EKT-816 Lecture 2

Probability Review (2)

Jesse Naidoo

University of Pretoria

Desirable Properties of Estimators

- consistency: $\widehat{\theta} \longrightarrow_{p} \theta_{0}$
- if $E[\widehat{\theta}] = \theta_0$ we say $\widehat{\theta}$ is unbiased
- ullet efficiency or precision: say we have two estimators $\widehat{ heta}$ and $\widetilde{ heta}$
 - for now assume both are unbiased
 - ullet if $V[\widehat{ heta}] \leq V[\widetilde{ heta}]$, say that $\widehat{ heta}$ is more efficient than $\widetilde{ heta}$
- the mean square error of $\widehat{\theta}$ is $MSE(\widehat{\theta}) = E[(\widehat{\theta} \theta_0)^2]$
 - ullet easy to see that $\mathsf{MSE} = \mathcal{V}[\widehat{ heta}] + \mathsf{bias}^2$
 - often a trade-off between the two criteria
 - typically people seek unbiased estimators, but not always clear they are better in a MSE sense

Sufficient Statistics

ullet suppose there is a statistic $\mathcal{T}(X_1,\ldots X_n)$ such that the joint density factors as

$$f(X_1,\ldots X_n,\theta)=g(T(X_1,\ldots X_n),\theta)\cdot h(X_1,\ldots X_n)$$

- ullet e.g. $T=\sum_{i=1}^n X_i$ for normal data with known variance
- ullet then, a maximum likelihood estimator must be a function of T
- in fact, the *Rao-Blackwell Theorem* says (roughly) that any unbiased estimator which is *not* a function of the sufficient statistic has higher variance than "necessary"
 - more precisely, higher variance than the MLE, which hits the (Cramer-Rao) lower bound
 - intuition: if you base estimates on irrelevant information, you are sacrificing precision

Sufficient Statistics

- we will not use an explicit likelihood framework much
 - but, the idea of "sufficiency" is still useful
 - in some situations, all of the relevant information can be reduced to some low-dimensional summaries
 - see Chetty (2009) and Weyl (2019) for examples of how this idea connects theory and econometrics
- this idea also comes up in the guise of "selection (only) on observables"

Example: Sufficiency and Comparison of Estimators

- say we have an iid sample of size n from a $U(0, \theta_0)$ distribution
 - ullet the sample maximum is, in this case, sufficient for $heta_0$
 - in fact, can show the MLE is $\widehat{\theta} = \max\{X_1, \dots X_n\}$
- another estimator would be $\widetilde{\theta} = 2\overline{X}_n$
 - this is unbiased (show this!)
- which estimator has lower MSE? Which has lower variance?
- to derive the distribution of the sample maximum:
 - use the fact that $\max\{X_1,\ldots X_n\} \leq x$ if and only if each $X_i \leq x$
 - by independence, the CDF of the sample maximum is the product of the individual CDFs

Sample Design

- some types of data you may encounter:
 - cross-sectional:
 - units from the population are surveyed once, and all at roughly the same time.
 - a "snapshot" of the population
 - stratified or two-stage designs
 - units are sampled randomly within certain pre-specified groups
 - e.g region, race, sex
 - clustered designs
 - often would be expensive to collect a simple random sample
 - save on transport and labor costs by selecting clusters of units
 - attempt to correct for the resulting correlations (why?)
 - panel or longitudinal designs: repeated observations on the same units
 - rotating panels, where some units are "rotated" in and out of the survey
 - retrospective histories
 - synthetic panels: aggregate individuals to form a panel at cohort level

Sample Design

- panel data can overcome some problems related to unobservable variables, but
 - they are expensive to collect
 - differential attrition can be a serious problem
- not all data are survey data
 - e.g. administrative data (e.g. tax records)
 - these sources can be much more complete and data quality can be high
 - for work on developed countries, the current frontier in labor and public economics

Weighting

- suppose we have a population of N units, and we sample with unequal probabilities
 - let π_i be the probability that unit i is selected
 - in a simple random sample of size n << N, $\pi_i \approx n/N$, even if we sample without replacement
 - but we don't always want to sample each unit with equal probability
- let $w_i = (n\pi_i)^{-1}$ be the "design weight"; then the expected sum of the weights is

$$E\left[\sum_{i=1}^{n} w_{i}\right] = E\left[\sum_{i=1}^{N} t_{i} w_{i}\right]$$

$$\approx \sum_{i=1}^{N} (\pi_{i} n) w_{i} = N$$
(1)

- here t_i is the number of times unit i is included in the sample
- if $n \ll N$, this is about $\pi_i n$
- so, the weights can be used to estimate the total size of the population

Weighting

- intuition: weights are inversely proportional to the probabilities of inclusion
 - in a 1/100 sample, each included unit represents 100 others
- to estimate the population mean, we weight the observations by w_i , forming

$$\overline{X}_w = \sum_{i=1}^n w_i x_i \tag{2}$$

- exercise: show that $E[\overline{x}_w] = E[X]$
- we may want to deliberately oversample some groups to improve precision of conditional means
 - e.g. white or Indian South Africans
 - this would be true even if response rates were the same across ethnic groups!

