Information-Theoretic Security: Eve doesn't have enough information to crack the message, even with unlimited computation power

Computation Security: Eve is computationally limited (e.g. can't factor quickly)

Kerkhoff's Principle: assume that

- Eve knows the encryption scheme
- Eve knows the alphabet and language
- Eve doesn't know the key
- Kev is chosen randomly

Private Key Encryption

Private Key Encryption requires that $(\forall m \in M)[Dec(Enc(m)) = m]$

Shift Cipher

- $\operatorname{Enc}(M,s) = (m_1 + s, m_2 + s, \ldots)$
- $Dec(C, s) = (c_1 s, c_2 s, ...)$
- Cracked using is English and frequency analysis: $f_E \cdot f_E \approx 0.065$ \$ all others will be ≈ 0.038

Affine Cipher: $K = \{(a,b) \mid 0 \le a, b \le 25 \text{ and } a \text{ rel prime } 26\}$ - Encrypt: $x \to ax + b \pmod{26}$ - Decyrpt: $x \to a^{-1}(x-b) \pmod{26}$ - Only requirement is that we need $\gcd(a,26) = 1$ so that a^{-1} exists - To crack, test all possible $(a,b) \in K$ and do frequency analysis. Take the largest $f_E \cdot f_{a,b}$

Quadratic Cipher: $K = \{(a, b, c) \mid 0 \le a, b, c \le 25\}$

- Encrypt: $x \to ax^2 + bx + c$
- Need to ensure that f(x), with a, b, c has an inverse, but this is hard b/c we need to test each individual $f(0) \dots f(25)$

General Sub Cipher: idea is to take a permutation of $\{0, ..., 25\}$ as the key

- Enc: $x \to f(x)$
- Dec: $x \to f^{-1}(x)$

Random Looking Cipher (Keyword Shift Cipher): create a random looking permutation

- Key is (phrase, shift)
- Permutation is generated by
 - writing out phrase (removing duplicate letters)
 - horizontally shifting the text by shift
- Main concern is that for a small phrase, there are a long sequence of consecutive letters

Vigenere Cipher: key is a word or phrase: $k = (k_1, k_2, \dots, k_n)$

- $\operatorname{Enc}(m,k) = m_1 + k_1, \dots, m_n + k_n, m_{k+1} + k_1 \dots$
- $Dec(c, k) = c_1 k_1, \dots, c_n k_n, c_{k+1} k_1 \dots$
- To crack:
 - Find the length of the key L. Assume that a word that appears frequently will likely appear in the same position $i \pmod{L}$.
 - * For example is "aiq" appears in the slots (57, 58, 59), (87, 88, 89), (102, 103, 104), (162, 163, 164), can deduce that L is a divisor of the gaps between these sequences, $L \in \{1, 3, 5, 15\}$
 - This will create a stream of every Lth character. We can do shift analysis on these streams

One Time Pad: encode messages with a long string of random bits

- $M = \{0, 1\}^n$
- Gen $K = \{0, 1\}^n$
- $\operatorname{Enc}(m,k) = k \oplus m$
- Dec $(c,k) = k \oplus k$

Psuedo Random Bits (Linear Congruential Generator): pick M large and A, B, x_0 random looking and create a recurrence

• $x_{i+1} = Ax_i + B \pmod{M}$ need gcd(A, M) = 1

Matrix Cipher: pick an $n \times n$ matrix M, must be invertible

- Enc $x \to M(x)$
- Dec $x \to M^{-1}(y)$
- Easy for Alice and Bob to use since M is small and it's easy to find M^{-1}
- Hard for Eve to brute force since key space is $\approx 26^{n^2}$
- Smart algorithm $(O(n26^n))$: let $T = t_1 t_2 \dots t_N$ where $t_i = t_i^1 \dots t_i^8$. Note that $MT_i = m_i \implies R_j t_i = m_i^j$

Random Shift: Idea is to ensure that the same two messages don't get mapped to the same ciphertext

