

N.B. Many of these slides have been borrowed from Prof. Garry Procter. Reading: Section 6.1

Some Important Vocabulary Words

- Enantiomers: stereoisomers that are non-superimposable mirror images
- Chirality: the property of having a non-superimposable mirror image

How can I tell if a molecule is chiral?

1. Does it have a stereogenic center?

Generalizations:

- If a molecule has 0 stereogenic centers, it is *achiral*.
- If a molecule has a single stereogenic center, it is *chiral*.
- If a molecule has >1 stereogenic centers, we must consider another property.

$$H_3C$$
 H_3C
 H_3C

- 2. Is there an internal plane of symmetry in the molecule?
 - Any molecule that has a plane of symmetry will be *achiral*.
 - Any molecule that *lacks* a plane of symmetrty will be *chiral*.

• For each of the following molecules, determine whether it is chiral or achiral. If it is chiral, draw its enantiomer.

Naming Enantiomers: The R, S System

- Here are the rules for naming enantiomers:
 - **1.** Rank the groups attached to the **stereocenter** in priority order as for *E* & *Z* nomenclature of alkenes. The greater the atomic number, the greater the priority. Use the *first point of difference* where necessary.

3. Now trace the path $1 \rightarrow 2 \rightarrow 3$

• Assign *R* or *S* configurations to each of the following compounds:

Are Enantiomers Different?

• Roald Hoffmann (who shared the Nobel Prize for frontier molecular orbitals) wrote a wonderful book about chemistry titled *The Same and Not The Same*. His point was that much of chemistry involves substances that are the same in some respects, and not the same in others. Enantiomers are an excellent example:

A pair of enantiomers will generally have **identical physical properties**:

- color, boiling point, melting point, solubility, etc.

A pair of enantiomers will generally have **different biological properties:**

- taste, smell, toxicity, therapeutic action, etc.

A pair of enantiomers can exhibit the **same chemical reactivity OR different chemical reactivity**, depending on what they are reacting with (more on this later).

For instance:

... this enantiomer of penicillin can save your life...

... this enantiomer of penicillin cannot save your life...

R-carvone spearmint

S-carvone caraway ("rye")

As an excercise, can you assign the *R* and *S* designations to these enantiomers of carvone? Do you remember the rule for multiple bonds?

Optical Activity of Enantiomers

• Enantiomers rotate the plane of polarized light **equally in opposite directions**polarized light

If the plane has **rotated clockwise**, the compound is **dextrorotatory or** (+) If the plane has **rotated counterclockwise**, the compound is **levorotatory or** (-) ... and we can incorporate this into the name: (S)-(+)-2-butanol

Note: (+) and (-) are physical properties and CANNOT be determined by the structure or by correlation with R/S. They are properties of the entire molecule.

- What would happen to the polarized light if it passed through a solution of (R)-2-butanol?
- What about a *mixture* composed of equal amounts of *both* (*S*)-2-butanol and (*R*)-2-butanol? Such a 50-50 mixture of enantiomers is called **racemic mixture** or a **racemate**
- Standard form for reporting optical rotation:

Reading: Sections 6.3, 6.4

Mixtures of Enantiomers: Racemates and Purity

• What would happen to polarized light if it passed through a *mixture* composed of equal amounts of *both* enantiomers of a compound? Such a 50-50 mixture of enantiomers is called a **racemic mixture** or a **racemate**.

• For any other mixture of enantiomers, we can characterize the mixture by measuring its optical rotation. We define the *optical purity* or *enantiomeric excess (e.e.)* as:

optical purity = e.e. =
$$\frac{\text{observed specific rotation}}{\text{specific rotation of pure enantiomer}}$$

= (% major enantiomer) – (% minor enantiomer)

Example:

A sample of (S)-(+)-monosodium glutamate (MSG) has an observed specific rotation of $+19.2^{\circ}$.

$$CO_2^- Na^+$$
 HO_2C
 HO_3
 (S) -(+)-monosodium glutamate
$$[\alpha]_D^{20} = +24 - \frac{\text{known specific rotation of pure enantiomer}}{\text{which is a property of the pure enantiomer}}$$

What is the optical purity of the sample? What is the composition of the mixture?

Enantiomers and Diastereomers

In a molecule with 2 or more stereocenters, **Diastereoisomers** are possible **Diastereoisomers:** Stereoisomers which are *not* enantiomers

Example: 2,3-pentanediol

• What do we notice about enantiomers and diastereomers when we look at their *R*, *S*-designations?

• How can we determine the relationship between two molecules: "the same and not the same"

Physical Properties of Enantiomers and **Diastereomers**

H₃C CH₂ CH₂ CO₂H (2S, 3S)
$$\left[\alpha\right]_{D}^{25} = +15$$
 m.pt. = 150–151
H₃C CH₂ CH₃ (2R, 3R) $\left[\alpha\right]_{D}^{25} = -15$ m.pt. = 150–151

H₃C CH₂ HN CO₂H (2S, 3R)
$$[\alpha]_D^{25} = +21$$
 m.pt. = 155–156
H₃C CH₂ HN CH₃ (2R, 3S) $[\alpha]_D^{25} = -21$ m.pt. = 155–6

$$H_3C - CH_2 + HN + CO_2H$$
 $CH_3 - CH_3 + CO_2H$
 $CH_3 - CH_3 + CO_2H$

racemate of (2S, 3S) & (2R, 3R)
$$\left[\alpha\right]_{D}^{25} = 0$$
 m.pt. = 117–123 racemate of (2S, 3R) & (2R, 3S) $\left[\alpha\right]_{D}^{25} = 0$ m.pt. = 165–166

racemate of (2S, 3R) & (2R, 3S)
$$\left[\alpha\right]_{D}^{25} = 0$$
 m.pt. = 165–166

Achiral Molecules with Asymmetric Carbons

• Usually, an asymmetric carbon is a sure sign that a compound is chiral. However, consider the various stereoisomers of 2,3-butanediol:

mirror plane

OH

$$H_3C$$
 H_3C
 H_3

The meso-stereoisomer has a plane of symmetry

How can we identify these *meso* compounds?

Separation of Enantiomers: Resolution of Racemates

Enantiomers - same solubilities, melting points, boiling points, etc.

separation poses a special problem!

If we convert a mixture of *enantiomers* to a mixture of *diastereoisomers*... ... then diastereoisomers can be separated (recall they have different properties).

Overall plan for resolution of a racemate

Example: