Fake News Detector

Using ML to Help Tackle Misinformation

Jesús Badenes @ Ironhack

What will we cover today?

01

02

Why Solve for This?

The Approach

03

04

The Data

The Models

05

06

The Application

Final Reflections

Why Solve for This?

The State of Affairs

Creating and Distributing Fake News Has Never Been Easier

- Al tools produce text massively.
- Social media amplifies misinformation and is a growing source.

Trust in Media Has Never Been Lower

- Ipsos* reports a 5% global drop in media trust over 5Y.
- Reasons: fake news spread and doubts about media integrity.

Good Journalism is at the Heart of Democracy

- Research links healthy media to effective democracies.
- Media trust can boost voter turnout by 13%.

Note(s): Worldwide; January to February, 2023; 18 years and older; 2,000* Further information regarding this statistic can be found on page 8. Source(s): Reuters Institute for the Study of Journalism; YouGov; ID 308468 * Ipsos Global Advisor, Trust in Media. 2021

Information $x 10^n = No$ Information

- The **Internet** offers **vast information**, but humans struggle to process it all.
- Selecting reliable information is effort-intensive and time-consuming.

Algorithmic Echo Chambers

- We manage information through quality news (often costly) and algorithmic curation.
- Social network algorithms often prioritize attention over truth, showing us preferred (even if untrue) content.

Confirmation Bias

- People naturally favor information that aligns with their beliefs.
- This "Confirmation Bias" makes detecting fake news hard.

02 The Approach

Identifying Fake News at Scale Through ML

Using a trained model, we can quickly help identify potential fake news

Dataset of Fake and True News

Binary Classification Algorithms

User Application

- Logistic Regression
- Decision Tree Classifier
- Random Forest Classifier
- Support Vector Machine
- Feedforward Neural Network
- Recurrent Neural Network

Deploy Model for User Application

Model

Deployment

03 The Data

Data Sources

To train a binary classification model, we need a labeled & diverse dataset of news articles

Modeled Features

- News Title
- **News Text**

Challenges:

- It is essential to train our models on previously classed data from fact checking organizations.
- We expanded our dataset to two sources due to overfitting concerns.

Data Cleaning

What Key Actions Did We Take?

- Lowercasing: Convert all text characters to **lowercase** for consistency.
- Removing Brackets: Eliminate square brackets and their enclosed contents.
- Non-Word Characters: Replace non-word characters with spaces.
- URL Removal: Strip out **URLs** and web addresses.
- HTML Tag Removal: Erase **HTML tags** from the text.
- Punctuation Removal: Discard **punctuation** marks for cleaner text.
- Newline Character Removal: Erase newline characters for continuous text.
- Alphanumeric Word Removal: Strip words containing **digits**.
- Expanding Contractions: Convert contractions (e.g., "it's" to "it is").
- Stopword Removal & Lemmatization: Remove **common words** (e.g., "is", "an") and reduce words to their root form using **lemmatization**.

Exploratory Data Analysis (1/3)

Understanding the distribution of our data and analyzing patterns

Observed that fake news were slightly longer

Exploratory Data Analysis (2/3)

Visualising a time series of news articles in the training set

A majority of the articles in the training set are from 2015 - 2018, and they are all in the range of 2007 - 2020

We can observe a significant overlap in most common words, but there are key differences

04 The Models

After cleaning the data, we ran 6 models well fit for classification tasks

Model Results

Model	Accuracy
Logistic Regression	0.89
Decision Tree Classifier	0.85
Random Forest Classifier	0.88
Support Vector Machine	0.89
Feedforward Neural Net	0.84
Recurrent Neural Net	0.90

Key Observations

RNN Excellence: With a 0.90 accuracy, the Recurrent Neural Net outperforms all, showing its strength in capturing sequential patterns.

Classic Algorithms Shine: Logistic Regression and SVM both achieve an impressive 0.89 accuracy, highlighting their competitive performance.

Robust Data: Most models hover around upper 80% accuracy, indicating consistent and clean data.

 $\label{eq:continuous} \textbf{Ensemble Benefit:} \ \text{Random Forest (0.88) outperforms its single counterpart, the } \\ \text{Decision Tree (0.85), underscoring ensemble methods' advantage.}$

Simplicity vs. Structure: The RNN's superior performance over the Feedforward Neural Net (0.90 vs. 0.84) suggests the importance of data structure.

The Selected Model: Recurrent Neural Network

Our final model is a recurrent neural network with an 11-layer architecture

- Text length and vocabulary size
- Overfitting & lack of generalization

Two-Tier LSTM architecture

Regularization Three Dropout Layers

Activation

05 The Application

Empowering Users to Identify Fake News

Creating a Streamlit App for users to paste news articles and assess their credibility

... And Fake News

06

Final Reflections

Challenges and Future Developments

Challenges

- Data Diversity: If the training data isn't diverse enough, the model might become too specialized, hindering its performance on unseen data.
- Overfitting Risk: While the model includes dropout and kernel regularization to combat overfitting, there's always a risk, especially with deeper networks.
- Model Interpretability: LSTMs, like other deep learning models, are often considered "black boxes", making it challenging to understand and explain their decision-making processes.
- Scalability: As the dataset grows, the computational cost of training such a complex model will increase.
- Research & Confirmation Bias: Relying exclusively on predictions to identify fake news can be risky and the need for the user to do further research is a limitation.

Future Developments

- Expanding Data: Adding more data sources will increase the model's ability to generalize.
- BERT and Variants: Leveraging models like BERT, RoBERTa, or DistilBERT which have been pre-trained on massive corpora can bring in the advantage of extensive prior knowledge.

Thank you