Aula 4: Linguagens Regulares.

Prof. Lucio A. Rocha

Engenharia de Computação Universidade Tecnológica Federal do Paraná, UTFPR Câmpus Apucarana, Brasil

1° semestre / 2023

Sumário

- Introdução
- 2 Autômato Finito
- 3 Linguagens Regulares

Seção 1

Introdução

- Linguagens Regulares (Tipo 3):
 - Gramática Regular √
 - Formalismo axiomático (gerador)
 - Gramática com restrições das regras de produção de sentenças
 - Expressão Regular √
 - Formalismo denotacional (gerador)
 - Conjuntos básicos, concatenação, alternativa, repetição
 - Autômato Finito
 - Formalismo operacional (reconhecedor)
 - Conjunto de estados finitos.

- Na hierarquia de Chomsky:
 - Classe de linguagens mais simples
 - Algoritmos de reconhecimento, geração ou conversão
 - Pouca complexidade
 - Grande eficiência
 - Linguagens de programação em geral são não-regulares.
 - Principal aplicação: análise léxica.

Seção 2

- É um sistema de estados pré-definidos e finitos.
- O autômato possui:
 - Estados
 - Transições

Figura: Autômato Finito.

• Autômato Finito é descrito por uma quíntupla:

$$M = (\Sigma, Q, \delta, q_0, F)$$

- Σ : alfabeto (finito) de entrada.
- Q: conjunto finito de estados.
- δ : conjunto de transições (função parcial, função de transição ou programa)

$$\delta: Qx\Sigma \to Q$$

- q_0 : estado inicial $(q_0 \in Q)$
- F: conjunto de estados finais. ($F \subseteq Q$)

• Função de transição:

Figura: Autômato Finito.

- p: estado anterior.
- a: símbolo lido.
- q: novo estado.

• Função de transição:

$$\delta(p, a) = q$$

$$p q$$

$$a q \dots$$

$$\dots \dots \dots$$

- p: estado anterior.
- a: símbolo lido.
- q: novo estado.

- Computação de um autômato finito:
 - Aplicação sucessiva da função de transição para cada símbolo de entrada
 - Sentença válida:
 - A função de transição alcançou estado final
 - Sentença não-reconhecida:
 - A função de transição terminou a leitura em estado que não é final
 - A função de transição não possui transição para um estado com o símbolo da sentenca.
 - Não há sentença inválida: apenas não é reconhecida pela linguagem.

• Exemplo: Reconhecer a palavra 010

	δ	S_i	S_n	Sa
•	0	Sa	Sa	Sa
	1	S_n	S _n	S_n

- Σ : $\{0,1\}$
- $Q: \{S_i, S_a, S_n\}$
- q_0 : S_i
- F: $\{S_a\}$
- Computação da palavra:
 - $\delta(S_i, 0) = S_a$
 - $\delta(S_a, 1) = S_n$
 - $\delta(S_n,0) = S_a$
 - $S_a \in F$. Então, palavra é válida.

- Exemplo: Reconhecer aa ou bb como subpalavra.
- $L = \{ w \mid w \text{ possui } \mathbf{aa} \text{ ou } \mathbf{bb} \text{ como subpalavra} \}$
- $M = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta, q_0, \{q_f\})$

	δ	q_0	q_1	q_2	q_f
•	а	q_1	q_f	q_1	q_f
	b	q_2	q_2	q_f	q_f

Figura: Autômato Finito.

- q₁: símbolo anterior é a.
- q₂: símbolo anterior é **b**.
- q₀: estado inicial.
- q_f: estado final.
- Pergunta: a palavra abba é reconhecida por esse autômato?

- Autômato finito sempre pára
 - Palavra é finita
 - Novo símbolo é lido a cada aplicação da função de transição
 - Não existe a possibilidade de loop infinito
- Parada do processamento
 - Palavra válida:
 - A função de transição alcançou estado final
 - Palavra não-reconhecida:
 - Função de transição terminou a leitura em estado que não é final
 - Função de transição não possui transição para um estado com o símbolo da palavra.
 - Não há palavra inválida: apenas não é reconhecida pela linguagem.

