MACHINE LEARNING

Distance Based Models

Dr G.Kalyani

Department of Information Technology
Velagapudi Ramakrishna Siddhartha Engineering College

Topics

Introduction

Nearest Neighbor Classification

- Distance based Clustering
 - Partitioning Clustering
 - K-Means algorithm,
 - Clustering around medoids,
 - Hierarchical Clustering.

Topics

Introduction

Nearest Neighbor Classification

- Distance based Clustering
 - Partitioning Clustering
 - K-Means algorithm,
 - Clustering around medoids,
 - Hierarchical Clustering.

Definition of Distance Metric

Definition 8.2 (**Distance metric**). *Given an instance space* \mathcal{X} , a **distance metric** is a function Dis: $\mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that for any $x, y, z \in \mathcal{X}$:

- 1. distances between a point and itself are zero: Dis(x, x) = 0;
- 2. all other distances are larger than zero: if $x \neq y$ then Dis(x, y) > 0;
- 3. distances are symmetric: Dis(y, x) = Dis(x, y);
- 4. detours can not shorten the distance: $Dis(x, z) \le Dis(x, y) + Dis(y, z)$.

Minkowski Distance

Definition 8.1 (Minkowski distance). *If* $\mathcal{X} = \mathbb{R}^d$, the Minkowski distance of order p > 0 is defined as

$$\operatorname{Dis}_{p}(\mathbf{x}, \mathbf{y}) = \left(\sum_{j=1}^{d} |x_{j} - y_{j}|^{p}\right)^{1/p} = ||\mathbf{x} - \mathbf{y}||_{p}$$

where $||\mathbf{z}||_p = \left(\sum_{j=1}^d |z_j|^p\right)^{1/p}$ is the *p*-norm (sometimes denoted L_p norm) of the vector \mathbf{z} . We will often refer to Dis_p simply as the *p*-norm.

Euclidean Distance

The 2-norm refers to the familiar Euclidean distance:

$$\operatorname{Dis}_2(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{j=1}^d (x_j - y_j)^2}$$

Manhattan Distance

1-norm denotes Manhattan distance or cityblock distance:

$$\mathrm{Dis}_1(\mathbf{x},\mathbf{y}) = \sum_{j=1}^d |x_j - y_j|$$

Chebyshev Distance

Chebyshev Distance:

$$\operatorname{Dis}_{\infty}(\mathbf{x}, \mathbf{y}) = \operatorname{max}_{j} |x_{j} - y_{j}|.$$

Hamming Distance

Hamming Distance: also called as 0-norm (or LO norm).
 The corresponding distance counts the number of positions in which vectors x and y differ.

$$Dis_0(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^d (x_j - y_j)^0 = \sum_{j=1}^d I[x_j = y_j]$$

Where
$$Z^0 = 0$$
 for $Z = 0$
= 1 otherwise.

*Hamming distance is used to calculate the distance between instances which are described with categorical attributes or dimensions.

Examples for Distance Calculation

Q1: Find the distance between X = (2, 3) and Y = (4, 1).

• Euclidean Distance=
$$\int_{j=1}^{d} (x_j - y_j)^2 = \sqrt{(2-4)^2 + (3-1)^2} = 2.83$$

- Manhattan Distance = $\sum_{j=1}^{d} |x_j y_j| = |(2-4)| + |(3-1)| = 4$
- Chebshev Dstance= $\max_{j} |x_j y_j|$. = $\max(|(2-4)|, |(3-1)|) = 2$

Q2: Find the distance between X= (yes, true) and Y= (no, true).

• Hamming Distance= I(yes=no) + I(true=true) = 0 + 1 = 1

Examples for Practice

Q3: Find the distance between the instances

$$X = (6, 2,4)$$
 and $Y = (9, 1,-2)$.

Q4: Determine the distance between the instances

X = (yes, male, high, good) and Y=(No, male, high, Excellent).

Topics

Introduction

Nearest Neighbor Classification

- Distance based Clustering
 - Partitioning Clustering
 - K-Means algorithm,
 - Clustering around medoids,
 - Hierarchical Clustering.

