Math 450B

Homework 3 Solutions

Dr. Fuller

- 1. (a) Continuous. Observe that $(x,y) \mapsto x$ and $(x,y) \mapsto y$ are linear transformations, hence continuous. The continuity of f then follows by applications of Proposition 9.
 - (b) Not continuous at (0,0). To see this, let $\varepsilon=\frac{1}{4}$, and observe for any $\delta>0$, the point $(\frac{\delta}{2},\frac{\delta}{2})$ satisfies $\|(\frac{\delta}{2},\frac{\delta}{2})-(0,0)\|<\delta$ but $f(\frac{\delta}{2},\frac{\delta}{2})=\frac{1}{2}>\frac{1}{4}$.
 - (c) Continuous. At points other than (0,0), this follows as in part (a). To see it is continuous at (0,0), let $\varepsilon > 0$ and pick $\delta = \varepsilon$. Then for $||(x,y)|| < \delta$, we have

$$\left| \frac{x^2 y}{x^2 + y^2} \right| = \left| \frac{x^2}{x^2 + y^2} \right| |y| \le |y| \le ||(x, y)|| < \delta = \varepsilon.$$

2. Let $\varepsilon > 0$ and pick $\delta = \varepsilon$. Then for $\|\mathbf{x} - \mathbf{a}\| < \delta$, we have

$$|\|\mathbf{x}\| - \|\mathbf{a}\|| \le \|\mathbf{x} - \mathbf{a}\| < \delta = \varepsilon.$$

3. Let $\varepsilon > 0$ and pick $\delta = (\frac{\varepsilon}{\kappa})^{1/\alpha}$. Then for $\|\mathbf{x} - \mathbf{a}\| < \delta$, we have

$$||f(\mathbf{x}) - f(\mathbf{a})|| \le K ||\mathbf{x} - \mathbf{y}||^{\alpha} < K\delta^{\alpha} = \varepsilon.$$

- 4. $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$
- 5. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be f(x,y) = (0,0). Then f is continuous, but for any open ball B((a,b),r) we have $f(B((a,b),r)) = \{(0,0)\}$, which is not an open set.
- 6. Applying the definition of continuity for $\varepsilon = f(\mathbf{a})$, we get that there exists a δ such that $\mathbf{x} \in B(\mathbf{a}, \delta) \cap A$ implies that $||f(\mathbf{x}) f(\mathbf{a})|| < f(\mathbf{a})$. Then we have

$$f(\mathbf{a}) - f(\mathbf{x}) \le ||f(\mathbf{x}) - f(\mathbf{a})|| < f(\mathbf{a}),$$

which implies $f(\mathbf{x}) > 0$.

7. Since A is not closed, there exists $\mathbf{x}_0 \notin A$ with \mathbf{x}_0 in the boundary of A. (Otherwise, every $\mathbf{x}_0 \notin A$ is in $\operatorname{Ext}(A)$, which would imply that $\mathbf{R}^n - A$ is open, and therefore that A is closed.) We then have a well-defined function $f: A \to \mathbf{R}$ given by $f(\mathbf{x}) = \frac{1}{\|\mathbf{x} - \mathbf{x}_0\|}$. Proposition 9 and problem 2 above imply that f is continuous on A. Finally, we can see that f is unbounded by noting that for all N > 0, we can find $\mathbf{y} \in B(\mathbf{x}_0, \frac{1}{N}) \cap A$, and so $f(\mathbf{y}) = \frac{1}{\|\mathbf{y} - \mathbf{x}_0\|} > N$.