Aufgabe 3

Sei $n := \max(\deg P_1(z), \deg P_i(z))$. Dann gilt

$$f^{(n+1)}(z+1) = f^{(n+1)}(z) + P_1^{(n+1)}(z) = f^{(n+1)}(z)$$

und analog

$$f^{(n+1)}(z+i) = f^{(n+1)}(z) + P_i^{(n+1)}(z) = f^{(n+1)}(z).$$

Daraus folgt $f^{(n+1)}(z) = f^{(n+1)}(z+1) = f^{(n+1)}(z+i)$, $f^{(n+1)}$ ist also eine elliptische Funktion auf $\mathbb{Z} \oplus \mathbb{Z}i$. Mit f ist auch $f^{(n+1)}$ holomorph. Eine elliptische holomorphe Funktion ist notwendigerweise konstant. Da also die n+1-te Ableitung von f konstant ist, muss f ein Polynom sein.

Aufgabe 4

Eine Polstelle mit Vielfachheit n>0 hat nach dem Ableiten Vielfachheit n+1, $\frac{\mathrm{d}}{\mathrm{d}z}z^{-n}=-n\cdot z^{-(n+1)}$. Sei nun P_f die Anzahl der Polstellen von f ohne Vielfachheiten gezählt. P_f ist invariant unter Differentiation, wie man aus der Laurentreihendarstellung leicht erkennt. Beim Ableiten erhöht sich für jede Polstelle die Vielfachheit um 1, wir erhalten also

$$N_{f'} = N_f + P_f$$

Da es sich bei f um eine nichtkonstante Funktion handelt, ist $P_f \geq 1$. Offensichtlich ist außerdem $N_f \geq P_f$. Mit diesen beiden Ungleichungen erhalten wir

$$N_f + 1 \le N_{f'} \le N_f + N_f = 2N_f.$$

Aufgabe 5

Nach Vorlesung ist $h \coloneqq \frac{f}{g}$ eine meromorphe, elliptische Funktion. Da f und g überall dieselbe Polbzw. Nullstellenordnung haben, kürzt sich jede Polstelle von f mit einer Polstelle gleicher Vielfachheit von g. Analog kürzt sich jede Nullstelle von g mit einer Nullstelle gleicher Vielfachheit von f. Daher lässt sich h holomorph auf ganz $\mathbb C$ fortsetzen. Eine holomorphe elliptische Funktion ist aber konstant, $h \equiv c$. Daraus folgt $\frac{f}{g} = h = c \implies f = c \cdot g$.