

5G Time Synchronization

Shahid Ajmeri Sr. Product Manager – 5G Transport Solutions

BRKSPM-3295

Cisco Webex Teams

Questions?

Use Cisco Webex Teams to chat with the speaker after the session

How

- 1 Find this session in the Cisco Events Mobile App
- 2 Click "Join the Discussion"
- 3 Install Webex Teams or go directly to the team space
- 4 Enter messages/questions in the team space

Agenda

- Synchronization In Telecommunication Networks
- Frequency & Phase Sync requirements in FDD vs TDD
- Timing Synchronization Standards
- 5G Time Synchronization Requirements
- Solution Options and Best Practices
- Summary

5G -

Where accurate timing is no longer an option...

but a requirement!!

Synchronization in Telecommunication Networks

Evolution of Time Synchronization

Synchronization

 Fundamental need for any Telecommunication

Analog to Digital Transition

- Synchronous protocols
- · Bulk Data Transfer

Asynchronous Packet Switched network

- Better Bandwidth
- · improved efficiency and
- · Services flexibility

End to End IP

- Improved user experience –
 "Any service Any Where"
- Improved revenue with Multi-Services convergence

Synchronization Issues

Audio / Video Voice Communications

- Audible clicks
- Latency (echo)
- Dropped calls
- Corrupted Video
- Loss of Frame
- Audio Video mis-alignment etc

Wireless Networks

- Seamless Handover
- Interference (elClC)
- CoMP
- Carrier Aggregation
- Dual Connectivity
- Location Accuracy Etc.

Application Impacted

- Location Services
- Industrial Automation
- Smart grid
- IoT
- Network Monitoring Etc.

Frequency & Phase Sync requirements in FDD vs TDD

Frequency Synchronization

- Avoid Slips on TDM Interfaces (E1/T1, ...)
- Make Synchronous networks work (SONET/SDH)
- 2G, 3G, and 4G FDD Cellular Networks
 - Ensure radios transmit on correct frequency

RAN ... Radio Access Network; TDM ... Time Division Multiplexing; SONET ... Synchronous Optical Network; SDH ... Synchronous Digital Hierarchy

Phase Synchronization

3GPP: 3µs between base stations (TDD, LTE-A radio co-ordination)

Radio backhaul network: ±1.5µs from reference time

Frequency and Phase Sync Requirements

Application	Frequency		Phase		Note
	Backhaul	Air	Backhaul	Air	
LTE-FDD	±16 ppb	± 50 pbb			
LTE-TDD	±16 ppb	± 50 pbb	±1.1μs ±4.1μs	±1.5μs ±5μs	< 3Km cell Radius > 3Km cell Radius
LTE-A / LTE-Pro	±50 pbb (Wide area) ±100 pbb (Local area) ±250 pbb (Home eNB)		≤ ±1.1µs	±1.5µs to 5µs	Depending on the application
LTE eMBMS	±16 ppb	± 50 pbb	≤ ±1.1µs	±1.5μs to 5μs	Inter-cell time difference

LTE-Advance	Type of Coordination Phase		hase
		Backhaul	Air
elClC	Enhanced inter-cell interference Coordination	≤ ±1.1µs	±1.5µs to 5µs
CoMP Moderate	UL coordinated scheduling		L1 Fire to Fire
Colvir Moderate	DL coordinated scheduling	≤ ±1.1µs	±1.5µs to 5µs
	DL coordinated beamforming	≤ ±1.1µs	±1.5μs
	DL non-coherent join transmission	≤ ±1.1µs	±1.5μs to 5μs
CoMP Tight	UL Joint processing	≤ ±1.1µs	±1.5µs (±130ns)
	UL selection combining	≤ ±1.1µs	±1.5μs
	UL joint reception	≤ ±1.1µs	±1.5µs
MIMO	Tx diversity transmission at each Carrier frequency	65ns	±32.5ns

1 nano sec / sec = $1x10^{-9}$ (1 ppb)

Time Synchronization Standards

Standards: ITU-T SG15

Approved

« In force »

4G LTE / LTE-A Mobile Backhaul Budget

Phase Performance

G.8273.2 Boundary Clock

±550ns cTE
(11 nodes, ±50ns per node)

±250ns cTE
(Link Asymmetry compensation)

