

DTIC FILE COPY

(4)

CONTRACT REPORT BRL-CR-602

BRL

1938 - Serving the Army for Fifty Years - 1988

VALVE OPENING-TIME REQUIREMENTS FOR LB/TS

AD-A201 417

R. A. BERRY
G. D. LASSAHN
EG&G IDAHO, INC. (INEL)

NOVEMBER 1988

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

U.S. ARMY LABORATORY COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

88 11 21 015

DESTRUCTION NOTICE

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute endorsement of any commercial product.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS NONE	
2a. SECURITY CLASSIFICATION AUTHORITY N/A		3. DISTRIBUTION/AVAILABILITY OF REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED	
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A			
4. PERFORMING ORGANIZATION REPORT NUMBER(S) EGG-PHY-8021		5. MONITORING ORGANIZATION REPORT NUMBER(S) BRL-CR-CO2	
6a. NAME OF PERFORMING ORGANIZATION E.G.&G. Idaho Inc.	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION U.S. Army Ballistic Research Laboratory	
6c. ADDRESS (City, State, and ZIP Code) Idaho Falls, ID 83415		7b. ADDRESS (City, State, and ZIP Code) Aberdeen Proving Ground, MD 21005-5066	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION U.S. Army BRL	8b. OFFICE SYMBOL (If applicable) SLCBR-TB-B	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER BRL-PO 76-87 (MIPR)	
8c. ADDRESS (City, State, and ZIP Code) Aberdeen Proving Ground, MD 21005-5066		10. SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO. 62120 PROJECT NO. AH25 TASK NO. WORK UNIT ACCESSION NO.	
11. TITLE (Include Security Classification) VALVE OPENING TIME REQUIREMENTS FOR LB/TS			
12. PERSONAL AUTHOR(S) R. A. Berry and G. D. Lassahn			
13a. TYPE OF REPORT Final	13b. TIME COVERED FROM 87/09 TO 88/01	14. DATE OF REPORT (Year, Month, Day) 29 February 1988	15. PAGE COUNT 130
16. SUPPLEMENTARY NOTATION			
17. COSATI CODES FIELD GROUP SUB-GROUP		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Computational 1D Flow, Blast-Wave Simulation, Variable-Area Shock Tubes, Shock Formation, Rapid Opening Valves, Valve Opening Time. (125)	
19. ABSTRACT (Continue on reverse if necessary and identify by block number) Computer calculations were performed to determine the maximum allowable valve opening times for producing sharply defined shocks of certain specifications ranging from 13.8 kPa to 241 kPa in the proposed Large Blast/Thermal Simulator for the U.S. Army Ballistic Research Laboratory. The maximum allowable valve opening times range from 63 milliseconds for the highest shock overpressure to 21 milliseconds for the lowest shock overpressure in the specified overpressure range.			
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input checked="" type="checkbox"/> SAME AS RPT. <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED	
22a. NAME OF RESPONSIBLE INDIVIDUAL Mr. Klaus O. Opalka		22b. TELEPHONE (Include Area Code) (301) 278-6036	22c. OFFICE SYMBOL SLCBR-TB-B

18. Subject Terms

Large Blast/Thermal Simulator (LB/TS)
Shock Tubes
Computational Fluid Dynamics

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification _____	
By _____	
Distribution/ _____	
Availability Codes	
Aveil	Spec
Dist	Special
R-1	

VALVE OPENING TIME REQUIREMENTS FOR LB/TS

R. A. Berry and G. D. Lassahn
Idaho National Engineering Laboratory
EG&G Idaho, Inc.
P. O. Box 1625
Idaho Falls, ID 83415

29 February 1988

Final Report

prepared for
U. S. Army Ballistic Research Laboratory
Aberdeen Proving Ground, Maryland 21005-5066

CONTENTS

1. INTRODUCTION	1
2. CALCULATIONS	2
3. RESULTS	6
4. CONCLUSIONS	12
REFERENCES	13

FIGURES

1. Diagram (not to scale) of shock tube, case 1	14
2. Pressure versus distance, case 1, zero opening time	15
3. Magnified pressure versus distance, case 1, zero opening time	16
4. Density versus distance, case 1, zero opening time	17
5. Magnified density versus distance, case 1, zero opening time	18
6. Velocity versus distance, case 1, zero opening time	19
7. Magnified velocity versus distance, case 1, zero opening time	20
8. Sound speed versus distance, case 1, zero opening time	21
9. Magnified sound speed versus distance, case 1, zero opening time	22
10. Shock front detail, pressure versus distance, case 1, zero opening time	23
11. Shock front detail, density versus distance, case 1, zero opening time	24
12. Shock front detail, velocity versus distance, case 1, zero opening time	25
13. Shock front detail, sound speed versus distance, case 1, zero opening time	26
14. Pressure versus time, case 1, zero opening time	27
15. Detail, pressure versus time, case 1, zero opening time	28
16. Pressure versus distance, case 1, 65ms opening time	29
17. Magnified pressure versus distance, case 1, 65ms opening time	30
18. Density versus distance, case 1, 65ms opening time	31
19. Magnified density versus distance, case 1, 65ms opening time	32
20. Velocity versus distance, case 1, 65ms opening time	33
21. Magnified velocity versus distance, case 1, 65ms opening time	34
22. Sound speed versus distance, case 1, 65ms opening time	35
23. Magnified sound speed versus distance, case 1, 65ms opening time	36
24. Shock front detail, pressure versus distance, case 1, 65ms opening time	37
25. Shock front detail, density versus distance, case 1, 65ms opening time	38
26. Shock front detail, velocity versus distance, case 1, 65ms opening time	39
27. Shock front detail, sound speed versus distance, case 1, 65ms opening time	40
28. Pressure versus time, case 1, 65ms opening time	41
29. Detail, pressure versus time, case 1, 65ms opening time	42
30. Pressure versus distance, case 8, zero opening time	43
31. Magnified pressure versus distance, case 8, , zero opening time	44
32. Density versus distance, case 8, zero opening time	45
33. Magnified density versus distance, case 8, zero opening time	46
34. Velocity versus distance, case 8, zero opening time	47

35. Magnified velocity versus distance, case 8, zero opening time	51
36. Sound speed versus distance, case 8, zero opening time	51
37. Magnified sound speed versus distance, case 8, zero opening time	51
38. Pressure versus time, case 8, zero opening time	51
39. Detail, pressure versus time, case 8, zero opening time	51
40. Detail study, pressure versus distance, part 1	51
41. Detail study, pressure versus distance, part 2	51
42. Detail study, pressure versus distance, part 3	51
43. Detail study, magnified pressure versus distance, part 1	51
44. Detail study, magnified pressure versus distance, part 2	51
45. Detail study, magnified pressure versus distance, part 3	51
46. Detail study, density versus distance, part 1	51
47. Detail study, density versus distance, part 2	51
48. Detail study, density versus distance, part 3	51
49. Detail study, magnified density versus distance, part 1	51
50. Detail study, magnified density versus distance, part 2	51
51. Detail study, magnified density versus distance, part 3	51
52. Detail study, velocity versus distance, part 1	65
53. Detail study, velocity versus distance, part 2	65
54. Detail study, velocity versus distance, part 3	67
55. Detail study, magnified velocity versus distance, part 1	63
56. Detail study, magnified velocity versus distance, part 2	63
57. Detail study, magnified velocity versus distance, part 3	70
58. Detail study, sound speed versus distance, part 1	71
59. Detail study, sound speed versus distance, part 2	72
60. Detail study, sound speed versus distance, part 3	73
61. Detail study, magnified sound speed versus distance, part 1	74
62. Detail study, magnified sound speed versus distance, part 2	75
63. Detail study, magnified sound speed versus distance, part 3	75
64. Detail study, pressure versus distance 0.3 to 0.7, part 1	77
65. Detail study, pressure versus distance 0.3 to 0.7, part 2	78
66. Detail study, magnified pressure versus distance 0.3 to 0.7, part 1	79
67. Detail study, magnified pressure versus distance 0.3 to 0.7, part 2	80
68. Detail study, density versus distance 0.3 to 0.7, part 1	81
69. Detail study, density versus distance 0.3 to 0.7, part 2	82
70. Detail study, magnified density versus distance 0.3 to 0.7, part 1	83
71. Detail study, magnified density versus distance 0.3 to 0.7, part 2	84
72. Detail study, velocity versus distance 0.3 to 0.7, part 1	85
73. Detail study, velocity versus distance 0.3 to 0.7, part 2	86

74. Detail study, magnified velocity versus distance 0.3 to 0.7, part 1	87
75. Detail study, magnified velocity versus distance 0.3 to 0.7, part 2	88
76. Detail study, sound speed versus distance 0.3 to 0.7, part 1	89
77. Detail study, sound speed versus distance 0.3 to 0.7, part 2	90
78. Detail study, magnified sound speed versus distance 0.3 to 0.7, part 1	91
79. Detail study, magnified sound speed versus distance 0.3 to 0.7, part 2	92
80. Detail study, pressure versus distance 0.38 to 0.48	93
81. Detail study, density versus distance 0.38 to 0.48	94
82. Detail study, velocity versus distance 0.38 to 0.48	95
83. Detail study, sound speed versus distance 0.38 to 0.48	96
84. Detail study, pressure versus distance 0.39 to 0.43	97
85. Detail study, density versus distance 0.39 to 0.43	98
86. Detail study, velocity versus distance 0.39 to 0.43	99
87. Detail study, sound speed versus distance 0.39 to 0.43	100
88. Detail study, pressure versus time at -4 meters	101
89. Detail study, pressure versus time at -2 meters	102
90. Detail study, pressure versus time at 0 meters	103
91. Detail study, pressure versus time at 2 meters	104
92. Detail study, pressure versus time at 4 meters	105
93. Detail study, pressure versus magnified time	106
94. Detail study, characteristics plot	107
95. Pressure versus time, case 8, 20ms opening time	108
96. Pressure versus time, case 8, 30ms opening time	109
97. Pressure versus time, case 8, 50ms opening time	110
98. Pressure versus time, case 9, zero opening time	111
99. Pressure versus time, case 9, 20ms opening time	112
100. Pressure versus time, case 9, 30ms opening time	113
101. Pressure step versus valve opening time, cases 1, 2, and 3	114
102. Pressure step versus valve opening time, cases 4, 5, and 6	115
103. Pressure step versus valve opening time, cases 7, 8, and 9	116
104. Maximum allowable valve opening time versus driver pressure ratio	117
105. Driver temperature ratio versus driver pressure ratio	118

1. INTRODUCTION

The Ballistic Research Laboratory (BRL) of the U.S. Army is designing a Large Blast/Thermal Simulator (LB/TS), which is a proposed facility for creating pressure and thermal transients like those that occur near nuclear explosions.⁽¹⁾ The LB/TS is basically a large shock tube with area changes along its length. Unlike a conventional shock tube, which uses rupture diaphragms to separate the high pressure driver region from the low pressure driven region, it is desirable to utilize fast-opening valves in the LB/TS for wave shaping purposes as well as operational efficiency. However, with real valves, a finite opening time results in a compression wave with a finite rise time. The question then arises as to whether the compression wave will steepen to an adequate shock profile within the specified wave propagation distance, to simulate the desired blast wave. In support of this design effort, the Mathematical Analysis Unit at the Idaho National Engineering Laboratory (INEL) has done calculations to determine the maximum throat valve opening times allowable for the creation of certain shock waves in the LB/TS test section. Calculations were done for 9 specific cases specified by the BRL, representing 9 different initial conditions in the shock tube driver. All the calculations were done with the BRL-Q1D computer code⁽²⁾. This report summarizes the results of the valve opening calculations.

2. CALCULATIONS

For the present studies, the LB/TS was represented by the shock tube shown in Figure 1 and described in Table 1. We are interested in the initial magnitude and rise time (not the later decay) of the shock at the test section 103.5 meters from the valve. The objective of the present study is to determine how fast the valve must open to allow the overpressure to rise from 5% to 95% of the plateau value in 0.5 milliseconds or less. We are not concerned with reflections from the end of the shock tube, which arrive too late to affect the shock front of interest. This allows us to model a shock tube substantially shorter than the real LB/TS, thereby saving some computer costs.

Calculations were done for the 9 cases listed in Table 2, representing different initial temperature and pressure conditions in the driver. Case 9 was different from the other 8 in that the shock tube geometry was a little different (see Table 1) and the valve was opened to a maximum of 43.75% instead of 100%.

The valve was represented as a parabolic constriction with a total length of 2 meters, located in the middle of the throat. The valve opening was represented as a linear function of time, from 0.1% open at time zero to 100% open (43.75% open for case 9) at the specified valve opening time. In addition to these calculations with the valve opening gradually, a reference calculation was done with the valve opened instantaneously for each case, to insure adequate resolution of the shock wave structure with the mesh used and, in some instances, to compare certain features of the wave structures.

Table 1: Shock Tube Geometry

	cases 1-6	cases 7-8	case 9
driver length	80.	20.	20.
driver diameter	5.490	5.490	5.440
converging nozzle length	2.	2.	2.
throat length	4.	4.	4.
throat diameter	2.743	2.743	1.81
diverging nozzle length	4.	4.	4.
expansion tube length	110.	110.	110.
expansion tube diameter	14.494	14.494	14.494

(all dimensions are in meters)

TABLE 2: Calculation Results

case	pressure ratio	temperature ratio	nominal over-pressure [kPa]	reference over-pressure [kPa]	maximum valve opening time [second]
1	118.0	2.235	241.3	247.0	0.063
2	102.5	2.009	206.8	213.6	0.062
3	83.5	1.825	172.4	174.5	0.061
4	69.2	1.652	137.9	142.7	0.055
5	54.0	1.471	103.4	107.2	0.044
6	39.5	1.228	68.9	74.0	0.050
7	19.5	1.094	34.5	39.6	0.035
8	7.0	1.040	13.8	15.57	0.021
9	8.9	1.040	13.8	4.634	0.026

The calculations were done on INEL's CRAY X/MP-24 computer. Two minor modifications were made to the BRL-Q1D code: the sizes of the grid-dependent arrays were increased, and the plot and print output of time-dependent arrays was not started until the shock reached the first measurement station. For cases 8 and 9, the code was further modified by overlaying some large arrays, to decrease computer memory requirements and thereby improve computer access and turn-around time.

The BRL-Q1D code includes two options for the numerical method: the Beam-Warming and the MacCormack methods. For these calculations, the Beam-Warming method was used, with the BRL-recommended values of 1.0 for the Courant number and 0.04 for the smoothing coefficient. Preliminary estimates suggested that 10000 grid points would be adequate for these calculations, and this number was used successfully for cases 1-6. More grid points were required for cases 7-9.

3. RESULTS

The results for case 1 are given here in some detail; results for the other cases are given in much less detail, only as is necessary to describe significant differences from the results for case 1.

Figures 2-15 indicate the temporal and spatial dependence of some important variables calculated by the BRL-Q1D code for case 1 with the valve instantaneously opened 100%. In Figures 2-13, the horizontal axis is the normalized distance along the length of the shock tube. The actual total length corresponding to the normalized length of 1 is indicated by the value of L_{ref} (200 meters for case 1) printed at the top left corner of the page. The profile of the shock tube is indicated above the data plot, on the same horizontal scale as the data plot. The dependent variables plotted on the vertical scale in Figures 2-13 are also normalized to reference values as described in the BRL-Q1D code documentation.⁽²⁾ The number printed just above the right end of each curve in Figures 2-13 is the time corresponding to that curve, in seconds. In Figures 10-13, the horizontal scale is expanded enough so that the individual points of the spatial grid are discernible, indicated by the vertical lines in the shock tube profile drawn above the graph proper. These graphs with high spatial resolution clearly indicate the spatial spread of the computed shock front, which is useful in evaluating the adequacy of the numerical method.

Figures 14 and 15 are graphs of overpressure (solid line) and dynamic pressure (dashed line) versus time, at the test location specified by the value listed for X-sta at the top of the page. The indicated distance of 97.5 meters from the beginning of the expansion tube corresponds to the required 103.5 meters from the center of the valve.

The data of most immediate interest is the overpressure versus time data indicated by the solid curves in Figures 14 and 15. This overpressure rises abruptly -- in a fraction of a millisecond -- when the shock arrives at the test location. At the top of this step is a small overshoot that is an artifact of the numerical procedures and is not indicative of a real phenomenon; the actual overpressure step is better indicated by extrapolating the almost-horizontal curve from the right of the step into the region of the step itself. This extrapolation procedure was used to estimate the overpressure step in all the studies reported here.

After the initial shock transient, the overpressure approaches a constant value, a plateau value, which is different for each of the 9 cases. This plateau value is used as the reference overpressure for each case.

Figures 16-29 illustrate the effect of the valve opening gradually instead of instantaneously. These figures represent a valve opening time of 65 milliseconds, which is close to the maximum allowable valve opening time for case 1. The major effect is to decrease the magnitude of the overpressure step and to increase the slope of the overpressure versus time curve after the initial shock. The rise time for the initial step is not noticeably changed by the gradual opening of the valve. Since the slope of the overpressure versus time curve after the initial shock is practically zero on a millisecond time scale, the acceptance criterion is essentially equivalent to the requirement that the magnitude of the overpressure step with the valve opened gradually be at least 95% of the reference overpressure. Thus, the procedure for estimating the maximum allowable valve opening time was to try different opening times and check whether the shock overpressure step was at least 95% of the reference value. (Of course the shock rise time was also checked for each run, to be sure that it was less than 0.5 ms.)

This case 1 description is representative of the results for cases 1-5. Case 6 and 7 gave results similar to those described for case 1, except that the overpressure decreased slightly instead of increasing after the initial shock for the calculations in which the valve was opened instantaneously. This difference was not important in estimating the maximum acceptable valve opening time.

Cases 8 and 9 gave qualitatively different results, as indicated in Figures 30-39 for case 8 with the valve instantaneously opened. In these cases, the initial shock was followed after a few milliseconds by a second shock that raised the overpressure to a value substantially higher than that of the first shock. The timing and magnitude of the second shock depend on the details of the geometry in the throat region of the shock tube. Figures 40-93 show some detailed plots for case 8 with the valve instantaneously opened, and Figure 94 shows an x-t plot for this case. The second shock moves a little faster than the first shock, but does not quite overtake the first shock in the 103.5 meter travel distance to the test station. It appeared that moving the valve closer to the end of the throat would decrease the initial delay between the first and second shocks and perhaps allow the second shock to overtake and merge with the first shock before they reached the test location. This change in the valve location was tried and found effective for this particular problem; unfortunately, this created another shock even later, so that the overall effect was not significantly changed.

The general conclusion drawn from this examination of case 8 is that the details of the shock tube geometry near the valve can cause irregular behavior of the overpressure versus time plot for the shock front, more complicated than the simple step followed by an almost flat region. In fact, this same irregular behavior occurs in all cases (note Figure 3), but in the higher pressure cases the irregular structure is merged into one simple shock before the shock reaches the measurement station.

Of course the simple shock tube geometry assumed here and the one-dimensional fluid flow calculation used here may not accurately represent the actual shock tube valve, throat, and nozzle behavior; nevertheless, it would not be surprising if phenomena qualitatively similar to the double shock behavior calculated for case 8 actually occurred in the real LB/TS. The question of immediate importance here is whether the model is realistic or informative enough to be useful, and whether (and how) to proceed with the studies of acceptable valve opening times for cases 8 and 9. The BRL personnel consulted⁽³⁾ on this matter suggested proceeding with the calculations, with the understanding that the results might not be taken at face value. Thus, the results presented here for cases 8 and 9 should be regarded as plausible but perhaps not very accurate estimates of the actual shock tube behavior. These results are a little sketchy, but more detailed studies did not seem warranted in view of the high cost and limited validity of computer calculations for the low-pressure cases like cases 8 and 9.

