世界知的所有権機関 国 際 事 務 局

特許協力条約に基づいて公開された国際出願。

(51) 国際特許分類6 C07D 405/04, A01N 43/54

(11) 国際公開番号 A1 WO97/29105

(43) 国際公開日

1997年8月14日(14.08.97)

(21) 国際出願番号

PCT/JP97/00320

(22) 国際出願日

1997年2月7日(07.02.97)

(30) 優先権データ 特願平8/48327

1996年2月9日(09.02.96)

(71) 出願人 (米国を除くすべての指定国について) クミアイ化学工業株式会社

(KUMIAI CHEMICAL INDUSTRY CO., LTD.)[JP/JP]

イハラケミカル工業株式会社

(IHARA CHEMICAL INDUSTRY CO., LTD.)[JP/JP]

〒110 東京都台東区池之端1丁目4番26号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

宮崎雅弘(MIYAZAKI, Masahiro)[JP/JP]

出口武司(DEGUCHI, Takeshi)[JP/JP]

武樋隆芳(TAKEHI, Takayoshi)[JP/JP]

田丸雅敏(TAMARU, Masatoshi)[JP/JP]

〒437-12 静岡県磐田郡福田町塩新田408番地の1

株式会社 ケイ・アイ研究所内 Shizuoka, (JP)

山地充洋(YAMAJI, Yoshihiro)[JP/JP]

〒439 静岡県小笠郡菊川町加茂1809番地 Shizuoka, (JP)

花井 涼(HANAI, Ryo)[JP/JP]

〒439 静岡県小笠郡菊川町西方1198番地の2 Shizuoka, (JP)

魚津壮太(UOTSU, Souta)[JP/JP]

〒439 静岡県小笠郡菊川町加茂3353番地 Shizuoka, (JP)

佐土原英雄(SADOHARA, Hideo)[JP/JP]

〒352 埼玉県新座市堀之内2丁目9番地の3 Saitama, (JP)

(74) 代理人

弁理士 山本量三,外(YAMAMOTO, Ryozo et al.)

〒101 東京都千代田区神田東松下町38番地

鳥本鋼業ビル Tokyo, (JP)

(81) 指定国 AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO特許 (KE, LS, MW, SD, SZ, UG), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調查報告書

(54)Title: BENZOFURAN-7-YLURACIL DERIVATIVES AND HERBICIDES

(54)発明の名称 ベンゾフラン-7-イルウラシル誘導体及び除草剤

(57) Abstract

Benzofuran-7-yluracil derivatives represented by general formula (1) and herbicides containing the same as the active ingredient (1), wherein X and Y represent each hydrogen, halogeno, etc.; R¹ represents hydrogen, alkyl, etc.; R² represents haloalkyl, etc.; R³ represents hydrogen, halogeno, etc.; and R⁴ and R⁵ represent each independently hydrogen, alkyl, haloalkyl, halogeno, cyano, phenyl, benzyl, nitro, etc. These compounds exert excellent herbicidal effects on various upland weeds such as broadleaf weeds, grass weeds and perennial or annual cyperaceous weeds over a wide range of from the pre-sprouting period to the growing period. Also, perennial and annual lowland weeds can be controlled thereby. Moreover, the herbicides are highly safe for crops, in particular, rice, wheat, barley, grain sorghum, corn, soybean, cotton, beet, etc.

(57) 要約

一般式[1]

(式中、X、Yは水素原子、ハロゲン原子等を表し、 R^{-1} は水素原子、アルキル基等を表し、 R^{-2} はハロアルキル基等を表し、 R^{-3} は水素原子、ハロゲン原子等を表し、 R^{-4} 及び R^{-5} はそれぞれ独立して、水素原子、アルキル基、ハロアルキル基、ハロゲン原子、シアノ基、フェニル基、ベンジル基、ニトロ基等を表す。)で示されるベンゾフランー 7 ーイルウラシル誘導体及びこれを有効成分とする除草剤。

一般式[1] で表される本発明の化合物は、畑地において問題となる種々の広葉 雑草、イネ科雑草、及び多年生若しくは1年生カヤツリグサ科雑草などに、発芽 前から生育期の広い範囲にわたって優れた除草効果を発揮する。また、水田に発 生する一年生雑草及び多年生雑草を防除することもできる。

又、本発明の除草剤は作物に対する安全性も高く、特にイネ、コムギ、オオムギ、グレインソルガム、トウモロコシ、ダイズ、ワタ、テンサイ等に対して高い安全性を示す。

明細書

ベンソフランー7-イルウラシル誘導体及び除草剤

[技術分野]

本発明は新規なベンゾフラン-7-イルウラシル誘導体及びそれを有効成分と する除草剤に関するものである。

[背景技術]

特開平5-262765号公報明細書、特開平5-25165号公報明細書にはある種のベンゾフラン誘導体が、特開昭63-156787号公報明細書にはある種のベンゾピラン誘導体及びベンゾフラン誘導体が、さらにヨーロッパ特許626962号公報明細書にはベンゾチオフェン誘導体及びベンゾフラン誘導体が除草剤の有効成分として用いられることが記載されている。

有用作物に対して使用される除草剤は、土壌又は茎葉に施用し、低薬量で十分な除草効果を示し、しかも作物・雑草間の選択性を発揮する薬剤であることが望まれる。しかしながら土壌処理に限らず、除草効果と作物・雑草間の選択性は、土壌の性質に影響され、施用後に作物に薬害を生ずることがある。これらの点で、上記文献中で開示されている化合物は必ずしも満足すべき物とは言い難い。

本発明者らはこの様な状況に鑑み、除草効果と作物・雑草間の選択性を検討した結果、新規なベンゾフランー 7 ーイルウラシル誘導体が、優れた除草効果と作物・雑草間の選択性を有することを見いだし、本発明を完成した。

[発明の開示]

すなわち本発明は一般式[1]

[式中、Xは水素原子又はハロゲン原子を表し、Yは水素原子、ハロゲン原子、シアノ基、アルキル基、ハロアルキル基、アルコキシ基又はハロアルコキシ基を表し、R¹は水素原子、アルキル基、アミノ基又はハロアルキル基を表し、R²

はアルキル基又はハロアルキル基を表し、R³は水素原子、ハロゲン原子、アル キル基又はハロアルキル基を表し、R 4 及びR 5 はそれぞれ同一又は相異なり、 水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、ハロ アルキル基、アルコキシ基、ハロアルコキシ基、アルケニルオキシ基、アルキニ ルオキシ基、アルコキシカルボニルアルコキシ基、アルキルチオ基、ハロアルキ ルチオ基、アルケニルチオ基、アルキニルチオ基、アルコキシカルボニルアルキ ルチオ基、アルキルスルホニル基、ハロアルキルスルホニル基、置換されていて もよいフェニルスルホニル基、ハロゲン原子、ヒドロキシイミノアルキル基、ヒ ドロキシイミノハロアルキル基、アルコキシイミノアルキル基、アルコキシイミ ノハロアルキル基、アルキルイミノアルキル基、置換されていてもよいフェニル イミノアルキル基、ヒドラゾノアルキル基、アルキルヒドラゾノアルキル基、置 換されていてもよいフェニルヒドラゾノアルキル基、シアノ基、(窒素原子に、 同一又は相異なる水素原子、アルキル基、アシル基、ハロアルキルカルボニル 基、アルキルスルホニル基、ハロアルキルスルホニル基、もしくは置換されてい てもよいフェニル基が置換した)カルバモイル基、置換されていてもよいフェニ ル基、置換されていてもよいベンジル基、シアノアルキル基、カルバモイルアル キル基、チオシアノアルキル基、ニトロ基、ヒドロキシアミノ基、アルキル基に より置換されていてもよいオキシラニル基、(窒素原子に、同一又は相異なる水 素原子、アルキル基、ハロアルキル基、アルケニル基、アルキニル基、シクロア ルキル基、アルキルスルホニル基、ハロアルキルスルホニル基、置換されていて もよいフェニルスルホニル基、アシル基、ハロアルキルカルボニル基もしくは置 換されていてもよいベンゾイル基が置換した)アミノ基又は一般式

(式中、2は酸素原子又は硫黄原子を表し、Wは基-SO-Yは基 $-SO_2-\varepsilon$ 表し、 R^6 は水素原子又はアルキル基を表し、 R^7 は水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、ハロアルキル基、アルコキシア

WO 97/29105 PCT/JP97/00320

ルキル基又はアルキルチオアルキル基を表し、あるいはR 6 及びR 7 は互いに結 合し、これらが結合している炭素原子と一緒になって3~8員(炭素)環を形成 することもできる。R ⁸は水素原子、アルキル基、シクロアルキル基、ハロアル キル基、アルコキシカルボニルアルキル基、ヒドロキシカルボニルアルキル基、 モノアルキルカルバモイルアルキル基、ジアルキルカルバモイルアルキル基、ア シル基、アルキルスルホニル基、ハロアルキルスルホニル基、ハロアルキルカル ボニル基、モノアルキルカルバモイル基、モノアルキルチオカルバモイル基、ジ アルキルカルバモイル基、ジアルキルチオカルバモイル基又は置換されていても よいベンゾイル基を表し、R ⁹ は水素原子、アルキル基、シクロアルキル基、ハ ロアルキル基、アルコキシカルボニルアルキル基、ヒドロキシカルボニルアルキ ル基、モノアルキルカルバモイルアルキル基又はジアルキルカルバモイルアルキ ル基を表し、R¹⁰は水素原子、アルキル基、アシル基、アルキルスルホニル 基、ハロアルキルスルホニル基又はハロアルキルカルボニル基を表し、R11は 水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、ハロ アルキル基、アルコキシアルキル基、アルキルチオアルキル基、置換されていて もよいフェニル基、アルコキシ基、ハロアルコキシ基、置換されていてもよいべ ンジルオキシ基、置換されていてもよいフェノキシ基又は水酸基を表す。) で示 される基を表す。]で示されるベンゾフラン-7-イルウラシル誘導体及びそれ を有効成分とする除草剤である。

なお、本明細書において、アルキル基、アルキルチオ基、アルコキシアルキル基、アルキルチオアルキル基、アルコキシカルボニルアルキルチオ基、アルキルイミノアルキル基、シアノアルキル基、カルバモイルアルキル基、チオシアノアルキル基、アルキル基により置換されていてもよいオキシラニル基、アルコキシカルボニルアルキル基、ヒドロキシカルボニルアルキル基、モノアルキルカルバモイルアルキル基、ジアルキルカルバモイルアルキル基、ジアルキルカルバモイルアルキル基、ジアルキルルがモイルアルキル基、ヒドロキシイミノアルキル基、アルコキシイミノアルキル基、置換されていてもよいフェニルイミノアルキル基、ヒドラゾノアルキル基、アルキルヒドラゾノアルキル基、置換されていてもよいフェニルヒドラゾノアルキル基及びアルキルスルホニル基のアルキルとは、炭素数1~6の直鎖又は分岐鎖状のアルキル基を示し、例えばメチル基、

WO 97/29105 PCT/JP97/00320

エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基、3、3-ジメチルブチル基等を挙げることができる。

ハロアルキル基、ハロアルキルスルホニル基、ハロアルキルカルボニル基、ヒドロキシイミノハロアルキル基及びアルコキシイミノハロアルキル基のハロアルキルとは、ハロゲン原子によって置換された炭素数1~4の直鎖又は分岐鎖状のアルキル基を示し、例えばクロロメチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基等を挙げることができる。

ハロゲン原子とはフッ素原子、塩素原子、臭素原子、又はヨウ素原子を示す。 アルコキシ基、アルコキシアルキル基、アルコキシカルボニルアルキル基、アルコキシイミノアルキル基、アルコキシイミノアルキル基のアルコキシと は、炭素数1~6の直鎖又は分岐鎖状のアルコキシ基を示し、例えばメトキシ 基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソプトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、イソヘキシルオキシ基、3,3-ジメチルブトキシ基等を挙げることができる。

ハロアルコキシ基とはハロゲン原子によって置換された炭素数 1 ~ 4 の直鎖又は分岐鎖状のアルコキシ基を示し、例えばクロロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基等を挙げることができる。

アシル基とは、炭素数 1 ~ 6 の直鎖又は分岐鎖状の脂肪族アシル基を示し、例 えばホルミル基、アセチル基、プロピオニル基、ブチリル基、ピバロイル基等を 挙げることができる。

アルケニル基、アルケニルオキシ基及びアルケニルチオ基のアルケニルとは炭素数 2~6の直鎖又は分岐鎖状のアルケニル基を示し、例えばビニル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等を挙げることができる。

アルキニル基、アルキニルオキシ基及びアルキニルチオ基のアルキニルとは炭素数2~6の直鎖又は分岐鎖状のアルキニル基を示し、例えばエチニル基、プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、3、3~ジメチルー1~ブチニル基、4~メチルー1~ペンチニル基等を挙げることができる。

シクロアルキル基とは炭素数 3~8のシクロアルキル基を示し、例えばシクロ プロピル基、シクロヘキシル基等を挙げることができる。

置換されていてもよいフェニルスルホニル基、置換されていてもよいフェニルイミノアルキル基、置換されていてもよいフェニルヒドラゾノアルキル基、置換されていてもよいベンジルオキシ基、置換されていてもよいベンジルオキシ基、置換されていてもよいベンゾイル基、置換されていてもよいフェニル基及び置換されていてもよいベンジル基におけるフェニル環は、ハロゲン原子、アルキル基、アルコキシ基、ハロアルキル基、ハロアルコキシ基、ニトロ基、シアノ基等の置換基で置換されたものも含む。

次に、本発明化合物の具体例を表 1 ~表 2 4 に記載する。しかしながら、これらの化合物に限定されるものではない。なお、化合物番号は以後の記載において参照される。

(表1)

化合物	Х	Y	R ¹	R ²	R3	R ⁴	R ⁵	融点(℃)
番号		•						屈折率 n D
1	F	Cl	СНЗ	CF ₃	Н	н	Н	127-128
2	F	Cl	CH ₃	CF3	H	СH ₃	H	196-197
3	F	Cl	CH3	CF3	H	С ₂ Н ₅	Н	142-143
4	F	Cl	CH3	CF ₃	H	С ₃ Н ₇	H	88-89
5	F	Cl	CH3	CF3	H	C3H7-i	H	
6	F	Cl	CH3	CF ₃	H	C4H9	H	1. 5375
7	F	Cl	CH3	CF3	H	C4H9-i	·H	1. 5358
8	F	Cl	СНЗ	CF3	H	CH ₂ Br	H	168-172
9	F	C1	СНЗ	CF3	H	CHBr ₂	H	126-128
10	F	Cl	CH3	CF3	Н	CBr ₃	H	測定不可
11	F	Cl	СН3	CF3	H	CHF2	K	
12	F	Cl	СНЗ	CF3	Н	CH ₂ OH	H	198-199
13	F	C1	СНЗ	CF3	Н	СН (СН ₃) ОН	H	154-157
14	F	Cl	CH3	CF3	H	СH ₂ ОСН ₃	H	1. 5389
15	F	Cl	CH3	CF3	Н	${\tt CH_2OC_2H_5}$	Н	1. 5379
16	F	Ċl	СНЗ	CF3	H	сн ₂ ососн ₃	H	1. 5347
17	F.	C1	СНЗ	CF3	H	CH20C0C2H5	H	
18	. F	Cl	СНЗ	CF3	H	СН (СН ₃) ОСОСН ₃	H	
19	F	Cl	СНЗ	CF3	H	CH ₂ OCO -	H	160-162
20	F	C1	CH3	CF3	Н	CH2SCH3	H	測定不可
21	F	Cl	CH3	CF3	H	CH ₂ SO ₂ CH ₃	H	209-211
22	F	Cl	СНЗ	CF3	H	CH2SC2H5	H	1. 5629
23	F	Cl	CH3	CF3	Н	CH ₂ SO ₂ C ₂ H ₅	H	212-215
24	F	C1	СНЗ	CF3	Н	${\rm CH_2N}$ (${\rm CH_3}$) $_{\rm 2}$	H	
25	F	Cl	СНЗ	CF3	H	$\mathrm{CH_2N}\left(\mathrm{C_2H_5}\right)_2$	H	1. 5331
26	F	Cl	СНЗ	CF3	H	Cl	Н	180-182
27	F	Cl	СНЗ	CF3	H	Br	н	
								

(表2)

化合物	勿 X	Y	Rl	R ²	R3	R ⁴	R5	融点(℃)
番号								屈折率 n _D 20
28	F	Cl	СНЗ	CF ₃	. H	сосн3	Н	193-194
29	F	C1	CH ₃	CF3	H	COC ₂ H ₅	Н	測定不可
30	F	Cl	CH ₃	CF ₃	Н	COC ₃ H ₇	Н	測定不可
31	F	Cl	СНЗ	CF ₃	Н	COC ₃ H ₇ -i	Н	128-129
			_	_		C1		
32	F	Cì	CH3	CF3	Н	co–〈〉	Н	
33	F	C1	СНЗ	CF3	H	СНО	Н	180-183
34	F	Cl	CH ₃	CF3	H	CH=NOH	Н	
35	F	Cl	CH3	CF3	Н	CH=NOCH3	Н	測定不可
36	F	Cl	CH3	CF3	Н	C (CH ₃) =NOH	Н	263-266
37	F	Cl	CH3	CF ₃	Н	C (CH3) =NOCH3	Н	176-178
38	F	Cl	СНЗ	CF ₃	Н	C (CH3) =NOC2H5	Н	
39	F	Cl	CH3	CF ₃	H	C (CH3) =NCH3	Н	-
40	F	Cl	СНЗ	CF3	H	С (СН ₃) =NNHCH ₃	Н	
41	F	Cl	CH3	CF3	H	CN	H	
42	F	Cl	снз	CF3	Н	СООН	Н	267-268(分解)
43	F	Cl	снз	CF ₃	H	СООСН3	н	194-196
44	F	Cl	CH3	CF ₃	H	СООС ₂ Н ₅	Н	1. 5453
45	F	Cl	CH3	CF3	H	COOC3H7-i	н	測定不可
46	F	Cl	Сн3	CF3	H	соос ₅ н ₁₁	н	
47	F	C1	СНЗ	CF3	H	COO-{	н	
48	F	Cl	СНЗ	CF_3	H	соосн ₂ —	Н	
49	F	C1	CH3	CF3	H	CONH ₂	н	
50	F	Cl	СНЗ	CF3	H	соинсн3	н	
51-	F	Cl	СНЗ	CF3	H	CON (CH3) 2	н	
52	F	Cl	СНЗ	CF3	H	CONHC ₂ H ₅	н	į
53	F	Cl	CH3	CF3	H	CONH —	н	
54	F	Cl	СНЗ	CF ₃	H	CONH_CH3	н	i
55	. F	Cl	CH ₃	CF3	H	CONH_C)-C1	н	į
56	F	C1	снз	CF_3	H	CONH_CD-OCH3	н	
57	F	Cl	снз	CF ₃	H	-(C)_	н	ĺ
58	F	Cl	снз	CF ₃	H	CH ₂ —	н	ĺ
59	F	Cl	СНЗ	CF3	H	NO ₂	н	

(表3)

化合物	X	Y	R1	R ²	R3	R ⁴	_R 5	融点(℃)	
番号						•		屈折率 n	20 D
60	F	Cl	СНЗ	CF ₃	Н	NH ₂	Н		
61	F	Cl	CH3	CF3	Н	инсосн3	H		
62	F	Cl	CH ₃	CF3.	H	NHCOCH ₂ C	1 н		
63	F	Cl	CH ₃	CF ₃	H	NHCOCF3	Н		
64	F	Cl	СНЗ	CF3	H	инсо-{	Н		
65	F	Cl	снз	CF3	H	NHSO2CH3	H		
66	F	Cl	СНЗ	CF3	H	NHSO2CF3	Н		
67	F	Cl	СНЗ	CF3	H	NHSO2CH2	C1 H		
68	F	Cl	СНЗ	CF ₃	H	NHSO2CHF	2 н		
69	F	Cl	CH ₃	CF3	H	NHSO2 </td <td>У н</td> <td></td> <td></td>	У н		
70	F	Cl	CH3	CF3	H	CH3	CH3	181-183	
71	F	Cl	СНЗ	CF ₃	H	CH3	С ₂ н ₅	130-131	
72	F	Cl	СНЗ	CF ₃	H	CH ₃	С ₃ н ₇	1. 5287	
73	F	C1	СНЗ	CF3	H	CH ₃	С 3 Н7-і		
74	F	Cl	СНЗ	CF3	H	CH3	C4H9	1. 5398	
75	F	C1	СНЗ	CF3	H	СНЗ	~	195-197	
76	F	Cl	СНЗ	CF_3	H	СНЗ	SCH ₃		
77	F	Cl	снз	CF3	H	CH ₃	Br		ŀ
78	F	Cl	СНЗ	CF3	Н	CH3	C1	157-160	
79	F	Cl	CH3	CF3	H	CH3	СН ₂ ОН	97-100	
80	F	Cl	СНЗ	CF3	H	CH3	сн ₂ ососн ₃	168-170	1
81	F	Cl	СНЗ	CF3	H	CH3	сн ₂ осн ₃		
82	F	Cl	СНЗ	CF3	H	СНЗ	CH2OC2H5		
83	F	Cl	CH3	CF3	H	СНЗ	CH ₂ SCH ₃	157-158	-
84 ·	F	Cl	CH3	CF3	H	CH3	CH2SO2CH3	209-211	
85	F	C1	CH3	CF3	H	CH3	${ m CH_2N}{ m (CH_3)}_2$		
86	F	Cl	СНЗ	CF ₃	H	CH3	СООН	217-220	-
87	F	Cl	CH3	CF3	H	СНЗ	соосн3	1. 5440	
88	.F	Cl	СНЗ	CF3	H	СНЗ	СООС ₂ Н ₅	1. 5489	
89	F	Cl	СНЗ	CF3	Н	CH3	C00C3H7-i	154-156	
90	F	Cl	СНЗ	CF3	H	CH3	COOC5H11	1. 5299	
91	F	Cl	CH3	CF ₃	H	CH ₃	СНО	148-150	
92	F	C1	СНЗ	CF ₃	Н	CH3	CH=NOH	82-84	

(表4)

化合物	n X	Y	RI	R ²	R3	R ⁴	R5	融点(℃)
番号								屈折率 n _D 20
93	F	Cl	СНЗ	CF ₃	· H	СНЗ	СН=NOCH3	1. 5483
94	F	Cl	CH3	CF ₃	Н	CH ₃	CN	
95	F	Cl	CH ₃	CF ₃	Н	СНЗ	CONH ₂	102-105
96	F	C1	CH3	CF ₃	Н	CH3	соинснз	
97	F	C1	CH3	CF ₃	H	CH ₃	CONHC2H5	
98	F	Cl	СНЗ	CF3	H	CH3	CON (CH ₃) ₂	90-93
99	F	Cl	CH ₃	CF ₃	H	СНЗ	CONH-	
100	F	Cl	СНЗ	CF3	H	CH3	CONH_CD_C	ı
101	F	Cl	СНЗ	CF ₃	Н	СНЗ	сосн3	138-140
102	F	Cl	СНЗ	CF3	H	CH3	сос ₂ н ₅	1. 5496
103	F	Cl	CH3	CF3	H	CH3	COCH ₂ C1	77-80
104	F	C1	CH3	CF ₃	H	СНЗ	COCF ₃	
105	F	Cl	СН3	CF ₃	H	CH3	S0 ₂ CH ₃	
106	F	Cl	CH3	CF3	H	СНЗ	SO ₂ CF ₃	
107	F	C1	CH3	CF ₃	H	СНЗ	SO ₂ CH ₂ C1	
108	F	CI	CH3	CF3	H	СНЗ	SO ₂ CHF ₂	
109	F	Cl	СНЗ	CF ₃	H	СНЗ	СН (СН ₃) ОН	
110	F	Cl	СНЗ	CF3	H	СНЗ	C (CH ₃) =NOH	108-111
111	F	C1	СНЗ	CF3	H	CH ₃	$C(CH_3) = NOCH_3$	65-67
112	F	Cl	СНЗ	CF3	H	CH3	$C(CH_3) = NOC_2H_5$	
113	F	C1	СНЗ	CF ₃	H	CH3	$C(CH_3) = NCH_3$	
114	F	C1	СH ₃	CF3	H	CH3	$C(CH_3) = NNHCH_3$	187-190
115	F	Cl	CH3	CF3	H	СНЗ	$C(CH_3) = N$	
116	F	C1	снз	CF3	H	СНЗ	$C(CH_3) = NNH$	117-120
117-	F	Cl	CH3	CF ₃	H	CH3	co-<	192-194
118	F	Cl	CH3	CF ₃	H	СНЗ	S02-	
119	F	Cl	СНЗ	CF ₃	H	CH3	NO ₂	測定不可
120	F	CI	CH3	CF3	H	CH3	NH ₂	
121	- F	Cl	CH3	CF3	H	CH3	NHSO ₂ CH ₃	
122	F	C1	СНЗ	CF3	Н	CH3	NHSO ₂ CF ₃	
123	F	Cl	СНЗ	CF3	H	СНЗ	NHSO ₂ CH ₂ C1	
124	F	Cl	снз	CF3	H	СНЗ	NHSO ₂ CHF ₂	
125	F	Cl	снз	CF3	H	СНЗ	инсосн3	209-211

(表5)

化合物	Х	Y	Rl	R ²	R3	R ⁴	R5	融点((°C)
番号	<u> </u>							屈折率	n _D ²⁰
126	F	Cl	СНЗ	CF ₃	H	СНЗ	NHCOCF3		
127	F	Cl	CH ₃	CF3	H	CH ₃	NHCOCH2C1		
128	F	Cl	снз	CF3	H	СНЗ	NHCO-		
129	F	C1	СНЗ	CF ₃	H	CH3	инсо-{С}-сн ₃		
130	F	Cl	CH ₃	CF3	H	СНЗ	NHCO-\(\bigcirc_\)-C1		
131	F	Cl	СНЗ	CF3	H	СНЗ	NHCO-()-OCH3		
132	F	Cl	СНЗ	CF3	H	СНЗ	NHSO2-		
133	F	Cl	CH3	CF ₃	H	CH3	NHSOZ-CH3		
134	F	C1	CH3	CF_3	H	снз	NHS02-(-)-C1		
135	F	Cl	СНЗ	CF_3	H	СНЗ	NHSO ₂ - OCH ₃		
136	F	C1	CH ₃	CF3	H	Ċ ₂ H ₅	CH3		
137	F	C1	СНЗ	CF_3	H	C ₂ H ₅	СН ₂ ОН		
138	F	Cl	CH3	CF3	H	С ₂ Н ₅	сн ₂ ососн ₃		
139	F	Cl	CH3	CF3	H	C ₂ H ₅	Сн ₂ осн ₃		
140	F	Cl	CH3	CF3	H	С ₂ н ₅	СООН	114-116	6
141	F	Cl	CH3	CF3	H	C ₂ H ₅	СНО	測定不可	1
142	F	Cl	CH3	CF3	H	С ₂ н ₅	соосн3	1. 534	ı j
143	F	Cl	СНЗ	CF3	H	С ₂ Н ₅	СООС3Н7-і	1. 5229	9
144	F	C1	CH3	CF3	H	С ₂ н ₅	CH=NOCH3		
145	F	Cl	снз	CF3	H	C_2H_5	СН=ИИНСН _З		
146	F	Cl	СНЗ	CF ₃	Н	С ₂ н ₅	Cl		ĺ
147	F	Cl	СНЗ	CF3	н	C ₂ H ₅	сосн3	1. 5503	3
148	F	Cl	CH ₃	CF ₃	Н	С ₂ Н ₅	C (CH ₃) =NOH		
149	F	Cl	CH ₃	CF_3	H	C ₂ H ₅	С (СН ₃) =NOCH ₃		
150	F	Cl	СНЗ	CF ₃	Н	C ₂ H ₅	C (CH ₃) =NNHCH ₃		1
151	F	Cl	СНЗ	CF3	H	C ₂ H ₅	C (CH3) =NNH-		Ì
152	F	Cl	CH3	CF3	H	С ₂ н ₅	COC ₂ H ₅	139-140	
153	F	Cl	СНЗ	CF ₃	H	C ₂ H ₅	COC ₃ H ₇ -i	115-117	, I
154	. F	Cl	CH3	CF3	H	C_2H_5	co-		1
155	F	C1	CH3	CF_3	H	C ₂ H ₅	NO ₂		
156	F	Cl	снз	CF ₃	Н	C ₂ H ₅	NH ₂		
157	F	C1	СНЗ	CF ₃	Н	C_2H_5	инсосн3		
158	F	Cl	СНЗ	CF3	H	C ₂ H ₅	NHSO ₂ CH ₃		

(表6)

化合物	n X	Y	R1	R ²	R3	R ⁴	_R 5	融点(℃)
番号								屈折率 n _D 20
159	F	Cl	СНЗ	CF ₃	Н	C ₂ H ₅	NHSO ₂ CF ₃	
160	F	Cl	CH3	CF3	H	C ₂ H ₅	COO—<	
161	F	Cl	CH3	CF3	H	C ₂ H ₅	соосн ₂ —	
162	F	Cl	CH3	CF3	Н	C ₂ H ₅	соинсн3	ļ
163	F	Cl	CH3	CF3	H	C2H5	CON (CH3) 2	
164	F	Cl	CH3	CF3	H	C3H7	CH ₃	
165	F	Cl	CH3	CF3	H	C3H7	соснз	1. 5362
166	F	Cl	СНЗ	CF3	н	C ₃ H ₇	соосн3	103-104
167	F	Cl	CH3	CF ₃	Н	С ₃ н ₇	СН ₂ ОСН ₃	
168	F	C1	СНЗ	CF ₃	Н	C3H7-i	СНЗ	
169	F	Cl	СНЗ	CF ₃	H	C3H7-i	сосн3	
170	F	Cl	CH3	CF3	H	С3Н7-і	сооснз	
171	F	Cl	СНЗ	CF3	H	C3H7-i	сн ₂ осн ₃	
172	F	C1	H	CF3	H	СНЗ	Н	172-174
173	F	Cl	C_2H_5	CF3	H	CH3	н	
174	F	Cl	С3Н7	CF3	H	СНЗ	н	
175	F	C1	CH ₂ C1	CF3	Н	CH ₃	н	
176	F	Cl	CHF ₂	CF3	H	снз	н	
177	F	Cl	Н	CF3	СНЗ	СНЗ	Н	
178	F	Cl	H	CF3	CH ₂ C1	CH ₃	н	ſ
179	F	Cl	H	CF ₃	C1	СНЗ	н	
180	F	Cl	H	CF3	Br	CH3	Н	
181	F	Cl	H	СНЗ	H	CH ₃	Н	
182	F	Cl	СНЗ	СНЗ	H	СНЗ	н	
183 [.]	F	Cl	CHF ₂	СНЗ	н	CH3	Н	1
184	F	C1	H	CH3	Cl	СНЗ	н	
185	F	Cl	H	CH ₂ C1	Н	СНЗ	н	
186	F	Cl	СНЗ	CH ₂ C1	H	СНЗ	н	
187	F	Cl	Н	CF ₃	H	С ₂ н ₅	H	154-155
188	F	C1	Н	CF ₃	CH3	С ₂ Н ₅	н	
189	F	Cl	H	CF_3	Cl	С ₂ н ₅	Н	
190	F	Cl	CH ₂ C1	CF3	Н	C ₂ H ₅	Н	
191	F	Cl	CHF ₂	CF3	Н	С ₂ н ₅	Н	

(表7)

