DEUTSCHLAND

® BURDESREPUBLIK ® Patentschrift _® DE 3029266 C2

f) Int. CL 3: B 01 J 23/85

DEUTSCHES PATENTAMT Aktenzeichen:

Anmeldetag:

Offenlegungstag: Veröffentlichungstag: P 30 29 266.1-41

1. 8.80

26. 2.81

5. 8.82

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(3) Unionspriorität: (2) (3)

06.08.79 DD WPB01J/214805

73 Patentinhaber:

VEB Leuna-Werke »Walter Ulbricht«, DDR 4220 Leuna, DD

(7) Erfinder:

Becker, Karl, Dipl.-Chem. Dr., DDR 4803 Bad Kösen, DD; John, Heino, Dipl.-Chem. Dr., DDR 4020 Halle, DD; Berrouschot, Hans-Dieter, DDR 4850 Weißenfels, DD; Großmann, Manfred, Dipl.-Chem. Dr., DDR 4200 Merseburg, DD; Prag, Manfred, Dipl.-Chem. Dr., DDR 4090 Halle-Neustadt, DD

Entgegenhaltungen:

DE-AS 27 07 013

Katalysator für die einstufige Hydrierung von Heteroatomverbindungen und Aromaten enthaltenden Kohlenwasserstoffgemischen

Patentanspruch:

Katalysator für die einstufige Hydrierung von Heteroatomverbindungen und Aromaten enthaltenden Kohlenwasserstoffgemischen bei Wasserstoffdrücken von 5 bis 30 MPa, erhalten durch Imprägnieren eines röntgenamorphen Alumosilikats mit einem SiOz-Gehalt von 5 bis 50 Masse-% und einem Al₂O₃-Gehalt von 50 bis 95 Masse-% mit einer Nickel- und einer Wolframverbindung sowie an- 10 schließendes Glühen bei 673 bis 873° K, wobei der NiO-Gehalt 2 bis 5 Masse-% und der WO3-Gehalt 15 bis 30 Masse-% beträgt, dadurch gekennzeichnet, daß das so erhaltene röntgenamorphe Alumosilikat in Pulverform mit einer zweiten 15 pulverförmigen Komponente im Verhältnis 4:1 bis 1:4 intensiv gernischt wird, die 30 bis 70 Masse-% NiO und 70 bis 30 Masse-% WO3 enthält und durch Vermischen von basischem Nickelcarbonat und Wolfram(VI)-oxid, Formen und anschließendes Glühen bei 673 bis 873°K hergestellt wurde, und daß das Gemisch der beiden Komponenten anschließend verformt wird.

Die Erfindung betrifft einen Katalysator für die einstufige Hydrierung von Kohlenwasserstoffgemischen, insbesondere für die Perhydrierung unraffinierter 30 Dieselkraftstoff- und Vakuumdestillatfraktionen.

Für die Hydrierung von Kohlenwasserstofffraktionen mit dem Ziel der weitgehenden Entfernung von ungesättigten Anteilen und/oder aromatischen Strukturen verwendet man Edelmetall oder Nickelmetall 35 enthaltende Katalysatoren. Sobald die Kohlenwasserstofffraktionen jedoch Schwefel- sowie Stickstoffverbindungen enthalten, desaktivieren diese Katalysatoren sehr schnell.

schwefel- und stickstoffhaltigen Kohlenwasserstofffraktionen vorzugsweise Mo- und W-haltige Katalysatoren, die meist mit Ni promotiert sind und zur Steigerung der Aktivität und Stabilität mit H2S oder organischen Schweselverbindungen sulfidiert werden. Diese Katalysatortypen, insbesondere solche, die mit einem Träger, wie Al₂O₃ oder Alumosilikat, kombiniert sind, besitzen jedoch nicht die Hydrierstärke bzw. Aktivität der Edelmetalikatalysatoren. In den Kohlenwasserstofffraktionen wird dadurch ein Teil der Aromaten nicht zu 50 Naphthenen hydriert. Die trägerfreien Typen (z. B. NiO - WO3) sind zwar bei der Hydrierung aromatischer Strukturen wirksamer als die mit Al₂O₃ oder Alumosilikat kombinierten, jedoch erweist sich die geringe Festigkeit, die im Betrieb nach der Aufnahme 55 des Schwefels unter Bildung der Metallsulfide des Ni und W beobachtet wird, als ein entscheidender Mangel. Durch die eintretende Quellung wird der Katalysatorformling weich, z. T. zerstört und damit technisch unbrauchbar (vgl. z. B. A. G. Martynenko in Chim. techn. 60 topliv masel 1975, 4, 19-22).

