MAT77C - Fundamentos de Análise - Lista de Exercícios

Fabio Zhao Yuan Wang*

LISTA 8

2. Seja $A \subset \mathbb{R}$. Mostre que $a \in A$ é um ponto de acumulação de A se, e somente se, toda vizinhança V de a, contém um ponto de $A \setminus \{a\}$, isto é, $V \cap (A \setminus \{a\}) \neq \emptyset$.

Dem: Antes, note que toda vizinhança de a pode ser escrita como V=(c,d)=(a-k,a+l) onde $k,l\in\mathbb{R}^+$. Mais ainda, $(a-k,a+l)\supset (a-d,a+d)$, onde $d=\min(k,l)$, isto é, toda vizinhança de a tem como subconjunto uma vizinhança de a centrada em a, sendo assim, para a ida da proposição, basta mostrar que a afirmação é valida para vizinhanças de a centradas em a. Deste modo, suponhamos que $a\in A$ é um ponto de acumulação de A, ou seja, existe uma sequência $(x_n)_{n\in\mathbb{N}}$ tal que $x_n\in A\setminus\{a\}$ e $\lim_{n\to\infty}x_n=a$. Como $\lim_{n\to\infty}x_n=a$, para todo $\epsilon>0$ existe $n_0\in\mathbb{N}$ tal que, para $n\in\mathbb{N}$, temos $|x_n-a|<\epsilon$ com $n\geq n_0$, ou seja

$$|x_n - a| < \epsilon \iff -\epsilon < x_n - a < \epsilon \implies a - \epsilon < x_n < a + \epsilon$$
 (2.1)

e, como (2.1) vale para todo $\epsilon>0$, é conveniente escolher um ϵ suficientemente pequeno, tal que $(a-\epsilon,a+\epsilon)$ é uma vizinhança de a de raio ϵ centrada em a que esteja contida em A e que denotaremos por $V_{\epsilon}(a)$. Com isto, como $\epsilon>0$, existe um ponto $a-\frac{\epsilon}{2}\in(a-\epsilon,a+\epsilon)=V_{\epsilon}(a)=V_{\epsilon}(a)\cap A$ que é diferente de a, ou seja, em particular, $a-\frac{\epsilon}{2}\in(V_{\epsilon}(a)\cap A)\setminus\{a\}=V_{\epsilon}(a)\cap(A\setminus\{a\})$. Com isto, temos o que queríamos.

Por outro lado, suponhamos que toda vizinhança V de a contém um ponto de $A\setminus\{a\}$, (2.2). Ora, como (2.2) vale para qualquer vizinhança V(a), então, seja $V(a)=(\alpha,\beta)$, tal que $\alpha,\beta\in\mathbb{R}$ e $\alpha<\beta$. Da hipótese, sabemos que $V(a)\cap(A\setminus\{a\})\neq\emptyset$, portanto, podemos construir uma sequência $(x_n)_{n\in\mathbb{N}}$ em V(a) tal que $\lim_{n\to\infty}x_n=a$. Com isto, sejam $\overline{\alpha}=a-\alpha$ e $\overline{\beta}=\beta-a$, e $r=\min(\overline{\alpha},\overline{\beta})$, e, considere a sequência $(x_n)_{n\in\mathbb{N}}$ tal que $x_n=a+\frac{r}{n+1}$. Note que $\lim_{n\to\infty}x_n=a$, mais ainda, por construção, para todo $n\in\mathbb{N}$, $x_n\in V(a)\setminus\{a\}$, portanto, a é um ponto de acumulação de A, como queríamos. \square

- 5. Sobre conjuntos abertos e fechados.
- a) Encontre um exemplo de interseção infinita de conjuntos abertos que não é um conjunto aberto.