化合物	Х	Y	Rl	R ²	R3	R ⁴	R5	融点(℃)。
番号		_						屈折率 n D
192	F	C1	CHF ₂	CF ₃	H	С2Н5	соосн3	
193	F	C1	CHF ₂	CF3	H	C ₂ H ₅	Н	
194	F	Cl	CH ₃	CF3	Cl	C ₂ H ₅	Н	
195	H	C1	CH3	CF ₃	H	Н	Н	142-144
196	H	Cl	СНЗ	CF3	H	СНЗ	Н	206-207
197	H	Cl	CH ₃	CF3	H	C ₂ H ₅	Н	159-160
198	Н	Cl	СНЗ	CF3	Н	C3H7	н	159-161
199	Н	Cl	СНЗ	CF ₃	H	C3H7-i	н	
200	Н	Cl	CH3	CF ₃	H	С ₄ Н ₉	н	101-102
201	Н	Cl	СНЗ	CF3	H	C ₄ H ₉ -i	Н	129-131
202	H	Cl	CH ₃	CF3	H	CH ₂ Br	н	200-202
203	Н	Cl	снз	CF3	H	CHBr ₂	н	
204	H	Cl	СНЗ	CF ₃	H	CBr ₃	н	
205	H	- C1	CH3	CF3	H	CHF ₂	H	
206	H	C1	СНЗ	CF3	H	СН ₂ ОН	н	179-181
207	H	Cl	СНЗ	CF3	H	СН (СН ₃) ОН	Н	85-86
208	H	Cl	СНЗ	CF3	H	СН ₂ 0СН3	н	141-143
209	H	C1	снз	CF3	H	CH ₂ OC ₂ H ₅	Н	93-96
210	H	C1	CH3	CF ₃	Н	сн ₂ ососн ₃	н	135-138
211	H	C1	снз	CF ₃	H	СH ₂ 0СОС ₂ H ₅	н	
212	H	C1	CH3	CF3	H	сн (сн ₃) ососн	3 Н	
213	Н	Cl	СНЗ	CF3	H	сн ₂ осо—<_>	н	180-182
214	H	Cl	СНЗ	CF3	H	CH ₂ SCH ₃	н	
215	Н	Cl	СНЗ	CF3	H	CH ₂ SO ₂ CH ₃	н	
216·	H	Cl	CH3	CF3	H	CH2SC2H5	н	
217	H	Cl	СнЗ	CF3	H	CH ₂ SO ₂ C ₂ H ₅	н	
218	H	Cl	СНЗ	CF_3	H	CH2NHCH3	н	
219	H	Cl	СНЗ	CF3	H	${ m CH_2N}({ m C_2H_5})_2$	н	1. 5420
220	- Н	Cl	CH3	CF ₃	H	Cl	н	
221	H	Cl	СН3	CF ₃	H	Br	н	
222	H	Cl	СНЗ	CF ₃	H.	сосн3	н	181-182
223	H	Cl	CH3	CF ₃	H	сос ₂ н ₅	н	
224	Н	Cl	СНЗ	CF ₃	H	COC ₃ H ₇	н	

(表8)

		т							
	化合物	X	Y	R1	\mathbb{R}^2	R3	R ⁴	R5	融点(℃)
	番号								屈折率 n _D
	225	Н	Cl	СНЗ	CF3	H	COC3H7-i	H	
	226	Н	Cl	CH3	CF3	H	∞-<>>	Н	
	227	Н	Cl	СНЗ	CF ₃	H	СНО	H	233-235
	228	Н	Cl	СНЗ	CF ₃	H	СН (ОСН ₃) ₂	H	1. 5416
	229	H	Cl	СНЗ	CF3	H	CH=NOH	H	
	230	Н	Cl	СНЗ	CF3	Н	CH=NOCH3	Н	179-181
j	231	Н	Cl	СНЗ	CF3	H	сн=иинсн ₃	Н	測定不可
	232	H	Cl	СНЗ	CF3	H	$C(CH_3) = NOH$	H	
	233	Н	Cl	CH3	CF3	H	$C(CH_3) = NOCH_3$	Н	172-176
	234	H	Cl	СНЗ	CF3	H	$C(CH_3) = NOC_2H_5$	H	
1	235	Н	Cl	CH3	CF ₃	H	$C(CH_3) = NCH_3$	H	1
	236	Н	Cl	СНЗ	CF ₃	H	$C(CH_3) = NNHCH_3$	H	
-	237	Ή	Cl	СНЗ	CF ₃	H	CN	H	
-	238	H	C1	СНЗ	CF3	H	СООН	Н	270-273
	239	H	C1	СНЗ	CF3	H	соосн3	H	137-138
	240	H	Cl	снз	CF3	H	СООС ₂ Н ₅	Н -	116-117
	241	Н	Cl	СНЗ	CF ₃	H	COOC3H7-i	H	144-145
	242	H	Cl	CH3	CF ₃	H	СООС ₅ Н ₁₁	Н	
1	243	Н	Cl	СН3	CF ₃	H	соо-{∑−осн ₃	н	
ļ	244	H	Cl	СНЗ	CF ₃	H	COOCH ₂	Н	;
1	245	H	Cl	СНЗ	CF ₃	H	CONH ₂	H	273-275
1	246	H	Cl	снз	CF3	H	соинсн3	н	287-288
İ	247	H	Cl	СНЗ	CF3	Н	CON (CH3) 2	H	測定不可
	248	H	Cl	СНЗ	CF3	H	CONHC2H5	н	225-226
1	249-	H	Cl	СНЗ	CF3	H	CONH—	н	289-290
ı	250	H	Cl	СНЗ	CF3	H	CONH-CY-CH3	н	294-296
l	251	H	Cl	снз .	CF3	H	CONH_C>_C1	н	>300
ı	252	H	Cl	СНЗ	CF3	Н	CONH CONH OCH 3	н	254-256
l		-					CI	1	
	253	H	CI	CH3	CF3	H	CONH	н	177-180
	254	H	Cl	CH3	CF3	H	- ⟨_> −cı	н	
	255	Н	C1	СНЗ	CF ₃	H	CH2-CH2	Н	
	256	H	Cl	CH3	CF ₃	H	NO ₂	н	İ
L								ŀ	ļ

(表9)

化合物	X	Y	Rl	R ²	R3	R ⁴	R5	融点(℃)
番号	ļ							屈折率 n _D
257	Н	Cl	СНЗ	CF ₃	Н	NH ₂	H	
258	Н	Cl	СНЗ	CF ₃	Н	инсосн3	H	
259	Н	Cl	CH3	CF3	H	NHCOCH ₂ C1	Н	
260	н	Cl	СНЗ	CF3	H	NHCOCF3	н	
261	Н	Cl	СНЗ	CF3	H	NHSO2CH3	H	
262	Н	Cl	СНЗ	CF3	H	NHSO2CF3	H	
263	H	Cl	СНЗ	CF3	H	NHSO2CH2C	1 н	
264	н	Cl	CH3	CF3	H	NHSO2CHF2	н	
265	Н	Cl	снз	CF_3	H	CH ₃	CH ₃	152-153
266	Н	Cl	CH3	CF3	H	CH ₃	С ₂ н ₅	141-142
267	Н	Cl	CH3	CF_3	H	СН3	C3H7	1. 5461
268	H	Cl	CH3	CF_3	H	снз	C3H7-i	
269	H	Cl	CH3	CF3	H	СНЗ	C_4H_9	1. 5557
270	Н	Cl	СНЗ	CF3	H	СНЗ	-⟨□⟩	測定不可
271	H	Cl	СНЗ	CF3	H	СНЗ	SCH ₃	
272	Н	Cl	CH3	CF3	H	CH ₃	Br	1. 5632
273	Н	. CI	СНЗ	CF ₃	H	СНЗ	C1	
274	H	Cl	СНЗ	CF3	H	CH ₃	CH20H	
275	H	Cl	CH3	CF3	H	CH3	сн ₂ ососн ₃	
276	Н	Cl	CH3	CF3	H	сн3	CH20CH3	
277	H	Cl	СНЗ	CF_3	H	сн3	$\mathrm{CH}_2\mathrm{OC}_2\mathrm{H}_5$	
278	H	Cl	СНЗ	CF3	H	СНЗ	CH2SCH3	•
279	H	C1	снз	CF ₃	H	CH3	$\mathrm{CH}_2\mathrm{SO}_2\mathrm{CH}_3$	
280	H	Cl	CH ₃	CF3	H	снз .	${\rm CH_2N}({\rm CH_3})_2$	
281	H	Cl	СНЗ	CF3	H	СНЗ	СООН	
282	H	Cl	СНЗ	CF3	H	СНЗ	С00СН3	
283	H	Cl	СНЗ	CF3	H	CH ₃	СООС2Н5	
284	H	Cl	CH ₃	CF3	H	СНЗ	СООС ₃ Н ₇ -і	
285	H	Cl	снз	CF3	H	CH3	соос ₅ н ₁₁	
286	Н	C1	CH3	CF3	H	СНЗ	СНО	
287	Н	Cl	CH3	cf3	H	СНЗ	CH=NOH	
288	Н	C1	СНЗ	CF ₃	H	СНЗ	сн=иосн ₃	
289	Н	C1	CH3	CF ₃	Н	СНЗ	сосн3	172-174
L								

(表10)

				- 2			· · · ·	
化合物	か X	Y	Rl	R ²	R3	R ⁴	Ŗ5	融点(℃)
番号	 							屈折率 ng
290	Н	Cl	СНЗ	CF ₃	· H	CH3	сос ₂ н ₅	
291	Н	C1	СНЗ	CF ₃	H	CH3	COCH ₂ C1	
292	Н	Cl	СНЗ	CF3	Н	СНЗ	cocf ₃	
293	Н	Cl	снз	CF3	H	СНЗ	SO ₂ CH ₃	
294	н	Cl	СНЗ	CF3	H	СНЗ	SO ₂ CF ₃	
295	Н	Cl	СНЗ	CF3	H	СНЗ	SO2CH2C1	
296	Н	Cl	СНЗ	CF3	H	СНЗ	SO ₂ CHF ₂	
297	Н	Cl	СH ₃	CF3	H	CH3	сн (сн ₃) он	
298	Н	Cl	СНЗ	CF3	H	СНЗ	с (сн ₃) = nон	248-250
299	Н	C1	CH3	CF3	Н	CH3	С (СН ₃) = NOCH ₃	167-168
300	Н	Cl	сн3	CF3	Н	СНЗ	$C(CH_3) = NOC_2H_5$	
301	H	Cl	СНЗ	CF3	H	СНЗ	co-🔷	203-205
302	Н	Cl	СНЗ	CF3	H	СНЗ	S02-C1	
303	Н	Cl	СНЗ	CF3	H	CH3	NO ₂	174-175
304	Н	Cl	СНЗ	CF3	H	СНЗ	NH ₂	
305	Н	Cl	CH3	CF3	Н	СНЗ	ИНОН	134-136
306	Н	Cl	СНЗ	CF ₃	H	CH3	NHSO ₂ CH ₃	
307	H	Cl	СНЗ	CF3	Н	СНЗ	NHSO ₂ CF ₃	
308	Н	C1	CH3	CF3	H	CH3	NHSO2CH2C1	
309	Н	Cl	снз	CF3	H	CH3	NHSO2CHF2	
310	н	Cl	снз	CF_3	H	СНЗ	инсосн ₃	290-292
311	Н	Cl	снз	CF3	H	СНЗ	NHCOCF3	
312	Н	Cl	СНЗ	CF3	H	CH3	NHCOCH ₂ C1	
313	Н	Cl	СНЗ	CF3	H	CH3	NHCO-	
314	н	CI	СНЗ	CF ₃	H	СНЗ	NHCO-CH3	
315	Н	C1	СНЗ	CF ₃	H	CH3	NHCO-()-CI	
316	Н	CI	СНЗ	CF ₃	H	CH3	NHCO-CD-OCH3	
317	Н	Cl	снз	CF3	H	СН3	NHSO ₂	
318	Н	Cl	снз	CF3	H	CH3	NHSO2-CH3	
319	Н	Cl	снз	CF3	Н	CH3	NHSO ₂ —C1	
320	Н	Cl	СНЗ	CF ₃	H	CH3	NHSO2-OCH3	
321	Н	Cl	CH ₃	CF ₃	H	C_2H_5	CH3	
322	Н	Cl	СНЗ	CF ₃	H	C_2H_5	CH ₂ OH	*
								ļ

(表11)

化合物	Х	Y	Rl	R ²	R3	R ⁴	R ⁵	融点(℃)
番号		<u> </u>					···	屈折率 n _D 20
323	Н	Cl	СНЗ	CF3	H	C ₂ H ₅	сн ₂ ососн ₃	
324	Н	Cl	CH3	CF3	H	C ₂ H ₅	сн ₂ осн ₃	
325	H	C1	CH ₃	CF ₃	H	С ₂ Н ₅	СНО	122-124
326	Н	Cl	снз	CF3	H	С ₂ н ₅	СООН	
327	H	Cl	снз	CF3	H	C ₂ H ₅	сооснз	
328	H	Cl	снз	CF3	H	С ₂ Н ₅	C00C3H7-i	
329	H	Cl	снз	CF ₃	H	C ₂ H ₅	C1	
330	Н	Cl	снз	CF3	H	С ₂ н ₅	сосн3	1. 5662
331	H	Cl	снз	CF3	H	С ₂ н ₅	C (CH3) =NOH	102-105
332	H	Cl	СНЗ	CF3	H	C ₂ H ₅	$C(CH_3) = NOCH_3$	1. 5442
333	H	Cl	снз	CF3	H	C ₂ H ₅	сос ₂ н ₅	
334	H	Cl	CH3	CF3	H	C_2H_5	COC ₃ H ₇ -i	測定不可
335	H	Cl	CH3	CF ₃	Н	C ₂ H ₅	co<	
336	H	Cl	CH3	CF3	H	C_2H_5	CH ₂ SCH ₃	
337	H	C1	СНЗ	CF3	H	C2H5	сн ₂ ѕо ₂ сн ₃	-
· 338	Н	Cl	CH3	CF ₃	H	C ₂ H ₅	соинсн3	
339	Н	Cl	СНЗ	CF ₃	H	С ₂ н ₅	CON (CH3) 2	
340	H	C1	CH3	CF ₃	H	C ₂ H ₅	CONH—	
341	H	Cl	СНЗ	CF ₃	H	С3Н7	СНЗ	
342	H	Cl	CH ₃	CF3	H	C3H7	сосн3	
343	H	Cl	СНЗ	CF ₃	H	C3H7	соосн3	
344	H	Cl	CH3	CF ₃	H	C3H7	сн ₂ осн ₃	
345	H	Cl	СНЗ	CF3	H	C3H7-i	CH3	
346	H	Cl	СНЗ	CF ₃	H	C3H7-i	сосн3	1
347	Н	Cl	СНЗ	CF3	H	C3H7-i	сооснз	
348	H	Cl	СНЗ	CF3	H	C3H7-i	сн ₂ осн ₃	. [
349	H	Cl	CH3	CF ₃	H	C_4H_9	сосн3	1. 5449
350	H	Cl	CH3	CF3	H	CH ₂ Br	Br	188-191
351	. Н	Cl	H	CF ₃	H	снз	н	
352	Н	Cl	C ₂ H ₅	CF ₃	H	сн3	Н]
353	H	Cl	C3H7	CF3	H	CH3	н	
354	Н	Cl	CH ₂ Cl	CF3	H	CH3	н	
355	Н	Cl	CHF ₂	CF ₃	Н	CH ₃	н	

(表12)

	化合物) X	Y	Rl	R ²	R3	R ⁴	_R 5	融点(℃)	
	番号								屈折率 nD	0
	356	Н	Cl	Н	CF ₃	СНЗ	CH ₃	Н		٦
	357	Н	C 1	Н	CF ₃	CH ₂ C1	CH ₃	К	ŀ	
	358	Н	Cl	Н	CF ₃	Cl	СНЗ	Н		
	359	Н	Cl	H	CF3	Br	СНЗ	H		
	360	Н	Cl	Н	СНЗ	H	CH3	H		1
	361	Н	Cl	CH3	СНЗ	H	СНЗ	H		1
	362	Н	Cl	CHF ₂	CH3	Н	CH ₃	H		ı
	363	Н	Cl	H	CH3	Cl	CH ₃	H		ŀ
	364	н	C1	Н	CH ₂ C1	H	СНЗ	H		1
	365	Н	Cl	СНЗ	CH ₂ C1	H	CH ₃	Н		1
	366	Н	Cl	Н	CF ₃	Н	C ₂ H ₅	Н	j	۱
	367	Н	Cl	Н	CF3	CH3	C ₂ H ₅	Н	l	1
	368	Н	C1	H	CF ₃	Cl	C ₂ H ₅	Н		١
	369	Н	Cl	CH ₂ C1	CF3	H	C ₂ H ₅	Н		
	370	н	C 1	CHF ₂	CF ₃	H	C ₂ H ₅	Н		l
	371	Н	C 1	CHF ₂	CF3	H	C ₂ H ₅	COOCH3		
	372	Н	. C1	CHF2	CF3	H	C ₂ H ₅	Н	ļ	ı
	373	н	Cl	СНЗ	CF3	Cl	C ₂ H ₅	Н		
	374	F	F	СНЗ	CF3	Н	Н	Н	151-152	
I	375	F	F	CH3	CF3	H	CH ₃	H	176-178	l
	376	F	F	CH ₃	CF ₃	H	CH3	COCH ₃	測定不可	
	377	F	F	СНЗ	CF ₃	H	сн ₃	соосн3		l
l	378	. F	F	CH3	CF_3	Н	СН3	Сн ₂ он		l
l	379	F	F	CH3	CF3	н	C ₂ H ₅	H	156-158	
l	380	F	F	СНЗ	CF ₃	Н	С ₂ Н ₅	соснз		
l	381	F	F	СНЗ	CF3	Н	C ₂ H ₅	соосн3	· .	
l	382	F	F	CH3	CF3	Н	C_2H_5	СН ₂ ОН		
	383	F	F	CH ₃	CF ₃	H	С ₃ Н ₇	H	137-140	
ı	-384	F	F	CH ₃	CF3	H	C3H7-i	Н		
l	385	C1	H	CH3	CF3	H	СНЗ	H		
	386	F	Н.	Сн3	CF3	H	СНЗ	н		
	387	F	CN	СНЗ	CF ₃	H	СНЗ	Н		
	388	F	СНЗ	СНЗ	CF3	Н	снз	Н	ļ	
_										

(表13)

化合物	X	Y	Rl	R ²	R ³	R4	_R 5	融点(℃)
番号								屈折率 n _D
389	F	CF ₃	СНЗ	CF ₃	Н	СНЗ	Н	TADIT D
390	F	осн ₃	СНЗ	CF ₃	Н	СН ₃	H	
391	F	OCHF ₂	_	CF ₃	H	CH ₃	Н	
392	F	Cl	CH3	CF ₃	Н	CH ₂ C1	H	181-182
393	F	C1	CH3	CF ₃	Н	СН (СН ₃) С1	н	1. 5639
394	F	Cl	СНЗ	CF ₃	H	CH (CH3) Br	н	1. 5562
395	F	C1	СНЗ	CF3	Н	CH (CH ₃) OCH ₃	Н	
396	F	Cl	CH3	CF ₃	Н	СН (С ₂ Н ₅) С1	н	
397	F	Cl	СНЗ	CF ₃	Н	co-<1	Н	85-87
398	F	Cl	CH3	CF3	H	COC ₄ H ₉ -n	Н	95-97
399	F	Cl	СНЗ	CF ₃	H	COCH ₂ C1	Н	
400	F	Cl	CH ₃	CF ₃	H	COCH ₂ Br	Н	105-106
401	F	C1	СНЗ	CF3	H	СН (ОН) С ₂ Н ₅	Н	測定不可
402	F	Cl	СНЗ	CF3	H	СН (ОН) С _З Н ₇	н	66-67
403	F	Cl	CH3	CF3	Н	СН (ОН) С _З Н ₇ - і	H	
404	F	Cl	CH3	CF3	Н	$CH(OH)C\equiv CH$	Н	143-144
405	F	C1	СНЗ	CF3	H	CH (OH) CH=CH2	H	87-88
406	F	Cl	CH3	CF3	H	CH2SC3H7	H	. 1. 5656
407	F	Cl	CH3	CF3	H	СH ₂ SO ₂ С ₃ H ₇	H	156-157
408	F	Cl	CH3	CF3	H	CH2SC3H7-i	H	
409	F	C1	CH3	CF ₃	H	CH2SO2C3H7-i	Н	125-127
410	F	Cl	СНЗ	CF3	H	CH ₂ SC ₄ H ₉	H	1. 5512
411	F	C1	СНЗ	CF3	H	${\rm CH_2SO_2C_4H_9}$	Н	103-104
412	F	Cl	СНЗ	CF3	Н	CH=CH ₂	Н	108-109
413·	F	Cl	СНЗ	CF ₃	H	C≡CH	Н	
414	F	C1	СНЗ	CF3	H	CH2SO2CH2CF3	H	
415	F	C1	СНЗ	CF3	Н	ightharpoons	Н]
416	F	C1	СНЗ	CF3	H	сн3 ост	ł ₂ CF ₃	
417	F	Cl	CH3	CF ₃	H	снз со-	\triangleleft	154-156
418	F	C1	CH3	CF3	H	сн ₃ со-	\Diamond	116-117
419	F	Cl	СНЗ	CF3	H	сн3 сос	3 ^H 7	124-126
420	F	CI	СНЗ	CF ₃	H	_	C3H7-i	1. 5344
421	F	Cl	СНЗ	CF3	Н	CH3 COC	4H9	104-105

(表14)

化合物	X	Y	Rl	R ²	R3	R ⁴	R5	融点(℃)
番号								屈折率 n _D 20
422	F	C1	СНЗ	CF ₃	Н	СНЗ	COCH ₂ Br	1. 5650
423	F	Cl	СНЗ	CF ₃	Н	CH ₃	CH ₂ C1	177-179
424	F	Cl	СНЗ	CF ₃	H	CH3	СН (СН ₃) ОН	1. 5345
425	F	Cl	CH3	CF3	H	СНЗ	$C(C_3H_7) = NOCH_3$	1. 5397
426	F	Cl	СНЗ	CF3	Н	CH3	C (CH ₂ C1) = NOH	107-109
427	F	Cl	СНЗ	CF3	Н	СН3	осн3	57-60
428	F	Cl	СНЗ	CF3	H	СН3	0С ₂ Н ₅	
429	F	Cl	CH3	CF ₃	H	Снз	0С ₃ Н ₇	
430	F	Cl	СНЗ	CF ₃	H	CH ₃	0С ₃ Н ₇ -і	
431	F	Cl	CH3	CF ₃	H	СНЗ	СН (СН ₃) ОСН ₃	·
432	F	Cl	СНЗ	CF3	H	С ₂ н ₅	соос ₂ н ₅	133-135
433	F	Cl	снз	CF3	Н	С ₂ Н ₅	СООС _З Н ₇	124-125
434	F	Cl	СНЗ	CF ₃	H	C ₂ H ₅	соос ₄ н ₉	
435	F	C1	CH3	CF3	Н	С ₂ н ₅	СОС _З Н ₇	1. 5420
436	F	CI	CH3	CF ₃	Н	С ₂ н ₅	co-<	128-129
437	F	Cl	СНЗ	CF3	H	C ₂ H ₅	СН (СН3) ОН	
438	F	Cl	CH3	CF3	H	С ₂ Н ₅	СН (СН ₃) ОСН ₃	
439	F	C1	СНЗ	CF3	H	C3H7	СООН	147-148
440	F	Cl	CH3	CF ₃	Н	C ₃ H ₇	CONH ₂	187-188 ⁻
441	F	Cl	СНЗ	CF ₃	H	С3Н7	соинсн3	198-200
442	F	Cl	снз	CF ₃	Н	С3H7	CON (CH3) 2	1. 5336
443	F	C1	снз	CF ₃	H	C3H7	СООС3Н7-і	1. 5290
444	F	Cl	CH3	CF ₃	H	C3H7	сос ₂ н ₅	1. 5441
445	F	C1	CH3	CF3	H	С3Н7	СОС3Н7	1. 5401
446	F	Cl	CH3	CF3	Н	С3Н7	COC3H7-i	測定不可
447	F	Cl	СНЗ	CF3	H	С3Н7	COCH ₂ C1	129-130
448	F	Cl	СНЗ	CF3	H	С ₃ н ₇	COCH ₂ Br	110-111
449	F	Cl	CH3	CF3	H	C3H7	СН ₂ ОН	1. 5255
450	- F	Cl	СНЗ	CF ₃	H	С3Н7	СНО	123-124
451	F	C1	СНЗ	CF ₃	H	C3H7 C(CH ₃) =NOC ₃ H ₇ -i	1. 5304
452	F	C1	СНЗ	CF ₃	Н	• .	CH ₃) =NOCH ₃	1. 5332
453	F	CI	СНЗ	CF ₃	H	сосн3	СНЗ	117-118
454	F	CI	СН3	CF ₃	Н	СОС2Н5	сн3	119-120

(表15)

化合物	Х	Y	Rl	R ²	R3	R ⁴	R ⁵	融点(℃)
番号								屈折率 n _D 20
455	F	Cl	СНЗ	CF ₃	Н	СОС3Н7	СНЗ	1. 5498
456	F	Cl	СНЗ	CF3	H	сн (он) сн ₃	СНЗ	130-131
457	F	Cl	СНЗ	CF3	H	СН (ОН) С ₂ Н ₅	СНЗ	141-142
458	F	Cl	снз	CF3	Н	СН (ОН) С _З Н ₇	СНЗ	1. 5392
459	F	Cl	СНЗ	CF3	H	сосн3	C ₂ H ₅	170-171
460	F	Cl	СНЗ	CF ₃	H	COC ₂ H ₅	C ₂ H ₅	測定不可
461	F	Cl	снз	CF_3	H	COC3H7	C ₂ H ₅	116-117
462	F	Cl	СH ₃	CF ₃	H	СН (ОН) СН ₃	C ₂ H ₅	122-123
463	F	Cl	CH ₃	CF ₃	H	СН (ОН) С ₂ Н ₅	C ₂ H ₅	測定不可
464	F	C1	СНЗ	CF3	Н	СН (ОН) С _З Н ₇	C ₂ H ₅	測定不可
465	F	F	CH3	CF ₃	H	сн ₃ с (сн ₃) =NOCH3	114-116
466	Н	Cl	CH ₃	CF3	H	С ₂ Н ₅	NHCOCH3	156-158
467	F	C1	CH ₃	CF3	H	СН (СН ₃) SCH ₃	Н	1. 5394
468	F	Cl	СНЗ	CF3	H	СН (СН ₃) SOCH ₃	Н	84-86
469	F	C1	СНЗ	CF3	H	СН (СН ₃) SO ₂ CH ₃	H	182-183
470	F	C1	СНЗ	CF3	Н	СН (СН3) SC2H5	H	1. 5540
471	F	Cl	снз	CF_3	H	СН (СН ₃) SOC ₂ H ₅	H	53-54
472	F	Cl	СНЗ	CF_3	H	СН (СН ₃) SO ₂ C ₂ H ₅	H	73-75
473	F	Cl	CH3	CF ₃	H	СН (СН ₃) SC ₃ H ₇	Н	1. 5325
474	F	Cl	CH3	CF ₃	H	СН (СН3) SOC3H7	H	1. 5585
475	F	CI	СНЗ	CF3	H	СН (СН3) SO2C3H7	Н	67-68
476	F	Cl	CH3	CF ₃	H	CH (CH3) SC3H7-i	Н	1. 5461
477	F	Cl	СНЗ	CF3	H	CH (CH3) SOC3H7-	i . H	1. 5470
478	F	C1	СНЗ	CF3	H	CH (CH ₃) SO ₂ C ₃ H ₇	-i H	159-161
479·	F	C1	СНЗ	CF3	H	CH (CH3) SC4H9	H	1. 5435
480	F	C1	СНЗ	CF3	H	СН (СН ₃) SOC ₄ H ₉	H	1. 5472
481	F	Cl	СНЗ	CF3	Н	СН (СН3) SO2C4H9	н	125-126
482	F	Cl	СНЗ	CF ₃	H	${\rm CH}({\rm C_2H_5}){\rm SCH_3}$	н	1. 5540
483	- F	Cl	СНЗ	CF_3	H	СН (C ₂ H ₅) SOCH ₃	н	83-85
484	F	Cl	СНЗ	CF ₃	H	$CH(C_2H_5)SO_2CH_3$	н	83-86
485	F	Cl	CH3	CF3	Н	$CH(C_2H_5)SC_2H_5$	н	1. 5562
486	F	Cl	CH3	CF3	H	$\mathtt{CH}(\mathtt{C}_2\mathtt{H}_5)\mathtt{SOC}_2\mathtt{H}_5$	н	1. 5231
487	F	Cl	CH3	CF3	H	CH (C2H5) SO2C2H5	5 Н	178-179
L								

(表16)

化合物	X	Y	Rl	R ²	R ²	3 R4	R5	融点(℃)
番号							-	屈折率 n _D ²⁰
488	F	C1	СНЗ	CF ₃	Н	CH (C2H5) SC3H7	Н	
489	F	Cl	CH3	CF ₃	H	CH (C2H5) SOC3H7	Н	
490	F	Cl	CH ₃	CF ₃	H	CH (C2H5) SO2C3H7	Н	
491	F	Cl	CH3	CF ₃	Н	CH (C2H5) SC3H7-i	н	
492	F	Cl	СНЗ	CF3	Н	CH (C2H5) SOC3H7-i	Н	1
493	F	C1	CH3	CF ₃	H	CH (C2H5) SO2C3H7-i	Н	
494	F	Cl	СНЗ	CF ₃	Н	CH (C3H7) SCH3	н	
495	F	Cl	СНЗ	CF3	H	СН (С ₃ Н ₇) SOCH ₃	Н	
496	F	Cl	СНЗ	CF3	Н	СН (C3H7) SO2CH3	H	
497	F	Cl	CH3	CF3	H	CH (C3H7) SC2H5	H	
498	F	Cl	CH ₃	CF3	H	СН (C3H7) SOC2H5	Н	1
499	F	Cl	СНЗ	CF ₃	H	CH (C3H7) SO2C2H5	H	
500	F	Cl	CH3	CF ₃	H	CH(C3H7-i)SCH3	Н	
501	F	Cl	СНЗ	CF3	H	CH (C3H7-i) SOCH3	H	1. 5281
502	F	Cl	СНЗ	CF3	H	CH(C3H7-i)SO2CH3	H	149-150
503	F	C1	СНЗ	CF3	H	$CH(C_3H_7-i)SC_2H_5$	H	
504	F	Cl	СНЗ	CF3	H	$CH(C_3H_7-i)SOC_2H_5$	H	1. 5404
505	F	Cl	снз	CF3	H	$CH(C_3H_7-i)SO_2C_2H_5$	Н	1. 5390
506	F	Cl	СНЗ	CF ₃	H	C(CH ₃) ₂ SCH ₃	H	
507	F	C1	СНЗ	CF3	H	C(CH ₃) ₂ SOCH ₃	H	1
508	F	Cl	СНЗ	CF ₃	H	С (СН ₃) ₂ SO ₂ CH ₃	H	227-230
509	F	Cl	СНЗ	CF3	H	С (СН3) (С2Н5) SOCH3	H	
510	F	Cl	CH3	CF ₃	H	$C(CH_3)(C_2H_5)SO_2CH_3$	Н	85-87
511	F	Cl	СНЗ	CF3	H	$C(CH_3)(C_3H_7)SO_2CH_3$	H	92-93
512	F	Cl	снз	CF ₃	H	C(CH3) (CH2OCH3) SOCH3	Н	
513	F	Cl	CH3	CF3	H	$C(CH_3)(CH_2OCH_3)SO_2CH_3$	Н	1. 5365
514	F	C1	СНЗ	CF ₃	Н	$C(CH_3)(CH_2SCH_3)SO_2CH_3$	H	
515	F	C1	CH ₃	CF3	H	CH (CH ₃) SCF ₃	H	測定不可
516	. F	Cl	СНЗ	CF3	H	CH (CH3) SOCF3	н	
517	F	Cl	CH3	CF3	H	CH (CH ₃) SO ₂ CF ₃	н	
518	F	Cl	снз	CF ₃	H	CH (CH3) SCHF2	н	
519	F	CI	СНЗ	CF3	H	CH (CH ₃) SOCHF ₂	н	
520	F	Cl	снз	CF3	H	CH (CH ₃) SO ₂ CHF ₂	H	

(表17)

