Tarea 1

Pregunta 1: Lógica proposicional Matemáticas Discretas

Integrantes:

- Franco Cattani
- Nicolás del Valle
- Jorge Espinosa
- 1. Suponga que le entregan un algoritmo de caja negra de resolución SAT, es decir, un dispositivo que toma una fórmula de lógica proposicional ϕ y devuelve si ϕ es o no satisfacible. Usted no sabe nada sobre el funcionamiento de este algoritmo. Vamos a denotar este algoritmo A, por lo que $A(\phi)$ es verdadero si ϕ es satisfacible.

Esta pregunta plantea qué más se puede hacer con un algoritmo de resolución SAT.

(a) Cree un algoritmo que utilice A como subrutina para determinar si ϕ es una tautología. Demuestre que su algoritmo es correcto. No se limite a enumerar todas las posibles asignaciones y comprobar cada una individualmente.

Respuesta: Para este algoritmo utilizaremos el siguiente lemma

Lemma

La proposición ϕ es una tautología si y solo sí $\neg \phi$ es no satisfacible.

En base a esto el algoritmo se le pasa como parametro ϕ para luego utilizar como subrutina A con el parámetro $\neg \phi$, es decir, $A(\neg \phi)$, si $A(\neg \phi) = F$ entonces ϕ es tautología, de lo contrario no es tautología.

(b) Suponga que tiene dos fórmulas proposicionales ϕ y ψ . Te interesa determinar si $\phi \equiv \psi$, es decir, si ϕ y ψ tienen siempre los mismos valores de verdad. Crea un algoritmo que utilice A como subrutina para responder esta pregunta, y demuestra que tu algoritmo es correcto.

Respuesta:

Al algoritmo se le pasarán dos parámetros, ϕ y ψ , luego se guardará el resultado de $A(\neg(\phi\equiv\psi))$, este valor de verdad lo llamaremos ζ , si $\zeta=Falso$ entonces ϕ y ψ siempre tienen el mismo valor de verdad, si por el contrario $\zeta=Verdadero$ entonces ϕ y ψ no siempre tienen el mismo valor de verdad. Con esto el algoritmo cumple su función el cual es comprobar la equivalencia entre ϕ y ψ .

Para demostrar esto nos basaremos en el lemma mencionado anteriormente, sabemos que $\phi \equiv \psi$ es una fórmula proposicional, entonces tiene un valor de verdad.

Para poder determinar si se cumple esta equivalencia $\phi \equiv \psi$ debe ser una tautología, recordemos que la definición de tautología es;

Tautología

Una fórmula $\alpha \in \xi(P)$ es una **tautología** si y solo sí es **verdadera** bajo cualquier valuación, es decir, si y solo sí $\widehat{\sigma}(\alpha) = 1$ para toda valuación $\sigma : P \to \{0, 1\}$

La definición de tautología para este caso nos dice que para toda valuación $P, \phi \equiv \psi$ siempre se cumplirá, por ende, $\zeta = Falso$ es lo mismo que decir que $\neg(\phi \equiv \psi)$ es insatisfacible si y solo si $\phi \equiv \psi$ es una tautología, con lo que el algoritmo cumple con lo pedido.

- (c) Suponga que tiene una fórmula proposicional ϕ con n variables que sabe que es satisfacible. Cree un algoritmo que utilice A como subrutina para obtener una asignación satisfactoria para ϕ utilizando como máximo n llamadas a A. Demuestre que su respuesta es correcta. El algoritmo tomará como variables ϕ, n, A , supongamos que las n variables son P: $\{P_1, P_2, ..., P_n\}$, sabemos que son 2^n posibles asignaciones y n llamadas al algoritmo A por ende intentar a la fuerza bruta no es factible, por otro lado
- 2. En esta pregunta usted construirá fórmulas de la lógica proposicional que definen como sumar números binarios.

