УДК 621.316.3

АНАЛИЗ РЕЖИМОВ РАБОТЫ ГЕНЕРАТОРНЫХ ВЫСОКОВОЛЬТНЫХ ВЫКЛЮЧАТЕЛЕЙ

THE ASSAYING OF OPERATION MODES OF THE GENERATOR HIGH-VOLTAGE SWITCHES

Баландин Виталий Сергеевич

магистр, старший преподаватель кафедры энергетические системы, Карагандинский государственный технический университет

Нешина Елена Геннадьевна

магистр, старший преподаватель кафедры энергетические системы, Карагандинский государственный технический университет

Дуйсенбаева Молдир Серикбековна

магистр, преподаватель кафедры энергетические системы, Карагандинский государственный технический университет

Пономарев Антон Анатольевич

Магистрант 1 курса кафедры энергетические системы, Карагандинский государственный технический университет m o I d i r 89@mail.ru

Аннотация. Электроэнергетические системы, как и их элементы в процессе эксплуатации постоянно находятся под воздействием разнообразных внешних и внутренних факторов: неблагоприятные атмосферные явления, повышенная влажность, агрессивных сред, пыли, механических и электрических нагрузок и т.д. В настоящее время износ электрооборудования сетевых и генерирующих компаний превышает 60 %. Выключатель высокого напряжения является основным коммутационным аппаратом в электрических установках. Он служит для отключения и включения цепи в разных режимах: длительная нагрузка, перегрузка, короткое замыкание, холостой ход, несинхронная работа. Наиболее тяжелой и ответственной операцией является отключение токов КЗ и включение на существующее короткое замыкание.

Ключевые слова: высоковольтные выключатели, дуга Майера, дуга Касси, коммутационные способности, генераторные выключатели.

Balandin Vitaliy Sergeevich

Master's degree, Senior lecturer of the Department of energy systems, Karaganda state technical university

Neshina Yelena Gennadievna

Master's degree, Senior lecturer of the Department of energy systems, Karaganda state technical university

Duisenbayeva Moldir Serikbekovna

Master's degree, teacher of the Department of energy systems, Karaganda state technical university

Ponomarev Anton Anatolyevich

1st year master's student of the Department of energy systems, Karaganda state technical university m_o_l_d_i_r_89@mail.ru

Annotation. Electric power systems, as well as their elements, are constantly under the influence of various external and internal factors during operation: adverse atmospheric phenomena, high humidity, aggressive environments, dust, mechanical and electrical loads, etc. currently, the wear of electrical equipment of network and generating companies exceeds 60 %. The high-voltage switch is the main switching device in electrical installations. It is used to disable and enable the circuit in different modes: long-term load, overload, short circuit, idle, non-synchronous operation. The most difficult and responsible operation is to turn off the short-circuit currents and switch on the existing short circuit.

Keywords: high-voltage switches, Friend Major, Duk Cassi, switching capacity, generator switches.

ри установке генераторных высоковольтных выключателей в электрических сетях мощных блоков, необходимо рассмотреть ряд задач для анализа требований к системе мер, обеспечивающих надежную эксплуатацию изоляции электрооборудования блока. К этим задачам можно отнести:

• Разработку математической модели высоковольтного выключателя, сравнение собственного переходного восстанавливающегося напряжения – СПВН (не учитываются процессы в дуге), и переходного восстанавливающегося напряжения – ПВН (при учёте процессов в дуге).

- Анализ собственных переходных восстанавливающихся напряжений, возникающих на контактах генераторных выключателей при отключении токов короткого замыкания в цепях блоков, и формирование требований к отключающей и коммутационной способности высоковольтных выключателей;
- Исследование процессов, сопровождающих включение высоковольтных выключателей блоков при отключённом генераторном выключателе.

Основы математического описания дуговых процессов в выключателях заложены еще в середине прошлого века, исследователями Касси [1] и Майером [2] ими были получены первые зависимости проводимости дуги от тока и напряжения дуги, которые показывали электрические свойства реального дугового промежутка между контактами в выключателях. Полученные уравнения в силу несовершенства не учитывали ряда факторов, которые, влияют на процессы возникновения дуги, например — свойства контактного материала, температуру дуги, размер и др. Однако, экспериментальные исследования [3] доказали, что уравнения Майера и Касси при опытном нахождении некоторых параметров, входящих в состав математических уравнений, достаточно точно описывают дуговые процессы в выключателях, и построенные на их основе математические модели имеют хорошую сходимость с экспериментальными результатами.