Seja A_n intervalos não-degenerados definidos por $A_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$ onde $n \in \mathbb{N}$. Como visto no exercício 1, para todo $n \in \mathbb{N}$, A_n é um conjunto aberto. Considere a interseção infinita $I = \bigcap_{n \in \mathbb{N}} A_n$. Note que, para todo $n \in \mathbb{N}$, $0 < \frac{1}{n}$ e $-\frac{1}{n} < 0$, portanto, para todo $n \in \mathbb{N}$, temos $0 \in A_n$, ou seja, $\{0\} \subset I$. Vejamos que $I \setminus \{0\} = \emptyset$. Afim de contradição, suponhamos que existe $x \in I \setminus \{0\}$. Visto que $x \neq 0$, seja d = |x| > 0, e, da definição dos intervalos A_n , temos, por conseguinte, que 1 > |x| = d > 0, ou seja, $\frac{1}{d} > 1$. Daqui, seja $n_0 = \left\lceil \frac{1}{d} \right\rceil$ o menor inteiro maior que $\frac{1}{d}$, ou seja, $\frac{1}{d} < n_0$, e, como $n_0 \in \mathbb{N}$, segue que existe um intervalo $A_{n_0} = \left(-\frac{1}{n_0}, \frac{1}{n_0}\right)$. Já que $\frac{1}{d} < n_0$, então, $\frac{1}{n_0} < d = |x|$, portanto, $x \notin A_{n_0}$, ou seja $x \notin I$, uma contradição. Com isto, podemos concluir que $I = \bigcap_{n \in \mathbb{N}} A_n = \{0\}$, e, como visto no

^{*} **1** Universidade Tecnológica Federal do Paraná, Cidade, Paraná, Brasil. ■ fabioyuan@gmail.com.

exercício 3 desta lista, segue que $I \neq \text{int}(I)$, portanto, I não é aberto, como queríamos.

b) Encontre um exemplo de união infinita de conjuntos fechados que não é um conjunto fechado.

Ora, das leis de De Morgan, sabemos que $(\bigcap_{\lambda \in \Lambda} X_{\lambda})^c = \bigcup_{\lambda \in \Lambda} X_{\lambda}^c$, e como um conjunto é fechado se seu complementar é aberto, considere $A_n^c = (-\infty, -\frac{1}{n}] \cup [\frac{1}{n}, \infty)$ onde $n \in \mathbb{N}$. Visto que os intervalos $A_n = \left(-\frac{1}{n}, +\frac{1}{n}\right)$ são abertos, segue que A_n^c é fechado para todo $n \in \mathbb{N}$. Mais ainda, como $\bigcap_{n \in \mathbb{N}} A_n = \{0\}$ não é aberto, da contrapositiva da definição de fechado, segue que $\bigcup_{n \in \mathbb{N}} A_n^c = \mathbb{R}/\{0\}$ não é fechado, como queríamos.

LISTA 9

2. Seja $\{K_n\}_{n\in\mathbb{N}}$ uma família de conjuntos compactos não-vazios em \mathbb{R} tais que

$$K_1 \supset K_2 \supset \cdots \supset K_n \supset \cdots$$
.

Então $\bigcap_{n=1}^{\infty} K_n$ é compacto e não-vazio.

Antes, considere o seguinte lema:

.....

Lema: Seja A um conjunto compacto, então $\sup A \in A$ e $\inf A \in A$.

Demonstração do lema: Vejamos que $M=\sup A\in A$. Ora, da definição de supremo, temos que para todo $\epsilon>0$, existe $x_{\frac{1}{\epsilon}}\in A$ tal que $M-\epsilon< x_{\frac{1}{\epsilon}}\leq M$. Deste modo, tome $\epsilon=\frac{1}{n}>0$ e seja a sequência $(x_n)_{n\in\mathbb{N}}$ tal que $M-\frac{1}{n}< x_n\leq M< M+\frac{1}{n}$ e $x_n\in A$. Com isto, segue que quando $n\to\infty$, $x_n\to M$, isto é, M é ponto de acumulação de A, e, como A é compacto, em particular A é fechado, isto é $A=\overline{A}$, então $M\in A$, como queríamos. Para inf $A\in A$ segue de maneira análoga. \square

