Computational Methods

RELATIONS AND MAPPINGS

Describe the rule associated with the following functions, sketch their graphs and state their domains and ranges:

(a)
$$f(x) = 2x^2$$

(b)
$$f(x) = x^2 - 1$$
 $0 \le x$

(c)
$$g(t) = 3t - 4$$
 $0 \le t$

$$(\mathbf{d})\,y(x) = x^3$$

(e)
$$f(t) = 0.5t + 2 - 2 \le t \le 10$$

(f)
$$z(x) = 3x - 2$$
 $3 \le x \le 8$

If f(x) = 5x + 4, find

- (a) f(3)
- (b) f(-3)
- (c) $f(\alpha)$
- (d) f(x+1)
- (e) $f(3\alpha)$
- (f) $f(x^2)$

If
$$g(t) = 5t^2 - 4$$
, find

- (a) g(0)
- (b) g(2)
- (c) g(-3)
- (d) g(x)
- (e) g(2t-1)

Find the inverse of the following functions:

(a)
$$f(x) = x + 4$$

(b)
$$g(t) = 3t + 1$$

(c)
$$y(x) = x^3$$

(d)
$$h(t) = \frac{t-8}{3}$$

(e)
$$f(t) = \frac{t-1}{3}$$

(f)
$$h(x) = x^3 - 1$$

$$(g) \ k(v) = 7 - v$$

(h)
$$m(n) = \frac{1}{3}(1-2n)$$

```
Given f(t) = 2t, g(t) = t - 1 and h(t) = t^2 write
expressions for
```

- (a) f(g(t))
- (b) f(h(t))
- (c) g(h(t)) (d) g(f(t))
- (e) h(g(t)) (f) h(f(t))
- (g) f(f(t)) (h) g(g(t))
- (i) h(h(t)) (j) f(g(h(t)))
- (k) g(f(h(t))) (l) h(g(f(t)))

Simplify

(a)
$$\frac{e^{2x}}{3e^{3x}}$$

(b)
$$\frac{e^{2t-3}}{e^2}$$

$$(c) \frac{e^x(e^x + e^{2x})}{e^{2x}}$$

(d)
$$\frac{e^{-3}e^{-7}}{e^6e^{-2}}$$

(a)
$$\frac{e^{2x}}{3e^{3x}}$$
 (b) $\frac{e^{2t-3}}{e^2}$ (c) $\frac{e^x(e^x + e^{2x})}{e^{2x}}$ (d) $\frac{e^{-3}e^{-7}}{e^6e^{-2}}$ (e) $\frac{(e^{2t})^3(e^{3t})^4}{e^{10t}}$

Evaluate

(a) $\log_2 8$ (b) $\log_2 15$

(c) $\log_{16} 50$ (d) $\log_{16} 123$

(e) log₈ 23

(f) $\log_8 47$

Simplify each of the following to a single log term:

(a) $\log 7 + \log x$

(b) $\log x + \log y + \log z$

(c) $\ln y - \ln 3$

(d) $2\log y + \log x$

(e) $ln(xy) + ln(y^2)$

Solve the following equations:

(a)
$$e^x = 70$$

(a)
$$e^x = 70$$
 (b) $e^x = \frac{1}{3}$

(c)
$$e^{-x} =$$

(d)
$$3e^x = 50$$

(e)
$$e^{3x} = 50$$

(f)
$$e^{2x+3} = 300$$

(g)
$$e^{-x+1} = 0.75$$

(h)
$$2ee^{2x} = 50$$

(c)
$$e^{-x} = 1$$
 (d) $3e^{x} = 50$
(e) $e^{3x} = 50$ (f) $e^{2x+3} = 300$
(g) $e^{-x+1} = 0.75$ (h) $2ee^{2x} = 50$
(i) $\frac{3}{e^{x}+1} = 0.6$ (j) $\frac{3}{e^{x+1}} = 0.6$

(j)
$$\frac{3}{e^{x+1}} = 0.6$$

(k)
$$(e^x)^3 = 200$$

(1)
$$\sqrt{e^{2x}} = 2$$

(m)
$$\sqrt{e^{2x} + 4} = 0$$

(k)
$$(e^x)^3 = 200$$
 (l) $\sqrt{e^{2x}} = 2$
 (m) $\sqrt{e^{2x} + 4} = 6$ (n) $\frac{e^x}{e^x + 2} = 0.7$

