

SCHWEIZERISCHE EIDGENOSSENSCHAFT

BUNDESAMT FÜR GEISTIGES EIGENTUM

₁₀ CH 649 633

61) Int. Cl.4: G 01 S

17/08

Erfindungspatent für die Schweiz und Liechtenstein Schweizerisch-liechtensteinischer Patentschutzvertrag vom 22. Dezember 1978

12 PATENTSCHRIFT AS

(21) Gesuchsnummer:

(73) Int

(3) Inhaber: Kern & Co. AG Werke für Präzisionsmechanik, Optik und Elektronik, Aarau

2 Anmeldungsdatum:

20.11.1979

10338/79

(24) Patent erteilt:

31.05.1985

(5) Patentschrift veröffentlicht:

31.05.1985

Erfinder: Aeschlimann, Heinz, Dr., Aarau Balmer, Beat, Dr., Unterkulm Nünlist, René, Aarau

64 Elektrooptisches Distanzmessgerät.

Für ein elektrooptisches Distanzmessgerät, bei dem Zeididifferenzen zwischen ausgesendeten und reflekterten Lichtsignalen gemessen werden, werden elektronische Schalfungen (7, 24 - 35) angegeben, durch die solor Zeididifferenzen Wesswerte von der Auswertung zur Distanzbildung ausgeschlossen werden, die mit grosser Wahrscheinlichkeit durch Reflexionsstörungen entstanden sind und keine Information über die Messdistanz enthalten. Ein hierzu verwendetes Auswahl-Fenster ist durch einen bestimmten Relativfehler des Distanzmesswertes gegeben.

1. Elektrooptisches Distanzmessgerät, bei dem Lichtsignale einen Messstrahlengang bis zu einem entfernten Ziel und nach Reflektion zurück zum Gerät, sowie einen internen Referenzweg durchlaufen und bei dem durch eine erste digitale Schaltung die der Distanz zum Ziel entsprechende Zeitdifferenz zwischen Messignal und Referenzsignal gebildet wird, wobei zur Erhöhung der Messgenauigkeit eine Anzahl von Zeitdifferenzen zur Distanzbildung ausgewertet wird, gekennzeichnet durch eine zweite digitale Schaltung (7, 8, 24-35), die aus einer ersten Anzahl von Zeitdifferenzmesswerten ein wahrscheinliches Messresultat bildet, unter Verwendung dieses Messresultates einen zulässigen Messsehler ermittelt und die Verwendung weiterer Zeitdifferenzmesswerte zur Distanzbildung nur freigibt, wenn die aus ihnen resultierenden Messwerte den durch das wahrscheinliche Messresultat und den zulässigen Messfehler bestimmten Bereich nicht über- oder unterschreiten.

2. Distanzmessgeråt nach Anspruch I, dadurch gekennzeichnet, dass die zweite digitale Schaltung (29) unter Verwendung des aus den Zeitdifferenzmesswerten gebildeten Messreultates einen zweiten zulässigen Messfehler und einen dementsprechenden zweiten zulässigen Fehlerberich für die Freigabe weiterer Zeitdifferenzmesswerte zur Bildung eines weiteren Messresulätates ermittelt.

 Distanzmessgerät nach Anspruch 2, dadurch gekennzeichnet, dass der zweite zulässige Fehlerberich entsprechend der Anzahl von Messwerten, die zur Bildung des Messresultates, aus dem er ermittelt ist, beitragen, verkleinert ist.

4. Distanzmessgerät nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der den Bereich bestimmende zulässige Messfehler als Relativfehler des Messresultates bestimmt ist, aus dem er ermittelt wurde.

5. Distanzmessgerät nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der den Bereich bestimmende zulässige Messfehler für einen bestimmten Wertbereich des Messresultates, aus dem er ermittelt wurde, eine feste, vom Messresultat unabhängige Grösse hat.

6. Distanzmessgerät nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass das Messresultat aus den Mess- 40 lassen
werten durch arithmetische Mittelung entsteht.

