

4. Stationary Equilibrium

Adv. Macro: Heterogenous Agent Models

Jeppe Druedahl & Patrick Moran 2022

Previously:

- 1. Single agent problems
- 2. No interactions (only passive distribution)

- Previously:
 - 1. Single agent problems
 - 2. No interactions (only passive distribution)
- Today: Interaction through Walrassian markets

- Previously:
 - 1. Single agent problems
 - 2. No interactions (only passive distribution)
- Today: Interaction through Walrassian markets
- Model: Heterogeneous Agent Neo-Classical (HANC) model

- Previously:
 - 1. Single agent problems
 - 2. No interactions (only passive distribution)
- Today: Interaction through Walrassian markets
- Model: Heterogeneous Agent Neo-Classical (HANC) model
- Equilibrium-concept: Stationary equilibrium

- Previously:
 - 1. Single agent problems
 - 2. No interactions (only passive distribution)
- Today: Interaction through Walrassian markets
- Model: Heterogeneous Agent Neo-Classical (HANC) model
- Equilibrium-concept: Stationary equilibrium
- Code: Based on the GEModelTools package
 - 1. Is in active development
 - 2. You can help to improve interface
 - 3. You can help to find bugs
 - 4. You can help to add features

- Previously:
 - 1. Single agent problems
 - 2. No interactions (only passive distribution)
- Today: Interaction through Walrassian markets
- Model: Heterogeneous Agent Neo-Classical (HANC) model
- Equilibrium-concept: Stationary equilibrium
- Code: Based on the GEModelTools package
 - 1. Is in active development
 - 2. You can help to improve interface
 - 3. You can help to find bugs
 - 4. You can help to add features
- Literature: Aiyagari (1994)

HANC

Model blocks:

1. **Firms:** Rent capital and hire labor from the households, produce with given technology, and sell output goods

- Firms: Rent capital and hire labor from the households, produce with given technology, and sell output goods
- 2. **Households:** Face idiosyncratic productivity shocks, supplies labor exogenously and makes consumption-saving decisions

- Firms: Rent capital and hire labor from the households, produce with given technology, and sell output goods
- 2. **Households:** Face idiosyncratic productivity shocks, supplies labor exogenously and makes consumption-saving decisions
- 3. Markets: Perfect competition in labor, goods and capital markets

- Firms: Rent capital and hire labor from the households, produce with given technology, and sell output goods
- 2. **Households:** Face idiosyncratic productivity shocks, supplies labor exogenously and makes consumption-saving decisions
- 3. Markets: Perfect competition in labor, goods and capital markets
- Add-on to Ramsey-Cass-Koopman: Heterogeneous households

- Firms: Rent capital and hire labor from the households, produce with given technology, and sell output goods
- 2. **Households:** Face idiosyncratic productivity shocks, supplies labor exogenously and makes consumption-saving decisions
- 3. Markets: Perfect competition in labor, goods and capital markets
- Add-on to Ramsey-Cass-Koopman: Heterogeneous households
- Other names:

- 1. **Firms:** Rent capital and hire labor from the households, produce with given technology, and sell output goods
- Households: Face idiosyncratic productivity shocks, supplies labor exogenously and makes consumption-saving decisions
- 3. Markets: Perfect competition in labor, goods and capital markets
- Add-on to Ramsey-Cass-Koopman: Heterogeneous households
- Other names:
 - 1. The Aiyagari-model

- Firms: Rent capital and hire labor from the households, produce with given technology, and sell output goods
- 2. **Households:** Face idiosyncratic productivity shocks, supplies labor exogenously and makes consumption-saving decisions
- 3. Markets: Perfect competition in labor, goods and capital markets
- Add-on to Ramsey-Cass-Koopman: Heterogeneous households
- Other names:
 - 1. The Aiyagari-model
 - 2. The Aiyagari-Bewley-Hugget-Imrohoroglu-model

Model blocks:

- Firms: Rent capital and hire labor from the households, produce with given technology, and sell output goods
- Households: Face idiosyncratic productivity shocks, supplies labor exogenously and makes consumption-saving decisions
- 3. Markets: Perfect competition in labor, goods and capital markets
- Add-on to Ramsey-Cass-Koopman: Heterogeneous households

Other names:

- 1. The Aiyagari-model
- 2. The Aiyagari-Bewley-Hugget-Imrohoroglu-model
- 3. The Standard Incomplete Market (SIM) model