• Função programa estendida

•
$$\delta^*: Qx\Sigma^* \to Q$$

é a função estendida de

$$\delta: Qx\Sigma \to Q$$

para reconhecimento de palavras.

• Exemplo:

$$M = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta, q_0, \{q_f\})$$

• A computação da sentença abaa:

•
$$\delta^*(q_0, abaa) = \delta^*(\delta(q_0, a), baa) =$$

• $\delta^*(q_1, baa) = \delta^*(\delta(q_1, b), aa) =$
• $\delta^*(q_2, aa) = \delta^*(\delta(q_2, a), a) =$
• $\delta^*(q_1, a) = \delta^*(\delta(q_1, a), \varepsilon) =$
• $\delta^*(q_f, \varepsilon) = q_f$

• Portanto, a palavra é aceita.

Seção 3

- \bullet Σ : alfabeto
- Σ^* : é uma partição de todas as palavras do alfabeto.

• $\Sigma^* = \{\{ACEITA(M)\}, \{REJEITA(M)\}\}$

- Def.: Linguagem ACEITA pelo autômato finito determinístico (AFD).
- Dado o AFD definido por

$$M = (\Sigma, Q, \delta, q_0, F)$$

, a linguagem ACEITA por M, definida por:

$$ACEITA(M) = L(M)$$

, é o conjunto de todas as palavras de Σ^* aceitas por M a partir do estado inicial q_0 , ou seja,

$$ACEITA(M) = L(M) = \{ w \mid \delta^*(q_0, w) \in F \}$$

- Def.: Linguagem REJEITADA pelo autômato finito determinístico (AFD).
- Dado o AFD definido por

$$M = (\Sigma, Q, \delta, q_0, F)$$

, a linguagem REJEITADA por M, definida por:

, é o conjunto de todas as palavras de Σ^* rejeitadas por M a partir do estado inicial q_0 , ou seja,

$$REJEITA(M) = \{ w \mid \delta^*(q_0, w) \notin F \}$$

$$REJEITA(M) = \{ w \mid \delta^*(q_0, w) \text{ \'e indefinida } \}$$

Def.: Linguagem Regular (ou Linguagem Tipo 3)

- L é uma Linguagem Regular se existe pelo menos um AFD que aceita L, ou seja, ACEITA(M)=L
 - Diferentes autômatos finitos podem aceitar uma mesma linguagem.
 - Def.: Autômatos Finitos Equivalentes
 M1 e M2 são equivalentes se, e somente se:

$$ACEITA(M1) = ACEITA(M2)$$

- Exemplo: Considere a linguagem L_1 sobre o alfabeto $\Sigma = \{a, b\}$
- $L_1 = \emptyset = \{\}$
- $M_1 = (\{a, b\}, \{q_0\}, \delta_1, q_0, \{\})$
- $egin{aligned} egin{aligned} \delta_1 &= \{ \ \delta(q_0, a) &= q_0, \ \delta(q_0, b) &= q_0 \} \end{aligned}$
- $ACEITA(M_1) = L_1$. Portanto, L_1 é uma linguagem regular.

- Exemplo: Considere a linguagem L_2 sobre o alfabeto $\Sigma = \{a, b\}$
- $L_2 = \Sigma^* = \{\varepsilon, a, aa, ab, bb, aabb, ...\}$
- $M_2 = (\{a, b\}, \{q_0\}, \delta_2, q_0, \{q_0\})$
- $\delta_2 = \{$ $\delta(q_0, a) = q_0,$ $\delta(q_0, b) = q_0 \}$
- $ACEITA(M_2) = L_2$. Portanto, L_2 é uma linguagem regular.

• Pergunta: M_1 é equivalente a M_2 ?

Figura: M_1 .

Figura: M_2 .

