数学试题 (五)参考答案

1-4.BADC

5-8.DCDD

9 AC

10.BD

11.ACD

12. $\sqrt{3}$

13.1

 $14.\frac{\pi}{4}$ $\frac{\sqrt{6}}{3}$

15.【详解】(1) 因为向量 $\vec{m} = (2b, \sqrt{3})$, $\vec{n} = (c, \sin C)$, 且 $\vec{m} / / \vec{n}$,

所以 $2b\sin C = \sqrt{3}c$,由正弦定理可得 $2\sin B\sin C = \sqrt{3}\sin C$,因为 $\sin C > 0$,

所以
$$\sin B = \frac{\sqrt{3}}{2}$$
 , 又 $B \in \left(0, \frac{\pi}{2}\right)$, 所以 $B = \frac{\pi}{3}$.

(2) 因为
$$\triangle ABC$$
 的面积为 $\frac{3\sqrt{3}}{2}$, 所以 $\frac{1}{2}ac\sin B = \frac{3\sqrt{3}}{2}$, 又 $B = \frac{\pi}{3}$, $a = 3$, 所以 $c = 2$,

所以 BM = 1,在 $\triangle BCM$ 中 $CM^2 = BC^2 + BM^2 - 2BM \cdot BC \cos B = 3^2 + 1^2 - 2 \times 3 \times 1 \times \frac{1}{2} = 7$,所以

 $CM = \sqrt{7}$.

16. 【详解】(1) 因为G是 ΔABC 的重心,

所以 $\overrightarrow{AG} = \frac{2}{3} \times \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right) = \frac{1}{3} \overrightarrow{AB} + \frac{1}{3} \overrightarrow{AC}$, 因为 $\overrightarrow{AB} = x \overrightarrow{AM}$, $\overrightarrow{AC} = y \overrightarrow{AN}$, 所以 $\overrightarrow{AG} = \frac{1}{3} x \overrightarrow{AM} + \frac{1}{3} y \overrightarrow{AN}$, 因为 $\overrightarrow{AG} = y \overrightarrow{AN}$, 所以 $\overrightarrow{AG} = \frac{1}{3} x \overrightarrow{AM} + \frac{1}{3} y \overrightarrow{AN}$, 因为 $\overrightarrow{AG} = y \overrightarrow{AN}$, 所以 $\overrightarrow{AG} = \frac{1}{3} x \overrightarrow{AM} + \frac{1}{3} y \overrightarrow{AN}$, 因为 $\overrightarrow{AG} = y \overrightarrow{AN}$, 所以 $\overrightarrow{AG} = \frac{1}{3} x \overrightarrow{AM} + \frac{1}{3} y \overrightarrow{AN}$, 因为 $\overrightarrow{AG} = y \overrightarrow{AN}$, 所以 $\overrightarrow{AG} = \frac{1}{3} x \overrightarrow{AM} + \frac{1}{3} y \overrightarrow{AN}$, 因为 $\overrightarrow{AG} = y \overrightarrow{AN}$, 所以 $\overrightarrow{AG} = y \overrightarrow{AN}$, $\overrightarrow{AG} = y$

(2) 由(1)得,x+y=3(x,y>0),则 x+y=3,

所以
$$\left(\frac{2}{x} + \frac{1}{y}\right) = \frac{1}{3} \left(\frac{2}{x} + \frac{1}{y}\right) (x + y) = \frac{1}{3} \left(3 + \frac{2y}{x} + \frac{x}{y}\right) \ge \frac{3 + 2\sqrt{2}}{3}$$
, 当且仅当 $2y^2 = x^2$ 且 $x + y = 3$,即

$$x = 3(2-\sqrt{2}), y = 3(\sqrt{2}-1)$$
,所以 $\frac{2}{x} + \frac{1}{y}$ 的最小值为 $\frac{3+2\sqrt{2}}{3}$,此时 $x = 3(2-\sqrt{2}), y = 3(\sqrt{2}-1)$.

17. 【解】(1) 如图,点G为BC的中点,连接EG,GB₁,

由 E 为 AC 中点,则 EG//AB,又 $AB//A_1B_1$,所以 $EG//A_1B_1$,所以 A_1,B_1,G,E 四点共面,故平面 A_1B_1E 与棱柱的截面为 A_1B_1GE .

