MATH580 - Advanced PDEs 1

Based on lectures from Fall 2025 by Prof. Niky Kamran. Notes by Louis Meunier

Contents

1	Local Existence Theory	2
	1.1 Terminology	
	1.2 First Order Scalar PDEs	
	1.3 Cauchy-Kovaleskaya	5
	The Laplacian/Laplace's Equation	
	2.1 Preliminaries: Review of the Fourier Transform, Distributions	
	2.1.1 Fourier Transform	
	2.1.2 Distributions	
	2.2 The Laplacian	15
	2.3 The Fundamental Solution to Laplace's Equation	
	2.4 Dirichlet and Neumann Problems	
	2.5 Green's Function for the Laplacian	

§1 Local Existence Theory

§1.1 Terminology

 \hookrightarrow **Definition 1.1** (Multiindex): We'll use *multiindex* notation throughout; if working in \mathbb{R}^n , we have a multiindex

$$\alpha \equiv (\alpha_1, ..., \alpha_n), \quad \alpha_i \in \mathbb{Z}_+.$$

The *length* of a multiindex is given

$$|\alpha| \equiv \sum_i \alpha_i$$
,

and we'll also write, for $x \in \mathbb{R}^n$,

$$x^{\alpha} \equiv x_1^{\alpha_1} \cdots x_n^{\alpha_n}.$$

Finally, we'll write

$$\partial^{\alpha} \equiv \partial_{x_1}^{\alpha_1} \circ \cdots \circ \partial_{x_n}^{\alpha_n}$$

for higher-order partial derivatives in mixed directions.

Thus, the most general form of a k-th order PDE in independent variables $x \in \Omega \subset \mathbb{R}^n$ can be written succinctly by

$$F\left(x,(\partial^{\alpha}u)_{|\alpha|\leq k}\right))=0, \qquad F:\Omega\times\mathbb{R}^{N(k)}\to\mathbb{R}, \qquad (\dagger)$$

with $N(k) \equiv \#\{\alpha \mid |\alpha| \le k\}$.

Definition 1.2 (Solution): We'll define a (*classical/strong*) solution to (†) to be a C^k -map u : Ω → ℝ for which (†) is satisfied for all x ∈ Ω.

 \hookrightarrow **Definition 1.3** (Linearity/Quasilinearity): We say (†) is *linear* if F is affine-linear in $\partial^{\alpha} u$ for each multiindex, i.e. we may write equivalently

$$L[u] \coloneqq \sum_{|\alpha| \le k} a_{\alpha}(x) \partial^{\alpha} u = f(x),$$

where $L[u] = f(x) \Leftrightarrow F[x, u] = 0$. Similarly, (†) is said to be *quasilinear* if F is affine-linear in the highest order derivatives, i.e. $\partial^{\alpha} u$ for $|\alpha| = k$. An equivalent form is given by

$$\sum_{|\alpha|=k} a_{\alpha} \left(x, \left(\partial^{\beta} u \right)_{|\beta| \le k-1} \right) \partial^{\alpha} u = b \left(x, \left(\partial^{\beta} u \right)_{|\beta| \le k-1} \right).$$

 \hookrightarrow **Definition 1.4** (Weak Solution): A *weak solution* to a linear PDE L[u] = f is a function u: Ω → ℝ such that

$$\sum_{|\alpha| \leq k} (-1)^{|\alpha|} \langle u, \partial^{\alpha} a_{\alpha} \varphi \rangle = \langle f, \varphi \rangle \qquad \forall \varphi \in C^{\infty}_{c}(\Omega),$$

with $\langle \cdot, \cdot \rangle$ the regular $L^2(\Omega)$ -inner product.

1.1 Terminology

Remark 1.1: Such a notation allows for non- C^k "solutions" to (†) which still have certain properties akin to those described by F. For a motivation of the definition, one need only integrate by parts L[u] = f multiple times, hitting against $\varphi \in C_c^{\infty}(\Omega)$; if u were a strong solution, one would find the above equation as a result.

 \hookrightarrow **Definition 1.5** (Characteristics): Let *L* be a linear operator associated to a *k*th-order linear PDE. The *characteristic form* of *L* is the *k*th degree homogeneous polynomial defined by

$$\chi_L(x,\xi) := \sum_{|\alpha|=k} a_{\alpha}(x)\xi^{\alpha}.$$

The *characteristic variety* is defined, for a fixed x, as the set of ξ for which χ_L vanishes, i.e.

$$char_x(L) := \{ \xi \neq 0 \mid \chi_L(x, \xi) = 0 \}.$$

Remark 1.2: Suppose $\overline{\xi} = \xi_i e_i \neq 0 \in \text{char}_x(L)$; then since

$$\chi_L(x,\overline{\xi}) = a_{\overline{\alpha}} \partial_{x_j}^k \xi_j, \quad \overline{\alpha} \equiv k e_j,$$

then it must be that $a_{\overline{\alpha}} = 0$ at x. Heuristically, one has that L is not "genuinely" kth order in the direction of $\overline{\xi}$.

- \hookrightarrow **Definition 1.6** (Elliptic): We say *L* is *elliptic* at *x* if char_{*x*}(*L*) = \emptyset .
- \hookrightarrow **Proposition 1.1**: char_{χ}(L) is independent of choice of coordinates.

§1.2 First Order Scalar PDEs

We consider the quasilinear first-order PDE of the form

$$\sum_{i=1}^{n} a_i(x, u) \partial_i u = b(x, u), \qquad (*)$$

subject to the initial condition $u|_S = \varphi$ where $S \subseteq \mathbb{R}^n$ some hypersurface with φ given. We assume a_i , b C^1 in all arguments.

Theorem 1.1: Let $A(x) = (a_1(x, u), ..., a_n(x, u), b(x, u))$ and $S^* = \{(x, \varphi(x)) : x \in S\} \subseteq \mathbb{R}^{n+1}$. Then, if A nowhere tangent to S^* , then for any sufficiently small neighborhood Ω on S, there exists a unique solution to (*) on Ω.

Proof. Locally, *S* can be parametrized by

$$(s_1,...,s_{n-1})\mapsto g(s)=\big(g_1(s),...,g_n(s)\big).$$

Then, the "transversality condition" (about the tangency of A) can equivalently be written as

$$\det\begin{pmatrix} \partial g_1/\partial s_1 & \dots & \partial g_1/\partial s_{n-1} & a_1(g(s)) \\ \vdots & & \vdots & & \vdots \\ \partial g_n/\partial s_1 & \dots & \partial g_n/\partial s_{n-1} & a_n(g(s)) \end{pmatrix} \neq 0.$$

3

1.2 First Order Scalar PDEs

Remark 1.3: In the linear case, one sees that this equivalently means that the normal ν of S is not in $\operatorname{char}_{\chi}(L)$; in particular, it is independent of the choice of initial data.

Remark that if we write coordinates $(x_1, ..., x_n, y) \in \mathbb{R}^{n+1}$ and define F(x, y) = u(x) - y, then the PDE can be written succinctly as the statement $A \cdot \nabla F = 0$, and that the zero set F = 0 gives the graph of the solution u; hence, we essentially need that the vector field A everywhere tangent to the graph of any solution. The idea of our solution is to consider A "originating" at S^* , and "flowing" our solution along the integral curves defined by A to obtain a solution locally.

The integral curves of *A* are defined by the system of ODEs

$$\begin{cases} \frac{\mathrm{d}x_j}{\mathrm{d}t} = a_j(x, y), \frac{\mathrm{d}y}{\mathrm{d}t} = b(x, y) \\ x_j(s, 0) = g_j(s), y(s, 0) = \varphi(g(s)) \end{cases}$$
 $j = 1, ..., n.$

By existence/uniqueness theory of ODEs, there is a local solution to this ODE, viewing *s* as a parameter, inducing a map

$$(s,t) \mapsto (x_1(s,t),...,x_n(s,t)),$$

which is at least C^1 in s, t by smooth dependence on initial data. By the transversality condition, we may apply inverse function theorem to this mapping to find C^1 -inverses s = s(x), t = t(x) with t(x) = 0 and g(s(x)) = 0 whenever $x \in S$. Define now

$$u(x) \coloneqq y(t(x), s(x)).$$

We claim this a solution. By the inverse function theorem argument, it certainly satisfies the initial condition, and repeated application of the chain rule shows that the solution satisfies the PDE.

