Relations

Aritra Hazra

Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Paschim Medinipur, West Bengal, India - 721302.

Email: aritrah@cse.iitkgp.ac.in

Autumn 2020

Cartesian Product

Definition: Cartesian Product or Cross Product of two sets, \mathcal{A} and \mathcal{B} , denoted as $\mathcal{A} \times \mathcal{B}$, is defined by, $\mathcal{A} \times \mathcal{B} = \{(a, b) \mid a \in \mathcal{A}, b \in \mathcal{B}\}$

Generically, $A_1 \times A_2 \times \cdots \times A_k = \{(x_1, x_2, \dots, x_k) \mid \forall i, x_i \in A_i\}$

Ordered Pairs: The elements of $(A \times B)$ are called ordered pairs.

Generically, the elements, $(x_1, x_2, ..., x_k) \in A_1 \times A_2 \times \cdots \times A_k$ (*k*-fold Cartesian product), are called ordered *k*-tuples.

Cardinality: Let, $|\mathcal{A}_1| = n_1, |\mathcal{A}_2| = n_2, \dots, |\mathcal{A}_k| = n_k$. Then, $|\mathcal{A}_1 \times \mathcal{A}_2 \times \dots \times \mathcal{A}_k| = |\mathcal{A}_1| |\mathcal{A}_2| \dots |\mathcal{A}_k| = n_1 n_2 \dots n_k$.

Properties: For $(a, b), (c, d) \in \mathcal{A} \times \mathcal{B}$, we have (a, b) = (c, d) if and only if a = b and c = d.

Note that $A \times \mathcal{B} \neq \mathcal{B} \times A$ but $|A \times \mathcal{B}| = |A||\mathcal{B}| = |A|$

Note that, $A \times B \neq B \times A$, but $|A \times B| = |A||B| = |B \times A|$.

Other Properties: Let $A, B, C \in \mathcal{U}$

(ii)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

(iv)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

(vi)
$$(A - B) \times C = (A \times C) - (B \times C)$$

(i)
$$A \times \phi = \phi \times A = \phi$$

(iii)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

(v)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

(vii)
$$\mathcal{A} \times (\mathcal{B} - \mathcal{C}) = (\mathcal{A} \times \mathcal{B}) - (\mathcal{A} \times \mathcal{C})$$

Relations and Examples

(Binary) Relation

Definition: A (binary) relation, ρ , between two sets, \mathcal{A} and \mathcal{B} , is defined as, $\rho \subseteq \mathcal{A} \times \mathcal{B}$. If an ordered pair, $(a,b) \in \rho$ (or $a \rho b$), then the element, $a \in \mathcal{A}$, is said to be *related* to the element, $b \in \mathcal{B}$.

- Any subset of $(A \times A)$ (or A^2) is called a relation on A.
- The relation, $\rho = A \times B$, is called the *universal relation*.

Count: Total number of (binary) relations between two sets, \mathcal{A} and \mathcal{B} (where, $|\mathcal{A}| = m$ and $|\mathcal{B}| = n$), is the number of possible subsets of $(\mathcal{A} \times \mathcal{B})$, i.e. 2^{mn} .

Example

Let
$$\mathcal{A}=\{1,2,3\}$$
 and $\mathcal{B}=\{a,b\}$. So, the Cartesian products are defined as, $\mathcal{A}\times\mathcal{B}=\{(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)\}$ and $\mathcal{B}\times\mathcal{A}=\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$ Clearly, $\mathcal{A}\times\mathcal{B}\neq\mathcal{B}\times\mathcal{A}$, however $|\mathcal{A}\times\mathcal{B}|=6=|\mathcal{B}\times\mathcal{A}|$.

