

# Forelesning nr.1 INF 1411 Elektroniske systemer

Kursoversikt Strøm, spenning, ladning og Ohms lov



## Dagens temaer

- . Organisering av kurset
- Læringsmål
- Bakgrunn og motivasjon for kurs i analog elektronikk
- Strøm, spenning, motstand og Ohms lov (Kap 2 og 3 fra læreboka)

# Organisering av kurset

- . Forelesningsplanen på kursets hjemmeside
  - . Forelesninger: 1 dobbelttime per uke
  - .Regneøvelser: 1 dobbelttime per uke
  - .Labøvelser: 1 dag per uke i snitt
- Obligatoriske øvelser
  - . Alle må være bestått for å ta eksamen
  - .Utføres normalt i grupper på to personer
  - .5 øvelser i lab + 1 teorioppgave
- . Endringer kan forkomme
  - . Sjekk forelesningsplanen jevnlig!

### Om pensum

- . Pensum består av fire deler:
  - .Oppgitte kapitler fra læreboka
  - . Forelesninger og forelesningsnotater
  - .Gruppeoppgaver
  - .Labøvelser
- Alle deler forutsettes kjent på eksamen

# NB: Ikke ta for lett på gruppeøvelsene!

#### Labøvelser





- Forelesningene: Teoretisk grunnlag for labøvelsene
- . Labøvelsene
  - .Omsetter teorien til praksis
  - .Utfyllende kunnskaper om bla. variasjon i komponenter
  - .Gir kunnskap om labarbeid generelt og nyttig for senere kurs

### Læringsmål for kurset



- . Hovedmålet å «gi innføring i hvordan (enkle) elektroniske systemer fungerer, og hvordan enkeltkomponenter virker og kan settes sammen til større systemer»
  - . Forstå sammenhengen mellom fysiske enheter som ladning, strøm, spenning, motstand etc og lover/formler
  - . Forstå virkemåten til elektroniske komponenter
  - . Forstå forskjell mellom hva som er teoretisk og praktisk mulig
  - .Regne på kretser og komponentverdier
  - . Måling på og konstruksjon av enkle kretser.

#### UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

# Bakgrunn



# Tre oppgaver i informatikk



### Moore's law

Antall transistorer på én integrert krets dobles hvert annet år

- Moore's lov har vist seg å gjelde mer:
  - Regnekraft dobles ca hvert annet år (og prisen halveres)
  - Datahukommelse dobles ca hvert annet år (og prisen halveres)
  - Båndbredde dobles ca hvert annet år (og prisen halveres)





### Bakgrunn

- . Elektronikk er overalt:
  - Datamaskiner, husholdningsapparater, biler, båter, medisinsk utstyr, våpen, musikk, foto, film, fly tog, mobil-telefoner, sparepærer......



- Digital elektronikk: Bruker to diskrete verdier: '0' og '1'
- Analog elektronikk: Verdier er kontinuerlige (uendelig mange)
  - Digital elektronikk er en spesiell type analog elektronikk

# Bakgrunn (forts)

- Digitale elektroniske systemer kan designes uten spesiell innsikt i analog elektronikk:
  - .Benytter velprøvde og standardiserte byggeblokker
  - . Designer på et høyere abstraksjonsnivå

#### . MEN

- .Konstruksjon av digitale byggeblokker skjer på analognivå
- .Stadig raskere digitale kretser oppfører seg mer og mer som analoge kretser (dvs ikke bare '0' og '1')
- Verden er analog (består av uendelig mange verdier), ikke digital

# Strøm og spenning – en analogi

- Strøm og spenning er svært grunnleggende fenomener som kan være litt vanskelige å forstå hva egentlig er
- . Sammenligning: Vann som strømmer i en foss



- . Spenning: Hastigheten til vannet
- Strøm: Vannmengden

# Motstand- en analogi

- I tillegg er motstand (resistans) sentralt.
- Hvis vann renner gjennom et rør vil antall liter og hastigheten bremses:
  - . Et langt rør bremser mer enn et kort rør
  - . Et tynt rør bremser mer enn et tykt rør



- Hvis vi skal ha samme vannmengde gjennom et lang rør som et kort rør (eller et tynt rør som et tykt rør), må vi øke trykket
- Hvis vi skal ha samme trykk i et tynt som et tykt rør, må vi enten senke eller øke vannmengden

# Strøm og spenning: En mer presis forklaring

 Atomkjernen består av positivt ladede protoner og nøytralt ladene nøytroner

 Rundt atomkjernen svever negativt ladede elektroner i faste baner eller skall

 I et nøytralt atom er antall elektroner og protoner likt



# Atomer, valensbånd og ladning (forts)

- . Det ytterste skallet kalles for et valensbånd
- Elektronene i valensbåndet er med på å bestemme elektriske egenskaper til atomet
- Elektroner i ytre valensbånd har høyere energi og lavere binding til kjernen
- Hvis det er få elektroner i det ytterste båndet kan de lett forlate atomet og bli frie elektroner

