

=> b casre  
FILE 'CASREACT' ENTERED AT 14:32:10 ON 07 JUN 2007  
USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT  
COPYRIGHT (C) 2007 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE CONTENT: 1840 - 2 Jun 2007 VOL 146 ISS 24

New CAS Information Use Policies, enter HELP USAGETERMS for details.

\*\*\*\*\*  
\*  
\* CASREACT now has more than 12 million reactions \*  
\*  
\*\*\*\*\*

Some CASREACT records are derived from the ZIC/VINITI database (1974-1999) provided by InfoChem, INPI data prior to 1986, and Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d que sta 18  
L3 STR



VAR G1=S/N/CN/AK/X/38/26/41  
REP G2=(1-4) C  
NODE ATTRIBUTES:  
DEFAULT MLEVEL IS ATOM  
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:  
RING(S) ARE ISOLATED OR EMBEDDED  
NUMBER OF NODES IS 37

STEREO ATTRIBUTES: NONE  
L5 352 SEA FILE=CASREACT SSS FUL L3 ( 2701 REACTIONS)  
L6 STR



VAR G1=S/N/CN/AK/X/38/26/41

REP G2=(1-4) C

NODE ATTRIBUTES:

CONNECT IS E2 RC AT 1  
CONNECT IS E2 RC AT 2  
CONNECT IS E2 RC AT 3  
CONNECT IS E2 RC AT 5  
DEFAULT MLEVEL IS ATOM  
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED  
NUMBER OF NODES IS 37

STEREO ATTRIBUTES: NONE

L8 24 SEA FILE=CASREACT SUB=L5 SSS FUL L6 ( 38 REACTIONS)

100.0% DONE 2701 VERIFIED

38 HIT RXNS

24 DOCS

SEARCH TIME: 00.00.01

=> d bib abs crd 18 tot

L8 ANSWER 1 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

AN 145:292716 CASREACT

TI Process for preparation of sodium isophthalic acid 5-sulfonate

IN Liu, Xusi; Sui, Fulong

PA Dongying Xuye Chemical Co., Ltd., Peop. Rep. China

SO Faming Zhanli Shenqing Gongkai Shuomingshu, 5pp.

CODEN: CNXXEV

DT Patent

LA Chinese

FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|------|-----------------|------|
|------------|------|------|-----------------|------|

PI CN---1821224 A 20060823 CN 2006-10043229 20060320

PRAI CN 2006-10043229 20060320

AB The method for preparing sodium isophthalic acid 5-sulfonate comprises sulfonating isophthalic acid with fuming sulfuric acid (molar ratio 1:1.5) at 150-200 °C for 5-10 h, neutralizing with base at 100-130 °C under stirring, centrifuging to obtain the product, recrystg. with hot water (60-100 °C) together with decolorizing agent and

oxidant (e.g. hydrogen peroxide), and recrystg. for a second time. The mother liquid after precipitating and centrifuging is extracted with toluene and acid, then neutralized with base. The yield is above 80%, and the mother liquid is recycled in a close system, and thus both pollution and cost are reduced.

## RX(1) OF 1



Na  
80%

NOTE: regioselective, fuming sulfuric acid used in stage 1, NaOH, Na<sub>2</sub>CO<sub>3</sub>, or NaHCO<sub>3</sub> used in stage 2

CON: STAGE(1) 5 - 10 hours, 150 - 220 deg C  
STAGE(2) 100 - 130 deg C; 100 deg C -> room temperature

L8 ANSWER 2 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

AN 141:424031 CASREACT

TI Preparation of sulfo-substituted aromatic carboxylic acid alkyl esters and their salts with high esterification yield

IN Ogata, Eiji; Yanase, Norio; Kitahara, Takayuki

PA Konishi Kagaku Kogyo Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 14 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

|    | PATENT NO.   | KIND | DATE     | APPLICATION NO. | DATE     |
|----|--------------|------|----------|-----------------|----------|
| PI | JP2004331527 | A    | 20041125 | 2003JP-0126844  | 20030502 |

PRAI 2003JP-0126844 20030502

AB Title compds., useful as modifiers for polyesters, are prepared by esterification of sulfo-substituted aromatic carboxylic acids with lower alcs. while precipitating the crystals of the resulting esters, optionally followed by neutralization of the crystals. Thus, sulfonation of isophthalic acid gave 5-sulfoisophthalic acid hydrate, which was refluxed in o-dichlorobenzene to remove the water, esterified with MeOH at from 90° to 30°, and adjusted to pH 7 to give di-Me 5-sodiosulfoisophthalate with 83% overall yield.

## RX(1) OF 6



NOTE: alternative prepn. shown

CON: 2 hours, 190 deg C

## RX(5) OF 6 - 2 STEPS



NOTE: 1) alternative prepn. shown  
 CON: STEP(1.1) 2 hours, 190 deg C  
 STEP(2.1) 1 hour, 90 deg C; 5 hours, 30 deg C

L8 ANSWER 3 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

AN 141:277358 CASREACT

TI Preparation of high-purity dialkyl 5-bromoisophthalates

IN Fujimoto, Masaki; Noji, Kazuaki

PA Sanko Chemical Industry Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

|      | PATENT NO.     | KIND | DATE     | APPLICATION NO. | DATE     |
|------|----------------|------|----------|-----------------|----------|
| PI   | JP2004262778   | A    | 20040924 | 2003JP-0052340  | 20030228 |
| PRAI | 2003JP-0052340 |      | 20030228 |                 |          |

AB Title compds. are prepared by cooling alc. solns. containing crude dialkyl 5-bromoisophthalates for crystallization. Thus, 5-bromoisophthalic acid (I) was brominated with Br to give a reaction mixture (I 6.2%, 5-bromoisophthalic acid 84.7%, 4-bromoisophthalic acid 0.3%, 4,5-dibromoisophthalic acid 5.2%), which was refluxed with MeOH in the presence of H<sub>2</sub>SO<sub>4</sub>, condensed, cooled, kept at room temperature for 3 h, filtered, and washed with MeOH to give di-Me 5-bromoisophthalate with purity 99.1%.

## RX(1) OF 5



CON: STAGE(1) 30 - 35 deg C; 30 - 35 deg C -> 60 deg C  
 STAGE(2) 5 hours, 60 deg C; 24 hours, 60 deg C

## RX(4) OF 5 - 2 STEPS



CON: STEP(1.1) 30 - 35 deg C; 30 - 35 deg C -> 60 deg C  
 STEP(1.2) 5 hours, 60 deg C; 24 hours, 60 deg C  
 STEP(2) 24 hours, reflux

## RX(5) OF 5 - 2 STEPS



CON: STEP(1.1) 30 - 35 deg C; 30 - 35 deg C -> 60 deg C  
 STEP(1.2) 5 hours, 60 deg C; 24 hours, 60 deg C  
 STEP(2) 24 hours, reflux

L8 ANSWER 4 OF 24 CASREACT COPYRIGHT 2007 ACS on STN  
 AN 140:16533 CASREACT  
 TI Bromination by means of sodium monobromoisoxyanurate (SMBI)  
 AU Okada, Yukihiko; Yokozawa, Masanori; Akiba, Miwa; Oishi, Kazuhiko; Okawa,  
   Kyoji; Akeboshi, Tomohiro; Kawamura, Yasuo; Inokuma, Seiichi; Nakamura,  
   Yosuke; Nishimura, Jun  
 CS Department of Chemistry, Gunma University, Kiryu, 376-8515, Japan  
 SO Organic & Biomolecular Chemistry (2003), 1(14), 2506-2511  
 CODEN: OBCRAK; ISSN: 1477-0520  
 PB Royal Society of Chemistry  
 DT Journal  
 LA English  
 AB A variety of aromatic compds. with both activating and deactivating  
   substituents were brominated with sodium monobromoisoxyanurate (I) in  
   Et<sub>2</sub>O, Et<sub>2</sub>O-MeSO<sub>3</sub>H, F<sub>3</sub>CCO<sub>2</sub>H, or H<sub>2</sub>SO<sub>4</sub>. Thus PhNO<sub>2</sub> was conveniently  
   brominated in H<sub>2</sub>SO<sub>4</sub>, C<sub>6</sub>H<sub>7</sub> was readily monobrominated in Et<sub>2</sub>O-MeSO<sub>3</sub>H, and  
   PhOH was selectively brominated at the ortho position under mild  
   conditions in refluxing Et<sub>2</sub>O. With substituents that are easily  
   protonated, F<sub>3</sub>CCO<sub>2</sub>H may be employed as solvent in the reaction with I; in  
   contrast NBS was ineffective in F<sub>3</sub>CCO<sub>2</sub>H. This renders I a superior  
   reagent relative to NBS. In addition to aroms., alkenes, ketones and esters  
   were also brominated with I. Di-Et malonate was brominated with I and  
   then subjected to a Bingel reaction with NaH to afford the desired  
   methanofullerene in reasonable yield.

