In [1]:	INTRODUCTION TO MACHINE LEARNING Import Library import numpy as np import pandas as pd
In [2]: Out[2]:	Supervised Learning Import Data dataset = pd.read_csv(r"D:\SEMESTER 4\IS411 Data Modelling\LAB\Bahan Modul 7\winequality-red.csv", delimiter=';') dataset.head(5) fixed acidity_volatile acidity_citric acid_residual sugar_chlorides_free sulfur dioxide_total sulfur dioxide_density_pH_sulphates_alcohol_quality
Out[2]: In [3]:	0 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 5 1 7.8 0.88 0.00 2.6 0.098 25.0 67.0 0.9968 3.20 0.68 9.8 5 2 7.8 0.76 0.04 2.3 0.092 15.0 54.0 0.9970 3.26 0.65 9.8 5 3 11.2 0.28 0.56 1.9 0.075 17.0 60.0 0.9980 3.16 0.58 9.8 6 4 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 5
In [3]:	<pre>print(dataset.groupby('quality').size()) dataset.info() quality 3 10 4 53 5 681 6 638 7 199 8 18 dtype: int64</pre>
	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 1599 entries, 0 to 1598 Data columns (total 12 columns): # Column</class></pre>
In [4]:	<pre>dtypes: float64(11), int64(1) memory usage: 150.0 KB #memisahkan kolum independent variable dengan dependent variable redwine = dataset.copy() Y = redwine['quality'] X = redwine.drop(columns = 'quality')</pre>
In [5]:	<pre>#membagi data menjadi 2 bagian, untuk training dan testing dengan bantuan library from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0) Logistic Regression from sklearn.linear_model import LogisticRegression logreg = LogisticRegression()</pre>
	logreg.fit(X_train, y_train) print('Accuracy of Logistic regression classifier on training set: {:.2f}'.format(logreg.score(X_train, y_train))) print('Accuracy of Logistic regression classifier on test set: {:.2f}'.format(logreg.score(X_test, y_test))) Accuracy of Logistic regression classifier on training set: 0.58 Accuracy of Logistic regression classifier on test set: 0.62 C:\Users\Darren\anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:814: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in:
In [7]:	https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression n_iter_i = _check_optimize_result(Decision Tree from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier()
In [8]:	clf.fit(X_train, y_train) print('Accuracy of Decision Tree Classifier on training set: {:.2f}'.format(clf.score(X_train, y_train))) print('Accuracy of Decision Tree Classifier on test set: {:.2f}'.format(clf.score(X_test, y_test))) Accuracy of Decision Tree Classifier on training set: 1.00 Accuracy of Decision Tree Classifier on test set: 0.69 KNN from sklearn.neighbors import KNeighborsClassifier
	<pre>knn = KNeighborsClassifier() knn.fit(X_train, y_train) print('Accuracy of K-NN classifier on training set: {:.2f}'.format(knn.score(X_train, y_train))) print('Accuracy of K-NN classifier on test set: {:.2f}'.format(knn.score(X_test, y_test))) Accuracy of K-NN classifier on training set: 0.66 Accuracy of K-NN classifier on test set: 0.48 Naive Bayes</pre>
In [9]:	<pre>gnb = GaussianNB() gnb.fit(X_train, y_train) print('Accuracy of GNB classifier on training set: {:.2f}'.format(gnb.score(X_train, y_train))) print('Accuracy of GNB classifier on test set: {:.2f}'.format(gnb.score(X_train, y_train))) Accuracy of GNB classifier on training set: 0.55 Accuracy of GNB classifier on test set: 0.55</pre>
In [10]: In [11]:	#Cobalah hilangkan data dengan kualitas 3,4,7, dan 8 sehingga data hanya memiliki 2 output kategori, dan #bagaimana hasil prediksinya? Manakah prediksi data yang lebih baik? (Boleh pilih gunakan salah satu algoritma). df_filtered = dataset[-dataset['quality'].isin([3, 4, 7, 8])] from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split
In [12]: In [13]:	<pre>y = df_filtered['quality'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) rf = RandomForestClassifier(n_estimators=100, random_state=42) rf.fit(X_train, y_train)</pre>