7. Distanzmessgerit nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Distanzwert aus dem Messresultat durch Multiplikation mit einem Faktor entstelt, dessen Wert durch die gewählte Längeneinheit für den Distanzwert und die meteorologischen Bedrigungen der Luft auf der Messdistanz bestimmt ist und dass die zweite digitale Schaltung (8) den so entstandenen Distanzwert auszigt.

8. Distanzmessgeråt nach einem der Ansprüche I bis 7, mit Übertragung impulsformiger Lichtsignale, gekennzichnet durch eine gemeinsame Empfängerschaltung (14', 16', 18', 20', 45) für die Referenzimpulse und dier Messimpulse und durch eine optische Verzögerungsleitung (43) für die Messimpulse.

Die Erfindung betrifft ein elektrooptisches Distanzmessgrät, bei dem Lichtsignale einen Messtrahlengan bis zu einem entfernten Ziel und nach Reflektion zurück zum Gerät, sowie einem internen Referenzweg durchlaufen und bei dem durch eine erste digitate Schaltung die der Distanz zum Ziel entsprechende Zeitdifferenz zwischen Messignal und Referenzignal gebüdet wirft, wobei zur Erhöbung der Messgenauigkeit eine Anzahl von Zeitdifferenzen zur Distanzbildung ausgewertet wirfd.

Derartige Distanzmessgeräte sind bekannt, beispielsweise aus CH-PS 551 628 und aus Allg. Vermessungsnachrichten,

80. Jahrgang, Heft 6/1973, S. 201–207. In diesem Fall sind die Lichtistignale durch eine kontinuerliche, mit 15 MH zamplitudenmodulierte Infrarot-Lichtwelle gegeben, und als Zeitdifferenz wird die Phasendifferenz zwischen gesendeter und emp
fangener Modulation bestimmt. Dazu werden elektronische Schaltungen zur Frequenzkonwersion und zur digitalen Phasenmessung verwender. Zur Erhöhung der Messgenauigkeit wird bier einfach eine grosse Anzahl (z. B. 300 000) aufeinanderfolgender Modulationsperioden ausgezählt und das Mess-10- ergebnis durch arithmetische Mittelung berechnet.

Da derartige Geräte ausschliesslich mit Reflektoren am Ziel arbeiten, können Fehlmessungen infolge Reflexionsstörungen oder Fehlzielungen durch eine einfache Unterbrechungsautomatik vermieden werden, welche die Signalausis wertung bei zu geringem Pegel des Reflexionssignales spertt.

Bei ebenfalls bekannten Laser-Entfernungsmessern mit Lasergenerator zur Aussendung von impulbförmigen Lichtig galen (vg. DE-OS.28 40 605) auf das Ziel können Zielreflektoren entbehrlich sein, wobei aber die Empfindlichkeit für zo Fehlmessungen infolge Reflexionsstörungen, Fehlzielungen, Methrächechos usw. grösser ist als bei Systemen der erstigenanten Art. Zur Verminderung dieser Empfindlichkeit sind Lichtempfänger mit steuerbaren Ausbiendmitteln bekannt, die den Empfang nur während eines Zeitfensters freigeben, 23 welches einem beschränkten Entfernungs-Messbereich entspricht. Allerdings dienen dierartige Mittle weiger der Erhöhung der Messgenaugkeit, als dem Schutz des Lichtempfängers vor Schäden infolge zu starker Belichtung.

