[0006]

It is an object of the present invention to provide an actuator for a pickup which makes it possible to suppress a rise in rolling frequency and to prevent deterioration in damping characteristics even when a movable portion causes rolling with respect to a fixed portion, a pickup device, a recording medium drive device, and a method of producing an actuator for a pickup.

3

MEANS FOR SOLVING THE PROBLEMS

[0007]

5

10

15

20

25

The present invention provides an actuator for a pickup which includes: a fixed portion; a movable portion designed to be movable in each of a focusing direction extending along an optical axis of an objective lens and in a tracking direction substantially perpendicular to the focusing direction, due to a driving force transmitted from a drive portion, for holding the objective lens; and a plurality of linear elastic members of five or more each having ends connected to the movable portion and the fixed portion, respectively. The plurality of the linear elastic members is equal to one another in length dimension between the fixed portion and the movable portion. The ends of the plurality of the linear elastic members are located on a virtual circle formed on a plane by being projected onto a plane including both the focusing direction and the tracking direction. The virtual circle has a center defined as a rolling center, with which a center of translational forces of the linear elastic members coincides. coincides with aAt least one of a center of gravity of the movable portion, and a center of translational forces of the linear elastic members coincides with the rolling center.

The present invention also provides an actuator for a pickup which includes: a fixed portion; a movable portion designed to be movable in each of a focusing direction extending along an optical axis of an objective lens and a tracking direction substantially perpendicular to the focusing direction, due to a driving force transmitted from a drive portion, for holding the objective lens; and a plurality of linear elastic members of five or more each having ends connected to the movable portion and the fixed portion,

respectively. The plurality of the linear elastic members is equal to one another in length dimension between the fixed portion and the movable portion. The ends of the plurality of the linear elastic members are located on a virtual circle formed on a plane by being projected onto a plane including both the focusing direction and the tracking direction. The virtual circle has a center defined as a rolling center, which coincides with a center of translational forces of the linear elastic members, a center of gravity of the movable portion, and a center of a driving force of the movable portion.

[8000]

5

10

15

20

25

The present invention also provides an actuator for a pickup which includes: a fixed portion; a movable portion designed to be movable in each of a focusing direction extending along an optical axis of an objective lens and in a tracking direction substantially perpendicular to the focusing direction, due to a driving force transmitted from a drive portion, for holding the objective lens; and four linear elastic members each having ends connected to the movable portion and the fixed portion, respectively. The ends of the four linear elastic members are located on a virtual circle formed on a plane by being projected onto a plane including both the focusing direction and the tracking direction; the ends are linked with each other by line segments constituting substantially a trapezoidal shape. The virtual circle has a center defined as a rolling center, which coincides with at least one of a center of gravity of the movable portion, a center of a driving force of the movable portion, and a center of translational forces of the linear elastic members.

[0009]

The present invention provides a pickup device which includes: the actuator for a pickup described above; and an actuator drive portion for driving the actuator for a pickup.

[0010]

The present invention provides a recording medium drive device which includes the pickup device described above.

[0011]

The present invention provides a method of producing an actuator for a pickup

including: a fixed portion; a movable portion designed to be movable in each of a focusing direction extending along an optical axis of an objective lens and in a tracking direction substantially perpendicular to the focusing direction, to hold the objective lens; and a plurality of linear elastic members of five or more each having ends connected to the movable portion and the fixed portion, respectively. The method includes: equalizing the plurality of the linear elastic members to one another in length dimension between the fixed portion and the movable portion; locating the ends of the plurality of the linear elastic members on a virtual circle formed on a plane by being projected onto a plane including both the focusing direction and the tracking direction, respectively; and making a center of translational forces of the linear elastic members coincide with a center of the virtual circle which is defined as a rolling center; and making at least one of a center of gravity of the movable portion and a center of a driving force of the movable portion coincide with the rolling centermaking at least one of a center of gravity of the movable portion, a center of a driving force of the movable portion, and a center of translational forces of the linear elastic members coincide with a center of the virtual circle defined as a rolling center.

