Importing Libraries

```
In [1]: import pyforest #for importing all libraries at once
        import pygwalker as pyg
        import pycaret
In [2]: from sklearn.model_selection import cross_val_score,GridSearchCV, RandomizedSearchC
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.svm import SVC
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.linear model import LogisticRegression
        from xgboost import XGBClassifier
        from sklearn.naive_bayes import GaussianNB
        from sklearn.neural_network import MLPClassifier
        from sklearn.ensemble import GradientBoostingClassifier
        from lightgbm import LGBMClassifier
        from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
        #to ignore all the warnings
        import warnings
        warnings.filterwarnings("ignore")
```

Loading the Dataset and play with the data

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 800 entries, 0 to 799
Data columns (total 21 columns):
              Non-Null Count Dtype
# Column
--- -----
                   -----
0
                   800 non-null int64
   sno
   acc_info
1
                   800 non-null object
   duration_month 800 non-null int64
   credit_history 800 non-null object
                   800 non-null object
   purpose
   savings_acc
                    800 non-null object
                   792 non-null object
788 non-null float64
   employment_st
7
    poi
   personal_status 800 non-null object
                   792 non-null object
   gurantors
10 resident_since 800 non-null int64
11 property_type 800 non-null object
12 age 796 non-null float64
13 installment_type 800 non-null object
14 housing_type
                   793 non-null object
15 credits_no 800 non-null int64
16 job_type 800 non-null object
                   800 non-null int64
17 liables
                   800 non-null object
18 telephone
19 foreigner
                    800 non-null object
 20 Group_no
                    800 non-null
                                   int64
dtypes: float64(2), int64(6), object(13)
memory usage: 131.4+ KB
```

EDA and Preprocessing

Handling null values and duplicates

Train dataset

```
In [6]: df1.duplicated().sum() #no duplicate values
Out[6]: 0
In [7]: # Display the number of missing values in each column
print("Number of missing values in each column:")
print(df1.isnull().sum())

# Numeric Columns: Impute missing values with mean
numeric_columns = ['poi', 'age']
for col in numeric_columns:
    df1[col].fillna(df1[col].mean(), inplace=True)

# Categorical Columns: Impute missing values with mode
categorical_columns = ['employment_st', 'housing_type', 'gurantors']
for col in categorical_columns:
```

```
df1[col].fillna(df1[col].mode()[0], inplace=True)
 # Display the number of missing values after handling
 print("\nNumber of missing values after handling:")
 print(df1.isnull().sum())
Number of missing values in each column:
sno
acc info
duration_month
                    0
credit_history
                    0
purpose
savings_acc
                    0
                    8
employment_st
poi
                   12
personal_status
                    0
                    8
gurantors
resident_since
                    0
property_type
                    0
                    4
age
installment_type
                    7
housing_type
credits_no
                    0
                    0
job_type
liables
                    0
telephone
                    0
foreigner
                    0
Group_no
dtype: int64
Number of missing values after handling:
sno
                   0
acc_info
duration_month
                   0
credit_history
                   0
                   0
purpose
savings_acc
                   0
employment_st
                   0
poi
personal_status
                   0
gurantors
resident_since
                   0
property_type
                   0
                   0
age
installment_type
                   0
housing_type
                   0
credits_no
job_type
                   0
liables
                   0
telephone
foreigner
                   0
Group no
                   0
```

Test Dataset

dtype: int64

```
In [8]: df2.duplicated().sum() #no duplicate values
Out[8]: 0
In [9]: # Display the number of missing values in each column
        print("Number of missing values in each column:")
        print(df2.isnull().sum())
        # Numeric Columns: Impute missing values with mean
        numeric_columns = ['poi', 'age']
        for col in numeric_columns:
            df2[col].fillna(df2[col].mean(), inplace=True)
        # Categorical Columns: Impute missing values with mode
        categorical_columns = ['employment_st', 'housing_type', 'gurantors']
        for col in categorical_columns:
            df2[col].fillna(df2[col].mode()[0], inplace=True)
        # Display the number of missing values after handling
        print("\nNumber of missing values after handling:")
        print(df2.isnull().sum())
```

