

Predictions of the Spectra of the Rare-Earth Ions Ce³⁺ through Yb³⁺ in the Two Sites of Ca₅(PO₄)₃F

by Clyde A. Morrison

ARL-TR-708

April 1995

19950522 022

DITO QUALIFE DUSPECTED 1

Approved for public release; distribution unlimited.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Davis Highway, Suite 1204, Artington, VA 22202-43 1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE		i e	ND DATES COVERED
,	April 1995		Interim, fror	n 1 June 1993 to 1 Nov 1994
4. TITLE AND SUBTITLE				5. FUNDING NUMBERS
Predictions of the Spectra of t the Two Sites of Ca ₅ (PO ₄) ₃ F	PE: 611102.H44			
6. AUTHOR(S)				
Clyde A. Morrison				
7. PERFORMING ORGANIZATION NAME(S) AND				8. PERFORMING ORGANIZATION REPORT NUMBER
U.S. Army Research Laborato	ry			ARL-TR-708
Attn: AMSRL-PS-AA 2800 Powder Mill Road				
Adelphi, MD 20783-1197				
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING/MONITORING AGENCY REPORT NUMBER
U.S. Army Research Laborato	ry			
2800 Powder Mill Road Adelphi, MD 20783-1197				
7.0c1p111, 1415 207 05 1137				
11. SUPPLEMENTARY NOTES				
AMS code: 21520406U6U01 ARL PR: 57E771				
12a DISTRIBUTION/AVAILABILITY STATEMENT				12b. DISTRIBUTION CODE
Approved for public release;	distribution unlimited	•		
13. ABSTRACT (Maximum 200 words)				
The results of fitting the e	experimental data on f	r ³⁺ in the	e two Ca ²⁺ sit	tes of Ca ₅ (PO ₄) ₃ F are used to
predict the crystal-field paran	neters for the entire ra	re-earth s	eries. These o	crystal-field parameters are
then used along with the free	-ion wavefunctions de	etermined	with aqueou	s parameters to determine a
set of energy levels of the rare try and Ca2 with C_s symmetry	earth ions Cest thro	ugn Yb ^o ' Lithe ludd	ior boin Ca- l-Ofelt param	heters, Ω_{i} , are determined for
each ion in the Ca1 and Ca2	sites, as well as the Z_i	eeman g	factors for the	ground states.

14. SUBJECT TERMS	15. NUMBER OF PAGES 74		
Spectra, rare earths, cal	cium fluoroapatite (fluorapa	atite)	16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	UL

Contents

1. 1	Introduction	5
2.	Smoothed Crystal-Field Parameters for Ce ³⁺ Through Yb ³⁺	7
2	Judd-Ofelt Intensity Parameters	14
4.	Predicted Energy Levels for Ca1 Site (C ₃) and Ca2 Site (C ₅)	15
5.	Conclusion	53
Dat	aran coc	54
Dis	tribution	71
	Appendices	
A (Solaction Rules for Dipole Flectronic Transitions in Ca-(PO.).F	55
A. (Selection Rules for Dipole Electronic Transitions in $Ca_5(PO_4)_3F$ Bibliography of Articles on Fluoroapatites	65
D.	bibliography of Atticles on Fluoroapatites	
	Tables	
	Data on Ca ₅ (PO ₄) ₃ F	6
1.	Data on $Ca_5(PO_4)_3F$	0
	C_{α} (PC)F	8
2	Monopole crystal-field components, A_{nm} (cm ⁻¹ /Å ⁿ), for Ca2 site, C_s symmetry	8
4.	Experimental and hest fit theoretical energy levels of Er^{3+} in C_2 site in $Ca_5(PO_4)_2F$	9
5.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11
6.	Smoothed crystal-field parameters, B_{mm} (cm ⁻¹), for C_2 site in $Ca_5(PO_4)_3F$	13
7.	Smoothed crystal-field parameters B_{nm} (cm ⁻¹) for C_s site in $Ca_5(PO_4)_3F$	13
8.	Smoothed crystal-field parameters B_{nm}^{nm} (cm ⁻¹) for C_s site in $Ca_5(PO_4)_3F$	
	sito in Ca (PO) E	14
9.	Calculated Judd-Ofelt intensity parameters Ω_{k} (10 ⁻²⁰ cm ²) of rare-earth ions in C_{s} site	in
	Ca ₂ (PO ₂) ₂ F	14
10.	Predicted g values of ground state of triply ionized rare-earth ions in two Ca sites in	_
	$Ca_5(PO_4)_3F$	15
11.	Splitting (cm ⁻¹) of ${}^{4}I_{1}$ ($J = 15/2$ to 9/2) for Er ³⁺ in Ca ₅ (PO ₄) ₃ F, LaF ₃ , Y ₂ O ₃	15
12.	Predicted energy levels for Ce^{3+} in $Ca_5(PO_4)_3F$, C_3 site	16
13.	Predicted energy levels for Pr^{3+} in $Ca_5(PO_4)_3F$, C_3 site	Ib
14.	Predicted energy levels for Nd^{3+} in $Ca_5(PO_4)_3F$, C_3 site	17
15.	Predicted energy levels for Pm^{3+} in $Ca_5(PO_4)_3F$, C_3 site	19
16.	Predicted energy levels for Sm^{3+} in $Ca_5(PO_4)_3F$, C_3 site	∠∪
17.	Predicted energy levels for Eu ³⁺ in $Ca_5(PO_4)_3F$, C_3 site	44 22
18.	Predicted energy levels for G_0^{3+} in $C_{3-}(PO_4)_3F$, C_3 site	25 25
19.	Splitting (cm ⁻¹) of ⁴ I ₁ (f = 15/2 to 9/2) for Er ⁻¹ in Ca ₅ (PO ₄) ₃ F, C ₃ site	∠3 77
20.	Prodicted energy levels for Dy in Ca ₅ (PO ₄) ₃ r, C ₃ site	 クタ
22.	Predicted energy levels for Tm^{3+} in $Ca_5(PO_4)_3F$, C_3 site	30 37
23.	. Fredicted energy levels for YD in $Ca_5(YO_4)_3Y$, C_3 site	52

Tables (cont'd)

24.	Predicted energy levels for Ce^{3+} in $Ca_5(PO_4)_3F$, C_5 site	. 32
	Predicted energy levels for Pr ³⁺ in Ca ₅ (PO ₄) ₃ F, C ₅ site	
	Predicted energy levels for Nd^{3+} in $Ca_5(PO_4)_3F$, C_s site	
	Predicted energy levels for Pm ³⁺ in Ca ₅ (PO ₄) ₃ F, C_s site	
28.	Predicted energy levels for Sm ³⁺ in Ca ₅ (PO ₄) ₃ F, C_s site	. 38
29.	Predicted energy levels for Eu ³⁺ in Ca ₅ (PO ₄) ₃ F, C_s site	. 39
30.	Predicted energy levels for Gd^{3+} in $Ca_5(PO_4)_3F$, C_s site	. 41
31.	Predicted energy levels for Tb^{3+} in $Ca_5(PO_4)_3F$, C_s site	. 43
32.	Predicted energy levels for Dy ³⁺ in Ca ₅ (PO ₄) ₃ F, C_s site	. 46
	Predicted energy levels for Ho ³⁺ in Ca ₅ (PO ₄) ₃ F, C ₅ site	
34.	Predicted energy levels for Tm^{3+} in $Ca_5(PO_4)_3F$, C_s site	. 50
35.	Predicted energy levels for Yb ³⁺ in Ca ₅ (PO ₄) ₃ F, C_5 site	. 52

1. Introduction

Single crystals of $Ca_5(PO_4)_5F$ have been analyzed by x-ray diffraction, and the positions of all the ions in the unit cell have been determined [1,2]. The general space group information is given in table 1a. Since it is generally assumed that the rare-earth dopants replace the calcium ions, we see that of the 10 calcium ions in a unit cell, four are in the 4f position with C_3 symmetry and six are in the 6f position with C_5 symmetry. The detailed x-ray data are given in table 1b. From the x-ray data in table 1b, the nearest neighbors to the Ca1, Ca2, and P sites were calculated; these are given in table 1c. These latter distances, particularly the Ca–Ca and Ca–P distances, are important in energy transfer considerations [3]. The crystal-field analysis assumes the crystal-field Hamiltonian of the form

$$H = \sum_{nm} B_{nm}^* \sum_i C_{nm} (\hat{r}_i) , \qquad (1)$$

where the B_{nm} are the crystal-field parameters, with $B_{nm}^* = (-1)^m B_{n-m}$ and $C_{nm} = \sqrt{4\pi/(2n+1)} Y_{nm}(\theta_i, \phi_i)$. The $Y_{nm}(\theta_i, \phi_i)$ are ordinary spherical harmonics with polar angles θ_i and ϕ_i . In equation (1), the sum on n covers the even integers 2, 4, and 6, and the sums on i cover the number of 4f electrons, N, in the triply ionized rare-earth ion configuration $4f^N$. The sum on m in equation (1) depends on which Ca ion site the rare-earth ion occupies. For the Ca1 site with C_3 symmetry, the crystal-field parameters are B_{20} , B_{40} , B_{43} , B_{60} , B_{63} , and B_{66} . If B_{43} is chosen as real, then B_{63} and B_{66} are in general complex, and eight crystal-field parameters result. For C_s symmetry, the number of crystal-field parameters is the same as for C_2 symmetry; that is, B_{n0} for n = 2, 4, 6 and B_{22} are real, and the remaining B_{nm} are complex, making a total of 14 crystal-field parameters (Morrison and Leavitt [4], pp 86, 87). Having to deal with such a large number of crystal-field parameters, plus the complexities of two different sites, means that we must have very good starting values for B_{nm} in the analysis of the optical data. In both C_3 symmetry and C_s symmetry, I have adopted the convention that the lowest even- $n B_{nm}$, with m not zero, is real and positive; that is, for C_3 , B_{43} is real and positive, and for C_s , B_{22} is real and positive (Morrison and Leavitt [4], pp 86, 87).

Accesion	ı For			
NTIS	CRA&I		V	
DTIC	TAB			
Unanno	unced			
Justifica	ation			
By Distribu		tv Co	de	5
Dist	Avail and / or Special			
A-1				

Table 1. Data on Ca₅(PO₄)₃F.

a. Crystallographic data: hexagonal $C_{6h}^2\left(P6_3/m\right)$, 176, Z=2.

Ion	Site	Symmetry	x	y	z	9
O1	6h	Cs	х	ų	1/4	-1.8
O2	6h	C_{S}	x	y	1/4	-1.8
O3	12 <i>i</i>	C ₁	x	y	z	-1.8
P	6h	C_s	x	y	1/4	4.2
Ca1	4 f	C ₃	1/3	2/3	z	2
Ca2	6ĥ	C_{s}	x	ų	1/4	2
F	2 <i>a</i>	C_{3i}	0	0	1/4	-1

b. X-ray data.

•			O1		O2		O3	
a (Å)	c (Å)	х	y	х	y	x	у	z
9.3973	6.8782	0.4849	0.3273	0.4667	0.5875	0.2575	0.3421	0.0705
9.3684	6.8841	0.329	0.484	0.589	0.466	0.348	0.259	0.0730

	P	Ca1	Ca2		
х	у	z	x	y	Reference
0.36895 0.400	0.3985 0.369	0.0010 0.001	-0.00712 0.246	0.24227 -0.007	Hughes et al (1989) [2] Wyckoff (1968) [1]

c. Distance (Å) to any number of nearest neighbors, N, to Ca1 (C_3), Ca2 (C_s), and P (C_s) sites in Ca₅(PO₄)₃F.

	Ca	1 site			Ca2	site			P si	te	
Ion	N	R (Å)a	R (Å)b	Ion	N	R (Å)a	R (Å)b	Ion	N	R (Å)a	R (Å)b
O1	3	2.399	2.408	F	1	2.311	2.338	O3	2	1.532	1.511
O2	3	2.457	2.442	O3	2	2.348	2.376	O1	1	1.537	1.523
O3	3	2.807	2.753	O2	1	2.374	2.340	O2	1	1.538	1.534
P	3	3.207	3.190	O3	2	2.501	2.495	Ca2	1	3.075	3.067
Ca1	2 ^c	3.44	3.45	O1	1	2.700	2.694	Ca1	2	3.207	3.190
Ca2	3	3.961	3.931	P	1	3.075	3.067				
				Ca1	2	3.961	3.931				
				Ca2	2	4.003	4.050				

^aHughes et al (1989) [2]. bWyckoff (1968) [1]. ^cAverage distance of two Ca1 ions.

2. Smoothed Crystal-Field Parameters for Ce³⁺ Through Yb³⁺

The crystal-field parameters used in the first analysis are

$$B_{nm} = \rho_n A_{nm} , \qquad (2)$$

where the radial factors ρ_n have been tabulated by Morrison and Leavitt [5], and the crystal-field components A_{nm} are calculated from the x-ray data [6]. For this analysis, I calculate only the monopole A_{nm} given by

$$A_{nm} = -e^2 \sum_{j} q_j \frac{C_{nm}(\hat{R}_j)}{R_j^{n+1}} , \qquad (3)$$

where q_i is the effective charge (in units of electronic charge) on the ion at Rj. The x-ray data given in table 1b, along with the effective charges in table 1a, are used to compute the A_{nm} for the C_3 site (table 2) and for the C_s site (table 3). The A_{nm} in table 2 have been rotated about the z-axis (crystalline c-axis) so as to make A_{43} real and positive [4]. Similarly, the A_{nm} of table 3 have been rotated about the same axis so as to make A_{22} real and positive. The effective charges on the oxygen (-1.8) were chosen from the best fit to the experimental A_{nm} for triply ionized rare-earth ions in Y₃Sc₂Al₃O₁₂ [7]. The values of A_{nm} given in tables 2 and 3 with ρ_n for Er³⁺ were used in equation (1) to provide starting values for the C_3 and C_s spectra. The free-ion parameters were the same as used previously, and details of the fitting procedure are given elsewhere [8]. The irreducible representations for both C_s and C_3 symmetry are chosen from Koster et al [9]. The best fits to the experimental data for the C_3 site and the C_5 site are given in tables 4 and 5. (These results have been previously reported but are included here for completeness [10].) Assuming that the A_{nm} are only host dependent, the best-fit B_{nm} can be used in equation (2) to produce experimental crystal-field components, A_{nm}^{exp} , by

$$A_{nm}^{\text{exp}} = B_{nm}(\text{Er})/\rho_n(\text{Er}) , \qquad (4)$$

and by using equation (2) again, we have

$$B_{nm}(X) = B_{nm}(\text{Er}) \left[\rho_n(X) / \rho_n(\text{Er}) \right] , \qquad (5)$$

where X is any rare-earth ion. This calculation has been done, and the results are given in table 6 for the Ca1 site (C_3 symmetry) and in table 7 for the Ca2 site (C_5 symmetry) and are referred to as the smoothed crystal-field parameters.

Table 2. Monopole (point charge) crystalfield components, A_{nm} (cm⁻¹/Åⁿ), for Ca1 site, C_3 symmetry, in Ca₅(PO₄)₃F.^a

n m	$ReA_{nm}^{\ \ b}$	ImA_{nm}^{b}	$ReA_{nm}^{\ \ b}$	ImA_{nm}^{c}
10	9184		11980	
20	7142		7 310	_
30	190	_	82.2	_
33	2330	2444	2129	-2802
40	-3 7 95		-3900	
43	1617	0	1761	0
50	-566		-596	
53	-593	2714	-622	-2637
60	–755	_	-74 0	_
63	575	84.7	560	-164
66	-107	-246	-73.9	224
70	81.0	_	63.3	_
73	-55.6	1.50	-46.4	-147
76	-63.6	215	-83.4	-202

^aRotated so that A_{43} is real and positive. ^bWyckoff (1968) [1].

Table 3. Monopole (point charge) crystalfield components, A_{nm} (cm⁻¹/Åⁿ), for Ca2 site, C_s symmetry.^a

n m	$ReA_{nm}^{\ \ b}$	$Im A_{nm}^{b}$	$ReA_{nm}^{\ \ c}$	ImA_{nm}^{c}
11	-5252	-1142	-2852	-3017
20	7 900		9481	_
22	1442	0	2110	0
3 1	270.7	3119	2822	-1716
33	-1980	-3204	1746	-3041
40	1850		2031	
42	-2920	-1644	-2314	2428
44	829	2104	-487	-2189
5 1	-50.90	1924	1703	-1066
53	1150	441.6	-1123	462.7
5 5	-855.2	139.7	-574.0	639.5
60	47.3	-	90.8	-
62	293	-257	389	197
64	170	-103	171	-10.4
66	-169	-136	57.1	161
71	-3.344	99.30	103	-81.96
73	-139.8	-212.8	11 <i>7.7</i>	-216.8
75	-28.10	46.53	-50.28	10.45
77	-202.1	82.33	-19.47	-207.6

^aRotated so that A_{22} is real and positive. ^bWyckoff (1968) [1].

^cHughes et al (1989) [2].

cHughes et al (1989) [2].

Table 4. Experimental and best fit theoretical energy levels of Er^{3+} in C_3 site in $Ca_5(PO_4)_3F.^a$

2S+1L _J centroids	Level	Γ_n	Energ	gy (cm ⁻¹)	Free-ion mixture (%)
(cm ⁻¹) ^b	Dever	- n	Theor.	Expt	
⁴ I _{15/2}	1	Γις	-0.7	0.1	$99.91 {}^{4}I_{15/2} + 0.04 {}^{4}I_{13/2} + 0.01 {}^{4}F_{9/2}$
(223)	2	$\Gamma_{4,5}^{\Gamma_{4,5}}$	19.2	18	$99.90^{4}I_{17} = +0.06^{4}I_{12} = +0.01^{2}H_{11} =$
(223)	3	Γ	43.1	41	$99.91 {}^{4}I_{15/2} + 0.02 {}^{2}H_{11/2} + 0.02 {}^{4}I_{13/2}$
	4	$\Gamma_{4,5}^{\Gamma_{4,5}}$ Γ_{6}^{2}	89.1	92	$99.89 {}^{4}I_{15/2} + 0.06 {}^{4}I_{13/2} + 0.02 {}^{2}H_{11/2}$
	5	r 6	168.3	162	$99.87 {}^{4}I_{15/2} + 0.07 {}^{4}I_{13/2} + 0.02 {}^{2}H_{11/2}$
	6	$\Gamma_{4,5}^{6$	373.9	376	$99.95 \stackrel{4}{}_{15/2} + 0.02 \stackrel{4}{}_{13/2} + 0.01 \stackrel{4}{}_{9/2}$
	7	¹ 6	445.0	570	$\begin{array}{c} 39.94 {}^{4}I_{15/2} + 0.04 {}^{4}I_{13/2} + 0.01 {}^{4}I_{11/2} \\ 99.94 {}^{4}I_{15/2} + 0.04 {}^{4}I_{13/2} + 0.01 {}^{4}I_{11/2} \end{array}$
•	8	Γ _{4,5} .	560.7		$99.92 {}^{4}I_{15/2} + 0.04 {}^{4}I_{13/2} + 0.01 {}^{4}F_{9/2}$
4 +		$\Gamma_{4,5}$		6520	$99.86 {}^{4}I_{13/2} + 0.04 {}^{4}G_{9/2} + 0.03 {}^{4}I_{9/2}$
⁴ I _{13/2}	9 10	$\Gamma_{4,5}$	6532.0 6546.8	6530	$99.80 \stackrel{1}{4}_{13/2} + 0.04 \stackrel{1}{4}_{09/2} + 0.03 \stackrel{1}{4}_{13/2}$
(6688)		${}^{2}\Gamma_{6}^{4,3}$		6564	$99.80 {}^{4}I_{13/2} + 0.07 {}^{4}I_{11/2} + 0.03 {}^{4}I_{15/2}$
	11	$\Gamma_{4,5}$	6571.3		$99.71 {}^{4}I_{13/2} + 0.17 {}^{4}I_{11/2} + 0.04 {}^{4}I_{9/2}$
	12	¹ 4.5	6619.0	6627	$99.51 {}^{4}I_{13/2} + 0.41 {}^{4}I_{11/2} + 0.02 {}^{4}I_{9/2}$
	13	$\Gamma_{4,5}^{\Gamma_{4,5}}$	6779.6	6773	$99.80 {}^{4}I_{13/2} + 0.12 {}^{4}I_{15/2} + 0.03 {}^{4}I_{11/2}$
	14	²¹ 6	6802.0	6806	$99.64 {}^{4}I_{13/2} + 0.19 {}^{4}I_{11/2} + 0.11 {}^{4}I_{15/2}$
	15	$\Gamma_{4,5}$	6885.3	_	$99.76 {}^{4}I_{13/2} + 0.17 {}^{4}I_{11/2} + 0.05 {}^{4}I_{15/2}$
$^{4}I_{11/2}$	16	$^{\Gamma_{4,5}}_{^2\Gamma_6}$	10211.3	10211	$99.78 {}^{4}I_{11/2} + 0.05 {}^{2}G_{7/2} + 0.04 {}^{4}I_{13/2}$
(10321)	1 <i>7</i>	$^{2}\Gamma_{6}^{\sim}$	10230.1	10230	$99.68^{4}I_{11/2} + 0.11^{4}F_{9/2} + 0.08^{4}I_{9/2}$
	18	$\Gamma_{4.5}$	10268.6	10270	$99.68 {}^{4}I_{11/2} + 0.11 {}^{4}F_{9/2} + 0.08 {}^{4}I_{9/2} $ $99.74 {}^{4}I_{11/2} + 0.08 {}^{4}F_{9/2} + 0.08 {}^{4}I_{9/2} $
	19	$\Gamma_{4,5}$	10352.8	10349	$99.29^{-1}_{111/2} + 0.38^{-1}_{12/2} + 0.24^{-1}_{0/2}$
	20	$\Gamma_{4.5}$	10399.5		$99.57 {}^{4}I_{11/2} + 0.34 {}^{4}I_{13/2} + 0.03 {}^{4}I_{9/2}$
	21	$\Gamma_{4,5}$ ${}^{2}\Gamma_{6}$	10422.6	10424	$99.42 {}^{4}I_{11/2} + 0.31 {}^{4}I_{9/2} + 0.20 {}^{4}I_{13/2}$
⁴ I _{9/2}	22	4Γ∠	12403.0	12399	$99.60^{4}I_{0/2} + 0.17^{4}I_{11/2} + 0.14^{4}F_{0/2}$
(12600)	23	$\Gamma_{4,5}^{6}$	12500.0	12508	$99.59^{4}I_{0/2} + 0.08^{4}I_{11/2} + 0.07^{4}S_{2/2}$
	24	$\Gamma_{4,5}^{4,5}$	12622.4	12626	$99.70^{4}I_{9/2} + 0.09^{4}F_{9/2} + 0.06^{4}I_{11/2}$
	25	${}^{2}\Gamma_{6}^{7}$	12646.9	12645	$99.42^{-1}I_{9/2} + 0.23^{-1}F_{9/2} + 0.21^{-1}I_{11/2}$
	26	$\Gamma_{4,5}$	12779.8	_	$99.63 {}^{4}I_{9/2}^{7/2} + 0.13 {}^{4}F_{9/2}^{7/2} + 0.10 {}^{2}H_{11/2}^{7/2}$
⁴ F _{9/2}	27	$^2\Gamma_6$	15142.4	15149	$99.45 {}^{4}F_{0/2} + 0.26 {}^{4}I_{0/2} + 0.13 {}^{2}H_{11/2}$
(15335)	28	$\Gamma_{4,5}$	15296.8	15298	$99.46 {}^{4}F_{0/2} + 0.16 {}^{2}H_{11/2} + 0.15 {}^{4}I_{0/2}$
(2222)	29	1 4 5	15369.1		$99.41 {}^{4}F_{0/2} + 0.17 {}^{4}I_{11/2} + 0.13 {}^{2}H_{11/2}$
	30	${}^{2}\Gamma_{6}^{4,3}$	15406.2	15402	$99.58^{4}F_{0/2} + 0.14^{2}H_{11/2} + 0.09^{4}I_{0/2}$
	31	$\Gamma_{4,5}$	15446.0	15440	$99.48 {}^{4}F_{9/2} + 0.22 {}^{2}H_{11/2} + 0.13 {}^{4}I_{11/2}$
40	32	${}^{2}\Gamma_{6}$	18305.2	18307	$96.46 {}^{4}S_{3/2} + 3.37 {}^{2}H_{11/2} + 0.03 {}^{4}I_{9/2}$
⁴ S _{3/2} (18411)	33	$\Gamma_{4,5}^{6}$	18445.8	18442	$94.03 ^{4}S_{3/2} + 5.70 ^{2}H_{11/2} + 0.08 ^{4}I_{9/2}$
		1 4,5			07.44.24 + 1.24.45 + 0.74.45
$^{2}H_{11/2}$	34	$\Gamma_{4,5}$	19009.8	19013	$97.44^{2}H_{11/2} + 1.24^{4}S_{3/2} + 0.74^{4}F_{7/2}$
(19094)	35	$\Gamma_{4,5}^{\Gamma_{4,5}}$	19041.7	19048	$97.66^{2}H_{11/2}^{11/2} + 1.26^{4}S_{3/2}^{3/2} + 0.64^{4}F_{7/2}^{7/2}$
	36	² 1 6	19085.4	19082	$97.45^{2}H_{11/2} + 1.35^{4}S_{3/2} + 0.83^{4}F_{7/2}$
	37	² Γ6	19115.2	19106	$96.85 {}^{2}H_{11/2}^{11/2} + 1.98 {}^{4}S_{3/2}^{3/2} + 0.86 {}^{4}F_{7/2}^{7/2}$
	38	$\Gamma_{4,5}$	19148.8	19144	$99.25^{2}H_{11/2}^{1/2} + 0.38^{4}S_{3/2}^{3/2} + 0.25^{4}F_{7/2}^{7/2}$
	39	1 _{4,5}	19186.3	19207	$96.06^{2}H_{11/2}^{11/2} + 2.85^{4}S_{3/2}^{3/2} + 0.80^{4}F_{7/2}^{7/2}$
$^{4}F_{7/2}$	40	$\Gamma_{4.5}$	20290.8	20285	$98.85 {}^{4}F_{7/2} + 0.55 {}^{2}H_{11/2} + 0.17 {}^{4}F_{5/2}$
(20458)	41	145	20422.1	20422	$97.33^{4}F_{7/2} + 1.39^{4}H_{11/2} + 1.04^{4}F_{5/2}$
	42	² 1′ ₆	20489.2	20492	$97.79^{4}F_{7/2} + 1.66^{2}H_{11/2} + 0.24^{4}F_{2/2}$
	43	$\Gamma_{4,5}$	20629.6	20630	$98.93 {}^{4}F_{7/2} + 0.46 {}^{2}H_{11/2} + 0.34 {}^{4}F_{5/2}$
4F	44	${}^{2}\Gamma_{6}$	22118.3	22117	$87.34^{4}F_{5}$, $\alpha + 12.28^{4}F_{2}$, $\alpha + 0.09^{2}G_{7}$, α
⁴ F _{5/2} (22191)	45	т 6	22163.1	22164	$97.89^{4}F_{-10} + 1.27^{4}F_{-10} + 0.28^{2}H_{-10}$
(44171)	43 46	$\Gamma_{4,5}$	22249.5	22251	$97.89 {}^{4}F_{5/2} + 1.27 {}^{4}F_{7/2} + 0.28 {}^{2}H_{11/2}$ $99.23 {}^{4}F_{5/2} + 0.20 {}^{4}F_{7/2} + 0.16 {}^{4}G_{9/2}$
	40	$\Gamma_{4,5}$	ZZZ47.J	22231	79.23 15/2 T 0.20 17/2 T 0.10 39/2

Table 4 (cont'd). Experimental and best fit theoretical energy levels of Er^{3+} in C_3 site in $Ca_5(PO_4)_3F.^a$