Tp [14].	<pre>y_pred = rf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy: {:.2f}%".format(accuracy * 100)) Accuracy: 76.89% Unsupervised learning winecluster = dataset.copy()</pre>
In [14]: Out[14]:	<pre>winecluster = winecluster.drop(columns='quality') winecluster</pre>
	4 7.4 0.700 0.00 1.9 0.076 11.0 34.0 0.99780 3.51 0.56 9.4 <t< td=""></t<>
In [15]:	1598 6.0 0.310 0.47 3.6 0.067 18.0 42.0 0.99549 3.39 0.66 11.0 1599 rows × 11 columns #menggunakan grafik import matplotlib.pyplot as plt plt.scatter(winecluster['volatile acidity'], winecluster['fixed acidity']) plt.xlim(0,2)
	plt.show() 16
In [16]:	x = dataset.iloc[:,0:2] x.info()
	<pre>from sklearn.cluster import KMeans <class 'pandas.core.frame.dataframe'=""> RangeIndex: 1599 entries, 0 to 1598 Data columns (total 2 columns): # Column</class></pre>
In [17]:	<pre>wcss = [] for i in range(1,11): kmeans = KMeans(n_clusters = i, init='k-means++', random_state = 42) kmeans.fit(x) wcss.append(kmeans.inertia_) plt.plot(range(1,11), wcss) plt.xlabel('Number of clusters') plt.ylabel('wcss') plt.show()</pre>
	C:\Users\Darren\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:1036: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=7. warnings.warn(5000 4000 4000
In [18]:	2000 - 1000 - 2 4 6 8 10 kmeans = KMeans(4)
In [18]: Out[18]: In [19]:	<pre>kmeans = kmeans(4) kmeans.fit(x) identified_clusters = kmeans.fit_predict(x) identified_clusters array([2, 0, 0,, 2, 2, 2]) wine_clusters = winecluster.copy() wine_clusters['Clusters'] = identified_clusters plt.scatter(winecluster['fixed acidity'], winecluster['volatile acidity'], c=wine_clusters['Clusters'], cmap='Spectral')</pre>
Out[19]:	<pre> </pre> <pre> <pre> <pre></pre></pre></pre>
	0.6
In [20]:	#Coba lakukan clustering berdasarkan pada kolom free sulfur dioxide dan #total sulfur dioxide, dan tampilkan hasilnya. Apakah nilai K-nya sama dengan clustering sebelumnya? import matplotlib.pyplot as plt plt.scatter(winecluster['free sulfur dioxide'], winecluster['total sulfur dioxide']) plt.xlim(0,80) plt.title('free sulfur dioxide vs total sulfur dioxide') plt.show()
	free sulfur dioxide vs total sulfur dioxide 250 - 200 - 150 -
In [21]:	x2 = dataset.iloc[:,5:7] x2.info()
	<pre>from sklearn.cluster import KMeans <class 'pandas.core.frame.dataframe'=""> RangeIndex: 1599 entries, 0 to 1598 Data columns (total 2 columns): # Column Non-Null Count Dtype</class></pre>
In [22]: In [23]:	<pre>#!pip install yellowbrick from yellowbrick.cluster import KElbowVisualizer wcss2 = [] for i in range(1,11): kmeans2 = KMeans(n_clusters = i, init='k-means++', random_state = 42) kmeans2.fit(x2) wcss2.append(kmeans2.inertia_)</pre>
	<pre>visualizer = KElbowVisualizer(kmeans2, k=(2,10)) plt.plot(range(1,11), wcss2) plt.xlabel('Number of clusters') plt.ylabel('wcss') plt.show() visualizer.fit(x2) visualizer.show() C:\Users\Darren\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:1036: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than</pre>
	available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=7. warnings.warn(1.75 1.50 1.25
	95 1.00 0.75 0.50 0.25
	Distortion Score Elbow for KMeans Clustering elbow at k = 4, score = 273399.671 022 020
	200000 0.18 g g g g g g g g g g g g g g g g g g g
Out[23]: In [24]:	<pre>// Indeptified_clusters2 = kmeans2.fit_predict(x) identified_clusters2 = kmeans2.fit_predict(x)</pre> <pre>// Resolution Score Elbow for Kmeans Clustering' xlabel = 'k', ylabel = 'distortion score' xlabel = 'k', ylabel = 'k', ylabel = 'distortion score' xlabel = 'k', ylabel = 'distortion score' xlabel = 'k', ylabel = 'k', ylabel = 'distortion score' xlabel = 'k', ylabel = 'k', ylabel = 'distortion score' xlabel = 'k', ylabel = 'k', yla</pre>
