1030 - Discovering Gold

You are in a cave, a long cave! The cave can be represented by a $1 \times N$ grid. Each cell of the cave can contain any amount of gold.

Initially you are in position 1. Now each turn you throw a perfect 6 sided dice. If you get X in the dice after throwing, you add X to your position and collect all the gold from the new position. If your new position is outside the cave, then you keep throwing again until you get a suitable result. When you reach the N^{th} position you stop your journey. Now you are given the information about the cave, you have to find out the **expected** number of gold you can collect using the given procedure.

Input

Input starts with an integer $T \leq 100$, denoting the number of test cases.

Each case contains a blank line and an integer N ($1 \le N \le 100$) denoting the dimension of the cave. The next line contains N space separated integers. The i^{th} integer of this line denotes the amount of gold you will get if you come to the i^{th} cell. You may safely assume that all the given integers will be non-negative and no integer will be greater than 1000.

Output

For each case, print the case number and the expected number of gold you will collect. Errors less than 10⁻⁶ will be ignored.

Sample Input	Output for Sample Input
3	Case 1: 101.000000000
	Case 2: 13.000
1	Case 3: 15
101	
2	
10 3	
3	
3 6 9	