# 16FX/FR EVALUATION SYSTEM STUDENT-MODEL-CAR

# **USER GUIDE**







# **Revision History**

| Date       | Issue                                                                                        |  |  |  |
|------------|----------------------------------------------------------------------------------------------|--|--|--|
| 2010-01-19 | CII – Initial Version 1.0                                                                    |  |  |  |
| 2010-02-10 | CII – V1.1                                                                                   |  |  |  |
| 2010-02-25 | CII – V1.2: Added 3.3.1 - Speed controller calibration                                       |  |  |  |
| 2010-08-12 | DWi – V1.3: IR line sensor added                                                             |  |  |  |
|            | Updated table 1 + 5                                                                          |  |  |  |
|            | Added 3.8 IR line sensor                                                                     |  |  |  |
|            | Added 6.11 IR line sensor module                                                             |  |  |  |
| 2010-09-27 | DWi – V1.3.1: Updated headlines                                                              |  |  |  |
|            | Updated 3.8 – ADA-IR-LINE-SENSOR                                                             |  |  |  |
| 2010-09-29 | DWi – V1.4: Updated Warranty and Disclaimer                                                  |  |  |  |
| 2010-09-30 | DWi – V1.5: Updated 6.12 IR line sensor module                                               |  |  |  |
|            | Added 6.12.1 Software                                                                        |  |  |  |
|            | Added 6.12.2 Test software                                                                   |  |  |  |
| 2011-06-10 | MWi – V1.6: Line-Sensor connector numbering corrected in Table 1: Modules to MCU connections |  |  |  |

This document contains 55 pages.



# **Warranty and Disclaimer**

The use of the deliverables (e.g. software, application examples, target boards, evaluation boards, starter kits, schematics, engineering samples of IC's etc.) is subject to the conditions of Fujitsu Semiconductor Europe GmbH ("FSEU") as set out in (i) the terms of the License Agreement and/or the Sale and Purchase Agreement under which agreements the Product has been delivered, (ii) the technical descriptions and (iii) all accompanying written materials.

Please note that the deliverables are intended for and must only be used for reference in an evaluation laboratory environment.

The software deliverables are provided on an as-is basis without charge and are subject to alterations. It is the user's obligation to fully test the software in its environment and to ensure proper functionality, qualification and compliance with component specifications.

Regarding hardware deliverables, FSEU warrants that they will be free from defects in material and workmanship under use and service as specified in the accompanying written materials for a duration of 1 year from the date of receipt by the customer.

Should a hardware deliverable turn out to be defect, FSEU's entire liability and the customer's exclusive remedy shall be, at FSEU's sole discretion, either return of the purchase price and the license fee, or replacement of the hardware deliverable or parts thereof, if the deliverable is returned to FSEU in original packing and without further defects resulting from the customer's use or the transport. However, this warranty is excluded if the defect has resulted from an accident not attributable to FSEU, or abuse or misapplication attributable to the customer or any other third party not relating to FSEU or to unauthorised decompiling and/or reverse engineering and/or disassembling.

FSEU does not warrant that the deliverables do not infringe any third party intellectual property right (IPR). In the event that the deliverables infringe a third party IPR it is the sole responsibility of the customer to obtain necessary licenses to continue the usage of the deliverable.

In the event the software deliverables include the use of open source components, the provisions of the governing open source license agreement shall apply with respect to such software deliverables.

To the maximum extent permitted by applicable law FSEU disclaims all other warranties, whether express or implied, in particular, but not limited to, warranties of merchantability and fitness for a particular purpose for which the deliverables are not designated.

To the maximum extent permitted by applicable law, FSEU's liability is restricted to intention and gross negligence. FSEU is not liable for consequential damages.

Should one of the above stipulations be or become invalid and/or unenforceable, the remaining stipulations shall stay in full effect.

The contents of this document are subject to change without a prior notice, thus contact FSEU about the latest one.



# Contents

| R | EVISI | ON HISTORY                                          | 2  |
|---|-------|-----------------------------------------------------|----|
| W | ARRA  | ANTY AND DISCLAIMER                                 | 3  |
| C | ONTE  | NTS                                                 | 4  |
| 1 | OVE   | RVIEW                                               | 6  |
|   | 1.1   | Features                                            | 6  |
|   | 1.2   | Modules                                             | 6  |
| 2 | QUIC  | CK SETUP                                            | 8  |
|   | 2.1   | Power supply for sensor modules and drive           | 9  |
|   | 2.2   | Mounting plate                                      | 9  |
|   | 2.3   | Side infrared modules                               | 9  |
|   | 2.4   | Microcontroller                                     | 9  |
| 3 | MOD   | OULE DESCRIPTION                                    | 11 |
|   | 3.1   | Mechanic components                                 | 11 |
|   | 3.2   | Power supply                                        | 11 |
|   | 3.3   | Speed controller                                    | 12 |
|   | 3.4   | Steering servo                                      | 13 |
|   | 3.5   | Microcontroller board                               | 14 |
|   | 3.6   | ADA-US-IR-RFM-BT                                    | 20 |
|   | 3.7   | ADA-INFRARED                                        | 23 |
|   | 3.8   | ADA-IR-LINE-SENSOR                                  | 24 |
| 4 | GET   | TING STARTED                                        | 28 |
|   | 4.1   | Installing the USB driver                           | 28 |
|   | 4.2   | Downloading the firmware to flash                   | 29 |
|   | 4.3   | Usage of the test program                           | 32 |
| 5 | ULTI  | RASONIC MODULE SOFTWARE                             | 34 |
|   | 5.1   | Interface protocol                                  | 35 |
|   | 5.2   | Commands                                            | 36 |
| 6 | MAI   | N MICROCONTROLLER UNIT SOFTWARE                     | 39 |
|   | 6.1   | Microcontroller resources used by the test software | 39 |
|   | 6.2   | Data types                                          | 39 |
|   | 6.3   | Bluetooth module / USART communication              | 40 |
|   | 6.4   | Motor and servo control                             | 42 |
|   | 6.5   | Infrared                                            | 43 |
|   | 6.6   | RFM12                                               | 44 |
|   | 6.7   | Real time clock                                     | 45 |

## Student-Model-Car Chapter 0 Contents



|   | 6.8  | Seven segment display   | 46 |
|---|------|-------------------------|----|
|   | 6.9  | Systick                 | 46 |
|   | 6.10 | Ultrasonic module       | 47 |
|   | 6.11 | Utility routines        | 48 |
|   | 6.12 | IR line sensor module   | 49 |
| 7 | APPI | ENDIX                   | 51 |
|   | 7.1  | Tables                  | 51 |
|   | 7.2  | Figures                 | 52 |
| 8 | INFO | RMATION IN THE WWW      | 53 |
|   | 8.1  | 16FX controller related | 53 |
|   | 8.2  | FR controller related   | 53 |
|   | 8.3  | Hardware documentation  | 54 |
| 9 | REC' | YCLING                  | 55 |



## 1 Overview

The Student-Model-Car is a hardware platform for students to get familiar with embedded microcontroller projects. It features a basic setup including actors, sensors and communication interfaces for a quick start but it can also be extended by additional hardware modules. Starting with simple examples which only use single features of the platform it might be used up to autonomous car control.

#### 1.1 Features

- ➤ Starter kit SK-16FX-EUROSCOPE or SK-FR-144PMC-91467B
- > Eight infrared transmitters and receivers in eight directions
- Two ultrasonic transmitters (front and back)
- > RFM wireless communication module (RFM12)
- Servo for steering and motor, controlled by PWM signal
- Voltage regulation for unregulated battery supply
- Sensor modules are protected against short circuits
- Main peripheral PCB is prepared for stacked PCB providing power supply to the upper level
- Optional Bluetooth communication module (BTM-222)
- > 5 infrared reflective sensors for line detection

#### 1.2 Modules

## 1.2.1 Car body

The body is a TT-01 chassis taken from a Tamiya model car. It features a battery pack fixture and damped wheel suspension. The chassis also has fixtures used for the mounting plate for the electronic components.

#### 1.2.2 Power supply

Power for the electronic components of the model car is provided by a six cell 7.2 V battery pack.

#### 1.2.3 Drive

The chassis includes a steering servo and a speed controller which drives the motor. Both are controlled by PWM signals.

#### 1.2.4 Shock absorbers

The front and back side of the chassis each hold a shock absorber to prevent higher damage to be dealt to the environment when the car bumps into it.

#### 1.2.5 Mounting plate for electronic components

The electronic modules are mounted on a wooden plate which in turn is mounted on the chassis of the car. This plate is framed by a damper to reduce possible damage to the environment.



#### 1.2.6 Starter kit

The starter kit provides the microcontroller and the peripheral resources required to use the Student-Model-Car such as power supply, oscillator, and an USB interface for flash downloading and debugging. It also provides pin headers to connect to the other resources.

#### 1.2.7 ADA-US-IR-RFM-BT

Also referred to by main sensor modules (front and back). These modules combine three infrared modules for object detection and short distance communication, an ultrasonic distance measurement module and a RFM12 wireless communication module. Optionally a BTM-222 Bluetooth module can be mounted. Furthermore a multiplexer allows to switch between the three infrared channels on this module plus one side module, voltage regulator generates a 5 V / 3.3 V level from an unregulated battery supply and two LEDs allow for status signalling.

#### 1.2.8 ADA-INFRARED

These modules are referred to by side infrared modules (left and right). They each contain one infrared diode and one receiver. They are powered and interfaced to the microcontroller through the front and back module respectively.

#### 1.2.9 ADA-IR-LINE-SENSOR

The line sensor module features five reflective optical sensors directed at the ground below the car. They can be used to detect a line or edges on the ground.

Note: This module is not shipped with the first version of the Student-Model-Car.



Figure 1: Hardware platform outline



# 2 Quick setup

This chapter will explain how to quickly connect the modules on the car. For detailed information of the signals see chapter 3 - Module description.



Figure 2: Schematic overview of the mounting plate



#### 2.1 Power supply for sensor modules and drive

Plug the power supply jack from the speed controller in the battery connector.

Connect the power supply board through header J1 to the battery.

Connect the servo power supply cable with the supply board's regulated output J2.

Note: Each module has its own power LED which should light up when the module is connected to the power supply. If one module does not light up its power LED recheck the connections. Make sure the jumper setting of JP1 on the ADA-US-IR-RFM-BT boards is correct, that is open for 5 V or closed for 3.3 V operation.

Connect the power pins from the front and back side main sensor modules (pins 1 and 2) with the appropriate pins on the power supply board on J3. Use the power connector cable to connect the starter kit with the power supply board on J3. Fit the cables through the two cable holes.

If a Bluetooth module is mounted on one of the main sensor modules set the power select jumper according to the operating voltage of the sensor module:

| Jumper | Setting | Description             |
|--------|---------|-------------------------|
| JP2    | 1-2     | Board operates at 5 V   |
| JFZ    | 2-3     | Board operates at 3.3 V |

#### 2.2 Mounting plate

Connect signal cables (green) to the input of the speed controller and the steering servo and fit both cables through a cable hole of the plate.

Put the plate on the car so that the four fixtures of the chassis go through the four holes of the plate. Put the holding clamps through the fixtures.

#### 2.3 Side infrared modules

Connect the infrared modules on both sides of the car to the corresponding main sensor modules with a ribbon cable.

