Universidade Estadual Vale do Acaraú - UVA

Curso: Ciências da Computação

Disciplina: Construção e Análise de Algoritmos

Professor: Cláudio Carvalho

Lista 01 - Complexidade de Algoritmos

1. Suponha que um dado problema é resolvido, por um dado algoritmo, em $f(n) \mu s$, onde n indica o tamanho da entrada. Para cada função f(n) a seguir, determine o maior tamanho de entrada desse problema que pode ser resolvida em 1s.

a)
$$f(n) = n$$

b)
$$f(n) = n^2$$

c)
$$f(n) = 2^n$$

a)
$$f(n) = n$$
 b) $f(n) = n^2$ c) $f(n) = 2^n$ d) $f(n) = \log_2 n$

2. Resolva as seguintes equações de recorrência:

a)
$$T(n) = 4T(n/2) + n^2$$

c)
$$T(n) = 2T(n/2) + n^2$$

e)
$$T(n) = 2T(n-1) + 1$$

a)
$$T(n) = 4T(n/2) + n^2$$
 c) $T(n) = 2T(n/2) + n^2$ e) $T(n) = 2T(n-1) + 1$
b) $T(n) = 4T(n/2) + n$ d) $T(n) = T(\sqrt{n}) + 1$ f) $T(n) = T(n/3) + 1$

$$d) T(n) = T(\sqrt{n}) + 1$$

f)
$$T(n) = T(n/3) + 1$$

3. Em relação a notação assintótica verifique se:

(nos itens $d \in f$, b é uma constante positiva diferente de 1.)

a)
$$n^2 + 10n = O(n^2)$$

c)
$$3^n = \Omega(2^n)$$

e)
$$2^{n+1} = \Theta(2^n)$$

a)
$$n^2 + 10n = O(n^2)$$
 c) $3^n = \Omega(2^n)$ e) $2^{n+1} = \Theta(2^n)$
b) $n^2 = O(777n + 1345)$ d) $\log_b n = O(n)$. f) $\log_b n = \Theta(\log_2 n)$.

$$d) \log_b n = O(n).$$

f)
$$\log_b n = \Theta(\log_2 n)$$
.

4. Sejam f(n) e g(n) funções assintoticamente positivas. Prove ou conteste as conjecturas:

a)
$$f(n) = O(g(n))$$
 implica $g(n) = O(f(n))$

b)
$$f(n) = O(g(n))$$
 é equivalente a $g(n) = \Omega(f(n))$

c)
$$f(n) + g(n) = \Theta(\min(f(n), g(n)))$$

d)
$$f(n) = \Theta(f(n/2))$$

5. Sabe-se que um computador C_1 , executando um algoritmo A_1 de complexidade \log_4^n , resolve um problema de tamanho x em um tempo t milissegundos. Responda:

a) Em quanto tempo C_1 resolve um problema de tamanho 16x usando A_1 ?

b) Qual o tamanho da maior entrada que um computador C_2 , 3 vezes mais rápido que C_1 , resolve no mesmo tempo t com o algoritmo A_1 ?

c) Em quanto tempo o computador C_1 resolve o mesmo problema de tamanho x, utilizando um algoritmo A_2 de complexidade \log_2^n ?

 Considerando apenas as operações de atribuição e comparação, apresente as funções de complexidade do melhor e do pior casos, para o SelectionSort e o InsertionSort.

1

- 7. Considerando A(n) a função que determina o tempo de execução do algoritmo a seguir para uma entrada de tamanho n, responda:
 - a) Calcule A(n) em notação assintótica.
 - b) Troque 8 por 7 no algoritmo e calcule novamente A(n) em notação assintótica.
 - c) Troque 8 por 16 e calcule novamente A(n) em notação assintótica.

Algoritmo Asteriscos(n) 1 se n > 1 então 2 para $i \leftarrow 1$ até 8 faça 3 Asteriscos($\lfloor n/2 \rfloor$) 4 para $j \leftarrow 1$ até n^3 faça 5 Imprima "*"