```
Number of missing values in each column:
acc info
                   0
duration_month
                   0
credit_history
                   0
purpose
                   0
savings_acc
                   0
employment_st
                   5
poi
                   5
personal_status
                   0
                   0
gurantors
resident_since
                   0
property_type
                   0
age
                   2
installment_type
                   0
housing_type
                   8
credits_no
                   0
job_type
                   0
liables
telephone
                   0
foreigner
                   0
dtype: int64
Number of missing values after handling:
sno
acc info
                   0
duration_month
                   0
credit_history
                   0
purpose
                   0
savings_acc
                   0
employment_st
poi
personal_status
gurantors
                   0
resident_since
                   0
property_type
                   0
age
installment_type
housing_type
                   0
credits_no
                   0
job_type
                   0
liables
                   0
telephone
                   0
foreigner
                   0
dtype: int64
```

Data Visualisation

```
In [10]: #Deleting the columns which are not necessary for our classification problem
  #df1=df1.drop(['sno','telephone','personal_status'],axis=1)
  #df2=df2.drop(['sno','telephone','personal_status'],axis=1)
In [11]: import matplotlib.pyplot as plt
import seaborn as sns
```

```
plt.figure(figsize=(15,10))
plt.subplot(2,3,1)
sns.countplot(x='acc_info', hue='Group_no', data=df1, palette='plasma')
plt.xlabel('Account Information', fontsize=14)
plt.ylabel('Number', fontsize=14)
plt.subplot(2,3,2)
sns.countplot(x='poi', hue='Group_no', data=df1, palette='viridis')
plt.xlabel('poi', fontsize=14)
plt.ylabel(' ')
plt.yticks([])
plt.subplot(2,3,3)
sns.countplot(x='credit_history', hue='Group_no', data=df1, palette='copper')
plt.xlabel('Credit History', fontsize=14)
plt.ylabel(' ')
plt.yticks([])
plt.subplot(2,3,4)
sns.countplot(x='purpose', hue='Group_no', data=df1, palette='summer')
plt.xlabel('Purpose', fontsize=14)
plt.ylabel('Number', fontsize=14)
plt.subplot(2,3,5)
sns.countplot(x='savings_acc', hue='Group_no', data=df1, palette='autumn')
plt.xlabel('Savings Account', fontsize=14)
plt.ylabel(' ')
plt.yticks([])
plt.subplot(2,3,6)
sns.countplot(x='employment_st', hue='Group_no', data=df1, palette='PuBuGn')
plt.xlabel('Employment Status', fontsize=14)
plt.ylabel(' ')
plt.yticks([])
plt.show()
```


Univariate Analysis

```
In [12]:
         # Define categorical and numerical features
         categorical_features = ['acc_info', 'credit_history', 'purpose', 'savings_acc', 'em
                                  'gurantors', 'property_type', 'installment_type',
                                  'housing_type', 'job_type', 'foreigner']
         numerical_features = ['duration_month', 'poi', 'resident_since', 'age', 'credits_no
In [13]: # Select only numeric columns
         df1_numeric = df1.select_dtypes(include=['number'])
         df1_categorical = df1.select_dtypes(exclude=['number'])
         # Now calculate correlations
         #correlation_matrix = df1_numeric.corr()
In [14]: from scipy.stats import skew,kurtosis
         key =[]
         skewval =[]
         kurtval =[]
         for i in df1_numeric :
             print('The skewness of the ',i, '=',skew(df1_numeric [i]))
             print('The kurtosis of the ',i, '=',kurtosis(df1_numeric [i]))
             plt.figure()
             sns.distplot(df1_numeric[i],color='blue',kde=True,
                          hist_kws = {'color':'green', 'edgecolor':'black','linewidth':2,'al
             plt.show()
             key.append(i)
```

