Efrei – Paris 2023-2024

Module : Physique Moderne

« SP 303 »

Chapitre 1

Transformations Galiléennes

On donne $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$

- 1- Déterminer la force gravitationnelle entre la terre et une personne de masse 100 Kg. Sachant que la masse de la terre est m_{terr} =6x10²⁴ Kg et le rayon R_{terr} =6,4x10³ Km.
- 2- Utiliser la loi d'interaction gravitationnelle pour calculer la masse du soleil. On donne : la distance entre terre et soleil est égale 1.5×10^{11} m, vitesse de rotation de la terre sur son orbite autour du soleil est: $v_T = 3 \times 10^4$ m/s.
- 3- Un train roulant à une vitesse constante v_1 passe dans une gare sans s'arrêter à l'instant t=t'=0; t et t'étant les mesures des temps dans les référentiels de la gare et du train respectivement.
 - a- Un passager court dans le train dans la direction du mouvement avec la vitesse constante v₂. Ecrire l'équation du mouvement du passager dans les deux référentiels.
 - b- Un autre passager laisse tomber un objet dans le même train à t'=t=0. Ecrire l'équation du mouvement de l'objet dans les deux référentiels.
- 4- Un noyau radioactif au repos dans un laboratoire, émet deux électrons A et B dans les sens opposés avec des vitesses de 0.6c et 0.7c respectivement, mesurées par un observateur du laboratoire. Calculer la vitesse classique d'un électron par rapport à l'autre
- 5- Un ion se déplace dans un accélérateur à une vitesse $v = 5.10^4$ m/s et émet un photon dans la direction et le sens de déplacement de l'ion calculer la vitesse classique du photon par rapport au référentiel du laboratoire.

6- Un observateur immobile dans un référentiel O de la terre observe la collision élastique entre une masse $m_1 = 3$ kg se déplaçant le long de Ox avec une vitesse $v_1 = 4$ m/s et une masse $m_2 = 1$ kg se déplaçant le long du même axe à la vitesse $v_2 = -3$ m/s. Calculer la vitesse de m_1 après le choc dans le référentiel O de la Terre et dans celui d'un observateur O' ayant une vitesse v_0 de 2m/s par rapport à la terre dans la direction Ox.

Exercice supplémentaire

7- Un point matériel M_1 de masse m_1 = 50 kg est animé avant le choc d'une vitesse V_1 = 20 m/s. Le point matériel M_2 de masse m_2 = 30 kg est au repos. Le choc est supposé élastique. Après le choc les vitesses de M_1 et M_2 sont V'_1 et V'_2 et font des angles α = 30° et β = 60° avec la direction de V_1 . En utilisant les principes de conservation de la quantité de mouvement et d'énergie, exprimer V'_2 en fonction de V_1 , m_1 , m_2 et β , et trouvez sa valeur.

Efrei – Paris 2023-2024

Module: SP 303

Chapitre 2

Transformations de Lorentz

- 1- Un noyau radioactif au repos dans un laboratoire, émet deux électrons A et B dans les sens opposés avec des vitesses de 0.6c et 0.7c respectivement, mesurées par un observateur du laboratoire. Calculer la vitesse relativiste d'un électron par rapport à l'autre
- 2- Un ion se déplace dans un accélérateur à une vitesse v=5.10⁴ m/s et émet un photon dans la direction et le sens de déplacement de l'ion calculer la vitesse relativiste du photon par rapport au référentiel du laboratoire.
- 3- Le facteur relativiste γ d'un électron est 1,25. Déterminer la vitesse v en m/s de l'électron.
- 4- La taille de la statue de Liberté mesurée par un observateur terrestre (référentiel O) est égale à 93 m. Que vaut la taille de cette statue par rapport à un référentiel O' situé dans une fusée ayant un facteur de relativiste $\gamma = 1,3$.
- 5- Deux évènements A et B sont perçus séparés par une distance égale à 600 m et un intervalle de temps de 8.10⁻⁷s dans un référentiel inertiel O.
 - a- Existe-t-il un référentiel inertiel O' dans lequel les deux évènements apparaissent simultanés ?
 - b- Dans l'affirmative, calculer la vitesse relative de O' par rapport à O.
- 6- Un vaisseau spatial de longueur propre L = 120 m dépasse en 4 ms un observateur O situé sur une plateforme spatiale.
 - a- Calculer sa vitesse par rapport à cet observateur O.

b- A ce moment précis, un laser situé à l'arrière du vaisseau, émet un signal vers l'avant, calculer l'intervalle de temps Δt séparant l'émission du signal de sa réception par un observateur O' situé à l'avant de la fusée tel que perçue par O et O'.