2S+1L _J			Energ	y (cm ⁻¹)	
centroids (cm ⁻¹) ^b	Level	Γ_n	Theor.	Expt	Free-ion mixture (%)
$^{4}F_{3/2}$	47	$^2\Gamma_6$	22593.9		$87.09 {}^{4}F_{3/2} + 12.25 {}^{4}F_{5/2} + 0.25 {}^{4}G_{9/2}$
(22009)	48	$\Gamma_{4,5}^{6}$	22741.7	22742	$99.35 {}^{4}F_{3/2} + 0.26 {}^{4}F_{5/2} + 0.13 {}^{2}G_{7/2}$
$^{2}G_{9/2}$	49	$^2\Gamma_6$	24451.7	24448	$99.33^{2}G_{0/2} + 0.45^{2}K_{15/2} + 0.07^{4}G_{11/2}$
(24651)	50	Γ_{45}	24568.0	24575	$97.92 ^{2}G_{0/2} + 1.53 ^{4}G_{11/2} + 0.38 ^{2}K_{15/2}$
	51	⁻¹ 6	24678.3	24678	$98.83 {}^{2}G_{9/2} + 0.71 {}^{4}G_{11/2}^{11/2} + 0.22 {}^{2}K_{15/2}$ $98.73 {}^{2}G_{9/2} + 0.84 {}^{4}G_{11/2} + 0.20 {}^{2}K_{15/2}$
	52	$\Gamma_{4,5}$	24693.9	24695	$98.73^{2}G_{9/2} + 0.84^{4}G_{11/2} + 0.20^{2}K_{15/2}$
	53	$\Gamma_{4,5}^{4,5}$	24764.6		$97.80^{2}G_{9/2}^{5/2} + 1.46^{4}G_{11/2}^{11/2} + 0.50^{2}K_{15/2}^{15/2}$
$^{4}G_{11/2}$	54	$\Gamma_{4,5}$	26261.1	26261	$96.99^{4}G_{11/2} + 1.86^{2}G_{9/2} + 0.55^{2}K_{15/2}$
(26367)	55	$^{2}\Gamma_{6}^{3}$	26272.9	26278	$98.56 ^{4}G_{11} _{2} + 0.90 ^{4}G_{0} _{2} + 0.37 ^{2}K_{15} _{2}$
	56	Γ_{4} =	26321.2	26321	$97.03 {}^{4}G_{11/2} + 1.24 {}^{2}G_{0/2} + 1.02 {}^{2}K_{15/2}$
	57	${}^{2}\Gamma_{6}^{4,5}$	26407.6	26408	$94.90 ^{4}G_{11/2} + 1.95 ^{4}G_{0/2} + 1.93 ^{2}K_{15/2}$
	58	$\Gamma_{4,5}$	26435.9	26425	$97.84 {}^{4}G_{11/2} + 1.24 {}^{2}K_{15/2} + 0.39 {}^{4}G_{0/2}$
	59	$\Gamma_{4,5}^{4,5}$	26478.5		$94.47 \stackrel{4}{}_{011/2} + 4.11 \stackrel{2}{}_{15/2} + 0.47 \stackrel{4}{}_{09/2}$
$^{4}G_{9/2}$	60	$\Gamma_{4,5}^{4,5}$	27352.4		$89.44 {}^{4}K_{15/2} + 5.93 {}^{4}G_{11/2} + 3.43 {}^{4}G_{0/2}$
27479 ⁰	61	$^{2}\Gamma_{6}^{3}$	27421.7		$90.71^{2}K_{15/2} + 4.32^{4}G_{0/2} + 2.71^{4}G_{11/2}$
$^{2}K_{15/2}$	62	$\Gamma_{4,5}$	27438.4		$90.30^{4}G_{0/2} + 4.66^{2}K_{15/2} + 4.56^{2}G_{7/2}$
2/800°	63	145	27480.8		$97.12 {}^{4}G_{0} {}_{2} + 1.86 {}^{2}G_{7} {}_{2} + 0.50 {}^{4}G_{11} {}_{2}$
$^{2}G_{7/2}$	64	⁻¹ 6	27493.0	_	$86.66 {}^{4}G_{0,12} + 7.05 {}^{2}G_{7,12} + 4.07 {}^{2}K_{15,12}$
27981 ^a	65	Γ_{IF}	27505.4		$95.41 {}^{4}G_{0} = +2.35 {}^{2}G_{7} = +1.12 {}^{2}K_{17} = 0$
	66	${}^{2}\Gamma_{6}^{4,5}$	27530.3		$95.29 {}^{4}G_{9/2} + 3.03 {}^{2}K_{15/2} + 0.80 {}^{4}G_{11/2}$
	67	$\Gamma_{4,5}$	27587.2		$96.28^{\circ}K_{15/2} + 1.96^{\circ}G_{7/2} + 0.79^{\circ}G_{9/2}$
	68	I 4 5	27807.5		$94.16^{2}K_{15} = 2.67^{4}G_{0} = 2.31^{2}G_{7} = 2.31^{2}G_$
	69	140	27954.2	_	$90.72 {}^{2}G_{7/2} + 7.35 {}^{2}K_{15/2} + 1.72 {}^{4}G_{9/2}$
	70	⁻¹ 6	27982.5		$86.97^{2}K_{15/2} + 10.40^{2}G_{7/2} + 2.37^{2}G_{9/2}$
	71	Γ_{A5}	28020.8	_	$84.69 {}^{2}G_{7/2} + 13.35 {}^{2}K_{15/2} + 1.40 {}^{4}G_{9/2}$
	72		28052.0		$90.48^{2}G_{7/2} + 5.06^{2}K_{15/2} + 4.06^{4}G_{0/2}$
	73	-1,	28078.5		$62.33^{2}K_{15/2} + 33.96^{2}G_{7/2} + 3.52^{4}G_{0/2}$
	74	² 1 6	28105.9	_	$49.83^{\circ}K_{15}$ (2) $\pm 45.42^{\circ}(17.72 \pm 4.35)^{\circ}(10.72$
	<i>7</i> 5	$\Gamma_{4,5}$	28152.2		$87.77^{2}K_{15/2} + 11.67^{2}G_{7/2} + 0.28^{3}G_{11/2}$
	76	$\Gamma_{4,5}^{4,5}$	28175.4		$92.35 {}^{2}K_{15/2} + 6.99 {}^{2}G_{7/2} + 0.43 {}^{4}G_{9/2}$
TA7'11	4.000	.1 5	(1) 5		1/00 D F/0 D F0F D F0F 10F0

With an rms = $4.832 \text{ cm}^{-1} B_{nm} \text{ (cm}^{-1)}$ are $B_{20} = 1281$, $B_{40} = -1600$, $B_{43} = 563$, $B_{60} = -727$, $B_{63} = 505 + i273$, $B_{66} = 87.8 - i279$, and $\text{Im} B_{66} = -277$.

 $^{^{\}rm a}$ Gruber et al (1994) [10]. The $\Gamma_{\rm n}$ labels are from Koster et al (1963) [9]. $^{\rm b}$ Aqueous centroids.

Table 5. Experimental and best fit theoretical energy levels of Er^{3+} in C_s site in $Ca_5(PO_4)_3F.^a$

2S+1L _J	· ·	Energ	gy (cm-1)	Free ion mivture (%)	
centroids (cm ⁻¹) ^b	Level	Theor.	Expt	Free-ion mixture (%)	
⁴ I _{15/2}	1	5.9	0	$99.90^{4}I_{15/2} + 0.03^{4}I_{13/2} + 0.03^{2}H_{11/2}$	
(328)	2	141.5	139	$99.90^{4}I_{15/2} + 0.05^{4}I_{13/2} + 0.02^{2}H_{11/2}$	
	3	186.9	194	$99.92 {}^{4}I_{15/2} + 0.03 {}^{4}I_{13/2} + 0.02 {}^{4}H_{11/2}$	
	4	257.6	256	$99.92^{4}I_{15/2} + 0.02^{4}I_{13/2} + 0.02^{4}F_{0/2}$	
	5	319.6	314	$99.92^{4}I_{15/2} + 0.04^{4}I_{13/2} + 0.01^{4}F_{9/2}$	
	6	441.5		$99.93^{4}I_{15/2} + 0.02^{4}I_{12/2} + 0.01^{4}F_{0/2}$	
	7	522.3		$99.91^{4}I_{15/2} + 0.04^{4}I_{12/2} + 0.03^{4}F_{9/2}$	
	8	653.7	662	$99.95 + I_{15/2} + 0.03 + I_{13/2} + 0.01 + H_{11/2}$	
⁴ I _{13/2}	9	6578.8	6583	$99.76 {}^{4}I_{13/2} + 0.13 {}^{4}I_{11/2} + 0.03 {}^{4}G_{9/2}$	
(6804)	10	6678.0	6667	$99.67 {}^{4}I_{13/2} + 0.22 {}^{4}I_{11/2} + 0.03 {}^{4}G_{9/2}$	
	11	6710.5	6713	$99.84 {}^{4}I_{13/2} + 0.07 {}^{4}I_{11/2} + 0.03 {}^{4}I_{15/2}$	
	12	6760.5	6773	$\begin{array}{c} 99.67 {}^{4}I_{13/2} + 0.22 {}^{4}I_{11/2} + 0.03 {}^{4}G_{9/2} \\ 99.84 {}^{4}I_{13/2} + 0.07 {}^{4}I_{11/2} + 0.03 {}^{4}I_{15/2} \\ 99.67 {}^{4}I_{13/2} + 0.21 {}^{4}I_{11/2} + 0.05 {}^{4}I_{15/2} \\ 00.87 {}^{4}I_{13/2} + 0.04 {}^{4}I_{11/2} + 0.03 {}^{4}I_{15/2} \\ \end{array}$	
	13	6856.6		$99.85^{-1}_{13/2} + 0.04^{-1}_{15/2} + 0.05^{-1}_{11/2}$	
	14	6906.6	6906	$99.71 {}^{4}I_{13/2} + 0.17 {}^{4}I_{11/2} + 0.06 {}^{4}I_{15/2}$	
	15	7045.2	7038	$99.80 {}^{4}I_{13/2} + 0.10 {}^{4}I_{11/2} + 0.03 {}^{4}I_{15/2}$	
$^{4}I_{11/2}$	16	10216.4		$99.59 {}^{4}I_{11/2} + 0.15 {}^{4}I_{13/2} + 0.12 {}^{4}I_{9/2}$	
(10351)	17	10279.3	10291	$99.61 {}^{4}I_{11/2} + 0.18 {}^{4}I_{9/2} + 0.07 {}^{4}I_{13/2}$	
	18	10308.9	10312	$99.70 {}^{4}I_{11/2} + 0.11 {}^{4}I_{13/2} + 0.06 {}^{4}F_{9/2}$	
	19	10359.4	10349	$99.69^{4}I_{11/2} + 0.15^{4}I_{13/2} + 0.07^{4}F_{9/2}$	
	20	10399.0		$99.54 {}^{4}I_{11/2} + 0.28 {}^{4}I_{13/2} + 0.06 {}^{4}I_{9/2}$	
	21	10495.5	10491	$99.57 {}^{4}I_{11/2} + 0.17 {}^{4}I_{13/2} + 0.14 {}^{4}I_{9/2}$	
⁴ I _{9/2}	22	12431.7		$99.66 {}^{4}I_{9/2} + 0.17 {}^{4}F_{9/2} + 0.04 {}^{4}I_{11/2}$	
(12605)	23	12544.0	12552	$99.63^{-1}_{0/2} + 0.12^{-1}_{11/2} + 0.09^{-1}_{0/2}$	
	24	12579.3	12580	$99.50^{4}I_{9/2} + 0.21^{4}I_{11/2} + 0.10^{4}F_{9/2}$	
	25	12654.7	12646	$99.49^{-1}_{0/2} + 0.13^{-1}_{11/2} + 0.12^{-1}_{0/2}$	
	26	12754.7		$99.49 {}^{4}I_{9/2} + 0.25 {}^{4}F_{9/2} + 0.10 {}^{4}I_{11/2}$	
$^{4}F_{9/2}$	27	15237.0	15244	$99.18 {}^{4}F_{9/2} + 0.37 {}^{4}I_{9/2} + 0.21 {}^{2}H_{11/2}$	
(15420)	28	15302.7	15298	$99.45 + F_{0.0} + 0.24 + H_{11.0} + 0.07 + I_{11.0}$	
	29	15434.3	15437	$99.34 {}^{4}F_{9/2} + 0.30 {}^{2}H_{11/2} + 0.13 {}^{4}I_{9/2}$	
	30	15512.1	15509	$99.45 {}^{4}F_{9/2} + 0.19 {}^{2}H_{11/2} + 0.14 {}^{4}I_{9/2}$	
	31	15576.7	15575	$99.71 {}^{4}F_{9/2} + 0.06 {}^{4}I_{9/2} + 0.05 {}^{2}H_{11/2}$	
⁴ S _{3/2}	32	18300.4	18293	$95.09 {}^{4}S_{3/2} + 4.61 {}^{2}H_{11/2} + 0.05 {}^{4}I_{9/2}$	
(18432)	33	18448.8	18457	$92.09^{4}S_{3/2} + 7.54^{2}H_{11/2} + 0.08^{4}F_{7/2}$	
$^{2}H_{11/2}$	34	19078.3	19087	$97.81^{2}H_{11/2} + 1.21^{4}S_{3/2} + 0.72^{4}F_{7/2}$	
(19181)	35	19137.2	19141	$97.76^{2}H_{11/2} + 1.75^{4}S_{3/2} + 0.21^{4}F_{7/2}$	
	36	19184.2	19179	$97.92^{2}H_{11/2} + 1.20^{4}S_{3/2} + 0.29^{4}F_{7/2}$	
	37	19217.0	19198	$93.11^{2}H_{11/2} + 5.54^{4}S_{2/2} + 0.89^{4}F_{7/2}$	
	38	19263.1	19259	$97.86^{2}H_{11/2} + 1.15^{4}S_{3/2} + 0.54^{4}F_{7/2}$	
	39	19280.4	19295	$97.10^{2}H_{11/2} + 1.42^{4}S_{3/2} + 1.03^{4}F_{7/2}$	
⁴ F _{7/2}	40	20346.0	20347	$98.36 {}^{4}F_{7/2} + 0.86 {}^{2}H_{11/2} + 0.25 {}^{4}F_{5/2}$	
(20552)	41	20516.7	20534	$97.59 {}^{4}F_{7/2} + 1.20 {}^{2}H_{11/2} + 0.57 {}^{4}F_{5/2} $ $98.18 {}^{4}F_{7/2} + 0.70 {}^{2}H_{11/2} + 0.60 {}^{4}F_{5/2} $	
	42	20617.6	20601	$98.18^{4}F_{7/2} + 0.70^{2}H_{11/2} + 0.60^{4}F_{5/2}$	
	43	20696.7	20695	$97.93 {}^{4}F_{7/2} + 0.99 {}^{2}H_{11/2} + 0.53 {}^{4}F_{5/2}$	
$^{4}F_{5/2}$	44	22125.6	22114	$93.50{}^{4}F_{5/2} + 5.47{}^{4}F_{3/2} + 0.44{}^{4}F_{7/2} \\ 85.15{}^{4}F_{5/2} + 13.08{}^{4}F_{3/2} + 1.02{}^{4}F_{7/2} \\ 95.44{}^{4}F_{5/2} + 3.48{}^{4}F_{3/2} + 0.63{}^{4}F_{7/2}$	
(22204)	45	22162.7	22164	$85.15 {}^{4}F_{5/2} + 13.08 {}^{4}F_{3/2} + 1.02 {}^{4}F_{7/2}$	
,,	46	22245.6	22256	$95.44 {}^{4}F_{5/2} + 3.48 {}^{4}F_{3/2} + 0.63 {}^{4}F_{7/2}$	
		- · -	-	3/2 3/2 1/2	

Table 5 (cont'd). Experimental and best fit theoretical energy levels of ${\rm Er}^{3+}$ in C_s site in ${\rm Ca_5(PO_4)_3F.}^a$

2S+1L _I		Ener	gy (cm-1)	
centroids (cm ⁻¹) ^b	Level	Theor.	Expt	Free-ion mixture (%)
⁴ F _{3/2}	47	22551.6	22550	$82.27^{4}F_{3/2} + 16.92^{4}F_{5/2} + 0.37^{4}F_{7/2}$
(22599)	48	22740.5	22742	$94.18 {}^{4}F_{3/2} + 5.22 {}^{4}F_{5/2} + 0.16 {}^{4}F_{7/2}$
$^{2}G_{9/2}$	49	24394.2	244 01	$98.49^{2}G_{9/2} + 0.70^{4}G_{11/2} + 0.55^{2}K_{15/2}$
(24556)	50	24459.9	24448	$98.23^{2}G_{0/2} + 0.93^{4}G_{11/2} + 0.54^{2}K_{15/2}$
	51	24543.5	_	$98.82 {}^{2}G_{0} = + 0.56 {}^{4}G_{11} = + 0.37 {}^{2}K_{12} =$
	52	24582.9	24588	$97.65^{2}G_{9/2}^{5/2} + 1.38^{4}G_{11/2}^{11/2} + 0.61^{2}K_{15/2}^{15/2}$
	53	24673.4	_	$97.65 {}^{2}G_{9/2} + 1.38 {}^{4}G_{11/2} + 0.61 {}^{2}K_{15/2} 98.20 {}^{2}G_{9/2} + 0.84 {}^{4}G_{11/2} + 0.70 {}^{2}K_{15/2}$
$^{4}G_{11/2}$	54	26214.2	26206	$97.91^{4}G_{11/2} + 1.22^{4}G_{0/2} + 0.54^{2}K_{15/2}$
(26398)	55	26261.1	26265	$98.60^{4}G_{11/2} + 0.56^{4}G_{0/2} + 0.38^{2}K_{15/2}$
	56	26369.2	26364	$95.65 {}^{4}G_{11/2} + 1.59 {}^{2}G_{0/2} + 1.33 {}^{2}K_{15/2}$
	57	26465.4	26464	$96.38 ^{4}G_{11/2} + 1.74 ^{4}G_{0/2} + 0.97 ^{2}K_{11/2}$
	58	26520.5	26523	$95.12 {}^{4}G_{11/2}^{11/2} + 1.86 {}^{4}G_{0/2}^{9/2} + 1.67 {}^{2}K_{15/2}^{13/2}$
	59	26560.4	26569	$95.12 {}^{4}G_{11/2} + 1.86 {}^{4}G_{9/2} + 1.67 {}^{2}K_{15/2} 96.66 {}^{4}G_{11/2} + 1.35 {}^{2}K_{15/2} + 0.82 {}^{2}G_{9/2}$
$^{4}G_{9/2}$	60	27293.8		$91.95^{2}K_{15} + 3.59^{4}G_{20} + 1.75^{4}G_{31}$
27479°	61	27433.1		$82.41 {}^{4}G_{9/2} + 8.44 {}^{2}K_{15/2} + 7.16 {}^{2}G_{7/2}$
$^{2}K_{15/2}$	62	27443.6		$82.41 {}^{4}G_{9/2} + 8.44 {}^{2}K_{15/2} + 7.16 {}^{2}G_{7/2} $ $84.89 {}^{4}G_{9/2} + 7.75 {}^{2}G_{7/2} + 6.53 {}^{2}K_{15/2} $ $58.33 {}^{4}G_{9/2} + 38.42 {}^{2}K_{15/2} + 1.95 {}^{2}G_{7/2} $
27800°	63	27474.4		$58.33 {}^{4}G_{9/2} + 38.42 {}^{2}K_{15/2} + 1.95 {}^{2}G_{7/2}$
$^{2}G_{7/2}$	64	27518.1	_	//.33 'G ₀ /2 + 14.88 'K ₁ = /2 + 0.33 'G ₇ /2
27981 ^b	65	27527.1	_	$56.67 ^{4}\text{Ga}_{10} + 37.59 ^{2}\text{K}_{15} + 3.31 ^{2}\text{Ga}_{10}$
	66	27559.4	-	$92.19 {}^{4}G_{9/2} + 4.31 {}^{2}K_{15/2} + 1.63 {}^{4}G_{11/2}$
	67	27609.3		$89.97^{2}K_{15/2} + 6.58^{4}G_{0/2} + 1.70^{2}G_{7/2}$
	68	27647.8		$93.68^{2}K_{15/2} + 2.83^{4}G_{9/2} + 2.11^{2}G_{7/2}$
	69	27830.8	_	$87.20^{2}K_{17}$, $\alpha + 11.45^{2}G_{7}$, $\alpha + 0.73^{4}G_{9}$,
	7 0	27923.5		$90.24 {}^{2}K_{15} {}_{22} + 8.26 {}^{2}G_{7} {}_{22} + 1.01 {}^{4}G_{0} {}_{22}$
	71	27998.8		$89.64^{2}G_{7/2} + 5.37^{2}K_{15/2} + 4.62^{4}G_{0/2}$
	7 2	28043.4		74.37^{2} $G_{77/2} + 16.79^{2}$ $K_{17/2} + 8.24^{4}$ $G_{70/2}$
	73	28084.0		$82.50^{4}G_{7/2} + 13.36^{4}K_{15/2} + 3.46^{4}G_{9/2}$
	74	28110.4	_	$81.16^{2}G_{7/2} + 10.37^{2}K_{15/2} + 7.81^{4}G_{0/2}$
	<i>7</i> 5	28209.0		$84.17^{2}K_{15/2} + 14.66^{2}G_{7/2} + 0.44^{2}G_{9/2}$
	76	28526.2		$97.54^{2}K_{15/2}^{15/2} + 2.10^{2}G_{7/2}^{7/2} + 0.26^{4}G_{11/2}^{5/2}$

The B_{nm} (cm⁻¹) are $B_{20} = 1406$, $B_{22} = 236$, $B_{40} = 744$, $B_{42} = -1306 - i587$, $Im B_{42} = 50.5 + i566$, $B_{60} = -42$, $B_{62} = 203 - i225$, $B_{64} = 397 + i165$, and $B_{66} = -131 + i123$. The rms = 7.892 cm⁻¹.
^aGruber et al (1994) [10]. All levels are the $\Gamma_3 + \Gamma_4$ Kramers doublets in the notation of Koster et al (1963) [9].

Table 6. Smoothed crystal-field parameters, B_{nm} (cm⁻¹), for C_3 site in $Ca_5(PO_4)_3F$.

					.,,,			
Ion	B ₂₀	B ₄₀	B ₄₃	B ₆₀	ReB ₆₃	ImB ₆₃	ReB ₆₆	ImB ₆₆
$\overline{A_{nm}}$	7509	-3878	1365	-740	514	278	89.4	-284
Ce	1382	-2922	1028	-1801	1251	676	218	-691
Pr	1318	-2507	882	-1388	964	521	168	-533
Nd	1281	-2240	7 88	-1376	817	442	142	–4 51
Pm	1261	-2070	729	-1052	731	395	127	-404
Sm	1252	-1958	689	-9 7 7	679	367	118	-3 <i>7</i> 5
Eu	1251	-1875	660	-925	643	347	112	-355
Gd	1252	-1806	635	-878	610	330	106	-337
Tb	1256	-1 74 1	613	-831	577	312	100	-319
Dy	1262	-1683	592	-785	545	295	94.8	-301
Ho	127 0	-1635	575	-749	520	281	90.4	-287
Er	1281	-1600	563	-727	505	273	87.8	-279
Tm	1293	-1572	553	-714	496	268	86.2	-274
Yb	1304	-1527	537	-675	469	253	81.5	-259

Table 7. Smoothed crystal-field parameters B_{nm} (cm⁻¹) for C_s site in $Ca_5(PO_4)_3F$.

Ion	B ₂₀	B ₂₂	B_{40}	ReB_{42}	ImB_{42}	ReB ₄₄	ImB ₄₄
$\overline{A_{nm}}$	8242	1383	1803	-3165	-1423	122	1372
Ce"	1517	255	1359	-2385	-1072	92.2	1034
Pr	1447	243	1166	-2046	-920	79.1	887
Nd	1406	236	1342	-1828	-822	70.7	792
Pm	1384	232	963	-1690	-760	65.3	732
Sm	1375	231	910	-1598	-718	61.8	693
Eu	1373	230	872	-1531	-688	59.2	663
Gd	1375	231	840	-1474	-662	57.0	639
Tb	1379	231	810	-1421	-639	55.0	616
Dy	1385	233	783	-1374	-618	53.1	595
Нo	1394	234	760	-1335	-600	51.6	578
Er	1406	236	744	-1306	-587	50.5	566
Tm	1419	238	731	-1283	-5 7 7	49.6	556
Yb	1432	240	710	-1246	-560	48.2	540

Ion	B ₆₀	ReB ₆₂	ImB ₆₂	ReB ₆₄	ImB ₆₄	ReB ₆₆	ImB ₆₆
$\overline{A_{nm}}$	-42.7	207	-229	404	168	-133	125
Ce	-104	503	-557	983	409	-325	305
Pr	-80.2	387	-429	7 58	315	-250	235
Nd	-67.9	328	-364	642	267	-212	199
Pm	-60.8	294	-326	574	239	-190	178
Sm	-56.5	273	-302	534	222	-176	165
Eu	-53.4	258	-286	505	210	-167	157
Gd	-50. <i>7</i>	245	-272	480	199	-158	148
Tb	-48.0	232	-257	454	189	-150	141
Dy	-45.4	219	-243	429	178	-142	133
Но	-43.3	209	-232	409	170	-135	127
Er	-42.0	203	-225	397	165	-131	123
Tm	-41.2	199	-221	390	162	-129	121
Yb	-39.0	188	-209	368	153	-122	114

3. Judd-Ofelt Intensity Parameters

The Judd-Ofelt parameters for the Ca1 (C_3) site and the Ca2 (C_s) site have been calculated and are given in tables 8 and 9, respectively. In the calculation of the Judd-Ofelt parameters, the formula

$$\Omega_t = 28(2t+1) \sum_k S_k^2 N_k^2(t), t = 2, 4, \text{ and } 6,$$
 (6)

from Leavitt and Morrison [11] has been used. The $N_k(t)$ are given there, and

$$S_k^2 = \frac{1}{2k+1} \left[A_{k0}^2 + 2 \sum_{m=1}^k \left| A_{km} \right|^2 \right], \ k = 1, 3, 5, \text{ and } 7.$$
 (7)

Table 8. Calculated Judd-Ofelt intensity parameters Ω_k (10⁻²⁰ cm²) of rare-earth ions in C_3 Ca site in $Ca_5(PO_4)_3F$.^a

Ion	Ω_2	Ω_4	Ω_6
Ce	22.46	12.95	58.25
Pr	13.61	6.530	24.83
Nd	10.13	4.228	13.63
Pm	8.541	3.253	10.47
Sm	7.769	2.771	8.671
Eu	6.143	2.105	6.131
Gd	4.754	1.575	4.233
Tb	10.06	3.068	10.28
Dy	7.136	2.110	6.376
Ho	5.742	1.648	4.654
Er	5.623	1.567	4.390
Tm	5.583	1.517	4.241
Yb	4.671	1.229	3.231

^aHughes et al (1989) [2].

Table 9. Calculated Judd-Ofelt intensity parameters Ω_k (10⁻²⁰ cm²) of rare-earth ions in C_s site in $C_{a_5}(PO_4)_3F$.^a

Ion	Ω_2	Ω_4	Ω_6
Ce	13.89	18.60	46.88
Pr	8.19	9.373	20.03
Nd	6.68	6.162	11.00
Pm	4.983	4.792	8.450
Sm	4.456	4.041	6.990
Eu	3.525	3.030	4.954
Gd	2.737	2.230	3.426
Tb	5.498	4.772	8.228
Dy	3.936	3.204	5.118
Ho	3.180	2.472	3.739
Er	3.096	2.364	3.525
Tm	3.058	2.304	3.0402
Yb	2.563	1.852	2.594

^aHughes et al (1989) [2].

4. Predicted Energy Levels for Ca1 Site (C_3) and Ca2 Site (C_s)

The smoothed crystal-field parameters for the Ca1 site given in table 6 have been used in the calculation of the energy levels of the entire triply ionized rare-earth series Ce³⁺ through Yb³⁺; these energy levels are given in tables 6 through 23. The smoothed crystal-field parameters for the Ca2 site given in table 7 have been used for a similar calculation, with the results given in tables 24 through 35. The g values for those ions having doublet ground states have been calculated and are given in table 10.

Table 10. Predicted g values of ground state of triply ionized rarearth ions in two Ca sites in Ca₅(PO₄)₃F.

			C _s ^a			
Ion	$g\ $	g⊥	8	g⊥1 ^b	g⊥2 ^b	
Ce	-3.6897	0.317	2.467	1.629	0.326	
Pr ^c			_		_	
Nd	4.556	0.930	2.210	3.660	0.934	
Pm	1.544	0		_	_	
Sm	1.079	0.255	-0.345	0.736	0.134	
Euc					_	
Gd	1.994	7.979	0.931	12.845	1.857	
Tbc	_		_		_	
Dy	-14.422	0.276	-19.487	0.011	0.007	
Нo	16.537	0			_	
Er	0.694	8.737	-0.532	16.159	1.027	
Tm ^c	_	_			_	
Yb	6.645		-0.012	7.056	0.097	

^aIn C_s symmetry, g values exist only for rare-earth elements with an odd number of f electrons.

Table 11. Splitting (cm⁻¹) of 4I_J (J = 15/2 to 9/2) for Er³⁺ in Ca₅(PO₄)₃F, LaF₃, Y₂O₃.

C+-+-	Ca ₅ (P	O_4 ₃ F	LaF ₃ b	Y ₂ O ₃ c	
State	C_3^a	C_s^a	Larg	1203	
$\frac{4I_{15/2}}{}$	562	662	443	510	
$^{4}I_{15/2}$ $^{4}I_{13/2}$ $^{4}I_{13/2}$	353	455	219	357	
$4I_{11/2}^{13/2}$	212	280	94	186	
$^{1}_{4}_{I_{9/2}}^{11/2}$	377	323	311	280	

^aThis work, table 5, for C_3 site and table 6 for C_s site.

 $^{^{}b}g$ ⊥1 and g ⊥2 are magnitudes of principal g factors in a, b plane (g|| is parallel to c-axis).

These ions have singlet ground states in C_3 sites as well as C_s sites.

^bMorrison and Leavitt (1979) [5].

^cChang et al (1982) [8] (C₂ site).

Table 12. Predicted energy levels for Ce^{3+} in $Ca_5(PO_4)_3F$, C_3 site. B_{nm} from table 6.

