******	· * * * * * * * * * * * * * * * * * * *	****	*************************	****
	ΓE CARLO EXPERIMENT #		.000	~ ~ ~ ~
		-	*******	***
******	******	*****	* * * * * * * * * * * * * * * * * * * *	****
****			* * * * * * * * * * * * * * * * * * * *	
	OF THE DYNAMIC GAME			^ ^ ^ ^
		*****	******	****
Values of th	ne structural parameter	 s		
	Fixed cost firm 1	_	-1.900	
	Fixed cost firm 2	=	-1.900	
	Fixed cost firm 3	=	-1.700	
	Fixed cost firm 4	=	-1.600	
	Fixed cost firm 5	=	-1.500	
Parameter of	market size (theta_rs) =	1.000	
Parameter of compet	tition effect (theta_rn		0.0000	
	Entry cost (theta_ec) =	1.000	
	Discount factor	=	0.9500	
	Std. Dev. epsilons	=	1.000	
Best respo Convergence Best respo	ce criterion = onse mapping iteration		1.000	
Convergend	ce criterion =	0.9764		
CONVERGENO	CE ACHIEVED AFTER	3.000	BEST RESPONSE ITERATIONS	
EQUILIBRIU	JM PROBABILITIES			
0.1667 0.2482	0.1846	0.2042	0.2254	
0.1667	0.1846	0.2042	0.2254	
0.4730				
0.1667	0.1846	0.2042	0.4416	
0.2482		_		
0.1667	0.1846	0.2042	0.4416	
0.4730	0.1046	0 4100	0 0054	
0.1667	0.1846	0.4108	0.2254	
0.2482 0.1667	0.1846	0.4108	0.2254	
0.4730	0.1040	0.4100	0.22J±	
0.1667	0.1846	0.4108	0.4416	
0.2482	- 1 - 3 - 3 - 3			
		_		

Page 1

0.1667	0.1846	0.4108	0.4416
0.4730 0.1667	0.3810	0.2042	0.2254
0.2482 0.1667	0.3810	0.2042	0.2254
0.4730 0.1667	0.3810	0.2042	0.4416
0.2482 0.1667	0.3810	0.2042	0.4416
0.4730 0.1667	0.3810	0.4108	0.2254
0.2482 0.1667	0.3810	0.4108	0.2254
0.4730 0.1667	0.3810	0.4108	0.4416
0.2482 0.1667	0.3810	0.4108	0.4416
0.4730 0.3523	0.1846	0.2042	0.2254
0.2482 0.3523	0.1846	0.2042	0.2254
0.4730 0.3523	0.1846	0.2042	0.4416
0.2482 0.3523	0.1846	0.2042	0.4416
0.4730 0.3523	0.1846	0.4108	0.2254
0.2482 0.3523	0.1846	0.4108	0.2254
0.4730 0.3523	0.1846	0.4108	0.4416
0.2482 0.3523	0.1846	0.4108	0.4416
0.4730 0.3523	0.3810	0.2042	0.2254
0.2482 0.3523	0.3810	0.2042	0.2254
0.4730 0.3523	0.3810	0.2042	0.4416
0.2482 0.3523	0.3810	0.2042	0.4416
0.3523 0.4730 0.3523	0.3810	0.4108	0.2254
0.2482			
0.3523 0.4730	0.3810	0.4108	0.2254
0.3523 0.2482	0.3810	0.4108	0.4416
0.3523 0.4730	0.3810	0.4108	0.4416
0.4002 0.5238	0.4307	0.4616	0.4928
0.4002	0.4307 Pa	0.4616 ge 2	0.4928

