深圳	大学	期末	老	试试卷
レハッリ	1	771/1	-71	an lan lat

			深	则入	(字	期本	考	国证	、在		()	
开/闭卷	-	多0030000	11					70	14		A/B 卷	A卷
课程编	号 18	0030001	9 i	果程名	称 大	一学物习	EA (1	1)	1		_ 学分	4
》题人(签字)_				审题	人(签书	F)	NA.		1018	年月	8
题号		=	III	四	五	六	七	八	九	+	基本题总分	附加题
得分												
评卷人		W 7/	100	1000	R. Jana		P Fil	40	ANE OF	MAR	10.12	3.6.11
质点质,若真的,在真的,在一个	组(系) 点组(系) 点组(系) 点组(系) 点的环间 点价的	总动能 的通过理 路定理 的磁化下	的改变 外力的 说明 定 順 破	合曲面 电场约 ,电位 质内的	か做功 が が が も も も も も も も も も も も も も	有关 (=0,) 。 。 。 。 。 。 。 。 。 。 。 。 。	(制该质量为 (量仅与	等,则	该曲面 电荷的磁 场的磁	内一定 分布和 感应到	官无电荷 百关 (强度 (()
应的	电流假 基题 :	设的实 下列 字母	质是认 每小是 填在抗	为变化 原中, 舌号中	比的电 只有 。每	场要激 一个过 小题:	发有加先项名 分,	能磁场 計合题 共计	(目要2 27 分) 求。*	各你的选	
前, 忽 A. 角 C. 角	速度7	专轴的 次变,分	所有阻 角动量 角动量	力矩, 守恒 守恒	相对知	E轴, B. D.	人、哑 角速 角速	铃和转 度不变 度改变	椅构后 ,角云 ,角云	龙的系 力量不 力量不	守恒	
己知」	$\frac{d}{dt} = \frac{1}{2}$		$\frac{1}{m_s} =$		两圆盘	放的半		为	(か惯量) D.	分别为J 1: 1	A 和Ja
下列说 A. 点 B. 电	法正确电荷在	电场中的极化 物时,	中总是七电荷导体	可以在	电介质荷只能	质内自治分布	在导体	表面	为常矢	量		

《大学物理 A (1)》试卷 A 卷 第 1 页 共 8 页

- 4. 如图所示,在磁感应强度为产的勾强磁场中。取半径为产的半球面。产的方向与半球 面轴线夹角为θ,则通过这个半球面的磁通量Φ。为 (A. $\sqrt{3}\pi R^3 B \cos\theta$ B. $\sqrt{2}\pi R^3 B \cos \theta$
 - C. $2\pi R^2 B \cos\theta$ D. $\pi R^2 B \cos \theta$
- 5. 半径分别为 R 和 r 的两个足够长中空的螺线管, 单位长度的绕线匝数相同, 通过两螺 线管的电流分别为 $I_n = I$ 和 $I_n = 2I_n$ 设两管内的磁感应强度大小分别为 B_n 和 B_n 。下 列等式中,正确的是 (

