TRUST Reference Manual V1.9.3

Support team: trust@cea.fr

November 30, 2023

Contents

1	Syntax to define a mathematical function	1
2	Existing & predefined fields names	1
3	nterprete]
	3.1 Create_domain_from_sub_domain	
	3.2 Write_med	
	3.3 Merge_med	
	3.4 Multiplefiles	
	3.5 Op_conv_ef_stab_polymac_face	
	3.6 Op_conv_ef_stab_polymac_p0p1nc_elem	2
	3.7 Op_conv_ef_stab_polymac_p0p1nc_face	2
	3.8 Op_conv_ef_stab_polymac_p0_face	
	3.9 Option_polymac	
	3.10 Option_polymac_p0	
	3.11 Parallel_io_parameters	
	3.12 Raffiner_isotrope_parallele	
	3.13 Read_med	
	3.14 Test_sse_kernels	
	3.15 Analyse_angle	
	3.16 Associate	
	3.17 Axi	
	3.18 Bidim_axi	
	3.19 Calculer_moments	
	3.20 Lecture_bloc_moment_base	
	3.20.1 Calcul	
	3.20.2 Centre_de_gravite	
	3.20.3 Un_point	
	3.21 Corriger_frontiere_periodique	
	3.22 Create_domain_from_sous_zone	
	3.23 Criteres_convergence	
	3.24 Debog	2
	3.25 {	2
	3.26 Decoupebord	2
	3.27 Decouper_bord_coincident	2
	3.28 Dilate	2
	3.29 Dimension	2
	3.30 Disable_tu	2
	3.31 Discretiser_domaine	2
	3.32 Discretize	
	3.33 Distance_paroi	
	3.34 Ecrire_champ_med	
	3.35 Ecrire_fichier_formatte	
	3.36 Ecriturelecturespecial	
	3.37 Espece	
	3.38 Execute_parallel	
	3.39 Export	
	3.40 Extract_2d_from_3d	
	3.41 Extract_2daxi_from_3d	
	3.42 Extraire_domaine	
	3.43 Extraire_plan	
	3.44 Extraire surface	3

3.45	Extrudebord	34
3.46	Extrudeparoi	35
3.47	Extruder	35
3.48	Troisf	35
	Extruder_en20	36
	Extruder_en3	36
3.51	End	37
	}	37
	Imprimer_flux	37
	Bloc_lecture	37
3.31	3.54.1 Bloc_criteres_convergence	37
3 55	Imprimer_flux_sum	38
2.56	Integrer_champ_med	38
		39
	Interprete_geometrique_base	
	Lata_to_med	39
	Format_lata_to_med	39
	Lata_to_other	39
	Lire_ideas	40
	Lml_to_lata	40
3.63	Mailler	40
3.64	List_bloc_mailler	40
	3.64.1 Mailler_base	41
	3.64.2 Pave	41
	3.64.3 Bloc_pave	41
	3.64.4 List_bord	42
	3.64.5 Bord_base	42
	3.64.6 Bord	43
	3.64.7 Defbord	43
	3.64.8 Defbord_2	43
	3.64.9 Defbord_3	43
	3.64.10 Raccord	44
		44
	3.64.11 Internes	
	3.64.12 Epsilon	44
a - =	3.64.13 Domain	45
	Maillerparallel	45
	Modif_bord_to_raccord	46
	Modifydomaineaxi1d	46
	Moyenne_volumique	46
	Multigrid_solver	48
3.70	Coarsen_operators	49
	3.70.1 Coarsen_operator_uniform	49
3.71	Nettoiepasnoeuds	49
3.72	Option_vdf	49
	Orientefacesbord	50
	Partition	50
	Bloc_decouper	50
	Partition_multi	52
	Pilote_icoco	52
	Polyedriser	52
		53
	Postraiter_domaine	
	Precisiongeom	53
	Raffiner_anisotrope	54
	Raffiner_isotrope	54
3 83	Pand	55

3.84 Read_file
3.85 Read_file_binary
3.86 Lire_tgrid
3.87 Read_unsupported_ascii_file_from_icem
3.88 Orienter_simplexes
3.89 Redresser_hexaedres_vdf
3.90 Refine_mesh
3.91 Regroupebord
3.92 Remove_elem
3.93 Remove_elem_bloc
3.94 Remove_invalid_internal_boundaries
3.95 Reorienter_tetraedres
3.96 Reorienter_triangles
3.97 Reordonner
3.98 Residuals
3.99 Rotation
3.100Scatter
3.101Scattermed
3.102Solve
3.103Supprime_bord
3.104List_nom
3.105System
3.106Test_solveur
3.107Testeur
3.108Testeur_medcoupling
3.109Tetraedriser
3.110Tetraedriser_homogene
3.111Tetraedriser_homogene_compact
3.112Tetraedriser_homogene_fin
3.113Tetraedriser_par_prisme
3.114Transformer
3.115Trianguler
3.116Trianguler_fin
3.117Trianguler_h
3.118 Verifier_qualite_raffinements
3.119 Vect_nom
3.120 Verifier_simplexes
3.121 Verifiercoin
3.122 Verifiercoin_bloc
3.123 Verifier cont_bloc
3.124Ecrire_fichier_bin
3.124ECHE_HCHEL_OH
pb_gen_base 70
4.1 Pb_conduction
4.2 Corps_postraitement
4.2.1 Definition_champs
4.2.1 Definition_champ
4.2.4 Sondes
4.2.5 Sonde
4.2.6 Sonde_base
4.2.7 Points
4.2.8 Listpoints
4.2.9 Point

		74
	4.2.11 Numero_elem_sur_maitre	74
	4.2.12 Position_like	75
	4.2.13 Segment	75
	4.2.14 Plan	75
	4.2.15 Volume	75
		76
		76
		76
		77
		77
		77
		77
		78
	1 -1	78
	<u> </u>	78
	11	78
	<u> </u>	79
	<u>_</u>	80
	-1 -	80
		80
		80
	- * I	81
		81
	— — <u>-</u>	81
4.3	<u> </u>	82
	— <u> </u>	82
4.4	— <u> </u>	82
	_	83
		83
	<u> </u>	83
4.5	_	84
	— <u> </u>	84
	√1 	84
	√1 −1 − −	85
4.6		85
4.7	Pb_multiphase	85
4.8	Pb_hem	87
4.9	Pb_base	88
4.10	Probleme_couple	89
4.11	List_list_nom	90
		90
		91
	Pb_hydraulique	92
	Pb_hydraulique_concentration	93
		94
	- · · · · · · · · · · · · · · · ·	95
	- y 1	96
	- · · · · · · ·	98
		99
	- 1 - 5	100
		01
		02
		03
⊤. ∠4	To_incrinonyuraunque	.vJ

	4.25	Pb_thei	rmohydraulique_qc	105
	4.26	Pb_thei	rmohydraulique_wc	106
	4.27	Pb_thei	rmohydraulique_concentration	107
	4.28	Pb then	rmohydraulique_concentration_scalaires_passifs	109
			rmohydraulique_concentration_turbulent	
			rmohydraulique_concentration_turbulent_scalaires_passifs	
			rmohydraulique_especes_qc	
			rmohydraulique_especes_wc	
			rmohydraulique_especes_turbulent_qc	
			rmohydraulique_scalaires_passifs	
			rmohydraulique_turbulent	
			rmohydraulique_turbulent_qc	
			rmohydraulique_turbulent_scalaires_passifs	
			ed	
			fo_med	
	4.33		Info_med	
	4.40			
	4.40	Problei	m_read_generic	122
5	mor	ean		123
3	5.1	_ •	ction	
	5.2		onvection	
	3.2	5.2.1	Convection deriv	
		5.2.2	Amont	
		5.2.3	Amont_old	
		5.2.4	Centre	
		5.2.5	Centre4	
		5.2.6	Centre_old	
		5.2.7	Di_l2	
		5.2.8	Ef	
		5.2.9	Bloc_ef	
			Muscl3	
			Ef_stab	
			Listsous_zone_valeur	
			Sous_zone_valeur	
		5.2.14	Generic	128
		5.2.15	Kquick	129
		5.2.16	Muscl	129
		5.2.17	Muscl_old	129
			Muscl_new	
		5.2.19	Negligeable	129
		5.2.20	Quick	129
		5.2.21	Ale	
		5.2.22	Btd	130
			Supg	
	5.3		iffusion	
		5.3.1	Diffusion_deriv	131
		5.3.2	Negligeable	131
		5.3.3	P1b	131
		5.3.4	Plncp1b	131
		5.3.5	Stab	131
		5.3.6	Standard	_
		5.3.7	Bloc_diffusion_standard	_
		5.3.8	Option	
		5.3.9	Turbulente	133
		.)).7	Turbuiche	1.7.7

	5.3.10 Type_diffusion_turbulente_multiphase_deriv	
	5.3.11 L_melange	134
	5.3.12 Sgdh	134
	5.3.13 Op_implicite	
5.4	Condlims	
	5.4.1 Condlimlu	
5.5	Condinits	
	5.5.1 Condinit	
5.6	Sources	
5.7	Ecrire_fichier_xyz_valeur_param	
	5.7.1 Bords_ecrire	
5.8	Parametre_equation_base	
	5.8.1 Parametre_implicite	
	5.8.2 Parametre_diffusion_implicite	
5.9	Convection_diffusion_espece_binaire_turbulent_qc	
	Echelle_temporelle_turbulente	
	Energie_multiphase	
	Energie_cinetique_turbulente	
	Energie_cinetique_turbulente_wit	
	Masse_multiphase	
	Qdm_multiphase	
	Taux_dissipation_turbulent	
	Convection_diffusion_chaleur_qc	
	Convection_diffusion_chaleur_wc	
	Convection_diffusion_chaleur_turbulent_qc	
	Convection_diffusion_concentration	
	Convection_diffusion_concentration_turbulent	
	Convection_diffusion_espece_binaire_qc	
	Convection_diffusion_espece_binaire_wc	
	Convection_diffusion_espece_multi_qc	
	Convection_diffusion_espece_multi_wc	
	Convection_diffusion_espece_multi_turbulent_qc	
	Convection_diffusion_temperature	
5.28	Pp	
	5.28.1 Penalisation_12_ftd_lec	
	Convection_diffusion_temperature_turbulent	
	Eqn_base	
	Navier_stokes_qc	
	Deuxmots	
	Floatfloat	
5.34	Traitement_particulier	
	5.34.1 Traitement_particulier_base	
	5.34.2 Temperature	164
	5.34.3 Canal	164
	5.34.4 Ec	165
	5.34.5 Thi	165
<i>5 25</i>	5.34.6 Chmoy_faceperio	166
	Navier_stokes_wc	166
	Navier_stokes_standard	168
	Navier_stokes_turbulent	171
5.38	Modele_turbulence_hyd_deriv	173
	5.38.1 Dt_impr_ustar_mean_only	173
F 20	5.38.2 Null	
5.39	Navier_stokes_turbulent_qc	1/5

6	ijk_splitting	177
7	/*	177
	7.1 /*	177
8	champ_generique_base	177
		178
	8.2 List_nom_virgule	
	8.3 Listchamp_generique	
	8.4 Champ_post_operateur_base	
	8.5 Champ_post_operateur_eqn	
	8.6 Champ_post_statistiques_base	
	8.7 Correlation	
	8.8 Champ_post_operateur_divergence	
	8.9 Ecart_type	
	8.10 Champ_post_extraction	
	8.11 Champ_post_operateur_gradient	
	8.12 Champ_post_interpolation	
	8.13 Champ_post_morceau_equation	
	8.14 Moyenne	
	8.15 Predefini	
	8.16 Champ_post_reduction_0d	
	8.17 Champ_post_refchamp	
	8.18 Champ_post_tparoi_vef	
	8.19 Champ_post_transformation	188
0		100
9	chimie	189
	9.1 Reactions	
	9.1.1 Reaction	189
10	class_generic	190
	10.1 Amgx	190
	10.2 Cholesky	
	10.4 Dt_fixe	191
	10.5 Dt_min	
	10.6 Dt_start	
	10.7 Gcp_ns	
	10.8 Gen	
	10.10Optimal	194
	10.11Petsc	194
	10.12Rocalution	194
	10.13Gcp	198
	10.14Solveur_sys_base	199
	10.14301vcui_sys_base	199
11	#	199
	11.1 #	199
12	condlim_base	199
	12.1 Echange_couplage_thermique	200
	12.2 Paroi_echange_interne_global_impose	200
	12.3 Paroi_echange_interne_global_parfait	200
	12.4 Paroi_echange_interne_impose	200
	12.5 Paroi_echange_interne_parfait	201

	12.6 Neumann_homogene	
	12.7 Neumann_paroi	201
	12.8 Neumann_paroi_adiabatique	201
	12.9 Paroi	201
	12.10Dirichlet	
	12.11Entree_temperature_imposee_h	
	12.12Frontiere_ouverte	
	12.13Frontiere_ouverte_concentration_imposee	
	12.14Frontiere_ouverte_fraction_massique_imposee	
	12.15Frontiere_ouverte_gradient_pression_impose	
	12.16Frontiere_ouverte_gradient_pression_impose_vefprep1b	
	12.17Frontiere_ouverte_gradient_pression_libre_vef	
	12.18Frontiere_ouverte_gradient_pression_libre_vefprep1b	
	12.19Frontiere_ouverte_pression_imposee	
	12.20Frontiere_ouverte_pression_imposee_orlansky	
	12.21Frontiere_ouverte_pression_moyenne_imposee	
	12.22Frontiere_ouverte_rho_u_impose	
	12.23Frontiere_ouverte_temperature_imposee	
	12.24Frontiere_ouverte_vitesse_imposee	
	12.25Frontiere_ouverte_vitesse_imposee_sortie	205
	12.26Neumann	206
	12.27Paroi_adiabatique	206
	12.28Paroi_contact	
	12.29Paroi_contact_fictif	
	12.30Paroi_decalee_robin	
	12.31Paroi_defilante	
	12.32Paroi_echange_contact_correlation_vdf	
	12.33Paroi_echange_contact_correlation_vef	
	12.34Paroi_echange_contact_vdf	
	12.35Paroi_echange_externe_impose	
	12.36Paroi_echange_externe_impose_h	
	12.37Paroi_echange_global_impose	
	12.38Paroi_fixe	
	12.39Paroi_fixe_iso_genepi2_sans_contribution_aux_vitesses_sommets	
	12.40Paroi_flux_impose	
	12.41Paroi_knudsen_non_negligeable	
	12.42Paroi_temperature_imposee	
	12.43 Periodique	212
	12.44Scalaire_impose_paroi	212
	12.45Sortie_libre_temperature_imposee_h	
	12.46Symetrie	
	12.47Temperature_imposee_paroi	
13	discretisation_base	213
	13.1 Ef	213
	13.2 Polymac	
	13.3 Polymac_p0p1nc	
	13.4 Polymac_p0	
	13.5 Vdf	
	13.6 Vef	
	15.0 101	. ∠1 4
14	domaine	215
**	14.1 Domaineaxi1d	
	14.2 Ijk_grid_geometry	
	14.2 1Jr_gnu_gcomeny	. 413

15	champ_base	216
	15.1 Champ_base	216
	15.2 Champ_fonc_interp	216
	15.3 Champ_fonc_med_table_temps	
	15.4 Champ_fonc_med_tabule	
	15.5 Champ_tabule_morceaux	218
	15.6 Champ_fonc_tabule_morceaux_interp	
	15.7 Champ_composite	
	15.8 Champ_don_base	219
	15.9 Champ_don_lu	220
	15.10Champ_fonc_fonction	220
	15.11Champ_fonc_fonction_txyz	220
	15.12Champ_fonc_fonction_txyz_morceaux	
	15.13Champ_fonc_med	221
	15.14Champ_fonc_reprise	222
	15.15Fonction_champ_reprise	222
	15.16Champ_fonc_t	222
	15.17Champ_fonc_tabule	223
	15.18Champ_init_canal_sinal	223
	15.19Bloc_lec_champ_init_canal_sinal	223
	15.20Champ_input_base	224
	15.21Champ_input_p0	225
	15.22Champ_input_p0_composite	225
	15.23Champ_musig	226
	15.24Champ_ostwald	226
	15.25Champ_som_lu_vdf	226
	15.26Champ_som_lu_vef	226
	15.27Champ_tabule_temps	227
	15.28Champ_uniforme_morceaux	227
	15.29Champ_uniforme_morceaux_tabule_temps	
	15.30Champ_fonc_txyz	228
	15.31Champ_fonc_xyz	228
	15.32Init_par_partie	228
	15.33Tayl_green	229
	15.34Uniform_field	229
	15.35 Valeur_totale_sur_volume	229
16	champ_front_base	229
	16.1 Champ_front_base	
	16.2 Champ_front_xyz_tabule	
	16.3 Champ_front_debit_qc_vdf	230
	16.4 Champ_front_debit_qc_vdf_fonc_t	230
	16.5 Boundary_field_inward	231
	16.6 Ch_front_input	231
	16.7 Ch_front_input_uniforme	232
	16.8 Champ_front_med	
	16.9 Champ_front_bruite	
	16.10Champ_front_calc	233
	16.11Champ_front_composite	233
	16.12Champ_front_contact_vef	233
	16.13Champ_front_debit	
	16.14Champ_front_debit_massique	234
	16.15Champ_front_fonc_pois_ipsn	234
	16.16Champ front fonc pois tube	234

	16.17Champ_front_fonc_t	235
	16.18Champ_front_fonc_txyz	235
	16.19Champ_front_fonc_xyz	
	16.20Champ_front_fonction	
	16.21Champ_front_lu	
	16.22Champ_front_musig	
	16.23Champ_front_normal_vef	
	16.24Champ_front_pression_from_u	
	16.25Champ_front_recyclage	
	16.26Champ_front_tabule	
	16.27Champ_front_tabule_lu	
	16.28Champ_front_tangentiel_vef	
	16.29Champ_front_uniforme	
	16.30Champ_front_xyz_debit	
	10.50 Champ_nont_xyz_debit	240
17	interpolation_ibm_base	240
	17.1 Interpolation_ibm_power_law_tbl_u_star	
	17.2 Ibm_aucune	
	17.3 Ibm_element_fluide	
	17.4 Ibm_hybride	
	17.5 Ibm_gradient_moyen	
	17.6 Ibm_power_law_tbl	
	17.0 Total_power_law_tor	243
18	loi etat base	244
	18.1 Binaire_gaz_parfait_qc	244
	18.2 Binaire_gaz_parfait_wc	
	18.3 Loi_etat_gaz_parfait_base	
	18.4 Loi_etat_gaz_reel_base	
	18.5 Multi_gaz_parfait_qc	
	18.6 Multi_gaz_parfait_wc	
	18.7 Gaz_parfait_qc	
	18.8 Gaz_parfait_wc	
	18.9 Rhot_gaz_parfait_qc	
	18.10Rhot_gaz_reel_qc	
	10.10knot_gaz_rect_qc	240
19	loi fermeture base	248
	19.1 Loi_fermeture_test	248
20	loi_horaire	249
		2.40
21	milieu_base	249
	21.1 Constituant	250
	21.2 Fluide_base	
	21.3 Fluide_dilatable_base	
	21.4 Fluide_incompressible	
	21.5 Fluide_ostwald	
	21.6 Fluide_quasi_compressible	
	21.7 Bloc_sutherland	
	21.8 Fluide_reel_base	
	21.9 Fluide_sodium_gaz	
	21.10Fluide_sodium_liquide	256
	21.11Fluide_stiffened_gas	257
	21.12Fluide_weakly_compressible	
	21 13 Solide	259

22		259
	22.1 Null	260
23	nom	260
25	23.1 Nom_anonyme	
	23.1 Noni_anonyme	200
24	partitionneur_deriv	261
	24.1 Fichier_med	
	24.2 Fichier_decoupage	
	24.3 Metis	
	24.4 Partition	
	24.5 Sous_dom	
	24.6 Partitionneur_sous_zones	
	24.7 Sous_zones	
	24.8 Tranche	
	24.9 Union	265
25	1	265
	25.1 Bloc_lecture_poro	266
26	massed has	266
20	precond_base 26.1 Ilu	
	26.2 Precondsolv	
	26.3 Ssor	
	26.4 Ssor_bloc	207
27	saturation_base	268
	27.1 Saturation_constant	
	27.2 Saturation_sodium	
28		269
	28.1 Sch_cn_ex_iteratif	270
	28.2 Sch_cn_iteratif	273
	28.3 Scheme_euler_explicit	
	28.4 Leap_frog	277
	28.5 Runge_kutta_ordre_2	
	28.6 Runge_kutta_ordre_2_classique	
	28.7 Runge_kutta_ordre_3	
	28.8 Runge_kutta_ordre_3_classique	
	28.9 Runge_kutta_ordre_4_d3p	286
		288
		290
		291
		293
		295
		297
		299
		302
		304
		307
		310
	28.21Schema_predictor_corrector	312

29	solveur_implicite_base	313
	29.1 Ice	314
	29.2 Implicite	315
	29.3 Piso	
	29.4 Sets	317
	29.5 Simple	
	29.6 Simpler	
	29.7 Solveur_lineaire_std	320
	29.8 Solveur_u_p	320
30	source base	321
	30.1 Correction antal	
	30.2 Dp_impose	
	30.3 Type_perte_charge_deriv	
	30.3.1 Dp	
	30.3.2 Dp_regul	
	30.4 Dispersion_bulles	
	30.5 Portance_interfaciale	
	30.6 Source_travail_pression_elem_base	
	30.7 Acceleration	
	30.8 Boussinesq_concentration	
	30.9 Boussinesq_temperature	
	30.10Canal_perio	
	30.11Coriolis	
	30.12Darcy	
	30.13Dirac	
	30.14Flux_interfacial	
	30.15Forchheimer	
	30.16Frottement_interfacial	
	30.17Perte_charge_anisotrope	
	30.18Perte_charge_circulaire	
	30.19Perte_charge_directionnelle	
	30.20Perte_charge_isotrope	
	30.21Perte_charge_reguliere	
	30.22Spec_pdcr_base	
	30.22.1 Longitudinale	
	30.22.2 Transversale	
	30.23Perte_charge_singuliere	
	30.24Puissance_thermique	
	30.25Radioactive_decay	
	30.26Source_constituent	
	30.27Source generique	
	30.28Source_pdf	
	30.29Bloc_pdf_model	
	30.29.1 Troismots	
	30.30Source_pdf_base	
	30.31Source_qdm	
	30.32Source_qdm_lambdaup	
	30.33Source_robin	
	30.34Source_robin_scalaire	
	30.35Listdeuxmots_sacc	
	30.36Source_th_tdivu	
	30.37Terme_puissance_thermique_echange_impose	
	30.38Travail pression	336
	JUJU II UTUNII DIVONIVII	

	30.39 Vitesse_derive_base	336
	30.40 Vitesse_relative_base	336
31	sous_zone	336
	31.1 Bloc_origine_cotes	337
	31.2 Deuxentiers	337
	31.3 Bloc_couronne	338
	31.4 Bloc_tube	
32	turbulence_paroi_base	338
33	turbulence_paroi_scalaire_base	339
34	listobj_impl	339
	34.1 List_un_pb	339
	34.2 Un_pb	339
	34.3 Liste_mil	339
	34.4 Liste_sonde_tble	
	34.5 Sonde_tble	
	34.6 Listobj	340
35	objet_lecture	340
	35.1 Entierfloat	341
	35.2 Form_a_nb_points	341
	35.3 Fourfloat	
	35.4 Twofloat	341
	35.5 Methode_transport_deriv	
	35.5.1 Loi_horaire	
36	index	342

1 Syntax to define a mathematical function

In a mathematical function, used for example in field definition, it's possible to use the predifined function (an object parser is used to evaluate the functions):

ABS : absolute value function

COS : cosine function
SIN : sine function
TAN : tangent function
ATAN : arctangent function
EXP : exponential function
LN : natural logarithm function
SQRT : square root function
INT : integer function
ERF : error function

RND(x): random function (values between 0 and x)

COSH : hyperbolic cosine function SINH : hyperbolic sine function TANH : hyperbolic tangent function ACOS : inverse cosine function ASIN : inverse sine function

ATANH: inverse hyperbolic tangent function NOT(x): NOT x (returns 1 if x is false, 0 otherwise)

SGN(x) : SGN(x) = S

```
x_AND_y : boolean logical operation AND (returns 1 if both x and y are true, else 0)
x_OR_y : boolean logical operation OR (returns 1 if x or y is true, else 0)
x_GT_y: greater than (returns 1 if x>y, else 0)
x_GE_y: greater than or equal to (returns 1 if x \ge y, else 0)
x_LT_y: less than (returns 1 if x < y, else 0)
x_LE_y: less than or equal to (returns 1 if x \le y, else 0)
x_MIN_y : returns the smallest of x and y
x_MAX_y: returns the largest of x and y
x_MOD_y : modular division of x per y
             : equal to (returns 1 if x==y, else 0)
x_EQ_y
x_NEQ_y
             : not equal to (returns 1 if x!=y, else 0)
You can also use the following operations:
+ : addition
- : subtraction
/ : division
* : multiplication
%: modulo
$ : max
• : power
< : less than
> : greater than
[ : less than or equal to
] : greater than or equal to
You can also use the following constants:
Pi : pi value (3,1415...)
The variables which can be used are:
x,y,z : coordinates
t: time
Examples:
Champ_front_fonc_txyz 2 \cos(y+x^2) t+\ln(y)
Champ_fonc_xyz dom 2 \tanh(4*y)*(0.95+0.1*rnd(1)) 0.
Possible errors:
Error 1:
Champ fonc txyz 1 \cos(10^*t)^*(1 < x < 2)^*(1 < y < 2)
Previous line is wrong. It should be written as:
Champ_fonc_txyz 1 \cos(10*t)*(1<x)*(x<2)*(1<y)*(y<2)
Error 2:
Champ_front_fonc_xyz 1 20*(x<-2)+10*(y]-5)+3*(z>0)
Previous line is wrong because negative values are not written between parentheses. It should be written
Champ_front_fonc_xyz 1 20*(x<(-2))+10*(y](-5))+3*(z>0)
```

2 Existing & predefined fields names

Here is a list of post-processable fields, but it is not the only ones.

Physical values	Keyword for field_name	Unit
Velocity	Vitesse or Velocity	$m.s^{-1}$
Velocity residual	Vitesse_residu	$m.s^{-2}$
Kinetic energy per elements		
$(0.5\rho u_i ^2)$	Energie_cinetique_elem	$kg.m^{-1}.s^{-2}$
Total kinetic energy		
$\left(\frac{\sum_{i=1}^{nb_elem} 0.5\rho u_i ^2 vol_i}{\sum_{i=1}^{nb_elem} vol_i}\right)$		1 0
$\left[\begin{array}{c} 2^{n} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ $	Energie_cinetique_totale	$kg.m^{-1}.s^{-2}$
$\frac{\sum_{i=1} voi_i}{\text{Vorticity}}$	Vorticite	s^{-1}
Pressure in incompressible flow	vorucite	8
Pressure in incompressible now $(P/\rho + gz)$	Pression ¹	$Pa.m^3.kg^{-1}$
For Front Tracking probleme	1 Tession	_
		Pa
$\frac{(P + \rho gz)}{\text{Pressure in incompressible flow}}$		I u
Pressure in incompressible flow $(P+\rho gz)$	Pression_pa or Pressure	Pa
Pressure in compressible flow	Pression	Pa
Hydrostatic pressure (ρgz)	Pression hydrostatique	Pa
Totale pressure (when	1 ression_nyurostatique	I u
quasi compressible model		
is used)=Pth+P	Pression_tot	Pa
Pressure gradient	1 Tession_tot	I u
	Gradient_pression	m a-2
$\frac{(\nabla(P/\rho + gz))}{\text{Velocity gradient}}$	gradient_vitesse	$m.s^{-2}$ s^{-1}
Temperature	Temperature	°C or K
Temperature residual	Temperature_residu	${}^{o}\text{C.}s^{-1} \text{ or K.}s^{-1}$
Phase temperature of	Temperature_residu	C.S OF K.S
a two phases flow	Temperature_EquationName	°C or K
Mass transfer rate	Temperature_Equation value	COLK
between two phases	Temperature_mpoint	$k_{am}^{-2}e^{-1}$
Temperature variance	Variance_Temperature	$\frac{kg.m^{-2}.s^{-1}}{K^2}$
Temperature dissipation rate	Taux_Dissipation_Temperature	$K^{2}.s^{-1}$
Temperature dissipation rate Temperature gradient	Gradient_temperature	$K.m^{-1}$
Heat exchange coefficient	H_echange_Tref ²	$W.m^{-2}.K^{-1}$
Turbulent heat flux	Flux_Chaleur_Turbulente	$m.K.s^{-1}$
	Viscosite_turbulente	$m.K.s^{-1}$ $m^2.s^{-1}$
Turbulent viscosity	viscosite_turbulente	TH .S
Turbulent dynamic viscosity (when quasi compressible	Vicacita dynamicus tumbulanta	$kg.m.s^{-1}$
model is used)	Viscosite_dynamique_turbulente	кули.s
Turbulent kinetic energy	K	$m^2.s^{-2}$
Turbulent dissipation rate	Eps	$m \cdot s = m^3 \cdot s^{-1}$
Turbulent quantities	Lps	111 .5
K and Epsilon	K_Eps	$(m^2.s^{-2}, m^3.s^{-1})$
Residuals of turbulent quantities	K_12ps	(111.3 ,111.3)
K and Epsilon residuals	K_Eps_residu	$(m^2.s^{-3}, m^3.s^{-2})$
Constituent concentration	Concentration	(111.3 ,111.3)
Constituent concentration residual	Concentration_residu	
Component velocity along X	VitesseX	$m.s^{-1}$
	continued on next page	1111.5
•••	continued on next page	

The post-processed pressure is the pressure divided by the fluid's density $(P/\rho+gz)$ on incompressible laminar calculation. For turbulent, pressure is $P/\rho+gz+2/3*k$ cause the turbulent kinetic energy is in the pressure gradient.

2Tref indicates the value of a reference temperature and must be specified by the user. For example, H_echange_293 is the keyword

to use for Tref=293K.

Physical values	Keyword for field_name	Unit
Component velocity along Y	VitesseY	$m.s^{-1}$
Component velocity along Z	VitesseZ	$m.s^{-1}$
Mass balance on each cell	Divergence_U	$m^3.s^{-1}$
Irradiancy	Irradiance	$W.m^{-2}$
Q-criteria	Critere_Q	s^{-1}
Distance to the wall $Y^+ = yU/\nu$		
(only computed on	Y_plus	dimensionless
boundaries of wall type)		
Friction velocity	U_star	$m.s^{-1}$
Void fraction	alpha	dimensionless
Cell volumes	Volume_maille	m^3
Chemical potential	Potentiel_Chimique_Generalise	
Source term in non		
Galinean referential	Acceleration_terme_source	$m.s^{-2}$ S
Stability time steps	Pas_de_temps	
Listing of boundary fluxes	Flux_bords	cf each *.out file
Volumetric porosity	Porosite_volumique	dimensionless
Distance to the wall	Distance_Paroi ³	m
Volumic thermal power	Puissance_volumique	$W.m^{-3}$
Local shear strain rate defined as		
$\sqrt{(2SijSij)}$	Taux_cisaillement	s^{-1}
Cell Courant number (VDF only)	Courant_maille	dimensionless
Cell Reynolds number (VDF only)	Reynolds_maille	dimensionless
Viscous force	viscous_force	$kg.m^2.s^{-1}$
Pressure force	pressure_force	$kg.m^2.s^{-1}$
Total force	total_force	$kg.m^2.s^{-1}$
Viscous force along X	viscous_force_x	$kg.m^2.s^{-1}$
Viscous force along Y	viscous_force_y	$kg.m^2.s^{-1}$
Viscous force along Z	viscous_force_z	$kg.m^2.s^{-1}$
Pressure force along X	pressure_force_x	$kg.m^2.s^{-1}$
Pressure force along Y	pressure_force_y	$kg.m^2.s^{-1}$
Pressure force along Z	pressure_force_z	$kg.m^2.s^{-1}$
Total force along X	total_force_x	$kg.m^2.s^{-1}$
Total force along Y	total_force_y	$kg.m^2.s^{-1}$
Total force along Z	total_force_z	$kg.m^2.s^{-1}$

3 interprete

Description: Basic class for interpreting a data file. Interpretors allow some operations to be carried out on objects.

See also: objet_u (36) read (3.83) associate (3.16) discretize (3.32) mailler (3.63) maillerparallel (3.65) ecrire_fichier_bin (3.124) ecrire (3.123) read_file (3.84) lire_tgrid (3.86) solve (3.102) execute_parallel (3.38) end (3.51) dimension (3.29) bidim_axi (3.18) axi (3.17) transformer (3.114) rotation (3.99) dilate (3.28) residuals (3.98) testeur (3.107) test_solveur (3.106) postraiter_domaine (3.79) modif_bord_to_raccord (3.66) remove_elem (3.92) regroupebord (3.91) supprime_bord (3.103) calculer_moments (3.19) imprimer_flux (3.53) decouper_bord_coincident (3.27) raffiner_anisotrope (3.81) raffiner_isotrope

³distance_paroi is a field which can be used only if the mixing length model (see 2.15.1.2) is used in the data file.

```
(3.82) trianguler (3.115) tetraedriser (3.109) orientefacesbord (3.73) reorienter_tetraedres (3.95) reorienter-
_triangles (3.96) discretiser_domaine (3.31) { (3.25) } (3.52) export (3.39) debog (3.24) pilote_icoco (3.77)
moyenne volumique (3.68) lire ideas (3.61) system (3.105) redresser hexaedres vdf (3.89) analyse angle
(3.15) remove_invalid_internal_boundaries (3.94) reordonner (3.97) precisiongeom (3.80) nettoiepasnoeuds
(3.71) scatter (3.100) distance paroi (3.33) extruder (3.47) extract 2d from 3d (3.40) extruder en20 (3.49)
extrudeparoi (3.46) decoupebord (3.26) extraire_plan (3.43) extraire_domaine (3.42) extraire_surface (3.44)
integrer champ med (3.56) orienter simplexes (3.88) verifier simplexes (3.120) verifier qualite raffinements
(3.118) testeur medcoupling (3.108) interprete geometrique base (3.57) option vdf (3.72) criteres convergence
(3.23) espece (3.37) Option PolyMAC P0 (3.10) Option PolyMAC (3.9) Op Conv EF Stab PolyMAC-
_Face (3.5) Op_Conv_EF_Stab_PolyMAC_P0P1NC_Elem (3.6) Op_Conv_EF_Stab_PolyMAC_P0P1NC-
Face (3.7) Op Conv EF Stab PolyMAC P0 Face (3.8) verifiercoin (3.121) Write MED (3.2) read-
_med (3.13) lata_to_other (3.60) lata_to_med (3.58) lml_to_lata (3.62) ecrire_champ_med (3.34) Merge-
_MED (3.3) ecriturelecturespecial (3.36) Raffiner_isotrope_parallele (3.12) modifydomaineAxi1d (3.67)
extrudebord (3.45) corriger_frontiere_periodique (3.21) refine_mesh (3.90) polyedriser (3.78) partition-
_multi (3.76) partition (3.74) disable_TU (3.30) MultipleFiles (3.4) Parallel_io_parameters (3.11) Test-
_SSE_Kernels (3.14) multigrid_solver (3.69)
```

Usage:

interprete

3.1 Create domain from sub domain

Description: This keyword fills the domain domaine_final with the subdomaine par_sous_zone from the domain domaine_init. It is very useful when meshing several mediums with Gmsh. Each medium will be defined as a subdomaine into Gmsh. A MED mesh file will be saved from Gmsh and read with Lire_Med keyword by the TRUST data file. And with this keyword, a domain will be created for each medium in the TRUST data file.

```
See also: interprete_geometrique_base (3.57) create_domain_from_sous_zone (3.22)

Usage:
Create_domain_from_sub_domain {
    [domaine_final str]
    [par_sous_zone str]
    domaine_init str
}
where
```

- domaine_final str: new domain in which faces are stored
- par_sous_zone str: a sub-area allowing to choose the elements
- **domaine_init** *str*: initial domain

3.2 Write med

Description: Write a domain to MED format into a file.

See also: interprete (3)

Usage:

Write_MED nom_dom file where

• nom dom str: Name of domain.

• file str: Name of file.

3.3 Merge_med

Description: This keyword allows to merge multiple MED files produced during a parallel computation into a single MED file.

See also: interprete (3)

Usage:

Merge_MED med_files_base_name time_iterations where

- med_files_base_name str: Base name of multiple med files that should appear as base_name_xxxxx.med, where xxxxx denotes the MPI rank number. If you specify NOM_DU_CAS, it will automatically take the basename from your datafile's name.
- **time_iterations** *str into ['all_times', 'last_time']*: Identifies whether to merge all time iterations present in the MED files or only the last one.

3.4 Multiplefiles

Description: Change MPI rank limit for multiple files during I/O

See also: interprete (3)

Usage:

MultipleFiles type

where

where

• type int: New MPI rank limit

3.5 Op_conv_ef_stab_polymac_face

```
Description: Class Op_Conv_EF_Stab_PolyMAC_Face_PolyMAC
See also: interprete (3)

Usage:
Op_Conv_EF_Stab_PolyMAC_Face {
    [alpha float]
}
```

• alpha float: parametre ajustant la stabilisation de 0 (schema centre) a 1 (schema amont)

```
3.6 Op_conv_ef_stab_polymac_p0p1nc_elem
Description: Class Op_Conv_EF_Stab_PolyMAC_P0P1NC_Elem
See also: interprete (3)
Usage:
Op_Conv_EF_Stab_PolyMAC_P0P1NC_Elem {
     [ alpha float]
}
where
   • alpha float: parametre ajustant la stabilisation de 0 (schema centre) a 1 (schema amont)
3.7 Op_conv_ef_stab_polymac_p0p1nc_face
Description: Class Op_Conv_EF_Stab_PolyMAC_P0P1NC_Face
See also: interprete (3)
Usage:
3.8 Op_conv_ef_stab_polymac_p0_face
Description: Class Op_Conv_EF_Stab_PolyMAC_P0_Face
See also: interprete (3)
Usage:
3.9 Option_polymac
Description: Class of PolyMAC options.
See also: interprete (3)
Usage:
Option_PolyMAC {
     [use_osqp]
}
where
   • use_osqp: Flag to use the old formulation of the M2 matrix provided by the OSQP library
3.10
     Option_polymac_p0
Description: Class of PolyMAC_P0 options.
See also: interprete (3)
Usage:
Option_PolyMAC_P0 {
```

```
[ interp_ve1 ]
     [ traitement_axi ]
}
where
```

- **interp_ve1**: Flag to enable a first order velocity face-to-element interpolation (the default value is 0 which means a second order interpolation)
- **traitement_axi**: Flag used to relax the time-step stability criterion in case of a thin slice geometry while modelling an axi-symetrical case

3.11 Parallel io parameters

Description: Object to handle parallel files in IJK discretization

```
See also: interprete (3)

Usage:

Parallel_io_parameters {

    [ block_size_bytes int]
    [ block_size_megabytes int]
    [ writing_processes int]
    [ bench_ijk_splitting_write str]
    [ bench_ijk_splitting_read str]
}

where
```

- **block_size_bytes** *int*: File writes will be performed by chunks of this size (in bytes). This parameter will not be taken into account if block_size_megabytes has been defined
- **block_size_megabytes** *int*: File writes will be performed by chunks of this size (in megabytes). The size should be a multiple of the GPFS block size or lustre stripping size (typically several megabytes)
- writing_processes *int*: This is the number of processes that will write concurrently to the file system (this must be set according to the capacity of the filesystem, set to 1 on small computers, can be up to 64 or 128 on very large systems).
- **bench_ijk_splitting_write** *str*: Name of the splitting object we want to use to run a parallel write bench (optional parameter)
- **bench_ijk_splitting_read** *str*: Name of the splitting object we want to use to run a parallel read bench (optional parameter)

3.12 Raffiner_isotrope_parallele

Description: Refine parallel mesh in parallel

See also: interprete (3)

Usage:
Raffiner_isotrope_parallele {
 name_of_initial_zones|name_of_initial_domaines str
 name_of_new_zones|name_of_new_domaines str
 [ascii]

```
[ single_hdf ]
}
where
```

- name of initial zones name of initial domaines str: name of initial Domaines
- name of new zones|name of new domaines str: name of new Domaines
- ascii: writing Domaines in ascii format
- single_hdf: writing Domaines in hdf format

3.13 Read med

Synonymous: lire_med

Description: Keyword to read MED mesh files where 'domain' corresponds to the domain name, 'file' corresponds to the file (written in the MED format) containing the mesh named mesh_name.

Note about naming boundaries: When reading 'file', TRUST will detect boundaries between domains (Raccord) when the name of the boundary begins by type_raccord_. For example, a boundary named type_raccord_wall in 'file' will be considered by TRUST as a boundary named 'wall' between two domains.

NB: To read several domains from a mesh issued from a MED file, use Read_Med to read the mesh then use Create_domain_from_sub_domain keyword.

NB: If the MED file contains one or several subdomaine defined as a group of volumes, then Read_MED will read it and will create two files domain_name_ssz_geo and domain_name_ssz_par.geo defining the subdomaines for sequential and/or parallel calculations. These subdomaines will be read in sequential in the datafile by including (after Read_Med keyword) something like:

```
Read Med ....
Read file domain name ssz.geo;
During the parallel calculation, you will include something:
Scatter { ... }
Read file domain name ssz par.geo;
See also: interprete (3)
Usage:
read_med {
     [convertalltopoly]
     domaine|domain str
     fichier|file str
     [ maillage|mesh str]
     [ exclure groupes|exclude groups n word1 word2 ... wordn]
      [inclure groupes faces additionnels|include additional face groups n word1 word2 ... wordn]
}
where
```

- convertalltopoly: Option to convert mesh with mixed cells into polyhedral/polygonal cells
- **domaineldomain** *str*: Corresponds to the domain name.
- fichier|file str: File (written in the MED format, with extension '.med') containing the mesh
- maillagelmesh str: Name of the mesh in med file. If not specified, the first mesh will be read.
- exclure_groupeslexclude_groups n word1 word2 ... wordn: List of face groups to skip in the MED file
- inclure_groupes_faces_additionnelslinclude_additional_face_groups n word1 word2 ... wordn: List of face groups to read and register in the MED file.

3.14 Test_sse_kernels

Description: Object to test the different kernel methods used in the multigrid solver in IJK discretization

```
See also: interprete (3)

Usage:
Test_SSE_Kernels {
    [nmax int]
}
where
```

• nmax int: Number of tests we want to perform

3.15 Analyse_angle

Description: Keyword Analyse_angle prints the histogram of the largest angle of each mesh elements of the domain named name_domain. nb_histo is the histogram number of bins. It is called by default during the domain discretization with nb_histo set to 18. Useful to check the number of elements with angles above 90 degrees.

```
See also: interprete (3)

Usage:
analyse_angle domain_name nb_histo
where

• domain_name str: Name of domain to resequence.
• nb histo int
```

3.16 Associate

Synonymous: associer

Description: This interpretor allows one object to be associated with another. The order of the two objects in this instruction is not important. The object objet_2 is associated to objet_1 if this makes sense; if not either objet_1 is associated to objet_2 or the program exits with error because it cannot execute the Associate (Associer) instruction. For example, to calculate water flow in a pipe, a Pb_Hydraulique type object needs to be defined. But also a Domaine type object to represent the pipe, a Scheme_euler_explicit type object for time discretization, a discretization type object (VDF or VEF) and a Fluide_Incompressible type object which will contain the water properties. These objects must then all be associated with the problem.

```
See also: interprete (3)

Usage:
associate objet_1 objet_2
where

• objet_1 str: Objet_1
• objet_2 str: Objet_2
```

3.17 Axi

Description: This keyword allows a 3D calculation to be executed using cylindrical coordinates (R, θ, Z) . If this instruction is not included, calculations are carried out using Cartesian coordinates.

See also: interprete (3)

Usage:

axi

3.18 Bidim axi

Description: Keyword allowing a 2D calculation to be executed using axisymetric coordinates (R, Z). If this instruction is not included, calculations are carried out using Cartesian coordinates.

See also: interprete (3)

Usage:

bidim_axi

3.19 Calculer moments

Description: Calculates and prints the torque (moment of force) exerted by the fluid on each boundary in output files (.out) of the domain nom_dom.

See also: interprete (3)

Usage:

calculer_moments nom_dom mot

where

- nom_dom str: Name of domain.
- mot lecture_bloc_moment_base (3.20): Keyword.

3.20 Lecture_bloc_moment_base

Description: Auxiliary class to compute and print the moments.

See also: objet_lecture (35) calcul (3.20.1) centre_de_gravite (3.20.2)

Usage:

3.20.1 Calcul

Description: The centre of gravity will be calculated.

See also: (3.20)

Usage:

calcul

3.20.2 Centre_de_gravite

Description: To specify the centre of gravity.

```
See also: (3.20)

Usage:
centre_de_gravite point
where

• point un_point (3.20.3): A centre of gravity.

3.20.3 Un_point

Description: A point.

See also: objet_lecture (35)

Usage:
pos
where

• pos x1 x2 (x3): Point coordinates.
```

3.21 Corriger_frontiere_periodique

Description: The Corriger_frontiere_periodique keyword is mandatory to first define the periodic boundaries, to reorder the faces and eventually fix unaligned nodes of these boundaries. Faces on one side of the periodic domain are put first, then the faces on the opposite side, in the same order. It must be run in sequential before mesh splitting.

```
See also: interprete (3)

Usage:
corriger_frontiere_periodique {
    domaine str
    bord str
    [ direction n x1 x2 ... xn]
    [ fichier_post str]
}
where
```

- **domaine** *str*: Name of domain.
- bord str: the name of the boundary (which must contain two opposite sides of the domain)
- **direction** n x1 x2 ... xn: defines the periodicity direction vector (a vector that points from one node on one side to the opposite node on the other side). This vector must be given if the automatic algorithm fails, that is:
 - when the node coordinates are not perfectly periodic
 - when the periodic direction is not aligned with the normal vector of the boundary faces
- fichier_post str: .

3.22 Create_domain_from_sous_zone

 $Synonymous: \ \ \textbf{create_domain_from_sub_domain}$

Description: kept for backward compatibility. please use Create_domain_from_sub_domain

```
See also: Create_domain_from_sub_domain (3.1)

Usage:
create_domain_from_sous_zone {

    [domaine_final str]
    [par_sous_zone str]
    domaine_init str
}

where
```

- domaine final str for inheritance: new domain in which faces are stored
- par_sous_zone str for inheritance: a sub-area allowing to choose the elements
- domaine_init str for inheritance: initial domain

3.23 Criteres_convergence

```
Description: convergence criteria

See also: interprete (3)

Usage:
aco [inco][val] acof
where

• aco str into ['{'}: Opening curly bracket.
• inco str: Unknown (i.e: alpha, temperature, velocity and pressure)
• val float: Convergence threshold
• acof str into ['}']: Closing curly bracket.
```

3.24 Debog

Description: Class to debug some differences between two TRUST versions on a same data file.

If you want to compare the results of the same code in sequential and parallel calculation, first run (mode=0) in sequential mode (the files fichier1 and fichier2 will be written first) then the second run in parallel calculation (mode=1).

During the first run (mode=0), it prints into the file DEBOG, values at different points of the code thanks to the C++ instruction call. see for example in Kernel/Framework/Resoudre.cpp file the instruction: Debog::verifier(msg,value); Where msg is a string and value may be a double, an integer or an array.

During the second run (mode=1), it prints into a file Err_Debog.dbg the same messages than in the DEBOG file and checks if the differences between results from both codes are less than a given value (error). If not, it prints Ok else show the differences and the lines where it occured.

```
See also: interprete (3)

Usage:
debog pb fichier1 fichier2 seuil mode
where
```

- **pb** *str*: Name of the problem to debug.
- fichier1 str: Name of the file where domain will be written in sequential calculation.
- fichier2 str: Name of the file where faces will be written in sequential calculation.

- seuil *float*: Minimal value (by default 1.e-20) for the differences between the two codes.
- **mode** *int*: By default -1 (nothing is written in the different files), you will set 0 for the sequential run, and 1 for the parallel run.

3.25 { Description: Block's beginning. See also: interprete (3) Usage:

3.26 Decoupebord

Synonymous: decoupebord_pour_rayonnement

the splitted boundaries named boundary_name

Description: To subdivide the external boundary of a domain into several parts (may be useful for better accuracy when using radiation model in transparent medium). To specify the boundaries of the fine—domain_name domain to be splitted. These boundaries will be cut according the coarse mesh defined by either the keyword domaine_grossier (each boundary face of the coarse mesh coarse_domain_name will be used to group boundary faces of the fine mesh to define a new boundary), either by the keyword nb—parts_naif (each boundary of the fine mesh is splitted into a partition with nx*ny*nz elements), either by a geometric condition given by a formulae with the keyword condition_geometrique. If used, the coarse_domain_name domain should have the same boundaries name of the fine_domain_name domain.

A mesh file (ASCII format, except if binaire option is specified) named by default newgeom (or specified by the nom fichier sortie keyword) will be created and will contain the fine domain name domain with

See also: interprete (3)

Usage:
decoupebord {

domaine str
 [domaine_grossier str]
 [nb_parts_naif n n1 n2 ... nn]
 [nb_parts_geom n n1 n2 ... nn]
 bords_a_decouper n word1 word2 ... wordn
 [nom_fichier_sortie str]
 [condition_geometrique n word1 word2 ... wordn]
 [binaire int]
}
where

- domaine str
- domaine_grossier str
- **nb_parts_naif** *n n 1 n 2* ... *nn*
- **nb_parts_geom** *n n1 n2 ... nn*
- bords_a_decouper n word1 word2 ... wordn
- nom_fichier_sortie str
- condition_geometrique n word1 word2 ... wordn
- binaire int

3.27 Decouper_bord_coincident

Description: In case of non-coincident meshes and a paroi_contact condition, run is stopped and two external files are automatically generated in VEF (connectivity_failed_boundary_name and connectivity_failed_pb_name.med). In 2D, the keyword Decouper_bord_coincident associated to the connectivity_failed_boundary_name file allows to generate a new coincident mesh.

See also: interprete (3)

Usage:

decouper_bord_coincident domain_name bord where

- domain name str: Name of domain.
- **bord** *str*: connectivity_failed_boundary_name

3.28 Dilate

Description: Keyword to multiply the whole coordinates of the geometry.

See also: interprete (3)

Usage:

dilate domain_name alpha

where

- domain_name str: Name of domain.
- alpha float: Value of dilatation coefficient.

3.29 Dimension

Description: Keyword allowing calculation dimensions to be set (2D or 3D), where dim is an integer set to 2 or 3. This instruction is mandatory.

See also: interprete (3)

Usage:

dimension dim

where

• dim int into [2, 3]: Number of dimensions.

3.30 Disable_tu

Description: Flag to disable the writing of the .TU files

See also: interprete (3)

Usage:

disable TU

3.31 Discretiser_domaine

Description: Useful to discretize the domain domain_name (faces will be created) without defining a problem.

See also: interprete (3)

Usage:

discretiser_domaine domain_name where

• **domain name** *str*: Name of the domain.

3.32 Discretize

Synonymous: discretiser

Description: Keyword to discretise a problem problem_name according to the discretization dis. IMPORTANT: A number of objects must be already associated (a domain, time scheme, central object) prior to invoking the Discretize (Discretiser) keyword. The physical properties of this central object must also have been read.

See also: interprete (3)

Usage:

discretize problem_name dis

where

- **problem_name** *str*: Name of problem.
- dis str: Name of the discretization object.

3.33 Distance_paroi

Description: Class to generate external file Wall_length.xyz devoted for instance, for mixing length modelling. In this file, are saved the coordinates of each element (center of gravity) of dom domain and minimum distance between this point and boundaries (specified bords) that user specifies in data file (typically, those associated to walls). A field Distance_paroi is available to post process the distance to the wall.

See also: interprete (3)

Usage:

distance_paroi dom bords format

where

- dom str: Name of domain.
- **bords** *n word1 word2* ... *wordn*: Boundaries.
- **format** *str into* ['binaire', 'formatte']: Value for format may be binaire (a binary file Wall_length.xyz is written) or formatte (moreover, a formatted file Wall_length_formatted.xyz is written).

3.34 Ecrire_champ_med

Description: Keyword to write a field to MED format into a file.

See also: interprete (3)
Usage:

ecrire_champ_med nom_dom nom_chp file where

nom_dom str: domain namenom_chp str: field namefile str: file name

3.35 Ecrire_fichier_formatte

Description: Keyword to write the object of name name_obj to a file filename in ASCII format.

See also: ecrire_fichier_bin (3.124)

Usage:

ecrire_fichier_formatte name_obj filename where

- name_obj str: Name of the object to be written.
- filename str: Name of the file.

3.36 Ecriturelecturespecial

Description: Class to write or not to write a .xyz file on the disk at the end of the calculation.

See also: interprete (3)

Usage:

ecriturelecturespecial type

where

• **type** *str*: If set to 0, no xyz file is created. If set to EFichierBin, it uses prior 1.7.0 way of reading xyz files (now LecFicDiffuseBin). If set to EcrFicPartageBin, it uses prior 1.7.0 way of writing xyz files (now EcrFicPartageMPIIO).

3.37 Espece

```
Description: not_set

See also: interprete (3)

Usage:
espece {

mu champ_base
cp champ_base
masse_molaire float
```

```
where
mu champ_base (15.1): Species dynamic viscosity value (kg.m-1.s-1).
cp champ_base (15.1): Species specific heat value (J.kg-1.K-1).
masse_molaire float: Species molar mass.
```

3.38 Execute_parallel

Description: This keyword allows to run several computations in parallel on processors allocated to TRUST. The set of processors is split in N subsets and each subset will read and execute a different data file. Error messages usually written to stderr and stdout are redirected to .log files (journaling must be activated).

```
See also: interprete (3)

Usage:
execute_parallel {
    liste_cas n word1 word2 ... wordn
    [nb_procs n n1 n2 ... nn]
}
where
```

- **liste_cas** *n word1 word2* ... *wordn*: N datafile1 ... datafileN. datafileX the name of a TRUST data file without the .data extension.
- **nb_procs** *n n1 n2 ... nn*: nb_procs is the number of processors needed to run each data file. If not given, TRUST assumes that computations are sequential.

3.39 Export

Description: Class to make the object have a global range, if not its range will apply to the block only (the associated object will be destroyed on exiting the block).

```
See also: interprete (3)
Usage:
export
```

3.40 Extract 2d from 3d

Description: Keyword to extract a 2D mesh by selecting a boundary of the 3D mesh. To generate a 2D axisymmetric mesh prefer Extract_2Daxi_from_3D keyword.

```
See also: interprete (3) extract_2daxi_from_3d (3.41)

Usage:
extract_2d_from_3d dom3D bord dom2D
where
```

- dom3D str: Domain name of the 3D mesh
- **bord** *str*: Boundary name. This boundary becomes the new 2D mesh and all the boundaries, in 3D, attached to the selected boundary, give their name to the new boundaries, in 2D.
- dom2D str: Domain name of the new 2D mesh

3.41 Extract_2daxi_from_3d

Description: Keyword to extract a 2D axisymetric mesh by selecting a boundary of the 3D mesh.

```
See also: extract_2d_from_3d (3.40)

Usage: extract_2daxi_from_3d dom3D bord dom2D where
```

- dom3D str: Domain name of the 3D mesh
- **bord** *str*: Boundary name. This boundary becomes the new 2D mesh and all the boundaries, in 3D, attached to the selected boundary, give their name to the new boundaries, in 2D.
- dom2D str: Domain name of the new 2D mesh

3.42 Extraire_domaine

Description: Keyword to create a new domain built with the domain elements of the pb_name problem verifying the two conditions given by Condition_elements. The problem pb_name should have been discretized.

Keyword Discretize should have already been used to read the object. See also: interprete (3)

Usage:
extraire_domaine {

domaine str
probleme str
[condition_elements str]
[sous_zone str]
}
where

- domaine str: Domain in which faces are saved
- **probleme** str: Problem from which faces should be extracted
- condition_elements str
- sous_zone str

3.43 Extraire plan

Description: This keyword extracts a plane mesh named domain_name (this domain should have been declared before) from the mesh of the pb_name problem. The plane can be either a triangle (defined by the keywords Origine, Point1, Point2 and Triangle), either a regular quadrangle (with keywords Origine, Point1 and Point2), or either a generalized quadrangle (with keywords Origine, Point1, Point2, Point3). The keyword Epaisseur specifies the thickness of volume around the plane which contains the faces of the extracted mesh. The keyword via_extraire_surface will create a plan and use Extraire_surface algorithm. Inverse_condition_element keyword then will be used in the case where the plane is a boundary not well oriented, and avec_certains_bords_pour_extraire_surface is the option related to the Extraire_surface option named avec_certains_bords.

Keyword Discretize should have already been used to read the object.

```
See also: interprete (3)
Usage:
extraire_plan {
      domaine str
      probleme str
      epaisseur float
      origine n \times 1 \times 2 \dots \times n
      point1 n \times 1 \times 2 \dots \times n
      point2 n \times 1 \times 2 \dots \times n
      [ point3 n \times 1 \times 2 \dots \times n]
      [triangle]
      [via_extraire_surface]
      [inverse_condition_element]
      [ avec_certains_bords_pour_extraire_surface n word1 word2 ... wordn]
where
   • domaine str: domain_namme
   • probleme str: pb_name
    • epaisseur float
   • origine n x1 x2 ... xn
   • point1 n x1 x2 ... xn
   • point2 n x1 x2 ... xn
   • point3 n x1 x2 ... xn
   • triangle
   • via_extraire_surface
   • inverse_condition_element
   • avec_certains_bords_pour_extraire_surface n word1 word2 ... wordn
```

3.44 Extraire_surface

Description: This keyword extracts a surface mesh named domain_name (this domain should have been declared before) from the mesh of the pb_name problem. The surface mesh is defined by one or two conditions. The first condition is about elements with Condition_elements. For example: Condition_elements $x^*x+y^*y+z^*z<1$

Will define a surface mesh with external faces of the mesh elements inside the sphere of radius 1 located at (0,0,0). The second condition Condition_faces is useful to give a restriction.

By default, the faces from the boundaries are not added to the surface mesh excepted if option avec_les_bords is given (all the boundaries are added), or if the option avec_certains_bords is used to add only some boundaries.

Keyword Discretize should have already been used to read the object. See also: interprete (3)

```
Usage:

extraire_surface {

domaine str
probleme str
[condition_elements str]
[condition faces str]
```

```
[ avec_les_bords ]
    [ avec_certains_bords n word1 word2 ... wordn]
}
where

• domaine str: Domain in which faces are saved
• probleme str: Problem from which faces should be extracted
• condition_elements str
• condition_faces str
• avec_les_bords
• avec_certains_bords n word1 word2 ... wordn
```

3.45 Extrudebord

Description: Class to generate an extruded mesh from a boundary of a tetrahedral or an hexahedral mesh. Warning: If the initial domain is a tetrahedral mesh, the boundary will be moved in the XY plane then extrusion will be applied (you should maybe use the Transformer keyword on the final domain to have the domain you really want). You can use the keyword Ecrire_Fichier_Meshtv to generate a meshtv file to visualize your initial and final meshes.

This keyword can be used for example to create a periodic box extracted from a boundary of a tetrahedral or a hexaedral mesh. This periodic box may be used then to engender turbulent inlet flow condition for the main domain.

Note that ExtrudeBord in VEF generates 3 or 14 tetrahedra from extruded prisms.

```
Usage:
extrudebord {
    domaine_init str
    direction x1 x2 (x3)
    nb_tranches int
    domaine_final str
    nom_bord str
    [ hexa_old ]
    [ trois_tetra ]
    [ vingt_tetra ]
    [ sans_passer_par_le2d int]
}
where
```

- **domaine init** *str*: Initial domain with hexaedras or tetrahedras.
- **direction** $x1 \ x2 \ (x3)$: Directions for the extrusion.
- **nb** tranches *int*: Number of elements in the extrusion direction.
- domaine final str: Extruded domain.
- nom_bord str: Name of the boundary of the initial domain where extrusion will be applied.
- hexa_old : Old algorithm for boundary extrusion from a hexahedral mesh.
- trois tetra: To extrude in 3 tetrahedras instead of 14 tetrahedras.
- vingt_tetra : To extrude in 20 tetrahedras instead of 14 tetrahedras.
- sans_passer_par_le2d int: Only for non-regression

3.46 Extrudeparoi

Description: Keyword dedicated in 3D (VEF) to create prismatic layer at wall. Each prism is cut into 3 tetraedra.

```
See also: interprete (3)

Usage:
extrudeparoi {

domaine str
nom_bord str
[epaisseur n x1 x2 ... xn]
[critere_absolu int]
[projection_normale_bord]
}
where
```

- domaine str: Name of the domain.
- nom_bord str: Name of the (no-slip) boundary for creation of prismatic layers.
- epaisseur n x1 x2 ... xn: n r1 r2 rn : (relative or absolute) width for each layer.
- **critere_absolu** *int*: relative (0, the default) or absolute (1) width for each layer.
- **projection_normale_bord**: keyword to project layers on the same plane that contiguous boundaries. defaut values are: epaisseur_relative 1 0.5 projection_normale_bord 1

3.47 Extruder

Description: Class to create a 3D tetrahedral/hexahedral mesh (a prism is cut in 14) from a 2D triangular/quadrangular mesh.

```
See also: interprete (3) extruder_en3 (3.50)

Usage:
extruder {

domaine str
direction troisf
nb_tranches int
}
where
```

- domaine str: Name of the domain.
- **direction** troisf(3.48): Direction of the extrude operation.
- **nb_tranches** *int*: Number of elements in the extrusion direction.