#### 2.4 Microcontroller

Connect the signals from the different modules to the microcontroller with green connector cables.

|              |       |             |     | 6FX-EUROSCOPE        | SK-F | R-144PMC-91467B      |
|--------------|-------|-------------|-----|----------------------|------|----------------------|
| M            | odule | •           |     | MB96F348HS           |      | MB91F467B            |
| Module       | Ρi    | Signal      | Pin | Signal               | Pin  | Signal               |
|              | n     |             |     |                      |      |                      |
|              | 3     | IR_A        | 55  | P08_0                | 110  | P29_0                |
|              | 4     | IR_B        | 56  | P08_1                | 111  | P29_1                |
|              | 5     | IR_RX       | 54  | SIN9R (P07_7)        | 98   | SIN6 (P18_0)         |
| Main sensor  | 6     | IR_TX       | 36  | PPG2 (P06_2)         | 66   | PPG10 (P16_2)        |
| module front | 7     | US_SDI      | 23  | SOT2 (P05_1)         | 39   | SOT2 (P20_1)         |
| module nont  | 8     | US_SDO      | 22  | SIN2 (P05_0)         | 38   | SIN2 (P20_0)         |
|              | No    | t connected | 53  | SOT9R/INT6           | 128  | INT2 (P24_2) /       |
|              | No    | t connected |     | (P07_6) <sup>1</sup> | 99   | SOT6 (P18_1)         |
|              |       |             |     |                      |      | (cable) <sup>2</sup> |
| Main sensor  | 3     | IR_A        | 95  | P02_0                | 118  | P28_0                |



|                  |     |             | SK-1 | 6FX-EUROSCOPE         | SK-F | R-144PMC-91467B       |
|------------------|-----|-------------|------|-----------------------|------|-----------------------|
| Module           |     | MB96F348HS  |      | MB91F467B             |      |                       |
| Module           | Ρi  | Signal      | Pin  | Signal                | Pin  | Signal                |
|                  | n   |             |      |                       |      |                       |
| module back      | 4   | IR_B        | 96   | P02_1                 | 119  | P28_1                 |
|                  | 5   | IR_RX       | 60   | SIN1 (P08_5)          | 16   | SIN0 (P21_0)          |
|                  | 6   | IR_TX       | 37   | PPG3 (P06_3)          | 67   | PPG11 (P16_3)         |
|                  | 7   | US_SDI      | 86   | SOT3 (P01_3)          | 42   | SOT3 (P20_5)          |
|                  | 8   | US_SDO      | 85   | SIN3 (P01_2)          | 41   | SIN3 (P20_4)          |
|                  | No  | t connected | 59   | INT15R (P08_4) /      | 15   | INT7 (P24_7) /        |
|                  | No  | t connected | 61   | SOT1 (P08_6)          | 17   | SOT0 (P21_1)          |
|                  | INO | Connected   |      | (jumper) <sup>1</sup> |      | (jumper) <sup>2</sup> |
|                  | 3   | SDI         | 79   | SOT8R (P00_4)         | 102  | SOT7 (P18_5)          |
| RFM module       | 4   | SDO         | 80   | SIN8R (P00_5)         | 101  | SIN7 (P18_4)          |
| IXI IVI IIIOGGIE | 5   | SCK         | 78   | SCK8R (P00_3)         | 103  | SCK7 (P18_6)          |
|                  | 6   | xSEL        | 81   | P00_6                 | 61   | P22_5                 |
| BTM module       | 3   | SDI         | 76   | SOT7R (P00_1)         | 93   | SOT4 (P19_1)          |
| D I W Module     | 4   | SDO         | 77   | SIN7R (P00_2)         | 92   | SIN4 (P19_0)          |
| Servo            |     | PWM         | 34   | PPG0 (P06_0)          | 64   | PPG8 (P16_0)          |
| Motor            |     | PWM         | 35   | PPG1 (P06_1)          | 65   | PPG9 (P16_1)          |
|                  | 8   | GND         | GND  | GND                   | GND  | GND                   |
|                  | 7   | Sensor 4    | 29   | AN15 (P05_7)          | 116  | AN6 (P29_6)           |
|                  | 6   | Sensor 3    | 28   | AN14 (P05_6)          | 115  | AN5 (P29_5)           |
| IR line          | 5   | Sensor 2    | 27   | AN13 (P05_5)          | 114  | AN4 (P29_4)           |
| sensor           | 4   | Sensor 1    | 26   | AN12 (P05_4)          | 113  | AN3 (P29_3)           |
|                  | 3   | Sensor 0    | 25   | AN11 (P05_3)          | 112  | AN2 (P29_2)           |
|                  | 2   | PPG/PWM     | 38   | PPG4 (P06_4)          | 70   | PPG14 (P16_6)         |
|                  | 1   | VCC         | VCC  | VCC                   | VCC  | VCC                   |

Table 1: Modules to MCU connections

#### Note:

See chapter 3.5.3 - SOTx -> INTx connections for further details.

<sup>&</sup>lt;sup>1</sup>: For the MB96F348HS the pins 59 and 61 have to be connected together and pin 53 has to be left unconnected! On JP4 no connection may be made to position '1'.

<sup>&</sup>lt;sup>2</sup>: For the MB91F467B pins 128 and 99 have to be connected together and pins 15 and 17 also! On JP4 no connection may be made to position '0' when a Bluetooth module is used.



# 3 Module description

In this chapter the different modules of the Student-Model-Car will be described.

# 3.1 Mechanic components

#### 3.1.1 Chassis

The chassis is a Tamiya TT-01 equipped with a Tamiya TSU-01 servo and a Tamiya TEU-101BK speed controller.



Figure 3: Schematic overview of chassis

#### 3.1.2 Mounting plate

The electronic components such as sensor modules and the starter kit are mounted on a wooden plate. For that purpose the panel is supplied with holes which contain T-nuts to screw the boards. Furthermore the panel has a foam border to reduce possible risks of damaged objects by collisions.

#### 3.2 Power supply

Power is supplied by a 6 cell / 7.2 V battery pack with Tamiya connector. It is then directly fed into the speed controller and supplied to the electronic boards through a power supply board. This board also generates a regulated 5 V output for the steering servo.





Figure 5: Power supply board pinout

The power supply board includes a 0.5 A fuse which protects the electronic boards and the servo. J1 is the power input from the battery, J2 the regulated 5 V output to the servo and J3 provides the battery voltage 3 times for the electronic boards.

Note: Minimum input voltage for the whole system to function properly is about 6.8 V.

## 3.3 Speed controller

The speed controller has five connections:

| Cable         | Description                                                              |
|---------------|--------------------------------------------------------------------------|
| Red / black   | Power supply input from battery                                          |
| Red / black   | Power switch connection                                                  |
| Red / black   | Provides the power for the receiver module (not available in this setup) |
| Red / black / | Control input                                                            |
| green         | Red: unconnected                                                         |
|               | Black: ground                                                            |
|               | Green: PWM signal                                                        |
| Orange / blue | Motor power output                                                       |

**Table 2: Speed controller connections** 

The PWM input signal has a period of 17.43 ms. Duty cycle for null value is about 1.53 ms, lower values down to 1.14 ms are for forward drive whereas higher values 1.86 ms are for backward drive.



**Table 3: Timings for speed controller** 



If a PWM signal for backward is send to the speed controller while driving in forward direction the speed controller makes the motor actively brake. Braking is not provided for backwards direction.

#### 3.3.1 Calibration

The speed controllers can have different settings for their null value and minimum / maximum. In order to get them behave the same with one software running on the microcontroller it is necessary to calibrate them to the same settings.

Note: Calibration is done on shipped cars. Only if a new speed controller is used calibration has to be done again.

Calibration of the steering servo can be achieved by the following procedure:

- 1. Power on the system
- 2. While the null value signal is applied to the steering servo press the SET button on the speed controller for at least 0.5 seconds. The controller will beep once and the LED should flash in a short interval.
- 3. Output the full forward signal and press the SET button. The speed controller will beep and the LED should flash twice in short intervals.
- 4. Output the full reverse signal and press the SET button again. The speed controller will beep and the LED will stop blinking.

#### 3.4 Steering servo

The servo is interfaced with a three wire cable. The red wire is for a 5 V to 6 V supply, black should be connected to ground and white is the PWM input signal. PWM period is 17.43 ms, duty cycle for neutral position is 1.53 ms. Maximum position to the right has a duty cycle of 1.81 ms, maximum to the left 1.24 ms.



Table 4: Timings for steering servo



#### 3.5 Microcontroller board

Different microcontrollers can be used to control the car. Currently software examples for the MB96F348HS and the MB91F467B are prepared. For those the starter kits SK-16FX-EUROSCOPE and SK-FR-144PMC-91467B respectively can be used. For further details on the starter kits or the microcontrollers used see the websites given in chapter 8.

# 3.5.1 SK-16FX-EUROSCOPE

|     | OK 101% EUKOUUUT E       |                 |                               |
|-----|--------------------------|-----------------|-------------------------------|
| Pin | Name                     | Used<br>Modules | d by<br>SK-16FX-<br>EUROSCOPE |
| 1   | P02 6/A22/IN2/TTG2/TTG10 |                 |                               |
| 2   | P02 7/A23/IN3/TTG3/TTG11 |                 |                               |
| 3   | P03 0/ALE/IN4/TTG4/TTG12 |                 |                               |
| 4   | P03_1/RDX/IN5/TTG5/TTG13 |                 |                               |
| 5   | P03_2/WRLX/WRX/INT10R    |                 |                               |
| 6   | P03_3/WRHX               |                 |                               |
| 7   | P03_4/HRQ/OUT4           |                 |                               |
| 8   | P03_5/HAKX/OUT5          |                 |                               |
| 9   | P03_6/RDY/OUT6           |                 |                               |
| 10  | P03_7/CLK/OUT7           |                 |                               |
| 11  | P04_0                    |                 |                               |
| 12  | P04_1                    |                 |                               |
| 13  | Vcc                      |                 | Vcc                           |
| 14  | Vss                      |                 | Ground                        |
| 15  | С                        |                 | C capacitors                  |
| 16  | P04_2/IN6/RX1/TTG6/TTG14 |                 |                               |
| 17  | P04_3/IN7/TX1/TTG7/TTG15 |                 |                               |
| 18  | P04_4/SDA0/FRCK0         |                 |                               |
| 19  | P05_5/SCL0/FRCK1         |                 |                               |
| 20  | P04_6/SDA1               |                 |                               |
| 21  | P04_7/SCL1               |                 |                               |
| 22  | P05_0/AN8/ALARM0/SIN2    | US front (SDO)  |                               |
| 23  | P05_1/AN9/ALARM1/SOT2    | US front (SDI)  |                               |
| 24  | P05_2/AN10/SCK2          |                 |                               |
| 25  | P05_3/AN11/TIN3          | Line sensor 0   |                               |
| 26  | P05_4/AN12/TOT3/TIN2R    | Line sensor 1   |                               |
| 27  | P05_5/AN13/INT0R/NMIR    | Line sensor 2   |                               |
| 28  | P05_6/AN14/INT4R         | Line sensor 3   |                               |
| 29  | P05_7/AN15/INT5R         | Line sensor 4   |                               |
| 30  | AVcc                     |                 | Vcc                           |
|     | AVRH                     |                 | Vcc                           |
| 32  | AVRL                     |                 | Ground                        |
| 33  | AVss                     |                 | Ground                        |
| 34  | P06_0/AN0/PPG0           | Servo           |                               |
| 35  | P06_1/AN1/PPG1           | Motor           |                               |
| 36  | P06_2/AN2/PPG2           | IR front (TX)   |                               |
| 37  | P06_3/AN3/PPG3           | IR back (TX)    |                               |
| 38  | P06_4/AN4/PPG4           | Line sensor PPG |                               |
| 39  | P06_5/AN5/PPG5           |                 |                               |
| 40  | P06_6/AN6/PPG6           |                 |                               |
| 41  | P06_7/AN7/PPG7           |                 |                               |



