

Instituto Tecnológico de Aeronáutica

Projeto, Construção e Testes de Um Robô Omnidirecional do Tipo Ballbot

Pedro Henrique de Jesus

Orientador: Prof. Dr. Cairo L. Nascimento Jr.

Coorientador: Prof. Dr. Douglas Soares dos Santos

Sumário

- Introdução.
- Fundamentação:
 - História do ballbot;
 - Modelagem;
 - Controlador LQR;
 - Visão computacional;
 - Navegação por waypoints.
- Simulação:
 - Arquitetura de controle;
 - Resultados de simulação 2D;
 - Resultados de simulação 3D.
- Implementação:
 - Projeto e construção.
- Resultados Experimentais:
 - Controle de posição, velocidade e guinada;
 - Navegação autônoma;
 - Rastreamento de objetos.
- Conclusão e trabalhos futuros.

Motivação

- Categoria recente de robôs omnidirecionais.
- Capacidade de mudar a direção do seu deslocamento em espaços confinados.
- Implementação de navegação autônoma e rastreamento de objetos.

Objetivo

Construir e testar o robô do tipo *ballbot* com a capacidade de seguir objetos, e também se locomover autonomamente em um ambiente supervisionado por câmeras.

Com esse propósito:

- Simular o modelo não linear do *ballbot* em duas e três dimensões;
- Testar os controladores: posição, velocidade, guinada e velocidade de guinada;
- Implementar um sistema de localização por câmera;
- Desenvolver um sistema de navegação por waypoints;
- Implementar um sistema de rastreamento por cor.

História do Ballbot

a) Havasi (2005), b) Endo e Nakamura (2005), c) Lauwers *et al.* (2005), d) Kumaga e Ochiai (2009) e e) Yamamoto (2009)

História do Ballbot

a) Fong e Uppill (2009), b) Fankhauser e Gwerder (2010), c) Tsai et al. (2012), d) Sukvichai e Parnichkun (2014), e) Blonk (2014) e f) Yang et al. (2015).

Modelagem planar

onde:

mc = massa do corpo [kg]

Ic = momento de inércia do corpo [kgm²]

L = comprimento do centro da roda até o corpo [m]

 $\theta x = \hat{a} ngulo do corpo (Arfagem) [^{0}]$

 $\varphi x = \hat{a} ngulo da roda [^{0}]$

m_R = massa da roda [kg]

I_R = momento de inércia da roda [kgm²]

r = raio da roda [m]

g = aceleração da gravidade [m/s²]

x = posição do robô

Modelo não linear na forma de espaço de estados

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \\ \dot{x_4} \end{bmatrix} = \begin{bmatrix} x_2 \\ \frac{m_c g L sin(x_1) + (-I_r - (m_r + m_c)r^2 - m_c r L cos(x_1))u + m_c r L sin(x_1)x_2^2}{I_c + m_c L^2 + m_c r L cos(x_1)} \\ x_4 \\ -ru \end{bmatrix}$$

onde:

$$u = \ddot{\varphi_x}, x_1 = \theta_x, x_2 = \dot{\theta_x}, x_3 = x, x_4 = \dot{x}$$

Modelo planar linearizado na origem do espaço de estados

$$\begin{array}{c} \frac{\dot{\overline{\Delta x_1}}(t)}{\overline{\Delta x_2}(t)} \\ \frac{\dot{\overline{\Delta x_2}}(t)}{\overline{\Delta x_3}(t)} \\ \frac{\dot{\overline{\Delta x_2}}(t)}{\overline{\Delta x_4}(t)} \end{array} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \frac{m_c g L}{I_c M_c L^2 + M c_r L} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \overline{\Delta x_1}(t) \\ \overline{\Delta x_2}(t) \\ \overline{\Delta x_3}(t) \\ \overline{\Delta x_4}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{-(I_c + L m_c r + r^2 (m_c + m_r))}{I_c + L^2 m_c + L m_c r} \\ 0 \\ -r \end{bmatrix} \overline{\Delta u}(t)$$

$$\overline{\Delta x}(t)$$

$$\overline{\Delta x}(t)$$

$$\overline{\Delta x}(t)$$

$$\overline{\Delta x}(t)$$

$$\overline{\Delta x}(t)$$

$$\overline{\Delta x}(t)$$

$$\overline{\Delta x}(t)$$

onde:

$$\overline{\Delta \mathbf{x}}(t) = \mathbf{x}(t) - \mathbf{x}_{nom}(t), \overline{\Delta \mathbf{u}}(t) = \mathbf{u}(t) - \mathbf{u}_{nom}(t)$$
$$\mathbf{x}_{nom}(t) = \mathbf{0}, \mathbf{u}_{nom}(t) = \mathbf{0}$$

