Notes on Combinatorics

Alec Zabel-Mena Text -

January 26, 2021

Chapter 1

Essential Problems

There are some essential problems to discuss, but we first give some counting principles.

Axiom 1.0.1 (The Sum Rule). Suppose S_1, S_2, \ldots, S_m are mutually disjoint finite sets and that $|S_i| = n_i$ for $1 \le i \le n$. There are $n_1 + n_2 + \cdots + n_m = \sum_{i=1}^m n$ ways to select one element from any of the sets S_i

Axiom 1.0.2 (The Product Rule). Suppose S_1, S_2, \ldots, S_m are finite sets, (not necessarily mutually disjoint) for $1 \le i \le n$. Provided that the selections are made independently, there are $n_1 n_2 \ldots n_m =_{i=1}^m n_i$ ways to select one element from the set S_i followed by an element from S_{i+1} .

The following problems can now be discussed, and are all solved by the product rule.

Problem 1. How many ways are there to order n different elements in a given n element set?

Solution. Let S be a set with |S| = n and choose one element $s_1 \in S$ and take $S_1 = S \setminus s_1$, since s_1 is arbitrary, by the sum rule, there are n choices for elements in S Now we need to choose elements from S_1 which has $|S_1| = n - 1$, by the same reasoning, choose $s_2 \in S_2$ and take $S_2 = S_1 \setminus s_2$. Since s_2 was arbitrary, by the sum rule again, there are n - 1 ways to choose elements from S_2 . Continuing along this construction, take $s_i \in S_{i-1}$ and take $S_0 = S_{i-1}s_i \setminus$, by the same reasoning there are n - i ways to choose elements from S_i , where $1 \le i \le n$. Then by the product rule, there are $i = n - i = n(n - 1) \dots 2 \cdot 1 \cdot 0! = n!$ ways to order n elements of S.

Problem 2. How many ways are there to order k elements from an n element set?

Solution. Let S be a set with |S| = n and choose an arbitrary subset $T \subseteq S$ with |T| = k. Now there are n! ways to order the elements of S and (n - k)! ways to order elements from $S \setminus T$, hence there are $\frac{n!}{(n-k)!}$ ways to order k elements of T from S.

Problem 3. How many ways are the to select k elements, regardless of order, from an n element set?

Solution (1). Let S be a set with |S| = n and $T \subseteq S$ with |T| = k. We have there are n! ways to order the elements of S, k! ways to order the elements of T and $\frac{n!}{(n-k)!}$ ways to order the elements of $S \setminus T$. Now since order is irrelevant, the ordering of the elements of T does not matter. Hence there are $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ ways to select k elements from S in no particular order.

There is an another way of arriving to this solution.

Definition 1.0.1. We define the falling factorial power $x^{\underline{k}}$, of x is the product

$$x^{\underline{k}} = x(x-1)(x-2)\dots(x-k+1) = \prod_{i=1}^{k-1} x - i$$
 (1.1)

We define the **rising factorial power** of x to be

$$x^{\bar{k}} = x(x+1)(x+2)\dots(x+k-1) = \prod_{i=1}^{k-1} x - i$$
 (1.2)

Ande we define $n^{\underline{0}=n^{\bar{0}}=0!=1}$.

Solution (2). Notice that $\frac{n!}{(n-k)!} = n(n-1)\dots(n-k+1) = n^{\underline{k}} = n^{\overline{k}}$ and $n^{\underline{n}} = 1^{\overline{n}} = n!$. So there are $\frac{n^{\underline{k}}}{k!} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$ ways to choose k elements from S in no particular order.

Remark. Note that this solution is not unique.

Chapter 2

Binomial Coefficients

Definition 2.0.1. Let $n \in \mathbb{N}$ and $k \in \mathbb{Z}$. We define the **binomial coefficient** of n choose k to be

$$\binom{n}{k} = \begin{cases} \frac{n!}{k!(n-k)!} & , \text{ if } 0 \le k \le n\\ 0 & , \text{ if } k > n \text{ or } k < 0 \end{cases}$$
 (2.1)

and where $\binom{n}{0} = \binom{n}{n} = 1$.