| Pin   | Nama                          | Lloos                 | l by               |
|-------|-------------------------------|-----------------------|--------------------|
| Pilli | Name                          | Used<br>Modules       | SK-16FX-           |
|       |                               | Modules               | EUROSCOPE          |
| 42    | Vss                           |                       | Ground             |
| 43    | P07 0/AN16/INT0/NMI           |                       | Button "INT0/NMI"  |
| 44    | P07_0/AN17/INT1               |                       | Button "INT1"      |
| 45    | P07_//AN18/INT2               |                       | DULLOIT IIVI I     |
| 46    | P07_2/AN19/INT3               |                       |                    |
| 47    | P07_3/AN19/INT3               |                       |                    |
| 48    | P07_4/AN20/INT4               |                       |                    |
| 49    | MD2                           |                       | Ground             |
| 50    | MD1                           |                       | Vcc                |
| 51    | MD0                           |                       |                    |
|       |                               |                       | Mode switch S1     |
| 52    | RSTX                          | D = == 4 = = == = 41* | Key button "Reset" |
| 53    | P07_6/AN22/INT6/SOT9R         | Do not connect!*      |                    |
| 54    | P07_7/AN23/INT7/SIN9R         | IR front (RX)         |                    |
| 55    | P08_0/TIN0/CKOTX0/ADTG/INT12R | IR front (Sel. A)     |                    |
| 56    | P08_1/TOT0/CKOT0/INT13R       | IR front (Sel. B)     |                    |
| 57    | P08_2/SIN0/TIN2/INT14R        |                       | UARTO (RXD)        |
| 58    | P08_3/SOT0/TOT2               |                       | UART0 (TXD)        |
| 59    | P08_4/SCK0/INT15R             | Jumper to pin 61*     |                    |
| 60    | P08_5/SIN1/INT1R              | IR back (RX)          | UART1 (RXD)        |
| 61    | P08_6/SOT1                    | Jumper to pin 59*     | UART1 (TXD)        |
| 62    | P08_7/SCK1                    |                       |                    |
| 63    | Vcc                           |                       | Vcc                |
| 64    | Vss                           |                       | Ground             |
| 65    | P09_0/PPG8/UBX                |                       | SEG1-A             |
| 66    | P09_1/PPG9/LBX                |                       | SEG1-B             |
| 67    | P09_2/PPG10/CS5               |                       | SEG1-C             |
| 68    | P09_3/PPG11/CS4               |                       | SEG1-D             |
| 69    | P09_4/OUT0/CS3                |                       | SEG1-E             |
| 70    | P09_5/OUT1/CS2                |                       | SEG1-F             |
| 71    | P09 6/OUT2/CS1                |                       | SEG1-G             |
| 72    | P09_7/OUT3/CS0                |                       | SEG1-DP            |
| 73    | P10 0/RX0/INT8R               |                       | CAN0 (RX)          |
| 74    |                               |                       | CAN0 (TX)          |
| 75    | P00 0/AD00/INT8/SCK7R         | BTM-222 (Reset)       | SEG2-A             |
| 76    | <del></del>                   | BTM-222 (SDI)         | SEG2-B             |
| 77    | P00 2/AD02/INT10/SIN7R        | BTM-222 (SDO)         | SEG2-C             |
| 78    |                               | RFM12 (SCK)           | SEG2-D             |
| 79    | P00 4/AD04/INT12/SOT8R        | RFM12 (SDI)           | SEG2-E             |
| 80    | P00 5/AD05/INT13/SIN8R        | RFM12 (SDO)           | SEG2-F             |
| 81    | P00 6/AD06/INT14              | RFM12 (SEL)           | SEG2-G             |
| 82    | P00 7/AD07/INT15              | (022)                 | SEG2-DP            |
| 83    | P01_0/AD08/CKOT1/TIN1         |                       | CLOL DI            |
| 84    | P01_0/AD00/CKOTX1/TOT1        |                       |                    |
| 85    | P01_//AD09/CR01X1/1011        | US back (SDO)         |                    |
| 86    | P01_2/AD10/INTTITUSINS        | US back (SDI)         |                    |
| 87    | P01_3/AD11/3O13               | OO DOOK (ODI)         |                    |
| 88    | Vcc                           |                       | Vcc                |
| 89    | Vss                           |                       | Ground             |
|       |                               |                       |                    |
| 90    | X1<br>X0                      |                       | 4 MHz crystal      |
| 91    | Λυ                            |                       | 4 MHz crystal      |

#### Student-Model-Car Chapter 3 Module description

| Pin | Name                          | Į                | Jsed by               |
|-----|-------------------------------|------------------|-----------------------|
|     |                               | Modules          | SK-16FX-<br>EUROSCOPE |
| 92  | P01_5/AD13/INT7R/SIN2R        |                  |                       |
| 93  | P01_6/AD14/SOT2R              |                  |                       |
| 94  | P01_7/AD15/SCK2R              |                  |                       |
| 95  | P02_0/A16/PPG12               | IR back (Sel. A) |                       |
| 96  | P02_1/A17/PPG13               | IR back (Sel. B) |                       |
| 97  | P02_2/A18/PPG14               |                  |                       |
| 98  | P02_3/A19/PPG15               |                  |                       |
| 99  | P02_4/A20/TTG8/IN0            |                  |                       |
| 100 | P02_5/A21/TTG9/TTG1/IN1/ADTGR |                  |                       |

Table 5: Pinout of MB96F348HS

For more information on the functions of the pins refer to the datasheet and hardware manual of the microcontroller.

## 3.5.2 SK-FR-144PMC-91467B

| Pin | Name                    | Use               | ed by               |
|-----|-------------------------|-------------------|---------------------|
|     |                         | Modules           | SK-FR-144PMC-91467B |
| 1   | VSS5                    |                   | Ground              |
| 2   | P27_6/AN22              |                   |                     |
| 3   | P27_7/AN23              |                   |                     |
| 4   | P26_0/AN24              |                   | SEG1-A              |
| 5   | P26_1/AN25              |                   | SEG1-B              |
| 6   | P26_2/AN26              |                   | SEG1-C              |
| 7   | P26_3/AN27              |                   | SEG1-D              |
| 8   | P26_4/AN28              |                   | SEG1-E              |
| 9   | P26_5/AN29              |                   | SEG1-F              |
| 10  | P26_6/AN30              |                   | SEG1-G              |
| 11  | P26_7/AN31              |                   | SEG1-DP             |
| 12  | P24_4/INT4              |                   |                     |
| 13  | P24_5/INT5              |                   |                     |
| 14  | P24_6/INT6              |                   |                     |
| 15  | P24_7/INT7              | Jumper to pin 17* |                     |
| 16  | P21_0/SIN0              | IR back (RX)      |                     |
| 17  | P21_1/SOT0              | Jumper to pin 15* |                     |
| 18  | VDD35                   |                   | VDD35               |
| 19  | VSS5                    |                   | Ground              |
| 20  | P14_4/ICU4/TIN4/TTG12/4 |                   |                     |
| 21  | P14_5/ICU5/TIN5/TTG13/5 |                   |                     |
| 22  | P14_6/ICU6/TIN6/TTG14/6 |                   |                     |
| 23  | P14_7/ICU7/TIN7/TTG15/7 |                   |                     |
| 24  | P15_4/OCU4/TOT4         |                   |                     |
| 25  | P15_5/OCU5/TOT5         |                   |                     |
| 26  | P15_6/OCU6/TOT6         |                   |                     |
| 27  | P15_7/OCU7/TOT7         |                   |                     |
| 28  | P17_0/PPG0              |                   | SEG2-A              |
| 29  | P17_1/PPG1              |                   | SEG2-B              |
| 30  | P17_2/PPG2              |                   | SEG2-C              |

