*第九节

二元函数的泰勒公式

- 一、二元函数泰勒公式
- 二、极值充分条件的证明

$$f''(x,y) = \int_{x}^{x+y^{2}} \frac{1}{(x^{2}+y^{2})^{2}} \frac$$

$$(2)u = \cos(x+y) + \sin(xy)$$

17. 设二元函数 z=z(x,y) 由方程 $z+e^z=xy$ 所确定,求 $\frac{\partial^2 z}{\partial x \partial y}$. $F_x = -y$, $F_z = 1 + e^z$ $\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{y}{1+e^z},$ $\frac{\partial \overline{z}}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{y}{1 + e^{\overline{z}}} \right) = \frac{1}{1 + e^{\overline{z}}}$

15. 设于具有二阶连续偏导数,
$$z = f(\frac{y}{x}, x^{2}y)$$
,求 z 的各种二阶偏导数.

$$\frac{d^{2}z}{dx^{2}} = \frac{d}{dx} \left(\frac{dz}{dx}\right), \frac{dz}{dx} = \frac{df}{d(\frac{y}{x})} \cdot \left(\frac{y}{x^{2}}\right) = + \frac{1}{2}x^{2}y \cdot \frac{$$

*第九节

二元函数的泰勒公式

- 一、二元函数泰勒公式
- 二、极值充分条件的证明

记号(设下面涉及的偏导数连续):

•
$$(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y})f(x_0, y_0)$$
 表示 $hf_x(x_0, y_0) + kf_y(x_0, y_0)$

•
$$(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y})^2 f(x_0, y_0)$$
表示
$$h^2 f_{xx}(x_0, y_0) + 2hk f_{xy}(x_0, y_0) + k^2 f_{yy}(x_0, y_0)$$

• 一般地,
$$(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y})^m f(x_0, y_0)$$
 表示

$$\sum_{p=0}^{m} C_{m}^{p} h^{p} k^{m-p} \frac{\partial^{m} f}{\partial x^{p} \partial y^{m-p}} \Big|_{(x_{0}, y_{0})}$$

定理1. 设 z = f(x, y) 在 点 (x_0, y_0) 的某一邻域内有直到 n+1 阶连续偏导数, (x_0+h, y_0+k) 为此邻域内任一点,则有

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + (h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y})f(x_0, y_0)$$

$$+ \frac{1}{2!}(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y})^2 f(x_0, y_0) + \cdots$$

$$+ \frac{1}{n!}(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y})^n f(x_0, y_0) + R_n \qquad \text{1}$$

其中
$$R_n = \frac{1}{(n+1)!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^{n+1} f(x_0 + \theta h, y_0 + \theta k)$$
 ②
$$(0 < \theta < 1)$$

① 称为f 在点 (x_0, y_0) 的 n 阶泰勒公式,②称为其拉格 朗日型余项.

说明:

(1) 余项估计式. 因 f 的各 n+1 阶偏导数连续, 在某闭

邻域其绝对值必有上界
$$M$$
, $\Leftrightarrow \rho = \sqrt{h^2 + k^2}$,则有

$$|R_n| \le \frac{M}{(n+1)!} (|h| + |k|)^{n+1} \quad \begin{pmatrix} h = \rho \cos \alpha \\ k = \rho \sin \alpha \end{pmatrix}$$

$$= \frac{M}{(n+1)!} \rho^{n+1} (|\cos \alpha| + |\sin \alpha|)^{n+1}$$

$$|\pi| = \max_{[0,1]} (x + \sqrt{1 - x^2}) = \sqrt{2}$$

$$\leq \frac{M}{(n+1)!} (\sqrt{2})^{n+1} \rho^{n+1} = o(\rho^n)$$

(2) 当 n = 0 时, 得二元函数的拉格朗日中值公式:

$$f(x_0 + h, y_0 + k) - f(x_0, y_0)$$

$$= h f_x(x_0 + \theta h, y_0 + \theta k) + k f_y(x_0 + \theta h, y_0 + \theta k)$$

$$(0 < \theta < 1)$$

(3) 若函数 z = f(x, y) 在区域D 上的两个一阶偏导数恒为零,由中值公式可知在该区域上 $f(x, y) \equiv 常数.$

例1. 求函数 $f(x, y) = \ln(1 + x + y)$ 在点(0,0) 的三阶泰勒公式.

