Contents

Introduction	1
Amenable Groups and Subgroups	1
Understanding Free Groups	2

Introduction

This is going to be a part of my Honors thesis independent study, focused on amenability and C*-algebras. This section of notes will be a deeper dive into group amenability. These notes will be taken from the notes my professor has prepared on group amenability, with supplementation from Volker Runde's *Lectures on Amenability* and Pierre de la Harpe's *Topics in Geometric Group Theory*.

I do not claim any of this work to be original.

Amenable Groups and Subgroups

Let G be a group, with P(G) denoting the power set.

Definition. An invariant mean on G is a set function $m : P(G) \to [0,1]$, which satisfies, for all $t \in G$ and $E, F \subseteq G$,

- (1) m(G) = 1;
- (2) $m(E \sqcup F) = M(E) + m(F);$
- (3) m(tE) = m(E).

We say G is amenable if it admits a mean.

We can also say that m is a translation-invariant probability measure on (G, P(G)).

Proposition (Amenability of Subgroups and Quotient Groups): Let G be amenable, with $H \leq G$.

- (1) H is amenable;
- (2) for $H \subseteq G$, G/H is amenable.

Proof.

(1) Let R be a right transversal for H (i.e., selecting one element of each right coset of H to make up R).

If m is a mean for G, we set

$$\lambda: \mathcal{P}(H) \rightarrow [0,1]$$

by $\lambda(E) = m(ER)$. We have

$$\lambda(H) = \mathfrak{m}(HR)$$
$$= \mathfrak{m}(G)$$
$$= 1.$$

We claim that if $E \cap F = \emptyset$, then $ER \cap FR = \emptyset$, since if we suppose toward contradiction that $ER \cap FR \neq \emptyset$, then $xr_1 = yr_2$ for some $x \in E$, $y \in F$ and $r_1, r_2 \in R$. Then, we must have $r_2r_1^{-1} = y^{-1}x \in H$,

meaning $r_1 = r_2$ and x = y, which means $E \cap F \neq \emptyset$.

Thus, we have

$$\lambda (E \sqcup F) = \mathfrak{m} ((E \sqcup F) R)$$

$$= \mathfrak{m} (ER \sqcup FR)$$

$$= \mathfrak{m} (ER) + \mathfrak{m} (FR)$$

$$= \lambda(E) + \lambda(F),$$

and

$$\lambda(sE) = m(sER)$$
$$= m(ER)$$
$$= \lambda(E).$$

(2) For the canonical projection map $\pi: G \to G/H$ defined by $\pi(t) = tH$, we define

$$\lambda: P(G/H) \rightarrow [0,1]$$

by $\lambda(E) = m(\pi^{-1}(E))$. We have

$$\lambda(G/H) = m \left(\pi^{-1}(G/H)\right)$$
$$= m(G)$$
$$= 1,$$

and

$$\begin{split} \lambda\left(\mathsf{E} \sqcup \mathsf{F}\right) &= \mathfrak{m}\left(\pi^{-1}\left(\mathsf{E} \sqcup \mathsf{F}\right)\right) \\ &= \mathfrak{m}\left(\pi^{-1}\left(\mathsf{E}\right) \sqcup \pi^{-1}\left(\mathsf{F}\right)\right) \\ &= \mathfrak{m}\left(\pi^{-1}\left(\mathsf{E}\right)\right) + \mathfrak{m}\left(\pi^{-1}\left(\mathsf{F}\right)\right) \\ &= \lambda\left(\mathsf{E}\right) + \lambda\left(\mathsf{F}\right). \end{split}$$

To show translation-invariance, we let $sH = \pi(s) \in G/H$, and $E \subseteq G/H$. Note that

$$\pi^{-1}(\pi(s) E) = s\pi^{-1}(E)$$
,

since for $r \in s\pi^{-1}(E)$, we have r = st for $\pi(t) \in E$, so $\pi(r) = \pi(st) = \pi(s)\pi(t) \in \pi(s) E$.

Additionally, if $r \in \pi^{-1}(\pi(s) E)$, then $\pi(r) \in \pi(s) E$, so $\pi(s^{-1}r) \in E$, and $s^{-1}r \in \pi^{-1}(E)$. Thus, we have

$$\lambda(\pi(s) E) = m \left(\pi^{-1}(\pi(s) E)\right)$$
$$= m \left(s\pi^{-1}(E)\right)$$
$$= m \left(\pi^{-1}(E)\right)$$
$$= \lambda(E).$$

Understanding Free Groups

In the Tarski's Theorem notes, we discussed a little bit the ramifications of the free group on two generators being paradoxical. In order to better understand free groups, we will draw information from Pierre de la Harpe's *Topics in Geometric Group Theory*.