

FUNDAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO DISCIPLINA DE CÁLCULO NUMÉRICO ATIVIDADE COMPLEMENTAR – 2024.1

INSTRUÇÕES:

- 1- Equipes devem ser formadas com até 3 integrantes. Na entrega do trabalho, deverá ter um pequeno texto descrevendo o que cada membro da equipe fez na atividade.
- 2- Para cada equipe, será sorteado um problema de cada tópico, totalizando 4 problemas. Desses, no mínimo, um problema deverá ter sua solução apresentada em sala de aula, na data estabelecida (07/11/2024), as demais serão enviadas pela plataforma. A lista dos integrantes de cada equipe deve ser enviada até o dia 25/10/2023, no MURAL DA DISCIPLINA NO AMADEUS.
- **3-** As demais respostas devem ser encaminhadas junto com o respectivo código comentado também pela plataforma, após a apresentação e no prazo estipulado.
- 4- As soluções implementadas devem prever, sempre que possível, a possibilidade de novas entradas de dados, para resolução de outros problemas de mesma natureza ou domínio. Além das funcionalidades dos métodos implementados, serão analisados critérios como: facilidade na entrada dos dados pelo usuário, clareza na apresentação das soluções e a opção para realizar novos cálculos ou sair do programa.
- **5-** A participação de todos os integrantes no dia das apresentações **É OBRIGATÓRIA**, sob pena de não ser considerada a sua nota.

TÓPICO 01 – SISTEMAS DE EQUAÇÕES LINEARES – MÉTODOS DIRETOS

1 – Uma companhia de eletrônica produz transistores, resistores e chips de computador. Cada transistor usa quatro unidades de cobre, uma unidade de zinco e duas unidades de vidro. Cada resistor usa três, três e uma unidades de cada material, respectivamente, e cada chip de computador usa duas, uma e três unidades desses materiais, respectivamente. Colocando essa informação em uma tabela, tem-se:

Componente	Cobre	Zinco	Vidro
Transistor	4	1	2
Resistor	3	3	1
Chip de computador	2	1	3

O fornecimento desses materiais varia de semana para semana. Assim, a companhia precisa determinar uma meta de produção diferente para cada semana. Por exemplo, em uma semana a quantidade total de materiais disponíveis era: 960 unidades de cobre, 510 unidades de zinco e 610 unidades de vidro. Determine o sistema de equações que modela essa meta de produção e desenvolva um programa para determinar o número de transistores, resistores e chips de computador fabricados nessa semana. O programa deve permitir a entrada de outros valores para problemas semelhantes.

2 - Um engenheiro supervisiona a produção de três tipos de componentes elétricos. Três tipos de material — metal, plástico e borracha — são necessários para a produção. As quantidades necessárias para a produção de cada componente são:

Componente		Plástico, g/ por componente	Borracha, g/ por componente
1	15	0,30	1,0
2	17	0,40	1,2
3	19	0,55	1,5

Se um total de 3,89; 0,095 e 0,282 kg de metal, plástico e borracha, respectivamente, estiver disponível a cada dia, quantos componentes poderão ser produzidos por dia? a - Apresente o problema acima na forma de um sistema de equações lineares.

- b Desenvolva um programa que seja capaz de resolver problemas semelhantes usando métodos diretos.
- c Encontre a solução do sistema linear com os dados do problema.
- 3 Um engenheiro envolvido em uma construção precisa de 4.800, 5.800 e 5.700 m3 de areia, cascalho fino e cascalho grosso, respectivamente, para terminar a construção. Existem três minas de onde esses materiais podem ser obtidos. A composição dessas minas é:

	Areia Cascalho fino %		Cascalho grosso %		
Mina 1	55	30	15		
Mina 2	25	45	30		
Mina 3	25	20	55		

Quantos metros cúbicos devem ser minerados de cada mina para atender as necessidades do engenheiro?

- a Apresente o problema acima na forma de um sistema de equações lineares.
- b Desenvolva um programa que seja capaz de resolver problemas semelhantes usando métodos diretos.
- c Encontre a solução do sistema linear com os dados do problema.

TÓPICO 02 - SISTEMAS DE EQUAÇÕES LINEARES – MÉTODOS ITERATIVOS

1 − O circuito mostrado a seguir é frequentemente usado em medidas elétricas e é conhecido com uma "Ponte de Wheatstone", conforme ilustrado na figura abaixo.

As equações que estabelecem o sistema são obtidas a partir da lei de Kirchoff.

Usando **o método iterativo de Gauss-**Siedel **para** resolução de sistemas lineares, determinar as correntes no problema proposto quando: E=30 Volts, R1=20 Ohms e R2=R3= R4=R5=120 Ohms.

Obs: Testar a convergência para o sistema, usando os critérios de linhas e Sassenfeld.

2 — Numa treliça estaticamente determinada, com juntas articuladas, como mostra a figura abaixo, a soma de todas as forças horizontais ou verticais, em cada junta é igual a zero, pois o sistema está em repouso. Essas somas formam as equações de um sistema linear esparso (vários termos iguais a zero). Esse tipo de estrutura pode ser descrito por um sistema de equações lineares acopladas.

