Machine Learning (ML) 101 Methods in AI research

Roxana Rădulescu September 2025

Practicalities

• **Literature for today:** Hal Daumé III, A Course in Machine Learning, Chapter 1 (Decision Trees; http://ciml.info/dl/vo_99/ciml-vo_99-cho2.pdf). Learning; http://ciml.info/dl/vo_99/ciml-vo_99-cho2.pdf).

Last time

Dialog systems

- Chatbots vs. goal-based dialogue systems
- We came across approaches for which we needed to:
 - Classify domain, intent, slot for frame-based approaches
 - Classify dialog acts
- Rule-based vs. machine learning approaches

Natural Language 1

Egesiel Magalhães S.	Loan Offer - Do you need a Loan @ 2% PA? Mail us your: Names,Home Add,Mob No,Email id,Amount Needed,Lo
Mr. Karim Zongo	PLEASE THIS IS VERY URGENT Compliment of the day, I am Mr. Karim Zongo Have a Business Proposal of \$5
CITIBANK OF NEW YORK	NEW MESSAGE FROM CITIBANK NEW YORK - CITIBANK INTERNATIONAL NEW YORK DIRECTOR, FOREIGN OPE
MRS. CHRISTY MCCOOL	MY DONATION OF 4 MILLION DOLLARS ARE YOU INTERESTED ? - I am writing to seek your consent to conduct

Spam classification

 $EN \leftarrow \rightarrow NL$

Machine translation

Intent: **SHOWFLIGHT**

I want to fly to San Francisco on Monday afternoon please

Intent classification

Image classification

ImageNet has 21841 classes
http://image-net.org/explore

Digit recognition MNIST dataset

Diagnosing Diabetic Eye Disease
https://ai.google/healthcare/

What is Machine Learning?

There are many definitions, here is a useful one:

A computer program is said to **learn** from experience **E** with respect to some class of tasks **T** and performance measure **P**, if its performance at tasks in **T**, as measured by **P**, improved with experience **E**.

Tom Mitchell, Machine Learning 1997

What is Machine Learning?

Three components:

- Task T
- Experience E
- Performance measure P

Detect the dialog act of an utterance

T: Classify the dialog act of an utterance

P: The fraction of utterances correctly classified

E: A set of utterances labeled with their dialog acts

What is Machine Learning?

Three components:

- Task T
- Experience E
- Performance measure P

Self-driving cars

T: Drive on public highways using vision sensors

P: Average distance traveled before an error

E: Sequence of images and steering commands from human drivers

- 1. Supervised learning
- 2. Unsupervised learning
- 3. Reinforcement learning

The focus of our lectures!

- 1. Supervised learning
- 2. Unsupervised learning
- 3. Reinforcement learning

Learn a model using **labelled** instances

Example: image classification, dialog act classification.

- 1. Supervised learning
- 2. Unsupervised learning
- 3. Reinforcement learning

Learn a model using **unlabelled** data

Example: community detection

- 1. Supervised learning
- 2. Unsupervised learning
- 3. Reinforcement learning

Agent: conversational agent

Environment: reward model

Reward: score (e.g., helpful response)

Action: generated tokens

RECAP! Hand crafted rules: dialog systems

To recognize SET-ALARM intent:

wake me (up) | set (the|an) alarm | get me up

Hand crafted rules: spam classification

```
Spam list => spam
'Buy' AND ('cheap' OR 'free') => spam
```

Hand crafted rules: spam classification

```
Spam list => spam
'Buy' AND ('cheap' OR 'free') => spam
```

Very precise. Sometimes easier to fix mistakes.

Hand crafted rules: spam classification

```
Spam list => spam
'Buy' AND ('cheap' OR 'free') => spam
```

Very precise. Sometimes easier to fix mistakes.

Manually crafting rules takes a **lot** of time and is **difficult** to do.

High maintenance cost (e.g. need to adapt to changing language use)

Hand crafted rules: time-consuming!