Overpressure versus time plots for cases 8 and 9 are shown in Figure 38 and Figures 95-100. The overpressure step associated with the first shock front appears to vary in a consistent manner with valve opening time, if the valve is opened gradually instead of instantaneously, and the results obtained from considering only this first shock front fit reasonably well with the results from cases 1-7. Therefore, despite the irregular nature of the overpressure versus time curve near the shock front, cases 8 and 9 were finally treated in the same manner as the other cases, with the overpressure step at the first shock front being considered the critical factor.

For the case 9 calculations with valve opening times of 20 and 30 milliseconds, the shock front rise time was a little greater than the required 0.5 milliseconds. However, previous experience indicates that the parameters of interest are not very sensitive to this factor, and the high calculation cost prohibited repeating these calculations with smaller step sizes to obtain the required rise time.

The results of these valve opening time studies are summarized in Figures 101-103, which indicate the magnitude of the shock overpressure step versus valve opening time for each of the 9 cases studied.

Interpolation of these curves gives the maximum allowable valve opening time for each case, listed in Table 2 and graphed versus driver pressure to ambient pressure ratio in Figure 104. This curve does show a general trend, but it is not smooth. This lack of smoothness is at least partly attributed to the fact that the maximum allowable valve opening time is not a function of pressure ratio alone; it also depends on the temperature ratio, which is not a perfectly smooth function of the pressure ratio (see Figure 105) for the cases considered here.

4. CONCLUSIONS

The calculations done here indicate that the maximum allowable valve opening time is about 63 milliseconds for case 1, and somewhat less for the other, lower-pressure cases, as indicated in Table 2. The results for cases 1-7 are believed to be realistic; the results for cases 8 and 9 must be regarded with some skepticism. More reliable results would require a multidimensional computer model that is somewhat more complicated and substantially more expensive to run than the model used in this work.

REFERENCES

1. Opalka, K. O., "Large Blast-Wave Simulators (LBS) with Cold-Gas Drivers: Computational Design Studies", BRL-TR, U. S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066.
2. Opalka, K. O. and Mark, A., "The BRL-Q1D Code: A Tool for the Numerical Simulation of Flows in Shock Tubes with Variable Cross-Sectional Areas", BRL-TR-2763, U. S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066, October 1986.
3. Pearson, R. J. and Opalka, K. O., private communication, U. S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066, January 1988.

Figure 1. Diagram (not to scale) of shock tube for Case 1.

pressure

$$\begin{aligned}L_{ref} &= 200.0 \text{ m} \\V_{drv} &= 1933. \text{ m}^3 \\P_{41} &= 118.0; \quad T_{41} = 2.235 \\XSTA_1 &= 0.935, 0.938, 0.940\end{aligned}$$

CASE~1 in: BRL1 - PLOT 1
Offset, $\Delta y = 1.000$

PRESSURE vs. DISTANCE

Figure 2. Pressure versus distance, case 1, zero opening time

pressure

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1933. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.935, 0.938, 0.940$

CASE~1n: BRL1 - PLOT 1
Offset, $\Delta y = 0.020$

PRESSURE vs. DISTANCE

Figure 3. Magnified pressure versus distance, case 1,
zero opening time

density

$L_{ref} = 200.0 \text{ m}_3$
 $V_{drv} = 1933. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.935, 0.938, 0.940$

CASE~1n: RRL1 PLOT 1
Offset, $\Delta y = 0.100$

DENSITY vs. DISTANCE

Figure 4. Density versus distance, case 1, zero opening time

density

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1933. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.935, 0.938, 0.940$

CASE~1n: BRL1 - PLOT
Offset, $\Delta y = 0.010$

DENSITY vs. DISTANCE

Figure 5. Magnified density versus distance, case 1,
zero opening time

velocity

CASE~ 1n: BRL1 - PLOT 1
Offset, $\Delta y = 3.000$

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1933. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.935, 0.938, 0.940$

VELOCITY vs. DISTANCE

19.10.05 WED 9 DEC, 1987 JGD-FID20846, ISSCO 01SSPLA 10.0

Figure 6. Velocity versus distance, case 1, zero opening time

velocity

CASE~1r: redo 1n, check q01 - PLOT 1
Offset, $\Delta y = 0.200$

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1833. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.935, 0.938, 0.940$

VELOCITY vs. DISTANCE

Figure 7. Magnified velocity versus distance, case 1,
zero opening time

sound speed

CASE~1n: BRL1 - PLOT 1
Offset, $\Delta y = 1.500$

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1903. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.935, 0.938, 0.940$

SOUND VELOCITY vs. DISTANCE

Figure 8. Sound speed versus distance, case 1, zero opening time

sound speed

CASE~1r: redo 1n, check q01 - PLOT 1
Offset, $\Delta y = 0.030$

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1933. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.935, 0.938, 0.940$

SOUND VELOCITY vs. DISTANCE

Figure 9. Magnified sound speed versus distance, case 1,
zero opening time

pressure

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1933. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.935, 0.938, 0.940$

CASE~1n: BRL1 - PLOT 3
Offset, $\Delta y = 0.000$

PRESSURE vs. DISTANCE

Figure 10. Shock front detail, pressure versus distance,
case 1, zero opening time

density

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1933. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.935, 0.938, 0.940$

CASE~1n: BRL1 - PLOT 3
Offset, $\Delta y = 0.000$

DENSITY vs. DISTANCE

Figure 11. Shock front detail, density versus distance,
case 1, zero opening time

PLOT 9 08.19.29 THUR 10 DEC, 1987 JJB-P1030086, ISSCO DISPLAY 10.0

velocity

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1933. \text{ m/s}$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.935, 0.938, 0.940$

CASE~ in: BRL1 ~ PLOT 3
Offset, $\Delta y = 0.00$

VELOCITY vs. DISTANCE

Figure 12. Shock front detail, velocity versus distance,
case 1, zero opening time

sound speed

$$\begin{aligned} L_{ref} &= 200.0 \text{ m} \\ V_{drv} &= 1933. \text{ m}^3 \\ P_{41} &= 118.0; \quad T_{41} = 2.235 \\ XSTA_1 &= 0.935, 0.938, 0.940 \end{aligned}$$

CASE~1n: BRL1 - PLOT 3
Offset, $\Delta y = 0.000$

Figure 13. Shock front detail, sound speed versus distance, case 1, zero opening time

SHOCK TUBE WITH CONICAL DRIVER AND NOZZLE

CASE: = 1n: BRL1 $P_{-so} = 254.6 \text{ kPa}$ (36.92 psi)
 $L_{-ref} = 200.0 \text{ m}$ $X_{-sta} = 97.50 \text{ m}$ $t_{-a} = 175.5 \text{ ms}$
 $L_{-drv} = 80.00 \text{ m}$ $P_{-drv} = 118.0 \text{ atm}$ $PPD = 0.023 \text{ s}$ (0.083 s)
 $V_{-drv} = 1933. \text{ m}^3$ $P_{-amb} = 101.3 \text{ kPa}$ $I_{-so} = 5.586 \text{ kPa-s}$ (0.171 kT)
 $L_{-dvn} = 110.0 \text{ m}$ $T_{-amb} = 288.2 \text{ K}$ $Q_{-s} = 168.1 \text{ kPa}$
 $L_{-rwe} = 0.000 \text{ m}$ $T_4/T_1 = 2.235$ $I_{-dyn} = 3.600 \text{ kPa-s}$ (0.287 kT)

PRESSURE-TIME HISTORY

Figure 14. Pressure versus time, case 1, zero opening time

SHOCK TUBE WITH CONICAL DRIVER AND NOZZLE

CASE: = 1n: BRL1	P-so = 234.6 kPa (36.92 psi)	
L-ref = 200.0 m	X-sta = 97.50 m	t-a = 175.5 ms
L-drv = 80.00 m	P-drv = 118.0 atm	PPD = 0.023 s (0.083 s)
V-drv = 1933. m ³	P-amb = 101.3 kPa	I-so = 5.586 kPa-s (0.171 kT)
L-dvn = 110.0 m	T-amb = 288.2 K	Q-s = 168.1 kPa
L-rwe = 0.000 m	T4/T1 = 2.235	I-dyn = 3.600 kPa-s (0.287 kT)

PRESSURE-TIME HISTORY

Figure 15. Detail, pressure versus time, case 1, zero opening time

pressure

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1929. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.938$

CASE~1u: BRL1 - PLOT 1
Offset, $\Delta y = 1.000$

PRESSURE vs. DISTANCE

14:42:57 THUR 14 JUN, 1985
JB-1559905, ISSCO DISSPLA 10.0

PLOT 2

Figure 16. Pressure versus distance, case 1, 65ms opening time

pressure

CASE~ 1u: BRL1 - PLOT 1
Offset, $\Delta y = 0.020$

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1929. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.938$

PRESSURE vs. DISTANCE

Figure 17. Magnified pressure versus distance, case 1,
65ms opening time

density

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1929. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.938$

CASE~1u; BRLJ - PLOT 1
Offset, $\Delta y = 0.100$

DENSITY vs. DISTANCE

14.43.39 THUR 14 JAN, 1988 JCB-F105990C, 15500 DISSPLA 10.0

PLOT 4

Figure 18. Density versus distance, case 1, 65ms opening time

density

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1929. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.938$

