

Hydration to Everyone

Providing clean drinking water to every household without the need of treatment or transportation

Problem: 2 bn people lack access to safe & reliable drinking water

Safety

Diarrheal diseases due to unsafe drinking water is responsible for approximately **485,000 deaths a** year¹

Water access is often far from the home; women and girls spend **200** million hours daily collecting water for their homes²

WHO estimates that it will take \$203 billion in infrastructure investment to provide piped water to people currently underserved⁶

Solution: Atmospheric Water Harvesting

Providing clean drinking water to every household without the need of treatment or transportation

- \$150 target price point
- Solar powered
- Captures ambient humidity and condenses it into clean water
- Produces enough drinking water for for two adults per day

Technology

H₂E's Vacuum Formed Prototype **Exploded View Photograph**

1. Heating

natural sunlight is used to heat recirculating air to a temperature of 80-100 C

2. Humidifying

the hot air draws in moisture from ambient air with the help of a sorbent material

3. Recuperating

heat is recycled increasing the efficiency and water output of the device

4. Condensing

water appears as it condenses at ambient temperature and without any refrigerants

Air-Flow Path: Humidity supply

Moisture enters the drive through a stream of ambient air that is passed through a desiccant, depositing humidity before exiting the device

Air-Flow Path: Recirculated Stream

Air acts a working fluid, heating, absorbing moisture from the desiccant, flowing through heat exchangers, to cool and condense out water, and finally cycling back through the device.

Outdoor Experimental Results 2020

Device Losses of an AWH

Approximate Sankey Diagram of how Power flows through our Prototype

Market

Atmospheric Water Harvesting performs best where it is needed most

population density of potential customers $log_{10}(people / km^2)$

average daily operating window of a water generator (darker = better)

How AWH compares to other technologies

	Surface Water	Surface Water + Treatment	Surface Water + Filter	Bottled Water	AWH
Free from bacteriological contamination	×	✓	✓	✓	✓
Free from chemical contamination	×	X	×	✓	✓
Water available at household without transportation	Х	X	X	X	✓
Volumetric cost	\$0 - \$0.05 / L ²	\$0 - \$0.07 / L ²	\$0 - \$0.07 / L ²	\$0.04 - \$1.00 / L ²	~ \$0
Capital cost	X	X	\$15 - \$150 ⁵	X	target: \$150
Total water cost	\$0 - \$0.05 / L ²	\$0 - \$0.05 / L ²	\$0.01 - \$0.10/L	\$0.04 - \$1.00 / L ²	target~\$0.03/L ⁶

References

Page 2

- Prüss-Ustün A, Wolf J, Bartram J, et al. Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: An updated analysis with a focus on low- and middle-income countries. *Int J Hyg Environ Health*. 2019;222(5):765-777. doi:10.1016/j.ijheh.2019.05.004
- 2) Collecting water is often a colossal waste of time for women and girls. UNICEF. (2021, October 15). Retrieved October 22, 2021, from https://www.unicef.org/press-releases/unicef-collecting-water-often-colossal-waste-time-women-and-girls.
- 3) Hutton, Guy, Haller, Laurence & World Health Organization. Water, Sanitation and Health Team. (2004). Evaluation of the costs and benefits of water and sanitation improvements at the global level / Guy Hutton and Laurence Haller. World Health Organization. https://apps.who.int/iris/handle/10665/68568

Page 9

- 1) Progress on household drinking water, sanitation and hygiene 2000-2017. Special focus on inequalities. New York: United Nations Children's Fund (UNICEF) and World Health Organization, 2019.
- 2) Cook, J., P. Kimuyu, and D. Whittington (2016), The costs of coping with poor water supply in rural Kenya, Water Resources Research, 52, 841–859, doi:10.1002/2015WR017468.
- 3) End-User Preferences for and Performance of Competing POU Water Treatment Technologies among the Rural Poor of Kenya Jeff Albert, Jill Luoto, and David Levine Environmental Science & Technology 2010 44 (12), 4426-4432 DOI: 10.1021/es1000566
- 4) Low-end range: M. Dzodzomenyo, G. Fink, W. Dotse-Gborgbortsi, N. Wardrop, G. Aryeetey, N. Coleman, A. Hill, J. Wright; Sachet water quality and product registration: a cross-sectional study in Accra, Ghana. J Water Health 1 August 2018; 16 (4): 646–656. doi: https://doi.org/10.2166/wh.2018.055, High end: Data analysis from Ghana Living Standard Survey (GLSS7) 2017
- 5) PATH, Commercial approaches to delivering household water treatment and safe storage products and solutions to low-income households. Report 2012 https://path.azureedge.net/media/documents/TS_swp_perspectives_rpt.pdf
- 6) *Assuming 1500 L/yr x 3 yr and remineralization and/or chlorination for residual protection