232 industry categories and 504 occupation categories

- Manual rules
 - Development time = 192 person-months
- Machine learning
 - Development time = 4 person-months
 - More accurate!

COMMERCIAL APPLICATIONS OF MASSIVELY PARALLEL SUPERCOMPUTERS FOR THE 90'S Waltz 1991.

Hand crafting rules for some tasks would be really difficult!

For example: author identification of texts

 It's (usually) not about the use of specific words, but about small differences between (relative) frequencies of words and grammatical constructions.

But collecting labels is easy...

- Learn a machine learning model using labeled example instances
- Need to define **features**, characteristics of the instances that the model uses for predictions (words in a document, movie ratings, etc..)

 Learn a machine learning model using labeled example instances

 Need to define **features**, characteristics of the instances that the model uses for predictions (words in a document, movie ratings, etc..)

Domain classification for dialog systems

I want to fly to San Francisco on Monday afternoon please

Domain: AIRLINE

Features: words

 Learn a machine learning model using labeled example instances

 Need to define features, characteristics of the instances that the model uses for predictions (words in a document, movie ratings, etc..)

Features for house price prediction:

- Overall condition of the house
- Neighborhood
- Condition of the basement
- Number of bedrooms
- Construction date
- First floor square meters
- Number of schools in within 2 km
- Condition of the kitchen
- •

figure 1.1 CIML,

Setting:

X: input space (set of possible instances)

Y: output space

 $H = \{f | f : X \rightarrow Y\}$: set of hypotheses (the set of all possible classifiers we consider)

Learning:

Input: $\langle x^{(i)}, y^{(i)} \rangle$: training example Learning algorithm: Defines a data-driven search over the hypothesis space

Output:

 $f \in F$: hypothesis that approximates the target function

Tasks & data

features target

Input: $\{\langle x^{(1)}, y^{(1)} \rangle, ..., \langle x^{(N)}, y^{(N)} \rangle \}$

Goal: Predict the target using the features

Housing price prediction:

This is a *regression* problem (target is a real number)

What are the dimensions of the features and the target?

$$x^{(i)} \in \mathbb{R} \text{ (one)}$$

 $y^{(i)} \in \mathbb{R} \text{ (one)}$

Tasks & data

features target

Input: $\{\langle x^{(1)}, y^{(1)} \rangle, ..., \langle x^{(N)}, y^{(N)} \rangle \}$

Goal: Predict the target using the

features

Breast cancer diagnosis (malignant or benign):

This is a *classification* problem (target is a category)

What are the dimensions of the features and the target?

$$x^{(i)} \in \mathbb{R}^2 \text{ (two)}$$

 $y^{(i)} \in \{0,1\} \text{ (one)}$

Tasks & data

features target

Input: $\{\langle x^{(1)}, y^{(1)} \rangle, ..., \langle x^{(N)}, y^{(N)} \rangle \}$

Goal: Predict the target using the

features

Breast cancer diagnosis (malignant or benign):

This is a *classification* problem (target is a category)

The focus of our lectures!

What are the dimensions of the features and the target?

$$x^{(i)} \in \mathbb{R}^2 \text{ (two)}$$

 $y^{(i)} \in \{0,1\} \text{ (one)}$

Learning

Generalization

- Training versus test examples
- Memorization is not enough!

Training set

Test set

Inductive bias

 Allows a learning algorithm to prioritize one solution (or interpretation) over another, independent of the observed data (Battaglia et al. 2018, Mitchell 1980)

Training data

Inductive bias

Test data

Question: How would you label the test data?

Underlying assumptions to generalize to new input!

Training data

Inductive bias

Test data

ABBA: bird vs. non-bird

AABB: Fly vs. no-fly

Underlying assumptions to generalize to new input! 29

[CIML 2.1 and 2.2]

Supervised machine learning for classification

- Naive Bayes
- Logistic Regression
- Support Vector Machines (SVM)
- Neural networks
- Decision trees
- K-nearest neighbors
- And many more...