A.
$$B_x = \frac{B_r}{4}$$
 B. $B_x = \frac{B_r}{2}$ C. $B_R = B_r$ D. $B_y = 2B_r$

- 6. 在真空中, 一闭合回路 L 内围有三根载流导线. 若改变导线间的距离, 但不越出回路 L,则()
 - A. 磁感应强度 B 的环流 $\{B,d\bar{l}\}$ 改变,L上各点的 B 不变
 - B. 磁感应强度 \bar{B} 的环流 $\{\bar{B} : d\bar{l} \ \ \ \ \ \ \ \ \}$ 人上各点的 \bar{B} 改变
 - C. 磁態应强度 B 的环流 $\{B, d\bar{l}, T, \infty, L\}$ 上各点的 B 不变
 - D. 磁感应强度 \bar{B} 的环流 $d\bar{B}$ · $d\bar{l}$ 不变, L 上各点的 \bar{B} 改变
- 7. 一铜条置于均匀磁场中,铜条内电子的运动方向如图所示.下列表述正确的是(
 - A. 在铜条上a、b两点间产生一小电势差, $U_a < U_b$
 - B. 在铜条上a、b 两点间产生一小电势差, $U_a > U_b$
 - C. 电子由于受到洛伦兹力的作用其速率增大
 - D. 电子由于受到洛伦兹力的作用其速率减小
- 8. 如图所示, 圆铜盘水平放置在均匀磁场中, 磁感应强度 8 的方向垂直盘面向上. 当铜 盘绕通过中心垂直于盘面的轴逆时针转动时,下列表述正确的是(
- A. 铜盘上有感应电流产生, 沿原时针方向流动
- B. 铜盘上有感应电流产生,沿逆时针方向流动
- C. 铜盘上有感应电动势产生、铜盘边缘处电势最高
- D. 铜盘上有感应电动势产生,铜盘中心处电势最高

《太学物理A(1)》试卷A卷 第2页共8页

9. 下列表述正确的是()

- A. 若线圈内不存在磁介质, 自感系数与电流无关
- B. $\phi_{n} = LI$, 说明线圈的自感系数与线圈的电流成反比
- C. $\phi_{**} = LI$,说明线圈的磁通量越大,线圈的自感系数也一定大
- D. 线圈电流变化率不变的情况下,线圈的自感越小,产生的自感电动势越大
- 三、非选择题:将题作答在试卷上,按设问要求应写出必要的求解步骤,只写结果的不给分。共计57分。
- 1. (14分)
- (1) 如图所示,一半径为 R 的半圆形导线,通有恒定电流 J,将其放在磁感强度为 B 的均匀磁场中,磁场方向垂直于线圈所在平面,试写出半圆形导线沿 y 方向上受安培力的积分表达式.

(2) 如图所示,真空中,一长度为I的均匀带电细杆 AB,带电量为g (q>0). 利用电势叠加原理,求细杆延长线上C 点处的电势,其中BC=I (取无穷远处为电势零点).

2. (15分)

真空中,一半径为R₁的均匀带电球体(电荷体密度不为零),总带电量为Q>0。其

外套一个内、外半径分别为 R₂和 R₃的同心导体球壳. 求:

- (1) r < R,和R, < r < R,两个区域内电场强度的大小和方向:
- (2) R₁ < r < R₂ 区域内的电场能量:
- (3) R₂ < r < R, 区域内的电势分布(取无穷远点为零电势点).

3. (14分)

如图所示,质量为m, 长为L的均匀刚性细杆,可绕光滑定轴O在水平桌面上转动,转动惯量为 $J=\frac{1}{3}mL^2$,杆的一端固定着质量为m的小木块(可视为质点),木块与桌面间的动摩擦因数为 μ ,杆与桌面无接触。开始时,一质量为 $\frac{1}{3}$ m的粘性小球,以速率 v_0 沿垂直于杆的方向射向静止的小木块,磁后球与木块牢固地粘在一起。试求:

- (1) 小球刚与木块粘在一起时, 球与杆的角速度;
- (2) 小球刚与木块粘在一起时, 细杆、木块和小球系统的动能:
- (3) 要使杆至少能转一周,碰撞前小球应具有的速率.

4. (14分)

如图所示,一根长直导线载有稳恒电流 I,两条平行光滑导轨垂直于长直导线参查。 导轨的左端连接电阻 R,它们都固定在水平桌面上。导轨 AB 边与长直导线的菱离为。 导轨间距为 a. 细金属棒 CD 与导轨垂直并沿导轨以速率 o 数匀速直线运动。设定= 6 时。 CD 与 AB 边重合。不计导轨和金属棒的电阻和回路自移。表:

- (1) 长直导线周围磁感强度的大小和方向:
- (2) t 时刻穿过回路 ABCDA 的磁通量 Φ(r):
- (3) t 时刻回路 ABCDA 中的感应电流的大小和方向。

附加题: 共30分。

1. (12分)

如图所示,将半径为R的球面分为 8 等份,取其中的一份,使之均匀带正电荷,面电荷密度为 σ ,求: $\frac{1}{8}$ 带电球面在球心O处,电场强度的大小.

