block name 1

2 1 New

1. New

Homeomorphisms are monotonous

Let:

 $\cdot f : \mathbb{R} \to \mathbb{R}$ homeomorphism

Then, holds:

 $\cdot f$ monotonous

Demonstration:

no demonstration

block name 3

Homeomorphisms and n-periodic points

Let:

 $\cdot \, f \, : \, \mathbb{R} \to \mathbb{R}$ homeomorphism (M,T,ϕ) dynamical system defined

by f

Then, holds:

 $\cdot \quad \forall \ n \in \mathbb{N}$:

 $\nexists x \in M$, x n-periodic point

Demonstration:

graphically

4 1 New

Decreasing function orbits

Let:

 $\cdot \, declarations$

.

Show that:

 $\cdot statements \\$

.

Demonstration:

f corta en un punto

f decreasing $\rightarrow f^2$ increasing

 $f^{2n} \stackrel{n}{\longrightarrow}$ fixed point of f

block name 5

10.

Let:

$$f: \mathbb{R}^+ \to \mathbb{R}^+ \in \mathbb{C}^{\infty}$$

$$f(0) = 0$$

$$p \in \mathbb{R}^+ \setminus \{0\} \quad \text{if } f'(p) \ge 0$$

$$f' \text{ decreasing}$$

Show that:

$$\forall p \in \mathbb{R}^+ \setminus \{0\}:$$

$$f^n(x) \xrightarrow{n} p$$

Demonstration:

$$f'$$
 decreasing $\to f'' < 0 \to f$ concave f positive $\to f$ has no extrema $\to f' > 0 \to f$ increasing f has only one fixed point
$$\text{Suppose 2 fixed points} : p, p'$$
 $IVT \to \exists \ c \in (0, p'):$

$$f'(c) = 1$$

 $f'(p) < 1 \rightarrow p$ attractive $IVT \rightarrow$ dont exist more fixed points

$$\rightarrow f'(c') = 1 \nleq 1$$

$$\forall x \in (0,p)$$
:

 $\forall x \in \mathbb{R} \mid_{\Pi} x > p$:

$$f(x) < x 5$$

 $f \text{ increasing } \rightarrow f([0, p]) = [0, p]$