Linear Analysis Homework 7

Michael Nelson

Throughout this homework, let \mathcal{H} be a Hilbert space.

Problem 1

Problem 1.a

Proposition 0.1. Let (x_n) and (y_n) be two sequences in \mathcal{H} such that $x_n \xrightarrow{w} x$ and $y_n \xrightarrow{w} y$ and let $\alpha, \beta \in \mathbb{C}$. Then

$$\alpha x_n + \beta y_n \xrightarrow{w} \alpha x + \beta y$$
.

Proof. Let $z \in \mathcal{H}$. Then

$$\lim_{n \to \infty} (\langle \alpha x_n + \beta y_n, z \rangle) = \lim_{n \to \infty} (\alpha \langle x_n, z \rangle + \beta \langle y_n, z \rangle)$$

$$= \alpha \lim_{n \to \infty} (\langle x_n, z \rangle) + \beta \lim_{n \to \infty} (\langle y_n, z \rangle)$$

$$= \alpha \langle x, z \rangle + \beta \langle y, z \rangle$$

$$= \langle \alpha x + \beta y, z \rangle.$$

Therefore $\alpha x_n + \beta y_n \xrightarrow{w} \alpha x + \beta y$.

Problem 1.b

Proposition 0.2. Let $T: \mathcal{H} \to \mathcal{H}$ be a bounded operator and let (x_n) be a sequence in \mathcal{H} such that $x_n \xrightarrow{w} x$. Then

$$Tx_n \xrightarrow{w} Tx$$
.

Proof. Let $z \in \mathcal{H}$. Then

$$\lim_{n \to \infty} (\langle Tx_n, z \rangle) = \lim_{n \to \infty} (\langle x_n, T^*z \rangle)$$

$$= \langle x, T^*z \rangle$$

$$= \langle Tx, z \rangle.$$

Therefore $Tx_n \xrightarrow{w} Tx$.

Remark. Note that we may not have $Tx_n \to Tx$. Indeed, suppose \mathcal{H} is separable. Let (e_n) be an orthonormal sequence in \mathcal{H} and let $T: \mathcal{H} \to \mathcal{H}$ be the identity map. Then $e_n \xrightarrow{w} 0$ but $Te_n = e_n \not\to 0$. In fact (Te_n) doesn't even converge.

Problem 2

Problem 2.a

Proposition 0.3. Let \mathcal{Y} be a dense subset of \mathcal{H} . Let (x_n) be a bounded sequence of elements in \mathcal{H} and suppose $\langle x_n, y \rangle \to \langle x, y \rangle$ for all $y \in \mathcal{Y}$. Then $x_n \xrightarrow{w} x$.

Proof. Let $z \in \mathcal{H}$. Choose $M \geq 0$ such that $||x_n|| \leq M$ for all $n \in \mathbb{N}$. Choose $y \in \mathcal{Y}$ such that

$$||z-y|| < \frac{\varepsilon}{3\max\{||x||,M\}}$$

(we can do this since \mathcal{Y} is dense in \mathcal{H}). Choose $N \in \mathbb{N}$ such that $n \geq N$ implies

$$|\langle x_n,y\rangle-\langle x,y\rangle|<\frac{\varepsilon}{3}.$$

Then $n \ge N$ implies

$$\begin{aligned} |\langle x_n, z \rangle - \langle x, z \rangle| &= |\langle x_n, z \rangle - \langle x_n, y \rangle + \langle x_n, y \rangle - \langle x, y \rangle + \langle x, y \rangle - \langle x, z \rangle| \\ &\leq |\langle x_n, z - y \rangle| + |\langle x_n, y \rangle - \langle x, y \rangle| + |\langle x, y - z \rangle| \\ &\leq M \|z - y\| + |\langle x_n, y \rangle - \langle x, y \rangle| + \|x\| \|y - z\| \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \\ &= \varepsilon. \end{aligned}$$

Therefore $x_n \xrightarrow{w} x$.

Problem 2.b

Lemma 0.1. Let \mathcal{H} be a separable Hilbert space, let (e_m) be an othonormal basis in \mathcal{H} , let (x_n) be a bounded sequence in \mathcal{H} , and let $x \in \mathcal{H}$. Then $x_n \xrightarrow{w} x$ if and only if $\langle x_n, e_m \rangle \to \langle x, e_m \rangle$ for all $m \in \mathbb{N}$.

