iMath Phần mềm Tao đề ngẫu nhiên

ĐỀ ÔN TẬP Môn thi: Toán Thời gian: phút Mã đề: 005

PHÂN I. Câu trắc nghiệm nhiều phương án lưa chon.

Câu 1. Đổi số đo của góc 810° sang radian ta được kết quả bằng

A.
$$\frac{41\pi}{9}$$

B.
$$\frac{9\pi}{2}$$

C.
$$\frac{14\pi}{3}$$
.

D.
$$\frac{79\pi}{18}$$
.

Áp dụng công thức chuyển đổi: $810^\circ = \frac{810.\pi}{180} = \frac{9\pi}{2}$. Chọn đáp án B Chọn đáp án B.

Câu 2. Tính cot $\frac{13\pi}{6}$.

A.
$$\frac{1}{2}$$
.

B.
$$\frac{\sqrt{3}}{3}$$
.

C.
$$\frac{\sqrt{3}}{2}$$
. Lời giải.

D.
$$\sqrt{3}$$
.

Chọn đáp án D.

Câu 3. Cho b là góc lương giác. Tìm khẳng đinh đúng trong các khẳng đinh sau.

A. $\cos(\pi + b) = \sin b$. **B.** $\tan(\pi - b) = \cot b$. **C.** $\sin(\pi + b) = \cos b$. **D.** $\cot(\pi + b) = \cot b$. Lời giải.

 $\cot(\pi + b) = \cot b$ là khẳng đinh đúng.

Chon đáp án D.

Câu 4. Cho β là góc lương giác. Tìm khẳng đinh đúng trong các khẳng đinh sau.

A.
$$\sin 2\beta = 2\sin\beta\cos\beta$$
.

B.
$$\cos 2\beta = 1 - 2\cos^2\beta$$
.

$$\mathbf{C.} \, \sin 2\beta = 2 \sin \beta \, .$$

$$\mathbf{D.} \ \tan 2\beta = \frac{\tan \beta}{1 - 2 \tan^2 \beta} \ .$$

Lời giải.

 $\sin 2\beta = 2 \sin \beta \cos \beta$ là khẳng đinh đúng.

Chon đáp án A.

Câu 5. Cho α, β là các góc lượng giác. Tìm khẳng định đúng trong các khẳng định sau.

A.
$$\sin \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$$

B.
$$\cos \alpha \cos \beta = -\frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$

A.
$$\sin \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$$
.

B. $\cos \alpha \cos \beta = -\frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$.

C. $\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$.

D. $\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$.

D.
$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$

 $\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$ là khẳng định đúng.

Câu 6. Cho $\sin \beta = \frac{1}{2} \text{ với } \beta \in \left(2\pi; \frac{5\pi}{2}\right)$. Tính $\sin \left(\beta - \frac{\pi}{6}\right)$.

A.
$$\frac{1}{2}$$

B.
$$\frac{1}{2} + \frac{\sqrt{3}}{2}$$
. **C.** 0.

D.
$$\frac{\sqrt{3}}{2}$$
.

Vì $\beta \in \left(2\pi; \frac{5\pi}{2}\right)$ nên $\cos \beta > 0$.

$$\cos\beta = \sqrt{1 - \frac{1}{4}} = \frac{\sqrt{3}}{2}.$$

$$\sin\left(\beta - \frac{\pi}{6}\right) = \sin\beta\cos(-\frac{\pi}{6}) + \cos\beta\sin(-\frac{\pi}{6}) = \frac{1}{2}.(\frac{\sqrt{3}}{2}) + \frac{\sqrt{3}}{2}.(-\frac{1}{2}) = 0.$$
Chon đáp án C.

Câu 7. Tìm tập xác định của hàm số $y = \tan(9x - 5\pi)$.

