1 Интегрирование

1.1 Первообразный и неопределённый интеграл

Функция F(x) — называется первообразной для функции f(x), на промежутке X, если $x \in X$, выполняется равенство F'(x) = f(x)

Тогда X, называется областью определения функции F(x)

Если F(x) первообразная для функции f(x), то множество функции F(x) + C, где C произвольная постоянная, называется неопределённым интегралом от функции f(x) и обозначается

$$\int f(x) \, dx = F(x) + C$$

 Π ри этом функция f(x), называется под интегральной функцией.

 $\int f(x) \, dx$ (произносится как: f(x) no dx) — называется под интегральным выражением. Восстановление функции по её производной или что тоже отыскание неопределённого интеграла, называется **интегрированием**.

Интегрирование — обратно дифференцированию

Значение неопределённых интегралов

$$\int dx = x + C$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

3.
$$\int \frac{dx}{x} = \ln|x| + C$$

$$\int a^x dx = \frac{a^x}{\ln a} + C$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int \frac{dx}{\cos^2 x} = tgx + C$$

8.
$$\int \frac{dx}{\sin^2 x} = ctgx + C$$

9.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$$

10.
$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \mid x + \sqrt{x^2 \pm + a^2} \mid + C$$

11.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{2a} \ln \left| \frac{a+x}{a-x} \right| + C$$

12.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{2} \operatorname{arcctan} \frac{x}{a} + C$$

13.
$$\int e^x dx = e^x + C$$

Свойство интеграла

1. Производная неопределённого интеграла равна под интегральному выражению функции, а его дифференциал — подынтегральному выражению

 $(\int f(X)dx)' = f(x), d(\int f(x)dx) = f(x)dx)$

2. Неопределённый интеграл от дифференциала функции равен сумме этих функций и произвольной константе

 $\int dF(x) = F(x) + C$

3. Постоянный множитель можно вынести за знак неопределённого интеграла

 $\int k f(x) dx = k \int f(x) dx$

4. Неопределённый интеграл от суммы (разности) двух непрерывных функций равен сумме(разности) интегралов от этих функций

$$\int (f(x) \pm g(t)) dx = \int f(x) dx \pm \int g(t) dx$$

2 Основные методы интегрирования

- 1. Непосредственное интегрирование
- 2. Метод подстановки
- 3. Метод интегрирования по частям

2.1 Непосредственное интегрирование

Непосредственное интегрирование — Вычисление интегралов с помощью значений простейших неопределённых интегралов и на основе свойств неопределённых интегралов

2.2 Метод подстановки

Метод подстановки — или замена переменной заключается в том чтобы заменить x на $\phi(t)$, где $\phi(t)$ — непосредственно дифференцируемая функция, полагают dx равно $\phi(t)$ * dt и получают

$$\int f(X)dx = \int f(\phi(t) * \phi'(t))dt$$

2.3 Метод интегрирования по частям

Формула интегрирования по частям в неопределённом интеграле называется формула:

$$\int u \, dv = uv - \int v \, du$$

 Γ де u и v — деференцируемые функции от x, то есть u(x) и v(x). Формула позволяет свести вычисления интеграла $\int u \, dv$ κ вычислению интеграла $\int v \, du$, который может оказатся более простой для интегрирования.

Большую часть интегралов вычисляемых интегрированиям по частям можно разбить на 3 группы:

- 1. (a) $\int P(x)arctan(x) dx$
 - (b) $\int P(x)arcctg(x) dx$
 - (c) $\int P(x)ln(x) dx$
 - (d) $\int P(x)arcsin(x) dx$
 - (e) $\int P(x)arccos(x) dx$
 - (f) $\int P(x)arcctg(x) dx$

Где P(x) — многочлен. Для их вычисления следует "положить" и равной одной из указанной выше функции. Например в уравнении $\int P(x) \arctan(x) dx$ заменить $\arctan(x)$ на u, а деференциал равный P(x) dx.

- 2. (a) $\int P(x)e^{kx}dx$
 - (b) $\int P(x)\sin(kx)dx$

(c) $\int P(x)\cos(x)dx$

 Γ де P(x) — многочлен, а k-некоторое число (может быть даже 1) для вычисления слудует обозначить $u{=}P(x)$, тогда:

- (a) $\int P(x)e^{kx}dx$, $dv = e^{kx}dx$
- (b) $\int P(x)\sin(kx)dx$, $dv = \sin(kx)dx$
- (c) $\int P(x)\cos(x)dx$, $dv = \cos(x)dx$
- 3. (a) $\int e^{ax}\cos(bx)dx$
 - (b) $\int e^{ax} \sin(bx) dx$

 $\Gamma \partial e\ a\ u\ b$ некоторые числа, эти интегралы вычисляются двукаратным интегрированием по частям