NOTICE TECHNIQUE

CAIRSENS

MICROSENSOR

- **NOVEMBRE 2020 -**

AVERTISSEMENT

Les informations contenues dans ce document sont susceptibles d'être modifiées sans préavis. Le concepteur se réserve le droit de modifier son matériel sans faire évoluer ce document, par conséquent les informations de ce document ne sont pas contractuelles.

NOTE : Cette notice s'applique uniquement à la version 3 du CAIRSENS sortie en Mai 2020, à partir du N° de série : 7073

Index des pages

Pages	Dates	Pages	Mises à jour	Pages	Dates
1	2020.11	21	2020.06		
2	2020.11	22	2020.06		
3	2020.06	23	2020.06		
4	2020.06	24	2020.06		
5	2020.06	25	2020.06		
6	2020.06	26	2020.06		
7	2020.06	27	2020.06		
8	2020.06	28	2020.06		
9	2020.06	29	2020.06		
10	2020.06	30	2020.06		
11	2020.06	31	2020.06		
12	2020.06	32	2020.06		
13	2020.06	33	2020.06		
14	2020.06	34	2020.06		
15	2020.06	35	2020.06		
16	2020.06	36	2020.06		
17	2020.06	37	2020.06		
18	2020.06	38	2020.06		
19	2020.06				
20	2020.06				

1–2 NOVEMBRE 2020

CAIRSENS

1	GEN	ERALITES – CARACTERISTIQUES	1–5
1.1	GENE	ERALITES	1–7
	1.1.1	PRESENTATION	1–7
	1.1.2	DESCRIPTION	1–8
		1.1.2.1 Face avant	1–8
		1.1.2.2 Face arrière	1–9
		1.1.2.3 Corps du CAIRSENS	1–10
	1.1.3	MODES DE FONCTIONNEMENT	1–11
		1.1.3.1 En standard	1–11
		1.1.3.2 En option	1–11
	1.1.4	EQUIPEMENT ASSOCIE	1–11
1.2	CARA	ACTERISTIQUES	1–12
	1.2.1	CARACTERISTIQUES TECHNIQUES	1–12
	1.2.2	CARACTERISTIQUES DE STOCKAGE	1–14
	1.2.3	CARACTERISTIQUES D'INSTALLATION	1–14
		1.2.3.1 Liaisons entre appareils	1–14
		1.2.3.2 Encombrement et masse	1–15
		1.2.3.3 Manutention et stockage	1–15
2	MES	URE	2–17
2.1	LECT	URE DE LA CONCENTRATION SUR L'AFFICHEUR	2–17
2.2	MESU	JRE EFFECTUEE PAR LE CAIRSENS	2–18
2.3	FONC	CTION DU FILTRE	2–18
3	FON	CTIONNEMENT	3–19
3.1	MISE	EN SERVICE	3–19
	3.1.1	PREMIERE MISE EN FONCTIONNEMENT	3–19
	3.1.2	HEURE, DATE ET HORODATAGE DES DONNEES MESUREES	3–20
	3.1.3	MISE EN SERVICE SUITE A UNE DUREE DE STOCKAGE IMPORTANTE	3–21
		3.1.3.1 Reconditionnement accéléré	3–21
		3.1.3.2 Reconditionnement en air ambiant sur site	3–21
	3.1.4	CABLAGE DU CAIRSENS POUR INTEGRATION DANS SYSTEME	3–22
	3.1.5	PROTOCOLES DE COMMUNICATIONS	3–24
3.2	LOGI	CIEL D'EXPLOITATION CAIRSOFT	3–25
	3.2.1	PREREQUIS	3–25
	3.2.2	TELECHARGEMENT DEPUIS LE WEB	3–25

CAIRSENS

	3.2.3	INSTAL	LATION DU CAIRSOFT	3–26
	3.2.4	CONNE	XION DU CAIRSENS AU PC	3–26
	3.2.5	LANCE	MENT DU CAIRSOFT	3–27
	3.2.6	CONFIG	GURATION DU CAIRSENS	3–28
		3.2.6.1	Nom du CAIRSENS	3–28
		3.2.6.2	Mode d'affichage du CAIRSENS	3–28
		3.2.6.3	Date et heure du CAIRSENS	3–29
		3.2.6.4	Echantillonnage / Intervalle de mesure	3–30
		3.2.6.5	Visualisation sur le graphique et export des mesures du CAIRSENS sous form	nat . <i>csv</i> 3–30
		3.2.6.6	Visualisation des mesures et autres données sur tableau type .XLSX	3–32
4	ΛEΕΙ		DES DEFAUTS DE FONCTIONNEMENTS	4–34
7	A111	SHAGL	DES DEI AUTS DE I ONCTIONNEMENTS	4-34
5	MAIN	TENAN	NCE DU CAIRSENS	5–35
5.1	CONS	IGNES I	DE SECURITE	5–35
5.2	OPER	ATION [DE MAINTENANCE	5–36
6	ANNI	EYES		6–37
U	AININ	LALG		0–31
6.1	PROT	OCOLE	MODBUS	6–37
6.2	PROT	OCOLE	CAIRSENS UART	6–37
6.3	PLAN			6–37
Figure 1	I-2 – Face	avant du	u CAIRSENS CAIRSENS	1–5 1–8
		e arrière du Jette du ca	u CAIRSENS	1–9 1–10
Figure 1	I-6 – Liais	ons entre	appareils pour CAIRSENS pour fonctionnement autonome USB	1–14
Figure 1			appareils pour CAIRSENS UART pour intégration dans système (type CAIRNET 2.0)	1–14
Figure 1	I - 8 – Liai:	son entre	appareils pour CAIRSENS UART ou MODBUS pour intégration dans système	
Figure 1			(type CAIRNET 3.0) brement du CAIRSENS (en mm)	1–15 1–16
			a concentration	2–17
Figure 3	3-1 – Ecra	n d'afficha	nge au démarrage du CAIRSENS	3–19
			age en fin de durée de vie	3–19
			age d'alerte réglage de l'horloge	3–20
			câblage pour l'intégration en système	3–22
			es mesures sur tableau XLSX IRSOFT d'une cellule électrochimique ayant fonctionné plus de 12 mois	3–32
i iguie c		= 00%).	1. Con 1 d and condic diconocininique ayant fonctionine plus de 12 mois	3–33
Figure 5	`	,	lu filtre du CAIRSENS	5–36

1 GENERALITES – CARACTERISTIQUES

L'ensemble est constitué d'un coffret de stockage (1), d'un CAIRSENS pour la mesure du polluant concerné (2), le cas échéant d'un jeu de 2 filtres poussières et tampons d'humidité (3), et d'un câble standard (4) mini USB B vers USB A (noir 50 cm) pour alimenter en 5 VDC le CAIRSENS en face arrière sur le port mini USB et télécharger les données en USB via le logiciel CAIRSOFT.

(1) coffret de stockage, (2) CAIRSENS, (3) présence ou non de 2 filtres de rechange selon le type de CAIRSENS (voir Note ci-dessous), (4) câble standard mini USB B vers USB A

Figure 1-1 - Présentation du CAIRSENS

NOTE: – Un jeu de deux filtres blancs de rechange est livré avec les CAIRSENS H₂S/CH₄S, CO, O₃/NO₂, SO₂ et NH₃.

- Le CAIRSENS NO₂ contient un seul filtre prémonté, de couleur bleue, qui est différent des filtres H₂S/CH₄S, CO, O₃/NO₂, SO₂ et NH₃. Ce filtre a une durée de vie d'un an. Il est recommandé de ne pas manipuler ni de remplacer ce filtre. Cependant, si, à titre exceptionnel, cela s'avérait nécessaire, l'opérateur **ne doit pas** manipuler ce filtre avec les mains mais utiliser une pince et des gants.
- Le CAIRSENS COVnm ne contient pas de filtre.

Le CAIRSENS supporte trois protocoles de communication : UART, USB et Modbus.

ATTENTION: Par défaut, le CAIRSENS fonctionne en protocole USB sur la face arrière (port mini USB B) et en protocole UART du côté écran (port micro USB B)

Le CAIRSENS en mode USB fonctionne avec un outil logiciel spécifique de téléchargement, configuration, visualisation et exportation des données : le Cairsoft (V4.5.et plus). Cet outil est disponible gratuitement dans la rubrique « Téléchargement » sur notre site web www.cairpol.com.

Le fonctionnement du CAIRSOFT est détaillé au chapitre 3 de ce manuel technique.

Le CAIRSENS qui fonctionne en protocole UART délivre un signal de sortie UART TTL 3V. Il convient d'utiliser les trames de requêtes à envoyer au CAIRSENS afin d'obtenir les données souhaitées (voir document en annexe). Ce mode de communication permet de développer de multiples applications autour des mesures réalisées par le CAIRSENS.

NE PAS relier directement le CAIRSENS UART à un port USB d'un PC. Prévoir un convertisseur UART vers USB (FTDI 3V3) si nécessaire (convertisseur non fourni).

JUIN 2020

1.1 GENERALITES

1.1.1 PRESENTATION

Le CAIRSENS est un capteur qui permet de mesurer en continu et en temps réel différents polluants gazeux présents dans l'air ambiant dans une large gamme de concentrations (de quelques dizaines de ppb à plusieurs ppm).

