Machine Learning Course

Lecture 6: Ensembles

MIPT, 2019

Outline

- 1. Bias-variance decomposition.
- 2. Bagging.
- RSM Random Subspace Method
- 4. Random Forest.

The dataset $X=(x_i,y_i)_{i=1}^\ell$ with $y_i\in\mathbb{R}$ for regression problem.

The dataset $X=(x_i,y_i)_{i=1}^\ell$ with $y_i\in\mathbb{R}$ for regression problem.

Denote loss function
$$L(y,a) = ig(y-a(x)ig)^2$$
 .

4

The dataset $X=(x_i,y_i)_{i=1}^\ell$ with $y_i\in\mathbb{R}$ for regression problem.

Denote loss function
$$L(y,a) = (y-a(x))^2$$
 .

The corresponding risk estimation is

$$R(a) = \mathbb{E}_{x,y} \Big[\big(y - a(x) \big)^2 \Big] = \int_{\mathbb{Y}} \int_{\mathbb{Y}} p(x,y) \big(y - a(x) \big)^2 dx dy.$$

Let's show that
$$a_*(x) = \mathbb{E}[y \,|\, x] = \int_{\mathbb{V}} y p(y \,|\, x) dy$$

Let's show that
$$a_*(x) = \mathbb{E}[y \mid x] = \int_{\mathbb{Y}} y p(y \mid x) dy = \operatorname*{arg\,min}_a R(a).$$

Let's show that
$$a_*(x) = \mathbb{E}[y \,|\, x] = \int_{\mathbb{Y}} y p(y \,|\, x) dy = \operatorname*{arg\,min}_a R(a).$$

$$L(y, a(x)) = (y - a(x))^2$$

Let's show that
$$a_*(x) = \mathbb{E}[y \mid x] = \int_{\mathbb{Y}} y p(y \mid x) dy = \operatorname*{arg\,min}_a R(a).$$

$$L(y, a(x)) = (y - a(x))^{2} = (y - \mathbb{E}(y \mid x) + \mathbb{E}(y \mid x) - a(x))^{2} =$$

Let's show that
$$a_*(x) = \mathbb{E}[y \mid x] = \int_{\mathbb{Y}} y p(y \mid x) dy = \operatorname*{arg\,min}_a R(a).$$

$$L(y, a(x)) = (y - a(x))^{2} = (y - \mathbb{E}(y \mid x) + \mathbb{E}(y \mid x) - a(x))^{2} =$$

$$= (y - \mathbb{E}(y \mid x))^{2} + 2(y - \mathbb{E}(y \mid x))(\mathbb{E}(y \mid x) - a(x)) + (\mathbb{E}(y \mid x) - a(x))^{2}.$$

Let's return to the risk estimation:

Let's show that
$$a_*(x) = \mathbb{E}[y \mid x] = \int_{\mathbb{Y}} y p(y \mid x) dy = \operatorname*{arg\,min}_a R(a).$$

$$L(y, a(x)) = (y - a(x))^{2} = (y - \mathbb{E}(y \mid x) + \mathbb{E}(y \mid x) - a(x))^{2} =$$

$$= (y - \mathbb{E}(y \mid x))^{2} + 2(y - \mathbb{E}(y \mid x))(\mathbb{E}(y \mid x) - a(x)) + (\mathbb{E}(y \mid x) - a(x))^{2}.$$

Let's return to the risk estimation:

$$R(a) = \mathbb{E}_{x,y} L(y, a(x))$$

Let's show that
$$a_*(x) = \mathbb{E}[y \mid x] = \int_{\mathbb{Y}} y p(y \mid x) dy = \operatorname*{arg\,min}_a R(a).$$

$$L(y, a(x)) = (y - a(x))^{2} = (y - \mathbb{E}(y \mid x) + \mathbb{E}(y \mid x) - a(x))^{2} =$$

$$= (y - \mathbb{E}(y \mid x))^{2} + 2(y - \mathbb{E}(y \mid x))(\mathbb{E}(y \mid x) - a(x)) + (\mathbb{E}(y \mid x) - a(x))^{2}.$$

