

Лабораторная работа №19

Задания 2, 4, 5

Баканова К.В., Б01-003 апрель 2022 г.

2 Активные звенья с двойным Т-мостом

Рис. 1: Полосовой фильтр с двойным Т - мостом.

2.1

Откроем модель полосового фильтра с $f_0=10k,\,K_0=20.$ Измерим усиление на частоте f_0 и полосу Δf по уровню -3dB. Получаем $K_0=20.92,\,\Delta f=1.93$ $(R_2=20k).$

R_2 , OM	40k	60k	80k	100k
K_0	41,02	61,12	81,11	101,24
Δf , Γ ц	979	643	495	397

2.2

Изучим поведение фильтра при разбалансировании моста варьированием R_5 . Снимем зависимость от R_5 пикового усиления.

R_5 , OM	1,5	2	2,5	3	3,5	4	4,5	5	5,5
K_0	32,45	43,76	79,67	956,78	90,57	42,88	28,11	20,97	16,88

2.3

Измерим уровни скачка в нуле и первого выброса: уровень скачка - 1В при $R_5=5{\rm k}$ Ом. Оценим значение R_5 , при котором фильтр теряет устойчивость.

R_5 , Om	1	,		/		,
выброс	4,29	4,49	4,72	5,0	5,36	5,82

Рис. 2: Режекторный фильтр с двойным Т - мостом.

2.4

Откроем модель режекторного фильтра с $f_0=10k,\,\gamma=0.1.$ Измерим ширину полосы режекции Δf по уровню $0.7=3 \mathrm{dB}.$ Получим: $\Delta f=4.07$ кГц.

2.5

Измерим уровни скачка в нуле и первого выброса. Получим: уровень скачка - 1В, первый выброс - $697.5~\mathrm{mB}$.

Звенья Саллена-Ки. 4

Рис. 3: Звенья Саллена-Ки.

4.1

Откроем модель звеньев Саллена-Ки с частотой $f_0=10k$ и добротностью Q=1.Измерим значения коэффициентов передачи при $f = f_0$. Получим:

$$K_0 = 2, k_{lp} = 29.44, K_{hp} = 28.485, K_{bp} = 28.898$$

4.2

Откроем модель с фильтрами Баттерворта верхних и нижних частот порядка n=3 на частоту среза $f_0 = 10k$. Измерим скорости спада в dB на октаву и затухания на частотах $f_0/2, 2f_0$:

ВЧ: затухание на $f_0/2$: 18 dB, скорость спада 15 $\frac{dB}{\text{дек}}$ дек НЧ: затухание на $2f_0$: 18 dB, скорость спада 15 $\frac{dB}{\text{дек}}$ дек .

Измерим уровни затухания фильтров Чебышева на частотах $f_0/2$, $2f_0$:

ВЧ: затухание на $f_0/2$: 30 dB, скорость спада 18 $\frac{db}{\rm де6}$ дек НЧ: затухание на $2f_0$: 30 dB, скорость спада 18 $\frac{db}{\rm де6}$ дек .

4.3

Откроем прототип , реализуем 4-полюсной полосовой фильтр Чебышева с $f_0=10k,$ $\epsilon = 1, \ Q = \frac{f_0}{\Delta f} = 6$. Измерим затухания на частотах $f_0/2, \ 2f_0, \ f_0/10, \ 10f_0$.

\int	$f_0/2$	$2f_0$	$f_0/10$	$10f_0$
затухание	1,83	1,75	-27,9	-27,9

5 Звенья с двойной обратной связью.

5.1

Полосовое звено с $f_0 = 5k, K_0 = 5, Q = 15$

 $f_{max}=4.980k,~\Delta f=338$ - ширина полосы по уровню 0.7. $Q=\frac{f_{max}}{\Delta f}=14.7,~QK_0=73.5$ - пиковое усиление.

Построим график зависимости частоты пика от R_2

R_2	100	300	500	700	900	1100	1300
f	12,7k	7,6k	6,1k	5,3k	4,7k	4,4k	4,1k

На практике:

$$f_{max} = 5.05k, K_0 = 5.77$$