

STPS40L40CT/CW

LOW DROP POWER SCHOTTKY RECTIFIER

MAIN PRODUCTS CHARACTERISTICS

I _{F(AV)}	2 x 20 A
V_{RRM}	40 V
Tj (max)	150 °C
V _F (max)	0.49 V

FEATURES AND BENEFITS

- LOW FORWARD VOLTAGE DROP MEANING VERY SMALL CONDUCTION LOSSES
- LOW DYNAMIC LOSSES AS A RESULT OF THE SCHOTTKY BARRIER
- AVALANCHE CAPABILITY SPECIFIED

Dual center tap Schottky barrier rectifier designed for high frequency Switched Mode Power Supplies and DC to DC converters.

Packaged in TO-220AB and TO-247 this device is intended for use in low voltage, high frequency inverters, free-wheeling and polarity protection applications.

ABSOLUTE RATINGS (limiting values, per diode)

Symbol	Parameter			Value	Unit
V _{RRM}	Repetitive peak reverse voltage			40	V
I _{F(RMS)}	RMS forward current			30	А
I _{F(AV)}	Average forward current	forward current Tc = 130°C Per diode		20	А
	δ = 0.5 Per dev		Per device	40	
I _{FSM}	Surge non repetitive forward current	tp = 10 ms S	inusoidal	230	Α
I _{RRM}	Repetitive peak reverse current	tp = 2 µs squ	uare F = 1kHz	2	Α
I _{RSM}	Non repetitive peak reverse current	tp = 100 μs :	square	3	А
P _{ARM}	Repetitive peak avalanche power	tp = 1µs Tj	= 25°C	8100	W
T _{stg}	Storage temperature range			- 65 to + 150	°C
Tj	Maximum operating junction temperature *			150	°C
dV/dt	Critical rate of rise of reverse voltage			10000	V/µs

^{* :} $\frac{dPtot}{dTj} < \frac{1}{Rth(j-a)}$ thermal runaway condition for a diode on its own heatsink

July 2003 - Ed: 7A

STPS40L40CT/CW

THERMAL RESISTANCES

Symbol	Parameter		Value	Unit
R _{th (j-c)}	Junction to case	Per diode	1.5	°C/W
		Total	0.8	
R _{th(c)}		Coupling	0.1	°C/W

When the diodes 1 and 2 are used simultaneously:

 Δ Tj(diode 1) = P(diode1) x R_{th(j-c)}(Per diode) + P(diode 2) x R_{th(c)}

STATIC ELECTRICAL CHARACTERISTICS (per diode)

Symbol	Parameter	Tests Conditions		Min.	Тур.	Max.	Unit
I _R *	Reverse leakage current	Tj = 25°C	$V_R = V_{RRM}$			0.8	mA
		Tj = 100°C			30	70	mA
V _F *	Forward voltage drop	Tj = 25°C	I _F = 20 A			0.53	V
		Tj = 125°C	I _F = 20 A		0.42	0.49	
		Tj = 25°C	I _F = 40 A			0.69	
		Tj = 125°C	I _F = 40 A		0.6	0.7	

Pulse test : * tp = 380 μ s, δ < 2%

To evaluate the conduction losses use the following equation : $P = 0.28 \text{ x } I_{F(AV)} + 0.0105 I_{F}^{2}_{(RMS)}$

Fig. 1: Average forward power dissipation versus average forward current (per diode).

Fig. 3: Normalized avalanche power derating versus pulse duration.

Fig. 2: Average current versus ambient temperature ($\delta = 0.5$, per diode).

Fig. 4: Normalized avalanche power derating versus junction temperature.

Fig. 5: Non repetitive surge peak forward current versus overload duration (maximum values, per diode).

Fig. 6: Relative variation of thermal impedance junction to case versus pulse duration.

Fig. 7: Reverse leakage current versus reverse voltage applied (typical values, per diode).

Fig. 8: Junction capacitance versus reverse voltage applied (typical values, per diode).

Fig. 9: Forward voltage drop versus forward current (maximum values, per diode).

3/5

PACKAGE MECHANICAL DATA

TO-220AB

COOLING METHOD : C

■ RECOMMENDED TORQUE VALUE: 0.55M.N

■ MAXIMUM TORQUE VALUE: 0.70 M.N

4/5

PACKAGE MECHANICAL DATA

TO-247

COOLING METHOD : C

■ RECOMMENDED TORQUE VALUE: 0.8M.N

MAXIMUM TORQUE VALUE: 1.0M.N

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
STPS40L40CT	STPS40L40CT	TO-220AB	2g	50	Tube
STPS40L40CW	STPS40L40CW	TO-247	4.4g	30	Tube

■ EPOXY MEETS UL94,V0

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore

Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com