Roth's Theorem

John D Mangual

1 ...

Roth's Theorem

2 Poincare Recurrence

The idea should be that point-wise ergodic theorem is an extension of Poincare recurrence, which is an extension of the Pigeon-hole principle.

von Neumann ergodic theorem Let (X, \mathcal{B}, μ, T) be a measure-preserving system, and let P_T denote the orthogonal projection to the closed subspace

$$\{g \in L^2_\mu : U_T g = g\} \subseteq L^2_\mu$$

Then for any $f \in L^2_\mu$

$$\frac{1}{N} \sum_{n=0}^{N-1} U_T^n f \longrightarrow_{L^2_{\mu}} P_T f$$

None of these proofs are very illuminating 'til we observe specific T, X, \mathcal{B} , μ and f.

Proof #1 The spectral theorem says a unitary operator $U: H \to H$ can be expressed as $U = \int_{S^1} \lambda \, d\mu(\lambda)$, since unitary operators have eigenvalues in the unit circle $S^1 = \{z: |z| = 1\}$. Then

$$\frac{1}{N} \sum_{n=0}^{N-1} U^n |v\rangle = \left[\int_{S^1} \frac{1}{N} \sum_{n=0}^{N-1} \lambda^n \, d\mu(\lambda) \right] |v\rangle$$

for any $|v\rangle \in H.$ By geometric series and dominated convergence:

$$\left[\mu(\{1\}) + \int_{S^1\setminus\{1\}} \frac{1}{N} \frac{\lambda^N - 1}{\lambda - 1} d\mu(\lambda)\right] |v\rangle \to \mu(\{1\})|v\rangle$$

The RHS is the projection $P_T|v\rangle \in H^U$ to the subspace with eigenvalue 1. \square

Two proofs involving pre-compactness and the Banach-Alaoglu theorem I will skip. A "slick" geometric proof of Riesz is enough for me.

Proof #1 The proof argues that
$$\{U_Tg-g:g\in L^2_\mu\}^\perp=\{U_Tg=g:g\in L^2_\mu\}$$
 \(\sqrt{}

If $U_T f = f$ then by unitarity

$$\langle f|U_Tg - g\rangle = \langle U_Tf|U_Tg\rangle - \langle f|g\rangle = 0$$

If $\langle f|U_Tg-g\rangle\equiv 0$ so that f is perpendcular to all "noise" then

$$\langle U_T g | f \rangle = \langle g | U_T^* f \rangle = \langle g | f \rangle$$

for all states $g \in L^2_\mu$. That means $U_T^*f = f$ and $U_Tf = f$.

We have shown the Hilbert space of states L^2_μ splits in two parts.

$$L_{\mu}^{2} = \{U_{T}g = g : g \in L_{\mu}^{2}\} \oplus \overline{\{U_{T}g - g : g \in L_{\mu}^{2}\}}$$

Given any unitary unitary operator, any function splits into a signal and a noise: $f = P_T f + h$. The claim is the noise averages out to 0 in the L^2_μ norm.

This is obvious by telescoping sum if $h = U_T g - g$.

$$\left\| \frac{1}{N} \sum_{n=0}^{N-1} U_T^n (U_T g - g) \right\|_2 = \frac{1}{N} \left\| U_T g - g \right\|_2 = 0$$

The noise is in the closure. $h = \lim(U_T g_i - g_i)$ The same argument before has two steps:

$$\left\| \frac{1}{N} \sum_{n=0}^{N-1} U_T^n h \right\|_2 \le \underbrace{\left\| \frac{1}{N} \sum_{n=0}^{N-1} U_T^n (h - h_i) \right\|_2}_{\epsilon \epsilon} + \underbrace{\left\| \frac{1}{N} \sum_{n=0}^{N-1} U_T^n h_i \right\|_2}_{\epsilon \epsilon} < 2\epsilon$$

The noise converges in the L^2_μ norm, as $N \to \infty$ and $i \to \infty$.

The space of noise $\overline{\{U_Tg-g:g\in L_\mu^2\}}$ has many interesting effects that get averages away in the L_μ^2 limit, but we still see them pointwise. It was very instructive to see the ergodic averages $\frac{1}{N}\sum f$ convergence. Away from a measure 0 set the convergence is pointwise, but that difference is dramatic.

3 Physics

We do not discuss matrix integrals at this time.

References

- (1) Enrico Bombieri, Alfred J. van der Poorten. **Continued Fractions of Algebraic Numbers** 1995.
- (2) S. Lang and H. Trotter, **Continued fractions for some algebraic numbers**, J. Reine Angew. Math. 255 (1972), 112-134. https://eudml.org/doc/151239