

# 64K × 8 HIGH SPEED CMOS STATIC RAM

#### **GENERAL DESCRIPTION**

The W24512A is a high speed, low power CMOS static RAM organized as  $65536 \times 8$  bits that operates on a single 5-volt power supply. This device is manufactured using Winbond's high performance CMOS technology.

#### **FEATURES**

- High speed access time: 15/20/25/35 nS (max.)
- Low power consumption:
  - Active: 500 mW (typ.)
- Single +5V power supply
- · Fully static operation

- · All inputs and outputs directly TTL compatible
- Three-state outputs
- Available packages: 32-pin 300 mil SOJ, skinny DIP, 450 mil SOP, and standard type one TSOP

#### PIN CONFIGURATIONS



#### **BLOCK DIAGRAM**



#### PIN DESCRIPTION

| SYMBOL    | DESCRIPTION         |
|-----------|---------------------|
| A0-A15    | Address Inputs      |
| I/O1-I/O8 | Data Inputs/Outputs |
| CS1, CS2  | Chip Select Inputs  |
| WE        | Write Enable Input  |
| ŌĒ        | Output Enable Input |
| Vdd       | Power Supply        |
| Vss       | Ground              |
| NC        | No Connection       |

Publication Release Date: March 1999 Revision A7



# **TRUTH TABLE**

| CS1 | CS2 | OE | WE | MODE           | MODE I/O1- I/O8 |           |
|-----|-----|----|----|----------------|-----------------|-----------|
| Н   | X   | Χ  | X  | Not Selected   | High Z          | ISB, ISB1 |
| Х   | L   | Χ  | Х  | Not Selected   | High Z          | ISB, ISB1 |
| L   | Н   | Н  | Н  | Output Disable | High Z          | IDD       |
| L   | Н   | L  | Н  | Read           | Data Out        | IDD       |
| L   | Н   | Х  | L  | Write          | Data In         | IDD       |

## **DC CHARACTERISTICS**

## **Absolute Maximum Ratings**

| PARAMETER                       | RATING           | UNIT |
|---------------------------------|------------------|------|
| Supply Voltage to Vss Potential | -0.5 to +7.0     | V    |
| Input/Output to Vss Potential   | -0.5 to VDD +0.5 | V    |
| Allowable Power Dissipation     | 1.0              | W    |
| Storage Temperature             | -65 to +150      | °C   |
| Operating Temperature           | 0 to +70         | °C   |

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

## **Operating Characteristics**

(VDD = 5V  $\pm 10\%$ , VSS = 0V, TA = 0 to  $70^{\circ}$  C)

| PARAMETER                       | SYM. | TEST CONDITIONS                                                                                                             | MIN. | TYP. | MAX. | UNIT     |    |
|---------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------|------|------|------|----------|----|
| Input Low Voltage               | VIL  | -                                                                                                                           | -0.5 | -    | +0.8 | V        |    |
| Input High Voltage              | ViH  | -                                                                                                                           |      | +2.2 | -    | VDD +0.5 | V  |
| Input Leakage Current           | ILI  | VIN = VSS to VDD                                                                                                            |      | -10  | -    | +10      | μΑ |
| Output Leakage                  | ILO  | VI/O = VSS to VDD                                                                                                           |      | -10  | -    | +10      | μΑ |
| Current                         |      | $\overline{\text{CS1}}$ = VIH or $\overline{\text{CS2}}$ = VIL $\overline{\text{OE}}$ = VIH or $\overline{\text{WE}}$ = VIL |      |      |      |          |    |
| Output Low Voltage              | Vol  | IOL = +8.0 mA                                                                                                               | -    | -    | 0.4  | V        |    |
| Output High Voltage             | Vон  | Iон = -4.0 mA                                                                                                               | 2.4  | -    | -    | V        |    |
| Operating Power                 | IDD  | CS1 = VIL, CS2 = VIH                                                                                                        | 15   | -    | -    | 200      | mA |
| Supply Current                  |      | I/O = 0 mA, Cycle = min.                                                                                                    | 20   |      |      | 160      |    |
|                                 |      | Duty = 100%                                                                                                                 | 25   |      |      | 160      |    |
|                                 |      |                                                                                                                             | 35   |      | -    | 140      |    |
| Standby Power<br>Supply Current | ISB  | CS1 = VIH or CS2 = VIL<br>Cycle = min., Duty = 100%                                                                         |      | -    | 1    | 30       | mA |
|                                 | ISB1 | $\overline{\text{CS1}} \ge \text{VDD -0.2V or}$<br>$\text{CS2} \le 0.2\text{V}$                                             | -    | -    | 10   | mA       |    |

Note: Typical characteristics are at VDD = 5V,  $TA = 25^{\circ}$  C.



