Organización del Computador 2024 PARCIAL 1

Nombre:

Fecha:

Ejercicio 1

1.a) Transformar el siguiente número de punto flotante formato IEEE754 (expresado en hexadecimal) a binario (completar la tabla con ceros y unos):

0x40807FFF:

1.b) Transformar el siguiente número de punto flotante formato IEEE754 (en formato hexadecimal). Expresar el resultado en formato decimal:

0xFF8004E7:_____

Ejercicio 2

- 2.a) ¿Cuáles son las compuertas lógicas que consideramos universales, es decir, aquellas que nos posibilitan representar las funciones NOT, AND y OR? __
- 2.b) Dada la siguiente función: X = (B+C)B' + A' + AC' Marque, encerrando con un círculo el índice, la o las funciones equivalentes
 - (a) X=BB'+B'C+A'+AC'
 - (b) X=B'. C + A+A'
 - (c) X= B'
 - (4) X=B'C+A'+AG'
- 2.c) ¿Cuál de las siguientes combinaciones de entradas producirá una salida en 1 en una compuerta XOR de tres entradas?
 - A) 011
 - B) 101
 - C) 100
 - D) 000

Ejercicio 3

Encontrar la expresión minimizada de la función utilizando el siguiente mapa de Karnaugh. Indicar con claridad los agrupamientos realizados.

$$X = C\overline{A}D + C\overline{A}\overline{B} + C\overline{D}\overline{A} + \overline{C}\overline{D}\overline{B} + A\overline{B}C\overline{D}$$

Función minimizada:

Evaluar el circuito y completar la columna de salida "F" de la tabla de verdad.

W	X	Y	Z	F
-0	0	0	0	
0.	0	0	1	
0	0	1	0	
Ø	O	1	1	
-0	1	0	Ð	
0	1	0-	1	
0	1	1	0	
0	1.	1	1.	b .
1	0.	0.	0	
.1	0	0	1	
1	0	1	0	
1	0	1	1	
7	7	0	0	
1	1.	.0	1	
1-	1	1	0-	
1	1	1	1	

Ejercicio 5

Considerando el sistema de memoria implementado en la figura:

- a) Completar los cuadros en líneas de puntos del diagrama con la cantidad de señales involucradas y su denominación.
- Determinar si alguno de los siguientes mapas de memoria representa correctamente la implementación del diagrama (Marcar con una X el correcto, o dejar en blanco si se considera que son todos incorrectos).

c) Calcular el espacio direccionable en palabras de 32 bits:

_____palabras.

- d) Responder verdadero (V) o (F):
 - 1. Los bloques #1 y #2 están en paralelo
 - 2. El sistema solo posee conexiones en serie.
 - 3. La memoria FLASH tiene asociada posiciones imagen.
 - El decodificador manejado por A29 divide un segmento de 512M palabras en dos segmentos de 256M palabras c/u.

Ejercicio 6

Indicar en qué número de bloque de RAM se almacenan las siguientes direcciones:

- a. 0x3579; RAM #___
- b. 0x50F0: RAM #
- c. 0xC0F2: RAM #_____
- d. 0x0F0F: RAM #

Ejercicio 7

Se pretende diseñar un registro de entrada serie (In) y salida paralelo O[0-3], además debe tener la capacidad de retener la información. La entrada op selecciona el funcionamiento:

- op = 0: registro desplazamiento
- op ≈ 1: retención de la información.

Además, debe generarse una salida extra (OUT_1) que se ponga en uno cuando todos los bits almacenados sean ceros, de lo contrario debe dar salida cero.

Aclaración: El diagrama debe realizarse a continuación, debe utilizar las entradas y salidas dadas y no se puede agregar entradas o salidas nuevas a los flip-flop.

Ejercicio 8

Dado el siguiente diagrama de estados, con una entrada "In" de 1 bit y una salida "Out" de 2 bits, considerando que los estados deben codificarse por el número de estado en representación binaria de 2 bits (ej: E0 es el "estado cero" y se codifica como "00"), completar las tablas de los circuitos combinacionales de estados y de salida del circuito secuencial.

Combinacional de estados						
Q,	Qo	-In	D ₁	D ₀		
0	0	0				
0	0	t				
0	1	0				
0-		1		-		
1	0	0				
1	0	1	100			
1	1	-0				
1	1.	1				

Combinacional de salida							
Codificación	Q ₁	Qo	OUT,	QUT			
E0							
E1							
E2							
E3			1				