CE203 ساختمان داده ها و الگوریتم ها

سجاد شیرعلی شهرضا پاییز 1400 جلسه ششم و هفتم: حل با روش جایگذاری و انتخاب نامین عضو

شنبه، 17 مهر 1400 و شنبه، 24 مهر 1400

اطلاع رساني

- بخش مرتبط کتاب برای این جلسه: 4.3
 - ارائه تمرین اول
- مهلت ارسال تمرین اول: صبح شنبه، 24 مهر 1400 (ساعت 8 صبح)
 امتحانک اول:
 - دوشنبه همین هفته، 16 مهر 1400
 - به صورت آنلاین
 - از طریق سامانه کورسس
 - در طی ساعت کلاس

SUBSTITUTION METHOD

Algorithm, Proof of Correctness, Runtime

حل با روش جایگذاری

الگوریتم، اثبات درستی، زمان اجرا

SO FAR:

- Proving correctness:
 - Iterative algorithms: proof by induction on the iteration (e.g. Insertion Sort)
 - Recursive algorithms: proof by induction on the input size (e.g. MergeSort)
- Proving runtime:
 - Iterative algorithms: ~intuition~ (basically directly analyze the work being done)
 - Recursive algorithms: Defining & Solving recurrence relations

SO FAR:

- Proving correctness:
 - Iterative algorithms: proof by induction on the iteration (e.g. Insertion Sort)
 - Recursive algorithms: proof by induction on the input size (e.g. MergeSort)
- Proving runtime:
 - Iterative algorithms: ~intuition~ (basically directly analyze the work being done)
 - Recursive algorithms: **Defining & Solving recurrence relations**

We saw how to solve some recurrence relations with RECURSION TREES & the MASTER THEOREM. Here's another way:

THE SUBSTITUTION METHOD

SUBSTITUTION METHOD

- 1. Guess what the answer is (expand for a few iterations)
- 2. Prove your guess is correct (using induction)

SUBSTITUTION METHOD

- 1. Guess what the answer is (expand for a few iterations)
- 2. Prove your guess is correct (using induction)

This is a good technique to turn to if you find that the Master Theorem doesn't work. It's also especially helpful with recurrences that have differently sized subproblems (i.e. when the recursion tree & table aren't helpful either).

Let's try it on some example recurrences...

$$T(n) = 2 \cdot T(n/2) + n$$

 $T(1) = 1$

STEP 1: guess what the answer is!

$$T(n) = 2 \cdot T(n/2) + n$$

 $T(1) = 1$

STEP 1: guess what the answer is!

```
T(n) = 2T(n/2) + n
= 2(2T(n/4) + n/2) + n
= 4T(n/4) + 2n
= 4(2(T(n/8) + n/4)) + 2n
= 8(T(n/8)) + 3n
= \cdots
```

$$T(n) = 2 \cdot T(n/2) + n$$

 $T(1) = 1$

STEP 1: guess what the answer is!

$$T(n) = 2 \cdot T(n/2) + n$$

 $T(1) = 1$

STEP 1: guess what the answer is!

$$T(n) = 2T(n/2) + n$$

$$= 2(2T(n/4) + n/2) + n$$

$$= 4T(n/4) + 2n$$

$$= 4(2(T(n/8) + n/4)) + 2n$$

$$= 8(T(n/8)) + 3n$$

$$= \cdots$$

```
T(n) = \cdots
= nT(n/n) + (\log n)n
= nT(1) + n \log n
= n \log n + n
let's guess that
T(n) = n \log n + n
and try to prove it!
```

$$T(n) = 2 \cdot T(n/2) + n$$

 $T(1) = 1$

Our guess from Step 1:

 $T(n) = n \log n + n$

STEP 2: Try to prove your guess!

$$T(n) = 2 \cdot T(n/2) + n$$

 $T(1) = 1$

Our guess from Step 1:

 $T(n) = n \log n + n$

STEP 2: Try to prove your guess!

• Inductive Hypothesis: T(n) = n log n + n

$$T(n) = 2 \cdot T(n/2) + n$$

 $T(1) = 1$

Our guess from Step 1:

 $T(n) = n \log n + n$

STEP 2: Try to prove your guess!

- Inductive Hypothesis: T(n) = n log n + n
- **Base case**: Prove IH holds for n = 1. $T(1) = 1 = 1 \log 1 + 1$.

$$T(n) = 2 \cdot T(n/2) + n$$

 $T(1) = 1$

Our guess from Step 1:

 $T(n) = n \log n + n$

STEP 2: Try to prove your guess!

- Inductive Hypothesis: T(n) = n log n + n
- **Base case**: Prove IH holds for n = 1. $T(1) = 1 = 1 \log 1 + 1$.
- Inductive step:
 - Let k > 1. Assume that the IH holds for all n such that $1 \le n < k$.

$$\begin{array}{rcl} \circ & T(k) & = & 2 \cdot T(k/2) + k \\ & = & 2 \cdot ((k/2)(\log{(k/2)}) + (k/2)) + k \\ & = & 2 \cdot ((k/2)(\log{k} - 1 + 1)) + k \\ & = & 2 \cdot (k/2)(\log{k}) + k \\ & = & k \log{k} + k \end{array}$$

$$T(n) = 2 \cdot T(n/2) + n$$

 $T(1) = 1$

Our guess from Step 1:

 $T(n) = n \log n + n$

STEP 2: Try to prove your guess!