### **CAPACITANCE**

 $(VDD = 5V, TA = 25^{\circ} C, f = 1 MHz)$ 

| PARAMETER                | SYM. | CONDITIONS | MAX. | UNIT |
|--------------------------|------|------------|------|------|
| Input Capacitance        | CIN  | VIN = 0V   | 8    | pF   |
| Input/Output Capacitance | CI/O | Vout = 0V  | 10   | pF   |

Note: These parameters are sampled but not 100% tested.

### THERMAL RESISTANCE

| PARAMETER                                 | SYM. | CONDITIONS                    | MAX. | UNIT |
|-------------------------------------------|------|-------------------------------|------|------|
| Junction to Case Thermal Resistance       | θιс  | A. F. R. = 1m/sec, TA = 25° C | 20   | °C/W |
| Junction to Ambient Thermal<br>Resistance | θја  | A. F. R. = 1m/sec, TA = 25° C | 60   | °C/W |

Note: These parameters are only applied to "TSOP" and "SOJ" package types.

### **AC CHARACTERISTICS**

### **AC Test Conditions**

| PARAMETER                               | CONDITIONS                       |
|-----------------------------------------|----------------------------------|
| Input Pulse Levels                      | 0V to 3V                         |
| Input Rise and Fall Times               | 5 nS                             |
| Input and Output Timing Reference Level | 1.5V                             |
| Output Load                             | CL = 30 pF, Iон/IоL = -4 mA/8 mA |

### **AC Test Loads and Waveform**





AC Characteristics, continued

(VDD = 5V  $\pm 10\%$ , Vss = 0V, TA = 0 to 70° C)

# **Read Cycle**

| PARAMETER                          | PARAMETER |        | W245 | 12A-15 | W24512A-25 |      | W24512A-25 |      | W24512A-35 |      | UNIT |
|------------------------------------|-----------|--------|------|--------|------------|------|------------|------|------------|------|------|
|                                    |           |        | MIN. | MAX.   | MIN.       | MAX. | MIN.       | MAX. | MIN.       | MAX. |      |
| Read Cycle Time                    |           | Trc    | 15   | -      | 20         | -    | 25         | -    | 35         | -    | nS   |
| Address Access Time                |           | Таа    | -    | 15     | -          | 20   | -          | 25   | -          | 35   | nS   |
| Chip Select Access Time            | CS1       | TACS1  | -    | 15     | -          | 20   | -          | 25   | -          | 35   | nS   |
|                                    | CS2       | TACS2  | -    | 15     | -          | 20   | -          | 25   | -          | 35   | nS   |
| Output Enable to Output Valid      |           | TAOE   | -    | 7      | -          | 10   | -          | 12   | -          | 17   | nS   |
| Chip Selection to Output in Low Z  | CS1       | TcLZ1* | 3    | -      | 3          | -    | 3          | -    | 3          | -    | nS   |
|                                    | CS2       | TCLZ2* | 3    | -      | 3          | -    | 3          | -    | 3          | -    | nS   |
| Output Enable to Output in Low Z   |           | Tolz*  | 0    | -      | 0          | -    | 0          | -    | 0          | -    | nS   |
| Chip Deselection to Output in      | CS1       | TCHZ1* | -    | 7      | -          | 10   | -          | 12   | -          | 17   | nS   |
| High Z                             | CS2       | TCHZ2* | -    | 7      | -          | 10   | -          | 12   | -          | 17   | nS   |
| Output Disable to Output in High Z |           | Тонz*  | -    | 7      | -          | 1    | -          | 12   | -          | 17   | nS   |
| Output Hold from Address Change    |           | Тон    | 3    | -      | 3          | -    | 3          | -    | 3          | -    | nS   |

<sup>\*</sup> These parameters are sampled but not 100% tested.

# **Write Cycle**

| PARAMETER                          |         | SYM.  | W245 | 12A-15 | W245 | 12A-25 | W24512A-25 |      | W24512A-35 |      | UNIT |
|------------------------------------|---------|-------|------|--------|------|--------|------------|------|------------|------|------|
|                                    |         |       | MIN. | MAX.   | MIN. | MAX.   | MIN.       | MAX. | MIN.       | MAX. |      |
| Write Cycle Time                   |         | Twc   | 15   | -      | 20   | -      | 25         | -    | 35         | -    | nS   |
| Chip Selection to End of Write     | CS1     | Tcw1  | 13   | -      | 17   | -      | 18         | -    | 20         | -    | nS   |
|                                    | CS2     | Tcw2  | 13   | -      | 17   | -      | 18         | -    | 20         | -    | nS   |
| Address Valid to End of Write      |         | Taw   | 13   | -      | 17   | -      | 18         | -    | 20         | -    | nS   |
| Address Setup Time                 |         | Tas   | 0    | -      | 0    | -      | 0          | -    | 0          | -    | nS   |
| Write Pulse Width                  |         | Twp   | 10   | -      | 12   | -      | 15         | -    | 18         | -    | nS   |
| Write Recovery Time                | CS1, WE | TwR1  | 0    | -      | 0    | -      | 0          | -    | 0          | -    | nS   |
|                                    | CS2     | TWR2  | 0    | -      | 0    | -      | 0          | -    | 0          | -    | nS   |
| Data Valid to End of Write         |         | Tow   | 9    | -      | 10   | -      | 12         | -    | 15         | -    | nS   |
| Data Hold from End of Write        |         | TDH   | 0    | -      | 0    | -      | 0          | -    | 0          | -    | nS   |
| Write to Output in High Z          |         | Twnz* | -    | 8      | -    | 10     | -          | 12   | -          | 15   | nS   |
| Output Disable to Output in High Z |         | Тонz* | -    | 8      | -    | 10     | -          | 12   | -          | 15   | nS   |
| Output Active from End of Write    |         | Tow   | 0    | -      | 0    | -      | 0          | -    | 0          | -    | nS   |

