Álgebra Universal e Categorias

1º teste

Nome:	Número:		

Grupo I

Para cada uma das questões deste grupo, indique a sua resposta no espaço disponibilizado a seguir à questão.

1. Seja $\mathcal{A}=(A;f^{\mathcal{A}},g^{\mathcal{A}})$ a álgebra do tipo (2,1) onde $f^{\mathcal{A}}:A^2\to A$ e $g^{\mathcal{A}}:A\to A$ são as operações definidas por

$f^{\mathcal{A}}$											
1											
2	2	2	2	2	2	x	1	2	3	4	5
3	2	2	2	2	2	$g^{\mathcal{A}}(x)$	2	3	4	2	5
4 5	3	3	3	4	1		•				
5	3	3	3	1	5						

Indique, sem justificar, todos os subuniversos de \mathcal{A} . Represente o reticulado $(\operatorname{Sub},\subseteq)$ por um diagrama de Hasse.

Resposta: Os subuniversos de \mathcal{A} são: \emptyset , $\{5\}$, $\{2,3,4\}$, $\{1,2,3,4\}$, $\{1,2,3,4,5\}$. O reticulado dos subuniversos de \mathcal{A} pode ser representado pelo diagrama seguinte

- 2. Diga, justificando, se são verdadeiras ou falsas as afirmações seguintes:
 - (a) Para qualquer álgebra \mathcal{A} e para quaisquer $X,Y\subseteq A$, tem-se $Sg^{\mathcal{A}}(X)\cup Sg^{\mathcal{A}}(Y)\subseteq Sg^{\mathcal{A}}(X\cup Y)$. Resposta: A afirmação é falsa.

Contra-exemplo: Sejam $\mathcal{N}=(\mathbb{N},+^{\mathcal{N}})$ a álgebra de tipo (2), onde $+^{\mathcal{N}}$ representa a adição usual em \mathbb{N} , $X=\{2\}$ e $Y=\{3\}$. Então $Sg^{\mathcal{N}}(X)\cup Sg^{\mathcal{N}}(Y)\nsubseteq Sg^{\mathcal{N}}(X\cup Y)$, pois

$$\operatorname{Sg}^{\mathcal{N}}(X) \cup \operatorname{Sg}^{\mathcal{N}}(Y) = \{2n \mid n \in \mathbb{N}\} \cup \{3n \mid n \in \mathbb{N}\},\,$$

 $2 +^{\mathcal{N}} 3 = 5 \in \operatorname{Sg}^{\mathcal{N}}(X \cup Y)$ e $5 \notin \operatorname{Sg}^{\mathcal{N}}(X) \cup \operatorname{Sg}^{\mathcal{N}}(Y)$.

(b) Para qualquer álgebra \mathcal{A} e para quaisquer $X,Y\subseteq A$, tem-se $Sg^{\mathcal{A}}(X\cap Y)\subseteq Sg^{\mathcal{A}}(X)\cap Sg^{\mathcal{A}}(Y)$. Resposta: A afirmação é verdadeira.

Tem-se $X\cap Y\subseteq X$ e $X\cap Y\subseteq Y$. Logo $Sg^{\mathcal{A}}(X\cap Y)\subseteq Sg^{\mathcal{A}}(X)$ e $Sg^{\mathcal{A}}(X\cap Y)\subseteq Sg^{\mathcal{A}}(Y)$. Consequentemente, $Sg^{\mathcal{A}}(X\cap Y)\subseteq Sg^{\mathcal{A}}(Y)\cap Sg^{\mathcal{A}}(X)$.

3. Seja $\mathcal{A}=(A;f^{\mathcal{A}},g^{\mathcal{A}})$ a álgebra de tipo (1,1), onde $A=\{0,1,2,3\}$, $f^{\mathcal{A}}$ e $g^{\mathcal{A}}$ são as operações definidas por

e cujo reticulado de congruências pode ser representado pelo diagrama indicado ao lado.

(a) Sem apresentar os cálculos, indique $\Theta(2,3)$ e $\Theta(0,3)$. Diga, justificando, se $\Theta(2,3)\cup\Theta(0,3)=\Theta(2,3)\vee\Theta(0,3)$.

