CS1231: Discrete Structures

Tutorial 3

Li Wei

Department of Mathematics National University of Singapore

12 February, 2019

Quick Review

- Testing for a valid argument form
- Valid argument forms

Menu

Question 2
Question 3
Question 4

1. Use a truth table to determine whether the following argument forms are valid.

Recall

Testing for a valid argument form

- 1. Identify the premises and conclusion.
- Construct a truth table.
- 3. If the truth table contains a row in which all the premises are true and the conclusion is false, the argument form is invalid. Otherwise the form is valid.

1. Use a truth table to determine whether the following argument forms are valid.

- Testing for a valid argument form
 - 1. Identify the premises and conclusion.
 - 2. Construct a truth table.
 - If the truth table contains a row in which all the premises are true and the conclusion is false, the argument form is invalid. Otherwise the form is valid.
- (a) $p \to r$, $q \to r : p \lor q \to r$.

1. Use a truth table to determine whether the following argument forms are valid.

Recall

- 1. Identify the premises and conclusion.
- 2. Construct a truth table.
- 3. If the truth table contains a row in which all the premises are true and the conclusion is false, the argument form is invalid. Otherwise the form is valid.

(a)	p	\rightarrow	r.	a	\rightarrow	r	٠.	p	V	a	\rightarrow	r.

p	q	r	$p \rightarrow r$	$q \rightarrow r$	$p \vee q$	$p \lor q \to r$
\overline{T}	T	T	T	T	T	T
T	T	F	F	F	T	F
T	F	T	T	T	T	T
T	F	F	F	T	T	F
F	T	T	T	T	T	T
F	T	F	T	F	T	F
F	F	T	T	T	F	T
F	F	F	T	T	F	T

1. Use a truth table to determine whether the following argument forms are valid.

Recall

- 1. Identify the premises and conclusion.
- 2. Construct a truth table.
- 3. If the truth table contains a row in which all the premises are true and the conclusion is false, the argument form is invalid. Otherwise the form is valid.

(a	$p \rightarrow r$	$q \rightarrow r$	$\therefore p \vee q$	$r \rightarrow r$.	Answer. Valid

p	q	r	$p \rightarrow r$	$q \rightarrow r$	$p \vee q$	$p \lor q \to r$
\overline{T}	T	T	T	T	T	T
T	T	F	F	F	T	F
T	F	T	T	T	T	T
T	F	F	F	T	T	F
F	T	T	T	T	T	T
F	T	F	T	F	T	F
F	F	T	T	T	F	T
F	F	F	T	T	F	T

Testing for a valid argument form

- 1. Identify the premises and conclusion.
- 2. Construct a truth table.
- If the truth table contains a row in which all the premises are true and the conclusion is false, the argument form is invalid. Otherwise the form is valid.

- Testing for a valid argument form
 - 1. Identify the premises and conclusion.
 - 2. Construct a truth table.
 - If the truth table contains a row in which all the premises are true and the conclusion is false, the argument form is invalid. Otherwise the form is valid.
- (b) $p \to q \lor r$, $\neg q \lor \neg r : \neg p \lor \neg r$.

Testing for a valid argument form

- 1. Identify the premises and conclusion.
- 2. Construct a truth table.
- 3. If the truth table contains a row in which all the premises are true and the conclusion is false, the argument form is invalid. Otherwise the form is valid.

(b)
$$p \to q \lor r$$
, $\neg q \lor \neg r : \neg p \lor \neg r$.

p	q	r	$p \rightarrow q \vee r$	$\neg q \vee \neg r$	$\neg p \lor \neg r$
\overline{T}	T	T	T	F	F
T	T	F	T	T	T
T	F	T	T	T	F
T	F	F	F	T	T
F	T	T	T	F	T
F	T	F	T	T	T
F	F	T	T	T	T
F	F	F	T	T	T

Testing for a valid argument form

- 1. Identify the premises and conclusion.
- 2. Construct a truth table.
- If the truth table contains a row in which all the premises are true and the conclusion is false, the argument form is invalid. Otherwise the form is valid.

