

AOL1412

N-Channel Enhancement Mode Field Effect Transistor

General Description

The AOL1412 uses advanced trench technology with a monolithically integrated Schottky diode to provide excellent R_{DS(ON)}, and low gate charge. This device is suitable for use as a low side FET in SMPS, load switching and general purpose applications. Standard Product AOL1412 is Pb-free (meets ROHS & Sony 259 specifications). AOL1412L is a Green Product ordering option. AOL1412 and AOL1412L are electrically identical.

Features

$$\begin{split} &V_{DS}\left(V\right) = 30V \\ &I_{D} = 85A\left(V_{GS} = 10V\right) \\ &R_{DS(ON)} < 3.9 m\Omega\left(V_{GS} = 10V\right) \\ &R_{DS(ON)} < 4.6 m\Omega\left(V_{GS} = 4.5V\right) \end{split}$$

UIS Tested Rg,Ciss,Coss,Crss Tested

Ultra SO-8[™] Top View

Fits SOIC8 footprint!

Bottom tab connected to drain

Absolute Maximum Ratings T _A =25°C unless otherwise noted					
Parameter		Symbol	Maximum	Units	
Drain-Source Voltage)	V_{DS}	30	V	
Gate-Source Voltage		V_{GS}	±12	V	
Continuous Drain	T _C =25°C ^I		85		
Current ^B	T _C =100°C	I _D	84	Α	
Pulsed Drain Current		I _{DM}	200		
Continuous Drain	T _A =25°C		27	Δ.	
Current H	T _A =70°C	I _{DSM}	21	A A	
Avalanche Current C		I _{AR}	40	А	
Repetitive avalanche energy L=0.3mH ^C		E _{AR}	240	mJ	
T _C =25°C		P _D	100	W	
Power Dissipation B	T _C =100°C	L D	50	v	
	T _A =25°C	Ь	5	W	
Power Dissipation A	T _A =70°C	P _{DSM}	3	¬	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 175	°C	

Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	$ R_{\theta JA}$	19.6	25	°C/W	
Maximum Junction-to-Ambient ^A	Steady-State	$\kappa_{\theta JA}$	50	60	°C/W	
Maximum Junction-to-Case ^C	Steady-State	$R_{\theta JC}$	1	1.5	°C/W	

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC P	ARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I_D =1mA, V_{GS} =0V		30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =24V, V _{GS} =0V			0.008	0.1	mA
DSS	Zero Gate Voltage Brain Gurrent		T _J =125°C		9	20	IIIA
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±12V				0.1	μА
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		1.4	1.8	2.4	V
$I_{D(ON)}$	On state drain current	V_{GS} =10V, V_{DS} =5V		200			Α
		V_{GS} =10V, I_D =20A			3.2	3.9	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance		T _J =125°C		5.0	6.2	11122
		V_{GS} =4.5V, I_D =20A			3.8	4.6	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =20A			112		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.4	0.5	V
Is	Maximum Body-Diode Continuous Current					85	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance				6430	7716	pF
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=	1MHz		756		pF
C_{rss}	Reverse Transfer Capacitance				352		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			0.9	1.4	Ω
SWITCHING PARAMETERS							
$Q_g(10V)$	Total Gate Charge				96	115	
Q _g (4.5V)	Total Gate Charge	VGS=10V, VDS=15V, ID=20A			44	53	nC
Q_{gs}	Gate Source Charge				17		nC
Q_{gd}	Gate Drain Charge				13		nC
t _{D(on)}	Turn-On DelayTime				17.5		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =0.75 Ω , R_{GEN} =3 Ω			10		ns
$t_{D(off)}$	Turn-Off DelayTime				56		ns
t _f	Turn-Off Fall Time				10.5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=300A/μ	S		20	25	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =20A, dI/dt=300A/μ	S		26		nC

A: The value of R_{DJA} is measured with the device in a still air environment with T_A =25°C. The power dissipation P_{DSM} and current rating I_{DSM} are based on TJ(MAX)=150°C, using t ≤ 10s junction-to-ambient thermal resistance.

- C: Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C.
- D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300 ms pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assumin a maximum junction temperature of TJ(MAX)=175°C.
- G. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA curve provides a single pulse rating.
- H. Surface mounted on a 1 in 2 FR-4 board with 2oz. Copper.
- I. The maximum current rating is limited by bond-wires.

Rev1: June 2006

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Figure 10: Single Pulse Power Rating Junction-to-Case (Note F)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Figure 12: Single Pulse Avalanche capability

Figure 13: Power De-rating (Note B)

Figure 14: Current De-rating (Note B)

Figure15: Single Pulse Power Rating Junction-to-Ambient (Note G)

Figure 16: Normalized Maximum Transient Thermal Impedance (Note G)

Figure 17: Diode Reverse Leakage Current vs. **Junction Temperature**

0.9

Temperature

Figure 19: Diode Reverse Recovery Charge and **Peak Current vs. Conduction Current**

Figure 20: Diode Reverse Recovery Time and Soft Coefficient vs. Conduction Current

Figure 21: Diode Reverse Recovery Charge and Peak Current vs. di/dt

Figure 22: Diode Reverse Recovery Time and Soft Coefficient vs. di/dt

Document No.	PD-00468			
Version	A			
Title	AOL1412 Marking Description			

UltraSO- 8^{TM} PACKAGE MARKING DESCRIPTION

Green product

NOTE:

LOGO - AOS Logo

1412 - Part number code

F - Fab code

A - Assembly location code

Y - Year code W - Week code L&T - Assembly lot code

PART NO.	DESCRIPTION	CODE
AOL1412	Standard product	1412
AOL1412L	Green product	<u>1412</u>

Document No.	PO-00013
Version	rev E

UltraSO-8™ PACKAGE OUTLINE

RECOMMENDED LAND PATTERN

arn mor a	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES			
SYMBOLS	MIN	NOM	MAX	MIN	NOM	MAX	
A	1. 45	1. 55	1.70	0.057	0.061	0.067	
A1	0.00		0.05	0.000		0.002	
B1	2. 75	2. 95	3. 15	0.108	0.116	0. 124	
B2	0.50	0. 56	0.65	0.020	0.022	0.026	
С	0.45	0.51	0.56	0.018	0.020	0.022	
D	5. 00	5. 11	5. 30	0.197	0. 201	0. 209	
D1	3. 60	3. 71	4. 30	0.142	0.146	0.169	
D2	3.60	4.01	4. 30	0.142	0.158	0.169	
D3	4.00	4. 22	4. 30	0.157	0.166	0.169	
D4	5. 11	5. 41	5. 60	0. 201	0. 213	0. 220	
Е	4. 90	5.00	5. 10	0. 193	0. 197	0. 201	
E1	5. 90	6.05	6. 20	0. 232	0. 238	0. 244	
E2	3. 50	3. 61	3.80	0.138	0.142	0.150	
L1	0.50	0.64	1.00	0.020	0.025	0.039	
L2	0.15TYP.			0.006 TYP.			
Ø				<u> </u>			
θ	0		10°	0		10°	

NOTE

- 1. PAKCAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS. MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 6 MILS.
- 2. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.