

Überblick

- + Einführung: Von Statistik zu ML
 - ◆ Was unterscheidet ML von klassischer Statistik?
 - ★ Warum benötigen Ökonomen ML-Methoden?
- **+** Grundlegende Konzepte
 - **◆** Der Trainings-Test-Split: Warum und wie?
 - ◆ Overfitting und Generalisierung
 - ★ Der Bias-Varianz-Tradeoff
- **★** ML-Methoden für Vorhersageprobleme
 - **★** LASSO-Regression für Variablenselektion
 - **★** Entscheidungsbäume und Random Forests
- **★** Fortgeschrittene Konzepte und Anwendungen
 - ♣ Cross-Validation zur Modellvalidierung
 - ★ Textanalyse mit LLMs für Ökonomen

Von klassischer Statistik zu maschinellem Lernen

Was unterscheidet ML von klassischer Statistik?

Klassische Statistik/Ökonometrie

+ Hauptziel: Parameterschätzung $(\hat{\beta})$

+ Fokus: Kausalität und Inferenz

Theorie: Modell basiert auf wirtschaftlicher Theorie

Evaluierung: In-Sample-Anpassung, Signifikanztests

Maschinelles Lernen

+ Hauptziel: Vorhersagegenauigkeit (\hat{Y})

★ Fokus: Muster und Prognosen

◆ Daten: Modell wird von Daten geleitet

+ Evaluierung: Out-of-Sample-Performance

Beide Ansätze ergänzen sich und sind nicht konkurrierend!

Terminologie: Statistik vs. ML

Datenpunkt Instance

Kovariate Feature

Parameter Weights

Schätzung Learning

Regression/Klassifikation Supervised Learning

Clustering Unsupervised Learning

Response Label

Testset-Performance Generalization

Warum benötigen Ökonomen ML-Methoden?

- **★** Große Datensätze mit vielen potenziellen Einflussvariablen
 - Administrative Daten
 - ★ Web-gescrapte Daten
 - ★ Hochfrequente Finanzdaten
- **★** Komplexe, nicht-lineare Zusammenhänge
 - ➡ Wirtschaftliche Prozesse sind selten linear
 - Interaktionseffekte sind schwer zu modellieren
- **★** Verbesserte Vorhersagen
 - ★ Konjunkturprognosen
 - **★** Risikomodelle
 - ★ Kundenverhalten
- ★ Neue Datenquellen erschließen
 - **★** Textdaten (Zentralbankstatements, Nachrichten)
 - **★** Bilder, Sensordaten

Von der Regression zum Maschinellen Lernen

Vorhersageproblem und Modellgüte

Ziel in der Regression: f(X) = E(Y|X) möglichst genau schätzen

Evaluierung: Wie gut sagt das Modell $\hat{f}(X)$ den wahren Wert Y vorher?

Mittlerer quadratischer Fehler (MSE): $MSE = rac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}\left(x_i
ight))^2$

Aber: MSE auf den Trainingsdaten ist irreführend! Warum?

Das Problem: Overfitting

Was ist Overfitting?

- ◆ Modell "lernt" die Trainingsdaten zu genau
- ★ Erfasst nicht nur die echten Muster, sondern auch das Rauschen
- **★** Folge: Schlechte Generalisierung auf neue Daten

Beispiel: Polynomiale Regression

- **★** Lineares Modell: Underfitting (zu simpel)
- **◆** Quadratisches Modell: Gute Balance
- **◆** Polynom 10. Grades: Overfitting (zu komplex)

Bildquelle

Die Lösung: Trainings- und Testdaten

Warum aufteilen?

- **◆ Trainingsdaten**: Zum Schätzen der Modellparameter
- ★ Testdaten: Zur unabhängigen Bewertung der Generalisierbarkeit

Vorgehensweise:

- **◆** Zufällige Aufteilung der Daten (z.B. 80/20)
- ★ Training des Modells nur auf Trainingsdaten
- **+** Evaluation der Performance auf Testdaten

<u>Bildquelle</u>

```
# Beispiel in R mit tidymodels
library(tidymodels)

# Daten aufteilen
data_split <- initial_split(data, prop = 0.8)
train_data <- training(data_split)
test_data <- testing(data_split)</pre>
```

Der Bias-Varianz-Tradeoff

Erwarteter Vorhersagefehler kann zerlegt werden in:

$$E[(y - \hat{f}(x))^2] = \text{Bias}^2[\hat{f}(x)] + \text{Var}[\hat{f}(x)] + \sigma^2$$

