Class 64

Thm. $C[0,1]^* \cong NBV \equiv BV_0$ (Normalized & bdd variation) (Riesz, 1909)

 $x^* \leftrightarrow g_0$ (isometric isomorphism)

$$x^*(f) = \int_0^1 f dg_0 \ \forall f \in C[0,1]$$

Motivation:

Def. BV = $\{g \text{ on } [0,1] \text{ of bdd variation} \}$ (cf. p.54) & V(g) = total variation of $g \equiv$

$$\sup \left\{ \sum_{i=1}^{n} \left| g(x_i) - g(x_{i-1}) \right| : 0 \le x_1 < \dots < x_n = 1 \right\}$$

Then $g = g_1 - g_2$, where $g_1, g_2 \uparrow$ on [0,1] (cf. p.54, Ex.2.8.3)

$$u_{g_i}((a,b]) = g_i(b) - g_i(a), i = 1,2$$

 \therefore extended to Lebesgue-Stieljes measure u_{g_i} , i = 1, 2

$$\therefore \int f dg_i$$
, $i = 1, 2$, defined

$$\therefore \int f dg$$
, defined = $\int f dg_1 - \int f dg_2$

Def. "~" in BV: $g \sim h$ if $\int_0^1 f dg = \int_0^1 f dh \ \forall f \in C[0,1]$, equiv,

 \exists constant $c \ni g(x) = h(x) + c$ (Ex.4.14.3) for all x except when g or h is disconti. at x

Then "~" equivalence relation.

Let
$$BV_0 = \{ [g] : g \in BV \}$$

Let
$$||[g]|| = \inf_{h \in [g]} V(h)$$

Then $(BV_0, \|\cdot\|)$ normed space

Consider the representative $g_0 \in [g]$

$$(1) g_0(0) = 0;$$

- (2) g_0 right conti. on [0,1);
- (3) g_0 left conti. at t = 1.

Def.
$$NBV = \{g_0\}$$

Then *NBV* normed space under $||g_0|| = V(g_0)$

Note: *g* of bdd variation

$$\Rightarrow g(x+), g(x-) \text{ exist } \forall x$$

& g has only countable jump. disconti.

Thm.
$$X$$
 locally compact, top. space (Ex. $X = [0,1]$, $\{1,2,...,n\}$, $\{1,2,...\}$, \mathbb{R}) $C_0(X) = \{f: X \to \mathbb{R} \text{ conti. } \& \forall \varepsilon > 0, \{x: | f(x)| \ge \varepsilon\} \text{ compact} \}$

Then $C_0(X)^* \cong M(X) = \{\text{regular Borel signed measures on } X\}$

Def. $u \ge 0$ is regular Borel if

$$(1) \forall K \subseteq X \text{ compact, } u(K) < \infty,$$

$$(2) \forall E \text{ Borel, } u(E) = \sup\{u(K): K \subseteq E \text{ compact} \},$$

$$(3) \forall E \text{ Borel, } u(E) = \inf\{u(U): U \supseteq E \text{ open} \}.$$

Def. u signed Borel is regular if

$$|u|(E) = \sup\{\sum_{i=1}^n |u(E_i)|: \{E_i\}_{i=1}^n \text{ Borel decomp. of } E\} \text{ (E Borel) is regular } \|f\|_{\infty} = \sup\{|f(x)|: x \in X\} \text{ for } f \in C_0(X)$$

$$||u|| = |u|(X)$$

$$x^* \leftrightarrow u$$

$$x^*(f) = \int_X f du \ \forall f \in C_0(X)$$

Then $(\mathbb{R}^n, |||_{\infty})^* \cong (\mathbb{R}^n, |||_{\mathbb{I}})$

Cor. $1: X = \{1, 2, ..., n\}$

Then $(\mathbb{R}^n, ||\cdot|_{\infty})^* \cong (\mathbb{R}^n, ||\cdot|_{\mathbb{I}})$

$$Cor. 3: X = \mathbb{R}$$

Then $C_0(\mathbb{R}) = \{f: \mathbb{R} \to \mathbb{R} \text{ conti., } \lim_{x \to \pm \infty} f(x) = 0\}$

$$\& C_0(\mathbb{R})^* \cong M(\mathbb{R})$$

Ref. J. B. Conway, A course in functional analysis, 2nd ed., p.383

Thm.1.
$$\forall x^* \in C[0,1]^*, \exists g \in BV \ni x^*(f) = \int_0^1 f dg \ \forall f \in C[0,1] \& ||x^*|| = V(g).$$

Pf.: Motivation:
Then
$$x^* \left(\chi_{[0,x]} \right) = \int_0^x dg = g(x) - g(0) \Rightarrow g$$

Difficulty: $\chi_{[0,x]} \notin C[0,1]$

 \therefore Hahn-Banach Thm $\Rightarrow x^*$ extended to $\Phi \in L^{\infty}(0,1)^*$ & $\|\Phi\| = \|x^*\|$

Define
$$g(x) = \Phi(\chi_{[0,x]}) \forall x \in [0,1]$$

Check: (1)
$$g \in BV \& V(g) \le ||x^*||$$
.

