Содержание

1	Лег	кция от 08.02.17. Случайные блуждания	1
	1.1	Понятие случайного блуждания	1
	1.2	Случайные блуждания	2
	1.3	Исследование случайного блуждания с помощью характери-	
		стической функции	4
2 Лекция от 15.02.17. Ветвящиеся процессы и процессы		кция от 15.02.17. Ветвящиеся процессы и процессы вос-	
	становления		5
	2.1	Модель Гальтона-Ватсона	5
	2.2	Процессы восстановления	8
1	Лекция от 08.02.17		
	\mathbf{C}	лучайные блуждания	

1.1 Понятие случайного блуждания

Определение 1.1. Пусть V — множество, а \mathscr{A} — σ -алгебра его подмножеств. Тогда (V,\mathscr{A}) называется измеримым пространством.

Определение 1.2. Пусть есть (V, \mathscr{A}) и (S, \mathscr{B}) — два измеримых пространства, $f \colon V \to S$ — отображение. f называется $\mathscr{A} | \mathscr{B}$ -измеримым, если $\forall B \in \mathscr{B} f^{-1}(B) \in \mathscr{A}$. Обозначение: $f \in \mathscr{A} | \mathscr{B}$.

Определение 1.3. Пусть есть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство, (S, \mathscr{B}) — измеримое пространство, $Y \colon \Omega \to S$ — отображение. Если $Y \in \mathscr{F}|\mathscr{B}$, то Y называется *случайным элементом*.

Определение 1.4. Пусть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство, (S, \mathscr{B}) — измеримое пространство, $Y \colon \Omega \to S$ —случайный элемент. Pac-пределение вероятностей, индуцированное случайным элементом Y, - это функция на множествах из \mathscr{B} , задаваемая равенством

$$P_Y(B) := P(Y^{-1}(B)), B \in \mathscr{B}.$$

Определение 1.5. Пусть $(S_t, \mathcal{B}_t)_{t \in T}$ — семейство измеримых пространств. Случайный процесс, ассоциированный с этим семейством, — это семейство случайных элементов $X = \{X(t), t \in T\}$, где $X(t): \Omega \to S_t, X(t) \in \mathcal{F} | \mathcal{B}_t \ \forall t \in T$. Здесь T— это произвольное параметрическое множество, (S_t, \mathcal{B}_t) — произвольные измеримые пространства.

Замечание. Если $T \subset \mathbb{R}$, то $t \in T$ интерпретируется как время. Если $T = \mathbb{R}$, то время непрерывно; если $T = \mathbb{Z}$ или $T = \mathbb{Z}_+$, то время дискретно; если $T \subset \mathbb{R}^d$, то говорят о случайном поле.

Определение 1.6. Случайные элементы X_1,\ldots,X_n называются *независимыми*, если $\mathsf{P}\left(\bigcap_{k=1}^n \left\{X_k \in B_k\right\}\right) = \prod_{k=1}^n \mathsf{P}(X_k \in B_k) \ \forall \, B_1 \in \mathscr{B}_1,\,\ldots,\,B_n \in \mathscr{B}_n.$

Теорема 1.1 (Ломницкого-Улама). Пусть $(S_t, \mathcal{B}_t, Q_t)_{t \in T}$ — семейство вероятностных пространств. Тогда на некотором $(\Omega, \mathcal{F}, \mathsf{P})$ существует семейство независимых случайных элементов $X_t \colon \Omega \to S_t, \ X_t \in \mathcal{F}|\mathcal{B}_t$ таких, что $\mathsf{P}_{X_t} = Q_t, \ t \in T$.

Замечание. Это значит, что на некотором вероятностном пространстве можно задать независимое семейство случайных элементов с наперед указанными распределениеми. При этом T по-прежнему любое, как и $(S_t, \mathcal{B}_t, \mathbb{Q})_{t \in T}$ — произвольные вероятностные пространства. Независимость здесь означает независимость в совокупности \forall конечного поднабора.

