Intro

- 1. Mention Project back ground
- 2. Mention that used Big Query to solve this project
 - 1. Mention the project "Business Case Target SQL" was created
 - 2. Under the above project "targetsql" dataset was created
 - 3. Under the above dataset all the tables (shared by client) were uploaded to perform the analysis

1.Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

1. Data type of columns in a table

Query used:

SELECT column_name, data_type
FROM `Customer.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = "Customer_info";

Sample Results:

Row /	column_name	data_type
1	customer_id	STRING
2	customer_unique_id	STRING
3	customer_zip_code_prefix	INT64
4	customer_city	STRING
5	customer_state	STRING

Comments:

We have imported the all the dataset to bigquery and we checked the structure of all the dataset and provide example of one snippet with one query

1.Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

2. Time period for which the data is given

Query used:

SELECT MIN(extract(YEAR FROM order_purchase_timestamp)) as Start_year_data,MAX(extract(YEAR FROM or der_purchase_timestamp)) as End_year_data FROM `first-business-case-study.Customer.orders`;

Row /	Start_year_data	End_year_data_
1	2016	2018

1.Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

3. Cities and States of customers ordered during the given period

Query used:

select distinct customer.customer_city,customer.customer_state from `first-business-case-study.Customer.orders` orders join `first-business-case-study.Customer.Customer_info` customer on orders.customer_id=customer.customer_id order by customer.customer_city,customer.customer_state;

Row /	customer_city //	customer_state
1	abadia dos dourados	MG
2	abadiania	GO
3	abaete	MG
4	abaetetuba	PA
5	abaiara	CE
6	abaira	BA
7	abare	BA

2. In-depth Exploration:

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

Query used:

SELECT count(orders.order_id) as cnt_order, extract(YEAR from orders.order_purchase_timestamp) as order_year, extract(MONTH from orders.order_purchase_timestamp) as order_month FROM `first-business-case-study.Customer.orders` orders LEFT JOIN `first-business-case-study.Customer.Customer_info` customer ON orders.customer_id = customer.customer_id group by order_year,order_month;

Sample Results:

Row	cnt_order //	order_year	order_month
1	4	2016	9
2	324	2016	10
3	1	2016	12
4	800	2017	1
5	1780	2017	2
6	2682	2017	3
7	2404	2017	4

Comments:

- 1. The trend does looks like it's growing.
 - 1. Specially through out the 2017.
 - 2. However, in 2018, the trend looks more or less stagnant
- 2. There is no indication of any seasonality.

- 2. In-depth Exploration: (Approach 1)
 - 2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

Query used:

select extract(year from date(order_time.order_purchase_timestamp)) as year, extract(month from date(order time.order purchase timestamp)) as month, order_time.timeslot, count(*) as order_count from (select *, case when time(orders.order_purchase_timestamp) between '00:00:00' and '05:59:59' then 'Dawn' when time(orders.order_purchase_timestamp) between '06:00:00' and '11:59:59' then 'Morning' when time(orders.order purchase timestamp) between '12:00:00' and '17:59:59' then 'Afternoon' when time(orders.order purchase timestamp) between '18:00:00' and '23:59:59' then 'Night' end as timeslot from `first-business-case-study.Customer.orders` orders) order time group by year, month, order time.timeslot order by year, month, order time.timeslot

Sample Results:

Row /	year //	month /	timeslot	order_count //
1	2016	9	Afternoon	2
2	2016	9	Dawn	1
3	2016	9	Night	1
4	2016	10	Afternoon	125
5	2016	10	Dawn	15
6	2016	10	Morning	84
7	2016	10	Night	100

Comments:

- 1. The question was solved using two approaches.
- 2. This is the first approach where total number for all years & month were found out

	<u>-</u>	-	_	_	•
Row Labels	Afternoon	Dawn	Morning	Night	Grand Total
Grand Total	38.58%	4.77%	22.37%	34.29%	100.00%

- 3. Evolution of E-commerce orders in the Brazil region:
 - 1. Get month on month orders by states

Query used:

SELECT extract(MONTH from orders.order_purchase_timestamp) as order_month, count(*) as cnt_orders_month, geolocation.geolocation_state FROM `first-business-case-study.Customer.orders` orders

INNER JOIN `first-business-case-study.Customer.Customer_info` cust

ON orders.customer_id = cust.customer_id

INNER JOIN 'first-business-case-study.Customer.Geolocation' geolocation

ON cust.customer_zip_code_prefix = geolocation.geolocation_zip_code_prefix group by order_month,geolocation.geolocation_state order by order month;

Row /	order_month	cnt_orders_mon	geolocation_state
1	1	2634	RN
2	1	453515	SP
3	1	246203	MG
4	1	32144	BA
5	1	230923	RJ
6	1	62867	RS
7	1	4008	MA