CASE~1u: BRL1 - PLOT 1
Offset, $\Delta y = 0.010$

DENSITY vs. DISTANCE

PLOT 3 14.43.14 THUR 14 JAN, 1988 JOB-P1059900, ISSCO DISSPLA 10.0

Figure 19. Magnified density versus distance, case 1,
65ms opening time

velocity

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1929. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.938$

CASE~1u: BRL1 - PLOT 1
Offset, $\Delta y = 3.000$

VELOCITY vs. DISTANCE

14:44:16 THUR 14 JAN, 1988 JOB-P1053900, ISSUED 015500 DISPLR 10.0

PLOT 6

Figure 20. Velocity versus distance, case 1, 65ms opening time

velocity

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1929. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.938$

CASE~ 1u: BRL1 - PLOT :
Offset, $\Delta y = 0.200$

VELOCITY vs. DISTANCE

Figure 21. Magnified velocity versus distance, case 1,
65ms opening time

sound speed

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1929. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.938$

CASE~1u: BRL1 - PLOT 1
Offset, $\Delta y = 1.500$

SOUND VELOCITY vs. DISTANCE

14:44:59 THUR 14 JUN, 1988 JOB-F1059900, ISSCO 01SSPLA 10.0

PLOT 7

Figure 22. Sound speed versus distance, case 1, 65ms opening time

sound speed

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1929. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.655$
 $XSTA_1 = 0.938$

CASE~ 1u: BRL1 - PLOT 1
Offset, $\Delta y = 0.030$

SOUND VELOCITY vs. DISTANCE

Figure 23. Magnified sound speed versus distance, case 1,
65ms opening time

pressure

CASE~ 1u: BRL1 - PLOT 1
Offset, $\Delta y = 0.000$

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1929. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.938$

PRESSURE vs. DISTANCE

15.44.52 THUR 14 JAN, 1986

JOB=PID63148, ISSCO DISPLA 10.0

PLOT 1

Figure 24. Shock front detail, pressure versus distance,
case 1, 65ms opening time

density

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1929. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.938$

CASE~1u: BRL1 - PLOT 1
Offset, $\Delta y = 0.000$

DENSITY vs. DISTANCE

Figure 25. Shock front detail, density versus distance,
case 1, 65ms opening time

velocity

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1929. \text{ m/s}$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.938$

CASE~1u: BRL1 - PLOT 1
Offset, $\Delta y = 0.000$

VELOCITY vs. DISTANCE

Figure 26. Shock front detail, velocity versus distance,
case 1, 65ms opening time

sound speed

$L_{ref} = 200.0 \text{ m}$
 $V_{drv} = 1929. \text{ m}^3$
 $P_{41} = 118.0; T_{41} = 2.235$
 $XSTA_1 = 0.938$

CASE~1u: BRL1 - PLOT 1
Offset, $\Delta y = 0.000$

SOUND VELOCITY vs. DISTANCE

Figure 27. Shock front detail, sound speed versus distance,
case 1, 65ms opening time

SHOCK TUBE WITH CONICAL DRIVER AND NOZZLE

CASE: = 1u: BRL1	P-so = 241.2 kPa (34.88 psi)	
L-ref = 200.0 m	X-sta = 97.50 m	t-a = 204.8 ms
L-drv = 80.00 m	P-drv = 118.0 atm	PPD = 0.015 s (0.054 s)
V-drv = 1929. m ³	P-amb = 101.3 kPa	I-so = 3.502 kPa·s (0.045 kT)
L-dvn = 110.0 m	T-amb = 288.2 K	Q-s = 153.2 kPa
L-rwe = 0.000 m	T4/T1 = 2.235	I-dyn = 2.224 kPa·s (0.031 kT)

PRESSURE-TIME HISTORY

Figure 28. Pressure versus time, case 1, 65ms opening time

SHOCK TUBE WITH CONICAL DRIVER AND NOZZLE

CASE:	= 1u; BRL1	P-so	= 241.2 kPa	(34.98 psi)	
L-ref	= 200.0 m	X-sta	= 97.50 m	t-a	= 204.8 ms
L-drv	= 80.00 m	P-drv	= 118.0 atm	PPD	= 0.015 s
V-drv	= 1929. m ³	P-amb	= 101.3 kPa	I-so	= 3.502 kPa-s
L-dvn	= 110.0 m	T-amb	= 288.2 K	Q-s	= 153.2 kPa
L-rwe	= 0.000 m	T4/T1	= 2.235	I-dyn	= 2.224 kPa-s

PRESSURE-TIME HISTORY

PLOT 1 15:54:21 THUR 14 JAN, 1988 JOB-P1063612, 15500 DISPLA 10.0

Figure 29. Detail, pressure versus time, case 1, 65ms opening time

pressure

$L_{ref} = 140.0 \text{ m}$
 $V_{drv} = 512.9 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.040$
 $XSTA_1 = 0.911$

CASE~8q: BRL8 -- PLOT 1
Offset, $\Delta y = 1.000$

PRESSURE vs. DISTANCE

Figure 30. Pressure versus distance, case 8, zero opening time

pressure

CASE~ 8q: BRL8 - PLOT 1
Offset, $\Delta y = 0.020$

$L_{ref} = 140.0 \text{ m}$
 $V_{drv} = 512.8 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.040$
 $XSTA_1 = 0.911$

PRESSURE vs. DISTANCE

PLOT 1 03.03.53 FRI 8 JHN, 1988
JOB-P1057385, ISSCO DISSPLR 10.0

Figure 31. Magnified pressure versus distance, case 8,
zero opening time

density

$L_{ref} = 140.0 \text{ m}$
 $V_{drv} = 512.9 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.040$
 $XSTA_i = 0.911$

CASE~8q: BRL8 PLOT 1
Offset, $\Delta y = 0.100$

DENSITY vs. DISTANCE

Figure 32. Density versus distance, case 8, zero opening time

density

$L_{ref} = 140.0 \text{ m}$
 $V_{drv} = 512.9 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.040$
 $XSTA_1 = 0.911$

CASE~8q: BRL8 - PLOT 1
Offset, $\Delta y = 0.0 \text{ C}$

PLOT 3 03.05.18 7:51:18 JUN, 1988 JUSP-1106.7995, 15500 0155PLR 10.0

Figure 33. Magnified density versus distance, case 8,
zero opening time

velocity

CASE~8q: BRL8 - PLOT 1
Offset, $\Delta y = 3.000$

$L_{ref} = 140.0 \text{ m}$
 $V_{drv} = 512.9 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.040$
 $XSTA_1 = 0.911$

VELOCITY vs. DISTANCE

PLCT: 6 033.37.32 FRI 8 JAN, 1988 -28-P:1357365, 13300 01SSPLA 10.0

Figure 34. Velocity versus distance, case 8, zero opening time

velocity

$L_{ref} = 140.0 \text{ m}$
 $V_{dry} = 512.9 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.040$
 $XSTA_1 = 0.911$

CASE~8q: BRL8 - PLGT
Offset, $\Delta y = 0.25$

VELOCITY vs. DISTANCE

Figure 35. Magnified velocity versus distance, case 8,
zero opening time

sound speed

CASE~8q: BRL8 -- PLOT 1
Offset, $\Delta y = 1.500$

$L_{ref} = 140.0 \text{ m}$
 $V_{drv} = 512.9 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.040$
 $XSTA_1 = 0.911$

SOUND VELOCITY vs. DISTANCE

Figure 36. Sound speed versus distance, case 8, zero opening time

sound speed

$L_{ref} = 140.0 \text{ m}$
 $V_{drv} = 512.9 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.040$
 $XSTA_1 = 0.911$

CASE~8q: BRL8 - PLOT 1
Offset, $\Delta y = 0.030$

SOUND VELOCITY vs. DISTANCE

Figure 37. Magnified sound speed versus distance, case 8,
zero opening time

SHOCK TUBE WITH CONICAL DRIVER AND NOZZLE

CASE: = 8q: BRL8	P-so = 11.96 kPa (1.735 psi)	
L-ref = 140.0 m	X-sta = 97.50 m	t-a = 282.1 ms
L-drv = 20.00 m	P-drv = 7.000 atm	PPD = 0.083 s (0.245 s)
V-drv = 512.9 m ³	P-amb = 101.3 kPa	I-so = 1.209 kPa-s (0.169 kT)
L-dvn = 110.0 m	T-amb = 288.2 K	Q-s = 0.496 kPa
L-rwe = 0.000 m	T4/T1 = 1.040	I-dyn = 0.078 kPa-s (1.778 kT)

PRESSURE-TIME HISTORY

Figure 38. Pressure versus time, case 8, zero opening time

SHOCK TUBE WITH CONICAL DRIVER AND NOZZLE

CASE: = 8q: BRL8	P-so = 11.96 kPa	(1.735 psi)
L-ref = 140.0 m	X-sta = 97.50 m	t-a = 282.1 ms
L-drv = 20.00 m	P-drv = 7.000 atm	PPD = 0.063 s
V-drv = 512.9 m ³	P-amb = 101.3 kPa	I-so = 1.209 kPa-s
L-dvn = 110.0 m	T-amb = 288.2 K	Q-s = 0.496 kPa
L-rwe = 0.000 m	T4/T1 = 1.040	I-dyn = 0.078 kPa-s

(0.245 s) (0.169 kT) (1.778 kT)

