TROUGAO

Mnogougao koji ima tri stranice zove se **trougao.** Osnovni elementi trougla su :

- Temena A,B,C
- Stranice a,b,c (po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd)
- Uglovi, unutrašnji α, β, γ i spoljašnji $\alpha_1, \beta_1, \gamma_1$

Osnovne relacije za uglove i stranice trougla su:

- 1) Zbir unutrašnjih uglova u trouglu je 180^{0} tj. $\alpha + \beta + \gamma = 180^{0}$
- 2) Zbir spoljašnjih uglova je 360° tj. $\alpha_1 + \beta_1 + \gamma_1 = 360^{\circ}$
- 3) Spoljašnji i njemu susedni unutrašnji ugao su uporedni,tj.

$$\alpha + \alpha_1 = \beta + \beta_1 = \gamma + \gamma_1 = 180^0$$

4) Spoljašnji ugao trougla jednak je zbiru dva nesusedna unutrašnja ugla, tj

$$\alpha_1 = \beta + \gamma$$
 $\beta_1 = \alpha + \gamma$ $\gamma_1 = \alpha + \beta$

5) Svaka stranica trougla manja je od zbira a veća od razlike druge dve stranice, tj

1

$$|a-b| < c < a+b$$

$$|a-c| < b < a+c$$

$$|b-c| < a < b+c$$

6) Naspram većeg ugla nalazi se veća stranica i obrnuto.

Ako je
$$\alpha = \beta$$
 onda je $a = b$
Ako je $a = b$ onda je $\alpha = \beta$

Četiri značajne tačke trougla su:

- 1) Ortocentar (H)
- 2) Težiste (T)
- 3) Centar upisane kružnice (S)
- 4) Centar opisane kružnice (O)

Ortocentar se nalazi u preseku visina trougla h_a,h_b,h_c. (Visina je najkraće rastojanje od temena do naspramne stranice). Kod oštrouglog trougla je u trouglu, kod pravouglog u temenu pravog ugla a kod tupouglog van trougla.

 $h_a \cap h_b \cap h_c = H$ Ortocentar

Težišna duž trougla je duž koja spaja teme sa sredinom naspramne stranice. Težišne duži seku se u jednoj tački, a to je **TEŽIŠTE TROUGLA.** Težište deli težišnu duž u razmeri 2:1.

 $BT : TB_1 = 2 : 1$

 $CT : TC_1 = 2 : 1$

Centar upisane kružnice je tačka preseka simetrala uglova i kod svih trouglova je u oblasti trougla.

Centar opisane kružnice je tačka preseka simetrala stranica. Kod oštrouglog trougla je u trouglu, kod pravouglog na sredini hipotenuze i kod tupouglog van trougla.

$$s_{AB} \cap s_{AC} \cap s_{BC} = O$$

Vrste trouglova:

Trouglovi se dele prema "stranicama" i prema "uglovima".

Prema stranicama:

Prema uglovima:

1) jednakostranični

2) jednakokraki

2) pravougli

1) oštrougli

3) nejednakostranični

3) tupougli

4

Nejednakostranični

$$O = a + b + c$$

$$P = \frac{ah_a}{2} = \frac{bh_b}{2} = \frac{ch_c}{2} \text{ ili } P = \sqrt{s(s-a)(s-b)(s-c)} \text{ ili } P = r \text{ s} \text{ ili } P = \frac{abc}{4R}$$

gde je:

s poluobim
$$s = \frac{a+b+c}{2}$$
,

r-poluprečnik upisane kružnice i

R-poluprečnik opisane kružnice.

