Trasformazioni di una v.a.: rand() → v.a. generica

Esempio: MATLAB 8.3 – Libro Luise-Vitetta

• Trasformare un valore (generato tramite la funzione MATLAB rand()) di una v.a. Y uniformemente distribuita tra 0 e 1 in un valore di una v.a. X con densità di probabilità $f_X(x)$ assegnata

TEORETS FOND. PER LS

TRAST. DI UNA V.A.

$$\int_{X} (y) = \frac{\int_{X} f_{x}(x_{i})}{|g'(x_{i})|} \frac{1}{|g'(x_{i})|}$$

$$\int_{Y} (y) = \begin{cases} \frac{\int_{X} (x_{1})}{|g'(x_{1})|} \\ 0 & y < 0 \ \text{Uy} > 1 \end{cases}$$

$$g(x) = F_{x}(x)$$

$$g'(x) = f_{x}(x) > 0 \quad \forall n$$

$$y = F_{x}(x)$$

$$y = \left[1 - e^{-\frac{x}{\eta}}\right]u(x)$$

$$y = -\frac{x}{\eta}$$

$$y = -\frac{x}{\eta}$$

$$y = -\frac{x}{\eta}$$

Trasformazioni di una v.a.: rand() → v.a. generica

Nel caso particolare di v.a. esponenziale X, otteniamo $x = -\eta \cdot \log(1-y)$

```
y=rand(1,10000);
% 10000 realizzazioni di una
% v.a. uniforme tra 0 e 1
eta=0.55; % parametro caratteristico
% della v.a. esponenziale
x=-eta*log(1-y);
% trasformazione di Y in X
[f,x_f]=hist(x,50); % istogramma di Y
delta_x_f=x_f(2)-x_f(1); % ampiezza degli
% intervalli
f=f/(length(x)*delta_x_f); % normalizzazione
% dell'istogramma
f_teorica=exppdf(x_f,eta); % ddp teorica
```


Trasformazioni di una v.a. continua

Nota:

se per un certo y^* l'equazione y=g(x) non ha soluzione, risulterà:

$$f_{\mathbf{y}}(\mathbf{y}^*) = 0$$

TETODO DEUS FUNZ. BI BISTR.

$$F_{y}(y) = \int_{y}^{y} f_{x}(x) dx, \text{ dove } J(y) = \{x : g(x) \leq y\}$$

•
$$y < -1$$
: $\Im(y) = \phi$ $F_{y}(y) = 0$

$$-1 \leq y \leq 1 : \quad \Im(y) = \left\{ x : -\infty < x \leq y \right\}$$

$$F_{y}(y) = \int_{0}^{y} f_{x}(x) dx = F_{x}(y)!$$

$$y > 1$$
: $J(y) = \{n : -\infty < n < +\infty\}$

$$F_{y}(y) = \int_{-\infty}^{+\infty} f_{x}(n) dn = 1$$

Indici caratteristici di una distribuzione

- La funzione di distribuzione oppure la densità o la massa di probabilità forniscono una descrizione statistica completa della v.a. X → Il massimo di informazione che si può avere sul comportamento statistico dei valori assunti da X
- In molti casi non è possibile arrivare a una conoscenza così completa riguardo a un problema aleatorio che si sta trattando
- Se non si riesce ricavare la legge di distribuzione, allora ci accontentiamo di alcuni indici caratteristici (parametri statistici semplificati) che forniscono informazioni parziali sulla legge di distribuzione
 - Valor medio (valore atteso)
 - Varianza
 - Valore quadratico medio

Valore medio di una v.a. discreta (*(**) (**) (**)

- Il simbolo $E(\cdot)$ deriva dal termine inglese Expectation
- Il valor medio di una v.a. è compreso tra il più piccolo ed il più grande valore assunto da X
- Fornisce un'indicazione sulla posizione attorno alla quale si addensano i valori della X (indice di posizione)
- Può non coincidere con alcuno dei valori assunti da X (ad esempio nel lancio del dado il valor medio è 3.5)