Stratification

- to understand why stratification is useful, think about trying to measure the national average of some X where there are two cities
- · variance of a randomly sampled unit is

$$V[X_i] = p\sigma_1^2 + (1-p)\sigma_2^2 + p(\mu_1 - \mu)^2 + (1-p)(\mu_2 - \mu)^2$$

• notice that V[X] = E[V[X|S]] + V[E[X|S]]

Stratification

- consider a stratified design where we take two independent samples from the two strata
 - size n_1 and n_2 respectively, with $n_1 + n_2 = n$
 - · the variance of the sample mean is

$$V[\overline{x}^{STRAT}] = V\left[n^{-1}\sum_{i=1}^{n_1} x_i + n^{-1}\sum_{i=n_1+1}^{n} x_i\right]$$
$$= \left(\frac{n_1}{n}\right)^2 \frac{\sigma_1^2}{n_1} + \left(\frac{n_2}{n}\right)^2 \frac{\sigma_2^2}{n_2}$$
(3)

- say we choose $n_1/n = p$ and $n_2/n = 1 p$
 - then

$$V[\overline{x}^{STRAT}] = n^{-1} \{ p\sigma_1^2 + (1-p)\sigma_2^2 \} < n^{-1}V[X]$$

- as long as the means differ $(\mu_1 \neq \mu_2)$, stratification improves precision (why?)
- notice that the motivation here is to improve precision of the overall mean
 - how is this different to weighting?

Clustering

- suppose we have several clusters, indexed by c
- the distribution of the variable of interest, X, obeys the following:

$$x_{ic} = \mu + \alpha_c + \varepsilon_{ic} \tag{4}$$

- here α and ε are independent of each other, and both have mean zero
- let σ_{lpha}^2 be the variance of the cluster-specific mean
- $\sigma_{arepsilon}^2$ be the variance of the idiosyncratic error term $arepsilon_{ic}$
- the mean of sample from k clusters, with m units per cluster, has variance

$$V[\overline{x}^{CLUST}] = \frac{\sigma^2}{km} \{ (m-1)\rho + 1 \}$$
 (5)

- here $\sigma^2 = \sigma_\alpha^2 + \sigma_\varepsilon^2$ is the overall variance of X
- $\rho = \sigma_{\alpha}^2/\sigma^2$ is the intercluster correlation coefficient
- positive correlations within a cluster reduce the precision of your estimates
 - · effectively less information from each observation from the same cluster
 - in limiting case $\rho = 1$, the effective sample size is k, not km

Hypothesis Testing

- a *hypothesis* is a subset of the parameter space
 - if this is a single point, we say the hypothesis is simple
 - e.g. $H_0: \mu = 1$
 - otherwise, we say the hypothesis is complex or compound
 - e.g. $H_1: \mu \neq 1$
- we often designate one particular hypothesis as the "null hypothesis"
 - then, see if the data provides strong enough evidence against it
- the frequentist approach to hypothesis testing takes parameters as fixed and the data as random
 - thus $P(\mu=1|X)$ makes no sense, but $P(X|\mu=1)$ does
 - the Bayesian approach is more intuitive here, but econometrics is overwhelmingly frequentist

Hypothesis Testing

- to perform a *test* of the null hypothesis we form a *test statistic*, say $\widehat{S}(X_1, \dots X_n)$
 - not always the estimator itself, e.g. the t-test
 - ullet then, we need to compute (at least approximately) the distribution of \widehat{S} under the null
- suppose we know the distribution of \widehat{S} under H_0
 - now, we can set a rejection region R such that $P(\widehat{S} \in R|H_0)$ is "small"
 - given a rejection region R,

$$\alpha = \max_{\theta \in H_0} P(\text{reject } H_0 | \theta)$$

is called the size of the test, or the significance level

- we take the maximum over H_0 (in case H_0 is a compound hypothesis) to be conservative
- the number

$$\beta = P(\text{reject } H_0 | \theta)$$

is called the power of the test

Hypothesis Testing

- consider some extreme cases:
 - could ignore the data and never reject: then you never make Type I errors
 - similarly could always reject: never make Type II errors
- in general there is a tradeoff between size and power
- how well you can do, and how severe the tradeoff is, depends on the problem
 - in some "ill-posed" problems, you cannot beat the trivial test
 - i.e. ignore the data, generate a random number $U \sim U(0,1)$ and reject if U < lpha
 - these pathologies often arise when there are "nuisance parameters"
 - in those cases, the requirement to keep the size of the test low imposes so many constraints you cannot have nontrivial power

References

Chetty, Raj. 2009. "Sufficient Statistics for Welfare Analysis: A Bridge Between Structural and Reduced-Form Methods." *Annual Review of Economics* 1 (1): 451-88. https://doi.org/10.1146/annurev.economics.050708.142910. Weyl, E. Glen. 2019. "Price Theory." *Journal of Economic Literature (Forthcoming)*, no. August.

Table of Contents

Desirable Properties of Estimators

Weighting and Sample Design

Hypothesis Testing