2. (18分)

如图所示,在磁感应强度为B的勾强磁场中,有两根足够长的平行金属导轨。导轨上有两根质量均为m,电阻均为R,长度均为L的金属棒ab和cd,两棒均垂直导轨并可沿导轨滑动。开始时,两棒间距离为 D_a ,ab棒静止,而cd棒以初速度 v_a 向右运动。不计棒与导轨间的摩擦力和回路自感。求:两棒向右运动的速度随时间的变化关系。

大学物理 A (1) A 卷参考答案及评分标准

本门课程总评成绩由两部分组成:平时成绩和期末考试成绩,其中平时成绩 占总分 40%,期末考试成绩占总分 60%.

期末考试成绩的评定:

- 1. 判断题和单项选择题凡是答对的给满分,答错的不给分.
- 2. 计算题按步骤给分, 具体分数分布情况见参考答案及评分标准(含附加题).
- 一. 判断题 (每题2分,共计16分)

题号	1	2	3	4	5	6	7	8
答案	Т	F	F	F	T	T	F	Т

二.单选题 (每题3分,共计27分)

题号	1	2	3	4	5	6	7	8	9
答案	С	С	С	D	В	D	В	C	A

三. 非选择题 (共计57分)

1.(14分)

(1)(8分)

.解:在导线上取 dl 线元,则 $d\vec{F} = Id\vec{l} \times \vec{B}$

该力在y轴方向的分量为
$$dF_y = dF \sin \theta = BIdl \sin \theta = BIR \sin \theta d\theta$$
 (6分)

积分得
$$F_y = \int dF_y = BIR \int_0^{\pi} \sin\theta d\theta = 2BIR$$
 (2分)

导线在 y 方向所受的力为: $\bar{F} = \bar{F}_y = 2BIR\bar{j}$

(2)(6分)

解: 以A为坐标原点,水平向右为x轴

正方向建立坐标轴,取 dx 的线元,该线元在 C 点处的电势为

$$dV = \frac{dq}{4\pi\varepsilon_0(2l-x)} = \frac{qdx}{4\pi l\varepsilon_0(2l-x)} \tag{3.5}$$

$$V = \int \frac{q dx}{4\pi l \varepsilon_0 (2l - x)} = \frac{q}{4\pi l \varepsilon_0} \ln 2 \tag{3 \%}$$

2.(15分)

解: (1) 电场分布球对称, 做同心球面为高斯面, 利用高斯定理

$$\oint \vec{E} \cdot d\vec{S} = E \cdot 4\pi r^2 = \frac{\sum q}{\varepsilon_0}, \qquad (2 \, \beta)$$

有

在
$$r < R_1$$
区域内, $\sum q = \frac{\frac{4}{3}\pi r^3 Q}{\frac{4}{3}\pi R_1^3}$,则

$$E_1 = \frac{Qr}{4\pi\epsilon_0 R_1^3}$$
,方向沿直径方向指向外侧。 (2分)

在 $R_1 < r < R_2$ 区域内, $\sum q = Q$, 则

$$E_2 = \frac{Q}{4\pi\epsilon_0 r^2}$$
,方向沿直径方向指向外侧。 (2分)

(2)
$$R_1 < r < R_2$$
 区域内的电场能量密度: $w_e = \frac{1}{2} \varepsilon_0 E_2^2 = \frac{Q^2}{32\pi^2 \varepsilon_0 r^4}$

