

Designnotat

Tittel: Transistorforsterker

Forfatter: Karl Henrik Ejdfors

Versjon: 2.0 Dato: 3. mai 2017

Innhold

1	Problembeskrivelse	1
2	Prinsipiell løsning	1
3	Realisering	3
4	Konklusjon	8

1 Problembeskrivelse

Vi vil ta for oss design av et system som vist i figur 1.1. Som vi kan se i figuren, har inngangssignalet en endelig impedans. Dersom det koples til en last, R_L , som er mindre enn inngangsmotstanden, R_k , vil det være størst spenningsfall over R_k , og dermed liten effektoverføring til R_L . For å få større effektoverføring kan man benytte seg av en forsterker for å levere effekt til lasten.

Vi skal i dette designet lage en enkel transistorforsterker som skal drive en resistiv last med motstandsverdien 22Ω .

Figur 1.1: Generell forsterker [1]

2 Prinsipiell løsning

En enkel transistorforsterker-krets kan implementeres som vist i figur 2.1. Det viktigste med en forsterker er at utgangsspenningen $v_2(t)$ har samme variasjon som V_D har rundt sitt arbeidspunkt. Transistoren må være i metningsområdet for å få en oppførsel på variasjonene til V_D til å være mest mulig lineær, slik at vi får levert en stor del av den tilgjengelige effekten til lasten.

Figur 2.1: Enkel transistorforsterker, modifisert fra [2].

Man finner arbeidspunktet ved å ta utgangspunkt i en grafisk fremstilling av transistorkarakteristikken. En slik fremstilling viser hvordan verdiene V_{DS} , V_{GS} og I_D , som

utgjør arbeidspunktet avhenger av hverandre. V_{GS} og V_{DS} er henholdsvis spenningsverdiene V_G og V_D i forhold til V_S .

Når man har valgt et arbeidspunkt, regner man ut komponentverdier til R_{G1} , R_{G2} , R_D og R_{S1} ved Kirchhoffs lover. Spenningen over R_{S1} trenger vanligvis ikke å være så stor, da denne brukes til å kompansere for arbeidspunktet grunnet temperaturendringer. Kondensatorene C_1 og C_2 flytter inngangssignalet slik at likevektslinjen vil ligge på arbeidspunktet til transistoren. Resten av komponentverdiene finner man med kretsanalyse.

For å isolere forsterkerkretsen fra lasten, kan man implementere et buffer til utgangssignalet. Dette kan implementeres som vist i figur 2.2.

Figur 2.2: Generell Source follower, modifisert fra [3]

Forsterkerkretsen kan dermed implementeres som vist i figur 2.3.

Figur 2.3: Implementasjon av forsterker med tilkoblet buffer.

Forsterkeren kan forenkles ved å tegne en småsignalekvivlent, vist i figur 2.4, der

$$R_{i1} = R_{G1} || R_{G2}$$

 $R_{i2} = R_1 || R_2$
 $R_{o1} = R_D = 845$

$$R_{o2} = \frac{v_x}{i_x} = \frac{1}{\frac{1}{R_{S2}} + gm}$$

der v_x er tilkoblet testspenning og $i_x = v_x(\frac{1}{R_{S2}} + gm)$, der

$$gm = -\frac{A_2}{R_{S2}(A_2 - 1)}$$

 A_1 og A_2 blir da:

$$A_1 = \frac{v_2}{v_1}$$

$$A_2 = \frac{v_L}{v_2}$$

 v_{sig} er i inngangssignalet og R_{sig} er inngangsmotstanden.

Figur 2.4: Småsignalekvivalent

3 Realisering

Realisering av designet starter med å finne et arbeidspunkt fra den simulerte forsterkerkarakteristikken gitt i figur 3.1. I dette designet blir det brukt en BS107, en N-kanal MOSFET transistor. Den simulerte karakteristikken har en terskelspenning, V_T , på 3.3V. I databladet til transistoren[4] er det oppgitt at terskelspenningen skal ligge mellom 1V og 3V. Grunnet disse ulike observasjonene kan hver enkelt transistor oppføre seg ulikt.