化合物	Х	Y	Rl	R ²	R3	R ⁴	R5	融点(℃)。
番号								屈折率 n _D 20
521	F	C1	CH ₃	CF3	Н	CH2SCH2COOCH3	Н	1. 5390
522	F	Cl	СНЗ	CF3	H	CH2SOCH2COOCH3	H	
523	F	Cl	СНЗ	CF3	H	СH ₂ SO ₂ CH ₂ COOCH ₃	Н	
524	F	Cl	CH3	CF3	H	СН (СН3) SCH2COOCH3	H	1. 5411
525	F	Cl	CH3	CF3	H	СН (СН3) SC3H6C1	H	
526	F	Cl	CH3	CF_3	Н	CH (CH3) SOC3H6C1	Н	
527	F	C1	СНЗ	CF3	H	CH (CH ₃) SC ₂ H ₄ COOCH ₃	н	
528	F	Cl	CH3	CF3	H	СН (СН3) SO2C2H4COOCH3	н	
529	F	C1	CH3	CF3	H	CH (CH3) SCH2CONHCH3	Н	
530	F	Cl	CH3	CF ₃	H	CH (CH3) SO2CH2CONHCH3	н	
531	F	C1	СНЗ	CF3	H	CH (CH $_3$) SCH $_2$ CON (CH $_3$) $_2$	н	
532	F	Cl	CH3	CF3	H	CH (CH ₃) SO ₂ CH ₂ CON (CH ₃) 2	Н	
533	F	Cl	CH3	CF3	H	СН (СН3) SCH2СООН	Н	
534	F	Cl	CH3	CF3	Н	СН (СН3) SOCH2COOH	Н	
535	F	Cl	СНЗ	CF3	H	СН (СН3) SO2CH2COOH	Н	
536	F	Cl	СНз	CF3	H	СН (СН3) S-<	Н	
537	F	Cl	СНЗ	CF ₃	H	СН (СН3) ЅО<	н	
538	F	C1	CH3	CF ₃	H	СН (СН ₃) SO ₂ -<	Н	•
539	F	Cl	СНЗ	CF ₃	H	CH2SOCH3	н	127-129
540	F	Cl	СНЗ	CF3	H	СН (СН ₃) SH	н	
541	F	Cl	CH3	CF3	H	CH (CH ₃) SCOCH ₃	н	
542	F	Cl	СНЗ	CF_3	H	CH (CH $_3$) SCON (CH $_3$) $_2$	н	
543	F	Cl	CH3	CF3	Н	CH (CH ₃) SCONHCH ₃	н	
544	F	Cl	CH3	CF3	H	CH (CH3) SCSN (CH3) 2	н	
545·	F	Cl	CH3	CF3	H	CH (CH3) SCSNHCH3	н	İ
546	F	F	CH3	CF3	H	CH (CH3) Br	Н	1. 5389
547	F	F	СНЗ	CF3	H	CH (CH ₃) SCF ₃	н	1. 5140
548	F	F	CH3	CF3	H	CH (CH3) SCN	н	1. 5450
549	. F	Cl	СНЗ	CF3	H	C (CH ₃) ₂ OH	н	160-161
550	F	F	CH3	CF3	H	CH (CH ₃) SO ₂ CF ₃	н	
551	F	Cl	СНЗ	CF3	11	CH (CH3) NHSO2CF3	н	測定不可
552	F	Cl	СНЗ	CF3	H	CH (CH ₂ C1) SCH ₃	н	
553	F	Cl	СНЗ	CF3	H	CH (CH ₂ C1) SOCH ₃	н	
							- 1	

(表18)

番号	化合物	Х	Y	Rl	R ²	R3	R ⁴	R ⁵	融点(℃)
5555 F C1 CH3 CF3 H CH(CH=CH2)SCH3 H	番号								屈折率 n _D ²⁰
556	554	F	C1	СНЗ	CF3	Н	CH (CH2C1) SO2CH3	H	
557	555	F	Cl	СНЗ	CF ₃	Н	CH (CH=CH ₂) SCH ₃	H	
558	556	F	Cl	СНЗ	CF3	H	CH (CH=CH ₂) SOCH ₃	H	
F	557	F	Cl	_	.CF3	H	CH (CH=CH $_2$) SO $_2$ CH $_3$	H	*
F	558	F	Cl	СНЗ	CF3	H	$CH(C \equiv CH)SCH_3$	H	
561 F	559	F	Cl	СНЗ	CF3	H	$CH(C \equiv CH) SOCH_3$	H	
S62	560	F	Cl	СНЗ	CF3	Н	$CH(C \equiv CH)SO_2CH_3$	H	
S63	561	F	Cl	СНЗ	CF3	H	CH (-∕∕) SCH3	H	
F C1 CH3 CF3 H ← SO ₂ CH3 H 565 F C1 CH3 CF3 H CH(CH ₂ OCH ₃) SCH ₃ H 566 F C1 CH ₃ CF ₃ H CH(CH ₂ OCH ₃) SO ₂ CH ₃ H 567 F C1 CH ₃ CF ₃ H CH(CH ₂ SCH ₃) SCH ₃ H 568 F C1 CH ₃ CF ₃ H CH(CH ₂ SCH ₃) SCH ₃ H 569 F C1 CH ₃ CF ₃ H CH(CF ₃) SOCH ₃ H 570 F C1 CH ₃ CF ₃ H CH(CF ₃) SO ₂ CH ₃ H 571 F C1 CH ₃ CF ₃ H CH(CH ₃) NHCH ₃ H 测定不可 572 F C1 CH ₃ CF ₃ H CH(CH ₃) NHCH ₃ H 573 F C1 CH ₃ CF ₃ H CH(CH ₃) NHSO ₂ CF ₃ H 574 F C1 CH ₃ CF ₃ H CH(CH ₃) NHSO ₂ CH ₃ H 575 F C1 CH ₃ CF ₃ H CH(CH ₃) NHSO ₂ CH ₃ H 576 F C1 CH ₃ CF ₃ H CH(CH ₃) NHSO ₂ CH ₃ H 577 F C1 CH ₃ CF ₃ H CH(CH ₃) NHCOCH ₃ H 578 F C1 CH ₃ CF ₃ H CH(CH ₃) NHCOCH ₂ C1 H 577 F C1 CH ₃ CF ₃ H CH(CH ₃) NHCOCH ₂ C1 H 577 F C1 CH ₃ CF ₃ H CH(CH ₃) NHCOCH ₂ C1 H 578 F C1 CH ₃ CF ₃ H CH(CH ₂ C1) OH H 580 F C1 CH ₃ CF ₃ H CH(CH ₂ C1) OH H 581 F C1 CH ₃ CF ₃ H CH(CH ₂ C1) OH H 582 F C1 CH ₃ CF ₃ H CH(CH ₂ C0CH ₃) OH H 583 F C1 CH ₃ CF ₃ H CH(CH ₂ C0CH ₃) OH H 584 F C1 CH ₃ CF ₃ H CH(CH ₂ C0CH ₃) OH H	562	F	Cl	CH3	CF3	H	$CH(-\subset)SOCH_3$	H	
565	563	F	Cl	CH3	CF3	H	CH (-<-() SO ₂ CH ₃	H	
565	564	F	Cl	СНЗ	CF3	H	- С _{SO2} CH3	Н	
566 F C1 CH3 CF3 H CH(CH2OCH3)SO2CH3 H 567 F C1 CH3 CF3 H CH(CH2SCH3)SCH3 H 568 F C1 CH3 CF3 H CH(CF3)SCH3 H 569 F C1 CH3 CF3 H CH(CF3)SOCH3 H 570 F C1 CH3 CF3 H CH(CF3)SO2CH3 H 571 F C1 CH3 CF3 H CH(CH3)NHCH3 H MEXTF 572 F C1 CH3 CF3 H CH(CH3)NHCH3 H MEXTF 573 F C1 CH3 CF3 H CH(CH3)NHSO2CF3 H MEXTF 574 F C1 CH3 CF3 H CH(CH3)NHSO2CH3 H MEXTF 575 F C1 CH3 CF3 H CH(CH3)NHCOCH3 H MEXTF 576 F C1 CH3 CF3 H CH(CH3)SCN H MEXTF 577 F C1 CH3 CF3 H CH(CH3)SCN H MEXTF 578 F C1 CH3 CF3 H CH(CH3)SCN H MEXTF 579 F C1 CH3 CF3 H CH(CH2OH3)OH H MEXTF 580 F C1 CH3 CF3 H CH(CH2C1)OH H MEXTF 581 F C1 CH3 CF3 H CH(CH2SCH3)OH H MEXTF 582 F C1 CH3 CF3 H CH(CH2SCH3)OH H MEXTF 583 F C1 CH3 CF3 H CH(CH2SCH3)OH H MEXTF 584 F C1 CH3 CF3 H CH(CH3)OCH3 H MEXTF	565	F	Cl	CH3	. CF3	H	СН (СН ₂ ОСН ₃) SСН ₃	H	
568 F C1 CH3 CF3 H CH(CF3) SCH3 H 569 F C1 CH3 CF3 H CH(CF3) SOCH3 H 570 F C1 CH3 CF3 H CH(CF3) SO2CH3 H 571 F C1 CH3 CF3 H CH(CH3) NHCH3 H MMEATO 572 F C1 CH3 CF3 H CH(CH3) NHCH3 H MMEATO 573 F C1 CH3 CF3 H CH(CH3) NHSO2CF3 H CH(CH3) NHSO2CH3 H MMEATO 574 F C1 CH3 CF3 H CH(CH3) NHSO2CH3 H MMEATO 575 F C1 CH3 CF3 H CH(CH3) NHCOCH3 H MMEATO 576 F C1 CH3 CF3 H CH(CH3) NHCOCH2C1 H MMEATO 577 F C1 CH3 CF3 H CH(CH3) SCN H MMEATO 578 F C1 CH3 CF3 H CH(CH3) SCN H MMEATO 579 F C1 CH3 CF3 H CH(CH2C1) OH H MMEATO 580 F C1 CH3 CF3 H CH(CH2C1) OH H MMEATO 581 F C1 CH3 CF3 H CH(CH2ST) OH H MMEATO 582 F C1 CH3 CF3 H CH(CH2SCH3) OH H MMEATO 583 F C1 CH3 CF3 H CH(CH2SCH3) OH H MMEATO 584 F C1 CH3 CF3 H CH(CH2SCH3) OH MMEATO	566	F	Cl	CH3	-	Н		н	
F C1 CH ₃ CF ₃ H CH(CF ₃)SOCH ₃ H 570 F C1 CH ₃ CF ₃ H CH(CF ₃)SO ₂ CH ₃ H 571 F C1 CH ₃ CF ₃ H CH(CH ₃)NHCH ₃ H 572 F C1 CH ₃ CF ₃ H CH(CH ₃)NHCH ₃ H 573 F C1 CH ₃ CF ₃ H CH(CH ₃)NHSO ₂ CF ₃ H 574 F C1 CH ₃ CF ₃ H CH(CH ₃)NHSO ₂ CF ₃ H 575 F C1 CH ₃ CF ₃ H CH(CH ₃)NHCOCH ₃ H 576 F C1 CH ₃ CF ₃ H CH(CH ₃)NHCOCH ₂ C1 H 577 F C1 CH ₃ CF ₃ H CH(CH ₃)NHCOCH ₂ C1 H 577 F C1 CH ₃ CF ₃ H CH(CH ₃)SCN H 60-63 578 F C1 CH ₃ CF ₃ H CH(CH ₂ C1)OH H 580 F C1 CH ₃ CF ₃ H CH(CH ₂ C1)OH H 581 F C1 CH ₃ CF ₃ H CH(CH ₂ C1)OH H 582 F C1 CH ₃ CF ₃ H CH(CH ₂ CCH ₃)OH H 583 F C1 CH ₃ CF ₃ H CH(CH ₂ CCH ₃)OH H 584 F C1 CH ₃ CF ₃ H CH(CH ₂ CCH ₃)OH H	567	F	Cl	CH3	CF3	Н	CH (CH2SCH3) SCH3	Н	
570 F C1 CH3 CF3 H CH (CF3) SO2CH3 H 571 F C1 CH3 CF3 H CH (CH3) NHCH3 H 572 F C1 CH3 CF3 H CH (CH3) N (CH3) 2 H 1.5341 573 F C1 CH3 CF3 H CH (CH3) NHSO2CF3 H 1.5341 574 F C1 CH3 CF3 H CH (CH3) NHSO2CH3 H 1.575 575 F C1 CH3 CF3 H CH (CH3) NHCOCH3 H 1.576 576 F C1 CH3 CF3 H CH (CH3) NHCOCH2C1 H 1.577 577 F C1 CH3 CF3 H CH (CH3) SCN H 60-63 578 F C1 CH3 CF3 H CH (CH2) OH H 113-115 579 F C1 CH3 CF3 H CH (CH2C1) OH H 1580 580 F C1 CH3 CF3 H CH (CH2SP) OH H 1582 581 F C1 CH3 CF3 H CH (CH2OCH3) OH H 1582 582 F C1 CH3 CF3 H CH (CH2SCH3) OH H 1583 583 F C1 CH3 CF3 H CH (CH2SCH3) OH H 1584 584 F C1 CH3 CF3 H CH (CH2SCH3) OCH3 H 120-121	568	F	Cl	CH ₃	CF ₃	H	CH (CF3) SCH3	н	
571 F C1 CH3 CF3 H CH (CH3) NHCH3 H 加定不可 572 F C1 CH3 CF3 H CH (CH3) N (CH3) 2 H 1.5341 573 F C1 CH3 CF3 H CH (CH3) NHSO2CF3 H 1.5341 574 F C1 CH3 CF3 H CH (CH3) NHSO2CH3 H 1.575 575 F C1 CH3 CF3 H CH (CH3) NHCOCH3 H 1.576 576 F C1 CH3 CF3 H CH (CH3) NHCOCH2C1 H 1.577 577 F C1 CH3 CF3 H CH (CH3) SCN H 60-63 578 F C1 CH3 CF3 H CH (C√1) OH H 113-115 579 F C1 CH3 CF3 H CH (CH2C1) OH H 1580 580 F C1 CH3 CF3 H CH (CH2Br) OH H 1582 F C1 CH3 CF3 H CH (CF3) OH H 1582 F C1 CH3 CF3 H CH (CH2CH3) OH H 1582 581 F C1 CH3 CF3 H CH (CH2SCH3) OH H 1583 583 F C1 CH3 CF3 H CH (CH2SCH3) OH H 1584 584 F C1 CH3 CF3 H CH (CH2SCH3) OCH3 H 120-121	569	F	Cl	CH3	CF ₃	H	CH (CF3) SOCH3	Н	
572 F C1 CH ₃ CF ₃ H CH (CH ₃) N (CH ₃) ₂ H 1.5341 573 F C1 CH ₃ CF ₃ H CH (CH ₃) NHSO ₂ CF ₃ H 574 F C1 CH ₃ CF ₃ H CH (CH ₃) NHSO ₂ CH ₃ H 575 F C1 CH ₃ CF ₃ H CH (CH ₃) NHCOCH ₃ H 576 F C1 CH ₃ CF ₃ H CH (CH ₃) NHCOCH ₂ C1 H 577 F C1 CH ₃ CF ₃ H CH (CH ₃) SCN H 60-63 578 F C1 CH ₃ CF ₃ H CH (CH ₂) OH H 113-115 579 F C1 CH ₃ CF ₃ H CH (CH ₂ C1) OH H 580 F C1 CH ₃ CF ₃ H CH (CH ₂ C1) OH H 581 F C1 CH ₃ CF ₃ H CH (CH ₂ C1) OH H 582 F C1 CH ₃ CF ₃ H CH (CH ₂ CCH ₃) OH H 583 F C1 CH ₃ CF ₃ H CH (CH ₂ CCH ₃) OH H 584 F C1 CH ₃ CF ₃ H CH (CH ₂ CCH ₃) OH H	570	F	Cl	СН3	CF ₃	Н	CH (CF3) SO2CH3	Н	
F C1 CH ₃ CF ₃ H CH (CH ₃) NHSO ₂ CF ₃ H F C1 CH ₃ CF ₃ H CH (CH ₃) NHSO ₂ CH ₃ H F C1 CH ₃ CF ₃ H CH (CH ₃) NHCOCH ₃ H F C1 CH ₃ CF ₃ H CH (CH ₃) NHCOCH ₂ C1 H F C1 CH ₃ CF ₃ H CH (CH ₃) NHCOCH ₂ C1 H F C1 CH ₃ CF ₃ H CH (CH ₃) SCN H 60-63 F C1 CH ₃ CF ₃ H CH (CH ₂) OH H 113-115 F C1 CH ₃ CF ₃ H CH (CH ₂ C1) OH H	571	F	Cl	СНЗ	CF3	H	СН (СН3) ИНСН3	н	測定不可
574 F C1 CH3 CF3 H CH (CH3) NHSO2CH3 H 575 F C1 CH3 CF3 H CH (CH3) NHCOCH2C1 H 576 F C1 CH3 CF3 H CH (CH3) SCN H 60-63 577 F C1 CH3 CF3 H CH (CH2) ON H 113-115 578 F C1 CH3 CF3 H CH (CH2C1) ON H 113-115 579 F C1 CH3 CF3 H CH (CH2C1) ON H 580 F C1 CH3 CF3 H CH (CH2BT) OH H 581 F C1 CH3 CF3 H CH (CH2OCH3) OH H 582 F C1 CH3 CF3 H CH (CH2SCH3) OH H 583 F C1 CH3 CF3 H CH (CH2SCH3) OCH3 H 120-121	572	F	Cl	CH ₃	CF3	H	CH (CH3) N (CH3) 2	H	1. 5341
575 F C1 CH ₃ CF ₃ H CH (CH ₃) NHCOCH ₃ H 576 F C1 CH ₃ CF ₃ H CH (CH ₃) NHCOCH ₂ C1 H 577 F C1 CH ₃ CF ₃ H CH (CH ₃) SCN H 60-63 578 F C1 CH ₃ CF ₃ H CH (CH ₂ C1) OH H 113-115 579 F C1 CH ₃ CF ₃ H CH (CH ₂ C1) OH H 580 F C1 CH ₃ CF ₃ H CH (CH ₂ Br) OH H 581 F C1 CH ₃ CF ₃ H CH (CF ₃) OH H 582 F C1 CH ₃ CF ₃ H CH (CH ₂ CCH ₃) OH H 583 F C1 CH ₃ CF ₃ H CH (CH ₂ CCH ₃) OH H 584 F C1 CH ₃ CF ₃ H CH (CH ₂ CCH ₃) OH H	573	F	Cl	СН3	CF ₃	H	CH (CH3) NHSO2CF3	Н	
576 F C1 CH ₃ CF ₃ H CH (CH ₃) NHCOCH ₂ C1 H 577 F C1 CH ₃ CF ₃ H CH (CH ₃) SCN H 60-63 578 F C1 CH ₃ CF ₃ H CH (CH ₂) OH H 113-115 579 F C1 CH ₃ CF ₃ H CH (CH ₂ C1) OH H 580 F C1 CH ₃ CF ₃ H CH (CH ₂ Br) OH H 581 F C1 CH ₃ CF ₃ H CH (CF ₃) OH H 582 F C1 CH ₃ CF ₃ H CH (CH ₂ OCH ₃) OH H 583 F C1 CH ₃ CF ₃ H CH (CH ₂ SCH ₃) OH H 584 F C1 CH ₃ CF ₃ H CH (CH ₂ SCH ₃) OH H	574	F	Cl	CH3	CF3	H	СН (СН ₃) NHSO ₂ CH ₃	н	
577 F C1 CH ₃ CF ₃ H CH (CH ₃) SCN H 60-63 578 F C1 CH ₃ CF ₃ H CH (-√) OH H 113-115 579 F C1 CH ₃ CF ₃ H CH (CH ₂ C1) OH H 580 F C1 CH ₃ CF ₃ H CH (CH ₂ Br) OH H 581 F C1 CH ₃ CF ₃ H CH (CF ₃) OH H 582 F C1 CH ₃ CF ₃ H CH (CH ₂ OCH ₃) OH H 583 F C1 CH ₃ CF ₃ H CH (CH ₂ SCH ₃) OH H 584 F C1 CH ₃ CF ₃ H CH (CH ₂ SCH ₃) OH H	575	F	Cl	СНЗ	CF ₃	H	СН (СН3) NHCOCH3	Н	
578 F C1 CH ₃ CF ₃ H CH(-√)OH H 113-115 579 F C1 CH ₃ CF ₃ H CH(CH ₂ C1)OH H 580 F C1 CH ₃ CF ₃ H CH(CH ₂ Br)OH H 581 F C1 CH ₃ CF ₃ H CH(CF ₃)OH H 582 F C1 CH ₃ CF ₃ H CH(CH ₂ OCH ₃)OH H 583 F C1 CH ₃ CF ₃ H CH(CH ₂ SCH ₃)OH H 584 F C1 CH ₃ CF ₃ H CH(CH ₂ SCH ₃)OCH H	576	F	Cl	СНЗ	CF ₃	H	CH (CH3) NHCOCH2C1	Н	
579 F C1 CH3 CF3 H CH (CH2C1) OH H 580 F C1 CH3 CF3 H CH (CH2Br) OH H 581 F C1 CH3 CF3 H CH (CF3) OH H 582 F C1 CH3 CF3 H CH (CH2OCH3) OH H 583 F C1 CH3 CF3 H CH (CH2SCH3) OH H 584 F C1 CH3 CF3 H CH (CH3) OCH3 H 120-121	577	F	Cl	СНЗ	CF ₃	H	CH (CH3) SCN	н	60-63
580 F C1 CH3 CF3 H CH (CH2Br) OH H 581 F C1 CH3 CF3 H CH (CF3) OH H 582 F C1 CH3 CF3 H CH (CH2OCH3) OH H 583 F C1 CH3 CF3 H CH (CH2SCH3) OH H 584 F C1 CH3 CF3 H CH (CH3) OCH3 H 120-121	578	F	Cl	СНЗ	CF3	Н	СН (—<) ОН	н	113-115
581 F C1 CH ₃ CF ₃ H CH (CF ₃) OH H 582 F C1 CH ₃ CF ₃ H CH (CH ₂ OCH ₃) OH H 583 F C1 CH ₃ CF ₃ H CH (CH ₂ SCH ₃) OH H 584 F C1 CH ₃ CF ₃ H CH (CH ₃) OCH ₃ H 120-121	579	F	CI	CH ₃	CF3	Н	CH (CH ₂ C1) OH	н	İ
582 F C1 CH ₃ CF ₃ H CH (CH ₂ OCH ₃) OH H 583 F C1 CH ₃ CF ₃ H CH (CH ₂ SCH ₃) OH H 584 F C1 CH ₃ CF ₃ H CH (CH ₃) OCH ₃ H 120-121	580	F	Cl	CH3	CF3	H	CH(CH ₂ Br)OH	н	İ
583 F C1 CH ₃ CF ₃ H CH(CH ₂ SCH ₃)OH H 584 F C1 CH ₃ CF ₃ H CH(CH ₃)OCH ₃ H 120-121	581	- F	Cl	CH ₃	CF3	H	CH (CF3) OH	н	İ
584 F C1 CH ₃ CF ₃ H CH (CH ₃) OCH ₃ H 120-121	582	F	C1	СНЗ	CF3	Н	СН (СН ₂ ОСН ₃) ОН	Н	
	583	F	C1	СНЗ	CF3	H	СН (СН ₂ SCH ₃) ОН	н	
585 F C1 CH ₃ CF ₃ H CH(CH ₃)OC ₂ H ₅ H 1.5080	584	F	Cl	CH3	CF3	Н	СН (СН ₃) ОСН ₃	н	120-121
	585	F	Cl	CH3	CF3	H	CH (CH ₃) OC ₂ H ₅	н]	1. 5080

(表19)

化合物	Х	Y	Rl	R ²	R3	R ⁴	R ⁵	融点(℃) 屈折率 ⁿ D
番号							•	屈折率 n _D ²⁰
586	F	Cl	СНЗ	CF ₃	Н	CH (CH ₃) OC ₃ H ₇	Н	1. 5241
587	F	Cl	CH3	CF3	H	CH (CH3) OCHF2	H	
588	F	Cl	CH3	CF ₃	Н	CH (CH ₃) OCH ₂ —	Н	
589	F	Cl	СНЗ	CF3	H	CH (CH ₃) OCH ₂ COOCH ₃	Н	-
590	F	Cl	СНЗ	CF3	H	CH (CH ₃) OCH ₂ CON (CH ₃) ₂	Н	
591	F	Cl	CH3	CF3	H	СН (СН3) ОСОСН3	H	1. 5251
592	F	Cl	CH3	CF3	Н	CH (CH3) OCON (CH3) 2	Н	1. 5937
593	F	Cl	СНЗ	CF3	Н	CH (CH3) OCSN (CH3) 2	Н	
594	F	Cl	CH3	CF ₃	H	CH (CH ₃) OCONHCH ₃	Н	
59 5	F	C1	СНЗ	CF ₃	Н	СН (СН3) ОСSNHCH3	Н	
596	F	Cl	CH3	CF3	H	CH (CH3) NH2	Н	
597	F	Cl	CH3	CF3	H	СН (СН3) СИ	Н	
598	F	Cl	СНЗ	CF3	H	CH (CH ₃) CONH ₂	Н	
599	F	C1	СНЗ	CF3	H	CH (CH ₃) OCH ₂ OCH ₃	н	
600	F	Cl	СНЗ	CF ₃	H	СН (СН ₃) ОСН ₂ SCH ₃	н	
601	F	Cl	CH3	CF3	H	COCH=CH2	н	
602	F	Cl	СНЗ	CF3	H	COC ≡ CH	н	
603	F	Cl	СНЗ	CF3	H	COCH ₂ OCH ₃	Н	
604	F	C1	СНЗ	CF3	H	COCH2SCH3	н	
605	F	Cl	CH3	CF ₃	Н	C5H11	н	1. 5397
606	F	Cl	СНЗ	CF3	Н	ightharpoons	Н	109-111
607	. F	C1	CH3	CF3	Н	-<₁-сн³	н	1. 5389
608	F	Cl	СНЗ	CF3	H	CH ₃	н	
609	F	CI	СНЗ	CF3	H	CH ₃ CH ₃	н	
610	- F	Cl	СНЗ	CF3	H	СН=СНСН3	н	149-151
611	F	Cl	CH3	CF3	H	$C(CH_3) = CH_2$	Н	155-156
612	F	Cl	CH3	CF ₃	H	$C(CH_3) = CHCH_3$	н	153-155
613	F	Cl	CH3	CF3	H	$C(C_2H_5) = CH_2$	н	1
614	F	Cl	СНЗ	CF3	H	$C(C_2H_5) = CHCH_3$	н	

(表20)

化合物	n X	Y	Rl	R ²	R3	R4	R5	融占(%)
番号	"	-		•	••	••		融点(℃) 配折率 nD
615	F	Cl	CH3	CF ₃	Н	C (CH ₃) =C	(CH ₃) ₂ H	12017
616	F	Cl	CH ₃	CF ₃	H	CH=C (CH ₃)		
617	F	C1	CH ₃	CF ₃	Н	CH ₃	CH ₂ Br	181-183
618	F	C1	СНЗ	CF ₃	H	СНЗ	CH ₂ CN	224-226
619	F	Cl	СНЗ	CF ₃	H	CH ₃	CH ₂ CONH ₂	127-129
620	F	Cl	CH3	CF3	Н	СНЗ	OCHF ₂	
621	F	Cl	СНЗ	CF ₃	H	СНЗ	OCH2CH=CH2	
622	F	Cl	CH3	CF3	H	CH ₃	OCH ₂ C≡CH	1. 5331
623	F	Cl	СНЗ	CF3	Н	СНЗ	осн ₂ соосн ₃	53-55
624	F	Cl	СНЗ	CF ₃	H	CH ₃	осн (сн ₃) соосн ₃	71-73
625	F	CI	CH3	CF ₃	H	СНЗ	SCHF ₂	
626	F	C1	СНЗ	CF ₃	Н	CH3	SCH2CH=CH2	
627	F	Cl	CH3	CF ₃	H	CH3	$SCH_2C \equiv CH$	1
628	F	Cl	CH3	CF3	H	СНЗ	$SCH_2COOC_2H_5$	1
629	F	Cl	СНЗ	CF3	Н	СНЗ	SCH (СН3) СООСН3]
630	F	Cl	СНЗ	CF3	H	CH3	co	1. 5275
631	F	Cl	СНЗ	CF ₃	H	CH ₃	CSCH ₃	1. 5967
632	F	Cl	CH3	CF_3	H	CH ₃	соосн ₂ —	1. 5331
633	F	Cl	снз	CF ₃	H	CH3	COOCH ₂ —COCH ₃	
634	F	Cl	СНЗ	CF3	H	снз	COOCH ₂ CH ₂ F	109-110
635	F	Cl	СНЗ	CF ₃	Н	CH3	CH=CH ₂	58-60
636	F	Cl	CH3	CF3	H	СНЗ	сн=снсн ₃	1. 5409
637	·F	Cl	СНЗ	CF3	H	CH ₃	\prec^0	÷
638	F	Cl	СНЗ	CF3	Н	СН3	-<₁ ^{CH3}	169-170
639	F	Cl	СН3	CF3	H	C ₂ H ₅	COCH ₂ Br	158-159
640	F	Cl	СНЗ	CF ₃	H	С3Н7	соос ₂ н ₅	1. 5140
641	- F	Cl	СН3	CF ₃	H	C3H7	соос ₅ н ₁₁	1. 5209
642	F	C1	СНЗ	CF3	Н	Сзн	COOCH ₂	1. 5485
643	F	Cl	CH3	CF ₃	Н	C4H9	СНО	128-130
644	F	Cl	СНЗ	CF ₃	Н	C4H9	сооснз	1. 5410
645	F	Cl	СНЗ	CF ₃	H	C4H9	СООН	1. 5342

(表21)

化合物 番号	Х	Y	R ¹	R ²	R3	R ⁴	_R 5	融点(℃) 屈折率 ⁿ D
646	F	Cl	CH ₃	CF ₃	Н	C ₄ H ₉ -i	СНО	54-55
647	F	Cl	CH3	CF ₃	Н	C ₄ H ₉ -i	COOCH3	62-63
648	F	Cl	CH ₃	CF ₃	H	C ₄ H ₉ -i	СООН	208-209
649	F	Cl	CH ₃	CF ₃	H	C5H11	СНО	測定不可
650	F	Cl	СНЗ	CF3	H	С ₅ Н ₁₁	соосн3	1. 5271
651	F	Cl	СНЗ	CF3	Н	C5H11	СООН	1. 5156
652	F	C1	СНЗ	CF ₃	Н	CH ₂ Br	CH ₂ Br	225-227
653	F	Cl	СНЗ	CF ₃	Н	CH ₂ Br	CHBr ₂	146-147
654	F	Cl	CH ₃	CF ₃	Н	NO ₂	CH ₃	146-148
655	F	Cl	CH3	CF3	H	Н	СООСНЗ	95-97
656	F	Cl	CH3	CF ₃	н	сосн3	COOCH ₃	91-93
657	F	Cl	CH3	CF ₃	Н	СН (СН ₃) ОН	COOCH3	95-97
658	F	Cl	CH3	CF ₃	Н	СН (СН=СН2) ОН	COOCH3	142-145
659	F	C1	CH3	CF ₃	Н	CH ₂ Br	COOC ₂ H ₅	1. 5535
660	F	Cl	CH3	CF3	H	CH ₂ SCH ₃	COOC ₂ H ₅	103-105
661	F	Cl	СНЗ	CF3	H	CH2SO2CH3	COOC ₂ H ₅	73-75
662	F	Cl	CH ₃	CF3	H	С (СН3) 2502СН3	COOC ₂ H ₅	182-183
663	F	Cl	CH3	CF3	H	СH ₂ SС ₂ H ₅	COOC ₂ H ₅	1. 5481
664	F	Cl	CH3	CF3	H	$\mathrm{CH_2SO_2C_2H_5}$	COOC ₂ H ₅	57-59
665	F	Cl	CH3	CF ₃	Н	CHB _{r2}	COOC2H5	112-114
666	F	C1	СНЗ	CF3	Н	СНО	COOC ₂ H ₅	測定不可
667	F	Cl	СНЗ	CF3	Н	с н (с н ₃) он	C00C ₂ H ₅	1. 5378
668	F	Cl	CH ₃	CF3	H	COCH ₃	COOC ₂ H ₅	1. 5466
669	F	Cl	CH3	CF3	Н	CH(CH ₃)Br	COOC ₂ H ₅	1. 5300
670 ·	F	Cl	CH3	CF3	Н	СН (СН3) С1	COOC ₂ H ₅	測定不可
671	F	Cl	СНЗ	CF3	H	сн (сн ₃) си	COOC ₂ H ₅	1. 5348
672	F	C1.	CH3	CF ₃	Н	Н	COOC ₂ H ₅	1. 5468
673	F	C1	CH3	CF3	Н	CH ₂ C1	CH ₂ C1	202-203
674	·F	Cl	CH3	CF ₃	H	CH ₂ SCH ₃	CH2SCH3	115-116
675	F	C1	СНЗ	CF3	н	СH ₂ SO ₂ CH ₃	CH2SO2CH3	169-171
676	F	F	CH3	CF ₃	H	сосн3	Н	204-205
677	F	F	СНЗ	CF ₃	H	COC ₂ H ₅	H	136-137
678	F	F	СНЗ	CF ₃	H	СН (СН3) ОСН	3 Н	1. 5220

