Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання лабораторної роботи №1 з дисципліни: «Твердотільна електроніки-1»

ДОСЛІДЖЕННЯ ВИПРЯМЛЯЮЧИХ НАПІВПРОВІДНИКОВИХ ДІОДІВ

Виконавець: Студент 3-го курсу	(підпис)	А.С. Мнацаканов
Превірив:	(підпис)	Л. М. Королевич

1. МЕТА РОБОТИ

Теоретичне вивчення і практичне дослідження випрямляючих діодів; визначення фізичних та основних технічних параметрів германійових та кремнійових діодів із їх вольт-амперних характеристик.

2. ЗАВДАННЯ

- 1. Вивчити структуру параметрів (паспортних даних) досліджуваного підкласу діодів. Ознайомитися із вимірювальним стендом та використовуваними приладами.
- 2. Зібрати схему для дослідження вольт-амперної характеристики випрямляючих діодів.
- 3. Виміряти вольт-амперні характеристики германійового та кремнійового діодів при кімнатній температурі. Результати вимірювань записати в таблиці.
- 4. *Провести температурні дослідження ВАХ германійового та кремнійового діодів при температурі $+70^{\circ}$ С (для прямої та зворотньої полярності напруги).
 - 5. Побудувати графіки вольт-амперних характеристик діодів.
- 6. Графічно визначити дифузійний потенціал ϕ_0 , опір бази r_b та струм виродження $I_{\text{вир}}$ для кожного з діодів. Оцінити тепловий струм германійового діода.
- 7. За побудованими графіками характеристик визначити основні параметри діодів.
- 8. **Побудувати графіки залежностей статичного та динамічного опорів діодів від прикладеної напруги (або вирахувати статичний та диференційний опори посередині прямої та зворотньої гілок ВАХ кожного діоду і співставити їх між собою).
- 9. Провести аналіз результатів досліджень, і зробити висновки з виконаної роботи.

Рис. 1: Схема для вимірювання ВАХ діода. При знятті зворотньої гілки ВАХ змінюється полярність джерела живлення та номінал резистора R (величина резистора для прямої гілки $R_1=5$ кОм; для зворотньої $R_2=100$ кОм, або $1~{\rm MOm}$).

