1. Suma e intersección de variedades lineales

- 1.1 Sigui L un subconjunt de \mathbb{P}^n . Proveu: L és varietat lineal si i només si L conté la recta $P \vee Q$ per qualsevol parell de punts diferents $P, Q \in L$.
- 1.2 Siguin L i L' dues varietats lineals no buides de \mathbb{P}^n . Proveu que $L \vee L'$ és la reunió dels conjunts de la forma $P \vee P'$, amb $P \in L$, $P' \in L'$.
- 1.3 Siguin V i W varietats lineals suplementàries de \mathbb{P}^n ($V \vee W = \mathbb{P}^n$, $V \cap W = \emptyset$). Demostreu que per qualsevol punt $p \notin V \cup W$, existeix una única recta que passa per p i talla V i W.
- 1.4 Donades 4 varietats lineals L_1, L_2, L_3, L_4 de la mateixa dimensió, dues a dues disjuntes, en un espai projectiu, demostreu que

$$\dim(L_1 \vee L_2) \cap (L_3 \vee L_4) = \dim(L_1 \vee L_3) \cap (L_2 \vee L_4) = \dim(L_1 \vee L_4) \cap (L_2 \vee L_3).$$

1.5 En un espai projectiu es consideren varietats lineals A, B, C. Demostreu:

$$dimA \cap (B \vee C) + dimB \cap C = dimB \cap (A \vee C) + dimA \cap C.$$

- 1.6 Es consideren en un espai projectiu \mathbb{P}^n de dimensió n tres rectes L_1, L_2, L_3 disjuntes dues a dues. Demostreu que
 - (i) dim $L_1 \vee L_2 \vee L_3 = 5$ si i només si no existeix cap recta L tal que $L \cap L_i \neq \emptyset$, i = 1, 2, 3.
 - (ii) dim $L_1 \vee L_2 \vee L_3 = 4$ si i només si existeix una única recta L tal que $L \cap L_i \neq \emptyset$, i = 1, 2, 3.
 - (iii) dim $L_1 \vee L_2 \vee L_3 = 3$ si i només si existeixen al menys dues rectes L tals que $L \cap L_i \neq \emptyset$, i = 1, 2, 3.
- 1.7 Siguin l_1, l_2, l_3 tres rectes disjuntes dues a dues d'un espai projectiu tals que $l_1 \cap (l_2 \vee l_3) = \{p_1\}$.
 - (i) Demostreu que $l_2 \cap (l_3 \vee l_1) = \{p_2\}$ i $l_3 \cap (l_1 \vee l_2) = \{p_3\}$.
 - (ii) Demostreu que els punts p_1 , p_2 i p_3 estan alineats.
- 1.8 Sean ℓ_1, ℓ_2, ℓ_3 tres rectas de un espacio proyectivo, cada una disjunta con la variedad generada por las otras dos. Se toman puntos $x_i \in \ell_i$, i = 1, 2, 3, y $\pi = x_1 \vee x_2 \vee x_3$. Calcular las dimensiones de $\ell_1 \vee \ell_2 \vee \ell_3$ y $\ell_1 \vee \ell_2 \vee \pi$.
- 1.9 Sean L_1, L_2, L_3, L_4 rectas de un espacio proyectivo \mathbb{P} de dimensión 6. Demostrar que existe un plano π en \mathbb{P} que corta a todas ellas.
- 1.10 En un espai projectiu es donen rectes l_1, l_2 i un pla π tals que dim $l_1 \cap l_2 = 0$, dim $l_2 \cap \pi = 0$ i $l_1 \cap \pi = \emptyset$. Trobeu la dimensió de la varietat lineal $V = l_1 \vee l_2 \vee \pi$ que generen.
- 1.11 En un espai projectiu \mathbb{P}^4 de dimensió 4 considerem dos plans π_1, π_2 que es tallen en un punt P. Considerem també una recta r per P que no està continguda ni en π_1 ni en π_2 . Demostreu que existeix un únic pla π que passa per r i tal que $\pi \cap \pi_i$, i = 1, 2, són rectes.
- 1.12 Es consideren en un espai projectiu \mathbb{P}^5 , dos plans π_1, π_2 disjunts, dos punts $p_1 \in \pi_1, p_2 \in \pi_2$ i $\ell = p_1 \vee p_2$.