(b) $p \rightarrow q \lor r$, $\neg q \lor \neg r \therefore \neg p \lor \neg r$. Answer. Invalid

p	q	r	$p \rightarrow q \vee r$	$\neg q \vee \neg r$	$\neg p \lor \neg r$
\overline{T}	T	T	T	F	F
T	T	F	T	T	T
T	F	T	T	T	F
T	F	F	F	T	T
F	T	T	T	F	T
F	T	F	T	T	T
F	F	T	T	T	T
F	F	F	T	T	T

- 1. Identify the premises and conclusion.
- 2. Construct a truth table.
- 3. If the truth table contains a row in which all the premises are true and the conclusion is false, the argument form is invalid. Otherwise the form is valid.

- 1. Identify the premises and conclusion.
- 2. Construct a truth table.
- 3. If the truth table contains a row in which all the premises are true and the conclusion is false, the argument form is invalid. Otherwise the form is valid.

(c)
$$p \lor q$$

$$p \to r$$

$$q \to s$$

 $\therefore r \vee s$

- 1. Identify the premises and conclusion.
- 2. Construct a truth table.
- If the truth table contains a row in which all the premises are true and the conclusion is false, the argument form is invalid. Otherwise the form is valid.

(c)
$$p \lor q$$

 $p \to r$
 $q \to s$
 $\therefore r \lor s$

Answer. Valid.

				1		1	I.
p	q	r	s	$p \vee q$	$p \rightarrow r$	$q \rightarrow s$	$r \vee s$
T	T	T	T	T	T	T	T
T	T	T	F	T	T	T	T
T	T	F	T	T	F	T	T
T	T	F	F	T	F	F	F
T	F	T	T	T	T	T	T
T	F	T	F	T	T	T	T
T	F	F	T	T	F	T	T
T	F	F	F	T	F	T	F
F	T	T	T	T	T	T	T
F	T	T	F	T	T	F	T
F	T	F	T	T	T	T	T
F	T	F	F	T	T	F	F
F	F	T	T	F	T	T	T
F	F	T	F	F	T	T	T
F	F	F	T	F	T	T	T
F	F	F	F	F	T	T	F

 $\neg p \lor q \to r, \quad s \lor \neg q, \quad \neg t, \quad p \to t, \quad \neg p \land r \to \neg s$

- ✓ Modus Tollen (Method of Denying) $p \to q, \neg q$ ∴ $\neg p$ ✓ Generalization p ∴ $p \lor q$
- - \triangle Elimination $p \lor q, \neg p$ $\therefore q$
 - $1.\ p \to t$
 - 2. ¬*t* 3. ∴ From 1, 2 (modus
 - tollen)
 4. : From
 3(generalization)
- 5. ¬p ∨ q → r
 6. ∴ From 4,5 (modus ponens)

- 7. \therefore From 3, 6(conjunction) 8. $\neg p \land r \rightarrow \neg s$
- 9. From 7, 8 (modus ponens)
- 10. $s \vee \neg q$ 11. \therefore From 9, 10 (elimination)

 $\neg p \lor q \to r, \quad s \lor \neg q, \quad \neg t, \quad p \to t, \quad \neg p \land r \to \neg s$

Recall

- △ Generalization p ∴ $p \lor q$ △ Modus Pollen (Method of Affirming) $p \to q, p$ ∴ q
- Modus Pollen (Method of Affirming) $p \rightarrow q, p$ ∴ qElimination $p \lor q, \neg p$ ∴ q
 - 1. $p \rightarrow t$
 - 2. $\neg t$ 3. $\therefore \neg p$ From 1, 2 (modus
 - tollen)
 4. : From
 3(generalization)
- 5. $\neg p \lor q \rightarrow r$ 6. \therefore From 4,5 (modus ponens)

6(conjunction)
8. $\neg p \land r \rightarrow \neg s$

7. ... From 3.

