Esercizio 3 (1+2+1+2 punti)

- ullet Si consideri il circuito in figura e si scriva l'espressione della funzione f
- Trasformare tale espressione, usando assiomi e regole dell'algebra di Boole, in forma normale SOP
- Stendere la tavola di verità di f
- Scrivere l'espressione minimale POS di f

Esercizio 3 (1+2+1+2 punti)

- Si consideri il circuito in figura e si scriva l'espressione della funzione f
- Trasformare tale espressione, usando assiomi e regole dell'algebra di Boole, in forma normale SOP
- Stendere la tavola di verità di f
- Scrivere l'espressione minimale POS di f

1)
$$f = \left[b(a \oplus c) + d(a \oplus c)\right] b \oplus c + d(b \oplus c) =$$

2)
$$\begin{cases} = b(bc+b\bar{c})(ac+\bar{a}\bar{c}) + d(a\bar{c}+\bar{a}c)(bc+b\bar{c}) + b\bar{c}d + \bar{L}cd = \\ bc + d(ab\bar{c}+\bar{a}bc) + b\bar{c}d + \bar{b}cd = \\ = abc + ab\bar{c}d + \bar{a}bcd + b\bar{c}d + \bar{b}cd \end{cases}$$

3) abcd of	
0010 0	4) 06 00 01 11 10
0100 1	0001010
0111 1 1000 0 1001 1	10 1 1 1
1010 0	(1)(-1)(-1)
1110 1	(b+d)(c+d)(a+d)(a+b+c)

La funzione di 4 variabili, $f(x_4, x_3, x_2, x_1)$, vale 1 se $x_4 + x_2x_1 = 0$ mentre risulta non specificata (termini *don't care*) se si verifica la condizione $x_4x_1 = 1$, mentre la funzione $g(x_4, x_2, x_2, x_1)$, vale 1 se x_4 ed x_2 sono uguali. Progettare la rete che realizza le funzioni f e g utilizzando una PLA con il numero minimo di righe.

La funzione di 4 variabili, $f(x_4, x_3, x_2, x_1)$, vale 1 se $x_4 + x_2x_1 = 0$ mentre risulta non specificata (termini *don't care*) se si verifica la condizione $x_4x_1 = 1$, mentre la funzione $g(x_4, x_3, x_2, x_1)$, vale 1 se x_4 ed x_2 sono uguali. Progettare la rete che realizza le funzioni f e g utilizzando una PLA con il numero minimo di righe.

Tabella della verità:

x4	х3	x2	x1	f	g
0	0	0	0	1	1
0	0	0	1	1	1
0	0	1	0	1	0
0	0	1	1	0	0
0	1	0	0	1	1
0	1	0	1	1	1
0	1	1	0	1	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	0	1	-	0
1	0	1	0	0	1
1	0	1	1	-	1
1	1	0	0	0	0
1	1	0	1	-	0
1	1	1	0	0	1
1	1	1	1	-	1

 $g(x_4, x_3, x_2, x_1)$ è ovviamente lo XNOR tra x_4 ed tra x_2 .

$$g(x_4, x_2, x_2, x_1) = x_4 \cdot x_2 + \bar{x}_4 \cdot \bar{x}_2$$

La funzione di 4 variabili, $f(x_4, x_3, x_2, x_1)$, vale 1 se $x_4 + x_2x_1 = 0$ mentre risulta non specificata (termini *don't care*) se si verifica la condizione $x_4x_1 = 1$, mentre la funzione $g(x_4, x_3, x_2, x_1)$, vale 1 se x_4 ed x_2 sono uguali. Progettare la rete che realizza le funzioni f e g utilizzando una PLA con il numero minimo di righe.

$$f = \overline{x_4} \cdot \overline{x_2} + \overline{x_4} \cdot \overline{x_1}$$

$$g(x_4, x_3, x_2, x_1) = x_4 \cdot x_2 + \overline{x}_4 \cdot \overline{x}_2$$

La funzione di 4 variabili, $f(x_4, x_3, x_2, x_1)$, vale 1 se $x_4 + x_2x_1 = 0$ mentre risulta non specificata (termini *don't care*) se si verifica la condizione $x_4x_1 = 1$, mentre la funzione $g(x_4, x_3, x_2, x_1)$, vale 1 se x_4 ed x_2 sono uguali. Progettare la rete che realizza le funzioni f e g utilizzando una PLA con il numero minimo di righe.

$$f = \overline{x_4} \cdot \overline{x_2} + \overline{x_4} \cdot \overline{x_1}$$

$$g(x_4, x_2, x_2, x_1) = x_4 \cdot x_2 + \overline{x}_4 \cdot \overline{x}_2$$

PLA:

