

Component synergy and armor protection induced superior catalytic activity and stability of ultrathin Co-Fe spinel nanosheets confined in mesoporous silica shells for ammonia decomposition reaction

Lili Huo^a, Baocang Liu^{a,b,*}, Huan Li^a, Bo Cao^a, Xiu-cui Hu^c, Xin-pu Fu^c, Chunjiang Jia^{c,**}, Jun Zhang^{a,b,*}

^a School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China

^b Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot, 010021, PR China

^c Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China

ARTICLE INFO

Keywords:

Spinel oxide nanosheets
Ammonia decomposition reaction
Component synergistic interaction
 CO_x -free H_2 production

ABSTRACT

We report the fabrication of ultrathin Co-Fe spinel oxide nanosheets with adjustable stoichiometry confined in mesoporous SiO_2 shells ($\text{Co}_x\text{Fe}_{3-x}\text{O}_4@\text{mSiO}_2$) by encapsulating Fe-Co layered double hydroxides (FeCo-LDHs) with mesoporous SiO_2 shells followed with a calcination process. In this way, the unique 2D structured $\text{Co}_x\text{Fe}_{3-x}\text{O}_4@\text{mSiO}_2$ nanosheets offers high specific surface area and intimate contact with NH_3 . The tunable stoichiometry of $\text{Co}_x\text{Fe}_{3-x}\text{O}_4$ nanosheets regulate the electron structure and thus optimize the nitrogen desorption ability. The encapsulation of mSiO₂ shells not only effectively facilitates the generation of ultrathin Co-Fe spinel oxides nanosheets with abundant active sites, but also protects $\text{Co}_x\text{Fe}_{3-x}\text{O}_4$ nanosheets from detachment and agglomeration during the NH_3 decomposition reaction. Benefiting from these advantages, the optimal $\text{Co}_{0.89}\text{Fe}_{2.11}\text{O}_4@\text{mSiO}_2$ nanosheet catalyst possesses 88% conversion of ammonia at 600 °C with a space velocity of 60 000 $\text{cm}^3 \text{g}^{-1} \text{h}^{-1}$ and maintains even 48 h without attenuation.

1. Introduction

The excessive fossil fuel depletion and concomitant environment contamination drive the development of clean and renewable energy sources. Hydrogen is generally perceived as one of the most promising substitutes [1,2]. Ammonia (NH_3) has been considered as an viable hydrogen storage medium due to its unparalleled characteristics [3–5]: (i) NH_3 possesses the high gravimetric content of 17.8 wt% and volumetric energy density of 108 $\text{kg}_{\text{H}_2} \text{m}^{-3}$ [6,7]; (ii) the transportation and storage of NH_3 can be handled easily since its liquefaction occurs under moderate conditions [5]; and (iii) producing hydrogen via NH_3 decomposition is carbon-free [8]. Therefore, NH_3 decomposition reaction has been regarded as a valuable venue to supply high quality hydrogen for fuel cell application [9–13]. Ru-based catalyst is the most active but its scarcity and high cost hinders its commercialization [14–16]. Earth-abundant and inexpensive transition metals, (e.g. Fe [5,17,18], Co [19,20], Ni [21,22], and Mo [10,11,23]) have been extensively studied

as potential alternatives for large-scale hydrogen production from NH_3 . Recently, spinel AB_2O_4 oxides have heightened concerns due to their multiple valence states and the active site of A site (A^{2+}) and B site (B^{3+}) can influence each other, which will remarkably enhance the catalytic activity during the deep oxidation [24–28]. In particular, spinel CoFe_2O_4 has been explored in multiple catalytic domains but not in catalyzing NH_3 decomposition reaction [29–31]. Thus, fabricating well-defined spinel oxide catalysts composed of tailored nanostructures is highly desired for catalyzing NH_3 decomposition.

Fascinating two-dimensional (2D) layered nanomaterials have been the focus of substantial research interest owing to their special properties [32–36]. As one of the most famous 2D materials, layered double hydroxides (LDHs) nanosheets tend to form oxides, nitrides, and carbides after thermal treatment under different atmospheres, which have great potential to be applied in various catalytic reactions [37–40]. Unfortunately, there are still limitations in practical applications, especially when being applied in high-temperature catalytic reactions

* Corresponding author at: School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.

** Corresponding author at: School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China

E-mail addresses: cebcliu@imu.edu.cn (B. Liu), cejzhang@imu.edu.cn (C. Jia), jiacj@sdu.edu.cn (J. Zhang).

like ammonia decomposition (up to 700 °C), it often encounters serious aggregation and restacking caused by the high surface energy and interlayer van der Waals force [41,42]. In view of the above-mentioned facts, it is anticipated that ultrathin mesoporous SiO₂ cladded on the surface of nanosheets may prevent nanosheets from gathering together and improve mass-transfer efficiency.

Herein, we demonstrate an approach to fabricate 2D ultrathin Co–Fe spinel oxide nanosheets encapsulated with mesoporous silica shells (Co_xFe_{3-x}O₄@mSiO₂) using FeCo-LDHs@SiO₂/CTAB hybrids as precursors. By tuning the stoichiometry of Co/Fe, the optimal NH₃ decomposition performance can be achieved on Co_{0.89}Fe_{2.11}O₄@mSiO₂ nanosheet, exhibiting as high as 88% conversion of NH₃ at 600 °C with a space velocity of 60 000 cm³ g⁻¹ h⁻¹ and 48 h durability without obvious attenuation owing to its unique 2D mesoporous structure.

2. Experimental section

2.1. Materials preparation

2.1.1. Synthesis of FeCo-LDHs

FeCo-LDHs were firstly prepared by a modified method described previously [43]. Briefly, 0.5 g of polyvinylpyrrolidone (PVP, MW = 53 000) was added into 10 mL 1.0 M of a mixed solution of Fe(NO₃)₂·9H₂O and Co(NO₃)₂·6H₂O with different molar ratios of 10:0, 8:2, 5:5, 2:8, and 0:10. The mixed solution was sonicated for 10 min and poured into a beaker containing 50 mL distilled water. Then, 20 mL of NaBH₄ solution (50 mg/mL) was added to the above solution under vigorous mechanical stirring for 6 h. Subsequently, the obtained turbid suspension was filtrated and washed by distilled water and ethanol for three times.

