NOTES ON ANALYSIS

RALPH HOWARD

1. Metric Spaces.

Definition 1. A *metric space* is a nonempty set E with a function $d: E \times E \to [0, \infty)$ such that for all $p, q, r \in E$ the following hold

- (a) $d(p,q) \ge 0$,
- (b) d(p,q) = 0 if and only if p = q,
- (c) d(p,q) = d(q,p), and
- (d) $d(p,r) \le d(p,q) + d(q,r)$.

The function d is called the **distance function** on E. The condition d(p,q) = d(q,p) is that the distance between points is **symmetric**. The inequality $d(p,r) \le d(p,q) + d(q,r)$ is the **triangle inequality**.

The most basic example if a metric space is when $E \subseteq \mathbb{R}$ is a nonempty subset of the real numbers, \mathbb{R} , and the distance is defined by

$$d(p,q) = |p - q|.$$

Problem 1. Show that this makes E into a metric space.

We have seen that if $p = (p_1, ..., p_n)$ and $q = (q_1, ..., q_n)$ are points in \mathbb{R}^n and we define the **length** or **norm** of p to be

$$||p|| = \sqrt{p_1^2 + \dots + p_n^2}$$

then the inequality

$$||p+q|| \le ||p|| + ||q||$$

holds.

Proposition 2. Let E be a nonempty subset of \mathbb{R}^n and for $p, q \in E$ let

$$d(p,q) = ||p - q||.$$

Then E with the distance function d is a metric space.

Problem 2. Prove this.

Here are some inequalities that we will be using later.

Proposition 3 (Reverse triangle inequality). Let E be a metric space with distance function d and let $x, y, z \in E$. Then

$$|d(x,y) - d(x,z)| \le d(y,z).$$

Date: September 24, 2018.

Problem 3. Prove this. Then draw a picture in the case of \mathbb{R}^2 with its standard distance function showing why this inequality is reasonable. \square

Proposition 4. Let E be a metric space with distance function d and $x_1, \ldots, x_n \in E$. Then

$$d(x_1, x_n) \le d(x_1, x_2) + d(x_2, x_3) + \dots + d(x_{n-1}, x_n).$$

Problem 4. Prove this. Then draw a picture in the plane showing why this is reasonable. *Hint:* Induction. \Box

Definition 5. Let E be a metric space with distance function d. Let $a \in E$, and r > 0.

(a) The **open ball** of radius r centered at x is

$$B(a,r) := \{x : d(a,x) < r\}.$$

(b) The **closed ball** or radius r centered at a is

$$\overline{B}(a,r) := \{x : d(a,x) \le r\}.$$

In the real numbers with their usual metric d(x, y) = |x - y| the open and closed balls about a are intervals with center a:

In the plane, \mathbb{R}^2 , with its usual metric $d(\mathbf{p}, \mathbf{q}) = ||\mathbf{p} - \mathbf{q}||$, the open and closed balls about \mathbf{a} are disks centered at \mathbf{a} .

$$B(\mathbf{a},r)=$$
 $\overline{B}(\mathbf{a},r)=$

Definition 6. Let E be a metric space with distance function d. Then $S \subseteq E$ is an **open set** if and only if for all $x \in S$ there is an r > 0 such that $B(x,r) \subseteq S$.

This can be restated by saying that S is open if and only if each of its points is the center of an open ball contained in S. See Figure 1.

Proposition 7. In any metric space E, the sets E and \varnothing are open. \square

Proof. Let $p \in E$, then for any r > 0 we have $B(p,r) = \{x \in E : d(x,p) < r\} \subseteq E$. Thus E contains not only some open ball about p, it contains every open ball about p. Therefore E is open.

FIGURE 1. A set is open if and only if each of its points is the center of an open ball contained in the set.

That \varnothing is open is a case of a vicious implication. To see this consider the statement

$$p \in \emptyset$$
 and $r > 0 \implies B(p, r) \subseteq \emptyset$.

