Intervention Target Estimation in the Presence of Latent Variables

Rensselaer

Burak Varici Ali Tajer Rensselaer Polytechnic Institute

Karthikeyan Shanmugam Prasanna Sattigeri IBM Research AI

uai2022

Motivation

- Directed Acyclic Graphs (DAG): encode cause-effect relationships
- Causally insufficient systems: unobserved confounders
- Maximal Ancestral Graphs (MAG): ancestral and confounding relationships
- **Interventions**: forced changes on target variables

Motivation and Applications

Fault localization:

- Causal model: set of loosely coupled services
- Vulnerable to unwanted changes, e.g., delays, attacks
- Interventions: root causes of the faulty operations

Biological applications:

- Causal model: gene regulatory networks
- Off-target genome sites can also be affected

How it helps interventional structure learning?

Interventional Structure Learning:

- Causally insufficient models are common yet understudied
- Known targets → strong assumption
- Unknown targets → not scalable methods
- Combine with scalable observational algorithms!

observational algorithm infer interventional knowledge

full information in scalable fashion

Model

• Linear Structural Equation Model: $X = [X_1, \dots, X_p]^{\top}$ and $\epsilon \sim (N, \Omega)$

$$X = B^{\top}X + \epsilon$$

- Precision matrix: $\Theta = (I B)\Omega^{-1}(I B)^{\top}$
- Models: $B^{(s)}, \epsilon^{(s)}, \Sigma^{(s)}, \Theta^{(s)}, \Omega^{(s)}$ for $s \in \{1, 2\}$
- Soft Interventions: Change in noise variations of targets.

$$\mathcal{I} \triangleq \{i : \sigma_i^{(1)} \neq \sigma_i^{(2)}\}$$

• Causally insufficient systems: \mathcal{I} is not exactly identifiable!

Augmented graph and interventional MAG

- $\operatorname{Aug}_{\mathcal{I}}$: Create a node (F) for each pair of settings, draw edges to targets (Jaber et al., NeurlPS'20)
- \mathcal{I} -MAG(\mathcal{D}): MAG of $\operatorname{Aug}_{\mathcal{I}}$, with edges $\mathcal{E}_{\mathcal{I}}$
- $\operatorname{Aug}_{\mathcal{I}}(\mathcal{D})$ and $\mathcal{I}\operatorname{-MAG}(\mathcal{D})$ exactly represents the separation statements.
- Effective intervention targets:

$$\mathcal{K} \triangleq \{i : (F, i) \in \mathcal{E}_I\}$$

• "Parents-or-spouses" of effective interventions: $ps(\mathcal{K})$

Objective

Estimate \mathcal{K} and $ps(\mathcal{K})$ from $\Sigma^{(1)}$ and $\Sigma^{(2)}$

 $(F,X),(F,W)\in\mathcal{E}_{\mathcal{I}}$

 $\mathcal{I}\text{-}\mathrm{MAG}(\mathcal{D})$

Results

- Marginal SEMs: $X_S \to (B_S, \epsilon_S)$
- Precision Difference Estimation (PDE) $\Delta_S = \Theta_S^{(1)} \Theta_S^{(2)}$.
- Lasso formulation and solution through ADMM (Jiang et al. JMLR 2018).

$$\hat{\Delta}_S = \min_{\Delta_S} \left\{ \frac{1}{2} \text{Tr}(\Delta_S^\top \hat{\Sigma}^{(1)} \Delta_S \hat{\Sigma}^{(2)}) - \text{Tr}(\Delta_S(\hat{\Sigma}^{(1)} - \hat{\Sigma}^{(2)})) + \lambda \|\Delta_S\|_1 \right\}$$

• Intervened $K \in \mathcal{K}$: ϵ_S is never invariant

• Non-intervened J : ϵ_S can be made invariant

: search for an S to make $[\Delta_S]_{J,J}=0$ Goal

: prune, then check subsets of the pruning set Steps

Theorem 1: Consider an observed node $V \in \mathbf{V}$. Then,

$$V \in \mathcal{K} \iff \nexists S \subseteq \mathbf{V} \text{ such that } [\Delta_S]_{V,V} = 0$$

Pruning set

 $\Delta = \Theta_{\mathbf{V}}^{(1)} - \Theta_{\mathbf{V}}^{(2)}$ $S_{\Delta} = \{ V \in \mathbf{V} : [\Delta]_{V,V} \neq 0 \}$ (contains \mathcal{K} , ps(\mathcal{K}))

Results for restricting search to S_{Δ}

• Consider a node $V \in S_{\Delta} \setminus \mathcal{K}$.

$$S = S_{\Delta} \cap \operatorname{an}(V) \to [\Delta_S]_{V,V} = 0$$

• Consider $K \in \mathcal{K}$ and $J \in \mathbf{V} \setminus \mathcal{K}$. Then,

$$J \in \operatorname{ps}(K) \iff \nexists S \subseteq S_{\Delta} \text{ such that } [\Delta_S]_{K,J} = 0$$

Theorem 2 (Main result): Given the true covariances $\Sigma^{(1)}$ and $\sigma^{(2)}$, the algorithm perfectly estimates

- Effective interventions K
- Parents-or-spouses of them $ps(\mathcal{K})$
- Knowing \mathcal{K} and $ps(\mathcal{K})$: all the interventional knowledge
- Markov equivalence class of \mathcal{I} -MAG's: ψ -PAG

Theorem 3 (Secondary result): Given the PAG of a MAG \mathcal{M} , the algorithm **perfectly** recovers the ψ -PAG.

Experiments

- Synthetic data: Erdös-Renyi random DAGs with graph size p
- $|\mathbf{L}| = 5$ latents, $|\mathcal{K}| = 5$ targets
- Compare to FCI-JCI123 (Mooij et al. JMLR'2020) at 5000 samples

Method	PreDITEr	FCI-JCI123	PreDITEr	FCI-JCI123
Graph size	20	20	40	40
Precision	1.0	1.0	1.0	0.96
Recall	0.83	1.0	0.87	0.96
Runtime(s)	< 1	80.9	< 1	1301.9

- Real data: Protein signaling network (Sachs et al. 2005).
- PreDITEr recovers most of the skeleton correctly (details in paper).

Conclusions

- Intervention target estimation in linear models with latent nodes.
- A consistent and scalable algorithm using precision differences.
- Furthermore, refined the observational PAG to interventional PAG.