(表22)

化合4	勿 X	Y	Rl	R ²	R3	R ⁴	R ⁵	融点(℃)20
番号								│ 屈折率 n D
679	F	F	СНЗ	CF ₃	H.	CH (CH ₃) OC ₂ H ₅	Н	
680	F	F	СНз	CF3	H	СН (С ₂ Н ₅) ОН	H	137-138
681	F	F	CH3	CF3	H	СН (СН=СН ₂) ОН	Н	1. 5090
682	F	F	CH3	CF ₃	H	СН (СН3) SCH3	H	1. 5415
683	F	F	CH3	CF3	H	СН (СН3) SOCH3	H	
684	F	F	СНЗ	CF ₃	H	СН (СН3) SO2СН3	H	79-80
685	F	F	CH3	CF3	H	С (СН3) 2502СН3	Н	108-111
686	F	F	СНЗ	CF ₃	H	СН (СН3) SC2H5	Н	1. 5345
687	F	F	СНЗ	CF ₃	H	CH (CH3) SOC2H5	H	
688	F	F	CH3	CF3	Н	СН (СН ₃) SO ₂ C ₂ H ₅	5 H	72-73
689	F	F	СНЗ	CF3	H	СН (С ₂ Н ₅) SCН ₃	н	
690	F	F	CH3	CF3	H	СН (C ₂ H ₅) SOCH ₃	Н	1. 5251
691	F	F	\mathtt{CH}_3	CF ₃	H	СН (С ₂ Н ₅) SO ₂ CH ₃	H	1. 5170
692	F	F	CH3	CF ₃	H	СН (С ₂ Н ₅) SC ₂ Н ₅	H	1. 5339
693	F	F	СНЗ	CF3	H	СН (C ₂ H ₅) SOC ₂ H ₅	Н	1. 5325
694	F	F.	СНЗ	CF3	Н	СН (С ₂ Н ₅) SO ₂ C ₂ Н ₅	Н	1. 5250
695	F	F	СНЗ	CF3	Н	СН (СН3) CN	н	
696	F	F	CH ₃	CF ₃	Н	СН (СН ₃) СОМН ₂	н	
69.7	F	F	CH3	CF ₃	H	СН (СН ₃) SH	н	
698	CI	Cl	CH3	CF ₃	H	СН3	н	136-137
699	Cl	Cl	СНЗ	CF ₃	H	С ₂ Н ₅	н	148-149
700	C1	Cl	CH3	CF ₃	H	C3H7	н	114-115
701	Cl	Cl	СНЗ	CF ₃	H	C3H7-i	Н	1. 5435
702	C1	Cl	СНЗ	CF3	H	CH ₃	соснз	1. 5542
703·	Cl	Cl	СНЗ	CF3	H	С ₂ Н ₅	сосн3	1. 5495
704	Cl	C1	CH3	CF3	H	С ₃ Н ₇	COCH3	1. 5487
705	F	Br	CH ₃	CF3	H	H	Н	137-138
706	F	Br	CH3	CF ₃	H	сн ₃	н	182-184
707	- F	Br	CH3	CF_3	H	С ₂ Н ₅	н	145-147
708	F	Br	снз	CF ₃	H	С ₃ Н ₇	н	1. 5552
709	F	Br	CH3	CF3	Н	соснз	н	187-189
710	F	Br	СНЗ	CF_3	H	COC ₂ H ₅	н	124-125
711	F	Br	СНЗ	CF_3	H	СН (СН ₃) ОН	Н	144-146

(表23)

化合物	Х	Y	R1	R ²	R3	R ⁴	R 5	融点(℃)20
番号								屈折率 nD
712	F	Br	СНЗ	CF3	Н	СН (С ₂ Н ₅) ОН	Н	1. 5420
713	F	Br	СНЗ	CF3	H	сн (сн ₃) осн ₃	Н	1. 5322
714	F	Br	СНЗ	CF3	H	СН (СН3) ОС2Н5	н	
715	F	Br	СНЗ	CF3	H	СН (СН ₃) SCH ₃	Н	
716	F	Br	СНЗ	CF3	H	СН (СН ₃) SOCH ₃	Н	88-90
717	F	Br	СНЗ	CF3	Н	СН (СН ₃) SO ₂ CH ₃	Н	107-109
718	F	Br	СНЗ	CF_3	H	СН (СН ₃) SC ₂ Н ₅	Н	
719	F	Br	CH3	CF3	H	$CH(CH_3)SOC_2H_5$	Н	1. 5561
720	F	Br	CH3	CF ₃	H	CH (CH3) SO2C2H5	Н	1. 5382
721	F	Br	CH ₃	CF ₃	H	СН (С ₂ Н ₅) SCН ₃	Н	
722	F	Br	CH3	CF3	H	CH (C2H5) SOCH3	н	
723	F	Br	CH3	CF_3	H	сн (с ₂ н ₅) so ₂ сн ₃	н	
724	F	Вг	CH3	CF3	H	CH3	сосн3	1. 5500
725	F	Br	CH3	CF3	H	C ₂ H ₅	соснз	1. 5460
726	F	Br	CH3	CF3	H	С ₃ н ₇	соснз	1. 5408
727	F	H	СНЗ	CF3	H	С ₂ н ₅	н	129-130
728	F	Cl	NH2	CF ₃	H	H	н	
729	F .	C1	NH ₂	CF3	H	СНЗ	н	
730	F	Cl	NH_2	CF3	H	С ₂ Н ₅	Н	145-147
731	F	Cl	NH ₂	CF ₃	H	С ₃ н ₇	Н	
732	F	Cl	NH ₂	CF3	H	СН (СН _З) ОН	Н	
733	F	C1	NH ₂	CF3	H	СН (СН ₃) SСН ₃	Н	
734	F	Cl	NH ₂	CF3	H	СН (СН ₃) SO ₂ СН ₃	Н	
735	F	Cl	NH ₂	CF3	H	CH (C ₂ H ₅) SCH ₃	Н	
736	F	C1	NH2	CF3	H	СН (С $_2$ Н $_5$) SO $_2$ СН $_3$	H	
737	F	Cl	NH ₂	CF3	H	сн (сн ₃) осн ₃	H	
738	F	Cl	NH ₂	CF3	H	сосн3	Н	
739	F	F	NH2	CF3	H	Н	Н	
740	· F	F	NH_2	CF3	H	CH ₃	H	
741	F	F	NH2	CF3	H	C_2H_5	II	
742	F	F	NH ₂	CF3	Н	С3Н7	Н	
743	F	F	ин2	CF_3	H	соснз	Н	
744	F	F	NH ₂	CF3	Н	СН (СН ₃) ОН	H	

(表24)

日子	化合物	by X	Υ	R1	_R 2	_R 3	R4	_R 5	H. F. (90)
745		" ^	1	K-	R ^D	χo	К³	Κo	融点(℃)20
T46			E	NHo	CEo	u	Ch (ch*) cch*	11	出が幸り
747		1		_	•		• •		
748		1		_	•				
749		1			•				
750			-		_				
T51					•				
T52		1			_		• •		1
F C1 CH3 CF3 H CH(CH3) SOCH2CF3 H 73-75 754 F C1 CH3 CF3 H CH(CH3) SO2CH2CF3 H 73-75 755 F C1 CH3 CF3 H CH(C2H5) SCH2CF3 H 72-75 756 F C1 CH3 CF3 H CH(C2H5) SOCH2CF3 H 757 757 F C1 CH3 CF3 H CH(C2H5) SOCH2CF3 H 757 758 F C1 CH3 CF3 H CH(C2H5) SO2CH2CF3 H 759 759 F C1 CH3 CF3 H CH(CH=CH2) SOCH2CF3 H 760 760 F C1 CH3 CF3 H CH(CH=CH2) SO2CH2CF3 H 762 761 F C1 CH3 CF3 H CH(CE=CH) SCH2CF3 H 762 762 F C1 CH3 CF3 H CH(C=CH) SCH2CF3 H 763 763 F C1 CH3 CF3 H CH(C=CH) SOCH2CF3 H 764 764 F C1 CH3 CF3 H CH(C=CH) SO2CH2CF3 H 765 765 F C1 CH3 CF3 H CH(C=CH) SO2CH2CF3 H 765 766 F C1 CH3 CF3 H CH(CH=CH2) SO2CH2CF3 H 766 767 F C1 CH3 CF3 H CH(CH3) OCH2CF3 H 767 768 F C1 CH3 CF3 H CH(CH3) OCH2CF3 H 768 769 F C1 CH3 CF3 H CH(C=CH2) OCH2CF3 H 769 760 F C1 CH3 CF3 H CH(CH=CH2) OCH2CF3 H 769 760 F C1 CH3 CF3 H CH(C=CH2) OCH2CF3 H 769	1			_	•		•		1
T54		i		_	_				;
755		1			•				
756 F C1 CH3 CF3 H CH (C ₂ H ₅) SOCH ₂ CF3 H 757 F C1 CH3 CF3 H CH (C ₂ H ₅) SOCH ₂ CF3 H 758 F C1 CH3 CF3 H CH (CH=CH ₂) SCH ₂ CF ₃ H 759 F C1 CH3 CF ₃ H CH (CH=CH ₂) SCH ₂ CF ₃ H 760 F C1 CH ₃ CF ₃ H CH (CH=CH ₂) SOCH ₂ CF ₃ H 761 F C1 CH ₃ CF ₃ H CH (CH=CH ₂) SOCH ₂ CF ₃ H 762 F C1 CH ₃ CF ₃ H CH (C ≡ CH) SOCH ₂ CF ₃ H 763 F C1 CH ₃ CF ₃ H CH (C ≡ CH) SOCH ₂ CF ₃ H 764 F C1 CH ₃ CF ₃ H CH (C ≡ CH) SO ₂ CH ₂ CF ₃ H 765 F C1 CH ₃ CF ₃ H CH (C ≡ CH) SO ₂ CH ₂ CF ₃ H 766 F C1 CH ₃ CF ₃ H CH (CH ₃) OCH ₂ CF ₃ H 767 F C1 CH ₃ CF ₃ H CH (CH ₃) OCH ₂ CF ₃ H 768 F C1 CH ₃ CF ₃ H CH (CH=CH ₂) OCH ₂ CF ₃ H 769 F C1 CH ₃ CF ₃ H CH (C ≡ CH) OCH ₂ CF ₃ H 769 F C1 CH ₃ CF ₃ H CH (C ≡ CH) OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH (CH ₃) SCSN (C ₂ H ₅) ₂ H 1. 5537		ı		-	_			•	128-129
757	1	ļ		_	•			H	
758		1		•	CF_3	H	CH (C_2H_5) SOCH $_2CF_3$	Н	
F C1 CH ₃ CF ₃ H CH(CH=CH ₂) SOCH ₂ CF ₃ H F C1 CH ₃ CF ₃ H CH(CH=CH ₂) SO ₂ CH ₂ CF ₃ H F C1 CH ₃ CF ₃ H CH(CH=CH ₂) SO ₂ CH ₂ CF ₃ H F C1 CH ₃ CF ₃ H CH(C ≡ CH) SOCH ₂ CF ₃ H F C1 CH ₃ CF ₃ H CH(C ≡ CH) SOCH ₂ CF ₃ H F C1 CH ₃ CF ₃ H CH(C ≡ CH) SO ₂ CH ₂ CF ₃ H F C1 CH ₃ CF ₃ H CH(C ≡ CH) SO ₂ CH ₂ CF ₃ H F C1 CH ₃ CF ₃ H CH(C ₂ H ₅) OCH ₃ H 1.5158 F C1 CH ₃ CF ₃ H CH(CH ₃) OCH ₂ CF ₃ H 1.5165 F C1 CH ₃ CF ₃ H CH(CH ₃) OCH ₂ CF ₃ H 1.5312 F C1 CH ₃ CF ₃ H CH(CH=CH ₂) OCH ₂ CF ₃ H F C1 CH ₃ CF ₃ H CH(C ≡ CH) OCH ₂ CF ₃ H				CH3	CF3	Н	CH (C2H5) SO2CH2CF3	Н	測定不可
760 F C1 CH ₃ CF ₃ H CH (CH=CH ₂) SO ₂ CH ₂ CF ₃ H 761 F C1 CH ₃ CF ₃ H CH (C ≡ CH) SCH ₂ CF ₃ H 762 F C1 CH ₃ CF ₃ H CH (C ≡ CH) SOCH ₂ CF ₃ H 763 F C1 CH ₃ CF ₃ H CH (C ≡ CH) SO ₂ CH ₂ CF ₃ H 764 F C1 CH ₃ CF ₃ H CH (C ≡ CH) SO ₂ CH ₂ CF ₃ H 765 F C1 CH ₃ CF ₃ H CH (C ₂ H ₅) OCH ₃ H 1. 5158 766 F C1 CH ₃ CF ₃ H CH (CH ₃) OCH ₂ CF ₃ H 1. 5165 766 F C1 CH ₃ CF ₃ H CH (CH ₃) OCH ₂ CF ₃ H 1. 5312 767 F C1 CH ₃ CF ₃ H CH (CH=CH ₂) OCH ₂ CF ₃ H 768 F C1 CH ₃ CF ₃ H CH (C ≡ CH) OCH ₂ CF ₃ H 769 F C1 CH ₃ CF ₃ H CH (C ≡ CH) OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH (C ≡ CH) OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH (C ≡ CH) OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH (C ₂ H ₅) OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH (CH ₃) SCSN (C ₂ H ₅) 2 H 1. 5537		I		CH3	•	H	CH (CH=CH2) SCH2CF3	H	
761 F C1 CH ₃ CF ₃ H CH (C ≡ CH) SCH ₂ CF ₃ H 762 F C1 CH ₃ CF ₃ H CH (C ≡ CH) SOCH ₂ CF ₃ H 763 F C1 CH ₃ CF ₃ H CH (C ≡ CH) SO ₂ CH ₂ CF ₃ H 764 F C1 CH ₃ CF ₃ H CH (C ≡ CH) SO ₂ CH ₂ CF ₃ H 765 F C1 CH ₃ CF ₃ H CH (CH ₃) OCH ₂ CF ₃ H 1.5165 766 F C1 CH ₃ CF ₃ H CH (CH ₃) OCH ₂ CF ₃ H 1.5312 767 F C1 CH ₃ CF ₃ H CH (CH=CH ₂) OCH ₂ CF ₃ H 768 F C1 CH ₃ CF ₃ H CH (C ≡ CH) OCH ₂ CF ₃ H 769 F C1 CH ₃ CF ₃ H CH (C ≡ CH) OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH (C ≡ CH) OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH (C ≡ CH) OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH (C ≡ CH) OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH (C ≡ CH) OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH (CH ₃) SCSN (C ₂ H ₅) $_2$ H 1.5537	1	ľ	C1	_	CF3	Н	CH (CH=CH2) SOCH2CF3	Н	
762 F C1 CH ₃ CF ₃ H CH (C ≡ CH) SOCH ₂ CF ₃ H 763 F C1 CH ₃ CF ₃ H CH (C ≡ CH) SO ₂ CH ₂ CF ₃ H 764 F C1 CH ₃ CF ₃ H CH (C ₂ H ₅) OCH ₃ H 1. 5158 765 F C1 CH ₃ CF ₃ H CH (CH ₃) OCH ₂ CF ₃ H 1. 5165 766 F C1 CH ₃ CF ₃ H CH (CH ₃) OCH ₂ CF ₃ H 1. 5312 767 F C1 CH ₃ CF ₃ H CH (CH=CH ₂) OCH ₂ CF ₃ H 768 F C1 CH ₃ CF ₃ H CH (C ≡ CH) OCH ₂ CF ₃ H 769 F C1 CH ₃ CF ₃ H CH (C ≡ CH) OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH (C ₂ H ₅) OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH (C ₂ H ₅) OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH (CH ₃) SCSN (C ₂ H ₅) ₂ H 1. 5537	j .			CH3	CF3	H	CH (CH=CH ₂) SO ₂ CH ₂ CF	'з Н	
763 F C1 CH ₃ CF ₃ H CH (C≡CH) SO ₂ CH ₂ CF ₃ H 764 F C1 CH ₃ CF ₃ H CH (C ₂ H ₅) OCH ₃ H 1. 5158 765 F C1 CH ₃ CF ₃ H CH (CH ₃) OCH ₂ CF ₃ H 1. 5165 766 F C1 CH ₃ CF ₃ H CH (CH ₃) OCH ₂ CF ₃ H 1. 5312 767 F C1 CH ₃ CF ₃ H CH (CH=CH ₂) OCH ₂ CF ₃ H 768 F C1 CH ₃ CF ₃ H CH (C≡CH) OCH ₂ CF ₃ H 769 F C1 CH ₃ CF ₃ H CH (C ₂ H ₅) OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH (C ₂ H ₅) OCH ₂ CF ₃ H 1. 5537		F	Cl	_	CF ₃	H	$CH(C \equiv CH)SCH_2CF_3$	н	
764 F C1 CH ₃ CF ₃ H CH(C ₂ H ₅) OCH ₃ H 1. 5158 765 F C1 CH ₃ CF ₃ H CH(CH ₃) OCH ₂ CF ₃ H 1. 5165 766 F C1 CH ₃ CF ₃ H CH(CH ₃) OCH ₂ CH ₂ F H 1. 5312 767 F C1 CH ₃ CF ₃ H CH(CH=CH ₂) OCH ₂ CF ₃ H 768 F C1 CH ₃ CF ₃ H CH(C≡CH) OCH ₂ CF ₃ H 769 F C1 CH ₃ CF ₃ H CH(C ₂ H ₅) OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH(C ₂ H ₅) OCH ₂ CF ₃ H 1. 5537	762	F	Cl	CH3	CF ₃	H	$CH(C \equiv CH) SOCH_2CF_3$	Н	
765 F C1 CH ₃ CF ₃ H CH(CH ₃)OCH ₂ CF ₃ H 1.5165 766 F C1 CH ₃ CF ₃ H CH(CH ₃)OCH ₂ CH ₂ F H 1.5312 767 F C1 CH ₃ CF ₃ H CH(CH=CH ₂)OCH ₂ CF ₃ H 768 F C1 CH ₃ CF ₃ H CH(C≡CH)OCH ₂ CF ₃ H 769 F C1 CH ₃ CF ₃ H CH(C ₂ H ₅)OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH(CH ₃)SCSN(C ₂ H ₅) ₂ H 1.5537	763	F	Cl	CH3.	CF3	H	CH ($C \equiv CH$) $SO_2CH_2CF_3$	Н	
766 F C1 CH ₃ CF ₃ H CH (CH ₃) OCH ₂ CH ₂ F H 1. 5312 767 F C1 CH ₃ CF ₃ H CH (CH=CH ₂) OCH ₂ CF ₃ H 768 F C1 CH ₃ CF ₃ H CH (C≡CH) OCH ₂ CF ₃ H 769 F C1 CH ₃ CF ₃ H CH (C ₂ H ₅) OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH (CH ₃) SCSN (C ₂ H ₅) ₂ H 1. 5537	764	F	C1	CH ₃	CF3	H	СН (С ₂ Н ₅) ОСН ₃	Н	1. 5158
767 F C1 CH ₃ CF ₃ H CH (CH=CH ₂) OCH ₂ CF ₃ H 768 F C1 CH ₃ CF ₃ H CH (C≡CH) OCH ₂ CF ₃ H 769 F C1 CH ₃ CF ₃ H CH (C ₂ H ₅) OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH (CH ₃) SCSN (C ₂ H ₅) ₂ H 1. 5537	765	F	Cl	CH3	CF3	H	СН (СН ₃) ОСН ₂ СF ₃	Н	1. 5165
768 F C1 CH ₃ CF ₃ H CH (C \equiv CH) OCH ₂ CF ₃ H 769 F C1 CH ₃ CF ₃ H CH (C ₂ H ₅) OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH (CH ₃) SCSN (C ₂ H ₅) ₂ H 1. 5537	766	F	C1	CH3	CF3	H	CH (CH3) OCH2CH2F	Н	1. 5312
768 F C1 CH ₃ CF ₃ H CH (C≡CH) OCH ₂ CF ₃ H 769 F C1 CH ₃ CF ₃ H CH (C ₂ H ₅) OCH ₂ CF ₃ H 770 F C1 CH ₃ CF ₃ H CH (CH ₃) SCSN (C ₂ H ₅) ₂ H 1. 5537	767	. F	Cl	CH3	CF3	Н	CH (CH=CH2) OCH2CF3	Н	
770 F C1 CH ₃ CF ₃ H CH (CH ₃) SCSN (C ₂ H ₅) ₂ H 1. 5537	768	F	Cl	CH3	CF ₃	Н		Н	
770 F C1 CH ₃ CF ₃ H CH (CH ₃) SCSN (C ₂ H ₅) ₂ H 1. 5537	769	F	Cl	CH3	CF ₃	Н	2 0	н	ĺ
	770	F	Cl	СНЗ	-	Н		н	1. 5537
771 F F CH ₃ CF ₃ H CH(C ₂ H ₅)OCH ₃ H 1.5216	771	F	F	СНЗ	CF ₃	Н	СН (С ₂ Н ₅) ОСН ₃	н	
772 F C1 CH ₃ CF ₃ H CBr ₂ C ₂ H ₅ II 197-199	772	F	Cl	CH3	CF ₃	Н		11	1

次に本発明化合物の一般的製造法について説明する。

製造法1

一般式 [1] で示される化合物中、R 4 がアルキル基、シクロアルキル基又は

置換されていてもよいベンジル基であり、R⁵が水素原子、アルキル基、置換されていてもよいベンジル基又は置換されていてもよいフェニル基である本発明化合物は以下のようにして製造することができる。

(式中、 R^1 、 R^2 、 R^3 、X及びYはそれぞれ前記と同じ意味を表し、Lは脱離基を表し、 R^{12} 及び R^{13} はそれぞれ水素原子、アルキル基又は置換されていてもよいフェニル基を表すか、あるいは R^{12} と R^{13} は互いに連なる炭素環を表し、 R^{14} は水素原子、アルキル基、置換されていてもよいベンジル基又は置換されていてもよいフェニル基を表す。)

化合物(A-1)とプロパルギルアルコール誘導体とをアゾ化合物及びトリフェニルホスフィンの存在下で反応させる公知の方法(シンセシスSynthesis, 1981, 1-28)によるか、又は脱離基を含んだプロパルギル誘導体とを塩基存在下で縮合させる通常の方法により化合物(A-2)を得ることができる。さらに、化合物(A-2)を溶媒中、塩基存在下で環化させることにより化合物(A-3)を製造することができる。

ここで、溶媒としてはトルエン、キシレン、メシチレン等の芳香族炭化水素類、1、4ージオキサン、テトラヒドロフラン等のエーテル類、N、Nージメチルホルムアミド等のアミド類、ジメチルスルホキシド、スルホラン等の硫黄化合物、キノリン、ピリジン等の芳香族含窒素化合物、N、Nージエチルアニリン、N、Nージメチルアニリン等のアニリン誘導体が挙げられる。特に、化合物(A

-2)の閉環反応についてはN、N-ジエチルアニリンが好ましい。さらに、アゾ化合物としてはアゾジカルボン酸ジエチルが好ましい。塩基としてはアルカリ金属又はアルカリ土類金属等の水素化物、水酸化物、炭酸化合物、炭酸水素化合物もしくは有機酸塩、フッ化セシウム、フッ化カリウム等のフッ化金属化合物あるいはトリエチルアミン、1、8-ジアザビシクロ[5.4.0]-7-ウンデセン、ピリジン等の有機塩基が挙げられる。反応温度は氷温から溶媒の還流温度までで実施できる。

製造法2

一般式 [1] で示される化合物中、 R^{1} が水素原子である本発明化合物(B-7)及び本発明化合物(C-3)は以下のようにして製造することができる。

(式中、R 2 、R 3 、R 4 、R 5 、R 12 、R 13 、R 14 、X及びYはそれぞれ前記と同じ意味を表し、R 15 はアルキル基、置換されていてもよいフェニル

WO 97/29105

基又は置換されていてもよいベンジル基を表し、PNはモノもしくはジアシルアミノ基、モノもしくはジハロアルキルカルボニルアミノ基、モノもしくはジアルキルスルホニルアミノ基、テトラヒドロフタルイミノ基又はフタルイミノ基等の保護基を持つアミノ基を表す。)

製造法1に述べた方法と同様にして化合物(B-1)を閉環し、化合物(B-2)を製造することができる。次に、化合物(B-2)を、以後に述べるウラシル誘導体の製造法(製造法5〜製造法35)又は叢書(メソーデン・デル・オルガニッシェン・ケミエ、第E6b1巻、第33頁〜第162頁、1994年)に記載された方法等に準じて化合物(B-3)に変換し、これの保護基を取り除きアニリン化合物(B-4)を製造することができる。アニリン化合物(B-4)を通常の方法によりクロロ炭酸フェニル等と反応させることにより、カーバメート化合物(B-5)とした後、化合物(B-6)と反応させて得られる生成物を酸処理することにより目的の化合物(B-7)を製造することができる。

あるいは、化合物(B-2)の保護基を取り除きアニリン化合物(C-1)を製造することができる。アニリン化合物(C-1)にホスゲン等を反応させて化合物(C-2)とするか、又はクロロ炭酸フェニル等を反応させて化合物(C-4)とした後、これらの化合物をそれぞれ化合物(B-6)と反応させて得られる生成物を酸処理することにより目的の化合物(C-3)を製造することができる。

保護基Pを取り除く方法は、塩基存在下での加水分解によるか、あるいは保護 基がテトラヒドロフタルイミノ基又はフタルイミノ基等の場合にはヒドラジンと 反応させることによっても取り除くことができる。

化合物(B-5)又は化合物(C-4)の製造は通常、溶媒中で塩基の存在下、反応温度 $0\sim120$ \mathbb{C} 、好ましくは $20\sim80$ \mathbb{C} 00. $5\sim24$ 時間反応させる。反応に供される試剤の量は化合物(B-4)又は化合物(C-1) 1 当量に対してクロロ炭酸誘導体は $1\sim2$ 当量、塩基は $1\sim1$. 5 当量である。塩基としては、炭酸カリウム、水素化ナトリウム等の無機塩基、トリエチルアミン、1, 8-ジアザビシクロ [5. 4. 0] -7-ウンデセン、ピリジン等の有機塩

基が挙げられる。溶媒としてはジエチルエーテル、テトラヒドロフラン等のエーテル類、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、N、N-ジメチルホルムアミド等のアミド類、ジメチルスルホキシド、スルホラン等の硫黄化合物、ベンゼン、トルエン等の芳香族炭化水素類又はそれらの混合物が挙げられる。

化合物(C-2)の製造は通常、溶媒中、反応温度 $0\sim120$ $\mathbb C$ 、好ましくは $20\sim100$ $\mathbb C$ で0. $5\sim24$ 時間反応させる。反応に供される試剤の量は化合物(C-1) 1 当量に対してホスゲンは $2\sim10$ 当量、塩基は $1\sim1$. 5 当量である。溶媒としてはクロロホルム、四塩化炭素等のハロゲン化炭化水素類、ベンゼン、トルエン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類又はそれらの混合物が挙げられる。

化合物(B-5)から化合物(B-7)の製造又は化合物(C-4)から化合物(C-3)の製造は通常、溶媒中で塩基の存在下、反応温度0~150℃、好ましくは20~120℃で0.5~24時間反応させる。反応に供される試剤の量は化合物(B-5)又は化合物(C-4)1当量に対して化合物(B-6)1~10当量、塩基は1~10当量である。塩基としては、水素化カリウム、水素化ナトリウム等の無機塩基、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の有機塩基が挙げられる。溶媒としてはジエチルエーテル、テトラヒドロフラン等のエーテル類、ベンゼン、トルエン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類、N,N-ジメチルホルムアミド等のアミド類、ジメチルスルホキシド、スルホラン等の硫黄化合物又はそれらの混合物が挙げられる。

化合物(C-2)から化合物(C-3)の製造は通常、溶媒中で塩基の存在下、反応温度0~60℃、好ましくは5~30℃で0.5~24時間反応させる。反応に供される試剤の量は化合物(C-2)1当量に対して化合物(B-6)1~1.5当量、塩基は1~1.5当量である。塩基としては、水素化カリウム、水素化ナトリウム等の無機塩基等が挙げられる。溶媒としてはジエチルエーテル、テトラヒドロフラン等のエーテル類、ベンゼン、トルエン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類、N.N-ジメチルホル

ムアミド等のアミド類、ジメチルスルホキシド、スルホラン等の硫黄化合物又は それらの混合物が挙げられる。

原料化合物 (B-1) は以下のようにして製造することができる。

(式中、R 12 、R 13 、R 14 、PN、X及びYはそれぞれ前記と同じ意味を

表し、R 16 はアルキル基又は置換されていてもよいベンジル基を表し、X 1 及びY 1 はそれぞれフッ素原子以外のX及びYを表し、Eは塩素原子、臭素原子、ョウ素原子又はメタンスルホニルオキシ基を表す。)

化合物(D-1)又は化合物(D-2)を対応するアルキニルアルコールと塩基存在下で反応させることにより化合物(D-3)を製造することができる。あるいは、化合物(D-1)又は化合物(D-2)を塩基存在下で加水分解することにより化合物(D-9)を製造した後、製造法1に述べた方法に準じて化合物(D-3)を製造することができる。次に、得られた化合物(D-3)を還元することにより化合物(D-4)を製造した後、窒素原子を保護基で保護することにより化合物(D-1)を製造することができる。

また、化合物(D-1)又は化合物(D-2)を対応するアルコールと塩基存在下で反応させるか、あるいは化合物(D-9)を化合物 $R^{16}-E$ と反応させることにより化合物(D-5)を製造することができる。次に、化合物(D-5)を還元することにより化合物(D-6)を製造した後、窒素原子を保護基で保護することにより化合物(D-7)を製造することができる。さらに、化合物(D-7)から R^{16} を取り除き、化合物(D-8)を製造した後、製造法1に述べた方法に準じて化合物(B-1)を製造することができる。

 R^{16} を取り除く方法は、 R^{16} がアルキル基の場合は三臭化ホウ素等の脱アルキル化剤を用い、 R^{16} が置換されてもよいベンジル基の場合は常圧下で水素添加することにより取り除くことができる。

なお、例えばXがフッ素原子でYが塩素原子又は臭素原子である化合物〔(D-1)に相当〕は、例えば2, 6-ジフルオロアニリンをN-クロロコハク酸イミド(NCS)又はN-プロモコハク酸イミド(NBS)等のハロゲン化剤によりフェニル環の4位を塩素化又は臭素化した後、例えばメタクロロ過安息香酸等の酸化剤で酸化することにより製造することができる。

例えばXがフッ素原子でYがシアノ基である化合物 [(D-1) に相当] は、 2. 6-ジフルオロ-4-シアノアニリンを例えばメタクロロ過安息香酸等の酸 化剤で酸化することにより製造することができる。

製造法3

一般式 [1] で示される化合物の中、 R^1 がアルキル基又はハロアルキル基である本発明化合物(E-2)又は本発明化合物(E-3)は以下のようにして製造することができる。

(式中、R 2 、R 3 、R 4 、R 5 、R 12 、R 13 、R 14 、R 15 、E、X及びYはそれぞれ前記と同じ意味を表し、R 17 はアルキル基又はハロアルキル基を表す。)