Pravougli:

$$O = a + b + c$$

$$P = \frac{ab}{2}$$
 ili $P = \frac{ch_c}{2}$ odavde je: $h_c = \frac{a \cdot b}{c}$

$$a^2 + b^2 = c^2$$
 Pitagorina teorema

$$R = \frac{c}{2}$$
; $r = \frac{a+b-c}{2}$; $h_c = \sqrt{pq}$; $a = \sqrt{pc}$; $b = \sqrt{qc}$; $c = p+q$

Jednakokraki:

Ovde je a osnova i b krak (kraci)

$$O = a + 2b$$
 $P = \frac{ah_a}{2} = \frac{bh_b}{2}$ Primena Pitagorine teoreme: $h_a^2 + (\frac{a}{2})^2 = b^2$

Jednakostranični:

$$O = 3a \quad i \quad P = \frac{a^2 \sqrt{3}}{4}$$

Visina
$$h = \frac{a\sqrt{3}}{2}$$
; $r_y = \frac{1}{3}h = \frac{a\sqrt{3}}{6}$; $r_o = \frac{2}{3}h = \frac{a\sqrt{3}}{3}$

Kod ovog trougla sve četiri značajne tačke se nalaze u jednoj tački.

<u>Srednja linija trougla</u> (m) je duž koja spaja sredine dve stranice i uvek je jednaka polovini paralelne stranice.

Podudarnost

$$\triangle ABC \cong \triangle A_1B_1C_1 \Leftrightarrow$$

(SSS) Ako su sve stranice jednog trougla jednake odgovarajućim stranicama drugog trougla.

(SUS) Ako su dve stranice i zahvaćeni ugao jednog trougla jednaki dvema stranicama i zahvaćenom uglu drugog trougla.

(USU) Ako su stranica i na nju nalegli uglovi jednog trougla jednaki sa stranicom i na nju naleglim uglovima drugog trougla.

(SSU) Ako su dve stranice i ugao naspram veće od njih jednog trougla jednaki dvema stranicama i uglu naspram veće od njih drugog trougla.

Sličnost

$$\triangle ABC \sim \triangle A_1 B_1 C_1 \Leftrightarrow$$
 $\angle A = \angle A_1, \angle B = \angle B_1, \angle C = \angle C_1$
 $AB: A_1 B_1, BC: B_1 C_1, CA: C_1 A_1$

- Ako su dva ugla jednog trougla jednaka sa dva ugla drugog trougla.
- Ako su tri stranice jednog trougla proporcionalne trima stranicama drugog trougla.
- Ako su dve stranice jednog trougla proporcionalne dvema stranicama drugog trougla i uglovi izmedju tih stranica jednaki.
- Ako su dve stranice jednog trougla proporcionalne sa odgovarajućim stranicama drugog trougla, uglovi naspram dveju od tih odgovarajućih stranica su uglovi iste vrste (ili oštri, ili pravi, ili tupi).

ZADACI

1) Dat je pravougli trougao. Poluprečnik opisanog kruga je R=15,a poluprečnik upisanog kruga je r=6. Odrediti osnovice.

Pošto se radi o pravouglom trouglu, važe formule:
$$\frac{r=6}{a=?}$$

$$b=?$$

$$c=?$$

$$c=?$$

$$a+b-30=12$$

$$a+b=42$$

$$b=42-a$$
Pošto se radi o pravouglom trouglu, važe formule:
$$c=2R$$

$$c=2R$$

$$c=2.15$$

$$c=30$$

Sada ćemo iskoristiti Pitagorinu teoremu.

$$a^{2} + b^{2} = c^{2}$$
 $a_{1,2} = \frac{42 \pm 6}{2}$ $a = 24$ $a^{2} + 1764 - 84a + a^{2} - 900 = 0$ $a = 18$ $2a^{2} - 84a + 864 = 0$ $2a = 24 \Rightarrow b = 42 - 24 = 18$ $2a = 24 \Rightarrow b = 42 - 18 = 24$ $a^{2} - 42a + 432 \Rightarrow$ Kvadratna "po a" **Dakle, stranice trougla su 18,24,30**

2) Poluprečnik kruga upisanog u jednokraki trougao osnovice a=12 je r=3. Izračunati površinu i obim trougla.

$$a = 12$$

$$r = 3$$

$$P = ?, O = 9$$

Obeležavamo sa M podnožje visine iz A sa O centar upisane kružnice i sa D podnožje poluprečnika na stranicu b

Trouglovi BMC i CDO su slični.Okrenućemo ih da bi uočili tu sličnost.

