PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE DEPARTAMENTO DE CIENCIAS DE COMPPUTACIÓN MATEMÁTICAS DISCRETAS- IIC1253

Guía 4 – relaciones

Problema 1 Sean $X = \{1, 2, 3\}, Y = (X \times X) \setminus \{(1, 1), (2, 2), (3, 3)\}.$

- a) Demuestre que no existen conjuntos A, B tal que $Y = A \times B$.
- b) ¿Existen conjuntos A_1, B_1, A_2, B_2 tales que $Y = (A_1 \times B_1) \cup (A_2 \times B_2)$?

Problema 2 Sean $x \in A, y \in B$. Demuestre que $(x, y) \in \mathcal{P}(\mathcal{P}(A \cup B))$.

Problema 3 Sea $A = \{1, 2, 3\}$. ¿Es $R \subseteq A \times A$ una relación de equivalencia sobre A si

- a) $R = \{(1,1), (2,2), (3,3)\}$?
- b) $R = \{(2,2), (3,3)\}$?
- c) $R = \{(1,1), (2,2), (2,3), (3,2)\}$?
- d) $R = A \times A$?

Problema 4 En un torneo, cada equipo jugó una vez contra cada uno de los demás, sin empates, y cada equipo perdió al menos un partido. Demuestre que existen tres equipos A, B y C que rompen la transitividad: A ganó a B, B ganó a C y C ganó a A.

Problema 5 Demuestre que una relación R sobre un conjunto A es refleja, simétrica y antisimétrica si y sólo si R es la relación de igualdad.

Problema 6 Sea \sim una relación de equivalencia sobre un conjunto A tal que la relación $\not\sim$ es transitiva. Demuestre que $x\sim y$ para todos $x,y\in A$.

Problema 7 Sea R una relación sobre $(0, +\infty)$ tal que

$$xRy \iff \frac{x}{y} \in \mathbb{Q} \qquad \forall x, y \in (0, +\infty).$$

- a) demuestre que R es una relación de equivalencia.
- b) demuestre que $[x]_R \cap (10,11) \neq \emptyset$ para todo $x \in (0,+\infty)$.
- c) demuestre que el producto \cdot respete R pero la suma + no respete R.

Problema 8 Sea \leq la siguiente relación sobre $\mathbb{R}[x]$ (conjunto de polinomios reales de una variable x):

$$p \leq q \iff \exists c \in \mathbb{R} \ p(x) \leq q(x) \text{ para todo } x \geq c.$$

Demuestre que \leq es un orden lineal (hint: use el hecho de que todo polinomio no cero tiene un número finito de raíces).

Problema 9 ?Verdadero o falso? Sean R_1, R_2 dos órdenes sobre un conjunto A. Entonces, $R_1 \cap R_2$ es un orden sobre A.

Problema 10 Sea R un orden sobre $\{1,2,3,4\}$. ¿Cuál es el tamaño máximo posible de R?

Problema 11 Sean \leq_1 y \leq_2 dos órdenes sobre los conjuntos A_1 y A_2 , respectivamente. Definimos el "producto Cartesiano" de \leq_1 y \leq_2 como la siguiente relación sobre $A_1 \times A_2$:

$$(x,y)(\preceq_1 \times \preceq_2)(u,v) \iff (x \preceq_1 u) \land (y \preceq_2 v),$$

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE DEPARTAMENTO DE CIENCIAS DE COMPPUTACIÓN MATEMÁTICAS DISCRETAS- IIC1253

para todos $x,u\in A,y,v\in B.$ Demuestre que $\preceq_1\times \preceq_2$ es un orden.

Problema 12 Sea \leq un orden sobre un conjunto de tamaño mn+1. Demuestre que existen m+1 elementos comparables entre sí o existen n+1 elementos, no comparables entre sí.