- Inductive Hypothesis: T(n) = n log n + n
- **Base case**: Prove IH holds for n = 1. $T(1) = 1 = 1 \log 1 + 1$.
- Inductive step:
 - Let k > 1. Assume that the IH holds for all n such that $1 \le n < k$.

$$\begin{array}{rcl} \circ & T(k) & = & 2 \cdot T(k/2) + k \\ & = & 2 \cdot ((k/2)(\log{(k/2)}) + (k/2)) + k \\ & = & 2 \cdot ((k/2)(\log{k} - 1 + 1)) + k \\ & = & 2 \cdot (k/2)(\log{k}) + k \\ & = & k \log{k} + k \end{array}$$

• **Conclusion:** By induction, $T(n) \le n \log n + n$ for all n > 0.

This satisfies the Big-O definition for O(n log n) (imagine choosing c = 2, $n_0 = 1$)

$$T(n) \le n \log n + n$$

for all $n > 0$

$$T(n) = O(n \log n)$$

- 1. Guess what the answer is (expand for a few iterations)
- 2. Prove your guess is correct (using induction)

$$T(n) \le n \log n + n$$

for all $n > 0$

$$T(n) = O(n \log n)$$

- 1. Guess what the answer is (expand for a few iterations)
- 2. Prove your guess is correct (using induction)

But sometimes expanding gets complicated...

$$T(n) = T(n/5) + T(7n/10) + n$$

 $T(n) = 1$ when $1 \le n \le 10$

Note:

While Example 1 could have also been solved with the Master Theorem, this one has differently sized subproblems, so the Master Theorem won't apply.

So... Time to use the Substitution Method!

$$T(n) = T(n/5) + T(7n/10) + n$$

 $T(n) = 1$ when $1 \le n \le 10$

STEP 1: guess what the answer is!

Unraveling this expression gets ugly... (feel free to try it!). You can also make a semi-educated guess and just hope for the best.

$$T(n) = T(n/5) + T(7n/10) + n$$

 $T(n) = 1$ when $1 \le n \le 10$

STEP 1: guess what the answer is!

Unraveling this expression gets ugly... (feel free to try it!). You can also make a semi-educated guess and just hope for the best.

$$T(n) = T(n/5) + T(7n/10) + n$$

 $T(n) = 1$ when $1 \le n \le 10$

STEP 1: guess what the answer is!

Unraveling this expression gets ugly... (feel free to try it!). You can also make a semi-educated guess and just hope for the best.

It also feels like it could be better than 2T(n/2) + n, which we know to be O(n log n)...

$$T(n) = T(n/5) + T(7n/10) + n$$

 $T(n) = 1$ when $1 \le n \le 10$

STEP 1: guess what the answer is!

Unraveling this expression gets ugly... (feel free to try it!). You can also make a semi-educated guess and just hope for the best.

It also feels like it could be better than 2T(n/2) + n, which we know to be O(n log n)...

Let's guess O(n)

$$T(n) = T(n/5) + T(7n/10) + n$$

 $T(n) = 1$ when $1 \le n \le 10$

Our guess from Step 1:

T(n) is O(n)

STEP 2: Prove it!

$$T(n) = T(n/5) + T(7n/10) + n$$

 $T(n) = 1$ when $1 \le n \le 10$

Our guess from Step 1:

T(n) is O(n)

STEP 2: Prove it!

WARNING:

You might be tempted to prove this with the inductive hypothesis "T(n) = O(n)"

But that doesn't make sense! Formally, this is what your IH would be saying: "There is some $n_0 > 0$ and some C > 0 such that for all $n \ge n_0$, $T(n) \le C \cdot n$ "

Your IH is supposed to hold for a *specific* n, not an unbounded *range* of n!

$$T(n) = T(n/5) + T(7n/10) + n$$

 $T(n) = 1$ when $1 \le n \le 10$

Our guess from Step 1:

T(n) is O(n)

STEP 2: Prove it!

Your IH is supposed to hold for a *specific* n, not an unbounded *range* of n!

$$T(n) = T(n/5) + T(7n/10) + n$$

 $T(n) = 1$ when $1 \le n \le 10$

Our guess from Step 1:

T(n) is O(n)

STEP 2: Prove it!

Use a placeholder **C** constant in the big-O proof. We don't know what C should be yet, but let's go through the proof leaving it as C and then figure out what works.

$$T(n) = T(n/5) + T(7n/10) + n$$

 $T(n) = 1$ when $1 \le n \le 10$

Our guess from Step 1:

T(n) is **O(n)**

STEP 2: Prove it!

Use a placeholder **C** constant in the big-O proof. We don't know what C should be yet, but let's go through the proof leaving it as C and then figure out what works.

- Inductive Hypothesis: $T(n) \le Cn$
- Base case: Prove IH holds for $1 \le n \le 10$. $T(n) = 1 \le Cn$ \leftarrow

Whatever we choose C to be, we know C needs to be at least

1

$$T(n) = T(n/5) + T(7n/10) + n$$

 $T(n) = 1$ when $1 \le n \le 10$

Our guess from Step 1:

T(n) is O(n)

STEP 2: Prove it!

Use a placeholder **C** constant in the big-O proof. We don't know what C should be yet, but let's go through the proof leaving it as C and then figure out what works.

- Inductive Hypothesis: $T(n) \le Cn$
- **Base case**: Prove IH holds for $1 \le n \le 10$. $T(n) = 1 \le Cn$
- Inductive step:
 - Let k > 10. Assume that the IH holds for all n such that $1 \le n \le k$.

Whatever we choose C to be, we know C needs to be at least

$$T(n) = T(n/5) + T(7n/10) + n$$

 $T(n) = 1$ when $1 \le n \le 10$

Our guess from Step 1:

T(n) is O(n)

STEP 2: Prove it!

