Contents

2 First Chapter

CONTENTS

Chapter 1

Philosopherers

```
(1.5)
                             \forall y (<, S) := \forall_{x,y \in S} (x < y \lor x = y \lor y < x)
                              \forall (<, S) := \forall_{x,y,z \in S} ((x < y \land y < z)) \implies x < z)
          (<,S) := OrderTrichotomy(<,S) \land OrderTransitivity(<,S)
(1.7)
                         O(E, S, <) := Order(<, S) \land E \subset S \land \exists_{\beta \in S} \forall_{x \in E} (x \le \beta)
                          (E, S, <) := Order(<, S) \land E \subset S \land \exists_{\beta \in S} \forall_{x \in E} (\beta \le x)
                     (\beta, E, S, <) := Order(<, S) \land E \subset S \land \beta \in S \land \forall_{x \in E} (x \le \beta)
                      (\beta, E, S, <) := Order(<, S) \land E \subset S \land \beta \in S \land \forall_{x \in E} (\beta \le x)
        \forall (\alpha, E, S, <) := UpperBound(\alpha, E, S, <) \land \forall_{\gamma} (\gamma < \alpha \implies \neg UpperBound(\gamma, E, S, <))
GLP(\alpha, E, S, <) := LowerBound(\alpha, E, S, <) \land \forall_{\beta} (\alpha < \beta \implies \neg LowerBound(\beta, E, S, <))
(1.10)
               \mathsf{operty}(S,<) := \forall_E \Big( \big(\emptyset \neq E \subset S \land Bounded Above(E,S,<) \big) \implies \exists_{\alpha \in S} \big( LUB(\alpha,E,S,<) \big) \Big)
\overline{GLBProperty}(S,<) := \forall_E \Big( \big( \emptyset \neq E \subset S \land Bounded Below(E,S,<) \big) \implies \exists_{\alpha \in S} \big( \overline{GLB}(\alpha,E,S,<) \big) \Big)
                                                              LUBProperty(S, <) \implies GLBProperty(S, <)
   (1) LUBProperty(S, <) \implies ...
      (1.1) \ (\emptyset \neq B \subset S \land Bounded Below(B, S, <)) \implies \dots
          (1.1.1) Order(\langle S \rangle \land \exists_{\delta' \in S} (LowerBound(\delta', B, S, \langle S \rangle))
          (1.1.2) |B| = 1 \implies ...
             (1.1.2.1) \ \exists_{u'}(u' \in B) \ \blacksquare \ u := choice(\{u'|u' \in B\}) \ \blacksquare \ B = \{u\}
             (1.1.2.2) \quad \mathbf{GLB}(u, B, S, <) \quad \blacksquare \quad \exists_{\epsilon_0 \in S} \left( \mathbf{GLB}(\epsilon_0, B, S, <) \right)
          (1.1.3) |B| = 1 \implies \exists_{\epsilon_0 \in S} (GLB(\epsilon_0, B, S, <))
          (1.1.4) |B| \neq 1 \implies \dots
             (1.1.4.1) \ \forall_{E} \Big( \big( \emptyset \neq E \subset S \land Bounded Above(E, S, <) \big) \implies \exists_{\alpha \in S} \big( LUB(\alpha, E, S, <) \big) \Big)
             (1.1.4.2) L := \{s \in S | LowerBound(s, B, S, <)\}
             (1.1.4.3) |B| > 1 \land OrderTrichotomy(<, S) | \exists \exists_{b_1' \in B} \exists_{b_0' \in B} (b_0' < b_1')
             (1.1.4.4) \ b_1 := choice\Big(\{b_1' \in B | \exists_{b_0' \in B}(b_0' < b_1')\}\Big) \ \blacksquare \neg LowerBound(b_1, B, S, <)
             (1.1.4.5) b_1 \notin L \ \blacksquare \ L \subset S
             (1.1.4.6) \quad \delta := choice(\{\delta' \in S | LowerBound(\delta', B, S, <)\}) \quad \blacksquare \quad \delta \in L \quad \blacksquare \quad \emptyset \neq L
                                                                                                                                                                                                         from: 1.1.4.5, 1.1.4.6
             (1.1.4.7) \emptyset \neq L \subset S
```

