Particle spectrograph

Wave operator and propagator

$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	$0 \\ \frac{6\sqrt{2}}{(3+4k^2)^2 t_1}$		$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}_{+}\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	$\frac{k^2}{(1+k^2)^2 t_1}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}$ $_{lphaeta}$	$\frac{\sqrt{2}}{t_1 + k^2 t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	0	0	0	0
	1	1 ::	10				
$\sigma_{1}^{\#1}{}_{lphaeta}$	$+^{\alpha \beta}$ 0 $-$	$+\alpha\beta$ $-\frac{\sqrt{2}}{t_1+k^2t_1}$ $($	$+\alpha\beta \left \frac{i\sqrt{2}k}{t_1+k^2t_1} \right -\frac{1}{(1+t^2)^2}$	0	0	0	0

$f_{1}^{\#2}$	0	0	0	<i>i k t</i> <u>1</u> 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	$\frac{\mathbb{E}}{\mathbb{T}_2}$	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1^{\bar{-}}\alpha}^{\#1}$	0	0	0	$\frac{6}{1}$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \bar{l} kt_1
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	- <u>t1</u>	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
,	$\omega_{1}^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + ^{lphaeta}$	$f_{1+}^{#1} +^{\alpha\beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{\#2} +^{lpha}$

$\sigma_{0}^{\#1}$ $\tau_{0}^{\#1}$ $\tau_{0}^{\#2}$ $\sigma_{0}^{\#1}$	$\frac{1}{6k^2r_3} 0 0 0$	0 0 0	0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	#	$\omega_2^{"+} \alpha_\beta f_2^{"+} \alpha_\beta \omega_2^{"+} \alpha_\beta$	$+^{\alpha\beta}$ $\frac{t_1}{2}$ $-\frac{ikt_1}{\sqrt{2}}$ 0	$+^{\alpha\beta} \frac{ikt_1}{\sqrt{2}} k^2 t_1 = 0$	$\alpha \beta \chi$ 0 0 $\frac{t_1}{2}$		$\omega_{0}^{\#1}$ $f_{0}^{\#1}$ $f_{0}^{\#2}$ $\omega_{0}^{\#1}$	$6k^2r_3$ 0 0 0	0 0 0 0	0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1} +$	$\tau_{0}^{#2} +$	$\sigma_{0}^{\#1}$ †			$\omega_2^{\#1} + \alpha^{eta}$	$f_2^{\#1} + \alpha \beta$	$\omega_{2}^{#1} + ^{\alpha \beta \chi}$			$\omega_{0}^{\#1}\dagger$	$f_0^{#1}$ †	$f_{0}^{#2} +$	$\omega_{0^-}^{\#1} \dotplus$
auge generators	Multiplicities 1		4 ~	n m	8	ď				$ au_2^{\#1}{}_{\alpha\beta} \qquad \sigma_2^{\#1}{}_{\alpha\beta\chi}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1} \qquad 0$	4 k 0	$(1+2k^2)^2 t_1$	$0 \frac{\frac{2}{t_1}}{t_1}$	
Source constraints/gauge generators	SO(3) irreps	$t_0 + = 0$ $\frac{\tau + \tau_1}{\tau} = 0$; '	== 0	$\sigma_1^{\#1}\alpha := \sigma_1^{\#2}\alpha$	-#1αβ + i ν σ#2αβ O	- " · · · · · · · · · · · · · · · · · ·	constraints:		$\sigma_{2}^{\#1}$	$\sigma_{2}^{\#1} + \alpha \beta \left[\frac{2}{(1+2k^2)^2 t_1} \right] - \frac{1}{(1+2k^2)^2 t_2}$		$(1+2k^2)^2 t_1$	$\sigma_{2}^{*1} + \alpha \beta \chi$ 0	

Massive and massless spectra

Massive particle							
Pole residue: $\left -\frac{1}{r_2} > 0 \right $							
Polarisations:	1						
Square mass:	$\frac{t_1}{r_2} > 0$						
Spin:	0						
Parity:	Odd						

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$