We briefly discuss, but don't prove in detail, the fully nonlinear case, i.e.

$$F(x, u, \partial u) = 0$$
,

where we assume $F \in C^2$. We approach by analogy. Putting $\xi_i := \frac{\partial u}{\partial x_i}$, then we see F as a function $\mathbb{R}^{2n+1} \to \mathbb{R}$. We seek "characteristic" ODEs akin to those found for the integral curves in the quasilinear case. We naturally take, as in the previous, $\frac{\mathrm{d}x_i}{\mathrm{d}t} = \frac{\partial F}{\partial \xi_i}$. Applying chain rule, we find that

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \sum_{i} \frac{\partial u}{\partial x_{i}} \frac{\mathrm{d}x_{i}}{\mathrm{d}t} = \sum_{i} \xi_{i} \frac{\partial F}{\partial \xi_{i}}.$$

Finally, if we differentiate F = 0 w.r.t. x_i , we find

$$0 = \frac{\partial F}{\partial x_i} + \xi_j \frac{\partial F}{\partial y} + \sum_k \frac{\partial F}{\partial \xi_k} \frac{\partial \xi_k}{\partial x_i}$$

whence

$$\frac{\mathrm{d}\xi_j}{\mathrm{d}t} = \sum_k \frac{\partial \xi_j}{\partial x_k} \frac{\partial x_k}{\partial t} = -\frac{\partial F}{\partial x_j} - \xi_j \frac{\partial F}{\partial y}.$$

1.2 First Order Scalar PDEs

In summary, this gives a system of 2n + 1 ODEs in (x, y, ξ) variables

$$\frac{\mathrm{d}x_{j}}{\mathrm{d}t} = \frac{\partial F}{\partial \xi_{j}}, \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = \sum_{i} \xi_{i} \frac{\partial F}{\partial \xi_{i}}$$
$$\frac{\mathrm{d}\xi_{j}}{\mathrm{d}t} = -\frac{\partial F}{\partial x_{i}} - \xi_{j} \frac{\partial F}{\partial y}.$$

After imposing a similar (but slightly more complex) transversality requirement, one can show similarly obtain a solution from this system by an inverse function theorem argument.

In terms of initial conditions, if u is specified on some hypersurface S, we need to lift it to $S^{**} \subseteq \mathbb{R}^{2n+1}$ to "encode" the information of the initial values of u and its derivatives on u.

⊗ Example 1.1: Show that

$$\partial_1 u \partial_2 u = u, \qquad u(0, x_2) = x_2^2$$

has solution

$$u(x_1, x_2) = \frac{(x_1 + 4x_2)^2}{16}.$$

Example 1.2 (Geodesics): For an invertible matrix $g = (g^{ij})$, solve

$$\sum_{ij} g^{ij} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} = 0.$$

SOLUTION (*To* ⊗ *Example 1.2*).

§1.3 Cauchy-Kovaleskaya

We discuss the essential existence and uniqueness theorem related to the following general *k*-order Cauchy problem:

$$(*') \qquad \begin{cases} F(x, u, \partial^{\alpha} u) = 0 & |\alpha| \le k \\ \partial^{j}_{\nu} u|_{S} = \varphi_{j} & 0 \le j \le k - 1' \end{cases}$$

in which S a given hypersurface with normal ν , and we assume F and φ_j to be analytic, for which we write that they are in C^ω . We aim to show that, for $x_0 \in S$, there exists a neighborhood of x_0 and unique solution to (*') on that neighborhood.

We begin to rewriting (*') in several ways to simplify things. First, since we are working locally, we can always change coordinates to $(x,t) \in \mathbb{R}^{n-1} \times \mathbb{R}$ such that S is locally given by the zero set t = 0, in which case our problem becomes

$$\begin{cases} F\left(x,t,\partial_{x}^{\alpha}\partial_{t}^{j}u\right)=0 & |\alpha|+j\leq k \\ \partial_{t}^{j}u(x,0)=\varphi_{j}(x) & 0\leq j\leq k-1 \end{cases}$$

where now of course $\alpha = (\alpha_1, ..., \alpha_{n-1})$ a n-1 length multiindex.

1.3 Cauchy-Kovaleskaya

Remark that if *u* were a C^r solution for $r \ge k$, we can compute

$$\partial_x^{\alpha} \partial_t^j u(x,0) = \partial_x^{\alpha} \varphi_i(x)$$

for any $0 \le j \le k-1$ and $|\alpha| \le r$. I.e., we can compute the mixed partial derivatives of u up to order k-1 in t along S in this way. To find those related to the kth order in t, we'd need to be able to use the equation F=0 directly to solve for $\partial_t^k u(x,0)$ in terms of the other variables. However, this is not always possible, for arbitrary Cauchy data:

- 1. $\partial_x \partial_t u = 0$, $u(x,0) = \varphi_0(x)$, $\partial_t u(x,0) = \varphi_1(x)$ does not have unique solutions, and in fact the initial conditions dictate that φ_1 must be constant (which is already problematical). Moreover, $u(x,t) := \varphi_0(x) + f(t)$, with f any C^1 function with $f(0) = \varphi_1$, is a valid solution.
- 2. $\partial_x^2 u \partial_t u = 0$ dictates that $\varphi_0''(x) = \varphi_1(x)$, so we can't choose arbitrary initial conditions again.

We enforce then this condition in the following:

Definition 1.7 (Characteristic): We say *S* given by t = 0 is *non-characteristic* for (∗) if one can solve for $\partial_t^k u$ from the equation directly.

In this case, we may rewrite our equation as

(1)
$$\begin{cases} \partial_t^k u = G\left(x, t, \left(\partial_x^\alpha \partial_t^j u\right)_{\substack{|\alpha|+j \le k \\ 1 \le j \le k-1}}\right) \\ \partial_t^j u(x, 0) = \varphi_j(x) \end{cases}$$
 $0 \le j \le k-1$

Moreover, we assume $x_0 = (0,0)$ in (x,t) space by translating. We write, for notational convenience, $y_{\alpha j} := \partial_x^\alpha \partial_t^j u$, noting that we will use this both as a separate coordinate system and for shorthand distinctly, so one should be careful with interpreting notation to follow.

Now, by differentiating (1) repeatedly with respect to t and evaluating when t = 0 (so on S), we can thus solve for the higher-order derivatives of $\partial_t^j u$ in terms of lower-order, known terms. For instance,

$$\partial_t^{k+1} u = \frac{\partial G}{\partial t} + \sum_{\substack{|\alpha| + j \le k \\ 0 \le j \le k-1}} \frac{\partial G}{\partial y_{\alpha j}} \partial_x^{\alpha} \partial_t^{j+1} u.$$

On S, everything on the right-hand side is determined, and so thus we know what $\partial_t^{k+1}u$ is as well here. We can repeat this process for any order derivative of u. This proves our first result:

 \hookrightarrow Proposition 1.2: (1) has at most 1 analytic solution.

PROOF. If (1) has an analytic solution u, then the discussion above demonstrates how to compute all of its derivatives at a specific point, i.e. on S. But these then just form the coefficients of a local power series representation of u, which must be unique, and hence u is unique as well, being determined by such coefficients.

1.3 Cauchy-Kovaleskaya

→Theorem 1.2 (Cauchy-Kovaleskaya): (1) has a unique analytic solution.

The proof of the theorem is fairly constructive. Using similar ideas to above, we find the Taylor series coefficients of a solution. Then, we show that such a series actually converges with strictly positive radius of convergence, thus proving in turn existence and analyticity of the solution. The previous proposition give the uniqueness once this existence has been established.

