Lecture 6; CH 101: Inorganic Chemistry

Dr. Akshai Kumar A. S

Department of Chemistry

8

Centre For Nanotechnology

Indian Institute of Technology Guwahati Guwahati – 781039, Assam, India

A Brief Review of Co-ordination Chemistry

- Co-ordination compound (complex)
 An assembly of metal atom(s) and organic and/or inorganic groups ("Ligands")
- ♦ Metal bound to non-carbon ligands Werner complexes

↓ Ligands can have donor atoms having more than one lone pair

♦ There are also ligands which have more than one donor atoms

Very stable and less easily displaced compared to monodentate ligands

- ♦ Co-ordination number
 Number of groups bound to the central atom

♦ Oxidation state; OS(M) = C_{tot} – L_{tot} C = Total charge of complex L = Total charge of ligands

How about
$$K_4[Fe(CN)_6]$$
 or H_{H_0} H_{PPh_3}

Actually oxidation state is only a formality

Overlapping of AOs of participating atoms

Filled orbital of ligand with empty orbital of metal

Geometry based on hybridization of metal ion

Geometry of [CoCl₄]²⁻

4 co-ordinate, tetrahedral, paramagnetic

Geometry of [NiCN₄]²⁻

4 co-ordinate, square planar, diamagnetic

4s

 NH_3

4*p*

 d^2sp^3

6 co-ordinate, octahedral, paramagnetic

Geometry of $[CoF_6]^{3-}$ Vs. $[Co(CN)_6]^{3-}$

Bonding Crystal Field Theory

Based on electrostatics

ligands are considered as point charges

All valence electrons are considered to be in d-orbitals neutral free atom: nd ~ (n+1)s complexes: nd < (n+1)s < < (n+1)p

In neutral free atom, all d-orbitals have same energy (degenerate)

In an octahedral field

Co: $[Ar]4s^23d^7$

Co(0) complex: $[Ar]4s^03d^9$ (usually abbreviated as d^9)

Co(III) complex: [Ar] $4s^03d^6$ (usually abbreviated as d^6)

Co(II) d^7 – Labile; Co(III) d^6 – inert; Cr(III) d^3 – inert 2^{nd} and 3^{rd} row complexes mostly inert – high Δ

d^6 configuration is very stable and commonest type

Other examples include Mo(0), Re(I), Fe(II) & Pt(IV)

Pairing energy $< \Delta_o$ **Low-spin complexes** *Diamagnetic* Pairing energy > Δ_0 **High-spin complexes Paramagnetic**

- ♦ Complexes with odd number of electrons; $d^5 \text{ V(CO)}_6$ paramagnetic
- ♦ Complexes with even number of electrons High-spin for first row transition elements
- \Leftrightarrow High-field ligands (CO, C₂H₄): low-spin complexes
- ♦ Low-field ligands (H₂O, NH₃): High-spin complexes

Spectrochemical Series

$$I^- < Br^- < Cl^- < F^- < H_2O < NH_3 < PPh_3 < CO, H < SnCl_3^-$$

$$\leftarrow low \ \Delta \qquad \qquad high \ \Delta \rightarrow$$

$$\leftarrow \pi \ donor \qquad \qquad \pi \ acceptor/strong \ \sigma \ donor \rightarrow$$

- (i) Δ_0 increases with increase in ligand field strength.
- (ii) For a given ligand, Δ_0 increases with increase in oxidation state of the metal ion.
- (iii) For a given ligand and a given oxidation state, Δ_0 increases down a group (3d < 4d < 5d).

$$\begin{array}{l} Mn^{2+} < V^{2+} < Co^{2+} < Fe^{2+} < Ni^{2+} < Fe^{3+} < Co^{3+} < Mn^{4+} \\ < Rh^{3+} < Ru^{3+} < Pd^{4+} < Ir^{3+} < Pt^{4+} \\ \leftarrow low \; \Delta \\ \leftarrow low \; valent, \; first \; row \end{array}$$