Use a placeholder **C** constant in the big-O proof. We don't know what C should be yet, but let's go through the proof leaving it as C and then figure out what works.

- Inductive Hypothesis: $T(n) \le Cn$
- Base case: Prove IH holds for $1 \le n \le 10$. $T(n) = 1 \le Cn$ •
- Inductive step:
 - \circ Let k > 10. Assume that the IH holds for all n such that $1 \le n < k$.
 - T(k) = k + T(k/5) + T(7k/10) $\leq k + C \cdot (k/5) + C \cdot (7k/10)$ $= k \cdot (1 + C/5 + 7C/10)$ $\leq Ck ???$
 - \circ (If we find the right C, then we've shown IH holds for n = k)

Whatever we choose C to be, we know C needs to be at least

1

We can just solve for C:

$$1 + C/5 + 7C/10 \le C$$

 $1 + 9C/10 \le C$
 $1 \le C/10$

So let's choose C = 10!

$$T(n) = T(n/5) + T(7n/10) + n$$

 $T(n) = 1$ when $1 \le n \le 10$

Our guess from Step 1:

T(n) is **O(n)**

STEP 2: Prove it!

We can choose C = 10!

- Inductive Hypothesis: $T(n) \le 10n$
- Base case: Prove IH holds for $1 \le n \le 10$. $T(n) = 1 \le 10$ n
- Inductive step:
 - Let k > 10. Assume that the IH holds for all n such that $1 \le n < k$.
 - $\begin{array}{lll} \circ & \mathsf{T}(\mathsf{k}) & = & \mathsf{k} + \mathsf{T}(\mathsf{k}/5) + \mathsf{T}(\mathsf{7}\mathsf{k}/10) \\ & \leq & \mathsf{k} + \mathbf{10} \cdot (\mathsf{k}/5) + \mathbf{10} \cdot (\mathsf{7}\mathsf{k}/10) \\ & = & \mathsf{k} + 2\mathsf{k} + \mathsf{7}\mathsf{k} \\ & = & \mathbf{10}\mathsf{k} \end{array}$
 - Thus, the IH holds for n = k!
- Conclusion: With C = 10 and $n_0 = 1$, $T(n) \le Cn$ for all $n \ge n_0$. By the Big-O definition, T(n) = O(n).

$$T(n) = T(n/5) + T(7n/10) + n$$

 $T(n) = 1$ when $1 \le n \le 10$

Our guess from Step 1:

T(n) is O(n)

STEP 2: Prove it!

We can choose C = 10!

- Induc*
- Base
- Induc
 - 0

Yay! Our guess worked! But what if you make a bad guess?

- = TOK
- \circ Thus, the IH holds for n = k!
- Conclusion: With C = 10 and $n_0 = 1$, $T(n) \le Cn$ for all $n \ge n_0$. By the Big-O definition, T(n) = O(n).

$$T(n) = 2 \cdot T(n/2) + n$$

 $T(1) = 1$

Bad guess:

$$T(n) = O(n)$$

$$T(n) = 2 \cdot T(n/2) + n$$

 $T(1) = 1$

Bad guess:

$$T(n) = O(n)$$

STEP 2: Prove it!

Use a placeholder C constant in the big-O proof. We don't know what C should be yet, but let's go through the proof leaving it as C and see if we run into any trouble.

- Inductive Hypothesis: T(n) ≤ Cn
- Base case: $1 = T(n) \le Cn$ for n = 1.
- Inductive step:
 - Let k > 1. Assume that the IH holds for all n such that $1 \le n < k$.

○
$$T(k) = 2 \cdot T(k/2) + k$$

≤ $2 \cdot C(k/2) + k$
= $Ck + k$
≤ Ck ???

$$T(n) = 2 \cdot T(n/2) + n$$

 $T(1) = 1$

Bad guess:

T(n) = O(n)

STEP 2: Prove it!

Use a placeholder C constant in the big-O proof. We don't know what C should be yet, but let's go through the proof leaving it as C and see if we run into any trouble.

- Inductive Hypothesis: T(n) ≤ Cn
- Base case: $1 = T(n) \le Cn$ for n = 1.
- Inductive step:
 - Let k > 1. Assume that the IH holds for all n such that $1 \le n < k$.

$$T(k) = 2 \cdot T(k/2) + k$$

$$\leq 2 \cdot C(k/2) + k$$

$$= Ck + k$$

$$\leq Ck???$$

We need this inequality to hold for the Inductive Step to be complete. However, no choice of C could ever make Ck+ k ≤ Ck!

$$T(n) = 2 \cdot T(n/2) + n$$

 $T(1) = 1$

Bad guess:

T(n) = O(n)

STEP 2: Prove it!

Use a placeholder C constant in the big-O proof. We don't know what C should be yet, but let's go

A few tips:

- If you stumble across impossible inequalities, then your guess
- was too small! If you end up with an inequality that seems too loose (e.g. k ≤ k², log k ≤ k), maybe try a smaller guess.

hold

$$= Ck + k$$

≤ Ck???

complete. However, no choice of C could ever make Ck+ k ≤ Ck!

SO WHAT HAVE WE LEARNED?

- The substitution method can work when the master theorem doesn't
 - E.g. with different-sized sub-problems

- 1. Guess what the answer is (expand for a few iterations)
- 2. Prove your guess is correct (using induction)

In your final proof, pretend like you didn't do Steps 1 & 2 - no need to say how you unraveled the expression or why you made your guess. Just make sure your proof checks out!