Il effectue des mesures de la pollution ambiante de l'air à titre indicatif : l'incertitude de mesure tolérée (+/- 25 à 30%) est en accord avec les objectifs de qualité de données fixés par la Directive européenne 2008/50/CE concernant la qualité de l'air ambiant et un air pur pour l'Europe.

Le CAIRSENS est fabriqué et calibré en laboratoire de qualification métrologique par ENVEA avec une durée de validité d'un an. Il est compact et consomme très peu d'énergie. Il fournit des concentrations toutes les minutes calculées à partir de la moyenne glissante des mesures réalisées toutes les secondes. Chaque CAIRSENS est fourni avec son certificat de calibration.

Il existe plusieurs déclinaisons du CAIRSENS, chacun capable de mesurer le/les polluant(s) suivant(s):

- Dioxyde d'azote NO₂
- Ammoniac NH₃
- Dioxyde de soufre SO₂
- Monoxyde de carbone CO
- Sulfure d'hydrogène & méthyl mercaptans H₂S/CH₄S
- Ozone & dioxyde d'azote O₃/NO₂
- Composés organiques volatils non méthaniques COVnm

Chaque CAIRSENS n'est destiné qu'à la mesure d'un de ces polluants et est calibré en laboratoire visà-vis de ce polluant.

Les CAIRSENS peuvent être utilisés de façon autonome avec récupération directe sur un ordinateur des données mémorisées. Ils peuvent aussi être intégrés par 6 unités (maximum) dans des mini stations CAIRNET pour le suivi de plusieurs polluants, ou encore s'intégrer de façon personnalisée dans un réseau de supervision de la qualité de l'air.

Les applications du CAIRSENS les plus usuelles sont les suivantes :

- Surveillance de la qualité de l'air intérieur et extérieur : villes intelligentes, bords de route et tunnels, écoles, aéroports, terminaux de navires...
- Surveillance des odeurs : SEEU (Stations d'Epuration des Eaux Usées), site de recyclage, fabrication de pâte et de papier, raffineries pétrochimiques.
- Détection des fuites et surveillance des émissions fugitives : carrières, installations de stockage, mines, usines de fabrication.
- Fourniture de données pour modéliser la dispersion atmosphérique.
- Santé et sécurité : mines, sites industriels, construction.
- Prévision des émissions en limite séparative de sites industriels.

1.1.2 DESCRIPTION

1.1.2.1 Face avant

Voir Figure 1-2.

La face avant, protégée par une plaque de polycarbonate, est équipée de :

- L'écran LCD qui affiche :
 - La concentration mesurée (1), représentée par 3 chiffres, 1 exposant et 1 unité (voir Chapitre 2.).
 - L'état de la capacité mémoire utilisée (2), par fraction de 25% : lorsque toute la mémoire est complètement utilisée, les quarts de cercle sont pleins.
 - Les éventuels défauts (3) de fonctionnement du CAIRSENS (voir Chapitre 4).
- Le port micro-USB B (4), protégé par un capuchon amovible, qui permet :
 - L'alimentation du CAIRSENS en 5 VDC.
 - La communication en UART CAIRPOL et UART MODBUS RTU (mode esclave).

(1) concentration mesurée, (2) mémoire utilisée, (3) erreurs de fonctionnement, (4) port micro USB B

Figure 1-2 - Face avant du CAIRSENS

1-8 JUIN 2020

1.1.2.2 Face arrière

Voir Figure 1-3.

La face arrière du CAIRSENS regroupe les éléments suivants :

- L'entrée échantillon (1) équipée d'un porte-filtre qui contient ou non un filtre (selon le modèle de CAIRSENS) qui assure la protection du capteur contre les poussières et l'humidité.
- Le port mini-USB B (2) qui gère la communication USB et UART et permet l'alimentation du CAIRSENS en 5VDC. Ce port est protégé par un capuchon amovible.

(1) entrée échantillon, (2) port mini-USB B et son capuchon amovible

Figure 1-3 – Face arrière du CAIRSENS

1.1.2.3 Corps du CAIRSENS

Le corps du CAIRSENS contient les éléments nécessaires à la mesure. Il est protégé par un tube externe bleu en aluminium qui assure le maintien en place des éléments et le rejet de l'air aspiré.

Ce CAIRSENS ne contient pas de batterie Lithium, seule une pile bouton assure le maintien de l'horodatage.

Le circuit fluide est d'une grande simplicité : l'air à analyser est aspiré à travers l'entrée échantillon par un micro-ventilateur interne puis est rejeté à travers l'orifice percé sur le tube bleu externe.

ATTENTION : NE PAS obstruer l'entrée du gaz échantillon (1) de Figure 1-3, ni sa sortie par l'orifice percé sur le tube externe.

La cellule de mesure est spécifique au gaz à mesurer : chaque CAIRSENS ne mesure qu'un seul gaz correspondant à la cellule qui lui est intégrée.

Pour la mesure des composés inorganiques, les cellules utilisent le principe de mesure électrochimique (ampérométrie). Pour la mesure des COVnm, le principe de mesure repose sur la photo ionisation par rayonnement UV.

Les informations suivantes figurent sur le corps du CAIRSENS : l'identification du/des gaz mesuré(s) (1), la gamme de mesure (2), la tension d'alimentation pour le raccordement (3), la référence du CAIRSENS (4) et son numéro de série (5).

(1) Gaz mesuré(s), (2) gamme de mesure, (3) tension d'alimentation, (4) référence du CAIRSENS, (5) n° de série

Figure 1-4 - Etiquette du CAIRSENS

Le CAIRSENS ainsi que ses accessoires ne doivent pas être jetés dans une poubelle traditionnelle. Ils doivent être pris en charge par une structure spécialisée de récupération et de recyclage.

1–10 JUIN 2020

1.1.3 MODES DE FONCTIONNEMENT

1.1.3.1 En standard

- Via l'utilisation de la communication USB et de la mémoire interne : de manière autonome, avec téléchargement des données après mesures directement sur un PC.
- Via l'utilisation de la communication UART : intégré dans une mini-station CAIRNET afin de créer un réseau de surveillance de la qualité de l'air
- Via l'utilisation de la communication UART ou MODBUS : intégré dans une solution personnalisée avec centralisation des données sur un DAS à des fins de supervision et de suivi de la qualité de l'air en associant avec d'autres types de mesures (météo, bruit, ...).

1.1.3.2 En option

Le CAIRSENS peut être embarqué dans le produit, (en option) suivant :

CAIRNET 3.0 :

Station de mesure autonome grâce à sa batterie interne rechargeable à l'aide de panneaux photovoltaïques ou alimentée en continu par une source de tension 8 – 30 V. Un module de communication sans fil cellulaire 3G/4G assure la transmission des données vers le CAIRCLOUD (plateforme de gestion des mesures, accessibles à distance depuis une interface web sécurisée).

NOTE : Le CAIRSENS est compatible avec les anciens produits CAIRNET 2.0, le convertisseur analogique, le CAIRTUB analogique, en basculant le port mini USB B en face arrière en protocole de communication UART, et également avec le CAIRTUB USB.

1.1.4 EQUIPEMENT ASSOCIE

Le CAIRSENS peut être associé aux équipements suivants (non fournis) :

- Convertisseur numérique/ analogique
- Système d'acquisition et de gestion des données : DAHS e-SAM.

1.2 **1.2.1 CARACTERISTIQUES CARACTERISTIQUES TECHNIQUES**

Gaz mesuré	NO_2	O_3 / NO_2	SO_2	CO H ₂ S / CH ₄ S		H ₂ S / CH ₄ S	S		NH ₃		COVnm
Gamme de mesure (ppm)	0 - 0,25	0 - 0,25	0 - 1	0 - 20	0 - 1	0 - 20	0 - 200		0 - 25		0-2 0-16
Limite de détection (ppm) (1)	0,02	0,02	90'0	0,05	0,01	0,03	0,20		0,50		0,20 0,50
Résolution (ppm)						0,001	10				
Linéarité						< ± 10 %	% C				
Incertitude de la mesure	± 25 % (2)	± 30 % (2)	± 25 % (2)	±25 % (2)	+ 30 %	% 0E +	730%		730 %		± 30 % (2)
Temps de réponse (1)	s 06 >	s 06 >	s 06	s 06 >	s 06 >	s 06 >	s 06 >		s 06		s 09 s 09
Calibration & gaz vecteurs	NO ₂ + air humide	O ₃ + air humide	SO ₂ + air humide	CO + air humide		H ₂ S + air humide	mide		NH ₃ + air humide		Isobutylène (C ₄ H ₈) + Air synthétique
Composé référence de sensibilité	NO ₂ + air humide	O ₃ + air humide	SO ₂ + air humide	CO + air humide		H ₂ S + air humide	mide		NH ₃ + air humide		Isobutylène (C₄H8) + Air synthétique
Limite de quantification (QL) (ppm) (1)	0,04	0,04	0,10	0,10	0,02	90'0	0,40		1,00		0,40 1,00
Sensibilité croisée	Cl₂~ 80%	Cl ₂ ~ 80%	NO ₂ & O ₃ ~ -125% H ₂ S ~ 5% CO & H ₂ < 1%	H ₂ < 60 %	(SO ₂ , OC Interféren oxyde	Autres VRSC (4) 2, OCS, C ₂ H ₆ S, C ₂ H ₆ S ₂) < 10 ferences negatives des espé oxydantes (O ₃ , NO ₂) ~ 30%	Autres VRSC (4) (SO ₂ , OCS, C ₂ H ₆ S, C ₂ H ₆ S ₂) < 100% Interférences négatives des espèces oxydantes (O ₃ , NO ₂) ~ 30%	Interférent SO ₂ H ₂ S NO NO ₂	Concentration 20 ppm 20 ppm 20 ppm 20 ppm 20 ppm	Lecture -7 ppm 7 ppm -1 ppm -20 ppm	Liste disponible sur demande (6)
Limite d'exposition à l'O ₃	7,5 ppm/jour(3)						N/A				
Type de capteur					Electrochimique	mique					PID(5) Potentiel d'ionisation de la lampe = 10,6 eV(6)
Température de fonctionnement (°C)	-20 \$	-20 à +40	-20 à +50	+50			-20 8	-20 à +40			-20 à +50
Humidité relative de fonctionnement (HR%)					10	10 à 90 (sans condensation)	ondensation)				
Pression de fonctionnement						1013 ± 200	: 200				

