# Übungsblatt 12

(Besprechung am 16.01.2025)

## 1. Pumping-Lemma für kontextfreie Sprachen



Beweisen Sie, dass folgende Sprache über dem Alphabet  $\{a, b, c\}$  nicht kontextfrei ist.

$$L = \{a^n b^n c^n \mid n \in \mathbb{N}\}\$$

## 2. kontextfrei = regulär bei unären Alphabeten



Ziel dieser Aufgabe ist es, folgende Aussage zu beweisen: jede kontextfreie Sprache  $L \subseteq \{a\}^*$  ist regulär.

Im Folgenden sei  $k \in \mathbb{N}$  eine 2-pumping number für L. Beweisen Sie:

(a) Für  $m \ge k$  gilt

$$a^m \in L \implies \forall_{i \in \mathbb{N}} a^{m+i \cdot k!} \in L.$$

(b) Benutzen Sie (a), um die Existenz von Zahlen  $m_1, \ldots, m_s$  mit  $s \leq k!$  zu zeigen, so dass gilt

$$L = \{ x \in L \mid |x| < n \} \cup \bigcup_{r=1}^{s} \{ a^{m_r + i \cdot k!} \mid i \in \mathbb{N} \}.$$

(c) Folgern Sie  $L \in REG$ .



Sei  $\Sigma = \{a\}$  und  $L = \{a^n | n = 2^k$  für ein  $k \in \mathbb{N}\} \subseteq \Sigma^*$ .

3. Kontextsensitive und nichtverkürzende Grammatiken

- (a) Geben Sie eine nichtverkürzende Grammatik für L an und begründen Sie, dass die Grammatik die angegebene Sprache erzeugt.
- (b) Wandeln Sie die konstruierte Grammatik mit dem Verfahren aus Theorem 4.31 in eine äquivalente kontextsensitive Grammatik um.

### 4. Ein falscher Beweis



Der Student Arno Nühm möchte beweisen, dass die kontextsensitiven Sprachen unter Konkatenation abgeschlossen sind. Er hat dazu folgenden Beweis verfasst.

Seien  $L_1$  und  $L_2$  kontextsensitive Sprachen über einem Alphabet  $\Sigma$ . Dann gibt es kontextsensitive Grammatiken  $G_1 = (\Sigma, N_1, S_1, R_1)$  und  $G_2 = (\Sigma, N_2, S_2, R_2)$  mit  $L(G_1) = L_1$  und  $L(G_2) = L_2$ . Wir dürfen davon ausgehen, dass  $N_1 \cap N_2 = \emptyset$  (ansonsten benennen wir die Nichtterminale von  $G_2$  um, sodass keine Nichtterminale mehr vorliegen, die auch in  $N_1$  sind). Wir definieren die Grammatik  $G = (\Sigma, N_1 \cup N_2 \cup \{S\}, S, R_1 \cup R_2 \cup \{S \rightarrow S_1S_2\})$ , wobei S ein Nichtterminal ist, welches nicht in  $N_1 \cup N_2$  ist.

Die Grammatik G ist kontextsensitiv. Weiter gilt offenbar  $L(G) = L(G_1) \cdot L(G_2)$ .

- (a) Streichen Sie alle falschen Aussagen in Arnos Beweis an.
- (b) Konstruieren Sie Beispielgrammatiken  $G_1$  und  $G_2$ , für welche Arnos Beweis fehlschlägt.
- (c) Arnos Beweisidee würde für kontextfreie Sprachen funktionieren. Beschreiben Sie, wie sich aus zwei kontextfreien Grammatiken G und G' kontextfreie Grammatiken für die Sprachen  $L(G) \cup L(G')$ ,  $L(G) \cdot L(G')$  und  $L(G)^*$  bauen lassen.

### Hints

#### Exercise 1:

Kein Hinweis.

#### Exercise 2:

Die Aufteilung in Teilaufgaben ist Hinweis genug.

#### Exercise 3:

Sie können sich an der in den Übungen besprochenen "ähnlichen" Aufgabe orientieren.

Offensichtlich erhält man die Sprache, indem man mit a beginnt und dann die Anzahl der Symbole jeweils verdoppelt. Eine solche Verdopplung kann z.B. dadurch geschehen, dass man ein spezielles Nichtterminal über das Wort laufen lässt und dabei jedes a durch aa ersetzt. Nach einem Durchlauf muss dieses Nichtterminal dann beseitigt werden. Außerdem müssen Sie sicherstellen, dass Verdopplungen immer komplett durchgeführt werden und nicht in der Wortmitte stoppen.

