9. Razgradnja slik

Slikovna informatika

Razgradnja slik

▶Vsebina:

- osnovne definicije
- razgradnja z odvodi
- upragovljanje
- razgradnja z razvrščanjem
- razgradnja z modeli

Razgradnja slik

- Razgradnja ali segmentacija slik (segmentation):
 - razdeljevanje slik na osnovna področja oz. objekte
- Podrobnost razgradnje:
 - odvisna od namena uporabe
 - omejena z vsebino in kakovostjo slik → ločljivost, ostrina, šum, kontrast, sivinske nehomogenosti, ...
- Razgradnja je (najbolj?) zahteven postopek obdelave slik
- Zanesljivost in natančnost se dviguje zaradi:
 - razvoja slikovnih tehnik
 - → dvigovanje kakovosti slik
 - razvoja sodobnih postopkov razgradnje
 - → omogočajo uporabo predznanja o slikanih objektih

Razgradnja – definicije

- Bodi R domena slike, ki jo razgradimo na n področij; $R_1, R_2, \dots R_n$, tako da zadostimo naslednjim petim pogojem:
 - Razgradnja mora biti popolna → vsak slikovni element mora biti razvrščen v področje:

$$R_1 \cup R_2 \cup \ldots \cup R_n = R$$

2. Področja morajo biti medsebojno nezdružljiva:

$$R_i \cap R_j = \emptyset$$
 za vsak i in j ; $i \neq j$

3. Slikovni elementi v področju morajo biti povezani, npr. z robovi ali z vogali:

 R_i je povezana množica slikovnih elementov; i = 1, 2, ..., n

4. Vse vrednosti v področju morajo biti enake ali pa dovolj podobne:

$$Q(R_i) = 1$$
 za vsak $i = 1, 2, ..., n$

5. Sosednja področja morajo biti različna v smislu logične izjave *Q*:

$$Q(R_i \cup R_j) = 0$$
 za vsaki dve sosednji področji R_i in R_j

Razgradnja – osnovni pristopi

- Razgradnja z odvodi
 - področja ločujejo močni robovi
- Upragovljanje
 - velike spremembe sivin med ppodročji
- Razgradnja z razvrščanjem
 - področja so glede na določen kriterij oz.
 značilnico dovolj homogena (sivine, std, tekstura, ...)
- Razgradnja z modeli
 - sliko geometrijsko poravnamo z nekim modelom, ki predstavlja področja slike

Razgradnja slik – primeri

Razgradnja z odvodi

- Kadar imamo velike lokalne spremembe sivinskih vrednosti na prehodih med področji
- Posebni lokalni operatorji za zaznavanje:
 - točk (point detectors)
 - **črt** (line detectors)
 - robov (edge detectors)
- Razlika med prvim in drugim odvodom:
 - prvi odvod slike da širši rob
 - drugi odvod da dvojni in različno predznačeni rob
 - drugi odvod je bolj občutljiv na majhne strukture, kot so tanke črte in osamljene točke a tudi šum

Odvajanje digitalne funkcije

Slikovna informatika

Univerza v Ljubljani

Fakulteta za Elektrotehniko

3. letnik, Izbirni Modul A prof. dr. Boštjan Likar, doc. dr. Tomaž Vrtovec 1. stopnja UN študija Elektrotehnika

Zaznavanje točk in črt

 Uporabimo Laplaceov operator za drugi odvod:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

 Za diskretno 2D sliko ga določimo s pomočjo digitalnega filtra:

1	1	1
1	-8	1
1	1	1

• Dobimo velik odziv na osamljenih točkah, tankih črtah in izrazitih robovih, poveča pa se tudi šum:

Univerza v Ljubljani Fakulteta za Elektrotehniko

Slikovna informatika prof. dr. Boštjan Likar, doc. dr. Tomaž Vrtovec

3. letnik, Izbirni Modul A 1. stopnja UN študija Elektrotehnika

Uporabimo lahko posebne usmerjene digitalne filtre:

T7 1		
Vod	ora	บทา
VOU	ora	A 111

-1	-1	-1
2	2	2
- 1	- 1	-1

+	459	0
- 1	TJ	

2	-1	- 1
-1	2	-1
- 1	- 1	2

Navpični

-1	2	-1
- 1	2	-1
- 1	2	- 1

 -45°

-1	– 1	2
-1	2	-1
2	- 1	- 1

Slikovna informatika

prof. dr. Boštjan Likar, doc. dr. Tomaž Vrtovec

3. letnik, Izbirni Modul A 1. stopnja UN študija Elektrotehnika

Zaznavanje robov

$$\nabla f(x, y) = \operatorname{grad}\left[f(x, y)\right] = \mathbf{g}(x, y) = \begin{bmatrix} g_x(x, y) \\ g_y(x, y) \end{bmatrix} = \begin{bmatrix} \frac{\partial f(x, y)}{\partial x} \\ \frac{\partial f(x, y)}{\partial y} \end{bmatrix}$$

