

Professor Phil McMinn

4.1 Grey-Box Coverage Criteria based on Input Domain Analysis

The Input Domain of a Program

System Level

Mouse Clicks

Touch Gestures

User Entered Data

Network Data

The Input Domain of a Program

Unit Level

Method Parameters

Global Variables

System State

The Input Domain of a Program

Input Domain for isPositive(int n)

Properties of an Input Domain Partition

- 1. The partition must cover the entire domain (i.e., it is complete)
- 2. The equivalence classes must not overlap (i.e., they are disjoint)

Input Domain for isPositive(int n)

Input Domain for isPositive(int n)

-2,147,483,648 ... -1 0 1 ... 2,147,483,648

e₁ e₂ e₃

Input Domain for is Positive (int n)

-2,147,483,648 ... -1 0 1 ... 2,147,483,648

$$e_1$$
 e_2 e_3

Test Case	Equivalence Class	Example Input	Expected Outcome
1	Less than zero	-100	false
2	Zero	0	false
3	Greater than zero	100	true

Boundary Value Analysis

-2,147,483,648 ... -1 0 1 2 ... 2,147,483,648

$$e_1$$
 e_2 e_3 e_4

Characteristics

- Whether elements is null (true, false)
- The size of elements (0, 1, greater than 1)
- The initial order of elements (ascending, descending, arbitrary)

The initial order of elements (ascending, descending, arbitrary)

The initial order of elements

- Sorted in ascending order (true, false)
- Sorted in descending order (true, false)

Applying Input Domain Analysis

- 1. Identify the Functions to Test
- 2. Identify the Input Domain
- 3. Identify Characteristics
 - Interface-Based Input Domain Modelling
 - Functionality-Based Input Domain Modelling
- 4. Identify Equivalence Classes

Identifying Equivalence Classes

- Valid sets of values
- Invalid sets of values
- Normal sets of values
- Abnormal sets of values
- Boundary values
- Special values

Ensure the partitioning is valid:

- Missing sets of values
- Overlapping sets of values

		Equiva	alence Class	ses
	Characteristic	<i>e</i> ₁	<i>e</i> ₂	<i>e</i> ₃
1	Relation of side1 to 0	greater than 0	equal to 0	less than 0
2	Relation of side2 to 0	greater than 0	equal to 0	less than 0
3	Relation of side3 to 0	greater than 0	equal to 0	less than 0

			Equivalence	Classes	
	Characteristic	<i>e</i> ₁	<i>e</i> ₂	<i>e</i> ₃	<i>e</i> ₄
1	Length of side1	greater than 1	equal to 1	equal to 0	less than 0
2	Length of side2	greater than 1	equal to 1	equal to 0	less than 0
3	Length of side3	greater than 1	equal to 1	equal to 0	less than 0

			Equivalend	e Classes	
Partition	Characteristic	<i>e</i> ₁	<i>e</i> ₂	<i>e</i> ₃	<i>e</i> ₄
1	Geometric Classification	scalene	isosceles	equilateral	invalid

			Equivalence	Classes	
	Characteristic	<i>e</i> ₁	<i>e</i> ₂	<i>e</i> ₃	e_4
1	Geometric Classification	scalene	isosceles, not equilateral	equilateral	invalid

Param	<i>e</i> ₁	<i>e</i> ₂	<i>e</i> ₃	<i>e</i> ₄
Triangle	(4, 5, 6)	(3, 3, 4)	(3, 3, 3)	(3, 4, 8)

		Equivalence Classes	
	Characteristic	<i>e</i> ₁	<i>e</i> ₂
1	Triangle is Scalene	true	false
2	Triangle is Isosceles	true	false
3	Triangle is Equilateral	true	false
4	Triangle is Invalid	true	false

Combination Coverage Criteria

- All Combinations Coverage
- Each Choice Coverage
- Pair-Wise Coverage
- T-Wise Coverage
- Base Choice Coverage
- Multiple Base Choice Coverage

Constraints Among Partitions

- Cannot be combined
- Must be combined

Final Thoughts

- Using more than one input domain model
- Checking the input domain model