Level	I. R.ª	[(<i>S,L</i>) <i>J</i>] ^b	Energy (cm ⁻¹)	Free ion mixture (%)
1	Γ _{4.5}	$^{2}F_{5/2}$	0	$97.52^{2}F_{5/2} + 2.48^{2}F_{7/2}$
2	$\Gamma_{4,5}$	250	573.8	$97.52 {}^{2}F_{5/2} + 2.48 {}^{2}F_{7/2}$ $93.34 {}^{2}F_{5/2} + 6.66 {}^{2}F_{7/2}$
3	$^2\Gamma_6$		1074.1	$96.86^{2}F_{5/2} + 3.14^{2}F_{7/2}$
4	$\Gamma_{4.5}$	$^{2}F_{7/2}$	2272.0	$97.75^{2}F_{7/2} + 2.25^{2}F_{5/2}$
5	$\Gamma_{4,5}$	2550	2771.5	$97.60^{2}F_{7/2} + 2.40^{2}F_{5/2}$
6	$^{2}\ddot{\Gamma}_{6}^{2}$		3532.0	$96.86^{2}F_{7/2} + 3.14^{2}F_{5/2}$
7	$\Gamma_{4,5}$	_	3559.9	$95.51^{2}F_{7/2} + 49^{2}F_{5/2}$

^aIrreducible representations of C_3 double group, $\Gamma_{4,5} = \Gamma_4 + \Gamma_5$. ^bAqueous centroids (cm⁻¹).

Table 13. Predicted energy levels for Pr^{3+} in $Ca_5(PO_4)_3F$, C_3 site. B_{nm} from table 6.

Level	I. R.ª	[(<i>S,L</i>) <i>J</i>] ^b	Energy (cm ⁻¹)	Free ion mixture (%)
1	Γ_1	$^{3}H_{4}$	0	$98.44 {}^{3}H_{4} + 0.69 {}^{3}F_{3} + 0.63 {}^{3}H_{5}$
2	Γ_{23}	245	109	$96.47{}^{3}H_{4} + 2.05{}^{3}H_{5} + 1.15{}^{3}F_{2}$
3	1 1		167	$99.25{}^{3}H_{4} + 0.23{}^{3}F_{3} + 0.193F4$
4	123		254	$98.26^{3}H_{A} + 1.17^{3}H_{5} + 0.24^{3}F_{2}$
5	$\Gamma_{2,3}$		739	$95.94^{3}H_{A} + 3.59^{3}H_{5} + 0.25^{3}F_{2}$
6	· 1		1114	$98.45^{3}H_{4} + 0.86^{3}H_{5} + 0.45^{3}F_{3}$
7	$\Gamma_{2,3}$	$^{3}H_{5}$	2193	$96.77^{3}H_{5} + 1.24^{3}H_{4} + 0.69^{3}H_{6}$
8	Γ_1	2323	2200	$97.50^{3}H_{5} + 1.07^{3}F_{2} + 0.57^{3}H_{A}$
9	Γ_1		2258	$95.80^{3}H_{c} + 1.88^{3}H_{c} + 1.10^{3}F_{c}$
10	$\Gamma_{2,3}$		2289	$98.23 {}^{\circ}H_r + 0.69 {}^{\circ}H_{c} + 0.33 {}^{\circ}F_{a}$
11	1 2.3		2509	$92.33 ^{9}H_{z} + 3.00 ^{9}H_{z} + 2.63 ^{9}H_{z}$
12	1 2,3		2928	93.88 °H _F + 2.97 °H _A + 1.58 °H _Z
13	Γ_1		3089	$98.55^{3}H_{5} + 0.89^{3}H_{6} + 0.25^{3}F_{3}$
14	$\Gamma_{2,3}$	$^{3}H_{6}$	4184	$93.75^{3}H_{4} + 3.10^{3}F_{4} + 1.58^{3}H_{5}$
15	¹ 1	4496	4230	$95.23^{3}H_{6} + 1.61^{3}F_{3} + 1.55^{3}H_{5}$
16	Γ_1		4354	$96.64 {}^{3}H_{6} + 1.51 {}^{3}F_{2} + 1.19 {}^{3}F_{4}$
17	$\Gamma_{2,3}$ Γ_1		4441	$96.23^{3}H_{6} + 2.05^{3}F_{2} + 0.98^{3}F_{2}$
18	$\overline{\Gamma}^{1}$		4533	$96.29^{3}H_{6} + 1.61^{3}H_{5} + 1.51^{3}F_{2}$
19	Γ_1		4578	$96.48^{\circ}H_{6} + 1.89^{\circ}F_{3} + 1.05^{\circ}H_{5}$
20	$\Gamma_{2,3}$		4894	$88.71 {}^{3}H_{6} + 7.40 {}^{3}F_{2} + 3.29 {}^{3}H_{5}$
21	1 2,3	_	5196	$83.31 {}^{3}H_{6} + 13.85 {}^{3}F_{2} + 1.37 {}^{3}F_{4}$
22	Γ_1	$^{3}F_{2}$	5256	$60.34^{3}F_{2} + 37.03^{3}H_{6} + 1.49^{3}F_{4}$
23	$\Gamma_{2,3}$	5149	5337	$87.55 {}^{\circ}F_{2} + 10.60 {}^{\circ}H_{6} + 0.88 {}^{\circ}H_{5}$
24	1 1	${}^{3}F_{3}$	5396	$58.13^{\circ}H_{6} + 36.57^{\circ}F_{2} + 4.03^{\circ}F_{3}$
25	123	6540	5680	$78.14 {}^{3}F_{2} + 11.21 {}^{3}H_{6} + 6.58 {}^{3}F_{2}$
26	11	${}^{3}F_{4}$	6611	$89.27 {}^{3}F_{2} + 9.76 {}^{3}F_{4} + 0.83 {}^{3}H_{4}$
27	$\Gamma_{2,3}$	6973	6725	$92.97 {}^{3}F_{3}^{3} + 3.17 {}^{3}F_{4}^{4} + 1.99 {}^{3}F_{2}$
28	1 1		6762	$69.01 {}^{3}F_{4}^{3} + 27.32 {}^{3}F_{3} + 1.44 {}^{1}G_{4}$
29	Γ_1		6819	$54.19^{\circ}F_{2} + 43.19^{\circ}F_{A} + 1.58^{\circ}H_{A}$
30	$\Gamma_{2,3}$		6868	$92.78 {}^{3}F_{3} + 2.46 {}^{3}H_{6} + 2.24 {}^{3}F_{2}$
31	1 2 3		7135	$97.90^{3}F_{4} + 0.65^{3}H_{6} + 0.48^{3}F_{2}$
32	1 1		7189 7210	$68.99 {}^{3}F_{4} + 26.80 {}^{3}F_{3} + 2.67 {}^{3}H_{6}$
33	$\Gamma_{2,3}$		7219 7240	$95.78^{\circ}F_{A} + 2.48^{\circ}F_{2} + 0.93^{\circ}H_{4}$
34	1 ₁		7249 7409	$55.00^{3}F_{3}^{4} + 39.15^{3}F_{4} + 3.40^{3}H_{6}$
35	Γ_1		7408 7610	$58.80^{3}F_{4} + 32.86^{3}F_{3} + 5.56^{3}H_{6}$
36	$\Gamma_{2,3}$		7 619	$93.02{}^{3}F_{4}^{4} + 4.11{}^{3}H_{6} + 1.07{}^{3}F_{3}$

Table 13 (cont'd). Predicted energy levels for Pr^{3+} in $Ca_5(PO_4)_3F$, C_3 site. B_{nm} from table 6.

Level	I. R.ª	[(<i>S,L</i>) <i>J</i>] ^b	Energy (cm ⁻¹)	Free ion mixture (%)
37	Γ_1	$^{1}G_{4}$	9560	$95.75 {}^{1}G_{4} + 3.09 {}^{3}F_{4} + 0.56 {}^{3}H_{6}$
38	Γ_{1}	9885	9723	$97.92 {}^{1}G_{4}^{4} + 1.11 {}^{3}F_{4}^{4} + 0.50 {}^{3}H_{6}^{6}$ $98.87 {}^{1}G_{4} + 0.43 {}^{3}F_{4} + 0.30 {}^{3}H_{6}$
39	$\Gamma_{2,3}$		10039	$98.87 {}^{1}G_{4} + 0.43 {}^{3}F_{4} + 0.30 {}^{3}H_{6}$
40	$\Gamma_{2,2}^{2,3}$		10103	$99.33 {}^{1}G_{4} + 0.14 {}^{3}H_{4} + 0.13 {}^{1}I_{4}$
41	$\Gamma_{2,3}$ Γ_1		10223	$99.42 {}^{1}G_{A} + 0.18 {}^{1}I_{6} + 0.13 {}^{3}F_{A}$
42	$\Gamma_{2,3}^{1}$		10645	$98.71 {}^{1}G_{4}^{1} + 0.53 {}^{3}F_{4} + 0.32 {}^{3}H_{6}$
43	Γ_1	$^{1}D_{2}$	16328	$98.12 {}^{1}D_{2} + 1.52 {}^{1}I_{6} + 0.16 {}^{3}P_{2}$
44	$\Gamma_{2,3}$	16840	17079	$99.18 {}^{1}D_{2}^{2} + 0.51 {}^{1}I_{6}^{0} + 0.09 {}^{1}G_{4}^{2}$
45	$\Gamma_{2,3}^{2,3}$		17323	$98.31 {}^{1}D_{2}^{2} + 1.36 {}^{1}I_{6}^{2} + 0.14 {}^{1}G_{4}^{2}$
46	Γ_1	$^{3}P_{0}$	20425	99.97 ${}^{1}I_{6}$ + 0.02 ${}^{1}G_{4}$
47	$\Gamma_1^{'}$	20706	20444	$99.33^{1}I_{c} + 0.52^{1}D_{2} + 0.11^{3}P_{2}$
48	$\Gamma_1^{'}$	${}^{3}P_{1}$	20897	$94.80^{3}P_{0} + 4.34^{3}P_{2} + 0.52^{1}I_{4}$
49	$\Gamma_{2,3}^{1}$	21330	21384	$90.11~^{3}P_{1} + 6.45~^{3}P_{2} + 2.95~^{4}I_{4}$
50	$\Gamma_{2,2}^{2,3}$	$^{1}I_{6}$	21490	$97.05^{1}I_{c} + 2.60^{3}P_{1} + 0.20^{1}D_{2}$
51	$\Gamma_{2,3} \\ \Gamma_1$	21500	21789	$96.46 {}^{1}I_{c} + 1.88 {}^{3}P_{2} + 0.68 {}^{3}P_{0}$
52	$\Gamma_{2,3}$		21810	$99.17^{1}I_{6} + 0.37^{3}P_{2} + 0.31^{1}D_{2}$
53	$\Gamma_1^{2,3}$		21837	$99.87^{3}P_{1} + 0.07^{3}H_{5} + 0.03^{1}I_{6}$
54	$\Gamma_{2,3}$		22168	$97.74^{1}L + 1.30^{3}P_{2} + 0.45^{1}D_{2}$
55	$\Gamma_{2,3}^{2,3}$		22265	$92.16^{1}I_{c} + 5.80^{3}P_{2} + 1.12^{3}P_{1}$
56	$\Gamma_{2,3} \Gamma_1$		22270	$98.27 I_{c} + 1.10 P_{2} + 0.24 G_{A}$
57	Γ_1		22354	$83.70^{1}I_{6}^{\circ} + 14.27^{3}P_{2} + 1.35^{3}P_{0}$
58	Γ_1	$^{3}P_{2}$	22622	$77.80^{3}P_{2} + 19.24^{1}I_{6} + 2.67^{3}P_{0}$
59	$\Gamma_{2,3}$	22535	22840	$87.98^{3}P_{0} + 6.46^{1}L + 5.20^{3}P_{1}$
60	$\Gamma_{2,2}^{2,3}$		23056	$97.62 {}^{3}P_{2} + 2.10 {}^{1}I_{6} + 0.11 {}^{3}P_{1}$
61	$\Gamma_{2,3}$ Γ_{1}	1 _S 0 46901	47169	$99.86 {}^{1}S_{0}^{2} + 0.06 {}^{1}I_{6} + 0.03 {}^{1}D_{2}$

^aIrreducible representations of C_3 single group, $\Gamma_{2,3} = \Gamma_2 + \Gamma_3$. ^bAqueous centroids (cm⁻¹).

Table 14. Predicted energy levels for Nd^{3+} in $Ca_5(PO_4)_3F$, C_3 site. B_{nm} from table 6.

Level	I. R. ^a	[(<i>S,L</i>) <i>J</i>] ^b	Energy (cm ⁻¹)	Free ion mixture (%)
1	Γ _{4,5}	⁴ I _{9/2}	0	$98.44 {}^{4}I_{9/2} + 1.38 {}^{4}I_{11/2} + 0.13 {}^{4}I_{13/2}$
2	$^2\Gamma_6^{7}$	130	25	$97.83 \frac{4}{19/2} + 1.80 \frac{4}{111/2} + 0.28 \frac{4}{13/2}$
3	$\Gamma_{4,5}$		335	$97.23^{4}I_{0/2} + 2.62^{4}I_{11/2} + 0.05^{4}G_{5/2}$
4	$\Gamma_{4.5}^{3,5}$		530	$99.12 {}^{4}I_{9/2} + 0.53 {}^{4}I_{11/2} + 0.17 {}^{4}I_{13/2}$
5	$\Gamma_{4,5}^{2}$		658	$97.75 {}^{4}I_{9/2} + 2.06 {}^{4}I_{11/2} + 0.08 {}^{4}I_{13/2}$
6	$^2\Gamma_6$	$^{4}I_{11/2}$	2060	$96.95 {}^{4}I_{11/2} + 1.58 {}^{4}I_{9/2} + 1.34 {}^{4}I_{13/2}$
7	$\Gamma_{4,5}$	2006	2142	$97.09^{4}I_{11/2} + 2.34^{4}I_{13/2} + 0.24^{4}I_{9/2}$
8	$\Gamma_{4,5}^{4,5}$		2174	$95.48^{4}I_{11/2} + 2.22^{4}I_{9/2} + 2.16^{4}I_{13/2}$
9	$\Gamma_{4,5}^{4,5}$		2376	$97.27 \frac{4}{111/2} + 1.59 \frac{4}{19/2} + 1.03 \frac{4}{13/2}$
10	$\Gamma_{4,5}^{4,5}$		2403	$98.94 {}^{4}I_{11/2}^{11/2} + 0.41 {}^{4}I_{9/2}^{-1} + 0.33 {}^{4}I_{13/2}^{-1}$
11	${}^{2}\Gamma_{6}^{4,3}$		2415	$96.68 {}^{4}I_{11/2}^{11/2} + 2.28 {}^{4}I_{9/2}^{5/2} + 0.86 {}^{4}I_{13/2}^{15/2}$
12		⁴ I _{13/2}	4015	$97.45 {}^{4}I_{12/2} + 1.49 {}^{4}I_{11/2} + 0.98 {}^{4}I_{15/2}$
13	$\Gamma_{4,5}^{2}$	4004	4104	$96.39 {}^{4}I_{13/2}^{13/2} + 1.79 {}^{4}I_{15/2}^{17/2} + 1.51 {}^{4}I_{11/2}^{13/2}$
14	$\Gamma_{4,5}$		4121	$96.90^{4}I_{13/2} + 2.48^{4}I_{15/2} + 0.46^{4}I_{11/2}$
15	$\Gamma_{4,5}$		4385	$97.53 {}^{4}I_{13/2}^{13/2} + 1.58 {}^{4}I_{11/2}^{13/2} + 0.55 {}^{4}I_{15/2}^{13/2}$
16	${}^{2}\Gamma_{6}^{4,5}$		4404	$98.04 {}^{4}I_{13/2}^{13/2} + 0.98 {}^{4}I_{15/2}^{11/2} + 0.68 {}^{4}I_{11/2}^{13/2}$
17			4408	$97.64 \stackrel{4}{4}_{13/2} + 1.06 \stackrel{4}{4}_{15/2} + 1.05 \stackrel{4}{4}_{11/2}$
18	Γ _{4,5} Γ _{4,5}		4436	$98.01 {}^{4}I_{13/2} + 1.18 {}^{4}I_{11/2} + 0.68 {}^{4}I_{15/2}$

Table 14 (cont'd). Predicted energy levels for Nd^{3+} in $Ca_5(PO_4)_3F$, C_3 site. B_{nm} from table 6.

Level	I. R.ª	[(<i>S,L</i>) <i>J</i>] ^b	Energy (cm ⁻¹)	Free ion mixture (%)
19 20 21 22 23 24 25 26	Γ _{4,5} Γ _{4,5} 2Γ ₆ Γ _{4,5} 2Γ ₆ Γ _{4,5} Γ _{4,5} 2Γ ₆	⁴ I _{15/2} 6080	5890 6059 6144 6377 6497 6544 6675 6732	$\begin{array}{c} 97.87 {}^{4}I_{15/2} + 1.99 {}^{4}I_{13/2} + 0.04 {}^{4}F_{9/2} \\ 98.64 {}^{4}I_{15/2} + 1.10 {}^{4}I_{13/2} + 0.17 {}^{4}I_{11/2} \\ 99.01 {}^{4}I_{15/2} + 0.83 {}^{4}I_{13/2} + 0.04 {}^{4}F_{9/2} \\ 98.63 {}^{4}I_{15/2} + 1.08 {}^{4}I_{13/2} + 0.11 {}^{4}I_{11/2} \\ 99.25 {}^{4}I_{15/2} + 0.39 {}^{4}I_{13/2} + 0.09 {}^{4}F_{9/2} \\ 99.04 {}^{4}I_{15/2} + 0.52 {}^{4}I_{13/2} + 0.13 {}^{4}F_{9/2} \\ 98.67 {}^{4}I_{15/2} + 1.02 {}^{4}I_{13/2} + 0.08 {}^{4}F_{9/2} \end{array}$
27 28	$\Gamma_{4,5}$ $2\Gamma_{6}$	⁴ F _{3/2} 11526	11678 11826	$98.32 {}^{4}I_{15/2} + 1.51 {}^{4}I_{13/2} + 0.06 {}^{4}I_{11/2}$ $97.83 {}^{4}F_{3/2} + 0.63 {}^{4}F_{5/2} + 0.56 {}^{2}H_{9/2}$ $94.37 {}^{4}F_{3/2} + 3.69 {}^{4}F_{5/2} + 0.93 {}^{4}F_{7/2}$
29 30 31 32 33 34 35 36 37	Γ _{4,5} Γ _{4,5} 2Γ ₆ Γ _{4,5} 2Γ ₆ Γ _{4,5} Γ _{4,5} Γ _{4,5}	⁴ F _{5/2} 12573 ² H _{9/2} 12738	12670 12800 12831 12912 12943 13039 13147 13174 13657	$\begin{array}{c} 3/2 & 3/2 & 7/2 \\ 86.44 & ^4F_{5/2} + 11.44 & ^2H_{9/2} + 1.02 & ^4F_{7/2} \\ 56.77 & ^4F_{5/2} + 37.86 & ^2H_{9/2} + 4.03 & ^4F_{7/2} \\ 87.91 & ^2H_{9/2} + 9.92 & ^4F_{5/2} + 0.98 & ^4F_{3/2} \\ 63.42 & ^2H_{9/2} + 34.89 & ^4F_{5/2} + 0.95 & ^4F_{7/2} \\ 83.94 & ^4F_{5/2} + 12.03 & ^2H_{9/2} + 3.30 & ^4F_{3/2} \\ 85.76 & ^2H_{9/2} + 12.40 & ^4F_{5/2} + 1.17 & ^4F_{7/2} \\ 98.06 & ^2H_{9/2} + 1.29 & ^4F_{5/2} + 0.23 & ^4F_{9/2} \\ 98.22 & ^2H_{9/2} + 0.87 & ^4F_{7/2} + 0.40 & ^4F_{5/2} \\ 92.59 & ^4F_{7/2} + 2.80 & ^4F_{5/2} + 1.79 & ^4S_{3/2} \end{array}$
38 39	$\Gamma_{4,5}^{\Gamma_{4,5}}$	⁴ S _{3/2} 13459	13711 13737	$96.19 {}^{4}S_{3/2} + 2.60 {}^{4}F_{7/2} + 0.43 {}^{4}G_{5/2} 94.92 {}^{4}S_{3/2} + 4.12 {}^{4}F_{7/2} + 0.20 {}^{4}G_{5/2}$
40 41 42	$^{2}\Gamma_{6}$ $\Gamma_{4,5}$ $\Gamma_{4,5}$	⁴ F _{7/2} 13564	13872 13884 13982	92.28 ${}^{4}F_{7/2}$ + 4.33 ${}^{4}S_{3/2}$ + 0.93 ${}^{2}H_{9/2}$ 95.10 ${}^{4}F_{7/2}$ + 2.24 ${}^{4}F_{5/2}$ + 1.12 ${}^{4}F_{9/2}$ 94.68 ${}^{4}F_{7/2}$ + 3.29 ${}^{4}F_{9/2}$ + 1.23 ${}^{4}F_{5/2}$
43 44 45 46 47	$\Gamma_{4,5}$ $\Gamma_{4,5}$ $\Gamma_{4,5}$ Γ_{6} $\Gamma_{4,5}$ Γ_{6}	⁴ F _{9/2} 14854	15018 15082 15086 15166 15380	$97.36 {}^{4}F_{9/2} + 0.89 {}^{2}H_{11/2} + 0.53 {}^{4}F_{7/2} \\ 95.39 {}^{4}F_{9/2} + 3.08 {}^{4}F_{7/2} + 0.71 {}^{2}H_{11/2} \\ 98.04 {}^{4}F_{9/2} + 0.71 {}^{4}F_{7/2} + 0.41 {}^{2}H_{11/2} \\ 97.49 {}^{4}F_{9/2} + 1.46 {}^{4}F_{7/2} + 0.32 {}^{2}G_{7/2} \\ 99.07 {}^{4}F_{9/2} + 0.31 {}^{2}G_{7/2} + 0.21 {}^{2}H_{9/2}$
48	$\Gamma_{4.5}$	$^{2}H_{11/2}$	16263	$98.22 {}^{2}H_{11/2} + 1.15 {}^{2}G_{7/2} + 0.15 {}^{4}F_{7/2}$
49 50 51 52 53	$^{2}\Gamma_{6}$ $\Gamma_{4,5}$ $^{2}\Gamma_{6}$ $\Gamma_{4,5}$ $\Gamma_{4,5}$	16043	16282 16308 16319 16350 16404	98.78 ${}^{2}H_{11/2}$ + 0.81 ${}^{2}G_{7/2}$ + 0.11 ${}^{4}F_{9/2}$ 97.59 ${}^{2}H_{11/2}$ + 1.76 ${}^{2}G_{7/2}$ + 0.33 ${}^{4}F_{9/2}$ 98.63 ${}^{2}H_{11/2}$ + 0.50 ${}^{2}G_{7/2}$ + 0.46 ${}^{4}F_{9/2}$ 98.30 ${}^{2}H_{11/2}$ + 0.88 ${}^{4}F_{9/2}$ + 0.33 ${}^{2}H_{9/2}$ 98.99 ${}^{2}H_{11/2}$ + 0.46 ${}^{4}F_{9/2}$ + 0.35 ${}^{2}G_{7/2}$
54 55 56 57 58 59 60	$\Gamma_{4,5}$ $\Gamma_{4,5}$ $2\Gamma_{6}$ $\Gamma_{4,5}$ $\Gamma_{4,5}$ $\Gamma_{4,5}$ $\Gamma_{4,5}$ $\Gamma_{4,5}$	⁴ G _{5/2} 17167 ² G _{7/2} 17334	17215 17379 17490 17674 17734 17799 17815	$83.80 {}^{4}G_{5/2} + 14.59 {}^{2}G_{7/2} + 0.37 {}^{2}H_{11/2} \\ 73.71 {}^{4}G_{5/2} + 25.12 {}^{2}G_{7/2} + 0.50 {}^{2}H_{11/2} \\ 64.48 {}^{2}G_{7/2} + 33.67 {}^{4}G_{5/2} + 0.96 {}^{2}H_{11/2} \\ 96.68 {}^{2}G_{7/2} + 1.56 {}^{4}G_{5/2} + 1.06 {}^{2}H_{11/2} \\ 84.89 {}^{2}G_{7/2} + 13.79 {}^{4}G_{5/2} + 0.51 {}^{2}H_{11/2} \\ 72.81 {}^{2}G_{7/2} + 24.91 {}^{4}G_{5/2} + 1.10 {}^{2}H_{11/2} \\ 65.04 {}^{4}G_{5/2} + 33.45 {}^{2}G_{7/2} + 0.49 {}^{2}H_{11/2}$

^aIrreducible representations of C_3 double group, $\Gamma_{4,5} = \Gamma_4 + \Gamma_5$. ^bAqueous centroids (cm⁻¹).

Table 15. Predicted energy levels for Pm^{3+} in $Ca_5(PO_4)_3F$, C_3 site. B_{nm} from table 6.

Level	I. R.a	[(<i>S,L</i>) <i>J</i>] ^b	Energy	Free ion
			(cm ⁻¹)	mixture (%)
1 2 3 4	$\Gamma_{2,3} \\ \Gamma_{1} \\ \Gamma_{2,3} \\ \Gamma_{2,3}$	⁵ I ₄ 99	0 122 143 320	$98.57 {}^{5}I_{4} + 1.14 {}^{5}I_{5} + 0.22 {}^{5}I_{6}$ $99.19 {}^{5}I_{4} + 0.63 {}^{5}I_{5} + 0.08 {}^{5}I_{6}$ $96.77 {}^{5}I_{4} + 2.88 {}^{5}I_{5} + 0.27 {}^{5}I_{6}$ $97.47 {}^{5}I_{4} + 1.86 {}^{5}I_{5} + 0.57 {}^{5}I_{6}$
5 6	$\Gamma_1 \ \Gamma_1$	Sr	368 547	$93.90 {}^{5}I_{4}^{4} + 5.70 {}^{5}I_{5}^{5} + 0.30 {}^{5}I_{6}^{6}$ $97.57 {}^{5}I_{4} + 1.82 {}^{5}I_{5} + 0.54 {}^{5}I_{6}$ $99.55 {}^{5}I_{5} + 0.14 {}^{5}I_{6} + 0.10 {}^{5}I_{7}$
7 8 9 10 11 12 13	Γ_{1} $\Gamma_{2,3}$ $\Gamma_{2,3}$ $\Gamma_{2,3}$ Γ_{1} $\Gamma_{2,3}$ Γ_{1}	⁵ I ₅ 1577	1533 1621 1710 1803 1814 1820 1857	$97.20^{5}I_{5} + 1.90^{5}I_{4} + 0.76^{5}I_{6}$ $98.59^{5}I_{5} + 0.60^{5}I_{6} + 0.46^{5}I_{7}$ $96.94^{5}I_{5} + 1.81^{5}I_{6} + 0.86^{5}I_{4}$ $94.12^{5}I_{5} + 3.46^{5}I_{6} + 2.26^{5}I_{4}$ $95.21^{5}I_{5} + 2.89^{5}I_{4} + 1.49^{5}I_{6}$ $92.37^{5}I_{5} + 5.87^{5}I_{4} + 1.30^{5}I_{6}$
14 15 16 17 18 19 20 21	Γ_{1} $\Gamma_{2,3}$ $\Gamma_{2,3}$ Γ_{1} Γ_{1} $\Gamma_{2,3}$ $\Gamma_{2,3}$ Γ_{1} Γ_{1}	⁵ I ₆ 3186	3154 3203 3309 3338 3359 3424 3429 3455 3462	$\begin{array}{l} 99.26 {}^{5}I_{6} + 0.27 {}^{5}I_{7} + 0.17 {}^{5}I_{4} \\ 98.69 {}^{5}I_{6} + 0.46 {}^{5}I_{5} + 0.42 {}^{5}I_{7} \\ 98.29 {}^{5}I_{6} + 0.76 {}^{5}I_{5} + 0.63 {}^{5}I_{7} \\ 96.14 {}^{5}I_{6} + 3.12 {}^{5}I_{7} + 0.36 {}^{5}I_{8} \\ 97.09 {}^{5}I_{6} + 1.82 {}^{5}I_{7} + 0.52 {}^{5}I_{8} \\ 96.11 {}^{5}I_{6} + 1.78 {}^{5}I_{5} + 1.59 {}^{5}I_{7} \\ 94.94 {}^{5}I_{6} + 2.71 {}^{5}I_{7} + 1.75 {}^{5}I_{5} \\ 97.79 {}^{5}I_{6} + 1.50 {}^{5}I_{5} + 0.62 {}^{5}I_{7} \\ 95.98 {}^{5}I_{6} + 3.15 {}^{5}I_{5} + 0.64 {}^{5}I_{7} \end{array}$
23 24 25 26 27 28 29 30 31 32	Γ_{1} $\Gamma_{2,3}$ $\Gamma_{2,3}$ Γ_{1} $\Gamma_{2,3}$ Γ_{1} $\Gamma_{2,3}$ $\Gamma_{2,3}$ Γ_{1} $\Gamma_{2,3}$ Γ_{1}	⁵ I ₇ 4876	4881 4893 4936 4992 5039 5051 5103 5141 5217 5219	$\begin{array}{l} 99.36 {}^{5}I_{7} + 0.23 {}^{5}I_{8} + 0.11 {}^{5}I_{5} \\ 98.68 {}^{5}I_{7} + 0.68 {}^{5}I_{8} + 0.28 {}^{5}I_{6} \\ 97.96 {}^{5}I_{7} + 1.01 {}^{5}I_{8} + 0.67 {}^{5}I_{6} \\ 98.20 {}^{5}I_{7} + 0.97 {}^{5}I_{6} + 0.70 {}^{5}I_{8} \\ 95.82 {}^{5}I_{7} + 2.77 {}^{5}I_{8} + 1.21 {}^{5}I_{6} \\ 97.04 {}^{5}I_{7} + 2.45 {}^{5}I_{6} + 0.32 {}^{5}I_{5} \\ 96.38 {}^{5}I_{7} + 2.07 {}^{5}I_{6} + 1.33 {}^{5}I_{8} \\ 93.94 {}^{5}I_{7} + 4.28 {}^{5}I_{8} + 1.24 {}^{5}I_{6} \\ 96.98 {}^{5}I_{7} + 1.52 {}^{5}I_{6} + 1.40 {}^{5}I_{8} \\ 97.16 {}^{5}I_{7} + 1.53 {}^{5}I_{6} + 1.25 {}^{5}I_{8} \\ \end{array}$
33 34 35 36 37 38 39 40 41 42 43	Γ_1 $\Gamma_{2,3}$ $\Gamma_{2,3}$ Γ_1 $\Gamma_{2,3}$ Γ_1 $\Gamma_{2,3}$ Γ_1 $\Gamma_{2,3}$ Γ_1 $\Gamma_{2,3}$	⁵ I ₈ 6611	6529 6548 6590 6599 6633 6795 6797 6986 7083 7104 7202	$\begin{array}{c} 98.68 {}^{5}I_{8} + 1.05 {}^{5}I_{7} + 0.11 {}^{5}I_{6} \\ 98.25 {}^{5}I_{8} + 1.47 {}^{5}I_{7} + 0.16 {}^{5}I_{6} \\ 96.63 {}^{5}I_{8} + 3.26 {}^{5}I_{7} + 0.03 {}^{5}F_{4} \\ 99.25 {}^{5}I_{8} + 0.40 {}^{5}I_{7} + 0.14 {}^{5}I_{6} \\ 98.63 {}^{5}I_{8} + 1.04 {}^{5}I_{7} + 0.16 {}^{5}I_{6} \\ 98.69 {}^{5}I_{8} + 0.92 {}^{5}I_{7} + 0.30 {}^{5}I_{6} \\ 97.28 {}^{5}I_{8} + 2.50 {}^{5}I_{7} + 0.11 {}^{5}I_{6} \\ 99.10 {}^{5}I_{8} + 0.74 {}^{5}I_{7} + 0.04 {}^{5}I_{6} \\ 99.04 {}^{5}I_{8} + 0.60 {}^{5}I_{7} + 0.28 {}^{5}I_{6} \\ 98.97 {}^{5}I_{8} + 0.72 {}^{5}I_{7} + 0.21 {}^{5}I_{6} \\ 98.74 {}^{5}I_{8} + 1.16 {}^{5}I_{7} + 0.03 {}^{5}F_{5} \end{array}$
44 45 46 47	$egin{array}{c} \Gamma_{2,3} \ \Gamma_{1} \ \end{array} \ \Gamma_{2,3}$	$^{5}F_{1}$ 12397 $^{5}F_{2}$ 12811	12460 12671 12872 12979	$89.51 {}^{5}F_{1} + 8.57 {}^{5}F_{2} + 1.56 {}^{5}F_{3}$ $98.86 {}^{5}F_{1} + 0.73 {}^{5}F_{3} + 0.20 {}^{5}F_{5}$ $93.52 {}^{5}F_{2} + 3.34 {}^{5}F_{1} + 2.11 {}^{5}F_{3}$ $92.47 {}^{5}F_{2} + 5.57 {}^{5}F_{1} + 1.01 {}^{5}F_{3}$
48	$\Gamma_{2,3}$ Γ_{1}	12011	13215	$99.53 {}^{5}F_{2} + 0.16 {}^{5}F_{4} + 0.13 {}^{5}F_{5}$

Table 15 (cont'd). Predicted energy levels for Pm³⁺ in $Ca_5(PO_4)_3F$, C_3 site. B_{nm} from table 6.