Nearest Neighbor(NN) Classification

- Distance based & Supervised
- Used for both Classification & Regression
- Decision is made based on K-Number of neighborhood points
- NN is easy to implement. Only 2 parameters required i.e. the value of K and the distance function (e.g. Euclidean or Manhattan etc.)
- Does not work with large dataset: In large datasets, the cost of calculating the distance between the new point and each existing points is huge which degrades the performance of the algorithm.

Example for Nearest Neighbor Classification

Name	Age	Gender	Sport
Ajay	32	M	Football
Mark	40	M	Neither
Sara	16	F	Cricket
Zaira	34	F	Cricket
Sachin	55	M	Neither
Rahul	40	M	Cricket
Pooja	20	F	Neither
Smith	15	M	Cricket
Laxmi	55	M	Football
Machael	15	M	Football

Angelina 5 F ?

Example for Nearest NeighborClassification

- Assume that we are using Euclidean Distance with value of K as 3.
- Distance between angelina (5,1) and Ajay (32,0) is

$$D = \sqrt{(5-32)^2 + (1-0)^2}$$

$$= \sqrt{27^2 + 1^2} = \sqrt{729 + 1} = 27.02$$

Example for Nearest NeighborClassification

Name	Age	Gender	Distance	Sport
Ajay	32	0	27.02	Football
Mark	40	0		Neither
Sara	16	1		Cricket
Zaira	34	1		Cricket
Sachin	55	0		Neither
Rahul	40	0		Cricket
Pooja	20	1		Football
Smith	15	0		Cricket
Laxmi	55	0		Football
Machael	15	0		Football

Example for Nearest NeighborClassification

Name	Age	Gender	Distance	Sport
Ajay	32	0	27.02	Football
Mark	40	0	35.01	Neither
Sara	16	1	11.00	Cricket
Zaira	34	1	29.00	Cricket
Sachin	55	0	50.01	Neither
Rahul	40	0	35.01	Cricket
Pooja	20	1	15.00	Football
Smith	15	0	10.00	Cricket
Laxmi	55	0	50.00	Football
Machael	15	0	10.05	Football

Example for Nearest Neighbor Classification

- K=3 in the example :
- So the 3 nearest neighbors are

Sara	16	1	11.00	Cricket
Smith	15	0	10.00	Cricket
Machael	15	0	10.05	Football

Majority Voting Rule:

Angelina belongs to class of Cricket

Example for Nearest Neighbor Classification

- Let K=5 in the example :
- So the 5 nearest neighbors are

Sara	16	1	11.00	Cricket
Smith	15	0	10.00	Cricket
Machael	15	0	10.05	Football
Pooja	20	1	15.00	Football
Ajay	32	0	27.02	Football

Majority Voting Rule:

Angelina belongs to class of Football

K-Nearest Neighbor Classification

- If K is too small, sensitive to noise points
- If K is too large, neighborhood may include points from other classes
- Thumb rule: K< sqrt(n) where n is number of samples
- To choose the correct K value use error curves.

KNN Algorithm

Input: Dataset of n instances, K, Distance measure, new instance T

Output: Predicted Label for the given new instance T

Method:

- 1. For each instance x in the dataset
 - a. Calculate the distance between T and x.
 - b. Add the distance and the index of the x to an ordered collection.
- 2. Sort the ordered collection of distances and indices from smallest to largest (in ascending order) by the distances.
- Pick the first K entries from the sorted collection.
- 4. Get the labels of the selected K entries.
- **5.** If Regression, return the mean of the K labels.
- **6.** If Classification, return the mode of the K labels.

Important points in KNN Classification

- Takes more time if number of dimensions in the dataset is more
 - Use dimensionality reduction techniques and feature selection techniques to reduce the number of dimensions.
- How to handle noise in the Data
 - Increase the K value
- Relation between K value and Bias & Variance
 - If K is small bias is less(as k is more bias increases)
 - As k decreases variance increases

Topics

Introduction

Nearest Neighbor Classification

- Distance based Clustering
 - Partitioning Clustering
 - K-Means algorithm,
 - Clustering around medoids,
 - Hierarchical Clustering.

