

Revisão de Artigos: ANN e CBR

SISTEMAS DE REPRESENTAÇÃO DE CONHECIMENTO E RACIOCÍNIO

Abordagem

Revisão de Artigos

- I. Qualidade da Informação versus Grau de Confiança
- II. Representação do Conhecimento e Raciocínio
- III. Redes Neuronais Artificiais
- IV. Raciocínio Baseado em Casos

Revisão de Artigos

A Soft Computing Approach to Quality Evaluation of General Chemistry Learning in Higher Education

Margarida Figueiredo, José Neves e Henrique Vicente

An Artificial Intelligence Approach to Dyscalculia

Filipa Ferraz, José Neves, António Costa e Henrique Vicente

ANN

I. Qualidade da Informação vs. Grau de Confiança

Qol vs. DoC

Quality of Information *Qol*

$$predicate_iig((x_1,\cdots,x_n)ig)::QoI$$

$$QoI_i={}^1/_{Card} ig[0,1]$$
 falso verdadeiro

Degree of Confidence DoC

$$K = C_1^{Card} + C_2^{Card} + \dots + C_{Card}^{Card}$$

II. Representação do Conhecimento e Raciocínio

Extensão do Programa em Lógica, Normalização, Qol, Dol

Extensão do Programa em Lógica (EPL)

}:: 1 (once the universe of discourse is set in terms of the extension of only one predicate)

TIPOS DE DADOS						
1 desconhecido						
[a,b]	intervalos					
{baixo, médio, alto}	qualitativos					
{2,5,9}	discretos					

EPL, Normalização e DoC

III. Redes Neuronais Artificiais

ANN

A Soft Computing Approach to Quality Evaluation of General Chemistry Learning in Higher Education

Abstract

In contemporary societies higher education must shape individuals able to solve problems in a workable and simpler manner and, therefore, a multidisciplinary view of the problems, with insights in disciplines like psychology, mathematics or computer science becomes mandatory. Undeniably, the great challenge for teachers is to provide a comprehensive training in General Chemistry with high standards of quality, and aiming not only at the promotion of the student's academic success, but also at the understanding of the competences/skills required to their future doings. Thus, this work will be focused on the development of an intelligent system to assess the Quality-of-General-Chemistry-Learning, based on factors related with subject, teachers and students.

Keywords

General Chemistry · Higher Education · Logic Programming · Knowledge Representation and Reasoning · Artificial Neural Networks

Pré-processamento de Dados

	Subject Related Factors								
#	Adequacy Syllabus/ Objectives		Syllabus	Coherence	Coherence Teaching	Accessibility to the			
"	/Previous Knowledge	Adequacy	Adequacy	Syllabus/Objectives	Methodologies/Objectives	Recommended Bibliography			
1	High	High	Moderate	7	High/Moderate	Very High			
2	Low	Moderate	Moderate	Moderate	Moderate	High			
127	Very High	Very High	High	High	Very High	Very High			

127

-			
	Case 1	Diversity of Teaching Methodologies	Domain/Knowledge of Syllabus
		Attendance Availability	Clearness/ /Thoroughness
		AL	pility to
	Case 1	Stimula	nte Students 🔪

0.85

	Teacher Related Factors								
#	Domain/Knowledge of Syllabus	Clearness/Thoroughness	Ability to Stimulate Students	Attendance Availability	Diversity of Teaching Methodologies				
1	High/Moderate	High/Moderate	Low	Very High	1				
2	Moderate	Moderate	Moderate	High	Moderate				
12'	Very High/High	Very High		Very High	1				

[0.53, 1]

Extensão do Programa em Lógica (EPL)

 $quality_{gcl}: Stud_{ent\,Issues}$, $Teacher_{Issues}$, $Subj_{ect\,Issues} \rightarrow \{0,1\}$