Considere el conjunto de variables proposicionales

 $P = \{a_0, a_1, ..., a_{n-1}, b_0, b_1, ..., b_{n-1}\}$. Podemos suponer que cada valuación $\sigma: P \to \{0, 1\}$ define un par de números binarios X_1^{σ} y X_2^{σ} dados por la evaluación de σ sobre las secuencias de variables $a_{n-1}...a_1a_0$ y $b_{n-1}...b_1b_0$.

Por ejemplo, si n=3 y σ es tal que, $\sigma(a_2)=\sigma(a_1)=\sigma(b_1)=0$ y $\sigma(a_0)=\sigma(b_2)=\sigma(b_0)=1$ entonces $X_1^{\sigma}=001$ y $X_2^{\sigma}=101$.

Construya fórmulas (solamente con los conectivos $\{\vee,\neg\}$) $\phi_0,\phi_1,...,\phi_{n-1},\phi_n$ en $\mathcal{L}(P)$ tales que para toda valuación σ se cumpla que $\sigma(\phi_i)=1$, si y solo si, el bit en la posición i de $X_1^{\sigma}+X_2^{\sigma}$ es 1.

Sus fórmulas las deben dejar en función de $\{\neg, \lor\}$, en caso de que usen algún otro conectivo lógico $(\{\land, \Rightarrow, \oplus, etc\})$, **DEBEN** definirlo en base a $\{\neg, \lor\}$, por más trivial que sea (esto es enunciado solamente).

Para poder definir la suma de números binarios debemos cubrir 2 situaciones las cuales son:

- (a) Suma de bits para cada i-esima posición, es decir, a_i+b_i .
- (b) Cuando $a_i+b_i+c_{i-1}>1$ con c_{i-1} que representa al "bit sobrante" de la suma de $a_{i-1}+b_{i-1}+c_{i-2}$.

Notemos que en (b) tenemos un problema para i=0, por ende, para i=0 tomamos $c_{i_0}=0$. Comenzamos definiendo c_{i-1} : Claramente $c_{i-1}:\{0,1\}$ por lo tanto para que este sea 1, suponiendo que $c_{i-2}=1$, $a_i=1$ ó $b_i=1$, por otro lado si $c_{i-2}=0$ obliga a $a_i=1$ y $b_i=1$, por último para que $c_{i-1}=0$ obliga tanto a $a_i=0$ y $b_i=0$, por tanto la fórmula proposicional que define lo enunciado es:

$$C(a_i, b_i, c_{i-1}) = (a_i \wedge b_i) \vee (a_i \wedge c_{i-1}) \vee (b_i \wedge c_{i-1})$$

Para dejar esta fórmula en los conectivos $\{\neg, \lor\}$ basta con aplicar ley de morgan.

$$\mathcal{C}(a_i, b_i, c_{i-1}) = \neg(\neg a_i \lor \neg b_i) \lor \neg(\neg a_i \lor \neg c_{i-1}) \lor \neg(\neg b_i \lor \neg c_{i-1})$$

Para la suma de bits basta con el operador \oplus (XOR) el cual debemos expresar en los conectivos $\{\neg, \lor\}$.

$$a_i \oplus b_i \oplus c_{i-1} \equiv (a_i \oplus b_i) \oplus c_{i-1} \equiv a_i \oplus (b_i \oplus c_{i-1})$$

$$\equiv (\{(a_i \land \neg b_i) \lor (\neg a_i \land b_i)\} \land \neg c_{i-1}) \lor (\{\neg (a_i \lor \neg b_i) \lor \neg (\neg a_i \land b_i)\} \land c_{i-1})$$

Nuevamente para dejar esta fórmula solo con los conectivos indicado más arriba, basta con aplicar ley de morgan.

$$a_i \oplus b_i \oplus c_{i-1} \equiv \neg (\neg \{\neg (\neg a_i \lor b_i) \lor \neg (a_i \lor \neg b_i)\} \lor c_{i-1}) \lor \neg (\{\neg (\neg a_i \lor b_i) \lor \neg (a_i \lor \neg b_i)\} \lor \neg c_{i-1})$$

Con esto podemos sumar números binarios donde tendremos dos fórmulas lógicas las que nos definen la operación suma.