第 2 章 线性规划的对偶理论

Duality 对偶

Dual Problem 对偶问题

Dual Linear Programming 对偶线性规划

Dual Theory 对偶理论

2.1 问题的提出

例1: 甲企业计划生产I、II两种产品,该两种产品均需经 A、B、C、D 四种不同设备加工,按工艺资料规定,在各种不同设备上的加工时间及设备加工能力、单位产品利润如表中所示。问: 如何安排产品的生产计划,才能使企业获利最大?

设备 产品	A	В	С	D	单位利润
I 产品 II 产品	2 2	1 2	4 0	0 4	2 3
加工能力	12	8	16	12	

设企业生产甲产品为 X_1 件, 乙产品为 X_2 件,则

$$\max z = 2 X_1 + 3 X_2$$
s.t
$$2 X_1 + 2 X_2 \le 12$$

$$X_1 + 2 X_2 \le 8$$

$$4 X_1 \le 16$$

$$4 X_2 \le 12$$

$$X_1 \ge 0, X_2 \ge 0$$

例2: 甲企业生产甲、乙两种产品,该两种产品均需 经A、B、C、D 四种不同设备加工,按工艺资料规定,在各种不同设备上的加工时间及设备加工能力、单位产品利润如表中所示。现有乙企业提出要全部租用甲企业设备。问: 最低出价为多少时才能租下甲企业的设备?

设备产品	A	A B C		D	单位利润
I 产品 II产品	2 2	1 2	4 0	0 4	2 3
加工能力	12	8	16	12	

设第i种资源价格为 y_i (i=1,2,3,4,),则有

min w=
$$12y_1 + 8y_2 + 16y_3 + 12 y_4$$

s.t $2y_1 + y_2 + 4y_3 + 0 y_4 \ge 2$
 $2y_1 + 2y_2 + 0y_3 + 4 y_4 \ge 3$
 $y_i \ge 0$, (i=1, 2, 3, 4)

1.最大生产利润模型

设企业生产甲产品为X₁件, 乙产品为X₂件,则

max
$$z= 2 X_1 + 3 X_2$$

s.t
$$\begin{cases} 2 X_1 + 2 X_2 \le 12 & y_1 \\ X_1 + 2 X_2 \le 8 & y_2 \\ 4 X_1 \le 16 & y_3 \\ 4 X_2 \le 12 & y_4 \\ X_1 \ge 0, X_2 \ge 0 \end{cases}$$

2.资源最低售价模型

设第*i*种资源价格为y_i, (i=1, 2, 3, 4,) 则有

min
$$w = 12y_1 + 8y_2 + 16y_3 + 12y_4$$

s.t
$$\begin{cases} 2y_1 + y_2 + 4y_3 + 0 & y_4 \ge 2 \\ 2y_1 + 2y_2 + 0y_3 + 4 & y_4 \ge 3 \\ y_i \ge 0, & (i=1,2,3,4) \end{cases}$$

(原问题) <===> (对偶问题)

2.2 原问题与对偶问题的关系

一般表示式:

原问题:
$$\max \ z = c_1 \ X_1 + c_2 \ X_2 + \cdots + c_n \ X_n$$

$$s.t$$

$$\begin{cases} a_{11} \ X_1 + a_{12} \ X_2 + \cdots + a_{1n} \ X_n \le b_1 \\ a_{21} \ X_1 + a_{22} \ X_2 + \cdots + a_{2n} \ X_n \le b_2 \end{cases}$$

$$\begin{cases} a_{m1} \ X_1 + a_{m2} \ X_2 + \cdots + a_{mn} \ X_n \le b_m \\ x_j \ge 0, \ j=1, 2, \cdots, n \end{cases}$$

典式模型对应对偶结构矩阵表示

原问题

对偶问题

(1)
$$\max z = C X$$
 $\min w = Y b$
s.t $\begin{cases} AX \le b \\ X \ge 0 \end{cases}$ s.t $\begin{cases} YA \ge C \\ Y \ge 0 \end{cases}$