Proof. Suppose $x_n \stackrel{w}{\to} x$. Then $\langle x_n, y \rangle \to \langle x, y \rangle$ for all $y \in \mathcal{H}$, so certainly $\langle x_n, e_m \rangle \to \langle x, e_m \rangle$ for all $m \in \mathbb{N}$. Conversely, suppose $\langle x_n, e_m \rangle \to \langle x, e_m \rangle$ for all $m \in \mathbb{N}$. We first show that $\langle x_n, y \rangle \to \langle x, y \rangle$ for all $y \in \mathcal{Y}$, where $\mathcal{Y} = \text{span}\{e_m \mid m \in \mathbb{N}\}$, so let $y \in \mathcal{Y}$. Then

$$y = \lambda_1 e_{m_1} + \cdots + \lambda_r e_{m_r}$$

for some (unique) $\lambda_1, \ldots, \lambda_r \in \mathbb{C}$ and $m_1, \ldots, m_r \in \mathbb{N}$. Then

$$\lim_{n \to \infty} \langle x_n, y \rangle = \lim_{n \to \infty} \langle x_n, \lambda_1 e_{m_1} + \dots + \lambda_r e_{m_r} \rangle$$

$$= \overline{\lambda}_1 \lim_{n \to \infty} \langle x_n, e_{m_1} \rangle + \dots + \overline{\lambda}_r \lim_{n \to \infty} \langle x_n, e_{m_r} \rangle$$

$$= \overline{\lambda}_1 \langle x, e_{m_1} \rangle + \dots + \overline{\lambda}_r \langle x, e_{m_r} \rangle$$

$$= \langle x, \lambda_1 e_{m_1} + \dots + \lambda_r e_{m_r} \rangle$$

$$= \langle x, y \rangle.$$

Therefore $\langle x_n, y \rangle \to \langle x, y \rangle$ for all $y \in \mathcal{Y}$. Now since $\overline{\mathcal{Y}} = \mathcal{H}$, we may use Proposition (0.3) to conclude that $\langle x_n, z \rangle \to \langle x, z \rangle$ for all $z \in \mathcal{H}$. In other words, we have $x_n \stackrel{w}{\to} x$.

Corollary. Let (x^n) be a sequence in $\ell^2(\mathbb{N})$ that converges coordinate-wise to $x = (x_m) \in \ell^2(\mathbb{N})$. Then $x^n \xrightarrow{w} x$.

Proof. Saying (x^n) converges coordinate-wise to $x = (x_m)$ is equivalent to saying

$$\lim_{n \to \infty} (\langle x^n, e^m \rangle) = x_m$$
$$= \langle x, e^m \rangle$$

for all $m \in \mathbb{N}$. Thus Lemma (0.1) implies $x^n \xrightarrow{w} x$.

Problem 3

Proposition o.4. Let K be a closed subspace of H. If (x_n) is a sequence of elements in K and $x_n \xrightarrow{w} x$, then $x \in K$. *Proof.* Let $y \in K^{\perp}$. Then

$$0 = \lim_{n \to \infty} (0)$$

$$= \lim_{n \to \infty} (\langle x_n, y \rangle)$$

$$= \langle x, y \rangle.$$

This implies $x \in (\mathcal{K}^{\perp})^{\perp} = \mathcal{K}$.

Remark. The same proof shows that if A is a subset of \mathcal{H} and (x_n) is a sequence of elements in A and $x_n \xrightarrow{w} x$, then $x \in \overline{\operatorname{span}}(A)$.

Problem 4

Proposition 0.5. *Let* $T: \mathcal{H} \to \mathcal{H}$ *be a bounded operator and let* $S: \mathcal{H} \to \mathcal{H}$ *be a compact operator. Then* $TS: \mathcal{H} \to \mathcal{H}$ *and* $ST: \mathcal{H} \to \mathcal{H}$ *are both compact operators.*

Proof. We first show ST is compact. Let (x_n) be a sequence in \mathcal{H} such that $x_n \xrightarrow{w} x$. Since T is a bounded operator, we have $Tx_n \xrightarrow{w} Tx$ by Proposition (0.2). Since S is compact, we have $S(Tx_n) \to S(Tx)$. Thus, ST is compact. Now we show TS is compact. Let (x_n) be a sequence in \mathcal{H} such that $x_n \xrightarrow{w} x$. Since S is compact, we have $Sx_n \to Sx$. Since T is bounded (and in particular continuous) we have $T(Sx_n) \to T(Sx)$. Thus, TS is compact.

Problem 5

Lemma o.2. Let (x_n) be a sequence in \mathcal{H} such that $x_n \xrightarrow{w} x$ and let $(x_{\pi(n)})$ be a subsequence of (x_n) . Then $x_{\pi(n)} \xrightarrow{w} x$.