First, we can rewrite (1) a couple of times:

\hookrightarrow Lemma 1.1: (1) is equivalent to

$$\begin{cases} \partial_t Y = \sum_{j=1}^{n-1} A_j(x, t, Y) \partial_j Y + B(t, x, Y) \\ Y(x, 0) = \Phi(x) \end{cases}$$

where Y a vector $(y_{\alpha j})_{|\alpha|+j\leq k'}$, $A_j(x,t,Y)$ matrix-valued, B(t,x,Y) vector valued, $\partial_j \equiv \partial_{x_j}$, and Φ determined by φ_j .

The proof is notationally difficult, but not conceptually; one need just to show that if y_{00} the first (lexicographically) component of a solution Y to this system, then y_{00} satisfies the original PDE.

We can do even better:

Lemma 1.2: The problem (1) is equivalent to one in the same form as the previous lemma, but with A_i and B independent of t (and Y now of 1 higher dimension).

This last one is easy; we just introduce an additional component to Y such that $\partial_t Y = 1$, and subtract the initial conditions from our original B.

1.3 Cauchy-Kovaleskaya 7

$$u_{tt} = f(u_{xx}, u_{xt}),$$

$$u(x,0) = \varphi_0(x), \qquad u_t(x,0) = \varphi_1(x),$$

where we assume f, φ_0 , $\varphi_1 \in C^{\infty}$ for convenience of notation. In the notation of the previous two lemmas, we have

$$Y = (y_{00}, y_{10}, y_{01}, y_{20}, y_{11}, y_{02}).$$

Computing the partials of each of these entries:

$$\begin{split} \partial_t y_{00} &= \text{``} \partial_t u \text{''} = y_{01}, & \partial_t y_{10} &= y_{11}, & \partial_t y_{01} &= y_{02}, \\ \partial_t y_{20} &= \text{``} y_{21} \text{''} &= \partial_x y_{11}, & \partial_t y_{11} &= \partial_x y_{02}, & \partial_t y_{02} &= f_1 \partial_x y_{11} + f_2 \partial_x y_{02}, \end{split}$$

noting that in the second line, we used the assumed smoothness of the solutions to interchange the order of the derivatives, and for the last partial, we directly used the statement of the PDE. The initial conditions follow similarly,

$$\begin{aligned} y_{00}(x,0) &= \varphi_0(x), & y_{10}(x,0) &= \varphi_0'(x), & y_{01}(x,0) &= \varphi_1(x) \\ y_{20}(x,0) &= \varphi_0''(x), & y_{11}(x,0) &= \varphi_1'(x), & y_{02}(x,0) &= f(\varphi_1''(x),\varphi_1'(x)), \end{aligned}$$

where we again use the PDE directly to compute the final initial condition.

We recall/state several facts on C^{ω} functions of multiple variables we'll need.

Proposition 1.3 (i): We say $f ∈ C^ω$ near x_0 if there exists a cube $Ω := \{x ∈ \mathbb{R}^n : |x_j - x_j^0| < r, 1 \le j \le n\}$, r > 0, such that the series

$$\sum_{\alpha} \frac{1}{\alpha!} (\partial^{\alpha} f)(x_0) (x - x_0)^{\alpha}$$

converges to f(x) for all $x \in \Omega$.

On compact subsets of Ω , convergence is absolute and uniform; in particular, we can differentiate the summation term-by-term.

Proposition 1.4 (ii): Let $f(x) = \sum a_{\alpha}(x - x_0)^{\alpha}$ converge near x_0 , and suppose x a C^{ω} function of ξ , i.e. $x = \sum b_{\beta}(\xi - \xi_0)^{\beta}$, $x(\xi_0) = x_0$. Then, $F(\xi) := f(x(\xi))$ will be analytic near ξ_0 , and moreover, the power series for F is obtained by substitution, and can be written

$$F(\xi) = \sum_{\gamma} c_{\gamma} (\xi - \xi_0)^{\gamma},$$

where the coefficients $c_{\gamma}=c_{\gamma}(a_{\alpha},b_{\beta})$ are polynomials in a_{α},b_{β} , with non-negative coefficients.

1.3 Cauchy-Kovaleskaya 8

 \hookrightarrow **Proposition 1.5** (iii): Given M > 0, r > 0, the function

$$f(x) := \frac{Mr}{r - (x_1 + \dots + x_n)}$$

is analytic on the rectangle $\{x \mid \max_{j} |x_{j}| < \frac{r}{n}\}$, and moreover

$$f(x) = M \sum_{k=0}^{\infty} \frac{\left(x_1 + \dots + x_n\right)^k}{r^k} = M \sum_{\alpha} \frac{|\alpha|! x^{\alpha}}{\alpha! r^{|\alpha|}}.$$

Remark 1.4: This is just a geometric series, with the second equality just a rewriting using the multinomial theorem.

Proposition 1.6 (iv): We say that $A := \sum a_{\alpha}(x - x_0)^{\alpha}$ majorizes $B := \sum b_{\alpha}(x - x_0)^{\alpha}$ if $a_{\alpha} > |b_{\alpha}|$ for all α . In this case, if A converges absolutely at some x, then so does B.

Remark 1.5: This is just the comparison test in several variables.

Proposition 1.7 (v): Suppose $\sum_{\alpha} a_{\alpha} x^{\alpha}$ converges in some rectangle $\{x \mid \max_{j} |x_{j}| < R\}$. Then, there exists a geometric series, as in (iii), that majorizes $\sum_{\alpha} a_{\alpha} x^{\alpha}$.

PROOF. Let 0 < r < R fixed. Then, $\sum a_{\alpha} r^{|\alpha|}$ converges, and thus there exists M > 0 such that $|a_{\alpha} r^{|\alpha|}| \le M$ for all α . Rearranging, this implies

$$|a_{\alpha}| \le \frac{M}{r^{|\alpha|}} \le \frac{M |\alpha|!}{r^{|\alpha|} \alpha!},$$

where we used the fact that $|\alpha|! \ge \alpha!$.

We return to the proof of Cauchy-Kovaleskaya. Using our lemmas, we are reduced to solving the system

(1)
$$\partial_t y_m = \sum_{i=1}^{n-1} \sum_{\ell=1}^N a^i_{m,\ell}(x,Y) \partial_i y_\ell + b_m(x,Y), \qquad 1 \le m \le N,$$
$$Y(x,0) = 0.$$

In particular, we will construct a power series for each y_m component, and prove that it converges. Namely, we write

$$y_m = \sum_{\alpha,j} c_m^{\alpha j} x^{\alpha} t^j.$$

Substituting this form into (1), the right-hand side becomes

$$\sum_{i,j,\alpha} P_m^{\alpha j} \left(\left(c_k^{\beta k} \right)_{k \le j}, \text{ coeff. of } A_i, B \right) x^{\alpha} t^j,$$

where $P_m^{\alpha j}$ are polynomials with nonnegative coefficients, as in (ii). The left-hand side becomes

$$\sum_{\alpha,j} (j+1) c_m^{\alpha,j+1} x^{\alpha} t^j.$$

1.3 Cauchy-Kovaleskaya

Matching coefficients, this gives the recursive formula

$$c_m^{\alpha j+1} = \frac{1}{j+1} P_m^{\alpha j} \left(\left(c_k^{\beta k} \right)_{k \le j}, \text{coeff. of } A_i, B \right).$$

This can be solved explicitly, giving

$$c_m^{\alpha j} = Q_m^{\alpha j}$$
 (coeff. of A_i, B),

where $Q_m^{\alpha j}$ a polynomial with nonnegative coefficients.