Consider
$$0 = x_0 < x_1 < ... < x_{n-1} < x_n = 1$$

$$\therefore \sum_{i=1}^{n} |g(x_i) - g(x_{i-1})| = \sum_{i} \varepsilon_i \cdot (g(x_i) - g(x_{i-1})), \text{ where } |\varepsilon_i| = 1 \ \forall i$$

$$= \sum_{i} \varepsilon_{i} \cdot \left(\Phi \left(X_{[0,x_{i}]} \right) - \Phi \left(X_{[0,x_{i-1}]} \right) \right)$$

$$= \Phi \left(\sum_{i} \varepsilon_{i} \cdot X_{[x_{i-1},x_{i}]} \right)$$

$$\leq \| \Phi \| \cdot \left\| \sum_{i} \varepsilon_{i} \cdot X_{[x_{i-1},x_{i}]} \right\|_{\infty}$$

$$= \| x^{*} \| \cdot 1 \qquad f_{n}$$

f

(2)
$$x^*(f) = \int_0^1 f dg . \forall f \in C[0,1]$$

Let
$$f \in C[0,1]$$

Let
$$f_n(t) = \sum_{k=1}^n f\left(\frac{k}{n}\right) \left(\chi_{\left[0,\frac{k}{n}\right]} - \chi_{\left[0,\frac{k-1}{n}\right]}\right)$$

$$\therefore f_n \to f \text{ in } \|\cdot\|_{\infty} \ (\because f \text{ unif. conti. on } [0,1])$$

$$\Rightarrow \Phi(f_n) \to \Phi(f)$$

$$\frac{1}{n}$$
 $\frac{2}{n}$ $\frac{n}{n}$

$$\sum_{k} f\left(\frac{k}{n}\right) \left(\left[g\left(\frac{k}{n}\right) - g\left(\frac{k-1}{n}\right)\right]\right) x^{*}(f)$$

 $\int_0^1 f dg$ (Riemann-Stieltjes integral)

$$\Rightarrow x^*(f) = \int_0^1 f dg$$

$$(3) \left\| x^* \right\| \leq V(g):$$

$$\begin{aligned} & : \left| x^* \left(f \right) \right| = \left| \int_0^1 f \, dg \right| \le \left\| f \right\|_{\infty} \cdot \left| \int_0^1 dg \right| = \left\| f \right\| \cdot \left| g \left(1 \right) - g \left(0 \right) \right| \le \left\| f \right\|_{\infty} \cdot V \left(g \right) = \forall f \in C \left[0, 1 \right] \\ & \Rightarrow \left\| x^* \right\| \le V \left(g \right). \end{aligned}$$

Thm. 2.
$$C[0,1]^* \cong BV_0$$
 isometric isom. $x^* \leftrightarrow [g]$ $x^*(f) = \int_0^1 f dg \ \forall f \in C[0,1].$ Pf.: $\forall [g]$, define $x_{[g]}^*(f) = \int_0^1 f dg \ \forall f \in C[0,1].$ Then, (1) well-defined, & $\|x_{[g]}^*\| \le V(g) \quad \forall g \in [g]$ (Thm 1(3)) $\Rightarrow (2) \quad \|x_{[g]}^*\| \le \|[g]\|$ (3) $[g] \to x_{[g]}^*\|$ linear (4) onto Thm. 1. $\Rightarrow \forall x^*, \exists g \ni x^*(f) = \int_0^1 f dg \ \& \quad \|x^*\| = V(g)$ Consider $[g]$. (5) isometric: Then $\|x^*\| = V(g) \ge \|[g]\|$. Conclusion: $BV_0 \cong C[0,1]^*$ Let $g_0 \in [g]$ be a normalization of $[g]$ \Rightarrow Lma. If $g \in BV[0,1]$, $\exists 1 g_0$ normalized $\ni g \sim \{g_0\}$. Moreover, $V(g_0) = V(g)$. Pf.: cf. pp.183~184

Let $NBV = \{g_0\}$ Define $\|g_0\| = V(g_0)$. Then $(NBV, \|\cdot\|)$ normed space Lma. $(NBV, \|\cdot\|) \cong (BV_0, \|\cdot\|)$ isometric isomorphism $g_0 \leftrightarrow [g]$ Pf.: $|\cdot|\cdot| \|g_0\| = V(g_0) \ge \|[g]\|$ Check: $\|g_0\| \le \|[g]\|$ i.e. Check: $V(g_0) \le V(g) \ \forall g \sim g_0$ (cf. p.184)

(Motivation: Look at graphs of $g \& g_0$)

Homework: Sec. 4.14 Ex.6