МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение Высшего профессионального образования «Вятский государственный университет» (ФГБОУ ВПО «ВятГУ»)

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Отчёт по лабораторной работе №1 по дисциплине «Организация памяти ЭВМ» Вариант 8

Выполнил студент группы ИВТб-31	/Седов М.Д./
Проверил преподаватель	/Мельцов В.Ю./

Задания на лабораторную работу:

- 1)Исследовать работу стеков типа LIFO и FIFO в режимах загрузки и чтения стека.
- 2)Составить подмикропрограммы операций загрузки данных в стек и извлечения из стека для заданного варианта.
- 3)Для каждого стека выполнить последовательность следующих операций:
 - запись 4-х чисел
 - чтение 2-х чисел
 - запись 2-х чисел
 - чтение 3-х чисел
 - запись пока стек не будет полон
 - чтение пока стек не будет пуст.

LIFO:

Вариант	6
LIFO	\rightarrow
BP	11
S	10

FIFO:

Вариант	6
FIFO	- ↑
BP	5
S	8

Запись и чтение для LIFO с пред-декрементом:

1. Запись числа:

- 1) Так как в стеке с пред-декрементной записью числа, указатель SP указывает на последнюю занятую ячейку, сначала данные записываются в регистр входных данных (RgDI) с входной шины (ШД), т.е. на вход CRI подается единица. В этом же такте происходит декремент значения указателя SP.
- 2) Данные записываются из входного регистра RgDI в ячейку памяти по адресу SP, с помощью подачи на вход ~WR нуля.

Подмикропрограмма записи в стек типа LIFO представлена на рисунке 1, граф-схема алгоритма записи в стек типа LIFO представлена на рисунке 2.

1				INIIGE					IMILITA				
N≗	Данные	~WR	~RD	CRI	SP+	SP-	~WR	~RD	CRI	WR+	RD+	Комментарии	
00	10101010	1	1	1	0	1						ЗаписьRgDI,dec SP	^
01	00000000	0	1	0	0	0						Запись в RAM	

Рисунок 1-подмикропрограмма записи

Рисунок 2-граф-схема алгоритма записи

2. Чтение числа:

Сначала на вход ~RD подается 0, таким образом данные находящиеся в ячейке памяти по адресу SP записываются в выходной регистр RgDO и становятся доступными на выходной шине (ШД). В этом же такте увеличивается значение указателя SP, т.е. на вход SP+ подается единица для того, чтобы SP указывал на последнюю занятую ячейку после чтения.

Подмикропрограмма чтения из стека типа LIFO представлена на рисунке 3, граф-схема алгоритма чтения из стека типа LIFO представлена на рисунке 4.

			39	типа LI	IFO .		39 типа FIFO					
N≗	Данные	~WR	~RD	CRI	SP+	SP-	~WR	~RD	CRI	WR+	RD+	Комментарии
00	00000000	1	0	0	1	0						Чтение RAM;inc SP

Рисунок 3-подмикропрограмма чтения

Рисунок 4-граф-схема алгоритма чтения

Запись и чтение для FIFO с пред-инкрементом:

- 1. Запись числа:
- 1) Во входной регистр RgDI записываются данные с входной шины при подаче на вход CRI единицы. В этом же такте инкрементируется значение указателя SPwr, т.е. на вход WR+ подается единица (выполняется инкремент перед записью в ячейку памяти).
- 2) Данные из входного регистра RgDI записываютя в ячейку памяти по адресу SPwr при подаче на вход ~WR ноля.

Подмикропрограмма записи в стек типа FIFO представлена на рисунке 5, граф-схема алгоритма записи в стек типа FIFO представлена на рисунке 6.

N≗	Данные	~wr	~RD	CRI	SP+	SP-	~WR	~RD	CRI	WR+	RD+	Комментарии
00	00100000	1	1	1	1	0						Зап.в RgDI;inc SPwr
01	00000000	0	1	0	0	0						Запись в RAM

Рисунок 5-подмикропрограмма записи

Рисунок 6-граф-схема алгоритма записи

2. Чтение числа:

- 1) Инкрементируется значение указателя SPrd при подаче на вход RD+ единицы.
- 2) Подается ноль на вход ~RD, тем самым данные, находящиеся в ячейке памяти по адресу SPrd записываются в выходной регистр RgDO и становятся доступными на выходной шине данных.

Подмикропрограмма чтения из стека типа FIFO представлена на рисунке 7, граф-схема алгоритма чтения из стека типа FIFO представлена на рисунке 8.

N≗	Данные	~WR	~RD	CRI	SP+	SP-	~WR	~RD	CRI	WR+	RD+	Комментарии	
00	00000000	1	1	0	0	1						inc SPrd	^
01	00000000	1	0	0	0	0						Запись в RgDO	

Рисунок 7-подмикропрограмма чтения

Рисунок 8-граф-схема алгоритма чтения

Функциональные схемы

На рисунке 9 представлена функциональная схема LIFO

Рисунок 9 – Функциональная схема LIFO

Экранные формы для LIFO:

Рисунок 10 -Начальная установка

Рисунок 11-Запись 4-х чисел

Рисунок 12 - Чтение 2-х чисел

Рисунок 13-Запись 2-х чисел

Рисунок 14-Чтение 3-х чисел

Рисунок 15-Запись пока стек не станет полон

Рисунок 16-Чтение пока стек не станет пуст

Экранные формы для FIFO:

Рисунок 17-Начальная установка

Рисунок 18-Запись 4-х чисел

Рисунок 19-Чтение 2-х чисел

Рисунок 20-Запись 2-х чисел

Рисунок 21-Чтение 3-х чисел

Рисунок 22-Запись пока стек не станет полон

Рисунок 23-Чтение пока стек не станет пуст

Вывод:

В ходе выполнения лабораторной работы были рассмотрены стеки типа LIFO и FIFO, разработаны подпрограммы записи и чтения для стеков типа LIFO с пред-декрементом и FIFO с пред-инкрементом. Основная особенность пред-декремента заключается в том, что перед записью в ОЗУ производится декремент указателя SP, а в операции чтения инкремент производится после считывания данных. При FIFO имеется два указателя, которые увеличиваются в одном направлении.