2.1.2. Synthesis of Co_xFe_{3-x}O₄@mSiO₂ hybrid nanosheets

Co_xFe_{3-x}O₄@mSiO₂ hybrid nanosheets with different Co/Fe molar ratios of 10:0, 8:2, 5:5, 2:8, and 0:10 were prepared via a cost efficient and simple method. Typically, 30 mg of FeCo-LDHs were dissolved in 20 mL of distilled water, then 36 mL of CTAB aqueous solution (12 mg mL⁻¹) was added and stirred at 40 °C for 0.5 h. Afterwards, 0.825 mL of TEOS was added and continuously stirred for 12 h. The solid was centrifuged and washed with deionized water before calcination at 600 °C for 3 h in air (ramp rate 2 °C min⁻¹). The bulk Co_{0.89}Fe_{2.11}O₄ catalyst was synthesized by directly calcining FeCo-LDHs with the Co/Fe molar ratio of 2:8 at 600 °C for 3 h. Co_xFe_{3-x}O₄@mSiO₂ catalysts are prepared following the similar process as those of Co_xFe_{3-x}O₄@mSiO₂ but with the mass ratios of FeCo-LDHs and TEOS fixed at 2:1, 1:1 and 1:2.

2.2. Materials characterization

XRD was performed on a PANalytical Empyrean diffractometer with Cu K α 1 radiation ($\lambda = 1.54178 \text{ \AA}$) in the Bragg angle ranging between 10° and 80°. Transmission electron microscopy (TEM) characterizations were performed on a FEI Tecnai F20 field-emission transmission electron microscope (FE-TEM). The scanning electron micrographs (SEM) were recorded with a HITACHI S4800 field-emission scanning electron microscope (FE-SEM). Surface area measurements were performed on an ASAP 2020 Brunauer–Emmett–Teller (BET) analyzer. X-ray photoelectron spectroscopy (XPS) was carried out on a ThermoESCALABXi⁺. The iron and cobalt auger lines were subtracted in Co 2p and Fe 2p XPS spectra, respectively.

Temperature-programmed desorption of N₂ (N₂-TPD) was measured on a chemisorption instrument with an online mass spectrometer. Before the N₂-TPD analysis, 1.0 g of the catalysts was pre-treated at 600 °C for 30 min and then cooled to room temperature under NH₃ flow at a flow rate of 30 mL min⁻¹. Afterwards, the flow was switched to He and purged with the same flow for 1 h. Finally, the TPD signal for fragment species of $m/z = 17$ was recorded in the temperature range from 20 to 800 °C at a rate of 10 °C min⁻¹ in a He flow.

2.3. Catalytic activity measurements

NH₃ decomposition measurements were carried out on a fixed-bed quartz tubular flow reactor with an inner diameter of 6 mm using a flow of pure NH₃. Typically, 50 mg of catalysts were loaded and heated every 10 °C from 350 to 600 °C and each temperature stabilized for 60 min under pure NH₃ at a flow rate of 19 mL min⁻¹. The effluents of N₂ and NH₃ concentrations were analysed by an online gas chromatograph equipped with a thermal conductive detector and a Porapak Q column using H₂ as the carrier gas. Steady state stability tests were also performed in the same equipment at 600 °C for 48 h with gas hourly space velocity of 60 000 cm³ g_{cat}⁻¹ h⁻¹. The apparent activation energy for NH₃ decomposition was measured using a fixed conversion of 12.5% by tuning the reaction temperature (380–460 °C) and the space velocity (9000–36 000 cm³ g_{cat}⁻¹ h⁻¹).

3. Results and discussion

3.1. Synthesis and structure of Co_xFe_{3-x}O₄@mSiO₂ catalysts

3.1.1. Synthesis process

The fabrication procedures of Co_xFe_{3-x}O₄@mSiO₂ are schematically illustrated in **Scheme 1**. Initially, FeCo-LDHs were synthesized via a simple co-precipitation method using metal cobalt and iron salts as precursors, polyvinylpyrrolidone (PVP) as modulating agent, and NaBH₄ as strong reductant, followed with the hydrolysis of tetraethyl orthosilicate (TEOS) to form mesoporous SiO₂ shells on surface of FeCo-LDHs using CTAB as a pore-generating agent. Finally, the Co_xFe_{3-x}O₄@mSiO₂ nanosheets were obtained by annealing the resulting products at 600 °C under air atmosphere. For convenience, the Co_xFe_{3-x}O₄@mSiO₂ catalysts with different Co/Fe molar ratios were denoted as Fe₂O₃@mSiO₂, Co_{0.89}Fe_{2.11}O₄@mSiO₂, Co_{1.67}Fe_{1.33}O₄@mSiO₂, Co_{2.52}Fe_{0.48}O₄@mSiO₂, and Co₃O₄@mSiO₂, as determined by EDS measurement (Table S1), respectively.

3.1.2. Phase structure, morphology, and 2D configuration

Fig. 1a displays XRD patterns of Co_xFe_{3-x}O₄@mSiO₂ catalysts with variable Co/Fe molar ratios. The characteristic diffraction peaks of Fe₂O₃@mSiO₂ are consistent with hematite α-Fe₂O₃ (JCPDS No. 85-0599), while the Co₃O₄@mSiO₂ belong to spinel Co₃O₄ (JCPDS No. 74-1656). The diffraction peaks of bimetallic Co_xFe_{3-x}O₄@mSiO₂ catalysts are associated with cubic CoFe₂O₄ (JCPDS No. 03-0864) [44]. According to the Scherrer equation, the particle size of Fe₂O₃@mSiO₂, Co_{0.89}Fe_{2.11}O₄@mSiO₂, Co_{1.67}Fe_{1.33}O₄@mSiO₂, Co_{2.52}Fe_{0.48}O₄@mSiO₂, and Co₃O₄@mSiO₂ catalysts is estimated to be 8.1, 5.6, 5.0, 6.5 and 7.8 nm, respectively. SEM images (**Fig. 1b–f**) show uniform flower-like nanosheets can be found in Co_xFe_{3-x}O₄@mSiO₂ with low Co/Fe molar ratios ($x < 1.0$) and the size of nanosheets is variable from several hundred nanometers to a few microns. However, with the increasing of Co content, the density of Co_xFe_{3-x}O₄@mSiO₂ catalysts are gradually reduced and even aggregated into large and thick nanosheets. The morphological differences of Co_xFe_{3-x}O₄@mSiO₂ catalysts with variable Co/Fe molar ratios may root in different zeta potentials of FeCo-LDHs surface, which may influence the assembled behavior of SiO₂/CTAB hybrid shells [40]. The elemental mapping analysis reveals that the Co_{0.89}Fe_{2.11}O₄@mSiO₂ catalyst owns a uniform distribution of Fe, Co, Si and O, indicating a heterostructure coupling of Co–Fe spinel oxides nanosheets and mesoporous SiO₂ shells.

