

Progettazione di basi di dati

Progettazione logica relazionale

Progettazione logica relazionale (1/2)

- □ Introduzione
- □ Ristrutturazione dello schema ER
- □ Eliminazione delle gerarchie
- □ Partizionamento di concetti
- □ Eliminazione degli attributi multivalore
- □ Traduzione nel modello relazionale: entità e relazioni molti a molti
- Traduzione nel modello relazionale: relazioni uno Bca molti

Progettazione logica relazionale (2/2)

- □ Traduzione nel modello relazionale: relazioni uno a uno
- □ Traduzione nel modello relazionale: entità con identificatore esterno
- □ Traduzione nel modello relazionale: relazioni ternarie

Progettazione logica relazionale

Introduzione

Progettazione logica

- □ Richiede di scegliere il modello dei dati
 - modello relazionale
- Obiettivo
 - definizione di uno schema logico relazionale corrispondente allo schema ER di partenza
- - semplificazione dello schema per renderlo rappresentabile mediante il modello relazionale
 - ottimizzazione per aumentare l'efficienza delle interrogazioni

Passi della progettazione logica

Schema ER

Passi della progettazione logica

Passi della progettazione logica

Schema ER

Ristrutturazione dello schema

Schema ER semplificato

Traduzione

Schema logico relazionale

Progettazione logica relazionale

Ristrutturazione dello schema ER

Ristrutturazione dello schema ER

- □ Lo schema ER ristrutturato tiene conto di aspetti realizzativi
 - non è più uno schema concettuale
- Obiettivi
 - eliminazione dei costrutti per cui non esiste una rappresentazione diretta nel modello relazionale
 - trasformazioni volte ad aumentare l'efficienza delle operazioni di accesso ai dati

Attività di ristrutturazione

- □ Analisi delle ridondanze
- Partizionamento e accorpamento di entità e relazioni
- □ Scelta degli identificatori primari

Analisi delle ridondanze

- □ Rappresentano informazioni significative, ma derivabili da altri concetti
 - decisione se conservarle
- □ Effetti delle ridondanze sullo schema logico
 - semplificazione e velocizzazione delle interrogazioni
 - maggiore complessità e rallentamento degli aggiornamenti
 - maggiore occupazione di spazio

Esempio di attributo ridondante

∑ L'attributo MediaVoti è ridondante

- utile per velocizzare le interrogazioni relative al calcolo della media dei voti degli studenti
- se conservato, occorre integrare lo schema relazionale con l'indicazione di ridondanza dell'attributo

Progettazione logica relazionale

Eliminazione delle gerarchie

Eliminazione delle gerarchie

- Non sono rappresentabili direttamente nel modello relazionale
 - sono sostituite da entità e relazioni
- - accorpamento delle entità figlie nell'entità padre
 - accorpamento dell'entità padre nelle entità figlie
 - sostituzione della gerarchia con relazioni

Esempio

Accorpamento nel padre

Attributi delle entità figlie

Relazioni con le entità figlie

Relazioni con le entità figlie

Attributo discriminante

∑ Tipo permette di distinguere a quale entità figlia appartiene ogni occorrenza

Accorpamento nel padre

- □ Applicabile per qualsiasi copertura
 - se sovrapposta, sono possibili molte combinazioni come valori di Tipo

Schema di partenza

Accorpamento nelle figlie

Attributi del padre

Relazioni con il padre

○ Occorre sdoppiare le relazioni con l'entità padre

Cardinalità della relazione Lavora in

○ Occorre sdoppiare le relazioni con l'entità padre

Accorpamento nelle figlie

Schema di partenza

Sostituzione con relazioni

Relazioni tra padre e figlie

Identificazione delle entità figlie

Cardinalità della relazione E' un

Cardinalità della relazione E' un

Sostituzione con relazioni

- - può essere dispendiosa per ricostruire l'informazione di partenza

Valutazione delle alternative

- □ L'accorpamento delle entità figlie nell'entità padre è appropriato quando
 - le entità figlie introducono differenziazioni non sostanziali (pochi valori nulli)
 - le operazioni d'accesso non distinguono tra occorrenze dell'entità padre e delle figlie (accesso più efficiente)

Valutazione delle alternative

- □ L'accorpamento dell'entità padre nelle entità figlie è appropriato quando
 - la generalizzazione è totale
 - le operazioni d'accesso distinguono tra occorrenze delle diverse entità figlie (accesso più efficiente)

Valutazione delle alternative

- □ Sono possibili anche soluzioni "miste"
 - le operazioni d'accesso distinguono tra occorrenze di alcune entità figlie (accesso più efficiente)

Valutazione delle alternative

- ∑ Sono possibili anche soluzioni "miste"
 - le operazioni d'accesso distinguono tra occorrenze di alcune entità figlie (accesso più efficiente)
- □ Per le generalizzazioni a più livelli, si procede nello stesso modo, partendo dal livello inferiore