RX(7) OF 47



NOTE: regioselective, green chem.-reagent  
 CON: 12 hours, room temperature -> 40 deg C

RE.CNT 24 THERE ARE 24 CITED REFERENCES AVAILABLE FOR THIS RECORD  
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 5 OF 24 CASREACT COPYRIGHT 2007 ACS on STN  
 AN 139:118987 CASREACT  
 TI Synthesis of sodium dimethyl 5-sulfoisophthalate  
 AU Li, Guo-qiang; Tang, Xu-li; Wen, Li-rong; Yu, Yong-liang  
 CS Institute of Chemical and Molecular Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, Peop. Rep. China  
 SO Jingxi Huagong (2003), 20(1), 50-52  
 CODEN: JIHUFJ; ISSN: 1003-5214  
 PB Jingxi Huagong Bianjibu  
 DT Journal  
 LA Chinese  
 AB The title compound(sodium di-Me 5-sulfoisophthalate, SIPM) was prepared from isophthalic acid (IPA), using w(SO<sub>3</sub>) = 30% oleum as sulfonating agent. By orthogonal exptl. design method, the optimum sulfonation reaction conditions were determined:n(IPA):n(SO<sub>3</sub>) = 1.00:1.15 at 185° for 4.5 h. By HPLC method, the neutralization process was controlled at pH value of 5.0. Yield of SIPM was 85.2% and the purity was w(SIPM) = 99.5%. Specifications of the product conformed with the standard of Du Pont Co.

RX(1) OF 1



NOTE: optimization study  
 CON: STAGE(1) room temperature -> 185 deg C; 4.5 hours, 185 deg C  
 STAGE(2) 4 hours, reflux; reflux -> room temperature  
 STAGE(3) neutralized

L8 ANSWER 6 OF 24 CASREACT COPYRIGHT 2007 ACS on STN  
 AN 138:271391 CASREACT  
 TI Process for the preparation of 5-aminoisophthalic acid by sequential bromination and ammonolysis of isophthalic acid.  
 IN Gelmont, Mark  
 PA Bromine Compounds Ltd., Israel

SO Israeli, 15 pp.

CODEN: ISXXAQ

DT Patent

LA English

FAN.CNT 1

|      | PATENT NO.     | KIND | DATE     | APPLICATION NO. | DATE     |
|------|----------------|------|----------|-----------------|----------|
| PI   | IL---118972    | A    | 20000928 | 1996IL-0118972  | 19960729 |
| PRAI | 1996IL-0118972 |      |          |                 |          |

AB 5-Aminoisophthalic acid was prepared by sequential bromination and ammonolysis of isophthalic acid. Thus, isophthalic acid in 65% oleum at 103-106° was treated dropwise with Br<sub>2</sub> over 4 h; heating and stirring were continued for 2 h to give a crude precipitate comprising 51% crude 5-bromoisophthalic acid and 49% oleum. This was autoclaved with NH<sub>3</sub> and cat. CuSO<sub>4</sub>.5H<sub>2</sub>O at 140° for 3 h to give 77% 5-aminoisophthalic acid.

RX(1) OF 3



CON: STAGE(1) room temperature -&gt; 106 deg C; 4 hours; 2 hours

RX(3) OF 3 - 2 STEPS



NOTE: 2) optimization study

CON: STEP(1.1) room temperature -&gt; 106 deg C; 4 hours; 2 hours

STEP(2.1) 3.5 hours, room temperature -> 140 deg C;  
140 deg C -> 30 deg C

L8 ANSWER 7 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

AN 137:249482 CASREACT

TI A New Route for the Preparation of 5-Hydroxyisophthalic Acid

AU Gelmont, Mark; Oren, Jakob

CS IMI (TAMI) Institute for Research and Development Ltd., Haifa Bay, 26111, Israel

SO Organic Process Research &amp; Development (2002), 6(5), 591-596

CODEN: OPRDFK; ISSN: 1083-6160

PB American Chemical Society

DT Journal

LA English

AB A new, simple and practical, two-stage process for the preparation of 5-hydroxyisophthalic acid (5-HIPA) from isophthalic acid is described. In the first stage, isophthalic acid is brominated by bromine in oleum, in the presence of an iodine catalyst, to give crude 5-bromoisophthalic acid (5-BIPA). In the second stage the crude 5-BIPA is hydrolyzed with aqueous NaOH, in the presence of a copper catalyst, to give crude 5-HIPA, with a purity of ca. 98%. Both stages of the process were optimized. A single crystallization of the crude 5-HIPA from water gives the product in a purity of more than 99%. The overall yield of pure 5-HIPA is 65-70%.

## RX(1) OF 4



NOTE: regioselective, overall yield 50%, 91% of product was 5-bromoisophthalic acid, 6% combined yield of dibromoisophthalic acid, other products also detected, alternate workups also described, optimization study, optimized on temp., catalyst, amt. of catalyst, amt. of oleum, workup

RE.CNT 27 THERE ARE 27 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 8 OF 24 CASREACT COPYRIGHT 2007 ACS on STN  
 AN 137:200992 CASREACT  
 TI A non-rotatory isomerization path in ethene derivatives? Investigation of a stilbenophane and protonated azobenzenophanes ("pseudo-stilbenophanes")  
 AU Rau, Hermann; Waldner, Isabella  
 CS FG Physikalische Chemie, Universitaet Hohenheim, Stuttgart, 70593, Germany  
 SO Physical Chemistry Chemical Physics (2002), 4(10), 1776-1780  
 CODEN: PPCPFQ; ISSN: 1463-9076  
 PB Royal Society of Chemistry  
 DT Journal  
 LA English  
 AB A stilbenophane and protonated azobenzenophanes ("pseudo-stilbenes") with four -CH<sub>2</sub>-S-CH<sub>2</sub>- bridges in all meta-positions were synthesized. The spectroscopic and photochem. properties were investigated: excited dimer absorption spectra and for the stilbenophane also emission spectra were observed. Photochem. reactions could be identified as the [2+2] photocycloaddn. for the stilbenophane; the nature of the photoproducts in the case of pseudo-stilbenes could not be established. Photo-isomerizations could not be observed which gives a neg. answer to the title question.

