Sheaves on Manifolds Exercise II.14 の解答

ゆじとも

2021年2月9日

Sheaves on Manifolds [Exercise II.14, KS02] の解答です。

II Sheaves

問題 II.14. $X = \bigcup_{i \in I} U_i$ を X の開被覆とする。各 $i \in I$ に対して F_i を U_i 上の層として、各 $(i,j) \in I^2$ に対して同型射 $\varphi_{ij}: F_j|_{U_i \cap U_j} \overset{\sim}{\to} F_i|_{U_i \cap U_j}$ が与えられているとする。 $\varphi_{ii} = \mathrm{id}_{F_i}$ であり、さらに任意の $(i,j,k) \in I^3$ に対して $U_i \cap U_j \cap U_k$ 上で $\varphi_{ij} \circ \varphi_{jk} = \varphi_{ik}$ が成り立つと仮定せよ。このとき、X 上の層 F と 各 $i \in I$ に対する同型射 $\varphi_i: F|_{U_i} \overset{\sim}{\to} F_i$ であって、任意の $(i,j) \in I^2$ に対して $U_i \cap U_j$ 上で $\varphi_{ij} = \varphi_i \circ \varphi_j^{-1}$ が成り立つもの、が up to isomorphism で一意的に存在することを示せ。

証明. 圏 *I* を次で定義する:

- 対象の集合は $Ob(\mathcal{I}) : \stackrel{\text{def}}{=} I^3$.
- $\operatorname{Hom}_{\mathcal{I}}((i,j,k),(i',j',k'))$ は $\{i,j,k\}\supset\{i',j',k'\}$ である場合は一点集合で、そうでない場合は \varnothing と定める。

 $\{i,j,k\} = \{i',j',k'\}$ である場合、またその場合に限り $(i,j,k) \to (i',j',k')$ は同型射である。

 $U_{ij} \stackrel{\text{def}}{:=} U_i \cap U_j, U_{ijk} \stackrel{\text{def}}{:=} U_i \cap U_j \cap U_k$ とおき、 $f_i : U_i \to X, f_{ij} : U_{ij} \to X, f_{ijk} : U_{ijk} \to X$ をそれ ぞれ包含射とする。各 $(i,j,k) \in \mathcal{I}$ に対して X 上の層 F(i,j,k) を $P(i,j,k) \stackrel{\text{def}}{:=} f_{ijk,!}(F_i|_{U_{ijk}})$ と定義する $(P(i,i,i) = f_{i!}F_i$ である)。各 \mathcal{I} の射 $p: (i,j,k) \to (i',j',k')$ に対して $U_{ijk} \subset U_{i'j'k'}$ であるので、自然な包含射 $\psi(p)(-): f_{i'j'k',!}((-))|_{U_{ijk}}) \subset f_{i'j'k',!}((-)|_{U_{i'j'k'}})$ がある。また、 $i' \in \{i,j,k\}$ であるので $U_{ijk} \subset U_{ii'}$ である。 $P(p) \stackrel{\text{def}}{:=} \psi(p)(F_{i'}) \circ f_{ijk,!}(\varphi_{i'i}|_{U_{ijk}})$ と定義する。この対応によって、 $P: \mathcal{I} \to \mathsf{Ab}(X)$ は函手になる。それを確かめるために、 \mathcal{I} の射の列 $(i,j,k) \stackrel{p}{\to} (i',j',k') \stackrel{q}{\to} (i'',j'',k'')$ を任意にとる。P が函手であるためには、 $P(q \circ p) = P(q) \circ P(p)$ が成り立つことが十分である。 $i'' \in \{i',j',k'\} \subset \{i,j,k\}$ であるので、 $U_{ijk} \subset U_{ii'} \cap U_{i'i''}$ が成り立つ。従って

$$f_{ijk,!}(\varphi_{i''i}|_{U_{ijk}}) = f_{ijk,!}(\varphi_{i''i'}|_{U_{ijk}} \circ \varphi_{i'i}|_{U_{ijk}}) = f_{ijk,!}(\varphi_{i''i'}|_{U_{ijk}}) \circ f_{ijk,!}(\varphi_{i'i}|_{U_{ijk}})$$

が成り立つ。また、定義より、函手の射として $\psi(q\circ p)=\psi(q)\circ\psi(p)$ が成り立つ。また、 $\psi(p)$ が自然変換であることから、図式

$$\begin{array}{ccc} f_{ijk,!}(F_{i'}|_{U_{ijk}}) & \xrightarrow{f_{ijk,!}(\varphi_{i''i'}|_{U_{ijk}})} & f_{ijk,!}(F_{i''}|_{U_{ijk}}) \\ \psi(p)(F_{i'}) \downarrow & & \downarrow \psi(p)(F_{i''}) \\ f_{i'j'k',!}(F_{i'}|_{U_{i'j'k'}}) & \xrightarrow{f_{i'j'k',!}(\varphi_{i''i'}|_{U_{i'j'k'}})} & f_{i'j'k',!}(F_{i''}|_{U_{i'j'k'}}) \end{array}$$

は可換である。以上より、

$$\begin{split} P(q \circ p) &= \psi(q \circ p)(F_{i''}) \circ f_{ijk,!}(\varphi_{i''i'}|_{U_{ijk}}) \\ &= \psi(q)(F_{i''}) \circ \psi(p)(F_{i''}) \circ f_{ijk,!}(\varphi_{i''i'}|_{U_{ijk}}) \circ f_{ijk,!}(\varphi_{i'i}|_{U_{ijk}}) \\ &= \psi(q)(F_{i''}) \circ f_{i'j'k',!}(\varphi_{i''i'}|_{U_{i'j'k'}}) \circ \psi(p)(F_{i'}) \circ f_{ijk,!}(\varphi_{i'i}|_{U_{ijk}}) \\ &= P(q) \circ P(p) \end{split}$$

が成り立つ。よって $P: \mathcal{I} \to \mathsf{Ab}(X)$ は函手である。

 $F:\stackrel{\mathrm{def}}{=}\operatorname{colim} P$ とおく。各 $x\in X$ で stalk をとると図式 P の射は 0 射と同型射の図式となる。従って、自然な射 $P_i:P(i,i,i)=f_{i,!}F_i\to F$ を U_i へと制限したものは層の同型射である。その逆射を $\varphi_i:\stackrel{\mathrm{def}}{=}P_i^{-1}:F|_{U_i}\to F_i$ とおく。図式

は可換であり、 $P(j,j,i) \to P(j,j,j)$ と $P(i,j,j) \to P(i,i,i)$ を U_{ij} へと制限すると $\mathrm{id}_{F_j|_{U_{ij}}}$ と $\mathrm{id}_{F_i|_{U_{ij}}}$ になるので、従って U_{ij} 上で $\varphi_{ij} = \varphi_i \circ \varphi_j^{-1}$ が成り立つ。

別の F' がこの性質を満たせば、余極限の普遍性により射 $F \to F'$ が得られ、これは各点の stalk で同型射であるので、このような F は up to isom. で一意的に存在する。以上で問題 II.14 の証明を完了する。

References

[KS02] M. Kashiwara and P. Schapira. Sheaves on Manifolds. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2002. ISBN: 9783540518617. URL: https://www.springer.com/jp/book/9783540518617.