(2) 证明: 因为在 $Rt\triangle BFC$ 与 $Rt\triangle B_1GB$ 中, $tan\angle BFC = tan\angle B_1GB = 2$,

所以 $\angle BFC = \angle B_1GB$, 又 $\angle BFC + \angle FBC = 90^{\circ}$, 所以 $\angle B_1GB + \angle FBC = 90^{\circ}$, 所以 $BF \perp B_1G$,

 $BF \perp B_1E$, 且 $B_1G \cap B_1E = B_1$, B_1G , $B_1E \subset \text{平面 } A_1B_1GE$, 所以 $BF \perp \text{平面 } A_1B_1GE$, 即 $BF \perp \text{平面 } A_1B_1E$;

(3) 由 (2) 知 $BF \perp$ 平面 AB_1GE ,又 $EG \subset$ 平面 AB_1GE ,所以 $EG \perp BF$,又 $EG/\!\!/ AB$, $AB \perp B_1B$,

所以 $EG \perp B_1B$, 又 $BF \cap B_1B = B$, 且 $BF, B_1B \subset$ 平面 BCC_1B_1 , 所以 $EG \perp$ 平面 BCC_1B_1 ,

又 A_iB_i // EG, 所以 D 到平面 EFG 的距离等于 B_i 到平面 EFG 的距离,

所以三棱锥 D-EFG 的体积为定值 $\frac{1}{2}$. $\triangle EFG$ 中, $EG \perp FG, EG = 1, FG = \sqrt{2}$,

所以
$$S_{\triangle EFG} = \frac{1}{2} \times 1 \times \sqrt{2} = \frac{\sqrt{2}}{2}$$
,由 $V_{D-EFG} = \frac{1}{3} \cdot S_{\triangle EFG} \cdot h = \frac{1}{2}$,可得 $h = \frac{3\sqrt{2}}{2}$,

所以点 D 到平面 EFG 的距离为 $\frac{3\sqrt{2}}{2}$.

18. (1) 解: 因为向量
$$\vec{a} = \left(\sin\left(x + \frac{\pi}{3}\right), \sin^2 x\right), \ \vec{b} = \left(\sin x, -1\right),$$

$$\text{If } f(x) = \vec{a} \cdot \vec{b} + \frac{1}{4} = \sin x \sin \left(x + \frac{\pi}{3} \right) - \sin^2 x + \frac{1}{4} = \sin x \left(\frac{1}{2} \sin x + \frac{\sqrt{3}}{2} \cos x \right) - \sin^2 x + \frac{1}{4} = \sin x \sin \left(x + \frac{\pi}{3} \right) - \sin^2 x + \frac{\pi}{4} = \sin x \sin \left(x + \frac{\pi}{3} \right) - \sin^2 x + \frac{\pi}{4} = \sin x \sin \left(x + \frac{\pi}{3} \right) - \sin^2 x + \frac{\pi}{4} = \sin x \cos x + \frac{\pi}{2} \cos x + \frac{\pi}{2} \cos x + \frac{\pi}{4} = \sin x \cos x + \frac{\pi}{4} = \sin x$$

$$=\frac{\sqrt{3}}{2}\sin x\cos x - \frac{1}{2}\sin^2 x + \frac{1}{4} = \frac{\sqrt{3}}{4}\sin 2x - \frac{1-\cos 2x}{4} + \frac{1}{4} = \frac{\sqrt{3}}{4}\sin 2x + \frac{1}{4}\cos 2x = \frac{1}{2}\sin\left(2x + \frac{\pi}{6}\right).$$

(2) 解: 因为
$$f\left(\frac{\theta}{4}\right) = \frac{1}{2}\sin\left(\frac{\theta}{2} + \frac{\pi}{6}\right) = \frac{\sqrt{5}}{10}$$
,所以, $\sin\left(\frac{\theta}{2} + \frac{\pi}{6}\right) = \frac{\sqrt{5}}{5}$,

因为
$$\theta \in \left(\frac{7}{6}\pi, \frac{5}{3}\pi\right)$$
, 则 $\frac{3\pi}{4} < \frac{\theta}{2} + \frac{\pi}{6} < \pi$,

所以,
$$\cos\left(\frac{\theta}{2} + \frac{\pi}{6}\right) = -\sqrt{1 - \sin^2\left(\frac{\theta}{2} + \frac{\pi}{6}\right)} = -\sqrt{1 - \left(\frac{\sqrt{5}}{5}\right)^2} = -\frac{2\sqrt{5}}{5}$$