Resposta: Tem-se

е

- $\Theta(2,3) = \triangle_A \cup \{(2,3), (3,2), (2,1), (2,1), (1,3), (3,1)\};$
- $\Theta(0,3) = \triangle_A \cup \{(0,3),(3,0),(1,2),(2,1)\}.$

A relação binária $\Theta(2,3)\cup\Theta(0,3)$ não é uma congruência em \mathcal{A} , pois não é uma relação de equivalência; mais especificamente, não é transitiva: $(0,3),(3,2)\in\Theta(2,3)\cup\Theta(0,3)$ e $(0,2)\not\in\Theta(2,3)\cup\Theta(0,3)$.

(b) Indique a álgebra quociente $\mathcal{A}/\Theta(2,3)$.

Resposta: A álgebra $\mathcal{A}/\Theta(2,3)$ é a álgebra $(A/\Theta(2,3);f^{\mathcal{A}/\Theta(2,3)},g^{\mathcal{A}/\Theta(2,3)})$ do tipo (1,1), onde

$$A/\Theta(2,3) = \{[0]_{\Theta(2,3)}, [1]_{\Theta(2,3)}\},\$$

 $\text{pois } [1]_{\Theta(2,3)} = \{1,2,3\}, \ [0]_{\Theta(2,3)} = \{0\}, \ \text{e} \ f^{\mathcal{A}/\Theta(2,3)} \ \text{e} \ g^{\mathcal{A}/\Theta(2,3)} \ \text{são as operações definidas por approximation}$

$$\begin{array}{cccc} f^{\mathcal{A}/\Theta(2,3)}: A/\Theta(2,3) & \to & A/\Theta(2,3) \\ & [0]_{\Theta(2,3)} & \mapsto & [f^{\mathcal{A}}(0)]_{\Theta(2,3)} = [2]_{\Theta(2,3)} = [1]_{\Theta(2,3)} \\ & [1]_{\Theta(2,3)} & \mapsto & [f^{\mathcal{A}}(1)]_{\Theta(2,3)} = [1]_{\Theta(2,3)} \end{array}$$

 $\begin{array}{cccc} g^{\mathcal{A}/\Theta(2,3)} : A/\Theta(2,3) & \to & A/\Theta(2,3) \\ & [0]_{\Theta(2,3)} & \mapsto & [g^{\mathcal{A}}(0)]_{\Theta(2,3)} = [1]_{\Theta(2,3)} \\ & [1]_{\Theta(2,3)} & \mapsto & [g^{\mathcal{A}}(3)]_{\Theta(2,3)} = [1]_{\Theta(2,3)}. \end{array}$

4. Diga, justificando, se a álgebra $\mathcal A$ é congruente-distributiva.

Resposta: Uma álgebra \mathcal{A} é conguente-distributiva se o seu reticulado de congruências é distributivo. Um reticulado é distributivo se e só se não tem qualquer sub-reticulado isomorfo a N_5 ou a M_3 . Ora, o reticulado

é um sub-reticulado de $(Con\mathcal{A},\subseteq)$ e é isomorfo a N_5 . Logo $(Con\mathcal{A},\subseteq)$ não é distributivo e, portanto, a álgebra \mathcal{A} não é congruente-distributiva.

Grupo II

Resolva cada uma das questões deste grupo na folha de exame. Justifique as suas respostas.

1. Seja $\mathcal{A}=(A;F)$ uma álgebra unária. Mostre que se S_1 e S_2 são subniversos de \mathcal{A} , então $S_1\cup S_2$ é um subuniverso de \mathcal{A} .

Sejam $\mathcal{A}=(A;F)$ uma álgebra unária e S_1 e S_2 subniversos de \mathcal{A} . Uma vez que \mathcal{A} é uma álgebra unária, todas as operações de \mathcal{A} têm aridade 1. Como S_1 e S_2 são subuniversos de \mathcal{A} , tem-se $S_1,S_2\subseteq A$ e S_1 e S_2 são fechados para todas as operações de \mathcal{A} . Nestas condições, o conjunto $S_1\cup S_2$ também é um subuniverso de \mathcal{A} , pois $S_1\cup S_2\subseteq A$ e, para qualquer operação unária $f^{\mathcal{A}}$ de \mathcal{A} e para qualquer $x\in A$,

$$x \in S_1 \cup S_2 \Rightarrow x \in S_1 \text{ ou } x \in S_2$$

 $\Rightarrow f^{\mathcal{A}}(x) \in S_1 \text{ ou } f^{\mathcal{A}}(x) \in S_2$
 $\Rightarrow f^{\mathcal{A}}(x) \in S_1 \cup S_2.$

2. Sejam $\mathcal{A}=(A;F)$ uma álgebra unária, B um subuniverso de \mathcal{A} e θ uma relação binária em A definida por

$$a\theta b$$
 se e só se $a=b$ ou $\{a,b\}\subseteq B$.

