- How to measure user happiness?
- Depends on many factors:
 - Relevance of results
 - User interface design layout
 - Speed of response
 - Target application
 - Web engine: user finds what they want and return to the engine
 - Can measure rate of return users
 - e-commerce site: user finds what they want and make a purchase
 - Is it the end-user, or the e-commerce site, whose happiness we measure?
 - Measure time to purchase, or fraction of searchers who become buyers?
 - Enterprise (company/govt/academic): Care about "user productivity"
 - How much time do my users save when looking for information?
 - Many other criteria having to do with breadth of access, secure access ...

- System quality
 - How fast does the system index?
 - How many documents/hour for a certain distribution of document sizes?
 - How fast does it search?
 - latency as function of index size
 - How large is the document collection?
 - How expressive is its query language? How fast is it on complex queries?
- all but the last criteria are measurable

- To measure ad hoc information retrieval effectiveness in the standard way, we need:
 - A test document collection
 - A test suite of information needs, expressible as queries
 - A set of relevance judgements
 - which documents are relevant/non-relevant for each query a.k.a. Ground Truth, Gold Standard
- Test collection must be of a reasonable size
 - Need to average performance since results are very variable over different documents and information needs

- Relevance is assessed relative to an information need, not to a query.
 - For example, the information need:
 "I'm looking for information on whether drinking red wine is more effective at reducing your risk of heart attack than white wine"

might be translated into the query:

white AND red AND wine AND heart AND attack AND effective

 A document is relevant if it addresses the stated information need, not just because it contains all the word in the query

Unranked retrieval: TP, FP, FN, TN

	Relevant	Non-relevant
Retrieved	true positive (TP)	false positive (FP)
Not-retrieved	false negative(FN)	true negative(TN)

Retrieved/Not-retrieved: from IR system Relevant/Non-relevant: from Ground Truth

True: Retrieved/Not-retrieved corresponds to Relevent/Non-relevant

False: Retrieved/Not-retrieved doesn't correspond to Relevent/Non-relevant

Unranked retrieval: Precision and Recall

Precision (P): fraction of retrieved documents that are relevant

$$P = \frac{relevant\ retrieved}{retrieved} = \frac{TP}{TP + FP}$$

- Measures the "degree of soundness" of the system
- Recall (R): fraction of relevant documents that are retrieved

$$R = \frac{relevant\ retrieved}{relevant} = \frac{TP}{TP + FN}$$

Measures the "degree of completeness" of the system

Unranked retrieval: Precision and Recall

- An IR system can get high recall (but low precision) by retrieving all documents for all queries
 - Recall is a non-decreasing function of the number of retrieved documents
 - Precision in good IR systems is a decreasing function of the number of retrieved documents
- Precision can be computed at different levels of recall
- Precision-oriented users
 - Web surfers
- Recall-oriented users
 - Professional searchers, paralegals, intelligence analysts

Unranked retrieval: F-measure

F-measure(F): weighted harmonic mean of Precision and Recall

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}$$

- $\alpha \in [0,1]$
 - $\alpha = 1 \rightarrow F = P$
 - $\alpha = 0 \rightarrow F = R$
 - Usually $\alpha = 0.5 \rightarrow F = \frac{2 \cdot PR}{P+R}$ (balanced F-measure)
- Trade-off between the "degree of soundness" and the "degree of completeness" of a system
- Weighted harmonic mean: $H = \frac{\sum_{i=1}^{n} \alpha_i}{\sum_{i=1}^{n} \alpha_i \frac{1}{x_i}}$

Unranked retrieval: F-measure

- Harmonic mean is a conservative average
 - e.g. 1 document out of 10000 is relevant
 - Retrieving all documents
 - Recall = 100%
 - Precision = 0.01%
 - Arithmetic mean = $\frac{1}{2}(P+R) = 50\%$
 - Harmonic mean (Balanced F-measure) = $\frac{2 \cdot PR}{P+R} = 0.02\%$
- When the value of two number differs, harmonic mean is closer to their minimum than arithmetic or geometric mean

Unranked retrieval: Accuracy

Accuracy(A): fraction of correctly classified documents

$$A = \frac{TP + TN}{TP + TN + FP + FN}$$

- Accuracy is not suitable in the context of IR
 - In many cases data are extremely skewed
 - e.g. 99.99% of documents are Non-relevant
 - In these cases a system tuned to maximize the accuracy will almost always retrieve nothing!
 - Accuracy is 99.99%
 - Recall is $\frac{0}{1}$
 - Precision is $\frac{0}{0}$