## RX(1) OF 63



## RX(8) OF 63 - 2 STEPS



## RX(15) OF 63 - 3 STEPS



NOTE: 3) Heck reaction

RE.CNT 34 THERE ARE 34 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 9 OF 24 CASREACT COPYRIGHT 2007 ACS on STN  
 AN 136:37401 CASREACT  
 TI Process for the preparation of bromoisophthalic acid or derivatives thereof  
 IN Nagai, Masaki; Suzuki, Hideo; Hashiba, Isao  
 PA Nissan Chemical Industries, Ltd., Japan  
 SO PCT Int. Appl., 15 pp.  
 CODEN: PIXXD2  
 DT Patent  
 LA Japanese  
 FAN.CNT 1

| PATENT NO.          | KIND     | DATE     | APPLICATION NO. | DATE     |
|---------------------|----------|----------|-----------------|----------|
| PI WO2001094289     | A1       | 20011213 | 2001WO-JP04532  | 20010530 |
| W: CN, KR, US       |          |          |                 |          |
| RW: DE, FR, GB, NL  |          |          |                 |          |
| EP---1293495        | A1       | 20030319 | 2001EP-0934410  | 20010530 |
| R: DE, FR, GB, NL   |          |          |                 |          |
| JP2002060370        | A        | 20020226 | 2001JP-0167799  | 20010604 |
| US2004015010        | A1       | 20040122 | 2002US-0296500  | 20021125 |
| US---6855845        | B2       | 20050215 |                 |          |
| PRAI 2000JP-0167511 | 20000605 |          |                 |          |

OS 2001WO-JP04532 20010530  
 OS MARPAT 136:37401  
 GI



**AB** This document discloses a process for preparing bromoisophthalic acid compds., particularly 5-bromoisophthalic acid compds. and 4,5-dibromoisophthalic acid compds., by brominating an isophthalic acid compound of the general formula I (wherein R1 and R2 are each independently hydrogen or C1-6 alkyl) with bromine in a solvent containing sulfur trioxide. The title compds. are pharmaceutical and agrochem. intermediates and additives for polymers. According to this process, bromoisophthalic acid compds., particularly 5-bromoisophthalic acid compds. and 4,5-dibromoisophthalic acid compds., can be prepared selectively using industrially inexpensive bromine.

RX(2) OF 2



RE.CNT 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD  
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 10 OF 24 CASREACT COPYRIGHT 2007 ACS on STN  
 AN 135:107099 CASREACT  
 TI Nonacid Nitration of Benzenedicarboxylic and Naphthalenecarboxylic Acid Esters  
 AU Nose, Masatoshi; Suzuki, Hitomi; Suzuki, Hideo  
 CS Department of Chemistry School of Science, Kwansei Gakuin University,  
 Nishinomiya, 662-8501, Japan  
 SO Journal of Organic Chemistry (2001), 66(12), 4356-4360  
 CODEN: JOCEAH; ISSN: 0022-3263  
 PB American Chemical Society  
 DT Journal  
 LA English  
 AB When treated with nitrogen dioxide in the presence of ozone and a catalytic amount of iron(III) chloride in inert organic solvent at -10 to +5 °C, benzenedicarboxylic acid diesters underwent smooth nitration to give the corresponding mononitro derivs. in good yield (Kyodai nitration). Naphthalenecarboxylic acid esters and naphthalene-1,8-dicarboxylic acid diester were similarly nitrated in the absence of catalyst to give the expected nitro compds. Different from conventional nitration based on the combined use of concentrated nitric and sulfuric acids, no hydrolytic cleavage of the ester function was observed under these conditions. The isomer distribution has been determined for the nitration of naphthalenecarboxylic acid esters and spectral data were collected for less common nitro derivs. A unique changeover of the orientation mode observed in the Kyodai nitration

of the diester, from the initial exclusive meta to the final meta/para, has been discussed in terms of the competition between the electrophilic substitution process involving the nitronium ion ( $\text{NO}_2^+$ ) and the addition-elimination sequence involving the nitrogen trioxide radical ( $\bullet\text{NO}_3$ ).

## RX(2) OF 7



NOTE: regioselective, optimization study

## RX(7) OF 7



NOTE: regioselective, optimization study

RE.CNT 21 THERE ARE 21 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

- L8 ANSWER 11 OF 24 CASREACT COPYRIGHT 2007 ACS on STN  
AN 134:340634 CASREACT  
TI Synthesis of fluorescent stilbene and tolan rotaxanes by Suzuki coupling  
AU Stanier, Carol A.; O'Connell, Michael J.; Anderson, Harry L.; Clegg, William  
CS Department of Chemistry, University of Oxford, Oxford, OX1 3QY, UK  
SO Chemical Communications (Cambridge, United Kingdom) (2001), (5), 493-494  
CODEN: CHCOFS; ISSN: 1359-7345  
PB Royal Society of Chemistry  
DT Journal  
LA English  
AB Highly fluorescent stilbene and tolan cyclodextrin [2]rotaxanes have been synthesized in good yield using aqueous Suzuki coupling, and the crystal structure of one of these rotaxanes has been determined

RX(6) OF 7



RX(6) OF 7



4 Na  
 50%

RX(6) OF 7



RX(7) OF 7



RX(7) OF 7



MULTI  
PAGE  
IMAGE +  
338793-49-0  
73%

RX(7) OF 7



RE.CNT 12 THERE ARE 12 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 12 OF 24 CASREACT COPYRIGHT 2007 ACS on STN  
 AN 134:310986 CASREACT  
 TI Preparation of dialkyl 5-bromoisophthalates by regioselective bromination  
 IN Suzuki, Hideo; Nagai, Masanori; Myojo, Tomohiro; Hashiba, Isao  
 PA Nissan Chemical Industries, Ltd., Japan  
 SO Jpn. Kokai Tokkyo Koho, 3 pp.  
 CODEN: JKXXAF  
 DT Patent  
 LA Japanese  
 FAN.CNT 1

| PATENT NO.      | KIND  | DATE     | APPLICATION NO. | DATE     |
|-----------------|-------|----------|-----------------|----------|
| -----           | ----- | -----    | -----           | -----    |
| PI JP2001122823 | A     | 20010508 | 1999JP-0300591  | 19991022 |

PRAI 1999JP-0300591 19991022

OS MARPAT 134:310986

AB Title compds. are prepared by bromination of m-R2O2CC6H4CO2R1 (R1, R2 = Cl-10 alkyl) by N-bromoisocyanuric acid (I) or its mono-Na or -K salt in strong acids. Di-Me isophthalate was brominated by I mono-Na salt in H<sub>2</sub>SO<sub>4</sub> at 40-45° for 8 h to give 83.9% di-Me 5-bromoisophthalate.

RX(1) OF 1



NOTE: regioselective

L8 ANSWER 13 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

AN 133:89275 CASREACT

TI Synthesis of sodium 3,5-dimethoxycarbonyl benzene sulfonate

AU Jiang, Jianping

CS Yangzhou Organic Chemical Plant, Yangzhou, 225003, Peop. Rep. China

SO Huagong Shikan (2000), 14(5), 21-23

CODEN: HUSHFT; ISSN: 1002-154X

PB Huagong Shikan Zazhishe

DT Journal

LA Chinese

AB The title compound, Na 3,5-dimethoxycarbonyl benzene sulfonate (SIPM) used as dye modifying agent for polyester was synthesized with 71.9% yield from isophthalic acid by sulfonation with H<sub>2</sub>SO<sub>4</sub>.SO<sub>3</sub>, esterification with CH<sub>3</sub>OH, and neutralization with NaOH or Na<sub>2</sub>CO<sub>3</sub>. The effects of reacting time, temperature, and ratio of raw materials on sulfonation ratio and esterification ratio were studied. The optimum reacting conditions were: sulfonating temperature 180°, reacting time 7 h, SO<sub>3</sub>:IPA 1.1:1 (mol ratio), esterifying temperature 60-70°, reacting time 2-4 h, CH<sub>3</sub>OH:IPA 4-5:1, and neutralizing temperature 15-20°.

RX(1) OF 6



NOTE: 150.degree., 7 h

## RX(4) OF 6 - 2 STEPS



NOTE: 1) 150.degree., 7 h, 2) 60.degree.-70.degree., 2-4 h

## RX(6) OF 6 - 3 STEPS



NOTE: 1) 150.degree., 7 h, 2) 60.degree.-70.degree., 2-4 h, 3)  
15.degree.-20.degree.