前記製造法 1 で製造される化合物(A-3)中、R 1 が水素原子である本発明化合物(B-7)又は前記製造法 2 で製造される本発明化合物(B-7)を化合物 R 1 7 -E と反応させるか、あるいは化合物(B-5)と化合物(E-1)と

を製造法2に示した方法に準じて反応させることによって化合物(E-2)を製造することができる。

また、化合物(C-2)と化合物(E-1)とを製造法 2 に示した方法に準じて反応させることによって化合物(E-3)を製造することができる。

化合物(B-7)から化合物(E-2)の製造は通常、溶媒中で塩基の存在下、反応温度0~100℃で0.5~24時間反応させる。反応に供される試剤の量は化合物(B-7)1当量に対して化合物R¹⁷-Eは1~10当量、塩基は1~1.5当量である。塩基としては、炭酸カリウム、水素化カリウム、水素化ナトリウム等の無機塩基、ナトリウムエトキシド、ナトリウムメトキシド等のアルカリ金属アルコキシド等が挙げられる。溶媒としてはクロロホルム、四塩化炭素等のハロゲン化炭化水素類、ジエチルエーテル、テトラヒドロフラン等のエーテル類、ベンゼン、トルエン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類、アセトン、メチルイソブチルケトン等のケトン類、酢酸エチル等のエステル類、N.Nージメチルホルムアミド等のアミド類、ジメチルスルホキシド、スルホラン等の硫黄化合物又はそれらの混合物が挙げられる。

製造法4

一般式 [1] で示される化合物の中、R 1 がアミノ基である本発明化合物(G $^{-1}$)は以下のようにして製造することができる。

(式中、 R^2 、 R^3 、 R^4 、 R^5 、X及びYはそれぞれ前記と同じ意味を表し、 Gはメタンスルホニルオキシ基、パラトルエンスルホニルオキシ基又は 2 , 4 - ジニトロフェノキシ基を表す。)

前記製造法 1 で製造される化合物(A-3)中、R 1 が水素原子である本発明化合物(B-7)又は前記製造法 2 で製造される本発明化合物(B-7)を化合物 $G-NH_2$ と反応させることによって化合物(G-1)を製造することができる。

この反応は通常、溶媒中で塩基の存在下、反応温度 0~100℃で0.5~24時間反応させる。反応に供される試剤の量は化合物(B-7)1当量に対して化合物 G-NH2は1~10当量、塩基は1~1.5当量である。塩基としては、炭酸カリウム、水素化カリウム、水素化ナトリウム等の無機塩基、ナトリウムエトキシド、ナトリウムメトキシド等のアルカリ金属アルコキシド等が挙げられる。溶媒としてはクロロホルム、四塩化炭素等のハロゲン化炭化水素類、ジェチルエーテル、テトラヒドロフラン等のエーテル類、ベンゼン、トルエン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類、アセトン、メチルイソブチルケトン等のケトン類、酢酸エチル等のエステル類、N.N-ジメチルイソブチルケトン等のケトン類、酢酸エチル等のエステル類、N.N-ジメチルホルムアミド等のアミド類、ジメチルスルホキシド、スルホラン等の硫黄化合物又はそれらの混合物が挙げられる。

製造法5

一般式 [1] で示される化合物中、R 4 がハロアルキル基である本発明化合物は、一般式

(式中、R²、R³、R¹²、R¹³、X及びYはそれぞれ前記と同じ意味を表し、R¹⁸はアミノ基、アルキル基又はハロアルキル基を表し、R¹⁹は水素原子、アルコキシ基、ハロアルコキシ基、置換されていてもよいフェニルスルホニル基、ハロゲン原子、置換されていてもよいフェニル基、ニトロ基、アルコキシ

カルボニル基又は置換されていてもよいベンジル基を表す。)で表される化合物 (I-1)とハロゲン化剤とを反応させることにより、一般式

$$R^{18}$$
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{19}
 R^{12}
 R^{12}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}

(式中、 R^1 、 R^2 、 R^3 、 R^{12} 、 R^{13} 、 R^{18} 、 R^{19} 、X及VYU は それ前記と同じ意味を表し、A は ハロゲン原子を表す。)で示される化合物の混合物として製造することができる。 [但し、化合物(I-3)は化合物(I-1)の I^{13} が水素原子である場合のみ製造することができ、また、化合物(I-4)は化合物(I-1)の I^{12} 及 I^{13} が共に水素原子である場合のみ製造することができる。]これらの化合物の混合物を単離精製することにより目的化合物を得ることができる。

本反応は溶媒中、触媒の存在下又は非存在下で、反応温度0~150℃、好ましくは30~100℃で0.5~24時間反応させる。反応に供される試剤の量は化合物(I-1)1当量に対してハロゲン化剤は1~10当量であり、触媒は0.01~0.5当量である。ハロゲン化剤としては臭素、塩素等のハロゲン、N-プロモコハク酸イミド等のN-ハロコハク酸イミド、過臭化ピリジニウム等のピリジン塩等が挙げられる。溶媒としてはクロロホルム、四塩化炭素等のハロゲン化炭化水素類、ギ酸、酢酸等のカルボン酸類、N.N-ジメチルホルムアミド等のアミド類、ジメチルスルホキシド、スルホラン等の硫黄化合物等が挙げられる。触媒としては過酸化ベンゾイル、α,α'-アゾビスイソブチロニトリル又はそれらの混合物が挙げられる。

製造法6

一般式[1]で示される化合物中、R4がホルミル基である本発明化合物は、

前記製造法 5 で製造される化合物(I-3)で R^{1} 2 が水素原子である化合物を常法により加水分解することにより製造することができる。

製造法7

一般式 [1] で示される化合物中、R 4 がカルボキシル基である本発明化合物は、前記製造法 5 で製造される化合物(I-4)を加水分解するか、又は前記製造法 6 で製造されるR 4 がホルミル基である本発明化合物を、例えばジョーンズ試薬(三酸化クロム、硫酸及び水の混合溶液;オルガニック・シンセセズ Organic Syntheses col. vol. 1 参照)等の酸化剤で酸化することにより製造することができる。

製造法8

一般式[I]で示される化合物中、 R^4 が水素原子である本発明化合物は、前記製造法7で製造される R^4 がカルボキシル基である本発明化合物を銅触媒存在下で脱炭酸することにより製造することができる。

製造法9

一般式 [1] で示される化合物中、 R^4 が基 $-COR^2O$ である本発明化合物は、前記製造法 8 で製造される R^4 が水素原子である化合物と対応する酸無水物 $(R^2OCO)_2O$ 又は酸ハライド R^2OCOL^1 とをルイス酸存在下でフリーデルクラフツ反応させることによって製造することができる。 (式中、 R^2O_{ld} アルキル基、シクロアルキル基、ハロアルキル基又は置換されていてもよいフェニル基を表し、 L^1 は塩素原子、臭素原子又はヨウ素原子を表す。)

また、R 4 が基-COR 12 である本発明化合物は、前記製造法 $_5$ で製造される化合物($_{I-3}$)でR 12 がアルキル基又は置換されていてもよいフェニル基である化合物を製造法 $_6$ と同様に加水分解することによって製造することができる。

製造法10

一般式 [1] で示される化合物中、R 4 がヒドロキシイミノアルキル基、ヒドロキシイミノハロアルキル基、アルコキシイミノアルキル基又はアルコキシイミノハロアルキル基である本発明化合物は、前記製造法 6 もしくは製造法 9 で製造されるR 4 がアシル基又はハロアルキルカルボニル基である本発明化合物と一般式NH $_2$ OR 2 1 (式中、R 2 1 は水素原子又はアルキル基を表す。)で示される化合物又はその硫酸塩もしくは塩酸塩とを反応させることにより製造することができる。

製造法11

一般式 [1] で示される化合物中、R 4 がヒドラゾノアルキル基、アルキルヒドラゾノアルキル基、置換されていてもよいフェニルヒドラゾノアルキル基、アルキルイミノアルキル基又は置換されていてもよいフェニルイミノアルキル基である本発明化合物は、前記製造法 6 もしくは製造法 9 で製造される 4 がアシル基である本発明化合物と一般式 1 N R 2 2 (R 2 3) (式中、R 2 2 及び R 2 3 はそれぞれ互いに同一又は相異なり水素原子、アルキル基もしくは置換されていてもよいフェニル基を表す。)で示される化合物又はその硫酸塩もしくは塩酸塩とを反応させることにより製造することができる。

製造法12

一般式 [1] で示される化合物中、R 4 がシアノ基である本発明化合物は、前記製造法 1 0 で製造される R 4 がヒドロキシイミノメチル基である本発明化合物を、例えばパラトルエンスルホン酸等の酸触媒存在下で脱水することにより製造することができる。

製造法13

一般式 [1] で示される化合物中、R 4 が基-C(R 6)(R 7) O H である本発明化合物は、前記製造法 6 又は前記製造法 9 で製造される R 4 が基-COR 6 である本発明化合物とグリニヤール試薬 R 7 M g L 1 とを反応させることにより製造することができる。(式中、R 6 、R 7 及び L 1 は前記と同じ意味

を表す。)

製造法14

一般式 [1] で示される化合物中、R 4 が基 4 である本発明化合物は、前記製造法 4 である本発明化合物をジョーンズ試薬等で酸化することにより製造することができる。(式中、R 7 は前記と同じ意味を表す。)

製造法15

一般式 [1] で示される化合物中、 R^4 が基- CH (R^7) OHである本発明化合物は、前記製造法 6、前記製造法 9 又は前記製造法 1 4 で製造される R^4 が基- COR 7 である本発明化合物を、例えばジイソブチルアルミニウムハイドライド等の還元剤を用いて還元することにより製造することができる。(式中、 R^7 は前記と同じ意味を表す。)

製造法16

一般式 [1] で示される化合物中、 R^4 が基-C(R^6)(R^7) L^1 である本発明化合物は、前記製造法13で製造される R^4 が基-C(R^6)(R^7) OHである本発明化合物を、例えば [トリフェニルホスフィン/クロラニル(テトラクロロベンゾキノン)] 等のハロゲン化剤を用いてハロゲン化することにより製造することができる。(式中、 R^6 、 R^7 及び L^1 は前記と同じ意味を表す。)

製造法17-

一般式 [1] で示される化合物中、R 4 が基 $^-$ C(R 6)(R 7) 7 2 R 9 又は基 $^-$ C(R 6)(R 7) N(R 6) R 2 4 である本発明化合物は、前記製造法 5 で製造される化合物(1 2 2) 又は前記製造法 1 3 6 で製造される化合物と一般式 R 9 S H、一般式 R 9 O H 又は一般式 R 6 (R 2 4) N H(式中、R 6 、R 7 、R 9 及び 2 2 はそれぞれ前記と同じ意味を表し、R 2 4 は水素原子又はアルキル基

を表す。)で示される化合物とを反応させることにより製造することができる。本反応は溶媒中で塩基の存在又は非存在下、反応温度0~100℃、好ましくは20~80℃で0.5~24時間反応させる。本反応に用いられる溶媒としてはジエチルエーテル、テトラヒドロフラン等のエーテル類、N,Nージメチルホルムアミド等のアミド類、ジメチルスルホキシド、スルホラン等の硫黄化合物、ベンゼン、トルエン等の芳香族炭化水素類が挙げられ、塩基としては水素化ナトリウム、水素化カリウム等の金属水素化物、炭酸カリウム、ナトリウムメトキシド等が挙げられる。

製造法18

一般式 $\{1\}$ で示される化合物中、R 4 が基-C(R 6)(R 7)WR 9 である本発明化合物は、前記製造法16で製造されるR 4 が基-C(R 6)(R 7)SR 9 で示される化合物をメタクロロ過安息香酸又は過酸化モノ硫酸カリウム(商品名オキソン)等の酸化剤で酸化することによって製造することができる。(式中、R 6 、R 7 、R 9 及びWはそれぞれ前記と同じ意味を表す。)

製造法19

一般式 [1] で示される化合物中、R 4 が基-COOR 2 5 である本発明化合物は、前記製造法 7 で製造される R 4 がカルボキシル基である化合物と一般式 R 2 5 OHで示される化合物とを酸触媒存在下で反応させるか、あるいは一般式 R 2 6 $^-$ L 1 で示される化合物とを塩基存在下で反応させることにより製造することができる。(式中、L 1 は前記と同じ意味を表し、R 2 5 はアルキル基、ハロアルキル基、置換されていてもよいベンジル基又は置換されていてもよい ニル基を表し、R 2 6 はアルキル基、ハロアルキル基又は置換されていてもよい ベンジル基を表す。)

製造法20

一般式[1]で示される化合物中、 R^4 が(窒素原子に、同一又は相異なる水素原子、アルキル基、もしくは置換されていてもよいフェニル基が置換した)カ

製造法21

一般式 [1] で示される化合物中、R 4 が基-C(R 6)(R 7)SHである本発明化合物は、前記製造法 5 で製造される化合物(1 – 2)又は前記製造法 1 6 で製造される化合物のうち、R 4 が基-C(R 6)(R 7)L 1 である本発明化合物を塩基存在下で、硫化ナトリウム又は水硫化ナトリウム等のチオール化剤と反応させた後、酸処理することにより製造することができる。(式中、R 6 、R 7 及びL 1 は前記と同じ意味を表す。)

製造法22

一般式 [1] で示される化合物中、R 4 が基-C(R 6)(R 7) Z R 8 である本発明化合物は、前記製造法15で製造されるR 4 が基-C H(R 7) O Hである本発明化合物、前記製造法13で製造されるR 4 が基-C(R 6)(R 7) O Hである本発明化合物又は前記製造法21で製造されるR 4 が基-C(R 6)(R 7) S Hである本発明化合物を塩基存在下で、一般式R 2 9 - E で示される化合物又は一般式R 3 0 N = C = Z で示される化合物と反応させることにより製造することができる。(式中、R 6、R 7、R 8、 Z 及びE は前記と同じ意味を表し、R 2 9 はアルキル基、シクロアルキル基、ハロアルキル基、アルコキシカルボニルアルキル基、ヒドロキシカルボニルアルキル基、モノアルキルカルバモイルアルキル基、ジアルキルカルバモイルアルキル基、ジアルキルカルバモイルアルキル基、ジアルキルカルバモイルを、バロアルキルスルホニル基、ハロアルキルスルホニル基、ハロアルキルスルホニル基、ハロアルキルスルホニル基、ハロアルキルスルホニル基、ハロアルキルスルホニル基、ハロアルキルスルホニル基、ハロアルキルスルホニル基、ハロアルキルスルホニル基、ハロアルキルスルホール基、ジアルキルチオカルバモイル基又は置換されていてもよいベンゾイル基を表し、R 3 0 はアルキル基を表す。)

製造法23

一般式 [1] で示される化合物中、R 4 が基-C(R 6)(R 7)N(R 6) R 3 1 である本発明化合物は、前記製造法 1 7 で製造される R 4 が基-C(R 6)(R 7)N H(R 6)である本発明化合物を塩基存在下で、一般式 R 3 1 $^-$ E で示される化合物と反応させることにより製造することができる。(式中、R 6 、R 7 及び E は前記と同じ意味を表し、R 3 1 はアルキル基、アシル基、アルキルスルホニル基、ハロアルキルスルホニル基又はハロアルキルカルボニル基を表す。)

製造法24

一般式 [1] で示される化合物中、 R^5 が基 $-COR^2$ 0 である本発明化合物は、 R^5 が水素原子である本発明化合物と対応する酸ハライド R^2 0 COL^1 とをルイス酸存在下でフリーデルクラフツ反応をすることによって製造することができる。(式中、 R^2 0 及び L^1 は前記と同じ意味を表す。)

製造法25

一般式[1]で示される化合物中、R⁵がホルミル基である本発明化合物は、R⁵が水素原子である本発明化合物とジクロロメチルアルキルエーテルをルイス酸存在下で反応させる公知の方法[実験化学講座(第4版)、第21巻、第110頁]等により製造することができる。

前記製造法 1 ないし前記製造法 4 で製造することができる R 5 がアルキル基である本発明化合物又は前記製造法 2 4 もしくは前記製造法 2 5 で製造することができる R 5 がアシル基である本発明化合物を原料として、ここまでに記載した何れか適当な製造法に準じて、 R 4 と同様に種々の R 5 の置換基を持つ本発明化合を製造することができる。

製造法26

一般式[1] で示される化合物中、 R^4 又は R^5 が基- CSR^2 0である本発

明化合物は、前記製造法で製造されるR 4 又はR 5 が基 $^-$ COR 2 0である本発明化合物を五硫化リン、ローソン試薬 $\{2, 4-$ ビス(4-メトキシフェニル)-1、3-ジチア-2、4-ジホスフェタン-2、4-ジスルフィド $\}$ 等でチオカルボニル化することにより製造することができる。(式中、R 2 0は前記と同じ意味を表す。)

製造法27

一般式 [1] で示される化合物中、R 4 又はR 5 がハロゲン原子である本発明化合物は、前記製造法で製造されるR 4 又はR 5 が水素原子である本発明化合物を例えば臭素等のハロゲン化剤によりハロゲン化することによって製造することができる。

製造法28

一般式[1]で示される化合物中、R 4 又はR 5 がニトロ基である本発明化合物は、前記製造法で製造されるR 4 又はR 5 が水素原子である本発明化合物を常法によりニトロ化することによって製造することができる。

製造法29

一般式 [1] で示される化合物中、R 4 又はR 5 がシアノアルキル基である本発明化合物は、前記製造法で製造されるR 4 又はR 5 がハロアルキル基である本発明化合物を例えばシアン化カリウム等のシアノ化剤でシアノ化することによって製造することができる。

製造法30 -

一般式 [1] で示される化合物中、R 4 又はR 5 がカルバモイルアルキル基である本発明化合物は、前記製造法 2 9 で製造されるR 4 又はR 5 がシアノアルキル基である本発明化合物を酸性もしくは塩基性条件下、シアノ基を加水分解することによって製造することができる。

製造法31

一般式 [1] で示される化合物中、R 4 又はR 5 がチオシアナトアルキル基である本発明化合物は、前記製造法で製造されるR 4 又はR 5 がハロアルキル基である本発明化合物をチオシアン酸カリウム等のチオシアナト化剤でチオシアナト化することによって製造することができる。

製造法32

一般式 [1] で示される化合物中、R 4 又はR 5 が基-CR 3 2 = CR 3 3 R 3 4 である本発明化合物は、前記製造法で製造されるR 4 又はR 5 が アシル基-COR 3 2 である本発明化合物をホスホニウム試薬 [Ph $_3$ P $^+$ CHR 3 3 R 3 4] L 1 と塩基存在下で反応させるウィティッヒ反応によって 製造することができる。 (L 1 は前記と同じ意味を表し、R 3 2 、R 3 3 及び R 3 4 はそれぞれ同一又は相異なり、水素原子又はアルキル基を表し、Ph $_3$ Pはトリフェニルホスフィンを表す。)

製造法33

一般式 [1] で示される化合物中、R 4 又はR 5 がアルキル基により置換されていてもよいオキシラニル基である本発明化合物は、前記製造法 3 2 である本発明化合物をメタクロロ過安息香酸等の酸化剤で酸化することによって製造することができる。 (R 3 2 、R 3 3 及びR 3 4 はそれぞれ前記と同じ意味を表す。)

製造法34

一般式 [1] で示される化合物中、 R^5 がアルコキシ基、ハロアルコキシ基、アルケニルオキシ基、アルキニルオキシ基、アルコキシカルボニルアルコキシ基である本発明化合物は、 R^5 が水酸基である化合物と一般式 R^3^5 - E (式中、E は前記と同じ意味を表し、 R^3^5 はアルキル基、アルケニル基、アルキニル基、アルコキシカルボニルアルキル基又はハロアルキル基を表す。)で示される化合物とを塩基存在下で反応させることにより製造することができる。なお、

 R^{5} が水酸基である化合物は、前記製造法で製造される R^{5} がニトロ基である本発明化合物を例えば酢酸触媒存在下で、トルエン-水の混合溶媒中、鉄と反応させることによって製造することができる。

製造法35

一般式 [1] で示される化合物中、R 5 がヒドロキシアミノ基である本発明化合物は、前記製造法で製造されるR 5 がニトロ基である本発明化合物を例えば酢酸触媒存在下で、酢酸エチルー水の混合溶媒中、鉄で還元することによって製造することができる。

なお、製造法1の原料である化合物(A-1)は、以下のようにして製造することができる。

(式中、 R^1 、 R^2 、 R^3 、 R^{15} 、 R^{16} 、E、G、X及びYはそれぞれ前記と同じ意味を表し、 R^{17} はアルキル基又はハロアルキル基を表す。)

前記製造法2に準じて化合物(D-6)から化合物(J-1)又は化合物(J-2)を製造した後、それぞれを化合物(B-6)と反応させることにより化合物(J-3)を製造することができる。さらに、R¹がアルキル基又はハロアルキル基の場合は、前記製造法3に準じて化合物(J-3)と塩基存在下で一般式R¹7-Eで示される化合物とを反応させることにより化合物(J-4)を製造するか、あるいはR¹がアミノ基の場合は、前記製造法4に準じて化合物(J-3)と塩基存在下で一般式G-NH₂で示される化合物とを反応させることにより化合物(J-4)をR¹6がアルキル基の場合は三臭化ホウ素等の脱アルキル化剤と反応させるか、又はR¹6が置換されてもよいベンジル基の場合は常圧下で水素添加することにより化合物(A-1)を製造することができる。

[発明を実施するための最良の形態]

以下に具体的製造例を示す。

製造例1

3- (4-クロロー6-フルオロー2-メチルベンゾフランー7-イル)-1-メチル-6-トリフルオロメチルウラシル(化合物番号2)の合成

3-(4-クロロー2-フルオロー6-プロパルギルオキシフェニル)-1-メチルー6-トリフルオロメチルウラシル5.2g(14mmol)及びフッ化セシウム6.4g(42mmol)にN,N-ジエチルアニリン100mlを加え、180~190℃で3時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を10%塩酸水溶液、水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色粉末の目的物1.4g(収率26.9%)を得た。融点196~197℃

製造例2

3- (4-クロロ-2-メチルベンゾフラン-7-イル) -1-メチル-6-ト リフルオロメチルウラシル(化合物番号196)の合成 3-(4-2) ロロー 2-プロパルギルオキシフェニル) -1-メチルー 6-トリフルオロメチルウラシル 20.0g (55.8mmo1) 及びフッ化セシウム 17.0g (112mmo1) にN、N-ジエチルアニリン 200m1 を加え、 $180\sim190$ でで2時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を 10% 塩酸水溶液、水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物 7.0g (収率 35.0%) を得た。融点 $206\sim207$ で

製造例3

3- (4-クロロ-2, 3-ジメチルベンゾフラン-7-イル) -1-メチル-6-トリフルオロメチルウラシル (化合物番号265) の合成

3-(4-200-2-2-2) にロキシフェニル)-1-3 チルー6ートリフルオロメチルウラシル2.0g(6.2 mmol)及びアゾジカルボン酸ジェチル1.3g(7.5 mmol)をテトラヒドロフラン30 mlに溶解し、氷冷下これにトリフェニルホスフィン2.0g(7.6 mmol)及び2-ブチン-1-オール0.52g(9.3 mmol)の20 mlテトラヒドロフラン溶液を滴下した。滴下終了後、室温で30分間撹拌し、エーテル化合物を得た。次に、精製したエーテル化合物及びフッ化セシウム0.94g(6.2 mmol)にN.Nージエチルアニリン20 mlを加え、190℃で15時間加熱した。反応終了後、反応混合物をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物0.52g(収率22.4%)を得た。融点152~153℃

製造例4

3-(4, 6-ジフルオロー2-メチルベンゾフラン-7-イル) -1-メチル -6-トリフルオロメチルウラシル(化合物番号375)の合成

 $3-(2,4-ジフルオロ-6-プロパルギルオキシフェニル)-1-メチル-6-トリフルオロメチルウラシル4.7g(<math>1.3\,mmol$)及びフッ化セシウム $5.9\,g$ ($3.9\,mmol$)に $N,N-ジエチルアニリン<math>1.0.0\,ml$ を加え、

180~190℃で3時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出し、有機層を10%塩酸水溶液、水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色粉末の目的物1.0g(収率21.3%)を得た。融点176~178℃

製造例5

3 - (4 - クロロー 2 - エチルベンゾフランー 7 - イル) - 1 - メチル- 6 - トリフルオロメチルウラシル(化合物番号 1 9 7)の合成

製造例6

3 - (4 - クロロー2 - エチルー6 - フルオロベンゾフランー7 - イル) - 6 - トリフルオロメチルウラシル(化合物番号187)の合成

3-アミノー4, 4, 4-トリフルオロクロトン酸エチル5. 8g(32mmol)及び1, 8-ジアザビシクロ[5. 4. 0]-7-ウンデセン6. 6g(43mmol)にN, N-ジメチルホルムアミド80mlを加え、室温で4-クロロー2-エチルー6-フルオロー7-フェノキシカルボニルアミノベンゾフラン9. 6g(29mmol)を徐々に加えた。60℃で8時間撹拌後、反応液を10%塩酸水にあけ、酸性とした後、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物4.8g(収率44%)を得た。融点154~155℃

. 製造例 7

3 - (4 - クロロー 2 - エチルー 6 - フルオロベンゾフランー 7 - イル) - 1 - メチルー 6 - トリフルオロメチルウラシル(化合物番号 3)の合成

 $3-(1-\rho - 2-x + w - 6-y - 2 + w - 6-y - 2 + w - 6-y - 2 + w - 6-y - 2 + w - 6-y - 2 + w - 6-y - 2 + w - 2 +$

製造例8

3 - (4 - クロロー 2 - エチルー 6 - フルオロベンゾフラン- 7 - イル) - 1 - アミノー 6 - トリフルオロメチルウラシル(化合物番号 7 3 0)の合成

3-(4-クロロー2-エチルー6-フルオロベンゾフラン-7-イル)-6
ートリフルオロメチルウラシル3.4g(9.0mmol)、2,4-ジニトロフェノキシアミン2.7g(14mmol)及び炭酸カリウム5.0g(36mmol)にN,N-ジメチルホルムアミド80mlを加え、60~70℃で1時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物2.0g(収率58%)を得た。融点145~147℃

製造例9

3-(2-プロモメチル-4-クロロー6-フルオロベンゾフラン-7-イル) -1-メチルー6-トリフルオロメチルウラシル(A, 化合物番号8)、3-

(4-0)1-メチル-6-トリフルオロメチルウラシル (B, 化合物番号9)及び3--1-メチル-6-トリフルオロメチルウラシル (C. 化合物番号10)の合成 3-(4-2-6-7)ルオロー2-4 チルベンゾフランー7-4 ルクロロー6-メチルー6-トリフルオロメチルウラシル20.0g(53.1mmol)、N-プロモコハク酸イミド56.8g(319.1mmol)、過酸化ベンゾイ ν 0.2g(1、4mmol)及び α 、 α 'ーアゾビスイソブチロニトリル0、 2g(1.2mmol)に四塩化炭素400mlを加え、加熱還流下24時間撹 拌した。反応終了後、反応液を冷却後、析出した結晶をろ別し、ろ液を、亜硫酸 水素ナトリウム水溶液、水及び飽和食塩水の順で洗浄した。無水硫酸マグネシウ ムで乾燥後、溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフ ィーにて分離し、白色結晶の(A) 5.0g(収率20.6%) 融点168~ 172℃、白色結晶の(B) 12.0g(収率42.3%)融点126~128 ℃及び濃褐色粘稠液体の(C) 0. 6 g(収率 1. 8 %)屈折率:測定不可をそ れぞれ得た。化合物番号10の¹H-NMR (溶媒、CDC13):3.61 (3 H, bs), 6. 42 (1 H, s), 7. 26 (1 H, d) ppm

製造例10

3-(4-クロロー6-フルオロー2ーホルミルベンゾフランー7ーイル)-1
-メチルー6ートリフルオロメチルウラシル(化合物番号33)の合成
3-(4-クロロー2ージプロモメチルー6-フルオロベンゾフランー7ーイル)-1-メチルー6ートリフルオロメチルウラシル12.0g(22.5mmol)に濃硫酸60mlを加え、50℃で1時間撹拌した。反応終了後、反応液を氷水にあけ、酢酸エチルで抽出した。有機層を飽和炭酸水素ナトリウム水溶液、水及び飽和食塩水の順で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をイソプロピルエーテルで結晶化させ、淡黄色結晶の目的物7.6g(収率88.4%)を得た。融点180~183℃

製造例11

3-(2-カルボキシ-4-クロロ-6-フルオロベンゾフラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル (化合物番号42) の合成 3-(4-クロロ-6-フルオロ-2-トリブロモメチルベンゾフラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル0.6g(0.98mmol)に濃硫酸10mlを加え、45℃で3時間撹拌した。反応終了後、反応液を氷水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物0.21g(収率53.7%)を得た。融点267~268℃(分解)

製造例12

3-(2-カルボキシ-4-クロロ-6-フルオロベンゾフラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル(化合物番号42)の合成

3-(4-2)000-6-7ルオロー2-ホルミルベンゾフランー7-イル)ー 1-メチルー6ートリフルオロメチルウラシル1.5g (3.84mmol)をアセトン20mlに溶解し、5℃でジョーンズ試薬を橙色が消えなくなるまで滴下した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物1.2g (収率76.9%)を得た。融点267~268℃ (分解)

製造例13

3- (4-クロロー6-フルオロベンゾフラン-7-イル) -1-メチル-6-トリフルオロメチルウラシル(化合物番号1)の合成

3-(2-カルボキシ-4-クロロー6-フルオロベンソフランー7-イル) -1-メチルー6-トリフルオロメチルウラシル7. 0g(17mmol)及び 調粉5.0g(79mmol)をキノリン50m.1に懸濁し、200℃で1時間 撹拌した。反応終了後、反応液をろ過し、ろ液を酢酸エチルで抽出した。有機層 を10%塩酸水溶液及び水の順で洗浄した後、無水硫酸ナトリウムで乾燥した。 減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し白色結晶の目的物3.5g(収率56%)を得た。融点127~ 128℃

製造例14

3-(4-クロロ-2-プロピオニル-6-フルオロベンゾフラン-7-イル)
-1-メチル-6-トリフルオロメチルウラシル(化合物番号29)の合成
3-(4-クロロ-6-フルオロベンゾフラン-7-イル)-1-メチル-6
-トリフルオロメチルウラシル1.3g(1.4mmol)及び塩化アルミニウム1.9g(1.4mmol)をニトロメタン20mlに溶解し、氷冷下これに塩化プロピオニル0.5g(1.4mmol)を滴下した。滴下終了後、室温で12時間撹拌した。反応終了後、反応液を希塩酸と氷の混合物にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、黄色ガラス状物質の目的物0.33g(収率56%)を得た。屈折率:測定不可、1H-NMR(溶媒、CDCl3):1.20(3H,m)、2.91(2H,q)、3.56(3H,s)、6.38(1H,s)、7.28(1H,d)、7.58(1H,s)ppm

製造例15

3- [4-クロロー6-フルオロー2-(1-メトキシイミノエチル) ベンソフランー7-イル] -1-メチルー6-トリフルオロメチルウラシル (化合物番号37) の合成

3-(2-アセチル-4-クロロ-6-フルオロベンゾフラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル0.4g(1mmol)、酢酸カリウム0.4g(4mmol)及びメトキシアミン塩酸塩0.33g

 $(4 \, \text{mmol})$ にメタノール $20 \, \text{mle}$ が加え、室温で $12 \, \text{時間撹拌}$ した。反応終了後、減圧下で溶媒を留去し、得られた残渣を直接シリカゲルカラムクロマトグラフィーにて精製し、白色粉末の目的物 $0.28 \, \text{g}$ (収率 $64.6 \, \text{%}$) を得た。融点 $176 \sim 178 \, \text{℃}$

製造例16

3-(4-クロロ-2-メチルヒドラゾノメチルベンゾフラン-7-イル)-1
-メチル-6-トリフルオロメチルウラシル(化合物番号231)の合成
3-(4-クロロ-2-ホルミルベンゾフラン-7-イル)-1-メチル-6
-トリフルオロメチルウラシル0.4g(1.0mmol)をテトラヒドロフラン5mlに溶解し、氷冷下これにモノメチルヒドラジン0.1g(21.7mmol)を加え、室温で3時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡黄色ガラス状物質の目的物0.2g(収率47.6%)を得た。屈折率:測定不可、1H-NMR(溶媒、CDC13):2.90(3H,s)、3.52(3H,s)、6.18(1H,bs)、6.40(1H,s)、6.85(1H,s)、7.05(1H,d)、7.25(1H,s)、7.29(1H,d)、ppm