```
skewval.append(skew(df1_numeric [i]))
kurtval.append(kurtosis(df1_numeric [i]))
```

The skewness of the sno = 0.0The kurtosis of the sno = -1.2000037500058593

The skewness of the duration_month = 1.1470027029543717
The kurtosis of the duration_month = 1.0529676149863754

The skewness of the poi = -0.5039066555236439The kurtosis of the poi = -1.2293262165867966

The skewness of the resident_since = -0.2767323024835812The kurtosis of the resident_since = -1.3766474938843547

The skewness of the age = 1.060425705742385 The kurtosis of the age = 0.6927026736563899

The skewness of the credits_no = 1.2652514728538597 The kurtosis of the credits_no = 1.4791338504629952

The skewness of the liables = 1.9881351927895627 The kurtosis of the liables = 1.9526815448083923

The skewness of the $Group_no = -0.12325434930243198$ The kurtosis of the $Group_no = -1.1851006072150474$


```
In [15]: dict = {'variables':key,'skew_values':skewval,'kurtosis_values':kurtval}
In [16]: show_val = pd.DataFrame(dict)
```

In [17]: show_val

Out[17]:

	variables	skew_values	kurtosis_values
0	sno	0.000000	-1.200004
1	duration_month	1.147003	1.052968
2	poi	-0.503907	-1.229326
3	resident_since	-0.276732	-1.376647
4	age	1.060426	0.692703
5	credits_no	1.265251	1.479134
6	liables	1.988135	1.952682
7	Group_no	-0.123254	-1.185101

Handling outliers

```
In [18]: for i in df1_numeric:
    plt.figure()
```

```
sns.boxplot(df1_numeric[i],color='blue')
plt.show()
```



```
In [19]: #Impute the outliers from the data
    # Calculate the first quartile (Q1) and third quartile (Q3)
    Q1 = df1_numeric.quantile(0.25)
    Q3 = df1_numeric.quantile(0.75)

# Calculate the IQR
```

```
IQR = Q3 - Q1
          # Define the threshold for outliers (e.g., 1.5 times the IQR)
          threshold = 1.5
          # Impute outliers with the median
          # The clip() method limits the values in the DataFrame to be within the specified {\sf L}
          df1 imputed median = df1 numeric.clip(lower=Q1 - threshold * IQR, upper=Q3 + thresh
In [20]: # Combine imputed numeric columns with original categorical columns
          df1_new = pd.concat([df1_imputed_median, df1_categorical], axis=1)
In [21]:
         df1_new
Out[21]:
               sno
                    duration_month poi resident_since age credits_no liables Group_no acc_info
            0
                                     4.0
                                                        62.0
                                                                     2.0
                                                                              1
                                                                                         3
                                                                                                Α1
                 2
                                     2.0
                                                      2 22.0
            1
                                 42
                                                                     1.0
                                                                              1
                                                                                         1
                                                                                                Α1
            2
                 3
                                 12
                                     2.0
                                                      3 49.0
                                                                     1.0
                                                                              1
                                                                                         2
                                                                                                Α1
            3
                 4
                                 42
                                     2.0
                                                     4 45.0
                                                                     1.0
                                                                              1
                                                                                                A1
            4
                 5
                                 24
                                     3.0
                                                     4 53.0
                                                                     2.0
                                                                              1
                                                                                         1
                                                                                                Α1
          795 796
                                  9
                                     2.0
                                                      4 22.0
                                                                     1.0
                                                                              1
                                                                                         2
                                                                                                Α1
          796 797
                                 18
                                     1.0
                                                      4 51.0
                                                                     1.0
                                                                                                A1
          797 798
                                 12
                                     2.0
                                                     4 22.0
                                                                     2.0
                                                                              1
                                                                                         3
                                                                                                Α1
          798 799
                                 24
                                     4.0
                                                      4 54.0
                                                                     2.0
                                                                              1
                                                                                         3
                                                                                                Α1
          799 800
                                                                              1
                                                                                         2
                                  9
                                     4.0
                                                     2 35.0
                                                                     1.0
                                                                                                Α1
```

800 rows × 21 columns

Checking whether our dataset is imbalanced

```
In [22]: # Assuming 'Group_no' is the target variable
    class_distribution = df1_new['Group_no'].value_counts()

print("Class Distribution:")
    print(class_distribution)

