Math 207: Statistics

Chapter 8: Correlation

Dr. Ralph Wojtowicz

- Scatter Diagrams
 - Scatter Diagrams

- Correlation Coefficient
 - Correlation Coefficient
 - Magnitude
 - Calculation

- The SD Line
 - The SD Line
 - Calculation

Scatter Diagrams

• Example from page 132 of our text

```
> x < -c(1, 3, 4, 5, 7)
```

$$> y <- c(5, 9, 7, 1, 13)$$

- > plot(x, y)
- Example using an R environmental data set
 - > library(lattice)
 - > plot(environmental\$temperature, environmental\$ozone)

- Given lists x_1, \ldots, x_n and y_1, \ldots, y_n , the correlation coefficient:
 - Is a measure of linear association between the lists
 - Is a measure of the clustering of the (x_i, y_i) points around a line
 - Is a number between -1 and 1
 - Is defined by:

$$r = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \mathsf{mean}_x}{\mathsf{SD}_x} \right) \left(\frac{y_i - \mathsf{mean}_y}{\mathsf{SD}_y} \right)$$

- = average of the x and y values measured in standard units
- A positive correlation means that the cloud of (x_i, y_i) points slopes up
- A negative correlation means that the cloud of (x_i, y_i) points slopes down

$$r = \frac{1}{n} \sum \left(\frac{x_i - \mathsf{mean}_x}{\mathsf{SD}_x} \right) \left(\frac{y_i - \mathsf{mean}_y}{\mathsf{SD}_y} \right)$$

X	У	Z_X	z_y	$Z_X Z_y$
1	5	-3/2	-1/2	3/4
3	9	-1/2	1/2	-1/4
4	7	0	0	0
5	1	1/2	-3/2	-3/4
7	13	3/2	3/2	9/4

$$r = \frac{1}{n} \sum \left(\frac{x_i - \text{mean}_x}{\text{SD}_x} \right) \left(\frac{y_i - \text{mean}_y}{\text{SD}_y} \right)$$

У	Z_X	z_y	$z_x z_y$
5	-3/2	-1/2	3/4
9	-1/2	1/2	-1/4
7	0	0	0
1	1/2	-3/2	-3/4
13	3/2	3/2	9/4
	9 7 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

$$\begin{aligned} & \mathsf{mean}(x) = \frac{1}{5}\left(1 + 3 + 4 + 5 + 7\right) = 4 & & \mathsf{SD}(x) = \sqrt{\frac{(1 - 4)^2 + (3 - 4)^2 + (4 - 4)^2 + (5 - 4)^2 + (7 - 4)^2}{5}} = 2 \\ & \mathsf{mean}(y) = \frac{1}{5}\left(5 + 9 + 7 + 1 + 13\right) = 7 & & \mathsf{SD}(y) = \sqrt{\frac{(5 - 7)^2 + (9 - 7)^2 + (7 - 7)^2 + (1 - 7)^2 + (13 - 7)^2}{5}} = 4 \end{aligned}$$

$$\mathsf{mean}(y) = \frac{1}{5} \left(5 + 9 + 7 + 1 + 13 \right) = 7 \qquad \mathsf{SD}(y) = \sqrt{\frac{(5 - 7)^2 + (9 - 7)^2 + (7 - 7)^2 + (1 - 7)^2 + (13 - 7)^2}{5}} = \frac{1}{5} \left(\frac{1}{5} + \frac{1}{5} +$$

$$r = \frac{1}{n} \sum \left(\frac{x_i - \mathsf{mean}_x}{\mathsf{SD}_x} \right) \left(\frac{y_i - \mathsf{mean}_y}{\mathsf{SD}_y} \right)$$