If this statement is true, then \varnothing satisfies the definition of being open. But this is a true statement as an implication $P \implies Q$ is true whenever the hypotheses, P, is false. And the hypothesis " $p \in \varnothing$ and r > 0" is false as " $p \in \varnothing$ " is false. \square

Proposition 8. Let E be a metric space. Then for any $a \in E$ and r > 0 the open ball B(x,r) is an open set.

Problem 5. Prove this. *Hint:* Let $x \in B(a,r)$. Then d(a,x) < r. Set $\rho := r - d(a,x) > 0$ and show $B(x,\rho) \subseteq B(a,r)$

Proposition 9. In the real numbers, \mathbb{R} , with their standard metric, the open intervals (a,b) are open.

Problem 6. Prove this. \Box

Proposition 10. Let E be a metric space. Then for any $a \in E$ and r > 0 the compliment, $C(\overline{B}(a,r))$, of the closed ball $\overline{B}(a,r)$ is open.

Proposition 11. Prove this. Hint: If $x \in \mathcal{C}(B(a,r))$, then d(x,a) > r. Let $\rho := d(a,x) - r > 0$ and show $B(a,\rho) \subseteq \mathcal{C}(B(a,r))$.

Proposition 12. If U and V are open subsets of E, then so are $U \cup V$ and $U \cap V$.

Proof. Let $x \in U \cup V$. Then $x \in U$ or $x \in V$. By symmetry we can assume that $x \in U$. Then, as U is open, there is an r > 0 such $B(x,r) \subseteq U$. But then $B(x,r) \subseteq U \subseteq U \cup V$. As x was any point of $U \cup V$ this shows that $U \cup V$ is open.

Let $x \in U \cap V$. Then $x \in U$ and $x \in V$. As $x \in U$ there is an $r_1 > 0$ such that $B(x, r_1) \subseteq U$. Likewise there is an $r_2 > 0$ such that $B(x, r_2) \subseteq V$. Let

 $r = \min\{r_1, r_2\}$. Then

$$B(x,r) \subseteq B(x,r_1) \subseteq U$$
 and $B(x,r) \subseteq B(x,r_2) \subseteq V$

and therefore $B(x,r) \subseteq U \cap V$. As x was any point of $U \cap V$ this shows that $U \cap V$ is open.

Proposition 13. Let E be a metric space.

- (a) Let $\{U_i : i \in I\}$ be a (possibly infinite) collection of open subsets of E. Then the union $\bigcup_{i \in I} U_i$ is open.
- (b) Let U_1, \ldots, U_n be a finite collection of open subsets of E. Then the intersection $U_1 \cap U_2 \cap \cdots \cap U_n$ is open.

Problem 7. Prove this.

Problem 8. In \mathbb{R} let U_n be the open set $U_n := (-1/n, 1/n)$. Show that the intersection $\bigcap_{n=1}^{\infty} U_n$ is not open.

Definition 14. Let E be a metric space. Then a subset S of E is **closed** if and only if its compliment, C(S) is open.

Because the compliment of the compliment is the original set this implies that a set, S, is open if and only if its compliment C(S) is closed. Likewise a set, S, is closed if and only if its compliment C(S) is open.

Proposition 15. In any metric space E the sets \varnothing and E are both closed.

Proof. We have seen the sets E and \varnothing are open, thus their compliments $\mathcal{C}(E) = \varnothing$ and $\mathcal{C}(\varnothing) = E$ are closed.

Proposition 16. If E is a metric space, $a \in E$, and r > 0, then the closed ball $\overline{B}(a,r)$ is closed.

Problem 9. Show that in \mathbb{R} with its usual metric the closed intervals are closed.

Proposition 17. If E is a metric space, then every finite subset of E is closed.

Problem 10. Prove this. □

Problem 11. In the real numbers show that the half open interval [0,1) is neither open or closed.

