Package 'pigMLcore'

March 31, 2022

Type Package
Title What the Package Does (Title Case)
Version 0.4.0
Author Tianfu Yang
Maintainer Tianfu Yang <tianfu@ualberta.ca></tianfu@ualberta.ca>
Description More about what it does (maybe more than one line) Use four spaces when indenting paragraphs within the Description.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
Imports mlbench, caret, doParallel, parallel, glmnet, testthat, ranger, elasticnet, e1071, xgboost, kernlab, tensorflow, keras
R topics documented:
calculate_lambda_max2calculate_search_grid_en3calculate_search_grid_mlpL23calculate_search_grid_rf4calculate_search_grid_svrl4calculate_search_grid_svrp5calculate_search_grid_svrr6calculate_search_grid_xgbl6calculate_search_grid_xgbt7

2 calculate_lambda_max

```
8
9
10
17
25
Index
 26
```

calculate_lambda_max calculate data-based lambda.max

Description

DESCRIPTION

Usage

```
calculate_lambda_max(y, X, alpha)
```

Arguments

y the responding variable. The function assume it is non-missing

X the full feature dataset alpha the alpha hyperparameter

Value

name a description

Note

The function calculate the minimal lambda that shrinks all regression coefficients into zero (lambda.max) based on the data:

```
calculate_search_grid_en
```

calculate the whole grid for lasso

Description

DESCRIPTION

Usage

```
calculate_search_grid_en(y, X, n_alpha, n_lambda, lambda_ratio = NULL)
```

Arguments

y the responding variable. The function assume it is non-missing

X the full feature dataset

n_alphan_lambdanumber of alpha tested in the gridn_lambdanumber of lambda tested in the grid

lambda_ratio Smallest value for lambda, as a fraction of lambda.max,

Value

a data frame

Note

A search grid calculated based on the input data

```
calculate_search_grid_mlpL2
```

calculate the whole grid for MLP with L2 penalty

Description

DESCRIPTION

Usage

```
calculate_search_grid_mlpL2(y, X, n_size, n_lambda)
```

Arguments

y the responding variable. The function assume it is non-missing

X the full feature dataset

n_size number of size in grid search,n_lambda number of lambda in grid search,

Value

a data frame

Note

A search grid calculated based on the input data

```
calculate_search_grid_rf
```

calculate the whole grid for rf

Description

DESCRIPTION

Usage

```
calculate_search_grid_rf(y, X, n_mtry, n_MNS)
```

Arguments

y the responding variable. The function assume it is non-missing

X the full feature dataset

n_mtry number of mtry tested in the grid

n_MNS number of min.node.size tested in the grid

Value

a data frame

Note

A search grid calculated based on the input data

```
calculate_search_grid_svrl
```

calculate the whole grid for SVR linear kernel

Description

DESCRIPTION

Usage

```
calculate_search_grid_svrl(y, X, n_C)
```

Arguments

y the responding variable. The function assume it is non-missing

X the full feature dataset

n_C number of Cost in grid search,

Value

a data frame

Note

A search grid calculated based on the input data

calculate_search_grid_svrp

calculate the whole grid for SVR Polynomial kernel

Description

DESCRIPTION

Usage

```
calculate_search_grid_svrp(y, X, n_C, n_degree, n_Scale)
```

Arguments

y the responding variable. The function assume it is non-missing

X the full feature dataset

n_C number of Cost in grid search,n_degree number of degree in grid search,n_Scale number of Scale in grid search,

Value

a data frame

Note

A search grid calculated based on the input data

```
calculate_search_grid_svrr
```

calculate the whole grid for SVR RBF kernel

Description

DESCRIPTION

Usage

```
calculate_search_grid_svrr(y, X, n_C)
```

Arguments

y the responding variable. The function assume it is non-missing

X the full feature dataset

n_C number of Cost in grid search

Value

a data frame

Note

A search grid calculated based on the input data

```
calculate_search_grid_xgbl
```

calculate the whole grid for xgblinear

Description

DESCRIPTION

Usage

```
calculate_search_grid_xgbl(y, X, n_rounds, n_reg)
```

Arguments

y the responding variable. The function assume it is non-missing

X the full feature dataset

n_rounds number of # boosting iterations

n_reg number of tested regularization parameter

Value

a data frame

Note

A search grid calculated based on the input data

```
calculate_search_grid_xgbt
```

calculate the whole grid for xgbtree

Description

DESCRIPTION

Usage

```
calculate_search_grid_xgbt(y, X, n_rounds, n_depth, n_seq)
```

Arguments

y the responding variable. The function assume it is non-missing

X the full feature dataset

n_roundsn_mentn_depthnumber of depth in grid search,

n_seq number of gamma/min_child_weight in grid search,

Value

a data frame

Note

A search grid calculated based on the input data

check_input_data

check the data for the prediction

Description

DESCRIPTION

Usage

```
check_input_data(y, X, verbose = FALSE)
```

Arguments

y the responding variable

X the feature matrix. No missing allowed

verbose output level: True for more logs.

