Deadline: Fr. Mai 17, 14:00 Drop your printed or legible handwritten submissions into the boxes at Samelsonplatz, or a .pdf file via LearnWeb.

NOTE: Make sure to use the 2019 slides, there are some errors in the 2018 version

1 SVM training

(15 points)

In all tasks below, use a regularization constant of $\lambda=1$ and initial parameters $\beta=(0,0,0)$ (including bias) and $\alpha=(0,0,0,0)$ respectively. For simplicity always take the samples in order.

Given the dataset from Table 1,

- **A.** [5p] Perform 2 iterations of primal Gradient Descent, with learn-rate $\eta = \frac{1}{2}$
- **B.** [5p] Perform 2 iterations of PEGASOS with batch size K=2
- **C.** [5p] Perform 2 iterations of dual coordinate descent (don't forget clipping!)

Table 1: dataset

α	c_1	x_2	y
	0	2	+1
	2	0	-1
	2	2	+1
	1	1	— 1

2 SVM theory

(5 points)

A. [5p] Compare SVM with a linear kernel to logistic regression. Both try to learn a separating hyperplane. How are they different?