Раздел I Случайные события

03.09.24

Теория вероятностей — наука, изучающая закономерности в массовых случайных явлениях. Разделы курса: случайные события, случайные величины, предельные теоремы.

1 Основные понятия

- Ω пространство элементарных исходов
- $\Omega = \{\omega_1, \omega_2, ...\omega_n\}$ множество всех единственно равновозможных исходов данного эксперимента
- F σ -алгебра случайных событий
- \mathbb{P} вероятность
- $A, B, C \dots$ случаные события
- U, Ω достоверное событие
- V,\emptyset невозможное событие
- $\bar{A}, \{\omega_i, \omega_i \notin A\}$ противоположное событие

Вероятность случайного события A определяем как $P(A) = w_i, w_i \in [0, 1]$.

10.09.24

17.09.24

2 Схема независимых испытаний. Формула Бернулли

Опр. 1. Независимые испытания - испытания, исход каждого из которых не влияет на исход последующих

Опр. 2. Схема независимых испытаний Бернулли - неоднократное вопроизведение независимых опытов в одинаковых условиях

Теорема 2.0.1. Формула Бернулли: пусть проводится n незаивисимых одинаковых опытов, в каждом из которых некоторое событие A может наступить c вероятностью p и не наступить c вероятностью q. Тогда вероятность того, что A наступит ровно m раз ($m \le n$):

$$P_{n,m}(A) = C_n^m p^m q^{n-m} \tag{1}$$

Proof. Пусть T - A наступило (P(T) = p), F - "A не наступило" (P(T) = q), A' - A наступило m раз из n.

Рассмотрим один из элементарных исходов, благоприятствующих A':

$$A_{1}^{'} = \underbrace{T \dots T}_{m \text{ pas}} \underbrace{F \dots F}_{n - m \text{ pas}}$$
 (2)

т.к. испытания независимы, $P(A_1') = p^k q^{n-k}$.

Остальные элементарные исходы, благоприятствующие A' отличаются только расстановкой событий T и F. Количество таких расстановок равно C_n^m . Получаем

$$P_{n,m}(A) = C_n^m p^m q^{n-m} \tag{3}$$