Supersymmetry and a Nobel Class of Solvable Quantum Mechanical Models in Real and Complex Domains

Rajesh Kumar

Registration Year: 2022 PhD Roll No: 202221300126

University Department Of Physics

Sido Kanhu Murmu University Dumka, Jharkhand, India-814110

February 7, 2024

Modelling Physical Systems-I

Figure: Free Spring Mass System.

Free Spring Mass System

The equation of motion for a free spring mass system is given by

 $m\ddot{x} + kx = 0$

¹Figure: Stewart, James. Essential calculus: Early transcendentals. Brooks/Cole, a part of the Thomson Corporation, 2007.

Modelling Physical Systems-II

Figure: Damped Spring Mass System.

Damped Spring Mass System

The equation of motion for a damped spring mass system is given by

 $m\ddot{x} + c\dot{x} + kx = 0$

²Figure: Stewart, James. Essential calculus: Early transcendentals. Brooks/Cole, a part of the Thomson Corporation, 2007.

Modelling Physical Systems-III

Figure: Forced Periodic System.

Forced Periodic System

The equation of motion for a forced periodic system is given by

$$m\ddot{x} + c\dot{x} + kx = F(t)$$

Modelling Physical Systems-IV

Figure: RLC Circuit.

RLC Circuit

The equation of motion for a RLC circuit is given by

$$L\ddot{q} + R\dot{q} + \frac{1}{C}q = E(t)$$

⁴Figure: Stewart, James. Essential calculus: Early transcendentals. Brooks/Cole, a part of the Thomson Corporation, 2007.

Schrödinger Equation

Figure: Erwin Schrödinger (1887-1961) Austria.

Schrödinger Equation

Describes how the quantum state of a physical system changes over time. It is a fundamental concept in quantum mechanics.

$$H\Psi = E\Psi$$

$$\left[-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x)\right]\Psi = E\Psi$$

⁵Figure: https://en.wikipedia.org/wiki/Erwin_Schrödinger

Strum-Liouville Problem

Figure: Joseph Liouville (1809-1882) France.

Strum-Liouville Problem

It is a theory of differential equations that is used to solve boundary value problems.

$$Ly = \lambda y$$

$$\left[-\frac{d}{dx} \left(p(x) \frac{d}{dx} \right) + q(x) \right] \mathbf{y} = \lambda \mathbf{y}$$

In quantum mechanics, 1-D time-independent Schrödinger equation is a SL problem.

⁶Figure: https://en.wikipedia.org/wiki/Joseph_Liouville

Bochners Observation

Figure: Salomon Bochner (1899-1982) USA.

Observations

For a given second order differential equation

$$f(x)y'' + g(x)y' + h(x)y = \lambda y$$

with coefficients f(x), g(x) and h(x), the following conditions are necessary and sufficient for the equation to be self-adjoint or to describe all the set of Sturm-Liouville polynomials.

- $f(x) \leq 2$
- $g(x) \le 1$
- h(x) is a constant

⁷Figure: https://en.wikipedia.org/wiki/Salomon_Bochner

Second Order Systems Introduction Research Gap Significance of Study Methodology Submitted Work Thank You

Peter Lesky's Conclusion

Classical Orthogonal Polynomial

Classical orthogonal polynomials are the only orthogonal polynomials that are the Solutions of a Sturm-Liouville differential equation.

$$f(x)y_i'' + g(x)y_i' + h(x)y_i = \lambda y_i,$$

$$i = 0, 1, 2, 3, \cdots$$

The classical orthogonal polynomials with their standard forms are:

- Hermite polynomials
- Laguerre polynomials
- Jacobi polynomials

⁸Peter Lesky. Die charakterisierung der klassischen orthogonalen polynome durch Sturm-Liouvillesche Differentialgleichungen. The characterization of classical orthogonal

Failure of Bochner's Theorem

Missing degrees leads to XOP

The Bochner's theorem fails to describe the set of Sturm-Liouville problem for the polynomials with missing degrees. The complete set of orthogonal polynomials that spans the Hilbert space with missing degrees are called Exceptional^a Orthogonal Polynomials (EOP).

- Consider Simple Harmonic Oscillator (SHO) potential, $V(x) = x^2$, which has a complete set of orthogonal Hermite polynomials $H_n(x)$.
- Requiring an orthogonal polynomial set, missing degree 2(say), that spans the Hilbert space, yields a new set with a different potential but identical spectra.