X	У	Z_X	z_y	$Z_X Z_y$
1	5	-3/2	-1/2	3/4
3	9	-1/2	1/2	-1/4
4	7	0	0	0
5	1	1/2	-3/2	-3/4
7	13	3/2	3/2	9/4

$$mean(x) = \frac{1}{5}(1+3+4+5+7) = 4 \qquad SD(x) = \sqrt{\frac{(1-4)^2+(3-4)^2+(4-4)^2+(5-4)^2+(7-4)^2}{5}} = 2$$

$$1 \qquad \qquad \sqrt{\frac{(5-7)^2+(9-7)^2+(7-7)^2+(1-7)^2+(13-7)^2}{5}} = 2$$

mean(y) =
$$\frac{1}{5}$$
 (5 + 9 + 7 + 1 + 13) = 7 SD(y) = $\sqrt{\frac{(5-7)^2 + (9-7)^2 + (7-7)^2 + (1-7)^2 + (13-7)^2}{5}}$ = 4

Convert the x values to standard units. For example,

$$x = 1$$
 becomes $z_x = \frac{1-4}{2} = -3/2$ and $x = 3$ becomes $z_x = \frac{3-4}{2} = -1/2$

$$z_X = \frac{3-4}{2} = -1$$

$$r = \frac{1}{n} \sum \left(\frac{x_i - \mathsf{mean}_x}{\mathsf{SD}_x} \right) \left(\frac{y_i - \mathsf{mean}_y}{\mathsf{SD}_y} \right)$$

Х	У	Z_X	z_y	$Z_X Z_y$
1	5	-3/2	-1/2	3/4
3	9	-1/2	1/2	-1/4
4	7	0	0	0
5	1	1/2	-3/2	-3/4
7	13	3/2	3/2	9/4

$$\begin{aligned} \text{mean}(x) &= \frac{1}{5} \left(1 + 3 + 4 + 5 + 7 \right) = 4 \\ \text{mean}(y) &= \frac{1}{5} \left(5 + 9 + 7 + 1 + 13 \right) = 7 \end{aligned} \quad \text{SD}(x) &= \sqrt{\frac{(1 - 4)^2 + (3 - 4)^2 + (4 - 4)^2 + (5 - 4)^2 + (7 - 4)^2}{5}} = 2 \\ \text{mean}(y) &= \frac{1}{5} \left(5 + 9 + 7 + 1 + 13 \right) = 7 \end{aligned} \quad \text{SD}(y) &= \sqrt{\frac{(5 - 7)^2 + (9 - 7)^2 + (7 - 7)^2 + (1 - 7)^2 + (13 - 7)^2}{5}} = 4 \end{aligned}$$

Convert the x values to standard units. For example,

$$x = 1$$
 becomes $z_x = \frac{1-4}{2} = -3/2$

and x = 3 becomes $z_x = \frac{3 - 4}{2} = -1/2$

Convert the y values to standard units: For example,

$$y = 5$$
 becomes $z_y = \frac{5 - 7}{4} = -1/2$ and $y = 9$ becomes $z_y = \frac{9 - 7}{4} = 1/2$

$$z_y = \frac{9-7}{4} = 1$$

$$r = \frac{1}{n} \sum \left(\frac{x_i - \mathsf{mean}_x}{\mathsf{SD}_x} \right) \left(\frac{y_i - \mathsf{mean}_y}{\mathsf{SD}_y} \right)$$

Х	у	Z_X	z_y	$Z_X Z_y$
1	5	-3/2	-1/2	3/4
3	9	-1/2	1/2	-1/4
4	7	0	0	0
5	1	1/2	-3/2	-3/4
7	13	3/2	3/2	9/4

Convert the x values to standard units. For example,

$$x = 1$$
 becomes $z_x = \frac{1-4}{2} = -3/2$

and x = 3 becomes $z_x = \frac{3-4}{2} = -1/2$

Convert the y values to standard units: For example,

$$y=5$$
 becomes $z_y=rac{5-7}{4}=-1/2$ and $y=9$ becomes $z_y=rac{9-7}{4}=1/2$

$$y = \frac{9-7}{4}$$

Compute the products $z_x z_y$.

$$r = \frac{1}{n} \sum \left(\frac{x_i - \mathsf{mean}_x}{\mathsf{SD}_x} \right) \left(\frac{y_i - \mathsf{mean}_y}{\mathsf{SD}_y} \right)$$