			·····	
Level	I. R.ª	$[(S,L)J]^{b}$	Energy	Free ion
			(cm ⁻¹)	mixture (%)
49	Γ_1	⁵ F ₃	13699	$93.55 {}^{5}F_{3} + 5.73 {}^{5}F_{4} + 0.44 {}^{5}F_{5}$
50	$\Gamma_{2,3}$	13651	13720	$96.27 {}^{5}F_{3} + 2.74 {}^{5}F_{2} + 0.39 {}^{5}F_{5}$
51	Γ_1		13780	$95.55 {}^{\circ}F_{3} + 3.74 {}^{\circ}F_{A} + 0.32 {}^{\circ}F_{1}$
52	$\Gamma_{2,3}$		13941	$96.75{}^{5}F_{3} + 1.06{}^{5}F_{1} + 1.03{}^{5}F_{4}$
53	Γ_1		13956	$97.36^{5}F_{3}^{3} + 2.14^{5}F_{4}^{1} + 0.25^{5}F_{1}^{3}$
54	$\Gamma_{2,3}$	$^{5}S_{2}$	14512	$99.51\ {}^{5}S_{2} + 0.34\ {}^{5}F_{4} + 0.04\ {}^{5}I_{8}$
55	Γ_1	14337	14516	$99.81 {}^{5}S_{2} + 0.06 {}^{5}F_{4} + 0.05 {}^{5}I_{8}$
56	$\Gamma_{2,3}$		14520	$99.58 {}^{5}S_{2}^{2} + 0.25 {}^{5}F_{4}^{4} + 0.04 {}^{5}F_{3}^{3}$
57	$\Gamma_{2,3}$	$^{5}F_{4}$	14626	$96.50 {}^{5}F_{4} + 2.63 {}^{5}F_{5} + 0.53 {}^{5}F_{3}$
58	$\Gamma_{2,3}$	14561	14728	$97.89{}^{5}F_{4} + 0.71{}^{5}F_{2} + 0.51{}^{5}F_{5}$
59	Γ_1		14 <i>7</i> 70	$97.60{}^{5}F_{4} + 1.48{}^{5}F_{3} + 0.46{}^{5}F_{5}$
60	$\Gamma_{2,3}$		14798	$97.56 {}^{5}F_{4} + 0.92 {}^{5}F_{5} + 0.71 {}^{5}F_{3}$
61	Γ_1		14809	$92.42{}^{5}F_{4} + 6.44{}^{5}F_{2} + 0.91{}^{5}F_{5}$
62	Γ_1		14887	$95.80^{5}F_{4}^{7} + 3.83^{5}F_{3} + 0.11^{5}F_{5}$
63	$\Gamma_{2,3}$	${}^{5}F_{5}$	15 77 1	$99.05^{5}F_{5} + 0.67^{3}K_{6} + 0.14^{5}F_{4}$
64	$\Gamma_{2,3}$	15862	16006	$93.25^{3}K_{6} + 6.60^{5}F_{5} + 0.11^{5}F_{4}$
65	Γ_1	$^{3}K_{6}$	16010	$57.52 {}^{\circ}F_{5} + 41.71 {}^{\circ}K_{6} + 0.50 {}^{\circ}F_{A}$
66	$\Gamma_{2,3}$	15874	16012	$94.66{}^{3}K_{6} + 5.20{}^{5}F_{5} + 0.11{}^{5}F_{4}$
67	Γ_1		16022	$99.24^{3}K_{6} + 0.69^{5}F_{5} + 0.06^{5}F_{4}$
68	Γ_1		16029	$61.17^{3}K_{6} + 38.51^{5}F_{5} + 0.17^{5}F_{4}$
69 7 0	$\Gamma_{2,3}$		16041	$74.51 {}^{5}F_{5} + 24.16 {}^{3}K_{6} + 1.01 {}^{5}F_{4}$
7 0	Γ_1		16042	$97.85 {}^{3}K_{6} + 2.02 {}^{5}F_{5} + 0.08 {}^{5}F_{4}$
71 72	Γ_1		16042	$96.69^{3}K_{6} + 3.22^{5}F_{5} + 0.06^{5}F_{4}$
72 73	$\Gamma_{2,3}$		16067	$94.58 {}^{3}K_{6} + 5.33 {}^{5}F_{5} + 0.05 {}^{5}F_{4}$
73 74	Γ_1		16096 16097	$99.12^{3}K_{6} + 0.83^{5}F_{5} + 0.04^{5}F_{4}$
7 4 75	$\Gamma_{2,3}$		16097	$82.70^{3}K_{6} + 16.87^{5}F_{5} + 0.36^{5}F_{4}$
76	$\Gamma_{2,3}$		16178	92.96 ${}^{5}F_{5}$ + 6.02 ${}^{3}K_{6}$ + 0.44 ${}^{5}F_{3}$ 94.01 ${}^{5}F_{5}$ + 3.74 ${}^{3}K_{6}$ + 1.95 ${}^{5}F_{4}$
77	$\Gamma_{2,3} \ \Gamma_1$		16200	$96.88 {}^{5}F_{5} + 2.01 {}^{3}K_{6} + 0.65 {}^{5}F_{4}$
78	Γ_1^1		16218	$97.33^{5}F_{5} + 1.88^{3}K_{6} + 0.36^{5}F_{4}$
	- 1			71.55 15 1.55 16 1 5.50 14

^aIrreducible representations of C_3 single group, $\Gamma_{2,3} = \Gamma_2 + \Gamma_3$. ^bAqueous centroids (cm⁻¹).

Table 16. Predicted energy levels for Sm^{3+} in $Ca_5(PO_4)_3F$, C_3 site. B_{nm} from table 6.

Level	I. R.ª	[(<i>S,L</i>) <i>J</i>] ^b	Energy (cm ⁻¹)	Free ion mixture (%)
1 2 3	Γ _{4,5} ² Γ ₆ Γ _{4,5}	⁶ H _{5/2} 46	0 279 570	$95.35{}^{6}H_{5/2} + 3.20{}^{6}H_{7/2} + 1.00{}^{6}H_{9/2} \\ 88.50{}^{6}H_{5/2} + 10.12{}^{6}H_{7/2} + 0.83{}^{6}H_{9/2} \\ 97.98{}^{6}H_{5/2} + 1.27{}^{6}H_{7/2} + 0.43{}^{6}H_{9/2}$
4 5 6 7	² Γ ₆ Γ _{4,5} Γ _{4,5} Γ _{4,5}	⁶ H _{7/2} 1084	1227 1234 1433 1630	$85.60{}^{6}H_{7/2} + 10.69{}^{6}H_{5/2} + 3.04{}^{6}H_{9/2} \\ 92.82{}^{6}H_{7/2} + 3.42{}^{6}H_{5/2} + 2.21{}^{6}H_{9/2} \\ 94.34{}^{6}H_{7/2} + 4.03{}^{6}H_{9/2} + 0.84{}^{6}H_{5/2} \\ 98.28{}^{6}H_{7/2} + 0.88{}^{6}H_{9/2} + 0.30{}^{6}H_{5/2}$
8 9 10 11 12	$\Gamma_{4,5}^{\Gamma_{4,5}}$ $\Gamma_{6}^{\Gamma_{4,5}}$ $\Gamma_{4,5}^{\Gamma_{4,5}}$ $\Gamma_{6}^{\Gamma_{6}}$	⁶ H _{9/2} 2299	2411 2456 2562 2694 2858	$89.65 {}^{6}H_{9/2} + 5.91 {}^{6}H_{7/2} + 2.86 {}^{6}H_{11/2} \\ 93.27 {}^{6}H_{9/2} + 3.42 {}^{6}H_{7/2} + 2.57 {}^{6}H_{11/2} \\ 94.72 {}^{6}H_{9/2} + 1.55 {}^{6}H_{11/2} + 1.29 {}^{6}H_{7/2} \\ 96.20 {}^{6}H_{9/2} + 2.54 {}^{6}H_{11/2} + 0.48 {}^{6}H_{13/2} \\ 99.04 {}^{6}H_{9/2} + 0.34 {}^{6}H_{11/2} + 0.14 {}^{6}H_{7/2}$

Table 16 (cont'd). Predicted energy levels for Sm^{3+} in $Ca_5(PO_4)_3F$, C_3 site. B_{nm} from table 6.

Level	I. R.ª	$[(S,L)J]^{b}$	Energy (cm ⁻¹)	Free ion mixture (%)
13	Γ	⁶ H _{11/2}	3729	$90.82^{6}H_{11/2} + 4.56^{6}H_{9/2} + 2.80^{6}H_{13/2}$
14	$\Gamma_{4,5}$ ${}^2\Gamma_6$	3638	3763	$92.92 ^{\circ}H_{11/2} + 2.91 ^{\circ}H_{12/2} + 2.37 ^{\circ}H_{0/2}$
15	G_{A} s		3836	94.96 $^{\circ}H_{11/2} + 1.91$ $^{\circ}H_{0/2} + 1.67$ $^{\circ}H_{12/2}$
16	145		3932	$94.60^{\circ}H_{11/2} + 2.69^{\circ}H_{12/2} + 1.39^{\circ}H_{0/2}$
17	⁻¹ 6		4125	$98.33 \text{ PH}_{11/2} + 0.45 \text{ Ph}_{12/2} + 0.44 \text{ PH}_{12/2}$
18	$\Gamma_{4.5}$		4203	$99.25 ^{\circ}H_{11/2} + 0.20 ^{\circ}H_{13/2} + 0.14 ^{\circ}F_{11/2}$
19	$^{2}\Gamma_{c}$	⁶ H _{13/2}	5100	$90.06^{6}H_{12/2} + 4.58^{6}H_{15/2} + 2.39^{6}H_{11/2}$
20	175	5060	5138	92.55 $^{\circ}H_{12/2}$ + 2.89 $^{\circ}H_{15/2}$ + 2.35 $^{\circ}H_{11/2}$
21	145	•	5165	$92.52 ^{\circ}H_{12/2} + 2.65 ^{\circ}H_{11/2} + 2.63 ^{\circ}H_{15/2}$
22	112		531 7	94.36 $^{\circ}H_{12/2} + 2.83$ $^{\circ}H_{11/2} + 1.75$ $^{\circ}H_{15/2}$
23	-1 <u>-</u>		5500	$98.24 ^{\circ}\text{H}_{12/2} + 0.51 ^{\circ}\text{H}_{11/2} + 0.50 ^{\circ}\text{H}_{15/2}$
24	145		5603	$97.75^{6}H_{13/2} + 0.64^{6}F_{11/2} + 0.48^{6}F_{5/2}$
25	¹ 4,5		5610	$97.75 {}^{6}H_{13/2} + 0.64 {}^{6}F_{11/2} + 0.48 {}^{6}F_{5/2} \\ 98.74 {}^{6}H_{13/2} + 0.27 {}^{6}F_{11/2} + 0.25 {}^{6}F_{5/2}$
26	Γις	$^{6}F_{1/2}$	6342	$95.00^{6}H_{15/2} + 2.13^{6}H_{13/2} + 0.67^{6}H_{11/2}$
27	1 4	0422	6499	92.01 ° H_{15} (2 + 4.00) ° H_{12} (2 + 1.56 ° F_{5} (2
28	Γ_{AS}	⁶ H _{15/2}	6696	$01.22 \text{ oH} = 1.2 \pm 2.07 \text{ oH} = 1.2 \pm 2.22 \text{ oF} = 1.2$
29	$\Gamma_{4,5}$	0001	6798	92.24 ${}^{6}F_{1/2} + 2.35 {}^{6}F_{3/2} + 2.15 {}^{6}H_{15/2}$ 84.70 ${}^{6}H_{15/2} + 7.35 {}^{6}F_{3/2} + 2.38 {}^{6}F_{1/2}$ 72.51 ${}^{6}H_{15/2} + 24.49 {}^{6}F_{3/2} + 1.42 {}^{6}F_{9/2}$
30	$\Gamma_{4.5}^{,,5}$	$^{6}F_{3/2}$	6890	$84.70^{6}H_{15/2} + 7.35^{6}F_{3/2} + 2.38^{6}F_{1/2}$
31	$\Gamma_{4,5}^{\Gamma_{4,5}}$	6666	6962	$72.51^{6}H_{15/2} + 24.49^{6}F_{3/2} + 1.42^{6}F_{9/2}$
32	$\Gamma_{4.5}$		7032	コンカリ *Fa /a 十 4U./ 1 *ロ1E /a 十 3・33 *FE /a
33			7 060	$95.82^{6}H_{15/2} + 1.36^{6}F_{3/2} + 1.10^{6}F_{7/2}$
34	⁻ 1 ∠		7069	95.82 $^{6}H_{15/2} + 1.36 ^{6}F_{3/2} + 1.10 ^{6}F_{7/2}$ 77.32 $^{6}H_{15/2} + 17.85 ^{6}F_{3/2} + 2.92 ^{6}F_{5/2}$
35	145		<i>7</i> 071	$63.22 ^{\circ}H_{15/2} + 30.98 ^{\circ}F_{2/2} + 2.75 ^{\circ}F_{5/2}$
36	⁻¹ 6		7107	$53.93 ^{\circ}F_{3/2} + 43.44 ^{\circ}H_{15/2} + 1.07 ^{\circ}H_{13/2}$
37	$^2\Gamma_{c}$	⁶ F _{5/2}	7523	$92.97^{6}F_{5/2} + 4.12^{6}H_{15/2} + 0.90^{6}H_{13/2}$
38	Γ_{45}	7158	7559	$94.50 {}^{\circ}F_{5/2} + 2.11 {}^{\circ}F_{3/2} + 1.90 {}^{\circ}H_{15/2}$
39	$\Gamma_{4,5}^{4,5}$		7611	$92.07 {}^{\circ}F_{5/2} + 5.65 {}^{\circ}H_{15/2} + 1.04 {}^{\circ}H_{13/2}$
40	$\Gamma_{4,5}$	⁶ F _{7/2}	8324	$96.82^{6}F_{7/2} + 1.56^{6}H_{15/2} + 0.72^{6}H_{13/2}$
41	$\Gamma_{4.5}^{3,5}$	8006	8380	$97.34 {}^{\circ}F_{7/2} + 1.63 {}^{\circ}H_{15/2} + 0.28 {}^{\circ}H_{11/2}$
42	$\Gamma_{4,5}$ ${}^{2}\Gamma_{6}$		8424	$97.13 ^{\circ}F_{7/2} + 1.11 ^{\circ}H_{15/2} + 0.42 ^{\circ}H_{11/2}$
43	$\Gamma_{4,5}^{6}$		8460	$95.92^{6}F_{7/2}^{7/2} + 2.49^{6}H_{15/2}^{15/2} + 0.69^{6}H_{13/2}^{11/2}$
44	$\Gamma_{4.5}$	⁶ F _{9/2}	9490	$98.30^{6}F_{0.19} + 0.54^{6}H_{19.49} + 0.54^{6}H_{19.49}$
45	$\Gamma_{4,5}^{\Gamma_{4,5}}$	9167	9508	$97.28 ^{\circ}F_{0/2} + 1.62 ^{\circ}H_{15/2} + 0.30 ^{\circ}H_{11/2}$
46	Γ_{45}		9561	$97.20^{\circ}F_{0/2} + 1.44^{\circ}H_{15/2} + 0.62^{\circ}H_{13/2}$
47	$^{\Gamma_{4,5}}_{^2\Gamma_6}$		9565	$97.87 {}^{\circ}F_{0/2} + 0.96 {}^{\circ}H_{15/2} + 0.36 {}^{\circ}F_{11/2}$
48	$\Gamma_{4,5}$		9627	$99.07 {}^{6}F_{9/2} + 0.36 {}^{6}F_{7/2} + 0.22 {}^{6}H_{15/2}$
49	$\Gamma_{4,5}$	6 _F 11/2	10804	97.23 ${}^{6}F_{11/2} + 1.59 {}^{6}H_{15/2} + 0.89 {}^{6}H_{13/2}$ 99.43 ${}^{6}F_{11/2} + 0.19 {}^{6}F_{9/2} + 0.19 {}^{6}H_{15/2}$
50	$\Gamma_{4.5}^{3,3}$	10552	10915	$99.43^{6}F_{11/2} + 0.19^{6}F_{9/2} + 0.19^{6}H_{15/2}$
51	$\Gamma_{4,5}^{\Gamma_{4,5}}$		10917	$98.43 {}^{\circ}F_{11/2} + 0.77 {}^{\circ}H_{15/2} + 0.57 {}^{\circ}F_{9/2}$
52	$^2\Gamma_6$		10969	$98.97^{6}F_{11/2} + 0.60^{6}H_{15/2} + 0.22^{6}F_{9/2}$
53	$\Gamma_{4,5}$		10975	$99.39 ^{\circ}F_{11/2} + 0.23 ^{\circ}H_{15/2} + 0.10 ^{\circ}F_{7/2}$
54	¹ 4.5		10997	$99.20^{6}F_{11/2}^{11/2} + 0.44^{6}H_{15/2}^{15/2} + 0.16^{6}H_{13/2}^{17/2}$
55	$^2\Gamma_6$	$^{4}G_{5/2}$	17981	$97.84^{4}G_{5/2} + 2.16^{4}F_{3/2}$
56	$\Gamma_{4,5}$	17935	18177	$99.74 {}^{4}G_{5/2} + 0.25 {}^{4}F_{3/2}$
57	$\Gamma_{4,5}$		18596	$99.86 {}^{4}G_{5/2} + 0.14 {}^{4}F_{3/2}$
58		$^{4}F_{3/2}$	19211	
59	$\frac{\Gamma_{4,5}}{^2\Gamma_6}$	1 3/2 18899	19272	$99.61 {}^{4}F_{3/2} + 0.39 {}^{4}G_{5/2} 97.84 {}^{4}F_{3/2} + 2.16 {}^{4}G_{5/2}$
	U			e group, $\Gamma_{4,5} = \Gamma_4 + \Gamma_5$.

^aIrreducible representations of C_3 double group, $\Gamma_{4,5} = \Gamma_4 + \Gamma_5$. ^bAqueous centroids (cm⁻¹).

Table 17. Predicted energy levels for Eu³⁺ in Ca₅(PO₄)₃F, C_3 site. B_{nm} from table 6.

Level	I. R. ^a	$[(S,L)J]^{b}$	Energy (cm ⁻¹)	Free ion mixture (%)
		7 _r		
1	Γ_1	⁷ F ₀ -31	0	$95.31^{7}F_{0} + 3.64^{7}F_{2} + 0.83^{7}F_{4}$
2	$\Gamma_{2,3}$	7_{F_1}	295	$97.07^{7}F_{1} + 1.78^{7}F_{2} + 0.49^{7}F_{4}$
3	Γ_1^{2}	350	574	$90.92 {}^{7}F_{1}^{1} + 8.64 {}^{7}F_{3}^{2} + 0.21 {}^{7}F_{4}^{4}$
4	$\Gamma_{2,3}$	$^{7}F_{2}$	936	$95.00^{7}F_{2} + 2.56^{7}F_{3} + 0.85^{7}F_{4}$
5	123	1018	1020	$91.79 {}^{\prime}F_{2} + 6.40 {}^{\prime}F_{3} + 0.82 {}^{\prime}F_{5}$
6	$\overline{\Gamma_1}$		1431	$85.91 {}^{\prime}F_2 + 8.49 {}^{\prime}F_3 + 2.97 {}^{\prime}F_0$
7	Γ_1	$^{7}F_{3}$	1826	$96.16^{7}F_{3} + 3.23^{7}F_{5} + 0.39^{7}F_{2}$
8 9	Γ_1	1881	1870	$87.69 {}^{7}F_{3} + 8.70 {}^{7}F_{2} + 2.06 {}^{7}F_{5}$
10	$\Gamma_{2,3}$		1907 2081	$87.84 {}^{7}F_{3} + 10.17 {}^{7}F_{4} + 0.70 {}^{7}F_{5} $ $82.16 {}^{7}F_{3} + 10.76 {}^{7}F_{4} + 6.17 {}^{7}F_{2}$
11	$\Gamma_{2,3}$ Γ_{1}		2082	$90.22 F_2 + 8.68 F_1 + 0.48 F_5$
12	$\Gamma_{2,3}$	$^{7}F_{4}$	2714	$84.17 {}^{7}F_{4} + 7.54 {}^{7}F_{3} + 6.46 {}^{7}F_{5} \\ 95.68 {}^{7}F_{4} + 1.74 {}^{7}F_{3} + 0.88 {}^{7}F_{0} \\ 90.20 {}^{7}F_{4} + 3.71 {}^{7}F_{5} + 3.29 {}^{7}F_{3} \\ 87.20 {}^{7}F_{4} + 7.39 {}^{7}F_{3} + 4.49 {}^{7}F_{5} \\ 96.36 {}^{7}F_{4} + 2.07 {}^{7}F_{6} + 0.80 {}^{7}F_{5} \\ 93.49 {}^{7}F_{4} + 3.56 {}^{7}F_{5} + 2.63 {}^{7}F_{6} \\ \end{cases}$
13	$\Gamma_1^{2,3}$	2867	2925	$95.68^{7}F_{4} + 1.74^{7}F_{3} + 0.88^{7}F_{0}$
14	$\Gamma_{2,3}$		3010	$90.20 {}^{7}F_{4} + 3.71 {}^{7}F_{5} + 3.29 {}^{7}F_{3}$
15	I 2.3		3039	$87.20 F_4 + 7.39 F_3 + 4.49 F_5$
16 17	Γ_1 Γ_1		3168 3229	$96.36^{\circ}F_4 + 2.07^{\circ}F_6 + 0.80^{\circ}F_5$ $93.49^{\circ}F_1 + 3.56^{\circ}F_2 + 2.63^{\circ}F_1$
18		$^{7}F_{5}$	3740	06 85 7F ± 1 08 7F ± 0.87 7F
19	Γ_1 $\Gamma_{2,3}$	3928	3864	$96.85 {}^{7}F_{5} + 1.98 {}^{7}F_{3} + 0.87 {}^{7}F_{4}$ $93.66 {}^{7}F_{5} + 3.44 {}^{7}F_{4} + 1.58 {}^{7}F_{6}$
20	$\Gamma_{2,3}^{2,3}$		4016	86.69 'F= + 9.46 'Fz + 3.26 'Fz
21	1 2,3		4087	$90.38 {}^{7}F_{5} + 7.34 {}^{7}F_{6} + 1.74 {}^{7}F_{4}$
22 23	$\Gamma_{2,3}$		4172 4207	$85.95 ^{7}F_{5} + 8.79 ^{7}F_{6} + 3.99 ^{7}F_{4}$
24	$\Gamma_1^{'}$ Γ_1		4319	90.38 ${}^{7}F_{5}$ + 7.34 ${}^{7}F_{6}$ + 1.74 ${}^{7}F_{4}$ 85.95 ${}^{7}F_{5}$ + 8.79 ${}^{7}F_{6}$ + 3.99 ${}^{7}F_{4}$ 95.68 ${}^{7}F_{5}$ + 2.04 ${}^{7}F_{6}$ + 1.60 ${}^{7}F_{3}$ 91.75 ${}^{7}F_{5}$ + 4.14 ${}^{7}F_{6}$ + 2.26 ${}^{7}F_{3}$
25	Γ_1	$^{7}F_{6}$	4942	$98.12 {}^{7}F_{6} + 1.49 {}^{7}F_{4} + 0.17 {}^{7}F_{2}$
26	$\Gamma_{2,3}^{1}$	5029	4997	$96.68 ^{7}F_{6} + 2.30 ^{7}F_{5} + 0.53 ^{7}F_{3}$
27	1 ₁		5029	$96.68 {}^{7}F_{6} + 2.30 {}^{7}F_{5} + 0.53 {}^{7}F_{3} 94.29 {}^{7}F_{6} + 3.13 {}^{7}F_{4} + 2.08 {}^{7}F_{5}$
28	$\Gamma_{2,3}$		5046	95.82 ${}^{7}F_{6}$ + 2.26 ${}^{7}F_{5}$ + 1.42 ${}^{7}F_{4}$ 95.21 ${}^{7}F_{6}$ + 2.93 ${}^{7}F_{5}$ + 1.75 ${}^{7}F_{4}$
29 30	Γ_1		5161 5229	$95.21^{7}F_{6} + 2.93^{7}F_{5} + 1.75^{7}F_{4}$ $88.13^{7}F_{6} + 10.14^{7}F_{5} + 1.50^{7}F_{4}$
31	$\Gamma_{2,3}$		5456	$88.47 {}^{7}F_{6} + 11.28 {}^{7}F_{5} + 0.14 {}^{7}F_{4}$
32	$\Gamma_{2,3}$ Γ_{1}		5732	$99.68 {}^{7}F_{6} + 0.13 {}^{7}F_{5} + 0.08 {}^{7}F_{4} 99.69 {}^{7}F_{6} + 0.12 {}^{7}F_{5} + 0.10 {}^{7}F_{4}$
33	Γ_1		5732	$99.69^{7}F_{6} + 0.12^{7}F_{5} + 0.10^{7}F_{4}$
34	Γ_1	$^{5}D_{0}$	17399	$99.85{}^{5}D_{0} + 0.10{}^{5}L_{6} + 0.05{}^{5}D_{2}$
	_	17286		
35	$\Gamma_{2,3} \ \Gamma_1$	$^{5}D_{1}$	19109	$99.88 {}^{5}D_{1} + 0.05 {}^{5}D_{2} + 0.04 {}^{5}L_{6}$
36	•	19026	19220	$99.97^{5}D_{1}^{1} + 0.02^{5}L_{6}^{2}$
37 38	$\Gamma_{2,3} \Gamma_1$	⁵ D ₂ 21499	21592 21592	$99.79 {}^{5}D_{2} + 0.16 {}^{5}D_{3} + 0.04 {}^{5}L_{6}$
39	$\Gamma_{2,3}^{1}$	£17/7	21660	$99.85 {}^{5}D_{2} + 0.09 {}^{5}L_{6} + 0.05 {}^{5}D_{0}$ $99.88 {}^{5}D_{2} + 0.07 {}^{5}L_{6} + 0.05 {}^{5}D_{1}$
40	Γ_1	$^{5}D_{3}$	24473	$99.92 {}^{5}D_{3} + 0.07 {}^{5}L_{6}$
41	$\Gamma_{2,3}$	24390	24488	$99.81 {}^{5}D_{3} + 0.11 {}^{5}D_{2} + 0.07 {}^{5}L_{6}$
42	$\Gamma_{2,3}^{2,3}$ Γ_{1}		24500	$99.88 {}^{5}D_{3} + 0.05 {}^{5}D_{2} + 0.05 {}^{5}L_{6}$
43	Γ_1		24568	$99.89 {}^{5}D_{3} + 0.10 {}^{5}L_{6} + 0.01 {}^{5}D_{2}$
44	Γ_1		24582	$99.85{}^{5}D_{3}^{3} + 0.15{}^{5}L_{6}^{6}$

Table 17 (cont'd). Predicted energy levels for Eu³⁺ in $Ca_5(PO_4)_3F$, C_3 site. B_{nm} from table 6.