• Vektorska slika gradienta g(x,y) v vsaki točki (x,y) vsebuje vektor, ki z x koordinatno osjo oklepa kot $\alpha(x,y)$ in kaže v smeri normale roba:

$$\alpha(x, y) = \arctan \frac{g_y(x, y)}{g_x(x, y)}$$

Slika gradienta – slika amplitud vektorjev:

$$G(x, y) = amp \left[\nabla f(x, y)\right] = \sqrt{g_x^2(x, y) + g_y^2(x, y)}$$

Operatorji gradienta

- Komponenti gradienta $g_x(x,y)$ in $g_y(x,y)$ predstavljata parcialna odvoda:
 - → izračunamo ju s pomočjo digitalnih filtrov
 - → Sobelov in Prewittov operator (normalna in diagonalna izvedba)

	g_x		Sobel
-1	0	1	
-2	0	2	
- 1	0	1	
	g15°		Sobel

1	2	1
0	0	0
- 1	-2	-1

 g_{v}

- 1	0	1
- 1	0	1
- 1	0	1

 g_{x}

1	1	1
0	0	0
-1	- 1	- 1

 g_{+45}

 g_{v}

Prewitt

Prewitt

-2	-1	0
-1	0	1
0	1	2

 $g_{-45^{\circ}}$

$$\begin{array}{c|cccc}
0 & 1 & 2 \\
-1 & 0 & 1 \\
-2 & -1 & 0
\end{array}$$

 $g_{+45^{\circ}}$

-1	-1	0
-1	0	1
0	1	1

 $g_{-45^{\circ}}$

0	1	1
- 1	0	1
-1	-1	0

- Poljubno velike digitalne filtre z nastavljivo stopnjo glajenja dobimo s pomočjo Gaussove funkcije N(x,y), ki je **zvezna v prostoru slike in v frekvenčnem prostoru**
- Z izračunom gradienta zvezne Gaussove funkcije dobimo zvezni gradientni operator Gaussove funkcije:

$$\nabla N(x,y) = \nabla e^{-\frac{x^2 + y^2}{2\sigma^2}} = \begin{bmatrix} -\frac{x}{\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \\ -\frac{y}{\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \end{bmatrix} = \begin{bmatrix} -x \\ -y \end{bmatrix} \frac{1}{\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

• Stopnjo glajenja lahko poljubno izberemo s parametrom σ , ki naj bo nekajkrat večja od največjih struktur, ki jih želimo zgladiti

prof. dr. Boštjan Likar, doc. dr. Tomaž Vrtovec

• Na podoben način lahko z odvajanjem Gaussove funkcije N(x,y) dobimo zvezni **Laplaceov operator Gaussove funkcije**:

$$\nabla^2 N(x, y) = \frac{\partial^2 N(x, y)}{\partial x^2} + \frac{\partial^2 N(x, y)}{\partial y^2} =$$

$$= \frac{\partial}{\partial x} \left[-\frac{x}{\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \right] + \frac{\partial}{\partial y} \left[-\frac{y}{\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \right] =$$

$$= \left[\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}} + \left[\frac{y^2}{\sigma^4} - \frac{1}{\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}} =$$

$$= \frac{x^2 + y^2 - 2\sigma^2}{\sigma^4} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

- S pomočjo splošnih operatorjev lahko določimo poljubno velike digitalne filtre za gradient in drugi odvod
- Velikost filtrov naj bo šestkratnik standardne deviacije σ, s katero določimo stopnjo glajenja
- Vrednosti koeficientov filtrov izračunamo iz zveznih oblik in jih zaokrožimo, tako da je njihova vsota enaka 0
- Na ta način bi lahko npr. določili Laplaceov operator velikosti 5 × 5:

0	0	1	0	0
0	1	2	1	0
1	2	-16	2	1
0	1	2	1	0
0	0	1	0	0

Marr-Hildrethov detektor roba

• Z digitalnim Laplaceovim filtrom lahko s pomočjo konvolucije (*) izračunamo robove g(x,y) slike f(x,y) kot:

$$g(x,y) = \left[\nabla^2 N(x,y)\right] * f(x,y)$$

 Ker sta konvolucija in Laplaceov operator linearna, lahko njun vrstni red zamenjamo:

$$g(x, y) = \nabla^2 \left[N(x, y) * f(x, y) \right]$$

• Sliko lahko torej najprej zgladimo z Gaussovim filtrom in na zglajeno sliko apliciramo preprost Laplaceov operator, npr. velikosti 3 × 3