# Calculate the imbalance ratio
    imbalance_ratio = class_distribution.min() / class_distribution.max()

print("Imbalance Ratio:", imbalance_ratio)
```

Class Distribution:

Group_no

2 353

3 254

1 193

Name: count, dtype: int64

Imbalance Ratio: 0.546742209631728

So our dataset is Balanced

Bivariate Analysis

In [23]: # Now calculate correlations
 correlation_matrix = df1_numeric.corr()

In [24]: correlation_matrix

Out[24]:

	sno	duration_month	poi	resident_since	age	credits_no
sno	1.000000	-0.001513	-0.000196	0.035694	-0.039311	0.001155
duration_month	-0.001513	1.000000	0.076066	0.030762	-0.045680	-0.013814
poi	-0.000196	0.076066	1.000000	0.039182	0.075055	0.014575
resident_since	0.035694	0.030762	0.039182	1.000000	0.251351	0.072087
age	-0.039311	-0.045680	0.075055	0.251351	1.000000	0.138340
credits_no	0.001155	-0.013814	0.014575	0.072087	0.138340	1.000000
liables	-0.004457	-0.023749	-0.066547	0.050136	0.129534	0.081980
Group_no	0.035358	-0.588725	0.259411	-0.026316	-0.003826	-0.056597

In [25]: sns.heatmap(correlation_matrix,annot=True,cmap='coolwarm')

Out[25]: <Axes: >

Label encoding

```
In [26]: # Create a Label encoder object
label_encoder = LabelEncoder()

# Iterate over columns and encode categorical columns
for column in df1_new.columns:
    if df1_new[column].dtype == 'object': # Check if column contains categorical d
        df1_new[column] = label_encoder.fit_transform(df1_new[column])

# Display the encoded DataFrame
df1_new
```

Out[26]:		sno	duration_month	poi	resident_since	age	credits_no	liables	Group_no	acc_inf
	0	1	6	4.0	4	62.0	2.0	1	3	
	1	2	42	2.0	2	22.0	1.0	1	1	
	2	3	12	2.0	3	49.0	1.0	1	2	
	3	4	42	2.0	4	45.0	1.0	1	1	
	4	5	24	3.0	4	53.0	2.0	1	1	
	•••									
	795	796	9	2.0	4	22.0	1.0	1	2	
	796	797	18	1.0	4	51.0	1.0	1	1	
	797	798	12	2.0	4	22.0	2.0	1	3	
	798	799	24	4.0	4	54.0	2.0	1	3	
	799	800	9	4.0	2	35.0	1.0	1	2	

800 rows × 21 columns

Tn	[27]	df2

Out[27]:		sno	acc_info	duration_month	credit_history	purpose	savings_acc	employment_st
	0	1	A14	24	A34	A46	A61	A75

	sno	acc_info	duration_month	credit_history	purpose	savings_acc	employment_st
0	1	A14	24	A34	A46	A61	A75
1	2	A12	18	A34	A43	A61	A75
2	3	A11	20	A34	A42	A61	A75
3	4	A14	12	A34	A43	A65	A75
4	5	A12	12	A32	A40	A65	A71
•••							•••
195	196	A14	12	A32	A42	A61	A74
196	197	A11	30	A32	A41	A61	A73
197	198	A14	12	A32	A43	A61	A75
198	199	A11	45	A32	A43	A61	A73
199	200	A12	45	A34	A41	A62	A71

200 rows × 20 columns

```
In [28]: # Create a label encoder object
         label_encoder = LabelEncoder()
```

Iterate over columns and encode categorical columns

```
for column in df2.columns:
    if df2[column].dtype == 'object': # Check if column contains categorical data
        df2[column] = label_encoder.fit_transform(df2[column])

# Display the encoded DataFrame
df2
```

Out[28]:		sno	acc_info	duration_month	credit_history	purpose	savings_acc	employment_st
	0	1	3	24	4	7	0	4
	1	2	1	18	4	4	0	4
	2	3	0	20	4	3	0	4
	3	4	3	12	4	4	4	4
	4	5	1	12	2	0	4	0
	•••							
	195	196	3	12	2	3	0	3
	196	197	0	30	2	1	0	2
	197	198	3	12	2	4	0	4
	198	199	0	45	2	4	0	2
	199	200	1	45	4	1	1	0

200 rows × 20 columns