Let's return to the risk estimation:

$$R(a) = \mathbb{E}_{x,y} L(y, a(x)) =$$

$$= \mathbb{E}_{x,y} (y - \mathbb{E}(y \mid x))^2 + \mathbb{E}_{x,y} (\mathbb{E}(y \mid x) - a(x))^2 +$$

$$+ 2\mathbb{E}_{x,y} (y - \mathbb{E}(y \mid x)) (\mathbb{E}(y \mid x) - a(x)).$$

$$egin{aligned} R(a) &= \mathbb{E}_{x,y} L(y,a(x)) = \ &= \mathbb{E}_{x,y} (y - \mathbb{E}(y\,|\,x))^2 + \mathbb{E}_{x,y} (\mathbb{E}(y\,|\,x) - a(x))^2 + \ &+ 2\mathbb{E}_{x,y} ig(y - \mathbb{E}(y\,|\,x)ig) ig(\mathbb{E}(y\,|\,x) - a(x)ig). \end{aligned}$$

Focus on the last term:

$$R(a) = \mathbb{E}_{x,y} L(y,a(x)) = \\ = \mathbb{E}_{x,y} (y - \mathbb{E}(y \mid x))^2 + \mathbb{E}_{x,y} (\mathbb{E}(y \mid x) - a(x))^2 + \\ + 2\mathbb{E}_{x,y} \big(y - \mathbb{E}(y \mid x) \big) \big(\mathbb{E}(y \mid x) - a(x) \big).$$
 Focus on the last term:

$$\mathbb{E}_{x}\mathbb{E}_{y}\Big[\big(y - \mathbb{E}(y \mid x)\big)\big(\mathbb{E}(y \mid x) - a(x)\big) \mid x\Big] =$$

$$R(a) = \mathbb{E}_{x,y} L(y,a(x)) = \\ = \mathbb{E}_{x,y} (y - \mathbb{E}(y \mid x))^2 + \mathbb{E}_{x,y} (\mathbb{E}(y \mid x) - a(x))^2 + \\ + 2\mathbb{E}_{x,y} \big(y - \mathbb{E}(y \mid x) \big) \big(\mathbb{E}(y \mid x) - a(x) \big).$$
 Focus on the last term:

Does not depend on y $\mathbb{E}_x \mathbb{E}_y \Big[\big(y - \mathbb{E}(y \,|\, x) \big) \Big[\big(\mathbb{E}(y \,|\, x) - a(x) \big) \Big] \,|\, x \Big] =$

$$R(a) = \mathbb{E}_{x,y} L(y,a(x)) = \\ = \mathbb{E}_{x,y} (y - \mathbb{E}(y\,|\,x))^2 + \mathbb{E}_{x,y} (\mathbb{E}(y\,|\,x) - a(x))^2 + \\ + 2\mathbb{E}_{x,y} \big(y - \mathbb{E}(y\,|\,x)\big) \big(\mathbb{E}(y\,|\,x) - a(x)\big).$$
 Focus on the last term:

Does not depend on y $\mathbb{E}_x \mathbb{E}_y \Big[\big(y - \mathbb{E}(y \,|\, x) \big) \Big(\mathbb{E}(y \,|\, x) - a(x) \big) |\, x \Big] = \\ = \mathbb{E}_x \Big(\big(\mathbb{E}(y \,|\, x) - a(x) \big) \mathbb{E}_y \Big[\big(y - \mathbb{E}(y \,|\, x) \big) |\, x \Big] \Big) =$

$$R(a) = \mathbb{E}_{x,y} L(y,a(x)) = \\ = \mathbb{E}_{x,y} (y - \mathbb{E}(y \mid x))^2 + \mathbb{E}_{x,y} (\mathbb{E}(y \mid x) - a(x))^2 + \\ + 2\mathbb{E}_{x,y} \big(y - \mathbb{E}(y \mid x) \big) \big(\mathbb{E}(y \mid x) - a(x) \big).$$
 Focus on the last term:

$$\mathbb{E}_{x}\mathbb{E}_{y}\left[\left(y - \mathbb{E}(y \mid x)\right)\left(\mathbb{E}(y \mid x) - a(x)\right) \mid x\right] =$$

$$= \mathbb{E}_{x}\left(\left(\mathbb{E}(y \mid x) - a(x)\right)\mathbb{E}_{y}\left[\left(y - \mathbb{E}(y \mid x)\right) \mid x\right]\right) =$$