Remark. Here we view π as a strictly increasing function from $\mathbb N$ to $\mathbb N$ whose range consists of the indices in the subsequence.

Proof. Let $y \in \mathcal{H}$ and let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $n \geq N$ implies

$$|\langle x_n, y \rangle - \langle x, y \rangle| < \varepsilon.$$

Then $\pi(n) \ge N$ implies

$$|\langle x_{\pi(n)}, y \rangle - \langle x, y \rangle| < \varepsilon$$

Proposition o.6. Let $T: \mathcal{H} \to \mathcal{H}$ be a bounded operator with the property that for any bounded sequence (x_n) in \mathcal{H} , the sequence (Tx_n) has a convergent subsequence. Then T is compact.

Proof. Let (x_n) be a sequence in \mathcal{H} such that $x_n \stackrel{w}{\to} x$. Assume (for a contradiction) that $Tx_n \not\to Tx$. Choose $\varepsilon > 0$ and choose a subsequence $(Tx_{\pi(n)})$ of (Tx_n) such that $\|Tx_{\pi(n)} - Tx\| > \varepsilon$ for all $n \in \mathbb{N}$. By the (baby version) of the uniform boundedness principle, the sequence (x_n) is bounded, and hence the subsequence $(x_{\pi(n)})$ must be bounded too. Thus the sequence $(Tx_{\pi(n)})$ has a convergent subsequence (by the hypothesis on T). Choose a convergent subsequence of $(Tx_{\pi(n)})$, say $(Tx_{\rho(n)})$. Since $(x_{\rho(n)})$ is a subsequence of (x_n) , we must have $x_{\rho(n)} \stackrel{w}{\to} x$ by Lemma (0.2), and since T is a bounded operator, we must have $Tx_{\rho(n)} \stackrel{w}{\to} Tx$ by Proposition (0.2). Since $(Tx_{\rho(n)})$ is a convergent sequence and since $Tx_{\rho(n)} \stackrel{w}{\to} Tx$, we must in fact have $Tx_{\rho(n)} \to Tx$. But since $(Tx_{\rho(n)})$ is a subsequence of $(Tx_{\pi(n)})$, we have $\|Tx_{\rho(n)} - Tx\| > \varepsilon$ for all $n \in \mathbb{N}$, and so $Tx_{\rho(n)} \to Tx$. This is a contradiction.

Problem 6

Let \mathcal{K} be a Hilbert space.

Problem 6.a

Proposition 0.7. *If every bounded sequence in* K *has a convergent subsequence, then* K *must be finite-dimensional.*

Proof. We prove the contrapositive statement: if K is infinite-dimensional, then there exists a bounded sequence which has no convergent subsequence. Assume K is infinite-dimensional. Let (e_n) be an orthonormal sequence in K. Then the sequence (e_n) cannot have a convergent subsequence. Indeed, the distance squared between any two elements e_n , e_m (with $m \neq n$) in the sequence is

$$||e_n - e_m||^2 = ||e_n||^2 + ||e_m||^2$$

= 1 + 1
- 2

by the Pythagorean Theorem. Thus any subsequence of (e_n) will fail to be Cauchy (and in particular will fail to converge).

Problem 6.b

Proposition o.8. Let $T: \mathcal{H} \to \mathcal{H}$ be compact. Then $ker(1_{\mathcal{H}} - T)$ is finite-dimensional.

Proof. Let (x_n) be a bounded sequence in $\ker(1_{\mathcal{H}} - T)$. Choose a subsequence $(x_{\pi(n)})$ of (x_n) such that $x_{\pi(n)} \xrightarrow{w} x$ for some $x \in \mathcal{H}$ (such a subsequence exists by a theorem proved in class). Since T is compact, we have

$$x_{\pi(n)} = Tx_{\pi(n)}$$

$$\to Tx$$

$$= x.$$

Thus $(x_{\pi(n)})$ is a convergent subsequence of (x_n) . It follows from Proposition (0.7) that $\ker(1_{\mathcal{H}} - T)$ is finite-dimensional.

Problem 6.c

Proposition 0.9. Let $S: \mathcal{H} \to \mathcal{H}$ be a bounded operator whose image im(S) is closed and infinite-dimensional. Then S cannot be compact.