What is Clustering?

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups

Clustering

- Finding similarities between data according to the characteristics found in the data and
- grouping similar data objects into clusters
- Unsupervised learning: no predefined class labels for the data

Applications of Clustering

- Information retrieval: document clustering
- Land use: Identification of areas of similar land use in an earth observation database
- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs

Applications of Clustering

Image Segmentation (Clustering the pixels)

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters
 - high <u>intra-Class or Intra-Cluster</u> similarity: cohesive within clusters
 - low <u>Inter-class or Inter-Cluster similarity</u>: distinctive between clusters

- The quality of a clustering method depends on
 - the similarity measure used by the method
 - Process used for clustering, and

Measure the Quality of Clustering

- Similarity / Dissimilarity metric
 - Dissimilarity is expressed in terms of a distance function,
 typically metric: d(i, j)
 - The definitions of distance functions are usually rather different for categorical and continuous attributes.
 - Weights should be associated with different variables based on applications and data semantics

Distance Measures-for Numerical data

- Properties of Distance Measures:
 - for all objects A and B, $dist(A, B) \ge 0$, and dist(A, B) = dist(B, A)
 - for any object A, dist(A, A) = 0
- Common Distance Measures:

$$X = \langle x_1, x_2, \dots, x_n \rangle$$
 $Y = \langle y_1, y_2, \dots, y_n \rangle$

Manhattan distance:

$$dist(X,Y) = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_n - y_n|$$

Euclidean distance:

$$dist(X,Y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

Can be normalized to make values fall between 0 and 1.

Cosine similarity:

$$dist(X,Y) = 1 - sim(X,Y)$$

$$sim(X,Y) = \frac{\sum_{i} (x_i \times y_i)}{\sqrt{\sum_{i} x_i^2 \times \sum_{i} y_i^2}}$$

Major Clustering Approaches

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion,
 e.g., minimizing the sum of square errors
- Typical methods: K-Means, K-Medoids, CLARANS

Hierarchical approach:

- Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Typical methods: Diana, Agnes, BIRCH, CAMELEON

Density-based approach:

- Based on connectivity and density functions
- Typical methods: DBSACN, OPTICS, DenClue

• Grid-based approach:

- based on a multiple-level granularity structure
- Typical methods: STING, WaveCluster, CLIQUE

Partitioning Algorithms: Basic Concept

- Given k, Partitioning a database D of n objects into a set of K clusters that
 optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - <u>k-Means</u>: Each cluster is represented by the center of the cluster
 - k-Medoids or PAM (Partition Around Medoids): Each cluster is represented by one of the objects in the cluster

Partitioning Algorithms: Basic Concept

Partitioning method:

Partitioning a database *D* of *n* objects into a set of *K* clusters, such that the sum of squared distances is minimized

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} dist(\mathbf{p}, c_i)^2,$$

where c_i is the centroid of cluster C_i

K-Means Clustering Method

Algorithm 8.1: KMeans(D, K) – K-means clustering using Euclidean distance Dis₂.

```
: data D \subseteq \mathbb{R}^d; number of clusters K \in \mathbb{N}.
   Output: K cluster means \mu_1, ..., \mu_K \in \mathbb{R}^d.
1 randomly initialise K vectors \mu_1, ..., \mu_K \in \mathbb{R}^d;
2 repeat
         assign each \mathbf{x} \in D to arg min _i Dis_2(\mathbf{x}, \mu_j);
        for j = 1 to K do
       D_j \leftarrow \{\mathbf{x} \in D | \mathbf{x} \text{ assigned to cluster } j\};
         \mu_j = \frac{1}{|D_j|} \sum_{\mathbf{x} \in D_j} \mathbf{x};
         end
8 until no change in \mu_1, ..., \mu_K;
9 return \mu_1, \ldots, \mu_K;
```