PRESSURE-TIME HISTORY

Figure 39. Detail, pressure versus time, case 8, zero opening time

pressure

CASE~8h: BRL8 - PLOT 1

Offset, $\Delta y = 1.000$

$$L_{ref} = 40.00 \text{ m}$$

$$V_{drv} = 276.1 \text{ m}^3$$

$$P_{41} = 7.000; T_{41} = 1.000$$

$$XSTA_i = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

PRESSURE vs. DISTANCE

Figure 40. Detail study, pressure versus distance, part 1

LST 5 18:45:26 FRI 18 JEC, 1987 JOB#P1053300, ISSCO 01SSPCU 1G.0

pressure

$$L_{ref} = 40.00 \text{ m}$$

$$V_{drv} = 276.1 \text{ m}^3$$

$$P_{41} = 7.000; T_{41} = 1.000$$

$$XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

CASE~8h: BRL8 - PLOT 2
Offset, $\Delta y = 1.000$

PRESSURE vs. DISTANCE

Figure 41. Detail study, pressure versus distance, part 2

pressure

CASE~8h: BRL8 - PLOT 3

Offset, $\Delta y = 1.000$

$$L_{ref} = 40.00 \text{ m}$$

$$V_{drv} = 276.1 \text{ m}^3$$

$$P_{41} = 7.000; T_{41} = 1.000$$

$$XSTA_i = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

PRESSURE vs. DISTANCE

Figure 42. Detail study, pressure versus distance, part 3

pressure

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

CASE~8h: BRL8 - PLOT 1
Offset, $\Delta y = 0.020$

PRESSURE vs. DISTANCE

Figure 43. Detail study, magnified pressure versus distance, part 1

pressure

CASE~8h: BRL8 - PLOT 2

Offset, $\Delta y = 0.020$

$$L_{ref} = 40.00 \text{ m}$$

$$V_{drv} = 276.1 \text{ m}^3$$

$$P_{41} = 7.000; T_{41} = 1.000$$

$$XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

PRESSURE vs. DISTANCE

Figure 44. Detail study, magnified pressure versus distance, part 2

pressure

$$L_{ref} = 40.00 \text{ m}$$
$$V_{drv} = 276.1 \text{ m}^3$$

$$P_{41} = 7.000; T_{41} = 1.000$$

$$XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

CASE~8h: BRL8 - PLOT 3
Offset, $\Delta y = 0.020$

PRESSURE vs. DISTANCE

18.44.55 FRI 18 DEC, 1987 JOB-P1053500, ISSCO DISPLA 10.0

* LDR 4

Figure 45. Detail study, magnified pressure versus distance, part 3

density

CASE~8h: BRL8 - PLOT 1
Offset, $\Delta y = 0.100$

$$L_{ref} = 40.00 \text{ m}$$

$$V_{drv} = 276.1 \text{ m}^3$$

$$P_{41} = 7.000; T_{41} = 1.000$$

$$XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

DENSITY vs. DISTANCE

Figure 46. Detail study, density versus distance, part 1

density

CASE~8h: BRL8 - PLOT 2
Offset, $\Delta y = 0.100$

$$L_{ref} = 40.00 \text{ m}$$

$$V_{drv} = 276.1 \text{ m}^3$$

$$P_{4l} = 7.000; T_{4l} = 1.000$$

$$XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

DENSITY vs. DISTANCE

Figure 47. Detail study, density versus distance, part 2

density

CASE~8h: BRL8 - PLOT 3
Offset, $\Delta y = 0.100$

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

DENSITY vs. DISTANCE

Figure 48. Detail study, density versus distance, part 3

density

CASE~8h: BRL8 - PLOT 1
Offset, $\Delta y = 0.010$

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

DENSITY vs. DISTANCE

Figure 49. Detail study, magnified density versus distance, part 1

density

CASE~ 8h: BRL8 - PLOT 2
Offset, $\Delta y = 0.010$

$$L_{ref} = 40.00 \text{ m}$$

$$V_{drv} = 276.1 \text{ m}^3$$

$$P_{41} = 7.000; T_{41} = 1.000$$

$$XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

DENSITY vs. DISTANCE

Figure 50. Detail study, magnified density versus distance, part 2

PLOT 10 18.46.17 FRI 18 DEC, 1987

JOB-P1053500, ISSCO 01SSPLA 10.0

density

$$L_{ref} = 40.00 \text{ m}$$

$$V_{drv} = 276.1 \text{ m}^3$$

$$P_{41} = 7.000; T_{41} = 1.000$$

$$XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

CASE~8h: BRL8 - PLOT 3
Offset, $\Delta y = 0.010$

DENSITY vs. DISTANCE

Figure 51. Detail study, magnified density versus distance, part 3

velocity

$$L_{ref} = 40.00 \text{ m}$$
$$V_{drv} = 276.1 \text{ m/s}$$

$$P_{41} = 7.000; T_{41} = 1.000$$

$$XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

CASE~ 8h: BRL8 - PLOT 1

Offset, $\Delta y = 3.000$

VELOCITY vs. DISTANCE

Figure 52. Detail study, velocity versus distance, part I

velocity

CASE~ 8h: BRL8 - PLOT 2
Offset, $\Delta y = 3.000$

$L_{ref} = 40.00 \text{ m}_3$
 $V_{drv} = 276.1 \text{ m}_3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

VELOCITY vs. DISTANCE

Figure 53. Detail study, velocity versus distance, part 2

velocity

CASE~8h: BRL8 - PLOT 3
Offset, $\Delta y = 3.000$

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

VELOCITY vs. DISTANCE

Figure 54. Detail study, velocity versus distance, part 3

velocity

CASE~8h: BRL8 - PLOT 1
Offset, $\Delta y = 0.200$

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

VELOCITY vs. DISTANCE

Figure 55. Detail study, magnified velocity versus distance, part 1

velocity

CASE~ 8h: BRL8 - PLOT 2
Offset, $\Delta y = 0.200$

$L_{ref} = 40.00 \text{ m}_3$
 $V_{drv} = 276.1 \text{ m}_3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_t = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

VELOCITY vs. DISTANCE

Figure 56. Detail study, magnified velocity versus distance, part 2

velocity

CASE~ 8h: BRL8 - PLOT 3
Offset, $\Delta y = 0.200$

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

VELOCITY vs. DISTANCE

Figure 57. Detail study, magnified velocity versus distance, part 3

sound speed

$$L_{ref} = 40.00 \text{ m}$$

$$V_{drv} = 276.1 \text{ m/s}$$

$$P_{41} = 7.000; T_{41} = 1.000$$

$$XSTA_i = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

CASE~8h: BRL8 - PLOT 1

Offset, $\Delta y = 1.500$

SOUND VELOCITY vs. DISTANCE

Figure 58. Detail study, sound speed versus distance, part 1

sound speed

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

CASE~8h: BRL8 - PLOT 2
Offset, $\Delta y = 1.500$

SOUND VELOCITY vs. DISTANCE

Figure 59. Detail study, sound speed versus distance, part 2

sound speed

CASE~8h: BRL8 - PLOT 3
Offset, $\Delta y = 1.500$

$$L_{ref} = 40.00 \text{ m}$$

$$V_{drv} = 276.1 \text{ m}^3$$

$$P_{41} = 7.000; T_{41} = 1.000$$

$$XSTA_i = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

SOUND VELOCITY vs. DISTANCE

Figure 60. Detail study, sound speed versus distance, part 3

sound speed

$L_{\text{eff}} = 40.00 \text{ m}$
 $V_{\text{drv}} = 276.1 \text{ m}^3$

$P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

CASE~8h: BRL8 - PLOT
Offset, $\Delta y = 0.0$

SOUND VELOCITY vs. DISTANCE

1.3 1.4 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49 1.50 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63 1.64 1.65

Figure 61. Detail study, magnified sound speed versus distance,
part 1

sound speed

CASE~8h: BRI.8 PLOT 2
Offset, $\Delta y = 0.030$

$$L_{ref} \approx 40.00 \text{ m}$$

$$V_{dry} = 276.1 \text{ m}^3$$

$$P_{41} = 7.000; T_{41} = 1.000$$

$$XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

SOUND VELOCITY vs. DISTANCE

Figure 62. Detail study, magnified sound speed versus distance,
part 2

sound speed

CASE~ 8h: BRL8 - PLOT 3
Offset, $\Delta y = 0.030$

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

SOUND VELOCITY vs. DISTANCE

Figure 63. Detail study, magnified sound speed versus distance,
part 3

pressure

CASE~8h: BRL8 - PLOT i
Offset, $\Delta y = 1.000$

$$L_{ref} = 40.00 \text{ m}$$

$$V_{dry} = 276.1 \text{ m}^3$$

$$P_{41} = 7.000; T_{41} = 1.000$$

$$XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

PRESSURE vs. DISTANCE

Figure 64. Detail study, pressure versus distance
0.3 to 0.7, part 1

pressure

$$L_{ref} = 40.00 \text{ m}$$

$$V_{drv} = 276.1 \text{ m}^3$$

$$P_{41} = 7.000; T_{41} = 1.000$$

$$XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

CASE~8h: BRL8 ~ PLOT 6
Offset, $\Delta y = 1.000$

PRESSURE vs. DISTANCE

Figure 65. Detail study, pressure versus distance
0.3 to 0.7, part 2

pressure

CASE~8h: BRL8 - PLOT 1
Offset, $\Delta y = 0.020$

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

PRESSURE vs. DISTANCE

Figure 66. Detail study, magnified pressure versus distance 0.3 to 0.7, part 1

pressure

CASE~8h: BRL8 - PLOT 2
Offset, $\Delta y = 0.020$

$L_{ref} = 40.00 \text{ m}$
 $V_{avg} = 278.1 \text{ m}^3$
 $P_{st} = 7.000; T_{st} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

PRESSURE vs. DISTANCE

Figure 67. Detail study, magnified pressure versus distance
0.3 to 0.7, part 2

density

$$L_{ref} = 40.00 \text{ m}$$

$$V_{drv} = 276.1 \text{ m}^3$$

$$P_{41} = 7.000; T_{41} = 1.000$$

$$XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

CASE~8h: BRL8 - PLCT 1

Offset, $\Delta y = 0.100$

DENSITY vs. DISTANCE

Figure 68. Detail study, density versus distance
0.3 to 0.7, part 1

density

$$\begin{aligned}L_{\text{ref}} &= 40.00 \text{ m} \\V_{\text{drv}} &= 276.1 \text{ m}^3 \\P_{41} &= 7.000; \quad T_{41} = 1.000 \\XSTA_1 &= 0.400, 0.450, 0.500, 0.550, 0.600, 0.700\end{aligned}$$