1 2 3 4 5 6 7 8 9 10 11

±420ns cTE
(21 nodes, ±20ns per node)

±380ns cTE
(Link Asymmetry compensation)

Level	Max Total Time Error* max TE	Constant Time Error cTE	Dynamic Time Error** dTE
Class A (10 T-BC's + T-TSC)	100 ns	±50 ns	±40 ns
Class B (20 T-BC's + T-TSC)	70 ns	±20 ns	±40 ns

- * Max|TE| includes all time error components (unfiltered)
- ** dTE is an MTIE limit over 1K (constant temp) or 10K (variable) seconds with low-pass filter (there is also a TDEV limit)

Absolute vs Relative Budget

- All nodes sync'd within the max|TE| of 1100nS
- Cluster below "5" also synced within max|TE| of <260nS RELATIVE to each other

5G Time
Synchronization
Requirements

RAN Evolution

Split Groups	Splits	Latency One Way	Bandwidth
Backhaul (S1 / Nx)	None	Service Dependent	~User bandwidth
Midhaul High Split (F1)	Option 2: PDCP-RLC	1- 5 milliseconds	~User bandwidth
Fronthaul	Option 7/8: PHY Hi- PHY Lo	100us / 150us / 500us	Very High

RAN Evolution vs Transport Timing

- 1. Fronthaul Requirements
 - a. Jitter & Latency
 - b. TSN

2. 5G RAN Applications

- 3. New Performance Definition
 - a. Class C

Fronthaul Standards

CPRI

Common Public Radio Interface

CPRI

(Common Public Radio Interface definition to connect RE & REC)

eCPRI

(Next version of CPRI, connect eRE and eREC over packet based transport)

- Formed to standardize critical elements of proprietary RAN architectures
- Defines Open –
 eCPRI Specifications
 for vendor
 interoperability

- 1914.1 ROE
- 1914.3 NGFI

(Defines encapsulation and mapping of Radio protocol over ethernet; including Fronthaul functional split definition)

• 802.1CM (Specifies TSN profiles for Fronthaul)

Timing on Packet Fronthaul

How do we deliver Sync with CPRIoEthernet or eCPRI?

- CPRI timing built-in to synchronous protocol itself
 - PRTC delivers time up to BBU, BBU delivers it to RU over CPRI
- eCPRI or ROE requirement for timing same as before but all the way to RRH/eRE
 - Much tighter than Backhaul or Midhaul timing requirements

What is 802.1CM?

- TSN features making packets deterministic, most important are:
 - 802.1Q Amd. 26 Frame Pre-emption (was 802.1Qbu)
 - 802.3 Amd. 5 Interspersing Express Traffic (was 802.3br)
- 802.1CM takes TSN & applies it to Fronthaul (e.g. CPRIoPacket)
 - Splits CPRI traffic into separate IQ (radio bits) & Control/Mgmt (C&M)
 - Specifies the use of PTP for carrying timing information
 - Defines various budgets for absolute/relative timing error in the Fronthaul
 - Low latency requirement for IQ (radio) traffic (100uS between RE/REC)
 - 802.1CM defines two profiles for transport of Fronthaul traffic:
 - Profile A: Strict priority queuing (no frame pre-emption)
 - Profile B: Frame Preemption and Interspersing Express Traffic

Time Sensitive Networking 802.1CM

Ethernet for Fronthaul

- Profile A: Strict priority queuing (no frame pre-emption)
 - Radio data payload frame size max is 2000, C&M max is 1500 octets
 - IQ data traffic belongs to strict priority traffic class strict priority algorithm
 - C&M data assigned to lower priority than IQ data

- Profile B: 802.1Qbu Frame Preemption
 - Pre-emption useful to avoid restrictions on the maximum frame size
 - Frame Preemption up to 25G links
 - IQ data traffic configured (frame pre-emption status) as "express"
 - C&M data assigned to lower priority than IQ data and set "pre-emptable"

802.1CM for Deterministic Latency

Mode	Radio Traffic	Enterprise Traffic
Strict Priority	Excellent Service Each Node: Moderate ENT queuing delay Each Node: Self-queuing delay	CIR met. SLAs may not guaranteed for Jitter and Delay.
Strict Priority + Preemption	Excellent Service Lowest Latency Each Node: Small ENT queuing delay Each Node: Self-queuing delay	CIR met. Latency / Jitter impact increased due to heavy preemption