3.РЕЗУЛЬТАТИ ВИМІРЮВАНЬ

Табл. 1: BAX діода D1 за прямого зміщення

U_{summ} , MB	U_R , MB	$\triangle U_{summ} = U_R$, MB	R, Om	$\triangle U_d$, mB	$\triangle I_d$, мА	U_d , мВ	I_d , мА
306	246	$\frac{2 \cos summ - \cos R, \text{ MB}}{0.5}$	5000	0.7071	0.0025	60	0.0492
375	309	0.5	5000	0.7071	0.0023	66	0.0432
465	390	0.5	5000	0.7071	0.0031	75	0.0018
480	403	0.5	5000	0.7071	0.0033	77	0.0806
515	437	0.5	5000	0.7071	0.004	78	0.0874
574	494	0.5	5000	0.7071	0.0044	80	0.0874
638	555	0.5	5000	0.7071	0.0049	83	0.0366
710	623	0.5	5000	0.7071	0.0050	87	0.111
738	650	0.5				88	0.1240
			5000	0.7071 0.7071	0.0065		
760	670	0.5			0.0067	90	0.134
806	714	0.5	5000	0.7071	0.0071	92	0.1428
811	719	0.5	5000	0.7071	0.0072	92	0.1438
830	736	0.5	5000	0.7071	0.0074	94	0.1472
870	774	0.5	5000	0.7071	0.0077	96	0.1548
908	811	0.5	5000	0.7071	0.0081	97	0.1622
970	874	0.5	5000	0.7071	0.0087	96	0.1748
1019	918	0.5	5000	0.7071	0.0092	101	0.1836
1042	942	0.5	5000	0.7071	0.0094	100	0.1884
1210	1103	0.5	5000	0.7071	0.011	107	0.2206
1370	1262	0.5	5000	0.7071	0.0126	108	0.2524
1527	1412	0.5	5000	0.7071	0.0141	115	0.2824
1723	1604	0.5	5000	0.7071	0.016	119	0.3208
2043	1914	0.5	5000	0.7071	0.0191	129	0.3828
2264	2136	0.5	5000	0.7071	0.0214	128	0.4272
2483	2348	0.5	5000	0.7071	0.0235	135	0.4696
2583	2441	0.5	5000	0.7071	0.0244	142	0.4882
2824	2681	0.5	5000	0.7071	0.0268	143	0.5362
4426	4263	0.5	5000	0.7071	0.0426	163	0.8526
4878	4711	0.5	5000	0.7071	0.0471	167	0.9422
5201	5034	0.5	5000	0.7071	0.0503	167	1.0068
6575	6393	0.5	5000	0.7071	0.0639	182	1.2786
7125	6937	0.5	5000	0.7071	0.0694	188	1.3874
8530	8341	0.5	5000	0.7071	0.0834	189	1.6682
9386	9181	0.5	5000	0.7071	0.0918	205	1.8362
10260	10060	5	5000	7.0711	0.1006	200	2.012
13080	12610	5	5000	7.0711	0.1261	470	2.522
15650	15450	5	5000	7.0711	0.1545	200	3.09
18430	18030	5	5000	7.0711	0.1803	400	3.606
18810	18510	5	5000	7.0711	0.1851	300	3.702
20340	20120	5	5000	7.0711	0.2012	220	4.024
23250	22980	5	5000	7.0711	0.2298	270	4.596
25530	25270	5	5000	7.0711	0.2527	260	5.054
28580	28280	5	5000	7.0711	0.2828	300	5.656
30200	29900	5	5000	7.0711	0.299	300	5.98
31950	31660	5	5000	7.0711	0.3166	290	6.332
33440	33120	5	5000	7.0711	0.3312	320	6.624
34670	34350	5	5000	7.0711	0.3435	320	6.87
35950	35690	5	5000	7.0711	0.3569	260	7.138
37820	37550	5	5000	7.0711	0.3755	270	7.51
38670	38350	5	5000	7.0711	0.3835	320	7.67
40910	40320	5	5000	7.0711	0.4032	590	8.064
41830	41550	5	5000	7.0711	0.4155	280	8.31
46370	46050	5	5000	7.0711	0.4605	320	9.21
49430	49010	5	5000	7.0711	0.4901	420	9.802
50630	50330	5	5000	7.0711	0.5033	300	10.066

Табл. 2: BAX діода D2 за прямого зміщення

U_{summ} , MB	U_R , MB	$\triangle U_{summ} = U_R$, MB	R, Om	$\triangle U_d$, мВ	$\triangle I_d$, мА	U_d , мВ	I_d , MA
629	103	0.5	5000	0.7071	0.001	526	0.0206
646	196	0.5	5000	0.7071	0.002	450	0.0392
729	267	0.5	5000	0.7071	0.0027	462	0.0534
807	339	0.5	5000	0.7071	0.0034	468	0.0678
932	445	0.5	5000	0.7071	0.0045	487	0.089
992	507	0.5	5000	0.7071	0.0051	485	0.1014
1054	565	0.5	5000	0.7071	0.0057	489	0.113
1116	622	0.5	5000	0.7071	0.0062	494	0.1244
1224	724	0.5	5000	0.7071	0.0072	500	0.1448
1337	831	0.5	5000	0.7071	0.0083	506	0.1662
1682	1155	0.5	5000	0.7071	0.0116	527	0.231
1868	1342	0.5	5000	0.7071	0.0134	526	0.2684
2045	1513	0.5	5000	0.7071	0.0151	532	0.3026
2240	1704	0.5	5000	0.7071	0.017	536	0.3408
2553	2010	0.5	5000	0.7071	0.0201	543	0.402
2880	2325	0.5	5000	0.7071	0.0233	555	0.465
3137	2581	0.5	5000	0.7071	0.0258	556	0.5162
3852	3291	0.5	5000	0.7071	0.0329	561	0.6582
4587	4017	0.5	5000	0.7071	0.0402	570	0.8034
4977	4383	0.5	5000	0.7071	0.0438	594	0.8766
4891	4313	0.5	5000	0.7071	0.0431	578	0.8626
5305	4712	0.5	5000	0.7071	0.0471	593	0.9424
6383	5831	0.5	5000	0.7071	0.0583	552	1.1662
6880	6215	0.5	5000	0.7071	0.0622	665	1.243
8018	7397	0.5	5000	0.7071	0.074	621	1.4794
8711	8087	0.5	5000	0.7071	0.0809	624	1.6174
9327	8721	0.5	5000	0.7071	0.0872	606	1.7442
10100	9460	5	5000	7.0711	0.0946	640	1.892
12420	11720	5	5000	7.0711	0.1172	700	2.344
14190	13540	5	5000	7.0711	0.1354	650	2.708
15740	15030	5	5000	7.0711	0.1503	710	3.006
16870	16180	5	5000	7.0711	0.1618	690	3.236
17660	16940	5	5000	7.0711	0.1694	720	3.388
19230	18510	5	5000	7.0711	0.1851	720	3.702
20470	19810	5	5000	7.0711	0.1981	660	3.962
23080	22410	5	5000	7.0711	0.2241	670	4.482
25430	24750	5	5000	7.0711	0.2475	680	4.95
27130	26460	5	5000	7.0711	0.2646	670	5.292
28220	27530	5	5000	7.0711	0.2753	690	5.506
29630	28940	5	5000	7.0711	0.2894	690	5.788
31210	30520	5	5000	7.0711	0.3052	690	6.104
32550	31850	5	5000	7.0711	0.3185	700	6.37
35130	34440	5	5000	7.0711	0.3444	690	6.888
38560	37860	5	5000	7.0711	0.3786	700	7.572
40030	39340	5	5000	7.0711	0.3934	690	7.868
42030	41350	5	5000	7.0711	0.4135	680	8.27
45480	44720	5	5000	7.0711	0.4472	760	8.944
48470						1	
40470	47740	5	5000	7.0711	0.4774	730	9.548