Marr-Hildrethov detektor roba

- Laplaceov operator daje dvojne in različno predznačene robove:
 - \rightarrow njihov pravi položaj določimo tam, kjer prehajajo vrednosti slike robov g(x,y) skozi vrednost 0 (zero crossings)
- Uporabimo preprost logični operator velikosti 3 × 3:
 - → preverimo ali sta vsaj dve sivinski vrednosti sosednjih in nasprotnih slikovnih elementov različno predznačeni:

Marr-Hildrethov detektor roba

Prehodi skozi nič

Močnejši prehodi skozi nič

- Nekoliko kompleksnejši, vendar ima številne prednosti:
 - majhna napaka zaznavanja robov
 - → zazna veliko pravih in malo nepravih robov
 - robovi so relativno točno določeni
 - → blizu pravim robovom
 - eno-točkovno zaznavanje roba
 - → zazna samo eno točko za vsako pravo robno točko

Postopek:

- 1. Sliko najprej zgladimo z Gaussovim filtrom
- 2. Izračunamo gradientno sliko zglajene slike
- 3. Izračunamo velikosti in smeri gradientov
- 4. Odstranjevanje nemaksimalnih vrednosti
- 5. Dvojno upragovljanje in povezovanje robov

Odstranjevanje nemaksimalnih vrednosti slike robov = tanjšanje robov v eno točko (non-maxima suppression):

- odstranimo točke z nemaksimalnimi vrednostmi v najbližji diskretni smeri gradienta
- točko odstranimo, če je gradient v vsaj eni sosednji točki v smeri gradienta večji

- Dvojno upragovljanje in povezovanje:
 - odstranimo čim več napačno zaznanih robov
 - določimo zgornji in spodnji prag:
 - robne točke nad zgornjim pragom zadržimo
 - robne točke nad spodnjim pragom, zadržimo le če imajo sosednje točke nad zgornjim pragom

Vhodna slika

Slika robov - Sobel

Cannyev detektor

Slikovna informatika prof. dr. Boštjan Likar, doc. dr. Tomaž Vrtovec

Vhodna slika

Slika robov - Sobel

Cannyev detektor

Univerza v Ljubljani Fakulteta za Elektrotehniko

Slikovna informatika prof. dr. Boštjan Likar, doc. dr. Tomaž Vrtovec

3. letnik, Izbirni Modul A
1. stopnja UN študija Elektrotehnika

Povezovanje robov

- Detektorji robov ne dajo vedno robove, ki se ujemajo z dejanskimi robovi slike
 - šum, prostorske nehomogenosti in drugi motilni dejavniki povzročajo prekinitve robov
- Rezultate detektorjev robov nadgradimo s postopki za povezovanje robov:
 - lokalno povezovanje robov
 - področno povezovanje robov
 - globalno povezovanje robov → Houghova transformacija
- ➤ Tako dobimo smiselne robove oz. meje področij vhodne slike → ustrezna razgradnja

Lokalno povezovanje robov

- Temelji na lokalni obdelavi slike robov v majhni okolici vsake robne točke (x,y)
- Vse bližnje točke, ki so glede na velikost in smer gradientov dovolj podobne povežemo v skupni rob

Slika roba

$$\Delta G(s,t) = |G(s,t) - G(x,y)| \le T_G$$

$$\Delta G(s,t)$$
 $\Delta \alpha(s,t) = |\alpha(s,t) - \alpha(x,y)| \le T_{\alpha}$

Področno povezovanje robov

- Temelji na področni obdelavi slike robov
- Prileganje 2D funkcij na točke roba v področju zanimanja – izbira ustrezne 2D funkcije
- Omogoča povezovanje bolj oddaljenih robov

Prostor parametrov

Houghova transformacija

$b = -x_{j}a + y_{j}$ $b' = -x_{i}a + y_{i}$ $a' \qquad a$ Prostor parametrov

Prostor slike $x \cos(\varphi') + y \sin(\varphi') = r'$ (x_j, y_j) r (x_i, y_i) x