对偶模型其他结构关系

(2) 若模型为

$$\max z = C X$$

$$s.t \begin{cases} AX \ge b \\ X \ge 0 \end{cases}$$

Min w=Y'(-b)
st.
$$\begin{cases} Y'(-A) \ge C \\ Y' > 0 \end{cases}$$

$$\min w = Y b$$

$$s.t \quad \begin{cases} YA \ge C \\ Y \le 0 \end{cases}$$

--第2章 对偶问题--

(3) max
$$z = C X$$

s.t $\begin{cases} AX \le b \\ X \le 0 \end{cases}$

$$\max = -CX'$$

$$\text{st.} \begin{cases} -AX' \le b \\ X' \ge 0 \end{cases}$$

min
$$w = Y b$$

s.t $YA \leq C$
 $Y \geq 0$

对偶问题典式:

用矩阵形式表示: (1) $\max z = C X$ $\min w = Y b$ s.t $YA \ge C$ s.t $AX \leq b$ <= $X \ge 0$ $Y \ge 0$ (2) $\max z = CX$ $\min w = Yb$ s.t AX≥b s.t $YA \ge C$ $X \ge 0$ $Y \leq 0$ (3) max z = CX $\min w = Yb$ s.t YA ≤C s.t $AX \le b$ <=====> X ≤0 $Y \ge 0$

原问题与对偶问题关系表

原问题(对偶问题) 目标函数系数 约束右端项 约束条件系数列向量 A 变量个数	对偶问题(原问题) 约束右端项 目标函数系数 约束条件系数行向量 A ^T 约束条件个数
\max 变量 x_j : $x_j \ge 0$ $x_j : \pm 0$ $x_j : \pm 0$ $x_j : \pm 0$	min 约束方程 i: ≥ = ≤
约束方程: ≤ = ≥	变量 y _i : y _i ≥ 0 y _i 无约束 y _i ≤0

复习思考题

- 1. 怎样理解对偶现象?
- 2. 对偶模型的对偶关系是什么?
- 3. 如何从经济上理解对偶模型?
- 4. 互为对偶怎样理解?
- 5. 对偶变量的意义是什么?

2.3 对偶问题的基本性质

$$\begin{aligned} \text{Max } z &= \text{CX} & \text{Min } w &= \text{Y b} \\ \text{s t . } AX &\leq b & \text{s t . } YA &\geq C \\ X &\geq 0 & Y &\geq 0 \end{aligned}$$

(1) 弱对偶性:

若 X^0 ——原问题可行解, Y^0 ——对偶问题可行解 则 $CX^0 \le Y^0$ b

(2) 最优性:

若 X^0 ——原问题可行解, Y^0 ——对偶问题可行解,且 $CX^0 = Y^0$ b

则 X⁰——原问题最优解, Y⁰——对偶问题最优解

证明:设 X*——原问题最优解,Y*——对偶问题最优解

则 $CX^0 \le CX^* \le Y^* b \le Y^0 b$

但 $CX^0 = Y^0 b$, $\therefore CX^0 = CX^* = Y^* b = Y^0 b$

 $\therefore X^0 \Rightarrow X^*, Y^0 \Rightarrow Y^*$

即 X⁰——原问题最优解, Y⁰——对偶问题最优解 证毕。

(3) 无界性

若原问题最优解无界,则对偶问题无可行解

证:有性质1, $C X^0 \le Y^0 b$, 当 $C X^0 \to \infty$ 时,则不可能存在 Y^0 , 使得 $C X^0 \le Y^0 b$ 。

注: 逆定理不成立,即

如果原问题(对偶问题)无可行解,那么 对偶问题(或原问题)"解无界"不成立。

(4) 强对偶性(对偶定理)

若原问题有最优解,则对偶问题一定有最优解,

且有
$$z_{max} = w_{min}$$

证: 由
$$\sigma = C - C_B B^{-1} A \le 0$$
 令 $C_B B^{-1} = Y^*$,
$$\begin{cases} \mathcal{F} & Y^* A \ge C \\ -Y^* = -C_B B^{-1} \le 0, \end{cases}$$
 $Y^* \ge 0$

因此, Y*是对偶问题的可行解,

$$X = C_B (B^{-1}b) = C_B B^{-1}b = Y^*b$$

: Y*是对偶问题的最优解。

--第2章 对偶问题--

LP模型矩阵变换:

$$(X_B + B^{-1}NX_N + B^{-1}X_S = B^{-1}b)$$

--第2章 对偶问题--

单纯形法的矩阵描述:

	$C_{\rm B}$	C_N	c_{i}	0
初始表	X_{B}	X_N	$\mathbf{x}_{\mathbf{j}}$	X_{S}
$0 X_S b$	В	N	p _j	I e
σ	C_{B}	C_{N}	c_{j}	0
	(A-117)		4-1	

最终表				
$C_B X_B b'$	I	N'	p_{j}	B-1
σ	0	$\sigma_{ m N}$	σ_{j}	$\sigma_{_{ m S}}$

$$\begin{cases} X_B = b' = B^{-1} b \\ N' = B^{-1} N \end{cases}$$

$$\sigma_{N} = C_{N} - C_{B}B^{-1}N \le 0$$

$$\sigma_{S} = -C_{B}B^{-1} \le 0$$

$$\sigma = C - C_{B}B^{-1} A \le 0$$

若
$$y_i^*>0$$
, 则 $\sum_{j=1}^n a_{ij} x_j^*=b_i$ 若 $\sum_{j=1}^n a_{ij} x_j^*< b_i$, 则 $y_i^*=0$ 证: $\sum_{j=1}^n c_j x_j^*=\sum_{j=1}^n (\sum_{i=1}^m a_{ij} y_i^*) x_j^*=\sum_{i=1}^m b_i y_i^*$ $\therefore \sum_{j=1}^n (\sum_{i=1}^m a_{ij} y_i^*) x_j^*-\sum_{i=1}^m b_i y_i^*=0$ $\sum_{i=1}^m (\sum_{j=1}^n a_{ij} x_j^*-b_i) y_i^*=0$ \therefore 当 $y_i^*>0$, $\sum_{j=1}^n a_{ij} x_j^*-b_i=0$, 即 $\sum_{j=1}^n a_{ij} x_j^*=b_i$ 当 $\sum_{i=1}^n a_{ij} x_j^*-b_i<0$, $y_i^*=0$

性质5的应用:

该性质给出了已知一个问题最优解求另一个问题最优解 的方法,即已知Y*求X*或已知X*求Y*

$$\begin{cases} Y^*X_s = 0 \\ Y_sX^* = 0 \end{cases}$$
 互补松弛条件

由于变量都非负,要使求和式等于零,则必定每一分量为零, 因而有下列关系:

若 $X^* \neq 0$,则 X_s 必为0;若 $X^* \neq 0$,则 Y_s 必为0利用上述关系,建立对偶问题(或原问题)的约束线性方程组,方程组的解即为最优解。

例2.4 已知线性规划

$$\max z = 3x_1 + 4x_2 + x_3$$

$$\begin{cases} x_1 + 2x_2 + x_3 \le 10 \\ 2x_1 + 2x_2 + x_3 \le 16 \\ x_j \ge 0, j = 1, 2, 3 \end{cases}$$

的最优解是X * =(6,2,0)T,求其对偶问题的最优解Y *。

解: 写出原问题的对偶问题,即

min
$$w = 10 y_1 + 16 y_2$$

$$\begin{cases} y_1 + 2 y_2 \ge 3 \\ 2 y_1 + 2 y_2 \ge 4 \end{cases}$$
标准化
$$\begin{cases} y_1 + y_2 \ge 1 \\ y_1 + y_2 \ge 0 \end{cases}$$

$$\min w = 10 y_1 + 16 y_2$$

$$\begin{cases} y_1 + 2 y_2 - y_3 = 3 \\ 2 y_1 + 2 y_2 - y_4 = 4 \\ y_1 + y_2 - y_5 = 1 \\ y_1, y_2, y_3, y_4, y_5 \ge 0 \end{cases}$$

例2.5 已知线性规划

$$\min z = 2x_1 - x_2 + 2x_3$$

$$\begin{cases} -x_1 + x_2 + x_3 = 4 \\ -x_1 + x_2 - x_3 \le 6 \end{cases}$$

$$\begin{cases} x_1 \le 0, x_2 \ge 0, x_3$$
无约束

的对偶问题的最优解为Y * =(0,-2), 求原问题的最优解。

解: 对偶问题是

$$\max w = 4y_1 + 6y_2$$

$$\begin{cases} -y_1 - y_2 \ge 2 \\ y_1 + y_2 \le -1 \end{cases}$$
标准化
$$\begin{cases} y_1 - y_2 = 2 \\ y_1 - y_2 = 2 \end{cases}$$

$$\max w = 4y_1 + 6y_2$$

$$\begin{cases} -y_1 - y_2 - y_3 = 2 \\ y_1 + y_2 + y_4 = -1 \end{cases}$$

$$\begin{cases} y_1 - y_2 = 2 \\ y_1 \pm 0, y_2 \le 0, y_3, y_4 \ge 0 \end{cases}$$

