

Olimpiada Națională de Matematică Etapa Județeană/a Sectoarelor Municipiului București, 16 martie 2019

CLASA a VII-a - SOLUŢII şi BAREME

Problema 1. Determinați numerele întregi a, b, c pentru care

$$\frac{a+1}{3} = \frac{b+2}{4} = \frac{5}{c+3}.$$

Gazeta Matematică

Soluție și barem de corectare

Remarcă: O altă cale de a arăta că valoarea comună a fracțiilor din enunț este număr întreg este:

$$\frac{a+1}{3} = \frac{b+2}{4} = \frac{(b+2)-(a+1)}{4-3} = b-a+1 \in \mathbb{Z}. \quad \dots \qquad 2\mathbf{p}$$

Problema 2. Se consideră D mijlocul bazei [BC] a triunghiului isoscel ABC în care $m(\angle BAC) < 90^\circ$. Pe perpendiculara în B pe dreapta BC se consideră punctul E astfel încât $\angle EAB \equiv \angle BAC$, iar pe paralela prin C la dreapta AB se consideră punctul F astfel încât F şi D sunt de o parte şi de alta față de dreapta AC şi $\angle FAC \equiv \angle CAD$. Demonstrați că AE = CF şi BF = EF.

Soluție și barem de corectare

Problema 3. Se consideră mulțimile $M = \{0, 1, 2, \dots, 2019\}$ și

$$A = \left\{ x \in M \mid \frac{x^3 - x}{24} \in \mathbb{N} \right\}.$$

- a) Câte elemente are multimea A?
- b) Determinați cel mai mic număr natural $n, n \geq 2$, care are proprietatea că orice submulțime cu n elemente a mulțimii A conține două elemente distincte a căror diferență se divide cu 40.

Soluție și barem de corectare

a) Numărul $x^3 - x = x(x^2 - 1) = (x - 1)x(x + 1)$ este un produs de trei numere naturale consecutive, deci $3 \mid x^3 - x$.

Dacă $x \in A$ este par, cum x - 1 şi x + 1 sunt impare, trebuie ca x să fie multiplu de 8. Dacă $x \in A$ este impar, numerele x - 1 şi x + 1 sunt pare, iar unul din ele este divizibil cu 4, deci $x^3 - x$ este divizibil cu 8.

b) Vom demonstra că cea mai mică valoare a lui n este 26.

Problema 4. Se consideră triunghiul dreptunghic isoscel ABC, $m(\widehat{A}) = 90^{\circ}$, şi punctul $D \in (AB)$ astfel încât $AD = \frac{1}{3}AB$. În semiplanul determinat de dreapta AB şi punctul C se consideră punctul E pentru care $m(\angle BDE) = 60^{\circ}$ şi $m(\angle DBE) = 75^{\circ}$. Dreptele BC şi DE se intersectează în punctul G, iar paralela prin punctul G la dreapta AC intersectează dreapta BE în punctul G.

Demonstrați că triunghiul CEH este echilateral.

Soluție și barem de corectare

