18.445 Introduction to Stochastic Processes

Lecture 21: Continuous time Markov chains

Hao Wu

MIT

04 May 2015

Hao Wu (MIT) 18.445 04 May 2015 1 / 7

Recall A point process ${\it N}$ on \mathbb{R}_+ is called a Poisson process with intensity $\lambda>0$ if

- For any $k \ge 1$, any $0 \le t_1 \le t_2 \le \cdots \le t_k$, the random variables $N(t_i, t_{i+1}], i = 1, ..., k-1$ are independent.
- For any interval $(a, b] \subset \mathbb{R}_+$, the variable N(a, b] is a Poisson random variable with mean $\lambda(b a)$.

Today's Goal:

- Characterization of Poisson process
- Continuous time Markov chain

Poisson process — Characterization

Theorem

Let $(X_t)_{t\geq 0}$ be an increasing right-continuous process taking values in $\{0,1,2,...\}$ with $X_0=0$. Let $\lambda>0$. Then the following statements are equivalent.

- $(X_t)_{t\geq 0}$ is a Poisson process with intensity λ .
- X has independent increments, and as $\epsilon \downarrow 0$, uniformly in t, we have

$$\mathbb{P}[X_{t+\epsilon} - X_t = 0] = 1 - \lambda \epsilon + o(\epsilon);$$

$$\mathbb{P}[X_{t+\epsilon} - X_t = 1] = \lambda \epsilon + o(\epsilon).$$

• *X* has independent and stationary increments, and for all $t \ge 0$ we have $X_t \sim Poisson(\lambda t)$.

◆ロト ◆問 → ◆注 > ◆注 > 注 り Q ©

Hao Wu (MIT) 18.445 04 May 2015 3 / 7

Continuous time Markov chains

 Ω : countable state space

Definition

 $(X_t)_{t\geq 0}$ is called a continuous time Markov chain if, for all $0\leq t_1\leq t_2\leq \cdots \leq t_n\leq t_{n+1}$ and all $x_1,...x_n,x_{n+1}\in \Omega$, we have

$$\mathbb{P}[X_{t_{n+1}} = x_{n+1} \mid X_{t_1} = x_1, ..., X_{t_n} = x_n] = \mathbb{P}[X_{t_{n+1}} = x_{n+1} \mid X_{t_n} = x_n]$$

moreover, the right hand side only depends on $(t_{n+1} - t_n)$.

Remark regularity requirement : the process is right-continuous, i.e. for all $t \ge 0$, there exists $\epsilon > 0$ such that $X_{t+s} = X_t$ for $s \in [0, \epsilon]$.

Hao Wu (MIT) 18.445 04 May 2015

Semigroup of the chain

Definition

Suppose that $(X_t)_{t\geq 0}$ is a continuous time Markov chain. Define

$$P_t(x,y) = \mathbb{P}[X_t = y \,|\, X_0 = x].$$

 (P_t) is called the semigroup of the chain.

- $P_0 = I$
- P_t is a stochastic matrix
- $P_{t+s} = P_t P_s.$

Hao Wu (MIT) 18.445 04 May 2015

Examples

Example 1 Poisson process is Markovian.

$$P_s(x,y) = e^{\lambda s} \frac{(\lambda s)^{y-x}}{(y-x)!}.$$

Example 2 Let $(\hat{X}_n)_{n\geq 0}$ be a discrete time Markov chain with transition matrix Q. Let $(N_t)_{t\geq 0}$ be an independent Poisson process with intensity $\lambda > 0$. Define

$$X_t = \hat{X}_{N_t}, \quad t \geq 0.$$

Then $(X_t)_{t>0}$ is a continuous time Markov chain.

$$P_s(x,y) = e^{-\lambda s} \sum_{k>0} \frac{(\lambda s)^k}{k!} Q^k(x,y).$$

←□ → ←□ → ← □ → ← □ → ← ○

Hao Wu (MIT) 18.445

Holding times

Let $(X_t)_{t>0}$ be a continuous time Markov chain.

Question: how long it stays at a state x?

Define S_x to be the holding time at x:

$$X_0 = x$$
, $S_x = \inf\{t \geq 0 : X_t \neq x\}$.

Theorem

 S_x has exponential distribution.

Lemma

Let T be a positive random variable. T has memoryless property :

$$\mathbb{P}[T > t + s \mid T > s] = \mathbb{P}[T > t]$$

if and only if T has exponential distribution.