Aviation Fatalities

Machine Learning in R IST 707 DATA ANALYTICS

Dr Gates

- Editt
- Maria
- Bhavya
- Veasna

Agenda

- Introduction
- Problem Statement
- Objective, Analysis & Result
 - Clustering
 - Associate Rule Mining
 - Decision Tree
 - Support Vector Machine
- Conclusion

Introduction

- Rising aviation accidents that involves faulty craftsmanship, pilot errors and systems errors led our individual curiosity
- Data is based on NTSB harnessing Data Science methodologies to investigate aviation crashes

Problem Statement

 Investigate commonalities among accident fatalities:

Possible examples:

- Bad weather conditions
- Pilot Error
- Mechanic Failure
- Other causes
- NTSB data consists of approximately ~84k observations & 32 variables (numeric, nominal, ordinal)

Data Visualization

US Map of Aviation Accident Fatalities

Clustering ANALYSIS & MODEL

- Objective
 - To identify what characteristics are there for fatal accidents, and if we can identify distinct clusters in our data
- Process
 - Perform K-Means cluster analysis; Challenge: categorical attributes
- Tuning
 - Perform Principal Component Analysis to reduce dimensionality; perform hierarchical clustering to find more insights; tune number of clusters

Hierarchical clustering recommends 3 or 7 clusters

PCA helps explain what's in each component

	Comp1	Comp2	Comp3	Comp4
Aircraft.Damage	-0.603		0.336	0.151
Number.of.Engines	0.672	0.149	-0.310	-0.158
Engine.Type	0.599		-0.415	-0.187
FAR.Description	-0.823		-0.522	-0.188
Purpose.of.Flight	0.825		0.519	0.187
Weather.Condition	-0.121	-0.695		0.160
Broad.Phase.of.Flight		-0.666	-0.206	0.187
Aircraft.Category		-0.150	0.262	-0.715
Amateur.Built		-0.321	0.285	-0.615
Schedule	0.411	-0.395	-0.364	
WeekDay	0.105		-0.206	
Month	0.114	0.328		

Importance (Variance Accounted For):

	Comp1	Comp2	Comp3	Comp4
Eigenvalues	2.7469	1.3608	1.2943	1.1279
VAF	22.8911	11.3401	10.7855	9.3993
Cumulative VAF	22.8900	34.2300	45.0200	54.4200

Association Rule Mining

ANALYSIS & MODEL

- Objective:
 - To find the probability of relationship between injury severity (Fatal) and various other attributes
- Process:
 - Two iterations with two sets of attributes
- Tuning:
 - Tuned support and confidence to arrive at meaningful rules

Association Rule Mining

ANALYSIS & MODEL

Iteration 1 (15 Rules)	Injury Severity = Fatal Lift 3.8 - 4.1
Injury Severity	Amateur Built = No
Aircraft Category	Weather Condition = Instruments Phase of Flight = MANEUVERING 375
Amateur Built	Aircraft Category = Airplane
Schedule	Weather Condition = Instruments Phase of Flight = MANEUVERING
Purpose of Flight	371
Weather Condition	Purpose of Flight = Private
Phase of Flight	Weather Condition = Instruments Phase of Flight = CRUISE 814

Graph for 15 rules

Association Rule Mining

ANALYSIS & MODEL

Iteration 2 (14 Rules)	Injury Severity = Fatal Lift 5.8 - 6.1
Injury Severity	Model=dhc-2, Amateur Built=No
Aircraft Category	Phase of Flight=CRUISE
Amateur Built	6
Schedule	Make=de havilland Weather Condition=Visual
Purpose of Flight	Phase.of.Flight=MANEUVERING
Weather Condition	7
Phase of Flight	
Make	
Model	
Air carrier	

Decision Tree ANALYSIS & MODEL

• Purpose:

- To identify a model with a high accuracy for prediction of injury severity
- Process:
 - Training data (2/3) & testing data (1/3)
 - Evaluate model accuracy by each factor
- Tuning
 - Cross reference with associate rules
 - Combine factors with model accuracy > 95%

Factor	Model Accuracy
Injury.Severity	99.4%
Aircraft.Damage	86.3%
Aircraft.Category	97.2%
Amateur.Built	89.8%
Number.of.Engines	89.9%
Engine.Type	89.8%
FAR.Description	97%
Schedule	96.9%
Purpose.of.Flight	67.9%
Total.Fatal.Injuries	99.9%
Total.Serious.Injuries	93.8%
Total.Minor.Injuries	92.2%
Total.Uninjured	94.3%
Weather.Condition	92.8%
Broad.Phase.of.Flight	36.9%
Month	12.2%

Visual - cross reference with association rule

- Association Rule #1
 - {Weather.condition = Instruments, Broad.Phase.of.Flight = Maneuvering} → {Injury.Severity = Fatal}


```
Reference
Prediction Fatal No-Injury Non-Fatal
Fatal 778 0 2787
No-Injury 36 0 482
Non-Fatal 390 0 14491
```

Model Accuracy: 80.5%

Visual - combined factors / tuning

Select factor with model accuracy > 95%:

Total.Fatal.Injuries, Schedule, Aircraft.Category, and FAR.Description


```
Confusion Matrix and Statistics

Reference
Prediction Fatal No-Injury Non-Fatal
Fatal 3563 2 0
No-Injury 3 218 297
Non-Fatal 0 231 14650
```

Model Accuracy: 97.2%

Support Vector Machine

ANALYSIS & MODEL

- Objective
 - Given a set of attributes to predict the target attribute: "Fatal" or "Non-Fatal"
- Process
 - Injury Severity, Built, Engine Type & Count, Flight Purpose, Weather Conditions, etc.
 - Intuition and Correlation of choosing attributes
 - Transform nominal data to numeric for SVM algorithm
 - Compare different kernels
- Tuning
 - Using 10-fold Cross-validation, Kernel, Cost and Gamma

Support Vector Machine RESULT

Accuracy : 0.6803

95% CI: (0.6573, 0.7026)

No Information Rate: 0.802

P-Value [Acc > NIR] : 1

Kappa : 0.2117

Mcnemar's Test P-Value : <2e-16

Sensitivity: 0.7098

Specificity: 0.5606

Pos Pred Value : 0.8675

Neg Pred Value: 0.3229

Prevalence: 0.8020

Detection Rate: 0.5693

Detection Prevalence: 0.6563

Balanced Accuracy: 0.6352

'Positive' Class: NonFatal

Reference
Prediction Fatal NonFatal
Fatal 185 388
NonFatal 145 949

Reference

Prediction	Prediction Fatal NonFatal		
	Fatal	NonFatal	
Fatal	185	388	
NonFatal	145	949	

1134 1667

0.680264

68.0%

Conclusion

Machine Learning		
Unsupervised	Association Rule Mining	{Amateur Built = No, Weather Condition = Instruments, Phase of Flight = MANEUVERING} → {Fatal Injury}
	Clustering	 Important Variables: FAR.Description, Weather Condition, Phase of Flight, Purpose of Flight
Company in a si	SVM	Model accuracy 68% (10-fold cross validation)
Supervised	Decision Tree	Model accuracy 97% (3-fold cross validation)