K-Means Algorithm: Example

Partition the following data points into 2 clusters

Data	x	Y
1	1	1
2	2	1
3	1	2
4	2	2
5	3	3
6	6	6
7	6	8
8	5	7
9	7	5
10	4	5

K-Means Algorithm: Example

Randomly select 2 data points as cluster centers

Data	х	Y	
1	1	1	
2	2	1	
3	1	2	
4	2	2	
5	3	3	
6	6	6	
7	6	8	
8	5	7	
9	7	5	
10	4	5	

K-Means Algorithm: Example

- First, randomly set a point as centroid point
- For example, k = 2

Calculate the distance between the centroid and each point

Data	х	Y	Distance between centroid(2,1) and point in cluster 1	Compare	Distance between centroid(3,3) and point in cluster 2	Cluster
1	1	1				I
2	2	1		-		
3	1	2				1
4	2	2				
5	3	3				
6	6	6				
7	6	8		-		
8	5	7				
9	7	5				
10	4	5				U

Calculate the distance between the centroid and each point

Data	х	Y	Distance between centroid(2,1) and point in cluster 1	Compare	Distance between centroid(3,3) and point in cluster 2	Cluster
1	1	1		<		1
2	2	1		<		1
3	1	2		<		1
4	2	2		<		1
5	3	3		>		2
6	6	6		>		2
7	6	8		>		2
8	5	7		>		2
9	7	5		>		2
10	4	5		>		2

K-means Clustering – Centroid update step

 In this step, the centroids are recomputed by taking the mean of all data points assigned to that centroid's cluster

Data	X	Y	Cluster
1	1	1	1
2	2	1	1
3	1	2	1
4	2	2	1
5	3	3	2
6	6	6	2
7	6	8	2
8	5	7	2
9	7	5	2
10	4	5	2

New centroid(cluster 1)
=
$$(\frac{1+2+1+2}{4}, \frac{1+1+2+2}{4})$$

= $(1.5, 1.5)$

New centroid(cluster 2)
=
$$(\frac{3+6+6+5+7+4}{6}, \frac{3+6+8+7+5+5}{6})$$

= (5.1, 5.6)

Cluster	New Centroid	Data Index
1	(1.5, 1.5)	1,2,3,4
2	(5.1, 5.6)	5,6,7,8,9,10

K-means Clustering - Data assignment step

Calculate the distance between the centroid and each point

Data	X	Y	Distance between centroid(1.5,1.5) and point in cluster 1	Compare	Distance between centroid(5.1,5.6) and point in cluster 2	Cluste r
1	1	1		<		1
2	2	1		<		1
3	1	2		<		1
4	2	² Ch	anged	<		1
5	3	3		<		2
6	6	6		>		2
7	6	8		>		2
8	5	7		>		2
9	7	5		>		2
10	4	5		>		2

Now, repeat calculating distance between new centroid and each point

K-means Clustering – Centroid update step

 In this step, the centroids are recomputed by taking the mean of all data points assigned to that centroid's cluster

Data	X	Y	Cluster
1	1	1	1
2	2	1	1
3	1	2	1
4	2	2	1
5	3	3	2
6	6	6	2
7	6	8	2
8	5	7	2
9	7	5	2
10	4	5	2

New centroid(cluster 1)
=
$$(\frac{1+2+1+2+3}{5}, \frac{1+1+2+2+3}{5})$$

= (1.8, 1.6)

New centroid(cluster 2)
=
$$(\frac{6+6+5+7+4}{5}, \frac{6+8+7+5+5}{5})$$

= (5.6, 6.2)

Cluster	New Centroid	Data Index
1	(1.8, 1.6)	1,2,3,4,5
2	(5.6, 6.2)	6,7,8,9,10

Now, repeat calculating distance between new centroid and each point

Example 2 of K-means Clustering

dataset containing information on 32 cars.

- We can consider each car a separate observation.
- For each observation, we have its weight and its horsepower.

Comments on the K-Means Method

Strength:

Efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations.
 Normally, k, t << n.