This defines, assuming convergence, the power series of each y_m . The key-step to proving convergence is the following; we construct another Cauchy problem

(1')
$$\partial_t \tilde{Y} = \sum_{j=1}^{n-1} \tilde{A}_j(x, \tilde{Y}) \partial_j \tilde{Y} + \tilde{B}(x, \tilde{Y}),$$
$$\tilde{Y}(x, 0) = 0,$$

with \tilde{A}_i , \tilde{B} chosen such that

(i): (1') has a C^{ω} solution near (x,t)=(0,0);

(ii): the Taylor series of \tilde{A}_i , \tilde{B} majorize those of A_i , B respectively.

Assuming we can do this we'll be done. We claim that a solution to (1') will majorize our constructed solution to (1), which would imply our desired result (namely, that this solution converges). Indeed, we have that since each $Q_m^{\alpha j}$ has nonnegative coefficients,

$$|c_m^{\alpha j}| = |Q_m^{\alpha j}(\text{coeff.}A_i, B)| \le Q_m^{\alpha j}(\text{coeff.}\tilde{A}_i, \tilde{B}) = \tilde{c}_m^{\alpha j},$$

and thus $\sum \hat{c}_m^{\alpha j} x^{\alpha} t^j$ majorizes $\sum c_m^{\alpha j} x^{\alpha} t^{\alpha}$, and thus the latter converges near the origin.

We proceed then to construction \tilde{A}_j , \tilde{B} for (1') and its conditions to hold. By (v) above, there exists M>0 and r>0 such that the series for each A_i and B are majorized by the (geometric) series for

$$\frac{Mr}{r - (x_1 + \dots + x_{n-1} - (y_1 + \dots + y_N))}.$$

Thus, chosen in this way, consider our candidate (1') as

$$\partial_t y_m = \frac{Mr}{r - \sum_{i=1}^{n-1} x_i - \sum_{j=1}^{N} y_j} \left(\sum_{i=1}^{n-1} \sum_{j=1}^{N} \partial_i y_j + 1 \right), \quad y_m(x,0) = 0,$$

for each $1 \le m \le N$, noting that by choice of M, r, (ii) is satisfied, so we just need to show that this has a C^{ω} solution.

Remark that this system is completely symmetric under permutation of the x_j , y_m variables, and thus if we find a solution u = u(s,t) to the system

$$(1'') \qquad \partial_t u = \frac{Mr}{r - s - Nu} (N(n-1)\partial_s u + 1), \qquad u(s,0) = 0,$$

where $(s,t) \in \mathbb{R}^2$, then setting

1.3 Cauchy-Kovaleskaya 10

$$y_i = u(x_1 + \dots + x_n, t), \quad j = 1, \dots, N,$$

gives a solution to (1'). But (1'') is just a quasilinear system, in \mathbb{R}^2 , which we know how to handle. Indeed, it has characteristic equations (using τ as our "characteristic" parameter)

$$\frac{\mathrm{d}t}{\mathrm{d}\tau} = n - s - Nu, \qquad \frac{\mathrm{d}s}{\mathrm{d}\tau} = -Mr(N - 1), \qquad \frac{\mathrm{d}u}{\mathrm{d}\tau} = Mr$$
$$t(0) = 0, s(0) = \sigma, u(0) = 0,$$

using σ as our parametrization variable along $\tau = 0$. Solving this system, one readily finds

$$t(\tau) = \frac{1}{2}MrN(n-2)\tau^2 + \alpha\tau, \qquad s(\tau) = -Mr(N-1)\tau + \sigma, \qquad u(\tau) = Mr\tau,$$

where α an arbitrary constant. Inverting these to solve for $\tau(s,t)$, $\sigma(s,t)$ and plugging into u (indeed, u only depends on τ so it suffices to solve for this parameter), readily yields

$$u(s,t) = \frac{r - s - \sqrt{(r-s)^2 - 2MrNt}}{Mn}.$$

This is analytic in (s,t) near the origin (indeed, we can avoid any blow-ups in the higher derivatives of $\sqrt{...}$), and thus $u \in C^{\omega}$. "Changing variables" to $u(x_1 + ... + x_n, t)$ will not change this analyticity, and so we have finished our proof.

Remark 1.6: This theorem gives absolutely *no* description as to how solutions to a given PDE behave with respect to their initial Cauchy data. For ODEs, under mild assumptions, we can guarantee continuous dependence on solution on initial conditions; we have no such result for PDEs under the current assumptions, for any reasonable notion of "continuity" for spaces of functions.

Example 1.5 (from Hadamard): Consider Laplace's equation in \mathbb{R}^2 with specified initial conditions on a line:

$$\partial_1^2 u+\partial_2^2 u=0,$$

$$u(x_1,0)=0, \qquad \partial_2 u(x_1,0)=\varphi_k(x_1):=ke^{-\sqrt{k}}\sin(kx_1),$$

with $k \in \mathbb{N}$. The line $x_2 = 0$ is clearly non-characteristic for the PDE. The unique C^{ω} solution is given by (which can be found using characteristics)

$$u_k(x_1, x_2) = e^{-\sqrt{k}} \sin(kx_1) \sinh(kx_2).$$

Now, remark that as $k \to \infty$, the initial data $\varphi_k \to 0$ uniformly in x_1 . However, the solution, for $x_2 \neq 0$, as $k \to \infty$

- grows in amplitude (because of the sin term)
- oscillates increasingly rapidly (because of the sinh term),

so in particular, u_k will diverge for $x_2 \neq 0$. The unique solution for the limiting initial data $\lim_{k\to\infty} \varphi_k(x_1) = 0$, though, is the trivial solution. So, there is clearly no "continuity" (in some vague, heuristic sense) in this situation.

1.3 Cauchy-Kovaleskaya 11

§2 THE LAPLACIAN/LAPLACE'S EQUATION

§2.1 Preliminaries: Review of the Fourier Transform, Distributions

2.1.1 Fourier Transform

Recall that the Fourier transform of a function $f \in L^1(\mathbb{R}^n)$ (which we'll write as L^1 when the underlying space is clear) is defined by

$$\hat{f}(\xi) := \int_{\mathbb{R}^n} e^{-2\pi i x \cdot \xi} f(x) \, \mathrm{d}x.$$

We'll state some properties of \hat{f} here, mostly without proof. Note first that by passing absolute values under the integral, we have the trivial bound $\|\hat{f}\|_{\infty} \leq \|f\|_{1}$, so in general the Fourier transform will live in L^{∞} . We'll see some isntances below where we can do better.

∽Theorem 2.1: For
$$f,g \in L^1$$
, $\widehat{f * g} = \widehat{f} \cdot \widehat{g}$.

- \hookrightarrow Proposition 2.1: Let $f \in L^1$. Then:
- 1. if we define $f_a(\cdot) := f(\cdot + a)$ as the translate of f by a vector $a \in \mathbb{R}^n$, then

$$\hat{f}_a(\xi) = e^{2\pi a \cdot \xi} \hat{f}(\xi);$$

2. if *T* a linear invertible map on \mathbb{R}^n , then

$$\widehat{f \circ T}(\xi) = |\det T|^{-1} \widehat{f}((T^{-1})^* \xi);$$

in particular, the Fourier transform commutes with orthogonal linear transformations.

→ Definition 2.1 (Schwartz Class): The Schwartz Class of functions is defined

$$\mathcal{S} = \mathcal{S}(\mathbb{R}^n) \coloneqq \bigg\{ u \in C^{\infty}(\mathbb{R}^n) \mid \sup_{x \in \mathbb{R}^n} |x^{\beta} \partial^{\alpha} u| < \infty, \forall \text{ multiindices } \beta, \alpha \bigg\}.$$

In other words, it is the space of smooth functions decay faster at infinity than any polynomial can grow.

