Problem 1. In order to get a feeling for the difficulties with inverse problems, we consider the problem of numerical differentiation.

Let $f:[0,1]\to\mathbb{R}$ be a differentiable function. You have some knowledge of the function at equidistant points $\frac{k}{n}$, but up to some measurement errors. In other words, we have n+1 values $f_0,\ldots,f_n\in\mathbb{R}$ such that

$$|f_k - f(k/n)| \le \varepsilon$$
 for $k = 0, \dots, n$

(i.e., that the f_k 's approximate the function values with precision ε) for some $\varepsilon > 0$. For some k, approximate the derivative with the difference quotient

$$f'(k/n) \approx \frac{f((k+1)/n) - f(k/n)}{1/n}.$$

Show that the error by replacing f(k/n) with f_k is $2n\varepsilon$ and this estimation is sharp. What happens for $n \to \infty$?

Problem 2. Compute the forward operator \mathcal{A} (in polar coordinates)

$$\mathcal{A}(f)(t,\theta) = \int_{-\infty}^{\infty} f \begin{pmatrix} t \cos \theta - s \sin \theta \\ t \sin \theta + s \cos \theta \end{pmatrix} ds$$

of the image $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = \begin{cases} 1 - (x^2 + y^2) & \text{if } x^2 + y^2 \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Hint: $\cos^2 \theta + \sin^2 \theta = 1$.

Problem 3. Compute the matrix A of the discretized forward operator for a (2×2) image with horizontal and vertical rays. What do the rows and columns of the matrix correspond to? Invert this matrix if you can.

Problem 4. Consider a $(2 \times 2 \times 2)$ image on $[0,2]^3$ and the ray given by

$$\begin{pmatrix} 0.5\\0.5\\0 \end{pmatrix} + t \begin{pmatrix} 1\\2\\3 \end{pmatrix}, t \in \mathbb{R}.$$

Compute the intersections of this ray with the planes given by each of the planes separating the voxels of the images.