- Key is a function (e.g. f(r) = 2r + y). To encrypt "NYNY"
 - Pick a random r = 4 so first shift is 2 * 4 + 7 = 15
 - Pick a random r = 10 so second shift is 2 * 10 + 7 = 1
 - Pick a random r = 1 so third shift is 2 * 1 + 7 = 9
 - Pick a random r = 17 so fourth shift is 2 * 17 + 7 = 15
 - Send (4; c), (10; Z), (1; W), (17; N)

Public Key Encryption

Exponentiation: Input: a, n, p and Output: $a^n \pmod{p}$

- Convert the exponent into binary
- Use repeated squaring : x^1, x^2, x^4, \dots
- Then $x^n = x^{n_1} * x^{n_2} * \cdots$. Where n_1, n_2, \ldots are powers of 2

Generator for Z_p^* : for a prime p and $\{g^1, \ldots, g^{p-1}\} = \{1, \ldots, p-1\}$, g is a **generator** for Z_p^*

- **Theorem**: if g is NOT a generator, then there exists x such that
 - $-x \mid p-1$
 $-x \neq p-1$
 $-g^x \equiv 1$

Input p

Let F be the set of factors of p-1, except p - 1 $\,$

For g in p/3 to 2p/3:

Compute g^x for all x in F. If any give 1, then g is NOT a generator Otherwise if none of them give 1 for g, then output g

• Factoring hard, so extend algorithm for only safe primes where p-1=2q for a prime q so $F=\{2,q\}$ and easy to check

Discrete Log Problem: $DL_{p,q}(y) = x$ such that $g^x \equiv y \pmod{p}$

- Input: g, a, p $1 \le g, a \le p-1$ $\langle g \rangle = Z_p^*$
- Output x such that $g^x \equiv a \pmod{p}$
- A good algorithm would solve this problem in $O(\log(n))$
- In general, we have $g \in \{p/3..., 2p/3\}$ because of some tricks
 - If g is a generator of Z_p^* then $g^{(p-1)/2} \equiv p-1 \equiv -1$ * **Example**: $3^x \equiv 92 \pmod{101} \implies 92 \equiv 101 - 9 \equiv (-1)3^2 \equiv 3^{50} * 3^2 \equiv 3^{52}$

Primality Testing

• Fermat's Little Theorem: given a prime $p, a^p \equiv a \pmod{p}$

```
Input r
```

Choose a random subset R of $\{2, \ldots, p-1\}$ of size lg(p)

For each a in R, compute a^p and if not equivalent to a, then p is NOT prime

Generating Same Primes of length L:

```
Input L
Pick y in \{0, 1\}^{L-1}
Let x = 1y
Test if x is a prime and (x-1)/2 is a prime
```

If both are prime then output x, else goto step 2

- Can be extended to remove multiples of 2 and 3.
- 2 doesn't divide $n \iff (\exists k)[n = 2k + 1]$
- 3 doesn't divide $n \iff (\exists k, \exists i \in \{1,2\})[n = 3k + i]$
- Thus 2, 3 don't divide $n \iff (\exists k, \exists i \in \{1,5\})[n = 6k + i]$

Diffie Hellman Given a security param L

- 1. Alice finds (p, g) such that len(p) = L
- 2. Alice sends (p, g) to Bob (Eve sees this)
- 3. Alice picks random a and sends $g^a \pmod{p}$ to Bob (Eve sees this)
- 4. Bob picks random b and sends $g^b \pmod{p}$ to Alice (Eve see this)
- 5. Alice computes $(g^b)^a = g^{ab}$
- 6. Bob computes $(g^a)^b = g^{ab}$
- g^{ab} is the **shared secret** and it believed that it is hard for Eve to find g^{ab}

RSA:

- 1. Alice picks 2 primes p, q of length L and computes N = pq
- 2. Alice computes $R = \phi(N) = \phi(pq) = (p-1)(q-1)$
- 3. Alice picks $e \in \{R/3, \ldots, 2R/3\}$ that is relatively prime to R
- 4. Alice finds d such that $ed \equiv 1 \pmod{R}$
- 5. Alice broadcasts (N, e) so that both Bob and Eve can see it
- 6. Bob wants to send $m \in \{1, \ldots, N-1\}$ and broadcasts $m^e \pmod{N}$
- 7. Alice receives $m^e \pmod{N}$ and computes
- $(m^e)^d \equiv m^{ed} \equiv m^{ed \pmod{R}} \equiv m \pmod{N}$