Selon qualification métrologique en laboratoire (à 20 °C ± 2°C, 50 % HR ± 10 %, 1013 mbar ± 5 %) Incertitude conforme aux objectifs de qualité des données pour le règlement de l'évaluation de la qualité de l'air ambiant par la directive européenne 2008/50/CE pour les mesures indicatives £2

 $\mathfrak{S}_{4}\mathfrak{S}_{6}$

Au-delà de cette limite, la performance du filtre d'ozone diminue VRSC= Composés soufrés réduits volatils (Volatile Reduced Sulfur Compounds) PID= Détecteur Photo Ionisation (Photo-Ionization Detector) Les capteurs PID permettent de détecter les COV ayant un potentiel d'ionisation inférieur à l'énergie générée par la lampe UV

Caractéristiques du système :

Durée de vie	Garantie 1 an		
Puissance nominale d'alimentation	5VDC / 50mA		
	Connexion sur un port USB d'un ordinateur		
Consommation d'énergie	< 20 mA pour 5VDC de puissance d'alimentation		
Méthode d'échantillonnage du gaz	Echantillonnage de l'air avec un micro-ventilateur contrôlé		
Ports Entrée/Sortie	Mini USB B (face ventilateur)Micro USB B (face écran)		
Protocoles de communication	USBUART CAIRPOLUART Modbus RTU		
Affichage LCD	 Concentration mesurée et unité Etat de la mémoire Défauts éventuels (fin de vie, erreur ventilateur, perte d'horodatage) 		
Gestion et traitement des données	 Micro-processeur interne pour l'acquisition de données et leur traitement Horloge Temp Réel intégrée 		
Capacité de stockage des données	 20 jours de données 1 min 303 jours de données 15 min 1212 jours de données 60 min 		
Téléchargement des données	 Logiciel CAIRSOFT : graphes et tableau .xls, export des données sur Caircloud (option) DAHS (tel que le système d'acquisition de données eSAM d'ENVEA) 		

Conformité à la réglementation environnementale :

Sécurité électrique	NF EN 61010-1 : 2010
Compatibilité électromagnétique	NF EN 61326-1 : 2013
Indice de protection	IP 42 (selon IEC 60529)
Objectifs de qualité des données pour l'évaluation de la qualité de l'air ambiant (mesures indicatives)	2008/50/CE

1.2.2 CARACTERISTIQUES DE STOCKAGE

Température (°C)	+5 à +20
Humidité Relative (% HR)	> 15 (sans condensation)
Durée maximum de stockage sans	3 mois pour l'ensemble des CAIRSENS gaz,
utilisation	 6 mois pour le CAIRSENS COVnm

1.2.3 CARACTERISTIQUES D'INSTALLATION

1.2.3.1 Liaisons entre appareils

Le CAIRSENS met en œuvre les liaisons externes et les alimentations comme illustré ci-dessous :

Figure 1-5 – Liaisons entre appareils pour CAIRSENS pour fonctionnement autonome USB

Figure 1-6 – Liaisons entre appareils pour CAIRSENS UART pour intégration dans système via face arrière (type CAIRNET 2.0)

Pour l'intégration du CAIRSENS via le connecteur mini USB B en communication UART, basculer au préalable du mode USB à UART via l'application (voir section 3.1.5).

Figure 1-7 – Liaison entre appareils pour CAIRSENS UART ou MODBUS pour intégration dans système via face avant (type CAIRNET 3.0)

1.2.3.2 Encombrement et masse

Le CAIRSENS se présente sous la forme d'un cylindre :

Longueur : 62,7 mm

Diamètre : 32,2 mm

Masse : 47 g

1.2.3.3 Manutention et stockage

Le CAIRSENS doit être manipulé avec précaution.

Il doit être conservé dans le coffret prévu à cet effet.

Figure 1-8 – Cotes d'encombrement du CAIRSENS (en mm)

2 MESURE

2.1 LECTURE DE LA CONCENTRATION SUR L'AFFICHEUR

Voir Figure 2-1.

La valeur numérique de la concentration mesurée est donnée par la formule :

XXX **×** 10^y

Où:

- XXX est la valeur de mesure affichée sur les 3 chiffres de l'écran (1)
- st l'opérateur de multiplication
- 10^y est le facteur multiplicatif à appliquer à XXX. Sur l'écran, la valeur de « y » est affichée en (2).

A titre d'exemple, le tableau ci-dessous donne la valeur de la concentration pour des valeurs de y de 0 à 2:

Valeur de y	Valeur de 10 ^y	Valeur de la concentration lue
y = 0	100 = 1	XXX × 1 = XXX
y = 1	$10^1 = 10$	XXX ≭ 10 = XXX0
y = 2	10 ² =100	XXX x 100 = XXX00

(1) affichage de la valeur mesurée sur 3 chiffres XXX, (2) valeur de « y » dans la formule : XXX ★ 10^y

Figure 2-1 – Affichage de la concentration

2.2 MESURE EFFECTUEE PAR LE CAIRSENS

Les mesures affichées à l'écran sont réalisées de la manière suivante :

- Moyenne glissante des mesures réalisées par le CAIRSENS pendant 60 secondes.
- Rafraichissement de cette valeur à l'écran toutes les 10 secondes.

La fréquence des mesures enregistrées dans la mémoire du CAIRSENS est paramétrable en 1 min (par défaut), 15 min ou 1h à l'aide du logiciel CAIRSOFT. Attention, ce paramètre influe directement sur le volume de données à mémoriser et donc sur la capacité de mémoire du CAIRSENS.

2.3 FONCTION DU FILTRE

Le filtre est essentiel au bon fonctionnement du CAIRSENS, il permet le conditionnement de l'échantillon à mesurer. Placé sur l'entrée échantillon, il assure le passage du polluant et protège des poussières et de l'humidité.

ATTENTION : Le filtre est à manipuler avec précaution : NE PAS sortir le filtre de son porte-filtre et NE PAS manipuler avec les doigts (voir Opération de maintenance).

2–18 JUIN 2020

3 FONCTIONNEMENT

3.1 MISE EN SERVICE

3.1.1 PREMIERE MISE EN FONCTIONNEMENT

La mise en fonctionnement du CAIRSENS se fait dès son alimentation électrique : le CAIRSENS commence à mesurer dès sa mise en fonctionnement. Les mesures sont immédiatement affichées à l'écran et mémorisées automatiquement. La sauvegarde des mesures est réalisée en permanence dans la mémoire interne du CAIRSENS. Il est recommandé de n'exploiter les mesures qu'après 24h, durée nécessaire au capteur pour se conditionner à son environnement.

Par défaut, le CAIRSENS est en mode de mesure continue, et la période de mesure (ou pas de temps) est de 1 minute. Elle est modifiable en 15 min ou 1 h avec le logiciel CAIRSOFT.

Lorsque la mémoire du CAIRSENS est pleine, celui-ci continue à fonctionner normalement, mais il enregistre les nouvelles mesures en écrasant les mesures les plus anciennes.

ATTENTION : L'opérateur doit extraire régulièrement les données avant d'atteindre la capacité maximale de stockage du CAIRSENS pour éviter de perdre des mesures.

Au démarrage, tous les pictogrammes s'affichent par défaut (Figure 3-1) :

Figure 3-1 - Ecran d'affichage au démarrage du CAIRSENS

La calibration et la mesure du CAIRSENS sont garantis valables durant 12 mois après sa livraison.

La durée de vie du CAIRSENS est de 12 mois (8760 h d'utilisation). Lorsque cette durée est expirée, l'affichage sur l'écran est : cAL (Figure 3-2). Il est alors nécessaire de procéder au renouvellement du CAIRSENS.

Figure 3-2 - Ecran d'affichage en fin de durée de vie

ATTENTION: Par défaut le CAIRSENS fonctionne en protocole USB sur la face arrière (port mini USB B) et en protocole UART du côté écran (port micro USB B)

3.1.2 HEURE, DATE ET HORODATAGE DES DONNEES MESUREES

L'horloge interne du CAIRSENS est préréglée en usine, une pile bouton assure la sauvegarde de l'horloge. Avant toute utilisation ou campagne de mesure, il faut vérifier son réglage.

