EARTHSCOPE INSAR TRAINING:

INSAR PROCESSING AND TIME-SERIES ANALYSIS FOR GEOPHYSICAL APPLICATIONS: INSAR SCIENTIFIC COMPUTING ENVIRONMENT (ISCE), ARIA TOOLS, AND MINTPY

Contributors:

Franz J Meyer¹⁾, P. Rosen²⁾, D. Bekaert²⁾, A. Donnellan²⁾, S. Hensley²⁾, H. Fattahi²⁾, G. Funning³⁾, H. Davis⁴⁾, B. Minchew⁵⁾

¹⁾University of Alaska Fairbanks, Fairbanks | ²⁾Jet Propulsion Laboratory | ³⁾UC Riverside | ⁴⁾TLC Inc. | ⁵⁾ Massachusetts Institute of Technology

Short Introduction to OpenScienceLab

The UNAVCO InSAR Course OpenScienceLab Environment

URL: https://earthscope-insar.asf.alaska.edu

- OpenScienceLab is a pre-installed and fully cloud-based processing environment
- It can be used from any internet-enabled device with a web browser
- Sits next to the ASF archive in the Amazon Web Services (AWS) cloud → does not require data download to a local machine
- Broadly installed to support most python-based notebook development
- Contains all notebooks and software needed for this course

Concept of the EarthScope InSAR Course OpenScienceLab Environment

Web Address: https://earthscope-insar.asf.alaska.edu

Working Within the EarthScope OpenScienceLab

Account Creation & Login

- In your web browser, navigate to: https://earthscope-insar.asf.alaska.edu
- 2. Click on "Sign in"

3. First time user: Click on "Sign up"

4. Fill in the signup form and submit [please use the email address associated with your EarthScope InSAR course registration]

Sign Up

Select the EarthScope InSAR Server Once You are Logged In

Working Within the OpenScienceLab

Navigate to the Notebooks Relevant for this Training

• To find the Jupyter notebooks related to this EarthScope InSAR training, navigate to:

Geo-SInC/EarthScope2023

All training materials for this course are public and available at

https://github.com/parosen/Geo-SInC

Benefits of the Notebook-based OpenScienceLab

Jupyter Notebooks

Jupyter Notebook benefits:

- Mix code with instructions and explanations
- Mix synthetic data for demonstration with real data for use in science and applications
- Easily expand existing code
- Vanilla entry to python programming
- Fully reproducible processing performance and processing results
- Heavy processing in the cloud → only download what you need

Have your own notebooks or notebooks from other authors? The lab is installed with a broad set of python tools → most notebooks should run out of the box

Benefits of the Notebook-based OpenScienceLab

• Improved User Experience:

- Users have full access to sophisticated SAR data processing and analysis tools without need to install and maintain
- Existing Notebooks supporting SAR instruction, research and a range of applications
- Decently-sized compute environment without need for local processing hardware
- No data downloads (data remain in AWS) → lightning-speed performance; no need for local storage

Low Cost Implementation and Accelerated Research:

- Instead of downloading data, processing in the cloud → cheaper than download and local processing
- Slow data download replaced by near immediate processing capabilities

• Easily Extendable Collaboration Platform:

- Easy sharing of notebooks and easy extension via Github
- Consistent notebook development both in format and functionality

The UNAVCO Cloud-based OpenScienceLab:

https://earthscope-insar.asf.alaska.edu

 Explore Environmental Signatures in Deep SAR data stacks

Example: Madre de Dios, Peru

