In-Class Lab 10

ECON 4223 (Prof. Tyler Ransom, U of Oklahoma)

October 1, 2020

The purpose of this in-class lab is to use R to practice estimating time series regression models with standard errors corrected for heteroskedasticity and serial correlation (HAC). To get credit, upload your .R script to the appropriate place on Canvas.

For starters

First, install the pdfetch, tsibble, sandwich, and COVID19 packages. pdfetch stands for "Public Data Fetch" and is a slick way of downloading statistics on stock prices, GDP, inflation, unemployment, etc. tsibble is a package useful for working with time series data. It is the "tibble" for time series data. sandiwch is helpful for obtaining HAC standard errors. COVID19 pulls up-to-date data on COVID-19 cases, deaths, etc.

Open up a new R script (named ICL10_XYZ.R, where XYZ are your initials) and add the usual "preamble" to the top:

```
# Add names of group members HERE
library(tidyverse)
library(wooldridge)
library(broom)
library(car)
library(pdfetch)
library(magrittr)
library(match)
library(sandwich)
library(tsibble)
library(COVID19)
```

Load the data

We're going to use data on US COVID-19 cases, deaths and other information.

```
df <- covid19(c("US"))
df.ts <- as_tsibble(df, key=id, index=date)</pre>
```

Now it will be easy to include lags of various variables into our regression models.

Plot time series data

Let's have a look at the data on new daily cases and deaths:

Determinants of US COVID-19 cases

Now let's estimate the following regression model:

```
\log(new\_cases_t) = \beta_0 + \beta_1 gath_t + \beta_2 gath_{t-7} + \beta_3 gath_{t-14} + \beta_4 \log(new\_cases_{t-7}) + u_t
```

where new_cases is the number of new COVID cases, and gath is a variable taking on values 0–4 representing severity of gatherings restrictions.

1. Are any of these variables significant determinants of new COVID cases? If so, which ones?

Correcting for Serial Correlation

Now let's compute HAC (Heteroskedasticity and Autocorrelation Consistent) standard errors. To do so, we'll use the NeweyWest option in the coeftest() function of the lmtest package.¹

```
coeftest(est) # re-display baseline results
coeftest(est, vcov=NeweyWest)
```

2. How does your interpretation of the interest rate model change, using the Newey-West standard errors?

Oklahoma COVID cases

```
df.ok <- covid19(c("US"),level=2) %>% filter(key_alpha_2=="OK")
df.ts.ok <- as_tsibble(df.ok, key=id, index=date)
df.ts.ok %<>% mutate(new_deaths = difference(deaths),
```

 $^{^{1}\}mbox{NeweyWest}$ comes from the sandwich package.

Traditional macroeconomic model of interest rates and inflation

Load the data

We can also use data on US macroeconomic indicators. The wooldridge data set is called intdef.

```
df.ts <- as_tsibble(intdef, key=NULL, index=year)</pre>
```

Now it will be easy to include lags of various variables into our regression models.

Plot time series data

Let's have a look at the inflation rate for the US over the period 1948–2003:

```
ggplot(df.ts, aes(year, inf)) + geom_line()
```

Determinants of the interest rate

Now let's estimate the following regression model:

$$i3_t = \beta_0 + \beta_1 in f_t + \beta_2 in f_{t-1} + \beta_3 in f_{t-2} + \beta_4 de f_t + u_t$$

where i3 is the 3-month Treasury Bill interest rate, inf is the inflation rate (as measured by the CPI), and def is the budget deficit as a percentage of GDP.

```
est \leftarrow lm(i3 \sim inf + lag(inf,1) + lag(inf,2) + def, data=df.ts)
```