Progettazione logica relazionale

Partizionamento dei concetti

Partizionamento di concetti

- □ Partizionamento di entità o relazioni
 - rappresentazione migliore di concetti separati
 - separazione di attributi di uno stesso concetto che sono utilizzati da operazioni diverse
 - maggiore efficienza delle operazioni

Partizionamento di entità

Partizionamento di entità

Cardinalità della relazione Dati impiegato

Cardinalità della relazione Dati impiegato

Partizionamento di relazioni

Partizionamento di relazioni

Cardinalità della relazione Ha occupato

Cardinalità della relazione Ha occupato

Cardinalità della relazione Ha occupato

Cardinalità della relazione Occupa attualmente

Cardinalità della relazione Occupa attualmente

Progettazione logica relazionale

- Non sono rappresentabili nel modello relazionale
- ∠ L'attributo multivalore è rappresentato mediante una nuova entità collegata da una relazione all'entità originale
 - attenzione alla cardinalità della nuova relazione

Cardinalità della relazione Ha conseguito

Cardinalità della relazione Ha conseguito

Cardinalità della relazione Ha telefono

Cardinalità della relazione Ha telefono

Progettazione logica relazionale

Eliminazione degli attributi composti e scelta degli identificatori primari

Eliminazione degli attributi composti

- Non sono rappresentabili nel modello relazionale
- Due alternative

Eliminazione degli attributi composti

- Non sono rappresentabili nel modello relazionale
- Due alternative
 - si rappresentano in modo separato gli attributi componenti
 - adatto se è necessario accedere separatamente a ciascun attributo

Rappresentazione separata degli attributi

Rappresentazione separata degli attributi

Eliminazione degli attributi composti

- Non sono rappresentabili nel modello relazionale
- □ Due alternative
 - si rappresentano in modo separato gli attributi componenti
 - adatta se è necessario accedere separatamente a ciascun attributo
 - si introduce un unico attributo che rappresenta la concatenazione degli attributi componenti
 - adatta se è sufficiente l'accesso all'informazione complessiva

Rappresentazione con un attributo unico

Rappresentazione con un attributo unico

Scelta degli identificatori primari

- Necessaria per definire la chiave primaria delle tabelle
- □ Un buon identificatore
 - non assume valore nullo
 - è costituito da pochi attributi (meglio 1!)
 - possibilmente è interno
 - è utilizzato da molte operazioni d'accesso
- Può essere opportuno introdurre codici identificativi

Progettazione logica relazionale

Traduzione nel modello relazionale: entità e relazioni molti a molti

Traduzione nel modello relazionale

- ∑ Si esegue sullo schema ER ristrutturato
 - senza gerarchie, attributi multivalore e composti
- □ Trasformazioni
 - ad ogni entità corrisponde una tabella con gli stessi attributi
 - per le relazioni occorre considerare la cardinalità massima

Traduzione di entità

Traduzione di entità

Persona(CodiceFiscale, Nome, Cognome, Professione*)

- □ Chiave primaria sottolineata
- □ Attributi opzionali indicati con asterisco

Traduzione di relazioni binarie molti a molti

- Ogni relazione molti a molti corrisponde a una tabella
 - la chiave primaria è la combinazione degli identificatori delle due entità collegate
 - è possibile ridenominare gli attributi della tabella che corrisponde alla relazione (necessario in caso di relazioni ricorsive)

Relazione binaria molti a molti

Relazione binaria molti a molti: entità

Studente(<u>Matricola</u>, Nome, Cognome) Corso(<u>CodCorso</u>, Nome)

Relazione binaria molti a molti

Studente(<u>Matricola</u>, Nome, Cognome) Corso(<u>CodCorso</u>, Nome) Esame(<u>Matricola</u>, <u>CodCorso</u>, Voto)

Relazione binaria molti a molti ricorsiva

Relazione binaria molti a molti ricorsiva

Prodotto(<u>CodP</u>, Nome, Costo)

Relazione binaria molti a molti ricorsiva

Prodotto(<u>CodP</u>, Nome, Costo) Composizione(<u>CodComposto</u>, <u>CodComponente</u>, Quantità)

Progettazione logica relazionale

Traduzione nel modello relazionale: relazioni uno a molti

- ∑ Sono possibili due modalità di traduzione
 - mediante attributi
 - mediante una nuova tabella

Relazione binaria uno a molti: entità

Persona(CodiceFiscale, Nome, Cognome)

Comune(NomeComune, Provincia)

Persona(<u>CodiceFiscale</u>, Nome, Cognome, <u>NomeComune</u>)
Comune(<u>NomeComune</u>, Provincia)

Persona(<u>CodiceFiscale</u>, Nome, Cognome, NomeComune, <u>DataTrasferimento</u>) Comune(<u>NomeComune</u>, Provincia)

Studente(<u>Matricola</u>, Nome, Cognome) Facoltà(<u>NomeFacoltà</u>, Città) Laurea(<u>Matricola</u>, NomeFacoltà, DataLaurea)

