

General Description

- 100% UIS Tested
- Advanced Trench Technology
- Low Gate Charge
- High Current Capability
- RoHS and Halogen-Free Compliant

Product Summary

Vps	40	V
RDS(ON),max	1.8	mΩ
lo	210	Α

Applications

- SMPS Synchronous Rectification
- DC/DC Converters
- Or-ing

TO-220 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter Rating		Units
VDS	Drain-Source Voltage 40		V
Vgs	Gate-Source Voltage	±20	V
In@Tc=25°C	Continuous Drain Current, Vcs @ 10V _{1,6}	210	А
In@Tc=100°C	Continuous Drain Current, Vcs @ 10V _{1,6}	Continuous Drain Current, Vos @ 10V _{1,6} 152	
Ірм	Pulsed Drain Current ₂	Pulsed Drain Current ₂ 400	
EAS	Single Pulse Avalanche Energy₃	400	mJ
las	Avalanche Current	40	А
Pp@Tc=25°C	Total Power Dissipation₄	178	
Тѕтс	Storage Temperature Range -55 to 150		°C
TJ	Operating Junction Temperature Range -55 to 150		°C

Thermal Data

Symbol	Parameter		Max.	Unit
Reja	Thermal Resistance Junction-Ambient 1		50	°C/W
Rejc	Thermal Resistance Junction-Case ₁		0.7	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	40			V
Dancer	Static Drain-Source On-Resistance2	Vgs=10V , Ip=20A		1.5	1.8	mΩ
RDS(ON)	Static Drain-Source On-Resistance2	Vgs=4.5V , ID=20A		2.0	2.6	
VGS(th)	Gate Threshold Voltage	Vgs=Vps , Ip =250uA	1.2	1.6	2.2	٧
Ipss	Drain-Source Leakage Current	V _{DS} =32V , V _{GS} =0V , T _J =25°C			1	uA
IDSS		V _{DS} =32V , V _{GS} =0V , T _J =55°C			5	
Igss	Gate-Source Leakage Current	Vgs=±20V, Vps=0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =20A		53		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.0		Ω
Qg	Total Gate Charge (4.5V)			45		
Qgs	Gate-Source Charge	V _{DS} =15V , V _{GS} =10V , I _D =20A		12		nC
Qgd	Gate-Drain Charge	7		18.5		
Td(on)	Turn-On Delay Time			18.5		
Tr	Rise Time	V_{DD} =15 V , V_{GS} =10 V , R_{G} =3.3 Ω ,		9		20
Td(off)	Turn-Off Delay Time	In=20A		58.5		ns
Tf	Fall Time			32		
Ciss	Input Capacitance			3972		
Coss	Output Capacitance	V _{DS} =20V , V _{GS} =0V , f=1MHz		1119		pF
Crss	Reverse Transfer Capacitance			82		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current _{1,6}	Vg=VD=0V , Force Current	-	-	150	Α
VsD	Diode Forward Voltage2	Vgs=0V , Is=1A , TJ=25°C	-	-	1.2	V

Note:

- 1. The data tested by surface mounted on a 1 inch $_2\,FR\text{-}4$ board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The EAS data shows Max. rating . The test condition is $V_{DD}=25V$, $V_{GS}=10V$, L=0.5mH, $I_{AS}=40A$
- 4.The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as $\mbox{$\rm l$_D$}$ and $\mbox{$\rm l$_DM$}$, in real applications , should be limited by total power dissipation.
- 6.Package limitation current is 210A.

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Source Drain Forward Characteristics

Fig.5 Normalized V_{GS(th)} vs T_J

Fig.2 On-Resistance vs G-S Voltage

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized RDSON vs TJ

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Switching