TEM measurements were carried for further insight into the detailed microstructure of Co_xFe_{3-x}O₄@mSiO₂ catalysts. The Co_{0.89}Fe_{2.11}O₄@mSiO₂ display that the twisted and wrinkled nanosheets with a thickness of less than 10 nm (**Fig. 2a–c**). However, the irregular and overlapped lamellar structure can be detected in Co_{1.67}Fe_{1.33}O₄@mSiO₂ and Co_{2.52}Fe_{0.48}O₄@mSiO₂ catalysts (**Figures S1a–c** and **S2a–c**), implying that the adhesion between mesoporous SiO₂ shells and Co_xFe_{3-x}O₄ nanosheets gradually weakens with the increase of Co content. In addition, the abundant mesopores with an average size of ~3 nm disperses over the nanosheets, forming a sandwich-like structure (**Figs. 2c, S1d**

Scheme 1. Schematic illustration shows the synthetic process of $\text{Co}_x\text{Fe}_{3-x}\text{O}_4@\text{mSiO}_2$ catalysts.

and S2d) [42]. SAXRD patterns of $\text{Co}_x\text{Fe}_{3-x}\text{O}_4@\text{mSiO}_2$ catalysts show no diffraction peaks can be observed, indicating the existence of disordered mesoporous silica structures (Figure S3). The HRTEM image of

$\text{Co}_{0.89}\text{Fe}_{2.11}\text{O}_4@\text{mSiO}_2$ nanosheet reveals well-resolved lattice fringes with interplanar distances of 0.198 and 0.167 nm, corresponding to the (311) and (220) planes of CoFe_2O_4 , respectively (Fig. 2d) [44]. The

Fig. 1. (a) XRD pattern of $\text{Co}_x\text{Fe}_{3-x}\text{O}_4@\text{mSiO}_2$ catalysts with different molar ratios of Co/Fe; SEM images of (b) $\text{Fe}_2\text{O}_3@\text{mSiO}_2$, (c) $\text{Co}_{0.89}\text{Fe}_{2.11}\text{O}_4@\text{mSiO}_2$, (d) $\text{Co}_{1.67}\text{Fe}_{1.33}\text{O}_4@\text{mSiO}_2$, (e) $\text{Co}_{2.52}\text{Fe}_{0.48}\text{O}_4@\text{mSiO}_2$, and (f) $\text{Co}_3\text{O}_4@\text{mSiO}_2$ catalysts; EDX elemental mapping of (g) overlap, (h) Fe, (i) Co, (j) Si, and (k) O in $\text{Co}_{0.89}\text{Fe}_{2.11}\text{O}_4@\text{mSiO}_2$ catalyst.

Fig. 2. (a–c) TEM, (d) HRTEM, (e) STEM images the corresponding EDX elemental mapping images of Fe, Co, Si, and O in $\text{Co}_{0.89}\text{Fe}_{2.11}\text{O}_4@\text{mSiO}_2$ catalyst.

HAADF-STEM images and corresponding EDX elemental mapping images show that Fe, Co, Si, and O elements are evenly distributed within the $\text{Co}_{0.89}\text{Fe}_{2.11}\text{O}_4@\text{mSiO}_2$ nanosheets (Fig. 2e).

3.1.3. Specific surface area and porous property

N_2 adsorption–desorption technique was employed to assess the specific surface area and porous feature of $\text{Co}_x\text{Fe}_{3-x}\text{O}_4@\text{mSiO}_2$ catalysts. All $\text{Co}_x\text{Fe}_{3-x}\text{O}_4@\text{mSiO}_2$ catalysts showing a typical IV isotherm with an H1 hysteresis loop confirm the existence of mesopores [45] and average pore diameter centered at around 2.5 nm (Fig. 3). The specific surface area of $\text{Co}_x\text{Fe}_{3-x}\text{O}_4@\text{mSiO}_2$ catalysts gradually decreases with the increasing of Co content owing to their progressively thickened and overlapped lamellar structure (Table S2). The bulk $\text{Co}_{0.89}\text{Fe}_{2.11}\text{O}_4$ catalyst shows a typical type II isotherm with an H2 hysteresis, hinting its nonporous characteristic (Figure S4).

3.2. Catalytic performance of NH_3 decomposition

The NH_3 decomposition performance of a series of $\text{Co}_x\text{Fe}_{3-x}\text{O}_4@\text{mSiO}_2$ catalysts was investigated at a space velocity of $22800 \text{ cm}^3 \text{ g}_{\text{cat}}^{-1} \text{ h}^{-1}$ (Fig. 4a). The activity in terms of NH_3 conversion is highly dependent on the composition of $\text{Co}_x\text{Fe}_{3-x}\text{O}_4@\text{mSiO}_2$ catalysts and bimetallic $\text{Co}_x\text{Fe}_{3-x}\text{O}_4@\text{mSiO}_2$ exhibits the higher NH_3 conversion than

monometallic catalysts. Considering that the specific surface area is gradually decreased with the addition of Co, the enhanced catalytic activity should be originated from the increase of intrinsic activity due to the synergistic effect between Fe and Co atoms [26]. Impressively, when the Co/Fe atomic ratio of ~1:2 is offered, the NH_3 conversion achieves a maximum and nearly full conversion at temperatures as low as 550 °C.

Fig. 4b displays NH_3 conversion rate normalized by the specific surface areas at 450 °C, in which the bimetallic spinel oxides displayed superior catalytic activity to the monometallic oxides. This indicates that the construction of bimetallic spinel oxides can improve the intrinsic activity. The turnover frequency (TOF) for each active site is estimated to understand the intrinsic activity of $\text{Co}_x\text{Fe}_{3-x}\text{O}_4@\text{mSiO}_2$ with Co/Fe mole ratios ion (See the Supporting Information for the detailed calculation process). As seen in Fig. 4b and Table 1, the TOF values for bimetallic spinel oxides are higher than those of two monometallic oxides. It can be deduced that the Fe atoms partially replaced by Co atoms on an atomic scale in spinel structure have excellent intrinsic activity due to the strong coupling effects between Fe and Co atoms. Moreover, the $\text{Fe}_2\text{O}_3@\text{mSiO}_2$ shows the smaller TOF of 0.037 s^{-1} compared to that of $\text{Co}_3\text{O}_4@\text{mSiO}_2$ (0.062 s^{-1}), proving the intrinsic catalytic activity of Fe metal is inferior to Co metal in NH_3 decomposition reaction. To verify the effect of gas diffusion on activity, we

Fig. 3. (a) N_2 adsorption/desorption curves and (b) pore size distribution of $\text{Co}_x\text{Fe}_{3-x}\text{O}_4@\text{mSiO}_2$ catalysts with different molar ratios of Co/Fe.