Supervised machine learning for classification

- Naive Bayes
- Logistic Regression
- Support Vector Machines (SVM)
- Neural networks
- Decision trees
- K-nearest neighbors
- And many more...

Decision Trees

Example

Is it a good time to play tennis?

(Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong)

Answer: No

Example

Decision trees represent disjunction of conjunctions of constraints on the attribute values

```
(Outlook = Sunny \Lambda Humidity = Normal) V (Outlook = Overcast) V (Outlook = Rain \Lambda Wind = Weak)
```

Decision trees can be represented as if-then rules (helps interpretability ©)

Decision trees - Representation

- Each internal node tests an attribute
- Each branch corresponds to attribute value
- Each leaf node assigns a classification

How would we represent:

- \wedge , \vee , XOR
- $(A \wedge B) \vee (C \wedge \neg D \wedge E)$

Decision trees - Representation

$$(A \wedge B) \vee (C \wedge \neg D \wedge E)$$

Supervised learning

CIML, figure 1.1

Setting:

X: input space (set of possible instances)

Y: output space

 $H = \{f | f : X \rightarrow Y\}$: set of hypotheses (the set of all possible classifiers we consider)

Learning:

Input: $\langle x^{(i)}, y^{(i)} \rangle$: training examples
Learning algorithm: Defines a data-driven search over the hypothesis space

Output:

 $f \in F$: hypothesis that approximates the target function

Supervised learning

CIML, figure 1.1

Setting:

X: input space (set of possible instances)
Y: output space

y=1: good time to play tennis 0: not a good time

 $H = \{f | f : X \rightarrow Y\}$: set of hypotheses (the set of all possible classifiers we consider) Set of all possible decision trees

Learning:

Input: $\langle x^{(i)}, y^{(i)} \rangle$: training examples
Learning algorithm: Defines a data-driven search over the hypothesis space

Output:

 $f \in F$: hypothesis that approximates the target function

Supervised learning

CIML, figure 1.1

Setting:

X: input space (set of possible instances) Y: output space

y=1: good time to play tennis 0: not a good time

 $H = \{f | f : X \rightarrow Y\}$: set of hypotheses (the set of all possible classifiers we consider) Set of all possible decision trees

Learning:

Input: <x(i), y(i)>: training example

Learning algorithm: Defines a data-driven search over the hypothesis space

Output:

 $f \in F$: hypothesis that approximates the target function

Learning decision trees

Find the 'best' tree $h \in H$, i.e. the tree that minimizes training error, or maximizes training accuracy

What about doing an exhaustive search? Computationally infeasible

Instead: We use a greedy search

Learning decision trees

Start with empty tree

Base cases:

If all instances have the same label →
create a leaf with that label and exit
If no features left to split →
create a leaf with the majority label

Else:

Select the best test to split the data on Split the data according to the test Recurse on each subset of the data

Learning decision trees

Start with empty tree

Base cases:

If all instances have the same label →
create a leaf with that label and exit
If no features left to split →
create a leaf with the majority label

Else:

Select the best test to split the data on Split the data according to the test Recurse on each subset of the data

Selecting attributes to split

Is it a good time to play tennis?

Question: which one would you choose?

Selecting attributes to split

We want to be more certain about the label after splitting:

After split:

All instances have the same label

Uniform distribution over labels

Selecting attributes to split

We want to be more certain about the label after splitting:

After split:

All instances have the same label

Uniform distribution over labels

How can we quantify this intuition?

Selecting attributes to split: misclassification rate

Is it a good time to play tennis?

Selecting attributes to split: misclassification rate

Is it a good time to play tennis?

Gain(S,A) = expected reduction in **entropy** due to sorting on A

Gain(S,A) = expected reduction in **entropy** due to sorting on A

Decision tree method: ID3 (Iterative Dichotomiser 3)

- selects the attribute that **maximises** information gain

Entropy(S) = expected number of bits needed to encode class (\bigoplus or \bigoplus) of randomly drawn member of S (under the optimal, shortest-length code)

Why?