Modelo planar linearizado na origem do espaço de estados

$$\begin{bmatrix}
\frac{\overline{\Delta}x_{1}}{\Delta x_{1}}(t) \\
\frac{\overline{\Delta}x_{2}}{\Delta x_{2}}(t) \\
\frac{\overline{\Delta}x_{3}}{\Delta x_{3}}(t) \\
\frac{\overline{\Delta}x_{4}}{\Delta x_{4}}(t)
\end{bmatrix} = \begin{bmatrix}
0 & 1 & 0 & 0 \\
24.84 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
\overline{\Delta}x_{1}(t) \\
\overline{\Delta}x_{2}(t) \\
\overline{\Delta}x_{3}(t) \\
\overline{\Delta}x_{4}(t)
\end{bmatrix} + \begin{bmatrix}
0 \\
-0.73 \\
0 \\
-0.12
\end{bmatrix} \overline{\Delta u}(t)$$

Parâmetro	Descrição	Valor	Unidade
g	Aceleração da gravidade	9,81	m/s^2
m_c	Massa do corpo	1,6	kg
m_r	Massa da roda	0,5	kg
L	Comprimento da roda até o CG do corpo	0,2	m
r	Raio da roda	$0,\!12$	\mathbf{m}
I_c	Momento de inércia do corpo	0,024	kgm^2
I_r	Momento de inércia da roda	0,0033	kgm^2

Controlador LQR (Linear- Quadratic Regulator)

$$\mathbf{Q} = \begin{bmatrix} 50 & 0 & 0 & 0 \\ 0 & 20 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 20 \end{bmatrix}$$

$$\mathbf{R} = 50$$

$$\mathbf{K} = \begin{bmatrix} -70.51 & -14.56 & 0.45 & 2.98 \end{bmatrix}$$

$$\mathbf{F}(t) = -\mathbf{R}^{-1}\mathbf{B}(t)^T\mathbf{K}$$

Visão computacional

Modelo pinhole

$$P_h' = \begin{bmatrix} f_x x + c_x \\ f_y y + c_y \\ z \end{bmatrix} = \begin{bmatrix} f_x & 0 & c_X & 0 \\ 0 & f_y & c_Y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} f_x & 0 & c_X & 0 \\ 0 & f_y & c_Y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}}_{K} P_j$$
imagem projetada imagem virtual objeto real imagem virtual
$$P = K \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_{14} \\ r_{21} & r_{22} & r_{23} & t_{24} \\ r_{31} & r_{32} & r_{33} & t_{34} \end{bmatrix}$$

$$\begin{bmatrix} R_c & T_c \end{bmatrix}$$

$$\begin{bmatrix} y \\ z \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} \int_{X} & 0 & c_{X} & 0 \\ 0 & f_{y} & c_{Y} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}}_{K} P_{j}$$

$$P = K \underbrace{\begin{bmatrix} r_{11} & r_{12} & r_{13} & t_{14} \\ r_{21} & r_{22} & r_{23} & t_{24} \\ r_{31} & r_{32} & r_{33} & t_{34} \end{bmatrix}}_{[R_{c} \ T_{c}]} P_{w}$$

Calibração da câmera

positiva

Distorção radial negativa

$$x_R'' = x'(1 + k_1r^2 + k_2r^4 + k_3r^6)$$

$$y_R'' = y'(1 + k_1r^2 + k_2r^4 + k_3r^6)$$

$$x_T'' = x' + (2p_1x'y' + p_2(r^2 + x'^2))$$

$$y_T'' = y' + (p_1(r^2 + x'^2) + 2p_2x'y')$$

onde:
$$r^2 = x'^2 + y'^2$$

Uso do OpenCV para calibração

Método calibrateCamera permite calibrar usando imagens de *chessboard*

$$s \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = H \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Navegação por waypoints

Neste tipo de navegação uma lista de *waypoints* é enviada para o robô seguir ponto a ponto. A missão é completada quando o robô seguir todos os pontos.

onde:

Rw = raio do waypoint [m]

Wx, Wy = posição do waypoint [m]

 $\Psi_W = \text{ ângulo do } waypoint [^0]$

X_B, Y_B = posição do *ballbot* [m]

 $\Psi_B = \text{ ângulo do } ballbot [^0]$

d = distância euclidiana entre o ballbot e o waypoint

MATLAB / Simulink

Referência

Bloco do modelo planar não linear

Bloco do controlador LQR

Resultados da simulação do modelo planar (MATLAB/Simulink)

Resultados da simulação do modelo planar (MATLAB/Simulink)

Simulação 3D usando o CoppeliaSim (V-REP)

Parâmetro	Valor	Unidade
Aceleração da gravidade	9,81	m/s^2
Diâmetro da esfera	0,24	\mathbf{m}
Massa da esfera	0,58	kg
Momento de inércia da esfera em X	0,0134	kgm^2
Momento de inércia da esfera em Y	0,0134	kgm^2
Momento de inércia da esfera em Z	0,0134	kgm^2
Diâmetro do corpo cilíndrico	0,2	m
Altura do corpo cilíndrico	0,3	m
Massa do corpo cilíndrico	1,6	kg
Momento de inércia do corpo em X	0,0413	kgm^2
Momento de inércia do corpo em Y	0,0413	kgm^2
Momento de inércia do corpo em Z	0,0720	kgm^2
Diâmetro da omniwheel	7	cm
Espessura da omniwheel	1,3	cm
Massa da omniwheel	50	g
Momento de inércia da omniwheel em X	$6,16\times10^{-6}$	kgm^2
Momento de inércia da omniwheel em Y	$6,16\times10^{-6}$	kgm^2
Momento de inércia da omniwheel em Z	$1,22\times 10^{-4}$	kgm^2

