SOFTWARE DE SIMULACIÓN DE **CIRCUITOS**

Objetivos de la Sesión

- Conocer el software Proteus. Entorno Ares.
- 2. Entender el funcionamiento de un circuito a partir del diagrama esquemático e interpretar las conexiones necesarias para su implementación.
- 3. Aprender a diseñar tarjetas electrónicas en el Software Proteus ARES.

Pasos a Seguir para diseñar la tarjeta PCB

- Verificar que el circuito dibujado simule correctamente.
- Conocer físicamente cada componente y configurar el empaque del mismo en el Isis.
- Entender el funcionamiento del circuito en la realidad, como se alimenta? Como se conectará hacia una botonera o hacia un indicador luminoso?
- Colocar Borneras o Molex al circuito para la conectividad de la tarjeta electrónica hacia los mandos de control, displays, luces indicadoras, fuentes de poder etc.
- Excluir los componentes o dispositivos que no se colocarán en la tarjeta electrónica.
- Verificar que el circuito modificado simule correctamente.

Oscilador - Simulación

Empaques – Componentes Tamaño de Resistencia

Empaques – Componentes Led's – No son especificados por Proteus El discredor debo indicar el empague

Empaques – Componentes – Conectores Borneras – Ubicación - TBLOCK

Empaques – Componentes – Conectores Molex – Fabricación – CONN-SIL

INDICACIONES PARA PCB DE OSCILADOR:

C.I. 555	DIL08
C1	CAP20
C2	CAP20
R1	RES50
R2	RES50
R3	RES60
R4	RES60
LED VERDE	VA EN LA PCB - EMPAQUE LED
LED AMARILLO	VA EN LA CARCASA - MOLEX DE 2 PINES
ALIMENTACIÓN?	VIENE DE FUENTE DE ALIMENTACIÓN CON BORNERA DE 2 PINES

Comprobar:

- Excluir de la PCB instrumentos de medición y/o componentes que no se instalarán en la placa.
- Colocar nombres adecuados a las borneras y molex.
- Excluir de la simulación borneras y molex para verificar el funcionamiento del circuito.

Circuito simulado preparado para Ares

Entorno Ares

Unidades – Seleccionar 25 TH

Reglas de Ruteo – 20 TH

DIMENSIÓN DE PISTA - GROSOR - 30 TH

VERIFICACIÓN DE COMPONENTES - EMPAQUES

RUTEAR PISTAS – NO REALIZAR ANGULOS IGUALES NI MENORES A 90°

Revisando lo aprendido

- Conocer el software Proteus. Entorno Ares.
- 2. Entender el funcionamiento de un circuito a partir del diagrama esquemático e interpretar las conexiones necesarias para su implementación.
- 3. Aprender a diseñar tarjetas electrónicas en el Software Proteus ARES.