Actividad 0

Luis Miguel Fros De Castro

20 de Agosto de 2018

1. Complejidades Teóricas

Sea $L \in \mathcal{L}_{\mathbb{N}}$ ($\mathcal{L}_{\mathbb{N}}$ conjunto de listas ligadas) una lista ligada con un largo finito $n.(||L|| = n, n \in \mathbb{N})$. Para el análisis teórico de la complejidad de las operaciones, se asume que además de la referencia el primer elemento tenemos un puntero al ultimo.

- Insert(L, x, i): Insertar un elemento \mathbf{x} en la posición \mathbf{i} de L toma en el peor caso n pasos si \mathbf{i} =n, por lo debe recorrer todos los elementos de la lista.
 - Complejidad es O(n).
- **Delete**(L,i): Eliminar un elemento en la posicion **i** de L también debe recorrer todos los elementos de la lista hasta estar en la posición buscada. En el peor de los casos i=n.
 - Complejidad es O(n).
- Append(L,x): Dada la implementación mencionada, esta operacion seria actualizar el ultimo nodo como x.
 - Complejidad es O(1).
- $\operatorname{Pop}(L)$: En este caso, aunque tengamos la referencia al ultimo elemento necesitamos su predecesor. Esto requiere recorrer n-1 elementos hasta encontrarlo.
 - Complejidad es O(n).

Sea $L* \in \mathcal{L}_{\mathbb{N}}$ de largo **k**.

- Concatenate(L, L*):Dado que tenemos la referencia al ultimo nodo, esta operación es equivalente a Append dado que el ultimo elemento de L tiene como proximo al primero de L*.
 - Complejidad es O(1)
- Destroy(L): Para poder eliminar la lista L se deben eliminar todos los nodos ,por lo que toma n pasos y un paso extra para eliminar la referencia de la lista misma.
 - Complejidad es O(n).