AP:
$$f_x(x, y) = f_y(x, y) = \frac{1}{1 + x + y}$$

 $f_{xx}(x, y) = f_{xy}(x, y) = f_{yy}(x, y) = \frac{-1}{(1 + x + y)^2}$
 $\frac{\partial^3 f}{\partial x^p \partial y^{3-p}} = \frac{2!}{(1 + x + y)^3}$ $(p = 0, 1, 2, 3)$
 $\frac{\partial^4 f}{\partial x^p \partial y^{4-p}} = \frac{-3!}{(1 + x + y)^4}$ $(p = 0, 1, 2, 3, 4)$

因此, $(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y})f(0,0) = hf_x(0,0) + kf_y(0,0) = h + k$

$$(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y})^{2} f(0,0)$$

$$= h^{2} f_{xx}(0,0) + 2hk f_{xy}(0,0) + k^{2} f_{yy}(0,0) = -(h+k)^{2}$$

$$(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y})^{3} f(0,0) = \sum_{p=0}^{3} C_{3}^{p} h^{p} k^{3-p} \frac{\partial^{3} f}{\partial x^{p} \partial y^{3-p}} \Big|_{(0,0)}$$

$$= 2(h+k)^{3}$$

$$\forall f(0,0) = 0 \quad \forall x h = x h = y f(x) \Rightarrow \text{ if } x \neq \text{ if } x$$

又
$$f(0,0) = 0$$
,将 $h = x$, $k = y$ 代入三阶泰勒公式得
$$\ln(1+x+y) = x + y - \frac{1}{2}(x+y)^2 + \frac{1}{3}(x+y)^3 + R_3$$

$$R_{3} = \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^{4} f(\theta h, \theta k) \Big|_{\substack{h = x \\ k = y}} = -\frac{1}{4} \cdot \frac{(x+y)^{4}}{(1+\theta x + \theta y)^{4}}$$

第八章

第八节 多元函数的极值及其求法

- 一、多元函数的极值
- 二、最值应用问题
- 三、条件极值

一、多元函数的极值

定义: 若函数 z = f(x,y) 在点 (x_0,y_0) 的某邻域内有 $f(x,y) \le f(x_0,y_0)$ (或 $f(x,y) \ge f(x_0,y_0)$)

则称函数在该点取得极大值(极小值). 极大值和极小值统称为极值, 使函数取得极值的点称为极值点.

例如:

$$z = 3x^2 + 4y^2$$
 在点 (0,0) 有极小值;

$$z = \sqrt{x^2 + y^2}$$
 在点 (0,0) 有极小值;

$$z = xy$$
 在点 (0,0) 无极值.

定理1 (必要条件) 函数 z = f(x, y) 在点 (x_0, y_0) 存在偏导数,且在该点取得极值,则有

$$f'_x(x_0, y_0) = 0$$
, $f'_y(x_0, y_0) = 0$

证: 因 z = f(x, y) 在点 (x_0, y_0) 取得极值,故

$$z = f(x, y_0)$$
 在 $x = x_0$ 取得极值

$$z = f(x_0, y)$$
 在 $y = y_0$ 取得极值

据一元函数极值的必要条件可知定理结论成立.

说明: 使偏导数都为 0 的点称为驻点.

但驻点不一定是极值点.

例如, z = xy有驻点(0,0), 但在该点不取极值.

定理2 (充分条件) 若函数 z = f(x, y) 在点 (x_0, y_0) 的 的某邻域内具有一阶和二阶连续偏导数, 且

$$f_x(x_0, y_0) = 0$$
, $f_y(x_0, y_0) = 0$

$$\Rightarrow A = f_{xx}(x_0, y_0), B = f_{xy}(x_0, y_0), C = f_{yy}(x_0, y_0)$$

则: 1) 当 $AC - B^2 > 0$ 时, 具有极值 $\begin{cases} A < 0 \text{ 时取极大值;} \\ A > 0 \text{ 时取极小值.} \end{cases}$

- 2) 当 $AC B^2 < 0$ 时, 没有极值.
- 3) 当 $AC B^2 = 0$ 时, 不能确定, 需另行讨论.