L8 ANSWER 14 OF 24 CASREACT COPYRIGHT 2007 ACS on STN  
 AN 129:289936 CASREACT  
 TI Preparation of dialkyl aminophthalates as intermediates for pharmaceuticals and dyes  
 IN Suzuki, Hideo; Suzuki, Hitomi  
 PA Nissan Chemical Industries, Ltd., Japan  
 SO Jpn. Kokai Tokkyo Koho, 8 pp.  
 CODEN: JKXXAF  
 DT Patent  
 LA Japanese  
 FAN.CNT 1

|      | PATENT NO.        | KIND | DATE     | APPLICATION NO. | DATE     |
|------|-------------------|------|----------|-----------------|----------|
| PI   | JP--10251211      | A    | 19980922 | 1997JP-0058915  | 19970313 |
| PRAI | 1997JP-0058915    |      | 19970313 |                 |          |
| OS   | MARPAT 129:289936 |      |          |                 |          |
| GI   |                   |      |          |                 |          |



AB The title compds. I [R1, R2 = alkyl, cycloalkyl] are prepared by nitration of dialkyl phthalates by nitrogen oxide and ozone, followed by reduction of the nitro compds. Thus, a mixture of ozone and oxygen was introduced into a mixture of di-Me isophthalate 3.88 g, N2O4 4.6 g, and FeCl3 0.01 g in 1,2-dichloroethane 40 g at 5° during 2.5 h to give, after workup,

di-Me 5-nitroisophthalate (II) in 88% yield. Hydrogenation of II 4.57 g in 1,2-dimethoxyethane containing 5% Pd/C 4.6 mg under hydrogen (5 kg/cm<sup>2</sup>) gave di-Me 5-aminoisophthalate in 86% yield.

## RX(2) OF 3



NOTE: 2.5 h at 5.degree.

## RX(3) OF 3 - 2 STEPS



NOTE: 1) 2.5 h at 5.degree.

L8 ANSWER 15 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

AN 128:321458 CASREACT

TI Preparation of dialkyl 5-bromoisophthalates

IN Suzuki, Hideo; Hashiba, Isao

PA Nissan Chemical Industries, Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 4 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

|    | PATENT NO.   | KIND | DATE     | APPLICATION NO. | DATE     |
|----|--------------|------|----------|-----------------|----------|
| PI | JP--10114712 | A    | 19980506 | 1996JP-0272065  | 19961015 |
|    | JP---3911732 | B2   | 20070509 |                 |          |

PRAI 1996JP-0272065 19961015

OS MARPAT 128:321458

AB Title compds. are prepared by bromination of 1,3-R2O2CC6H4CO2R1 (R1, R2 = C1-10 alkyl) with N-bromoimides as bromination agents in strong acid solvents. M-C6H4(CO2Me)<sub>2</sub> was treated with N-bromosuccinimide in 97% H<sub>2</sub>SO<sub>4</sub> at 40° for 8 h to give 85.6% di-Me 5-bromoisophthalate.

## RX(1) OF 1



L8 ANSWER 16 OF 24 CASREACT COPYRIGHT 2007 ACS on STN  
 AN 125:10318 CASREACT  
 TI Synthesis of 2,6-dicyano-4-nitroaniline  
 AU Xie, Yunging; Lian, Yeliang  
 CS Dep. Environmental Eng., Qingdao Coll. Architecture Eng., Tsingtao, Peop. Rep. China  
 SO Huaxue Shiji (1996), 18(2), 124-125  
 CODEN: HUSHDR; ISSN: 0258-3283  
 PB Huagongbu Huaxue Shiji Keji Qingbao Zhongxinzhan  
 DT Journal  
 LA Chinese  
 AB The title compound was prepared from isophthalic acid by nitration, cyanation, and amination.

## RX(1) OF 6



NOTE: 6 H

L8 ANSWER 17 OF 24 CASREACT COPYRIGHT 2007 ACS on STN  
 AN 123:256091 CASREACT  
 TI Arranging coordination sites around cyclotrimeratrylene  
 AU Wytko, Jennifer A.; Weiss, Jean  
 CS lab. d'Electrochim. Chim. Phys. Corps Solide, Univ. Louis Pasteur, Strasbourg, 67000, Fr.  
 SO Journal of Inclusion Phenomena and Molecular Recognition in Chemistry (1994), 19(1-4), 207-25  
 CODEN: JIMCEN; ISSN: 0923-0750  
 PB Kluwer  
 DT Journal  
 LA English  
 AB This article describes the attachment of coordination sites around a rigid matrix: cyclotrimeratrylene (CTV). The synthetic approaches leading to these new ligands possessing pyridines and bipyridines as coordinating sites are discussed and full synthetic details are given. One expanded CTV derivative bearing three 3-pyridyl groups has been characterized by X-ray crystallog. and the structure shows that the conformation adopted by the CTV matrix is appropriate for the coordination of transition metals, and inclusion of a range of mols. in the hydrophobic pocket.

RX(1) OF 95



L8 ANSWER 18 OF 24 CASREACT COPYRIGHT 2007 ACS on STN  
 AN 120:298430 CASREACT

TI Dinitrogen pentoxide-sulfur dioxide, a new nitration system

AU Bakke, Jan M.; Hegbom, Ingrid

CS Norweg. Inst. Technol., Univ. Trondheim, Trondheim, N-7034, Norway

SO Acta Chemica Scandinavica (1994), 48(2), 181-2

CODEN: ACHSE7; ISSN: 0904-213X

DT Journal

LA English

AB Nitration of pyridine and 2- and 3-methypyridine with N2O5 in SO2 solvent afforded 3-nitropyridine (60%), 2-methyl-5-nitropyridine:2-methyl-3-nitropyridine = 91:9 (69%), and 4-methyl-3-nitropyridine (51%); these reactants were inert under standard HNO3/H2SO4 conditions. N2O5/SO2 was also effective at nitration of isophthalate esters to 5-nitroisophthalate esters.

RX(2) OF 5



L8 ANSWER 19 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

AN 120:163992 CASREACT

TI Nitration system, and process for nitrating aromatic and hetero aromatic compounds

IN Bakke, Jan; Hegbom, Ingrid

PA Norsk Hydro A/S, Norway

SO PCT Int. Appl., 14 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

|    | PATENT NO.   | KIND                                                                                                                                   | DATE     | APPLICATION NO. | DATE     |
|----|--------------|----------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|----------|
| PI | WO---9323352 | A1                                                                                                                                     | 19931125 | 1993WO-NO00065  | 19930423 |
|    | W:           | AT, AU, BB, BG, BR, CA, CH, CZ, DE, DK, ES, FI, GB, HU, JP, KP, KR, LK, LU, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SK, UA, US |          |                 |          |
|    | RW:          | AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG                 |          |                 |          |
|    | NO---9300959 | A                                                                                                                                      | 19931109 | 1993NO-0000959  | 19930317 |
|    | NO---174462  | B                                                                                                                                      | 19940131 |                 |          |

NO----174462 C 19940511  
AU---9340232 A 19931213 1993AU-0040232 19930423  
PRAI 1992NO-0001825 19920508  
1993NO-0000959 19930317  
1993WO-NO00065 19930423

AB The invention relates to a new nitration system, comprising N<sub>2</sub>O<sub>5</sub> dissolved in liquid SO<sub>2</sub>. The invention also relates to a process for nitrating aromatic and hetero aromatic compds. using the new system. This process is particularly favorable for nitration of aromatic compds. that are unstable under acidic conditions. 2-Methylpyridine was added slowly to a solution of 25 mmol N<sub>2</sub>O<sub>5</sub> in 25 mL SO<sub>2</sub> at -78° and the mixture was warmed to -11° in 2 h and stirred for another 2 h, the reaction mixture was poured over ice, the aqueous solution was made basic with saturated NaHCO<sub>3</sub> solution and extracted with CH<sub>2</sub>Cl<sub>2</sub> to give 69% 2-methyl-5-nitropyridine, vs. 5% with nitration by HNO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub>. Also nitrated were quinoline, isoquinoline thiophene derivs. and dialkyl isophthalates.

RX(1) OF 5



NOTE: -78 to -11 degree.

