

Artificial Intelligence Qualifying Exam

Alli Nilles

October 9, 2017

University of Illinois at Urbana-Champaign

• We have low-level planning mostly figured out

- We have low-level planning mostly figured out
 - Even in real time: dynamic replanning, Robot Motion Planning on a Chip

- We have low-level planning mostly figured out
 - Even in real time: dynamic replanning, Robot Motion Planning on a Chip
- More than ever, robots "just work"

- We have low-level planning mostly figured out
 - Even in real time: dynamic replanning, Robot Motion Planning on a Chip
- More than ever, robots "just work"
- Now, how to make robots work with humans?

- We have low-level planning mostly figured out
 - Even in real time: dynamic replanning, Robot Motion Planning on a Chip
- More than ever, robots "just work"
- Now, how to make robots work with humans?

- We have low-level planning mostly figured out
 - Even in real time: dynamic replanning, Robot Motion Planning on a Chip
- More than ever, robots "just work"
- Now, how to make robots work with humans?

Why Do We Care?

Event Date	Event Description
01/17/2017	Employee Is Struck By Robot Arm And Sustains Fractured Stern
06/16/2013	Employee Is Struck By Axis Arm< Later Dies
03/07/2013	Maintenance Worker Is Struck And Killed By Robot
12/15/2012	Robot Crushes And Kills Worker Inside Robot Work Cell
11/29/2012	Employee Suffers Head Injures In Fall On Energized Track
08/02/2011	Employee Is Killed When Caught In Equipment
07/21/2009	Employee Is Killed By Robotic Palletizer
05/13/2007	Employee Dies After Being Struck By Robotic Arm

1,2

¹Gear Patrol ²US DOL

What is Needed?

A better notion of what is **optimal**: encode models of human cognition into our planners and controllers!

Background

Task Planning: planning over a finite, often discrete, series of *actions*

³See Leslie Kaelbling's talk next week!

Background

Task Planning: planning over a finite, often discrete, series of *actions*

May include jointly doing state estimation, motion planning, etc,³ but here we assume the actions "just work"

³See Leslie Kaelbling's talk next week!

Background

Task Planning: planning over a finite, often discrete, series of actions

May include jointly doing state estimation, motion planning, etc,³ but here we assume the actions "just work"

³See Leslie Kaelbling's talk next week!

Background: Communicating Through Action

predictability vs. legibility⁴

HRI started in 2006, with 147 attendees, and in 2015 had 364 attendees

135/834 IROS 2016 papers had "human" in the title or keywords

⁴[1], Dragan et al 13 HRI

Background: Communicating Through Action

- predictability vs. legibility⁴
- explicability⁵

HRI started in 2006, with 147 attendees, and in 2015 had 364 attendees

135/834 IROS 2016 papers had "human" in the title or keywords

⁴[1], Dragan et al 13 HRI

⁵[2], Zhang et al 17 ICRA

Background: Communicating Through Action

- predictability vs. legibility⁴
- explicability⁵
- expressiveness: Amy LaViers RAD Lab⁶

HRI started in 2006, with 147 attendees, and in 2015 had 364 attendees

135/834 IROS 2016 papers had "human" in the title or keywords

⁴[1], Dragan et al 13 HRI

⁵[2], Zhang et al 17 ICRA

⁶[3], Bai, Dahl, LaViers 16 IROS

Approach

 Need computable model of what humans predict robots will do after observing the robot and knowing the task

Approach

- Need computable model of what humans predict robots will do after observing the robot and knowing the task
- Given this, we can estimate the probability that a human will be able to predict the rest of a robot's plan, given the goal and the first t steps of the robot's plan

Approach

- Need computable model of what humans predict robots will do after observing the robot and knowing the task
- Given this, we can estimate the probability that a human will be able to predict the rest of a robot's plan, given the goal and the first t steps of the robot's plan
- Optimize plans so that the first t steps make the rest of the plan maximally predictable

Definitions

t-predictability given a feasible plan $a=(a_1,\ldots,a_T)$, t-predictability is the probability that an observer can correctly infer (a_{t+1},\ldots,a_T) after observing (a_1,\ldots,a_t) and knowing the goal G. $\mathcal{P}_t(a)=P(a_{t+1},\ldots,a_T|S,G,a_1,\ldots,a_t)$

Definitions

t-predictability given a feasible plan $a = (a_1, \ldots, a_T)$, t-predictability is the probability that an observer can correctly infer (a_{t+1}, \ldots, a_T) after observing (a_1, \ldots, a_t) and knowing the goal G. $\mathcal{P}_t(a) = P(a_{t+1}, \ldots, a_T | S, G, a_1, \ldots, a_t)$

t-predictable planner a planner which generates the plan maximizing t-predictability out of all feasible plans. $a^* \text{ such that } a^* = \arg\max_{a \in \mathcal{A}} \mathcal{P}_t(a)$

8

How Do Humans Predict What Robots Will Do?