Процесс гашения дуги в элегазовых выключателях происходит при прохождении током нулевого значения, при этом проводимость дуги представляет собой нелинейную величину, значение которой изменяется в различных стадиях отключения тока. Успешность же отключения тока зависит как от величины тока, так и от конструкции контактной системы. Однако, экспериментальными путём [4] было установлено, что при достижении нелинейной проводимостью дуги величины порядка 106 Ом, происходит её гашение. В противном случае будут иметь место повторные зажигания, и дуга в выключателе будет продолжать гореть до перехода тока промышленной частоты через нулевое значение. Сразу же после успешного гашения дуги, между контактами выключателя начинаются процессы восстановления напряжения, но некоторое время из-за большого разогрева межконтактного промежутка, когда диэлектрические свойства элегаза ещё не восстановились в полной мере, между контактами протекает небольшой ток, который зафиксирован экспериментально и получен на компьютерной модели.

Выражения (1) и (2) представляют собой уравнения Майера и Касси. Уравнение Касси (2) описывает процесс горения дуги при больших токах, то есть в начальной стадии расхождения контактов до момента перехода тока через ноль, в то время как уравнения Майера (1) отражает поведение дугового промежутка в момент перехода тока непосредственно через нулевое значение:

$$\frac{1}{g_m} \frac{dg_m}{dt} = \frac{1}{\tau_m} \left(\frac{ui}{P_0} - 1 \right). \tag{1}$$

$$\frac{1}{g_c} \frac{dg_c}{dt} = \frac{1}{\tau_c} \left(\frac{u^2}{U_c^2} - 1 \right). \tag{2}$$

где g_c , g_m , τ_c , τ_m – проводимости дуги и постоянные времени, P_0 – отводимая тепловая мощность, U_c – напряжение, u, i – напряжение и ток в дуге.

Как видно из уравнений, на каждом шаге решения уравнений в качестве выходной переменной является проводимость межконтактного промежутка. Математическая реализация данных уравнений выполнена в пакете MATLAB Simulink. Проверка модели производилась применительно к элегазовому выключателю Siemens на класс напряжения 110 кВ, так как для этого выключателя в [4] экспериментально были получены коэффициенты, входящие в уравнения (1) и (2). Амплитуда отключаемого тока КЗ в экспериментах составляла $I_m = 19$ кА. $\tau_{\tau} = 0.27$ мкс, $P_0 = 6200$ Вт, $\tau_{c} = 0.8$ мкс, $U_c = 2250$ В.

Рассмотрим экспериментальный контур рисунок 1, моделирующий КЗ на линии с параметрами, приведенными в таблице 1 [5], и проведём анализ моделей, предложенных Касси и Майером.

Таблица 1 – Параметры экспериментального контура для исследования моделей дуги

Параметр контура	Значение
Д1, Ом	29,8
R2, Ом	450
LI, Гн	3,52e-03
L2, Гн	5,28e-3
L3, Гн	6,256e-4
С1, Ф	1,98e-6
С2, Ф	1,93e-9
Ет, В	59196

Для того чтобы модель была полной и адекватной, необходимо использовать как модель дуги Майера, так и модель дуги Касси.

Рисунок 1 – Экспериментальный контур для исследования моделей дуги

Объединение двух моделей в одну позволит рассчитывать процессы на всём временном интервале отключения: как в момент прохождения тока через ноль, так и между полупериодами. Тем не менее, математическая модель, разработанная Хабеданком [4] показывает хорошее совпадение с экспериментальными данными [5], при четырёх неизвестных параметрах, определяемых уравнениями Майера и Касси. Согласно разработанной теории, проводимость дуги (1) и (2) представлялась в виде (3):

$$\frac{1}{g} = \frac{1}{g_m} + \frac{1}{g_c}.$$
 (3)

В компьютерной модели элегазового выключателя, реализация уравнения (3) производится аналогично реализации (1) и (2). Модель дуги Хабеданка на базе уравнений Майера и Кассии также реализована в пакете MATLAB Simulink, при использовании исходных данных, приведенных в [4, 5]. На рисунке 2 представлена компьютерная осциллограмма напряжения и тока между контактами элегазового выключателя с использованием объединённой модели дуги Хабеданка.

Таким образом, на рисунке 2 приведена полная картина изменения напряжения и тока между контактами выключателя в процессе его отключения.

Рисунок 2 – Ток и напряжение между контактами элегазового выключателя при отключении

Рассматривая уравнения математической модели, на каждом шаге в качестве выходной переменной будет являться проводимость межконтактного промежутка. Математическая реализация уравнений Майера и Касси выполнена в программе MATLAB Simulink. Проверка модели произведена на элегазовом выключателе Siemens на напряжение 110 кВ, так как для этого выключателя в [5] экспериментально были получены необходимые коэффициенты.