由二倍角公式可得
$$\sin\left(\theta + \frac{\pi}{3}\right) = 2\sin\left(\frac{\theta}{2} + \frac{\pi}{6}\right)\cos\left(\frac{\theta}{2} + \frac{\pi}{6}\right) = 2 \times \frac{\sqrt{5}}{5} \times \left(-\frac{2\sqrt{5}}{5}\right) = -\frac{4}{5}$$
,

$$\cos\left(\theta + \frac{\pi}{3}\right) = 1 - 2\sin^{2}\left(\frac{\theta}{2} + \frac{\pi}{6}\right) = 1 - 2 \times \left(\frac{\sqrt{5}}{5}\right)^{2} = \frac{3}{5}.$$

所以,
$$\sin \theta = \sin \left(\theta + \frac{\pi}{3} - \frac{\pi}{3}\right) = \frac{1}{2} \sin \left(\theta + \frac{\pi}{3}\right) - \frac{\sqrt{3}}{2} \cos \left(\theta + \frac{\pi}{3}\right) = \frac{1}{2} \times \left(-\frac{4}{5}\right) - \frac{\sqrt{3}}{2} \times \frac{3}{5} = -\frac{4 + 3\sqrt{3}}{10}$$
.

19. 【解】(1) 在直三棱柱 $ABC - A_1B_1C_1$ 中, $AA_1 \perp$ 平面 ABC, $AC,AB \subset$ 平面 ABC,

则
$$AA_1 \perp AC$$
 , $AA_1 \perp AB$, 所以点 A 的曲率为 $2\pi - 2 \times \frac{\pi}{2} - \angle BAC = \frac{2\pi}{3}$,

所以 $\angle BAC = \frac{\pi}{3}$. 因为AB = AC,所以 $\triangle ABC$ 为正三角形. 因为N为AB的中点,所以 $CN \perp AB$. 又 $AA_1 \perp$ 平面ABC, $CN \subset$ 平面ABC,所以 $AA_1 \perp CN$,

因为 $AA_1 \cap AB = A$, $AA_1 \setminus AB \subset \text{平面 } ABB_1A_1$, 所以 $CN \perp \text{平面 } ABB_1A_1$.

(2) 取 AB_1 的中点 D, 连接 DM, DN.

因为 N 为 AB 的中点,所以 $DN //BB_1$ 且 $DN = \frac{1}{2}BB_1$.又 $CM //BB_1$ 且 $CM = \frac{1}{2}BB_1$,所以 DN //CM 且 DN = CM,

所以四边形 CNDM 为平行四边形,则 DM //CN . 由 (1) 知 CN \bot 平面 ABB_1A_1 ,则 DM \bot 平面 ABB_1A_1 . 又 DM \subset 平面 AMB_1 ,所以平面 AMB_1 \bot 平面 ABB_1A_1 . (3) 取 BC 的中点 F ,连接 AF ,则 AF \bot BC . 因为 BB_1 \bot 平面 ABC ,AF \subset 平面 ABC ,所以 BB_1 \bot AF ,因为 BB_1 \bigcap BC = B , BB_1 、 BC \bigcap 平面 BB_1C_1C ,所以 AF \bot 平面 BB_1C_1C . 又 B_1M \bigcap 平面 BB_1C_1C ,所以 AF \bot B_1M ,过 F 作 B_1M 的垂线,垂足为 H ,连接 AH ,

则 $B_iM \perp FH$,又 $AF \cap FH = F$, $AF \setminus FH \subset$ 平面 AFH ,所以 $B_iM \perp$ 平面 AFH ,又 $AH \subset$ 平面 AFH ,

 $AH \perp B_1M$,

所以 $\angle AHF$ 为二面角 $A-MB_1-C_1$ 的平面角的补角.

设 $B_1M \cap BC = E$, AB = 2 , 则 $AF = \sqrt{3}$, EF = 1 + 2 = 3 , $ME = 2\sqrt{2}$. 由等面积法可得 $\frac{1}{2}ME \cdot FH = \frac{1}{2}EF \cdot CM$, 则 $FH = \frac{EF \cdot CM}{ME} = \frac{3 \times 2}{2\sqrt{2}} = \frac{3}{\sqrt{2}}$, 则 $tan \angle AHF = \frac{AF}{FH} = \frac{\sqrt{6}}{3}$, 故二面角 $A - MB_1 - C_1$ 的正切值为 $-\frac{\sqrt{6}}{3}$.