3.48 Troisf

```
Description: Auxiliary class to extrude.
```

```
See also: objet_lecture (35)
```

Usage:

lx ly lz where

- lx float: X direction of the extrude operation.
- ly *float*: Y direction of the extrude operation.
- Iz *float*: Z direction of the extrude operation.

3.49 Extruder en20

Description: It does the same task as Extruder except that a prism is cut into 20 tetraedra instead of 3. The name of the boundaries will be devant (front) and derriere (back). But you can change these names with the keyword RegroupeBord.

```
See also: interprete (3)

Usage:
extruder_en20 {
    domaine str
    [direction troisf]
    nb_tranches int
}
where
• domaine str: Name of the domain.
```

- **direction** troisf(3.48): 0 Direction of the extrude operation.
- **nb_tranches** *int*: Number of elements in the extrusion direction.

3.50 Extruder_en3

Description: Class to create a 3D tetrahedral/hexahedral mesh (a prism is cut in 3) from a 2D triangular/quadrangular mesh. The names of the boundaries (by default, devant (front) and derriere (back)) may be edited by the keyword nom_cl_devant and nom_cl_derriere. If NULL is written for nom_cl, then no boundary condition is generated at this place.

Recommendation: to ensure conformity between meshes (in case of fluid/solid coupling) it is recommended to extrude all the domains at the same time.

```
See also: extruder (3.47)

Usage:
extruder_en3 {

domaine n word1 word2 ... wordn
 [nom_cl_devant str]
 [nom_cl_derriere str]
 direction troisf
 nb_tranches int
}
where
```

- domaine *n word1 word2* ... *wordn*: List of the domains
- nom_cl_devant *str*: New name of the first boundary.
- **nom_cl_derriere** *str*: New name of the second boundary.
- **direction** *troisf* (3.48) for inheritance: Direction of the extrude operation.
- **nb_tranches** *int* for inheritance: Number of elements in the extrusion direction.

3.51 End

Synonymous: fin

Description: Keyword which must complete the data file. The execution of the data file stops when reaching this keyword.

```
See also: interprete (3)

Usage: end

3.52 }

Description: Block's end.

See also: interprete (3)

Usage:
```

3.53 Imprimer_flux

Description: This keyword prints the flux per face at the specified domain boundaries in the data set. The fluxes are written to the .face files at a frequency defined by dt_impr, the evaluation printing frequency (refer to time scheme keywords). By default, fluxes are incorporated onto the edges before being displayed.

```
See also: interprete (3) imprimer_flux_sum (3.55)
```

Usage:

imprimer_flux domain_name noms_bord where

• domain name str: Name of the domain.

• **noms_bord** *bloc_lecture* (3.54): List of boundaries, for ex: { Bord1 Bord2 }

3.54 Bloc_lecture

Description: to read between two braces

See also: objet_lecture (35) bloc_criteres_convergence (3.54.1)

Usage:

bloc_lecture

where

• bloc_lecture str

3.54.1 Bloc_criteres_convergence

Description: Not set

See also: (3.54)

Usage:

bloc_lecture

where

• bloc_lecture str

3.55 Imprimer_flux_sum

Description: This keyword prints the sum of the flux per face at the domain boundaries defined by the user in the data set. The fluxes are written into the .out files at a frequency defined by dt_impr, the evaluation printing frequency (refer to time scheme keywords).

```
See also: imprimer_flux (3.53)

Usage:
imprimer_flux_sum domain_name noms_bord
where

• domain_name str: Name of the domain.
• noms_bord bloc_lecture (3.54): List of boundaries, for ex: { Bord1 Bord2 }
```

3.56 Integrer_champ_med

Description: his keyword is used to calculate a flow rate from a velocity MED field read before. The method is either debit_total to calculate the flow rate on the whole surface, either integrale_en_z to calculate flow rates between z=zmin and z=zmax on nb_tranche surfaces. The output file indicates first the flow rate for the whole surface and then lists for each tranche: the height z, the surface average value, the surface area and the flow rate. For the debit_total method, only one tranche is considered. file:z Sum(u.dS)/Sum(dS) Sum(dS) Sum(u.dS)

```
See also: interprete (3)

Usage:
integrer_champ_med {
    champ_med str
    methode str into ['integrale_en_z', 'debit_total']
    [ zmin float]
    [ zmax float]
    [ nb_tranche int]
    [ fichier_sortie str]
}
where
```

- champ_med str
- **methode** *str into ['integrale_en_z', 'debit_total']*: to choose between the integral following z or over the entire height (debit_total corresponds to zmin=-DMAXFLOAT, ZMax=DMAXFLOAT, nb_tranche=1)
- zmin float
- zmax float
- nb_tranche int
- **fichier_sortie** *str*: name of the output file, by default: integrale.

3.57 Interprete_geometrique_base

Description: Class for interpreting a data file

See also: interprete (3) Create_domain_from_sub_domain (3.1)

Usage:

interprete_geometrique_base

3.58 Lata to med

Description: To convert results file written with LATA format to MED file. Warning: Fields located on faces are not supported yet.

See also: interprete (3)

Usage:

lata_to_med [format] file file_med

where

- **format** *format_lata_to_med* (3.59): generated file post_med.data use format (MED or LATA or LML keyword).
- file str: LATA file to convert to the new format.
- file_med str: Name of the MED file.

3.59 Format_lata_to_med

Description: not_set

See also: objet_lecture (35)

Usage:

mot [format]

where

- mot str into ['format_post_sup']
- **format** *str into ['lml', 'lata_v2', 'med']*: generated file post_med.data use format (MED or LATA or LML keyword).

3.60 Lata_to_other

Description: To convert results file written with LATA format to MED or LML format. Warning: Fields located at faces are not supported yet.

See also: interprete (3)

Usage:

lata_to_other [format] file file_post

where

- **format** *str into ['lml', 'lata', 'lata_v2', 'med']*: Results format (MED or LATA or LML keyword).
- file str: LATA file to convert to the new format.
- file post str: Name of file post.

3.61 Lire_ideas

Description: Read a geom in a unv file. 3D tetra mesh elements only may be read by TRUST.

See also: interprete (3)

Usage:

lire_ideas nom_dom file

where

- nom dom str: Name of domain.
- file str: Name of file.

3.62 Lml_to_lata

Description: To convert results file written with LML format to a single LATA file.

See also: interprete (3)

Usage:

lml_to_lata file_lml file_lata

where

- **file lml** *str*: LML file to convert to the new format.
- file_lata str: Name of the single LATA file.

3.63 Mailler

Description: The Mailler (Mesh) interpretor allows a Domain type object domaine to be meshed with objects objet_1, objet_2, etc...

See also: interprete (3)

Usage:

mailler domaine bloc

where

- **domaine** *str*: Name of domain.
- **bloc** *list_bloc_mailler* (3.64): Instructions to mesh.

3.64 List_bloc_mailler

Description: List of block mesh.

See also: listobj (34.6)

Usage:

{ object1 , object2 }

list of mailler_base (3.64.1) separeted with,

```
3.64.1 Mailler_base
Description: Basic class to mesh.
See also: objet_lecture (35) pave (3.64.2) epsilon (3.64.12) domain (3.64.13)
Usage:
3.64.2 Pave
Description: Class to create a pave (block) with boundaries.
See also: mailler_base (3.64.1)
Usage:
pave name bloc list bord
where
   • name str: Name of the pave (block).
   • bloc bloc_pave (3.64.3): Definition of the pave (block).
   • list_bord list_bord (3.64.4): Domain boundaries definition.
3.64.3 Bloc_pave
Description: Class to create a pave.
See also: objet_lecture (35)
Usage:
{
      [Origine x1 \ x2 \ (x3)]
      [longueurs x1 \ x2 \ (x3)]
      [ nombre_de_noeuds n1 n2 (n3)]
      [ facteurs x1 \ x2 \ (x3)]
      [symx]
      [symy]
      [symz]
      [ xtanh float]
      [ xtanh_dilatation int into [-1, 0, 1]]
      [ xtanh_taille_premiere_maille float]
      [ ytanh float]
      [ ytanh dilatation int into [-1, 0, 1]]
      [ ytanh_taille_premiere_maille float]
      [ ztanh float]
      [ ztanh_dilatation int into [-1, 0, 1]]
      [ ztanh_taille_premiere_maille float]
where
```

- **Origine** x1 x2 (x3): Keyword to define the pave (block) origin, that is to say one of the 8 block points (or 4 in a 2D coordinate system).
- **longueurs** $x1 \ x2 \ (x3)$: Keyword to define the block dimensions, that is to say knowing the origin, length along the axes.

- **nombre_de_noeuds** *n1 n2 (n3)*: Keyword to define the discretization (nodenumber) in each direction.
- **facteurs** x1 x2 (x3): Keyword to define stretching factors for mesh discretization in each direction. This is a real number which must be positive (by default 1.0). A stretching factor other than 1 allows refinement on one edge in one direction.
- **symx**: Keyword to define a block mesh that is symmetrical with respect to the YZ plane (respectively Y-axis in 2D) passing through the block centre.
- **symy**: Keyword to define a block mesh that is symmetrical with respect to the XZ plane (respectively X-axis in 2D) passing through the block centre.
- symz: Keyword defining a block mesh that is symmetrical with respect to the XY plane passing through the block centre.
- xtanh float: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the X-direction.
- xtanh_dilatation int into [-1, 0, 1]: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the X-direction. xtanh_dilatation: The value may be -1,0,1 (0 by default): 0: coarse mesh at the middle of the channel and smaller near the walls -1: coarse mesh at the left side of the channel and smaller at the right side 1: coarse mesh at the right side of the channel and smaller near the left side of the channel.
- xtanh_taille_premiere_maille *float*: Size of the first cell of the mesh with tanh (hyperbolic tangent) variation in the X-direction.
- ytanh float: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the Y-direction.
- ytanh_dilatation int into [-1, 0, 1]: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the Y-direction. ytanh_dilatation: The value may be -1,0,1 (0 by default): 0: coarse mesh at the middle of the channel and smaller near the walls -1: coarse mesh at the bottom of the channel and smaller near the top 1: coarse mesh at the top of the channel and smaller near the bottom.
- ytanh_taille_premiere_maille *float*: Size of the first cell of the mesh with tanh (hyperbolic tangent) variation in the Y-direction.
- ztanh float: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the Z-direction.
- **ztanh_dilatation** *int into* [-1, 0, 1]: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the Z-direction. tanh_dilatation: The value may be -1,0,1 (0 by default): 0: coarse mesh at the middle of the channel and smaller near the walls -1: coarse mesh at the back of the channel and smaller near the front 1: coarse mesh at the front of the channel and smaller near the back.
- **ztanh_taille_premiere_maille** *float*: Size of the first cell of the mesh with tanh (hyperbolic tangent) variation in the Z-direction.

3.64.4 List_bord

```
Description: The block sides.
See also: listobj (34.6)
```

Usage: { object1 object2 } list of bord_base (3.64.5)

3.64.5 Bord_base

Description: Basic class for block sides. Block sides that are neither edges nor connectors are not specified. The duplicate nodes of two blocks in contact are automatically recognized and deleted.

```
See also: objet_lecture (35) bord (3.64.6) raccord (3.64.10) internes (3.64.11)
```

Usage:

3.64.6 Bord

Description: The block side is not in contact with another block and boundary conditions are applied to it.

See also: bord_base (3.64.5)

Usage:

bord nom defbord

where

- nom str: Name of block side.
- **defbord** *defbord* (3.64.7): Definition of block side.

3.64.7 Defbord

Description: Class to define an edge.

See also: objet_lecture (35) defbord_2 (3.64.8) defbord_3 (3.64.9)

Usage:

3.64.8 Defbord 2

Description: 1-D edge (straight line) in the 2-D space.

See also: (3.64.7)

Usage:

dir eq pos pos2_min inf1 dir2 inf2 pos2_max

where

- **dir** *str into* ['X', 'Y']: Edge is perpendicular to this direction.
- eq str into ['=']: Equality sign.
- **pos** *float*: Position value.
- pos2_min *float*: Minimal value.
- inf1 str into ['<=']: Less than or equal to sign.
- **dir2** *str into* ['X', 'Y']: Edge is parallel to this direction.
- inf2 str into ['<=']: Less than or equal to sign.
- pos2_max float: Maximal value.

3.64.9 **Defbord_3**

Description: 2-D edge (plane) in the 3-D space.

See also: (3.64.7)

Usage:

dir eq pos pos2_min inf1 dir2 inf2 pos2_max pos3_min inf3 dir3 inf4 pos3_max where

- dir str into ['X', 'Y', 'Z']: Edge is perpendicular to this direction.
- eq str into ['=']: Equality sign.
- **pos** *float*: Position value.
- pos2_min *float*: Minimal value.
- inf1 str into ['<=']: Less than or equal to sign.

- **dir2** *str into ['X', 'Y']*: Edge is parallel to this direction.
- inf2 str into ['<=']: Less than or equal to sign.
- pos2_max *float*: Maximal value.
- pos3_min float: Minimal value.
- inf3 str into ['<=']: Less than or equal to sign.
- dir3 str into ['Y', 'Z']: Edge is parallel to this direction.
- inf4 str into ['<=']: Less than or equal to sign.
- pos3_max float: Maximal value.

3.64.10 Raccord

Description: The block side is in contact with the block of another domain (case of two coupled problems).

See also: bord_base (3.64.5)

Usage:

raccord type1 type2 nom defbord

where

- type1 str into ['local', 'distant']: Contact type.
- type2 str into ['homogene']: Contact type.
- nom str: Name of block side.
- **defbord** *defbord* (3.64.7): Definition of block side.

3.64.11 Internes

Description: To indicate that the block has a set of internal faces (these faces will be duplicated automatically by the program and will be processed in a manner similar to edge faces).

Two boundaries with the same boundary conditions may have the same name (whether or not they belong to the same block).

The keyword Internes (Internal) must be used to execute a calculation with plates, followed by the equation of the surface area covered by the plates.

See also: bord_base (3.64.5)

Usage:

internes nom defbord

where

- nom str: Name of block side.
- **defbord** *defbord* (3.64.7): Definition of block side.

3.64.12 Epsilon

Description: Two points will be confused if the distance between them is less than eps. By default, eps is set to 1e-12. The keyword Epsilon allows an alternative value to be assigned to eps.

See also: mailler_base (3.64.1)

Usage:

epsilon eps

where

• eps float: New value of precision.

3.64.13 Domain

```
Description: Class to reuse a domain.

See also: mailler_base (3.64.1)

Usage:
domain domain_name
where
```

• domain_name str: Name of domain.

3.65 Maillerparallel

Description: creates a parallel distributed hexaedral mesh of a parallelipipedic box. It is equivalent to creating a mesh with a single Pave, splitting it with Decouper and reloading it in parallel with Scatter. It only works in 3D at this time. It can also be used for a sequential computation (with all NPARTS=1)}

```
See also: interprete (3)
Usage:
maillerparallel {
     domain str
     nb nodes n n1 n2 ... nn
     splitting n n 1 n 2 \dots n n
     ghost thickness int
     [ perio_x ]
     [perio_y]
     [perio z]
     [function_coord_x str]
     [function_coord_y str]
     [function_coord_z str]
     [ file_coord_x str]
     [file_coord_y str]
     [ file_coord_z str]
     [boundary_xmin str]
     [boundary_xmax str]
     [boundary_ymin str]
     [boundary_ymax str]
     [boundary_zmin str]
     [boundary zmax str]
}
where
```

- **domain** str: the name of the domain to mesh (it must be an empty domain object).
- **nb_nodes** *n n1 n2* ... *nn*: dimension defines the spatial dimension (currently only dimension=3 is supported), and nX, nY and nZ defines the total number of nodes in the mesh in each direction.
- **splitting** *n n1 n2 ... nn*: dimension is the spatial dimension and npartsX, npartsY and npartsZ are the number of parts created. The product of the number of parts must be equal to the number of processors used for the computation.
- **ghost_thickness** *int*: he number of ghost cells (equivalent to the epaisseur_joint parameter of Decouper.
- **perio** x : change the splitting method to provide a valid mesh for periodic boundary conditions.

- perio_y : change the splitting method to provide a valid mesh for periodic boundary conditions.
- perio_z: change the splitting method to provide a valid mesh for periodic boundary conditions.
- function_coord_x str: By default, the meshing algorithm creates nX nY nZ coordinates ranging between 0 and 1 (eg a unity size box). If function_coord_x} is specified, it is used to transform the [0,1] segment to the coordinates of the nodes. funcX must be a function of the x variable only.
- function_coord_y str: like function_coord_x for y
- function_coord_z str: like function_coord_x for z
- file_coord_x str: Keyword to read the Nx floating point values used as nodes coordinates in the file.
- file_coord_y str: idem file_coord_x for y
- file_coord_z str: idem file_coord_x for z
- **boundary_xmin** *str*: the name of the boundary at the minimum X direction. If it not provided, the default boundary names are xmin, xmax, ymin, ymax, zmin and zmax. If the mesh is periodic in a given direction, only the MIN boundary name is used, for both sides of the box.
- boundary_xmax str
- boundary_ymin str
- boundary_ymax str
- boundary_zmin str
- boundary_zmax str

3.66 Modif_bord_to_raccord

Description: Keyword to convert a boundary of domain_name domain of kind Bord to a boundary of kind Raccord (named boundary_name). It is useful when using meshes with boundaries of kind Bord defined and to run a coupled calculation.

See also: interprete (3)

Usage:

modif_bord_to_raccord domaine nom_bord where

- domaine str: Name of domain
- **nom_bord** *str*: Name of the boundary to transform.

3.67 Modifydomaineaxi1d

Description: Convert a 1D mesh to 1D axisymmetric mesh

See also: interprete (3)

Usage:

modifydomaineAxi1d dom bloc

where

- dom str
- bloc bloc_lecture (3.54)

3.68 Moyenne_volumique

Description: This keyword should be used after Resoudre keyword. It computes the convolution product of one or more fields with a given filtering function.

```
See also: interprete (3)

Usage:
moyenne_volumique {
    nom_pb str
    nom_domaine str
    noms_champs n word1 word2 ... wordn
    [nom_fichier_post str]
    [format_post str]
    [localisation str into ['elem', 'som']]
    fonction_filtre bloc_lecture
}
```

- **nom pb** *str*: name of the problem where the source fields will be searched.
- **nom_domaine** *str*: name of the destination domain (for example, it can be a coarser mesh, but for optimal performance in parallel, the domain should be split with the same algorithm as the computation mesh, eg, same tranche parameters for example)
- **noms_champs** *n word1 word2 ... wordn*: name of the source fields (these fields must be accessible from the postraitement) N source_field1 source_field2 ... source_fieldN
- **nom_fichier_post** *str*: indicates the filename where the result is written
- **format_post** *str*: gives the fileformat for the result (by default : lata)
- **localisation** *str into ['elem', 'som']*: indicates where the convolution product should be computed: either on the elements or on the nodes of the destination domain.
- fonction_filtre bloc_lecture (3.54): to specify the given filter

```
Fonction_filtre {
type filter_type
demie-largeur l
[ omega w ]
[ expression string ]
```

type filter_type : This parameter specifies the filtering function. Valid filter_type are:

Boite is a box filter, $f(x, y, z) = (abs(x) < l) * (abs(y) < l) * (abs(z) < l)/(8l^3)$

Chapeau is a hat filter (product of hat filters in each direction) centered on the origin, the half-width of the filter being 1 and its integral being 1.

Quadra is a 2nd order filter.

Gaussienne is a normalized gaussian filter of standard deviation sigma in each direction (all field elements outside a cubic box defined by clipping_half_width are ignored, hence, taking clipping_half_width=2.5*sigma yields an integral of 0.99 for a uniform unity field).

Parser allows a user defined function of the x,y,z variables. All elements outside a cubic box defined by clipping_half_width are ignored. The parser is much slower than the equivalent c++ coded function...

demie-largeur l: This parameter specifies the half width of the filter

[omega w] : This parameter must be given for the gaussienne filter. It defines the standard deviation of the gaussian filter.

[expression string] : This parameter must be given for the parser filter type. This expression will be interpreted by the math parser with the predefined variables x, y and z.

3.69 Multigrid_solver

Description: Object defining a multigrid solver in IJK discretization

```
Usage:
multigrid_solver {

    [coarsen_operators coarsen_operators]
    [ghost_size int]
    [relax_jacobi n x1 x2 ... xn]
    [pre_smooth_steps n n1 n2 ... nn]
    [smooth_steps n n1 n2 ... nn]
    [nb_full_mg_steps n n1 n2 ... nn]
    [solveur_grossier solveur_sys_base]
    [seuil float]
    [impr ]
    [solver_precision str into ['mixed', 'double']]
    [iterations_mixed_solver int]
}
where
```

- **coarsen_operators** *coarsen_operators* (3.70): Definition of the number of grids that will be used, in addition to the finest (original) grid, followed by the list of the coarsen operators that will be applied to get those grids
- ghost_size int: Number of ghost cells known by each processor in each of the three directions
- **relax_jacobi** n x1 x2 ... xn: Parameter between 0 and 1 that will be used in the Jacobi method to solve equation on each grid. Should be around 0.7
- **pre_smooth_steps** *n n1 n2* ... *nn*: First integer of the list indicates the numbers of integers that has to be read next. Following integers define the numbers of iterations done before solving the equation on each grid. For example, 2 7 8 means that we have a list of 2 integers, the first one tells us to perform 7 pre-smooth steps on the first grid, the second one tells us to perform 8 pre-smooth steps on the second grid. If there are more than 2 grids in the solver, then the remaining ones will have as many pre-smooth steps as the last mentionned number (here, 8)
- **smooth_steps** *n n1 n2 ... nn*: First integer of the list indicates the numbers of integers that has to be read next. Following integers define the numbers of iterations done after solving the equation on each grid. Same behavior as pre smooth steps
- **nb_full_mg_steps** *n n1 n2 ... nn*: Number of multigrid iterations at each level
- solveur_grossier solveur_sys_base (10.14): Name of the iterative solver that will be used to solve the system on the coarsest grid. This resolution must be more precise than the ones occurring on the fine grids. The threshold of this solver must therefore be lower than seuil defined above.
- **seuil** *float*: Define an upper bound on the norm of the final residue (i.e. the one obtained after applying the multigrid solver). With hybrid precision, as long as we have not obtained a residue whose norm is lower than the imposed threshold, we keep applying the solver
- impr : Flag to display some info on the resolution on eahc grid
- **solver_precision** *str into ['mixed', 'double']*: Precision with which the variables at stake during the resolution of the system will be stored. We can have a simple or floattant precision or both. In the case of a hybrid precision, the multigrid solver is launched in simple precision, but the residual is calculated in floattant precision.
- iterations_mixed_solver int: Define the maximum number of iterations in mixed precision solver

3.70 Coarsen_operators

```
Description: not_set

See also: listobj (34.6)

Usage:
n object1 object2 ....
list of coarsen_operator_uniform (3.70.1)
```

3.70.1 Coarsen_operator_uniform

Description: Object defining the uniform coarsening process of the given grid in IJK discretization

See also: objet_lecture (35)

Usage:

[Coarsen_Operator_Uniform] aco [coarsen_i] [coarsen_i_val] [coarsen_j] [coarsen_j_val] [coarsen_k] [coarsen_k_val] acof where

- Coarsen_Operator_Uniform str
- aco str into ['{'}]: opening curly brace
- coarsen_i str into ['coarsen_i']
- **coarsen_i_val** int: Integer indicating the number by which we will divide the number of elements in the I direction (in order to obtain a coarser grid)
- coarsen_j str into ['coarsen_j']
- **coarsen_j_val** int: Integer indicating the number by which we will divide the number of elements in the J direction (in order to obtain a coarser grid)
- coarsen_k str into ['coarsen_k']
- coarsen_k_val int: Integer indicating the number by which we will divide the number of elements in the K direction (in order to obtain a coarser grid)
- acof str into ['}']: closing curly brace

3.71 Nettoiepasnoeuds

Description: Keyword NettoiePasNoeuds does not delete useless nodes (nodes without elements) from a domain.

See also: interprete (3)

Usage:

nettoiepasnoeuds domain_name

where

• domain_name str: Name of domain.

3.72 Option_vdf

Description: Class of VDF options.

See also: interprete (3)

Usage:

```
option_vdf {
    [ traitement_coins str into ['oui', 'non']]
    [ traitement_gradients str into ['oui', 'non']]
    [ p_imposee_aux_faces str into ['oui', 'non']]
    [ toutes_les_options|all_options ]
}
where
```

- **traitement_coins** *str into ['oui', 'non']*: Treatment of corners (yes or no). This option modifies slightly the calculations at the outlet of the plane channel. It supposes that the boundary continues after channel outlet (i.e. velocity vector remains parallel to the boundary).
- **traitement_gradients** *str into ['oui', 'non']*: Treatment of gradient calculations (yes or no). This option modifies slightly the gradient calculation at the corners and activates also the corner treatment option.
- p_imposee_aux_faces str into ['oui', 'non']: Pressure imposed at the faces (yes or no).
- **toutes_les_options**lall_**options**: Activates all Option_VDF options. If used, must be used alone without specifying the other options, nor combinations.

3.73 Orientefacesbord

Description: Keyword to modify the order of the boundary vertices included in a domain, such that the surface normals are outer pointing.

See also: interprete (3)

Usage:

orientefacesbord domain_name

where

• domain_name str: Name of domain.

3.74 Partition

Synonymous: decouper

Description: Class for parallel calculation to cut a domain for each processor. By default, this keyword is commented in the reference test cases.

See also: interprete (3)

Usage:

partition domaine bloc_decouper

where

- domaine str: Name of the domain to be cut.
- **bloc_decouper** *bloc_decouper* (3.75): Description how to cut a domain.

3.75 Bloc_decouper

Description: Auxiliary class to cut a domain.

See also: objet_lecture (35)

- **Partition_toollpartitionneur** *partitionneur_deriv* (24): Defines the partitionning algorithm (the effective C++ object used is 'Partitionneur_ALGORITHM_NAME').
- larg_joint *int*: This keyword specifies the thickness of the virtual ghost domaine (data known by one processor though not owned by it). The default value is 1 and is generally correct for all algorithms except the QUICK convection scheme that require a thickness of 2. Since the 1.5.5 version, the VEF discretization imply also a thickness of 2 (except VEF P0). Any non-zero positive value can be used, but the amount of data to store and exchange between processors grows quickly with the thickness.
- nom_zones str: Name of the files containing the different partition of the domain. The files will be

name_0001.Zones name_0002.Zones

...

name_000n.Zones. If this keyword is not specified, the geometry is not written on disk (you might just want to generate a 'ecrire_decoupage' or 'ecrire_lata').

- ecrire_decoupage str: After having called the partitionning algorithm, the resulting partition is written on disk in the specified filename. See also partitionneur Fichier_Decoupage. This keyword is useful to change the partition numbers: first, you write the partition into a file with the option ecrire_decoupage. This file contains the domaine number for each element's mesh. Then you can easily permute domaine numbers in this file. Then read the new partition to create the .Zones files with the Fichier_Decoupage keyword.
- ecrire lata str
- nb_parts_tot int: Keyword to generates N .Domaine files, instead of the default number M obtained after the partitionning algorithm. N must be greater or equal to M. This option might be used to perform coupled parallel computations. Supplemental empty domaines from M to N-1 are created. This keyword is used when you want to run a parallel calculation on several domains with for example, 2 processors on a first domain and 10 on the second domain because the first domain is very small compare to second one. You will write Nb_parts 2 and Nb_parts_tot 10 for the first domain and Nb_parts 10 for the second domain.
- **periodique** *n word1 word2* ... *wordn*: N BOUNDARY_NAME_1 BOUNDARY_NAME_2 ... : N is the number of boundary names given. Periodic boundaries must be declared by this method. The partitionning algorithm will ensure that facing nodes and faces in the periodic boundaries are located on the same processor.
- **reorder** *int*: If this option is set to 1 (0 by default), the partition is renumbered in order that the processes which communicate the most are nearer on the network. This may slighly improves parallel performance.
- **single_hdf**: Optional keyword to enable you to write the partitioned domaines in a single file in hdf5 format.

• print_more_infos int: If this option is set to 1 (0 by default), print infos about number of remote elements (ghosts) and additional infos about the quality of partitionning. Warning, it slows down the cutting operations.

3.76 Partition_multi

Synonymous: decouper_multi

Description: allows to partition multiple domains in contact with each other in parallel: necessary for resolution monolithique in implicit schemes and for all coupled problems using PolyMAC_P0P1NC. By default, this keyword is commented in the reference test cases.

See also: interprete (3)

partition multi aco domaine1 dom blocdecoupdom1 domaine2 dom2 blocdecoupdom2 acof where

- aco str into ['{'}]: Opening curly bracket.
- domaine1 str into ['domaine']: not set.
- dom str: Name of the first domain to be cut.
- **blocdecoupdom1** *bloc_decouper* (3.75): *Partition bloc for the first domain.*
- domaine2 str into ['domaine']: not set.
- dom2 str: Name of the second domain to be cut.
- **blocdecoupdom2** *bloc_decouper* (3.75): *Partition bloc for the second domain.*
- **acof** *str into* ['}']: Closing curly bracket.

3.77 Pilote icoco

```
Description: not_set
See also: interprete (3)
Usage:
pilote_icoco {
     pb name str
     main str
where
   • pb name str
```

• main str

3.78 **Polyedriser**

Description: cast hexahedra into polyhedra so that the indexing of the mesh vertices is compatible with PolyMAC P0P1NC discretization. Must be used in PolyMAC P0P1NC discretization if a hexahedral mesh has been produced with TRUST's internal mesh generator.

See also: interprete (3)

```
Usage: polyedriser domain_name where
```

• domain_name str: Name of domain.

3.79 Postraiter_domaine

Description: To write one or more domains in a file with a specified format (MED,LML,LATA,SINGLE-LATA).

```
See also: interprete (3)

Usage:
postraiter_domaine {
    format    str into ['lml', 'lata', 'single_lata', 'lata_v2', 'med']
    [ file|fichier    str]
    [ domaine    str]
    [ sous_zone    str]
    [ domaines    bloc_lecture]
    [ joints_non_postraites    int into [0, 1]]
    [ binaire    int into [0, 1]]
    [ ecrire_frontiere    int into [0, 1]]
}
where
```

- format str into ['lml', 'lata', 'single_lata', 'lata_v2', 'med']: File format.
- **filelfichier** *str*: The file name can be changed with the fichier option.
- domaine str: Name of domain
- sous zone str: Name of the sub zone
- **domaines** bloc_lecture (3.54): Names of domains : { name1 name2 }
- **joints_non_postraites** *int into* [0, 1]: The joints_non_postraites (1 by default) will not write the boundaries between the partitioned mesh.
- **binaire** *int into* [0, 1]: Binary (binaire 1) or ASCII (binaire 0) may be used. By default, it is 0 for LATA and only ASCII is available for LML and only binary is available for MED.
- ecrire_frontiere int into [0, 1]: This option will write (if set to 1, the default) or not (if set to 0) the boundaries as fields into the file (it is useful to not add the boundaries when writing a domain extracted from another domain)

3.80 Precisiongeom

Description: Class to change the way floating-point number comparison is done. By default, two numbers are equal if their absolute difference is smaller than 1e-10. The keyword is useful to modify this value. Moreover, nodes coordinates will be written in .geom files with this same precision.

```
See also: interprete (3)

Usage: precisiongeom precision where
```

• precision float: New value of precision.

3.81 Raffiner_anisotrope

Description: Only for VEF discretizations, allows to cut triangle elements in 3, or tetrahedra in 4 parts, by defining a new summit located at the center of the element:

Note that such a cut creates flat elements (anisotropic).

See also: interprete (3)

Usage:

raffiner_anisotrope domain_name where

• domain_name str: Name of domain.

3.82 Raffiner_isotrope

Synonymous: raffiner_simplexes

Description: For VDF and VEF discretizations, allows to cut triangles/quadrangles or tetrahedral/hexaedras elements respectively in 4 or 8 new ones by defining new summits located at the middle of edges (and center of faces and elements for quadrangles and hexaedra). Such a cut preserves the shape of original elements (isotropic). For 2D elements:

For 3D elements:

See also: interprete (3)

Usage:

raffiner_isotrope domain_name where

• **domain_name** *str*: Name of domain.

3.83 Read

Synonymous: lire

Description: Interpretor to read the a_object objet defined between the braces.

See also: interprete (3)

Usage:

read a_object bloc where

- **a_object** *str*: Object to be read.
- **bloc** *str*: Definition of the object.

3.84 Read_file

Synonymous: lire_fichier

Description: Keyword to read the object name_obj contained in the file filename.

This is notably used when the calculation domain has already been meshed and the mesh contains the file filename, simply write read_file dom filename (where dom is the name of the meshed domain).

If the filename is ;, is to execute a data set given in the file of name name_obj (a space must be entered between the semi-colon and the file name).

See also: interprete (3) read_unsupported_ascii_file_from_icem (3.87) read_file_binary (3.85)

Usage:

read_file name_obj filename

where

- name_obj str: Name of the object to be read.
- filename str: Name of the file.

3.85 Read_file_binary

Synonymous: lire_fichier_bin

Description: Keyword to read an object name_obj in the unformatted type file filename.

See also: read_file (3.84)

Usage:

read_file_binary name_obj filename

where

- name_obj str: Name of the object to be read.
- filename str: Name of the file.

3.86 Lire_tgrid

Description: Keyword to reaf Tgrid/Gambit mesh files. 2D (triangles or quadrangles) and 3D (tetra or hexa elements) meshes, may be read by TRUST.

See also: interprete (3)

Usage:

lire_tgrid dom filename

where

- dom str: Name of domaine.
- filename str: Name of file containing the mesh.

3.87 Read_unsupported_ascii_file_from_icem

Description: not_set

See also: read file (3.84)

Usage:

read_unsupported_ascii_file_from_icem name_obj filename where

- name_obj str: Name of the object to be read.
- filename str: Name of the file.

3.88 Orienter_simplexes

Synonymous: rectify_mesh

Description: Keyword to raffine a mesh

See also: interprete (3)

Usage:

orienter_simplexes domain_name

where

• domain_name str: Name of domain.

3.89 Redresser_hexaedres_vdf

Description: Keyword to convert a domain (named domain_name) with quadrilaterals/VEF hexaedras which looks like rectangles/VDF hexaedras into a domain with real rectangles/VDF hexaedras.

See also: interprete (3)

Usage:

redresser_hexaedres_vdf domain_name

where

• **domain_name** *str*: Name of domain to resequence.

3.90 Refine_mesh

Description: not_set

See also: interprete (3)

Usage:

refine_mesh domaine

where

• domaine str

3.91 Regroupebord

Description: Keyword to build one boundary new_bord with several boundaries of the domain named domaine.

See also: interprete (3)

Usage:

regroupebord domaine new_bord bords where

• domaine str: Name of domain

• **new_bord** *str*: Name of the new boundary

• **bords** *bloc_lecture* (3.54): { Bound1 Bound2 }

3.92 Remove_elem

Description: Keyword to remove element from a VDF mesh (named domaine_name), either from an explicit list of elements or from a geometric condition defined by a condition f(x,y)>0 in 2D and f(x,y,z)>0 in 3D. All the new borders generated are gathered in one boundary called: newBord (to rename it, use RegroupeBord keyword. To split it to different boundaries, use DecoupeBord_Pour_Rayonnement keyword). Example of a removed zone of radius 0.2 centered at (x,y)=(0.5,0.5):

Remove_elem dom { fonction $0.2 * 0.2 - (x - 0.5)^2 - (y - 0.5)^2 > 0$ }

Warning: the thickness of removed zone has to be large enough to avoid singular nodes as decribed below:

UNCORRECT - 2 SINGULAR NODES

CORRECT

See also: interprete (3)

Usage:

remove_elem domaine bloc where

- domaine str: Name of domain
- **bloc** remove_elem_bloc (3.93)

3.93 Remove elem bloc

Description: not_set

```
See also: objet_lecture (35)

Usage:
{
    [liste n n1 n2 ... nn]
    [fonction str]
}
where
• liste n n1 n2 ... nn
```

• fonction str

3.94 Remove_invalid_internal_boundaries

Description: Keyword to suppress an internal boundary of the domain_name domain. Indeed, some mesh tools may define internal boundaries (eg: for post processing task after the calculation) but TRUST does not support it yet.

See also: interprete (3)

Usage:

 $remove_invalid_internal_boundaries \quad domain_name$

where

• domain_name str: Name of domain.

3.95 Reorienter_tetraedres

Description: This keyword is mandatory for front-tracking computations with the VEF discretization. For each tetrahedral element of the domain, it checks if it has a positive volume. If the volume (determinant of the three vectors) is negative, it swaps two nodes to reverse the orientation of this tetrahedron.

See also: interprete (3)

Usage

reorienter_tetraedres domain_name where

• domain_name str: Name of domain.

3.96 Reorienter_triangles

Description: not_set

See also: interprete (3)

Usage:
reorienter_triangles domain_name
where

• domain_name str: Name of domain.

3.97 Reordonner

Description: The Reordonner interpretor is required sometimes for a VDF mesh which is not produced by the internal mesher. Example where this is used:

Read file dom fichier.geom

Reordonner dom

Observations: This keyword is redundant when the mesh that is read is correctly sequenced in the TRUST sense. This significant mesh operation may take some time... The message returned by TRUST is not explicit when the Reordonner (Resequencing) keyword is required but not included in the data set...

See also: interprete (3)

Usage:

reordonner domain_name

where

• domain_name str: Name of domain to resequence.

3.98 Residuals

Description: To specify how the residuals will be computed.

```
See also: interprete (3)

Usage:
residuals {

    [norm str into ['L2', 'max']]
    [relative str into ['0', '1', '2']]
}
where
```

- **norm** *str into ['L2', 'max']*: allows to choose the norm we want to use (max norm by default). Possible to specify L2-norm.
- **relative** *str into ['0', '1', '2']*: This is the old keyword seuil_statio_relatif_deconseille. If it is set to 1, it will normalize the residuals with the residuals of the first 5 timesteps (default is 0). if set to 2, residual will be computed as R/(max-min).

3.99 Rotation

Description: Keyword to rotate the geometry of an arbitrary angle around an axis aligned with Ox, Oy or Oz axis.

See also: interprete (3)

Usage:

rotation domain_name dir coord1 coord2 angle where

- **domain_name** str: Name of domain to wich the transformation is applied.
- dir str into ['X', 'Y', 'Z']: X, Y or Z to indicate the direction of the rotation axis
- **coord1** *float*: coordinates of the center of rotation in the plane orthogonal to the rotation axis. These coordinates must be specified in the direct triad sense.
- coord2 float
- angle *float*: angle of rotation (in degrees)

3.100 Scatter

Description: Class to read a partionned mesh in the files during a parallel calculation. The files are in binary format.

See also: interprete (3) scattermed (3.101)

Usage:

scatter file domaine

where

• file str: Name of file.

• **domaine** str: Name of domain.

3.101 Scattermed

Description: This keyword will read the partition of the domain_name domain into a the MED format files file.med created by Medsplitter.

See also: scatter (3.100)

Usage:

scattermed file domaine

where

• file str: Name of file.

• domaine str: Name of domain.

3.102 Solve

Synonymous: resoudre

Description: Interpretor to start calculation with TRUST.

Keyword Discretize should have already been used to read the object.

See also: interprete (3)

Usage:

solve pb

where

• **pb** *str*: Name of problem to be solved.

3.103 Supprime_bord

Description: Keyword to remove boundaries (named Boundary_name1 Boundary_name2) of the domain named domain_name.

See also: interprete (3)

Usage:

supprime_bord domaine bords

where

```
• domaine str: Name of domain
   • bords list_nom (3.104): { Boundary_name1 Boundaray_name2 }
3.104 List_nom
Description: List of name.
See also: listobj (34.6)
Usage:
{ object1 object2 .... }
list of nom_anonyme (23.1)
3.105 System
Description: To run Unix commands from the data file. Example: System 'echo The End | mail trust@cea.fr'
See also: interprete (3)
Usage:
system cmd
where
   • cmd str: command to execute.
3.106
       Test_solveur
Description: To test several solvers
See also: interprete (3)
Usage:
test_solveur {
     [fichier_secmem str]
     [ fichier_matrice str]
     [fichier_solution str]
     [ nb_test int]
     [impr]
     [solveur_sys_base]
     [fichier_solveur str]
     [ genere_fichier_solveur float]
     [ seuil_verification float]
     [ pas_de_solution_initiale ]
     [ascii]
}
```

- fichier_secmem *str*: Filename containing the second member B
- fichier_matrice str: Filename containing the matrix A

where

- fichier_solution str: Filename containing the solution x
- **nb_test** *int*: Number of tests to measure the time resolution (one preconditionnement)

- impr: To print the convergence solver
- solveur solveur_sys_base (10.14): To specify a solver
- fichier_solveur str: To specify a file containing a list of solvers
- genere_fichier_solveur float: To create a file of the solver with a threshold convergence
- **seuil_verification** *float*: Check if the solution satisfy ||Ax-B||precision
- pas_de_solution_initiale : Resolution isn't initialized with the solution x
- ascii : Ascii files

3.107 Testeur

Description: not_set

See also: interprete (3)

Usage:

testeur data

where

• data bloc_lecture (3.54)

3.108 Testeur_medcoupling

Description: not_set

See also: interprete (3)

Usage:

testeur_medcoupling pb_name field_name

where

- **pb_name** *str*: Name of domain.
- field_name str: Name of domain.

3.109 Tetraedriser

Description: To achieve a tetrahedral mesh based on a mesh comprising blocks, the Tetraedriser (Tetrahedralise) interpretor is used in VEF discretization. Initial block is divided in 6 tetrahedra:

See also: interprete (3) tetraedriser_homogene (3.110) tetraedriser_homogene_fin (3.112) tetraedriser_homogene_compact (3.111) tetraedriser_par_prisme (3.113)

Usage:

tetraedriser domain_name where

• domain name str: Name of domain.

3.110 Tetraedriser_homogene

Description: Use the Tetraedriser_homogene (Homogeneous_Tetrahedralisation) interpretor in VEF discretization to mesh a block in tetrahedrals. Each block hexahedral is no longer divided into 6 tetrahedrals (keyword Tetraedriser (Tetrahedralise)), it is now broken down into 40 tetrahedrals. Thus a block defined with 11 nodes in each X, Y, Z direction will contain 10*10*10*40=40,000 tetrahedrals. This also allows problems in the mesh corners with the P1NC/P1iso/P1bulle or P1/P1 discretization items to be avoided. Initial block is divided in 40 tetrahedra:

See also: tetraedriser (3.109)

Usage:

tetraedriser_homogene domain_name where

• domain name str: Name of domain.

3.111 Tetraedriser_homogene_compact

Description: This new discretization generates tetrahedral elements from cartesian or non-cartesian hexahedral elements. The process cut each hexahedral in 6 pyramids, each of them being cut then in 4 tetrahedral. So, in comparison with tetra_homogene, less elements (*24 instead of*40) with more homogeneous volumes are generated. Moreover, this process is done in a faster way. Initial block is divided in 24 tetrahedra:

See also: tetraedriser (3.109)

Usage:

tetraedriser_homogene_compact domain_name where

• domain_name str: Name of domain.

3.112 Tetraedriser_homogene_fin

Description: Tetraedriser_homogene_fin is the recommended option to tetrahedralise blocks. As an extension (subdivision) of Tetraedriser_homogene_compact, this last one cut each initial block in 48 tetrahedra (against 24, previously). This cutting ensures:

- a correct cutting in the corners (in respect to pressure discretization PreP1B),
- a better isotropy of elements than with Tetraedriser_homogene_compact,
- a better alignment of summits (this could have a benefit effect on calculation near walls since first elements in contact with it are all contained in the same constant thickness and ii/ by the way, a 3D cartesian grid based on summits can be engendered and used to realise spectral analysis in HIT for instance). Initial block is divided in 48 tetrahedra:

See also: tetraedriser (3.109)

Usage:

tetraedriser_homogene_fin domain_name where

• domain_name str: Name of domain.

3.113 Tetraedriser_par_prisme

Description: Tetraedriser_par_prisme generates 6 iso-volume tetrahedral element from primary hexahedral one (contrarily to the 5 elements ordinarily generated by tetraedriser). This element is suitable for calculation of gradients at the summit (coincident with the gravity centre of the jointed elements related with) and spectra (due to a better alignment of the points).

Initial block is divided in 6 prismes.

See also: tetraedriser (3.109)

Usage:

tetraedriser_par_prisme domain_name where

• domain_name str: Name of domain.

3.114 Transformer

Description: Keyword to transform the coordinates of the geometry.

Exemple to rotate your mesh by a 90o rotation and to scale the z coordinates by a factor 2: Transformer domain_name -y -x 2*z

See also: interprete (3)

Usage:

transformer domain_name formule where

- **domain_name** *str*: Name of domain.
- **formule** *word1 word2 (word3)*: Function_for_x Function_for_y

 $Function_forz$

3.115 Trianguler

Description: To achieve a triangular mesh from a mesh comprising rectangles (2 triangles per rectangle). Should be used in VEF discretization. Principle:

See also: interprete (3) trianguler_h (3.117) trianguler_fin (3.116)

Usage:

trianguler domain_name where

• domain_name str: Name of domain.

3.116 Trianguler_fin

Description: Trianguler_fin is the recommended option to triangulate rectangles.

As an extension (subdivision) of Triangulate_h option, this one cut each initial rectangle in 8 triangles (against 4, previously). This cutting ensures :

- a correct cutting in the corners (in respect to pressure discretization PreP1B).
- a better isotropy of elements than with Trianguler_h option.
- a better alignment of summits (this could have a benefit effect on calculation near walls since first elements in contact with it are all contained in the same constant thickness, and, by this way, a 2D cartesian grid based on summits can be engendered and used to realize statistical analysis in plane channel configuration for instance). Principle:

See also: trianguler (3.115)

Usage:

trianguler_fin domain_name where

• domain_name str: Name of domain.

3.117 Trianguler_h

Description: To achieve a triangular mesh from a mesh comprising rectangles (4 triangles per rectangle). Should be used in VEF discretization. Principle:

See also: trianguler (3.115)

Usage:

trianguler_h domain_name where

• domain_name str: Name of domain.

3.118 Verifier_qualite_raffinements

Description: not_set

See also: interprete (3)

Usage:

verifier_qualite_raffinements domain_names

where

• domain_names vect_nom (3.119)

3.119 Vect_nom

Description: Vect of name.

See also: listobj (34.6)

Usage:

n object1 object2

list of nom anonyme (23.1)

3.120 Verifier_simplexes

Description: Keyword to raffine a simplexes

See also: interprete (3)

Usage:

verifier_simplexes domain_name

where

• domain_name str: Name of domain.

3.121 Verifiercoin

Description: This keyword subdivides inconsistent 2D/3D cells used with VEFPreP1B discretization. Must be used before the mesh is discretized. The Read_file option can be used only if the file.decoupage_som was previously created by TRUST. This option, only in 2D, reverses the common face at two cells (at least one is inconsistent), through the nodes opposed. In 3D, the option has no effect.

The expert_only option deactivates, into the VEFPreP1B divergence operator, the test of inconsistent cells.

See also: interprete (3)

```
Usage:
verifiercoin domain_name bloc
where
   • domain_name str: Name of the domaine
   • bloc verifiercoin_bloc (3.122)
3.122 Verifiercoin_bloc
Description: not_set
See also: objet_lecture (35)
Usage:
     [ Lire_fichier|Read_file str]
     [ expert_only ]
}
where
   • Lire_fichier|Read_file str: name of the *.decoupage_som file
   • expert_only: to not check the mesh
3.123 Ecrire
Description: Keyword to write the object of name name_obj to a standard outlet.
See also: interprete (3)
Usage:
ecrire name_obj
where
   • name_obj str: Name of the object to be written.
3.124 Ecrire_fichier_bin
Synonymous: ecrire_fichier
Description: Keyword to write the object of name name_obj to a file filename. Since the v1.6.3, the
default format is now binary format file.
See also: interprete (3) ecrire_fichier_formatte (3.35)
Usage:
ecrire_fichier_bin name_obj filename
where
```

• name_obj str: Name of the object to be written.

• **filename** *str*: Name of the file.

4 pb_gen_base

```
Description: Basic class for problems.

See also: objet_u (36) Pb_base (4.9) probleme_couple (4.10) pbc_med (4.38)

Usage:
```

4.1 Pb conduction

Description: Resolution of the heat equation.

```
Keyword Discretize should have already been used to read the object.
```

```
See also: Pb_base (4.9)
```

Usage:

where

```
Pb_Conduction str

Read str {

    [solide solide]
    [Conduction conduction]
    [milieu milieu_base]
    [constituant constituant]
    [Post_processing|postraitement corps_postraitement]
    [Post_processings|postraitements post_processings]
    [liste_de_postraitements liste_post_ok]
    [liste_postraitements liste_post]
    [sauvegarde format_file]
    [sauvegarde_simple format_file]
    [reprise format_file]
    [resume_last_time format_file]
}
```

- **solide** *solide* (21.13): The medium associated with the problem.
- **Conduction** *conduction* (5.1): Heat equation.
- milieu milieu base (21) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (21.1) for inheritance: Constituent.
- **Post_processinglyostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.

- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.2 Corps_postraitement

```
Description: not_set
See also: post_processing (4.4.3)
Usage:
     [fichier str]
      [format str into ['lml', 'lata', 'single_lata', 'lata_v2', 'med', 'med_major']]
      [ domaine str]
      [ sous_zone|sous_domaine str]
     [ parallele str into ['simple', 'multiple', 'mpi-io']]
     [ definition champs definition champs]
     [ definition_champs_file|definition_champs_fichier | definition_champs_fichier]
     [ probes|sondes | sondes]
     [ mobile_probes|sondes_mobiles sondes]
     [ probes_file|sondes_fichier | sondes_fichier]
      [ deprecatedkeepduplicatedprobes int]
     [ fields|champs champs posts]
     [statistiques stats_posts]
     [ statistiques_en_serie stats_serie_posts]
}
where
```

- fichier str for inheritance: Name of file.
- **format** *str into* ['lml', 'lata', 'single_lata', 'lata_v2', 'med', 'med_major'] for inheritance: This optional parameter specifies the format of the output file. The basename used for the output file is the basename of the data file. For the fmt parameter, choices are lml or lata. A short description of each format can be found below. The default value is lml. single_lata is not compatible with 64 bits integer version.
- **domaine** *str* for inheritance: This optional parameter specifies the domain on which the data should be interpolated before it is written in the output file. The default is to write the data on the domain of the current problem (no interpolation).
- sous_zonelsous_domaine *str* for inheritance: This optional parameter specifies the sub_domaine on which the data should be interpolated before it is written in the output file. It is only available for sequential computation.
- parallele str into ['simple', 'multiple', 'mpi-io'] for inheritance: Select simple (single file, sequential write), multiple (several files, parallel write), or mpi-io (single file, parallel write) for LATA format
- **definition_champs** *definition_champs* (4.2.1) for inheritance: Keyword to create new or more complex field for advanced postprocessing.

- **definition_champs_fileIdefinition_champs_fichier** *definition_champs_fichier* (4.2.3) for inheritance: Definition_champs read from file.
- **probes|sondes** sondes (4.2.4) for inheritance: Probe.
- mobile_probes|sondes_mobiles sondes (4.2.4) for inheritance: Mobile probes useful for ALE, their positions will be updated in the mesh.
- probes_filelsondes_fichier sondes_fichier (4.2.22) for inheritance: Probe read in a file.
- **deprecatedkeepduplicatedprobes** *int* for inheritance: Flag to not remove duplicated probes in .son files (1: keep duplicate probes, 0: remove duplicate probes)
- **fieldslchamps** champs posts (4.2.23) for inheritance: Field's write mode.
- **statistiques** *stats_posts* (4.2.26) for inheritance: Statistics between two points fixed : start of integration time and end of integration time.
- **statistiques_en_serie** *stats_serie_posts* (4.2.34) for inheritance: Statistics between two points not fixed: on period of integration.

4.2.1 Definition_champs

```
Description: List of definition champ

See also: listobj (34.6)

Usage:
{ object1 object2 .... }
list of definition_champ (4.2.2)
```

4.2.2 Definition champ

Description: Keyword to create new complex field for advanced postprocessing.

```
See also: objet_lecture (35)

Usage:
name champ_generique
where
```

- name str: The name of the new created field.
- champ_generique champ_generique_base (8)

4.2.3 Definition_champs_fichier

Description: Keyword to read definition_champs from a file

```
See also: objet_lecture (35)

Usage:
{

filelfichier str
}
where
```

• filelfichier str: name of file containing the definition of advanced fields

4.2.4 Sondes

```
Description: List of probes.

See also: listobj (34.6)

Usage:
{ object1 object2 .... }
list of sonde (4.2.5)
```

4.2.5 Sonde

Description: Keyword is used to define the probes. Observations: the probe coordinates should be given in Cartesian coordinates (X, Y, Z), including axisymmetric.

See also: objet_lecture (35)

Usage:

```
nom_sonde [special] nom_inco mperiode prd type where
```

- **nom_sonde** *str*: Name of the file in which the values taken over time will be saved. The complete file name is nom sonde.son.
- **special** *str into ['grav', 'som', 'nodes', 'chsom', 'gravcl']*: Option to change the positions of the probes. Several options are available:

grav: each probe is moved to the nearest cell center of the mesh;

som: each probe is moved to the nearest vertex of the mesh

nodes: each probe is moved to the nearest face center of the mesh;

chsom: only available for P1NC sampled field. The values of the probes are calculated according to P1-Conform corresponding field.

gravel: Extend to the domain face boundary a cell-located segment probe in order to have the boundary condition for the field. For this type the extreme probe point has to be on the face center of gravity.

- nom_inco str: Name of the sampled field.
- mperiode str into ['periode']: Keyword to set the sampled field measurement frequency.
- **prd** *float*: Period value. Every prd seconds, the field value calculated at the previous time step is written to the nom sonde.son file.
- **type** *sonde_base* (4.2.6): Type of probe.

4.2.6 Sonde base

Description: Basic probe. Probes refer to sensors that allow a value or several points of the domain to be monitored over time. The probes may be a set of points defined one by one (keyword Points) or a set of points evenly distributed over a straight segment (keyword Segment) or arranged according to a layout (keyword Plan) or according to a parallelepiped (keyword Volume). The fields allow all the values of a physical value on the domain to be known at several moments in time.

See also: objet_lecture (35) points (4.2.7) numero_elem_sur_maitre (4.2.11) position_like (4.2.12) segment (4.2.13) plan (4.2.14) volume (4.2.15) circle (4.2.16) circle_3 (4.2.17) segmentfacesx (4.2.18) segmentfacesy (4.2.19) segmentfacesz (4.2.20) radius (4.2.21)

Usage:

sonde_base

4.2.7 Points

Description: Keyword to define the number of probe points. The file is arranged in columns.

```
See also: sonde_base (4.2.6) point (4.2.9) segmentpoints (4.2.10)
```

Usage:

points points

where

• points *listpoints* (4.2.8): Probe points.

4.2.8 Listpoints

```
Description: Points.
```

```
See also: listobj (34.6)
```

Usage:

n object1 object2 list of un_point (3.20.3)

4.2.9 Point

Description: Point as class-daughter of Points.

```
See also: points (4.2.7)
```

Usage:

point points

where

• points listpoints (4.2.8): Probe points.

4.2.10 Segmentpoints

Description: This keyword is used to define a probe segment from specifics points. The nom_champ field is sampled at ns specifics points.

```
See also: points (4.2.7)
```

Usage:

segmentpoints points

where

• points listpoints (4.2.8): Probe points.

4.2.11 Numero_elem_sur_maitre

Description: Keyword to define a probe at the special element. Useful for min/max sonde.

```
See also: sonde_base (4.2.6)
```

Usage:

numero_elem_sur_maitre numero

where

• numero int: element number

4.2.12 Position_like

Description: Keyword to define a probe at the same position of another probe named autre_sonde.

See also: sonde_base (4.2.6)

Usage:

position_like autre_sonde

where

• autre_sonde str: Name of the other probe.

4.2.13 Segment

Description: Keyword to define the number of probe segment points. The file is arranged in columns.

See also: sonde_base (4.2.6)

Usage:

segment nbr point_deb point_fin

where

- **nbr** *int*: Number of probe points of the segment, evenly distributed.
- point_deb un_point (3.20.3): First outer probe segment point.
- point_fin un_point (3.20.3): Second outer probe segment point.

4.2.14 Plan

Description: Keyword to set the number of probe layout points. The file format is type .lml

See also: sonde_base (4.2.6)

Usage:

plan nbr nbr2 point_deb point_fin point_fin_2 where

- **nbr** *int*: Number of probes in the first direction.
- **nbr2** *int*: Number of probes in the second direction.
- point_deb un_point (3.20.3): First point defining the angle. This angle should be positive.
- point_fin un_point (3.20.3): Second point defining the angle. This angle should be positive.
- point_fin_2 un_point (3.20.3): Third point defining the angle. This angle should be positive.

4.2.15 Volume

Description: Keyword to define the probe volume in a parallelepiped passing through 4 points and the number of probes in each direction.

See also: sonde_base (4.2.6)

Usage:

volume nbr nbr2 nbr3 point_deb point_fin point_fin_2 point_fin_3

where

- **nbr** *int*: Number of probes in the first direction.
- **nbr2** *int*: Number of probes in the second direction.
- **nbr3** *int*: Number of probes in the third direction.
- point_deb un_point (3.20.3): Point of origin.
- **point_fin** *un_point* (3.20.3): Point defining the first direction (from point of origin).
- point_fin_2 un_point (3.20.3): Point defining the second direction (from point of origin).
- point_fin_3 un_point (3.20.3): Point defining the third direction (from point of origin).

4.2.16 Circle

Description: Keyword to define several probes located on a circle.

See also: sonde_base (4.2.6)

Usage:

circle nbr point_deb [direction] radius theta1 theta2 where

- **nbr** *int*: Number of probes between teta1 and teta2 (angles given in degrees).
- point_deb un_point (3.20.3): Center of the circle.
- direction int into [0, 1, 2]: Axis normal to the circle plane (0:x axis, 1:y axis, 2:z axis).
- radius float: Radius of the circle.
- theta1 float: First angle.
- theta2 float: Second angle.

4.2.17 Circle 3

Description: Keyword to define several probes located on a circle (in 3-D space).

See also: sonde_base (4.2.6)

Usage:

circle_3 nbr point_deb direction radius theta1 theta2 where

- **nbr** *int*: Number of probes between teta1 and teta2 (angles given in degrees).
- point deb un point (3.20.3): Center of the circle.
- direction int into [0, 1, 2]: Axis normal to the circle plane (0:x axis, 1:y axis, 2:z axis).
- radius float: Radius of the circle.
- theta1 float: First angle.
- theta2 float: Second angle.

4.2.18 Segmentfacesx

Description: Segment probe where points are moved to the nearest x faces

See also: sonde_base (4.2.6)

Usage:

segmentfacesx nbr point_deb point_fin

where

• **nbr** *int*: Number of probe points of the segment, evenly distributed.

- point_deb un_point (3.20.3): First outer probe segment point.
- **point_fin** *un_point* (3.20.3): Second outer probe segment point.

4.2.19 Segmentfacesy

Description: Segment probe where points are moved to the nearest y faces

See also: sonde_base (4.2.6)

Usage:

 $segment facesy \ nbr \ point_deb \ point_fin$

where

- **nbr** *int*: Number of probe points of the segment, evenly distributed.
- point_deb un_point (3.20.3): First outer probe segment point.
- **point_fin** *un_point* (3.20.3): Second outer probe segment point.

4.2.20 Segmentfacesz

Description: Segment probe where points are moved to the nearest z faces

See also: sonde_base (4.2.6)

Usage:

segmentfacesz nbr point_deb point_fin

where

- **nbr** *int*: Number of probe points of the segment, evenly distributed.
- point_deb un_point (3.20.3): First outer probe segment point.
- point_fin un_point (3.20.3): Second outer probe segment point.

4.2.21 Radius

Description: not_set

See also: sonde_base (4.2.6)

Usage:

radius nbr point_deb radius teta1 teta2 where

- **nbr** *int*: Number of probe points of the segment, evenly distributed.
- point_deb un_point (3.20.3): First outer probe segment point.
- radius float
- teta1 float
- teta2 float

4.2.22 Sondes_fichier

Description: not_set

See also: objet_lecture (35)

Usage:

ί

```
file|fichier str
}
where
   • filelfichier str: name of file
4.2.23 Champs_posts
Description: Field's write mode.
See also: objet_lecture (35)
Usage:
[format] mot period fields|champs
where
   • format str into ['binaire', 'formatte']: Type of file.
   • mot str into ['dt_post', 'nb_pas_dt_post']: Keyword to set the kind of the field's write frequency.
      Either a time period or a time step period.
   • period str: Value of the period which can be like (2.*t).
   • fieldslchamps champs_a_post (4.2.24): Post-processed fields.
4.2.24 Champs_a_post
Description: Fields to be post-processed.
See also: listobj (34.6)
Usage:
{ object1 object2 .... }
list of champ\_a\_post (4.2.25)
4.2.25 Champ_a_post
Description: Field to be post-processed.
See also: objet_lecture (35)
Usage:
```

- **champ** *str*: Name of the post-processed field.
- **localisation** *str into ['elem', 'som', 'faces']*: Localisation of post-processed field values: The two available values are elem, som, or faces (LATA format only) used respectively to select field values at mesh centres (CHAMPMAILLE type field in the lml file) or at mesh nodes (CHAMPPOINT type field in the lml file). If no selection is made, localisation is set to som by default.