Figure 69. Detail study, density versus distance
0.3 to 0.7, part 2

density

CASE~ 8h: BRL8 -- PLOT 1
Offset, $\Delta y \approx 0.010$

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_i = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

DENSITY vs. DISTANCE

Figure 70. Detail study, magnified density versus distance 0.3 to 0.7, part 1

density

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

CASE~8h: BRL8 - PL 11.1
Offset, $\Delta y = 0.016$

DENSITY vs. DISTANCE

Figure 71. Detail study, magnified density versus distance
0.3 to 0.7, part 2

velocity

CASE~8h: BRL8 - PLOT 1
Offset, Δy = 3.000

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_i = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

VELOCITY vs. DISTANCE

Figure 72. Detail study, velocity versus distance
0.3 to 0.7, part 1

velocity

CASE~8h: BRL8 - PLOT 2
Offset, $\Delta y = 3.000$

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

VELOCITY vs. DISTANCE

Figure 73. Detail study, velocity versus distance
0.3 to 0.7, part 2

velocity

CASE~8h: BRL8 - PLOT 1
Offset, $\Delta y = 0.200$

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

VELOCITY vs. DISTANCE

Figure 74. Detail study, magnified velocity versus distance
0.3 to 0.7, part 1

velocity

CASE~8h: BRL8 ~ PLOT 2
Offset, $\Delta y = 0.200$

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

VELOCITY vs. DISTANCE

Figure 75. Detail study, magnified velocity versus distance
0.3 to 0.7, part 2

sound speed

CASE~ 8h: BRL8 - PLOT 1
Offset, $\Delta y = 1.500$

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

SOUND VELOCITY vs. DISTANCE

Figure 76. Detail study, sound speed versus distance
0.3 to 0.7, part 1

sound speed

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

CASE~ 8h: BRL8 - PLOT 2
Offset, $\Delta y = 1.500$

SOUND VELOCITY vs. DISTANCE

Figure 77. Detail study, sound speed versus distance
0.3 to 0.7, part 2

sound speed

$$L_{ref} = 40.00 \text{ m}$$

$$V_{drv} = 276.1 \text{ m}^3$$

$$P_{41} = 7.000; T_{41} = 1.000$$

$$XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

CASE~8h: BRL8 - PLOT 1
Offset, $\Delta y = 0.030$

SOUND VELOCITY vs. DISTANCE

Figure 78. Detail study, magnified sound speed versus distance 0.3 to 0.7, part 1

sound speed

CASE~8h: BRL8 - PLOT 2
Offset, $\Delta y = 0.030$

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

SOUND VELOCITY vs. DISTANCE

Figure 79. Detail study, magnified sound speed versus distance 0.3 to 0.7, part 2

pressure

CASE~8h: BRL8 - PLOT 1
Offset, $\Delta y = 0.020$

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_i = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

PRESSURE vs. DISTANCE

Figure 80. Detail study, pressure versus distance 0.38 to 0.48

density

CASE~8h: BRL8 - PLOT 1
Offset, $\Delta y = 0.010$

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$

XSTA₁ = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700

DENSITY vs. DISTANCE

Figure 81. Detail study, density versus distance 0.38 to 0.48

velocity

CASE~8h: BRL8 PLOT 1
Offset, $\Delta y = 0.200$

$L_{ref} = 40.00 \text{ m}$
 $V_{dry} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

VELOCITY vs. DISTANCE

PLOT 5 09.19.87 MED 23 DEC, 1987 JCB-P1029035, 15500 0.55PLR 10.0

Figure 82. Detail study, velocity versus distance 0.38 to 0.48

sound speed

CASE~8h: BRL8 - PLOT 1
Offset, $\Delta y = 0.030$

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

SOUND VELOCITY vs. DISTANCE

Figure 83. Detail study, sound speed versus distance 0.38 to 0.48

pressure

$$L_{ref} = 40.00 \text{ m}$$
$$V_{drv} = 276.1 \text{ m}^3$$

$$P_{41} = 7.000; T_{41} = 1.000$$

$$XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

CASE~ 8h: BRL8 - PLOT 1
Offset, $\Delta y = 0.020$

PRESSURE vs. DISTANCE

Figure 84. Detail study, pressure versus distance 0.39 to 0.43

density

$$L_{ref} = 40.00 \text{ m}$$

$$V_{drv} = 276.1 \text{ m}^3$$

$$P_{41} = 7.000; T_{41} = 1.000$$

$$XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

CASE~ 8h: BRL8 -- PLOT :

Offset, $\Delta y = 0.010$

DENSITY vs. DISTANCE

Figure 85. Detail study, density versus distance 0.39 to 0.43

velocity

CASE~ 8h: BRL8 - PLOT 1

Offset, $\Delta y = 0.200$

$$L_{ref} = 40.00 \text{ m}$$

$$V_{drv} = 276.1 \text{ m}^3$$

$$P_{41} = 7.000; T_{41} = 1.000$$

$$XSTA_1 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$$

VELOCITY vs. DISTANCE

Figure 86. Detail study, velocity versus distance 0.39 to 0.43

sound speed

$L_{ref} = 40.00 \text{ m}$
 $V_{drv} = 276.1 \text{ m}^3$
 $P_{41} = 7.000; T_{41} = 1.000$
 $XSTA_4 = 0.400, 0.450, 0.500, 0.550, 0.600, 0.700$

CASE~ 8h: BRL8 - PLOT 1
 Offset, $\Delta y = 0.000$

Figure 87. Detail study, sound speed versus distance 0.39 to 0.43

SHOCK TUBE WITH CONICAL DRIVER AND NOZZLE

CASE: = 8h: BRL8 $P_{-so} = 142.1 \text{ kPa}$ (20.60 psia)
 L-ref = 40.00 m $X_{-sta} = -4.000 \text{ m}$ $t-a = 3.906 \text{ ms}$
 L-drv = 10.00 m $P_{-drv} = 7.000 \text{ atm}$ $PPD = 0.030 \text{ s}$ (0.076 s²)
 V-drv = 276.1 m³ $P_{-amb} = 101.3 \text{ kPa}$ $I_{-so} = 3.174 \text{ kPa-s}$ (0.007 kip-in)
 L-dvn = 20.00 m $T_{-amb} = 288.2 \text{ K}$ $Q_{-s} = 114.0 \text{ kPa}$
 L-rwe = 0.000 m $T_4/T_1 = 1.000$ $I_{-dyn} = 5.457 \text{ kPa-s}$ (8.724 kip-in)

PRESSURE-TIME HISTORY

Figure 88. Detail study, pressure versus time at -4 meters

SHOCK TUBE WITH CONICAL DRIVER AND NOZZLE

CASE:	= 8h: BRL8	P-so	= 49.02 kPa
L-ref	= 40.00 m	t-a	= 8.47e-004 s
L-drv	= 10.00 m	PPD	= 0.0354
V-drv	= 276.1 m ³	I-so	= 0.137 kPa
L-dvn	= 20.00 m	Q-s	= 8.152 kJ/kg
L-rwe	= 0.000 m	I-dyn	= 0.163 kPa
	T4/T1		
	= 1.000		

PRESSURE-TIME HISTORY

Figure 89. Detail study, pressure versus time at -2

SHOCK TUBE WITH CONICAL DRIVER AND NOZZLE

CASE:	= 8h: BRL8	P-so	= 28.39 kPa	(4.117 psi)		
L-ref	= 40.00 m	X-sta	= 0.000 m	t-a	= 13.58 ms	
L-drv	= 10.00 m	P-drv	= 7.000 atm	PPD	= 0.020 s	(0.029 s)
V-drv	= 276.1 m ³	P-amb	= 101.3 kPa	I-so	= 0.302 kPa-s	(0.000 kT)
L-dvn	= 20.00 m	T-amb	= 288.2 K	Q-s	= 2.733 kPa	
L-rwe	= 0.000 m	T4/T1	= 1.000	I-dyn	= 0.017 kPa-s	(0.000 kT)

PRESSURE-TIME HISTORY

Figure 90. Detail study, pressure versus time at 0 meters

SHOCK TUBE WITH CONICAL DRIVER AND NOZZLE

CASE: = 8h: BRL8

L-ref = 40.00 m

L-drv = 10.00 m

V-drv = 276.1 m³

L-dvn = 20.00 m

L-rwe = 0.000 m

X-sta = 2.000 m

P-drv = 7.000 atm

P-amb = 101.3 kPa

T-amb = 288.2 K

T4/T1 = 1.000

P-so = 26.79 kPa

t-a = 18.30 ms

PPD = 0.013 s

I-so = 0.215 kPa s

Q-s = 2.481 kPa

I-dyn = 0.012 kPa s

PRESSURE-TIME HISTORY

Figure 91. Detail study, pressure versus time at 2 meters

SHOCK TUBE WITH CONICAL DRIVER AND NOZZLE

CASE: = 8h; BRL8

L-ref = 40.00 m	X-sta = 4.000 m	P-so = 25.56 kPa (3.708 psi)
L-drv = 10.00 m	P-drv = 7.000 atm	t-a = 24.17 ms
V-drv = 276.1 m ³	P-amb = 101.3 kPa	PPD = 0.009 s (0.015 s)
L-dvn = 20.00 m	T-amb = 288.2 K	I-so = 0.150 kPa-s (0.000 kT)
L-rwe = 0.000 m	T4/T1 = 1.000	Q-s = 2.223 kPa
		I-dyn = 0.009 kPa-s (0.000 kT)