Information theory: optimal length code assigns - $\log_2 p$ bits to message having probability p $p_{\oplus}(-\log_2 p_{\oplus}) + p_{\ominus}(-\log_2 p_{\ominus})$

Entropy(S) = expected number of bits needed to encode class (\bigoplus or \bigoplus) of randomly drawn member of S (under the optimal, shortest-length code)

Why?

Information theory: optimal length code assigns - $\log_2 p$ bits to message having probability p $p_{\oplus}(-\log_2 p_{\oplus}) + p_{\ominus}(-\log_2 p_{\ominus})$

So, expected number of bits to encode \oplus or \ominus of random member of S:

$$p_{\oplus}(-\log_2 p_{\oplus}) + p_{\ominus}(-\log_2 p_{\ominus})$$

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Entropy(S) = expected number of bits needed to encode class (\bigoplus or \bigoplus) of randomly drawn member of S (under the optimal, shortest-length code)

Why?

Information theory: optimal length code assigns - $\log_2 p$ bits to message having probability p $p_{\oplus}(-\log_2 p_{\oplus}) + p_{\ominus}(-\log_2 p_{\ominus})$

So, expected number of bits to encode \oplus or \ominus of random member of S:

$$p_{\oplus}(-\log_2 p_{\oplus}) + p_{\ominus}(-\log_2 p_{\ominus})$$

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

with c-wise classification, we get

$$Entropy(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Entropy:

$$Entropy(S) = -\sum_{i} p_{i} \log_{2} p_{i}$$

p_i: the probability of class i (i.e. the fraction of instances of class i in S)

"the amount of randomness"

$$Entropy(S) = -\sum_{i} p_{i} \log_{2} p_{i}$$

Entropy = o

p_i: the probability of class i (i.e. the fraction of instances of class i in S)

"the amount of randomness"

Entropy = 1

$$-(9/14) \log_2 (9/14) - (5/14) \log_2 (5/14) = 0.940$$

 $-(7/14) \log_2 (7/14) - (7/14) \log_2 (7/14) = 1$
 $-(14/14) \log_2 (14/14) - (0/14) \log_2 (0/14) = 0$

Entropy:

$$Entropy(S) = -\sum_{i} p_{i} \log_{2} p_{i}$$

p_i: the probability of class i (i.e. the fraction of instances of class i in S)

"the amount of randomness"

"the average number of yes/no questions to guess a draw from S"

	р
Α	0.5
В	0.25
С	0.25

What strategy would use you to guess my draw? (A,B, or C).

Entropy:

 $Entropy(S) = -\sum_{i} p_{i} \log_{2} p_{i}$

p_i: the probability of class i (i.e. the fraction of instances of class i in S)

"the amount of randomness"

"the average number of yes/no questions to guess a draw from S"

	р
Α	0.5
В	0.25
С	0.25

On average we need 1.5 questions

$$-0.5*log2(0.5)-0.25*log2(0.25)$$

 $-0.25*log2(0.25) = 1.5$

Entropy:

 $Entropy(S) = -\sum_{i} p_{i} \log_{2} p_{i}$

p_i: the probability of class i (i.e. the fraction of instances of class i in S)

"the amount of randomness"

"the average number of yes/no questions to guess a draw from S"

	р
Α	0.5
В	0.25
С	0.25

On average we need 1.5 questions

$$-0.25*log2(0.25) = 1.5$$

Entropy:

$$Entropy(S) = -\sum_{i} p_i \log_2 p_i$$

p_i: the probability of class i (i.e. the fraction of instances of class i in S)

"the amount of randomness"

"the average number of yes/no questions to guess a draw from S"

	р
Α	0.5
В	0.25
С	0.25

On average we need 1.5 questions

$$-0.5*log2(0.5)-0.25*log2(0.25)$$

 $-0.25*log2(0.25) = 1.5$

Information Gain

Information Gain:

Entropy before you split – entropy after split (weighted by probability of following each branch)

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Which attribute is the best next node?