انتخاب المين عضو

الگوریتم، اثبات درستی، زمان اجرا

THE SELECT PROBLEM

INPUT:

an unsorted array **A** of n elements (assume all elements are distinct), & an integer **k** in {1, ..., n}

OUTPUT of SELECT(A, k): the kth smallest element of A

THE SELECT PROBLEM

INPUT:

an unsorted array **A** of n elements (assume all elements are distinct), & an integer **k** in {1, ..., n}

7	2	6	9	1	5	4	11	
---	---	---	---	---	---	---	----	--

OUTPUT of SELECT(A, k): the kth smallest element of A

Note: k is a 1-indexed number!

THE SELECT PROBLEM

INPUT:

an unsorted array **A** of n elements (assume all elements are distinct), & an integer **k** in {1, ..., n}

OUTPUT of SELECT(A, k): the kth smallest element of A

Can you come up with an O(n log n) algorithm for SELECT?

AN O(n log n) ALGORITHM

```
SELECT(A, k):

A = MERGESORT(A)

return A[k-1]

It's k-1 (rather than k) since my pseudocode is 0-indexed and k is a 1-indexed number
```

Okay, great! We're done!

AN O(n log n) ALGORITHM

It's k-1 (rather than k) since my pseudocode is 0-indexed and k is a 1-indexed number

Okay, great! We're done!

If k = 1, then we want the minimum of A. There's an easy O(n) algorithm for that:

Pretty much the same if k = n (we're just finding MAX(A) instead)

If k = 1, then we want the minimum of A. There's an easy O(n) algorithm for that:

Pretty much the same if k = n (we're just finding MAX(A) instead)

Runtime of SELECT-1: O(n)

If k = 2, then we want the second-smallest element in A. There's an easy-ish O(n) algorithm for that:

(Not a very important algorithm, because this will end up being a bad idea...)

```
If k = 2, then we want the second-smallest element in A.
                       There's an easy-ish O(n) algorithm for that:
                  (Not a very important algorithm, because this will end up being a bad idea...)
                     SELECT-2(A):
                           result = infinity
                           minSoFar = infinity
                                                                         This loop runs O(n) times
                           for i in [0, ..., n-1]:
                                 if A[i] < result & A[i] < minSoFar:</pre>
                                      result = minSoFar
The body of each iteration
                                      minSoFar = AΓi]
   is still O(1) work.
                                else if A[i] < result & A[i] >= minSoFar
                                      result = AΓi]
                           return result
```

Runtime of SELECT-2: O(n)

If k = n/2, then we want the median element in A.

```
SELECT-n/2(A):
    result = infinity
    minSoFar = infinity
    secondMinSoFar = infinity
    thirdMinSoFar = infinity
    fourthMinSoFar = infinity
    fifthMinSoFar = infinity
    ...
```

If k = n/2, then we want the median element in A.

```
SELECT-n/2(A):
    result = infinity
    minSoFar = infinity
    secondMinSoFar = infinity
    thirdMinSoFar = infinity
    fourthMinSoFar = infinity
    fifthMinSoFar = infinity
    ...
```

Runtime of SELECT-n/2: O(n²)

Clearly, this algorithm style isn't a good idea for large k (e.g. n/2). This basically ends up looking like InsertionSort.

Let's use DIVIDE-and-CONQUER!

Let's use DIVIDE-and-CONQUER!

Select a pivot

Partition around it

Recurse!

Let's use DIVIDE-and-CONQUER!

Select a pivot

Partition around it

Recurse!

kind of like a "binary search" for the kth smallest element (except that the array isn't sorted!)

3 2 9 8 1 6 4 11

Select a pivot

How do we pick a pivot?? We'll see this later. For now, imagine we pick it randomly.

Select a pivot

Partition around it

Partition around pivot: **L** has elements less than pivot, and **R** has elements greater than pivot. (Note that **L** and **R** remain unsorted).

Select a pivot

3 2 9 8 1 6 4 11

How do we pick a pivot?? We'll see this later.
For now, imagine we pick it randomly.

Partition around it

Partition around pivot: **L** has elements less than pivot, and **R** has elements greater than pivot. (Note that **L** and **R** remain unsorted).

The pivot is in position **5**. We have three cases:

- 1. if k = 5: return pivot
- 2. if k < 5: return SELECT(L, k)
- 3. if k > 5: return SELECT(R, k-5)

the kth smallest element is the pivot!

the kth smallest element lives in L

the kth smallest element is the (k-5)th smallest element in R

Recurse!

SELECT(A, 7):

1 12 4 20 31 6 18 9

PICK A PIVOT

How do we pick a pivot??? We'll see later...

PICK A PIVOT

We'll see later...

PARTITION

LINEAR SELECTION: PSEUDOCODE

Base Case:

if len(A) = 1, then just go ahead and return the element itself

```
SELECT(A,k):
      if len(A) == 1:
            return A[0]
                                                                     Case 1:
      p = GET_PIVOT(A)
                                                               We got lucky and found
      L, R = PARTITION(A,p)
                                                               exactly the kth smallest!
      if len(L) == k-1:
                                                                     Case 2.
                                                               The k<sup>th</sup> smallest is in the
            return p
                                                               first part of the array (L)
     else if len(L) > k-1:
                                                                     Case 3:
            return SELECT(L, k)
                                                               The k<sup>th</sup> smallest is in the
      else:
                                                              second part of the array (R)
           return SELECT(R, k-len(L)-1)
```

LINEAR SELECTION: PSEUDOCODE

```
SELECT(A,k):
   if len(A) == 1:
       return A[0]
   p = GET_PIVOT(A)
   L, R = PARTITION(A,p)
   if len(L) == k-1:
       return p
   else if len(L) > k-1:
       return SELECT(L, k)
   else:
       return SELECT(R, k-len(L)-1)
```

```
PARTITION(A, pivot):
    L, R = [], []
    for i in [1,...,len(A)]:
        if A[i] == pivot:
            continue
        else if A[i] < pivot:
            add A[i] to L
        else:
        add A[i] to R</pre>
```


LINEAR SELECTION: SO FAR

• Intuition:

- Partition the array around a pivot (how do we select?? still TBD)
- Either return the pivot itself or recurse on the left or right subarrays (but not both!)