Problem 12. The integers, \mathbb{Z} , are a metric space with the metric d(m,n) = |m-n|. Note that for this metric space if $m \neq n$ that d(m,n) is a nonzero positive integer and thus $d(m,n) \geq 1$. Assuming these facts prove the following

- (a) Let r = 1/2, then for each $n \in \mathbb{Z}$ the open ball B(n, r) is the one element set $B(n, r) = \{n\}$ and therefore $\{n\}$ is open.
- (b) Every subset of \mathbb{Z} is open. *Hint*: Let $S \subseteq \mathbb{Z}$, then $S = \bigcup_{n \in S} \{n\}$ and use Proposition 13 to conclude that S is open.
- (c) Every subset of \mathbb{Z} is closed.

Proposition 18. Let E be a metric space.

- (a) Let $\{F_i : i \in I\}$ be a (possibly infinite) collection of closed subsets of E. Then the intersection $\bigcap_{i \in I} F_i$ is closed.
- (b) Let F_1, \ldots, F_n be a finite collection of closed subsets of E, then the union $U_1 \cup \cdots \cup U_n$ is closed.

Problem 13. Prove this. *Hint:* The correct way to do this is to deduce it directly from Proposition 13. For example to show that the union of two closed sets is closed, let F_1 and F_2 be closed. Then the compliments $\mathcal{C}(F_1)$ and $\mathcal{C}(F_1)$ are open and the intersection of two open sets is open. Therefore $\mathcal{C}(F_1) \cap \mathcal{C}(F_2)$ is open and thus the compliment of this set is closed. That is

$$F_1 \cup F_2 = \mathcal{C}(\mathcal{C}(F_1) \cap \mathcal{C}(F_2))$$

is closed. \Box

Let E be a metric space. Then a function $f: E \to \mathbb{R}$ is **Lipschitz** if and only if there is a constant $M \geq 0$ such that

$$|f(p) - f(q)| \le Md(p, q)$$
 for all $p, q \in E$.

Proposition 19. Let E be a metric space and $f: E \to \mathbb{R}$ a Lipschitz function. Then for all $c \in \mathbb{R}$ the sets

$$f^{-1}[(c,\infty)] = \{ p \in E : f(p) < c \}$$
$$f^{-1}[(-\infty,c)] = \{ p \in E : f(p) > c \}$$

are open and the sets

$$f^{-1}[[c,\infty)] = \{p \in E : f(p) \ge c\}$$

 $f^{-1}[(-\infty,c]] = \{p \in E : f(p) \le c\}$

are closed.

Half of the proof. Assume that f satisfies $|f(p) - f(q)| \leq Md(p,q)$ for $p, q \in E$. We will show that $f^{-1}[(-\infty,c)]$ is open. We need to show that for any $q \in f^{-1}[(-\infty,c)]$ the set $f^{-1}[(-\infty,c)]$ contains an open ball about q. As $q \in f^{-1}[(-\infty,c)]$ we have f(q) < c. Therefore

$$r = \frac{c - f(q)}{M}$$

is positive. Let $pe \in B(q, r)$. Then

$$\begin{split} f(p) &= f(q) + (f(p) - f(q)) \\ &\leq f(q) + |f(p) - f(q)| & \text{(as } (f(p) - f(q)) \leq |f(p) - f(q)|) \\ &\leq f(q) + Md(p,q) & \text{(as } f \text{ is Lipschitz}) \\ &< f(q) + Mr & \text{(as } p \in B(q,r), \text{ so } d(p,q) < r) \\ &= f(q) + M\left(\frac{c - f(q)}{M}\right) & \text{(from our definition of } r) \\ &= c. \end{split}$$

Therefore if $p \in B(q, r)$ we have f(p) < c and thus $B(q, r) \subseteq f^{-1}[(-\infty, c)]$. Whence $f^{-1}[(-\infty, c)]$ contains an open ball about any of its points q and therefore $f^{-1}[(-\infty, c)]$ is open.

