Laboratorio N.1

Introduccion a Los Metodos Estadisticos Estimadores

Diana Carolina Arias Sinisterra Cod. 1528008 Kevin Steven Chica Garcia Cod. 1533173 Cesar Andres Saavedra Vanegas Cod. 1628466

Universidad Del Valle

Facultad De Ingenieria Estadistica Octubre 2017

${\bf \acute{I}ndice}$

1.	Situacion 1	
	1.1	
	1.2. Scripts R	
	1.3. Analisis Resultados	•
2.	Situacion 2	
	2.1. Punto A	
	2.2. Punto B	
	2.3. Punto C	
3	Situacion 3	
0.	3.1. Punto A	
	3.2. Punto B	
Í۲	dice de figuras	
	1. Titulo de la figura	
Ir	dice de tablas	
	1. Titulo de la tabla	

1. Situacion 1

Despliegue de una tabla que se llama "Tabla1" junto a su nï
¿ $\frac{1}{2}$ mero de referencia:

Tabla 1: Titulo de la tabla				
Indicador	$\mathbf{SO_2}$	Temperatura		
Promedio	0.006	24.093		
Desviacii $\frac{1}{2}$ n esti $\frac{1}{2}$ ndar	0.007	2.950		
Mediana	0.004	23.500		
Minima	0.000	18.200		
$M\ddot{i}\dot{\epsilon}\frac{1}{2}ximo$	0.127	32		
Asimetri $\frac{1}{2}$ a	5.415	0.451		

Para referenciar una tabla, se utiliza el texto "ref" precedido de un backslash: asï $\frac{1}{2}$, se referenciarï $\frac{1}{2}$ a la Tabla 1.

Despliegue de una imagen que se llama "Figura1" junto a su nï
¿ $\frac{1}{2}$ mero de referencia:

Figura 1: Titulo de la figura

Para referenciar una figura, se utiliza el texto "ref" precedido de un backslash: asi; $\frac{1}{2}$, se referenciari; $\frac{1}{2}$ a la Figura 1.

Expresiï; $\frac{1}{2}$ n matemï; $\frac{1}{2}$ tica en lï; $\frac{1}{2}$ nea con el texto: $f(x) := ax^2 + bx + c$.

Representacii; $\frac{1}{2}$ n de una ecuacii; $\frac{1}{2}$ n, sin ni; $\frac{1}{2}$ mero de referencia:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Representacii; $\frac{1}{2}$ n de una ecuacii; $\frac{1}{2}$ n en una li; $\frac{1}{2}$ nea nueva, con ni; $\frac{1}{2}$ mero de referencia:

$$\bar{X} = \sum_{i=1}^{n} \frac{x_i}{n} \tag{1}$$

Pare referenciar la ecuaci
ï $\frac{1}{2}$ n (1). Se utiliza la etiqueta "eqref" precedido de un
 backslash

Para referenciar una cita bibliogri; $\frac{1}{2}$ ficas se utiliza un archivo "Bibliografia.bib". Este contiene la informacii; $\frac{1}{2}$ n de las referencias utilizadas. Por ejemplo para citar dentro del texto: Segi; $\frac{1}{2}$ n ? plantea que el modelo de regresii; $\frac{1}{2}$ n.....

1.1.

```
\left(\frac{365}{3}\right) \cdot \left(\frac{365}{4}\right)
Una lista:
```

- primer \ddot{i}_{c}^{2} tem de la lista.
- segundo \ddot{i}_{c}^{2} tem de la lista.

Numeracii $\frac{1}{2}$ n de una lista:

- 1. primer $\ddot{i}_{c}^{\frac{1}{2}}$ tem de la lista.
- 2. segundo "
i
; $\frac{1}{2}$ tem de la lista.

Ejemplo para construir una matriz:

