11 Publication number:

0 230 893 A2

(B)

EUROPEAN PATENT APPLICATION

(21) Application number: 87100274.7

(9) Int. Cl.4: C07C 101/26 , C07C 101/28 , C07C 101/447 , C07D 401/12

- ② Date of filing: 12.01.87
- 3 Priority: 30.01.86 IT 1923686
- Date of publication of application:
 05.08.87 Bulletin 87/32
- Designated Contracting States: AT BE CH DE ES FR GB GR IT LI LU NL SE
- Applicant: BRACCO INDUSTRIA CHIMICA Società per Azioni
 Via E. Folli, 50
 I-20134 Milano(IT)
- (9) Inventor: Felder, Ernst; Prof. Dr. Via Carealo 49 CH-6826 Riva S. Vitale(CH) Inventor: Furmagalli, Luciano, Prof. Dr. Via Dei Guarneri 14 Le2010 Milano(IT) Inventor: Uggeri, Fulvio, Dr. Via A. Grossi 16 Le20073 Codogno (MI)(IT) Inventor: Vittadini, Glorgio, Dr. Via Cherubini 6 Le20145 Milano(IT)
- Representative: Zutter, Hans Johann Niklaus EPROVA Aktiengesellschaft im Laternenacker 5 CH-8200 Schaffthausen(CH)

- Paramagnetic chelates.
- (g) Compounds suitable for NMR imaging having the formula:

wherein

a is 2 or 3; b is an integer from 0 to 4; Me^(a+) is Fe⁽²⁺⁾, Fe⁽³⁺⁾, Gd⁽³⁺⁾, or Mn⁽²⁺⁾:

E^(b+) is an ion of an alkali metal, alkaline earth metal, alkyl ammonium, alkanol ammonium, polyhydroxyalkyl ammonium, or basic protonated amino acid, said ions representing a total charge of b;

m is an integer from I to 5:

R is H, alkyl with from I to 8 carbon atoms, alkyl with from I to 8 carbon atoms wherein from I to 5 carbons are substituted with OH; aralkyl with I to 4 aliphatic carbon atoms; phenyl or phenyl substituted by halogen, hydroxyl, carboxyl, carboxemide, ester. SO₂H, sulfonamide, lower alkyl, lower hydroxy alkyl, amino, acylamino; (poly)oxa-alkyl with I to 50 oxygen atoms and from 3 to I50 carbon atoms, wherein I to 5 hydrogen atoms may be substituted by OH;

R. is -CH,COOZ, -CH(CH)COOZ, CH,CH,-N(CH,COOZ), a hydroxy arylalkyl, hydroxy pyridylalkyl, hydroxy aryl(carboxy)alkyl or hydroxy pyridyl-(carboxy)-alkyl radical, where the aryl or pyridyl radical may be substituted by hydroxyl, hydroxy alkyl, alkyl, halogen, carboxyl or SOJH;

R, is the same as R, or

is
$$-CH_2COOZ$$
, $-CH(CH_3)COOZ$, $-(CH_2)_n-X-(CH_2)_n-N$

$$R_3$$

$$-CH_2CH-N$$

$$CH-N$$

$$CH_3$$

$$CH-N$$

$$CH_3$$

$$CH-N$$

$$CH_3$$

$$CH-N$$

$$R_3$$

$$R_3$$

$$CH-N$$

$$R_3$$

$$R_3$$

wherein

R₂ is -CH₂COOZ, -CH(CH₂)COOZ or a monovalent radical having the structure R-O-(CH₂)_m- CH-COOZ;

X is a direct chemical bond, -O-, -S-, -NH-, -N -CH₂COOZ or -N -CH(CH₃)COOZ;

n is the integer 2 or 3, with the proviso that when X represents a direct bond, n is I, 2 or 3;

Z. is hydrogen or a unit of negative charge, and -(CH₂)_m-may also be -CH₂-C(CH₂)₂-.

The compounds are relatively simple, well tolerated, partially endowed with organ specificity and are suitable for application in nuclear spin tomography. The compounds may be prepared by reacting inventive free polyaminopolycarboxylic acids having the formula

$$R-O-(CH_2)_{m}$$
 (Ia)

where R, R, R, and m have the same meaning as in formula I, or alkali metal, sikaline earth metal and/or amino salts of said acids, with salts, oxides, or hydroxides of iron $^{\alpha-1}$, iron $^{\alpha-1}$, gadolinium $^{\alpha-1}$, or manganese $^{\alpha+1}$, or with the basic salts of these metal ions. Imaging compositions and methods of use are also disclosed.

PARAMAGNETIC CHELATES

BACKGROUND OF THE INVENTION

Field of the Invention

6

The invention relates to compounds which affect the relaxation time of atomic nuclei. More particularly, it are trains to compounds for use in effecting the relaxation times for nuclei in animal and human tissue which can be used for diagnosis through NMR imagino.

2. Description of the Prior Art

The NMR imaging method is based on the characteristic of certain atomic nuclei which have their own magnetic momentum and, in particular, protons, of orienting themselves, as the result of a magnetic field, in a state of equilibrium from which they can be moved by the use of pulses of a given radio frequency - (resonance frequency).

The nuclei then return to their original state of equilibrium as a result of spin-spin and spin-lattice relaxation. The time required for returning to the state of equilibrium, known as relaxation time, gives valuable information on the degree of organization of the atoms and on their interaction with the degree of the spin or the spin o

On the basis of differences in proton density and relaxation times, images of biological tissues can be obtained which may be used for diagnostic purposes.

The greater the differences in the relaxation times of the nuclei which are present in the tissues being examined, the greater will be the contrast in the image that is obtained; cf., for example, P. Brunner et al, J. of Magnetic Resonance, 33, 83, 106 (979).

It is known that the relaxation times of neighboring nuclei can be affected by the use of complex paramagnetic salts (G.C. Levy, et al., J. Amer. Chem. Soc. <u>96</u>, 676-68I (1874)). It herefore been proposed to administer paramagnetic ions to living organisms in order to improve the diagnostic information by the localized increase in relaxivity obtainable specifically by the use of paramagnetic substances: P. C. Lauterbur et al., Frontiers of Biol. Energetics Vol., I, 752-759 (1978); F.H. Doyle et al., Proc. of NMR I Imaging Symp. held in Nashville, Tenn., U.S.A., on October 26-27, 1980; J.A. Koutcher et al. J. of Nuclear Medicine 25:506-513 (1984). Various ions of transition metals and lanthanides are paramagnetic (F. A. Cotton et al., Advanced Inorganic Chemistry 1986, 63-46-59).

Specifically, paramagnetic ions which have a particularly strong effect on relaxation times are, for example, gadolinium^{(a-1}, iron^{(a-1}), manganese^{(a-1}), and chromium^{(a-1}; cf. G.L. Wolf et al., Magnetic Resonance Annual 1985 (Rawer Press, New York), 231-266.

These ions of transition metals and lanthanides are, however, too toxic for use in mar: R. J. Walker, R. William "Haemochromatosis and Iron Overload", in: Iron in Biochemistry and Medicine; A. Jacobs, M. Worwood, Eds., Academic Press, London, pp. 588-613 (1974); G.G. Cotzias, "Manganese in Heath and Disease", Physiol. Rev. 38, 503-532 (1958); P. Arvela, "Toxicity of Rare Earths", Prog. Pharmacol. 2, 7HI4 - (1979).

We have therefore an incentive to deal with this problem by trying to reduce the toxic effect of metal ions administered for diagnostic purposes by combining these ions with suitable agents: F. Hosain et al, Radiology 9], II99-1203 (968), describe, for example, complex compounds of diethylene triaminopentacetate (DTPA) of the lanthanide viterbium.

Gadolinium can also be successfully detoxified by combining it, for example, with diethylene triaminopentacetic acid; but this greatly reduces the relaxivity and, therefore, the contrast-reinforcing action compared to free Gd+ (Weinmann et al., AJR I42:619-624 (1984).

Another problem is that the compound is not always less toxic than the free ion: in the same paper, for example, Weinmann et al. report that the toxicity of the ethylene-diaminotetracetic compound (EDTA) of gadolinium is higher than that of gadolinium trichlorida.

The specific usefulness and tolerance of metallic complexes must therefore be individually investigated in every single case.

Weinmann reports in PhysiolChem.Phys.Med. NMR 1994, fs, 167-172 on the pharmacokinetics of the gadolinium-DTPA complex which indicates that this complex is distributed in the organism both in the vascular space and in the considerably larger interstitium. This is a disadvantage, for example, in the imaging of blood vessels, because it requires a much larger amount of contrast medium than would be needed in the case of a contrast medium whose distribution is limited to the vascular space. See, in this respect, M. Ogan et al., "Approaches to the Chemical Synthesis of Macromolecular NMRI Imaging Contrast Media for Perfusion-Dependent Enhancement", presented at the 7ist Scientific Assembly and Annual Meeting RSNA, Chicago, Not. 7-22, 1985.

Media for NMR diagnosis which contain complex paramagnetic salts of the lanthanides and transition must be not broad coverage in European patent EP-B 7L64. Equally extensive processes for NMR diagnosis by means of complexes of lanthanides are described in EP-A ISS.125 (DiPont).

Schering's European Patent No. 7I 564 covers compounds of the types according to formulas I to IV:

$$\begin{array}{c|c} \text{HOOCCH}_2 & \text{CH}_2\text{COOH} \\ \\ \text{HOH}_2\text{CCH}_2 & \text{CH}_2\text{COOH} \end{array} \tag{I}$$

N-Hydroxyethyl-N,N',N'-ethylenediaminetriacetic acid (HEDTA)

$$\begin{array}{c} \text{HOOCH}_2\text{C} \\ & \downarrow \\ \text{N-(CH}_2)_2 \text{-N-(CH}_2)_2 \text{-N} \end{array}$$

$$\begin{array}{c} \text{CH}_2\text{COOH} \\ \text{CH}_2\text{COOH} \\ \text{CH}_2\text{COOH} \end{array}$$

$$\text{(II)}$$

N,N,N',N",N"-Diethylenetriaminepentascetic acid (DTPA)

$$\begin{array}{c|c}
 & & & \text{CH}_{2} \\
 & & & & \text{CH}_{2} \\
 & & & & \text{N-(CH}_{2})_{\mathfrak{m}} - (\text{CH}_{2} - \text{N-CH}_{2})_{\mathfrak{n}} - (\text{CH}_{2})_{\mathfrak{m}} - \text{N} \\
 & & & & \text{CH}_{2} \text{COOH}
\end{array}$$

wherein

20

25

- m represents I to 4
- n represents 0 to 2

R' represents a saturated or unsaturated hydrocarbon group with 4 to I2 hydrocarbon atoms or the group -CH.—COOH, or diphosphonic acids of the general formula V

wherein

R₂ represents hydrogen, alkyl of I to 4 carbon atoms, halogen, the hydroxy-, amino-or CH₂——COOH groups and,

R₃ represents hydrogen, alkyl of I to 4 carbon atoms, or the -CH2----COOH group, and

the ions of the lanthanide elements of numbers 57 to 70 or the ions of the transition metals of numbers 21 to 29, 42 and 44, and an organic base, by which as organic base glucamine, N-methylglucamine, N-M-dimethylglucamine, ethanolamine, diethanolamine, morpholine, lysine, ornithine and arginine are concerned, to optionally with the usual additives in the art, dissolved or suspended in water or physiological salt solution characterized in that one brings into a form for oral or intravascular application, the paramagnetic complex salt dissolved or suspended in water or a physiological salt solution optionally with the usual additives in the

Complex compounds of iron⁶⁺⁾ and gadolinium⁶⁺⁾ for the imaging of the gastrointestinal tract are described in EP-A I24,766.

All agents proposed up to now for NMR diagnosis, which consist of complexes of heavy metals, are not very satisfactory with regard to their practical use in man or create more or less serious problems with regard to relaxivity and tolerance. Also, they frequently exhibit insufficient selectivity of the bond with the heavy metal, Insufficient stability, and particularly, lack of selective targeting to certain organs.

The tendency of many complexes to exchange the central metal on for trace metals which are essential to the organism or for ions, for example Ca⁶⁷, which in vivo are present in relatively large amounts (cf., on this point, P.M. May, "The Present Status of Chelating Agents in Medicine", in: Progress in Medical Chemistry 20, 1983 (Elsevier Science Publ.) p. 233) ultimately limits their applicability, particularly in dosages which would be desirable for NMR diagnosis.

