INTRODUCTION TO ANALYSIS I

MATH 279 – Lesson 0

Prof. Isaac Kwame Dontwi

Department of Mathematics Kwame Nkrumah University of Science and Technology

Outline

Learning Objectives

2 The Real Number Line

Mathematical Induction

Lesson 0: Real Number Line

Abstract

 This lesson is designed to introduce students to the number line and its properties in relation to functions.

Objectives

By the end of the lesson participants should be able to:

- understand various representation on the number line with points and intervals.
- understand neighborhood points.
- understand and prove statements using the principle of mathematical induction.

The Real Number Line

- This is a unique representation of real numbers by a set of points on a line.
- The origin corresponding to '0' divides the real number line into positive and negative numbers.

Figure: Geometric representation of the number line

Real Numbers

The following are sets of numbers;

- Natural Number; Positive whole numbers: $N = \{1, 2, 3, ...\}$
- Integers; Positive and negative whole numbers including 0. $Z = \{..., -3, -2, -1, 0, 1, 2, 3, ..\}$
- Rational Numbers; Fractions expressed in the form $\frac{a}{b}$, where a and b are integers and $b \neq 0$.
- Irrational Numbers; Numbers that cannot be expressed in the form $\frac{a}{b}$ i.e $\sqrt{2}$ and π
- The set of rational and irrational numbers are knows as **Real** Numbers. $N \subset Z \subset Q \subset R$

Real Number Operations

- a + b and $ab \in R$ Closure
- a + b = b + a Commutative law of addition
- a + (b + c) = (a + b) + c Associative law of addition
- a(b+c) = ab + ac Distributive law
- a + 0 = 0 + a = a, $a \cdot 1 = 1 \cdot a = a$ -0 and 1 are identity elements for addition and multiplication respectively.
- \bullet -a additive inverse.
- a^{-1} multiplicative inverse.

Inequalities and Geometric Representations

- If a b is positive then a is greater than b: a > b.
- If a b is non-positive then a is less than or equal to b: $a \le b$.
- If a, b, c are given real numbers then;
 - **1** Either a > b, a = b or a < b -Trichotomy.
 - ② If a > b and b > c then a > c -Transitivity.
 - **3** If a > b then a + c > b + c.

Exponents, Roots and Logarithms

 A number to which another number is raised to the power is called its exponent.

 $a ext{ exponent } b \implies a^b = a \times a \times ...a (b ext{ times})$

The following rules hold for exponents:

$$a^m \times a^n = a^{m+n} \tag{1}$$

$$(a^m)^n = a^{mn} (2)$$

$$a^m \div a^n = a^{m-n} \tag{3}$$

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m} \tag{4}$$

- If $a^m = N$ then $a = \sqrt[m]{N}$ and m is called the mth root of N.
- Generally,

$$a^{\frac{m}{n}} = \sqrt[n]{a^m} \tag{5}$$

Exponents, Roots and Logarithms

• If $a^m = N$, then m is called the logarithm of N to the base a. i.e.

$$m = \log_a N \tag{6}$$

• The following rules hold for relations in logarithms:

$$\log_m AB = \log_m A + \log_m B \tag{7}$$

$$\log_m(\frac{A}{B}) = \log_m A - \log_m B \tag{8}$$

$$\log_m A^B = B \log_m A \tag{9}$$

• The log with base e = 2.71828... is known as the natural logarithm, denoted by;

$$ln(x) = \log_e x$$
(10)

Absolute Value of Real Numbers

- The absolute value of real number x is denoted by |x|.
- It is defined by x if x > 0, -x if x < 0 and 0 if x = 0.

$$|5| = 5$$
 $|-5| = 5$ $|0| = 0$

• The following rules hold;

$$|ab| = |a||b| \tag{11}$$

$$|a+b| \le |a|+|b| \tag{12}$$

$$|a-b| \ge |a| - |b| \tag{13}$$

Points, Intervals and Representation

- A set points or real numbers located on the real axis is called a one-dimensional point set.
- Closed interval: all set of points $a \le x \le b \implies [a, b]$
- Half open/closed sets $a < x \le b \implies (a, b]$ or $a \le x < b \implies [a, b)$
- Open interval: $a < x < b \implies (a, b)$.
- x- represents a set of points known as a variable and a and b are fixed points (constants)
- $|x| < 2 \implies -2 < x < 2 \text{ or } x \in (-2, 2)$
- x < a can be expressed as $-\infty < x < a$.
- Real numbers are represented by $-\infty < x < \infty$.

