Oppgave 1:

Nei, fordi med bare AND porter vil du aldri klare å konvertere 0 til 1.

Oppgave 2:

F = A NAND 1 -> inverterende funksjon (A NAND A fungerer også).

Oppgave 3:

a)
$$F_1 = A'B$$

 $F_2 = AB'$
 $F_3 = (A'B') + (AB)$

b) F₁ tar 10ps (5ps for inverter og 5ps for AND port)

F₂ tar 10ps (5ps for inverter og 5ps for AND port)

F₃ tar 15ps (5ps for inverter, 5ps for AND port og 5ps for OR port)

c) F3 er bare 1 når hverken F1 eller F2 er 1. Derfor kan vi ta F1 NOR F2 og få samme sannhetsverditabell. Men da hadde tidsforsinkelsen vært det samme. Etter å sammenligne sannhetsverditabellen til F3 med XNOR så jeg at de var det samme, fordi F3 bare er 1 når A og B er like. Derfor kan vi bare ta A XNOR B og få en tidsforsinkelse på 5 ps i stedet for 15 for F3.

A	D	-
0	0	0
0	1	1
1	0	0
1	1	0
F2		
Α	В	F
0	0	0
0	1	F 0 0
1	0	1
1	1	0
F3		
Α	В	F
0	0	1
0	1	0
1	0	0
1	1	0 0 1

F1

F3 = A XNOR B (best løsning)