

«Санкт-Петербургский политехнический университет Петра Великого»

Институт компьютерных наук и технологий Высшая школа киберфизических систем и управления

Прогнозирование технологических параметров автоматизированного теплового пункта методами машинного обучения

Направление 27.03.04 — Управление в технических системах Профиль 27.03.04 _05 — Интеллектуальные системы обработки информации и управления

Выполнил

студент гр. 3532704/80501 Федотовских Евгений Александрович

Научный руководитель

старший преподаватель Киселева Людмила Анатольевна

POLYTECH

Цель и задачи

Цель работы:

создание программного модуля на основе моделей машинного обучения для возможности предиктивного управления интенсивностью отопления на автоматизированном тепловом пункте

Задачи:

- 1) Изучить работу автоматизированного теплового пункта;
- 2) Изучить методы машинного обучения для прогнозирования временных рядов;
- 3) Проанализировать предоставленные данные для обучения, предобработать их;
- 4) Реализовать программные модули для прогнозирования одномерных временных рядов, используя изученные методы машинного обучения;
- 5) Сравнить качество получившихся моделей машинного обучения для прогнозирования одномерных временных рядов, оптимизировать модели, выбрать оптимальную;
- 6) Реализовать программный модуль прогнозирования технологических параметров.

Рассмотренные методы:

- 1. Случайный лес
- 2. Градиентный бустинг над решающими деревьями
- 3. Классические искусственные нейронные сети
- 4. Искусственные рекуррентные нейронные сети LSTM

Функциональная схема автоматизированного теплового пункта

Обозначения: T_{yn} — температура наружного воздуха; T_{11} — температура носителя к потребителю; T_{21} — температура носителя от потребителя;

Описание и предобработка измеряемых данных

Параметры создания датасетов:

windows_size — размер окна forward_number — кол-во элементов на которое предсказываем

Разделение на датасеты для обучения, проверки качество модели, тестирования происходит в процентном отношении 70-20-10

Случайный лес

Решающее дерево

Разделение пространства признаков предикатами решающего дерева

Случайный лес – ансамбль из решающи
$$a(X)=\frac{1}{k}(b_1(X_1)+b_2(X_2)+\cdots+b_k(X_k))$$
 деревьев

regr = RandomForestRegressor(n_estimators=1000, max_depth=10, min_samples_sp lit=2, min_samples_leaf=1,verbose=1)

Фрагмент листинга:

regr.fit(x_train, y_train)

prediction = regr.predict(x_test)

Градиентный бустинг над решающими деревьями

$$L(y,x) = \frac{1}{2} \sum_{i=1}^{N} (y_i - a(x_i))^2 \to min$$

L(y,x) – значение функция потерь y_i — реальное значение і-го объекта $a(x_i)$ – предсказание текущего ансамбля для і-го объекта

Формирование ансамбля:
$$a_{K+1}(x) = b_1(x) + \eta b_2(x) + \dots + \eta b_{k+1}(x)$$

 $b_{i}(x)$ – предсказание і-го решающего дерева $a_{K+1}(x)$ – предсказание ансамбля из K+1 дерева $\eta \epsilon (0;1]$ – темп обучения

Фрагмент листинга:

```
model = XGBRegressor(n estimators=1000, max depth=7, learning rate=0.01)
model.fit(x train, y train,
         eval set=[(x train, y train), (x val, y val)],
         eval metric='mae',
         verbose=True, callbacks=[xgboost.callback.EarlyStopping(rounds=15,s
ave best=True)])
model.best ntree limit
results = model.evals result()
```


Искусственные глубокие нейронные сети

Структура простейшей искусственной нейронной сети

Обратное распространение ошибки и обновление весов

Функции активации

```
model = Sequential([
    Dense(128, activation='selu', input_shape=(window_size,)),
    Dropout(0.5),
    Dense(256, activation='selu'),
    Dropout(0.5),
    Dense(256, activation='selu'),
    Dropout(0.5),
    Dense(256, activation='selu'),
    Dropout(0.5),
    Dense(1)
```

Фрагмент листинга

Искусственные рекуррентные нейронные сети LSTM

Принцип работы рекуррентных нейронных сетей:

lstm_model = tf.keras.models.Sequential([
 tf.keras.Input((window_size,1)),

Фрагмент листинга:

Формулы, описывающие работу блока LSTM:

$$f_{t} = \sigma(W_{f} \cdot [h_{t-1}, x_{t}]),$$

$$i_{t} = \sigma(W_{i} \cdot [h_{t-1}, x_{t}]),$$

$$C'_{t} = tanh(W_{c} \cdot [h_{t-1}, x_{t}]),$$

$$C_{t} = f_{t} * C_{t-1} + i_{t} * C'_{t},$$

$$O_{t} = \sigma(W_{O} \cdot [h_{t-1}, x_{t}]),$$

$$h_{t} = O_{t} * tanh(C_{t}).$$

Сравнение моделей

В качестве метрики была взята абсолютная ошибка:

$$MAE(y^{true}, y^{pred}) = \frac{1}{N} \sum_{i=1}^{N} |y_i - f(x_i)|$$

 y^{pred} – предсказание модели

 y^{true} – реальное значение

Графики МАЕ для разных моделей с использованием данных за 1 час и предсказанием на 28 минут вперед:

Сравнение моделей

Средняя абсолютная ошибка для разных методов формирования датасета и разных моделей:

POLYTECH

Выводы

В рамках ВКР были рассмотрены четыре метода прогнозирования временных рядов:

- 1. случайный лес
- 2. градиентный бустинг над решающими деревьями
- 3. искусственные глубокие нейронные сети
- 4. искусственные рекуррентные нейронные сети LSTM

Было проведено несколько экспериментов, модели разных методов обучались на:

- а) абсолютных значениях температуры
- b) разницах между текущим и прошлым значением;

Датасеты для обучения составлялись с использованием разного количества предыдущих измерений.

В качестве лучшей модели выбрана искусственная нейронная сеть LSTM.

Разработка всех моделей производилась на языке Python 3 в среде Jupiter Notebook.

Спасибо за внимание.