Temporal and Spatial Speckle **Characterization Using** Vulnerable Plaque Analysis

Gary J. Tearney, M.D. Ph.D.
Massachusetts General Hospital
Department of Pathology and
Wellman Laboratories of Photomedicine

Vulnerable Plaques

Vulnerable Plaque

Stable Plaque

-- Thick

Low

High

Abundant-

Macrophages – Lipid Conc. –

Vulnerable Plaque Diagnosis

Proposed Diagnostics

- Infrared
- Indirectly measures lipid content of plaque
- Fluorescence
- Measures autofluorescence
- Collagen
 - MMP
- SNAI
- Structural measurement of cap
- Poor resolution
- OCT
- Structural measurement of cap
- Sufficient resolution for measurement of cap thickness

Proposed methods do not measure the biomechanical properties of plaque

Intrinsic Plaque Biomechanics

Biomechanical properties

- Cap strength
- Proportional to thickness and structural integrity
- Lipid pool
- Shear stress and strain on cap are related to lipid pool stiffness
- Rupture of plaque tends to occur in areas of large stiffness gradient between cap and lipid pool
- Lipid lowering drugs increase stiffness of lipid pool
- Stiffening of the lipid pool decreases vulnerability

essential parameters for assessing the likelihood of Mechanical stiffness of the cap and lipid pool are plaque rupture

Viscosity

Viscosity of tissue is proportional to stiffness

 Related to the ability of the molecules in the tissue matrix to move

Brownian motion

- Random motion of particles in the matrix
- Brownian motion is inversely proportional to viscosity and stiffness
- Low stiffness, rapid Brownian motion
- High stiffness, slow Brownian motion

Brownian motion velocity is a measurement of tissue stiffness

Speckle

Coherent interference of light remitted from a scattering media or substrate

- Produces a grainy pattern at the surface of the specimen and in the image plane
 - The pattern is created from the remitted field after many multiple scattering events within the specimen
- Motion of a single scatterer in the specimenichanges the speckle pattern

Speckle Motion

Motion of a single scatterer in the specimen changes the speckle pattern

- determine the Brownian motion within a multiply scattering The time dependent speckle pattern can be used to
- The motion is characterized by the spatial decorrelation of the speckle pattern as a function of time
- For Brownian motion, the decorrelation is a negative exponential with a time constant, au

Stiffness of the cap and lipid pool can be determined by measuring the speckle decorrelation time constant

Light Diffusion

In tissue, light remitied further from the beam entry polint has probed desper into the tissue

o Governed by the optical properties of tissue

Characterization of Plaques Spatial and Temporal

function of distance from beam entry point allows Measuring the speckle decorrelation time, τ , as a measurement of Brownian Motion and

- Cap thickness
- Cap stiffness
- Lipid pool stiffness

Proof of Principle

Methods

- Cadaveric aortas
- Normal saline, 37°C
- Helium Neon Laser (632.8 nm)
- 100 µm spot at sample
 - 2 seconds (33 fps)

Results

Hesullis

(Spatial Localization)

Feasibility Study Summary

Speckle decorrelation time constant is different between normal aorta and plaque

• $\tau = 500 \text{ ms vs } 40 \text{ ms}$

Speckle decorrelation time constant is different between thin and thick-walled plaques

Greater for thick-walled plaques

Speckle decorrelation is spatially dependent

Border between plaque and normal aorta demarcates different speckle decorrelation time constants

Clinical Realization

Catheter based technique (one possibility)

- Array of fibers
- Scanned probe

Transparent Outer Sheath

Difficulties

- Intrinsic heart and catheter motion
- Lipid pool Brownian motion time constant is approximately 40 ms
- Blood
- Will need saline infusion and/or direct contact with tissue

Alternative Methods

(Spatial Localization)

ocalize time and space (x, y, z) dependent speckle patterns using optical methods as opposed to light diffusion

- Confocal microscopy Apartures in the source and detector planes co numerical aparture imaging lans
 - High resolution speciale enclysis in (kr, yr, z)
- Spaddle decorrelation is less sensitive than multiple seattering leehinlewe
- Optical Coherence Tomography (OCT) 0
- Uses low coherence interferometry to obtain localization in z
- Wessures cap thickness directly
- Specific decorrelation is less sensitive than multiple seattering

一一般によったころと 南

Conclusion

Temporal and spatial analysis of the speckle patterns can potentially determine

- Cap thickness
- Cap and plaque viscosity
- Spatially resolved biomechanical stiffness
- Plaque vulnerability

Future work

- Speckle statistics
- Can determine cap thickness and optical properties
- Low coherence light
- Strain and stress measurements
- Correlate biomechanical properties with Brownian motion measured by speckle decorrelation
- Probe development
- Continue cadaveric aorta studies
- In vivo studies (e.g. rabbit model)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.