MATH 340 - Discrete Structures 2

$McGill\ University\ -\ Winter\ 2013$

Last Updated: April 15, 2013

Contents

In	information 1						
	Summary of Graph Theory Terms1 Terminology]					
	2 Special Graphs						
2	Stable Marriages	4					
	2.1 Example						
	2.2 Gale-Shapley	ŀ					
	2.3 Matching	7					
	2.4 Matching in Bipartite Graph						

Information

• Instructor: Bruce Shepherd

• LaTeX: Ehsan Kia

• Notes: Catherine Hilgers

1 Summary of Graph Theory Terms

A (simple) graph G is an ordered pair (V(G), E(G)), sometimes written (V, E), where V(G) is a finite set of vertices (aka nodes), and E(G) is a finite set of edges.

Each edge is of the form $\{u, v\}$ sometimes written uv, where $u \neq v$ are two vertices that are the end points of the edge. An edge $e \in E$ is *incident* to a vertex $v \in V$ if e = (u, v) for some $u \in V$. A vertex $v \in V$ is called *adjacent* to a vertex $u \in V$ if $(u, v) \in E$.

Figure 1: Example of a graph where $V = \{1, 2, 3, 4, 5, 6, 7\}$

Note: simple, undirected graph mean that we have no:

Suppose we have H = (V(H), E(H)) such that:

- i) $V(H) \subseteq V(G)$
- ii) $E(H) \subseteq E(G)$
- iii) $\forall e = (u, v) \in E(H) : u, v \in V(H)$

Then, H is a subgraph of G.

Given a set $S \subset V$, we define the *subgraph induced by* S to be the graph denoted by G[S] to be a subgraph of G whose vertex set is S and whose edge set is the set of edges with both ends in S.

Similarly, for $F \subset E$, define the subgraph induced by F, denoted G[F], to be the subgraph of G whose edge set is F and whose vertex set is the set of all endpoints in F.

1.1 Terminology

The degree of a vertex v is the number of edges of which it is an endpoint, denoted by $deg_G(v)$.

A walk of a graph G is a sequence of alternating vertices and edges $v_0e_1v_1e_2...v_{n-1}e_nv_n$ such that e_i is incident to v_{i-1} and v_i , $\forall i = 1, ..., n$, where n is the length of the walk.

A trail is a walk in which the edges are distinct.

A path is a trail in which vertices are distinct.

A cycle is a trail of length at least 1 in which the vertices are distinct, except v_0 and v_n which are the same.

Figure 2: Cycles of size 1 to 4.

A graph is *connected* if \exists a path between any two vertices. Else, it's disconnected.

A component of G is a maximal connected subgraph.

1.2 Special Graphs

Figure 3: Examples of simple graphs

A tree is a connected graph with no cycles (Figure 4).

A graph G is bipartite if \exists a partition (X,Y) of V(G) such that for every edge $e \in E(G)$, e has one endpoint in X and the other in Y. X and Y are called the parts of G and (X,Y) is called the bipartition.

Figure 4: A tree

Theorem: G is bipartite $\Leftrightarrow G$ contains no odd cycles.

Proof: Without loss of generality, assume G is connected, since G is bipartite \Rightarrow each of its components are.

(\Rightarrow) Suppose G is bipartite, with bipartition (X,Y). Let $v_0e_1v_1e_2...e_nv_n$ be an odd cycle (n is odd). Assume $v_0 \in X$. We then show that for $0 \le k < \frac{n}{2}$, $v_{2k} \in X$. Assume inductively that $V_{2k-2} \in X$, where $k \ge 1$. Then v_{2k-1} lies in Y, since e_{2k-1} has endpoints in both X and Y. But v_{2k-1} inplies $v_{2k} \in X$ for the same reason. In particular, $v_{n-1} \in X$, but this means the two endpoints of e_n , v_0 and v_{n-1} , both lie in X. This contradict the fact that G is bipartite.

(\Leftarrow) Suppose G contains no odd cycles. Let $v \in V$, and for all $u \in V$, define d(v) = length of the shortest path from u to v. Let $D_i = \{u \in V : d(u) = i\}$.

Claim 1: $j \ge i+2 \Rightarrow$ there are no edges with endpoints in D_i or D_j .

Claim 2: any $i \geq 0$, there are no edges with both endpoints in D_i .

Then, letting $X = \bigcup_{i \text{ even}} D_i$ and $Y = \bigcup_{i \text{ odd}} D_i$, then (X, Y) forms a bipartition of G.

Proof of claim 1: Suppose there were some vertices u, v, and integers i, j, such that $j \geq i + 2$, $u \in D_i$, $w \in D_j$, and $uw \in E$. Then, a shortest path from v to w is no longer than the path by adjoining uw to the shortest path from v to u. So, $d(w) \leq i + 1$. This contracting the fact that $w \in D_j$, that is, $d(w) \geq qi + 1$.

Proof of claim 2: Suppose there were some $i \geq 0$ and vertices $u, w \in D_i$ such that $uw \in D_i$. Then, \exists two paths: $P_1 = (v = a_0, a_1, a_2, ..., a_{i-1}, u = a_i)$ and $P_2 = (v = b_0, b_1, b_2, ..., b_{i-1}, w = b_i)$. Let m be thte largest index such that $a_k \neq b_k \ \forall \ m+1 \leq k \leq i$. Then, $a_m a_{m+1} ... a_{i-1} uw b_{i-1} ... b_{m+1} b_m$ is a cycle of length 2(i-m)+1, which is odd. $\Rightarrow \Leftarrow$.

2 Stable Marriages

We have n boys and n girls. Each boy has an ordered list of girls and vice versa.

A set M of marriages is stable if there is no boy-girl pair who prefer each other to their current pairings in M. We call this situation an unstable (unblocking) pair [Figure 5].

Figure 5: Unstable pair B_j prefers G_i to G_j and G_i prefers B_j to B_i

2.1 Example

In the following example [Figure 6], we have 3 boys and 3 girls, each with their own preference list, but the given matching isn't a stable marriage.

But when trying again, we can easily find two stable configuations [Figure 7]

Figure 6: Unstable because Amalia and Bob prefer each other over their current partner

Figure 7: These work because each boy prefers a different girl, and each girl prefers a different boy.

2.2 Gale-Shapley

Do stable matchings exist in general?

Theorem (Gale & Shapley): A stable matching always exists

Proof (by algorithm): While there is some "single" boy B, B proposes to the next girl on his list, call her G. Girl G accepts if she is single or prefers B to her current fiancé. Claim is that the algorithm terminates for any set of lists with a stable matching.

NOTE: as the algorithm proceeds, girls' choices only get better and mens' only get worse. Each time a girl changes fiance, she trades up. A boy only changes if he gets dumped by G and he then proposes to the next girl on his list.

Figure 8: Preference list

Corollary: The algorithm terminates. Say boy B has his list. The pointer aims at his current match. There are n boys and n possible pointers into their lists [Figure 8]. each dumping moves the pointer down the list by one. We have $\leq n^2$ total dumpings. The algorithm terminates after $\mathcal{O}(n^2)$.

The matching returned by the algorithm is stable. Suppose M is the output matching, and has unstable pair (B_i, G_j) , for a contradiction:

• B_i prefers G_i to current match G_i

• G_i prefers B_i to current match B_i

Since B_i prefers G_j to G_i , he proposed to her earlier and she either rejected him, or accepted and dumped him later. In either case, she was at some point matched to some B_k she preferred to B_i . By observation, her partners only improved from that point on. Thus, she prefers B_j to B_k and B_k to $B_i \Rightarrow \text{prefers } B_j$ to B_i and (B_i, G_j) is not unstable. $\Rightarrow \Leftarrow$ (contradiction)

There can be many stable matchings. Let:

$$S = \{M_1, M_2, ..., M_k\}$$

be the set of all stable matchings. Call G_j a valid partner for B_i if (B_i, G_j) are matched in some $M_i \in \mathcal{S}$. For each B, let $G^+(B)$ be his most preferred valid partner.

Remarkably, the boy-proposal algorithm matches each boy B to $G^+(B)$. To show this, we require a lemma:

Lemma: a girl never rejects a valid partner

Proof (by contradiction): Suppose not. Consider the first time G_j rejects a valid partner B_i . Say (B_i, G_j) were matched in $M_t \in \mathcal{S}$. Say G_j dumps B_i for B_j at that time. Say (B_j, G_k) is a match in M_t [Figure 9].