```
In [29]: # Get the number of categories in each column
    category_counts = {}
    for column in df1_new.columns:
        category_counts[column] = len(df1_new[column].value_counts())

# Print or use the counts as needed
    for column, count in category_counts.items():
        print(f"Column '{column}' has {count} categories.")
```

```
Column 'sno' has 800 categories.
Column 'duration_month' has 27 categories.
Column 'poi' has 5 categories.
Column 'resident_since' has 4 categories.
Column 'age' has 45 categories.
Column 'credits_no' has 4 categories.
Column 'liables' has 1 categories.
Column 'Group_no' has 3 categories.
Column 'acc info' has 4 categories.
Column 'credit_history' has 5 categories.
Column 'purpose' has 10 categories.
Column 'savings_acc' has 5 categories.
Column 'employment_st' has 5 categories.
Column 'personal_status' has 4 categories.
Column 'gurantors' has 3 categories.
Column 'property_type' has 4 categories.
Column 'installment_type' has 3 categories.
Column 'housing_type' has 3 categories.
Column 'job_type' has 4 categories.
Column 'telephone' has 2 categories.
Column 'foreigner' has 2 categories.
```

Modelling

```
In [30]: # Split data into features (X) and target variable (y)
         X = df1_new.drop(columns=['Group_no']) # Features
         y = df1_new['Group_no'] # Target variable
In [31]: # Mapping classes from [1, 2, 3] to [0, 1, 2]
         class_mapping = {1: 0, 2: 1, 3: 2}
         y= y.map(class_mapping)
In [32]: X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=123)
In [33]: # Define classifiers
         classifiers = {
             "Random Forest": RandomForestClassifier(n estimators=100, random state=0),
             "Decision Tree": DecisionTreeClassifier(random_state=42),
             "Logistic Regression": LogisticRegression(),
             "NB": GaussianNB(),
             "MLP": MLPClassifier(),
             "Support Vector Machine": SVC(kernel='linear', random_state=42),
             "Gradient Boosting": GradientBoostingClassifier(n_estimators=100, learning_rate
         }
In [34]: # Define an empty dictionary to store accuracies
         accuracies = {}
         # Train and evaluate each classifier
         for name, clf in classifiers.items():
             print(f"Training {name}...")
             # Train the classifier
            clf.fit(X train, y train)
```

Training Random Forest...

Accuracy for Random Forest: 67.50%

Classification Report for Random Forest:

	precision	recall	f1-score	support
0	0.71	0.63	0.67	59
1	0.64	0.70	0.67	110
2	0.71	0.68	0.69	71
2661112614			0.68	240
accuracy			0.00	240
macro avg	0.69	0.67	0.68	240
weighted avg	0.68	0.68	0.68	240

Confusion Matrix for Random Forest:

[[37 20 2]

[15 77 18]

[0 23 48]]

Training Decision Tree...

Accuracy for Decision Tree: 49.58%

Classification Report for Decision Tree:

	precision	recall	f1-score	support
0	0.61	0.63	0.62	59
1	0.49	0.45	0.47	110
2	0.42	0.45	0.44	71
accuracy			0.50	240
macro avg	0.50	0.51	0.51	240
weighted avg	0.50	0.50	0.50	240

Confusion Matrix for Decision Tree:

[[37 14 8]

[24 50 36]

[0 39 32]]

Training Logistic Regression...

Accuracy for Logistic Regression: 63.75%

Classification Report for Logistic Regression:

	precision	recall	f1-score	support
0	0.71	0.68	0.70	59
1	0.63	0.60	0.62	110
2	0.59	0.66	0.62	71
accuracy			0.64	240
macro avg	0.65	0.65	0.64	240
weighted avg	0.64	0.64	0.64	240

Confusion Matrix for Logistic Regression:

```
[[40 14 5]
[16 66 28]
[ 0 24 47]]
-----
Training NB...
                Accuracy for NB: 60.83%
Classification Report for NB:
              precision recall f1-score support

