2154312 郑博远

- a) 分解规则::AC→BD ::AC→B 传递律::AC→B B→E ::AC→E
- b) $(A)^{\dagger} = \{A\}$ $(AC)^{\dagger} = \{A, B, C, D, E\}$
- c) $F = \{AC \rightarrow B, AC \rightarrow D, B \rightarrow C, C \rightarrow D, B \rightarrow E\}$ 消除沉結 $F_c = \{AC \rightarrow B, C \rightarrow D, B \rightarrow C, B \rightarrow E\}$ 合并后 $F_c = \{AC \rightarrow B, C \rightarrow D, B \rightarrow CE\}$
- d) X={A} Y={B,C,D}
 X+={A}, 因此不是候选码
 (AB)+=U (AC)+=U (AD+)={A,D}
 二候选码为(AB),(AC)

对于 C→D, D部分依赖子键 AC 因此,R ¢ 2 NF ∴ R 为 1 NF

e) $U_1 = \{A, B, C\}, F_1 = \{AC \Rightarrow B\}$ $U_2 = \{C, D\}, F_2 = \{C \Rightarrow D\}$ $U_3 = \{B, c, E\}, F_3 = \{B \Rightarrow cE\}$

f) $A B C D E_{a_4}$ $U_1(A,B,C)$ $a_1 a_2 a_3 b_{14} b_{15} \rightarrow f_{1} v_{1} = b_{25} c_{15} c_{15}$ $U_2(C,D)$ $b_{21} b_{22} a_3 a_4 b_{25} c_{25}$ $U_3(B,C,E)$ $b_{31} a_2 a_3 b_{24} a_4 a_5$

·: (F, UF2 UF3)+= F+ :: 满足 dependency preservation

数据库系统原理第四次作业

2154312 郑博远

7.1 Suppose that we decompose the schema R = (A, B, C, D, E) into

(A, B, C)

(A, D, E).

Show that this decomposition is a lossless decomposition if the following set *F* of functional dependencies holds:

$$A \rightarrow BC$$

$$CD \rightarrow E$$

$$B \rightarrow D$$

$$E \rightarrow A$$

Solution:

According to $A \rightarrow BC$ in F:

$$(A,B,C) \cap (A,D,E) = A \rightarrow (A,B,C)$$

i.e.
$$R_1 \cap R_2 \rightarrow R_1$$

So, this decomposition is a lossless one.

7.6 Compute the closure of the following set F of functional dependencies for relation schema R = (A, B, C, D, E).

$$A \rightarrow BC$$

$$CD \rightarrow E$$

$$B \rightarrow D$$

$$E \rightarrow A$$

List the candidate keys for R.

Solution:

Starting with $A \rightarrow BC$, we can got $A \rightarrow B$ and $A \rightarrow C$ (decomposition)

Since $A \rightarrow B$ and $B \rightarrow D$, got $A \rightarrow D$ (transitivity)

Since
$$A \rightarrow C$$
, $A \rightarrow D$, $CD \rightarrow E$, got $A \rightarrow E$ (union, transitivity)

So, $A \rightarrow ABCDE$ (reflextivity, union)

Since $E \rightarrow A$, got $E \rightarrow ABCDE$ (transitivity)

Since $CD \rightarrow E$, got $CD \rightarrow ABCDE$ (transitivity)

Since $B \rightarrow D$, we got $BC \rightarrow ABCDE$ (pseudotransitivity)

Besides, we have $C \rightarrow C, B \rightarrow B, D \rightarrow D, BD \rightarrow BD$ (reflextivity)

Thus, $BD \rightarrow B$, $BD \rightarrow D$ (decomposition)

Also, $B \rightarrow BD$ (union)

In conclusion , F^+ is $B \to B$, $B \to D$, $C \to C$, $D \to D$, $B \to BD$, $BD \to B$, $BD \to D$, $BD \to BD$, and all FDs whose LHS contains A, BC, CD or E, and whose RHS is any subset of $\{A, B, C, D, E\}$.

The candidate keys are A, BC, CD and E.

7.30 Consider the following set F of functional dependencies on the relation schema (A, B, C, D, E, G):

$$A \rightarrow BCD$$

$$BC \rightarrow DE$$

$$B \rightarrow D$$

$$D \rightarrow A$$

- a. Compute B^+ .
- b. Prove (using Armstrong's axioms) that AG is a superkey.
- c. Compute a canonical cover for this set of functional dependencies F; give each step of your derivation with an explanation.
 - d. Give a 3NF decomposition of the given schema based on a canonical cover.