Proof. Let (y_n) be a bounded sequence in $\operatorname{im}(S)$ and let $\mathcal{K} := \ker(S)$. Choose N > 0 such that $\|y_n\| \leq N$ for all $n \in \mathbb{N}$. Choose a sequence (x_n) in \mathcal{H} such that $Sx_n = y_n$ for all $n \in \mathbb{N}$. By replacing x_n with $x_n - P_{\mathcal{K}}x_n$ if necessary, we may assume that $\langle x_n, z \rangle = 0$ for all $n \in \mathbb{N}$ and for all $n \in \mathbb{N}$. We claim that for each $n \in \mathbb{N}$ the sequence $(|\langle x_n, z \rangle|)$ is bounded. Indeed, since $\operatorname{im}(S)$ is closed, we have $n \in \mathbb{N} = \ker(S) \oplus \operatorname{im}(S^*)$. We've already showing $|\langle x_n, z \rangle|$ is bounded for all $n \in \mathbb{N} = \ker(S)$. Thus it suffices to check that $n \in \mathbb{N}$ is bounded for all $n \in \mathbb{N}$. Let $n \in \mathbb{N}$ be unded for all $n \in \mathbb{N}$. Then

$$|\langle x_n, S^* x \rangle| = |\langle S x_n, x \rangle|$$

$$= |\langle y_n, x \rangle|$$

$$\leq ||y_n|| ||x||$$

$$\leq N||x||.$$

Thus for each $z \in \mathcal{H}$, the sequence $(|\langle x_n, z \rangle|)$ is bounded. It follows from the Uniform Boundedness Principle (stated in Theorem (0.5) in the Appendix) that the sequence (x_n) is bounded. Since S is compact and (x_n) is bounded, the sequence $(Sx_n) = (y_n)$ must have a convergent subsequence. This contradicts the fact that \mathcal{K} is infinite-dimensional.

Proof using Open Mapping Theorem:

Proof. Assume (for a contradiction) that S is compact. Denote $\mathcal{K} := \operatorname{im}(S)$ and let (y_n) be a bounded sequence in \mathcal{K} . Let M > 0 and choose N > 0 such that if $y \in \mathcal{K}$ and ||y|| < N, then there exists an $x \in \mathcal{H}$ such that Sx = y and ||x|| < M (this follows from the Open Mapping Theorem). By scaling the sequence (y_n) if necessary, we may assume that $||y_n|| < N$ for all $n \in \mathbb{N}$. Thus there exists $x_n \in \mathcal{H}$ such that $Sx_n = y$ and $||x_n|| < M$ for all $n \in \mathbb{N}$. Thus (x_n) is a bounded sequence in \mathcal{H} . Since S is compact and (x_n) is bounded, the sequence $(Sx_n) = (y_n)$ must have a convergent subsequence. This contradicts the fact that \mathcal{K} is infinite-dimensional.

Appendix

Open Mapping Theorem

Theorem 0.3. (Open Mapping Theorem) Let $T: \mathcal{H}_1 \twoheadrightarrow \mathcal{H}_2$ be a surjective bounded linear operator between two Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 . Then T is an open map.

Let's describe in more detail what it means for T to be an open map. Let $x \in \mathcal{H}_1$ and denote y := Tx. Then for all ε -neighborhoods $B_{\varepsilon}(x)$ of x there exists a δ -neighborhood $B_{\delta}(y)$ of y such that

$$B_{\delta}(y) \subseteq T(B_{\varepsilon}(x)).$$

In other words, for all $\varepsilon > 0$ there exists $\delta > 0$ such that if $y' \in \mathcal{H}_2$ and $||y' - y|| < \delta$, then there exists $x' \in \mathcal{H}_1$ such that Tx' = y' and $||x' - x|| < \varepsilon$.

Uniform Boundedness Principle

Lemma 0.4. Let (x_n) be a sequence in \mathcal{H} . Assume there exists an M>0 and a closed ball $\overline{B}_r(a)\subseteq\mathcal{H}$ such that

$$|\langle x_n, y \rangle| \leq M$$

for all $n \in \mathbb{N}$ and for all $y \in \overline{B}_r(a)$. Then the sequence (x_n) is bounded.

Proof. The key is to translate everything from the closed ball $\overline{B}_r(a)$ to the closed ball $\overline{B}_1(0)$. Let $z \in \overline{B}_1(0)$. Then

$$|\langle x_n, z \rangle| = \frac{1}{r} |\langle x_n, rz \rangle|$$

$$= \frac{1}{r} |\langle x_n, rz + a - a \rangle|$$

$$= \frac{1}{r} |\langle x_n, rz + a \rangle - \langle x_n, a \rangle|$$

$$\leq \frac{1}{r} |\langle x_n, rz + a \rangle| + \frac{1}{r} |\langle x_n, a \rangle|$$

$$\leq \frac{1}{r} M + \frac{1}{r} M$$

$$= \frac{2M}{r}$$

for all $n \in \mathbb{N}$. In particular, fixing x_n and setting $z = x_n/\|x_n\|$, we have $\|x_n\| \le 2M/r$. Since x_n was arbitrary, we have $\|x_n\| \le 2M/r$ for all $n \in \mathbb{N}$.

