$\tau_{1}^{\#2}$	0	0	0	$-\frac{6ik}{(3+2k^2)^2t_3}$	$\frac{3i\sqrt{2}k}{(3+2k^2)^2t_3}$	0	$\frac{6k^2}{(3+2k^2)^2t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#2}{}_{lpha}$	0	0	0	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	$\frac{3}{(3+2k^2)^2t_3}$	0	$-\frac{3i\sqrt{2}k}{(3+2k^2)^2t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+2k^2)^2t_3}$	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	0	$\frac{6ik}{(3+2k^2)^2t_3}$
$\tau_{1}^{\#1}\!$	$-\frac{2i\sqrt{2}}{3kr_3+3k^3r_3}$	$\frac{i(9k^2r_3+4t_2)}{3k(1+k^2)^2r_3t_2}$	$\frac{9k^2r_3+4t_2}{3(1+k^2)^2r_3t_2}$	0	0	0	0
$\sigma_{1}^{\#2}_{+}\alpha_{\beta}$	$-\frac{2\sqrt{2}}{3k^2r_3+3k^4r_3}$	$\frac{9k^2r_3+4t_2}{3(k+k^3)^2r_3t_2}$	$-\frac{i(9k^2r_3+4t_2)}{3k(1+k^2)^2r_3t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\!$	$\frac{2}{3k^2r_3}$	$\frac{2\sqrt{2}}{3k^2r_3+3k^4r_3}$	$\frac{2i\sqrt{2}}{3kr_3+3k^3r_3}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$

$f_{1}^{\#2}$	0	0	0	-2 ikt3	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	٤ 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{2t_3}{3}$	$-\frac{\sqrt{2}\ t_3}{3}$	0	2 i k t 3 3
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<i>ikt</i> 2 3	$\frac{k^2t_2}{3}$	0	0	0	0
$\omega_1^{\#_+^2}$	$\frac{\sqrt{2} t_2}{3}$	1	$-rac{1}{3}$ īkt $_2$	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$\frac{1}{6}$ ($-\frac{1}{3}$ i $\sqrt{2}$ kt ₂	0	0	0	0
	$\omega_1^{\#1} +^{lphaeta}$	$\omega_1^{\#_2^2} +^{lphaeta}$	$f_{1+}^{#1} +^{\alpha\beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{\#2} \dagger^{lpha}$

$\sigma_{2}^{\#1}{}_{lphaeta}$ $ au_{2}^{\#1}{}_{lphaeta}$ $\sigma_{2}^{\#1}{}_{lphaeta}$	0	0	0
$\tau_2^{\#1}_{2^+}\alpha\beta$	0	0	0
	$-\frac{2}{3k^2r_3}$	0	0
·	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_2^{\#1} + ^{\alpha\beta}$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$

 $\sigma_{0}^{\#1}$

 $\frac{-}{(1+2k^2)^2t_3}$

 $\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$

1 1 #

SO(3) irreps $\tau_0^{\#2} == 0$

Source constraints

 $\tau_{0}^{\#1}$

 $-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$

 $\frac{2\,k^2}{(1+2\,k^2)^2\,t_3}$

0

0

 \sim

 $\tau_{1}^{\#1}{}^{\alpha} == 0$

 \sim

 $\sigma_{1}^{\#1}\alpha + 2 \ \sigma_{1}^{\#2}\alpha = 0$

 \sim

 $\tau_1^{\#2}{}^\alpha - ik \ \sigma_1^{\#1}{}^\alpha == 0$

 $\tau_0^{\#1} - 2ik\sigma_0^{\#1} = 0$

 $\tau_{0}^{\#2}$

0

0

0

0

m 0

 $\tau_1^{\#1}{}^{\alpha\beta} + ik \sigma_1^{\#2}{}^{\alpha\beta}$

 $\sigma_{2}^{\#1}\alpha\beta\chi == 0$

 $\tau_2^{\#1}\alpha\beta==0$

Total #:

 $\sigma_0^{\#1}$

0

0

0

 $\frac{1}{k^2 r_2 + t_2}$

5

$\omega_2^{#1} \dagger^{\alpha\beta\chi}$		0		0	0	
	$\omega_{0^-}^{\#1}$	0	0	0	$k^2 r_2 + t_2$	
	$f_{0}^{#2}$	0	0	0	0	
24	$f_{0}^{\#1}$	$\sqrt{2} kt_3$	$k^2 t_3$	0	0	

 $\sqrt{2}~k\,t_3$

 $\omega_{0}^{*+} + f$ $f_{0}^{*+} + f$ $f_{0}^{*+} + f$ $\omega_{0}^{*-} + f$

0

0

*t*³

 $\omega_{0}^{\#1}$

 $\omega_{2}^{\#1} + \alpha \beta \left[-\frac{3 k^2 r_3}{2} \right]$

 $f_{2^{+}}^{#1}\dagger^{\alpha\beta}$

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

0

0

0

0

	Massive particle		
? /	Pole residue:	$-\frac{1}{r_2}$ >	
$J^P = 0^-$	Polarisations:	1	
k^{μ}	Square mass:	$-\frac{t_2}{r_2}$ >	
?	Spin:	0	

	Massive particle				
?	Pole residue:	$-\frac{1}{r_2} > 0$			
0-	Polarisations:	1			
·	Square mass:	$-\frac{t_2}{r_2} > 0$			
?	Spin:	0			
	Parity:	Odd			

Unitarity conditions $r_2 < 0 \&\& t_2 > 0$

(No massless particles)