Gymnasiearbete på Vetenskapens Hus

Träff 3: Introduktion till programmering

Idag

- Första halvan:
 - En (snabb) introduktion till python/programmering
 - Hur en löser SIR-modellen
 - Visualisering med riktig data
- Andra halvan:
 - Eget arbete med exempelvis
 - Grundläggande programmering
 - SIR-modellen (testa olika parametrar)
 - Visualisering av olika datan
 - Tid för frågor!!

Introduktion till programmering

- Skriva och köra vårt första program
- Variabler och tilldelning
- Typer
- Funktioner
- Att använda bibliotek
- Differentialekvationer
- Visualisering med riktig data

Allt material + kodexempel för alla olika koncept finns här:

https://github.com/TypAnna/VHGY20

Vårt första program

HelloWorld.py - ett program som skriver ut "Hello World!"

```
print("Hello World!")
```

Tilldelning

Vad händer egentligen när vi skriver x = 10?

- 1. Ett objekt med typen int skapas
- 2. Detta objekt sätts till värdet 10
- 3. Variabeln \times binds till detta objekt

Kan tyckas självklart men det är viktigt att kunna vad som händer i bakgrunden.

Typer

- <u>Heltal</u> (integers)
- <u>Flytpunkter</u> (floating points): decimaltal
 - 0.1
 - 0 7.000000238471821
- <u>Strängar</u>: representerar text, en följd av karaktärer och markeras med citattecken
 - "KatjaKaj"
- <u>Listor</u>: är en lista med objekt. Markeras med hak-klamrar
 - ["katt", "tiger", "lo"]
- <u>Sanningsvärden</u> (booleans): är antingen true eller false. Finns enbart två sanningsvärden

Typer

Finns mängder med typer som alla har olika egenskaper och det finns en mängd funktioner som kan appliceras på dessa!

- Heltal och flytpunkter kan exempelvis summeras precis som i vanlig matte
 - \circ 1 + 0.3 = 1.3
- Strängar kan också läggas ihop, men då sätt strängarna ihop
 - o "1" + "0.3" = "10.3"
 - Vi kan också ta reda på längden av en sträng genom den inbyggda funktionen len().
- Vi kan hämta element från listor genom
 - ettElement = enList[i], där i indikerar vilken element i listan vi vill hämta. Om i=0 hämtar vi det första elementet.

Funktioner

<u>Funktioner</u> är *extremt* viktiga då det är dom som står för allt grovjobb i ett program.

Funktioner tillåter oss att återanvända kod och göra koden mer lättförståelig - vilket leder till bättre kod med mindre fel!

Det finns *massor* med inbyggda funktioner - men vi kan också definiera egna funktioner, vilket är superduperbra!!

Funktioner

Vi definierar en funktion med nyckelordet (detta är ord som har specifik betydelse) 'def' följt av namnet av funktionen, tillsammans med eventuella parametrar/argument.

```
def helloYou(namn):
print("Hello", namn)
```

För att anropa funktionen skriver vi: helloYou ("Kaj")

Funktioner

Uppgift: Skriv en funktion som beräknar hur gammal en person är utifrån vilket år hen är född och skriv ut detta.

Bibliotek

Det finns massor av *bibliotek* som innehåller funktioner som andra har skrivit som vi kan använda oss av! Vi kan använda dessa för att

- Rita kurvor/grafer
- Träna och testa modeller (maskininlärning/Al)
- Hantera stora datamängder
- Lösa differentialekvationer
- Hantera datum och tid
- Och massa, massa, massa, massa, massa mer!!!!!!

För att ladda in ett bibliotek skriver vi import namnPåBibliotek.

Differentialekvationer

- Låt oss använda oss utav allt vi gått igenom för att lösa differentialekvationer!
- Vi behöver:
 - Matplotlib: för att rita grafer
 - Numpy: för att hantera stora listor (något förenklat)
 - <u>Scipy</u>: för att lösa differentialekvationer

Visualisering med riktig data

- Här finns massor med riktig data.
- Kom ihåg att kolla så att den datan du är intresserad av finns!
 - Exempelvis så innehåller inte datasetet hur många som tillfrisknat varje dag, och olika länder rapporterar olika data.

Nästa steg

- Eget arbete med exempelvis
 - Frågeställningen
 - Grundläggande programmering
 - SIR-modellen (testa olika parametrar)
 - Visualisering av olika datan
- Tid för frågor!!