- **◆ Bias**: Systematische Abweichung des Modells
 - **+** Hoher Bias → Underfitting (zu einfaches Modell)
- **◆ Varianz**: Empfindlichkeit gegenüber Schwankungen in den Trainingsdaten
 - ♣ Hohe Varianz → Overfitting (zu komplexes Modell)
- + Irreduzibler Fehler (σ^2): Unvermeidbare Unsicherheit

Visualisierung des Bias-Varianz-Tradeoffs

<u>Bildquelle</u>

- **+** Modellkomplexität erhöhen: Bias ↓, Varianz ↑
- **+** Modellkomplexität verringern: Bias ↑, Varianz ↓

Ziel: Optimaler Punkt mit minimalem Gesamtfehler

ML-Methoden für Vorhersageprobleme

Lineare Regression als Ausgangspunkt

Klassisches lineares Modell:

$$y_i = eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \ldots + eta_p x_{ip} + arepsilon_i$$

Eigenschaften:

- lacktriangle Einfach zu interpretieren: eta_j ist der Effekt von x_j auf y
- **★** Leicht zu schätzen: Kleinste-Quadrate-Methode (OLS)
- **★** Schnell berechenbar, auch für große Datensätze

Limitierungen:

- **★** Kann nicht-lineare Beziehungen nur begrenzt erfassen
- → Bei vielen Variablen: Gefahr von Überanpassung und Multikollinearität
- ★ Keine automatische Variablenselektion

LASSO: Regularisierung für bessere Modelle

LASSO (Least Absolute Shrinkage and Selection Operator) erweitert die lineare Regression:

$$\hat{eta} = \min_{eta} \sum_{i=1}^n (y_i - eta_0 - \sum_{j=1}^p eta_j x_{ij})^2 + \lambda \sum_{j=1}^p |eta_j|$$

- lacktriangle Der Regularisierungsparameter $\lambda \sum_{j=1}^p |\beta_j|$ kontrolliert die Größe der Koeffizienten
- lacktriangle λ kontrolliert, wie stark die Regularisierung ist
- + Für λ = 0 landen wir bei der linearen Regression

Vorteile:

- **◆ Variablenselektion**: Unwichtige Koeffizienten werden auf 0 gesetzt
- **★ Regularisierung**: Verhindert Overfitting durch Einschränkung der Koeffizienten
- **Bessere Vorhersagen**: Besonders bei vielen potenziellen Prädiktoren
- + Interpretierbarkeit: Ergebnis bleibt ein lineares Modell

LASSO in der Praxis mit tidymodels

```
# LASSO in R mit dem tidymodels-Framework
library(tidymodels)
# Daten aufteilen
data_split <- initial_split(economic_data, prop = 0.8)</pre>
train data <- training(data split)</pre>
test_data <- testing(data_split)</pre>
# Rezept für Datenvorverarbeitung
lasso recipe <- recipe(target ~ ., data = train data) |>
  step normalize(all numeric predictors()) |> # Wichtig für LASSO!
  step dummy(all nominal predictors()) |>
  step zv(all predictors())
# LASSO-Modell spezifizieren
lasso spec <- linear reg(</pre>
 penalty = 0.1, # Lambda-Parameter für Regularisierung
 mixture = 1  # 1 = LASSO, 0 = Ridge, dazwischen = Elastic Net
) |>
  set engine("glmnet")
# Workflow erstellen und anpassen
lasso workflow <- workflow() |>
  add recipe(lasso recipe) |>
  add model(lasso spec) |>
  fit (train data)
```

Entscheidungsbäume: Intuitive nicht-lineare Modelle

Grundidee:

- **◆** Daten werden durch eine Reihe von binären Entscheidungen aufgeteilt
- **◆** Jede Aufteilung maximiert die Homogenität der Untergruppen
- **◆** Blätter enthalten die Vorhersagen für die jeweiligen Segmente

Vorteile:

- **★** Erfassen automatisch nicht-lineare Beziehungen und Interaktionen
- **★** Leicht zu interpretieren (visuelle Darstellung möglich)
- ★ Können mit kategorialen und numerischen Variablen umgehen
- ♣ Robust gegenüber Ausreißern und fehlenden Werten

Beispiel eines Entscheidungsbaums

Entscheidungsbäume: Funktionsweise im Detail

+ Aufteilung finden:

- **★** Für jede Variable und jeden möglichen Schwellenwert:
 - **◆** Berechne Unreinheit der resultierenden Teilmengen
 - **◆** Wähle Split, der Unreinheit am meisten reduziert

+ Unreinheitsmaße:

- ★ Regression: Varianz oder mittlerer quadratischer Fehler
- ★ Klassifikation: Gini-Index oder Entropie

+ Stopping-Kriterien:

