

Unit 2 Nonlinear Classification, Linear regression, Collaborative

Course > Filtering (2 weeks)

> <u>Lecture 6. Nonlinear Classification</u> > 5. The Kernel Perceptron Algorithm

5. The Kernel Perceptron Algorithm **Computational Efficiency**

here as a kind of similarity measure.

How similar the j-th example is to the i-th example.

So our predicted value here is now how important the j-th example is.

Its label times how similar the example we wish to make a prediction on and the jth training example.

All right.

That is now the kernel perceptron algorithm.

7:34 / 7:34

▶ 1.0x

X

End of transcript. Skip to the start.

Video

Download video file

Transcripts Download SubRip (.srt) file <u>Download Text (.txt) file</u>

How the Kernel Perceptron Algorithm Works: Initalization

1/1 point (graded)

Recall that the original Perceptron Algorithm is given as the following:

$$\begin{split} \mathsf{Perceptron}\Big(\big\{\left(x^{(i)},y^{(i)}\right),i=1,\dots,n\big\},T\Big): \\ \mathsf{initialize}\;\theta &= 0 \; \mathsf{(vector)}; \\ \mathsf{for}\;t &= 1,\dots,T, \\ \mathsf{for}\;i &= 1,\dots,n, \\ \mathsf{if}\;y^{(i)}\left(\theta\cdot x^{(i)}\right) \leq 0, \\ \mathsf{then}\;\mathsf{update}\;\theta &= \theta + y^{(i)}x^{(i)}. \end{split}$$

In the lecture, it was introduced that we can always express heta as

$$heta = \sum_{j=1}^n lpha_j y^{(j)} \phi\left(x^{(j)}
ight)$$

where values of α_1,\ldots,α_n may vary at each step of the algorithm. In other words, we can reformulate the algorithm so that we somehow initialize and update α_i 's, instead of θ .

The reformulated algorithm, or **kernel perceptron**, can be given in the following form:

Kernel Perceptron
$$\left(\left\{\left(x^{(i)},y^{(i)}\right),i=1,\ldots,n,T\right\}\right)$$

Initialize $lpha_1,lpha_2,\ldots,lpha_n$ to some values;
for $t=1,\ldots,T$
for $i=1,\ldots,n$
if (Mistake Condition Expressed in $lpha_j$)
Update $lpha_j$ appropriately

Look at the initialization statement of the algorithm. Which of the following is an equivalent way to initialize $\alpha_1, \alpha_2, \dots, \alpha_n$ if we want the same result as initializing $\theta = 0$?

$$\circ$$
 $\alpha_1 = \ldots = \alpha_n = \theta$

$$\alpha_1 = \ldots = \alpha_n = 1$$

$$\bullet$$
 $\alpha_1 = \ldots = \alpha_n = 0 \checkmark$

$$\alpha_1 = \ldots = \alpha_n = -1$$

Solution:

Since $heta=\sum_{j=1}^n lpha_j y^{(j)} \phi\left(x^{(j)}
ight),$ setting $lpha_j=0$ for all j leads to heta=0.

Submit

You have used 1 of 1 attempt

Answers are displayed within the problem

How the Kernel Perceptron Algorithm Works: The Update

1/1 point (graded)

As in the previous problem, our goal is to correctly reformulate the original perceptron algorithm. In other words, we want the algorithm to be about updating α_i 's instead of θ .

Kernel Perceptron
$$\left(\left\{\left(x^{(i)},y^{(i)}\right),i=1,\ldots,n,T\right\}\right)$$
 initialize $lpha_1,lpha_2,\ldots,lpha_n$ to some values; for $t=1,\ldots,T$ for $i=1,\ldots,n$ if (Mistake Condition Expressed in $lpha_j$) Update $lpha_j$ appropriately

Now look at the line "**Update** $lpha_j$ **appropriately**" in the above algorithm. Remember that we express heta as

$$heta = \sum_{j=1}^n lpha_j y^{(j)} \phi\left(x^{(j)}
ight)$$

Assuming that there was a mistake in classifying the ith data point i.e.

$$y^{(i)}\left(heta\cdot x^{(i)}
ight)\leq 0$$

which of the following conditions about $lpha_1,\ldots,lpha_n$ is equivalent to

$$heta = heta + y^{(i)} \phi\left(x^{(i)}
ight),$$

the update condition of the original algorithm?

$$\bullet$$
 $\alpha_i = \alpha_i + 1 \checkmark$

$$\circ \ lpha_i = lpha_i - 1$$

$$ullet$$
 $lpha_j=lpha_j+1$ for all $j\in 1,\ldots,n$

Solution:

Expand θ in the last equation and it turns out only α_i gets updated:

$$lpha_{i}y^{\left(i
ight)}\phi\left(x^{\left(i
ight)}
ight)+y^{\left(i
ight)}\phi\left(x^{\left(i
ight)}
ight)=\left(lpha_{i}+1
ight)y^{\left(i
ight)}\phi\left(x^{\left(i
ight)}
ight).$$

Submit

You have used 1 of 1 attempt

• Answers are displayed within the problem

How the Kernel Perceptron Algorithm Works: The Mistake Condition

1/1 point (graded)

$$\begin{aligned} & \text{Kernel Perceptron}\Big(\big\{\left(x^{(i)},y^{(i)}\right),i=1,\ldots,n,T\big\}\Big) \\ & \text{initialize } \alpha_1,\alpha_2,\ldots,\alpha_n \text{ to some values;} \\ & \text{for } t=1,\ldots,T \\ & \text{for } i=1,\ldots,n \\ & \text{if (Mistake Condition Expressed in } \alpha_j) \\ & \text{Update } \alpha_j \text{ appropriately} \end{aligned}$$

Now look at the line "**Mistake Condition Expressed in** $lpha_j$ " in the above algorithm. Remember that we express heta as

$$heta = \sum_{j=1}^n lpha_j y^{(j)} \phi\left(x^{(j)}
ight)$$

Which of the following conditions is equivalent to $y^{(i)}$ $(\theta \cdot \phi(x^{(i)})) \leq 0$? Remember from the video lecture above that given feature vectors $\phi(x)$ and $\phi(x')$, we define the Kernel function K as

$$K(x,x') = \phi(x)\phi(x').$$

$$ullet y^{(i)} \sum_{j=1}^n lpha_j y^{(j)} K\left(x^j, x^i
ight) \leq 0$$

$$\bigcirc y^{(i)} \sum_{j=1}^n lpha_i y^{(j)} K\left(x^j, x^i
ight) \leq 0$$

$$\bigcirc y^{(i)} \sum_{j=1}^n lpha_j y^{(i)} K\left(x^j, x^i
ight) \leq 0$$

$$igcup y^{(i)} \sum_{j=1}^n lpha_j y^{(j)} \phi\left(x^{(j)}
ight) \leq 0$$

Solution:

Substitute $ heta$) with $\sum_{j=1}^{n}lpha_{j}y^{(j)}\phi\left(x^{(j)} ight)$ in $y^{(i)}\left(heta\cdot\phi\left(x^{(i)} ight) ight)\leq0$.	
Submit	You have used 1 of 1 attempt	
1 Answer	ers are displayed within the problem	
Discussio	on	Show Discussion

Topic: Unit 2 Nonlinear Classification, Linear regression, Collaborative Filtering (2 weeks):Lecture 6. Nonlinear Classification / 5. The Kernel Perceptron Algorithm

© All Rights Reserved