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8 D9	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Gain(S, Humidity)

$$[9+, 5-]$$

H=0.940

Humidity

normal =
$$0.940 - (7/14) * 0.985 - (7/14) * 0.592 = 0.1515$$

Information Gain:

Entropy before you split entropy after split (weighted by probability of following each branch)

$$[9+, 5-]$$
 E=0.940

Wind

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Gain (S, Humidity) = .940 - (7/14).985 - (7/14).592 = .151

Gain(s, Outlook) = 0.246 Gain(s, Temperature) = 0.029

Gain (S, Wind) = .940 - (8/14).811 - (6/14)1.0 = .048

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

= .940 - (8/14).811 - (6/14)1.0

Gain (S, Wind)

= .048

$$Gain(s, Outlook) = 0.246$$

Gain(s, Temperature) = 0.029

Which attribute should be tested here?

Decision boundary

x1

Decision boundary

x1

Decision boundary

max depth = 25

x1 x1

Hypothesis Space Search by ID3

ID3 algorithms perform a hill-climbing search

- The nodes of the tree are partial decision trees
- The evaluation function = information gain

Hypothesis Space Search by ID3

- Hypothesis space is complete!
 - Target function surely in there...
- Outputs a single hypothesis (which one?)
 - The one that leads us to the answer in few questions
- No back tracking
 - Local minima
- Statistically-based search choices
 - Robust to noisy data

Inductive bias

Underlying assumptions to generalize to new input! What type of solutions are we more likely to prefer?

E.g., prefer smaller models with similar training accuracy (e.g. shallow decision trees), i.e. decisions can be made by only looking at a small number of features.

When to consider Decision Trees

- Instances describable by attribute value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data

Model selection

Model selection

• **Features:** Words, user profile, etc.

• **Model:** Decision trees, or maybe something different?

Model selection

• **Features:** Words, user profile, etc.

Model: Decision trees, or maybe something different?

We are interested in how well the model **generalizes!**

i.e. how does it perform on data it hasn't seen before?

Classification: Accuracy

#correctly labeled instances

#total instances

Confusion Matrix:

	Truth: A	Truth: B
Predicted: A	70	40
Predicted: B	30	60

Classification: Accuracy

#correctly labeled instances

#total instances

Confusion Matrix:

	Truth: A	Truth: B
Predicted: A	70	40
Predicted: B	30	60

Accuracy: 130/200 = 0.65

Train & test data

Dataset

Training set

Test set

Train your model on this data!

Test your model on this data

80% accurate on the test data

85% accurate on the test data

64% accurate on the test data

Train & test data

Dataset Training set

system X: 83% accuracy on the test set

Test set

Train your model on this data!

Test your model on this data

80% accurate on the test data

85% accurate on the test data

64% accurate on the test data My model is better!! It is 85% accurate

Train & test data

Hold on...

Dataset

system X:

83% accuracy on the test set

Training set

Test set

Train your model on this data!

Test your model on this data

80% accurate on the test data

85% accurate on the test data

64% accurate on the test data

Warning!!

Training error is an optimistic estimate of your system's true error. So evaluate on a holdout test set. But...

Make sure no knowledge about the test data leaks into your model. So, you should **NEVER** do **ANY** learning on the test set.

- Feature development
- Selecting the model
- •

Train & dev & test data

Train & dev & test data

Train your model on this data!

Tune your model on this data

Example:

- 1. Train five different decision trees (max depth = 2, 5, 10, 15, 20) on the *training* set.
- 2. Evaluate their performance on the *dev*. set.
- 3. Select the best one and run in on the *test* set.

When you're done with experimenting with features, tuning parameters etc. test your final model using this data.

Cross validation

Train and tune your parameters on folds 1-3

E.g. train on folds 2 and 3, test on fold 1. Usually 10 folds (i.e. 10-fold cross validation), but depends on the data

Cross validation

leave-one-out cross validation:

number of folds= number of datapoints

When you're done with experimenting with features, tuning parameters etc. test your final model using this data.

