Tema 2: El procesador

1 Instrucciones en MIPS

MIPS tiene 32 bits y 32 registros. Solo puede tener 2^{32} Bytes = 4 GBy de memoria Por lo tanto como máximo habrán $\frac{2^{32}}{4} = 2^{30}$ palabras. La memoria solo lee palabras (1 palabra = 4 Bytes).

1.1 Identificación de los registros

Del registro 8 al 15 se identifican con \$t0 a \$t7 Del registro 16 a 23 se identifican con \$s0 a \$s7 También se pueden identificar de \$0 a \$31. El \$0 siempre vale 0

1.2 Instrucciones MIPS

• Tipo R(Registro) Operan exclusivamente en registros.(rs, rt, rd)

add rd, rs, rt : Suma el contenido de los registros rs y rt y almacena el resultado en rd.

sub rd, rs, rt : Resta el contenido de rt y rs, y guarda el resultado en rd.

and rd, rs, rt : Realiza una operación lógica AND entre los contenidos de rs y rt, y almacena el resultado en rd.

• Tipo I(Inmediato) Incluyen un valor inmediato como un operando

lw rt, inmed(rs): Carga un valor desde la memoria en la dirección rs + inmed y lo almacena en rt.

sw rt, inmed(rs): Guarda el contenido de rt en la memoria en la dirección rs + inmed.

beq rs, rt, etiqueta: Si los registros rs y rt son iguales, realiza un salto a la etiqueta especificada.

• Tipo J(Salto incondicional) Solo contienen una dirección de destino

1.3 Ejemplos

Instrucción MIPS	Equivalencia en ARM
add \$1,\$2,\$3	add \$1,\$2,\$3
lw \$1,20(\$3)	ldr \$1,20(\$3)
sw \$3,1(\$4)	str \$3,1(\$4)
beq \$1,\$2,fin	cmp \$1,\$2
	beq fin

1

$$\begin{array}{lll} \mathbf{add} & [rs] + [rt] & \Longrightarrow & rd \\ \mathbf{lw} & [\ [rs] + Inmediato\] & \Longrightarrow & rt \\ \mathbf{sw} & [rt] & \Longrightarrow & [\ [rs] + inmediato\] \\ \mathbf{beq} & [rs] - [rt] & \end{array}$$

1.4 Representación de instrucciones en el computador

	6 bits		5 bits		5	bits			5 bits	3	5 bits		6 bits	
R:	31 op	26	²⁵ rs	21	20	rt	16	15	rd	11	¹⁰ shamt ⁶	5	funct	0
I:	op		rs			rt			a	ıddı	ress / imme	edia	ite	
J:	J: op target address													

• Valor de **op** según instrucción:

	$\mathrm{dec}.$	hexa.	binario
tipo R	0	0x0	000000
\mathbf{lw}	35	0x23	100011
sw	43	0x2B	101011
beq	4	0x04	000010

• Valor de **funct** según la operación artimética:

	dec.	hexa.	binario
add(suma)	32	0x20	100000
$\mathbf{sub}(\text{resta})$	34	0x22	100010
and	43	0x24	100100
\mathbf{or}	44	0x25	100101

• El campo shamt especifica cuántos bits se desplazarán a la izquierda

1.5 Señales de control

Se activan cuando:

• MemWrite: Escribe en memoria

• MemRead: Lee de memoria

• Cero: Cuando ALU=0

• Branch: Compara y redirige

• RegWrite: Cuando se hace una operación de escritura en un registro