8 check_input_seed

Value

a idx of data records available for the prediction (no missing)

Note

The function checks the missing values and dimension of the dataset

```
check_input_foldset check foldset
```

Description

DESCRIPTION

Usage

```
check_input_foldset(foldset, y, K, verbose = FALSE)
```

Arguments

foldset provide a foldset to control random sampling error.

y the responding variable. The function assume it is non-missing

K integer, the number of folds in the CV verbose output level: True for more logs.

Value

 $Checked\ foldset\ \hbox{--the same structure as caret::} createFolds()$

Note

check the foldset. If there is none, create one

check_input_seed check the seed of the analysis

Description

DESCRIPTION

Usage

```
check_input_seed(seed)
```

Arguments

seed integer or NULL, the input seed

Note

Create a new seed or check an existing seed

cla_en 9

cla_en

 $\label{lem:prediction} \textit{Prediction with EN and evaluation through CV-classification}$

Description

DESCRIPTION

Usage

```
cla_en(
    y,
    X,
    job_name = "new_job",
    K = 10,
    n_pca = NULL,
    pb = FALSE,
    foldset = NULL,
    seed = NULL,
    lasso_TC = trainControl(method = "cv", number = 5, verboseIter = F),
    lasso_TG = NULL,
    n_alpha = 10,
    n_lambda = 100,
    nc = 1
)
```

Arguments

у	the responding variable - binary
X	the feature matrix. No missing allowed
job_name	A character of job ID
K	integer, the number of folds in the CV
n_pca	number of selected top PCs. Null for no PCA
pb	show pgbar or nots
foldset	provide a foldset to control random sampling error.
seed	provide a seed to reproduce a result. NULL by default
lasso_TC	trControl that pass to caret
lasso_TG	tuneGrid that pass to caret
n_alpha	number of alpha tested in the grid
n_lambda	number of lambda tested in the grid
nc	number of cpus to use in parallel

Value

a list

Note

The function provide a general way to evaluate the prediction using EN through CV.

cla_rf

cla_rf

Prediction with RF and evaluation through CV

Description

DESCRIPTION

Usage

```
cla_rf(
  у,
  Χ,
  job_name = "new_job",
  K = 10,
  n_pca = NULL,
  verbose = FALSE,
  pb = FALSE,
  foldset = NULL,
  seed = NULL,
  rf_TC = trainControl(method = "cv", number = 5, verboseIter = F),
  rf_TG = NULL,
  n_mtry = 10,
  n\_MNS = 5,
  nc = 1
)
```

Arguments

у

Χ	the feature matrix. No missing allowed
job_name	A character of job ID
K	integer, the number of folds in the CV
n_pca	number of selected top PCs. Null for no PCA
verbose	output log or not
pb	show pgbar or nots
foldset	provide a foldset to control random sampling error.
seed	provide a seed to reproduce a result. NULL by default
rf_TC	trControl that pass to caret
rf_TG	tuneGrid that pass to caret
n_mtry	number of ntry tested in the grid
n_MNS	number of min.node.size tested in the grid
nc	number of cpus to use in parallel- should be 1

the responding variable

Value

a list

cla_svrl 11

Note

The function provide a general way to evaluate the prediction using RF through CV.

cla_svrl

Prediction with SVR linear and evaluation through CV

Description

DESCRIPTION

Usage

```
cla_svrl(
   y,
   X,
   job_name = "new_job",
   K = 10,
   n_pca = NULL,
   pb = FALSE,
   foldset = NULL,
   seed = NULL,
   svrl_TC = trainControl(method = "cv", number = 5, verboseIter = F),
   svrl_TG = NULL,
   n_C = 15,
   nc = 1
)
```

Arguments

```
the responding variable
У
Χ
                   the feature matrix. No missing allowed
                   A character of job ID
job_name
                   integer, the number of folds in the CV
K
                   number of selected top PCs. Null for no PCA
n_pca
pb
                   show pgbar or nots
                   provide a foldset to control random sampling error.
foldset
                   provide a seed to reproduce a result. NULL by default
seed
svrl_TC
                   trControl that pass to caret
svrl_TG
                   tuneGrid that pass to caret
                   number of Cost in grid search,
n_C
                   number of cpus to use in parallel
nc
```

Value

a list

Note

The function provide a general way to evaluate the prediction using SVR linear through CV.