Schon früher hat man diesen Mangel umgangen, indem Ni-W-Sulfid-Katalysatoren eingesetzt wurden. Davon ist man jedoch wieder abgegangen, da Schwierigkeiten beim Einbau des Katalysators in den 65 Reaktor durch H2S-Abgabe und Verhinderung der Wirksamkeit durch O2-Beeinflussung aus der Luft auftreten. Die Aktivitätsstabilität solcher Typen ist

wenig befriedigend (vgl. z. B. Günther, G., Chem. Techn. 13 [1961], 427 und Münzing, E., Acta Chim. acad. sci. hung. 36 [1963], 279-287). Der reine WSz-Katalysator ist zwar sehr hydrieraktiv und arbeitet stabil, er fördert aber auch die Spaltung von C-C-Bindungen und liefert daher unerwünschte Nebenprodukte.

Ziel der Erfindung ist es, einen verbesserten Katalysator für einstzifige Hydrierzwecke vorzuschla-

Die technische Aufgabe besteht darin, einen Katalysator aufzufinden, der folgende Eigenschaften aufweist:

- unempfindlich gegen Schwefel-, Sauerstoff- und Stickstoffverbindungen,
- hohe Hydrierleistung (ähnlich den Edelmetallkatalysatoren) und geringe Spaltwirkung,
- mechanisch stabil,
- stabiles Langzeitverhalten.

Die technische Aufgabe wird durch einen Katalysator 20 für die einstufige Hydrierung von Heteroatomverbindungen und Aromaten enthaltenden Kohlenwasserstoffgemischen bei Wasserstoffdrücken von 5 bis 30 MPa, erhalten durch Imprägnieren eines röntgenamorphen Alumosilikats mit einem SiO₂-Gehalt von 5 25 bis 50 Masse-% und einem Al₂O₃-Gehalt von 50 bis 95 Masse-% mit einer Nickel- und einer Wolframverbindung sowie anschließendes Glühen bei 673 bis 873° K. wobei der NiO-Gehalt 2 bis 5 Masse-% und der WO3-Gehalt 15 bis 30 Masse-% beträgt, gelöst, indem erfindungsgemäß das so erhaltene röntgenamorphe Alumosilikat in Pulverform mit einer zweiten pulverförmigen Komponente im Verhältnis 4:1 bis 1:4 intensiv gemischt wird, die 30 bis 70 Masse-% NiO und 70 bis 30 Masse-% WO₃ enthält und durch Vermischen von basischem Nickelcarbonat und Wolfram(VI)-oxid, Formen und anschließendes Glühen bei 673 bis 873°K hergestellt wurde, und daß das Gemisch der beiden Komponenten anschließend verformt wird.

Das Katalysatorschüttgewicht beträgt vorteilhafter-Deshalb verwendet man für die Hydrierung von 40 weise 1,3 kg/L Der vorgeschlagene Katalysator zeigt bei der einstufigen hydrierenden Behandlung unraffinierter Kohlenwasserstoffgemische (wie Dieselkraftstoff- und Vakuumdestillatfraktionen) eine höhere Hydrierwirkung als die der Einzelkomponenten, was nicht zu erwarten war. Die Hydrierleistung ist mit der der Edelmetallkatalysatoren zu vergleichen. Die Gegenwart von Schwefel-, Sauerstoff- und Stickstoffverbindungen, die auf Metallkatalysatoren einen starken schädigenden Einfluß haben, hat auf den erfindungsgemäßen Katalysator keine nachteiligen Folgen. Von Vorteil ist ebenso die hohe Festigkeit und das gute Aktivitätszeitverhalten.

Der Katalysator gemäß vorliegender Erfindung eignet sich insbesondere zur weitgehenden oder vollständigen Hydrierung (Perhydrierung) von Kohlenwasserstoffen, die ungesättigte Verbindungen und Aromaten enthalten. Gleichzeitig ist der Katalysator in der Lage, organische Heteroatomverbindungen des Schwefels, Sauerstoffs, Stickstoffs und gewisser Schwermetallverbindungen (Nickel, Eisen, Vanadium, Kupfer in Spuren) abzubauen.

Die allgemeinen Arbeitsparameter des Katalysators umfassen vorzugsweise folgende Grenzwerte:

H2-Druck 5-30 MPa 473-723°K Temperatur 0,2-2 v/vh Belastung Gas: Produkt-Verhältnis 200-2000:1 NI/1

Während der Behandlung unraffinierter Rohstoffe

nimmt der Katalysator bis zu 30 Masse-% Schwefel auf. Die Schwefelaufnahme in dieser Menge hat normalerweise bei NiO-WO3-Katalysatoren zur Folge, daß die Formlinge ihre mechanische Stabilität verlieren. Überraschenderweise wurde gefunden, daß der Katalysator der vorliegenden Erfindung trotz der Aufnahme großer Schwefelmengen während der Arbeitsperiode eine ausreichende mechanische Festigkeit besitzt.