$$= \mathbb{E}_{x}\left(\left(\mathbb{E}(y \mid x) - a(x)\right)\left(\mathbb{E}(y \mid x) - \mathbb{E}(y \mid x)\right)\right) =$$

$$R(a) = \mathbb{E}_{x,y} L(y,a(x)) = \\ = \mathbb{E}_{x,y} (y - \mathbb{E}(y \mid x))^2 + \mathbb{E}_{x,y} (\mathbb{E}(y \mid x) - a(x))^2 + \\ + 2\mathbb{E}_{x,y} \big(y - \mathbb{E}(y \mid x) \big) \big(\mathbb{E}(y \mid x) - a(x) \big).$$
 Focus on the last term:

$$\mathbb{E}_{x}\mathbb{E}_{y}\Big[\big(y - \mathbb{E}(y \mid x)\big)\big(\mathbb{E}(y \mid x) - a(x)\big) \mid x\Big] =$$

$$= \mathbb{E}_{x}\Big(\big(\mathbb{E}(y \mid x) - a(x)\big)\mathbb{E}_{y}\Big[\big(y - \mathbb{E}(y \mid x)\big) \mid x\Big]\Big) =$$

$$= \mathbb{E}_{x}\Big(\big(\mathbb{E}(y \mid x) - a(x)\big)\big(\mathbb{E}(y \mid x) - \mathbb{E}(y \mid x)\big)\Big) =$$

$$= 0$$

$$R(a) = \mathbb{E}_{x,y} L(y,a(x)) = \\ = \mathbb{E}_{x,y} (y - \mathbb{E}(y \mid x))^2 + \mathbb{E}_{x,y} (\mathbb{E}(y \mid x) - a(x))^2 + \\ + 2\mathbb{E}_{x,y} \big(y - \mathbb{E}(y \mid x) \big) \big(\mathbb{E}(y \mid x) - a(x) \big). \\ > 0$$

$$\mathbb{E}_{x}\mathbb{E}_{y}\Big[\big(y - \mathbb{E}(y \mid x)\big)\big(\mathbb{E}(y \mid x) - a(x)\big) \mid x\Big] =$$

$$= \mathbb{E}_{x}\Big(\big(\mathbb{E}(y \mid x) - a(x)\big)\mathbb{E}_{y}\Big[\big(y - \mathbb{E}(y \mid x)\big) \mid x\Big]\Big) =$$

$$= \mathbb{E}_{x}\Big(\big(\mathbb{E}(y \mid x) - a(x)\big)\big(\mathbb{E}(y \mid x) - \mathbb{E}(y \mid x)\big)\Big) =$$

$$= 0$$

Does not depend on a(x)

So the risk takes form:

$$R(a) = \mathbb{E}_{x,y}(y - \mathbb{E}(y \mid x))^2 + \mathbb{E}_{x,y}(\mathbb{E}(y \mid x) - a(x))^2.$$

The minimum is reached when $a(x) = \mathbb{E}(y \mid x)$.

So the optimal regression model with square loss is

$$a_*(x) = \mathbb{E}(y \mid x) = \int_{\mathbb{Y}} yp(y \mid x)dy.$$

So
$$L(\mu) = \mathbb{E}_X \left[\mathbb{E}_{x,y} \left[\left(y - \mu(X)(x) \right)^2 \right] \right]$$
 , where X dataset.

So
$$L(\mu)=\mathbb{E}_X\left|\mathbb{E}_{x,y}\left|\left(y-\mu(X)(x)
ight)^2\right|
ight|$$
 , where X dataset.

If X is fixed, then

$$\mathbb{E}_{x,y}\Big[\big(y-\mu(X)\big)^2\Big] = \mathbb{E}_{x,y}\Big[\big(y-\mathbb{E}[y\,|\,x]\big)^2\Big] + \mathbb{E}_{x,y}\Big[\big(\mathbb{E}[y\,|\,x]-\mu(X)\big)^2\Big].$$

So
$$L(\mu) = \mathbb{E}_X \Big[\mathbb{E}_{x,y} \Big[ig(y - \mu(X)(x) ig)^2 \Big] \Big]$$
 , where X dataset.