	Fronthaul Max. Latency (us)			Fronthaul Frame Delay Variation (us)		
Scenario	1 node	2 node	3 node	1 node	2 node	3 node
SP	3.1	6.3	9.3	3.0	6.0	8.9
SP+P(Qbu*)	0.2	0.4	0.6	0.1	0.2	0.2

SP= Strict Priority SP+P = Strict Priority + Frame Preemption

RAN Evolution vs Transport Timing

- 1. Fronthaul Requirements
 - a. Jitter & Latency
 - b. TSN
- 2. 5G RAN Applications

- 3. New Performance Definition
 - a. Class C

eCPRI / ROE / NGFI Transport Requirements

Transmission Diversity
±32.5ns Phase Accuracy
Improves error performance
Data Rate or Capacity

Carrier Aggregation
±65ns Phase Accuracy
Higher Pick Date Rate
Better Load Balancing

Cordinated Multi Point
±130ns Phase Accuracy
Higher Pick Date Rate
Better Load Balancing

Case 1 = T-TSC is integrated in eRE

- Case 1.1 = integrated T-TSC requirements to T-TSC Class B
- Case 1.2 = enhanced integrated T-TSC requirement is total max |TE| is 15 ns

Case 2 = T-TSC is not integrated in eREs

* 3GPP TS 38.104, 38.133

	Time Er	3GPP TAE		
Category	Case 1		Case 2	requirements at
	Case 1.1	Case 1.2		antenna ports
A+	N.A.	N.A.	20 ns Relative	65 ns
А	N.A.	60 ns Relative	70 ns Relative	130 ns
В	100 ns Relative	190 ns Relative	200 ns Relative	260 ns
С	1100 ns Absolute		1100 ns Absolute	3 µs

Transmission Diversity

Transmission Diversity
±32.5ns Phase Accuracy
Improves error performance
Data Rate or Capacity

	Time Error R	t UNI TE	3GPP TAE	
Category C		e 1	Case 2	requirements at antenna
	Case 1.1	Case 1.2		ports
A+	N.A.	N.A.	20 ns Relative	65 ns

Case 2 = T-TSC is not integrated in eREs

Example: Class A+ (T-TSC not integrated with eRE):

$$|TE|_{Relative} <= TAE - 2xTE_{RE}$$

65ns - 2x22.5ns
= 20ns

Dual Connectivity

UE with multiple Tx/Rx capability is configured to utilise radio resources provided by two distinct schedulers, located in two eNBs connected via a backhaul over the X2 interface

Synchronous ENDC Requirements

MRTD	Inter-band NR CA	Intra-Band non-conti NR
FR1	33us	3us (Co-located)
FR2	8us	3us (Co-located)
Between FR1 & FR2	TBD	

MTTD	Inter-band NR CA
FR1	35.21us
FR2	8.5us
Btw FR1 & FR2	TBD

 T_{RPTD} : Absolute propagation time difference between MN and SN which are serving the same UE = 30us (9Km)

MRTD: Maximum Received Timing Difference MTTD: Maximum Transmitted Timing Difference

Carrier Aggregation

	Time Error Requirements at UNI TE			3GPP TAE
Category	Case 1		Case 2	requirements at antenna
	Case 1.1	Case 1.2		ports
А	N.A.	60 ns Relative	70 ns Relative	130 ns
В	100 ns Relative	190 ns Relative	200 ns Relative	260 ns
С	1100 ns Absolute		1100 ns Absolute	3 µs

Example case 1.1: Class B (T-TSC not integrated with eRE):

$$TE_{Relative} \le TAE - 2|cTE_{RE}| - 2|TE_{T-TSC}| - 2|dTE_{T-TSC}|$$

 $260ns - 2x20ns - 2x20ns - 2x40ns$
= 100ns

Industrial Automation

PMSE - Programme Making Special Events

3GPP TR 22.804 – for information 3GPP TR 22.821 – Feasibility Study

RAN Evolution vs Transport Timing

- 1. Fronthaul Requirements
 - a. Jitter & Latency
 - b. TSN
- 2. 5G RAN Applications

