第五章 大数定律及中心极限定理 参考答案

一、单选题 (共4小题,每小题5分,共20分)		
1.		则 $\{X_n\}$ 依概率收敛于 a 是指······(A)
	$n{ ightarrow}\infty$	(B) $\forall \epsilon > 0, P\{ X_n - a \ge \epsilon\} = 1$
	(C) $\lim_{n \to \infty} X_n = a$	(D) $\lim_{n \to \infty} P\{X_n = a\} = 1$
2.		$X_2 + \cdots + X_n$,则根据林德伯格-莱维中心极限分布,只要 $\{X_n\} \cdots \cdots \in \mathbb{C}$
	(A) 有相同的数学期望	(B) 有相同的方差
	(C) 服从同一指数分布	(D) 服从同一离散型随机变量的分布
3.	设随机变量序列 X_n 独立同分布,其共同	的概率密度函数为
	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \le 0 \end{cases}, \lambda > 0,$	
	$\Phi(x)$ 为标准正态分布函数,则·······	(A)
	(A) $\lim_{n \to \infty} P\left\{\frac{\lambda \sum\limits_{i=1}^{n} X_i - n}{\sqrt{n}} \le x\right\} = \Phi(x)$	(B) $\lim_{n \to \infty} P\left\{\frac{\sum\limits_{i=1}^{X_i - n}}{\sqrt{n}} \le x\right\} = \Phi(x)$
	(C) $\lim_{n \to \infty} P\left\{\frac{\sum\limits_{i=1}^{n} X_i - \lambda}{\sqrt{n}\lambda} \le x\right\} = \Phi(x)$	(D) $\lim_{n \to \infty} P\left\{\frac{\sum\limits_{i=1}^{n} X_i - \lambda}{\sqrt{n\lambda}} \le x\right\} = \Phi(x)$
	思路:由指数分布的参数,可知期望和方差,进而知部分和的期望和方差,再利用	
	独立同分布的中心极限定理。	
4.	设 X_1, X_2, \cdots, X_1 000 是独立同分布的随机变量序列,且 $X_i \sim B(1, p)$ (0 < p < 1), 则下列	
	式子不正确的是	······(C)
	(A) $\frac{1}{1000}\sum_{k=1}^{1000}X_k$ 在概率的意义下近似于 p	
	(B) $P\{a < \sum_{k=1}^{1000} X_k < b\} \approx \Phi(\frac{b-1000p}{\sqrt{1000p(1-p)}}) - \Phi(\frac{a-1000p}{\sqrt{1000p(1-p)}})$	
	(C) $P\{a < \sum_{k=1}^{1000} X_k < b\} \approx \Phi(b) - \Phi(a)$	
	(D) $\sum_{k=1}^{1000} X_k \sim B(1000, p)$	
二、填空题(共4小题,每小题5分,共20分)		
1.	设随机变量 X 的数学期望 $E(X) = \mu$, 方差 $Var(X) = \sigma^2$, 则由切比雪夫不等式,有	
	$P\{ X-\mu \geq 3\sigma\}\leq \frac{1}{9}.$	
2.	设随机变量 X 与 Y 的数学期望分别为-2 和 2,方差分别为 1 和 4,而相关系数为-0.5 则由切比雪夫不等式,有 $P\{ X+Y \geq 6\}\leq \frac{1}{12}$.	
3.		且 $X_i \sim U(-2,2), i = 1,2,$,则 $\frac{1}{n} \sum_{i=1}^{+\infty} X_i^2$ 依概率
	收敛于	<i>i</i> =1

4. 掷一枚均匀的骰子 n 次,用 X 表示出现点数不超过 3 的次数,则 $\lim_{n\to\infty}P\{|\frac{X}{n}-\frac{1}{2}|\geq 0.1\}=$

注. 以下三个题目中, 若涉及到随机变量的正态近似, 需给出理由或说明, 否则会扣分.

三、设某网店每天接到的订单数服从参数为 20 的泊松分布. 若一年 365 天该网店都营业,且假设每天得到的订单数相互独立. 求该网店一年至少得到 7000 个订单的概率的近似值. (本题 20 分)

解. 设 X_i 为第 i 天接到的订单数,则 $X_i \sim P(20)$, $E(\sum_{i=1}^{365} X_i) = 7300$, $Var(\sum_{i=1}^{365} X_i) = 7300$,由 列维-林德伯格中心极限定理可知: $\sum_{i=1}^{365} X_i$ 近似服从 N(7300,7300). 该网店一年至少得到 7000 个订单的概率为

$$P\left(\sum_{i=1}^{365} X_i \ge 7000\right) \approx 1 - \Phi\left(\frac{7000 - 7300}{\sqrt{7300}}\right) = \Phi(3.51) = 0.9998.$$

四、某产品成箱包装,每箱的重量是随机的.假设每箱平均重量为50kg,标准差是5kg.现用载重为5t的汽车承运.试问,汽车最多只能装多少箱,才能使不超载的概率不小于0.95?(本题20分)

解. 设 X_i 为第 i 箱重量(单位:kg),n 为所求箱数,则 $E(\sum_{i=1}^n X_i) = 50n$, $Var(\sum_{i=1}^n X_i) = 25n$,由列维-林德伯格中心极限定理可知: $\sum_{i=1}^n X_i$ 近似服从 N(50n,25n). 该网店一年至少得到 7000 个订单的概率为

$$P\left(\sum_{i=1}^{n} X_i \le 5000\right) \approx \Phi\left(\frac{5000 - 50n}{\sqrt{25n}}\right) \ge 0.95.$$

查表可得: $\frac{5000-50n}{\sqrt{25n}} \ge 1.65$,解得最多可装 98 箱才能使不超载的概率不小于 0.95.

五、设某保险公司开办了一个农业保险项目,农户参加这项保险,每户需交保险费 1050元,一旦农户因病虫害等因素受到损失可获得 10000 元的赔付,假设各农户是否受到损失相互独立.每个农户因病虫害等因素受到损失的概率为 0.1. 不计营销和管理费用.(本题 20 分)

- (1) 若共有 10000 农户参加这项保险, 求该保险公司在该险种上产生亏损的概率;
- (2) 若共有 10000 农户参加这项保险, 求该保险公司在该险种上的盈利不少于 30 万的概率.
- **解.** 设 X 为这 10000 农户中因病虫害等因素收到损失的户数,则 $X \sim B(10000, 0.1)$, 由棣 莫弗-拉普拉斯中心极限定理可知,X 近似服从 N(1000, 900).
 - (1) 该保险公司在该险种上产生亏损的概率为

$$P(10000X \ge 1.05 \times 10^7) = P(X \ge 1050) \approx 1 - \Phi(\frac{1050 - 1000}{\sqrt{900}}) = 1 - \Phi(1.67) = 1 - 0.9525 = 0.0475.$$

(2) 盈利不少于 30 万的概率为

$$P(1.05 \times 10^7 - 10000X \ge 30 \times 10^4) = PX \le 1020 \approx \Phi(\frac{1020 - 1000}{\sqrt{900}}) = \Phi(0.67) = 0.7486.$$