If X is fixed, then

$$\mathbb{E}_{x,y}\Big[\big(y-\mu(X)\big)^2\Big] = \mathbb{E}_{x,y}\Big[\big(y-\mathbb{E}[y\,|\,x]\big)^2\Big] + \mathbb{E}_{x,y}\Big[\big(\mathbb{E}[y\,|\,x]-\mu(X)\big)^2\Big].$$

Let's combine the latter equations:

So
$$L(\mu)=\mathbb{E}_X\left|\mathbb{E}_{x,y}\left|\left(y-\mu(X)(x)
ight)^2\right|
ight|$$
 , where X dataset.

If X is fixed, then

$$\mathbb{E}_{x,y}\Big[\big(y-\mu(X)\big)^2\Big] = \mathbb{E}_{x,y}\Big[\big(y-\mathbb{E}[y\,|\,x]\big)^2\Big] + \mathbb{E}_{x,y}\Big[\big(\mathbb{E}[y\,|\,x]-\mu(X)\big)^2\Big].$$

Let's combine the latter equations:

$$L(\mu) = \mathbb{E}_{X} \left[\underbrace{\mathbb{E}_{x,y} \left[\left(y - \mathbb{E}[y \mid x] \right)^{2} \right]} + \mathbb{E}_{x,y} \left[\left(\mathbb{E}[y \mid x] - \mu(X) \right)^{2} \right] \right]$$

Does not depend on X

$$L(\mu) = \mathbb{E}_{X} \left[\underbrace{\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \mid x] \big)^{2} \Big]}_{\text{Decorption}} + \mathbb{E}_{x,y} \Big[\big(\mathbb{E}[y \mid x] - \mu(X) \big)^{2} \Big] \right] = 0$$

Does not depend on X

$$L(\mu) = \mathbb{E}_X \left[\underbrace{\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{Does not depend on X}} + \mathbb{E}_{x,y} \Big[\big(\mathbb{E}[y \, | \, x] - \mu(X) \big)^2 \Big] \right] = 0$$

$$= \mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \mid x] \big)^2 \Big] + \mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mu(X) \big)^2 \Big] \Big].$$

$$L(\mu) = \mathbb{E}_{X} \left[\mathbb{E}_{x,y} \left[\left(y - \mathbb{E}[y \mid x] \right)^{2} \right] + \mathbb{E}_{x,y} \left[\left(\mathbb{E}[y \mid x] - \mu(X) \right)^{2} \right] \right] =$$

$$= \mathbb{E}_{x,y} \left[\left(y - \mathbb{E}[y \mid x] \right)^{2} \right] + \mathbb{E}_{x,y} \left[\mathbb{E}_{X} \left[\left(\mathbb{E}[y \mid x] - \mu(X) \right)^{2} \right] \right].$$

Focus on the second term:

$$L(\mu) = \mathbb{E}_{X} \Big[\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \mid x] \big)^{2} \Big] + \mathbb{E}_{x,y} \Big[\big(\mathbb{E}[y \mid x] - \mu(X) \big)^{2} \Big] \Big] =$$

$$= \mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \mid x] \big)^2 \Big] + \Big[\mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mu(X) \big)^2 \Big] \Big] \Big].$$

Focus on the second term:

$$\mathbb{E}_{x,y}\Big[\mathbb{E}_X\Big[\big(\mathbb{E}[y\,|\,x]-\mu(X)\big)^2\Big]\Big] =$$

$$L(\mu) = \mathbb{E}_X \left[\mathbb{E}_{x,y} \left[\left(y - \mathbb{E}[y \mid x] \right)^2 \right] + \mathbb{E}_{x,y} \left[\left(\mathbb{E}[y \mid x] - \mu(X) \right)^2 \right] \right] =$$

$$= \mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \mid x] \big)^2 \Big] + \mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mu(X) \big)^2 \Big] \Big].$$

