MÉTHODE 1

En calculant directement la limite

SITUATION

Si la suite est définie de manière explicite, on peut parfois déterminer directement la valeur de son éventuelle limite.

ÉNONCÉ

Soit (u_n) la suite définie par :

$$orall n \in \mathbb{N}, \; u_n = rac{1}{2e^n}$$

Montrer que $\left(u_{n}\right)$ converge et donner la valeur de sa limite.

ETAPE 1

Déterminer la valeur de la limite éventuelle

On peut calculer la valeur de la limite de la suite de trois façons différentes :

- En utilisant les limites usuelles et les règles des opérations sur les limites
- En utilisant le théorème des gendarmes
- En utilisant les théorèmes de comparaison

APPLICATION

On a:

$$\lim_{n\to+\infty} 2e^n = +\infty$$

Or:

$$\lim_{X o +\infty} \; rac{1}{X} = 0$$

On a donc:

$$\lim_{n o +\infty} \ rac{1}{2e^n} = 0$$

Ainsi:

$$\lim_{n o +\infty}\ u_n=0$$

ETAPE 2

Conclure sur la convergence de la suite

Si la limite trouvée dans l'étape précédente est finie, la suite converge. Sinon, la suite diverge.

APPLICATION

Ainsi, la suite (u_n) converge vers 0.

MÉTHODE 2

En utilisant les théorèmes de convergence monotone

SITUATION

Si la suite est définie par récurrence, on ne peut généralement pas calculer sa limite directement. On utilise alors un théorème de convergence monotone.

ÉNONCÉ

Soit (u_n) la suite définie par :

$$egin{cases} u_0=2\ orall n\in\mathbb{N},\ u_{n+1}=rac{u_n}{2} \end{cases}$$

On admet que $orall n \in \mathbb{N}, \; u_n > 0$. Montrer que la suite (u_n) est convergente.

ETAPE 1

Étudier la monotonie de la suite

On détermine si la suite est croissante ou décroissante.

APPLICATION

Pour tout entier naturel *n*, on a :

$$u_{n+1}-u_n=-rac{u_n}{2}$$

Or, d'après l'énoncé:

$$\forall n \in \mathbb{N}, \ u_n > 0$$

Ainsi, pour tout entier naturel *n*:

$$u_{n+1}-u_n\leqslant 0$$

Soit:

$$u_{n+1}\leqslant u_n$$

La suite (u_n) est donc décroissante.

ETAPE 2

Étudier la majoration ou minoration de la suite

- Si la suite est croissante, on détermine si elle est majorée.
- Si la suite est décroissante, on détermine si elle est minorée.

APPLICATION

On sait que:

$$\forall n \in \mathbb{N}, \ u_n > 0$$

La suite (u_n) est donc minorée par 0.

ETAPE 3

Conclure à l'aide des théorèmes de convergence monotone

On sait que:

- Si la suite est croissante et majorée, elle converge.
- Si la suite est décroissante et minorée, elle converge.

Par ailleurs:

- Si la suite est croissante et non majorée, elle diverge vers $+\infty$.
- Si la suite est décroissante et non minorée, elle diverge vers $-\infty$.

Cette méthode ne permet pas de conclure sur la valeur de la limite de la suite si celle-ci converge. Le majorant (ou le minorant) déterminé n'est pas nécessairement la limite.

APPLICATION

La suite $\left(u_{n}
ight)$ étant décroissante et minorée par 0, elle est donc convergente. On note I sa limite.

Kartable.fr Chapitre 5 : Les suites