Zur Erhöhung der Messgenauigkeit bei einem elektrooptisehen Entfernungsmessgerit mit Auswertung einer Anzahl
aufeinanderfolgender Phasendifferenzwerte ist andererseits
durch die DE-AS 2 49 194 eine digitale Schaltung bekannt,
die die statistische Varianz der Phasendifferenzwerte ermittelt, diese mit einem internen Prüfgerenzwert vergleicht und
30 eine Anzeige des Messergehnisses nur freight, wenn die Varianz den Prüfgeranzwert nicht überschreitet. Bei einem derartigen Auswertungssystem tragen sändliche Einzelmesswerte
zur Varianzbildung bei, also auch solche, die infolge von Reflectionsstörungen gar keine Aussage über die Messdistanz zur

Aufgabe der vorliegenden Erfindung ist es, ein elektrospische Distanzenssgerå auzugeben, bei dem nach den jewiligen Messbedingungen angepassten Kriterien automatisch nur solche Einzelmesswerte zur Distanzbildung ausgewertet 49 werden, die mit einer bestimmten Wahrscheinlichkeit nicht durch Reflexionsstörungen verfülsch ist die

Diese Aufgabe wird bei einem Distanzmessgerät der eingänsg genannen Art gelött durch ein zweit eigitale Schalung, die aus einer ersten Auzahl von Zeidüfferenzmesswerten 9- ein währscheinliches Messresultab bildet, unter Verwendung dieses Messresultates einen zulässigen Messfehler ermittelt und die Verwendung weiterer Zeidüfferenzmeswerte zur Distanzbildung nur freigibt, wenn die aus ihnen resultierenden Messwerte den durch das wahrscheinliche Messresultat und 30- den zulässigen Messfehler bestimmten Bereich nicht überoder unterschreiten.

Dabe ist er zweckmässig, dass die zweite digitale Schaltung unter Verwendung des aus den Zeitdifferenzmesswerten gebildeten Messresultates einen zweiten zulässigen Messfehler wurd einen dementsprechenden zweiten zulässigen Fehlerbereich für die Freigabe weiterer Zeitdifferenzmesswerte zur Bildung eines weiteren Messresultates ermittelt. Vorzugsweise arbeitet diese Schaltung so, dass der zweite zulässige Fehlerbereich entsprechend der Anzahl von Messwerten, die zur Bil-50 dung des Messresultates, aus dem er ermittelt ist, beitragen, verkliener ist.

Mit Vorteil ist der den Bereich bestimmende zulässige Messfehler als Relativschler des Messresultates bestimmt, aus dem er ermittelt wurde. Auch kann es zweckmässig sein, dass der den Bereich bestimmende zulässige Messfehler für einen bestimmten Wertbereich des Messresultates, aus dem er ermittelt wurde, eine feste, vom Messresultat unabhängige Grösse hat

Die Erfindung wird nachfolgend anhand eines in den Zeichnungen schematisch dargestellten Ausführungsbeispieles näher erläutert. Es zeigen:

Fig. 1 ein allgemeines Blockschema eines erfindungsgemässen elektrooptischen Distanzmessgerätes.

Fig. 2 ein detailliertes Blockschema eines Gerätes gemäss

Fig. 3a bis 3d ein Flussdiagramm für das Arbeitsverfahren eines erfindungsgemässen Distanzmessgerätes und

Fig. 4 das Schema eines Distanzmessgerätes mit nur einem elektrischen Empfängerkanal und einem optischen Si-

gnalverzögerer. Im in Fig. 1 gezeigten Ausführungsbeispiel umfasst eine Sender-Empfängereinheit 1 Mittel zur gleichzeitigen Aussendung von Folgen von Lichtimpulsen oder Lichtblitzen über die Messdistanz (Pfeil 2) und einen Kurzweg 3, sowie Mittel zum Empfang und zur lichtelektrischen Wandlung dieser Lichtblitze in elektrische Impulse.

Die über den Kurzweg 3 gelaufenen Impulse 4 und die über die Messdistanz gelaufenen Impulse 5 weisen eine der doppelten Messdistanz proportionale Zeitverschiebung auf und gelangen über Verbindungsleitungen in einen Zeitintervall-Zähler 6, der ein der Zeitverschiebung entsprechendes digitales Messignal erzeugt.