0 5404			
0.7494 0.4002	0.4307	0.4616	0.7253
0.5238 0.4002	0.4307	0.4616	0.7253
0.7494 0.4002	0.4307	0.6998	0.4928
0.5238 0.4002	0.4307	0.6998	0.4928
0.7494 0.4002	0.4307	0.6998	0.7253
0.5238 0.4002	0.4307	0.6998	0.7253
0.7494 0.4002	0.6728	0.4616	0.4928
0.5238 0.4002	0.6728	0.4616	0.4928
0.7494 0.4002	0.6728	0.4616	0.7253
0.5238 0.4002	0.6728	0.4616	0.7253
0.7494 0.4002	0.6728	0.6998	0.4928
0.5238 0.4002	0.6728	0.6998	0.4928
0.7494 0.4002	0.6728	0.6998	0.7253
0.5238 0.4002	0.6728	0.6998	0.7253
0.7494 0.6446	0.4307	0.4616	0.4928
0.5238 0.6446	0.4307	0.4616	0.4928
0.7494 0.6446	0.4307	0.4616	0.7253
0.5238 0.6446	0.4307	0.4616	0.7253
0.7494 0.6446	0.4307	0.6998	0.4928
0.5238 0.6446	0.4307	0.6998	0.4928
0.7494 0.6446	0.4307	0.6998	0.7253
0.5238 0.6446	0.4307	0.6998	0.7253
0.7494 0.6446	0.6728	0.4616	0.4928
0.5238 0.6446	0.6728	0.4616	0.4928
0.7494 0.6446	0.6728	0.4616	0.7253
0.5238 0.6446	0.6728	0.4616	0.7253
0.7494			

Page 3

0.6446 0.5238	0.6728	0.6998	0.4928
0.6446	0.6728	0.6998	0.4928
0.7494	0.6728	0.6998	0.7253
0.5238 0.6446	0.6728	0.6998	0.7253
0.7494 0.6946	0.7191	0.7421	0.7637
0.7838	0.7191	0.7421	0.7637
0.9079 0.6946	0.7191	0.7421	0.8978
0.7838	0.7191	0.7421	0.8978
0.9079 0.6946	0.7191	0.8866	0.7637
0.7838	0.7191	0.8866	0.7637
0.9079 0.6946	0.7191	0.8866	0.8978
0.7838	0.7191	0.8866	0.8978
0.9079	0.8743	0.7421	0.7637
0.7838	0.8743	0.7421	0.7637
0.9079	0.8743	0.7421	0.8978
0.7838	0.8743	0.7421	0.8978
0.9079 0.6946	0.8743	0.8866	0.7637
0.7838	0.8743	0.8866	0.7637
0.9079	0.8743	0.8866	0.8978
0.7838	0.8743	0.8866	0.8978
0.9079 0.8608	0.7191	0.7421	0.7637
0.7838	0.7191	0.7421	0.7637
0.9079 0.8608	0.7191	0.7421	0.8978
0.7838	0.7191	0.7421	0.8978
0.9079 0.8608	0.7191	0.8866	0.7637
0.7838 0.8608	0.7191	0.8866	0.7637
0.9079 0.8608	0.7191	0.8866	0.8978
		Page 4	

0 5000			
0.7838 0.8608	0.7191	0.8866	0.8978
0.9079 0.8608	0.8743	0.7421	0.7637
0.7838 0.8608	0.8743	0.7421	0.7637
0.9079 0.8608	0.8743	0.7421	0.8978
0.7838 0.8608	0.8743	0.7421	0.8978
0.9079	0.8743	0.8866	0.7637
0.7838	0.8743	0.8866	0.7637
0.9079	0.8743	0.8866	0.8978
0.7838	0.8743	0.8866	0.8978
0.9079	0.8875	0.8978	0.9073
0.9158 0.8762	0.8875	0.8978	0.9073
0.9673 0.8762	0.8875	0.8978	0.9638
0.9158 0.8762	0.8875	0.8978	0.9638
0.9673 0.8762	0.8875	0.9598	0.9073
0.9158 0.8762	0.8875	0.9598	0.9073
0.9673 0.8762	0.8875	0.9598	0.9638
0.9158 0.8762	0.8875	0.9598	0.9638
0.9673 0.8762	0.9555	0.8978	0.9073
0.9158 0.8762	0.9555	0.8978	0.9073
0.9673 0.8762	0.9555	0.8978	0.9638
0.9158 0.8762	0.9555	0.8978	0.9638
0.9673 0.8762	0.9555	0.9598	0.9073
0.9158 0.8762	0.9555	0.9598	0.9073
0.9673 0.8762	0.9555	0.9598	0.9638
0.9158 0.8762	0.9555	0.9598	0.9638
0.9673 0.9506	0.8875	0.8978	0.9073
0.9158			