製造例1.7

3- [4-クロロー6-フルオロー2-(1-ヒドロキシエチル) ベンソフラン -7-イル] -1-メチルー6-トリフルオロメチルウラシル (化合物番号 13) の合成

3-(4-2)000-6-フルオロー2-ホルミルベンゾフランー7-4ル) ー 1-4チルー6ートリフルオロメチルウラシル4. 0g (10. 2mmol) をテトラヒドロフラン20 mlに溶解し、-65 $\mathbb C$ でこれにメチルマグネシウムプロミド (1.0 Mテトラヒドロフラン溶液) 12. 3 mlを滴下した。室温で1時間撹拌後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食

塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡黄色結晶の目的物 2.3 g (収率 5 5.3%)を得た。融点 1 5 4 ~ 1 5 7 ℃

製造例18

3-(2-アセチル-4-クロロ-6-フルオロベンゾフラン-7-イル)-1 -メチル-6-トリフルオロメチルウラシル(化合物番号28)の合成

3- [4-クロロー6-フルオロー2-(1-ヒドロキシエチル)ベンゾフラン-7-イル] -1-メチルー6-トリフルオロメチルウラシル1.5g(3.7mmol)をアセトン20mlに溶解し、5℃でジョーンズ試薬を橙色が消えなくなるまで滴下した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡橙色結晶の目的物を定量的に得た。融点193~194℃

製造例19

3-(4-クロロー6-フルオロー2-ヒドロキシメチルベンゾフランー7ーイル)-1-メチルー6ートリフルオロメチルウラシル(化合物番号12)の合成3-(4-クロロー6-フルオロー2ーホルミルベンゾフランー7ーイル)ー1-メチルー6ートリフルオロメチルウラシル1.5g(3.8mmol)をテトラヒドロフラン10mlに溶解し、窒素気流下5℃でこれにジイソプチルアルミニウムハイドライド(0.94Mへキサン溶液)4.5mlを滴下した。室温で1時間撹拌後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡黄色結晶の目的物1.4g(収率90.7%)を得た。融点198~199℃

製造例20

3-[4-クロロ-2-(1-クロロエチル)-6-フルオロベンゾフラン-7-イル]-1-メチル-6-トリフルオロメチルウラシル(化合物番号393)の合成

 $3-[4-\rho -2-(1-e) + (1-e) +$

製造例21

3-(4-クロロー6-フルオロー2-メトキシメチルベンソフランー7-イル)-1-メチルー6-トリフルオロメチルウラシル(化合物番号14)の合成3-(2-プロモメチルー4-クロロー6-フルオロベンソフランー7-イル)-1-メチルー6-トリフルオロメチルウラシル1.5g(3.3mmol)をテトラヒドロフラン30mlに溶解し、氷冷下これにナトリウムメトキシド(28%メタノール溶液)0.7g(3.6mmol)を滴下した。室温で5分間撹拌した後、反応液を水にあけ、酢酸エチルで抽出した。有機屬を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、黄褐色ガラス状物質の目的物0.75g(収率56.0%)を得た。屈折率1.5389(20℃)

製造例22

3-(4-クロロ-2-エチルチオメチル-6-フルオロベンゾフラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル(化合物番号22)の合成

3-(2-プロモメチルー4-クロロー6-フルオロベンゾフランー7-イル)-1-メチルー6-トリフルオロメチルウラシル1.5g(3.3mmol)及び炭酸カリウム0.7g(5.1mmol)をN,Nージメチルホルムアミド20mlに懸濁し、室温でこれにエチルメルカプタン0.21g(3.4mmol)を加え、さらに室温で1時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、黄褐色ガラス状物質の目的物1.2g(収率83.4%)を得た。屈折率1.5629(20℃)

製造例23

3- (4-クロロー6-フルオロー2-メチルスルホニルメチルベンゾフランー7-イル)-1-メチルー6-トリフルオロメチルウラシル(化合物番号21)の合成

3-(4-クロロー6-フルオロー2-メチルチオメチルベンゾフラン-7-イル)-1-メチルー6-トリフルオロメチルウラシル0.5g(1.2mmol)及びメタクロロ過安息香酸0.6g(3.5mmol)をクロロホルムに懸濁し、室温で1時間撹拌した。反応終了後、反応液に酢酸エチルを加え、水及び10%亜硫酸水素ナトリウム水溶液の順で洗浄した後、有機層を無水硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物0.5g(収率92.9%)を得た。融点209~211℃

製造例24

3-(4-クロロー6-フルオロー2-メトキシカルボニルベンゾフラン-7-イル)-1-メチルー6-トリフルオロメチルウラシル(化合物番号43)の合成

3-(2-カルボキシ-4-クロロ-6-フルオロベンゾフラン-7-イル) -1-メチル-6-トリフルオロメチルウラシル0.21g(0.5mmol)

及び炭酸カリウム 0.16g(1.1mmol) をN、N-ジメチルホルムアミド10mlに懸濁し、室温でこれにヨウ化メチル <math>0.15g(1.1mmol) を加え、室温で 3 時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡黄土色結晶の目的物 0.21g(収率96.8) を得た。融点 194~196 $\mathbb C$

製造例25

3 - (4 - クロロー 2 - エチルカルバモイルベンゾフランー 7 - イル) - 1 - メ チルー 6 - トリフルオロメチルウラシル(化合物番号 2 4 8)の合成

製造例 2.6

3 - (2 - アセトキシメチル-4 - クロロベンゾフラン-7 - イル) - 1 - メチル-6 - トリフルオロメチルウラシル (化合物番号210) の合成

3-(4-クロロー2-ヒドロキシメチルベンゾフランー7-イル)-1-メチルー6-トリフルオロメチルウラシル0.4g(1.1mmol)及びトリエチルアミン0.13g(1.2mmol)をテトラヒドロフラン20mlに溶解し、氷冷下これに塩化アセチル0.1g(1.2mmol)を滴下した。反応終了後、反応液を水にあけ、酢酸エチルで洗浄した。有機層を10%塩酸水溶液、水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下

で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色固体の目的物 0.2g (収率 45.5%) を得た。融点 $135\sim$

製造例27

3-[4-000-6-7)ルオロー2-(1-3)メチルアミノエチル)ベンゾフラン-7-4ル] -1-3チルー6-トリフルオロメチルウラシル (化合物番号 5.7.2) の合成

製造例28

3-(3-アセチル-4-クロロ-6-フルオロ-2-メチルベンソフラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル(化合物番号101)の合成

3-(4-クロロー6-フルオロー2-メチルベンソフランー7-イル)-1-メチルー6ートリフルオロメチルウラシル1.6g(4.2mmol)をニトロメタン50mlに溶解し、室温でこれに塩化アルミニウム5.6g(4.2mmol)を滴下(4.2mmol)を加え、さらに塩化アセチル3.3g(4.2mmol)を滴下した。滴下終了後、加熱還流下5時間撹拌した。反応終了後、反応液を希塩酸と氷の混合物にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、得られ

た残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡黄色結晶の目的物 1.2g(収率66.7%)を得た。融点138~140℃

製造例29

3- (4-クロロー6-フルオロー3-ホルミルー2-メチルベンゾフランー7-イル)-1-メチルー6-トリフルオロメチルウラシル(化合物番号91)の合成

3-(4-クロロ-6-フルオロ-2-メチルベンソフラン-7-イル)-1
-メチル-6-トリフルオロメチルウラシル2.0g(53mmol)及びジクロロメチルメチルエーテル36.5g(0.32mol)をジクロロメタン100mlに溶解し、0℃でこれに四塩化スズ(1Mジクロロメタン溶液)200ml(0.20mol)を滴下した。滴下終了後、室温で2時間撹拌した。反応終了後、反応液を希塩酸と氷の混合物にあけ、ジクロロメタンで抽出した。有機層を水で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物19.5g(収率90.7%)を得た。融点148~150℃

製造例30

3- [4-クロロー6-フルオロー3-(1-メトキシイミノエチル)-2-メ チルベンゾフランー7-イル]-1-メチルー6-トリフルオロメチルウラシル (化合物番号111)の合成

3-(3-アセチル-4-クロロー6-フルオロー2-メチルベンゾフランー7-イル)-1-メチルー6ートリフルオロメチルウラシル0.4g(1mmol)、酢酸カリウム0.5g(5mmol)及びメトキシアミン塩酸塩0.5g(6mmol)にメタノール50mlを加え、室温で12時間、さらに加熱還流下8時間撹拌した。反応終了後、減圧下でメタノールを留去した後、得られた残渣に酢酸エチルを加え、水及び飽和食塩水の順で洗浄した。有機層を無水硫酸ナトリウムで乾燥後、減圧下で溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡黄色結晶の目的物0.4g(収率

100%)を得た。融点65~67℃、¹H-NMR(溶媒、CDCl₃):
1.54(1H, s)、2.21(3H, s)、2.35(3H, s)、3.
59(3H, s)、3.91(3H, s)、6.41(1H, s)、7.16
(1H, d) ppm

製造例31

3-(4-0)00-6-フルオロ-2-xチル-3-チオアセチルベンゾフラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル(化合物番号 631)の合成

3-(3-rセチル-4-200-6-7)ルオロー2-xチルベンゾフランー 7-4ル)-1-xチルー6-トリフルオロメチルウラシル0.50 g (1.2mmol) 及び五硫化リン1.5 g (6.7mmol) にトルエン100mlを加え、加熱還流下2時間撹拌した。反応終了後、反応液にさらにトルエン100mlを加え、有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、橙色ガラス状物質の目的物47mg (収率9%) を得た。屈折率1.5967 (20°C)

製造例32

3- (3-ブロモー4-クロロー2-メチルベンゾフラン-7-イル) -1-メ チルー6-トリフルオロメチルウラシル(化合物番号272)の合成

3-(4-9-10-2-3+1) 3-(4-9-10

製造例33

3- (4-クロロ-2-メチル-3-ニトロベンソフラン-7-イル) -1-メ チル-6-トリフルオロメチルウラシル(化合物番号303)の合成

3-(4-0)00-2-メチルベンゾフラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル 0.5 g(1.4 mm o l)を濃硫酸 10 m l に溶解し、-20 $\mathbb C$ でこれに 60 %硝酸 0.1 g(1.1 mm o l)を滴下した。-20 $\mathbb C$ で 10 分間撹拌後、反応液を氷水にあけ、0 の 1 で 市出した。 有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラム 0 の 0 で 0

製造例34

3- [4-クロロー2-(1-シアノエチル)-3-エトキシカルボニルー6-フルオロベンゾフラン-7-イル)-1-メチルー6-トリフルオロメチルウラ シル(化合物番号671)の合成

製造例35

3-(3-カルバモイルメチル-4-クロロ-6-フルオロ-2-メチルベンゾ

フラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル (化合物番号619) の合成

 $3-(4-\rho - 0 - 3 - \nu 7)$ メチルー6-7ルオロー2-メチルベンソフランー7-イル)-1-メチルー6-トリフルオロメチルウラシル0.50g (1.2mmo1)を50%硫酸30m1に溶解し、60 \mathbb{C} で2時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物0.39g (収率75%)を得た。融点 $127\sim129$ \mathbb{C}

製造例36

3- [4-クロロー6-フルオロー2-(1-チオシアナトエチル) ベンゾフランー7-イル] -1-メチルー6-トリフルオロメチルウラシル (化合物番号577) の合成

3-[2-(1-プロモエチル)-4-クロロー6-フルオロベンゾフランー7-イル)-1-メチルー6ートリフルオロメチルウラシル2.3g(4.9mmol)及びチオシアン酸カリウム1.5g(2.3mmol)にエタノール30mlを加え、<math>60℃で2時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、黄色結晶の目的物1.1g(収率50%)を得た。融点 $60\sim63$ ℃、 1 H-NMR(溶媒、CDC13):1.93(3H,d)、3.59(3H,s)、4.56(1H,q)、6.40(1H,d)、6.87(1H,s)、7.25(1H,s)ppm

製造例37

3 - (4 - クロロー 6 - フルオロー 2 - ビニルベンゾフラン- 7 - イル) - 1 - メチル- 6 - トリフルオロメチルウラシル(化合物番号 4 1 2)の合成

1-メチルー6-トリフルオロメチルウラシル1.0g(2.6mmol)、メチルトリフェニルホスホニウムプロミド0.94g(2.6mmol)及び炭酸カリウム0.43g(3.1mmol)にジオキサン50ml、水0.5mlを加えた。加熱還流下2時間撹拌した。反応終了後、反応液を水にあけ、クエン酸水溶液でpH3に調整した後、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、黄色結晶の目的物0.51g(収率51%)を得た。融点108~109℃

製造例38

3- [4-クロロー2-(2-オキシラニル)-6-フルオロベンゾフラン-7-イル]-1-メチルー6-トリフルオロメチルウラシル(化合物番号606)の合成

3-(4-クロロ-6-フルオロ-2-ビニルベンゾフラン-7-イル)-1
-メチル-6-トリフルオロメチルウラシル0.4g(1.0mmol)にクロロホルム50mlを加え、室温でこれに80%メタクロロ過安息香酸0.21g(1.0mmol)のクロロホルム10ml溶液を滴下した。室温で12時間撹拌後、反応液を水にあけ、クロロホルムで抽出した。有機層を水、10%亜硫酸水素ナトリウム水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物85mg(収率21%)を得た。融点109~111℃

製造例39

3- (4-クロロ-6-フルオロ-3-メトキシ-2-メチルベンゾフラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル (化合物番号427)の合成

3-(4-200-6-7)ルオロー3-2とドロキシー2-34 チルベンゾフラン - 7-4ル) - 1-34 チルー6-57 フルオロメチルウラシル0.509 (1.3mmol)及びフッ化セシウム2.0g(1.3mmol)をN.N-ジメチルホルムアミド10mlに懸濁し、これにヨウ化メチル0.3g(2.1mmol)を加え、70℃で1時間撹拌した。反応終了後、反応液に酢酸エチルを加え、有機層を水で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物0.19g(収率35%)を得た。融点57~60℃

製造例40

WO 97/29105

3 - (4 - クロロー 3 - ヒドロキシアミノー 2 - メチルベンソフランー 7 - イル) - 1 - メチルー 6 - トリフルオロメチルウラシル (化合物番号 3 0 5) の合成

3-(4-200-2-3+1)-3-1-1 メチルー6-1 リフルオロメチルウラシル 2. 3g (5. 7mmol) 及び鉄粉 1. 6g (28mmol) に酢酸 5ml、酢酸エチル 200ml 及び水 100ml を加え、加熱還流下 2 時間撹拌した。反応終了後、不溶物を 5ml 、有機層を 水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣を シリカゲルカラム 2ml 2

参考例1

3-(4-クロロー2-フルオロー6-ヒドロキシフェニル) -1-メチルー6 ートリフルオロメチルウラシルの合成

3-(4-クロロ-2-フルオロ-6-メトキシフェニル)-1-メチル-6
-トリフルオロメチルウラシル5.7g(16mmol)をジクロロメタン
100mlに溶解し、0℃で三臭化ホウ素(3.0Mジクロロメタン溶液)
27ml(80mmol)を滴下した。室温で3時間撹拌後、反応液を氷水にあけ、炭酸水素ナトリウムで中和した。ジクロロメタンで抽出し、有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒

PCT/JP97/00320

を留去した後、得られた粗結晶をイソプロピルエーテルで洗浄し、白色結晶の目的物 5. 4 g (収率 9 8. 2%) を得た。融点 $143 \sim 144$ $\mathbb C$

参考例2

3- (4-クロロー2-フルオロー6-プロパルギルオキシフェニル) -1-メ チルー6-トリフルオロメチルウラシルの合成

参考例3

3- (4-クロロー2-ヒドロキシフェニル) -1-メチルー6-トリフルオロメチルウラシルの合成

参考例4

3 - (4 - クロロー2 - プロパルギルオキシフェニル) - 1 - メチルー6 - トリフルオロメチルウラシルの合成

3-(4-クロロ-2-ヒドロキシフェニル-1-メチル-6-トリフルオロメチルウラシル22.6g(70.5mmol)及び炭酸カリウム14.5g(105.1mmol)をN,N-ジメチルホルムアミド150mlに懸濁し、室温で臭化プロパルギル11.2g(94.1mmol)を滴下した。70℃で2時間撹拌した後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた粗結晶をイソプロピルエーテルで洗浄し淡茶色粉末の目的物22.5g(収率89.0%)を得た。融点147~148℃

参考例5

3 - (2, 4 - ジフルオロー 6 - ヒドロキシフェニル) - 1 - メチル - 6 - トリフルオロメチルウラシルの合成

参考例6

3-(2,4-ジフルオロー6-プロパルギルオキシフェニル)-1-メチルー6-トリフルオロメチルウラシルの合成

3-(2,4-ジフルオロー6-ヒドロキシフェニル)-1-メチルー6-トリフルオロメチルウラシル4.8g(15mmol)及び炭酸カリウム3.2g(23mmol)をN,N-ジメチルホルムアミド50mlに懸濁し、室温で臭

参考例7

3 - [4 - クロロー2 - (1 - メチルー2 - プロピニルオキシ) フェニル] - 1 - メチルー6 - トリフルオロメチルウラシルの合成

3-(4-2)00-2-ヒドロキシフェニル)-1-3チルー6-トリフルオロメチルウラシル 1. 7 g(5. 3 m m o 1)、1-プチン-3-オール 0. 6 3 g(9. 0 m m o 1)及びトリフェニルホスフィン 1. 5 7 g(6. 0 m m o 1)をテトラヒドロフラン 1 0 0 m l に溶解し、氷冷下アゾジカルボン酸ジエチル 1. 0 g(6. 0 m m o 1)を滴下した。室温で 1 時間撹拌後、溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物 1 . 8 6 g(収率 9 3 . 9 %)を得た。融点 9 6 \sim 9 9 \odot

次に、本発明化合物のいくつかについて 1 H-NMR データを以下に示す。

(表25)

化合物 番号	1H-NMR δ値(ppm) 溶媒 CDC13
10	3. 61 (3H, bs) 6. 42 (1H, s) 7. 26 (1H, d)
20	2. 11 (3H, s) 3. 59 (3H, s) 3. 73 (2H, s) 6. 40 (1H, s) 6. 70 (1H, s) 7. 19 (1H, d)
29	1. 20 (3H, m) 2. 91 (2H, q) 3. 56 (3H, s) 6. 38 (1H, s) 7. 28 (1H, d) 7. 58 (1H, s)
30	1. 01 (3H, t) 1. 78 (2H, m) 2. 87 (2H, t) 3. 59 (3H, s) 6. 41 (1H, s) 7. 36 (1H, d) 7. 57 (1H, s)
35	3. 60 (3H, s) 4. 02 (3H, s) 6. 42 (1H, s) 7. 07 (1H, s) 7. 24 (1H, d) 8. 00 (1H, s)
45	1.37(6H, d) 3.57(3H, s) 5.26(1H, m) 6.39(1H, s) 7.29(1H, d) 7.56(1H, s)
79	2. 29(1H, bs) 2. 40(3H, s) 3. 57(3H, s) 4. 78(1H, s) 6. 38(1H, s) 7. 17(1H, d)
80	2. 05 (3H. s) 2. 43 (3H, s) 3. 57 (3H, s) 5. 27 (2H, s) 6. 35 (1H, s) 7. 15 (1H, d)
86	2. 69 (3H, s) 3. 60 (3H, s) 6. 43 (1H, s) 7. 29 (1H, d) 8. 00 (1H, bs)
89	1. 38 (6H, d) 2. 58 (3H, s) 3. 55 (3H, s) 5. 26 (1H, m) 6. 35 (1H, s) 7. 20 (1H, d)
111	1. 54(1H, s) 2. 21(3H, s) 2. 35(3H, s) 3. 59(3H, s) 3. 91(3H, s) 6. 41(1H, s) 7. 16(1H, d)
119	2. 73 (3H, s) 3. 57 (3H, s) 6. 37 (1H, s) 7. 32 (1H, d)
141	1. 30 (3H, s) 3. 16 (2H, q) 3. 61 (3H, s) 6. 42 (1H, s) 7. 31 (1H, d) 10. 73 (1H, s)
207	1. 60 (3H, d) 2. 59 (1H, m) 3. 57 (3H, s) 4. 97 (1H, m) 6. 40 (1H, s) 6. 78 (1H, s) 7. 09 (1H, d) 7. 32 (1H, d)

(表26)

化合物	
番号	lH-NMR δ値(ppm) 溶媒 CDCl3
231	2. 90 (3H. s) 3. 52 (3H. s) 6. 18 (1H. bs) 6. 40 (1H. s) 6. 85 (1H. s) 7. 05 (1H. d)
	7. 25(1H, s) 7. 29(1H, d)
247	3. 17 (6H, dd) 3. 57 (3H, s) 6. 39 (1H, s) 7. 25 (1H, d) 7. 39 (1H, d)
270	2. 33 (3H, s) 3. 60 (3H, bs) 6. 40 (1H, s) 7. 0~7. 5 (7H, m)
334	1. 23(6H, d) 3. 43(1H, m) 3. 57(3H, s) 6. 37(1H, s) 7. 18(1H, d)
376	2 67/34 c) 2 60/34 c) 6 36/34 c) 7 33/44 d) 7 30/44 b)
3,0	2. 67 (3H, s) 3. 60 (3H, s) 6. 36 (1H, s) 7. 21 (1H, d) 7. 38 (1H, d)
401	0.97(3H, m) 1.92(2H, m) 2.34(1H, m) 3.57(3H, s) 4.66(1H, m) 6.37(1H, s)
	6. 72 (1H, s) 7. 19 (1H, d)
446	0. 99 (3H, t) 1. 20 (3H, d) 1. 68 (2H, m) 2. 67 (2H, t) 3. 31 (1H, m) 3. 60 (3H, s)
	6. 41 (1H, s) 7. 22 (1H, d)
460	1. 16 (3H, t) 1. 30 (3H, t) 2. 89 (2H, q) 3. 29 (2H, q) 3. 61 (3H, s) 6. 42 (1H, s)
	7. 24 (1H, d)
463	0 99 (2U m) 1 24 (2U A) 1 02 (2U -) 0 57 0 72 (1U U) 0 01 (2U
403	0. 88 (3H, m) 1. 24 (3H, t) 1. 93 (2H, m) 2. 57, 2. 73 (1H, d) 2. 81 (2H, m) 3. 52, 3. 55 (3H, s) 4. 67 (1H, m) 6. 30, 6. 36 (1H, s) 7. 15 (1H, d)
]	5. 52, 5. 55 (51, 5) 4. 57 (11, 11) 6. 50, 6. 50 (11, S) 7. 15 (11, 0)
464	0. 94 (3H, t) 1. 27 (3H, t) 1. 0~2. 0 (4H, m) 2. 17 (1H, m) 2. 86 (2H, m)
	3. 54. 3. 57 (3H, s) 4. 79 (1H, m) 6. 35, 6. 38 (1H, s) 7. 15 (1H, d)
J	
471	1. 33 (3H, t) 1. 74~1. 78 (3H, m) 2. 48~2. 74 (2H, m) 3. 60 (3H, s)
	3.99~4.13(1H, m) 6.40(1H, d) 6.82(1H, s) 7.24(1H, dd)
472	1 20/211 4) 1 20/211 4) 2 0/011) 0 == (011) 1 == (011)
472	1. 30 (3H, t) 1. 80 (3H, d) 3. 0 (2H, m) 3. 55 (3H, s) 4. 40 (1H, q) 6. 45 (1H, d) 7. 00 (1H, s) 7. 24 (1H, d)
	1. 00 (111, 5) 1. 24 (11, U)
ł	
l	

(表27)

化合物	
番号	¹ H-NMR δ値(ppm) 溶媒 CDC1 ₃
475	1. 03 (3H, t) 1. 86 (5H, m) 2. 87 (2H, m) 3. 60 (3H, m) 4. 36 (1H, q) 6. 39 (1H, d) 7. 00 (1H, s) 7. 27 (1H, d)
483	1. 10 (3H, t) 2. 20 (1H, m) 2. 50 (1H, m) 2. 80 (3H, s) 3. 60 (3H, s) 4. 20 (1H, m) 6. 45 (1H, d) 7. 05 (1H, s) 7. 20 (1H, d)
484	1. 10(3H, t) 2. 20(1H, m) 2. 50(1H, m) 2. 70(3H, s) 3. 60(3H, s) 4. 10(1H, m) 6. 20(1H, d) 7. 0(1H, s) 7. 20(1H, d)
485	1.09(3H, m) 1.19(3H, t) 1.96(2H, m) 2.45(2H, m) 3.58(3H, s) 3.82(1H, t)
486	6. 40 (1H, d) 6. 68 (1H, d) 7. 17 (1H, d) 1. 05 (3H, t) 1. 30 (3H, t) 2. 56 (4H, m) 3. 59 (3H, s) 3. 81 (1H, m) 6. 46 (1H, d)
505	6. 82 (1H, d) 7. 22 (1H, d) 1. 15 (6H, m) 1. 28 (3H, m) 2. 81 (3H, m) 3. 59 (3H, s) 4. 16 (1H, m) 6. 40 (1H, d)
510	7. 09 (1H, d) 7. 26 (1H, d) 0. 86 (3H, t) 1. 71 (3H, s) 2. 10 (1H, m) 2. 35 (1H, m) 2. 66 (3H, d) 3. 51 (3H, s)
	6. 31 (1H, s) 6. 92 (1H, s) 7. 18 (1H, d)
511	0. 97 (3H, t) 1. 17 (1H, m) 1. 43 (1H, m) 1. 80 (3H, s) 2. 09 (1H, m) 2. 32 (1H, m) 2. 73 (3H, d) 3. 59 (3H, s) 6. 39 (1H, d) 6. 97 (1H, s) 7. 24 (1H, d)
515	1.80(3H, d) 3.60(3H, s) 4.60(1H, m) 6.40(1H, s) 6.80(1H, s) 7.20(1H, d)
549 551	1. 59 (6H, s) 2. 91 (1H, bs) 3. 55 (3H, s) 6. 33 (1H, s) 6. 65 (1H, s) 7. 17 (1H, d) 1. 42 (3H, d) 3. 58 (3H, s) 5. 35 (1H, m) 6. 39, 6. 43 (1H, s) 6. 75 (1H, s)
551	6. 80(1H, bs) 7. 25(1H, d)

(表28)

化合物 番号	lH-NMR δ値(ppm) 溶媒 CDC13
571	1. 45 (3H, d) 2. 40 (3H, s) 3. 10 (1H, s) 3. 60 (3H, s) 3. 90 (1H, q) 6. 40 (1H, s) 6. 70 (1H, s) 7. 15 (1H, d)
577	1. 93 (3H, d) 3. 59 (3H, s) 4. 56 (1H, q) 6. 40 (1H, d) 6. 87 (1H, s) 7. 25 (1H, s)
585	0. 90 (3H, t) 1. 54 (3H, d) 3. 45 (2H, m) 3. 58 (3H, s) 4. 52 (1H, m) 6. 38 (1H, d) 6. 73 (1H, s) 7. 20 (1H, d)
586	0. 88 (3H, t) 1.5~1.6 (6H, m) 3. 38 (2H, m) 3. 56 (3H, s) 4. 55 (1H, m) 6. 39 (1H, d) 6. 73 (1H, s) 7. 18 (1H, d)
623	2. 44 (3H, s) 3. 58 (3H, s) 3. 80 (3H, s) 4. 64 (2H, s) 6. 40 (1H, s) 7. 15 (1H, d)
624	1. 62 (3H, d) 2. 41 (3H, s) 3. 59 (3H, s) 3. 75 (3H, s) 4. 73 (1H, q) 6. 40 (1H, s) 7. 15 (1H, d)
635	2. 44 (3H, s) 3. 54 (3H, s) 5. 32~5. 50 (2H, dd) 6. 36 (1H, s) 7. 00~7. 15 (2H, m)
646	0. 96 (6H, d) 2. 14 (1H, m) 3. 03 (2H, m) 3. 59 (3H, s) 6. 41 (1H, s) 7. 31 (1H, d) 10. 7 (1H, s)
647	0. 94 (6H, d) 2. 07 (1H, m) 2. 84 (2H, d) 3. 59 (3H, s) 3. 93 (3H, s) 6. 40 (1H, s) 7. 25 (1H, d)
649	0. 91 (3H, m) 1. 33~1. 38 (4H, m) 1. 66~1. 73 (2H, m) 3. 12 (2H, m) 3. 60 (1H, s) 6. 41 (1H, s) 7. 30 (1H, d)
655	3. 59 (3H, s) 3. 92 (3H, s) 6. 40 (1H, s) 7. 31 (1H, d) 8. 20 (1H, s)
656	2. 56 (3H, s) 3. 56 (3H, s) 4. 03 (3H, s) 6. 41 (1H, s) 7. 32 (1H, d)

(表29)

化合物 番号	lH-NMR δ値(ppm) 溶媒 CDC13
657	1. 56 (3H, d) 3. 57 (4H, m) 3. 96 (3H, s) 5. 18 (1H, m) 6. 37 (1H, d) 7. 28 (1H, d)
661	1. 44 (3H, t) 2. 96 (3H, s) 3. 58 (3H, s) 4. 46 (2H, q) 4. 73 (2H, s) 6. 39 (1H, s) 7. 34 (1H, d)
664	1. 37 (3H. t) 1. 43 (3H. t) 3. 08 (2H. q) 3. 58 (3H. s) 4. 45 (2H. q) 4. 71 (2H. s)
	6.39(1H, s) 7.34(1H, d)
666	1. 46(3H, t) 3. 58(3H, s) 4. 53(2H, q) 6. 40(1H, s) 7. 39(1H, d) 10. 04(1H, s)
670	1. 43 (3H, t) 1. 88 (3H, d) 3. 60 (3H, s) 4. 45 (2H, q) 5. 62 (1H, q) 6. 41 (1H, s) 7. 29 (1H, d)
678	1.50(3H, d) 3.30(3H, d) 3.60(3H, s) 4.40(1H, m) 6.40(1H, d) 6.80(1H, s) 6.90(1H, dd)
684	1.8(3H, dd) 2.75(3H, s) 3.80(3H, s) 4.20(1H, q) 6.20(1H, d) 7.00(2H, m)
688	1. 38 (3H, t) 1. 80 (3H, dd) 2. 90 (2H, m) 3. 60 (3H, d) 4. 40 (1H, q) 6. 40 (1H, d)
691	7.00(2H, m) 7.20(1H, s) 0.89(3H, m) 1.84(2H, m) 3.27(3H, s) 3.53(3H, s) 4.13(1H, q) 6.35(1H, d)
	6. 72 (1H, d) 6. 87 (1H, dd)
694	1. 04 (3H, t) 1. 31 (3H, t) 2. 17 (1H, m) 2. 45 (1H, m) 2. 87 (2H, m) 3. 58 (3H, s) 4. 19 (1H, m) 6. 39 (1H, d) 6. 96 (1H, dd) 7. 03 (1H, d)
712	1. 00 (2H, t) 1. 90 (2H, m) 2. 60 (1H, bs) 3. 50 (3H, s) 3. 60 (1H, q) 6. 30 (1H, s)
	6. 60 (1H, s) 7. 40 (1H, d)
I	•

PCT/JP97/00320

(表30)

化合物	
番号	¹ H-NMR δ値(ppm) 溶媒 CDC1 ₃
713	1. 53 (3H, d) 3. 31 (3H, d) 3. 58 (3H, s) 4. 45 (1H, m) 6. 39 (1H, d) 6. 70 (1H, s) 7. 35 (1H, d)
717	1.82(3H, dd) 2.82(3H, s) 3.57(3H, s) 4.37(1H, q) 6.39(1H, d) 6.96(1H, s) 7.41(1H, d)
720	1. 35 (3H, m) 1. 83 (3H, dd) 2. 92 (2H, m) 3. 59 (3H, s) 4. 39 (1H, q) 6. 39 (1H, d) 6. 95 (1H, s) 7. 40 (1H, d)
750 .	1. 33 (3H, t) 2. 80 (2H, q) 3. 70 (3H, s) 6. 35 (1H, s) 6. 47 (1H, s) 7. 23 (1H, d)
752	1. 63 (3H, d) 3. 07 (2H, m) 3. 56 (3H, d) 4. 27 (1H, q) 6. 37 (1H, d) 6. 71 (1H, d) 7. 19 (1H, d)
757	1. 11 (3H, m) 2. 20 (1H, m) 2. 54 (1H, m) 3. 53~3. 62 (4H, m) 3. 86 (1H, m) 4. 36 (1H, m) 6. 38 (1H, d) 7. 05 (1H, s) 6. 26 (1H, d)
764	0. 85 (3H, m) 1. 82 (2H, m) 3. 24 (3H, s) 3. 51 (3H, s) 4. 11 (1H, q) 6. 32 (1H, d) 6. 98 (1H, d) 7. 12 (1H, d)
765	1. 61 (3H, d) 3. 73 (3H, s) 3. 79 (2H, m) 4. 73 (1H, m) 6. 38 (1H, s) 6. 81 (1H, s) 7. 23 (1H, d)
766 -	1. 54 (3H, d) 3. 58 (3H, s) 3. 71 (2H, m) 4. 45 (1H, m) 4. 64 (2H, m) 6. 39 (1H, s) 6. 78 (1H, s) 7. 19 (1H, d)
770	1. 22~1. 28 (6H, m) 1. 79 (3H, dd) 3. 59 (3H, s) 3. 66~4. 07 (4H, dd) 5. 47 (1H, m) 6. 39 (1H, d) 6. 79 (1H, s) 7. 16 (1H, d)
771	0. 93 (3H, m) 1. 84 (2H, m) 3. 31 (3H, s) 3. 57 (3H, s) 4. 17 (1H, q) 6. 38 (1H, q) 6. 75 (1H, d) 6. 90 (1H, dd)

本発明の除草剤は、一般式[1]で示されるベンゾフラン-7-イルウラシル

誘導体を有効成分としてなる。

本発明化合物を除草剤として使用するには本発明化合物それ自体で用いてもよいが、製剤化に一般的に用いられる担体、界面活性剤、分散剤または補助剤等を配合して、粉剤、水和剤、乳剤、微粒剤または粒剤等に製剤して使用することもできる。

製剤化に際して用いられる担体としては、例えばタルク、ベントナイト、クレー、カオリン、珪藻土、ホワイトカーボン、バーミキュライト、炭酸カルシウム、消石灰、珪砂、硫安、尿素等の固体担体、イソプロピルアルコール、キシレン、シクロヘキサン、メチルナフタレン等の液体担体等があげられる。

界面活性剤及び分散剤としては、例えばアルキルベンゼンスルホン酸金属塩、ジナフチルメタンジスルホン酸金属塩、アルコール硫酸エステル塩、アルキルアリールスルホン酸塩、リグニンスルホン酸塩、ポリオキシエチレングリコールエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンソルビタンモノアルキレート等があげられる。補助剤としては、例えばカルボキシメチルセルロース、ポリエチレングリコール、アラビアゴム等があげられる。使用に際しては適当な濃度に希釈して散布するかまたは直接施用する。

本発明の除草剤は茎葉散布、土壌施用または水面施用等により使用することができる。有効成分の配合割合については必要に応じて適宜選ばれるが、粉剤または粒剤とする場合は $0.01\sim10\%$ (重量)、好ましくは $0.05\sim5\%$ (重量)の範囲から適宜選ぶのがよい。また、乳剤及び水和剤とする場合は $1\sim50\%$ (重量)、好ましくは $5\sim30\%$ (重量)の範囲から適宜選ぶのがよい。

本発明の除草剤の施用量は使用される化合物の種類、対象雑草、発生傾向、環境条件ならびに使用する剤型等によってかわるが、粉剤及び粒剤のようにそのまま使用する場合は、有効成分として10 アール当00 1 g ~ 5 k g 、好ましくは1 g ~ 1 k g の範囲から適宜選ぶのがよい。また、乳剤及び水和剤とする場合のように液状で使用する場合は、0 $1 \sim 5$ 0, 0 0 0 p p m の範囲から適宜選ぶのがよい。

また、本発明の化合物は必要に応じて殺虫剤、殺菌剤、他の除草剤、植物生長 調節剤、肥料等と混用してもよい。 次に代表的な製剤例をあげて製剤方法を具体的に説明する。化合物、添加剤の 種類及び配合比率は、これのみに限定されることなく広い範囲で変更可能であ る。以下の説明において「部」は重量部を意味する。

〈製剤例1〉 水和剤

化合物(4)の10部にポリオキシエチレンオクチルフェニルエーテルの0. 5部、βーナフタレンスルホン酸ホルマリン縮合物ナトリウム塩の0.5部、珪 藻土の20部、クレーの69部を混合粉砕し、水和剤を得る。

〈製剤例2〉 水和剤

化合物 (78) の10部にポリオキシエチレンオクチルフェニルエーテルの 0.5部、βーナフタレンスルホン酸ホルマリン縮合物ナトリウム塩の0.5 部、珪藻土の20部、ホワイトカーボンの5部、クレーの64部を混合粉砕し、水和剤を得る。

〈製剤例3〉 水和剤

化合物 (201) の10部にポリオキシエチレンオクチルフェニルエーテルの 0.5部、βーナフタレンスルホン酸ホルマリン縮合物ナトリウム塩の0.5 部、珪藻土の20部、ホワイトカーボンの5部、炭酸カルシウムの64部を混合 粉砕し、水和剤を得る。

〈製剤例4〉 乳剤

化合物(8)の30部にキシレンとイソホロンの等量混合物60部、界面活性 剤ポリオキシエチレンソルビタンアルキレート、ポリオキシエチレンアルキルア リールポリマー及びアルキルアリールスルホネートの混合物の10部を加え、こ れらをよくかきまぜることによって乳剤を得る。

〈製剤例5〉 粒剤

化合物(44)の10部、タルクとベントナイトを1:3の割合の混合した増量剤の80部、ホワイトカーボンの5部、界面活性剤ポリオキシエチレンソルビタンアルキレート、ポリオキシエチレンアルキルアリールポリマー及びアルキルアリールスルホネートの混合物の5部に水10部を加え、よく練ってペースト状としたものを直径0.7mmのふるい穴から押し出して乾燥した後に0.5~1mmの長さに切断し、粒剤を得る。

次に試験例をあげて本発明化合物の奏する効果を説明する。尚、比較剤として、次に示した化合物を用いた。

〈試験例1〉 水田土壌処理による除草効果試験

100cm²のプラスチックポットに水田土壌を充填し、代掻後、タイヌビエ(Ec)、コナギ(Mo)及びホタルイ(Sc)の各種子を播種し、水深3cmに湛水した。翌日、製剤例1に準じて調製した水和剤を水で希釈し、水面滴下した。施用量は、有効成分を10アール当り100gとした。その後、温室内で育成し、処理後21日目に表31の基準に従って除草効果を調査した。結果を表32~表40に示す。

(表31)

指数	除草効果(生育抑制程度)及び薬害
5	90%以上の抑制の除草効果、薬害
4	70%以上90%未満の除草効果、薬害
3	50%以上70%未満の除草効果、薬害
2	30%以上50%未満の除草効果、薬害
1	10%以上30%未満の除草効果、薬害
0	0%以上10%未満の除草効果、薬害

(表32)

化合物	除	草効	果
番号	Ес	Мо	Sc
1	5	5	5
2	5	5	5
3	5	5	5
4	5	5	5
6	5	5	5
7	5	5	5
8	5	5	5
9	5	5	5
10	5	5	5 .
1 2	5	5	5
1 3	5	5	5
1 4	5	5	5
1 5	5	5	5
1 6	5	5	5
1 9	5	5	5
2 0	5	5	5
2 1	5	5	5
2 2	5	5	5
2 3	5	5 ·	5
2 8	5	5	5
2 9	5	5	5
3.0	5	5	5
3 1	5	5	5
3 3	5	5	5
3 5	5	·5	5
3 7	5	5	5
4 2	5	5	5
4 3	5	5	5
44	5	5	5

(表33)

化合物	除	草効	果
番号	Еc	Мо	Sc
4 5	5	5	5
7 0	5	5	5
7 1	5	5	5
7 2	5	5	5
7 5	5	5	5
7 8	5	5	5
8 3	5	5	5
8 4	5	5	5
9 5	5	5	5
9 8	5	5	5
101	5	5	5
111	5	5	5
140	5	5	5
141	5	5	5
142	5	5	5
143	5	5	5
147	5	5	5
152	5	5	5
153	5	5	5
165	5	5	5
166	5	5	5
187	5	5	4
195	5	5	5
196	5	5	5
197	5	5	5
198	5	5	5
200	. 5	5	5
201	5	5	5
202	5	5	5 .

(表34)

化合物	除	草効	果
番号	Еc	Мо	Sc
			·
207	5	5	5
208	5	5	5
209	5	5	5
2 1 0	5	5	5
2 1 3	5	5	5
2 2 2	5	5	5
2 2 8	5	5	5
2 3 3	5	5	5
2 3 0	5	5	5
2 3 9	5	5	5
2 4 5	5	5	5
265	5	5	5
266	5	5	5
272	5	5	5
289	5	5	5
299	5	5	5
3.03	5	5	5
350	5	5	5
3 7 4	5	5	5
3 7 5	5	5	5
379	5	5	5
383	5	5	5
392	5	5	5
3 9 3	5	5	5
3 9 4	5	5	5
3 9 7 -	5	5	5
3 9 8	5	5	5
400	5	5	5
401	5	5	5

(表35)

化合物	除	草効	果
番号	Еc	Мо	Sc
4 0 2	5	5	5
404	5	5	5
405	5	5	5
406	5	5	5
407	5	5	5
409	5	5	5
410	5	5	5
4 1 1	5	5	5
412	5	5	5
417	5	5	5
418	5	5	5
421	5	5	5
423	5	5	5
424	5	5	5
427	5	5	5
432	5	5	5
433	5	5	5
4 3 5	5	5	5
436	5	5	5
439	5	5	5
440	5	5	5
441	5	5	5
442	5	5	5
443	5	5	5
444	5	5	5
4 4 5	5	5	5
4 4 6	5	5	5
447	5	5	5
448	5	5	5

(表36)

化合物	除	草効	果
番号	Еc	Мо	S c
4 4 9	5	5	5
450	5	5	5
451	5	5	5
452	5	5	5
453	5	5	5
454	5	5	5
455	5	5	5
. 456	5	5	5
457	5	5	5
458	5	5	5
459	5	5	5
460	5	5	5
4 6 1	5	5	5
462	5	5	5
463	5	5	5
464	5	5	5
466	5	5	4
467	5	5	5
468	5	5	5
469	5	5	5
470	5	5	5
471	5	5	5
472	5	5	5
473	5	5	5
476	5	5	5
479	5	5	5
482	5	5	5
483	5	5	5
484	5	5	5

(表37)

化合物	除	草効	果
番号	Еc	Мо	Sc
	ļ		
508	5	5	5
510	5	5	5
511	5	5	5
513	5	5	5
515	5	5	5
521	5	5	5
524	5	5	5
539	5	5	5
571	5	5	5
572	5	5	5
577	5	5	5
578	5	5	5
584	5	5	5
591	5	5	5
5 9 2	5	5	5
605	5	5	5
6 [.] 06	5	5	5
607	5	5	5
6 1 0	5	5	5
6 1 2	5	5	5
617	5	5	5
6 1 8	5	5	5
6 1 9	5	5	5
6 2 2	5	5	5
6 2 3	5	5	5
624	5	5	5
6 3 0	5	5	5
6 3 1	5	5	5
6 3 4	5	5	5

(表38)

化合物	除	草効	果
番号	Еc	Мо	Sc
<u> </u>	-		•
635	5	5	5
636	5	5	5
639	5	5	· 5
640	5	5	5
641	5	5	5
642	5	5	4
643	5	5	5
644	5	5	5
645	5	5	5
646	5	5	5
647	5	5	5
648	5	5	5
649	5	5	5
650	5	5	5
651	5	5	5
653	5	5 .	4
655	5.	5	5
656	5	5	5
657	5	5	5
658	5	5	5
659	5	5	5
660	5	5	5
6 6 1	5	5	5
662	5	5	5
663	5	5 .	5
664	5	5	5
665	5	5	5
666	5	5	5
667	5	5	5

(表39)

化合物	除	草効	果
番号	Ес	Мо	Sc
668	5	5	5
669	5	5	5
670	5	5	5
671	5	5	5
672	5	5	5
674	5	5	5
676	5	5	5
677	5	5	5
680	5	5	5
681	5	5	5
682	5	5	5
684	5	5	5
685	5	5	5
686	5	5	5
688	5	5	5
698	5	5	5
6 9 9	5	5	5
7 0 0	5	5	5
7 0 1	5	5	5
702	5	5	5
703	5	5	5
704	5	5	4
705	5	5	5
706	5	5	5
707	5	5	5
708	5	5	5
709	5	5	5
710	5	5	5
7 1 1	5	5	5

(表40)

化合物	除	草効	果
番 号	Ес	Мо	Sc
7 1 2	5	5	5
7 2 4	5	5	5
7 2 5	5	5	5
7 2 6	5	5	5
727	5	5	5

〈試験例2〉 畑地土壌処理による除草効果試験

120cm²プラスチックポットに砂を充填し、オオイヌタデ(Po)、アオビュ(Am)、シロザ(Ch)、コゴメガヤツリ(Ci)の各種子を播種して覆土した。製剤例1に準じて調製した水和剤を水で希釈し、10アール当り有効成分が100gになる様に、10アール当り1001を小型噴霧器で土壌表面に均一に散布した。その後、温室内で育成し、処理21日目に表31の基準に従って、除草効果を調査した。その結果を表41~表49に示す。なお、一は未試験を表す。

(表41)

化合物		除草	効	果
番号	Ро	A m	Ch	ı Ci
	 			
1	5	5	5	5
2	5	5	5	5
3	5	5	5	5
4	5	5	5	5
6	5	5	5	5
7	5	5	5	5
8	5	5	5	5
9	5	5	5	5
1 0	5	5	5	5
1 2	5	5	5	5
1 3	5	5	5	5
1 4	5	5	5	5
1 5	5	5	5	5
1 6	5	5	5	5
1 9	5	5	5	5
2 0	5	5	5	5
2 1	5	5	5	5
2 2	5	5	5	5
2 3	5	5	5	5
2 5	5	5	5	5
2 8	5	5	5	5
2 9	5	5	5	5
3 0	5	5	5	5
3 1	5	5	5	5
3 3	5	5	5	5
3 5	5	5	5	5
3 7	5	5	5	5
4 2	5	5	5	5
4 3	5	5	5	5

(表42)

化合物		除草		果	
番号	Рс	A m	Ch	n Ci	
4 4	5	5		5	_
4 5	5	5	5	5	
7 0	5	5	5	5	
7 1	5	5	5	5	
7 2	5	5	5	. 5	
7 4	5	5	5	5	
7 5	5	5	5	5	
7 8	5	5	5	5	
8 3	5	5	5	5	
8 4	5	5	5	5	
9 5	5	5	5	5	
98	5	5	5	5	
101	5	5	5	5	
1 1 1	5	5	5	5	
117	5	5	5	5	Ì
140	5	5	5	5	١
141	5	5	5	5	
1 4 2	5	5	5	5	
1 4 3	5	5	5	5	.
1 4 7	5	5	5	5	
152	5	5	5	5	Ì
153	5	5	5	5	
165	5	5	5	5	
166	5	5	5	5	
195	5	5	5	5	
196	5	5	5	5	
197	5	5	5	5	
198	5	5	5	5	
200	5	5	5	5	-

(表43)

化合物		除草	効	果
番号	Ро	A m	C h	Ci
201	5	 5	5	 5
202	5	5	5	5
206	5	5	5	5
207	5	5	5	5
208	5	5	5	5
1	5	5	5	5 5
	ſ			
210	5	5	5	5
213	5	5	5	5
219	5	5	5	5
2 2 2	5	5	5	5
227	5	5	5	5
228	5	5	5	5
230	5	5	5	5
2 3 1	5	5	5	5
233	5	5	5	5
238	5	5	5	5
239	5	5	5	5
240	5	5	5	5
241	5	5	5	5
2 4 5	5	5	5	5
246	5	5	5	5
247	5	5	5	5
2 4 8	5	5	5	5
265	5	5	5	5
266	5	5	5	5
267.	5	5	5	5
269	5	5	5	5
270	5	5	5	5
272	5	5	5	5

(表44)

化合物		除草	効	果
番号	Pc	A m	C I	n Ci
289	5	5	5	5
299	5	5	5	5
301	5	5	5	5
3 0 3	5	5	5	5
3 0 5	5	5	5	5
3 4 9	5	5	5	5
350	5	5	5	5
374	5	5	5 .	5
3 7 5	5	5	5	5
3 7 9	5	5	5	5
383	5	5	5	5
3 9 2	5	5	5	5
393	5	5	5	5
394	5	5	5	5
397	5	5	5	5
398	5	5	5	5
400	5	5	5	5
401	5	5	5	5
402	5	5 .	5	5
404	5	5	5	5
405	5	5	5	5
406	5	5	5	5
407	5	5	5	5
409	5	5	5	5
410	5	5	5	5
411	5	5	5	5
4 1 2	5	5	5	5
4 1 7	5	5	5	5
4 1 8	5	5	5	5

(表45)

化合物		除草	効	果
番号	Ро	Am	Cl	n Ci
4 2 1	5	5	5	5
4 2 3	5	5	5	5
424	5	5	5	5
427	5	5	5	5
4 3 2	5	5	5	5
4 3 3	5	5	5	5
4.35	5	5	5	5
4 3 6	5	5	5	5
4 3 9	5	5	5	-
4 4 0	5	5	5	5
441	5	5	5	-
442	5	5	5	5
443	5	5	5	5
444	5	5	5	5
445	5	5	5	5
446	5	5	5	5
447	5	5	5	5
448	5	5	5	5
449	5	5	5	5
450	5	5	5	5
452	5	5	5	_
453	5	5	5	5
454	5	5	5	5
455	5	5	5	5
456	5	5	5	5
457	5	5	5	5
458	5	5	5	5
459	5	5	5	5
460	5	5	5	5

(表46)

化合物		除草	効	果
番号	Ро	A m	Cł	ı Ci
4 6 1	5	5	5	5
462	5	5	5	5
4 6 3	5	5	5	5
4 6 4	5	5	5	5
466	5	5	5	5
467	5	5	5	5
4 6 8	5	5	5	5
469	5	5	5	5
470	5	5	5	
471	5	5	5	5
472	5	5	5	_
473	5	5	5	5
482	5	5	5	5
483	5	5	5	5
484	5	5	5	5
508	5	5	5	5
5 1 0	5	[.] 5	5	5
511	5	5	5	5
513	5	5	5	5
515	5	5	5	5
5 2 1	5	5	5	5
5 2 4	5	5	5	5
5 3 9	5	5	5	5
571	5	5	5	5
572	5	5	5	5
577 -	5	5	5	5
578	5	5	5	5
5 8 4	5	5	5	5
591	5	5	5	5

(表47)

化合物		除草	効	果
番号	Po	A m	Cl	n Ci
5 9 2	5	5	5	5
605	5	5	5	5
606	5	5	5	5
607	5	5	5	5
610	5	5	5	5
6 1 2	5	5	5	5
617	5	5	5	5
618	5	5	5	5
619	5	5	5	5
622	5	5	5	5
623	5	5	5	5
6 2 4	5	5	5	5
630	5	5	5	5
631	5	5	5	5
632	5	5	5	5
6 3 4	5	5	5	5
6 3 5	5	5	5	5
6 3 6	5	5	5	5
6 3 9	5	5	5	5
6 4 0	5	5	5	5
6 4 3	5	5	5	5
6 4 4	4	5	5	5
6 4 5	5	5	5	5
646	5	5	5	5
647	5	5	5	5
648.	5	5	5	5
649	5	5	5	5
651	5	5	5	5
652	5	5	5	5

(表48)

化合物		除草	効	果
番号	Рс	Am	Cł	n Ci
6 5 3	5	5	5	5
6 5 5	5	5	5	5
656	5	5	5	5
657	5	5	5	5
658	5	5	5	5
659	5	5	5	-
660	5	5	5	5
661	5	5	5	5
662	5	5	5	5
663	5	5	5	5
664	5	5	5	5
6 6 5	5	5	5	5
666	5	5	5	5
667	5	5	5	5
668	5	5	5	5
669	5	5	5	5
670	5	5	5	5
671	5	5	5	5
672	5	5 ·	5	5
673	5	5	5	5
674	5	5	5	5
675	5	5	5	5
676	5	5	5	5
677	5	5	5	5
680	5	5	5	5
6 8 1	5	5	5	5
682	5	5	5	5
684	5	5	5	5
685	5	5	5	5

(表49)

化合物		除草	効!	 果
番号	Ро	Am	C h	Ci
686	5	5	5	5
688	5	5	5	5
698	5	5	5	-
699	5	5	5	_
700	5	5	5	-
701	5	5	5	5
702	5	5	5	-
703	5	5	5	-
7 0 4	5	5	5	-
705	5	5,	5	5
706	5	5	5	5
707	5	5	5	5
708	5	5	5	5
709	5	5	5	5
710	5	5	5	5
7 1 1	5	5	5	5
7 1 2	5	5	5	5
7 2 4	5	5	5	5
7 2 5	5	5	5	5
7 2 6	5	5	5	5
727	5	5	5	5
7 3 0	5	5	5	5

〈試験例3〉 畑地茎葉処理による除草効果試験

120cm²プラスチックポットに砂を充填し、オオイヌタデ(Po)、アオビユ(Am)、シロザ(Ch)、コゴメガヤツリ(Ci)の各種子を播種し、温室内で2週間育成後、製剤例1に準じて調製した水和剤を水に希釈し、10アール当り有効成分が100gになる様に、10アール当り1001を小型噴霧器で植物体の上方から全体に茎葉散布処理した。その後、温室内で育成し、処理14日目に表31の基準に従って、除草効果を調査した。その結果を表50~表58に示す。

(表50)

	除	草	効 果	
化合物番号	Ро	A m	Ch	Ci
1	5	5	5	5
2	5	5	5	5
3	5	5	5	5
4	5	5	5	5
6	5	5	5	5
7	5	5	5	5
8	5	5	5	5
9	5	5	5	5
10	5	5	5	5
12	5	5	5	5
1 3	5	5	5	5
1 4	5	5	5	5
15	5	5	5	5
16	5	5	5	5
19	5	5	5	5
2 0	5	5	5	5
2 1	5	5	5	5
2 2	5	5	5	5
2 3	5	5	5	5.
2 5	5	5	5	5
28	5	5	5	5
2 9	5	5	5	5
3 0	5	5	5	5
3 1	5	5	5	5
3 3	5 .	5	5	5
3 5	5	5	5	5
3 7	5	5	5	5
4 2	5	5	5	5
4 3	5	5	5	5

(表,51)

	除	草	効 果	
化合物番号	Po	Αn	n Ch	Ci
4 4	5	5	5	5
4 5	5	5	5	5
7 0	5	5	5	5
7 1	5	5	5	5
7 2	5	5	5	5
7 4	5	5	5	5
7 5	5	5	5	5
7 8	5	5	5	5
8 3	5	5	5	5
8 4	5	5	5	5
9 5	5	5	5	5
9 8	5	5	5	5
101	5	5	5	5
1.11	5	5	5	5
116	5	5	5	5
140	5	5	5	5
141	5	5	5	5
142	5	5	5	5
143	5	5	5	5
147	5	5	5	5
152	5	5	5	5
153	5	5	5	5
165	5	5	5	5
166	5	5	5	5
195	5	5	5	5
196	5	5	5	5
197	5	5	5	5
198	5	5	5	5
200	5	5	5	5

(表52)

	除	草	効 果	
化合物番号	Ро	A m	Сh	Ci
2 0 1	5	5	5	5
202	5	5	5	5
206	5	5	5	5
207	5	5	5	5
208	5	5	5	5
209	5	5	5	5
2 1 0	5	5	5	5
2 1 3	5	5	5	5
219	5	5	5	5
222	5	5	5	5
227	5	5	5	5
228	5	5	5	5
230	5	5	5	5
231	5	5	5	5
233	5	5	5	5
238	5	5	5	5
239	5	5	5	5
240	5	5	5	5
241	5	5	5	5
245	5	5	5	5
246	5	5	5	5
247	5	5	5	5
248	5	5	5	5
265	5	5	5	5
266	5	5	5	5
267	5	5	5	5
269	5	5	5	5
272	5	5	5	5
289	5	5	5	5

(表53)

	除	草	効 果		
化合物番号	Ро	An	n Ch	Ci	
299	5	5	5	5	
301	5	5	5	5	
303	5	5	5	5	i
3 0 5	5	5	5	5	
3 4 9	5	5	5	5	Ì
3 5 0	5	5	5	5	
3 7 4	5	5	5	5	
3 7 5	5	5	5	5	
379	5	5	5	5	
383	5	5	5	5	ļ
3 9 2	5	5	5	5	
3 9 3	5	5	5	5	
3 9 4	5	5	5	5	
397	5	5	5	5	
398	5	5	5	5	
400	5	5	5	5	
401	5	5	5	5	
402	5	5	5	5	
404	5	5	5	5	
405	5	5	5	5	
406	5	5	5	5	l
407	5	5	5	5	
409	5	5	5	5	
410	5	5	5	5	
411	5	5	5	5	
412	5	5	5	5	
4 1 7	5	5	5	5	
4 1 8	5	5	5	5	
421	5	5	5	5	

(表54)

	除	草	効 果	
化合物番号	Ро	An	n Ch	Ci
4 2 3	5	5	5	5
424	5	5	5	5
427	5	5	5	5
432	5	5	5	5
433	5	5	5	5
4 3 5	5	5	5	5
436	5	5	5	5
439	5	5	5	5
440	5	5	5	5
441	5	5	5	5
442	5	5	5	5
443	5	5	5	5
444	5	5	5	5
445	5	5	5	5
446	5	5	5	5
447	5	5	5	5
448	5	5	5	5
449	5	5	5	5
450	5	5	5	5
451	5 -	5	5	5
452	5	5	5	5
453	5	5	5	5
454	. 5	5	5	5
4 5 5	5	5	5	5
4 5 6	5	5	5	5
457.	5	5	5	5
4 5 8	5	5	5	5
459	5	5	5	5
460	5	5	5	5

(表55)

	除	草	効 果	<u> </u>	
化合物番号	Ро	A m	C h	Ci	
461	. 5	5	5	5	
462	5	5	5	5	-
463	5	5	5	5	ļ
464	5	5	· 5	5	۱
466	5	5	5	5	
467	5	5	5	5	
468	5	5	5	5	
469	5	5	5	5	
470	5	5	5	5	
471	5	5	5	5	l
472	5	5	5	5	1
473	5	5	5	5	
476	5	5	5	5	
479	5	5	5	5	
482	5	5	5	5	
483	5	5	5	5	1
484	5	5	5	5	Ì
508	5	5	5	5	l
510	5	5	5	5	
511	5	5	5	5	
513	5	5	5	5	
515	5	5	5	5	l
5 2 1	5	5	5	5	l
5 2 4	5	5	5	5	
5 3 9	5	5	5	5	
571	5	5	5	5	
572	5	5	5	5	
577	5	5	5	5	
578	5	5	5	5	

(表56)

	除	草	効 果	
化合物番号	Ро	Am	C h	Ci
5 8 4	5	5	5	5
5 9 1	5	5	5	5
592	5	5	5	5
605	5	5	5	5
606	5	5	5	5
607	5	5	5	5
610	5	5	5	5
6 1 2	5	5	5	5
617	5	5	5	5
618	5	5	5	5
619	5	5	5	5
622	5	5	5	5
623	5	5	5	5
624	5	5	5	5
630	5	5	5	5
6 3 1	5	5	5	5
6 3 2	5	5	5	5
6 3 4	5	5	5	5
6 3 5	5	5	5	5
636	5	5	5	5
639	5	5	5	5
640	5	5	5	5
641	5	5	5	5
6 4 3	5	5	5	5
6 4 4	5	5	5	5
645-	5	5	5	5
646	5	5	5	5
647	5	5	5	5
648	5	5	5	5

5 (表57)

	除	草	効 果	
化合物番号	Ро	A m	C h	Ci
649	5	5	5	5
651	5	5	5	5
653	5	5	5	5
655	5	5	5	5
656	5	5	5	5
657	5	5	5	5
658	5	5	5	5
659	5	5	5	5
660	5	5	5	5
661	5	5	5	5
662	5	5	5	5
663	5	5	5	5
664	5	5	5	5
665	5	5	5	5
666	5	5 ·	5	5
667	5	5	5	5
668	5	5	5	5
669	5	5	5	5
670	5	5	5	5
671	5	5	5	5
672	5	5	5	5
674	5	5	5	5
676	5	5	5	5
677	5	5	5	5
680	5	5	5	5
681	5	5	5	5
682	5	5	5	5
684	5	5	5	5
6 8 5	5	5	5	5

(表58)

	除	草	功 果	
化合物番号	Ро	Am	C h	Ci
686	5	5	5	5
688	5	5	5	5
698	5	5	5	5
699	5	5	5	5
701	5	5	5	5
702	5	5	5	5
703	5	5	5	5
704	5	5	5	5
705	5	5	5	5
706	5	5	5	5
707	5	5	5	5
708	5	5	5	5
709	5	5	5	5
710	5	5	5	5
711	5	5	5	5
7 1 2	5	5	5	5
724	5	5	5	5
725	5	5	5	5
726	5	5	5	5
727	5	5	5	5
730	5	5	5	5

〈試験例4〉 畑地土壌処理による作物選択性試験

600 c m 2 プラスチックポットに砂を充填し、コムギ (T r)、オオイヌタデ (Po)、アオビユ (Am)、シロザ (Ch)、イチビ (Ab)の各種子を播種して覆土した。翌日、製剤例1に準じて調製した水和剤の所定有効成分量(ai,g/10a)を水で希釈し、10アール当り1001を小型噴霧器で土壌表面に均一に散布した。その後、温室内で育成し、処理後21日目に表31の基準に従って除草効果及び薬害を調査した。試験結果を表59~表62に示す。なお、一は未試験を表す。

(表59)

化合物	薬 量	ß.	余 草	効・	果	薬害
	ai, g				-	
番号	/10a	Ро	Am	Ch	Аb	Tr
3	1. 6	5	5	5	5	0
6	1. 6	5	5	5	5	1
8	1. 6	5	5	5	5	1
1 3	1. 6	5	5	5	5	0
1 5	1.6	5	5	5	5	0
2 2	1. 6	5	5	5	5	0
2 3	1. 6	5	5	5	5	1
3 1	1. 6	5	5	5	5	1
3 3	1. 6	5	5	5	5	1
70	1. 6	5	5	5	5	1
7 1	1. 6	5	5	5	5	1
7 2	1. 6	5	5	5	5	0
7.8	1.6	5	5	5	5	1
8 4	6. 3	5	5	5	5	1
9 5	1.6	5	5	5	5	1
98	6.3	5	5	5	5	1
111	1.6	5	5	5	5	1
142	6. 3	5	5	5	5	1
152	1.6	5	5	4	5	0
153	6.3	5	5	5	5	1
165	1.6	5	5	5	5	1
200	1.6	5	5	5	5	1
222	1. 6	5	5	5	5	0
233	1. 6	5	5	5	5	1
245	6.3	5	5	5	5	0
246	1. 6	5	5	5	5	0
247	6.3	5	5	5	5	0
266	6. 3	5	5	5	5	1
289	1.6	5	5	5	5	1 .