<sup>\*</sup> These parameters are sampled but not 100% tested.



### **TIMING WAVEFORMS**

# Read Cycle 1

## (Address Controlled)



# Read Cycle 2

## (Chip Select Controlled)



# Read Cycle 3

## (Output Enable Controlled)





Timing Waveforms, continued

## Write Cycle 1

## (OE Clock)



### Write Cycle 2

### (OE = VIL Fixed)



#### Notes:

- 1. During this period, I/O pins are in the output state, so input signals of opposite phase to the outputs should not be applied.
- 2. The data output from Dout are the same as the data written to DIN during the write cycle.
- 3. Dout provides the read data for the next address.
- 4. Transition is measured  $\pm 500$  mV from steady state with CL = 5 pF. This parameter is guaranteed but not 100% tested.



### **ORDERING INFORMATION**

| PART NO.    | ACCESS<br>TIME (nS) | OPERATING<br>CURRENT<br>MAX. (mA) | STANDBY<br>CURRENT<br>MAX. (mA) | PACKAGE                |
|-------------|---------------------|-----------------------------------|---------------------------------|------------------------|
| W24512AK-15 | 15                  | 200                               | 10                              | 300 mil skinny DIP     |
| W24512AK-20 | 20                  | 160                               | 10                              | 300 mil skinny DIP     |
| W24512AK-25 | 25                  | 160                               | 10                              | 300 mil skinny DIP     |
| W24512AK-35 | 35                  | 140                               | 10                              | 300 mil skinny DIP     |
| W24512AJ-15 | 15                  | 200                               | 10                              | 300 mil SOJ            |
| W24512AJ-20 | 20                  | 160                               | 10                              | 300 mil SOJ            |
| W24512AJ-25 | 25                  | 160                               | 10                              | 300 mil SOJ            |
| W24512AJ-35 | 35                  | 140                               | 10                              | 300 mil SOJ            |
| W24512AS-15 | 15                  | 200                               | 10                              | 450 mil SOP            |
| W24512AS-20 | 20                  | 160                               | 10                              | 450 mil SOP            |
| W24512AS-25 | 25                  | 160                               | 10                              | 450 mil SOP            |
| W24512AS-35 | 35                  | 140                               | 10                              | 450 mil SOP            |
| W24512AT-15 | 15                  | 200                               | 10                              | standard type one TSOP |
| W24512AT-20 | 20                  | 160                               | 10                              | standard type one TSOP |
| W24512AT-25 | 25                  | 160                               | 10                              | standard type one TSOP |
| W24512AT-35 | 35                  | 140                               | 10                              | standard type one TSOP |

#### Notes:

<sup>1.</sup> Winbond reserves the right to make changes to its products without prior notice.

<sup>2.</sup> Purchasers are responsible for performing appropriate quality assurance testing on products intended for use in applications where personal injury might occur as a consequence of product failure.



#### **PACKAGE DIMENSIONS**

### 32-pin SOJ



### 32-pin SO Wide Body





Package Dimensions, continued

## 32-pin TSOP



### 32-pin P-DIP Skinny (300 mil)





#### **VERSION HISTORY**

| VERSION | DATE      | PAGE | DESCRIPTION                            |
|---------|-----------|------|----------------------------------------|
| A7      | Mar. 1999 | ı    | Arrange access time for 15/20/25/35 nS |



#### Headquarters

No. 4, Creation Rd. III,

Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5770066 FAX: 886-3-5792647 http://www.winbond.com.tw/ Voice & Fax-on-demand: 886-2-7197006

#### **Taipei Office**

11F, No. 115, Sec. 3, Min-Sheng East Rd., Taipei, Taiwan TEL: 886-2-7190505 FAX: 886-2-7197502

Winbond Electronics (H.K.) Ltd. Rm. 803, World Trade Square, Tower II,

Rm. 803, World Trade Square, Tower II 123 Hoi Bun Rd., Kwun Tong, Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064 Winbond Electronics North America Corp. Winbond Memory Lab. Winbond Microelectronics Corp. Winbond Systems Lab. 2730 Orchard Parkway, San Jose, CA 95134, U.S.A.

TEL: 1-408-9436666 FAX: 1-408-9436668

Note: All data and specifications are subject to change without notice.