Recursão e Teoria dos Números

Rogerinho

MaratonUSP

2020

Sumário

Recursão

2 Teoria dos Números

O que é recursão?

 Recursão, ou coisas recursivas, são coisas que são definidas em termos delas mesmas.

• Exemplo: Fatorial.

$$n! = \begin{cases} 1, & \text{se } n = 0 \\ n \cdot (n-1)!, & \text{se } n \ge 1 \end{cases}$$

Também podemos utilizar recursão em programação. Como construiríamos um programa que calcula fatorial recursivamente?

O que o programa realmente está fazendo?

Consumo de tempo

• Uma boa estimativa para o consumo de tempo do algoritmo é contar a quantidade de chamadas da função fatorial em função de n.

• Analisando vemos que o algoritmo é O(n).

Será que conseguimos definir potências de forma recursiva?

Dada uma pontência a^n , será que conseguimos definir a^n de forma recursiva?

lacktriangle Podemos definir a^n em termos de pontências menores?

2 Temos um caso base?

Será que conseguimos definir potências de forma recursiva?

• Duas opções imediatas:

$$a^{n} = a \cdot a^{n-1}$$

$$= a^{n/2} \cdot a^{n/2}$$

$$(1)$$

$$= (2)$$

$$=a^{n/2} \cdot a^{n/2} \tag{2}$$

 $a^0 = 1$

Como	construiríamos	um	programa	recursivo	para	calcular	potências?

O que o programa realmente está fazendo?

```
1024
pot(2,10)
 pot(2,5)
 pot(2,2)
 pot(2,1)
 pot(2,0)
```

Consumo de tempo

- Uma boa estimativa para o consumo de tempo do algoritmo é calcular da altura figura anterior em função de n.
- Pode-se ver que a altura para a figura é o número k de vezes que temos que dividir n por 2 para que n seja igual a 1, mais a altura entre as chamadas para n=1 e n=0, que é 1. Para k temos:

$$\frac{n}{2^k} = 1 \implies n = 2^k \implies k = \lg n$$

 \bullet Portanto a altura da arvore é algo da ordem de l
gn+1e portanto o algoritmo é $O(\lg n)$

Maior divisor comum (Greatest common divisor)

- Maior divisor comum ou gcd entre dois números a e b é o maior número que divide a e b.
- Há mais de 2000 anos ja temos um algoritmo eficiente para isso, o algoritmo de Euclides:

$$gcd(a,b) = \begin{cases} 0, & \text{se } b = 0\\ gcd(b, a \mod b), & \text{se } b > 0 \end{cases}$$

 ${\bf Como\ implementar\ esse\ algoritmo?}$

Consumo de tempo

Esse algoritmo consome tempo de $O(\lg n)$

Teste de primalidade

• Se um número não é primo, seu menor divisor é um primo

 \bullet O menor divisor primo de um número composto n é menor ou igual \sqrt{n}

Prova.

Seja n um número composto. Seja k o seu menor divisor e suponha que $k>\sqrt{n}$. Então podemos escrever $n=k\cdot q$, para algum q. Mas $q\geq k$, o que implica $q\cdot k>\sqrt{n}\cdot \sqrt{n}=|n|=n$, um absurdo. \square

Como implementar um algoritmo que utiliza essas duas informações para decidir se um número é primo?

Consumo de tempo

Como só percorremos possíveis divisores de n até \sqrt{n} , então o algoritmo é $O(\sqrt{n})$.

Todos os divisores inteiros de um número

• Para encontrar todos os divisores inteiros de um número podemos utilizar uma estrutura muito próxima do algoritmo anterior

• Convém notar que os divisores sempre aparecem aos pares

Como implementar um algoritmo que obtém todos os divisores inteiros de um número?

Consumo de tempo

Assim como o algoritmo anterior, o consumo de tempo deste é $O(\sqrt{n}).$

Fatorização em números primos

• Ainda utilizando uma estrutura muito próxima, podemos encontrar a fatorização de um número n em números primos

• Utilizaremos o fato de que o menor divisor de um número é um número primo

Como implementar um algoritmo que obtém a fatoração em números primos de um inteiro n?

Consumo de tempo

Note que só procuramos fatores primos até \sqrt{n} e, além disso efetuamos divisões sucessivas em n até que n se torne 1, possivelmente. Vimos anteriormente que o número de divisões sucessivas que fazemos em um número até que ele se torne 1 consome tempo proporcional a $\lg n$. Portanto o consumo e tempo desse algoritmo é proporcional a $\sqrt{n} + \lg n = O(\sqrt{n})$

 \bullet E se quisermos todos os números primos entre 1 e n?

• Podemos utlizar o Crivo de Eratóstenes.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30

Seja n = 30

1	2	3	4	5	6	7	8	9	10
11									
21	22	23	24	25	26	27	28	29	30

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30

1	2	3	4	5	6	7	8	9	10
11									
21	22	23	24	25	26	27	28	29	30

1	2	3	4	5	6	7	8	9	10
11									
21	22	23	24	25	26	27	28	29	30

1	2	3	4	5	6	7	8	9	10
11									
21	22	23	24	25	26	27	28	29	30

1	2	3	4	5	6	7	8	9	10
11									
21	22	23	24	25	26	27	28	29	30

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30

1	2	3	4	5	6	7	8	9	10
11									
21	22	23	24	25	26	27	28	29	30

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30

1	2	3	4	5	6	7	8	9	10
11									
21	22	23	24	25	26	27	28	29	30

1	2	3	4	5	6	7	8	9	10
11									
21	22	23	24	25	26	27	28	29	30

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30

Como implementaríamos um algoritmo que segue a mesma ideia do crivo?

O consumo de tempo do algoritmo é $O(n \lg \lg n)$.