

TA 101A:2019-20:II Lecture 15 –Space Geometry II

Dr. Bharat Lohani

Professor, Geoinformatics

Department of Civil Engineering

IIT Kanpur, Kanpur

Office: WLE 113

7 Phone: 7413

Email: blohani@iitk.ac.in

Recapitulation

Auxiliary Views – Viewing Direction

- The view that gives normal view is in the viewing direction which is perpendicular to the surface.
- Some views
 - Normal view of a line
 - Point view of a line
 - Normal view of a plane
 - Edge view of a plane

Projection of Lines

- A line is considered to be of infinite length, and the portion between any two points on it simply specifies a segment.
- A straight line segment is the shortest distance between its end points.
- Direction of line in space known if line is known in two adjacent orthographic views.
- The space direction (bearing and slope) and one point will also locate a line.

The line is called HORIZONTAL-FRONTAL Having normal view in Hz and F plane

HORIZONTAL -PROFILE

Space Geometry II

Draw in your notebook for FRONTAL -PROFILE

HORIZONTAL Inclined to Frontal and Profile

FRONTAL
Inclined to Horizontal and Profile

Space Geometry II

Draw in your notebook for a Line

PROFILE

Inclined to Horizontal and Frontal

Oblique

Inclined to all planes

Space Geometry | Inclined to true length of this line or true slope and azimuth, i.e., how to know the line.

11

Auxiliary View of an Oblique Line

What are the distances of the ends of Normal Line on A3 from hinge between A2 and A3?

Space Geometry II

12

Three adjacent Planes for Auxiliary View

- Plane on which Auxiliary
 View is Projected (A3)
- Plane from which
 Projectors are drawn
 (A2)
- 3. Plane from which measurements are taken (A1)

Auxiliary View of an Oblique Line

- First Step
 - Identification of Auxiliary Plane
 - If a view of a line on a plane (A2) is parallel to an Edge View of another plane (A3), then the view of that line will be Normal View on that plane (A3)

- Second Step
 - Distance of line on Auxiliary
 Plane from hinge line
 - The distances to the line on A3 will be same as in previous view (A1) from A2

Understand the concept of

Auxiliary Planes A1, A2, A3 & A4

auxiliary planes and distances measured along projectors. a_{A2} b_{A3} *چ*4 b_{A4} , a_{A4} b_{A2} **Point View** LINE OF SIGHT a_{A1}

Can you locate the Normal and Point

Views of line AB?

Normal View of Oblique Lines

Projected from the Top/Horizontal View

Notice the direction of Projectors

Notice the distance Measurements along Projectors Space Geometry II

Normal View of Oblique Lines

Projected from the Front View

Auxiliary View of an Oblique Line

By Rotation in a View

- Hold one end of line and rotate the other end in horizontal
- If we rotate the projected view on H plane this means there is not rotation in vertical but only horizontal rotation of line.
- On Front view the rotation will reflect as movement of one end of line along horizontal line

True Length of a Line

By rotation towards Frontal Plane, i.e., make parallel to Frontal Plane

True Length of a Line

By rotation towards Horizontal Plane, i.e., make parallel to Horizontal Plane

Bearing of a Line

- Bearing can be seen on/from the horizontal view only
- Maps are always in Horizontal Views
- The acute angle (<90°) is always used
- Due North, Due East, Due South, Due West

Bearing is the deviation from North or South point of a compass

Azimuth of a Line

- Azimuth is always read clockwise from the North arrow and uses only the letter N together with the clockwise angle
- Also called whole circle bearing

Azimuth of a line is a alternative way to express Bearing

Slope of an Oblique line

Space Geometry II 23

Thank you!