- ◆ Maximale Tiefe erreicht
- ★ Minimale Anzahl an Beobachtungen pro Blatt
- + Keine signifikante Verbesserung mehr möglich

Random Forests: Von einzelnen Bäumen zu Wäldern

Problem von einzelnen Entscheidungsbäumen:

- → Hohe Varianz: Kleine Änderungen in den Daten können zu sehr unterschiedlichen Bäumen führen
- ★ Neigung zum Overfitting bei zu tiefen Bäumen

Lösung - Random Forests:

- **★** Erstelle viele Entscheidungsbäume (oft 100-500)
- **★** Jeder Baum wird auf einer Bootstrap-Stichprobe trainiert (Bagging)
- **◆** Bei jedem Split nur zufällige Teilmenge der Variablen betrachten (Feature Bagging)
- ★ Kombiniere die Vorhersagen aller Bäume (Durchschnitt oder Mehrheitsentscheid)

Random Forests: Eigenschaften und Vorteile

Eigenschaften:

- **★** Robust: Weniger anfällig für Overfitting als einzelne Bäume
- **◆ Genau**: Oft bessere Vorhersagen als einzelne Modelle
- **◆ Stabil**: Geringe Varianz durch Mittelung vieler Bäume
- + Flexibel: Automatische Erfassung von Nicht-Linearitäten und Interaktionen

Nachteile:

- ★ Weniger interpretierbar als einzelne Bäume
- **★** Berechnungsintensiver
- ★ Kann "Black-Box"-Charakter haben

Random Forests in der Praxis

```
# Random Forest mit tidymodels
library(tidymodels)
# Modell spezifizieren
rf spec <- rand forest(
 trees = 500,
                      # Anzahl der Bäume
 min_n = tune() # Minimale Knotengröße (zu optimieren)
 set_engine("ranger") |>  # Schnelle Implementation
 set mode("regression")  # Für Regressionsprobleme
# Workflow erstellen
rf workflow <- workflow() |>
 add recipe (recipe (target ~ ., data = train data)) |>
 add model(rf spec)
# Für Modelltuning siehe späteren Teil über Cross-Validation
```

Modellvalidierung und neue Anwendungsgebiete

Warum eine einzelne Train-Test-Aufteilung nicht ausreicht

Probleme der einfachen Aufteilung:

- **Tufälligkeit**: Ergebnisse hängen stark von der spezifischen Aufteilung ab
- **Datenverschwendung**: Testdaten werden nur zur Evaluation, nicht zum Training verwendet
- **◆ Parametertuning**: Wie Hyperparameter optimieren, ohne Testdaten zu "verbrauchen"?

Beispiel für Hyperparameter:

- **+** LASSO: Regularisierungsparameter λ
- Random Forest: Anzahl der Bäume, Tiefe der Bäume, Anzahl der Variablen pro Split

Cross-Validation: Robuste Modellvalidierung

K-Fold Cross-Validation:

- ★ Teile Trainingsdaten in K gleichgroße Teile (Folds)
- ★ Für jedes Fold i (i=1...K):
 - ♣ Trainiere auf allen Daten außer Fold i
 - **★** Fyaluiere auf Fold i
- ➡ Mittlere Performance über alle K Folds

<u>Bildquelle</u>

Vorteile:

- Robustere Schätzung der Modellgüte
- **◆** Effiziente Nutzung der verfügbaren Daten
- **★** Bessere Generalisierbarkeit der Ergebnisse

Cross-Validation für Hyperparameter-Tuning

```
# Hyperparameter-Tuning mit Cross-Validation
library(tidymodels)
# Kreuzvalidierung definieren
cv folds \leftarrow vfold cv(train data, v = 10) # 10-Fold CV
# Tuning-Grid für LASSO-Regularisierungsparameter
lambda grid <- grid regular(</pre>
  penalty (range = c(-3, 1), trans = log10 trans()),
  levels = 50
# Tuning durchführen
tuning_results <- lasso_workflow |>
 tune grid(
   resamples = cv folds,
   grid = lambda grid,
   metrics = metric_set(rmse, rsq)
# Besten Parameter auswählen
best params <- select best(tuning results, "rmse")</pre>
# Finales Modell trainieren
final model <- finalize workflow(lasso workflow, best params) |>
 fit (train data)
```

Beispielhafte Anwendungen: Textanalyse

Traditionelle Ökonomie:

- **★** Fokus auf strukturierte, quantitative Daten
- **◆** Qualitative Informationen oft vernachlässigt

Neue Möglichkeiten durch Textanalyse:

- **★** Analyse von Zentralbankstatements
- **★** Sentimentanalyse von Wirtschaftsnachrichten
- ★ Auswertung von Geschäftsberichten
- ♣ Analyse von Kundenrezensionen

Methoden:

- ◆ Bag-of-Words und TF-IDF
- **★** Topic Modeling
- ★ Word Embeddings
- Large Language Models (LLMs)

Large Language Models (LLMs) für Ökonomen

Was sind LLMs?