Pollard's ρ **Algorithm** factor N knowing that p is a factor and $p \leq N^{1/2}$. Idea is to find x, y such that $x \equiv y \pmod{p}$

- gcd(x-y,N) will yield a nontrivial factor of N since p divides both
- Idea is to pick random $x_1 \in \{1, \dots, N-1\}$ and generate $x_i = x_{i-1} * x_{i-1} + c \pmod{N}$
- Idea is that $x_i = x_j$, then $x_{i+1} = x_{j+a}$, so we find k such that $x_k \equiv x_{2k}$

```
define f(x) = x * x + c
```

```
x = rand(1, N-1), c = rand(1, N-1), y = f(x)
while TRUE:
    x = f(x)
    y = f(f(y))
    d = gcd(x - y, N)
    if d != 1 and d != N
        break
output(d)
```

Low e Attack on RSA

- Chinese Remainder Theorem:
 - If N_1, \ldots, N_l are relatively prime then there exists $0 \le x < N_1 \cdots N_L$ such that
 - $-x \equiv x_1 \pmod{N_1}$
 - $-x \equiv x_2 \pmod{N_2}$
 - ...
 - $-x \equiv x_2 \pmod{N_2}$
- e Theorem
 - Instead of x_1, x_2, \ldots, x_n , we can look at $m^e \pmod{N_i}$. Then find an x such that $0 \le x < N_1 \cdots N_L$
 - Finally we have that x is the eth power of m

Same N Attack on RSA:

- **Definition**: A set of numbers if **relatively prime** if no number divides all of them
- **Theorem**: If a, b, c are rel prime, then there exists x_1, x_2, x_3 such that $ax_1 + bx_2 + cx_3 = 1$
- Analysis of generalization of L. Zelda sends m to A_1, \ldots, A_L and Eve sees m^{e_i}
 - $-e_1, \ldots, e_L$ are rel prime so there exists x_1, \ldots, x_L such that $\sum_{i=1}^{L} e_i x_i = 1$
 - Eve finds such x_1, \ldots, x_l and computes $(m^{e_1})^{x_1} \times \cdots \times (m^{e_L})^{x_L} = m^{\sum_{i=1}^L e_i x_i} \equiv m^1 \equiv m \pmod{N}$

Post Public Key

Learn with Errors Private Key:

- Let $e \in {}^{r} A$ mean that e is picked uniformly randomly from the set A
- Let $\frac{p}{4}$ denote $\left|\frac{p}{4}\right|$ for p odd
- Let \vec{k} denote the key and \vec{r} denote a random vector
- Let γ be a parameter such that we choose e from $\{-\gamma, \ldots, \gamma\}$

Private key \vec{k} Public info p, γ

- 1. Alice picks a random vector \vec{r}
- 2. Alice computes $\vec{r} \cdot \vec{k} \equiv C \pmod{p}$ and chooses $e \in \{-\gamma, \dots, \gamma\}$
- 3. Let $D \equiv C + e + \frac{bp}{4}$
- 4. To send b, Alice sends $(\vec{r}; D)$
- 5. Bob computes $\vec{r} \cdot \vec{k} \equiv C$
 - $D \approx C \implies b = 0$ (within γ)
 - $D \approx C + \frac{p}{4} \implies b = 1$ (within γ) Otherwise Eve tampered the message

Learn with Errors Public Key:

Idea is for only Alice to have the key vector \vec{k} and have Alice publish noisy equations that satisfy \vec{k} . For $e_i \in \{-\gamma, \gamma\}$

- $\vec{r} \cdot \vec{k} \sim C_1 + e_1$
- $\vec{s} \cdot \vec{k} \sim C_2 + e_2$

Taking the sum $(r_1 + s_1)x_1 + \cdots + (r_n + s_n) \sim C_1 + C_2 + e_1 + e_2$ so error in $\{-2\gamma, \dots, 2\gamma\}$