Dem: Do item b do exercício anterior, segue que $\bigcap_{n=1}^{\infty} K_n$ é compacto, (1). Da hipótese, K_n é compacto, portanto, em particular, K_n é limitado. Deste modo, para todo $n \in \mathbb{N}$, existe $a_n = \inf K_n$ e $b_n = \sup K_n$. Mais ainda, visto que $K_{n+1} \subset K_n$, segue que $a_{n+1} \geq a_n$ e $b_{n+1} \leq b_n$. E, já que $K_1 \supset K_n$ para todo $n \in \mathbb{N}$, então $a_1 \leq b_n$ e $a_n \leq b_1$, sendo assim, do Teorema da Convergência Monótona, as sequências $(a_n)_{n \in \mathbb{N}}$ e $(b_n)_{n \in \mathbb{N}}$ são convergentes, digamos a α e β , respectivamente, (\star) .

Note que, do lema anterior, segue que $a_n,b_n\in K_n\subset K_1$ que, combinado a (\star) , segue que α e β são pontos de acumulação de K_1 . Já que K_1 é compacto, ou seja $K_1=\overline{K}_1$, temos que $\alpha,\beta\in K_1$. De modo análogo, segue que $\alpha,\beta\in K_n$ para todo $n\in\mathbb{N}$. Portanto $\{\alpha,\beta\}\subset \bigcap_{n=1}^\infty K_n$, ou seja, K_n é não-vazio, (2). De (1) e (2), temos o que queríamos. \square

4. Demonstre as seguintes afirmações:

a) O espaço \mathbb{R} é conexo.

Dem: Do teorema visto em aula, sabemos que um conjunto $A \subset \mathbb{R}$ é conexo se, e somente se, A é um intervalo. Deste modo, como $\mathbb{R} = (-\infty, \infty)$, segue que \mathbb{R} é um intervalo, portanto, temos que \mathbb{R} é conexo. \square

- b) Os únicos conjuntos abertos e fechados ao mesmo tempo são $\mathbb R$ e \emptyset
 - **Dem:** A fim de contradição, suponhamos que \mathbb{R} e \emptyset não são os únicos abertos e fechados em \mathbb{R} . Então, existe $A \subset \mathbb{R}$ fechado e aberto ao mesmo tempo tal que $A \neq \mathbb{R}$ e $A \neq \emptyset$. Ora, se A é fechado e aberto ao mesmo tempo, segue que A^c também é. Note que $A \subset \mathbb{R}$ e $A = A \cap \mathbb{R}$, e como A é aberto, segue que A é um aberto relativo de \mathbb{R} . Analogamente, temos que A^c também é um aberto relativo de \mathbb{R} . Com isto, visto que $A \cap A^c = \emptyset$ e $A \cup A^c = \mathbb{R}$, temos uma cisão não-trivial de \mathbb{R} . Porém como \mathbb{R} é conexo, temos uma contradição, visto que \mathbb{R} só admite a cisão trivial. Deste modo, segue que não existe outro conjunto aberto e fechado ao mesmo tempo que seja diferente de \mathbb{R} e \emptyset . Como queríamos. \square
- c) Seja $X = U \cap V$, em que U e V são conjuntos conexos e $U \cap V \neq \emptyset$. Então X é conexo. Dem: Ora, visto que U e V são conexos, segue que U e V são intervalos. Agora, basta verificar que X também é um intervalo. Das propriedades de intervalo, temos que, para cada $x, y \in U$ e $z \in \mathbb{R}$, se $x \leq z \leq y$, então $z \in U$. Sendo assim, se $x, y \in U$ e $x, y \in V$, isto é, $x, y \in U \cap V$ e temos $z \in \mathbb{R}$, segue que, se $x \leq z \leq y$, então $z \in U$ e $z \in V$, isto é $z \in U \cap V$. Com isto, segue que X também é um intervalo e, por conseguinte, temos então que X é conexo. Como queríamos. \square