1.2 Случайные блуждания

Определение 1.7. Пусть X, X_1, X_2, \ldots независимые одинаково распределенные случайные векторы со значениями в \mathbb{R}^d . Случайным блужданием в \mathbb{R}^d называется случайный процесс с дискретным временем $S = \{S_n, n \geq 0\}$ $(n \in \mathbb{Z}_+)$ такой, что

$$S_0 := x \in \mathbb{R}^d$$
 (начальная точка); $S_n := x + X_1 + \ldots + X_n, \quad n \in \mathbb{N}.$

Определение 1.8. Простое случайное блуждание в \mathbb{Z}^d — это такое случайное блуждание, что

$$P(X = e_k) = P(X = -e_k) = \frac{1}{2d}$$

где
$$e_k = (0, \dots, 0, \underbrace{1}_k, 0, \dots, 0), \ k = 1, \dots, d.$$

Определение 1.9. Введем $\mathbf{N}:=\sum_{n=0}^{\infty}\mathbb{I}\{S_n=0\}\ (\leqslant\infty)$. Это, по сути, число попаданий нашего процесса в точку 0. Простое случайное блуждание $S==\{S_n,n\geqslant 0\}$ называется возвратным, если $\mathsf{P}(N=\infty)=1;$ невозвратным, если $\mathsf{P}(N<\infty)=1.$

Замечание. Следует понимать, что хотя определение подразумевает, что $P(N=\infty)$ равно либо 0, либо 1, пока что это является недоказанным фактом. Это свойство будет следовать из следующей леммы.

Замечание (от наборщика). Судя по всему, в лемме ниже подразумевается, что начальная точка нашего случайного блуждания— это 0.

Определение 1.10. Число $\tau := \inf\{n \in \mathbb{N} : S_n = 0\}$ ($\tau := \infty$, если $S_n \neq 0$ $\forall n \in N$) называется моментом первого возвращения в θ .

Лемма 1.2. Для
$$\forall n \in \mathbb{N}$$
 $P(N=n) = P(\tau=\infty) P(\tau<\infty)^{n-1}$.

Доказатель ство. При n=1 формула верна: $\{N=1\}=\{ au=\infty\}$. Докажем по индукции.

$$\begin{split} \mathsf{P}(N = n+1, \tau < \infty) &= \sum_{k=1}^{\infty} \mathsf{P}(N = n+1, \tau = k) = \\ &= \sum_{k=1}^{\infty} \mathsf{P}\left(\sum_{m=0}^{\infty} \mathbb{I}\{S_{m+k} - S_k = 0\} = n, \tau = k\right) = \\ &= \sum_{k=1}^{\infty} \mathsf{P}\left(\sum_{m=0}^{\infty} \mathbb{I}\{S_m = 0\} = n\right) \mathsf{P}(\tau = k) = \\ &= \sum_{k=1}^{\infty} \mathsf{P}(N' = n) \, \mathsf{P}(\tau = k), \end{split}$$

где N' определяется по последовательности $X_1'=X_{k+1},\ X_2'=X_{k+2}$ и так далее. Из того, что X_i — независиые одинаково распределенные случайные векторы, следует, что N' и N распределены одинаково. Таким образом, получаем, что

$$P(N = n + 1, \tau < \infty) = P(N = n) P(\tau < \infty).$$

Заметим теперь, что

$$P(N = n + 1) = P(N = n + 1, \tau < \infty) + P(N = n + 1, \tau = \infty),$$

где второе слагаемое обнуляется из-за того, что $n+1\geqslant 2$. Из этого следует,

$$P(N = n + 1) = P(N = n) P(\tau < \infty).$$

Пользуемся предположением индукции и получаем, что

$$P(N = n + 1) = P(\tau = \infty) P(\tau < \infty)^n$$

что и завершает доказательство леммы.

Следствие. $P(N=\infty)$ равно θ или 1. $P(N<\infty)=1\Leftrightarrow P(\tau<\infty)<1$.