Page 5

0.9506	0.8875	0.8978	0.9073
0.9673 0.9506	0.8875	0.8978	0.9638
0.9158 0.9506 0.9673	0.8875	0.8978	0.9638
0.9506	0.8875	0.9598	0.9073
0.9158 0.9506	0.8875	0.9598	0.9073
0.9673 0.9506	0.8875	0.9598	0.9638
0.9158 0.9506	0.8875	0.9598	0.9638
0.9673 0.9506 0.9158	0.9555	0.8978	0.9073
0.9506 0.9673	0.9555	0.8978	0.9073
0.9506 0.9158	0.9555	0.8978	0.9638
0.9506	0.9555	0.8978	0.9638
0.9673 0.9506 0.9158	0.9555	0.9598	0.9073
0.9506 0.9673	0.9555	0.9598	0.9073
0.9506 0.9158	0.9555	0.9598	0.9638
0.9506 0.9673	0.9555	0.9598	0.9638
0.9673 0.9531 0.9685	0.9575	0.9615	0.9652
0.9531 0.9882	0.9575	0.9615	0.9652
0.9531 0.9685	0.9575	0.9615	0.9869
0.9531 0.9882	0.9575	0.9615	0.9869
0.9531 0.9685	0.9575	0.9855	0.9652
0.9531 0.9882	0.9575	0.9855	0.9652
0.9531 0.9685	0.9575	0.9855	0.9869
0.9531 0.9882	0.9575	0.9855	0.9869
0.9531 0.9685	0.9839	0.9615	0.9652
0.9531 0.9882	0.9839	0.9615	0.9652
0.9531 0.9685	0.9839	0.9615	0.9869
0.9531	0.9839	0.9615 Page 6	0.9869
		1 aye 0	

0.9882			
0.9531	0.9839	0.9855	0.9652
0.9685 0.9531	0.9839	0.9855	0.9652
0.9882 0.9531	0.9839	0.9855	0.9869
0.9685 0.9531	0.9839	0.9855	0.9869
0.9882	0.0000	0.9633	0.5005
0.9822	0.9575	0.9615	0.9652
0.9685 0.9822	0.9575	0.9615	0.9652
0.9882 0.9822	0.9575	0.9615	0.9869
0.9685			
0.9822 0.9882	0.9575	0.9615	0.9869
0.9822	0.9575	0.9855	0.9652
0.9685 0.9822	0.9575	0.9855	0.9652
0.9882			
0.9822	0.9575	0.9855	0.9869
0.9685			
0.9822	0.9575	0.9855	0.9869
0.9882	0 0020	0.9615	0.9652
0.9822 0.9685	0.9839	0.9615	0.9652
0.9822	0.9839	0.9615	0.9652
0.9882	0.0000	0.9019	0.5052
0.9822	0.9839	0.9615	0.9869
0.9685 0.9822	0.9839	0.9615	0.9869
0.9882	0.9839	0.9615	0.9869
0.9822	0.9839	0.9855	0.9652
0.9685	0.0000	0.9033	0.5052
0.9822	0.9839	0.9855	0.9652
0.9882			
0.9822 0.9685	0.9839	0.9855	0.9869
0.9822	0.9839	0.9855	0.9869
0.9882			

DESCRIPTIVE STATISTICS FROM THE EQUILIBRIUM BASED ON 5.000e+004 OBSERVATIONS

TABLE 2 OF THE PAPER AGUIRREGABIRIA AND MIRA (2007)

⁽¹⁾ Average number of active firms = 3.680
Page 7

(2)) Std. Dev. number of firms = 1.547	,
(3)) Regression N[t] on N[t-1] = 0.7418	
(4)) Average number of entrants = 0.5249	
(5)) Average number of exits = 0.5226	
(6)) Excess turnover (in # of firms) = 0.3349	
(7)) Correlation entries and exits = -0.01180	
	Frequencies of being active = 0.6996 0.7199 0.7371 0.7513 0.7719	
MON ****** Repli (**************************************	
((((Repli	<pre>(b.2) NPL algorithm using frequency estimates as init (c.1) Estimation of initial CCPs (Semi-Parametric: Lo (c.2) NPL algorithm using Logit estimates as initial (d.1) Estimation of initial CCPs (Completely Random) (d.2) NPL algorithm using U(0,1) random draws as init (e) NPL algorithm using true values as initial CCPs ication = 2.00000</pre>	git) CCPs ial CCPs
(((((a) Simulations of x's and a's (b.1) Estimation of initial CCPs (Non-Parametric) (b.2) NPL algorithm using frequency estimates as init (c.1) Estimation of initial CCPs (Semi-Parametric: Lc (c.2) NPL algorithm using Logit estimates as initial (d.1) Estimation of initial CCPs (Completely Random) (d.2) NPL algorithm using U(0,1) random draws as init (e) NPL algorithm using true values as initial CCPs	git) CCPs ial CCPs
- (((<pre>ication = 999.000 (a) Simulations of x's and a's (b.1) Estimation of initial CCPs (Non-Parametric) (b.2) NPL algorithm using frequency estimates as init (c.1) Estimation of initial CCPs (Semi-Parametric: Lc (c.2) NPL algorithm using Logit estimates as initial</pre>	git)