There can be a total of $2^6 = 64$ different (binary) relations possible. Some are: $\rho_1 = \{(1, a), (1, b), (1, c)\}$ or $\rho_2 = \{(2, a), (3, a), (1, b), (3, b)\}.$

Types and Properties of Relations

Let a relation, ρ , is defined over the set, \mathcal{A} with $|\mathcal{A}| = n$, as $\rho \subseteq \mathcal{A} \times \mathcal{A}$. (Count: 2^{n^2})

Reflexive: ρ is reflexive if $\forall x \in \mathcal{A}$, $(x, x) \in \rho$

Count: 2^{n^2-n} (after choosing all *n* number of (x,x) pairs, any subset from (n^2-n) pairs can be taken as relation keeping reflexivity)

Symmetric: ρ is symmetric if $\forall x, y \in \mathcal{A}, (x, y) \in \rho \Rightarrow (y, x) \in \rho$

Count: $2^{\frac{n^2+n}{2}}$ (selecting an (x,y)+(x,x) pair in $\binom{n}{2}+n$ ways, any subset from $\binom{n}{2}+n$ pairs can be taken as relation keeping symmetry)

Transitive: ρ is transitive if $\forall x, y, z \in \mathcal{A}$, $(x, y), (y, z) \in \rho \Rightarrow (x, z) \in \rho$

Count: Unknown (still an open-problem!)

Antisymmetric: ρ is antisymmetric if $\forall x, y \in \mathcal{A}$, $(x, y), (y, x) \in \rho \Rightarrow (x = y)$

Count: $2^n 3^{\frac{n^{\ell}-n}{2}}$ (element (x,x) can either be included or excluded; element (x,y) have three options – (i) take only (x,y), (ii) take only (y,x), or (iii) take neither (x,y) nor (y,x). What if take both?)

Irreflexive: ρ is irreflexive if $\exists x \in \mathcal{A}, (x,x) \notin \rho$

Asymmetric: ρ is asymmetric if $\exists x, y \in \mathcal{A}, (x, y) \in \rho \land (y, x) \notin \rho$

Non-Transitive: ρ is non-transitive if $\exists x, y, z \in \mathcal{A}, (x, y), (y, z) \in \rho \land (x, z) \notin \rho$

Not Antisymmetric: ρ is not antisymmetric if $\exists x,y \in \mathcal{A}, \ (x,y), (y,x) \in \rho \land (x \neq y)$

Examples of Relations

- **Q** Reflexive and Symmetric, but NOT Transitive: ρ is defined over \mathbb{Z} as, $\rho = \{(x,y) \mid xy \geq 0 \text{ and } x,y \in \mathbb{Z}\}$ (Reflexive as $x^2 \geq 0$, Symmetric as xy = yx, NOT Transitive for x = 2, y = 0, z = -1)
- ② Symmetric and Transitive, but NOT Reflexive: ρ is defined over \mathbb{R} as, $\rho = \{(x,y) \mid xy > 0 \text{ and } x,y \in \mathbb{R}\}$ (NOT Reflexive for x=0, Symmetric as xy=yx, Transitive as $xz=\frac{(xy),(yz)}{z^2}>0$ since $xy>0,yz>0,y^2>0$)
- **Reflexive and Transitive, but NOT Symmetric** (Antisymmetric): $\rho \text{ is defined over } \mathbb{R} \text{ as, } \rho = \{(x,y) \mid x \leq y \text{ and } x,y \in \mathbb{R}\}$ (Reflexive as $x \leq x$, NOT Symmetric for x = 0.1, y = 1.0, Transitive as $x \leq y \leq z$)
- **NOT** Reflexive, NOT Symmetric, NOT Transitive, BUT Antisymmetric: ρ is defined over $\mathbb Z$ as, $\rho = \{(x,y) \mid y=x+1 \text{ and } x,y \in \mathbb Z\}$

(NOT Reflexive as $x \neq x+1$, NOT Symmetric as $y=x+1 \Rightarrow x=y-1$, NOT Transitive as z=y+1=x+2)

- **1** Only Reflexive: Relation $\rho = \{(A, B) \mid \text{Person-}A \text{ knows Person-}B\}$
- **1** Only Symmetric: Relation $\rho = \{(A, B) \mid A + B = 5 \text{ and } A, B \in \mathbb{Z}\}$
- **Only Transitive:** Relation $\rho = \{(A, B) \mid A \subset B \text{ and } A, B \in \mathcal{U}\}$
- Only Antisymmetric: Left for You to find as an Exercise!

