Лабораторная работа №3. Кластерный анализ систем.

Цель работы: Ознакомиться с применением теории нечетких отношений к кластерному

анализу систем.

Задание к работе: Вариант 1. Построить матрицу парных сравнений (нечеткое отношение) по результатам операции нечёткого сравнения строк, задаваемых пользователем.

Построить транзитивное замыкание нечеткого отношения, определить класс

нечеткого отношения и сделать вывод о «схожести» входных строк.

Вариант 2. Построить матрицу парных сравнений (нечеткое отношение) по результатам операции нечёткого сравнения монохромных изображений, задаваемых пользователем. Построить транзитивное замыкание нечеткого отношения, определить класс нечеткого отношения и сделать вывод о «схожести» входных изображений.

Теоретическая часть

Приложения теории нечетких отношений к кластерному анализу систем

В кластерном анализе (автоматической классификации) предложена процедура кластеризации, основанная на транзитивном замыкании исходного нечеткого отношения, получаемого в результате опроса экспертов.

Например, эксперты в некоторой шкале сравнений указывают силу сходства между портретами людей, принадлежащих к нескольким семьям (универсуме U, мощность |U|=N), и на основе по-парного сравнения всех портретов строится отношение, в виде матрицы сходства $M=\left\|m_{i,j}\right\|, i,j=\overline{1,N}, N=\left|U\right|$, на множестве являющимся декартовым произведением $U\times U$. Если наложить ограничение на элементы матрицы сходства, такое что $0\leq m_{i,j}\leq 1, i,j=\overline{1..N}$, получим бинарное нечеткое отношение первого типа. Далее ищется транзитивное замыкание этого НО и выбирается порог (уровень) α — таким образом, чтобы число классов разбиения, получаемое из α -уровней, равнялось числу семей N.

Процедура классификации относила портреты, попавшие в один класс разбиения, к одной семье. В проведенных экспериментах результаты классификации дали хорошее согласование с истинным разбиением портретов по семьям.

Нечеткие отношения

Определение *Нечетким отношением* \tilde{R} на множествах $X_1, X_2, ..., X_n$ называется нечеткое подмножество декартова произведения $X_1 \times X_2 \times ... \times X_n$. Степень принадлежности $\mu_{\tilde{R}}(X_1, X_2, ..., X_n)$ показывает степень выполнения отношения \tilde{R} между элементами $(x_1, x_2, ..., x_n)$, $x_i \in X_i$, $i = \overline{1..n}$. Если значение $0 \le \mu_{\tilde{R}}(X_1, X_2, ..., X_n) \le 1$, то такое НО называется НО отношением типа 1.

Рассмотрим *бинарные нечеткие отношения*, которые задаются на декартовом произведении двух множеств. Обозначим эти множества через X и Y. Тогда задание бинарного нечеткого отношения \tilde{R} на $X \times Y$ состоит в указании всех троек $\left(x,y,\mu_{\tilde{R}}(x,y)\right)$, где $x \in X$, $y \in Y$, или, что тоже самое, $(x,y) \in \left(X \times Y\right)$.

Пример 1. Задать нечеткое отношение $x \approx y$ ("x приблизительно равно y").

Пусть $(x, y) \in \{1, 2, 3\}$. Тогда нечеткое отношение удобно задавать матрицей вида:

$$\tilde{R} = \begin{bmatrix} 0 & 1 & 2 & 3 & \leftarrow y & x \downarrow \\ 1 & 0.5 & 0.2 & 0.1 \\ 0.5 & 1 & 0.6 & 0.3 \\ 0.2 & 0.6 & 1 & 0.8 \\ 0.1 & 0.3 & 0.8 & 1 \end{bmatrix} \qquad \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$$

Для непрерывных множеств X=[0,3] и Y=[0,3] нечеткое отношение можно задать следующей функцией принадлежности: $\mu_{\tilde{R}}(x,y)=e^{-0.2(x-y)^2}$.

Пример 2. Задать нечеткое отношение "x намного меньше, чем y".

Пусть $(x, y) \in \{1, 2, 3\}$. Тогда нечеткое отношение можно задать матрицей вида:

$$\tilde{R} = \begin{bmatrix} 0 & 0.2 & 0.6 & 1 \\ 0 & 0.2 & 0.6 & 1 \\ 0 & 0 & 0.2 & 0.6 \\ 0 & 0 & 0 & 0.2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$$

Пример 3. Задать отношение "схожий менталитет" для следующих национальностей {Украинцы(У), Чехи (Ч), Австрийцы (А), Немцы (Н)}.