Si le CAIRSENS vient à perdre son réglage d'horloge :

- L'afficheur du CAIRSENS indique l'alerte « dAt » (Figure 3-3).
- Procéder au réglage de l'heure et date en utilisant le logiciel CAIRSOFT. Dès le réglage effectué,
 l'horodatage des mesures reprendra à partir de la nouvelle date et heure paramétrée.
- Si le réglage n'est pas effectué, les mesures seront horodatées à partir du 01/01/2030.

Figure 3-3 – Ecran d'affichage d'alerte réglage de l'horloge

3–20 JUIN 2020

3.1.3 MISE EN SERVICE SUITE A UNE DUREE DE STOCKAGE IMPORTANTE

La durée de stockage maximale sans utilisation du CAIRSENS est de 3 mois (6 mois pour les COVnm).

Un stockage prolongé (supérieur à 4 semaines) influe directement sur les performances du CAIRSENS pendant les premiers jours d'utilisation suivant sa remise en service. <u>Il est strictement conseillé de maintenir le CAIRSENS constamment alimenté en appliquant les conditions de stockage</u>.

Le CAIRSENS doit être reconditionné pour retrouver sa précision. Il est alors vivement conseillé de procéder à un reconditionnement de la cellule électrochimique du CAIRSENS, suivant l'une des 2 méthodes au choix :

3.1.3.1 Reconditionnement accéléré

Ce reconditionnement s'effectue à l'aide d'une bouteille de gaz étalon contenant un mélange du gaz à tester avec de l'air reconstitué (20.9% d'oxygène) :

- (a) Utiliser un volume hermétique* (une poche en nalophan par exemple).
- (b) Placer le CAIRSENS à l'intérieur de ce volume * pendant 10 minutes.
- (c) Pendant 10 nouvelles minutes, injecter une concentration égale :
 - Au maximum de la gamme pour un CAIRSENS dont la plage de mesure est égale ou inférieure à 0/1000 ppb.
 - Equivalente au 1/20^{ième} du maximum de la gamme pour des CAIRSENS dont la gamme est supérieure à 1000 ppb.
- (d) Vider le volume du contenu (l'ouvrir ou extraire le gaz encore présent) jusqu'à ce que la concentration en gaz soit proche de « zéro » ppb.
- (e) Réitérer une fois depuis l'étape (b).
- * ATTENTION : un minimum de 10 % d'humidité relative doit être présent dans le volume.

3.1.3.2 Reconditionnement en air ambiant sur site

- La cellule électrochimique du CARSENS va se reconditionner dans l'air ambiant en présence du polluant à mesurer. Cette méthode nécessite beaucoup plus de temps que la précédente.
- Il est fortement conseillé de n'utiliser les mesures qu'après une période au moins égale à 48 heures (durée nécessaire pour un reconditionnement optimal).

3.1.4 CABLAGE DU CAIRSENS POUR INTEGRATION DANS SYSTEME

Les indications concernant le câblage nécessaire pour l'intégration du CAIRSENS dans un système sont données ci-dessous :

Connecteur mini USB, face filtre

Connecteur micro USB, face écran

La correspondance des broches et des câbles pour un raccordement du CAIRSENS par le connecteur mini ou micro USB vers USB A standard est présentée dans le tableau :

Bro	che	Description	Couleur du câble	
USB A	Mini/Micro USB B			
1	1	5 VDC	Rouge	
2	2 2		Blanc	
3	3 3		Vert	
4		Non utilisé	Marron	
4	5	GND Ground	Noir	

Figure 3-4 – Indications de câblage pour raccordement USB A vers mini ou micro USB B

3–22 JUIN 2020

Pour relier un CAIRSENS fonctionnant sous protocole UART, sur un ordinateur, il est nécessaire de relier un convertisseur FTDI TTL 3V3 (non fourni) au port mini ou micro USB (selon type de configuration UART) du CAIRSENS. Le code couleur pour réaliser ce câblage est présenté dans le tableau cidessous :

	Câble FTDI		Mini/Micro USB		
Broche	Description	Couleur du câble	Broche	Description	Couleur du câble
1	GND	Noir	5	GND	Noir
3	VCC	Rouge	1	VCC	Rouge
4	TXD	Orange	3	D+	Vert
5	RXD	Vert	2	D -	Blanc

3.1.5 PROTOCOLES DE COMMUNICATIONS

Le CAIRSENS supporte trois protocoles de communication, UART, USB and Modbus :

- Face avant micro-USB B: UART Cairpol (par défaut) ou UART Modbus.
- Face arrière mini-USB B : USB (par défaut) ou UART Cairpol.

Il y a donc 4 configurations possibles (cf photo).

ATTENTION: Par défaut le CAIRSENS fonctionne en protocole USB sur la face arrière (port mini USB B) et en protocole UART du côté écran (port micro USB B).

Pour modifier le protocole de communication sur le port mini-USB B et micro-USB B du CAIRSENS, connecter celui-ci à un ordinateur en utilisant le câble USB fourni avec le CAIRSENS, ou à l'aide d'un convertisseur UART vers USB (FTDI 3v3, non fourni) si celui-ci fonctionne sous le protocole UART.

- 1. Connecter le CAIRSENS au PC avec le câble adéquat selon son mode de fonctionnement et le port utilisé
- 2. Exécuter Cairsens_UartConfig.exe (v1.01 ou ultérieure) téléchargeable gratuitement sur le site web « www.cairpol.com,» au même endroit que le CAIRSOFT : rubrique « Téléchargement », onglet « Documentation technique » puis « Logiciels »
- 3. Sélectionner le mode actuel de fonctionnement du CAIRSENS

4. Sélectionner le CAIRSENS reconnu (identifiant se terminant par les 4 chiffres de son numéro de série). Sa configuration actuelle s'affiche en vert, par défaut Config 1 USB/UART-CAIRPOL.

La colonne de gauche, sous la photographie de la face arrière du Cairsens, désigne la configuration du port mini-USB B (USB ou UART-CAIRPOL). La colonne de droite, sous la photographie de l'écran, désigne la configuration du port micro-USB B (UART-CAIRPOL ou UART-MODBUS).

5. Afin de modifier la configuration, double-cliquer sur la configuration désirée (ex.Send Config 2). Lorsque l'opération est terminée, la nouvelle configuration s'affiche en vert. Si la modification de communication impacte le connecteur actuellement utilisé, il est nécessaire de relancer l'application pour visualiser la modification. Fermer le logiciel et déconnecter le CAIRSENS.

3–24 JUIN 2020

3.2 LOGICIEL D'EXPLOITATION CAIRSOFT

La configuration de certains paramètres du CAIRSENS (Réglage horloge, nommage, etc...) est possible à l'aide du logiciel CAIRSOFT (V4.5 et plus). Le logiciel CAIRSOFT permet la visualisation, l'exploitation et l'exportation des données du CAIRSENS.

Le CAIRSOFT est téléchargeable gratuitement sur le site web « <u>www.cairpol.com</u>, » dans la rubrique « Téléchargement », onglet « Documentation technique » puis « Logiciels ».

3.2.1 PREREQUIS

Les prérequis sont les suivants :

Systèmes d'exploitation supportés :

Windows Vista SP2

Windows 7 SP1

Windows 8

Windows 8.1

Windows 10

Windows Server 2008 SP2

Windows Server 2008 R2 SP1

Windows Server 2012

Windows Server 2012 R2

Configuration matérielle minimale requise :

Processeur 1 GHz minimum

512 Mo de mémoire vive (RAM)

Microsoft .Net Framework 4.6 et plus

3.2.2 TELECHARGEMENT DEPUIS LE WEB

La procédure de téléchargement à suivre est la suivante :

- Depuis un navigateur, se rendre sur le site internet <u>www.cairpol.com</u>, et cliquer sur le menu
 « Téléchargements », puis sur l'item « Documentation technique » et catégorie « logiciels »
- Lancer le téléchargement du « CairsoftV4.x.x » (Version CAIRSOFT V4.5 et plus).
- Enregistrer le setup « <u>setup-Cairsoft-4.x.x.exe</u> » (Version CAIRSOFT V4.5 et plus).

INSTALLATION DU CAIRSOFT 3.2.3

- 1 Lancer le setup « setup-Cairsoft-4.x.x.exe » (Version CAIRSOFT V4.5 et plus).
- 2 Suivre les instructions de l'installateur automatique.
- 3 L'installateur vérifie la présence de la version du Framework requise (voir chapitre des prérequis). Si elle n'est pas présente, elle sera installée automatiquement (accès au web requis).

En l'absence d'une connexion internet, le framework 4.6 (et plus) peut être installé manuellement. Reprendre à l'étape a) une fois cette installation finalisée.

- 4 Valider l'installation des Drivers « FTDI CDM » et suivre les instructions de l'installateur.
- 5 Terminer l'installation.
- 6 Le CAIRSOFT est prêt à l'emploi.

3.2.4 **CONNEXION DU CAIRSENS AU PC**

Le CAIRSENS se connecte au PC à l'aide du câble « USB A » vers mini « USB B » spécifique fourni avec le CAIRSENS.

NE PAS utiliser un autre câble USB que celui qui est fourni au risque de détériorer le

matériel.

JUIN 2020 3-26

3.2.5 LANCEMENT DU CAIRSOFT

- Lancer le CAIRSOFT depuis le raccourci « <u>CairsoftV4.x</u> » (Version CAIRSOFT V4.5 et plus) sur le bureau ou depuis le dossier « <u>Cairpol</u> » du menu Démarrer.
- La fenêtre de téléchargement apparait, le téléchargement de l'ensemble des données du CAIRSENS débute.
 Ne pas déconnecter le

Cairsens du PC.