- **→Theorem 2.2**: δ is dense in L^1 , and functions in δ are uniformly continuous.
- \hookrightarrow **Proposition 2.2**: Let $f \in \mathcal{S}$. Then:
- 1. $\hat{f} \in C^{\infty}$ and $\partial^{\beta} \hat{f} = (-2\pi i x)^{\beta} f$;
- 2. $\widehat{\partial^{\beta}f}(\xi) = (2\pi i \xi)^{\beta} \widehat{f}(\xi)$.
- \hookrightarrow Corollary 2.1: $f \in \mathcal{S} \Rightarrow \hat{f} \in \mathcal{S}$
- **Theorem 2.3** (Riemann-Lebesgue Lemma): Let $f \in L^1$; then, \hat{f} is continuous and $\hat{f}(\xi) \to 0$ as $\|\xi\| \to \infty$.
- **Theorem 2.4** (Gaussian to Gaussian): Let $f(x) = e^{-\pi a |x|^2}$, then $\hat{f}(\xi) = a^{-n/2}e^{-\pi |\xi|^2/a}$.

2.1.1 Fourier Transform 12

Theorem 2.5: If f,g ∈ S, then $\int f\hat{g} = \int \hat{f}g$.

→ Theorem 2.6 (Fourier Inversion): Define the inverse Fourier transform by

$$\check{f}(x) \coloneqq \int e^{2\pi i \xi \cdot x} f(\xi) \, \mathrm{d}\xi.$$

Then, if $f \in \mathcal{S}$, $(\hat{f})^{*} = f$.

PROOF (*Sketch*). For $\varepsilon > 0$ and $x \in \mathbb{R}^n$, define $\varphi(\xi) := e^{2\pi i x \cdot \xi - \pi \varepsilon^2 |\xi|^2}$. One can check that $\varphi \in \mathcal{S}$, and $\hat{\varphi}(y) = g_{\varepsilon}(x - y)$, where $g_{\varepsilon}(z) := \varepsilon^{-n} g\left(\frac{z}{\varepsilon}\right)$ where $g(z) := e^{-\pi |x|^2}$. In particular, one checks that g_{ε} a "good kernel", i.e.

$$g_{\varepsilon} * f \underset{\varepsilon \to 0}{\longrightarrow} f$$

for all $f \in \mathcal{S}$, where the convergence is uniform. Thus,

$$\int e^{-\pi\varepsilon^2 \, |\xi|^2} e^{2\pi i x \cdot \xi} \hat{f}(\xi) \, \mathrm{d}\xi \int \varphi(\xi) \hat{f}(\xi) \, \mathrm{d}x = \int \hat{\varphi}(\xi) f(\xi) \, \mathrm{d}x = g_\varepsilon * f(x).$$

Taking $\varepsilon \to 0$ on both sides gives the result.

Theorem 2.7 (Plancherel): The Fourier transform extends to an isometry of L^2 to itself, i.e. $\|f\|_2^2 = \|\hat{f}\|_2^2$ for all $f \in \mathcal{S}$.

Proof (*Sketch*). Define
$$g(x) := \overline{f(-x)}$$
, and compute \hat{g} .

2.1.2 Distributions

Let $\Omega \subset \mathbb{R}^n$ open.

Definition 2.2: Let $\{\varphi_j\}$ ⊂ $C_c^\infty(\Omega)$. We will say that $\varphi_j \to \varphi$ in $C_c^\infty(\Omega)$ if there exists $K \subset \Omega$ such that supp (φ_j) ⊂ K for all j and $\partial^\alpha \varphi_j \to \partial^\alpha \varphi$ for all multiindices α , uniformly.

This defines, then, a topology on the space $C_c^{\infty}(\Omega)$.

→ Definition 2.3: A *distribution* u on Ω is a continuous linear function on $C_c^\infty(\Omega)$. I.e., u continuous iff for each $\varphi_j \to \varphi$ in $C_c^\infty(\Omega)$, $\langle u, \varphi_j \rangle \to \langle u, \varphi \rangle$, as a sequence of real numbers (where we use the bracket notation to indicate evaluation of the functional u to differentiate from function evaluation).

We write $\mathcal{D}'(\Omega)$ or just \mathcal{D}' for the space of distributions on \mathcal{D}' . We endow the space with the weak topology, i.e. a sequence $u_j \in \mathcal{D}'$ converges in \mathcal{D}' to another distribution $u \in \mathcal{D}'$ if $\langle u_j, \varphi \rangle \to \langle u, \varphi \rangle$ for every $\varphi \in C_c^{\infty}(\mathbb{R}^n)$.

⊗ Example 2.1:

- 1. Every $u \in L^1_{loc}(\Omega)$ is naturally a distribution, by defining $\langle u, \varphi \rangle \coloneqq \int_{\Omega} u \varphi$ (one can check continuity holds by DOM).
- 2. The *Dirac measure*, denoted δ , and defined by $\langle \delta, \varphi \rangle = \varphi(0)$.

2.1.2 Distributions

Next, we show a fairly natural way to extend operations on functions to act on distributions. Suppose $T: C_c^\infty \to C_c^\infty$ is continuous, and admits a "transpose" T', in the sense that for any $\varphi, \psi \in C_c^\infty$,

$$\int (T\varphi)\psi = \int \varphi(T'\psi).$$

Then, the natural way to make T act on distributions is by, given $u \in \mathcal{D}'$,

$$\langle Tu, \varphi \rangle := \langle u, T'\varphi \rangle.$$

Then, one can verify $T: \mathcal{D}' \to \mathcal{D}'$ is continuous whenever $T: C_c^{\infty} \to C_c^{\infty}$ is. We discuss some particular T's of interest to follow:

- 1. $T = \text{multiplication by } f \in C^{\infty}(\Omega)$; then, T' = T.
- 2. $T = \partial^{\alpha}$; by integration by parts (boundary terms vanish since φ compactly supported), $T' = (-1)^{|\alpha|} \partial^{\alpha}$.
- 3. If $T = \sum_{|\alpha| \le k} a_{\alpha}(x) \partial^{\alpha}$ some linear differential operator, one has $T' = \sum_{|\alpha| \le k} (-1)^{|\alpha|} \partial^{\alpha} (a^{\alpha} \cdot)$.
 - **Example 2.2**: The derivative of the heaviside function $H(x) := \begin{cases} 0x < 0 \\ 1x \ge 0 \end{cases}$, as a distribution, equals the delta distribution; the *α*-th derivative of the *δ* is given by

$$\delta^{\alpha} \varphi = (-1)^{\alpha} \partial^{\alpha} \varphi(0).$$

- 4. (Translation) For $x \in \mathbb{R}^n$, define $(T\varphi)(y) := \varphi_x(y) := \varphi(y+x)$. One checks $T'\varphi(y) = \varphi_{-x}(y)$.
- 5. (Reflection) Define $(T\varphi)(x) := \varphi(-x) \equiv \tilde{\varphi}$.
- 6. (Convolution Product) For $u \in \mathcal{D}'$; $\psi, \varphi \in C_c^{\infty}$, define

$$T_{\psi}\varphi = \varphi * \psi.$$

Then one can check $T_{\psi'}\varphi = \varphi * \tilde{\psi}$ (one needs to apply Fubini after changing variables in the appropriate integrals). We thus define $(u * \psi)\varphi = \langle u, \tilde{\psi} * \varphi \rangle$. Note that we can extend this definition to convolve u with ψ not necessarily compactly supported, but we need some additional constraint on u, which we'll describe here.

- \hookrightarrow **Definition 2.4**: Let *u*, *v* ∈ $\mathcal{D}'(\Omega)$.
- 1. We say u = v on $V \subseteq \Omega$, open, if $\langle u, \varphi \rangle = \langle v, \varphi \rangle$ for every $\varphi \in C_c^{\infty}(V)$.
- 2. We define

 $\operatorname{supp}(u) := \operatorname{complement} \operatorname{of} \operatorname{largest} \operatorname{subset} \operatorname{of} \Omega \operatorname{on} \operatorname{which} u = 0,$

where "0" the 0 functional which acts trivially. Denote by $\mathcal{E}'(\Omega) \subsetneq \mathcal{D}'(\Omega)$ the set of compactly supported distributions.