Level	I. R.ª	[(<i>S,L</i>) <i>J</i>] ^b	Energy (cm ⁻¹)	Free ion mixture (%)
45 46 47 48 49 50 51	G_1 Γ_1 Γ_1 $\Gamma_{2,3}$ $\Gamma_{2,3}$ $\Gamma_{2,3}$ $\Gamma_{1,1}$	⁵ L ₆ 25375	25199 25237 25252 25288 25463 25648 25690	$99.76 {}^{5}L_{6} + 0.17 {}^{5}D_{3} + 0.07 {}^{5}D_{2}$ $99.95 {}^{5}L_{6} + 0.04 {}^{5}D_{3} + 0.01 {}^{5}D_{1}$ $99.93 {}^{5}L_{6} + 0.04 {}^{5}D_{3} + 0.03 {}^{5}D_{0}$ $99.89 {}^{5}L_{6} + 0.06 {}^{5}D_{3} + 0.04 {}^{5}D_{2}$ $99.96 {}^{5}L_{6} + 0.01 {}^{5}D_{2} + 0.01 {}^{5}D_{3}$ $99.93 {}^{5}L_{6} + 0.05 {}^{5}D_{3} + 0.02 {}^{5}D_{2}$ $99.92 {}^{5}L_{6} + 0.04 {}^{5}D_{3} + 0.03 {}^{5}D_{0}$
52 53	Γ_1^1 $\Gamma_{2,3}$		25757 25791	$99.91 {}^{5}L_{6} + 0.04 {}^{5}D_{0} + 0.04 {}^{5}D_{3}$ $99.95 {}^{5}L_{6} + 0.04 {}^{5}D_{2} + 0.01 {}^{5}D_{1}$

^aIrreducible representations of C_3 single group, $\Gamma_{2,3} = \Gamma_2 + \Gamma_3$. ^bAqueous centroids (cm⁻¹).

Table 18. Predicted energy levels for Gd^{3+} in $Ca_5(PO_4)_3F$, C_3 site. B_{nm} from table 6.

Level	I. R.ª	[(<i>S,L</i>) <i>J</i>] ^b	Energy (cm ⁻¹)	Free ion mixture (%)
1	Γ _{4,5}	⁸ S _{7/2}	0	100.00 ⁸ S _{7/2}
2	⁻ 1 ∠	14	0.2	100 00 °S _{= 40}
3	145		0.6	100 00 °S= /2
4	$\Gamma_{4,5}^{4,5}$		1.2	$100.00^{\circ}S_{7/2}$
5	$\Gamma_{4.5}$	⁶ P _{7/2}	32096	$99.22^{6}P_{7/2} + 0.13^{6}P_{3/2} + 0.11^{6}I_{13/2}$
6	$\Gamma_{4,5}$ $^2\Gamma_6$	32224	32116	$98.69 ^{\circ}P_{7/2} + 0.53 ^{\circ}P_{5/2} + 0.21 ^{\circ}P_{3/2}$
7	$^{2}\Gamma_{c}$		32116	$98.69 ^{\circ}P_{7/2} + 0.53 ^{\circ}P_{5/2} + 0.21 ^{\circ}P_{3/2}$
8	145		32185	$98.94 ^{\circ}P_{7/2} + 0.42 ^{\circ}P_{5/2} + 0.16 ^{\circ}I_{17/2}$
9	$\Gamma_{4,5}^{4,5}$		32317	$99.20 ^{\circ}P_{7/2} + 0.20 ^{\circ}I_{15/2} + 0.15 ^{\circ}I_{17/2}$
10	$\Gamma_{4,5}$	⁶ P _{5/2}	32663	$98.45 {}^{6}P_{5/2} + 0.44 {}^{6}I_{7/2} + 0.39 {}^{6}I_{17/2}$
11	-1 4	32767	32673	$94.96 ^{6}P_{5/2} + 3.45 ^{6}P_{3/2} + 0.61 ^{6}P_{7/2}$
12	$\Gamma_{4.5}$		32803	$98.87^{6}P_{5/2}^{3/2} + 0.40^{6}P_{7/2}^{3/2} + 0.27^{6}I_{17/2}^{7/2}$
13	$^2\Gamma_6$	⁶ P _{3/2}	33235	$95.31^{6}P_{3/2} + 3.58^{6}P_{5/2} + 0.36^{6}I_{13/2}$
14	$\Gamma_{4,5}$	33303	33294	$98.46 ^{6}P_{3/2}^{3/2} + 0.33 ^{6}P_{5/2}^{3/2} + 0.32 ^{6}I_{15/2}^{15/2}$
15	$\Gamma_{4,5}$	6 _{17/2}	35842	$99.59^{6}I_{7/2} + 0.19^{6}P_{5/2} + 0.08^{6}I_{9/2}$
16	${}^{2}\Gamma_{6}^{4,5}$	35879	35849	$99.18 ^{6}I_{7/2} + 0.43 ^{6}I_{9/2} + 0.27 ^{6}P_{5/2}$
17	Γ _{4,5}		35882	$99.43 ^{\circ}I_{7/2} + 0.25 ^{\circ}P_{5/2} + 0.16 ^{\circ}I_{9/2}$
18	$\Gamma_{4,5}^{4,5}$		35915	$99.69 {}^{6}I_{7/2}^{7/2} + 0.14 {}^{6}P_{5/2}^{7/2} + 0.06 {}^{6}I_{9/2}^{9/2}$
19	$\Gamma_{4,5}$	6 _{I_{9/2}}	36184	$98.87^{6}I_{9/2} + 0.56^{6}I_{11/2} + 0.12^{6}I_{7/2}$
20	112	36231	36201	$99.17 {}^{\circ}l_{9/2} + 0.25 {}^{\circ}l_{11/2} + 0.18 {}^{\circ}l_{17/2}$
21	${}^{2}\Gamma_{6}^{4,5}$		36208	$98.63 ^{\circ}I_{9/2} + 0.48 ^{\circ}I_{11/2} + 0.40 ^{\circ}I_{7/2}$
22	145		36235	$98.88 {}^{\circ}l_{9/2} + 0.29 {}^{\circ}l_{17/2} + 0.26 {}^{\circ}l_{11/2}$
23	${}^{2}\Gamma_{6}^{4,3}$		36284	$99.42 {}^{\circ}l_{9/2} + 0.22 {}^{\circ}l_{13/2} + 0.09 {}^{\circ}l_{11/2}$
24	$\Gamma_{4,5}$	6 _{I17/2}	36441	$92.80^{6}I_{17/2} + 4.96^{6}I_{11/2} + 1.39^{6}I_{15/2}$
25	115	36462	36442	$95.31 9_{17/2} + 2.13 9_{11/2} + 1.61 9_{15/2}$
26	-1.		36442	$96.81 {}^{\circ}I_{17/2} + 1.50 {}^{\circ}I_{15/2} + 1.32 {}^{\circ}I_{11/2}$
27	-1.		36446	$95.97 ^{\circ}l_{17/2} + 2.09 ^{\circ}l_{11/2} + 1.17 ^{\circ}l_{15/2}$
28	145		36447	$91.83 9_{17/2} + 5.85 9_{11/2} + 1.61 9_{15/2}$
29	145		36452	$99.03 ^{\circ}I_{17/2} + 0.62 ^{\circ}I_{11/2} + 0.13 ^{\circ}I_{13/2}$
30	11=		36455	$89.72 {}^{\circ}I_{17/2} + 8.14 {}^{\circ}I_{11/2} + 0.78 {}^{\circ}I_{13/2}$
31	- ₁ 6		36456	$91.64 {}^{\circ}l_{17/2} + 6.87 {}^{\circ}l_{11/2} + 0.76 {}^{\circ}l_{13/2}$
32	$\Gamma_{4,5}$		36460	$91.98 {}^{6}I_{17/2}^{17/2} + 6.59 {}^{6}I_{11/2}^{17/2} + 0.48 {}^{6}I_{13/2}^{17/2}$

Table 18 (cont'd). Predicted energy levels for Gd^{3+} in $Ca_5(PO_4)_3F$, C_3 site. B_{nm} from table 6.

Level	I. R.ª	[(S,L)]] ^b	Energy	Free ion
			(cm ⁻¹)	mixture (%)
33	$\Gamma_{4,5}$	⁶ I _{11/2}	36479	$81.65 {}^{6}I_{11/2} + 16.50 {}^{6}I_{17/2} + 0.75 {}^{6}I_{15/2}$
34	$\Gamma_{4,5}^{1,5}$ $2\Gamma_{6}^{1}$	36526	36489	$89.16 ^{\circ}I_{11/2} + 8.44 ^{\circ}I_{17/2} + 1.04 ^{\circ}I_{17/2}$
35	$^{2}\Gamma_{6}$		36499	$90.62 ^{\circ}l_{11/2} + 7.37 ^{\circ}l_{17/2} + 0.79 ^{\circ}l_{15/2}$
36	$^{2}\Gamma_{c}$		36523	$94.28 ^{\circ}1_{11/2} + 3.31 ^{\circ}1_{17/2} + 0.93 ^{\circ}1_{12/2}$
37	1 4 5		36533	$94./4 9_{11/2} + 4.16 9_{17/2} + 0.44 9_{15/2}$
38	¹ 4,5		36585	$94.46 {}^{\circ}l_{11/2} + 3.43 {}^{\circ}l_{15/2} + 1.37 {}^{\circ}l_{13/2}$
39	$\Gamma_{4,5}^{\Gamma_{4,5}}$	6 <i>I</i> _{13/2}	36657	81 93 61 +15 30 61 + 1 68 61
40	$^2\Gamma_6$	30/11	36659	$\begin{array}{c} 64.83 {}^{6}I_{13/2} + 13.53 {}^{6}I_{15/2} + 1.03 {}^{6}I_{17/2} \\ 64.83 {}^{6}I_{13/2} + 31.53 {}^{6}I_{15/2} + 1.73 {}^{6}I_{17/2} \\ 74.75 {}^{6}I_{13/2} + 21.51 {}^{6}I_{15/2} + 2.34 {}^{6}I_{11/2} \\ 57.14 {}^{6}I_{13/2} + 27.25 {}^{6}I_{13/2} + 2.68 {}^{6}I_{11/2} \end{array}$
. 41	Γ_{45}	6I _{15/2}	36675	$74.75 {}^{6}I_{13/2} + 21.51 {}^{6}I_{15/2} + 2.34 {}^{6}I_{11/2}$
42		36725	36692	37.14 1 ₁₅ / ₂ +37.33 1 ₁₃ / ₂ + 3.00 1 ₁₁ / ₂
43	-1 -		36694	39.74° /115 /2 $\pm 38.95^{\circ}$ /112 /2 $\pm 0.65^{\circ}$ /112 /2
44	1 4.5		36698	$67.53 \text{M}_{15.79} + 31.29 \text{M}_{15.79} + 0.45 \text{M}_{15.79}$
45	$\Gamma_{4,5}^{1,5}$ ${}^2\Gamma_6$		36702	$/5.6/~^{1}_{15/2} + 23.00~^{1}_{12/2} + 0.74~^{1}_{11/2}$
46	² 1 6		36707	$08.98 ^{\circ}I_{13/2} + 29.22 ^{\circ}I_{15/2} + 1.04 ^{\circ}I_{11/2}$
47	$\Gamma_{4,5}$		36715	$77.76 ^{\circ}l_{12/2} + 21.35 ^{\circ}l_{15/2} + 0.33 ^{\circ}l_{17/2}$
48 49	10-		36725	$77.69 ^{6}I_{15/2} + 19.92 ^{6}I_{13/2} + 2.04 ^{6}I_{17/2}$
50	16		36731 36734	$77.10 {}^{6}I_{15/2} + 22.26 {}^{6}I_{13/2} + 0.28 {}^{6}I_{11/2}$
50 51	$\Gamma_{4,5}$		3673 4 36742	$49.57 ^{6}I_{13/2} + 49.23 ^{6}I_{15/2} + 0.75 ^{6}I_{17/2}$
52	$\Gamma_{4,5}^{4,5}$ ${}^{2}\Gamma_{6}$		36782	$83.78 \stackrel{6I_{15/2}}{6I_{15/2}} + 15.30 \stackrel{6I_{13/2}}{6I_{13/2}} + 0.32 \stackrel{6I_{17/2}}{6I_{17/2}}$
53	$\Gamma_{4,5}^{6}$		36790	$97.13 {}^{6}I_{15/2} + 1.82 {}^{6}I_{17/2} + 0.79 {}^{6}I_{13/2} \\ 81.07 {}^{6}I_{13/2} + 18.70 {}^{6}I_{15/2} + 0.06 {}^{6}I_{11/2}$
54	* 4,5	60		01.07 113/2 + 10.70 115/2 + 0.00 111/2
55	$\Gamma_{4,5}$	⁶ D _{9/2} 39779	39618 39691	$99.24^{6}D_{9/2} + 0.27^{6}D_{7/2} + 0.18^{6}D_{1/2}$
56	${}^2\Gamma_6$	39779	39891	$98.73 ^{6}D_{9/2} + 1.09 ^{6}D_{7/2} + 0.05 ^{6}P_{5/2}$
57	$\Gamma_{4,5}^{}$ ${}^{2}\Gamma_{6}^{}$		39828	$99.06 ^{6}D_{9/2} + 0.74 ^{6}D_{7/2} + 0.06 ^{6}D_{5/2}$
58	$\Gamma_{4,5}^{6}$		39882	$99.85 {}^{6}D_{9/2}^{3/2} + 0.03 {}^{6}I_{15/2}^{1/2} + 0.03 {}^{6}D_{5/2}^{5/2}$ $99.59 {}^{6}D_{9/2} + 0.16 {}^{6}D_{7/2} + 0.12 {}^{6}D_{1/2}^{1/2}$
59	^ 4,5	60		$\frac{27.05}{29/2} + 0.10 \frac{10}{27/2} + 0.12 \frac{1}{2}$
39	$\Gamma_{4,5}$	$^{6}D_{1/2}$ 40621	40576	$85.99 ^6D_{1/2} + 6.73 ^6D_{7/2} + 4.32 ^6D_{3/2}$
60	$\Gamma_{4,5}$	⁶ D _{7/2}	40680	$90.88 ^6D_{7/2} + 4.65 ^6D_{3/2} + 3.69 ^6D_{5/2}$
61	1 4	40713	40694	$80.07^{\circ}D_{7/2} + 12.11^{\circ}D_{7/2} + 1.07^{\circ}D_{7/2}$
62	1 4 5		40703	$94.59 ^{\circ}D_{7/2} + 2.47 ^{\circ}D_{1/2} + 2.20 ^{\circ}D_{2/2}$
63	¹ 4,5		40727	$88.07 ^{9}D_{7/2} + 5.04 ^{9}D_{1/2} + 3.64 ^{9}D_{5/2}$
64	$\frac{\Gamma_{4,5}}{{}^{2}\Gamma_{6}}$	⁶ D _{3/2}	40772	$78.83^{6}D_{2/2} + 12.14^{6}D_{7/2} + 8.12^{6}D_{5/2}$
65	$^{2}\Gamma_{6}$	40001	40878	64.11 $D_{E/2} + 30.79$ $D_{2/2} + 4.94$ $D_{7/2}$
66	$^{2}\Gamma_{c}$	$^{6}D_{5/2}$	40976	$56.96 ^{\circ}D_{2}$ $_{12} + 35.11 ^{\circ}D_{5}$ $_{13} + 7.71 ^{\circ}D_{7}$ $_{13}$
67	1/15	40978	41009	$89.62 ^{\circ}D_{\pi}$ /2 $\pm 4.34 ^{\circ}D_{\pi}$ /2 $\pm 3.90 ^{\circ}D_{\pi}$ /2
68	$\Gamma_{4,5}^{4,5}$		41056	$91.53 ^6D_{5/2} + 3.64 ^6D_{1/2} + 3.07 ^6D_{3/2}$

^aIrreducible representations of C_3 double group, $\Gamma_{4,5} = \Gamma_4 + \Gamma_5$. ^bAqueous centroids (cm⁻¹).

Table 19. Predicted energy levels for Tb^{3+} in $Ca_5(PO_4)_3F$, C_3 site. - B_{nm} from table 6.

Level	I. R.ª	[(<i>S,L</i>)]] ^b	Energy (cm ⁻¹)	Free ion mixture (%)
1 2 3 4 5 6	Γ_{1} Γ_{1} $\Gamma_{2,3}$ $\Gamma_{2,3}$ Γ_{1} $\Gamma_{2,3}$	⁷ F ₆ 74	0 0 335 560 606 706	$99.86 {}^{7}F_{6} + 0.04 {}^{7}F_{4} + 0.04 {}^{7}F_{5}$ $99.86 {}^{7}F_{6} + 0.04 {}^{7}F_{5} + 0.03 {}^{7}F_{4}$ $95.82 {}^{7}F_{6} + 4.06 {}^{7}F_{5} + 0.08 {}^{7}F_{4}$ $96.69 {}^{7}F_{6} + 2.73 {}^{7}F_{5} + 0.46 {}^{7}F_{4}$ $98.64 {}^{7}F_{6} + 0.69 {}^{7}F_{5} + 0.61 {}^{7}F_{4}$ $98.73 {}^{7}F_{6} + 0.55 {}^{7}F_{5} + 0.48 {}^{7}F_{4}$
7 8 9	Γ_1 $\Gamma_{2,3}$ Γ_1		721 746 786	98.73 ${}^{7}F_{6} + 0.55 {}^{7}F_{5} + 0.48 {}^{7}F_{4}$ 98.43 ${}^{7}F_{6} + 0.97 {}^{7}F_{4} + 0.37 {}^{7}F_{5}$ 99.05 ${}^{7}F_{6} + 0.49 {}^{7}F_{5} + 0.23 {}^{7}F_{3}$ 99.29 ${}^{7}F_{6} + 0.49 {}^{7}F_{4} + 0.10 {}^{7}F_{2}$
10 11 12 13 14 15 16	Γ_{1} $\Gamma_{2,3}$ Γ_{1} $\Gamma_{2,3}$ $\Gamma_{2,3}$ $\Gamma_{2,3}$ $\Gamma_{2,3}$ Γ_{1}	⁷ F ₅ 2112	2353 2450 2456 2532 2594 2786 2906	$95.27^{7}F_{5} + 2.02^{7}F_{4} + 1.86^{7}F_{3}$ $92.50^{7}F_{5} + 3.78^{7}F_{4} + 3.03^{7}F_{6}$ $97.52^{7}F_{5} + 1.27^{7}F_{3} + 0.64^{7}F_{4}$ $96.27^{7}F_{5} + 2.73^{7}F_{6} + 0.58^{7}F_{4}$ $94.64^{7}F_{5} + 2.56^{7}F_{4} + 2.02^{7}F_{6}$ $96.00^{7}F_{5} + 2.60^{7}F_{4} + 0.47^{7}F_{2}$ $97.87^{7}F_{5} + 1.45^{7}F_{3} + 0.48^{7}F_{4}$
17 18 19 20 21 22	Γ_{1} Γ_{1} $\Gamma_{2,3}$ $\Gamma_{2,3}$ Γ_{1} $\Gamma_{2,3}$	⁷ F ₄ 3370	3622 3684 3804 3829 3916 4097	$95.83 {}^{7}F_{4} + 2.80 {}^{7}F_{5} + 0.89 {}^{7}F_{6} \\ 97.66 {}^{7}F_{4} + 0.78 {}^{7}F_{5} + 0.72 {}^{7}F_{6} \\ 86.71 {}^{7}F_{4} + 8.84 {}^{7}F_{3} + 3.65 {}^{7}F_{5} \\ 93.62 {}^{7}F_{4} + 2.22 {}^{7}F_{5} + 1.76 {}^{7}F_{3} \\ 95.92 {}^{7}F_{4} + 1.32 {}^{7}F_{2} + 1.24 {}^{7}F_{3} \\ 86.88 {}^{7}F_{4} + 6.56 {}^{7}F_{3} + 4.84 {}^{7}F_{5} \\ \end{cases}$
23 24 25 26 27	Γ_{1} $\Gamma_{2,3}$ $\Gamma_{2,3}$ Γ_{1} Γ_{1}	⁷ F ₃ 4344	4712 4746 4919 4941 4998	$85.50 {}^{7}F_{3} + 13.75 {}^{7}F_{1} + 0.44 {}^{7}F_{5}$ $80.96 {}^{7}F_{3} + 10.35 {}^{7}F_{4} + 8.08 {}^{7}F_{2}$ $88.39 {}^{7}F_{3} + 9.95 {}^{7}F_{4} + 0.70 {}^{7}F_{2}$ $79.78 {}^{7}F_{3} + 17.11 {}^{7}F_{2} + 1.43 {}^{7}F_{5}$ $96.82 {}^{7}F_{3} + 2.37 {}^{7}F_{5} + 0.44 {}^{7}F_{2}$
28 29 30	$\Gamma_1 \ \Gamma_{2,3} \ \Gamma_{2,3}$	⁷ F ₂ 5028	5242 5646 5716	$74.42 {}^{7}F_{2} + 17.40 {}^{7}F_{3} + 4.65 {}^{7}F_{0}$ $89.62 {}^{7}F_{2} + 8.31 {}^{7}F_{3} + 0.96 {}^{7}F_{1}$ $93.76 {}^{7}F_{2} + 3.32 {}^{7}F_{3} + 1.42 {}^{7}F_{1}$
31 32 33	$\Gamma_1 \ \Gamma_{2,3} \ \Gamma_1$	⁷ F ₁ 5481 ⁷ F ₀	5903 6156 6307	$85.84 {}^{7}F_{1} + 13.76 {}^{7}F_{3} + 0.24 {}^{7}F_{4}$ $95.78 {}^{7}F_{1} + 3.13 {}^{7}F_{2} + 0.50 {}^{7}F_{4}$ $92.51 {}^{7}F_{0} + 6.39 {}^{7}F_{2} + 0.94 {}^{7}F_{4}$
34 35 36 37 38 39	Γ_{1} Γ_{1} $\Gamma_{2,3}$ $\Gamma_{2,3}$ $\Gamma_{2,3}$ Γ_{1}	5703 ⁵ D ₄ 20542	20931 20942 20970 21026 21106 21127	$99.75 {}^{5}D_{4} + 0.15 {}^{5}G_{6} + 0.05 {}^{5}L_{10}$ $99.78 {}^{5}D_{4} + 0.12 {}^{5}G_{6} + 0.04 {}^{5}L_{10}$ $99.86 {}^{5}D_{4} + 0.07 {}^{5}G_{6} + 0.04 {}^{5}L_{10}$ $99.76 {}^{5}D_{4} + 0.07 {}^{5}G_{6} + 0.06 {}^{5}L_{10}$ $99.81 {}^{5}D_{4} + 0.06 {}^{5}L_{10} + 0.05 {}^{5}G_{5}$ $99.83 {}^{5}D_{4} + 0.06 {}^{5}L_{10} + 0.05 {}^{5}G_{4}$
40 41 42 43 44 45 46 47	Γ_{1} Γ_{1} $\Gamma_{2,3}$ Γ_{1} $\Gamma_{2,3}$ Γ_{1} Γ_{1} $\Gamma_{2,3}$	⁵ D ₃ 26336 ⁵ G ₆ 26425	26470 26482 26732 26759 26765 26767 26785 26836	$92.51 {}^{5}G_{6} + 3.80 {}^{5}D_{3} + 2.39 {}^{5}L_{10} $ $95.42 {}^{5}G_{6} + 2.51 {}^{5}L_{10} + 1.00 {}^{5}L_{9} $ $58.62 {}^{5}D_{3} + 38.18 {}^{5}G_{6} + 1.26 {}^{5}L_{10} $ $83.54 {}^{5}D_{3} + 14.38 {}^{5}G_{6} + 1.26 {}^{5}G_{5} $ $65.09 {}^{5}D_{3} + 32.74 {}^{5}G_{6} + 1.06 {}^{5}L_{10} $ $87.56 {}^{5}D_{3} + 10.38 {}^{5}G_{6} + 1.31 {}^{5}G_{5} $ $84.32 {}^{5}D_{3} + 14.02 {}^{5}G_{6} + 0.92 {}^{5}G_{5} $ $58.38 {}^{5}G_{6} + 36.29 {}^{5}D_{3} + 3.11 {}^{5}L_{10} $

Table 19 (cont'd). Predicted energy levels for Tb³⁺ in $Ca_5(PO_4)_3F$, C_3 site. B_{nm} from table 6.