Notation - central variables

Aggregate variables (quantities and prices):

- 1. Technology: Γ_t
- 2. Capital: K_t
- 3. Labor: Lt
- 4. Consumption: C_t
- 5. Investment: It
- 6. Rental rate: r_t^k
- 7. Real wage: w_t

Idiosyncratic variables:

- 1. Saving: at
- 2. Consumption: c_t
- 3. Productivity: z_t

Distributions:

- 1. $\underline{\boldsymbol{D}}_t$ over z_{t-1} and a_{t-1}
- 2. \mathbf{D}_t over z_t and a_{t-1}

Firms

- Production function: $Y_t = \Gamma_t K_{t-1}^{\alpha} L_t^{1-\alpha}$
- Profits: $\Pi_t = Y_t w_t L_t r_t^k K_{t-1}$
- Profit maximization: $\max_{K_{t-1}, L_t} \Pi_t$
 - 1. Rental rate: $\frac{\partial \Pi_t}{\partial r_t^k} = 0 \Leftrightarrow r_t^k = \alpha \Gamma_t (K_{t-1}/L_t)^{\alpha-1}$
 - 2. Real wage: $\frac{\partial \Pi_t}{\partial w} = 0 \Leftrightarrow w_t = (1 \alpha) \Gamma_t (K_{t-1}/L_t)^{\alpha}$

Households - formulation

$$\begin{aligned} v_t(z_t, a_{t-1}) &= \max_{c_t} \frac{c_t^{1-\sigma}}{1-\sigma} + \beta \mathbb{E} \left[v_{t+1}(z_{t+1}, a_t) \, | \, z_t, a_t \right] \\ \text{s.t. } a_t + c_t &= (1+r_t)a_{t-1} + w_t z_t \geq 0 \\ &\log z_{t+1} = \rho_z \log z_t + \psi_{t+1} \ , \psi_t \sim \mathcal{N}(\mu_\psi, \sigma_\psi), \, \mathbb{E}[z_t] = 1 \end{aligned}$$

with $r_t \equiv r_t^k - \delta$, where δ is the depreciation rate

Households - formulation

$$\begin{aligned} v_t(z_t, a_{t-1}) &= \max_{c_t} \frac{c_t^{1-\sigma}}{1-\sigma} + \beta \mathbb{E} \left[v_{t+1}(z_{t+1}, a_t) \, | \, z_t, a_t \right] \\ \text{s.t. } a_t + c_t &= (1+r_t)a_{t-1} + w_t z_t \geq 0 \\ &\log z_{t+1} = \rho_z \log z_t + \psi_{t+1} \ , \psi_t \sim \mathcal{N}(\mu_\psi, \sigma_\psi), \, \mathbb{E}[z_t] = 1 \end{aligned}$$

with $r_t \equiv r_t^k - \delta$, where δ is the depreciation rate

Aggregates:

$$A_t^{hh} = \int a_t^*(z_t, a_{t-1}) d\mathbf{D}_t = A^{hh} \left(\underline{\mathbf{D}}_t, \left\{ r_\tau, w_\tau \right\}_{\tau \ge t} \right) = a_t^{*\prime} \mathbf{D}_t$$

$$C_t^{hh} = \int c_t^*(z_t, a_{t-1}) d\mathbf{D}_t = C^{hh} \left(\underline{\mathbf{D}}_t, \left\{ r_\tau, w_\tau \right\}_{\tau \ge t} \right) = c_t^{*\prime} \mathbf{D}_t$$

Households - formulation

$$\begin{aligned} v_t(z_t, a_{t-1}) &= \max_{c_t} \frac{c_t^{1-\sigma}}{1-\sigma} + \beta \mathbb{E} \left[v_{t+1}(z_{t+1}, a_t) \, | \, z_t, a_t \right] \\ \text{s.t. } a_t + c_t &= (1+r_t)a_{t-1} + w_t z_t \geq 0 \\ &\log z_{t+1} = \rho_z \log z_t + \psi_{t+1} \ , \psi_t \sim \mathcal{N}(\mu_\psi, \sigma_\psi), \, \mathbb{E}[z_t] = 1 \end{aligned}$$

with $r_t \equiv r_t^k - \delta$, where δ is the depreciation rate

Aggregates:

$$A_t^{hh} = \int a_t^*(z_t, a_{t-1}) d\mathbf{D}_t = A^{hh} \left(\underline{\mathbf{D}}_t, \{r_\tau, w_\tau\}_{\tau \geq t} \right) = a_t^{*\prime} \mathbf{D}_t$$

$$C_t^{hh} = \int c_t^*(z_t, a_{t-1}) d\mathbf{D}_t = C^{hh} \left(\underline{\mathbf{D}}_t, \{r_\tau, w_\tau\}_{\tau \geq t} \right) = c_t^{*\prime} \mathbf{D}_t$$

