Medium Access Control

Medium Access Control (MAC)

- MAC algorithms regulate access to a medium using any of the multiplexing schemes
- Wired networks: sender can detect collisions
- Wireless networks
 - Signal strength decreases proportional to 1/d²
 - Collisions happen at the receiver
 - Sender can't "hear" the collision

Hidden / exposed terminals

- Hidden terminal
 - A sends to B, C senses "free" medium
 - Collision at B, A can't receive it
 - A is "hidden" for C
- Exposed terminal
 - B sends to A, C wants to send to a 4th terminal
 - C has to wait, senses medium in use
 - C is "exposed" to B

Near and far terminals

- A and B send to C
- Signal of terminal B drowns out A's signal
- C can't receive A

- Problematic in CDMA
- Power control required to receive all senders with the same strength (UMTS)

SDMA and FDMA

- Space Division Multiple Access (SDMA)
 - Segment space into sectors, use directed antennas
 - Cell structure
- Frequency Division Multiple Access (FDMA)
 - Allocate frequencies to channels using FDM
 - Fixed or dynamic allocation
 - Pure FDMA or FDMA + TDMA
 - FDM used for duplex channels
 - Frequency Division Duplex (FDD): uplink and downlink at different frequencies

FDD/FDMA example: GSM

Time Division Multiple Access (TDMA)

- Used for most wired MAC schemes (ethernet)
- Sender-receiver synchronisation in the time domain:
 - Dynamic allocation requires identification of each transmission (MAC address)
 - Fixed schemes don't need identification, but not as flexible with varying bandwidth requirements

Fixed TDM

- Time slots allocated in fixed pattern
- Simple, just need to sync with base station slot pattern
- Good for fixed delay and bandwidth applications
- Time Division Duplex (TDD)
 - Slots on same frequency for uplink and downlink
- Inefficient for bursty or asymmetric data communication

TDD/TDMA example: DECT

Aloha

- Stations can always access the medium
- Collisions resolved by higher layers
- Works fine for light load, maximum throughput is 18%
- Slotted Aloha doubles throughput (36%)

Reservation schemes

- Explicit reservation: Demand Assigned Multiple Access (DAMA)
 - Used in satellite systems
 - Aloha used for reservation phase
 - Collisions destroy only requests for transmission
- Implicit reservation: Packet Reservation Multiple Access (PRMA)
 - Several slots form a frame
 - If a station succeeds with reservation all future slots reserved for it
 - Transmission with guaranteed data rate and delay, Aloha used only for idle slots

Reservation schemes II

- Reservation TDMA
 - Each frame consists of N mini-slots and x dataslots
 - Each station has its own mini-slot used to reserve up to k data-slots in the next frame
 - Other stations can send data on unused data slots on round-robin or Aloha fashion (best effort traffic)

Multiple Access Collision Avoidance (MACA)

- Uses short signaling packets for collision avoidance
 - RTS (Request To Send): sender sends RTS before sending data with name of sender and receiver
 - CTS (Clear To Send): receiver sends CTS with names of sender and receiver
- Hidden terminal see the CTS and know that the medium is reserved for the sender
- Exposed terminals don't see a the CTS so can assume that they won't interfere with sender
- Disadvantage: overhead of RTS and CTS signals

MACA examples

- Solving hidden terminals
 - A and C want to send to B
 - C waits after seeing
 CTS for A from B

- Solving exposed terminals
 - B wants to send to A, C to a different terminal
 - C doesn't have to wait as it can't receive the CTS from A

Polling and ISMA

- Polling
 - Centralised scheme with a master (base) station and several slave stations
 - Master can poll according to several different schemes (round-robin, random, ...)
- Inhibit Sense Multiple Access (ISMA)
 - Base station signals BUSY/IDLE tone
 - Terminals don't access medium while BUSY
 - After BUSY stops uplink access is free
 - Base station acknowledges successful transmissions

Code Division Multiple Access (CDMA)

- Uses codes to separate users and enable shared access
- Main issues
 - Finding good codes: good autocorrelation and orthogonal to others
 - Separating signal from noise
- Spread Aloha Multiple Access (SAMA)
 - SAMA uses Spread Spectrum with a single code for all users ("CDMA without CD")
 - Signal separation for synchronised sender-receiver
 - Maximum throughput of 18%, like Aloha
 - Robust against narrowband interference