

OFFICE OF NAVAL RESEARCH

Contract N00014-77-C-0255

Task No. NR 056-527

Transition State Theory and the Compensation

Effect in Chemical Kinetics

by

Robert L. Palmer

Prepared for Publication

in the

Chemical Physics Letters

IRT Corporation
P. O. Box 80817
San Diego, California 92138

STIC ELECTE FEB 2 0 1980 B

February 4, 1980

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER WE OF REPORT & PERIOD COVERED 4. TITLE (and Subtitle) TECHNICAL REPORT. TRANSITION STATE THEORY AND THE COMPENSATION EFFECT IN CHEMICAL KINETICS. PERFORMING ORG. REPORT NUMBER 8162-004 CONTRACT OR GRANT NUMBER(*) 7. AUTHOR(s) Robert L. Palmer N00014-77-C-0255 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 9. PERFORMING ORGANIZATION NAME AND ADDRESS IRT Corporation / P.O. Box 80817 NR 056-527 San Diego, CA 92138 Office of Naval Research 12. REPORT DATE February 4, 1980 Department of the Navy 13. NUMBER OF PAGES Arlington, VA 22217 4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 13. SECURITY CLASS. (of this report) Unclassified 154. DECLASSIFICATION/DOWNGRADING This document has been approved for public release and sale; its distribution is unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES To be published in Chemical Physics Letters 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Chemisorption Chemical kinetics Compensation effect Transition state theory 10. ABSTRACT (Continue on reverse side if necessary and identify by block number) Detailed balancing is applied to transition state theory with the result that the necessity of a compensation law relating the pre-exponential factor and the energy in chemical kinetics is clearly established. It is pointed out that the correct compensation behavior is achieved if the volume change that enters into the Clapeyron equation is taken to mean the

DD 1 JAN 73 1473 EDITION OF THOY 65 IS OBSOLETE

volume change in phase space.

409388

JOB

TRANSITION STATE THEORY AND THE COMPENSATION EFFECT IN CHEMICAL KINETICS

Robert L. Palmer
IRT Corporation
P. O. Box 80817
San Diego, California 92138
U.S.A.

ABSTRACT

Detailed balancing is applied to transition state theory with the result that the necessity of a compensation law relating the pre-exponential factor and the energy in chemical kinetics is clearly established. It is pointed out that the correct compensation behavior is achieved if the volume change that enters into the Clapeyron equation is taken to mean the volume change in phase space.

INTRODUCTION

In a recently published letter, Menzel et al. use a very simple transition state model to describe their kinetic results for the chemisorption of CO on ${\rm Ru}(001)$. The close agreement of their model with the observed pre-exponential kinetic factors, obtained by several independent methods, argues convincingly in favor of their general model for the desorption mechanism. Another interesting experimental feature in this study is the pronounced "compensation" behavior exhibited by the measured isosteric heat of adsorption versus coverage. In fact, the variation in ${\rm E}_{\rm iso}$ exactly compensates, within experimental accuracy, the concomitant change in the pre-exponential factor versus coverage which was

observed to vary almost six orders of magnitude from $\theta = 0$ to $\theta > 0.5$. The explanation for this compensation behavior is actually quite simple, but further consideration of this simple case gives important insight into the reason for the existence of a more general compensation law. Although previous attempts to derive an explicit compensation law from basic thermodynamic arguments have been largely unsuccessful, (2) many intuitively appealing qualitative explanations have been proposed in the past to explain this effect. (3) We will now consider this problem again in the light of Menzel's results and, hopefully, clarify some issues relative to the compensation law, transition state theory, and the use of Arrhenius plots in chemical kinetics.

2. THE COMPENSATION EFFECT IN ADSORPTION/DESORPTION KINETICS

The necessity of a compensation effect for the cases such as that studied by Menzel et al. can be illustrated by considering a heterogeneous chemisorption system at thermodynamic equilibrium with the gas phase. Since the introduction of an intermediate precursor or transition state can in no way affect the equilibrium gas phase pressure, then an increased pre-exponential factor for desorption that results from the insertion of a high entropy state into the reaction path must be compensated by a concomitant increase in either the sticking coefficient and/or the heat of adsorption. (We assume for the moment that we have simple first order kinetics and that the adsorption is not activated.) While it is reasonable that the sticking probability S would tend to increase if a precursor adsorption state is introduced, the maximum value for S is, of course, unity so that only a limited amount of compensation can be attributed to changes in S. Certainly not the many orders of magnitude change required by transition state theory. Conceptually, we can always pick the transition state partition function F to have sufficient degrees of freedom

CODES

(i.e., entropy) such that $S \approx 1$ so that a further increase in F^* then requires strict compensation behavior in $\Delta H_{iso}(\theta)$. Consequently, we have established, at least for this simple example, the necessity of a compensation effect although we have yet to identify the mechanism by which the introduction of a transition state into the reaction path would change the measured $\Delta H_{iso}(\theta)$ in precisely the right fashion.