In the case of insufficient specific stability of the complex, trace metals of vital importance may, in fact, be extracted from the organism, and undesirable heavy metals, such as Gd may be deposited in their place which may remain in the organism for a long time.

Contrast media with organ specificity for NMR contrast imaging, which contain paramagnetic complexes of lanthanides, are being claimed in the published French patent application No. 2,550,449 and in EP-A 33,603. The solutions proposed there are, however, still limited and not optimal.

Therefore, there exists, now as before, a demand for contrast agents for the representation of the individual organs (for example, liver, bile ducts, spleen, pancreas, lymph nodes) and their respective anatomically pathological and functional channes.

Such paramagnetic substances for effective application in man should satisfy some or all of the following requirements:

I. A strong effect on the relaxation times T, and T, (particularly T,); in other words, they should induce a high level of relaxation which, by increasing the contrast in the image, makes it possible among other things to obtain relevant information in a short amount of time with obvious advantages in terms of the economic cost of each single examination, full utilization of equipment, etc.

- 2. A high level of stability of the complex, both in solution and in the organism. This means that the complexing agents exhibit a high level of selectivity for the relevant paramagnetic ions as opposed to the physiological ions.
 - 3. A distribution which is specific to the organ and the tissue in the organism.
 - An elimination kinetics which is specific to the organ and the tissue.

SUMMARY OF THE INVENTION

50

We have discovered compounds which meet the above-stated requirements and are particularly suited for NMR diagnostic imaging. The compounds are made up of iron⁶⁻¹, iron⁶⁻¹, agodinum⁶⁻¹, and manganese⁶⁻¹. They are relatively simple, well tolerated, partially endowed with organ specificity and are suitable for application in nuclear spin tomography. More specifically, the inventive compounds have the formula I

$$\begin{bmatrix} R-O-(CH_2)_{\mathfrak{m}}-CH-COOZ \\ \downarrow & \downarrow & \\ N & Me^{(a+)} \end{bmatrix} \qquad (b-)$$

$$R_1 \qquad R_2 \qquad (1)$$

wherein

5

10

20

35

a is 2 or 3:

b is an integer from 0 to 4:

Me(a+) is Fe(2+), Fe(3+), Gd(3+), or Mn(2+)-

E^(b-1) is an ion(s) of an alkali metal or alkaline earth metal, alkyl ammonium, alkanol ammonium, polyhydroxyalkyl ammonium, or basic protonated amino acid, with the ions representing a total charge of b units;

m is an integer from I to 5;

R is H, alkyl with from I to 8 carbon atoms, or alkyl with from I to 8 carbon atoms wherein from I to 5 carbon atoms may be substituted with OH;

is aralkyl with I to 4 aliphatic carbon atoms;

is phenyl or phenyl substituted by halogen, hydroxyl, carboxyl, carboxamide, ester, SO₃H, sulfonamide;

lower alkyl (as used herein, lower alkyl means alkyl having I to 4 carbon atoms), or lower hydroxy alkyl.

amino, acylamino; is (poly)oxa-alkyl with from I to 50 oxygen atoms and from 3 to I50 carbon atoms, where from I to 5 hydrogen atoms may be substituted by OH:

R, is -CH₂COOZ, -CH(CH₂)COOZ, CH₂CH₂-COOZ), a hydroxy arylaikyl, hydroxy pyridylaikyl, hydroxy aryl(carboxy)alkyl radical, where the aryl or pyridyl radical may be substituted by hydroxyl, hydroxy alkyl, alkyl, halogen, carboxyl or SO.H.

R₂ is the same as R₁ or

where

50

 R_1 is -CH₂COO2, -CH₁(CH₃)COO2 or a monovalent radical of the structure R-O-(CH₃)_m- C H-COO2; X is a simple chemical bond, i.e., no intervening atom, -O-, -S-, -NH-, - $\frac{N}{2}$ -CH₄COO2 or - $\frac{N}{2}$ -CH₄COO2.

n is the integer 2 or 3., with the proviso that when X represents a simple bond, n can be I, 2, or 3;

Z is hydrogen or a unit of negative charge, and -(CH₂)_m-may also be -CH₂-C(CH₃)₂-.

The compounds of the present invention may be prepared by reacting free polyamino-polycarboxylic acids having the formula

$$R-O-(CH_2)_m$$
 CH-COOH

no where R, R, R, and m have the same meaning as in formula I, or alkall metal, alkaline earth metal and/or amino salts of said acids, with salts, oxides, or hydroxides of iron e-1, gadoliniume-1, or manganese-2, or with the basic salts of these metal ions.

15 DESCRIPTION OF THE PREFERRED EMBODIMENTS

5

20

25

30

50

55

Within the scope of formula I are four groups of complex heavy metal compounds having the following formulas II, III, IV and V:

1.
$$\begin{bmatrix} R-O-(CH_2)_m-CH-COOZ \\ N-R_1 \\ (CH_2)_n \\ X \\ (CH_2)_n \\ R_1-N-R_3 \end{bmatrix}$$
 (b-)

where in formulas II and III, the symbols a, b, $Me^{(a*)}$, $E^{(b*)}$, Z, R, R, R, R, m, n and X have the same meaning as in formula I.

3.
$$\begin{bmatrix} R-O-(CH_2)_m-CH-COOZ & OH & & & & \\ N-T & & & & & \\ (CH_2)_n & & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

where R, m, n and X have the same meaning as defined above, T represents -(CH₂) -2, -CH(COOH)-or -CH(COOH)CH₂-,

Q represents = CH-or = N-,

30

35

50

55

A represents hydrogen, hydroxyl, lower hydroxy alkyl, and B represents hydrogen, lower alkyl, halogen, carboxyl or SO₃H. Fe⁽³⁺⁾ is preferred as the metal ion.

4.
$$\begin{bmatrix} \text{R-O-} (\text{CH}_2)_{\,\text{m}}\text{-CH-COOZ} & & & \\ (\text{CH}_2)_{\,\text{n}}\text{-N-} (\text{CH}_2)_{\,\text{n}} & & \\ \text{x} & \text{x} & & \cdot & \\ & & | & | & \\ (\text{CH}_2)_{\,\text{n}} & (\text{CH}_2)_{\,\text{n}} & & \\ & | & | & | & \\ \text{CH}_2)_{\,\text{n}} & (\text{CH}_2)_{\,\text{n}} & & \\ \text{R}_1\text{-N-R}_3 & \text{R}_1\text{-N-R}_3 & & & \\ \end{bmatrix}$$

where a, b, Me^(a+), E ^(b+), R, R₁, R₂, m, n, X and Z have the same meaning as set forth in general formula I. The polyamino-polycarboxylic acids according to formula Ia, or their salts, which combine readily with iron, can also be caused to react directly with elemental iron to obtain the corresponding complex iron compound.

The inventive polyamino-polycarboxylic acids having formula la include, in particular, compounds having the following formulas:

wherein R, R, R, m, n and X have the same meaning as in general formula I,

wherein T represents -(CH₂) -2, -CH(COOH)-or -CH(COOH)-CH₂.

O represents - CH-or - N-. A represents hydrogen, hydroxyl, lower hydroxy alkyl, and B represents hydrogen, lower alkyl, halogen, carboxyl or SO₂H, and

$$R-O-(CH_2)_m-CH-COOH$$
 $X-(CH_2)_n-N-(CH_2)_n-X$
 $(CH_2)_n$
 $(CH_2)_n$
 $(CH_2)_n$
 $(CH_2)_n$
 $(CH_2)_n$
 $(CH_2)_n$

In formulas IIa, IIIa, IVa, and Va, R, R, R, m, n and X have the same meaning as defined above.

Accordingly, the invention as disclosed herein includes:

a) complex paramagnetic compounds of heavy metals having formula I, II, III, IV or V;

b) compositions for influencing the relaxation times in NMR diagnostics, containing an effective amount of at least one complex paramagnetic compound having formula I, II, III, IV or V;

c) a procedure for the preparation of the complex heavy metal compounds having formula I, II, III, IV or V; and

d) polyamino-polycarboxylic acids having formula la, Ila, Ila, IVa, or Va.

The polyamino-polycarboxylic acids of the present invention may be prepared by procedures which are well known to the expert in this art. Particularly advantageous are the methods of synthesis set forth below wherein the symbols R, R, B, m, n and X have the same meaning as above defined. In addition:

20 CA is -COOZ, -COOalkyl, -CONH_z, -CONH-R'_b, -CN;

D is halogen (Cl, Br, I), -OSO2alkyl/aryl, -OSO2Oalkyl/aryl;

R', is a protected group R₁, easily transformable into -R, by, for example, hydrolysis, hydrogenolysis, alkylation:

R'2 is a protected group R2, easily transformable into -R2;

25 R' is a protected group R₃, easily transformable into -R₂;

X' is a protected group X, easily transformable into X.

(The expression "easily transformable into" means simply that the protecting group can be easily removed by conventional means to produce the corresponding desired group.)

Preparation of polyamino-polycarboxylic acids according to formula IIa, in which m = I.

Reaction schematic A:

5

30

35

40

Protective groups are, for example, acyl or phenyl-CH2-.

Preparation of polyamino-polycarboxylic acids according to general formula IIa, in which m is an integer from I to 5:

Reaction schematic B:

Compound according for formula IIa m = 1 - 5

Method: K. Mai et al.

Tetrahedron Letters, Vol. 25 (41), 4583-4586 (1984).

Preparation of intermeilate products by the synthesis of polyamino-polycarboxylic acids having the formulas lla and llla by means of imidazolidine and 2-imidazolidines as reagents.

Reaction schematic C:

40

40 R₄ = H, alkyl or aryl; R₅ = H, alkyl or aryl; R₄ + R₅ also = O; R₆/R₇ = H, alkyl (CH₃); R₆ + R, also = -(CH₂)_{1-S};

Preparation of polyamino-polycarboxylic acids having formula IIIa, from intermediate products of syntheses A, B or C:

Reaction schematic D:

55

Intermediate product prepared, for example, according to reaction schematic A.

Compound according to formula IIIa.

Reaction schematic E:

20

50

55

Intermediate product prepared, for example, according to reaction schematic A or B.

Compound according to formula IIIa.

Preparation of polyamino-polycarboxylic acids according to general formula IVa wherein T = CH.

Reaction schematic F:

Compound according to formula IVa wherein $T=CH_2$.

Reaction schematic G:

Intermediate product prepared according to reaction schematic C or D.

-

Compound according to formula IVa wherein T=CH2.

Reaction schematic H:

45

Preparation of polyamino-polycarboxylic acids according to formula Va, wherein $-(CH_2)_m$ -may also be $-CH_2-C(CH_3)_m$.

The paramagnetic compounds of iron⁽²⁺⁾, iron⁽³⁺⁾, gadolinium⁽³⁺⁾ and manganese⁽³⁺⁾ in accordance with the invention, meet the requirements for substances which enhance the contrast in nuclear spin tomography images and these compounds have a broad field of application.

The salts, which are generally water soluble, and are based on organic and inorganic compounds, can be administered intravascularly, for example, intravenously, intra-arterially, intraterior intravenously, intravenously, intraterior intravenously, intravenously

Particularly important are the complex Fe⁽⁸⁺⁾compounds according to formula IV, which are distinguished by their excellent stability, good solubility and tolerability.

Certain complex compounds according to the invention have a particularly surprising organ specificity as they become concentrated, specifically in the liver, bile duct, or, after intralymphatic, intraparenchymal, intramuscular or subcutaneous administration, in the lymphatic vessels or the lymph nodes. This permits the contrast imaging of these organs.

The following examples illustrate the invention:

Preparation of the free polyamino-polycarboxylic acids

EXAMPLE I

10

15

20

25

30

3-Phenylmethoxy-2-N-[2-[2-N',N'-bis(carboxymethyl)-aminoethoxy]-ethyl]-N-(carboxymethyl)-aminopropionic acid

Formula IIa: R = Ph-CH₂; m = I;R, = R₂ = -CH₂COOH; n = 2; X = 0

A) Hydrochloride of 3-phenylmethoxy-2-N-[2-(2-aminoethoxy)ethyl]-aminopropionic acid.

73.9 g of bis-2-amino-ethyl ether in I25 ml of water is reacted at 40-60°C with 3-phenylmethoxy-2chloropropionic acid. The excess bis-2-amino-ethyl ether is separated as a hydrochloride. The raw product is purified by means of chromatography and finally recrystallized from ethanol. The above-captioned compound thus obtained melts at 20°C. Analysis: C1° calculated II.12%; measured II.15%.