Level	I. R.ª	$[(S,L)J]^{b}$	Energy	Free ion
			(cm ⁻¹)	mixture (%)
48	$\Gamma_{2,3}$		26867	$86.82 {}^{5}G_{6} + 9.24 {}^{5}D_{3} + 2.28 {}^{5}L_{10}$
49	$\tilde{\Gamma_1}$		26922	$90.36 {}^{5}G_{6} + 6.16 {}^{5}D_{3} + 2.89 {}^{5}L_{10}$
50	$\Gamma_1^{'}$		26996	$73.49 {}^{5}G_{6} + 24.25 {}^{5}D_{3} + 1.74 {}^{5}L_{10}$
51	$\Gamma_{2,3}$		27050	$80.13 {}^{5}G_{6} + 16.40 {}^{5}D_{3} + 2.54 {}^{5}L_{10}$
52	Γ		27106	$82.43 {}^{5}G_{6} + 12.12 {}^{5}D_{3} + 4.43 {}^{5}L_{10}$
53	$\Gamma_{2,3} \\ \Gamma_1$		27130	$87.25 {}^{5}G_{6} + 7.18 {}^{5}L_{10} + 4.40 {}^{5}D_{3}$
		=-		
54	$\Gamma_{2,3}$	$^{5}L_{10}$	27332	$95.93{}^{5}L_{10} + 2.19{}^{5}G_{6} + 0.96{}^{5}G_{5}$
55	17	27146	27344	$97.56 {}^{5}L_{10} + 1.94 {}^{5}G_{6} + 0.25 {}^{5}G_{5}$
56	Γ_1^1		27 363	$91.29^{\circ}L_{10} + 8.23^{\circ}G_{6} + 0.14^{\circ}G_{4}$
57	$\Gamma_{2,3}$		27389	$93.87 {}^{5}L_{10} + 4.99 {}^{5}G_{6} + 0.67 {}^{5}L_{9}$
58	$\Gamma_{2,3}$		27508	$96.10 ^{5}L_{10} + 1.55 ^{5}G_{6} + 1.50 ^{5}L_{9}$
59	$\Gamma_{2,3}$		27564	$95.70^{5}L_{10} + 2.70^{5}G_{6} + 1.24^{5}L_{9}$
60	$\tilde{\Gamma_1}$		27645	$96.71 {}^{5}L_{10} + 1.44 {}^{5}L_{9} + 0.99 {}^{5}G_{6}$
61	Γ_1		27689	$96.23 {}^{5}L_{10}^{10} + 2.04 {}^{5}G_{6} + 1.43 {}^{5}L_{9}^{0}$
62	$\Gamma_1^{'}$		27697	$95.90 {}^{5}L_{10}^{10} + 1.77 {}^{5}G_{6}^{0} + 1.49 {}^{5}L_{9}^{5}$
63	Γ_1^1		27716	$96.63 {}^{5}L_{10} + 1.75 {}^{5}G_{5} + 1.16 {}^{5}L_{9}$
64	$\Gamma_{2,3}^{1}$		27814	$95.58 {}^{5}L_{10} + 2.33 {}^{5}G_{5} + 1.14 {}^{5}G_{6}$
65	$\Gamma_{2,3}^{2,3}$		27909	92.71 ${}^{5}L_{10}$ + 5.15 ${}^{5}G_{5}$ + 1.53 ${}^{5}G_{6}$
66	$\Gamma_1^{2,3}$		27948	$93.04 {}^{5}L_{10} + 4.70 {}^{5}G_{5} + 1.89 {}^{5}G_{6}$
67	$\Gamma_{2,3}$		27953	$97.68 {}^{5}L_{10} + 1.86 {}^{5}G_{5} + 0.37 {}^{5}G_{6}$
68	رم ت	${}^{5}G_{5}$	28104	
69	$\Gamma_{2,3}$	277795	28179	$93.33 {}^{5}G_{5} + 1.86 {}^{5}G_{6} + 1.56 {}^{5}G_{4}$
<i>7</i> 0	$\Gamma_{2,3}$	211193	28297	$79.93 {}^{5}G_{5} + 11.76 {}^{5}G_{4} + 5.33 {}^{5}L_{10}$
70 71	Γ_1		28320	$93.17 {}^{5}G_{5} + 2.74 {}^{5}L_{10} + 2.51 {}^{5}D_{2}$
72	Γ_1^1			$91.88 {}^{5}G_{5} + 3.94 {}^{5}L_{10} + 2.53 {}^{5}D_{2}$
73	$\Gamma_{2,3}$		28343	$89.56 {}^{5}G_{5} + 6.07 {}^{5}D_{2} + 3.07 {}^{5}L_{10}$
73 74	$\Gamma_{2,3}$		28403	$88.48 {}^{5}G_{5} + 6.87 {}^{5}D_{2} + 2.57 {}^{5}G_{4}$
	Γ_1	c	28480	$91.53 {}^{5}G_{5} + 5.36 {}^{5}G_{4} + 1.71 {}^{5}L_{10}$
75	Γ_1	$^{5}D_{2}$	28567	$88.95 {}^{5}D_{2} + 4.31 {}^{5}G_{4} + 4.08 {}^{5}G_{5}$
76 	$\Gamma_{2,3}$	28150	28620	$75.81 {}^{5}D_{2}^{2} + 19.61 {}^{5}G_{4} + 3.24 {}^{5}G_{5}$
77	$\Gamma_{2,3}$		28698	$64.04\ ^5D_2^2 + 24.07\ ^5G_4^4 + 9.27\ ^5G_5^7$
78	Γ_1	$^{5}G_{4}$	28715	$70.96 {}^{5}G_{4} + 27.42 {}^{5}L_{9} + 0.44 {}^{5}G_{6}$
<i>7</i> 9	Γ_1	28307	28727	$57.80{}^{5}G_{4} + 35.61{}^{5}L_{9} + 3.95{}^{5}G_{5}$
80	$\Gamma_{2,3}$	$^{5}L_{9}$	28757	$45.16{}^{5}G_{4} + 42.06{}^{5}L_{9} + 9.91{}^{5}G_{5}$
81	$\Gamma_{2,3}$	28503	28814	65.89 $^{\circ}I_{\circ} + 20.94$ $^{\circ}G_{\bullet} + 9.12$ $^{\circ}D_{\circ}$
82	Γ_1		28815	$66.18^{5}L_{0} + 32.86^{5}G_{4} + 0.37^{5}L_{10}$
83	Γ_1		28827	$66.85 ^{3}L_{0} + 30.56 ^{3}G_{A} + 1.46 ^{3}G_{5}$
84	$\Gamma_{2,3}$		28843	$44.73{}^{\circ}G_4 + 41.36{}^{\circ}I_{\circ} + 11.72{}^{\circ}D_{\circ}$
85	$\Gamma_{2,3}$		28892	$50.74~^{5}L_{0} + 39.37~^{5}G_{4} + 4.53~^{5}G_{5}$
86	$\Gamma_{2,3}$		2 8918	$52.28 {}^{\circ}G_{A} + 33.92 {}^{\circ}L_{0} + 12.71 {}^{\circ}D_{2}$
87	Γ_1		28919	$69.33{}^{5}G_{4} + 27.70{}^{5}L_{2} + 2.26{}^{5}D_{2}$
88	$\Gamma_{2,3}$		28963	$70.76^{5}L_{0} + 24.04^{5}G_{4} + 3.55^{5}D_{2}$
89	$\Gamma_{2,3}^{2,3}$		29018	94.78 3 L ₀ + 2.69 3 G ₄ + 1.64 3 L ₁₀
90	Γ_1^{\sim}		29042	$91.35^{\circ}L_{0} + 7.12^{\circ}G_{4} + 0.69^{\circ}L_{10}$
91	Γ_1		29104	$82.25^{\circ}L_{0} + 16.14^{\circ}G_{4} + 1.17^{\circ}L_{10}$
92	$\Gamma_{2,3}$		29186	$92.17^{3}L_{0} + 6.39^{3}G_{4} + 0.72^{3}L_{10}$
93	Γ_1^2		29199	$97.54^{\circ}L_{0} + 1.46^{\circ}L_{10} + 0.64^{\circ}G_{A}$
94	Γ_{\bullet}^{1}		29201	$96.80^{\circ}L_0 + 1.43^{\circ}L_{10} + 1.36^{\circ}G_4$
95	$\Gamma_{2,3}$		29253	$95.96 7.5 \pm 2.89 2.4 \pm 0.40 2.5 $
96	Γ_1		29273	$97.90^{5}L_{9} + 1.47^{5}G_{4} + 0.36^{5}G_{6}$
almodu	مسمع مامانه		. (C 1	

^aIrreducible representations of C_3 single group, $\Gamma_{2,3} = \Gamma_2 + \Gamma_3$. ^bAqueous centroids (cm⁻¹).

Table 20. Predicted energy levels for Dy³⁺ in Ca₅(PO₄)₃F, C_3 site. B_{nm} from table 6.

Level	I. R.ª	[(<i>S,L</i>) <i>J</i>] ^b	Energy	Free ion
Level	1. 1	[(3,27)]	(cm ⁻¹)	mixture (%)
1	Γ.,	⁶ H _{15/2}	0	$99.68^{6}H_{15/2} + 0.23^{6}F_{11/2} + 0.04^{6}H_{11/2}$
2	$\Gamma_{4,5}^{2}$	40	1	$99.84 ^{\circ}\text{H}_{15/2} + 0.12 ^{\circ}\text{F}_{11/2} + 0.01 ^{\circ}\text{F}_{0/2}$
3	Γ.		32	$99.93 ^{\circ}H_{15/2} + 0.02 ^{\circ}F_{7/2} + 0.01 ^{\circ}H_{13/2}$
4	-1/		<i>77</i>	$99.65 ^{\circ}H_{15/2} + 0.12 ^{\circ}H_{13/2} + 0.11 ^{\circ}F_{11/2}$
5	Γ _{4,5}		199	$99.23 ^{\circ}H_{15/2} + 0.53 ^{\circ}H_{13/2} + 0.13 ^{\circ}F_{11/2}$
6	$\Gamma_{4.5}^{4,5}$		412	$99.14 ^{\circ}H_{15/2} + 0.69 ^{\circ}H_{13/2} + 0.08 ^{\circ}F_{11/2}$
7	$\Gamma_{4,5}^{\Gamma_{4,5}}$		600	$99.24 ^{\circ}H_{15/2} + 0.56 ^{\circ}H_{13/2} + 0.08 ^{\circ}H_{11/2}$
8	$\Gamma_{4,5}$		721	$99.60^{\circ}H_{15/2} + 0.14^{\circ}H_{11/2} + 0.13^{\circ}H_{13/2}$
9.	$\Gamma_{4.5}$	^{.6} H _{13/2}	3443	99.01 ${}^{6}H_{13/2} + 0.75 {}^{6}F_{11/2} + 0.13 {}^{6}H_{11/2}$
10	145	3506	3481	$99.80 ^{\circ}H_{13/2} + 0.12 ^{\circ}F_{11/2} + 0.02 ^{\circ}F_{9/2}$
11	16		3622	$99.57 ^{\circ}H_{12/2} + 0.17 ^{\circ}H_{11/2} + 0.10 ^{\circ}H_{15/2}$
12	¹ 4.5		3769	$98.40^{6}H_{12/2} + 0.77^{8}H_{11/2} + 0.53^{8}H_{15/2}$
13	$\Gamma_{4,5}^{\Gamma_{4,5}}$		3858	97.42 ° $H_{10.70} + 1.32$ ° $H_{11.70} + 0.73$ ° $H_{15.70}$
14	$^2\Gamma_6$		3919	$97.86 ^{\circ}H_{12/2} + 0.99 ^{\circ}H_{11/2} + 0.60 ^{\circ}H_{15/2}$
15	$\Gamma_{4,5}^{0}$		3950	$99.11^{\circ}H_{13/2} + 0.31^{\circ}H_{11/2} + 0.26^{\circ}H_{9/2}$
16	$\Gamma_{4.5}$	$^{6}H_{11/2}$	5753	$99.16^{6}H_{11/2} + 0.55^{6}F_{11/2} + 0.14^{6}H_{13/2}$
1 <i>7</i>	-1 ∠	5833	5895	$97.73 ^{\circ}H_{11/2} + 0.98 ^{\circ}F_{11/2} + 0.92 ^{\circ}F_{0/2}$
18	145		6082	$97.22 ^{6}H_{11/2} + 1.03 ^{6}H_{0/2} + 0.68 ^{6}H_{12/2}$
19	145		6160	$97.41 ^{\circ}H_{11/2} + 0.82 ^{\circ}H_{12/2} + 0.80 ^{\circ}H_{0/2}$
20	-1 ∠		61 <i>7</i> 7	$96.78^{\circ}H_{11/2} + 1.25^{\circ}H_{0/2} + 1.08^{\circ}H_{12/2}$
21	145		6191	$97.19^{6}H_{11/2} + 1.19^{6}H_{9/2} + 0.76^{6}H_{13/2}$
22	$^{2}\Gamma_{c}$	$^{6}H_{9/2}$	7584	$83.00^{6}H_{9/2} + 15.56^{6}F_{11/2} + 1.12^{6}F_{9/2}$
23	1,5	7692	7737	$66.52 ^{\circ}H_{0/2} + 31.27 ^{\circ}F_{11/2} + 1.39 ^{\circ}H_{11/2}$
24		⁶ F _{11/2}	7826	54.57 $^{\circ}H_{0}$, $_{1}+42.45$ $^{\circ}F_{11}$, $_{2}+1.45$ $^{\circ}H_{7}$,
25	-1 <u>c</u>	1130	7903	$92.74 ^{\circ}F_{11/2} + 6.00 ^{\circ}H_{9/2} + 0.62 ^{\circ}H_{11/2}$
26	145	6F _{9/2}	7913	$74.26 ^{\circ}F_{11/2} + 24.56 ^{\circ}H_{0/2} + 0.33 ^{\circ}H_{11/2}$
27	145	900/	7949	$87.90^{6}F_{11/2}^{11/2} + 10.89^{6}H_{9/2}^{9/2} + 0.54^{6}H_{7/2}^{11/2}$
28	146	$^{6}H_{7/2}$	8001	$56.34 ^{6}H_{9/2} + 40.69 ^{6}F_{11/2} + 0.91 ^{6}H_{7/2}$
29	⁻ 1 6	9115	8025	$52.03 ^{6}H_{9/2} + 44.31 ^{6}F_{11/2} + 1.41 ^{6}F_{9/2}$
30	145		8049	$61.74 ^{6}H_{9/2} + 35.05 ^{6}F_{11/2} + 1.76 ^{6}H_{7/2}$
31	-1 A		8100	$52.62 ^{6}H_{9/2} + 44.60 ^{6}F_{11/2} + 0.86 ^{6}H_{11/2}$
32	145		8346 8991	$83.00 ^{6}F_{11/2} + 11.97 ^{6}H_{9/2} + 2.40 ^{6}H_{7/2} $ $68.08 ^{6}H_{7/2} + 30.28 ^{6}F_{9/2} + 0.54 ^{6}F_{11/2}$
33	1 4.5		9263	$60.08 \cdot H_{7/2} + 50.28 \cdot F_{9/2} + 0.54 \cdot I_{11/2}$ $52.21 \cdot 6F_{9/2} + 43.52 \cdot 6H_{7/2} + 3.10 \cdot 6H_{9/2}$
34	145		9263 9274	$61.34 {}^{6}F_{9/2} + 34.78 {}^{6}H_{7/2} + 1.49 {}^{6}H_{9/2}$
35 36	$\Gamma_{4,5}^{7,5}$ ${}^{2}\Gamma_{6}^{7}$		9274	$81.55 ^6F_{9/2} + 14.90 ^6H_{7/2} + 2.42 ^6H_{5/2}$
36 37	$\frac{2}{\Gamma_6}$		9359	$66.03 ^{6}F_{9/2} + 30.28 ^{6}H_{7/2} + 1.59 ^{6}H_{5/2}$
38	r 6		9368	$55.13 ^{6}H_{7/2} + 42.33 ^{6}F_{9/2} + 0.83 ^{6}H_{5/2}$
39	$\Gamma_{4,5}$		9456	$66.60 ^{6}F_{9/2} + 30.07 ^{6}H_{7/2} + 1.06 ^{6}H_{9/2}$
40	$\Gamma_{4,5}^{4,5}$		9503	$53.60 ^{6}H_{7/2} + 40.23 ^{6}F_{9/2} + 3.35 ^{6}H_{5/2}$
41	$\Gamma_{4,5}^{2}$		9600	$46.21^{6}F_{9/2} + 42.51^{6}H_{7/2} + 6.90^{6}H_{5/2}$
42		6H _{5/2}	10174	$93.38^{6}H_{5.0} + 2.36^{6}F_{7.0} + 2.22^{6}F_{0.0}$
43	$^{\Gamma_{4,5}}_{^2\Gamma_6}$	115/2 10168	10423	93.38 $^{6}H_{5/2}$ + 2.36 $^{6}F_{7/2}$ + 2.22 $^{6}F_{9/2}$ 85.46 $^{6}H_{5/2}$ + 9.64 $^{6}H_{7/2}$ + 2.05 $^{6}F_{7/2}$
43	$\Gamma_{4,5}^{16}$	10100	10423	$91.00^{6}H_{5/2} + 5.34^{6}F_{7/2} + 2.12^{6}H_{7/2}$
45	- 4,5 T	6 <u>r</u> _	11239	$98.16^{6}F_{7/2} + 0.66^{6}H_{7/2} + 0.52^{6}H_{5/2}$
45 46	$\Gamma_{4,5}^{\Gamma_{4,5}}$	⁶ F _{7/2} 11025	11239	$96.24 ^{\circ}\text{Fr}_{10} + 1.97 ^{\circ}\text{Hr}_{10} + 0.84 ^{\circ}\text{Fr}_{10}$
40 47	т 6	11023	11349	95.39 ${}^{6}F_{7/2} + 2.44 {}^{6}H_{5/2} + 0.67 {}^{6}H_{7/2}$
48	$\Gamma_{4,5}$		11407	$93.45 ^{6}F_{7/2} + 3.65 ^{6}H_{5/2} + 1.01 ^{6}F_{5/2}$
40	$\Gamma_{4,5}$		1140/	20.10 17/2 10.00 115/2 1101 15/2

Table 20. (cont'd) Predicted energy levels for Dy³⁺ in $Ca_5(PO_4)_3F$, C_3 site. B_{nm} from table 6.

Level	I. R.ª	[(<i>S,L</i>) <i>J</i>] ^b	Energy (cm ⁻¹)	Free ion mixture (%)
49 50 51	$\Gamma_{4,5}$ $\Gamma_{4,5}$ $^2\Gamma_6$	⁶ F _{5/2} 12432	12655 12705 12767	$97.69 {}^{6}F_{5/2} + 1.20 {}^{6}F_{3/2} + 0.44 {}^{6}H_{5/2} $ $97.29 {}^{6}F_{5/2} + 0.70 {}^{6}F_{3/2} + 0.69 {}^{6}H_{7/2} $ $96.67 {}^{6}F_{5/2} + 1.62 {}^{6}F_{3/2} + 0.52 {}^{6}F_{7/2} $
52 53	$^2\Gamma_6$ $\Gamma_{4,5}$	⁶ F _{3/2} 13212	13489 13498	$97.28 {}^{6}F_{3/2} + 1.34 {}^{6}F_{5/2} + 0.85 {}^{6}H_{5/2} $ $93.92 {}^{6}F_{3/2} + 3.81 {}^{6}F_{1/2} + 1.54 {}^{6}F_{5/2}$
54	$\Gamma_{4,5}$	⁶ F _{1/2} 13760	14060	$95.11^{6}F_{1/2} + 3.33^{6}F_{3/2} + 0.50^{6}H_{5/2}$
55 56 57 58 59	$\Gamma_{4,5} \\ \Gamma_{4,5} \\ ^{2}\Gamma_{6} \\ \Gamma_{4,5} \\ ^{2}\Gamma_{6}$	⁴ F _{9/2} 21144	21143 21303 21314 21407 21537	$97.63 {}^{4}F_{9/2} + 1.81 {}^{4}I_{15/2} + 0.55 {}^{4}G_{11/2} \\ 97.79 {}^{4}F_{9/2} + 1.88 {}^{4}I_{15/2} + 0.33 {}^{4}G_{11/2} \\ 97.61 {}^{4}F_{9/2} + 1.22 {}^{4}G_{11/2} + 1.16 {}^{4}I_{15/2} \\ 99.10 {}^{4}F_{9/2} + 0.84 {}^{4}I_{15/2} + 0.05 {}^{4}G_{11/2} \\ 92.80 {}^{4}F_{9/2} + 5.00 {}^{4}I_{15/2} + 2.20 {}^{4}G_{11/2} \\ \end{cases}$
60 61 62 63 64 65	$\Gamma_{4,5}$ $\Gamma_{4,5}$ $^{2}\Gamma_{6}$ $^{2}\Gamma_{6}$ $\Gamma_{4,5}$ $\Gamma_{4,5}$	⁴ I _{15/2} 22293	22213 22282 22413 22576 22609 22696	$\begin{array}{l} 99.57 {}^4I_{15/2} + 0.30 {}^4G_{11/2} + 0.13 {}^4F_{9/2} \\ 98.82 {}^4I_{15/2} + 1.06 {}^4G_{11/2} + 0.12 {}^4F_{9/2} \\ 94.96 {}^4I_{15/2} + 4.90 {}^4F_{9/2} + 0.14 {}^4G_{11/2} \\ 99.36 {}^4I_{15/2} + 0.48 {}^4G_{11/2} + 0.16 {}^4F_{9/2} \\ 94.40 {}^4I_{15/2} + 3.40 {}^4G_{11/2} + 2.20 {}^4F_{9/2} \\ 95.48 {}^4I_{15/2} + 3.59 {}^4G_{11/2} + 0.93 {}^4F_{9/2} \end{array}$
66 67 68	$\frac{^2\Gamma_6}{\Gamma_{4,5}}$	4 <i>C</i>	22710 22730	$94.88 {}^{4}I_{15/2} + 4.14 {}^{4}G_{11/2} + 0.97 {}^{4}F_{9/2} 96.66 {}^{4}I_{15/2} + 2.12 {}^{4}G_{11/2} + 1.22 {}^{4}F_{9/2}$
69 70 71	Γ _{4,5} ² Γ ₆ Γ _{4,5} Γ _{4,5}	⁴ G _{11/2} 23321	23278 23594 23625 23660	97.69 ${}^{4}G_{11/2}$ + 2.24 ${}^{4}I_{15/2}$ + 0.07 ${}^{4}F_{9/2}$ 95.95 ${}^{4}G_{11/2}$ + 3.21 ${}^{4}F_{9/2}$ + 0.84 ${}^{4}I_{15/2}$ 98.74 ${}^{4}G_{11/2}$ + 0.75 ${}^{4}I_{15/2}$ + 0.50 ${}^{4}F_{9/2}$ 99.05 ${}^{4}G_{11/2}$ + 0.76 ${}^{4}I_{15/2}$ + 0.18 ${}^{4}F_{9/2}$
72 73	$^{2}\Gamma_{6}^{7}$ $\Gamma_{4,5}$		23706 23759	$95.86 {}^{4}G_{11/2} + 3.80 {}^{4}I_{15/2} + 0.34 {}^{4}F_{9/2} 93.10 {}^{4}G_{11/2} + 6.79 {}^{4}I_{15/2} + 0.11 {}^{4}F_{9/2}$

^aIrreducible representations of C_3 double group, $\Gamma_{4,5} = \Gamma_4 + \Gamma_5$. ^bAqueous centroids (cm⁻¹).

Table 21. Predicted energy levels for Ho³⁺ in Ca₅(PO₄)₃F, C_3 site. B_{nm} from table 6.

Level	I. R.a	$[(S,L)J]^{b}$	Energy	Free ion
			(cm ⁻¹)	mixture (%)
1	$\Gamma_{2,3}$	$^{5}I_{8}$	0	$99.89 {}^{5}I_{8} + 0.09 {}^{5}I_{7} + 0.01 {}^{5}F_{5}$
2	$\Gamma_1^{r,s}$	8Ŏ	73	$99.91 {}^{5}I_{8} + 0.05 {}^{5}I_{7} + 0.02 {}^{5}I_{6}$
3	Γ_1		86	99.91 ${}^{5}I_{8} + 0.05 {}^{5}I_{7} + 0.03 {}^{5}I_{6}$
4	$\Gamma_{2,3}$		157	$99.93 {}^{5}I_{8} + 0.05 {}^{5}I_{7}$
5	$\Gamma_1^{j,z}$		327	$99.87 {}^{5}I_{8} + 0.06 {}^{5}I_{7} + 0.03 {}^{5}G_{6}$
6	$\Gamma_{2,3}$		330	$99.79^{5}I_{8} + 0.16^{5}I_{7} + 0.02^{5}G_{6}$
7	$\Gamma_{2,3}^{2,3}$		420	$99.86 {}^{5}I_{8} + 0.07 {}^{5}I_{7} + 0.03 {}^{5}G_{6}$
8	Γ_1		444	$99.90^{5}I_{8} + 0.04^{5}G_{6} + 0.02^{5}I_{7}$
9	$\Gamma_{2,3}$		460	$99.81^{5}I_{8} + 0.16^{5}I_{7} + 0.01^{5}G_{6}$
10	$\Gamma_{2,3}^{2,3}$		480	$99.88 {}^{5}I_{8} + 0.07 {}^{5}I_{7} + 0.02 {}^{5}G_{6}$
11	Γ_{l}		496	$99.89 {}^{5}I_{8} + 0.05 {}^{5}I_{7} + 0.02 {}^{5}G_{6}$
12	Γ_1	$^{5}I_{7}$	5200	$99.74^{5}I_{7} + 0.16^{5}I_{6} + 0.08^{5}I_{8}$
13	Γ_1	5116	5201	$99.71 {}^{5}I_{7} + 0.17 {}^{5}I_{6} + 0.09 {}^{5}I_{8}$
14	$\Gamma_{2,3}$		5238	$99.53 {}^{5}I_{7}' + 0.24 {}^{5}I_{8}' + 0.14 {}^{5}I_{6}'$
15	$\Gamma_{2,3}^{2,3}$		5278	$99.67 {}^{5}I_{7} + 0.24 {}^{5}I_{8} + 0.04 {}^{5}I_{6}$
16	$\Gamma_{2,3}^{2,3}$		5324	$99.55 {}^{5}I'_{7} + 0.36 {}^{5}I'_{6} + 0.04 {}^{5}I'_{8}$
17	$\Gamma_1^{2,3}$		5362	$99.56 {}^{5}I_{7} + 0.30 {}^{5}I_{6} + 0.06 {}^{5}I_{5}$

Table 21 (cont'd). Predicted energy levels for Ho^{3+} in $\text{Ca}_5(\text{PO}_4)_3\text{F}$, C_3 site. B_{nm} from table 6.

Level	I. R.ª	$[(S,L)J]^{b}$	Energy (cm ⁻¹)	Free ion mixture (%)
18 19 20 21	$\Gamma_{1} \\ \Gamma_{2,3} \\ \Gamma_{2,3} \\ \Gamma_{1}$		5389 5435 5466 5475	$99.75 {}^{5}I_{7} + 0.15 {}^{5}I_{6} + 0.04 {}^{5}I_{8}$ $99.78 {}^{5}I_{7} + 0.07 {}^{5}I_{6} + 0.05 {}^{5}I_{5}$ $99.84 {}^{5}I_{7} + 0.04 {}^{5}I_{8} + 0.03 {}^{5}F_{5}$ $99.86 {}^{5}I_{7} + 0.05 {}^{5}F_{5} + 0.02 {}^{5}I_{8}$
22 23 24 25 26 27 28 29 30	Γ_{1} $\Gamma_{2,3}$ Γ_{1} $\Gamma_{2,3}$ Γ_{1} Γ_{1} Γ_{1} $\Gamma_{2,3}$ Γ_{1} $\Gamma_{2,3}$ Γ_{1}	⁵ I ₆ 8614	8757 8758 8759 8761 8809 8818 8890 8972 9005	$\begin{array}{l} 99.30 {}^{5}I_{6} + 0.44 {}^{5}I_{5} + 0.20 {}^{5}I_{7} \\ 99.49 {}^{5}I_{6} + 0.26 {}^{5}I_{5} + 0.16 {}^{5}I_{7} \\ 99.45 {}^{5}I_{6} + 0.32 {}^{5}I_{5} + 0.16 {}^{5}I_{7} \\ 99.11 {}^{5}I_{6} + 0.37 {}^{5}I_{7} + 0.37 {}^{5}I_{5} \\ 99.48 {}^{5}I_{6} + 0.25 {}^{5}I_{7} + 0.12 {}^{5}I_{5} \\ 99.40 {}^{5}I_{6} + 0.30 {}^{5}I_{5} + 0.15 {}^{5}I_{7} \\ 99.51 {}^{5}I_{6} + 0.29 {}^{5}I_{5} + 0.06 {}^{5}F_{5} \\ 99.72 {}^{5}I_{6} + 0.08 {}^{5}I_{5} + 0.07 {}^{5}I_{4} \\ 99.85 {}^{5}I_{6} + 0.04 {}^{5}I_{4} + 0.03 {}^{5}F_{4} \end{array}$
31 32 33 34 35 36 37	$\Gamma_{2,3}$ $\Gamma_{2,3}$ Γ_{1} Γ_{1} $\Gamma_{2,3}$ $\Gamma_{2,3}$ Γ_{1}	⁵ I ₅ 11164	11308 11322 11329 11345 11425 11490 11535	$\begin{array}{c} 98.88 {}^{5}I_{5} + 0.63 {}^{5}I_{4} + 0.38 {}^{5}I_{6} \\ 99.30 {}^{5}I_{5} + 0.37 {}^{5}I_{6} + 0.22 {}^{5}I_{4} \\ 97.72 {}^{5}I_{5} + 1.72 {}^{5}I_{4} + 0.38 {}^{5}I_{6} \\ 98.35 {}^{5}I_{5} + 0.79 {}^{5}I_{6} + 0.75 {}^{5}I_{4} \\ 99.54 {}^{5}I_{5} + 0.18 {}^{5}I_{4} + 0.17 {}^{5}I_{6} \\ 99.18 {}^{5}I_{5} + 0.61 {}^{5}I_{4} + 0.07 {}^{5}I_{6} \\ 99.78 {}^{5}I_{5} + 0.08 {}^{5}F_{5} + 0.03 {}^{5}F_{1} \end{array}$
38 39 40 41 42 43	Γ_{1} Γ_{1} $\Gamma_{2,3}$ $\Gamma_{2,3}$ Γ_{1} $\Gamma_{2,3}$	⁵ I ₄ 13219	13218 13329 13363 13520 13568 13635	$\begin{array}{l} 99.23 {}^{5}I_{4} + 0.58 {}^{5}I_{5} + 0.11 {}^{5}I_{6} \\ 98.14 {}^{5}I_{4} + 1.75 {}^{5}I_{5} + 0.06 {}^{5}I_{6} \\ 99.14 {}^{5}I_{4} + 0.64 {}^{5}I_{5} + 0.13 {}^{5}I_{6} \\ 98.98 {}^{5}I_{4} + 0.82 {}^{5}I_{5} + 0.05 {}^{5}I_{6} \\ 99.59 {}^{5}I_{4} + 0.15 {}^{5}I_{5} + 0.11 {}^{5}S_{2} \\ 99.65 {}^{5}I_{4} + 0.18 {}^{5}I_{5} + 0.05 {}^{5}F_{3} \end{array}$
44 45 46 47 48 49 50	Γ_{1} Γ_{1} $\Gamma_{2,3}$ $\Gamma_{2,3}$ $\Gamma_{2,3}$ Γ_{1} $\Gamma_{2,3}$	⁵ F ₅ 15519	15602 15620 15653 15670 15771 15800 15950	$99.38 {}^{5}F_{5} + 0.34 {}^{5}G_{6} + 0.13 {}^{5}F_{4}$ $99.31 {}^{5}F_{5} + 0.35 {}^{5}G_{6} + 0.18 {}^{5}F_{4}$ $99.32 {}^{5}F_{5} + 0.29 {}^{5}F_{4} + 0.23 {}^{5}G_{6}$ $99.39 {}^{5}F_{5} + 0.25 {}^{5}G_{6} + 0.15 {}^{5}F_{4}$ $99.52 {}^{5}F_{5} + 0.15 {}^{5}F_{4} + 0.11 {}^{5}G_{6}$ $99.68 {}^{5}F_{5} + 0.08 {}^{5}I_{5} + 0.07 {}^{5}F_{4}$ $99.87 {}^{5}F_{5} + 0.05 {}^{3}G_{5} + 0.03 {}^{5}G_{6}$
51 52 53	Γ_1 $\Gamma_{2,3}$ $\Gamma_{2,3}$	⁵ S ₂ 18353	18558 18571 18588	$93.92 {}^{5}S_{2} + 5.72 {}^{5}F_{4} + 0.17 {}^{5}G_{6}$ $95.68 {}^{5}S_{2} + 3.99 {}^{5}F_{4} + 0.20 {}^{5}G_{6}$ $97.36 {}^{5}S_{2} + 2.27 {}^{5}F_{4} + 0.18 {}^{5}G_{6}$
54 55 56 57 58 59	$\Gamma_{1} \\ \Gamma_{2,3} \\ \Gamma_{1} \\ \Gamma_{2,3} \\ \Gamma_{1} \\ \Gamma_{2,3} \\ \Gamma_{1}$	⁵ F ₄ 18612	18682 18747 18849 18857 18884 18968	$93.62 {}^{5}F_{4} + 5.37 {}^{5}S_{2} + 0.56 {}^{5}G_{6}$ $95.14 {}^{5}F_{4} + 3.97 {}^{5}S_{2} + 0.49 {}^{5}G_{6}$ $98.84 {}^{5}F_{4} + 0.54 {}^{5}F_{3} + 0.18 {}^{5}G_{6}$ $97.07 {}^{5}F_{4} + 2.13 {}^{5}S_{2} + 0.24 {}^{5}F_{2}$ $98.46 {}^{5}F_{4} + 0.91 {}^{5}F_{3} + 0.17 {}^{5}F_{5}$ $98.93 {}^{5}F_{4} + 0.53 {}^{5}F_{5} + 0.18 {}^{5}S_{2}$
60 61 62 63 64	$\Gamma_{1} \\ \Gamma_{2,3} \\ \Gamma_{1} \\ \Gamma_{2,3} \\ \Gamma_{1}$	⁵ F ₃ 20672	20759 20805 20949 20976 20990	$98.84 {}^{5}F_{3} + 0.62 {}^{3}G_{5} + 0.24 {}^{5}F_{4}$ $97.81 {}^{5}F_{3} + 1.15 {}^{5}F_{2} + 0.47 {}^{3}G_{5}$ $98.02 {}^{5}F_{3} + 0.95 {}^{5}G_{6} + 0.72 {}^{5}F_{4}$ $93.11 {}^{5}F_{3} + 6.06 {}^{5}F_{2} + 0.37 {}^{5}G_{6}$ $98.08 {}^{5}F_{3} + 0.85 {}^{5}F_{4} + 0.77 {}^{5}G_{6}$

Table 21 (cont'd). Predicted energy levels for Ho^{3+} in $\text{Ca}_5(\text{PO}_4)_3\text{F}$, C_3 site. B_{nm} from table 6.

