

คู่มือ การใช้งานชุดคำสั่งสร้างแบบจำลอง สอบเทียบแบบจำลองชลศาสตร์ และ วิเคราะห์อิทธิพลสถานีสูบจ่ายน้ำ

การใช้งานชุดคำสั่งสร้างแบบจำลอง โครงข่ายท่อน้ำประปาอัตโนมัติ

ขั้นตอนการใช้งานชุดคำสั่งสร้างแบบจำลองโครงข่ายท่อ <u>น้ำประปาอัตโนมัติ</u>

ข้อมูลนำเข้า (Input Data)

- ไฟล์ข้อมูลภูมิศาสตร์เส้นท่อนามสกุล .SHP
- ไฟล์ข้อมูลภูมิศาสตร์พื้นที่เฝ้าระวังนามสกุล .SHP
- ไฟล์ข้อมูลภูมิศาสตร์มาตร U และ UZ นามสกุล .SHP

รูปที่ 1 ข้อมูลภูมิศาสตร์ที่ใช้สำหรับสร้างแบบจำลองโครงข่ายท่อน้ำประปา

- ไฟล์ข้อมูลคุณลักษณะของเส้นท่อนามสกุล .CSV ตารางที่ 1 ตัวอย่างข้อมูลคุณลักษณะของเส้นท่อ

MATL	PIPE_SIZE	EXT_SIZE	THICK	INT_COVER	INT_SIZE	ROUGH
AC	50	70	10	1	48	135
AC	100	115	10	1	93	135
AC	150	170	13	1	142	135
AC	200	227	17	1	191	135

ขั้นตอนการใช้งานชุดคำสั่งสร้างแบบจำลองโครงข่ายท่อ น้ำประปาอัตโนมัติ

ข้อมูลนำเข้า (Input Data)

- ไฟล์ข้อมูลภูมิศาสตร์มาตร DM นามสกุล .SHP
- ไฟล์ข้อมูลภูมิศาสตร์แหล่งจ่ายน้ำแบบ Reservoir และ Junction นามสกุล .SHP
- ไฟล์ข้อมูลภูมิศาสตร์ประตูน้ำ (Valve) นามสกุล .SHP

รูปที่ 2 ข้อมูลภูมิศาสตร์ที่ใช้สำหรับสร้างแบบจำลองโครงข่ายท่อน้ำประปา (ต่อ)

- ไฟล์ข้อมูลอัตราการไหลตั้งต้นของมาตร DM นามสกุล .CSV ตารางที่ 2 ตัวอย่างข้อมูลอัตราการไหลตั้งต้นของมาตร DM

DM_inlet	BaseDemand
DEFAULTFLOW	1
DM-01-01-01F	104.1165
DM-01-01-02-01F	121.2917
DM-01-01-02-02F	503.2465

ขั้นตอนการใช้งานชุดคำสั่งสร้างแบบจำลองโครงข่ายท่อ น้ำประปาอัตโนมัติ

ข้อมูลนำเข้า (Input Data)

- ไฟล์ข้อมูลรูปแบบการจ่ายน้ำของมาตร DM นามสกุล .CSV ตารางที่ 3 ตัวอย่างข้อมูลรูปแบบการจ่ายน้ำของมาตร DM

	BaseDemand	0	1	2	3	4
DEFAULTFLOW	1.0	0.7	0.6	0.6	0.6	0.6
DM-01-01-02-01F	121.2	0.7	0.7	0.7	0.7	0.7

- ไฟล์ข้อมูลรูปแบบการจ่ายแรงดันของมาตร DM นามสกุล .CSV ตารางที่ 4 ตัวอย่างข้อมูลรูปแบบการจ่ายแรงดันของมาตร DM

	0	1	2	3	4
DM-01-01-02-01P	2.138265	2.077876	2.12021	2.149857	2.393508
DM-01-01-02-02P	2.753069	2.593269	2.653013	2.68054	2.866016

- ไฟล์ข้อมูลคุณลักษณะแหล่งจ่ายน้ำแบบ Reservoir และ Junction นามสกุล .CSV ตารางที่ 5 ตัวอย่างข้อมูลคุณลักษณะแหล่งจ่ายน้ำ

MAHASAWAT	MAHASAWAT RES		MAHASAWAT	
MAIYALAP_V.C.	NODE	2420.83	MAIYALAP_V.C.	