LINEAR SELECTION: SO FAR

- Intuition:
 - Partition the array around a pivot (how do we select?? still TBD)
 - Either return the pivot itself or recurse on the left or right subarrays (but not both!)
- Our two favorite questions:
 - o Does this work?
 - What's the runtime?

LINEAR SELECTION: DOES IT WORK?

RECURSIVE ALGORITHMS

- 1. **Inductive hypothesis**: your algorithm is correct for sizes *up to* **i**
- 2. **Base case**: IH holds for i < small constant
- 3. **Inductive step**:
 - assume IH holds for $k \Rightarrow \text{prove } k+1, OR$
 - assume IH holds for $\{1,2,...,k-1\} \Rightarrow$ prove k.
- 4. **Conclusion**: IH holds for i = n ⇒ yay!

INDUCTIVE HYPOTHESIS (IH)

When run on an array A of size **i** and an integer $1 \le k \le i$, SELECT(A,k) correctly returns the k^{th} smallest element of A.

INDUCTIVE HYPOTHESIS (IH)

When run on an array A of size **i** and an integer $1 \le k \le i$, SELECT(A,k) correctly returns the k^{th} smallest element of A.

BASE CASE

The IH holds for i = 1: We know k must be 1, so SELECT does indeed return the smallest (and only) element of A.

INDUCTIVE HYPOTHESIS (IH)

When run on an array A of size i and an integer $1 \le k \le i$, SELECT(A,k) correctly returns the k^{th} smallest element of A.

BASE CASE

The IH holds for i = 1: We know k must be 1, so SELECT does indeed return the smallest (and only) element of A.

(OUTLINE OF) INDUCTIVE STEP (strong/complete induction)

Let j be an integer, where j > 1. Assume that the IH holds for all i where $1 \le i < j$. We want to show that the IH holds for i = j, i.e. that for an array A of size j and an integer $k \le j$, SELECT returns the k^{th} smallest element of A.

We consider three cases, depending on the pivot chosen by GET_PIVOT. PARTITION gives us L, and R.

- CASE 1: |L| = k-1. We use STRONG induction because
- CASE 2: |L| > k-1.
 cases 2 and 3 rely on the correctness of
- **CASE 3**: |L| < k-1. the smaller recursive calls.

Thus, in each of the three cases, SELECT(A,k) returns the k^{th} smallest element of A. This establishes the IH for i = j.

INDUCTIVE HYPOTHESIS (IH)

When run on an array A of size i and an integer $1 \le k \le i$, SELECT(A,k) correctly returns the k^{th} smallest element of A.

BASE CASE

The IH holds for i = 1: We know k must be 1, so SELECT does indeed return the smallest (and only) element of A.

(OUTLINE OF) INDUCTIVE STEP (strong/complete induction)

Let j be an integer, where j > 1. Assume that the IH holds for all i where 1 ≤ i < j. We want to show that the IH holds for i = j, i.e. that for an array A of size j and an integer $k \le j$, SELECT returns the k^{th} smallest element of A.

We consider three cases, depending on the pivot chosen by GET_PIVOT. PARTITION gives us L, and R.

CASE 1: |L| = k-1.

We use STRONG induction because

- **CASE 2**: |L| > k-1. ← cases 2 and 3 rely on the correctness of
 - **CASE 3**: |L| < k-1. **←** the smaller recursive calls

Thus, in each of the three cases, SELECT(A,k) returns the k^{th} smallest element of A. This establishes the IH for i = j.

CONCLUSION

By induction, we conclude that the IH holds for all $1 \le i \le n$. Thus, we conclude that SELECT(A, k) returns the k^{th} smallest element of A on any array A, provided that $1 \le k \le |A|$. That is, SELECT is correct!


```
SELECT(A,k):
   if len(A) == 1:
        return A[0]
   p = GET_PIVOT(A)
   L, R = PARTITION(A,p)
   if len(L) == k-1:
        return p
   else if len(L) > k-1:
        return SELECT(L, k)
   else if len(L) < k-1:
        return SELECT(R, k-len(L)-1)
```

Recurrence Relation for SELECT

For now, assume we'll pick the pivot in time O(n)

```
SELECT(A,k):
   if len(A) == 1:
        return A[0]
   p = GET_PIVOT(A)
   L, R = PARTITION(A,p)
   if len(L) == k-1:
        return p
   else if len(L) > k-1:
        return SELECT(L, k)
   else if len(L) < k-1:
        return SELECT(R, k-len(L)-1)
```

Recurrence Relation for SELECT

For now, assume we'll pick the pivot in time O(n)

$$T(n) = \begin{cases} O(n) & len(L) == k-1 \\ T(len(L)) + O(n) & len(L) > k-1 \\ T(len(R)) + O(n) & len(L) < k-1 \end{cases}$$

```
SELECT(A,k):
   if len(A) == 1:
        return A[0]
   p = GET_PIVOT(A)
   L, R = PARTITION(A,p)
   if len(L) == k-1:
        return p
   else if len(L) > k-1:
        return SELECT(L, k)
   else if len(L) < k-1:
        return SELECT(R, k-len(L)-1)
```

Recurrence Relation for SELECT

For now, assume we'll pick the pivot in time O(n)

$$T(n) = \begin{cases} O(n) & len(L) == k-1 \\ T(len(L)) + O(n) & len(L) > k-1 \\ T(len(R)) + O(n) & len(L) < k-1 \end{cases}$$

But what are **len(L)** and **len(R)**? That depends on how we pick the pivot...

```
SELECT(A,k):
   if len(A) == 1:
        return A[0]
   p = GET_PIVOT(A)
   L, R = PARTITION(A,p)
   if len(L) == k-1:
        return p
   else if len(L) > k-1:
        return SELECT(L, k)
   else if len(L) < k-1:
        return SELECT(R, k-len(L)-1)
```

What's a "good" pivot? What's a "bad" pivot?

