Mathematical Logic (MATH6/70132; P65) Problem sheet $2\frac{1}{2}$ - for problem class

- [1] (Warm-up) Decide whether the following are true or false give reasons.
 - 1. Every L-formula is a theorem.
 - 2. If ϕ is an L-formula, then one of ϕ , $(\neg \phi)$ is a theorem of L.
 - 3. In every L-formula, the number of opening brackets (equals the number of closing brackets).
 - 4. In every L-formula, the number of opening brackets (is equal to the number of connectives in the formula.
- [2] Show that the set of connectives $\{\neg, \leftrightarrow\}$ is not adequate.
- [3] (An alternative formal system for propositional logic: natural deduction) The formal system \widehat{L} has the same language and formulas as L, but it has only deduction rules and no axioms. The notion $\Gamma \vdash_{\widehat{L}} \phi$, where Γ is a set of \widehat{L} -formulas and ϕ is an \widehat{L} -formula, is defined by saying that it satisfies the following deduction rules:
 - If $\phi \in \Gamma$ then $\Gamma \vdash_{\widehat{L}} \phi$;
 - (Modus Ponens) If $\Gamma \vdash_{\widehat{L}} \phi$ and $\Gamma \vdash_{\widehat{L}} (\phi \to \psi)$, then $\Gamma \vdash_{\widehat{L}} \psi$;
 - (Deduction Theorem) If $\Gamma \cup \{\phi\} \vdash_{\widehat{L}} \psi$, then $\Gamma \vdash_{\widehat{L}} (\phi \to \psi)$;
 - (PBC) If $\Gamma \vdash_{\widehat{L}} ((\neg \phi) \to \psi)$ and $\Gamma \vdash_{\widehat{L}} ((\neg \phi) \to (\neg \psi))$, then $\Gamma \vdash_{\widehat{L}} \phi$;

and any instance of $\Gamma \vdash_{\widehat{L}} \phi$ arises after a finite number of applications of these rules.

We say that ϕ is a theorem of \widehat{L} if $\emptyset \vdash_{\widehat{L}} \phi$.

Prove that:

- (a) $(\phi \to \phi)$ is a theorem of \widehat{L} , for every \widehat{L} -formula ϕ .
- (b) Every axiom of L is a theorem of \widehat{L} .
- (c) The deduction rule (PBC) is valid with L in place of \widehat{L} .
- (d) A formula ϕ is a theorem of \widehat{L} if and only if it is a theorem of L .
- [4] (For fun) The following is known as Hofstadter's MU puzzle. You can look at the Wikipedia entry, but first try the problem yourself.

The formal system H has: alphabet M, I, U; formulas all (finite) strings of these symbols; one axiom MI; and the following deduction rules (where x, y are any formulas):

- 1. from xI deduce xIU;
- 2. from Mx deduce Mxx;
- 3. from xIIIy deduce xUy;
- 4. from xUUy deduce xy.

The problem is to decide whether MU is a theorem of H. But you could first write down some theorems of H, just to test your understanding of what a formal system is.