- ไฟล์ข้อมูลรูปแบบการจ่ายน้ำแหล่งจ่ายน้ำนามสกุล .CSV ตารางที่ 6 ตัวอย่างรูปแบบการจ่ายน้ำแหล่งจ่ายน้ำ

BANGPLEE	F	20771.37	0.7	0.62	0.59	0.57
BANGPLEE	Р	14.86	0.56	0.5	0.49	0.49

- ไฟล์ข้อมูลคุณลักษณะของ Valve นามสกุล .CSV ตารางที่ 7 ข้อมูลคุณลักษณะของประตูน้ำ

1580.7	-0.090308

<u>ขั้นตอนการใช้งานชุดคำสั่งสร้างแบบจำลองโครงข่ายท่อ</u> <u>น้ำประปาอัตโนมัติ</u>

การสั่งงานชุดคำสั่งสร้างแบบจำลอง (run program command)

- เปิดไฟล์ config.py จากนั้นกรอกที่อยู่ไฟล์ข้อมูล (file directory) ลงในตัวแปรชื่อว่า DATA_DIR เช่น <u>r"C:\Users\Data for build up network model"</u> แล้วกด บันทึก

```
Directory containing all input files
DATA_DIR = r"C:\Users\Data for build up network model"

# Logging level: can be one of DEBUG, INFO, WARNING, or CRITICAL
LOG_LEVEL = "WARNING"
```

รูปที่ 3 ตัวอย่างการกรอกที่อยู่ไฟล์ข้อมูลสำหรับสร้างแบบจำลอง

- เปิดไฟล์ epanet_prep.py จากนั้นทำการกดสัญลักษณ์ ▶ เพื่อสั่งดำเนินงานตาม ชุดคำสั่งครั้งที่ 1 (*หมายเหตุ : ในการกดดำเนินการครั้งแรกจะแสดงการแจ้งเตือน เพื่อกำหนดที่อยู่ของไฟล์ชุดคำสั่งใหม่ตามเครื่องคอมพิวเตอร์)
- จากนั้นทำการคลิ๊กเมาส์บนหน้าต่าง console และกดลูกศรขึ้น จะปรากฏตำแหน่ง ของชุดคำสั่งที่ดำเนินการล่าสุด จากนั้นทำการพิมพ์เลือกลำดับขั้นตอนที่จะ ดำเนินการ ดังนี้ runfile('C:/Users/Code for build up network model/epanet_prep.py', wdir='C:/Users//Code for build up network model',args='0') (*หมายเหตุ : เนื่องจากชุดคำสั่งแบ่งออกเป็น 6 ส่วน จากขั้นที่ 0 ถึง 5 ผู้ใช้งานจำเป็นต้องกรอกเลือกขั้นตอนให้ครบตามลำดับ โดยข้อความ args='0' หมายถึง การเลือกขั้นตอนที่ 0)

```
In [1]: runfile('C:/Users/natch/Desktop/จักจักลไจเลู่บ-ตัฐกล/Interim results/01-Build up network model/Code for build up network model/epanet_prep.py', wdir='C:/Users/natch/Desktop/จักจักลไจเลู่บ-ตัฐกล/Interim results/01-Build up network model/Code for build up network model')
Usage: C:\Users\natch\Desktop\จักจักลไจเลู่บ-ตัฐกล\Interim results\01-Build up network model\Code for build up network model\epanet_prep.py step
An exception has occurred, use %tb to see the full traceback.

SystemExit: 1

In [2]: runfile('C:/Users/natch/Desktop/จักจักลไจเลูบ-ตัฐกล/Interim results/01-Build up network model/Code for build up network model/epanet_prep.py', wdir='C:/Users/natch/Desktop/จักจักลไจเลูบ-ตัฐกล/Interim results/01-Build up network model/Code for build up network model', args='0')
```

<u>รูปที่ 4 ตัวอย่างสั่งดำเนินงานตามชุดคำสั่งสร้างแบบจำลอง</u>

การใช้งานชุดคำสั่งสอบเทียบ แบบจำลองชลศาสตร์

ข้อมูลนำเข้า (Input Data)

- ไฟล์แบบจำลองโครงข่ายท่อน้ำประปา (Water Network Model) นามสกุล .INP

รูปที่ 5 แบบจำลองจากชุดคำสั่งสร้างแบบจำลองโครงข่ายท่อน้ำประปาอัตโนมัติ

- ไฟล์ข้อมูลค่าตรวจวัดอัตราการไหลของแหล่งจ่ายน้ำแบบ Reservoir นามสกุล .DAT ตารางที่ 8 ตัวอย่างข้อมูลค่าตรวจวัดอัตราการไหลของแหล่งจ่ายน้ำแบบ Reservoir

