MATH 20410 (Analysis in \mathbb{R}^n II – Accelerated) Notes

Steven Labalme

February 6, 2022

Contents

6	The Riemann-Stieltjes Integral	1
	6.1 Notes	
	6.2 Exam 1 Additional Topics	3
7	Sequences and Series of Functions	4
	7.1 Notes	4

Chapter 6

The Riemann-Stieltjes Integral

6.1 Notes

1/28:

- Plan:
 - 1. Finish up Fundamental Theorem of Calculus proof.
 - 2. Basic consequences.
 - 3. Rectifiable curves.
- Recall that we're given $f:[a,b]\to\mathbb{R}$ continuous, $f:[a,b]\to\mathbb{R}$, and $x\mapsto\int_a^x f(t)\,\mathrm{d}t$.
- Goal: Show $F'(x_0) = f(x_0)$.
 - WTS: Find δ such that $|x x_0| < \delta$ implies

$$\left| \frac{1}{x - x_0} \int_{x_0}^x f(t) dt - f(x_0) \right| = \left| \frac{1}{x - x_0} \int_{x_0}^x f(t) dt - \frac{1}{x - x_0} \int_{x_0}^x f(x_0) dt \right|$$

$$= \frac{1}{|x - x_0|} \left| \int_{x_0}^x (f(t) - f(x_0)) dt \right|$$

$$\leq \frac{1}{|x - x_0|} \int_{x_0}^x |f(t) - f(x_0)| dt$$

$$< \epsilon$$

- Since f is continuous, there exists δ such that if $|x-x_0| < \delta$, then $|f(x)-f(x_0)| < \epsilon$.
- Now

$$\frac{1}{|x - x_0|} \int_{x_0}^x |f(t) - f(x_0)| \, \mathrm{d}t < \frac{1}{|x - x_0|} \int_{x_0}^x \epsilon \, \mathrm{d}t$$

$$= \epsilon$$

- Applications:
 - 1. Theorem (MVT for integration): $f:[a,b]\to\mathbb{R}$ continuous, then there exists $x_0\in[a,b]$ such that

$$f(x_0) = \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x$$

– Apply MVT to $F(x) = \int_a^x f(t) dt$. Then

$$F'(x_0) = f(x_0) = \frac{F(b) - F(a)}{b - a}$$

as desired.

2. Theorem (Integration by parts): Let $F, G : [a, b] \to \mathbb{R}$ be differentiable with F' = f, G' = g and with f and g both integrable. Then

$$\int_{a}^{b} Fg = F(b)G(b) - F(a)G(a) - \int_{a}^{b} fG$$

- Just use the product rule plus the FTC to prove.
- We have

$$\int_{a}^{b} (FG)' = \int_{a}^{b} fG + \int_{a}^{b} Fg$$

$$F(b)G(b) - F(a)G(a) = \int_{a}^{b} fG + \int_{a}^{b} Fg$$

$$\int_{a}^{b} Fg = F(b)G(b) - F(a)G(a) - \int_{a}^{b} fG$$

- 3. Theorem (u-substitution).
 - Follows similarly from the chain rule and FTC.
- Integration of vector-valued functions.
- If $f:[a,b]\to\mathbb{R}^k$, we define $\int_a^b f$ by

$$\int_{a}^{b} f = \left(\int_{a}^{b} f_{1}, \dots, \int_{a}^{b} f_{k} \right)$$

- Alternatively, you can define $\int_a^b f$ using P, U(f,P), L(f,P), etc. and then prove that the integral exists iff all f_i are integrable and in this case the above definition holds.
- Rectifiable curves: Let $\gamma:[a,b]\to\mathbb{R}^k$ be a continuous function.
- Plan: Define the length of γ and show that we can compute it with an integral.
 - Idea: For polygonal paths, we know how to define length. So let's approximate γ by polygons and take a limit.
 - Ref: Given a partition P, then define the length of γ with respect to P as $\Lambda(\gamma, P)$. Let the length of γ be $\Lambda(\gamma) = \sup_{P} \Lambda(\gamma, P)$ if this limit exists in this case, we call γ rectifiable.
- Fractals are not rectifiable their length diverges.
- Theorem: Suppose γ is continuously differentiable (i.e., γ is differentiable and γ' is continuous). Then γ si rectifiable and