Fig. 4. (a) Temperature-dependent NH₃ decomposition, (b) the NH₃ conversion rate normalized by the specific surface area of catalysts (red) and TOFs (blue) at 450 °C over Fe₂O₃@mSiO₂, Co_{0.89}Fe_{2.11}O₄@mSiO₂, Co_{1.67}Fe_{1.33}O₄@mSiO₂, Co_{2.52}Fe_{0.48}O₄@mSiO₂, and Co₃O₄@mSiO₂ catalysts at a GHSV of 22800 cm³ g_{cat}⁻¹ h⁻¹, (c) Temperature-dependent NH₃ decomposition of Co_{0.89}Fe_{2.11}O₄@mSiO₂ and bulk Co_{0.89}Fe_{2.11}O₄ catalysts, and (d) Arrhenius plots of Fe₂O₃@mSiO₂, Co_{0.89}Fe_{2.11}O₄@mSiO₂, and bulk Co_{0.89}Fe_{2.11}O₄ catalysts (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Table 1
Comparison of the catalytic performance of different Co_xFe_{3-x}O₄@mSiO₂ and bulk Co_{0.89}Fe_{2.11}O₄ catalysts for NH₃ decomposition at 450 °C.

Catalysts	NH ₃ Decom. Rate (mmol _{NH3} g _{cat} ⁻¹ s ⁻¹)	NH ₃ Decom. Rate (mmol _{NH3} m _{cat} ⁻² s ⁻¹ × 10 ⁻³)	Moles of active sites (mmol g ⁻¹)	TOF (s ⁻¹)
Fe ₂ O ₃ @mSiO ₂	0.056	0.108	1.53	0.037
Co _{0.89} Fe _{2.11} O ₄ @mSiO ₂	0.089	0.304	0.55	0.162
Co _{1.67} Fe _{1.33} O ₄ @mSiO ₂	0.047	0.244	0.59	0.080
Co _{2.52} Fe _{0.48} O ₄ @mSiO ₂	0.042	0.255	0.65	0.065
Co ₃ O ₄ @mSiO ₂	0.039	0.243	0.63	0.062
Bulk Co _{0.89} Fe _{2.11} O ₄	0.036	0.297	0.24	0.150

also investigated the NH₃ decomposition performance for the Co_{0.89}Fe_{2.11}O₄@mSiO₂ catalysts with different thickness of mesoporous silica shells (Figure S5). It can be seen clearly that the Co_{0.89}Fe_{2.11}O₄@mSiO₂ catalyst with the thinnest thickness of mesoporous silica shell as illustrated by TEM (Figure S6) may generate optimal gas diffusion efficiency, and thereby exhibits the highest performance among Co_{0.89}Fe_{2.11}O₄@SiO₂ catalysts.

To study the effects of the microstructure on NH₃ decomposition performance, the activity of bulk Co_{0.89}Fe_{2.11}O₄ was determined (Fig. 4c). The activity of bulk Co_{0.89}Fe_{2.11}O₄ is obviously lower than that of mesoporous Co_{0.89}Fe_{2.11}O₄@mSiO₂ under the identical conditions. This illustrates the improvement of activity in Co_{0.89}Fe_{2.11}O₄@mSiO₂ catalysts may be mainly attributed to strong coupling between Co_{0.89}Fe_{2.11}O₄ nanosheets and mSiO₂ shells. Furthermore, in order to further show the superior properties of these nanosheets catalysts, we synthesized three additional catalysts of Fe₂O₃/KIT-6, Co₃O₄/KIT-6 and CoFe₂O₄/KIT-6 with 3D mesoporous structure as characterized by XRD and TEM (Figures S7 and S8). Temperature-dependent NH₃ decomposition show that the catalytic activity of Fe₂O₃/KIT-6, Co₃O₄/KIT-6, and CoFe₂O₄/KIT-6 catalysts is obviously inferior to Fe₂O₃/mSiO₂, Co₃O₄/mSiO₂, and Co_{0.89}Fe_{2.11}O₄@mSiO₂ catalysts (Figure S9), further indicating 2D structured Co_xFe_{3-x}O₄/mSiO₂ catalysts exhibit unique advantages in comparison with those of 3D mesoporous catalysts due to high mass transfer efficiency and more accessible active sites.

The apparent activation energies were calculated using the Arrhenius equation ($\ln k = \ln A - E_a/RT$), where k is the rate value and E_a is the apparent activation energy. As presented in Fig. 4d, monometallic Fe₂O₃@mSiO₂ catalyst displays an E_a of 137.9 kJ mol⁻¹, while bimetallic Co_{0.89}Fe_{2.11}O₄@mSiO₂ catalyst decreases the activation energy by over 10 kJ mol⁻¹. This reveals that the formation of ternary cobalt iron spinel oxide can create new highly active sites [46]. However, the small difference in activation energy between bulk Co_{0.89}Fe_{2.11}O₄ (129.1 kJ mol⁻¹) and Co_{0.89}Fe_{2.11}O₄@mSiO₂ (126.4 kJ mol⁻¹) implies that they obey similar reaction pathways in NH₃ decomposition reaction. This further demonstrates that the enhanced activity of Co_{0.89}Fe_{2.11}O₄@mSiO₂ catalyst may come from the unique structural feature.

The long-term stability tests of Co_{0.89}Fe_{2.11}O₄@mSiO₂ and bulk Co_{0.89}Fe_{2.11}O₄ catalysts were examined at a given GHSV of 60000 cm³ g_{cat}⁻¹ h⁻¹ (Fig. 5a). Distinctly, the Co_{0.89}Fe_{2.11}O₄@mSiO₂ catalyst presents a NH₃ conversion leveling off when measured at 600 °C over continuous 48 h while bulk Co_{0.89}Fe_{2.11}O₄ catalyst undergoes a deactivation process. Subsequently, we calculated the reaction rate normalized by the mass of catalysts during a long-term stability test at 600 °C (Fig. 5b). The bulk Co_{0.89}Fe_{2.11}O₄ has the lower hydrogen formation rate of 0.59 mmol g⁻¹ s⁻¹ than that of 2D Co_{0.89}Fe_{2.11}O₄@mSiO₂ at the end of stability test. Long-term cycling tests (Figure S10) show that the activity recorded on Co_{0.89}Fe_{2.11}O₄@mSiO₂ catalyst is basically identical with the initial value whereas bulk Co_{0.89}Fe_{2.11}O₄

Fig. 5. (a) Stability tests of Co_{0.89}Fe_{2.11}O₄@mSiO₂ and bulk Co_{0.89}Fe_{2.11}O₄ catalysts at 600 °C with a space velocity of 60000 cm³ g_{cat}⁻¹ h⁻¹, (b) hydrogen formation rate over Co_{0.89}Fe_{2.11}O₄@mSiO₂ and bulk Co_{0.89}Fe_{2.11}O₄ catalysts during the stability test (the data acquired from the start and end of test at 48 h, 600 °C and GHSV = 60 000 cm³ g_{cat}⁻¹ h⁻¹).