Х	у	Z_X	z_y	$Z_X Z_y$
1	5	-3/2	-1/2	3/4
3	9	-1/2	1/2	-1/4
4	7	0	0	0
5	1	1/2	-3/2	-3/4
7	13	3/2	3/2	9/4

Convert the x values to standard units. For example,

$$x = 1$$
 becomes $z_x = \frac{1-4}{2} = -3/2$ and $x = 3$ becomes $z_x = \frac{3-4}{2} = -1/2$

Convert the y values to standard units: For example,

$$y=5$$
 becomes $z_y=\frac{5-7}{4}=-1/2$ and $y=9$ becomes $z_y=\frac{9-7}{4}=1/2$

Compute the products z_x z_y.

Compute the correlation coefficient: $r = \frac{1}{5} \left(\frac{3}{4} - \frac{1}{4} + 0 - \frac{3}{4} + \frac{9}{4} \right) = \frac{1}{5} \frac{8}{4} = \frac{2}{5} = 0.4$

$$r = \frac{1}{n} \sum \left(\frac{x_i - \mathsf{mean}_x}{\mathsf{SD}_x} \right) \left(\frac{y_i - \mathsf{mean}_y}{\mathsf{SD}_y} \right)$$

Х	У	Z_X	z_y	$Z_X Z_y$
1	5	-3/2	-1/2	3/4
3	9	-1/2	1/2	-1/4
4	7	0	0	0
5	1	1/2	-3/2	-3/4
7	13	3/2	3/2	9/4

Convert the x values to standard units. For example,

$$x = 1$$
 becomes $z_x = \frac{1-4}{2} = -3/2$ and $x = 3$ becomes $z_x = \frac{3-4}{2} = -1/2$

Convert the y values to standard units: For example,

$$y=5$$
 becomes $z_y=rac{5-7}{4}=-1/2$ and $y=9$ becomes $z_y=rac{9-7}{4}=1/2$

Compute the products z_x z_y.

• Compute the correlation coefficient:
$$r = \frac{1}{5} \left(\frac{3}{4} - \frac{1}{4} + 0 - \frac{3}{4} + \frac{9}{4} \right) = \frac{1}{5} \frac{8}{4} = \frac{2}{5} = 0.4$$

 $x \leftarrow c(1, 3, 4, 5, 7)$ In R: v <- c(5, 9, 7, 1, 13)</p> cor(x, v)

The SD Line

- Given lists x_1, \ldots, x_n and y_1, \ldots, y_n , the SD line
 - Is a linear approximation to the cloud of (x_i, y_i) points
 - Is defined by

$$(y - \text{mean}_y) = (\text{sign } r) \left(\frac{\text{SD}_y}{\text{SD}_x}\right) (x - \text{mean}_x)$$

where r is the correlation coefficient.

- It goes through the point of averages: (mean_x, mean_y).
- It's slope is $\pm \frac{SD_y}{SD_z}$.
- For every increase of 1 SD_x in the x-direction, there is an increase of 1 SD_y in the y-direction.
- If r > 0, the slope of the SD line is $\frac{SD_y}{SD_x}$.
- If r < 0, the slope of the SD line is $-\frac{SD_y}{SD_x}$.

SD Line Calculation

х	у	Z_{χ}	z_y	$z_x z_y$	y values predicted by SD line	SD error
1	5	-3/2	-1/2	3/4	1	4
3	9	-1/2	1/2	-1/4	5	4
4	7	0	0	0	7	0
5	1	1/2	-3/2	-3/4	9	-8
7	13	3/2	3/2	9/4	13	0

SD line equation:

$$(y - \text{mean}_y) = (\text{sign } r) \left(\frac{\text{SD}_y}{\text{SD}_x}\right) (x - \text{mean}_x)$$

Substitute the values from Slide 5:

$$(y-7)=(+1)\left(\frac{4}{2}\right)(x-4)$$

which simplifies to

$$(y-7)=2(x-4)$$