Osservazione:

Stabilendo un'analogia tra una v.a. discreta e un sistema di masse puntiformi posizionate sull'asse x centrate nei punti x_i e con massa $p_x(x_i)$, il valor medio diventa l'ascissa del baricentro del sistema di masse

Valore medio di una v.a. discreta

se si ripete l'esperimento un gran numero di volte si ottiene la seguente interpretazione del valor medio in termini di frequenza di presentazione:

$$M = \text{numero di possibili valori di } X$$

$$N = \text{numero di prove}$$

$$\eta_X = E(X) = \sum_{i=1}^{M} x_i p_X(x_i) \cong \sum_{i=1}^{M} \frac{x_i n_i}{N} = \frac{1}{N} \sum_{n=1}^{N} x(n)$$

Media aritmetica dei valori assunti da X in un numero molto elevato di prove; di solito indicata con $\hat{\eta}_{X}$. $\hat{\eta}_{X}$

Risultati delle prove

$$\hat{\boldsymbol{\eta}}_X = \frac{1}{N} \sum_{n=1}^N x(n)$$

138

Varianza di una v.a. discreta

La varianza è una misura dello scostamento dei valori di X dal suo valor medio, ovvero è un **indice di dispersione** della v.a.

Varianza di X:
$$\sigma_X^2 = E[(X - \eta_X)^2] = \sum_i (x_i - \eta_X)^2 p_X(x_i)$$

Interpretazione in frequenza relativa:

$$\sigma_X^2 \cong \sum_{i=1}^{M} (x_i - \eta_X)^2 \frac{n_i}{N} = \frac{1}{N} \sum_{n=1}^{N} [x(n) - \eta_X]^2 \equiv \hat{\sigma}_X^2$$

La varianza è approssimabile con la media aritmetica dei quadrati delle differenze fra i valori della X ottenuti in N prove (N>>1) ed il valor medio > Indicazione dell'addensamento dei valori della v.a. attorno al suo valor medio

Osservazione:

Proseguendo l'analogia tra una v.a. discreta e un sistema di masse puntiformi, la varianza diventa il *momento d'inerzia* del sistema rispetto ad un asse verticale passante per il baricentro

Deviazione standard di una v.a. discreta

Deviazione standard di X:

$$\sigma_X = \sqrt{\sigma_X^2} = \sqrt{\sum_i (x_i - \eta_X)^2 p_X(x_i)}$$

- La deviazione standard è una misura dello scostamento dei valori di X dal valor medio
- Se X è una grandezza fisica dimensionale, la deviazione standard ed il valore medio hanno le stesse dimensioni di X

Valore quadratico medio di una v.a. discreta

Il valore quadratico medio di una v.a. rappresenta la sua potenza media statistica:

Valore quadratico medio di X:

$$P_X = E[X^2] = \sum_i x_i^2 p_X(x_i)$$

Interpretazione in frequenza relativa:

$$P_X \cong \sum_{i=1}^{M} x_i^2 \frac{n_i}{N} = \frac{1}{N} \sum_{n=1}^{N} x^2(n) \equiv \hat{P}_X$$

Legame tra varianza e valore quadratico medio

Il valore quadratico medio (v.q.m.) e la varianza sono legati da una semplice relazione (l'operatore di aspettazione è lineare):

$$M_X = cont$$

$$\sigma_X^2 = E\left[\left(X - \eta_X\right)^2\right] = E\left[X^2 - 2\eta_X X + \eta_X^2\right]$$

$$= E\left[X^2\right] - 2\eta_X E\left[X\right] + \eta_X^2 = P_X - \eta_X^2$$

$$\rho_X - 2\eta_X \cdot \eta_X + \eta_X^2$$

Indici caratteristici per v.a. continue

$$\eta_X = E(X) = \int_{-\infty}^{\infty} x f_X(x) dx \quad \text{Valore medio di } X$$

