

Algorithms and Data Structures 2 CS 1501

Spring 2023

Sherif Khattab

ksm73@pitt.edu

(Slides are adapted from Dr. Ramirez's and Dr. Farnan's CS1501 slides.)

Announcements

- Upcoming Deadlines
 - Homework 10: this Friday @ 11:59 pm
 - Assignment 3: Friday 3/31 @ 11:59 pm
 - Support video and slides on Canvas
 - Lab 9: Tuesday 4/4 @ 11:59 pm
 - Assignment 4: Friday 4/14 @ 11:59 pm
 - Support video and slides on Canvas

Previous lecture

- Repetitive Minimum Problem
 - Priority Queue ADT

This Lecture

Heap implementation of the Priority Queue ADT

Repetitive Highest Priority Problem

Input:

- a (large) dynamic set of data items
 - each item has a priority
- a stream of zero or more of following operations
 - Find a highest priority item
 - Insert
 - Remove a highest priority item
- Examples
 - Selection sort
 - Repeatedly, remove a minimum item from unsorted portion
 - Huffman trie construction
 - remove two minimum trees

Let's create an ADT!

- The ADT Priority Queue (PQ)
- Primary operations of the PQ:
 - O Insert
 - Find item with highest priority
 - e.g., findMin() or findMax()
 - Remove an item with highest priority
 - e.g., removeMin() or removeMax()

What are possible implementations of the PQ ADT?

	findMin	removeMin	insert
Unsorted Array	O(n)	O(n)	O(1)
Sorted Array	O(1)	O(1)	O(n)
Red-Black BST	O(log n)	O(log n)	O(log n)

Which implementation should we choose?

- The best implementation may not be obvious
 - operations have different runtimes
 - O Depends on the application
- Compare **amortized runtimes** over a sequence of operations

	findMin	removeMin	insert
Unsorted Array	O(n)	O(n)	O(1)
Sorted Array	O(1)	O(1)	O(n)
Red-Black BST	O(log n)	O(log n)	O(log n)

Amortized Runtime

Given a set of operations performed by the application:

Example: Huffman Trie Construction

- K-1 iterations; each iteration: 2 removeMin and 1 insert
 - K: # unique characters
- Unsorted Array: $(K-1) * [2 * K + 1 * 1] = O(K^2)$
- Sorted Array: $(K-1)*[2 * 1 + 1 * K] = O(K^2)$
- Balanced BST: (K-1)*[2 * log K + 1 * log K] = O(K log K)

Is a BST overkill to implement ADT PQ?

- Balanced BST: log n time for all operations
- Can we do findMinimum in less time?
- BST is efficient in finding any item
- findMinimum only needs the highest priority item
 - O Can we take advantage of this?
 - Yes!

The heap

- A heap is complete binary tree such that for each node T in the tree:
 - T.item is of a higher priority than T.right_child.item
 - T.item is of a higher priority than T.left_child.item

- It does not matter how T.left_child.item relates to T.right_child.item
 - This is a relaxation of the approach taken by a BST

The *heap property*

Min Heap Example

• In a Min Heap, a highest priority item is a minimum item

Heap PQ runtimes

- Find is easy
 - Simply the root of the tree
 - **■** Θ(1)
- Remove and insert are not quite so trivial
 - O The tree is modified and the heap property must be maintained

Heap insert

- Add the inserted item at the next available leaf
 - O Last level of a Complete Binary Tree fills up from left to right
- Push the new item **up** the tree until heap property established

Min heap insert

Heap remove

- Tricky to delete root...
- Instead, overwrite the root with item from the last leaf
 - O then delete the last leaf
- The new root may violate the heap property...
 - O push the new root **down** the tree until heap property estabished

Min heap removal

Heap runtimes

- Find
 - \bigcirc $\Theta(1)$
- Insert and remove
 - O Height of a complete binary tree is log n
 - O At most, upheap and downheap operations traverse tree height
 - \bigcirc Hence, insert and remove are $\Theta(\log n)$
 - O Constant factors are smaller than in RB-BST because heap is simpler

What are possible implementations of the ADT PQ?

	findMin	removeMin	insert
Unsorted Array	O(n)	O(n)	O(1)
Sorted Array	O(1)	O(1)	O(n)
Red-Black BST	O(log n)	O(log n)	O(log n)
Heap	O(1)	O(log n)	O(log n)

Heap implementation

- **Linked**: tree nodes like for BinaryTree
 - overhead for dynamic node allocation
 - must have parent links
- **Array**: a heap is a complete binary tree...
 - o can easily represent a complete binary tree using an array

Storing a heap in an array

- Number nodes row-wise starting at 0
- Use these numbers as indices in the array
- Now, for node at index i
 - \bigcirc parent(i) = $\lfloor (i 1) / 2 \rfloor$
 - O left_child(i) = 2i + 1
 - O right_child(i) = 2i + 2

For arrays indexed from 0

Can we turn any array into a heap?