Доказательство. Пусть $P(\tau < \infty) < 1$. Тогда

$$\begin{split} \mathsf{P}(N<\infty) &= \sum_{n=1}^{\infty} \mathsf{P}(N=n) = \sum_{n=1}^{\infty} \mathsf{P}(\tau=\infty) \, \mathsf{P}(\tau<\infty)^{n-1} = \frac{\mathsf{P}(\tau=\infty)}{1-\mathsf{P}(\tau<\infty)} = \\ &= \qquad = \frac{\mathsf{P}(\tau=\infty)}{\mathsf{P}(\tau=\infty)} = 1. \end{split}$$

Это доказывает первое утверждение следствия и импликацию справа налево в формулировке следствия. Докажем импликацию слева направо.

$$\mathsf{P}(\tau < \infty) = 1 \Rightarrow \mathsf{P}\left((\tau = \infty) = 0\right) \Rightarrow \mathsf{P}(N = n) = 0 \; \forall \, n \in \mathbb{N} \Rightarrow \mathsf{P}(N < \infty) = 0.$$

Следствие доказано.

Теорема 1.3. Простое случайное блуждание в \mathbb{Z}^d возвратно \Leftrightarrow $\mathsf{E} N = \infty$ (соответственно, невозвратно \Leftrightarrow $\mathsf{E} N < \infty$).

Доказательство. Если $\mathsf{E} N < \infty$, то $\mathsf{P}(N < \infty) = 1$. Пусть теперь $\mathsf{P}(N < \infty) = 1$. Это равносильно тому, что $\mathsf{P}(\tau < \infty) < 1$.

$$\mathsf{E} N = \sum_{n=1}^\infty n \, \mathsf{P}(N=n) = \sum_{n=1}^\infty n \, \mathsf{P}(\tau=\infty) \, \mathsf{P}(\tau<\infty)^{n-1} =$$

$$= \mathsf{P}(\tau=\infty) \sum_{n=1}^\infty n \, \mathsf{P}(\tau<\infty)^{n-1}.$$

Заметим, что

$$\sum_{n=1}^{\infty} np^{n-1} = (\sum_{n=1}^{\infty} p^n)' = (\frac{1}{1-p})' = \frac{1}{(1-p)^2}.$$

Тогда, продолжая цепочку равенств, получаем, что

$$P(\tau = \infty) \sum_{n=1}^{\infty} n P(\tau < \infty)^{n-1} = \frac{P(\tau = \infty)}{(1 - P(\tau < \infty))^2} = \frac{1}{1 - P(\tau < \infty)},$$

что завершает доказательство теоремы.

Замечание. Заметим, что поскольку $N=\sum_{n=0}^{\infty}\mathbb{I}\{S_n=0\}$, то

$$EN = \sum_{n=0}^{\infty} EI\{S_n = 0\} = \sum_{n=0}^{\infty} P(S_n = 0),$$

где перестановка местами знаков матожидания и суммы возможна в силу неотрицательности членов ряда. Таким образом,

S возвратно
$$\Leftrightarrow \sum_{n=0}^{\infty} \mathsf{P}(S_n = 0) = \infty.$$

Следствие. S возвратно $npu \ d = 1 \ u \ d = 2.$

Доказатель ство.
$$P(S_{2n}=0)=(\frac{1}{2d})^{2n}\sum_{\substack{n_1,\ldots,n_d\geqslant 0\\n_1+\ldots+n_d=n}}\frac{(2n)!}{(n_1!)^2\ldots(n_d!)^2}$$

Случай
$$d = 1$$
: $P(S_{2n} = 0) = \frac{(2n)!}{(n!)^2} (\frac{1}{2})^{2n}$.