B) 3-Phenylmethoxy-2-N-[2-[2-(N',N'-bis-carboxymethyl)-aminoethoxy]-ethyl]-(N-carboxymethyl)-aminopropionic acid:

20.3 g of compound A in 60 ml of a 2N aqueous solution of sodium hydroxide is reacted with 62.5 g of bromo acetic acid at approximately 50°C to 10-20 hours, the pH of the reaction solution being maintained at 10 by addition of 2N sodium hydroxide. This carboxymethylation reaction is repeated with another !2.5 g for bromo acetic acid and 2N NaOH. The raw product is purified by means of chromatography and

The compound shown in the caption forms a dihydrate which sinters at 82°C and melts at 134°C. It is very soluble in boiling water, methanol and diluted alkali, and on the contrary, not very soluble in most organic solvents.

EXAMPLE 2

3-Phenylmethoxy-2-N-[2-N',N'-bis-(carboxymethyl)-aminoethyl]N-(carboxymethyl)-aminopropionic acid Formula IIa: $R = Ph-CH_a$; m = I; $R_1 = R_2 = -CH_2COOH$; n = I; X = -

A) Hydrochloride of 3-phenylmethoxy-2-N-(2-aminoethyl)-aminopropionic acid:

I30 g of 3-phenylmethoxy-2-chloropropionic acid is reacted in I liter of water at 50°C with 500 ml of an ethylene diamine for approximately 20 hours. The product shown in the caption is precipitated by bringing the pH to 3.
Meltiting point: 226°C.

35 B) 3-Phenylmethoxy-2-N-[2-N',N'-bis-(carboxymethyl)-aminoethyl]-N-(carboxymethyl)-aminopropionic acid:

88.5 g of compound A is reacted with 209 g of bromo acetic acid in the presence of 2N aqueous sodium hydroxide at 50°C and a pH of 9.5 -10. The compound shown in the caption thus prepared is precipitated by acidification to pH 1.7.

Melting point: 179-180°C.

EXAMPLE 3

45 3-Hydroxy-2-N-[2-N',N'-bis-(carboxymethyl)-aminoethyl]-N-(carboxymethyl)-aminopropionic acid Formula IIa: R = H; m = I; R, = R, = -CH₂COOH; n = I; X = -

20.65 g (0.05 mol) of 3-phenylmethoxy-2-N-(2-N',N'-bis-(carboxymethyl)-aminoethyl)-N-(carboxymethyl)-aminopropionic acid in 200 ml of iN NaOH and I50 ml of water is completely hydrogenated in the presence of 38 g of palladium-carbon catalyst (5% Pd). After filtering out the catalyst and evaporating until dry, the tetrasodium sait of the compound shown in the caption is obtained. Melting point: 205°C.

EXAMPLE 4

3-Phenylmethoxy-2-N-[2'-N'-[2'-N'-N'-bis-(carboxymethyl)-aminoethyl]-N'-(carboxymethyl)-aminoethyl]-N-(carboxymethyl)-aminoprojnoic acid formula $\exists x \in \mathbb{R} = \mathbb{R} = -\mathbb{C}H_xCOOH; n = 2; X = N-\mathbb{C}H_xCOOH$

A) 3-Phenylmethoxy-2-[2'-(2"-aminoethyl)-aminoethyl]-aminopropionic acid:

42.9 g of 3-phenylmethoxy-2-chloropropionic acid (0.2 mol) is dripped under agitation into a solution of 205 g of diethylene triamine (2 mol) in 400 mil of water. The reaction mixture is agitated for 40 hours at 50°C and then percolated through a column of strongly basic anion exchange resin. The excess amine is eliminated by washing with water.

The product is eluted from the resin with diluted IN hydrochloric acid. The resulting solution of the trihydrochloride of 3-phenylmethoxy-2+12*-(2*-aminoethyl)-aminoethyl)-aminoproplonic acid in hydrochloric acid is evaporated until dry, the residue is recovered in anhydrous ethanol and the crystallized product is to filtered.

The product obtained is 62.2 g of trihydrochloride of 3-phenylmethoxy-2-[2'-(2"-aminoethyl)-aminopropionic acid (79.6% of the theoretical amount) with a melting point of 165°C.

15 B) 3-Phenylmethoxy-2-N-[2'-N'-[2'-N"-bis-(carboxymethyl)-aminoethyl]-N'-(carboxymethyl)-aminopropionic acid:

A solution at 50°C of IIS g of bromo acetic acid in 4l3 ml of 2N aqueous sodium hydroxide is added under agitation over a period of about 30 minutes to a solution of 50 g of trihydrochloride of 3-phenyimethoxy-2-[2-(2*-aminoethy)|-aminoethy]-aminopropionic acid in 255 ml of 2N aqueous sodium hydroxide. The pH of the reaction solution is maintained at between 9.8 and I0.2 by adding 2N aqueous sodium hydroxide. After about 8 hours, the carboxymethylation is complete. The reaction solution is percolated through a column of strongly acidic cation exchange resin and then rinsed with water. The product is eluted from the resin with 2N aqueous ammonium hydroxide. The solution thus obtained is evaporated until dry, and the evaporation residue is dissolved in water and brought to a pH of 1.7 with concentrated hydrochloric acid. The compound shown in the caption is slowly crystallized as a monohydrate.

Melting point: II8°C. Analysis after drying

C₂₂H₃₁N₂O₁₁: calculated: C 5l.45%; H 6.09%, N 8.18%; *

30 measured: C 5l.28%; H 6.12%; N 8.13%.

The compound is easily soluble in hot water and ethanol and very easily soluble in alkall, amines and aqueous amino alcohols.

35 EXAMPLE 5

3-Hydroxy-2-N-[2'-N'-[2"-N",N"-bis-(carboxymethyl)-aminoethyl]-N'-(carboxymethyl)-aminoethyl]-N-(carboxymethyl)-aminopropionic acid

Formula lla: R = H-; m = I; R, = R, = -CH2COOH; n = 2; X = N-CH2COOH

26.6 g (0.05 mol) of 3-phenylmethoxy-2-N-[2"-N" R"-bis-(carboxymethyl)-aminoethyl)-N-(carboxymethyl)-aminoethyl)-N-(carboxymethyl)-aminopropionic monohydrate acid in 250 ml of IN sodium hydroxide and 200 ml of water is completely hydrogenated in the presence of 20 g of paliadium-carbon catalyst (6% Pd). After filtering out the catalyst and evaporating until dry, the pentasodium salt of the compound shown in the caption is obtained. Melting point: 200°C with decompositive of the carbox o

EXAMPLE 6

50 3-n-octyloxy-2-N-[2-N',N'-bis(carboxymethyl)-aminoethyl]-N-(carboxymethyl)-aminopropionic acid Formula lla: R = CH₂-(CH₂)_r-; m = I; R₁ = R₂ = -CH₂COOH; n = I, X = -

A) 3-n-octyloxy-2-chloropropionic acid:

I5.2 g of metallic sodium is dissolved in 450 g of n-octanol by heating to 60°C. The sodium octylate solution thus obtained is reacted at about 50°C with 94 g of 2.3-dichloromethyl propionate. Processing is started after I0 hours. The methyl ester of 3-n-octyloxy-2-chloropropionic acid thus obtained boils at II5-II7°C and 0.1 mbar. It is then saponified by heating with methanolic sodium hydroxide, thereby obtaining the compound shown in the caption.

10 B) Chloride of 3-n-octyloxy-2-N-(2-aminoethyl)-aminopropionic acid:

39 g of ethylene diamine is reacted over a period of 100 hours with II.8 g of 3-n-octyloxy-2chloropropionic acid in 150 ml of water at 40-60°C. The excess ethylene diamine is separated as an hydrochloride. The compound shown in the caption is isolated as a hydrochloride. Melting point: I87°C.

C) 3-n-octyloxy-2-N-[2-N',N'-bis(carboxymethyl)-aminoethyl]-N-(carboxymethyl)-aminopropionic acid:

6 g of compound B) in a solution of aqueous sodium hydroxide is reacted with I7 g of bromo acetic acid at 50°C, with the pH of the reaction solution being maintained at 9.5-I0.3 by the addition of 2N sodium hydroxide. The solution shown in the caption thus obtained is slightly soluble in water, although easily soluble in aqueous alkali. Melting point: 215°C.

25 EXAMPLE 7

15

3-methoxy-2-N-[2-(N',N'-bis-(carboxymethyl)-aminoethyl]-N-(carboxymethyl)aminopropionic acid Formula IIa: $R = CH_1$; m = l; $R_1 = R_2 = -CH_2COOH$; n = l; $X = -CH_2COOH$; x = l; x =

30 A) Hydrochloride of 3-methoxy-2-[2-aminoethyl)-aminopropionic acid: .

I20 g of 3-methoxy-2-chloropropionic acid is reacted for approximately 20 hours in water at 50°C, with 500 ml of ethylene diamine. The product shown in the caption is crystallized by acidification with hydrochloric acid. Metiting point: 220°C.

B) 3-methoxy-2-N-[2-N',N'-bis-(carboxymethyl)-aminoethyl]-N-(carboxymethyl)-aminopropionic acid:

60 g of compound A is reacted with 220 g of bromo acetic acid in the presence of 2N aqueous sodium b hydroxide at 50° C and a pH of 9.5-40. The compound shown in the caption is precipitated by acidification at pH I.7. Melting point: 195°C.

EXAMPLE 8

3-metitoxy-2-N-[2'-N'-[2'-N'-N'-bis-(carboxymethyl)-aminoethyl]-N'-(carboxymethyl)-aminopropionic acid: Formula II: $R = CH_1$; m = 1; $R_1 = R_2 = -CH_1COOH$; n = 2; $X = N - CH_1COOH$

50 A) 3-methoxy-2-[2'-(2"-aminoethyl)-aminoethyl]-aminopropionic acid:

This compound is obtained by reaction of 3-methoxy-2-chloropropionic acid with a large excess of triethylene triamine at 50°C.

55

45

B) 3-methoxy-2-N-[2"-N"-[2"-N",N"-bis-(carboxymethyl)-aminoethyl]-N'-(carboxymethyl)-aminopropionic acid:

This compound is obtained by reacting compound A with bromo acetic acid in the presence of 2N aqueous sodium hydroxide at a pH of I0. Melting point: I25°C.

EXAMPLE 9

15

25

35

45

- 70 3-(2,3-dihydroxypropoxy)-2-N-[2-N'[2-N']-N-bis-(carboxymethyl)-aminoethyl]-N-(carboxymethyl)-aminoethyl)-N-(carboxymethyl)-aminopropionic acid:
 Formula Ila: R = HOCH₃CH(OH)-CH₂: m = I; R₁ = R₃ = -CH₃COOH; n = 2; X = N-CH₃-COOH
 - A) 3-(2,3-dihydroxypropoxy)-2-chloropropionic acid;

4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane is reacted with 2,3-dichloropropionic acid to 3-(2,2-dimethyl-1,3-dioxanyl-(4)-methoxyl-2-chloropropionic acid. By treatment with hydrochloric acid, the protective group is removed and the compound shown in the capiton is released.

B) 3-(2,3-dihydroxypropoxy)-2-N-[2'-(2"-aminoethyl)-aminoethyl]-aminopropionic acid:

This compound is obtained by the reaction of 3-(2,3-dihydroxypropoxy)-2-chloropropionic acid with a large excess of diethylene triamine at 50°C.

- C) 3-(2,3-dihydroxypropoxy)-2-N-[2'-N'-[2"-N",N" bis-(carboxymethyl)-aminoethyl]-N'-(carboxymethyl)-aminopropionic acid:
- 30 This compound is obtained by having compound A react with bromo acetic acid in the presence of 2N sodium hydroxide at pH I0. Melting point: I40°C.

EXAMPLE ID

3-Phenoxy-2-N-[2'-N'-[2'"-N",N'-bis-(carboxymethyl)-aminoethyl]-N'-(carboxymethyl)-aminoethyl]-N(carboxymethyl)-aminopropionic acid
Formula III: R = phenyl: m = I: R, = R, = -CH-COOH: n = 2: X = \(\subseteq \) N-CH-COOH

- A) 3-(phenoxy-2-N-[2'-(2"-aminoethyl))-aminopropionic acid is obtained in a manner similar to Example 4A by means of a reaction of 3-phenoxy-2-chloropropionic acid with an excess of diethylene triamine.
- B) Compound A) is transformed into the compound shown in the caption at pH 10 with an excess of bromo acetic acid.

