Assignment 6

DESABOINA SRI SATHWIK-AI24BTECH11007

GATE-2008:ME

1) A set of 5 jobs is to be processed on a single machine. The processing time (in days) is given in the table below. The holding cost for each job is Rs. *K* per day.

Job	Processing Time
P	5
Q	2
R	3
S	2
T	1

A schedule that minimizes the total inventory cost is

(GATE-ME:2008)

a) T-S-Q-R-P

c) T-R-S-Q-P

b) P-R-S-Q-T

d) P-Q-R-S-T

2) For generating a Coon's surface we require

(GATE-ME:2008)

- a) a set of grid points on the surface
- b) a set of grid control points
- c) four bounding curves defining the surface
- d) two bounding curves and a set of grid control points
- 3) Internal gear cutting operation can be performed by

(GATE-ME:2008)

- a) milling
- b) shaping with rack cutter
- c) shaping with pinion cutter
- d) hobbing
- 4) Consider the shaded triangular region P shown in the figure. What is $\iint_{P} xydxdy$?

(GATE-ME:2008)

a) $\frac{1}{6}$	b) $\frac{2}{9}$	c) $\frac{7}{16}$	d) 1	
5) The direction of the direction of	I derivative of the scalar f of the vector $\mathbf{a} = 3\hat{i} - 4\hat{j}$ is	unction $f(x, y, z) = x^2 + 2$	$y^2 + z$ at the point $P = (1, 2)$, 1, 2) in
the direction of	The vector $\mathbf{a} = 3i - 4j$ is		(GATE-M	E:2008)
a) -4 b) -2	c) -1 d) 1			
6) For what value	e of a , if any, will the follow	owing system of equation	s in x, y, z have a solution	?
		2x + 3y = 4		(1)
		x + y + z = 4		(2)
		x + 2y - z = a		(3)
			(GATE-M	E:2008)
a) Any real nub) 0	mber	c) 1d) There is no	such value	
7) Which of the	following integrals is unbo	unded?	(GATE-M	E:2008)
a) $\int_0^{\pi/4} \tan x dx$ b) $\int_0^1 \frac{1}{x^2 + 1} dx$		c) $\int_0^1 xe^{-x^2} dx$ d) $\int_0^1 \frac{1}{1-x} dx$		
8) The integral ϕ	f(z)dz evaluated around the	ne unit circle on the comp	plex plane for $f(z) = \frac{\cos z}{z}$ if (GATE-M	is E:2008)
a) $2\pi i$	b) 4π <i>i</i>	c) $-2\pi i$	d) 0	
9) The length of	the curve $y = \frac{2}{3}x^{3/2}$ between	en x = 0 and x = 1 is	(GATE-M	E:2008)
a) 0.27	b) 0.67	c) 1	d) 1.22	,
10) The eigenvector	ors of the matrix	$\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$		
are written in	the form $\begin{pmatrix} 1 \\ a \end{pmatrix}$ and $\begin{pmatrix} 1 \\ b \end{pmatrix}$. What	, ,		
	• •		(GATE-M	E:2008)

c) 1

b) $\frac{1}{2}$

11) Let $f = x^y$. What is $\frac{\partial^2 f}{\partial x \partial y}$ at x = 2, y = 1?

a) 0

(GATE-ME:2008)

d) 2

a) 0

b) ln 2

c) 1

- d) $\frac{1}{\ln 2}$
- 12) It is given that y'' + 2y' + y = 0, y(0) = 0, y(1) = 0. What is y(0.5)?

(GATE-ME:2008)

a) 0

b) 0.17

c) 0.62

- d) 1.13
- 13) The strain energy stored in the beam with flexural rigidity EI and loaded as shown in the figure is

(GATE-ME:2008)

a) $\frac{P^2L^3}{3EI}$ b) $\frac{2P^2L^3}{2EI}$

- c) $\frac{4P^2L^3}{3EI}$ d) $\frac{8P^2L^3}{3EI}$
- 14) For the component loaded with a force F as shown in the figure, the axial stress at the corner point P is

(GATE-ME:2008)

a) $\frac{F(3L-b)}{4b^3}$

b) $\frac{F(3L+b)}{4b^3}$

- c) $\frac{F(3L-4b)}{4b^3}$
- d) $\frac{F(3L-2b)}{4b^3}$
- 15) A solid circular shaft of diameter 100 mm is subjected to an axial stress of 50 MPa. It is further subjected to a torque of 10 kNm. The maximum principal stress experienced on the shaft is closest to

(GATE-ME:2008)

- a) 41 MPa
- b) 82 MPa
- c) 164 MPa
- d) 204 MPa
- 16) A circular disk of radius R rolls without slipping at a velocity v. The magnitude of the velocity at point P is

(GATE-ME:2008)

a) $\frac{\sqrt{3}}{v}$

b) $\frac{\sqrt{3}v}{2}$

c) $\frac{v}{2}$

- d) $v\sqrt{3}$
- 17) Consider a truss PQR loaded at P with a force F as shown in the figure. The tension in the member QR is

(GTE-ME:2008)

a) 0.5F

- b) 0.63*F*
- c) 0.73*F*
- d) 0.87*F*