For "waypoint visiting" task, assume humans will predict shortest path with some noise.

path length cost $c: \mathcal{A} \times \mathcal{S} \times \mathcal{G} \rightarrow \mathbb{R}^+$

$$P(\mathbf{a}|S,G) = \frac{e^{-\beta c(\mathbf{a},S,G)}}{\sum_{\tilde{a}\in\mathcal{A}} e^{-\beta c(\tilde{a},S,G)}}$$

 $\beta > 0$, set to 1 for both experiments

Optimization Using This Model

$$\boldsymbol{a}^* = \arg\max_{\boldsymbol{a} \in \mathcal{A}} \frac{e^{-\beta c(\boldsymbol{a}_{t+1:T}, S_{\boldsymbol{a}}^t, G)}}{\sum_{\tilde{\boldsymbol{a}}_{t+1:T} \in \mathcal{A}_{\boldsymbol{a}}^t} e^{-\beta c(\tilde{\boldsymbol{a}}_{t+1:T}, S_{\boldsymbol{a}}^t, G)}}$$

Where we assume cost is linearly separable, and factor out $e^{-\beta c(a_{1:t},S,S_a^t)}$ from the top and bottom expressions.

Optimization Using This Model

$$\boldsymbol{a}^* = \arg\max_{\boldsymbol{a} \in \mathcal{A}} \frac{e^{-\beta c(\boldsymbol{a}_{t+1:T}, \boldsymbol{S}_{\boldsymbol{a}}^t, G)}}{\sum_{\tilde{\boldsymbol{a}}_{t+1:T} \in \mathcal{A}_{\boldsymbol{a}}^t} e^{-\beta c(\tilde{\boldsymbol{a}}_{t+1:T}, \boldsymbol{S}_{\boldsymbol{a}}^t, G)}}$$

Where we assume cost is linearly separable, and factor out $e^{-\beta c(a_{1:t},S,S_a^t)}$ from the top and bottom expressions.

Search over all $a_{1:t}$ and find $a_{t+1:T}$ which is **most predictable**.

Optimization Using This Model

$$\textbf{\textit{a}}^* = \arg\max_{\textbf{\textit{a}} \in \mathcal{A}} \frac{e^{-\beta c(\textbf{\textit{a}}_{t+1:T}, S^t_{\textbf{\textit{a}}}, G)}}{\sum_{\tilde{\textbf{\textit{a}}}_{t+1:T} \in \mathcal{A}^t_{\textbf{\textit{a}}}} e^{-\beta c(\tilde{\textbf{\textit{a}}}_{t+1:T}, S^t_{\textbf{\textit{a}}}, G)}}$$

Where we assume cost is linearly separable, and factor out $e^{-\beta c(a_{1:t},S,S_a^t)}$ from the top and bottom expressions.

Search over all $a_{1:t}$ and find $a_{t+1:T}$ which is **most predictable**.

Use branch-and-bound technique to reduce from factorial to exponential time.

t-Predictability

Sample t=0,1,2-predictable trajectories, and their theoretical predictability. Figure 2 from $\ [4]$

Online Experiment

Training Phase: click on targets, guiding human avatar to visit all targets with the shortest path

Online Experiment

Training Phase: click on targets, guiding human avatar to visit all targets with the shortest path

primes people to think of shortest path: influences how they may predict what the robot does

Online Experiment

Training Phase: click on targets, guiding human avatar to visit all targets with the shortest path

primes people to think of shortest path: influences how they may predict what the robot does

Experimental Phase: watch robot visit k = 0, 1, 2 targets. Then click on targets to predict which ones robot will visit next. Then show robot's actual path.

Environment Generation

Create 270 randomly generated layouts with five or six targets.

Environment Generation

Create 270 randomly generated layouts with five or six targets.

Eliminate environments where optimal sequence is the same for all planners: down to 176 layouts.

Environment Generation

Create 270 randomly generated layouts with five or six targets.

Eliminate environments where optimal sequence is the same for all planners: down to 176 layouts.

This planner is most useful in ambiguous settings

Model Validity: high correlation (r = 0.87) between theoretical predictability and participant accuracy

Model Validity: high correlation (r = 0.87) between theoretical predictability and participant accuracy

All hypotheses (mostly) supported:

H1: When showing 1 target, the 1-predictable robot will result in lower error than the optimal baseline (similar for 2 targets).

Model Validity: high correlation (r = 0.87) between theoretical predictability and participant accuracy

All hypotheses (mostly) supported:

H1: When showing 1 target, the 1-predictable robot will result in lower error than the optimal baseline (similar for 2 targets).