L8 ANSWER 20 OF 24 CASREACT COPYRIGHT 2007 ACS on STN  
AN 119:8240 CASREACT  
TI Aqueous periodate oxidation of aromatic and aliphatic carboxylic acid disulfides  
AU Evans, Brian J.; Doi, Joyce Takahashi; Musker, W. Kenneth  
CS Dep. Chem., Univ. California, Davis, CA, 95616, USA  
SO Phosphorus, Sulfur and Silicon and the Related Elements (1992), 73(1-4), 5-13  
CODEN: PSSLEC; ISSN: 1042-6507  
DT Journal  
LA English  
AB The water-soluble carboxylic acid-functionalized aromatic disulfides, 3,3'-dithiodibenzoic acid and 5,5'-dithiodoisophthalic acid [5,5'-dithiobis(1,3-benzenedicarboxylic acid)] were prepared and their rates of periodate oxidation to the sulfonic acids were determined. The reaction is first order in each of the reactants which indicates that the slow step is the initial oxidative cleavage step. These aromatic disulfides are oxidized to the sulfonic acids 4-8 times more slowly than a typical aliphatic disulfide. In all cases, water solubility of the disulfide is of prime importance. The periodate oxidation of two aliphatic carboxylic acid analogs were also examined, however, in these cases, the reactions were multiphasic and intermediate thiosulfinate were observed by <sup>1</sup>H NMR along with the sulfonic acids.

## RX(2) OF 7



## RX(3) OF 7



## RX(7) OF 7 - 2 STEPS



NOTE: 2) ZN/HCL

L8 ANSWER 21 OF 24 CASREACT COPYRIGHT 2007 ACS on STN  
 AN 117:69577 CASREACT  
 TI Nontoxic sulfonation catalyst for the manufacture of 5-sulfoisophthalic acid  
 IN Vorel, Milan  
 PA Czech.  
 SO Czech., 3 pp.  
 CODEN: CZXXA9  
 DT Patent  
 LA Czech  
 FAN.CNT 1

| PATENT NO.          | KIND | DATE     | APPLICATION NO. | DATE     |
|---------------------|------|----------|-----------------|----------|
| PI CS---265300      | B1   | 19891013 | 1988CS-0004400  | 19880623 |
| PRAI 1988CS-0004400 |      | 19880623 |                 |          |

AB In manufacturing the title compound (I) by sulfonation of isophthalic acid with fuming H<sub>2</sub>SO<sub>4</sub>, the reaction was accelerated by using 0.00001-0.1, preferably 0.004-0.007 mass % of SiO<sub>2</sub>, as a nontoxic catalyst. Thus, 80 g SiO<sub>2</sub> was added to a mixture of 1225 kg fuming H<sub>2</sub>SO<sub>4</sub> (25% free SO<sub>3</sub>) and 300 kg isophthalic acid, and the whole was stirred and heated for 1 h at 190°. The mixture was cooled to 160°, mixed with 850 L of combined mother liquor and washings from a previous conversion of I to I-Na salt, and the whole cooled to 25° to give 589 g product containing 88% I.

RX(1) OF 2



NOTE: nontoxic catalyst

RX(2) OF 2



NOTE: nontoxic catalyst

L8 ANSWER 22 OF 24 CASREACT COPYRIGHT 2007 ACS on STN  
 AN 106:157944 CASREACT  
 TI Synthesis and spectral characterization of blue azobenzene dyes  
 AU Thiel, W.; Mayer, R.; Jauer, E. A.; Modrow, H.; Dost, H.  
 CS Sekt. Chem., Tech. Univ. Dresden, Dresden, Ger. Dem. Rep.  
 SO Journal fuer Praktische Chemie (Leipzig) (1986), 328(4), 497-514  
 CODEN: JPCEAO; ISSN: 0021-8383  
 DT Journal  
 LA German  
 GI



AB Fifty-three donor-acceptor-substituted azo dyes (I, A = H, NHAc, NHCOEt, NHBz, NHCOBu; B = H, OMe, R = Me, Et, Pr, CH<sub>2</sub>CH<sub>2</sub>OH, CH<sub>2</sub>CH<sub>2</sub>OAc; X = NO<sub>2</sub>, CO<sub>2</sub>Et, COSEt, CN, Br; Y = Cl, Br, I, CN, NO<sub>2</sub>; Z = Cl, Br, I, CONH<sub>2</sub>, SO<sub>2</sub>Me, CN) were prepared by diazo coupling or halogen-CN exchange. The preparation of the precursor amines and couplers was also described. I have blue shades on polyester fibers.

RX(4) OF 61



L8 ANSWER 23 OF 24 CASREACT COPYRIGHT 2007 ACS on STN  
 AN 105:114750 CASREACT

TI Dimethyl 5-nitroisophthalate  
 IN Lixandru, Tatiana; Saidac, Serban Gheorghe; Pastravanu, Mariana; Vasiliu Silvia; Mazilu, Ioan; Wagner, Luminita Eugenia  
 PA Combinatul Chimic, Giurgiu, Rom.  
 SO Rom., 2 pp.  
 CODEN: RUXXA3  
 DT Patent  
 LA Romanian  
 FAN.CNT 1

|      | PATENT NO.                                                                                                                                                                                                                                                       | KIND | DATE     | APPLICATION NO. | DATE     |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| PI   | RO-----88168                                                                                                                                                                                                                                                     | B1   | 19851230 | 1983RO-0112310  | 19831012 |
| PRAI | 1983RO-0112310                                                                                                                                                                                                                                                   |      | 19831012 |                 |          |
| AB   | Di-Me isophthalate is nitrated with a mixture of H <sub>2</sub> SO <sub>4</sub> (d. 1.84) and HNO <sub>3</sub> (d. 1.5) at 15-20°. The mixture is heated to 40°, to give the title compound in 94-96% yield at 95-99% purity. The product is a dye intermediate. |      |          |                 |          |

RX(1) OF 1



L8 ANSWER 24 OF 24 CASREACT COPYRIGHT 2007 ACS on STN  
 AN 40:37261 CASREACT  
 TI The synthesis of potential antimalarials. Some substituted N-phenylsulfonamides  
 AU Senear, A. E.; Rapport, M. M.; Mead, J. F.; Maynard, J. T.; Koepfli, J. B.  
 CS Calif. Inst. of Technol., Pasadena  
 SO Journal of Organic Chemistry (1946), 11, 378-83  
 CODEN: JOCEAH; ISSN: 0022-3263  
 DT Journal  
 LA Unavailable  
 AB Some substituted N-phenylsulfonamides of the formula p-RC<sub>6</sub>H<sub>4</sub>SO<sub>2</sub>NHC<sub>6</sub>H<sub>2</sub>R'R''R''' (I) are synthesized to be tested as antimalarials. When 28 g. 3,5-(NO<sub>2</sub>)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NH<sub>2</sub> (II) in 200 cc. pyridine is treated with 55 g. p-AcHNC<sub>6</sub>H<sub>4</sub>SO<sub>2</sub>Cl (III), added in small portions with cooling and stirring, the mixture kept at room temperature for 1 h., and then heated on a steam bath for 15 min., 93% N4-acetyl-N1-(3,5-dinitrophenyl)sulfanilamide (IV), m. 280-1° (decomposition), is obtained. Saponification of the Ac group in IV by refluxing 55 g. with 750 cc. EtOH and 220 cc. concentrated HCl for 2 h., gives 90% N1-(3,5-dinitrophenyl)sulfanilamide (I, R = NH<sub>2</sub>, R' = NO<sub>2</sub>, R'' = H) (SN 3863), crystals from EtOH, m. 214-15°. Reduction of 3,5-Br<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NO<sub>2</sub> at 50° and 50 lb. in the presence of Raney Ni gives 86% 3,5-Br<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NH<sub>2</sub> (V), m. 47.5-50.5°. V and III give 93% N4-acetyl-N1-(3,5-dibromophenyl)sulfanilamide which, when saponified, gives N1-(3,5-dibromophenyl)sulfanilamide (I, R = NH<sub>2</sub>, R' = Br, R'' = H) (SN 187), m. 154-5°. Catalytic reduction of the Ac derivative of 2,6-dibromo-4-nitroaniline, prepared in 96% yield according to Mohlau and Uhlmann (Ann. 289, 94(1896)) gives 64% 2,6-dibromo-4-aminoacetanilide, m. 246.5-8.5°, which, when coupled with III, gives 81% N4-acetyl-N1-(3,5-dibromo-4-acetamidophenyl)sulfanilamide (VI), m. 236-8°. Saponification of VI gives 76% N1 -(3,5-dibromophenyl-4-acetamidophenyl)sulfanilamide, m. 210-13°. 2,6-Dibromo-p-