 Meltina point: [75*C.

EXAMPLE II

- 3-(3,6,9-trioxadecyloxy)-2-N-[2"-N",N"-bis-(carboxymethyl)-aminoethyl]-N'-(carboxymethyl)-so aminoethyl]-N-(carboxymethyl)-aminopropionic acid
 - Formula IIa: R = $CH_3(OCH_2CH_2)_3$; m = I; R₁ = R_3 = $-CH_3COOH$; n = 2; X = $> N-CH_2-COOH$
 - A) 2,3-dichloropropionic acid is transformed into 3-(3,6,9-trioxadecyloxy)-2-chloropropionic acid with the sodium compound of 3,6,9-trioxadecane-I-ol.
- B) 3-(3,6,9-trioxadecyloxy)-2-N-[2'-(2"-aminoethyl)-aminoethyl)-aminopropionic acid is obtained from compound A by reaction with an excess of diethylene triamine, similar to Example 4A.

C) Compound B is completely carboxymethylated according to the method of Example 4B and the compound shown in the caption is obtained. Melting point: 95°C.

5 EXAMPLE 12

N,N'-bis-(2-phenylmethoxy)-l-carboxy-l-ethyl)-N,N'-bis-(carboxymethyl)-ethylene diamine Formula Illa: $R = Ph-CH_{2^*}; m = I; R_1 = -CH_2COOH; n = I; X = -$

10 A) N,N'-bis-(2-phenylmethoxy)-I-carboxy-I-ethyl)-ethylene diamine:

I0.7 g of 3-phenylmethoxy-2-chloropropionic acid and 4I.2 g of the hydrochloride of 3-phenylmethoxy-2-(2-aminoethyl)-aminopropionic acid (Example 2A) are reacted in the presence of 2N aqueous sodium hydroxide at 50°C and pH I0. The compound shown in the caption is precipitated by acidification at a pH of 5. Metting point: 210°C.

The same compound can also be obtained by the reaction of 3-phenylmethoxy-2-chloropropionic acid with ethylene diamine or by the reaction of 3-phenylmethoxy-2-aminopropionic acid with 1,2-dibromo ethane.

20 B) N,N'-bis-(2-phenylmethoxy-l-carboxy-l-ethyl)-N,N'-bis-(carboxymethyl)-ethylene diamine:

I3.5 g of compound A) is reacted with I9.2 g of bromo acetic acid in the presence of 2N sodium hydroxide at 50°C and a pH of 5S - I0. The compound shown in the caption is isolated by means of acidification and purified by recrystallization from ethanol. Mething point; 177°C.

EXAMPLE 13

N,N'-bis-(2-hydroxy)-l-carboxy-t-ethyl)-N,N'-bis-(carboxymethyl)-ethylene diamine Formula Illa: R = H; m = I; $R_1 = -CH_2COOH$; n = I; $X = -CH_2COOH$; n = I; $X = -CH_2COOH$; $x = -CH_2COOH$; x = -C

26.63 g (0.05 mol) of N,N'-bis-(2-phenylmethoxy-l-carboxy-tethyl)-N,N'-bis-(carboxymethyl)-ethylene diamine in 200 ml of IN sodium hydroxide and 50 ml water is completely hydrogenated in the presence of 38 g palladium-carbon catalyst (Pd 5%). After the catalyst has been filtered out and the compound has been evaporated until dry, the tetrasodium salt of the compound shown in the caption is obtained.

EXAMPLE 14

40 N,N'-bis-(2-methoxy-l-carboxy-t-ethyl)-N,N'-bis-(carboxymethyl)-ethylene diamine Formula Illa: R = CH_a-; m = I; R, = -CH_aCOOH; n = I; X = -

A) N,N'-bis-(2-methoxy-l-carboxy-l-ethyl)-ethylene diamine:

4s A solution of \$9.5 g of 3-methoxy-2-aminopropionic acid (0.5 mol) and 42 g of sodium bicarbonate (0.5 mol) in 500 ml of water is treated for 3 hours with 47 g of 1.2-dibromo ethane (0.25 mol) in 400 ml of ethanol. Simultaneously, the hydrobromic acid which is released is continually neutralized by adding an aqueous solution of 42 g of sodium bicarbonate (0.5 mol) in 500 ml of water. The solution resulting from the reaction is agitated again for 6-8 hours at 90-95°C and then completely evaporated, the evaporation residue so is dissolved in water and the pH of the solution is adjusted to 4.1; the compound shown in the caption (I4A) is crystalized in this manner.

C₁₀H₂₀N₂O₄ calculated: C 45.45%: H 7.63%: N 10.60%

measured: C 45.I3%; H 7.64%; N I0.54%. Melting point: 240°C with decomposition.

55 The NMR spectra agree with the structure indicated by the formula.

B) N,N'-bis-(2-methoxy-l-carboxy-l-ethyl)-N,N'-bis-(carboxymethyl)-ethylene diamine:

15 g of compound A is reacted at 50°C with 30 g of bromo acetic acid at pH I0, maintained by continually adding 2N sodium hydroxide solution. The compound shown in the caption is isolated by acidification and purified by recrystallization from acueous methanol and ethanol. Meltino point: 215°C.

EXAMPLE 15

10 N,N'-bis-(2-(2-phenylethoxy)-l-carboxy-l-ethyl)-N,N'-bis-(carboxymethyl)-ethylene diamine Formula Illa: R = PhCH₂CH₂-; m = I; R₁ = -CH₂COOH; n = I; X = -

This compound is obtained from 3-(2-phenylethoxy)-2-hydroxypropionic acid through 3-(2-phenylethoxy)-2-(4-toluenesulfonyloxy)-propionic acid, 3-(2-phenylethoxy)-2-(4-toluenesulfonyloxy)-propionic acid, 3-(2-phenylethoxy)-2-aminopropionic acid, 3-(2-phenylethoxy)-1-carboxy-1-ethyl)-ethylethoxyl-1-carboxy-1-ethyl)-ethylethoxyl-1-explained simine, in a similar manner as In Examples IA, 2A, I2A and I2B. Metting point: 210°C.

EXAMPLE 16

25

35

40

55

N,N'-bis-(2-hydroxy-l-carboxy-l-ethyl)-N,N'-bis-(2-hydroxyphenylmethyl)-ethylene diamine Formula IVa: R = H; m = I; n = I; X = -; $T = -CH_2$ -; A = B = H; $Q = -CH = -CH_2$

A) N,N'-bis-(2-phenylmethoxy-l-carboxy-l-ethyl)-N,N'-bis-(2-phenylmethoxy-phenylmethyl)-ethylene diamine:

N.N"-bis-(2-pheny/methoxy-l-carboxy-l-ethy/p-ethylene diamine, prepared according to Example 2A, is reacted in ethanol in the presence of 2N NaOH at a pH of approximately 10 and at 40-80°C with 2-(pheny/methoxy)-pheny/-methyl chloride.

B) N.N'-bis-(2-hydroxy-l-carboxy-l-ethyl)-N.N-bis-(2-hydroxyphenylmethyl)-ethylene diamine:

This compound is obtained by catalytic hydrogenation of A in a manner similar to that of Example I3.

EXAMPLE 17

N,N'-bis-(2-methoxy-l-carboxy-l-ethyl)-N,N'-bis-(2-hydroxyphenylmethyl)-ethylene diamine Formula IVa: $R = CH_a$; m = 1; n = 1; $T = -CH_a$; A = B = H; Q = -CH =; X = -CH =

Into a hot solution at 40°C of 26.4 g of NN'-bis-(2-methoxy-l-carboxy-l-ethyl)-ethylene diamine (0.1 mol) in 95 ml of ethanol and 100 ml of 2N aqueous sodium hydroxide a solution of 49.5 g of 2-acetoxy-phenylmethyl bromide (0.26 mol) in 95 ml of ethanol is dripped for about 2 hours, adjusting the pH, and 2II ml of 2N aqueous sodium hydroxide is dripped for about 9 hours. The pH is maintained between 9.8 and 10 by controlling the addition of NaOH.

Then the product is extracted with ethyl ether, the pH is adjusted to 8 by adding hydrochloric acid, and the product is extracted again with ethyl ether. The aqueous phase is evaporated to an oil. The residue is placed in water and acidified with hydrochloric acid. The precipitated raw product is dissolved in diluted sodium hydroxide; the solution is adjusted to a pH of 5 and purified by fractionation on an adsorbent made of a polymerized acrylic ester base. The compound shown in the caption, which is precipitated by acidification with hydrochloric acid at a pH of I.8, metis at approximately I40°C.

C₁₁H₁₁N₂O₂ calculated: C 60.49%: H 6.77%: N 5.88%:

measured: C 60.6I%; H 6.47%; N 5.87%.

The NMR spectra agree with the structure indicated.

EXAMPLE 18

N,N'-bis-(2-hydroxy-i-carboxy-i-ethyl)-N,N'-bis-(2-hydroxyphenylmethyl)-ethylene diamine Formula IVa: R = H; m = I; n = I; X = *; $T = -CH_{J^-}$; A = B = H; $Q = -CH = -CH_{J^-}$

A mixture of 4.7 g N,N'-bis-(2-methoxy-Learboxy-Lethyl)-N,N'-bis-(2-hydroxy-phenylmethyl)5 ethylenediamine (Example I7), 16 g trimethyl silyl iodide (0.08 mol), 6.30 g pyridine (0.08 mol) in 10 ml
5 chloroform is stirred at room temperature overnight, under nitrogen. The reaction mixture is filtered and the
5 solvent evaporated in vacuo. The residue is poured in water giving a solid that after purification by
5 chromatography furnishes N,N'-bis-(2-hydroxy-|-tearboxy-|-tethyl)-N,N'-bis-(2-hydroxy-phenylmethyl)-ethylene
6 diamine.

EXAMPLE 19

ŧΩ

25

N.N'-bis-(3,6,9,l2-letraoxa-l-carboxy-l-tridecyl)-N,N'-bis-(2-hydroxyphenylmethyl)-ethylene diamine 75 Formula IVa: $R = CH_3(OCH_2CH_2)_1$; m = 1; $T = -CH_2$; n = 1; X = -; A = B = H; $Q = -CH = -CH_2$; n = 1; X = -; A = B = H; $A = -CH_2$; $A = -CH_2$; A = -C

A) 3-(3.6.9-trioxadecyloxy)-2-aminopropionic acid

This product is obtained with a melting point of I84-I85°C and a yield of 70% by treatment of 3-(3,6,9-trioxadecyloxy)-2-chloropropionic acid (Ex. IIA) with 25% amonia (I mol/3.5 mol) at II5°C for two hours and removal of the salts by passage through an ion exchange resin column.

B) N,N'-bis-(3,6,9,I2-tetraoxa-l-carboxy-l-tridecyl)-ethylene diamine

32 g (7 mmol) of L2-dibromo eithane in 27 ml of ethanol and 2.85 g of sodium bloarbonate in 30 ml of water are dripped simultaneously into a solution of 8.5 g (34 mmol) of product I9A) and 2.85 g (34 mmol) of sodium bloarbonate in 35 ml of water, agitated at 80°C. After maintaining the mixture at 80°C for 2 hours, the ethanol is removed and the remaining solution is passed through an acidic-type cation exchange resin.

The title compound is elutated by aqueous ammonia. The elutate obtained produces by concentration and crystallization from ethanol N,N'-bis-(3,6,9,12-tetraoxa-l-carboxy-l-tridecyl)-ethylene diamine with a melting point of 192°C.

C) The product of Example (9B) is treated with 2-acetoxyphenylmethyl bromide in the same manner as described in Example 17, to obtain N,N*-bis-(3.6.9,2-tetraoxa-t-carboxy-tridecyl)-N,N*-bis-(2-hydroxy-phenylmethyl)-ethylene diamine. Metting point 180**C.

EXAMPLE 20

4-0 4-methoxy-3,3-dimethyl-2-N-(2-N',N'-bis-(carboxymethyl)-aminoethyl]-N-(carboxymethyl)-aminobutyric acid Formula lla: R = CH₃-; -(CH₃)_m-= -CH₂C(CH₃)_x-; R₁ = R₂ = -CH₂COOH; n = I; X = -

A) 4-methoxy-3,3-dimethyl-2-N-(2-aminoethyl)-aminobutyric acid

45 From 3-hydroxy-2,2-dimethyl propionaldehyde, 4-methoxy-3,3-dimethyl-2-aminobutyric acid is prepared by the conventional method. From the latter, by reaction with an excess of chloro acetoritrile in dimethyl acetamide, 4-methoxy-3,3-dimethyl-2-N-(cyanomethyl)-aminobutyric acid is obtained. By hydrogenation in the presence of a palladium-carbon catalyst and in the presence of ammonia, 4-methoxy-3,3-dimethyl-2-N-(2-aminoethyl)-aminobutyric acid is obtained.

