [ OOB score ]" )
                            OOBデータに対するR<sup>2</sup>
print( model.oob_score_ )
print( "¥n [ 特徴の重要度 ]" )
                                                        feature_importances_
for i in range(len(feature_names)):
                                                        特徴の重要度
  print( " {0:25s} : {1:7.5f}".format( feature_names[i] ,
model. feature_importances_[i] ) )
# R<sup>2</sup>を求める
train_score = model.score(train_data, train_price)
                                                     R<sup>2</sup>を求める
test_score = model.score(test_data, test_price)
print( "\f R2 \]" )
print( " 学習データ: {0:7.5f}".format( train_score ) )
print( " テストデータ: {0:7.5f}".format( test_score ) )
```

散布図の描画

```
fig = plt.figure()
plt.scatter( test_price , predict )
plt.xlabel("Correct")
plt.ylabel("Predict")
fig.savefig("result.png")
```


RandomForestRegressor

from sklearn.ensemble import RandomForestRegressor

RandomForestRegressor(n_estimators=回帰木の個数, criterion=分類指標, max_features=使用される特徴数, bootstrap=True, oob_score=True)

bootstrapを行なう場合はTrue (デフォルトはTrue) OOBエラーを求める場合はTrue (デフォルトはFalse)

criterion 分類指標(デフォルトはmse)

model = RandomForestRegressor(n_estimators=20, criterion="mse", max_features="sqrt", bootstrap=True, oob_score=True)

max_features 使用される特徴数 sqrt \rightarrow 全特徴数の平方根 $\log 2 \rightarrow \log_2$ 全特徴数

実行結果

ランダムフォレスト vs 決定木

ランダムフォレスト

決定木

ランダムフォレスト

予測値を, 複数個の決定木による平均値とするため, 正解値に近づく

練習問題

バギングのプログラム(Cancer-Bagging.py)の弱分類器に サポートベクターマシンとベイズ決定則(GaussianNB)を追加しなさい。

```
■ コマンドプロンプト - python Cancer_Bagging-1.py - □ ×

[ 弱分類器の選択 ]
ロジスティック回帰 -> 1
k近傍法 -> 2
決定木 -> 3
SVM -> 4
単純ベイズ -> 5
>
```

練習問題

SVC(RBFカーネルの場合)

ベイズ決定則(GaussianNB)

参考文献①

- 加藤直樹他:データマイニングとその応用,朝倉書店,2009
- 平井有三:はじめてのパターン認識, 森北出版株式会社, 2012
- 後藤正幸他:入門 パターン認識と機械学習,コロナ社, 2014
- 株式会社システム計画研究所編: Pythonによる機械学習入門, オーム社, 2016
- 竹村彰通他:機械学習, 朝倉書店, 2017
- 荒木雅弘:機械学習入門,森北出版株式会社,2018

参考文献②

- BaggingClassifier
 - □ バギング(クラス分類)
 - https://scikit-learn.org/stable/modules/generated/ sklearn.ensemble.BaggingClassifier.html
- BaggingRegressor
 - □ バギング(回帰)
 - https://scikit-learn.org/stable/modules/generated/ sklearn.ensemble.BaggingRegressor.html

参考文献③

- RandomForestClassifier
 - □ ランダムフォレスト(クラス分類)
 - https://scikit-learn.org/stable/modules/generated/ sklearn.ensemble.RandomForestClassifier.html
- RandomForestRegressor
 - □ ランダムフォレスト(回帰)
 - https://scikit-learn.org/stable/modules/generated/ sklearn.ensemble.RandomForestRegressor.html