^aGómez-Ullate, David, Niky Kamran, and Robert Milson. "An extension of Bochner's problem: exceptional invariant subspaces." Journal of Approximation Theory 162.5 (2010): 987-1006.

Example

$$\hat{V}(x) = x^2 - 2 \log Wr [H_2(x)]$$
 Rationally Extended Harmonic Oscillator

$$\hat{H}_{n}(x) \propto Wr \left[H_{2}(x), H_{n}(x)\right]$$
 XOP with missing degree of 2
$$\eta(x) = \frac{e^{-x^{2}}}{Wr \left[H_{2}(x)\right]^{2}}$$
 Orthogonality Factor

- There is a new potential that has a complete set of orthogonal polynomials $\hat{H}_n(x)$, except for the degree of 2.
- The degrees of the polynomials are n = 0, 1, 3, 4, 5, ...
- The spectrum of the new potential is identical to that of the Simple Harmonic Oscillator (SHO) potential.

Bridge to New Potentials

Despite advancements in SQM, solvable potentials, non-Hermitian systems, many-body problems, and relativistic effects, significant research gaps remain.

PT-Symmetric Harmonic Oscillator

- Isotonic oscillator $V(x) = x^2 + \frac{G}{x^2}$.
- SUSY partner $\Psi \propto L(x) \to \tilde{L}(x)$ defined in the positive half line.
- Can be seen as harmonic oscillator potential with centrifugal-like core term $V(x) = x^2 + \frac{G}{x^2}$.
- This Potential can be regularized^a by transforming $x \rightarrow x ic$
- SUSY partner $\Psi \propto L(x) \rightarrow \tilde{L}(x)$ defined in the entire real liine.

^aZnojil, M. (1999). PT-symmetric harmonic oscillators. Physics Letters A, 259(3-4), 220-223.

Relativistic Effects

Extending the understanding of relativistic corrections in solvable potentials beyond the harmonic oscillator model.

Dirac Oscillator

•
$$i\hbar \frac{\partial \psi}{\partial t} = c \alpha \cdot \mathbf{p}\psi + mc^2\beta\psi$$

$$\bullet \ \mathbf{p} = -i\hbar \nabla; \quad \boldsymbol{\alpha} = \begin{bmatrix} 0 & \boldsymbol{\sigma} \\ \boldsymbol{\sigma} & 0 \end{bmatrix} \quad \beta = \begin{bmatrix} \boldsymbol{I} & 0 \\ 0 & -\boldsymbol{I} \end{bmatrix}$$

•
$$\mathbf{p} \rightarrow \mathbf{p} - im\omega\beta\mathbf{r}$$

 In non-relativistic regime Hamiltonian^a corresponds to a harmonic oscillator with spin-orbit coupling term.

^aMoshinsky, M., & Szczepaniak, A. (1989). The dirac oscillator. Journal of Physics A: Mathematical and General, 22(17), L817.

Many-Body Systems

Address Exactly Solvable Many-Body Problem in One dimension.

Three and Many Body Problem

- Calogero (1969): Complete solution for 3 particles in 1D with pairwise harmonic and inverse-square potentials.
- Wolfes (1974): Extended Calogero's method to include a special three-body potential.
- Many-Body Problem: Focus on exact solutions, integrability (Sutherland 1971, Calogero 1971, Olshanetsky and Perelomov 1981, 1983).

Significance

This Ph.D. research profoundly impacts quantum mechanics, encompassing theory, applications, and collaboration.

- Theoretical Advancements: Exploring SQM's solvable potentials advances quantum solutions, impacting condensed matter, particle physics, and quantum information.
- Novel Applications: Identifying new potentials holds practical value in device design, simulations, and quantum algorithms.
- New Solution Approaches: SUSYQM introduces innovative methods for iso-spectral Hamiltonians and exact solvability (Shape Invariance), extending solutions to periodic potentials.

Applications

- Typically, they are used as basis functions in which to expand other more complicated functions.
- There are a number of (somewhat disconnected) problem areas in computation that have given rise to unconventional orthogonal polynomials. These include:
 - Problems in interpolation and least squares approximation
 - Gauss quadrature of rational functions
 - Slowly convergent series
 - Moment-preserving spline approximation

Second Order Systems Introduction Research Gap

Industry Impact

Orthogonal polynomials are used for defining the optical surface shape.