- (i) Demostreu que $(\pi_1 \vee \ell) \cap (\pi_2 \vee \ell) = \ell$.
- (ii) Prenem $p_1' \in \pi_1, p_1' \neq p_1, p_2' \in \pi_2, p_2' \neq p_2$ i $\ell' = p_1' \vee p_2'$. Demostreu que $\ell \cap \ell' = \emptyset$.
- 1.13 Donats tres plans π_1 , π_2 , π_3 de \mathbb{P}^n que es tallen dos a dos en tres punts no alineats, proveu que existeix un únic pla π que talla π_1 , π_2 i π_3 en rectes.
- 1.14 Sigui \mathbb{P} un espai projectiu que conté tres plans π_1, π_2, π_3 de manera que $\mathbb{P} = \pi_1 \vee \pi_2 \vee \pi_3$ i no existeix cap recta que talli simultàniament a π_1, π_2, π_3 . Calculeu la dimensió de \mathbb{P} .
- 1.15 Siguin \mathbb{P}^4 un espai projectiu de dimensió 4 i Π_1, Π_2, Π_3 plans de \mathbb{P}^4 . Demostreu que si la dimensió de $\Pi_i \vee \Pi_j$ és 3 per qualssevol $i \neq j$, llavors o bé $\dim(\Pi_1 \cap \Pi_2 \cap \Pi_3) = 1$ o bé $\dim(\Pi_1 \vee \Pi_2 \vee \Pi_3) = 3$.
- 1.16 En un espai projectiu es consideren plans π_1, π_2, π_3 tals que $\pi_1 \cap \pi_2 \cap \pi_3 = \emptyset$, dim $\pi_1 \cap \pi_2 = 1$, dim $\pi_1 \cap \pi_3 = 0$ i dim $\pi_2 \cap \pi_3 = 0$. Calculeu dim $\pi_1 \vee \pi_2 \vee \pi_3$.
- 1.17 Siguin π_1, π_2, π_3 tres plans d'un espai projectiu tals que π_1 i π_2 es tallen en una recta, π_2 i π_3 també es tallen en una recta, i π_1 i π_3 es tallen en un punt. Calculeu la dimensió de $\pi_1 \vee \pi_2 \vee \pi_3$.
- 1.18 Sean π_1, π_2, π_3 planos de un espacio proyectivo $\mathbb P$ de tal manera que $\dim(\pi_1 \vee \pi_2 \vee \pi_3) = 6$ y existe $p \in \pi_1 \cap \pi_2 \cap \pi_3$. Demostrar que $\pi_1 \cap \pi_2 = \pi_2 \cap \pi_3 = \pi_3 \cap \pi_1 = \{p\}$.
- 1.19 En un espai projectiu \mathbb{P}^5 de dimensió cinc es consideren tres plans π_1, π_2, π_3 de manera que $\pi_1 \vee \pi_2 \vee \pi_3 = \mathbb{P}^5$, dim $\pi_1 \cap \pi_2 = 1$, dim $\pi_1 \cap \pi_3 = 0$, i dim $\pi_2 \cap \pi_3 = 0$. Calculeu la dimensió de $\pi_1 \cap \pi_2 \cap \pi_3$.
- 1.20 Siguin V_1 , V_2 , V_3 varietats lineals de dimensió tres de \mathbb{P}^5 de manera que les tres unions $V_i \vee V_j$, $i \neq j$, són hiperplans diferents dos a dos. Calculeu la dimensió de $V_1 \cap V_2 \cap V_3$.
- 1.21 En un espacio proyectivo se dan variedades lineales V_1, V_2, V_3 de dimensión 3, tales que $\dim(V_1 \cap V_2) = \dim(V_1 \cap V_3) = \dim(V_2 \cap V_3) = 1$ y $V_1 \cap V_2 \cap V_3 = \emptyset$. Calcular la dimensión de la variedad lineal $V_1 \vee V_2 \vee V_3$ que generan.
- 1.22 Sea \mathbb{P} un espacio proyectivo, y sean $L_1, L_2, L_3 \subset \mathbb{P}$ subespacios proyectivos de la misma dimensión. Demostrar que si cada uno de ellos está contenido en la suma de los otros dos, entonces se cortan dos a dos en subespacios proyectivos de la misma dimensión. ¿Es cierta la implicación recíproca?
- 1.23 Demostreu que si una recta de \mathbb{P}^n talla en punts diferents dues cares (bidimensionals) d'un tetràedre de vèrtexs $p_0, p_1, p_2, p_3 \in \mathbb{P}^n$, llavors les talla totes.
- 1.24 Sean A, B variedades lineales suplementarias en un espacio proyectivo \mathbb{P}^n . Sea H un hiperplano de \mathbb{P}^n . Considerando H como un espacio proyectivo, demostrar que las variedades lineales $A' = H \cap A$, $B' = H \cap B$ de H son suplementarias en H si, y solamente si, $A \subset H$ o $B \subset H$.
- 1.25 Demostreu que punts P_0, \ldots, P_m diferents d'un espai projectiu de dimensió n són linealment independents si i només si per a qualssevol $i \neq j$ la recta $P_i \vee P_j$ és disjunta amb la varietat generada pels altres punts.

_

1.26 I) Sean A, B, C subespacios de dimensión 0 correspondientes a tres puntos distintos, alineados en un espacio proyectivo P. Demostrar que son falsas las siguientes inclusiones entre subespacios de P:

$$(A \cap B) \vee (A \cap C) \subset A \cap (B \vee C)$$
$$A \vee (B \cap C) \subset (A \vee B) \cap (A \vee C)$$

- II) Sean A, B, C subespacios de un espacio proyectivo P. Demostrar que son iguales los cinco subespacios siguientes de P:
- i) $(A\cap (B\vee C))\vee (B\cap (C\vee A))\vee (C\cap (A\vee B))$
- ii) $(A \vee B) \cap (B \vee C) \cap (C \vee A)$
- iii) $(A \cap (B \vee C)) \vee (B \cap (C \vee A))$
- iv) $(A \cap (B \vee C)) \vee (C \cap (A \vee B))$
- v) $(B \cap (C \vee A)) \vee (C \cap (A \vee B))$
- 1.27 Sean L_1, L_2, L_3 variedades lineales de un espacio \mathbb{P}_n .
 - a) Demostrar que se cumple $((L_1 \cap L_2) \vee (L_2 \cap L_3)) \cap (L_3 \cap L_1) = L_1 \cap L_2 \cap L_3$.
 - b) Expresar $\dim(L_1 \cap L_2) \vee (L_2 \cap L_3) \vee (L_3 \cap L_1)$ en función de $\dim L_1 \cap L_2$, $\dim L_2 \cap L_3$, $\dim L_3 \cap L_1$ y $\dim L_1 \cap L_2 \cap L_3$.

_