We now show $f^{-1}[[c,\infty]] = \{p \in E : f(p) \ge c\}$ is closed. We know $f^{-1}[(-\infty,c)] = \{p \in E : f(p) < c\}$ is open. Its compliment is

$$\mathcal{C}\left(f^{-1}\big[(-\infty,c)]\right)=f^{-1}\big[[c,\infty)\big].$$

Therefore $f^{-1}[[c,\infty)]$ is the compliment of an open set, which means that $f^{-1}[[c,\infty)]$ is closed.

Problem 14. Prove the other half of Proposition 19, that is show $f^{-1}[(c,\infty)]$ is open and $f^{-1}[(-\infty,c]]$ is closed.

Proposition 20. Let E be a metric space and $f: E \to \mathbb{R}$ a Lipschitz function. Then for any $c \in \mathbb{R}$ the set

$$f^{-1}[c] = \{ p \in E : f(p) = c \}$$

is a closed set.

Problem 15. Prove this. *Hint*: Write $f^{-1}[c]$ as the intersection of two closed sets.

We can now give some more examples of open and closed sets in the plane, \mathbb{R}^2 where we are using the distance function $d(\mathbf{p}, \mathbf{q}) = \|\mathbf{p} - \mathbf{q}\|$. Let $\mathbf{a} = (a_1, a_2)$ be a vector in \mathbb{R}^2 define $f : \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x_1, x_2) = a_1 x_1 + a_2 x_2 + b$$

where b is a real number. If $\mathbf{x} = (x_1, x_2)$ this can be written in vector form as

$$f(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x} + b.$$

If $\mathbf{p}, \mathbf{q} \in \mathbb{R}^2$ then

$$|f(\mathbf{p}) - f(\mathbf{q})| = |\mathbf{a} \cdot \mathbf{p} + b - (\mathbf{a} \cdot \mathbf{q} + b)|$$

$$= |\mathbf{a} \cdot (\mathbf{p} - \mathbf{q})|$$

$$\leq ||\mathbf{a}|| ||\mathbf{p} - \mathbf{q}||$$

$$= Md(\mathbf{p}, \mathbf{q})$$
(Cauchy-Schwartz)

where $M = \|\mathbf{a}\|$. Thus f is a Lipschitz function.

Consider the case where $\mathbf{a} = (1,0)$ and b = 0. Then for any $c \in \mathbb{R}$. In this case $f(x_1, x_2) = x_1$, or in slightly different notation f(x, y) = x. Therefore Proposition 19 implies the sets

$$\{(x,y): x > c\}, \{(x,y): x < c\}$$

are open and that

$$\{(x,y): x \ge c\}, \quad \{(x,y): x \le c\}$$

are closed.

Problem 16. Let $(a,b) \in \mathbb{R}^2$ be a nonzero vector and $c \in \mathbb{R}$.

(a) Show that the line

$$\{(x,y) \in \mathbb{R}^2 : ax + by = c\}$$

is closed.

(b) Show that the half plane

$$\{(x,y) \in \mathbb{R}^2 : ax + by > c\}$$

is open (call such a half plane an open half plane).

(c) Show that the half plane

$$\{(x,y) \in \mathbb{R}^2 : ax + by \ge c\}$$

is closed (call such a half plane a closed half plane).

(d) Show that the triangle

$$T = \{(x, y) \in \mathbb{R}^2 : x, y > 0, x + y < 0\}$$

is an open set. Hint : Write this as the intersection of three open half planes.

(e) Show that the triangle

$$S = \{(x, y) : x, y \ge 0, x + y \le 0\}$$

is a closed subset of the plane. *Hint:* Write this as the interestion of three closed half planes. \Box

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, S.C. 29208, USA E-mail address: howard@math.sc.edu URL: www.math.sc.edu/~howard