Train and tune your parameters on folds 1-3

E.g. train on folds 2 and 3, test on fold 1. Usually 10 folds (i.e. 10-fold cross validation), but depends on the data

Overfitting and underfitting

Underfitting: The model is too simple. It could have learned something but didn't.

Example: A decision tree which always predicts the same label (majority class)

Overfitting: The model pays too much attention to idiosyncrasies of the training data.

Example: a leaf for each instance in your training data (training error will be zero!).

Constrain to simpler trees

- Max. depth
- Max. number of leaves
- Minimum number of instances per leaf

Overfitting and underfitting

Parameters vs. hyper parameters

• **Parameters:** The weights or structure selected by the learning algorithm

Hyperparameters:

'Parameters that control the other parameters'. 'Things' we can tune but are not selected by the learning algorithm.

Parameters vs. hyper parameters

- **Parameters:** The weights or structure selected by the learning algorithm
- **Hyperparameters:**'Parameters that control the other parameters'. 'Things' we can tune but are not selected by the learning algorithm.

Decision trees

Parameters:

structure of a specific decision tree

Hyperparameters:

Maximum depth, minimum number of instances per leaf, ..

Cannot be naively adjusted using the training data, because increasing max depth will always reduce the training error!

Υ	X1	X2
0	0	1
0	0	0
0	0	1
1	0	1
1	0	1
1	1	1
1	1	0
1	1	0
1	1	0
1	1	0

Accuracy

#correctly labeled instances #total instances

Question: What is the accuracy of a classifier that would predict the majority label?

Υ	X1	X2
0	0	1
0	0	0
0	0	1
1	0	1
1	0	1
1	1	1
1	1	0
1	1	0
1	1	0
1	1	0

Accuracy

#correctly labeled instances

#total instances

Question: What is the accuracy of a classifier that would predict the majority label?

Accuracy is not suitable when the class distribution is (heavily) skewed!

	Truth: A	Truth: B
Predicted: A	True Positive (TP)	False Positive (FP)
Predicted: B	False Negative (FN)	True Negative (TN)

$$accuracy = \frac{\#TP + \#TN}{\#TP + \#FP + \#FN + \#TN}$$

	Truth: A	Truth: B
Predicted: A	70 (TP)	40 (FP)
Predicted: B	30 (FN)	60 (TN)

Precision for class A:
$$70/110 = 0.64$$

$$precision = \frac{\text{#TP}}{\text{#TP+\#FP}}$$

What fraction of the ones that you have identified belong to that class?

Of all messages labeled as spam, what fraction is actually spam?

	Truth: A	Truth: B
Predicted: A	70 (TP)	40 (FP)
Predicted: B	30 (FN)	60 (TN)

$$70/110 = 0.64$$

Precision for class B:

$$60/90 = 0.67$$

$$precision = \frac{\text{#TP}}{\text{#TP+#FP}}$$

What fraction of the ones that you have identified belong to that class?

Of all messages labeled as spam, what fraction is actually spam?

	Truth: A	Truth: B
Predicted: A	70 (TP)	40 (FP)
Predicted: B	30 (FN)	60 (TN)

Recall A:
$$70/100 = 0.7$$

$$recall = \frac{\text{#TP}}{\text{#TP+\#FN}}$$

What fraction of the ones that belong to the class have you identified?

Of all the messages that are actually spam, what fraction has the system labeled as spam?

	Truth: A	Truth: B
Predicted: A	70 (TP)	40 (FP)
Predicted: B	30 (FN)	60 (TN)

Recall B:
$$60/100 = 0.6$$

$$recall = \frac{\text{\#TP}}{\text{\#TP+\#FN}}$$

What fraction of the ones that belong to the class have you identified?

Of all the messages that are actually spam, what fraction has the system labeled as spam?