Iz sličnosti trouglova sledi proporcionalnost odgovarajućih stranica,

$$b: x = \frac{a}{2}: r$$

$$b: x = 6:3$$

$$3b = 6x \Rightarrow b = 2x$$

Sada primenjujemo Pitagorinu teoremu na trougao AMC

$$\left(\frac{a}{2}\right)^2 + (x+r)^2 = b^2$$

$$6^2 + (x+3)^2 = (2x)^2$$

$$36 + x^2 + 6x + 9 = 4x^2$$

$$3x^2 - 6x - 45 = 0$$

Podelimo sa 3 i rešavamo kao kvadratnu jednačinu...

$$x_{1,2} = \frac{2 \pm 8}{2}$$

$$x = 5 \Rightarrow b = 10$$

$$x = -3 \rightarrow \text{Nemoguće}$$

$$h = x + r = 5 + 3 = 8 \Rightarrow h = 8$$

$$O = a + 2b$$

$$P = \frac{a \cdot h}{2}$$

$$O = 12 + 2 \cdot 10$$

$$P = \frac{12 \cdot 8}{2}$$

$$O = 32$$

$$P = 48$$

3) Uglovi trougla se odnose kao 2:3:7. Dužina najmanje stranice je $\,a$. Odrediti poluprečnik $\,R$ opisane kružnice.

Povučemo visinu BB₁

Da sklopimo sada rezultate:

$$BC = a$$

 $AB = a\sqrt{2} = c$
 $AC = AB_1 + B_1C = \frac{a\sqrt{6}}{2} + \frac{a\sqrt{2}}{2} = \frac{a\sqrt{2}}{2} (\sqrt{3} + 1) = b$

Površina trougla je:

$$P = \frac{AC \cdot BB_1}{2} = \frac{a\sqrt{2}}{2} \left(\sqrt{3} + 1\right) \cdot \frac{a\sqrt{2}}{2} = \frac{a^2\left(\sqrt{3} + 1\right)}{4}$$

$$P = \frac{abc}{4R}$$

$$R = \frac{abc}{4P} = \frac{a \cdot \frac{a\sqrt{2}}{2} \left(\sqrt{3} + 1\right) \cdot a\sqrt{2}}{4 \cdot \frac{a^2\left(\sqrt{3} + 1\right)}{4}}$$

$$a^3$$

$$R = \frac{a^3}{a^2}$$
 skratimo...
$$R = a$$

4) Dužina luka izmedju dva susedna temena jednakostraničnog trougla upisanog u krug poluprečnika r je $l=\frac{4\pi}{3}$. Odrediti površinu trougla.

Pošto se obim ovog kruga sastoji iz tri ovakva luka:

$$O = 3 \cdot \frac{4\pi}{3}$$

$$O = 4\pi$$

$$2r\pi = 4\pi$$

$$r = 2$$

Poluprečnik opisane kružnice je:

r =
$$\frac{a\sqrt{3}}{3}$$
 \Rightarrow $\frac{a\sqrt{3}}{3} = 2$ (racionališemo)
$$a = \frac{6}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}$$

$$a = \frac{6\sqrt{3}}{\sqrt{3}} = 2\sqrt{3}$$

$$a = \frac{6\sqrt{3}}{\sqrt{3}} = 2\sqrt{3}$$

$$a = \frac{6\sqrt{3}}{\sqrt{3}} = 2\sqrt{3}$$

$$P = \frac{a^2\sqrt{3}}{4}$$

$$P = \frac{(2\sqrt{3})^2\sqrt{3}}{4} = \frac{4\cdot3\cdot\sqrt{3}}{4} = 3\sqrt{3}$$

5) Površina oštrouglog trougla čije dve stranice su a = 5 i b = 3 je P = 6. Odredi obim trougla.