Анализ сравнительных процессов между контактами выключателя при учёте и не принятия в учёт процессов в дуге показал, что не учёт процессов в дуге не приводит к серьезной ошибке, но только при определении скорости восстанавливающего напряжения или после успешного гашения дуги в реальной конструкции, действующего элегазового выключателя [5].

Требования, выдвигаемые к отключающей способности выключателей, определяются, в основном величиной отключаемого тока. То есть, надежность отключение короткого замыкания зависит как от величины отключаемого тока, при данном классе напряжения, определяющем разрывную мощность выключателя, так и от СПВН [5].

Для обеспечения надежного отключения трехфазных КЗ в цепи генераторного блока величина дополнительной емкости, устанавливаемой со стороны трансформатора, и может быть принята на уровне не менее 270 нФ, а со стороны генератора – на уровне 110–140 нФ. Как видно из рисунка 3, при отключении произошло два повторных зажигания дуги. Согласно расчётам и исходным данным [5], ток КЗ на уровне $I_m = 57-58$ кА является предельным для выключателя SIEMENS – 110 kV, с регламентируемым амплитудным током КЗ $I_m = 54$ кА, можно сделать вывод, что моделирование выключателя в виде идеального ключа даёт достоверную информацию о скорости восстановления напряжения, так как процессы после погасания дуги в сравниваемых моделях практически одинаковы.

Модель элегазового выключателя, предложенная Хабеданком на основе уравнений Майера и Касси с экспериментальными параметрами [3] для выключателя SIEMENS 110 kV позволяет моделировать дуговые процессы при отключении токов К3. Результаты, полученные с помощью компьютерного моделирования, практически полностью совпадают с результатами, полученными при отключении реального аппарата.

Рисунок 3 – Процессы изменения тока на контактах элегазового выключателя SIEMENS – 110

Модель элегазового выключателя, предложенная Хабеданком на основе уравнений Майера и Касси с экспериментальными параметрами [3] для выключателя SIEMENS 110 kV позволяет моделировать дуговые процессы при отключении токов КЗ. Результаты, полученные с помощью компьютерного моделирования, практически полностью совпадают с результатами, полученными при отключении реального аппарата.

Сравнительный анализ процессов между контактами выключателя при учёте и не учёте процессов в дуге показал, что не учёт процессов в дуге не приводит к ошибке при определении скорости восстанавливающегося напряжения после успешного погасания дуги в реальной конструкции элегазового выключателя.

Основная сложность при создании универсальной модели элегазового выключателя заключается в определении параметров уравнений Майера и Касси, которые могут быть найдены либо опытным путём, при проведении специальных экспериментов, либо путем осциллографирования процессов отключения в реальных конструкциях.

Литература

- 1. Cassie A.M. Theorie Nouvelle des Arcs de Rupture et de la Rigidite des Circuits, C1GRE Report 102, 193 pp. 588-608.
- 2. Mayr O. Beitrage zur Theorie des Statischen und des Dynamichen Lichtbogens, Archiv fur Elektrotechnik, Band 37, Heft 12, 1943, pp. 588–608.
- 3. Беляков Н.Н., Кадомская К.П. Процессы при однофазном автоматическом повторном включении линий высоких напряжений / под редакцией М.Л. Левинштейна. М. : Энергоатомиздат, 1991. 256 с.

- 4. Bizjak P., Zunko D. Combined model Circuit Breaker for Use in Digital Simulation Programs, IEEE Trans. Power Delivery, vol. 19., pp. 174-181, Jan. 2004.
- 5. Нешина Е.Г. Исследование и разработка мер, повышающих надежность эксплуатации изоляции электрооборудования ТЭС : дисс. ... м-ра тех. наук. М., 2012. 56 с.

References

- 1. Cassie A.M. Theorie Nouvelle des Arcs de Rupture et de la Rigidite des Circuits, C1GRE Report 102, 193 pp. 588–608.
- 2. Mayr O. Beitrage zur Theorie des Statischen und des Dynamichen Lichtbogens, Archiv fur Elektrotechnik, Band 37, Heft 12, 1943, pp. 588–608.
- 3. Belyakov N.N., Kadomskaya K.P. Processes at single-phase automatic re-energization of the high voltage lines / edited by M.L. Levinstein. M.: Energoatomizdat, 1991. 256 p.
- 4. Bizjak P., Zunko D. Combined model Circuit Breaker for Use in Digital Simulation Programs, IEEE Trans. Power Delivery, vol. 19., pp. 174–181, Jan. 2004.
- 5. Neshina E.G. Research and development of the measures increasing the operation reliability of the TPP electrical equipment isolation: dissertation. ... mr. of technical sciences. M., 2012. 56 p.