Congratulations! You passed!

Grade received 100% To pass 70% or higher

Go to next item

Practice quiz: Gradient descent in practice

Latest Submission Grade 100%

1/1 point

size in

feet² rescaled

Which of the following is a valid step used during feature scaling?

- Subtract the mean (average) from each value and then divide by the (max min).
- Add the mean (average) from each value and and then divide by the (max min).

This is called mean normalization.

2. Suppose a friend ran gradient descent three separate times with three choices of the learning rate α and plotted the learning curves for each (cost J for each iteration).

For which case, A or B, was the learning rate lpha likely too large?

- O case A only
- O Neither Case A nor B
- O Both Cases A and B
- ase B only

⊘ Correct

The cost is increasing as training continues, which likely indicates that the learning rate alpha is too large.

 $\textbf{3.} \quad \text{Of the circumstances below, for which one is feature scaling particularly helpful?}$

1/1 point

- O Feature scaling is helpful when all the features in the original data (before scaling is applied) range from 0 to 1.
- Feature scaling is helpful when one feature is much larger (or smaller) than another feature.

⊘ Correct

For example, the "house size" in square feet may be as high as 2,000, which is much larger than the feature "number of bedrooms" having a value between 1 and 5 for most houses in the modern era.

4.	1/1 point	4
You are helping a grocery store predict its revenue, and have data on its items sold per week, and price per item. What could be a useful engineered feature?		
O For each product, calculate the number of items sold divided by the price per item.		
For each product, calculate the number of items sold times price per item.		
⊙ correct This feature can be interpreted as the revenue generated for each product.		
 True/False? With polynomial regression, the predicted values f_w,b(x) does not necessarily have to be a straight line (or linear) function of the input feature x. True False 	1/1 point	
 Correct A polynomial function can be non-linear. This can potentially help the model to fit the training data better. 		