Использование обычного, не нечеткого отношения позволяет выделить только одну пару наций со схожими менталитетами – немцев и австрийцев. Этим отношением не отражается тот факт, что по менталитету чехи более близки к немцам, чем к украинцам. Нечеткое отношение позволяет легко представить такую информацию:

$$\tilde{R} = \begin{bmatrix} 1 & 0.4 & 0.2 & 0.1 \\ 0.4 & 1 & 0.4 & 0.3 \\ 0.2 & 0.4 & 1 & 0.8 \\ 0.1 & 0.3 & 0.8 & 1 \end{bmatrix} \begin{array}{c} \mathbf{Y} \\ \mathbf{H} \\ \mathbf{H$$

Операции над нечеткими отношениями

Перейдем теперь к рассмотрению операций над нечеткими отношениями. Некоторые из этих операций являются аналогами соответствующих операций для обычных отношений, однако, как и в случае нечетких множеств, существуют операции, характерные лишь для нечетких отношений. Заметим, что так же, как и в случае нечетких множеств, операции объединения и пересечения нечетких отношений (и операцию произведения) можно определить различными способами.

Пусть на множестве X заданы два нечетких отношения A и B, T, e. в декартовом произведении $X \times X$ заданы два нечетких множества A и B, Нечеткие множества $C = A \cup B$ и $D = A \cap B$ называются соответственно объединением и пересечением нечетких отношений A и B на множестве X. Если воспользоваться определением объединения и пересечения нечетких множеств, то для функций принадлежности отношений C и D получаем

$$\mu_{C}(x, y) = \max \{ \mu_{A}(x, y), \mu_{B}(x, y) \},$$

$$\mu_{D}(x, y) = \min \{ \mu_{A}(x, y), \mu_{B}(x, y) \}.$$

Говорят, что нечеткое отношение B включает в себя нечеткое отношение A, если для нечетких множеств A и B выполнено $A \subseteq B$. Для функций принадлежности этих множеств неравенство

 $\mu_A(x,y) \le \mu_B(x,y)$ выполняется при любых x, y \in X. В рассмотренном выше примере отношений (\ge) и (>>) нечеткое отношение R содержится в отношении R, т. е. должно быть $\mu_R(x,y) \le \mu_R(x,y)$ для любых чисел x, y из интервала [0, 1].

Композиция нечетких отношений

Операция композиции нечетких отношений R_1 в $X \times Y$ и R_2 в $Y \times Z$ позволяет определить нечеткое отношение в $X \times Z$.

Пусть R_1 есть нечеткое отношение в $X \times Y$, R_2 - нечеткое отношение в $Y \times Z$. (Max-min) – композиция $R_1 \circ R_2$ определяется выражением: $\mu_{R_1 \circ R_2}(x,z) = \max_y \left[\min \left\{ \mu_{R_1}(x,y), \mu_{R_2}(y,z) \right\} \right]$, где: $x \in X$, $y \in Y$, $z \in Z$.

Вычисление композиции нечетких отношений аналогично вычислению произведения матриц, ("столбец на строку"), только вместо произведения и суммы выполняются операции взятия минимума и максимума соответственно.

Пример 4: Пусть $X = \{x_1, x_2, x_3\}$, $Y = \{y_1, y_2, y_3, y_4, y_5\}$, $Z = \{z_1, z_2, z_3, z_4\}$. Отношение R_1 на $X \times Y$ задано следующей матрицей:

R_1	y ₁	y_2	y ₃	y 4	y 5
\mathbf{x}_1	0.1	0.2	0.5	0.7	0.3
X2	0.3	0	1	0.3	0.7
X3	0.1	0.8	0	0	1

Нечеткое отношение R₂ на Y×Z задано следующей матрицей:

R_1	\mathbf{z}_1	yz_2	Z 3	\mathbf{z}_4
\mathbf{y}_1	0.9	0	0.4	0.7
y_2	0.3	0.4	0.9	1
y ₃	1	0.4	0.2	0
y 4	0.3	0.4	0.7	0.2
y 5	0.5	0.5	0.9	0.1

Тогда нечеткое отношение $R_1^{\circ} R_2$ определено на $X \times Z$ и выражается следующей матрицей:

