LUNDS TEKNISKA HÖGSKOLA MATEMATIK

LÖSNINGAR ENDIMENSIONELL ANALYS A2 2013-03-11

1. Svar: a)
$$\frac{3}{2}$$
, b) $-\infty$, c) ∞ , d) 0, e) $\frac{e^{3\pi/2} - 1}{\pi}$.

2. Funktionen är definierad för alla $x \neq \pm 2$. Derivering ger (för $x \neq \pm 2$)

$$f'(x) = \frac{2(x-1)(x^2-4) - (x-1)^2 2x}{(x^2-4)^2} = \dots \frac{2(x-1)(x-4)}{(x^2-4)^2}.$$

Vi har nu underlag för följande teckentabell:

x		-2		1		2		4	
f'(x)	+	}	+	0	_	?	_	0	+
f(x)	7	}	7	0	>	}	>	$\frac{3}{4}$	7

Punkten x = 1 är en lokal maximipunkt och x = 4 är en lokal minimipunkt.

Vi undersöker nu vad som händer där f ej är definierad, dvs. vid $x=\pm 2$. Vi har

$$\lim_{x \to -2^+} f(x) = -\infty \quad \text{och} \quad \lim_{x \to -2^-} f(x) = +\infty,$$

så x = -2 är lodrät asymptot. Vidare gäller det att

$$\lim_{x \to 2^+} f(x) = +\infty \quad \text{och} \quad \lim_{x \to 2^-} f(x) = -\infty,$$

så även x = 2 är lodrät asymptot.

Det gäller att

$$f(x) = \frac{x^2 (1 - \frac{1}{x})^2}{x^2 (1 - \frac{4}{x})} \to \frac{(1 - 0)^2}{1 - 0} = 1$$

då $x \to \pm \infty$, så vi ser direkt att y = 1 är sned (vågrät) asymptot då $x \to \pm \infty$. Vi har nu tillräckligt med information för att kunna rita grafen

Svar: Lokal maximipunkt x=1 och lokal minimipunkt x=4. Lodräta asymptoter $x=\pm 2$ och sned (vågrät) asymptot y=1 då $x\to\pm\infty$.

3. Vi löser först $z^3=8$. Ansätt $z=re^{i\theta}$ och skriv högerledet av ekvationen på polär form:

$$(re^{i\theta})^3 = 8e^{i0} \quad \Leftrightarrow \quad r^3e^{i3\theta} = 2^3e^{ik2\pi} \quad \Leftrightarrow \quad \begin{cases} r = 2\\ \theta = \frac{k2\pi}{3} \end{cases}.$$

Vi har alltså de tre lösningarna $z=2e^{i\frac{k2\pi}{3}},\ k=0,1,2$, vilka på rektangulär form blir z=2 och $z=2(-\frac{1}{2}\pm i\frac{\sqrt{3}}{2})=-1\pm i\sqrt{3}$. Eftersom p(z) har reella koefficienter så måste de konjugerade $z=-1\pm i\sqrt{3}$ vara de gemensamma nollställena. Således har p(z) faktorn

$$(z - (-1 + i\sqrt{3}))(z - (-1 - i\sqrt{3})) = z^2 + 2z + 4.$$

Polynomdivision ger

$$p(z) = (z^2 - 2z + 5)(z^2 + 2z + 4)$$

och de övriga lösningarna till p(z) = 0 fås nu av

$$z^2 - 2z + 5 = 0 \quad \Longleftrightarrow \quad z = 1 \pm 2i.$$

Svar: $z = -1 \pm i\sqrt{3} \text{ och } z = 1 \pm 2i$

- 4. a) Se läroboken sid. 212.
 - b) Exempelvis f(x) = |x| är kontinuerlig men inte deriverbar i x = 0.
 - c) Funktionen är kontinuerlig överallt utom eventuellt i x=0, så det är denna punkt vi måste undersöka. Det skall enligt definitionen av kontinuitet gälla att $f(x) \to f(0)$ då $x \to 0$, och eftersom

$$\arctan \frac{1}{x^2} \to$$
 " $\arctan \infty$ " = $\frac{\pi}{2}$ då $x \to 0^-$

