Linear Regression (afternoon)

Agenda

- Modeling with categorical variables
- Interactions
- Non-linear features and variable transformations

Categorical Variables

Interested in credit card balances (y)

Suspect it may be related to gender and/or ethnicity

If our predictor has only two levels we can simply create an indicator or *dummy variable* that takes on two possible numerical values

$$x_{female,i} = \begin{cases} 1 & \text{if } i \text{th person is female,} \\ 0 & \text{if } i \text{th person is male} \end{cases}$$

Data

Ones	Gender	
1	Female	
1	Female	
1	Male	
1	Female	
1	Male	
1	Female	
1	Male	
1	Male	
	•••	

Design Matrix

Ones	Female	
1	1	
1	1	
1	0	
1	1	
1	0	
1	1	
1	0	
1	0	
	•••	

Figure 1:Recoded Design Matrix

$$\begin{aligned} y_i &= \beta_0 + \beta_{\textit{female}} x_{\textit{female},i} + \epsilon_i = \\ \begin{cases} \beta_0 + \beta_{\textit{female}} + \epsilon_i & \text{if ith person is female,} \\ \beta_0 + \epsilon_i & \text{if ith person is male} \end{cases} \end{aligned}$$

Note that the decision to codify females as ${\bf 1}$ is arbitrary and has no effect on the regression fit

It does, however, alter the interpretation of the coefficients. In this case, the β_{female} term indicates the expected change in y_i from the male baseline holding all else equal

More than two levels

$$x_{asian,i} = \begin{cases} 1 & \text{if } i \text{th person is Asian,} \\ 0 & \text{if } i \text{th person is not Asian} \end{cases}$$
$$x_{caucasian,i} = \begin{cases} 1 & \text{if } i \text{th person is Caucasian,} \\ 0 & \text{if } i \text{th person is not Caucasian} \end{cases}$$

D	ata	
	į	•

Ones	Ethnicity	
1	AA	
1	Asian	
1	Asian	
1	Caucasian	
1	AA	
1	AA	
1	Asian	
1	Caucasian	
•••	•••	

Design Matrix

Design Matrix			
Ones	Asian	Caucasian	
1	0	0	
1	1	0	
1	1	0	
1	0	1	
1	0	0	
1	0	0	
1	1	0	
1	0	1	
	•••	•••	

Figure 2:Recoded Design Matrix

$$\begin{aligned} y_i &= \beta_0 + \beta_{asian} x_{asian,i} + \beta_{caucasian} x_{caucasian,i} + \epsilon_i = \\ \begin{cases} \beta_0 + \beta_{asian} + \epsilon_i & \text{if ith person is Asian,} \\ \beta_0 + \beta_{caucasian} + \epsilon_i & \text{if ith person is Caucasian,} \\ \beta_0 + \epsilon_i & \text{if ith person is AA} \end{cases} \end{aligned}$$

 β_0 as the average credit card balance for AA

 β_{asian} as the difference in average balance between Asian and AA

 $eta_{\it caucasian}$ as the $\it difference$ in average balance between Caucasian and AA

What if you wanted to compare groups to Caucasians as a baseline?

What if you wanted to compare groups to Caucasians as a baseline?

$$x_{aa,i} = \begin{cases} 1 & \text{if } i \text{th person is AA,} \\ 0 & \text{if } i \text{th person is not AA} \end{cases}$$

$$x_{asian,i} = \begin{cases} 1 & \text{if } i \text{th person is Asian,} \\ 0 & \text{if } i \text{th person is not Asian} \end{cases}$$

Modeling with gender and ethnicity

$$y_i = \beta_0 + \beta_{\textit{female}} x_{\textit{female},i} + \beta_{\textit{asian}} x_{\textit{asian},i} + \beta_{\textit{caucasian}} x_{\textit{caucasian},i} \epsilon_i$$

▶ Here, β_0 looses its nice interpretation

Interacting *student* (qualitative) and *income* (quantitative)

No Interaction
$$balance_i = \beta_0 + \beta_1 * income_i + \beta_2 * student_i$$

balance_i
$$\approx \beta_0 + \beta_1 \times \text{income}_i + \begin{cases} \beta_2 & \text{if } i \text{th person is a student} \\ 0 & \text{if } i \text{th person is not a student} \end{cases}$$

$$= \underline{\beta_1} \times \text{income}_i + \begin{cases} \underline{\beta_0 + \beta_2} & \text{if } i \text{th person is a student} \\ \underline{\beta_0} & \text{if } i \text{th person is not a student} \end{cases}$$

$$= \underline{\beta_1} \times \text{income}_i + \begin{cases} \underline{\beta_0 + \beta_2} & \text{if } i \text{th person is not a student} \\ \underline{\beta_0} & \text{if } i \text{th person is not a student} \end{cases}$$

<u>With Interaction</u> $balance_i = \beta_0 + \beta_1 * income_i + \beta_2 * student_i + \beta_3 * income_i * student_i$

$$\begin{aligned} \mathbf{balance}_i &\approx & \beta_0 + \beta_1 \times \mathbf{income}_i + \begin{cases} \beta_2 + \beta_3 \times \mathbf{income}_i & \text{if student} \\ 0 & \text{if not student} \end{cases} \\ &= & \begin{cases} (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \times \mathbf{income}_i & \text{if student} \\ \beta_0 + \beta_1 \times \mathbf{income}_i & \text{if not student} \end{cases} \end{aligned}$$

Figure 3:

$$\begin{aligned} \mathbf{sales} &= & \beta_0 + \beta_1 \times \mathsf{TV} + \beta_2 \times \mathsf{radio} + \underline{\beta_3} \times (\mathsf{radio} \times \mathsf{TV}) + \epsilon \\ &= & \beta_0 + (\beta_1 + \beta_3 \times \mathsf{radio}) \times \mathsf{TV} + \beta_2 \times \mathsf{radio} + \epsilon. \end{aligned}$$

Results:

	Coefficient	Std. Error	t-statistic	p-value	
Intercept	6.7502	0.248	27.23	< 0.0001	
TV	0.0191	0.002	12.70	< 0.0001	
radio	0.0289	0.009	3.24	0.0014	
${\tt TV}{ imes{\tt radio}}$	0.0011	0.000	20.73	< 0.0001	← Improvement!

The coefficient estimates in the table suggest that an increase in TV advertising of \$1,000 is associated with increased sales of

$$(\hat{\beta}_1 + \hat{\beta}_3 \times \text{radio}) \times 1000 = 19 + 1.1 \times \text{radio}$$
 units.

Figure 4:

Non-linear Features

Figure 5:Non-linear Features

Variable Transformations

Method	Transformation(s)	Regression equation	Predicted value (ŷ)
Standard linear regression	None	$y = b_0 + b_1 x$	$\hat{y} = b_0 + b_1 x$
Exponential model	Dependent variable = log(y)	$\log(y) = b_0 + b_1 x$	$\hat{y} = 10^{b_0 + b_1 x}$
Quadratic model	Dependent variable = sqrt(y)	$sqrt(y) = b_0 + b_1 x$	$\hat{y}=(b_0+b_1x)^2$
Reciprocal model	Dependent variable = 1/y	$1/y = b_0 + b_1 x$	$\hat{y} = 1 / (b_0 + b_1 x)$
Logarithmic model	Independent variable = log(x)	$y=b_0+b_1\log(x)$	$\hat{y} = b_0 + b_1 log(x)$
Power model	Dependent variable = log(y) Independent variable = log(x)	$\log(y) = b_0 + b_1 \log(x)$	$\hat{y} = 10^{b_0 + b_1 \log(x)}$

Figure 6:Variable Transformations