Лабораторная работа №1.

Тема: «Программирование линейных вычислительных процессов»

<u>**Цель работы**</u>: Изучить структуру программы на языке C++ [1, с. 10-33, с. 47-48]. Ознакомиться с операторами ввода и вывода [1, с. 49-52]. Ознакомиться с программированием математических формул [1, с. 47].

Задание: Написать две программы на языке C++ для расчета значений переменных у и z по заданным формулам (табл. 1.1). В первой программе использовать для ввода функцию scanf, для вывода — функцию printf. Во второй программе использовать операторы потокового ввода-вывода cin и cout. Определить разность между значениями у и z. В программе предусмотреть ввод исходных данных с экрана дисплея. Предварительно вычислите ожидаемые значения у и z с помощью калькулятора. Убедитесь, что значения, вычисленные с помощью калькулятора, совпадают с результатами, которые получаются в результате работы программы.

Таблица 1.1. Варианты заданий к лабораторной работе №1

Вариант 1	Вариант 2
$\sin\left(\frac{\pi}{2} + 3\alpha\right)$	$y = \cos \alpha + \sin \alpha + \cos 3\alpha + \sin 3\alpha$
$y = \frac{\sin\left(\frac{\pi}{2} + 3\alpha\right)}{1 - \sin(3\alpha - \pi)} ; z = ctg\left(\frac{5}{4}\pi + \frac{3}{2}\alpha\right)$ Represent	$z = 2 \sqrt{2} \cos \alpha \cdot \sin \left(\frac{\pi}{4} + 2\alpha \right)$
рариант 5	Вариант 4
$y = \frac{\sin 2\alpha + \sin 5\alpha - \sin 3\alpha}{\cos \alpha + 1 - 2\sin^2 2\alpha}$	$y = \frac{\sin 2\alpha + \sin 5\alpha - \sin 3\alpha}{\cos \alpha - \cos 3\alpha + \cos 5\alpha}$
$\cos \alpha + 1 - 2\sin^2 2\alpha$	
$z = 2\sin\alpha$	$z = tg 3\alpha$
Вариант 5	Вариант 6
$y = 1 - \frac{1}{4}\sin^2 2\alpha + \cos 2\alpha$	$y = \cos \alpha + \cos 2\alpha + \cos 6\alpha + \cos 7\alpha$
7	$z = 4\cos\frac{\alpha}{2} \cdot \cos\frac{5}{2}\alpha \cdot \cos 4\alpha$
$z = \cos^2 \alpha + \cos^4 \alpha$	Z Z
Вариант 7	Вариант 8
$y = \cos^2\left(\frac{3}{8}\pi - \frac{\alpha}{4}\right) - \cos^2\left(\frac{11}{8}\pi + \frac{\alpha}{4}\right)$	$y = 2 \cdot \sin^2(3\pi - 2\alpha) \cos^2(5\pi + 2\alpha)$
$\begin{pmatrix} y - \cos \left(8 & 4 \right) & \cos \left(8 & 4 \right) \end{pmatrix}$	$z = \frac{1}{4} - \frac{1}{4} \sin\left(\frac{5}{2}\pi - 8\alpha\right)$
$z = \frac{\sqrt{2}}{2} \sin \frac{\alpha}{2}$	$\begin{pmatrix} 2 & 4 & 4 & 3 & 4 & 3 & 4 & 4 & 4 & 4 & 4$
Вариант 9	Вариант 10
$y = (\cos \alpha - \cos \beta)^2 - (\sin \alpha - \sin \beta)^2$	$y = \cos^4 a + \sin^2 b + \frac{1}{4} \sin^2 2a - 1$
$z = -4 \cdot \sin^2 \frac{\alpha - \beta}{2} \cdot \cos(\alpha + \beta)$	$z = \sin(b+a) \cdot \sin(b-a)$