Focus on the second term:

$$\mathbb{E}_{x,y} \left[\mathbb{E}_{X} \left[\left(\mathbb{E}[y \mid x] - \mu(X) \right)^{2} \right] \right] =$$

$$= \mathbb{E}_{x,y} \left[\mathbb{E}_{X} \left[\left(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \left[\mu(X) \right] + \mathbb{E}_{X} \left[\mu(X) \right] - \mu(X) \right)^{2} \right] \right]$$

$$\mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mu(X) \big)^2 \Big] \Big] =$$

$$= \mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mathbb{E}_X \big[\mu(X) \big] + \mathbb{E}_X \big[\mu(X) \big] - \mu(X) \big)^2 \Big] \Big] =$$

$$\mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mu(X) \Big)^{2} \Big] \Big] = \\
= \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} [\mu(X)] + \mathbb{E}_{X} [\mu(X)] - \mu(X) \Big)^{2} \Big] \Big] = \\
= \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} [\mu(X)] \Big)^{2} \Big] \Big] + \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\mathbb{E}_{X} [\mu(X)] - \mu(X) \Big)^{2} \Big] \Big] + \\
+ 2 \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} [\mu(X)] \Big) \Big(\mathbb{E}_{X} [\mu(X)] - \mu(X) \Big) \Big] \Big].$$

Just a bit further, we are almost there

$$\mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\big(\mathbb{E}[y \mid x] - \mu(X) \big)^{2} \Big] \Big] =$$

$$= \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] + \mathbb{E}_{X} \big[\mu(X) \big] - \mu(X) \big)^{2} \Big] \Big] =$$

$$= \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \big)^{2} \Big] \Big] + \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\big(\mathbb{E}_{X} \big[\mu(X) \big] - \mu(X) \big)^{2} \Big] \Big] +$$

$$+2\mathbb{E}_{x,y}\Big[\mathbb{E}_X\Big[\big(\mathbb{E}[y\,|\,x]-\mathbb{E}_X\big[\mu(X)\big]\big)\big(\mathbb{E}_X\big[\mu(X)\big]-\mu(X)\big)\Big]\Big].$$

Focus on this term

$$\mathbb{E}_{X} \Big[\big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \big) \big(\mathbb{E}_{X} \big[\mu(X) \big] - \mu(X) \big) \Big] =$$

$$\mathbb{E}_{X} \left[\left(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \left[\mu(X) \right] \right) \left(\mathbb{E}_{X} \left[\mu(X) \right] - \mu(X) \right) \right] =$$

$$= \left(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \left[\mu(X) \right] \right) \mathbb{E}_{X} \left[\mathbb{E}_{X} \left[\mu(X) \right] - \mu(X) \right] =$$

$$\mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \Big) \Big(\mathbb{E}_{X} \big[\mu(X) \big] - \mu(X) \Big) \Big] =$$

$$= \Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \Big) \mathbb{E}_{X} \Big[\mathbb{E}_{X} \big[\mu(X) \big] - \mu(X) \Big] =$$

$$= \Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \Big) \Big[\mathbb{E}_{X} \big[\mu(X) \big] - \mathbb{E}_{X} \big[\mu(X) \big] \Big] =$$

$$\begin{split} \mathbb{E}_{X} \Big[\Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \Big) \Big(\mathbb{E}_{X} \big[\mu(X) \big] - \mu(X) \Big) \Big] &= \\ &= \Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \Big) \mathbb{E}_{X} \Big[\mathbb{E}_{X} \big[\mu(X) \big] - \mu(X) \Big] = \\ &= \Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X} \big[\mu(X) \big] \Big) \Big[\mathbb{E}_{X} \big[\mu(X) \big] - \mathbb{E}_{X} \big[\mu(X) \big] \Big] = \\ &= 0. \end{split}$$

$$\mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mu(X) \big)^2 \Big] \Big] =$$

$$= \mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mathbb{E}_X \big[\mu(X) \big] + \mathbb{E}_X \big[\mu(X) \big] - \mu(X) \big)^2 \Big] \Big] =$$

$$= \mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}[y \mid x] - \mathbb{E}_X \big[\mu(X) \big] \big)^2 \Big] \Big] + \mathbb{E}_{x,y} \Big[\mathbb{E}_X \Big[\big(\mathbb{E}_X \big[\mu(X) \big] - \mu(X) \big)^2 \Big] \Big] +$$

$$+2\mathbb{E}_{x,y}\Big[\mathbb{E}_X\Big[\big(\mathbb{E}[y\,|\,x]-\mathbb{E}_X\big[\mu(X)\big]\big)\big(\mathbb{E}_X\big[\mu(X)\big]-\mu(X)\big)\Big]\Big].$$