BK_032	0	12432.29
	1	12419.80
	2	12365.22
	3	12384.77
	4	12513.32

ข้อมูลนำเข้า (Input Data)

- ไฟล์ข้อมูลค่าตรวจวัดแรงดันของแหล่งจ่ายน้ำแบบ Junction นามสกุล .DAT ตารางที่ 9 ตัวอย่างข้อมูลค่าตรวจวัดแรงดันของแหล่งจ่ายน้ำแบบ Junction

KLONGTAEY	0	6.09
	1	5.99
	2	5.90

- ไฟล์ข้อมูลค่าตรวจวัดแรงดัน ณ จุดตรวจวัด นามสกุล .DAT ตารางที่ 10 ตัวอย่างข้อมูลค่าตรวจวัดแรงดัน ณ จุดตรวจวัด

P177A	0	4.26
	1	4.29

- ไฟล์ข้อมูลค่าตรวจวัดอัตราการไหลในเส้นท่อ นามสกุล .DAT ตารางที่ 11 ตัวอย่างข้อมูลค่าตรวจวัดอัตราการไหลในเส้นท่อ

UZ5601	0	1188		
	1	1072		

- ไฟล์ข้อมูลคุณลักษณะเส้นท่อ นามสกุล .XLSX ตารางที่ 12 ตัวอย่างข้อมูลคุณลักษณะเส้นท่อ

ID	Node1	Node2	Length	Diame	Rough	Minor	Status	Description	Install_	Age	Туре
				ter	ness	Loss			year		
0	1	2	0.0084	797	112	0	OPEN	ST2536	2536	29	ST
1	3	4	0.5664	997	125	0	OPEN	ST2549	2549	16	ST

ข้อมูลนำเข้า (Input Data)

- ผู้ใช้งานกำหนดชื่อไฟล์แบบจำลองหลังการสอบเทียบ นามสกุล .INP
- ผู้ใช้งานกำหนดค่าอัตราการเกิดจุดรั่วตามอายุท่อ (แนะนำให้โอกาสเกิดจุดรั่วเพิ่มขึ้น เป็น 3.5 เท่า เมื่อท่อมีอายุ 30 ปี กล่าวคือมีค่าเท่ากับ 3.5/30)
- ผู้ใช้งานกำหนดปีพุทธศักราชที่ทำการสอบเทียบแบบจำลองชลศาสตร์
- ผู้ใช้งานกำหนดจำนวนรอบการสอบเทียบแบบจำลองชลศาสตร์ (แนะนำขั้นต่ำที่ 5 รอบ)

การสั่งงานชุดคำสั่งสอบเทียบแบบจำลอง (run program command)

			9/ 1
_	ผู้ใช้งา	นทำการกรอกข้อมูลนำเช๋	ักทั้งหมดที่กล่าวข้างต้นลงในตัวแปรดังต่อไปนี้
	_	inp_initial	คือ ไฟล์แบบจำลองโครงข่ายท่อน้ำประปา
	_	inp_after_calibration	คือ ชื่อไฟล์แบบจำลองหลังการสอบเทียบ
	_	flow_res_obs	คือ ไฟล์ข้อมูลค่าตรวจวัดอัตราการไหลของ
			แหล่งจ่ายน้ำแบบ Reservoir
	-	inlet_press_obs	คือ ไฟล์ข้อมูลค่าตรวจวัดแรงดันของแหล่งจ่ายน้ำ
			แบบ Junction
	-	p_obs	คือ ไฟล์ข้อมูลค่าตรวจวัดแรงดัน ณ จุดตรวจวัด
	_	f_obs	คือ ไฟล์ข้อมูลค่าตรวจวัดอัตราการไหลในเส้นท่อ
	_	pipe	คือ ไฟล์ข้อมูลคุณลักษณะเส้นท่อ นามสกุล
	_	C_age	คือ อัตราการเกิดจุดรั่วตามอายุท่อ
	_	year_calibrate	คือ ปีพุทธศักราชที่ทำการสอบเทียบแบบจำลอง
		max_iteration	คือ จำนวนรอบการสอบเทียบแบบจำลอง

