

Universidade do Estado do Rio Grande do Norte - UERN Universidade Federal Rural do Semi-Arido - UFERSA Programa de Pós-graduação em Ciência da Computação - PPgCC

Método de Ampliação de Imagens Baseado em Rede Neural Disciplina: Inteligência Computacional

Lázaro R. M. Júnior Silvana S. L. Morais

Mossoró/RN 2020

Índice

Introdução
Referencial teórico
Trabalhos Relacionados
Considerações finais
Referências

Introdução

- Processamento Digital de Imagens(PDI)
- Problema de Inclusão de pixels nas imagens para aumentar o tamanho;
- Definir os valores destes novos pixels inseridos na imagem não é uma tarefa trivial.
- Técnicas mais utilizadas.

Objetivo

Desenvolver um método baseado em rede neural para ampliação de imagens, que servirá para estimar os valores de intensidade dos pixels que devem ser inseridos na imagem, ao invés de utilizar interpolação.

Referencial Teórico

Imagem Digital

Imagem Digital Representação

[161	161		142
161		•••	
163	163		95

Figura 1. Imagem caracterizada como uma matriz

Amostragem e Quantização

Figura 2. Produzindo uma imagem digital. (a) Imagem contínua. (b) Linha de varredura de A a B na imagem contínua utilizada para ilustrar os conceitos de amostragem e quantização. (c) Amostragem e quantização. (d) Linha de varredura digital.

Ampliação de Imagens

- Ampliação
- Problema em PDI
- Técnicas mais utilizadas

Figura 3. Aspecto serrilhado ou embaçado depois da ampliação

Interpolação de Imagens

 Para [Gonzalez e Woods 2010], essa ferramenta tem como processo a utilização dos dados conhecidos para aferir valores em pontos desconhecidos.

Técnicas de Interpolações mais utilizadas

- Interpolação pelo Vizinho mais Próximo (Replicação)
- Interpolação Bilinear
- Interpolação Bicúbica

Figura 4. Partes de um neurônio

Nos anos 40, surgiu a ideia de simular um neurônio humano computacionalmente.

Figura 5. Modelo de um neurônio artificial de McCulloch e Pitts

Redes Neurais Artificiais são métodos de inteligência artificial baseadas no modelo de funcionamento neuronal do cérebro humano, incidindo de diversos elementos simples de processamento denominados neurônios.

Para [Haykin 2001], a arquitetura de uma rede neural diminui o tipo de problema no qual a rede poderá ser empregada, e é determinada pela quantidade de camadas (camada única ou múltiplas camadas), pela contagem de nós em cada camada, pelo tipo de associação entre os nós e por sua topologia.

Figura 6 - Representação simplificada de uma rede neural artificial

Tipos de aprendizado

- Aprendizado Supervisionado
- Aprendizado não-supervisionado

Redes Neurais Perceptron de Múltiplas Camadas - MLP

Perceptron de uma só camada: possui a capacidade de categorizar padrões linearmente separáveis.

Perceptron multicamadas: onde, geralmente, se dá, quando o problema a ser trabalhado não reconhece uma separação linear exata.

Redes Neurais Perceptron de Múltiplas Camadas - MLP

Figura 7. Arquitetura MLP com duas camadas ocultas

Redes Neurais Perceptron de Múltiplas Camadas - MLP

Treinamento: onde os pesos ligados às conexões são modificados, adequando-se ao ambiente, seguindo algumas regras.

Essas regras de treinamento descrevem como os pesos podem ser ajustados durante o aprendizado para aperfeiçoar o desenvolvimento da rede.

Hasan, M. S., and Haque, S. T. (2017). Single Image Super-resolution Using Back-propagation Neural Network. Disponível: https://ieeexplore.ieee.org/document/82818/authors. Acesso em: 3 de junho.

Pandey, R. K., Maiya, S. R., and Ramakrishnan, A. G. (2017). A New Approach for Upscaling Document Images for Improving Their Quality. Disponível em: https://ieeexplore.ieee.org/document/8487796. Acesso em: 3 de junho.

Zhang, X. C., Chen, Q. Ng, R., and Koltun, V. (2019). Zoom to Learn, Learn to Zoom. Disponível em: https://arxiv.org/abs/1905.05169. Acesso em: 03 de junho.

Ye, M., Lyu, D., and Chen, G. Rundo, F. (2020). Scale-Iterative Upscaling Network for Image Deblurring. Disponível em: https://ieeexplore.ieee.org/abstract/document/8963625. Acesso em: 03 de junho.

Processo de ampliação da imagem

Processo de ampliação da imagem

Original

Replicação

Figura 6. Curva de aprendizagem da rede neural

Imagem original

Rede 3 camadas ocultas de 8 neurônios

Rede 3 camadas ocultas de 32 neurônios

Rede 3 camadas ocultas de 64 neurônios

Rede 3 camadas ocultas de 128 neurônios

Rede 5 camadas ocultas de 128 neurônios

Rede 5 camadas ocultas de 256 neurônios

33

$$PSNR = 10 \cdot log_{10} \left(\frac{MAX_I^2}{MSE} \right)$$

Tabela 1. PSNR das imagens ampliadas 2x

	Vizinho mais próximo	Bilinear	Bicúbico	Zoom com Rede Neural
Imagem a	16,573872	16,372977	17,695625	14,512599
Imagem b	24,490696	24,550793	26,498424	19,377241
Imagem c	25,964929	25,828712	27,242227	22,580447

$$PSNR = 10 \cdot log_{10} \left(\frac{MAX_I^2}{MSE} \right)$$

Tabela 2. PSNR das imagens ampliadas 4x

	Vizinho mais próximo	Bilinear	Bicúbico	Zoom com Rede Neural
Imagem a	14,571798	14,296778	15,423591	13,085989
Imagem b	23,746183	23,530838	25,864175	19,812576
Imagem c	24,294603	24,069869	25,373772	21,813326

RNA

Referências

Gonzalez, R. C. and Woods, R. E. (2010). Processamento Digital de Imagens. 3. ed.

Haykin, S. (2001). Redes Neurais: Princípios e Prática. 2. Ed.

Hasan, M. S., and Haque, S. T. (2017). Single Image Super-resolution Using Back-propagation Neural Network. Disponível: https://ieeexplore.ieee.org/document/82818/authors. Acesso em: 3 de junho.

Oliveira, N. A. P. (2018). Single image super-resolution method based on linear regression and Box-Cox transformation. Dissertação — Programa de Pós-Graduação em Ciência da Computação. Mossoró, RN.

Referências

Pandey, R. K., Maiya, S. R., and Ramakrishnan, A. G. (2017). A New Approach for Upscaling Document Images for Improving Their Quality. Disponível em: https://ieeexplore.ieee.org/document/8487796. Acesso em: 3 de junho.

Russel, S. and Norvig, P. (2013). Inteligência Artificial. 3. ed.

Ye, M., Lyu, D., and Chen, G. Rundo, F. (2020). Scale-Iterative Upscaling Network for Image Deblurring. Disponível em: https://ieeexplore.ieee.org/abstract/document/8963625. Acesso em: 03 de junho.

Zhang, X. C., Chen, Q. Ng, R., and Koltun, V. (2019). Zoom to Learn, Learn to Zoom. Disponível em: https://arxiv.org/abs/1905.05169. Acesso em: 03 de junho.

Obrigad@!