B) 4-methoxy-3,3-dimethyl-2-N-[2'-N',N'-bis-(carboxymethyl)-aminoethyl]-N-(carboxymethyl)-aminobutyric acid

The product of Example 20A is completely carboxymethylated with bromo acetic acid and the compound shown in the caption is thus obtained. Melting point: IS5°C.

EXAMPLE 2I

3-methoxy-2-N,N-bis-[2-N',N'-bis-(carboxymethyl)-aminoethyl]-aminopropionic acid Formula Va: R = CH₃-; m = I; n = I; X = -; R₁ = R₃ = -CH₂COOH

- A) 3-methoxy-2-bromo-propionitrile (0.1 mol) is reacted in dimethyl acetamide (DMA), at IQ0-I25°C and in the presence of potassium carbonate with 0.13 mol of bis-(2-acetylaminoethyl) aminer. The amethoxy-2-N,N-bis-(2-acetylaminoethyl)-aminopropionitrile obtained is saponified in ethanolic sodium hydroxide, with the ethanol being gradually distilled and substituted step by step by water. 3-methoxy-2-N,N-bis-(2-aminoethyl-
 - B) 3-methoxy-2-N,N-bis-(2-aminoethyl)-aminopropionic acid is subjected to complete carboxymethylation with an excess of brome acetic acid and in the presence of sodium hydroxide at a pH of approximately I0. The compound shown in the caption is thus formed. Melting point: 170°

EXAMPLE 22

15

20

35

4-methoxy-3,3-dimethyl-2-N,N-bis-[2-N',N'-bis-(carboxymethyl)-aminoethyl]-aminobutyric acid Formula Va: $R = CH_3$: $-(CH_2)_m$: $-CH_2$ - $-(CH_2)_2$: n = 1; X = -; $R_1 = R_2 = -CH_2$ --COOH;

- A) 4-methoxy-3,3-dimethyl-2-hydroxy butyric acid is prepared by conventional methods from 3-hydroxy-2,2-dimethyl-propionaldehyde and from that compound the ethyl ester of 4-methoxy-3,3-dimethyl-2-bromo-butyric acid is obtained.
- - In a similar manner, the polyamino-polycarboxylic acids listed in the following tables are obtained. Polyamino-polycarboxylic acids according to formula Ila:

	No.	R	R ₁	R ₃	m	n	x
5	1	CH ₃ (CH ₂) ₇ -	-сн ₂ соон	-CH ₂ COOH	1	2	> N-CH ₂ COOH
	2	CH ₃ (CH ₂) 9-	-CH ₂ ССООН	-CH ₂ СООН	ı	2	>N-CH ₂ CCOH
	3	CH ₃ (CH ₂)11-	-CH ₂ COOH	-сн ₂ соон	1	2	>N-CH ₂ COOH
10	4	CH ₃ (CH ₂) ₁₅ -	-CH_COOH	-сн ₂ ссоон	1	2	-(OCH ₂ CH ₂) ₂ -0-
	5	Ph-CH ₂ -CH ₂ -	-CH_COOH	-CH ₂ COOH	2	2	>N-CH ₂ CCOH
15	6	4-Chlor-Ph-CH ₂ -	-CH ₂ СООН	-CH ₂ CCCH	1	1	-
	7	Ph-CH ₂ -	-сн (сн ³) соон	-CH (CH ³) COOH	1	1	-
	8	Ph-CH2-	-сн (сн ³) соон	-сн (сн ³) соон	1	2	s
20	9	Phenyl-(=Ph-)	-CH ₂ COOH	-CH ₂ CCOH	1	1	-
	10	4-HOOC-Ph-	-CH ₂ COOH	-сн ₂ ссон	1	2	> N-CH ₂ CCCH
25	11	CH3 (OCH2CH2) 111-	-CH ₂ CCOH	-сн ₂ ссон	1	1	-
	12	$\text{CH}_3(\text{CCH}_2\text{CH}_2)_{\sim 1.1}$	-CH ₂ COOH	-CH ₂ CCCH	2	1	-
30	13	HO-CH ₂ C (CH ₂ OH) ₂ CH ₂ -	-CH ₂ COOH	-CH ² COOH	2	1	-
	14	H(OCH2CH-CH2)~4-	-CH ₂ COOH	-сн ₂ ссон	2	1	-
		Œ					
35	15	$HOCH_2$ (CHOH) $_4$ CH $_2$ -	-CH ₂ COOH	-сн ₂ ссон	1	2	> N-CH ₂ COOH
	16	$HOCH_2$ (CHOH) $_4$ CH $_2$ -	-CH ₂ COOH	-сн ₂ ссон	2	2	> N-CH ₂ CCOOH
40	17	CH ₃ (OCH ₂ CH ₂) ₆ -	-сн ₂ соон	-CH ₂ COOH)1	2	> n-CH ² COOH

45
) $^{1} = -(CH_{2})_{m} = -CH_{2}-(CH_{3})_{2}-$

50

Polyamino-polycarboxylic acids according to formula IIIa

	No.	R	R ₁	m	n X
5	1	C ₂ H ₅ -	-сн ₂ соон	2	2 S
	2	(CH ₃) ₂ CH-	-CH ₂ COOH	1	2 N-CH ₂ COOH
	3	Ph-CH ₂ -	-CH ₂ COOH)1	2 0
10	4	H(OCH2CH2)8-	-CH ₂ COOH)1	2 0
	5	CH ₃ (OCH ₂ CH ₂) 4-	-CH ₂ COOH)1	1 -
75	6	H(OCH2CH2)2-	-CH ₂ ССОН	1	1 -
	7	H(OCH2CH2)2-	-CH ₂ CCOH	1	2 N-CH2COOH
	8	H(OCH ₂ CH ₂) ₄ -	-CH ₂ COOH	1	1 -
20	9	H(OCH2CH2)~11-	-CH ₂ COOH	2	2 > N-CH ₂ COOH
	10	HOCH ₂ (CHOH) ₄ CH ₂ -	-сн ₂ ссоон	1	1 -
25	11	HOCH ₂ (CHOH) ₄ CH ₂ -	-CH ₂ ССООН	2	2 N-CH ₂ COOH
					•

 $^{1} = -(CH_{2})_{m} = -CH_{2}-C(CH_{3})_{2}-$

Polyamino-carboxylic acids according to formula IVa

	No.	R	т	Position of -OH	Q	A	В	m	n	x
5	1	H	-CH ₂ -	2	-CH=	ЗОН-	н	1	1	-
	2	H	-(CH ₂) ₂ -	2	-CH=	3 OH-	н	1	1	-
10	3	н	-CH ₂ -	2	-CH=	н	5 HOSO ₂ -	1	1	-
,,,	4	$HOCH_2CH(OH)CH_2$	-CH ₂ -	4	-CH=	H	н	1	1	-
	5	CH3CCH2CH2-	-сн ₂ -	2	-CH=	H	н	2	1	-
75	6	$^{\mathrm{CH}_3}(^{\mathrm{CCH}_2\mathrm{CH}_2})_4$ -	-CH ₂ -	3	-CH=	H	5-CH ₃ O-	1	1	-
	7	CH30-CH2CH2-	-CH ₂ -	2	-CH=	30H-	H	1	1	
20	8	CH3OCH2CH2-	-CH (COOOH) -	2 .	-CH=	H	н	2	2	0
	9	сн ₃ осн ₂ сн ₂ -	-CH-CH ₂	2	-CH=	4 Cl-	н	1	1	-
			COORT	-						
25	10	CH30CH2CH2-	4-CH ₂ -	3	-N=	2 CH ₃ -	5 носн ₂ -	1	1	-
	11.	CH3CCH2CH2-	4-CH ₂ -	3	-N=	2 CH ₃ -	5 носн ₂ -	2	2	0
30	12	CH ₃ (OCH ₂ CH ₂) 3-	4-CH ₂ -	3	-N=	2 CH ₃ -	5 носн ₂ -	2	2	0
	13	CH ₃ (CH ₂)11-	-CH ₂ -	2	-CH=	4 HOOC-	- н	1	2 .	0

35	Pol	yamino-carboxy	lic ac	ids a	ccording	to for	mula	IVa T	=	-CI	H
	No.	R	Positi of -OH		Α	В 1	m			n	x
40	14	CH3-	2	-CH=	H	H	-CH ₂ C	(CH ₃) ₂ -		1	-
	15	н (осн ₂ сн ₂) ₇ -	2	-CH=	н	H	-сн ₂ с	(CH ₃) ₂ -		1	-
	16	HOCH ₂ CH (OH) CH ₂ -	2	-CH=	н	H	-CH2C	(CH ₃) ₂ -		1	_
45	17	CH3-	2	-CH=	5-CH ₃ O-	Н	- сн ₂ с ((CH ₃) ₂ -		1	-
	18	H-	5	3-N=	4-CH ₃	6-сн ₂ он	-сн ₂ с	(CH ₃) ₂ -		1	-
50	19	Ph-CH ₂ -	5	3-N=	4-CH ₃	6-Сн ₂ он	-CH ₂ C	(CH ₃) ₂ -		1	-

Polyamino-polycarboxylic acids according to formula Ila

	No.	R	R ₁	R ₃	-(CH ₂) _n -X-(CH ₂) _n -	m
5	1	PhCH ₂ -	-сн ₂ соон	-CH ₂ ССОН	-cH — CH-	1
70	2	сн ₃ (осн ₂ сн ₂) 6-	-сн ₂ ссон	-сн ₂ соон	-CH — CH- (CH ₂) ₄)1
15	3	CH3-	-сн ₂ ссон	-сн ₂ соон	-CH	1
	4	DEGL-	-сн ₂ ссон	-CH ₂ СООН .	-CH CH-	1
		DEGL = 1 deoxy-	-		çн³ сн³	
20)1 :	$(CH_2)_m = -CH_2 - C$	(CH ₃) ₂ -			

Polyamino-carboxylic acids according to formula IIIa

20	No.	R	R ₁	-(CH ₂) _n -x-(CH ₂) _n -	m
30	1	CH3-	-сн ₂ ссон	-CH CH- CH ₃ CH ₃	1
35	2	CH3-	-сн ₂ ссон	-CH	2 .
	3	CH3-	-сн ₂ ссон	-CHCH	,1
40	4	Ph-	-сн ₂ ссон	-CH	1
45	5	CH ₃ (OCH ₂ CH ₂) 4-	-сн ₂ ссон	-CH)1
)1	$-(CH_2)_m = -CH_2 -$	C(CH ₃) ₂ -	CH ₃ CH ₃	
			and the second second		

Polyamino-carboxylic acids according to formula Va

	No.	R	R ₁	R ₃	m	n	x
5	1	Ph-	-сн ₂ ссон	-CH ₂ ССОН	2	2 :	> N-CH ₂ COOH
	2	Ph-	-сн ₂ ссон	-сн ₂ соон	3	2 ;	> N-CH ₂ COOH
10	3	CH3-	-сн ₂ ссон	2 HO-Ph-CH ₂ -	2	1	-
•	4	CH3-	- СН ₂ ССОН	2.3-(HO) ₂ Ph-CH ₂ -	2	1	-
	5	PhCH ₂ -	-сн ₂ ссон	-сн ₂ ссон	1	1	-
15	6	4-H ₂ N-Ph-CH ₂ -	-CH2COOH	-CH ₂ ССООН)1	1	-
	7	CH ₃ (OCH ₂ CH ₂) ₆ -	-сн ₂ ссон	-сн ₂ ссон)1	1	-
	-						

$$(CH_2)_m = -CH_2 - C(CH_3)_2 -$$

Preparation of the complex compounds according to general formula I (or formulas II to V, respectively) from the polyamino-polycarboxylic acids according to general formulas Ia (or formulas IIa to Va, respectively) which are the basis of these complex compounds and of ready-made solutions for use as contrast-enhancing substances according to the invention.