- Lorsque le téléchargement est terminé, la fenêtre principale du CAIRSOFT apparaît et donne accès :
 - Au menu principal constitué de cinq icônes permettant de personnaliser le CAIRSENS et de visualiser l'historique des mesures, d'hygrométrie et du niveau de la batterie du CAIRSENS.
 - A cette notice d'utilisation du CAIRSOFT, accessible depuis l'icône situé en haut à droite de la fenêtre principal.

3.2.6 CONFIGURATION DU CAIRSENS

3.2.6.1 Nom du CAIRSENS

Le nom par défaut de l'appareil est son numéro de série (exemple : « CCB0100000891 »).

Cliquer sur l'icône « Nom » pour le modifier.

- La fenêtre secondaire «Name» apparait : Dans la zone de texte « Nom », entrer le nouveau nom de votre CAIRSENS.
- Pour prendre en compte le changement du nom, cliquer sur le bouton vert « Valider ».
- Pour annuler et revenir à la fenêtre principale, cliquer sur le bouton rouge « Abandon ».

- Le nouveau nom est mémorisé dans le CAIRSENS et apparaît dans la fenêtre principale du CAIRSOFT.
- Le nom du CAIRSENS peut être modifié autant de fois que souhaité.

3.2.6.2 Mode d'affichage du CAIRSENS

Option désactivée pour le CAIRSOFT V4.5.1 et version suivante.

3–28 JUIN 2020

3.2.6.3 Date et heure du CAIRSENS

En cas de perte d'horodatage, celui-ci reprend automatiquement à la date « 2000.01.01 » et l'heure « 00:00 ».

Dans ce cas, il est vivement conseillé de procéder à la mise à l'heure du CAIRSENS pour pouvoir bénéficier d'un horodatage des données valide.

Cette fonctionnalité utilise les fonctions « Date » et « Heure » du PC sur lequel est connecté le CAIRSENS.

 Cliquez sur l'icône « Date & Heure » pour lancer les réglages de la date et de l'heure du CAIRSENS.

- Sélectionner la zone géographique souhaitée (EU ou US).
- Sélectionner le format "heure" souhaité (AM ou PM).
- Valider à l'aide du bouton vert « Valider ».
- Pour annuler et revenir à la fenêtre principale cliquez sur le bouton rouge « Abandon ».

3.2.6.4 Echantillonnage / Intervalle de mesure

Cette fonction vous permet de modifier le pas de mesure. Le CAIRSENS effectue des mesures en continu et peut réaliser des moyennes de 1 minute, 15 minutes ou 1 heure au choix.

Le pas de mesure sélectionné influe directement sur le nombre de données sauvegardées dans le CAIRSENS.

- La fenêtre « Paramètres de mesure » apparaît.
- Sélectionner le pas de mesure souhaité.
- Cliquer sur le bouton vert pour valider (pour annuler, cliquer sur le bouton rouge).

 Une fenêtre « Confirmation » apparaît : confirmer votre choix (vous avez toujours la possibilité d'annuler en cliquant sur « non »).

IMPORTANT : si la confirmation est acceptée alors les données sauvegardées seront supprimées de la mémoire du CAIRSENS.

Le Logiciel CAIRSOFT va redémarrer avec le nouveau paramétrage du CAIRSENS (ne pas déconnecter le CAIRSENS du PC).

3.2.6.5 Visualisation sur le graphique et export des mesures du CAIRSENS sous format .csv

Cette fonction vous permet de visualiser et/ou d'exporter (sous format .csv) les mesures réalisées par le CAIRSENS pendant un ou plusieurs jours.

La période de visualisation et d'export est, par défaut, sur un jour et la concentration est en ppb. Il est possible de visualiser et d'exporter toutes les données et paramètres disponibles en mémoire.

JUIN 2020

Dans la fenêtre principale du CAIRSOFT, cliquer sur le logo « Graphique ».

- (1) Sélectionner la période de mesure : 1 jour ou toutes les données mesurées (les autres sélections, 6 jours, 1-2-3-7 et 10 mois, ne sont plus actives).
- (2) Sélectionner l'unité de mesure (ppb ou μg/m3) du graphique et dans le tableau excel.
- (3) Cliquer sur le bouton vert « **Valider** » pour rafraîchir le graphique. Un menu interactif (modifier, zoomer; imprimer,...) est disponible par clic droit de la souris sur le graphique.
- (4) Pour l'export sous format *XLSX*, cliquer sur le logo d'Excel (copyright Microsoft).

3.2.6.6 Visualisation des mesures et autres données sur tableau type .XLSX

L'export sous format XLSX permet de retrouver les paramètres suivants :

- La référence (1) du CAIRSENS.
- L'horodatage (2) correspondant à la période sélectionnée dans « Paramètre de mesure ».
- Les mesures (3) avec l'unité sélectionnée dans la fenêtre « Graphique ».
- La tension de la batterie (4) en mV est traduite de la manière suivante :
 - ≥ 4700 mV = Fonctionnement branché sur alimentation externe.
 - 4200 <mV<3100 = Fonctionnement sur batterie sans alimentation externe.
 - 4200 mV = la batterie est complètement chargée.
 - 3100 mV = la batterie est vide et doit être rechargée.

Valable uniquement pour les anciennes versions de CAIRSENS pré -2020 fonctionnant sur batterie

- La mesure de la température en °C. (5), le cas échéant
- Mesure de l'humidité relative HR en %. (6), le cas échéant
- L'état de vieillissement du CAIRSENS en % (7), il est traduit de la manière suivante :
 - 100% = 0 mois de fonctionnement.
 - 50% = 6 mois de fonctionnement.
 - 00% = 12 mois de fonctionnement.

Dans ce cas les **cases des mesures** correspondantes dans le tableau sont de <u>couleur rouge</u> et le **cadre du graphique** du CAIRSOFT passe du bleu au rouge (voir Figure 3-6).

Figure 3-5 - Visualisation des mesures sur tableau XLSX

3–32 JUIN 2020

Exemple d'un graphique d'un CAIRSENS dont la cellule électrochimique a fonctionné durant une période égale à 12 mois et plus (Life = 00%) :

Figure 3-6 – Graphique CAIRSOFT d'une cellule électrochimique ayant fonctionné plus de 12 mois (Life = 00%).

4 AFFICHAGE DES DEFAUTS DE FONCTIONNEMENTS

Les défauts détectables sont :

Erreur CAL fin de vie

cAL (voir photo ci-contre): Le CAIRSENS a atteint le terme de sa durée de vie d'1 an. Ce délai dépassé, la mesure et la calibration du CAIRSENS ne sont plus garanties, la précision de la mesure est détériorée. Il est conseillé de renouveler le CAIRSENS (contacter ENVEA par email à info@cairpol.com).

Erreur date

<u>dAt (voir photo ci-contre)</u>: La date et l'heure du CAIRSENS ne sont pas réglées ou celles-ci ont été perdues (retour par défaut au 01/01/2000). Il est conseillé de resynchroniser la date et l'heure à l'aide du logiciel CAIRSOFT (voir 3.2.6.3)

Erreur ventilateur

FAn (voir photo ci-contre): Le ventilateur assurant le prélèvement dynamique de l'air ne fonctionne pas correctement. Vérifier que celuici tourne normalement et n'est pas obstrué. Pour tout problème persistant, contacter ENVEA par mail à support@cairpol.com

Erreur **Mémoire pleine**.

Le CAIRSENS continue à fonctionner normalement, mais il enregistre les nouvelles mesures en écrasant les mesures les plus anciennes.

L'opérateur doit extraire régulièrement les

données avant d'atteindre la capacité maximale de stockage du CAIRSENS pour éviter de perdre des mesures.

JUIN 2020

5 MAINTENANCE DU CAIRSENS

5.1 CONSIGNES DE SECURITE

Les consignes de sécurité doivent être respectées à tout moment par l'utilisateur.

- Couper l'alimentation électrique lorsque vous effectuez la maintenance du CAIRSENS.
 Ne pas brancher le CAIRSENS à la fois par le port mini-USB et par le port micro-USB sous peine
 - de dommages irréversibles.

 Le personnel doit être convenablement formé au bon fonctionnement du CAIRSENS avant de
- Utiliser seulement les accessoires fournis (câble USB, filtre).

commencer à le faire fonctionner.

- Ne pas obturer le filtre, le ventilateur, ni l'orifice latéral assurant l'extraction d'air.
- Ne pas tenir le CAIRSENS dans les mains pendant les mesures.
- Ne pas utiliser dans un milieu poussiéreux, corrosif, explosif, dans un environnement en présence d'autres gaz (gaz de combustion, solvant, chlore, vapeurs acides et basiques...).
- Respecter les conditions d'utilisation (cf. Caractéristiques techniques).

En ce qui concerne la sécurité, le fabricant ne peut être tenu responsable des conséquences résultant de:

- L'utilisation de l'appareil par du personnel non qualifié,
- L'utilisation de l'appareil dans des conditions autres que celles spécifiées dans le présent document,
- L'utilisation de pièces de rechange ou d'accessoires non fournis par ENVEA.
- L'utilisation de cet appareil d'une manière qui n'est pas approuvé par ENVEA est déconseillée et peut causer des dommages au personnel utilisateur et au matériel. La non-utilisation de pièces de rechange spécifiques peut réduire l'efficacité du dispositif de sécurité.
- La modification de l'appareil par l'utilisateur,
- Le non-entretien de l'appareil.