12 cla_svrp

cla_svrp

 $\label{eq:cvaluation} \textit{Prediction with SVR polynomial} \textit{and evaluation through CV}$

Description

DESCRIPTION

Usage

```
cla_svrp(
    y,
    X,
    job_name = "new_job",
    K = 10,
    n_pca = NULL,
    pb = FALSE,
    foldset = NULL,
    seed = NULL,
    svrp_TC = trainControl(method = "cv", number = 5, verboseIter = F),
    svrp_TG = NULL,
    n_C = 10,
    n_degree = 3,
    n_Scale = 3,
    nc = 1
)
```

Arguments

У

Х	the feature matrix. No missing allowed
job_name	A character of job ID
K	integer, the number of folds in the CV
n_pca	number of selected top PCs. Null for no PCA
pb	show pgbar or nots
foldset	provide a foldset to control random sampling error.
seed	provide a seed to reproduce a result. NULL by default
svrp_TC	trControl that pass to caret
svrp_TG	tuneGrid that pass to caret
n_C	number of Cost in grid search
n_degree	number of degree in grid search,
n_Scale	number of Scale in grid search,
nc	number of cpus to use in parallel

the responding variable

Value

a list

cla_svrr

Note

The function provide a general way to evaluate the prediction using SVR polynomial through CV.

cla_svrr

Prediction with SVR polynomialand evaluation through CV

Description

DESCRIPTION

Usage

```
cla_svrr(
   y,
   X,
   job_name = "new_job",
   K = 10,
   n_pca = NULL,
   pb = FALSE,
   foldset = NULL,
   seed = NULL,
   seed = NULL,
   svrr_TC = trainControl(method = "cv", number = 5, verboseIter = F),
   svrr_TG = NULL,
   n_C = 10,
   nc = 1
)
```

Arguments

```
the responding variable
У
Χ
                  the feature matrix. No missing allowed
                  A character of job ID
job_name
                  integer, the number of folds in the CV
K
                  number of selected top PCs. Null for no PCA
n_pca
pb
                  show pgbar or nots
                  provide a foldset to control random sampling error.
foldset
                  provide a seed to reproduce a result. NULL by default
seed
svrr_TC
                  trControl that pass to caret
svrr_TG
                  tuneGrid that pass to caret
                  number of Cost in grid search
n_C
                  number of cpus to use in parallel
nc
```

Value

a list

Note

The function provide a general way to evaluate the prediction using SVR RBF through CV.

14 cla_xgbl

cla_xgbl

Prediction with XGBlinear and evaluation through CV

Description

DESCRIPTION

Usage

```
cla_xgbl(
    y,
    X,
    job_name = "new_job",
    K = 10,
    n_pca = NULL,
    pb = FALSE,
    foldset = NULL,
    seed = NULL,
    xgbl_TC = trainControl(method = "cv", number = 5, verboseIter = F),
    xgbl_TG = NULL,
    n_rounds = 10,
    n_reg = 5,
    nc = 1
)
```

Arguments

у	the responding variable
Χ	the feature matrix. No missing allowed
job_name	A character of job ID
K	integer, the number of folds in the CV
n_pca	number of selected top PCs. Null for no PCA
pb	show pgbar or nots
foldset	provide a foldset to control random sampling error.
seed	provide a seed to reproduce a result. NULL by default
xgbl_TC	trControl that pass to caret
xgbl_TG	tuneGrid that pass to caret
n_rounds	number of # boosting iterations
n_reg	number of tested regularization parameter
nc	number of cpus to use in parallel

Value

a list

Note

The function provide a general way to evaluate the prediction using xgboost through CV.

