Causal Machine Learning – Autumn Quarter 2024–2025

Slides Set #2: Frequentist Inference and Influence Functions

Max H. Farrell

(version 1.1, compiled October 10, 2024)

Topics to cover

- 1. Inference based on asymptotic Normality
- 2. Standard errors
- 3. Estimators as maps from data sets to $\mathbb R$
- 4. Influence functions
- 5. Examples in parametric models (OLS, MLE)
- 6. Two step estimation

Example: Linear Regression

Fit a linear model (for simplicity, only one variable)

- ▶ Model: $Y = \beta_0 + \beta_1 X + \varepsilon$, $\mathbb{E}[\varepsilon \mid X] = 0$, $\mathbb{E}[\varepsilon^2 \mid X] = \sigma^2$
- ▶ Data: $\{y_i, x_i\}, i = 1, ..., n$
- $\blacktriangleright \ \ \mathsf{Estimation} \ y_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i + e_i$

Standard/textbook result.

$$\sqrt{n}(\widehat{\beta} - \beta) \to_d \mathcal{N}(0, V)$$

- 1. What does this mean?
- 2. Where does this come from?
- 3. What is V?

What Variance?

We talk about "variance" a lot.

- $ightharpoonup \sigma^2$ is the variance of ε (or $\mathbb{V}[Y\mid X]$).
- ightharpoonup V is the (asymptotic) variance of \widehat{eta}

We **actually do** see many realizations of ε , and they **vary**. We have **only one** value $\widehat{\beta}$, so how does it "vary"? How does V quantify the precision of the estimator?

 \triangleright ε is one draw from $(0, \sigma^2)$

(We see n of these)

 $ightharpoonup \widehat{eta}$ is one draw from $\mathcal{N}(eta,V)$

- (Wee see 1 of these)
- Example: You flip n coins. Each of the n tosses $\{0,1\}$ is Bernoulli distributed, but the mean is Normally distributed.

Both σ^2 and V measure how much each draw bounces around

- ightharpoonup Standard errors are just estimates of this, since we don't know V.
- ▶ How much will $\widehat{\beta}$ changes if the data changes (which it won't)?

Frequentist Inference

Functions/Maps

- $ightharpoonup q=f(w)=w^2$ is a function that maps $\mathbb{R}\mapsto\mathbb{R}$
- ▶ Different $w \in \mathbb{R}$ yield different $q \in \mathbb{R}$
- ightharpoonup f(w) is a function, but after you know w, q is fixed.

Random Variable

- ightharpoonup Every RV is a map from a **sample space** to the **real line**. E.g. $X: \mathcal{S} \to \mathbb{R}$
- lacktriangle Different $\omega \in \mathcal{S}$ yield different realizations $x_i \in \mathbb{R}$
- ightharpoonup X is random, but after you know ω , x_i is fixed
- ▶ Column of data is a set of n realizations of this map: $x_i = X(\omega), \ \omega \in \mathcal{S}$

Frequentist Inference

Estimators are Random Variables

- $\triangleright \widehat{\beta} := \widehat{\beta}(\omega) \to \mathbb{R}$
- ▶ The sample space $S = \{all \text{ possible data sets}\}$
 - ightharpoonup Each point $\omega \in \mathcal{S}$ is a data set of size n
 - lacktriangle Write F for the poulation distribution of the random variables (Y,X)
 - $ightharpoonup F_n$ is the empirical distribution of the data set
 - We will write $\widehat{\beta} = \widehat{\beta}(\omega) = \widehat{\beta}(F_n)$
- ▶ Different $\omega = F_n \in \mathcal{S}$ yield different realizations $\widehat{\beta} \in \mathbb{R}$
- $ightharpoonup \widehat{\beta}$ is random, but after you know F_n , $\widehat{\beta}$ is fixed
- $lackbox{}\widehat{eta}$ changes if the data changes (but the data never actually changes)
- ► Monte Carlo illustration

Influence Functions

- \blacktriangleright To find V, we need to measure how $\widehat{\beta}$ changes when the data changes
- $lackbox{ View }\widehat{eta}$ as a function of the data: $\widehat{eta}:=\widehat{eta}(F_n)$, with F_n the distribution of the data
 - $ightharpoonup \widehat{\beta} o \beta$, which is also a function of the population "data": $\beta(F)$
 - ▶ If F_n are draws from F, then $\beta(F)$ is defined as what $\widehat{\beta}(F_n)$ estimates

Just like any other function, we can ask what happens to the output if the input changes a little.