选择半径为 r, 厚度为 dr 的同心球壳, 则此球壳内的电场能量为:

$$dW_e = w_e dV = \frac{Q^2}{32\pi^2 \varepsilon_0 r^4} 4\pi r^2 dr = \frac{Q^2}{8\pi \varepsilon_0 r^2} dr$$
 (3 \(\frac{1}{2}\))

 $R_1 < r < R_2$ 区间内的电场能量

$$W_{e} = \int_{R_{1}}^{R_{2}} dW_{e} = \int_{R_{1}}^{R_{2}} \frac{Q^{2}}{8\pi\varepsilon_{0}r^{2}} dr = \frac{Q^{2}}{8\pi\varepsilon_{0}} \left(\frac{1}{R_{1}} - \frac{1}{R_{2}}\right)$$
 (15)

(3) $R_2 < r < R_3$ 区间内的电场强度为: $E_3 = 0$

 $r > R_3$ 区间内的电场强度为:

$$E_4 = \frac{Q}{4\pi\epsilon_0 r^2}$$
,方向沿直径方向指向外侧。 (2分)

电势为:
$$U = \int_{0}^{\infty} \vec{E} \, d\vec{r} = \int_{0}^{R_3} 0 \, dr + \int_{R_3}^{\infty} E_4 \cdot dr = \frac{Q}{4\pi\epsilon_0 R_3}$$
 (3分)

3.(14分)

解: (1) 选小球、木块和杆为复合系统,碰撞过程中,对轴的角动量守恒

$$\frac{mv_0L}{3} = (\frac{1}{3}mL^2 + mL^2 + \frac{mL^2}{3})\omega \tag{5 \%}$$

解得
$$\omega = \frac{\upsilon_0}{5L}$$
 (1分)

(2) 碰撞后瞬间,复合系统的转动动能为

$$E_k = \frac{1}{2}J\omega^2 = \frac{1}{2}(\frac{1}{3}mL^2 + mL^2 + \frac{mL^2}{3})\left(\frac{\upsilon_0}{5L}\right)^2 = \frac{m\upsilon_0^2}{30}$$
 (5 分)

(3) 碰撞后,复合系统开始转动至停止的过程中,只有摩擦力矩做功,

$$f_{\mathcal{R}} = \mu N = \mu (\frac{1}{3}mg + mg + N_{H}) = \frac{11}{6}mg$$

沿轴的方向上,利用转动定律,有 $N_{H}L - \frac{L}{2}mg = 0$

所以
$$\frac{1}{2}(\frac{1}{3}mL^2 + mL^2 + m\frac{L^2}{3})\omega^2 = \frac{1}{30}m\upsilon_0^2 = \frac{11}{6}\mu mgL\theta$$
 (2分)

因为
$$\theta \ge 2\pi$$
,所以 $\nu_0 \ge \sqrt{110 \mu g L \pi}$ (1分)

4.(14分)

解: (1) 取圆心在长直导线上,半径为r,且垂直于直导线的圆形回路,利用安培环路定理,则 $\oint \vec{B} \cdot d\vec{l} = B2\pi r = \mu_o I$, (3分)

$$B = \frac{\mu_0 I}{2\pi r}$$
, 导线右侧, 磁场垂直于纸面向内。

(2)以A为坐标原点,AD为x轴正方向,建立坐标系,取距 AB 导线 x 远处宽为 a 长为 a 的矩形面元,则通过此面元的磁通量为

$$d\Phi = \vec{B} \cdot d\vec{S} = \frac{\mu_0 Ia}{2\pi (a+x)} dx \tag{2.5}$$

所以总磁通为:

$$\Phi = \int d\Phi = \int_{S} \vec{B} \cdot d\vec{S} = \int_{a}^{u} \frac{\mu_{0} Ia}{2\pi (a+x)} dx = \frac{\mu_{0} Ia}{2\pi} \ln \left(1 + \frac{vt}{a}\right)$$
 (2 分)

