ADAMAS UNIVERSITY PURSUE EXCELLENCE	ADAMAS UNIVERSITY END SEMESTER EXAMINATION (Academic Session: 2020 – 21)		
Name of the Program:	BCA	Semester:	II
Paper Title:	DIGITAL ELECTRONICS	Paper Code:	ECE11501
Maximum Marks:	50	Time Duration:	3 Hrs
Total No. of Questions:	17	Total No of Pages:	02
(Any other information for the student may be mentioned here)	& Code, Date of Exam. 2. All parts of a Question should be answer start from a fresh page.	parts of a Question should be answered consecutively. Each Answer should	

	Group A		
	Answer All the Questions $(5 \times 1 = 5)$		
	How many two-inputs AND & OR gates are required to realize		
1	Y=CD+EF+G	R	CO1
1	a) 2,2 b) 2,3.	K	
	c) 3,3 d) none of these.		
2	Solve the Boolean expression $\overline{\overline{A}B\overline{C}} + \overline{A\overline{B}C}$	AP	CO2
	In a 1:8 de-multiplexer, the number of select lines are		
3	a) 4 b) 1	\mathbf{U}	CO3
	c) 3 d) 2		
4	What are the differences between ROM & RAM?		CO4
	The register that is loaded with parallel data with the stored data		CO5
5	being available at the output serially one bit at a time is the type	R	
3	a) SISO b) SIPO	K	
	c) PISO d) PIPO		
	Group B		
	Answer All the Questions (5 x 2 = 10)		
6 a)	Design and implement EX-OR gate using NOR gate.	C	CO2
	(OR)		
6 b)	On subtracting (001100) ₂ from (101001) ₂ using 2's	AP	CO1
0.0)	complements, construct the value?		
7 a)	Simplify and draw the logic diagram for the given expression	AN	CO2
	$F = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$		
	(OR)		
7 b)	Construct 16:1 MUX by using 4:1 MUX only.	AP	CO3
8 a)	Simplify the expression $Y = \prod (0, 1, 4, 5, 6, 8, 9, 12, 13, 14)$	AN	CO3
	using the K-map method		
	(OR)		
8 b)	Compare between PROM, PLA & PAL.	E	CO4
9 a)	Determine the initial clock frequency of 4-bit ripple counter, if	E	CO5
<i>y u_j</i>	the period of waveform at the last flip-flop is 64 microseconds.	L	
	(OR)		~~~
9 b)	Explain propagation delay in ripple counter.	U	CO5

10 a)	Determine the binary numbers represented by the following decimal numbers.	E	CO1
	(i) 25.5 (ii) 10.625		201
	(OR)		
10 b)	Define Associative property of Boolean algebra.	R	CO2
,	Group C		
	Answer All the Questions $(7 \times 5 = 35)$		
	i) Compare between Weighted Binary Codes and Non-		CO1
11 \	Weighted Binary Codes [2]	AN, AP	
11 a)	ii) Construct the decimal number 82.67 to its binary,		
	hexadecimal and octal equivalents. [3]		
	(OR)		
11 b)	Draw the logic diagram of a full subtractor and explain its	U	CO2
	working with the help of a truth table.	U	CO2
	Simplify the expression using Karnaugh map $Y = \sum_{m} (0, 1, 4, 5, $		CO3
12 a)	8, 9, 12, 13, 14), d (2,3,6) and draw the equivalent circuit using	$\mathbf{A}\mathbf{N}$	
	logic gates.		
	(OR)		
12 b)	Design and implement the circuit using 4-bit EXCESS-3 to BCD	C	CO2
12 0)	converter and simplify the expression using Karnaugh map.	C	CO2
13 a)	What is an Encoder? Draw the logic circuit of a 8-line to 3-line	R	CO3
15 a)	Encoder and explain its working.	1	
	(OR)		
13 b)	Explain the operation of master slave J-K flip flop and show	U	CO3
13 0)	how the race around condition is eliminated in it.	•	
14 a)	Design 4x1 MUX using Boolean function $F(A,B,C,D) = \sum_{m}$	C	CO3
1. u)	(1,4,5,7,9,12,13).		
	(OR)		
	Write the different conditions to check for determining the type		
	of Decoder, number of AND gates and OR gates for realization		CO4
441	of Boolean expression using PLDs. Realize the following set of	-	
14 b)	logical expressions using ROM, PLA and PAL.	E	
	$Y_1 = AC + \overline{AB}$		
	$Y_2 = ABC + AB\overline{C} + \overline{A}BC$		
	$Y_3 = A\overline{B}C + AB\overline{C} + A\overline{B}\overline{C}$		
15 a)	Design a 4-bit asynchronous up counter using negative edge	C	CO5
	triggered and show the timing diagram. (OR)		
	Design PISO shift register and explain the data movement	T	
15 b)	technique.	C, U	CO5
	i) Write down the differences between synchronous and	+	
16 a)	asynchronous counters.	P C	CO5
	ii) Design Mod-6 Synchronous up counter using T flip flop.	R, C	COS
	(OR)		
	Compare between static and dynamic RAM. Draw the circuits		
16 b)	of one cell of each and explain its working.	E	CO4
	Construct the D FF from JK FF using its corresponding		
			CO ₃
17 a)		AP	COS
17 a)	characteristics & excitation table.	AP	
17 a)		AP	