OM-S20-13: Eigen Value Problems in Optimization

C. V. Jawahar

IIIT Hyderabad

http://preon.iiit.ac.in/om_quiz

28 Feb 2020

Eigen Values and Eigen Vectors

Eigen vectors are vectors x that do not get "rotated" by A, only "stretched" (by a factor of λ)

$$Ax = \lambda x$$

Eigen values of A can be obtained by solving the characteristic equation $|A - \lambda I| = 0$. Eigen vectors form the null space of matrix $(A - \lambda I)$ Interesting properties:

- $A^2x = \lambda^2x$
- $\prod_i \lambda_i = |A|$
- $\sum_{i} \lambda_{i} = tr(A)$
- Every vector is an eigen vector of I
- Symmetric matrices have real eigen values
- **Spectral Theorem:** Symmetric matrices $S = Q\Lambda Q^T$
- Generalized eiegen value problem of two symmetric matrices A and B.

$$Ax = \lambda Bx$$

Presence of EV in OM

Many optimization problems take the form:

$$\min_{x} z = x^{T} A x, \text{s.t.} ||x||^{2} = 1$$

Solution gives us $Ax = \lambda x, z^* = \lambda$

Maximum variance line fitting: Let $y_1, ..., y_N$ be the points and w be the direction. Variance on x should be maximized with a constraint on ||w|| = 1. Also $x = w^T(y - b)$

$$\frac{1}{N} \sum_{i=1}^{N} (x_i - \frac{1}{N} \sum_{i} x_i)^2 + \lambda (w^T w - 1)$$

3 Least norm solution to Ax = 0

$$\min_{x} ||Ax||^2, \text{s.t.} ||x||^2 = 1$$

Solution:
$$(A^T A)x = \lambda x, z^* = \lambda$$

Applications: PCA

- Objective function of PCA is defined as:
 Given data matrix X: (N x M), find a direction u, such that the
 variance of the projection of X on u is maximized (Max information
 captured).
- Projection of X on u is Xu
- Mean of projections is $\bar{X}u$

$$\max_{u} \|(X - \bar{X}).u\|^2, \|u\|^2 = 1$$

The constraint comes because u is only a direction.

$$\begin{aligned} \max_{u} u^{T} \Sigma u, u^{T} u &= 1 \\ \max_{u} u^{T} \Sigma u - \lambda (u^{T} u - 1) \\ \Sigma u &= \lambda u, Z^{*} = \lambda \end{aligned}$$

Simple Graph Partitioning/Clustering

- Matrices: #edges = m; #vertices = n
 - Incidence matrix(J): $m \times n$
 - Degree Matrix: Diagonal(D; $n \times n$
 - Adjacency (A): $n \times n \in \{0, 1\}$
 - Laplacian(L): $n \times n L = D A$; $L = J^T J$
 - Affinity/Weight $(A/W) n \times n$
- A: Affinity matrix; A_{ij} affinity of ith and jth node (eg. $A_{ij} = e^{-d(x_i, x_j)}$)
- ω : vector with ω_i being the "membership" of i vertex/sample into the cluster.
- Optimization problem:

Maximize
$$\omega^T A \omega$$
 such that $\omega^T \omega = 1$

ullet ω is the eigen vector of A and characterize a good cluster.

Spectral Graph Partitioning/Clustering

- A be the adjacency matrix. Eg. (i) Fully connected with all nodes have degree d; (ii) two separate components of each have degree d₁.
- Ax = y; y_i is the sum of neighbours of node i.
- Case 1: $Ax = \lambda x$; $x = [1, 1, ..., 1]^T$ and $\lambda = d$
- Case 2: $x' = [1, \dots, 0, 0]^T$ and $\lambda' = d_1$ and $\chi'' = [0, \dots, 0, 1, 1, \dots, 1]^T$ and $\lambda'' = d_1$
- Lx = 0 is true for a constant vector say $x_i = 1$ vector, with $\lambda = 0$. (Why? D_{ii} is y_i)
- **Fiedler vector:** Eigen vector corresponding to the smallest positive (second smallest) eigen value.
- x_2 is orthogonal to x_1 . Some elements of x_2 are positive and some negative. They characterize the two clusters.