

Shylaja S S & Kusuma K V

Department of Computer Science & Engineering

Heap: Definition and Implementation

Shylaja S S

Department of Computer Science & Engineering

Heap Tree

Definition: A heap can be defined as a binary tree with keys assigned to its nodes (one key per node) provided the following two conditions are met:

- 1. The tree's shape requirement The binary tree is essentially complete, that is, all its levels are full except possibly the last level, where only some rightmost leaves may be missing
- 2. The parental dominance requirement The key at each node is greater than or equal to the keys at its children. (This condition is considered automatically satisfied for all leaves.)

Heap Tree

Only the topmost Binary Tree is a heap. Why?

Properties of Heap

- 1. There exists exactly one essentially complete binary tree with n nodes. Its height is equal to [log₂n]
- 2. The root of a heap always contains its largest element
- 3. A node of a heap considered with all its descendants is also a heap
- 4. A heap can be implemented as an array by recording its elements in the top-down, left-to-right fashion. It is convenient to store the heap's elements in positions 1 through n of such an array, leaving H[0] either unused or putting there a sentinel whose value is greater than every element in the heap.

Properties of Heap

• • •

In such a representation,

- a) The parental node keys will be in the first [n/2] positions of the array, while the leaf keys will occupy the last [n/2] positions
- b) The children of a key in the array's parental position i (1 <= i <= [n/2]) will be in positions 2i and 2i + 1, and, correspondingly, the parent of a key in position i (2 <= i <= n) will be in position [n/2]

Heap Construction – Bottom Up

Bottom Up Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33 Here, n=8

Heap Construction – Bottom Up

Bottom Up Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33 Here, n=8

Largest child: 92

Compare 48 with its largest child

after one iteration at k=4

48 < 92, Heapify

Heap Construction – Bottom Up

Bottom Up Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33 Here, n=8

At
$$k = 2$$
, $v = 57$

Largest child: 37

Compare 57 with its largest child

57 > 37, it's a heap at k=2

Heap Construction – Bottom Up

Bottom Up Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33

Heap Construction – Bottom Up

Bottom Up Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33

DATA STRUCTURES AND ITS APPLICATIONS Heap Construction – Bottom Up

```
ALGORITHM HeapBottomUp(H[1...n])
//Constructs a heap from the elements of a given array by bottom-up algorithm
//Input: An array H[1...n] of orderable items
//Output: A heap H[1...n]
for i \leftarrow \lfloor n/2 \rfloor downto 1 {
   v \leftarrow H[k]
    heap ← false
   while not heap and 2*k \le n {
       i ← 2*k
                            //if there are two children
       if j < n
          if H[j] < H[j+1]
               j ← j+1
                              //find position of largest child
       if v \ge H[i] //if key of parent node \ge key of largest child
          heap ← true //it's a heap
                             //heapify
       else {
               H[k] \leftarrow H[j]
              //end of else
   } //end of while
    //end of for
```


Heap Construction – Bottom Up

Efficiency

Heap Construction – Top Down

Top Down Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33

Heap

- 1. First, attach a new node with key *K* in it after the last leaf of the existing heap
- 2. Then sift *K* up to its appropriate place in the new heap as follows
- 3. Compare *K* with its parent's key: if the latter is greater than or equal to *K*, stop (the structure is a heap);
- 4. otherwise, swap these two keys and compare *K* with its new parent
- 5. This swapping continues until *K* is not greater than its last parent or it reaches the root
- 6. In this algorithm, too, we can sift up an empty node until it reaches its proper position, where it will get *K* 's value

Heap Construction – Top Down

Efficiency of insertion is O(log n)

THANK YOU

Shylaja S S

Department of Computer Science & Engineering

shylaja.sharath@pes.edu

+91 9449867804