<sup>\*:</sup> See chapter 3.5.3 - SOTx -> INTx connections



| Modules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pin | Name                |                 | Used by          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------|-----------------|------------------|
| 31   P17 3/PPG3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | rtamo               | Modules         |                  |
| 32 P17 4/PPG4   SEG2-E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31  | P17 3/PPG3          |                 |                  |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                     |                 |                  |
| 34   P17 6/PPG6   SEG2-G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33  | P17 5/PPG5          |                 |                  |
| 36   VDD35   VDD35   Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34  | P17 6/PPG6          |                 |                  |
| 37    VSS5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35  | P17 7/PPG7          |                 | SEG2-DP          |
| 38   P20   O/SIN2/AIN0   US front (SDO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36  | VDD35               |                 | VDD35            |
| 39   P20 1/SOT2/BIN0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37  | VSS5                |                 | Ground           |
| 39   P20 1/SOT2/BINO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38  | P20 0/SIN2/AIN0     | US front (SDO)  |                  |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39  | P20 1/SOT2/BIN0     |                 |                  |
| 42   P20_5/SOT3/BIN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40  | P20_2/SCK2/ZIN0/CK2 |                 |                  |
| 42   P20_5/SOT3/BIN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41  | P20_4/SIN3/AIN1     | US back (SDO)   |                  |
| Mathematical Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42  | P20_5/SOT3/BIN1     |                 |                  |
| 45   P24   1/INT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43  | P20_6/SCK3/ZIN1/CK3 | , ,             |                  |
| A6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44  | P24_0/INT0          |                 |                  |
| 47   P23   1/TX0   CAN0 (RX)     48   P23   2/RX1/INT9     49   P23   3/TX1     50   P23   4/RX2/INT10     51   P23   5/TX2     52   P23   6/RX3/INT11     53   P23   7/TX3     54   VDD5   VDD5     55   VSS5   Ground     56   P22   0/RX4/INT12   Key button 'SW2'     57   P22   1/TX4     58   P22   2/RX5/INT13   Key button 'SW3'     59   P22   3/TX5     60   P22   4/SDA0/INT14     61   P22   5/SCL0   RFM12 (SEL)     62   P22   6/SDA1/INT15     63   P22   7/SCL1     64   P16   0/PPG8   Servo     65   P16   1/PPG9   Motor     66   P16   2/PPG10   IR front (TX)     67   P16   3/PPG11   IR back (TX)     68   P16   4/PPG12/SGA     69   P16   5/PPG13/SGO     70   P16   6/PPG14   Line sensor PPG     71   P16   7/PPG15/ATGX     72   VDD5   VDD5     73   VSS5   Ground     74   MD   0   Ground     75   MD   1   Ground     76   MD   2   Ground     77   MONCLK     78   MD   3   Ground     79   X1   4   MHz crystal                                                                                                                                                                            | 45  | P24_1/INT1          |                 |                  |
| 48   P23   2/RX1/INT9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46  | P23_0/RX0/INT8      |                 | CAN0 (RX)        |
| 49   P23   3/TX1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47  | P23_1/TX0           |                 | CAN0 (RX)        |
| 50   P23 4/RX2/INT10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48  | P23_2/RX1/INT9      |                 |                  |
| 51   P23   5/TX2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49  | P23_3/TX1           |                 |                  |
| 52   P23 6/RX3/INT11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50  | P23_4/RX2/INT10     |                 |                  |
| 53   P23   T/TX3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51  | P23 5/TX2           |                 |                  |
| S4   VDD5   VSS5   Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52  | P23_6/RX3/INT11     |                 |                  |
| S5    VSS5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 53  | P23_7/TX3           |                 |                  |
| 56         P22_0/RX4/INT12         Key button 'SW2'           57         P22_1/TX4         Key button 'SW3'           58         P22_2/RX5/INT13         Key button 'SW3'           59         P22_3/TX5         Key button 'SW3'           60         P22_4/SDA0/INT14         P22_5/SCL0           61         P22_5/SCL0         RFM12 (SEL)           62         P22_6/SDA1/INT15         P22_7/SCL1           63         P22_7/SCL1         P22_7/SCL1           64         P16_0/PPG8         Servo           65         P16_1/PPG9         Motor           66         P16_2/PPG10         IR front (TX)           67         P16_3/PPG11         IR back (TX)           68         P16_4/PPG12/SGA         P16_5/PPG13/SGO           70         P16_6/PPG14         Line sensor PPG           71         P16_7/PPG15/ATGX         VDD5           73         VSS5         Ground           74         MD_0         Ground           75         MD_1         Ground           76         MD_2         Ground           77         MONCLK         Ground           78         MD_3         Ground           79         X1 | 54  | VDD5                |                 | VDD5             |
| 57         P22_1/TX4           58         P22_2/RX5/INT13         Key button 'SW3'           59         P22_3/TX5         60           60         P22_4/SDA0/INT14         61           61         P22_5/SCL0         RFM12 (SEL)           62         P22_6/SDA1/INT15         63           63         P22_7/SCL1         64           64         P16_0/PPG8         Servo           65         P16_1/PPG9         Motor           66         P16_2/PPG10         IR front (TX)           67         P16_3/PPG11         IR back (TX)           68         P16_4/PPG12/SGA         69           69         P16_5/PPG13/SGO         70           70         P16_6/PPG14         Line sensor PPG           71         P16_7/PPG15/ATGX         72           72         VDD5         VDD5           73         VSS5         Ground           74         MD_0         Ground           75         MD_1         Ground           76         MD_2         Ground           77         MONCLK         78           78         MD_3         Ground           79         X1         4 MHz crys                                       | 55  | VSS5                |                 | Ground           |
| 58         P22         2/RX5/INT13         Key button 'SW3'           59         P22         3/TX5           60         P22_4/SDA0/INT14         61           61         P22_5/SCL0         RFM12 (SEL)           62         P22_6/SDA1/INT15         63           63         P22_7/SCL1         64           64         P16_0/PPG8         Servo           65         P16_1/PPG9         Motor           66         P16_2/PPG10         IR front (TX)           67         P16_3/PPG11         IR back (TX)           68         P16_4/PPG12/SGA         F16_5/PPG13/SGO           70         P16_5/PPG14         Line sensor PPG           71         P16_7/PPG15/ATGX         72           72         VDD5         VDD5           73         VSS5         Ground           74         MD_0         Ground           75         MD_1         Ground           76         MD_2         Ground           77         MONCLK         Ground           78         MD_3         Ground           79         X1         4 MHz crystal                                                                                             | 56  | P22_0/RX4/INT12     |                 | Key button 'SW2' |
| 59         P22_3/TX5           60         P22_4/SDA0/INT14           61         P22_5/SCL0         RFM12 (SEL)           62         P22_6/SDA1/INT15           63         P22_7/SCL1           64         P16_0/PPG8         Servo           65         P16_1/PPG9         Motor           66         P16_2/PPG10         IR front (TX)           67         P16_3/PPG11         IR back (TX)           68         P16_4/PPG12/SGA           69         P16_5/PPG13/SGO           70         P16_6/PPG14         Line sensor PPG           71         P16_7/PPG15/ATGX         VDD5           73         VSS5         Ground           74         MD_0         Ground           75         MD_1         Ground           76         MD_2         Ground           77         MONCLK         Ground           78         MD_3         Ground           79         X1         4 MHz crystal                                                                                                                                                                                                                                    | 57  | P22_1/TX4           |                 |                  |
| 60         P22_4/SDA0/INT14           61         P22_5/SCL0         RFM12 (SEL)           62         P22_6/SDA1/INT15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58  | P22_2/RX5/INT13     |                 | Key button 'SW3' |
| 61         P22_5/SCL0         RFM12 (SEL)           62         P22_6/SDA1/INT15            63         P22_7/SCL1            64         P16_0/PPG8         Servo           65         P16_1/PPG9         Motor           66         P16_2/PPG10         IR front (TX)           67         P16_3/PPG11         IR back (TX)           68         P16_4/PPG12/SGA            69         P16_5/PPG13/SGO            70         P16_6/PPG14         Line sensor PPG           71         P16_7/PPG15/ATGX         VDD5           73         VSS5         Ground           74         MD_0         Ground           75         MD_1         Ground           76         MD_2         Ground           77         MONCLK         Ground           78         MD_3         Ground           79         X1         4 MHz crystal                                                                                                                                                                                                                                                                                                     | 59  | P22_3/TX5           |                 |                  |
| 62       P22_6/SDA1/INT15         63       P22_7/SCL1         64       P16_0/PPG8       Servo         65       P16_1/PPG9       Motor         66       P16_2/PPG10       IR front (TX)         67       P16_3/PPG11       IR back (TX)         68       P16_4/PPG12/SGA       IR back (TX)         69       P16_5/PPG13/SGO       VDD5         70       P16_6/PPG14       Line sensor PPG         71       P16_7/PPG15/ATGX       VDD5         73       VSS5       Ground         74       MD_0       Ground         75       MD_1       Ground         76       MD_2       Ground         77       MONCLK       Ground         78       MD_3       Ground         79       X1       4 MHz crystal                                                                                                                                                                                                                                                                                                                                                                                                                           | 60  | P22_4/SDA0/INT14    |                 |                  |
| 63         P22_7/SCL1           64         P16_0/PPG8         Servo           65         P16_1/PPG9         Motor           66         P16_2/PPG10         IR front (TX)           67         P16_3/PPG11         IR back (TX)           68         P16_4/PPG12/SGA         F16_5/PPG13/SGO           70         P16_6/PPG14         Line sensor PPG           71         P16_7/PPG15/ATGX         VDD5           73         VSS5         Ground           74         MD_0         Ground           75         MD_1         Ground           76         MD_2         Ground           77         MONCLK         Ground           78         MD_3         Ground           79         X1         4 MHz crystal                                                                                                                                                                                                                                                                                                                                                                                                                | 61  | P22_5/SCL0          | RFM12 (SEL)     |                  |
| 64         P16_0/PPG8         Servo           65         P16_1/PPG9         Motor           66         P16_2/PPG10         IR front (TX)           67         P16_3/PPG11         IR back (TX)           68         P16_4/PPG12/SGA         F16_5/PPG13/SGO           70         P16_6/PPG14         Line sensor PPG           71         P16_7/PPG15/ATGX         VDD5           73         VSS5         Ground           74         MD_0         Ground           75         MD_1         Ground           76         MD_2         Ground           77         MONCLK         Ground           78         MD_3         Ground           79         X1         4 MHz crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62  | P22_6/SDA1/INT15    |                 |                  |
| 65         P16_1/PPG9         Motor           66         P16_2/PPG10         IR front (TX)           67         P16_3/PPG11         IR back (TX)           68         P16_4/PPG12/SGA         IR back (TX)           69         P16_5/PPG13/SGO         IVD           70         P16_6/PPG14         Line sensor PPG           71         P16_7/PPG15/ATGX         VDD5           73         VSS5         Ground           74         MD_0         Ground           75         MD_1         Ground           76         MD_2         Ground           77         MONCLK         Ground           78         MD_3         Ground           79         X1         4 MHz crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63  | P22_7/SCL1          |                 |                  |
| 66         P16_2/PPG10         IR front (TX)           67         P16_3/PPG11         IR back (TX)           68         P16_4/PPG12/SGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64  | P16_0/PPG8          | Servo           |                  |
| 67         P16_3/PPG11         IR back (TX)           68         P16_4/PPG12/SGA         69           69         P16_5/PPG13/SGO         70           70         P16_6/PPG14         Line sensor PPG           71         P16_7/PPG15/ATGX         VDD5           72         VDD5         VDD5           73         VSS5         Ground           74         MD_0         Ground           75         MD_1         Ground           76         MD_2         Ground           77         MONCLK         Ground           78         MD_3         Ground           79         X1         4 MHz crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 65  | P16_1/PPG9          | Motor           |                  |
| 67         P16_3/PPG11         IR back (TX)           68         P16_4/PPG12/SGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66  | P16_2/PPG10         | IR front (TX)   |                  |
| 69       P16_5/PPG13/SGO         70       P16_6/PPG14         71       P16_7/PPG15/ATGX         72       VDD5         73       VSS5         74       MD_0         75       MD_1         76       MD_2         77       MONCLK         78       MD_3         79       X1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67  | P16_3/PPG11         | i               |                  |
| 70         P16_6/PPG14         Line sensor PPG           71         P16_7/PPG15/ATGX         VDD5           72         VDD5         VDD5           73         VSS5         Ground           74         MD_0         Ground           75         MD_1         Ground           76         MD_2         Ground           77         MONCLK         Ground           78         MD_3         Ground           79         X1         4 MHz crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 68  | P16_4/PPG12/SGA     |                 |                  |
| 71         P16_7/PPG15/ATGX           72         VDD5           73         VSS5           74         MD_0           75         MD_1           76         MD_2           77         MONCLK           78         MD_3           79         X1           4         MHz crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 69  | P16_5/PPG13/SGO     |                 |                  |
| 72         VDD5           73         VSS5         Ground           74         MD_0         Ground           75         MD_1         Ground           76         MD_2         Ground           77         MONCLK         Ground           78         MD_3         Ground           79         X1         4 MHz crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70  | _                   | Line sensor PPG |                  |
| 73         VSS5         Ground           74         MD_0         Ground           75         MD_1         Ground           76         MD_2         Ground           77         MONCLK         Ground           78         MD_3         Ground           79         X1         4 MHz crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71  | P16_7/PPG15/ATGX    |                 |                  |
| 74       MD_0       Ground         75       MD_1       Ground         76       MD_2       Ground         77       MONCLK       Ground         78       MD_3       Ground         79       X1       4 MHz crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72  | VDD5                |                 | VDD5             |
| 75         MD_1         Ground           76         MD_2         Ground           77         MONCLK         Ground           78         MD_3         Ground           79         X1         4 MHz crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 73  | VSS5                |                 | Ground           |
| 76         MD_2         Ground           77         MONCLK         Ground           78         MD_3         Ground           79         X1         4 MHz crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74  | MD_0                |                 | Ground           |
| 77         MONCLK           78         MD_3         Ground           79         X1         4 MHz crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75  | MD_1                |                 | Ground           |
| 78 MD_3         Ground           79 X1         4 MHz crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76  |                     |                 | Ground           |
| 79 X1 4 MHz crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77  | MONCLK              |                 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78  | MD_3                |                 | Ground           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79  | X1                  |                 | 4 MHz crystal    |
| 80   X0   4 MHz crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80  | X0                  |                 | 4 MHz crystal    |
| 81 VSS5 Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81  | VSS5                |                 |                  |

## Student-Model-Car Chapter 3 Module description

| Pin | Name                    |                   | Used by             |
|-----|-------------------------|-------------------|---------------------|
|     |                         | Modules           | SK-FR-144PMC-91467B |
| 82  | X0A                     |                   | Ground              |
| 83  | X1A                     |                   |                     |
| 84  | INITX                   |                   | Key button 'Reset'  |
| 85  | NMIX                    |                   | VDD5                |
| 86  | VSS5                    |                   | Ground              |
| 87  | VCC18C                  |                   | C23  C24            |
| 88  | VDD5R                   |                   | VDD5R               |
| 89  | VDD5R                   |                   | VDD5R               |
| 90  | VDD5                    |                   | VDD5                |
| 91  | VSS5                    |                   | Ground              |
| 92  | P19_0/SIN4              | BTM-222 (SDO)     | UART4 (RXD)         |
| 93  | P19_1/SOT4              | BTM-222 (SDI)     | UART4 (TXD)         |
| 94  | P19_2/SCK4/CK4          | BTM-222 (Reset)   |                     |
| 95  | P19_4/SIN5              |                   | UART5 (RXD)         |
| 96  | P19_5/SOT5              |                   | UART5 (TXD)         |
| 97  | P19_6/SCK5/CK5          |                   |                     |
| 98  | P18_0/SIN6              | IR front (RX)     |                     |
| 99  | P18_1/SOT6              | Cable to pin 128* |                     |
| 100 | P18_2/SCK6/CK6          |                   |                     |
| 101 | P18_4/SIN7              | RFM12 (SDO)       |                     |
| 102 | P18_5/SOT7              | RFM12 (SDI)       |                     |
| 103 | P18_6/SCK7/CK7          | RFM12 (SCK)       |                     |
| 104 | ALARM_0                 |                   |                     |
| 105 | AVSS                    |                   | Ground              |
| 106 | AVRH5                   |                   | VDD5                |
| 107 | AVCC5                   |                   | VDD5                |
| 108 | VDD5                    |                   | VDD5                |
| 109 | VSS5                    |                   | Ground              |
| 110 | P29_0/AN0               | IR front (Sel. A) |                     |
| 111 | P29_1/AN1               | IR front (Sel. B) |                     |
| 112 | P29_2/AN2               | Line sensor 0     |                     |
| 113 | P29_3/AN3               | Line sensor 1     |                     |
| 114 | P29_4/AN4               | Line sensor 2     |                     |
| 115 | P29_5/AN5               | Line sensor 3     |                     |
| 116 | P29_6/AN6               | Line sensor 4     |                     |
| 117 | P29_7/AN7               | ID 1 (0 1 1)      |                     |
| 118 | P28_0/AN8               | IR back (Sel. A)  |                     |
| 119 | P28_1/AN9               | IR back (Sel. B)  |                     |
| 120 | P28_2/AN10              |                   |                     |
| 121 | P28_3/AN11              |                   |                     |
| 122 | P28_4/AN12              |                   |                     |
| 123 | P28_5/AN13              |                   |                     |
| 124 | P28_6/AN14              |                   |                     |
| 125 | P28_7/AN15              |                   | 1/005               |
| 126 | VDD5                    |                   | VDD5                |
| 127 | VSS5                    | 0.11.4.1.00*      | Ground              |
| 128 | P24_2/INT2              | Cable to pin 99*  |                     |
| 129 | P24_3/INT3              |                   |                     |
| 130 | P14_0/ICU0/TIN0/TTG8/0  |                   |                     |
| 131 | P14_1/ICU1/TIN1/TTG9/1  |                   |                     |
| 132 | P14_2/ICU2/TIN2/TTG10/2 |                   |                     |



| Pin | Name                    | Use     | ed by               |
|-----|-------------------------|---------|---------------------|
|     |                         | Modules | SK-FR-144PMC-91467B |
| 133 | P14_3/ICU3/TIN3/TTG11/3 |         |                     |
| 134 | P15_0/OCU0/TOT0         |         |                     |
| 135 | P15_1/OCU1/TOT1         |         |                     |
| 136 | P15_2/OCU2/TOT2         |         |                     |
| 137 | P15_3/OCU3/TOT3         |         |                     |
| 138 | P27_0/AN16              |         |                     |
| 139 | P27_1/AN17              |         |                     |
| 140 | P27_2/AN18              |         |                     |
| 141 | P27_3/AN19              |         |                     |
| 142 | P27_4/AN20              |         |                     |
| 143 | P27_5/AN21              |         |                     |
| 144 | VDD35                   |         | VDD35               |

Table 6: Pinout of MB91F467B

For more information on the functions of the pins refer to the datasheet and hardware manual of the microcontroller.

