MA2102: LINEAR ALGEBRA

Lecture 17: Dual Spaces

29th September 2020

Recall the following result (cf. lecture 15).

Proposition Let V and W be vector spaces (over \mathbb{R}) of dimension n and m over respectively. The space $\mathcal{L}(V, W)$ is isomorphic to $M_{m \times n}(\mathbb{R})$.

A linear isomorphism was constructed by first choosing ordered bases β and γ of V and W respectively. Then we verified that the map

$$\Phi: \mathcal{L}(V,W) \to M_{m \times n}(\mathbb{R}), \ \Phi(T) = [T]_{\beta}^{\gamma}.$$

was an isomorphism.

There are two extreme cases: either $V = \mathbb{R}$ or $W = \mathbb{R}$. In the first case, any linear map from \mathbb{R} to W is determined uniquely by its value at 1, i.e., the map

$$\operatorname{ev}: \mathcal{L}(\mathbb{R}, W) \to W, \ T \mapsto T(1)$$

is a linear isomorphism (exercise).

We also have the *coordinate* map

$$C: W \to \mathbb{R}^n, \ w \mapsto [w]^{\gamma}.$$

We had observed (cf. lecture 14) that this was an isomorphism. The composition gives us a linear isomorphism

$$C \circ \text{ev} : \mathcal{L}(\mathbb{R}, W) \to \mathbb{R}^n, T \mapsto [T(1)]^{\gamma}.$$

Notice that $C \circ \text{ev}$ is the linear isomorphism Φ corresponding to $\beta = \{1\}$ and γ .

Definition [Dual Spaces] Let V be a vector space over \mathbb{R} . The dual of V is defined to be $\mathcal{L}(V,\mathbb{R})$. It is denoted by V^* .

Remark The dual is defined similarly for a vector space V over F, by setting $V^* = \mathcal{L}(V, F)$.

Note that if V is finite dimensional, then dim $V^* = \dim V$. Dual spaces appear frequently in physics.

- General Relativity: vectors and covectors
- Quantum Mechanics : $\langle \psi |$ bras and $| \psi \rangle$ kets
- Solid State Physics: crystalline and reciprocal lattice

Examples (1) [Dual of \mathbb{R}^n] Let $T \in (\mathbb{R}^n)^*$, i.e., $T : \mathbb{R}^n \to \mathbb{R}$ is a linear map. If $T(\mathbf{e}_i) = a_i$, then

$$T(v) = T(v_1e_1 + \dots + v_ne_n)$$

$$= a_1v_1 + \dots + a_nv_n$$

$$= \langle (a_1, \dots, a_n), (v_1, \dots, v_n) \rangle.$$

Thus, T may be identified with the vector $\mathbf{a} = (a_1, \dots, a_n)$. This defines a map from the dual of \mathbb{R}^n to \mathbb{R}^n .

Consider the linear maps

$$T_i: \mathbb{R}^n \to \mathbb{R}, \ (v_1, \dots, v_n) \mapsto v_i.$$

Note that

$$T(v) = a_1 v_1 + \dots + a_n v_n = a_1 T_1(v) + \dots + a_n T_n(v).$$

Therefore, any $T \in (\mathbb{R}^n)^*$ can be expressed as a linear combination of T_j 's. As $(\mathbb{R}^n)^*$ has dimension n, the set $\{T_1, \ldots, T_n\}$ forms a basis. Elements of $(\mathbb{R}^n)^*$ are called *covectors* or *linear functionals*.

(2) [Dual Basis] Choose an ordered basis $\beta = \{v_1, ..., v_n\}$ of V. Define linear maps

$$v_i^*: V \to \mathbb{R}, \ a_1v_1 + \dots + a_nv_n \mapsto a_i.$$

Claim The set $\{v_1^*, \dots, v_n^*\}$ forms a basis of V^* .

If $v = a_1v_1 + \cdots + a_nv_n$ and $T \in V^*$, then

$$T(v) = a_1 T(v_1) + \dots + a_n T(v_n) = T(v_1) v_1^*(v) + \dots + T(v_n) v_n^*(v).$$

This implies that we have an equality of linear maps

$$T = T(v_1)v_1^* + \dots + T(v_n)v_n^*.$$

Thus, $\beta^* = \{v_1^*, \dots, v_n^*\}$ span V^* . As dim $V^* = n$, β is a basis.

Definition [Dual Basis] The set β^* is called the dual basis of β .

Note that we have

$$v_i^*(v_j) = \delta_{ij}.$$

Consider the linear map $T_{\beta}: V \to V^*$

$$T_{\beta}(a_1v_1 + \dots + a_nv_n) = a_1v_1^* + \dots + a_nv_n^*.$$

Show that $T_{\beta}: V \to V^*$ is a linear isomorphism. This implies that there are plenty of linear isomorphisms between V and V^* .

Remark There is no canonical isomorphism between V and V^* . It seemed so in the case of \mathbb{R}^n and $(\mathbb{R}^n)^*$ due to the presence of the vector dot product.

Consider $\beta = \{(1,0),(0,1)\}$ and $\gamma = \{(1,0),(1,1)\}$ as two ordered bases of \mathbb{R}^2 . As

$$T_{\beta}(x,y) = xT_{\beta}(\mathbf{e}_1) + yT_{\beta}(\mathbf{e}_2) = x\mathbf{e}_1^* + y\mathbf{e}_2^*,$$

the map T_{β} is given by

$$T_{\beta}(x,y): \mathbb{R}^2 \to \mathbb{R}, \ (a,b) \mapsto ax + by.$$

Note that (a, b) = (a - b)(1, 0) + b(1, 1) in terms of γ .

Note that

$$\begin{array}{rcl} T_{\gamma}(x,y) & = & T_{\gamma}((x-y)(1,0)+y(1,1)) \\ & = & (x-y)T_{\gamma}(1,0)+yT_{\gamma}(1,1) \\ & = & (x-y)(1,0)^*+y(1,1)^*. \\ \Rightarrow & T_{\gamma}(x,y)(a,b) & = & T_{\gamma}(x,y)\big((a-b)(1,0)+b(1,1)\big) \\ & = & (a-b)(x-y)+by. \end{array}$$

Thus, the map T_{ν} is given by

$$T_{\nu}: \mathbb{R}^2 \to (\mathbb{R}^2)^*, \ T_{\nu}(x,y): (a,b) \mapsto a(x-y) + b(2y-x).$$

It follows that T_{β} and T_{γ} are quite different maps!

Question Given $T: V \to W$, is there a linear map $T^*: W^* \to V^*$?