Discrete Random Variables: Mean, SD (μ_X, σ_X) :

Data Table:

Let X = some discrete random variable and P(X) = the probability of X.

Let	Value	P(X)	Probability
$X_1 =$	0	0.099	10%
$X_2 =$	1	0.333	30%
$X_3 =$	2	0.566	60%

Mean:

$$\mu_{X} = (X_{1} * P(X_{1})) + (X_{2} * P(X_{2})) + (X_{3} * P(X_{3}))$$

$$= (0 * 0.099) + (1 * 0.333) + (2 * 0.566)$$

$$= (0 + 0.333 + 1.132)$$

$$= \mu_{X} = 1.465$$

Standard Deviation:

$$\sigma_{X} = ((X_{1} - \mu_{X})^{2} * P(X_{1})) + ((X_{2} - \mu_{X})^{2} * P(X_{2})) + ((X_{3} - \mu_{X})^{2} * P(X_{3}))$$

$$= ((0 - 1.456)^{2} * 0.099) + ((1 - 1.456)^{2} * 0.333) + ((2 - 1.456)^{2} * 0.566)$$

$$= (0 + 0.279 + 0.167) = 0.467 \text{ (variance } = 0.467)$$

$$= \sqrt{0.467}$$

$$= \sigma_{X} = 0.683$$