$$\sigma_X^2 = E[(X - \eta_X)^2] = \int_{-\infty}^{\infty} (x - \eta_X)^2 f_X(x) dx \quad \text{Varianza di } X$$

$$P_X^{\bullet} = E[X^2] = \int_{-\infty}^{\infty} x^2 f_X(x) dx$$
 Valor quadratico medio di X

$$\sigma_X = \sqrt{\sigma_X^2} = \sqrt{\int_{-\infty}^{\infty} (x_X - \eta_X)^2 f_X(x) dx}$$
 Deviazione standard

Varianza come indice di dispersione

- Ddp di due variabili aleatorie X1 e X2 accomunate dallo stesso valore atteso η_X
- La ddp $f_{X1}(x)$ è molto «allargata» attorno al valore atteso \rightarrow E' piuttosto probabile trovare valori lontani dal valore atteso
- La ddp f $_{\chi_2}({\bf x})$ al contrario è molto più «appuntita» ${m o}\sigma_{X_2}^2 < \sigma_{X_1}^2$

Valor medio di una v.a.

La definizione di valor medio per v.a. discrete si può ricavare come caso particolare di quello per v.a. continue

$$f_X(x) = \sum_{i} p_X(x_i) \delta(x - x_i) \qquad \qquad \uparrow^{f_X(x_i)} \uparrow^{$$

Valor medio di una v.a.

Infatti:
$$\eta_X = \int_{-\infty}^{\infty} x f_X(x) dx = 0$$

In generale, se la ddp ha simmetria pari rispetto ad a, il v.m. vale a:

$$\int_{-\infty}^{\infty} (a-x) = f_X(a+x) \qquad \eta_X = a$$

$$\int_{-\infty}^{\infty} (a-x) f_X(x) dx = 0 = a \int_{-\infty}^{\infty} f_X(x) dx - \int_{-\infty}^{\infty} x f_X(x) dx = 0$$

Valor medio di una funzione di v.a.

- Se Y = g(X) è possibile ricavare il valore medio di Y direttamente dalla distribuzione di X
- Consideriamo il caso in cui Y ed X siano v.a. discrete:

$$\eta_{Y} = E(Y) = \sum_{k} y_{k} P(Y = y_{k}) = \eta_{1} \cdot P(Y = y_{1}) + \eta_{2} \cdot P(Y = y_{1}) + \dots$$

Il primo termine della sommatoria si può scrivere:

$$y_1 P(Y = y_1) = \underbrace{y_1}_{G(y_1)} P(X = x_i) = \underbrace{\sum_{G(y_1)} g(x_i)}_{G(y_2,y_2)} P(X = x_i)$$

dove la somma è estesa a tutti gli x_i per i quali $g(x_i)=y_1$, ovvero:

$$G(y_1) \equiv \{x_i\} : g(x_i) = y_1\}$$

$$G(y_1) = \{x_i\} : g(x_i) = y_1\}$$

Valor medio di una funzione di v.a.

Analogamente:
$$y_2 P(Y = y_2) = \sum_{G(y_2)} g(x_i) P(X = x_i)$$

Procedendo allo stesso modo per gli altri termini e notando che $G(y_1)$, ..., $G(y_n)$ costituiscono una partizione di \mathbb{R} , si ottiene che E(Y) può essere espressa come somma di termini del tipo $g(x_i)P(X=x_i)$:

Teorema dell'aspettazione per v.a. discrete:

$$\underbrace{E(Y)} = E[g(X)] = \sum_{i} g(x_i) P(X = x_i)$$

N.B.: La definizione di *varianza* di X ne è un caso particolare:

$$\sigma_X^2 = E[(X - \eta_X)^2] = \sum_i (x_i - \eta_X)^2 P(X = x_i)$$

Teorema dell'aspettazione per v.a. continue

Teorema dell'aspettazione per v.a. discrete:

$$E(Y) = E[g(X)] = \sum_{i} g(x_i) P(X = x_i)$$

$$E(Y) = E[g(X)] = \int_{-\infty}^{+\infty} g(x) f_X(x) dx$$

$$E(X) = \int_{-\infty}^{+\infty} x \cdot \delta_X(x) dx$$

Linearità dell'operatore "aspettazione"

i)
$$E[g(X)+c]=E[g(X)]+c$$

$$ii) \quad E[cg(X)] = cE[g(X)]$$

iii)
$$E[g(X)+h(X)]=E[g(X)]+E[h(X)]$$

Dimostrazione: X ed Y v.a. discrete

i)
$$\underline{E[g(X)+c]} = \sum_{i} [g(x_{i})+c]P(X=x_{i})$$

$$= \sum_{i} g(x_{i})P(X=x_{i})+c\sum_{i} P(X=x_{i})$$

$$= E[g(X)]+c$$

$$= 1$$

Linearità dell'operatore "aspettazione"

$$ii) \quad E[cg(X)] = c\sum_{i} g(x_i)P(X = x_i) = cE[g(X)]$$

iii)
$$E[g(X) + h(X)] = \sum_{i} [g(x_{i}) + h(x_{i})]P(X = x_{i})$$

$$= \sum_{i} g(x_{i})P(X = x_{i}) + \sum_{i} h(x_{i})P(X = x_{i})$$

$$= E[g(X)] + E[h(X)]$$

Linearità dell'operatore "aspettazione"

$$\alpha_{n} g_{1}(x) + \alpha_{2} g_{2}(x) + \dots + \alpha_{n} g_{n}(x)$$

$$E\left[\sum_{i} \alpha_{i} g_{i}(X)\right] = \sum_{i} \alpha_{i} E[g_{i}(X)]$$

Esempio:
$$\widehat{Y} = 2(X-1)^2$$

$$\mathbb{E}\{X\} \longrightarrow \mathbb{E}\{Y\} = \emptyset$$

$$E(Y) = E[2(X^{2} - 1)^{2}] = E[2X^{2} - 4X + 2]$$

$$= E(2X^{2}) + E(-4X) + 2$$

$$= 2E(X^{2}) - 4E(X) + 2$$

Indici caratteristici di v.a. notevoli
$$\frac{k}{\kappa!} = \frac{k}{\kappa \cdot (k-1) \cdot ($$

• V.a. di Poisson $X \in P(\Lambda)$: $(p_X(k) = P(\{X = k\}) = \frac{\Lambda^k}{k!}e^{-\Lambda})$

$$\eta_{X} = \sum_{k=0}^{+\infty} x_{k} \cdot p_{X}(x_{k}) = \sum_{K=0}^{+\infty} K \cdot \frac{\wedge}{k!} \cdot e^{-\wedge} = e^{-\wedge} \sum_{K=1}^{+\infty} \frac{\wedge}{(\kappa-1)!} = e^{-\wedge} \cdot \wedge \cdot \sum_{K=1}^{-\infty} \frac{\wedge}{(\kappa-1)!}$$

$$= \sum_{m=K-1}^{+\infty} \sum_{m=0}^{+\infty} \frac{\wedge}{m!} e^{-\wedge} \cdot \wedge = e^{-\wedge} \cdot A =$$

Indici caratteristici di v.a. notevoli

• V.a. uniforme
$$X \in U(a,b)$$
: $f_X(x) = \begin{cases} \frac{1}{b-a} & \text{per } a \le x \le b \\ 0 & \text{altrove} \end{cases}$

$$\eta_X = \int_{-\infty}^{\infty} x \xi_X(x) dx = 2$$

$$G_{x}^{2} = \frac{\left(b-a\right)^{2}}{12}$$

$$P_{X} = E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f_{X}(x) dx = \int_{0}^{\infty} x^{2} \frac{1}{(b-e)} dx = \frac{1}{b-e} \frac{x^{3}}{3} \Big|_{e}^{b} = \frac{\frac{b^{3}}{3} - \frac{a^{3}}{3}}{\frac{b-e}{3}}$$