The solution to problem 3 is a sufficient proof for the relation; and the fact that $\binom{n}{k} = 0$ for n < k and k < 0 is evident since there can be no k element subsets of an n element set under those conditions. What follows are some fundamental lemmas about the binomial coefficient.

Lemma 2.0.1 (Symmetry). $\binom{n}{k} = \binom{n}{n-k}$

Proof.
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!(n-(n-k))!} = \binom{n}{n-k}.$$

Lemma 2.0.2 (Pascal's Lemma). If $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ then

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$
 (2.2)

Proof. For k < 0 or k > n, the result is obvious by definition. Now suppose that $0 \le k \le n$, then $\binom{n-1}{k} + \binom{n-1}{k-1} = \frac{(n-1)!}{k!(n-k-1)!} + \frac{(n-1)!}{(k-1)!(n-k)!} = (n-1)! \frac{(n-k)+k}{k!(n-k)!} = \binom{n}{k}$.

Remark. We can use Pascal's lemma to construct Pascal's triangle in figure 2.1.

Theorem 2.0.3 (The Binomial Theorem). If $n \in \mathbb{N}$, then

$$(x+y)^n = \sum_k \binom{n}{k} x^k y^{n-k} \tag{2.3}$$

Proof. We use induction on n. Notice that $(x+y)^0=1=\binom{0}{0}x^0y^0$, and $(x+y)^1=x+y=\binom{1}{0}x^0y^1+\binom{1}{1}x^1y^0$

Figure 2.1: Pascal's triangle up to n = 6.

Proof. We use induction on n. Notice that $(x+y)^0 = \binom{0}{0}x^0y^0$ and $(x+y)^1 = x+y = \binom{1}{0}x^0y^1 + \binom{1}{1}x^1y^0$. Now suppose that the theorem holds for $n \geq 1$. Then $(x+y)^{n+1} = (x+y)\sum \binom{n}{k}x^ny^{n-k} = \sum \binom{n}{k}x^{k+1}y^{n-k} + \sum \binom{n}{k}x^ky^{n+1-k} = \sum \binom{n}{k-1}\binom{n}{k}x^ky^{n+1-k} = \sum \binom{n+1}{k}x^ky^{n+1-k}$, by Pascal's lemma.

Corollary. $\sum_{k} \binom{n}{k} = 2^n$ and there are exactly 2^n subsets of an n element set.

Proof. Exapand $(1+1)^n$, also notice that since there are $\binom{n}{k}$ possible k element subsets of a given n element set, then all we need to do is take the sum of $\binom{n}{k}$ over k.

Corollary.
$$\sum_{k} (-1)^{k} \binom{n}{k} = \begin{cases} 0 & , & \text{if } n \geq 11 \\ , & \text{if } n = 0 \end{cases}$$

Proof. Expand $(-1+1)^n$.

Lemma 2.0.4. If $m, n \in \mathbb{N}$, then $\sum_{k} {k \choose m} = {n+1 \choose m+1}$.

Proof. For n=0, the result follows, $\binom{0}{0}=1=\binom{1}{1}$, and if m>0, then each side is 0. Now suppose for $n\geq 0$ that the lemma holds. Then $\sum_{k=0}^{n+1}\binom{k}{m}=\binom{n+1}{m}+\binom{n+1}{m+1}=\binom{n+1}{m+1}$ by Pascal's lemma.

Theorem 2.0.5 (Vandermonde's Convolution). If $m, n \in \mathbb{N}$ and $l, p \in \mathbb{Z}$, then

$$\sum_{k} {m \choose p+k} {n \choose l-k} = {m+n \choose l+p} \tag{2.4}$$

Proof. By induction on n, for n=0, $\binom{m}{l+p}=\sum\binom{m}{p+k}$. Now suppose that the theorem holds for $n\geq 0$, then by Pascal's lemma we have that $\binom{m+n+1}{p+l}=\binom{m+n}{p+l}+\binom{m+n}{p+l}=\sum\binom{m}{p+k}\binom{n}{l-k}=\binom{m}{p+k}\binom{n}{l-k}=\sum\binom{m}{p+k}\binom{n+1}{l-k}$.

Chapter 3 Multinomial Coefficients