Midterm Review

填选题

Q1 普陀

9. 设 $\lambda \in \mathbb{R}$, 在如图所示的平行六面体 $ABCD - A_lB_lC_lD_l$ 中, $\angle A_lAB = \angle A_lAD = \angle BAD = \frac{\pi}{3}$, $AA_l = 2$, AB = AD = 1 , 点 M 是棱 C_lD_l 的中点, $\overrightarrow{A_lN} = \lambda \overrightarrow{A_lD_l}$,若 $\overrightarrow{AM} \cdot \overrightarrow{CN} = 2$,则 λ 的值为______.

Q2 普陀

11. 设 $t \in \mathbb{R}$,直线l: x+y-t=0与曲线 $C_1: y=\frac{1}{4}x^2 \ (0 \le x \le 4)$ 和曲线 $C_2: y=2x^{\frac{1}{2}}$ 分别交于 $P \times Q$ 两点,则|PQ|的最大值是_____.

Q3 普陀

12. 设
$$a > b > 0$$
,函数 $y = f(x)$ 的表达式为 $f(x) = \left| x - \frac{1}{x} + \ln x \right|$,若 $f(a) = f(b)$,且关于 x 的方程
$$\left| x^2 + ax + 2ab \right| + \left| x^2 - ax + 2ab \right| = 2a |x|$$
的整数解有且仅有 4 个,则 a 的取值范围是______.

Q4 杨浦

9. 将一个半径为1的球形石材加工成一个圆柱形摆件,则该圆柱形摆件侧面积的最大值为

Q5 宝山

Q6 宝山

15. 如图,正四棱柱 $ABCD-A_lB_lC_lD_l$ 的底面 ABCD 边长为 , E 为 AD 上任意一点, F 为 CC_l 中点,若 棱 C_lD_l 上至少存在一点 P 使得 $PE\perp PF$,则棱长 AA_l 的最大值为(

Q7 闵行

10. 已知 F_1 、 F_2 分别为椭圆 $\frac{x^2}{4} + \frac{y^2}{2} = 1$ 的左、右焦点,过 F_1 的直线交椭圆于A、B 两点. 若 $\overline{AF_1} \cdot \overline{AF_2} = 0$,则 $\overline{AF_2} \cdot \overline{BF_2} = \underline{}$

Q8 长宁(这个题出的不太好,思考一下即可)

12. 点 P、M、N 分别位于正方体 ${}^{ABCD} - {}^{A'B'C'D'}$ 的面上, ${}^{AB} = 1$,则 ${}^{PM} \cdot {}^{PN}$ 的最小值是_____.

Q9 虹口

9. 如图,已知正三角形 ABC 和正方形 BCDE 的边长均为 2,且二面角 A - BC - D 的大小为 $\overline{\bf 6}$,则 $\overline{\bf AC \cdot BD}$ =

第 1页/共 4页

Q10 虹口

 $C_1: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 的左、右焦点分别为 F_1 和 F_2 ,若以点 F_2 为焦点的抛物线 $C_2: y^2 = 2px(p > 0)$ 与 C_1 在第一象限交于点P,且 $\angle PF_1F_2 = \frac{\pi}{4}$,则 C_1 的离心率为______.

Q11 虹口

15. 已知边长为 2 的正四面体 A-BCD 的内切球(球面与四面体四个面都相切的球)的球心为 O,若空间中的动点 P 满足 $\overline{OP}=x\overline{OC}+y\overline{OB}+z\overline{OD},x$ 、y、 $z\in [0,1]$,则点 P 的轨迹所形成的几何体的体积为 ().

- A. $\sqrt{2}$
- B. $\frac{\sqrt{2}}{3}$
- C. . $2\sqrt{3}$
- D. $\frac{\sqrt{3}}{3}$

大题

DQ1 通河中学

17. (本题满分14分, 第1小题满分6分, 第2小题满分8分)

如图,四棱锥P-ABCD中,PA上底面ABCD,四边形ABCD是正方形,M, N分 别是PC, PD的中点.

- (1) 求证: MN//平面PAB;
- (2) 若PA = AB = 2, 求直线PB与平面ABN所成角的大小.

DQ2

A.
$$(-\infty, -2e)$$
 B. $(-\infty, -e)$ C. $(-\infty, -\frac{2}{e})$ D. $(-\infty, -\frac{1}{e})$

D.
$$(-\infty, -\frac{1}{e})$$

三. 解答题

17. 如图,在四棱锥 P-ABCD 中,底面 ABCD 是矩形, $PA \perp$ 平面 ABCD ,

PA = AD = 2 , AB = 1 , 以 BD 的中点 O 为球心、 BD 为直径的球面交 PD 于点 M .

(1) 求证: *PD* ⊥ 平面 *ABM* ; (2) 求二面角 *A* – *BM* – *C* 的大小.