- Distributional dynamics (with histogram method):
 - 1. Stochastic: $\mathbf{D}_t = \Pi_z' \underline{\mathbf{D}}_t$
 - 2. Choices: $\underline{\boldsymbol{D}}_{t+1} = \Lambda_t' \boldsymbol{D}_t$, $\Lambda_t = \Lambda \left(\left\{ r_{\tau}, w_{\tau} \right\}_{\tau > t} \right)$

Households - solution

Beginning-of-period value function:

$$\underline{v}_t(z_{t-1}, a_{t-1}) = \mathbb{E}\left[v_t(z_t, a_{t-1}) \,|\, z_{t-1}, a_{t-1}\right]$$

Note: This re-formulation will be useful later in the course

Households - solution

Beginning-of-period value function:

$$\underline{v}_t(z_{t-1}, a_{t-1}) = \mathbb{E}\left[v_t(z_t, a_{t-1}) \,|\, z_{t-1}, a_{t-1}\right]$$

Note: This re-formulation will be useful later in the course

• **Envelope theorem:** Differentiate with fixed a_t choice

$$\underline{v}_{\mathsf{a},t} \equiv \frac{\partial \underline{v}_t}{\partial \mathsf{a}_{t-1}} = \underline{\mathbb{E}}_t \left[(1 + r_t) c_t^{-\sigma} \right]$$

Households - solution

Beginning-of-period value function:

$$\underline{v}_t(z_{t-1}, a_{t-1}) = \mathbb{E}\left[v_t(z_t, a_{t-1}) \mid z_{t-1}, a_{t-1}\right]$$

Note: This re-formulation will be useful later in the course

Envelope theorem: Differentiate with fixed a_t choice

$$\underline{v}_{\mathsf{a},t} \equiv \frac{\partial \underline{v}_t}{\partial a_{t-1}} = \underline{\mathbb{E}}_t \left[(1+r_t) c_t^{-\sigma} \right]$$

EGM: Find solution by

$$c_t = \left(\beta \underline{v}_{a,t+1}\right)^{\frac{1}{\sigma}} \Rightarrow m_t = a_t + c_t$$

Resource constraint and market clearing

Law-of-motion for capital

$$K_t = (1 - \delta)K_{t-1} + I_t$$

- Market clearing:
 - 1. Labor market: $L_t = \int z_t dD_t = 1$
 - 2. Goods market: $Y_t = C_t + I_t$
 - 3. Capital market: $K_t = \int a_t dD_t$

• **Assumption:** The capital market clears

- **Assumption:** The capital market clears
 - 1. Zero profits implies $Y_t = w_t L_t + r_t^k K_{t-1} = w_t + (r_t + \delta) K_{t-1}$

- Assumption: The capital market clears
 - 1. Zero profits implies $Y_t = w_t L_t + r_t^k K_{t-1} = w_t + (r_t + \delta) K_{t-1}$
 - 2. Capital dynamics implies $I_t = K_t (1 \delta)K_{t-1}$

- Assumption: The capital market clears
 - 1. Zero profits implies $Y_t = w_t L_t + r_t^k K_{t-1} = w_t + (r_t + \delta) K_{t-1}$
 - 2. Capital dynamics implies $I_t = K_t (1 \delta)K_{t-1}$
 - 3. Aggregating across individual

$$C_t + Y_t = \int c_t dD_t + (K_t - (1 - \delta)K_{t-1})$$

$$= \int [(1 + r_t)a_{t-1} + w_t z_t - a_t] d\mathbf{D}_t + K_t - (1 - \delta)K_{t-1}$$

$$= (1 + r_t)K_{t-1} + w_t - K_t + K_t - (1 - \delta)K_{t-1}$$

$$= w_t + (r_t + \delta)K_{t-1}$$

- Assumption: The capital market clears
 - 1. Zero profits implies $Y_t = w_t L_t + r_t^k K_{t-1} = w_t + (r_t + \delta) K_{t-1}$
 - 2. Capital dynamics implies $I_t = K_t (1 \delta)K_{t-1}$
 - 3. Aggregating across individual

