Lab 6: Advanced Plotting and SciPy

Name:	University Number:
Exercise 1: Wave F	unction for a 2D Infinite Square Well
AIM:	•
	particle in a 2D infinite square well located in the region $0 \le 3$
$\psi_{m,n}$	$(x, y) = \frac{2}{L} \sin\left(\frac{m\pi x}{L}\right) \sin\left(\frac{n\pi y}{L}\right)$
of the state. Write a Python program the	icle, $m = 1, 2, 3,$ and $n = 1, 2, 3,$ are the quantum numbers that uses the matplotlib module to make the 3D surface plower function $\psi_{4,3}(x, y)$ over the region $0 \le x \le L$, $0 \le y \le L$ side
ALGORITHM:	
PROGRAM:	

PHYS2160	Introductory Computational Physics	2022 Spring
OUTPUT:		

Exercise 2: Mass, Center of Mass, and Moment of Inertia of a Laminar

AIM:

For a lamina occupying a region D in the x-y plane with mass density $\sigma(x, y)$, the mass M, the center of mass $(x_{\rm cm}, y_{\rm cm})$, as well as the moment of inertia about the x-axis I_x and about the y-axis I_y are given by the double integrals

$$M = \iint_{D} \sigma(x, y) dA,$$

$$x_{cm} = \frac{1}{M} \iint_{D} x \, \sigma(x, y) dA, \quad y_{cm} = \frac{1}{M} \iint_{D} y \, \sigma(x, y) dA,$$

$$I_{x} = \iint_{D} y^{2} \, \sigma(x, y) dA, \quad I_{y} = \iint_{D} x^{2} \, \sigma(x, y) dA.$$

Write a Python program that uses the scipy.integrate function dblquad to compute M, $x_{\rm cm}$, $y_{\rm cm}$, I_x , and I_y for a lamina occupying the region $0 \le x \le 2$, $0 \le y \le xe^{-x}$ with mass density $\sigma(x, y) = x^2y^2$ and then outputs the results. Assume all the quantities are expressed in SI units.

ALGORITHM:		
PROGRAM:		
FROOKAWI.		

PHYS2160	Introductory Computational Physics	2022 Spring
OUTPUT:		

Exercise 3: Series *LRC* Circuit

AIM:

A series LRC circuit is composed of an inductor of inductance L, a resistor of resistance R, and a capacitor of capacitance C connected in series with an alternating emf $\xi(t)$. It can be shown that the charge q on the capacitor obeys the differential equation:

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = \xi(t)$$

where the current in the circuit I(t) = q'(t). Write a Python program to solve this equation subject to the initial conditions q(0) = 0 C, I(0) = 6 A from time t = 0 to 5s for the case L = 0.5 H, $R = 20 \Omega$, C = 0.001 F, and $\xi(t) = 100 \sin 60t$ V by using the scipy.integrate.odeint method. Your program should also use the matplotlib module to plot the numerical solutions of q(t) and I(t) versus t as separate plots sharing the same horizontal axis.

ALGORITHM:		
PROGRAM:		

PHYS2160	Introductory Computational Physics	2022 Spring	
OUTPUT:			

Exercise 4: Legendre Polynomial

AIM:

Below is a table listing the data set drawn from the Legendre polynomial of degree 4, $P_4(x)$, with some noise added.

x	-1.0	-0.8	-0.6	-0.4	-0.2	0
у	0.91695	-0.19706	-0.29293	-0.04645	0.24494	0.44410
x	0.2	0.4	0.6	0.8	1.0	
у	0.31141	-0.04369	-0.42651	-0.39541	1.14994	

Write a Python program that uses the scipy.optimize function curve_fit to fit the data set to a degree-4 polynomial of x with the initial guesses of all fitting parameters set to 1, prints out the fitting parameters, as well as plots the data set, fitting result, and the polynomial $P_4(x)$ on the same graph using the matplotlib module and the scipy.special function eval_legendre.

ALGORITHM:		
PROGRAM:		

PHYS2160	Introductory Computational Physics	2022 Spring	
OUTPUT:			