R_1	\mathbf{z}_1	\mathbf{z}_2	Z 3	\mathbf{z}_4
\mathbf{x}_1	0.5	0.4	0.7	0.2
\mathbf{x}_2	1	0.5	0.7	0.8
X 3	0.5	0.5	0.9	0.8

Свойства нечетких отношений

- *Рефлексивность*. Нечеткое отношение R на множестве X называется рефлексивным, если для любого $x \in X$ выполнено равенство $\mu_R(x,x) = 1$ ($R(x,x) = 1, \forall x \in X$). В случае конечного множества X главная диагональ матрицы рефлексивного нечеткого отношения R состоит целиком из единиц. Примером рефлексивного нечеткого отношения может служить отношение «примерно равны» в множестве чисел.
- Антирефлексивность: R(x,x) = 0, $\forall x \in X$. Функция принадлежности антирефлексивного нечеткого отношения обладает свойством $\mu_R(x,x) = 0$ при любом $x \in X$. Антирефлексивно, например, отношение «много больше» в множестве чисел. Ясно, что дополнение рефлексивного отношения антирефлексивно.

- *Симметричность*. Нечеткое отношение R на множестве X называется симметричным, если для любых x, $y \in X$ выполнено равенство: $\mu_R(x,y) = \mu_R(y,x)$. Матрица симметричного нечеткого отношения, заданного в конечном множестве, симметричная. Пример симметричного нечеткого отношения отношение «сильно различаться по величине».
- *Антисимметричность*. Нечеткое бинарное отношение называется антисимметричным, если $\forall (x,y) \in U \times U : x \neq y \Rightarrow \mu_R(x,y) \neq \mu_R(y,x)$ или $\mu_R(x,y) = \mu_R(y,x) = 0$.
- *Транзитивность*. Нечеткое отношение R на множестве X называется транзитивным, если $R \circ R \subseteq R$, $R(x,z) \ge R(x,y) \land R(y,z)$, $\forall x,y,z \in X$.

Из этого определения видно, что свойство транзитивности нечеткого отношения зависит от способа определения композиции нечетких отношений, под которой будем понимать *max-min* композицию.

Транзитивное замыкание нечеткого бинарного отношения

Пусть R - нечеткое отношение в $U \times U$. Определим $R^2 = R^{\circ}R$ с функцией принадлежности

$$\mu_{R^2}(x,z) = \max_{y} \left[\min \left\{ \mu_R(x,y), \mu_R(y,z) \right\} \right],$$

где x, y, $z \in U$.

Сравнивая последнее выражение с определением транзитивности для нечетких бинарных отношений, не трудно увидеть, что свойство транзитивности можно записать в следующем виде:

$$R^2 \subset R$$
.

Аналогично можно определить по индукции Rⁿ:

$$R^n = R^{n-1} \circ R, \ n = 2, 3, \dots$$

Пусть $R^2 \subset R$ и $R^{n+1} \subset R^n$, тогда $R^n \subset R$.

Tранзитивное замыкание \tilde{R} нечеткого бинарного отношения R определяется как:

$$\tilde{R} = R^1 \cup R^2 \cup ... \cup R^n ...$$

где R^n определяется рекурсивно: $R^1 = R$, $R^n = R^{n-1} {}^{o}R$, n = 2, 3, ...

Как проверить, построили мы или нет транзитивное замыкание конкретного нечеткого бинарного отношения? Ответ на этот вопрос дает следующее утверждение: Пусть R - некоторое нечеткое бинарное отношение. Если существует k такое, что $R^{k+1} = R^k$, то $\tilde{R} = R \bigcup R^2 \bigcup ... \bigcup R^k$. Для конечных HO, заданных на счетных множествах число k равняется рангу матрицы HO (k = rang k).

Вычисление транзитивного замыкания нечеткого отношения — довольно утомительное дело, даже если множество состоит из небольшого числа элементов. $\tilde{R} = R^1 \bigcup R^2 \bigcup ... \bigcup R^n ...$

Декомпозиция нечетких отношений

Одно из важнейших свойств НО заключается в том, что они могут быть представлены в виде совокупности обычных отношений, причем эти отношения могут быть упорядочены по включению, представляя собой иерархическую совокупность отношений. Разложение НО на совокупность обыкновенных отношений основано на понятии α -уровня нечеткого отношения.

