Homework Due 10/12/17: (13 problems) Section 4.2 pages 177 - 178; 1, 2, 4, 5(a)(c)(e)(g)(i)(k), 9, 10, 17, 18 (for 5(i) define to be 1 over sm, and then show that 1 over sm goes to 0)

Problem 1

Mark each statement True or False. Justify each answer.

a. If (s_n) and (t_n) are convergent sequences with $s_n \to s$ and $t_n \to t$, then $\lim (s_n + t_n) = s + t$ and $\lim (s_n t_n) = st$.

True. By Theorem 4.2.1 (a) and (c).

b. If (s_n) converges to s and $s_n > 0 \ \forall \ n \in \mathbb{N}$, then s > 0.

False. Counter example: $(s_n) = \frac{1}{n}$ (s = 0, but the moment you define n, $s_n > 0$)

c. The sequence (s_n) converges to s iff $\lim s_n = s$.

False. The sequence converges to s iff s exists as a real number. If $s = +\infty$ then it can't converge.

d. $\lim s_n = +\infty$ iff $\lim \left(\frac{1}{s}\right) = 0$.

False. If $\lim_{s_n} (\frac{1}{s_n}) = 0$ but $(s_n) = -1, -2, -3, ...$ then s_n does not diverge to $+\infty$

Problem 2

Mark each statement True or False. Justify each answer.

a. If $s_n = s$ and $\lim t_n = t$, then $\lim (s_n t_n) = st$.

False. We don't know s_n 's limit (which could be, for example, $(s_n) = n$, which diverges)

b. If $\lim s_n = +\infty$, then (s_n) is said to converge to $+\infty$.

False. You can only converge to a finite number.

c. Given sequences (s_n) and (t_n) with $s_n \leq t_n \ \forall \ n \in \mathbb{N}$, if $\lim s_n = +\infty$, then $\lim t_n = +\infty$.

True.

Suppose \exists sequences (s_n) and (t_n) st $s_n \leq t_n \ \forall \ n \in \mathbb{N}$ where $\lim s_n = +\infty$ and $\lim t_n$ is NOT $+\infty$. t_n diverges to $+\infty$ if $\forall \ M \in \mathbb{R}$, $\exists \ N \in \mathbb{N}$ st $n \geq N$ implies $t_n > M$

Let: $M \in \mathbb{R}$

We know that

 $\exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } t_n > M$

Since $s_n \leq t_n \ \forall \ n \in \mathbb{N}$

 $\exists \ \mathbb{N} \in \mathbb{N} \text{ st } \mathbb{N} \geq \mathbb{N} \text{ implies } \mathbb{S}_n \geq \mathbb{I}_n > \mathbb{M}$

 $\exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } s_n > M$

This is the definition of diverging to $+\infty$, a contradiction.

Hence, result.

d. Suppose (s_n) is a sequence st the sequence of ratios $(\frac{s_{n+1}}{s_n})$ converges to L. If L < 1, then $\lim s_n = 0$.

false.

Let:
$$s_n = n(1)^{-n} \longrightarrow (\frac{s_{n+1}}{s_n}) = \frac{(n+1)(1)^{-(n+1)}}{n(1)^{-n}}$$

which converges to -1 which is less than 1 but does not have a limit of 0.

Problem 4

Since $t_n \geq 0$,

a. Prove Theorem 4.2.1(b): Suppose that (s_n) and (t_n) are convergent sequences with $\lim s_n = s$ and $\lim t_n = t$. Then **(b)** $\lim_{n \to \infty} (ks_n) = ks$ and $\lim_{n \to \infty} (k+s_n) = k+s$, for any $k \in \mathbb{R}$ We know that since s_n and t_n are convergent sequences with limits s and t, respectively. So, $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |s_n - s| < \epsilon$ $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |t_n - t| < \epsilon$ Want to show: $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |ks_n - ks| < \epsilon$ $|ks_n - ks| = |k(s_n - s)| = |k||s_n - s|$ So, $|\mathbf{k}\mathbf{s}_n - \mathbf{k}\mathbf{s}| = |\mathbf{k}||\mathbf{s}_n - \mathbf{s}| < \epsilon$ $|\mathbf{s}_n - \mathbf{s}| < |\mathbf{k}|\epsilon = \epsilon_1(\epsilon)$ Since $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |s_n - s| < \epsilon$ thus. $\forall \epsilon_1 > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |s_n - s| < \epsilon_1$ $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |ks_n - ks| < \epsilon$ Hence, $\lim (ks_n) = ks$ Want to show: $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |k + s_n - (k + s)| < \epsilon$ We know: $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |s_n - s| < \epsilon$ So, $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |s_n + k - s - k| < \epsilon$ $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |s_n + k - (s + k)| < \epsilon$ Since this is true, $\lim (s_n + k) = k + s$ b. Prove Corollary 4.2.5: If (t_n) converges to t and $t_n \geq 0 \ \forall \ n \in \mathbb{N}$, then $t \geq 0$. We know that $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |t_n - t| < \epsilon$ Suppose: t < 0Let: $\epsilon = |\mathbf{t}|$ $\forall n \in \mathbb{N}, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |t_n - t| < |t|$ Since t is negative, $\forall n \in \mathbb{N}, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |t_n + |t|| < |t|$