- 9. From 7, 8 (modus ponens)
- 10. $s \vee \neg q$ 11. \therefore From 9, 10 (elimination)

 $\neg p \lor q \to r$, $s \lor \neg q$, $\neg t$, $p \to t$, $\neg p \land r \to \neg s$

- ✓ Modus Tollen (Method of Denying) $p \to q, \neg q$ ∴ $\neg p$ ✓ Generalization p ∴ $p \lor q$
- - **Elimination** $p \lor q, \neg p$ $\therefore q$
 - 1. $p \rightarrow t$ 2. $\neg t$
 - 3. $\therefore \neg p$ From 1, 2 (modus tollen)
 - 4. $\therefore \neg p \lor q$ From 3(generalization)
- 5. ¬p ∨ q → r
 6. ∴ From 4,5 (modus ponens)

- 7. : From 3, 6(conjunction)
- 8. $\neg p \land r \rightarrow \neg s$ 9. \therefore From 7, 8 (modus ponens)
- 10. $s \vee \neg q$ 11. \therefore From 9, 10 (elimination)

 $\neg p \lor q \to r$, $s \lor \neg q$, $\neg t$, $p \to t$, $\neg p \land r \to \neg s$

- \triangle Modus Tollen (Method of Denying) $p \rightarrow q, \neg q$ $\therefore \neg p$ \triangle Generalization p $\therefore p \lor q$
- ✓ Modus Pollen (Method of Affirming) $p \rightarrow q, p$ $\therefore q$
- \triangle Elimination $p \vee q, \neg p$ $\therefore q$
 - 1. $p \rightarrow t$
 - $2. \neg t$ 3. $\therefore \neg p$ From 1, 2 (modus
 - tollen) 4. $\therefore \neg p \lor q$ From 3(generalization)
- 5. $\neg p \lor q \rightarrow r$ 6. $\therefore r$ From 4,5 (modus ponens)

- 7. ... From 3. 6(conjunction) 8. $\neg p \land r \rightarrow \neg s$
- 9. ... From 7, 8 (modus ponens)
- 10. $s \vee \neg q$ 11. ... From 9, 10 (elimination)

 $\neg p \lor q \to r$, $s \lor \neg q$, $\neg t$, $p \to t$, $\neg p \land r \to \neg s$

Recall

- ✓ Modus Tollen (Method of Denying) $p \to q, \neg q$ ∴ $\neg p$ ✓ Generalization p ∴ $p \lor q$
- ightharpoonup Modus Pollen (Method of Affirming) p o q, p o q
 - **Elimination** $p \lor q, \neg p$ $\therefore q$
 - 1. $p \rightarrow t$ 2. $\neg t$
 - 3. $\therefore \neg p$ From 1, 2 (modus tollen)
 - 4. $\therefore \neg p \lor q$ From 3(generalization)
 - 5. ¬p ∨ q → r
 6. ∴ r From 4,5 (modus ponens)

6(conjunction)
8. $\neg p \land r \rightarrow \neg s$

7. $\therefore \neg p \wedge r$ From 3,

- 9. From 7, 8 (modus ponens)
- 10. $s \vee \neg q$ 11. \therefore From 9, 10 (elimination)

 $\neg p \lor q \to r, \quad s \lor \neg q, \quad \neg t, \quad p \to t, \quad \neg p \land r \to \neg s$

- $\begin{tabular}{ll} \begin{tabular}{ll} \beg$
- △ Generalization p ∴ $p \lor q$ △ Modus Pollen (Method of Affirming) $p \to q, p$ ∴ q
- Modus Pollen (Method of Affirming) $p \to q, p : q$ Elimination $p \lor q, \neg p : q$
 - 1. $p \rightarrow t$
 - 2. $\neg t$ 3. $\therefore \neg p$ From 1, 2 (modus
 - tollen)
 4. $\therefore \neg p \lor q$ From 3(generalization)
- 5. $\neg p \lor q \rightarrow r$ 6. $\therefore r \text{ From 4,5 (modus ponens)}$

- 7. $\therefore \neg p \land r$ From 3, 6(conjunction) 8. $\neg p \land r \rightarrow \neg s$
- 9. $\therefore \neg s$ From 7, 8 (modus ponens)
- 10. s ∨ ¬q
 11. ∴ From 9, 10 (elimination)

 $\neg p \lor q \to r, \quad s \lor \neg q, \quad \neg t, \quad p \to t, \quad \neg p \land r \to \neg s$

