CS 450 Sample Problem Set

Howard Yang

Jan., 2024

0.1 Theoretical Problems

Question-1: Consider using the fixed-point iteration to find the root of the following equation

$$x^3 + x - 1 = 0. (1)$$

One can construct different forms of fixed-point relationships, e.g.,

- 1) $x = g_1(x)$, with $g_1(x) = 1 x^3$;
- 2) $x = g_2(x)$, with $g_2(x) = \sqrt[3]{1-x}$;
- 3) $x = g_3(x)$, with $g_3(x) = \frac{1+2x^3}{1+3x^2}$.

Suppose the algorithm starts from the same initial point, do all the above fixed-point iterations converge? Which one converges the fastest, what are the respective convergence rates? Can you construct a fixed-point iteration that has the fastest convergence rate amongst all the possible candidates?

Question-2: Which of the following fixed-point iterations converge to $\sqrt{5}$?

- 1) $x = h_1(x)$, with $h_1(x) = \frac{4}{5}x + \frac{1}{x}$;
- 2) $x = h_2(x)$, with $g_2(x) = \frac{x}{2} + \frac{5}{2x}$;
- 3) $x = h_3(x)$, with $g_3(x) = \frac{x+5}{x+1}$.

Rank the ones converge from fastest and slowest.

Question-3: Consider using the Gradient Descent Method to solve the following optimization problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \qquad f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x}$$
 (2)

where \boldsymbol{A} is a symmetric and positive definite matrix. Answer the following questions.

- (a) Provide the steps for gradient descent algorithm.
- (b) What would be the convergence rate?
- (c) What happens if we use Newton's method to solve this problem?

Question-4: For Lagrange polynomial interpolation of m data points $(x_i, y_i), i = 1, \dots, m$.

- (a) What is the degree of each polynomial function $L_j(x)$ in the Lagrange basis?
 - (b) How many polynomials of degree m+1 interpolates these data points?
 - (c) How many polynomials of degree m interpolates these data points?
 - (d) How many polynomials of degree m-1 interpolates these data points?
 - (e) How many polynomials of degree m-2 interpolates these data points?