PRŮVODCE HODINOU III

V této části budou studenti řešit zejména úkoly, které jsou spojeny s projektem automatického skleníku. Tento projekt ukazuje, jak provázat několik elektronických komponent dohromady a jak je také naprogramovat. Studenti by měli využít všechny doposud nabyté vědomosti z předchozích lekcí. Úkoly by měli řešit převážně samostatně, bez nutné větší účasti vyučujícího.

PŘÍPRAVA

Co bude v této hodině potřeba?

- ① Součásti obvodu deska Arduino, kontaktní pole, termistor, servomotor, stejnosměrný motor, tranzistor, usměrňovací dioda, rezistor 10kΩ, vodiče typu zástrčka-zástrčka.
- 2 Osobní počítač pro studenty s nainstalovaným Arduino IDE.
- 3 Pokud je k dispozici, tak dataprojektor.
- 4 Prezentace k lekci 6.
- (5) Pracovní listy pro studenty.
- 6 Poskládaný model skleníku.

Výrobu konstrukce stolního skleníku by měli studenti realizovat doma, podle přiloženého postupu, uvedeného na konci lekce. Konstrukce je opravdu jednoduchá a na hodinu by měli přinést hotový výrobek, do kterého zakomponují elektronické části pro jeho ovládání.

1. KROK 5 minut

Na začátku hodiny řekněte studentům, že se jedná zejména o opakování z přechozích lekcí a využijí vše co se již naučili. Rozdejte studentům sady Arduino a ať vyberou potřebné součástky.

2. KROK 🕞 5 minut

Prvním krokem bude sestavení obvodu s termistorem. Studenti by si měli najít schéma zapojení z předchozích hodin. To platí i pro další kroky týkající se zapojení el. komponent a programovacího kódu.

ÚKOL PRO STUDENTY

→ Sestavte první část ovládání skleníku. Zapojte termistor, který bude snímat teplotu ve skleníku.

TYP

Termistor by měl být připojený pomocí vodičů mimo kontaktní pole, protože bude uvnitř skleníku. Termistor může být přilepený páskou ke květináči a vodiče vyvedeny mimo skleník.

3. KROK 5 minut

ÚKOL PRO STUDENTY

→ Implementujte program, který zajistí čtení teploty z termistoru ve stupních Celsia.

TYP

Programový kód mohou studenti použít z předchozího příkladu. Tento kód obsahuje Steinhart-Hartovu rovnici. V tomto programu budou následně probíhat úpravy týkající se ovládání servomotoru a stejnosměrného motoru v závislosti na teplotě.

Ať studenti odzkouší zapojení a programový kód. Hodnoty naměřené termistorem budou zobrazovány v sériovém monitoru.

4. KROK 10 minut

V tomto kroku studenti zapojí servomotor, kterým se bude ovládat otevírání a zavírání střešního okna. Opět to může být samostatný úkol pro studenty.

ÚKOL PRO STUDENTY

- Zapojte servomotor, který bude ovládat střešní okno skleníku. Servomotor je umístěn v konstrukci skleníku.
- → Programový kód pro zjišťování teploty upravte tak, aby při dosažení vyšší teploty, než bude vámi definovaná, servomotor okno otevřel. Při poklesu teploty ve skleníku naopak servomotor okno zavře.

5. KROK 10 minut

ÚKOL PRO STUDENTY

- → Do stávajícího obvodu zapojte stejnosměrný motor, který bude sloužit ve skleníku jako větrák.
- → Upravte programový kód tak, aby se větrák zapnul a vypnul při dosažení určité teploty. Bude zapínán ve stejnou chvíli jako servomotor pro otevírání okna.

6. KROK 10 minut

Zbytek hodiny ať studenti věnují plnému zprovoznění ovládání skleníku.

OTÁZKA PRO STUDENTY

→ Jak byste stávající skleník vylepšili? Míní se tím zejména ovládání elektronických komponent.

Viz níže v dalších nápadech.

DALŠÍ NÁPADY

- → V obvodu lze nahradit termistor za čidlo teploty a vlhkosti DHT11.
- → Lze připojit také LCD displej pro zobrazení teploty a vlhkosti uvnitř skleníku.
- → Otevírání střešního okna by mohlo být plynulé, nikoliv skokové.