Out[24]: In [25]: Out[25]:	<pre>identified_clusters2 array([1, 1, 1,, 0, 0, 0]) wine_clusters2 = winecluster.copy() wine_clusters2['Clusters'] = identified_clusters2 plt.scatter(winecluster['free sulfur dioxide'], winecluster['total sulfur dioxide'], c=wine_clusters2['Clusters'],cmap='cividis') <matplotlib.collections.pathcollection 0x17fa0549070="" at=""></matplotlib.collections.pathcollection></pre>
	250 200 150
	White Data wine
In [26]: Out[26]:	#Cobalah lakukan clustering pada data whitewine dan bandingkan hasilnya. datasetwhiteclus = pd.read_csv(r"D:\SEMESTER 4\IS411 Data Modelling\LAB\Bahan Modul 7\winequality-white.csv") datasetwhiteclus.head(5) fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality 0 7.0 0.27 0.36 20.7 0.045 45.0 170.0 1.0010 3.00 0.45 8.8 6 1 6.3 0.30 0.34 1.6 0.049 14.0 132.0 0.9940 3.30 0.49 9.5 6 2 8.1 0.28 0.40 6.9 0.050 30.0 97.0 0.9951 3.26 0.44 10.1 6
In [27]: Out[27]:	3 7.2 0.23 0.32 8.5 0.058 47.0 186.0 0.9956 3.19 0.40 9.9 6 4 7.2 0.23 0.32 8.5 0.058 47.0 186.0 0.9956 3.19 0.40 9.9 6 datasetwhiteclus = datasetwhiteclus drop(columns='quality') fixed acidity volatile acidity volatile acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol
	0 7.0 0.27 0.36 20.7 0.045 45.0 170.0 1.00100 3.00 0.45 8.8 1 6.3 0.30 0.34 1.6 0.049 14.0 132.0 0.99400 3.30 0.49 9.5 2 8.1 0.28 0.40 6.9 0.050 30.0 97.0 0.99510 3.26 0.44 10.1 3 7.2 0.23 0.32 8.5 0.058 47.0 186.0 0.99560 3.19 0.40 9.9 4 7.2 0.23 0.32 8.5 0.058 47.0 186.0 0.99560 3.19 0.40 9.9
In [28]:	4894 6.6 0.32 0.36 8.0 0.047 57.0 168.0 0.99490 3.15 0.46 9.6 4895 6.5 0.24 0.19 1.2 0.041 30.0 111.0 0.99254 2.99 0.46 9.4 4896 5.5 0.29 0.30 1.1 0.022 20.0 110.0 0.9869 3.34 0.38 12.8 4897 6.0 0.21 0.38 0.8 0.020 22.0 98.0 0.98941 3.26 0.32 11.8 4898 rows × 11 columns #menggunakan grafik
	<pre>import matplotlib.pyplot as plt plt.scatter(datasetwhiteclus_['free sulfur dioxide'], datasetwhiteclus['total sulfur dioxide']) plt.xlim(0,190) plt.show()</pre>
	200
In [29]:	x3 = dataset.iloc[:,5:7] x3.info() from sklearn.cluster import KMeans
Tn ~	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 1599 entries, 0 to 1598 Data columns (total 2 columns): # Column</class></pre>
In [30]:	<pre>wcss3 = [] for i in range(1,11): kmeans3 = KMeans(n_clusters = i, init='k-means++', random_state = 42) kmeans3.fit(x3) wcss3.append(kmeans2.inertia_) visualizer = KElbowVisualizer(kmeans3, k=(2,10)) plt.plot(range(1,11), wcss3)</pre>
	plt.xlabel('Number of clusters') plt.ylabel('WCSS') plt.show() visualizer.fit(x3) visualizer.show() C:\Users\Darren\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:1036: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=7. warnings.warn(
	620 610 800 590
	570 2 4 6 8 10 Number of clusters Distortion Score Elbow for KMeans Clustering 700000 Distortion Score = 273399 671 020
	elbow at k = 4, score = 273399.671 500000 500000 0.16 90000 0.14 00000 0.14 00000
Out[30]:	200000 200000 2 3 4 5 6 7 8 9 Avec Subplict this less (Jeonters J. Distortion, Seere Fibrus for Manne Chartering), violed Fibrus violed Fibru
In [31]: Out[31]:	<pre>kmeans3 = KMeans(4) kmeans3.fit(x3) identified_clusters3 = kmeans3.fit_predict(x3) identified_clusters3 array([1, 3, 0,, 0, 0, 0])</pre>
In [32]:	<pre>wine_clusters3 = datasetwhitecluscopy() wine_clusters3['Clusters'] = identified_clusters3 plt.scatter(datasetwhiteclus_['free sulfur dioxide'], datasetwhiteclus_['total sulfur dioxide'], c=wine_clusters3['Clusters'],cmap='plasma') valueError</pre>
	File ~\anaconda3\lib\site-packages\pandas\core\frame.py:3655, in DataFramesetitem(self, key, value) 3652
	<pre>3825 () 3830 ensure homogeneity. 3831 """ -> 3832 value = selfsanitize_column(value) 3834 if (3835</pre>
	if not self.columns.is_unique or isinstance(self.columns, MultiIndex): File ~\anaconda3\lib\site-packages\pandas\core\frame.py:4535, in DataFramesanitize_column(self, value) 4532
In []:	<pre>!jupyter nbconvertto html "./00000054804_Christopher Darren_Week7.ipynb"output-dir="./"</pre>