Spam classification
Accidentally labeling a
message as spam: BAD
Accidentally labeling a spam
message as ok: ANNOYING

Only label messages as spam if we're really *sure*.
Use the "confidence" of the classifier

Low confidence

Spam classification
Accidentally labeling a
message as spam: BAD
Accidentally labeling a spam
message as ok: ANNOYING

Only label messages as spam if we're really *sure*.
Use the "confidence" of the classifier

Low confidence

Precision =
$$4/5$$

Recall = $4/5$

Spam classification
Accidentally labeling a
message as spam: BAD
Accidentally labeling a spam
message as ok: ANNOYING

Only label messages as spam if we're really *sure*.
Use the "confidence" of the classifier

Low confidence

Precision =
$$3/3 = 1$$
Recall = $3/5$

Spam classification
Accidentally labeling a
message as spam: BAD
Accidentally labeling a spam
message as ok: ANNOYING

Only label messages as spam if we're really *sure*. Use the "confidence" of the classifier

How can we compute the confidence of a decision tree?

Precision = 3/3 = 1

Low confidence

Recall = 3/5

103

Question: Come up with a task for which *precision* is more important, and a task for which *recall* is more important

Low confidence

Precision =
$$3/3 = 1$$

Recall = $3/5$

Evaluation

Combining recall and precision using F-measure

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} \times \text{recall}}{(\beta^2 \text{precision}) + \text{recall}}$$

Often
$$\beta = 1$$
:

$$F_1 = \frac{2 \square \text{precision} \square \text{ recall}}{\text{precision} + \text{recall}}$$

Multiclass classification

- Many classification tasks are *binary* (e.g. spam or not spam).
- But... often there are more than 2 classes. This is called **multiclass** classification.

IM GENET

ImageNet has 21841 classes

Speech act classification

15 speech acts in the project dataset.

F1 for multiclass problems

F1 scores for individual classes

In addition:

- Micro F1 average: Calculate F1 by counting total nr of true positives, false negatives and false positives
- Macro F1 average: Calculate metrics for each class, and aggregate by taking an (unweighted) average

ML process + wrap up

1	real world goal	increase revenue
2	real world mechanism	better ad display
3	learning problem	classify click-through
4	data collection	interaction w/ current system
5	collected data	query, ad, click
6	data representation	bow ² , \pm click
7	select model family	decision trees, depth 20
8	select training data	subset from april'16
9	train model & hyperparams	final decision tree
10	predict on test data	subset from may'16
11	evaluate error	zero/one loss for \pm click
12	deploy!	(hope we achieve our goal)

Source: https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-leastenjoyable-data-science-task-survey-says/

1	real world goal	increase revenue
2	real world mechanism	better ad display
3	learning problem	classify click-through
4	data collection	interaction w/ current system
5	collected data	query, ad, click
6	data representation	bow ² , \pm click
7	select model family	decision trees, depth 20
8	select training data	subset from april'16
9	train model & hyperparams	final decision tree
10	predict on test data	subset from may'16
11	evaluate error	zero/one loss for \pm click
12	deploy!	(hope we achieve our goal)

Decide what and how to collect data!

Some labels can be collected 'automatically'

• E.g. whether user clicked on an ad.

When annotating your own data:

- Develop annotation guidelines (sometimes called code book, especially in the social sciences).
- Calculate inter-annotator agreement and withinannotator agreement.
- If humans can't agree about the right label....

1	real world	increase
	goal	revenue
2	real world	better ad
	mechanism	display
3	learning	classify
)	problem	click-through
4	data collection	interaction w/
4	data conection	current system
5	collected data	query, ad, click
	data	12 -11-1
6	representation	bow ² , \pm click
7	select model	decision trees,
7	family	depth 20
8	select training	subset from
°	data	april'16
9	train model &	final decision
9	hyperparams	tree
10	predict on test	subset from
	data	may'16
11	evaluate error	zero/one loss
	evaluate ciroi	for \pm click
		(hope we
12	deploy!	achieve our
		goal)

Decide what and how to collect data!

Be suspicious of 'ground truth' or 'gold labels'!