(d.2) (e) Replication (a) (b.1) (b.2) (c.1) (c.2) (d.1) (d.2)	Estimation of initial NPL algorithm using UNPL algorithm using the 1000.00 Simulations of x's and Estimation of initial NPL algorithm using for Estimation of initial NPL algorithm using LOUESTIME ASSOCIATION OF INITIAL NPL algorithm using UNPL algorithm using the NPL algorithm using the	(0,1) random draws rue values as init d a's CCPs (Non-Paramet requency estimates CCPs (Semi-Parame ogit estimates as CCPs (Completely (0,1) random draws	as initial CCF ial CCPs ric) as initial CCF tric: Logit) initial CCPs Random) as initial CCF	Pg
Number	of Re-drawings due to	o Multicollinearit	y = 0.00	0000
	******	******	******	*****
**** *******	******	******	*****	*****
**** MO	NTE CARLO EXPERIMENT ‡	‡ 1.000		
******	*****************		******	*****

**********************	*******	******	*****	******
******* ****	********	******	******	******
MONTE CARLO EX	PERIMENT # 1 S and STANDARD ERRORS	1.000		
TABLE 4 OF THE	PAPER AGUIRREGABIRIA	and MIRA (2007)		
******	******	` ,	******	******

	theta_fc_1	theta_rs	theta_rn 	theta_ec
 TRUE VALUES	-1.900	1.000	0.0000	1.000
MEAN 2step-Tru	e -1.910	1.001	-0.01020	1.009
MEDIAN 2step-Tru	e -1.927	0.9948	-0.02389	1.010
S.E. 2step-Tru	e 0.2713	0.1503	0.4031	0.1396

 MEAN 2step-Freq	-0.4719	0.3662	0.1681	1.133
	-0.4687	0.3553	0.1728	1.131
S.E. 2step-Freq	0.2880	0.1449	0.3559	0.1942
MEAN NPL-Freq	-1.899	1.011	0.01989	1.005
MEDIAN NPL-Freq	-1.923	0.9937	-0.02883	1.004
S.E. NPL-Freq	0.2748	0.1519	0.4092	0.1392
 MEAN 2step-Logit	-1.924	1.000	-0.02194	1.002
MEDIAN 2step-Logit	-1.934	0.9875	-0.04265	1.004
S.E. 2step-Logit	0.2784	0.1492	0.4080	0.1404
D.D. 2000p 10910	0.2701	0.1152	0.1000	V.1101
MEAN NPL-Logit	-1.899	1.011	0.02003	1.005
MEDIAN NPL-Logit	-1.923	0.9937	-0.02883	1.004
S.E. NPL-Logit	0.2748	0.1519	0.4092	0.1392
MEAN 2step-Random	-1.924	1.000	-0.02194	1.002
	P	age 10		

MEDIAN 2step-Rando	-1.934	0.9875	-0.04265	1.004
S.E. 2step-Random	0.2784	0.1492	0.4080	0.1404
MEAN NPL-Random	-1.899	1.011	0.02003	1.005
MEDIAN NPL-Random	-1.923	0.9937	-0.02883	1.004
S.E. NPL-Random	0.2748	0.1519	0.4092	0.1392
MONTE CARLO EXPERI SQUARE-ROOT MEAN S RATIOS OVER THE SQ TABLE 5 OF THE PAP ***********************************	QUARE ERRORS UARE-ROOT MSE OF ER AGUIRREGABIRI	THE 2-STEP PML US		*****
	theta_fc_1	theta_rs	theta_rn	theta_ec
 SQRT-MSE 2-step-TRUE	0.2715		0.4032	
RATIO: 2step-Freq	5.365			
 RATIO: NPL-Freq	1.012		1.016	
 RATIO: 2step-Logit	1.029			1.004

 RATIO: NPL-Logit	1.012	1.014	1.016	0.9963
 RATIO: 2step-Rando	1.894	1.295	0.8062	0.9974
RATIO: NPL-Random	1.012	1.014	1.016	0.9963