A tensão obtida em cada componente (F) pode ser obtida a partir da resolução de um sistema de

equalções lineares.

Perceba que as equações são obtidas fazendo-se a soma de todas as forças horizontais ou verticais em cada junta igual a zero. Além disso a matriz dos coeficientes é bastante esparsa, e assim é mais apropriado resolvê-la usando um método iterativo.

- A Apresente o sistema linear obtido com os dados da treliça acima.
- B Desenvolva um programa que seja capaz de resolver esse e problemas semelhantes, usando o **Método de Gauss-Siedel**.
- V Encontre a solução do sistema linear com os dados do problema com precisão 0,0001.

Obs: Testar a convergência para o sistema, usando os critérios de linhas e Sassenfeld.

3 – Considere o circuito elétrico da figura abaixo.

- A Apresente o sistema linear obtido com os dados do circuito acima, a partir da Lei de Kirchoff.
- B Desenvolva um programa que seja capaz de resolver esse e problemas semelhantes, usando o **Método de Gauss-Siedel**.
- C Usando o programa desenvolvido, encontre o valor das correntes. Use como aproximação inicial, o quociente do termo independente pelo elemento da diagonal principal em cada linha (b_i/a_{ii}) , com precisão 0,0001.

Obs: Testar a convergência para o sistema, usando os critérios de linhas e Sassenfeld.

TÓPICO 03 - INTERPOLAÇÃO POLINOMIAL/MÍNIMOS QUADRADOS

1 - Em 1965, Gordon Moore, um dos fundadores da Intel, propôs uma regra para a crescente miniaturização dos chips que ficou conhecida como a"Lei de Moore". Em sua "profecia", Moore afirmava que o número de transistores dos chips teriam o número duplicado a cada 18 meses.

A tabela a seguir relaciona alguns chips com o seu respecitvo ano de lançamento. O gráfico ilustra essa evolução.

Chip	Ano	Número de transistores
4004	1971	2 250
8008	1972	3 300
8080	1974	6 000
8086	1978	29 000
80286	1982	134 000
80386	1986	275 000
80486	1989	1 200 000
Pentium	1993	3 100 000
Pentium II	1997	7 500 000
Pemtium III	1999	9 500 000
Pentium 4	2000	42 000 000

De posse destes dados, proponha uma função que estabeleça uma previsão para o número de transistores em chips lançados em 2010, 2020 e 2030. (Dica: procure uma função N=f(a), onde **N** é o número de transistores e **a** é o ano).

Antes de tudo, transforme o eixo do número de transistores para log₁₀(N)

2 — Considere os dados sobre a queda de voltagem V através de um resistor para diversos valores diferentes da corrente i., obtidos em um ensaio de laboratório:

i	0,25	0,75	1,25	1,5	2,0
V	-0,45	-0,60	0,70	1,88	6,0

Use interpolação polinomial, usando as **formas de Lagrange e Newton**, de **segundo a quarto graus** para fazer uma estimativa da queda de voltagem para i = 1,15.

Obs: Escolha seus pontos base para obter a melhor acurácia; ou seja, os pontos-base devem ser centrados em torno e tão próximo possível do valor desconhecido a ser obtido.

3 – Use regressão por mínimos quadrados para ajustar por uma reta, parábola e exponencial aos os seguintes dados:

x	0	1,5	2,6	4,2	6	8,2	10	11,4
F(x)	18	13	11	9	6	4	2	1

Apresentar também, para cada ajuste, o erro quadrático cometido = $\sum [F(x_i) - G(x_i)]^2$.

TÓPICO 04 – INTEGRAÇÃO NUMÉRICA

1 - A determinação da área da seção reta de rios e lagos é importante em projetos de prevenção de enchentes (para o cálculo de vazão da água) e nos projetos de reservatórios (para o cálculo do volume total de água). A menos que dispositivos tipo sonar sejam usados na obtenção do perfil do fundo de rios/lagos, o engenheiro deve trabalhar com valores da profundidade, obtidos em pontos discretos da superfície. Um exemplo típico de seção reta de um rio é mostrado na Figura a seguir:

Faça uma aplicação que calcule, por integração numérica (usando as **Regras do Trapézio e de Simpson Repetidas**), a área da seção reta da Figura acima, considerando os pontos igualmente espaçados.

2 — Considere as margens de um rio e tome como referência de medida uma linha reta, conforme a figura abaixo. Foram medidas distências, em metros, entre essa linha e as duas margens, em alguns pontos, a partir do ponto tomado como origem. Tais dados foram registrados na tabela a seguir:

Xi	0	10	20	30	40
$M_1(x_i)$	50,8	86,2	136	72,8	51
$M_2(x_i)$	113,6	144,5	185	171,2	95,3

Usando ambas as regras de integração repetidas, determine o valor aproximado da área da superfície do rio no intervalo [0,40].

3 — Usando ambas as regras de integração repetidas, determine o valor aproximado da área da seção do trecho mais largo de um navio, conforme dados da figura ao lado:

