Faculty of Science and Engineering

ELEC4844/8844 Practical Class – Week 10, 2024 Phase Locked Loop

TASK

The supplied file "data_practical_W10.mat" contains an RF signal s[n] acquired by the RTL-SDR device at sampling rate f_s (=1/ T_s) = 1.2 MHz for 10 seconds. The RTL-SDR device was tuned to f_c = 96.75 MHz.

- a) It is known there exists a local FM radio station at 96.9 MHz. Use MATLAB function $\underline{\text{periodogram}}$ (or $\underline{\text{pwelch}}$) to plot the centred two-sided power spectral density of s[n], confirming that it is likely from this FM radio station.
- b) The signal can be FM-demodulated using a Type-2 phase locked loop according to the following diagram:

Calculate the parameters of the loop filter K_1 and K_2 based on the following equations

$$\eta = \frac{B_n T_s}{\zeta + \frac{1}{4\zeta}}, \qquad K_1 = \frac{4\zeta \eta}{K_o K_p (1 + 2\zeta \eta + \eta^2)}, \qquad K_2 = \frac{4\eta^2}{K_o K_p (1 + 2\zeta \eta + \eta^2)},$$

and with gain of phase detector $K_p = 1$, gain of NCO $K_o = 1$, noise bandwidth $B_n = 50$ kHz, and damping ratio $\zeta = 1$. In addition, set $f_o = 100$ kHz.

c) Derive the updating equations for the internal registers $\phi[n]$, $v_1[n]$, $v_2[n]$, $v_3[n]$, and c[n]. Build the model in MATLAB or Simulink, and perform the FM demodulation.

Plot the obtained $v_2[n]$ as a function of time, which is the demodulated FM signal.

- d) Convert the sampling rate of the demodulated signal to 48 kHz. Plot it as a function of time and play the audio.
- e) The PLL above tracks the real part (i.e. in-phase component) of the received RF signal. But since the RTL-SDR device receives quadrature signal in the complex format, it is also possible to track the complex-valued s[n] directly, using a Type-2 PLL as shown in the following diagram:

Modify the updating rules for $\phi[n]$, $v_1[n]$, $v_2[n]$, $v_3[n]$, and c[n] accordingly, and use the same PLL parameters to simulate the model for FM demodulation. Note that the location of the coefficient 2π has changed.

Plot the demodulated FM signal $v_2[n]$, downsample it to 48 kHz, and play the audio.