Project Proposal – Intelligent System for Exercise Classification and Evaluation

Project Repository:

https://github.com/Nicolas-CM/PoseTrack AI ADN.git

MMFit Dataset – Official Website and Repository:

https://mmfit.github.io https://github.com/KDMStromback/mm-fit

1. Introduction and General Objective

This project aims to develop an intelligent system capable of classifying physical exercises and evaluating whether they are being performed correctly, using real-time pose analysis.

The system will be developed **iteratively**, with continuous adjustments based on data understanding, model performance, and feasibility. Eventually, the system will focus on **three selected exercises**, chosen according to performance, clarity of metrics, and relevance in physiotherapy and fitness contexts.

2. Main Research Question

How can we develop an intelligent system that accurately classifies physical exercises and determines whether they are being performed correctly, using real-time pose estimation?

Subquestions:

- What joint-based metrics (e.g., angles of knees, hips, wrists) are most relevant for evaluating exercise correctness?
- How can the system provide real-time feedback on posture during exercises?
- How can this system be applied in physiotherapy and fitness to monitor users' progress?

3. Problem Type

This is a **supervised classification problem** within the domain of artificial intelligence applied to computer vision, focusing on:

- Human activity recognition (HAR) from video and sensor data.
- Pose-based movement analysis for form evaluation.
- Multi-modal signal processing (video + wearable sensors).

4. Methodology (CRISP-DM Framework)

We follow the CRISP-DM (Cross-Industry Standard Process for Data Mining) methodology, adapted to an experimental and evolving project scope:

1. Business Understanding

- Purpose: Analyze and assess exercise performance in real time to provide corrective feedback.
- Potential applications: personalized training, rehabilitation, home physiotherapy.

2. Data Understanding

MMFit Dataset (<u>GitHub</u>, <u>Web</u>)
Includes labeled videos and synchronized sensor data for 10 physical exercises.

3. Data Preparation

- Pose extraction using MediaPipe (2D) and MMFit-provided data (3D).
- Feature engineering: joint angles, trunk inclination, joint velocity.
- Data normalization, segmentation, and augmentation if needed.

4. Modeling

- Initial classifiers: SVM, Random Forest, XGBoost.
- Hyperparameter tuning and cross-validation to improve generalization.

5. Evaluation

- Standard metrics: Accuracy, Recall, F1-Score.
- Pose-specific metrics: joint angle error, trunk alignment deviation.

6. Deployment

• Development of a real-time interface with pose visualization and corrective feedback.

5. Dataset: MMFit

Exercise Types (only 3 will be selected for final system):

• Squats, Lunges, Bicep Curls, Sit-ups, Push-ups, Tricep Extensions, Dumbbell Rows, Jumping Jacks, Dumbbell Shoulder Press, Lateral Shoulder Raises.

Modalities and Sensors:

- Pose Data:
 - 2D: 18 keypoints (COCO format)
 - o 3D: 17 keypoints (Human3.6M format)

Sensors:

- Accelerometers, gyroscopes, magnetometers, heart rate monitors
- o RGB and Depth Cameras

Labels:

- Activity class
- Repetition count
- Execution quality (correct/incorrect)

• Start/end of each set

6. Evaluation Metrics

- Accuracy: Correctly classified exercise instances over total.
- **Recall**: Model's ability to detect correct execution.
- **F1-Score**: Balance between precision and recall.
- **Inference time**: Speed of real-time classification.

Pose-specific metrics:

- Joint angle error: Difference between measured vs ideal angles (e.g., 90° in a squat).
- Trunk inclination: Based on the relative position of head, shoulders, and hips.
- Symmetry metrics: Comparison between left and right limbs.

7. Data Expansion Strategies

If more data is needed to improve performance or generalization, we may:

- Capture additional videos from volunteers performing exercises at different speeds and viewpoints.
- Generate synthetic movements using simulation tools or pose generators.
- Use annotation tools such as LabelStudio or CVAT to label new data.
- Collaborate with fitness professionals or physiotherapists to gather real-world data.

8. Ethical Considerations

- Informed consent: Required for all participants whose movements are recorded.
- Privacy & data protection: Videos and personal data will be anonymized and securely stored.
- Inclusivity: The system should avoid bias and be adaptable to users of different body types, ages, and abilities.

9. Next Steps

- Complete exploratory data analysis.
- Train initial models and evaluate performance on a subset of exercises.
- Begin development of the real-time interface.
- Iterate on the system design based on feedback and results.
- Select 3 final exercises to focus on for deployment.