Problemes de Càlcul amb Vàries variables. Full 2

Continuïtat i diferenciabilitat

1. Verifiqueu que les funcions següents són contínues a l'origen:

(a)
$$f(x,y) = x^3 - 3xy^2$$

(b)
$$g(x,y) = \sin(x^2 + y^2)$$

(c)
$$h(x,y) = \frac{\sin(xy)}{\sqrt{x^2 + y^2}}$$
 (d) $j(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$

(d)
$$j(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$$

Feu-ho a partir de la definició, trobant un $\delta(\epsilon)$ adequat.

2. Verifiqueu que les funcions següents

(a)
$$f_1(x,y) = x^3 - 3xy^2$$

(b)
$$f_2(x,y) = x^4 - 6x^2y^2 + y^4$$

són contínues a l'origen. Feu-ho trobant un $\delta(\epsilon)$ adequat. Suposeu que les dues funcions són les components d'una funció vectorial $F(x,y)=(f_1,f_2)$, i trobeu la $\delta(\epsilon)$ en aquest

3. Estudieu la continuïtat a l'origen de les següents funcions:

(a)
$$f(x,y) = \begin{cases} \frac{x}{y} & y \neq 0, \\ 0 & y = 0 \end{cases}$$
 (b) $g(x,y) = \begin{cases} \frac{x^4 - y^4}{x^2 + y^2} & (x,y) \neq (0,0), \\ 0 & x = y = 0 \end{cases}$ (c) $h(x,y) = \begin{cases} \frac{x^4 + y^4}{x^2 - y^2} & (x,y) \neq (0,0), \\ 0 & x = y = 0 \end{cases}$ (d) $j(x,y) = \begin{cases} \frac{x^2 + y^2}{x^2y + y^3 - x} & (x,y) \neq (0,0), \\ 0 & x = y = 0 \end{cases}$

4. Considereu les funcions $f: \mathbb{R}^2 \to \mathbb{R}$ definides per

(a)
$$f(x,y) = \begin{cases} (x+y)\sin(\frac{1}{x})\cos(\frac{1}{y}) & \text{si } x \neq 0 \text{ o } y \neq 0 \\ 0 & \text{si } x = 0 \text{ i } y = 0 \end{cases}$$
(b)
$$g(x,y) = \begin{cases} \frac{x^2y - y^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

(b)
$$g(x,y) = \begin{cases} \frac{x^2y - y^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Calculeu, si existeixen, els límits reiterats $(\lim_{x\to x_0} (\lim_{y\to y_0} f(x,y)) i \lim_{y\to y_0} (\lim_{x\to x_0} f(x,y))$ i el límit a l'origen.

5. Estudieu a quin valor tendeixen les funcions següents

(a)
$$f(x,y) = \frac{3(x-y)}{x+y}$$

(b)
$$g(x,y) = \frac{x^2}{x^2 - x + y}$$

quan (x, y) s'aproximen a l'origen per sobre de qualsevol recta y = ax.

6. Trobeu la derivada direccional de $f(x,y,z) = z^2 + 2x^2 - y^2$ en el punt (1,0,1) en la direcció (4,3,0). En quina direcció és màxima? Quin és el valor de la derivada direccional màxima?

7. Calculeu el vector gradient de les següents funcions:

(a)
$$f(x,y) = \begin{cases} x^2 y^2 \log(x^2 + y^2) & \text{si } (x,y) \neq (0,0) \\ 0. \end{cases}$$
 (b) $g(x,y) = \begin{cases} xy \sin(\frac{1}{x^2 + y^2}) & \text{si } (x,y) \neq (0,0) \\ 0. \end{cases}$

8. Calcula el diferencial total de les següents funcions:

(a)
$$f(x, y, z) = x^2 y \log z$$

(b)
$$g(u, v) = \sin(\frac{u}{\cos v})$$

(c)
$$h(x,y) = f(x^2 + y^2)$$
, on f és una funció diferenciable a tot arreu.

On pots assegurar (sense fer més càlculs) que seràn diferenciables aquestes funcions?

9. Donada la següent funció:

$$f(x,y) = \begin{cases} (x^2 + y^2)^3 & x^2 + y^2 \le 2\\ e^{\frac{2x}{n}} \cos^2 \left[\frac{(x^2 + y^2)\pi}{2} \right] & x^2 + y^2 \ge 2 \end{cases}$$

Determina els valors de n que asseguren continuïtat en algun punt. Determina aquest o aquests punts. És diferenciable la funció en aquests punts?

10. Donada la següent funció:

$$f(x,y) = \begin{cases} (x+y)^n \sin(x^2 + y^2)^m & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

determineu per a quins valors de m i n la funció és contínua. Trobeu ara els valors de m i n per tal que sigui diferenciable.