

Shoot 'em up

- A long-lived genre dating from the 1960s.
- Defeat enemies with the given weapons
- An early example is Missile
 Command ported to many platforms (1980):

Image from Wikipedia

https://www.youtube.com/watch?v=nokIGkInBGY

Shoot 'em up

A long history, extending into modern gaming.

https://en.wikipedia.org/wiki/Shoot_%27em_up

More recent titles such as Geometry Wars or

Jamestown

Image from Steam

Ballista Command

- This Practical comprises 20% of CS4303.
- It is due on Friday 12 February at 21:00.
- The Task:
 - Implement in Processing a variant of the classic
 Missile Command Game.
- Deliverables:
 - A report
 - A game guide
 - The Processing source code for the video game you will write.

Specification

- Single-player game
- Waves of meteorites fall from the sky
- Shoot at them to make them explode
- Points are scored for each one destroyed
- The game ends when no cities are intact

Twist

All projectiles are affected by physics

https://www.youtube.com/watch?v=aiiQ8btusrs

Similar behaviour to angry birds!

You Decide

- There are a number of places in the specification where you will need to make a decision about a design detail.
 - what are the controls?
 - Spawning angles/forces for meteorites?

- When making these decisions think about what effect it has on the game:
 - Does it make the game more or less fun to play?

The Play Area

- A 2d space with ground level near the bottom.
- There are three batteries: left, middle and right

The Play Area (2)

- Elements for you to decide (and document):
 - The dimensions and look of the play area,
 landscape, ballistas, rounds, meteorites
 - The strength of gravity and drag

The meteorites

- Appear falling from the sky (the top of the play area).
- Random initial velocity
- Use the wave number to influence the quantity and initial velocity of each meteorite so as to increase difficulty
- The meteorites should be subject to:
 - The force of gravity,
 - The force of friction due to movement in the air

The Ballistae

- Each has 10 bombs to shoot
- Bombs affected by Initial force, then also affected by gravity and drag
- Explode on command!

Initial vector:

The Ballistae

Elements for you to decide (and document):

- The implementation of the controls: mouse, keyboard, … ?
- The Looks
- Magnitudes
- The dimensions and look of the bombs
- Collision detection

Explosions

- Meteorite caught in the blast radius of an explosion should explode.
- This should allow you to fire various bombs and also chain explosions if timed properly.

Image from youtube

Additional features

Meteorites splitting mid-flight

Bomber and satellite enemies firing additional meteorites to the cities

User Interface

- At least, the following information should be displayed:
 - The score
 - Ammo and cities left
- Elements for you to decide (and document):
 - When the game ends will you provide the option of restarting the game?
 - Will you have an introductory screen giving instructions before the game starts?

Report

- Your report should document the design and implementation of your game.
- Include screenshots that show your game in operation and illustrate its features.
- Your report should include:
 - An introduction and Conclusion sections
 - discussion of all of the design decisions
 - an account of your implementation of the physics involved.

- The practical will be marked following the standard mark descriptors as given in the Student Handbook
- Further guidance as to what is expected:
- To achieve a mark of 7 or higher:
 - A bare bones implementation of the game, consisting of a single wave of falling particles. This implementation should be adequately described in an accompanying report and game guide

- To achieve a mark of 11 or higher:
 - In addition to the above,
 - the game should proceed in waves as specified,
 with an increasing level of difficulty.
 - This implementation should be well described in an accompanying report and game guide.

- To achieve a mark of 14 or higher:
 - In addition to the above,
 - some of the additional features should be implemented, together with a fully correct physics implementation. This implementation should be well described in an accompanying report and game guide.
- To achieve a mark of 17:
 - the full basic specification above must be implemented, including both of the additional features. The report and game guide should be written to a high standard.

- To achieve a mark greater than 17:
 - In addition to the requirements for a mark
 of 17, evidence of an exceptional achievement in
 terms of technical challenge, the original "smart
 bomb" enemies fully implemented and/or
 sound effects using the minim library for
 Processing