PRESSURE-TIME HISTORY

Figure 92. Detail study, pressure versus time at 4 meters

SHOCK TUBE WITH CONICAL DRIVER AND NOZZLE

CASE: = 8h: BRL8

L-ref = 40.00 m

L-drv = 10.00 m

V-drv = 276.1 m³

L-dvn = 20.00 m

L-rwe = 0.000 m

X-sta = 4.000 m

P-drv = 7.000 atm

P-amb = 101.3 kPa

T-amb = 288.2 K

T4/T1 = 1.000

P-so = 25.56 kPa

t-a = 34.17 ms

PPD = 0.000

I-so = 0.150 kPa s

Q-s = 2.223 kPa

I-dyn = 0.009 kPa s

(3.708 kPa

(0.013 ms

(0.000

(0.000 kPa s

(0.000 kPa

(0.000 kPa s

PRESSURE-TIME HISTORY

Figure 93. Detail study, pressure versus magnified time

Figure 94. Detail study, characteristics plot

SHOCK TUBE WITH CONICAL DRIVER AND NOZZLE

CASE:	= 8s: BRL8	P-so	= 14.4 atm	\Rightarrow 1.03 atm	
L-ref	= 140.0 m	X-sta	= 97.50 m	t-a	= 127.3 ms
L-drv	= 20.00 m	P-drv	= 7.000 atm	PPD	= 0.029 s
V-drv	= 508.2 m ³	P-amb	= 101.3 kPa	T-so	= 1.187 (10 ⁻³) s = 0.1187 ms
L-dyn	= 110.0 m	T-amb	= 288.2 K	Q-s	= 0.708 J/m ³
L-rwe	= 0.000 m	T4/T1	= 1.040	T-dyn	= 0.021 (10 ⁻³) s = 0.021 ms

PRESSURE-TIME HISTORY

Figure 95. Pressure versus time, case 8, 20ms opening time

SHOCK TUBE WITH CONICAL DRIVER AND NOZZLE

CASE:	= 8t: BRL8	P-so	= 12.98 kPa	(1.882 psi)	
L-ref	= 140.0 m	X-sta	= 97.50 m	t-a	= 290.6 ms
L-drv	= 20.00 m	P-drv	= 7.000 atm	PPD	= 0.026 s (0.06s)
V-drv	= 508.2 m ³	P-amb	= 101.3 kPa	I-so	= 0.362 kPa-s (0.004 kT)
L-dvn	= 110.0 m	T-amb	= 288.2 K	Q-s	= 0.583 kPa
L-rwe	= 0.000 m	T4/T1	= 1.040	I-dyn	= 0.018 kPa-s (0.014 kT)

PRESSURE-TIME HISTORY

Figure 96. Pressure versus time, case 8, 30ms opening time

SHOCK TUBE WITH CONICAL DRIVER AND NOZZLE

CASE: = 8r: BRL8	P-so = 10.31 kPa (1.495 ps)	
L-ref = 140.0 m	X-sta = 97.50 m	t-a = 294.6 ms
L-drv = 20.00 m	P-drv = 7.000 atm	PPD = 0.067 s (0.212 ms)
V-drv = 508.2 m ³	P-amb = 101.3 kPa	I-so = 0.915 kPa-s (0.098 kJ)
L-dvn = 110.0 m	T-amb = 288.2 K	Q-s = 0.369 kPa
L-rwe = 0.000 m	T4/T1 = 1.040	I-dyn = 0.045 kPa-s (0.725 kJ)

PRESSURE-TIME HISTORY

Figure 97. Pressure versus time, case 8, 50ms opening time

SHOCK TUBE WITH CONICAL DRIVER AND NOZZLE

CASE:	= 91: BRL9	P-so	= 6.508 kPa	(0.944 psi)	
L-ref	= 140.0 m	X-sta	= 97.50 m	t-a	= 291.0 ms
L-drv	= 20.00 m	P-drv	= 8.900 atm	PPD	= 0.036 s (0.061 s)
V-drv	= 491.4 m ³	P-amb	= 101.3 kPa	I-so	= 0.175 kPa·s (0.002 kT)
L-dvn	= 110.0 m	T-amb	= 288.2 K	Q-s	= 0.300 kPa
L-rwe	= 0.000 m	T4/T1	= 1.040	I-dyn	= 0.003 kPa·s (0.002 kT)

PRESSURE-TIME HISTORY

Figure 98. Pressure versus time, case 9, zero opening time

SHOCK TUBE WITH CONICAL DRIVER AND NOZZLE

CASE:	= 9s; BRL9	P-so	= 4.334 kPa	$\pm 0.015\%$
L-ref	= 140.0 m	t-a	= 299.3 ms	
L-drv	= 20.00 m	PPD	= 0.063 s	(0.1% t-a)
V-drv	= 490.4 m ³	I-so	= 0.296 kPa·s	(0.07% P-so)
L-dvn	= 110.0 m	Q-s	= 0.300 kPa	
L-rwe	= 0.000 m	I-dyn	= 0.005 kPa·s	(0.01% P-so)

PRESSURE-TIME HISTORY

Figure 99. Pressure versus time, case 9, 20ms opening time

SHOCK TUBE WITH CONICAL DRIVER AND NOZZLE

CASE:	= 9r; BRL9	P-so	= 5.022 kPa	(0.728 psi)	
L-ref	= 140.0 m	X-sta	= 97.50 m	t-a	= 297.6 ms
L-drv	= 20.00 m	P-drv	= 8.900 atm	PPD	= 0.029 s (0.002 s)
V-drv	= 490.4 m ³	P-amb	= 101.3 kPa	I-so	= 0.140 kPa-s (0.001 kT)
L-dvn	= 110.0 m	T-amb	= 288.2 K	Q-s	= 0.300 kPa
L-rwe	= 0.000 m	T4/T1	= 1.040	I-dyn	= 0.002 kPa-s (0.003 kT)

PRESSURE-TIME HISTORY

Figure 100. Pressure versus time, case 9, 30ms opening time

Figure 101. Pressure step versus valve opening time,
cases 1, 2, and 3

Figure 102. Pressure step versus valve opening time,
cases 4, 5, and 6

Figure 103. Pressure step versus valve opening time,
cases 7, 8, and 9

Figure 104. Maximum allowable valve opening time versus driver pressure ratio

Figure 105. Driver temperature ratio versus driver pressure ratio

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
12	Administrator Defense Technical Info Center ATTN: DTIC-FDAC Cameron Station, Bldg 5 Alexandria, VA 22304-6145	5	Director Defense Nuclear Agency ATTN: CSTI (Tech Lib) DFSP (G. Ullrich) NANS SPSD (Goering/Rohr) TDTR (Kennedy/Hrinishin) Washington, DC 20305
1	Director of Defense Research & Engineering ATTN: DD/TWP Washington, DC 20301	2	Commander Field Command, DNA ATTN: FCPR FCTMOF Kirtland AFB, NM 87115
1	Asst. to the Secretary of Defense (Atom.. Energy) ATTN: Document Control Washington, DC 20301	1	Commander Field Command, DNA Livermore Branch ATTN: FCPRL P.O. Box 808 Livermore, CA 94550
2	Deputy Chief of Staff for Operations and Plans ATTN: Technical Library Director of Chemical and Nuclear Operations Department of the Army Washington, DC 20310	1	HQDA DAMA-ART-M Washington, DC 20310
1	Director Defense Advanced Research Projects Agency ATTN: Tech Lib 1400 Wilson Boulevard Arlington, VA 22209	10	Central Intelligence Agency DIR/DB/Standard ATTN: GE-47 HQ Washington, DC 20505
2	Director Federal Emergency Management Agency ATTN: D. A. Bettge Technical Library Washington, DC 20472	1	Commander US Army Strategic Defense Command ATTN: CSSD-H-MPL (Tech Lib) CSSD-H-XM (Dr. Davies) P.O. Box 1500 Huntsville, AL 35807
1	Director Defense Intelligence Agency ATTN: DT-2/Wpns & Sys Div Washington, DC 20301	1	Commander US Army Engineer Division ATTN: HNDED-FD P.O. Box 1500 Huntsville, AL 35807
1	Director National Security Agency ATTN: E. E. Butala, R15 Ft. George G. Meade, MD 20755	1	Director Joint Strategic Target Planning Staff JCS Offut AFB Omaha, NB 68113

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
3	Commander US Army Engineers Waterways Experiment Station ATTN: Technical Library Jim Watt Jim Ingram P.O. Box 631 Vicksburg, MS 39180-0631	3	Commander US Army Communications & Electronics Command (CECOM) HQ ATTN: AMSEL-RD AMSEL-IM-I, AMSEL-RO-TPPO-P Fort Monmouth, NJ 07703-5301
2	Commander US Army Materiel Command ATTN: AMCDRA-ST John Shea 5001 Eisenhower Avenue Alexandria, VA 22333-0001	3	Director US Army Harry Diamond Labs SLCHD-NW-RA (L. Belliveau) SLCHD-NW-P (Gwaltney/Meszaros) SLCHD-TA-L (Tech Lib) 2800 Powder Mill Road Adelphi, MD 20783-1197
3	Commander US Army Armament RD&E Center ATTN: SMCAR-TDC SMCAR-MSI SMCAR-TSS Dover, NJ 07801-5001	1	Commander US Army Missile Command ATTN: AMSMI-RD Redstone Arsenal, AL 35898-5245
1	Commander US Army Armament, Munitions and Chemical Command ATTN: SMCAR-ESP-L Rock Island, IL 61299-7300	1	Director US Army Missile and Space Intelligence Center ATTN: AIAMS-YDL Redstone Arsenal, AL 35898-5500
1	Commander US AMCCOM ARDEC CCAC Benet Weapons Laboratory ATTN: SMCAR-CCB-TL Watervliet, NY 12189-4050	2	Commander US Army Natick Research and Development Center ATTN: AMDNA-D (Dr. D. Sieling) STRNC-UE (J. Calligeros) Natick, MA 01762
1	Commander US Army Aviation Systems Command ATTN: AMSAV-ES 4300 Goodfellow Boulevard St. Louis, MO 63120-1798	1	Commander US Army Tank Automotive Command ATTN: AMSTA-TSL Warren, MI 48397-5000
1	Director US Army Aviation Research and Technology Activity Ames Research Center Moffett Field, CA 94035-1099	1	Commander US Army Foreign Science and Technology Center ATTN: Research & Data Branch 220 7th Street, NE Charlottesville, VA 22901

