Machine Learning Assignment 3 Neural Networks

Submission deadline: December 9, 2024

Please submit your solution in PDF format (preferably, but not necessarily, L^AT_EX— this .tex file can be found on iCorsi). Handwriting and scanned documents are not allowed. In case you need further help, please write on iCorsi or contact me at mikhail.andronov@idsia.ch.

1 Estimating the parameters of a statistical model (26 points)

You are given a data set of N measurements $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}$, and every measurement $\mathbf{x}^{(n)}$ contains D numbers $(x_1^{(n)}, \dots, x_D^{(n)})$, such as $x_d^{(n)} \in \mathbb{N} \cup \{0\}$ for all $n \in \{1, \dots, N\}$ and $d \in \{1, \dots, D\}$. You decide to model the true distribution of this dataset with an independent multivariate Poisson distribution with the parameter vector $\lambda = (\lambda_1, \dots, \lambda_D)$, which has the form

$$p(\mathbf{x}|\lambda) = \prod_{d=1}^{D} \frac{\lambda_d^{x_d}}{x_d!} e^{-\lambda_d}$$
 (1)

You want to estimate the optimal parameters of the model given the data.

1.1 Likelihood (3 points)

What is the likelihood function of λ given the data set of N measurements $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}$? (3 points)

1.2 Log-likelihood (3 points)

Derive the log-likelihood. Include all intermediate steps and simplify the final result.

1.3 MLE (10 points)

Derive the maximum likelihood estimate (MLE) of λ . You can assume the critical point to be the maximum, no second derivatives are required. Include all intermediate steps and simplify the final result.

1.4 MAP (10 points)

You place a constraint on the parameters of the model by introducing a prior distribution on them. You assume independent exponential priors on the parameters λ_d

$$p(\lambda) = \prod_{d=1}^{D} p(\lambda_d) = \prod_{d=1}^{D} \beta_d e^{-\beta_d \lambda_d}$$

where $\beta_i > 0$. What is the maximum a posteriori (MAP) estimate of λ ? Include all intermediate steps and simplify the final result.

2 Additional questions (7 points)

Give answers to the following questions.

2.1 Different prior (3 points)

What would be the MAP estimate of λ if we chose the uniform prior, i.e., the prior that treats all parameter values as equally likely? Explain your reasoning.

2.2 Choice of prior (2 points)

When would the exponential prior on λ be a good choice? What kind of our belief about the model parameters are we expressing in this choice of prior?

2.3 Prior parameters (2 points)

If we make the β parameters of the prior smaller and smaller, how will the shape of the prior and the MAP estimate change?