$(1.1.4.8) \ \forall_{y \in L} \left(LowerBound(y, B, S, <) \right) \ \blacksquare \ \forall_{y \in L} \forall_{x \in B} (y \le x)$	from: LowerBound, 1.1.4.2 wts: 1.1.4.10
$(1.1.4.9) \ \forall_{x \in B} \Big(x \in S \land \forall_{y \in L} (y \le x) \Big) \ \blacksquare \ \forall_{x \in B} \Big(U \operatorname{pperBound}(x, L, S, <) \Big)$	from: UpperBound
$(1.1.4.10) \ \exists_{x \in S} (UpperBound(x, L, S, <)) \ \blacksquare BoundedAbove(L, S, <)$	
$(1.1.4.11) \emptyset \neq L \subset S \land Bounded Above(L, S, <)$	from: 1.1.4.7, 1.1.4.10
$(1.1.4.12) \ \exists_{\alpha' \in S} \left(\underline{LUB}(\alpha', L, S, <) \right) \ \blacksquare \ \alpha := choice \left(\left\{ \alpha' \in S \left(\underline{LUB}(\alpha', L, S, <) \right) \right\} \right)$	from: 1.1.4.1 wts: 1.1.4.21
$(1.1.4.13) \ \forall_x (x \in B \implies UpperBound(x, L, S, <))$	from: 1.1.4.9 wts: 1.1.4.17
$(1.1.4.14) \ \forall_x \left(\neg UpperBound(x, L, S, <) \implies x \notin B \right)$	
$(1.1.4.15) \gamma < \alpha \implies \dots$	wts: 1.1.4.16
$(1.1.4.15.1) \neg UpperBound(\gamma, L, S, <) \blacksquare \gamma \notin B$	from: LUB, 1.1.4.12, 1.1.4.14
$(1.1.4.16) \gamma < \alpha \implies \gamma \notin B \blacksquare \gamma \in B \implies \gamma \ge \alpha$	
$(1.1.4.17) \ \forall_{\gamma \in B} (\alpha \le \gamma) \ \blacksquare \ LowerBound(\alpha, B, S, <)$	from: LowerBound
$(1.1.4.18) \alpha < \beta \implies \dots$	wts: 1.1.4.19
$(1.1.4.18.1) \forall_{y \in L} (y \le \alpha < \beta) \blacksquare \forall_{y \in L} (y \ne \beta)$	from: LUB, 1.1.4.12, 1.1.4.18
$(1.1.4.18.2) \beta \notin L \blacksquare \neg LowerBound(\beta, B, S, <)$	from: 1.1.4.2
$(1.1.4.19) \alpha < \beta \implies \neg LowerBound(\beta, B, S, <) \blacksquare \forall_{\beta \in S} \left(\alpha < \beta \implies \neg LowerBound(\beta, B, S, <)\right)$	
$(1.1.4.20) LowerBound(\alpha, B, S, <) \land \forall_{\beta \in S} (\alpha < \beta \implies \neg LowerBound(\beta, B, S, <))$	from: 1.1.4.17, 1.1.4.19
$(1.1.4.21) GLB(\alpha, B, S, <) \blacksquare \exists_{\epsilon_1 \in S} \left(GLB(\epsilon_1, B, S, <) \right)$	
$(1.1.5) B \neq 1 \implies \exists_{\epsilon_1 \in S} (GLB(\epsilon_1, B, S, <))$	
$(1.1.6) \left(B = 1 \implies \exists_{\epsilon_0 \in S} \left(GLB(\epsilon_0, B, S, <) \right) \right) \land \left(B \neq 1 \implies \exists_{\epsilon_1 \in S} \left(GLB(\epsilon_1, B, S, <) \right) \right)$	from: 1.1.3, 1.1.5
$(1.1.7) (B = 1 \lor B \ne 1) \implies \exists_{\epsilon \in S} (GLB(\epsilon, B, S, <)) \blacksquare \exists_{\epsilon \in S} (GLB(\epsilon, B, S, <))$	
$(1.2) \ \left(\emptyset \neq B \subset S \land Bounded Below(B, S, <)\right) \implies \exists_{\epsilon \in S} \left(GLB(\epsilon, B, S, <)\right)$	
$(1.3) \ \forall_{B} \Big(\big(\emptyset \neq B \subset S \land Bounded Below(B, S, <) \big) \implies \exists_{\epsilon \in S} \big(GLB(\epsilon, B, S, <) \big) \Big)$	
(1.4) GLBProperty(S, <)	
$(2) LUBProperty(S, <) \implies GLBProperty(S, <)$	