så ser vi att vi måste ha $a = \pi/2$. Vidare gäller det att

$$\frac{1}{x}\left(\sqrt{\frac{1}{x^2} + b} - \frac{1}{x}\right) = \frac{1}{x} \frac{\left(\sqrt{\frac{1}{x^2} + b} - \frac{1}{x}\right)\left(\sqrt{\frac{1}{x^2} + b} + \frac{1}{x}\right)}{\sqrt{\frac{1}{x^2} + b} + \frac{1}{x}} = \frac{1}{x} \frac{\frac{1}{x^2} + b - \frac{1}{x^2}}{\frac{1}{x}\left(\sqrt{1 + bx^2} + 1\right)} = \frac{b}{\sqrt{1 + bx^2} + 1} \to \frac{b}{\sqrt{1 + 0} + 1} = \frac{b}{2} \quad \text{då } x \to 0^+.$$

Vi ser därför att $b/2 = \pi/2$, dvs. $b = \pi$.

Svar: $a = \pi/2$ och $b = \pi$.

5. a) Vi beräknar derivatorna upp till ordning 3 av $f(x) = (1+x)^{3/2}$ och får utvecklingen

$$f(x) = 1 + \frac{3}{2}x + \frac{3}{8}\frac{1}{\sqrt{1+\theta x}}x^2, \qquad 0 \le \theta \le 1.$$

Detta leder till att

$$\left| f(x) - 1 - \frac{3}{2} \right| = \left| \frac{3}{8} \frac{1}{\sqrt{1 + \theta x}} x^2 \right| = \frac{3}{8} \frac{1}{\sqrt{1 + \theta x}} x^2 \le$$

$$\le \frac{3}{8} \frac{1}{\sqrt{1 - \frac{1}{2}}} x^2 = \frac{3}{8} \frac{1}{\sqrt{\frac{1}{2}}} x^2 = \frac{3}{8} \sqrt{2} x^2 \le \frac{3}{8} 2x^2 = \frac{3}{4} x^2$$

då $-1/2 \le x \le 1/2$ och $0 \le \theta \le 1$. Notera speciellt att det är $\theta x = -1/2$ som ger det värsta fallet.

b) Utvecklar vi f(x) ovan ett steg längre så får vi, med den enklare formen av restterm,

$$(1 - x^2)^{3/2} = f(-x^2) = 1 - \frac{3}{2}x^2 + \frac{3}{8}x^4 + x^6B(x),$$

Detta ger

$$\frac{(1-x^2)^{3/2}-1+ax^2}{x^4} = \frac{1-\frac{3}{2}x^2+\frac{3}{8}x^4+x^6B(x)-1+ax^2}{x^4}$$
$$= \frac{\left(a-\frac{3}{2}\right)x^2+\frac{3}{8}x^4+x^6B(x)}{x^4}.$$

För att få ett ändligt gränsvärde måste vi ha a-3/2=0, dvs. a=3/2, och då gäller det att

$$\frac{(1-x^2)^{3/2}-1+ax^2}{x^4} = \frac{\frac{3}{8}x^4+x^6B(x)}{x^4} = \frac{3}{8}+x^2B(x) \to \frac{3}{8}+0$$

då $x \to 0$, eftersom funktionen B är begränsad nära 0.

Svar: a): a = 3/2 ger gränsvärdet 3/8.

6. Cirkelbågens längd är θr , så cirkelsektorn omkrets ges av $O = 2r + \theta r$. Sektorns andel av en hel cirkelskiva med radie r är $\theta/2\pi$, så det skall gälla att $\pi r^2 \cdot \theta/2\pi = A$, eller ekvivalent att $\theta r^2/2 = A$. Vi löser här ut $\theta = 2A/r^2$, och kan därefter uttrycka omkretsen i enbart r:

$$O(r) = 2r + \frac{2A}{r^2}r = 2r + \frac{2A}{r}.$$

Derivering ger

$$O'(r) = 2 - \frac{2A}{r^2} = 0 \quad \Leftrightarrow \quad r^2 = A \quad \Leftrightarrow \quad r = \pm \sqrt{A},$$

där vi såklart förkastar den negativa roten. Med hjälp av en teckentabell ser vi nu att $r=\sqrt{A}$ verkligen ger det minsta värdet på omkretsen. Slutligen beräknar vi för denna radie

r		\sqrt{A}	
O'(r)	1	0	+
f(r)	×	}	7

$$\theta = \frac{2A}{r^2} = \frac{2A}{A} = 2.$$

Svar: Radien skall vara \sqrt{A} meter, vinkeln 2 radianer.