Табл. 3: BAX діода D1 за зворотного зміщення

U_{summ} , мВ	U_R , мВ	$\triangle U_{summ} = U_R, \text{ MB}$	R, Om	$\triangle U_d$, мкВ	$\triangle I_d$, мк A	U_d , мВ	I_d , мк A
2.14	1.13	0.005	100000	7.071	0.001	-1.0100	-0.0113
2.75	1.19	0.005	100000	7.071	0.001	-1.5600	-0.0119
3.26	2.24	0.005	100000	7.071	0.001	-1.0200	-0.0224
3.83	1.24	0.005	100000	7.071	0.001	-2.5900	-0.0124
5.57	1.32	0.005	100000	7.071	0.001	-4.2500	-0.0132
6.38	1.35	0.005	100000	7.071	0.001	-5.0300	-0.0135
7.36	1.39	0.005	100000	7.071	0.001	-5.9700	-0.0139
9.40	1.17	0.005	100000	7.071	0.001	-8.2300	-0.0117
14.77	1.69	0.005	100000	7.071	0.001	-13.0800	-0.0169
18.96	1.42	0.005	100000	7.071	0.001	-17.5400	-0.0142
24.67	2.74	0.005	100000	7.071	0.001	-21.9300	-0.0274
23.86	2.5	0.005	100000	7.071	0.001	-21.3600	-0.025
24.13	2.58	0.005	100000	7.071	0.001	-21.5500	-0.0258
28.25	4.09	0.005	100000	7.071	0.002	-24.1600	-0.0409
28.97	4.42	0.005	100000	7.071	0.002	-24.5500	-0.0442
31.12	5.33	0.005	100000	7.071	0.003	-25.7900	-0.0533
32.32	5.97	0.005	100000	7.071	0.003	-26.3500	-0.0597
32.93	6.29	0.005	100000	7.071	0.003	-26.6400	-0.0629
34.63	7.22	0.005	100000	7.071	0.004	-27.4100	-0.0722
35.76	7.81	0.005	100000	7.071	0.004	-27.9500	-0.0781
37.49	8.75	0.005	100000	7.071	0.004	-28.7400	-0.0875
37.90	9.01	0.005	100000	7.071	0.005	-28.8900	-0.0901
39.94	10.11	0.005	100000	7.071	0.005	-29.8300	-0.1011
42.66	11.57	0.005	100000	7.071	0.006	-31.0900	-0.1157
44.44	12.53	0.005	100000	7.071	0.006	-31.9100	-0.1253
46.34	13.61	0.005	100000	7.071	0.007	-32.7300	-0.1361
47.11	14.07	0.005	100000	7.071	0.007	-33.0400	-0.1407
49.02	15.17	0.005	100000	7.071	0.008	-33.8500	-0.1517
51.78	16.72	0.005	100000	7.071	0.008	-35.0600	-0.1672
53.23	17.58	0.005	100000	7.071	0.009	-35.6500	-0.1758
54.69	18.42	0.005	100000	7.071	0.009	-36.2700	-0.1842
55.83	19.05	0.005	100000	7.071	0.01	-36.7800	-0.1905
58.55	20.57	0.005	100000	7.071	0.01	-37.9800	-0.2057
62.81	22.99	0.005	100000	7.071	0.011	-39.8200	-0.2299
65.87	24.35	0.005	100000	7.071	0.012	-41.5200	-0.2435
72.41	28.39	0.005	100000	7.071	0.014	-44.0200	-0.2839
81.44	34.58	0.005	100000	7.071	0.017	-46.8600	-0.3458
90.18	39.31	0.005	100000	7.071	0.02	-50.8700	-0.3931
93.38	41.15	0.005	100000	7.071	0.021	-52.2300	-0.4115
99.36	44.32	0.005	100000	7.071	0.022	-55.0400	-0.4432