Fig. 6. N₂-TPD profiles of Fe₂O₃@mSiO₂, Co_{0.89}Fe_{2.11}O₄@mSiO₂, Co_{1.67}Fe_{1.33}O₄@mSiO₂, Co_{2.52}Fe_{0.48}O₄@mSiO₂, and Co₃O₄@mSiO₂ catalysts.

shows a significant decrease in activity after four cycle tests. This suggests that the Co_{0.89}Fe_{2.11}O₄@mSiO₂ catalyst has an excellent durability even in extreme environment.

3.3. Understanding composition-dependence of catalytic activity

3.3.1. Desorption of absorbed nitrogen

The nitrogen-binding energy of transition metals (M–N) has a very significant impact on NH₃ conversion since the associative desorption of adsorbed N atoms is the rate-limiting step [47,48]. The metal–nitrogen binding energy can be reflected from the N₂ desorption temperature was evaluated by N₂-TPD. As shown in Fig. 6, the N₂ desorption temperature of Co_xFe_{3-x}O₄@mSiO₂ catalyst gradually reduces with the increase of Co content, implying the M–N bond strength decreases from Fe to Co. The strongest M–N bond for Fe₂O₃@mSiO₂ will facilitate the dissociative adsorption of NH₃ but the desorption of associative nitrogen will occur difficultly. For Co₃O₄@mSiO₂ with the weakest M–N bond, the dissociative adsorption of NH₃ on metals will hardly occur and thereby the intermediate species of NH_{2,ad} and NH_{ad} desorb easily before further dehydrogenation, leading to low catalytic activity. The Co_{0.89}Fe_{2.11}O₄@mSiO₂ catalyst with a moderate M–N bond strength exhibits the highest catalytic activity.

3.3.2. Surface active species

XPS was employed to analyze the surface elemental compositions and valence states of catalysts. The high resolution XPS spectra of Fe 2p

display the dominant Fe 2p_{3/2} and Fe 2p_{1/2} characteristic peaks with the binding energies centered at 711.0 and 724.3 eV, respectively, accompanied by two shake-up satellite peaks at ca. 718.7 and 732.3 eV (Fig. 7a), confirming that the Fe species predominately existed in the form of Fe (III) [49,50]. In the high-resolution Co 2p spectrum of Co₃O₄@mSiO₂, the spin-orbit splitting between the Co 2p_{3/2} and Co 2p_{1/2} is approximately 15.1 eV, which is consistent with that of Co₃O₄ [51,52]. For bimetallic Co_xFe_{3-x}O₄@mSiO₂ catalysts, two major peaks centered at 781.1–781.6 eV and 796.7–797.0 eV correspond to Co 2p_{3/2} and Co 2p_{1/2}, respectively. The presence of the satellite peaks at around 786.5–787.9 eV and 803.1–804.5 eV confirms that the cobalt mainly exists in the Co²⁺ state and are characteristics to spinel phase of CoFe₂O₄ [49,53]. Notably, the Fe 2p_{3/2} binding energies of bimetallic Co_xFe_{3-x}O₄@mSiO₂ catalysts exhibit the positive shifts while the Co²⁺ 2p_{3/2} signals occur negative shifts compared with those of monometallic catalyst. This implies that the charges transfer from Fe to Co and the strong electronic interaction exists between Fe and Co. Considering that the energy barrier value on metals may be affected by the electron density around metals and a appropriate electron transformation for Co_{0.89}Fe_{2.11}O₄@SiO₂ catalyst result in moderate M–N interaction, and thereby exhibits the highest NH₃ decomposition performance among Co_xFe_{3-x}O₄@SiO₂ catalysts.

3.3.3. Synergistic interaction between different components

H₂-TPR experiments were carried out to investigate the reduction behaviors and synergistic interaction between different components. The Fe₂O₃@mSiO₂ catalyst exhibits three apparent hydrogen consumption peaks at 401, 563, and 631 °C (Fig. 8a), which correspond to the reduction of Fe₂O₃ to Fe₃O₄, Fe₃O₄ to FeO and FeO to Fe° [5]. Compared with the H₂-TPR profile of Fe₂O₃@mSiO₂ catalyst, incorporating a little Co may not reshape the H₂-TPR profile but cause a shift in the peak. This can be stemmed from the presence of intimate interaction between the two reducible species Fe(III) and Co(II) as a result of generation of spinel CoFe₂O₄ phase in catalysts [49,55]. Notably, the Co_{2.52}Fe_{0.48}O₄@mSiO₂ and monometallic Co₃O₄@mSiO₂ only displays one reduction peak at low temperature, representing a tough emergence of active species of metallic Fe and Co and hence presenting a lower ammonia decomposition activity. Moreover, the Co_xFe_{3-x}O₄@mSiO₂ catalysts present identical hydrogen consumption peaks in a much higher temperature region from 700 to 900 °C, which is related to Co^{x+} and Fe^{x+} ions incorporated into the crystal lattice of silica [51,55]. The reduction peaks of bulk Co_{0.89}Fe_{2.11}O₄ are shifted to higher temperature compared to Co_{0.89}Fe_{2.11}O₄@mSiO₂ catalyst (Fig. 8b), implying that silica exerts a positive influence on the reduction of Fe(III) and Co(II) species. Moreover, the H₂-TPR profiles of bulk Co_{0.89}Fe_{2.11}O₄ catalyst return to the baseline in the temperature region above 800 °C. These results suggest the existence of a strong interaction between Fe and Co active species and mesoporous silica, which will contribute to the enhancement of catalytic activity.

Fig. 7. High-resolution XPS spectra of (a) Fe 2p and (b) Co 2p of (A) Fe₂O₃@mSiO₂, (B) Co_{0.89}Fe_{2.11}O₄@mSiO₂, (C) Co_{1.67}Fe_{1.33}O₄@mSiO₂, (D) Co_{2.52}Fe_{0.48}O₄@mSiO₂, and (E) Co₃O₄@mSiO₂ catalysts.

