Problema 13

Andoni Latorre Galarraga

Sea tenemos que $d(\alpha(t),r)=\frac{n}{||n||}(\alpha(t)-p)$ donde n es el vector normal a $r=p+\lambda v$. Sea

$$\begin{array}{cccc} f : & (a,b) & \longrightarrow & \mathbb{R} \\ & t & \longmapsto & \frac{n}{||n||}(\alpha(t)-p) \end{array}$$

sabemos que $f'(t_0)=0$ por ser $\alpha(t_0)$ el punto más cercano a r.

$$f'(t_0) = \frac{1}{||n||} \frac{d}{dt} n \cdot (\alpha(t_0) - p) = \frac{1}{||n||} n \cdot \alpha'(t_0) = 0$$
$$\alpha'(t_0) \perp n \perp v \quad \Rightarrow \quad \alpha'(t_0) \parallel v$$

Por lo que la recta tangete es o paralela a r o coincidente con r. Como $\alpha(t_0) \notin r$ se deduce que son paralelas.

