

Architectural Design & Evaluation Of An Industrial AGV Transportation System With A Multiagent System Approach

SATURN, 2006

Danny Weyns

DistriNet, Dept. Computer Science,

Katholieke Universiteit Leuven Belgium

- AGV Transportation System
- Software Architecture, ADD
- ATAM
 - o Utility tree
 - o Analysis of architectural approach
- Some lessons learned

17 May 2006

AGV Transportation System

Main Functionalities

- Transport assignment
- Execution transports
- IO with machines
- Collision avoidance
- Deadlock prevention
- Battery charging

Main Quality Goals

Performance

o Transports/hour - bandwidth

Flexibility

o Deal with change autonomously, exploit opportunities

Openness

o Deal with AGVs that dynamically leave and enter the system

17 May 2006

Traditional approach

Centralized architecture

- Server assigns transports to AGVs, plans routes etc.
- Low level control AGVs is handled by E'nsor software

Main quality attributes

- o Configurability (server is central configuration point)
- Predictability (server manages execution of functionality)

EMC² Project

Katholieke Universiteit Leuven

- Collaboration Egemin DistriNet
- Project: 2004 2006 (4 FT)
- Main Goal
 - o Cope with quality requirements: flexibility and openness
 - o Investigate feasibility of applying decentralized architecture for AGV transportation system
- Approach: Situated Multiagent System

Situated Multiagent System

Katholieke Universiteit Leuven

What is a situated multiagent system (MAS)?

- Set of autonomous entities (agents) explicitly situated in a shared structure (an environment)
- Agents select actions "here and now", they do not use long term planning (locality in time and space)
- Interaction is at the core of problem solving (rather than individual capabilities)

Decentralized control

Adaptive behavior

Collective behavior

- AGV Transportation System
- Software Architecture, ADD
- ATAM
 - o Utility tree
 - o Analysis of architectural approach
- Some lessons learned

on to month of the control of

Software Architecture

- Architectural design process
 - Principles from Attribute Driven Design (ADD)

Recursive decomposition: select drivers, apply architectural approaches

o Guided by:

Reference architecture for situated MAS
ObjectPlaces middleware

- Documentation
 - o Architectural views / view packets

Deployment -- Module -- Component and Connector

17 May 2006

Overview of the reference architecture

17 May 2006

Katholieke Universiteit Leuven

Deployment View: System

Module Uses View: AGV Control System

Communicating Processes View: Move action AGV

Attribute-Driven Design

- ADD with reference architecture
 - o Reference architecture

blueprint for architectural design

provides build-in mechanisms

o ADD is helpful

as a design approach

for refinement

- AGV Transportation System
- Software Architecture
- ATAM
 - o Utility Tree
 - o Analysis of architectural approach
- Some lessons learned

17 May 2006

Architecture Trade-Off Analysis Method

Goals ATAM

- o Articulation of business goals
- o A concise presentation of the architecture
- o Utility tree
- Mapping architectural decisions to quality requirements
- o Tradeoff points, risks, non-risks

ATAM for AGV Transportation System

Katholieke Universiteit Leuven

AGV Software Architecture

- o Developed independent of concrete system (Product Line like)
- o Evaluation in context of particular project (tobacco warehouse)

Preparation

o Preparation utility tree (+ 4 days / 3 stakeholders, 1 evaluator)

ATAM

- o June 16th, 2005 -- 10 stakeholders, 2 evaluators
- o Presentations: ATAM, business goals, architecture, approaches
- o Generation utility tree analysis architectural approaches
- o Round-up

- AGV Transportation System
- Software Architecture
- ATAM
 - o Utility Tree
 - o Analysis of architectural approach
- Some lessons learned

Utility tree (fragment)

- AGV Transportation System
- Software Architecture
- ATAM
 - o Utility Tree
 - o Analysis of architectural approach
- Some lessons learned

Analysis Architectural approach

Scenario: The amount of communication, with maximal 12 E'GVs and a maximal load of 140 transports per hour, does not exceed 60% of the bandwidth of the 11Mbps communication channel.

Architectural decisions	Sensitivity	Tradeoff	Risks	Nonrisks
AD 1 Choice for .NET remoting	S2		4 -	NR3
AD 2 Agent located on machine controls E'GV	7	T2	R2	
AD 3 Dynamic Contract-Net protocol for transport assignment	Posos	ТЗ		
AD 4 Two steps deadlock prevention mechanism	ROSO		R3	
AD 5 Unicast communication in Middleware	S3			

- AGV Transportation System
- Software Architecture
- ATAM
 - o Utility Tree
 - o Analysis of architectural approach
- Some lessons learned

Some Lessons Learned

Software architecture

- o We gained a better insight in
 - Role of SA in building complex systems
 - Relationship between MAS and SA
- o Qualities trade off (flexibility versus performance)
- o SA constraints the system implementation
- o Lack of tool support to document SA

Some Lessons Learned

ATAM

- Utility Tree = most important instrument, yet time
 consuming -> good preparation is necessary
- o A complete evaluation of a complex system such as the AGV system is not manageable in one day
- o Evaluation of specific case versus product line like basic architecture hindered the discussions

Research Group

Thanks!

Analysis Architectural approach

B-usage experiments