Согласно формуле Стирлинга,

$$m! \sim \left(\frac{m}{e}\right)^m \sqrt{2\pi m}, \quad m \to \infty.$$

Соответственно,

$$P(S_{2n}=0) \sim \frac{1}{\sqrt{\pi n}} \Rightarrow$$

 \Rightarrow ряд $\sum\limits_{n=0}^{\infty} \frac{1}{\sqrt{\pi n}} = \infty \Rightarrow$ блуждание возвратно. Аналогично рассматривается случай d=2: $\mathsf{P}(S_{2n}=0)=\ldots=\left\{\frac{(2n)!}{(n!)^2}(\frac{1}{2})^{2n}\right\}^2\sim \frac{1}{\pi n}\Rightarrow$ ряд тоже разойдется \Rightarrow блуждание возвратно. Теорема доказана.

1.3 Исследование случайного блуждания с помощью характеристической функции

Теорема 1.4. Для простого случайного блуждания в \mathbb{Z}^d

$$\mathsf{E}N = \lim_{c \uparrow 1} \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \frac{1}{1 - c\varphi(t)} \, \mathrm{d}t,$$

 $r de \ \varphi(t) - x a p a \kappa m e p u c m u ч e c \kappa a s \ \phi y н к u u s \ X, \ t \in \mathbb{R}^d.$

Доказатель ство. $\int_{[-\pi,\pi]} \frac{e^{inx}}{2\pi} dx = \begin{cases} 1, & n=0\\ 0, & n\neq 0 \end{cases}$. Следовательно,

$$\mathbb{I}\{S_n = 0\} = \prod_{k=1}^d \mathbb{I}\{S_n^{(k)} = 0\} = \prod_{k=1}^d \int_{[-\pi,\pi]} \frac{e^{iS_n^{(k)}t_k}}{2\pi} dt_k = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} e^{i(S_n,t)} dt.$$

По теореме Фубини

$$\mathsf{E}\mathbb{I}(S_n = 0) = \mathsf{E}\frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} e^{i(S_n,t)} \; \mathrm{d}t = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \mathsf{E}e^{i(S_n,t)} \; \mathrm{d}t.$$

Заметим, что

$$\mathsf{E}e^{i(S_n,t)} = \prod_{k=1}^n \varphi_{X_k}(t) = (\varphi(t))^n.$$

Тогда

$$\mathsf{EI}(S_n = 0) = \mathsf{P}(S_n = 0) = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \left(\varphi\left(t\right)\right)^n \, \mathrm{d}t.$$

Из этого следует, что

$$\sum_{n=0}^{\infty} c^n \, \mathsf{P}(S_n = 0) = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \sum_{n=0}^{\infty} (c\varphi(t))^n \, \mathrm{d}t, \quad \text{где } 0 < c < 1.$$

Поскольку $|c\varphi| \leqslant c < 1$, то

$$\frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \sum_{n=0}^{\infty} (c\varphi(t))^n dt = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \frac{1}{1 - c\varphi(t)} dt$$

по формуле для суммы бесконечно убывающей геометрической прогрессии. Осталось только заметить, что

$$\sum_{n=0}^{\infty} c^n \, \mathsf{P}(S_n=0) \to \sum_{n=0}^{\infty} \mathsf{P}(S_n=0) = \mathsf{E} N, \quad c \uparrow 1,$$

что и завершает доказательство теоремы.

Следствие. При $d \geqslant 3$ простое случайное блуждание невозвратно.

3амечание. Можно говорить и о случайных блужданиях в \mathbb{R}^d , если $X_i:\Omega o\mathbb{R}^d$. Но тогда о возвратности приходится говорить в терминах бесконечно частого попадания в ε -окрестность точки x.

Определение 1.11. Пусть есть случайное блуждание S на \mathbb{R}^d . Тогда *мно*жество возвратности случайного блуждания S — это множество

 $R(S) = \{x \in \mathbb{R}^d :$ блуждание возвратно в окрестности точки $x\}$.

Определение 1.12. Пусть есть случайное блуждание S на \mathbb{R}^d . Тогда *mov-* κu , достижимые случайным блужданием S,—это множество P(S) такое, отР

$$\forall z \in P(S) \ \forall \varepsilon > 0 \ \exists n: \ P(\|S_n - z\| < \varepsilon) > 0.$$

Теорема 1.5 (Чжуна-Фукса). Если $R(S) \neq \emptyset$, то R(S) = P(S).