$$C_t + Y_t = \int c_t dD_t + (K_t - (1 - \delta)K_{t-1})$$

$$= \int [(1 + r_t)a_{t-1} + w_t z_t - a_t] d\mathbf{D}_t + K_t - (1 - \delta)K_{t-1}$$

$$= (1 + r_t)K_{t-1} + w_t - K_t + K_t - (1 - \delta)K_{t-1}$$

$$= w_t + (r_t + \delta)K_{t-1}$$

4. Combined: Then the goods market clears

$$Y_t = C_t + I_t$$

Equation system

The model can be written as an **equation system**

$$\boldsymbol{H}(\{K_t, L_t; \Gamma_t\}_{t \geq 0}, \underline{\boldsymbol{D}}_0) = \begin{bmatrix} K_t - \boldsymbol{a}_t^{*'} \boldsymbol{D}_t \\ r_t - \alpha \Gamma_t (K_{t-1}/L_t)^{\alpha - 1} \\ w_t - (1 - \alpha) \Gamma_t (K_{t-1}/L_t)^{\alpha} \\ L_t - 1 \\ \boldsymbol{D}_t - \Pi_z' \underline{\boldsymbol{D}}_t \\ \underline{\boldsymbol{D}}_{t+1} - \Lambda_t' \boldsymbol{D}_t \\ \forall t \in \{0, 1, \dots\} \end{bmatrix} = \boldsymbol{0}$$

where $\left\{\Gamma_t\right\}_{t\geq 0}$ is a given technology path and $\textit{K}_{-1}=\int \textit{a}_{t-1}\textit{d}\underline{\textbf{\textit{D}}}_0$

Remember: Policies and choice transitions depend on prices

- 1. Policy function: $a_t^* = a^* \left(\left\{ r_\tau, w_\tau \right\}_{\tau \geq t} \right)$
- 2. Choice transition: $\Lambda_t = \Lambda\left(\left\{r_{\tau}, w_{\tau}\right\}_{\tau \geq t}\right)$

Stationary Equilibrium

Stationary equilibrium - equation system

The **stationary equilibrium** satisfies

$$H_{ss}\left(K_{ss}, L_{ss}; \Gamma_{ss}\right) = \begin{bmatrix} K_t - a_{ss}^{*\prime} \mathbf{D}_{ss} \\ r_{ss} - \alpha \Gamma_{ss} (K_{ss}/L_{ss})^{\alpha - 1} \\ w_{ss} - (1 - \alpha)\Gamma_{ss} (K_{ss}/L_{ss})^{\alpha} \\ L_{ss} - 1 \\ \mathbf{D}_{ss} - \Pi_z' \underline{\mathbf{D}}_{ss} \\ \underline{\mathbf{D}}_{ss} - \Lambda_{ss}' \mathbf{D}_{ss} \end{bmatrix} = \mathbf{0}$$

Note I: Households still move around »inside« the distribution due to idiosyncratic shocks

Note II: Steady state for aggregates (quantities and prices) and the distribution as such

Stationary equilibrium - more verbal definition

For a given Γ_{ss}

- 1. Quantities K_{ss} and L_{ss} ,
- 2. prices r_{ss} and w_{ss} ,
- 3. the distribution D_{ss} over z_t and a_{t-1}
- 4. and the policy functions $a_{ss}^*(z_t, a_{t-1})$ and $c_{ss}^*(z_t, a_{t-1})$

are such that

- 1. Household maximize expected utility (policy functions)
- 2. Firms maximize profits (prices)
- 3. D_{ss} is the invariant distribution implied by the household problem
- 4. The labor market clears
- 5. The capital market clears
- 6. The goods market clears

Direct implementation

Root-finding problem in K_{ss} with the objective function:

- 1. Set $L_{ss} = 1$
- 2. Calculate $r_{ss} = \alpha \Gamma_{ss} (K_{ss})^{\alpha-1}$ and $w_{ss} = (1 \alpha) \Gamma_{ss} (K_{ss})^{\alpha}$
- 3. Solve infinite horizon household problem backwards, i.e. find a_{ss}^*
- 4. Simulate households forwards until convergence, i.e. find $oldsymbol{D}_{ss}$
- 5. Return $K_{ss} \boldsymbol{a}_{ss}^{*\prime} \boldsymbol{D}_{ss}$