(6) 单纯形表中的对应关系

$$\max z = 2 x_1 + 3 x_2$$
s.t
$$\begin{cases}
2 x_1 + 2 x_2 \le 12 \\
x_1 + 2 x_2 \le 8 \\
4 x_1 \le 16 \\
4 x_2 \le 12 \\
x_1 \ge 0, x_2 \ge 0
\end{cases}$$

	c_j		2	3	0	0	0	0
C_{B}	X_{B}	b	\mathbf{x}_1	\mathbf{X}_2	X ₃	X ₄	X ₅	\mathbf{x}_6
0	X ₃	0	0	0	1	- 1	- 0.25	0
2	\mathbf{x}_1	4	1	0	0	0	0.25	0
0	\mathbf{x}_6	4	0	0	0	- 2	0.5	1
3	\mathbf{x}_2	2	0	1	0	0.5	- 0.125	0
	c _j -z _j		0	0	0	- 1.5	- 0.125	0
			- y ₅	- y ₆	- y ₁	- y ₂	- y ₃	- y ₄

复习思考题

- 1. 弱对偶性揭示什么关系?
- 2. 最优性揭示什么关系?
- 3. 如何从经济上理解无界性?
- 4. 强对偶性揭示什么关系?
- 5. 什么叫互补松弛性?
- 6. 单纯形表中的对偶关系是怎样的?

2.4 影子价格(Shadow price)

- ★ 取决于企业对资源使用的状况,受生产任务、产品结构差异、管理效率等因素影响。
- ★ 边际利润的概念:增加单位资源对利润的贡献。
- ★ 对资源使用决策的参考依据: 买进、卖出
- ★ 对资源使用状况的估算: 互补松弛性
- ★ 机会成本: $\sigma_j = c_j C_B B^{-1} p_j = c_j Y p_j = c_j \Sigma a_{ij} y_{i,j}$ $\Sigma a_{ij} y_i$ 为生产 x_j 而放弃其他产品生产的利润。
- ★ 制定内部结算价格的参考

2.5 对偶单纯形法

由于单纯表中同时反映原问题与对偶问题的最优解,故可以从求对偶问题最优解角度求解LP模型。

例:

$$\max z' = -2x_1 - 3x_2 + 0x_3 + 0x_4$$
s.t
$$\begin{cases} -x_1 - x_2 + x_3 = -3 \\ -x_1 - 2x_2 + x_4 = -4 \\ x_j \ge 0, (j=1,2,3,4) \end{cases}$$

列单纯表计算:

$C_i \rightarrow$	-2	-3	0	0
C_B X_B b	\mathbf{x}_1	\mathbf{X}_2	\mathbf{x}_3	X_4
$0 x_3 \underline{}$	3 -1	-1	1	0
$0 x_4 -$	4 -1	(-2)	0	1
c _j - z _j	-2	-3	0	0
$0 x_3 -$	1 (-1/2)	0	1	-1/2
-3 x ₂ 2	1/2	1	0	-1/2
c _j - z _j	-1/2	0	0	-3/2
-2 x ₁ 2	2 1	0	-2	1
-3 x ₂ 1	0	1	1	-1
c _j - z _j	0	0	-1	-1

对偶单纯形法步骤:

1.列初始单纯形表,使得所有检验数 $\sigma_{j} \leq 0$;

2.出基变量: 取min $\{b_i < 0\} = b_l \rightarrow x_{(l)}$

3.入基变量: $\min\left\{\frac{c_j^{-z_j}}{a_{l_i}} \mid a_{l_k} < 0\right\} = \rightarrow x_k$

4.主元素: [a_{lk}]

5.迭代: 同单纯形法,新单纯表中pk化为单位向量

说明:

 1^0 使用对偶单纯形法时,初始表中检验数必须全部为 $\sigma_j \le 0$,即使得其对偶问题为可行解,

20 为便于说明,这里采取从原问题角度叙述迭代步骤。

复习思考题

- 1. 如何定义影子价格?
- 2. 影子价格的经济意义有哪些?
- 3. 机会成本与财务成本有什么不同?
- 4. 为何提出对偶单纯形法?
- 5. 对偶单纯形法的计算原理是什么?
- 6. 对偶单纯形法的应用条件是什么?