$$\Lambda(\gamma) = \int_a^b |\gamma'(t)| \, \mathrm{d}t$$

- Notice: If $P \leq P'$, then $\Lambda(\gamma, P) \leq \Lambda(\gamma, P')$. (Prove with triangle inequality.)
- WTS: For all partitions P, $\Lambda(\gamma, P) \leq \int_a^b |\gamma'(t)| dt$ and thus $\Lambda(\gamma) \leq \int_a^b |\gamma'(t)| dt$.
- We have that

$$\Lambda(\gamma, P) = \sum_{i=1}^{n} |\gamma(x_i) - \gamma(x_{i-1})|$$

$$= \sum_{i=1}^{n} \left| \int_{x_{i-1}}^{x_i} \gamma'(t) dt \right|$$

$$\leq \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} |\gamma'(t)| dt$$

$$= \int_{a}^{b} |\gamma'(t)| dt$$

- Catch up.
 - I should make up PSets 1-2.
 - Exams have less than Rudin-strength problems.
 - Exams are mostly true/false (and of that, mostly false, provide a counterexample).

6.2 Exam 1 Additional Topics

• A continuous function that is not always differentiable.

$$f(x) = |x|$$

• A differentiable function with a discontinuous derivative.

$$f(x) = x^2 \sin \frac{1}{x}$$

• A vector-valued function that doesn't satisfy the MVT.

$$\mathbf{f}(x) = e^{ix}$$

- Between 0 and 2π .
- A pair of vector-valued functions that don't satisfy L'Hôpital's rule.

$$f(x) = x g(x) = x + x^2 e^{i/x^2}$$

Chapter 7

Sequences and Series of Functions

7.1 Notes

Midterm on differentiation and integration, and a bit of stuff from this week.

• Plan:

1/31:

- Talk about sequences of functions, all with the same domain and range, converging.
- Address what properties of f_n remain in the limit (e.g., continuity, differentiability, integrability).
 - The answer depends on what we mean by "convergence."
 - $f_n \to f$ pointwise implies basically nothing.
 - \blacksquare $f_n \to f$ uniformly implies that basically everything works out nicely.
- We'll restrict ourselves to real functions because those have all the properties (integrability, differentiability, etc.) that we care about.
- **Pointwise** (convergent sequence $\{f_n\}$ to f): A sequence of functions $\{f_n\}$ such that for all $x \in X$, the sequence $\{f_n(x)\}$ converges to f(x), where $f_n: X \to \mathbb{R}$ for all $n \in \mathbb{N}$ and $f: X \to \mathbb{R}$. Denoted by $f_n \to f$.
- Bad functions.
 - Consider $f_n:[0,1]\to\mathbb{R}$ defined by $x\mapsto x^n$. Each f_n is continuous, but f is not (zero everywhere except $f(1)=1)^{[1]}$.
 - Consider $f_n : \mathbb{R} \to \mathbb{R}$ defined by $f_n(x) = x^2/(1+x^2)^n$, and $f(x) = \sum_{n=0}^{\infty} f_n(x)$. As a geometric series, $f(x) = 1 + x^2$ when $x \neq 0$ but f(0) = 0. Thus, the limit exists but is not continuous once again.
 - Consider $f_m : \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto \lim_{n \to \infty} \cos^{2n}(m!\pi x)$. Each f_m is integrable, but the limit f is the function that's 1 for rationals and zero for irrationals. In particular, f is not integrable.
 - We take even powers of the cosine to make it always positive.
 - We use $\cos^2(x)$ just because its always between [0, 1], and we know when it is equal to 1.
 - In particular, $\cos^2(\pi x)$ is equal to 1 at every integer, $\cos^2(2\pi x)$ is equal to 1 at every half integer. $\cos^2(6\pi x)$ is equal to 1 at every one-sixth of an integer.
 - Then raising it to the n^{th} power just makes it spiky.
- Aside: Interchanging limits.
 - If all f_n are continuous, then $\lim_{x\to x_0} f_n(x) = f_n(x_0)$.