$$I = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

1.2. Scripts R

El ambiente Verbatim permite agregar codigo de R.

```
getwd()
k = 70
cumpledif=1
p=0
q=0
for (j in 1:k){
  cumpledif=cumpledif*(1-((j-1)/365))
  q[j]=cumpledif
  p[j]=1-cumpledif
  cat(cumpledif,"\n")
}
windows()
pdf("Texmaker/Graficos/Punto2.pdf")
par(mfrow=c(1,3))
plot(p,col="red", xlab = "n", ylab = "Probabilidad", main = "Probabilidad de que dos o mas
tengan el mismo cumplea\ddot{i}, \frac{1}{2}os en funcion
     de la cantidad de estudiantes n")
```

```
abline(h=0.5)
abline(v=23)
plot(q,col="blue", xlab = "n", ylab = "Probabilidad", main = "Probabilidad de que dos o mas
NO tengan el mismo cumplea\frac{1}{2}os en funcion
     de la cantidad de estudiantes n")
abline(h=0.5)
abline(v=23)
plot(p,col="red", xlab = "", ylab = "")
par(new=TRUE)
plot(q,col="blue", xlab = "", ylab = "")
title(xlab = "n", ylab = "Probabilidad", main="Probabilidades de que dos o mas estudiantes
tengan el mismo cumpleaï\frac{1}{2}os (rojo) y su
evento complemetario (azul) en funcion de n")
dev.off()
##########simulacion punto 3a Exponencial
U = runif(1000, 0, 1) \#Generar U
1 = 4 \text{ #Pari}_{\frac{1}{2}} \frac{1}{2}ametro de la exponencial Lambda = 4
X = -(1/1) * \log(U)
windows()
pdf("Texmaker/Graficos/Punto3A.pdf")
par(mfrow=c(1,2))
plot(density(U),col="blue", xlab = "X", ylab = "Densidad", main = expression(Unif(0,1)))
plot(density(X),col="red", xlab = "X", ylab = "Densidad", main = expression(Exp(lambda=4)))
dev.off()
########## Punto 3b Poisson
x=0
for(j in 1:1000){
  lambda=7
  i = 0
  p = exp(-lambda)
  f = p
  u= runif(1000,0,1)
  while(u>=f){
    p=lambda*p/(i + 1)
    f = f + p
    i = i + 1
    x[j] = i
  }
}
```

1.3. Analisis Resultados

2. Situacion 2

2.1. Punto A.

Si $\hat{\theta_1}$ y $\hat{\theta_2}$ son dos estimadores insesgados tales que:

$$\hat{\theta_3} = a\hat{\theta_1} + (1-a)\hat{\theta_2}$$

Aplico Esperanza a ambos lados

$$E[\hat{\theta}_3] = E[a\hat{\theta}_1 + (1-a)\hat{\theta}_2]$$

$$E[\hat{\theta}_3] = E[a\hat{\theta}_1] + E[(1-a)\hat{\theta}_2]$$

 $E[\hat{\theta_3}] = aE[\hat{\theta_1}] + (1-a)E[\hat{\theta_2}]$ Con $\hat{\theta_1}$ y $\hat{\theta_2}$ estimadores insesgados

$$E[\hat{\theta}_3] = a\theta + (1-a)\theta$$

$$E[\hat{\theta}_3] = a\theta + \theta - a\theta$$

$$E[\hat{\theta_3}] = \theta$$

 $\therefore \hat{\theta_3}$ Es un estimador insesgado.

2.2. Punto B.

El coeficiente de variacion de $\hat{\theta_3}$ es

$$CV[\hat{\theta_3}] = \frac{\sqrt{Var[\hat{\theta_3}]}}{E[\hat{\theta_3}]}$$

Hallamos la $Var[\hat{\theta_3}]$

 $Var[\hat{\theta_3}] = Var[a\hat{\theta_1} + (1-a)\hat{\theta_2}] + 2Cov[a\hat{\theta_1}, (1-a)\hat{\theta_2}]$, ya que no sabemos si $\hat{\theta_1}$ y $\hat{\theta_2}$ son independientes

Entonces, distribuyendo la Varianza y por las propiedades de Covarianza:

$$Var[\hat{\theta_3}] = Var[a\hat{\theta_1}] + Var[(1-a)\hat{\theta_2}] + 2a(1-a)Cov[\hat{\theta_1}, \hat{\theta_2}]$$

$$Var[\hat{\theta_3}] = a^2 Var[\hat{\theta_1}] + (1-a)^2 Var[\hat{\theta_2}] + (2a-2a^2)Cov[\hat{\theta_1},\hat{\theta_2}]$$

Como $Var[\hat{\theta_1}] = \sigma_1^2 \mathbf{y} \ Var[\hat{\theta_2}] = \sigma_2^2 \mathbf{entonces}$

$$Var[\hat{\theta}_3] = a^2[\sigma_1^2] + (1-a)^2[\sigma_2^2] + (2a-2a^2)Cov[\hat{\theta}_1, \hat{\theta}_2]$$

Sabemos que $Cov[\hat{\theta_1}, \hat{\theta_2}] = E[\hat{\theta_1}\hat{\theta_2}] - E[\hat{\theta_1}] * E[\hat{\theta_2}]$, entonces:

Como $E[\hat{\theta_1}] = \theta$ y $E[\hat{\theta_2}] = \theta$ tenemos:

$$Cov[\hat{\theta_1}, \hat{\theta_2}] = E[\hat{\theta_1}\hat{\theta_2}] - \theta^2$$
, por tanto:

$$Var[\hat{\theta_3}] = a^2[\sigma_1^2] + (1 - 2a + a^2)[\sigma_2^2] + (2a - 2a^2)(E[\hat{\theta_1}\hat{\theta_2}] - \theta^2)$$