- **★** Transformer-basierte Modelle, trainiert auf riesigen Textmengen
- **★** Erkennen komplexe Zusammenhänge und Kontexte in Texten
- **★** Beispiele: GPT, Claude, Gemini

Anwendungsmöglichkeiten in der Ökonomie:

- **★** Informationsextraktion aus komplexen Dokumenten
- **★ Sentimentanalyse** mit feiner Granularität
- **Szenarioanalyse** und Prognosegenerierung
- + Forschungsunterstützung (Literaturzusammenfassungen, Hypothesengenerierung)

LLMs in R nutzen mit dem ellmer-Paket

```
# Installation des ellmer-Pakets
install.packages("ellmer")
library(ellmer)
# API-Schlüssel in .Renviron speichern (sicher)
# usethis::edit r environ()
# Füge hinzu: GOOGLE API KEY=IhrApiSchlüssel
# Chat mit Google Gemini initialisieren
gemini chat <- chat gemini(</pre>
  system prompt = "Du bist ein Ökonom, der bei der Analyse von Wirtschaftsdaten hilft.",
 model = "gemini-2.0-flash"
# Beispielanfrage stellen
response <- gemini chat$chat(
  "Analysiere folgende Konjunkturdaten und erstelle eine Prognose für das nächste Quartal..."
```

Zusammenfassung: Wichtige Erkenntnisse für Ökonomen

Kernprinzipien des ML nach Breiman (2001)

- + Rashomon-Effekt:
 - ◆ Viele unterschiedliche Modelle k\u00f6nnen \u00e4hnlich gute Vorhersagen liefern
 - ♣ Vorsicht bei kausaler Interpretation von Modellparametern
- Occam-Prinzip:
 - **★** Einfache, transparente Modelle sind oft weniger präzise
 - **★** Abwägung zwischen Interpretierbarkeit und Vorhersagegenauigkeit
- + Bellman-Prinzip:
 - ➡ Hohe Dimensionalität kann in ML vorteilhaft sein
 - **★** ML-Methoden können viele Prädiktoren effektiv nutzen

Methoden im Vergleich: Stärken und Schwächen

Methode	Vorteil	Nachteil	Typische Anwendung
LASSO	Interpretierbar, Variablenselektion	Limitiert bei Nichtlinearität	Makroökonomische Prognosen, Faktorselektion
Entscheidungsbäume	Intuitive Visualisierung, transparent	Instabil, Tendenz zum Overfitting	Kreditscoring mit erklärbaren Regeln
Random Forest	Flexibel, robuste Prognosen	Schwerer interpretierbar	Kreditrisiko-Modellierung, Preisvorhersagen
LLMs	Tiefes Textverständnis	Black-Box, Ressourcenintensiv	Sentimentanalyse, Informationsextraktion

Schlüssel zum Erfolg mit ML in der Ökonomie

★ Methodenauswahl nach Anwendungsfall:

- ♣ Prognose vs. Kausalanalyse
- **★** Interpretierbarkeit vs. Genauigkeit

★ Robuste Validierung:

- **★** Immer Out-of-Sample Performance prüfen
- ★ Kreuzvalidierung für Hyperparameter-Optimierung

+ Feature Engineering:

- ♣ Domänenwissen einbringen
- **◆** Ökonomische Theorie als Leitfaden

+ Kombination von Methoden:

- **◆** Strukturelle Modelle + ML-Komponenten
- **◆** Double/Debiased Machine Learning für Kausalinferenz (weiterführende Literatur)

Empfohlene Literatur zur Vertiefung

- **◆** Athey, S., & Imbens, G. W. (2019). Machine learning methods that economists should know about. Annual Review of Economics, 11(1), 685-725.
- ◆ Mullainathan, S., & Spiess, J. (2017). Machine learning: an applied econometric approach. Journal of Economic Perspectives, 31(2), 87-106.
- ◆ Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of economic perspectives, 28(2), 3-28.
- **◆** Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical science, 16(3), 199-231.

R-Pakete für ML in der Ökonomie

- **tidymodels**: Framework für moderne ML-Workflows
- **# glmnet**: Penalisierte Regression (LASSO, Ridge, Elastic Net)
- + randomForest und ranger: Schnelle Random Forest Implementierungen
- **◆ DoubleML**: Implementierung von Double/Debiased Machine Learning
- **ellmer**: R-Integration für LLMs (GPT, Claude, Gemini, etc.)