cla_xgbt 15

cla_xgbt

Prediction with XGBTree and evaluation through CV

Description

DESCRIPTION

Usage

```
cla_xgbt(
  у,
  Χ,
  job_name = "new_job",
  K = 10,
  n_pca = NULL,
  pb = FALSE,
  foldset = NULL,
  seed = NULL,
  xgbt_TC = trainControl(method = "cv", number = 5, verboseIter = F),
  xgbt_TG = NULL,
  n_rounds = 8,
  n_{depth} = 5,
  n_{seq} = 5,
  nc = 1
)
```

Arguments

У

X	the feature matrix. No missing allowed
job_name	A character of job ID
K	integer, the number of folds in the CV
n_pca	number of selected top PCs. Null for no PCA
pb	show pgbar or nots
foldset	provide a foldset to control random sampling error.
seed	provide a seed to reproduce a result. NULL by default
xgbt_TC	trControl that pass to caret
xgbt_TG	tuneGrid that pass to caret
n_rounds	number of nrounds in grid search,
n_depth	number of depth in grid search,
n_seq	number of gamma/min_child_weight in grid search,
nc	number of cpus to use in parallel

the responding variable

Value

a list

pre_prosess_in_CV

Note

The function provide a general way to evaluate the prediction using xgboost through CV.

pigMLcore

pigMLcore: The core analysis module for the pigML project.

Description

pigMLcore: The core analysis module for the pigML project.

Author(s)

Tianfu Yang <tianfu@ualberta.ca> Maintainer: Tianfu Yang <tianfu@ualberta.ca>

pre_prosess_in_CV

preprocess the feature data in CV

Description

DESCRIPTION

Usage

```
pre_prosess_in_CV(X, idx_test, n_pca)
```

Arguments

X the full feature dataset

idx_test the idx of test records in the current fold n_pca number of selected top PCs. Null for no PCA

Value

A list including the transformed training and testing data

Note

Pre-process the feature matrix in cross-validation. if n_pca is given, the processing includes PCA and scaling. Otherwise it is simply scaling.

reg_en 17

reg_en

Prediction with EN and evaluation through CV

Description

DESCRIPTION

Usage

```
reg_en(
   y,
   X,
   job_name = "new_job",
   K = 10,
   n_pca = NULL,
   pb = FALSE,
   foldset = NULL,
   seed = NULL,
   lasso_TC = trainControl(method = "cv", number = 5, verboseIter = F),
   lasso_TG = NULL,
   n_alpha = 10,
   n_lambda = 100,
   nc = 1
)
```

Arguments

у	the responding variable
X	the feature matrix. No missing allowed
job_name	A character of job ID
K	integer, the number of folds in the CV
n_pca	number of selected top PCs. Null for no PCA
pb	show pgbar or nots
foldset	provide a foldset to control random sampling error.
seed	provide a seed to reproduce a result. NULL by default
lasso_TC	trControl that pass to caret
lasso_TG	tuneGrid that pass to caret
n_alpha	number of alpha tested in the grid
n_lambda	number of lambda tested in the grid
nc	number of cpus to use in parallel

Value

a list

Note

The function provide a general way to evaluate the prediction using EN through CV.

reg_mlpL2

 reg_mlpL2

Prediction with XGBTree and evaluation through CV

Description

DESCRIPTION

Usage

```
reg_mlpL2(
   y,
   X,
   job_name = "new_job",
   K = 10,
   n_pca = NULL,
   pb = FALSE,
   foldset = NULL,
   seed = NULL,
   mlpL2_TC = trainControl(method = "cv", number = 2, verboseIter = F),
   mlpL2_TG = NULL,
   n_size = 5,
   n_lambda = 3,
   epoch = 200
)
```

Arguments

у	the responding variable
Χ	the feature matrix. No missing allowed
job_name	A character of job ID
K	integer, the number of folds in the CV
n_pca	number of selected top PCs. Null for no PCA
pb	show pgbar or nots
foldset	provide a foldset to control random sampling error.
seed	provide a seed to reproduce a result. NULL by default
mlpL2_TC	trControl that pass to caret
mlpL2_TG	tuneGrid that pass to caret
n_size	number of size in grid search,
n_lambda	number of lambda in grid search,
epoch	epoch in the training

Value

a list

Note

The function provide a general way to evaluate the prediction using xgboost through CV.

reg_rf

reg_rf

Prediction with RF and evaluation through CV

Description

DESCRIPTION

Usage

```
reg_rf(
  у,
  Χ,
  job_name = "new_job",
  K = 10,
  n_pca = NULL,
  verbose = FALSE,
  pb = FALSE,
  foldset = NULL,
  seed = NULL,
  rf_TC = trainControl(method = "cv", number = 5, verboseIter = F),
  rf_TG = NULL,
  n_mtry = 10,
  n\_MNS = 5,
  nc = 1
)
```