Como sabemos que $E[\hat{\theta_3}] = \theta$

 \therefore El coeficiente de variacion para $\hat{\theta_3}$ es:

$$CV[\hat{\theta_3}] = \frac{\sqrt{a^2 \sigma_1^2 + (1-a)^2 \sigma_2^2 + (2a - 2a^2)(E[\hat{\theta_1}\hat{\theta_2}] - \theta^2)}}{\theta}$$

2.3. Punto C.

Como en este punto sabemos que $\hat{\theta_1}$ y $\hat{\theta_2}$ son independientes, entonces la $Cov[\hat{\theta_1}, \hat{\theta_2}] = 0$ y por tanto:

$$Var[\hat{\theta_3}] = Var[a\hat{\theta_1} + (1-a)\hat{\theta_2}]$$

Distribuyendo la varianza y aplicando sus propiedades, nos queda:

$$Var[\hat{\theta}_3] = Var[a\hat{\theta}_1] + Var[(1-a)\hat{\theta}_2]$$

$$Var[\hat{\theta}_3] = a^2 Var[\hat{\theta}_1] + (1-a)^2 Var[\hat{\theta}_2]$$

$$Var[\hat{\theta}_3] = a^2 \sigma_1^2 + (1-a)^2 \sigma_2^2$$

Note que $Var[\hat{\theta}_3]$ se convierte en una funcion que depende de a, ya que, σ_1^2 y σ_2^2 son conocidas, entonces, debemos encontrar a, que haga minima dicha funcion, en otras palabras, todo se reduce a encontrar el minimo de la funcion. Para ello procedemos de la siguiente manera:

1. Encontramos la primera derivada de la funcion con respecto a la variable a:

$$f'(a) = 2a\sigma_1^2 - 2(1-a)\sigma_2^2$$

2. Igualamos el resultado de la primera derivada a 0 y despejamos la variable que nos interesa obtener, en este caso, despejamos a:

$$2a\sigma_1^2 - 2(1-a)\sigma_2^2 = 0$$

$$2a\sigma_1^2 - (2-2a)\sigma_2^2 = 0$$

$$2a\sigma_1^2 - 2\sigma_2^2 + 2a\sigma_2^2 = 0$$

$$2a\sigma_1^2 + 2a\sigma_2^2 = 2\sigma_2^2$$

$$a(2\sigma_1^2 + 2\sigma_2^2) = 2\sigma_2^2$$

$$a = \frac{2\sigma_2^2}{2\sigma_1^2 + 2\sigma_2^2}$$

$$\therefore a = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$

3. Ahora, debemos encontrar la segunda derivada y ver si es positiva o negativa para saber si encontramos un minimo o un maximo:

$$f''(a) = 2\sigma_1^2 + 2\sigma_2^2 > 0$$

Como nos dio que la segunda derivada parcial es siempre positiva, concluimos que el a hallado anteriormente es un minimo. Por lo tanto, para hacer que la $Var[\hat{\theta}_3]$ sea minima, debemos escoger a como $a = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$.

3. Situacion 3

Punto A. 3.1.

Sea X una distribucion Poisson(λ) con, n = 30 y $E[x] = (\lambda)$

$$M_1' = \frac{1}{30} \sum_{i=1}^{30} x_i$$
$$\mu_1' = \lambda$$

$$M_1' = \frac{1}{30} \sum_{i=1}^{30} x_i = \lambda = \mu_1'$$

$$\therefore \hat{\lambda} = \frac{1}{30} \sum_{i=1}^{30} x_i = \overline{X}$$

Ahora es necesario probrar si es insesgado:
$$E[\hat{\lambda}] = E[\tfrac{1}{30} \sum_{i=1}^{30} x_i] \ E[\hat{\lambda}] = \tfrac{1}{30} E[\sum_{i=1}^{30} \lambda_i] \ E[\hat{\lambda}] = \tfrac{1}{30} 30 \lambda \ E[\hat{\lambda}] = \lambda$$

.: Un estimador insesgado para λ es $\hat{\lambda} = \frac{1}{30} \sum_{i=1}^{30} x_i = \overline{X}$

3.2. Punto B.

Sea
$$C = 3X + X^2$$

$$E[C] = E[3X + X^2] \ E[C] = E[3X] + E[X^2] \ E[C] = 3E[X] + E[X^2]$$

Sabiendo que:

$$V[X] = E[X^2] - E^2[X]$$

Entonces:

$$E^2[X] = V[X] + E[X^2]$$

$$\therefore E^2[X] = \lambda + (\lambda)^2$$

Reemplazando $E^2[X]$ en:

$$E[C] = 3\lambda + E[X^2]$$

Obtenemos que: $E[C] = 3\lambda + \lambda + (\lambda)^2$: $E[C] = 4\lambda + (\lambda)^2$