

CS 223 Digital Design

Bilkent University Spring 2021/2022

Laboratory Assignment 4 Preliminary Report

Section 2

Deniz Tuna Onguner 22001788

Mon. April 4th, 2022

State Transition Diagram

State Encodings

Current State S	Encodings S _{2:0}		
S0	000		
S1	001		
S2	010		
S3	011		
S4	100		
S5	101		
S6	110		
S7	111		

State Transition Table

Current State		Inp	outs	Next State			
S_2	S_1	S_0	SA	S_B	S'2	S'1	S'0
0	0	0	X	0	0	0	0
0	0	0	X	1	0	0	1
0	0	1	X	X	0	1	0
0	1	0	X	X	0	1	1
0	1	1	X	X	1	0	0
1	0	0	0	X	1	0	0
1	0	0	1	X	1	0	1
1	0	1	X	X	1	1	0
1	1	0	X	X	1	1	1
1	1	1	X	X	0	0	0

Output Encoding

Output	Encoding L _{2:0}
Green	011
Yellow	001
Red	111

Output Table

Current State			Outputs					
S_2	S_1	S_0	L_{A2}	L_{A1}	L_{A0}	L_{B2}	L_{B1}	L_{B0}
0	0	0	0	1	1	1	1	1
0	0	1	0	0	1	1	1	1
0	1	0	1	1	1	1	1	1
0	1	1	1	1	1	0	0	1
1	0	0	1	1	1	0	1	1
1	0	1	1	1	1	0	0	1
1	1	0	1	1	1	1	1	1
1	1	1	0	0	1	1	1	1

Output Equations

$$S'_2 = S_2S_1S_0' + S_2'S_1S_0 + S_2S_1'$$

 $S'_1 = S_1 \oplus S_0$

$$S'_0 = S_1S_0' + S_BS_2'S_1'S_0' + S_AS_2S_1'S_0'$$

$$L_{A2} = S_1S_2' + S_0'S_2 + S_1'S_2$$

$$L_{A1} = S_0' + S_1S_2' + S_1'S_2$$

$$L_{A0} = 1$$

$$L_{B2} = S_1'S_2' + S_0'S_1 + S_1S_2$$

$$L_{B1} = S_0' + S_1S_2 + S_1'S_2'$$

$$L_{B0} = 1$$

Circuit Diagrams

With Decoder

Only 3 flip-flops are enough for the implementation.

System Verilog Module

```
module TrafficLights(input logic clk, reset, sa, sb,
                     output logic [2:0] la, lb);
    typedef enum logic [2:0] {s0, s1, s2, s3, s4, s5, s6, s7} Statetype;
    Statetype [1:0] state, nextstate;
    parameter g = 3'b011;
    parameter y = 3'b001;
    parameter r = 3'b111;
    always_ff @(posedge clk, posedge reset)
        if(reset) state <= s0;
        else state <= nextstate;</pre>
    always_comb
    case(state)
        s0: if(sb) nextstate = s1;
            else nextstate = s0;
        s1:
                   nextstate = s2;
        s2:
                    nextstate = s3;
        s3:
                   nextstate = s4;
        s4: if(sa) nextstate = s5;
            else nextstate = s4;
        s5:
                   nextstate = s6;
        s6:
                    nextstate = s7;
        s7:
                    nextstate = s0;
        default: nextstate = s0;
    endcase
    always_comb
    case(state)
        s0:
                  \{la, lb\} = \{g, r\};
        s1:
                  {la, lb} = {y, r};
                  \{la, lb\} = \{r, r\};
        s2:
                  \{la, lb\} = \{r, y\};
        s3:
        s4:
                  \{la, lb\} = \{r, g\};
        s5:
                  {la, lb} = {r, y};
                  \{la, lb\} = \{r, r\};
        s6:
                  \{la, lb\} = \{y, r\};
        s7:
        default: \{la, lb\} = \{g, r\};
    endcase
endmodule
```

Clock Module for Timing

```
module Clock(input clk, output sclk);
  logic [31:0] timer = 0;
  logic out;

always @(posedge clk)
    begin
    timer <= timer + 1;
  if (timer == 150000000)
    begin
        timer <= 0;
        out = ~out;
    end
    end
  assign sclk = out;
endmodule</pre>
```

Testbench

```
module TestBench();
    logic clk, reset, sa, sb;
    logic [2:0] la, lb;
    TrafficLights dut(clk, reset, sa, sb, la, lb);
    initial begin
        reset = 0;
            sa = 0; sb = 1; #10;
            sa = 1; sb = 0; #10;
            sa = 0; sb = 0; #10;
            sa = 1; sb = 1; #10;
    end
    always
        begin
            clk <= 1; #10;
            clk <= 0; #10;
        end
endmodule
```