LISTA 10

2. **Sejam** $f: A \subset \mathbb{R} \to \mathbb{R}$, $x_0 \in A'$ **e** $L \in \mathbb{R}$ **tais que** $\lim_{x \to x_0} f(x) = L$, **então** $\lim_{x \to x_0} |f(x)| = |L|$. **Dem:** Da definição de limite, sabemos que $\lim_{x \to x_0} f(x) = L$ pode ser reescrito como: para todo $\epsilon > 0$, existe $\delta > 0$, tal que se $|x - x_0| < \delta$, então $|f(x) - L| < \epsilon$. Porém, da desigualdade triangular, segue que $||f(x)| - |L|| \le |f(x) - L| < \epsilon$. Deste modo,

$$\forall \epsilon > 0, \exists \delta > 0; \quad |x - x_0| < \delta \implies ||f(x)| - |L|| < \epsilon$$

ou seja, $\lim_{x\to x_0} |f(x)| = |L|$. \square

9. Dizemos que uma função $f:A\subset\mathbb{R}\to\mathbb{R}$ é *Lipschtziana* se existe K>0 tal que, para todo $x,y\in A$, tem-se que $|f(x)-f(y)|\leq K|x-y|$. Mostre que f é contínua.

Dem: Primeiro, suponhamos que A = A', e seja $y = a \in A$. Como $a \in A = A'$, existe uma sequência $(x_n)_{n \in \mathbb{N}}$, com $x_n \in A \setminus \{a\}$, tal que $x_n \to a$. Deste modo, para todo $\epsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que, se $n \in \mathbb{N}_{\geq n_0}$, então $|x_n - a| < \epsilon$, (1). Note que (1) pode ser reescrito como *para todo* $\epsilon > 0$, *existe* $n_0 \in \mathbb{N}$ e $\delta = |x_{n_0} - a| > 0$ tal que para todo $n \in \mathbb{N}_{\geq n_0}$, $|x_n - a| < \delta$, (\star). Agora, já que x_n , $a \in A$ e, por hipótese, f é Lipschtziana, segue que existe K > 0 tal que $|f(x_n) - f(a)| \le K|x_n - a| < K\delta$, (2). Com isto, seja K > 0 e, de (\star) e em seguida (1), para todo $\epsilon > 0$, existe $\delta = \frac{\epsilon}{K} > 0$ tal que, para todo $x \in A$ satisfazendo $|x - a| < \delta$, temos que $|f(x) - f(a)| < K\delta = \epsilon$. Deste modo, $\lim_{x \to x_0} f(x) = f(x_0)$, e como escolhemos qualquer

 $x_0 \in A$, segue que f é contínua em A, como queríamos. \square

LISTA 11

1. Sejam $a,b \in \mathbb{R}$ com a < b e $f:[a,b] \to \mathbb{R}$ uma função contínua. Então, existe $m,M \in \mathbb{R}$ tais que $m \le f(x) \le M$ para todo $x \in [a,b]$.

Dem: Note que [a,b] é fechado e limitado, portanto [a,b] é um compacto. Agora, do Teorema do Valor Intermediário, segue que a imagem de conexo por função contínua é conexo, isto é, f([a,b]) é conexo. Por conseguinte, da definição de conexo, temos que f([a,b]) é limitada, sendo assim, existe $m,M\in\mathbb{R}$ tais que $m\leq f(x)\leq M$ para todo $x\in[a,b]$, como queríamos. \square

4. Seja $f:A\subset\mathbb{R}\to B\subset\mathbb{R}$ uma função. Mostre que f é contínua se, e somente se, para todo conjunto fechado $X\subset B$, tem-se que $f^{-1}(X)$ é um conjunto fechado em A. Primeiro, relembremos a seguinte proposição demonstrada em aula:

Proposição: Seja $f:A\subset\mathbb{R}\to B\subset\mathbb{R}$ uma função. Temos que f é contínua se, e somente

se, para todo X aberto em B, $f^{-1}(X)$ é aberto em A.

