线性空间复习题

黄利兵

数学科学学院

2023年3月7日

本章总结

- 主要概念: 线性空间, 维数, 基, 过渡矩阵, 子空间, 子空间的交与和, 直和, 商空间, 线性映射, 像, 核, 秩, 零度, 线性函数, 对偶空间, 对偶基, 双线性函数, 度量矩阵.
- 基本结论: 交与和的维数公式; 秩与零度的关系; 同态基本定理; 对称 (反对称) 双线性函数的标准形.
- 常用方法: 回到定义; 在抽象概念与具体对象之间转化.

填空题

- (1) 如果 I, II 是 \mathbb{R}^2 的两组基, 从 I 到 II 的过渡矩阵为 $\begin{bmatrix} 1 & 2 \\ 4 & 7 \end{bmatrix}$, 且 I^* , II^* 分别是它们的对偶基, 那么从 I^* 到 II^* 的过渡矩阵是
- (2) 在 \mathbb{R}^2 上定义双线性函数 $f(\alpha,\beta)=\det(\alpha,\beta)$. 则 f 在基 (1,2)',(2,3)' 下的 度量矩阵是
- (3) 如果常数 c_1 , c_2 , c_3 , c_4 , c_5 满足

$$\int_{-1}^{1} p(t) dt = c_1 p(-1) + c_2 p(-1/2) + c_3 p(0) + c_4 p(1/2) + c_5 p(1), \quad \forall p \in \mathbb{R}[x]_5,$$

 $\emptyset \ c_1 = \underline{\hspace{1cm}}, \ c_2 = \underline{\hspace{1cm}}.$

(4) 线性函数 $f: \mathbb{C}^{n \times n} \to \mathbb{C}$ 满足 $f(AB) = f(BA), \forall A, B \in \mathbb{C}^{n \times n}, \text{ 且 } f(E_n) = n.$ 矩阵 $Q \in \mathbb{C}^{n \times n}$ 满足 $Q^2 = Q$, 且 Q 的秩为 3. 那么, $f(Q) = \underline{\hspace{1cm}}$.

解答题 (一)

设 $W = \{B \in P^{n \times n} | B^{\mathsf{T}} = -B\}, \ V = \{A \in P^{n \times n} | AB = BA, \forall B \in W\},$ 证明 V 是 $P^{n \times n}$ 的子空间, 并求它的维数.

解答题 (二)

已知 $\alpha_1, \dots, \alpha_n$ 是 $P^{n\times 1}$ 的一组基, u_1, \dots, u_m 是 $P^{1\times m}$ 的一组基, 证明 $\alpha_i u_j (1 \le i \le n, 1 \le j \le m)$ 是 $P^{n\times m}$ 的一组基.

解答题 (三)

设 V^* 是有限维线性空间 V 的对偶空间, W 是 V 上的全体双线性函数所构成 的线性空间. 对 V 上的每个双线性函数 B, 定义 $\psi_B: V \to V^*$ 如下

$$\psi_B(\alpha) = B(\alpha, \cdot).$$

- (1) 证明映射 $B \to \psi_B$ 是从 W 到 $Hom(V, V^*)$ 的同构.
- (2) 如果 B 是非退化的双线性函数, 证明 ψ_B 是从 V 到 V^* 的同构.

2023年3月7日

解答题 (四)

设 $n \ge 2$. 在 $\mathbb{R}^{n \times n}$ 上定义二元函数 $f(A, B) = \operatorname{tr}(AB) - \operatorname{tr}(A)\operatorname{tr}(B)$.

- (1) 证明 f 是对称的双线性函数;
- (2) 设 Q 是与 f 对应的二次型, 求 Q 的正惯性指数和负惯性指数.
- (3) 如果 W 是 $\mathbb{R}^{n\times n}$ 的子空间,且 $Q(A)=0,\,\forall A\in W,\,$ 求 dim W 的最大可能 值.

解答题 (五)

设 $V_1 = \{A \in \mathbb{C}^{2 \times 2} \mid \overline{A}^\mathsf{T} = A\}, \ V_2 = \{A \in \mathbb{C}^{2 \times 2} \mid A + \overline{A}^\mathsf{T} = \operatorname{tr}(A)E\}.$

- (1) 如果把 V_1 , V_2 看成 \mathbb{R} 上的线性空间, 求它们的维数和一组基, 并求 $V_1 + V_2$ 的维数和一组基.
- (2) 定义 $\Phi: V_2 \to V_1$ 如下

$$\Phi(A) = \frac{1-i}{2} \operatorname{tr}(A) E + iA.$$

证明 Φ 是线性空间同构;

(3) 在 V_2 上定义二次型 $q(A) = -\frac{1}{2} \operatorname{tr}(A^2)$, 求 q 的正惯性指数和负惯性指数.