TRANSITION STATE THEORY

In order to look for the link between the pre-exponential and exponential factors in chemical kinetics, first consider the idea of a transition state. This is visualized in n-dimensional phase space as the dividing surface between reactant and product and the area of this surface controls the probability of transitions, both ways, across the boundary. By analogy, this can be compared with the rate of evaporation of a water droplet in equilibrium with its vapor. As we increase the geometrical surface area (i.e., transition state) of the droplet, both the rates of evaporation and condensation are increased by the same geometrical factor. However, if we increase the evaporation rate by increasing only the entropy of the surface layer or transition state we no longer have a corresponding increase in the rate of condensation since the geometrical surface area in real space is constant, so again either the sticking probability (i.e., transmission factor) or the heat of vaporization must then increase. Increasing the entropy of the transition state might be visualized as analogous to packing together more compactly or miniaturizing the molecules at the physical dividing surface. Of course, for homogeneous processes, every molecule is at the physical dividing surface, but in this case another non-physical surface in phase space could be constructed which is a subset analogous to a physical surface so that the rate of the reverse reaction is again limited by the rate of arrival at that surface. For example, we might consider that some particular vibrational state of a molecule is part of the transition state for dissociation. We could consider increasing the transition probability by creating more and more rotational states at that particular vibration. But the rate of recombination at equilibrium is still kinetically limited by the frequency of physical collisions, so although we could conceptually increase the rate of dissociation without limit by increasing the number of rotational sublevels, the rate of recombination eventually reaches a maximum rate equal to the collision frequency. Thus, it is clear that a compensation effect is needed for this very general case and is not peculiar to heterogeneous processes. Discussions of transition state theory have traditionally avoided the foregoing line of reasoning by considering only reactions in the forward direction which are, of course, all that one is usually concerned with. (4) But there is often a great deal of additional insight to be gained by considering a particular process at thermodynamic equilibrium and then applying detailed balancing.

4. ISOSTERIC HEATS AND THE CLAPEYRON EQUATION

We have shown that increasing the entropy of the transition state must, eventually at least, lead to a strict compensation relationship between the entropy of the transition state and enthalpy of reaction. Previous attempts to derive this relationship from thermodynamic considerations have not been very convincing, $^{(2)}$ so it would appear that further efforts in this direction are perhaps ill advised. However, it may be important to at least point out that there are two assumptions in the derivation of the Clausius-Clapeyron equation from the more general Clapeyron equation for a change of state that may not be valid for cases similar to CO chemisorption on Ru(001). First, the assumption

is made that the gas phase obeys the ideal gas law and, second, that the specific volume of the condensed phase is negligible compared with the specific volume of gas. For an adsorbed layer like CO on Ru(001) which is better described as a two-dimensional gas, this is probably a very bad assumption. An Arrhenius plot, in this case, of the equilibrium pressure versus T^{-1} at constant coverage may still give a reasonably straight line, but the slope will no longer be equal to the isosteric heat of adsorption. As a matter of fact, the slope will be increased by the factor $(K_3-K_2)^{-1}$ where K_3 and K_2 are the compressibilities of the three dimensional and two dimensional gases, respectively. It appears likely that for the case of CO on Ru(001), the increase in the measured $\Delta H_{iso}(\theta)$ that accompanies the highly mobile transition state can be attributed to K2 becoming significant compared with K3. A slightly different way of looking at this would be to consider the entropy of the transition state as a measure of the "volume" of the state not only in physical space but in phase space as well. Whereas the change in volume in the Clapeyron equation $\frac{dP}{dT} = \frac{\Delta H}{T\Delta V}$ has always been taken to mean physical volume, if we expand its sense to include phase space then we have a much more general explanation for the compensation effect since increasing the entropy of the transition state will increase the total volume difference in phase space. Whether it will prove effective to use this interpretation of the Clapeyron equation in general, of course, remains to be seen.