¹Questions that require counterexamples like this could show up on the midterm!

- The question "is f continuous" is equivalent to being able to interchange limits:

$$\lim_{x \to x_0} \lim_{n \to \infty} f_n(x) = f(x_0) = \lim_{n \to \infty} \lim_{x \to x_0} f_n(x)$$

- Sequence example showing we need to be careful interchanging limits: $s_{n,m} = m/(m+n)$.
- All of this pathology goes away with the right definition, though.
- Uniformly (convergent sequence $\{f_n\}$ to f): A sequence of functions $\{f_n\}$ such that for all $\epsilon > 0$, there exists an N such that if $n \geq N$, then $|f_n(x) f(x)| < \epsilon$ for all $x \in X$, where $f_n : X \to \mathbb{R}$ for all $n \in \mathbb{N}$ and $f : X \to \mathbb{R}$.
- Proposition (Cauchy criterion for uniform convergence): $f_n \to f$ uniformly iff for all $\epsilon > 0$, there exists N such that for all $m, n \ge N$ and for all $x \in X$, $|f_n(x) f_m(x)| < \epsilon$.
 - Forward direction: Let $\epsilon > 0$. Suppose $f_n \to f$ uniformly. Choose N such that the functions are within $\epsilon/2$. Then

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

- 2/2: Office hours tomorrow 4-5 PM.
 - Plan:
 - 1. More on uniform convergence.
 - Limit of continuous functions is continuous.
 - Limit of the integral of functions is the integral of the limit.
 - 2. $\mathcal{C}(X)$ perspectives on uniform convergence.
 - Corollary (Weierstraß M-test): If there exist constants $M_n \in \mathbb{R}$ such that $|f_n(x)| \leq M_n$ for all x and $\sum_{n=1}^{\infty} M_n$ converges, then $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly.
 - Theorem: $f_n: X \to \mathbb{R}$, f_n continuous at $x_0 \in X$ for all n, and $f_n \to f$ uniformly imply f continuous at x_0 .
 - Idea:
 - " $\epsilon/3$ trick": Find δ such that if $|x-x_0|<\delta$, then

$$|f(x) - f(x_0)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

- Proof:
 - $f_n \to f$ uniformly implies there exists $N \in \mathbb{N}$ such that $|f_N(x) f(x)| < \epsilon/3$ for all $x \in X$.
 - f_N continuous at x_0 : There exists δ such that if $d(x,x_0) < \delta$, then $|f_N(x) f_N(x_0)| < \epsilon/3$.
 - Thus, by the $\epsilon/3$ trick, we have the continuity of f.
- Defining a norm on C(X).

$$||f|| = \sup_{x \in X} |f(x)|$$

- This makes $\mathcal{C}(X)$ into a vector space.
- We can now define our metric d(f,g) by d(f,g) = ||f-g||.
- $f_n \to f \iff f$ is bounded.
 - $-f_n \to f$ uniformly $\iff \lim_{n \to \infty} \sup |f_n(x) f(x)| = 0 \iff f_n \to f$ is $\mathcal{C}(X)$.
- Corollary to the Weierstraß M-test: C(X) is complete (i.e., all uniformly Cauchy sequences converge).

- Assume $\{f_n\}$ is Cauchy. Then by the Cauchy criterion for uniform convergence, f_n converges uniformly to some f. But this f must be continuous, too, meaning $f \in \mathcal{C}(X)$.
- 2/4: Plan.
 - 1. $\int \lim f_n = \lim \int f_n$.
 - 2. $dx \lim f_n = \lim dx f_n$.
 - 3. Definitions: Pointwise/uniform boundedness, equicontinuity.
 - Theorem: $f_n:[a,b]\to\mathbb{R}$ integrable and $f_n\to f$ uniformly implies f is integrable and

$$\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_{n}$$

- Plan:
 - 1. Show f is integrable.
 - 2. Show $\int f = \lim \int f_n$.
- Proof:
 - $\blacksquare \text{ Let } \epsilon_n = \sup_{x \in [a,b]} |f(x) f_n(x)|.$
 - Since $f_n \to f$ uniformly, $\epsilon_n \to 0$ as $n \to \infty$.
 - By definition, $f_n \epsilon_n \le f \le f_n + \epsilon_n$.
 - \blacksquare Thus, by Theorems 6.4 and 6.5,

$$\int_{a}^{b} (f_{n} - \epsilon_{n}) = \int_{a}^{b} (f_{n} - \epsilon_{n}) \le \int_{a}^{b} f \le \int_{a}^{b} (f_{n} + \epsilon_{n})$$