5.2 OPERATION DE MAINTENANCE

- Pour remplacer le filtre blanc (recommandé 2 fois par an ou si le filtre du CAIRSENS, lorsqu'il est présent, est jugé impropre) :
 - Déconnecter le CAIRSENS de toute alimentation.
 - Retirer le porte-filtre par son rebord en évitant tout contact avec la partie centrale blanche de celui-ci. Attention à la grille de protection du filtre / ventilateur.
 - Insérer le nouveau filtre par son rebord en évitant tout contact avec la partie centrale blanche de celui-ci.
 - Suite à ce changement, 12h sont nécessaires pour stabiliser les mesures.

Respecter les consignes suivantes :

- Ne pas stocker le CAIRSENS dans une ambiance polluée, et respecter les conditions de stockage (voir § 1.2.2).
- Si nécessaire, le nettoyer uniquement avec un chiffon propre et sec.
- Réaliser toute opération d'entretien à l'abri de la poussière et des projections d'eau.

Figure 5-1 - Changement du filtre du CAIRSENS

C	A A I A	JEXES
n		

- 6.1 PROTOCOLE MODBUS
- 6.2 PROTOCOLE CAIRSENS UART
- 6.3 PLAN

Page laissée blanche intentionnellement

6–38 JUIN 2020

Modbus RTU for CAIRSENS

Version 1.0.1

Table of Contents

ı	General	3
1	Overview	. 3
2	Available functions codes	
II	MODBUS mapping	3
1	Information	. 3
2	Date and time	. 3
3	Cairsens	. 3
	Internal parameters Measure Stored data (ppb) Stored data (µg/m3)	3 4 4
4	Cairsens PM	. 4
	Measure Stored data PM10 (μg/m3) Stored data PM2.5 (μg/m3) Stored data Temp (°C) Stored data Humidity (%)	4 5 5
Ш	Appendix	6
1	Glossary	. 6

1 General

1.1 Overview

The official Modbus specification can be found at www.modbus.org/specs.php

Version	Date	Comments
1.0.0	July 2019	Initial manual
1.0.1	November 2020	Fix address

1.2 Available functions codes

Code	Action
03	Read holding registers
06	Write single holding register
16	Write multiple holding registers
23	Read and write multiples holding registers

2 MODBUS mapping

2.1 Information

Address	Register	Access	Data	Description
09	110	R	String	ENVEA
10 19	11 20	R	String	Version(ex 1.52)
20 29	21 30	R	String	Serial
30 39	31 40	R	String	Gaz (ex CO) or Dust

2.2 Date and time

Address	Register	Access	Data	Description
40	41	R/W	uint16	Year (ex 2019)
41	42	R/W	uint16	Month (1 to 12)
42	43	R/W	uint16	Day (1 to 31)
43	44	R/W	uint16	Hours (0 to 23)
44	45	R/W	uint16	Minutes (0 to 59)
45	46	R/W	uint16	Seconds (0 to 59)

2.3 Cairsens

2.3.1 Internal parameters

Address	Register	Access	Data	Description
70	71	R	uint16	Fan Speed (rpm)
71	72	R/W	uint16	Fan configuration(%)
72 73	73 74	R	float	Max Range (ppb)
74	75	R	uint1	Life sensor aging state in %

2.3.2 Measure

Address	register	Access	Data	Description
80 81	81 82	R	float	Measure(ppb)
82 83	83 84	R	float	Measure(μg/m3)

2.3.3 Stored data (ppb)

Address	Register	Access	Data	Description
100 101	101 102	R	float	Last memorized value T0
102 103	103 104	R	float	memorized value T0- 1 minute
104 105	105 106	R	float	memorized value T0- 2 minutes
106 107	107 108	R	float	memorized value T0- 3 minutes
108 109	109 100	R	float	memorized value T0- 4 minutes
110 111	111 112	R	float	memorized value T0- 5 minute
112 113	113 114	R	float	memorized value T0- 6 minute
114 115	115 116	R	float	memorized value T0- 7 minute
116 117	117 118	R	float	memorized value T0- 8 minute
118 119	119 120	R	float	memorized value T0- 9 minute

2.3.4 Stored data (µg/m3)

Address	Register	Access	Data	Description
120 121	121 122	R	float	Last memorized value T0
122 123	123 124	R	float	memorized value T0- 1 minute
124 125	125 126	R	float	memorized value T0- 2 minutes
126 127	127 128	R	float	memorized value T0- 3 minutes
128 129	129 130	R	float	memorized value T0- 4 minutes
130 131	131 132	R	float	memorized value T0- 5 minute
132 133	133 134	R	float	memorized value T0- 6 minute
134 135	135 136	R	float	memorized value T0- 7 minute
136 137	137 138	R	float	memorized value T0- 8 minute
138 139	139 140	R	float	memorized value T0- 9 minute

2.4 Cairsens PM

2.4.1 Measure

Address	register	Access	Data	Description
200 201	201 202	R	float	PM10(μg/m3)
202 203	203 204	R	float	PM2.5(μg/m3)
204 205	205 206	R	float	Temp(°c)
206 207	207 208	R	float	Humidity(%)

2.4.2 Stored data PM10 (µg/m3)

Address	Register	Access	Data	Description
300 301	301 302	R	float	Last memorized value T0
302 303	303 304	R	float	memorized value T0- 1 minute

304 305	305 306	R	float	memorized value T0- 2 minutes
306 307	307 308	R	float	memorized value T0- 3 minutes
308 309	309 310	R	float	memorized value T0- 4 minutes
310 311	311 312	R	float	memorized value T0- 5 minute
312 313	313 314	R	float	memorized value T0- 6 minute
314 315	315 316	R	float	memorized value T0- 7 minute
316 317	317 318	R	float	memorized value T0- 8 minute
318 319	319 320	R	float	memorized value T0- 9 minute

2.4.3 Stored data PM2.5 (µg/m3)

Address	Register	Access	Data	Description
320 321	321 322	R	float	Last memorized value T0
322 323	323 324	R	float	memorized value T0- 1 minute
324 325	325 326	R	float	memorized value T0- 2 minutes
326 327	327 328	R	float	memorized value T0- 3 minutes
328 329	329 330	R	float	memorized value T0- 4 minutes
332 331	331 332	R	float	memorized value T0- 5 minute
332 333	333 334	R	float	memorized value T0- 6 minute
334 335	335 336	R	float	memorized value T0- 7 minute
336 337	337 338	R	float	memorized value T0- 8 minute
338 339	339 340	R	float	memorized value T0- 9 minute

2.4.4 Stored data Temp (°C)

Address	Register	Access	Data	Description
340 341	341 342	R	float	Last memorized value T0
342 343	343 344	R	float	memorized value T0- 1 minute
344 345	345 346	R	float	memorized value T0- 2 minutes
346 347	347 348	R	float	memorized value T0- 3 minutes
348 349	349 350	R	float	memorized value T0- 4 minutes
352 351	351 352	R	float	memorized value T0- 5 minute
352 353	353 354	R	float	memorized value T0- 6 minute
354 355	355 356	R	float	memorized value T0- 7 minute
356 357	357 358	R	float	memorized value T0- 8 minute
358 359	359 360	R	float	memorized value T0- 9 minute

2.4.5 Stored data Humidity (%)

Address	Register	Access	Data	Description
360 361	361 362	R	float	Last memorized value T0
362 363	363 364	R	float	memorized value T0- 1 minute
364 365	365 366	R	float	memorized value T0- 2 minutes
366 367	367 368	R	float	memorized value T0- 3 minutes
368 369	369 370	R	float	memorized value T0- 4 minutes
372 371	371 372	R	float	memorized value T0- 5 minute
372 373	373 374	R	float	memorized value T0- 6 minute
374 375	375 376	R	float	memorized value T0- 7 minute
376 377	377 378	R	float	memorized value T0- 8 minute
378 379	379 380	R	float	memorized value T0- 9 minute

3 Appendix

3.1 Glossary

Address	address of location in memory map (WORD format => 2 bytes)
R	Read only parameter
R/W	Read / Write parameter
string	Character string
float	32 bits floating point BIGENDIAN format
register	Word of 16 bits

Cairsens - UART Version

Communication Protocol Measured data download

Table of Contents

ı	UART Port settings	3			
II	Queries / answers structures between UART cairsens and host				
Ш	Life	3			
IV	HeaderUart and TrailerUart definitions	4			
V	Cyclic redundancy checks	4			
1	Compute	4			
2	Sample in c	4			
VI	REF definition	6			
1	Product option	6			
2	Coefficient	6			
3	Gaz Identification7				
4	Measure range7				
5	Interface type				
6	Example	8			
VII	Reading of the instant value of the Cairsens (GetValue)	9			
1	Query	d			
2					
3					
4					
/III	GetDownload structure for cairsens (Stored				
	data download)	13			
1	,				
2					
3					
4	Example 10 minutes data 2 bytes by value	17			

1 UART Port settings

Baud rate	data bits	Parity	Stop bits	Flow control
9600	8	N	1	none

2 Queries / answers structures between UART cairsens and host

The structure of the query / answer frame passing between the Cairsens and the host can be defined by a series of bytes, the number of which varying and being represented in hexadecimal.