Следствие. Если $0 \in R(S)$, то R(S) = P(S); если $0 \notin R(S)$, то $R(S) = \emptyset$.

2 Лекция от 15.02.17

Ветвящиеся процессы и процессы восстановления

2.1Модель Гальтона-Ватсона

Описание модели Пусть $\{\xi, \xi_{n,k}, n, k \in \mathbb{N}\}$ — массив независимых одинаково распределенных случайных величин,

$$P(\xi = m) = p_m \ge 0, \ m \in \mathbb{Z}_+ = \{0, 1, 2, \ldots\}.$$

Такие существуют в силу теоремы Ломницкого-Улама. Положим

$$Z_0(\omega) \coloneqq 1,$$
 $Z_n(\omega) \coloneqq \sum_{k=1}^{Z_{n-1}(\omega)} \xi_{n,k}(\omega)$ для $n \in \mathbb{N}.$

Здесь подразумевается, что если $Z_{n-1}(\omega)=0$, то и вся сумма равна нулю. Таким образом, рассматривается сумма случайного числа случайных величин. Определим $A=\{\omega\colon \exists\, n=n(\omega),\; Z_n(\omega)=0\}-c$ обыmue вырож дения *популяции.* Заметим, что если $Z_n(\omega) = 0$, то $Z_{n+1}(\omega) = 0$. Таким образом, $\{Z_n=0\}\subset \{Z_{n+1}=0\}$ и $A=\bigcup_{n=1}^\infty \{Z_n=0\}.$ По свойству непрерывности вероятностной меры,

$$\mathsf{P}(A) = \lim_{n \to \infty} \mathsf{P}(Z_n = 0).$$

Определение 2.1. Пусть дана последовательность $(a_n)_{n=0}^{\infty}$ неотрицательных чисел такая, что $\sum_{n=0}^{\infty} a_n = 1$. Производящая функция для этой последовательности — это

$$f(s) := \sum_{k=0}^{\infty} s^k a_k, \quad |s| \le 1$$

(нас в основном будут интересовать $s \in [0, 1]$).

Заметим, что если $a_k = \mathsf{P}(Y = k), \, k = 0, 1, \dots$, то

$$f_Y(s) = \sum_{k=0}^{\infty} s^k P(Y = k) = Es^Y, \quad s \in [0, 1].$$

Лемма 2.1. Вероятность P(A) является корнем уравнения $\psi(p)=p$, где $\psi=f_{\xi}$ и $p\in[0,1].$

Доказательство.

$$\begin{split} f_{Z_n}(s) &= \mathsf{E} s^{Z_n} = \mathsf{E} \left(s^{\sum_{k=1}^{Z_{n-1}} \xi_{n,k}} \right) = \\ &= \sum_{j=0}^\infty \mathsf{E} \left[\left(s^{\sum_{k=1}^{Z_{n-1}} \xi_{n,k}} \right) \mathbb{I} \{ Z_{n-1} = j \} \right] = \\ &= \sum_{j=0}^\infty \mathsf{E} \left[\left(s^{\sum_{k=1}^j \xi_{n,k}} \right) \mathbb{I} \{ Z_{n-1} = j \} \right]. \end{split}$$

Поскольку $\sigma\{Z_r\}\subset \sigma\{\xi_{m,k},\ m=1,\ldots,r,\ k\in\mathbb{N}\}$, которая независима с $\sigma\{\xi_{n,k},\ k\in\mathbb{N}\}$ (строгое и полное обоснование остается в качестве упражнения), то

