Analyzing Keyboard Vibrations

decoding keystrokes from nearby cell phone accelerometer data

John Harakas
Dept. of Mathematics and Computer Science
Faculty Advisor: Dr. Rosiene

Background Info (1)

- Data is digital pollution
 - Our phones fart personal information about us.
 - Information about our surroundings.
- Every phone has an accelerometer
 - Measures acceleration, used for tilting and rotation of screen on mobile devices.
 - Used in mobile games.
 - Used in apps to track how many steps you take in a day

Background Info (2)

- Data is as a by-product of computation
- Side Channel Attacks
 - Attack systems based on physical information
 - Power consumption, electromagnetic leaks, acoustic cryptanalysis.

Bruce Shchnier: Data and Goliath

Accelerometers as side channels

- They record info about your environment.
 - In Android, you don't need to explicitly give an app permissions to access the phone's accelerometer.
 - Malicious applications are <u>really</u> common.
- Record vibrations of nearby keyboard
 - Its not unrealistic to leave your phone on your desk while you are typing.

Accelerometers as side channels

Bad actors will leave their phones next to you.

Google: "bad actor"

How Realistic is It?

8 Technologies That Can Hack Into Your Offline Computer and Phone

8 Technologies That Can Hack Into Your Offline

Computer and Phone

By Farzan Hussain on July 14, 2015 Email @ @hackread E SECURITY

How Your Smartphone's Accelerometer Could Uncover Your **Passwords**

EY FENLON ON OCT. 18, 2011 AT NOON

10 Ridiculous Ways Your Smartphone Can Be Used To **Hack Your Personal** Information

Vinay Devnath - 10th March 2016

5 Terrifying Smartphone Hacks You Won't Believe Are Possible

By Teddem Yee | July 22, 2013 | 1,915,004 Views

13 sinister hacks that could turn your smartphone into your own worst enemy

By Amy Lane Published: June 17, 2015

7 Ridiculously Cool Ways Your Phone and Computer Can Get Hacked

BY JAGADESH SIDDHARTHA · FEBRUARY 4, 2016

Previous Research

- Supervised learning based on acoustic dictionaries
 - Record lots of keystrokes and feed it through a neural network.
 - Doesn't work outside of controlled conditions.
- Recognize key pairs
 - Vibrations of two keystrokes
- Only used the z-axis data

My Work

- Can keystrokes actually be uniquely identifiable?
- Can the x,y axes be used?
- Find traits that are independent of conditions
- Supervised learning (neural networks) is not robust
 - Extrapolating results when outside exact conditions
 - (spoiler) mixed results

What Makes This Difficult (1)

- Most phone accelerometers currently sample at 100Hz
 - Compare with phone microphone, thousands times faster
- Is a complex system, nonuniform
 - Do not type with consistent force each time
 - Each keyboard and surface is different.
 - Vibration travels from key, to the keyboard, to table, through table, to the device.

What Makes This Difficult (2)

- A single keystroke event is complicated:
 - Finger → Touch Key → Push Key → Hold Key
 Down → Lift Key Up → Untouch Key

Experiment

HTC One,mechanical keyboard (more vibration) on wooden table Recorded 4cm away (and other distances)

Methodology (2)

- Detect keystrokes
 - Transform, find peaks, threshold, etc...

Everything Looks Like Noise

For reference

Some Features

- The measured frequency changes as the signal propagates through material
 - Mean frequency
- As vibration travels, amplitude diminishes, looks more like white noise.
 - Variance of signal: reflects noise

3D Components

Variance

3D Components

Mean Freq (4cm)

3D Components (12cm)

Mean Freq (12cm)

3 Is Easy

- Easy classification for any unsupervised learner:
 - K nearest neighbor, linear support vector

More is hard: Indistinguishable

Mean Freq is Normal

Better Filtering

- 100Hz is low
 - Nyquist Sampling Theorem, need to sample at least twice the frequency of the signal
 - High frequency vibration not being measured correctly
 - Signal aliasing (overlapping higher freq signals)

Better Filtering

- Lowpass filter before acquisition
 - Reject higher frequency samples
- Matched filter, optimal linear filter
 - Like a template
 - Keystroke = Signal + Noise
 - Min noise ? Max Signal-to-Noise ratio

Filtering: None

Signals are indistinguishable, (color coded by keystroke)

Filtering: Bandpass

- Bandpass Filter, cut out lower and upper frequencies
- More distinct

More Sampling

- MPU-6050 sensor module
 - 1kHz(max) Accelerometer (10x faster)

More Problems

- The phone weight acts as a dampening mechanical lowpass filter
- Sensor chip is too light, responds to high frequency noise
- More aliasing amongst higher sampling.

Bigger Picture

- This can be solved with weighing down the sensor, set a lowpass at the hardware level
- The goal is not to reconstruct the signal
 - Only need to discriminate between keystrokes
- Discriminating Left/Right/Center keys and knowing the word length significantly reduce password search strategies in of itself.

Bigger Picture

- Mean frequency and the signal variance are not specific to an exact environment
 - Variance reflects the signal power. A lower variance indicates attenuated signal.
- More robust than an acoustic dictionary
- Other statistical methods can be supplemented
 - The unknown signal could be a vowel.

Future Work

Better filtering

- Sensor fusion
 - Combine with other sensors
 - Gyroscope, microphone
- Put it all together
 - Implement all aspects as one program

Concluding Remarks

- Realistically will this happen to you?
 - Probably not (for now)
- Sensors are getting better, faster, stronger
 - \$5 online, size of thumbnail

Questions. Remarks.