General Chemistry Learning Quality

#	Student Issues	Teacher Issues	Subject Issues
1	0.85	[0.33, 0.64]	[0.48, 0.66]
2	0.56	0.31	0.27
127	1	[0.53, 1]	0.85
	[0, 1]	[0, 1]	[0, 1]

Caso Aleatório

```
Stud_{ents\ Issues} = 0.71

Teacher_{Issues} = [0.25, 0.56]

Subj_{ect\ Issues} = \bot
```

EPL, Normalização, Qol e DoC

```
\neg quality_{gcl} (QoI_{Stud}, DoC_{Stud}), (QoI_{Teacher}, DoC_{Teacher}), (QoI_{Subj}, DoC_{Subj})
\leftarrow not \ quality_{gcl} \ \left( (QoI_{Stud}, DoC_{Stud}), (QoI_{Teacher}, DoC_{Teacher}), \left( QoI_{Subj}, DoC_{Subj} \right) \right)
quality_{gcl} ((1,1), (1,0.95), (0,1)) :: 1 :: 0.65
              attribute's quality of information
               and respective confidence values
              attibute's degree of confidence
           [0.71, 0.71] [0.25, 0.56] [0, 1]
               attribute's values ranges
            [0,1]
                  attribute's domains
} :: 1
```

Rede Neuronal Artificial do Caso Aleatório

IV. Raciocínio Baseado em Casos

CBR

An Artificial Intelligence Approach to Dyscalculia

Abstract

Dyscalculia stands for a brain-based condition that makes it hard to make sense of numbers and mathematical concepts. Some adolescents with dyscalculia cannot grasp basic number concepts. They work hard to learn and memorize basic number facts. They may know what to do in mathematical classes but do not understand why they are doing it. In other words, they miss the logic behind it. However, it may be worked out in order to decrease its degree of severity. For example, disMAT, an app developed for android may help children to apply mathematical concepts, without much effort, that is turning in itself, a promising tool to dyscalculia treatment. Thus, this work focuses on the development of an Intelligent System to estimate children evidences of dyscalculia, based on data obtained on-the-fly with disMAT. The computational framework is built on top of a Logic Programming framework to Knowledge Representation and Reasoning, complemented with a Case-Based problem solving approach to computing, that allows for the handling of incomplete, unknown, or even contradictory information.

Keywords

Dyscalculia · Knowledge Representation and Reasoning · Logic Programming · Case-Based Reasoning · Similarity Analysis

Extensão do Programa em Lógica (EPL)

 $dys_{diag}: Age\ , L_{evels}C_{ompleted}, Min_{imum\ Score}, Ave_{rage\ Score}, Max_{imum\ Score}, \\ L_{evel}1\ R_{esponse\ Time}, L_{evel}2\ R_{esponse\ Time}, L_{evel}3\ R_{esponse\ Time}, \\ U_{nderstanding}D_{if\ ficulties}, D_{oing}D_{if\ ficulties} \rightarrow \ \{0,1\}$

Dyscalculia Diagnosis

#	Age	N°. of Levels Completed	Minimum Score	Average Score	Maximum Score	Level 1 Response Time	Level 2 Response Time	Level 3 Response Time	Understanding Difficulties	Doing Difficulties	Descriptions
1	6	0	0	5	10	[12,30]	Τ	[0,6]	2	2	Description 1
2	7	2	90	190	290	[12,21]	[0,11]	[6,16]	1	0	Description 2
148	6	Т	0	60	120	[12,30]	[11,24]	[0,6]	Т	1	Description 148
	[5,10]	[0,3]	[0,300]	[5,300]	[10,300]	[12,60]	[0,30]	[0,20]	[0,2]	[0,2]	

Caso Aleatório

```
Age = 8
L_{evels}C_{ompleted} = 2
Min_{imum\ Score} = 20
Ave_{rage\ Score} = 120
Max_{imum\ Score} = 220
L_{evel}\ 1\ Response_{Time} = [12, 20]
L_{evel}\ 2\ Response_{Time} = 15
L_{evel}\ 3\ Response_{Time} = 0
U_{nderstanding}\ Difficulties = \bot
D_{oing}\ D_{ifficulties} = \bot
```

