〈국문요약문〉

	○ 권역 및 계절별 양돈시설, 가축분뇨 자원화 공동처리시설
연구의	유래 CH ₄ , N ₂ O 배출량 데이터 확보
목적 및 내용	○ 정책 변화, 기술 발전의 영향을 예측하여 온실가스 감축
학계 첫 네ઠ 	효율성 증대 방안 제시
	○ 경기, 강원, 충청, 전라, 경상 지역의 양돈시설, 그리고
연구개발성과	가축분뇨 자원화 공동처리시설 CH ₄ , N ₂ O 배출량 데이터 확보
	○ 우리나라 양돈분뇨 저장시설에서의 CH₄ 배출량
	- IPCC 1996년 가이드라인 Tier 1에 비해 2006년 가이드라인
	Tier 1은 2.67배 높았음
	- IPCC 1996년 가이드라인 Tier 1에 비해 가축분뇨 VS를
	이용하는 1996년 가이드라인 Tier 2는 0.43~1.99배였음
	- IPCC 1996년 가이드라인 Tier 1에 대한 실측값의 비는
	0.44~1.89이었음
	- 가축분뇨 VS를 이용하는 1996년 가이드라인 Tier 2에 비해
	실측값의 비는 0.23~0.96이었음
	○ 우리나라 가축분뇨 저장시설에서의 N ₂ O 배출량
	- 일반적으로 N ₂ O 배출량은 미미하였으며, 무시할 수 있었음
	○ 바이오가스 생산 가축분뇨 공공처리시설에서는 CH₄를
	생산하여 이용하고 있으나, 바이오가스 생산시설에 투입 전
	시설에서 CH4과 N2O 배출이 발생하였으며, N2O 배출량이
	CH₄ 배출량보다 현저히 높았음
	- IPCC 2006 가이드라인의 CH₄과 N₂O의 100년 기준
	온난화지수(global warming potential)인 25와 298을 각각
	적용한다면 CH ₄ 과 N ₂ O의 이산화탄소 환산량은 각각 25.3
	kg/일, 405.3 kg/일이었으므로 CH ₄ 에 비해 N ₂ O의 영향이
	16배 높은 것으로 나타났음
	○ IPCC 가이드라인 방법론 분석 및 적용방안
	- 메탄 배출계수 값은 1996 IPCC 지침보다 2006 IPCC
	- 메단 매물계구 없는 1990 IPCC 시점보다 2000 IPCC 지침에서 더 높았음
	- 가축분뇨 내 질소량 값은 1996 IPCC 지침보다 2006 IPCC
	지침에서 더 낮았음
	- 1996 IPCC 메탄 배출계수 기본값은 3이었고, 국가고유 돼지
	VS값(1.25)을 적용하여 도출된 메탄 배출계수는 액비화시설
	3.5이고 퇴비화 시설은 1.6이었음
	○ 온실가스 감축 효율성 증대방안을 반영하여 향후 온실가스
	배출특성 변화
	- 가축분뇨 에너지화 시설 이용했을 때, 에너지 시설을
	이용하지 않을 경우 산출된 배출량의 30% 수준으로 감소가
	예상됨
	- 가축분뇨 자원화 시설 이용했을 때, 자원화 시설을 이용하지