4.2.26 Stats_posts

champ [localisation]

where

Description: Field's write mode.

Dt_post: This keyword is used to set the calculated statistics write period.

dts: frequency value.

t_deb value: Start of integration timet_fin value: End of integration time

stat: Set to Moyenne (average) to calculate the average of the field nom_champ (field name) over time or Ecart_type (std_deviation) to calculate the standard deviation (statistic rms) of the field nom_champ (field_name) or Correlation to calculate the correlation between the two fields nom_champ and second_nom_champ.

nom_champ: name of the field on which statistical analysis will be performed. Possible keywords are **Vitesse (velocity)**, **Pression (pressure)**, **Temperature**, **Concentration**,...

localisation: localisation of post-processed field values (elem or som).

Example:

Correlation Vitesse Vitesse }

It will write every **dt_post** the mean, standard deviation and correlation value:

$$\begin{split} t <& = t_{\text{deb}} \text{ or } t > = t_{\text{fin}}: \\ \text{average: } \overline{P(t)} &= 0 \\ \text{std_deviation: } &< P(t) > = 0 \\ \text{correlation: } &< U(t).V(t) > = 0 \\ t > t_{\text{deb}} \text{ and } t < t_{\text{fin}}: \\ \text{average: } \overline{P(t)} &= \frac{1}{t - t_{\text{deb}}} \int\limits_{t_{\text{deb}}}^{t} P(s) \text{ds} \\ \text{std_deviation: } &< P(t) > = \sqrt{\frac{1}{t - t_{\text{deb}}} \int\limits_{t_{\text{deb}}}^{t} \left[P(s) - \overline{P(t)} \right]^2 \text{ds}} \\ \text{correlation: } &< U(t).V(t) > = \frac{1}{t - t_{\text{deb}}} \int\limits_{t_{\text{deb}}}^{t} \left[U(s) - \overline{U(t)} \right]. \left[V(s) - \overline{V(t)} \right] \text{ds} \\ \end{split}$$

See also: objet_lecture (35)

Usage:

mot period fields|champs

where

- **mot** *str into* ['dt_post', 'nb_pas_dt_post']: Keyword to set the kind of the field's write frequency. Either a time period or a time step period.
- **period** *str*: Value of the period which can be like (2.*t).
- **fieldslchamps** *list_stat_post* (4.2.27): Post-processed fields.

4.2.27 List_stat_post

Description: Post-processing for statistics

See also: listobj (34.6)

Usage:

{ object1 object2 }

list of stat_post_deriv (4.2.28)

```
4.2.28 Stat_post_deriv
Description: not_set
See also: objet_lecture (35) t_deb (4.2.29) t_fin (4.2.30) moyenne (4.2.31) ecart_type (4.2.32) correla-
tion (4.2.33)
Usage:
stat_post_deriv
4.2.29 T_deb
Description: not_set
See also: stat_post_deriv (4.2.28)
Usage:
t deb val
where
   • val float
4.2.30 T_fin
Description: not_set
See also: stat_post_deriv (4.2.28)
Usage:
t_fin val
where
   • val float
4.2.31 Moyenne
Synonymous: champ_post_statistiques_moyenne
Description: not_set
See also: stat_post_deriv (4.2.28)
Usage:
moyenne field [localisation]
where
   • field str
   • localisation str into ['elem', 'som', 'faces']: Localisation of post-processed field value
```

4.2.32 Ecart_type

Synonymous: **champ_post_statistiques_ecart_type**

Description: not_set

See also: stat_post_deriv (4.2.28)

Usage:

ecart_type field [localisation]

where

- field str
- localisation str into ['elem', 'som', 'faces']: Localisation of post-processed field value

4.2.33 Correlation

Synonymous: champ_post_statistiques_correlation

Description: not_set

See also: stat_post_deriv (4.2.28)

Usage:

correlation first_field second_field [localisation]

where

- first field str
- second field str
- localisation str into ['elem', 'som', 'faces']: Localisation of post-processed field value

4.2.34 Stats_serie_posts

Description: Post-processing for statistics.

Statistiques_en_serie: This keyword is used to set the statistics. Average on **dt_integr** time interval is post-processed every **dt_integr** seconds

• = 0

dt_integr value : Period of integration and write period.

stat: Set to Moyenne (average) to calculate the average of the field nom_champ (field name) over time or Ecart_type (std_deviation) to calculate the standard deviation (statistic rms) of the field nom_champ (field_name).

nom_champ: name of the field on which statistical analysis will be performed. Possible keywords are Vitesse (velocity), Pression (pressure), Temperature, Concentration,...

localisation: localisation of post-processed field values (elem or som).

Example:

```
Statistiques_en_serie Dt_integr dtst {
Moyenne Pression
```

Will calculate and write every dtst seconds the mean value:

$$(n+1) \text{dt_integr} > t > n * \text{dt_integr}, \overline{P(t)} = \frac{1}{t-n*\text{dt_integr}} \int\limits_{t_n*\text{dt_integr}}^t P(t) \text{dt}$$

See also: objet_lecture (35)

Usage:

mot dt integr stat

where

- mot str into ['dt_integr']: Keyword is used to set the statistics period of integration and write period.
- **dt_integr** *float*: Average on dt_integr time interval is post-processed every dt_integr seconds.
- **stat** *list_stat_post* (4.2.27)

4.3 Post_processings

Synonymous: postraitements

Description: Keyword to use several results files. List of objects of post-processing (with name).

See also: listobj (34.6)

Usage:

{ object1 object2 }

list of un_postraitement (4.3.1)

4.3.1 Un_postraitement

Description: An object of post-processing (with name).

See also: objet lecture (35)

Usage:

nom post

where

- nom str: Name of the post-processing.
- post corps_postraitement (4.2): Definition of the post-processing.

4.4 Liste_post_ok

Description: Keyword to use several results files. List of objects of post-processing (with name)

See also: listobj (34.6)

Usage:

{ object1 object2 }

list of nom_postraitement (4.4.1)

```
4.4.1 Nom_postraitement
Description: not_set
See also: objet lecture (35)
Usage:
nom post
where
   • nom str: Name of the post-processing.
   • post postraitement base (4.4.2): the post
4.4.2 Postraitement base
Description: not_set
See also: objet_lecture (35) post_processing (4.4.3)
Usage:
4.4.3 Post processing
Synonymous: postraitement
Description: An object of post-processing (without name).
See also: postraitement_base (4.4.2) corps_postraitement (4.2)
Usage:
post_processing {
     [fichier str]
     [format str into ['lml', 'lata', 'single_lata', 'lata_v2', 'med', 'med_major']]
     [domaine str]
     [ sous_zone|sous_domaine str]
     [ parallele str into ['simple', 'multiple', 'mpi-io']]
     [ definition champs definition champs]
     [definition_champs_file|definition_champs_fichier]
     [ probes|sondes | sondes]
     [ mobile_probes|sondes_mobiles sondes]
     [ probes_file|sondes_fichier | sondes_fichier]
     [ deprecatedkeepduplicatedprobes int]
     [ fields|champs champs_posts]
     [ statistiques stats_posts]
     [statistiques_en_serie stats_serie_posts]
}
where
```

- fichier str: Name of file.
- format str into ['lml', 'lata', 'single_lata', 'lata_v2', 'med', 'med_major']: This optional parameter specifies the format of the output file. The basename used for the output file is the basename of the data file. For the fmt parameter, choices are lml or lata. A short description of each format can be found below. The default value is lml. single_lata is not compatible with 64 bits integer version.

- **domaine** *str*: This optional parameter specifies the domain on which the data should be interpolated before it is written in the output file. The default is to write the data on the domain of the current problem (no interpolation).
- sous_zonelsous_domaine *str*: This optional parameter specifies the sub_domaine on which the data should be interpolated before it is written in the output file. It is only available for sequential computation.
- parallele *str into ['simple'*, *'multiple'*, *'mpi-io']*: Select simple (single file, sequential write), multiple (several files, parallel write), or mpi-io (single file, parallel write) for LATA format
- **definition_champs** *definition_champs* (4.2.1): Keyword to create new or more complex field for advanced postprocessing.
- **definition_champs_fileIdefinition_champs_fichier** *definition_champs_fichier* (4.2.3): Definition-champs read from file.
- probes|sondes sondes (4.2.4): Probe.
- **mobile_probes|sondes_mobiles** *sondes* (4.2.4): Mobile probes useful for ALE, their positions will be updated in the mesh.
- **probes_filelsondes_fichier** *sondes_fichier* (4.2.22): Probe read in a file.
- **deprecatedkeepduplicatedprobes** *int*: Flag to not remove duplicated probes in .son files (1: keep duplicate probes, 0: remove duplicate probes)
- **fieldslchamps** *champs_posts* (4.2.23): Field's write mode.
- **statistiques** *stats_posts* (4.2.26): Statistics between two points fixed : start of integration time and end of integration time.
- **statistiques_en_serie** *stats_serie_posts* (4.2.34): Statistics between two points not fixed : on period of integration.

4.5 Liste post

```
Description: Keyword to use several results files. List of objects of post-processing (with name)
```

```
See also: listobj (34.6)
Usage:
{ object1 object2 .... }
list of un_postraitement_spec (4.5.1)
4.5.1 Un postraitement spec
Description: An object of post-processing (with type +name).
See also: objet_lecture (35)
Usage:
[type_un_post][type_postraitement_ft_lata]
where
   • type_un_post type_un_post (4.5.2)
   • type_postraitement_ft_lata type_postraitement_ft_lata (4.5.3)
4.5.2 Type_un_post
Description: not_set
See also: objet_lecture (35)
Usage:
```

```
type post
where
   • type str into ['postraitement', 'post_processing']
   • post un_postraitement (4.3.1)
4.5.3 Type_postraitement_ft_lata
Description: not_set
See also: objet_lecture (35)
Usage:
type nom bloc
where
   • type str into ['postraitement_ft_lata', 'postraitement_lata']
   • nom str: Name of the post-processing.
   • bloc str
4.6 Format_file
Description: File formatted.
See also: objet_lecture (35)
Usage:
[format] name_file
where
   • format str into ['binaire', 'formatte', 'xyz', 'single_hdf']: Type of file (the file format).
   • name_file str: Name of file.
4.7 Pb_multiphase
Description: A problem that allows the resolution of N-phases with 3*N equations
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.9) Pb_HEM (4.8)
Usage:
Pb_Multiphase str
Read str {
     [ milieu_composite bloc_lecture]
     [ Milieu_MUSIG bloc_lecture]
     [correlations bloc_lecture]
     \begin{tabular}{ll} QDM\_Multiphase & qdm\_multiphase \end{tabular}
     Masse_Multiphase masse_multiphase
     Energie_Multiphase energie_multiphase
     [ Echelle_temporelle_turbulente | echelle_temporelle_turbulente]
     [ Energie_cinetique_turbulente energie_cinetique_turbulente]
     [Energie cinetique turbulente WIT energie cinetique turbulente wit]
```

[Taux_dissipation_turbulent taux_dissipation_turbulent]

```
[ milieu milieu_base]
  [ constituant constituant]
  [ Post_processing|postraitement corps_postraitement]
  [ Post_processings|postraitements post_processings]
  [ liste_de_postraitements liste_post_ok]
  [ liste_postraitements liste_post]
  [ sauvegarde format_file]
  [ sauvegarde_simple format_file]
  [ reprise format_file]
  [ resume_last_time format_file]
}
where
```

- milieu_composite bloc_lecture (3.54): The composite medium associated with the problem.
- Milieu_MUSIG bloc_lecture (3.54): The composite medium associated with the problem.
- **correlations** *bloc_lecture* (3.54): List of correlations used in specific source terms (i.e. interfacial flux, interfacial friction, ...)
- **QDM_Multiphase** *qdm_multiphase* (5.15): Momentum conservation equation for a multi-phase problem where the unknown is the velocity
- Masse_Multiphase masse_multiphase (5.14): Mass consevation equation for a multi-phase problem where the unknown is the alpha (void fraction)
- **Energie_Multiphase** *energie_multiphase* (5.11): Internal energy conservation equation for a multiphase problem where the unknown is the temperature
- Echelle_temporelle_turbulente echelle_temporelle_turbulente (5.10): Turbulent Dissipation time scale equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- Energie_cinetique_turbulente energie_cinetique_turbulente (5.12): Turbulent kinetic Energy conservation equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- Energie_cinetique_turbulente_WIT energie_cinetique_turbulente_wit (5.13): Bubble Induced Turbulent kinetic Energy equation for a turbulent multi-phase problem (available in TrioCFD)
- Taux_dissipation_turbulent taux_dissipation_turbulent (5.16): Turbulent Dissipation frequency equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (21.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the

name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.

• **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.8 Pb hem

Description: A problem that allows the resolution of 2-phases mechanicaly and thermally coupled with 3 equations

Keyword Discretize should have already been used to read the object. See also: Pb Multiphase (4.7)

```
Usage:
Pb HEM str
Read str {
     [ milieu_composite bloc_lecture]
     [ Milieu MUSIG bloc lecture]
     [correlations bloc_lecture]
     QDM_Multiphase qdm_multiphase
     Masse_Multiphase masse_multiphase
     Energie_Multiphase energie_multiphase
     [ Echelle_temporelle_turbulente echelle_temporelle_turbulente]
     [Energie cinetique turbulente energie cinetique turbulente]
     [Energie cinetique turbulente WIT energie cinetique turbulente wit]
     [ Taux dissipation turbulent taux dissipation turbulent]
     [ milieu milieu_base]
     [constituant constituant]
     [ Post processing|postraitement corps postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [reprise format file]
     [ resume_last_time format_file]
}
where
```

- **milieu_composite** *bloc_lecture* (3.54) for inheritance: The composite medium associated with the problem.
- Milieu_MUSIG bloc_lecture (3.54) for inheritance: The composite medium associated with the problem.
- **correlations** *bloc_lecture* (3.54) for inheritance: List of correlations used in specific source terms (i.e. interfacial flux, interfacial friction, ...)
- **QDM_Multiphase** *qdm_multiphase* (5.15) for inheritance: Momentum conservation equation for a multi-phase problem where the unknown is the velocity
- Masse_Multiphase masse_multiphase (5.14) for inheritance: Mass consevation equation for a multi-phase problem where the unknown is the alpha (void fraction)
- **Energie_Multiphase** *energie_multiphase* (5.11) for inheritance: Internal energy conservation equation for a multi-phase problem where the unknown is the temperature

- Echelle_temporelle_turbulente echelle_temporelle_turbulente (5.10) for inheritance: Turbulent Dissipation time scale equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- Energie_cinetique_turbulente energie_cinetique_turbulente (5.12) for inheritance: Turbulent kinetic Energy conservation equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- Energie_cinetique_turbulente_WIT energie_cinetique_turbulente_wit (5.13) for inheritance: Bubble Induced Turbulent kinetic Energy equation for a turbulent multi-phase problem (available in TrioCFD)
- **Taux_dissipation_turbulent** *taux_dissipation_turbulent* (5.16) for inheritance: Turbulent Dissipation frequency equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (21.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processingslpostraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.9 Pb base

Description: Resolution of equations on a domain. A problem is defined by creating an object and assigning the problem type that the user wishes to resolve. To enter values for the problem objects created, the Lire (Read) interpretor is used with a data block.

Keyword Discretize should have already been used to read the object.

See also: pb_gen_base (4) pb_post (4.23) problem_read_generic (4.40) Pb_Conduction (4.1) Pb_Multiphase (4.7) pb_thermohydraulique_concentration_turbulent (4.29) pb_thermohydraulique_turbulent (4.35) pb_thermohydraulique_turbulent_qc (4.36) pb_hydraulique_turbulent (4.22) pb_hydraulique_concentration_turbulent (4.17) pb_hydraulique_melange_binaire_turbulent_qc (4.21) pb_avec_passif (4.12) pb_thermohydraulique_QC (4.25) pb_hydraulique_melange_binaire_QC (4.19) pb_thermohydraulique_WC (4.26) pb_hydraulique_melange_binaire_WC (4.20) pb_thermohydraulique (4.24) pb_hydraulique_concentration (4.15) pb_thermohydraulique-concentration (4.27) pb_hydraulique (4.14)

```
Usage:

Pb_base str

Read str {

[ milieu milieu_base]
      [ constituant constituant]
      [ Post_processing|postraitement corps_postraitement]
      [ Post_processings|postraitements post_processings]
      [ liste_de_postraitements liste_post_ok]
      [ liste_postraitements liste_post]
      [ sauvegarde format_file]
      [ sauvegarde_simple format_file]
      [ reprise format_file]
      [ resume_last_time format_file]
}
where
```

- milieu milieu_base (21): The medium associated with the problem.
- constituent constituent (21.1): Constituent.
- Post processing postraitement corps postraitement (4.2): One post-processing (without name).
- Post_processings|postraitements post_processings (4.3): List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4): This
- **liste_postraitements** *liste_post* (4.5): This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6): Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6): The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6): Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6): Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.10 Probleme_couple

Description: This instruction causes a probleme_couple type object to be created. This type of object has an associated problem list, that is, the coupling of n problems among them may be processed. Coupling between these problems is carried out explicitly via conditions at particular contact limits. Each problem may be associated either with the Associate keyword or with the Read/groupes keywords. The difference is that in the first case, the four problems exchange values then calculate their timestep, rather in the second case, the same strategy is used for all the problems listed inside one group, but the second group of problem exchange values with the first group of problems after the first group did its timestep. So, the first case may

```
Probleme_Couple pbc
Read pbc { groupes { { pb1 , pb2 , pb3 , pb4 } } }
There is a physical environment per problem (however, the same physical environment could be common
to several problems).
Each problem is resolved in a domain.
Warning: Presently, coupling requires coincident meshes. In case of non-coincident meshes, boundary
condition 'paroi contact' in VEF returns error message (see paroi contact for correcting procedure).
See also: pb_gen_base (4)
Usage:
probleme_couple str
Read str {
     [ groupes list_list_nom]
}
where
   • groupes list_list_nom (4.11): { groupes { { pb1 , pb2 } , { pb3 , pb4 } } }
4.11 List_list_nom
Description: pour les groupes
See also: listobj (34.6)
Usage:
{ object1, object2.... }
list of list_un_pb (34.1) separeted with,
4.12 Pb_avec_passif
Description: Class to create a classical problem with a scalar transport equation (e.g. temperature or con-
centration) and an additional set of passive scalars (e.g. temperature or concentration) equations.
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.9) pb_thermohydraulique_turbulent_scalaires_passifs (4.37) pb_thermohydraulique-
_especes_turbulent_qc (4.33) pb_hydraulique_concentration_turbulent_scalaires_passifs (4.18) pb_thermohydraulique-
_concentration_turbulent_scalaires_passifs (4.30) pb_thermohydraulique_especes_QC (4.31) pb_thermohydraulique-
_especes_WC (4.32) pb_thermohydraulique_concentration_scalaires_passifs (4.28) pb_thermohydraulique-
scalaires passifs (4.34) pb hydraulique concentration scalaires passifs (4.16)
pb_avec_passif str
Read str {
     equations_scalaires_passifs listeqn
     [ milieu milieu base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [liste de postraitements liste post ok]
```

then also be written like this:

[liste_postraitements liste_post]

```
[ sauvegarde format_file]
[ sauvegarde_simple format_file]
[ reprise format_file]
[ resume_last_time format_file]
}
where
```

- equations_scalaires_passifs listeqn (4.13): Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (21.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.13 Listeqn

Description: List of equations.

See also: listobj (34.6)

Usage:
{ object1 object2 }
list of eqn_base (5.30)

4.14 Pb_hydraulique

where

Description: Resolution of the Navier-Stokes equations.

```
Keyword Discretize should have already been used to read the object.
See also: Pb base (4.9)
Usage:
pb hydraulique str
Read str {
     fluide incompressible fluide incompressible
     navier_stokes_standard navier_stokes_standard
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [liste de postraitements liste post ok]
     [liste postraitements liste post]
     [ sauvegarde format_file]
     [sauvegarde simple format file]
     [ reprise format_file]
     [resume last time format file]
}
```

- **fluide_incompressible** *fluide_incompressible* (21.4): The fluid medium associated with the problem
- navier_stokes_standard navier_stokes_standard (5.36): Navier-Stokes equations.
- milieu milieu base (21) for inheritance: The medium associated with the problem.
- constituant constituant (21.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste de postraitements liste post ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.

• **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.15 Pb_hydraulique_concentration

Description: Resolution of Navier-Stokes/multiple constituent transport equations.

```
Keyword Discretize should have already been used to read the object.
See also: Pb base (4.9)
Usage:
pb_hydraulique_concentration str
Read str {
     fluide_incompressible fluide_incompressible
     [constituant constituant]
      [ navier_stokes_standard navier_stokes_standard]
     [convection_diffusion_concentration convection_diffusion_concentration]
      [ milieu milieu base]
      [ Post_processing|postraitement corps_postraitement]
      [ Post processings|postraitements post_processings]
      [ liste_de_postraitements liste_post_ok]
      [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [sauvegarde simple format file]
     [reprise format file]
     [ resume_last_time format_file]
}
```

- **fluide_incompressible** *fluide_incompressible* (21.4): The fluid medium associated with the problem
- **constituant** *constituant* (21.1): Constituents.

where

- navier_stokes_standard navier_stokes_standard (5.36): Navier-Stokes equations.
- **convection_diffusion_concentration** *convection_diffusion_concentration* (5.20): Constituent transport vectorial equation (concentration diffusion convection).
- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- sauvegarde format_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.

- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.16 Pb_hydraulique_concentration_scalaires_passifs

Description: Resolution of Navier-Stokes/multiple constituent transport equations with the additional passive scalar equations.

Keyword Discretize should have already been used to read the object. See also: pb_avec_passif (4.12) Usage: pb_hydraulique_concentration_scalaires_passifs str Read str { fluide incompressible fluide incompressible [constituant constituant] [navier stokes standard navier stokes standard] [convection_diffusion_concentration convection_diffusion_concentration] equations_scalaires_passifs listeqn [milieu milieu base] [**Post_processing|postraitement** corps_postraitement] [Post_processings|postraitements post_processings] [liste_de_postraitements liste_post_ok] [liste_postraitements liste_post] [sauvegarde format_file] [sauvegarde simple format file] [reprise format_file] [resume_last_time format_file] }

- **fluide_incompressible** *fluide_incompressible* (21.4): The fluid medium associated with the problem.
- **constituant** *constituant* (21.1): Constituents.

where

- navier_stokes_standard navier_stokes_standard (5.36): Navier-Stokes equations.
- **convection_diffusion_concentration** *convection_diffusion_concentration* (5.20): Constituent transport equations (concentration diffusion convection).
- equations_scalaires_passifs listeqn (4.13) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.

- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- **Post_processinglyostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.17 Pb hydraulique concentration turbulent

Description: Resolution of Navier-Stokes/multiple constituent transport equations, with turbulence modelling.

```
Keyword Discretize should have already been used to read the object.
See also: Pb base (4.9)
Usage:
pb_hydraulique_concentration_turbulent str
Read str {
     fluide_incompressible fluide_incompressible
     [constituant constituant]
      [ navier stokes turbulent navier stokes turbulent]
     [convection diffusion concentration turbulent] convection diffusion concentration turbulent]
     [ milieu milieu base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [liste de postraitements liste post ok]
     [ liste_postraitements liste_post]
      [ sauvegarde format_file]
      [ sauvegarde_simple format_file]
     [ reprise format_file]
     [ resume_last_time format_file]
```

```
}
where
```

- **fluide_incompressible** *fluide_incompressible* (21.4): The fluid medium associated with the problem.
- **constituant** *constituant* (21.1): Constituents.
- navier_stokes_turbulent navier_stokes_turbulent (5.37): Navier-Stokes equations as well as the associated turbulence model equations.
- convection_diffusion_concentration_turbulent convection_diffusion_concentration_turbulent (5.21): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.
- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** corps_postraitement (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.18 Pb_hydraulique_concentration_turbulent_scalaires passifs

Description: Resolution of Navier-Stokes/multiple constituent transport equations, with turbulence modelling and with the additional passive scalar equations.

```
Keyword Discretize should have already been used to read the object.

See also: pb_avec_passif (4.12)

Usage:
pb_hydraulique_concentration_turbulent_scalaires_passifs str

Read str {

fluide_incompressible fluide_incompressible
[ constituant constituant]
[ navier stokes turbulent navier stokes turbulent]
```

```
[ convection_diffusion_concentration_turbulent convection_diffusion_concentration_turbulent]
    equations_scalaires_passifs listeqn
[ milieu milieu_base]
[ Post_processing|postraitement corps_postraitement]
[ Post_processings|postraitements post_processings]
[ liste_de_postraitements liste_post_ok]
[ liste_postraitements liste_post]
[ sauvegarde format_file]
[ sauvegarde_simple format_file]
[ reprise format_file]
[ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (21.4): The fluid medium associated with the problem.
- **constituant** *constituant* (21.1): Constituents.
- navier_stokes_turbulent navier_stokes_turbulent (5.37): Navier-Stokes equations as well as the associated turbulence model equations.
- convection_diffusion_concentration_turbulent convection_diffusion_concentration_turbulent (5.21): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.
- equations_scalaires_passifs listeqn (4.13) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.19 Pb_hydraulique_melange_binaire_qc

Description: Resolution of a binary mixture problem for a quasi-compressible fluid with an iso-thermal condition.

Keywords for the unknowns other than pressure, velocity, fraction_massique are:

masse_volumique : density pression : reduced pressure pression_tot : total pressure.

pb_hydraulique_melange_binaire_QC str

[reprise format_file]

Keyword Discretize should have already been used to read the object.

See also: Pb base (4.9)

Usage:

```
Read str {

fluide_quasi_compressible fluide_quasi_compressible

[constituant constituant]

navier_stokes_QC navier_stokes_qc

convection_diffusion_espece_binaire_QC convection_diffusion_espece_binaire_qc
```

[milieu milieu_base]
[Post_processing|postraitement corps_postraitement]
[Post_processings|postraitements post_processings]
[liste_de_postraitements liste_post_ok]
[liste_postraitements liste_post]
[sauvegarde format_file]
[sauvegarde_simple format_file]

[resume_last_time format_file]
}
where

- **fluide_quasi_compressible** *fluide_quasi_compressible* (21.6): The fluid medium associated with the problem.
- constituant constituant (21.1): The various constituants associated to the problem.
- navier stokes QC navier stokes qc (5.31): Navier-Stokes equation for a quasi-compressible fluid.
- **convection_diffusion_espece_binaire_QC** *convection_diffusion_espece_binaire_qc* (5.22): Species conservation equation for a binary quasi-compressible fluid.
- milieu milieu base (21) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.

- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format file (4.6) for inheritance: Keyword to resume a calculation based on the name file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema temps base) time fields are taken from the name file file. If there is no backup corresponding to this time in the name file, TRUST exits in
- resume_last_time format_file (4.6) for inheritance: Keyword to resume a calculation based on the name file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

Pb_hydraulique_melange_binaire_wc

Description: Resolution of a binary mixture problem for a weakly-compressible fluid with an iso-thermal condition.

```
Keywords for the unknowns other than pressure, velocity, fraction massique are:
masse volumique: density
pression: reduced pressure
pression_tot : total pressure
```

pression_hydro: hydro-static pressure pression_eos: pressure used in state equation.

pb hydraulique melange binaire WC str

Keyword Discretize should have already been used to read the object.

```
See also: Pb_base (4.9)
```

```
Usage:
```

}

```
Read str {
     fluide_weakly_compressible fluide_weakly_compressible
     navier_stokes_WC navier_stokes_wc
     convection_diffusion_espece_binaire_WC convection_diffusion_espece_binaire_wc
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [liste de postraitements liste post ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [reprise format file]
     [ resume_last_time format_file]
where
```

- fluide weakly compressible fluide weakly compressible (21.12): The fluid medium associated with the problem.
- navier_stokes_WC navier_stokes_wc (5.35): Navier-Stokes equation for a weakly-compressible
- convection_diffusion_espece_binaire_WC convection_diffusion_espece_binaire_wc (5.23): Species conservation equation for a binary weakly-compressible fluid.

- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- constituant constituant (21.1) for inheritance: Constituent.
- **Post_processing|postraitement** corps_postraitement (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.21 Pb_hydraulique_melange_binaire_turbulent_qc

[sauvegarde_simple format_file]

Description: Resolution of a turbulent binary mixture problem for a quasi-compressible fluid with an isothermal condition.

```
Keyword Discretize should have already been used to read the object.

See also: Pb_base (4.9)

Usage:

pb_hydraulique_melange_binaire_turbulent_qc str

Read str {

fluide_quasi_compressible fluide_quasi_compressible
    navier_stokes_turbulent_qc navier_stokes_turbulent_qc
    Convection_Diffusion_Espece_Binaire_Turbulent_QC convection_diffusion_espece_binaire_turbulent_qc
    [ milieu milieu_base]
    [ constituant constituant]
    [ Post_processing|postraitement corps_postraitement]
    [ Post_processings|postraitements post_processings]
    [ liste_de_postraitements liste_post_ok]
    [ liste_postraitements liste_post]
    [ sauvegarde format_file]
```

```
[ reprise format_file]
  [ resume_last_time format_file]
}
where
```

- fluide_quasi_compressible fluide_quasi_compressible (21.6): The fluid medium associated with the problem.
- navier_stokes_turbulent_qc navier_stokes_turbulent_qc (5.39): Navier-Stokes equation for a quasi-compressible fluid as well as the associated turbulence model equations.
- Convection_Diffusion_Espece_Binaire_Turbulent_QC convection_diffusion_espece_binaire_turbulent_qc (5.9): Species conservation equation for a quasi-compressible fluid as well as the associated turbulence model equations.
- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (21.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.22 Pb_hydraulique_turbulent

Description: Resolution of Navier-Stokes equations with turbulence modelling.

Keyword Discretize should have already been used to read the object. See also: Pb base (4.9)

Usage:

```
pb_hydraulique_turbulent str
Read str {
```

fluide_incompressible *fluide_incompressible*

```
navier_stokes_turbulent navier_stokes_turbulent
[milieu milieu_base]
[constituant constituant]
[Post_processinglpostraitement corps_postraitement]
[Post_processingslpostraitements post_processings]
[liste_de_postraitements liste_post_ok]
[liste_postraitements liste_post]
[sauvegarde format_file]
[sauvegarde_simple format_file]
[reprise format_file]
[resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (21.4): The fluid medium associated with the problem.
- navier_stokes_turbulent navier_stokes_turbulent (5.37): Navier-Stokes equations as well as the associated turbulence model equations.
- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (21.1) for inheritance: Constituent.
- **Post_processinglpostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste de postraitements liste post ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.23 **Pb_post**

Description: not_set

Keyword Discretize should have already been used to read the object.

See also: Pb_base (4.9)

```
Usage:

pb_post str

Read str {

[ milieu milieu_base]
      [ constituant constituant]
      [ Post_processing|postraitement corps_postraitement]
      [ Post_processings|postraitements post_processings]
      [ liste_de_postraitements liste_post_ok]
      [ liste_postraitements liste_post]
      [ sauvegarde format_file]
      [ sauvegarde_simple format_file]
      [ reprise format_file]
      [ resume_last_time format_file]
}
where
```

- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- constituant constituant (21.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.24 Pb_thermohydraulique

Description: Resolution of thermohydraulic problem.

Keyword Discretize should have already been used to read the object.

```
See also: Pb_base (4.9)
Usage:
pb_thermohydraulique str
Read str {
     [fluide incompressible fluide incompressible]
     [fluide ostwald]
     [ fluide_sodium_liquide | fluide_sodium_liquide]
     [ fluide sodium gaz fluide sodium gaz]
     [ navier_stokes_standard navier_stokes_standard]
     [convection_diffusion_temperature convection_diffusion_temperature]
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [ liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (21.4): The fluid medium associated with the problem (only one possibility).
- **fluide_ostwald** *fluide_ostwald* (21.5): The fluid medium associated with the problem (only one possibility).
- **fluide_sodium_liquide** *fluide_sodium_liquide* (21.10): The fluid medium associated with the problem (only one possibility).
- **fluide_sodium_gaz** *fluide_sodium_gaz* (21.9): The fluid medium associated with the problem (only one possibility).
- navier_stokes_standard navier_stokes_standard (5.36): Navier-Stokes equations.
- **convection_diffusion_temperature** *convection_diffusion_temperature* (5.27): Energy equation (temperature diffusion convection).
- milieu milieu base (21) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (21.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- sauvegarde format_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.

- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.25 Pb_thermohydraulique_qc

```
Description: Resolution of thermo-hydraulic problem for a quasi-compressible fluid.
Keywords for the unknowns other than pressure, velocity, temperature are:
masse volumique: density
enthalpie: enthalpy
pression: reduced pressure
pression tot: total pressure.
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.9)
Usage:
pb_thermohydraulique_QC str
Read str {
     fluide_quasi_compressible fluide_quasi_compressible
     navier_stokes_QC navier_stokes_qc
     convection_diffusion_chaleur_QC convection_diffusion_chaleur_qc
     [ milieu milieu base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
      [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
      [reprise format_file]
     [ resume_last_time format_file]
}
where
```

- fluide_quasi_compressible fluide_quasi_compressible (21.6): The fluid medium associated with the problem.
- navier_stokes_QC navier_stokes_qc (5.31): Navier-Stokes equation for a quasi-compressible fluid.
- **convection_diffusion_chaleur_QC** *convection_diffusion_chaleur_qc* (5.17): Temperature equation for a quasi-compressible fluid.
- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- constituant constituant (21.1) for inheritance: Constituent.
- **Post_processinglpostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).

- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.26 Pb_thermohydraulique_wc

```
Description: Resolution of thermo-hydraulic problem for a weakly-compressible fluid.
Keywords for the unknowns other than pressure, velocity, temperature are:
masse_volumique : density
pression: reduced pressure
pression_tot: total pressure
pression hydro: hydro-static pressure
pression eos: pressure used in state equation.
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.9)
Usage:
pb_thermohydraulique_WC str
Read str {
     fluide weakly compressible fluide weakly compressible
     navier stokes WC navier stokes wc
     convection diffusion chaleur WC convection diffusion chaleur wc
     [ milieu milieu base]
     [constituant constituant]
     [ Post processing|postraitement corps postraitement]
     [ Post_processings|postraitements post_processings]
      [ liste_de_postraitements liste_post_ok]
     [ liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
```

```
[ reprise format_file]
[ resume_last_time format_file]
}
where
```

- **fluide_weakly_compressible** *fluide_weakly_compressible* (21.12): The fluid medium associated with the problem.
- navier_stokes_WC navier_stokes_wc (5.35): Navier-Stokes equation for a weakly-compressible fluid.
- **convection_diffusion_chaleur_WC** *convection_diffusion_chaleur_wc* (5.18): Temperature equation for a weakly-compressible fluid.
- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (21.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.27 Pb_thermohydraulique_concentration

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations.

Keyword Discretize should have already been used to read the object. See also: Pb_base (4.9)

Usage:

pb_thermohydraulique_concentration str

Read str {

```
[ navier_stokes_standard navier_stokes_standard]
[ convection_diffusion_concentration convection_diffusion_concentration]
[ convection_diffusion_temperature convection_diffusion_temperature]
[ milieu milieu_base]
[ Post_processing|postraitement corps_postraitement]
[ Post_processings|postraitements post_processings]
[ liste_de_postraitements liste_post_ok]
[ liste_postraitements liste_post]
[ sauvegarde format_file]
[ sauvegarde_simple format_file]
[ reprise format_file]
[ resume_last_time format_file]
]

where
```

- **fluide_incompressible** *fluide_incompressible* (21.4): The fluid medium associated with the problem.
- **constituant** *constituant* (21.1): Constituents.
- navier_stokes_standard navier_stokes_standard (5.36): Navier-Stokes equations.
- **convection_diffusion_concentration** *convection_diffusion_concentration* (5.20): Constituent transport equations (concentration diffusion convection).
- **convection_diffusion_temperature** *convection_diffusion_temperature* (5.27): Energy equation (temperature diffusion convection).
- milieu milieu base (21) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.28 Pb_thermohydraulique_concentration_scalaires_passifs

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations, with the additional passive scalar equations.

Keyword Discretize should have already been used to read the object. See also: pb avec passif (4.12) pb thermohydraulique concentration scalaires passifs str Read str { **fluide_incompressible** *fluide_incompressible* [constituant constituant] [navier_stokes_standard navier_stokes_standard] [convection_diffusion_concentration convection_diffusion_concentration] [convection_diffusion_temperature | convection_diffusion_temperature] equations scalaires passifs listegn [milieu milieu base] [Post_processing|postraitement corps_postraitement] [Post processings|postraitements post processings] [liste_de_postraitements liste_post_ok] [liste postraitements liste post] [sauvegarde format file] [sauvegarde_simple format_file] [reprise format_file] [resume_last_time format_file] where

- **fluide_incompressible** *fluide_incompressible* (21.4): The fluid medium associated with the problem.
- **constituant** *constituant* (21.1): Constituents.
- navier_stokes_standard navier_stokes_standard (5.36): Navier-Stokes equations.
- **convection_diffusion_concentration** *convection_diffusion_concentration* (5.20): Constituent transport equations (concentration diffusion convection).
- **convection_diffusion_temperature** *convection_diffusion_temperature* (5.27): Energy equations (temperature diffusion convection).
- equations_scalaires_passifs listeqn (4.13) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.

- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.29 Pb_thermohydraulique_concentration_turbulent

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations, with turbulence modelling.

```
Keyword Discretize should have already been used to read the object.
See also: Pb base (4.9)
pb_thermohydraulique_concentration_turbulent str
Read str {
     fluide_incompressible fluide_incompressible
     [constituant constituant]
     [ navier stokes turbulent navier stokes turbulent]
     [convection_diffusion_concentration_turbulent] convection_diffusion_concentration_turbulent]
     [convection_diffusion_temperature_turbulent convection_diffusion_temperature_turbulent]
     [ milieu milieu_base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [ liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
     [ resume last time format file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (21.4): The fluid medium associated with the problem.
- **constituant** *constituant* (21.1): Constituents.
- navier_stokes_turbulent navier_stokes_turbulent (5.37): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection_diffusion_concentration_turbulent** *convection_diffusion_concentration_turbulent* (5.21): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.

- **convection_diffusion_temperature_turbulent** *convection_diffusion_temperature_turbulent* (5.29): Energy equation (temperature diffusion convection) as well as the associated turbulence model equations
- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste de postraitements liste post ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.30 Pb_thermohydraulique_concentration_turbulent_scalaires_passifs

Keyword Discretize should have already been used to read the object.

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations, with turbulence modelling and with the additional passive scalar equations.

Usage:

pb_thermohydraulique_concentration_turbulent_scalaires_passifs str

Read str {

fluide_incompressible fluide_incompressible

[constituant constituant]

[navier_stokes_turbulent navier_stokes_turbulent]

[convection_diffusion_concentration_turbulent convection_diffusion_concentration_turbulent]

[convection_diffusion_temperature_turbulent convection_diffusion_temperature_turbulent]

equations_scalaires_passifs listeqn

[milieu milieu_base]

[Post_processing|postraitement corps_postraitement]

[Post_processings|postraitements post_processings]

[liste_de_postraitements liste_post_ok]

```
[ liste_postraitements liste_post]
[ sauvegarde format_file]
[ sauvegarde_simple format_file]
[ reprise format_file]
[ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (21.4): The fluid medium associated with the problem.
- **constituant** *constituant* (21.1): Constituents.
- navier_stokes_turbulent navier_stokes_turbulent (5.37): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection_diffusion_concentration_turbulent** *convection_diffusion_concentration_turbulent* (5.21): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.
- **convection_diffusion_temperature_turbulent** *convection_diffusion_temperature_turbulent* (5.29): Energy equations (temperature diffusion convection) as well as the associated turbulence model equations.
- equations_scalaires_passifs listeqn (4.13) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu base (21) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.31 Pb_thermohydraulique_especes_qc

where

Description: Resolution of thermo-hydraulic problem for a multi-species quasi-compressible fluid.

Keyword Discretize should have already been used to read the object. See also: pb_avec_passif (4.12) Usage: pb thermohydraulique especes QC str Read str { fluide_quasi_compressible fluide_quasi_compressible navier_stokes_QC navier_stokes_qc **convection_diffusion_chaleur_QC** convection_diffusion_chaleur_qc equations_scalaires_passifs listeqn [milieu milieu_base] [constituant constituant] [Post_processing|postraitement corps_postraitement] [Post_processings|postraitements post_processings] [liste_de_postraitements liste_post_ok] [liste postraitements liste_post] [sauvegarde format_file] [sauvegarde_simple format_file] [reprise format_file] [resume_last_time format_file] }

- **fluide_quasi_compressible** *fluide_quasi_compressible* (21.6): The fluid medium associated with the problem.
- navier_stokes_QC navier_stokes_qc (5.31): Navier-Stokes equation for a quasi-compressible fluid.
- **convection_diffusion_chaleur_QC** *convection_diffusion_chaleur_qc* (5.17): Temperature equation for a quasi-compressible fluid.
- equations_scalaires_passifs listeqn (4.13) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu base (21) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (21.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.

- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.32 Pb_thermohydraulique_especes_wc

Description: Resolution of thermo-hydraulic problem for a multi-species weakly-compressible fluid.

Keyword Discretize should have already been used to read the object. See also: pb avec passif (4.12)

```
Usage:
pb_thermohydraulique_especes_WC str
Read str {
     fluide_weakly_compressible fluide_weakly_compressible
     navier stokes WC navier stokes wc
     convection diffusion chaleur WC convection diffusion chaleur wc
     equations scalaires passifs listegn
     [ milieu milieu base]
     [constituant constituant]
     [ Post processing|postraitement corps postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [reprise format file]
     [ resume_last_time format_file]
}
where
```

- **fluide_weakly_compressible** *fluide_weakly_compressible* (21.12): The fluid medium associated with the problem.
- navier_stokes_WC navier_stokes_wc (5.35): Navier-Stokes equation for a weakly-compressible fluid.
- **convection_diffusion_chaleur_WC** *convection_diffusion_chaleur_wc* (5.18): Temperature equation for a weakly-compressible fluid.
- equations_scalaires_passifs listeqn (4.13) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (21) for inheritance: The medium associated with the problem.

- **constituant** *constituant* (21.1) for inheritance: Constituent.
- **Post_processinglyostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.33 Pb thermohydraulique especes turbulent qc

Description: Resolution of turbulent thermohydraulic problem under low Mach number with passive scalar equations.

```
Keyword Discretize should have already been used to read the object.
See also: pb_avec_passif (4.12)
Usage:
pb_thermohydraulique_especes_turbulent_qc str
Read str {
     fluide_quasi_compressible fluide_quasi_compressible
     navier_stokes_turbulent_qc navier_stokes_turbulent_qc
     convection diffusion chaleur turbulent qc convection diffusion chaleur turbulent qc
     equations scalaires passifs listegn
     [ milieu milieu base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [ liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
```

```
[ resume_last_time format_file]
}
where
```

- **fluide_quasi_compressible** *fluide_quasi_compressible* (21.6): The fluid medium associated with the problem.
- navier_stokes_turbulent_qc navier_stokes_turbulent_qc (5.39): Navier-Stokes equations under low Mach number as well as the associated turbulence model equations.
- **convection_diffusion_chaleur_turbulent_qc** convection_diffusion_chaleur_turbulent_qc (5.19): Energy equation under low Mach number as well as the associated turbulence model equations.
- equations_scalaires_passifs listeqn (4.13) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (21.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.34 Pb_thermohydraulique_scalaires_passifs

Description: Resolution of thermohydraulic problem, with the additional passive scalar equations.

Keyword Discretize should have already been used to read the object. See also: pb_avec_passif (4.12)

Usage:

```
pb_thermohydraulique_scalaires_passifs str
Read str {
     fluide incompressible fluide incompressible
     [constituant constituant]
     [ navier stokes standard navier stokes standard]
     [convection diffusion temperature convection diffusion temperature]
     equations_scalaires_passifs listeqn
     [ milieu milieu_base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [liste de postraitements liste post ok]
     [ liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (21.4): The fluid medium associated with the problem.
- **constituant** *constituant* (21.1): Constituents.
- navier_stokes_standard navier_stokes_standard (5.36): Navier-Stokes equations.
- **convection_diffusion_temperature** *convection_diffusion_temperature* (5.27): Energy equations (temperature diffusion convection).
- equations_scalaires_passifs listeqn (4.13) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- Post_processings|postraitements post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema temps base) time fields are taken from the

name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.

• **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.35 Pb_thermohydraulique_turbulent

Description: Resolution of thermohydraulic problem, with turbulence modelling.

```
Keyword Discretize should have already been used to read the object. See also: Pb_base (4.9)
```

```
Usage:
pb_thermohydraulique_turbulent str
Read str {
     fluide_incompressible fluide_incompressible
     navier_stokes_turbulent navier_stokes_turbulent
     convection diffusion temperature turbulent convection diffusion temperature turbulent
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste postraitements liste post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (21.4): The fluid medium associated with the problem.
- navier_stokes_turbulent navier_stokes_turbulent (5.37): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection_diffusion_temperature_turbulent** *convection_diffusion_temperature_turbulent* (5.29): Energy equation (temperature diffusion convection) as well as the associated turbulence model equations.
- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- constituant constituant (21.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.

- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.36 Pb_thermohydraulique_turbulent_qc

```
Description: Resolution of turbulent thermohydraulic problem under low Mach number. Warning: Available for VDF and VEF P0/P1NC discretization only.
```

Keyword Discretize should have already been used to read the object.

```
See also: Pb_base (4.9)
```

```
Usage:
```

```
 \begin{array}{ll} \textbf{pb\_thermohydraulique\_turbulent\_qc} & \textit{str} \\ \textbf{Read} & \textit{str} \end{array} \{
```

- **fluide_quasi_compressible** *fluide_quasi_compressible* (21.6): The fluid medium associated with the problem.
- navier_stokes_turbulent_qc navier_stokes_turbulent_qc (5.39): Navier-Stokes equations under low Mach number as well as the associated turbulence model equations.
- **convection_diffusion_chaleur_turbulent_qc** convection_diffusion_chaleur_turbulent_qc (5.19): Energy equation under low Mach number as well as the associated turbulence model equations.
- milieu milieu_base (21) for inheritance: The medium associated with the problem.

- **constituant** *constituant* (21.1) for inheritance: Constituent.
- **Post_processinglyostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.37 Pb thermohydraulique turbulent scalaires passifs

Description: Resolution of thermohydraulic problem, with turbulence modelling and with the additional passive scalar equations.

```
Keyword Discretize should have already been used to read the object.
See also: pb_avec_passif (4.12)
Usage:
pb_thermohydraulique_turbulent_scalaires_passifs str
Read str {
      fluide_incompressible fluide_incompressible
      [constituant constituant]
      [ navier stokes turbulent navier stokes turbulent]
      [\ \textbf{convection\_diffusion\_temperature\_turbulent} \ \ \textit{convection\_diffusion\_temperature\_turbulent}]
      equations scalaires passifs listegn
      [ milieu milieu base]
      [ Post_processing|postraitement corps_postraitement]
      [ Post processings|postraitements post processings]
      [ liste_de_postraitements liste_post_ok]
      [ liste_postraitements liste_post]
      [ sauvegarde format_file]
      [ sauvegarde_simple format_file]
      [ reprise format_file]
```

```
[ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (21.4): The fluid medium associated with the problem.
- **constituant** *constituant* (21.1): Constituents.
- navier_stokes_turbulent navier_stokes_turbulent (5.37): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection_diffusion_temperature_turbulent** *convection_diffusion_temperature_turbulent* (5.29): Energy equations (temperature diffusion convection) as well as the associated turbulence model equations.
- equations_scalaires_passifs listeqn (4.13) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.38 Pbc_med

Description: Allows to read med files and post-process them.

```
See also: pb_gen_base (4)
Usage:
pbc med list info med
```

```
where
```

• list_info_med list_info_med (4.39)

4.39 List_info_med

```
Description: not_set

See also: listobj (34.6)

Usage:
{ object1 , object2 .... }
list of info_med (4.39.1) separeted with ,

4.39.1 Info_med

Description: not_set

See also: objet_lecture (35)

Usage:
file_med domaine pb_post
where

• file_med str: Name of the MED file.
• domaine str: Name of domain.
• pb_post pb_post (4.23)
```

4.40 Problem read generic

See also: Pb_base (4.9)

where

Description: The probleme_read_generic differs rom the rest of the TRUST code: The problem does not state the number of equations that are enclosed in the problem. As the list of equations to be solved in the generic read problem is declared in the data file and not pre-defined in the structure of the problem, each equation has to be distinctively associated with the problem with the Associate keyword.

Keyword Discretize should have already been used to read the object.

```
Usage:
problem_read_generic str
Read str {

[milieu milieu_base]
[constituant constituant]
[Post_processing|postraitement corps_postraitement]
[Post_processings|postraitements post_processings]
[liste_de_postraitements liste_post_ok]
[liste_postraitements liste_post]
[sauvegarde format_file]
[sauvegarde_simple format_file]
[reprise format_file]
[resume_last_time format_file]
}
```

- milieu milieu_base (21) for inheritance: The medium associated with the problem.
- constituant constituant (21.1) for inheritance: Constituent.
- Post_processing|postraitement corps_postraitement (4.2) for inheritance: One post-processing (without name).
- Post processings|postraitements post processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- liste postraitements liste post (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- sauvegarde format_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format file). If format reprise is xyz, the name file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name file file. If there is no backup corresponding to this time in the name file, TRUST exits in error.
- resume last time format file (4.6) for inheritance: Keyword to resume a calculation based on the name file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

5 mor_eqn

```
Description: Class of equation pieces (morceaux d'equation).
See also: objet u (36) eqn base (5.30)
Usage:
5.1
      Conduction
```

```
Description: Heat equation.
Keyword Discretize should have already been used to read the object.
See also: eqn base (5.30)
Usage:
Conduction str
Read str {
     [ disable_equation_residual str]
     [convection bloc convection]
     [ diffusion bloc diffusion]
     [boundary conditions|conditions limites condlims]
```

[initial conditions|conditions initiales condinits]

```
[sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire fichier xyz valeur ecrire fichier xyz valeur param]
     [ parametre_equation parametre_equation_base]
     [ equation non resolue str]
where
```

- disable_equation_residual str for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial conditions conditions initiales condinits (5.5) for inheritance: Initial conditions.
- sources sources (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire fichier xyz valeur ecrire fichier xyz valeur param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
x_n y_n [z_n] val_n
```

The created files are named: pbname fieldname [boundaryname] time.dat

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue str for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier Sokes Standard
{ equation_non_resolue (t>t0)*(t<t1) }
```

5.2 Bloc_convection

```
Description: not_set
See also: objet lecture (35)
Usage:
aco operateur acof
where
```

- aco str into ['{'}]: Opening curly bracket.
- operateur convection deriv (5.2.1)
- **acof** *str into* ['}']: Closing curly bracket.

5.2.1 Convection_deriv

Description: not_set

See also: objet_lecture (35) amont (5.2.2) amont_old (5.2.3) centre (5.2.4) centre4 (5.2.5) centre_old (5.2.6) di_12 (5.2.7) ef (5.2.8) muscl3 (5.2.10) ef_stab (5.2.11) generic (5.2.14) kquick (5.2.15) muscl (5.2.16) muscl_old (5.2.17) muscl_new (5.2.18) negligeable (5.2.19) quick (5.2.20) ale (5.2.21) btd (5.2.22) supg (5.2.23)

Usage:

convection_deriv

5.2.2 Amont

Description: Keyword for upwind scheme for VDF or VEF discretizations. In VEF discretization equivalent to generic amont for TRUST version 1.5 or later. The previous upwind scheme can be used with the obsolete in future amont_old keyword.

See also: convection_deriv (5.2.1)

Usage:

amont

5.2.3 Amont_old

Description: Only for VEF discretization, obsolete keyword, see amont.

See also: convection_deriv (5.2.1)

Usage:

amont_old

5.2.4 Centre

Description: For VDF and VEF discretizations.

See also: convection_deriv (5.2.1)

Usage: centre

5.2.5 Centre4

Description: For VDF and VEF discretizations.

See also: convection_deriv (5.2.1)

Usage: centre4

5.2.6 Centre old

Description: Only for VEF discretization.

See also: convection_deriv (5.2.1)

```
Usage:
centre old
5.2.7 Di_l2
Description: Only for VEF discretization.
See also: convection_deriv (5.2.1)
Usage:
di_l2
5.2.8 Ef
Description: For VEF calculations, a centred convective scheme based on Finite Elements formulation can
be called through the following data:
Convection { EF transportant_bar val transporte_bar val antisym val filtrer_resu val }
This scheme is 2nd order accuracy (and get better the property of kinetic energy conservation). Due to
possible problems of instabilities phenomena, this scheme has to be coupled with stabilisation process (see
Source_Qdm_lambdaup). These two last data are equivalent from a theoretical point of view in variationnal
writing to: div(( u. grad ub, vb) - (u. grad vb, ub)), where vb corresponds to the filtered reference test
functions.
Remark:
This class requires to define a filtering operator: see solveur_bar
See also: convection_deriv (5.2.1)
Usage:
ef [ mot1 ] [ bloc_ef ]
where
   • mot1 str into ['defaut_bar']: equivalent to transportant_bar 0 transporte_bar 1 filtrer_resu 1 antisym
   • bloc_ef bloc_ef (5.2.9)
5.2.9 Bloc_ef
Description: not set
See also: objet_lecture (35)
Usage:
mot1 val1 mot2 val2 mot3 val3 mot4 val4
where
   • mot1 str into ['transportant_bar', 'transporte_bar', 'filtrer_resu', 'antisym']
   • val1 int into [0, 1]
   • mot2 str into ['transportant_bar', 'transporte_bar', 'filtrer_resu', 'antisym']
```

• mot3 str into ['transportant_bar', 'transporte_bar', 'filtrer_resu', 'antisym']

• **val2** int into [0, 1]

• val3 int into [0, 1]

```
mot4 str into ['transportant_bar', 'transporte_bar', 'filtrer_resu', 'antisym']
val4 int into [0, 1]
```

5.2.10 Muscl3

Description: Keyword for a scheme using a ponderation between muscl and center schemes in VEF.

```
See also: convection_deriv (5.2.1)

Usage:
muscl3 {
    [alpha float]
}
where
```

• **alpha** *float*: To weight the scheme centering with the factor double (between 0 (full centered) and 1 (muscl), by default 1).

5.2.11 Ef_stab

Description: Keyword for a VEF convective scheme.

```
See also: convection_deriv (5.2.1)

Usage:
ef_stab {

    [alpha float]
    [test int]
    [tdivu]
    [old]
    [volumes_etendus]
    [volumes_non_etendus]
    [amont_sous_zone str]
    [alpha_sous_zone listsous_zone_valeur]
}
where
```

- **alpha** *float*: To weight the scheme centering with the factor double (between 0 (full centered) and 1 (mix between upwind and centered), by default 1). For scalar equation, it is adviced to use alpha=1 and for the momentum equation, alpha=0.2 is adviced.
- test int: Developer option to compare old and new version of EF_stab
- **tdivu**: To have the convective operator calculated as div(TU)-TdivU(=UgradT).
- old: To use old version of EF stab scheme (default no).
- volumes_etendus: Option for the scheme to use the extended volumes (default, yes).
- volumes_non_etendus: Option for the scheme to not use the extended volumes (default, no).
- amont_sous_zone str: Option to degenerate EF_stab scheme into Amont (upwind) scheme in the sub zone of name sz_name. The sub zone may be located arbitrarily in the domain but the more often this option will be activated in a zone where EF_stab scheme generates instabilities as for free outlet for example.
- alpha_sous_zone listsous_zone_valeur (5.2.12): Option to change locally the alpha value on N subzones named sub_zone_name_I. Generally, it is used to prevent from a local divergence by increasing locally the alpha parameter.

5.2.12 Listsous_zone_valeur

```
Description: List of groups of two words.

See also: listobj (34.6)

Usage:
n object1 object2 ....
list of sous_zone_valeur (5.2.13)

5.2.13 Sous_zone_valeur

Description: Two words.
```

See also: objet_lecture (35)

Usage:

sous_zone valeur where

sous_zone str: sous zonevaleur float: value

5.2.14 Generic

Description: Keyword for generic calling of upwind and muscl convective scheme in VEF discretization. For muscl scheme, limiters and order for fluxes calculations have to be specified. The available limiters are: minmod - vanleer -vanalbada - chakravarthy - superbee, and the order of accuracy is 1 or 2. Note that chakravarthy is a non-symmetric limiter and superbee may engender results out of physical limits. By consequence, these two limiters are not recommended.

Examples: convection { generic amont } convection { generic muscl minmod 1 } convection { generic muscl vanleer 2 }

In case of results out of physical limits with muscl scheme (due for instance to strong non-conformal velocity flow field), user can redefine in data file a lower order and a smoother limiter, as : convection $\{$ generic muscl minmod 1 $\}$

See also: convection_deriv (5.2.1)

Usage:

```
generic type [limiteur][ordre][alpha] where
```

- type str into ['amont', 'muscl', 'centre']: type of scheme
- limiteur str into ['minmod', 'vanleer', 'vanalbada', 'chakravarthy', 'superbee']: type of limiter
- ordre int into [1, 2, 3]: order of accuracy
- alpha float: alpha

5.2.15 Kquick

Description: Only for VEF discretization.

See also: convection_deriv (5.2.1)

Usage: **kquick**

5.2.16 Muscl

Description: Keyword for muscl scheme in VEF discretization equivalent to generic muscl vanleer 2 for the 1.5 version or later. The previous muscl scheme can be used with the obsolete in future muscl_old keyword.

See also: convection_deriv (5.2.1)

Usage:

muscl

5.2.17 Muscl_old

Description: Only for VEF discretization.

See also: convection_deriv (5.2.1)

Usage: muscl_old

5.2.18 Muscl_new

Description: Only for VEF discretization.

See also: convection_deriv (5.2.1)

Usage:

muscl_new

5.2.19 Negligeable

Description: For VDF and VEF discretizations. Suppresses the convection operator.

See also: convection_deriv (5.2.1)

Usage:

negligeable

5.2.20 Quick

Description: Only for VDF discretization.

See also: convection_deriv (5.2.1)

Usage:

quick

```
Description: A convective scheme for ALE (Arbitrary Lagrangian-Eulerian) framework.
See also: convection_deriv (5.2.1)
Usage:
ale opconv
where
   • opconv bloc_convection (5.2): Choice between: amont and muscl
     Example: convection { ALE { amont } }
5.2.22 Btd
Description: Only for EF discretization.
See also: convection_deriv (5.2.1)
Usage:
btd {
     btd float
     facteur float
}
where
   • btd float
   • facteur float
5.2.23 Supg
Description: Only for EF discretization.
See also: convection_deriv (5.2.1)
Usage:
supg \ \{
     facteur float
}
where
   • facteur float
5.3 Bloc_diffusion
Description: not_set
See also: objet_lecture (35)
Usage:
aco [ operateur ] [ op_implicite ] acof
```

5.2.21 Ale

where

- aco str into ['{'}]: Opening curly bracket.
- operateur diffusion_deriv (5.3.1): if none is specified, the diffusive scheme used is a 2nd-order scheme.
- **op_implicite** op_implicite (5.3.13): To have diffusive implicitation, it use Uzawa algorithm. Very useful when viscosity has large variations.
- acof str into ['}']: Closing curly bracket.

```
5.3.1 Diffusion_deriv
```

[standard int] [info int]

```
Description: not_set
See also: objet_lecture (35) negligeable (5.3.2) p1b (5.3.3) p1ncp1b (5.3.4) stab (5.3.5) standard (5.3.6)
option (5.3.8) turbulente (5.3.9)
Usage:
diffusion_deriv
5.3.2 Negligeable
Description: the diffusivity will not taken in count
See also: diffusion_deriv (5.3.1)
Usage:
negligeable
5.3.3 P1b
Description: not_set
See also: diffusion_deriv (5.3.1)
Usage:
p1b
5.3.4 P1ncp1b
Description: not_set
See also: diffusion_deriv (5.3.1)
Usage:
5.3.5 Stab
Description: keyword allowing consistent and stable calculations even in case of obtuse angle meshes.
See also: diffusion_deriv (5.3.1)
Usage:
stab {
```

```
[ new_jacobian int]
[ nu int]
[ nut int]
[ nu_transp int]
[ nut_transp int]
}
where
```

- **standard** *int*: to recover the same results as calculations made by standard laminar diffusion operator. However, no stabilization technique is used and calculations may be unstable when working with obtuse angle meshes (by default 0)
- **info** *int*: developer option to get the stabilizing ratio (by default 0)
- **new_jacobian** *int*: when implicit time schemes are used, this option defines a new jacobian that may be more suitable to get stationary solutions (by default 0)
- **nu** *int*: (respectively nut 1) takes the molecular viscosity (resp. eddy viscosity) into account in the velocity gradient part of the diffusion expression (by default nu=1 and nut=1)
- nut int
- nu_transp int: (respectively nut_transp 1) takes the molecular viscosity (resp. eddy viscosity) into account in the transposed velocity gradient part of the diffusion expression (by default nu_transp=0 and nut_transp=1)
- nut_transp int

5.3.6 Standard

Description: A new keyword, intended for LES calculations, has been developed to optimise and parameterise each term of the diffusion operator. Remark:

- 1. This class requires to define a filtering operator : see solveur_bar
- 2. The former (original) version: diffusion { } -which omitted some of the term of the diffusion operatorcan be recovered by using the following parameters in the new class : diffusion { standard grad Ubar 0 nu 1 nut 1 nu transp 0 nut transp 1 filtrer resu 0}.

diffusion { standard grad_Obar o nu 1 nut 1 nu_transp o nut_transp 1 inter_fest o

```
See also: diffusion_deriv (5.3.1)

Usage: standard [ mot1 ] [ bloc_diffusion_standard ] where
```

- mot1 str into ['defaut_bar']: equivalent to grad_Ubar 1 nu 1 nut 1 nu_transp 1 nut_transp 1 filtrer_resu 1
- bloc_diffusion_standard bloc_diffusion_standard (5.3.7)

5.3.7 Bloc diffusion standard

Description: grad_Ubar 1 makes the gradient calculated through the filtered values of velocity (P1-conform). nu 1 (respectively nut 1) takes the molecular viscosity (eddy viscosity) into account in the velocity gradient part of the diffusion expression.