Mostre que θ é uma congruência em A.

A relação θ é uma congruência em $\mathcal A$ se θ é uma relação de equivalência e satistaz a propriedade de substituição. Uma relação binária em A é uma relação de equivalência se é uma relação reflexiva, simétrica e transitiva. Mostremos que θ é uma relação nas condições indicadas.

- (1) Para todo $x \in A$, tem-se x = x e, portanto, $(x, x) \in \theta$. Logo θ é reflexiva.
- (2) Para quaisquer $x, y \in A$,

$$(x,y) \in \theta \Rightarrow (x=y \text{ ou } \{x,y\} \subseteq B) \Rightarrow (y=x \text{ ou } \{y,x\} \subseteq B) \Rightarrow (y,x) \in \theta.$$

Logo θ é simétrica.

(3) Para quaisquer $x, y, z \in A$,

```
\begin{array}{ll} ((x,y) \in \theta \text{ e } (y,z) \in \theta) & \Rightarrow & (x=y \text{ ou } \{x,y\} \subseteq B) \text{ e } (y=z \text{ ou } \{y,z\} \subseteq B) \\ & \Rightarrow & ((x=y \text{ e } y=z) \text{ ou } (x=y \text{ e } \{y,z\} \subseteq B) \\ & \text{ ou } (\{x,y\} \subseteq B \text{ e } y=z) \text{ ou } (\{x,y\} \subseteq B \text{ e } \{y,z\} \subseteq B)) \\ & \Rightarrow & ((x=z) \text{ ou } (\{x,z\} \subseteq B) \text{ ou } (\{x,z\} \subseteq B) \text{ ou } (\{x,z\} \subseteq B)) \\ & \Rightarrow & (x,z) \in \theta. \end{array}
```

Portanto, θ é transitiva.

(4) Para qualquer operação $f^{\mathcal{A}}$ de A e para quaisquer $x, y \in A$,

```
\begin{array}{lll} (x,y) \in \theta & \Rightarrow & (x=y \text{ ou } \{x,y\} \subseteq B) \\ & \Rightarrow & (f^{\mathcal{A}}(x) = f^{\mathcal{A}}(y) \text{ ou } \{f^{\mathcal{A}}(x), f^{\mathcal{A}}(y)\} \subseteq B) & (f^{\mathcal{A}} \text{ \'e operação em $A$ e B \'e subuniverso de $\mathcal{A}$}) \\ & \Rightarrow & (f^{\mathcal{A}}(x), f^{\mathcal{A}}(y)) \in \theta. \end{array}
```

Logo θ satisfaz a propriedade de substituição.

De (1), (2), (3) e (4) conclui-se que θ é uma congruência em A.

3. Justifique que, para qualquer álgebra $\mathcal{A}=(A;F)$, se $|A|\leq 2$, então $\mathrm{Eq}(A)=\mathrm{Con}\mathcal{A}$. Dê exemplo de uma álgebra $\mathcal{A}=(A;F)$ tal que |A|>2 e $\mathrm{Eq}(A)=\mathrm{Con}\mathcal{A}$.

Para qualquer álgebra \mathcal{A} , tem-se $\mathrm{Con}\mathcal{A}\subseteq\mathrm{Eq}(A)$. Se $|A|\le 2$, tem-se $\mathrm{Eq}(A)\subseteq\{\triangle_A,\nabla_A\}$ e as relações \triangle_A e ∇_A são congruências em \mathcal{A} . Logo $\mathrm{Eq}(A)\subseteq\mathrm{Con}\mathcal{A}$. Portanto, $\mathrm{Eq}(A)=\mathrm{Con}\mathcal{A}$.

Seja $\mathcal{A}=(\{1,2,3\};1^{\mathcal{A}})$ a álgebra de tipo (0), onde $1^{\mathcal{A}}=1$. Neste caso tem-se $\mathrm{Eq}(A)=\mathrm{Con}\mathcal{A}$, pois, $\mathrm{Con}\mathcal{A}\subseteq\mathrm{Eq}(A)$ e, para todo $\theta\in\mathrm{Eq}(A)$, tem-se $\theta\in\mathrm{Con}\mathcal{A}$, uma vez que toda a relação de equivalência θ satisfaz a propriedade de substituição (θ é reflexiva e, portanto, $(1^{\mathcal{A}},1^{\mathcal{A}})\in\theta$).