BUFN 745 Assignments 4

Luhao Wang 116089876

Part I Basic Answer

AR and CAR around announcement

Day	# ar obs	Mean ar	tar	par	# car obs	Mean car	tcar
-10	581	0.000909717	1.53924	0.12429	581	0.000909717	1.53924
-9	581	0.000531145	0.85313	0.39394	581	0.001440863	1.65582
-8	581	000618534	-0.95892	0.33800	581	0.000822329	0.76753
-7	581	001166385	-1.75938	0.07904	581	000344056	-0.28054
-6	581	0.000060448	0.08605	0.93146	581	000283608	-0.21198
-5	581	0.000082683	0.11205	0.91083	581	000200925	-0.13578
-4	581	000693822	-0.89569	0.37079	581	000894748	-0.56570
-3	581	0.000698847	1.05602	0.29140	581	000195901	-0.11156
-2	581	0.000807344	0.96527	0.33481	581	0.000611444	0.31894
-1	581	0.001443733	1.52020	0.12900	581	0.002055177	0.93984
0	581	0.000661568	0.72950	0.46599	581	0.002716745	1.13698
1	581	000065631	-0.06765	0 . <mark>94609</mark>	581	0.002651114	1.10918
2	581	0.000548338	0.70224	0.48281	581	0.003199452	1.29923
3	581	0.000146692	0.21418	0.83048	581	0.003346144	1.29279
4	581	0.000904030	1.22680	0.22039	581	0.004250174	1.58005
5	581	0.000738676	1.00427	0.31567	581	0.004988850	1.82676
6	581	000072889	-0.11859	0.90564	581	0.004915961	1.73851
7	581	000324618	-0.51513	0.60666	581	0.004591344	1.60166
8	581	0.000382061	0.63561	0.52528	581	0.004973405	1.70727
9	581	0.000899193	1.43014	0.15322	581	0.005872597	2.00557
10	581	0.000246084	0.42542	0.67069	581	0.006118682	2.02598

Table 1.

Chart. 1

Interpretation:

If we set the significance level as 5%, looking at those p-value numbers of abnormal return during the event window, you will be astonished that none of the abnormal returns between -10 and 10 rel_days are statistically significant, which makes the CAR chart very smooth.

From this research, we can get the conclusion that we cannot make any profitable strategy based only on the information that there is announcement of earning of firms because you cannot see any trends in the picture.

	3-day	5-day
CAR	0.003346144	0.004988850
t-statistic	1.29279	1.82676

Table 2.

Table 2 above shows that for the 3 days and 5 days after the announcement of earnings, there are not statistically significant (a t-statistic is statistically significant at the 5% confidence level if it is greater than 1.96 in absolute value) cumulative abnormal returns.

However, we have to understand that behind the announcement of earning reports of the 581 firms, it releases different information to the markets, which includes "higher than expectation", "lower than expectation" and "just like the expectation". Although the total information seems neutral to the investors, if we specify the different type of announcement, we may see a totally different picture.