5. SUMMARY

Arguments have been made which, it is hoped, will persuade the reader to consider the so-called "compensation effect" a likely result of changing the entropy of a transition state and absolutely necessary if the change exceeds what can be compensated by a change in the sticking probability or transmission

factor for the reverse process. While a rigorous derivation of a "Compensation Law" from basic thermodynamic or other arguments is not obvious, some ideas in that direction have been considered. Certainly we must not assume that an Arrhenius plot gives a straightforward isosteric heat unless the specific volume of the reactant can be assumed to be negligible. Finally, it has been suggested that it may be helpful to expand the meaning of the Clapeyron equation to include the change in volume in phase space. We then achieve a very general compensation law with, at least qualitatively, the right dependence on the entropy of the transition state. From this expanded viewpoint then, we only expect a transition state to affect the overall rate of a process when the specific volume of the reactant in phase space, including the transition state, is small compared with the phase space specific volume of the product.

REFERENCES

- H. Pfnür, P. Feulner, H. A. Engelhardt, and D. Menzel, Chem. Phys. Lett. 59, 481 (1978).
- 2. c.f. R. J. Thorn, J. Chem. Phys. <u>51</u>, 3582 (1969).
- 3. c.f. A. K. Galwey, Adv. Catal. 26, 247 (1977).
- 4. c.f. William L. Hase, J. Chem. Phys. 64, 2442 (1976).

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	No. Copies	•	No. Copies
Office of Naval Research		U.S. Army Research Office	
Attn: Code 472		Attn: CRD-AA-IP	
800 North Quincy Street		P.O. Box 1211	
Arlington, Virginia 22217	2	Research Triangle Park, N.C. 27709	1
ONR Branch Office		Naval Ocean Systems Center	
Attn: Dr. George Sandoz		Attn: Mr. Joe McCartney	
536 S. Clark Street		San Diego, California 92152	1
Chicago, Illinois 60605	1	Newal Hannes Contain	
ONR Branch Office		Naval Weapons Center	
		Attn: Dr. A. B. Amster, Chemistry Division	
Attn: Scientific Dept.		China Lake, California 93555	1
715 Broadway New York, New York 10003	1	Chilla Dake, California 93333	
new lolk, new lolk 10005		Naval Civil Engineering Laboratory	
ONR Branch Office		Attn: Dr. R. W. Drisko	
1030 East Green Street		Port Hueneme, California 93401	1
Pasadena, California 91106	1		
, , , , , , , , , , , , , , , , , , , ,		Department of Physics & Chemistry	
ONR Branch Office		Naval Postgraduate School	
Attn: Dr. L. H. Peebles		Monterey, California 93940	1
Building 114, Section D			
666 Summer Street		Dr. A. L. Slafkosky	
Boston, Massachusetts 02210	1	Scientific Advisor	
		Commandant of the Marine Corps	
Director, Naval Research Laboratory		(Code RD-1)	
Attn: Code 6100		Washington, D.C. 20380	1
Washington, D.C. 20390	1		
		Office of Naval Research	
The Assistant Secretary		Attn: Dr. Richard S. Miller	
of the Navy (R,E&S)		800 N. Quincy Street Arlington, Virginia 22217	1
Department of the Navy		Allington, Virginia 2221/	
Room 4E736, Pentagon	1	Naval Ship Research and Development	
Washington, D.C. 20350		Center	
Commander, Naval Air Systems Command		Attn: Dr. G. Bosmajian, Applied	
Attn: Code 310C (H. Rosenwasser)		Chemistry Division	
Department of the Navy		Annapolis, Maryland 21401	1
Washington, D.C. 20360	1		
,		Naval Ocean Systems Center	
Defense Documentation Center		Attn: Dr. S. Yamamoto, Marine	
Building 5, Cameron Station		Sciences Division	
Alexandria, Virginia 22314	-12	San Diego, California 91232	1
Dr. Fred Saalfeld		Mr. John Boyle	
Chemistry Division		Materials Branch	
Naval Research Laboratory		Naval Ship Engineering Center	
Washington, D.C. 20375	1	Philadelphia, Pennsylvania 19112	1

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	No. Copies
Dr. Rudolph J. Marcus	
Office of Naval Research	
Scientific Lisison Group	
American Embassy	
APO San Francisco 96503	1
Mr. James Kelley	
DTNSRDC Code 2803	
Annapolis, Maryland 21402	1