- 8. Dadas duas cadeias de caracteres S_1 e S_2 . Diz-se que S_2 é um dos anagramas de S_1 , e vice-versa, se elas possuem os mesmos caracteres. Por exemplo: 123, 321 e 132 são alguns dos anagramas de 123. Proponha um algoritmo de complexidade $\Theta(n)$ que receba duas cadeias de n dígitos e diga se elas são anagramas.
- 9. (Maratona de Programação da SBC 2017) Todo inteiro positivo pode ser fatorado em números primos. Exemplo, $252 = 2^2 \times 3^2 \times 7$. Um inteiro é despojado se pode ser escrito como produto de dois ou mais primos distintos. Exemplo: $6 = 2 \times 3$ e $14 = 2 \times 7$ são despojados, mas $28 = 2^2 \times 7$, 1 e 17 não são despojados. Proponha um algoritmo que, dado um inteiro n ($1 \le n \le 10^{12}$), diga o número de divisores de n que são despojados. Mostre a complexidade de tempo do seu algoritmo.
- 10. Proponha um algoritmo que, dado um número inteiro n ($1 \le n \le 10^6$), apresente os números primos no intervalo de 1 a n. Apresente a complexidade do seu algoritmo.
- 11. (URI Problema 1393 adaptada) O caminho para a escola de Maria é pavimentado com lajotas hexagonais. A imagem abaixo mostra um caminho com peças de 0 a 12.

Ao ir à escola, ela adota as seguintes regras: começa na lajota de número 0 e sempre passa para uma lajota vizinha cujo valor seja superior ao da que ela está pisando, até atingir a de maior valor. Maria não quer repetir sequências de passos nas lajotas. Por exemplo, há 5 sequênias distinas para lajotas numeradas de 0 a 4: $\langle 0, 1, 2, 3, 4 \rangle$, $\langle 0, 1, 3, 4 \rangle$, $\langle 0, 1, 3, 4 \rangle$, $\langle 0, 2, 3, 4 \rangle$ e $\langle 0, 2, 4 \rangle$. Dado um caminho com lajotas hexagonais numeradas de 0 a n, $1 \le n \le 40$, proponha um algoritmo que diga em tempo O(n) o número de maneiras distintas que levam da lajota 0 à n.

12. (URI - Problema 2867) Dados dois inteiros n e m, com $1 \le m, n \le 100$, elabore um algoritmo que calcule a quantidade de dígitos do número n^m .

- 13. Considere duas filas, uma de armários A_1, \ldots, A_n (inicialmente fechados), e outra de pessoas P_1, \ldots, P_n . Cada pessoa P_i , $1 \le i \le n$, deve passar pelos armários e mudar o status (aberto \leftrightarrow fechado) de cada armário A_j , $1 \le j \le n$, sempre que j for um múltiplo de i. Proponha um algoritmo que leia uma quantidade n de armários e de pessoas, $1 \le n \le 10^8$, e diga quantos armários ficarão abertos após a passagem da última pessoa. Analise a complexidade do seu algoritmo, em notação assintótica.
- 14. (URI Problema 1935) Dado um tabuleiro de dimensões $n \times n$, deseja-se colocar grãos de feijão, um em cada quadrado, seguindo uma espiral, começando na posição (1,1), indo para a direita, para baixo, para a esquerda e para cima. O sentido do movimento só muda quando atingir a borda do tabuleiro, ou quando a próxima posição estiver ocupada. Esse padrão deve se repetir até que b grãos de feijão sejam colocados. Dados os valores n ($1 \le n \le 2^{30}$) e b ($1 \le b \le n^2$), proponha um algoritmo que diga, em tempo O(1), a linha e a coluna em que ficará o último grão. Exemplo: para n = 8 e b = 53, conforme a figura a seguir, o último grão ficará na posição (4,6).

	1	2	3	4	5	6	7	8
1	Ŧ							-
2	7							1
3		1-	-			-,		
4						¥	1	
5	1							
6							1	
7		1-						1
8	1							

15. (URI - Problema 3087 - adaptada) Considere uma matriz A de ordem $n \times n$, com n ímpar, que deve ser preenchida com a sequência de valores de 1 a n^2 , a partir do centro, em espiral. Proponha um algoritmo que, dados a ordem n da matriz A e um número $s, n \in \{1, 3, ..., 99\}$ e $1 \le s \le n^2$, calcule a posição (linha, coluna) de s em A. No exemplo a seguir, para n = 5 e s = 6, s está na posição (2, 1).

	0	1	2	3	4
0	21	22	23	24	25
1	20	7	8	9	10
2	19	6	1	2	11
3	18	5	4	3	12
4	17	16	15	14	13

16. (URI - Problema 1801 - adaptada) Dado um número inteiro n, com $1 \le n \le 2^{12} - 1$, proponha um algoritmo que determine o número de permutações p de n tais que p não possui zeros à esquerda e o número p+n é um quadrado perfeito. Faça a análise de complexidade do seu algoritmo. Por exemplo, para n=152784, há 8 possíveis valores para p. São eles: 182457, 418752, 527841, 578241, 815472, 845217, 857241 e 875412.