EXAMPLE 23

- Ocomplex manganese compound of 3-phenylmethoxy-2-N-[2-N',N'bis-(carboxymethyl)-aminopropionic acid

 Formula II: Me^(a+) = Mn^(a+); b = 2; E = 2H; R = Ph-CH_x; m = I, n = I; R, = R₁ = -CH₂COO⁽⁾; Z = (1); X
- 49.2 g of 3-phenylmethoxy-2-N-[2-N',N'-bls-(carboxymethyl)-aminosthyl)-N-(carboxymethyl)-aminopropionic acid (= the compound shown in the caption of Example 2) (0.18 mol) and 18.87 g of manganese carbonate (0.18 mol) are heated in 100 ml of water at 100°C under agitation. After about 20 minutes a pinkish-red solution is formed which loses color completely after an additional 10 minutes. The reaction mixture is maintained at about 100°C for one and one-half hours, then filtered until clear and evaporated in a vacuum until dry. The complex manganese compound thus obtained melts, in a dehydrated condition, at 156-159°C.

Analysis of the dehydrated compound: C,H,MnN,O,:

calculated: C 46.46%; H 4.76%; N 6.02% Mn II.80%; measured: C 45.82%; H 4.81%; N 6.II%, Mn II.52%,

EXAMPLE 24

45

Salt of tris-(hydroxymethyl)-aminomethane (TRIS) of the complex manganese compound shown in Example 23

Formula II: $Me^{(a+)} = Mn^{(2+)}$; b = 2; $E^{(b+)} = 2 \bullet (H_2N-C(CH_2OH)_2)^*$; $R = Ph-CH_2-$; m = 1; n = 1; $R_1 = R_2 = -CH_2COO^{(a)}$; $Z = {}^{(a)}$; X = -

To a hot solution, at 60°C, of 28 g of tris-(hydroxymethyl)-aminomethane in 500 ml of double-distilled water suitable for injection is added, under agitation, 4128 g (0.1 mol) of 3-phenylmethoxy-2-N-[2-N',N'-base (carboxymethyl-)-aminoethyl-N-(carboxymethyl)-aminopropionic acid. The solution thus obtained is treated with 1.48 g of manganese carbonate (0.1 mol) and agitated at 60°C until completely dissolved. The clear solution is diluted with 10.0 ml of double-distilled water and then filtered under sterile conditions.

A number of the characteristics of the compound obtained are listed in Tables I and 2.

UV spectrum; lambda max. = 256nm; ensilon = 239.

The sterile clear solution is cooled to -30°C and then freeze-dried at 0.0l torr and +28°C. The freezedried product is filled under sterile conditions into 14 serum vials. When it is to be used, the solution is reconstituted by injecting it with 10 ml of double-distilled water. The amount of solution obtained is a sufficient amount of contrast-enhancing agent for nuclear-spin tomography of one adult

EXAMPLE 25

10

N-methyl-glucamine salt of the complex manganese compound according to Example 23 Formula II: $Me^{(k^+)} = Mn^{(k^+)}$, b = 2; $E^{(k^+)} = 2 *(CH_nNH_nCH_n(CHOH)_nH)^n$; $R = Ph-CH_n$; m = 1; n = 1; R, R, $a - CH_nCOO^n$; Z = 0; X = -1

A) A suspension of 206.4 g of 3-phenylmethoxy-2-N-[2-N',N'-bis-(carboxymethyl)-aminoethyl]-N(carboxymethyl)-aminopropionic acid (0.5 mol) in 600 mil of double-distilled water is treated in portions with
204.6 g of N-methyl-D-glucamine. The solution obtained with a pH of about 5, is slowly treated, under
agitation, with 200 ml of a 2.5 molar solution of manganese chloride (0.5 mol). Each time a gaseous
precipitate is formed which begins to dissolve under agitation. After the entire MnCl₂ solution has been
added, the pH of the solution is brought to 6.5-7.0 by the addition of N-methyl-D-glucamine. The solution is
diluted to a volume of 1000 ml and filtered in sterile conditions.

UV spectrum: lambda max. = 225 mr.; ensilon = 235.

B) The same complex salt is also obtained in the following manner: 48.5 g of the complex manganese compound obtained according to Example 23 is dissolved in 800 ml of double-distilled water and a solution with a pH of about 2 is obtained. The pH of the solution is then adjusted to 6.5-7.0 by adding N-methyl-D-glucamine. The solution is diluted to a volume of 1000 ml and filtered in sterile conditions. UV spectrum: lambda max. = 225 nm; epsilon = 235.

The solutions obtained according to A) or B) can be used to enhance the contrast of the images obtained by nuclear spin tomography.

30 Dosage: Solution A -approximately I5 ml

Solution B -approximately 70 ml

EXAMPLE 26

The sodium salt of the complex gadolinium compound of 3-phenyl-methoxy-2-N-[2'-N'-[2'-N'-N'-bis-(carboxymethyl)-aminoethyl)-N-(carboxymethyl)-aminoethyl)-N-(carboxymethyl)-aminopropionic acid Formutal II: $Me^{(n^*)} = Gd^{(n^*)}$; b = 2; E $^{(n^*)} = 2$ $Ne^{(n^*)}$; D = 2; E $^{(n^*)}$; D = 2; $Ne^{(n^*)}$; D = 2; $Ne^{(n^*)}$; D = 2; $Ne^{(n^*)}$; $Ne^{(n^*)}$

40 R, = R, = -CH,COO(+); X = > N-CH,COO(+)

I6 g of sodium hydroxide is gradually added to a suspension of 53.15 g of 3-phenylmethoxy-2-N-[2'-N'-[2'-N'-N'-bis-(carboxymethyl)-aminoethyl]-N'-(carboxymethyl)-aminoethyl)-N-(carboxymethyl)-n'-(carbox

aminopropionic monohydrate acid (the compound shown in the caption of Example 4) in 500 ml of doubledistilled water. The solution obtained is slowly treated under agitation with 200 ml of a 0.5 molar solution of gadolinium chloride and simultaneously with as much of a 2N solution of sodium hydroxide as is needed to maintain the pH of the reaction solution between 4.5 and 6.0.

Once the addition of gadolinium chloride is completed, the pH of the solution is adjusted to 6.5-7.0, the solution is diluted to 1000 ml and filtered in sterile conditions in a nitrogen atmosphere.

UV spectrum; lambda = 256 nm; epsilon = 220.

The solution is transferred into serum vials in sterile conditions or is freeze-dried. Dosage: 20-200 ml (0.2-2.4 ml per kg of body weight).

55 EXAMPLE 27

TRIS salt of the complex gadolinium compound of 3-phenyl-methoxy-2-N-[2'-N'-[2'-N'-N'-bis-(carboxymethyl)-aminopthyl]-N-(carboxymethyl)-aminopthyl]-N-(carboxymethyl)-aminopthyl-aminopthy

28 g of TRIS is gradually added to a suspension of 53.15 g of 3-phenylmethoxy-2-N-[2'-N-[2'-N-N'-bis-(carboxymethyl)-aminoethyl)-M-(carboxymethyl)-aminopropionic acid in 500 ml of doubled-distilled water suitable for injection.

The solution obtained is slowly treated under agitation with 200 ml of a 0.5 molar solution of gadolinium to chloride and simultaneously with TRIS (= tris-(hydroxymethyl)-aminomethane), in order to misitatian the pH of the solution between 4.5 and 6.0. After the entire quantity of GdCl; has been added, the pH is adjusted to 6.5 -7.0 by adding TRIS, the solution is diluted to 1000 ml, filtered in sterile conditions and transferred to serum visits or freeze-dried.

UV spectrum; lambda = 256 nm; epsilon = 208

EXAMPLE 28

15

25

30

Serinol salt of the complex gadolinium compound of 3-phenylmethoxy-2-N-[2'-N',12'-N',N'-bis-20 (carboxymethyl)-aminoethylj-N'-(carboxymethyl)-aminoethylj-N-(carboxymethyl)-aminopropionic acid Formula II: Ma^(a+) = Gd^(a+): b = 2:

```
E^{(b+)} = 2 \cdot (H_3 N C H_1 (C H_2 O H_2)^{(+)}; Z = 0;

R = Ph \cdot C H_2 \cdot ; m = 1; n = 2;

R_1 = R_3 = -C H_2 C O O \cdot ; X = N \cdot C H_2 C O O \cdot 0
```

The preparation is similar to that of Example 27 with the TRIS being replaced by an equimolar amount of serinol (= 1,3-dihydroxy-2-aminopropane).

UV spectrum: lambda = 256 nm; epsilon = 232.

EXAMPLE 29

The L-omithine salt of the complex gadolinium compound of 3-phenylmethoxy-2-N-[2'-N'-[2'-N'-N'-biscarboxymethyl)-aminoethyl]-Aminoethyl]-Aminoethyl]-Aminoethyl]-Aminophyl)-aminophyli-a

```
E^{(b+)} = 2 = (H_3N(CH_2)_3CH(NH_2)COOH)^{(+)};

Z = {}^{(1)}, R = Ph-CH_2; m = 1; n = 2;

R_1 = R_2 = -CH_2COO^{(1)}; X = N-CH_2COO^{(1)};
```

 $A = B = H; Q = -CH = : Z = \Theta$

The preparation is similar to that of Example 27, with the tris being replaced by an equimolar amount of L-ornithine. The corresponding lysine salt is obtained in the same manner.

EXAMPLE 30

The N-methylglucamine satt of the complex iron compound N,N'-bis-(2-methoxy-l-carboxy-l-ethyl)-N,N'-bis-(2-hydroxyphenylmethyl)-ethylene diamine
Formula N/z: Meth*1 = Fef*1, b = 1;
E*** = (CH,NH,CH,(CHOH),CH,OH) (*);
S = CH,CH,CH,CHOH),CH,OH) (*);
S = CH,CH,CH,CHOH),CH,CHOH) (*);

To a suspension of 3.336 g of N,N'-bis-(2-methoxy-\-carboxy-\-lethyl)-N,N'-bis-(2-hydroxyphenylmethyl)ethylene diamine (7 mmol) in 50 ml of water "for injection", 14 ml of an aqueous IM solution of Nmethylglucamine is added with which the product is put in solution. To the solution prepared in this manner,
whose pH is about 7.3, 7 ml of a IM solution of ferric chloride (7 mmol) is added and the pH of the solution
is kept between 5 and 7 by adding N-methylglucamine. The solution immediately turns to an intense red
color.

After the full amount of the second solution has been added, the pH of the solution is adjusted to a value between 6.8 and 7.2 by means of N-methyliquicamine; it is diluted to 100 ml with water "for injection" and filtered through a 0.22 µ filtering membrane under nitrogen pressure.

UV spectrum: lambda max. = 275 nm -epsilon l2300

lambda max. = 485 nm -epsilon 3780.

In a manner similar to that described in the preceding Examples 23 -30, the complex compounds of all the compounds described in Examples I through 22 and listed in the tables on pages 48 through 52, are obtained with ferrous chloride, ferric chloride, gadolinium chloride, manganese chloride or with their carbonates or basic salts.

Table I lists data on the relaxation effectiveness and stability of some of the complexes according to the invention as compared with the complexes representing the current state of the art relative to the corresponding paramanetic ion.

The symbols have the following meanings:

EDTA = Ethylene diamine tetra-acetic acid;

DTPA = Diethylene triamine penta-acetic acid

25

55

EHPG = Ethylene diamine-N,N'-bis-(2-(2-hydroxyphenyl)-acetic acid;

B I8950 = 3-phenylmethoxy-2-N-[2-N',N'-bis-(carboxymethyl)-aminoethyl]-N-(carboxymethyl)-aminopropionic acid;

B I9030 = 3-phenylmethoxy-2-N-[2"-N",N"-bis-(carboxymethyl)-aminoethyl]-N'-(carboxymethyl)-aminoethyl]-N-(carboxymethyl)-aminopropionic acid;

B I9040 = N,N'-bis-(2-methoxy-l-carboxy-l-ethyl)-N,N'-bis-(2-hydroxyphenyl)-methyl)-ethylene diamine.