(3) 感应电流为:
$$I = \frac{\varepsilon}{R} = \frac{1}{R} \left(-\frac{d\Phi}{dt} \right) = -\frac{-\mu_0 \nu I a}{2\pi R (a + \nu t)}$$
 (2分)

所以感应电流大小为
$$\frac{\mu_0 v I a}{2\pi R(a+vt)}$$
,方向沿 $ABCDA$ (逆时针方向)。 (1分)

附加题 (共30分)

1、(12分)

解: 选面元 ds,则面电荷元在球心处的电场强度为

$$d\vec{E} = \frac{\sigma ds}{4\pi\varepsilon_0 R^2} \vec{e}_R \tag{3.5}$$

二分之一球面在 y 方向对称, 所以 y 方向电场强度相互抵消; 在 x 方向的分量为(取面元矢径与 x 方向夹角为θ)

$$\vec{E}_x = \int d\vec{E}_x = \int \frac{\sigma ds}{4\pi\varepsilon_0 R^2} \cos\theta \vec{i} = \frac{\sigma}{4\pi\varepsilon_0 R^2} \int ds \cos\theta \vec{i} = \frac{\sigma}{4\varepsilon_0} \vec{i}$$
 (4 分)

八分之一球面是二分之一球面的四分之一,且电场强度在x,y,z方向上均匀分布所以其电场强度为

$$\vec{E} = \frac{\sigma}{16\varepsilon_0}\vec{i} + \frac{\sigma}{16\varepsilon_0}\vec{j} + \frac{\sigma}{16\varepsilon_0}\vec{k} \tag{4.4}$$

电场强度的大小为
$$E = \frac{\sqrt{3}\sigma}{16\varepsilon_0}$$
。 (1分)

解: 设t时刻, cd棒速度为 v_1 , ab棒速度为 v_2 ,

则 cd 棒的电动势为 $\varepsilon_{cd} = BLv_1$, ab 棒的电动势为 $\varepsilon_{ab} = BLv_2$

总电动势为 $\varepsilon = \varepsilon_{cd} - \varepsilon_{ab} = BL(\upsilon_1 - \upsilon_2)$

回路中电流为
$$I = \frac{\varepsilon}{2R} = \frac{BL(\upsilon_1 - \upsilon_2)}{2R}$$
 (3分)

$$cd$$
棒安培力为 $F_{cd} = ILB = \frac{B^2L^2(\upsilon_1 - \upsilon_2)}{2R}$,

$$ab$$
 棒安培力为 $F_{ab} = ILB = \frac{B^2L^2(\upsilon_1 - \upsilon_2)}{2R}$,

由牛顿第二定律,得:

$$F_{cd} = -m\frac{dv_1}{dt} = \frac{B^2 L^2 (v_1 - v_2)}{2R}$$
 (1) (3 \(\frac{1}{2}\))

$$F_{ab} = m\frac{dv_2}{dt} = \frac{B^2 L^2 (v_1 - v_2)}{2R}$$
 ② (3 分)

① +②,得

$$\frac{d(\upsilon_1 - \upsilon_2)}{(\upsilon_1 - \upsilon_2)} = -\frac{B^2 L^2}{Rm} dt$$

即
$$\upsilon_1 - \upsilon_2 = \upsilon_0 e^{-\frac{B^2 L^2}{Rm}t}$$
 ③ (3分)

③式带入①式得
$$dv_1 = -\frac{B^2L^2}{2Rm}v_0e^{-\frac{B^2L^2}{Rm}t}dt$$

所以
$$v_1 = \frac{v_0}{2} \left(1 + e^{\frac{B^2 L^2}{Rm}t} \right)$$
 ④ (3分)

④式带入③式得
$$v_2 = \frac{v_0}{2} \left(1 - e^{\frac{B^2 L^2}{Rm'}} \right)$$
 (3分)