- ✓ Modus Tollen (Method of Denying) $p \to q, \neg q$ ∴ $\neg p$ ✓ Generalization p ∴ $p \lor q$
- ightharpoonup Modus Pollen (Method of Affirming) p o q, p o q
- \triangle Elimination $p \lor q, \neg p$ $\therefore q$
- 1. $p \rightarrow t$
- 2. $\neg t$ 3. $\therefore \neg p$ From 1, 2 (modus
- tollen)
 4. $\therefore \neg p \lor q$ From 3(generalization)
- 5. $\neg p \lor q \rightarrow r$ 6. $\therefore r$ From 4,5 (modus ponens)

- 7. $\therefore \neg p \land r$ From 3, 6(conjunction) 8. $\neg p \land r \rightarrow \neg s$
- 9. $\therefore \neg s$ From 7, 8 (modus ponens)
- 10. $s \lor \neg q$ 11. $\therefore \neg q$ From 9, 10 (elimination)

3. Solve the following using argument forms.

Five friends have access to a chat room. Is it possible to determ

Five friends have access to a chat room. Is it possible to determine who is chatting if the following information is known?

- (i) At least one of Kevin and Heather is chatting;
- (ii) Exactly one of Randy and Vijay is chatting;(iii) If Abby is chatting, then so is Randy;
- (iv) Vijay and Kevin are either both chatting or both not chatting;
- (v) If Heather is chatting, then so are Abby and Kevin.

Five friends have access to a chat room. Is it possible to determine who is chatting if the following information is known?

- (i) At least one of Kevin and Heather is chatting;
- (ii) Exactly one of Randy and Vijay is chatting;
- (iii) If Abby is chatting, then so is Randy;(iv) Vijay and Kevin are either both chatting or both not chatting;
- (v) If Heather is chatting, then so are Abby and Kevin.
- Idea. Let A: Abby is chatting; H: Heather is chatting; K: Kevin is chatting; R: Randy is chatting; V: Vijay is chatting. so the information is
 - (i) $K \vee H$;

Five friends have access to a chat room. Is it possible to determine who is chatting if the following information is known?

- (i) At least one of Kevin and Heather is chatting;
- (ii) Exactly one of Randy and Vijay is chatting;
- (iii) If Abby is chatting, then so is Randy;(iv) Vijay and Kevin are either both chatting or both not chatting;
- (v) If Heather is chatting, then so are Abby and Kevin.

- information is (i) $K \vee H$;
 - (ii) $R \to \neg V$, $\neg R \to V$;

Five friends have access to a chat room. Is it possible to determine who is chatting if the following information is known?

- (i) At least one of Kevin and Heather is chatting;
- (ii) Exactly one of Randy and Vijay is chatting;
- (iii) If Abby is chatting, then so is Randy;(iv) Vijay and Kevin are either both chatting or both not chatting;
- (v) If Heather is chatting, then so are Abby and Kevin.

- (i) $K \vee H$;
- (ii) $R \to \neg V, \neg R \to V;$
- (iii) $A \to R$;

Five friends have access to a chat room. Is it possible to determine who is chatting if the following information is known?

- (i) At least one of Kevin and Heather is chatting;
- (ii) Exactly one of Randy and Vijay is chatting;
- (iii) If Abby is chatting, then so is Randy;(iv) Vijay and Kevin are either both chatting or both not chatting;
- (v) If Heather is chatting, then so are Abby and Kevin.

- (i) $K \vee H$;
- (ii) $R \to \neg V$, $\neg R \to V$;
- (iii) $A \to R$;
- (iv) $V \leftrightarrow K$;

Five friends have access to a chat room. Is it possible to determine who is chatting if the following information is known?

- (i) At least one of Kevin and Heather is chatting;
- (ii) Exactly one of Randy and Vijay is chatting;
- (iii) If Abby is chatting, then so is Randy;
- (iv) Vijay and Kevin are either both chatting or both not chatting;
- (v) If Heather is chatting, then so are Abby and Kevin.

