Simple as Possible 2 SAP-2

SAP 2 Block Architecture

 Evolution towards modern computers because it includes JUMP instruction.

2...

Input Port

- Port 1 and Port 2
- Port 1
 - Hexadecimal keyboard encoder
 - Sends ready signal to bit 0 of port 2 (indicates that data in port 1 is valid)
- Port 2
 - Serial In

Mnemonic	Comment
IN 02H	;Input byte from port 2
ANI 01H	;Isolate READY bit
JZ STATUS	Jump back if not ready
IN 01H	Transfer data in port 1
MOV B,A *	Transfer from A to B
MVI A,80H	;Set ACKNOWLEDGE bit
OUT 04H	Output high ACKNOWLEDGE
MVI A,00H	Reset ACKNOWLEDGE bit
OUT 04H	Output low ACKNOWLEDGE
HLT	
	IN 02H ANI 01H JZ STATUS IN 01H MOV B,A * MVI A,80H OUT 04H MVI A,00H OUT 04H

Program Counter

- 16 bit address
- Thus can count from
- PC = 0000 0000 0000 0000
- PC = 1111 1111 1111 1111 (FFFF H)

MAR and Memory

- 16-bit address to MAR
- MAR output to RAM
- Memory Capacity
 - 2K ROM (0000H to 07FFFH) Monitor Program
 - 62K RAM (0800H to FFFFH)

Memory Data Register (MDR)

- 8-bit Register
- Output setup RAM
- Receives data from the bus before write operation
- Data to the bus after read operation

Instruction Register (IR)

- 8-bit op code
- Can accommodate 256 instructions
- Only 42 instruction

Controller Sequencer

- As usual
 - Generates the control word (microinstructions)
 - Has more hardware (larger number of instructions)
 - Control word is bigger (CON)

Accumulator

• Same as SAP-1

ALU and Flags

- ALU
 - Includes both arithmetic and logical operations.
- Flags
 - Represent the status of the arithmetic and logical operation.
 - Flip flops are used:
 - Zero Flag (Z)
 - Sign Flag (S)

Temp, B and C Registers

- Temporary register (TEMP)
- Register B and C are used to move data during program run and accessible to programmers.

Outport Ports

- Two output ports (3 and 4)
- Port 3:
 - Drives Hexadecimal display
- Port 4:
 - Sends ACKNOWLEDGE signals used to hexadecimal encoder. (Handshaking)
- Serial Out:
 - Serial Transmission of data

Instructions

- LDA and STA
- For example:
 - LDA 2000H
 - STA 8000H

MVI

- MVI- Move Immediate
- For example:
- MVI A, 37H
- Other instructions are:
 - MVI B, byte
 - MVI C, byte

Register Instructions

- MOV
 - MOV A, B
 - MOV A,C
 - MOV B, A
 - MOV B, C
 - MOV C,A
 - MOV C,B

Register Instruction

- ADD and SUB
- For example:
 - ADD B
 - ADD C
 - SUB B
 - SUB C

Register Instruction

INR and DCR

- INR A/ DCR A
- INR B/ DCR B
- INR C/ DCR C

Jump And Call Instruction

- JMP
- For example:
 - JMP 3000 H
- JM (Jump if Minus)
- JZ (Jump if Zero)
- JNZ (Jump if not zero)

Jump And Call Instruction

- CALL
 - Call is used to call the subroutine

- RET
 - Return back from subroutine
 - Program counter contents are stored in the last two location of memory (FFFEH and FFFFF)

Logic Instruction

- CMA-Complement the accumulator
- ANA-And the accumulator with specified register. For example: ANA B
- ORA- OR the accumulator with specified register. For example: ORA B
- XRA- XOR the accumulator with specified register. For example XRA B

Logic Instruction

- ANI: And Immediate
- For example:
- ANI C7H (AND accumulator with immediate data C7H)
- ORI: OR immediate
- For example: ORI C7H
- XRI: XOR immediate
- For example: XRI C7H

Other Instruction

- OUT byte
- For example: OUT 03 H; accumulator to designated port.
- HLT
- IN (Input: Enter the data from designated input port to accumulator)
- For example: IN 01 H
- NOP
- RAL (Rotate the accumulator left)
- RAR (Rotate the accumulator right)

Parallel to Serial Data Out

EXAMPLE 11-14

Instead of a parallel output at port 3, we want a serial output at port 4. Modify the foregoing program so that it converts the answer (59H or 4EH) into a serial output at bit 0, port 4.

Make the second of the second

SOLUTION

Label	Mnemonic	Comment
IN 02H ANI 01H JNZ YES MVI A,4EH JMP DONE YES: MVI A,59H DONE: MVI C,08H AGAIN: OUT 04H RAR DCR C JNZ AGAIN HLT	IN 02H	(4年)
	ANI 01H	A
	JNZ YES	
	MVI A,4EH	
	MVI A,59H	
	MVI C,08H	;Load counter with 8
	OUT 04H	;Send LSB to port 4
	RAR	Position next bit
	DCR C	Decrement count
	Test count	
	HLT	

In converting from parallel to serial data, the A_0 bit is sent first, then the A_1 bit, then the A_2 bit, and see