Weakness

- Applicable only to objects in a continuous n-dimensional space
- Need to specify k, the number of clusters, in advance (there are ways to determine the best k)
- Sensitive to noisy data and outliers
- Not suitable to discover clusters with non-convex shapes (concave Shape)

Variations of the *K-Means* Method

- Most of the variants of the *k-means* which differ in
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: k-modes
 - Replacing means of clusters with <u>modes</u>
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters

K-Medoids Method

- The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data

 K-Medoids: Instead of taking the mean value of the objects in a cluster as a cluster center, medoids can be used, which is the most centrally located object in a cluster

The K-Medoids Clustering Method

Algorithm 8.2: KMedoids(D, K, Dis) – K-medoids clustering using arbitrary distance metric Dis.

```
: data D \subseteq \mathcal{X}; number of clusters K \in \mathbb{N};
   Input
                   distance metric Dis: \mathcal{X} \times \mathcal{X} \to \mathbb{R}.
   Output: K medoids \mu_1, \ldots, \mu_K \in D, representing a predictive clustering of \mathcal{X}.
1 randomly pick K data points \mu_1, ..., \mu_K \in D;
2 repeat
         assign each \mathbf{x} \in D to argmin<sub>j</sub> Dis(\mathbf{x}, \mu_j);
3
         for j = 1 to k do
4
               D_j \leftarrow \{\mathbf{x} \in D | \mathbf{x} \text{ assigned to cluster } j\};
               \mu_j = \operatorname{argmin}_{\mathbf{x} \in D_i} \sum_{\mathbf{x}' \in D_i} \operatorname{Dis}(\mathbf{x}, \mathbf{x}');
6
         end
7
8 until no change in \mu_1, ..., \mu_K;
9 return \mu_1, \ldots, \mu_K;
```

- While partitioning methods meet the basic clustering requirement of organizing a set of objects into a number of exclusive groups, in some situations we may want to partition our data into groups at different levels such as in a hierarchy.
- A hierarchical clustering method works by grouping data objects into a hierarchy or "tree" (called as Dendogram) of clusters.

Definition 8.4 (Dendrogram). Given a data set D, a dendrogram is a binary tree with the elements of D at its leaves. An internal node of the tree represents the subset of elements in the leaves of the subtree rooted at that node. The level of a node is the distance between the two clusters represented by the children of the node. Leaves have level 0.

Use distance matrix as clustering criteria.

	g_1	g_2	g_3	g_4	g_5	g 6	g_7	g_8	g 9	g_{10}
g_1	0.0	8.1	9.2	7.7	9.3	2.3	5.1	10.2	6.1	7.0
g_2	8.1	0.0	12.0	0.9	12.0	9.5	10.1	12.8	2.0	1.0
g_3	9.2	12.0	0.0	11.2	0.7	11.1	8.1	1.1	10.5	11.5
g_4	7.7	0.9	11.2	0.0	11.2	9.2	9.5	12.0	1.6	1.1
g_5	9.3	12.0	0.7	11.2	0.0	11.2	8.5	1.0	10.6	11.6
g_6	2.3	9.5	11.1	9.2	11.2	0.0	5.6	12.1	7.7	8.5
g_7	5.1	10.1	8.1	9.5	8.5	5.6	0.0	9.1	8.3	9.3
g_8	10.2	12.8	1.1	12.0	1.0	12.1	9.1	0.0	11.4	12.4
g_9	6.1	2.0	10.5	1.6	10.6	7.7	8.3	11.4	0.0	1.1
g_{10}	7.0	1.0	11.5	1.1	11.6	8.5	9.3	12.4	1.1	0.0

This method does not require the number of clusters k as an input, but needs a termination condition

- The most important point in Hierarchical clustering methods is regarding the selection of merge or split points.
- Such a decision is critical, because once a group of objects is merged or split, the process at the next step will operate on the newly generated clusters.
- It will neither undo what was done previously, nor perform object swapping between clusters.
- Thus, merge or split decisions, if not well chosen, may lead to low-quality clusters

Two types of hierarchical Clustering

Two types of hierarchical Clustering

Distance between Clusters

Definition 8.5 (Linkage function). A linkage function $L: 2^{\mathscr{X}} \times 2^{\mathscr{X}} \to \mathbb{R}$ calculates the distance between arbitrary subsets of the instance space, given a distance metric $Dis: \mathscr{X} \times \mathscr{X} \to \mathbb{R}$.