#### Exercise 4:

Kein Hinweis.

# Extra tasks

### 1. More closure properties

Let  $\Sigma$  be an alphabet and  $L\subseteq \Sigma^*.$  We define

$$\frac{1}{2}L \stackrel{\mathrm{df}}{=} \{w \in \Sigma^* \mid \exists_{x \in \Sigma^*} |x| = |w| \land wx \in L\}.$$

We want to see: if  $L \in FA$ , then  $\frac{1}{2}L \in FA$ .

- (a) Explain how a finite automaton A for L can be transformed into a finite automaton A' for  $\frac{1}{2}L$ .
- (b) Define A' formally as a quintuple.



### **Solutions**

#### Solution for exercise 1:

Es ist hinreichend zu zeigen, dass L nicht 2-pumpable ist.

Zu zeigen: Für jedes  $k \in \mathbb{N}^+$  existiert ein Wort  $w \in L$  mit  $|w| \ge k$ , sodass für jede Zerlegung w = rstuv mit  $|stu| \le k$  und  $su \ne \varepsilon$  ein  $i \in \mathbb{N}$  mit  $rs^itu^iv \notin L$  existiert.

Sei  $k \in \mathbb{N}^+$  beliebig.

Wähle  $w = a^k b^k c^k$ .

Sei eine beliebige Zerlegung w = rstuv mit  $|stu| \le k$  und  $su \ne \varepsilon$  gegeben.

Wegen  $|stu| \le k$  kann es nicht sein, dass in stu sowohl mindestens ein a als auch mindestens ein c vorkommt. Folglich ist die Anzahl an a's oder die Anzahl an c's in  $rs^0tu^0v = rtv$  genau k. Wegen  $su \ne \varepsilon$  hat rtv aber weniger Buchstaben als rstuv; es gibt also einen Buchstaben, der in rtv weniger als k mal vorkommt, weswegen in rtv die Anzahlen an a's, b's und c's nicht gleich sind, also  $rtv \notin L$ .

#### Solution for exercise 2:

Dies ist nur eine Skizze (Rückfragen gerne im Diskussionsforum):

- (a) Dies folgt aus dem Pumping-Lemma: Sei  $w \in L^{\geq k}$ . Da k eine 2-pumping number ist und  $|w| \geq k$ , gibt es eine Zerlegung w = rstuv mit  $|stu| \leq k$  und  $su \neq \varepsilon$ , sodass für alle  $i \in \mathbb{N}$  das Wort  $rs^itu^iv$  in L ist. Das Wort  $rs^itu^iv$  lässt sich schreiben als  $a^{|w|+(i-1)\cdot(|s|+|u|)}$ . Wegen  $|s|+|u| \leq |stu| \leq k$  ist |s|+|u| ein Teiler von k!.
  - Wählt man nun  $i = \iota \cdot \frac{k!}{|s| + |u|} + 1$  für ein beliebiges  $\iota \in \mathbb{N}$ , so erhalten wir mit Obigem, dass  $a^{|w| + \iota \cdot k!} \in L$ , was zu zeigen war.
- (b) Für jedes  $i \in \{1, ..., k!\}$  wähle  $\alpha_i = \min(\{|w| \mid w \in L^{\geq k}, |w| \equiv i \mod k!\})$ , wobei wir  $\min(\emptyset)$  als -1 definieren. Dann wählen wir  $m_1, ..., m_s$  als die positiven Zahlen aus  $\{\alpha_1, ..., \alpha_{k!}\}$ .
  - Dann gilt  $\subseteq$  in der zu zeigenden Gleichung nach Wahl der  $m_1, \ldots, m_s$  und  $\supseteq$  nach (a) und Wahl der  $m_1, \ldots, m_s$ .
- (c) L ist eine Vereinigung von s+1 regulären Mengen (die erstgenannte Menge ist endlich und daher regulär, die anderen Mengen lassen sich durch reguläre Ausdrück  $a^{m_r} + (a^{k!})^*$  beschreiben) und somit selbst regulär.

#### Solution for exercise 3:

Wir konstruieren zunächst eine nichtverkürzende Grammatik.