(o)
$$e^{2x} = 7e^x$$
 (p) $2e^{-x} = 9$

(p)
$$2e^{-x} = 9$$

(a)
$$(e^x + 3)^2 = 25$$

(q)
$$(e^x + 3)^2 = 25$$
 (r) $(3e^{-x} - 6)^3 = 8$

(s)
$$e^{2x} - 3e^x + 2 = 0$$

(t)
$$2e^{2x} - 7e^x + 3 = 0$$

(u)
$$e^x(5 - e^x) = 0$$

(s)
$$e^{2x} - 3e^x + 2 = 0$$
 (t) $2e^{2x} - 7e^x + 3 = 0$
(u) $e^x(5 - e^x) = 6$ (v) $e^x - 7 + \frac{12}{e^x} = 0$

Solve

(a)
$$\log x = 1.0$$

(a)
$$\log x = 1.6$$
 (b) $\log 2x = 1.6$

(c)
$$\log(2+x) = 1.6$$
 (d) $2\log(x^2) = 2.4$

(d)
$$2\log(x^2) = 2.4$$

(e)
$$\log(2x - 3) = 0.7$$

Solve

(a)
$$\ln x = 2.4$$

(b)
$$\ln 3x = 4$$

(c)
$$2\ln(2x-1) = 5$$
 (d) $\ln(2x^2) = 4.5$

(d)
$$ln(2x^2) = 4.5$$

(e)
$$\ln\left(\frac{x+1}{3}\right) = 0.9$$

Solve

(a)
$$e^{3x} = 2$$

(a)
$$e^{3x} = 21$$
 (b) $10^{-2x} = 6.7$

(c)
$$\frac{1}{e^{-x} + 2} = 0.3$$
 (d) $2e^{(x/2)} - 1 = 0$

(d)
$$2e^{(x/2)} - 1 = 0$$

(e)
$$3(10^{(-4x+6)}) = 17$$

(f)
$$(e^{x-1})^3 + e^{3x} = 500$$

(g)
$$\sqrt{10^{2x} + 100} = 3(10^x)$$

Evaluate the following:

(a) sinh 3

- (b) cosh 1.6
- (c) tanh 0.95
- (d) sech 1
- (e) cosech 2
- (f) coth 1.5
- $(g) \cosh(-3)$
- (h) cosech(-1.6)
- (i) sinh(-2)
- (j) $\coth(-2.7)$
- (k) tanh(-1.4)
- (1) sech(-0.5)

Evaluate

- (a) $sinh^{-1} 3$
- (b) $\cosh^{-1} 2$
- (c) $\tanh^{-1}(-0.25)$

Express

- (a) $6e^x + 5e^{-x}$ in terms of $\sinh x$ and $\cosh x$,
- (b) $4e^{2x} 3e^{-2x}$ in terms of sinh 2x and cosh 2x,
- (c) $2e^{-3x} 5e^{3x}$ in terms of sinh 3x and cosh 3x.

Express

- (a) $4 \sinh x + 3 \cosh x$ in terms of e^x and e^{-x} ,
- (b) $3 \sinh 2x \cosh 2x$ in terms of e^{2x} and e^{-2x} ,
- (c) $3 \cosh 3x 0.5 \sinh 3x$ in terms of e^{3x} and e^{-3x} .

Use the identities for $\sin(A \pm B)$, $\cos(A \pm B)$ and $tan(A \pm B)$ to simplify the following:

(a)
$$\sin \left(\theta - \frac{\pi}{2}\right)$$

(a)
$$\sin\left(\theta - \frac{\pi}{2}\right)$$
 (b) $\cos\left(\theta - \frac{\pi}{2}\right)$

(c)
$$tan(\theta + \pi)$$

(c)
$$tan(\theta + \pi)$$
 (d) $sin(\theta - \pi)$

(e)
$$\cos(\theta - \pi)$$
 (f) $\tan(\theta - 3\pi)$

(f)
$$tan(\theta - 3\pi)$$

(g)
$$\sin(\theta + \pi)$$

(h)
$$\cos\left(\theta + \frac{3\pi}{2}\right)$$

(e)
$$\cos(\theta - \pi)$$
 (f) $\tan(\theta - 3\pi)$ (g) $\sin(\theta + \pi)$ (h) $\cos\left(\theta + \frac{3\pi}{2}\right)$ (i) $\sin\left(2\theta + \frac{3\pi}{2}\right)$ (j) $\cos\left(\theta - \frac{3\pi}{2}\right)$ (k) $\cos\left(\frac{\pi}{2} + \theta\right)$

(j)
$$\cos\left(\theta - \frac{3\pi}{2}\right)$$

(k)
$$\cos\left(\frac{\pi}{2} + \theta\right)$$