$$L(\mu) = \underbrace{\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{noise}} + \underbrace{\mathbb{E}_x \Big[\big(\mathbb{E}_X \big[\mu(X) \big] - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{bias}} + \underbrace{\mathbb{E}_x \Big[\big(\mu(X) - \mathbb{E}_X \big[\mu(X) \big] \big)^2 \Big] \Big]}_{\text{variance}}.$$

$$L(\mu) = \underbrace{\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{noise}} + \underbrace{\mathbb{E}_x \Big[\big(\mathbb{E}_X \big[\mu(X) \big] - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{bias}} + \underbrace{\mathbb{E}_x \Big[\big(\mu(X) - \mathbb{E}_X \big[\mu(X) \big] \big)^2 \Big]}_{\text{variance}}.$$

This exact form of bias-variance decomposition is correct for square loss in regression.

However, it is much more general. See extra materials for more exotic cases.

Bagging = Bootstrap aggregating

Denote dataset \tilde{X} bootstrapped from X.

Denote μ : $\tilde{\mu}(X) = \mu(\tilde{X})$. Let $b_n(x)$ be basic algorithm.

Denote the ensemble:

$$a_N(x) = \frac{1}{N} \sum_{n=1}^{N} b_n(x) = \frac{1}{N} \sum_{n=1}^{N} \tilde{\mu}(X)(x).$$

$$L(\mu) = \underbrace{\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{noise}} + \underbrace{\mathbb{E}_x \Big[\big(\mathbb{E}_X \big[\mu(X) \big] - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{bias}} + \underbrace{\mathbb{E}_x \Big[\big(\mu(X) - \mathbb{E}_X \big[\mu(X) \big] \big)^2 \Big] \Big]}_{\text{variance}}.$$

$$\mathbb{E}_{x,y}\Big[\Big(\mathbb{E}_X\Big[\frac{1}{N}\sum_{1}^N\tilde{\mu}(X)(x)\Big]-\mathbb{E}[y\,|\,x]\Big)^2\Big]=$$

$$\mathbb{E}_{x,y} \left[\left(\mathbb{E}_X \left[\frac{1}{N} \sum_{n=1}^N \tilde{\mu}(X)(x) \right] - \mathbb{E}[y \mid x] \right)^2 \right] =$$

$$= \mathbb{E}_{x,y} \left[\left(\frac{1}{N} \sum_{n=1}^N \mathbb{E}_X [\tilde{\mu}(X)(x)] - \mathbb{E}[y \mid x] \right)^2 \right] =$$

$$\mathbb{E}_{x,y} \left[\left(\mathbb{E}_X \left[\frac{1}{N} \sum_{n=1}^N \tilde{\mu}(X)(x) \right] - \mathbb{E}[y \mid x] \right)^2 \right] =$$

$$= \mathbb{E}_{x,y} \left[\left(\frac{1}{N} \sum_{n=1}^N \mathbb{E}_X [\tilde{\mu}(X)(x)] - \mathbb{E}[y \mid x] \right)^2 \right] =$$

$$= \mathbb{E}_{x,y} \left[\left(\mathbb{E}_X \left[\tilde{\mu}(X)(x) \right] - \mathbb{E}[y \mid x] \right)^2 \right].$$

$$\mathbb{E}_{x,y} \left[\left(\mathbb{E}_{X} \left[\frac{1}{N} \sum_{n=1}^{N} \tilde{\mu}(X)(x) \right] - \mathbb{E}[y \mid x] \right)^{2} \right] =$$

$$= \mathbb{E}_{x,y} \left[\left(\frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{X} [\tilde{\mu}(X)(x)] - \mathbb{E}[y \mid x] \right)^{2} \right] =$$

$$= \mathbb{E}_{x,y} \left[\left(\mathbb{E}_{X} \left[\tilde{\mu}(X)(x) \right] - \mathbb{E}[y \mid x] \right)^{2} \right].$$
One algorithm bias

