How Computer Work
Lecture 10

Introduction to the Physics of
Communication

How Computer Work Lecture 10 Page 1

How About English?

- 6.JQ4 ij a vondurfhl co8rse wibh sjart sthdenjs.
- If every English letter had maximum uncertainty, average information / letter would be [log₂(26)]
- Actually, English has only _____ bits of information per letter if last 8 characters are used as a predictor.
- English actually has ____ bit / character if even more info is used for prediction.

An Interesting Consequence:

 A Data Stream containing the most possible information possible (i.e. the least redundancy) has the statistics of

Max. Channel Capacity for Uniform, Bounded Amplitude Noise (cont)

P = Range of Transmitter's Signal Space

N = Peak-Peak Width of Noise

W = Bandwidth in # Symbols / Sec

C = Channel Capacity = Max. # of Error-Free Bits/Sec

C =

W log₂(P/N)

Note: This formula is slightly different for Gaussian noise.

How Computer Work Lecture 10 Page 17

Further Reading on Information Theory

The Mathematical Theory of Communication,

Claude E. Shannon and Warren Weaver, 1972, 1949.

Coding and Information Theory, Richard Hamming, Second Edition, 1986, 1980.

Transmission Line Math

Lets try a sinusoidal solution for V and I:

$$V = V_0 e^{j(\mathbf{W}_t t + \mathbf{W}_x x)} = V_0 e^{j\mathbf{W}_t t} e^{j\mathbf{W}_x x}$$

$$I = I_0 e^{j(\mathbf{W}_t t + \mathbf{W}_x x)} = I_0 e^{j\mathbf{W}_t t} e^{j\mathbf{W}_x x}$$

$$\frac{\int V}{\int x} = l \frac{\int I}{\int t}$$

$$\frac{\int V}{\int x} = c \frac{\int V}{\int t}$$

$$j \mathbf{w}_{x} V_{0} = l j \mathbf{w}_{t} I_{0}$$

$$j \mathbf{w}_{x} I_{0} = c j \mathbf{w}_{t} V_{0}$$

Series or Parallel?

- · Series:
 - No Static Power Dissipation
 - Only One Output Point
 - Slower Slew Rate if Output is Capacitively Loaded
- Parallel:
 - Static Power Dissipation
 - Many Output Points
 - Faster Slew Rate if Output is Capacitively Loaded
- Fancier Parallel Methods:
 - AC Coupled Parallel w/o static dissipation
 - Diode Termination "Automatic" impedance matching

How Computer Work Lecture 10 Page 27

When is a wire a transmission line?

$$t_{fl} = l / v$$

Rule of Thumb:

$$t_r < 2.5 t_{fl}$$

$$t_r > 5 t_{fl}$$

Transmission Line

Equipotential Line

A Typical Circuit Board

1 Ounce Copper

w = 0.15cm

t = 0.0038cm

h = 0.038cm

$$c = 1.9 pF / cm$$
 $l = 2.75 nH / cm$
 $Z_0 = 38 \Omega$
 $v = 1.4 \times 10^{-10} cm / sec$
 $(14 cm / ns)$

How Computer Work Lecture 10 Page 31

G-10 Fiberglass-Epoxy