Soweit beschriebene Schaltungen für Pulsdistanzmesser sind bekannt. Eine mit dem Sender-Empfänger 1 und dem Zeitintervallzähler 6 verbundene digitale Schaltung 7 dient nun erfindungsgemäss dazu, eine erste Folge von Lichtimpulsen auszulösen, aus einer dieser Folge entsprechenden Anzahl digitaler Zeitdifferenz-Messignale ein erstes wahrscheinliches 35 tionsschalter 31 eingestellt werden. Ist der letzte Schritt er-Messresultat und daraus für weitere Messignale zulässige Grenzwerte eines sogenannten Fehlerfensters zu berechnen Wie nachfolgend näher beschrieben, schliesst die Schaltung 7 Zeitdifferenz-Messignale aus weiteren ausgelösten Folgen von Lichtimpulsen von der Auswertung zur Distanzbildung aus, wenn deren Wert ausserhalb des bereits bestimmten Fehlersensters liegt. Die Distanzbildung erfolgt aus den zugelassenen Zeitdifferenz-Messwerten in an sich bekannter Art durch Mittelwertbildung und Multiplikation mit einem durch rekturfaktor. Das Messresultat wird dann von der Schaltung 7 auf eine Anzeigeschaltung 8 ausgegeben und von dieser an-

Gemäss dem Blockschema von Fig. 2 umfasst die Sender-Empfängereinheit 1 einen Diodenlaser 10 als Sender für die Lichtimpulse. Dieser Laser wird betrieben über einen Pulsverstärker II mit elektrischen Signalpulsen, die in einem Trigger 12 entstehen und eine Halbwertsbreite von 5 nsec und eine Pulswiederholfrequenz von 10 kHz haben. Der Trigger 12 wird angesteuert von einer Signalquelle 13 mit 10 MHz Standardfrequenz, aus der durch Frequenzteilung mit dem Faktor 10-4 die Pulsfrequenz 10 kHz entsteht. Eine Sendeund Empfangsoptik üblicher Art zur Übertragung der Lichtimpulse des Lasers 10 ist nicht mit dargestellt. Die Lichtimpulse gelangen nach Teilung am Sender 10 über den Kurzweg 3 (z.B. einen Lichtleiter) auf eine erste Avalanche-Photodiode 14 und über die Messstrecke auf eine zweite Avalanche-Photodiode 15, die als Referenz- bzw. Messempfänger dienen. Die Vorspannung wird den Dioden 14, 15 über schaltbare Netzteile 16 bzw. 17 zugeführt.

Die elektrischen Empfangsimpulse gelangen von den Empfängerdioden 14, 15 über Koppelkapazitäten 18 bzw. 19 auf Signalaufbereitungsschaltungen 20 bzw. 21, die Filter,

Verstärker und Schmitt-Tripper als Zeitmarkengeneratoren umfassen. Schaltung 20 erzeugt die Startimpulse 4 und Schaltung 21 die Stoppimpulse 5 gemäss Fig. 1. Der Zeitintervallzähler 6 für diese Impulse umfasst einen Zeitintervallschalter mit Digitalkonverter 22, der vom Standard-Frequenzgenerator 13 über einen Zeittaktgeber 23 angesteuert wird

3

Die digitale Schaltung 7 zur Auswertung der digitalen Zeitmessignale vom Digitalkonverter 22 umfasst eine gesteuerte Signalweiche 24, über die die Signale auf eine von zwei Auswahlschaltungen 25, 26 gelangen, deren Funktion unten näher beschrieben wird. Durch eine Rechnerschaltung 27 werden aus den ausgewählten Zeitmessignalen ein wahrscheinliches Messresultat sowie die zulässigen Grenzwerte für weitere Zeitmessignale bestimmt und gespeichert. Diese 15 Grenzwerte dienen in der Schaltung 26 zur Auswahl aus den

von der Signalweiche 24 her übertragenen Signalen und können von der Schaltung 26 über eine zweite Datenweiche 28 abgerufen werden. In einer zweiten Rechnerschaltung 29 wird aus den von Schaltung 26 ausgewählten Signalen durch Mit-20 telbildung ein Distanzwert berechnet. Bei entsprechender Programmierung der Schaltung 29 können zu dem errechneten Distanzwert noch neue zulässige Grenzwerte für weitere Zeitmessignale bestimmt werden, die über eine weitere gesteuerte Signalweiche 30 und Weiche 28 von der Schaltung 26 ab-25 gerufen werden und im Sinne einer Iteration die vorher durch die Rechnerschaltung 27 bestimmten Grenzwerte ersetzen,

