# Math 582 Introduction to Set Theory

#### Kenneth Harris

kaharri@umich.edu

Department of Mathematics University of Michigan

January 14, 2009

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory

January 14, 2009 1 / 19

Equinumerosity and comparison of size

## Equinumerous

**Definition**. Two sets A and B are equinumerous or equal in cardinality iff there is a bijection between their elements. We write

$$A \approx B \leftrightarrow \exists f [f : A \leftrightarrows B].$$

Note on terminology. The material in this lecture corresponds to Chapter 4.1-3 of H+J. They use the term equipotent, where I am using equinumerous.

## Equinumerous

No finite set can be equinumerous with a proper subset; however, this is not true of infinite sets.

#### Example.

$$\mathbb{N}=\{0,1,2,\ldots\}\approx\{1,2,3,\ldots\}$$

via the correspondence

$$(x \mapsto x + 1)$$

**Example**. In the real numbers,

$$(0,1) \approx (0,2)$$
 where  $(p,q) = \{r \in \mathbb{R} \mid p < r < q\},$ 

via the correspondence

$$(x \mapsto 2x).$$

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory

January 14, 2009 4 / 19

Equinumerosity and comparison of size

## Equivalence relation

Equinumerosity is an equivalence relation between sets:

**Proposition**. For all sets A, B, C,

$$A \approx A$$
,  $A \approx B \rightarrow B \approx A$ ,  $A \approx B \wedge B \approx C \rightarrow A \approx C$ 

# Comparison of size

**Definition**. The set *A* is less than or equal to *B* in size iff it is equinumerous with a subset of *B*. We write

$$A \leq B \leftrightarrow \exists C [C \subseteq B \land A \approx C].$$

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory

January 14, 2009

6 / 19

Equinumerosity and comparison of size

### **Proposition**

**Proposition**. For all sets A and B

$$A \leq B \leftrightarrow \exists f [f : A \hookrightarrow B]$$

**Proposition**. For all sets A, B, C

$$A \leq A$$
,  
 $A \leq B \land B \leq C \rightarrow A \leq C$ 

**Note**. It is also true that  $\leq$  is an ordering relation

$$A \prec B \wedge B \prec A \rightarrow A \approx B$$
.

However, this is a difficult result known as the Schröder-Bernstein theorem, which we will prove later.

## Finite sets

**Definition**. A set *A* is finite if there exists a natural number *n* such that

$$A \approx \{i \mid i < n\} = \{0, 1, \dots, n-1\};$$

otherwise, A is finite.

#### Example.

- The empty set  $\emptyset$  is finite since  $\emptyset \approx \{i \mid i < 0\}$ .
- Any singleton set,  $\{x\}$ , is finite since  $\{x\} \approx \{i \mid i < 1\}$ .

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory

January 14, 2009

9/19

Finite and Countable sets

### Countable sets

**Definition**. A set is countable (or denumerable) if it is either finite or equinumerous with the set of natural numbers  $\mathbb{N}$ ; otherwise, it is uncountable.

**Proposition**. A nonempty set *A* is countable iff *A* has an enumeration, a surjection  $\pi: \mathbb{N} \to A$ , so that

$$A = {\pi(0), \pi(1), \ldots}.$$

## Proof: →

**Proof**. Suppose *A* is countable.

If *A* is infinite, then there is a bijection  $\pi : \mathbb{N} \rightleftharpoons A$  by definition.

If A is finite and nonempty, then we have a bijection  $f: \{i \mid i < n\} \leftrightarrows A \text{ for some } n > 0.$  Define

$$\pi(i) = \begin{cases} f(i) & \text{if } i < n, \\ f(0) & \text{if } i \ge n. \end{cases}$$

Then  $\pi: \mathbb{N} \to A$  is an enumeration of A.

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory

January 14, 2009 11 / 19

Finite and Countable sets

Proof: →

Conversely, suppose *A* has an enumeration  $\pi : \mathbb{N} \to A$ , but is not finite.

 $\pi$  may fail to be a bijection because of repetitions:  $\pi(i) = \pi(j)$  but  $i \neq j$ . We define a bijection  $f : \mathbb{N} \rightleftharpoons A$  by skipping repetitions.



### Proof: →

Since A is not finite, for every finite set  $\{a_0, a_1, \dots, a_n\}$  of A, there exists some  $m \in \mathbb{N}$  with  $\pi(m) \notin \{a_0, a_1, \dots, a_n\}$ .

Define *f* by recursion as follows:

$$f(0) = \pi(0),$$
  
 $f(n+1) = \pi(m)$ 

where m > n is least with  $\pi(m) \notin \{f(0, f(1), \dots, f(n))\}.$ 

It is obvious that *f* is injective, so we show it is surjective. Let  $x \in A$ , so that  $x = \pi(n)$  for some n. If  $x \in \{f(0), \dots, f(n-1)\}$ we are done, otherwise  $f(n) = \pi(n)$  by definition of f. q.e.d.

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory

January 14, 2009 13 / 19

Countable unions of countable sets

#### Countable unions of countable sets

The next result is one of the most basic results in counting. It uses Cantor's first diagonal method.

**Theorem**. (Cantor) For each sequence  $A_0, A_1, \ldots$  of countable sets, the union

$$A=\bigcup_{n=0}^{\infty}A_n$$

is also a countable set.

# Proof of theorem

Proof. WLOG (with loss of generality) we may assume that none of the sets  $A_n$  is empty.

Let  $\pi^n : \mathbb{N} \to A_n$  be an enumeration. We write

$$a_i^n = \pi^n(i)$$

for simplicity, so that for each n

$$A_n = \{a_0^n, a_1^n, \ldots\}$$

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory

January 14, 2009

Countable unions of countable sets

### Proof of theorem - continued

Enumerate *A* by following the arrows in the picture:

$$A = \{a_0^0, a_0^1, a_1^0, a_0^2, a_1^1, a_2^0, \ldots\}.$$

q.e.d.



## Integers are countable

**Corollary**. The set of integers  $\mathbb{Z}$  is countable.

**Proof**.  $\mathbb{Z} = \mathbb{N} \cup \{-1, -2, \ldots\}$  and the set of negative integers is countable by the correspondence

$$(x \mapsto -(x+1))$$

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory

January 14, 2009

Countable unions of countable sets

### Rationals are countable

**Corollary**. The set of rationals  $\mathbb{Q}$  is countable.

**Proof**. The set of positive rationals  $\mathbb{Q}^+$  is countable because it is the countable union of countable sets:

$$\mathbb{Q}^+ = \bigcup_{n=1}^{\infty} \{ \frac{m}{n} \mid m \in \mathbb{N} \}.$$

Similarly, the negative rationals  $\mathbb{Q}^-$  is countable.

Finally, express Q as

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+,$$

a countable union of countable sets. So, Q is countable.