Relation for SELECT

we'll pick the pivot in time O(n)

$$T(n) = \begin{cases} O(n) & len(L) == k-1 \\ T(len(L)) + O(n) & len(L) > k-1 \\ T(len(R)) + O(n) & len(L) < k-1 \end{cases}$$

But what are **len(L)** and **len(R)**? That depends on how we pick the pivot...

THE WORST PIVOT

The WORST pivot: picking the max or the min each time!

Then, in the worst case, the recurrence relation looks like T(n) = T(n-1) + O(n).

$$T(n) = \begin{cases} O(n) & len(L) == k-1 \\ T(len(L)) + O(n) & len(L) > k-1 \\ T(len(R)) + O(n) & len(L) < k-1 \end{cases}$$
 $T(n) \le T(n-1) + O(n)$

THE WORST PIVOT

The WORST pivot: picking the max or the min each time!

Then, in the worst case, the recurrence relation looks like T(n) = T(n-1) + O(n).

$$T(n) = \begin{cases} O(n) & len(L) == k-1 \\ T(len(L)) + O(n) & len(L) > k-1 \\ T(len(R)) + O(n) & len(L) < k-1 \end{cases}$$
 $T(n) \le T(n-1) + O(n)$

This ends up being $\Omega(n^2)$!

A call to SELECT(A, n/2) would already consist of ~n/2 recursive calls (each with a subarray of length at least n/2)!

The IDEAL pivot: splits the input array exactly in half!

$$len(L) = len(R) = (n-1)/2$$

$$T(n) = \begin{cases} O(n) & len(L) == k-1 \\ T(len(L)) + O(n) & len(L) > k-1 \\ T(len(R)) + O(n) & len(L) < k-1 \end{cases}$$

$$T(n) \leq T(n/2) + O(n)$$

The IDEAL pivot: splits the input array exactly in half!

$$len(L) = len(R) = (n-1)/2$$

$$T(n) = \begin{cases} O(n) & len(L) == k-1 \\ T(len(L)) + O(n) & len(L) > k-1 \\ T(len(R)) + O(n) & len(L) < k-1 \end{cases} \qquad T(n) \le T(n/2) + O(n)$$

$$a = 1$$

$$b = 2$$

$$d = 1$$

Suppose $T(n) = a \cdot T(n/b) + O(n^d)$. The Master Theorem states:

$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

The IDEAL pivot: splits the input array exactly in half!

$$T(n) = \begin{cases} O(n) & \text{With the ideal pivot, the runtime} \\ T(len(L)) + O(n) & \text{would be:} \\ T(len(R)) + O(n) & \text{Implies to the ideal pivot, the runtime} \end{cases}$$

```
With the ideal
```

$$\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(\mathsf{n}/2) + \mathsf{O}(\mathsf{n})$$

Suppose $T(n) = a \cdot T(n/b)$ Master Theorem states:

$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

The IDEAL pivot: splits the input array exactly in half!

$$T(n) = \begin{cases} O(r) \\ T(1) \\ T(1) \end{cases}$$

Sadly, the pivot to divide the input in half is the

MEDIAN

aka SELECT(A, n/2)

aka exactly the problem we're trying to solve...

$$+ O(n)$$

b

$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

The GOOD-ENOUGH pivot: splits the input array kind of in half!

$$3n/10 < len(L) < 7n/10$$

 $3n/10 < len(R) < 7n/10$

The GOOD-ENOUGH pivot: splits the input array kind of in half!

If we could fetch this good-enough pivot in time O(n), let's say, the recurrence looks like:

$$T(n) = \begin{cases} O(n) & len(L) == k-1 \\ T(len(L)) + O(n) & len(L) > k-1 \\ T(len(R)) + O(n) & len(L) < k-1 \end{cases}$$

$$T(n) \leq T(7n/10) + O(n)$$

The GOOD-ENOUGH pivot: splits the input array kind of in half!

If we could fetch this good-enough pivot in time O(n), let's say, the recurrence looks like:

$$T(n) = \begin{cases} O(n) & len(L) == k-1 \\ T(len(L)) + O(n) & len(L) > k-1 \\ T(len(R)) + O(n) & len(L) < k-1 \end{cases}$$

$$T(n) \leq T(7n/10) + O(n)$$

$$a = 1$$

$$b = 10/7 \quad a < b^d$$

$$d = 1$$

Suppose $T(n) = a \cdot T(n/b) + O(n^d)$. The Master Theorem states:

$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

The GOOD-ENOUGH pivot: splits the input array kind of in half!

$$3n/10 < 1en(1) < 7n/10$$

 $3n/10 < 1en(1) < 7n/10$

If we could fetch this good-enough

$$T(n) = \begin{cases} O(n) & 1 \\ T(len(L)) + O(n) & 1 \\ T(len(R)) + O(n) & lendarrow \end{cases}$$

This goodenough pivot would still give us:

O(n)

't's say, the recurrence looks like:

$$T(n) \le T(7n/10) + O(n)$$

waster Theorem states: Suppose $T(n) = a \cdot T(n/b)$

$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

OUR GOAL

Efficiently pick the pivot in time O(n) so that

Then, our recurrence $T(n) \le T(7n/10) + O(n)$ comes out to O(n)!