A.
$$D = \mathbb{R} \setminus \{ \frac{11}{9}\pi + k \frac{1}{9}\pi \}$$
.
B. $D = \mathbb{R} \setminus \{ \frac{1}{3}\pi + k \frac{1}{9}\pi \}$.
C. $D = \mathbb{R} \setminus \{ \frac{2}{3}\pi + k \frac{1}{9}\pi \}$.
D. $D = \mathbb{R} \setminus \{ \frac{11}{18}\pi + k \frac{1}{9}\pi \}$
Lòi giải.

Chọn đáp án D.

Câu 8. Nghiệm của phương trình
$$\cos\left(3x + \frac{\pi}{6}\right) = \sin\left(-x + \frac{5\pi}{4}\right)$$
 là

A. $x = -\frac{5\pi}{48} + k\pi, x = \frac{11\pi}{24} + k\frac{\pi}{2}(k \in \mathbb{Z})$.

B. $x = -\frac{11\pi}{24} + k\pi, x = \frac{7\pi}{48} + k\frac{\pi}{2}(k \in \mathbb{Z})$.

C. $x = -\frac{5\pi}{48} + k2\pi, x = \frac{11\pi}{24} + k2\pi(k \in \mathbb{Z})$.

D. $x = -\frac{11\pi}{24} + k\frac{\pi}{4}, x = \frac{7\pi}{48} + k\frac{\pi}{2}(k \in \mathbb{Z})$.

$$\mathbf{L} x = -\frac{3\pi}{48} + k2\pi, x = \frac{11\pi}{24} + k2\pi(k \in \mathbb{Z}) . \qquad \mathbf{D} \mathbf{L} x = -\frac{11\pi}{24} - \frac{11\pi}{24} = \frac{11\pi}{24} - \frac{11\pi}{24} = \frac{11\pi}{24} - \frac{11\pi}{24} = \frac{11\pi}{24} - \frac{11\pi}{24} = \frac{11\pi}{24} = \frac{11\pi}{24} - \frac{11\pi}{24} = \frac{11\pi}{24} - \frac{11\pi}{24} = \frac{11$$

$$\cos\left(3x + \frac{\pi}{6}\right) = \sin\left(-x + \frac{5\pi}{4}\right) \Leftrightarrow \cos\left(3x + \frac{\pi}{6}\right) = \cos\left(x - \frac{3\pi}{4}\right)$$

$$\Leftrightarrow \begin{bmatrix} 3x + \frac{\pi}{6} = x - \frac{3\pi}{4} + k2\pi \\ 3x + \frac{\pi}{6} = -x + \frac{3\pi}{4} + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 2x = -\frac{11\pi}{12} + k2\pi \\ 4x = \frac{7\pi}{12} + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} x = -\frac{11\pi}{24} + k\pi \\ x = \frac{7\pi}{12} + k\pi \end{bmatrix}, k \in \mathbb{Z}$$

Chon đáp án B.

PHÂN II. Câu trắc nghiêm đúng sai.

Câu 1. Cho $\sin x = \frac{\sqrt{3}}{6}$, $x \in \left(\frac{5\pi}{2}; 3\pi\right)$. Xét tính đúng-sai của các khẳng định sau.

Phát biểu	Ð	S
a) $\cos x = -\frac{\sqrt{33}}{6}$.	X	
$\mathbf{b)} \sin 2\alpha = -\frac{\sqrt{11}}{6} \ .$	X	
c) $\cos 2\alpha = \frac{5}{6}$.	X	
$\mathbf{d)} \sin\left(\alpha + \frac{\pi}{6}\right) = \frac{1}{4} - \frac{\sqrt{33}}{12} .$	X	

Lời giải.

a) Khẳng định đã cho là khẳng định đúng.