证: 由二元函数的泰勒公式, 并注意

$$f_x(x_0, y_0) = 0$$
, $f_y(x_0, y_0) = 0$

则有
$$\Delta z = f(x_0 + h, y_0 + k) - f(x_0, y_0)$$

$$= \frac{1}{2} [f_{xx}(x_0 + \theta h, y_0 + \theta k) h^2 + 2f_{xy}(x_0 + \theta h, y_0 + \theta k) hk + f_{yy}(x_0 + \theta h, y_0 + \theta k) k^2]$$

由于f(x,y)的二阶偏导数在点 (x_0,y_0) 连续,所以 $f_{xx}(x_0 + \theta h, y_0 + \theta k) = A + \alpha$ $f_{xy}(x_0 + \theta h, y_0 + \theta k) = B + \beta$ $f_{yy}(x_0 + \theta h, y_0 + \theta k) = C + \gamma$

其中 α , β , γ 是当 $h \rightarrow 0$, $k \rightarrow 0$ 时的无穷小量, 于是

$$\Delta z = \frac{1}{2} \left[\underline{Ah^2 + 2Bhk + Ck^2} \right] + \frac{1}{2} \left[\alpha h^2 + 2\beta hk + \gamma k^2 \right]$$
$$= \frac{1}{2} Q(h, k) + o(\rho^2) \qquad (\rho = \sqrt{h^2 + k^2})$$

因此当|h|, |k| 很小时, Δz 的正负号可由Q(h,k) 确定.

(1) 当 $AC - B^2 > 0$ 时, 必有 $A \neq 0$, 且 A = C 同号,

$$\therefore Q(h,k) = \frac{1}{A} [(Ah^2 + 2ABhk + B^2k^2) + (AC - B^2)k^2]$$
$$= \frac{1}{A} [(Ah + Bk)^2) + (AC - B^2)k^2]$$

可见,当A > 0时,Q(h,k) > 0,从而 $^{\triangle}z > 0$,因此 f(x,y) 在点 (x_0, y_0) 有极小值;

当A < 0时,Q(h,k) < 0,从而 $\triangle z < 0$, 因此 f(x,y) 在点 (x_0, y_0) 有极大值;

(2) 当 $AC - B^2 < 0$ 时, 若A, C不全为零, 无妨设 $A \neq 0$,

则
$$Q(h,k) = \frac{1}{A}[(Ah + Bk)^2) + (AC - B^2)k^2]$$

当(x,y)沿直线 $A(x-x_0)+B(y-y_0)=0$ 接近 (x_0,y_0)

时, 有Ah + Bk = 0, 故 Q(h,k)与A异号;

当(x,y)沿直线 $y-y_0=0$ 接近 (x_0,y_0) 时, 有 k=0,

故 Q(h,k) 与 A 同号.

可见 $\triangle z$ 在 (x_0, y_0) 邻近有正有负,

因此f(x,y)在点 (x_0,y_0) 无极值;

若 A = C = 0,则必有 $B \neq 0$,不妨设 B > 0,此时 $Q(h,k) = Ah^2 + 2Bhk + Ck^2 = 2Bhk$ 对点 $(x_0 + h, y_0 + k)$

当h,k同号时,Q(h,k) > 0,从而 $\Delta z > 0$, 当h,k异号时,Q(h,k) < 0,从而 $\Delta z < 0$,

可见 $\triangle z$ 在 (x_0, y_0) 邻近有正有负,

因此f(x,y)在点 (x_0,y_0) 无极值;

(3) 当 $AC - B^2 = 0$ 时,

若
$$A \neq 0$$
,则 $Q(h,k) = \frac{1}{A}(Ah + Bk)^2$ $Q(h,k)$ 可能 若 $A = 0$,则 $B = 0$, $Q(h,k) = Ck^2$ 为零或非零

此时

$$\Delta z = \frac{1}{2}Q(h,k) + o(\rho^2)$$

因为Q(h,k) = 0时, Δz 的正负号由 $o(\rho^2)$ 确定,因此不能断定 (x_0, y_0) 是否为极值点.