- **Example 2.3**: The support of the δ distribution, as one would expect, $\{0\}$.
- 6'. For $u \in \mathcal{E}'$, $\psi \in C^{\infty}$ (not necessarily with compact support!) and $\varphi \in C_c^{\infty}$, define then

$$\langle u * \psi, \varphi \rangle := \langle u, \tilde{\psi} * \varphi \rangle.$$

Now that *u* compactly supported, the expression on the right makes sense.

2.1.2 Distributions 14

⊗ Example 2.4 (Exercises):

- 1. Show $\delta * \psi = \delta$
- 2. Show that, given $u \in \mathcal{E}'$ and $v \in \mathcal{D}'$, we can define the convolution of u with v by

$$\langle u * v, \varphi \rangle := \langle v, \tilde{u} * \varphi \rangle,$$

i.e. this is a continuous operation.

7. (Tempered Distributions) Our goal here is define the Fourier transform of distributions. Recalling the "self-adjointness" of the Fourier transform we proved for Schwartz functions (that is, $\int \hat{\varphi} \psi = \int \varphi \hat{\psi}$), a natural definition would be " $\langle \hat{u}, \varphi \rangle = \langle u, \hat{\varphi} \rangle$ ". However, this definition does not make sense if we simply assume $\varphi \in C_c^{\infty}$, since $\hat{\varphi}$ will not generally have compact support either (indeed, one can show that φ , $\hat{\varphi}$ both have compact support only if $\varphi \equiv 0$, but that's besides the point), so writing u as acting on $\hat{\varphi}$ doesn't make sense, since u acts on C_c^{∞} . Thus, our idea is to enlarge our space of functions upon which admissible u's will act on to δ , and put an appropriate topology on this space which will be stronger than that we've put on C_c^{∞} . This will remedy our issue from above since δ stable under Fourier transform.

More precisely, define a topology on 5 by

$$\varphi_j \xrightarrow{\delta} \varphi \Leftrightarrow \sup_{x \in \mathbb{R}^n} |x^{\alpha} \partial^{\beta} (\varphi_j - \varphi)(x)| \xrightarrow[j \to \infty]{} 0, \quad \forall \alpha, \beta,$$

noting that this is stronger than the C_c^{∞} topology for such functions since taking $\alpha \equiv 0$ recovers the convergence requirement on that space. Then, define

$$\mathcal{S}' \coloneqq \{u : \mathcal{S} \to \mathbb{R} \mid u \text{ continuous}\}.$$

Then, $u \in \mathcal{S}' \Rightarrow u|_{C_c^{\infty}} \in \mathcal{D}'$.

Definition 2.5: For u ∈ S', denote the Fourier transform of u by \hat{u} , defined by

$$\langle \hat{u}, \varphi \rangle := \langle u, \hat{\varphi} \rangle$$
,

for $\varphi \in \mathcal{S}$.

Example 2.5: Show $\hat{\delta} = 1$; show $(\partial^{\alpha} \delta)^{\hat{}} = (2\pi i)^{|\alpha|} \xi^{\alpha}$.

§2.2 The Laplacian

Recall

$$\Delta := \sum_{i=1}^{n} \partial_i^2 = \nabla \cdot \nabla = \operatorname{tr}(\nabla^2)$$

is the *Laplacian* or *Laplace operator*. Functions for which $\Delta u = 0$ are called *harmonic*.

The Laplacian is a very symmetric operator, as we'll demonstrate more precisely.

2.2 The Laplacian 15

 \hookrightarrow **Definition 2.6**: We say a linear differential operator $L := \sum_{|\alpha| \le k} a_{\alpha}(x) \partial^{\alpha}$ commutes with $T : \mathbb{R}^n \to \mathbb{R}^n$ if

$$(Lu) \circ T = L(u \circ T),$$

for every function *u*.

→Theorem 2.8: Suppose *L* as above commutes with all translations and rotations in \mathbb{R}^n . Then,

$$L=\sum_{j}b_{j}\Delta^{j}, \qquad b_{j}\in\mathbb{R},$$

that is, L is a polynomial in powers of Δ with constant coefficients. In particular, Δ generates the ring of all linear differential operators invariant under the Euclidean group.

PROOF. First, we know that each a_{α} coefficient must be constant, by translation. Indeed, for each index α , let u be a function such $\partial^{\alpha} u = 1$, then if T is a translation by $y \in \mathbb{R}^n$,

$$(a_{\alpha}(x)\partial^{\alpha}u(x))\circ T=a_{\alpha}(x+y),$$

while

$$a_{\alpha}(x)\partial^{\alpha}(u \circ T) = a_{\alpha}(x),$$

so $a_{\alpha}(x) = a_{\alpha}(x + y)$ for all y, implying constancy.

Next, notice that if we take $u \in \mathcal{S}$, then

$$\widehat{Lu}(\xi) = P(\xi)\widehat{u}(\xi),$$

where $P(\xi)$ a polynomial in ξ ,

$$P(\xi) = \sum_{|\alpha| \le k} c_{\alpha} (2\pi i \xi)^{\alpha},$$

using properties of derivatives interacting with $^{\land}$. But the Fourier transform also commutes with rotations, so it must be also that $P(\xi)$ rotationally invariant, i.e.

$$P(\xi) = P(|\xi|) = \sum_j c_j (2\pi i \, |\xi|)^j.$$

Moreover, we know only even powers of j are admissible since P still a polynomial and $|\xi| = \sqrt{\xi_1^2 + ... + \xi_n^2}$. But remark $(2\pi i \, |\xi|)^{2j} \hat{u} = \widehat{\Delta^j u}$, thus completing the proof.

To further our discussion of the Laplacian, we recall some results from calculus.

2.2 The Laplacian 16

Theorem 2.9 (Green's Identities): Let $\Omega \subseteq \mathbb{R}^n$ have $S := \partial \Omega$ orientable and smooth, with outward unit normal given by ν . Denote the directional derivative in the direction ν by ∂_{ν} and d σ the induced surface measure on S. Let $u, v \in C^2(\overline{\Omega})$. Then,

(G1)
$$\int_{S} v \partial_{\nu} u \, d\sigma = \int_{\Omega} (v \Delta u - \nabla u \cdot \nabla v) \, dx,$$

(G2)
$$\int_{S} (v \partial_{\nu} u - u \partial_{\nu} v) d\sigma = \int_{\Omega} (v \Delta u - u \Delta v) dx.$$

PROOF. (G2) follows from (G1) by taking swapping the roles of u, v and subtracting the results. (G1) follows from the divergence theorem applied to the vector field $v\nabla u$.

 \hookrightarrow Corollary 2.2: If *u* harmonic in Ω , then

$$\int_{S} \partial_{\nu} u \, d\sigma = 0.$$

Proof. Take v = 1 in (G1).

We denote in what follows $\omega_n = \frac{2\pi^{n/2}}{\Gamma(n/2)}$ the surface area of the unit sphere S^{n-1} in \mathbb{R}^n .

Lemma 2.1: Suppose u(x) = φ(r) where r = |x|, i.e. u is radially symmetric. If u is harmonic on $\mathbb{R}^n - \{0\}$, then

$$\varphi(r) = \begin{cases} a + br^{2-n} & n \ge 3\\ a + b\log(r) & n = 2 \end{cases}$$

for some constants *a*, *b*.

PROOF. Applying the chain rule, one verifies that, in polar coordinates,

$$\Delta u(x) = \varphi''(r) + \frac{n-1}{r} \varphi'(r).$$

Indeed, this gives rise to the so-called radial Laplacian operator

$$\frac{\mathrm{d}^2}{\mathrm{d}r^2} + \frac{n-1}{r} \frac{\mathrm{d}}{\mathrm{d}r}.$$

This is just an ODE in r, which has general solution as in the lemma.

