#9

We begin with the Ratio Test for Absolute Convergence.

$$=\lim_{k\to+\infty}\left|\begin{array}{c} (-5) \times \sqrt{\frac{k+10}{k+11}} \right| = 5|x| (1) = 5|x|$$

So the series converges if 5|x| < 1, i.e. if $|x| < \frac{1}{5}$, or $-\frac{1}{5} < x < \frac{1}{5}$.

The test fails if 5|x|=1, or $x=\pm\frac{1}{5}$, so we must check these separately.

$$X = -\frac{1}{5}$$
: $\frac{2}{k} \frac{(-t)^k (-\frac{1}{5})^k}{\sqrt{k+10}} = \frac{2}{k=0} \frac{1}{\sqrt{k+10}} = \frac{2}{k=10} \frac{1}{\sqrt{k}}$

which diverges (p-series, p= 221).

$$X = \frac{1}{5}$$
: $\frac{20}{k=0}$ $\frac{(-1)^k}{(-1)^k}$ $\frac{1}{\sqrt{k+10}}$ $\frac{1}{\sqrt{k+10}}$

Now
$$\lim_{k \to +\infty} \frac{1}{\sqrt{k+10}} = 0.$$

Also, let
$$a_k = \frac{1}{\sqrt{k+10}}$$
. So $a_{k+1} = \frac{1}{\sqrt{k+11}}$.

Conclusion: $\sum_{k=0}^{\infty} \frac{(-5)^k x^k}{\sqrt{k+10}}$ has an

Interval of convergence of $(-\frac{1}{5},\frac{1}{5}]$ and a radius of convergence $R = \frac{1}{5}$.