Da der errechnete Distanzwert gegenüber dem in der Schaltung 27 bestimmten wahrscheinlichen Messresultat einen kleineren mittleren Fehler aufweist, wird es zweckmässig 30 sein, das neue Fehlerfenster (vgl. Fig. 1) etwa unter Verwendung eines kleineren vorgegebenen Relativfehlers gegenüber dem vorher verwendeten Fenster kleiner zu bestimmen und auf dem bereits errechneten Distanzwert zu zentrieren.

Die Anzahl der Iterationsschritte kann über einen Funkfolgt, so wird der Distanzwert über die gesteuerte Weiche 30 auf eine Multiplikationsstufe 32 übertragen, zur Multiplikation mit einem durch die meteorologischen Bedingungen und die anzuzeigende Längeneinheit für die Messdistanz bestimmten Korrekturfaktor. Der korrigierte Distanzwert wird dann auf die Anzeigeschaltung 8 übertragen und angezeigt. Zur Eingabe der meteorologischen Bedingungen ist ein Korrekturschalter 33 vorgesehen. Ein zweiter Funktionsschalter 34 ist für das Ein- und Ausschalten des Distanzmessgerätes, sodie meteorologischen Bedingungen der Luft bestimmten Kor- 45 wie zur Einstellung von unten beschriebenen Korrektur- und Kontrollfunktionen vorgesehen. Eine Starttaste 35 dient jeweils der Auslösung einer Folge von Lichtimpulsen des Lasers 10.

> Die Funktion des soweit beschriebenen erfindungsgemässen elektrooptischen Distanzmessgerätes wird nun anhand des in den Fig. 3a bis 3d dargestellten Flussdiagrammes erläutert. Als Bedienungselemente sind vorgesehen:

1. Starttaste 35

2. Funktionsschalter 34, mit den Einstellpositionen AUS CHECK

MIT REFLEKTOR OHNE REFLEKTOR BATTERIE.

In Position AUS ist die Stromversorgung unterbrochen, in den übrigen Positionen ist sie eingeschaltet.

In Position CHECK wird der Sender 10 über die Bauelemente 11, 12, 13 mit der Pulsfrequenz 1 kHz betrieben. Die 65 dabei vom Referenzempfänger 14 über den Kurzweg 3 empfangene Pulsintensität wird auf ein Analogmeter gegeben und angezeigt.

In Position MIT REFLEKTOR wird in der Schaltung 7

eine für Messung mit Reslektor zutressende Additionskonstante verarbeitet.

In Position OHNE REFLEKTOR wird eine dementsprechende Additionskonstante verarbeitet.

In Position BATTERIE wird die Spannung einer Betriebsstromquelle am Analogmeter angezeigt, wobei zur Belastung ein Beirich wie bei Pos. CHECK erfolet.

3. Funktionsschalter 31, mit den Einstellpositionen

100 000 10 000

1 000

TRACKING

In Position «100 000» erfolgen 64 Messzyklen (vgl. Erläuterung unten).

In Position «10 000» erfolgen 8 Messzyklen. In Position «1 000» erfolgt 1 Messzyklus.

In Position TRACKING erfolgt 1 Messzyklus, wie bei Pos. «1000», aber mit Anzeige des Messresultates und Wiederholung und Erneuerung der letzten Anzeige usw., solange Pos. TRACKING eingeschaltet ist. Diese Betriebsart ist in an sich bekannter Weise zur Messung veränderlicher Distanzen

4. Schalter 33 für Korrekturfaktoreinstellung in ppm (10-6), sowie Meter/Fuss-Anzeige, wie oben erläutert.

In Fig. 3a bedeutet «HH» das Einstellen einer der vier möglichen Positionen von Funktionsschalter 31. Anschliessend wird am Funktionsschalter 34 die zutreffende Additionskonstante eingestellt, «AN» bedeutet Messung ohne Reflektor, «AR» mit Reflektor. Damit ist gleichzeitig die Stromversorgung des Messteiles 1 (Fig. 1) eingeschaltet und es sind die Anfangsbedingungen der Schaltung 7 definiert.