- 3. Evolution of E-commerce orders in the Brazil region:
 - 2. Distribution of customers across the states in Brazil

Query used:

SELECT customer_state, ROUND((count(*)/(SELECT count(*) FROM `first-business-case-study.Customer_info`))*100,2) as cnt_customer_per_state FROM `first-business-case-study.Customer_info` group by customer_state;

Row	customer_state	11	cnt_customer_p
1	RN		0.49
2	CE		1.34
3	RS		5.5
4	SC		3.66
5	SP		41.98
6	MG		11.7
7	BA		3.4

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - 1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment_value" column in payments table

Query used: (to obtain cost for each year)

WITH payment 2017 as

(SELECT extract(YEAR from orders.order_purchase_timestamp) as orders_year, extract(MONTH from orders.order_purchase_timestamp) as orders_month, ROUND(SUM(payment.payment_value),2) as payment amount FROM `first-business-case-study.Customer.payments` payment

LEFT JOIN 'first-business-case-study.Customer.orders' orders

ON payment.order id = orders.order id

where extract(MONTH from orders.order_purchase_timestamp) between 1 and 8 AND extract(YEAR from orders.order_purchase_timestamp)= 2017

group by orders_year, orders_month

order by orders_year, orders_month),

payment_2018 as

(SELECT extract(YEAR from orders.order_purchase_timestamp) as orders_year_next, extract(MONTH from orders.order_purchase_timestamp) as orders_month_next, ROUND(SUM(payment.payment_value),2) as payment amount next FROM `first-business-case-study.Customer.payments` payment

LEFT JOIN 'first-business-case-study.Customer.orders' orders

ON payment.order_id = orders.order_id

where extract(MONTH from orders.order_purchase_timestamp) between 1 and 8 AND extract(YEAR from orders.order_purchase_timestamp)= 2018

group by orders_year_next, orders_month_next

order by orders_year_next, orders_month_next)

select *,

ROUND(((payment_2018.payment_amount_next - payment_2017.payment_amount)/payment_2017.payment_amount)*100,2) as percentage_increase from payment_2017

INNER JOIN payment_2018

ON payment_2017.orders_month = payment_2018.orders_month_next order by payment 2017.orders month;

Row /	orders_year //	orders_month /	payment_amour	orders_year_nex	orders_month_n	payment_amour	percentage_incr
1	2017	1	138488.04	2018	1	1115004.18	705.13
2	2017	2	291908.01	2018	2	992463.34	239.99
3	2017	3	449863.6	2018	3	1159652.12	157.78
4	2017	4	417788.03	2018	4	1160785.48	177.84
5	2017	5	592918.82	2018	5	1153982.15	94.63
6	2017	6	511276.38	2018	6	1023880.5	100.26
7	2017	7	592382.92	2018	7	1066540.75	80.04
8	2017	8	674396.32	2018	8	1022425.32	51.61

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - 1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment_value" column in payments table

Query used: (to obtain cost for each year)

```
select round((cost 2018-cost 2017)*100/cost 2017,2) as pc inc in cost
from
(select extract(year from date(o.order purchase timestamp)) as year,
round(sum(p.payment value),2) as cost 2017
from `first-business-case-study.Customer.orders` o
join `first-business-case-study.Customer.payments` p on p.order id=o.order id
where extract(month from date(o.order purchase timestamp)) between 1 and 8
group by year
having year=2017)t1,
(select extract(year from date(o.order purchase timestamp)) as year,
round(sum(p.payment value),2) as cost 2018
from `first-business-case-study.Customer..orders` o
join `first-business-case-study.Customer.payments` p on p.order id=o.order id
where extract(month from date(o.order purchase timestamp)) between 1 and 8
group by year
having year=2018)t2
```


- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - 2. Mean & Sum of price and freight value by customer state

Query used:

SELECT customer.customer_state, ROUND(avg(order_item.price),2) as mean_price, ROUND(sum(order_item.price),2) as total_price, ROUND(avg(order_item.freight_value),2) as mean_freight_value, ROUND(sum(order_item.freight_value),2) as total_freight_value FROM `first-business-case-study.Customer.order_items` order_item INNER JOIN `first-business-case-study.Customer.orders` orders ON order_item.order_id = orders.order_id INNER JOIN `first-business-case-study.Customer.Customer_info` customer ON orders.customer_id = customer.customer_id group by customer.customer_state order by customer.customer_state;

Row /	customer_state	mean_price	total_price	mean_freight_va	total_freight_val
1	AC	173.73	15982.95	40.07	3686.75
2	AL	180.89	80314.81	35.84	15914.59
3	AM	135.5	22356.84	33.21	5478.89
4	AP	164.32	13474.3	34.01	2788.5
5	BA	134.6	511349.99	26.36	100156.68
6	CE	153.76	227254.71	32.71	48351.59
7	DF	125.77	302603.94	21.04	50625.5