Theorem 0.5. (Uniform Boundedness Principle) Let \mathcal{H} be a Hilbert space and let (x_n) be a sequence in \mathcal{H} . Assume that for every $y \in \mathcal{H}$ there exists an $M_y > 0$ such that

$$|\langle x_n, y \rangle| \le M_y \tag{1}$$

for all $n \in \mathbb{N}$. Then the sequence (x_n) is bounded.

Proof. We claim that there exists M > 0 and a closed ball $\overline{B}_r(a) \subseteq \mathcal{H}$ such that

$$|\langle x_n, y \rangle| \leq M$$

for all $n \in \mathbb{N}$ and for all $y \in \overline{B}_r(a)$. This will imply (x_n) is bounded by Lemma (0.4).

For each $m \in \mathbb{N}$, define

$$E_m := \{ y \in \mathcal{H} \mid |\langle x_n, y \rangle| \le m \text{ for all } n \in \mathbb{N} \}.$$

It's easy to see that (E_m) is an increasing sequence of closed sets (view it as an infinite intersection of closed sets). Moreover, for any $y \in \mathcal{H}$, (1) implies $y \in \bigcup_{m=1}^{\infty} E_m$. Thus

$$\mathcal{H}=\bigcup_{m=1}^{\infty}E_{m}.$$

Now to prove the claim, it suffices to show that one of the E_m 's contains an open ball of the form $B_r(a)$ (the closure $\overline{B}_r(a)$ will then also belong to E_m). Let $B_{r_1}(a_1)$ be any open ball. If $B_{r_1}(a_1) \subseteq E_1$, then we are done. So assume $B_{r_1}(a_1) \cap E_1^c \neq \emptyset$. Choose $a_2 \in \mathcal{H}$ and $r_2 > 0$ such that $r_2 < r_1/2$ and $\overline{B}_{r_2}(a_2) \subseteq B_{r_1}(a_1) \cap E_1^c$ (we can find an open ball $B_{r_2}(a_2)$ which is contained in $B_{r_1}(a_1) \cap E_1^c$ since the intersection is nonempty, and by replacing r_2 by a smaller positive number if necessary, we may assume that $\overline{B}_{r_2}(a_2)$ is contained in $B_{r_1}(a_1) \cap E_1^c$). Continuing this process, we will either stop after finitely many iterations (and we'd be done!) or we can construct a sequence (a_n) in \mathcal{H} such that $r_{n+1} < r_n/2 < \cdots < r_1/2^n$ and $\overline{B}_{r_{n+1}}(a_{n+1}) \subseteq B_{r_n}(a_n) \cap E_n^c$ for all $n \in \mathbb{N}$.

Assume (for a contradiction) that such a sequence has been constructed. We claim that (a_n) is a Cauchy sequence. Indeed, let $\varepsilon > 0$. Since $r_n \to 0$, there exists $N \in \mathbb{N}$ such that $n \ge N$ implies $2r_n < \varepsilon$. Then $n, m \ge N$ implies

$$||a_n - a_m|| \le ||a_n - a_N|| + ||a_N - a_m||$$

$$< r_N + r_N$$

$$= 2r_N$$

$$< \varepsilon.$$

since $a_n, a_m \in \overline{B}_{r_N}(a_N)$ for all $n, m \ge N$. Thus (a_n) is a Cauchy sequence and hence converges (since we are in a Hilbert space) say to $a \in \mathcal{H}$. Now observe that for any $m \in \mathbb{N}$, we have $a \in \overline{B}_{r_m}(a_m) \subseteq E_{m-1}^c$. In particular

at for any
$$m \in \mathbb{N}$$
, we
$$a = \bigcap_{m=1}^{\infty} E_m^c$$

$$= \bigcap_{m=1}^{\infty} (\mathcal{H} \backslash E_m)$$

$$= \mathcal{H} \backslash \left(\bigcup_{m=1}^{\infty} E_m\right)$$

$$= \mathcal{H} \backslash \mathcal{H}$$

$$= \emptyset,$$

which is a contradiction.