phenylenediamine and III give N4-acetyl-N1-(3,5-dibromo-4-aminophenyl)sulfanilamide, m. 232-3.5°, which when saponified by refluxing with EtOH-HCl for 1 h. gives 85% N1-(3,5-dibromo-4-aminophenyl)sulfanilamide (SN 3864), m. 176-7°. When 44.8 g. p-Cl<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>, 40 cc. NHMe<sub>2</sub>, and 200 cc. EtOH are heated for 4 h. at 160°, 88% p-O<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>NMe<sub>2</sub> (VII), m. 163-6°, is obtained. Bromination of VII gives 30% N-methyl-2,6-dibromo-4-nitroaniline, yellow crystals, m. 111-13°, which, when reduced, gives 54% N-methyl-2,6-dibromo-p-phenylenediamine (VIII), m. 103-4°, VIII and III give 92% N4-acetyl-N1-(3,5-dibromo-4-methylaminophenyl)sulfanilamide m. 220-1.5°, which, when saponified, gives 80% N1-(3,5-dibromo-4-methylaminophenyl)sulfanilamide (I, R = NH<sub>2</sub>, R' = Br, R'' = NHMe) (SN 3865), m. 147-8.5°. 3,5-Dibromo-4-iodo-1-nitrobenzene (IX), prepared in the same way as 3,4,5-triiodo-1-nitrobenzene (cf. Niemann and Redemann, C.A. 35, 5475.2) in 75% yield, m. 150.5-2.5°. When 40.7 g. IX and 15 cc. NHMe<sub>2</sub> are heated in 80 cc. BuOH in a sealed tube at 120-30° for 7 h., 85% 3,5-dibromo-4-dimethylamino-1-nitrobenzene, golden plates, m. 102-3.5°, is formed which, when catalytically reduced, gives 100% 3,5-dibromo-4-dimethylaminoaniline (X). Because X is very unstable, it is immediately coupled with III to give 95% N4-acetyl-N1-(3,5-dibromo-4-dimethylaminophenyl)sulfanilamide, m. 252-3°; Ac-free analog (I, R = NH<sub>2</sub>, R' = Br, R'' = NMe<sub>2</sub>) (SN 3866), 79% yield, platelets from EtOH, m. 194.5-6°. m-NCC<sub>6</sub>H<sub>4</sub>NH<sub>2</sub> and p-O<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>SO<sub>2</sub>Cl (XI) give 77% 3'-cyano-4-nitrobenzenesulfonanilide (XII), prisms from AcOH, m. 198.5-9.5°. Reduction of XII with Fe and HCl on a steam bath for 6 h. gives 90% N1-(3-cyanophenyl)sulfanilamide (I, R = NH<sub>2</sub>, R' = CN, R'' = H) (SN 6947), m. 191-2°. 5-Nitroisophthalic acid, m. 254-8°, is prepared in 70-5% yield by heating 120 g. isophthalic acid with 600 cc. fuming HNO<sub>3</sub> (d. 1.6) for 8 h. When an intimate mixture of 10 g. 5-nitroisophthalamide and 13 g. P<sub>2</sub>O<sub>5</sub> is heated for 8 h. at 240-50°, 46% 3,5-(NC)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NO<sub>2</sub>, yellow prisms, m. 203.5-5.5°, is obtained which, on reduction with SnCl<sub>2</sub> in HCl, gives 41% 3,5-(NC)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NH<sub>2</sub> (XIII), needles, m. 192-3°. XIII and XI give 91% 3',5'-dicyano-4-nitrobenzenesulfonanilide, m. above 300°, which, on reduction with Fe and HCl, gives 76% N1-(3,5-dicyanophenyl)sulfanilamide (I, R = NH<sub>2</sub>, R' = CN, R'' = H) (SN 6946), greenish yellow prisms, m. 227.5-8.5°. When 20 g. V is reacted with 19.6 g. p-NCC<sub>6</sub>H<sub>4</sub>SO<sub>2</sub>Cl in pyridine, 93% 4-cyano-3',5'-dibromobenzenesulfonanilide (XIV), plates or flat prisms, m. 196.5-7.5°, is obtained. Catalytic reduction of 37.5 g. XIV in 920 cc. absolute EtOH containing 0.112 mol. HCl with 3 g. PtO<sub>2</sub> at 1 atmospheric for 5 h. gives 30.4 g. 4-aminomethyl-3',5'-dibromobenzenesulfonanilide-HCl (I, R = CH<sub>2</sub>NH<sub>2</sub>, R' = Br, R'' = H) (SN 8828), crystallizing with 1 mol. H<sub>2</sub>O, large flat prisms, m. 273-4° (decomposition); free base, prisms, m. 214.5-15.5°. All m.ps. are corrected

RX(1) OF 1



NOTE: Classification: C-Nitration; Regioselective; # Conditions:  
fuming HNO<sub>3</sub>; heat 8h

=&gt; d his

(FILE 'HOME' ENTERED AT 14:21:21 ON 07 JUN 2007)

FILE 'CASREACT' ENTERED AT 14:21:33 ON 07 JUN 2007

L1 STR  
L2 45 L1  
L3 STR L1  
L4 23 L3  
L5 352 L3 FULL  
L6 STR L3  
L7 1 L6 SAM SUB=L5  
L8 24 L6 FULL SUB=L5

FILE 'STNGUIDE' ENTERED AT 14:29:38 ON 07 JUN 2007

FILE 'CASREACT' ENTERED AT 14:32:10 ON 07 JUN 2007

=>

=> b reg  
FILE 'REGISTRY' ENTERED AT 15:26:49 ON 07 JUN 2007  
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.  
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.  
COPYRIGHT (C) 2007 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file  
provided by InfoChem.

STRUCTURE FILE UPDATES: 6 JUN 2007 HIGHEST RN 936692-95-4  
DICTIONARY FILE UPDATES: 6 JUN 2007 HIGHEST RN 936692-95-4

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH December 2, 2006

Please note that search-term pricing does apply when  
conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and  
predicted properties as well as tags indicating availability of  
experimental property data in the original document. For information  
on property searching in REGISTRY, refer to:

<http://www.cas.org/support/stngen/stndoc/properties.html>

=> d que sta 110  
L9 STR



REP G1=(1-20) C  
VAR G2=O/S  
NODE ATTRIBUTES:  
DEFAULT MLEVEL IS ATOM  
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:  
RING(S) ARE ISOLATED OR EMBEDDED  
NUMBER OF NODES IS 23