#### 3.5.3 SOTx -> INTx connections

In the default setup the signal for infrared transmission is generated by the USART. Since the infrared detector requires a carrier frequency of 36 kHz with a data signal modulated at an at least 10 times lower frequency the USART only generates the data output. This data is fed into an interrupt pin which enables or disables a 36 kHz PPG output depending on the state of the USART output value. Therefore the SOTx pins used for infrared have to be connected to external interrupt pins.



<sup>1:</sup> Interrupt caused by SOT falling edge starts PPG output

**Note:** The signal output by the IR receiver has a time offset related to the PPG output because the receiver has to detect a few 36 kHz pulses before it recognizes the signal.

Table 7: IR communication outline

<sup>\*:</sup> See chapter 3.5.3 - SOTx -> INTx connections

<sup>2:</sup> Interrupt caused by SOT rising edge disables PPG output

<sup>&</sup>lt;sup>3</sup>: IR receiver detects 36 kHz carrier and sets its output low

<sup>&</sup>lt;sup>4</sup>: No carrier detected by the IR receiver makes its output go high



#### 3.6 ADA-US-IR-RFM-BT

This is the main peripheral module on the Student-Model-Car. It is built of five independent sub-boards which can be split up into single PCBs:

- ADA-INFRARED (ADA-IR1 / ADA-IR3)
- ADA-RFM12
- SK-95F284-US-IR
- ADA-BT



Figure 6: Outline of ADA-US-IR-RFM-BT

It features an ultrasonic distance measurement unit based on a MaxBotix MaxSonar-UT ultrasonic transducer and an analogue amplification circuitry. Conversion and evaluation of the data is handled by an 8 bit microcontroller MB95F284KPF which also allows access to four general purpose inputs / outputs. Two of those GPIOs have LEDs connected.

Furthermore this board has three ADA-INFRARED units which are connected to a multiplexer. The fourth ADA-INFRARED unit from the side of the car can be connected to the multiplexer by a four wire ribbon cable.

Power for this board is regulated by an adjustable linear voltage regulator LT1763 which has a very low dropout voltage of about 300 mV, overcurrent and overtemperature protection. The supply of the board is protected against short circuits by a self-resetting fuse.



Figure 7: Relationship of modules on ADA-US-IR-RFM-BT

#### 3.6.1 Primary interface connector (J1)

The primary interface to the microcontroller is J1 which connects to the multiplexer for the infrared units and the ultrasonic module.

| Pin | Name | Description          |  |
|-----|------|----------------------|--|
| 1   | VIN  | Battery power supply |  |



| Pin | Name   | Description                               |
|-----|--------|-------------------------------------------|
| 2   | GND    | Ground                                    |
| 3   | IR_A   | Infrared multiplexer channel select A     |
| 4   | IR_B   | Infrared multiplexer channel select B     |
| 5   | IR_RX  | Infrared receiver output of multiplexer   |
| 6   | IR_TX  | Infrared transmitter input to multiplexer |
| 7   | US_SIN | Ultrasonic MCU serial data input pin      |
| 8   | US_SOT | Ultrasonic MCU serial data output pin     |
| 9   | US_PG1 | Ultrasonic MCU GPIO pin PG1               |
| 10  | US_PG2 | Ultrasonic MCU GPIO pin PG2               |
| 11  | US_P01 | Ultrasonic MCU GPIO pin P01               |
| 12  | US_P02 | Ultrasonic MCU GPIO pin P02               |
| 13  |        | Not connected                             |
| 14  |        | Not connected                             |

Table 8: J1 - Main interface connector of ADA-US-IR-RFM-BT

The voltage on the VIN pin should not exceed 10 V as the power dissipation could damage the regulator. Minimum operating voltage depends on the target board voltage level selected by JP1.

# 3.6.2 Power level select (JP1)

| Jumper | Setting | Description             | Starter kit                                                    |
|--------|---------|-------------------------|----------------------------------------------------------------|
| JP1    | Open    | Board operates at 5 V   | SK-16FX-EUROSCOPE: JP10: 1-2<br>SK-FR-144PMC-91467B: JP10: 1-2 |
| JFI    | Closed  | Board operates at 3.3 V | SK-16FX-EUROSCOPE: JP10: 2-3<br>SK-FR-144PMC-91467B: JP10: 2-3 |

Table 9: JP1 board voltage selection

Note: The selected voltage has to be the same as for the microcontroller! See 3.2 - Power supply.

#### 3.6.3 Power supply state LED (LD1)

LD1 (yellow) is lit when the board is powered up.

#### 3.6.4 Side infrared module connector (J2)

Connector J2 is used to connect the standalone ADA-INFRARED module of the side of the car. Its pinout is the same as J1 of ADA-INFRARED.

#### 3.6.5 Stacked PCB connectors (J6, J7, J8)

Connectors J6, J7 and J8 can be used to supply power to a stacked PCB on top of this PCB.

| Pin  | Name | Description                                                 |
|------|------|-------------------------------------------------------------|
| 1, 2 | VBAT | Protected (self resetting fuse, diode) battery power supply |
| 3, 4 | VCC  | 5 V / 3.3 V regulated power                                 |
| 5, 6 | GND  | Ground                                                      |

Table 10: J6, J7, J8 connectors for stacked PCB

Note: Maximum current from one ADA-US-IR-RFM-BT modules' VCC line may not exceed 200 mA. Current taken from VBAT pins may not exceed 400 mA.



#### 3.6.6 SK-95F284-US-IR

The infrared module on this board (IR2) is connected to the *Infrared channel multiplexer*. Also refer to chapter 3.7 - ADA-INFRARED for details on the signals.

The ultrasonic module is interfaced through pins 7 to 12 on J1. Control of the microcontroller operation is sent over an USART channel. The default firmware provides a command based control interface which is described in 5.1 - Interface. The four GPIO pins can be used to exchange status information from the ultrasonic controller to the main microcontroller. Furthermore the LEDs LD2 (green) and LD3 (red) are connected to the ultrasonic microcontroller pins PG1 and PG2 and can be controlled through the USART command interface.

Connector X1 provides the interface for the external programmer/debugger unit MB2146-08-E. To program the flash or debug the application first connect the debugger to X1, connect the debugger to the USB port of the PC and finally power up the microcontroller on this module.

#### 3.6.7 Infrared channel multiplexer

In order to save resources on the microcontroller all three infrared units of one main sensor module and one side module are connected to one USART channel on the microcontroller through the multiplexer. The channel select pins and the infrared data interface pins can be found on J1 pins 3 to 6. Pins A and B select the channel where BA can be handled as a 2 bit number indicating the selected IR module.

| B (JP1_4) | A (JP1_3) | IR module         |
|-----------|-----------|-------------------|
| 0         | 0         | 0 – Side module   |
| 0         | 1         | 1 – Right module  |
| 1         | 0         | 2 – Middle module |
| 1         | 1         | 3 – Left module   |

Table 11: IR multiplexer channel selection

#### 3.6.8 ADA-IR1 & ADA-IR3

These modules are functionally the same as the standalone ADA-INFRARED module. The optionally mounted I1J1 / I3J1 can be used to connect these modules to the multiplexer if the board is split into its individual sub-boards. In that case I1J1 has to be connected to J3 and I3J1 to J4. Those connectors have the same pinout as J1 of ADA-INFRARED.

Refer to 3.6.7 - Infrared channel multiplexer for details on how to interface these modules and chapter 3.7 - ADA-INFRARED for further details on the signals.

#### 3.6.9 ADA-RFM12

If a RFM12 wireless module is mounted it can be interfaced with SPI on J9:

| Pin | Name | Description                    |
|-----|------|--------------------------------|
| 1   | VCC  | Power supply                   |
| 2   | GND  | Ground                         |
| 3   | SDI  | Serial data input to RFM12     |
| 4   | SDO  | Serial data output from RFM12  |
| 5   | SCK  | Serial clock input to RFM12    |
| 6   | xSEL | Chip select input (low active) |
| 7   | xIRQ | Interrupt output (low active)  |
| 8   | xRES | Reset input (low active)       |



| Pin | Name | Description   |
|-----|------|---------------|
| 9   |      | Not connected |
| 10  |      | Not connected |

Table 12: J9 - RFM12 connector

Additional signals of the RFM12 module are provided on test points. For more details on those signals see the RFM12 manual.

|   | Pin | Name           | Description                                                  |
|---|-----|----------------|--------------------------------------------------------------|
|   | J12 | DCLK/CFIL/FFIT | Clock output / external filter capacitor for analogue mode / |
|   |     |                | FIFO interrupts                                              |
|   | J13 | CLK            | Clock output                                                 |
| ſ | J14 | xINT/VDI       | Interrupt input / Valid data indicator                       |
| F | J10 | ANT            | Antenna output. A 8.6 cm (λ/4) antenna should be connected   |

Table 13: RFM12 test points

#### 3.6.10 ADA-BT

The Bluetooth module operates at 3.3 V. Because of this a 3.3 V regulator for the Bluetooth module is required if the board operates at 5 V. JP2 selects whether the board voltage is directly used or the 3.3 V regulator for the Bluetooth module is used.

| Jumper | Setting | Description             |
|--------|---------|-------------------------|
| JP2    | 1-2     | Board operates at 5 V   |
| JFZ    | 2-3     | Board operates at 3.3 V |

Table 14: JP2 - Source voltage selection for Bluetooth

The interface of the Bluetooth module is a normal UART protocol, control of the reset signal is optional.

| Pin | Name | Description                     |
|-----|------|---------------------------------|
| 1   | VCC  | Power supply                    |
| 2   | GND  | Ground                          |
| 3   | SDI  | Serial data input to BTM-222    |
| 4   | SDO  | Serial data output from BTM-222 |
| 5   |      | Not connected                   |
| 6   |      | Not connected                   |
| 7   |      | Not connected                   |
| 8   | xRES | Reset input (low active)        |
| 9   |      | Not connected                   |
| 10  |      | Not connected                   |

Table 15: J5 - Bluetooth connector

LD4 signals incoming data over an active Bluetooth connection.

Antenna connection is provided through a test point:

| Pin | Name | Description                                                          |
|-----|------|----------------------------------------------------------------------|
| J11 | ANT  | Antenna output. A 3.1 cm ( $\lambda$ /4) antenna should be connected |

Table 16: BTM-222 Test points

#### 3.7 ADA-INFRARED

This board allows infrared object detection and short range infrared communications. It can be interfaced directly although in the normal setup it is connected to multiplexer of the main sensor module to save microcontroller resources. The data is modulated on a 36 kHz carrier

#### Student-Model-Car Chapter 3 Module description

frequency and output to an infrared LED. Signal reception is done with a SFH5110 with integrated demodulator. The output signal of the receiver is fed into a low-pass filter with a cut-off frequency of approximately 10.5 kHz.

Note: The infrared receiver on these modules requires an operating voltage of 5 V.

