Extended Answer Section

There are three questions in this section, each with a number of parts. Write your answers in the space provided below each part. If you need more space there are extra pages at the end of the examination paper.

1. (a) (6 marks)

(i) Starting from the geometric definition of the dot product of two vectors, or otherwise, show that for any geometric vector \mathbf{c} , $\mathbf{c} \cdot \mathbf{c} = |\mathbf{c}|^2$.

(ii) Using the result in (i), show that for any two geometric vectors \mathbf{a} and \mathbf{b} , $|\mathbf{a} + \mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2\mathbf{a} \cdot \mathbf{b}$.

(iii)	Using the result in (ii), show that if $ \mathbf{a} + \mathbf{b} = \mathbf{a} - \mathbf{b} $ then \mathbf{a} is perpendicular to \mathbf{b} .
(iv)	Let \overrightarrow{ABCD} be a parallelogram with adjacent sides given by the vectors $\overrightarrow{AB} = \mathbf{a}$ and $\overrightarrow{BC} = \mathbf{b}$. Express the diagonals \overrightarrow{AC} and \overrightarrow{DB} in terms of \mathbf{a} and \mathbf{b} and hence prove that if these diagonals are of equal length, then \overrightarrow{ABCD} is a rectangle.

- (b) **(4 marks)**
 - (i) Given

$$A = \left[\begin{array}{rrr} 1 & 0 & 1 \\ -4 & 1 & -1 \\ 6 & -2 & 1 \end{array} \right].$$

Using elementary row operations, or otherwise, find the inverse matrix, A^{-1} .

(ii)	Using the result in (i), or otherwise, solve the following set of equations for
	x, y, z:

$$\begin{array}{rcl} x+z & = & 3 \\ -4x+y-z & = & -2 \\ 6x-2y+z & = & 1. \end{array}$$

2. (a) **(2 marks)** Let C be an $n \times n$ matrix, \mathbf{v} be a non-zero vector of length n and λ a scalar. Explain what is meant by the statement "C has an eigenvalue λ with corresponding eigenvector \mathbf{v} ".

Show that λ satisfies $\det(C - \lambda I) = 0$ where I is the $n \times n$ identity matrix. (You may quote the fact that a square matrix has zero determinant if and only if it is not invertible.)

(b) (8 marks) Let B be the matrix

$$B = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 4 & 2 \\ 6 & 0 & 2 \end{array} \right].$$

(i) Show that $det(B - \lambda I) = (1 - \lambda)(2 - \lambda)(4 - \lambda)$, where I is the 3×3 identity matrix. Hence deduce the eigenvalues of B.

(ii) Find an eigenvector \mathbf{v}_3 corresponding to the eigenvalue $\lambda = 4$.				

(iii) Using matrix multiplication, or otherwise, verify that

$$\mathbf{v}_1 = \begin{bmatrix} -1 \\ -4 \\ 6 \end{bmatrix} \text{ and } \mathbf{v}_2 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$
 are eigenvectors of B corresponding to $\lambda = 1$ and $\lambda = 2$, respectively.

(iv) Write down matrices P and D such that

$$B = PDP^{-1},$$

where D is a diagonal matrix. (N.B. You are not required to calculate P^{-1} explicitly.)

(v) Explain why the matrices B - I, 2I - B and B - 4I are not invertible.

3.	. (a)	(4 marks) Let p be a plane and Q a point not on the plane. Let R be any point on the plane. Show that the shortest distance from Q to the plane is given by the					
		magnitude of $\overrightarrow{QR} \cdot \widehat{\mathbf{n}}$ where $\widehat{\mathbf{n}}$ is a unit vector perpendicular to p .					

Given that the plane p has equation 2x - y + 3z = 2 and that the point Q has coordinates (1, -1, 2):

(i) Find the shortest distance from Q to p;

(ii) Find the coordinates of the point S on p closest to Q.

$\mathbf{u} imes \mathbf{v} = \mathbf{v} imes \mathbf{w} = \mathbf{w} imes \mathbf{u}$					
then	$\mathbf{u} + \mathbf{v} + \mathbf{w} =$	= 0.			

More space is available on the next page.

Page 29 of 0

8002A Semester 1 2010

This blank page may be used if you need more space for your answers.

Page 30 of 0

8002A SEMESTER 1 2010

This blank page may be used if you need more space for your answers.

Page 31 of 0

8002A Semester 1 2010

This blank page may be used if you need more space for your answers.

End of Extended Answer Section