The most common linkage functions are as follows:

Single linkage defines the distance between two clusters as the *smallest* pairwise

distance between elements from each cluster.

Complete linkage defines the distance between two clusters as the *largest* pointwise

distance.

Average linkage defines the cluster distance as the *average* pointwise distance.

Centroid linkage defines the cluster distance as the point distance between the clus-

ter means.

Distance between Clusters

These linkage functions can be defined mathematically as follows:

$$L_{\text{single}}(A, B) = \min_{x \in A, y \in B} \text{Dis}(x, y)$$

$$L_{\text{complete}}(A, B) = \max_{x \in A, y \in B} \text{Dis}(x, y)$$

$$L_{\text{average}}(A, B) = \frac{\sum_{x \in A, y \in B} \text{Dis}(x, y)}{|A| \cdot |B|}$$

$$L_{\text{centroid}}(A, B) = \text{Dis}\left(\frac{\sum_{x \in A} x}{|A|}, \frac{\sum_{y \in B} y}{|B|}\right)$$

AGNES (Agglomerative Nesting)

- Introduced in Kaufmann and Rousseeuw
- Implemented in statistical packages, e.g., Splus
- Use the single-link method and the dissimilarity matrix
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster

DIANA (Divisive Analysis)

- Introduced in Kaufmann and Rousseeuw
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own

(Agglomerative Clustering)

Algorithm 8.4: HAC(D, L) – Hierarchical agglomerative clustering.

```
Input : data D \subseteq \mathcal{X}; linkage function L: 2^{\mathcal{X}} \times 2^{\mathcal{X}} \to \mathbb{R} defined in terms of distance metric.
```

Output: a dendrogram representing a descriptive clustering of *D*.

- initialise clusters to singleton data points;
- 2 create a leaf at level 0 for every singleton cluster;
- з repeat
- find the pair of clusters X, Y with lowest linkage l, and merge;
- create a parent of X, Y at level l;
- 6 until all data points are in one cluster;
- 7 return the constructed binary tree with linkage levels;

Example for AGNES(Agglomerative Clustering)

• Assume that you have given a set of 6 data tuples or objects named A, B, C,D,E and F.

A 1 1 1 1 1 1.5 1.5 5 5 5 D 4 4 4 4 4 3 3.5

The following is the distance matrix fc

Dist	Α	В	С	D	Ε	F	223
A	0.00	0.71	5.66	3.61	4.24	3.20	n
В	0.71	0.00	4.95	2.92	3.54	2.50	
c J	5.66	4.95	0.00	2.24	1.41	2.50	
D)	3.61	2.92	2.24	0.00	1.00	0.50	1
E	4.24	3.54	1.41	1.00	0.00	1.12	
F	3.20	2.50	2.50	0.50	1.12	0.00	J

Using the input distance matrix, distance between cluster (D, F) and cluster A is computed as

$d = \min (d - d_1) = \min (2.61.3.20) = 2.20$	Dist		Α	В	С	D	Ε	F	29
$d_{(D,F)\to A} = \min(d_{DA}, d_{EA}) = \min(3.61, 3.20) = 3.20$	Α		0.00	0.71	5.66	3.61	4.24	3.20)
Distance between cluster (D, F) and cluster B is	В		0.71	0.00	4.95	2.92	3.54	2.50	
	С	J	5.66	4.95	0.00	2.24	1.41	2.50	
$d_{(D,F)\to B} = \min(d_{DB}, d_{FB}) = \min(2.92, 2.50) = 2.50$	D)	3.61	2.92	2.24	0.00	1.00	0.50	
Cimilante distance between elector (D. E) and elector Cia	E		4.24	3.54	1.41	1.00	0.00	1.12	
Similarly, distance between cluster (D, F) and cluster C is	F		3.20	2.50	2.50	0.50	1.12	0.00	J