Neben der guten mechanischen Festigkeit besitzt der Katalysator auch ein ausgezeichnetes Aktivitäts-Zeit- 10 Verhalten, so daß er ebenfalls mit Vorteil unter großtechnischen Bedingungen verwendet werden kann.

Die Hydrierprodukte eignen sich insbesondere als Basisöle für Schmierstoffe oder als Einsatzmaterial zum technischen Kracken.

Die Herstellung des Katalysators geschieht folgendermaßen:

Die eine Komponente kann beispielsweise erzeugt werden, indem basisches Nickelkarbonat und Wolfram(VI)-oxid, beides in Pulverform, miteinander ver- 20 mischt, auf einer Tablettiermaschine vorgeformt und bei 673-873°K geglüht werden (NiO-Gehalt: 30-70 Masse-%, WO₃-Gehalt: 30-70 Masse-%).

Die andere Komponente wird vorteilhafterweise erzeugt, indem ein röntgenamorphes Alumosilikat mit 25 einem SiO2-Gehalt von 10-50 Masse-% mit Ni(NO3)2 und (NH4)2WO4 getränkt und anschließend bei 673-873°K geglüht wird (NiO-Gehalt: 2-5 Masse-%, WO3-Gehalt: 15-30 Masse-%).

Die beiden Komponenten werden auf eine Mahlfein- 30 vorgenommen: heit <0,1 mm gebracht, miteinander intensiv im Verhältnis 4:1 bis 1:4 gemischt und vorteilhafterweise zu Zylinderpreßlingen verformt. Der so hergestellte Katalysator wird vorzugsweise als Festbett in einem Reaktor in oxidischer Form eingebaut. Die Inbetrieb- 35 nahme erfolgt durch Aufheizen des Katalysators bis ca. 673° K in einem H₂S-freien oder -armen H₂-Gasstrom. Diese Kombination widerspricht den bisherigen Erfahrungen, nach denen die beste Wirksamkeit der S-unempfindlichen Ni-W-Katalysatoren dann erzielt 40 wurde, wenn der Katalysator zuvor geschwefelt wird. Entgegen der Erwartung besitzt der erfindungsgemäße Katalysator die bessere Wirksamkeit, wenn er ungeschwefelt eingesetzt wird.

Beispiei

Herstellung der Komponente a)

Vermischen von 56,2 kg pulverförmigen NiCO3 und 65 kg pulverförmigen WO3.

Anschließend Verpillung zu 10-mm-Preßlingen und Glühung bei 450°C. Erneutes Mahlen.

Herstellung der Komponente b)

Fällung eines Alumosilikats mit 20% SiO2 durch kontinuierliches Zusammenleiten einer Lösung von Aluminiumnitrat/Wasserglas und einer Salmiakgeistlösung. Die weiteren Arbeitsschritte sind Altern, Filtrieren, Waschen, Trocknen, Tränken mit einer Lösung von Nickelnitrat und Ammoniumwolframat, Abdampfen der überschüssigen Flüssigkeit, Trocknen und Mahlen. Die Komponenten a) und b) werden im Masseverhältnis von 4:1 (bzw. 1:4) vermischt und zu 5-mm-Preßlingen verpillt. Das Schüttgewicht beträgt 1,3 kg/l.

Der hergestellte Katalysator wird bei der Perhydrierung einer Dieselölfraktion verwendet. Zum Vergleich wurden Katalysatoren in den gleichen Abmessungen verwendet, die aus der Komponente a) und der

Komponente b), jeweils allein, bestanden.

Parameter des Dieselkraftstoffes:

Dichte	bei 293° K 0,830
Siedebereich	493-623° K
Basenzahl	33 mg NH ₃ /I
Schwefelgehalt	0,85 Masse-%
Aromaten	25,0 Vol%

Die Hydrierung wurde unter folgenden Bedingungen

Druck	19,0 MPa
Temperatur	+663° K
Belastung	1,5 v/vh
Gas: Produktverhältnis	1000 : 1 NI/I

Unter diesen Bedingungen wurden mit den Katalysatoren a) und b) sowie mit dem erfindungsgemäßen Katalysator folgende Aromatenrestgehalte ermittelt:

Komponente a	2,8 Vol-% Aromaten
Komponente b	10,5 Vol% Aromaten
Katalysatorkombination	0,5 Vol% Aromaten

Nach dem Ausbau der Katalysatoren (nach 600 Stunden) wies der Katalysator der Komponente a) nur noch geringe Festigkeit auf, was eine technische Verwendung praktisch ausschließt, während der erfindungsgemäße Katalysator keinen Abrieb zeigte und 50 eine technisch brauchbare Festigkeit besaß.