The present invention also provides a method of producing an actuator for a pickup including: a fixed portion; a movable portion designed to be movable in each of a focusing direction extending along an optical axis of an objective lens and in a tracking direction substantially perpendicular to the focusing direction, to hold the objective lens; and four linear elastic members each having ends connected to the movable portion and the fixed portion, respectively. The method includes: locating the ends of the four linear elastic members on a virtual circle formed on a plane by being projected onto a plane including both the focusing direction and the tracking direction; ensuring that line segments linking the ends with each other assume substantially a trapezoidal shape; and making at least one of a center of gravity of the movable portion, a center of a driving force of the movable portion, and a center of translational forces of the linear elastic members coincide with a center of the virtual circle defined as a rolling center.

BRIEF DESCRIPTION OF DRAWINGS

5

10

15

20

25

CLAIMS

	(Amended) [1] An actuator for a pickup, comprising:
	a fixed portion;
	a movable portion designed to be movable in each of a focusing direction
5	extending along an optical axis of an objective lens and a tracking direction substantially
	perpendicular to the focusing direction, due to a driving force transmitted from a drive
	portion, for holding the objective lens; and
	a plurality of linear elastic members of five or more each having ends connected
	to the movable portion and the fixed portion, respectively, wherein
10	the plurality of the linear elastic members is equal to one another in length
	dimension between the fixed portion and the movable portion,
	the ends of the plurality of the linear elastic members are located on a virtual
	circle formed on a plane by being projected onto a plane including both the focusing
	direction and the tracking direction, and
15	the virtual circle has a center defined as a rolling center, with which a center of
	translational forces of the linear elastic members coincides, and
	<u>coincides with at least one of a center of gravity of the movable portion, and a</u>
	center of a driving force of the movable portion, and a center of translational forces of the
	linear elastic members coincides with the rolling center.
20	(Deleted) [2] The actuator for the pickup according to Claim 1, wherein the linear
	elastic members include six linear elastic members.
	(Deleted) [3] An actuator for a pickup, comprising:
	———a fixed portion;
	a movable portion designed to be movable in each of a focusing direction
25	extending along an optical axis of an objective lens and in a tracking direction
	substantially perpendicular to the focusing direction, due to a driving force transmitted
	from a drive portion, for holding the objective lens; and
	four linear elastic members each having ends connected to the movable portion
	and the fixed portion, respectively, wherein

		driving force of the movable portion, and a center of translational forces of the linear
		elastic members coincide with a center of the virtual circle defined as a rolling center.
		(Deleted) [11] The method of producing the actuator for the pickup according to Claim
		9 or 10, further comprising:
	5	installing the linear elastic members in a mold for molding the fixed portion and
		the movable-portion; and
		insert-molding the actuator for the pickup through injection of a molten resin
		from an injection port of the mold.
<u>.</u>		(Added) [12] An actuator for a pickup, comprising:
	10	a fixed portion;
		a movable portion designed to be movable in each of a focusing direction
		extending along an optical axis of an objective lens and a tracking direction substantially
		perpendicular to the focusing direction, due to a driving force transmitted from a drive
		portion, for holding the objective lens; and
	15	a plurality of linear elastic members of five or more each having ends connected
		to the movable portion and the fixed portion, respectively, wherein:
		the plurality of the linear elastic members is equal to one another in length
		dimension between the fixed portion and the movable portion,
		the ends of the plurality of the linear elastic members are located on a virtual
	20	circle formed on a plane by being projected onto a plane including both the focusing
		direction and the tracking direction, and
		the virtual circle has a center defined as a rolling center, which coincides with a
		center of translational forces of the linear elastic members, a center of gravity of the
		movable portion, and a center of a driving force of the movable portion.
	25	(Added) [13] The actuator for the pickup according to Claim 1 or 12, wherein
		the linear elastic members include six linear elastic members,
		the linear elastic members are disposed laterally symmetrically across the rolling
		center in the tracking direction, and
		the linear elastic members which are adjacent to one another in a direction