What happens to $f(w)=w^2$ when w changes a little?

- f(2) = 4, f(2+0.1) = 4.41
- f'(w) = 2w

Need to formalize $\widehat{\beta}(\mathrm{data}+0.1)$. Need to find the derivative of $\widehat{\beta}$ with respect to the data set.

Really Simple Example: Sample Mean

Forget about X, assume we only have Y

- Model: $Y = \alpha + \nu$, $\mathbb{E}[\nu] = 0$, $\mathbb{E}[\nu^2] = \rho^2$
- **E**stimation: $\widehat{\alpha} = \sum_{i=1}^{n} y_i/n$

As a function of the distribution:

- $\widehat{\alpha} = \widehat{\alpha}(F_n) = \int y dF_n(y) = \mathbb{E}_n[Y] = \frac{1}{n} \sum_{i=1}^n y_i$
- $ightharpoonup \alpha = \alpha(F) = \int y dF(y) = \mathbb{E}[Y]$

How to think about the data changing?

- 1. **Influence** of one data point on the statistic $\alpha(F)$
- 2. Perturbation of the data
- 3. Explicit derivative

Really Simple Example: Sample Mean

Both the **influence function** and the **CLT** capture how the statistic changes when the data changes.

Now we connect the two.

- ► The CLT applies to averages, and the influence function is exactly what you are averaging
 - ▶ For large n, F_n is close to F, so we examine $\alpha(F_n) \alpha(F)$
- ▶ Need to properly center and scale the statistic

$$\sqrt{n}\left(\widehat{\alpha} - \alpha\right) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \underbrace{\left(y_i - \mathbb{E}[Y]\right)}_{\mbox{influence function}} \rightarrow_d \mathcal{N}(0, \rho^2)$$

- The asymptotic variance is just the variance of the influence function!
- Standard errors are just estimates of this variance

Back to Regression

Instead of differentiation, this time let's just derive forward until we get something in the right format:

$$\widehat{\beta} - \beta = \frac{1}{n} \sum_{i=1}^{n} M^{-1} x_i \varepsilon_i + o_P(1/\sqrt{n})$$

Note the format: Inverse times residual

▶ Inverse is also key for identification and is second derivative

Maximum Likelihood

Standard MLE:

- lacktriangle Data z_i , Parameter heta, Negative log likelihood $\ell(z, heta)$
- $\theta_0 = \arg\min_{\theta} \mathbb{E}[\ell(Z, \theta)]$

$$\widehat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell(Z_i, \theta)$$

$$\Leftrightarrow 0 = \mathbb{E}_n \left[\ell_{\theta}(z_i, \widehat{\theta}) \right] = \mathbb{E}_n \left[\ell_{\theta}(z_i, \theta_0) + \mathbb{E}_n \left[\ell_{\theta\theta}(z_i, \overline{\theta}) \right] \left(\widehat{\theta} - \theta_0 \right) \right]$$

So if $\mathbb{E}_n\left[\ell_{\theta\theta}(z_i,\bar{\theta})\right] \to_p \Lambda(\theta_0) > 0$, then

(Need ULLN, see Newey & McFadden)

$$\left(\widehat{\theta} - \theta_0\right) = \frac{1}{n} \sum_{i=1}^n -\Lambda(\theta_0)^{-1} \ell_{\theta}(z_i, \theta_0) + o_P(1/\sqrt{n})$$

Note the format: Inverse times residual

Inverse is also key for identification and is second derivative

Back to treatment effects

Just need to identify the CATE

- ▶ If we have $\tau(x)$, then we can average to get $\tau = \mathbb{E}[\tau(X)]$
- ▶ If we have $\mathbb{E}[Y(1) \mid X]$, we can average to get $\mathbb{E}[Y(1)]$

Two strategies

- ▶ Imputation: $\mathbb{E}[Y \mid T = 1, X = x]$
- ▶ Inverse weighting: $\mathbb{E}[YT \mid X = x] / \mathbb{E}[T \mid X = x]$