 $\label{eq:continuous_state} \begin{array}{l} \forall \ \mathbf{n} \in \mathbb{N} \ , \ \exists \ \mathbf{N} \in \mathbb{N} \ \mathrm{st} \ \mathbf{n} \geq \mathbf{N} \ \mathrm{implies} \ \mathbf{t}_n + |\mathbf{t}| < |\mathbf{t}| \\ \mathrm{So}, \\ \forall \ \mathbf{n} \in \mathbb{N} \ , \ \exists \ \mathbf{N} \in \mathbb{N} \ \mathrm{st} \ \mathbf{n} \geq \mathbf{N} \ \mathrm{implies} \ \mathbf{t}_n < 0 \\ \mathrm{but} \ \mathbf{t}_n \geq 0, \ \mathrm{a} \ \mathrm{contradiction}. \\ \mathrm{Hence, \ result.} \end{array}$

Problem 5

For s_n given by the following formulas, determine the convergence or divergence of the sequence (s_n) . Find any limits that exist.

a.
$$s_n = \frac{3-2n}{1+n} \longrightarrow \frac{1}{2}$$

b.
$$s_n = \frac{(-1)^n}{n+3} \longrightarrow 0$$

c.
$$s_n = \frac{(-1)^n}{2n-1} \longrightarrow 0$$

d.
$$s_n = \frac{2^{3n}}{3^{2n}} = \frac{8^n}{9^n} \longrightarrow 0$$

e.
$$s_n = \frac{n^2 - 2}{n + 1} \longrightarrow \infty$$

f.
$$s_n = \frac{3+n-n^2}{1+2n} \longrightarrow -\infty$$

g.
$$s_n = \frac{1-n}{2^n} \longrightarrow 0$$

h.
$$s_n = \frac{3^n}{n^3 + 5} \longrightarrow \infty$$

i.
$$s_n = \frac{n!}{2^n} \longrightarrow \infty$$

j.
$$s_n = \frac{n!}{n^n} = \frac{1*2*3*4*5}{5*5*5*5*5}$$
 where $n = 5 \longrightarrow 0$

k.
$$s_n = \frac{n^2}{2^n} \longrightarrow 0$$

$$1. \ \mathbf{s}_n = \frac{n^2}{n!} \longrightarrow 0$$

Problem 9

Prove Theorem 4.2.12:

Suppose that (s_n) and (t_n) are sequences st $s_n \leq t_n \ \forall \ n \in \mathbb{N}$

a. If $\lim s_n = +\infty$ then $\lim t_n = +\infty$

Suppose \exists sequences (s_n) and (t_n) st $s_n \leq t_n \ \forall \ n \in \mathbb{N}$ where $\lim s_n = +\infty$.

 \mathbf{t}_n diverges to $+\infty$ if $\forall~\mathbf{M}\in\mathbb{R}$, $\exists~\mathbf{N}\in\mathbb{N}$ st $\mathbf{n}\geq\mathbf{N}$ implies $\mathbf{t}_n>\mathbf{M}$

Let: $M \in \mathbb{R}$

We know that

 $\exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } s_n > M$

Since $s_n \leq t_n \ \forall \ n \in \mathbb{N}$,

 $\exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } t_n \geq s_n > M$

 \exists N \in N st n \geq N implies $t_n > M$

This is the definition of diverging to $+\infty$.