Level	I. R.a	$[(S,L)J]^{b}$	Energy	Free ion
	-		(cm ⁻¹)	mixture (%)
65	Γ_1	$^{5}F_{2}$	21252	$98.50 {}^{5}F_{2} + 0.98 {}^{5}G_{6} + 0.31 {}^{3}K_{8}$
66	$\Gamma_{2,3}$	21130	21371	$94.83 {}^{5}F_{2} + 2.36 {}^{5}F_{3} + 1.22 {}^{3}K_{8}$
67	$\Gamma_{2,3}$		21430	$90.77 {}^{5}F_{2}^{2} + 4.35 {}^{5}F_{3} + 3.23 {}^{3}K_{8}^{\circ}$
68	Γ_1	${}^{3}K_{8}$	21467	$99.31{}^{3}K_{8}+0.49{}^{5}G_{6}+0.18{}^{5}F_{2}$
69	$\Gamma_{2,3}$	21307	21471	$98.34 {}^{3}K_{8} + 1.04 {}^{5}F_{2} + 0.50 {}^{5}G_{6}$
7 0	1 2.3		21481	$98.26^{3}K_{0} + 1.47^{5}F_{1} + 0.22^{5}F_{1}$
7 1	1 ₁		21483	$99.48^{3}K_{8} + 0.36^{5}G_{6} + 0.11^{5}F_{2}$
72	$\Gamma_{2,3}$		21491	$98.32 {}^{5}K_{g} + 1.25 {}^{5}F_{2} + 0.35 {}^{5}G_{4}$
73	Γ_1		21518	$98.54^{3}K_{8} + 1.39^{5}G_{6} + 0.03^{5}F_{2}$
74	$\Gamma_{2,3}$		21524	$99.32 {}^{3}K_{8} + 0.32 {}^{3}G_{6} + 0.26 {}^{3}F_{2}$
7 5	$\Gamma_{2,3}$		21597	$99.64^{3}K_{8} + 0.18^{5}G_{6} + 0.15^{5}F_{2}$
76	Γ_1		21616	$98.18^{3}K_{8} + 1.69^{5}G_{6} + 0.11^{5}F_{3}^{2}$
77 70	Γ_1		21622	$98.65^{3}K_{8} + 1.27^{5}G_{6} + 0.07^{5}F_{3}$
78	$\Gamma_{2,3}$	_	21654	$99.88^{3}K_{8} + 0.10^{5}G_{6} + 0.01^{5}F_{2}$
<i>7</i> 9	Γ_1	${}^{5}G_{6}$	22181	$97.77 {}^{5}G_{6} + 0.67 {}^{5}F_{2} + 0.63 {}^{3}K_{8}$
80	$\Gamma_{\mathbf{l}}$	22094	22191	$96.85{}^{5}G_{c} + 1.90{}^{3}K_{o} + 0.89{}^{5}F_{1}$
81	Γ_1	${}^{5}F_{1}$	22209	$96.93{}^{5}G_{6} + 2.04{}^{3}K_{8} + 0.37{}^{5}F_{3}$
82	$\Gamma_{2,3}$	22375	22229	$97.30^{\circ}G_{6} + 0.58^{\circ}F_{2} + 0.58^{\circ}G_{5}$
83	$\Gamma_{2,3}$		22320	$97.43 {}^{5}G_{6} + 0.89 {}^{3}G_{5} + 0.62 {}^{5}F_{1}$
84	$\Gamma_{2,3}$		22420	$97.05 {}^{5}G_{6} + 1.19 {}^{5}F_{1} + 0.85 {}^{3}G_{5}$
85	1 1		22467	$66.37 {}^{5}G_{6} + 32.81 {}^{5}F_{1} + 0.28 {}^{3}K_{8}$
86	Γ_1		22513	$73.74 {}^{5}G_{6} + 25.05 {}^{5}F_{1} + 0.35 {}^{5}K_{8}$
87	$\Gamma_{2,3}$		22516	$94.51 {}^{5}G_{6} + 3.16 {}^{5}F_{1} + 0.98 {}^{3}G_{5}$
88	Γ_1		22554	$58.01 {}^{5}G_{6} + 40.80 {}^{5}F_{1} + 0.60 {}^{5}F_{3}$
89	$\Gamma_{2,3}$	•	22703	$93.02{}^{5}F_{1} + 5.42{}^{5}G_{6} + 0.73{}^{5}F_{2}$
90	Γ_1	${}^{3}G_{5}$	24043	$99.23^{3}G_{5} + 0.67^{5}F_{3} + 0.04^{5}F_{5}$
91	$\Gamma_{2,3}$	23887	24065	$98.77^{3}G_{5} + 0.41^{5}G_{6} + 0.34^{5}F_{3}$
92	$\Gamma_{2,3}$		24096	$98.84\ {}^{3}G_{5} + 0.63\ {}^{5}G_{6} + 0.20\ {}^{5}F_{2}$
93	Γ_1		24158	$99.73 {}^{3}G_{5} + 0.12 {}^{5}G_{6} + 0.10 {}^{5}F_{4}$
94	Γ_1		24175	$99.62 {}^{3}G_{5} + 0.19 {}^{5}G_{6} + 0.05 {}^{5}F_{4}$
95 06	$\Gamma_{2,3}$		24219	$98.50 {}^{3}G_{5} + 1.19 {}^{5}G_{6} + 0.11 {}^{5}F_{2}$
96	$\Gamma_{2,3}$		24265	$98.76{}^{3}G_{5} + 0.98{}^{5}G_{6} + 0.10{}^{5}F_{4}$

^aIrreducible representations of C_3 single group, $\Gamma_{2,3} = \Gamma_2 + \Gamma_3$. ^bAqueous centroids (cm⁻¹).

Table 22. Predicted energy levels for Tm^{3+} in $Ca_5(PO_4)_3F$, C_3 site. B_{nm} from table 6.

Level	I. R.ª	[(<i>S,L</i>) <i>J</i>] ^b	Energy (cm ⁻¹)	Free ion mixture (%)
1	Γ_1	$^{3}H_{6}$	0	$99.76 {}^{3}H_{6} + 0.20 {}^{3}F_{4} + 0.02 {}^{3}H_{4}$ $99.82 {}^{3}H_{6} + 0.12 {}^{3}F_{4} + 0.03 {}^{3}F_{3}$
2	$\Gamma_{2,3}$	202	56	$99.82^{3}H_{6} + 0.12^{3}F_{4} + 0.03^{3}F_{3}$
3	$\Gamma_{2,3}^{-2}$		186	$99.79^{3}H_{6} + 0.14^{3}F_{4} + 0.03^{3}H_{5}$
4	Γ_1		329	$99.56^{3}H_{6} + 0.35^{3}F_{4} + 0.06^{3}H_{5}$
5	Γ_1		418	$99.60^{3}H_{6} + 0.28^{3}F_{4} + 0.09^{3}H_{5}$
6	$\Gamma_{2,3}$		657	$99.60^{3}H_{4} + 0.32^{3}F_{4} + 0.06^{3}H_{5}$
7	$\Gamma_1^{'}$		659	$99.90^{3}H_{6} + 0.08^{3}F_{4} + 0.01^{3}H_{4}$
8	Γ_1		661	$99.88^{3}H_{6} + 0.10^{3}F_{4} + 0.01^{3}H_{4}$
9	$\Gamma_{2,3}$		896	99.90 ${}^{3}H_{6}^{6} + 0.08 {}^{3}F_{4}^{4} + 0.01 {}^{3}H_{4}^{3}$ 99.88 ${}^{3}H_{6} + 0.10 {}^{3}F_{4} + 0.01 {}^{3}H_{4}^{4}$ 99.95 ${}^{3}H_{6}^{6} + 0.03 {}^{3}H_{5}^{5} + 0.01 {}^{3}F_{3}^{3}$

Table 22 (cont'd). Predicted energy levels for Tm^{3+} in $Ca_5(PO_4)_3F$, C_3 site. B_{nm} from table 6.

Level	I. R.ª	[(<i>S,L</i>) <i>J</i>] ^b	Energy (cm ⁻¹)	Free ion mixture (%)
10 11 12 13 14 15	$\Gamma_{2,3} \\ \Gamma_{1} \\ \Gamma_{2,3} \\ \Gamma_{1} \\ \Gamma_{1} \\ \Gamma_{2,3} \\ \Gamma_{1} \\ \Gamma_{2,3}$	³ F ₄ 5812	5834 5843 6068 6171 6211 6226	$99.46 {}^{3}F_{4} + 0.25 {}^{3}H_{6} + 0.21 {}^{3}H_{5}$ $99.66 {}^{3}F_{4} + 0.13 {}^{3}H_{4} + 0.11 {}^{3}H_{5}$ $99.03 {}^{3}F_{4} + 0.71 {}^{3}H_{5} + 0.17 {}^{3}H_{6}$ $99.10 {}^{3}F_{4} + 0.57 {}^{3}H_{6} + 0.31 {}^{3}H_{5}$ $98.50 {}^{3}F_{4} + 1.00 {}^{3}H_{5} + 0.47 {}^{3}H_{6}$ $99.35 {}^{3}F_{4} + 0.38 {}^{3}H_{5} + 0.17 {}^{3}H_{6}$
16 17 18 19 20 21 22	$\Gamma_{1} \ \Gamma_{2,3} \ \Gamma_{2,3} \ \Gamma_{1} \ \Gamma_{1} \ \Gamma_{2,3}$	³ H ₅ 8390	8263 8312 8460 8697 8748 8893 8969	$99.72 {}^{3}H_{5} + 0.18 {}^{3}F_{4} + 0.07 {}^{3}F_{3}$ $98.90 {}^{3}H_{5} + 0.72 {}^{3}F_{4} + 0.14 {}^{3}F_{2}$ $99.38 {}^{3}H_{5} + 0.23 {}^{3}F_{3} + 0.20 {}^{3}H_{4}$ $99.17 {}^{3}H_{5} + 0.35 {}^{3}F_{3} + 0.33 {}^{3}F_{4}$ $98.55 {}^{3}H_{5} + 0.93 {}^{3}F_{4} + 0.37 {}^{3}F_{3}$ $99.68 {}^{3}H_{5} + 0.22 {}^{3}F_{4} + 0.03 {}^{3}F_{2}$ $99.49 {}^{3}H_{5} + 0.27 {}^{3}F_{4} + 0.17 {}^{3}H_{4}$
23 24 25 26 27 28	$\Gamma_{2,3} \\ \Gamma_{2,3} \\ \Gamma_{1} \\ \Gamma_{2,3} \\ \Gamma_{2,3} \\ \Gamma_{1} \\ \Gamma_{1}$	³ H ₄ 12720	12715 12744 12875 13102 13160 13240	98.26 ${}^{3}H_{4} + 0.97 {}^{3}F_{2} + 0.52 {}^{3}F_{3}$ 98.44 ${}^{3}H_{4} + 1.34 {}^{3}F_{3} + 0.12 {}^{3}F_{4}$ 98.66 ${}^{3}H_{4} + 0.95 {}^{3}F_{2} + 0.20 {}^{3}H_{5}$ 99.11 ${}^{3}H_{4} + 0.46 {}^{3}F_{3} + 0.18 {}^{3}H_{5}$ 97.74 ${}^{3}H_{4} + 2.02 {}^{3}F_{3} + 0.12 {}^{3}H_{5}$ 97.15 ${}^{3}H_{4} + 2.63 {}^{3}F_{3} + 0.08 {}^{3}H_{5}$
29 30 31 32 33	Γ_{1} Γ_{1} $\Gamma_{2,3}$ Γ_{1} $\Gamma_{2,3}$	³ F ₃	14675 14742 14763 14801 14845	$97.39 {}^{3}F_{3} + 2.19 {}^{3}H_{4} + 0.31 {}^{3}H_{5}$ $95.56 {}^{3}F_{3} + 3.80 {}^{3}H_{4} + 0.30 {}^{3}F_{2}$ $96.88 {}^{3}F_{3} + 2.65 {}^{3}F_{2} + 0.26 {}^{3}H_{5}$ $99.79 {}^{3}F_{3} + 0.10 {}^{3}H_{5} + 0.07 {}^{3}H_{4}$ $94.36 {}^{3}F_{3} + 4.84 {}^{3}F_{2} + 0.61 {}^{3}H_{4}$
34 35 36	$\Gamma_{2,3} \ \Gamma_{2,3} \ \Gamma_{1}$	³ F ₂ 15116	15277 15445 15597	$95.30 {}^{3}F_{2} + 3.11 {}^{3}F_{3} + 1.38 {}^{3}H_{4}$ $94.71 {}^{3}F_{2} + 4.03 {}^{3}F_{3} + 1.02 {}^{3}H_{4}$ $99.33 {}^{3}F_{2} + 0.34 {}^{3}F_{3} + 0.12 {}^{3}H_{4}$
37 38 39 40 41 42	Γ_{1} $\Gamma_{2,3}$ $\Gamma_{2,3}$ $\Gamma_{2,3}$ Γ_{1} Γ_{1}	¹ G ₄ 21374	21188 21322 21697 21802 21816 21904	$99.86 {}^{1}G_{4} + 0.05 {}^{3}P_{2} + 0.03 {}^{3}F_{3}$ $99.78 {}^{1}G_{4} + 0.05 {}^{3}F_{3} + 0.05 {}^{1}I_{6}$ $99.84 {}^{1}G_{4} + 0.09 {}^{1}I_{6} + 0.03 {}^{3}H_{4}$ $99.72 {}^{1}G_{4} + 0.17 {}^{1}D_{2} + 0.03 {}^{1}I_{6}$ $99.88 {}^{1}G_{4} + 0.04 {}^{3}F_{3} + 0.04 {}^{1}I_{6}$ $99.90 {}^{1}G_{4} + 0.05 {}^{1}I_{6} + 0.03 {}^{3}H_{5}$
43 44 45	$\Gamma_{2,3} \ \Gamma_{2,3} \ \Gamma_{1}$	¹ D ₂ 28032	28098 28387 28451	$99.69 {}^{1}D_{2} + 0.17 {}^{1}G_{4} + 0.10 {}^{1}I_{6}$ $99.60 {}^{1}D_{2} + 0.21 {}^{3}P_{1} + 0.06 {}^{1}I_{6}$ $99.77 {}^{1}D_{2} + 0.07 {}^{3}F_{2} + 0.04 {}^{3}P_{0}$
46 47 48 49 50 51 52 53 54 55 56	Γ_{1} $\Gamma_{2,3}$ $\Gamma_{2,3}$ Γ_{1} Γ_{1} $\Gamma_{2,3}$ Γ_{1} Γ_{1} Γ_{1} Γ_{1} Γ_{1} $\Gamma_{2,3}$	¹ I ₆ 34886 ³ P ₀ 35637 ³ P ₁ 36297	34674 34716 34793 34824 34946 35030 35356 35880 36289 36295 36298 36677	$\begin{array}{c} 99.96 {}^{1}I_{6} + 0.02 {}^{1}G_{4} + 0.02 {}^{3}P_{2} \\ 99.63 {}^{1}I_{6} + 0.26 {}^{3}P_{2} + 0.07 {}^{1}D_{2} \\ 99.68 {}^{1}I_{6} + 0.22 {}^{3}P_{2} + 0.06 {}^{1}D_{2} \\ 99.95 {}^{1}I_{6} + 0.04 {}^{1}G_{4} + 0.01 {}^{3}P_{0} \\ 99.71 {}^{1}I_{6} + 0.21 {}^{3}P_{0} + 0.03 {}^{1}G_{4} \\ 99.79 {}^{1}I_{6} + 0.10 {}^{1}G_{4} + 0.06 {}^{3}P_{2} \\ 99.91 {}^{1}I_{6} + 0.06 {}^{3}P_{2} + 0.01 {}^{1}D_{2} \\ 98.18 {}^{3}P_{0} + 0.90 {}^{3}P_{2} + 0.81 {}^{1}I_{6} \\ 58.43 {}^{3}P_{1} + 41.56 {}^{1}I_{6} + 0.01 {}^{3}F_{3} \\ 99.17 {}^{1}I_{6} + 0.64 {}^{3}P_{0} + 0.08 {}^{3}P_{1} \\ 58.51 {}^{1}I_{6} + 41.48 {}^{3}P_{1} \\ 97.84 {}^{3}P_{1} + 1.87 {}^{3}P_{2} + 0.20 {}^{1}D_{2} \end{array}$

Table 22 (cont'd). Predicted energy levels for Tm^{3+} in $Ca_5(PO_4)_3F$, C_3 site. B_{nm} from table 6.

Level	I. R.ª	[(<i>S,L</i>) <i>J</i>] ^b	Energy (cm ⁻¹)	Free ion mixture (%)
58 59 60	$\Gamma_{2,3}$ $\Gamma_{2,3}$ Γ_1	³ P ₂ 38193	38196 38525 38960	$99.47 {}^{3}P_{2} + 0.37 {}^{1}I_{6} + 0.12 {}^{3}P_{1}$ $97.96 {}^{3}P_{2} + 1.74 {}^{3}P_{1} + 0.22 {}^{1}I_{6}$ $98.89 {}^{3}P_{2} + 0.84 {}^{3}P_{0} + 0.17 {}^{1}I_{6}$
61	Γ_1	¹ S ₀ 79592	79855	$99.97{}^{1}S_{0} + 0.01{}^{3}P_{2} + 0.01{}^{1}G_{4}$

^aIrreducible representations of C_3 single group, $\Gamma_{2,3} = \Gamma_2 + \Gamma_3$. ^bAqueous centroid (cm⁻¹).

Table 23. Predicted energy levels for Yb³⁺ in Ca₅(PO₄)₃F, C_3 site. B_{nm} from table 6.

Level	I. R.ª	[(<i>S,L</i>) <i>J</i>] ^b	Energy (cm ⁻¹)	Free ion mixture (%)
1 2 3 4	$^{2}\Gamma_{6}$ $\Gamma_{4,5}$ $\Gamma_{4,5}$ $\Gamma_{4,5}$	² F _{7/2} 250	0 52 318 891	$\begin{array}{c} 99.97 ^2F_{7/2} + 0.03 ^2F_{5/2} \\ 99.92 ^2F_{7/2} + 0.08 ^2F_{5/2} \\ 99.96 ^2F_{7/2} + 0.04 ^2F_{5/2} \\ 99.98 ^2F_{7/2} + 0.02 ^2F_{5/2} \end{array}$
5 6 7	$^{2}\Gamma_{6}$ $\Gamma_{4,5}$ $\Gamma_{4,5}$	² F _{5/2} 10450	10231 10359 10988	$99.97 {}^{2}F_{5/2} + 0.03 {}^{2}F_{7/2}$ $99.94 {}^{2}F_{5/2} + 0.06 {}^{2}F_{7/2}$ $99.92 {}^{2}F_{5/2} + 0.08 {}^{2}F_{7/2}$

^aIrreducible representations of C_3 double group, $\Gamma_{4,5} = \Gamma_4 + \Gamma_5$. ^bAqueous centroids (cm⁻¹).

Table 24. Predicted energy levels for Ce^{3+} in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	[(S,L)]] ^a	Energy (cm ⁻¹)	Free ion mixture (%)
1 2 3	² F _{5/2} 250	0 561 1263	$98.03 {}^{2}F_{5/2} + 1.97 {}^{2}F_{7/2} 93.72 {}^{2}F_{5/2} + 6.28 {}^{2}F_{7/2} 90.08 {}^{2}F_{5/2} + 9.92 {}^{2}F_{7/2}$
4 5 6 7	² F _{7/2} 2550	2330 2819 3455 3859	$93.56 {}^{2}F_{7/2} + 6.44 {}^{2}F_{5/2}$ $92.32 {}^{2}F_{7/2} + 7.68 {}^{2}F_{5/2}$ $98.45 {}^{2}F_{7/2} + 1.55 {}^{2}F_{5/2}$ $97.50 {}^{2}F_{7/2} + 2.50 {}^{2}F_{5/2}$

^aAqueous centroids (cm⁻¹).

Table 25. Predicted energy levels for Pr^{3+} in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	I. R.	$[(S,L)J]^a$	Energy (cm ⁻¹)	Free ion mixture (%)
1	Γ_1	$^{3}H_{\Lambda}$	0	$98.23^{3}H_{4} + 1.09^{3}H_{5} + 0.29^{3}F_{2}$
2	Γ_1	245	61	$97.36^{3}H_{4} + 2.10^{3}H_{5} + 0.23^{3}F_{3}$
3	Γ_2		509	$95.53^{3}H_{4}^{4} + 3.07^{3}H_{5}^{3} + 1.07^{3}F_{2}^{3}$
4	Γ_1		636	$97.19^{3}H_{4} + 1.51^{3}H_{5} + 0.82^{3}F_{2}$
5	Γ_2		655	$97.81^{3}H_{4} + 1.58^{3}H_{5} + 0.41^{3}F_{2}$
6	Γ_2		766	$97.00^{3}H_{4} + 2.32^{3}H_{5} + 0.50^{3}F_{2}$
7	$\Gamma_1^{\overline{\iota}}$		1072	$97.42^{3}H_{4} + 1.29^{3}F_{2} + 0.93^{3}H_{5}$
8	Γ_1		1151	$98.36^{3}H_{4} + 0.58^{3}F_{3} + 0.53^{3}H_{5}$
9	Γ_2		1240	$97.59^{3}H_{4} + 1.50^{3}H_{5} + 0.77^{3}F_{3}$

Table 25 (cont'd). Predicted energy levels for Pr^{3+} in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	I.R.	$[(S,L)]^a$	Energy	Free ion
			(cm ⁻¹)	mixture (%)
10	Γ_2	$^{3}H_{5}$	2164	$95.69^{3}H_{5} + 2.09^{3}H_{4} + 1.03^{3}H_{6}$
11	Γ_2^2	2323	2205	$94.50^{3}H_{5} + 3.27^{3}H_{4} + 1.51^{3}H_{6}$
12	Γ_1^2		2587	$94.67^{3}H_{5} + 2.26^{3}H_{A} + 1.12^{3}F_{3}$
13	Γ_2		2643	$95.94^{3}H_{5} + 1.78^{3}H_{6} + 1.37^{3}F_{3}$
14	Γ_1^2		2654	$94.93^{3}H_{5} + 2.65^{3}H_{6} + 1.33^{3}H_{A}$
15	Γ_1		2702	$94.74^{3}H_{5} + 2.91^{3}H_{6} + 1.06^{3}F_{2}$
16	Γ_2		297 0	$95.42^{3}H_{5} + 1.55^{3}F_{2} + 1.28^{3}H_{4}$
17	Γ_2^-		3051	$97.46^{3}H_{5} + 0.90^{3}F_{3} + 0.72^{3}H_{A}$
18	Γ_1	•	3085	$94.18^{3}H_{5} + 1.50^{3}H_{4} + 1.49^{3}H_{6}$
19	Γ_1		3196	$95.79^{3}H_{5} + 1.38^{3}H_{6} + 1.05^{3}F_{2}$
20	Γ_2		3200	$96.33^{3}H_{5} + 1.27^{3}F_{2} + 0.92^{3}F_{4}$
21	Γ_1	$^{3}H_{6}$	4214	$95.37^{3}H_{6} + 2.23^{3}H_{5} + 1.13^{3}F_{4}$
22	Γ_1^1	4496	4226	$94.14 {}^{3}H_{6} + 3.41 {}^{3}H_{5} + 1.27 {}^{3}F_{4}$
23	Γ_2^1		4558	$94.47^{\circ}H_{c} + 2.28^{\circ}H_{c} + 1.77^{\circ}F_{A}$
24	Γ_1^2		4669	$93.45^{3}H_{6} + 3.38^{3}F_{A} + 1.25^{3}H_{5}$
25	Γ_2		4748	$95.19^{3}H_{c} + 1.79^{3}H_{c} + 1.26^{3}F_{3}$
26	Γ_2		4875	$96.45^{3}H_{c} + 1.50^{3}F_{4} + 0.89^{3}F_{2}$
27	Γ_1		5066	$92.29 {}^{9}H_{4} + 3.95 {}^{9}F_{2} + 1.77 {}^{9}F_{3}$
28	Γ_{i}		5116	$92.89 {}^{3}H_{c} + 3.52 {}^{3}F_{2} + 1.99 {}^{3}F_{A}$
29	Γ_2		5192	$82.42^{3}H_{6}^{6} + 15.26^{3}F_{2} + 0.97^{3}F_{4}$
30	Γ_{2}		5280	$88.59 {}^{3}H_{6} + 3.86 {}^{3}F_{2} + 3.73 {}^{3}F_{4}$ $84.53 {}^{3}H_{6} + 10.92 {}^{3}F_{2} + 1.82 {}^{3}F_{4}$
31	Γ_1		5327	$84.53^{\circ}H_{6} + 10.92^{\circ}F_{2} + 1.82^{\circ}F_{4}$
32	Γ_1		5351	$87.51^{3}H_{6} + 4.50^{3}F_{2} + 4.15^{3}F_{4}$
33	Γ_2		5374	$92.93^{3}H_{6} + 3.14^{3}F_{3} + 2.72^{3}F_{4}$
34	Γ_1	${}^{3}F_{2}$	5648	$80.91 {}^{3}F_{2} + 15.29 {}^{3}H_{6} + 2.11 {}^{3}H_{5}$
35	Γ_2	5149	5738	$81.02^{3}F_{2}^{2} + 15.94^{3}H_{6} + 1.22^{3}H_{5}$
36	Γ_2		5774	$89.46 {}^{3}F_{2}^{2} + 4.86 {}^{3}H_{6} + 2.91 {}^{3}H_{5}$
37	$\frac{\Gamma_1}{\Gamma}$		5873	$93.89 {}^{3}F_{2}^{2} + 2.37 {}^{3}H_{6}^{0} + 1.64 {}^{3}H_{5}^{0}$ $91.77 {}^{3}F_{2} + 4.80 {}^{3}H_{6} + 1.59 {}^{3}H_{5}$
38	Γ_1	2	5907	_
39	Γ_2	$^{3}F_{3}$	7012	$93.14^{3}F_{3} + 5.32^{3}F_{4} + 0.76^{3}H_{6}$
40	Γ_1	6540	7014	$82.56 {}^{3}F_{3} + 11.98 {}^{3}F_{4} + 3.68 {}^{3}H_{6}$
41	Γ_1		7070	$80.00^{3}F_{3} + 13.53^{3}F_{4} + 4.69^{3}H_{6}$
42	Γ_2		7128	$87.40^{3}F_{3} + 5.92^{3}F_{4} + 3.69^{3}H_{6}$
43	Γ_1		7160	$58.99 {}^{3}F_{3} + 34.45 {}^{3}F_{4} + 3.06 {}^{3}H_{6}$ $67.64 {}^{3}F_{3} + 27.02 {}^{3}F_{4} + 3.56 {}^{3}H_{6}$
44	Γ_2		7177 7267	$83.86 {}^{3}F_{3} + 11.55 {}^{3}F_{4} + 2.77 {}^{3}H_{6}$
45	Γ_2	2-		
46	Γ_1	$^{3}F_{4}$	7297	$88.69^{3}F_{4} + 7.68^{3}F_{3} + 1.41^{1}G_{4}$
47	Γ_1	6973	7390 7402	$64.44 {}^{3}F_{4} + 32.78 {}^{3}F_{3} + 1.53 {}^{1}G_{4}$
48	Γ_2		7403 7500	$62.76 {}^{3}F_{4} + 32.72 {}^{3}F_{3} + 2.77 {}^{3}H_{6}$
49	Γ_1		7509 7538	$74.57 {}^{3}F_{4}^{4} + 15.91 {}^{3}F_{3}^{3} + 8.01 {}^{3}H_{6}^{6}$ $83.05 {}^{3}F_{4} + 12.97 {}^{3}F_{3} + 3.11 {}^{3}H_{6}^{6}$
50	Γ_2		7536 7643	$97.09^{3}F_{4} + 1.20^{3}H_{6} + 0.80^{3}H_{5}$
51 52	Γ_2		7043 7771	$94.26 {}^{3}F_{4} + 2.94 {}^{3}F_{3} + 1.38 {}^{3}H_{6}$
53	Γ_1		7865	$90.96 {}^{3}F_{4} + 4.96 {}^{3}F_{3} + 3.25 {}^{3}H_{6}$
54	Γ_2		7870	$94.45^{3}F_{4} + 2.57^{3}H_{6} + 1.90^{3}F_{3}$
	Γ_1	10		
55 56	Γ_2	$^{1}G_{4}$	9967	$97.40{}^{1}G_{4} + 1.07{}^{3}F_{4} + 0.90{}^{3}H_{6}$
56	Γ_1	9885	9982	$96.96 {}^{1}G_{4}^{7} + 2.08 {}^{3}F_{4}^{7} + 0.35 {}^{3}H_{6}^{7}$
57	Γ_1		10015	$97.92 {}^{1}G_{4} + 1.24 {}^{3}F_{4} + 0.40 {}^{3}H_{6}$
58	Γ_1		10135	$98.08{}^{1}G_{4}^{4} + 0.91{}^{3}H_{6}^{4} + 0.40{}^{3}F_{4}^{6}$