The query frames have a fixed length and are structured as follows: SYNC STX LG RFF DATA CRC FTX

The answer frames have a fixed length and are structured as follows: SYNC STX LG REF DATA END CRC ETX

Bytes definition is:

- SYNC = Synchro Word
- STX = Start Frame
- LG = Length of Data
- REF = <u>Cairsens identification</u> (Serial Number)
- DATA = [CMD+PARAM] (Series of bytes for command and parameters)
- END = End Frame
- CRC [2 bytes/LSB First]
- ETX
- LIFE = Life used

Synchronization and start frame bytes have the following values and constant number of bytes:

- SYNC = 1 byte = 0xFF
- STX = 1 byte = 0x02
- CRC = 2 bytes
- END = 2 bytes = LIFE 0xFF
- ETX = 1 byte = 0x03

3 Life

Byte value	
0x00	the sensor can't return it's % life used
0x80	0 % of life used (New sensor)
0xC0	50 % of life used
0xE0	75% life used
	:
0xFF	100% life used (end of life)

4 HeaderUart and TrailerUart definitions

In the following section of this document, the series of bytes representing SYNC STX LG and a part of CMD will be referred to as HeaderUart and will be defined by:

• HeaderUart = SYNC, STX, LG, 0x30, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06

In the same idea, the series of bytes representing END will be referred to as TrailerUart and will be defined by:

• TrailerUart = END CRC ETX

5 Cyclic redundancy checks

5.1 Compute

The CRC code is calculated by dividing the binary sequence representing the frame by the following polynomial:

 $X^{16} + X^{12} + X^{5} + 1$

5.2 Sample in c

```
#include <stdio.h>
unsigned int FCRC( unsigned char Frame[],unsigned char lg)
  unsigned int Poly = 0x8408;
  unsigned int Crc;
  unsigned char j,i bits,carry;
  Crc=0;
  for (j=0;j<lg; j++) {</pre>
    Crc = Crc ^ Frame[i];
    for ( i_bits = 0; i_bits < 8; i_bits++ ) {</pre>
      carry = Crc & 1;
      Crc = Crc/2;
      if(carry) {
        Crc = Crc ^ Poly;
    }
  return Crc;
int main(int argc, char* argv[])
    unsigned int i;
    unsigned char Frame[] = {0xFF, // Synchro Word
    0x02,// Start Frame
    0x13,// Length of Data
    0x30,0x01,0x02,0x03,0x04,0x05,0x06,
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,
    0x12, // CMD
    0x00,0x00, // CRC [2 bytes/LSB First]
    0x03}; // End Frame
```

```
unsigned int StartPos = 2; // start position CRC
    printf ( " Frame without CRC =" );
    for( i = 0 ; i < sizeof( Frame) ; i++ )</pre>
        if( i > 0 ) putchar(',');
        printf ( " 0x%02X" , Frame[i] );
    putchar('\n');
    i = FCRC ( &Frame[StartPos] , Frame[StartPos] - 2); // compute CRC without
CRC's bytes
    printf ( " CRC=0x\%04X\n", i );
    Frame[19] = i \& 0xFF;
    Frame[20] = i >> 8;
    printf ( " CRC IN FRAME(LSB First) = 0x%02X 0x%02X\n" , Frame[19] ,
Frame[20]);
    printf ( " Frame with CRC= " );
    for( i = 0 ; i < sizeof( Frame) ; i++ )</pre>
        if( i > 0 ) putchar(',');
        printf ( " 0x%02X" , Frame[i] );
    putchar('\n');
    i = FCRC ( &Frame[StartPos] , Frame[StartPos] ); // check CRC
    if( i == 0 )
       printf ( " CRC OK\n");
    else
       printf ( " CRC ERROR\n" );
}
// output
//
//
// Frame without CRC = 0xFF, 0x02, 0x13, 0x30, 0x01, 0x02, 0x03, 0x04, 0x05,
0x06,0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x12, 0x00, 0x00, 0x03
// CRC=0x88AF
// CRC IN FRAME(LSB First)= 0xAF 0x88
// Frame with CRC= 0xFF, 0x02, 0x13, 0x30, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x12, 0xAF, 0x88, 0x03
CRC OK
```

6 REF definition

6.1 Product option

The REF 8 bytes represents the Cairsens reference (Serial number).

It allows to address individually and directly to a Cairsens, when in a network, several Cairsens are linked to a unique concentrator card.

The reference is included in every query with the Cairsens to allow an individual addressing, as only the concerned Cairsens will answer to the query.

FF FF FF FF FF FF FF is a generic address allowing to communicate with any product without knowing its reference.

of course in this situation, it has to be used with only one Cairsens linked to the host, to avoid any BUS corruption as all sensors will respond.

First byte is the product ID:

C = CAIRCLIP

D = CAIRSPM (new for particulates data and battery management)

H = CairClip H2S 200ppm (for CAIRCLOUD)

M = CairClip H2S 20ppm (for CAIRCLOUD)

L = CairClip H2S 2ppm (for CAIRCLOUD)

The reference is an 8 bytes series coded as follows: XX YY ZZ AA 00 00 00 00

XX	Product ID C=0x43 D=0x44		
ΥY	Gas identification		
ZZ	Measure Range		
AA	Interface Type		
00 00 00 00	serial number		

6.2 Coefficient

For each sensor, you must use a multiplicative coefficient to get the final value :

Sensor	Code	coefficient
CO 20ppm	COV	1
NMVOC 16ppm	CIV	1
H2S 1ppm	CHM	4
H2S 200ppm	CHV	10
H2S 20ppm	CHV or HHV	1
H2S 2ppm	CHV or MHV	1
NH3 25ppm	CAV or LHV	100
O3/NO2 1ppm	CCM	4
O3/NO2 250ppb	CCB	1
NO2 250ppb	CNB	1
SO2 1ppm	CSM	4

6.3 Gaz Identification

Product reference second byte gives the gas identification (NH3 in the example below)

REF	8 bytes	0x43
		0x41
		0x56
		0x32
		0x39
		0x44
		0x30
		0x35

List of gases

ASCII	HEX	DATA
А	0x41	Ammonia(NH3)
В	0x42	Benzene
С	0x43	Ozone(O3) and Nitrogen Dioxide(NO2)
D	0x44	Dust
E	0x45	CO2
F	0x46	Formaldehyde(CH2O)
G	0x47	CH4
Н	0x48	Hydrogen Sulfide(H2S)
I	0x49	NMVOC
L	0x4C	Chlorine(Cl2)
N	0x4E	Nitrogen Dioxide(NO2)
0	0x4F	СО
Р	0x50	Tetrachloroethylene
Т	0x54	Toluene
S	0x53	SO2

6.4 Measure range

ASCII	HEX	Range	
В	0x42	0-250 ppb	
М	0x4D	0-1 ppm	
V	0x56	0-20 ppm	
		for H2S 0-2 ppm, 0-20 pm or 0-200 ppm	
		for NH3 0-25 ppm	
Р	0x50	PACKET data block for CAISPM	

6.5 Interface type

|--|

0x01	USB
0x02	UART

6.6 Example

Ouerv:

Query:		
SYNC	1 byte	0xFF
STX	1 byte	0x02
LG	1 byte	0x13
	7 bytes	0x30
		0x01
		0x02
		0x03
		0x04
		0x05
		0x06
REF	8 bytes	0xFF
		0xFF
CMD	1 byte	0x1C
CRC	2 bytes	0xD1
		0x61
ETX	1 byte	0x03

SYNC	1 byte	0xFF
STX	1 byte	0x02
LG	1 byte	0x1D
	7 bytes	0x2C
		0x01
		0x02
		0x03
		0x04
		0x05
		0x06
REF	8 bytes	0x43
		0x48
		0x56
		0x02
		0x00
		0x00
		0x10
		80x0
RSP	1 byte	0x1D
Product reference	2 bytes	0x43
		0x48
Product option	1 byte	0x56
Product internal ID	5 bytes	0x02
		0x00
		0x00
		0x10
		0x08
END	2 bytes	0x80(LIFE)
		0xFF
CRC	2 bytes	0x06
		0xBA
ETX		0x03

REF: CHV0200001008

7 Reading of the instant value of the Cairsens (GetValue)

7.1 Query

This structure allows the reading of the instant value of the Cairsens Query:

- HeaderUart REF CMD CRC ETX
- Command byte CMD = 0x12

7.2 Answer

HeaderUart REF RSP PARAM=0xXX CRC TrailerUart

- Answer byte RSP = 0x13
- Instant value byte PARAM (see below)

The last value (last data stored) is expressed as follows:

• Parameter 1: 1 data

7.3 Example 1 byte by value

Query:

SYNC	1 byte	0xFF
STX	1 byte	0x02
LG	1 byte	0x13
	7 bytes	0x30
		0x01
		0x02
		0x03
		0x04
		0x05
		0x06
REF	8 bytes	0xFF
		0xFF
CMD	1 byte	0x12
CRC	2 bytes	0xAF
		0x88
ETX	1 byte	0x03