Множества уровня определяются так:

$$R_{\alpha} = ((x, y) | (x, y) \in X \times X, \mu_{R}(x, y) \ge \alpha)$$

Если обычное отношение R_{α} подобно HO отождествлять с его характеристической функцией R_{α} : $X \times Y \rightarrow [0, 1]$, то соотношение α -уровня можно переписать в виде:

$$R_{\alpha} = \begin{cases} 1, & \text{если } R(x, y) \ge \alpha, \\ 0, & \text{в противном случае.} \end{cases}$$

Нетрудно заметить, что α-уровни нечеткого отношения удовлетворяют соотношению:

$$\alpha \leq \beta \Longrightarrow R_{\alpha} \supseteq R_{\beta}$$
,

представляя собой совокупность вложенных друг в друга отношений.

Теорема о декомпозиции: Любое отношение R можно представить в форме: $R = \max_{\alpha} [\alpha \times R_{\alpha}]$ $0 < \alpha \le 1$.

Некоторые специальные типы нечетких отношений, отношение подобия

Рассмотрим отношение подобия и связанные с ним отношения различия, сходства и их свойства. Эти отношения интересны для нас тем, что они имеют интересные приложения в задачах обработки информации, демонстрирующие новые возможности такой обработки, предоставляемые введением и учетом нечеткости.

• Нечетким отношением подобия называется транзитивное рефлексивное симметричное нечеткое бинарное отношение. Очевидно, что отношение подобия является предпорядком.

Пример 5: Для любого a: 0<a<1 нечеткое бинарное отношение R является отношением подобия.

1	a	a	a	a
a	1	a	a	a
a	a	1	a	a
a	a	a	1	a
a	a	a	a	1

• Нечеткое бинарное отношение, обладающее свойствами антирефлексивности, симметричности и (min-max) - транзитивности называется отношением *различия*.

Алгоритм построения матрицы парных сравнений строк

Данная операция используется для поиска «похожих до определённой степени» строк. Скажем, если в большом списке поставщиков есть организация «Копыта и Рога, ООО», а вы пытаетесь найти в нём по памяти «ЗАО "Рога и Копыта"», то при использовании традиционных методов поиска вас, скорее всего, ждёт неудача. Нечёткое сравнение позволяет без труда находить такие совпадения.

Алгоритм построения матрицы парных сравнений строк использует в качестве аргументов две строки и параметр сравнения — максимальную длину сравниваемых подстрок (кластеров). Результатом работы для каждой подстроки является число, лежащее в пределах от 0 до 1. 0 соответствует полному несовпадению двух строк, а 1 — полной (в определённом ниже смысле) их идентичности.

Алгоритм сравнения составляет всевозможные комбинации подстрок с длинной, вплоть до максимально указанной, и подсчитывает их совпадения в двух сравниваемых строках. Количество совпадений, разделённое на число вариантов, объявляется коэффициентом схожести строк и заносится в матрицу парных сравнений.

Поясним работу алгоритма на примере, где в качестве аргументов заданы две строки "test" и "text" и максимальная длина сравниваемых подстрок равной 4 (т.е. максимально сравниваются слова целиком). Рассмотрим, каким образом происходит сравнение строк и заполнение матрицы парных сравнений.

Таблица № 1. Пояснения к алгоритму построения матрицы парных сравнений строк.

Сравниваемая подстрока	Подстроки второй строки	Есть совпадение?	Количество совпадений	Количест во вариантов	Результат		
Сравниваем стр	Сравниваем строку <i>test</i> со строкой <i>text</i> по подстрокам длины 1.						
T	t, e, x, t	да		4	3 / 4		
Е	t, e, x, t	да	3				
S	t, e, x, t	нет	3				
T	t, e, x, t	да					
Сравниваем стр	оку <i>text</i> со строко	ой test по подстрокам	г длины 1.				
T	t, e, s, t	да					
Е	t, e, s, t	да	3	4	3 / 4		
X	t, e, s, t	нет	3	4	3/4		
T	t, e, s, t	да					
Сравниваем стр	оку test со строко	й <i>text</i> по подстрокам	длины 2.				
Te	te, ex, xt	да		3	1/3		
Es	te, ex, xt	нет	1				
St	te, ex, xt	нет					
Сравниваем стр	Сравниваем строку <i>text</i> со строкой <i>test</i> по подстрокам длины 2.						
Te	te, es, st	да					
Ex	te, es, st	нет	1	3	1/3		
Xt	te, es, st	нет			l		
Сравниваем стр	оку test со строко	й <i>text</i> по подстрокам	длины 3.				
Tes	tex, ext	нет	0	2	0 / 2		
Est	tex, ext	нет	U	2			
Сравниваем стр	Сравниваем строку <i>text</i> со строкой <i>test</i> по подстрокам длины 3.						
Tex	tes, est	нет		2	0.72		
Ext	tes, est	нет	0		0 / 2		
Сравниваем строку <i>test</i> со строкой <i>text</i> по подстрокам длины 4.							
Test	Text	нет	0	1	0 / 1		
Сравниваем стр	Сравниваем строку <i>text</i> со строкой <i>test</i> по подстрокам длины 4.						
Text	Test	нет	0	1	0 / 1		

