Introduktion till dataanalys i GIS

Thomas Gumbricht thomas@karttur.com www.karttur.com

Föreläsningens innehåll och syfte

Föreläsningen ger en introduktion till analyser i Geografiska Informationssystem

- Vektoranalyser
- Generalisering av vektordata
- Rasteranalyser

Komponenter i GIS

presentation

modellering

analys

GIS är ett system som används för:

data manipulering

av geografiska data

uppdatering

datalagring

datafångst

Beräkning av avstånd

Euklidiskt avstånd

$$d(1,2) = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}$$

där

d(1,2) är avståndet mellan puntkerna I och 2 punkt I har koordinaterna (x_1,y_1) och, punkt 2 har koordinaterna (x_2,y_2) .

Beräkning av avstånd

Manhattan avstånd

Euklidiskt avstånd

Manhattan avstånd

Beräkning av avstånd

vDataanalys, Thomas Gumbricht,

Beräkning av avstånd

Topografiskt avstånd (över 3D yta)

Beräkning av avstånd

Sfärsikt avstånd (med hänsyn till jordyans rundning)

Polygontillhörighet

Om antalet passaer genom polygonens begränsning = ojämt antal, då ligger punkten inuti polygonen

Beräkning av en polygons tyngpunkt eller centroid

Överlagring av punkter på polygoner

Först analyseras polygontillhörighet.

Sedan extraheras valda polygon attribut till punktens attributdata.

Exempel:

- hänföra kriminella aktiviteter till rätt polisdisktrikt
- hänföra röstberättigade till rätt valdistrikt

Överlagring av linjer på polygoner

Först klipps linjeobjektet där det delas av polygonskiktet, och nya start- och stoppunkter läggs in. Till skillnad från överlagring av puntker måste en ny linje-vektor skapas.

Sedan extraheras valda polygon attribut (eller linje attribut) till det nya linjeobjektets attribut-tabell.

Exempel:

- Vattendragslängder i olika fastigheter
- väglängder i olika län

Överlagring av polygoner på polygoner

Överlagring med diskreta objekt hittar inersektioner mellan två polygoner och skapar en ny polygon

l exemplet uppstår 9 new polygons vid intersektionen av polygon A och B.

- En bildas gemensamt från A och B.
- Fyra bildas från polygon A men inte Polygon B.
- Fyra bildas från polygon B men inte polygan A.

- Två överlappande polygon-lager, som representerar två klassificeringar över samma område (jordarter och land markägare)
- Överlagringen skapar nya lager från alla kombinationer av intersektioner.
- Varje polygon i det nya lagret har både e jordart och och en markägare (konkatenerade attribut).
- Kan utföras i både raster och vektor

5 polygoner med 2 attribut

Polygon	Soil	Landuse
1	1	1
2	2	1
3	2	2
4	1	3
5	2	3

Vektor data model

Generalisering av linjer

kubiska polynom - "spline"

$$p(x) = b_0 + b_1 x + ... + b_k x^k$$

Generalisering i vektordata

Reducerig av detaljnivå

Generalisering i vektordata

Buffertzoner

Buffertanalys skapar ett nytt lager genom att beräkna avstånd från ett av användaren definierat objekt i ett befintligt lager.

Startobjektet kan vara en punkt, linje eller polygon, eller definierade celler i ett raster.

Kartalgebra

Kartalgebra Innebär att raster lager kombineras på cell-

nivå, genom:

- boolska operatorer

Var är både A och B Var är A eller B Var är B men inte A Var är varken A eller B

- algebraiska operatorer (+,-, *, /, log, etc)

Kostnadsytor & lägsta kostnadsvägen

3	5	6	6	
6	6	2	2	Cellvärde =
4	4	4	2	Kostnad för att traversera en ce
2	6	3	4	

Kostnadsyta

Kallas ibland även för friktionsyta

Startpunkt

Kostnadsyta

Ackumulerad förflyttningskostnad

minimum = 13

Lägsta kostnadsvägen

Hitta den billigaste vägen över en kontinuerlig kostnadsyta:

Mellan startpunkten S och destinationspunkten D

mål: att minimera totalkostnaden

Enklare i raster data

Konstruktionskostnad

markinköp/markinlösen

miljökonsekvenser

underhållskosntader

Tillämpningar

Hitta bästa läget för olika infrastrukturprojekt, vägar, ledningar, etc.

Kostnad

Operationen att finna den lägsta kostnadsvägen är beroende på upplösning i data

Lägsta kostanadsvägar beräknade i mer högupplöst data (vit linje) och mer generaliserad data (blå linje). Det pass genom vilket den vita linjen finner den billigaste vägen har försvunnit i generaliseringen av data och därmed finner den blå vägen inte passet.

Filtrering

Låt ett kvadratiskt filter (kernel) passera över en rasteryta och berälna ett nytt värde för den centrala cellen som en funktion av cellvärdena inuti filtret.

Original raster

Assigning values to the new raster during each step

Result depends on:

- filter size

3x3

5x5

7x7

- the way the new value is calculates from the values inside the filter sum, product, maximum, minimum, average (mean, median, modus), standard deviation, linear combination, etc.

Low-pass filtering:

simple arithmetic average 3x3 filter size

effect = smoothing, removing the extremes from the data

2	3	4
1	1	5
2	4	5

sharp forms

original image

3X3 average filter

9X9 average filter

smoother forms