Analysis on sales, freight and delivery time
 Calculate days between purchasing, delivering and estimated delivery

Query used:

SELECT order_id,

DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, day) as purchase_delivery_day_diff,

DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, day) as estimated_delivery_day_diff,

DATE_DIFF(order_estimated_delivery_date, order_purchase_timestamp, day) as estimated_purchase_day_diff

FROM `first-business-case-study.Customer.orders`

where order_status='delivered';

Row /	order_id //	purchase_delive	estimated_delive	estimated_purch
1	635c894d068ac37e6e03dc54e	30	1	32
2	3b97562c3aee8bdedcb5c2e45	32	0	33
3	68f47f50f04c4cb6774570cfde	29	1	31
4	276e9ec344d3bf029ff83a161c	43	-4	39
5	54e1a3c2b97fb0809da548a59	40	-4	36
6	fd04fa4105ee8045f6a0139ca5	37	-1	35
7	302bb8109d097a9fc6e9cefc5	33	-5	28

- 5. Analysis on sales, freight and delivery time
 - 2. Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:
 - 1. time_to_delivery = order_purchase_timestamp order_delivered_customer_date
 - 2. diff_estimated_delivery = order_estimated_delivery_date order_delivered_customer_date

SELECT DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp,day) as time_to_delivery, DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, day) as diff_estimated_delivery

FROM `first-business-case-study.Customer.orders`

where (order_delivered_customer_date order_purchase_timestamp) is not null or (order_estimated_delivery_date order_delivered_customer_date) is not null;

Row /	time_to_delivery	diff_estimated_c
1	30	-12
2	30	28
3	35	16
4	30	1
5	32	0
6	29	1
7	43	-4

- Analysis on sales, freight and delivery time
 - 3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

SELECT customer.customer state,

ROUND(AVG(order_items.freight_value),2) as mean_freight_value,

ROUND(AVG(DATE_DIFF(orders.order_delivered_customer_date, orders.order_purchase_timestamp,d

ay)),2) as time_to_delivery,

ROUND(AVG(DATE_DIFF(orders.order_estimated_delivery_date, orders.order_delivered_customer_dat

e, day)),2) as diff_estimated_delivery

FROM `first-business-case-study.Customer.orders` orders

LEFT JOIN `first-business-case-study.Customer.order_items` order_items

ON orders.order_id = order_items.order_id LEFT JOIN `first-business-case-study.Customer.Customer_infc ON orders.customer_id = customer.customer_id group by customer.customer_state

order by customer.customer_state;

Ro	w /	customer_state	1	mean_freight_va	time_to_delivery	diff_estimated_c
	1	AC		40.07	20.33	20.01
	2	AL		35.84	23.99	7.98
	3	AM		33.21	25.96	18.98
	4	AP		34.01	27.75	17.44
	5	BA		26.36	18.77	10.12
	6	CE		32.71	20.54	10.26
	7	DF		21.04	12.5	11.27

- 5. Analysis on sales, freight and delivery time
 - 4. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5

state	avg_freight_value	avg_delivery_pur	avg_est_delivery
AC	41.3	20.98	20.89
AL	36.15	24.31	8.87
AM	33.17	26.37	19.54
AP	34.98	27.15	19.53
BA	26.27	19.24	10.89
CE	33.02	21.12	10.92
DF	21.32	12.82	12.16
ES	22.11	15.64	10.58
GO	23.05	15.45	12.24

- 5. Analysis on sales, freight and delivery time
 - 3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery
 - 4. Sort the data to get the following:
 - 5. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5
 - 6. Top 5 states with highest/lowest average time to delivery
 - 7. Top 5 states where delivery is really fast/ not so fast compared to estimated date

- 5. Analysis on sales, freight and delivery time
 - 3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery
 - 4. Sort the data to get the following:
 - 5. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5
 - 6. Top 5 states with highest/lowest average time to delivery
 - 7. Top 5 states where delivery is really fast/ not so fast compared to estimated date

Row Labels	Sum of avg_freight_value
NOW Labels	Sum of avg_neight_value
RR	42.26
RO	42.13
РВ	41.55
AC	41.3
PI	39.01

- 5. Analysis on sales, freight and delivery time
 - 3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery
 - 4. Sort the data to get the following:
 - 5. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5
 - 6. Top 5 states with highest/lowest average time to delivery
 - 7. Top 5 states where delivery is really fast/ not so fast compared to estimated date

Row Labels	Sum of avg_delivery_pur	Sum of avg_est_delivery	
RR		29.34	17.29
AP		27.15	19.53
AM		26.37	19.54
AL		24.31	8.87
PA		23.79	14.08