2.6 灵敏度分析

1. 灵敏度分析的概念:

当某一个参数发生变化后,引起最优解如何改变的分析。可以改变的参数有:

b;——约束右端项的变化,通常称资源的改变;

c_i——目标函数系数的变化,通常称市场条件的变化;

p_i——约束条件系数的变化,通常称工艺系数的变化;

其他的变化有:增加一种新产品、增加一道新的工序等。

2. 分析原理:

借助最终单纯形表,将变化后的结果按下述基本原则反映到最终表中去。

(1)
$$b_i$$
变化: $(b+\triangle b)'=B^{-1}(b+\triangle b)$
= $B^{-1}b+B^{-1}\triangle b=b'+B^{-1}\triangle b$

(2)
$$p_j$$
变化: $(p_j + \triangle p_j)' = B^{-1} (p_j + \triangle p_j)$
= $B^{-1} p_j + B^{-1} \triangle p_j = p_j' + B^{-1} \triangle p_j$

- (3) c_i变化: 直接反映到最终表中, 计算检验数。
- (4) 增加一个约束方程: 直接反映到最终表中。
- (5) 增加新产品: 仿照pj变化。

3. 计算示例:

例: 己知某线性规划模型及最终的单纯表如下:

$$\max z = 2 x_1 + 3 x_2$$
s.t
$$\begin{cases} 2 x_1 + 2 x_2 \le 12 \\ x_1 + 2 x_2 \le 8 \\ 4 x_1 \le 16 \\ 4 x_2 \le 12 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

问: (1) 若b₂增加8个单位,最优解如何变化?

- (2) 若c2还可增加2个单位,最优解如何改变?
- $4x_1 \le 16$ (3) 若引进一个新变量(产品)y,其目标函数 $4x_2 \le 12$ 系数为 $c_y = 5$,系数列向量为 $p_y = [3 \ 2 \ 6 \ 3]^T$,问最优解 $x_1 \ge 0$, $x_2 \ge 0$ 是否会改变?

	$c_j \longrightarrow$	2	3	0	0	0	0	
$C_{\rm B}$	X _B b	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	x ₅	\mathbf{x}_6	
0	$x_3 = 0$	0	0	1	-1	-0.25	0	
2	\mathbf{x}_1 4	1	0	0	0	0.25	0	
0	x ₆ 4	0	0	0	-2	0.5	1	
3	x_2 2	0	1	0	0.5	-0.125	0	
	$c_j - z_j$	0	0	0	-1.5	-0.125	0	

--第2章 对偶问题--

解: (1)
$$B^{-1} \triangle b = \begin{bmatrix} 1 & -1 & -0.25 & 0 \\ 0 & 0 & 0.25 & 0 \\ 0 & -2 & 0.5 & 1 \\ 0 & 0.5 & -0.125 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 8 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -8 \\ 0 \\ -16 \\ 4 \end{bmatrix}$$

$$\therefore (b+\triangle b)' = B^{-1}b + B^{-1}\triangle b = b' + B^{-1}\triangle b$$
$$= [0 \ 4 \ 4 \ 2]^{T} + [-8 \ 0 \ -16 \ 4]^{T} = [-8 \ 4 \ -12 \ 6]^{T}$$

- :: 利用对偶单纯形法继续 求最优解。
- (2) 当 c_j 变化时, $\sigma' = C' C_B' B^{-1} A$,列出单纯形表, 重新求出检验数,**如表中所示**:
- (3) 增加y时, $\sigma_y = c_y C_B B^{-1} p_y = 5 (0 \ 1.5 \ 0.125 \ 0) [3 \ 2 \ 6 \ 3]^T$ =1.25>0
- :. 选择y作入基变量, $p_y' = B^{-1} p_y = = [-0.5 \ 1.5 \ 2 \ 0.25]^T$