- Annotator noise
- Annotator bias
- Inherent ambiguity
- Some concepts are very hard to formalize! (hate speech detection)

garbage in, garbage out

increase
revenue
better ad
display
classify
click-through
interaction w/
current system
query, ad, click
bow ² , \pm click
decision trees,
depth 20
subset from
april'16
final decision
tree
subset from
may'16
zero/one loss
for \pm click
(hope we
achieve our
goal)

real world

real world

learning problem

mechanism

data collection

collected data

representation select model

select training

train model &

hyperparams

predict on test

evaluate error

goal

data

family

data

data

deploy!

4

5

10

11

12

ML process

Data pre-processing

- Raw data is usually messy (e.g., missing values, outliers, class imbalance)
- Data quality, amount and preparation is a key factor for the success of any ML solution

1	real world goal	increase revenue
2	real world mechanism	better ad display
3	learning problem	classify click-through
4	data collection	interaction w/ current system
5	collected data	query, ad, click
6	data representation	bow ² , \pm click
7	select model family	decision trees, depth 20
8	select training data	subset from april'16
9	train model & hyperparams	final decision tree
10	predict on test data	subset from may'16
11	evaluate error	zero/one loss for \pm click
12	deploy!	(hope we achieve our goal)

Data pre-processing

Dealing with missing values

- Eliminate entries/attributes with missing values (only works if not too many elements are in this situation)
- Estimate missing values (e.g., interpolation, fill in the mean/median)

Inconsistent values

 Be aware of data types and ranges of the attributes (e.g., you cannot have negative values for 'Age')

real world	increase
goal	revenue
real world	better ad
mechanism	display
learning	classify
problem	click-through
data collection	interaction w/
data collection	current system
collected data	query, ad, click
data	1- a2 a1: a1-
representation	bow ² , \pm click
select model	decision trees,
family	depth 20
select training	subset from
data	april'16
train model &	final decision
hyperparams	tree
predict on test	subset from
data	may'16
evaluate error	zero/one loss
evaluate error	for \pm click
	(hope we
deploy!	achieve our
	goal)

10

11

ML process

Data pre-processing

Identify and remove outliers

- outliers = unexpected values that can statistically distort the dataset and negatively impact the performance of the ML model
- caused usually by measurement **noise**, **faulty input** or rare events

1	real world goal	increase revenue
2	real world mechanism	better ad display
3	learning problem	classify click-through
4	data collection	interaction w/ current system
5	collected data	query, ad, click
6	data representation	bow ² , \pm click
7	select model family	decision trees, depth 20
8	select training data	subset from april'16
9	train model & hyperparams	final decision tree
10	predict on test data	subset from may'16
11	evaluate error	zero/one loss for \pm click
12	deploy!	(hope we achieve our goal)

Usually a combination of multiple evaluation metrics.

Also take into account:

- Cost of errors (e.g. accidently labeling a spam email as 'ok' vs. a self-driving car not detecting a pedestrian crossing a street)
- Biases
- Etc..

Before deciding to deploy it!

Quiz

I posted a short quiz (optional) on Brightspace for you to practice with the material.

Do the quiz before **Wednesday 4pm**, so I have time to take a look before the next lecture.

What do you need to know

- Pros and cons of rule-based vs. supervised learning
- Differences between supervised, unsupervised, reinforcement learning
- Decision Trees (algorithm, entropy, information gain, error rate)
- Concepts such as decision boundary, overfitting, underfitting, inductive bias, hyperparameters
- How to set up machine learning experiments (cross validation, evaluation metrics, precision recall tradeoff)

Resources

- **scikit-learn:** https://scikit-learn.org. Python library with many implementations for ML models (incl. decision trees), as well as pre processing and evaluation
- **Kaggle:** https://www.kaggle.com/. Improve your ML skills by participating in competitions with shared datasets.
- There are many online tutorials and online courses (e.g. ML courses by Andrew Ng, Fast AI, etc.)

Books

http://www.deeplearnin
gbook.org/

https://web.stanford.edu/
~hastie/ElemStatLearn/

https://www.cs.cmu.edu/~t
om/files/MachineLearningT
omMitchell.pdf

https://probml.github.
io/pml-book/book1.html