Watch your Up-Convolution

을 통해 논문 작성에 대한 아이디어 이해하기

20185153 이상영

• 논문의 Idea

- GAN, AE와 같은 생성적 신경망; Up-Convolution 기법을 사용
 - 1. 보간을 이용한 up-conv
 - 2. 전치된 conv
- **Up-Conv이 스펙트럼 왜곡을 유발한다**는 사실 발견 → 딥페이크 검출기 제안
- 스펙트럼 왜곡을 보정할 수 있는 Spectral Regularization 제안 → GAN 모델 안정화 & 시각적 출력 품질 향상

• 키워드

- 1. Up-sampling method(up-conv/transposed-conv)
- 2. 주파수 영역
- 3. 이산 푸리에 변환
- 4. 방위각 적분

- Down sampling
 - 보통의 conv 연산; output의 크기가 input보다 작아지는 특성 존재
 - Conv layer가 깊어질 수록 → feature map의 크기 작아짐

- Up sampling

- Output의 크기가 input보다 커지게하는 방법
 - 1. Unpooling
 - 2. Transposed conv

- Up sampling 사용 예시

- Semantic segmentation
 - Input 이미지를 압축된 벡터로 표현 → 원래의 input이미지와 동일한 크기로 되돌림.
 - 이미지의 픽셀단위로 예측하기 위해 높은 해상도 필요
- U-net
 - 모델의 layer마다 얻어지는 feature map을 합치는 구조
 - 서로 모양이 맞아야 feature map을 합칠 수 있음.

Unpooling

- Pooling layer를 복원하는 방법

- Transposed conv
 - Stride로 인해 발생하는 down sampling에 대한 복원

$$f * g = h$$

- f: filter
- *: convolution 연산
- g: input
- h: output

- Deconvolution

- Convolution의 역 연산
- f와 h를 알고있는 상태에서 g를 구하는 것
- Conv layer를 통과시켜서 얻은 feature map → de-conv → input

- Transposed-Conv Vs. De-conv

- Transposed-Conv: 여기에서 사용하는 kernel은 어떤 conv layer와 공유하는 것이 아니라, 학습을 통해 찾아감.
- De-conv: 사용한 kernel과 output을 알고 있고, 역 연산을 통해 input을 재현하는 것이 목적

• 주파수 영역

- 주파수 단위로 정의되어있는 cos, sin 파동함수 →이미지 신호를 해석하기 위해 기저함수로 사용
- 파동신호는 서로 독립적(직교) → "선형결합"을 통해 모든 신호를 표현할 수 있음

- 이산 푸리에 변환(Discrete Fourier Transform)
 - 임의의 입력신호를 다양한 주파수를 갖는 주기함수들의 합으로 변환하는 것

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

$$j = \sqrt{-1}, \ e^{\pm jx} = \cos(x) \pm j\sin(x)$$

공간영역

: 픽셀로 구성된 일반적인 이미지 영역

주파수 영역

- 푸리에 스펙트럼: 해당 주파수 성분이 이미지에 나타나는 강도 표현

- Spatial domain(공간)
- Frequency amplitude(진동수의 진폭)
 - Frequency가 어느정도의 빈도로 나타나는지 표현
 - 중심으로부터의 거리
 - 가까울수록; 진동수, 빈도수 ↓(저주파)
 - 멀수록; 진동수, 빈도수 ↑ (고주파)

공간의 반복수에 대해

多	high pass	고주파	날카롭고 변화 큰 부분
少	low pass	저주파	blur

• 방위각 적분

[2D Power Spectrum]

$$AI(\omega_k) = \int_0^{2\pi} \|\mathcal{F}(I) (\omega_k \cdot \cos(\phi), \omega_k \cdot \sin(\phi))\|^2 d\phi$$

for $k = 0, \dots, M/2 - 1$,

: MXM인 스펙트럼 이미지를 입력

[1D Power Spectrum]

- 반지름 기준으로 모든 성분들의 합과 평균 → 1D Power Spectrum
- X축: 반지름 길이, 주파수 크기
- Y축: 적분값

• 논문- 실험결과

Up+conv : 고주파 결여 → blurring 효과 Transconv: 고주파 노이즈 多 → 경계부분에 많이 분포

• 논문- 스펙트럼 왜곡을 통한 Deepfake Detection

감사합니다.