The scripts of this directory is to compute numerical values of g_n in [1, eq. (1.2)] or $\mathcal{I}_n = g_n - \frac{1}{n}$. As was shown by Bettin-Conrey, it holds that

$$g_n = \frac{1}{n(n+1)} + 2b_n + 2\sum_{j=0}^{n-2} \binom{n-1}{j} b_{j+2}$$
 (4)

for $n \in \mathbb{Z}_{\geq 2}$, where

$$b_k = \frac{B_k \zeta(k)}{k},$$

 B_k is the k-th Bernoulli number and $\zeta(s)$ is the Riemann zeta-function. According to [1, the first displayed formula in §6], we have

$$b_{2l} = (-1)^{l-1} \frac{(2\pi)^{2l} B_{2l}^2}{4l \cdot (2l)!}$$

for $l \in \mathbb{Z}_{>1}$. Since B_k vanishes for odd $k \geq 3$, we find

$$|b_k| = \frac{(2\pi)^k B_k^2}{2k \cdot k!}$$

for $k \in \mathbb{Z}_{\geq 2}$.

To investigate significant digits of precision needed for computation of g_n , we set

$$G_n^{(1)} = \frac{1}{n(n+1)} + 2|b_n| + 2\sum_{j=0}^{n-2} \binom{n-1}{j} |b_{j+2}|, \qquad G_n^{(\infty)} = 2\max_{0 \le j \le n-2} \binom{n-1}{j} |b_{j+2}|.$$

The script SDP.gp is to compute $G_n^{(\infty)}$ and $G_n^{(1)}$. After start Pari/GP, do \r SDP.gp. To compute $G_{1001}^{(\infty)}$ (resp. $G_{1001}^{(1)}$), type Ginf(1001) (resp. Gone(1001)). When we calculate g_n up to 1001, we set significant digits of precision to much larger than the number of digits of $G_{1001}^{(1)}$ or $1001 \times G_{1001}^{(\infty)}$.

By (\clubsuit) we find

$$\mathcal{I}_n = -\frac{1}{n+1} + 2b_n + 2\sum_{j=0}^{n-2} \binom{n-1}{j} b_{j+2}$$

for $n \in \mathbb{Z}_{\geq 2}$. Since b_n vanishes for odd $n \geq 3$, we notice

(1)
$$\mathcal{I}_{2l} = -\frac{1}{2l+1} + 4l \times b_{2l} + \sum_{j=0}^{l-2} {2l-1 \choose 2j} b_{2(j+1)},$$

(2)
$$\mathcal{I}_{2l+1} = -\frac{1}{2l+2} + \sum_{j=0}^{l-1} {2l \choose 2j} b_{2(j+1)}$$

for $l \in \mathbb{Z}_{\geq 1}$. The script main.gp outputs numerical values of I_n for $2 \leq n \leq 1001$ as a vector. Since $G_{1001}^{(1)} = 7.14... \times 10^{1773}$, we compute g_n with 2000 decimal digits.

References

[1] H. Akatsuka and Y. Murakami, An asymptotic property on a reciprocity law for the Bettin–Conrey cotangent sum, arXiv:2402.14216.