میانه ی میانه ها!

ایده اصلی الگوریتم خطی برای انتخاب kامین عضو

The ideal world wasn't feasible because we can't just compute SELECT(A, n/2) \Rightarrow that would throw us into infinite recursion since problem sizes aren't shrinking between recursive calls...

But we can instead generate a **smaller** list and call SELECT on that smaller list!

The ideal world wasn't feasible because we can't just compute SELECT(A, n/2) \Rightarrow that would throw us into infinite recursion since problem sizes aren't shrinking between recursive calls...

But we can instead generate a **smaller** list and call SELECT on that smaller list!

OUR GAME PLAN:

We'll make a smaller list out of SUB-MEDIANS.

Then, we'll use SELECT to find the median of the sub-medians.

This "median of medians" will be our proxy for the true median!

GOAL: get a proxy for the true median by finding the exact median of all the sub-medians!

GOAL: get a proxy for the true median by finding the exact median of all the sub-medians!

Divide the original list into $\lceil n/5 \rceil$ groups (each group has ≤ 5 elements)

GOAL: get a proxy for the true median by finding the exact median of all the sub-medians!

Divide the original list into $\lceil n/5 \rceil$ groups (each group has ≤ 5 elements)

Find the sub-median of each small group (3rd smallest out of the 5)

GOAL: get a proxy for the true median by finding the exact median of all the sub-medians!

Divide the original list into $\lceil n/5 \rceil$ groups (each group has ≤ 5 elements)

Find the sub-median of each small group (3rd smallest out of the 5)

Find the median of all the sub-medians (call SELECT)

GOAL: get a proxy for the true median by finding the exact median of all the sub-medians!

Divide the original list into $\lceil n/5 \rceil$ groups (each group has ≤ 5 elements)

Find the sub-median of each small group (3rd smallest out of the 5)

Find the median of all the sub-medians (call SELECT)

25

GOAL: get a proxy for the true median by finding the exact median of all the sub-medians!

Divide the original list into $\lceil n/5 \rceil$ groups (each group has ≤ 5 elements)

Find the sub-median of each small group (3rd smallest out of the 5)

Find the median of all the sub-medians (call SELECT)

constant work for each group. \Rightarrow O(n) work.

GOAL: get a proxy for the true median by finding the exact median of all the sub-medians!

Divide the original list into $\lceil n/5 \rceil$ groups (each group has ≤ 5 elements)

Find the sub-median of each small group (3rd smallest out of the 5)

Find the median of all the sub-medians (call SELECT)

constant work for each group.

[n/5] groups total ork.

14

To compute our pivot:

Do O(n) work to set up (divide into groups & get a list of submedians), then make a call to **SELECT**(Submedians, |Submedians|/2)

1 | 14 | 4 | 18 | 25 | 6 | 17 | 9 | 3 | 5 | 10 | 16 | 12 | 23 | 19 | 13 | 20 | 8 | 15 | 24 | 7 | 21 | 22 | 2 | 11


```
SELECT(A,k):
   if len(A) == 1:
       return A[0]
   p = MEDIAN_OF_MEDIANS(A)
  L, R = PARTITION(A,p)
   if len(L) == k-1:
       return p
   else if len(L) > k-1:
       return SELECT(L, k)
   else:
       return SELECT(R, k-len(L)-1)
```

What does the recurrence relation for T(n) look like?

```
O(n) work outside of
SELECT(A,k):
                                                                 recursive calls
    if len(A) == 1:
                                                               (base case, set-up within
                                                          MEDIAN OF MEDIANS, partitioning)
         return A[0]
    p = MEDIAN_OF_MEDIANS(A)
                                                             T(n/5) work hidden in
   L, R = PARTITION(A,p)
                                                               this recursive call
   if len(L) == k-1:
                                                         (remember, MEDIAN_OF_MEDIANS calls
         return p
                                                             SELECT on \lceil n/5 \rceil-size array)
   else if len(L) > k-1:
         return SELECT(L, k)
                                                             T(???) work hidden in
                                                               this recursive call
   else:
                                                             What is the maximum size of
         return SELECT(R, k-len(L)-1)
                                                                   either L or R?
```

```
SELECT(A,k):
if len(A) == 1:
```

What is the smallest number of elements that could be smaller than our MEDIAN OF MEDIANS?

else:

return SELECT(R, k-len(L)-1)

O(n) work outside of recursive calls

(base case, set-up within MEDIAN_OF_MEDIANS, partitioning)

T(n/5) work hidden in — this recursive call

(remember, MEDIAN_OF_MEDIANS calls SELECT on Γn/51-size array)

T(???) work hidden in this recursive call

What is the maximum size of either L or R?

MEDIAN_OF_MEDIANS will choose a pivot greater than at least 3n/10 - 6 elements

(The same reasoning we're about to do also shows that the pivot will be less than at least 3n/10 - 6 elements)

MEDIAN_OF_MEDIANS will choose a pivot greater than at least 3n/10 - 6 elements

(The same reasoning we're about to do also shows that the pivot will be less than at least 3n/10 - 6 elements)

At least how many elements are guaranteed to be **smaller** than the median of medians?

MEDIAN_OF_MEDIANS will choose a pivot greater than at least 3n/10 - 6 elements

(The same reasoning we're about to do also shows that the pivot will be less than at least 3n/10 - 6 elements)

At least how many elements are guaranteed to be **smaller** than the median of medians?