 $nu_transp\ 1\ (respectively\ nut_transp\ 1)\ takes\ the\ molecular\ viscosity\ (eddy\ viscosity)\ into\ account\ according\ in\ the\ TRANSPOSED\ velocity\ gradient\ part\ of\ the\ diffusion\ expression.$

filtrer_resu 1 allows to filter the resulting diffusive fluxes contribution.

```
See also: objet_lecture (35)
```

Usage:

```
mot1 val1 mot2 val2 mot3 val3 mot4 val4 mot5 val5 mot6 val6
where
   • mot1 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
   • val1 int into [0, 1]
   • mot2 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
   • val2 int into [0, 1]
   • mot3 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
   • val3 int into [0, 1]
   • mot4 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
   • val4 int into [0, 1]
   • mot5 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
   • val5 int into [0, 1]
   • mot6 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
   • val6 int into [0, 1]
5.3.8 Option
Description: not_set
See also: diffusion_deriv (5.3.1)
Usage:
option bloc_lecture
where
   • bloc_lecture bloc_lecture (3.54)
5.3.9 Turbulente
Description: Turbulent diffusion operator for multiphase problem
See also: diffusion deriv (5.3.1)
Usage:
turbulente [ type ]
where
   • type type_diffusion_turbulente_multiphase_deriv (5.3.10): Turbulence model for multiphase prob-
     lem
5.3.10 Type_diffusion_turbulente_multiphase_deriv
Description: not_set
See also: objet_lecture (35) l_melange (5.3.11) SGDH (5.3.12)
```

Usage:

```
5.3.11 L_melange
Description: not_set
See also: type_diffusion_turbulente_multiphase_deriv (5.3.10)
Usage:
l_melange {
     [l_melange float]
}
where
   • l_melange float
5.3.12 Sgdh
Description: not_set
See also: type_diffusion_turbulente_multiphase_deriv (5.3.10)
Usage:
SGDH {
     [ Pr_t float]
     [ sigma_turbulent|sigma float]
     [no_alpha]
     [gas_turb]
where
   • Pr_t float
   • sigma_turbulent|sigma float
   • no_alpha
   • gas_turb
5.3.13 Op_implicite
Description: not_set
See also: objet_lecture (35)
Usage:
implicite mot solveur
where
   • implicite str into ['implicite']
   • mot str into ['solveur']
   • solveur_sys_base (10.14)
```

5.4 Condlims

{ object1, object2....}

list of source_base (30) separeted with,

```
Description: Boundary conditions.
See also: listobj (34.6)
Usage:
{ object1 object2 .... }
list of condlimlu (5.4.1)
5.4.1 Condlimlu
Description: Boundary condition specified.
See also: objet_lecture (35)
Usage:
bord cl
where
   • bord str: Name of the edge where the boundary condition applies.
   • cl condlim_base (12): Boundary condition at the boundary called bord (edge).
5.5 Condinits
Description: Initial conditions.
See also: listobj (34.6)
Usage:
{ object1 object2 .... }
list of condinit (5.5.1)
5.5.1 Condinit
Description: Initial condition.
See also: objet_lecture (35)
Usage:
nom ch
where
   • nom str: Name of initial condition field.
   • ch champ_base (15.1): Type field and the initial values.
5.6 Sources
Description: The sources.
See also: listobj (34.6)
Usage:
```

5.7 Ecrire_fichier_xyz_valeur_param

Description: To write the values of a field for some boundaries in a text file.

The name of the files is pb_name_field_name_time.dat

Several Ecrire_fichier_xyz_valeur keywords may be written into an equation to write several fields. This kind of files may be read by Champ_don_lu or Champ_front_lu for example.

See also: objet_lecture (35)

Usage:
name dt_ecrire_fic [bords]
where

- name str: Name of the field to write (Champ_Inc, Champ_Fonc or a post_processed field).
- **dt_ecrire_fic** *float*: Time period for printing in the file.
- **bords** bords ecrire (5.7.1): to post-process only on some boundaries

5.7.1 Bords_ecrire

Description: not_set

See also: objet_lecture (35)

Usage:

chaine bords

where

- chaine str into ['bords']
- **bords** *n word1 word2 ... wordn*: Keyword to post-process only on some boundaries : bords nb bords boundary1 ... boundaryn

where

nb bords: number of boundaries

boundary1 ... boundaryn: name of the boundaries.

5.8 Parametre_equation_base

Description: Basic class for parametre_equation

See also: objet_lecture (35) parametre_implicite (5.8.1) parametre_diffusion_implicite (5.8.2)

Usage:

5.8.1 Parametre_implicite

Description: Keyword to change for this equation only the parameter of the implicit scheme used to solve the problem.

```
See also: parametre_equation_base (5.8)
```

Usage:

```
parametre_implicite {
```

```
[ seuil_convergence_implicite float]
[ seuil_convergence_solveur float]
[ solveur solveur_sys_base]
```

```
[ resolution_explicite ]
    [ equation_non_resolue ]
    [ equation_frequence_resolue str]
}
where
```

- **seuil_convergence_implicite** *float*: Keyword to change for this equation only the value of seuil-convergence implicite used in the implicit scheme.
- seuil_convergence_solveur *float*: Keyword to change for this equation only the value of seuil-convergence solveur used in the implicit scheme
- **solveur** *solveur_sys_base* (10.14): Keyword to change for this equation only the solver used in the implicit scheme
- resolution_explicite : To solve explicitly the equation whereas the scheme is an implicit scheme.
- equation_non_resolue : Keyword to specify that the equation is not solved.
- equation_frequence_resolue *str*: Keyword to specify that the equation is solved only every n time steps (n is an integer or given by a time-dependent function f(t)).

5.8.2 Parametre_diffusion_implicite

Description: To specify additional parameters for the equation when using impliciting diffusion

```
See also: parametre_equation_base (5.8)

Usage:
parametre_diffusion_implicite {

    [ crank int into [0, 1]]
    [ preconditionnement_diag int into [0, 1]]
    [ niter_max_diffusion_implicite int]
    [ seuil_diffusion_implicite float]
    [ solveur solveur_sys_base]
}

where
```

- **crank** *int into* [0, 1]: Use (1) or not (0, default) a Crank Nicholson method for the diffusion implicitation algorithm. Setting crank to 1 increases the order of the algorithm from 1 to 2.
- **preconditionnement_diag** *int into* [0, 1]: The CG used to solve the implicitation of the equation diffusion operator is not preconditioned by default. If this option is set to 1, a diagonal preconditionning is used. Warning: this option is not necessarily more efficient, depending on the treated case.
- **niter_max_diffusion_implicite** *int*: Change the maximum number of iterations for the CG (Conjugate Gradient) algorithm when solving the diffusion implicitation of the equation.
- **seuil_diffusion_implicite** *float*: Change the threshold convergence value used by default for the CG resolution for the diffusion implicitation of this equation.
- **solveur** *solveur_sys_base* (10.14): Method (different from the default one, Conjugate Gradient) to solve the linear system.

5.9 Convection_diffusion_espece_binaire_turbulent_qc

Description: Species conservation equation for a binary quasi-compressible fluid as well as the associated turbulence model equations.

```
Keyword Discretize should have already been used to read the object. See also: convection_diffusion_espece_binaire_QC (5.22)
```

```
Usage:
Convection_Diffusion_Espece_Binaire_Turbulent_QC str
Read str {
     [ modele_turbulence modele_turbulence_scal_base]
     [ disable equation residual str]
     [convection bloc_convection]
     [ diffusion bloc diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [ sources sources]
     [ ecrire fichier xyz valeur bin ecrire fichier xyz valeur param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

- **modele_turbulence** *modele_turbulence_scal_base* (22): Turbulence model for the species conservation equation.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname fieldname [boundaryname] time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.10 Echelle_temporelle_turbulente

Description: Turbulent Dissipation time scale equation for a turbulent mono/multi-phase problem (available in TrioCFD)

Keyword Discretize should have already been used to read the object. See also: eqn base (5.30)

```
Usage:

Echelle_temporelle_turbulente str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

} where

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.11 Energie_multiphase

Description: Internal energy conservation equation for a multi-phase problem where the unknown is the temperature

Keyword Discretize should have already been used to read the object. See also: eqn base (5.30)

```
Usage:

Energie_Multiphase str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
where
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.12 Energie_cinetique_turbulente

Description: Turbulent kinetic Energy conservation equation for a turbulent mono/multi-phase problem (available in TrioCFD)

Keyword Discretize should have already been used to read the object.

```
See also: eqn_base (5.30)
```

```
Usage:
Energie_cinetique_turbulente str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
where
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

Energie_cinetique_turbulente_wit 5.13

Description: Bubble Induced Turbulent kinetic Energy equation for a turbulent multi-phase problem (available in TrioCFD)

Keyword Discretize should have already been used to read the object.

```
See also: eqn base (5.30)
Usage:
```

}

```
Energie_cinetique_turbulente_WIT str
Read str {
     [ disable_equation_residual str]
     [convection bloc convection]
     [ diffusion bloc_diffusion]
     [boundary conditions|conditions limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
where
```

- disable equation residual str for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.5) for inheritance: Initial conditions.
- sources sources (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
x n y n [z n] val n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

ecrire fichier xyz valeur ecrire fichier xyz valeur param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
x_n y_n [z_n] val_n
```

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue str for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard
{ equation_non_resolue (t>t0)*(t<t1) }
```

5.14 Masse_multiphase

Description: Mass consevation equation for a multi-phase problem where the unknown is the alpha (void fraction)

Keyword Discretize should have already been used to read the object.

```
Usage:

Masse_Multiphase str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

where

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.15 Qdm_multiphase

} where

Description: Momentum conservation equation for a multi-phase problem where the unknown is the velocity

Keyword Discretize should have already been used to read the object. See also: eqn base (5.30)Usage: QDM Multiphase str Read str { [solveur_pression solveur_sys_base] [evanescence bloc_lecture] [disable_equation_residual str] [convection bloc_convection] [**diffusion** bloc_diffusion] [boundary conditions|conditions limites condlims] [initial conditions|conditions initiales condinits] [sources sources] [ecrire fichier xyz valeur bin ecrire fichier xyz valeur param] [ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param] [parametre equation parametre equation base] [equation non resolue str]

- **solveur_pression** *solveur_sys_base* (10.14): Linear pressure system resolution method.
- evanescence bloc_lecture (3.54): Management of the vanishing phase (when alpha tends to 0 or 1)
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation

• equation_non_resolue str for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard
{ equation_non_resolue (t>t0)*(t<t1) }
```

5.16 Taux_dissipation_turbulent

Description: Turbulent Dissipation frequency equation for a turbulent mono/multi-phase problem (available in TrioCFD)

Keyword Discretize should have already been used to read the object.

```
See also: eqn_base (5.30)
```

```
Usage:
```

```
Taux_dissipation_turbulent str
Read str {
     [ disable_equation_residual str]
     [ convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire fichier xyz valeur ecrire fichier xyz valeur param]
     [ parametre_equation parametre_equation_base]
     [ equation non resolue str]
}
where
```

- disable_equation_residual str for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial conditions conditions initiales condinits (5.5) for inheritance: Initial conditions.
- sources sources (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

ecrire_fichier_xyz_valeur_ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
x_n y_n [z_n] val_n
The created files are named: pbname [boundaryname] time.dat
```

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.17 Convection_diffusion_chaleur_qc

Description: Temperature equation for a quasi-compressible fluid.

Keyword Discretize should have already been used to read the object. See also; egn base (5.30) convection diffusion chaleur turbulent gc (5.19)

[ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
[ecrire fichier xyz valeur ecrire fichier xyz valeur param]

[parametre_equation parametre_equation_base]

```
Usage:
```

```
convection_diffusion_chaleur_QC str
Read str {
    [ mode_calcul_convection str into ['ancien', 'divuT_moins_Tdivu', 'divrhouT_moins_Tdivrhou']]
    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
```

[equation_non_resolue str] } where

- mode_calcul_convection str into ['ancien', 'divuT_moins_Tdivu', 'divrhouT_moins_Tdivrhou']: Option to set the form of the convective operator divrhouT_moins_Tdivrhou (the default since 1.6.8): rho.u.gradT = div(rho.u.T)- Tdiv(rho.u.1) ancien: u.gradT = div(u.T) T.div(u) divuT_moins_Tdivu: u.gradT = div(u.T) Tdiv(u.1)
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial conditions londitions initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
The created files are named : pbname fieldname [boundaryname] time.dat
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.18 Convection_diffusion_chaleur_wc

Description: Temperature equation for a weakly-compressible fluid.

Keyword Discretize should have already been used to read the object.

```
See also: eqn_base (5.30)
```

```
Usage:
```

where

```
convection_diffusion_chaleur_WC str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary conditions limites condlims (5.4) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
```

••

```
x_n y_n [z_n] val_n
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.19 Convection_diffusion_chaleur_turbulent_qc

Description: Temperature equation for a quasi-compressible fluid as well as the associated turbulence model equations.

Keyword Discretize should have already been used to read the object.

```
See also: convection_diffusion_chaleur_QC (5.17)
```

Usage:

```
convection_diffusion_chaleur_turbulent_qc str
Read str {
```

```
[ modele_turbulence modele_turbulence_scal_base]
[ mode_calcul_convection str into ['ancien', 'divuT_moins_Tdivu', 'divrhouT_moins_Tdivrhou']]
[ disable_equation_residual str]
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
[ sources sources]
[ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
[ parametre_equation parametre_equation_base]
[ equation_non_resolue str]
}
where
```

- **modele_turbulence** *modele_turbulence_scal_base* (22): Turbulence model for the temperature (energy) conservation equation.
- mode_calcul_convection str into ['ancien', 'divuT_moins_Tdivu', 'divrhouT_moins_Tdivrhou'] for inheritance: Option to set the form of the convective operator divrhouT_moins_Tdivrhou (the default since 1.6.8): rho.u.gradT = div(rho.u.T) Tdiv(rho.u.1) ancien: u.gradT = div(u.T) T.div(u) divuT_moins_Tdivu: u.gradT = div(u.T) Tdiv(u.1)
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step

- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- diffusion bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.20 Convection_diffusion_concentration

Description: Constituent transport vectorial equation (concentration diffusion convection).

```
Keyword Discretize should have already been used to read the object.
See also: eqn_base (5.30) convection_diffusion_concentration_turbulent (5.21)
```

Usage:

```
convection_diffusion_concentration str
Read str {
```

```
[ nom_inconnue str]
[ masse_molaire float]
[ alias str]
[ disable_equation_residual str]
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
[ sources sources]
[ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
[ parametre_equation parametre_equation_base]
[ equation_non_resolue str]
```

```
}
where
```

- **nom_inconnue** *str*: Keyword Nom_inconnue will rename the unknown of this equation with the given name. In the postprocessing part, the concentration field will be accessible with this name. This is usefull if you want to track more than one concentration (otherwise, only the concentration field in the first concentration equation can be accessed).
- masse_molaire float
- alias str
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- diffusion bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x n y n [z n] val n
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.21 Convection_diffusion_concentration_turbulent

Description: Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.

Keyword Discretize should have already been used to read the object. See also: convection_diffusion_concentration (5.20)

```
Usage:
```

```
convection_diffusion_concentration_turbulent str
Read str {
    [ modele_turbulence modele_turbulence_scal_base]
    [ nom inconnue str]
```

```
[ masse_molaire float]
[ alias str]
[ disable_equation_residual str]
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
[ sources sources]
[ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
[ parametre_equation parametre_equation_base]
[ equation_non_resolue str]
}
where
```

- **modele_turbulence** *modele_turbulence_scal_base* (22): Turbulence model to be used in the constituent transport equations. The only model currently available is Schmidt.
- **nom_inconnue** *str* for inheritance: Keyword Nom_inconnue will rename the unknown of this equation with the given name. In the postprocessing part, the concentration field will be accessible with this name. This is usefull if you want to track more than one concentration (otherwise, only the concentration field in the first concentration equation can be accessed).
- masse molaire float for inheritance
- alias str for inheritance
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- diffusion bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.22 Convection_diffusion_espece_binaire_qc

Description: Species conservation equation for a binary quasi-compressible fluid.

```
Keyword Discretize should have already been used to read the object.

See also: eqn_base (5.30) Convection_Diffusion_Espece_Binaire_Turbulent_QC (5.9)

Usage:
convection_diffusion_espece_binaire_QC str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary conditions limites condlims (5.4) for inheritance: Boundary conditions.
- initial conditions londitions initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

} where

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname fieldname [boundaryname] time.dat

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.23 Convection_diffusion_espece_binaire_wc

Description: Species conservation equation for a binary weakly-compressible fluid.

Keyword Discretize should have already been used to read the object.

```
See also: eqn_base (5.30)
```

```
Usage:
```

where

```
convection_diffusion_espece_binaire_WC str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary conditions limites condlims (5.4) for inheritance: Boundary conditions.
- initial conditions londitions initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
```

•••

x_n y_n [z_n] val_n

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
```

x_n y_n [z_n] val_n

The created files are named: pbname fieldname [boundaryname] time.dat

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.24 Convection_diffusion_espece_multi_qc

Description: Species conservation equation for a multi-species quasi-compressible fluid.

Keyword Discretize should have already been used to read the object. See also: eqn_base (5.30)

```
Usage:
```

where

```
convection_diffusion_espece_multi_QC str

Read str {

    [espece espece]
    [disable_equation_residual str]
    [convection bloc_convection]
    [diffusion bloc_diffusion]
    [boundary_conditions|conditions_limites condlims]
    [initial_conditions|conditions_initiales condinits]
    [sources sources]
    [ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [parametre_equation parametre_equation_base]
    [equation_non_resolue str]
```

- espece espece (3.37): Assosciate a species (with its properties) to the equation
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- diffusion bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname fieldname [boundaryname] time.dat

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.25 Convection_diffusion_espece_multi_wc

Description: Species conservation equation for a multi-species weakly-compressible fluid.

Keyword Discretize should have already been used to read the object.

```
Usage:
convection_diffusion_espece_multi_WC str

Read str {

[ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

where

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation

• equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.26 Convection_diffusion_espece_multi_turbulent_qc

```
Description: not_set
Keyword Discretize should have already been used to read the object.
See also: eqn_base (5.30)
Usage:
convection_diffusion_espece_multi_turbulent_qc str
Read str {
     [ modele_turbulence modele_turbulence_scal_base]
     espece espece
     [ disable equation residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire fichier xyz valeur bin ecrire fichier xyz valeur param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
where
```

- modele_turbulence modele_turbulence_scal_base (22): Turbulence model to be used.
- **espece** *espece* (3.37)
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
x_n y_n [z_n] val_n
```

- parametre equation parametre equation base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation non resolue str for inheritance: The equation will not be solved while condition(t) is verified if equation non resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier Sokes Standard
{ equation non resolue (t>t0)*(t<t1) }
```

5.27 **Convection diffusion temperature**

Description: Energy equation (temperature diffusion convection).

Keyword Discretize should have already been used to read the object.

```
See also: eqn_base (5.30)
```

```
Usage:
```

```
convection_diffusion_temperature str
Read str {
     [ penalisation 12 ftd pp]
     [ disable_equation_residual str]
     [convection bloc convection]
     [ diffusion bloc diffusion]
     [boundary conditions|conditions limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire fichier xyz valeur bin ecrire fichier xyz valeur param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

- penalisation_12_ftd pp (5.28): to activate or not (the default is Direct Forcing method) the Penalized Direct Forcing method to impose the specified temperature on the solid-fluid interface.
- disable_equation_residual str for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary conditions limites condlims (5.4) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.5) for inheritance: Initial conditions.
- sources sources (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
```

```
x_n y_n [z_n] val_n
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.28 Pp

```
Description: not_set

See also: listobj (34.6)

Usage:
{ object1 object2 .... }
list of penalisation_l2_ftd_lec (5.28.1)
```

5.28.1 Penalisation_l2_ftd_lec

Description: not_set

See also: objet_lecture (35)

Usage:

[postraiter_gradient_pression_sans_masse] [correction_matrice_projection_initiale] [correction_calcul_pression_initiale] [correction_vitesse_projection_initiale] [correction_matrice_pression] [matrice_pression_penalisee_H1] [correction_vitesse_modifie] [correction_pression_modifie] [gradient_pression_qdm_modifie] bord val where

- **postraiter_gradient_pression_sans_masse** *int*: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **correction_matrice_projection_initiale** *int*: (IBM advanced) fix matrix of initial projection for PDF
- correction_calcul_pression_initiale int: (IBM advanced) fix initial pressure computation for PDF
- correction_vitesse_projection_initiale int: (IBM advanced) fix initial velocity computation for PDF
- correction_matrice_pression int: (IBM advanced) fix pressure matrix for PDF
- matrice pression penalisee H1 int: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int: (IBM advanced) fix velocity for PDF
- correction_pression_modifie int: (IBM advanced) fix pressure for PDF
- gradient_pression_qdm_modifie int: (IBM advanced) fix pressure gradient
- bord str
- val n x1 x2 ... xn

5.29 Convection_diffusion_temperature_turbulent

Description: Energy equation (temperature diffusion convection) as well as the associated turbulence model equations.

Keyword Discretize should have already been used to read the object. See also: eqn_base (5.30)

Usage:
convection_diffusion_temperature_turbulent str

Read str {

```
[ modele_turbulence modele_turbulence_scal_base]
    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
where
```

- modele turbulence modele turbulence scal base (22): Turbulence model for the energy equation.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1 ... x_n y_n [z_n] val_n The created files are named : pbname fieldname [boundaryname] time.dat
```

The created mes are named: poname_neigname_tooungarynamej_time.gat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not

```
solved between time t0 and t1.

Navier_Sokes_Standard
{ equation_non_resolue (t>t0)*(t<t1) }
```

5.30 Eqn_base

Description: Basic class for equations.

Keyword Discretize should have already been used to read the object.

See also: mor_eqn (5) navier_stokes_standard (5.36) convection_diffusion_temperature (5.27) convection_diffusion_concentration (5.20) Conduction (5.1) Energie_Multiphase (5.11) Masse_Multiphase (5.14) QDM_Multiphase (5.15) Echelle_temporelle_turbulente (5.10) Energie_cinetique_turbulente (5.12) Energie_cinetique_turbulente_WIT (5.13) Taux_dissipation_turbulent (5.16) convection_diffusion_espece_multi_turbulent_qc (5.26) convection_diffusion_chaleur_QC (5.17) convection_diffusion_temperature_turbulent (5.29) convection_diffusion_espece_binaire_QC (5.22) convection_diffusion_chaleur_WC (5.18) convection_diffusion_espece_multi_QC (5.24) convection_diffusion_espece_binaire_WC (5.23) convection_diffusion_espece_multi_WC (5.25)

```
Usage:

eqn_base str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
where
```

- **disable_equation_residual** *str*: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2): Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3): Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4): Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.5): Initial conditions.
- **sources** *sources* (5.6): To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7): This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7): This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
The created files are named : pbname_fieldname_[boundaryname]_time.dat
```

- parametre_equation parametre_equation_base (5.8): Keyword used to specify additional parameters for the equation
- equation_non_resolue *str*: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.31 Navier_stokes_qc

Description: Navier-Stokes equation for a quasi-compressible fluid.

Keyword Discretize should have already been used to read the object. See also: navier_stokes_standard (5.36)

```
Usage:
```

where

```
navier stokes QC str
Read str {
     _operateurs', 'sans_rien']]
     [ projection initiale int]
     [solveur pression solveur sys base]
     [solveur bar solveur sys base]
     [dt_projection deuxmots]
     [ seuil divU floatfloat]
     [traitement_particulier traitement_particulier]
     [ correction matrice projection initiale int]
     [ correction_calcul_pression_initiale int]
     [ correction_vitesse_projection_initiale int]
     [correction_matrice_pression int]
     [correction_vitesse_modifie int]
     [ gradient_pression_qdm_modifie int]
     [correction pression modifie int]
     [ postraiter_gradient_pression_sans_masse ]
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary conditions|conditions limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ecrire fichier xyz valeur ecrire fichier xyz valeur param]
     [ parametre_equation parametre_equation_base]
     [ equation non resolue str]
```

• methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist

time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.

- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur_pression solveur_sys_base (10.14) for inheritance: Linear pressure system resolution method.
- **solveur_bar** *solveur_sys_base* (10.14) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt_projection** *deuxmots* (5.32) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil_divU floatfloat (5.33) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

If (lmax(DivU)*dtl<value)

Seuil(tn+1)= Seuil(tn)*factor

Else

Seuil(tn+1)= Seuil(tn)*factor

Endif

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement_particulier** *traitement_particulier* (5.34) for inheritance: Keyword to post-process particular values.
- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction_matrice_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction vitesse modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following

```
format: n_valeur
     x_1 y_1 [z_1] val_1
     x_n y_n [z_n] val_n
     The created files are named: pbname_fieldname_[boundaryname]_time.dat
   • ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is
     used to write the values of a field only for some boundaries in a text file with the following format:
     n valeur
     x_1 y_1 [z_1] val_1
     x_n y_n [z_n] val_n
     The created files are named: pbname_fieldname_[boundaryname]_time.dat
   • parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify ad-
     ditional parameters for the equation
   • equation_non_resolue str for inheritance: The equation will not be solved while condition(t) is
     verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not
     solved between time t0 and t1.
     Navier_Sokes_Standard
     { equation_non_resolue (t>t0)*(t<t1) }
5.32 Deuxmots
Description: Two words.
See also: objet_lecture (35)
Usage:
mot_1 mot_2
where
   • mot_1 str: First word.
   • mot_2 str: Second word.
5.33 Floatfloat
Description: Two reals.
See also: objet_lecture (35)
Usage:
a b
where
   • a float: First real.
   • b float: Second real.
5.34
       Traitement_particulier
Description: Auxiliary class to post-process particular values.
See also: objet_lecture (35)
Usage:
```

aco trait_part acof

where

```
• aco str into ['{'}]: Opening curly bracket.
   • trait_part traitement_particulier_base (5.34.1): Type of traitement_particulier.
   • acof str into ['}']: Closing curly bracket.
5.34.1 Traitement_particulier_base
Description: Basic class to post-process particular values.
See also: objet_lecture (35) temperature (5.34.2) canal (5.34.3) ec (5.34.4) thi (5.34.5) chmoy_faceperio
(5.34.6)
Usage:
5.34.2 Temperature
Description: not_set
See also: traitement_particulier_base (5.34.1)
Usage:
temperature {
      bord str
      direction int
where
   • bord str
   • direction int
5.34.3 Canal
Description: Keyword for statistics on a periodic plane channel.
See also: traitement_particulier_base (5.34.1)
Usage:
canal {
      [ dt_impr_moy_spat float]
      [ dt_impr_moy_temp float]
      [ debut_stat float]
      [fin_stat float]
      [ pulsation_w float]
      [ nb_points_par_phase int]
      [reprise str]
where
```

}

- **dt_impr_moy_spat** *float*: Period to print the spatial average (default value is 1e6).
- **dt_impr_moy_temp** *float*: Period to print the temporal average (default value is 1e6).
- **debut_stat** *float*: Time to start the temporal averaging (default value is 1e6).
- fin_stat float: Time to end the temporal averaging (default value is 1e6).

- **pulsation_w** *float*: Pulsation for phase averaging (in case of pulsating forcing term) (no default value).
- **nb_points_par_phase** *int*: Number of samples to represent phase average all along a period (no default value).
- **reprise** *str*: val_moy_temp_xxxxxx.sauv : Keyword to resume a calculation with previous averaged quantities.

Note that for thermal and turbulent problems, averages on temperature and turbulent viscosity are automatically calculated. To resume a calculation with phase averaging, val_moy_temp_xxxxxx.sauv_phase file is required on the directory where the job is submitted (this last file will be then automatically loaded by TRUST).

5.34.4 Ec

Description: Keyword to print total kinetic energy into the referential linked to the domain (keyword Ec). In the case where the domain is moving into a Galilean referential, the keyword Ec_dans_repere_fixe will print total kinetic energy in the Galilean referential whereas Ec will print the value calculated into the moving referential linked to the domain

```
See also: traitement_particulier_base (5.34.1)

Usage:
ec {
    [Ec]
    [Ec_dans_repere_fixe]
    [periode float]

}
where
```

- Ec
- Ec_dans_repere_fixe
- **periode** *float*: periode is the keyword to set the period of printing into the file datafile_Ec.son or datafile_Ec_dans_repere_fixe.son.

5.34.5 Thi

Description: Keyword for a THI (Homogeneous Isotropic Turbulence) calculation.

```
See also: traitement_particulier_base (5.34.1)

Usage:
thi {

    init_Ec int
    [val_Ec float]
    [facon_init int into [0, 1]]
    [calc_spectre int into [0, 1]]
    [periode_calc_spectre float]
    [spectre_3D int into [0, 1]]
    [spectre_1D int into [0, 1]]
    [conservation_Ec ]
    [longueur_boite float]
```

```
}
where
```

- init_Ec int: Keyword to renormalize initial velocity so that kinetic energy equals to the value given by keyword val Ec.
- val_Ec *float*: Keyword to impose a value for kinetic energy by velocity renormalizated if init_Ec value is 1.
- **facon_init** int into [0, 1]: Keyword to specify how kinetic energy is computed (0 or 1).
- calc_spectre int into [0, 1]: Calculate or not the spectrum of kinetic energy.

Files called Sorties THI are written with inside four columns:

time:t global_kinetic_energy:Ec enstrophy:D skewness:S

If calc spectre is set to 1, a file Sorties THI2 2 is written with three columns:

time:t kinetic_energy_at_kc=32 enstrophy_at_kc=32

If calc_spectre is set to 1, a file spectre_xxxxx is written with two columns at each time xxxxx : frequency:k energy:E(k).

- periode_calc_spectre float: Period for calculating spectrum of kinetic energy
- spectre_3D int into [0, 1]: Calculate or not the 3D spectrum
- spectre_1D int into [0, 1]: Calculate or not the 1D spectrum
- conservation_Ec: If set to 1, velocity field will be changed as to have a constant kinetic energy (default 0)
- longueur_boite float: Length of the calculation domain

5.34.6 Chmoy_faceperio

```
Description: non documente
```

See also: traitement_particulier_base (5.34.1)

Usage:

chmoy_faceperio bloc

where

• **bloc** *bloc lecture* (3.54)

5.35 Navier_stokes_wc

Description: Navier-Stokes equation for a weakly-compressible fluid.

Keyword Discretize should have already been used to read the object.

See also: navier_stokes_standard (5.36)

```
Usage:
```

```
navier_stokes_WC str
Read str {
```

```
[ correction_matrice_projection_initiale int]
     [ correction_calcul_pression_initiale int]
     [ correction vitesse projection initiale int]
     [ correction_matrice_pression int]
     [correction vitesse modifie int]
     [ gradient_pression_qdm_modifie int]
     [correction pression modifie int]
     [postraiter gradient pression sans masse]
     [ disable equation residual str]
     [convection bloc convection]
     [ diffusion bloc diffusion]
     [boundary conditions|conditions limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur_pression solveur_sys_base (10.14) for inheritance: Linear pressure system resolution method.
- solveur_bar solveur_sys_base (10.14) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt_projection** *deuxmots* (5.32) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil_divU floatfloat (5.33) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

```
If ( |max(DivU)*dt|<value )
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
Endif
```

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

• **traitement_particulier** *traitement_particulier* (5.34) for inheritance: Keyword to post-process particular values.

- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction matrice pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient pression qdm modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction pression modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.36 Navier_stokes_standard

Description: Navier-Stokes equations.

```
Keyword Discretize should have already been used to read the object.
See also: eqn_base (5.30) navier_stokes_turbulent (5.37) navier_stokes_QC (5.31) navier_stokes_WC (5.35)
```

Usage:

```
Read str {
     [ methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et-
     _operateurs', 'sans_rien']]
     [ projection_initiale int]
     [solveur pression solveur sys base]
     [solveur bar solveur sys base]
     [dt projection deuxmots]
     [ seuil divU floatfloat]
     [traitement_particulier traitement_particulier]
     [ correction_matrice_projection_initiale int]
     [ correction_calcul_pression_initiale int]
     [ correction vitesse projection initiale int]
     [correction_matrice_pression int]
     [correction_vitesse_modifie int]
     [ gradient_pression_qdm_modifie int]
     [correction_pression_modifie int]
     [postraiter gradient pression sans masse]
     [ disable equation residual str]
     [convection bloc convection]
     [ diffusion bloc diffusion]
     [boundary conditions|conditions limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

navier_stokes_standard str

- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien']: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection_initiale** *int*: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur_pression solveur_sys_base (10.14): Linear pressure system resolution method.
- **solveur_sys_base** (10.14): This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt_projection** *deuxmots* (5.32): nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- **seuil_divU** *floatfloat* (5.33): value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value

```
seuil(tn+1) will be evualated as:

If ( lmax(DivU)*dtl<value )

Seuil(tn+1)= Seuil(tn)*factor

Else

Seuil(tn+1)= Seuil(tn)*factor

Endif
```

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- traitement_particulier traitement_particulier (5.34): Keyword to post-process particular values.
- correction_matrice_projection_initiale int: (IBM advanced) fix matrix of initial projection for PDF
- correction_calcul_pression_initiale int: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int*: (IBM advanced) fix initial velocity computation for PDF
- correction_matrice_pression int: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int: (IBM advanced) fix pressure gradient
- correction_pression_modifie int: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** : (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- diffusion bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary conditions limites condlims (5.4) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.37 Navier_stokes_turbulent

Description: Navier-Stokes equations as well as the associated turbulence model equations.

```
Keyword Discretize should have already been used to read the object.
See also: navier_stokes_standard (5.36) navier_stokes_turbulent_qc (5.39)
Usage:
navier stokes turbulent str
Read str {
     [ modele turbulence modele turbulence hyd deriv]
     _operateurs', 'sans_rien']]
     [ projection_initiale int]
     [solveur_pression solveur_sys_base]
     [solveur_bar solveur_sys_base]
     [dt_projection deuxmots]
     [ seuil_divU floatfloat]
     [traitement_particulier traitement_particulier]
     [ correction matrice projection initiale int]
     [ correction_calcul_pression_initiale int]
     [ correction vitesse projection initiale int]
     [correction_matrice_pression int]
     [ correction vitesse modifie int]
     [gradient pression qdm modifie int]
     [correction pression modifie int]
     [postraiter gradient pression sans masse]
     [ disable equation residual str]
     [convection bloc_convection]
     [ diffusion bloc diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

- **modele_turbulence** *modele_turbulence_hyd_deriv* (5.38): Turbulence model for Navier-Stokes equations.
- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur_pression solveur_sys_base (10.14) for inheritance: Linear pressure system resolution method.

- **solveur_bar** *solveur_sys_base* (10.14) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt_projection** *deuxmots* (5.32) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil_divU floatfloat (5.33) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

```
If ( lmax(DivU)*dtl<value )
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
```

Endif

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement_particulier** *traitement_particulier* (5.34) for inheritance: Keyword to post-process particular values.
- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction_matrice_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- diffusion bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
```

••

```
x_n y_n [z_n] val_n
```

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.38 Modele_turbulence_hyd_deriv

Description: Basic class for turbulence model for Navier-Stokes equations.

```
Usage:
modele_turbulence_hyd_deriv {

    [correction_visco_turb_pour_controle_pas_de_temps]
    [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
    [turbulence_paroi turbulence_paroi_base]
    [dt_impr_ustar_float]
    [dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
    [nut_max float]
}
where
```

- correction_visco_turb_pour_controle_pas_de_temps: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence_paroi turbulence_paroi_base (32): Keyword to set the wall law.
- **dt_impr_ustar** *float*: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- dt_impr_ustar_mean_only dt_impr_ustar_mean_only (5.38.1): This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- **nut_max** *float*: Upper limitation of turbulent viscosity (default value 1.e8).

5.38.1 Dt_impr_ustar_mean_only

Description: not_set

```
Usage:
{
    dt_impr float
    [boundaries n word1 word2 ... wordn]
}
where
    • dt_impr float
    • boundaries n word1 word2 ... wordn

5.38.2 Null
Description: Nul turbulence model (turbulent viscosity = 0) which can be used with a turbulent problem.
See also: modele_turbulence_hyd_deriv (5.38)
```

[correction_visco_turb_pour_controle_pas_de_temps]

[dt_impr_ustar_mean_only dt_impr_ustar_mean_only]

[turbulence paroi turbulence paroi base]

[dt impr ustar float]

[nut max float]

[correction_visco_turb_pour_controle_pas_de_temps_parametre float]

See also: objet_lecture (35)

Usage: null {

} where

• **correction_visco_turb_pour_controle_pas_de_temps** for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.

- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence paroi turbulence paroi base (32) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.38.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

5.39 Navier_stokes_turbulent_qc

Description: Navier-Stokes equations under low Mach number as well as the associated turbulence model equations.

```
Keyword Discretize should have already been used to read the object.
See also: navier stokes turbulent (5.37)
Usage:
navier_stokes_turbulent_qc str
Read str {
     [ modele_turbulence modele_turbulence_hyd_deriv]
     _operateurs', 'sans_rien']
     [ projection_initiale int]
     [solveur_pression solveur_sys_base]
     [solveur bar solveur sys base]
     [dt projection deuxmots]
     [ seuil_divU floatfloat]
     [traitement particulier traitement particulier]
     [ correction_matrice_projection_initiale int]
     [ correction calcul pression initiale int]
     [ correction vitesse projection initiale int]
     [correction matrice pression int]
     [ correction_vitesse_modifie int]
     [ gradient_pression_qdm_modifie int]
     [correction_pression_modifie int]
     [postraiter gradient pression sans masse]
     [ disable_equation_residual str]
     [ convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary conditions|conditions limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire fichier xyz valeur bin ecrire fichier xyz valeur param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [parametre equation parametre equation base]
     [ equation_non_resolue str]
where
```

- **modele_turbulence** *modele_turbulence_hyd_deriv* (5.38) for inheritance: Turbulence model for Navier-Stokes equations.
- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.

- solveur_pression solveur_sys_base (10.14) for inheritance: Linear pressure system resolution method.
- **solveur_bar** *solveur_sys_base* (10.14) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt_projection** *deuxmots* (5.32) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil_divU floatfloat (5.33) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

```
If ( |max(DivU)*dt|<value )
```

Seuil(tn+1)= Seuil(tn)*factor

Else

Seuil(tn+1)= Seuil(tn)*factor

Endif

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement_particulier** *traitement_particulier* (5.34) for inheritance: Keyword to post-process particular values.
- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction_matrice_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (5.4) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.5) for inheritance: Initial conditions.
- **sources** *sources* (5.6) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
```

...

 $x_n y_n [z_n] val_n$

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.7) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

- parametre_equation parametre_equation_base (5.8) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

6 ijk_splitting

Description: Object to specify how the domain will be divided between processors in IJK discretization

```
See also: objet_u (36)

Usage:

IJK_Splitting str

Read str {

    ijk_grid_geometry str
    nproc_i int
    nproc_j int
    nproc_k int
}

where
```

- ijk_grid_geometry str: the grid that will be splitted
- nproc_i int: the number of processors into which we will divide the grid following the I direction
- **nproc** j int: the number of processors into which we will divide the grid following the J direction
- nproc_k int: the number of processors into which we will divide the grid following the K direction

7 /*

7.1 /*

Description: bloc of Comment in a data file.

```
See also: objet_u (36)
Usage:
/* comm
where
```

• comm str: Text to be commented.

8 champ_generique_base

Description: not_set

```
See also: objet_u (36) champ_post_de_champs_post (8.1) champ_post_refchamp (8.17) predefini (8.15)
Usage:
8.1
      Champ_post_de_champs_post
Description: not_set
See also: champ generique base (8) champ post transformation (8.19) champ post operateur base (8.4)
champ_post_statistiques_base (8.6) champ_post_extraction (8.10) champ_post_tparoi_vef (8.18) champ-
_post_morceau_equation (8.13) champ_post_interpolation (8.12) champ_post_reduction_0d (8.16) champ-
_post_operateur_eqn (8.5)
Usage:
champ_post_de_champs_post str
Read str {
     [ source champ_generique_base]
     [ nom source str]
     [source reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
   • source champ_generique_base (8): the source field.
   • nom_source str: To name a source field with the nom_source keyword
   • source_reference str
   • sources_reference list_nom_virgule (8.2)
   • sources listchamp_generique (8.3): sources { Champ_Post.... { ... } Champ_Post.. { ... }}
8.2 List_nom_virgule
Description: List of name.
See also: listobj (34.6)
Usage:
{ object1, object2.... }
list of nom_anonyme (23.1) separeted with,
8.3 Listchamp_generique
Description: XXX
See also: listobj (34.6)
Usage:
{ object1, object2 .... }
list of champ_generique_base (8) separeted with,
```

8.4 Champ_post_operateur_base

```
Description: not_set
See also: champ_post_de_champs_post (8.1) champ_post_operateur_gradient (8.11) champ_post_operateur-
_divergence (8.8)
Usage:
champ_post_operateur_base str
Read str {
     [ source champ_generique_base]
     [ nom_source str]
     [ source_reference str]
     [sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
   • source champ_generique_base (8) for inheritance: the source field.
   • nom source str for inheritance: To name a source field with the nom source keyword
   • source_reference str for inheritance
   • sources_reference list_nom_virgule (8.2) for inheritance
   • sources listchamp_generique (8.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post...
     { ... }}
      Champ_post_operateur_eqn
Synonymous: operateur_eqn
Description: Post-process equation operators/sources
See also: champ_post_de_champs_post (8.1)
Usage:
champ_post_operateur_eqn str
Read str {
     [ numero_source int]
     [ numero op int]
     [ numero masse int]
     [ sans_solveur_masse ]
     [compo int]
     [source champ_generique_base]
     [ nom_source str]
     [source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
```

• **numero_source** *int*: the source to be post-processed (its number). If you have only one source term, numero_source will correspond to 0 if you want to post-process that unique source

- **numero_op** *int*: numero_op will be 0 (diffusive operator) or 1 (convective operator) or 2 (gradient operator) or 3 (divergence operator).
- numero_masse int: numero_masse will be 0 for the mass equation operator in Pb_multiphase.
- sans solveur masse
- **compo** *int*: If you want to post-process only one component of a vector field, you can specify the number of the component after compo keyword. By default, it is set to -1 which means that all the components will be post-processed. This feature is not available in VDF disretization.
- **source** *champ_generique_base* (8) for inheritance: the source field.
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source reference str for inheritance
- **sources_reference** *list_nom_virgule* (8.2) for inheritance
- **sources** *listchamp_generique* (8.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post... { ... }}

8.6 Champ_post_statistiques_base

```
Description: not set
See also: champ_post_de_champs_post (8.1) correlation (8.7) moyenne (8.14) ecart_type (8.9)
Usage:
champ_post_statistiques_base str
Read str {
     t_deb float
     t fin float
     [ source champ_generique_base]
     [ nom_source str]
     [ source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp generique]
}
where
   • t_deb float: Start of integration time
   • t_fin float: End of integration time
   • source champ_generique_base (8) for inheritance: the source field.
   • nom_source str for inheritance: To name a source field with the nom_source keyword
   • source reference str for inheritance
   • sources_reference list_nom_virgule (8.2) for inheritance
   • sources listchamp_generique (8.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post...
      { ... }}
```

8.7 Correlation

Synonymous: champ_post_statistiques_correlation

Description: to calculate the correlation between the two fields.

See also: champ_post_statistiques_base (8.6)

Usage:

```
correlation str
Read str {
     t_deb float
     t_fin float
     [ source champ_generique_base]
     [ nom source str]
     [ source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
   • t_deb float for inheritance: Start of integration time
   • t_fin float for inheritance: End of integration time
   • source champ_generique_base (8) for inheritance: the source field.
   • nom_source str for inheritance: To name a source field with the nom_source keyword
   • source reference str for inheritance
   • sources_reference list_nom_virgule (8.2) for inheritance
   • sources listchamp_generique (8.3) for inheritance: sources { Champ_Post... { ... } Champ_Post...
     { ... }}
8.8
      Champ_post_operateur_divergence
Synonymous: divergence
Description: To calculate divergency of a given field.
See also: champ_post_operateur_base (8.4)
Usage:
champ_post_operateur_divergence str
Read str {
     [source champ_generique_base]
     [ nom source str]
     [ source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
   • source champ_generique_base (8) for inheritance: the source field.
   • nom_source str for inheritance: To name a source field with the nom_source keyword
   • source_reference str for inheritance
   • sources_reference list_nom_virgule (8.2) for inheritance
   • sources listchamp_generique (8.3) for inheritance: sources { Champ_Post... { ... } Champ_Post...
     { ... }}
```

8.9 Ecart_type

where

```
Synonymous: champ_post_statistiques_ecart_type
Description: to calculate the standard deviation (statistic rms) of the field nom_champ.
See also: champ_post_statistiques_base (8.6)
Usage:
ecart_type str
Read str {
     t_deb float
     t_fin float
     [ source champ_generique_base]
     [ nom_source str]
     [ source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
   • t deb float for inheritance: Start of integration time
   • t_fin float for inheritance: End of integration time
   • source champ_generique_base (8) for inheritance: the source field.
   • nom_source str for inheritance: To name a source field with the nom_source keyword
   • source_reference str for inheritance
   • sources_reference list_nom_virgule (8.2) for inheritance
   • sources listchamp_generique (8.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post...
     { ... }}
8.10
      Champ_post_extraction
Synonymous: extraction
Description: To create a surface field (values at the boundary) of a volume field
See also: champ_post_de_champs_post (8.1)
Usage:
champ_post_extraction str
Read str {
     domaine str
     nom_frontiere str
     [ methode str into ['trace', 'champ_frontiere']]
     [source champ_generique_base]
     [ nom_source str]
     [source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
```

- domaine str: name of the volume field
- nom_frontiere str: boundary name where the values of the volume field will be picked
- **methode** *str into ['trace', 'champ_frontiere']*: name of the extraction method (trace by_default or champ_frontiere)
- source champ_generique_base (8) for inheritance: the source field.
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source reference str for inheritance
- **sources_reference** *list_nom_virgule* (8.2) for inheritance
- **sources** *listchamp_generique* (8.3) for inheritance: sources { Champ_Post... { ... } Champ_Post... { ... }}

8.11 Champ post operateur gradient

```
Synonymous: gradient
Description: To calculate gradient of a given field.
See also: champ_post_operateur_base (8.4)
Usage:
champ_post_operateur_gradient str
Read str {
     [ source champ_generique_base]
     [ nom source str]
     [ source_reference str]
     [sources reference list nom virgule]
     [sources listchamp_generique]
}
where
   • source champ_generique_base (8) for inheritance: the source field.
   • nom_source str for inheritance: To name a source field with the nom_source keyword
   • source reference str for inheritance
   • sources_reference list_nom_virgule (8.2) for inheritance
   • sources listchamp_generique (8.3) for inheritance: sources { Champ_Post... { ... } Champ_Post...
     { ... }}
```

8.12 Champ_post_interpolation

```
Synonymous: interpolation
```

[domaine str]

Description: To create a field which is an interpolation of the field given by the keyword source.

```
See also: champ_post_de_champs_post (8.1)

Usage:
champ_post_interpolation str

Read str {

localisation str
[ methode str]
```

```
[ optimisation_sous_maillage str into ['default', 'yes', 'no']]
    [ source champ_generique_base]
    [ nom_source str]
    [ source_reference str]
    [ sources_reference list_nom_virgule]
    [ sources listchamp_generique]
}
where
```

- localisation str: type_loc indicate where is done the interpolation (elem for element or som for node).
- **methode** *str*: The optional keyword methode is limited to calculer_champ_post for the moment.
- domaine str: the domain name where the interpolation is done (by default, the calculation domain)
- optimisation_sous_maillage str into ['default', 'yes', 'no']
- **source** *champ_generique_base* (8) for inheritance: the source field.
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source_reference str for inheritance
- sources_reference list_nom_virgule (8.2) for inheritance
- **sources** *listchamp_generique* (8.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post... { ... }}

8.13 Champ_post_morceau_equation

Synonymous: morceau_equation

Description: To calculate a field related to a piece of equation. For the moment, the field which can be calculated is the stability time step of an operator equation. The problem name and the unknown of the equation should be given by Source refChamp { Pb_Champ problem_name unknown_field_of_equation }

```
See also: champ_post_de_champs_post (8.1)
```

```
Usage:
champ_post_morceau_equation str

Read str {

type str
    [numero int]
    option str into ['stabilite', 'flux_bords', 'flux_surfacique_bords']
    [compo int]
    [source champ_generique_base]
    [nom_source str]
    [source_reference str]
    [sources_reference list_nom_virgule]
    [sources listchamp_generique]
}
where
```

- **type** *str*: can only be operateur for equation operators.
- **numero** *int*: numero will be 0 (diffusive operator) or 1 (convective operator) or 2 (gradient operator) or 3 (divergence operator).
- **option** *str into ['stabilite', 'flux_bords', 'flux_surfacique_bords']*: option is stability for time steps or flux_bords for boundary fluxes or flux_surfacique_bords for boundary surfacic fluxes

- **compo** *int*: compo will specify the number component of the boundary flux (for boundary fluxes, in this case compo permits to specify the number component of the boundary flux choosen).
- source champ_generique_base (8) for inheritance: the source field.
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source reference str for inheritance
- sources_reference list_nom_virgule (8.2) for inheritance
- **sources** *listchamp_generique* (8.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post... { ... }}

8.14 Moyenne

```
Synonymous: champ_post_statistiques_moyenne
```

Description: to calculate the average of the field over time

```
See also: champ_post_statistiques_base (8.6)
```

```
Usage:
moyenne str
Read str {

    [moyenne_convergee champ_base]
    t_deb float
    t_fin float
    [source champ_generique_base]
    [nom_source str]
    [source_reference str]
    [sources_reference list_nom_virgule]
    [sources listchamp_generique]
}
where
```

- moyenne_convergee champ_base (15.1): This option allows to read a converged time averaged field in a .xyz file in order to calculate, when resuming the calculation, the statistics fields (rms, correlation) which depend on this average. In that case, the time averaged field is not updated during the resume of calculation. In this case, the time averaged field must be fully converged to avoid errors when calculating high order statistics.
- t_deb float for inheritance: Start of integration time
- **t_fin** *float* for inheritance: End of integration time
- **source** *champ_generique_base* (8) for inheritance: the source field.
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source reference str for inheritance
- **sources_reference** *list_nom_virgule* (8.2) for inheritance
- **sources** *listchamp_generique* (8.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post... { ... }}

8.15 Predefini

Description: This keyword is used to post process predefined postprocessing fields.

```
See also: champ_generique_base (8)
```

Usage:

```
predefini str
Read str {
    pb_champ deuxmots
}
where
```

• **pb_champ** *deuxmots* (5.32): { Pb_champ nom_pb nom_champ } : nom_pb is the problem name and nom_champ is the selected field name. The available keywords for the field name are: energie_cinetique_totale, energie_cinetique_elem, viscosite_turbulente, viscous_force_x, viscous_force_y, viscous_force_z, pressure_force_x, pressure_force_y, pressure_force_z, total_force_x, total_force_y, total_force_z, viscous_force, pressure_force, total_force

8.16 Champ_post_reduction_0d

Synonymous: reduction_0d

Description: To calculate the min, max, sum, average, weighted sum, weighted average, weighted sum by porosity, weighted average by porosity, euclidian norm, normalized euclidian norm, L1 norm, L2 norm of a field.

See also: champ_post_de_champs_post (8.1)

Usage:

```
 \begin{array}{ll} \textbf{champ\_post\_reduction\_0d} & \textit{str} \\ \textbf{Read} & \textit{str} \end{array} \{
```

methode str into ['min', 'max', 'moyenne', 'average', 'moyenne_ponderee', 'weighted_average',
'somme', 'sum', 'somme_ponderee', 'weighted_sum', 'somme_ponderee_porosite', 'weighted_sum_porosity', 'euclidian_norm', 'normalized_euclidian_norm', 'L1_norm', 'L2_norm', 'valeur_a_gauche',
'left_value']
[source champ_generique_base]
[nom source str]

[source_reference str]
 [sources_reference list_nom_virgule]
 [sources listchamp_generique]
}
where

- methode str into ['min', 'max', 'moyenne', 'average', 'moyenne_ponderee', 'weighted_average', 'somme', 'sum', 'somme_ponderee', 'weighted_sum', 'somme_ponderee_porosite', 'weighted_sum_porosity', 'euclidian_norm', 'normalized_euclidian_norm', 'L1_norm', 'L2_norm', 'valeur_a_gauche', 'left_value']: name of the reduction method:
 - min for the minimum value.
 - max for the maximum value,
 - average (or movenne) for a mean,
 - weighted_average (or moyenne_ponderee) for a mean ponderated by integration volumes, e.g. cell volumes for temperature and pressure in VDF, volumes around faces for velocity and temperature in VEF,
 - sum (or somme) for the sum of all the values of the field,
 - weighted_sum (or somme_ponderee) for a weighted sum (integral),
 - weighted_average_porosity (or moyenne_ponderee_porosite) and weighted_sum_porosity (or somme_ponderee_porosite) for the mean and sum weighted by the volumes of the elements, only for ELEM

localisation,

- euclidian_norm for the euclidian norm,
- normalized euclidian norm for the euclidian norm normalized,
- L1_norm for norm L1,
- L2 norm for norm L2
- source champ_generique_base (8) for inheritance: the source field.
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source reference str for inheritance
- **sources_reference** *list_nom_virgule* (8.2) for inheritance
- **sources** *listchamp_generique* (8.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post... { ... }}

8.17 Champ_post_refchamp

```
Synonymous: refchamp

Description: Field of prolem

See also: champ_generique_base (8)

Usage:
champ_post_refchamp str

Read str {
    pb_champ deuxmots
    [nom_source str]
}

where
```

- **pb_champ** *deuxmots* (5.32): { Pb_champ nom_pb nom_champ } : nom_pb is the problem name and nom_champ is the selected field name.
- nom_source str: The alias name for the field

8.18 Champ_post_tparoi_vef

Synonymous: tparoi_vef

Description: This keyword is used to post process (only for VEF discretization) the temperature field with a slight difference on boundaries with Neumann condition where law of the wall is applied on the temperature field. nom_pb is the problem name and field_name is the selected field name. A keyword (temperature_physique) is available to post process this field without using Definition_champs.

```
See also: champ_post_de_champs_post (8.1)

Usage:
champ_post_tparoi_vef str

Read str {

    [ source champ_generique_base]
    [ nom_source str]
    [ source_reference str]
    [ sources_reference list_nom_virgule]
    [ sources listchamp_generique]
```

```
}
where
```

- source champ generique base (8) for inheritance: the source field.
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source reference str for inheritance
- **sources_reference** *list_nom_virgule* (8.2) for inheritance
- **sources** *listchamp_generique* (8.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post... { ... }}

8.19 Champ_post_transformation

```
Synonymous: transformation
Description: To create a field with a transformation.
See also: champ_post_de_champs_post (8.1)
Usage:
champ_post_transformation str
Read str {
     methode str into ['produit scalaire', 'norme', 'vecteur', 'formule', 'composante']
     [ expression n word1 word2 ... wordn]
     [ numero int]
     [localisation str]
     [source champ_generique_base]
     [ nom source str]
     [ source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
```

- methode str into ['produit_scalaire', 'norme', 'vecteur', 'formule', 'composante']: methode norme : will calculate the norm of a vector given by a source field methode produit_scalaire: will calculate the dot product of two vectors given by two sources fields methode composante numero integer: will create a field by extracting the integer component of a field given by a source field methode formule expression 1: will create a scalar field located to elements using expressions with x,y,z,t parameters and field names given by a source field or several sources fields. methode vecteur expression N f1(x,y,z,t) fN(x,y,z,t): will create a vector field located to elements by defining its N components with N expressions with x,y,z,t parameters and field names given by a source field or several sources fields.
- expression n word1 word2 ... wordn: see methodes formule and vecteur
- numero int: see methode composante
- **localisation** *str*: type_loc indicate where is done the interpolation (elem for element or som for node). The optional keyword methode is limited to calculer_champ_post for the moment
- **source** *champ_generique_base* (8) for inheritance: the source field.
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source_reference str for inheritance
- sources_reference list_nom_virgule (8.2) for inheritance
- **sources** *listchamp_generique* (8.3) for inheritance: sources { Champ_Post... { ... } Champ_Post... { ... }}

9 chimie

Description: Keyword to describe the chmical reactions

```
See also: objet_u (36)
Usage:
chimie str
Read str {
      reactions reactions
      [ modele_micro_melange int]
      [ constante_modele_micro_melange float]
      [ espece_en_competition_micro_melange str]
}
where
   • reactions reactions (9.1): list of reactions
   • modele_micro_melange int: modele_micro_melange (0 by default)
   • constante modele micro melange float: constante of modele (1 by default)
   • espece_en_competition_micro_melange str: espece in competition in reactions
9.1 Reactions
Description: list of reactions
See also: listobj (34.6)
Usage:
{ object1, object2....}
list of reaction (9.1.1) separeted with,
9.1.1 Reaction
Description: Keyword to describe reaction:
w = K pow(T,beta) \exp(-Ea/(RT)) \prod pow(Reactif_i,activitivity_i).
If K_{inv} > 0,
w= K pow(T,beta) exp(-Ea/( R T)) ( Π pow(Reactif_i,activitivity_i) - Kinv/exp(-c_r_Ea/(R T)) Π pow(Produit-
_i,activitivity_i ))
See also: objet_lecture (35)
Usage:
      reactifs str
      produits str
      [constante_taux_reaction float]
      [ coefficients_activites bloc_lecture]
      enthalpie_reaction float
      energie_activation float
      exposant_beta float
      [contre_reaction float]
      [contre_energie_activation float]
```

```
}
where
   • reactifs str: LHS of equation (ex CH4+2*O2)
   • produits str: RHS of equation (ex CO2+2*H20)
   • constante_taux_reaction float: constante of cinetic K
   • coefficients_activites bloc_lecture (3.54): coefficients od ativity (exemple { CH4 1 O2 2 })
   • enthalpie_reaction float: DH
   • energie_activation float: Ea
   • exposant_beta float: Beta
   • contre_reaction float: K_inv
   • contre_energie_activation float: c_r_Ea
10
      class generic
Description: not_set
See also: objet_u (36) dt_start (10.6) solveur_sys_base (10.14)
Usage:
10.1 Amgx
Description: Solver via AmgX API
See also: petsc (10.11)
Usage:
amgx solveur option_solveur [ atol ] [ rtol ]
where
   • solveur str
   • option_solveur bloc_lecture (3.54)
   • atol float: Absolute threshold for convergence (same as seuil option)
   • rtol float: Relative threshold for convergence
10.2
      Cholesky
Description: Cholesky direct method.
See also: solveur_sys_base (10.14)
Usage:
cholesky str
Read str {
     [impr]
     [quiet]
}
where
   • impr : Keyword which may be used to print the resolution time.
```

• quiet : To disable printing of information

10.3 Dt_calc

Description: The time step at first iteration is calculated in agreement with CFL condition.

```
See also: dt_start (10.6)
Usage:
dt_calc
```

10.4 Dt_fixe

Description: The first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).

```
See also: dt_start (10.6)

Usage:
dt_fixe value
where
```

• value float: first time step.

10.5 **Dt_min**

Description: The first iteration is based on dt_min.