Theorem 2.10 (Mean Value Property of Harmonic Functions): Suppose $\Delta u = 0$ in Ω and for $x \in \Omega$, r > 0 sufficiently small such that $\overline{B}_r(x) \subset \Omega$. Then, u(x) is equal to the average of u over the sphere of radius r centered at x, i.e.

$$u(x) = \frac{1}{r^{n-1}\omega_n} \int_{S_r(x)} u(x + ry) \, \mathrm{d}\sigma(y),$$

where $S_r(x)$ the sphere of radius r centered at x.

PROOF. We assume x=0 by translating if necessary (which is valid since Δ invariant under translations). We prove in the case $n \geq 3$, and leave the two dimensional case as an exercise. Let $\Omega_{\varepsilon} := B_r(0) - B_{\varepsilon}(0)$ with $\varepsilon > 0$ sufficiently small. Apply (G2) to u as

2.2 The Laplacian 17

given and $v = \varphi(r)$ as in the previous lemma, normalized with a = 0, b = 1. Then, since both u, v harmonic, the RHS of (G2) is identically zero, so we are left with

$$\int_{\partial\Omega_s} v \partial_\nu u - u \partial_\nu v \, \mathrm{d}\sigma = 0.$$

The outward unit normal to a sphere $S_r(0)$ is given by $\frac{y}{r}$, so $\partial_{\nu} = \frac{1}{r} \sum y_i \frac{\partial}{\partial y_i}$. Computing the outward unit normal of $\varphi(r)$, we readily see $\partial_{\nu} \varphi(r) = (2-n)r^{1-n}$ on $S_r(0)$. Now, notice that $\partial \Omega_{\varepsilon} = S_r(0) \cup S_{\varepsilon}^-(0)$ (i.e. the second component of surface has opposite orientation). Splitting the integral above along both components, we get

$$\int_{S_r(0)} v \partial_{\nu} u \, d\sigma - \int_{S_{\varepsilon}(0)} v \partial_{\nu} u \, d\sigma - \int_{S_r(0)} u \partial_{\nu} v \, d\sigma + \int_{S_{\varepsilon}(0)} u \partial_{\nu} v \, d\sigma.$$

In the two left-most integrals, since v is radially symmetric, it is constant along S_r , S_ε , so we can "pull out" v from each integrals; but then since u harmonic, each of these integrals is identically zero from Cor. 2.2. Plugging in what we computed for $\partial_{\nu}v$ and rearranging, we find what's left gives

$$(2-n)r^{1-n}\int_{S_r(0)}u\,\mathrm{d}\sigma=(2-n)\varepsilon^{1-n}\int_{S_\varepsilon(0)}u\,\mathrm{d}\sigma.$$

Dividing both sides by ω_n , both sides form perfect averages of u over their respective domains; taking $\varepsilon \to 0$ on the RHS, then by continuity of ε , we have convergence to u(0). What's left on the LHS is precisely what we aimed to show.

 \hookrightarrow Corollary 2.3: With the same notations, hypotheses as <u>Thm. 2.10</u>,

$$\frac{n}{\omega_n r^n} \int_{B_r(x)} u \, \mathrm{d}y = u(x),$$

i.e. u(x) is given by the average of u over the ball $B_r(x)$.

PROOF. This follows from writing the integral over the ball as an integral over spherical shells, and applying the theorem to each shell; the remaining terms form the normalizing constant in the ball average.

§2.3 The Fundamental Solution to Laplace's Equation

Our goal to follow is to find a distribution $u \in \mathcal{D}'$ such that

$$\Delta u = \delta$$
 on Ω .

→ Theorem 2.11: The solution to the above problem is given by

$$N(x) := \begin{cases} \frac{|x|^{2-n}}{\omega_n(2-n)} & n \ge 3\\ \frac{1}{2\pi} \log(|x|) & n = 2 \end{cases}.$$

Note that this is the same radially symmetric function " φ " we saw in the previous section, with b=0, $a=\frac{1}{\omega_n(2-n)}$, $\frac{1}{2\pi}$ for $n\geq 3$, n=2 resp.. We know this function is harmonic away from the origin, so really what we have to focus on is the blow-up at the origin.

PROOF. We'll prove for $n \ge 3$. Our idea will be to regularize N by shifting the pole at the origin, take derivatives of our regularization, and show that what results converges to δ . For $\varepsilon > 0$, define

$$N^{\varepsilon}(x) \coloneqq \frac{\left(|x|^2 + \varepsilon^2\right)^{\frac{2-n}{n}}}{\omega_n(2-n)}.$$

It's clear $N^{\varepsilon} \to N$ pointwise everywhere. Indeed, associating N^{ε} , N with distributions in the typical sense (which is valid since they are both locally integrable), we have $N^{\varepsilon} \to N$ in \mathcal{D}' (one can see this by the fact that $|N^{\varepsilon}\varphi| \leq |N| |\varphi|$, so we can apply dominated convergence to any test function $\varphi \in C_c^{\infty}$). Next, one verifies

$$\Delta N^{\varepsilon}(x) = \frac{n}{\omega_n} \varepsilon^2 (|x|^2 + \varepsilon^2)^{-\frac{n+2}{2}}.$$

Let $\psi(x) := \frac{n}{\omega_n} (|x|^2 + 1)^{-\frac{n+2}{2}}$; then one verifies $\Delta N^{\varepsilon}(x) = \psi_{\varepsilon}(x) := \varepsilon^{-n} \psi(\frac{x}{\varepsilon})$. Thus, for $\varphi \in C_c^{\infty}$, we find

$$\langle \Delta N^{\varepsilon}, \varphi \rangle = \int \psi_{\varepsilon}(-x) \varphi(x) \, \mathrm{d}x = \psi_{\varepsilon} * \varphi(0),$$

using the radial symmetry of ψ to write as a reflection across the origin. By the following lemma:

Lemma 2.2: Let $g ∈ L^1$ with a := ∫ g dx. Let $f ∈ L^p$, p ≥ 1 (resp. $f ∈ L^∞$, uniformly continuous on some $V ⊂ \mathbb{R}^n$). Then, $f * g_\varepsilon \xrightarrow[\varepsilon \to 0]{} af$ in L^p (resp. uniformly on V), where $g_\varepsilon(x) := \varepsilon^{-n} g\left(\frac{x}{\varepsilon}\right)$.

Using this with $g = \psi$, $f = \varphi$, for which clearly f of the "second kind", we find that $\langle \Delta N^{\varepsilon}, \varphi \rangle \to a\varphi(0)$.; so, it suffices to show that the value of $a = \int \psi$ is 1. This follows by some calculus:

$$\int \psi(x) \, \mathrm{d}x = \int \frac{n}{\omega_n} (|x|^2 + 1)^{-\frac{n+2}{2}} \, \mathrm{d}x$$

$$= n \int_0^\infty r^{n-1} (r^2 + 1)^{-\frac{n+2}{2}} \, \mathrm{d}r$$

$$= \frac{n}{2} \int_0^\infty \left(\frac{r^2}{r^2 + 1} \right)^{\frac{n-2}{2}} \frac{2r}{(r^2 + 1)^2} \, \mathrm{d}r, \qquad s := \frac{r^2}{r^2 + 1}$$

$$= \frac{n}{2} \int_0^1 s^{\frac{n-2}{2}} \, \mathrm{d}s = 1.$$

Theorem 2.12 (Maximum Principle): Let Ω ⊂ \mathbb{R}^n open and connected. Suppose u is harmonic in Ω , and sup $_{\Omega} u = A < \infty$. Then, either

- u(x) < A everywhere on Ω , or
- u(x) = A everywhere on Ω .

