

Cryptographic Hashing & File Validation

Hashing vs. Encryption

Cryptographic Hash Function

"Hello World"

648a6a6ffffdaa0badb23b8baf90b6168dd16b3a

Hash Function Features

- Fixed Length Output (Hash Value)
- Hash function coverts data of arbitrary length to a fixed length. This process is often referred to as hashing the data.
- Hash value is much smaller than the input data
 - Hash functions can be called compression functions
 - Hash value is a smaller representation of a larger data and sometimes referred to as a digest
- Hash Function Naming
 - N bit output is referred to as an N-bit hash function
 - Represented in Hexadecimal to be readable
 - Common hash functions generate values between 160 and 512 bits

Hash Function Key Properties

Deterministic

The same message always results in the same hash.

One-Way Function

You cannot reverse the cryptographic hash function to get to the data.

Collision Resistance

 It should be hard to find two different messages that hash to the same enciphered text.

Diffusion or Avalanche Effect

 Change a single bit or character and the output of hashed message should change significantly and unpredictably

Calculation Speed

Fast, but no too fast

Uses of Cryptographic Hash Functions

- Password Encryption
- Cryptocurrency
- Digital Signatures
- Digital Certificates
- SSL/TLS
- File Integrity Validation

File Integrity Validation

AUBURN UNIVERSITY