Figure 9: A valid partner being dumped by a girl in boy-proposal

Since B_i is the first valid partner to be dumped, we claim B_j prefers G_j to G_k . Why? Supposed B_j prefers G_k to G_j . Thus he proposes first to G_k . But $(G_k, B_j) \in M_t$, and therefore G_k is valid for B_j . But B_j was as we supposed in the beginning the first valid person to be dumped, which means B_j did not get dumped and B-j is not free to propose to G_j . $\Rightarrow \Leftarrow$

So B_j prefers G_j to G_k and G_j prefers B_j to B_i , therefore (B_i, G_j) is unstable in M_t . But $M_t \in \mathcal{S}$ and in thus stable. $\Rightarrow \Leftarrow$. Hence a girl never rejects a valid partner.

Now we will show that the boy-proposal algorithm matches each boy B with $G^+(B)$.

Proof: If B_i is matched by algorithm to G_j , who he doesn't like as much as $G^+(B_i)$, then he proposed to $G^+(B_i)$ first. But $G^+(B_i)$ and B_i are valid, hence $G^+(B_i)$ couldn't have rejected him. $\Rightarrow \Leftarrow$

Let $B^-(G_j)$ be the worst partner for G_j amongst all stable matchings.

Lemma: The boy-proposal algorithm matches each G_j to $B^-(G_j)$.

Proof: Supposed B_j and G_j are matched, whom she prefers to $B^-(G_j)$. Say $(G_j, B^-(G_j)) \in M_r$ and $(G_i, B_j) \in M_r$ [Figure 10].

Figure 10: By the previous, B_j gets $G^+(B_j)$, so $G_j = G^+(B_j)$

Thus, B_j prefers G_j to G_i and G_j prefers B_j to $B^-(G_j)$, therefore the valid pair (B_i, G_j) is unstable in M_r . $\Rightarrow \Leftarrow$. It follows that G_j gets $B^-(G_j)$ with boy proposal.

2.3 Matching

A matching in a graph G(V, E) is a set $M \subseteq E$ of vertex-disjoint edges, i.e., each vertex of G is the endpoint of at most one edge in M.

we say $v \in V$ is matched (or saturated) by M if it is the endpoint of some edges in M. Otherwise, it is unmatched. A path P is M-alternating if its edges are alternatively in M and not in M.

An alternating path is *M-augmenting* if its endpoints are unmatched.

Theorem: A matching in G is of maximum cardinality \iff there is no M-augmenting path.

Proof:(\Rightarrow) Suppose P is an M-augmenting path, then switching the edges in P produces a larger matching. Let $M' = M \oplus E(P)$ (Symmetric difference of M and the edges in the path P).

Figure 11: Symmetric difference of M and E(P)

$$M \oplus E(P) = (M \cup E(P)) - (M \cap E(P))$$
$$= (M - E(P)) \cup (E(P) - M)$$

(\Leftarrow) Suppose M has no augmenting path. Claim that it is a maximum matching. Suppose not, and that M^* is a maximum matching where $|M^*| > |M|$. Consider $M \oplus M^*$. Let H be the subgraph induced by the edges.

Claim:

$$|M| = \#$$
 of M -edges $\in H + |M \cap M^*|$
= $\#$ of M^* -edges $\in H + |M \cap M^*|$

What is the degre of any vertex in H? It's at most two, since each vertex is incident to at most one edge in M and at most one edge in M^* . $deg_H(v) \in \{0, 1, 2\}$.

What does H look like?

Say blue is M and green is M^* . They alternate:

This means that a cycle must be even:

Each component is either

• an even cycle

• a path

Since alternating an even cycle doesn't change the size of M nor M^* , we will focus on paths.

Consider the 3 following types of paths:

- 1. M^* -augmenting
- 2. M-augmenting
- 3. augments nothing

There are no type 1 paths since they are M^* -augmenting and we assumed M^* was maximum! (See \Rightarrow path of the proof). Each type 3 path, similarly to the cycle components, have the same number M and M^* edges. But, by the claim, H must have more M^* edges than M-edges. Therefore there is a type 2 component, and thus is an M-augmenting path. $\Rightarrow \Leftarrow$

Note: This theorem holds for all graphs.