- (i) $K \vee H$:
- (ii) $R \to \neg V$, $\neg R \to V$;
- (iii) $A \to R$;
- (iv) $V \leftrightarrow K$;
- (v) $H \to A \wedge K$.

$K \vee H: R \rightarrow \neg V. \neg R \rightarrow V: A \rightarrow R: V \leftrightarrow K:$ $H \to A \wedge K$

Recall

\not Transitivity $p \rightarrow q, q \rightarrow r$ $\therefore p \rightarrow r$

- 1. $K \vee H \equiv$
- 2. $H \rightarrow A \wedge K$
- From 1, 2 9, $A \rightarrow R$ 3. . . (transitivity)
- 4. . .
 - From 3
- 5. $K \rightarrow V$:
- 6. ∴ From 4,5 (modus ponens)
- 7. $R \rightarrow \neg V$

- ; 8. ∴ From 6, 7(modus tollens)

 - 10. ∴ From 8, 9(modus tollens)
 - From 10 11. (generalization)
 - 12. ... From 2, 11 (modus tollen)

$K \vee H: R \rightarrow \neg V. \neg R \rightarrow V: A \rightarrow R: V \leftrightarrow K:$ $H \to A \wedge K$

Recall

\not Transitivity $p \rightarrow q, q \rightarrow r$ $\therefore p \rightarrow r$

- 1. $K \vee H \equiv \neg K \rightarrow H$:
- 2. $H \rightarrow A \wedge K$
- From 1, 2 9, $A \rightarrow R$ 3. . . (transitivity)
- 4. . .
 - From 3
- 5. $K \rightarrow V$:
- 6. ∴ From 4,5 (modus ponens)
- 7. $R \rightarrow \neg V$

- 8. ∴ From 6, 7(modus tollens)
- 10. ∴ From 8, 9(modus tollens)
- From 10 11. (generalization)
- 12. ... From 2, 11 (modus tollen)

- 1. $K \vee H \equiv \neg K \rightarrow H$;
- 2. $H \rightarrow A \wedge K$
- 3. $\therefore \neg K \to A \land K$ From 1, 2 (transitivity)
- 4. $\therefore \neg K \to A \land K \equiv$ From 3
- 5. $K \rightarrow V$;
- 6. From 4,5 (modus ponens)
- 7. $R \rightarrow \neg V$

- 8. ∴ From 6, 7(modus tollens)
- 9. $A \rightarrow R$
- 10. ∴ From 8, 9(modus tollens)
- 11. : From 10 (generalization)
- 12. ∴ From 2, 11 (modus tollen)

- 1. $K \vee H \equiv \neg K \rightarrow H$;
- 2. $H \rightarrow A \wedge K$
- 3. $\therefore \neg K \to A \land K$ From 1, 2 (transitivity)
- 4. $\therefore \neg K \to A \land K \equiv$ $K \lor (A \land K) \equiv \quad \text{From 3}$
- 5. $K \rightarrow V$;
- 6. From 4,5 (modus ponens)
- 7. $R \rightarrow \neg V$

- 8. ∴ From 6, 7(modus tollens)
- 9. $A \rightarrow R$
- 10. ∴ From 8, 9(modus tollens)
- 11. : From 10 (generalization)
- 12. ∴ From 2, 11 (modus tollen)

Recall

- 1. $K \vee H \equiv \neg K \to H$;
- 2. $H \rightarrow A \wedge K$
- 3. $\therefore \neg K \to A \land K$ From 1, 2 (transitivity)
- 4. $\therefore \neg K \to A \land K \equiv K \lor (A \land K) \equiv K$ From 3
- 5. $K \rightarrow V$;
- 6. From 4,5 (modus ponens)
- 7. $R \rightarrow \neg V$

- 8. ∴ From 6, 7(modus tollens)
- 9. $A \rightarrow R$
- 10. ∴ From 8, 9(modus tollens)
- 11. ... From 10 (generalization)
- 12. ∴ From 2, 11 (modus tollen)