■ It follows since

$$0 \le \bar{\int} f - \int f \le \int_a^b (f_n + \epsilon_n) - \int_a^b (f_n - \epsilon_n) = (b - a)...$$

that f is integrable.

■ Hence,

$$\int_{a}^{b} (f_{n} - \epsilon_{n}) \leq \int_{a}^{b} f \leq \int_{a}^{b} (f_{n} - \epsilon_{n})$$

$$\left| \int_{a}^{b} f_{n} - \int_{a}^{b} f \right| \leq \epsilon_{n}$$

$$\lim_{n \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} f$$

- Theorem: $f_n:[a,b]\to\mathbb{R}$, each f_n differentiable, $f_n\to f$ pointwise, and $(f_n)'\to g$ uniformly implies that f is differentiable and f'=g.
 - Note that you can do better: Substituting $f_n(x_0)$ converging for some $x_0 \in [a, b]$ for $f_n \to f$ pointwise still implies the desired result.
 - Idea: We use the $\epsilon/3$ trick; 2/3 will be easy and 1/3 will be tricky.
 - Goal: We want

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - g(x_0) \right| < \epsilon$$

for some δ with $0 < |x - x_0| < \delta$. We will show that

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - \frac{f_N(x) - f_N(x_0)}{x - x_0} + \frac{f_N(x) - f_N(x_0)}{x - x_0} - f'_N(x_0) + f'_N(x_0) - g(x_0) \right|$$

$$\leq \left| \frac{f(x) - f(x_0)}{x - x_0} - \frac{f_N(x) - f_N(x_0)}{x - x_0} \right| + \left| \frac{f_N(x) - f_N(x_0)}{x - x_0} - f'_N(x_0) \right| + \left| f'_N(x_0) - g(x_0) \right|$$

- For the middle inequality, use Chapter 5, Exercise 8.
- For the right inequality, use the uniform convergence condition.
- For the left inequality, it will suffice to show the Cauchy condition

$$\left| \frac{f_n(x) - f_n(x_0)}{x - x_0} - \frac{f_m(x) - f_m(x_0)}{x - x_0} \right| < \frac{\epsilon}{3}$$

so, noting that the left term above is equal to

$$\left| \frac{[f_n(x) - f_m(x)] - [f_n(x_0) - f_m(x_0)]}{x - x_0} \right|$$

which is equal to $|f'_n(c) - f'_m(c)|$ by the MVT, from which we can apply the Cauchy form of the uniform convergence of $(f_n)'$ condition.

- Pointwise bounded $(\{f_n\})$: A sequence of real functions $\{f_n\}$ such that for all $x \in X$, there exists $M_x \in \mathbb{R}$ such that $|f_n(x)| \leq M_x$ for all $n \in \mathbb{N}$.
- Uniformly bounded ($\{f_n\}$): A sequence of real functions $\{f_n\}$ for which there exists $M \in \mathbb{R}$ such that for all $x \in X$ and $n \in \mathbb{N}$, $|f_n(x)| \leq M$.
- Proposition: $f_n: E \to \mathbb{R}$, $\{f_n\}$ is pointwise bounded, and E is countable implies there is a subsequence $\{f_{n_k}\}$ that converges pointwise.
 - Enumerate $E = \{x_1, x_2, \dots\}.$
 - Then since $\{f_n(x_m)\}$ is bounded for all m by hypothesis, it always has a convergent subsequence.
 - The claim is if you look at the sequence of diagonal functions, it is such a subsequence, i.e., if $f_1(x_1)$ is the first term for x_1 , $f_3(x_2)$ is the second term for x_2 , $f_{11}(x_3)$ is the third term for x_3 , and so on, f_1, f_3, f_{11}, \ldots is such a subsequence.