TABLE 1

10

15

20

25

30

50

55

STABILITY AND SPECIFIC RELAXIVITY* OF PARAMAGNETIC COMPOUNDS IN WATER AND IN RAT PLASMA - 20 MHz, 40°C

RELATIVE** SPECIFIC RELAXIVITY	IN PLASMA	-	1.55		1.86	1	1.04
RELATIVE** SPECIFIC REL	IN WATER	-	0.82	1	1.51	ī	96.0
XIVITY viation)	IN PLASMA	5.29 (± 0.04)	8.18 (± 0.32)	4.60 (± 0.02)	8.58 (± 0.05)	1.35 (± 0.04)	1.40 (± 0.03)
SPECIFIC RELAXIVITY (# standard_deviation) (mmol's)	IN WATER	3.63 (± 0.10)	2.98 (± 0.11)	3.90 (± 0.00)	5.88 (± 0.05)	1.07 (± 0.04)	1.03 (±0.01)
STABILITY CONSTANT OF THE COMPLEX (log. unit)		14.0	13.4	22.7	21.0	33.9	37.1
COMPLEX [M]		Mn-EDTA	Mn-B 18950	Gd-DIPA	Gd-B 19030	Fe-EHPG	Fe-B 19040

Expressed as the angular coefficient (b) of the regression line (y - a = bx) which correlates the rate of longitudinal relaxation (y) of the solution with the concentration of the paramagnetic complex (x). The line was calculated in the concentration interval between 0.1 and 5.0 mmol/1.

Expressed as the ratio of the specific relaxivity of the claimed complex and the specific relaxivity of the corresponding reference complex.

*

From a comparison of the specific relaxivities (ratio of the effectiveness and the molar concentration of the complex), it is clear that substantial progress with respect to known compounds can be obtained in plasma with the manuaness and gadolinium complexes of the invention.

While the effectiveness of the iron complex is not significantly different from that of the reference c complex, its stability level is higher and it exhibits, moreover, important hepatotropic properties in animal experiments (rabbits).

This is indicated by the fact that excretion takes place to a large extent through the biliary system (55% excretion through the bile ducts versus 24% through the urinary tract in the first eight hours after I.V. administration). This result also agrees with the <u>in vitro</u> determination of the protein binding which, in rabbit plasma, is considerable, i.e., over 30%.

Fe-EHPG, a compound which represents the current state of the art in this particular field (Iron EHPG as an Hepatobilary MIR Contrast Agent: Initial Imaging and Biodistribution Studies, R.B. Luffer et al., Journal of Computer Assisted Tomography 9(3): 431-438 May-June 1985, Raven Press; New York) was tested under the same conditions and showed a decisively lower level of hepatotropism (biliary excretion 18 8%) and less protein briding, i.e., below 20%.

Some of the initial data on the tolerance of the complex compounds in question, as compared with noncomplexed heavy metal ions, are set forth in Table 2.

TABLE 2

Tolerance	DL 50 in mg/kg mouse intravenous oral
'GdCl3	72 (62-85)
DTPA •Gd (3+)	2628 (2448-2826)
B 19030 'Gd(3+)	3873 (37 2 6-4026)
'MnCl ₂	36 (31-40) 1032 (965-1115)
DTPA *Mn (2+)	767 (692-852) 6650 (6127-7216)
B 18950 'Mn (2+)	1177 (1089-1270) 8329 (7631-9074)

Explanation:

20

50

B 19030 Gd
$$^{(3+)}$$
 = N-methyl-D-glucamine salt
DTPA Mn $^{(2+)}$ = N-methyl-D-glucamine salt
B 18950 Mn $^{(2+)}$ = N-methyl-D-glucamine, Example 25.

Table 2 shows that by complexing paramagnetic heavy metal ions with polyamino-polycarboxylic acids according to the invention, substantial detoxification is obtained and relatively tolerable complex heavy metal compounds are formed.

This demonstrates that the complex heavy metal compounds of the invention according to formula I are endowed with the necessary characteristics of contrast-enhancing agents for nuclear spin tomography imaging.

Claims

5

10

15

I. A compound having the formula

$$\begin{bmatrix} R-O-(CH_2)_{\mathfrak{m}} - CH-COOZ \\ N & Me^{(a+)} \end{bmatrix}$$

$$\begin{bmatrix} R_1 & R_2 & \\ & &$$

wherein

a is 2 or 3:

b is an integer from 0 to 4:

Me(a+) is Fe(2+), Fe (3+), Gd(3+), or Mn(2+);

E (b+) is an ion of an alkali metal, alkaline earth metal, alkyl ammonium, alkanol ammonium, polyhydroxyalkyl ammonium, or basic protonated amino acid, said ions representing a total charge of b; m is an integer from I to 5:

R is H, alkyl with from I to 8 carbon atoms, alkyl with from I to 8 carbon atoms wherein from I to 5 carbons are substituted with OH; aralkyl with I to 4 aliphatic carbon atoms; phenyl or phenyl substituted by halogen, hydroxyl, carboxyl, carboxamide, ester, SO₂H, sulfonamide, lower alkyl, lower hydroxy alkyl, amino, acylamino; (poly)oxa-alkyl with I to 50 oxygen atoms and from 3 to I50 carbon atoms, wherein I to 5 hydrogen atoms may be substituted by OH:

R, is -CH2COOZ, -CH(CH2)COOZ, CH2CH2-N(CH2COOZ), a hydroxy arylalkyl, hydroxy pyridylalkyl, hydroxy aryl(carboxy)alkyl or hydroxy pyridyl-(carboxy)-alkyl radical, where the aryl or pyridyl radical may be substituted by hydroxyl, hydroxy alkyl, alkyl, halogen, carboxyl or SO₂H;

R, is the same as R, or

is
$$-CH_2COOZ$$
, $-CH(CH_3)COOZ$, $-(CH_2)_n-X-(CH_2)_n-N$, R_3 , $-CH_2CH-N$, $-CH_3CH-N$, $-C$

45

55

R₃ is -CH₂COOZ, -CH(CH₃)COOZ or a monovalent radical having the structure R-O-(CH₃)_m- C H-COOZ; X is a direct chemical bond, -O-, -S-, -NH-, - N -CH2COOZ or - N -CH(CH3)COOZ;

n is the integer 2 or 3, with the proviso that when X represents a direct bond, n is I, 2 or 3;

Z is hydrogen or a unit of negative charge, and -(CH₂)_m-may also be -CH₂-C(CH₃)₂-.

2. The compound of claim I having the formula

$$\begin{bmatrix} R-0-(CH_2)_m-CH-COOZ & & & & & \\ & N-R_1 & & & & \\ & (CH_2)_n & & Me^{(a+)} & & \\ & X & & & & \\ & (CH_2)_n & & & \\ & & R_1-N-R_3 & & & \\ \end{bmatrix} \qquad (b-)$$

3. The compound of claim I having the formula:

4. The compound of claim I having the formula

55 wherein

10

75

35

T is -(CH₁)₁₋₂-, -CH(COOH)-or -CH(COOH)CH₂-,

Q is = CH-or = N-.

A is hydrogen, hydroxyl or lower hydroxyalkyl and

- B is hydrogen, lower alkyl, halogen, carboxyl or -SO₃H.
 - The compound of claim 4 wherein Me^(a+) is Fe⁽³⁺⁾.
 - 6. The compound of claim I having the formula

5

70

15

20

25

30

$$\begin{bmatrix} \text{R-O-} & (\text{CH}_2)_m - \text{CH-COOZ} \\ & & & \\ & (\text{CH}_2)_n - \text{N-} & (\text{CH}_2)_n \\ & & & & \\ & & & \\ & & (\text{CH}_2)_n & (\text{CH}_2)_n \\ & & & & \\ & & (\text{CH}_2)_n & (\text{CH}_2)_n \\ & & & \\ & &$$

7. The compound of claim I wherein

is selected from the group consisting of

3-hydroxy-2-N-[2'-N'-[2"-N",N"-bis-(carboxymethyl)-aminoethyl]-N'-(carboxymethyl)-aminoethyl]-N-(carboxymethyl)-amino-propionic acid.

3-phenylmethoxy-2-N-[2'-N',[2'-N',N'-bis-(carboxymethyl)-aminoethyl]-N'-(carboxymethyl)-aminoethyl]-N-(carboxymethyl)-aminopropionic acid.

3-methoxy-2-N,N-bis-[2'-N',N'-bis-(carboxymethyl)-aminoethyl]-aminopropionic acid,

3-phenylmethoxy-2-N,N-bis-[2'-N',N'-bis-(carboxymethyl)-aminoethyl]-aminopropionic acid.

4-(3,6,9,12,15-pentaoxahexadecyloxy)-3,3-dimethyl-2-N-[2"-N",N"-bis-(carboxymethyl)-aminoethyl]-N'(carboxy

methyl)-aminoethyl]-N-(carboxymethyl)-amino-butyric acid.

4-(4'-amino-phenylmethoxy)-3,3-dimethyl-2-N,N-bis-[2'-N',N'-bis-(carboxymethyl)-aminoethyl)-amino-butyric acid,

4-(3,6,9,12,15-pentaoxahexadecyloxy)-3,3-dimethyl-2-N,N-bis-[2'-N',N'-bis-(carboxymethyl)-aminoethyl]amino-butyric acid.

3-hydroxy-2-N-[2'-N, N'-bis-(carboxymethyl)-aminoethyl]-N-(carboxymethyl)-amino-propionic acid, 3-phenylmethoxy-2-N-[2'-N, N'-bis-(carboxymethyl)-aminoethyl)-N-(carboxymethyl)-amino-propionic acid, 3-octyloxy-2-N-[2'-N, N'-bis-(carboxymethyl)-aminoethyl]-N-(carboxymethyl)-amino-propionic acid,

N,N'-bis-(2-hydroxy-t-carboxy-t-ethyl)-N,N'-bis-(carboxymethyl) ethylene diamine,

4-methoxy-3,3-dimethyl-2-N-[2'-N',N'-bis-(carboxymethyl)-aminoethyl]-N-(carboxymethyl)-amino-butyric

acid,
3-phenylmethoxy-2-N-[1',2'-dimethyl-2-N',N'-bis-(carboxymethyl)-aminoethyl]-N-(carboxymethyl)-

aminopropionic acid,

N.N'-bis-(4.7,0,13-tetraoxa-2,2-dimethyl-l-carboxy-t-tetra decyl)-N.N'-bis-(carboxymethyl)-ethylene diamine, N.N'-bis-(1,7,0,13-tetraoxa-2,2-dimethyl-l-carboxy-t-tetra decyl)-N.N'-bis-(carboxymethyl)-1,2-dimethyl-tethyl-ene diamine,

4-(3,6,9,12,15-pentaoxahexadecyloxy)-3,3-dimethyl-2-N-[2'-N',N'-bis-(carboxymethyl)-aminocyclohexyl(trans)-}-N-(carboxymethyl)-amino-butyric acid, N,N'-bis-(3-methoxy-2,2-dimethyl-i-carboxy-i-propyl)-N,N'-bis-(carboxymethyl)-I,2-(trans)-cyclohexane diamine,

3-phenylmethoxy-2-N-[2-[2-N',N'-bis-(carboxymethyl)-aminoethoxy]-ethyl]-N-(carboxymethyl)-aminopropionic acid, and

- 5 N,N'-bis-(24-hydroxy-4,7,I0,I3,I6,I9,22-heptaoxa-2,2-dimethyl-h-carboxy-l-tetracontyl-N,N'-bis-(carboxymethyl)-diaminediethyl ether.
 - 8. The compound of claim I wherein Me(e+) is

Fe⁽³⁺⁾ and R-O-(CH₂)_m-CH-COOZ
$$\begin{array}{c}
N \\
R_1
\end{array}$$

is selected from the group consisting of

N,N'-bis-(2-methoxy-l-carboxyl-l-ethyl)-N,N'-bis-(2-hydroxyphenylmethyl)-ethylene diamine,

20 N,N'-bis-(3,6,9,12-tetraoxa-1-carboxy-1-tridecyl)-N,N'-bis-(2-hydroxy-phenylmethyl)-ethylene diamine, N,N'-bis-(3,6,9,12-tetraoxa-1-carboxy-1-tridecyl)-N,N'-bis-(2-hydroxy-5-methoxy-phenylmethyl)-ethylene diamine

N,N'-bis-(3-methoxy-2,2-dimethyl-l-carboxy-l-propyl)-N,N'-bis-(2-hydroxy-phenylmethyl)-ethylene diamine, N.N'-bis-2l-hydroxy-4.7.I0.I3.I6.I9-hexaoxa-2,2-dimethyl-l-carboxy-l-uncontyl-N,N'-bis-(2-hydroxy-

25 phenylmethyl)-ethylene-diamine,

10

15

35

45

N,N'-bis-3-(2,3-dihydroxypropoxy)-2,2-dimethyl-l-carboxy-lpropyl)-N,N'-bis-(2-hydroxy-phenylmethyl)-ethylene diamine,

N,N'-bls-(3-methoxy-2,2-dimethyl-l-carboxy-l-propyl)-N,N'-bis-(2-hydroxy-5-methoxy-phenylmethyl)-ethylene diamine,

30 N,N'-bis-(3-hydroxy-2,2-dimethyl-l-carboxy-l-propyl)-N,N'-bis-(pyridoxyl)-ethylene diamine, and N,N'-bis-(3-phenylmethoxy-2,2-dimethyl-l-carboxy-l-propyl)-N,N'-bis-(pyridoxyl)-ethylene-diamine.

