TRISTAN MONTOYA

tristan.montoya@mail.utoronto.ca

tjbmontoya.com

EDUCATION

University of Toronto

Expected early 2024

Doctor of Philosophy (PhD), Aerospace Science and Engineering

Direct transfer from Master of Applied Science (MASc) in September 2019

Carleton University 2018

Bachelor of Engineering (BEng), Mechanical Engineering

University medalist (highest academic standing of any student completing an engineering degree)

RESEARCH INTERESTS

Numerical methods for partial differential equations; high-performance computing; spectral-element methods; discontinuous Galerkin methods; summation-by-parts operators; split-form and entropy-stable discretizations; data-driven analysis of dynamical systems; applications in atmospheric modeling

SUBMITTED PREPRINTS

- **T. Montoya** and D. W. Zingg, "Efficient entropy-stable discontinuous spectral-element methods using tensor-product summation-by-parts operators on triangles and tetrahedra." arXiv:2312.07874, 2023. [pdf]
- **T. Montoya** and D. W. Zingg, "Efficient tensor-product spectral-element operators with the summation-by-parts property on curved triangles and tetrahedra." arXiv:2306.05975, 2023. [pdf]

PUBLICATIONS IN PEER-REVIEWED JOURNALS

T. Montoya and D. W. Zingg, "A unifying algebraic framework for discontinuous Galerkin and flux reconstruction methods based on the summation-by-parts property." *Journal of Scientific Computing* 92(3), 2022. [pdf]

PUBLICATIONS IN CONFERENCE PROCEEDINGS

T. Montoya and D. W. Zingg, "Stable and conservative high-order methods on triangular elements using tensor-product summation-by-parts operators." *Eleventh International Conference on Computational Fluid Dynamics*, 2022 (Awarded best student paper). [pdf]

INVITED AND CONTRIBUTED TALKS (EXCLUDING ABOVE PROCEEDINGS)

- **T. Montoya** and D. W. Zingg, "Efficient tensor-product spectral-element methods with the summation-by-parts property on triangles and tetrahedra." Minisymposium presentation, SIAM Conference on Computational Science and Engineering, 2023. [abstract]
- **T. Montoya** and D. W. Zingg, "Efficient and robust spectral-element methods on triangles using tensor-product summation-by-parts operators." Invited talk, NASA Advanced Modeling and Simulation (AMS) Seminar Series, 2022. [abstract]
- **T. Montoya** and D.W. Zingg, "Unified analysis of discontinuous Galerkin and flux reconstruction methods based on the summation-by-parts property." Contributed talk, *International Conference on Spectral and High-Order Methods*, 2021. [abstract]
- **T. Montoya** and D.W. Zingg, "Unified analysis of high-order methods based on the summation-by-parts property: Application to discontinuous Galerkin and flux reconstruction discretizations." Minisymposium presentation, SIAM Conference on Computational Science and Engineering, 2021. [abstract]

RESEARCH EXPERIENCE

University of Toronto

Graduate Student Researcher

September 2018 – Present

Thesis: "Discontinuous spectral-element methods with the summation-by-parts property: A unifying framework for provably stable discretizations of conservation laws"

Advisor: David W. Zingg

National University of Singapore

August 2022

Visiting Researcher

Project: Data-driven stability analysis and control of numerical schemes using the Koopman operator

Advisor: Gianmarco Mengaldo

University of Toronto

May 2017 - August 2017

Undergraduate Student Researcher

Projects: Optimization of finite-difference operators with the summation-by-parts property on non-uniform nodal distributions; comparison of pseudo-transient and homotopy-based continuation methods with application to aerodynamic shape optimization

Advisor: David W. Zingg

McGill University

May 2016 – August 2016

Undergraduate Student Researcher

Project: Algorithms for robust deformation of unstructured grids in computational fluid dynamics

Advisor: Siva Nadarajah

Carleton University

May 2015 – August 2015

Undergraduate Student Researcher

Projects: Optimal estimation of uncertain parameters in models of welding processes; novel interpola-

tion techniques for stress and strain tensor fields using quaternions

Advisor: John A. Goldak

AWARDS AND SCHOLARSHIPS

Best Student Paper, International Conference on Computational Fluid Dynam	nics 2022
Ontario Graduate Scholarship	2019 – 2020, 2022 – 2023
Kenneth Molson Fellowship	2021 – 2022, 2022 – 2023
Queen Elizabeth II Graduate Scholarship in Science and Technology	2020 – 2021, 2021 – 2022
Douglas Patton Hogg Memorial Award	2021
NSERC Canada Graduate Scholarship - Master's	2018 - 2019
University Medal in Engineering	2018
Canadian Society for Mechanical Engineering Gold Medal	2018
Rajesh Ahluwalia Memorial Scholarship	2017 - 2018
NSERC Undergraduate Student Research Award	2015, 2017
McGill University Summer Undergraduate Research in Engineering Award	2016
Allan Buchanan Undergraduate Scholarship	2015 - 2016
Deans' Honour List	2014 - 2018
Faculty Scholarship	2014 - 2018

TECHNICAL SKILLS

Programming languages
High-performance computing

Julia, Python (NumPy/SciPy), C, C++, MATLAB, Fortran, LATEX Shared-memory (multithreading/OpenMP) and distributed-memory (MPI) parallelism

memory (MPI) parallelism **Development tools**Unix shell, Git, GNU Make

Unix shell, Git, GNU Make, Anaconda, Jupyter Notebook, VS Code, Vim, Emacs, Slurm

SERVICE AND MENTORSHIP

Canadian Science Fair Journal

June 2022 - Present

Editor, Physics and Mathematics Section

Volunteer editor and mentor for an open-access journal showcasing science projects by students at primary and secondary schools across Canada [homepage]

Centre for Computational Science and Engineering

December 2021 – Present

Lab Representative

Member of the student organizing committee for an interdepartmental group of researchers at the University of Toronto across various disciplines of computational science and engineering [homepage]

Supervision of undergraduate research

May 2019 – Present

Yewon Lee (BASc summer student, engineering science): A comparative evaluation of energy- and entropy-stable discontinuous Galerkin and summation-by-parts methods

Ruilin (Jerry) Bai (BASc summer student, engineering science): Optimization of summation-by-parts operators for minimal solution error

Reviewer for academic journals

August 2022 – Present

Advances in Continuous and Discrete Models

OPEN-SOURCE SOFTWARE DEVELOPMENT

StableSpectralElements.jl

October 2021 - Present

Julia framework for energy-stable and entropy-stable discontinuous spectral-element methods on general element types based on multidimensional and tensor-product formulations; emphasis on dispatched strategies for matrix-based and matrix-free operator evaluation [GitHub repository]

GHOST: Generalized High-Order Solver Toolbox

June 2019 – December 2021

Python implementation of discontinuous Galerkin and flux reconstruction schemes in one or two spatial dimensions with various design choices [GitHub repository]

OTHER ACTIVITIES

Music (performing guitarist/bassist), cycling, alpine skiing (former ski instructor), non-fiction reading

REFERENCES

Available upon request