- 1. $K \vee H \equiv \neg K \to H$;
- 2. $H \rightarrow A \wedge K$
- 3. $\therefore \neg K \to A \land K$ From 1, 2 (transitivity)
- 4. $\therefore \neg K \to A \land K \equiv$ $K \lor (A \land K) \equiv K \text{ From 3}$
- 5. $K \rightarrow V$;
- V From 4,5 (modus ponens)
- 7. $R \rightarrow \neg V$

- 8. ∴ From 6, 7(modus tollens)
- 9. $A \rightarrow R$
- 10. ∴ From 8, 9(modus tollens)
- 11. ... From 10 (generalization)
- 12. ∴ From 2, 11 (modus tollen)

Recall

- 1. $K \vee H \equiv \neg K \rightarrow H$;
- 2. $H \rightarrow A \wedge K$
- 3. $\therefore \neg K \to A \land K$ From 1, 2 (transitivity)
- 4. $\therefore \neg K \to A \land K \equiv$ $K \lor (A \land K) \equiv K \text{ From 3}$
- 5. $K \rightarrow V$;
- 6. ∴ V From 4,5 (modus ponens)
- 7. $R \rightarrow \neg V$

- 8. $\therefore \neg R$ From 6, 7(modus tollens)
- 9. $A \rightarrow R$
- 10. ∴ From 8, 9(modus tollens)
- 11. ... From 10 (generalization)
- 12. ∴ From 2, 11 (modus tollen)

- 1. $K \vee H \equiv \neg K \to H$;
- 2. $H \rightarrow A \wedge K$
- 3. $\therefore \neg K \to A \land K$ From 1, 2 (transitivity)
- 4. $\therefore \neg K \to A \land K \equiv$ $K \lor (A \land K) \equiv K \text{ From 3}$
- 5. $K \rightarrow V$;
- V From 4,5 (modus ponens)
- 7. $R \rightarrow \neg V$

- 8. $\therefore \neg R$ From 6, 7(modus tollens)
- 9. $A \rightarrow R$
- 10. $\therefore \neg A$ From 8, 9(modus tollens)
- 11. : From 10 (generalization)
- 12. ∴ From 2, 11 (modus tollen)

 $K \vee H$; $R \to \neg V$, $\neg R \to V$; $A \to R$; $V \leftrightarrow K$; $H \to A \wedge K$.

- 1. $K \vee H \equiv \neg K \to H$;
- 2. $H \rightarrow A \wedge K$
- 3. $\therefore \neg K \to A \land K$ From 1, 2 (transitivity)
- 4. $\therefore \neg K \to A \land K \equiv$ $K \lor (A \land K) \equiv K \text{ From 3}$
- 5. $K \rightarrow V$;
- V From 4,5 (modus ponens)
- 7. $R \rightarrow \neg V$

- 8. $\therefore \neg R$ From 6, 7(modus tollens)
- 9. $A \rightarrow R$
- 10. $\therefore \neg A$ From 8, 9(modus tollens)
- 11. $\therefore \neg (A \land K)$ From 10 (generalization)
- 12. ∴ From 2, 11 (modus tollen)

 $K \vee H$; $R \to \neg V$, $\neg R \to V$; $A \to R$; $V \leftrightarrow K$; $H \to A \wedge K$.

Recall

- 1. $K \vee H \equiv \neg K \to H$;
- 2. $H \rightarrow A \wedge K$
- 3. $\therefore \neg K \to A \land K$ From 1, 2 (transitivity)
- 4. $\therefore \neg K \to A \land K \equiv$ $K \lor (A \land K) \equiv K \text{ From 3}$
- 5. $K \rightarrow V$;
- V From 4,5 (modus ponens)
- 7. $R \rightarrow \neg V$

- 8. $\therefore \neg R$ From 6, 7(modus tollens)
- 9. $A \rightarrow R$
- 10. $\therefore \neg A$ From 8, 9(modus tollens)
- 11. $\therefore \neg (A \land K)$ From 10 (generalization)
- 12. $\therefore \neg H$ From 2, 11 (modus tollen)

- 4. You are given the following. Use it to prove that superman does not exist. (You need to use argument forms.)
 - (i) If Superman were able and willing to prevent evil, he would do so.
 - (ii) If Superman were unable to prevent evil, he would be impotent.
 - (iii) If he were unwilling to prevent evil, he would be malevolent.
 - (iv) Superman does not prevent evil.
 - (v) If Superman exists, he is neither impotent nor malevolent.
 - 'a' is Superman is able to prevent evil.
 - 'w' is Superman is willing to prevent evil.
 - 'p' is Superman prevents evil.
 - ▶ 'i' is Superman is impotent.
 - 'm' is Superman is malevolent.
 - 'e' is Superman exists.