#### Terminale: a

#### Nichtterminale:

- S  $\stackrel{\frown}{=}$  Startsymbol, erzeugt mehrere Symbole V
- $E \cong Endsymbol$ , markiert uns das rechte Ende des Wortes; wird ganz am Ende in a umgewandelt, deshalb wird E wie ein a behandelt (bei Verdopplung)

#### nichtverkürzende Grammatik:

$$\left. \begin{array}{l} S \rightarrow VS \\ S \rightarrow E \end{array} \right. \left. \begin{array}{l} \text{Phase 1} \end{array} \right.$$
 
$$\left. \begin{array}{l} VE \rightarrow aE \\ Va \rightarrow aaV \end{array} \right. \left. \begin{array}{l} \text{Phase 2} \end{array} \right.$$
 
$$E \rightarrow a \qquad \left. \begin{array}{l} \text{Phase 3} \end{array} \right.$$

#### Phase 1:

- $\bullet\,$ der Befehl S $\to$  VS erzeugt Wörter der Form VV...VS
- $\bullet$  wird das erste Mal der Befehl S  $\to$  E ausgeführt, so können keine weiteren Befehle aus Phase 1 angewendet werden
- am Ende von Phase 1 haben wir ein Wort VV...VE

#### Phase 2:

- wird eventuell gar nicht ausgeführt, sondern gleich Phase 3
- ullet zuerst wird VE o aE ausgeführt und damit das E (das ja ein gedachtes a ist) verdoppelt
- $\bullet$  jetzt kann auch Va  $\rightarrow$  aaV angewendet werden
- $\bullet$ durch Va  $\to$  aaV werden jeweils alle a's verdoppelt und wenn das V rechts angekommen ist, wird es durch VE  $\to$  aE gelöscht

#### Phase 3:

 $\bullet$  E  $\to$  a kann angewendet werden, wenn alle V gelöscht sind (danach können nämlich keine V mehr gelöscht werden)

Wir wandeln diese Grammatik nun in eine vom Typ 1 um.

1. Schritt: Ersetzen Terminale in allen Regeln, d.h. wir ersetzen

- VE  $\rightarrow$  aE durch VE  $\rightarrow$  AE
- Va  $\rightarrow$  aaV durch VA  $\rightarrow$  AAV
- $E \rightarrow a \text{ durch } E \rightarrow A$

und fügen die Regel  $A \rightarrow a$  hinzu.

2. Schritt: Dazu ersetzen wir die einzige nicht-kontextsensitive Regel VA  $\rightarrow$  AAV durch

 $VA \rightarrow D_1A$   $D_1$  ist ein neues Nichtterminal

 $D_1A \rightarrow D_1D_2$   $D_2$  ist ein neues Nichtterminal

 $D_1D_2 \to AD_2$ 

 $AD_2 \rightarrow AAV$ 

#### Kontextsensitive Grammatik:

 $G = (\Sigma, N, S, R)$  mit

$$\Sigma = \{a\}$$

$$N = \{S, V, E, A, D_1, D_2\}$$

$$R = \{ \text{S} \rightarrow \text{VS}, \text{S} \rightarrow \text{E}, \text{VE} \rightarrow \text{AE}, \text{VA} \rightarrow \text{D}_1 \text{A}, \text{D}_1 \text{A} \rightarrow \text{D}_1 \text{D}_2, \text{D}_1 \text{D}_2 \rightarrow \text{AD}_2, \text{AD}_2 \rightarrow \text{AAV}, \text{E} \rightarrow \text{A}, \text{A} \rightarrow \text{a} \}$$

#### Solution for exercise 4:

- 1. Der einzige Fehler ist im letzten Satz des Beweises. Für die von Arno konstruierte Grammatik gilt zwar  $L(G) \supseteq L(G_1) \cdot L(G_2)$ , aber es kann auch  $L(G) \not\subseteq L(G_1) \cdot L(G_2)$  gelten, s.u.
- 2. Betrachte die Grammatiken  $G_1 = (\{a,b\}, \{S_1\}, S_1, \{S_1 \to a\})$  und  $G_2 = (\{a,b\}, \{S_2\}, S_2, \{aS_2 \to ab\})$ . Beide Grammatiken sind kontextsensitiv und wegen  $L(G_2) = \emptyset$  ist auch  $L(G_1) \cdot L(G_2) = \emptyset$ . Jedoch lässt sich mit der Grammatik G wie folgt das Wort ab erzeugen:

$$S \Rightarrow S_1S_2 \Rightarrow aS_2 \Rightarrow ab.$$

3. Seien kontextfreie  $G_1 = (\Sigma, N_1, S_1, R_1)$  und  $G_2 = (\Sigma, N_2, S_2, R_2)$  gegeben. Wir gehen im Folgenden davon aus, dass  $N_1 \cap N_2 = \emptyset$  und  $S \notin N_1 \cup N_2$  (sonst Nichtterminale umbenennen).