3.4. Structural stability of Co_xFe_{3-x}O₄@mSiO₂ catalysts

The microstructure of Co_xFe_{3-x}O₄@mSiO₂ catalysts after the catalytic reaction was characterized by TEM. Clearly, Co_xFe_{3-x}O₄ nanosheet is completely transformed into nanoparticles with an average size of ca. 3–10 nm and these nanoparticles are well encapsulated in mesoporous SiO₂ layers (Figs. 9 and S12). The HRTEM images display the interplanar distance of ~0.238 nm corresponding to the (011) planes of hexagonal Fe₂N and a lattice spacing of 0.246 nm ascribed to the (110) plane of cubic CoFe alloy (Fig. 9i). These interplanar distances are in good agreement with XRD data of the used Co_xFe_{3-x}O₄@mSiO₂ (Figure S13). In addition, some boundaries, defects, and dislocations due to the transformation of Fe₂N or FeCo alloy nanoparticles from Co_xFe_{3-x}O₄ nanosheets can be observed and they are usually considered as active sites [56]. N₂ sorption/desorption curves reveal that all the used Co_xFe_{3-x}O₄@mSiO₂ catalysts still possess obvious mesoporous features and average pore diameter centered at around 3.5 nm (Figure S14). However, the specific surface area of the used Co_xFe_{3-x}O₄@mSiO₂ catalyst sharply decreases compared with that of the fresh catalysts (Table S2). The high resolution Fe 2p and Co 2p XPS spectra demonstrate the used catalysts display the representative characteristic peaks of FeN_x (707.1/720.4 eV) and CoN_x (779.4/794.5 eV) species [57,58], further suggesting there is a phase transition for Co_xFe_{3-x}O₄@mSiO₂ catalysts after the ammonia decomposition reaction (Figure S15).

There are probably several reasons for the superior NH₃ decomposition performance of Co_xFe_{3-x}O₄@mSiO₂ catalysts. As is proposed in Scheme 2, the spinel oxides consisting of iron and cobalt cations occupying tetrahedral and octahedral gaps enrich active sites and

generate an intimate interaction exists between the two active species, which greatly benefits the improvement of catalytic activity. Then, the thin 2D layered structure offers more contact areas with reactant molecules and maximizes the mass efficiency. The presence of mesoporous silica shells not only is helpful to facilitate the transport of reaction molecules, intermediates, and products, but also prevent unwanted agglomeration of active sites and provide isolated spaces for confining the formed nitride nanoparticles with specific size during the reaction, resulting in good mechanical and catalytic stability. Finally, the Co_xFe_{3-x}O₄ nanosheets bedecked mesoporous silica with grain boundaries, defects and dislocations are considered to be the active sites and have higher catalytic capability. The synergy effects between Co_xFe_{3-x}O₄ nanosheets and mesoporous silica can further enhance the catalytic activity due to the strong bonding interaction.

4. Conclusion

In summary, 2D layered heterostructure of ultrathin Co-Fe spinel oxide nanosheets encapsulated in mesoporous SiO₂ shells have been successfully fabricated and the obtained Co_xFe_{3-x}O₄@mSiO₂ catalysts exhibit outstanding ammonia decomposition performance. In addition to the large specific surface area and the intimate Fe-Co interaction, the high performance also originates from unique mesoporous SiO₂ shells, which avoids the aggregation of Co_{0.89}Fe_{2.11}O₄ nanosheets and provides a confined space for stabilizing the formed Co-Fe nitride nanoparticles. More importantly, tuning the chemical stoichiometry of Co_xFe_{3-x}O₄ nanosheets can reasonably adjust the M-N bond strength and subsequently greatly optimize the catalytic performance. These

Fig. 8. (a) H₂-TPR profiles of (A) Fe₂O₃@mSiO₂, (B) Co_{0.89}Fe_{2.11}O₄@mSiO₂, (C) Co_{1.67}Fe_{1.33}O₄@mSiO₂, (D) Co_{2.52}Fe_{0.48}O₄@mSiO₂, and (E) Co₃O₄@mSiO₂ catalysts and H₂-TPR profiles of (b) Co_{0.89}Fe_{2.11}O₄@mSiO₂ and bulk Co_{0.89}Fe_{2.11}O₄ catalysts.

Fig. 9. TEM and HRTEM images of (a–c) $\text{Fe}_2\text{O}_3@\text{mSiO}_2$, (d–f) $\text{Co}_{0.89}\text{Fe}_{2.11}\text{O}_4@\text{mSiO}_2$, and (g–i) $\text{Co}_{2.52}\text{Fe}_{0.48}\text{O}_4@\text{mSiO}_2$ catalysts after the catalytic performance of NH_3 decomposition.

Scheme 2. The proposed mechanism for the improvement of NH_3 decomposition performance of $\text{Co}_x\text{Fe}_{3-x}\text{O}_4@\text{mSiO}_2$ catalysts.

findings are expected to provide a feasible route for fabrication of spinel oxides nanocatalysts protected by mesoporous SiO_2 shells for catalyzing various reactions.

Acknowledgments

This study was supported by grants from NSFC (21661023 and 21601096), Program of Higher-level Talents of IMU (21300-5155105) and “Grassland Talent” Program and “Grassland Talent” Innovation Team of Inner Mongolia.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:<https://doi.org/10.1016/j.apcatb.2019.04.053>.