Unranked retrieval: Precision and Recall drawbacks

Difficulties in using Precision/Recall

- Average over large corpus/query...
 - Need human relevance assessments
 - People aren't reliable assessors
 - Assessments have to be binary
 - Nuanced assessments?
 - Heavily skewed by corpus/authorship
 - Results may not translate from one domain to another
- The relevance of one document is treated as independent of the relevance of other documents in the collection
 - This is also an assumption in most retrieval systems

Ranked retrieval: Precision and Recall

- Precision/Recall/F-measure are set-based measures
 - Unordered sets of documents
- In ranked retrieval systems, P and R are values relative to a rank position

 Evaluation performed by computing Precision as a function of Recall

Ranked retrieval: Precision and Recall

- Precision/Recall function
 - If the (k+1)th retrieved document is relevant, then R(k+1) > R(k) and $P(k+1) \ge P(k)$
 - If the (k+1)th retrieved document is non-relevant, then R(k+1) = R(k), but $P(k+1) \le P(k)$
- To remove the jiggles, use interpolated precision

Ranked retrieval: Precision and Recall

Ranked retrieval: Average Precision

- 11-point interpolated average precision
 - measure precision at 11 recall levels {0.0, 0.1, 0.2, ..., 1.0}
 - compute the arithmetic mean of the precision levels

- mean average precision (MAP)
 - Given a set of queries Q, whose cardinality is |Q|
 - 1. Compute the average precision (AP) for each query
 - Average the precision values obtained for the top set of k
 documents after each relevant document is retrieved
 - For a single query, AP is related to the area under the uninterpolated Precision/Recall curve
 - 2. Compute the mean AP over the set of queries

Ranked retrieval: Average Precision

MAP = mean AP over the set of queries

$$MAP(Q) = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \left(\frac{1}{m_i} \sum_{k=1}^{m_i} P(\Re_k) \right)$$

- $\{d_1, \dots d_{m_i}\}$ documents relevant to query q_i
- \Re_k top-k ranked set of retrieval results

Ranked retrieval: Precision at k, R-precision

- Precision at k
 - Set a fixed value of retrieved results k
 - Compute precision among top-k items
 - pro: does not require any estimate of the size of the set of relevant documents (useful in Web search)
 - con: total number of relevant documents has strong influence on Precision at k
 - e.g. with 8 relevant docs precision at 20 can be at most 0.4
- R-precision
 - Given a relevant set of size Rel
 - Calculate number of relevant documents r in the top-Rel set
 - pros:
 - a perfect system achieves R-precision = 1.0
 - Intuitive meaning: $\frac{r}{Rel}$ = precision at Rel = recall at Rel
 - con: considers only one point on the Precision/Recall curve

Ranked retrieval: Receiver-Operating-Characteristic (ROC)

- True positive rate (sensitivity) vs. false positive rate (1 specificity)
- TP rate = sensitivity = Recall = $\frac{TP}{TP+FN} = \frac{retrieved\ relevant}{relevant}$
 - fraction of relevant documents that are retrieved
- FP rate = $1 specificity = \frac{FP}{FP + TN} = \frac{retrieved\ non-relevant}{non-relevant}$
 - fraction of non-relevant documents that are retrieved

Ranked retrieval: example

- An IR system gives the following rankings in response to two queries q_1 and q_2
- The highlighted documents are the ones relevant to the user for a specific query
- Suppose that the whole document collection is shown for each query
 - The total number of relevant and non-relevant documents is known

Ranked retrieval: example

Draw the Precision-Recall curve for each query

 q_1

Α

В

F

D

С

Ε

Query q₁

- Precision and Recall at 1 $P(1) = \frac{1}{1}$
- Precision and Recall at 2 $P(2) = \frac{2}{2}$
- Precision and Recall at 3 $P(3) = \frac{2}{3}$
- Precision and Recall at 4 $P(4) = \frac{3}{4}$
- Precision and Recall at 5 $P(5) = \frac{3}{5}$
- Precision and Recall at 6 $P(6) = \frac{3}{6}$

$$R(1) = \frac{1}{3}$$

$$R(2) = \frac{2}{3}$$

$$R(3) = \frac{2}{3}$$

$$R(4) = \frac{3}{3}$$

$$R(5) = \frac{3}{3}$$

$$R(6) = \frac{3}{3}$$

Ranked retrieval: example

Draw the Precision-Recall curve for each query (continue...)