Табл. 4: ВАХ діода D2 за зворотного зміщення

U_{summ} , MB	U_R , мВ	$\triangle U_{summ}$, MB	$\triangle U_R$, мВ	$\triangle U_d$, мкВ	$\triangle I_d$, нА	U_d , мВ	I_d , мк A
54	0.07	0.5	0.005	0.0005	0.06	-0.0539	-0.0007
85	0.03	0.5	0.005	0.0005	0.05	-0.0850	-0.0003
110	0.04	0.5	0.005	0.0005	0.05	-0.1100	-0.0004
208	0.13	0.5	0.005	0.0005	0.08	-0.2079	-0.0013
247	0.16	0.5	0.005	0.0005	0.09	-0.2468	-0.0016
347	0.22	0.5	0.005	0.0005	0.12	-0.3468	-0.0022
527	0.31	0.5	0.005	0.0005	0.16	-0.5267	-0.0031
662	0.37	0.5	0.005	0.0005	0.19	-0.6616	-0.0037
709	0.39	0.5	0.005	0.0005	0.2	-0.7086	-0.0039
1041	0.55	0.5	0.005	0.0005	0.28	-1.0405	-0.0055
1524	0.75	0.5	0.005	0.0005	0.38	-1.5233	-0.0075
2109	1.03	0.5	0.005	0.0005	0.52	-2.1080	-0.0103
2883	1.32	0.5	0.005	0.0005	0.66	-2.8817	-0.0132
3237	1.46	0.5	0.005	0.0005	0.73	-3.2355	-0.0146
4515	2.03	0.5	0.005	0.0005	1.02	-4.5130	-0.0203
4837	2.18	0.5	0.005	0.0005	1.09	-4.8348	-0.0218
5644	2.53	0.5	0.005	0.0005	1.27	-5.6415	-0.0253
6024	2.67	0.5	0.005	0.0005	1.34	-6.0213	-0.0267
7455	3.25	0.5	0.005	0.0005	1.63	-7.4518	-0.0325
8175	3.66	0.5	0.005	0.0005	1.83	-8.1713	-0.0366
9162	3.97	0.5	0.005	0.0005	1.99	-9.1580	-0.0397
10060	4.45	5	0.005	0.005	2.23	-10.0556	-0.0445
11090	4.90	5	0.005	0.005	2.45	-11.0851	-0.05
11850	5.27	5	0.005	0.005	2.64	-11.8447	-0.0527

Всі значення та їх похибкибки обраховувались за наступними формулами:

Напруга на діоді:

$$U_D = U - U_R \tag{1}$$

Струм на діоді:

$$I_D = \frac{U_R}{R} \tag{2}$$

Похибки значень струму і напруги знаходили з формулами:

$$\Delta U_D = \sqrt{\Delta U^2 + \Delta U_R^2} \tag{3}$$

$$\Delta I_D = \frac{1}{R^2} \cdot \sqrt{(R\Delta U_R)^2 + (U_R \Delta R)^2}$$
 (4)