$$\begin{split} \sum_{j=0}^{\infty} \mathsf{E} \left[\left(s^{\sum_{k=1}^{j} \xi_{n,k}} \right) \mathbb{I} \{ Z_{n-1} = j \} \right] &= \sum_{j=0}^{\infty} \mathsf{E} \left(s^{\sum_{k=1}^{j} \xi_{n,k}} \right) \mathsf{E} \mathbb{I} \{ Z_{n-1} = j \} = \\ &= \sum_{j=0}^{\infty} \mathsf{E} \left(s^{\sum_{k=1}^{j} \xi_{n,k}} \right) \mathsf{P} (Z_{n-1} = j) = \sum_{j=0}^{\infty} \prod_{k=1}^{j} \mathsf{E} s^{\xi_{n,k}} \, \mathsf{P} (Z_{n-1} = j) = \\ &= \sum_{j=0}^{\infty} \psi_{\xi}^{j}(s) \, \mathsf{P} (Z_{n-1} = j) = f_{Z_{n-1}} \left(\psi_{\xi}(s) \right) \end{split}$$

в силу независимости и одинаковой распределенности $\xi_{n,k}$ и определения производящей функции. Таким образом,

$$f_{Z_n}(s) = f_{Z_{n-1}}(\psi_{\mathcal{E}}(s)), \quad s \in [0, 1].$$

Подставим s=0 и получим, что

$$f_{Z_n}(0) = f_{Z_{n-1}}\left(\psi_{\xi}\left(0\right)\right)$$

Заметим, что

$$f_{Z_n}(s) = f_{Z_{n-1}}(\psi_{\xi}(s)) = f_{Z_{n-2}}\left(\psi_{\xi}\left(\psi_{\xi}\left(s\right)\right)\right) = \ldots = \underbrace{\psi_{\xi}(\psi_{\xi}\ldots(\psi_{\xi}(s))\ldots)}_{n \text{ итераций}} = \psi_{\xi}(f_{Z_{n-1}}(s)).$$

Тогда при s=0 имеем, что

$$\mathsf{P}(Z_n=0)=\psi_{\xi}\left(\mathsf{P}\left(Z_{n-1}=0\right)\right).$$

Но $\mathsf{P}(Z_n=0)\nearrow\mathsf{P}(A)$ при $n\to\infty$ и ψ_ξ непрерывна на [0,1]. Переходим к пределу при $n\to\infty$. Тогда

$$P(A) = \psi_{\varepsilon}(P(A)),$$

то есть P(A) — корень уравнения $p = \psi_{\mathcal{E}}(p), p \in [0, 1].$

Теорема 2.2. Вероятность р вырождения процесса Гальтона-Ватсона есть **наименьший** корень уравнения

$$\psi(p) = p, \quad p \in [0, 1], \tag{1}$$

 $r\partial e \ \psi = \psi_{\mathcal{E}}$

Доказатель ство. Пусть $p_0 := \mathsf{P}(\xi = 0) = 0$. Тогда

$$\mathsf{P}(\xi\geqslant 1)=1,\quad \mathsf{P}\left(\bigcap_{n,k}\left\{\xi_{n,k}\geqslant 1\right\}\right)=1.$$

Поэтому $Z_n \geqslant 1$ при $\forall n$, то есть $\mathsf{P}(A)$ — наименьший корень уравнения (1). Пусть теперь $p_0 = 1$. Тогда $\mathsf{P}(\xi = 0) = 1 \Rightarrow \mathsf{P}(A)$ — наименьший корень уравнения (1). Пусть, наконец, $0 < p_0 < 1$. Из этого следует, что $\exists m \in \mathbb{N}$: $p_m > 0$, а значит, ψ строго возрастает на [0,1]. Рассмотрим

$$\Delta_n = [\psi_n(0), \psi_{n+1}(0)), n = 0, 1, 2, \dots,$$

где $\psi_n(s)$ — это производящая функция Z_n . Пусть $s\in\Delta_n$. Тогда из монотонности ψ на [0,1] получаем, что

$$\psi(s) - s > \psi(\psi_n(0)) - \psi_{n+1}(0) = \psi_{n+1}(0) - \psi_{n+1}(0) = 0,$$

что означает, что у уравнения (1) нет корней на $\Delta_n \ \forall \ n \in \mathbb{Z}_+$. Заметим, что

$$\bigcup_{n=0}^{\infty} \Delta_n = [0, P(A)), \quad \psi_n(0) \nearrow P(A).$$

По лемме 2.1 P(A) является корнем уравнения (1). Следовательно, показано, что P(A) — наименьший корень, что и требовалось доказать.