STEREO ATTRIBUTES: NONE  
L10 35 SEA FILE=REGISTRY SSS FUL L9

100.0% PROCESSED 25388 ITERATIONS  
SEARCH TIME: 00.00.01

35 ANSWERS

=> b hcap

FILE 'HCAPLUS' ENTERED AT 15:26:59 ON 07 JUN 2007  
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.  
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.  
 COPYRIGHT (C) 2007 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field. (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 7 Jun 2007 VOL 146 ISS 24  
 FILE LAST UPDATED: 6 Jun 2007 (20070606/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> => d bib abs hitstr retable 3 5

|         |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |          |
|---------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|----------|
| L11     | ANSWER 3 OF 5                                                                           | HCAPLUS                                                                                                                                                                                                                                                                                                                                                                                                    | COPYRIGHT 2007 ACS on STN |                 |          |
| AN      | 2006:117097                                                                             | HCAPLUS                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                 |          |
| DN      | 144:212810                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |          |
| TI      | Preparation of macrocyclic $\beta$ -secretase inhibitors                                |                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |          |
| IN      | Stamford, Andrew W.; Huang, Ying; Li, Guoqing; Strickland, Corey O.; Voigt, Johannes H. |                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |          |
| PA      | Schering Corporation, USA                                                               |                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |          |
| SO      | PCT Int. Appl., 61 pp.                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |          |
|         | CODEN: PIXXD2                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |          |
| DT      | Patent                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |          |
| LA      | English                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |          |
| FAN.CNT | 1                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |          |
|         | PATENT NO.                                                                              | KIND                                                                                                                                                                                                                                                                                                                                                                                                       | DATE                      | APPLICATION NO. | DATE     |
| PI      | WO2006014944                                                                            | A1                                                                                                                                                                                                                                                                                                                                                                                                         | 20060209                  | 2005WO-US26468  | 20050726 |
|         | W:                                                                                      | AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW |                           |                 |          |
|         | RW:                                                                                     | AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM                                                                                                                     |                           |                 |          |
|         | CA--2575340                                                                             | A1                                                                                                                                                                                                                                                                                                                                                                                                         | 20060209                  | 2005CA-2575340  | 20050726 |
|         | US2006040948                                                                            | A1                                                                                                                                                                                                                                                                                                                                                                                                         | 20060223                  | 2005US-0189346  | 20050726 |
|         | EP--1781644                                                                             | A1                                                                                                                                                                                                                                                                                                                                                                                                         | 20070509                  | 2005EP-0776414  | 20050726 |
|         | R:                                                                                      | AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LI, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, AL, BA, HR, MK, YU                                                                                                                                                                                                                                                             |                           |                 |          |
| PRAI    | 2004US-591899P                                                                          | P                                                                                                                                                                                                                                                                                                                                                                                                          | 20040728                  |                 |          |
|         | 2005WO-US26468                                                                          | W                                                                                                                                                                                                                                                                                                                                                                                                          | 20050726                  |                 |          |
| OS      | CASREACT 144:212810; MARPAT 144:212810                                                  |                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |          |
| GI      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |          |



AB      Macrocyclic lactams, such as I [R1 = nitrogen containing heterocyclyl, such as piperazinyl; W = heterocyclene or N(R5)C(O)W1, R5 = H, alkyl, cycloalkyl, aryl, heteroaryl, W1 = arylene, heteroarylene, heterocyclene, cycloalkylene; X = O, S, NH, C(R5); Y = (CH<sub>2</sub>)<sub>n</sub>, n = 0-3; Z = arylene, heteroarylene, heterocyclene, cycloalkylene] were prepared for use in pharmaceutical compns. as  $\beta$ -secretase inhibitors useful for the treatment of cognitive or neurodegenerative diseases, such as Alzheimer's disease. These macrocyclic lactams were also claimed for use in combination with other therapeutic agents selected from HMG-CoA reductase inhibitors,  $\gamma$ -secretase inhibitors, non-steroidal anti-inflammatory agents, N-methyl-D-aspartate receptor antagonists, cholinesterase inhibitors and anti-amyloid antibodies. The cholinesterase inhibitors, wherein said cholinesterase inhibitor is acetylcholinesterase or butyrylcholinesterase, can be selected from the group consisting of tacrine, donepezil, rivastigmine, galantamine, pyridostigmine and neostigmine. The nonsteroid antiinflammatory agents can be selected from diclofenac, diflunisal, etodolac, flurbiprofen, ibuprofen, indomethacin, ketoprofen, ketorolac, nabumetone, naproxen, oxaprozin, piroxicam, sulindac, tolmetin, celecoxib or rofecoxib. The HMG-CoA reductase inhibitors can be selected from atorvastatin, lovastatin, simvastatin, pravastatin, fluvastatin or rosuvastatin. The N-methyl-D-aspartate receptor antagonist can be memantine. Thus, macrocyclic lactam II was prepared was prepared via multistep synthetic sequence starting from Cl(CH<sub>2</sub>)<sub>4</sub>OH, Me(CH<sub>2</sub>)<sub>2</sub>NH<sub>2</sub>, MeOCOC<sub>6</sub>H<sub>4</sub>-3-CO<sub>2</sub>H, L-tyrosine Me ester and piperazinone. The prepared macrocyclic lactams were assayed for  $\beta$ -secretase inhibitory activity.

IT 875762-75-7P

RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of macrocyclic  $\beta$ -secretase inhibitors for the treatment of cognitive or neurodegenerative diseases and for use in combination with other therapeutic agents)

RN 875762-75-7 HCAPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 8-fluoro-4-[hydroxy[3-oxo-4-(phenylmethyl)-2-piperazinyl]methyl]-16-propyl-, (4S)- (9CI) (CA INDEX NAME)

## Absolute stereochemistry.



IT 875762-94-0P 875762-96-2P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation of macrocyclic  $\beta$ -secretase inhibitors for the treatment of cognitive or neurodegenerative diseases and for use in combination with other therapeutic agents)

RN 875762-94-0 HCPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),13,18,20-heptaene-2,17-dione, 8-fluoro-4-(hydroxymethyl)-16-propyl-, (4S)- (9CI)  
(CA INDEX NAME)

Absolute stereochemistry.

Double bond geometry unknown.



RN 875762-96-2 HCPLUS

CN 1-Piperazinecarboxylic acid, 2-[(4S)-8-fluoro-2,17-dioxo-16-propyl-11-oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaen-4-y1]hydroxymethyl]-3-oxo-4-(phenylmethyl)-, 1,1-dimethylethyl ester (9CI)  
(CA INDEX NAME)

Absolute stereochemistry.



## RETABLE

| Referenced Author<br>(RAU) | Year<br>(RPY) | VOL<br>(RVL) | PG<br>(RPG) | Referenced Work<br>(RWK) | Referenced File |
|----------------------------|---------------|--------------|-------------|--------------------------|-----------------|
| Pulley, S                  | 2002          |              |             | WO---02100399 A          | HCAPLUS         |
| Pulley, S                  | 2002          |              |             | WO---02100856 A          | HCAPLUS         |

L11 ANSWER 5 OF 5 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2002:964186 HCAPLUS

DN 138:24959

TI Preparation of macrocycles useful in the treatment of Alzheimer's disease

IN Pulley, Shon R.; Beck, James P.; Tenbrink, Ruth E.; Jacobs, Jon S.

PA Elan Pharmaceuticals, Inc., USA; Pharmacia &amp; Upjohn Company

SO PCT Int. Appl., 173 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

|      | PATENT NO.                                                                                                                                                                                                                                                                                                                                                            | KIND | DATE     | APPLICATION NO. | DATE     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| PI   | WO2002100399                                                                                                                                                                                                                                                                                                                                                          | A1   | 20021219 | 2002WO-US18719  | 20020612 |
|      | W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW |      |          |                 |          |
|      | RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG                                                                                                                                                                    |      |          |                 |          |
|      | CA---2450167                                                                                                                                                                                                                                                                                                                                                          | A1   | 20021219 | 2002CA-2450167  | 20020612 |
|      | AU2002315098                                                                                                                                                                                                                                                                                                                                                          | A1   | 20021223 | 2002AU-0315098  | 20020612 |
|      | EP---1395257                                                                                                                                                                                                                                                                                                                                                          | A1   | 20040310 | 2002EP-0742038  | 20020612 |
|      | R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR                                                                                                                                                                                                                                                             |      |          |                 |          |
|      | BR2002010391                                                                                                                                                                                                                                                                                                                                                          | A    | 20040615 | 2002BR-0010391  | 20020612 |
|      | JP2005505506                                                                                                                                                                                                                                                                                                                                                          | T    | 20050224 | 2003JP-0503220  | 20020612 |
|      | US2003236240                                                                                                                                                                                                                                                                                                                                                          | A1   | 20031225 | 2002US-0170331  | 20020613 |
|      | US---7067507                                                                                                                                                                                                                                                                                                                                                          | B2   | 20060627 |                 |          |
|      | US2006003978                                                                                                                                                                                                                                                                                                                                                          | A1   | 20060105 | 2005US-0208382  | 20050819 |
| PRAI | 2001US-297505P                                                                                                                                                                                                                                                                                                                                                        | P    | 20010612 |                 |          |
|      | 2001US-333082P                                                                                                                                                                                                                                                                                                                                                        | P    | 20011119 |                 |          |
|      | 2002WO-US18719                                                                                                                                                                                                                                                                                                                                                        | W    | 20020612 |                 |          |
|      | 2002US-0170331                                                                                                                                                                                                                                                                                                                                                        | A3   | 20020613 |                 |          |
| OS   | MARPAT 138:24959                                                                                                                                                                                                                                                                                                                                                      |      |          |                 |          |
| GI   |                                                                                                                                                                                                                                                                                                                                                                       |      |          |                 |          |