Ranked retrieval: example

Draw the Precision-Recall curve for each query (continue...)

 q_2

C

Ε

Α

D

В

F

Query q₂

- Precision and Recall at 1 $P(1) = \frac{0}{1}$
- Precision and Recall at 2 $P(2) = \frac{1}{2}$
- Precision and Recall at 3 $P(3) = \frac{1}{3}$
- Precision and Recall at 4 $P(4) = \frac{1}{4}$
- Precision and Recall at 5 $P(5) = \frac{2}{5}$
- Precision and Recall at 6 $P(6) = \frac{2}{6}$

$$R(1) = \frac{0}{2}$$

$$R(2) = \frac{1}{2}$$

$$R(3) = \frac{1}{2}$$

$$R(4) = \frac{1}{2}$$

$$R(5) = \frac{2}{2}$$

$$R(6) = \frac{2}{2}$$

Ranked retrieval: example

Draw the Precision-Recall curve for each query (continue...)

q₂
C
E
A
D
B

• Query q_2

Ranked retrieval: example

- Determine the R-precision for each query
 - Query q_1

•
$$Rel = 3 \rightarrow \text{R-precision} = P(3) = \frac{2}{3}$$

- Query q₂
 - $Rel = 2 \rightarrow \text{R-precision} = P(2) = \frac{1}{2}$

Calculate the Mean Average Precision

•
$$AP_1 = \frac{1}{3}(P(1) + P(2) + P(4)) = \frac{11}{12}$$

•
$$AP_2 = \frac{1}{2} (P(2) + P(5)) = \frac{9}{20}$$

•
$$MAP = \frac{1}{2}(AP_1 + AP_2) = \frac{41}{60}$$

Ranked retrieval: example

Draw the Receiver-Operating-Characteristic for each query

 q_1

Α

В

F

D

C

Ε

Query
$$q_1$$

•
$$TP_{rate}(1) = R(1) = \frac{1}{3}$$

•
$$TP_{rate}(2) = R(2) = \frac{2}{3}$$

•
$$TP_{rate}(3) = R(3) = \frac{2}{3}$$

•
$$TP_{rate}(4) = R(4) = \frac{3}{3}$$

•
$$TP_{rate}(5) = R(5) = \frac{3}{3}$$

•
$$TP_{rate}(6) = R(6) = \frac{3}{3}$$

$$FP_{rate}\left(1\right) = \frac{0}{3}$$

$$FP_{rate}\left(2\right) = \frac{0}{3}$$

$$FP_{rate}(3) = \frac{1}{3}$$

$$FP_{rate}\left(4\right) = \frac{1}{3}$$

$$FP_{rate}\left(5\right) = \frac{2}{3}$$

$$FP_{rate}\left(6\right) = \frac{3}{3}$$

Ranked retrieval: example

Draw the Receiver-Operating-Characteristic for each query

 q_1 • Query q_1

Ranked retrieval: example

Query q_2

Draw the Receiver-Operating-Characteristic for each query

 q_2

C

Ε

A

D

В

F

E

•
$$TP_{rate}(1) = R(1) = \frac{0}{2}$$

• $TP_{rate}(2) = R(2) = \frac{1}{2}$

•
$$TP_{rate}(3) = R(3) = \frac{1}{2}$$

•
$$TP_{rate}(4) = R(4) = \frac{1}{2}$$

•
$$TP_{rate}(5) = R(5) = \frac{2}{2}$$

•
$$TP_{rate}(6) = R(6) = \frac{2}{2}$$

$$FP_{rate}\left(1\right) = \frac{1}{4}$$

$$FP_{rate}\left(2\right) = \frac{1}{4}$$

$$FP_{rate}\left(3\right) = \frac{2}{4}$$

$$FP_{rate}\left(4\right) = \frac{3}{4}$$

$$FP_{rate}\left(5\right) = \frac{3}{4}$$

$$FP_{rate}\left(6\right) = \frac{4}{4}$$

Ranked retrieval: example

Draw the Receiver-Operating-Characteristic for each query

References

- [Baeza-Yates and Ribeiro-Nieto, 1999] R. Baeza-Yates and B. Ribeiro-Nieto, "Modern Information Retrieval", 1999
 (http://www.mir2ed.org/)
- [Manning et al., 2008] C.D. Manning, P. Raghavan and H. Schütze, "Introduction to Information Retrieval", Cambridge University Press, 2008 (http://nlp.stanford.edu/IR-book/)