Electromagnetics (I) Final Examination

1. In Fig. 1, media 1 and 3 extend to infinity, and medium 2 is a dispersive (i.e., the material parameters depend on frequency) slab. For an infinite planar sheet current, lying in z=0 plane,

 $\vec{J}_s(t) = -2J_{s0}\cos^2(1.5 \times 10^8 \pi t)\hat{a}_x \text{ A/m},$

there will be electric and magnetic fields in the three media. The frequency dependency of material

parameters of medium 2 are listed in the following Table 1

	ε(ω)	$\mu(\omega)$
$\omega = 0$	2ε ₀	$2\mu_0$
$\omega = 1.5 \times 10^8 \pi$	$2.5\varepsilon_0$	$2.5\mu_0$
$\omega = 3 \times 10^8 \pi$	3ε ₀	$3\mu_0$

Can you solve the problem by using integral form Maxwell equations? Why? (10%) (1)

Can you solve the problem by using time-dependent and differential form Maxwell equations? (2)Why? (10%)

Please find the time-dependent form electric- and magnetic fields in all three media. (15%) (3)

Please find the time-dependent form surface current on the surface of media 3. (5%) (4)

Please find the time-average Poynting vectors in media 1 and 2 and explain the physical meaning (5)of the results briefly. (10%)

- 2. The space between two parallel conducting plates each having an area S is filled with two different lossy dielectrics as shown in Fig. 2, where the thicknesses d_1 , $d_2 \ll S^{1/2} = L$ (the length) so that the fringe effect can be neglected. A battery of dc voltage V is applied across the plates. Please determine
 - The steady current densities in both dielectrics (10%) (1)
 - The electric field intensities in both dielectrics. (10%) (2)
 - The surface charge densities on the plates and the interface. Please explain briefly the reason of the (3)existence of the surface charge density on the interface. (10%)
 - If the steady magnetic field is neglected, please draw the equivalent circuit of this system and (4)show the circuit parameters. (10%)
 - The power dissipation in this structure. (10%) (5)

Fig. 2 for Problem 2