Dem: Suponhamos que f é contínua e seja $X \subset B$ um conjunto fechado qualquer. Deste modo, segue que X^c é aberto, e, já que $B \setminus X = X^c \cap B$, segue que $B \setminus X$ é aberto relativo de B, (1). Dito isto, visto que f é contínua, da proposição citada, temos que $f^{-1}(B \setminus X)$ é aberto em A, (1). Note que, do exercício anterior,

$$f^{-1}(B \setminus X) = f^{-1}(X^c \cap B) \stackrel{(a)}{=} f^{-1}(X^c) \cap f^{-1}(B)$$
$$= f^{-1}(X^c) \cap A \stackrel{(d)}{=} \left(f^{-1}(X) \right)^c \cap A \tag{2}$$

de (1) e (2), segue que $(f^{-1}(X))^c$ é aberto, isto é, $f^{-1}(X)$ é fechado, e, já que $f^{-1}(X) = f^{-1}(X) \cap A$, segue que $f^{-1}(X)$ é fechado relativo de A, como queríamos.

Por outro lado, seja um conjunto aberto em B denotado por $U \subset B$. Análogo a (1), segue que $B \setminus U$ é fechado em B, ou seja, $f^{-1}(B \setminus U)$ é fechado em A, com isto,

$$f^{-1}(B \setminus U) = f^{-1}(U^c \cap B) \stackrel{(a)}{=} f^{-1}(U^c) \cap f^{-1}(B)$$
$$= f^{-1}(U^c) \cap A \stackrel{(d)}{=} (f^{-1}(U))^c \cap A$$

como $f^{-1}(B \setminus U)$ é fechado relativo de A, segue que $(f^{-1}(U))^c$ é fechado, portanto, $f^{-1}(U)$ é aberto. Da proposição citada, visto que para todo U aberto em B, $f^{-1}(U)$ é aberto em A, temos que f é contínua, como queríamos. \Box

LISTA 12

- 1. Mostre que as funções a seguir são deriváveis:
- a) $f: \mathbb{R} \to \mathbb{R}$ dado por $f(x) = \cos(x)$;

Dem: Seja $x_0 \in \mathbb{R}$ e considere o seguinte limite:

$$\lim_{h \to 0} \frac{\cos(x_0 + h) - \cos(x_0)}{h} = \lim_{h \to 0} \frac{\cos(x_0) \cos(h) - \sin(x_0) \sin(h) - \cos(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x_0) (\cos(h) - 1) - \sin(x_0) \sin(h)}{h}$$

$$= \lim_{h \to 0} \cos(x_0) \left(\frac{(\cos(h) - 1)}{h} \right) - \sin(x_0) \left(\frac{\sin(h)}{h} \right)$$
(1)

visto que $\lim_{h\to 0} \frac{\cos(h)-1}{h}$ e $\lim_{h\to 0} \frac{\sin(h)}{h}$ convergem, segue que (1) pode ser escrito como:

$$\left(\lim_{h\to 0}\cos(x_0)\left(\frac{(\cos(h)-1)}{h}\right)\right) - \left(\lim_{h\to 0}\sin(x_0)\left(\frac{\sin(h)}{h}\right)\right)$$

deste modo, dos limites fundamentais, segue que a derivada de $f(x) = \cos(x)$ existe em x_0 e vale $f'(x_0) = -\sin(x_0)$, porém, visto que x_0 é um real qualquer, segue que a derivada de f(x) existe e vale $f'(x) = -\sin(x)$ para todo $x \in \mathbb{R}$. \square

b) $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ dado por $f(x) = \frac{1}{x}$.