(1.14)

AdditiveCancellation $(x + y = x + z) \implies y = z$

(1)
$$v = 0 + v = (x + (-x)) + v = ((-x) + x) + v = (-x) + (x + v) = ...$$

from: Field

(2) (-x) + (x + z) = ((-x) + x) + z = (x + (-x)) + z = 0 + z = z

AdditiveIdentityUniqueness $(x + y = x) \implies y = 0$

1) x + y - x - 0 + x - x + 0 from: Field

(2)
$$v = 0$$
 from: AdditiveCancellation

 $(x + y = 0) \implies y = -x$

(1)
$$x + y = 0 = x + (-x)$$

(2)
$$v = -r$$
 from: AdditiveCancellation

(1)
$$0 = x + (-x) = (-x) + x \quad \blacksquare \quad 0 = (-x) + x$$

(2)
$$x = -(-x)$$
 from: AdditiveInverseUniqueness

(1.15)

MultiplicativeCancellation
$$(x \neq 0 \land x * y = x * z) \implies y = z$$

Multiplicative Identity Uniqueness
$$(x \neq 0 \land x * y = x) \implies y = 1$$

MultiplicativeInverseUniqueness
$$(x \neq 0 \land x * y = 1) \implies y = 1/x$$
 —

DoubleReciprocal
$$(x \neq 0) \implies x = 1/(1/x)$$
 —

(1.16)

$$\boxed{ \textbf{Domination} } \quad 0 * x = 0$$

(1)
$$0 * x = (0 + 0) * x = 0 * x + 0 * x$$
 $0 * x = 0 * x + 0 * x$ from: Field

(2)
$$0 * x = 0$$
 from: AdditiveIdentityUniqueness

omination $(x \neq 0 \land y \neq 0) \implies x * y \neq 0$

$$(1) (x \neq 0 \land y \neq 0) \implies \dots$$

$$(1.1) (x * y = 0) \Longrightarrow \dots$$

$$(1.1.1) \quad \mathbb{1} = \mathbb{1} * \mathbb{1} = \left(x * (1/x)\right) * \left(y * (1/y)\right) = (x * y) * \left((1/x) * (1/y)\right) = \mathbb{0} * \left((1/x) * (1/y)\right) = \mathbb{0}$$

$$(1.1.2) \quad \mathbb{1} = 0 \land \mathbb{1} \neq 0 \quad \blacksquare \perp$$

$$(1.2) \quad (x * y = 0) \implies \bot \quad \blacksquare \quad x * y \neq 0$$

$$(2) (x \neq 0 \land y \neq 0) \implies x * y \neq 0$$

(-x) * y = -(x * y) = x * (-y)

(1)
$$x * y + (-x) * y = (x + -x) * y = 0 * y = 0$$
 $x * y + (-x) * y = 0$ wts: 2

(2)
$$(-x) * y = -(x * y)$$

(3)
$$x * y + x * (-y) = x * (y + -y) = x * 0 = 0$$
 $x * y + x * (-y) = 0$ wts: 4

$$(3) x + y + x + (3) = x + (3) = 3$$

NegativeMultiplication
$$(-x)*(-y) = x*y$$

(1)
$$(-x)*(-y) = -(x*(-y)) = -(-(x*y)) = x*y$$

(1.17)

$$\begin{aligned} & \textit{Ordered Field}(F,+,*,<) := \left(\begin{array}{ccc} \textit{Field}(F,+,*) & \land & \textit{Order}(<,F) & \land \\ \forall_{x,y,z \in F}(y < z \implies x + y < x + z) & \land \\ \forall_{x,y \in F} \left((x > 0 \land y > 0) \implies x * y > 0 \right) \end{array} \right) \end{aligned}$$

