Math 15910: Problem Set 9

Underland, Jake

2021-08-09

Contents

Exercise 1	1
Problem 3.10.25	1
Exercise 2	2
Exercise 3 Problem 3.10.2.11 (ii)	2 2
Exercise 4	2
Exercise 5	3
Bonus	3

Exercise 1

Problem 3.10.25

Suppose that a series $\sum_{n=1}^{\infty}a_n$ converges. Show that $\lim_{n\to\infty}=0.$

Proof. Since $\sum_{n=1}^{\infty} a_n$ converges, we know that it is Cauchy, and that $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that $\forall n, m > N$, the below holds:

$$|\sum_{k=m+1}^{n} a_k| < \epsilon$$

Now, let $\epsilon = \frac{\epsilon}{2}$ and n, m > N such that the above holds. Then, the above also holds for n-1, m, assuming n-1 > m > N. Thus, we have

$$\begin{split} |\sum_{k=m+1}^n a_k| < \frac{\epsilon}{2} \\ |\sum_{k=m+1}^{n-1} a_k| < \frac{\epsilon}{2} \\ \Longrightarrow |\sum_{k=m+1}^n a_k - \sum_{k=m+1}^{n-1} a_k| = |a_n| < |\sum_{k=m+1}^n a_k| + |\sum_{k=m+1}^{n-1} a_k| < \epsilon \\ |a_n| < \epsilon \end{split}$$

Thus, $\lim_{n\to\infty} = 0$.

Exercise 2

1. Prove the Comparison Test.

Proof. Since $a_n>0$ for $n\in\mathbb{N}$ and $\sum_{n=1}^\infty a_n$ converges, from the monotone criterion, we know that $(A_k)_{k\in\mathbb{N}}$ is bounded, where A_k represents the partial sum of a_n . Then, since $|b_n|\leq a_n$ for all n,

$$|B_k| = \sum_{n=1}^k |b_n| \le \sum_{n=1}^k a_n = A_n \implies (|B_k|)_{k \in \mathbb{N}} \text{ is bounded}$$

Thus, $\sum_{n=1}^{\infty} |b_n|$ converges and $\sum_{n=1}^{\infty} b_n$ does too.

2. If the series $\sum_{n=1}^{\infty} a_n$ converges to s and c is any constant, show that the series $\sum_{n=1}^{\infty} ca_n$ converges to cs.

Proof. Since c is a constant,

$$C_k = \sum_{n=1}^k ca_n = c \sum_{n=1}^k a_n = cA_k$$

Thus, $(C_k)_{k\in\mathbb{N}}=(cA_k)_{k\in\mathbb{N}}$. Since $(A_k)_{k\in\mathbb{N}}$ is a convergent sequence whose limit is zero, following the easily proven limit law of multiplication by scalar.

3. Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are infinite series. Suppose that a/n > 0 and $b_n > 0$ for $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n/b_n = c > 0$. Show that $\sum_{n=1}^{\infty} a_n$ converges iff $\sum_{n=1}^{\infty} b_n$ converges.

Proof. From $\lim_{n\to\infty} a_n/b_n = c > 0$, we have for all $\epsilon > 0$ there is $N \in \mathbb{N}$ such that for all n > N,

$$\begin{split} |\frac{a_n}{b_n} - c| < \epsilon \\ \implies -\epsilon < & \frac{a_n}{b_n} - c < \epsilon \\ \implies -\epsilon + c < & \frac{a_n}{b_n} < \epsilon + c \\ \implies b_n(-\epsilon + c) < & a_n < b_n(\epsilon + c) \end{split}$$

Thus, when b_n converges, from (2.), $b_n(\epsilon+c)$ converges, and since that bounds a_n above, a_n converges. Similarly, when a_n converges, $b_n(-\epsilon+c)$ converges and hence b_n converges.

Exercise 3

Problem 3.10.2.11 (ii)

if $p \in \mathbb{R}$ and p < 1, show that $\sum_{n=1}^{\infty} 1/n^p$ diverges.

Proof. When p=1, we have the harmonic series. We also have that $1/n < 1/n^p$ for all n when p < 1. The harmonic series diverges, and from the comparison test, $\sum_{n=1}^{\infty} 1/n^p$ diverges as well.

Exercise 4

Prove the alternating series test: Let (b_n) be a non-increasing sequence where $b_n \geq 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} b_n = 0$. Show that the series $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ converges.

Proof.

$$\begin{split} S_{2k} &= b_1 - b_2 + b_3 - b_4 ... b_{2k-1} - b_{2k} \\ &= (b_1 - b_2) + (b_3 - b_4) ... + (b_{2k-1} - b_{2k}) \end{split}$$

2

Since b_n is nondecreasing, all $(b_n-b_{n+1})\geq 0$, and thus $(S_{2k})_{k\in\mathbb{N}}$ is non-decreasing. Since $\lim_{n\to\infty}b_n=0$,

$$\lim_{k \to \infty} b_{2k-1} - b_{2k} = 0 - 0 = 0$$

So $(S_{2k})_{k\in\mathbb{N}}$ is bounded above.

From the monotone criterion, $S_{2k} \to S$ for some $S \in \mathbb{R}$.

$$\begin{split} S_{2k+1} &= S_{2k} + b_{2k+1} \\ \Longrightarrow \lim_{k \to \infty} S_{2k+1} &= \lim_{k \to \infty} S_{2k} + b_{2k+1} = S + 0 = S \end{split}$$

Thus, for all S_k , $\lim_{k\to\infty} S_k = S$. Because the sum of partials converges, $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ converges as well.

Exercise 5

Complete the proof that every rearrangement of the absolutely convergent series converges to the same sum.

Proof.

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^-$$

By factoring the negative sign in to the summation, we get

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n^+ + \sum_{n=1}^{\infty} -a_n^-$$

Since $a_n^- = -a_n$ for $a_n < 0$,

$$\sum_{n=1}^{\infty} -a_n^- = \sum_{a_n < 0} a_n$$

Similarly, by definition,

$$\sum a_n^+ = \sum_{n \ge 0} a_n$$

Since all three sums converge, we can treat them as finite sums and reorder them. From here, we have

$$\sum_{a_n \geq 0} a_n + \sum_{a_n < 0} a_n$$
$$= \sum_{n=1}^{\infty} a_n$$

And thus,

$$\sum_{n=1}^\infty a_n = \sum_{n=1}^\infty a_n^+ - \sum_{n=1}^\infty a_n^-$$

Bonus

Show that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2$

$$S_{2k} = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} \dots + \frac{1}{2k-1} - \frac{1}{2k}$$

$$\begin{split} &=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}...+\frac{1}{2k-1}+\frac{1}{2k}-2(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{2k-1}+\frac{1}{2k})\\ &=\frac{1}{k+1}+\frac{1}{k+2}+...+\frac{1}{2k}\\ &=\sum_{n=k+1}^{2k}\frac{1}{n} \end{split}$$

Then,

$$\int_{n=2k}^{4k} \frac{1}{n} < \sum_{n=k+1}^{2k} \frac{1}{n} < \int_{n=k+1}^{2k+2} \frac{1}{n}$$

which evaluates to ln2?

Or, you could just say $\sum_{n=k+1}^{2k} \frac{1}{n} = \sum_{n=k+1}^{2k} \frac{k}{n} \frac{1}{k}$ and use the Riemann sum to conclude

$$\int_{1}^{2} \frac{1}{x} dx = [\ln x]_{1}^{2} = \ln 2$$