φ Slikovna informatika prof. dr. Boštjan Likar, doc. dr. Tomaž Vrtovec

3. letnik, Izbirni Modul A 1. stopnja UN študija Elektrotehnika

Univerza v Ljubljani Fakulteta za Elektrotehniko

Vhodna slika

Slika robov

Akumulator

Najizrazitejši premici

4 3 2 1

Slikovna informatika

Univerza v Ljubljani Fakulteta za Elektrotehniko

3. letnik, Izbirni Modul A 1. stopnja UN študija Elektrotehnika

Slikovna informatika prof. dr. Boštjan Likar, doc. dr. Tomaž Vrtovec

Univerza v Ljubljani Fakulteta za Elektrotehniko

3. letnik, Izbirni Modul A 1. stopnja UN študija Elektrotehnika

Lahko jo posplošimo za poljubno funkcijo oblike:

$$f(\mathbf{v},\mathbf{p})=0$$

- kjer je v vektor koordinat, p pa vektor parametrov
- S številom parametrov krivulje zahtevnost postopka hitro narašča:
 - krog → 3D akumulator
 - elipsa → 4D akumulatorski prostor
- Učinkovito orodje za globalno iskanje parametričnih funkcij na binarnih slikah robov
 - robustna na velike prekinitve in napake zaznave robov

Upragovljanje

- Razgradnja na podlagi sivinskih vrednosti
 - Globalno upragovljanje

$$g(x,y) = \begin{cases} L-1 & \text{\'e je } f(x,y) > T \\ 0 & \text{\'e je } f(x,y) \le T \end{cases}$$

Večkratno upragovljanje

$$g(x, y) = \begin{cases} L_2 & \text{\'e je } f(x, y) > T_2 \\ L_1 & \text{\'e je } T_1 < f(x, y) \le T_2 \\ L_0 & \text{\'e je } f(x, y) \le T_1 \end{cases}$$

Lokalno upragovljanje

Upragovljanje

 T_1

Univerza v Ljubljani Fakulteta za Elektrotehniko

Slikovna informatika prof. dr. Boštjan Likar, doc. dr. Tomaž Vrtovec

3. letnik, Izbirni Modul A 1. stopnja UN študija Elektrotehnika

Kakovost upragovljanja

- Odvisna od globine in širine doline med roji v histogramu oz. od stopnje prekrivanja rojev:
 - razdalja med vrhovi rojev
 - mora biti čim večja, odvisna pa je od kontrasta slike
 - količina šuma
 - povzroča širjenje rojev in s tem večje prekrivanje
 - velikosti objektov na sliki
 - razmerje velikosti ozadja in objektov na sliki
 - prostorska nehomogenost
 - povzroča širjenje rojev in s tem večje prekrivanje
 - nehomogenost objektov na sliki
 - neposredno določa širino rojev

Vpliv šuma

Slikovna informatika prof. dr. Boštjan Likar, doc. dr. Tomaž Vrtovec

Vpliv nehomogenosti

Slikovna informatika prof. dr. Boštjan Likar, doc. dr. Tomaž Vrtovec

Vpliv glajenja

Slikovna informatika prof. dr. Boštjan Likar, doc. dr. Tomaž Vrtovec

Določanje optimalnega praga

- Začetna ocena praga T, nato ponavljamo postopek:
 - 1. Sliko razgradimo s pragom $T \rightarrow$ dobimo dve področji:

 - področje G_1 s sivinami > T– področje G_2 s sivinami ≤ T
 - 2. Izračunamo povprečni sivini obeh področij: m_1 in m_2
 - 3. Izračunamo novo vrednost praga $T = (m_1 + m_2) / 2$
 - 4. Ponavljamo korake od 1 do 3 dokler sprememba praga med zaporednimi iteracijami ne pade pod določeno stopnjo ΔT
- \[
 \textsup \Delta T \]
 \text{določa natančnost in hitrost postopka.}
 \]
- Postopek deluje dobro, če je med rojema v histogramu dovolj velika dolina
- Začetno vrednost praga T lahko postavimo kar na povprečno vrednost celotne slike oz. kamorkoli med oba roja

Optimalni prag z masko prehoda

Originalna slika

Drugi odvod

Maska prehoda

Maskirana slika

Optimalni prag

Univerza v Ljubljani

Fakulteta za Elektrotehniko

Slikovna informatika

prof. dr. Boštjan Likar, doc. dr. Tomaž Vrtovec

Optimalni prag z masko prehoda

Originalna slika

Prvi odvod

。。 。。。

Univerza v Ljubljani Fakulteta za Elektrotehniko

Slikovna informatika prof. dr. Boštjan Likar, doc. dr. Tomaž Vrtovec

3. letnik, Izbirni Modul A 1. stopnja UN študija Elektrotehnika

Ostali postopki upragovljanja

- Večkratno upragovljanje z več pragi:
 - bolj zahtevno in težje izvedljivo opravilo
 - kakovost razgradnje je odvisna od prekrivanja rojev
- Prilagodljivo upragovljanje slik:
 - smiselno, ko je prekrivanje rojev veliko, statistične lastnosti slike pa prostorsko spremenljive
 - vrednost praga lokalno prilagajamo lastnostim slike
- Slike zelo slabe kakovosti ne moremo zadovoljivo razgraditi z upragovljanjem:
 - nujnost uporabe zmogljivejših postopkov razgradnje