Studente(<u>Matricola</u>, Nome, Cognome, NomeFacoltà*, DataLaurea*) Facoltà(<u>NomeFacoltà</u>, Città)

Progettazione logica relazionale

Traduzione nel modello relazionale: relazioni uno a uno

Relazione binaria uno a uno

- ∑ Sono possibili più traduzioni
 - dipende dal valore della cardinalità minima

Relazione binaria uno a uno: caso 1

□ Partecipazione obbligatoria da entrambi i lati

□ Partecipazione obbligatoria da entrambi i lati

Rettore(Matricola, Nome, Cognome)

Università (Nome Università, Città)

□ Partecipazione obbligatoria da entrambi i lati

Rettore(<u>Matricola</u>, Nome, Cognome, *NomeUniversità*, *DataElezione*)

Università (Nome Università, Città)

□ Partecipazione obbligatoria da entrambi i lati

Rettore(<u>Matricola</u>, Nome, Cognome) Università(<u>NomeUniversità</u>, Città)

□ Partecipazione obbligatoria da entrambi i lati

Rettore(<u>Matricola</u>, Nome, Cognome) Università(<u>NomeUniversità</u>, Città, <u>Matricola</u>, <u>DataElezione</u>)

Relazione binaria uno a uno: caso 2

□ Partecipazione opzionale da un lato

Relazione binaria uno a uno: entità

□ Partecipazione opzionale da un lato

Professore(<u>Matricola</u>, Nome, Cognome) Università(<u>NomeUniversità</u>, Città)

Relazione binaria uno a uno

□ Partecipazione opzionale da un lato

Professore(<u>Matricola</u>, Nome, Cognome) Università(<u>NomeUniversità</u>, Città, <u>Matricola</u>, <u>DataElezione</u>)

Relazione binaria uno a uno: caso 3

□ Partecipazione opzionale da entrambi i lati

□ Partecipazione opzionale da entrambi i lati

Professore(<u>Matricola</u>, Nome, Cognome) Università(<u>NomeUniversità</u>, Città)

□ Partecipazione opzionale da entrambi i lati

Professore(<u>Matricola</u>, Nome, Cognome) Università(<u>NomeUniversità</u>, Città) Rettore(<u>Matricola</u>, NomeUniversità, DataElezione)

□ Partecipazione opzionale da entrambi i lati

Professore(Matricola, Nome, Cognome) Università (Nome Università, Città)

Rettore(Matricola, NomeUniversità, DataElezione)

□ Partecipazione opzionale da entrambi i lati

Professore(<u>Matricola</u>, Nome, Cognome) Università(<u>Nome</u>, Città)

□ Partecipazione opzionale da entrambi i lati

Professore(<u>Matricola</u>, Nome, Cognome) Università(<u>Nome</u>, Città, <u>Matricola</u>*, <u>DataElezione</u>*)

Progettazione logica relazionale

Traduzione nel modello relazionale: entità con identificatore esterno

Entità con identificatore esterno

Entità con identificatore esterno

Università(<u>NomeUniversità</u>, Città) Studente(<u>Matricola, NomeUniversità</u>, Nome, Cognome)

Entità con identificatore esterno

Università(<u>NomeUniversità</u>, Città) Studente(<u>Matricola</u>, <u>NomeUniversità</u>, Nome, Cognome)

□ La relazione è rappresentata insieme all'identificatore

Progettazione logica relazionale

Traduzione nel modello relazionale: relazioni ternarie

Relazione ternaria

Relazione ternaria: entità

Studente(<u>Matricola</u>, Nome, Cognome) Corso(<u>Codice</u>, Nome) Tempo(<u>Data</u>)

Relazione ternaria: identificatore

Studente(<u>Matricola</u>, Nome, Cognome) Corso(<u>Codice</u>, Nome) Tempo(<u>Data</u>) Esame(<u>Matricola</u>, <u>Codice</u>, <u>Data</u>

Relazione ternaria: attributi

Studente(<u>Matricola</u>, Nome, Cognome) Corso(<u>Codice</u>, Nome) Tempo(<u>Data</u>)

Esame(Matricola, Codice, Data, Voto)

Progettazione logica relazionale

Vincoli d'integrità referenziale

Vincoli d'integrità referenziale

Le relazioni rappresentano vincoli d'integrità referenziale

Integrità referenziale: relazione Esame

□ Tabelle coinvolte

Studente(Matricola, Nome, Cognome)

Corso(CodCorso, Nome)

Esame(Matricola, CodCorso, Voto)

Integrità referenziale: relazione Esame

Tabelle coinvolte

Studente(Matricola, Nome, Cognome)

Corso(CodCorso, Nome)

Esame(Matricola, CodCorso, Voto)

✓ Vincoli d'integrità referenziale
 Esame (Matricola) REFERENCES Studente (Matricola)
 Esame (CodCorso) REFERENCES Corso (CodCorso)