H2: The error rate will be lowest when t equals the number of targets shown, k.

Model Validity: high correlation (r = 0.87) between theoretical predictability and participant accuracy

All hypotheses (mostly) supported:

H1: When showing 1 target, the 1-predictable robot will result in lower error than the optimal baseline (similar for 2 targets).

H2: The error rate will be lowest when t equals the number of targets shown, k.

H3: The percieved performance of the robots will be highest when t = k.

Error rate and Levenshtein distance for user-predicted paths in online experiment. Figure 4 in [4].

Preferences

User preferences over time. Figure 5 in [4].

Preferences

User preferences over time. Figure 5 in [4].

"This robot mostly starts out in the worst way and then goes in weird directions but eventually starts to make sense."

In-Person Experiments

Results

H1: The 1-predictable robot will result in more successful trials than the optimal baseline.

1-predictable robot leads to more successful completions ($z=3.34,\ p<0.001$)

H2: Users will prefer working with the 1-predictable robot.

86% of participants prefer the predictable robot

Results

H1: The 1-predictable robot will result in more successful trials than the optimal baseline.

1-predictable robot leads to more successful completions ($z=3.34,\ p<0.001$)

H2: Users will prefer working with the 1-predictable robot.

86% of participants prefer the predictable robot

 first step toward making predictable action sequences, not just predictable goals

- first step toward making predictable action sequences, not just predictable goals
 - very important for safety and comfort!

- first step toward making predictable action sequences, not just predictable goals
 - very important for safety and comfort!
- statistically significant evidence that this planner affects how humans predict what robots will do

- first step toward making predictable action sequences, not just predictable goals
 - very important for safety and comfort!
- statistically significant evidence that this planner affects how humans predict what robots will do
- collaboration with psychologists, thorough statistical analysis of experiments

Difficult to model human predictions for more complicated tasks

- Difficult to model human predictions for more complicated tasks
 - People have different cultural expectations of how to complete tasks (such as cooking)

- Difficult to model human predictions for more complicated tasks
 - People have different cultural expectations of how to complete tasks (such as cooking)
 - Does not address "learning curve": people are also modelling how the robot works!

- Difficult to model human predictions for more complicated tasks
 - People have different cultural expectations of how to complete tasks (such as cooking)
 - Does not address "learning curve": people are also modelling how the robot works!
- Tractability: need to compute over all possible remaining action sequences

- Difficult to model human predictions for more complicated tasks
 - People have different cultural expectations of how to complete tasks (such as cooking)
 - Does not address "learning curve": people are also modelling how the robot works!
- Tractability: need to compute over all possible remaining action sequences
- In-person experiment is narrow in scope (but needs to be, to show effects of planner)

• want a trajectory ξ from start S to goal G

- want a trajectory ξ from start S to goal G
- approximation requires maximizing the determinant of the Hessian

- want a trajectory ξ from start S to goal G
- approximation requires maximizing the determinant of the Hessian
- instead, could integrate with homotopy-aware path sampling techniques

- want a trajectory ξ from start S to goal G
- approximation requires maximizing the determinant of the Hessian
- instead, could integrate with homotopy-aware path sampling techniques

- want a trajectory ξ from start S to goal G
- approximation requires maximizing the determinant of the Hessian
- instead, could integrate with homotopy-aware path sampling techniques

Sample paths generated for the robot (red disk) avoiding the obstacles (black shapes). Figure 13 in *Real-Time Informed Path Sampling for Motion Planning Search* by Ross Knepper and Matt Mason, IJRR 2012 [5]

Thank you!

r munroe

References

- [1] A. D. Dragan, K. C. Lee, and S. S. Srinivasa, "Legibility and predictability of robot motion," in *Human-robot interaction (hri)*, 2013 8th acm/ieee international conference on, 2013, pp. 301–308.
- [2] Y. Zhang, S. Sreedharan, A. Kulkarni, T. Chakraborti, H. H. Zhuo, and S. Kambhampati, "Plan explicability and predictability for robot task planning," in *Robotics and automation (icra)*, 2017 ieee international conference on, 2017, pp. 1313–1320.
- [3] L. Bai, J. Bellona, L. Dahl, and A. LaViers, "Design of perceptually meaningful quality in robotic motion," in Workshop on artistically skilled robots, ieee/rsj international conference on intelligent robots and systems, 2016.
- [4] J. Fisac, C. Liu, J. B. Hamrick, S. Sastry, J. K. Hedrick, T. L. Griffiths, and A. D. Dragan, "Generating plans that predict themselves," in Workshop on the algorithmic foundations of robotics (wafr), 2016.
- [5] R. A. Knepper and M. T. Mason, "Real-time informed path sampling for motion planning search," *The International Journal of Robotics Research*, vol. 31, no. 11, pp. 1231–1250, 2012.