SYNC	1 byte	0xFF
STX	1 byte	0x02
LG	1 byte	0x16
	7 bytes	0x2C
		0x01
		0x02
		0x03
		0x04
		0x05
		0x06
REF	8 bytes	0x43
		0x41
		0x56
		0x32
		0x39
		0x44
		0x30
		0x35
RSP	1 byte	0x13
Measure	1 byte	0xD1
END	2 byte	0x00(LIFE)
		0xFF
CRC	2 bytes	0x70
		0xFB
ETX	1 byte	0x03

here the value is 0xD1 = 209

```
it's a cairsens CAV ( NH3 25ppm ) : measure = 209*100 = 20900pbb = 20.9 ppm
```

```
for a cairsens CHM ( H2S 1ppm ) : measure = 209*4 = 836pbb = 0.836 ppm for a cairsens CCM ( O3 1ppm ) : measure = 209*4 = 836pbb = 0.836 ppm for a cairsens CSM ( SO2 1ppm ) : measure = 209*4 = 836pbb = 0.836 ppm
```

7.4 Example 2 bytes by value

Query:

Query:		
SYNC	1 byte	0xFF
STX	1 byte	0x02
LG	1 byte	0x13
	7 bytes	0x30
		0x01
		0x02
		0x03
		0x04
		0x05
		0x06
REF	8 bytes	0xFF
		0xFF
CMD	1 byte	0x12
CRC	2 bytes	0xAF
		0x88
ETX	1 byte	0x03

SYNC	1 byte	0xFF
STX	1 byte	0x02
LG	1 byte	0x17
	7 bytes	0x2C
		0x01
		0x02
		0x03
		0x04
		0x05
		0x06
REF	8 bytes	0x43
		0x49
		0x56
		0x32
		0x33
		0x33
		0x30
		0x33
RSP	1 byte	0x13
	2 bytes	0xB8
	2 bytes	0x2E
END	2 byte	<u>0x00(LIFE)</u>
		0xFF
CRC	2 bytes	0xF3
		0x8D
ETX	1 byte	0x03

it's a cairsens CIV (2 bytes by value) measure = (0x2E * 256 + 0xB8) = 11960 ppb = 11.960 ppm

for a cairsens H2S 200ppm the value is: 11960 * 10 = 119600ppb = 119.6 ppm

8 GetDownload structure for cairsens (Stored data download)

8.1 Query

Command byte is CMD = 0x0C

The parameter allowing the data download PARAM is built on a byte which value can vary and refer to several periods to download:

- 0x00: 10 successive points of measurement
- 0x01: 96 successive points of measurement for 1 byte by value, 48 successive points of

measurement for 2 byte by value

- 0x02: send 7 answer of 96 successive points of measurement for 1 byte by value , 48 successive points of measurement for 2 byte by value
- 0x03: send 30 answers of 96 successive points of measurement for 1 byte by value , 48 successive points of measurement for 2 byte by value
- 0x04: send 60 answers of 96 successive points of measurement for 1 byte by value , 48 successive points of measurement for 2 byte by value
- 0x05: send 90 answers of 96 successive points of measurement for 1 byte by value , 48 successive points of measurement for 2 byte by value
- 0x06: send 240 answers of 96 successive points of measurement for 1 byte by value , 48 successive points of measurement for 2 byte by value
- 0x07: send 300 answers of 96 successive points of measurement for 1 byte by value , 48 successive points of measurement for 2 byte by value

This number of points of measurement is valid for a sampling factory configured (meaning one measurement per minute)

8.2 Answer

HeaderUart REF RSP PARAM TrailerUart

Answer byte is RSP = 0x0D

Information + requested data = PARAM (see below)

PARAM holds various information about Cairsens' status in addition to the requested data.

This sequence of information consists of the 10 following parameters:

- Parameter 1 1 byte: number of the RS232 exchange frame, coded in hexadecimal (from 0x01 to 0xFF)
- Parameter 2 1 byte: total number of RS232 exchange frames, coded in hexadecimal (from 0x01 to 0xFF)
- Parameter 3 2 bytes: not used
- Parameter 4 1 byte: not used
- Parameter 5 1 byte: not used
- Parameter 6 1 byte: not used
- Parameter 7 1 byte: not used
- Parameter 8 1 byte: not used
- Parameter 9 2 bytes: not used
- Parameter 10 96 bytes:

1 byte by value : 96 data of 1 byte each = 96 bytes of pollutant level data 2 bytes by value : 48 data of 2 byte each = 96 bytes of pollutant level data

8.3 Example 10 minutes data 1 byte by value

• Query:

• Query.	1	
SYNC	1 byte	0xFF
STX	1 byte	0x02
LG	1 byte	0x14
	7 bytes	0x30
		0x01
		0x02
		0x03
		0x04
		0x05
		0x06
REF	8 bytes	0xFF
		0xFF
CMD	1 byte	0x0C
PARAM	1 byte	0x00
CRC	2 bytes	0x63
		0xA8
ETX	1 byte	0x03

SYNC	1 byte	0xFF
STX	1 byte	0x02
LG	1 byte	0x2A
	7 bytes	0x2C
	7 27.00	0x01
		0x02
		0x03
		0x04
		0x05
		0x06
REF	8 bytes	0x43
		0x48
		0x4D
		0x02
		0x09
		0x14
		0x00
		0x22
RSP	1 byte	0x0D
number of the RS232 exchange frame, coded in hexadecimal	1 byte	0x01
total number of RS232 exchange frames, coded in hexadecimal	1 byte	0x01
not used	2 bytes	0x00
		0x00
not used	1 byte	0x00
not used	1 byte	0x00
not used	1 byte	0x00
not used	1 byte	0x00
not used	1 byte	0x00
not used	2 bytes	0x00
		0x00
value n°1(oldest)	1 byte	0x00
value n°2	1 byte	0x00
value n°3	1 byte	0x00
value n°4	1 byte	0x00
value n°5	1 byte	0x00
value n°6	1 byte	0x00
value n°7	1 byte	0x00
value n°8	1 byte	0x00
value n°9	1 byte	0x00
value n°10(recent)	1 byte	0x00
END	2 bytes	0x00(LIFE)
		0xFF
CRC	2 bytes	0x4D
		0x90

ETX	l1 bvte	0x03
LIA	li Dyle	0.000

for a cairsens CAV (NH3 25ppm) : measure in ppb = value*100 for a cairsens CHM (H2S 1ppm) : measure in ppb = value*4

for a cairsens CCM (O3 1ppm): measure in ppb = value*4

for a cairsens CSM (SO2 1ppm): measure in ppb = value*4

8.4 Example 10 minutes data 2 bytes by value

Download of 10 minutes data => GetDownload query (0x00):

• Query:

SYNC	1 byte	0xFF
STX	1 byte	0x02
LG	1 byte	0x14
	7 bytes	0x30
		0x01
		0x02
		0x03
		0x04
		0x05
		0x06
REF	8 bytes	0xFF
		0xFF
CMD	1 byte	0x0C
PARAM	1 byte	0x00
CRC	2 bytes	0x63
		0xA8
ETX	1 byte	0x03

SYNC	1 byte	0xFF
STX	1 byte	0x02
LG	1 byte	0x34
	7 bytes	0x2C
		0x01
		0x02
		0x03
		0x04
		0x05
		0x06
REF	8 bytes	0x43
		0x49
		0x56
		0x02
		0x33
		0x33
		0x00
		0x33
RSP	1 byte	0x0D
number of the RS232 exchange frame, coded in hexadecimal	1 byte	0x01
total number of RS232 exchange frames, coded in hexadecimal	1 byte	0x01
not used	2 bytes	0x00
		0x00
not used	1 byte	0x00
not used	1 byte	0x00
not used	1 byte	0x00
not used	1 byte	0x00
not used	1 byte	0x00
not used	2 bytes	0x00
		0x00
value n°1(oldest)	2 bytes	0xE8
		0x2B
value n°2	2 bytes	0x60
z bytes		0x2C
value n°3	2 bytes	0x1A
		0x2C
value n°4	2 bytes	0x8E
		0x2B
 value n°5	2 bytes	0x8E
		0x2B
 value n°6	2 bytes	0x8E
		0x2B
value n°7	2 bytes	0x06
		0x2C

lughus m ^o O	2 hutaa	0x60
value n°8	2 bytes	0x2C
value n°9	2 bytes	0xDE
		0x2B
value n°10(recent)	2 bytes	0xE8
value ii To(recent)	2 bytes	0x2B
END	2 bytes	<u>0x00(LIFE)</u>
		0xFF
CRC	2 bytes	0x69
		0x0D
ETX	1 byte	0x03

```
value 1 : 0x2B *256 + 0xE8 = 11240 ppb
value 2 : 0x2C *256 + 0x60 = 11360 ppb
value 3 : 0x2C *256 + 0x1A = 11290 ppb
value 4 : 0x2B *256 + 0x8E = 11150 ppb
value 5 : 0x2B *256 + 0x8E = 11150 ppb
value 6 : 0x2B *256 + 0x8E = 11150 ppb
value 7 : 0x2C *256 + 0x06 = 11270 ppb
value 8 : 0x2C *256 + 0x60 = 11360 ppb
value 9 : 0x2B *256 + 0xDE = 11230 ppb
value 10: 0x2B *256 + 0xE8 = 11240 ppb
```

for a cairsens H2S 200ppm: measure 1 = value1*10 = 112400 ppb = 112.4 ppm