Приведем пример полностью заполненной матрицы парных сравнений для строк «test» и «text»:

Таблица № 2. Пояснения к алгоритму построения матрицы парных сравнений строк.

	text	Подстроки длины 1	Подстроки длины 2	Подстроки длины 3	Подстроки длины 4
test		t e x t	te ex xt	tex ext	Text
Подстроки длины 1	t e s t	5 / 16	6 / 12	6/8	3 / 4
Подстроки длины 2	te es st	6 / 12	1/9	1/6	1/3
Подстроки длины 3	tes est	6/8	1/6	0 / 4	0 / 2
Подстроки длины 4	test	3 / 4	1/3	0/2	0 / 1

Покажем, каким образом вычисляется элемент таблицы с номером (3,2) т.е. когда подстроки длины три строки «test» сравниваются с подстроками длины два строки «text»:

Таблица № 3. Пояснения к алгоритму построения матрицы парных сравнений строк.

Подстроки длины три строки «test» Подстроки длины два строки «text»		Совпадения		Результат
	te	Да		
tes	ex	Нет	1/3	
	xt	Нет		1/6
	te	Нет		1 / 0
est	ex	Нет	0/3	
	xt	Нет		

Алгоритм построения матрицы парных сравнений изображений

Алгоритм построения матрицы парных сравнений изображений использует в качестве аргументов два монохромных изображения и параметр сравнения – количество элементов (кластеров) разбиения изображения в строках и столбцах (обозначим его через *M*). Результатом работы, для каждых двух элементов различных изображений находящихся в одной строке и столбце разбиения, является число, лежащее в пределах от 0 до 1. 0 соответствует полному несовпадению элементов изображения, а 1 – полной (в определённом ниже смысле) их идентичности. После выполнения попарных сравнений всех элементов изображений получаем матрицу парных сравнений.

Значения заносимые в матрицу парных сравнений, вычисляются по правилу алгебраической суммы, отношений количества значащих пикселей к общему количеству пикселей в кластере:

$$m_{i,j} = \frac{N_{1-i,j}^{Black}}{N_{1-i,j}^{All}} + \frac{N_{2-i,j}^{Black}}{N_{2-i,j}^{All}} - \frac{N_{1-i,j}^{Black}}{N_{1-i,j}^{All}} \times \frac{N_{2-i,j}^{Black}}{N_{2-i,j}^{All}}, \qquad i, j = \overline{1..M}.$$

Где: $N_1^{Black}_{i,j}$, $N_2^{Black}_{i,j}$ - число значащих (для черно-белого изображения это черный цвет) пикселей в i,j-ом кластере для 1-го и 2-го изображений соответственно;

 $N_{1\ i,j}^{All}$, $N_{2\ i,j}^{All}$ - общее число пикселей в i, j-ом кластере для 1-го и 2-го изображений соответственно.

Получение вывода об идентичности строк и изображений

После заполнения матрицы парных сравнений, в соответствии с вышеуказанными алгоритмами, которые в свою очередь являются нечеткими отношениями на множестве являющимся декартовым произведением разбитых на кластеры множеств входных данных (строк или изображений), требуется найти транзитивное замыкание этого нечеткого отношения, по *max-min* композиции. На основании полученного транзитивного замыкания сделать вывод об идентичности входных данных (строк или изображений).

Литература

- 1. Заде Л. Понятие лингвистической переменной и его применение для принятия приближенных решений. М.: Мир, 1976. -165с.
- 2. Алтунин А.Е., Семухин М.В. Модели и алгоритмы принятия решений в нечетких условиях: Монография. Тюмень: Издательство Тюменского государственного университета, 2000. 352 с.