Lesson 3 Vertical and Horizontal Asymptotes

PART A: Vertical Asymptotes

The graph of a function f(x) has a vertical asymptote at x = a if $\lim_{x \to a} f(x) = \pm \infty$.

The easiest way to find vertical asymptotes is to find where the denominator is zero.

Example 1: Consider the function

$$f(x) = \frac{1}{x^2 - 4} + 3.$$

The vertical asymptotes occur when $x^2 - 4 = 0$

$$(\chi - z)(\chi + \zeta) = 0$$

$$\chi = 2$$

$$\chi = -2$$

$$V.A.$$

So the graph has vertical asymptotes at *x*=2 and at *x*=-2

PART B: Horizontal Asymptotes

The graph of a function f(x) has a horizontal asymptote at y=L if $\lim_{x\to\infty}f(x)=L$ or $\lim_{x\to\infty}f(x)=L$. The easiest way to find horizontal asymptotes is to take the limit of the function as x approaches infinity.

Example 2: Consider the function $f(x) = \frac{4x^2 - 3x + 1}{2x^2 - 8}$

The horizontal asymptote occurs where

So the graph has a horizontal asymptote at *y*=2

$$2x^{2}-8=0$$

 $x^{2}-4=0$
 $(x-1)(x+1)=0$

PART C: Slant Asymptotes

The graph of a function f(x) has a slant (oblique) asymptote y = mx + b if when you take the limit as x approaches infinity, the result can be written in the form:

 $y = \lim(mx + b) + \lim g(x)$ where $\lim g(x) = 0$. This can often be achieved by performing

polynomial division.

$$f(x) = \frac{2x^2 + x - 2}{x - 1}.$$

Example 3: Consider the function $f(x) = \frac{2x^2 + x - 2}{x - 1}$.

Using polynomial division, we can write: $x - 1 \overline{\smash)2x^2 + x - 2}$

$$2x^2-2x$$

You can also use synthetic division as long as your divisor is *linear*

$$3x - 2$$

$$\frac{3x-3}{1}$$

The division statement can be written as:

$$\frac{2x^2 + x - 1}{(x-1)} = \frac{(x-1)(2x+3) + 1}{OR^{(y-1)}}$$

$$\frac{2x^2 + x - 2}{x - 1} = (2x + 3) + \frac{1}{x - 1}$$

$$\lim_{x\to\infty}f(x)$$

$$=\lim_{x\to\infty}\frac{2x^2+x-2}{x-1}$$

$$= \lim_{x \to \infty} \left[(2x+3) + \frac{1}{x-1} \right]$$

$$= \lim_{x \to \infty} (2x+3) + \lim_{x \to \infty} \frac{1}{x-1}$$

$$=\lim_{x\to\infty} (2x+3) + 0$$

$$=\lim_{x\to\infty}(2x+3)$$

So the line y = 2x + 3 is a slant asymptote for this graph. Note the graph is approaching the dotted line having the equation v = 2x + 3

** We need to verify that the quotient we get from above is the oblique asymptote by using limits (it usually is)

Note

For slant asymptotes, the degree of the numerator is higher than that of the denominator.

PART D: Analyzing behaviour of a rational function near its asymptotes						
Example 4: For the function $f(x) = \frac{3x}{x^2 - x - 6}$, determine the equations of all asymptotes and illustrate the behaviour of the graph as it approaches the asymptotes. $\frac{\text{To C VA}}{\sqrt{x^2 - x} - 6} = 0$ $(x - 3)(x + 2) = 0 \implies \text{VA} \implies x = 3, x = -2$						
$(x-3)(x+2)$ values $3x$ -2^{-} -2^{+} 3^{-} 3^{+}		x+2 - + +	F(x) - +	f(x)-> - & - &		
For HA - can't was 9°C - was limits	Similarly, $\lim_{x \to \infty} \frac{3x}{x^2 - x - c} = 0$ $\therefore HA: y = 0$					

For HA	Similarly,					
lim 3x	$\lim_{x \to -\infty} f(x) = 0$					
x = + = x = - x = 6	H.A. → y= O Behaviour around H.A.					
-lim x2 x - 6	Be have	x>-∞				
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	3×	1	+			
= lim x > +20 - 0	x2-x-6	+	+			
= 0 4 4	f(x)		+			
= 0		below H.A.	above H.A.			