Теорема 2.3. Вероятность вырожедения P(A) есть нуль $\Leftrightarrow p_0 = 0$. Пусть $p_0 > 0$. Тогда при $E\xi \leqslant 1$ имеем P(A) = 1, при $E\xi > 1$ имеем P(A) < 1.

Следствие. Пусть $\mathsf{E}\xi<\infty$. Тогда $\mathsf{E}Z_n=(\mathsf{E}\xi)^n,\ n\in\mathbb{N}.$

Доказательство. Доказательство проводится по индукции.

База индукции: $n = 1 \Rightarrow \mathsf{E} Z_1 = \mathsf{E} \xi$.

Индуктивный переход:

$$\mathsf{E} Z_n = \mathsf{E} \left(\sum_{k=1}^{Z_{n-1}} \xi_{n,k} \right) = \sum_{j=0}^{\infty} j \, \mathsf{E} \xi \, \mathsf{P}(Z_{n-1} = j) = \mathsf{E} \xi \, \mathsf{E} Z_{n-1} = \left(\mathsf{E} \xi \right)^n.$$

Определение 2.2.

При $\mathsf{E}\xi < 1$ процесс называется докритическим.

При $\mathsf{E}\xi=1$ процесс называется $\mathit{критическим}.$

При $\mathsf{E}\xi > 1$ процесс называется надкритическим.

2.2 Процессы восстановления

Определение 2.3. Пусть $S_n = X_1 + \ldots + X_n$, $n \in \mathbb{N}$, X, X_1, X_2, \ldots независимые одинаково распределенные случайные величины, $X \geqslant 0$. Положим

$$Z(0) := 0;$$

 $Z(t) := \sup\{n \in \mathbb{N} : S_n \le t\}, \quad t > 0.$

(здесь считаем, что $\sup \varnothing := \infty$). Таким образом,

$$Z(t,\omega) = \sup \{ n \in \mathbb{N} : S_n(\omega) \leq t \}.$$

Иными словами,

$$\{Z(t) \geqslant n\} = \{S_n \leqslant t\}.$$

Так определенный процесс Z(t) называется npoцессом восстановления.

Замечание. Полезно заметить, что

$$Z(t) = \sum_{n=1}^{\infty} \mathbb{I}\{S_n \leqslant t\}, \ t > 0.$$

Определение 2.4. Рассмотрим процесс восстановления $\{Z^*(t), t \ge 0\}$, который строится по Y, Y_1, Y_2, \ldots независимым одинаково распределенным случайным величинам, где $\mathsf{P}(Y = \alpha) = p \in (0,1); \; \mathsf{P}(Y = 0) = q = 1-p$. Исключаем из рассмотрения случай, когда Y = C = const: если C = 0, то $Z(t) = \infty \; \forall \, t > 0$; если же C > 0, то $Z(t) = \left[\frac{t}{c}\right]$.

Лемма 2.4.

$$\mathsf{P}(Z^{\star}(t) = m) = \begin{cases} C_m^j \, p^{j+1} q^{m-j}, \ \mathrm{ide} \ j = \left[\frac{t}{\alpha}\right] &, \ \mathrm{ecau} \ m \geqslant j; \\ 0 &, \ \mathrm{ecau} \ m < j, \end{cases}$$

 $r\partial e \ m = 0, 1, 2, \dots$

Определение 2.5. U имеет *геометрическое распределение* с параметром $p \in (0,1)$, если $\mathsf{P}(U=k) = (1-p)^k p, \ k=0,1,2,\dots$

Лемма 2.5. Рассмотрим независимые геометрические величины U_0,\dots,U_{j+m} с параметром $p\in(0,1)$. Тогда

$$P(j \neq U_0 + ... + U_j = m) = P(Z^*(t) = m).$$