Trend Analysis

Nik Bear Brown

In this lesson we'll learn the how to implement Trend Analysis in R.

Additional packages needed

To run the code you may need additional packages.

If necessary install the followings packages.

install.packages("tseries");

library(tseries)

Data

We will be generating simulated data for this lesson.

Trend Analysis

Trend Analysis is the practice of collecting information and attempting to spot a pattern, or trend, in the information. Typically this involves analyzing the variance for a change over time. The null hypothesis: H_0 is that there is no trend. Many techniques can be used to identify trends, we'll use an ARMA model again.

Dickey-Fuller Test

The Dickey-Fuller Test is a test for the stationarity of a time series.

The Dickey-Fuller test tests whether a unit root is present in an autoregressive model. simple AR(1) model is

$$y_t = \rho y_{t-1} + u_t$$

where y_t is the variable of interest, t is the time index, ρ is a coefficient, and u_t is the error term. A unit root is present if $\rho=1$. The model would be non-stationary in this case.

The regression model can be written as

$$\nabla y_t = (\rho - 1)y_{t-1} + u_t = \delta y_{t-1} + u_t$$

where ∇ is the first difference operator.

The Dickey-Fuller Test uses a specific distribution simply known as the Dickey-Fuller table to assess whether ∇y_t is significant.

Trend Analysis in R

```
#------
set.seed(3333)
white_noise <- rnorm(100, mean = 0, sd = 3.0)
plot(white_noise,type='l',xlab='Time',main='Gaussian White Noise ACF
Function')</pre>
```

Gaussian White Noise ACF Function


```
## Fitting White noise Time series
# plot a correlogram
acf(white_noise)
```

Series white_noise

Random Walk

Fitting a Random Walk
#A good way to see if a time series follows a random walk is to compute
the successive differences between terms.
acf(diff(random_walk))

Series diff(random_walk)


```
# Moving Average Model

set.seed(555)

#ACF function with coefficients 0.84 and 0.62

ma_ts1 <- arima.sim(model = list(ma = c(0.84, 0.62), sd = 1.2), n = 1000)

head(ma_ts1, n = 8)

## [1] 0.59291917 2.51535102 0.03864703 0.56145710 -0.51638224

1.78195701

## [7] 1.08566382 1.49532881

acf(ma_ts1)
```

Series ma_ts1


```
# Autoregressive model
set.seed(5555)
ma_ts3 <- arima.sim(model = list(ar = c(0.74), sd = 1.2), n = 1000)
acf(ma_ts3)</pre>
```

Series ma_ts3

pacf(ma_ts3)

Series ma_ts3


```
#-----Dickey-Fuller for stationarity ----
adf.test(random_walk, alternative = "stationary")
##
## Augmented Dickey-Fuller Test
##
## data: random_walk
## Dickey-Fuller = -2.7267, Lag order = 4, p-value = 0.2756
## alternative hypothesis: stationary
#----- Another unit root test : Philips-Perron test -----
PP.test(random_walk)
##
## Phillips-Perron Unit Root Test
##
## data: random_walk
## Dickey-Fuller = -2.8444, Truncation lag parameter = 3, p-value =
## 0.2268
                  Seasonal Trend Decomposition in R ------
#The Seasonal Trend Decomposition using Loess (STL) is an algorithm
that was developed
```


Resources

- The heat is on.. or is it? Trend Analysis of Toronto Climate Data via @rbloggers](http://www.r-bloggers.com/the-heat-is-on-or-is-it-trend-analysis-of-toronto-climate-data/)
- Trend Analysis ETH
- Trend Analysis Using R ResearchGate

References

The data, R code and lessons are based upon:

1. Time Series Analysis:

Data Source: http://www.geophysics.geol.uoa.gr/catalog/catgr_20002008.epi

Code References:

Book: Mastering Predictive Analytic with R

Author: Rui Miguel Forte

https://www.safaribooksonline.com/library/view/mastering-predictive-

analytics/9781783982806/

Chapter 9: Time series Analysis

http://www.statoek.wiso.uni-goettingen.de/veranstaltungen/zeitreihen/sommer03/ts_r_intro.pdf

http://www.stat.pitt.edu/stoffer/tsa3/R_toot.htm

http://www.statoek.wiso.unigoettingen.de/veranstaltungen/zeitreihen/sommer03/ts_r_intro.pdf

2. Trend Analysis

Code References:

Book: Mastering Predictive Analytic with R

Author: Rui Miguel Forte

https://www.safaribooksonline.com/library/view/mastering-predictive-analytics/9781783982806/

http://www.r-bloggers.com/seasonal-trend-decomposition-in-r/

3. Seasonal Models

Code references:

Book: Time Series Analysis and Its Applications Author: Robert H. Shumway . David S. Stoffer

Link:

http://www.springer.com/us/book/9781441978646#otherversion=97814614275

http://a-little-book-of-r-for-time-series.readthedocs.org/en/latest/src/timeseries.html

https://onlinecourses.science.psu.edu/stat510/?q=node/47

https://rpubs.com/ryankelly/tsa5

https://onlinecourses.science.psu.edu/stat510/node/68

Data Reference:

https://github.com/RMDK/TimeSeriesAnalysis/blob/master/colorado_river.csv

4. Spectral Analysis

Code References: Book: Modern Applied Statistics with S Fourth edition Author: W. N. Venables and B. D. Ripley Link: Modern Applied Statistics with S Fourth edition
http://www.maths.adelaide.edu.au/patty.solomon/TS2004/tsprac3_2004.pdf