# Protocols – Dash Protocols, NUMA Multiprocessors, NUMA Algorithms

#### **Introduction to DASH Protocols**

**Definition:** DASH, or Directory Architecture for Shared Memory, is a protocol used in distributed shared memory systems. It coordinates memory accesses across multiple processors by using a directory-based approach.

**Purpose:** DASH protocols aim to efficiently manage and maintain coherence across distributed memory in multiprocessor systems, allowing processors to share data as if they were accessing a single, unified memory.

**Context in DSM:** In DSM, memory is physically distributed among processors, but DASH protocols allow processes to access this memory seamlessly while keeping data consistent across nodes.

### **NUMA** Multiprocessors

- NUMA stands for Non-Uniform Memory Access.
- In NUMA multiprocessors, memory is divided across different nodes, each with its own memory that it accesses faster than the memory of other nodes.



#### **How NUMA Works**

- Local Memory: Each processor has direct, faster access to its 'local' memory.
- Remote Memory: Processors can still access memory in other nodes (remote memory), but it's slower than accessing local memory.

## Why NUMA?

- As the number of processors increases, it's harder for all of them to share a single memory efficiently (like in Uniform Memory Access, or UMA).
- NUMA reduces memory access bottlenecks by keeping data closer to the processor that needs it most often.

#### Properties of NUMA

- Non-Uniform Memory Access Time:
- Memory access time depends on whether a processor is accessing its local memory or remote memory. Access to local memory is faster, while access to remote memory is slower.
- Scalability:
- NUMA systems can scale more easily as they add more processors and memory because each processor doesn't rely on a single memory bus.

### Properties of NUMA

- Memory Affinity:
- Programs are often designed to keep frequently used data close to the processor that uses it (memory affinity). This helps to minimize remote memory accesses, making the system more efficient.

#### **NUMA Algorithms**

- First-Touch Allocation:
- Data is initially placed in the local memory of the first processor that accesses it, reducing remote access if that processor uses it frequently.
- Page Migration:
- Frequently accessed data by a particular processor is moved to its local memory, minimizing remote access for that processor.

### **NUMA Algorithms**

- Dynamic Memory Mapping:
- Continuously adjusts the placement of memory pages based on recent access patterns, optimizing local access and adapting to changing workloads.
- Replication:
- Copies of commonly accessed data are placed in the local memory of each processor needing it, reducing remote access at the cost of additional memory usage.