Продолжение табл.1.1

Вариант 11	Вариант 12
$1-2\sin^2\alpha$	$y = \frac{\sin 4\alpha}{1 + \cos 4\alpha} \cdot \frac{\cos 2\alpha}{1 + \cos 2\alpha}$
$y = \frac{1 - 2\sin^2\alpha}{1 + \sin 3\alpha}$	$y = \frac{1+\cos 4\alpha}{1+\cos 2\alpha}$
$1 - tg \alpha$	(3)
$z = \frac{1 - tg \alpha}{1 + tg \alpha}$	$z = ctg\left(\frac{3}{2}\pi - \alpha\right)$
Вариант 13	Вариант 14
$y = \frac{\sin \alpha + \cos(2\beta - \alpha)}{\cos \alpha - \sin(2\beta - \alpha)}$	$y = \frac{1}{4} \cdot (\sin(\alpha + \beta - \gamma) - \sin(\beta + \gamma - \alpha) +$
	$+\sin(\gamma+\alpha-\beta)-\sin(\alpha+\beta+\gamma)$
$z = \frac{1 + \sin 2\beta}{\cos 2\beta}$	$z = \sin \alpha \cdot \cos \beta \cdot \cos \gamma$
Вариант 15	Вариант 16
$y = \frac{\sqrt{2b+2}\sqrt{b^2-4}}{\sqrt{b^2-4}+b+2}$	$y = \frac{x^2 + 2x - 3 + (x+1) \cdot \sqrt{x^2 - 9}}{x^2 + 2x - 3 + (x-1) \cdot \sqrt{x^2 - 9}}$
	$x^2 + 2x - 3 + (x - 1) \cdot \sqrt{x^2 - 9}$
$z = \frac{1}{\sqrt{b+2}}$	$z = \sqrt{\frac{x+3}{x-3}}$
Вариант 17	Вариант 18
$y = \frac{1}{4} \cdot [\cos(\alpha + \beta - \gamma) + \cos(\beta + \gamma - \alpha) +$	$y = \frac{3 tg \alpha - tg^3 \alpha}{1 - 3 tg^2 \alpha}$
$+\cos(\gamma+\alpha-\beta)+\cos(\alpha+\beta+\gamma)$	
$z = \cos \alpha \cdot \cos \beta \cdot \cos \gamma$	$z = tg 3\alpha$
	Вариант 20
$y = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$	Вариант 20 $y = \left(\frac{1+a+a^2}{2a+a^2} + 2 - \frac{1-a+a^2}{2a-a^2}\right)^{-1} \cdot (5-2a^2)$
Вариант 19	Вариант 20 $y = \left(\frac{1+a+a^2}{2a+a^2} + 2 - \frac{1-a+a^2}{2a-a^2}\right)^{-1} \cdot (5-2a^2)$ $z = \frac{4-a}{2}$
$y = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$	$y = \left(\frac{1+a+a^2}{2a+a^2} + 2 - \frac{1-a+a^2}{2a-a^2}\right)^{-1} \cdot (5-2a^2)$
Вариант 19 $y = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$ $z = \frac{1 - \cos \alpha}{\sin \alpha}$	$y = \left(\frac{1+a+a^2}{2a+a^2} + 2 - \frac{1-a+a^2}{2a-a^2}\right)^{-1} \cdot (5-2a^2)$ $z = \frac{4-a}{2}$ Вариант 22
Вариант 19 $y = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$ $z = \frac{1 - \cos \alpha}{\sin \alpha}$ Вариант 21	$y = \left(\frac{1+a+a^2}{2a+a^2} + 2 - \frac{1-a+a^2}{2a-a^2}\right)^{-1} \cdot (5-2a^2)$ $z = \frac{4-a}{2}$ Bapuaht 22 $y = \frac{4 tg \alpha - 4 tg^3 \alpha}{1-6 tg^2 \alpha + tg^4 \alpha}$
Вариант 19 $y = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$ $z = \frac{1 - \cos \alpha}{\sin \alpha}$ Вариант 21 $y = \frac{1}{8} (\cos 4\alpha + 4 \cos 2\alpha + 3)$	$y = \left(\frac{1+a+a^2}{2a+a^2} + 2 - \frac{1-a+a^2}{2a-a^2}\right)^{-1} \cdot (5-2a^2)$ $z = \frac{4-a}{2}$ Вариант 22
