EASYMATH

Slightly faster mathematical typesetting

Tyler Griffiths

Contents

Conter	nts	1
1	Introduction	1
2	Symbols	2
3	Brackets	2
4	Functions	2
5	Differentials	2
6	Integrals	4

1 Introduction

This LATEX package provides a number of commands to make it easier to "live-TeX" mathematically-heavy lectures. It generally reflects the sorts of mathematics I've had to type during the course of an undergraduate Chemistry degree, taking an additional module in scientific computing (with a focus on partial differential equations).

2 Contents

Table 2.1: Symbols provided by EASYMATH.

Command	Example	Description
\D	d	Differential operator
\del	∂	Partial differential operator
\E	e	Euler's number
<pre>\Ey, \egy, \energy</pre>	\mathcal{E}	Energy
\ham	${\cal H}$	Hamiltonian operator
\V	\mathcal{V}	Voltage (as a variable, to avoid confusion with unit)

Every command is wrapped in \ensuremath and so can be used in prose directly, without entering \$math mode\$.

2 Symbols

This package defines a few symbols, largely for later internal use.

3 Brackets

Several types of brackets are provided.

4 Functions

Here are provided some common functions and useful snippets for writing them.

5 Differentials

Much of this package aims to make type setting of differential equations faster. Utilities are provided for both partial and ordinary differentials. 5. Differentials 3

 Table 3.2: Brackets provided by EASYMATH.

Command	Example	Description
\br	(abc)	Parentheses
\abr	$\langle abc \rangle$	Angle brackets
\cubr	$\{abc\}$	Curly braces
\sqbr	[abc]	Square brackets
\bra	$\langle \phi $	Dirac "bra"
\ket	$ \psi angle$	Dirac "ket"
\braket	$\langle \phi \psi \rangle$	Dirac "braket"
\bramket	$\langle \phi A \psi \rangle$	Dirac "braket" (mnemonic: $middle$)

Table 4.3: Function commands provided by EASYMATH.

Command	Example	Description
\tx	$\mathcal{E}_{ ext{total}}$	A shorter alias for text. Does not require $\{\}$ in $su\{b,per\}$ script.
\of	f(x)	Correctly-spaced, correctly-sized, function argument.
\upf	abc(x)	Upright multiletter function with argument.
\ex	$e^{(i\pi)}$	Exponential function with argument.
\inv	$\frac{1}{\rho}$	Inverse.
\is	$y \Leftarrow ax^2$	Algebraic assignment.
\Oh	$\mathcal{O}\!\left(n^3\right)$	Big-O notation.
\fr	(x+y)/z	Fraction, either normal or slashed depending on context. Arguments parenthesized as required.

4 Contents

Table 5.4: Differential functions provided by EASY-MATH.

Command	Example	Description
\diffn	$\frac{\mathrm{d}^4 y}{\mathrm{d}x^4}$	nth order ordinary differential.
\diff	$\frac{\mathrm{d}y}{\mathrm{d}x}$	First-order differential.
\ddtn	$\frac{\mathrm{d}^6 y}{\mathrm{d}t^6}$	nth order ordinary differential with respect to time.
\ddt	$\frac{\mathrm{d}y}{\mathrm{d}t}$	First-order ordinary differential with respect to time.
\pdiffn	$\frac{\partial^2 y}{\partial x^2}$	nth order partial differential.
\pdiff	$\frac{\partial y}{\partial x}$	First-order partial differential.
\pdtn, \pddtn	$\frac{\partial^2 T}{\partial t^2}$	nth order partial differential with respect to time.
\pdt, \pddt	$\frac{\partial \Gamma}{\partial t}$	First-order partial differential with respect to time.

Table 6.5: Integral functions provided by EASYMATH.

Command	Example	Description
\lint	$\int_{a}^{b} f(x) \mathrm{d}x$	Limited integral.
\uint	$\int g(r) \mathrm{d}r$	Unlimited integral.

6 Integrals

A few commands are provided to make it easier to type integrals.