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander US Army Logistics Management Center ATTN: ATCL-O (R. Cameron) Fort Lee, VA 23801	1	Commander US Army Development & Employment Agency ATTN: MODE-ORO Fort Lewis, WA 98433-5000
2	Commander US Army Materials Technology Laboratory ATTN: AMXMR-ATL Eugene de Luca Watertown, MA 02172-0001	1	Commandant Interservice Nuclear Weapons School ATTN: Technical Library Kirtland AFB, NM 87115
1	Commander US Army Research Office ATTN: SLCRO-D P.O. Box 12211 Research Triangle Park, NC 27709-2211	2	Chief of Naval Operations ATTN: OP-03EG OP-985F Department of the Navy Washington, DC 20350
3	Commander US Army Nuclear & Chemical Agency ATTN: ACTA-NAW MONA-WE Tech. Lib. 7500 Backlick Rd, Bldg. 2073 Springfield, VA 22150	1	Chief of Naval Research ATTN: N. Perrone Department of the Navy Arlington, VA 22217
1	Commander US Army TRADOC ATTN: DCST&E Fort Monroe, VA 23651-5143	1	Director Strategic Systems Projects Office ATTN: NSP-43, Tech Library Department of the Navy Washington, DC 20360
1	Commander US Army Test & Evaluation Command Nuclear Effects Laboratory ATTN: STEWS-TE-NO (Dr. J. L. Meason) P.O. Box 477 White Sands Missile Range, NM 88002-	1	Commander Naval Electronic Systems Command ATTN: PME 117-21A Washington, DC 20360
2	Director US Army TRADOC Analysis Command (WSML) ATTN: LTC John Hesse ATOR-TSL White Sands Missile Range, NM 88002-5502	1	Commander Naval Facilities Engineering Command Washington, DC 20360
2	Commandant US Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905-5400	1	Commander Naval Sea Systems Command ATTN: Code SEA-62R Department of the Navy Washington, DC 20362-5101

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
3	Officer-in-Charge (Code L31) Naval Construction Battalion Center Civil Engineering Laboratory ATTN: Stan Takahashi R. J. Odello Technical Library Port Hueneme, CA 93041	2	Air Force Armament Technology Laboratory ATTN: AFATL/EOIL AFATL/DLYV Eglin AFB, FL 32542-5438
1	Commander David W. Taylor Naval Ship Research & Development Command ATTN: Lib Div, Code 522 Bethesda, MD 20084-5000	1	AFESC/RDCS ATTN: Paul Rosengren Tyndall AFB, FL 32463
1	Commander Naval Surface Weapons Center ATTN: DX-21, Library Dahlgren, VA 22448-5000	1	RADC (EMTLD/Docu Library) Griffiss AFB, NY 13441
2	Commander Naval Surface Weapons Center ATTN: Code WA501, Navy Nuclear Programs Office Code WX21, Tech Library Silver Spring, MD 20902-5000	3	Air Force Weapons Laboratory ATTN: SUL NTES, R. Henny NTED, J. W. Aubrey Kirtland AFB, NM 87117-6008
1	Commander Naval Weapons Center ATTN: Code 533, Tech Library China Lake, CA 93555-6001	2	Commander-in-Chief Strategic Air Command ATTN: NRI-STINFO Lib Offutt AFB, NB 68113
1	Commander Naval Weapons Evaluation Fac ATTN: Document Control Kirtland AFB, NM 87117	1	AFIT (Lib Bldg. 640, Area B) Wright-Patterson AFB, OH 45433
1	Commander Naval Research Laboratory ATTN: Code 2027, Tech Library Washington, DC 20375	1	FTD/NIIS Wright-Patterson AFB Ohio 45433
1	Superintendent Naval Postgraduate School ATTN: Code 2124, Tech Library Monterey, CA 93940	1	U.S. Department of Energy Idaho Operations Office ATTN: Spec Programs (J. Patton) 785 DOE Place Idaho Falls, ID 83402
1	AFSC/SDOA Andrews AFB, MD 20334	2	Director Idaho National Engineering Laboratory EG&G Idaho Inc. ATTN: Dr. R. A. Berry Mr. W. C. Reed P.O. Box 1625 Idaho Falls, ID 83415
		1	Director Lawrence Livermore Lab. ATTN: Tech Info Dept L-3 P.O. Box 808 Livermore, CA 94550

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
2	Director Los Alamos Scientific Lab. ATTN: Doc Control for Rpts Library P.O. Box 1663 Los Alamos, NM 87544	1	Black & Veatch Consulting Engineers ATTN: H. D. Laverentz 1500 Meadow Lake Parkway Kansas City, MO 64114
2	Director Sandia Laboratories ATTN: Doc Control 3141 Sandia Rpt Collection L. J. Vortman P.O. Box 5800 Albuquerque, NM 87185-5800	1	The Boeing Company ATTN: Aerospace Library P.O. Box 3707 Seattle, WA 98124
1	Director Sandia Laboratories Livermore Laboratory ATTN: Doc Control for Tech Library P.O. Box 969 Livermore, CA 94550	1	Carpenter Research Corporation ATTN: H. Jerry Carpenter Suite 424 904 Silver Spur Road Rolling Hills Estates, CA 90274
1	Director National Aeronautics and Space Administration Scientific & Tech Info Fac P.O. Box 8757, BWI Airport Baltimore, MD 21240	1	Dynamics Technology, Inc. ATTN: D. T. Hove Suite 300 21311 Hawthorne Blvd. Torrance, CA 90503
1	Director NASA-Ames Research Center Applied Computational Aerodynamics Branch ATTN: MS 202-14, Dr. T. Holtz Moffett Field, CA 94035	1	EATON Corporation Defense Valve & Actuator Div. ATTN: Dr. J. Y. S. Yang 2338 Alaska Ave. El Segundo, CA 90245-4896
3	Aberdeen Research Center ATTN: N.H. Ethridge J. Keefer Library P.O. Box 548 Aberdeen, MD 21001	4	Kaman AviDyne ATTN: Dr. R. Reuteneck (2 cys) Mr. S. Criscione Mr. R. Milligan 83 Second Avenue Northwest Industrial Park Burlington, MA 01830
1	Applied Research Associates, Inc. ATTN: R. L. Guice 7114 West Jefferson Ave., Suite 305 Lakewood, CO 80235	2	Kaman Sciences Corporation ATTN: Dr. F. W. Balicki Tech Lib 1613 University Blvd. N.E. Albuquerque, NM 87102
		2	Kaman-TEMPO ATTN: DASIAC Don Sachs P.O. Drawer QQ 816 State Street Santa Barbara, CA 93102

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	New Mexico Engineering Research Institute (CERF) University of New Mexico ATTN: Dr. J. Leigh P.O. Box 25 Albuquerque, NM 87131	1	Battelle Memorial Institute ATTN: Technical Library 505 King Avenue Columbus, OH 43201
2	R&D Associates ATTN: Technical Library Allan Kuhl P.O. Box 9695 Marina Del Rey, CA 90291	1	California Institute of Technology ATTN: Tech Lib 1201 E. California Blvd. Pasadena, CA 91109
1	R&D Associates ATTN: G.P. Ganong P.O. Box 9330 Albuquerque, NM 87119	1	Massachusetts Institute of Technology ATTN: Technical Library Cambridge, MA 02139
1	Science Applications International Corp. ATTN: Mr. J. Guest 4615 Hawkins Blvd. N.E. Albuquerque, NM 87109	1	Northrop University ATTN: Dr. F. B. Safford 5800 W. Arbor Vitae St. Los Angeles, CA 90045
1	Science Applications International Corp. ATTN: Technical Library 1250 Prospect Plaza La Jolla, CA 92037	2	Southwest Research Institute ATTN: Dr. W. E. Baker A. B. Wenzel 8500 Culebra Road San Antonio, TX 78228
			<u>Aberdeen Proving Ground</u>
		Dir. USAMSA	
		ATTN: AMXSY-D	
		AMXSY-MP (H. Cohen)	
		Cdr. USATECOM	
		ATTN: AMSTE-SI-E	
		AMSTE-TF-E (T. J. Jackson)	
		Cdr. CRDEC	
		ATTN: SMCCR-RSP-A	
		SMCCR MU	
		SMCCR-SPS-II	
		Cdr. USATHMA	
		ATTN: AMXTB-TL	
1	Sverdrup Technology, Inc. ATTN: R. F. Starr P. O. Box 884 Tullahoma, TN 37388		
2	Systems, Science and Software ATTN: C. E. Needham Lynn Kennedy PO Box 8243 Albuquerque, NM 87198		
1	AFELM, The Rand Corporation ATTN: Library-D 1700 Mainm Street Santa Monica, CA 90406		

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. BRL Report Number _____ Date of Report _____

2. Date Report Received _____

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)

4. How specifically, is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)

Name _____

CURRENT Organization _____

ADDRESS Address _____

City, State, Zip _____

7. If indicating a Change of Address or Address Correction, please provide the New or Correct Address in Block 6 above and the Old or Incorrect address below.

Name _____

OLD Organization _____

ADDRESS Address _____

City, State, Zip _____

(Remove this sheet, fold as indicated, staple or tape closed, and mail.)

— — — — — FOLD HERE — — — — —

Director
U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-5066

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE. \$300

Director
U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-9989

— — — — — FOLD HERE — — — — —