Actually, some papers (Ball and Brown, 1986; Watts, 1978; Foster et al., 1984; Bernard and Thomas, 1989) show that we can in a way predict stock returns after the earnings announcements. Bernard and Thomas (1990) analyze the earning announcements in 1970s and 1980s. Chan et al. (1996) further reckon that postearning announcement drift is distinct from price momentum; it puts that "The drift in future returns is economically meaningful and lasts for at least six months".

```
/***Assignment 4
Luhao Wang
116089876
3/1/2019***/
options ls=72 MAUTOSOURCE SASAUTOS='C:\Users\lhwang94\Desktop\SAS_A4\macros';
*this is the code after the professor made her requirements clear, so I named it the macro event_study_new;
%event_study_new(inforelease,permno,anndats, -10,10,1,AR and CAR around announcement);
```

```
∃ %macro event study new(d p, permno p, date p, lwindow, rwindow, graph p, title p);
 libname worklib 'C:\Users\lhwang94\Desktop\SAS A4\lib';
 *create a temporary dataset, and change the name of variables;
 data d;
 set worklib.&d p;
 permno = &permno_p;
 edate = &date p;
 run:
 *define lwindow and rwindow in unix;
 %syslput u lwindow=&lwindow;
 %syslput u rwindow=&rwindow;
 *connect to wrds servers;
 %let wrds=wrds.wharton.upenn.edu 4016;
 options comamid=TCP remote=WRDS;
 signon username=_prompt_;
 *submit program in unix;
 rsubmit;
 libname crspsd '/wrds/crsp/sasdata/a_stock';
 libname crspix '/wrds/crsp/sasdata/a indexes';
 libname worklib './data';
 *upload the temporary data set to unix;
 proc upload data=d out=worklib.d unix;
 *download stock returns;
 proc sql;
 create table d_ret as
 select distinct
 dsf.ret,
 dsf.date,
 d unix.*
 from
 crspsd.dsf,worklib.d unix
 d unix.permno=dsf.permno and
 d unix.edate+2*&u lwindow<=dsf.date<=d unix.edate+2*&u rwindow;
 proc download data=d ret out=worklib.d ret;
 *downlad index data;
 proc sql;
 create table d_mkt as
 select
 dsix.caldt,
 dsix.vwretd
 from
 crspix.dsix, worklib.d unix
 d unix.edate+2*&u lwindow<=dsix.caldt<=d unix.edate+2*&u rwindow;
 proc download data=d mkt out=worklib.d mkt(rename=(caldt=date));
 run:
 endrsubmit;
```

```
*get abnormal returns;
proc sort data=worklib.d_ret out=d_ret;
by date;
proc sort data=worklib.d mkt out=d mkt;
by date;
data d1;
merge d ret d mkt;
by date;
ar=ret-vwretd;
*merge the dataset containing abnormal returns and the dataset containing event information;
create table d2 as
select distinct
dl.ar,
d1.date,
d1.permno,
d.*
from
d1,d
where
d1.permno=d.permno and
\verb|d.edate+2*\&lwindow<=d1.date<=d.edate+2*\&rwindow|\\
order by
permno, edate, date;
proc print data=d2 (obs=120);
var permno edate date ar;
format edate date date9.;
run;
* get relative days data;
proc means data=d2 noprint;
var permno;
by permno edate;
output out=d2 stats
n=num before;
where date<edate;
data d3;
merge d2 d2 stats(keep=permno edate num before);
by permno edate;
if first.edate then
rel_day=-num_before;
else
rel_day=rel_day+1;
retain rel_day;
*get the dataset only including the returns in our window;
data d4;
set d3;
if &lwindow<=rel_day<=&rwindow;
*get ar and car;
data d4;
set d4;
```

```
by permno edate;
if first.edate then
car=ar;
else
car=car+ar;
retain car;
*calculate statistics;
proc sort data=d4;
by rel day;
proc means data=d4 noprint;
var car ar;
output out=d4 stats
n(car)=ncar
mean(car)=acar
t(car)=tcar
probt(car)=pcar
n(ar)=nar
mean(ar)=aar
t(ar)=tar
probt(ar)=par;
by rel day;
*based on the graph p, get the table and draw the picture;
%if &graph_p=0 %then
%do;
proc print data=d4 stats noobs label;
title "&title p";
var rel day nar aar tar ncar acar tcar;
where &lwindow<=rel day<=&rwindow;
label
rel day="Day"
nar="# ar obs"
aar="Mean ar"
tar="tar"
par="par"
ncar="# car obs"
acar="Mean car"
tcar="tcar"
pcar="pcar";
run;
%end;
%else
%do;
proc print data=d4 stats noobs label;
title "&title p";
var rel day nar aar tar par ncar acar tcar;
where &lwindow<=rel day<=&rwindow;
label
rel day="Day"
nar="# ar obs"
```

```
aar="Mean ar"
tar="tar"
par="par"
ncar="# car obs"
acar="Mean car"
tcar="tcar"
pcar="pcar";
symbol1
color=green interpol=spline width=1 value=square;
symbol2
color=red interpol=spline width=1 value=triangle;
symbol3
color=blue interpol=spline width=1 value=circle;
axis1
label=('Event Time')
order=&lwindow to &rwindow by 2
width=3;
axis2
label=('CAR')
order=-0.04 to 0.04 by 0.01
width=3;
proc gplot data=d4 stats;
plot acar*rel day/haxis=axis1 vaxis=axis2;
run;
quit;
%end;
run;
%mend event_study;
```

Part II Further explorations

If we set samples as "Bad-News Firms", "Good-News Firms", and "No-News" Firms, the further researches are as follows:

AR and CAR around announcement

Sample	Day	# ar obs	Mean ar	tar	par	# car obs	Mean car	tcar
Bad-News Firms	-10	217	000196825	-0.17487	0.86135	217	-0.000197	-0.17487
Bad-News Firms	-9	217	0.000380868	0.30615	0.75979	217	0.000184	0.10718
Bad-News Firms	-8	217	002147894	-1.75646	0.08043	217	-0.001964	-0.92648
Bad-News Firms	-7	217	001488835	-1.13950	0.25576	217	-0.003453	-1.43626
Bad-News Firms	-6	217	000306080	-0.23455	0.81478	217	-0.003759	-1.45171
Bad-News Firms	-5	217	0.000585646	0.40658	0.68472	217	-0.003173	-1.13157
Bad-News Firms	-4	217	002299630	-1.93385	0.05444	217	-0.005473	-1.82205
Bad-News Firms	-3	217	001627840	-1.33203	0.18425	217	-0.007101	-2.10062
Bad-News Firms	-2	217	001567991	-1.11503	0.26608	217	-0.008669	-2.40731
Bad-News Firms	-1	217	003251178	-1.84494	0.06641	217	-0.011920	-2.70097
Bad-News Firms	0	217	003805657	-2.53184	0.01206	217	-0.015725	-3.29978
Bad-News Firms	1	217	0.000016039	0.01166	0.99071	217	-0.015709	-3.41541
Bad-News Firms	2	217	0.001674058	1.33499	0.18329	217	-0.014035	-3.00042
Bad-News Firms	3	217	0.001336278	1.29537	0.19658	217	-0.012699	-2.67391
Bad-News Firms	4	217	0.000292288	0.24956	0.80316	217	-0.012407	-2.59636
Bad-News Firms	5	217	0.001720523	1.35971	0.17534	217	-0.010686	-2.19360
Bad-News Firms	6	217	000271908	-0.26064	0.79462	217	-0.010958	-2.21103
Bad-News Firms	7	217	002180891	-1.93803	0.05392	217	-0.013139	-2.60262
Bad-News Firms	8	217	000091704	-0.08788	0.93006	217	-0.013231	-2.54714
Bad-News Firms	9	217	0.000433341	0.38644	0.69955	217	-0.012797	-2.41725
Bad-News Firms	10	217	000444833	-0.44137	0.65938	217	-0.013242	-2.39596

Good-News Firms	-10	219	0.001398239	1.53241	0.12687	219	0.001398	1.53241
Good-News Firms	-9	219	0.000443630	0.51219	0.60904	219	0.001842	1.49269
Good-News Firms	-8	219	000819394	-0.86732	0.38672	219	0.001022	0.69087
Good-News Firms	-7	219	001270518	-1.27734	0.20284	219	-0.000248	-0.14190
Good-News Firms	-6	219	0.000832500	0.72779	0.46752	219	0.000584	0.28634
Good-News Firms	-5	219	001423179	-1.41960	0.15715	219	-0.000839	-0.37317
Good-News Firms	-4	219	000955005	-0.63592	0.52549	219	-0.001794	-0.72860
Good-News Firms	-3	219	0.002326940	2.25305	0.02525	219	0.000533	0.19497
Good-News Firms	-2	219	0.002591662	1.77055	0.07803	219	0.003125	1.04104
Good-News Firms	-1	219	0.005535158	3.76577	0.00021	219	0.008660	2.82043
Good-News Firms	0	219	0.005343083	3.29340	0.00115	219	0.014003	4.30672
Good-News Firms	1	219	0.000330729	0.16887	0.86606	219	0.014334	4.29532
Good-News Firms	2	219	000216839	-0.14766	0.88274	219	0.014117	3.96500
Good-News Firms	3	219	001122022	-1.07402	0.28400	219	0.012995	3.33978
Good-News Firms	4	219	0.002403337	2.16248	0.03167	219	0.015398	3.71196
Good-News Firms	5	219	0.000777868	0.74298	0.45829	219	0.016176	3.71280
Good-News Firms	6	219	0.000489660	0.47532	0.63504	219	0.016666	3.65741
Good-News Firms	7	219	0.002114664	2.01419	0.04522	219	0.018781	4.20792
Good-News Firms	8	219	0.000490585	0.53245	0.59496	219	0.019271	4.33133
Good-News Firms	9	219	0.001971452	2.06212	0.04038	219	0.021243	4.78068
Good-News Firms	10	219	0.000551732	0.63378	0.52689	219	0.021794	4.74008

