

Bloque 7. Redes Neuronales

INTRODUCCIÓN

1 Eficiencia de las redes neuronales.

Proposición: cuánto más tamaño tiene la red, más precisa es.

5 Conclusión: afirmamos proposición.

VARIABLES •

Red i (5.000 iteraciones)	(i = 1, 3 o 5)
Entrenamiento:	Test:
100 img / iteración	10.000 img/ iteración
(x 1) Tiempo de entrenamiento	-
(x 5.000)	(x 5.000)
Precisión entrenamiento	Precisión test
(x 5.000)	(x 5.000)
Error entrenamiento	Error test

ERROR Y PRECISIÓN •

• PRUEBAS DE HIPÓTESIS •

PROPOSICIÓN 1

HIPÓTESIS 3

ESTADÍSTICO 5

Prueba para 1 y 3 Prueba para 3 y 5

H₀:
$$\mu_1 = \mu_3$$
 H₀: $\mu_3 = \mu_5$ H₁: $\mu_1 < \mu_3$ H₂

$$\hat{z} = \frac{(\bar{y}_1 - \bar{y}_2)}{\sqrt{S_1^2/n_1 + S_2^2/n_2}}$$

 n_1 , $n_2 \ge \approx 100$ m.a.s indep

S

0000000

ESTADÍSTICO

 $z_{1,3} = -17.12524$ $z_{3,5} = -3.346447$ $z_{1-\alpha} = 3.090232$

PREDICCIÓN

X (capas)	Y (tiempo)
1	37,051
2	123,0838
3	189,008
4	335,3667
5	461,62

MÁS RÁPIDO

DISCUSIÓN •

MÁS PRECISO