Solution:

a.
$$X^{(0)}=\{B\}$$

$$X^{(1)}=\{B,D\}, according to B \rightarrow D$$

$$X^{(2)} = \{A, B, D\}$$
, according to $D \to A$
 $X^{(3)} = \{A, B, C, D\}$, according to $A \to BCD$
 $X^{(4)} = \{A, B, C, D, E\}$, according to $BC \to DE$
So, $B^+ = \{A, B, C, D, E\}$.

b. Since $BC \to DE$, we got $BCD \to DE$ (augmentation)

Since $A \to BCD$, $BCD \to DE$, we got $A \to DE$ (transivity)

Then we got $A \to BCDE$ (union)

Thus, $AG \to ABCDEG$ (augmentation)

So AG is a superkey.

c. (1)
$$F = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, BC \rightarrow D, BC \rightarrow E, B \rightarrow D, D \rightarrow A\}$$

(2) $A \rightarrow D$ is implied by $A \rightarrow B, B \rightarrow C$ and $BC \rightarrow D$, so $A \rightarrow D$ is extraneous.
 F_c is now $\{A \rightarrow B, A \rightarrow C, BC \rightarrow D, BC \rightarrow E, B \rightarrow D, D \rightarrow A\}$.
(3) $BC \rightarrow D$ is implied by $B \rightarrow D$, so $BC \rightarrow D$ is extraneous.
 F_c is now $\{A \rightarrow B, A \rightarrow C, BC \rightarrow E, B \rightarrow D, D \rightarrow A\}$.

(4) combine $A \to B$ with $A \to C$ to get:

$$F_c = \{ A \rightarrow BC, BC \rightarrow E, B \rightarrow D, D \rightarrow A \}$$

d.

First, find all the candidate keys:

$$X = \{ G \}, Y = \{ A, B, C, D \}$$

Since X cannot be candidate keys, try:

$$(AG)^{+} = R$$
$$(BG)^{+} = R$$
$$(CG)^{+} = \{ C, G \}$$
$$(DG)^{+} = R$$

So the candidate keys are (AG), (BG), (DG).

Then, give the 3NF decomposition:

$$U_{1} = \{ A, B, C \}, F_{1} = \{ A \to BC \}$$

$$U_{2} = \{ B, C, E \}, F_{2} = \{ BC \to E \}$$

$$U_{3} = \{ B, D \}, F_{3} = \{ B \to D \}$$

$$U_{3} = \{ A, D \}, F_{3} = \{ D \to A \}$$

Since none of them contains candidate keys, add:

$$U_4 = \{ A, G \}, F_4 = \emptyset$$

In conclusion, the decomposition is (A, B, C), (B, C, E), (B, D), (A, D), (A, G).

2154312 郑博远

- a) 分解规则::AC→BD ::AC→B 传递律::AC→B B→E ::AC→E
- b) $(A)^{\dagger} = \{A\}$ $(AC)^{\dagger} = \{A, B, C, D, E\}$
- c) $F = \{AC \rightarrow B, AC \rightarrow D, B \rightarrow C, C \rightarrow D, B \rightarrow E\}$ 消除沉結 $F_c = \{AC \rightarrow B, C \rightarrow D, B \rightarrow C, B \rightarrow E\}$ 合并后 $F_c = \{AC \rightarrow B, C \rightarrow D, B \rightarrow CE\}$
- d) X={A} Y={B,C,D}
 X+={A}, 因此不是候选码
 (AB)+=U (AC)+=U (AD+)={A,D}
 二候选码为(AB),(AC)

对于 C→D, D部分依赖子键 AC 因此,R ¢ 2 NF ∴ R 为 1 NF

e) $U_1 = \{A, B, C\}, F_1 = \{AC \Rightarrow B\}$ $U_2 = \{C, D\}, F_2 = \{C \Rightarrow D\}$ $U_3 = \{B, c, E\}, F_3 = \{B \Rightarrow cE\}$

f) $A B C D E_{a_4}$ $U_1(A,B,C)$ $a_1 a_2 a_3 b_{14} b_{15} \rightarrow f_{1} v_{1} = b_{25} c_{15} c_{15}$ $U_2(C,D)$ $b_{21} b_{22} a_3 a_4 b_{25} c_{25}$ $U_3(B,C,E)$ $b_{31} a_2 a_3 b_{24} a_4 a_5$

·: (F, UF2 UF3)+= F+ :: 满足 dependency preservation