The interface of this module is provided through the header J1.



| Pin | Name | Description        |  |
|-----|------|--------------------|--|
| 1   | VCC  | Power supply (5 V) |  |
| 2   | GND  | Ground             |  |
| 3   | RX   | Receiver output    |  |
| 4   | TX   | ransmitter input   |  |
| 5   |      | Not connected      |  |
| 6   |      | Not connected      |  |

Table 17: J1 - ADA-INFRARED connector

The receiver is designed for 36 kHz infrared signals; length of one burst should be at least 10 cycles for the receiver to detect the transmitted signal. The infrared LED is driven active high whereas the receiver outputs a low signal when it detects a 36 kHz infrared signal.

See chapter 3.5.3 - SOTx -> INTx connections for an overview of the signal relations.

#### 3.8 ADA-IR-LINE-SENSOR

#### 3.8.1 Installation instruction

The IR line sensor has to be mounted under the front bumper. Therefore the mounting plate needs to be removed:

- 1. Remove the screws
- 2. Remove the ADA-US-IR-RFM-BT modules on both sides
- 3. Remove the brackets under the ADA-US-IR-RFM-BT modules
- 4. Remove the mounting plate carefully because connections cables are still attached (note: cables don't have to be removed)
- 5. Remove the screws of the front bumper and the front bumper
- 6. Cut out a rectangle (24mm x 8mm) of the bumper for the connectors (see figure 8)
- 7. Install the IR line sensor (figure 8)
- 8. Reassemble the car





Figure 8: Installation instruction of IR line sensor

The front bumper of the student car should look like this:



Figure 9: IR line sensor attachment



#### 3.8.2 Features and usage

The IR line sensor is able to detect the location of a line below the sensors. The line should have a width of about 1.0 - 1.5 cm. The line also should be very bright if one uses a dark underground or vice versa.

#### Example:



Figure 10: Example: line detection

All sensor ADC values during the test conditions (wooden desk) added up to about 700 of 1024 maximum. By planting a white line below one of the sensors the sensor value drop to about 20.

If the sensor values have big differences in their range caused of part variances the potentiometers in front of the sensors can be used in order to adjust the output values so that all five sensors nearly have the same level.

The PPG / PWM functionality can be used in order to realize a power management by adjusting the duty cycle of the PPG signal.



# 3.8.3 Pin description



Figure 11: ADA-IR-LINE-SENSOR

1 2 3 4 5 6 7 8

| Pin | Name     | Description                                           |
|-----|----------|-------------------------------------------------------|
| 1   | VCC      | Power supply (VCC)                                    |
| 2   | PPG/PWM  | Programmable Pulse Generator / Pulse Width Modulation |
|     |          | (Power management)                                    |
| 3   | Sensor 0 | Sensor output                                         |
| 4   | Sensor 1 | Sensor output                                         |
| 5   | Sensor 2 | Sensor output                                         |
| 6   | Sensor 3 | Sensor output                                         |
| 7   | Sensor 4 | Sensor output                                         |
| 8   | GND      | Ground (GND)                                          |

**Table 18: ADA-IR-LINE-SENSOR connector** 

Use ADC channels to readout sensor values.

Use a PPG channel for a PPG / PWM signal (power management) or VCC for permanent current supply.



# 4 Getting started

This chapter will describe how to download and use the test software for the Student-Model-Car.

# 4.1 Installing the USB driver

The first time the starter kit on the Student-Model-Car is connected to a Windows PC through USB the driver for the USB to serial converter has to be installed.

- 1. Connect the starter kit with an USB A to USB B cable
- 2. Windows will pop up a new hardware wizard. Do not connect to Windows Update.



3. In the next dialog select "Install from a list or specific location (Advanced)".



4. Select "Search for the best driver in these locations", uncheck "Search removable media (floppy, CD-ROM...)" and select "Include this location in the search". Then browse to the directory with the drivers for the starter kit.





5. When asked if the installation should be continued even though the drivers have not passed Windows Logo testing select "Continue Anyway".



6. Press finish when the installation of the driver is complete.

Windows will now show a second driver installation dialog for an "USB Serial Port". Repeat the instructions for this device.

Note: Always use the same USB port with the same starter kit. Otherwise Windows will ask for another driver installation and will assign a different COM port number.

#### 4.2 Downloading the firmware to flash

Depending on the microcontroller series respectively the starter kit used a different programming software is provided by Fujitsu.

- 4.2.1 MB96340 series / SK-16FX-EUROSCOPE
  - 1. Start the Fujitsu Flash MCU Programmer for 16FX.
  - 2. Select the MB96F348C/H/T target microcontroller and 4 MHz crystal frequency. Also select the firmware hex file.



3. Open the settings by clicking on "Set Environment" and select the COM port the starter kit is connected to.





- 4. On the starter kit select the programming mode by setting the switch S1 to "PROG".
- 5. Start the flash download operation by clicking on "Full operation(D+E+B+P)". When asked to press the reset button on the starter kit and click OK in the flash programmer.



6. When everything went fine you will get the following message:



7. Select the run mode on the starter kit by setting S1 to "RUN" and reset the microcontroller to start the application.

#### 4.2.2 MB91460 series / SK-FR-144PMC-91467B

- 1. Start the Fujitsu FME FR-Flash Programmer.
- 2. Set the COM port number to the virtual COM port of the starter kit, the programming baud rate to 115200 and select the MB91F467B device. Also select the firmware hex file in the automatic tab.





3. Start the automatic mode.



4. Reset the microcontroller by pressing the blue button on the starter kit. Flash downloading will start.



5. If everything went fine the dialog should look like this:



6. Press reset on the starter kit to start the application.

# 4.3 Usage of the test program

- Connect the interface port of the starter kit to the PC
   Depending on the starter kit the terminal interface of the test program is on different ports:
  - a. SK-16FX-EUROSCOPE: USB (X5)
  - b. SK-FR-144PMC-91467B: RS232 (X4)
- 2. Open SK Wizard
- Select the COM port the starter kit is connected to and set the baud rate to 115200 Baud





4. Open the port and reset the microcontroller



5. Select a test from the list by pressing its number. Further instructions will be given in the test routines.

#### The provided tests cover:

- 1. Motor control:
  - Tests the operation of the motor module by sending appropriate PPG signals to the speed controller for forward driving, braking and backward driving.
- 2. Servo control:
  - Sends PPG signals to the servo to move from maximum left position to maximum right position.
- 3. Infrared modules:
  - Displays the state of infrared object detection for each sensor module.
- 4. Ultrasonic modules:
  - Displays distances to detected objects, send calibration command and make the LEDs of the ultrasonic modules blink.
- 5. RFM12 wireless module:
  - Send and receive messages over wireless communication.
- 6. USART control mode:
  - In this mode the motor and servo operation can be controlled manually by sending different characters.



# 5 Ultrasonic module software

The preprogrammed firmware on the ultrasonic module samples the echo of the ultrasonic transmission and provides an evaluated output of that data which gives the distance to a detected object. Communication is done via a USART interface.



Figure 12: Flowchart of ultrasonic module firmware

The measurement routine first sends 13 ultrasonic bursts. Then it converts 8 samples of the returned signal which are averaged in each of 250 timeslots. From the averaged value the stored calibration value is subtracted. The timeslots are 128 µs each which results in about 2 cm of additional distance per timeslot until a peak is detected.





Figure 13: Ultrasonic measurement process

# 5.1 Interface protocol

The firmware features a small command protocol to control the behavior of the ultrasonic module. Data sent from the module is fit into packages. Each package is prefixed with a 0 value byte whereas no other 0 value will be in the data bytes of the package. The second byte in a package determines the type of the package.

| Byte 0 | Byte 1          | Byte 2n                                   |
|--------|-----------------|-------------------------------------------|
| 0x00   | Type of package | Data; length depending on type of package |

Table 19: Ultrasonic module package structure

The following types of packages are defined and will be described in the following chapters:

| Type value | Data length n | Description                          |  |
|------------|---------------|--------------------------------------|--|
| 0x01       | 250           | Raw sample data                      |  |
| 0x02       | 3             | Evaluated measurement values         |  |
| 0x03       | 1             | Reply to command                     |  |
| 0x04       | 1             | Calibration saved or unknown command |  |

Table 20: Ultrasonic module package types



#### 5.1.1 Raw sample data

This package is sent during each measurement run if the raw data mode is enabled (see 5.2.1 - Raw data mode). It represents the averaged sample values of the analog to digital converter per timeslot. Each of the bytes is one average value.

| Byte 0 | Byte 1 | Byte 2251                 |  |
|--------|--------|---------------------------|--|
| 0x00   | 0x01   | Averaged AD sample values |  |

The first value is for timeslot 0 which starts at about 581 us. The value for timeslot 0 is always 1.

#### 5.1.2 Evaluated measurement values

This package is sent after each measurement run if raw mode is disabled. It contains the timeslot index and the distance in cm where an object was detected.

| Byte 0 | Byte 1 | Byte 2            | Byte 3                   | Byte 4                   |
|--------|--------|-------------------|--------------------------|--------------------------|
| 0x00   | 0x02   | Index of timeslot | Upper 7 bits of distance | Lower 7 bits of distance |

The bytes for the distance in cm are OR'ed with 0x80 and the lower 7 bits of each byte contain the actual value. Thus the distance in cm can be taken from bytes 3 and 4 by:

Distance [cm] = ((Byte3 and 0x7f) << 7) or (Byte4 and 0x7f)

#### 5.1.3 Reply to command

If a command was received and could be handled correctly an reply will be generated. This reply contains the original command. If the command was a read command the value fields will be filled by the current internal values of the running software.

| Byte 0 | Byte 1 | Byte 2          |
|--------|--------|-----------------|
| 0x00   | 0x03   | Handled command |

#### 5.1.4 Calibration saved or unknown command

When a calibrate command was received and calibration is done or when an unknown command was received this package will be sent.

| Byte 0 | Byte 1 | Byte 2                  |
|--------|--------|-------------------------|
| 0x00   | 0x04   | 0x10 – Calibration done |
|        |        | 0x11 – Unknown command  |

#### 5.2 Commands

Commands are single bytes sent to the ultrasonic module. Since only one command is handled after each measurement run only one command may be sent until the reply is received. Alternatively a wait time may be used to make sure that the command has been processed.

Commands have the following format:

| Bit 74         | Bit 3                | Bit 20     |
|----------------|----------------------|------------|
| Parameter data | Read (0) / Write (1) | Command id |

Table 21: Structure of ultrasonic commands



The commands defined are as following:

| Command id | Description                                      | Remarks    |
|------------|--------------------------------------------------|------------|
| 0          | Raw data mode                                    |            |
| 1          | Pause between measurement runs in units of 50 ms |            |
| 2          | Calibrate to current measurement values          | Write only |
| 3          | Clear calibration                                | Write only |
| 4          | Pin data (PDR register)                          |            |
| 5          | Pin configuration (DDR and PUL registers)        |            |
| 6          | Reserved                                         |            |
| 7          | Reserved                                         |            |

**Table 22: Ultrasonic commands** 

## 5.2.1 Raw data mode

This command allows selection of raw data mode or evaluated data mode.

| Bit |   |   |      |     |   |   |   |
|-----|---|---|------|-----|---|---|---|
| 7   | 6 | 5 | 4    | 3   | 2 | 1 | 0 |
| 1   | - | - | Mode | R/W | 0 | 0 | 0 |

| Mode bit | Mode description    |
|----------|---------------------|
| 0        | Evaluated data mode |
| 1        | Raw data mode       |

#### 5.2.2 Pause

A pause between each measurement run can be set from 0 to 750 ms.



Default value is 0 ms delay.

## 5.2.3 Calibrate

Stores the current measurement values as calibration data in the Flash of the 8 bit controller. These values are subtracted from the measured values in measurements after this command has finished.



When calibration has finished a "calibration saved" package (see 5.1.4) is sent by the ultrasonic module.

Note: Calibration should be issued while the ultrasonic transducers are directed at an empty room so a good null measurement value can be taken.

## Student-Model-Car Chapter 5 Ultrasonic module software

## 5.2.4 Clear calibration

This command clears stored calibration data setting every value to 0. This way the sampled data can be received in an unaltered way in raw data mode.

| ı | Bit |   |   |   |   |   |   |   |
|---|-----|---|---|---|---|---|---|---|
| ı | 7   | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Ī | 0   | 1 | 1 | 0 | 1 | 0 | 1 | 1 |

Note: After this command was issued evaluated data mode will not return useful data.