- Exemplo:
- $L_1 = \{ w \mid w \text{ possui número ímpar de } \mathbf{a} \in \mathbf{b} \}$
- $M_1 = (\{a, b\}, \{q_0, q_1, q_2, q_3, q_4\}, \delta_1, q_0, \{q_2, q_4\})$
- $\delta_1 = \{ \\ \delta(q_0, a) = q_1, \\ \delta(q_0, b) = q_3, \\ \delta(q_1, a) = q_0, \\ \delta(q_1, b) = q_2, \\ \delta(q_2, b) = q_1, \\ \delta(q_3, b) = q_0, \\ \delta(q_3, a) = q_4, \\ \delta(q_4, a) = q_3 \}$
- $ACEITA(M_1) = L_1$. Portanto, L_1 é uma linguagem regular.

- Exemplo:
- $L_2 = \{ w \mid w \text{ possui número ímpar de } \mathbf{a} \in \mathbf{b} \}$
- $M_2 = (\{a, b\}, \{q_0, q_1, q_2, q_3\}, \delta_2, q_0, \{q_2\})$
- $\delta_2 = \{$ $\delta(q_0, a) = q_1,$ $\delta(q_0, b) = q_3,$ $\delta(q_1, a) = q_0,$ $\delta(q_1, b) = q_2,$ $\delta(q_2, b) = q_1,$ $\delta(q_3, b) = q_0,$ $\delta(q_3, a) = q_2,$ $\delta(q_2, a) = q_3 \}$
- $ACEITA(M_2) = L_2$. Portanto, L_2 é uma linguagem regular.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

• Pergunta: M_1 é equivalente a M_2 ?

Figura: M_1 .

Figura: M_2 .

- Computações x Caminhos de um Grafo
 - Conjunto de arcos: todas as computações possíveis.
 - Subconjunto de arcos:
 - Com origem no estado inicial.
 - Destino em um estado final.
 - Linguagem aceita.

Figura: Autômato x Caminhos de um Grafo.

- $ACEITA(M) = \{\varepsilon, d, abc\}$
- $COMPUTACAO(M) = \{\varepsilon, a, b, c, d, ab, bc, abc\}$

1 ト 4 同 ト 4 豆 ト 4 豆 ト 9 Q (~)

• Linguagem gerada: Seja $G = (V_T, V_N, \mathbb{P}, S_i)$ uma gramática. A linguagem gerada é:

$$L(G) = GERA(G)$$

$$L(G) = \{ w \in (V_T)^* \mid S \Rightarrow^+ w \}$$

- Uma gramática G é regular se G é uma gramática linear.
- Gramática linear: todas as produções são da forma:

$$A \rightarrow wB$$
 ou $A \rightarrow Bw$ ou $A \rightarrow w$

	Gramática Linear	Produções
	Linear à Esquerda (GLE)	A o Bw ou $A o w$
•	Linear Unitária à Esquerda (GLUE)	$GLE + w \le 1$
	Linear à Direita (GLD)	A o wB ou $A o w$
	Linear Unitária à Direita (GLUD)	$GLD + w \le 1$

- Exemplo:
 - A linguagem a(ba)* é gerada pelas seguintes gramáticas regulares:
 - GLD:

$$G_1 = (\{a, b\}, \{S, A\}, \mathbb{P}, S)$$

 $\mathbb{P}: S \to aA$
 $A \to baA|_{\mathcal{E}}$

GLE:

$$G_2 = (\{a, b\}, \{S\}, \mathbb{P}, S)$$

 $\mathbb{P}: S \to Sba|a$

GLUD:

$$G_3 = (\{a, b\}, \{S, A, B\}, \mathbb{P}, S)$$

$$\mathbb{P}: S \to aA$$

$$A \to bB|\varepsilon$$

$$B \to aA$$

GLUE:

$$G_4 = (\{a,b\},\{S,A\},\mathbb{P},S)$$

$$\mathbb{P}: S \to Aa|a$$

$$A \to Sb$$