继续迭代:

右端项变化分析单纯形表:

返回

$c_{j} \longrightarrow$	2	3	0	0	0	0
C_B X_B b	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6
$0 x_3 -8$	0	0	1	-1	-0.25	0
$2 x_1 4$	1	0	0	0	0.25	0
$0 x_6 -12$	0	0	0	[-2]	0.5	1
$3 \mathbf{x}_2 6$	0	1	0	0.5	-0.125	0
c_j-z_j	0	0	0	-1.5	-0.125	0
$0 x_3 -2$	0	0	1	0	[-0.5]	-0.5
$2 x_1 4$	1	0	0	0	0.25	0
$0 x_4 6$	0	0	0	1	-0.25	-0.5
$3 x_2 3$	0	1	0	0	0	0.25
c_j-z_j	0	0	0	0	-0.5	-0.75
$0 x_5 4$	0	0	-2	0	1	1
$2 \mathbf{x}_1 3$	1	0	0.5	0	0	-0.25
$0 x_6 7$	0	0	-0.5	1	0	-0.25
$3 x_2 3$	0	1	0	0	0	0.25
c_j-z_j	0	0	-1	0	0	-0.25

--第2章 对偶问题--

C_j变化分析单纯形表:

$\xrightarrow{c_{j}\longrightarrow}$	2	5	0	0	0	0
C_B X_B b	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6
$0 x_3 0$	0	0	1	-1	-0.25	0
$2 x_1 4$	1	0	0	0	0.25	0
$0 x_6 4$	0	0	0	-2	[0.5]	1
$5 x_2 2$	0	1	0	0.5	-0.125	0
c_j-z_j	0	0	0	-2.5	0.125	0
$0 x_3 2$	0	0	1	-2	0	0.5
$2 x_1 2$	1	0	0	1	0	-0.5
$0 x_5 8$	0	0	0	-4	1	2
$5 x_2 3$	0	1	0	0	0	0.25
$c_i - z_i$	0	0	0	-2	0	-0.25

返回

--第2章 对偶问题--

增加新产品(变量y)变化分析单纯形表:

$c_j \longrightarrow$	2	3	0	0	0	0	5
C_B X_B b	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	x ₄	X ₅	\mathbf{x}_6	у
$0 \mathbf{x}_3 0$	0	0	1	-1	-0.25	0	-0.5
$2 \mathbf{x}_1 4$	1	0	0	0	0.25	0	1.5
$0 x_6 4$	0	0	0	-2	0.5	1	[2]
$3 x_2 2$	0	1	0	0.5	-0.125	0	0.25
c_j-z_j	0	0	0	-1.5	-0.125	0	1.25
$0 x_3 1$	0	0	1	-1.5	-0.125	0.25	0
$2 x_1 1$	1	0	0	1.5	-0.125	-0.75	0
5 y 2	0	0	0	-1	0.25	0.5	1
$3 x_2 1.5$	0	1	0	0.75	-0.1875	-0.125	0
c_j-z_j	0	0	0	-0.25	-0.4375	-0.625	0

2.7 参数线性规划

- 1. 概念: 研究目标函数值随某一参数变化的规律及最优解相应的变化。
- 2. 算法: 先令变化量θ=0, 再考察随着θ的增加引起解的变化情况。
- 3. 最后, 画出目标值随θ的变化所形成的曲线。

例:有如下线性规划模型:

$$\max_{\substack{s.t\\ s.t\\ x_1+2x_2 \le 4+\theta\\ x_1 \ge 0,\ x_2 \ge 0\ (\ \theta \ge 0\)}} x_1^{+3}x_2^{-1}$$

- (1) 当 θ =0 时的最优解;
- (2) 当θ>0时, z值的变化规律。

解: 先令z=0, 有下述模型的标准形

$$\max z=2x_1+3x_2+0x_3+0x_4$$
 s.t
$$\begin{cases} x_1+x_2+x_3=3\\ x_1+2x_2+x_4=4\\ x_j\geq 0,\ (j=1,2,3,4) \end{cases}$$

利用单纯形法求解:

--第2章 对偶问题--

$C_i \rightarrow$	2	3	0	0	
C_B X_B b	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X ₄	
$0 x_3 3$	1	1	1	0	
$0 x_4 4$	1	(2)	0	1	
c _j - z _j	2	3	0	0	
$0 x_3 1$	[1/2]	0	1	-1/2	
$3 x_2 2$	1/2	1	0	1/2	
c _j - z _j	1/2	0	0	-3/2	
$2 x_1 2$	1	0	2	-1	
$3 x_2 1$	0	1	-1	1	$(\theta = 0)$
c _j - z _j	0	0	-1	-1	

--第2章 对偶问题--

当 θ >0时, Δ b' = B-1· Δ b= B-1·(0 θ)^T= (- θ θ)^T,继续迭代如下: (对偶单纯形法)

$C_i \rightarrow$	2	3	0	0	
$C_B X_B b$	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0	0 1	2 -1	(-1) 1 (0≤€	$0 \leq 2$
$c_j - z_j$	0	0	-1	-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 1	0 1	-2 1	1 0 (θ>	2)
c _j - z _j	-1	0	-3	0	

其变化曲线如下:

复习思考题

- 1. 灵敏度分析的概念是什么?
- 2. 为何要进行灵敏度分析?
- 3. 参数分析解决什么问题?
- 4. 各项参数的变化可能会引起哪些结果改变?
- 5. 敏感度分析与参数规划依据的是什么原理?

例:

某大学教授利用部分业余时间从事咨询工作。现有三个A、B、C企业欲聘请,各自每小时的咨询费用分别为10,12,16元。教授每月可用于外出咨询的时间为40小时,但对每个企业而言,用于准备的时间与咨询所花的时间的比例分别为0.1,0.5,0.8,教授每月可用于准备的时间应不超过24小时。若假定三个企业每月要求的咨询时间可分别达到80,60,20小时。现问:教授应作何种决策,才能使收益最大?

从目前看,教授有许多咨询机会,但可用的外出咨询 时间及准备的时间有限,所以可考虑雇用助手(用于帮助 准备),但要支付每小时4元的费用,现帮助教授分析一下, 它是否该雇用助手,若需雇用,每月应雇用多少时间? 设 用于三个企业咨询的时间分别为A— x_1 ,B— x_2 ,C— x_3 ,

Max
$$z=10x_1+12x_2+16x_3-4\theta$$

s.t. $x_1+x_2+x_3\leq 40$
 $0.1x_1+0.5x_2+0.8x_3\leq 24+\theta$
 $x_1\leq 80$
 $x_2\leq 60$
 $x_3\leq 20$
 $x_1\geq 0, x_2\geq 0, x_3\geq 0$

单纯形表:

c_i	─ →		10	12	16	0	0	0	0	0
$C_{\rm B}$	X_{B}	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
10	x_1	5	1	0	0	1.25	-2.5	0	0	0.75
12	x_2	15	0	1	0	-0.25	2.5	0	0	-1.75
0	x_6	75	0	0	0	-1.25	2.5	1	0	-0.75
0	x_7	45	0	0	0	0.25	-2.5	0	1	1.75
16	X_3	20	0	0	1	0	0	0	0	1.00
	$z_j - z_j$		0	0	0	- 9.5	-5.0	0	0	-2.5

$$Z_{max} = 550$$

--第2章 对偶问题--

单纯形表:

$c_j \longrightarrow$	10	12	16	-4	0	0	0	0	0
$C_B X_B b$	x_1	x_2	x_3	θ	x_4	x_5	x_6	x_7	x_8
-4 θ 2	0.4	0	0	1	0. 5	-1.0	0	0	0.3
12 x_2 20	1	1	0	0	1.0	0	0	0	-1
$0 x_6 80$	1	0	0	0	0	0	1	0	0
$0 x_7 40$	-1	0	0	0	-1	0	0	1	1
$16 x_3 20$	0	0	1	0	0	0	0	0	1
$c_j - z_j$	-0 .4	0	0	0	- 10	-4	0	0	-2.8

$$Z_{max} = 552$$

本章知识点

- 1. 对偶模型中结构要素的对应关系
- 2. 对偶模型的主要性质
- 3. 影子价格原理及应用分析
- 4. 对偶单纯形法的使用
- 5. 灵敏度分析方法
- 6. 参数规划方法