

Al Developers Practice

Tokenization

תהליך חלוקה של משפט לstokens, שלב לפני הtransformer.

basic_tokenizer.py

השתמשו בטוקנייזר bert-base-uncased, ופרקו משפט לtokens

לאחר מכן, תרכיבו חזרה את הtokens לאחר משפט. השתמשו בספריית

compare_tokenizer.py

השתמשו בטוקנייזרים שונים על משפט זהה. מה ההבדלים ביניהם?

bert-base-uncased, roberta-base, xlm-roberta-base

Model	Tokenizer Type	Approach
bert-base-uncased	WordPiece	Greedy, deterministic merging of the most frequent subwords, using likelihood based on training corpus
roberta-base	BPE (Byte-Pair Encoding)	Starts with characters, repeatedly merges the most frequent adjacent character pairs
xlm-roberta-base	SentencePiece	Trains on raw text using a Unigram Language Model, chooses token splits probabilistically for highest likelihood segmentation, with no pre-tokenization

TF-IDF

מדידת חשיבות מילים בתוך מסמך. TF = Term Frequency IDF = Inverse Document Frequency

Term Frequency (TF)

$$TF(t,d) = \frac{Apperance\ count\ of\ word\ t\ on\ document\ d}{Amount\ of\ words\ in\ d}$$

למשל, במסמך b של 100 מילים, אם המילה "פלאפל" מופיעה 5 פעמים:

$$TF("$$
פלאפל", $d) = \frac{5}{100} = 0.05$

Inverse Document Frequency (IDF)

$$IDF(t,D) = \log(\frac{Total\ number\ of\ documents\ in\ corpus\ D}{Amount\ of\ documents\ containing\ the\ word\ t})$$

למשל, בקורפוס D של 300 כתבות אוכל, אם המילה "פלאפל" מופיעה ב3 כתבות :

$$IDF("$$
פלאפל", $D) = \log\left(\frac{300}{3}\right) = \log(100) = 2$

Inverse Document Frequency (IDF)

לעומת זאת, באותו קורפוס של 300 כתבות אוכל, המילה "אוכל" מופיעה ב299 כתבות:

$$IDF("אוכל", D) = \log\left(\frac{300}{299}\right) = 0.00145$$

Inverse Document Frequency (IDF)

ככל שהIDF יותר קטן, זה אומר שהמילה נפוצה יותר בקורפוס. במקרה שלנו: - הIDF של "פלאפל" נחשב יחסית גדול, משמע המילה נדירה יחסית בקורפוס. - הIDF של "אוכל" קטן מאוד (שואף ל0), משמע המילה נפוצה בקורפוס.

$$IDF("אוכל",D) = 0.00145$$
 $IDF("אוכל",D) = 2$

*מה קורה אם המילה מופיעה בכל מסמך בקורפוס?

TF-IDF

את הTF-IDF נחשב על ידי מכפלה של הTF בTDF ב

$$TF - IDF(t, d, D) = TF(t, d) \times IDF(t, D)$$

נחשב את הTF-IDF עבור הדוגמאות שראינו (נניח שהמילה "אוכל" מופיעה גם היא 5 פעמים במאמר שבחרנו):

$$TF - IDF("פלאפל", d, D) = 2 x 0.05 = 0.1$$

$$TF - IDF("אוכל", d, D) = 0.00145 \ x \ 0.05 = 0.00007$$

tfidf_test.py

נשתמש בTfidfVectorizer מתוך sklearn תיצרו רשימת מחרוזות (כל מחרוזת תהיה מסמך, הרשימה היא הקורפוס שלנו). תחשבו את הTF-IDF עבור כל מילה במסמכים, והציגו את התוצאות.

tfidf_search.py

ניקח רשימה של מחרוזות, ונבצע חיפוש של מחרוזת עלינו למצוא את המסמך הכי רלוונטי query. למחרוזת query.

.cosine-similarity1 tf-idfב נשתמש ב

NextTokenPredict.py

נשתמש במודל GPT-2 על מנת לחזות משפטים על סמך תחילתם. נשתמש בספריית transformers

Prompt Engineering לוגול

1 – Zero-Shot, One-Shot, Few-Shot

Prompt Engineering לוגול

2 – Prompt Tuning