Observational Data - Binary Treatment

- ▶ Recall the selection bias problem: $\mathbb{E}[Y(0) \mid T=1] \neq \mathbb{E}[Y(0) \mid T=0]$
- Randomization made this go away
- $\hbox{ Key idea with observational data: } X \hbox{ captures why people select} \\ \Rightarrow \mathbb{E}[Y(0) \mid T=1, X=x] = \mathbb{E}[Y(0) \mid X=x]$
- ▶ Intuition: need an RCT for each X = x
- CIA, unconfoundedness, missing at random, . . .
 - ▶ Strong version: $Y(1), Y(0) \perp T \mid X$
 - Weak version: $\mathbb{E}[Y(t) \mid T, X] = \mathbb{E}[Y(t) \mid X]$
- Also still need overlap, consistency, SUTVA

Two step estimation

- lackbox Our goal is to estimate $au=\mathbb{E}[Y(1)]-\mathbb{E}[Y(0)]$ and provide inference
- $Y = \alpha(X) + \beta(X)T + \varepsilon$ is w.l.o.g.
- ▶ In an RCT you recover the average of heterogeneous effects:

$$\hat{Y} = \widehat{\alpha} + \widehat{\beta}T \longrightarrow \widehat{\beta} \to_p \mathbb{E}[\beta(X)]$$

- ▶ But in general this fails
 - Need to account for heterogeneity, but we also want to exploit it
 - ▶ Need to get the CATE correct
- ► Two step estimation:
 - 1. Estimate $\alpha(x)$ and $\beta(x)$
 - 2. Use these to estimate $\tau = \mathbb{E}[\beta(X)]$ and do inference

Example: Linear models

Assume a correctly specified linear (or other parametric) model:

$$\mu_t(x) = \mathbb{E}[Y(t) \mid X = x] = x'\beta_t$$

- $CATE = \beta(x) = \tau(x) = x'\beta_1 x'\beta_0$
- Run a regression in treatment and control groups separately, then project everywhere (or run a saturated model).
- ► Then $\widehat{\tau} = \widehat{\mathbb{E}[Y(1)]} \widehat{\mathbb{E}[Y(0)]} = \frac{1}{n} \sum_{i=1}^{n} x_i \widehat{\beta}_1 \frac{1}{n} \sum_{i=1}^{n} x_i \widehat{\beta}_0.$

Big questions for today:

- lacktriangle How do we do inference for au even though we estimate eta_t first
- How can we change our approach to make this easier/better?
- Where do influence functions fit in?

Intuition for the problem

When we estimate $\mathbb{E}[Y(1)]$ there are two sources of uncertainty:

1. Usual frequentist parameter uncertainty: when the data changes the numbers change If we knew β_1 or $\widehat{\beta}_1$ was fixed, we'd have a standard CLT:

$$\sqrt{n}\left(\widehat{\mathbb{E}[Y(1)]} - \mathbb{E}[Y(1)]\right) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left\{ x_i \widehat{\beta}_1 - \mathbb{E}[Y(1)] \right\} \to_d \mathcal{N}(0, \Sigma),$$

Data changes $\to x_i$ changes $\to x_i \widehat{\beta}_1$ changes $\to \widehat{\mathbb{E}[Y(1)]}$ changes

2. Model uncertainty – when the data changes the function(al) $\widehat{eta}_1(F_n)$ changes

data changes
$$x_i$$
 changes $x_i \widehat{\beta}_1$ changes twice $\widehat{\beta}_1$ changes

Formally as Maps

- \triangleright $\widehat{\beta}_1$ and β_1 are functions of the DGP
 - ▶ In fact the same function: $\widehat{\beta}_1(F_n) \to_p \beta_1(F) = \beta_1$
- Averaging is a function of the DGP
 - ▶ Remember $\frac{1}{n} \sum_{i=1}^{n} y_i$ versus $\mathbb{E}[Y]$
- ▶ So $\widehat{\mathbb{E}[Y(1)]} = \frac{1}{n} \sum_{i=1}^{n} x_i \widehat{\beta}_1$ is function of the data twice

$$\begin{split} \widehat{\mathbb{E}[Y(1)]} &= \widehat{\mathbb{E}[Y(1)]}(F_n) = \widehat{\mathbb{E}[Y(1)]}(F_n, \widehat{\beta}_1(F_n)) \\ \widehat{\mathbb{E}[Y(1)]} &\to_p \mathbb{E}[Y(1)] = \mathbb{E}_F[X\beta(F)] \end{split}$$