$$= \frac{1}{b-e} \frac{x^{3}}{3} \Big|_{e}^{b} = \frac{\frac{b^{3}}{3} - \frac{a^{3}}{3}}{\frac{b-e}{3}}$$

$$= \frac{1}{b-e} \frac{x^{3}}{3} \Big|_{e}^{b} = \frac{\frac{b^{3}}{3} - \frac{a^{3}}{3}}{\frac{b-e}{3}}$$

$$= \frac{a^{2} + ab + b^{2}}{3}$$

$$\sigma_{X}^{2} = P_{X} - \eta_{X}^{2} = \frac{a^{2} + ab + b^{2}}{3}$$

$$\sigma_X^2 = P_X - \eta_X^2 = \frac{1}{2} = \frac{$$

Indici caratteristici di v.a. notevoli

• V.a. esponenziale $X \in Exp(\lambda)$: $f_X(x) = \frac{1}{\lambda} \exp\left(-\frac{x}{\lambda}\right) u(x)$

$$\eta_X = \int_{-\infty}^{\infty} x f_X(x) dx = \lambda$$

$$P_X = E(X^2) = \int_{-\infty}^{\infty} x^2 f_X(x) dx =$$

$$\sigma_X^2 = P_X - \eta_X^2 = \lambda^2$$

Variabile aleatoria Gaussiana (o normale)

Una v.a. X è detta Gaussiana o normale di parametri (η, σ^2) , e si indica con $X \in \mathcal{N}(\eta, \sigma^2)$, se la sua ddp è:

$$\underbrace{f_X(x)}_{x} = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\eta}{\sigma}\right)^2\right] = \underbrace{\frac{1}{\sqrt{2\pi\sigma^2}}}_{con \sigma > 0} \exp\left[-\frac{(x-\eta)^2}{2\sigma^2}\right]$$

Variabile aleatoria Gaussiana (o normale)

$$\Phi(z) \triangleq F_Z(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} \exp\left(-\frac{\alpha^2}{2}\right) d\alpha$$

Non valutabile in forma chiusa; si trova tabulata o si calcola numericamente

Funzione Q:
$$Q(z) = \frac{1}{\sqrt{2\pi}} \int_{z}^{+\infty} \exp\left(-\frac{\alpha^2}{2}\right) d\alpha = 1 - \Phi(z)$$

Funzione Q

$$Q(z) = \frac{1}{\sqrt{2\pi}} \int_{z}^{+\infty} \exp\left(-\frac{\alpha^{2}}{2}\right) d\alpha = 1 - \Phi(z)$$

158

Variabile aleatoria Gaussiana (o normale)

Se $X \in \mathcal{N}(\eta, \sigma^2)$, la funzione di distribuzione si ricava da quella della normale standard mediante la seguente relazione:

$$\begin{aligned}
\widehat{F_X(x)} &= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left[-\frac{(\alpha - \eta)^2}{2\sigma^2}\right] d\alpha = \int_{-\infty}^{x} \widehat{f_X(\alpha)} d\alpha \\
&\left[\text{ponendo: } \widehat{y} = \frac{\alpha - \eta}{\sigma} \Rightarrow dy = \frac{d\alpha}{\sigma}\right] \\
&= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{(x - \eta)/\sigma} \exp\left(-\frac{y^2}{2}\right) dy = \Phi\left(\frac{x - \eta}{\sigma}\right) = 1 - Q\left(\frac{x - \eta}{\sigma}\right) \\
&\text{quindi: } P(X > \lambda) = 1 - F_X(\lambda) = Q\left(\frac{\lambda - \eta}{\sigma}\right)
\end{aligned}$$

$$(x > \lambda) = (-F_{x}(\lambda)) = Q(\frac{\lambda - m}{\sigma})$$