Recueil direct de distances sensorielles : le napping

François Husson – Agrocampus Ouest

Les données

- 10 vins blancs du Val de Loire
- 2 cépages : 5 Chenins (Vouvray) et 5 Sauvignons (Touraine)
- Terroirs
- Différentes vinifications (un vin contient 7g de sucre résiduel)
- Élevage (passage en fût ou pas)

Profil sensoriel

- Évaluations sensorielles descriptives (profils sensoriels)
 - 1 fiche de descripteurs (olfactifs, gustatifs, ...)
 - une note par descripteur
 - chaque juge évalue chaque produit
- Avantages
 - recueil le plus classique
 - description très précise de chaque produit
- Limites
 - temps
 - entraînement du jury
 - choix des descripteurs
 - pas d'informations sur l'importance des critères pour les juges

Napping

- Recueil direct de distances sensorielles
 - Principe: «évaluer les ressemblances (ou dissemblances) entre plusieurs produit selon vos propres critères (ceux importants pour vous). Vous n'avez pas à indiquer vos critères. Il n'y a ni bonnes ni mauvaises réponses. »
 - Mode opératoire
 - Nappes 40*60 cm
 - Tous les produits sont fournis simultanément
- Profil ultra-flash (Pagès 2003)
- Avantages
 - facile à mettre en œuvre
 - rapide
 - critères personnels
 - génération de vocabulaire
- Limite
 - nombre de produits par nappe

Données

Pour chaque nappe on récupère les coordonnées de chaque produit (en cm)

AFM non normée

• On fait une AFM non normée du tableau

• Représentation des produits : 2 produits proches si vus proches par l'ensemble des juges

Représentation des 10 vins

Individual factor map

Représentation des 10 vins (ellipses)

Confidence ellipses for the napping configuration

Représentation des coordonnées des juges

Représentation des juges

Groups representation

Représentation de la configuration d'un juge

- Il est intéressant de représenter la nappe d'un juge avec la configuration moyenne
- Rotation procrustéenne de la configuration du juge sur la configuration moyenne : translation, rotation et éventuellement dilatation pour minimiser les distances entre les points des deux configurations
- Distance entre configurations mesurée par le coefficient RV :

$$RV(X,Y) = \frac{\langle W_X, W_Y \rangle}{\|W_X\| \|W_y\|} = \frac{tr(XX'YY')}{\sqrt{tr(XX')^2 tr(YY')^2}}$$

• Un test de significativité du coefficient RV fondé sur des tests de permutation est disponible (fonction coeffRV)

Représentation de la configuration d'un juge

Y8

Utilisation de données « complémentaires »

• Les fréquences de mots mots

 x_{ik} fréquence avec laquelle le mot k est associé au vin i

• Les données sensorielles

x_{ik} moyenne des notes du jury pour le descripteur *k* et le produit *i*

Utilisation de données « complémentaires »

Utilisation de données « complémentaires »

Utilisées comme variables supplémentaires dans l'AFM

Étude des mots par une Analyse Factorielle des Correspondances (AFC)

- Étudier les liaisons entre 2 variables qualitatives
- Association entre modalités

Représentation des produits

Représentation des produits et des mots

Napping catégorisé