```
See also: dt_start (10.6)
```

Usage: **dt_min**

10.6 Dt_start

```
Description: not_set
```

```
See also: class_generic (10) dt_calc (10.3) dt_min (10.5) dt_fixe (10.4)
```

Usage: **dt_start**

10.7 Gcp_ns

[precond_nul]

```
Description: not_set

See also: gcp (10.13)

Usage:
gcp_ns str
Read str {

solveur0 solveur_sys_base
solveur1 solveur_sys_base
[precond precond_base]
```

```
seuil float
[impr]
[quiet]
[save_matrix|save_matrice]
[optimized]
[nb_it_max int]
}
where
```

- solveur0 solveur_sys_base (10.14): Solver type.
- solveur1 solveur_sys_base (10.14): Solver type.
- **precond** *precond_base* (26) for inheritance: Keyword to define system preconditioning in order to accelerate resolution by the conjugated gradient. Many parallel preconditioning methods are not equivalent to their sequential counterpart, and you should therefore expect differences, especially when you select a high value of the final residue (seuil). The result depends on the number of processors and on the mesh splitting. It is sometimes useful to run the solver with no preconditioning at all. In particular:
 - when the solver does not converge during initial projection,
 - when comparing sequential and parallel computations.

With no preconditioning, except in some particular cases (no open boundary), the sequential and the parallel computations should provide exactly the same results within fpu accuracy. If not, there might be a coding error or the system of equations is singular.

- **precond_nul** for inheritance: Keyword to not use a preconditioning method.
- seuil *float* for inheritance: Value of the final residue. The gradient ceases iteration when the Euclidean residue standard ||Ax-B|| is less than this value.
- **impr** for inheritance: Keyword which is used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- quiet for inheritance: To not displaying any outputs of the solver.
- save_matrix|save_matrice for inheritance: to save the matrix in a file.
- **optimized** for inheritance: This keyword triggers a memory and network optimized algorithms useful for strong scaling (when computing less than 100 000 elements per processor). The matrix and the vectors are duplicated, common items removed and only virtual items really used in the matrix are exchanged.

Warning: this is experimental and known to fail in some VEF computations (L2 projection step will not converge). Works well in VDF.

• **nb_it_max** *int* for inheritance: Keyword to set the maximum iterations number for the Gcp.

10.8 Gen

```
Description: not_set

See also: solveur_sys_base (10.14)

Usage:
gen str
Read str {

    solv_elem str
    precond precond_base
    [ seuil float]
    [ impr ]
    [ save_matrix|save_matrice ]
    [ quiet ]
```

```
[ nb_it_max int]
        [ force ]
}
where
```

- solv_elem str: To specify a solver among gmres or bicgstab.
- precond precond_base (26): The only preconditionner that we can specify is ilu.
- seuil *float*: Value of the final residue. The solver ceases iterations when the Euclidean residue standard ||Ax-B|| is less than this value. default value 1e-12.
- **impr**: Keyword which is used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- save_matrix|save_matrice : To save the matrix in a file.
- quiet: To not displaying any outputs of the solver.
- **nb_it_max** *int*: Keyword to set the maximum iterations number for the GEN solver.
- **force**: Keyword to set ipar[5]=-1 in the GEN solver. This is helpful if you notice that the solver does not perform more than 100 iterations. If this keyword is specified in the datafile, you should provide nb_it_max.

10.9 Gmres

Description: Gmres method (for non symetric matrix).

```
See also: solveur_sys_base (10.14)

Usage:
gmres str
Read str {

    [impr]
    [quiet]
    [seuil float]
    [diag]
    [nb_it_max int]
    [controle_residu int into [0, 1]]
    [save_matrix|save_matrice]
    [dim_espace_krilov int]
}

where
```

- **impr** : Keyword which may be used to print the convergence.
- quiet : To disable printing of information
- seuil float: Convergence value.
- diag: Keyword to use diagonal preconditionner (in place of pilut that is not parallel).
- **nb it max** *int*: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** *int into* [0, 1]: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.
- save_matrix|save_matrice : to save the matrix in a file.
- dim_espace_krilov int

10.10 Optimal

Description: Optimal is a solver which tests several solvers of the previous list to choose the fastest one for the considered linear system.

```
See also: solveur_sys_base (10.14)

Usage:
optimal str
Read str {

    seuil float
    [impr ]
    [quiet ]
    [save_matrix|save_matrice ]
    [frequence_recalc int]
    [nom_fichier_solveur str]
    [fichier_solveur_non_recree ]
}
where
```

- seuil *float*: Convergence threshold
- impr : To print the convergency of the fastest solver
- quiet : To disable printing of information
- save_matrix|save_matrice : To save the linear system (A, x, B) into a file
- frequence_recalc int: To set a time step period (by default, 100) for re-checking the fatest solver
- nom_fichier_solveur str: To specify the file containing the list of the tested solvers
- fichier_solveur_non_recree : To avoid the creation of the file containing the list

10.11 Petsc

Description: Solver via Petsc API

Usage:

```
Solveur_pression Petsc Solver { precond Precond [ seuil seuil | nb_it_max integer ] [ impr | quiet ] [ save_matrix | read_matrix] }
```

Solver: Several solvers through PETSc API are available:

GCP: Conjugate Gradient

PIPECG: Pipelined Conjugate Gradient (possible reduced CPU cost during massive parallel calculation due to a single non-blocking reduction per iteration, if TRUST is built with a MPI-3 implementation).

GMRES: Generalized Minimal Residual

BICGSTAB: Stabilized Bi-Conjugate Gradient

IBICGSTAB: Improved version of previous one for massive parallel computations (only a single global reduction operation instead of the usual 3 or 4).

CHOLESKY: Parallelized version of Cholesky from MUMPS library. This solver accepts since the 1.6.7 version an option to select a different ordering than the automatic selected one by MUMPS (and printed by using the **impr** option). The possible choices are **Metis** | **Scotch** | **PT-Scotch** | **Parmetis**. The two last

options can only be used during a parallel calculation, whereas the two first are available for sequential or parallel calculations. It seems that the CPU cost of A=LU factorization but also of the backward/forward elimination steps may sometimes be reduced by selecting a different ordering (Scotch seems often the best for b/f elimination) than the default one. Notice that this solver requires a huge amont of memory compared to iterative methods. To know how many RAM you will need by core, then use the **impr** option to have detailled informations during the analysis phase and before the factorisation phase (in the following output, you will learn that the largest memory is taken by the 0th CPU with 108MB):

...

** Rank of proc needing largest memory in IC facto : 0

** Estimated corresponding MBYTES for IC facto : 108

•••

Thanks to the following graph, you read that in order to solve for instance a flow on a mesh with 2.6e6 cells, you will need to run a parallel calculation on 32 CPUs if you have cluster nodes with only 4GB/core (6.2GB*0.42~2.6GB):

Relative evolution compare to a 16 CPUs parallel calculation on a 2.6e6 cells mesh (163000 cells/CPU) where: Peak RAM/CPU is 6.2GB A=LU in factorization in 206 s x=A-1.B solve in 0.83 s

CHOLESKY_OUT_OF_CORE: Same as the previous one but with a written LU decomposition of disk (save RAM memory but add an extra CPU cost during Ax=B solve)

CHOLESKY_SUPERLU: Parallelized Cholesky from SUPERLU_DIST library (less CPU and RAM efficient than the previous one)

CHOLESKY_PASTIX: Parallelized Cholesky from PASTIX library

CHOLESKY_UMFPACK: Sequential Cholesky from UMFPACK library (seems fast).

CLI { string } : Command Line Interface. Should be used only by advanced users, to access the whole solver/preconditioners from the PETSC API. To find all the available options, run your calculation with the -ksp_view -help options:

trust datafile [N] -ksp view -help

. . .

Preconditioner (PC) Options -----

-pc_type Preconditioner:(one of) none jacobi pbjacobi bjacobi sor lu shell mg

eisenstat ilu icc cholesky asm ksp composite redundant nn mat fieldsplit galerkin openmp spai hypre tfs (PCSetType)

HYPRE preconditioner options

-pc_hypre_type <pilut> (choose one of) pilut parasails boomeramg

HYPRE ParaSails Options

- -pc_hypre_parasails_nlevels <1>: Number of number of levels (None)
- -pc_hypre_parasails_thresh <0.1>: Threshold (None)
- -pc_hypre_parasails_filter <0.1>: filter (None)
- -pc_hypre_parasails_loadbal <0>: Load balance (None)
- -pc_hypre_parasails_logging: <FALSE> Print info to screen (None)
- -pc_hypre_parasails_reuse: <FALSE> Reuse nonzero pattern in preconditioner (None)
- -pc hypre parasails sym <nonsymmetric> (choose one of) nonsymmetric SPD nonsymmetric, SPD

Krylov Method (KSP) Options -----

- -ksp_type Krylov method:(one of) cg cgne stcg gltr richardson chebychev gmres tcqmr
 - bcgs bcgsl cgs tfqmr cr lsqr preonly qcg bicg fgmres minres symmlq lgmres lcd (KSPSetType)
- -ksp max it <10000>: Maximum number of iterations (KSPSetTolerances)
- -ksp rtol <0>: Relative decrease in residual norm (KSPSetTolerances)
- -ksp atol <1e-12>: Absolute value of residual norm (KSPSetTolerances)
- -ksp_divtol <10000>: Residual norm increase cause divergence (KSPSetTolerances)
- -ksp_converged_use_initial_residual_norm: Use initial residual residual norm for computing relative convergence
- -ksp_monitor_singular_value <stdout>: Monitor singular values (KSPMonitorSet)
- -ksp_monitor_short <stdout>: Monitor preconditioned residual norm with fewer digits (KSPMonitorSet)
- -ksp_monitor_draw: Monitor graphically preconditioned residual norm (KSPMonitorSet)
- -ksp_monitor_draw_true_residual: Monitor graphically true residual norm (KSPMonitorSet)

Example to use the multigrid method as a solver, not only as a preconditioner:

Solveur_pression Petsc CLI { -ksp_type richardson -pc_type hypre -pc_hypre_type boomeramg -ksp_atol 1.e-7 }

Precond: Several preconditioners are available:

NULL { } : No preconditioner used

BLOCK_JACOBI_ICC { **level** k **ordering natural** | **rcm** } : Incomplete Cholesky factorization for symmetric matrix with the PETSc implementation. The integer k is the factorization level (default value, 1). In parallel, the factorization is done by block (one per processor by default). The ordering of the local matrix is **natural** by default, but **rcm** ordering, which reduces the bandwith of the local matrix, may interestingly improves the quality of the decomposition and reduces the number of iterations.

SSOR { **omega** double } : Symmetric Successive Over Relaxation algorithm. **omega** (default value, 1.5) defines the relaxation factor.

EISENTAT { **omega** double } : SSOR version with Eisenstat trick which reduces the number of computations and thus CPU cost

SPAI { **level** nlevels **epsilon** thresh } : Spai Approximate Inverse algorithm from Parasails Hypre library. Two parameters are available, nlevels and thresh.

PILUT { **level** k **epsilon** thresh }: Dual Threashold Incomplete LU factorization. The integer k is the factorization level and **epsilon** is the drop tolerance.

DIAG { } : Diagonal (Jacobi) preconditioner.

BOOMERAMG { }: Multigrid preconditioner (no option is available yet, look at CLI command and Petsc documentation to try other options).

seuil corresponds to the iterative solver convergence value. The iterative solver converges when the Euclidean residue standard ||Ax-B|| is less than the value *seuil*.

nb_it_max integer: In order to specify a given number of iterations instead of a condition on the residue with the keyword **seuil**. May be useful when defining a PETSc solver for the implicit time scheme where convergence is very fast: 5 or less iterations seems enough.

impr is the keyword which is used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).

quiet is a keyword which is used to not displaying any outputs of the solver.

save_matrixlread_matrix are the keywords to savelread into a file the constant matrix A of the linear system Ax=B solved (eg: matrix from the pressure linear system for an incompressible flow). It is useful when you want to minimize the MPI communications on massive parallel calculation. Indeed, in VEF discretization, the overlapping width (generaly 2, specified with the **largeur_joint** option in the partition keyword **partition**) can be reduced to 1, once the matrix has been properly assembled and saved. The cost of the MPI communications in TRUST itself (not in PETSc) will be reduced with length messages divided by 2. So the strategy is:

- I) Partition your VEF mesh with a largeur_joint value of 2
- II) Run your parallel calculation on 0 time step, to build and save the matrix with the **save_matrix** option. A file named *Matrix_NBROWS_rows_NCPUS_cpus.petsc* will be saved to the disk (where NBROWS is the number of rows of the matrix and NCPUS the number of CPUs used).
- III) Partition your VEF mesh with a largeur_joint value of 1
- IV) Run your parallel calculation completly now and substitute the **save_matrix** option by the **read_matrix** option. Some interesting gains have been noticed when the cost of linear system solve with PETSc is small compared to all the other operations.

TIPS:

- A) Solver for symmetric linear systems (e.g. Pressure system from Navier-Stokes equations):
- -The **CHOLESKY** parallel solver is from MUMPS library. It offers better performance than all others solvers if you have enough RAM for your calculation. A parallel calculation on a cluster with 4GBytes on each processor, 40000 cells/processor seems the upper limit. Seems to be very slow to initialize above 500 cpus/cores.
- -When running a parallel calculation with a high number of cpus/cores (typically more than 500) where preconditioner scalability is the key for CPU performance, consider **BICGSTAB** with **BLOCK_JACOBI_ICC(1)** as preconditioner or if not converges, **GCP** with **BLOCK_JACOBI_ICC(1)** as preconditioner.
- -For other situations, the first choice should be **GCP/SSOR**. In order to fine tune the solver choice, each one of the previous list should be considered. Indeed, the CPU speed of a solver depends of a lot of parameters. You may give a try to the **OPTIMAL** solver to help you to find the fastest solver on your study.
- B) Solver for non symmetric linear systems (e.g.: Implicit schemes): The **BICGSTAB/DIAG** solver seems to offer the best performances.

Additional information is available into the PETSC documentation available on:

\$TRUST_ROOT/lib/src/LIBPETSC/petsc/*/docs/manual.pdf

```
See also: solveur_sys_base (10.14) amgx (10.1) rocalution (10.12)
Usage:
petsc solveur option_solveur [atol][rtol]
where
   • solveur str
   • option_solveur bloc_lecture (3.54)
   • atol float: Absolute threshold for convergence (same as seuil option)
   • rtol float: Relative threshold for convergence
10.12 Rocalution
Description: Solver via rocALUTION API
See also: petsc (10.11)
Usage:
rocalution solveur option_solveur [atol][rtol]
where
   • solveur str
   • option_solveur bloc_lecture (3.54)
   • atol float: Absolute threshold for convergence (same as seuil option)
   • rtol float: Relative threshold for convergence
10.13 Gcp
Description: Preconditioned conjugated gradient.
See also: solveur_sys_base (10.14) gcp_ns (10.7)
Usage:
gcp str
Read str {
     [ precond precond_base]
     [ precond_nul ]
     seuil float
     [impr]
     [quiet]
     [ save_matrix|save_matrice ]
     [ optimized ]
     [ nb_it_max int]
where
```

• **precond** *precond_base* (26): Keyword to define system preconditioning in order to accelerate resolution by the conjugated gradient. Many parallel preconditioning methods are not equivalent to their sequential counterpart, and you should therefore expect differences, especially when you select a high value of the final residue (seuil). The result depends on the number of processors and on the mesh splitting. It is sometimes useful to run the solver with no preconditioning at all. In particular:

- when the solver does not converge during initial projection,

- when comparing sequential and parallel computations.
- With no preconditioning, except in some particular cases (no open boundary), the sequential and the parallel computations should provide exactly the same results within fpu accuracy. If not, there might be a coding error or the system of equations is singular.
- **precond_nul**: Keyword to not use a preconditioning method.
- **seuil** *float*: Value of the final residue. The gradient ceases iteration when the Euclidean residue standard ||Ax-B|| is less than this value.
- **impr**: Keyword which is used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- quiet: To not displaying any outputs of the solver.
- save_matrix|save_matrice : to save the matrix in a file.
- **optimized**: This keyword triggers a memory and network optimized algorithms useful for strong scaling (when computing less than 100 000 elements per processor). The matrix and the vectors are duplicated, common items removed and only virtual items really used in the matrix are exchanged. Warning: this is experimental and known to fail in some VEF computations (L2 projection step will not converge). Works well in VDF.
- **nb_it_max** *int*: Keyword to set the maximum iterations number for the Gcp.

10.14 Solveur_sys_base

Description: Basic class to solve the linear system.

See also: class_generic (10) optimal (10.10) gen (10.8) petsc (10.11) gcp (10.13) cholesky (10.2) gmres (10.9)

Usage:

11

11.1

Description: Comments in a data file.

See also: objet_u (36)

Usage: # comm where

• comm str: Text to be commented.

12 condlim_base

Description: Basic class of boundary conditions.

See also: objet_u (36) paroi_fixe (12.38) symetrie (12.46) periodique (12.43) paroi_adiabatique (12.27) dirichlet (12.10) neumann (12.26) paroi_contact (12.28) paroi_contact_fictif (12.29) paroi_echange_contact_vdf (12.34) paroi_echange_externe_impose (12.35) paroi_echange_global_impose (12.37) Paroi (12.9) paroi_flux_impose (12.40) frontiere_ouverte_fraction_massique_imposee (12.14) paroi_echange_contact_correlation_vdf (12.32) paroi_echange_contact_correlation_vef (12.33) Paroi_echange_interne_global_impose (12.2) Paroi_echange_interne_global_parfait (12.3) Paroi_echange_interne_parfait (12.5) Paroi_echange_interne_impose (12.4) paroi_decalee_robin (12.30) Neumann_homogene (12.6) Neumann_paroi

```
(12.7)
Usage:
condlim_base
       Echange_couplage_thermique
Description: Thermal coupling boundary condition
See also: paroi_echange_global_impose (12.37)
Usage:
Echange_couplage_thermique str
Read str {
     [temperature_paroi champ_base]
     [flux_paroi champ_base]
}
where
   • temperature_paroi champ_base (15.1): Temperature
   • flux_paroi champ_base (15.1): Wall heat flux
12.2
      Paroi_echange_interne_global_impose
Description: Internal heat exchange boundary condition with global exchange coefficient.
See also: condlim_base (12)
Usage:
Paroi_echange_interne_global_impose h_imp ch
   • h_imp str: Global exchange coefficient value. The global exchange coefficient value is expressed
     in W.m-2.K-1.
   • ch champ_front_base (16.1): Boundary field type.
12.3
      Paroi_echange_interne_global_parfait
Description: Internal heat exchange boundary condition with perfect (infinite) exchange coefficient.
See also: condlim_base (12)
Usage:
Paroi_echange_interne_global_parfait
     Paroi_echange_interne_impose
12.4
Description: Internal heat exchange boundary condition with exchange coefficient.
```

See also: condlim_base (12)

Usage:

$Paroi_echange_interne_impose \ h_imp \ ch$

where

- h_imp str: Exchange coefficient value expressed in W.m-2.K-1.
- ch champ_front_base (16.1): Boundary field type.

12.5 Paroi_echange_interne_parfait

Description: Internal heat exchange boundary condition with perfect (infinite) exchange coefficient.

See also: condlim_base (12)

Usage:

Paroi_echange_interne_parfait

12.6 Neumann_homogene

Description: Homogeneous neumann boundary condition

See also: condlim_base (12) Neumann_paroi_adiabatique (12.8)

Usage:

Neumann_homogene

12.7 Neumann_paroi

Description: Neumann boundary condition for mass equation (multiphase problem)

See also: condlim_base (12)

Usage:

Neumann paroi ch

where

• **ch** *champ_front_base* (16.1): Boundary field type.

12.8 Neumann_paroi_adiabatique

Description: Adiabatic wall neumann boundary condition

See also: Neumann_homogene (12.6)

Usage:

Neumann_paroi_adiabatique

12.9 Paroi

Description: Impermeability condition at a wall called bord (edge) (standard flux zero). This condition must be associated with a wall type hydraulic condition.

See also: condlim_base (12)

Usage:

Paroi

12.10 Dirichlet

Description: Dirichlet condition at the boundary called bord (edge): 1). For Navier-Stokes equations, velocity imposed at the boundary; 2). For scalar transport equation, scalar imposed at the boundary.

See also: condlim_base (12) paroi_defilante (12.31) paroi_knudsen_non_negligeable (12.41) frontiere_ouverte_vitesse_imposee (12.24) frontiere_ouverte_temperature_imposee (12.23) frontiere_ouverte_concentration_imposee (12.13) paroi_temperature_imposee (12.42) scalaire_impose_paroi (12.44)

Usage:

dirichlet

12.11 Entree_temperature_imposee_h

Description: Particular case of class frontiere ouverte temperature imposee for enthalpy equation.

See also: frontiere_ouverte_temperature_imposee (12.23)

Usage:

entree_temperature_imposee_h ch
where

• ch champ_front_base (16.1): Boundary field type.

12.12 Frontiere ouverte

Description: Boundary outlet condition on the boundary called bord (edge) (diffusion flux zero). This condition must be associated with a boundary outlet hydraulic condition.

See also: neumann (12.26)

Usage:

frontiere_ouverte var_name ch where

- var_name str into ['T_ext', 'C_ext', 'Y_ext', 'K_Eps_ext', 'Fluctu_Temperature_ext', 'Flux_Chaleur_Turb_ext', 'V2_ext', 'a_ext', 'tau_ext', 'k_ext', 'omega_ext']: Field name.
- ch champ_front_base (16.1): Boundary field type.

12.13 Frontiere_ouverte_concentration_imposee

Description: Imposed concentration condition at an open boundary called bord (edge) (situation corresponding to a fluid inlet). This condition must be associated with an imposed inlet velocity condition.

See also: dirichlet (12.10)

Usage:

 $\label{lem:concentration_imposee} \ \ ch \\ \ \ where$

• **ch** *champ_front_base* (16.1): Boundary field type.

12.14 Frontiere_ouverte_fraction_massique_imposee

Description: not_set

See also: condlim base (12)

Usage:

frontiere_ouverte_fraction_massique_imposee ch where

• **ch** *champ_front_base* (16.1): Boundary field type.

12.15 Frontiere_ouverte_gradient_pression_impose

Description: Normal imposed pressure gradient condition on the open boundary called bord (edge). This boundary condition may be only used in VDF discretization. The imposed $\partial P/\partial n$ value is expressed in Pa.m-1.

See also: neumann (12.26) frontiere_ouverte_gradient_pression_impose_vefprep1b (12.16)

Usage

frontiere_ouverte_gradient_pression_impose ch where

• **ch** champ front base (16.1): Boundary field type.

12.16 Frontiere_ouverte_gradient_pression_impose_vefprep1b

Description: Keyword for an outlet boundary condition in VEF P1B/P1NC on the gradient of the pressure.

See also: frontiere_ouverte_gradient_pression_impose (12.15)

Usage:

 $frontiere_ouverte_gradient_pression_impose_vefprep1b \quad ch \\$ where

• **ch** *champ_front_base* (16.1): Boundary field type.

12.17 Frontiere_ouverte_gradient_pression_libre_vef

Description: Class for outlet boundary condition in VEF like Orlansky. There is no reference for pressure for theses boundary conditions so it is better to add pressure condition (with Frontiere_ouverte_pression_imposee) on one or two cells (for symmetry in a channel) of the boundary where Orlansky conditions are imposed.

See also: neumann (12.26)

Usage:

frontiere_ouverte_gradient_pression_libre_vef

12.18 Frontiere_ouverte_gradient_pression_libre_vefprep1b

Description: Class for outlet boundary condition in VEF P1B/P1NC like Orlansky.

See also: neumann (12.26)

Usage:

frontiere_ouverte_gradient_pression_libre_vefprep1b

12.19 Frontiere_ouverte_pression_imposee

Description: Imposed pressure condition at the open boundary called bord (edge). The imposed pressure field is expressed in Pa.

See also: neumann (12.26)

Usage:

 $frontiere_ouverte_pression_imposee \ \ ch$

where

• **ch** *champ_front_base* (16.1): Boundary field type.

12.20 Frontiere_ouverte_pression_imposee_orlansky

Description: This boundary condition may only be used with VDF discretization. There is no reference for pressure for this boundary condition so it is better to add pressure condition (with Frontiere_ouverte_pression_imposee) on one or two cells (for symetry in a channel) of the boundary where Orlansky conditions are imposed.

See also: neumann (12.26)

Usage:

frontiere_ouverte_pression_imposee_orlansky

12.21 Frontiere_ouverte_pression_moyenne_imposee

Description: Class for open boundary with pressure mean level imposed.

See also: neumann (12.26)

Usage:

frontiere_ouverte_pression_moyenne_imposee pext where

• pext *float*: Mean pressure.

12.22 Frontiere_ouverte_rho_u_impose

Description: This keyword is used to designate a condition of imposed mass rate at an open boundary called bord (edge). The imposed mass rate field at the inlet is vectorial and the imposed velocity values are expressed in kg.s-1. This boundary condition can be used only with the Quasi compressible model.

See also: frontiere_ouverte_vitesse_imposee_sortie (12.25)

Usage:

frontiere_ouverte_rho_u_impose ch where

• ch champ_front_base (16.1): Boundary field type.

12.23 Frontiere_ouverte_temperature_imposee

Description: Imposed temperature condition at the open boundary called bord (edge) (in the case of fluid inlet). This condition must be associated with an imposed inlet velocity condition. The imposed temperature value is expressed in oC or K.

See also: dirichlet (12.10) entree_temperature_imposee_h (12.11)

Usage:

frontiere_ouverte_temperature_imposee ch where

• ch champ_front_base (16.1): Boundary field type.

12.24 Frontiere_ouverte_vitesse_imposee

Description: Class for velocity-inlet boundary condition. The imposed velocity field at the inlet is vectorial and the imposed velocity values are expressed in m.s-1.

See also: dirichlet (12.10) frontiere_ouverte_vitesse_imposee_sortie (12.25)

Usage:

frontiere_ouverte_vitesse_imposee ch where

• **ch** *champ_front_base* (16.1): Boundary field type.

12.25 Frontiere_ouverte_vitesse_imposee_sortie

Description: Sub-class for velocity boundary condition. The imposed velocity field at the open boundary is vectorial and the imposed velocity values are expressed in m.s-1.

See also: frontiere_ouverte_vitesse_imposee (12.24) frontiere_ouverte_rho_u_impose (12.22)

Usage:

 $\label{lem:continuous} \textbf{frontiere_ouverte_vitesse_imposee_sortie} \quad \textbf{ch} \\ \text{where} \\$

• **ch** *champ_front_base* (16.1): Boundary field type.

12.26 Neumann

Description: Neumann condition at the boundary called bord (edge): 1). For Navier-Stokes equations, constraint imposed at the boundary; 2). For scalar transport equation, flux imposed at the boundary.

See also: condlim_base (12) frontiere_ouverte_gradient_pression_libre_vef (12.17) frontiere_ouverte_gradient_pression_libre_vefprep1b (12.18) frontiere_ouverte_gradient_pression_impose (12.15) frontiere_ouverte_pression_imposee (12.19) frontiere_ouverte_pression_imposee_orlansky (12.20) frontiere_ouverte_pression_moyenne_imposee (12.21) frontiere_ouverte (12.12) sortie_libre_temperature_imposee_h (12.45)

Usage:

neumann

12.27 Paroi adiabatique

Description: Normal zero flux condition at the wall called bord (edge).

See also: condlim_base (12)

Usage:

paroi_adiabatique

12.28 Paroi contact

Description: Thermal condition between two domains. Important: the name of the boundaries in the two domains should be the same. (Warning: there is also an old limitation not yet fixed on the sequential algorithm in VDF to detect the matching faces on the two boundaries: faces should be ordered in the same way). The kind of condition depends on the discretization. In VDF, it is a heat exchange condition, and in VEF, a temperature condition.

Such a coupling requires coincident meshes for the moment. In case of non-coincident meshes, run is stopped and two external files are automatically generated in VEF (connectivity_failed_boundary_name and connectivity_failed_pb_name.med). In 2D, the keyword Decouper_bord_coincident associated to the connectivity failed boundary name file allows to generate a new coincident mesh.

In 3D, for a first preliminary cut domain with HOMARD (fluid for instance), the second problem associated to pb_name (solide in a fluid/solid coupling problem) has to be submitted to HOMARD cutting procedure with connectivity_failed_pb_name.med.

Such a procedure works as while the primary refined mesh (fluid in our example) impacts the fluid/solid interface with a compact shape as described below (values 2 or 4 indicates the number of division from primary faces obtained in fluid domain at the interface after HOMARD cutting):

```
2-2-2-2-2
2-4-4-4-4-4-2 2-2-2
2-4-4-4-4-2 2-4-2
2-2-2-2-2 2-2
OK
```

2-2 2-2-2 2-4-2 2-2 2-2 2-2 NOT OK

See also: condlim base (12)

Usage:

paroi_contact autrepb nameb

where

- autrepb str: Name of other problem.
- nameb str: boundary name of the remote problem which should be the same than the local name

12.29 Paroi contact fictif

Description: This keyword is derivated from paroi_contact and is especially dedicated to compute coupled fluid/solid/fluid problem in case of thin material. Thanks to this option, solid is considered as a fictitious media (no mesh, no domain associated), and coupling is performed by considering instantaneous thermal equilibrium in it (for the moment).

Usage:
paroi_contact_fictif autrepb nameb conduct_fictif ep_fictive
where

• autrepb str: Name of other problem.
• nameb str: Name of bord.
• conduct_fictif float: thermal conductivity
• ep_fictive float: thickness of the fictitious media

12.30 Paroi_decalee_robin

Description: This keyword is used to designate a Robin boundary condition (a.u+b.du/dn=c) associated with the Pironneau methodology for the wall laws. The value of given by the delta option is the distance between the mesh (where symmetry boundary condition is applied) and the fictious wall. This boundary condition needs the definition of the dedicated source terms (Source_Robin or Source_Robin_Scalaire) according the equations used.

```
See also: condlim_base (12)

Usage:
paroi_decalee_robin str

Read str {
    delta float
}
where
• delta float
```

12.31 Paroi defilante

Description: Keyword to designate a condition where tangential velocity is imposed on the wall called bord (edge). If the velocity components set by the user is not tangential, projection is used.

```
See also: dirichlet (12.10)

Usage:
paroi_defilante ch
where

• ch champ_front_base (16.1): Boundary field type.
```

12.32 Paroi_echange_contact_correlation_vdf

Description: Class to define a thermohydraulic 1D model which will apply to a boundary of 2D or 3D domain.

Warning: For parallel calculation, the only possible partition will be according the axis of the model with the keyword Tranche.

```
See also: condlim base (12)
Usage:
paroi_echange_contact_correlation_vdf str
Read str {
     dir int
     tinf float
     tsup float
     lambda str
     rho str
     cp float
     dt_impr float
     mu str
     debit float
     dh float
     volume str
     nu str
     [reprise_correlation]
}
```

where

- dir int: Direction (0 : axis X, 1 : axis Y, 2 : axis Z) of the 1D model.
- tinf *float*: Inlet fluid temperature of the 1D model (oC or K).
- tsup *float*: Outlet fluid temperature of the 1D model (oC or K).
- lambda str: Thermal conductivity of the fluid (W.m-1.K-1).
- rho str: Mass density of the fluid (kg.m-3) which may be a function of the temperature T.
- cp float: Calorific capacity value at a constant pressure of the fluid (J.kg-1.K-1).
- **dt_impr** *float*: Printing period in name_of_data_file_time.dat files of the 1D model results.
- mu str: Dynamic viscosity of the fluid (kg.m-1.s-1) which may be a function of the temperature T.
- **debit** *float*: Surface flow rate (kg.s-1.m-2) of the fluid into the channel.
- **dh** *float*: Hydraulic diameter may be a function f(x) with x position along the 1D axis (xinf <= x <= xsup)
- **volume** *str*: Exact volume of the 1D domain (m3) which may be a function of the hydraulic diameter (Dh) and the lateral surface (S) of the meshed boundary.
- **nu** *str*: Nusselt number which may be a function of the Reynolds number (Re) and the Prandtl number (Pr).
- reprise_correlation : Keyword in the case of a resuming calculation with this correlation.

12.33 Paroi_echange_contact_correlation_vef

Description: Class to define a thermohydraulic 1D model which will apply to a boundary of 2D or 3D domain.

Warning: For parallel calculation, the only possible partition will be according the axis of the model with the keyword Tranche_geom.

```
See also: condlim_base (12)
Usage:
paroi_echange_contact_correlation_vef str
Read str {
     dir int
     tinf float
     tsup float
     lambda str
     rho str
     cp float
     dt_impr float
     mu str
     debit float
     dh str
     n int
     surface str
     nu str
     xinf float
     xsup float
     [ emissivite_pour_rayonnement_entre_deux_plaques_quasi_infinies float]
     [reprise_correlation]
}
where
```

- dir int: Direction (0 : axis X, 1 : axis Y, 2 : axis Z) of the 1D model.
- tinf float: Inlet fluid temperature of the 1D model (oC or K).
- tsup *float*: Outlet fluid temperature of the 1D model (oC or K).
- **lambda** str: Thermal conductivity of the fluid (W.m-1.K-1).
- rho str: Mass density of the fluid (kg.m-3) which may be a function of the temperature T.
- cp float: Calorific capacity value at a constant pressure of the fluid (J.kg-1.K-1).
- **dt_impr** *float*: Printing period in name_of_data_file_time.dat files of the 1D model results.
- mu str: Dynamic viscosity of the fluid (kg.m-1.s-1) which may be a function of the temperature T.
- **debit** *float*: Surface flow rate (kg.s-1.m-2) of the fluid into the channel.
- **dh** *str*: Hydraulic diameter may be a function f(x) with x position along the 1D axis (xinf <= x <= xsup)
- **n** *int*: Number of 1D cells of the 1D mesh.
- **surface** *str*: Section surface of the channel which may be function f(Dh,x) of the hydraulic diameter (Dh) and x position along the 1D axis (xinf <= x <= xsup)
- **nu** *str*: Nusselt number which may be a function of the Reynolds number (Re) and the Prandtl number (Pr).
- xinf float: Position of the inlet of the 1D mesh on the axis direction.
- **xsup** *float*: Position of the outlet of the 1D mesh on the axis direction.
- emissivite_pour_rayonnement_entre_deux_plaques_quasi_infinies float: Coefficient of emissivity for radiation between two quasi infinite plates.
- reprise_correlation : Keyword in the case of a resuming calculation with this correlation.

12.34 Paroi_echange_contact_vdf

Description: Boundary condition type to model the heat flux between two problems. Important: the name of the boundaries in the two problems should be the same.

See also: condlim_base (12)

Usage:

paroi_echange_contact_vdf autrepb nameb temp h
where

- autrepb str: Name of other problem.
- nameb str: Name of bord.
- temp str: Name of field.
- h *float*: Value assigned to a coefficient (expressed in W.K-1m-2) that characterises the contact between the two mediums. In order to model perfect contact, h must be taken to be infinite. This value must obviously be the same in both the two problems blocks.

The surface thermal flux exchanged between the two mediums is represented by:

fi = h (T1-T2) where $1/h = d1/lambda1 + 1/val_h_contact + d2/lambda2$

where di: distance between the node where Ti and the wall is found.

12.35 Paroi_echange_externe_impose

Description: External type exchange condition with a heat exchange coefficient and an imposed external temperature.

See also: condlim_base (12) paroi_echange_externe_impose_h (12.36)

Usage:

paroi_echange_externe_impose h_imp himpc text ch
where

- h imp str: Heat exchange coefficient value (expressed in W.m-2.K-1).
- himpc champ_front_base (16.1): Boundary field type.
- **text** *str*: External temperature value (expressed in oC or K).
- **ch** champ front base (16.1): Boundary field type.

12.36 Paroi echange externe impose h

Description: Particular case of class paroi_echange_externe_impose for enthalpy equation.

See also: paroi_echange_externe_impose (12.35)

Usage:

paroi_echange_externe_impose_h h_imp himpc text ch where

- **h_imp** *str*: Heat exchange coefficient value (expressed in W.m-2.K-1).
- himpc champ_front_base (16.1): Boundary field type.
- **text** *str*: External temperature value (expressed in oC or K).
- **ch** *champ_front_base* (16.1): Boundary field type.

12.37 Paroi_echange_global_impose

Description: Global type exchange condition (internal) that is to say that diffusion on the first fluid mesh is not taken into consideration.

See also: condlim_base (12) Echange_couplage_thermique (12.1)

Usage:

paroi_echange_global_impose h_imp himpc text ch
where

- **h_imp** *str*: Global exchange coefficient value. The global exchange coefficient value is expressed in W.m-2.K-1.
- himpc champ_front_base (16.1): Boundary field type.
- text str: External temperature value. The external temperature value is expressed in oC or K.
- ch champ_front_base (16.1): Boundary field type.

12.38 Paroi_fixe

Description: Keyword to designate a situation of adherence to the wall called bord (edge) (normal and tangential velocity at the edge is zero).

See also: condlim_base (12) paroi_fixe_iso_Genepi2_sans_contribution_aux_vitesses_sommets (12.39)

Usage:

paroi_fixe

12.39 Paroi_fixe_iso_genepi2_sans_contribution_aux_vitesses_sommets

Description: Boundary condition to obtain iso Geneppi2, without interest

See also: paroi_fixe (12.38)

Usage:

paroi_fixe_iso_Genepi2_sans_contribution_aux_vitesses_sommets

12.40 Paroi_flux_impose

Description: Normal flux condition at the wall called bord (edge). The surface area of the flux (W.m-1 in 2D or W.m-2 in 3D) is imposed at the boundary according to the following convention: a positive flux is a flux that enters into the domain according to convention.

See also: condlim_base (12)

Usage:

paroi_flux_impose ch

where

• **ch** *champ_front_base* (16.1): Boundary field type.

12.41 Paroi_knudsen_non_negligeable

Description: Boundary condition for number of Knudsen (Kn) above 0.001 where slip-flow condition appears: the velocity near the wall depends on the shear stress: Kn=l/L with l is the mean-free-path of the molecules and L a characteristic length scale.

U(y=0)-Uwall=k(dU/dY)

Where k is a coefficient given by several laws:

Mawxell: k=(2-s)*l/s

```
Bestok&Karniadakis :k=(2-s)/s*L*Kn/(1+Kn)
Xue&Fan :k=(2-s)/s*L*tanh(Kn)
s is a value between 0 and 2 named accomodation coefficient. s=1 seems a good value.
Warning : The keyword is available for VDF calculation only for the moment.

See also: dirichlet (12.10)

Usage:
paroi_knudsen_non_negligeable name_champ_1 champ_1 name_champ_2 champ_2
where
```

- name_champ_1 str into ['vitesse_paroi', 'k']: Field name.
- **champ_1** *champ_front_base* (16.1): Boundary field type.
- name_champ_2 str into ['vitesse_paroi', 'k']: Field name.
- champ_front_base (16.1): Boundary field type.

12.42 Paroi_temperature_imposee

Description: Imposed temperature condition at the wall called bord (edge).

See also: dirichlet (12.10) temperature_imposee_paroi (12.47)

Usage:

paroi_temperature_imposee ch where

• ch champ_front_base (16.1): Boundary field type.

12.43 Periodique

Description: 1). For Navier-Stokes equations, this keyword is used to indicate that the horizontal inlet velocity values are the same as the outlet velocity values, at every moment. As regards meshing, the inlet and outlet edges bear the same name.; 2). For scalar transport equation, this keyword is used to set a periodic condition on scalar. The two edges dealing with this periodic condition bear the same name.

See also: condlim base (12)

Usage:

periodique

12.44 Scalaire_impose_paroi

Description: Imposed temperature condition at the wall called bord (edge).

See also: dirichlet (12.10)

Usage:

scalaire_impose_paroi ch where

• **ch** *champ_front_base* (16.1): Boundary field type.

12.45 Sortie_libre_temperature_imposee_h

Description: Open boundary for heat equation with enthalpy as unknown.

See also: neumann (12.26)

Usage:

sortie_libre_temperature_imposee_h ch where

• **ch** *champ_front_base* (16.1): Boundary field type.

12.46 Symetrie

Description: 1). For Navier-Stokes equations, this keyword is used to designate a symmetry condition concerning the velocity at the boundary called bord (edge) (normal velocity at the edge equal to zero and tangential velocity gradient at the edge equal to zero); 2). For scalar transport equation, this keyword is used to set a symmetry condition on scalar on the boundary named bord (edge).

See also: condlim_base (12)

Usage:

symetrie

12.47 Temperature imposee paroi

Description: Imposed temperature condition at the wall called bord (edge).

See also: paroi_temperature_imposee (12.42)

Usage:

temperature_imposee_paroi ch where

• **ch** *champ_front_base* (16.1): Boundary field type.

13 discretisation_base

Description: Basic class for space discretization of thermohydraulic turbulent problems.

See also: objet_u (36) vdf (13.5) polymac (13.2) polymac_P0P1NC (13.3) polymac_p0 (13.4) vef (13.6) ef (13.1)

Usage:

13.1 Ef

Description: Element Finite discretization.

See also: discretisation_base (13)

Usage:

13.2 Polymac

Description: polymac discretization (polymac discretization that is not compatible with pb_multi).

```
See also: discretisation_base (13)
```

Usage:

13.3 Polymac_p0p1nc

Description: polymac_P0P1NC discretization (previously polymac discretization compatible with pb_multi).

```
See also: discretisation_base (13)
```

Usage:

13.4 Polymac_p0

Description: polymac_p0 discretization (previously covimac discretization compatible with pb_multi).

```
See also: discretisation_base (13)
```

Usage:

13.5 Vdf

Description: Finite difference volume discretization.

```
See also: discretisation base (13)
```

Usage:

13.6 Vef

Synonymous: vefprep1b

Description: Finite element volume discretization (P1NC/P1-bubble element). Since the 1.5.5 version, several new discretizations are available thanks to the optional keyword Read. By default, the VEFPreP1B keyword is equivalent to the former VEFPreP1B formulation (v1.5.4 and sooner). P0P1 (if used with the strong formulation for imposed pressure boundary) is equivalent to VEFPreP1B but the convergence is slower. VEFPreP1B dis is equivalent to VEFPreP1B dis Read dis { P0 P1 Changement_de_base_P1Bulle 1 Cl_pression_sommet_faible 0 }

```
See also: discretisation_base (13)

Usage:
vef str
Read str {
```

```
[ changement_de_base_p1bulle int]
[ p0  ]
[ p1  ]
[ pa  ]
[ rt  ]
[ modif_div_face_dirichlet int]
```

```
[ cl_pression_sommet_faible int] } where
```

- **changement_de_base_p1bulle** *int*: (into=[0,1]) changement_de_base_p1bulle 1 This option may be used to have the P1NC/P0P1 formulation (value set to 0) or the P1NC/P1Bulle formulation (value set to 1, the default).
- **p0**: Pressure nodes are added on element centres
- p1 : Pressure nodes are added on vertices
- pa : Only available in 3D, pressure nodes are added on bones
- rt: For P1NCP1B
- modif_div_face_dirichlet *int*: (into=[0,1]) This option (by default 0) is used to extend control volumes for the momentum equation.
- cl_pression_sommet_faible int: (into=[0,1]) This option is used to specify a strong formulation (value set to 0, the default) or a weak formulation (value set to 1) for an imposed pressure boundary condition. The first formulation converges quicker and is stable in general cases. The second formulation should be used if there are several outlet boundaries with Neumann condition (see Ecoulement_Neumann test case for example).

14 domaine

```
Description: Keyword to create a domain.
```

```
See also: objet_u (36) DomaineAxi1d (14.1) IJK_Grid_Geometry (14.2)
```

Usage:

14.1 Domaineaxi1d

```
Description: 1D domain
See also: domaine (14)
```

See also: domaine (14)

Usage:

14.2 Ijk_grid_geometry

Description: Object to define the grid that will represent the domain of the simulation in IJK discretization

```
Usage:

IJK_Grid_Geometry str

Read str {

    [ perio_i ]
    [ perio_j ]
    [ perio_k ]
    [ nbelem_i int]
    [ nbelem_j int]
    [ nbelem_k int]
    [ uniform_domain_size_i float]
```

[uniform_domain_size_j float]

```
[uniform_domain_size_k float]
     [ origin_i float]
     [ origin_j float]
     [ origin_k float]
}
where
   • perio i : rien to specify the border along the I direction is periodic
   • perio_j: rien to specify the border along the J direction is periodic
   • perio k: rien to specify the border along the K direction is periodic
   • nbelem_i int: the number of elements of the grid in the I direction
   • nbelem_j int: the number of elements of the grid in the J direction
   • nbelem_k int: the number of elements of the grid in the K direction
   • uniform_domain_size_i float: the size of the elements along the I direction
   • uniform_domain_size_j float: the size of the elements along the J direction
   • uniform_domain_size_k float: the size of the elements along the K direction
   • origin_i float: I-coordinate of the origin of the grid
   • origin_j float: J-coordinate of the origin of the grid
   • origin_k float: K-coordinate of the origin of the grid
15
      champ_base
15.1
       Champ_base
Description: Basic class of fields.
See also: objet_u (36) champ_don_base (15.8) champ_ostwald (15.24) champ_input_base (15.20) champ-
_fonc_med (15.13)
Usage:
15.2
       Champ fonc interp
Description: Field that is interpolated from a distant domain via MEDCoupling (remapper).
See also: champ_don_base (15.8)
Usage:
Champ_Fonc_Interp str
Read str {
     nom champ str
     pb loc str
     pb dist str
     [ dom_loc str]
     [dom dist str]
     [ default_value str]
```

- nom_champ str: Name of the field (for example: temperature).
 nb_loc_str: Name of the local problem.
- **pb_loc** *str*: Name of the local problem.

nature str

} where

- **pb_dist** *str*: Name of the distant problem.
- dom_loc str: Name of the local domain.
- dom_dist str: Name of the distant domain.
- **default_value** *str*: Name of the distant domain.
- **nature** *str*: Nature of the field (knowledge from MEDCoupling is required; IntensiveMaximum, IntensiveConservation, ...).

15.3 Champ_fonc_med_table_temps

Description: Field defined as a fixed spatial shape scaled by a temporal coefficient

```
See also: champ fonc med (15.13)
Usage:
Champ_Fonc_MED_Table_Temps str
Read str {
     [table_temps str]
     [table_temps_lue str]
     [ use_existing_domain ]
     [last_time]
     [ decoup str]
     [ mesh str]
     domain str
     file str
     field str
     [loc str into ['som', 'elem']]
     [ time float]
where
```

- table_temps str: Table containing the temporal coefficient used to scale the field
- table_temps_lue str: Name of the file containing the values of the temporal coefficient used to scale the field
- **use_existing_domain** for inheritance: whether to optimize the field loading by indicating that the field is supported by the same mesh that was initially loaded as the domain
- **last_time** for inheritance: to use the last time of the MED file instead of the specified time. Mutually exclusive with 'time' parameter.
- **decoup** *str* for inheritance: specify a partition file.
- mesh *str* for inheritance: Name of the mesh supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use_existing_domain'.
- **domain** *str* for inheritance: Name of the domain supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use_existing_domain'.
- file str for inheritance: Name of the .med file.
- field str for inheritance: Name of field to load.
- loc str into ['som', 'elem'] for inheritance: To indicate where the field is localised. Default to 'elem'.
- **time** *float* for inheritance: Timestep to load from the MED file. Mutually exclusive with 'last_time' flag.

15.4 Champ_fonc_med_tabule

```
Description: not_set
See also: champ fonc med (15.13)
Usage:
Champ_Fonc_MED_Tabule str
Read str {
     [use_existing_domain]
     [last_time]
     [ decoup str]
     [ mesh str]
     domain str
     file str
     field str
     [loc str into ['som', 'elem']]
     [time float]
}
where
```

- **use_existing_domain** for inheritance: whether to optimize the field loading by indicating that the field is supported by the same mesh that was initially loaded as the domain
- **last_time** for inheritance: to use the last time of the MED file instead of the specified time. Mutually exclusive with 'time' parameter.
- **decoup** *str* for inheritance: specify a partition file.
- mesh *str* for inheritance: Name of the mesh supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use_existing_domain'.
- **domain** *str* for inheritance: Name of the domain supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use_existing_domain'.
- file str for inheritance: Name of the .med file.
- field str for inheritance: Name of field to load.
- loc str into ['som', 'elem'] for inheritance: To indicate where the field is localised. Default to 'elem'.
- **time** *float* for inheritance: Timestep to load from the MED file. Mutually exclusive with 'last_time' flag.

15.5 Champ_tabule_morceaux

Description: Field defined by tabulated data in each sub-domaine. It makes possible the definition of a field which is a function of other fields.

```
See also: champ_don_base (15.8) Champ_Fonc_Tabule_Morceaux_Interp (15.6)
```

Usage:

Champ_Tabule_Morceaux domain_name nb_comp data where

- **domain_name** *str*: Name of the domain.
- **nb_comp** *int*: Number of field components.

• data bloc_lecture (3.54): { Defaut val_def sous_domaine_1 val_1 ... sous_domaine_i val_i } By default, the value val_def is assigned to the field. It takes the sous_domaine_i identifier Sous_Domaine (sub_area) type object function, val_i. Sous_Domaine (sub_area) type objects must have been previously defined if the operator wishes to use a champ_fonc_tabule_morceaux type object.

15.6 Champ_fonc_tabule_morceaux_interp

Description: Field defined by tabulated data in each sub-domaine. It makes possible the definition of a field which is a function of other fields. Here we use MEDCoupling to interpolate fields between the two domains.

See also: Champ_Tabule_Morceaux (15.5)

Usage:

Champ_Fonc_Tabule_Morceaux_Interp problem_name nb_comp data

- problem name str: Name of the problem.
- **nb comp** *int*: Number of field components.
- data bloc_lecture (3.54): { Defaut val_def sous_domaine_1 val_1 ... sous_domaine_i val_i } By default, the value val_def is assigned to the field. It takes the sous_domaine_i identifier Sous_Domaine (sub_area) type object function, val_i. Sous_Domaine (sub_area) type objects must have been previously defined if the operator wishes to use a champ_fonc_tabule_morceaux type object.

15.7 Champ_composite

Description: Composite field. Used in multiphase problems to associate data to each phase.

See also: champ_don_base (15.8) champ_musig (15.23)

Usage:

champ composite dim bloc

where

- dim int: Number of field components.
- **bloc** *bloc_lecture* (3.54): Values Various pieces of the field, defined per phase. Part 1 goes to phase 1, etc...

15.8 Champ_don_base

Description: Basic class for data fields (not calculated), p.e. physics properties.

See also: champ_base (15.1) uniform_field (15.34) champ_uniforme_morceaux (15.28) champ_fonc_xyz (15.31) champ_fonc_txyz (15.30) champ_don_lu (15.9) init_par_partie (15.32) champ_tabule_temps (15.27) champ_fonc_t (15.16) champ_fonc_tabule (15.17) champ_init_canal_sinal (15.18) champ_som_lu_vdf (15.25) champ_som_lu_vef (15.26) tayl_green (15.33) Champ_Tabule_Morceaux (15.5) champ_composite (15.7) champ_fonc_fonction_txyz_morceaux (15.12) champ_fonc_reprise (15.14) Champ_Fonc_Interp (15.2)

Usage:

15.9 Champ_don_lu

Description: Field to read a data field (values located at the center of the cells) in a file.

See also: champ don base (15.8)

Usage:

$champ_don_lu \ dom \ nb_comp \ file$

where

- dom str: Name of the domain.
- **nb comp** *int*: Number of field components.
- file str: Name of the file.

This file has the following format:

nb val lues -> Number of values readen in th file

Xi Yi Zi -> Coordinates readen in the file

Ui Vi Wi -> Value of the field

15.10 Champ_fonc_fonction

Description: Field that is a function of another field.

See also: champ_fonc_tabule (15.17) champ_fonc_fonction_txyz (15.11)

Usage:

champ_fonc_fonction problem_name inco expression

where

- **problem_name** *str*: Name of problem.
- inco str: Name of the field (for example: temperature).
- **expression** *n word1 word2* ... *wordn*: Number of field components followed by the analytical expression for each field component.

15.11 Champ_fonc_fonction_txyz

Description: this refers to a field that is a function of another field and time and/or space coordinates

See also: champ_fonc_fonction (15.10)

Usage:

champ_fonc_fonction_txyz problem_name inco expression
where

• **problem_name** *str*: Name of problem.

- inco str: Name of the field (for example: temperature).
- **expression** *n word1 word2* ... *wordn*: Number of field components followed by the analytical expression for each field component.

15.12 Champ_fonc_fonction_txyz_morceaux

Description: Field defined by analytical functions in each sub-domaine. It makes possible the definition of a field that depends on the time and the space.

See also: champ_don_base (15.8)

Usage:

champ_fonc_fonction_txyz_morceaux problem_name inco nb_comp data where

- **problem_name** *str*: Name of the problem.
- **inco** *str*: Name of the field (for example: temperature).
- **nb comp** *int*: Number of field components.
- data bloc_lecture (3.54): { Defaut val_def sous_domaine_1 val_1 ... sous_domaine_i val_i } By default, the value val_def is assigned to the field. It takes the sous_domaine_i identifier Sous_Domaine (sub_area) type object function, val_i. Sous_Domaine (sub_area) type objects must have been previously defined if the operator wishes to use a champ_fonc_fonction_txyz_morceaux type object.

15.13 Champ_fonc_med

Description: Field to read a data field in a MED-format file .med at a specified time. It is very useful, for example, to resume a calculation with a new or refined geometry. The field post-processed on the new geometry at med format is used as initial condition for the resume.

See also: champ_base (15.1) Champ_Fonc_MED_Table_Temps (15.3) Champ_Fonc_MED_Tabule (15.4)

Usage:

where

```
champ_fonc_med str
Read str {
    [ use_existing_domain ]
    [ last_time ]
    [ decoup str]
    [ mesh str]
    domain str
    file str
    field str
    [ loc str into ['som', 'elem']]
    [ time float]
}
```

- **use_existing_domain**: whether to optimize the field loading by indicating that the field is supported by the same mesh that was initially loaded as the domain
- **last_time**: to use the last time of the MED file instead of the specified time. Mutually exclusive with 'time' parameter.
- **decoup** str: specify a partition file.
- **mesh** *str*: Name of the mesh supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use_existing_domain'.
- **domain** *str*: Name of the domain supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use_existing_domain'.
- file str: Name of the .med file.
- field str: Name of field to load.
- loc str into ['som', 'elem']: To indicate where the field is localised. Default to 'elem'.
- time *float*: Timestep to load from the MED file. Mutually exclusive with 'last_time' flag.

15.14 Champ_fonc_reprise

Description: This field is used to read a data field in a save file (.xyz or .sauv) at a specified time. It is very useful, for example, to run a thermohydraulic calculation with velocity initial condition read into a save file from a previous hydraulic calculation.

See also: champ_don_base (15.8)

Usage:

champ_fonc_reprise [format] filename pb_name champ [fonction] temps where

- **format** *str into* ['binaire', 'formatte', 'xyz', 'single_hdf']: Type of file (the file format). If xyz format is activated, the .xyz file from the previous calculation will be given for filename, and if formatte or binaire is choosen, the .sauv file of the previous calculation will be specified for filename. In the case of a parallel calculation, if the mesh partition does not changed between the previous calculation and the next one, the binaire format should be preferred, because is faster than the xyz format. If single_hdf is used, the same constraints/advantages as binaire apply, but a single (HDF5) file is produced on the filesystem instead of having one file per processor.
- filename str: Name of the save file.
- **pb_name** *str*: Name of the problem.
- **champ** *str*: Name of the problem unknown. It may also be the temporal average of a problem unknown (like moyenne_vitesse, moyenne_temperature,...)
- **fonction** *fonction_champ_reprise* (15.15): Optional keyword to apply a function on the field being read in the save file (e.g. to read a temperature field in Celsius units and convert it for the calculation on Kelvin units, you will use: fonction 1 273.+val)
- **temps** *str*: Time of the saved field in the save file or last_time. If you give the keyword last_time instead, the last time saved in the save file will be used.

15.15 Fonction_champ_reprise

Description: not_set

See also: objet lecture (35)

Usage:

mot fonction

where

- mot str into ['fonction']
- fonction n word1 word2 ... wordn: n f1(val) f2(val) ... fn(val)] time

15.16 Champ_fonc_t

Description: Field that is constant in space and is a function of time.

See also: champ_don_base (15.8)

Usage:

champ_fonc_t val

where

• val n word1 word2 ... wordn: Values of field components (time dependant functions).

15.17 Champ_fonc_tabule

Description: Field that is tabulated as a function of another field.

See also: champ_don_base (15.8) champ_fonc_fonction (15.10)

Usage:

champ_fonc_tabule inco dim bloc where

- inco str: Name of the field (for example: temperature).
- dim int: Number of field components.
- **bloc** *bloc_lecture* (3.54): Values (the table (the value of the field at any time is calculated by linear interpolation from this table) or the analytical expression (with keyword expression to use an analytical expression)).

15.18 Champ_init_canal_sinal

Description: For a parabolic profile on U velocity with an unpredictable disturbance on V and W and a sinusoidal disturbance on V velocity.

See also: champ_don_base (15.8)

Usage:

champ_init_canal_sinal dim bloc

where

- dim int: Number of field components.
- bloc bloc_lec_champ_init_canal_sinal (15.19): Parameters for the class champ_init_canal_sinal.

15.19 Bloc_lec_champ_init_canal_sinal

```
Description: Parameters for the class champ_init_canal_sinal.
in 2D:
U=ucent*y(2h-y)/h/h
V=ampli_bruit*rand+ampli_sin*sin(omega*x)
rand: unpredictable value between -1 and 1.
in 3D:
U=ucent*y(2h-y)/h/h
V=ampli_bruit*rand1+ampli_sin*sin(omega*x)
W=ampli_bruit*rand2
rand1 and rand2: unpredictables values between -1 and 1.
See also: objet_lecture (35)
Usage:
{
     ucent float
     h float
     ampli_bruit float
     [ ampli_sin float]
     omega float
```

[**dir_flow** int into [0, 1, 2]]

```
[ dir_wall int into [0, 1, 2]]
[ min_dir_flow float]
[ min_dir_wall float]
}
where
```

- ucent *float*: Velocity value at the center of the channel.
- h float: Half hength of the channel.
- ampli_bruit float: Amplitude for the disturbance.
- ampli_sin float: Amplitude for the sinusoidal disturbance (by default equals to ucent/10).
- omega *float*: Value of pulsation for the of the sinusoidal disturbance.
- dir_flow int into [0, 1, 2]: Flow direction for the initialization of the flow in a channel.
 - if dir_flow=0, the flow direction is X
 - if dir_flow=1, the flow direction is Y
 - if $dir_flow=2$, the flow direction is Z

Default value for dir flow is 0

- dir_wall int into [0, 1, 2]: Wall direction for the initialization of the flow in a channel.
 - if dir_wall=0, the normal to the wall is in X direction
 - if dir_wall=1, the normal to the wall is in Y direction
 - if $dir_wall=2$, the normal to the wall is in Z direction

Default value for dir_flow is 1

- min_dir_flow float: Value of the minimum coordinate in the flow direction for the initialization of the flow in a channel. Default value for dir_flow is 0.
- min_dir_wall float: Value of the minimum coordinate in the wall direction for the initialization of the flow in a channel. Default value for dir flow is 0.

15.20 Champ_input_base

```
Description: not_set
See also: champ_base (15.1) champ_input_p0 (15.21) champ_input_p0_composite (15.22)
Usage:
champ input base str
Read str {
      nb_comp int
      nom str
      [ initial_value n \times 1 \times 2 \dots \times n]
      probleme str
      [ sous_zone str]
}
where
   • nb_comp int
   • nom str
   • initial value n x1 x2 ... xn
   • probleme str
   • sous_zone str
```

15.21 Champ_input_p0

```
Description: not_set
See also: champ_input_base (15.20)
Usage:
champ_input_p0 str
Read str {
      nb_comp int
      nom str
      [ initial_value n \times 1 \times 2 \dots \times n]
      probleme str
      [ sous_zone str]
}
where
   • nb comp int for inheritance
   • nom str for inheritance
   • initial value n x1 x2 ... xn for inheritance
   • probleme str for inheritance
   • sous zone str for inheritance
```

15.22 Champ_input_p0_composite

Description: Field used to define a classical champ input p0 field (for ICoCo), but with a predefined field for the initial state.