▶ Derive IF for $\widehat{\mathbb{E}[Y(1)]} = \frac{1}{n} \sum_{i=1}^{n} x_i \widehat{\beta}_1 \dots$

Key idea: use the IF for estimation

- ▶ Can we find a **different** function of the data that still estimates $\mathbb{E}[Y(1)] = \mathbb{E}_F[X\beta(F)]$, but without this two step estimation problem?
- ► Yes! We use the influence function

$$\widetilde{\mathbb{E}[Y(1)]} = \frac{1}{n} \sum_{i=1}^{n} \hat{\phi}(z_i) = \frac{1}{n} \sum_{i=1}^{n} \left\{ x_i' \hat{\beta}_1 + \mathbb{E}_n[x_i'] \hat{M}_1^{-1} t_i x_i \hat{\varepsilon}_i \right\}$$

Some Monte Carlos

Doubly robust estimation

Similar idea, but from a different angle

lacktriangle We already saw two ways to identify $\mathbb{E}[Y(1)]$

$$\mathbb{E}[Y(1)] = \mathbb{E}\left[\mathbb{E}\left[Y \mid T = 1, X\right]\right] = \mathbb{E}\left[\frac{TY}{p(X)}\right]$$

So we can use one or the other estimator:

$$\widehat{\mathbb{E}[Y(1)]}_{\text{IMP}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_1(x_i) \qquad \widehat{\mathbb{E}[Y(1)]}_{\text{IPW}} = \frac{1}{n} \sum_{i=1}^{n} \frac{t_i y_i}{\widehat{p}(x_i)}$$

- ▶ Each relies on a first step estimator: $\widehat{\mu}_1(x) = \widehat{\mathbb{E}}\left[Y \mid T=1, X=x\right]$ and $\widehat{p}(x_i) = \widehat{\mathbb{P}}[T=1 \mid X=x]$
 - First step has to be right

Doubly robust estimation

Basic idea of doubly robust estimation:

- ► Two chances to get the right answer
- Cost: do **both** first step estimators
- Benefit: ATE is right if either first step is right

$$\widehat{\mathbb{E}[Y(1)]}_{DR} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_{1}(x_{i}) + \frac{t_{i} (y_{i} - \widehat{\mu}_{1}(x_{i}))}{\widehat{p}(x_{i})}$$

- ▶ What if only $\widehat{\mu}_1(x_i)$ is right? What if only $\widehat{p}(x_i)$ is right?
- ▶ What if both are "close"?
- ► Consistent? Bias limit/asymptotic/finite?
- Related to IF?

General Case

Two step M/Z estimation

1. $\theta_0 = \arg\min_{\theta} \mathbb{E}[\ell(Z, \theta)] = \arg\operatorname{zero}_{\theta} \mathbb{E}[\ell_{\theta}(Z, \theta)]$

$$\Rightarrow \left(\widehat{\theta} - \theta_0\right) = \frac{1}{n} \sum_{i=1}^n -\Lambda^{-1} \ell_{\theta}(z_i, \theta_0) + o_P(1/\sqrt{n})$$

2. $\mu_0 = \arg\min_m \mathbb{E}[g(Z, m, \theta_0)] = \arg\operatorname{zero}_m \mathbb{E}[g_{\mu}(Z, m, \theta_0)]$ $\widehat{\mu} = \arg\min_m \mathbb{E}_n[g(z_i, m, \widehat{\theta})] = \arg\operatorname{zero}_m \mathbb{E}_n[g_{\mu}(z_i, m, \widehat{\theta})]$

$$\Rightarrow (\widehat{\mu} - \mu_0) = \frac{1}{n} \sum_{i=1}^n -\Omega^{-1} g_{\mu}(Z, \mu_0, \widehat{\theta}) + o_P(1/\sqrt{n})$$

$$= \frac{1}{n} \sum_{i=1}^n -\Omega^{-1} \Big\{ g_{\mu}(Z, \mu_0, \theta_0) + \mathbb{E}[g_{\mu, \theta}(Z, \mu_0, \theta_0)] \Lambda^{-1} \ell_{\theta}(z_i, \theta_0) \Big\} + o_P(1/\sqrt{n})$$

Familiar format

- ► Inverse × residual
- ▶ plug+in + gradient × correction