20.01.2015 INF 1411 To 15

# Ulike materialers egenskaper

- Antall elektroner i det ytterste valensbåndet bestemmer et materiales elektriske egenskaper:
  - .Ledere: Materiale med mange ledige elektronplasser i det ytterste valensbåndet, typisk. Kopper og sølv er eksempler på metaller som leder elektrisk strøm godt
  - .Halvledere: Typisk 4 valenselektroner i det ytterste skallet. Silisium og germanium er halvledere som leder strøm og viktige i elektroniske komponenter
  - . Isolatorer: Ingen valenselektroner, eller valenselektroner som er sterkt bundet til kjernen. Svært dårligere elektriske ledere

## Elektrisk ladning

 Mellom elektrisk ladede partikler er det en kraft som gjør at de enten tiltrekker eller frastøter hverande



- . Kraften er direkte proporsjonal med ladningen
- Kraften er omvendt proporsjonal med kvadratet av avstanden
- . Denne kraften kalles *elektrisk felt*

# Elektrisk ladning (forts)

- . Elektrisk ladning måles i coulomb (C)
- 1 coulomb tilsvarer ladningen til 6.25x10<sup>18</sup> elektroner
- Et elektron har en ladning på -1.609x10<sup>-19</sup> C, og et proton har en ladning på +1.609x10 <sup>-19</sup> C
- . Ladning benevnes enten Q eller q(t)
- Total ladning er gitt av

$$Q = \frac{\text{antall elektroner}}{6.25 \times 10^{18} \, \text{elektroner/C}} = \text{antall elektroner } \times 1.609 \times 10^{-19} \, \text{C}$$

### Elektrisk ladning og strøm

- En annen grunnleggende enhet er elektrisk strøm som måles i ampere
- 1 ampere tilsvarer 1 coulomb som passerer et vilkårlig tverrsnitt i en elektrisk leder i løpet av 1 sekund



Elektrisk strøm / er altså et mål for antall ladninger per tidsintervall

20.01.2015 INF 1411 19

# Elektrisk ladning og strøm

- . Strøm kan også betraktes som overføring av ladning
- . Strøm har både en *verdi* og en *retning* (vektor)
- Gitt et referansepunkt måles strøm med hvilken rate ladninger passerer forbi punktet i øyeblikket
- . Symbolet for strøm er *I* eller *i(t)*
- Hvis strømmen varierer med tiden er det vanligere å angi sammenhengen mellom strøm og ladning slik:

$$i = \frac{dq}{dt}$$

# Spørsmål

- 1) Atomnummeret angir
  - a. protoner i atomkjernen
  - b. nøytronkjerner i atomkjernen
  - c. protoner pluss nøytroner i atomkjernen
  - d. elektroner i det ytre skallet
- 2) Valenselektroner er
  - a. I det ytre skallet
  - b. involvert i kjemiske reaksjoner
  - c. relativt løst bundet
  - d. alle egenskapene over

# Spørsmål

- 3) Partikkelen som er ansvarlig for elektrisk strøm i faste ledende materialer er
  - a. protonet
  - b. elektronet
  - c. nøytronet
  - d. alle nevnt over
- 4) Måleenheten for elektrisk ladning er
  - a. C
  - b.  $\Omega$
  - c. Q
  - d. W

### Strøm

. Strøm har alltid en retning som angis med en pil



. Begge figurer angir samme strømstyrke og retning

# Ulike typer strøm: Likestrøm (DC)

- . En likestrøm er en strøm som er konstant over tid
- . Betegnes med «I» (stor I)



# Ulike typer strøm: Vekselstrøm (AC)

- En vekselstrøm varierer med tiden og betegnes med «i» eller «i(t)» (liten i)
- Variasjonen kan enten være periodisk eller ikkeperiodisk







# **Spenning**



- For at ladninger skal bevege seg mellom a og b, må det være en potensialforskjell mellom a og b.
- Potensialforskjell eller spenning er et mål på arbeidet som kreves for å flytte ladinger fra a til b
- Spenning måles i *volt* som er definert ved

 $V = \frac{energi}{ladning} = \frac{W}{Q}$ 

1 volt er spenningen mellom a og b når
1 joule brukes for for å flytte en ladning
på 1 coulomb fra a til b

# Spenningskilder

- Spenning kan enten være likespenning (DC), eller vekselspenning (AC)
- Batterier, brenselceller og solcellepaneler er likespenningskilder hvor spenning oppstår ved kjemiske reaksjoner eller konvertering av lys
- Generatorer er eksempel på vekselspenningskilder hvor spenning lages ved konvertering av mekaniske bevegelser som vind, vann eller havbølger

# Spenningskilder (forts)

- Spenningskilder kan enten være ideelle eller ikke-ideelle (praktiske)
- En ideell kilde leverer konstant spenning uavhengig av strømmen kilden leverer
- I virkeligheten vil spenningen synke når strømmen øker



# Spenningskilder (forts)

. Symboler for spenningskilder er



- '+' terminalen er V<sub>s</sub> (eller v<sub>s</sub>) volt positiv i forhold til '-' terminalen.
- . Hvis  $V_s$  (eller  $v_s$ ) er < 0, er '+' terminalen *negativ* i forhold til '-' terminalen