- Za učinkovito razgradnjo slik moramo poleg sivin uporabljati še dodatne značilnice:
 - prvi in drugi odvodi
 - značilnice teksture
 - vrednosti barv
 - večspektralne slike itn.
- Prostor značilnic postane večdimenzionalen
- S primerno izbiro značilnic zmanjšamo prekrivanje med roji:
 - s tem izboljšamo razgradnjo slik
 - postopki so bolj zapleteni večdimenzionalni prostor

Neparametrično razvrščanje

Vhodni sliki z drugimi odvodi

Vhodna slika

Vhodna slika

Drugi odvod

Drugi odvod

Porazdelitve posameznih značilnic

Histogram sivin

Histogram sivin

Histogram odvodov

Histogram odvodov

Skupne značilnice

Sivine

Sivine

Razgradnja z razvrščanjem

- Roje lahko ločujemo z upragovljanjem posameznih značilnic
- Boljše je če uporabljamo večdimenzionalne ploskve (poševne oz. ukrivljene meje)
- Uporaba postopkov za razvrščanje vzorcev:
 - glede na značilnice vsak vzorec razvrstimo v določen razred
 - pri razgradnji slik so vzorci slikovni elementi
 - te opišemo z več značilnicami in razvrstimo v ustrezen razred, ki predstavlja neko področje razgrajene slike

Neparametrično razvrščanje

Prostor značilnic p(r,l)

Prostor oznak razredov o(r,l)

Neparametrično razvrščanje

Razgradnja z modeli

- Modeliranje objektov zanimanja:
 - opis predznanj o pričakovani obliki
- Matematični modeli:
 - geometrijski liki: premice, krivulje, kroge, elipse, ploskve, krogle, elipsoide, valje, cevi,...
- Fizikalni modeli:
 - upoštevajo tudi fizikalne lastnosti, denimo elastične lastnosti materiala
- Statistični modeli:
 - zgradimo jih na podlagi analize variabilnosti oblik večjega števila reprezentativnih objektov, npr. s statistično analizo velikosti oz. dolžine neke kosti

Razgradnja z modeli

- Modele poravnamo s sliko
 - → iskanje optimalnih parametrov modelov
 - neposredno prileganje modelov in slike
 - optimizacija podobnosti med modelom in sliko
- > Prednosti:
 - lahko je zelo učinkovita in robustna
- > Slabosti:
 - bolj zahtevna zaradi potrebe po modeliranju vseh objektov zanimanja

Poravnava modela na sliko

Štetje celičnih kolonij

Poravnava modela na sliko

Merjenje ujema zobnikov

Merjenje premera con

Poravnava modela na sliko

Statistični modeli vretenc

Povprečna oblika

1. lastna oblika ±3σ

2. lastna oblika ±3σ

Aktivni neparametrični modeli

Ostali postopki razgradnje

- Širjenje področij (region growing)
- Deljenje in združevanje (region splitting and merging)
- ➤ Kače (snakes)
- Nivojske množice (level sets)
- ➤ Teorija grafov (graph theory)
- **>** . . .

Razprava – razgradnja

- Katere lastnosti slik omogočajo njihovo razgradnjo in kateri neželeni dejavniki najbolj vplivajo na kakovost razgradnje?
- Kateri je največji problem razgradnje na podlagi odvodov in kako ga lahko rešujemo?
- Katera je najpomembnejša dobra in katera najneugodnejša slaba lastnost Houghove transformacije?
- Kateri dejavniki najbolj vplivajo na kakovost razgradnje z upragovljanjem in kako lahko njihov vpliv čim bolj izničimo?

Razprava – razgradnja

- Kdaj moramo namesto globalnega uporabiti lokalno upragovljanje slik, pri katerem je prag zvezna funkcija prostorskih koordinat?
- Kako bi lahko izvedli lokalno upragovljanje slik? S katerim postopkom obdelave slik se takšnemu upragovljanju lahko izognemo?
- Zakaj je razgradnja na podlagi razvrščanja v splošnem bolj učinkovita od razgradnje na podlagi upragovljanja? Ali lahko upragovljanje obravnavamo kot posebno vrsto razvrščanja?
- Katere so glavne prednosti in slabosti razgradnje z modeli?