No-News Firms	-10	145	0.001827879	1.96120	0.05178	145	0.001828	1.96120
No-News Firms	-9	145	0.000888222	0.86079	0.39079	145	0.002716	1.87828
No-News Firms	-8	145	0.001973598	1.76822	0.07914	145	0.004690	2.60295
No-News Firms	-7	145	000526544	-0.52794	0.59835	145	0.004163	2.06309
No-News Firms	-6	145	000557088	-0.52182	0.60260	145	0.003606	1.78642
No-News Firms	-5	145	0.001604344	1.19906	0.23247	145	0.005210	2.15655
No-News Firms	-4	145	0.002103828	1.86601	0.06407	145	0.007314	3.09911
No-News Firms	-3	145	0.001721872	1.58167	0.11592	145	0.009036	3.71274
No-News Firms	-2	145	0.001667223	1.22423	0.22286	145	0.010703	3.79869
No-News Firms	-1	145	0.002290447	1.53194	0.12773	145	0.012994	4.43627
No-News Firms	0	145	0.000276301	0.20918	0.83460	145	0.013270	3.93975
No-News Firms	1	145	000786496	-0.53409	0.59411	145	0.012484	3.38038
No-News Firms	2	145	0.000019323	0.01658	0.98680	145	0.012503	3.24698
No-News Firms	3	145	0.000282611	0.17346	0.86253	145	0.012786	2.96462
No-News Firms	4	145	000444938	-0.26495	0.79143	145	0.012341	2.65982
No-News Firms	5	145	000789901	-0.48945	0.62527	145	0.011551	2.61398
No-News Firms	6	145	000624692	-0.56524	0.57279	145	0.010926	2.32363
No-News Firms	7	145	001230766	-1.26811	0.20681	145	0.009695	1.96667
No-News Firms	8	145	0.000927166	0.77238	0.44115	145	0.010622	2.11127
No-News Firms	9	145	000023116	-0.01922	0.98470	145	0.010599	2.16108
No-News Firms	10	145	0.000818446	0.69698	0.48694	145	0.011418	2.34896

Table 3.

Chart 2.

If we set the significance level at 0.05, all the abnormal return of No-News Firms is not significant, although at day -10 the p value is 0.052, very close to 0.05. Therefore, if the announcement does not significantly differ from earlier expectation, it will not affect the stock market.

Both good news and bad news have effect on stock market on day 0, which is consist with Michael Firth(1976), that investors use the financial results of a company to reappraise the share price of that company (and of competing companies).

For those Good-News Firms, there is significant abnormal return as 0.002326940 in day -3; there is significant abnormal return as 0.005343083 in day 0; there is significant abnormal return as 0.005343083 in day 0; there is significant abnormal return as 0.002114664 in day 7; there is significant abnormal return as 0.002114664 in day 7; there is significant abnormal return as 001971452 in day 9. The abnormal returns in day -3 and day -1 shows there is leakage of good news in the financial market. And the abnormal returns in day 4, day 7 and day 9 shows the short-term momentum. Some economists and psychologists in the fields of behavioral finance recon that it is because individuals see a stock price rising and are drawn into the market in a kind of "bandwagon effect"; another explanation is that there is a tendency for investors to underreact to new information (Burton G Malkiel, 2003).