Public information: p, γ, n, m

Alice wants Bob to be able to send $b \in \{0, 1\}$

- 1. Alice picks a random \vec{k} of length n
- 2. Alice picks m random \vec{r} , each with their own $e \in \{-\gamma, \ldots, \gamma\}$
- Let $D = \vec{r} \cdot \vec{k} + e$
- 3. Alice broadcasts each $(\vec{r}; D)$
- Note: \vec{k} satisfies noisy equations and any sum of them
- 4. Bob wants to send bit b and picks a random uniform set of noisy equations, adds them, and adds bp/2 to the solution. Let D' be the sum of all Ds in the selected equations

$$s_1x_1 + \cdots + s_nx_n \sim D' + bp/2$$
 if and only if $b = 0$

- 5. Bob broadcasts $(\vec{s}; F = D' + bp/2)$
- 6. Alice computes $\vec{s} \cdot \vec{k} F$

- If small then b = 0
- If large then b=1

Psuedorandom Generator (PRG): expands short seed into longer string that looks random

PRG Game: Let p be a polynomial and $G: \{0,1\}^n \to \{0,1\}^{p(n)}$ be computable in poly time

- 1. Alice picks $x \in \{0,1\}^n$ uniformly and computes $y = G(x) \in \{0,1\}^{p(n)}$
- 2. Alice picks $z \in \{0,1\}^{p(n)}$ uniformly
- 3. Alice gives $\{w_1, w_2\} = \{y, z\}$ to Eve $(z \text{ is either } w_1 \text{ or } w_2)$
- 4. Eve outputs one of $\{w_1, w_2\}$ hoping it's z
- 5. If Eve outputs z, she wins

Can Eve win this game with probability $\geq 1/2$? Depends on how much Computational Power Eve has

Eve Strategy under Unlimited Computational Power

- 1. Eve gets w_1, w_z as input (one of which is z)
- 2. Eve creates the set $A = \{G(x) \mid x \in \{0,1\}^n\}$. This takes exponential time
- 3. If $w_1 \notin A$, then Eve outputs w_1 and wins
- 4. If $w_2 \notin A$, then Eve outputs w_2 and wins
- 5. If $w_1, w_2 \in A$, then Eve outputs w_1 , though she might be wrong
 - Probability of Eve losing is \leq probability that $z \in A$.
 - There are $2^{p(n)}$ that z could be, of which 2^n are in A.
 - Thus probability that Eve loses is $\leq \frac{2^n}{2^{p(n)}} < 1/2$

However, we restrict Eve to having only polynomial computing time

Threshold Secret Sharing: Zelda has a secret $s \in \{0,1\}^n$

(t, m)-secret sharing is a way for Zelda to give strings to A_1, \ldots, A_m such that

- If any t get together, they can learn s
- If any < t get together, they cannot learn anything

Random String Approach: ((4,4) case) Zelda generates random $r_1, r_2, r_3 \in \{0,1\}^n$ and

- Gives $A_1 \ s_1 = r_1$
- Gives $A_2 \ s_2 = r_2$
- Gives $A_3 \ s_3 = r_3$
- Gives A_4 $s_4 = s \oplus r_1 \oplus r_2 \oplus r_3$

 A_1, A_2, A_3, A_4 can recover the secret by doing $s_1 \oplus s_2 \oplus s_3 \oplus s_4 = s$

Polynomial Approach: We can imagine a secret will always be an element of Z_p for prime p

- $s = 20 \implies Z_{23}$
- $s = 23 \implies Z_{23} \implies s = 0$

Zelda wants to send a string to A_1, \ldots, A_m such that

- Any t of A_1, \ldots, A_m can find s
- Any < 1 learn nothing
- 1. $s \in \mathbb{Z}_p$ and Zelda works under mod p
- 2. Zelda generates random numbers $a_{t-1},\ldots,a_1\in Z_p$
- 3. Zelda creates the polynomial $f(x) = a_{t-1}x^{t-1} + \cdots + a_1x + s$
- 4. For $1 \le i \le m$, Zelda gives each A_i f(i) (all mod p)
 - Any t people have t points from f(x) and can solve for s
 - Any < t people don't have enough information to figure out s