TECHNICAL REPORT DISTRIBUTION LIST, 056

C	No.	•	No. Copies
		•	
Dr. D. A. Vroom		Dr. C. P. Flynn	
IRT _		Department of Physics	
P.O. Box 80817		University of Illinois	
San Diego, California 92138	1	Urbana, Illinois 61801	1
Dr. G. A. Somorjai		Dr. W. Kohn	
Department of Chemistry		Department of Physics	
University of California		University of California	
Berkeley, California 94720	1	(San Diego)	
		LaJolla, California 92037	1
Dr. L. N. Jarvis			
Surface Chemistry Division		Dr. R. L. Park	
4555 Overlook Avenue, S.W.		Director, Center of	
Washington, D.C. 20375	1	Materials Research	
		University of Maryland	
Dr. J. B. Hudson		College Park, Maryland 20742	1
Materials Division		De II M Bondo	
Rensselaer Polytechnic Institute		Dr. W. T. Peria	
Troy, New York 12181	1	Electrical Engineering Department	
Dr. John T. Yates		University of Minnesota	
Surface Chemistry Section		Minneapolis, Minnesota 55455	1
National Bureau of Standards			
Department of Commerce		Dr. Narkis Tzoar	
Washington, D.C. 20234	1	City University of New York	
		Convent Avenue at 138th Street	
Dr. Theodore E. Madey		New York, New York 10031	1 .
Surface Chemistry Section			
Department of Commerce		Dr. Chia-wei Woo	
National Bureau of Standards		Department of Physics	
Washington, D.C. 20234	1	Northwestern University	
		Evanston, Illinois 60201	1
Dr. J. M. White		D- D C Manda	
Department of Chemistry		Dr. D. C. Mattis	
University of Texas		Polytechnic Institute of New York	
Austin, Texas 78712	1	333 Jay Street	
		Brooklyn, New York 11201	1
Dr. Keith H. Johnson		Blooklyn, new lote 11291	
Department of Metallurgy and Materials Science		Dr. Robert M. Hexter	
Massachusetts Institute of Technology		Department of Chemistry	
Cambridge, Massachusetts 02139	1	University of Minnesota	
	•	Minneapolis, Minnesota 55455	1
Dr. J. E. Demuth			
IBM Corportion		Dr. R. P. Van Duyne	
Thomas J. Watson Research Center		Chemistry Department	
P.O. Box 218		Northwestern University	
Yorktown Heights, New York 10598	1	Evanston, Illinois 60201	1

TECHNICAL REPORT DISTRIBUTION LIST, 056

	No. Copies		No. Copies
Dr. Leonard Wharton		Dr. Martin Fleischmann	
Department of Chemistry		Department of Chemistry	
James Franck Institute		Southampton University	
5640 Ellis Avenue		Southampton 509 5NH	
Chicago, Illinois 60637	1	Hampshire, England	1
Dr. M. G. Lagally		Dr. J. Osteryoung	
Department of Metallurgical		Chemistry Department	
and Mining Engineering		State University of New	
University of Wisconsin		York at Buffalo	
Madison, Wisconsin 53706	1	Buffalo, New York 14214	1
Dr. Robert Gomer		Dr. G. Rubloff	
Department of Chemistry		I.B.M.	
James Franck Institute		Thomas J. Watson Research Center	
5640 Ellis Avenue		P. O. Box 218	
Chicago, Illinois 60637	1	Yorktown Heights, New York 10598	1
Dr. R. G. Wallis		Dr. J. A. Gardner	
Department of Physics		Department of Physics	
University of California, Irvine		Oregon State University	
Irvine, California 92664	1	Corvallis, Oregon 97331	1
Dr. D. Ramaker		Dr. G. D. Stein	
Chemistry Department		Mechanical Engineering Department	
George Washington University		Northwestern University	
Washington, D.C. 20052	1	Evanston, Illinois 60201	1
Dr. P. Hansma		Dr. K. G. Spears	
Chemistry Department		Chemistry Department	
University of California,		Northwestern University	
Santa Barbara		Evanston, Illinois 60201	1
Santa Barbara, California 93106	1		
		Dr. R. W. Plummer	
Dr. P. Hendra		University of Pennsylvania	
Chemistry Department		Department of Physics	
Southhampton University		Philadelphia, Pennsylvania 19104	1
England S09JNH	1	D- 7 V	
Professor P. Chall		Dr. E. Yeager	
Professor P. Skell		Department of Chemistry	
Chemistry Department Pennsylvania State University		Case Western Reserve University Cleveland, Ohio 41106	2
University Park, Pennsylvania 16802	1	oleveland, onto 41100	•
Dr. J. C. Hemminger			
Chemistry Department			
University of California, Irvine			
Irvine, California 92717	1		