### Strømkilder

- Noen ganger trenger man kilder som kan levere strøm uavhengig av spenningen
- For å levere en konstant strøm må kilden variere spenningen etter behov
- Også strømkilder kan være enten ideelle eller ikke-ideelle



30

# Oppsummering kilder

- . Kilder kan enten være ideelle eller ikke-ideelle
- . I tillegg kan kilder være uavhengige eller avhengige
  - .Uavhengig: Kilden leverer strøm eller spenning som ikke er avhengig av andre strømmer eller spenninger i en krets
  - .Avhengig: Kilden leverer en strøm eller spenning som er proporsjonal med en annen strøm eller spenning i en krets



Strømkontrollert strømkilde



Spenningskontrollert strømkilde



Spenningskontrollert spenningskilde



Strømkontrollert spenningskilde

# Spørsmål

- 1) En ideell strømkilde leverer en strøm som er
  - a. Uavhengig av spenningen over strømkilden
  - b. Direkte proporsjonal med spenningen
  - c. Omvendt proporsjonal med spenningen
  - d. Konstant
- 2) En uavhengig spenningskilde
  - a. Leverer spenning som er uavhengig av strømmen gjennom den
  - b. Leverer spenning som er avhengig av strømmen gjennom den
  - c. Leverer spenning som uavhengig av andre kilder
  - d. Leverer strøm som er avhengig av andre spenningskilder

### Elektrisk krets

En *elektrisk krets* er en sammenkopling av elektriske elementer i en lukket løkke slik at elektriske ladninger eller strøm beveger seg i løkken





#### Resistans

- . Når en elektrisk strøm går gjennom en leder eller et kretselement vil det alltid være en resistans R
- Resistans er et materiales motstand mot elektrisk strøm Resistans gjør at endel av energien til elektronene som beveger seg konverteres til lys eller varme
- Ledere vil man at skal ha veldig lav eller ingen resistans for å unngå tap av energi
- Andre ganger ønsker man å ha en bestemt resistans, og da bruker man en resistor eller Ohmsk motstand

# Resistans (forts)

- Resistans måles i enheten Ohm
  - .1 Ohm er motstanden når det går en strøm på 1 ampere i et materiale med 1 volt spenningsforskjell mellom endepunktene
  - Det motsatte av resistans (dvs. ledningsevne) kalles konduktans og måles i Siemens

$$G=\frac{1}{R}$$

 Resistorer lages i mange ulike varianter, avhengig av bruksområde (strøm, spenning, fysisk størrelse og form, effekt, nøyaktighet)

## Resistans (forts)

 Fargekoding brukes for å angi Ohm og toleranse (mer om dette på lab og gruppeundervisning)



# Måling av spenning, strøm og resistans

- Strøm, spenning og motstand kan måles med et multimeter
- Multimetre kan også måle effekt, frekvens, osv
- Man måler spenningen over og strømmen gjennom et element
- Første labøvelse vil dreie seg mye om måling









**INF 1411** 

#### Ohms lov

 Ohms lov gir sammenhengen mellom strøm, spenning og resistans (motstand):

$$V = RI$$

Alternativt kan dette skrives som

$$I = rac{V}{R}$$
 eller  $R = rac{V}{I}$ 

- Hvis V øker og R er konstant, øker I
- . Hvis V er konstant og R øker, synker I

### Bruk av Ohms lov

. Når spenning er ukjent:



$$V = 100\Omega \cdot 5A = 500v$$

. Når strømmen er ukjent:



$$I = \frac{25v}{4.7M\Omega} = 5.32\mu$$

. Når resistansen er ukjent:



$$R = \frac{10v}{5A} = 2\Omega$$

# Eksempel: Måling av temperatur

Variasjon i R kan brukes til å måle temperatur:





- . Spenningen  $V_b$  er et mål for temperaturen
- Fordelen med kretsen er at man ikke må måle både strøm og spenning for å bestemme Rt (dvs temperaturen)
- Kretsen kan også kalibreres (nullstilles)

# Spørsmål

- 1) Hvis resistansen er  $10\Omega$  og strømmen er 0.2A, hva er spenningen?
  - a. 20 volt
  - b. 0.2 volt
  - c. 2000 milliVolt
  - d. 2 Siemens
- 2) Ohms lov gir sammenhengen mellom
  - a. Ladning, spenning og tid
  - b. Ladning, strøm og tid
  - c. Resistans, strøm og ladning
  - d. Resistans, strøm og spenning

# Spørsmål

- 3) Resistans er et uttrykk for
  - a. Et materiales motstand mot elektrisk spenning
  - b. Et materiales motstand mot elektrisk strøm
  - c. Et materiales evne til å lede elektrisk strøm
  - d. Et materiales evne til å transportere protoner
- 4) Hvis spenningen skal være konstant når strømmen øker, så må
  - a. Konduktansen økes
  - b. Resistansen økes
  - c. Resistans holdes konstant
  - d. Konduktansen holdes konstant