The variance: $\mathbb{E}_{x,y}\Big[\mathbb{E}_X\Big[\Big(\frac{1}{N}\sum_{n=1}^N \tilde{\mu}(X)(x) - \mathbb{E}_X\Big[\frac{1}{N}\sum_{n=1}^N \tilde{\mu}(X)(x)\Big]\Big)^2\Big]\Big].$

$$\left(\frac{1}{N}\sum_{n=1}^{N}\tilde{\mu}(X)(x) - \mathbb{E}_{X}\left[\frac{1}{N}\sum_{n=1}^{N}\tilde{\mu}(X)(x)\right]\right)^{2} =
= \frac{1}{N^{2}}\left(\sum_{n=1}^{N}\left[\tilde{\mu}(X)(x) - \mathbb{E}_{X}\left[\tilde{\mu}(X)(x)\right]\right]\right)^{2} =
= \frac{1}{N^{2}}\sum_{n=1}^{N}\left(\tilde{\mu}(X)(x) - \mathbb{E}_{X}\left[\tilde{\mu}(X)(x)\right]\right)^{2} +
+ \frac{1}{N^{2}}\sum_{n_{1}\neq n_{2}}\left(\tilde{\mu}(X)(x) - \mathbb{E}_{X}\left[\tilde{\mu}(X)(x)\right]\right)\left(\tilde{\mu}(X)(x) - \mathbb{E}_{X}\left[\tilde{\mu}(X)(x)\right]\right)$$

The variance:

$$\begin{split} &\mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\frac{1}{N^{2}} \sum_{n=1}^{N} \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big)^{2} + \\ &+ \frac{1}{N^{2}} \sum_{n_{1} \neq n_{2}} \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big) \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big) \Big] \Big] = \\ &= \frac{1}{N^{2}} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\sum_{n=1}^{N} \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big)^{2} \Big] \Big] + \\ &+ \frac{1}{N^{2}} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\sum_{n_{1} \neq n_{2}} \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big) \Big] \Big] = \text{One algorithm} \\ &= \underbrace{ \Big[\frac{1}{N} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big)^{2} \Big] \Big] }_{+} + \frac{N(N-1)}{N^{2}} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \Big] \Big) \Big] \Big] \\ &+ \underbrace{ \Big[\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \Big] \Big] \Big] }_{+} \\ &\times \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \Big] \Big) \Big] \Big] \end{split}$$

The variance:

$$\begin{split} &\mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\frac{1}{N^{2}} \sum_{n=1}^{N} \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big)^{2} + \\ &+ \frac{1}{N^{2}} \sum_{n_{1} \neq n_{2}} \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big) \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big) \Big] \Big] = \\ &= \frac{1}{N^{2}} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\sum_{n=1}^{N} \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big)^{2} \Big] \Big] + \\ &+ \frac{1}{N^{2}} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\sum_{n_{1} \neq n_{2}} \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big) \Big] \Big] = \text{One algorithm} \\ &= \underbrace{ \Big[\frac{1}{N} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big)^{2} \Big] \Big] + }_{\text{variance}} + \frac{1/N}{N^{2}} \\ &+ \underbrace{ \Big[\frac{N(N-1)}{N^{2}} \mathbb{E}_{x,y} \Big[\mathbb{E}_{X} \Big[\Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \big] \Big) \Big] \Big] }_{\text{X}} \\ &\times \Big(\tilde{\mu}(X)(x) - \mathbb{E}_{X} \big[\tilde{\mu}(X)(x) \Big] \Big) \Big] \Big] \\ \end{split}$$

Bagging = Bootstrap aggregating

Bagging = Bootstrap aggregating

Decreases the variance if the basic algorithms are not correlated.

RSM - Random Subspace Method

Same approach, but with features.

Bagging + RSM = Random Forest

One of the greatest "universal" models.

- One of the greatest "universal" models.
- There are some modifications: Extremely Randomized Trees, Isolation Forest, etc.

- One of the greatest "universal" models.
- There are some modifications: Extremely Randomized Trees, Isolation Forest, etc.
- Allows to use train data for validation: OOB

- One of the greatest "universal" models.
- There are some modifications: Extremely Randomized Trees, Isolation Forest, etc.
- Allows to use train data for validation: OOB

OOB =
$$\sum_{i=1}^{\ell} L\left(y_i, \frac{1}{\sum_{n=1}^{N} [x_i \notin X_n]} \sum_{n=1}^{N} [x_i \notin X_n] b_n(x_i)\right)$$

Random Forest Classifier

3-Nearest Neighbors

Boosting is coming next time. Stay tuned.