Nach Auslösung der hier mit «S» bezeichneten Starttaste 35 erfolgt automatisch «Bootstrapping», d.h. Einstellung definierter Anfangsbedingungen des Messteils 1, sowie eine Eichung des Zeitintervallzählers 6 bezüglich Nullpunkt und Steigung, Anschliessend wird in einem Speicher der Schaltung 7 i: = 8, j: = 16 und M: = 0 gesetzt. Dabei ist der Speicherplatz i vorgesehen für die Anzahl von Messungen einer Pulslaufzeit ΔT, die einer Distanz von 25 km oder mehr (ΔT25) entsprechen, Speicherplatz j für kleinere Pulslaufzeiten. Eine in Speicherplatz i fallende Zählung bedeutet also einen «Fehlschuss.» M bezeichnet den Speicherplatz für die durch i gezählten Messergebnisse der Laufzeit ΔT.

Sind diese Anfangsbedingungen erfüllt, so wird am Laser 10 die Aussendung des ersten Mess-Lichtimpulses bewirkt, was zur Ausgabe des entsprechenden Laufzeitwertes AT vom Digitalkonverter 22 über die entsprechend eingestellte Weiche 24 auf die Auswahlschaltung 25 führt. Führt hier der Vergleich von ΔT und ΔT₂, zu einem «≥» - Ergebnis, so wird die «erlaubte» Anzahl i der Überreichweiten-Ergebnisse um 1 reduziert, im anderen Fall wird die Anzahl j der auszuwertenden Ergebnisse um 1 reduziert.

1st nach dem Ersatz i: = i - 1 bereits i = 0, so gibt die Schal- ss chend einer Division durch 26 = 64 oder 23 = 8 oder 20 = 1 tung 25 ein «RESET»-Signal auf die Anzeigeschaltung 8. Das bedeutet, dass kein Ziel gefunden wurde und die Messung erst nach Betätigung der Starttaste «S» erneut beginnt. Bis zu diesem «RESET»-Signal sind also maximal 8 Fehlschüsse möglich, sofern zwischendurch keine «erlaubten» Messungen erfolgt sind. Erfolgt jedoch eine solche, so wird j: = j - 1 und i: = 8 gesetzt und das Messergebnis AT in den Speicher M addiert, also $M := M + \Delta T$ gesetzt.

1st nach einem Ersatz j: = j - 1 bereits j = 0, so sind insgesamt 16 erlaubte Ergebnisse für ΔT in M aufaddiert. Es erfolgt in diesem Fall in M eine binare Stellenverschiebung nach rechts um 4 Stellen, d.h. eine Division durch 24 = 16, also die Bildung des Mittelwertes

$$\Delta T = \frac{\sum \Delta T}{6}$$
.

Ist aber noch i #0, so erfolgt ein neuer Sendepuls, wie aus Fig. 3a, 3b ersichtlich.

Nach Vorliegen des Mittelwertes AT für die Pulslaufzeit im Speicher M wird durch Division durch 64 ein Relativsehler 10 AT von ca. 2% berechnet und in einem Speicher H zwischengespeichert. Dieser relative Laufzeitsehler wird nun mit einer festen, einem Distanzfehler von 16 cm entsprechenden

Grenze $\Delta T_{16 \text{ cm}}$ verglichen. Is $\frac{\Delta T}{64} > \Delta T_{16 \text{ cm}}$ so werden in der

15 Rechnerschaltung 27 Grenzen $\Delta T + \frac{\Delta T}{64}$ und $\Delta T - \frac{\Delta T}{64}$ gebildet und in Speicher $M_0 := M + H$ bzw. $M_U := M - H$ eingespeichert, die selbst vom Wert der Pulslaufzeit AT abhängen. Gleichzeitig werden die Ergebnisspeicher M für AT und M* für später zu gewinnende Laufzeitmittelwerte gleich Null gesetzt. Ist $\frac{\overline{\Delta T}}{64} \leqq \Delta T_{16 \text{ cm}}$, so werden die Grenzen $M_0 := \overline{\Delta T} + \Delta T_{16 \text{ cm}}$ und $M_U := \overline{\Delta T} - \Delta T_{16 \text{ cm}}$ gesetzt und ebenfalls M: -O, $M^*: = 0$.

Nach Vorliegen der Grenzen in Mo und Mu wird in einen Speicher v als Anzahl auszuwertender Messungen v: = 1024 eingesetzt. Schaltung 26 vergleicht nun durch weitere Laserpulse gewonnene Laufzeit-Messergebnisse ΔT mit den Grenzen. Ist $\Delta T \ge M_0$ oder $\Delta T \le M_0$, so wird das Ergebnis ΔT verworfen und die nächste Messung verglichen. Ist dagegen $\Delta T < M_O$ und $\Delta T > M_U$, so wird die Anzahl in v um 1 vermindert und AT in Speicher M addiert. Dieser Messvorgang wird wiederholt bis der Anzahlwert in v = 0 ist. In diesem Fall erfolgt in der Rechnerschaltung 29 eine binäre Stellenverschiebung nach rechts um 10 Stellen, d.h. eine Division durch 210= 1024, also die Bildung des Mittelwertes über 1024 Mes-

$$\langle \Delta T \rangle_{1024} \approx \frac{\sum \Delta T}{1024}$$
.

Anschliessend erfolgt eine neue Eichung des Zeitintervallzählers 6 bezüglich Nullpunkt und Steigung in der oben erwähnten Art. Die in einem Speicher U durch Funktionsschalter 31 eingegebene Anzahl der Messzyklen wird um 1 reduziert und der Mittelwert (AT) 1024 in Ergebnisspeicher M° addiert. Wie aus den Fig. 3b, 3d ersichtlich, wiederholt sich die beschriebene Bildung von (AT) 1024 so oft, bis die Messzyklenanzahl U=0 ist.

Die Bildung des Mittelwertes ((ΔT)1024)U über die Messzyklen erfolgt dann durch binäre Stellenverschiebung nach rechts im Speicher M* um 6 oder 3 oder 0 Stellen entspre-

$$\langle\langle\Delta T\rangle_{1024}\rangle_{U} = \frac{\sum\langle\Delta T\rangle_{1024}}{U}$$

Wie oben zu Fig. 2 beschrieben, kann nun dieser Mittelwert von der Rechnerschaltung 29 zur Bildung neuer Grenzen für Speicher Mo und Mu verwendet werden, die zur Iteration über die Weichen 30 und 28 auf die Auswahlschaltung 26 zurückübertragen werden. Mit den neuen Grenzen Mo, Mu würde dann über eine neue Folge von Messzyklen ein neuer Mittelwert $\langle \langle \Delta T \rangle_{1024} \rangle_U$ bestimmt.

Anschliessend erfolgt in der Multiplikationsstufe 32 die Korrektur mit dem über Korrekturschalter 33 eingegebenen Korrekturfaktor aus einem Bereich von (1 ± 99 ppm), sowie die Ausgabe des korrigierten Ergebnisses auf Anzeige 8. Diese Anzeige 8 kann eine Flüssigkristallanzeige bekannter Art

Die Ausgabe des Ergebnisses erfolgt zweckmässig in einem Signakode, der eine Weiterverarbeitung mit codierten Messignalen anderer geodäuscher Messgeräte erfaubt. Der Signakode sollte insbesondere kompatibel sein mit üblichen Sipalacodes elektronischer Theodolite und Datenspeiches.