EPL, Normalização, Qol e DoC

```
\neg dys_{diag} ((QoI_{Age}, DoC_{Age}), \cdots, (QoI_{L1R}, DoC_{L1R}), \cdots, (QoI_{DD}, DoC_{DD}))
      \leftarrow not \ dys_{diag} \ \left( \left( QoI_{Age}, DoC_{Age} \right), \cdots, \left( QoI_{L1R}, DoC_{L1R} \right), \cdots, \left( QoI_{DD}, DoC_{DD} \right) \right)
dys_{diag}((1,1),\cdots,(1,0.99),\cdots,(1,0))::1::0.80
            attribute's quality of information
             and respective confidence values
              (1, \cdots, 0.99, \cdots, 0)
             attibute's degree of confidence
      [0.6, 0.6] ··· [0, 0.17] ··· [0, 1]
      attribute's values ranges once normalized
        [0,1] ... [0,1] ... [0,1] attribute's domains once normalized
} :: 1
```


Processo CBR

Novo Caso

$$Age = 6$$

$$L_{evels}C_{ompleted} = \bot$$

$$Min_{imum\ Score} = 30$$

$$Ave_{rage\ Score} = 150$$

$$Max_{imum\ Score} = 240$$

$$L_{\text{evel}} 1 R_{\text{esponse Time}} = [12, 20]$$

$$L_{\text{evel}} 2 R_{\text{esponse Time}} = [11, 18]$$

$$L_{\text{evel}}$$
 3 $R_{\text{esponse Time}}$ = [6, 15]

$$U_{nderstanding} D_{ifficulties} = 0$$

Abordagem CBR

 $Case = \{ \langle Raw_{data}, Normalized_{data}, Description_{data} \rangle \}$

$$\underbrace{dys_{diag}_{new}\big((1,1),(1,0),\cdots,(1,0.97),(1,0.89),\cdots,(1,1),(1,1)\big) \ :: 1 :: 0.88}_{new\ case}$$

$$\underbrace{dys_{diag}_{new}\big((1,1),(1,0),\cdots,(1,0.97),(1,0.89),\cdots,(1,1),(1,1)\big)\ :: 1:: 0.88}_{new\ case}$$

Novo caso

 $dys_{diag_{1}}((1,1),(1,0.98),\cdots,(1,1),(1,1),\cdots,(1,1),(1,0))::1::0.84$ $dys_{diag_{2}}((1,1),(1,1),\cdots,(1,0),(1,1),\cdots,(1,1),(1,0.95))::1::0.89$

:

$$dys_{diag_{j}}\big((1,1),(1,0.92),\cdots,(1,0),(1,0),\cdots,(1,1),(1,0)\big) :: 1 :: 0.72$$

normalized cases from retrieved cluster

$$dys_{diag}{}_{new \to 1}^{DoC} = \frac{\|1 - 1\| + \|0 - 0.98\| + \|1 - 1\| + \dots + \|1 - 0\|}{10} = 0.17$$

$$similarity\left[dys_{diag}^{DoC}_{new\rightarrow 1}\right] = dys_{diag}^{QoI}_{new\rightarrow 1} - dys_{diag}^{DoC}_{new\rightarrow 1} = 1 - 0.17 = 0.83 \quad \longleftarrow$$

global similarity
$$\left[dys_{diag}_{new \to 1}^{QoI,DoC} \right] = \frac{1 + 0.83}{2} = 0.92$$

Cluster com os casos mais próximos do 'novo caso'

Dissimilaridade entre o 'novo caso' e o caso 1

Similaridade entre o 'novo caso' e o caso 1

Similaridade global

Dúvidas?

Filipa Ferraz filipatferraz@gmail.com