Hence, t_n diverges to $+\infty$.

b. If $\lim t_n = -\infty$ then $\lim s_n = -\infty$

Suppose \exists sequences (s_n) and (t_n) st $s_n \leq t_n \ \forall \ n \in \mathbb{N}$ where $\lim t_n = -\infty$.

 t_n diverges to $-\infty$ if $\forall M \in \mathbb{R}$, $\exists N \in \mathbb{N}$ st $n \geq N$ implies $t_n < M$

Let: $M \in \mathbb{R}$

We know that

 $\exists N \in \mathbb{N} \text{ st } n > N \text{ implies } t_n < M$

Since $s_n \leq t_n \ \forall \ n \in \mathbb{N}$,

 $\exists \ N \in \mathbb{N} \text{ st } n \geq N \text{ implies } s_n \leq t_n < M$

 $\exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } s_n < M$

This is the definition of diverging to $-\infty$.

Hence, s_n diverges to $-\infty$.

Problem 10

Prove the converse part of Theorem 4.2.13:

Let (s_n) be a sequence of positive numbers. Then, $\lim s_n = +\infty$ iff $\lim \left(\frac{1}{s_n}\right) = 0$.

Assume: $\lim s_n = +\infty$

Given any $\epsilon > 0$, let $M = \frac{1}{\epsilon}$. Then there exists a natural number N st $n \geq N$ implies that $s_n > M = \frac{1}{\epsilon}$.

Since each s_n is positive, we have:

$$\left|\frac{1}{s_n} - 0\right| < \epsilon$$
, whenever $n \ge N$
Thus, $\lim_{n \to \infty} \left(\frac{1}{s_n}\right) = 0$.

Assume: $\lim_{n \to \infty} \left(\frac{1}{s_n} \right) = 0$

 $\forall \ \epsilon > 0, \ \exists \ \mathbf{N} \in \mathbb{N} \ \mathrm{st} \ \mathbf{n} \geq \mathbf{N} \ \mathrm{implies} \ \left| \frac{1}{s_n} - 0 \right| < \epsilon$

 $\left|\frac{1}{s_n}\right| < \epsilon$

Since (s_n) is a sequence of positive numbers,

 $\frac{\frac{1}{s_n}}{\frac{1}{\epsilon}} < s_n$

Let: $\frac{1}{\epsilon} = M$

 $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } M = \frac{1}{\epsilon} < s_n$

Thus, $\lim s_n = +\infty$

Problem 17

a. Show that $\lim_{n\to\infty} \frac{k^n}{n!} = 0 \ \forall \ \mathbf{k} \in \mathbb{R}$

Let: $\epsilon > 0, k \in \mathbb{R} > 0$

Want to show: $\exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } \left| \frac{k^n}{n!} - 0 \right| < \epsilon$

Recall Theorem 4.2.7 - "The Ratio Test"

Assume $\{s_n\}$ is a sequence of **positive** terms (i.e. $s_n > 0, \forall n \in \mathbb{N}$) and $\lim_{n \to \infty} \frac{s_{n+1}}{s_n} = L$.

If L < 1, then $\lim_{n\to\infty} s_n = 0$

Let: $s_n = \frac{k^n}{n!}$

Want to show: $\lim_{n\to\infty} \frac{\frac{k^{n+1}}{(n+1)!}}{\frac{k^n}{n!}} < 1$

$$\frac{\frac{k^{n+1}}{(n+1)!}}{\frac{k^n}{n!}} = \frac{n!k^{n+1}}{(n+1)!k^n} = \frac{k}{n+1}$$

$$\lim_{n \to \infty} \frac{k}{n+1} = 0 = L$$

L < 1

Hence, $\lim_{n\to\infty} s_n = 0$ if $k \in \mathbb{R} > 0$ (why does this not apply to $k \le 0$ again?)

b. What can be said about $\lim_{n\to\infty} \frac{n!}{k^n}$?

It diverges to $+\infty$

Problem 18

Assume that (s_n) is a convergent sequence with $a \leq s_n \leq b \ \forall \ n \in \mathbb{N}$.

Prove that $a \leq \lim s_n \leq b$.

Let: $\lim s_n = s$

Want to show: $a \le s \le b$

Suppose: a > s or s > b

We know that

 $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |s_n - s| < \epsilon$

Let: $\epsilon = a - s$

So,

$$-(a-s) < s_n - s < a - s$$

 $-a + s < s_n - s < a - s$
 $-a + 2s < s_n < a$

but a \leq s_n, a contradiction.

Let: $\epsilon = s - b$

So,

$$-(s-b) < s_n - s < s - b$$
$$-s + b < s_n - s < s - b$$
$$b < s_n < 2s - b$$

but $s_n \leq b$, a contradiction.

Hence, a $\leq \lim s_n \leq b$