Arguments

у

•	1 &
Χ	the feature matrix. No missing allowed
job_name	A character of job ID
K	integer, the number of folds in the CV
n_pca	number of selected top PCs. Null for no PCA
verbose	output log or not
pb	show pgbar or nots
foldset	provide a foldset to control random sampling error.
seed	provide a seed to reproduce a result. NULL by default
rf_TC	trControl that pass to caret
rf_TG	tuneGrid that pass to caret
n_mtry	number of ntry tested in the grid
n_MNS	number of min.node.size tested in the grid
nc	number of cpus to use in parallel- should be 1

the responding variable

Value

a list

20 reg_rr

Note

The function provide a general way to evaluate the prediction using RF through CV.

reg_rr

Prediction with EN and evaluation through CV

Description

DESCRIPTION

Usage

```
reg_rr(
   y,
   X,
   job_name = "new_job",
   K = 10,
   n_pca = NULL,
   verbose = FALSE,
   pb = FALSE,
   foldset = NULL,
   seed = NULL,
   rr_TC = trainControl(method = "cv", number = 5, verboseIter = F),
   nc = 1
)
```

Arguments

У	the responding variable
Χ	the feature matrix. No missing allowed
job_name	A character of job ID
K	integer, the number of folds in the CV
n_pca	number of selected top PCs. Null for no PCA
verbose	output log or not
pb	show pgbar or nots
foldset	provide a foldset to control random sampling error.
seed	provide a seed to reproduce a result. NULL by default
rr_TC	trControl that pass to caret

number of cpus to use in parallel

Value

a list

nc

Note

The function provide a general way to evaluate the prediction using EN through CV.

reg_svrl 21

reg_svrl

Prediction with SVR linear and evaluation through CV

Description

DESCRIPTION

Usage

```
reg_svrl(
   y,
   X,
   job_name = "new_job",
   K = 10,
   n_pca = NULL,
   pb = FALSE,
   foldset = NULL,
   seed = NULL,
   seed = NULL,
   svrl_TC = trainControl(method = "cv", number = 5, verboseIter = F),
   svrl_TG = NULL,
   n_C = 15,
   nc = 1
)
```

Arguments

У	the responding variable
X	the feature matrix. No missing allowed
job_name	A character of job ID
K	integer, the number of folds in the CV
n_pca	number of selected top PCs. Null for no PCA
pb	show pgbar or nots
foldset	provide a foldset to control random sampling error.
seed	provide a seed to reproduce a result. NULL by default
svrl_TC	trControl that pass to caret
svrl_TG	tuneGrid that pass to caret
n_C	number of Cost in grid search,
nc	number of cpus to use in parallel

Value

a list

Note

The function provide a general way to evaluate the prediction using SVR linear through CV.

22 reg_svrp

reg_svrp

 $\label{eq:cvaluation} \textit{Prediction with SVR polynomial} \textit{and evaluation through CV}$

Description

DESCRIPTION

Usage

```
reg_svrp(
  у,
  Χ,
  job_name = "new_job",
  K = 10,
  n_pca = NULL,
  pb = FALSE,
  foldset = NULL,
  seed = NULL,
  svrp_TC = trainControl(method = "cv", number = 5, verboseIter = F),
  svrp\_TG = NULL,
  n_C = 10,
  n_{degree} = 3,
  n_Scale = 3,
  nc = 1
)
```

Arguments

У

Χ	the feature matrix. No missing allowed
job_name	A character of job ID
K	integer, the number of folds in the CV
n_pca	number of selected top PCs. Null for no PCA
pb	show pgbar or nots
foldset	provide a foldset to control random sampling error.
seed	provide a seed to reproduce a result. NULL by default
svrp_TC	trControl that pass to caret
svrp_TG	tuneGrid that pass to caret
n_C	number of Cost in grid search
n_degree	number of degree in grid search,
n_Scale	number of Scale in grid search,
nc	number of cpus to use in parallel

the responding variable

Value

a list

reg_svrr 23

Note

The function provide a general way to evaluate the prediction using SVR polynomial through CV.