```
See also: champ_input_base (15.20)
Usage:
champ_input_p0_composite str
Read str {
      [initial_field champ_base]
      [input_field champ_input_p0]
      nb comp int
      nom str
      [ initial_value n \times 1 \times 2 \dots \times n]
      probleme str
      [ sous_zone str]
}
where
   • initial_field champ_base (15.1): The field used for initialization
   • input_field champ_input_p0 (15.21): The input field for ICoCo
   • nb_comp int for inheritance
   • nom str for inheritance
   • initial_value n x1 x2 ... xn for inheritance
   • probleme str for inheritance
   • sous zone str for inheritance
```

15.23 Champ_musig

Description: MUSIG field. Used in multiphase problems to associate data to each phase.

See also: champ_composite (15.7)

Usage:

champ_musig bloc

where

• **bloc** *bloc_lecture* (3.54): Not set

15.24 Champ_ostwald

Description: This keyword is used to define the viscosity variation law:

Mu(T) = K(T)*(D:D/2)**((n-1)/2)

See also: champ_base (15.1)

Usage:

champ_ostwald

15.25 Champ_som_lu_vdf

Description: Keyword to read in a file values located at the nodes of a mesh in VDF discretization.

See also: champ_don_base (15.8)

Usage:

champ_som_lu_vdf domain_name dim tolerance file

where

- **domain_name** *str*: Name of the domain.
- dim int: Value of the dimension of the field.
- tolerance float: Value of the tolerance to check the coordinates of the nodes.
- file str: name of the file

This file has the following format:

Xi Yi Zi -> Coordinates of the node

Ui Vi Wi -> Value of the field on this node

Xi+1 Yi+1 Zi+1 -> Next point

Ui+1 Vi+1 Zi+1 -> Next value ...

15.26 Champ_som_lu_vef

Description: Keyword to read in a file values located at the nodes of a mesh in VEF discretization.

See also: champ_don_base (15.8)

Usage:

champ_som_lu_vef domain_name dim tolerance file

where

• **domain_name** *str*: Name of the domain.

- dim int: Value of the dimension of the field.
- tolerance *float*: Value of the tolerance to check the coordinates of the nodes.
- file str: Name of the file.

This file has the following format:

Xi Yi Zi -> Coordinates of the node

Ui Vi Wi -> Value of the field on this node

Xi+1 Yi+1 Zi+1 -> Next point

Ui+1 Vi+1 Zi+1 -> Next value ...

15.27 Champ_tabule_temps

Description: Field that is constant in space and tabulated as a function of time.

See also: champ_don_base (15.8)

Usage:

champ_tabule_temps dim bloc

where

- dim int: Number of field components.
- **bloc** *bloc_lecture* (3.54): Values as a table. The value of the field at any time is calculated by linear interpolation from this table.

15.28 Champ_uniforme_morceaux

Description: Field which is partly constant in space and stationary.

See also: champ_don_base (15.8) champ_uniforme_morceaux_tabule_temps (15.29) valeur_totale_sur_volume (15.35)

Usage:

champ_uniforme_morceaux nom_dom nb_comp data

- **nom_dom** *str*: Name of the domain to which the sub-areas belong.
- **nb comp** *int*: Number of field components.
- data bloc_lecture (3.54): { Defaut val_def sous_zone_1 val_1 ... sous_zone_i val_i } By default, the value val_def is assigned to the field. It takes the sous_zone_i identifier Sous_Zone (sub_area) type object value, val_i. Sous_Zone (sub_area) type objects must have been previously defined if the operator wishes to use a Champ_Uniforme_Morceaux(partly_uniform_field) type object.

15.29 Champ uniforme morceaux tabule temps

Description: this type of field is constant in space on one or several sub_zones and tabulated as a function of time.

See also: champ_uniforme_morceaux (15.28)

Usage:

champ_uniforme_morceaux_tabule_temps nom_dom nb_comp data where

- nom_dom str: Name of the domain to which the sub-areas belong.
- **nb_comp** *int*: Number of field components.
- data bloc_lecture (3.54): { Defaut val_def sous_zone_1 val_1 ... sous_zone_i val_i } By default, the value val_def is assigned to the field. It takes the sous_zone_i identifier Sous_Zone (sub_area) type object value, val_i. Sous_Zone (sub_area) type objects must have been previously defined if the operator wishes to use a Champ_Uniforme_Morceaux(partly_uniform_field) type object.

15.30 Champ_fonc_txyz

Description: Field defined by analytical functions. It makes it possible the definition of a field that depends on the time and the space.

See also: champ_don_base (15.8)

Usage:

champ_fonc_txyz dom val
where

- dom str: Name of domain of calculation.
- val n word1 word2 ... wordn: List of functions on (t,x,y,z).

15.31 Champ_fonc_xyz

Description: Field defined by analytical functions. It makes it possible the definition of a field that depends on (x,y,z).

See also: champ don base (15.8)

Usage:

champ_fonc_xyz dom val
where

- dom str: Name of domain of calculation.
- val n word1 word2 ... wordn: List of functions on (x,y,z).

15.32 Init_par_partie

Description: ne marche que pour n_comp=1

See also: champ_don_base (15.8)

Usage:

init_par_partie n_comp val1 val2 val3 where

- **n_comp** int into [1]
- val1 float
- val2 float
- val3 float

15.33 Tayl_green

Description: Class Tayl_green.

See also: champ_don_base (15.8)

Usage:

tayl_green dim

where

• dim int: Dimension.

15.34 Uniform_field

Synonymous: champ_uniforme

Description: Field that is constant in space and stationary.

See also: champ_don_base (15.8)

Usage:

uniform_field val

where

• val n x1 x2 ... xn: Values of field components.

15.35 Valeur totale sur volume

Description: Similar as Champ_Uniforme_Morceaux with the same syntax. Used for source terms when we want to specify a source term with a value given for the volume (eg: heat in Watts) and not a value per volume unit (eg: heat in Watts/m3).

See also: champ uniforme morceaux (15.28)

Usage:

valeur_totale_sur_volume nom_dom nb_comp data where

• nom_dom str: Name of the domain to which the sub-areas belong.

- **nb_comp** *int*: Number of field components.
- data bloc_lecture (3.54): { Defaut val_def sous_zone_1 val_1 ... sous_zone_i val_i } By default, the value val_def is assigned to the field. It takes the sous_zone_i identifier Sous_Zone (sub_area) type object value, val_i. Sous_Zone (sub_area) type objects must have been previously defined if the operator wishes to use a Champ_Uniforme_Morceaux(partly_uniform_field) type object.

16 champ_front_base

16.1 Champ_front_base

Description: Basic class for fields at domain boundaries.

See also: objet_u (36) champ_front_uniforme (16.29) champ_front_fonc_pois_ipsn (16.15) champ_front_fonc_pois_tube (16.16) champ_front_tangentiel_vef (16.28) champ_front_lu (16.21) boundary_field_inward

(16.5) champ_front_pression_from_u (16.24) champ_front_contact_vef (16.12) champ_front_calc (16.10) champ_front_recyclage (16.25) ch_front_input (16.6) champ_front_normal_vef (16.23) Champ_front_debit_QC_VDF_fonc_t (16.4) Champ_front_debit_QC_VDF (16.3) champ_front_MED (16.8) champ_front_fonction (16.20) champ_front_debit_massique (16.14) champ_front_tabule (16.26) champ_front_debit (16.13) champ_front_xyz_debit (16.30) champ_front_bruite (16.9) champ_front_fonc_txyz (16.18) champ_front_composite (16.11) champ_front_fonc_t (16.17) champ_front_fonc_xyz (16.19)

Usage:

16.2 Champ_front_xyz_tabule

Description: Space dependent field on the boundary, tabulated as a function of time.

See also: champ_front_fonc_txyz (16.18)

Usage:

Champ_Front_xyz_Tabule val bloc where

- val n word1 word2 ... wordn: Values of field components (mathematical expressions).
- bloc_lecture (3.54): {nt1 t2 t3tn u1 [v1 w1 ...] u2 [v2 w2 ...] u3 [v3 w3 ...] ... un [vn wn ...]

Values are entered into a table based on n couples (ti, ui) if nb_comp value is 1. The value of a field at a given time is calculated by linear interpolation from this table.

16.3 Champ_front_debit_qc_vdf

Description: This keyword is used to define a flow rate field for quasi-compressible fluids in VDF discretization. The flow rate is kept constant during a transient.

See also: champ_front_base (16.1)

Usage:

Champ_front_debit_QC_VDF dimension liste [moyen] pb_name where

- dimension int: Problem dimension
- **liste** *bloc_lecture* (3.54): List of the mass flow rate values [kg/s/m2] with the following syntaxe: { val1 ... valdim }
- moyen str: Option to use rho mean value
- **pb_name** *str*: Problem name

16.4 Champ_front_debit_qc_vdf_fonc_t

Description: This keyword is used to define a flow rate field for quasi-compressible fluids in VDF discretization. The flow rate could be constant or time-dependent.

See also: champ_front_base (16.1)

Usage:

 $\label{lem:condition} Champ_front_debit_QC_VDF_fonc_t \quad dimension \quad liste \ [\ moyen \] \quad pb_name \\ \text{where}$

- dimension int: Problem dimension
- **liste** *bloc_lecture* (3.54): List of the mass flow rate values [kg/s/m2] with the following syntaxe: { val1 ... valdim } where val1 ... valdim are constant or function of time.
- moyen str: Option to use rho mean value
- **pb_name** *str*: Problem name

16.5 Boundary_field_inward

Description: this field is used to define the normal vector field standard at the boundary in VDF or VEF discretization.

```
See also: champ_front_base (16.1)

Usage:
boundary_field_inward str

Read str {

    normal_value str
}
where
```

• **normal_value** *str*: normal vector value (positive value for a vector oriented outside to inside) which can depend of the time.

16.6 Ch_front_input

```
Description: not_set
See also: champ_front_base (16.1) ch_front_input_uniforme (16.7)
Usage:
ch_front_input str
Read str {
     nb_comp int
      nom str
      [ initial_value n \times 1 \times 2 \dots \times n]
      probleme str
      [ sous_zone str]
where
   • nb_comp int
   • nom str
   • initial_value n x1 x2 ... xn
   • probleme str
   • sous_zone str
```

16.7 Ch_front_input_uniforme

Description: for coupling, you can use ch_front_input_uniforme which is a champ_front_uniforme, which use an external value. It must be used with Problem.setInputField.

```
See also: ch_front_input (16.6)
Usage:
ch front input uniforme str
Read str {
      nb_comp int
      nom str
      [ initial_value n \times 1 \times 2 \dots \times n]
      probleme str
      [ sous_zone str]
}
where
   • nb_comp int for inheritance
   • nom str for inheritance
   • initial_value n x1 x2 ... xn for inheritance
   • probleme str for inheritance
   • sous_zone str for inheritance
```

16.8 Champ_front_med

Description: Field allowing the loading of a boundary condition from a MED file using Champ_fonc_med

```
See also: champ\_front\_base (16.1)
```

Usage:

```
champ_front_MED champ_fonc_med
where
```

• **champ_fonc_med** *champ_base* (15.1): a champ_fonc_med loading the values of the unknown on a domain boundary

16.9 Champ_front_bruite

Description: Field which is variable in time and space in a random manner.

```
See also: champ_front_base (16.1)

Usage:
champ_front_bruite nb_comp bloc
where
```

- **nb comp** *int*: Number of field components.
- bloc bloc_lecture (3.54): { [N val L val] Moyenne m_1.....[m_i] Amplitude A_1.....[A_ i]}: Random nois: If N and L are not defined, the ith component of the field varies randomly around an average value m_i with a maximum amplitude A_i.

White noise: If N and L are defined, these two additional parameters correspond to L, the domain

length and N, the number of nodes in the domain. Noise frequency will be between 2*Pi/L and 2*Pi*N/(4*L).

For example, formula for velocity: u=U0(t) v=U1(t)Uj(t)=Mj+2*Aj*bruit_blanc where bruit_blanc (white_noise) is the formula given in the mettre_a_jour (update) method of the Champ_front_bruite (noise_boundary_field) (Refer to the Champ_front_bruite.cpp file).

16.10 Champ_front_calc

Description: This keyword is used on a boundary to get a field from another boundary. The local and remote boundaries should have the same mesh. If not, the Champ_front_recyclage keyword could be used instead. It is used in the condition block at the limits of equation which itself refers to a problem called pb1. We are working under the supposition that pb1 is coupled to another problem.

See also: champ_front_base (16.1)

Usage:

champ_front_calc problem_name bord field_name where

- **problem_name** *str*: Name of the other problem to which pb1 is coupled.
- **bord** *str*: Name of the side which is the boundary between the 2 domains in the domain object description associated with the problem_name object.
- **field_name** *str*: Name of the field containing the value that the user wishes to use at the boundary. The field_name object must be recognized by the problem_name object.

16.11 Champ_front_composite

Description: Composite front field. Used in multiphase problems to associate data to each phase.

See also: champ_front_base (16.1) champ_front_musig (16.22)

Usage:

champ_front_composite dim bloc

where

- dim int: Number of field components.
- **bloc** *bloc_lecture* (3.54): Values Various pieces of the field, defined per phase. Part 1 goes to phase 1, etc...

16.12 Champ_front_contact_vef

Description: This field is used on a boundary between a solid and fluid domain to exchange a calculated temperature at the contact face of the two domains according to the flux of the two problems.

See also: champ_front_base (16.1)

Heage.

champ_front_contact_vef local_pb local_boundary remote_pb remote_boundary where

- local_pb str: Name of the problem.
- **local boundary** *str*: Name of the boundary.
- **remote_pb** *str*: Name of the second problem.
- remote_boundary str: Name of the boundary in the second problem.

16.13 Champ_front_debit

Description: This field is used to define a flow rate field instead of a velocity field for a Dirichlet boundary condition on Navier-Stokes equations.

See also: champ_front_base (16.1)

Usage:

champ_front_debit ch

where

• **ch** *champ_front_base* (16.1): uniform field in space to define the flow rate. It could be, for example, champ_front_uniforme, ch_front_input_uniform or champ_front_fonc_txyz that depends only on time.

16.14 Champ_front_debit_massique

Description: This field is used to define a flow rate field using the density

See also: champ_front_base (16.1)

Usage:

champ_front_debit_massique ch

where

• **ch** *champ_front_base* (16.1): uniform field in space to define the flow rate. It could be, for example, champ_front_uniforme, ch_front_input_uniform or champ_front_fonc_txyz that depends only on time.

16.15 Champ_front_fonc_pois_ipsn

Description: Boundary field champ_front_fonc_pois_ipsn.

See also: champ_front_base (16.1)

Usage:

 $\begin{array}{lll} champ_front_fonc_pois_ipsn & r_tube & umoy & r_loc \\ \\ where & & \\ \end{array}$

- r_tube float
- **umoy** n x1 x2 ... xn
- $r_{loc} x1 x2 (x3)$

16.16 Champ_front_fonc_pois_tube

Description: Boundary field champ_front_fonc_pois_tube.

See also: champ front base (16.1)

Usage:

 $champ_front_fonc_pois_tube \ \ r_tube \ \ umoy \ \ r_loc \ \ r_loc_mult$

where

- r_tube float
- **umoy** n x1 x2 ... xn
- $r_{loc} x1 x2 (x3)$
- r_loc_mult n1 n2 (n3)

16.17 Champ_front_fonc_t

Description: Boundary field that depends only on time.

See also: champ_front_base (16.1)

Usage:

champ_front_fonc_t val

where

• val n word1 word2 ... wordn: Values of field components (mathematical expressions).

16.18 Champ_front_fonc_txyz

Description: Boundary field which is not constant in space and in time.

See also: champ_front_base (16.1) Champ_Front_xyz_Tabule (16.2)

Usage:

champ_front_fonc_txyz val

where

• val n word1 word2 ... wordn: Values of field components (mathematical expressions).

16.19 Champ_front_fonc_xyz

Description: Boundary field which is not constant in space.

See also: champ_front_base (16.1)

Usage:

champ_front_fonc_xyz val

where

• val n word1 word2 ... wordn: Values of field components (mathematical expressions).

16.20 Champ_front_fonction

Description: boundary field that is function of another field

See also: champ_front_base (16.1)

Usage:

 $champ_front_fonction \ dim \ inco \ expression$

where

• dim int: Number of field components.

- inco str: Name of the field (for example: temperature).
- **expression** *str*: keyword to use a analytical expression like 10.*EXP(-0.1*val) where val be the keyword for the field.

16.21 Champ_front_lu

Description: boundary field which is given from data issued from a read file. The format of this file has to be the same that the one generated by Ecrire_fichier_xyz_valeur

Example for K and epsilon quantities to be defined for inlet condition in a boundary named 'entree': entree frontiere_ouverte_K_Eps_impose Champ_Front_lu dom 2pb_K_EPS_PERIO_1006.306198.dat

See also: champ_front_base (16.1)

Usage:

champ_front_lu domaine dim file where

• domaine str: Name of domain

• dim int: number of components

• file str: path for the read file

16.22 Champ_front_musig

Description: MUSIG front field. Used in multiphase problems to associate data to each phase.

See also: champ_front_composite (16.11)

Usage:

champ_front_musig bloc

where

• **bloc** *bloc_lecture* (3.54): Not set

16.23 Champ_front_normal_vef

Description: Field to define the normal vector field standard at the boundary in VEF discretization.

See also: champ_front_base (16.1)

Usage:

champ_front_normal_vef mot vit_tan

where

- mot str into ['valeur_normale']: Name of vector field.
- vit_tan float: normal vector value (positive value for a vector oriented outside to inside).

16.24 Champ_front_pression_from_u

Description: this field is used to define a pressure field depending of a velocity field.

```
See also: champ_front_base (16.1)

Usage: champ_front_pression_from_u expression where
```

• **expression** *str*: value depending of a velocity (like $2 * u_moy^2$).

16.25 Champ_front_recyclage

Description: This keyword is used on a boundary to get a field from another boundary. New keyword since the 1.6.1 version which replaces and generalizes several obsolete ones:

```
Champ_front_calc_intern
Champ_front_calc_recycl_fluct_pbperio
Champ_front_calc_recycl_champ
Champ_front_calc_intern_2pbs
Champ_front_calc_recycl_fluct
```

It is to use, in a general way, on a boundary of a local_pb problem, a field calculated from a linear combination of an imposed field g(x,y,z,t) with an instantaneous f(x,y,z,t) and a spatial mean field f(x,y,z) or a temporal mean field f(x,y,z) extracted from a plane of a problem named pb (pb may be local_pb itself): For each component i, the field F applied on the boundary will be:

```
F_{i}(x,y,z,t) = alpha_{i}*g_{i}(x,y,z,t) + xsi_{i}*[f_{i}(x,y,z,t)-beta_{i}*<fi>]
```

Usage:

```
Champ_front_recyclage {
```

```
pb_champ_evaluateur problem_name field nb_comp
  [ distance_plan x1 x2 (x3) ]
  [ moyenne_imposee methode_moy [fichier file [second_file]] ]
  [ moyenne_recyclee methode_recyc [fichier file [second_file]] ]
  [ direction_anisotrope int ]
  [ ampli_moyenne_imposee n x1 x2 ... xn ]
  [ ampli_moyenne_recyclee n x1 x2 ... xn ]
  [ ampli_fluctuation n x1 x2 ... xn ]
}
where:
```

- **pb_champ_evaluateur** *problem_name field nb_comp*: To give the name of the problem, the name of the field of the problem and its number of components nb_comp.
- **distance_plan** x1 x2 (x3): Vector which gives the distance between the boundary and the plane from where the field F will be extracted. By default, the vector is zero, that should imply the two domains have coincident boundaries.
- ampli movenne imposee 2|3 alpha(0) alpha(1) [alpha(2)]: alpha i coefficients (by default =1)
- ampli_moyenne_recyclee 2|3 beta(0) beta(1) [beta(2)]: beta_i coefficients (by default =1)
- ampli_fluctuation 2|3 gamma(0) gamma(1) [gamma(2)]: gamma_i coefficients (by default =1)
- **direction_anisotrope** *int into* [1,2,3]: If an integer is given for direction (X:1, Y:2, Z:3, by default, direction is negative), the imposed field g will be 0 for the 2 other directions.

• moyenne_imposee methode_moy: Value of the imposed g field. The methode_moy option can be:

profil [2|3] valx(x,y,z,t) valy(x,y,z,t) [valz(x,y,z,t)]: To specify analytic profile for the imposed g field.

interpolation fichier *file*: To create an imposed field built by interpolation of values read from a file. The imposed field is applied on the direction given by the keyword direction_anisotrope (the field is zero for the other directions). The format of the file is:

```
pos(1) val(1)
pos(2) val(2)
...
pos(N) val(N)
```

If direction given by direction_anisotrope is 1 (or 2 or 3), then pos will be X (or Y or Z) coordinate and val will be X value (or Y value, or Z value) of the imposed field.

connexion_approchee fichier *file*: To read the imposed field from a file where positions and values are given (it is not necessary that the coordinates of points match the coordinates of the boundary faces, indeed, the nearest point of each face of the boundary will be used). The format of the file is:

```
N
x(1) y(1) [z(1)] valx(1) valy(1) [valz(1)]
x(2) y(2) [z(2)] valx(2) valy(2) [valz(2)]
...
x(N) y(N) [z(N)] valx(N) valy(N) [valz(N)]
```

connection_exacte fichier *file second_file*: To read the imposed field from two files. The first file contains the points coordinates (which should be the same as the coordinates of the boundary faces) and the second_file contains the mean values. The format of the first file is:

```
N
1 x(1) y(1) [z(1)]
2 x(2) y(2) [z(2)]
...
N x(N) y(N) [z(N)]
```

while the format of the second_file is:

```
N
1 valx(1) valy(1) [valz(1)]
2 valx(2) valy(2) [valz(2)]
...
N valx(N) valy(N) [valz(N)]
```

logarithmique diametre *float* **u_tau** *float* **visco_cin** *float* **direction** *int*: To specify the imposed field (in this case, velocity) by an analytical logarithmic law of the wall: $g(x,y,z) = u_tau * (log(0.5*diametre*u_tau/visco_cin)/Kappa + 5.1)$ with g(x,y,z)=u(x,y,z) if **direction** is set to 1 (g=v(x,y,z) if **direction** is set to 2, and g=w(w,y,z) if it is set to 3)

• moyenne_recylee methode_recyc: Method used to perform a spatial or a temporal averaging of f field to specify <f>. <f> can be the surface mean of f on the plane (surface option, see below) or it can be read from several files (for example generated by the chmoy_faceperio option of the Traitement_particulier keyword to obtain a temporal mean field). The option methode_recyc can be:

surfacique: Surface mean for <f> from f values on the plane

Or one of the following $methode_moy$ options applied to read a temporal mean field $\langle f \rangle(x,y,z)$:

interpolation

connexion_approchee connexion_exacte

See also: champ_front_base (16.1)

Usage:

champ_front_recyclage bloc where

• bloc str

16.26 Champ_front_tabule

Description: Constant field on the boundary, tabulated as a function of time.

See also: champ_front_base (16.1) champ_front_tabule_lu (16.27)

Usage:

champ_front_tabule nb_comp bloc
where

- **nb_comp** *int*: Number of field components.
- **bloc** *bloc_lecture* (3.54): {nt1 t2 t3tn u1 [v1 w1 ...] u2 [v2 w2 ...] u3 [v3 w3 ...] ... un [vn wn ...] }

Values are entered into a table based on n couples (ti, ui) if nb_comp value is 1. The value of a field at a given time is calculated by linear interpolation from this table.

16.27 Champ_front_tabule_lu

Description: Constant field on the boundary, tabulated from a specified column file. Lines starting with # are ignored.

See also: champ front tabule (16.26)

Usage:

champ_front_tabule_lu nb_comp column_file where

- **nb_comp** *int*: Number of field components.
- column file str: Name of the column file.

16.28 Champ_front_tangentiel_vef

Description: Field to define the tangential velocity vector field standard at the boundary in VEF discretization.

See also: champ_front_base (16.1)

Usage:

champ_front_tangentiel_vef mot vit_tan

where

- mot str into ['vitesse_tangentielle']: Name of vector field.
- vit_tan float: Vector field standard [m/s].

16.29 Champ_front_uniforme

Description: Boundary field which is constant in space and stationary.

```
See also: champ_front_base (16.1)
```

Usage:

champ_front_uniforme val
where

• val n x1 x2 ... xn: Values of field components.

16.30 Champ_front_xyz_debit

Description: This field is used to define a flow rate field with a velocity profil which will be normalized to match the flow rate chosen.

```
See also: champ_front_base (16.1)
Usage:
champ_front_xyz_debit str
Read str {
    [velocity_profil champ_front_base]
    flow_rate champ_front_base
}
where
```

- **velocity_profil** *champ_front_base* (16.1): velocity_profil 0 velocity field to define the profil of velocity.
- flow_rate champ_front_base (16.1): flow_rate 1 uniform field in space to define the flow rate. It could be, for example, champ_front_uniforme, ch_front_input_uniform or champ_front_fonc_t

17 interpolation_ibm_base

Description: Base class for all the interpolation methods available in the Immersed Boundary Method (IBM).

```
See also: objet_u (36) ibm_element_fluide (17.3) ibm_gradient_moyen (17.5) ibm_aucune (17.2)
```

Usage:

```
interpolation_ibm_base [ impr ] [ nb_histo_boxes_impr ]
where
```

- impr : To print IBM-related data
- nb_histo_boxes_impr int: number of histogram boxes for printed data

17.1 Interpolation_ibm_power_law_tbl_u_star

```
Description: Immersed Boundary Method (IBM): law u star.

See also: ibm_gradient_moyen (17.5)

Usage:
Interpolation_IBM_power_law_tbl_u_star str
Read str {

    points_solides champ_base
    est_dirichlet champ_base
    correspondance_elements champ_base
    elements_solides champ_base
    [ impr ]
    [ nb_histo_boxes_impr int]
}

where
```

- **points_solides** *champ_base* (15.1): Node field giving the projection of the node on the immersed boundary
- **est_dirichlet** *champ_base* (15.1): Node field of booleans indicating whether the node belong to an element where the interface is
- correspondance_elements champ_base (15.1): Cell field giving the SALOME cell number
- **elements_solides** *champ_base* (15.1): Node field giving the element number containing the solid point
- impr for inheritance: To print IBM-related data
- nb_histo_boxes_impr int for inheritance: number of histogram boxes for printed data

17.2 Ibm_aucune

Synonymous: interpolation_ibm_aucune

Description: Immersed Boundary Method (IBM): no interpolation.

See also: interpolation_ibm_base (17)

Usage:

```
ibm_aucune [ impr ] [ nb_histo_boxes_impr ]
where
```

- impr : To print IBM-related data
- nb_histo_boxes_impr int: number of histogram boxes for printed data

17.3 Ibm_element_fluide

Synonymous: interpolation_ibm_element_fluide

Description: Immersed Boundary Method (IBM): fluid element interpolation.

See also: interpolation_ibm_base (17) ibm_hybride (17.4) ibm_power_law_tbl (17.6)

Usage:

```
ibm_element_fluide str
Read str {
    points_fluides champ_base
    points_solides champ_base
    elements_fluides champ_base
    correspondance_elements champ_base
    [ impr ]
    [ nb_histo_boxes_impr int]
}
where
```

- **points_fluides** *champ_base* (15.1): Node field giving the projection of the point below (points_solides) falling into the pure cell fluid
- **points_solides** *champ_base* (15.1): Node field giving the projection of the node on the immersed boundary
- **elements_fluides** *champ_base* (15.1): Node field giving the number of the element (cell) containing the pure fluid point
- correspondance_elements champ_base (15.1): Cell field giving the SALOME cell number
- impr for inheritance: To print IBM-related data
- nb_histo_boxes_impr int for inheritance: number of histogram boxes for printed data

17.4 Ibm_hybride

Synonymous: interpolation_ibm_hybride

Description: Immersed Boundary Method (IBM): hybrid (fluid/mean gradient) interpolation.

```
See also: ibm_element_fluide (17.3)

Usage:
ibm_hybride str

Read str {

    est_dirichlet champ_base
    elements_solides champ_base
    points_fluides champ_base
    points_solides champ_base
    elements_fluides champ_base
    correspondance_elements champ_base
    [ impr ]
    [ nb_histo_boxes_impr int]
}

where
```

- **est_dirichlet** *champ_base* (15.1): Node field of booleans indicating whether the node belong to an element where the interface is
- **elements_solides** *champ_base* (15.1): Node field giving the element number containing the solid point
- **points_fluides** *champ_base* (15.1) for inheritance: Node field giving the projection of the point below (points_solides) falling into the pure cell fluid
- **points_solides** *champ_base* (15.1) for inheritance: Node field giving the projection of the node on the immersed boundary

- **elements_fluides** *champ_base* (15.1) for inheritance: Node field giving the number of the element (cell) containing the pure fluid point
- **correspondance_elements** *champ_base* (15.1) for inheritance: Cell field giving the SALOME cell number
- impr for inheritance: To print IBM-related data
- nb_histo_boxes_impr int for inheritance: number of histogram boxes for printed data

17.5 Ibm_gradient_moyen

```
Synonymous: interpolation_ibm_gradient_moyen
```

Description: Immersed Boundary Method (IBM): mean gradient interpolation.

```
See also: interpolation_ibm_base (17) Interpolation_IBM_power_law_tbl_u_star (17.1)
```

Usage:

where

```
ibm_gradient_moyen str
Read str {
    points_solides champ_base
    est_dirichlet champ_base
    correspondance_elements champ_base
    elements_solides champ_base
    [ impr ]
    [ nb_histo_boxes_impr int]
}
```

- **points_solides** *champ_base* (15.1): Node field giving the projection of the node on the immersed boundary
- **est_dirichlet** *champ_base* (15.1): Node field of booleans indicating whether the node belong to an element where the interface is
- correspondance_elements champ_base (15.1): Cell field giving the SALOME cell number
- **elements_solides** *champ_base* (15.1): Node field giving the element number containing the solid point
- impr for inheritance: To print IBM-related data
- nb_histo_boxes_impr int for inheritance: number of histogram boxes for printed data

17.6 Ibm_power_law_tbl

```
Synonymous: interpolation_ibm_power_law_tbl
```

Description: Immersed Boundary Method (IBM): power law interpolation.

```
See also: ibm_element_fluide (17.3)

Usage:
ibm_power_law_tbl str

Read str {

    [formulation_linear_pwl int]
    points_fluides champ_base
    points_solides champ_base
```

```
elements_fluides champ_base
    correspondance_elements champ_base
    [ impr ]
    [ nb_histo_boxes_impr int]
}
where
```

- formulation_linear_pwl int: Choix formulation lineaire ou non
- **points_fluides** *champ_base* (15.1) for inheritance: Node field giving the projection of the point below (points_solides) falling into the pure cell fluid
- **points_solides** *champ_base* (15.1) for inheritance: Node field giving the projection of the node on the immersed boundary
- **elements_fluides** *champ_base* (15.1) for inheritance: Node field giving the number of the element (cell) containing the pure fluid point
- **correspondance_elements** *champ_base* (15.1) for inheritance: Cell field giving the SALOME cell number
- impr for inheritance: To print IBM-related data
- **nb histo boxes impr** int for inheritance: number of histogram boxes for printed data

18 loi_etat_base

Description: Basic class for state laws used with a dilatable fluid.

```
See also: objet_u (36) loi_etat_gaz_reel_base (18.4) loi_etat_gaz_parfait_base (18.3)
```

Usage:

18.1 Binaire_gaz_parfait_qc

Description: Class for perfect gas binary mixtures state law used with a quasi-compressible fluid under the iso-thermal and iso-bar assumptions.

```
See also: loi_etat_gaz_parfait_base (18.3)

Usage:
binaire_gaz_parfait_QC str

Read str {

    molar_mass1 float
    molar_mass2 float
    mu1 float
    mu2 float
    temperature float
    diffusion_coeff float
}

where
```

- molar_mass1 float: Molar mass of species 1 (in kg/mol).
- molar_mass2 *float*: Molar mass of species 2 (in kg/mol).
- mu1 float: Dynamic viscosity of species 1 (in kg/m.s).
- mu2 float: Dynamic viscosity of species 2 (in kg/m.s).
- **temperature** *float*: Temperature (in Kelvin) which will be constant during the simulation since this state law only works for iso-thermal conditions.
- diffusion_coeff float: Diffusion coefficient assumed the same for both species (in m2/s).

18.2 Binaire_gaz_parfait_wc

Description: Class for perfect gas binary mixtures state law used with a weakly-compressible fluid under the iso-thermal and iso-bar assumptions.

```
See also: loi_etat_gaz_parfait_base (18.3)
Usage:
binaire_gaz_parfait_WC str
Read str {
     molar_mass1 float
     molar_mass2 float
     mu1 float
     mu2 float
     temperature float
     diffusion_coeff float
}
where
   • molar_mass1 float: Molar mass of species 1 (in kg/mol).
   • molar_mass2 float: Molar mass of species 2 (in kg/mol).
   • mu1 float: Dynamic viscosity of species 1 (in kg/m.s).
   • mu2 float: Dynamic viscosity of species 2 (in kg/m.s).
   • temperature float: Temperature (in Kelvin) which will be constant during the simulation since this
     state law only works for iso-thermal conditions.
```

18.3 Loi_etat_gaz_parfait_base

Description: Basic class for perfect gases state laws used with a dilatable fluid.

```
See also: loi_etat_base (18) rhoT_gaz_parfait_QC (18.9) binaire_gaz_parfait_QC (18.1) multi_gaz_parfait_QC (18.5) gaz_parfait_QC (18.7) multi_gaz_parfait_WC (18.6) binaire_gaz_parfait_WC (18.2) gaz_parfait_WC (18.8)
```

• diffusion_coeff float: Diffusion coefficient assumed the same for both species (in m2/s).

Usage:

18.4 Loi_etat_gaz_reel_base

Description: Basic class for real gases state laws used with a dilatable fluid.

```
See also: loi_etat_base (18) rhoT_gaz_reel_QC (18.10)
```

Usage:

18.5 Multi_gaz_parfait_qc

Description: Class for perfect gas multi-species mixtures state law used with a quasi-compressible fluid.

```
See also: loi_etat_gaz_parfait_base (18.3)
```

Usage:

```
multi_gaz_parfait_QC str
Read str {
    sc float
    prandtl float
    [cp float]
    [dtol_fraction float]
    [correction_fraction ]
    [ignore_check_fraction ]
}
where
```

- sc *float*: Schmidt number of the gas Sc=nu/D (D: diffusion coefficient of the mixing).
- **prandtl** *float*: Prandtl number of the gas Pr=mu*Cp/lambda
- cp float: Specific heat at constant pressure of the gas Cp.
- dtol_fraction float: Delta tolerance on mass fractions for check testing (default value 1.e-6).
- **correction fraction**: To force mass fractions between 0. and 1.
- ignore check fraction: Not to check if mass fractions between 0. and 1.

18.6 Multi_gaz_parfait_wc

Description: Class for perfect gas multi-species mixtures state law used with a weakly-compressible fluid.

```
See also: loi_etat_gaz_parfait_base (18.3)

Usage:
multi_gaz_parfait_WC str

Read str {

    species_number int
    diffusion_coeff champ_base
    molar_mass champ_base
    mu champ_base
    cp champ_base
    prandtl float

}

where
```

- species_number int: Number of species you are considering in your problem.
- **diffusion_coeff** *champ_base* (15.1): Diffusion coefficient of each species, defined with a Champ_uniforme of dimension equals to the species_number.
- **molar_mass** *champ_base* (15.1): Molar mass of each species, defined with a Champ_uniforme of dimension equals to the species_number.
- **mu** *champ_base* (15.1): Dynamic viscosity of each species, defined with a Champ_uniforme of dimension equals to the species_number.
- **cp** *champ_base* (15.1): Specific heat at constant pressure of the gas Cp, defined with a Champ_uniforme of dimension equals to the species_number..
- **prandtl** *float*: Prandtl number of the gas Pr=mu*Cp/lambda.

18.7 Gaz_parfait_qc

```
Description: Class for perfect gas state law used with a quasi-compressible fluid.
```

```
See also: loi_etat_gaz_parfait_base (18.3)
Usage:
gaz_parfait_QC str
Read str {
     Cp float
     [Cv float]
     [gamma float]
     Prandtl float
     [ rho_constant_pour_debug champ_base]
}
where
   • Cp float: Specific heat at constant pressure (J/kg/K).
   • Cv float: Specific heat at constant volume (J/kg/K).
   • gamma float: Cp/Cv
   • Prandtl float: Prandtl number of the gas Pr=mu*Cp/lambda
   • rho_constant_pour_debug champ_base (15.1): For developers to debug the code with a constant
```

18.8 Gaz_parfait_wc

Description: Class for perfect gas state law used with a weakly-compressible fluid.

- Cp float: Specific heat at constant pressure (J/kg/K).
- Cv *float*: Specific heat at constant volume (J/kg/K).
- gamma float: Cp/Cv
- Prandtl float: Prandtl number of the gas Pr=mu*Cp/lambda

Description: Class for perfect gas used with a quasi-compressible fluid where the state equation is defined as rho = f(T).

```
See also: loi_etat_gaz_parfait_base (18.3)
```

```
Usage:
rhoT_gaz_parfait_QC str
Read str {

    cp float
    [ prandtl float]
    [ rho_xyz champ_base]
    [ rho_t str]
    [ t_min float]
}
where
```

- cp float: Specific heat at constant pressure of the gas Cp.
- **prandtl** *float*: Prandtl number of the gas Pr=mu*Cp/lambda
- **rho_xyz** *champ_base* (15.1): Defined with a Champ_Fonc_xyz to define a constant rho with time (space dependent)
- rho_t str: Expression of T used to calculate rho. This can lead to a variable rho, both in space and in time
- t_min *float*: Temperature may, in some cases, locally and temporarily be very small (and negative) even though computation converges. T_min keyword allows to set a lower limit of temperature (in Kelvin, -1000 by default). WARNING: DO NOT USE THIS KEYWORD WITHOUT CHECKING CAREFULY YOUR RESULTS!

18.10 Rhot_gaz_reel_qc

Description: Class for real gas state law used with a quasi-compressible fluid.

```
See also: loi_etat_gaz_reel_base (18.4)

Usage:
rhoT_gaz_reel_QC bloc
where

• bloc bloc_lecture (3.54): Description.
```

19 loi_fermeture_base

Description: Class for appends fermeture to problem

Keyword Discretize should have already been used to read the object. See also: objet_u (36) loi_fermeture_test (19.1)

Usage:

19.1 Loi_fermeture_test

Description: Loi for test only

Keyword Discretize should have already been used to read the object.

See also: loi_fermeture_base (19)

Usage:

20 loi horaire

Description: to define the movement with a time-dependant law for the solid interface.

```
See also: objet_u (36)

Usage:
loi_horaire str
Read str {

    position n word1 word2 ... wordn
    vitesse n word1 word2 ... wordn
    [rotation n word1 word2 ... wordn]
    [derivee_rotation n word1 word2 ... wordn]
}
where

    • position n word1 word2 ... wordn
    • vitesse n word1 word2 ... wordn
    • rotation n word1 word2 ... wordn
    • rotation n word1 word2 ... wordn
    • derivee_rotation n word1 word2 ... wordn
```

21 milieu_base

```
Description: Basic class for medium (physics properties of medium).
```

```
See also: objet_u (36) constituant (21.1) solide (21.13) fluide_base (21.2)

Usage:
milieu_base str

Read str {

    [gravite champ_base]
    [porosites_champ champ_base]
    [diametre_hyd_champ champ_base]
    [porosites porosites]
}

where
```

- gravite champ_base (15.1): Gravity field (optional).
- **porosites_champ** *champ_base* (15.1): The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (15.1): Hydraulic diameter field (optional).
- porosites porosites (25): Porosities.

21.1 Constituant

```
Description: Constituent.
See also: milieu base (21)
Usage:
constituant str
Read str {
     [ rho champ_base]
     [ cp champ_base]
     [lambda champ base]
     [coefficient diffusion champ base]
     [porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
     [ porosites porosites]
}
where
   • rho champ base (15.1): Density (kg.m-3).
   • cp champ_base (15.1): Specific heat (J.kg-1.K-1).
   • lambda champ_base (15.1): Conductivity (W.m-1.K-1).
   • coefficient_diffusion champ_base (15.1): Constituent diffusion coefficient value (m2.s-1). If a
     multi-constituent problem is being processed, the diffusivite will be a vectorial and each components
     will be the diffusion of the constituent.
   • porosites champ champ base (15.1) for inheritance: The porosity is given at each element and the
     porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour el-
     ements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
   • diametre_hyd_champ champ_base (15.1) for inheritance: Hydraulic diameter field (optional).
   • porosites porosites (25) for inheritance: Porosities.
21.2
      Fluide_base
Description: Basic class for fluids.
Keyword Discretize should have already been used to read the object.
See also: milieu_base (21) fluide_reel_base (21.8) fluide_incompressible (21.4) fluide_dilatable_base (21.3)
Usage:
fluide base str
Read str {
     [indice champ_base]
     [kappa champ_base]
     [gravite champ base]
     [ porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
     [ porosites porosites]
}
```

• **indice** *champ_base* (15.1): Refractivity of fluid.

where

- **kappa** *champ_base* (15.1): Absorptivity of fluid (m-1).
- gravite champ_base (15.1) for inheritance: Gravity field (optional).
- porosites_champ champ_base (15.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (15.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (25) for inheritance: Porosities.

21.3 Fluide_dilatable_base

Description: Basic class for dilatable fluids.

Keyword Discretize should have already been used to read the object. See also: fluide_base (21.2) fluide_quasi_compressible (21.6) fluide_weakly_compressible (21.12)

Usage:

```
fluide_dilatable_base str

Read str {

    [indice champ_base]
    [kappa champ_base]
    [gravite champ_base]
    [porosites_champ champ_base]
    [diametre_hyd_champ champ_base]
    [porosites porosites]
}

where
```

- **indice** *champ_base* (15.1) for inheritance: Refractivity of fluid.
- **kappa** *champ_base* (15.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ_base (15.1) for inheritance: Gravity field (optional).
- porosites_champ champ_base (15.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (15.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (25) for inheritance: Porosities.

21.4 Fluide_incompressible

Description: Class for non-compressible fluids.

Keyword Discretize should have already been used to read the object.

```
See also: fluide_base (21.2) fluide_ostwald (21.5)
```

Usage:

```
fluide_incompressible str

Read str {

[ beta_th champ_base]
 [ mu champ_base]
 [ beta co champ base]
```

```
[rho champ_base]
     [cp champ_base]
     [lambda champ base]
     [ porosites bloc_lecture]
     [indice champ_base]
     [kappa champ_base]
     [gravite champ base]
     [porosites champ champ base]
     [diametre hyd champ champ base]
}
where
   • beta_th champ_base (15.1): Thermal expansion (K-1).
   • mu champ_base (15.1): Dynamic viscosity (kg.m-1.s-1).
   • beta_co champ_base (15.1): Volume expansion coefficient values in concentration.
   • rho champ_base (15.1): Density (kg.m-3).
   • cp champ_base (15.1): Specific heat (J.kg-1.K-1).
   • lambda champ_base (15.1): Conductivity (W.m-1.K-1).
   • porosites bloc_lecture (3.54): Porosity (optional)
   • indice champ_base (15.1) for inheritance: Refractivity of fluid.
   • kappa champ_base (15.1) for inheritance: Absorptivity of fluid (m-1).
   • gravite champ_base (15.1) for inheritance: Gravity field (optional).
   • porosites_champ champ_base (15.1) for inheritance: The porosity is given at each element and the
     porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour el-
     ements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
   • diametre hyd champ champ base (15.1) for inheritance: Hydraulic diameter field (optional).
```

21.5 Fluide ostwald

Description: Non-Newtonian fluids governed by Ostwald's law. The law applicable to stress tensor is: tau=K(T)*(D:D/2)**((n-1)/2)*D Where:

D refers to the deformation tensor

K refers to fluid consistency (may be a function of the temperature T)

n refers to the fluid structure index n=1 for a Newtonian fluid, n<1 for a rheofluidifier fluid, n>1 for a rheothickening fluid.

Keyword Discretize should have already been used to read the object.

See also: fluide_incompressible (21.4)

```
Usage:
```

```
fluide_ostwald str

Read str {

    [k champ_base]
    [n champ_base]
    [beta_th champ_base]
    [beta_co champ_base]
    [rho champ_base]
    [cp champ_base]
    [lambda champ_base]
    [porosites bloc_lecture]
```

```
[indice champ_base]
     [kappa champ_base]
     [gravite champ base]
     [porosites_champ champ_base]
     [diametre hyd champ champ base]
where
   • k champ_base (15.1): Fluid consistency.
   • n champ base (15.1): Fluid structure index.
   • beta_th champ_base (15.1) for inheritance: Thermal expansion (K-1).
   • mu champ_base (15.1) for inheritance: Dynamic viscosity (kg.m-1.s-1).
   • beta_co champ_base (15.1) for inheritance: Volume expansion coefficient values in concentration.
   • rho champ base (15.1) for inheritance: Density (kg.m-3).
   • cp champ_base (15.1) for inheritance: Specific heat (J.kg-1.K-1).
   • lambda champ_base (15.1) for inheritance: Conductivity (W.m-1.K-1).
   • porosites bloc_lecture (3.54) for inheritance: Porosity (optional)
   • indice champ_base (15.1) for inheritance: Refractivity of fluid.
   • kappa champ_base (15.1) for inheritance: Absorptivity of fluid (m-1).
   • gravite champ base (15.1) for inheritance: Gravity field (optional).
   • porosites_champ champ_base (15.1) for inheritance: The porosity is given at each element and the
```

• diametre hyd champ champ base (15.1) for inheritance: Hydraulic diameter field (optional).

porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.

21.6 Fluide_quasi_compressible

[gravite champ_base]

[porosites porosites]

[**porosites_champ** champ_base] [**diametre_hyd_champ** champ_base]

Description: Quasi-compressible flow with a low mach number assumption; this means that the thermodynamic pressure (used in state law) is uniform in space.

Keyword Discretize should have already been used to read the object. See also: fluide dilatable base (21.3)

```
Usage:
fluide_quasi_compressible str

Read str {

    [ sutherland bloc_sutherland]
    [ pression float]
    [ loi_etat loi_etat_base]
    [ traitement_pth str into ['edo', 'constant', 'conservation_masse']]
    [ traitement_rho_gravite str into ['standard', 'moins_rho_moyen']]
    [ temps_debut_prise_en_compte_drho_dt float]
    [ omega_relaxation_drho_dt float]
    [ lambda champ_base]
    [ mu champ_base]
    [ indice champ_base]
    [ kappa champ_base]
```

```
}
where
```

- sutherland bloc_sutherland (21.7): Sutherland law for viscosity and for conductivity.
- pression float: Initial thermo-dynamic pressure used in the assosciated state law.
- loi_etat_loi_etat_base (18): The state law that will be associated to the Quasi-compressible fluid.
- **traitement_pth** *str into ['edo', 'constant', 'conservation_masse']*: Particular treatment for the thermodynamic pressure Pth; there are three possibilities:
 - 1) with the keyword 'edo' the code computes Pth solving an O.D.E.; in this case, the mass is not strictly conserved (it is the default case for quasi compressible computation):
 - 2) the keyword 'conservation_masse' forces the conservation of the mass (closed geometry or with periodic boundaries condition)
 - 3) the keyword 'constant' makes it possible to have a constant Pth; it's the good choice when the flow is open (e.g. with pressure boundary conditions).
 - It is possible to monitor the volume averaged value for temperature and density, plus Pth evolution in the .evol glob file.
- **traitement_rho_gravite** *str into ['standard', 'moins_rho_moyen']*: It may be :1) standard: the gravity term is evaluated with rho*g (It is the default). 2) moins_rho_moyen: the gravity term is evaluated with (rho-rhomoy) *g. Unknown pressure is then P*=P+rhomoy*g*z. It is useful when you apply uniforme pressure boundary condition like P*=0.
- temps_debut_prise_en_compte_drho_dt *float*: While time<value, dRho/dt is set to zero (Rho, volumic mass). Useful for some calculation during the first time steps with big variation of temperature and volumic mass.
- omega_relaxation_drho_dt *float*: Optional option to have a relaxed algorithm to solve the mass equation. value is used (1 per default) to specify omega.
- lambda champ_base (15.1): Conductivity (W.m-1.K-1).
- mu champ_base (15.1): Dynamic viscosity (kg.m-1.s-1).
- **indice** champ base (15.1) for inheritance: Refractivity of fluid.
- **kappa** champ_base (15.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ_base (15.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (15.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (15.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (25) for inheritance: Porosities.

21.7 Bloc sutherland

Description: Sutherland law for viscosity mu(T)=mu0*((T0+C)/(T+C))*(T/T0)**1.5 and (optional) for conductivity lambda(T)=mu0*Cp/Prandtl*((T0+Slambda)/(T+Slambda))*(T/T0)**1.5

```
See also: objet_lecture (35)
```

Usage:

- problem_name str: Name of problem.
- **mu0** str into ['mu0']
- mu0_val float
- **t0** str into ['T0']
- t0_val float
- Slambda str into ['Slambda']

```
    s float
    C str into ['C']
    c_val float
```

21.8 Fluide_reel_base

Description: Class for real fluids.

Keyword Discretize should have already been used to read the object. See also: fluide_base (21.2) fluide_sodium_gaz (21.9) fluide_stiffened_gas (21.11) fluide_sodium_liquide

(21.10)

where

```
Usage:

fluide_reel_base str

Read str {

    [indice champ_base]
    [kappa champ_base]
    [gravite champ_base]
    [porosites_champ champ_base]
    [diametre_hyd_champ champ_base]
    [porosites porosites]
}
```

- indice champ_base (15.1) for inheritance: Refractivity of fluid.
- **kappa** *champ_base* (15.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ base (15.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (15.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (15.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (25) for inheritance: Porosities.

21.9 Fluide_sodium_gaz

```
Description: Class for Fluide_sodium_liquide
```

Keyword Discretize should have already been used to read the object.

```
See also: fluide_reel_base (21.8)
```

```
Usage:
```

```
fluide_sodium_gaz str

Read str {

    [P_ref float]
    [T_ref float]
    [indice champ_base]
    [kappa champ_base]
    [gravite champ_base]
    [porosites_champ champ_base]
    [diametre_hyd_champ champ_base]
```

```
[ porosites porosites]
}
where
```

- **P_ref** *float*: Use to set the pressure value in the closure law. If not specified, the value of the pressure unknown will be used
- **T_ref** *float*: Use to set the temperature value in the closure law. If not specified, the value of the temperature unknown will be used
- **indice** *champ_base* (15.1) for inheritance: Refractivity of fluid.
- **kappa** *champ_base* (15.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ_base (15.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (15.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre hyd champ champ base (15.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (25) for inheritance: Porosities.

21.10 Fluide_sodium_liquide

```
Description: Class for Fluide_sodium_liquide
```

Keyword Discretize should have already been used to read the object.

```
See also: fluide_reel_base (21.8)
```

```
Usage:
```

```
fluide_sodium_liquide str

Read str {

    [P_ref float]
    [T_ref float]
    [indice champ_base]
    [kappa champ_base]
    [gravite champ_base]
    [porosites_champ champ_base]
    [diametre_hyd_champ champ_base]
    [porosites porosites]
}

where
```

- **P_ref** *float*: Use to set the pressure value in the closure law. If not specified, the value of the pressure unknown will be used
- **T_ref** *float*: Use to set the temperature value in the closure law. If not specified, the value of the temperature unknown will be used
- indice champ_base (15.1) for inheritance: Refractivity of fluid.
- **kappa** champ base (15.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ_base (15.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (15.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre hyd champ champ base (15.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (25) for inheritance: Porosities.

21.11 Fluide_stiffened_gas

```
Description: Class for Stiffened Gas
Keyword Discretize should have already been used to read the object.
See also: fluide_reel_base (21.8)
Usage:
fluide stiffened gas str
Read str {
     [gamma float]
     [ pinf float]
     [ mu float]
     [lambda float]
     [Cv float]
     [ q float]
     [q_prim float]
     [indice champ_base]
     [kappa champ base]
     [gravite champ_base]
     [porosites champ champ base]
     [ diametre_hyd_champ champ_base]
     [porosites porosites]
```

- gamma *float*: Heat capacity ratio (Cp/Cv)
- **pinf** *float*: Stiffened gas pressure constant (if set to zero, the state law becomes identical to that of perfect gases)
- mu float: Dynamic viscosity
- lambda float: Thermal conductivity
- Cv float: Thermal capacity at constant volume
- q float: Reference energy
- q prim float: Model constant
- indice champ_base (15.1) for inheritance: Refractivity of fluid.
- **kappa** *champ_base* (15.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ_base (15.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (15.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (15.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (25) for inheritance: Porosities.

21.12 Fluide_weakly_compressible

Description: Weakly-compressible flow with a low mach number assumption; this means that the thermodynamic pressure (used in state law) can vary in space.

```
Keyword Discretize should have already been used to read the object. See also: fluide_dilatable_base (21.3)
```

Usage:

} where

```
fluide_weakly_compressible str
Read str {
     [loi_etat loi_etat_base]
     [ sutherland bloc_sutherland]
     [traitement_pth str into ['constant']]
     [lambda champ base]
     [mu champ base]
     [ pression_thermo float]
     [pression xyz champ base]
     [ use_total_pressure int]
     [ use hydrostatic pressure int]
     [use grad pression eos int]
     [time activate ptot float]
     [indice champ_base]
     [kappa champ_base]
     [gravite champ_base]
     [porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
     [ porosites porosites]
}
where
```

- loi etat loi etat base (18): The state law that will be associated to the Weakly-compressible fluid.
- sutherland bloc_sutherland (21.7): Sutherland law for viscosity and for conductivity.
- **traitement_pth** *str into ['constant']*: Particular treatment for the thermodynamic pressure Pth; there is currently one possibility:
 - 1) the keyword 'constant' makes it possible to have a constant Pth but not uniform in space; it's the good choice when the flow is open (e.g. with pressure boundary conditions).
- lambda champ_base (15.1): Conductivity (W.m-1.K-1).
- **mu** champ base (15.1): Dynamic viscosity (kg.m-1.s-1).
- pression_thermo float: Initial thermo-dynamic pressure used in the assosciated state law.
- **pression_xyz** *champ_base* (15.1): Initial thermo-dynamic pressure used in the assosciated state law. It should be defined with as a Champ_Fonc_xyz.
- use_total_pressure int: Flag (0 or 1) used to activate and use the total pressure in the assosciated state law. The default value of this Flag is 0.
- use_hydrostatic_pressure int: Flag (0 or 1) used to activate and use the hydro-static pressure in the assosciated state law. The default value of this Flag is 0.
- use_grad_pression_eos *int*: Flag (0 or 1) used to specify whether or not the gradient of the thermodynamic pressure will be taken into account in the source term of the temperature equation (case of a non-uniform pressure). The default value of this Flag is 1 which means that the gradient is used in the source.
- **time_activate_ptot** *float*: Time (in seconds) at which the total pressure will be used in the assosciated state law.
- indice champ_base (15.1) for inheritance: Refractivity of fluid.
- **kappa** *champ_base* (15.1) for inheritance: Absorptivity of fluid (m-1).
- **gravite** *champ_base* (15.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (15.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (15.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (25) for inheritance: Porosities.

21.13 Solide

```
Description: Solid with cp and/or rho non-uniform.
```

```
See also: milieu base (21)
Usage:
solide str
Read str {
     [rho champ_base]
     [cp champ_base]
     [lambda champ_base]
     [user_field champ_base]
     [gravite champ_base]
     [porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
     [ porosites porosites]
}
where
   • rho champ_base (15.1): Density (kg.m-3).
   • cp champ base (15.1): Specific heat (J.kg-1.K-1).
   • lambda champ_base (15.1): Conductivity (W.m-1.K-1).
   • user_field champ_base (15.1): user defined field.
   • gravite champ_base (15.1) for inheritance: Gravity field (optional).
```

• diametre_hyd_champ champ_base (15.1) for inheritance: Hydraulic diameter field (optional).

• **porosites_champ** *champ_base* (15.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.

• porosites porosites (25) for inheritance: Porosities.

22 modele_turbulence_scal_base

Description: Basic class for turbulence model for energy equation.

```
See also: objet_u (36) null (22.1)

Usage:
modele_turbulence_scal_base str

Read str {
    turbulence_paroi turbulence_paroi_scalaire_base
    [dt_impr_nusselt float]
}
where
```

- turbulence_paroi_turbulence_paroi_scalaire_base (33): Keyword to set the wall law.
- dt_impr_nusselt float: Keyword to print local values of Nusselt number and temperature near a wall during a turbulent calculation. The values will be printed in the _Nusselt.face file each dt_impr_nusselt time period. The local Nusselt expression is as follows: Nu = ((lambda+lambda_t)/lambda)*d_wall/d_eq where d_wall is the distance from the first mesh to the wall and d_eq is

given by the wall law. This option also gives the value of d_{q} and $h = (lambda+lambda_t)/d_{q}$ and the fluid temperature of the first mesh near the wall.

For the Neumann boundary conditions (flux_impose), the «equivalent» wall temperature given by the wall law is also printed (Tparoi equiv.) preceded for VEF calculation by the edge temperature «T face de bord».

22.1 Null

Description: Nul scalar turbulence model (turbulent diffusivity = 0) which can be used with a turbulent problem.

```
See also: modele_turbulence_scal_base (22)
Usage:
null str
Read str {
     [ dt_impr_nusselt float]
}
where
```

• **dt_impr_nusselt** *float* for inheritance: Keyword to print local values of Nusselt number and temperature near a wall during a turbulent calculation. The values will be printed in the _Nusselt.face file each dt_impr_nusselt time period. The local Nusselt expression is as follows: Nu = ((lambda+lambda_t)/lambda)*d_wall/d_eq where d_wall is the distance from the first mesh to the wall and d_eq is given by the wall law. This option also gives the value of d_eq and h = (lambda+lambda_t)/d_eq and the fluid temperature of the first mesh near the wall.

For the Neumann boundary conditions (flux_impose), the «equivalent» wall temperature given by the wall law is also printed (Tparoi equiv.) preceded for VEF calculation by the edge temperature «T face de bord».

23 nom

```
Description: Class to name the TRUST objects.
```

```
See also: objet_u (36) nom_anonyme (23.1)
Usage:
nom [ mot ]
where
```

• mot str: Chain of characters.

23.1 Nom_anonyme

```
Description: not_set

See also: nom (23)

Usage:
[ mot ]
where
```

• mot str: Chain of characters.

24 partitionneur_deriv

```
Description: not_set

See also: objet_u (36) metis (24.3) sous_zones (24.7) tranche (24.8) partition (24.4) fichier_decoupage (24.2) fichier_med (24.1) sous_dom (24.5) union (24.9) partitionneur_sous_zones (24.6)

Usage:
partitionneur_deriv str
Read str {
    [nb_parts int]
}
where
```

• **nb_parts** *int*: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

24.1 Fichier_med

Description: Partitioning a domain using a MED file containing an integer field providing for each element the processor number on which the element should be located.

```
See also: partitionneur_deriv (24)

Usage:
fichier_med str

Read str {
    file str
    field str
    [nb_parts int]
}
where
```

- file str: file name of the MED file to load
- **field** str: field name of the integer field to load
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

24.2 Fichier_decoupage

Description: This algorithm reads an array of integer values on the disc, one value for each mesh element. Each value is interpreted as the target part number n>=0 for this element. The number of parts created is the highest value in the array plus one. Empty parts can be created if some values are not present in the array.

The file format is ASCII, and contains space, tab or carriage-return separated integer values. The first value is the number nb_elem of elements in the domain, followed by nb_elem integer values (positive or zero). This algorithm has been designed to work together with the 'ecrire_decoupage' option. You can generate a partition with any other algorithm, write it to disc, modify it, and read it again to generate the .Zone files. Contrary to other partitioning algorithms, no correction is applied by default to the partition (eg. element 0 on processor 0 and corrections for periodic boundaries). If 'corriger_partition' is specified, these corrections are applied.

```
See also: partitionneur_deriv (24)

Usage:
fichier_decoupage str

Read str {

fichier str

[corriger_partition]

[nb_parts int]
}

where
```

- fichier str: FILENAME
- corriger_partition
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

24.3 Metis

Description: Metis is an external partitionning library. It is a general algorithm that will generate a partition of the domain.

```
See also: partitionneur_deriv (24)

Usage:
metis str
Read str {

    [kmetis]
    [use_weights]
    [nb_parts int]

}
where
```

- **kmetis**: The default values are pmetis, default parameters are automatically chosen by Metis. 'kmetis' is faster than pmetis option but the last option produces better partitioning quality. In both cases, the partitioning quality may be slightly improved by increasing the nb_essais option (by default N=1). It will compute N partitions and will keep the best one (smallest edge cut number). But this option is CPU expensive, taking N=10 will multiply the CPU cost of partitioning by 10. Experiments show that only marginal improvements can be obtained with non default parameters.
- use_weights: If use_weights is specified, weighting of the element-element links in the graph is used to force metis to keep opposite periodic elements on the same processor. This option can slightly improve the partitionning quality but it consumes more memory and takes more time. It is not mandatory since a correction algorithm is always applied afterwards to ensure a correct partitionning for periodic boundaries.
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

24.4 Partition

Synonymous: decouper

Description: This algorithm re-use the partition of the domain named DOMAINE_NAME. It is useful to partition for example a post processing domain. The partition should match with the calculation domain.

See also: partitionneur_deriv (24)

Usage:
partition str
Read str {
 domaine str
 [nb_parts int]
}
where

- domaine str: domain name
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

24.5 Sous_dom

Description: Given a global partition of a global domain, 'sous-domaine' allows to produce a conform partition of a sub-domain generated from the bigger one using the keyword create_domain_from_sous_domaine. The sub-domain will be partitionned in a conform fashion with the global domain.

See also: partitionneur deriv (24)

```
Usage:
sous_dom str
Read str {
fichier str
fichier_ssz str
[nb_parts int]
}
where
```

- fichier str: fichier
- fichier_ssz str: fichier sous zonne
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

24.6 Partitionneur_sous_zones

Synonymous: partitionneur_sous_domaines

Description: This algorithm will create one part for each specified subdomaine/domain. All elements contained in the first subdomaine/domain are put in the first part, all remaining elements contained in the second subdomaine/domain in the second part, etc...

If all elements of the current domain are contained in the specified subdomaines/domain, then N parts are

created, otherwise, a supplemental part is created with the remaining elements. If no subdomaine is specified, all subdomaines defined in the domain are used to split the mesh.

```
See also: partitionneur_deriv (24)

Usage:
partitionneur_sous_zones str

Read str {

    [sous_zones n word1 word2 ... wordn]
    [domaines n word1 word2 ... wordn]
    [nb_parts int]
}
where
```

- sous_zones n word1 word2 ... wordn: N SUBZONE_NAME_1 SUBZONE_NAME_2 ...
- **domaines** *n word1 word2 ... wordn*: N DOMAIN_NAME_1 DOMAIN_NAME_2 ...
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

24.7 Sous_zones

Description: This algorithm will create one part for each specified subzone. All elements contained in the first subzone are put in the first part, all remaining elements contained in the second subzone in the second part, etc...

If all elements of the domain are contained in the specified subzones, then N parts are created, otherwise, a supplemental part is created with the remaining elements.

If no subzone is specified, all subzones defined in the domain are used to split the mesh.