Figur 3.1: Simulert transistorkarakteristikk [2]

Ved å bruke et arbeidspunkt fra graf 3.1, ble det ingen forsterkning i dette tilfellet. Tilpasninger gjort med med variable motstander og analyse av hvordan signalet endret seg resulterer i et arbeidspunkt som gir forsterkning. Arbeidspunktet er gitt i tabell 3.1. Implementasjon som vist i figur 3.2, med tilhørende komponentverdier i tabell 3.2 og $V_{DD} = 5V$, gir en forsterkningsfaktor gitt i ligning 3.1, der v_1 og v_2 er peak-to-peak verdier.

$$A_1 = \frac{v_2}{v_1} = \frac{934.8mV}{42.2mV} = 22.15. \tag{3.1}$$

Tabell 3.2: Komponentverdier til figur 3.2

Tabell 3.1: Arbeidspunkt til transistor i figur 3.2

	Verdi
V_{DS}	1.84 V
V_{GS}	1.04 V
I_D	3.8 mA

Komponent	Verdi
R_{G1}	$10~\mathrm{k}\Omega$
R_{G2}	$10~\mathrm{k}\Omega$
R_D	845Ω
R_{S1}	150Ω
C_1	$1 \mu F$
C_{S1}	$100 \ \mu F$

Figur 3.2: Forsterkerkrets

Verdiene til forsterkningsfaktoren finner man ved å analysere forsterkningen over v_2 fra figur 3.3. For at lasten ikke skal belaste systemet implementeres en 'Source Follower', som vist i avsnittet 'Prinsipiell løsning', figur 2.2. Source Followeren implementeres med høy inngangsmotstand, lav R_{S2} og lav lastmotstand. På denne måten vil kretsen fungere som et buffer. Implementerer man bufferet sammen med forsterkerkretsen, får man et design som vist i figur 3.4, med tilhørende komponentverdier i tabell 3.4.

Figur 3.3: Forsterkning før buffer og last. Gul graf viser inngangssignalet og blå graf viser utgangssignalet.

Tabell 3.3: Arbeidspunkt til transistor i bufferkretsen

	Verdi	
V_{DS}	2.68 V	
V_{GS}	2.51 V	
I_D	101 mA	

Figur 3.4: Implementasjon av forsterkerkrets. $V_{DD}=5V$

Tabell 3.4: Komponentverdier til figur 3.4

Komponent	Verdi
R_{G1}	$10~\mathrm{k}\Omega$
R_{G2}	$10~\mathrm{k}\Omega$
R_D	845 Ω
R_{S1}	150 Ω
R_{S2}	22Ω
R_1	$105~\mathrm{k}\Omega$
R_2	$3.3~\mathrm{M}\Omega$
R_L	22Ω
C_1	$1 \mu F$
C_2	$1 \mu F$
C_{S1}	$100 \ \mu F$
C_{S2}	$100~\mu F$

Med denne implementasjonen får man en forsterkning, $A[dB]=A_1[dB]\cdot A_2[dB]\approx 20\cdot lg(16.3)=24.2dB$, visualisert i figur 3.5.

Figur 3.5: Visualisering av utgangssignal (blå) og inngangssignal (gul).

Figur 3.6: Fotografi av design.

4 Konklusjon

I dette designet har vi implementert en enkel transistorforsterker. BS107 har en simulert transistorkarakteristikk som vist i figur 3.1, på side 4, men grunnet store avvik fra datablad og simulert karakteristikk ble komponentverdier justert slik at et arbeidspunkt ble funnet. Designet er tilpasset for å få god virkningsgrad og den totale forsterkningen blir 24.2dB.

Referanser

- [1] Harald Garvik, Torstein Bolstad. Litt om bruk av forsterkere. NTNU, 2017.
- [2] Lars Lundheim, Harald Garvik. Døme på dimensjonering av ein enkel forsterkar. NTNU, 2016.
- [3] TTT4260, Øving 8. NTNU, 2017.
- [4] ON Semiconductor. Small Signal MOSFET, 2014. Rev. 7.