	parallel to the tracking direction satisfy a relationship of $KC \times C + KA \times A = KB \times B$ when the
	linear elastic members close to the rolling center are disposed on one side of the focusing
	direction, and a relationship of $KA \times A = KC \times C + KB \times B$ when the linear elastic members
	close to the rolling center are disposed on another side of the focusing direction, given that
5	line segments drawn from the rolling center onto line segments linking the ends of the
	linear elastic members with each other have length dimensions A, C, and B and moduli of
	elasticity KA, KC, and KB, respectively, sequentially in the focusing direction.
	(Added) [14] An actuator for a pickup, comprising:
	a fixed portion;
10	a movable portion designed to be movable in each of a focusing direction
	extending along an optical axis of an objective lens and in a tracking direction
	substantially perpendicular to the focusing direction, due to a driving force transmitted
	from a drive portion, for holding the objective lens; and
	four linear elastic members each having ends connected to the movable portion
15	and the fixed portion, respectively, wherein
	the ends of the four linear elastic members are located on a virtual circle formed
	on a plane by being projected onto a plane including both the focusing direction and the
	tracking direction,
	the ends are linked with one another by line segments constituting substantially a
20	trapezoidal shape, and
	the virtual circle has a center defined as a rolling center, which coincides with at
	least one of a center of gravity of the movable portion, a center of a driving force of the
	movable portion, and a center of translational forces of the linear elastic members.
	(Added) [15] The actuator for the pickup according to Claim 14, wherein
25	the four linear elastic members are composed of two linear elastic members
	linked with each other by a line segment constituting an upper base of the trapezoidal
	shape, and two linear elastic members linked with each other by a line segment
	constituting a lower base of the trapezoidal shape, and
	the former two linear elastic members are different in cross-sectional area from

	the latter two linear elastic members.
	(Added) [16] The actuator for the pickup according to Claim 15, wherein the two
	linear elastic members linked with each other by the line segment constituting the upper
	base of the trapezoidal shape are different in cross-sectional width dimension from the two
5	linear elastic members linked with each other by the line segment constituting the lower
	base of the trapezoidal shape.
	(Added) [17] The actuator for the pickup according to Claim 14, wherein
	the four linear elastic members are composed of the two linear elastic members
	linked with each other by the line segment constituting an upper base of the trapezoidal
10	shape and the two linear elastic members linked with each other by the line segment
	constituting a lower base of the trapezoidal shape, and
	the former two linear elastic members are different in modulus of elasticity from
	the latter two linear elastic members.
	(Added) [18] A pickup device, comprising:
15	the actuator for the pickup according to any one of Claims 1 and 12 to 17; and
	an actuator drive portion for driving the actuator for the pickup.
	(Added) [19] A recording medium drive device, comprising:
	the pickup device according to Claim 18.
	(Added) [20] A method of producing an actuator for a pickup including: a fixed
20	portion; a movable portion designed to be movable in each of a focusing direction
	extending along an optical axis of an objective lens and a tracking direction substantially
	perpendicular to the focusing direction, to hold the objective lens; and a plurality of linear
	elastic members of five or more each having ends connected to the movable portion and
	the fixed portion, respectively,
25	the method, comprising:
	equalizing the plurality of the linear elastic members to one another in length
	dimension between the fixed portion and the movable portion,
	locating the ends of the plurality of the linear elastic members on a virtual circle
	formed on a plane by being projected onto a plane including both the focusing direction

	and the tracking direction, respectively; and
	making a center of translational forces of the linear elastic members coincide with
	a center of the virtual circle which is defined as a rolling center, and
	making at least one of a center of gravity of the movable portion and a center of a
5	driving force of the movable portion coincide with the rolling center.
	(Added) [21] A method of producing an actuator for a pickup including: a fixed
	portion; a movable portion designed to be movable in each of a focusing direction
	extending along an optical axis of an objective lens and a tracking direction substantially
	perpendicular to the focusing direction, to hold the objective lens; and four linear elastic
10	members each having ends connected to the movable portion and the fixed portion,
	respectively,
	the method, comprising:
	locating the ends of the four linear elastic members on a virtual circle formed on
	a plane by being projected onto a plane including both the focusing direction and the
15	tracking direction;
•	ensuring that line segments linking the ends with one another assume
	substantially a trapezoidal shape; and
	making at least one of a center of gravity of the movable portion, a center of a
	driving force of the movable portion, and a center of translational forces of the linear
20	elastic members coincide with a center of the virtual circle defined as a rolling center.
	(Added) [22] The method of producing the actuator for the pickup according to Claim
	20 or 21, further comprising:
	installing the linear elastic members in a mold for molding the fixed portion and
	the movable portion; and
25	insert-molding the actuator for the pickup through injection of a molten resin
	from an injection port of the mold.