Indirect implementation

- 1. Choose r_{ss} and w_{ss}
- 2. Solve infinite horizon household problem backwards, i.e. find a_{ss}^*
- 3. Simulate households forwards until convergence, i.e. find \boldsymbol{D}_{ss}
- 4. Set $K_{ss} = \boldsymbol{a}_{ss}^{*\prime} \boldsymbol{D}_{ss}$
- 5. Set $L_{ss} = 1$
- 6. Set $\Gamma_{ss} = \frac{w_{ss}}{(1-\alpha)\Gamma_{ss}(K_{ss})^{\alpha}}$
- 7. Set $r_{ss}^k = \alpha \Gamma_{ss} (K_{ss})^{\alpha 1}$
- 8. Set $\delta = r_{ss}^k r_{ss}$

Steady interest rate

 Complete markets / representative agent: Derived from aggregate Euler-equation

$$C_t^{-\rho} = \beta(1+r)C_{t+1}^{-\rho} \Rightarrow C_{ss}^{-\rho} = \beta(1+r)C_{ss}^{-\rho} \Leftrightarrow \beta = \frac{1}{1+r}$$

Steady interest rate

 Complete markets / representative agent: Derived from aggregate Euler-equation

$$C_t^{-\rho} = \beta(1+r)C_{t+1}^{-\rho} \Rightarrow C_{ss}^{-\rho} = \beta(1+r)C_{ss}^{-\rho} \Leftrightarrow \beta = \frac{1}{1+r}$$

- Heterogeneous agents: No such equation exists
 - 1. Euler-equation replaced by asset market clearing condition
 - 2. Idiosyncratic income risk affects the steady state interest rate

Calibration

How to choose parameters?

 External calibration: Set sub-set of parameters to the standard values in the literature or directly from data estimates (e.g. income process)

How to choose parameters?

- External calibration: Set sub-set of parameters to the standard values in the literature or directly from data estimates (e.g. income process)
- Internal calibration: Set remaining parameter so the model fit a number of chosen macro-level and/or micro-level targets based on empirical estimates
 - 1. Informal: Roughly match targets by hand
 - 2. Formal:
 - 2a. Solve root-finding problem
 - 2b. Minimize a squared loss function
 - 3. **Estimation:** Formal with non-zero loss function + standard errors

How to choose parameters?

- External calibration: Set sub-set of parameters to the standard values in the literature or directly from data estimates (e.g. income process)
- Internal calibration: Set remaining parameter so the model fit a number of chosen macro-level and/or micro-level targets based on empirical estimates
 - 1. Informal: Roughly match targets by hand
 - 2. Formal:
 - 2a. Solve root-finding problem
 - 2b. Minimize a squared loss function
 - 3. **Estimation:** Formal with non-zero loss function + standard errors
- Complication: We must always solve for the steady state for each guess of the parameters to be calibrated

Exercises

Exercises: Model extensions

1. Households: Solve

$$\begin{split} v_t(z_t, a_{t-1}) &= \max_{c_t} \frac{c_t^{1-\sigma}}{1-\sigma} + \beta \mathbb{E}_t \left[v_{t+1}(z_{t+1}, a_t) \right] \\ \text{s.t. } a_t + c_t &= (1+r_t)a_{t-1} + (1-\tau_t)z_t \geq 0 \\ \log z_{t+1} &= \rho_z \log z_t + \psi_{t+1} \ , \psi_t \sim \mathcal{N}(\mu_\psi, \sigma_\psi), \ \mathbb{E}[z_t] = 1 \end{split}$$

where r_t is the real-interest rate and τ_t is a tax rate

2. Government: Set taxes and government bonds follows

$$B_{t+1} = (1+r_t)B_t - \int au_t z_t dm{D}_t$$

- 3. Bond market clearing: $B_t = \int a_t^*(z_t, a_{t-1}) d\mathbf{D}_t$
- 4. Define and find the stationary equilibrium
- 5. What is the optimal level of τ_t ?

Summary

Summary and next week

- Today:
 - 1. The concept of a stationary equilibrium
 - 2. Introduction to the GEModelTools package
- Next week: More on models with interesting dynamics in the stationary equilibrium
- Homework:
 - 1. Work on completing the model extension exercise
 - 2. Read: TBA