- Yes!
- Any array can be thought of as a complete binary tree!
- We can change any array into a heap using an algorithm.

Heapify

• The Heapify algorithm

Scan through the array **right to left** starting from **rightmost non-leaf** push item **down** the tree until heap property established

Rightmost non-leaf is at the largest index i such that left_child(i) < n

```
That is, 2i+1 < n

That is, i = floor((n-1)/2) if n even
= (n-1)/2 - 1 if n odd
```


Heapify Example: Building a Min Heap

Heapify Running time

- Upper bound analysis:
 - O We make about n/2 downheap operations
 - log n each
 - O So, O(n log n)

Heapify Running time: A tighter analysis

- for each node, we make at most **height[node]** comparisons/swaps
- height[node] = number of edges to deepest leaf

Heapify Running time: A tighter analysis

• $Runtime \leq \sum_{i=0}^{n-1} height[n]$

=
$$\sum_{i=0}^{\log n} i * number of nodes with height i$$

- What is the number of nodes with a given height?
- Assume a full tree (worst case)
 - \bigcirc A node with height *i* has > 2^{*i*} nodes in its subtree including itself
 - O k nodes with height $i \rightarrow$ at least $k*2^i$ nodes in their subtrees
 - O But $k*2^i <= n \rightarrow k <= n/2^i$
- So, at most $n/2^i$ nodes exist with height i
- Runtime $\leq \sum_{i=0}^{\log n} i * \frac{n}{2^i} = 0 * n + \frac{n}{2} + 2 * \frac{n}{4} + 3 * \frac{n}{8} + \cdots$
 - = O(largest term) = O(n)

9

42

7

12

Heap Sort

- Heapify the numbers
 - MAX heap to sort ascending
 - MIN heap to sort descending
- "Remove" the root
 - O Don't actually delete the leaf node
- Consider the heap to be from 0 .. length 1
- Repeat

Heap sort analysis

- Runtime:
 - O Worst case:
 - n log n
- In-place?
 - O Yes
- Stable?
 - O No

What if we need to update an item in the heap?

- A new ADT → ADT Indexable PQ
- What is the runtime to find an arbitrary item in a heap?
 - \bigcirc $\Theta(n)$
 - \bigcirc Hence, updating an item in the heap is $\Theta(n)$
- Can we improve on this?
 - O Back the PQ with something other than a heap?
 - O Develop a clever workaround?

Storing Objects in PQ

- What if we want to **update** an Object in the heap?
 - O What is the runtime to find an arbitrary item in a heap?
 - **■** Θ(n)
 - \blacksquare Hence, updating an item in the heap is Θ(n)
 - O Can we improve of this?
 - Back the PQ with something other than a heap?
 - Develop a clever workaround?

Indirection

- Maintain a second data structure that maps item IDs to each item's current position in the heap
- This creates an indexable PQ

Indirection example setup

- Let's say I'm shopping for a new video card and want to build a heap to help me keep track of the lowest price available from different stores.
- Keep objects of the following type in the heap:

```
class CardPrice implements Comparable<CardPrice>{
      public String store;
      public double price;
      public CardPrice(String s, double p) { ... }
      public int compareTo(CardPrice o) {
            if (price < o.price) { return -1; }</pre>
            else if (price > o.price) { return 1; }
            else { return 0; }
```

Indirection example

- n = new CardPrice("NE", 333.98);
- a = new CardPrice("AMZN", 339.99);
- x = new CardPrice("NCIX", 338.00);
- b = new CardPrice("BB", 349.99);
- Update price for NE: 340.00
- Update price for NCIX: 345.00
- Update price for BB: 200.00

Indirection

"NE":2

"AMZN":1

"NCIX":3

"BB":0

Indexable PQ Discussion

- how are our runtimes affected?
 - findMin, Insert, removeMin?
- space utilization?
- how should we implement the indirection?
- what are the tradeoffs?