- ผู้ใช้งานทำการกดสัญลักษณ์ **โ** เพื่อสั่งดำเนินงานตามชุดคำสั่งสอบเทียบแบบจำลองชล ศาสตร์กัตโนมัติ

```
temp.py X Calibrate_New_Method_V6.py X
      import wntr
      import pandas as pd
     import numpy as np
     from scipy.optimize import minimize_scalar
     import matplotlib.pyplot as plt
     from geneticalgorithm import geneticalgorithm as ga
     #%% input data
      inp_initial
                           = './Trunkmian_c_expo1-8(EDIT_KLONGTAEY_CONECTION).inp'
                           = './t.inp'
      inp_after_calibration
     = './3res_FlowOBS.dat'
      flow_res_obs
                          = './Sources(Junction)_Pressure_Observe_data.dat'
      inlet_press_obs
                           = './junction_pressure_observe.dat'
      p_obs
                           = './link_flow_observe_for_calibrate.dat'
      f_obs
                           = './pipe_information.xlsx'
      18
      C_age
                           = 3.5/30
      year_calibrate
                           = 2565
      max_iteration
```

รูปที่ 6 การกรอกข้อมูลนำเข้าเพื่อใช้ในการสอบเทียบแบบจำลองชลศาสตร์

การใช้งานชุดคำสั่งวิเคราะห์ขอบเขต อิทธิพลสถานีสูบจ่ายน้ำ

ขั้นตอนการใช้งานชุดคำสั่งวิเคราะห์ขอบเขตอิทธิพลสถานี สูบจ่ายน้ำ

ข้อมูลนำเข้า (Input Data)

- ไฟล์แบบจำลองหลังการสอบเทียบ และ เปลี่ยนจุดจ่ายน้ำเข้าระบบเป็นประเภท Reservoir นามสกุล .INP

รูปที่ 7 แบบจำลองหลังการสอบเทียบ (พิจารณาสถานีสูบจ่ายน้ำมีนบุรี)

- ไฟล์รายชื่อจุดจ่ายน้ำเข้าพื้นที่เฝ้าระวังที่อยู่ในขอบเขตอิทธิพลของสถานีสูบจ่ายน้ำที่ พิจารณา นามสกุล .CSV

ตารางที่ 13 ตัวอย่างรายชื่อจุดจ่ายน้ำเข้าพื้นที่เฝ้าระวังที่อยู่ในขอบเขตอิทธิพล

ลำดับ	BANGPLEE	MAHASAWAT	MINBURI	
0 DM-13-06-05-01		DM-01-04-03-03	DM-07-07-02-01	
1	DM-13-06-05-02	DM-01-04-04-01	DM-07-07-03-01	
2	DM-13-06-05-03	DM-01-04-05-01	DM-07-07-04-01	
3	DM-13-07-05-03	DM-01-04-06-01	DM-07-07-04-02	

<u>ขั้นตอนการใช้งานชุดคำสั่งวิเคราะห์ขอบเขตอิทธิพลสถานี</u> <u>สูบจ่ายน้ำ</u>

<u>ข้อมูลนำเข้า (Input Data)</u>

- ไฟล์รายชื่อประตูน้ำบนท่อประธานที่ทำการปิดเพื่อกั้นขอบเขตอิทธิพลแต่ละสถานี สูบจ่ายน้ำ นามสกุล .CSV

ตารางที่ 14 ตัวอย่างรายชื่อประตูน้ำบนท่อประธานที่ทำการปิดเพื่อกั้นขอบเขตอิทธิพล

BANGPLEE	LADKRABUNG	MINBURI	SUMRONG	RATBURANA
VAL-959	VAL-959	VAL-2244	VAL-1263	VAL-699
VAL-1400	VAL-1400	VAL-2238	VAL-1155	VAL-736
VAL-1179	VAL-1179	VAL-1825	VAL-1435	VAL-1287
VAL-1052	VAL-1052	VAL-1900	VAL-1148	VAL-480
VAL-1148	VAL-1435	VAL-1823	VAL-1302	VAL-581

- ไฟล์รายชื่อประตูน้ำหน้าสถานีสูบจ่ายน้ำ นามสกุล .CSV ตารางที่ 15 ตัวอย่างรายชื่อประตูน้ำหน้าสถานีสูบจ่ายน้ำ

BANGPLEE	LADKRABUNG	MINBURI	SUMRONG
BANGPLEE LADKRABUNG		MINBURI_NIMITMAI	SUMRONG_RAMA2
		MINBURI_RAMINTRA	SUMRONG_YAIROM
		MINBURI_SUWINTHAWONG	

