- Given, x_i and y_i
- K number of data points

Sum of Squared errors

$d_1^2 + d_2^2 + \cdots + d_k^2 =$ a minimum

$$\sum_{i=1}^{K} (y_i - f(x_i))^2 \longrightarrow \text{minimize}$$

Deviation - error

- Given, x_i and y_i
- K number of data points
- Error = $y_i f(x_i)$
- How many errors?
- K errors

Fit with
$$m=1$$
, and $c=0$
 $y=m.x+c$
 $MSE=169.7$

Fit with m=1.5, and
$$c = 0$$

 $y = m.x + c$
 $MSE = 43.6$

Fit with m=2, and c=0 y=m.x+cMSE=0.2365

Fit with m=2.5, and c = 0 y = m.x + cMSE = 39.6

Minimization of MSE

Adaptive system

- X: explanatory variable
- Y = f(x,w): generated output
- Z: response or desired output
- Error variable = z f(x)

Error as a random variable

- X: explanatory variable
- Y = f(x,w): generated output
- Z: response or desired output
- Error variable = z f(x)