      0.58
      0.71
      0.64

      0.59
      0.60
      0.60

      0.68
      0.54
      0.60

           0
                                                  59
           1
                                                  110
           2
                                                  71
                                                  240
                                      0.61
   accuracy

      0.62
      0.62
      0.61

      0.61
      0.61
      0.61

                                                  240
  macro avg
weighted avg
                                                  240
Confusion Matrix for NB:
[[42 15 2]
[28 66 16]
[ 3 30 38]]
-----
Training MLP...
                Accuracy for MLP: 57.08%
Classification Report for MLP:
              precision recall f1-score support

      0.55
      0.78
      0.65

      0.63
      0.35
      0.45

           0
                                                  59
           1
                                                  110
           2
                           0.75
                 0.55
                                     0.63
                                                  71
                                              240
                                      0.57
   accuracy
  macro avg 0.58 0.62 0.58 ghted avg 0.59 0.57 0.55
                                                  240
weighted avg
                                     0.55
                                                  240
Confusion Matrix for MLP:
[[46 7 6]
[34 38 38]
[ 3 15 53]]
-----
Training Support Vector Machine...
                Accuracy for Support Vector Machine: 65.00%
Classification Report for Support Vector Machine:
              precision recall f1-score support
           0
                 0.68 0.61 0.64
                                                  59
                 0.62
                           0.67
                                     0.65
           1
                                                 110
                 0.68 0.65 0.66
                                                  71
```

accuracy

0.65

240

```
macro avg
                          0.66
                                    0.64
                                              0.65
                                                         240
        weighted avg
                          0.65
                                    0.65
                                              0.65
                                                         240
        Confusion Matrix for Support Vector Machine:
        [[36 20 3]
        [17 74 19]
        [ 0 25 46]]
        Training Gradient Boosting...
                        Accuracy for Gradient Boosting: 68.75%
        Classification Report for Gradient Boosting:
                      precision recall f1-score support
                  0
                          0.66
                                    0.69
                                              0.68
                                                          59
                  1
                          0.69
                                              0.67
                                    0.65
                                                         110
                   2
                          0.71
                                    0.73
                                              0.72
                                                          71
            accuracy
                                              0.69
                                                         240
                                              0.69
                                                         240
           macro avg
                          0.69
                                    0.69
        weighted avg
                          0.69
                                    0.69
                                              0.69
                                                         240
        Confusion Matrix for Gradient Boosting:
        [[41 14 4]
        [21 72 17]
         [ 0 19 52]]
In [35]: accuracies
Out[35]: {'Random Forest': 67.5,
           'Decision Tree': 49.58,
           'Logistic Regression': 63.75,
           'NB': 60.83,
           'MLP': 57.08,
           'Support Vector Machine': 65.0,
           'Gradient Boosting': 68.75}
In [36]: # Define a color palette for the markers
         color_palette = ['rgb(31, 119, 180)', 'rgb(255, 127, 14)', 'rgb(44, 160, 44)', 'rgb
         # Create a trace for accuracy values with marker colors from the palette
         trace = go.Bar(
             x=list(accuracies.keys()),
             y=list(accuracies.values()),
             marker_color=color_palette,
             name='Accuracy'
         # Create the layout for the graph
         layout = go.Layout(
            title='Model Accuracies',
             xaxis_title='Classifier',
             yaxis_title='Accuracy (%)',
             hovermode='closest',
```

```
plot_bgcolor='rgba(0,0,0,0)'
)

# Create the figure
fig = go.Figure(data=[trace], layout=layout)

# Show the interactive graph
fig.show()
```

Model Accuracies

Selecting our best model

```
In [37]: # Hyperparameter training for Random forest Classifier

# Define parameter grid for hyperparameter tuning
param_grid = {
        'n_estimators': [100, 200, 300],
        'max_depth': [None, 10, 20],
        'min_samples_split': [2, 5, 10],
        'min_samples_leaf': [1, 2, 4]
}