Neighborhood of Points

• The neighborhood of a point a refers to all set of points such that $|x-a|<\delta$ for $\delta>0$

ullet Specifically this is called the δ - neighborhood of the point a

• The set of all points x such that $0<|x-a|<\delta$ in which x=a is excluded is called the deleted delta-neighborhood of a - open ball about a.

Mathematical Induction

• This is an important concept for proving statements/relations involving positive integers.

• The principle of mathematical induction;

Given infinitely many statements $S_1, S_2, S_3, ...$ and suppose that;

- ② If S_n is true then S_{n+1} must also be true, then all the statements must be true.

Steps In Proving Mathematical Induction.

• Let P(n) be some propositional function involving an integer n. E.g

$$P(n) = n(n+3) \tag{14}$$

is an even integer.

$$P(n) = 1 + 3 + \dots + (2n - 1) = n^{2}$$
 (15)

- The following are steps to prove P(n).
 - **1** Basis: Prove P(1) is true.
 - ② Hypothesis: Assume P(k) is true for any arbitrary $k \ge 1$.
 - **3** Induction: Establish P(k+1)

NB:Steps 2 and 3 are known as induction steps.

Example

Prove by induction that;

$$1 + 3 + \dots + (2n - 1) = n^2 \tag{16}$$

1 Basis: Prove that when n = 1, the proposition P(1) is true. i.e;

$$P(n) = 1 + 3 + \dots + (2n - 1) = n^{2}$$

 $P(1) = 1 = 1^{2} = 1$ (17)

Q Hypothesis: We shall assume that P(k) is true for some arbitrary k.

$$P(k) = 1 + 3 + \dots + (2k - 1) = k^{2}$$
(18)

Example

• Inductive Step: Using the hypothesis, we prove that P(k+1) is true.

$$P(k) = 1 + 3 + \dots + (2k - 1) = k^{2}$$

$$P(k+1) = 1 + 3 + \dots + (2k-1) + (2(k+1) - 1) = (k+1)^{2}$$

$$P(k+1) = P(k) + (2(k+1) - 1) = (k+1)^{2}$$

$$P(k+1) = k^{2} + 2k + 1 = (k+1)^{2}$$
(19)

 $\therefore P(k+1)$ is true.

Prove by induction that;

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
 (20)

is true

◆ロ > ◆母 > ◆き > ◆き > き の Q (

Basis and Hypothesis

Basis;

$$P(n) = \sum_{i=1}^{n} i^{2} = 1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$P(1) = 1^{2} = \frac{1(1+1)(2(1)+1)}{1} = \frac{6}{6} = 1$$
(21)

Hypothesis; Answer that P(k) is true.

$$P(k) = \sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + k^2 = \frac{k(k+1)(2k+1)}{6}$$
 (22)

Inductive Step

By the hypothesis, we have

$$P(k) = 1^{2} + 2^{2} + \dots + k^{2} = \frac{k(k+1)(2k+1)}{6}$$

$$P(k+1) = 1^{2} + 2^{2} + \dots + k^{2} + (k+1)^{2} = \frac{(k+1)(k+2)(2k+3)}{6}$$

$$P(k+1) = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2} = \frac{(k+1)(k+2)(2k+3)}{6}$$

$$P(k+1) = \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6} = \frac{(k+1)(k+2)(2k+3)}{6}$$

$$P(k+1) = (k+1)\frac{(2k^{2} + 7k + 6)}{6} = \frac{(k+1)(k+2)(2k+3)}{6}$$

$$P(k+1) = \frac{(k+1)(k+2)(2k+3)}{6} = \frac{(k+1)(k+2)(2k+3)}{6}$$

$$P(k+1) = \frac{(k+1)(k+2)(2k+3)}{6} = \frac{(k+1)(k+2)(2k+3)}{6}$$

 $\therefore P(k+1)$ is true

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

Exercise

Prove the following statements by mathematical induction;

$$1 + 2 + \dots + n = \frac{n(n+1)}{2} \tag{24}$$

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$
 (25)

$$1 \cdot 2 + 2 \cdot 3 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$
 (26)