I NAČIN

$$a = 5$$

Jedan od obrazaca za površinu je:

$$b = 3$$

$$P = 6$$

$$P = \frac{a \cdot b}{2} \sin \gamma$$

$$\overline{O} = ?$$

$$6 = \frac{5 \cdot 3}{2} \sin \gamma$$

$$\sin \gamma = \frac{12}{15} = \frac{4}{5}$$

Pošto je:

$$\sin^2 \gamma + \cos^2 \gamma = 1$$

$$\cos^2 \gamma = 1 - \sin^2 \gamma$$

$$\cos^2 \gamma = 1 - \frac{16}{25}$$

$$\cos \gamma = \pm \sqrt{\frac{9}{25}}$$

$$\cos \gamma = \pm \frac{3}{5} \rightarrow \boxed{\cos \gamma = \frac{3}{5}}$$

Sad ćemo iskoristiti kosinusnu teoremu:

 $c^2 = a^2 + b^2 - 2ab\cos\gamma$

Moramo ovde menjati obe vrednosti za cos...

$$c^2 = 5^2 + 3^2 - 2 \cdot 5 \cdot 3 \cdot \frac{3}{5}$$
 ili $c^2 = 5^2 + 3^2 + 18$

$$c^2 = 5^2 + 3^2 + 18$$

$$c^2 = 25 + 9 - 18$$

$$c^2 = 52$$

$$c^2 = 16$$

$$c = 2\sqrt{13}$$

$$c = 4$$

Pošto je trougao oštrougli uzećemo $c = 2\sqrt{13}$ jer bi u suprotnom sa stranicama 3,4,5 bio pravougli.

$$O = 8 + 2\sqrt{13}$$

II NAČIN

$$a = 5$$
 Jedan od obrazaca za površinu trougla je $b = 3$ $P = 6$
$$P = \sqrt{s(s-a)(s-b)(s-c)}$$

$$6 = \sqrt{\frac{8+c}{2}} \left(\frac{8+c}{2} - 5\right) \left(\frac{8+c}{2} - 3\right) \left(\frac{8+c}{2} - c\right)$$

$$36 = \frac{8+c}{2} \cdot \frac{c-2}{2} \cdot \frac{c+2}{2} \cdot \frac{8-c}{2}$$

$$36 \cdot 16 = (8+c)(8-c)(c-2)(c+2)$$

$$576 = (64-c^2)(c^2-4) \rightarrow \text{Smena } c^2 = t$$

$$576 = (64-t)(t-4)$$

$$576 = 64t - 256 - t^2 + 4t$$

$$t^2 - 68t + 832 = 0 \rightarrow \text{Kvadratna ''po t''}$$

$$t_{1,2} = \frac{68 \pm 36}{2}$$

$$t_1 = 52$$

$$t_2 = 16$$
 Dakle:
$$c^2 = 52 \qquad \text{ili} \qquad c^2 = 16$$

$$c = \sqrt{52} \qquad c = 4$$

A ovo su ista rešenja kao kod prvog načina...

6) Obim pravouglog trougla je O=36, a poluprečnik upisanog kruga je r=3. Odrediti obim opisanog kruga.

$$O = 36$$

$$\frac{r = 3}{O_{kr} = ?}$$

$$O = a + b + c$$

$$\boxed{a + b + c = 36}$$

$$r = \frac{a + b - c}{2}$$

$$3 = \frac{a + b - c}{2}$$

$$a + b - c = 6 \text{ odavde izrazimo c}$$

$$\boxed{c = a + b - 6}$$

Pazi:
$$(A+B+C)^2 = A^2 + B^2 + C^2 + 2AB + 2AC + 2BC$$

$$a^{2} + b^{2} = c^{2}$$

$$a^{2} + b^{2} = (a+b-6)^{2}$$

$$a^{2} + b^{2} = a^{2} + b^{2} + 36 + 2ab - 12a - 12b$$

$$2ab - 12a - 12b = -36 \dots / 2$$

$$ab - 6a - 6b = -18$$

$$a(21-a) - 6a - 6(21-a) + 18 = 0$$

$$21a - a^{2} - 6a - 126 + 6a + 18 = 0$$

$$-a^{2} + 21a - 108 = 0$$

$$a^{2} - 21a + 108 = 0 \rightarrow \text{Kvadratna "po } a\text{"}$$

$$a_{1,2} = \frac{21 \pm 3}{2}$$

Pošto je: $c = 2R \Rightarrow 2R = 15$

c = a + b - 6 = 12 + 9 - 6 = 15

 $a_1 = 12 \Rightarrow b = 9$ $a_2 = 9 \Rightarrow b = 12$

Obim opisanog kruga je: $O = 2R\pi = 15\pi$