```
See also: partitionneur_deriv (24)

Usage:
sous_zones str

Read str {

sous_zones n word1 word2 ... wordn
[nb_parts int]
}
where
```

- sous zones n word1 word2 ... wordn: N SUBZONE NAME 1 SUBZONE NAME 2 ...
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

24.8 Tranche

Description: This algorithm will create a geometrical partitionning by slicing the mesh in the two or three axis directions, based on the geometric center of each mesh element. nz must be given if dimension=3. Each slice contains the same number of elements (slices don't have the same geometrical width, and for VDF meshes, slice boundaries are generally not flat except if the number of mesh elements in each direction is an exact multiple of the number of slices). First, nx slices in the X direction are created, then each slice is split in ny slices in the Y direction, and finally, each part is split in nz slices in the Z direction. The

resulting number of parts is nx*ny*nz. If one particular direction has been declared periodic, the default slicing (0, 1, 2, ..., n-1) is replaced by (0, 1, 2, ... n-1, 0), each of the two '0' slices having twice less elements than the other slices.

See also: partitionneur_deriv (24)

Usage:
tranche str
Read str {
 [tranches n1 n2 (n3)]
 [nb_parts int]
}
where

- **tranches** *n1 n2 (n3)*: Partitioned by nx in the X direction, ny in the Y direction, nz in the Z direction. Works only for structured meshes. No warranty for unstructured meshes.
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

24.9 Union

Description: Let several local domains be generated from a bigger one using the keyword create_domain_from_sous_domaine, and let their partitions be generated in the usual way. Provided the list of partition files for each small domain, the keyword 'union' will partition the global domain in a conform fashion with the smaller domains.

See also: partitionneur_deriv (24)

Usage:
union liste [nb_parts]
where

- **liste** *bloc_lecture* (3.54): List of the partition files with the following syntaxe: {sous_domaine1 decoupage1 ... sous_domaineim decoupageim } where sous_domaine1 ... sous_zomeim are small domains names and decoupage1 ... decoupageim are partition files.
- **nb_parts** *int*: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

25 porosites

Description: To define the volume porosity and surface porosity that are uniform in every direction in space on a sub-area.

Porosity was only usable in VDF discretization, and now available for VEF P1NC/P0. Observations :

- Surface porosity values must be given in every direction in space (set this value to 1 if there is no porosity),
- Prior to defining porosity, the problem must have been discretized.

Can 't be used in VEF discretization, use Porosites_champ instead.

```
See also: objet_u (36)
```

Usage:

```
porosites aco sous_zone1|sous_zone bloc [ sous_zone2 ] [ bloc2 ] acof where
```

- aco str into ['{'}: Opening curly bracket.
- sous_zone1|sous_zone str: Name of the sub-area to which porosity are allocated.
- **bloc** *bloc_lecture_poro* (25.1): *Surface and volume porosity values.*
- sous_zone2 str: Name of the 2nd sub-area to which porosity are allocated.
- **bloc2** *bloc_lecture_poro* (25.1): *Surface and volume porosity values.*
- acof str into ['}']: Closing curly bracket.

25.1 Bloc_lecture_poro

Description: Surface and volume porosity values.

```
See also: objet_lecture (35)

Usage:
{

volumique float
surfacique n x1 x2 ... xn
}
where
```

- volumique float: Volume porosity value.
- **surfacique** *n x1 x2 ... xn*: Surface porosity values (in X, Y, Z directions).

26 precond base

```
Description: Basic class for preconditioning.
```

```
See also: objet_u (36) ssor (26.3) ssor_bloc (26.4) precondsolv (26.2) ilu (26.1)
```

Usage:

26.1 Ilu

Description: This preconditionner can be only used with the generic GEN solver.

```
See also: precond_base (26)

Usage:
ilu str

Read str {

[ type int]

[ filling int]
}

where
```

- type int: values can be 0|1|2|3 for null|left|right|left-and-right preconditionning (default value = 2)
- **filling** *int*: default value = 1.

```
26.2 Precondsolv
```

```
Description: not_set
See also: precond_base (26)
Usage:
precondsolv solveur
where
   • solveur solveur_sys_base (10.14): Solver type.
26.3 Ssor
Description: Symmetric successive over-relaxation algorithm.
See also: precond_base (26)
Usage:
ssor str
Read str {
     [ omega float]
}
where
   • omega float: Over-relaxation facteur (between 1 and 2, default value 1.6).
26.4 Ssor_bloc
Description: not_set
See also: precond_base (26)
Usage:
ssor_bloc str
Read str {
     [ alpha_0 float]
     [ precond0 precond_base]
     [ alpha_1 float]
     [ precond1 precond_base]
     [ alpha_a float]
     [ preconda precond_base]
}
where
   • alpha_0 float
   • precond0 precond_base (26)
   • alpha_1 float
   • precond1 precond_base (26)
   • alpha_a float
```

• preconda precond_base (26)

27 saturation base

where

```
Description: Basic class for a liquid-gas interface (used in pb_multiphase)
See also: objet_u (36) saturation_sodium (27.2) saturation_constant (27.1)
Usage:
27.1
       Saturation_constant
Description: Class for saturation constant
See also: saturation_base (27)
Usage:
saturation_constant str
Read str {
     [ P_sat float]
     [ T_sat float]
      [Lvap float]
     [ Hlsat float]
      [ Hvsat float]
}
where
   • P_sat float: Define the saturation pressure value (this is a required parameter)
   • T_sat float: Define the saturation temperature value (this is a required parameter)
   • Lvap float: Latent heat of vaporization
   • Hisat float: Liquid saturation enthalpy
   • Hvsat float: Vapor saturation enthalpy
27.2
       Saturation_sodium
Description: Class for saturation sodium
See also: saturation_base (27)
Usage:
saturation sodium str
Read str {
      [ P_ref float]
     [ T_ref float]
}
```

- **P_ref** *float*: Use to fix the pressure value in the closure law. If not specified, the value of the pressure unknown will be used
- **T_ref** *float*: Use to fix the temperature value in the closure law. If not specified, the value of the temperature unknown will be used

28 schema_temps_base

Description: Basic class for time schemes. This scheme will be associated with a problem and the equations of this problem.

See also: objet_u (36) scheme_euler_explicit (28.3) schema_predictor_corrector (28.21) Sch_CN_iteratif (28.2) leap_frog (28.4) schema_implicite_base (28.20) schema_adams_bashforth_order_2 (28.13) schema_adams_bashforth_order_3 (28.14) runge_kutta_ordre_2 (28.5) runge_kutta_ordre_3 (28.7) runge_kutta_ordre_4_d3p (28.9) runge_kutta_rationnel_ordre_2 (28.12) runge_kutta_ordre_2_classique (28.6) runge_kutta_ordre_3_classique (28.8) runge_kutta_ordre_4_classique (28.10) runge_kutta_ordre_4_classique-3_8 (28.11)

```
Usage:
```

```
schema_temps_base str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [\mathbf{dt}_{\mathbf{max}} \ str]
     [ dt_sauv float]
     [ dt_impr float]
     [facsec float]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil diffusion implicite float]
     [ impr_diffusion_implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no conv subiteration diffusion implicite int]
     [ dt_start dt_start]
     [ nb pas dt max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot_header int]
}
where
```

- tinit *float*: Value of initial calculation time (0 by default).
- tmax float: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float*: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float*: Minimum calculation time step (1e-16s by default).
- **dt_max** *str*: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float*: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).

- **dt_impr** *float*: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- facsec *float*: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema-Adams Bashforth order 3.
- **seuil_statio** *float*: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98): To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int*: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float*: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- impr_diffusion_implicite int: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int
- no_conv_subiteration_diffusion_implicite int
- **dt_start** *dt_start* (10.6): dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- **nb_pas_dt_max** *int*: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int*: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int*: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- periode_sauvegarde_securite_en_heures *float*: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space: To disable the check of the available amount of disk space during the calculation.
- **disable_progress**: To disable the writing of the .progress file.
- **disable_dt_ev**: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int*: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.1 Sch_cn_ex_iteratif

Description: This keyword also describes a Crank-Nicholson method of second order accuracy but here, for scalars, because of instablities encountered when dt>dt_CFL, the Crank Nicholson scheme is not applied to scalar quantities. Scalars are treated according to Euler-Explicite scheme at the end of the CN treatment for velocity flow fields (by doing p Euler explicite under-iterations at dt<=dt_CFL). Parameters

are the sames (but default values may change) compare to the Sch_CN_iterative scheme plus a relaxation keyword: niter_min (2 by default), niter_max (6 by default), niter_avg (3 by default), facsec_max (20 by default), seuil (0.05 by default)

```
See also: Sch CN iteratif (28.2)
Sch CN EX iteratif str
Read str {
     [ omega float]
     [ niter_min int]
     [ niter_max int]
     [ niter_avg int]
     [facsec_max float]
     [ seuil float]
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [ dt sauv float]
     [ dt_impr float]
     [facsec float]
     [ seuil statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision impr int]
     [ periode sauvegarde securite en heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
     [ gnuplot_header int]
}
where
```

- omega *float*: relaxation factor (0.1 by default)
- **niter_min** *int* for inheritance: minimal number of p-iterations to satisfy convergence criteria (2 by default)
- **niter_max** *int* for inheritance: number of maximum p-iterations allowed to satisfy convergence criteria (6 by default)
- **niter_avg** *int* for inheritance: threshold of p-iterations (3 by default). If the number of p-iterations is greater than niter_avg, facsec is reduced, if lesser than niter_avg, facsec is increased (but limited by the facsec_max value).
- **facsec_max** *float* for inheritance: maximum ratio allowed between dynamical time step returned by iterative process and stability time returned by CFL condition (2 by default).

- **seuil** *float* for inheritance: criteria for ending iterative process (Max(|| u(p) u(p-1)||/Max || u(p) ||) < seuil) (0.001 by default)
- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter_max_diffusion_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.

- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable progress** for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.2 Sch cn iteratif

Description: The Crank-Nicholson method of second order accuracy. A mid-point rule formulation is used (Euler-centered scheme). The basic scheme is:

$$u(t+1) = u(t) + \frac{du}{dt}(t+1/2) * dt$$

The estimation of the time derivative du/dt at the level (t+1/2) is obtained either by iterative process. The time derivative du/dt at the level (t+1/2) is calculated iteratively with a simple under-relaxations method. Since the method is implicit, neither the cfl nor the fourier stability criteria must be respected. The time step is calculated in a way that the iterative procedure converges with the less iterations as possible. Remark: for stationary or RANS calculations, no limitation can be given for time step through high value of facsec_max parameter (for instance: facsec_max 1000). In counterpart, for LES calculations, high

See also: schema temps base (28) Sch CN EX iteratif (28.1)

values of facsec max may engender numerical instabilities.

```
Usage:
Sch_CN_iteratif str
Read str {
     [ niter_min int]
     [ niter_max int]
     [ niter_avg int]
     [facsec_max float]
     [ seuil float]
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt min float]
     [ dt_max str]
     [ dt sauv float]
     [ dt_impr float]
     [facsec float]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil diffusion implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode sauvegarde securite en heures float]
```

```
[ no_check_disk_space ]
  [ disable_progress ]
  [ disable_dt_ev ]
  [ gnuplot_header int]
}
where
```

- niter_min int: minimal number of p-iterations to satisfy convergence criteria (2 by default)
- **niter_max** *int*: number of maximum p-iterations allowed to satisfy convergence criteria (6 by default)
- **niter_avg** *int*: threshold of p-iterations (3 by default). If the number of p-iterations is greater than niter_avg, facsec is reduced, if lesser than niter_avg, facsec is increased (but limited by the facsec_max value).
- **facsec_max** *float*: maximum ratio allowed between dynamical time step returned by iterative process and stability time returned by CFL condition (2 by default).
- seuil *float*: criteria for ending iterative process (Max(|| u(p) u(p-1)||/Max || u(p) ||) < seuil) (0.001 by default)
- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- seuil_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- **impr extremums** *int* for inheritance: Print unknowns extremas

- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- gnuplot_header int for inheritance: Optional keyword to modify the header of the .out files. Allows
 to use the column title instead of columns number.

28.3 Scheme_euler_explicit

```
Synonymous: schema_euler_explicite
Description: This is the Euler explicit scheme.
See also: schema temps base (28)
Usage:
scheme_euler_explicit str
Read str {
      [tinit float]
      [tmax float]
      [tcpumax float]
      [ dt_min float]
      [\mathbf{dt}_{\mathbf{max}} \ str]
      [ dt_sauv float]
      [dt impr float]
      [facsec float]
      [ seuil statio float]
      [residuals residuals]
      [ diffusion implicite int]
      [ seuil_diffusion_implicite float]
      [ impr_diffusion_implicite int]
      [impr extremums int]
      [ no error if not converged diffusion implicite int]
      [ no_conv_subiteration_diffusion_implicite int]
      [ dt_start dt_start]
      [ nb_pas_dt_max int]
      [ niter_max_diffusion_implicite int]
```

```
[ precision_impr int]
  [ periode_sauvegarde_securite_en_heures float]
  [ no_check_disk_space ]
  [ disable_progress ]
  [ disable_dt_ev ]
  [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- **nb pas dt max** int for inheritance: Maximum number of calculation time steps (1e9 by default).

- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.4 Leap_frog

```
Description: This is the leap-frog scheme.
```

```
See also: schema temps base (28)
Usage:
leap_frog str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [ dt_sauv float]
     [dt impr float]
     [facsec float]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [impr diffusion implicite int]
     [ impr_extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter max diffusion implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [disable dt ev ]
     [gnuplot_header int]
}
where
```

• **tinit** *float* for inheritance: Value of initial calculation time (0 by default).

- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable progress** for inheritance: To disable the writing of the .progress file.

- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.5 Runge_kutta_ordre_2

Description: This is a low-storage Runge-Kutta scheme of second order that uses 2 integration points. The method is presented by Williamson (case 1) in https://www.sciencedirect.com/science/article/pii/0021999180900339

```
See also: schema temps base (28)
Usage:
runge_kutta_ordre_2 str
Read str {
      [tinit float]
      [tmax float]
      [tcpumax float]
      [ dt_min float]
      \begin{bmatrix} dt max str \end{bmatrix}
      [ dt_sauv float]
      [ dt_impr float]
      [facsec float]
      [ seuil_statio float]
      [residuals residuals]
      [ diffusion implicite int]
      [ seuil diffusion implicite float]
      [impr diffusion implicite int]
      [ impr_extremums int]
      [ no_error_if_not_converged_diffusion_implicite int]
      [ no conv subiteration diffusion implicite int]
      [ dt_start dt_start]
      [ nb_pas_dt_max int]
      [ niter_max_diffusion_implicite int]
      [ precision_impr int]
      [ periode_sauvegarde_securite_en_heures float]
      [ no check disk space ]
      [ disable_progress ]
      [disable dt ev ]
      [ gnuplot_header int]
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).

- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- seuil_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- **nb_pas_dt_max** *int* for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable progress for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.6 Runge kutta ordre 2 classique

Description: This is a classical Runge-Kutta scheme of second order that uses 2 integration points.

```
Usage:
runge_kutta_ordre_2_classique str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt min float]
     [dt_max str]
     [ dt_sauv float]
     [ dt_impr float]
     [facsec float]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil diffusion_implicite float]
     [impr diffusion implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no conv subiteration diffusion implicite int]
     [ dt start dt start]
     [ nb pas dt max int]
     [ niter max diffusion implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot header int]
}
where
```

See also: schema_temps_base (28)

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt min float for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported

- values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- diffusion_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- **nb pas dt max** int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.7 Runge_kutta_ordre_3

Description: This is a low-storage Runge-Kutta scheme of third order that uses 3 integration points. The method is presented by Williamson (case 7) in https://www.sciencedirect.com/science/article/pii/0021999180900339

```
See also: schema_temps_base (28)
Usage:
runge_kutta_ordre_3 str
Read str {
    [tinit float]
    [tmax float]
    [tcpumax float]
```

```
[ dt_min float]
     [ dt_max str]
     [ dt sauv float]
     [ dt_impr float]
     [facsec float]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil diffusion implicite float]
     [impr diffusion implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures | float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [disable dt ev ]
     [gnuplot header int]
}
```

- where
 - tinit float for inheritance: Value of initial calculation time (0 by default).
 - tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
 - tcpumax float for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
 - **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
 - dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
 - dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
 - dt_impr float for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
 - facsec float for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema-_Adams_Bashforth order 3.
 - seuil statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
 - residuals residuals (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
 - diffusion_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time

step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.

- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no conv subiteration diffusion implicite int for inheritance
- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable progress** for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.8 Runge_kutta_ordre_3_classique

Description: This is a classical Runge-Kutta scheme of third order that uses 3 integration points.

See also: schema_temps_base (28) Usage: runge_kutta_ordre_3_classique str Read str { [tinit float] [tmax float] [tcpumax float] [**dt_min** float] $\begin{bmatrix} dt max str \end{bmatrix}$ [dt_sauv float] [dt_impr float] [facsec float] [seuil_statio float] [residuals residuals] [diffusion_implicite int] [seuil_diffusion_implicite float] [impr_diffusion_implicite int]

```
[ impr_extremums int]
      [ no_error_if_not_converged_diffusion_implicite int]
      [ no_conv_subiteration_diffusion_implicite int]
      [ dt_start dt_start]
      [ nb_pas_dt_max int]
      [ niter_max_diffusion_implicite int]
      [ precision_impr int]
      [ periode_sauvegarde_securite_en_heures float]
      [ no_check_disk_space ]
      [ disable_progress ]
      [ disable_dt_ev ]
      [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema-Adams Bashforth order 3.
- seuil_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- **impr_extremums** *int* for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no conv subiteration diffusion implicite int for inheritance

- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.9 Runge_kutta_ordre_4_d3p

Synonymous: runge_kutta_ordre_4

[precision_impr int]

Description: This is a low-storage Runge-Kutta scheme of fourth order that uses 3 integration points. The method is presented by Williamson (case 17) in https://www.sciencedirect.com/science/article/pii/0021999180900339

```
See also: schema_temps_base (28)
Usage:
runge_kutta_ordre_4_d3p str
Read str {
      [tinit float]
      [tmax float]
      [tcpumax float]
      [ dt min float]
      \begin{bmatrix} dt_{max} & str \end{bmatrix}
      [ dt_sauv float]
      [ dt_impr float]
      [facsec float]
      [ seuil_statio float]
      [residuals residuals]
      [ diffusion implicite int]
      [ seuil diffusion implicite float]
      [impr_diffusion_implicite int]
      [ impr_extremums int]
      [ no error if not converged diffusion implicite int]
      [ no_conv_subiteration_diffusion_implicite int]
      [ dt_start dt_start]
      [ nb_pas_dt_max int]
      [ niter_max_diffusion_implicite int]
```

```
[ periode_sauvegarde_securite_en_heures float]
    [ no_check_disk_space ]
    [ disable_progress ]
    [ disable_dt_ev ]
    [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- diffusion_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).

- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.10 Runge_kutta_ordre_4_classique

Description: This is a classical Runge-Kutta scheme of fourth order that uses 4 integration points.

```
See also: schema temps base (28)
Usage:
runge_kutta_ordre_4_classique str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [ dt_sauv float]
     [dt impr float]
     [facsec float]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [impr diffusion implicite int]
     [ impr_extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt start dt start]
     [ nb_pas_dt_max int]
     [ niter max diffusion implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [disable dt ev ]
     [gnuplot_header int]
}
where
```

• **tinit** *float* for inheritance: Value of initial calculation time (0 by default).

- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb pas dt max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.

- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.11 Runge_kutta_ordre_4_classique_3_8

Description: This is a classical Runge-Kutta scheme of fourth order that uses 4 integration points and the 3/8 rule.

```
See also: schema_temps_base (28)
Usage:
runge_kutta_ordre_4_classique_3_8 str
Read str {
      [tinit float]
      [tmax float]
      [tcpumax float]
      [ dt_min float]
      \begin{bmatrix} dt max str \end{bmatrix}
      [ dt_sauv float]
      [ dt_impr float]
      [facsec float]
      [ seuil_statio float]
      [residuals residuals]
      [ diffusion implicite int]
      [ seuil diffusion implicite float]
      [impr diffusion implicite int]
      [ impr_extremums int]
      [ no_error_if_not_converged_diffusion_implicite int]
      [ no conv subiteration diffusion implicite int]
      [ dt_start dt_start]
      [ nb_pas_dt_max int]
      [ niter_max_diffusion_implicite int]
      [ precision_impr int]
      [ periode_sauvegarde_securite_en_heures float]
      [ no check disk space ]
      [ disable_progress ]
      [disable dt ev ]
      [ gnuplot_header int]
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).

- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the out file
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable progress for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.12 Runge kutta rationnel ordre 2

Description: This is the Runge-Kutta rational scheme of second order. The method is described in the note: Wambeck - Rational Runge-Kutta methods for solving systems of ordinary differential equations, at

the link: https://link.springer.com/article/10.1007/BF02252381. Although rational methods require more computational work than linear ones, they can have some other properties, such as a stable behaviour with explicitness, which make them preferable. The CFD application of this RRK2 scheme is described in the note: https://link.springer.com/content/pdf/10.1007%2F3-540-13917-6_112.pdf.

```
See also: schema_temps_base (28)
Usage:
runge kutta rationnel ordre 2 str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [ dt_sauv float]
     [ dt_impr float]
     [facsec float]
     [ seuil statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil_diffusion_implicite float]
     [impr diffusion implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does

not converge with an explicit time scheme is to reduce the facsec to 0.5.

Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.

- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.13 Schema adams bashforth order 2

```
Description: not_set

See also: schema_temps_base (28)

Usage:
schema_adams_bashforth_order_2 str
Read str {
```

```
[tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [dt max str]
     [ dt_sauv float]
     [dt impr float]
     [facsec float]
     [ seuil statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no check disk space ]
     [ disable_progress ]
     [disable dt ev ]
     [gnuplot header int]
}
where
```

- tinit *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based

on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.

- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.14 Schema adams bashforth order 3

```
Description: not_set

See also: schema_temps_base (28)

Usage:
schema_adams_bashforth_order_3 str

Read str {

    [tinit float]
    [tmax float]
    [tcpumax float]
    [dt_min float]
    [dt_max str]
    [dt_sauv float]
    [dt_impr float]
    [facsec float]
    [seuil_statio float]
    [residuals residuals]
```

```
[ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [impr diffusion implicite int]
     [ impr_extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt start dt start]
     [ nb pas dt max int]
     [ niter max diffusion implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [disable dt ev ]
     [gnuplot_header int]
}
```

where

- tinit *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- facsec *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- seuil_diffusion_implicite *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.

- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no conv subiteration diffusion implicite int for inheritance
- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- disable dt ev for inheritance: To disable the writing of the .dt ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.15 Schema_adams_moulton_order_2

```
Description: not_set
See also: schema_implicite_base (28.20)
Usage:
schema_adams_moulton_order_2 str
Read str {
     [ facsec_max float]
     [ max_iter_implicite int]
     solveur_implicite_base
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [dt max str]
     [ dt_sauv float]
     [dt impr float]
     [ facsec float]
     [ seuil statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil diffusion implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
```

```
[ nb_pas_dt_max int]
  [ niter_max_diffusion_implicite int]
  [ precision_impr int]
  [ periode_sauvegarde_securite_en_heures float]
  [ no_check_disk_space ]
  [ disable_progress ]
  [ disable_dt_ev ]
  [ gnuplot_header int]
}
where
```

• facsec_max *float*: Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the implicit scheme but it couldn't be higher than facsec max value.

Warning: Some implicit schemes do not permit high facsec_max, example Schema_Adams_Moulton_order_3 needs facsec=facsec_max=1.

Advice:

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec_max limit. But the user can also choose to specify a constant facsec (facsec_max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100
- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable

These values can also be used as rule of thumb for initial facsec with a facsec_max limit higher.

- max_iter_implicite int for inheritance: Maximum number of iterations allowed for the solver (by default 200).
- solveur solveur_implicite_base (29) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).

- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the out file
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema-Adams Bashforth order 3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- **nb_pas_dt_max** *int* for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable progress for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.16 Schema adams moulton order 3

Description: not_set

```
See also: schema_implicite_base (28.20)
Usage:
schema_adams_moulton_order_3 str
Read str {
     [facsec max float]
     [ max iter implicite int]
     solveur solveur_implicite_base
     [tinit float]
     [tmax float]
      [tcpumax float]
     [ dt_min float]
     \begin{bmatrix} dt max str \end{bmatrix}
     [ dt_sauv float]
     [ dt_impr float]
     [ facsec float]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil diffusion implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no error if not converged diffusion implicite int]
     [ no conv subiteration diffusion implicite int]
     [ dt start dt start]
      [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures | float]
      [ no_check_disk_space ]
     [ disable_progress ]
     [disable dt ev ]
     [ gnuplot_header int]
where
```

• facsec max *float*: Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the implicit scheme but it couldn't be higher than facsec_max value.

Warning: Some implicit schemes do not permit high facsec max, example Schema Adams Moulton-_order_3 needs facsec=facsec_max=1.

Advice:

}

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec max limit. But the user can also choose to specify a constant facsec (facsec max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100
- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable

These values can also be used as rule of thumb for initial facsec with a facsec max limit higher.

- max_iter_implicite int for inheritance: Maximum number of iterations allowed for the solver (by default 200).
- solveur solveur_implicite_base (29) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no conv subiteration diffusion implicite int for inheritance

- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.17 Schema_backward_differentiation_order_2

```
Description: not set
See also: schema_implicite_base (28.20)
Usage:
schema_backward_differentiation_order_2 str
Read str {
      [facsec max float]
      [ max iter implicite int]
      solveur solveur_implicite_base
      [tinit float]
      [tmax float]
      [tcpumax float]
      [ dt min float]
      \begin{bmatrix} dt_{max} & str \end{bmatrix}
      [ dt_sauv float]
      [ dt_impr float]
      [facsec float]
      [ seuil_statio float]
      [residuals residuals]
      [ diffusion implicite int]
      [ seuil diffusion implicite float]
      [impr_diffusion_implicite int]
      [ impr_extremums int]
      [ no error if not converged diffusion implicite int]
      [ no_conv_subiteration_diffusion_implicite int]
      [ dt_start dt_start]
      [ nb_pas_dt_max int]
      [ niter_max_diffusion_implicite int]
      [ precision_impr int]
```

```
[ periode_sauvegarde_securite_en_heures float]
    [ no_check_disk_space ]
    [ disable_progress ]
    [ disable_dt_ev ]
    [ gnuplot_header int]
}
where
```

• facsec_max float: Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the implicit scheme but it couldn't be higher than facsec_max value.

Warning: Some implicit schemes do not permit high facsec_max, example Schema_Adams_Moulton_order_3 needs facsec=facsec_max=1.

Advice:

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec_max limit. But the user can also choose to specify a constant facsec (facsec_max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100
- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable

These values can also be used as rule of thumb for initial facsec with a facsec max limit higher.

- max_iter_implicite int for inheritance: Maximum number of iterations allowed for the solver (by default 200).
- solveur solveur_implicite_base (29) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.

- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas
- no error if not converged diffusion implicite int for inheritance
- no conv subiteration diffusion implicite int for inheritance
- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.18 Schema_backward_differentiation_order_3

Description: not_set

See also: schema_implicite_base (28.20)

Usage:

```
Read str {
     [facsec max float]
     [ max_iter_implicite int]
     solveur solveur implicite base
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     \begin{bmatrix} dt_{max} & str \end{bmatrix}
     [ dt_sauv float]
     [ dt_impr float]
     [facsec float]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil diffusion implicite float]
     [impr diffusion implicite int]
     [ impr_extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt start dt start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
      [ periode_sauvegarde_securite_en_heures | float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot_header int]
}
where
```

schema_backward_differentiation_order_3 str

• facsec_max *float*: Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the implicit scheme but it couldn't be higher than facsec max value.

Warning: Some implicit schemes do not permit high facsec_max, example Schema_Adams_Moulton_order_3 needs facsec=facsec_max=1.

Advice:

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec_max limit. But the user can also choose to specify a constant facsec (facsec_max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100
- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable
- These values can also be used as rule of thumb for initial facsec with a facsec max limit higher.
- max_iter_implicite int for inheritance: Maximum number of iterations allowed for the solver (by default 200).

• solveur solveur_implicite_base (29) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- ullet no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition.

dt_start dt_fixe value : the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).

By default, the first iteration is based on dt_calc.

- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- gnuplot_header int for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.19 Scheme_euler_implicit

```
Synonymous: schema_euler_implicite
Description: This is the Euler implicit scheme.
See also: schema_implicite_base (28.20)
Usage:
scheme_euler_implicit str
Read str {
      [facsec max float]
      [ resolution_monolithique bloc_lecture]
     [ max_iter_implicite int]
     solveur solveur_implicite_base
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
      [\mathbf{dt}_{\mathbf{max}} \ str]
     [ dt_sauv float]
     [ dt_impr float]
     [facsec float]
     [ seuil statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
      [ no_conv_subiteration_diffusion_implicite int]
      [ dt_start dt_start]
     [ nb_pas_dt_max int]
```

[niter_max_diffusion_implicite int]

```
[ precision_impr int]
  [ periode_sauvegarde_securite_en_heures float]
  [ no_check_disk_space ]
  [ disable_progress ]
  [ disable_dt_ev ]
  [ gnuplot_header int]
}
where
```

• facsec_max float: 1 Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the implicit scheme but it couldn't be higher than facsec_max value.

Warning: Some implicit schemes do not permit high facsec_max, example Schema_Adams_Moulton_order_3 needs facsec=facsec_max=1.

Advice:

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec_max limit. But the user can also choose to specify a constant facsec (facsec_max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100
- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable

These values can also be used as rule of thumb for initial facsec with a facsec max limit higher.

- resolution_monolithique bloc_lecture (3.54): Activate monolithic resolution for coupled problems. Solves together the equations corresponding to the application domains in the given order. All aplication domains of the coupled equations must be given to determine the order of resolution. If the monolithic solving is not wanted for a specific application domain, an underscore can be added as prefix. For example, resolution_monolithique { dom1 { dom2 dom3 } _dom4 } will solve in a single matrix the equations having dom1 as application domain, then the equations having dom2 or dom3 as application domain in a single matrix, then the equations having dom4 as application domain in a sequential way (not in a single matrix).
- max_iter_implicite int for inheritance: Maximum number of iterations allowed for the solver (by default 200).
- solveur solveur_implicite_base (29) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt min float for inheritance: Minimum calculation time step (1e-16s by default).

- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- seuil_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.20 Schema_implicite_base

Description: Basic class for implicite time scheme.

```
See also: schema temps base (28) schema adams moulton order 2 (28.15) schema adams moulton-
_order_3 (28.16) schema_backward_differentiation_order_2 (28.17) schema_backward_differentiation_order-
3 (28.18) scheme euler implicit (28.19)
Usage:
schema_implicite_base str
Read str {
     [ max iter implicite int]
     solveur_implicite_base
     [tinit float]
     [tmax float]
      [tcpumax float]
      [ dt_min float]
     \begin{bmatrix} dt_{max} & str \end{bmatrix}
     [ dt_sauv float]
      [ dt_impr float]
     [facsec float]
     [ seuil statio float]
     [residuals residuals]
      [ diffusion implicite int]
     [ seuil diffusion implicite float]
     [impr diffusion implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
      [ nb_pas_dt_max int]
      [ niter_max_diffusion_implicite int]
      [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures float]
      [ no_check_disk_space ]
     [ disable_progress ]
     [disable dt ev ]
     [gnuplot_header int]
}
where
```

- max_iter_implicite int: Maximum number of iterations allowed for the solver (by default 200).
- solveur solveur_implicite_base (29): This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains. Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt_min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no conv subiteration diffusion implicite int for inheritance
- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- **nb pas dt max** *int* for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.

- **disable_progress** for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

28.21 Schema_predictor_corrector

Description: This is the predictor-corrector scheme (second order). It is more accurate and economic than MacCormack scheme. It gives best results with a second ordre convective scheme like quick, centre (VDF).

```
See also: schema_temps_base (28)
Usage:
schema predictor corrector str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
      [ dt_min float]
      [\mathbf{dt}_{\mathbf{max}} \ str]
      [ dt_sauv float]
     [ dt_impr float]
      [ facsec float]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion implicite int]
      [ seuil diffusion implicite float]
     [impr_diffusion_implicite int]
     [impr extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
      [ no conv subiteration diffusion implicite int]
      [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
      [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
      [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).

- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the out file
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.98) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (10.6) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable progress for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

29 solveur implicite base

Description: Class for solver in the situation where the time scheme is the implicit scheme. Solver allows equation diffusion and convection operators to be set as implicit terms.

```
See also: objet_u (36) solveur_lineaire_std (29.7) simpler (29.6) Usage:
```

29.1 Ice

Description: Implicit Continuous-fluid Eulerian solver which is useful for a multiphase problem. Robust pressure reduction resolution.

```
See also: sets (29.4)
Usage:
ice str
Read str {
     [ pression_degeneree int]
     [ pressure_reduction|reduction_pression int]
     [ criteres_convergence bloc_criteres_convergence]
     [iter min int]
     [ seuil_convergence_implicite | float]
     [ nb corrections max int]
     [facsec_diffusion_for_sets float]
     [ seuil_convergence_solveur | float]
     [ seuil generation solveur float]
     [ seuil verification solveur float]
     [ seuil_test_preliminaire_solveur float]
     [solveur_sys_base]
     [no_qdm]
     [ nb it max int]
     [controle residu]
}
where
```

- **pression_degeneree** *int*: Set to 1 if the pressure field is degenerate (ex. : incompressible fluid with no imposed-pressure BCs). Default: autodetected
- **pressure_reduction|reduction_pression** *int*: Set to 1 if the user wants a resolution with a pressure reduction. Otherwise, the rien is to be set to 0 so that the complete matrix is considered. The default value of this rien is 1.
- **criteres_convergence** *bloc_criteres_convergence* (3.54.1) for inheritance: Set the convergence thresholds for each unknown (i.e. alpha, temperature, velocity and pressure). The default values are respectively 0.01, 0.1, 0.01 and 100
- iter_min int for inheritance: Number of minimum iterations
- seuil convergence implicite float for inheritance: Convergence criteria.
- **nb_corrections_max** *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- facsec_diffusion_for_sets float for inheritance: facsec to impose on the diffusion time step in sets while the total time step stays smaller than the convection time step.
- **seuil_convergence_solveur** *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).

- **seuil_generation_solveur** *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- seuil_verification_solveur *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (10.14) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- nb_it_max int for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

29.2 Implicite

Description: similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps. But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

```
See also: piso (29.3)

Usage:
implicite str

Read str {

    [ seuil_convergence_implicite float]
    [ nb_corrections_max int]
    [ seuil_convergence_solveur float]
    [ seuil_generation_solveur float]
    [ seuil_verification_solveur float]
    [ seuil_test_preliminaire_solveur float]
    [ solveur solveur_sys_base]
    [ no_qdm ]
    [ nb_it_max int]
    [ controle_residu ]
}

where
```

- seuil_convergence_implicite float for inheritance: Convergence criteria.
- **nb_corrections_max** *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- seuil_convergence_solveur *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- **seuil_generation_solveur** *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- **seuil_verification_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.

- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (10.14) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- **nb_it_max** *int* for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

29.3 Piso

Description: Piso (Pressure Implicit with Split Operator) - method to solve N_S.

```
See also: simpler (29.6) implicite (29.2) simple (29.5)
Usage:
piso str
Read str {
     [ seuil_convergence_implicite | float]
     [ nb_corrections_max int]
     [ seuil_convergence_solveur float]
     [ seuil_generation_solveur float]
     [ seuil_verification_solveur float]
     [ seuil test preliminaire solveur float]
     [solveur_sys_base]
     [no qdm]
     [ nb_it_max int]
     [ controle_residu ]
}
where
```

- seuil_convergence_implicite float: Convergence criteria.
- nb_corrections_max *int*: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- seuil_convergence_solveur *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil_generation_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- **seuil_verification_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (10.14) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).

- **nb_it_max** *int* for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

29.4 Sets

Description: Stability-Enhancing Two-Step solver which is useful for a multiphase problem. Ref: J. H. MAHAFFY, A stability-enhancing two-step method for fluid flow calculations, Journal of Computational Physics, 46, 3, 329 (1982).

```
See also: simpler (29.6) ice (29.1)
Usage:
sets str
Read str {
     [ criteres_convergence bloc_criteres_convergence]
      [iter_min int]
     [ seuil_convergence_implicite | float]
      [ nb corrections max int]
     [ facsec_diffusion_for_sets float]
     [ seuil_convergence_solveur float]
      [ seuil_generation_solveur float]
      [ seuil_verification_solveur float]
     [ seuil test preliminaire solveur float]
     [solveur_sys_base]
     [no qdm]
     [ nb it max int]
     [ controle_residu ]
}
where
```

- **criteres_convergence** *bloc_criteres_convergence* (3.54.1): Set the convergence thresholds for each unknown (i.e. alpha, temperature, velocity and pressure). The default values are respectively 0.01, 0.1, 0.01 and 100
- iter_min int: Number of minimum iterations
- seuil_convergence_implicite float: Convergence criteria.
- **nb_corrections_max** *int*: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- **facsec_diffusion_for_sets** *float*: facsec to impose on the diffusion time step in sets while the total time step stays smaller than the convection time step.
- seuil_convergence_solveur *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- **seuil_generation_solveur** *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- **seuil_verification_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.

- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (10.14) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- **nb_it_max** *int* for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

29.5 Simple

```
Description: SIMPLE type algorithm
See also: piso (29.3) solveur_u_p (29.8)
Usage:
simple str
Read str {
     [relax_pression float]
     [ seuil_convergence_implicite | float]
     [ nb_corrections_max int]
     [ seuil_convergence_solveur float]
     [ seuil_generation_solveur float]
     [ seuil verification solveur float]
     [ seuil_test_preliminaire_solveur float]
     [solveur_sys_base]
     [no_qdm]
     [ nb_it_max int]
     [controle residu]
}
where
```

- **relax_pression** *float*: Value between 0 and 1 (by default 1), this keyword is used only by the SIM-PLE algorithm for relaxing the increment of pressure.
- seuil_convergence_implicite float for inheritance: Convergence criteria.
- **nb_corrections_max** *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- **seuil_convergence_solveur** *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil_generation_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- **seuil_verification_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.

- **solveur** *solveur_sys_base* (10.14) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- **nb_it_max** *int* for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

29.6 Simpler

Description: Simpler method for incompressible systems.

```
See also: solveur_implicite_base (29) piso (29.3) sets (29.4)

Usage:
simpler str

Read str {

seuil_convergence_implicite float
[seuil_convergence_solveur float]
[seuil_generation_solveur float]
[seuil_verification_solveur float]
[seuil_test_preliminaire_solveur float]
[solveur solveur_sys_base]
[no_qdm ]
[nb_it_max int]
[controle_residu ]
}

where
```

- seuil_convergence_implicite float: Keyword to set the value of the convergence criteria for the resolution of the implicit system build to solve either the Navier_Stokes equation (only for Simple and Simpler algorithms) or a scalar equation. It is adviced to use the default value (1e6) to solve the implicit system only once by time step. This value must be decreased when a coupling between problems is considered.
- seuil_convergence_solveur *float*: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil_generation_solveur *float*: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- seuil_verification_solveur *float*: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float*: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (10.14): Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- no_qdm: Keyword to not solve qdm equation (and turbulence models of these equation).
- **nb_it_max** *int*: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu**: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

29.7 Solveur_lineaire_std

```
Description: not_set
See also: solveur implicite base (29)
Usage:
solveur lineaire std str
Read str {
     [solveur_sys_base]
}
where
   • solveur sys base (10.14)
29.8
       Solveur_u_p
Description: similar to simple.
See also: simple (29.5)
Usage:
solveur_u_p str
Read str {
     [relax_pression float]
     [ seuil_convergence_implicite float]
     [ nb corrections max int]
     [ seuil convergence solveur float]
     [ seuil_generation_solveur float]
     [ seuil_verification_solveur float]
     [ seuil_test_preliminaire_solveur float]
     [solveur_sys_base]
     [no_qdm]
     [ nb it max int]
     [controle_residu]
}
```

where

- **relax_pression** *float* for inheritance: Value between 0 and 1 (by default 1), this keyword is used only by the SIMPLE algorithm for relaxing the increment of pressure.
- seuil_convergence_implicite float for inheritance: Convergence criteria.
- nb_corrections_max int for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- seuil_convergence_solveur *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- **seuil_generation_solveur** *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).

- **seuil_verification_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (10.14) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- nb_it_max int for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

30 source_base

Description: Basic class of source terms introduced in the equation.

See also: objet_u (36) source_generique (30.27) boussinesq_temperature (30.9) boussinesq_concentration (30.8) dirac (30.13) puissance_thermique (30.24) source_qdm_lambdaup (30.32) source_th_tdivu (30.36) source_robin (30.33) source_robin_scalaire (30.34) canal_perio (30.10) source_constituant (30.26) radioactive_decay (30.25) acceleration (30.7) coriolis (30.11) source_qdm (30.31) perte_charge_singuliere (30.23) perte_charge_directionnelle (30.19) perte_charge_isotrope (30.20) perte_charge_anisotrope (30.17) perte_charge_circulaire (30.18) darcy (30.12) forchheimer (30.15) perte_charge_reguliere (30.21) travail_pression (30.38) vitesse_relative_base (30.40) flux_interfacial (30.14) frottement_interfacial (30.16) Portance_interfaciale (30.5) Source_Travail_pression_Elem_base (30.6) Dispersion_bulles (30.4) source_pdf_base (30.30) DP-_Impose (30.2) terme_puissance_thermique_echange_impose (30.37) Correction_Antal (30.1)

Usage:

30.1 Correction antal

Description: Antal correction source term for multiphase problem

See also: source base (30)

Usage:

30.2 Dp_impose

Description: Source term to impose a pressure difference according to the formula : DP = dp + dDP/dQ * (Q - Q0)

See also: source_base (30)

Usage:

DP_Impose aco dp_type surface bloc_surface acof where

- **aco** str into ['{'}: Opening curly bracket.
- **dp_type** type_perte_charge_deriv (30.3): mass flow rate (kg/s).
- surface str into ['surface']
- bloc_surface bloc_lecture (3.54): Three syntaxes are possible for the surface definition block: For VDF and VEF: { X|Y|Z = location subzone_name } Only for VEF: { Surface surface_name }. For polymac { Surface surface name Orientation champ uniforme }.

• acof str into ['}']: Closing curly bracket.

```
30.3 Type_perte_charge_deriv
```

```
Description: not_set

See also: objet_lecture (35) dp (30.3.1) dp_regul (30.3.2)

Usage:

30.3.1 Dp

Description: DP field should have 3 components defining dp, dDP/dQ, Q0

See also: type_perte_charge_deriv (30.3)

Usage:
dp dp_field
where
```

• **dp_field** *champ_base* (15.1): the parameters of the previous formula (DP = dp + dDP/dQ * (Q - Q0)): uniform_field 3 dp dDP/dQ Q0 where Q0 is a mass flow rate (kg/s).

30.3.2 Dp_regul

Description: Keyword used to regulate the DP value in order to match a target flow rate. Syntax : dp_regul { DP0 d deb d eps e }

```
See also: type_perte_charge_deriv (30.3)
```

- **DP0** *float*: initial value of DP
- **deb** str: target flow rate in kg/s
- **eps** *str*: strength of the regulation (low values might be slow to find the target flow rate, high values might oscillate around the target value)

30.4 Dispersion_bulles

Description: Base class for source terms of bubble dispersion in momentum equation.

```
See also: source_base (30)

Usage:

Dispersion_bulles str

Read str {
```

```
[ beta float] } where
```

• beta *float*: Mutliplying factor for the output of the bubble dispersion source term.

30.5 Portance_interfaciale

Description: Base class for source term of lift force in momentum equation.

```
See also: source_base (30)

Usage:
Portance_interfaciale str
Read str {
    [beta float]
}
where
```

• **beta** *float*: Multiplying factor for the bubble lift force source term.

30.6 Source_travail_pression_elem_base

Description: Source term which corresponds to the additional pressure work term that appears when dealing with compressible multiphase fluids

```
See also: source_base (30)

Usage:
Source_Travail_pression_Elem_base
```

30.7 Acceleration

Description: Momentum source term to take in account the forces due to rotation or translation of a non Galilean referential R' (centre 0') into the Galilean referential R (centre 0).

```
See also: source_base (30)

Usage:
acceleration str

Read str {

    [vitesse champ_base]
    [acceleration champ_base]
    [omega champ_base]
    [domegadt champ_base]
    [centre_rotation champ_base]
    [option str into ['terme_complet', 'coriolis_seul', 'entrainement_seul']]
}
where
```

- **vitesse** *champ_base* (15.1): Keyword for the velocity of the referential R' into the R referential (dOO'/dt term [m.s-1]). The velocity is mandatory when you want to print the total cinetic energy into the non-mobile Galilean referential R (see Ec_dans_repere_fixe keyword).
- acceleration champ_base (15.1): Keyword for the acceleration of the referential R' into the R referential (d2OO'/dt2 term [m.s-2]). field_base is a time dependant field (eg: Champ_Fonc_t).
- omega champ_base (15.1): Keyword for a rotation of the referential R' into the R referential [rad.s-1]. field_base is a 3D time dependant field specified for example by a Champ_Fonc_t keyword. The time_field field should have 3 components even in 2D (In 2D: 0 0 omega).
- **domegadt** *champ_base* (15.1): Keyword to define the time derivative of the previous rotation [rad.s-2]. Should be zero if the rotation is constant. The time_field field should have 3 components even in 2D (In 2D: 0 0 domegadt).
- **centre_rotation** *champ_base* (15.1): Keyword to specify the centre of rotation (expressed in R' coordinates) of R' into R (if the domain rotates with the R' referential, the centre of rotation is 0'=(0,0,0)). The time_field should have 2 or 3 components according the dimension 2 or 3.
- **option** *str into ['terme_complet', 'coriolis_seul', 'entrainement_seul']:* Keyword to specify the kind of calculation: terme_complet (default option) will calculate both the Coriolis and centrifugal forces, coriolis_seul will calculate the first one only, entrainement_seul will calculate the second one only.

30.8 Boussinesq_concentration

Description: Class to describe a source term that couples the movement quantity equation and constituent transport equation with the Boussinesq hypothesis.

```
See also: source_base (30)

Usage:
boussinesq_concentration str

Read str {

    c0 n x1 x2 ... xn
    [verif_boussinesq int]
}

where
```

- **c0** *n x1 x2 ... xn*: Reference concentration field type. The only field type currently available is Champ Uniform (Uniform field).
- **verif_boussinesq** *int*: Keyword to check (1) or not (0) the reference concentration in comparison with the mean concentration value in the domain. It is set to 1 by default.

30.9 Boussinesq_temperature

Description: Class to describe a source term that couples the movement quantity equation and energy equation with the Boussinesq hypothesis.

```
See also: source_base (30)

Usage:
boussinesq_temperature str

Read str {

t0 str

[verif boussinesq_int]
```

```
}
where
```

- **t0** *str*: Reference temperature value (oC or K). It can also be a time dependant function since the 1.6.6 version.
- **verif_boussinesq** *int*: Keyword to check (1) or not (0) the reference temperature in comparison with the mean temperature value in the domain. It is set to 1 by default.

30.10 Canal_perio

Description: Momentum source term to maintain flow rate. The expression of the source term is: S(t) = (2*(Q(0) - Q(t))-(Q(0)-Q(t-dt))/(coeff*dt*area)

Where:

coeff=damping coefficient area=area of the periodic boundary Q(t)=flow rate at time t dt=time step

Three files will be created during calculation on a datafile named DataFile.data. The first file contains the flow rate evolution. The second file is useful for resuming a calculation with the flow rate of the previous stopped calculation, and the last one contains the pressure gradient evolution:

- -DataFile_Channel_Flow_Rate_ProblemName_BoundaryName
- -DataFile_Channel_Flow_Rate_repr_ProblemName_BoundaryName
- -DataFile_Pressure_Gradient_ProblemName_BoundaryName

See also: source_base (30)

Usage:
canal_perio str

Read str {

bord str

[h float]

[coeff float]

[debit_impose float]
}

where

- **bord** *str*: The name of the (periodic) boundary normal to the flow direction.
- h float: Half heigth of the channel.
- coeff float: Damping coefficient (optional, default value is 10).
- **debit_impose** *float*: Optional option to specify the aimed flow rate Q(0). If not used, Q(0) is computed by the code after the projection phase, where velocity initial conditions are slightly changed to verify incompressibility.

30.11 Coriolis

Description: Keyword for a Coriolis term in hydraulic equation. Warning: Only available in VDF.

See also: source_base (30)

Usage:

coriolis omega

where

• omega str: Value of omega.

30.12 Darcy

Description: Class for calculation in a porous media with source term of Darcy -nu/K*V. This keyword must be used with a permeability model. For the moment there are two models: permeability constant or Ergun's law. Darcy source term is available for quasi compressible calculation. A new keyword is aded for porosity (porosite).

See also: source_base (30)

Usage:

darcy bloc

where

• **bloc** *bloc_lecture* (3.54): Description.

30.13 Dirac

Description: Class to define a source term corresponding to a volume power release in the energy equation.

See also: source_base (30)

Usage:

dirac position ch

where

- **position** *n x1 x2 ... xn*
- **ch** *champ_base* (15.1): Thermal power field type. To impose a volume power on a domain sub-area, the Champ_Uniforme_Morceaux (partly_uniform_field) type must be used.

Warning: The volume thermal power is expressed in W.m-3.

30.14 Flux_interfacial

Description: Source term of mass transfer between phases connected by the saturation object defined in saturation xxxx

See also: source_base (30)

Usage:

flux interfacial

30.15 Forchheimer

Description: Class to add the source term of Forchheimer -Cf/sqrt(K)*V2 in the Navier-Stokes equations. We must precise a permeability model: constant or Ergun's law. Moreover we can give the constant Cf: by default its value is 1. Forchheimer source term is available also for quasi compressible calculation. A new keyword is aded for porosity (porosite).

```
See also: source_base (30)

Usage:
forchheimer bloc
where

• bloc bloc_lecture (3.54): Description.
```

30.16 Frottement_interfacial

Description: Source term which corresponds to the phases friction at the interface

```
See also: source_base (30)

Usage:
frottement_interfacial str
Read str {
    [a_res float]
    [dv_min float]
    [exp_res int]
}
where
```

- a_res *float*: void fraction at which the gas velocity is forced to approach liquid velocity (default alpha_evanescence*100)
- dv_min float: minimal relative velocity used to linearize interfacial friction at low velocities
- exp_res int: exponent that callibrates intensity of velocity convergence (default 2)

30.17 Perte_charge_anisotrope

```
Description: Anisotropic pressure loss.

See also: source_base (30)

Usage:
perte_charge_anisotrope str
Read str {
    lambda str
    lambda_ortho str
    diam_hydr champ_don_base
    direction champ_don_base
    [sous_zone str]
}
where
```

- lambda str: Function for loss coefficient which may be Reynolds dependant (Ex: 64/Re).
- lambda_ortho *str*: Function for loss coefficient in transverse direction which may be Reynolds dependant (Ex: 64/Re).
- diam_hydr champ_don_base (15.8): Hydraulic diameter value.
- direction champ don base (15.8): Field which indicates the direction of the pressure loss.
- sous_zone str: Optional sub-area where pressure loss applies.

30.18 Perte_charge_circulaire

```
Description: New pressure loss.

See also: source_base (30)

Usage:
perte_charge_circulaire str
Read str {

    lambda str
    lambda_ortho str
    diam_hydr champ_don_base
    diam_hydr_ortho champ_don_base
    direction champ_don_base
    [ sous_zone str]
}

where
```

- lambda str: Function f(Re_tot, Re_long, t, x, y, z) for loss coefficient in the longitudinal direction
- lambda_ortho str: function: Function f(Re_tot, Re_ortho, t, x, y, z) for loss coefficient in transverse direction
- diam_hydr champ_don_base (15.8): Hydraulic diameter value.
- diam_hydr_ortho champ_don_base (15.8): Transverse hydraulic diameter value.
- direction champ_don_base (15.8): Field which indicates the direction of the pressure loss.
- sous_zone str: Optional sub-area where pressure loss applies.

30.19 Perte_charge_directionnelle

```
Description: Directional pressure loss.

See also: source_base (30)

Usage:
perte_charge_directionnelle str
Read str {
    lambda str
    diam_hydr champ_don_base
    direction champ_don_base
    [ sous_zone str]
}
where
```

- lambda str: Function for loss coefficient which may be Reynolds dependant (Ex: 64/Re).
- diam_hydr champ_don_base (15.8): Hydraulic diameter value.
- direction champ_don_base (15.8): Field which indicates the direction of the pressure loss.
- sous_zone str: Optional sub-area where pressure loss applies.

30.20 Perte_charge_isotrope

```
Description: Isotropic pressure loss.

See also: source_base (30)

Usage:
perte_charge_isotrope str
Read str {
    lambda str
    diam_hydr champ_don_base
    [ sous_zone str]
}
where
```

- lambda str: Function for loss coefficient which may be Reynolds dependant (Ex: 64/Re).
- diam_hydr champ_don_base (15.8): Hydraulic diameter value.
- sous zone str: Optional sub-area where pressure loss applies.

30.21 Perte_charge_reguliere

Description: Source term modelling the presence of a bundle of tubes in a flow.

```
See also: source_base (30)

Usage:
perte_charge_reguliere spec zone_name
where
```

- spec spec_pdcr_base (30.22): Description of longitudinale or transversale type.
- **zone_name** *str*: Name of the sub-area occupied by the tube bundle. A Sous_Zone (Sub-area) type object called zone_name should have been previously created.

30.22 Spec_pdcr_base

Description: Class to read the source term modelling the presence of a bundle of tubes in a flow. Cf=A Re-B.

See also: objet_lecture (35) longitudinale (30.22.1) transversale (30.22.2)

Usage:

```
spec_pdcr_base ch_a a [ch_b][b]
where
```

- **ch_a** *str into ['a', 'cf']*: Keyword to be used to set law coefficient values for the coefficient of regular pressure losses.
- a float: Value of a law coefficient for regular pressure losses.
- ch_b str into ['b']: Keyword to be used to set law coefficient values for regular pressure losses.
- **b** *float*: Value of a law coefficient for regular pressure losses.

30.22.1 Longitudinale

Description: Class to define the pressure loss in the direction of the tube bundle.

```
See also: spec_pdcr_base (30.22)

Usage:
longitudinale dir dd ch_a a [ch_b][b]
where
```

- dir str into ['x', 'y', 'z']: Direction.
- **dd** *float*: Tube bundle hydraulic diameter value. This value is expressed in m.
- **ch_a** *str into ['a', 'cf']*: Keyword to be used to set law coefficient values for the coefficient of regular pressure losses.
- a float: Value of a law coefficient for regular pressure losses.
- ch_b str into ['b']: Keyword to be used to set law coefficient values for regular pressure losses.
- **b** *float*: Value of a law coefficient for regular pressure losses.

30.22.2 Transversale

Description: Class to define the pressure loss in the direction perpendicular to the tube bundle.

```
See also: spec_pdcr_base (30.22)

Usage: transversale dir dd chaine_d d ch_a a [ch_b][b] where
```

- dir str into ['x', 'y', 'z']: Direction.
- **dd** *float*: Value of the tube bundle step.
- chaine_d str into ['d']: Keyword to be used to set the value of the tube external diameter.
- **d** *float*: Value of the tube external diameter.
- **ch_a** *str into ['a', 'cf']*: Keyword to be used to set law coefficient values for the coefficient of regular pressure losses.
- a *float*: Value of a law coefficient for regular pressure losses.
- ch b str into ['b']: Keyword to be used to set law coefficient values for regular pressure losses.
- **b** *float*: Value of a law coefficient for regular pressure losses.

30.23 Perte charge singuliere

Description: Source term that is used to model a pressure loss over a surface area (transition through a grid, sudden enlargement) defined by the faces of elements located on the intersection of a subzone named subzone_name and a X,Y, or Z plane located at X,Y or Z = location.

```
See also: source_base (30)

Usage:
perte_charge_singuliere str

Read str {

    dir str into ['kx', 'ky', 'kz', 'K']
    [coeff float]
    [regul bloc_lecture]
    surface bloc lecture
```

```
}
where
```

- dir str into ['kx', 'ky', 'kz', 'K']: KX, KY or KZ designate directional pressure loss coefficients for respectively X, Y or Z direction. Or in the case where you chose a target flow rate with regul. Use K for isotropic pressure loss coefficient
- coeff float: Value (float) of friction coefficient (KX, KY, KZ).
- regul bloc lecture (3.54): option to have adjustable K with flowrate target { K0 valeur initiale de k deb debit cible eps intervalle variation mutiplicatif}.
- surface bloc_lecture (3.54): Three syntaxes are possible for the surface definition block: For VDF and VEF: { X|Y|Z = location subzone_name }

Only for VEF: { Surface surface_name }.

For polymac { Surface surface_name Orientation champ_uniforme }

30.24 Puissance_thermique

Description: Class to define a source term corresponding to a volume power release in the energy equation.

See also: source_base (30)

Usage:

puissance thermique ch

where

• ch champ base (15.1): Thermal power field type. To impose a volume power on a domain sub-area, the Champ Uniforme Morceaux (partly uniform field) type must be used. Warning: The volume thermal power is expressed in W.m-3 in 3D (in W.m-2 in 2D). It is a power per volume unit (in a porous media, it is a power per fluid volume unit).

30.25 Radioactive_decay

Description: Radioactive decay source term of the form $-\lambda_i c_i$, where $0 \le i \le N$, N is the number of component of the constituent, c_i and λ_i are the concentration and the decay constant of the i-th component of the constituant.

See also: source_base (30)

Usage:

radioactive decay val

where

• val n x1 x2 ... xn: n is the number of decay constants to read (int), and val1, val2... are the decay constants (double)

30.26 **Source constituant**

Description: Keyword to specify source rates, in [[C]/s], for each one of the nb constituents. [C] is the concentration unit.

See also: source_base (30)

Usage:

source_constituant ch

where

• **ch** *champ_base* (15.1): Field type.

30.27 Source_generique

Description: to define a source term depending on some discrete fields of the problem and (or) analytic expression. It is expressed by the way of a generic field usually used for post-processing.

```
See also: source_base (30)

Usage:
source_generique champ
where
• champ champ_generique_base (8): the source field
```

30.28 Source_pdf

Description: Source term for Penalised Direct Forcing (PDF) method.

```
See also: source_pdf_base (30.30)

Usage:
source_pdf str

Read str {

    aire champ_base
    rotation champ_base
    [transpose_rotation]
    modele bloc_pdf_model
    [interpolation interpolation_ibm_base]
}

where
```

- aire champ_base (15.1) for inheritance: volumic field: a boolean for the cell (0 or 1) indicating if the obstacle is in the cell
- **rotation** *champ_base* (15.1) for inheritance: volumic field with 9 components representing the change of basis on cells (local to global). Used for rotating cases for example.
- transpose_rotation for inheritance: whether to transpose the basis change matrix.
- modele bloc_pdf_model (30.29) for inheritance: model used for the Penalized Direct Forcing
- interpolation interpolation_ibm_base (17) for inheritance: interpolation method

30.29 Bloc_pdf_model

```
Description: not_set

See also: objet_lecture (35)

Usage:
{

    eta float
       [temps_relaxation_coefficient_PDF float]
       [echelle_relaxation_coefficient_PDF float]
```

```
[ local ]
    [ vitesse_imposee_data champ_base]
    [ vitesse_imposee_fonction troismots]
}
where
```

- eta float: penalization coefficient
- temps_relaxation_coefficient_PDF float: time relaxation on the forcing term to help
- echelle_relaxation_coefficient_PDF float: time relaxation on the forcing term to help convergence
- local: rien whether the prescribed velocity is expressed in the global or local basis
- vitesse_imposee_data champ_base (15.1): Prescribed velocity as a field
- vitesse_imposee_fonction troismots (30.29.1): Prescribed velocity as a set of ananlytical component

30.29.1 Troismots

```
Description: Three words.

See also: objet_lecture (35)

Usage:
mot_1 mot_2 mot_3
where

• mot_1 str: First word.
• mot_2 str: Snd word.
• mot_3 str: Third word.
```

30.30 Source_pdf_base

Description: Base class of the source term for the Immersed Boundary Penalized Direct Forcing method (PDF)

```
See also: source_base (30) source_pdf (30.28)

Usage:
source_pdf_base str

Read str {

    aire champ_base
    rotation champ_base
    [transpose_rotation]
    modele bloc_pdf_model
    [interpolation interpolation_ibm_base]
}

where
```

- aire champ_base (15.1): volumic field: a boolean for the cell (0 or 1) indicating if the obstacle is in the cell
- **rotation** *champ_base* (15.1): volumic field with 9 components representing the change of basis on cells (local to global). Used for rotating cases for example.
- **transpose_rotation**: whether to transpose the basis change matrix.
- modele bloc_pdf_model (30.29): model used for the Penalized Direct Forcing
- interpolation interpolation_ibm_base (17): interpolation method

30.31 Source_qdm

Description: Momentum source term in the Navier-Stokes equations.

```
See also: source_base (30)

Usage:
source_qdm ch
where

• ch champ_base (15.1): Field type.
```

30.32 Source_qdm_lambdaup

Description: This source term is a dissipative term which is intended to minimise the energy associated to non-conformscales u' (responsible for spurious oscillations in some cases). The equation for these scales can be seen as: du'/dt= -lambda. u' + grad P' where -lambda. u' represents the dissipative term, with lambda = a/Delta t For Crank-Nicholson temporal scheme, recommended value for a is 2.

