Name:	II	D	:

No calculators, notes, or textbooks allowed. Show all your work for full credit. <u>Time limit:</u> 25 mins

<u>Problem 1:</u> Consider the following 1-bit ALU with the following delay times for each operation.

Control			Delay for	Delay CarryIn to
C_1	C_{0}	Operation	Result (ns)	CarryOut (ns)
0	0	A + B + CarryIn	3	2
0	1	A XOR B	1	-
1	0	A OR B	2	-
1	1	A'	1	-

a. [4 pts] What is the delay time to complete each operation in the 3-bit ALU? (Hint: draw the units connected together to build a 3bit ALU first)

b. [2 points] Which ALU operation determines the overall delay (critical path) of the 3-bit ALU? **A** + **B** + **CarryIn**

Problem 2 [6 points]: Show that NAND is a universal gate by building the following gates:

NOT:

X	Y	NAND
0	0	1
0	1	1
1	0	1
1	1	0

OR:

<u>Problem 3 [12 points]:</u> Implement a 1-bit ALU <u>for the Most significant bit of a larger ALU</u> with XOR and NAND gates and a single 4-input (2-bit selector) multiplexor. Assume only uncomplemented variables are given. (Hint: Build any required gates/units from XOR & NAND gates like in problem 2.)

Control		
C_1	C_{θ}	Operation
0	0	A+B+CarryIn
0	1	A XOR B
1	0	Set if B is Negative
1	1	A OR B

Name:	II	D	:

No calculators, notes, or textbooks allowed. Show all your work for full credit. <u>Time limit:</u> 25 mins

<u>Problem 1:</u> Consider the following 1-bit ALU with the following delay times for each operation.

Cor	ntrol		Delay for	Delay CarryIn to
C_1	C_0	Operation	Result (ns)	CarryOut (ns)
0	0	A NAND B	2	-
0	1	A + B	3	1
1	0	В'	1	-
1	1	A + B + CarryIn	4	2

a. [4 pts] What is the delay time to complete each operation in the 3-bit ALU? (Hint: draw the units connected together to build a 3bit ALU first)

b. [2 pts] Which ALU operation determines the overall delay (critical path) of the 3-bit ALU? **A + B + CarryIn**

<u>Problem 2 [6 points]:</u> Show that NAND is a universal gate by building the following gates:

X	Y	NAND
0	0	1
0	1	1
1	0	1
1	1	0

OR: X' _________X+Y

<u>Problem 3 [12 points]:</u> Implement a 1-bit ALU <u>for the Most significant bit of a larger ALU</u> with XOR and NAND gates and a single 4-input (2-bit selector) multiplexor. Assume only uncomplemented variables are given. (Hint: Build any required gates/units from XOR & NAND gates like in problem 2.)

Control		
C_1	C_0	Operation
0	0	Set if A is Positive
0	1	A OR B
1	0	A XOR B
1	1	A + B + CarryIn