- 4. You are given the following. Use it to prove that superman does not exist. (You need to use argument forms.)
 - (i) If Superman were able and willing to prevent evil, he would do so. $a \wedge w \to p$
 - (ii) If Superman were unable to prevent evil, he would be impotent.
 - (iii) If he were unwilling to prevent evil, he would be malevolent.
 - (iv) Superman does not prevent evil.
 - (v) If Superman exists, he is neither impotent nor malevolent.
 - 'a' is Superman is able to prevent evil.
 - ▶ 'w' is Superman is willing to prevent evil.
 - 'p' is Superman prevents evil.
 - 'i' is Superman is impotent.
 - 'm' is Superman is malevolent.
 - 'e' is Superman exists.

- 4. You are given the following. Use it to prove that superman does not exist. (You need to use argument forms.)
 - (i) If Superman were able and willing to prevent evil, he would do so. $a \wedge w \rightarrow p$
 - (ii) If Superman were unable to prevent evil, he would be impotent. $\neg a \rightarrow i$
- (iii) If he were unwilling to prevent evil, he would be malevolent.
- (iv) Superman does not prevent evil.
- (v) If Superman exists, he is neither impotent nor malevolent.
 - 'a' is Superman is able to prevent evil.
 - 'w' is Superman is willing to prevent evil.
 - 'p' is Superman prevents evil.
 - 'i' is Superman is impotent.
 - 'm' is Superman is malevolent.
 - 'e' is Superman exists.

- 4. You are given the following. Use it to prove that superman does not exist. (You need to use argument forms.)
 - (i) If Superman were able and willing to prevent evil, he would do so. $a \wedge w \to p$
 - (ii) If Superman were unable to prevent evil, he would be impotent. $\neg a \rightarrow i$
 - (iii) If he were unwilling to prevent evil, he would be malevolent. $\neg w \to m$
 - (iv) Superman does not prevent evil.
 - (v) If Superman exists, he is neither impotent nor malevolent.
 - 'a' is Superman is able to prevent evil.
 - 'w' is Superman is willing to prevent evil.
 - 'p' is Superman prevents evil.
 - ▶ 'i' is Superman is impotent.
 - 'm' is Superman is malevolent.
 - 'e' is Superman exists.

- 4. You are given the following. Use it to prove that superman does not exist. (You need to use argument forms.)
 - (i) If Superman were able and willing to prevent evil, he would do so. $a \wedge w \to p$
 - (ii) If Superman were unable to prevent evil, he would be impotent. $\neg a \rightarrow i$
 - (iii) If he were unwilling to prevent evil, he would be malevolent. $\neg w \rightarrow m$
- (iv) Superman does not prevent evil. $\neg p$
- (v) If Superman exists, he is neither impotent nor malevolent.
 - 'a' is Superman is able to prevent evil.
 - 'w' is Superman is willing to prevent evil.
 - 'p' is Superman prevents evil.
 - ▶ 'i' is Superman is impotent.
 - 'm' is Superman is malevolent.
 - 'e' is Superman exists.

- 4. You are given the following. Use it to prove that superman does not exist. (You need to use argument forms.)
- (i) If Superman were able and willing to prevent evil, he would do so. $a \wedge w \rightarrow p$
- (ii) If Superman were unable to prevent evil, he would be impotent. $\neg a \rightarrow i$
- (iii) If he were unwilling to prevent evil, he would be malevolent. $\neg w \to m$
- (iv) Superman does not prevent evil. ¬p
 (v) If Superman exists, he is neither impotent nor malevolent.
 - · 'a' is Superman is able to prevent evil.
 - 'w' is Superman is willing to prevent evil.
 - 'p' is Superman prevents evil.
 - 'i' is Superman is impotent.
 - ▶ 'm' is Superman is malevolent.
 - · 'e' is Superman exists.