- 3. New Performance Definition
 - a. Class C

5G Phase Performance

G.8273.2 Boundary Clock

- Noise Generation: New Classes with ever tighter time error margins
- Meeting these limits involves hardware it is not a software fix

Level	Max Total Time Error max TE	Constant Time Error cTE	Dynamic Time Error dTE
Class A (10 T-BC's)	100 ns	±50 ns	±40 ns
Class B (20 T-BC's)	70 ns	±20 ns	±40 ns
Class C (proposed*)	20 ns	10 ns	±20 ns

O-RAN Guidelines

C2

C3

C4

Solution Options and Best Practices

Solution Options

Key Deployment Challenges

- Legacy Networks
 - doesn't support SyncE or PTP
- Network Path Asymmetry & Re-routing
- PTP over Bundle links
- Last Mile network is "Non-standard" transport or outsourced
- Migration issues

Non-standard = Network that doesn't support accurate timing E.g. Microware, Cable, GPON etc.

PTP over Bundle links or ECMP Paths

- Topology will surely have Asymmetry paths
- Hashing Algorithm may put packets in different paths
- Link failure will introduce phase offset

5G over Non-Standard Transport APTS: Assisted Partial Timing Support

Non-standard Transport = Network that doesn't support accurate timing E.g. Microware, Cable, GPON etc.

- Edge CSR measures Time stamps received from the network PTP flow with the local PRTC
- Compensate the error and Calibrate the PTP flow.
- In the event of Local PRTC failure, CSR uses calibrated PTP flow to keep the client aligned

Multi-profile or Profile Inter-working

- Provides a migration path to roll out new profile on existing network
- Provides support to connect PTP aware and PTP unaware networks

Design Fronthaul Synchronization

BRKSPM-3295

- Some customers will focus on tight "Absolute" Timing
- Some may focus on tight "Relative" timing
- Trade off is Cost vs Complexity and Operations

So What is Class C Timing For?

Learnings and Recommendations

- G.8275.1 PTP Full Path support is the must have approach for successful 5G
- ✓ G.8275.1 is recommended for Bundle Interface and with Ring topologies
- ✓ Deploy GNSS / PRTC close to the client
- For PTP unaware networks, and / or G.8275.2 based deployments, it is recommended to deploy A-PTS for dynamic asymmetry correction
- Parallel PTP network could be an answer to bypass "legacy networks"

Summary

Time Synchronization Defines 5G

G.8272 Class B PRTC ~ 40ns

G.8272.1 ePRTC ~30ns

G.811.1 ePRC ~30ns G.8273.2 Class C T-BC ~ 10ns

Class C T-TSC ~ 10ns

G.8262.1 eEEC - 7ns MTIE, 1ns TDev G.8273.2 Class C T-TSC ~ 10ns

G.8273.2 / 802.1CM / eCPRI $|TE_{RF}| = 15$ ns or 20ns

Cisco Time Synchronization

Strong Feature Support and Roadmap

* Roadmap: eEEC, APTS

* Contact SPNS Product Marketing for more detail

Cisco enables Synchronization

Better Accuracy 5G Fronthaul Use Cases

Smooth Migration Path

BRKSPM-3295

Support for Legacy Transport

References and Further Information

- BRKSPG-2557 5G Synchronization Design, testing and deploying Timing to support 5G rollouts by Dennis Hagarty
 31st Jan 2020, Hall 8.1, CC8, Room 8.18/8.17
- 3GPP TR 38.104, TR 38.801, TR 38.214, TR 38.133
- 3GPP TR 28.204, TR 28.821 http://www.3gpp.org/ftp/specs/archive
- IEEE 802.1CM https://1.ieee802.org/tsn/802-1cm/
- O-RAN Specifications https://www.o-ran.org/specifications
- eCPRI Specifications http://www.cpri.info/spec.html
- ITU-T Recommendations ITU-T G.826x and G.827x Series https://www.itu.int/rec/T-REC-G/en

Complete your online session survey

- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (starting on Thursday) to receive your Cisco Live t-shirt.
- All surveys can be taken in the Cisco Events Mobile App or by logging in to the Content Catalog on <u>ciscolive.com/emea</u>.

Cisco Live sessions will be available for viewing on demand after the event at ciscolive.com.

Continue your education

illiilli CISCO

Thank you

cisco live!

You make possible