Vereinigung: Grammatik für  $L(G_1) \cup L(G_2)$ :  $(\Sigma, N_1 \cup N_2 \cup \{S\}, S, R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\})$ 

Konkatenation: Grammatik für  $L(G_1) \cup L(G_2)$ :  $(\Sigma, N_1 \cup N_2 \cup \{S\}, S, R_1 \cup R_2 \cup \{S \rightarrow S_1S_2\})$ 

Iteration: Grammatik für  $L(G_1)^*$ :  $(\Sigma, N_1 \cup \{S\}, S, R_1 \cup \{S \to SS_1, S \to S_1\})$ 

#### Solution for extra task 1:

We sketch three ways of proving  $\frac{1}{2}L$  to be in FA. Let  $A = (\Sigma, S, \delta, s_0, F)$  be a DFA with L(A) = L.

1. Consider the NFA  $A' = (\Sigma, S', \delta', (s_0, x), F')$  with  $S' = S \times (S \cup \{x\})$  (for some  $x \notin S$ ),  $F' = \begin{cases} \{(s, s) \mid s \in S\} \cup \{(s_0, x)\} & s_0 \in F \\ \{(s, s) \mid s \in S\} & s_0 \notin F \end{cases}$ 

and

 $\delta'((s,s'),a) = \begin{cases} \{(\delta(s,a),z) \mid z \in S, \delta(z,e) = s' \text{ for some } e \in \Sigma\} & \text{if } s' \neq x \\ \{(\delta(s,a),z) \mid z \in S, \delta(z,e) \in F \text{ for some } e \in \Sigma\} & \text{if } s' = x \end{cases}$ 

for all  $(s, s') \in S'$  and  $a \in \Sigma$ .

It can now be shown that  $L(A') = \frac{1}{2}L$ .

Example: Consider the DFA



Our above construction leads to the following NFA for  $\frac{1}{2}L(A)$ :



Other examples can be generated using the following script and embedding it into the automaton tool

```
def half_L_construction(A):
11 11 11
DFA -> NFA
when given a DFA A (not containing a state named x) as input, the algorithm returns an NFA for 1/2 L(A)
[Sigma, S, delta, s0, F] = A
x = "x"
S_{-} = \{(s,s_{-}) \text{ for s in S for s_ in S} \mid \{(s0, x)\}
F_{-} = \{(s,s) \text{ for s in S}\}
if s0 in F:
  F_{-} \mid = \{(s0,x)\}
delta_ = {}
for (s1, s2) in S_:
  for a in Sigma:
    delta_{(s1,s2), a} = {(s, s_) \text{ for s in S for s_ in S for e in Sigma}}
      if delta[s1,a] == s and delta[s_, e] == s2
    if s2 == x:
      delta_{(s0,x), a} = {(s,s) for s in S for s in S for e in Sigma}
         if delta[s0,a] == s and delta[s_, e] in F}
return [Sigma, S_, delta_, (s0,x), F_]
```

#### 2. Define for each state $q \in S$ :

$$L_q = \{ w \in \Sigma^* \mid \overline{\delta}(s_0, w) = q \} \quad \text{and} \quad L_q' = \{ w \in \Sigma^* \mid \exists_{x \in \Sigma^{|w|}} \overline{\delta}(q, x) \in F \}.$$

The language  $L_q$  is in FA as it is accepted by the DFA  $(\Sigma, S, \delta, s_0, \{q\})$ . Moreover,  $L_q' \in \text{FA}$  as it is accepted by the NFA  $(\Sigma, S, \delta', q, F)$  with  $\delta' \colon S \times \Sigma \to \mathcal{P}(S)$  defined via  $\delta'(s, a) = \{\delta(s, e) \mid e \in \Sigma\}$ .

Then it holds  $\frac{1}{2}L = \bigcup_{q \in S} \left(L_q \cap L'_q\right)$  and then by iterated application of Theorem 3.21,  $\frac{1}{2}L$  is regular.

### 3. For a word $w \in \Sigma^*$ we define

$$R_w = \{ (p,q) \in S \times S \mid \exists_{x \in \Sigma^{|w|}} \overline{\delta}(p,x) = q \}.$$

Consider the DFA  $A' = (\Sigma, S', \delta', R_{\varepsilon}, F')$  with  $S' = S \times \mathcal{P}(S \times S), \delta' : S' \times \Sigma \to S'$  defined via

and

$$F' = \{ (p, R) \mid p \in S \land R \in \mathcal{P}(S \times S) \land (\{p\} \times F) \cap R \neq \emptyset \}$$

One can now prove that for all words  $w \in \Sigma^*$  it holds  $\overline{\delta'}((s_0, R_{\varepsilon}), w) = (\overline{\delta}(s_0, w), R_w)$ .