Vì
$$x \in \left(\frac{5\pi}{2}; 3\pi\right)$$
 nên $\cos x < 0$.

$$\cos x = -\sqrt{1 - \frac{1}{12}} = -\frac{\sqrt{33}}{6}.$$

b) Khẳng đinh đã cho là khẳng đinh đúng.

$$\sin 2\alpha = 2\sin \alpha\cos\alpha = 2.\frac{\sqrt{3}}{6}.(-\frac{\sqrt{33}}{6}) = -\frac{\sqrt{11}}{6}.$$

c) Khẳng định đã cho là khẳng định đúng.

$$\cos 2\alpha = 1 - 2\sin^2 \alpha = 1 - 2.\frac{1}{12} = \frac{5}{6}$$

d) Khẳng định đã cho là khẳng định đúng.

$$\sin\left(\alpha + \frac{\pi}{6}\right) = \sin\alpha\cos(\frac{\pi}{6}) + \cos\alpha\sin(\frac{\pi}{6}) = \frac{\sqrt{3}}{6}.(\frac{\sqrt{3}}{2}) + (-\frac{\sqrt{33}}{6}).(\frac{1}{2}) = \frac{1}{4} - \frac{\sqrt{33}}{12}.$$

Chọn đáp án a đúng | b đúng | c đúng | d đúng.

Câu 2. Cho hàm số $y = -4\cos(3x) - 7$. Xét tính đúng-sai của các khẳng định sau.

Phát biểu	Ð	S
a) Tập xác định của hàm số là $D=\mathbb{R}$.	X	
b) Hàm số đã cho là hàm số lẻ.		X
c) Tập giá trị của hàm số đã cho là $T = [-11; -11]$.	X	
d) Đồ thị cắt trục tung tại điểm có tung độ bằng -10 .		X

Lời giải.

a) Khẳng đinh đã cho là khẳng đinh đúng.

Tập xác đinh của hàm số là $D = \mathbb{R}$.

b) Khẳng định đã cho là khẳng định sai.

Ta có: Với mọi $x \in \mathbb{R}$ thì $-x \in \mathbb{R}$.

$$f(-x) = -4\cos(3x) - 7 = -4\cos(3x) - 7$$
. Vậy hàm số $y = -4\cos(3x) - 7$ là hàm số chẵn.

c) Khẳng đinh đã cho là khẳng đinh đúng.

Ta có:
$$-11 \le -4\cos(3x) - 7 \le -11$$
 nên tập giá trị là $[-11; -11]$

d) Khẳng đinh đã cho là khẳng đinh sai.

Cho $x = 0 \Rightarrow y = -11$. Suy ra đồ thị cắt trục tung tại điểm có tung độ bằng -11.

Chọn đáp án a đúng | b sai | c đúng | d sai.

PHẨN III. Câu trắc nghiêm trả lời ngắn.

Câu 1. Một bánh xe của một loại xe có bán kính 47 cm và quay được 4 vòng trong 5 giây. Tính độ dài quãng đường (theo đơn vị mét) xe đi được trong 8 giây (kết quả làm tròn đến hàng phần mười).

Một giây bánh xe quay được số vòng là: $\frac{4}{5}$. Một vòng quay ứng với quãng đường là $2\pi.0, 5 = 1, 0\pi$.

Sau 8 giây quãng đường đi được là: $\frac{4}{5}$.8.1, $0\pi = 20$, 1:

Câu 2. Số nghiệm thuộc khoảng $(-\pi; \pi)$ của phương trình $\tan\left(4x + \frac{3\pi}{4}\right) = 0$ là

$$\tan\left(4x + \frac{3\pi}{4}\right) = 0 \Leftrightarrow 4x + \frac{3\pi}{4} = 0 + k\pi \Leftrightarrow x = -\frac{3\pi}{16} + k\frac{\pi}{4}, k \in \mathbb{Z}.$$

Do
$$x \in (-\pi; \pi)$$
 nên $-\pi < -\frac{3\pi}{16} + k\frac{\pi}{4} < \pi \Rightarrow -\frac{13}{4} < k < \frac{19}{4}$.

Có 7 số k thỏa mãn nên phương trình có 7 nghiệm.