2.4 Matching in Bipartite Graph

G is bipartite if there is a partition $V(G) = X \cup Y$, such that each edge has one endpoint in Z and the other in Y (figure 12).

Figure 12: Bipartite graph partitioned into vertex set X and Y

Definition: A matching is perfect if it matches each vertex of G (we can only have degree 1 matching here).

Fundamental question: "When does a graph have a perfect matching?"

Definition: For $A \in V$, denote by N(A) the set of neighbors of A, i.e., $N(A) = \{v \notin A : \exists uv \in E, u \in A\}$

Theorem (Hall's): A bipartite graph G with |X| = |Y| has a perfect matching $\iff |N(A) \ge |A| \ \forall \ A \subseteq X$. (Known as Hall's condition)

Proof: (\Rightarrow) Trivially holds since we can't have this:

N(A)

Figure 13: The two vertices in A have only one possible vertex they can match with, therefore there is no perfect matching that would match both.

 (\Leftarrow) If we have some matching M with unmatched vertex u, then we showed how to find an M-augmenting path from u. This gives a new matching which is larger. Repeat until you get a perfect matching.

Algorithm to find M-augmenting path from u:

Let $A = \{u\}, B = \emptyset$. Maintain two properties of A and B as we proceed.

- i) $A \subset X$, $B \subset Y$. A u matched to B by M. (N.B. |A| = |B| + 1)
- ii) There is an M-alternating path from u to any vertex in A-u in the graph $G[A \cup B]$.

Repeat:

- Choose $v \in N(A) B$. Let $e = wv, w \in A$. Combine an alternating path from u to w (by ii), with edge e, then get an M-augmenting path and quit.
- if v is matched to some $u' \in X A$, and u' not in A by i), get $A \in A \cup \{u'\}$, $B \in B \cup \{v\}$. Clearly i) holds. Check that ii) holds (similar to previous argument).
- We can always find another vertex because Hall's condition implies that $N(A) \ge |A| = |B| + 1 > |B|$.

This proof gives an algorithm for finding a perfect matching in G if it satisfies the Hall Condition.

Note: Runtime $\mathcal{O}(VE)$ steps. There exists faster algorithms.

Applications

A graph is d-regular if every vertex has degree d.

Theorem: Any d-regular bipartite graph can be decomposed into d perfect matchings, i.e., the edges $E = M_1 \cup M_2 \cup ... \cup M_d$ where each M_i is a perfect matching.

Proof: It is enough to show that we have one perfect matching in G, since if M is a perfect matching, then G - M is a (d-1)-regular, and we can repeat.

First, note that since each edge has one end in X and one in Y:

$$\sum_{x \in X} deg(x) = |E| = \sum_{y \in Y} deg(y) \Rightarrow |X| = |Y|$$

We also have that |E| = d|X| = d|Y| since $deg(x) = d \ \forall x \ in X$. Consider $A \subset X$:

$$\begin{aligned} d|A| &= \sum_{x \in A} deg(x) \\ &= \# \text{ of edges with 1 end in } A \\ &\leq \# \text{ of edges with one end in } N(A) \\ &= \sum_{y \in N(A)} deg(y) \\ &= d|N(A)| \end{aligned}$$

Thus $|A| \leq |N(A)|$. So G satisfies Hall's Condition and hence has a perfect matching.

Latin Squares

An $r \times n$ grid is a Latin Rectangle if the numbers in each row and column are distinct.

Theorem: Every $r \times n$ Latin rectangle with $r \leq n$ can be extended to an $n \times n$ Latin square.

Example

Proof Define a bipartite graph with a vertex for each column (X), and a vertex for each number 1, 2, ..., n (Y). Add an edge from column j to number i if i does not appear in column j.

1	2	3	4
2	3	4	1
4	1	2	3

Each vertex in X will be connected with n-r vertices on the other side. Hence, G is (n-r)-regular and has n-r perfect matchings. These give n-r rows which we can add to make the Latin square.