Cryptography and Network Security I

HW2 Theory Part a

1. Prove that:

a) $a \equiv b \pmod{n}$ implies $b \equiv a \pmod{n}$ If $a \equiv b \pmod{n}$ then $n \mid (b - a)$. $n \mid (b - a)$ implies $n \mid (-1)(b - a)$ which is equivalent to $n \mid (a - b)$. Therefore, $b \equiv a \pmod{n}$.

b) $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ imply $a \equiv c \pmod{n}$ If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ then $n \mid (b - a)$ and $n \mid (c - b)$. Because the sum of two numbers with a common divisor will share that divisor, we can write $n \mid (b - a + c - b)$ which is equivalent to $n \mid (c - a)$. Therefore, $a \equiv c \pmod{n}$.

2. Find multiplicative inverse of:

a) 1234 mod 4321

t	r
0	4321
1	1234
-3	619
4	615
-7	4
1075	3
-1082	1
-1082 + 4321 = 3239	0

b) 24140 mod 40902

t	r
0	40902
1	24140
-1	16762
2	7378
-5	2006
17	1360
-22	646
61	68
-571	34
no inverse found	0

c) 550 mod 1769

t	r
0	1769
1	550
-3	119

13	74
-16	45
29	29
-45	16
74	13
-119	3
550	1
550	0

- 3. Determine which are reducible over GF(2):
 - a) $x^3+1 = (x+1)(x^2+x+1)$
 - b) $x^3 + x^2 + 1 = \text{not reducible}$
 - c) $x^4+1=(x+1)^4$
- 4. determine GCD:
 - a) $x^3 x + 1$ and $x^2 + 1$ over GF(2) = 1 mod 2
 - b) $x^5 + x^4 + x^3 x^2 x + 1$ and $x^3 + x^2 + x + 1$ over GF(3) = x + 1 (mod 3)
- 5. For a cryptosystem {P,K,C,E,D} where
 - P={a,b,c} with
 - PP(a)=1/4
 - PP(b)=1/4
 - PP(c)=1/2

$$K = (k1,k2,k3)$$
 with

- PK(k1)=1/2
- PK(k2)=1/4
- PK(k3)=1/4

$C = \{1,2,3,4\}$

Encryption table

Ek(P)	a	b	С
k1	1	2	1
k2	2	3	1
k3	3	2	4
k4	3	4	4

Calculate H(K|C):

$$Pr(1) = \frac{1}{2}$$

$$Pr(2) = \frac{1}{4}$$

$$Pr(3) = \frac{1}{8}$$

$$Pr(4) = \frac{1}{8}$$

$$Pr(2) = \frac{1}{4}$$

$$\Pr(3) = \frac{1}{8}$$

$$\Pr(4) = \frac{3}{8}$$

- 4.1-)	-
Pr(k C)	=
Pr(k1 1)	3/4
Pr(k1 2)	1/2
Pr(k1 3)	0
Pr(k1 4)	0
Pr(k2 1)	1/4
Pr(k2 2)	1/4
Pr(k2 3)	1/4
Pr(k2 4)	0
Pr(k3 1)	0
Pr(k3 2)	1/4
Pr(k3 3)	1/4
Pr(k3 4)	1/4
Pr(k4 1)	0
Pr(k4 2)	0
Pr(k4 3)	1/2
Pr(k4 4)	3/4