Finally, distance between cluster E and cluster (D, F) is calculated as

 $d_{(D,F)\to C} = \min(d_{DC}, d_{FC}) = \min(2.24, 2.50) = 2.24$

Dist	A,B	C	(D, F)	E	
A,B	0	?	?	?	
С	?	0	2.24	1.41	
(D, F)	?	2.24	0	1.00	
E	?	1.41	1.00	0	
	-			-	

Using the input distance matrix (size 6 by 6), distance between cluster C and cluster (D, F) is computed $d_{CA}(A,B) = \min(d_{CA},d_{CB}) = \min(5.66,4.95) = 4.95$

Distance between cluster (D, F) and cluster (A, B) is the minimum distance between all objects involves in the two clusters

$$d_{(D,F)\to(A,B)} = \min\left(d_{DA}, d_{DB}, d_{FA}, d_{FB}\right) = \min\left(3.61, 2.92, 3.20, 2.50\right) = 2.50$$

Similarly, distance between cluster E and (A, B) is

$$d_{E\to(A,E)} = \min(d_{EA}, d_{EB}) = \min(4.24, 3.54) = 3.54$$

Then the updated distance matrix is

Min Distance (Single Linkage)

Min Distance (Single Linkage)

Dist	_	(A,B)	C	(D, F), E
(A,B)		0.00	4.95	2.50
С	1	4.95	0.00	1.41
(D, F), E		2.50	1.41	0.00

Dendogram Representation

The hierarchy is given as (((D, F), E),C), (A,B). We can also plot the clustering hierarchy into XY space

Deciding the Best Number of Clusters

Example for Divisive Hierarchical Clustering

Divisive Clustering Example

The following is an example of Divisive Clustering.

Distance	a	b	C	d	e
a	0	2	6	10	9
b	2	0	5	9	8
С	6	5	0	4	5
d	10	9	4	0	3
e	9	8	5	3	0

Step 1. Split whole data into 2 clusters Which is dissimilar more with other members? (in Average)

a to others: mean(2,6,10,9) = 6.75 b to others: mean(2,5,9,8) = 6.0 c to others: mean(6,5,4,5) = 5.0 d to others: mean(10,9,4,3) = 6.5 e to others: mean(9,8,5,3) = 6.25

Step 2: Because a has more dissimilar to others split a into separate cluster.

Recheck the remaining objects

	$\alpha=$ distance to the old party	$\beta=$ distance to the new party
b	$\frac{5+9+8}{3} = 7.33$	2
С	$\frac{5+4+5}{3} = 4.67$	6
d	$\frac{9+4+3}{3} = 5.33$	10
e	$\frac{8+5+3}{3} = 5.33$	9

Example for Divisive Hierarchical Clustering

```
Cluster 1: {a,b}
Cluster 2: {c,d,e}
```

Step 3: Choose a current cluster and split it as in Step 1. split the cluster with the largest number of members split the cluster with the largest diameter

```
cluster diameter {a,b} 2 {c,d,e} 5
```

Split the chosen cluster as in Step 1.

Example for Practice

point	x coordinate	y coordinate		
p1	0.4005	0.5306		
p2	0.2148	0.3854		
р3	0.3457	0.3156		
p4	0.2652	0.1875		
p5	0.0789	0.4139		
р6	0.4548	0.3022		

Table : X-Y coordinates of six points.

	p1	p2	p3	p4	p5	p6
p1	0.0000	0.2357	0.2218	0.3688	0.3421	0.2347
p2	0.2357	0.0000	0.1483	0.2042	0.1388	0.2540
р3	0.2218	0.1483	0.0000	0.1513	0.2843	0.1100
p4	0.3688	0.2042	0.1513	0.0000	0.2932	0.2216
p5	0.3421	0.1388	0.2843	0.2932	0.0000	0.3921
p6	0.2347	0.2540	0.1100	0.2216	0.3921	0.0000

Table : Distance Matrix for Six Points

Answer for Example 2

Topics

Introduction

- Nearest Neighbor Classification
- Distance based Clustering
 - Partitioning Clustering
 - K-Means algorithm
 - Clustering around medoids
 - Hierarchical Clustering
 - Agnes
 - Diana