#### 5.2.5 Pin data

This command is used to write to or read from the PDR registers of the unused IO pins of the microcontroller.

| Bit |       |      |      |     |   |    |   |
|-----|-------|------|------|-----|---|----|---|
| 7   | 6     | 5    | 4    | 3   | 2 | _1 | 0 |
| -   | Value | Pin1 | Pin0 | R/W | 1 | 0  | 0 |

| Pin10 bits | Pin |
|------------|-----|
| 00         | PG1 |
| 01         | PG2 |
| 10         | P01 |
| 11         | P02 |

## 5.2.6 Pin configuration

With this command the DDR (data direction) and PUL (pull-up enable) registers can be accessed.

| Bit      |       |      |      |     |   |   |   |
|----------|-------|------|------|-----|---|---|---|
| 7        | 6     | 5    | 4    | 3   | 2 | 1 | 0 |
| Register | Value | Pin1 | Pin0 | R/W | 1 | 0 | 1 |

Pin1..0 are the same values as for the pin data command.

| Register bit | Register |
|--------------|----------|
| 0            | DDR      |
| 1            | PUL      |

| Value bit | DDR register meaning | PUL register meaning |
|-----------|----------------------|----------------------|
| 0         | Input pin            | Pull-up disabled     |
| 1         | Output pin           | Pull-up enabled      |

## 5.2.7 Reserved IDs

These two command ids are reserved for future extensions.

| Bit |   |   |   |   |   |   |   |
|-----|---|---|---|---|---|---|---|
| 7   | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| -   | - | - | - | - | 1 | 1 | 0 |
| -   | - | - | - | - | 1 | 1 | 1 |



## 6 Main microcontroller unit software

This chapter will give an overview on the provided libraries with the test software.

The following software modules are provided with the test software:

- Bluetooth module (btm.h)
- Motor and servo control (drive.h)
- Infrared (ir.h)
- RFM12 (rfm12.h)
- Real time clock (rtc.h)
- Seven segment display (seg.h)
- Systick (systick.h)
- Ultrasonic module (us.h)
- USART communication (usart.h)
- Utility routines (util.h)

The line sensor has its own test software. It is described at the end of this chapter.

## 6.1 Microcontroller resources used by the test software

| MCU resource  | Module                       | Pins                |
|---------------|------------------------------|---------------------|
|               | Infrared front (multiplexer) | P08_0, P08_1        |
|               | Infrared back (multiplexer)  | P02_0, P02_1        |
|               | RFM12                        | P00_6               |
|               | Seven segment display        | P09                 |
| INT 15        | Infrared back                | P08_4               |
| PPG 0         | Servo control                | P06_0               |
| PPG 1         | Motor control                | P06_1               |
| PPG 2         | Infrared front               | P06_2               |
| PPG 3         | Infrared back                | P06_3               |
| RLT 1         | Systick                      |                     |
| RLT 3         | Wait routines                |                     |
| RTC           | RTC                          |                     |
| UART 0        | USART                        | P08_2, P08_3        |
| UART 1        | Infrared back                | P08_5, P08_6        |
| UART 2        | Ultrasonic front             | P05_0, P05_1        |
| UART 3        | Ultrasonic back              | P01_2, P01_3        |
| UART 7        | Bluetooth                    | P00_1, P00_2        |
| UART 8        | RFM12                        | P00_3, P00_4, P00_5 |
| UART 9, INT 6 | Infrared front               | P07_6, P07_7        |

**Table 23: Used MCU resources** 

## 6.2 Data types

## 6.2.1 Integer types – [u]int(n) t

Generic integer types are defined as [u]int(n)\_t where (n) is the number of bits and the optional u makes the type unsigned. Bit widths are defined for 8, 16 and 32 bits.

## 6.2.2 Boolean - boolean t

A boolean type is defined as boolean\_t. Values for false and true are defined as symbols FALSE and TRUE.

## 6.2.3 Characters and strings - char t

Characters are defined as char\_t, strings as a pointer to a character (\*char\_t).

## 6.2.4 Generic result status – en\_result\_t

Enumeration which represents the status of the execution of a method. This enumeration has the following values:

| Value                        | Description                                        |
|------------------------------|----------------------------------------------------|
| Ok (0)                       | Method finished successfully                       |
| Error (1)                    | Unspecified error occurred                         |
| ErrorInvalidParameter (4)    | One or more parameters passed were incorrect       |
| ErrorOperationInProgress (5) | Another conflicting operation is currently running |

## 6.2.5 Function pointers - func\_ptr\_t

Pointer to functions for callback functions of the type void func(void).

### 6.3 Bluetooth module / USART communication

Since Bluetooth communication operates via a standard USART module there is no difference between the USART and the Bluetooth module API.

## 6.3.1 Initialization – Btm\_Init / Usart Init

Initializes the USART. Call once after application start-up.

void Btm\_Init(void)

void Usart Init(void)

Parameters for the USARTs are:

| Parameter    | Value        |
|--------------|--------------|
| Baudrate     | 115200 bit/s |
| Frame length | 8 bit        |
| Parity       | None         |
| Stop bits    | 1            |



## 6.3.2 Receive byte – Btm\_GetByte / Usart\_GetByte

Try to get a single byte from USART. Can be used in blocking mode (method waits until a byte is received) or non-blocking mode (method returns instantly even if no byte was received).

```
en_result_t Btm_GetByte(boolean_t noBlock, uint8_t *data)
en_result_t Usart_GetByte(boolean_t noBlock, uint8_t *data)
```

#### Parameters:

- noBlock: Specifies if the function should be blocking (FALSE) or non-blocking (TRUE)
- data: Pointer to an buffer where the received byte will be stored

#### Return value:

Ok if a byte was successfully received, Error otherwise.

## 6.3.3 Send byte - Btm SendByte

Send a single byte over USART. Can be used as blocking (wait until transmission register empty) or non-blocking method.

```
en_result_t Btm_SendByte(uint8_t data, boolean_t noBlock)
en_result_t Usart_SendByte(uint8_t data, boolean_t noBlock)
```

#### Parameters:

- data: Data byte to send
- noBlock: Blocking (FALSE) or non-blocking (TRUE) operation

#### Return value:

Ok if byte was transmitted or ErrorOperationInProgress if the method was used in non-blocking mode and an transmission was still ongoing.

## 6.3.4 Send string – Btm SendString

Send a null-terminated string.

```
en_result_t Btm_SendString(char_t* data)
en_result_t Usart_SendString(char_t* data)
```

#### Parameters:

data: Pointer to string to send

#### Return value:

Ok.

## 6.3.5 Send decimal value as ASCII – Btm SendDec

Send a value as an ASCII string representing the decimal value of a given parameter.

```
en_result_t Btm_SendDec(uint32_t data, uint8_t digits, char_t fillChar) en_result_t Usart_SendDec(uint32_t data, uint8_t digits, char_t fillChar)
```

#### Parameters:

- data: Value to send
- digits: Number of decimal digits the value should be formatted to
- fillChar: Character used to fill leading zeros

#### Return value:

Ok if everything was fine or ErrorInvalidParameters if digits out of range (1-9).

## 6.3.6 Send hexadecimal value as ASCII – Btm SendHex

Send a value as an ASCII string representing the hexadecimal value of a given parameter.

```
en_result_t Btm_SendHex(uint32_t data, uint8_t digits, char_t fillChar) en_result_t Usart_SendHex(uint32_t data, uint8_t digits, char_t fillChar)
```

#### Parameters:

- data: Value to send
- digits: Number of decimal digits the value should be formatted to
- fillChar: Character used to fill leading zeros

#### Return value:

Ok if everything was fine or ErrorInvalidParameters if digits out of range (1 - 8).

#### 6.4 Motor and servo control

This module is used to control the motor and servo operation.

## 6.4.1 Global variables

## 6.4.2 Initialization - Drive Init

Initializes PPGs used for motor and servo control. Should be called once after program startup.

void Drive\_Init(void)



## 6.4.3 Set motor power – Drive SetMotor

Sets a new motor power target value. If timer is ignored the value is directly set to the PPG, otherwise acceleration will be limited.

void Drive\_SetMotor(int8\_t power, boolean\_t ignoreTimer)

#### Parameters:

- power: Power level to set. Values from -3 to +3
- ignoreTimer: Ignore the acceleration limit timer if TRUE

## 6.4.4 Set servo state – Drive\_SetServo

Set the servo direction.

void Drive\_SetServo(int8\_t percent)

#### Parameters:

- percent: Direction to set. -100 for full left, 0 for center, +100 for full right

## 6.4.5 Quick stop – Drive\_QuickStop

If currently driving forward active braking is used to stop the car. If driving backwards motor is simply switched off. See chapter 3.3 - Speed controller for details.

void Drive\_QuickStop(void)

# 6.4.6 Disable forward direction – Drive\_DisableForward and disable reverse direction – Drive\_DisableReverse

Forbids to drive forward or backward. Can be used by e.g. the infrared object detection to disable a direction when an object is detected.

void Drive\_DisableForward(boolean\_t disable)
void Drive\_DisableReverse(boolean\_t disable)

#### Parameters:

disable: Forbids to drive in the specific direction (TRUE) or allows it (FALSE)

## 6.4.7 Systick routine – Drive Systick

This routine handles acceleration and servo control and has to be called in intervals of 1 ms. This can be achieved by adding this method to the systick method list (see 6.9.2 - Register a function – Systick\_AddFunction).

void Drive\_Systick(void)

#### 6.5 Infrared

This module handles object detection. In this implementation sending of identification codes and evaluation of the received data is handled internally. Only the current state of the object detection is provided by the Ir\_States variable.

#### 6.5.1 Global variables

uint8\_t carID

Stores the ID sent over infrared

uint8\_t Ir\_States

Contains the current object detection states for each of the eight infrared sensors.

| Bit | Module      |
|-----|-------------|
| 0   | Left        |
| 1   | Front left  |
| 2   | Front       |
| 3   | Front right |
| 4   | Right       |
| 5   | Back right  |
| 6   | Back        |
| 7   | Back left   |

## 6.5.2 Initialization – Ir\_Init

Initializes USARTs, PPGs and external interrupts used by the infrared module. Should be called once after program start-up.

void Ir Init(void)

#### 6.6 RFM12

## 6.6.1 Initialization - Rfm12 Init

Initializes the USART used by this module and sets up the RFM12 module. Should be called once after program start-up.

void Rfm12\_Init(void)

## 6.6.2 Send command - Rfm12 Command

Sends a command to the RFM12 module and returns the returned value.

uint16\_t Rfm12\_Command(uint16\_t cmd)

#### Parameters:

- cmd: Command to send

#### Return value:

Command reply data

## 6.6.3 Enable reception – Rfm12\_RX\_Enable

Enables reception of messages.

void Rfm12\_RX\_Enable(void)



## 6.6.4 Check current state - Rfm12 State

Get current receive/transmit state.

uint8\_t Rfm12\_State(void)

#### Return value:

Current state of this module. See RFM12\_STATE\_\* defines.

## 6.6.5 Send a message – Rfm12\_SendMessage

Put a message in the transmit buffer and initialize transmission.

en\_result\_t Rfm12\_SendMessage(uint8\_t\* data, uint8\_t len)

#### Parameters:

- data: Pointer to data buffer to transmit
- len: Length of data in buffer

#### Return value:

Ok if everything went fine, ErrorOperationInProgress if a transmission/reception is currently ongoing.

## 6.6.6 Get a received message – Rfm12\_GetRxBuffer

Returns a copy of the RX buffer if a message is available.

en\_result\_t Rfm12\_GetRxBuffer(uint8\_t\* buffer, uint8\_t bufSize, uint8\_t\* returnedBytes)

#### Parameters:

- buffer: Pointer to target buffer for returned message
- bufSize: Size of target buffer
- returnedBytes: Actual amount of returned bytes

#### Return value:

Ok if a message was received, Error if not.

#### 6.7 Real time clock

#### 6.7.1 Global variables

uint16\_t rtcCount Increased by one every half second.