 $e \rightarrow \neg (i \vee m)$

$$a \wedge w \rightarrow p$$
, $\neg a \rightarrow i$, $\neg w \rightarrow m$, $\neg p$, $e \rightarrow \neg (i \vee m)$

$$\triangle$$
 Question 1(c) $p \lor q$, $p \to r$, $q \to s$ $\therefore r \lor s$

- 1. $\neg p$
- $2. \ a \wedge w \rightarrow p$
- 3. ... From 1,2 (modus tollen)
- 4. $\neg a \rightarrow i$
- 5. $\neg w \rightarrow m$
- 6. ... from 3, 4, 5. (Question 1(c))
- 7. $e \rightarrow \neg (i \lor m)$
- 8. .. from 6,7 (modus tollen)

$$a \wedge w \rightarrow p$$
, $\neg a \rightarrow i$, $\neg w \rightarrow m$, $\neg p$, $e \rightarrow \neg (i \vee m)$

$$\triangle$$
 Question 1(c) $p \lor q$, $p \to r$, $q \to s$ $\therefore r \lor s$

- 1. $\neg p$
- $2. \ a \wedge w \rightarrow p$
- 3. $\therefore \neg(a \land w) \equiv$ From 1,2 (modus tollen)
- 4. $\neg a \rightarrow i$
- 5. $\neg w \rightarrow m$
- 6. ... from 3, 4, 5. (Question 1(c))
- 7. $e \rightarrow \neg (i \lor m)$
- 8. .. from 6,7 (modus tollen)

$$a \wedge w \rightarrow p$$
, $\neg a \rightarrow i$, $\neg w \rightarrow m$, $\neg p$, $e \rightarrow \neg (i \vee m)$

$$\triangle$$
 Question 1(c) $p \lor q$, $p \to r$, $q \to s$ $\therefore r \lor s$

- 1. $\neg p$
- $2. \ a \wedge w \rightarrow p$
- 3. $\therefore \neg(a \land w) \equiv \neg a \lor \neg w$ From 1,2 (modus tollen)
- 4. $\neg a \rightarrow i$
- 5. $\neg w \rightarrow m$
- 6. ... from 3, 4, 5. (Question 1(c))
- 7. $e \rightarrow \neg (i \lor m)$
- 8. .. from 6,7 (modus tollen)

$$a \wedge w \rightarrow p$$
, $\neg a \rightarrow i$, $\neg w \rightarrow m$, $\neg p$, $e \rightarrow \neg (i \vee m)$

$$\triangle$$
 Question 1(c) $p \lor q$, $p \to r$, $q \to s$ $\therefore r \lor s$

- 1. $\neg p$
- $2. \ a \wedge w \rightarrow p$
- 3. $\therefore \neg(a \land w) \equiv \neg a \lor \neg w$ From 1,2 (modus tollen)
- 4. $\neg a \rightarrow i$
- 5. $\neg w \rightarrow m$
- 6. $\therefore i \vee m$ from 3, 4, 5. (Question 1(c))
- 7. $e \rightarrow \neg (i \lor m)$
- 8. .. from 6,7 (modus tollen)

$$a \wedge w \rightarrow p$$
, $\neg a \rightarrow i$, $\neg w \rightarrow m$, $\neg p$, $e \rightarrow \neg (i \vee m)$

$$\triangle$$
 Question 1(c) $p \lor q$, $p \to r$, $q \to s$ $\therefore r \lor s$

- 1. $\neg p$
- 2. $a \wedge w \rightarrow p$
- 3. $\therefore \neg(a \land w) \equiv \neg a \lor \neg w$ From 1,2 (modus tollen)
- 4. $\neg a \rightarrow i$
- 5. $\neg w \rightarrow m$
- 6. $\therefore i \vee m$ from 3, 4, 5. (Question 1(c))
- 7. $e \rightarrow \neg (i \lor m)$
- 8. $\therefore \neg e$ from 6,7 (modus tollen)