Hands-on Scikit-Learn for Machine Learning Applications

Data Science Fundamentals with Python

David Paper

Hands-on Scikit-Learn for Machine Learning Applications: Data Science Fundamentals with Python

David Paper Logan, UT, USA

ISBN-13 (pbk): 978-1-4842-5372-4 ISBN-13 (electronic): 978-1-4842-5373-1

https://doi.org/10.1007/978-1-4842-5373-1

Copyright © 2020 by David Paper

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr

Acquisitions Editor: Jonathan Gennick Development Editor: Laura Berendson Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a **Delaware** corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub via the book's product page, located at www.apress.com/9781484253724. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

For my mother, brothers, and friends.

Table of Contents

About the Author	D
About the Technical Reviewer	x i
Introduction	xiii
Chapter 1: Introduction to Scikit-Learn	1
Machine Learning	1
Anaconda	2
Scikit-Learn	3
Data Sets	3
Characterize Data	4
Simple Classification Data	4
Complex Classification Data	14
Regression Data	21
Feature Scaling	27
Dimensionality Reduction	30
Chapter 2: Classification from Simple Training Sets	37
Simple Data Sets	38
Classifying Wine Data	38
Classifying Digits	43
Classifying Bank Data	52
Classifying make_moons	64
Chapter 3: Classification from Complex Training Sets	71
Complex Data Sets	71
Classifying fetch_20newsgroups	71
Classifying MNIST	79
Classifying fetch_lfw_people	95

TABLE OF CONTENTS

Chapter 4: Predictive Modeling Through Regression	105
Regression Data Sets	105
Regressing tips	106
Regressing boston	117
Regressing wine data	122
Chapter 5: Scikit-Learn Classifier Tuning from Simple Training Sets	137
Tuning Data Sets	139
Tuning Iris Data	140
Tuning Digits Data	144
Tuning Bank Data	149
Tuning Wine Data	157
Chapter 6: Scikit-Learn Classifier Tuning from Complex Training Sets	165
Tuning Data Sets	166
Tuning fetch_1fw_people	166
Tuning MNIST	175
Tuning fetch_20newsgroups	184
Chapter 7: Scikit-Learn Regression Tuning	189
Tuning Data Sets	190
Tuning tips	190
Tuning boston	199
Tuning wine	20 8
Chapter 8: Putting It All Together	215
The Journey	215
Value and Cost	216
MNIST Value and Cost	218
Explaining MNIST to Money People	222
Explaining Output to Money People	222
Explaining the Confusion Matrix to Money People	223

TABLE OF CONTENTS

Explaining Visualizations to Money People	224
Value and Cost	224
fetch_lfw_people Value and Cost	225
Explaining fetch_lfw_people to Money People	229
Explaining Output to Money People	229
Explaining Visualizations to Money People	230
Value and Cost	230
fetch_20newsgroups Value and Cost	231
Explaining fetch_20newsgroups to Money People	235
Explaining Output to Money People	235
Explaining the Confusion Matrix to Money People	235
Value and Cost	236
Index	239

About the Author

Dr. David Paper is a professor at Utah State University in the Management Information Systems department. He is the author of two books – *Web Programming for Business: PHP Object-Oriented Programming with Oracle* and *Data Science Fundamentals for Python and MongoDB*. He has over 70 publications in refereed journals such as *Organizational Research Methods, Communications of the ACM, Information & Management, Information Resource Management Journal, Communications of the AIS, Journal of Information Technology Case and Application Research,* and *Long Range Planning*. He has also served on several editorial boards in various capacities, including associate editor. Besides

growing up in family businesses, Dr. Paper has worked for Texas Instruments, DLS, Inc., and the Phoenix Small Business Administration. He has performed IS consulting work for IBM, AT&T, Octel, Utah Department of Transportation, and the Space Dynamics Laboratory. Dr. Paper's teaching and research interests include data science, machine learning, process reengineering, object-oriented programming, and change management.

About the Technical Reviewer

Jojo Moolayil is an artificial intelligence, deep learning, machine learning, and decision science professional and published author of three books: Smarter Decisions – The Intersection of Internet of Things and Decision Science, Learn Keras for Deep Neural Networks, and Applied Supervised Learning with R. He has worked with industry leaders on several high-impact and critical data science and machine learning projects across multiple verticals. He is currently associated with Amazon Web Services as a research scientist – AI.

Jojo was born and raised in Pune, India, and graduated from the University of Pune with a major in Information Technology Engineering. He started his career with Mu

Sigma Inc., the world's largest pure-play analytics provider, and worked with the leaders of many Fortune 50 clients. He later worked with Flutura – an IoT analytics start-up – and GE, the pioneer and leader in Industrial AI.

He currently resides in Vancouver, BC. Apart from authoring books on deep learning, decision science, and IoT, Jojo has also been a technical reviewer for various books on the same subject with Apress and Packt publications. He is an active Data Science tutor and maintains a blog at http://blog.jojomoolayil.com.

- Jojo's personal web site: www.jojomoolayil.com
- Business e-mail: mail@jojomoolayil.com

Introduction

We apply the popular Scikit-Learn library to demonstrate machine learning exercises with Python code to help readers solve machine learning problems. The book is designed for those with intermediate programming skills and some experience with machine learning algorithms. We focus on application of the algorithms rather than theory. So, readers should read about the theory online or from other sources if appropriate. The reader should also be willing to spend a lot of time working through the code examples because they are pretty deep. But, the effort will pay off because the examples are intended to help the reader tackle complex problems.

The book is organized into eight chapters. Chapter 1 introduces the topic of machine learning, Anaconda, and Scikit-Learn. Chapters 2 and 3 introduce algorithmic classification. Chapter 2 classifies simple data sets and Chapter 3 classifies complex ones. Chapter 4 introduces predictive modeling with regression. Chapters 5 and 6 introduce classification tuning. Chapter 5 tunes simple data sets and Chapter 6 tunes complex ones. Chapter 7 introduces predictive modeling regression tuning. Chapter 8 puts all knowledge together to review and present findings in a holistic manner.

Download this book's example data by clicking the Download source code button found on the book's catalog page at https://www.apress.com/us/book/9781484253724.