References

- [1] J. Chow, R.J. Kopp, P.R. Portney, Energy resources and global development, *Science* 302 (2003) 1528–1531.
- [2] T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Solar energy supply and storage for the legacy and nonlegacy worlds, *Chem. Rev.* 110 (2010) 6474–6502.
- [3] F. Schüth, R. Palkovits, R. Schlögl, D.S. Su, Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition, *Energy Environ. Sci.* 5 (2012) 6278–6289.
- [4] Y. Zhang, W. Qiu, Y. Ma, Y. Luo, Z. Tian, G. Cui, F. Xie, T. L. Chen, X. Li, Sun, High-performance electrohydrogenation of N_2 to NH_3 catalyzed by multishelled hollow Cr_2O_3 microspheres under ambient conditions, *ACS Catal.* 8 (2018) 8540–8544.
- [5] Y.-Q. Gu, Z. Jin, H. Zhang, R.-J. Xu, M.-J. Zheng, Y.-M. Guo, Q.-S. Song, C.-J. Jia, Transition metal nanoparticles dispersed in an alumina matrix as active and stable catalysts for Co_x -free hydrogen production from ammonia, *J. Mater. Chem. A* 3 (2015) 17172–17180.
- [6] P. Yu, J. Guo, L. Liu, P. Wang, G. Wu, F. Chang, P. Chen, Ammonia decomposition with manganese nitride–calcium imide composites as efficient catalysts, *ChemSusChem* 9 (2016) 364–369.
- [7] X. Xu, L. Liu, P. Yu, J. Guo, X. Zhang, T. He, G. Wu, P. Chen, Mesoporous Ru/MgO prepared by a deposition-precipitation method as highly active catalyst for producing Co_x -free hydrogen from ammonia decomposition, *Appl. Catal. B: Environ.* 211 (2017) 167–175.
- [8] S. Zhou, S. Lin, H. Guo, First-principles insights into ammonia decomposition catalyzed by Ru clusters anchored on carbon nanotubes: size dependence and interfacial effects, *J. Phys. Chem. C* 122 (2018) 9091–9100.
- [9] S. Mukherjee, S.V. Devaguptapu, A. Sviripa, C.R.F. Lund, G. Wu, Low-temperature ammonia decomposition catalysts for hydrogen generation, *Appl. Catal. B: Environ.* 226 (2018) 162–181.
- [10] V. Tagliazzucca, K. Schlichte, F. Schüth, C. Weidenthaler, Molybdenum-based catalysts for the decomposition of ammonia: in situ x-ray diffraction studies, microstructure, and catalytic properties, *J. Catal.* 305 (2013) 277–289.
- [11] A. Srifa, K. Okura, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Hydrogen production by ammonia decomposition over Cs-modified $\text{Co}_3\text{Mo}_2\text{N}$ catalysts, *Appl. Catal. B: Environ.* 218 (2017) 1–8.
- [12] J.-Q. Zhong, X. Zhou, K. Yuan, C.A. Wright, A. Tadich, D. Qi, H.X. Li, K. Wu, G.Q. Xu, W. Chen, Probing the effect of the Pt–Ni–Pt(111) bimetallic surface electronic structures on the ammonia decomposition reaction, *Nanoscale* 9 (2017) 666–672.
- [13] K. Obata, K. Kishishita, A. Okemoto, K. Taniya, Y. Ichihashi, S. Nishiyama, Photocatalytic decomposition of NH_3 over TiO_2 catalysts doped with Fe, *Appl. Catal. B: Environ.* 160–161 (2014) 200–203.
- [14] S. Hajduka, V.D.B.C. Dasreddy, B. Likozar, G. Drazi, Z.C. Orela, CO_x -free hydrogen production via decomposition of ammonia over Cu–Zn-based heterogeneous catalysts and their activity/stability, *Appl. Catal. B: Environ.* 211 (2017) 57–67.
- [15] G. Li, H. Nagasaw, M. Kanazashi, T. Yoshioka, T. Tsuri, Graphene nanosheets supporting Ru nanoparticles with controlled nanoarchitectures form a high-performance catalyst for CO_x -free hydrogen production from ammonia, *J. Mater. Chem. A* 2 (2014) 9185–9192.
- [16] A.M. Karim, V. Prasad, G. Mpourmpakis, W.W. Lonergan, A.I. Frenkel, J.G. Chen, D.G. Vlachos, Correlating particle size and shape of supported Ru/ γ - Al_2O_3 catalysts with NH_3 decomposition activity, *J. Am. Chem. Soc.* 131 (2009) 12230–12239.
- [17] A.-H. Lu, J.-J. Nitz, M. Comotti, C. Weidenthaler, K. Schlichte, C.W. Lehmann, O. Terasaki, F. Schüth, Spatially and size selective synthesis of fe-based nanoparticles on ordered mesoporous supports as highly active and stable catalysts for ammonia decomposition, *J. Am. Chem. Soc.* 132 (2010) 14152–14162.
- [18] D. Varislia, C. Korkusuz, T. Dogu, Microwave-assisted ammonia decomposition reaction over iron incorporated mesoporous carbon catalysts, *Appl. Catal. B: Environ.* 201 (2017) 370–380.
- [19] L. Li, R. Jiang, W. Chu, H. Cang, H. Chen, J. Yan, Cobalt nanoparticles embedded in a porous carbon matrix as an efficient catalyst for ammonia decomposition, *Catal. Sci. Technol.* 7 (2017) 1363–1371.
- [20] J. Zhang, M. Comotti, F. Schüth, R. Schlögl, D.S. Su, Commercial Fe- or Co-containing carbon nanotubes as catalysts for NH_3 decomposition, *Chem. Commun.* 19 (2007) 1916–1918.
- [21] D.A. Hansgen, D.G. Vlachos, J.G. Chen, Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction, *Nat. Chem.* 2 (2010) 484–489.
- [22] Q. Su, L. Gu, Y. Yao, J. Zhao, W. Jia, W. Ding, C.-T. Au, Layered double hydroxides derived $\text{Ni}_x(\text{Mg}_y\text{Al}_z\text{O}_n)$ catalysts: enhanced ammonia decomposition by hydrogen spillover effect, *Appl. Catal. B: Environ.* 201 (2017) 451–460.
- [23] W. Zheng, T.P. Cotter, P. Kaghazchi, T. Jacob, B. Frank, K. Schlichte, W. Zhang, D.S. Su, F. Schüth, R. Schlögl, Experimental and theoretical investigation of molybdenum carbide and nitride as catalysts for ammonia decomposition, *J. Am. Chem. Soc.* 135 (2013) 3458–3464.
- [24] K. Li, R. Zhang, R. Gao, G.-Q. Shen, L. Pan, Y. Yao, K. Yu, X. Zhang, J.-J. Zou, Metal-defected spinel $\text{Mn}_x\text{Co}_{3-x}\text{O}_4$ with octahedral mn-enriched surface for highly efficient oxygen reduction reaction, *Appl. Catal. B: Environ.* 244 (2019) 536–545.
- [25] Q. Zhao, Z. Yan, C. Chen, J. Chen, Spinel: controlled preparation, oxygen reduction/evolution reaction application, and beyond, *Chem. Rev.* 117 (2017) 10121–10211.
- [26] X. Cao, J. Wu, C. Jin, J. Tian, P. Strasser, R. Yang, MnCo_2O_4 anchored on p-doped hierarchical porous carbon as an electrocatalyst for high-performance rechargeable $\text{Li}-\text{O}_2$ batteries, *ACS Catal.* 5 (2015) 4890–4896.
- [27] J. Xiong, Q. Wu, X. Mei, J. Liu, Y. Wei, Z. Zhao, D. Wu, J. Li, Fabrication of spinel-type $\text{Pd}_x\text{Co}_{3-x}\text{O}_4$ binary active sites on 3d ordered meso-macroporous $\text{Ce}-\text{ZrO}_2$ with enhanced activity for catalytic soot oxidation, *ACS Catal.* 8 (2018) 7915–7930.
- [28] C. Li, X. Han, F. Cheng, Y. Hu, C. Chen, J. Chen, Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis, *Nat. Commun.* 6 (2015) 7345.
- [29] Q. He, K. Rui, C. Chen, J. Yang, Z. Wen, Interconnected CoFe_2O_4 –polypyrrole nanotubes as anode materials for high performance sodium ion batteries, *ACS Appl. Mater. Interfaces* 9 (2017) 36927–36935.
- [30] L. Zhang, T. Wei, Z. Jiang, C. Liu, H. Jiang, J. Chang, L. Sheng, Q. Zhou, L. Yuan, Z. Fan, Electrostatic interaction in electrospun nanofibers: double-layer carbon protection of CoFe_2O_4 nanosheets enabling ultralong-life and ultrahigh-rate lithium ion storage, *Nano Energy* 48 (2018) 238–247.
- [31] Y. Zhang, L. Shen, M. Liu, X. Li, X. Lu, L. Lu, C. Ma, C. You, A. Chen, C. Huang, L. Chen, M. Alexe, C.-L. Jia, Flexible quasi-two-dimensional CoFe_2O_4 epitaxial thin films for continuous strain tuning of magnetic properties, *ACS Nano* 11 (2017) 8002–8009.
- [32] H. Zhang, Ultrathin two-dimensional nanomaterials, *ACS Nano* 9 (2015) 9451–9469.
- [33] C. Tan, H. Zhang, Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials, *Nat. Commun.* 6 (2015) 7873.
- [34] C. Tan, H. Zhang, Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets, *J. Am. Chem. Soc.* 137 (2015) 12162–12174.
- [35] K. Xu, P. Chen, X. Li, Y. Tong, H. Ding, X. Wu, W. Chu, Z. Peng, C. Wu, Y. Xie, Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation, *J. Am. Chem. Soc.* 137 (2015) 4119–4125.
- [36] Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu, J. Piao, T. Yao, C. Wu, S. Hu, S. Wei, Y. Xie, Fabrication of flexible and freestanding zinc chalcogenide single layers, *Nat. Commun.* 3 (2012) 1057.
- [37] G. Fan, F. Li, D.G. Evans, X. Duan, Catalytic applications of layered double hydroxides: recent advances and perspectives, *Chem. Soc. Rev.* 43 (2014) 7040–7066.
- [38] X. Jia, Y. Zhao, G. Chen, L. Shang, R. Shi, X. Kang, G.I.N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Ni_3FeN nanoparticles derived from ultrathin fe-layered double hydroxide nanosheets: an efficient overall water splitting electrocatalyst, *Adv. Energy Mater.* 6 (2016) 1502585.
- [39] Y. Zhao, G. Chen, T. Bian, C. Zhou, G.I. Waterhouse, L.Z. Wu, C.H. Tung, L.J. Smith, D. O'Hare, T. Zhang, Defect-rich ultrathin ZnAl -layered double hydroxide nanosheets for efficient photoreduction of CO_2 to CO with water, *Adv. Mater.* 27 (2015) 7824–7831.
- [40] Q. Wang, D. O'Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets, *Chem. Rev.* 112 (2012) 4124–4155.
- [41] X. Gong, Y.-Q. Gu, N. Li, H. Zhao, C.-J. Jia, Y. Du, Thermally stable hierarchical nanostructures of ultrathin MoS_2 nanosheet-coated CeO_2 hollow spheres as catalyst for ammonia decomposition, *Inorg. Chem.* 55 (2016) 3992–3999.
- [42] L. Shang, T. Bian, B. Zhang, D. Zhang, L.-Z. Wu, C.-H. Tung, Y. Yin, T. Zhang, Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions, *Angew. Chem. Int. Ed.* 53 (2014) 250–254.
- [43] K. Zhang, W. Wang, L. Kuai, B. Geng, A facile and efficient strategy to gram-scale preparation of composition-controllable Ni–Fe LDHs nanosheets for superior OER Catalysis, *Electrochim. Acta* 225 (2017) 303–309.
- [44] Q. Song, Z.J. Zhang, Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe_2O_4 and MnFe_2O_4 nanocrystals with core-shell architecture, *J. Am. Chem. Soc.* 134 (2012) 10182–10190.
- [45] L. Huo, B. Liu, G. Zhang, J. Zhang, Universal strategy to fabricate a two-dimensional layered mesoporous Mo_2C electrocatalyst hybridized on graphene sheets with high activity and durability for hydrogen generation, *ACS Appl. Mater. Interfaces* 8 (2016) 18107–18118.
- [46] H. Wang, C. Chen, Y. Zhang, L. Peng, S. Ma, T. Yang, H. Guo, Z. Zhang, D.S. Su, J. Zhang, In situ oxidation of carbon-encapsulated cobalt nanocapsules creates highly active cobalt oxide catalysts for hydrocarbon combustion, *Nat. Commun.* 6 (2015) 7181.
- [47] L. Wang, Y. Yi, Y. Zhao, R. Zhang, J. Zhang, H. Guo, NH_3 decomposition for h_2 generation: effects of cheap metals and supports on plasma–catalyst synergy, *ACS Catal.* 5 (2015) 4167–4174.
- [48] I. Nakamura, T. Fujitani, Role of metal oxide supports in NH_3 decomposition over Ni