PROOF. Let $S = \{x \in \Omega \mid u(x) = A\}$. We'll show that S is both open and closed, from which it follows that $S = \Omega$ or \emptyset , since Ω connected, and thus the theorem follows. S clearly closed, since it is equal to $u^{-1}(\{A\})$ and u continuous. For openness, let $x \in S$, so u(x) = A. We want to show that there exists a ball B centered at x such that u(x) = u(y) = A for all $y \in B$. Suppose otherwise, that no such ball exists. Then in particular, there exists a sufficiently small x > 0 for which x = 0 for x = 0 for which x = 0 for x = 0 for

$$A = u(x) = \frac{n}{\omega_n r^n} \int_{B(x,r)} u(y) \, \mathrm{d}y > A \frac{n}{\omega_n r^n} \int_{B(x,r)} \mathrm{d}y = A,$$

a contradiction. Thus, there exists a ball A on which u is constantly equal to A, thus $B \subset S$, and so S also open.

 \hookrightarrow Corollary 2.4: With the same assumptions, suppose further $\overline{\Omega}$ compact, and u is continuous up on $\overline{\Omega}$. Then, $\max_{\overline{\Omega}} u = \max_{x \in \partial \Omega} u$.

 \hookrightarrow Corollary 2.5: Suppose $\overline{\Omega}$ compact and u_1, u_2 are harmonic and equal on $\partial\Omega$. Then u_1, u_2 are equal on all of Ω .

 \hookrightarrow Theorem 2.13 (Liouville's): If u is harmonic and bounded on all of \mathbb{R}^n , then u is constant.

Proof. Let $x \in \mathbb{R}^n$ and R > ||x||. By the mean-value property,

$$|u(x) - u(0)| = \frac{n}{R^n \omega_n} \left| \int_{B(x,r)} u(y) \, \mathrm{d}y - \int_{B(0,r)} u(y) \, \mathrm{d}y \right| \le \frac{n}{R^n \omega_n} ||u||_{\infty} \operatorname{vol}(D),$$

where $D := B(x, R) \triangle B(0, R)$. One verifies that

$$D \subset \{y \mid R - |x| < |y| < R + |x|\},$$

and thus

$$\operatorname{vol}(D) \leq \frac{\omega_n}{n} ((R+|x|)^n - (R-|x|)^n) = \mathcal{O}\big(R^{n-1}\big).$$

Thus, it follows that

$$|u(x) - u(0)| \le c \cdot \frac{\|u\|_{\infty}}{R},$$

where c some constant independent of R. Thus, letting $R \to \infty$, we find that it must be that u(x) = u(0), and since this holds for all x, u must be constant.

§2.4 Dirichlet and Neumann Problems

We assume that $\Omega \subset \mathbb{R}^n$ bounded and $S = \partial \Omega$ is C^{∞} (and sufficiently nice t be able to apply Green's identities). We consider the *Dirichlet problem*,

$$\boxed{\mathsf{D}} \qquad \Delta u = f \text{ on } \Omega, u|_S = g,$$

where f, g are given functions, and the $Neumann\ problem$,

$$\boxed{\mathbf{N}}$$
 $\Delta u = f \text{ on } \Omega, u|_S = \partial_{\nu} g,$

where ν the exterior outward normal to S.

Remark 2.1: If \square has a solution it must be unique (if two solutions exist, their difference solves the equation $\Delta u = 0$, $u|_S = 0$ which implies by the maximum principle u = 0).

Remark 2.2: Solutions to $\boxed{\mathbb{N}}$ are not unique, for any solution plus a constant is another solution. Moreover, solutions do not exist for arbitrary f, g; applying Green's identities, we find that (we assume that Ω connected, but this work applies to any connected component of Ω)

$$\int_{\Omega} f \, \mathrm{d}x = \int_{\Omega} \Delta u \, \mathrm{d}x = \int_{S} \partial_{\nu} u \, \mathrm{d}\sigma = \int_{S} g \, \mathrm{d}\sigma,$$

and thus f, g must obey the integral identity that $\int_{\Omega} f \, dx = \int_{S} g \, d\sigma$.

We can reduce the study of $\boxed{\mathbb{D}}$ to one of the following related problems, where we take either f or g identically zero (a similar reasoning works for $\boxed{\mathbb{N}}$, but we restrict our attention to the Dirichlet problem here),

$$\boxed{\mathrm{D1}}$$
 $\Delta v = f, v|_S = 0,$ $\boxed{\mathrm{D2}}$ $\Delta w = 0, v|_S = g.$

Indeed, if v, w solve $\boxed{D1}$, $\boxed{D2}$ resp., then u = v + w solves \boxed{D} . Moreover, it turns out that the two are essentially equivalent.

Suppose we can solve $\overline{D1}$, and suppose g has a C^2 -extension \tilde{g} to $\overline{\Omega}$. Then, let v solve

$$\Delta v = \Delta \tilde{g}, v|_S = 0.$$

Then, one checks $w = \tilde{g} - v$ solves $\boxed{\text{D2}}$.

Conversely, suppose we can solve $\boxed{\text{D2}}$. Extend f to be identically zero outside of Ω , and let v' = f * N, where N the fundamental solution to the Laplacian we found earlier. Let w solve

$$\Delta w = 0, w|_S = v',$$

and let v = v' - w. Then,

$$\Delta v = \Delta v' - \Delta w = f * \Delta N = f,$$

since $\Delta N = \delta$ in the sense of distributions. Also, $v|_S = v'|_S - w|_S = v' - v' = 0$.

§2.5 Green's Function for the Laplacian

We assume throughout $n \ge 3$ for simplicity of notation. We abuse notation to write N(x,y) := N(x-y).

Definition 2.7 (Green's Functions): A function $G : \Omega \times \overline{\Omega} \to \mathbb{R}$ is called a *Green's function* for Δ on Ω if

- 1. $G(x,\cdot) N(x,\cdot)$ harmonic on Ω for all x, and C^0 on $\overline{\Omega}$, and
- 2. G(x,y) = 0 for all $x \in \Omega, y \in S$.

Remark 2.3: If G exists, it is unique, for it solves the Dirichlet problem $\Delta_y w(y) = 0$, $w|_S(y) = -N(x,y)$ for every $x \in \Omega$.

Theorem 2.14: If Ω bounded and *S* smooth, then *G* exists, and for all *x* ∈ Ω , *G* is $C^{\infty}(\Omega - \{x\})$ as a function of *y*.

 \hookrightarrow Proposition 2.3: G(x,y) = G(y,x).

Proof. For $x, y \in \Omega$, define

$$u(z) = G(x, z), \qquad v(z) = G(y, z).$$

One checks $\Delta_z u = \delta(x-z)$, $\Delta_z v = \delta(y-z)$; applying Green's identities (which we only do formally, but can be made rigorous through proper treatment of the distributions implicitly being used),

$$G(x,y) - G(y,x) = \int_{\Omega} G(x,z)\delta(y-z) - G(y,z)\delta(x-z) dz$$
$$= \int_{S} G(x,z)\partial_{\nu_{z}}G(y,z) - G(y,z)\partial_{\nu_{z}}G(x,z) dz = 0,$$

appealing to 2. in the definition of Green's functions for the final line.

Now, assume G exists for some Ω , and consider again $\overline{D1}$. Extend G to $\overline{\Omega} \times \overline{\Omega}$ to be zero on $\partial \Omega \times \Omega$, and extend f to be zero outside of Ω . We claim that

$$v(x) \coloneqq \int_{\Omega} G(x, y) f(y) \, \mathrm{d}y$$

solves D1. Indeed, we may rewrite

$$v(x) = \int_{\Omega} N(x - y)f(y) dy + \int_{\Omega} [G(x, y) - N(x, y)]f(y) dy,$$

so

$$\Delta v(x) = f * \Delta N + \int_{\Omega} \left(\underbrace{\Delta_x(G - N)}_{=0} \right) f \, \mathrm{d}y = f * \delta(x) = f(x),$$

and clearly v(x) = 0 whenever $x \in \partial \Omega$.

A similar formula holds for $\boxed{D2}$, indeed

$$w(x) = \int_{S} g(y) \partial_{\nu_{y}} G(x, y) \, \mathrm{d}y.$$

This can be shown using the previous integral formula and the remarks of the previous section linking solutions of $\boxed{D1}$ and $\boxed{D2}$.