Figure: DSLR Lens Surface

Figure: Progressive Lens Surface

⁹ Figure Source: https://www.businesstoday.in/lifestyle/fashion/story/essilor-introduces-ai-powered-progressive-lens-393290-2023-08-08

Simulation and Modelling

Figure: Simulation of Solar Storms

Point Canonical Transformation (PCT)

Introduction

- PCT ^a is a powerful technique for generating new shape-invariant or non-shape-invariant potentials
- New solvable potentials with wavefunctions expressed using exceptional orthogonal polynomials can be obtained from PCT approach.

Mathematical Formalism

- $H\psi(x) \equiv \left(-\frac{d^2}{dx^2} + V(x)\right)\psi(x) = E\psi(x)$
- Where $\psi(x) = f(x)F(g(x))$ and satisfies differential equation: F''(q) + Q(q)F'(q) + R(q)F(q) = 0

^aQuesne, C. (2008). Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry. Journal of Physics A: Mathematical and Theoretical, 41(39), 392001.

Darboux Transformation

Introduction

 Darboux transformation^a generates new Hamiltonians with the same energy spectrum as the original by adding or subtracting a superpotential to the original potential.

^aDarboux, G. (1888). Théorie Générale des Surfaces vol 2 (Paris: Gauthier-Villars).

Mathematical Formalism

•
$$H_0\phi_n(x) = E_n\phi_n(x)$$
 where, $H_0 = -\frac{d^2}{dx^2} + V(x)$

•
$$\mathcal{D} = \frac{d}{dx} - \frac{1}{\phi_0(x)} \frac{d\phi_0(x)}{dx}$$
. then, $\Psi_n(x) = \mathcal{D}\phi_n(x)$

•
$$\Psi_n(x)$$
 satisfies the SE with $H_1 = -\frac{d^2}{dx^2} + V_1(x)$

•
$$V_1(x) = V(x) - 2\frac{d^2}{dx^2} \log[\phi_0(x)]$$

Supersymmetric Quantum Mechanics (SQM)

Introduction

- Utilizes superalgebra to create partner potentials.
- For 1D potentials with a bound state, yields a continuous parameter family of isospectral potentials.
- Offers elegant solutions to complex potential problems.

Mathematical Formalism

•
$$H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) = A^{\dagger} A$$

•
$$H_1 = AA^{\dagger}$$

•
$$A = \frac{\hbar}{\sqrt{2m}} \frac{d}{dx} + W(x)$$
 $A^{\dagger} = -\frac{\hbar}{\sqrt{2m}} \frac{d}{dx} + W(x)$

PT Symmetry and Non-Hermitian Potentials

$$H = p^2 + x^2 (ix)^{\epsilon} \quad (\epsilon > 0)$$

This Hamiltonian is **PT** symmetric

Figure: Non-Hermitian PT-symmetric potential.

Exactly Solvable Potentials

It refers to specific potential energy functions for which the Schrödinger equation, which describes the behavior of quantum systems, can be solved analytically.

Schrödinger Equation

$$-\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi$$

- Analytical Solutions: Those potentials V(x) for which one can find analytical solutions to the Schrödinger equation.
- **Simple Systems:** Harmonic oscillator potential, particle in a box, Square well potential, Hydrogen atom.

Harmonic Oscillator Potentials

New Harmonic Oscillator type potential		
<i>V</i> (<i>x</i>)	$\psi(x)$	Туре
x ²	$e^{-\frac{x^2}{2}}H_n(x)$	SHO
$x^2 + \frac{8(2x^2-1)}{(2x^2+1)^2}$	$e^{-\frac{x^2}{2}}H_n(x)$ $\frac{e^{-\frac{x^2}{2}}}{4x^2+2}\hat{H}_n^{(2)}(x)$	New SHO
$x^{2} + \frac{16(8x^{6} + 12x^{4} + 18x^{2} - 9)}{(4(x^{2} + 3)x^{2} + 3)^{2}}$	$\frac{e^{-\frac{x^2}{2}}}{16x^4 + 48x^2 + 12}\hat{H}_n^{(4)}(x)$	New SHO

• The spectra of rationally extended potentials exhibit similar patterns, differing only by a constant shift.

Comparison of Graphs: New Harmonic-Type Potential

Figure: The left graph shows a simple harmonic oscillator potential (black curve), while the colored graphs represent wavefunctions in different excited states. Similarly, the right graph corresponds to a novel potential.

Thank You