9. In a media for NMR contrast imaging which contains an agent for influencing relaxation time, the improvement which comprises said agent being a compound having the formula

wherein

a is 2 or 3;

b is an integer from 0 to 4:

Me(a+) is Fe(2+), Fe (3+), Gd(3+), or Mn(2+);

^D E (0+1) is an ion of an alkali metal, alkaline earth metal, alkyl ammonium, alkanol ammonium, polyhydroxyal-kyl ammonium, or basic protonated amino acid, said ions representing a total charge of b;

m is an integer from I to 5;

R is H, alkyl with from I to 8 carbon atoms, alkyl with from I to 8 carbon atoms wherein from I to 5 carbons are substituted with OH; aralkyl with I to 4 aliphatic carbon atoms; phenyl or phenyl substituted by halogen, hydroxyl, carboxyl, carboxamide, ester, SO₂H, sulfonamide; lower alkyl, lower hydroxy alkyl, amino, acylamino; (poly)oxe-alkyl with I to 50 oxygen atoms and from 3 to 150 carbon atoms, wherein I to 5 hydrogen atoms may be substituted by OH:

R, is-CH,COOZ, -CH(CH,)COOZ,-CH,CH,-N(CH,COOZ), a hydroxy arylalkyl, hydroxy pyridylalkyl, hydroxy

ary/(carboxy)-alkyl or hydroxy pyridyl-(carboxy)-alkyl radical, where the aryl or pyridyl radical may be substituted by hydroxyl, hydroxy alkyl, alkyl, halogen, carboxyl or SO₃H; R₁ is the same as R₁ or

is
$$-CH_2COOZ$$
, $-CH(CH_3)COOZ$, $-(CH_2)_n-X-(CH_2)_n-N$, R_3 , R_3 , $CH-N$, R_3

whore

10

20

50

55

R₂ Is -CH₂COOZ, -CH(CH₃)COOZ or a monovalent radical having the structure R-O-(CH₃)_m- C H-COOZ; X is a direct chemical bond, -O₂, -S₂, -NH₂, -N₃ -CH₄COOZ or -N₃ -CH(CH₃)_COOZ; n is the integer 2 or 3, with the proviso that when X represents a direct bond, n is 1, 2 or 3; Z is hydrogen or a unit of negative charge, and -(CH₃)_m-may also be -CH₂-(CH₃)_x-.

10. The media of claim 9 wherein the agent has the formula

II. The media of claim 9 wherein the agent has the formula

12. The media of claim 9 wherein the agent has the formula

wherein

50

- T is -(CH₂)₁₋₂-, -CH(COOH)-, or -CH(COOH)CH₂-,
- Q is = CH-or = N-,
- A is hydrogen, hydroxyl or lower hydroxyalkyl, and
- B is hydrogen, lower alkyl, halogen, carboxyl or -SO₃H.
- The media of claim I2 wherein Me^(a+) is Fe⁽³⁺⁾.
- 14. The media of claim 9 wherein the agent has the formula

$$\begin{bmatrix} \text{R-O-(CH}_2)_{m} - \text{CH-COOZ} & & & & & \\ & \text{(CH}_2)_{n} - \text{N-(CH}_2)_{n} & & & \\ & \text{X} & \text{X} & & \text{Me}^{(a+)} \\ & \text{X} & \text{X} & & \text{(CH}_2)_{n} & \\ & \text{(CH}_2)_{n} & & \text{(CH}_2)_{n} \\ & \text{(CH}_2)_{n} & & \text{(CH}_2)_{n} \\ & \text{R}_1 - \text{N-R}_3 & \text{R}_1 - \text{N-R}_3 \end{bmatrix}$$

I5. In a method for NMR diagnosis of tissue wherein an effective amount of a media for diagnosis is an initiatered, the improvement which comprises said media containing a relaxation time influencing effective amount of a compound having the formula

20
$$\begin{bmatrix} R-O-(CH_2)_{m}-CH-COOZ \\ N & Me^{(a+)} \\ R_1 & R_2 \end{bmatrix}$$
 (b-)

wherein

50

10

a is 2 or 3;

b is an integer from 0 to 4;

Me(#+) is Fe(2+), Fe(3+), Gd(3+), or Mn(2+);

E^(b-) is an ion of an alkali metal, alkaline earth metal, alkyl ammonium, alkanol ammonium, polyhydroxyalkyl ammonium, or basic protonated amino acid, said ions representing a total charge of b; m is an integer from I to

R is H, alkyl with from I to 8 carbon atoms, alkyl with from I to 8 carbon atoms wherein from I to 5 carbons are substituted with OH; aralkyl with I to 4 aliphatic carbon atoms; phenyl or phenyl substituted by halogen, hydroxyl, carboxyl, carboxamide, ester, SOH, sulfonamide; lower alkyl, lower hydroxy alkyl, armon, acylamino; (poly)oxx-alkyl with I to 50 oxygen atoms and from 3 to I50 carbon atoms, wherein I to 5 hydrocen atoms may be substituted by OH.

R. is -CH.COOZ, -CH(CH,COOZ, CH(CH,N(CH,COOZ), a hydroxy arylalkyl, hydroxy pyridylalkyl, hydroxy arylalkyl or hydroxy pyridyl-(carboxy)-alkyl radical, where the aryl or pyridyl radical may be substituted by hydroxyl, hydroxy alkyl, alkyl, halogen, carboxyl or SO,H;

R_z is the same as R₁ or

is
$$-CH_2COOZ$$
, $-CH(CH_3)COOZ$, $-(CH_2)_n-X-(CH_2)_n-N$, R_3 , R_1 , or $-CH$, $CH-N$, R_3 , R_1 , R_3 ,

wherein

10

15

20

25

30

35

45

50

R₂ is -CH₂COOZ, -CH(CH₂)COOZ or a monovalent radical having the structure R-O-(CH₂)_m- CH-COOZ; X is a direct chemical bond, -O-, -S-, -NH-, - N -CH, COOZ. or - N -CH(CH.) COOZ; n is the integer 2 or 3, with the proviso that when X represents a direct bond, n is 1, 2 or 3;

Z is hydrogen or a unit of negative charge, and -(CH₂)_m-may also be -CH₂-C(CH₃)₂-.

16. The method of claim 15 wherein the compound has the formula

$$\begin{bmatrix} \text{R-O-(CH}_2)_{\,\text{m}} - \text{CH-COOZ} & & & & \\ & \text{N-R}_1 & & & \\ & & \text{(CH}_2)_{\,\text{n}} & & \text{Me}^{\,\text{(a+)}} \\ & & & \text{X} & & \\ & & & \text{(CH}_2)_{\,\text{n}} & & \\ & & & \text{R}_1 - \text{N-R}_3 & & & \\ \end{bmatrix}$$

17. The method of claim 15 wherein the compound has the formula:

18. The method of claim 15 wherein the compound has the formula:

wherein

10

15

20

30

35

45

55

T is -(CH2) H2-, -CH(COOH)-, or -CH(COOH)CH2-,

25 Q is = CH-or = N-,

A is hydrogen, hydroxyl or lower hydroxyalkyl, and

B is hydrogen, lower alkyl, halogen, carboxyl or -SO₃H.

19. The method of claim 18 wherein M^(a+) is Fe⁽³⁺⁾.

20. The method of claim I5 wherein the compound has the formula

$$\begin{bmatrix} \text{R-O-(CH}_2)_{m} - \text{CH-COOZ} & & & & & \\ \text{(CH}_2)_{n} - \text{CH-COOZ} & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \text{X} & & & & & \\ & & & & \\ & & & & \\ \text{CH}_2)_{n} & & & & \\ & & & & \\ \text{CH}_2)_{n} & & & & \\ & & & & \\ \text{R}_1 - \text{N-R}_3 & \text{R}_1 - \text{N-R}_3 \\ \end{bmatrix}$$

2l. A method for the preparation of the compound of claim I comprising reacting a salt, oxide, hydroxide, or basic salt of Me^(a+) ion with a polyamino-polycarboxylic acid having the formula

m is an integer from I to 5;

R is H, alkyl with from I to 8 carbon atoms, alkyl with from I to 8 carbon atoms wherein from I to 5 carbons are substituted with OH; aralkyl with I to 4 aliphatic carbon atoms; phenyl or phenyl substituted by halogenin, hydroxyl, carboxyl, carboxyel, carboxamide, ester, SO,H, sulfonamide; lower alkyl, lower hydroxy alkyl, amin, acylamino; (polyloxa-alkyl with I to 50 oxygen atoms and from 3 to I50 carbon atoms, wherein I to 5 hydrocen atoms may be substituted by OH.

R. is-CH₂COOZ, -CH₂CH₃COOZ,-CH₂CH₂-N(CH₂COOZ)_a, a hydroxy arylalkyl, hydroxy pyridylalkyl, hydroxy aryl(aerboxy)-alkyl or hydroxy pyridyl-(carboxy)-alkyl or hydroxyl, hydroxyl kyd-lakyl, hajocen, carboxyl or SOAH:

R₂ is the same as R₁ or

10

15

25

35

4n

55

where

R₃ is -CH₂COOZ, -CH(CH₃)COOZ or a monovalent radical having the structure R-O-(CH₃)_m-CH-COOZ; X is a direct chemical bond, -O-, -S-, -NH-, -N-CH₂COOZ or -N-CH(CH₃)COOZ:

n is the integer 2 or 3, with the proviso that when X represents a direct bond, n is I, 2 or 3;

Z is hydrogen or a unit of negative charge

and -(CH₂) m-may also be -CH₂-C(CH₃)₂-;

or alkali metal salts, alkali-earth metal salts or amine salts thereof.

22. A polyamino-polycarboxylic acid having the formula

$$R-O-(CH_2)_m$$
 CH-COOH N (Ia)

wherein

45 m is an integer from I to 5;

R is H, alkyl with from I to 8 carbon atoms, alkyl with from I to 8 carbon atoms wherein from I to 5 carbons ar substituted with OH; aralkyl with I to 4 aliphatic carb atoms; phenyl or phenyl substituted by halogen, hydroxyl, carboxylic carboxamide, ester, SO₂H, sulfonamide; lower alkyl, lower hydroxy alkyl, amino, acylamino; (poly)oxa-alkyl with I to 50 oxygen atoms an from 3 to I50 carbon atoms, wherein I to 5 hydrogen atom as to may be substituted by OH;

R. is -CH,COOZ, -CH(CH)COOZ, CH(CH,-N(CH,COOZ)_A a hydro anylalkyl, hydroxy pyridylalkyl, hydroxy anyl(carboxy)-alkyl or hydroxy pyridyl-(carboxy)-alkyl radical, where the anyl or pyridyl radical may be substituted by hydroxyl, hydroxy alkyl, alkyl, halogen, carboxyl or SO₂H;

R₂ is the same as R₁ or

is
$$-CH_2COOZ$$
, $-CH(CH_3)COOZ$, $-(CH_2)_n-X-(CH_2)_n-N$
 R_3
 $-CH$
 $-CH$

wherein

5

10

15

20

25

30

50

R₂ is -CH₂COO2, -CH(CH₂)COO2 or a monovalent radic having the structure R₂O-(CH₂)_m- C₂ H-COO2; X is a direct chemical bond, -O₂, -S₂ -NH₂ - N₃ -CH₂COO2 or -N₃ -CH(CH₃)_CCOO2; in is the Integer 2 or 3, with the proviso that when X represents a direct bond, in is 1, 2 or 3; Z is hydrogen or a unit of negative charge and -(CH₃)_m-may also be -CH₂-(CH₃)_x-:

23. The polyamino-carboxylic acid of claim 22 having the formula

24. The polyamino-carboxylic acid of claim 22 having the formula

25. The polyamino-carboxylic acid of claim 22 having the formula

whornin

5

10

75

25

30

50

55

T is -(CH₂) 1-2-, -CH(COOH)-or -CH(COOH)CH₂-,

Q is = CH-or = N-,

A is hydrogen, hydroxyl, lower hydroxyalkyl and

B is hydrogen lower alkyl, halogen, carboxy or SO₃H. 26. The polyamino-carboxylic acid of claim 22 having the formula