Un peu de télescopage...

Exercice 1:

- 1) a) Trouver $a, b \in \mathbb{R}$ tels que pour tout réel x > 1, on ait : $\frac{1}{x(x-1)} = \frac{a}{x} + \frac{b}{x-1}$.
- b) En déduire pour tout entier n supérieur ou égal à 2 la valeur de la somme $S_n = \sum_{k=2}^n \frac{1}{k(k-1)}$ ainsi que sa limite quand n tend vers $+\infty$.
- 2) En s'inspirant de la méthode précédente, déterminer la valeur et la limite quand n tend vers $+\infty$ de $\sum_{k=1}^{n} \frac{1}{k(k+1)}$.
- 3) Pour $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=1}^n \frac{1}{k^2}$.
- a) Pour $n \ge 2$, comparer $u_n 1$ et S_n (lequel de ces nombres est le plus grand? Justifier)
- b) En déduire que la suite (u_n) converge et donner un majorant de sa limite.

Calculs de quelques sommes

Exercice 2:

- 1) Soit $(m,n) \in \mathbb{N}^2$. Quelle est la valeur de $\sum_{k=0}^{m} {m \choose k}$? En déduire la valeur de $\sum_{0 \le i \le j \le n}^{n} {j \choose i}$
- 2) Calculer les sommes suivantes :

$$\sum_{1 \leqslant i,j \leqslant n}^{n} \min(i,j) \text{ et } \sum_{k=3}^{n} \ln \left(\frac{k^2}{(k+1)(k-2)} \right)$$

Autour de la formule du binôme de Newton

Exercice 3 : (Les questions 1 et 2 sont indépendantes)

- 1) a) Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, développer par la formule du binôme de Newton l'expression $f(x) = (1+x)^n$.
- b) Intégrer sur [0,1] les deux expressions de f (factorisée et développée).
- c) En déduire la valeur de $\sum\limits_{k=0}^{n}\frac{1}{k+1}\binom{n}{k}.$
- 2) a) Donner une autre expression de 2^n à partir de l'écriture : $2^n = (3-1)^n$.

On donnera le résultat sous la forme $2^n = (-1)^n + s_n$ où s_n est une somme que l'on identifiera.

b) En déduire que $2^n + 1$ est divisible par 3 si et seulement si n est impair.