Поточкові графіки ВАХ діодів з похибками вимірювань були побудувані за допомогою програми яку я написав в gnuplot:

set terminal png size 1024,768 set xzeroaxis set yzeroaxis

```
set datafile separator ";"
set output 'd1.png';
set ylabel 'I _d, MA' textcolor lt 8
set xlabel 'U _d, MB' textcolor lt 8
plot "Data for lab 1.csv" using 7:8:5:6
 title"ВАХ діода D1 за прямого зміщення" with xyerrorbars
set output 'd2.png';
set ylabel 'I _d, mA' textcolor lt 8
set xlabel 'U _d, MB' textcolor lt 8
plot "Data for lab 1.csv" using 15:16:13:14
title"BAX діода D2 за прямого зміщення" with xyerrorbars
set output 'd1r.png';
set ylabel 'I _d, MA' textcolor lt 8
set xlabel 'U _d, MB' textcolor lt 8
plot "Data for lab 1.csv" using 24:25:22:23
 title"ВАХ діода D1 за зворотного зміщення" with xyerrorbars
set output 'd2r.png';
set ylabel 'I _d, mA' textcolor lt 8
set xlabel 'U _d, MB' textcolor lt 8
plot "Data for lab 1.csv" using 33:34:31:32
title"BAX діода D2 за зворотного зміщення" with xyerrorbars
```


Рис. 2: BAX діода D1 за прямого зміщення.

Рис. 3: ВАХ діода D1 за зворотного зміщення.

Рис. 4: ВАХ діода D2 за прямого зміщення.

Рис. 5: BAX діода D2 за зворотного зміщення.

Рис. 6: Порівняння ВАХ діода D1(зліва) та D2 за прямого зміщення.

З Рис. 2 ВАХ для Германієвого діода можна визначити його опір бази r_b : для цього треба з точки A (це та точка після якої, якщо провести уявну пряму то після точки A вони повинні співпадати) опустити перпендикуляр на осі U та I, потім визначаємо значення в точці їх перетину $I_{\rm np} \approx 6$ мА і $U_{\rm np} \approx 0.3$ В (прямий струм та напруга відповідно). Потім визначимо дифузійний потенціал який знаходиться в точці перетину дотичної проведеної до точки A і вісі напруг. Зробивши це отримаємо $\varphi_0 \approx 0.175$ В (якщо згадати уявну пряму про яку я казав раніше, то φ_0 це точка перетину її та вісі X).

$$r_b \approx \frac{U_{\text{np}} - \varphi_0}{I_{\text{np}}} = \frac{0, 3 - 0, 175}{0,006} = 20,83 \text{ Om}$$
 (5)

Тепер можемо знайти $I_{\text{вир}}$ (струм виродження):

$$I_{\text{вир}} = \frac{\varphi_T}{r_b} = \frac{0,0258}{20,83} = 0,00123 \text{ A},$$
 (6)

де $\varphi_T = 0.0258~\mathrm{B}$ – температурний потенціал Зробивши аналогічні операції для кремнієвого діода отримаємо:

$$I_{\rm np} = 0,008 \text{ A}$$
 (7)

$$U_{\rm np} = 0.7 \text{ B} \tag{8}$$

$$\varphi_0 = 0,65 \text{ B} \tag{9}$$

$$r_b = 6,249 \text{ Om}$$
 (10)

$$I_{\text{вир}} = 0,00414 \text{ A}$$
 (11)

4. АНАЛІЗ РЕЗУЛЬТАТІВ ДОСЛІДЖЕНЬ ТА ВИСНОВКИ З ВИКОНАНОЇ РОБОТИ

В результаті виконання даної лабораторної роботи було досліджено випрямляючі діоди та побудовно графіки ВАХ германієвого та кремнієвого діодів. З когного ВАХ одразу ж стає зрозуміло де який діод. На Рис. 2 чітко видно що це германієвий, оскільки спад напруги в прямому напрямі на германієвих діодах не перевищує 0,5 В, а от з Рис. 4 можемо впевнитись що це кремнієвий діод, оскільки прямий спад напруги у кремнієвих діодах більший, ніж у германієвих, і досягає 1,5 В. Оцінюючи попередньо отримані результати можна стверджувати, що кремнієві діоди мають деякі вагомі переваги над германієвими, а саме: більша допустима зворотна напруга, більший робочий температурний інтервал та менший зворотний струм. На відміну від германієвих діодів зворотна гілка кремнієвих діодів не має відрізка насичення, що свідчить про більший внесок у зворотний струм складових струму термогенерації й струму витікання. У цілому зворотний струм у кремнієвих діодах значно менший, ніж в германієвих діодах, оскільки питомий опір (ширина забороненої зони) кремнію набагато більший, ніж германію (із цієї ж причини прямий спад напруги у кремнієвих діодах більший, ніж у германієвих, і досягає 1,5 В), також хочу зазначити, що в моєму випадку за значенням випрямного струму мої два випрямні діоди можна визначити як діоди малої потужності (оскільки $I_{\text{пр}} \leq 300 \text{ мA}$).