# Initialize and tune Random Forest Classifier
rfc = RandomForestClassifier(random_state=123)
```

```
grid_search = GridSearchCV(rfc, param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train, y_train)
# Get the best parameters
best_params = grid_search.best_params_
# Train RFC with best parameters
rfc_best = RandomForestClassifier(**best_params)
rfc_best.fit(X_train, y_train)
```

Out[37]:

RandomForestClassifier

RandomForestClassifier(min_samples_leaf=4, min_samples_split=10, n_estimators=200)

```
In [38]: # Initialize and train Gradient Boosting Classifier
         gbc = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1,
         gbc.fit(X_train, y_train)
         # Predict on the test set
         y_pred_gb = gbc.predict(X_test)
         # Evaluate model performance
         accuracy_gb = accuracy_score(y_test, y_pred_gb)
         print("Accuracy for Gradient Boosting Classifier:", round(accuracy_gb * 100, 2))
         # Classification report
         print("Classification Report for Gradient Boosting Classifier:")
         print(classification_report(y_test, y_pred_gb))
```

Accuracy for Gradient Boosting Classifier: 68.75 Classification Report for Gradient Boosting Classifier:

	precision	recall	f1-score	support
0	0.66	0.69	0.68	59
1	0.69	0.65	0.67	110
2	0.71	0.73	0.72	71
accuracy			0.69	240
macro avg	0.69	0.69	0.69	240
weighted avg	0.69	0.69	0.69	240

Even After hyperparameter tuning Gradiant boosting works best for us

In [39]: y_pred_gb

Save Model

```
In [40]: import pickle

# Save the model to a file
with open('Credit Classification Problem Model C&T Bank.pkl', 'wb') as file:
    pickle.dump(GradientBoostingClassifier, file)

# Load the model from the file
with open('Credit Classification Problem Model C&T Bank.pkl', 'rb') as file:
    loaded_model = pickle.load(file)
```

Submission file

```
In [47]: print("Training Data Columns:", X_train.columns)
         print("Prediction Data Columns:", df2.columns)
        Training Data Columns: Index(['sno', 'duration_month', 'poi', 'resident_since', 'ag
        e', 'credits_no',
               'liables', 'acc_info', 'credit_history', 'purpose', 'savings_acc',
               'employment_st', 'personal_status', 'gurantors', 'property_type',
               'installment_type', 'housing_type', 'job_type', 'telephone',
               'foreigner'],
              dtype='object')
        Prediction Data Columns: Index(['sno', 'acc_info', 'duration_month', 'credit_histor
        y', 'purpose',
               'savings_acc', 'employment_st', 'poi', 'personal_status', 'gurantors',
               'resident_since', 'property_type', 'age', 'installment_type',
               'housing_type', 'credits_no', 'job_type', 'liables', 'telephone',
               'foreigner'],
              dtype='object')
In [48]: # Reorder columns in the prediction data to match training data
         df2 = df2[X_train.columns]
In [49]: submission_pred=gbc.predict(df2)
In [50]: submission_pred
```

Out[51]: sno acc_info duration_month credit_history purpose savings_acc employment_st po 0 1 A14 24 A34 A46 A61 A75 4. 1 A12 18 A34 A43 A61 A75 3.1 2 3 A11 20 A34 A42 A61 A75 1.1 3 A14 12 A34 A43 A65 A75 4. 4 5 A12 12 A32 A40 A65 A71 1.1

In [52]: final=pd.DataFrame({'serial number':copy.sno.values,'Group_no':submission_pred})

In [53]: final

Out[53]: serial number Group_no

	Seriai iluliibei	Group_no
0	1	1
1	2	1
2	3	0
3	4	2
4	5	2
•••		
195	196	1
196	197	0
197	198	2
198	199	0
199	200	0

200 rows × 2 columns

```
In [54]: # Mapping classes from [0, 1, 2] to [1, 2, 3]
    class_mapping = {0: 1, 1: 2, 2: 3}
    final['Group_no']= final['Group_no'].map(class_mapping)
```

In [55]: **final**

Out[55]: serial number Group_no

0	1	2
1	2	2
2	3	1
3	4	3
4	5	3
•••		
195	196	2
196	197	1
197	198	3
198	199	1
199	200	1

200 rows × 2 columns

In [56]: final.to_csv('submission.csv',index=False) #by default index is true