Dem: Seja $x_0 \in \mathbb{R} \setminus \{0\}$ e considere o seguinte limite:

$$\lim_{h \to 0} \frac{\frac{1}{x_0 + h} - \frac{1}{x_0}}{h} = \lim_{h \to 0} \frac{\frac{x_0 - (x_0 + h)}{x_0(x_0 + h)}}{h} = \lim_{h \to 0} \frac{-h}{hx_0(x_0 + h)} = \lim_{h \to 0} \frac{-1}{x_0(x_0 + h)} = -\frac{1}{x_0^2}$$

deste modo, segue que a derivada de $f(x) = \frac{1}{x}$ existe em x_0 e vale $f'(x_0) = -\frac{1}{x_0^2}$, mais ainda, como escolhemos quaisquer $x_0 \in \mathbb{R} \setminus \{0\}$, segue que a derivada de f existe em seu domínio e vale $f'(x) = -\frac{1}{x^2}$ para todo $x \in \mathbb{R} \setminus \{0\}$. \square

4. Considere a função $\cos:(0,\pi)\to(-1,1)$. Mostre que esta função possui inversa contínua e estritamente decrescente. Conclua pelo Teorema da Função Inversa que a sua função inversa é derivável e calcule a sua derivada.

Antes, relembremos de um teorema proposto em aula:

Teorema: Sejam $I \subset \mathbb{R}$ e $f: I \to \mathbb{R}$ uma função contínua e estritamente crescente/decrescente. Então, $f^{-1}: \operatorname{Im}(f) \to I$ é contínua e é estritamente crescente/decrescente.

Dem: Utilizaremos a definição $\cos : \mathbb{R} \to [-1,1]$, e a fim de obter o mesmo efeito proposto pelo exercício, seja $f:(0,\pi) \to (-1,1)$ tal que $f(x) = \cos(x)$ para todo $x \in (0,\pi)$. Mais ainda, considere a função $f_0:[0,\pi] \to [-1,1]$ tal que $f_0(x) = \cos(x)$ para $x \in [0,\pi]$. Do exercício

Considere a runção $f_0: [0,\pi] \to [-1,1]$ tai que $f_0(x) = \cos(x)$ para $x \in [0,\pi]$. Do exercicio 1 da lista 12, $(\cos(x))' = -\sin(x)$, com isto, $f'(x) = -\sin(x) < 0$ para $x \in (0,\pi)$, ou seja, f é estritamente decrescente, portanto, f é injetora. De maneira análoga segue que f_0 é injetora. Novamente, do exercício 1 da lista 12, como $\cos(x)$ é derivável em todo \mathbb{R} , segue que $\cos(x)$ é contínua e, por conseguinte, que $f_0(x)$ é contínua em seu domínio. Como $[0,\pi]$ é conexo, do Teorema do Valor Intermediário, $f_0([0,\pi])$ é conexo. Dito isto, já que $f_0(0) = 1$ e $f(\pi) = -1$, que coincidem com os extremos da imagem de f_0 , segue que, para todo $f_0(0) = 1$ e $f_0(0)$

é sobrejetora. Já que f e f_0 são bijetoras, segue que f e f_0 são inversíveis. Agora, seja $f^{-1}:(-1,1)\to(0,\pi)$ a inversa de f. Já que f é contínua e estritamente decrescente, segue do teorema citado anteriormente, que f^{-1} é contínua e estritamente decrescente. Visto que $f'(x) = -\operatorname{sen}(x) < 0$ para todo $x \in (0, \pi)$, segue do Teorema da Função Inversa que f^{-1} é derivável e que $(f^{-1})'_{(f(x_0))} = \frac{1}{f'(x_0)}$ para todo $x_0 \in (0, \pi)$. Sendo assim, $(f^{-1})'(x) = \frac{1}{-\operatorname{sen}(\arccos(x))} = -\frac{1}{\sqrt{1-\cos^2(\arccos(x))}} = -\frac{1}{\sqrt{1-x^2}} \qquad x \in (-1,1)$

$$(f^{-1})'(x) = \frac{1}{-\text{sen}(\arccos(x))} = -\frac{1}{\sqrt{1 - \cos^2(\arccos(x))}} = -\frac{1}{\sqrt{1 - x^2}} \qquad x \in (-1, 1)$$