

COSC 222, 2022 Term 1 Practice Midterm

- 1) [2 marks] Rank by increasing asymptotic worst-case time complexity the following functions:
 - A. $n^3 2 n^2$
 - B. $20 \log n + 4$
 - C. $n \log n^2$

- D. $n n^{1/3}$
- E. \sqrt{n}
- F. e^n

• Consider the following code:

MyClass.java

```
public class MyClass {
    public boolean isEven(int n) {
        return ((n & 1) == 0);
    }
    int recur(int n) {
        if (n==0) return 2;
        if (n==1) return 3;
        if (isEven(n)) return n*n;
        return 2*n+1;
    }
}
```

MyClassTest.java

```
Import ...
class MyClassTest {
      private MyClass m;
      @BeforeEach
      void setUpBeforeClass() throws Exception {
             this.m = new MyClass();
      }
      @Test
      void testIsEven() {
             assertTrue(m.isEven(0) & !m.isEven(1) & !m.isEven(3));
      @Test
      void testRecur_base() {
             assertTrue(m.recur(0)==2);
             assertTrue(m.recur(1)==3);
      @Test
      void testRecur_general() {
             assertTrue(m.recur(7)==15);
}
```

Use the following terminology to evaluate the quality of unit tests.

Insufficient; more tests are needed to ensure code quality (as defined in labs for the course) **Inappropriate**; some tests violate fundamental unit testing rules

- 2) [2 marks] You analyze the unit testing for this code as
 - A. Insufficient and inappropriate
 - B. Sufficient, but inappropriate
 - C. Appropriate, but insufficient
 - D. Good; satisfies all code quality rules

THE UNIVERSITY OF BRITISH COLUMBIA

D. 0->1->2->4

1->0->3

2->0->4

4->0->2 E. 0->1->2->4

1->0->3

2->0->4

3->1->2

4->0->2

3->2

• Consider the following graph

3) [1 mark] Select the correct graph representation

- A. 0->1->2->4
 - 1->0->3
 - 2->0->4
 - 3->1
 - 4->0->2
- B. 0->1->3
 - 1->0->3->4
 - 2->0->4
 - 3->1
 - 4->0->2
- C. 0 -> 1 -> 2 -> 4
 - 1->3
 - 2->0->4
 - 3->1
 - 4->0->2

• Consider the following graph

- 4) [3 marks] Applying Dijkstra's shortest path algorithm starting from node 0, select the order in which the nodes are added to the explored set.
 - A. 0, 3, 2, 1
 - B. 0, 2, 3, 1
 - C. 0, 2, 1, 3
 - D. 2, 0, 3, 1
 - E. 2, 0, 1, 3

THE UNIVERSITY OF BRITISH COLUMBIA

• Consider the following graph

Applying Kruskal's algorithm

5) [3 marks] [Open answer] the list of edge weights added in order is:

6) [2 marks] the array representing the union-find/disjoint-set data structure has final values

E.

A.	0	1	2	3	4	5	D.
	-1	-1	-1	-1	-1	-1	

B.	0	1	2	3	4	5
	4	-1	-1	5	1	-1

C.	0	1	2	3	4	5	F
	4	-1	5	5	1	-1	

0	1	2	3	4	5
1	2	3	4	5	-1
0	1	2	3	4	5
4	5	3	5	1	-1
0	1	2	3	4	5
4	2	-1	5	1	2

THE UNIVERSITY OF BRITISH COLUMBIA

- A company wishes to perform the following operations on its data (assume there are m transactions and n customers and n is less than m). Each transaction includes customer name, address, purchase amount, and date
 - a. Input a new transaction including customer name, address, purchase amount, and date
 - b. List the top 5 customers by total purchases made till now
 - c. List all purchases made by a customer (assume there are h purchases)
 - d. Update customer information
 - 7) Select the closest asymptotic worst-case **time** complexity for the above operations when the data structure used is an unsorted list
 - A. Quadratic $O(n^2 + m^2 + nm)$
 - B. Linear O(n+m)

- C. Log linear $O((n+m)\log(n+m))$
- D. Logarithmic $O(\log(n+m))$
- E. Exponential $O(2^n + 2^m)$
- 8) Select the closest asymptotic worst-case **space** complexity for the above operations when the data structure used is an unsorted list
 - A. Quadratic $O(n^2 + m^2 + nm)$
 - B. Linear O(n+m)

- C. Log linear $O((n+m)\log(n+m))$
- D. Logarithmic $O(\log(n+m))$
- E. Exponential $O(2^n + 2^m)$

[Open answer] Propose a combination of data structures that improves the time complexity; indicate the time complexity of your data structure, e.g., 9) a. Array indexed on age, O(1)

- 9) Data structure(s):
- 10) a. time complexity
- 11) b. time complexity
- 12) c. time complexity
- 13) d. time complexity
- [Open answer] You are given 2 arrays A and B of sizes n and m respectively. Array A contains pairs of objects storing a key and a value. Array B contains similar information i.e., objects with a key and an associated value. Explain an algorithm to list all the objects as key in array A, value in array A, and value in array B for which the key in array B is equal to the key in array A. For example,

Array A

Key Value

1 Mary

42 Linda

84 Jennifer

Array B				
Key	Value			
1	London			
64	Paris			
84	New York			

The output should be

Key	Value A	Value B
1	Mary	London
84	Jennifer	New York

Indicate the complexity of your algorithm (space and time) including of any pre-processing step performed to speed the listing operation (if any).

You can assume that the keys are integer valued, and all the data is known beforehand (offline algorithm).

14) [Open answer]