reg_svrr

Prediction with SVR polynomialand evaluation through CV

Description

DESCRIPTION

Usage

```
reg_svrr(
   y,
   X,
   job_name = "new_job",
   K = 10,
   n_pca = NULL,
   pb = FALSE,
   foldset = NULL,
   seed = NULL,
   sevrr_TC = trainControl(method = "cv", number = 5, verboseIter = F),
   svrr_TG = NULL,
   n_C = 10,
   nc = 1
)
```

Arguments

```
the responding variable
У
Χ
                  the feature matrix. No missing allowed
                  A character of job ID
job_name
                  integer, the number of folds in the CV
K
                  number of selected top PCs. Null for no PCA
n_pca
pb
                  show pgbar or nots
                  provide a foldset to control random sampling error.
foldset
                  provide a seed to reproduce a result. NULL by default
seed
svrr_TC
                  trControl that pass to caret
svrr_TG
                  tuneGrid that pass to caret
                  number of Cost in grid search
n_C
                  number of cpus to use in parallel
nc
```

Value

a list

Note

The function provide a general way to evaluate the prediction using SVR RBF through CV.

24 reg_xgbl

reg_xgbl

Prediction with XGBlinear and evaluation through CV

Description

DESCRIPTION

Usage

```
reg_xgbl(
   y,
   X,
   job_name = "new_job",
   K = 10,
   n_pca = NULL,
   pb = FALSE,
   foldset = NULL,
   seed = NULL,
   xgbl_TC = trainControl(method = "cv", number = 5, verboseIter = F),
   xgbl_TG = NULL,
   n_rounds = 10,
   n_reg = 5,
   nc = 1
)
```

Arguments

у	the responding variable
X	the feature matrix. No missing allowed
job_name	A character of job ID
K	integer, the number of folds in the CV
n_pca	number of selected top PCs. Null for no PCA
pb	show pgbar or nots
foldset	provide a foldset to control random sampling error.
seed	provide a seed to reproduce a result. NULL by default
xgbl_TC	trControl that pass to caret
xgbl_TG	tuneGrid that pass to caret
n_rounds	number of # boosting iterations
n_reg	number of tested regularization parameter
nc	number of cpus to use in parallel

Value

a list

Note

The function provide a general way to evaluate the prediction using xgboost through CV.

reg_xgbt 25

reg_xgbt

Prediction with XGBTree and evaluation through CV

Description

DESCRIPTION

Usage

```
reg_xgbt(
   y,
   X,
   job_name = "new_job",
   K = 10,
   n_pca = NULL,
   pb = FALSE,
   foldset = NULL,
   seed = NULL,
   xgbt_TC = trainControl(method = "cv", number = 5, verboseIter = F),
   xgbt_TG = NULL,
   n_rounds = 8,
   n_depth = 5,
   n_seq = 5,
   nc = 1
)
```

Arguments

У	the responding variable
Χ	the feature matrix. No missing allowed
job_name	A character of job ID
K	integer, the number of folds in the CV
n_pca	number of selected top PCs. Null for no PCA
pb	show pgbar or nots
foldset	provide a foldset to control random sampling error.
seed	provide a seed to reproduce a result. NULL by default
xgbt_TC	trControl that pass to caret
xgbt_TG	tuneGrid that pass to caret
n_rounds	number of nrounds in grid search,
n_depth	number of depth in grid search,
n_seq	number of gamma/min_child_weight in grid search,
nc	number of cpus to use in parallel

Value

a list

Note

The function provide a general way to evaluate the prediction using xgboost through CV.

Index

```
calculate_lambda_max, 2
calculate_search_grid_en, 3
calculate_search_grid_mlpL2, 3
calculate_search_grid_rf, 4
calculate_search_grid_svrl, 4
calculate_search_grid_svrp, 5
calculate_search_grid_svrr, 6
calculate_search_grid_xgbl, 6
calculate_search_grid_xgbt, 7
check_input_data, 7
{\sf check\_input\_foldset}, 8
check_input_seed, 8
cla_en, 9
cla_rf, 10
cla_svrl, 11
cla_svrp, 12
cla_svrr, 13
cla_xgbl, 14
cla_xgbt, 15
pigMLcore, 16
pre_prosess_in_CV, 16
reg_en, 17
reg_mlpL2, 18
reg_rf, 19
reg_rr, 20
reg_svrl, 21
reg_svrp, 22
reg_svrr, 23
\texttt{reg\_xgbl}, \textcolor{red}{\textbf{24}}
reg_xgbt, 25
```