Ist am Schalter 31 die Funktion TRACKING eingestellt, so erfolgt, wie aus Fig. 3a bis 3e ersichtlich, automatisch eine Wiederholung der soweit beschriebenen Meszyklen. Andernfalls erfolgt keine weitere Messung, das letzte Ergebnis verselbeibt in der Anzeige und die Stromversorgung von Sender-Empfängereinheit 1, Zeitintervallzähler 6 und Digitalschaltung 7 wird unterbrochen.

Das Distanzmessgeråt gemäss dem in Fig. 2 dargestellten Schema arbeite in an sich bekannter Art mit einem elektrooptischen Sender 10, einem über die Lichtleiffaser 3 beaufschlagten Referenzfotenemflänger 14 und dem Messfotenpflänger 15. Da im Gegensatz zu Distanzmessern mit Phaeenvergleich (vgl. Beschreibungseinleitung) beim vorliegenden Ausführungsbeispiel Sender und Empflänger nur impulsförmig betrieben werden, ist es möglich, mit nur einem Empflänger nacheinander Referenz- und Messimpuls zu empflängen und auszuwerten. Eine hierfür geeignete Schaltung nebst zugehörigem optischem System zeigt schematisch Fig. 4, in der die Fig. 1 und Fig. 2 entsprechenden Bauelemente mit den entsprechenden Bezugszeichen bezeichnet sind. Der Diodenlaser 10 wird über den Pulsverstärker 11 mit Signalimpulse Imvom Trigger 12 betrieben. Die entsprechenden optischen Impulse werden an einem Strahlenteiler 40 in Referenz- und Messimpulse geleitl. Die Referenzimpulse gelangen über die Kurzweg-Lichtleitfaser 3 und einen zweiten Strahlenteiler 44 auf die Avalanche-Photodode 14*. Die Messimpulse sind ein er Sendeoptik 41 zugeführt, gelangen über die Messstrecke auf eine Empfangsoptik 42 und über eine optische Verzögerungsleitung 43 (z.B. einen Lichtleiter) und Strahlenteiler 44 ebenfalls auf die Emnfäneer-Photodiodel 14*. nlehenteiler 44

Die Verzögerungsleitung 43 bewirkt über eine Pulsverzögrung von etwa 100 nese, dass der Messpuls sicher vom Referenzpuls getrennt verarbeitet wird. Diese Verzögerung wird dann bei der Messung des Zeitintervalles zwischen Mess- und Referenzimpuls als Additionskonstante berücksichtigt. Zum Betrieb der Avalanche-Photodjode 14' ist wiederum ein schaltares Netzeitel 16' vorgesehen. Über die Koppelkapazität 18' und Signalaufbereitungsschaltung 20' gelangen die elektrischen Empfangsimpulse zur Trennung auf eine gestuerte Signalweiche 45 mit zwei Ausgängen 46, 47 für Referenzsignal 4 und Messignal 5.

Nach Beginn einer Messung gelangt der erste Empfangsimpuls auf den Ausgang 46 und startet als Referenzimpuls 4
den Zeitintervallschalter mit Digitatkonverter 22. Nach Abgabe des zugehörigen Steuerimpulses gibt der Trigger 12 mit
etwa 90 nsec Verzögerung ein Umschaltsignal auf die Signalsweiche 45. Diese Schaltet somit nach Durchhauf des Referenzimpulses 4 und vor Durchlauf des Messimpulses 3. Der Messimpuls 5 gelangt dann über den Ausgang 47 zur Verarbeitung
im Digitatkonverter 22. Die Signal weiche 45 schaltet sodann
schoststätig zur Aufnahme des nächsten Referenzimpulses auf
Ausgang 46 zurück. Die weitere Signalverarbeitung erfolgt

36 Ausgang 46 zuruck. Die weitere Signalverarbeitung erfolgt über die Schaltungen 7 und 8 in der zu Fig. 1 und Fig. 2 beschriebenen Art.

ñ. ط

Fig. 4