Uso de Arduino para Irrigação Automatizada de Baixo Custo

Aplicações

- Agricultura urbana
- Hortas residenciais
- Sistemas Agroflorestais

"Uso de Arduino para Irrigação Automatizada de Baixo Custo", de Saulo Machado Jacques pode ser usado, compartilhado e modificado livremente, desde que citada a fonte, segundo a Licença **Creative Commons** - Atribuição 4.0 Internacional

Potencial

- Integração com projetos de captação de água da chuva
- Uso eficiente de água
- Irrigação de pequenas e médias produções
- Adequação a necessidades e condições climáticas específicas de diferentes regiões
- Adequação a demanda hídricas de diferentes grupos vegetais

A adoção dessa técnica não visa a substituição do contato das pessoas com a terra por um sistema 100% automatizado, mas um equilíbrio entre o resgate da agricultura em grandes centros urbanos, integrado ao uso eficiente de recursos naturais.

Componentes

Arduino

Protoboard

Cabo conexão com laptop

Relé (relay)

Válvula solenóide

Mangueira

Ferramentas

Fios
Fita isolante
Chave de fenda
Estilete

Algodão (ou terra)

Componentes

O Relé (ou Relay)

Circuito elétrico usado para fechar/abrir circuito sem necessidade de intervenção

Válvula Solenoide

Válvula que se abre e se fecha respondendo ao campo magnético gerado por um solenoide ou um eletroímã

Módulo RTC

Relógio de tempo real

Bateria que garante autonomia para fornecer informações de segundo, minutos, dia, data, mês e ano.

Medindo a Umidade Usando Arduino

O sensor utilizado funciona como um resistor que varia em relação à quantidade de água no solo: quanto mais água, maior condutividades e menor resistência.

Resultados obtidos com os sensores: Resistência

Alta concentração de água → Menores valores de output Baixa concentração de água → Maiores valores de output

Lendo a Umidade do Solo com Arduino

Arquivo: esquema1_automatizada.ino

Detectando Baixa Umidade do Solo

Arquivo: esquema2_led.ino


```
int val_umid = 0; // sensor de umidade
int umidade=0;

void setup() {
   Serial.begin(9600);
}

void led(int state) {
   digitalWrite(8, state);
   }
}
```



```
void loop() {
 umidade = analogRead(val_umid);
//intervalo dos resultados brutos entre seca e
úmido
 umidade = constrain(umidade, 400, 1023);
//convertendo os resultados em porcentagem
de umidade (0 e 100%)
 umidade = map(umidade, 400, 1023, 100, 0);
 Serial.println(umidade);
 if (umidade < 40) {
 led(HIGH); }
 else {
 led(LOW); }
delay(2000);
```

Detectando Baixa Umidade do Solo & Automatizando o Sistema

Arquivo: esquema3_automatizada.ino

Usando Tempo Para Controlar a Rega

Arquivo: esquema4_tempo_de_rega.ino

Incluindo os Dados do RTC

Arquivo: esquema5_RTC.ino


```
// Carrega a biblioteca virtuabotixRTC
#include <virtuabotixRTC.h>
//Sensor de umidade
int val_umid = 0;
int umidade=0;
// Valvula solenoide
int solenoide = 8; // ativar led quando seco
// Determina os pinos ligados ao modulo
// myRTC(clock, data, rst)
virtuabotixRTC myRTC(10, 9, 8);
const int H1 = 17; // hora medida 1
const int M1 = 07; // minuto medida 1
const int H2 = 17; // hora medida 2
const int M2 = 11; // minuto medida 2
// Denfinindo umidade limite e tempo de rega
const int umidade min = 40; // 80%
```

int TempoRega = 10000; //10 secs operando

```
void setup() {
    Serial.begin(9600);

//certificar que a solenoide inicia deligada (LOW)
    digitalWrite(solenoide, LOW);

//definir solenoide como saida
    pinMode(solenoide, OUTPUT);
}
```

```
void loop()
{
// Ler as informacoes do CI
   myRTC.updateTime();
   imprime_tempo();

int hora = myRTC.hours;
   int minutos = myRTC.minutes;

// verifica se chegou a hora de ler a umidade
   if ((hora == H1 && minutos == M1) || (hora == H2 && minutos == M2) )
{
        Serial.println("medindo...");
}
```

```
// ler umidade
  umidade = analogRead(val_umid);
//intervalo entre seca e úmido
  umidade = constrain(umidade,400,1023);
// convertendo em %
  umidade = map(umidade, 400, 1023, 100, 0);
  imprime_umidade();
// verificar se a umidade está abaixo do minimo
  if (umidade < umidade_min ) {</pre>
   Serial.println("abrindo válvula...");
   digitalWrite(solenoide, HIGH);
   delay(TempoRega);
   Serial.println("fechando valvula...");
   digitalWrite(solenoide, LOW);
  } // fim do if da umidade
```

```
void imprime_umidade() {
  Serial.print("Umidade : ");
  Serial.print(umidade);
  Serial.println("%");
}
```

```
void imprime_tempo() {
  // Imprime as informacoes no serial monitor
  Serial.print("Data : ");
  Serial.print(myRTC.dayofmonth);
  Serial.print("/");
  Serial.print(myRTC.month);
  Serial.print("/");
  Serial.print(myRTC.year);
  Serial.print(" ");
  Serial.print(" Hora : ");
```

```
// Adiciona um 0 caso o valor da hora seja <10
 if (myRTC.hours < 10)
  Serial.print("0");
 Serial.print(myRTC.hours);
 Serial.print(":");
 // Adiciona um 0 caso o valor dos minutos seja <10
 if (myRTC.minutes < 10)
  Serial.print("0");
 Serial.print(myRTC.minutes);
 Serial.print(":");
 // Adiciona um 0 caso o valor dos segundos seja <10
 if (myRTC.seconds < 10)
  Serial.print("0");
 Serial.println(myRTC.seconds);
```