Arquitetura de controle

Modos de operação

Modo de operação	Chave 1 (CH1)	Chave 2 (CH2)	Chave 3 (CH3)	
Guinada	UP ($\Psi ref = REF$)	DOWN ($\dot{X}ref = 0$)	DOWN ($\dot{Y}ref = 0$)	
Velocidade de guinada	DOWN ($\dot{\Psi}$ ref = REF)	DOWN ($\dot{X}ref = 0$)	DOWN ($\dot{Y}ref = 0$)	
Posição	DOWN ($\dot{\Psi}$ ref = 0)	$UP\left(Xref = \mathit{REF}\right)$	$UP\left(Yref = \mathit{REF}\right)$	
Velocidade de translação	DOWN ($\dot{\Psi}$ ref = 0)	DOWN ($\dot{X}ref = REF$)	DOWN ($\dot{Y}ref = REF$)	
Guinada e posição	UP ($\Psi ref = REF$)	$UP\left(Xref = \mathit{REF}\right)$	$UP\left(Yref = \mathit{REF}\right)$	

Conversão de velocidades

$$V_1 = -Vel_x cos(\beta) + V_{rot}$$

$$V_2 = (0, 86Vel_x + 0, 5Vel_y)cos(\beta)$$

$$V_3 = (-0, 86Vel_x + 0, 5Vel_y)cos(\beta)$$

onde:

```
V_{rot} = velocidade de guinada;

\beta = ângulo dos motores;

V_1,V_2 e V_3 = velocidade dos motores;

Vel_x = velocidade em x;

Vel_y = velocidade em y.
```

Controle do ângulo de guinada, passo de simulação = 10 ms

Controle de velocidade de guinada

Controle de posição

Controle de velocidade

Navegação autônoma por waypoints

Algoritmo com prioridade de orientação

Robô com orientação fixa

Vídeo da navegação autônoma por waypoints no CoppeliaSim

Estrutura do robô Ballbot

Técnicas para melhorar o desempenho do sistema embarcado

- A taxa de comunicação serial entre o Arduino e o módulo *Bluetooth* foi aumentada para 115200 bps.
- Uso da interrupção de temporizadores do Arduino para gerar os sinais para os *drivers* de potência dos motores.
- Geração dos pulsos para os *drivers* de potência dos motores usando os pinos de saída dos registradores das portas do Arduino.
- Uso da técnica de deslocamento de bits para operações de multiplicação/divisão no programa executado no Arduino.

Detalhes da roda omnidirecional

$$\theta = \alpha(\theta + \theta_{gyro} dt) + (1 - \alpha) \theta_{gyro}$$

onde:

 θ = ângulo de arfagem filtrado [0]

 θ_{acc} = ângulo obtido pelo acelerômetro [°]

 θ_{gyro} = ângulo obtido pelo girômetro [°]

 α = constante do filtro

dt = passo de integração

Resultado do filtro complementar

Ambiente de testes

Software de controle

Controle do ângulo de guinada

Controle de velocidade de guinada

Controle de posição

Controle de velocidade

Resultado da navegação por waypoints

Vídeo da navegação autônoma por waypoints

Experimental

Rastreamento de objetos

Posição desejada do objeto é sempre no centro da imagem captada pela câmera embarcada.

Uso de filtro de cor para detectar o objeto colorido.

Primeiro o robô se orienta em relação ao objeto e depois executa o movimento de translação.

A estimativa de distância entre o *ballbot* e o objeto colorido foi feita com base no diâmetro do objeto.

Estimativa da distância entre o objeto e o robô

Experimento de rastreamento de objeto

Vídeos de rastreamento de objeto

Somente ação de guinada

Com ações de guinada e translação

Resultado do rastreamento de guinada

Considerações finais

Apresentou-se neste trabalho um *ballbot* de baixo custo capaz de executar translação e rotação, o que permite que o robô tenha a capacidade de executar uma determinada missão por meio da navegação por *waypoints* e também rastrear objetos.

Principais dificuldades:

- Construção de rodas omnidirecionais de boa qualidade;
- Ruídos causados pela vibração dos motores;
- Limitação da área útil de navegação;
- Baixo poder computacional do sistema embarcado.

Trabalhos futuros

Alguns pontos que podem ser explorados em trabalhos futuros:

- Construção de outros ballbots, para tarefas colaborativas;
- Uso de ballbot com SLAM (Simultaneous Localization and Mapping);
- Embarcar um LIDAR (Light Detection and Ranging) ou câmera de profundidade para a detecção de obstáculos;
- Navegação outdoor com o uso de GPS;
- Uso de uma ou mais câmeras para aumentar o ambiente de navegação.

Obrigado!