Remark: This method requires to define a filtering operator.

```
See also: source_base (30)

Usage:
source_qdm_lambdaup str

Read str {

    lambda float
    [lambda_min float]
    [lambda_max float]
    [ubar_umprim_cible float]

}
where

• lambda float: value of lambda
• lambda_min float: value of lambda_min
• lambda_max float: value of lambda_max
• ubar_umprim_cible float: value of ubar_umprim_cible
```

30.33 Source robin

Description: This source term should be used when a Paroi_decalee_Robin boundary condition is set in a hydraulic equation. The source term will be applied on the N specified boundaries. To post-process the values of tauw, u_tau and Reynolds_tau into the files tauw_robin.dat, reynolds_tau_robin.dat and u_tau_robin.dat, you must add a block Traitement_particulier { canal { } }

```
See also: source_base (30)

Usage:
source_robin bords
where

• bords vect_nom (3.119)
```

30.34 Source_robin_scalaire

See also: source base (30)

Description: This source term should be used when a Paroi_decalee_Robin boundary condition is set in a an energy equation. The source term will be applied on the N specified boundaries. The values temp_wall_valueI are the temperature specified on the Ith boundary. The last value dt_impr is a printing period which is mandatory to specify in the data file but has no effect yet.

```
Usage:
source_robin_scalaire bords
where

• bords listdeuxmots_sacc (30.35)

30.35 Listdeuxmots_sacc

Description: List of groups of two words (without curly brackets).

See also: listobj (34.6)
```

n object1 object2 list of *deuxmots* (5.32)

Usage:

30.36 Source_th_tdivu

Description: This term source is dedicated for any scalar (called T) transport. Coupled with upwind (amont) or muscl scheme, this term gives for final expression of convection: div(U.T)-T.div(U)=U.grad(T) This ensures, in incompressible flow when divergence free is badly resolved, to stay in a better way in the physical boundaries.

Warning: Only available in VEF discretization.

See also: source_base (30)
Usage:
source_th_tdivu

30.37 Terme_puissance_thermique_echange_impose

Description: Source term to impose thermal power according to formula: P = himp * (T - Text). Where T is the Trust temperature, Text is the outside temperature with which energy is exchanged via an exchange coefficient himp

```
See also: source_base (30)

Usage:
terme_puissance_thermique_echange_impose str

Read str {
    himp champ_base
    Text champ_base
    [PID_controler_on_targer_power bloc_lecture]
}
where
```

- himp champ_base (15.1): the exchange coefficient
- **Text** *champ_base* (15.1): the outside temperature
- PID_controler_on_targer_power bloc_lecture (3.54): PID_controler_on_targer_power bloc with parameters target_power (required), Kp, Ki and Kd (at least one of them should be provided)

30.38 Travail_pression

Description: Source term which corresponds to the additional pressure work term that appears when dealing with compressible multiphase fluids

See also: source_base (30)
Usage:
travail_pression

30.39 Vitesse_derive_base

Description: Source term which corresponds to the drift-velocity between a liquid and a gas phase

See also: vitesse_relative_base (30.40)

Usage:

vitesse_derive_base

30.40 Vitesse_relative_base

Description: Basic class for drift-velocity source term between a liquid and a gas phase

See also: source_base (30) vitesse_derive_base (30.39)

Usage:

vitesse_relative_base

31 sous_zone

Synonymous: sous_domaine

Description: It is an object type describing a domain sub-set.

A Sous_Zone (Sub-area) type object must be associated with a Domaine type object. The Read (Lire) interpretor is used to define the items comprising the sub-area.

Caution: The Domain type object nom_domaine must have been meshed (and triangulated or tetrahedralised in VEF) prior to carrying out the Associate (Associer) nom_sous_zone nom_domaine instruction; this instruction must always be preceded by the read instruction.

```
See also: objet_u (36)

Usage:
sous_zone str

Read str {

    [restriction str]
    [rectangle bloc_origine_cotes]
    [segment bloc_origine_cotes]
```

```
[ boite bloc_origine_cotes]
[ liste n n1 n2 ... nn]
[ fichier str]
[ intervalle deuxentiers]
[ polynomes bloc_lecture]
[ couronne bloc_couronne]
[ tube bloc_tube]
[ fonction_sous_zone str]
[ union str]
}
where
```

- **restriction** *str*: The elements of the sub-area nom_sous_zone must be included into the other sub-area named nom_sous_zone2. This keyword should be used first in the Read keyword.
- **rectangle** *bloc_origine_cotes* (31.1): The sub-area will include all the domain elements whose centre of gravity is within the Rectangle (in dimension 2).
- segment bloc_origine_cotes (31.1)
- **boite** *bloc_origine_cotes* (31.1): The sub-area will include all the domain elements whose centre of gravity is within the Box (in dimension 3).
- liste n n1 n2 ... nn: The sub-area will include n domain items, numbers No. 1 No. i No. n.
- **fichier** *str*: The sub-area is read into the file filename.
- **intervalle** *deuxentiers* (31.2): The sub-area will include domain items whose number is between n1 and n2 (where n1<=n2).
- polynomes bloc_lecture (3.54): A REPRENDRE
- **couronne** *bloc_couronne* (31.3): In 2D case, to create a couronne.
- tube bloc tube (31.4): In 3D case, to create a tube.
- **fonction_sous_zone** *str*: Keyword to build a sub-area with the elements included into the area defined by fonction>0.
- **union** *str*: The elements of the sub-area nom_sous_zone3 will be added to the sub-area nom_sous_zone. This keyword should be used last in the Read keyword.

31.1 Bloc_origine_cotes

```
Description: Class to create a rectangle (or a box).

See also: objet_lecture (35)

Usage:
name origin name2 cotes
where

• name str into ['Origine']: Keyword to define the origin of the rectangle (or the box).

• origin x1 x2 (x3): Coordinates of the origin of the rectangle (or the box).

• name2 str into ['Cotes']: Keyword to define the length along the axes.

• cotes x1 x2 (x3): Length along the axes.
```

31.2 Deuxentiers

```
Description: Two integers.

See also: objet_lecture (35)

Usage:
int1 int2
```

where

int1 int: First integer.int2 int: Second integer.

31.3 Bloc_couronne

Description: Class to create a couronne (2D).

See also: objet_lecture (35)

Usage:

name origin name3 ri name4 re where

- name str into ['Origine']: Keyword to define the center of the circle.
- origin x1 x2 (x3): Center of the circle.
- name3 str into ['ri']: Keyword to define the interior radius.
- ri float: Interior radius.
- name4 str into ['re']: Keyword to define the exterior radius.
- re float: Exterior radius.

31.4 Bloc_tube

Description: Class to create a tube (3D).

See also: objet_lecture (35)

Usage:

name origin name2 direction name3 ri name4 re name5 h where

- name str into ['Origine']: Keyword to define the center of the tube.
- origin $x1 \ x2 \ (x3)$: Center of the tube.
- name2 str into ['dir']: Keyword to define the direction of the main axis.
- direction str into ['X', 'Y', 'Z']: direction of the main axis X, Y or Z
- name3 str into ['ri']: Keyword to define the interior radius.
- ri float: Interior radius.
- name4 str into ['re']: Keyword to define the exterior radius.
- re *float*: Exterior radius.
- name5 str into ['hauteur']: Keyword to define the heigth of the tube.
- h float: Heigth of the tube.

32 turbulence_paroi_base

Description: Basic class for wall laws for Navier-Stokes equations.

See also: objet u (36)

Usage:

33 turbulence_paroi_scalaire_base

```
Description: Basic class for wall laws for energy equation.
See also: objet_u (36)
Usage:
      listobj_impl
34
Description: not_set
See also: objet_u (36) listobj (34.6)
Usage:
34.1 List_un_pb
Description: pour les groupes
See also: listobj (34.6)
Usage:
{ object1, object2.... }
list of un_pb (34.2) separeted with,
34.2 Un_pb
Description: pour les groupes
See also: objet_lecture (35)
Usage:
mot
where
   • mot str: the string
34.3 Liste_mil
Description: MUSIG medium made of several sub mediums.
See also: listobj (34.6)
Usage:
{ object1 object2 .... }
list of milieu_base (21)
34.4
      Liste_sonde_tble
Description: not_set
```

See also: listobj (34.6)

```
Usage:
n object1 object2 ....
list of sonde_tble (34.5)
```

34.5 Sonde_tble

Description: not_set

See also: objet_lecture (35)

Usage: name point where

• name str

• **point** *un_point* (3.20.3)

34.6 Listobj

Description: List of objects.

See also: listobj_impl (34) champs_a_post (4.2.24) list_stat_post (4.2.27) listpoints (4.2.8) sondes (4.2.4) listchamp_generique (8.3) list_nom_virgule (8.2) definition_champs (4.2.1) post_processings (4.3) liste_post (4.5) liste_post_ok (4.4) condinits (5.5) condlims (5.4) sources (5.6) vect_nom (3.119) list_nom (3.104) list_bord (3.64.4) list_bloc_mailler (3.64) list_un_pb (34.1) list_list_nom (4.11) pp (5.28) listdeuxmots_sacc (30.35) liste_sonde_tble (34.4) list_info_med (4.39) listsous_zone_valeur (5.2.12) reactions (9.1) liste_mil (34.3) listeqn (4.13) coarsen_operators (3.70)

Usage:

35 objet_lecture

Description: Auxiliary class for reading.

See also: objet u (36) bloc lecture (3.54) deuxmots (5.32) troismots (30.29.1) format file (4.6) deuxentiers (31.2) floatfloat (5.33) entierfloat (35.1) champ_a_post (4.2.25) champs_posts (4.2.23) stat_post_deriv (4.2.28) stats_posts (4.2.26) stats_serie_posts (4.2.34) sonde_base (4.2.6) un_point (3.20.3) sonde (4.2.5) definition champ (4.2.2) postraitement base (4.4.2) Definition champs fichier (4.2.3) sondes fichier (4.2.22) un postraitement (4.3.1) type un post (4.5.2) type postraitement ft lata (4.5.3) un postraitement spec (4.5.1) nom postraitement (4.4.1) condinit (5.5.1) condlimlu (5.4.1) mailler base (3.64.1) defbord (3.64.7) bord_base (3.64.5) bloc_pave (3.64.3) bloc_lecture_poro (25.1) un_pb (34.2) bords_ecrire (5.7.1) ecrire-_fichier_xyz_valeur_param (5.7) convection_deriv (5.2.1) bloc_convection (5.2) diffusion_deriv (5.3.1) op_implicite (5.3.13) bloc_diffusion (5.3) traitement_particulier_base (5.34.1) traitement_particulier (5.34) parametre_equation_base (5.8) penalisation_12_ftd_lec (5.28.1) dt_impr_ustar_mean_only (5.38.1) modele-_turbulence_hyd_deriv (5.38) form_a_nb_points (35.2) fourfloat (35.3) twofloat (35.4) sonde_tble (34.5) bloc_origine_cotes (31.1) bloc_couronne (31.3) bloc_tube (31.4) remove_elem_bloc (3.93) lecture_bloc-_moment_base (3.20) bloc_lec_champ_init_canal_sinal (15.19) fonction_champ_reprise (15.15) troisf (3.48) spec_pdcr_base (30.22) info_med (4.39.1) methode_transport_deriv (35.5) bloc_ef (5.2.9) sous_zone_valeur (5.2.13) bloc_diffusion_standard (5.3.7) reaction (9.1.1) bloc_pdf_model (30.29) type_diffusion_turbulentemultiphase deriv (5.3.10) bloc sutherland (21.7) type perte charge deriv (30.3) verifiercoin bloc (3.122) format_lata_to_med (3.59) bloc_decouper (3.75) Coarsen_Operator_Uniform (3.70.1)

Usage:

35.1 Entierfloat

Description: An integer and a real.

See also: objet_lecture (35)

Usage:

the_int the_float

where

• **the_int** *int*: Integer.

• the_float float: Real.

35.2 Form_a_nb_points

Description: The structure function is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.

See also: objet_lecture (35)

Usage:

nb dir1 dir2

where

- **nb** int into [4]: Number of points.
- dir1 int: First direction.
- dir2 int: Second direction.

35.3 Fourfloat

Description: Four reals.

See also: objet_lecture (35)

Usage:

a b c d

where

- a float: First real.
- **b** float: Second real.
- c float: Third real.
- d float: Fourth real.

35.4 Twofloat

Description: two reals.

See also: objet_lecture (35)

Usage:

a b

where

a float: First real.b float: Second real.

35.5 Methode_transport_deriv

Description: Basic class for method of transport of interface.

See also: objet_lecture (35) loi_horaire (35.5.1)

Usage:

 $methode_transport_deriv$

35.5.1 Loi_horaire

Description: not_set

See also: methode_transport_deriv (35.5)

Usage:

loi_horaire nom_loi

where

• nom_loi str

36 index

Index

/*, 177	a, 329, 330
#, 199	a_ext, 202
", 199	all_times, 19
, 26, 49, 52, 124, 131, 164, 266, 322	amont, 128
associer, 23	ancien, 146, 148
champ_post_statistiques_correlation, 81, 180	antisym, 126, 127
champ_post_statistiques_ecart_type, 81, 182	avec_les_cl , 161, 166, 167, 169, 171, 175
champ_post_statistiques_moyenne, 80, 185	avec_sources, 161, 166, 167, 169, 171, 175
champ_uniforme, 229	avec_sources_et_operateurs , 161, 166, 167, 169,
create_domain_from_sub_domain, 25	171, 175
decoupebord_pour_rayonnement, 27	average, 186
decouper, 50, 263	b, 329, 330
decouper_multi, 52	binaire, 29, 78, 85, 222
discretiser, 29	bords, 136
divergence, 181	C, 255
ecrire_fichier, 69	C_ext, 202
extraction, 182	centre, 128
fin , 37	cf, 329, 330
gradient, 183	chakravarthy, 128
interpolation, 183	champ_frontiere, 182, 183
interpolation_ibm_aucune, 241	chsom, 73
interpolation_ibm_element_fluide, 241	coarsen_i, 49
interpolation_ibm_gradient_moyen, 243	coarsen_j, 49
interpolation_ibm_hybride, 242	coarsen_k, 49
interpolation_ibm_power_law_tbl, 243	composante, 188
lire, 55	conservation_masse, 253, 254
lire_fichier, 56	constant, 253, 254, 258
lire_fichier_bin, 56	coriolis_seul , 323, 324
lire_med, 22	Cotes , 337
morceau_equation, 184	d, 330
operateur_eqn, 179	debit_total, 38
partitionneur_sous_domaines, 263	default, 184
postraitement, 83	defaut_bar, 126, 132
postraitements, 82	dir, 338
raffiner_simplexes, 54	distant, 44
rectify_mesh, 57	divrhouT_moins_Tdivrhou, 146, 148
reduction_0d, 186	divuT_moins_Tdivu, 146, 148
refchamp, 187	domaine, 52
resoudre, 61	double, 48
runge_kutta_ordre_4, 286	dt_integr, 82
schema_euler_explicite, 275	dt_post, 78, 79
schema_euler_implicite, 307	edo, 253, 254
sous_domaine, 336	elem, 47, 78, 80, 81, 217, 218, 221
tparoi_vef, 187	entrainement_seul, 323, 324
transformation, 188	euclidian_norm, 186
vefprep1b, 214	faces, 78, 80, 81
0,60	filtrer_resu, 126, 127, 133
1,60	Fluctu_Temperature_ext, 202
2,60	flux_bords, 184
<= , 43, 44	Flux_Chaleur_Turb_ext, 202
=, 43	

flux ausfacieus handa 104	mania da 172
flux_surfacique_bords, 184	periode, 73
fonction, 222	post_processing, 85
format_post_sup, 39	postraitement, 85
formatte, 29, 78, 85, 222	postraitement_ft_lata, 85
formule, 188	postraitement_lata, 85
grad_Ubar, 133	produit_scalaire, 188
grav , 73	re, 338
gravel, 73	ri , 338
hauteur, 338	sans_rien, 161, 166, 167, 169, 171, 175
homogene, 44	simple, 71, 83, 84
implicite, 134	single_hdf, 85, 222
integrale_en_z, 38	single_lata, 53, 71, 83
K, 330, 331	Slambda, 254
k, 212	solveur, 134
K_Eps_ext, 202	som, 47, 73, 78, 80, 81, 217, 218, 221
k_ext, 202	somme , 186
kx, 330, 331	somme_ponderee , 186
ky, 330, 331	somme_ponderee_porosite, 186
kz, 330, 331	stabilite, 184
L1_norm , 186	standard , 253, 254
L2,60	sum, 186
L2_norm, 186	superbee, 128
last_time , 19	surface, 321
lata, 39, 53, 71, 83	T0, 254
lata_v2, 39, 53, 71, 83	T_ext, 202
left_value, 186	tau_ext, 202
lml, 39, 53, 71, 83	terme_complet, 323, 324
local, 44	trace, 182, 183
max, 60, 186	transportant_bar, 126, 127
med, 39, 53, 71, 83	transporte_bar, 126, 127
med_major, 71, 83	V2_ext, 202
min, 186	valeur_a_gauche, 186
minmod, 128	valeur_normale, 236
mixed, 48	vanalbada, 128
moins_rho_moyen, 253, 254	vanleer, 128
moyenne, 186	vecteur, 188
moyenne_ponderee , 186	vitesse_paroi, 212
mpi-io, 71, 83, 84	vitesse_tangentielle, 240
mu0, 254	weighted_average, 186
multiple, 71, 83, 84	weighted_sum, 186
muscl, 128	weighted_sum_porosity, 186
nb_pas_dt_post, 78, 79	X, 43, 44, 60, 338
no , 184	x, 330
nodes , 73	xyz, 85, 222
non, 50	
	Y, 43, 44, 60, 338
normalized_euclidian_norm, 186	y, 330 Y 202
norme , 188	Y_ext, 202
nu , 133	yes , 184
nu_transp , 133	Z, 43, 44, 60, 338
nut , 133	z,330
nut_transp, 133	, 26, 49, 52, 124, 131, 164, 266, 321
omega_ext, 202	all_options , 50
Origine, 337, 338	champs , 72, 84
oui, 50	

conditions_initiales , 124, 138–147, 149–157, 159,	bords_a_decouper , 27
160, 162, 168, 170, 172, 176	boundaries , 174
conditions_limites , 124, 138–147, 149–157, 159,	boundary_conditions , 124, 138–147, 149–157,
160, 162, 168, 170, 172, 176	159, 160, 162, 168, 170, 172, 176
definition_champs_fichier , 71, 84	boundary_xmax , 46
domain, 22	boundary_xmin , 46
exclude_groups , 22	boundary_ymax , 46
fichier , 53, 72, 78	boundary_ymin , 46
file , 22	boundary_zmax , 46
include_additional_face_groups , 22	boundary_zmin , 46
mesh, 22	btd , 130
name_of_initial_domaines , 22	c0 , 324
name_of_new_domaines , 22	calc_spectre, 166
partitionneur, 51	centre_rotation , 324
postraitement , 70, 86, 88, 89, 91–93, 95–98, 100–	
105, 107–109, 111–113, 115–118, 120, 121.	-
	_
123	cl_pression_sommet_faible , 215
postraitements , 70, 86, 88, 89, 91–93, 95–98,	coarsen_operators , 48
100–105, 107–109, 111–113, 115–118, 120	
121, 123	coeff , 325, 331
Read_file, 69	coefficient_diffusion , 250
reduction_pression , 314	coefficients_activites , 190
save_matrice , 192–194, 199	compo , 180, 184
sigma , 134	condition_elements , 32, 34
sondes , 72, 84	condition_faces , 34
sondes_fichier , 72, 84	condition_geometrique , 27
sondes_mobiles , 72, 84	Conduction, 70
sous_domaine , 71, 84	conservation_Ec , 166
a_res , 327	constante_modele_micro_melange , 189
acceleration, 324	constante_taux_reaction, 190
aire, 332, 333	constituant , 70, 86, 88, 89, 91–94, 96–98, 100–
alias, 150, 151	105, 107–110, 112–114, 116–119, 121, 123
alpha , 19, 20, 127	contre_energie_activation , 190
alpha_0 , 267	contre_reaction , 190
alpha_1 , 267	controle_residu , 193, 315–319, 321
alpha_a , 267	convection , 124, 138–148, 150–157, 159, 160,
alpha_sous_zone , 127	162, 168, 170, 172, 176
amont_sous_zone , 127	convection_diffusion_chaleur_QC , 105, 113
ampli_bruit , 224	convection_diffusion_chaleur_turbulent_qc , 116,
ampli_sin, 224	119
ascii , 22, 63	convection_diffusion_chaleur_WC , 107, 114
	convection_diffusion_concentration , 93, 94, 108,
avec_certains_bords , 34	
avec_certains_bords_pour_extraire_surface , 33	109
avec_les_bords , 34	convection_diffusion_concentration_turbulent ,
bench_ijk_splitting_read , 21	96, 97, 110, 112
bench_ijk_splitting_write , 21	convection_diffusion_espece_binaire_QC , 98
beta , 323	Convection_Diffusion_Espece_Binaire_Turbulent-
beta_co , 252, 253	_QC , 101
beta_th , 252, 253	convection_diffusion_espece_binaire_WC , 99
binaire , 27, 53	convection_diffusion_temperature , 104, 108, 109,
block_size_bytes , 21	117
block_size_megabytes , 21	
	$convection_diffusion_temperature_turbulent\ , 110,$
boite , 337	$\begin{array}{c} \textbf{convection_diffusion_temperature_turbulent} \ , 110, \\ 112, 118, 121 \end{array}$

```
correction_calcul_pression_initiale , 162, 168, 170, disable_dt_ev , 270, 273, 275, 277, 278, 280, 282,
         172, 176
                                                           284, 286, 288, 289, 291, 293, 295, 297,
correction fraction, 246
                                                           299, 302, 304, 307, 309, 312, 313
correction_matrice_pression, 162, 168, 170, 172, disable_equation_residual, 124, 138-148, 150-
                                                            157, 159, 160, 162, 168, 170, 172, 176
correction_matrice_projection_initiale, 162, 167, disable_progress, 270, 273, 275, 277, 278, 280,
         170, 172, 176
                                                           282, 284, 286, 288, 289, 291, 293, 295,
                                                           297, 299, 302, 304, 307, 309, 311, 313
correction pression modifie, 162, 168, 170, 172,
                                                  dom dist, 217
correction visco turb pour controle pas de tempsom loc, 217
                                                  domain, 45, 217, 218, 221
         . 173. 174
correction_visco_turb_pour_controle_pas_de_temptomaine , 22, 25, 27, 32-36, 53, 71, 83, 182, 184,
         _parametre , 173, 174
                                                            263
correction_vitesse_modifie , 162, 168, 170, 172,
                                                  domaine_final , 18, 26, 34
                                                  domaine grossier, 27
correction_vitesse_projection_initiale , 162, 168,
                                                  domaine_init , 18, 26, 34
         170, 172, 176
                                                  domaines , 53, 264
                                                  domegadt, 324
correlations, 86, 87
correspondance_elements, 241-244
                                                  DPO, 322
corriger partition, 262
                                                  dt_impr , 174, 208, 209, 269, 272, 274, 276, 278,
couronne, 337
                                                            279, 281, 283, 285, 287, 289, 290, 292,
Cp, 247
                                                           294, 296, 298, 301, 303, 306, 309, 311,
cp, 31, 208, 209, 246, 248, 250, 252, 253, 259
                                                           312
crank , 137
                                                  dt_impr_moy_spat , 164
critere absolu, 35
                                                  dt impr moy temp, 164
criteres convergence, 314, 317
                                                  dt impr nusselt, 259, 260
Cv, 247, 257
                                                  dt_impr_ustar , 173, 174
deb , 322
                                                  dt_impr_ustar_mean_only, 173, 174
                                                  dt_max , 269, 272, 274, 276, 278, 279, 281, 283,
debit, 208, 209
debit_impose, 325
                                                           285, 287, 289, 290, 292, 294, 296, 298,
                                                           301, 303, 306, 308, 311, 312
debut_stat , 164
                                                  dt min , 269, 272, 274, 276, 278, 279, 281, 283,
decoup, 217, 218, 221
default_value, 217
                                                           285, 287, 289, 290, 292, 294, 296, 298,
definition_champs , 71, 84
                                                           301, 303, 306, 308, 311, 312
definition_champs_file , 71, 84
                                                  dt_projection, 162, 167, 169, 172, 176
delta, 207
                                                  dt_sauv , 269, 272, 274, 276, 278, 279, 281, 283,
deprecatedkeepduplicatedprobes, 72, 84
                                                           285, 287, 289, 290, 292, 294, 296, 298,
derivee rotation, 249
                                                           301, 303, 306, 309, 311, 312
dh, 208, 209
                                                  dt start, 270, 272, 275, 276, 278, 280, 282, 284,
diag , 193
                                                           285, 287, 289, 291, 293, 295, 297, 299,
diam hydr , 327-329
                                                           301, 304, 306, 309, 311, 313
diam_hydr_ortho , 328
                                                  dtol_fraction, 246
diametre hyd champ, 249–259
                                                  dv min, 327
diffusion , 124, 138–147, 149–157, 159, 160, 162,
                                                 Ec , 165
         168, 170, 172, 176
                                                  Ec dans repere fixe, 165
diffusion_coeff , 244-246
                                                  echelle_relaxation_coefficient_PDF , 333
diffusion_implicite, 270, 272, 274, 276, 278, 280,
                                                  Echelle_temporelle_turbulente, 86, 87
                                                  ecrire_decoupage, 51
         282, 283, 285, 287, 289, 291, 293, 294,
         296, 299, 301, 304, 306, 309, 311, 313
                                                  ecrire_fichier_xyz_valeur , 124, 138-146, 148-
dim_espace_krilov , 193
                                                            156, 158–160, 163, 168, 170, 172, 176
dir, 208, 209, 331
                                                  ecrire_fichier_xyz_valeur_bin , 124, 138–147, 149–
dir_flow, 224
                                                            157, 159, 160, 162, 168, 170, 172, 176
dir_wall, 224
                                                  ecrire_frontiere, 53
direction, 25, 34–36, 164, 327, 328
                                                  ecrire_lata, 51
```

```
elements_fluides , 242, 244
                                                  fluide_ostwald, 104
elements_solides , 241-243
                                                  fluide_quasi_compressible , 98, 101, 105, 113,
emissivite pour ravonnement entre deux plaques-
                                                            116, 119
                                                  fluide_sodium_gaz , 104
         _quasi_infinies , 209
energie activation, 190
                                                  fluide sodium liquide, 104
                                                  fluide_weakly_compressible, 99, 107, 114
Energie_cinetique_turbulente , 86, 88
Energie cinetique turbulente WIT, 86, 88
                                                  flux paroi, 200
                                                  fonction, 59
Energie Multiphase, 86, 87
enthalpie reaction, 190
                                                  fonction filtre, 47
epaisseur, 33, 35
                                                  fonction sous zone, 337
eps , 322
                                                  force . 193
equation_frequence_resolue, 137
                                                  format, 53, 71, 83
equation_non_resolue , 124, 137-144, 146-155,
                                                  format_post , 47
         157–159, 161, 163, 168, 170, 173, 177
                                                  formulation_linear_pwl , 244
equations_scalaires_passifs , 91, 94, 97, 109, 112-
                                                  frequence recalc, 194
         114, 116, 117, 121
                                                  function_coord_x , 46
                                                  function_coord_y , 46
espece, 154, 156
espece_en_competition_micro_melange , 189
                                                  function_coord_z , 46
                                                  gamma, 247, 257
est_dirichlet, 241-243
eta , 333
                                                  gas turb, 134
evanescence, 144
                                                  genere fichier solveur, 63
exclure groupes, 22
                                                  ghost size, 48
                                                  ghost_thickness, 45
exp_res, 327
expert only, 69
                                                  gnuplot_header , 270, 273, 275, 277, 279, 280,
exposant beta, 190
                                                           282, 284, 286, 288, 290, 291, 293, 295,
expression . 188
                                                           297, 299, 302, 304, 307, 309, 312, 313
facon init, 166
                                                  gradient pression qdm modifie, 162, 168, 170,
facsec , 270, 272, 274, 276, 278, 280, 281, 283,
                                                            172, 176
         285, 287, 289, 291, 292, 294, 296, 299,
                                                  gravite, 249, 251–259
         301, 303, 306, 309, 311, 313
                                                  groupes, 90
                                                  h, 224, 325
facsec_diffusion_for_sets , 314, 317
facsec_max , 271, 274, 298, 300, 303, 305, 308
                                                  hexa old, 34
facteur, 130
                                                  himp, 335
facteurs, 42
                                                  Hlsat, 268
fichier, 22, 71, 83, 262, 263, 337
                                                  Hvsat , 268
fichier_matrice, 62
                                                  ignore_check_fraction, 246
fichier post, 25
                                                  ijk grid geometry, 177
fichier secmem, 62
                                                  impr , 48, 62, 190, 192–194, 199, 241–244
fichier solution, 62
                                                  impr diffusion implicite, 270, 272, 274, 276, 278,
fichier solveur, 63
                                                           280, 282, 284, 285, 287, 289, 291, 293,
fichier solveur non recree, 194
                                                           295, 296, 299, 301, 304, 306, 309, 311,
fichier_sortie, 38
                                                           313
fichier ssz, 263
                                                  impr extremums , 270, 272, 274, 276, 278, 280,
                                                           282, 284, 285, 287, 289, 291, 293, 295,
field, 217, 218, 221, 261
fields . 72, 84
                                                           296, 299, 301, 304, 306, 309, 311, 313
file , 53, 72, 78, 217, 218, 221, 261
                                                  inclure_groupes_faces_additionnels, 22
file_coord_x , 46
                                                  indice, 250-258
                                                  info , 132
file_coord_y , 46
file coord z, 46
                                                  init Ec , 166
filling, 266
                                                  initial_conditions , 124, 138–147, 149–157, 159,
                                                            160, 162, 168, 170, 172, 176
fin_stat , 164
flow_rate, 240
                                                  initial_field, 225
fluide_incompressible , 92–94, 96, 97, 102, 104,
                                                  initial_value , 224, 225, 231, 232
         108–110, 112, 117, 118, 121
                                                  input field, 225
```

interp_ve1 , 21	modele_turbulence , 138, 148, 151, 156, 159, 171,
interpolation, 332, 333	175
intervalle, 337	modif_div_face_dirichlet , 215
inverse_condition_element , 33	molar_mass, 246
iter_min , 314, 317	molar_mass1 , 244, 245
iterations_mixed_solver , 48	molar_mass2 , 244, 245
joints_non_postraites , 53	moyenne_convergee , 185
k , 253	mu , 31, 208, 209, 246, 252–254, 257, 258
kappa , 250–258	mu1, 244, 245
kmetis , 262	mu2 , 244, 245
l_melange , 134	n, 209, 253
lambda , 208, 209, 250, 252–254, 257–259, 327–	name_of_initial_zones , 22
329, 334	name_of_new_zones , 22
lambda_max , 334	nature, 217
lambda_min , 334	navier_stokes_QC , 98, 105, 113
lambda_ortho , 327, 328	navier_stokes_standard , 92–94, 104, 108, 109,
larg_joint , 51	117
last_time , 217, 218, 221	navier_stokes_turbulent , 96, 97, 102, 110, 112,
Lire_fichier, 69	118, 121
liste, 59, 337	navier_stokes_turbulent_qc , 101, 116, 119
liste_cas , 31	navier_stokes_WC , 99, 107, 114
liste_de_postraitements , 70, 86, 88, 89, 91–93,	nb_comp , 224, 225, 231, 232
95–98, 100–104, 106–109, 111–113, 115–	nb_corrections_max , 314–318, 320
118, 120, 121, 123	nb_full_mg_steps , 48
liste_postraitements , 70, 86, 88, 89, 91–93, 95–	nb_histo_boxes_impr , 241–244
98, 100–104, 106–109, 111–113, 115–118,	nb_it_max , 192, 193, 199, 315, 316, 318, 319, 321
120, 121, 123	nb_nodes , 45
loc , 217, 218, 221	nb_parts , 261–265
local, 333	nb_parts_geom , 27
localisation , 47, 184, 188	nb_parts_naif , 27
loi_etat , 254, 258	nb_parts_tot ,51
longueur_boite , 166	nb_pas_dt_max , 270, 272, 275, 276, 278, 280,
longueurs , 41	282, 284, 286, 287, 289, 291, 293, 295,
Lvap , 268	297, 299, 302, 304, 307, 309, 311, 313
maillage , 22	nb_points_par_phase , 165
main , 52	nb_procs , 31
masse_molaire , 31, 150, 151	nb_test, 62
Masse_Multiphase , 86, 87	nb_tranche , 38
max_iter_implicite , 298, 300, 303, 305, 308, 310	nb_tranches , 34–36
mesh , 217, 218, 221	nbelem_i , 216
methode , 38, 183, 184, 186, 188	nbelem_j , 216
methode_calcul_pression_initiale , 161, 167, 169,	nbelem_k , 216
171, 175	new_jacobian , 132
milieu , 70, 86, 88, 89, 91–94, 96–99, 101–105,	niter_avg , 271, 274
107–109, 111–114, 116–119, 121, 122	niter_max , 271, 274
milieu_composite , 86, 87	niter_max_diffusion_implicite , 137, 270, 272, 275
Milieu_MUSIG , 86, 87	276, 278, 280, 282, 284, 286, 287, 289, 291, 293, 295, 297, 299, 302, 304, 307,
min_dir_flow , 224 min_dir_wall , 224	291, 293, 293, 297, 299, 302, 304, 307, 309, 311, 313
mobile_probes , 72, 84	niter_min , 271, 274
mode_calcul_convection , 146, 148	nmax , 23
modele, 332, 333	no_alpha , 134
modele_micro_melange , 189	no_check_disk_space , 270, 272, 275, 277, 278,
	280, 282, 284, 286, 288, 289, 291, 293,

295, 297, 299, 302, 304, 307, 309, 311,	p_imposee_aux_faces , 50
313	P_ref , 256, 268
no_conv_subiteration_diffusion_implicite , 270,	P_sat , 268
272, 275, 276, 278, 280, 282, 284, 285,	pa , 215
287, 289, 291, 293, 295, 297, 299, 301,	par_sous_zone , 18, 26
304, 306, 309, 311, 313	parallele , 71, 84
$no_error_if_not_converged_diffusion_implicite \; ,$	parametre_equation , 124, 138–145, 147–155, 157–
270, 272, 274, 276, 278, 280, 282, 284,	159, 161, 163, 168, 170, 173, 177
285, 287, 289, 291, 293, 295, 297, 299,	Partition_tool , 51
301, 304, 306, 309, 311, 313	pas_de_solution_initiale , 63
no_qdm , 315, 316, 318, 319, 321	pb_champ , 186, 187
nom , 224, 225, 231, 232	pb_dist , 216
nom_bord , 34, 35	pb_loc , 216
nom_champ , 216	pb_name, 52
nom_cl_derriere , 36	penalisation_12_ftd , 157
nom_cl_devant , 36	perio_i , 216
nom_domaine , 47	perio_j , 216
nom_fichier_post , 47	perio_k , 216
nom_fichier_solveur , 194	perio_x , 45
nom_fichier_sortie , 27	perio_x , 45
nom_frontiere , 183	perio_z ,46
nom_inconnue , 150, 151	-
	periode , 165 periode_calc_spectre , 166
nom_pb , 47	·
nom_source , 178–185, 187, 188	periode_sauvegarde_securite_en_heures , 270, 272
nom_zones , 51	275, 277, 278, 280, 282, 284, 286, 288,
nombre_de_noeuds , 41	289, 291, 293, 295, 297, 299, 302, 304,
noms_champs , 47	307, 309, 311, 313
norm , 60	periodique, 51
normal_value, 231	PID_controler_on_targer_power , 336
nproc_i , 177	pinf , 257
nproc_j , 177	point1, 33
nproc_k , 177	point2, 33
nu, 132, 208, 209	point3, 33
nu_transp , 132	points_fluides , 242, 244
numero , 184, 188	points_solides , 241–244
numero_masse , 180	polynomes , 337
numero_op , 179	porosites , 249–259
numero_source , 179	porosites_champ , 249–259
nut , 132	position, 249
nut_max , 173, 174	Post_processing , 70, 86, 88, 89, 91–93, 95–98,
nut_transp , 132	100–105, 107–109, 111–113, 115–118, 120,
old , 127	121, 123
omega , 224, 267, 271, 324	Post_processings , 70, 86, 88, 89, 91–93, 95–98,
omega_relaxation_drho_dt , 254	100–105, 107–109, 111–113, 115–118, 120,
optimisation_sous_maillage , 184	121, 123
optimized , 192, 199	<pre>postraiter_gradient_pression_sans_masse , 162,</pre>
option , 184, 324	168, 170, 172, 176
origin_i , 216	Pr_t , 134
origin_j , 216	Prandtl, 247
origin_k , 216	prandtl , 246, 248
Origine, 41	pre_smooth_steps , 48
origine, 33	precision_impr , 270, 272, 275, 277, 278, 280,
p0, 215	282, 284, 286, 288, 289, 291, 293, 295,
p1,215	297, 299, 302, 304, 307, 309, 311, 313
r - 1	

```
precond , 192, 193, 198
                                                           123
precond0, 267
                                                  sauvegarde_simple , 70, 86, 88, 89, 91–93, 95–98,
precond1, 267
                                                           100-104, 106-108, 110-113, 115-117, 119-
precond_nul , 192, 199
                                                           121, 123
preconda, 267
                                                  save matrix, 192–194, 199
preconditionnement_diag, 137
                                                  sc , 246
pression, 254
                                                  segment, 337
pression degeneree, 314
                                                  seuil, 48, 192–194, 199, 271, 274
pression thermo, 258
                                                  seuil convergence implicite, 137, 314–320
pression xyz, 258
                                                  seuil convergence solveur, 137, 314–320
pressure reduction, 314
                                                  seuil diffusion implicite, 137, 270, 272, 274, 276,
print more infos, 51
                                                           278, 280, 282, 284, 285, 287, 289, 291,
probes , 72, 84
                                                           293, 295, 296, 299, 301, 304, 306, 309,
probes_file , 72, 84
                                                           311, 313
probleme, 32–34, 224, 225, 231, 232
                                                  seuil divU , 162, 167, 169, 172, 176
                                                  seuil_generation_solveur, 314-320
produits, 190
                                                  seuil statio , 270, 272, 274, 276, 278, 280, 281,
projection_initiale , 162, 167, 169, 171, 175
                                                           283, 285, 287, 289, 291, 293, 294, 296,
projection_normale_bord , 35
pulsation_w , 164
                                                           299, 301, 304, 306, 309, 311, 313
                                                  seuil test preliminaire solveur, 315-319, 321
q, 257
q_prim , 257
                                                  seuil verification, 63
QDM Multiphase, 86, 87
                                                  seuil verification solveur , 315–320
quiet , 190, 192–194, 199
                                                  sigma turbulent, 134
reactifs, 190
                                                  single hdf, 22, 51
reactions, 189
                                                  smooth steps, 48
rectangle . 337
                                                  solide . 70
regul, 331
                                                  solv elem, 193
relative, 60
                                                  solver precision, 48
relax_jacobi, 48
                                                  solveur, 63, 137, 298, 301, 303, 305, 308, 310,
relax_pression, 318, 320
                                                           315, 316, 318-321
reorder, 51
                                                  solveur0, 192
reprise , 70, 86, 88, 89, 91, 92, 94–97, 99–104,
                                                 solveur1, 192
         106-108, 110-112, 114-117, 119-121, 123, \textbf{solveur\_bar} \ , 162, 167, 169, 171, 176
         165
                                                  solveur_grossier, 48
reprise_correlation, 208, 209
                                                  solveur_pression , 144, 162, 167, 169, 171, 175
residuals, 270, 272, 274, 276, 278, 280, 282, 283,
                                                  source, 178–185, 187, 188
         285, 287, 289, 291, 293, 294, 296, 299,
                                                  source reference, 178–185, 187, 188
         301, 304, 306, 309, 311, 313
                                                  sources , 124, 138–147, 149–157, 159, 160, 162,
resolution explicite, 137
                                                           168, 170, 172, 176, 178–185, 187, 188
resolution_monolithique, 308
                                                  sources_reference , 178-185, 187, 188
restriction, 337
                                                  sous zone , 32, 53, 71, 84, 224, 225, 231, 232,
resume_last_time , 71, 87-89, 91, 92, 94-97, 99-
                                                           327-329
         103, 105–108, 110–112, 114–116, 118–
                                                  sous zones . 264
         121, 123
                                                  species number, 246
rho, 208, 209, 250, 252, 253, 259
                                                  spectre 1D . 166
rho_constant_pour_debug, 247
                                                  spectre_3D, 166
rho_t , 248
                                                  splitting, 45
rho_xyz, 248
                                                  standard, 132
rotation, 249, 332, 333
                                                  statistiques , 72, 84
                                                  statistiques_en_serie, 72, 84
rt, 215
sans_passer_par_le2d , 34
                                                  surface, 209, 331
sans_solveur_masse, 180
                                                  surfacique, 266
sauvegarde , 70, 86, 88, 89, 91–93, 95–98, 100– sutherland , 254, 258
         104, 106–109, 111–113, 115–118, 120, 121, symx, 42
```

symy , 42	use_osqp , 20
symz , 42	use_total_pressure, 258
t0,325	use_weights , 262
t_deb , 180–182, 185	user_field , 259
t_fin , 180–182, 185	val_Ec , 166
t_min , 248	velocity_profil , 240
T_ref , 256, 268	verif_boussinesq , 324, 325
T_sat , 268	via_extraire_surface , 33
table_temps , 217	vingt_tetra , 34
table_temps_lue , 217	vitesse, 249, 323
Taux_dissipation_turbulent , 86, 88	vitesse_imposee_data , 333
tcpumax , 269, 272, 274, 276, 278, 279, 281, 283,	vitesse_imposee_fonction , 333
285, 287, 289, 290, 292, 294, 296, 298,	volume, 208
301, 303, 306, 308, 311, 312	volumes_etendus , 127
tdivu , 127	volumes_non_etendus , 127
temperature, 244, 245	volumique, 266
temperature_paroi , 200	writing_processes , 21
temps_debut_prise_en_compte_drho_dt , 254	xinf , 209
temps_relaxation_coefficient_PDF , 333	xsup , 209
test , 127	xtanh, 42
Text , 336	xtanh_dilatation , 42
time, 217, 218, 221	xtanh_taille_premiere_maille , 42
time_activate_ptot , 258	ytanh, 42
tinf, 208, 209	ytanh_dilatation , 42
tinit, 269, 272, 274, 276, 277, 279, 281, 283, 285,	ytanh_taille_premiere_maille , 42
287, 288, 290, 292, 294, 296, 298, 301,	zmax , 38
303, 306, 308, 310, 312	zmin , 38
tmax, 269, 272, 274, 276, 277, 279, 281, 283, 285,	ztanh, 42
287, 288, 290, 292, 294, 296, 298, 301,	ztanh_dilatation , 42
303, 306, 308, 311, 312	ztanh_taille_premiere_maille , 42
toutes_les_options , 50	A 1
traitement_axi , 21	Acceleration, 323
traitement_coins , 50	Ale, 129
traitement_gradients , 50	Amgx, 190
traitement_particulier , 162, 167, 170, 172, 176	Amont, 125
traitement_pth , 254, 258	Amont_old, 125
traitement_rho_gravite , 254	Analyse_angle, 23
tranches, 265	Associate, 23
transpose_rotation , 332, 333	Axi, 23
triangle, 33	Bidim axi, 24
trois_tetra , 34	Binaire_gaz_parfait_qc, 244
tsup , 208, 209	Binaire_gaz_parfait_wc, 244
tube , 337	Bord, 42
turbulence_paroi , 173, 174, 259	Bord_base, 42
type , 184, 266	Boundary_field_inward, 231
ubar_umprim_cible , 334	Boussinesq_concentration, 324
ucent , 224	Boussinesq_temperature, 324
uniform_domain_size_i , 216	Btd, 130
uniform_domain_size_j , 216	200, 100
uniform_domain_size_k , 216	Calcul, 24
union , 337	Calculer_moments, 24
use_existing_domain , 217, 218, 221	Canal, 164
use_grad_pression_eos , 258	Canal_perio, 325
use_hydrostatic_pressure , 258	—1 ,

Centre, 125	Champ_input_p0_composite, 225
Centre4, 125	Champ_musig, 225
Centre_de_gravite, 24	Champ_ostwald, 226
Centre_old, 125	Champ_post_de_champs_post, 178
Ch_front_input, 231	Champ_post_extraction, 182
Ch_front_input_uniforme, 231	Champ_post_interpolation, 183
Champ_base, 216	Champ_post_morceau_equation, 184
Champ_composite, 219	Champ_post_operateur_base, 178
Champ_don_base, 219	Champ_post_operateur_divergence, 181
Champ_don_lu, 219	Champ_post_operateur_eqn, 179
Champ_fonc_fonction, 220	Champ_post_operateur_gradient, 183
Champ_fonc_fonction_txyz, 220	Champ_post_reduction_0d, 186
Champ_fonc_fonction_txyz_morceaux, 220	Champ_post_refchamp, 187
Champ_fonc_interp, 216	Champ_post_statistiques_base, 180
Champ_fonc_med, 221	Champ_post_tparoi_vef, 187
Champ_fonc_med_table_temps, 217	Champ_post_transformation, 188
Champ_fonc_med_tabule, 217	Champ_som_lu_vdf, 226
Champ_fonc_reprise, 221	Champ_som_lu_vef, 226
Champ_fonc_t, 222	Champ_tabule_morceaux, 218
Champ_fonc_tabule, 222	Champ_tabule_temps, 227
Champ_fonc_tabule_morceaux_interp, 219	Champ_uniforme_morceaux, 227
Champ_fonc_txyz, 228	Champ_uniforme_morceaux_tabule_temps, 227
Champ_fonc_xyz, 228	Champ_front_fonc_txyz, 15
Champ_front_base, 229	Chimie, 189
Champ_front_bruite, 232	Chmoy_faceperio, 166
Champ_front_calc, 233	Cholesky, 190, 194–196
Champ_front_composite, 233	Circle, 76
Champ_front_contact_vef, 233	Circle_3, 76
Champ_front_debit, 233	Class_generic, 190
Champ_front_debit_massique, 234	Concentration, 79, 81
Champ_front_debit_qc_vdf, 230	Condinits, 135
Champ_front_debit_qc_vdf_fonc_t, 230	Condlim_base, 199
Champ_front_fonc_pois_ipsn, 234	Condlims, 134
Champ_front_fonc_pois_tube, 234	Conduction, 123
Champ_front_fonc_t, 235	Constituant, 249
Champ_front_fonc_txyz, 235	Convection_deriv, 124
Champ_front_fonc_xyz, 235	Convection_diffusion_chaleur_qc, 146
Champ_front_fonction, 235	Convection_diffusion_chaleur_turbulent_qc, 148
Champ_front_lu, 236	Convection_diffusion_chaleur_wc, 147
Champ_front_med, 232	Convection_diffusion_concentration, 149
Champ_front_musig, 236	Convection_diffusion_concentration_turbulent, 150
Champ_front_normal_vef, 236	Convection_diffusion_espece_binaire_qc, 151
Champ_front_pression_from_u, 236	Convection_diffusion_espece_binaire_turbulent_qc,
Champ_front_recyclage, 237	137
Champ_front_tabule, 239	Convection_diffusion_espece_binaire_wc, 152
Champ_front_tabule_lu, 239	Convection_diffusion_espece_multi_qc, 153
Champ_front_tangentiel_vef, 239	Convection_diffusion_espece_multi_turbulent_qc, 156
Champ_front_uniforme, 240	Convection_diffusion_espece_multi_wc, 155
Champ_front_xyz_debit, 240	Convection_diffusion_temperature, 157
Champ_front_xyz_tabule, 230	Convection_diffusion_temperature_turbulent, 158
Champ_generique_base, 177	Coriolis, 325
Champ_init_canal_sinal, 223	Correction_antal, 321
Champ_input_base, 224	Correlation, 79, 81, 180
Champ_input_p0, 224	Corriger_frontiere_periodique, 25

Create_domain_from_sous_zone, 25	Extraire_domaine, 32
Create_domain_from_sub_domain, 18	Extraire_plan, 32
	Extraire_surface, 33
Darcy, 326	Extrudebord, 34
Debog, 26	Extrudeparoi, 34
Decoupebord, 27	Extruder, 35
Decouper_bord_coincident, 27	Extruder_en20, 36
Di_12, 126	Extruder_en3, 36
Diffusion_deriv, 131	,,
Dilate, 28	Fichier_decoupage, 261
Dimension, 28	Fichier med, 261
Dirac, 326	Fluide_base, 250
Dirichlet, 201	Fluide_dilatable_base, 251
Disable_tu, 28	Fluide_incompressible, 251
Discretisation_base, 213	Fluide_ostwald, 252
Discretiser_domaine, 28	Fluide_quasi_compressible, 253
Discretize, 29	Fluide_reel_base, 255
Dispersion_bulles, 322	Fluide_sodium_gaz, 255
Dispersion_bunes, 322 Distance_paroi, 29	Fluide_sodium_liquide, 256
Domain, 44	Fluide_stiffened_gas, 256
Domaine, 215	Fluide_weakly_compressible, 257
Domaineaxi1d, 215	Flux_interfacial, 326
Dp, 322	Forchheimer, 326
Dp_impose, 321	Frontiere_ouverte, 202
Dp_regul, 322	Frontiere_ouverte_concentration_imposee, 202
Dt_calc, 190	Frontiere_ouverte_fraction_massique_imposee, 202
Dt_fixe, 191	Frontiere_ouverte_gradient_pression_impose, 203
Dt_min, 191	Frontiere_ouverte_gradient_pression_impose_vefprep1b
Dt_start, 191	203
Dt_post, 78, 79	Frontiere_ouverte_gradient_pression_libre_vef, 203
	Frontiere_ouverte_gradient_pression_libre_vefprep1b,
Ec, 165	203
Ecart_type, 80, 181	Frontiere_ouverte_pression_imposee, 204
Ecart_type, 79, 81	Frontiere_ouverte_pression_imposee_orlansky, 204
Echange_couplage_thermique, 200	Frontiere_ouverte_pression_moyenne_imposee, 204
Echelle_temporelle_turbulente, 138	Frontiere_ouverte_rho_u_impose, 204
Ecrire, 69	Frontiere_ouverte_temperature_imposee, 205
Ecrire_champ_med, 29	Frontiere_ouverte_vitesse_imposee, 205
Ecrire_fichier_bin, 69	Frontiere_ouverte_vitesse_imposee_sortie, 205
Ecrire_fichier_formatte, 30	Frottement_interfacial, 327
Ecriturelecturespecial, 30	
Ef, 126, 213	Gaz_parfait_qc, 246
Ef_stab, 127	Gaz_parfait_wc, 247
End, 36	GCP, 194, 197
Energie_cinetique_turbulente, 141	Gcp, 198
Energie_cinetique_turbulente_wit, 142	Gcp_ns, 191
Energie_multiphase, 140	Gen, 192
Entree_temperature_imposee_h, 202	Generic, 128
Epsilon, 44	Gmres, 193
Eqn_base, 160	Gradient, 194
Execute_parallel, 31	
Export, 31	IBICGSTAB, 194
Extract_2d_from_3d, 31	Ibm_aucune, 241
Extract 2daxi from 3d, 31	Ibm_element_fluide, 241

Ibm_gradient_moyen, 243	Modele_turbulence_hyd_deriv, 173
Ibm_hybride, 242	Modele_turbulence_scal_base, 259
Ibm_power_law_tbl, 243	Modif_bord_to_raccord, 46
Ice, 314	Modifydomaineaxi1d, 46
Ijk_grid_geometry, 215	Mor_eqn, 123
Ijk_splitting, 177	Moyenne, 79–81, 185
Ilu, 266	Moyenne_volumique, 46
Implicite, 315	Multi_gaz_parfait_qc, 245
Imprimer_flux, 37	Multi_gaz_parfait_wc, 246
Imprimer_flux_sum, 38	Multiplefiles, 19
Init_par_partie, 228	Muscl, 129
Integrer_champ_med, 38	Muscl3, 127
Interface, 196	Muscl_new, 129
Internes, 44	Muscl_old, 129
Interpolation_ibm_base, 240	
Interpolation_ibm_power_law_tbl_u_star, 240	N, 196
Interprete, 17	Navier_stokes_qc, 161
Interprete_geometrique_base, 38	Navier_stokes_standard, 168
	Navier_stokes_turbulent, 170
Kquick, 128	Navier_stokes_turbulent_qc, 174
	Navier_stokes_wc, 166
L_melange, 133	Negligeable, 129, 131
Lata_to_med, 39	Nettoiepasnoeuds, 49
Lata_to_other, 39	Neumann, 205
Leap_frog, 277	Neumann_homogene, 201
Lire_ideas, 39	Neumann_paroi, 201
Lire_tgrid, 56	Neumann_paroi_adiabatique, 201
List_bloc_mailler, 40	Nom, 260
List_bord, 42	NULL, 196
List_nom, 62	Null, 174, 260
List_nom_virgule, 178	Numero_elem_sur_maitre, 74
Liste_mil, 339	
Liste_post, 84	Objet_lecture, 340
Liste_post_ok, 82	Op_conv_ef_stab_polymac_face, 19
Listobj, 340	Op_conv_ef_stab_polymac_p0_face, 20
Listobj_impl, 339	Op_conv_ef_stab_polymac_p0p1nc_elem, 19
Lml_to_lata, 40	Op_conv_ef_stab_polymac_p0p1nc_face, 20
local, 196	Optimal, 193
Loi_etat_base, 244	Option, 133
Loi_etat_gaz_parfait_base, 245	Option_polymac, 20
Loi_etat_gaz_reel_base, 245	Option_polymac_p0, 20
Loi_fermeture_base, 248	Option_vdf, 49
Loi_fermeture_test, 248	Orientefacesbord, 50
Loi_horaire, 249, 342	Orienter_simplexes, 57
Longitudinale, 329	-
-	P1b, 131
Mailler, 40	P1ncp1b, 131
Mailler_base, 40	Parallel_io_parameters, 21
Maillerparallel, 45	Parametre_diffusion_implicite, 137
Masse_multiphase, 143	Parametre_equation_base, 136
Merge_med, 19	Parametre_implicite, 136
Methode_transport_deriv, 342	Paroi, 201
Metis, 262	Paroi_adiabatique, 206
Milieu_base, 249	Paroi_contact, 206

Paroi_contact_fictif, 207	Pb_thermohydraulique_turbulent_scalaires_passifs, 120
Paroi_decalee_robin, 207	Pb_thermohydraulique_wc, 106
Paroi_defilante, 207	Pbc_med, 121
Paroi_echange_contact_correlation_vdf, 207	Periodique, 212
Paroi_echange_contact_correlation_vef, 208	Perte_charge_anisotrope, 327
Paroi_echange_contact_vdf, 209	Perte_charge_circulaire, 327
Paroi_echange_externe_impose, 210	Perte_charge_directionnelle, 328
Paroi_echange_externe_impose_h, 210	Perte_charge_isotrope, 328
Paroi_echange_global_impose, 210	Perte_charge_reguliere, 329
Paroi_echange_interne_global_impose, 200	Perte_charge_singuliere, 330
Paroi_echange_interne_global_parfait, 200	Petsc, 194, 196, 197
Paroi_echange_interne_impose, 200	Pilote_icoco, 52
Paroi_echange_interne_parfait, 201	Piso, 316
Paroi_fixe, 211	Plan, 75
Paroi_fixe_iso_genepi2_sans_contribution_aux_vites	seoint, 74
_sommets, 211	Points, 73
Paroi_flux_impose, 211	Polyedriser, 52
Paroi_knudsen_non_negligeable, 211	Polymac, 213
Paroi_temperature_imposee, 212	Polymac_p0, 214
Partition, 50, 262	Polymac_p0p1nc, 214
Partition_multi, 52	Porosites, 265
Partitionneur_deriv, 261	Portance_interfaciale, 323
Partitionneur_sous_zones, 263	Position_like, 75
Pave, 41	Post_processing, 83
Pb_avec_passif, 90	Post_processings, 82
Pb_base, 88	Postraitement_base, 83
Pb_conduction, 70	Postraiter_domaine, 53
Pb_gen_base, 70	Pp, 158
Pb_hem, 87	Precisiongeom, 53
Pb_hydraulique, 91	Precond, 194, 196
Pb_hydraulique_concentration, 93	Precond_base, 266
•	Precondsolv, 266
Pb_hydraulique_concentration_turbulent, 95	Predefini, 185
Pb_hydraulique_concentration_turbulent_scalaires_pa	
96	Print, 196
Pb_hydraulique_melange_binaire_qc, 98	Problem_read_generic, 122
Pb_hydraulique_melange_binaire_turbulent_qc, 100	
Pb_hydraulique_melange_binaire_wc, 99	Puissance_thermique, 331
Pb_hydraulique_turbulent, 101	1
Pb_multiphase, 85	Qdm_multiphase, 144
Pb_thermohydraulique, 103	Quick, 129
Ph thermohydraulique concentration 107	
Pb_thermohydraulique_concentration_scalaires_passi	Raccord, 44
108	Radioactive_decay, 331
Ph thermohydraulique concentration turbulent 110	Radius, 77
Pb_thermohydraulique_concentration_turbulent_scala	Raffiner_anisotrope, 53
_passifs, 111	Raffiner_isotrope, 54
Pb_thermohydraulique_especes_qc, 112	Raffiner_isotrope_parallele, 21
Pb_thermohydraulique_especes_turbulent_qc, 115	Read, 55
Pb_thermohydraulique_especes_wc, 114	Read_file, 55
Pb_thermohydraulique_qc, 105	Read_file_binary, 56
Pb_thermohydraulique_scalaires_passifs, 116	Read_med, 22
Pb_thermohydraulique_turbulent, 118	Read_unsupported_ascii_file_from_icem, 56
Pb thermohydraulique turbulent qc, 119	Redresser_hexaedres_vdf, 57
L C VIII CII GI GGI GGO CGI	

Refine_mesh, 57	Solveur_sys_base, 199
Regroupebord, 57	Solveur_u_p, 320
Remove_elem, 58	Solveur_pression, 194, 196
Remove_invalid_internal_boundaries, 59	Sonde_base, 73
Reordonner, 59	Sortie_libre_temperature_imposee_h, 212
Reorienter_tetraedres, 59	Source_base, 321
Reorienter_triangles, 59	Source_constituant, 331
Rhot_gaz_parfait_qc, 247	Source_generique, 332
Rhot_gaz_reel_qc, 248	Source_pdf, 332
Rocalution, 198	Source_pdf_base, 333
Rotation, 60	Source_qdm, 333
Runge_kutta_ordre_2, 279	Source_qdm_lambdaup, 334
Runge_kutta_ordre_2_classique, 280	Source_robin, 334
Runge_kutta_ordre_3, 282	Source_robin_scalaire, 334
Runge_kutta_ordre_3_classique, 284	Source_th_tdivu, 335
Runge_kutta_ordre_4_classique, 288	Source_travail_pression_elem_base, 323
Runge_kutta_ordre_4_classique_3_8, 290	Sources, 135
Runge_kutta_ordre_4_d3p, 286	Sous_dom, 263
Runge_kutta_rationnel_ordre_2, 291	Sous_zone, 336
	Sous_zones, 264
Saturation_base, 268	Spai, 196
Saturation_constant, 268	Spec_pdcr_base, 329
Saturation_sodium, 268	SSOR, 196, 197
Scalaire_impose_paroi, 212	Ssor, 267
Scatter, 60	Ssor_bloc, 267
Scattermed, 61	Stab, 131
Sch_cn_ex_iteratif, 270	Standard, 132
Sch_cn_iteratif, 273	Stat_post_deriv, 79
Schema_adams_bashforth_order_2, 293	Statistiques, 79, 81
Schema_adams_bashforth_order_3, 295	Statistiques_en_serie, 81
Schema_adams_moulton_order_2, 297	Supg, 130
Schema_adams_moulton_order_3, 299	Supprime_bord, 61
Schema_backward_differentiation_order_2, 302	Symetrie, 213
Schema_backward_differentiation_order_3, 304	System, 62
Schema_implicite_base, 309	System, 02
Schema_predictor_corrector, 312	T_deb, 80
Schema_temps_base, 269	T_fin, 80
Scheme_euler_explicit, 275	Taux_dissipation_turbulent, 145
Scheme_euler_implicit, 307	Tayl_green, 228
Segment, 75	Temperature, 79, 81, 164
Segmentfacesx, 76	Temperature_imposee_paroi, 213
Segmentfacesy, 77	Terme_puissance_thermique_echange_impose, 335
Segmentfacesz, 77	Test_solveur, 62
Segmentpoints, 74	Test_sse_kernels, 22
Sets, 317	Testeur, 63
Sgdh, 134	Testeur_medcoupling, 63
Simple, 318	Tetraedriser, 63
Simpler, 319	Tetraedriser_homogene, 64
Solide, 258	Tetraedriser_homogene_compact, 64
Solve, 61	Tetraedriser_homogene_fin, 64
Solver, 194, 197	Tetraedriser_par_prisme, 65
Solveur, 194, 196	Thi, 165
Solveur_implicite_base, 313	Traitement_particulier_base, 164
Solveur_lineaire_std, 319	Tranche, 264
·	

```
Transformer, 66
Transversale, 330
Travail_pression, 336
Trianguler, 66
Trianguler_fin, 66
Trianguler_h, 67
Turbulence_paroi_base, 338
Turbulence_paroi_scalaire_base, 339
Turbulente, 133
type, 79, 81, 196
Type_diffusion_turbulente_multiphase_deriv, 133
Type_perte_charge_deriv, 322
Uniform_field, 229
Union, 265
Valeur_totale_sur_volume, 229
Vdf, 214
Vect_nom, 68
Vef, 214
Verifier_qualite_raffinements, 67
Verifier_simplexes, 68
Verifiercoin, 68
Vitesse, 79, 81
Vitesse_derive_base, 336
Vitesse_relative_base, 336
Volume, 75
Write_med, 18
xyz, 15
```