## 6.7.2 Initialization – Rtc Init

Initializes the RTC module. Should be called once after application start-up.

void Rtc\_Init(void)



## 6.7.3 Start of operation – Rtc Start

Starts the actual RTC operation with the given time value.

void Rtc\_Start(uint8\_t h, uint8\_t m, uint8\_t s)

#### Parameters:

- h: Hours
- m: Minutes
- s: Seconds

## 6.7.4 Print time to USART – Rtc\_PrintTime

Prints the current time to the USART interface defined by TESTINTERFACE in main.h.

void Rtc\_PrintTime(void)

## 6.8 Seven segment display

## 6.8.1 Initialization – Seg Init

Initializes IOs for the left seven segment display (SEG1) and disables all segments.

void Seg\_Init(void)

## 6.8.2 Output of a decimal digit - Seg Dec

Outputs a decimal digit to the seven segment display.

void Seg\_Dec(uint8\_t num)

## Parameters:

- num: Digit to display (0 – 9)

## 6.8.3 Output of a hexadecimal digit – Seg Hex

Outputs a hexadecimal digit to the seven segment display.

void Seg\_Hex(uint8\_t hex)

#### Parameters:

- hex: Digit to display (0 – 15)

## 6.9 Systick

The systick calls registered methods every 1 ms. The number of registerable methods can be defined by the symbol MAX\_FUNCTIONS in systick.c which defaults to 10. Unregistering functions is not implemented.

## 6.9.1 Initialization - Systick\_Init

Initializes the timer for the systick. Should be called once after application start-up.

void Systick\_Init(void)



## 6.9.2 Register a function – Systick AddFunction

Registers a function to the systick.

En\_result\_t Systick\_AddFunction(func\_ptr\_t func)

#### Parameters:

func: The function to be registered

#### Return value:

Ok if everything was fine, Error if the registered functions array is full.

#### 6.10 Ultrasonic module

Handles communication with the ultrasonic modules. Commands which take the parameter "module" expect the following values:

| Module number | Module                               |
|---------------|--------------------------------------|
| 0             | Both (not supported by all commands) |
| 1             | Front                                |
| 2             | Back                                 |

| 6  | 10  | 1 | വ   | lohal | varia | hlac |
|----|-----|---|-----|-------|-------|------|
| U. | IU. |   | וכי | wwai  | vana  | nes  |

| o. ro. r Global variables |                                                                                       |
|---------------------------|---------------------------------------------------------------------------------------|
| boolean_t Us_DataValid1   | Indicates whether the distances in the distance-variables for module 1 are valid      |
| boolean_t Us_DataValid2   | Indicates whether the distances in the distance-variables for module 2 are valid      |
| uint8_t Us_Distance1Raw   | Current timeslot index of detected object for module 1. If 255 no object was detected |
| uint16_t Us_Distance1Eval | Current distance for module 1 in cm                                                   |
| uint8_t Us_Distance2Raw   | Current timeslot index of detected object for module 2. If 255 no object was detected |
| uint16 t Us Distance2Eval | Current distance for module 2 in cm                                                   |

## 6.10.2 Initialization – Us\_Init

Initializes the USARTs for communication with the ultrasonic modules. Should be called once after application start-up.

void Us\_Init(void)

## 6.10.3 Wait for command to be confirmed – Us Cmd Wait

Checks whether the last sent command was confirmed yet.

boolean\_t Us\_Cmd\_Wait(uint8\_t module)

#### Parameters:

- module: Module to check whether there is an outstanding command

### Return value:

TRUE if command is not yet confirmed, FALSE otherwise

## 6.10.4 Calibrate module – Us Calibrate

Sends a calibration command to an ultrasonic module.

en\_result\_t Us\_Calibrate(uint8\_t module)

#### Parameters:

- module: The module to send the command to, 0 for both modules supported

### Return value:

Ok if everything was fine, ErrorInvalidParameter if module, ioNr or ddr invalid.

## 6.10.5 Set data direction of pin – Us\_IO\_DDR

Sets the data direction of an IO pin on an ultrasonic module.

en\_result\_t Us\_IO\_DDR(uint8\_t module, uint8\_t ioNr, uint8\_t ddr)

#### Parameters:

- module: The module to send the command to, 0 for both modules supported
- ioNr: IO to control (0 = PG1, 1 = PG2, 2 = P01, 3 = P02)
- ddr: Data direction to set (0 = input, 1 = output)

#### Return value:

Ok if everything was fine, ErrorInvalidParameter if module, ioNr or ddr invalid.

## 6.10.6 Set data of pin – Us\_IO\_Value

Sets the data value of an IO pin on an ultrasonic module.

en\_result\_t Us\_IO\_Value(uint8\_t module, uint8\_t ioNr, uint8\_t value)

## Parameters:

- module: The module to send the command to, 0 for both modules supported
- ioNr: IO to control (0 = PG1, 1 = PG2, 2 = P01, 3 = P02)
- value: Data to set (0 = low, 1 = high)

## Return value:

Ok if everything was fine, ErrorInvalidParameter if module, ioNr or value invalid.

## 6.11 Utility routines

This module contains some smaller generic utility routines.

#### 6.11.1 ARRAY SIZE

Macro to return the size of a given array in bytes.

ARRAY\_SIZE(arr)



## 6.11.2 Conversion integer to string – intToStr

Converts a given integer to a decimal ASCII string.

en\_result\_t intToStr(uint32\_t data, uint8\_t digits, char\_t fillChar, char\_t\* str)

#### Parameters:

- data: Value to convert
- digits: Number of digits to format to
- fillChar: Character used to fill leading zeros
- str: Target buffer for converted string

#### Return value:

Ok if everything went fine, ErrorInvalidParameter if number of digits out of range (1 to 10)

## 6.11.3 Wait number of cycles - wait

Delay loop for a number of loop cycles.

void wait(uint32 t del)

#### Parameters:

del: Number of loop cycles

#### 6.11.4 Wait number of microseconds – wait1us

Waits a specific number of microseconds.

void wait1us(uint16\_t delay\_us)

#### Parameters:

- delay us: Number of microseconds to wait

#### 6.11.5 Wait number of milliseconds – wait1ms

Waits a specific number of milliseconds.

void wait1ms(uint16\_t delay\_ms)

#### Parameters:

delay\_ms: Number of milliseconds to wait

#### 6.12 IR line sensor module

#### 6.12.1 Software

The software for the IR line sensor module is not included in the student's car software.

Use ADC channels to readout sensor values.

Use a PPG channel for a PPG / PWM signal (power management) or VCC for permanent current supply.

#### 6.12.2 Test software

In order to test the IR line sensor module use the test software TP\_IR\_LINE\_SENSOR. Connect the board to the starter kit and download the test software. Press Button SW1/RESET of the evaluation board.

## Check sensor functionality

After SW1/RESET is pressed SKWizard should show four columns with sensor values. But only the two left columns will already show alternating values. The two right columns will just show zeros.

## Check calibration functionality

A push to the Key-button INTO (left button) should result in calibration of the values of the second division. In Addition the two right divisions should show alternating values now as well. The values of the third division are the inverted values of the second division (values are needed for area weighting algorithm). The last division only shows the peak value of the area weighting algorithm in order to control output values.

### Optional testing

In order to check output values it is possible to apply a voltmeter to pin three to seven while affecting the sensors.

In order to check the PPG / PWM signal it is possible to apply an oscilloscope to pin 65 and ground (GND) in order to measure the frequency (example should have a value of 2 kHz).

#### Result within the SKWizard

After the software was started and the calibration was made the SKWizard will look like this:

COM-port (RS232) Connection:





# 7 Appendix

## 7.1 Tables

| Table 1: Modules to MCU connections                        | 10 |
|------------------------------------------------------------|----|
| Table 2: Speed controller connections                      | 12 |
| Table 3: Timings for speed controller                      | 12 |
| Table 4: Timings for steering servo                        | 13 |
| Table 5: Pinout of MB96F348HS                              | 16 |
| Table 6: Pinout of MB91F467B                               | 19 |
| Table 7: IR communication outline                          | 19 |
| Table 8: J1 – Main interface connector of ADA-US-IR-RFM-BT | 21 |
| Table 9: JP1 board voltage selection                       | 21 |
| Table 10: J6, J7, J8 connectors for stacked PCB            | 21 |
| Table 11: IR multiplexer channel selection                 | 22 |
| Table 12: J9 – RFM12 connector                             | 23 |
| Table 13: RFM12 test points                                | 23 |
| Table 14: JP2 – Source voltage selection for Bluetooth     | 23 |
| Table 15: J5 – Bluetooth connector                         | 23 |
| Table 16: BTM-222 Test points                              | 23 |
| Table 17: J1 – ADA-INFRARED connector                      | 24 |
| Table 18: ADA-IR-LINE-SENSOR connector                     | 27 |
| Table 19: Ultrasonic module package structure              | 35 |
| Table 20: Ultrasonic module package types                  | 35 |
| Table 21: Structure of ultrasonic commands                 | 36 |
| Table 22: Ultrasonic commands                              | 37 |
| Table 23: Used MCU resources                               | 39 |



## 7.2 Figures

| Figure 1: Hardware platform outline                   | 1  |
|-------------------------------------------------------|----|
| Figure 2: Schematic overview of the mounting plate    | 1  |
| Figure 3: Schematic overview of chassis               | 1  |
| Figure 4: Power distribution                          | 1  |
| Figure 5: Power supply board pinout                   | 1  |
| Figure 6: Outline of ADA-US-IR-RFM-BT                 | 1  |
| Figure 7: Relationship of modules on ADA-US-IR-RFM-BT | 1  |
| Figure 8: Installation instruction of IR line sensor  | 25 |
| Figure 9: IR line sensor attachment                   | 25 |
| Figure 10: Example: line detection                    | 26 |
| Figure 11: ADA-IR-LINE-SENSOR                         | 27 |
| Figure 12: Flowchart of ultrasonic module firmware    | 1  |
| Figure 13: Ultrasonic measurement process             |    |



## 8 Information in the WWW

European website:

http://emea.fujitsu.com/

Microcontrollers (8-, 16- and 32bit)
Datasheets and hardware manuals, support tools (hard- and software)

http://mcu.emea.fujitsu.com/

#### 8.1 16FX controller related

Microcontroller MB96F348HS:

http://mcu.emea.fujitsu.com/mcu\_product/detail/MB96F348HSCPMC.htm

Starter kit SK-16FX-EUROSCOPE:

http://mcu.emea.fujitsu.com/mcu\_tool/detail/SK-16FX-EUROSCOPE.htm

Flash programmer for 16FX microcontrollers:

http://mcu.emea.fujitsu.com/mcu\_tool/detail/FLASH\_PROGRAMMER\_16FX.htm

SK Wizard:

http://mcu.emea.fujitsu.com/mcu\_tool/detail/SK\_WIZARD.htm

#### 8.2 FR controller related

Microcontroller MB91F467B:

http://mcu.emea.fujitsu.com/mcu\_product/detail/MB91F467BAPMC.htm

Starter kit SK-FR-144PMC-91467B:

http://mcu.emea.fujitsu.com/mcu\_tool/detail/SK-91467B-144PMC.htm

Flash programmer for 32 bit FR microcontrollers:

http://mcu.emea.fujitsu.com/mcu\_tool/detail/FLASH\_PROGRAMMER\_FR\_FME.htm

SK Wizard:

http://mcu.emea.fujitsu.com/mcu tool/detail/SK WIZARD.htm



## Student-Model-Car Chapter 8 Information in the WWW

## 8.3 Hardware documentation

8.3.1 RFM12

HopeRF RFM12 product page:

http://www.hoperf.com/rf\_fsk/rfm12.htm

Wiki page on microcontroller.net with fixed register information:

http://www.mikrocontroller.net/articles/RFM12

8.3.2 BTM-222

Product page:

http://www.rayson.com/btm220.html

Datasheet and supplier:

https://www.it-wns.de/themes/kategorie/detail.php?artikelid=219&source=2



## 9 Recycling

## Gültig für EU-Länder:

Gemäß der Europäischen WEEE-Richtlinie und deren Umsetzung in landesspezifische Gesetze nehmen wir dieses Gerät wieder zurück.

Zur Entsorgung schicken Sie das Gerät bitte an die folgende Adresse:

Fujitsu Microelectronics Europe GmbH Warehouse/Disposal Monzastraße 4a D-63225 Langen

## **Valid for European Union Countries:**

According to the European WEEE-Directive and its implementation into national laws we take this device back.

For disposal please send the device to the following address:

Fujitsu Microelectronics Europe GmbH Warehouse/Disposal Monzastraße 4a D-63225 Langen GERMANY