(1.18) $x > 0 \iff -x < 0$


```
OrderedField(\mathbb{Q}, +, *, <)
                 (K, F, +, *) := Field(F, +, *) \wedge K \subset F \wedge Field(K, +, *)
                                  (K, F, +, *, <) := Ordered Field(F, +, *, <) \land K \subset F \land Ordered Field(K, +, *, <)
        (\alpha) := \emptyset \neq \alpha \subset \mathbb{Q}
          \mathbf{R} := \mathbb{R} := \{ \alpha \in \mathbb{Q} | CutI(\alpha) \land CutII(\alpha) \land CutIII(\alpha) \}
                  | \text{laryl} \mid (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q
   (1) \ (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies \dots
                                                                                                                                                                                                                                             from: CutII, 1
      (1.1) \ \forall_{p' \in \alpha} \forall_{q' \in \mathbb{Q}} (q' < p' \implies q' \in \alpha)
      (1.2) \quad q 
      (1.3) (q \notin \alpha) \Longrightarrow \dots
          (1.3.1) q \ge p
          (1.3.2) \quad (q = p) \implies (p \in \alpha \land p \notin \alpha) \implies \bot \quad \blacksquare \quad q \neq p
          (1.3.3) \quad q \ge p \land q \ne p \quad \blacksquare \quad p < q
                                                                                                                                                                                                                                                   from: 1
      (1.4) \quad q \notin \alpha \implies p < q \quad \blacksquare \quad p < q
   (2) \ (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q
                                (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha
   (1) \ (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies \dots
      (1.1) \ \forall_{s' \in \alpha} \forall_{r' \in \mathbb{Q}} (r' < s' \implies r' \in \alpha)
      (1.2) \quad s \in \alpha \implies (r \in \mathbb{Q} \implies (r < s \implies r \in \alpha)) \quad \blacksquare \quad s \in \alpha \implies r \in \alpha
      (1.3) \quad r \notin \alpha \implies s \notin \alpha \quad \blacksquare \quad s \notin \alpha
   (2) (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha
\langle R(\alpha, \beta) := \alpha, \beta \in \mathbb{R} \land \alpha \subset \beta
                                        OrderTrichotomy(\mathbb{R}, < R)
   (1) (\alpha, \beta \in \mathbb{R}) \implies \dots
     (1.1) \ \neg (\alpha < R\beta \lor \alpha = \beta) \implies \dots
                                                                                                                                                                                                                                             from: <R, 1.1
          (1.1.1) \alpha \not\subset \beta \land \alpha \neq \beta
      (1.2) \ \neg(\alpha < R\beta \lor \alpha = \beta) \implies \beta < R\alpha
   (2) (\alpha, \beta \in \mathbb{R}) \implies (\alpha < R\beta \vee \alpha = \beta \vee \alpha < R\beta)
   (3) \forall_{\alpha,\beta \in \mathbb{R}} (\alpha < R\beta \vee \alpha = \beta \vee \alpha < R\beta)
   (4) OrderTrichotomy(\mathbb{R}, < R)
                                        OrderTransitivity(\mathbb{R}, < R)
   (1) (\alpha, \beta, \gamma \in \mathbb{R}) \implies \dots
      (1.1) 123123
   (2) \ (\alpha, \beta, \gamma \in \mathbb{R}) \implies ((\alpha < R\beta \land \beta < R\gamma) \implies \alpha < R\gamma)
   (3) \ \forall_{\alpha,\beta,\gamma \in \mathbb{R}} \left( (\alpha < R\beta \land \beta < R\gamma) \implies \alpha < R\gamma \right)
   (4) OrderTransitivity(\mathbb{R}, \langle R)
                 Order(\langle R, \mathbb{R})
```

 $\exists_{\mathbb{R}} (LUBProperty(\mathbb{R}, <) \land OrderedSubfield(\mathbb{Q}, \mathbb{R}, +, *, <))$

(1) 123123

TODO: - name all properties - hyperlink all definitions ???

Chapter 2

First Chapter

- (1) First
 - (1.1) Second
- (1.2) Third
- (2) Fourth

This will be an empty chapter and I will put some text here

$$\sum_{i=0}^{\infty} a_i x^i \tag{2.1}$$

The equation 2.1 shows a sum that is divergent. This formula will later be used in the page ??.

For further references see Something Linky or go to the next url: http://www.sharelatex.com or open the next file File.txt It's also possible to link directly any word or any sentence in your document. supwithitSup With It Theorem If you read this text, you will get no information. Really? Is there no information?

For instance this sentence. supwithit