

$$I(J^P) = 1(\frac{1}{2}^+)$$
 Status: ***

TECN COMMENT

Created: 5/30/2017 17:22

COURANT 63 and ALFF 65, using $\Sigma^0 \to \Lambda e^+ e^-$ decays (Dalitz decays), determined the Σ^0 parity to be positive, given that J=1/2 and that certain very reasonable assumptions about form factors are true. The results of experiments involving the Primakoff effect, from which the Σ^0 mean life and $\Sigma^0 \to \Lambda$ transition magnetic moment come (see below), strongly support J=1/2.

Σ^0 MASS

The fit uses Σ^+ , Σ^0 , Σ^- , and Λ mass and mass-difference measurements.

VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID)	TECN	COMMENT
1192.642±0.024 OUR FI	Γ				
• • • We do not use the	following	data for averages,	fits, lir	nits, etc	. • • •
$1192.65 \pm 0.020 \pm 0.014$	3327	¹ WANG	97	SPEC	$\Sigma^0 o \Lambda \gamma o$
					$(p\pi^{-})(e^{+}e^{-})$
¹ This WANG 97 result	is redund	ant with the $arSigma^0$ -/	1 mass-	differenc	
		$m_{\Sigma^-} - m_{\Sigma^0}$			
\/ALLIE (NA \/)	TVTC	DOCUMENT ID	-	ECN C	OMMENT

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
4.807±0.035 OUR FIT			of 1.1		COMMENT
4.86 ±0.08 OUR AVE					
4.87 ± 0.12	37	DOSCH	65	HBC	
5.01 ± 0.12	12	SCHMIDT	65	HBC	See note with Λ mass
4.75 ± 0.1	18	BURNSTEIN	64	HBC	

$m_{\Sigma^0} - m_{\Lambda}$

. 0.505 = 0.0=0 0 0				
$76.966 \pm 0.020 \pm 0.013$	3327	WANG	97	SPEC $\Sigma^0 o \Lambda \gamma o$
				$(p\pi^{-})(e^{+}e^{-})$
• • • We do not use th	e following o	data for averages	s, fits,	, limits, etc. • • •
76.23 ± 0.55	109	COLAS	75	HLBC $\Sigma^0 o arLambda \gamma$
76.63 ± 0.28	208	SCHMIDT	65	HBC See note with Λ mass

76.959 ± 0.023 OUR FIT

Σ^0 MEAN LIFE

These lifetimes are deduced from measurements of the cross sections for the Primakoff process $\Lambda \to \Sigma^0$ in nuclear Coulomb fields. An alternative expression of the same information is the Σ^0 - Λ transition magnetic moment given in the following section. The relation is $(\mu_{\Sigma} \Lambda/\mu_N)^2 \tau = 1.92951 \times 10^{-19}$ s (see DEVLIN 86).

$VALUE (10^{-20} \text{ s})$	DOCUMENT ID		TECN	COMMENT
7.4±0.7 OUR EVALUATION	Using $\mu_{\sum \Lambda}$ (see the	e abov	/e note).	
$6.5^{+1.7}_{-1.1}$	² DEVLIN	86	SPEC	Primakoff effect
$7.6 \pm 0.5 \pm 0.7$	³ PETERSEN	86	SPEC	Primakoff effect
• • • We do not use the follow	ving data for average	s, fits,	, limits, e	etc. • • •
$5.8 \!\pm\! 1.3$	² DYDAK	77	SPEC	See DEVLIN 86
² DEVLIN 86 is a recalculation made in that work	on of the results of D	YDAK	77 rem	oving a numerical approx-

 $^{^3\}mbox{An additional uncertainty of the Primakoff formalism is estimated to be <math display="inline"><5\%.$

$|\mu(\Sigma^0 o \Lambda)|$ TRANSITION MAGNETIC MOMENT

See the note in the Σ^0 mean-life section above. Also, see the "Note on Baryon Magnetic Moments" in the Λ Listings.

$VALUE(\mu_N)$	DOCUMENT ID		TECN	COMMENT
1.61±0.08 OUR AVERAGE				
$1.72^{igoplus 0.17}_{-0.19}$	⁴ DEVLIN	86	SPEC	Primakoff effect
$1.59\!\pm\!0.05\!\pm\!0.07$	⁵ PETERSEN	86	SPEC	Primakoff effect
• • • We do not use the following	g data for average	s, fits	, limits,	etc. • • •
$1.82^{+0.25}_{-0.18}$	⁴ DYDAK	77	SPEC	See DEVLIN 86

⁴ DEVLIN 86 is a recalculation of the results of DYDAK 77 removing a numerical approximation made in that work

Σ^0 DECAY MODES

	Mode	Fraction (Γ_j/Γ)	Confidence level
$\overline{\Gamma_1}$	$\Lambda\gamma$	100 %	
Γ_2	$\Lambda\gamma\gamma$	< 3 %	90%
Γ_3	$\Lambda e^+ e^-$	[a] 5×10^{-3}	

[a] A theoretical value using QED.

Σ^0 branching ratios

$\Gamma(\Lambda\gamma\gamma)/\Gamma_{total}$					Γ_2/Γ
VALUE	CL%	DOCUMENT I	D	TECN	
<0.03	90	COLAS	75	HLBC	

HTTP://PDG.LBL.GOV Page 2 Created: 5/30/2017 17:22

 $_5$ imation made in that work. 5 An additional uncertainty of the Primakoff formalism is estimated to be <2.5%.

 $\Gamma(\Lambda e^+e^-)/\Gamma_{total}$ See COURANT 63 and ALFF 65 for measurements of the invariant-mass spectrum of

the Dalitz pairs.

VALUE	DOCUMENT ID		COMMENT	
0.00545	FEINBERG	58	Theoretical QED calculation	

Σ^0 REFERENCES

WANG	97	PR D56 2544	M.H.L.S. Wang et al.	(BNL-E766 Collab.)
DEVLIN	86	PR D34 1626	T. Devlin, P.C. Petersen, A.	Beretvas (RUTG)
PETERSEN	86	PRL 57 949	P.C. Petersen et al.	(RUTG, WISC, \dot{M} ICH $+\dot{)}$
DYDAK	77	NP B118 1	F. Dydak <i>et al.</i>	(CERN, DORT, HEIDH)
COLAS	75	NP B91 253	J. Colas <i>et al.</i>	(ORSAY)
ALFF	65	PR 137 B1105	C. Alff et al.	(COLU, RUTG, BNL) P
DOSCH	65	PL 14 239	H.C. Dosch et al.	(HEID)
SCHMIDT	65	PR 140 B1328	P. Schmidt	(ČOLU)
BURNSTEIN	64	PRL 13 66	R.A. Burnstein et al.	(UMD)
COURANT	63	PRL 10 409	H. Courant <i>et al.</i>	(CERN, UMD) P
FEINBERG	58	PR 109 1019	G. Feinberg	(BNL)

Created: 5/30/2017 17:22