

MA1014 CALCULUS AND ANALYSIS TUTORIAL 2

Dr. Andrew Tonks: apt12@le.ac.uk

Ben Smith: bjs30@le.ac.uk

ANNOUNCEMENTS

• I'm not here this week! 😊

 Make sure you keep up to date with all module content!

A function takes an input, say x, does something to it $(f: x \to \mathbb{R})$, and gives an output f(x).

More precisely, a function maps a **Domain** $(D = \text{dom}(f) \subseteq \mathbb{R})$ to a **Range** (range $(f) = \{f(x) : x \in D\}$)

Example: $f(x) = \sin(x)$, $dom(f) = (-\infty, \infty)$ or \mathbb{R} and range(f) = [-1,1]

Further, it is possible to classify some functions as either **Odd** or **Even**:

- If f(-x) = -f(x), then f is said to be **Odd**
- If f(-x) = f(x), then f is said to be **Even**

Example: $g(x) = x^2$, $g(-x) = (-x)^2 = x^2 = g(x)$ i.e. even!

EXERCISE:

GIVE THE DOMAIN & RANGE OF EACH FUNCTION, AND ALSO CLASSIFY IT AS EITHER ODD, EVEN OR NEITHER

$$a) \quad f(x) = \cos(x)$$

e)
$$l(x) = ln(x)$$

b)
$$g(x) = e^x$$

$$f) \quad m(x) = |x|$$

c)
$$h(x) = x^3$$

g)
$$p(x) = \frac{x^2+1}{3x^3+x}$$

$$d) \quad k(x) = \sin^2(x)$$

h)
$$q(x) = x^5 + 4x^3 - 2x$$

COMPOSITIONS OF FUNCTIONS

If $f: D_f \to \mathbb{R}$, $g: D_g \to \mathbb{R}$: range $(g) \subseteq D_f$ then the Composition, $f \circ g$, on D_g can be defined as

$$(f \circ g)(x) = f(g(x)), \qquad x \in D_g$$

Note: Compositions are not generally commutative (i.e. $f \circ g \neq g \circ f$)

Exercise: If $f(x) = x^2 + 6$ and g(x) = 2x - 1, determine $(f \circ g)(x)$ and $(g \circ f)(x)$.

ONE-TO-ONE, ONTO & BIJECTIVITY

- A function, f, is **One-to-One** (Injective) if $\forall x_1, x_2 \in D_f$, $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
- A function, f, is **Onto** (Surjective) if $\forall y \in \text{range}(f)$, $\exists x \in D_f : f(x) = y$
- A function is **Bijective** if it is **both** One-to-One and Onto

Example: Let $f: X \to Y$, classify the diagrams below.

٦

If f(x) is a one-to-one function, there exists a unique inverse function which we denote by

$$f^{-1}: \operatorname{ran}(f) \to \operatorname{dom}(f)$$

such that

$$f^{-1} \circ f(x) = x \ \forall x \in \text{dom}(f)$$

and

$$f \circ f^{-1}(y) = y \ \forall y \in \operatorname{ran}(f)$$

Example: Find the inverse function of

$$f(x) = \frac{x+4}{2x-5}$$

EXERCISE:

DETERMINE IF THESE FUNCTIONS ARE ONE-TO-ONE. IF SO, FIND IT'S INVERSE.

a)
$$f(x) = 3x - 2$$

e)
$$k(x) = \frac{1+2x}{7+x}$$

b)
$$g(x) = \frac{x}{2} + 7$$

$$f) \quad l(x) = |x|$$

c)
$$h(x) = x^2$$

g)
$$m(x) = \cos(x)$$

d)
$$j(x) = \sqrt[5]{2x + 11}$$

h)
$$n(x) = (x-2)^3 + 1$$

$$rac{d}{dx}\int_a^x f(t)\,dt = f(x)$$

$$\int_a^b f(x)dx = F(b) - F(a)$$

ANY QUESTIONS?

$$m\frac{d^2x}{dt^2} = -kx$$

$$\int \frac{dx}{1+x^2} = \tan^{-1}(x) + C$$