Bapuart 19 $y = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$ $z = \frac{1 - \cos \alpha}{\sin \alpha}$ Bapuart 21 $y = \frac{1}{8}(\cos 4\alpha + 4\cos 2\alpha + 3)$ $z = \cos^4 \alpha$	$y = \left(\frac{1+a+a^2}{2a+a^2} + 2 - \frac{1-a+a^2}{2a-a^2}\right)^{-1} \cdot (5-2a^2)$ $z = \frac{4-a}{2}$ Bapuaht 22 $y = \frac{4 tg \alpha - 4 tg^3 \alpha}{1-6 tg^2 \alpha + tg^4 \alpha}$ $z = tg 4\alpha$ Bapuaht 24
Bapuaht 19 $y = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$ $z = \frac{1 - \cos \alpha}{\sin \alpha}$ Bapuaht 21 $y = \frac{1}{8}(\cos 4\alpha + 4\cos 2\alpha + 3)$ $z = \cos^4 \alpha$ Bapuaht 23 $y = \frac{1}{8}(\cos 4\alpha - 4\cos 2\alpha + 3)$	$y = \left(\frac{1 + a + a^{2}}{2a + a^{2}} + 2 - \frac{1 - a + a^{2}}{2a - a^{2}}\right)^{-1} \cdot (5 - 2a^{2})$ $z = \frac{4 - a}{2}$ Bapuaht 22 $y = \frac{4 tg \alpha - 4 tg^{3} \alpha}{1 - 6 tg^{2} \alpha + tg^{4} \alpha}$ $z = tg 4\alpha$ Bapuaht 24 $y = \frac{\cos \alpha + \sin \alpha}{\cos \alpha - \sin \alpha}$
ΒαρυαΗΤ 19 $y = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$ $z = \frac{1 - \cos \alpha}{\sin \alpha}$ ΒαρυαΗΤ 21 $y = \frac{1}{8} (\cos 4\alpha + 4 \cos 2\alpha + 3)$ $z = \cos^4 \alpha$ ΒαρυαΗΤ 23 $y = \frac{1}{8} (\cos 4\alpha - 4 \cos 2\alpha + 3)$ $z = \sin^4 \alpha$	$y = \left(\frac{1 + a + a^{2}}{2a + a^{2}} + 2 - \frac{1 - a + a^{2}}{2a - a^{2}}\right)^{-1} \cdot (5 - 2a^{2})$ $z = \frac{4 - a}{2}$ Bapuaht 22 $y = \frac{4 tg \alpha - 4 tg^{3} \alpha}{1 - 6 tg^{2} \alpha + tg^{4} \alpha}$ $z = tg 4\alpha$ Bapuaht 24 $y = \frac{\cos \alpha + \sin \alpha}{\cos \alpha - \sin \alpha}$ $z = tg 2\alpha + \sec 2\alpha$
Bapuaht 19 $y = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$ $z = \frac{1 - \cos \alpha}{\sin \alpha}$ Bapuaht 21 $y = \frac{1}{8} (\cos 4\alpha + 4 \cos 2\alpha + 3)$ $z = \cos^4 \alpha$ Bapuaht 23 $y = \frac{1}{8} (\cos 4\alpha - 4 \cos 2\alpha + 3)$ $z = \sin^4 \alpha$ Bapuaht 25	$y = \left(\frac{1 + a + a^{2}}{2a + a^{2}} + 2 - \frac{1 - a + a^{2}}{2a - a^{2}}\right)^{-1} \cdot (5 - 2a^{2})$ $z = \frac{4 - a}{2}$ Bapuaht 22 $y = \frac{4 tg \alpha - 4 tg^{3} \alpha}{1 - 6 tg^{2} \alpha + tg^{4} \alpha}$ $z = tg 4\alpha$ Bapuaht 24 $y = \frac{\cos \alpha + \sin \alpha}{\cos \alpha - \sin \alpha}$
ΒαρυαΗΤ 19 $y = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$ $z = \frac{1 - \cos \alpha}{\sin \alpha}$ ΒαρυαΗΤ 21 $y = \frac{1}{8} (\cos 4\alpha + 4 \cos 2\alpha + 3)$ $z = \cos^4 \alpha$ ΒαρυαΗΤ 23 $y = \frac{1}{8} (\cos 4\alpha - 4 \cos 2\alpha + 3)$ $z = \sin^4 \alpha$	$y = \left(\frac{1+a+a^{2}}{2a+a^{2}} + 2 - \frac{1-a+a^{2}}{2a-a^{2}}\right)^{-1} \cdot (5-2a^{2})$ $z = \frac{4-a}{2}$ Bapuaht 22 $y = \frac{4 tg \alpha - 4 tg^{3} \alpha}{1-6 tg^{2} \alpha + tg^{4} \alpha}$ $z = tg 4\alpha$ Bapuaht 24 $y = \frac{\cos \alpha + \sin \alpha}{\cos \alpha - \sin \alpha}$ $z = tg 2\alpha + \sec 2\alpha$ Bapuaht 26