- กำหนดแรงดันขั้นต่ำที่ต้องการให้พื้นที่เฝ้าระวังได้รับเพื่อดำเนินกิจกรรมลดน้ำ สูญเสีย (แนะนำแรงดันขั้นต่ำที่ 10 เมตร)
- กำหนดจำนวนพื้นที่เฝ้าระวังขั้นต่ำที่จะได้รับอิทธิพลจากสถานีสูบจ่ายน้ำในการเพิ่ม แรงดันแต่ละครั้ง
- กำหนดเวลาเริ่มต้นที่ใช้ในการตัดสินใจเพิ่มแรงดันต้นทาง (แนะนำที่เวลา 23:00 น.)
- กำหนดช่วงเวลาในการดำเนินกิจกรรมลดน้ำสูญเสีย (แนะนำที่ 4 ชั่วโมง)
- กรอกรายชื่อโรงสูบในแบบจำลอง ที่ต้องการจะทำการวิเคราะห์ขอบเขตอิทธิพล

ขั้นตอนการใช้งานชุดคำสั่งวิเคราะห์ขอบเขตอิทธิพลสถานี สูบจ่ายน้ำ

การสั่งงานชุดคำสั่งชุดคำสั่งวิเคราะห์ขอบเขตอิทธิพลสถานีสูบจ่ายน้ำ (run program command)

- ผู้ใช้งานทำการกรอกข้อมูลนำเข้าทั้งหมดที่กล่าวข้างต้นลงในตัวแปรดังต่อไปนี้

- inp_initial คือ ไฟล์แบบจำลองโครงข่ายท่อน้ำประปา

- dm_influence_file คือ ไฟล์รายชื่อจุดจ่ายน้ำเข้าพื้นที่เฝ้าระวังที่อยู่ใน ขอบเขตอิทธิพลของสถานีสูบจ่ายน้ำ

- bound_pump_file คือ ไฟล์รายชื่อประตูน้ำบนท่อประธานที่ทำการปิด เพื่อกั้นขอบเขตอิทธิพล

- station_valve_file คือ ไฟล์รายชื่อประตูน้ำหน้าสถานีสูบจ่ายน้ำ

- minimum_pressure คือ แรงดันขั้นต่ำที่ต้องการให้พื้นที่เฝ้าระวังได้รับ

เพื่อดำเนินกิจกรรมลดน้ำสูญเสีย

- minimum_DMA คือ จำนวนพื้นที่เฝ้าระวังขั้นต่ำที่จะได้รับอิทธิพล

จากสถานีสูบจ่ายน้ำในการเพิ่มแรงดันแต่ละครั้ง

- decision_time คือ เวลาเริ่มต้นที่ใช้ในการตัดสินใจเพิ่มแรงดัน

- number_hours คือ ช่วงเวลาในการดำเนินกิจกรรมลดน้ำสูญเสีย

- pumping_station คือ รายชื่อโรงสูบในแบบจำลอง ที่ต้องการจะทำการ

วิเคราะห์ขอบเขตอิทธิพล

- ผู้ใช้งานทำการกดสัญลักษณ์ **โ** เพื่อสั่งดำเนินงานตามชุดคำสั่งวิเคราะห์ขอบเขตอิทธิพล สถานีสุบจ่ายน้ำอัตโนมัติ

ขั้นตอนการใช้งานชุดคำสั่งวิเคราะห์ขอบเขตอิทธิพลสถานี สูบจ่ายน้ำ

```
temp.py X Code-DMA-Influenced(test-V16).py X
          import pandas as pd
         import numpy as np
       import geopandas as gpd
import matplotlib.pyplot as plt
from matplotlib.pyplot import cm
import matplotlib.patches as mpatches
          from shapely.geometry import Point
          import pickle
          #%% input data
          inp_file
                                   = './SAMSEN.inp'
          dm_influence_file = './DM-influenced-bound.csv'
         bound_pump_file = './Bound-of-pumping-station.csv'
station_valve_file = './Open-valves-at-pumping-station.csv'
          minimum_pressure = 10
          minimum_DMA
         decision_time
                                   = '23:00'
        number_hours
                                   = 4
                                 = ['SAMSEN_DU1','SAMSEN_O1','SAMSEN_T','SAMSEN_X']
= './For_find_influenced.inp'
          pumping_station
        save_file
        max_head_reservoir = 50
```

รูปที่ 7 การกรอกข้อมูลนำเข้าเพื่อใช้ในการวิเคราะห์ขอบเขตอิทธิพลสถานีสูบจ่ายน้ำ