**AB** Macrocycles I [U is (un)substituted 1,3-dihydroxypropyl, 1-hydroxy-2-aminoethyl, oxiranyl, or 2-oxo-1,3-dioxolan-4-yl; V is (CH<sub>2</sub>)<sub>0-6</sub>; A, B, Y are (un)substituted alkylene or alkenylene or rings of defined structure; D is CH<sub>2</sub>, CO, or SO<sub>2</sub>; X is absent, O, or an imino group; Z is absent, O, S, an imino group, CO, O<sub>2</sub>C, CO<sub>2</sub>, NHCO, or CONH] were prepared for treating Alzheimer's and similar diseases characterized by the deposition of A<sub>B</sub> peptide in a mammal. Thus, macrocycle II was prepared by a multistep sequence involving reaction of 1-(allyloxy)-5-fluorobenzene with 2-(2,2-dimethyl[1,3]dioxolan-4-yl)aziridine-1-carboxylic acid tert-Bu ester.

**IT** 477954-35-1P 477954-37-3P 477954-39-5P  
477954-41-9P 477954-43-1P 477954-44-2P  
477954-46-4P 477954-48-6P 477954-52-2P  
477954-55-5P 477954-56-6P 477954-57-7P  
477954-58-8P 477954-60-2P 477954-61-3P  
477954-62-4P 477954-64-6P 477954-66-8P  
477954-68-0P 477954-69-1P

RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of macrocycles useful in treatment of Alzheimer's disease)

**RN** 477954-35-1 HCAPLUS

**CN** 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 4-[(1R)-2-[[[3-ethylphenyl)methyl]amino]-1-hydroxyethyl]-8-fluoro-20-methyl-, (4S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.



RN 477954-37-3 HCPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 4-[(1R)-2-[[1-(3-ethylphenyl)cyclopropyl]amino]-1-hydroxyethyl]-8-fluoro-20-methyl-, (4S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.



RN 477954-39-5 HCPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 4-[(1R)-2-[[1-(3-ethynylphenyl)cyclopropyl]amino]-1-hydroxyethyl]-8-fluoro-20-methyl-, (4S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.



RN 477954-41-9 HCAPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 8-fluoro-4-[(1R)-1-hydroxy-2-[[3-(trifluoromethyl)phenyl]methyl]amino]ethyl]-20-methyl-, (4S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.



RN 477954-43-1 HCAPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 4-[(1R)-2-[(5-ethyl-3-pyridinyl)methyl]amino]-1-hydroxyethyl]-8-fluoro-20-methyl-, (4S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.



RN 477954-44-2 HCAPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 4-[(1R)-2-[(3-ethylphenyl)methyl]amino]-1-hydroxyethyl]-8-fluoro-20-methyl-16-propyl-, (4S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.



RN 477954-46-4 HCPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 4-[(1R)-2-[[1-(3-ethylphenyl)cyclopropyl]amino]-1-hydroxyethyl]-8-fluoro-20-methyl-16-propyl-, (4S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.



RN 477954-48-6 HCPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 4-[(1R)-2-[[1-(3-ethynylphenyl)cyclopropyl]amino]-1-hydroxyethyl]-8-fluoro-20-methyl-16-propyl-, (4S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.



RN 477954-52-2 HCPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 8-fluoro-4-[(1R)-1-hydroxy-2-[[3-(trifluoromethyl)phenyl]methyl]amino]ethyl]-20-methyl-16-propyl-, (4S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.



RN 477954-55-5 HCPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 4-[(1R)-2-[[5-ethyl-3-pyridinyl)methyl]amino]-1-hydroxyethyl]-8-fluoro-20-methyl-16-propyl-, (4S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.



RN 477954-56-6 HCAPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 4-[(1R)-2-[(3-ethylphenyl)methyl]amino]-1-hydroxyethyl]-8-fluoro-20-(2-oxazolyl)-16-propyl-, (4S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.



RN 477954-57-7 HCAPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 4-[(1R)-2-[(1-(3-ethylphenyl)cyclopropyl)amino]-1-hydroxyethyl]-8-fluoro-20-(2-oxazolyl)-16-propyl-, (4S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.



RN 477954-58-8 HCAPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 4-[(1R)-2-[[1-(3-ethynylphenyl)cyclopropyl]amino]-1-hydroxyethyl]-8-fluoro-20-(2-oxazolyl)-16-propyl-, (4S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.



RN 477954-60-2 HCAPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 8-fluoro-4-[(1R)-1-hydroxy-2-[(3-(trifluoromethyl)phenyl)methyl]aminoethyl]-20-(2-oxazolyl)-16-propyl-, (4S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.



RN 477954-61-3 HCAPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 4-[(1R)-2-[(5-ethyl-3-pyridinyl)methylamino]-1-hydroxyethyl]-8-fluoro-20-(2-oxazolyl)-16-propyl-, (4S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.



RN 477954-62-4 HCAPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 4-[(1R)-2-[(3-ethylphenyl)methylamino]-1-hydroxyethyl]-8-fluoro-20-(2-oxazolyl)-, (4S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.



RN 477954-64-6 HCAPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 4-[(1R)-2-[(1-(3-ethylphenyl)cyclopropyl]amino]-1-hydroxyethyl]-8-fluoro-20-(2-oxazolyl)-, (4S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.



RN 477954-66-8 HCAPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 4-[(1R)-2-[(1-(3-ethynylphenyl)cyclopropyl]amino]-1-hydroxyethyl]-8-fluoro-20-(2-oxazolyl)-, (4S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.



RN 477954-68-0 HCAPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 8-fluoro-4-[(1R)-1-hydroxy-2-[[3-(trifluoromethyl)phenyl]methyl]amino]ethyl]-20-(2-oxazolyl)-, (4S)-rel-(9CI) (CA INDEX NAME)

Relative stereochemistry.



RN 477954-69-1 HCAPLUS

CN 11-Oxa-3,16-diazatricyclo[16.3.1.16,10]tricosa-1(22),6,8,10(23),18,20-hexaene-2,17-dione, 4-[(1R)-2-[[5-ethyl-3-pyridinyl]methyl]amino]-1-hydroxyethyl]-8-fluoro-20-(2-oxazolyl)-, (4S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.



## RETABLE

| Referenced Author<br>(RAU) | Year<br>(RPY) | VOL<br>(RVL) | PG<br>(RPG) | Referenced Work<br>(RWK) | Referenced<br>File |
|----------------------------|---------------|--------------|-------------|--------------------------|--------------------|
| Fairlie, D                 | 1996          |              |             | WO----9616950 A          | HCAPLUS            |
| Fairlie, D                 | 2000          | 7            | 1271        | JOURNAL OF MEDICINAL     |                    |

=> d his 19-

FILE 'REGISTRY' ENTERED AT 14:46:45 ON 07 JUN 2007  
ACT J476C1/A

-----  
L9 STR  
L10 35 SEA FILE=REGISTRY SSS FUL L9  
-----

FILE 'HCAPLUS' ENTERED AT 14:47:02 ON 07 JUN 2007  
L11 5 L10

=>