For those Bad-News Firms, on day 0, abnormal return is -0. 003805657, and is significant. I am surprised that this is the only day that the p value is less than 0.05, which means for bad news, there is not significant leakage or short-term momentum. The disappear of momentum is consistent with the survey of Eugene Fama (1998) which shows that many of the return "anomalies" arise only in the context of some very particular model, and tend to disappear when conditions change. Burton G. Malkiel(2003) argues that such apparent patterns were never sufficiently large or stable; our stock market are far more efficient and far less predictable than some recent academic papers would have us believe.

```
/***Assignment 4
Luhao Wang
116089876
3/1/2019***/
options ls=72 MAUTOSOURCE SASAUTOS='C:\Users\lhwang94\Desktop\SAS_A4\macros';
%event_study(inforelease,permno,anndats, -10,10,1,AR and CAR around announcement);
```

```
⊕ %macro event study(d p, permno p, date p, lwindow, rwindow, graph p, title p);
 libname worklib 'C:\Users\lhwang94\Desktop\SAS A4\lib';
 *create a temporary dataset, and change the name of variables;
 data d;
 set worklib.&d p;
 permno = &permno p;
 edate = &date_p;
 run:
 *define lwindow and rwindow in unix;
 %syslput u lwindow=&lwindow;
 %syslput u_rwindow=&rwindow;
 *connect to wrds servers;
 %let wrds=wrds.wharton.upenn.edu 4016;
 options comamid=TCP remote=WRDS;
 signon username=_prompt_;
 *submit program in unix;
 rsubmit;
 libname crspsd '/wrds/crsp/sasdata/a stock';
 libname crspix '/wrds/crsp/sasdata/a indexes';
 libname worklib './data';
 *upload the temporary data set to unix;
 proc upload data=d out=worklib.d unix;
 *download stock returns;
 proc sql;
 create table d ret as
 select distinct
 dsf.ret,
 dsf.date,
 d unix.*
 from
 crspsd.dsf,worklib.d unix
 d unix.permno=dsf.permno and
 d unix.edate+2*&u lwindow<=dsf.date<=d unix.edate+2*&u rwindow;
 proc download data=d ret out=worklib.d ret;
 *downlad index data;
 proc sql;
 create table d mkt as
 dsix.caldt,
 dsix.vwretd
 crspix.dsix, worklib.d_unix
 d unix.edate+2*&u lwindow<=dsix.caldt<=d unix.edate+2*&u rwindow;
 proc download data=d mkt out=worklib.d mkt(rename=(caldt=date));
 run:
 endrsubmit;
 *get abnormal returns;
 proc sort data=worklib.d_ret out=d_ret;
 by date;
```

```
proc sort data=worklib.d mkt out=d mkt;
by date;
data d1;
merge d ret d mkt;
by date;
ar=ret-vwretd;
run;
*merge the dataset containing abnormal returns and the dataset containing event information;
proc sql;
create table d2 as
select distinct
d1.ar,
d1.date,
d1.permno,
d.*
from
d1,d
where
d1.permno=d.permno and
d.edate+2*&lwindow<=d1.date<=d.edate+2*&rwindow
order by
permno, edate, date;
proc print data=d2 (obs=120);
var permno edate date ar;
format edate date date9.;
run;
* get relative days data;
proc means data=d2 noprint;
var permno;
by permno edate;
output out=d2_stats
n=num_before;
where date<edate;
merge d2 d2_stats(keep=permno edate num_before);
by permno edate;
if first.edate then
rel_day=-num_before;
rel_day=rel_day+1;
retain rel day;
*get the dataset only including the returns in our window;
data d4;
set d3;
if &lwindow<=rel_day<=&rwindow;
*get ar and car;
data d4;
set d4;
by permno edate;
if first.edate then
car=ar;
else
car=car+ar;
retain car;
```

```
*get samples;
data d4;
set d4;
if value>meanest+.025*abs(meanest) then
sample="Good-News Firms";
else
if value<meanest-0.025*abs(meanest) then
sample="Bad-News Firms";
sample="No-News Firms";
proc sort data=d4;
by sample rel day;
proc means data=d4 noprint;
var car ar;
output out=d4 stats
n(car)=ncar
mean(car)=acar
t(car)=tcar
probt(car)=pcar
n(ar)=nar
mean(ar)=aar
t(ar)=tar
probt(ar)=par;
by sample rel day;
*based on the graph p, get the table and draw the picture;
%if &graph p=0 %then
%do;
proc print data=d4 stats noobs label;
title "&title p";
var sample rel_day nar aar tar ncar acar tcar;
where &lwindow<=rel_day<=&rwindow;
label
sample="Sample"
rel day="Day"
nar="# ar obs"
aar="Mean ar"
tar="tar"
par="par"
ncar="# car obs"
acar="Mean car"
tcar="tcar"
pcar="pcar";
run;
%end:
%else
proc print data=d4 stats noobs label;
title "&title p";
var sample rel day nar aar tar par ncar acar tcar;
where &lwindow<=rel day<=&rwindow;
label
sample="Sample"
rel day="Day"
nar="# ar obs"
```

```
aar="Mean ar"
tar="tar"
par="par"
ncar="# car obs"
acar="Mean car"
tcar="tcar"
pcar="pcar";
symbol1
color=green interpol=spline width=1 value=square;
symbol2
color=red interpol=spline width=1 value=triangle;
symbol3
color=blue interpol=spline width=1 value=circle;
label=('Event Time')
order=&lwindow to &rwindow by 2
width=3;
axis2
label=('CAR')
order=-0.04 to 0.04 by 0.01
proc gplot data=d4_stats;
plot acar*rel day=sample/haxis=axis1 vaxis=axis2;
run;
quit;
%end;
run;
%mend event_study;
```