ECS230

Summary 1

Vectors, matrices, basic facts

- A vector $x \in \mathbb{R}^n$ is a *column vector*. The corresponding row vector is x^T .
- $\mathbb{R}^{m \times n}$ is the set of real matrices with m rows and n columns. $\mathbb{C}^{m \times n}$ is the set of complex $m \times n$ matrices.
- Notation: A denotes the matrix, a_{ij} is an element of the matrix A, i.e. $a_{ij} = (A)_{ij}$. Use upper case for matrices and lower case for vectors.

Block matrices: A matrix can be represented in block form, for example

$$\left(\begin{array}{cc} A & B \\ C & D \end{array}\right)$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{m \times n}$ and $D \in \mathbb{R}^{m \times m}$. The dimensions of the blocks must be compatible.

The matrix

$$\left(\begin{array}{cc} A & B \\ 0 & D \end{array}\right)$$

is upper block triangular (it contains the zero matrix). Note that it is not upper triangular (it has elements below its main diagonal).

Transpose: $A^T \in \mathbb{R}^{n \times m}$ is the transpose of $A \in \mathbb{R}^{m \times n}$. $(A^T)_{ij} = a_{ji}$. Hermitian transpose: $A^H \in \mathbb{C}^{n \times m}$ is the hermitian transpose of $A \in \mathbb{C}^{m \times n}$. $(A^H)_{ij} = \overline{a_{ji}}$.

Symmetric matrix: $A = A^T$

 $\underline{\text{Hermitian matrix:}} \ A = A^H$

Matrix multiplication: $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{m \times p}, C = AB$. $c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}$. Note that in general $AB \neq BA$.

Dot product of vectors: $x, y \in \mathbb{R}^n$, the dot product of x and y is $x^T y = \sum_{i=1}^n x_i y_i$.

Outer product of vectors: $x, y \in \mathbb{R}^n$, the outer product of x and y is an $n \times n$ matrix of rank one. $A = xy^T$. $a_{ij} = x_iy_j$.

Transpose of a product: $(AB)^T = B^T A^T$.

Complex dot product: $x^H y = \sum_{i=1}^n \overline{x_i} y_i$. This is not symmetric: $x^H y = \overline{y^H x}$. Orthogonal matrix: $A \in \mathbb{R}^{n \times n}$, $A^T A = AA^T = I$. Unitary matrix: $A \in \mathbb{C}^{n \times n}$, $A^H A = AA^H = I$.

Matrix algebra, basic facts

In general, for matrices A, B, C, if AB = AC for $A \neq 0$, this does not imply that B = C. If AB = 0, this does not imply that either A or B is zero. Matrix inverse: $A \in \mathbb{R}^{n \times n}$, the inverse of A is A^{-1} such that $AA^{-1} = A^{-1}A = I$.

<u>Trace:</u> $\operatorname{Tr} A = \sum_i a_{ii}$. $\operatorname{Tr} (A+B) = \operatorname{Tr} A + \operatorname{Tr} B$. $\operatorname{Tr} (AB) = \operatorname{Tr} (BA)$. <u>Determinant:</u> $A \in \mathbb{R}^{n \times n}$

$$\det A = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i\sigma_i}$$

 $\det A^T=\det A,\,\det A^H=\overline{\det A},\,\det AB=\det A\det B,\,\det \alpha A=\alpha^n\det A.$ Schur complements:

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det A \det(D - CA^{-1}B)$$

 $D - CA^{-1}B$ is the Schur complement of A in $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$.

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det D \det (A - BD^{-1}C)$$

 $A - BD^{-1}C$ is the Schur complement of D in $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$.