(表60)

化合物	薬 量		除草	効	 果	楽害	_
	ai, g						_
番号	/10a	Po	Am	Сh	Αb	Tr	
3 7 4	1. 6	5	5	5	5	1	-
379	1.6	5	5	5	5	1	
3 8 3	1. 6	5	5	5	5	1	
3 9 2	1. 6	5	5	4	5	1	
3 9 4	1. 6	5	5	5	5	1	
3 9 7	1. 6	5	5	5	5	1	
398	1. 6	5	5	5	4	1	
402	6.3	5	5	5	5	1	ı
406	1. 6	5	5	5	5	1	
407	1. 6	5	5	5	5	1	
409	1. 6	5	5	5	5	1	Ì
410	1. 6	5	5	5	5	1	l
4 1 1	1.6	5	5	5	5	1	l
417	1. 6	5	5	5	5	1	
421	1.6	5	5	5	5	1	
423	1.6	5	5	5	5	1	
4 3 2	1.6	5	5	5	5	1	
4 3 5	6.3	5	5	5	5	1	
436	1. 6	5	5	5	5	1	
439	1. 6	5	5	5	5	1	
440	1. 6	5	5	5	5	1	
441	1. 6	5	5	5	5	1	
444	6. 3	5	5	5	5	1	
447	6. 3	5	5	5	5	1	
448	6. 3	5	5	5	5	1	
454	1. 6	5	5	5	5	1	
458	1. 6	5	5	5	5	0	
459	1. 6	5	5	5	5	1	
462	1. 6	5	5	5	5	1	

(表61)

化合物	薬 量	ß	余 草	効り	果	薬害
	ai, g					
番号	/10a	Ро	Am	Ch	A b	Tr
467	1. 6	5	5	5	5	1
468	6. 3	5	5	5	5	1
471	1. 6	5	5	5	5	1
482	1. 6	5	5	5	_	1
5 1 5	1. 6	5	5	5	5	1
524	1. 6	5	5	5	5	1
539	1. 6	5	5	5	5	1
578	1. 6	5	5	5	5	0
617	1. 6	5	5	5	5	1
619	1. 6	5	5	5	5	1
630	6. 3	4	5	5	5	1
639	1. 6	5	5	5	5	0
648	1. 6	5	5	5	5	1
656	1. 6	5	5	5	5	1
658	1. 6	5	5	5	5	0
6 6 1	1. 6	5	5	5	5	1
662	1. 6	· 5	5	5	5	1
665	1. 6	5	4	5	4	1
667	1. 6	5	5	5	5	1
668	1. 6	5	5	5	5	1
669	1. 6	5	5	5	5	1
672	6. 3	5	5	5	5	1
677	6. 3	5	5	_	5	1
682	1. 6	5	5	5	5	1
699	6.3	5	5	5	4	1
702	6. 3	5	5	5	5	1
705	1. 6	5	5		5	1
708	1. 6	· 5	5	5	5	0
724	1. 6	5	5	5	5	1

(表62)

化合物	薬 量	除草効果	薬害
番号	a i, g /10a	Po Am Ch Ab	Tr
比較 1	1. 6	5 5 5 5	5
比較 2	1.6	5 5 5 5	5

〈試験例5〉 畑地土壌処理による作物選択性試験

600cm²プラスチックポットに砂を充填し、ダイズ(G1)、オオイヌタデ(Po)、アオビユ(Am)、シロザ(Ch)、イチビ(Ab)の各種子を播種して覆土した。翌日、製剤例1に準じて調製した水和剤の所定有効成分量(ai,g/10a)を水で希釈し、10アール当り1001を小型噴霧器で土壌表面に均一に散布した。その後、温室内で育成し、処理後21日目に表31の基準に従って除草効果及び薬害を調査した。試験結果を表63~表64に示す。なお、一は未試験を表す。

(表63)

化合物		β	余 草	効・	果	薬害
	ai, g					
番号		Ро	A m	Сh	Αb	G I
4	1. 6	5	5	5	5	1
6	1. 6	5	5	5	5	1
7	1. 6	5	5	5	4	0
3 1	1. 6	5	5	5	5	1
7 0	1. 6	5	5	5	5	0
7 1	1. 6	5	5	5	5	1
7 2	1. 6	5	5	5	5	0
152	1. 6	5	5	4	5	1
201	6. 3	5	5	5	5	0
207	1. 6	5	5	5	5	1
2 3 3	6. 3	5	5	5	5	1
239	6. 3	5	5	5	5	1
266	6.3	5	5	5	5	0
3 9 7	1. 6	5	5	5	5	1
398	1.6	5	5	5	4	1
421	1. 6	5	5	5	5	1
4 3 5	6.3	5	5	5	5	1
436	1. 6	5	5	5	5	1
439	1. 6	5	5	5	5	1
441	1. 6	5	5	5	5	1
447	6.3	5	5	5	5	1
450	6.3	5	5	5	5	1
458	1.6	5	5	5	5	0
459	1. 6	5	5	5	5	1
463	6.3	5	5	5	5	1
618 -	1. 6	5	5	5	5	0
630	6.3	4	5	5	5	1
639	1.6	5	5	5	5	1
655	6.3	5	5	5	5	1

(表64)

化合物	楽 量	Į į	余草	効り	R	薬害
	ai, g					
番号	/10a	Ро	Am	Сh	A b	GI
6 5 6	1. 6	5	5	5	5	0
658	1. 6.	5	5	5	5	0
661	1.6	5	5	5	5	1
6 6 2	1. 6	5	5	5	5	1
665	1. 6	5	4	5	4	0
667	1. 6	5	5	5	5	1
668	1. 6	5	5	5	5	1
669	1. 6	5	5	5	5	0
680	1. 6	5	5	_	4	1
702	6.3	5	5	5	5	·1
707	1. 6	5	5	5	5	1
708	1. 6	5	5	5	5	0
724	1.6	5	5	5	5	1
比較 1	6. 3	5	5	5	5	5
	1. 6	5	5	5	5	5
比較 2	6.3	5	5	5	5	5
	1. 6	5	5	5	5	5

〈試験例6〉 畑地土壌処理による作物選択性試験

(表65)

化合物	薬 量	t	除 草	効:	果	薬害
	ai, g					
番号	/10a	Ро	Am	Ch	Ab	Ze
3	1. 6	5	5	5	5	0
6	1. 6	5	5	5	5	0
7	1. 6	5	5	5	4	0
4 3	1. 6	5	5	5	5	0
7 0	1.6	5	5	5	5	0
7 2	1. 6	5	5	5	5	0
152	1.6	5	5	4	5 .	1
2 3 9	6.3	5	5	5	5	1
246	1. 6	5	5	5	5	0
266	6.3	5	5	5	5	0
374	1. 6	5	5	5	5	1
3 9 7	1. 6	5	5	5	5	1 ·
406	1. 6	5	5	5	5	1
432	1.6	5	5	5	5	1
441	1.6	5	5	5	5	1
454	1. 6	5	5	5	5	1
458	1. 6	5	5	5	5	1
515	1. 6	5	5	5	5	1
5 2 4	1.6	5	5	5	5	1
618	1. 6	5	5	5	5	1
630	6. 3	4	5	5	5	1
658	1. 6	5	5	5	5	1
661	1. 6	5	5	5	5	1
665	1. 6	5	4	5	4	1
699	6. 3	5	5	5	4	1
705	1. 6	5	5	-	5	1
708	1. 6	5	5	5	5	0
比較 1	6: 3	5	5	5	5	5
	1. 6	5	5	5	5	5
· • • • • • • • • • • • • • • • • • • •	i				1	

(表66)

化合物	薬 量	除草効果.	薬害
番号	ai, g /10a	Po Am Ch Ab	Z e
比較 2	6. 3 1. 6	5 5 5 5 5 5 5 5	5 5

〈試験例7〉 畑地土壌処理による作物選択性試験

600cm²プラスチックポットに砂を充填し、ワタ(Go)、オオイヌタデ(Po)、アオビユ(Am)、シロザ(Ch)、イチビ(Ab)の各種子を播種して覆土した。翌日、製剤例1に準じて調製した水和剤の所定有効成分量(ai,g/10a)を水で希釈し、10アール当り1001を小型噴霧器で土壌表面に均一に散布した。その後、温室内で育成し、処理後21日目に表31の基準に従って除草効果及び薬害を調査した。試験結果を表67~表69に示す。なお、-は未試験を表す。

WO 97/29105 PCT/JP97/00320 118

(表67)

化合物	薬 量	ß.	余 草	効り	R	薬害
	ai, g					
番号	/10a	Ро	Am	Ch	Αb	Go
3	1. 6	5	5	5	5	0
7	1. 6	5	5	5	4	0
10	1. 6	5	5	5	5	1
15	1.6	5	5	5	5	1
3 0	1.6	5	5	5	5	0
3 1	1.6	5	5	5	5	0
3 3	1. 6	5	5	5	5	1
4 3	1.6	5	5	5	5	1
70	1. 6	5	5	5	5	0
7 1	1. 6	5	5	5	5	0
7 2	1.6	5	5	5	5	1
111	1. 6	5	5	5	5	1
147	1. 6	5	5	5	5	1
152	1. 6	5	5	4 .	5	0
153	6. 3	5	5	5	5	0
166	6. 3	5	5	5	5	1
197	1. 6	5	5	5	5	0
201	1. 6	5	5	5	4	0
2 3 3	1. 6	5	5	5	5	1
237	6. 3	5	5	5	5	1
266	6. 3	5	5	5	5	1
272	6. 3	5	5	5	5	1
299	1.6	5	5	5	5	1
374	1. 6	5	5	5	5	1
383	1. 6	5	5	5	5	1
397	1. 6	5	5	5	5	0
398	1. 6	5	5	5	4	1
405	1. 6	5	5	5	5	1
406	1. 6	5	5	5	5	1

(表68)

化合物	薬 量	β	余 草	効:	果	薬害
·	ai, g					
番号		Ро	A m	Ch	Ab	Go
410	1. 6	5	5	5	5	1
4 1 1	1. 6	5	5	5	5	0
417	1. 6	5	5	5	5	0
4 1 8	1. 6	5	5	5	5	1
421	1. 6	5	5	5	5	1
4 2 4	1. 6	5	-	5	5	1
4 3 2	1. 6	5	5	5	5	0
4 3 5	6. 3	5	5	5	5	1
4 3 6	1. 6	5	5	5	5	0
4 4 2	6. 3	5	5	5	5	1
444	6.3	5	5	5	5	1
4 4 8	6. 3	5	5	5	5	1
454	1. 6	5	5	5	5	1
4 5 8	1.6	5	5	5	5	0
4 5 9	1.6	5	5	5	5	1
463	6.3	5	5	5	5	0
468	6.3	5	5	5	5	1
471	1.6	5	5	5	5	1
5 1 5	1.6	5	5	5	5	1
571	6.3	4	5	5	5	1
577	1.6	5	4	5	5	1
578	1.6	5	5	5	5	1
618	1.6	5	5	5	5	0
630	6.3	4	5	5	5	1
631	6.3	5	5	5	5	1
639 -	1. 6	5	5	5	5	0
655	6. 3	.5	5	5	5	0
656	1. 6	5	5	5	5	0 .
658	1. 6	5	5	5	5	0

(表69)

化合物	薬 量	\$	余草	効り	果	薬害
	ai, g					
番号	/10a	Ро	Am	Сh	Αb	Go
6 6 1	1. 6	5	5	5	5	0
665	1.6	5	4	5	4	0
666	1.6	5	5	5	5	1
667	1. 6	5	5	5	5	1
668	1. 6	5	5	5	5	0
669	1.6	5	5	5	5	1
672	6.3	5	5	5	5	1
680	1.6	5	5	_	4	1
699	6.3	5	5	5	4	1
702	6.3	5	5	5	5	1
705	1. 6	5	5	-	5	1
706	1. 6	5	5	5	5	1
707	1. 6	5	5	5	5	1
708	1. 6	5	5	5	5	0
724	1. 6	5	5	5	5	1
比較 1	6. 3	5	5	5	5	5
	1. 6	5	5	5	5	5
比較 2	6. 3	5	5	5	5	5
	1.6	5	5	5	5	5

〈試験例8〉 畑地茎葉処理による作物選択性試験

600cm²プラスチックポットに砂を充填し、イネ(Or)、オオイヌタデ(Po)、アオビユ(Am)、シロザ(Ch)、イチビ(Ab)の各種子を播種し、温室内で2週間育成後、製剤例1に準じて調製した水和剤の所定有効成分量(ai,g/10a)を水で希釈し、10アール当り1001を小型噴霧器で植物体の上方から全体に茎葉散布処理した。その後、温室内で育成し、処理14日目に表31の基準に従って、除草効果及び薬害を調査した。その結果を表70に示す。

(表70)

化合物	薬 量	F	余 草	効!	 果	薬害
	ai, g					
番号	/10a	Ро	A m	Сh	Αb	Or
6	1. 6	5	5	5	5	1
1 0	1. 6	5	5	5	5	1
1 2	0.4	5	5	5	5	1
3 3	1.6	5	5	5	5	1
44	0.4	4	5	5	5	0
7 2	1. 6	5	5	5	5	1
7 8	0.4	5	5	5	5	1
111	0.4	5	5	5	5	1
207	0.4	5	5	5	5	1
228	1. 6	5	5	5	5	1
比較 1	1. 6	5	5	5	5	5
	0.4	5	5	5	5	3
比較 2	1. 6	5	5	5	5	5
	0.4	5	5	5	5	4

〈試験例9〉 畑地茎葉処理による作物選択性試験

600cm²プラスチックポットに砂を充填し、コムギ(Tr)、オオイヌタデ(Po)、アオビユ(Am)、シロザ(Ch)、イチビ(Ab)の各種子を播種し、温室内で2週間育成後、製剤例1に準じて調製した水和剤の所定有効成分量(ai, g/10a)を水で希釈し、10アール当り1001を小型噴霧器で植物体の上方から全体に茎葉散布処理した。その後、温室内で育成し、処理14日目に表31の基準に従って、除草効果及び薬害を調査した。その結果を表71~表73に示す。

PCT/JP97/00320 WO 97/29105 122

(表71)

化合物	薬 量	ß	余 草	効り	 果	楽害
	ai, g					
番号	/10a	Ро	A m	C h	Аb	Tr
1	0.4	5	5	5	5	1
3	0.4	5	5	5	5	1
4	1. 6	5	5	5	5	. 1
1 0	1. 6	5	5	5	5	1
1 2	0.4	5	5	5	5	0
1 4	0.4	5	5	5	5	1
2 2	0.4	5	5	5	5	0
3 0	1.,6	5	5	5	5	1
3 3	1. 6	5	5	5	5	1
3 5	1. 6	5	5	5	5	0
4 3	1. 6	5	5	5	5	0
4.5	1. 6	5	5	5	5	1
7 0	1. 6	5	5	5	5	1
7 4	1. 6	5	5	5	5	1
8 3	1. 6	4	5	5	4	1
9 5	1. 6	5	5	5	5	1
98	0.4	4	5	5	5	1
101	0.4	5	5	5	5	1
111	0.4	-5	5	5	5	1
143	0.4	5	5	5	5	1
152	0.4	5	5	5	5	0
153	0.4	5	5	5	5	1
207	0.4	5	5	5	5	1
2 2 2	0.4	5	5	5	5	1
272	1. 6	5	5	5	5	1
394	0.4	5	5	5	5	0
402	0.4	4	5	5	5	1
405	0.4	5	5	5	5	1
411	1. 6	4	5	5	5	1

(表72)

	I	1	A -44-	4.1		1
化合物		ļ ļ	全		果 ————	薬害
	ai, g					
番号		Ро	A m	Ch	A b ·	Tr
4 2 3	1. 6	5	5	5	5	1
4 2 4	1. 6	5	5	5	5	1
4 3 2	0.4	5	5	5	5	1
4 3 6	1. 6	5	5	5	5	1
4 3 9	0.4	5	5	4	5	1
447	1. 6	5	5	4	5	1
4 5 8	0.4	5	5	5	5	1
460	1. 6	4	5	4	5	1
462	0.4	5	5	5	5	1
463	0.4	5	5	5	4	1
464	0.4	5	5	5	5	1
467	1. 6	. 5	5	5	5	1
468	0.4	4	5	5	4	1
469	0.4	5	5	5	5	1
482	0.4	5	5	5	5	1
515	0.4	5	5	4	5	1
571	0.4	4	5	5	5	1
572	1. 6	5	5	5	5	1
584	0.4	5	5	5	5	1
591	0.4	5	5	5	5	1
592	0.4	5	5	5	5	1
605	1. 6	4	5	5	5	1
606	0.4	5	5	4	5	1
607	0.4	5	5	4	5	1
630	1.6	5	5	5	5	1
634 -	0.4	5	5	5	5	1
6 3 5	1. 6	5	5	5	5	1
643	1. 6	5	5	5	4	1
658	1.6	5	5	5	5	1

(表73)

化合物	薬量	ß	余 草	効り	R.	薬害
	ai, g					
番号	/10a	Ро	A m	Сh	Аь	Tr
669	1. 6	4	5	5	5	1
670	1. 6	5	5	5	5	· 1
671	1. 6	5	5	5	5	1
688	0.4	4	5	5	5	1
706	1. 6	4	5	5	5	1
707	0.4	5	5	5	5	0
708	0.4	5	5	5	5	1
712	0.4	5	5	5	5	1
比較 1	1. 6	5	5	5	5	5
	0.4	5	5	5	5	3
比較 2	1. 6	5	5	5	5	5
	0.4	5	5	5	5	3

〈試験例10〉 畑地茎葉処理による作物選択性試験

600cm²プラスチックポットに砂を充填し、トウモロコシ(Ze)、オオイヌタデ(Po)、アオビユ(Am)、シロザ(Ch)、イチビ(Ab)の各種子を播種し、温室内で2週間育成後、製剤例1に準じて調製した水和剤の所定有効成分量(ai、g/10a)を水で希釈し、10アール当り1001を小型噴霧器で植物体の上方から全体に茎葉散布処理した。その後、温室内で育成し、処理14日目に表31の基準に従って、除草効果及び薬害を調査した。その結果を表74~表75に示す。

(表74)

化合物	薬量	ſ	涂 草	効	果	薬害
	ai, g					
番号	/10a	Ро	A m	C h	Аb	Ze
4	0.4	5	5	5	4	1
6	1. 6	5	5	5	5	1
7	1. 6	5	5	5	5	1
2 2	0.4	5	5	5	5	0
7 0	1. 6	5	5	5	5	1
7 2	1. 6	5	5	5	5	1
7 4	1. 6	5	5	5	5	0
7 8	0.4	5	5	5	5	0
8 3	1. 6	4	5	5	4	1
9 5	1. 6	5	5	5	5	1
101	0.4	5	5	5	5	1
111	0.4	5	5	5 ·	5	1
140	1.6	5	5	5	5	1
142	0.4	5	5	5	5	1
152	0.4	5	5	5	5	1
195	1. 6	4	5	5	5	1
207	0.4	5	5	5	5	1
222	0.4	5	5	5	5	0
228	1. 6	5	5	5	5	0
265	1. 6	5	5	5	5	1
272	1. 6	5	5	5	5	0
394	0.4	5	5	5	5	1
411	1. 6	4	5	5	5	1
423	1.6	5	5	5	5	1
435	0.4	5	5	5	5 ·	1
463	0.4	5	5	5 .	4	1
464	0.4	5	5	5	5	1
468	0.4	4	5	5	4	1
482	0.4	- 5	5	5	5	1

(表75)

化合物	薬 量	F	涂 草	効!	果	薬害
	ai, g					
番号	/10a	Ро	A m	C h	Αb	· Ze
5 1 5	0.4	5	5	4	5	1
577	0.4	5	5	4	5	1
578	0.4	5	5	5	4	1
584	0.4	5	5	5	5	1
606	0.4	5	5	4	5	1
607	0.4	5	5	4	5	1
6 1 7	1. 6	5	5	5	5	1
6 2 3	0.4	5	5	5	5	1
6 3 4	0.4	5	5	5	5	1
6 3 5	1. 6	5	5	5	5	1
647	0.4	5	5	5	5	- 1
662	0.4	5	5	5	5	1
663	0.4	5	5	5	5	1
666	1. 6	5	5	5	5	1
669	1. 6	4	5	5	5	1
671	1.6	5	5	5	5	1
682	1.6	5	5	5	5	1
688	0.4	4	5	5	5	1
706	1.6	4	5	5	5	1
707	0.4	5	5	5	5	1
708	0.4	5	5	5	5	1
712	0.4	5	5	5	5	1
724	1.6	5	5	5	5	1
725	1. 6	5	5	5	5	1
比較 1	1.6	5	5	5	5	5
	0.4	5	5	5	5	4
比較 2	1. 6	5	5	5	5	5
	0.4	5	5	5	5	3

〈試験例11〉 畑地茎葉処理による作物選択性試験

600cm²プラスチックポットに砂を充填し、ダイズ(G1)、アオビュ(Am)、イチビ(Ab)の各種子を播種し、温室内で2週間育成後、製剤例1に準じて調製した水和剤の所定有効成分量(ai,g/10a)を水で希釈し、10アール当り1001を小型噴霧器で植物体の上方から全体に茎葉散布処理した。その後、温室内で育成し、処理14日目に表31の基準に従って、除草効果及び薬害を調査した。その結果を表76に示す。

(表76)

化合物	薬 量	除草効果	薬害
	ai, g	·	
番号	/10a	Am Ab	G 1
7	1. 6	5 5	1
8	1. 6	5 5	1
7 4	1. 6	5 5	0
463	0.4	5 4	1
464	0.4	5 5	1
468	0.4	5 4	1
635	0.4	5 5	1
669	0.4	4 5	1
686	0.4	5 5	1
701	1.6	5 4	1 .
7 2 6	0.4	5 5	1
比較 1	1.6	5 5·	5
	0.4	5 5	5
比較 2	1.6	5 5	5
	0.4	5 5	5

〈試験例12〉 畑地茎葉処理による作物選択性試験

600cm²プラスチックポットに砂を充填し、ワタ(Go)、オオイヌタデ(Po)、アオビユ(Am)、シロザ(Ch)、イチビ(Ab)の各種子を播種して覆土した。翌日、製剤例1に準じて調製した水和剤の所定有効成分量(ai、g/10a)を水で希釈し、10アール当り1001を小型噴霧器で土壌表面に均一に散布した。その後、温室内で育成し、処理後21日目に表31の

基準に従って除草効果及び薬害を調査した。試験結果を表77に示す。 (表77)

化合物	薬 量	F	余 草	効!	果	薬害
	ai, g	1				
番号	/10a	Ро	A m	C h	A b	Go
666	1. 6	5	5	5	5	1
比較 1	1. 6	5	5	5	5	5
比較 2	1. 6	5	5	5	5	5

請求の範囲

1. 一般式[1]

[式中、Xは水素原子又はハロゲン原子を表し、Yは水素原子、ハロゲン原子、 シアノ基、アルキル基、ハロアルキル基、アルコキシ基又はハロアルコキシ基を、 表し、R¹は水素原子、アルキル基、アミノ基又はハロアルキル基を表し、R² はアルキル基又はハロアルキル基を表し、R³は水素原子、ハロゲン原子、アル キル基又はハロアルキル基を表し、R⁴及びR⁵はそれぞれ同一又は相異なり、 水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、ハロ アルキル基、アルコキシ基、ハロアルコキシ基、アルケニルオキシ基、アルキニ ルオキシ基、アルコキシカルボニルアルコキシ基、アルキルチオ基、ハロアルキ ルチオ基、アルケニルチオ基、アルキニルチオ基、アルコキシカルボニルアルキ ルチオ基、アルキルスルホニル基、ハロアルキルスルホニル基、置換されていて もよいフェニルスルホニル基、ハロゲン原子、ヒドロキシイミノアルキル基、ヒ ドロキシイミノハロアルキル基、アルコキシイミノアルキル基、アルコキシイミ ノハロアルキル基、アルキルイミノアルキル基、置換されていてもよいフェニル イミノアルキル基、ヒドラゾノアルキル基、アルキルヒドラゾノアルキル基、置 換されていてもよいフェニルヒドラゾノアルキル基、シアノ基、(窒素原子に、 同一又は相異なる水素原子、アルキル基、アシル基、ハロアルキルカルボニル 基、アルキルスルホニル基、ハロアルキルスルホニル基、もしくは置換されてい てもよいフェニル基が置換した)カルバモイル基、置換されていてもよいフェニ ル基、置換されていてもよいベンジル基、シアノアルキル基、カルバモイルアル キル基、チオシアノアルキル基、ニトロ基、ヒドロキシアミノ基、アルキル基に より置換されていてもよいオキシラニル基、(窒素原子に、同一又は相異なる水 素原子、アルキル基、ハロアルキル基、アルケニル基、アルキニル基、シクロア

ルキル基、アルキルスルホニル基、ハロアルキルスルホニル基、置換されていて もよいフェニルスルホニル基、アシル基、ハロアルキルカルボニル基もしくは置 換されていてもよいベンゾイル基が置換した)アミノ基又は一般式

(式中、Zは酸素原子又は硫黄原子を表し、Wは基-SO-又は基-SOゥーを 表し、 R^{6} は水素原子又はアルキル基を表し、 R^{7} は水素原子、アルキル基、シ クロアルキル基、アルケニル基、アルキニル基、ハロアルキル基、アルコキシア ルキル基又はアルキルチオアルキル基を表し、あるいはR⁶及びR⁷は互いに結 合し、これらが結合している炭素原子と一緒になって3~8員(炭素)環を形成 することもできる。R®は水素原子、アルキル基、シクロアルキル基、ハロアル キル基、アルコキシカルボニルアルキル基、ヒドロキシカルボニルアルキル基、 モノアルキルカルバモイルアルキル基、ジアルキルカルバモイルアルキル基、ア シル基、アルキルスルホニル基、ハロアルキルスルホニル基、ハロアルキルカル ボニル基、モノアルキルカルバモイル基、モノアルキルチオカルバモイル基、ジ アルキルカルバモイル基、ジアルキルチオカルバモイル基又は置換されていても よいベンゾイル基を表し、R⁹は水素原子、アルキル基、シクロアルキル基、ハ ロアルキル基、アルコキシカルボニルアルキル基、ヒドロキシカルボニルアルキ ル基、モノアルキルカルバモイルアルキル基又はジアルキルカルバモイルアルキ ル基を表し、R¹⁰は水素原子、アルキル基、アシル基、アルキルスルホニル 基、ハロアルキルスルホニル基又はハロアルキルカルボニル基を表し、R11は 水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、ハロ アルキル基、アルコキシアルキル基、アルキルチオアルキル基、置換されていて もよいフェニル基、アルコキシ基、ハロアルコキシ基、置換されていてもよいべ ンジルオキシ基、置換されていてもよいフェノキシ基又は水酸基を表す。)で示 される基を表す。] で示されるベンゾフラン-7-イルウラシル誘導体。

2. 請求項1に記載のベンゾフラン-7-イルウラシル誘導体を有効成分とし

PCT/JP97/00320 WO 97/29105 131

て含有する除草剤。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/00320

	SCHOOL STALL OF COMME					
1	SSIFICATION OF SUBJECT MATTER	·				
	C16 C07D405/04, A01N43/					
According	o International Patent Classification (IPC) or to be	oth national classification and IPC				
	DS SEARCHED					
Minimum d	ocumentation searched (classification system followed	by classification symbols)				
Int.	C16 C07D405/00-405/14, 1	A01N43/48-43/62				
Documentat	on searched other than minimum documentation to th	s extent that such documents are included in a	he Galda assarbad			
		The state of the s	ne rieina scalchen			
Electronic da	ta base consulted during the international search (name	ne of data base and, where practicable, search	terms used)			
	ONLINE		ŕ			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where		Relevant to claim No.			
A	WO, 95/05079, A (FMC Corp.),	1 - 2			
	February 23, 1995 (23. 02. Claim & AU, 9474806, A	95),				
A,P	US, 5521147, A (FMC Corp.)		1 - 2			
	May 28, 1996 (28. 05. 96),	′	1 - 2			
	Claim (Family: none)					
A	TP 5=25165 A (Symitoms C	Shamiaal Garage				
*	JP, 5-25165, A (Sumitomo C February 2, 1993 (02. 02.	nemical Co., Ltd.),	1 - 2			
	Claim & US, 5169431, A & E	P, 476697, A1				
	& CA, 2051942, A					
A	JP, 6-321941, A (Sumitomo	Chamical Co. Ital				
•	November 22, 1994 (22, 11.	94).	1 - 2			
1	Claim & US, 5411935, A & E	P, 617033, A1				
	& CA, 2119047, A					
1						
Further	documents are listed in the continuation of Box C	. See patent family annex.				
	stegories of cited documents:	"T" later document published after the intere	ational filing date or priority			
to be of p	defining the general state of the art which is not considered articular relevance	the principle or theory underlying the i	tion but cited to understand			
'E" earlier do 'L" document	cument but published on or after the international filing data which may throw doubts on priority claim(s) or which it	"X" document of particular relevance: the	Inimad investiga			
uiou w e	SUBDITION IDE DEDICATION date of another citation or other	such when the document it fakes slone				
O" document means	"document of particular relevance; the claimed invention cannot be considered to involve an invention cannot be					
P document the priorit	"document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family					
Date of the ac	ual completion of the international search	Date of mailing of the international search				
	L 24, 1997 (24. 04. 97)	May 7, 1997 (07. 05				
ame and mai	ling address of the ISA/	Authorized officer				
	nese Patent Office					
acsimile No.		Telephone No.				
	210 (second sheet) (July 1992)	Telephone No.				
-	· · · · · · · · · · · · · · · · · · ·					

		- Bandaga () 101/ J1	31/00320
A. 発明の	属する分野の分類(国際特許分類(IPC))		
Int.C	C1° C07D405/04, A01N43,	/ 5 4	
B. 調査を			
	W小限資料(国際特許分類(IPC))		
Int.C	1° C07D405/00-405/14,	A01N43/48-43/62	
最小限資料以	外の資料で調査を行った分野に含まれるもの		
国際調査で使	用した電子データベース(データベースの名称	、調査に使用した用語)	
CAS	ONLINE		
C. 関連する	5と認められる文献		
引用文献の			関連する
カテゴリー* A	引用文献名 及び一部の箇所が関連する	ときは、その関連する箇所の表示	請求の範囲の番号
А	WO, 95/05079, A (FMC Corporat 23, 2月, 1995 (23.02.9	ion),特許請求の範囲, 5)	1-2
•	& AU, 9474806, A		
A, P	US, 5521147, A (FMC Corporatio 28, 5月, 1996 (28. 05. 9	n), 特許請求の範囲, 6) (ファミリーなし)	1-2
A	JP, 5-25165, A (住友化学工業株 2, 2月, 1993 (02.02.93)	式会社), 特許請求の範囲,	1-2
	& US, 5169431, A & E	P, 476697, A1	
	& CA, 2051942, A	·	
	·		
X C欄の続き	にも文献が列挙されている。	□ パテントファミリーに関する	別紙を参照。
* 引用文献の		の日の後に公表された文献	
・A」特に関連 もの	のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公司	とされた文献であって
	ではあるが、国際出願日以後に公表されたも	て出願と矛盾するものではなく 論の理解のために引用するもの	、 発明の原理又は理 ウ
Ø		「X」特に関連のある文献であって、	当該文献のみで発明
・レ」 医光性主	張に疑義を提起する文献又は他の文献の発行 は他の特別な理由を確立するために引用する	の新規性又は進歩性がないとま	けえられるもの
文献(理	由を付す)	「Y」特に関連のある文献であって、 上の文献との、当業者にとって	当談文献と他の1以 自期である組合せに
「ロ」口頭によ	る開示、使用、展示等に言及する文献	よって進歩性がないと考えられ	しるもの
	日前で、かつ優先権の主張の基礎となる出願	「&」同一パテントファミリー文献	
国際調査を完了	した日 24.04.97	国際調査報告の発送日 07.05	.97
国際調査機関の	名称及びあて先	施佐库在水管 / 4689 0 4 4 4 4 4 4	
日本国	特許庁(ISA/JP)	特許庁審査官(権限のある職員) 高 原 慎 太 郎	4C 9053
郵	便番号100		33
果 从都	千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	内線 3453

		BALLER TO I CI/ JF 3	
(続き).	関連すると認められる文献		
用文献の			関連する
テゴリー*	引用文献名 及び一部の箇所が関連するときは、	その関連する箇所の表示	請求の範囲の番号
A	JP, 6-321941, A (住友化学工業株式会社) 22, 11月, 1994 (22, 11, 94) & US, 5411935, A & EP, 617 & CA, 2119047, A		1-2
	-		