Module: SP 303

Chapitre 3

Dynamique relativiste

On donne : 1 uma = $939 \frac{MeV}{c^2}$; $m_0 = 0.511 \frac{MeV}{c^2}$

- 1- La période propre de désintégration d'un muon est T_0 = 1.5 μ s. Sa masse au repos est m_0 = 207 m_e , où m_e est la masse au repos de l'électron. Calculer la masse du muon si sa période au laboratoire est de 7 μ s.
- 2- Une particule possède une énergie totale E = 6 GeV et une impulsion p = 3 GeV/c. Calculer sa masse au repos en u.m.a.
- 3- Calculer la vitesse d'une particule dont l'énergie vaut le double de son énergie au repos.
- 4- Calculer l'impulsion, l'énergie totale et l'énergie cinétique d'un électron de vitesse 0.8c,
 - a- Dans le repère du laboratoire
 - b- Dans son repère propre.

Module: SP 303

Chapitre 4

Les bases expérimentales de la théorie quantique

On donne : 1 ev = 1.6×10^{-19} J ; h= 6.626×10^{-34} *J*. s ; c = $3 \times 10^8 m/s$; m_e = 9.11×10^{-31} Kg.

- 1- La longueur d'onde du maximum d'intensité du rayonnement émis par le soleil se situe aux environs de 500 nm.
 - a- En supposant que le soleil peut être assimilé à un corps noir idéal, calculer la température de sa surface.
 - b- Calculer la puissance émise par unité de surface
 - c- Trouver la puissance totale rayonnée par le soleil
 - d- Calculer l'énergie reçue par jours sur terre sous forme de rayonnement solaire.
- 2- On envoie de la lumière de 400 nm de longueur d'onde sur du lithium dont le travail d'extraction est de 2.93 eV.
 - a- Calculer l'énergie des photons incidents
 - b- Calculer le potentiel d'arrêt V₀.
- 3- Quelle fréquence lumineuse est nécessaire pour produire des électrons d'énergie cinétique 3.0 eV en éclairant une photocathode de lithium dont le travail d'extraction est de 2.93 eV.
- 4- Un faisceau lumineux de longueur d'onde 350 nm a une intensité de 1.0×10^{-8} W/m². Calculer le nombre de photons par unité de surface et par unité de temps dans le faisceau lumineux.
- 5- Un rayon X de longueur d'onde 0.05 nm est diffusé par une cible d'or.

- a- Ce Rayon X peut-il subir une diffusion Compton sur un électron ayant une énergie de liaison de 62000 eV ?
- b- Quelle est la plus grande longueur d'onde que l'on peut observer sur le photon diffusé ?
- c- Quelle est l'énergie cinétique de l'électron ayant subi le recul le plus important ?
- 6- Des rayons X de longueur d'onde λ = 100pm subissent une diffusion à partir d'un bloc de carbone. Le rayonnement diffusé est alors observé à 90° du rayon incident.
 - a- Quel est le décalage de Compton entre le rayon diffusé et le rayon incident ?
 - b- Quelle est l'énergie cinétique transférée aux électrons de recul ?
- 7- Le seuil photoélectrique d'une cathode en césium est situé à une longueur d'onde λ_0 = 0.6 μ m. On dirige sur la photocathode un faisceau lumineux monochromatique de longueur d'onde λ = 0.5 μ m. Calculer l'énergie cinétique maximal des photoélectrons émis.
- 8- Si l'énergie d'extraction d'un métal est de 1.8 eV, quel serait le potentiel d'arrêt pour une lumière ayant une longueur d'onde de 400 nm ? Quelle serait la vitesse maximale des photoélectrons émis à la surface du métal ?
- 9- Un électron est accéléré à une énergie cinétique égale à 54 eV. Trouver la longueur d'onde associée à cet électron.
- 10- Calculer la longueur d'onde de de Broglie d'un électron de vitesse v=2x10⁵ m/s.

Efrei – Paris 2023-2024

Module: SP 303

<u>Chapitre 5</u> <u>Introduction à la mécanique quantique</u>

On considère une particule confinée dans un puit de potentiel carré infini unidimensionnel

- 1 Donner l'équation de Schrödinger indépendante du temps.
- 2- Déterminer la fonction d'onde $\Psi(x)$ pour la région $x \le 0$ et $x \ge L$.
- 3- Déterminer la fonction d'onde $\Psi(x)$ pour la région 0 < x < L.
- 4- Dans la continuité de la fonction d'onde en x=0 et x=L, monter que $\Psi(x)=A.\sin\left(\frac{n\pi}{L}\right)x$
- 5- A partir de la normalisation de la fonction d'onde, déterminer la constante A.
- 6- Donner la forme générale des fonction d'onde normalisé.
- 7- Donner les valeurs propres En
- 8- Déterminer et représenter les fonctions d'ondes $\Psi_n(x)$ et les énergies E_n de trois premiers états (état fondamental n=1, n=2 et n=3).

9- Déterminer la valeur moyenne de x pour la particule se trouve dans le premier état excité.

10-Determiner : $\langle x^2 \rangle$ et $\langle p \rangle$