MEDIAN_OF_MEDIANS will choose a pivot greater than at least 3n/10 - 6 elements

(The same reasoning we're about to do also shows that the pivot will be less than at least 3n/10 - 6 elements)

At least how many elements are guaranteed to be **smaller** than the median of medians?

3 elements from each group that has a median smaller than the median of medians

2 elements from the group containing the **median of medians**

MEDIAN_OF_MEDIANS will choose a pivot greater than at least 3n/10 - 6 elements

(The same reasoning we're about to do also shows that the pivot will be less than at least 3n/10 - 6 elements)

At least how many elements are guaranteed to be **smaller** than the median of medians?

3 elements from each (non-leftover) group that has a median smaller than the median of medians

2 elements from the group containing the **median of medians**

MEDIAN_OF_MEDIANS will choose a pivot greater than at least 3n/10 - 6 elements

(The same reasoning we're about to do also shows that the pivot will be less than at least 3n/10 - 6 elements)

At least how many elements are guaranteed to be **smaller** than the median of medians?

2 elements from the group 3 elements from each (non-leftover) group that has a **median** smaller than the median of medians The group with the

to be safe

MEDIAN_OF_MEDIANS will choose a pivot greater than at least 3n/10 - 6 elements

(The same reasoning we're about to do also shows that the pivot will be less than at least 3n/10 - 6 elements)

At least how many elements are guaranteed to be **smaller** than the median of medians?

3 elements from each (non-leftover) group that has a median smaller than the median of medians

$$3 \cdot (\lceil m/2 \rceil - 2)$$

= $3 \cdot (\lceil \lceil n/5 \rceil/2 \rceil - 2)$
 $\ge 3 \cdot (n/10 - 2)$
= $3n/10 - 6$

We just showed:

$$3n/10 - 6 \le len(L)$$

 $len(R) \le 7n/10 + 5$

We can similarly show the inverse:

$$3n/10 - 6 \le len(L) \le 7n/10 + 5$$

$$3n/10 - 6 \le len(R) \le 7n/10 + 5$$

```
O(n) work outside of
SELECT(A,k):
                                                                 recursive calls
    if len(A) == 1:
                                                              (base case, set-up within
                                                          MEDIAN OF MEDIANS, partitioning)
         return A[0]
    p = MEDIAN_OF_MEDIANS(A)
                                                             T(n/5) work hidden in
   L, R = PARTITION(A,p)
                                                               this recursive call
   if len(L) == k-1:
                                                         (remember, MEDIAN_OF_MEDIANS calls
         return p
                                                             SELECT on \lceil n/5 \rceil-size array)
   else if len(L) > k-1:
         return SELECT(L, k)
                                                             T(???) work hidden in
                                                               this recursive call
   else:
                                                             What is the maximum size of
         return SELECT(R, k-len(L)-1)
                                                                   either L or R?
```

We can similarly show the inverse:

$$3n/10 - 6 \le len(L) \le 7n/10 + 5$$

$$3n/10 - 6 \le len(R) \le 7n/10 + 5$$

What does the recurrence relation for T(n) look like?

$$T(n) \le T(n/5) + T(???) + O(n)$$

We can similarly show the inverse:

$$3n/10 - 6 \le len(L) \le 7n/10 + 5$$

$$3n/10 - 6 \le len(R) \le 7n/10 + 5$$

What does the recurrence relation for T(n) look like?

$$T(n) \le T(n/5) + T(7n/10) + O(n)$$

$$T(n) \le T(n/5) + T(7n/10) + O(n)$$

We solved this recurrence using the Substitution Method at the start of class!

SUBSTITUTION METHOD: EXAMPLE 2

$$T(n) = T(n/5) + T(7n/10) + n$$

 $T(n) = 1$ when $1 \le n \le 10$

Our guess from Step 1:

T(n) is **O(n)**

STEP 2: Prove it!

We can choose C = 10!

- Inductive Hypothesis: $T(n) \le 10n$
- **Base case**: Prove IH holds for $1 \le n \le 10$. $T(n) = 1 \le 10$
- Inductive step:
 - Let k > 10. Assume that the IH holds for all n such that $1 \le n < k$.
 - $\begin{array}{lll} \circ & \mathsf{T}(\mathsf{k}) &=& \mathsf{k} + \mathsf{T}(\mathsf{k}/5) + \mathsf{T}(\mathsf{7}\mathsf{k}/10) \\ & \leq & \mathsf{k} + \mathbf{10} \cdot (\mathsf{k}/5) + \mathbf{10} \cdot (\mathsf{7}\mathsf{k}/10) \\ & = & \mathsf{k} + 2\mathsf{k} + \mathsf{7}\mathsf{k} \\ & = & \mathbf{10}\mathsf{k} \end{array}$
 - Thus, the IH holds for n = k!
- Conclusion: With C = 10 and $n_0 = 1$, $T(n) \le Cn$ for all $n \ge n_0$. By the Big-O definition, T(n) = O(n).

$$T(n) \le T(n/5) + T(7n/10) + O(n)$$

We solved this recurrence using the Substitution Method at the start of class!

LINEAR-TIME SELECTION

```
SELECT(A,k):
   if len(A) == 1:
       return A[0]
   p = MEDIAN_OF_MEDIANS(A)
   L, R = PARTITION(A,p)
   if len(L) == k-1:
       return p
   else if len(L) > k-1:
       return SELECT(L, k)
   else if len(L) < k-1:
       return SELECT(R, k-len(L)-1)
```


