北京工业大学2018—2019学年第一学期 《概率论与数理统计》(工类)课程考试 A 卷

考试说明: 考试闭卷; 可使用文曲星外的计算器。 承诺: 本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》, 承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。										
Ā	· (诺人: 学号: 班号: 得分:									
注:本试卷共 <u>6</u> 大题,共 <u>7</u> 页,满分 100 分. 考试时必须使用卷后附加的统一答题纸或草稿纸。										
页 面 成 绩 汇 总 表 (阅卷教师填写)										
	题号 — 二(1) 二(2) 二(3) 二(4) 二(5) 总分									
	得分									
	教师									
	、填空题 (15 个空, 每空 2 分, 共 30 分) 设 $P(A) = 0.5, P(A \cup B) = 0.7.$ 则当 $A 与 B 互斥时, P(B) =; A 与 B$									
	相互独立时, $P(B) =$									
2. 在相同条件下做 4 次独立试验, 假设每次试验时事件 A 发生的概率都是 p , 且 4 次试验中 A 恰发生 1 次与发生 2 次的概率相等. 用 X 表示 4 次试验中 A 发生的次数时, $E(X) =, Var(X) =$										
3.	3. 设随机变量 X 服从参数 λ 的泊松分布, 且 $P\{X \geq 1\} = 1 - e^{-2}$, 则 $\lambda = \underline{\qquad}$ $E(X^2) = \underline{\qquad}$									
4.	4. 设随机变量 X 可能取的值为 -2 , 0 和 1 , 且 $P\{X=-2\}=0.4$, $P\{X=0\}=0.3$ 则 $E(X)=$, $Var(X)=$									
5.	5. 若随机变量 X_1, X_2 相互独立,且 $X_1 \sim N(3, 3^2)$, $X_2 \sim N(1, 2^2)$, $X = X_1 - 2X_2$ 则 $X \sim$, $P\{-4 < X < 6\} =$.									
6.	设 X_1, X_2, \dots, X_n 为抽自正态总体 $N(\mu, \sigma^2)$ 的随机样本, μ 与 σ^2 为未知常数									
	设 X_1, X_2, \dots, X_n 为抽自正态总体 $N(\mu, \sigma^2)$ 的随机样本, μ 与 σ^2 为未知常数 \overline{X} 与 S^2 分别为样本均值与方差, 即 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i, S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$									
	则 $\overline{X} \sim$									
	为 $1-\alpha$ 的置信区间									

注:标准正态分布分布函数值 $\Phi(1) = 0.8413$, $\Phi(1.96) = 0.975$, $\Phi(1.645) = 0.95$.

二、解答题 (每题 14 分, 共 70 分)

注: 由此以下各题目要求写过程, 否则没有分数!

- 1. 有型号相同的产品三箱, 第一箱装 12 件, 其中 2 件为次品; 第二箱装 8 件, 其中只有 1 件为次品; 第三箱装 20 件, 其中 4 件为次品.
 - (1). 从三箱抽取 1箱, 然后从中随机抽取 1件产品, 求抽到次品的概率;
 - (2). 如发现抽到的产品为次品, 求其抽自第 1 箱的概率.

- 2. 设随机变量 X_1, X_2 相互独立, 且二者均服从 [0,1] 区间上均匀分布, 令 $X = X_1 + X_2,$ 求
 - (1). X 的概率密度函数 $f_X(x)$;
 - (2). E(X) 和 Var(X);
 - (3). $Y = X^2$ 的概率密度函数 $f_Y(y)$.

3. 设二维连续型随机变量 (X,Y) 有联合概率密度函数

$$f(x,y) = \begin{cases} ay(1-x), & 0 \le y \le x \le 1 \\ 0, & \text{ i.e.} \end{cases}$$

- (1). 确定常数 a;
- (2). 求边缘概率密度函数 $f_X(x)$ 和 $f_Y(y)$;
- (3). 回答 X 与 Y 是否独立? 为什么?
- (4). 计算 E(Y).

- 4. 设 X_1, X_2, \dots, X_n 是总体 $X \sim N(0, \sigma^2)$ 的随机样本, $\sigma^2 > 0$ 是未知参数. 求 (1). σ^2 的矩估计 $\widehat{\sigma^2}$;
- (2). σ^2 的极大似然估计 $\widetilde{\sigma^2}$.
- (3). 回答 $\widehat{\sigma}^2$ 是否为 σ^2 的无偏估计, 为什么?

- 5. 假设某品牌日光灯的使用寿命 (单位:小时) 服从正态分布 $X \sim N(\mu, \sigma^2)$, μ 和 σ^2 未知. 现从该品牌的日光灯中随机抽取 9 只进行试验, 测得它们寿命的平均值 为 100.4,样本方差为 0.49。 问在显著性水平 $\alpha = 0.05$ 下,从样本看: (1). 能否认为 $\mu = 100$? (2). 能否认为 $\sigma^2 < 0.5$?

t	分才	ji与	χ^2	分布表
•	/ 1	1	- 1	/1 111/2

	0 73 113 J X	77 11-04	
$t_8(0.025) = 2.3060$	$t_8(0.05) = 1.8595$	$t_9(0.025) = 2.2622$	$t_9(0.05) = 1.8331$
$\chi_8^2(0.025) = 17.535$	$\chi_8^2(0.05) = 15.507$	$\chi_9^2(0.025) = 19.023$	$\chi_9^2(0.05) = 16.919$
$\chi_8^2(0.975) = 2.180$	$\chi_8^2(0.95) = 2.733$	$\chi_9^2(0.975) = 2.700$	$\chi_9^2(0.95) = 3.325$