- catalysts, *Appl. Catal. A Gen.* 524 (2016) 45–49.
- [49] Z. Zhang, W. Li, R. Zou, W. Kang, Y.S. Chui, M.F. Yuen, C.-S. Lee, W. Zhang, Layer-stacked cobalt ferrite (CoFe_2O_4) mesoporous platelets for high-performance lithium ion battery anodes, *J. Mater. Chem. A* 3 (2015) 6990–6997.
- [50] C. Wang, H. Su, Y. Ma, D. Yang, Y. Dong, D. Li, L. Wang, Y. Liu, J. Zhang, Coordination polymers-derived three-dimensional hierarchical CoFe_2O_4 hollow spheres as high-performance Lithium ion storage, *ACS Appl. Mater. Interfaces* 10 (2018) 28679–28685.
- [51] Y. Kim, J.H. Park, J.G. Kim, Y. Noh, Y. Kim, H. Han, W.B. Kim, Ruthenium oxide incorporated one-dimensional cobalt oxide composite nanowires as lithium-oxygen battery cathode catalysts, *ChemCatChem* 9 (2017) 3554–3562.
- [52] Y. Zhang, J. Huang, Y. Ding, Porous $\text{Co}_3\text{O}_4/\text{CuO}$ hollow polyhedral nanocages derived from metal-organic frameworks with heterojunctions as efficient photocatalytic water oxidation catalysts, *Appl. Catal. B: Environ.* 198 (2016) 447–456.
- [53] R.D.L. Smith, M.S. Prévot, R.D. Fagan, S. Trudel, C.P. Berlinguette, Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel, *J. Am. Chem. Soc.* 135 (2013) 11580–11586.
- [55] A. Biabani-Ravandi, M. Rezaei, Low temperature CO oxidation over Fe-Co mixed oxide nanocatalysts, *Chem. Eng. J.* 184 (2012) 141–146.
- [56] Y. Wang, D. Liu, Z. Liu, C. Xie, J. Huo, S. Wang, Porous cobalt–iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting, *Chem. Commun.* 52 (2016) 12614–12617.
- [57] X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, Fe-g-C₃N₄-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light, *J. Am. Chem. Soc.* 131 (2009) 11658–11659.
- [58] D. Yang, T. Jiang, T. Wu, P. Zhang, H. Han, B. Han, Highly selective oxidation of cyclohexene to 2-cyclohexene-1-one in water using molecular oxygen over Fe-Co-g-C₃N₄, *Catal. Sci. Technol.* 6 (2016) 193–200.