Equivalence Relation and Equivalence Classes

Equivalence Relation: A relation $\rho \subseteq \mathcal{A} \times \mathcal{A}$ on set \mathcal{A} is called an equivalence relation if it is reflexive, symmetric and transitive.

Example:
$$\rho = \{(x, y) \mid (x - y) \text{ is divisible by 5 and } x, y \in \mathbb{Z}\}$$

- Reflexive since (x x) = 0 is divisible by 5.
- Symmetric since (y x) = -(x y) is divisible by 5.
- Transitive since (x z) = (x y) + (y z) is divisible by 5.

Fallacy: Does *Symmetric* + *Transitive* ⇒ *Reflexive*? Why define Reflexivity?

[from
$$(x,y) \in \rho \Rightarrow (y,x) \in \rho$$
 and $(x,y), (y,x) \in \rho \Rightarrow (x,x) \in \rho$]

Reason: NO, since for all x, an y may not be found/associated!

Equivalence Class: Let ρ be an equivalence relation on \mathcal{A} . For each $y \in \mathcal{A}$, the equivalence class is denoted by $[y] = \{x \mid (x,y) \in \rho \text{ and } x \in \mathcal{A}\}.$

Example: In the relation, $\rho = \{(x,y) \mid (x-y) \text{ is divisible by 3 and } x,y \in \mathbb{Z}\}$, the four equivalence classes are defined as:

- $[1] = \{\ldots, -5, -2, 1, +4, +7, \ldots\} = \{3k+1 \mid k \in \mathbb{Z}\}$
- $[2] = \{\ldots, -4, -1, 2, +5, +8, \ldots\} = \{3k + 2 \mid k \in \mathbb{Z}\}$

Note: $[0] = [-3] = [+3] = [-6] = [+6] = \cdots$ (from definition) $[0] \neq [1] \neq [2]$ and $\mathbb{Z} = [0] \cup [1] \cup [2]$ (details in next slide)

Equivalence Classes and Partitions

Theorem: If ρ is an equivalence relation on \mathcal{A} and $x, y \in \mathcal{A}$, then (i) $x \in [x]$; (ii) $(x, y) \in \rho$ iff [x] = [y]; and (iii) [x] = [y] or $[x] \cap [y] = \phi$ Proof:

- **1** From Reflexive property, $(x, x) \in \rho$.
- **1** Let $a \in [x] \Rightarrow (a, x) \in \rho$. As $(x, y) \in \rho$, so using transitivity, we get $(a,y) \in \rho \Rightarrow a \in [y]$. Hence, $[x] \subseteq [y]$. Again, let $b \in [y] \Rightarrow (b,y) \in \rho$. By symmetry, $(x,y) \in \rho \Rightarrow (y,x) \in \rho$. So, using transitivity, $(b,x) \in \rho \Rightarrow b \in [x]$. Hence, $[y] \subseteq [x]$. [Only-If] $x \in [x]$ and [x] = [y] implies $x \in [y] \Rightarrow (x, y) \in \rho$.
- Assume $[x] \neq [y]$, then $[x] \cap [y] = \phi$ must hold. If otherwise $[x] \cap [y] \neq \phi$, then let $u \in [x]$ and $u \in [y]$. Thus, $(u, x) \in \rho$ and by symmetry, $(x, u) \in \rho$. With $(u, y) \in \rho$, applying transitivity we get, $(x, y) \in \rho \Rightarrow [x] = [y]$, which contradicts the assumption!

Partitions of a Set (Revisited)

Given set \mathcal{A} and index set \mathcal{I} , let $\forall i, \phi \neq \mathcal{A}_i \subseteq \mathcal{A}$. Then $\{\mathcal{A}_i\}_{i \in \mathcal{I}}$ induces a partition on \mathcal{A} if: (i) $A = \bigcup A_i$, and (ii) $A_i \cap A_i = \emptyset$, $\forall i, j \in \mathcal{I} \ (i \neq j)$. $i \in \mathcal{I}$

Results: (i) Any equivalence relation ρ on set A induces a partition of A.

Proof: Follows from the above theorem.

(ii) Any partition of \mathcal{A} gives rise to an equivalence relation ρ on \mathcal{A} .

Proof: Left for You as an Exercise!