\S 4.1 Skewhue Sheaf of affine scheme A - commutative sing $\operatorname{Opt}^{h} \mathcal{O}_{\operatorname{Spec A}}(\mathbb{D}(\mathsf{f})) := A_{\mathsf{f}} \text{ for } \mathsf{f} \in \mathsf{A}$ $= S^{1}A$ for $S = \{1, f, f^{2}, \dots\}$ = S^TA for $S = \{g \mid f^R \in (g) \text{ for some } n\}$ · Presheaf: $D(f) \subseteq D(g) \longrightarrow A_g \longrightarrow A_f$ $(\Rightarrow V(f) = V(g)) \Rightarrow f$ inverted $\Rightarrow g$ inverted. Suppose D(f) = U D(fi) \Leftrightarrow $V(f) = \bigcap_{i \in \mathcal{I}} V(f_i)$ $V((f_i)_{i \in I})$ \Leftrightarrow 1) $f^k \in (f_{i_1},...,f_{i_r})$ for some $i_1,i_2,...,i_r$. 2) (fi, ie I) = (f) Walog assume k=1 · Identity: Suppose $\alpha \in \mathcal{O}(\mathcal{D}(f))$ is such that $\alpha|_{f:=0} \forall i$ => < f(=0 ∀ i \Rightarrow $\ll =0$ in $O(D_f)$ · If lying: Jiven $x_i \in \mathcal{Q}(\mathbb{O}_{f_i})$ compatible. We can replace A by A_f and assume f=1. Quasi- compactness tells us: $A = D_{f_1} \cup \cdots \cup D_{f_V}$ for some v. And compatibility means, $(f_i, f_j)^N (f_j \alpha_i - \kappa_j f_i) = 0$ Let bi= Lifi hi= fi Then the above statement becomes bihi = bihi \ \ij $\mathbb{D}(f_i) = \mathbb{D}(h_i) \Rightarrow 1 = \sum_{i} h_i Y_i$ for some Y_i Now let $| \alpha = \sum b_i \gamma_i |$, $(\lambda - b_i) \cdot b_i = (\sum b_i \gamma_i b_i - b_i \beta_i) = (\sum b_i \gamma_i b_i - b_i \beta_i) = 0$ This then is the required element!

Def": OspecA cakended to wheaf on SpecA is salled structure sheaf on SpecA

Od: M is an A-module, $\widetilde{M}(D(f)) := M_f := M \underset{A}{\otimes} A_f$ is a sheaf of $G_{Spec,A}$ modules.

Remark: For an aclitrary set $U \subseteq Spec A$,
in general $S_{pec A}(U) \neq \left\{ \begin{array}{l} a \in A \text{ nowhere } \end{array} \right\} A$

§ 4.3 Schomes:

Def: In isomorphism of singeol spaces $(\times, \varnothing_x) \longrightarrow (\lor, \varnothing_r)$ consists of a homeomorphism $\pi\colon X \longrightarrow Y$ when isomorphisms $\pi_* \, \mathscr{Q}_x \longrightarrow \mathscr{Q}_y$

Def: An affine scheme is a ringed space isomorphic to (SpecA, OspecA) for some ving A.

Def: A scheme is a singed space $(\times,0_*)$ such that every point in \times has a neighborhood U such that $(U,0_*|_U)$ is an affine scheme.

- $\cdot \quad (\mathcal{D}(f), \mathcal{Q}_{\mathsf{Spec}(A)}|_{\mathcal{D}(f)}) \cong (\mathsf{Spec}(A_f), \mathcal{Q}_{\mathsf{Spec}(A_f)})$ Check
- . O, whome , $u \le x$ ofen $\Rightarrow (u, O_x|_u)$ is a whome of ofen subscheme if $(u, O_x|_u)$ is affine , call it open affine .
- · Spec A, I Spec A2 II... I Spec An Spec (A, X... x An)
- · Infinite disjoint unions of affine schemes is a scheme, leut being non-quasi compact is not an affine scheme.

det us try to understand modules over $O_{\text{spec A}}$: $M \in A-\text{mod} \implies M \otimes O_{\text{spec A}} \mod \mathbb{R}$ were $O_{\text{spec A}}$
So we have a functor: A-mod $\longrightarrow \mathcal{O}_{\operatorname{Spec} A}$ -mod \longrightarrow ringed spaces with base Spec A . It is exact? Yes because localisation is an exact functor.
If M is spee A-module, so would be M? What about sprojectivity? As localization is exact we certainly can lift maps on the lec of stalks, but how to ensure compatibility?

Examples: 1) If $M \subseteq A$ is an ideal, $\widetilde{M}(D_f) = M \otimes A_f = M[f] = M[x] /_{(f-1)}$ $\widetilde{M}_{\beta} = M_{\beta} = \text{Subset of } A_{\beta} \text{ if } M \subseteq \beta$?? else

9)
$$M = A[x]/g(x)$$

 $\widetilde{M}(D_f) = A_f[x]/g(x)$
 $\widetilde{M}_{\beta} = A_f[x]/g(x)$

3)
$$M = fidd of fractions of A$$
 $M(D_f) = M \otimes A_f = M$
This gives us the locally constant fresheaf M over $G_{free}A$

Enamples from the book:

- · Quadric Surface : Spec A , A= k[w,n,y,z]/(wz-ny)
- · Two planes meeting at a point
- . Infinite disjoint union of schemes
- . Spec $\bar{\mathbb{Q}} \longrightarrow \operatorname{Spec} \mathbb{R}$