mostra a Figura 7.16(b) na Seção 7.8. Uma floresta geradora de um grafo G = (V, A) é um subgrafo que contém todos os vértices de G e forma uma floresta.

Figura 7.6 (a) Uma árvore livre; (b) Uma floresta.

7.2 O Tipo Abstrato de Dados Grafo

É importante considerar os algoritmos em grafos como tipos abstratos de dados, com um conjunto de operações associado a uma estrutura de dados, de tal forma que haja uma independência de implementação para as operações. Algumas das operações mais comuns incluem:

- 1. FGVazio
(Grafo): Cria um grafo vazio. O procedimento retorna em Grafo um grafo contend
o $|{\cal V}|$ vértices e nenhuma aresta.
- 2. InsereAresta $(V_1, V_2, Peso, Grafo)$: Insere uma aresta no grafo. O procedimento recebe a aresta (V_1, V_2) e seu Peso para serem inseridos em Grafo.
- 3. Existe $Aresta(V_1,V_2,Grafo)$: Verifica se existe uma determinada aresta. A função retorna true se a aresta (V_1,V_2) está presente em Grafo, senão retorna false.
- 4. Obtém a lista de vértices adjacentes a um determinado vértice. Esta operação aparece na maioria dos algoritmos em grafos e, pela sua importância, será tratada separadamente logo a seguir.
- 5. Retira Aresta $(V_1, V_2, \text{Peso,Grafo})$: Retira uma aresta do grafo. O procedimento retira a aresta (V_1, V_2) de Grafo, retornando o peso da aresta na variável Peso.
- 6. LiberaGrafo(Grafo): Libera o espaço ocupado por um grafo. O procedimento libera toda a memória alocada para o grafo quando houve alocação dinâmica de memória, como no caso do uso de listas encadeadas.
- 7. ImprimeGrafo(Grafo): Imprime um grafo.
- 8. GrafoTransposto(Grafo,GrafoT): Obtém o transposto de um grafo direcionado. O procedimento é apresentado na Seção 7.7.
- 9. RetiraMin(A): Obtém a aresta de menor peso de um grafo. A função retira a aresta de menor peso dentre as arestas armazenadas no vetor A.

Uma operação que aparece com frequência é a de obter a lista de vértices adjacentes a um determinado vértice. Para implementar este operador de forma independente da representação escolhida para a aplicação em pauta, precisamos de três operações sobre grafos, a saber:

- ListaAdjVazia(v, Grafo) é uma função que retorna true se a lista de adjacentes de v está vazia, senão retorna false.
- PrimeiroListaAdj(v, Grafo) é uma função que retorna o endereço do primeiro vértice na lista de adjacentes de v.
- 3. ProxAdj(v, Grafo, u, Peso, Aux, FimListaAdj) é um procedimento que retorna o vértice u (apontado por Aux) da lista de adjacentes de v, bem como o peso relacionado à aresta (v, u). Ao retornar, Aux aponta para o próximo vértice da lista de adjacentes de v, e a variável booleana FimListaAdj retorna true se o final da lista de adjacentes for encontrado, senão retorna false.

Assim, em algoritmos sobre grafos é comum encontrar um pseudocomando do tipo:

for u ∈ ListaAdjacentes (v) do { faz algo com u }

O Programa 7.1 apresenta um possível refinamento do pseudocomando.

Programa 7.1 Trecho de programa para obter lista de adjacentes de um vértice de um grafo

```
if not ListaAdjVazia (v, Grafo)
then begin
   Aux := PrimeiroListaAdj (v, Grafo);
   FimListaAdj := false;
   while not FimListaAdj do
        ProxAdj (v, Grafo, u, Peso, Aux, FimListaAdj);
   end;
```

Existem duas representações usuais para grafos: as matrizes de adjacência e as listas de adjacência. A Seção 7.2.1 apresenta a implementação de matrizes de adjacência usando arranjos. A Seção 7.2.2 apresenta a implementação de listas de adjacência usando apontadores, e a Seção 7.2.3 apresenta a implementação de listas de adjacência usando arranjos. Qualquer uma dessas representações pode ser usada tanto para grafos direcionados quanto para grafos não direcionados.

7.2.1 Implementação por meio de Matrizes de Adjacência

A matriz de adjacência de um grafo G = (V, A) contendo n vértices é uma matriz $n \times n$ de bits, em que A[i, j] é 1 (ou verdadeiro, no caso de booleanos) se e somente se existir um arco do vértice i para o vértice j. Para grafos ponderados,