Table 25 (cont'd). Predicted energy levels for Pr^{3+} in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	I.R.	$[(S,L)J]^a$	Energy	Free ion
			(cm ⁻¹)	mixture (%)
59	Γ ₂		10417	$99.42 {}^{1}G_{4} + 0.14 {}^{3}H_{6} + 0.11 {}^{3}F_{4}$
60	Γ_2^2		10535	$99.27 {}^{1}G_{4} + 0.26 {}^{1}I_{6} + 0.13 {}^{3}H_{6}$
61	Γ_1^2		10722	$99.23 {}^{1}G_{4} + 0.23 {}^{1}I_{6} + 0.19 {}^{3}H_{6}$
62	Γ_2		10873	$98.81 {}^{1}G_{4} + 0.49 {}^{3}F_{4} + 0.24 {}^{3}H_{6}$
63	Γ_1^2		11010	$98.49 {}^{1}G_{4}^{4} + 0.94 {}^{3}F_{4}^{4} + 0.27 {}^{1}I_{6}^{6}$
64	Γ_2	$^{1}D_{2}$	16651	$98.71 {}^{1}D_{2} + 0.67 {}^{1}I_{6} + 0.18 {}^{3}P_{2}$
65	Γ_1	16840	17156	$99.04 {}^{1}D_{2}^{2} + 0.41 {}^{1}I_{6} + 0.24 {}^{1}G_{4}$
66	Γ_1		17467	$98.99 {}^{1}D_{2}^{2} + 0.84 {}^{1}I_{6}^{2} + 0.05 {}^{1}G_{4}^{2}$
67	Γ_2		17494	$98.47 {}^{1}D_{2}^{2} + 0.95 {}^{1}I_{6} + 0.20 {}^{3}P_{1}$
68	Γ_1		17943	$98.72 {}^{1}D_{2}^{2} + 0.91 {}^{1}I_{6}^{3} + 0.13 {}^{3}P_{2}^{1}$
69	Γ_1	${}^{3}P_{0}$	20934	$99.19 {}^{1}I_{6} + 0.44 {}^{1}D_{2} + 0.15 {}^{1}G_{4}$
7 0	Γ_1	20706	20944	$99.06 {}^{1}I_{6} + 0.45 {}^{1}D_{2} + 0.17 {}^{1}G_{4}$
7 1	Γ_2	$^{3}P_{1}$	21178	$99.33 {}^{1}I_{6} + 0.23 {}^{1}D_{2} + 0.16 {}^{1}G_{4}$
72	$\Gamma_1^{}$	21330	21194	$94.00^{3}P_{0} + 5.19^{3}P_{2} + 0.33^{1}I_{6}$
73	Γ_2^{-}	$^{1}I_{6}$	21199	$99.25 {}^{1}I_{6} + 0.29 {}^{1}D_{2} + 0.15 {}^{3}P_{1}$
74	Γ_2^-	21500	21613	$90.85 {}^{3}P_{1} + 8.35 {}^{3}P_{2} + 0.35 {}^{1}I_{6}$
7 5	Γ_2^-	$^{3}P_{2}$	21662	$88.68^{3}P_{1} + 9.64^{3}P_{2} + 1.21^{1}I_{6}$
76	Γ_1	22535	21951	$99.68^{-1}I_6 + 0.11^{-1}G_4 + 0.06^{-3}P_2$
77	Γ_1^-		22007	$98.80^{1}I_{6} + 0.47^{3}P_{2} + 0.29^{1}D_{2}$
78	Γ_1		22190	$98.89^{3}P_{1} + 0.37^{3}P_{2} + 0.36^{1}I_{6}$
79	Γ_2		22232	$99.26 {}^{1}L_{c} + 0.37 {}^{3}P_{1} + 0.14 {}^{1}D_{2}$
80	Γ_2		22341	$96.22^{1}I_{6} + 1.55^{3}P_{1} + 1.39^{3}P_{2}$
81	Γ_1		22450	$98.11 {}^{1}I_{6} + 1.02 {}^{3}P_{2} + 0.36 {}^{1}D_{2}$
82	Γ_2		22634	$92.41 {}^{1}I_{6} + 5.86 {}^{3}P_{2} + 1.26 {}^{3}P_{1}$
83	Γ_1		22638	$89.75 {}^{1}I_{6} + 9.10 {}^{3}P_{2} + 0.75 {}^{3}P_{0}$
84	Γ_1		22959	$85.44 \stackrel{3}{.}P_{2} + 9.72 \stackrel{1}{I_{6}} + 4.37 \stackrel{3}{.}P_{0}$
85	Γ_2		22978	$78.21 {}^{3}P_{2} + 14.25 {}^{1}I_{6} + 6.94 {}^{3}P_{1}$
86	Γ_1		23071	$93.59 {}^{1}I_{6} + 5.77 {}^{3}P_{2} + 0.26 {}^{1}G_{4}$
87	Γ_2		23076	$85.26 {}^{1}I_{6} + 13.15 {}^{3}\bar{P}_{2} + 1.16 {}^{3}P_{1}$
88	Γ_2		23216	$82.15 {}^{3}P_{2} + 9.76 {}^{1}I_{6} + 7.90 {}^{3}P_{1}$
89	Γ_1		23409	$93.26 {}^{3}P_{2} + 6.22 {}^{1}I_{6} + 0.15 {}^{3}P_{0}$
90	Γ_1		23457	$97.98 {}^{3}P_{2}^{2} + 1.34 {}^{1}I_{6}^{\circ} + 0.26 {}^{3}P_{1}^{\circ}$
91	Γ_1	$^{1}S_{0}$	47471	$99.85 {}^{1}S_{0} + 0.05 {}^{1}G_{4} + 0.05 {}^{1}D_{2}$
		469001		

^aAqueous centroids (cm⁻¹).

Table 26. Predicted energy levels for Nd^{3+} in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	$[(S,L)J]^a$	Energy (cm ⁻¹)	Free ion mixture (%)
1	⁴ I _{9/2}	0	$98.91^{4}I_{9/2} + 0.94^{4}I_{11/2} + 0.05^{4}I_{12/2}$
2	130	205	$98.91 {}^{4}I_{9/2} + 0.94 {}^{4}I_{11/2} + 0.05 {}^{4}I_{13/2} 98.67 {}^{4}I_{9/2} + 1.09 {}^{4}I_{11/2} + 0.10 {}^{4}I_{13/2}$
3		320	$98.13^{4}I_{0/2} + 1.68^{4}I_{11/2} + 0.07^{4}I_{12/2}$
4		451	$98.99 {}^{4}I_{9/2} + 0.76 {}^{4}I_{11/2} + 0.10 {}^{4}I_{13/2}$
5		647	$98.99 {}^{4}I_{9/2}^{9/2} + 0.76 {}^{4}I_{11/2}^{11/2} + 0.10 {}^{4}I_{13/2}^{13/2} 98.64 {}^{4}I_{9/2} + 1.12 {}^{4}I_{11/2} + 0.09 {}^{4}I_{13/2}$
6	$^{4}I_{11/2}$	1977	$98.15 {}^{4}I_{11/2} + 0.94 {}^{4}I_{9/2} + 0.77 {}^{4}I_{13/2} 97.61 {}^{4}I_{11/2} + 1.56 {}^{4}I_{13/2} + 0.64 {}^{4}I_{9/2}$
7	2006	2121	$97.61 {}^{4}I_{11/2} + 1.56 {}^{4}I_{13/2} + 0.64 {}^{4}I_{9/2}$
8		2153	$98.08 {}^{4}I_{11/2}^{11/2} + 0.96 {}^{4}I_{9/2}^{13/2} + 0.84 {}^{4}I_{13/2}^{13/2}$
9		2311	$98.12 {}^{4}I_{11/2}^{11/2} + 0.89 {}^{4}I_{13/2}^{13/2} + 0.75 {}^{4}I_{9/2}^{13/2}$
10		2346	$97.72 {}^{4}I_{11/2}^{11/2} + 1.30 {}^{4}I_{9/2}^{13/2} + 0.79 {}^{4}I_{13/2}^{13/2}$
11		2443	$97.91 {}^{4}I_{11/2}^{11/2} + 1.03 {}^{4}I_{9/2}^{7/2} + 0.87 {}^{4}I_{13/2}^{13/2}$

Table 26 (cont'd). Predicted energy levels for Nd^{3+} in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	$[(S,L)J]^a$	Energy (cm ⁻¹)	Free ion mixture (%)
12 13 14 15 16 17	⁴ I _{13/2} 4004	3946 4075 4119 4270 4325 4394 4491	$\begin{array}{c} 98.36 {}^{4}I_{13/2} + 0.96 {}^{4}I_{11/2} + 0.52 {}^{4}I_{15/2} \\ 97.75 {}^{4}I_{13/2} + 1.16 {}^{4}I_{15/2} + 0.88 {}^{4}I_{11/2} \\ 98.57 {}^{4}I_{13/2} + 0.86 {}^{4}I_{15/2} + 0.41 {}^{4}I_{11/2} \\ 97.70 {}^{4}I_{13/2} + 1.06 {}^{4}I_{15/2} + 1.03 {}^{4}I_{11/2} \\ 98.55 {}^{4}I_{13/2} + 0.86 {}^{4}I_{15/2} + 0.45 {}^{4}I_{11/2} \\ 97.74 {}^{4}I_{13/2} + 1.34 {}^{4}I_{11/2} + 0.79 {}^{4}I_{15/2} \end{array}$
18 19 20 21 22 23 24 25 26	⁴ I _{15/2} 6080	5913 6026 6112 6315 6381 6515 6576 6722	$98.53 {}^{4}I_{13/2} + 0.72 {}^{4}I_{11/2} + 0.54 {}^{4}I_{15/2} \\ 98.82 {}^{4}I_{15/2} + 1.01 {}^{4}I_{13/2} + 0.06 {}^{4}I_{11/2} \\ 98.66 {}^{4}I_{15/2} + 1.03 {}^{4}I_{13/2} + 0.13 {}^{4}F_{9/2} \\ 99.11 {}^{4}I_{15/2} + 0.64 {}^{4}I_{13/2} + 0.08 {}^{4}F_{9/2} \\ 99.19 {}^{4}I_{15/2} + 0.56 {}^{4}I_{13/2} + 0.08 {}^{4}F_{9/2} \\ 99.31 {}^{4}I_{15/2} + 0.47 {}^{4}I_{13/2} + 0.07 {}^{4}F_{9/2} \\ 99.27 {}^{4}I_{15/2} + 0.60 {}^{4}I_{13/2} + 0.05 {}^{4}I_{11/2} \\ 98.88 {}^{4}I_{15/2} + 0.97 {}^{4}I_{13/2} + 0.03 {}^{4}F_{9/2} \\ 99.24 {}^{4}I_{15/2} + 0.53 {}^{4}I_{13/2} + 0.05 {}^{4}F_{9/2} \\ 99.24 {}^{4}I_{15/2} + 0.53 {}^{4}I_{13/2} + 0.05 {}^{4}F_{9/2} \\ \end{cases}$
27 28	⁴ F _{3/2} 11526	11604 11 7 93	$96.26 {}^{4}F_{3/2} + 2.55 {}^{4}F_{5/2} + 0.48 {}^{4}F_{7/2} \\ 94.10 {}^{4}F_{3/2} + 3.23 {}^{4}F_{5/2} + 1.07 {}^{4}F_{7/2}$
29 30 31 32 33 34 35 36	⁴ F _{5/2} 12573 ² H _{9/2} 12738	12629 12716 12846 12888 12912 12999 13058 13171	$87.38 {}^4F_{5/2} + 8.42 {}^2H_{9/2} + 2.39 {}^4F_{7/2}$ $51.76 {}^4F_{5/2} + 45.13 {}^2H_{9/2} + 1.43 {}^4F_{7/2}$ $58.98 {}^2H_{9/2} + 36.39 {}^4F_{5/2} + 2.41 {}^4F_{3/2}$ $61.71 {}^4F_{5/2} + 34.38 {}^2H_{9/2} + 1.53 {}^4F_{7/2}$ $86.46 {}^2H_{9/2} + 11.78 {}^4F_{5/2} + 0.84 {}^4F_{7/2}$ $78.68 {}^2H_{9/2} + 18.52 {}^4F_{5/2} + 2.02 {}^4F_{7/2}$ $89.25 {}^2H_{9/2} + 9.26 {}^4F_{5/2} + 0.87 {}^4F_{7/2}$ $91.52 {}^2H_{9/2} + 6.89 {}^4F_{5/2} + 0.72 {}^4F_{7/2}$
37 38 39 40 41 42	⁴ S _{3/2} 13459 ⁴ F _{7/2} 13564	13643 13668 13701 13731 13838 14014	$75.54 {}^{4}S_{3/2} + 21.69 {}^{4}F_{7/2} + 0.84 {}^{4}G_{5/2} \\ 48.60 {}^{4}S_{3/2} + 47.61 {}^{4}F_{7/2} + 1.63 {}^{4}F_{5/2} \\ 63.83 {}^{4}S_{3/2} + 33.45 {}^{4}F_{7/2} + 1.10 {}^{4}F_{5/2} \\ 86.22 {}^{4}F_{7/2} + 8.61 {}^{4}S_{3/2} + 1.94 {}^{4}F_{9/2} \\ 92.54 {}^{4}F_{7/2} + 3.26 {}^{4}F_{9/2} + 1.80 {}^{4}F_{5/2} \\ 95.38 {}^{4}F_{7/2} + 1.42 {}^{4}F_{5/2} + 1.22 {}^{4}F_{9/2} $
43 44 45 46 47	⁴ F _{9/2} 14854	14930 14975 15082 15266 15321	$96.81 {}^{4}F_{9/2} + 1.78 {}^{4}F_{7/2} + 0.62 {}^{4}F_{5/2} \\ 98.08 {}^{4}F_{9/2} + 0.77 {}^{2}H_{11/2} + 0.51 {}^{4}F_{7/2} \\ 95.06 {}^{4}F_{9/2} + 3.20 {}^{4}F_{7/2} + 1.04 {}^{2}H_{11/2} \\ 97.10 {}^{4}F_{9/2} + 1.26 {}^{4}F_{7/2} + 0.87 {}^{2}H_{11/2} \\ 97.24 {}^{4}F_{9/2} + 1.23 {}^{2}H_{11/2} + 0.50 {}^{2}G_{7/2} \\ \end{cases}$
48 49 50 51 52 53	² H _{11/2} 16043	16234 16260 16279 16310 16336 16342	$98.87 {}^{2}H_{11/2} + 0.52 {}^{2}G_{7/2} + 0.46 {}^{4}F_{9/2} \\ 99.04 {}^{2}H_{11/2} + 0.30 {}^{2}G_{7/2} + 0.24 {}^{4}F_{9/2} \\ 98.06 {}^{2}H_{11/2} + 0.94 {}^{4}F_{9/2} + 0.44 {}^{2}G_{7/2} \\ 98.56 {}^{2}H_{11/2} + 0.64 {}^{4}F_{9/2} + 0.37 {}^{2}G_{7/2} \\ 98.65 {}^{2}H_{11/2} + 0.87 {}^{4}F_{9/2} + 0.17 {}^{2}G_{7/2} \\ 98.43 {}^{2}H_{11/2} + 0.92 {}^{4}F_{9/2} + 0.38 {}^{2}G_{7/2} \\ \end{cases}$
54 55 56 57 58 59 60	⁴ G _{5/2} 17167 ² G _{7/2} 17334	17130 17357 17486 17589 17682 17780 17873	$84.61 {}^{4}G_{5/2} + 13.55 {}^{2}G_{7/2} + 0.54 {}^{4}F_{7/2} \\ 62.16 {}^{4}G_{5/2} + 36.49 {}^{2}G_{7/2} + 0.43 {}^{4}F_{3/2} \\ 56.90 {}^{2}G_{7/2} + 41.36 {}^{4}G_{5/2} + 0.53 {}^{4}F_{9/2} \\ 96.54 {}^{2}G_{7/2} + 1.94 {}^{4}G_{5/2} + 0.63 {}^{2}H_{11/2} \\ 84.44 {}^{2}G_{7/2} + 14.31 {}^{4}G_{5/2} + 0.54 {}^{2}H_{11/2} \\ 66.26 {}^{2}G_{7/2} + 32.20 {}^{4}G_{5/2} + 0.38 {}^{4}S_{3/2} \\ 59.11 {}^{4}G_{5/2} + 40.05 {}^{2}G_{7/2} + 0.24 {}^{4}S_{3/2} $

^aAqueous centroids (cm⁻¹).

Table 27. Predicted energy levels for Pm^{3+} in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	I. R.	$[(S,L)J]^a$	Energy	Free ion
			(cm ⁻¹)	mixture (%)
1	Γ_1	$^{5}I_{4}$	0	$99.07 {}^{5}I_{4} + 0.70 {}^{5}I_{5} + 0.18 {}^{5}I_{6}$
2	Γ_{2}	99	39	$98.30^{5}I_{4}^{4} + 1.51^{5}I_{5}^{3} + 0.12^{5}I_{6}^{6}$
3	Γ_{2}		190	$97.68 ^{3}I_{A} + 2.08 ^{3}I_{5} + 0.19 ^{3}I_{6}$
4	$\underline{\Gamma}_1$		193	$99.36 ^{9}I_{A} + 0.45 ^{9}I_{5} + 0.13 ^{9}I_{6}$
5	Γ_2		286	$98.07 {}^{5}I_{4}^{4} + 1.69 {}^{5}I_{5} + 0.14 {}^{5}I_{6}^{6}$
6	Γ_1		325	$98.30^{5}I_{4}^{7} + 1.42^{5}I_{5}^{7} + 0.25^{5}I_{6}^{7}$
7	Γ_2		416	$98.53^{5}I_{4}^{4} + 1.27^{5}I_{5}^{3} + 0.11^{5}I_{6}^{3}$
8	Γ_1		488	$95.19^{5}I_{4}^{3} + 4.57^{5}I_{5}^{3} + 0.18^{5}I_{6}^{3}$
9	Γ_1	-	560	$97.73^{5}I_{4}^{7} + 1.94^{5}I_{5}^{7} + 0.26^{5}I_{6}^{7}$
10	Γ_2	$^{5}I_{5}$	1642	$96.36 {}^{5}I_{5} + 2.22 {}^{5}I_{4} + 1.24 {}^{5}I_{6}$
11	Γ_1	1577	1645	$97.03^{5}I_{5} + 1.92^{5}I_{4} + 0.82^{5}I_{6}$
12	Γ_2		1695	$98.27 {}^{5}I_{5} + 0.88 {}^{5}I_{4} + 0.57 {}^{5}I_{6}$
13	Γ_1		1697	$97.27 {}^{5}I_{5} + 2.27 {}^{5}I_{4} + 0.30 {}^{5}I_{6}$
14	Γ_2		1742	$97.92^{3}I_{5} + 1.34^{3}I_{4} + 0.42^{3}I_{6}$
15	Γ_2		1 7 96	$98.62 {}^{5}I_{5} + 0.99 {}^{5}I_{6} + 0.28 {}^{5}I_{4}$
16	Γ_1		1802	$97.10 {}^{9}I_{5} + 1.77 {}^{9}I_{6} + 1.00 {}^{9}I_{4}$
17	Γ_1		1813	$95.92 ^{9}I_{5} + 2.44 ^{9}I_{4} + 1.37 ^{9}I_{6}$
18	Γ_1		1831	$96.52 {}^{5}I_{5} + 1.84 {}^{5}I_{6} + 1.43 {}^{5}I_{4}$
19	Γ_2		1966	$97.21 {}^{5}I_{5} + 1.88 {}^{5}I_{6} + 0.71 {}^{5}I_{4}$
20	Γ_2		1972	$97.18^{5}I_{5} + 1.53^{5}I_{6} + 1.03^{5}I_{4}$
21	Γ_1	⁵ I ₆	3245	$97.78 {}^{5}I_{6} + 0.97 {}^{5}I_{7} + 0.76 {}^{5}I_{5}$
22	Γ_2	3186	3259	$96.56 {}^{5}I_{6} + 1.77 {}^{5}I_{5} + 1.26 {}^{5}I_{7}$
23	Γ_2^-		3289	$98.59 {}^{5}I_{6} + 0.63 {}^{5}I_{5} + 0.47 {}^{5}I_{7}$
24	Γ_1^-		3307	$97.86 {}^{5}I_{6} + 1.50 {}^{5}I_{5} + 0.43 {}^{5}I_{7}$
25	Γ_2		3344	$97.96 {}^{5}I_{6} + 1.46 {}^{5}I_{5} + 0.37 {}^{5}I_{7}$
26	Γ_1		3357	$98.19^{5}I_{6} + 0.82^{5}I_{5} + 0.65^{5}I_{7}$
27	Γ_1		3365	$97.02^{5}I_{6} + 1.33^{5}I_{7} + 1.28^{5}I_{5}$
28	Γ_2		3424	$98.18 {}^{5}I_{6} + 0.91 {}^{5}I_{5} + 0.71 {}^{5}I_{7}$
29	Γ_1		3431	$98.34 {}^{5}I_{6} + 0.98 {}^{5}I_{7} + 0.44 {}^{5}I_{5}$
30	Γ_2		3448	$96.48 {}^{5}I_{6} + 2.14 {}^{5}I_{7} + 1.11 {}^{5}I_{5}$
31	Γ_2		3455	$97.32_{16}^{5} + 1.93_{17}^{5} + 0.58_{15}^{5}$
32	Γ_1		3587	$97.70 {}^{5}I_{6} + 1.38 {}^{5}I_{7} + 0.67 {}^{5}I_{5}$
33	Γ_1		3590	$98.01 {}^{5}I_{6} + 1.14 {}^{5}I_{7} + 0.58 {}^{5}I_{5}$
34	Γ_2	⁵ I ₇	4902	$97.99^{5}I_7 + 0.94^{5}I_6 + 0.68^{5}I_8$
35	Γ_1^-	4876	4903	$97.29 ^{\circ}I_{7} + 1.33 ^{\circ}I_{c} + 1.03 ^{\circ}I_{o}$
36	Γ_2		4971	$98.83 ^{5}I_{7} + 0.54 ^{5}I_{8} + 0.47 ^{5}I_{6}$
37	Γ_1 .		4983	$98.64 ^{3}I_{7} + 0.78 ^{3}I_{8} + 0.40 ^{3}I_{6}$
38	Γ_1		4995	$98.21 {}^{5}I_{7} + 0.87 {}^{5}I_{6} + 0.69 {}^{5}I_{8}$
39	Γ_2		5013	$97.96 ^{5}I_{7} + 1.29 ^{5}I_{6} + 0.62 ^{5}I_{8}$
40	Γ_1		5031	$97.45 {}^{5}I_{7} + 1.85 {}^{5}I_{6} + 0.59 {}^{5}I_{8}$
41	Γ_2		5062	$96.60 ^{5}I_{7} + 1.96 ^{5}I_{8} + 1.19 ^{5}I_{6}$
42	Γ_2		5076	$97.70 ^{9}I_{7} + 1.10 ^{9}I_{8} + 1.02 ^{9}I_{6}$
43	Γ_1		5143	$97.77 {}^{5}I_{7} + 1.88 {}^{5}I_{8} + 0.15 {}^{5}I_{6}$
44	Γ_2		5166	$98.46 {}^{5}I_{7} + 0.75 {}^{5}I_{8} + 0.59 {}^{5}I_{6}$
45	Γ_1		5185	$96.78 {}^{5}I_{7} + 1.95 {}^{5}I_{8} + 1.10 {}^{5}I_{6}$
46	Γ_1		5208	$98.16 {}^{5}I_{7} + 1.10 {}^{5}I_{6} + 0.63 {}^{5}I_{8}$
47	Γ_2		5323	$98.17^{5}I_{7} + 0.96^{5}I_{8} + 0.67^{5}I_{6}$
48	Γ_2		5325	$98.39^{5}I_{7} + 0.80^{5}I_{8} + 0.60^{5}I_{6}$

Table 27 (cont'd). Predicted energy levels for Pm³⁺ in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	I. R.	[(S,L)J] ^a	Energy	Free ion
			(cm ⁻¹)	mixture (%)
49	Γ_2	⁵ I ₈	6502	$98.61^{5}I_{8} + 1.16^{5}I_{7} + 0.15^{5}I_{6}$
50	Γ_1	6611	6506	$98.58 {}^{5}I_{8} + 1.17 {}^{5}I_{7} + 0.15 {}^{5}I_{6}$
51	Γ_1		6600	$98.92^{5}I_{8} + 0.95^{5}I_{7} + 0.07^{5}I_{6}$
52	Γ_2		6667	$98.24^{5}I_{8} + 1.60^{5}I_{7} + 0.05^{5}F_{5}$
53	Γ_1		6674	$99.08 {}^{5}I_{8} + 0.79 {}^{5}I_{7} + 0.07 {}^{5}I_{6}$
54	Γ_2		6686	$99.23 {}^{5}I_{8} + 0.66 {}^{5}I_{7} + 0.06 {}^{5}I_{6}$
55 5	Γ_2		6695	$98.53 {}^{5}I_{8} + 1.32 {}^{5}I_{7} + 0.06 {}^{5}I_{6}$ $99.47 {}^{5}I_{8} + 0.39 {}^{5}I_{7} + 0.06 {}^{5}F_{5}$
56 57	Γ_1		6769 6809	$99.36 {}^{5}I_{8} + 0.45 {}^{5}I_{7} + 0.07 {}^{5}F_{5}$ $99.36 {}^{5}I_{8} + 0.45 {}^{5}I_{7} + 0.07 {}^{5}F_{5}$
57 58	$\Gamma_2 \\ \Gamma_1$		6825	$98.95 {}^{5}I_{8} + 0.86 {}^{5}I_{7} + 0.06 {}^{5}F_{4}$
59	Γ_1^1		6921	$97.98 {}^{5}I_{8} + 1.77 {}^{5}I_{7} + 0.11 {}^{5}F_{5}$
60	Γ_2^1		6997	$99.41^{5}I_{8} + 0.35^{5}I_{7} + 0.08^{5}I_{6}$
61	Γ_1^2		7021	$99.21{}^{5}I_{8}^{\circ}+0.57{}^{5}I_{7}^{\circ}+0.09{}^{5}F_{5}^{\circ}$
62	$\Gamma_2^{'}$		7068	$98.77 {}^{5}I_{8} + 1.01 {}^{5}I_{7} + 0.12 {}^{5}F_{5}$
63	Γ_2^2		7086	$98.95 {}^{5}I_{8} + 0.81 {}^{5}I_{7} + 0.11 {}^{5}F_{5}$
64	Γ_1^2		7 188	$99.35 {}^{5}I_{8} + 0.50 {}^{5}I_{7} + 0.08 {}^{5}I_{6}$
65	Γ_1		7191	$99.39{}^{5}I_{8}^{3}+0.45{}^{5}I_{7}^{\prime}+0.08{}^{5}I_{6}^{\prime}$
66	Γ_2	${}^{5}F_{1}$	12501	$95.17^{5}F_{1} + 2.75^{5}F_{2} + 1.53^{5}F_{3}$
67	Γ_2	12397	12523	$89.18{}^{5}F_{1} + 9.42{}^{5}F_{2} + 0.99{}^{5}F_{3}$
68	Γ_1^-		12686	$91.74{}^{5}F_{1} + 4.60{}^{5}F_{2} + 3.14{}^{5}F_{3}$
69	Γ_1	$^{5}F_{2}$	12799	$95.35 {}^{5}F_{2} + 2.46 {}^{5}F_{1} + 1.66 {}^{5}F_{3}$
7 0	Γ_2	12811	12976	$87.76 {}^{5}F_{2} + 8.84 {}^{5}F_{1} + 1.95 {}^{5}F_{3}$
71	Γ_1^-		12996	$94.54 {}^{5}F_{2} + 2.66 {}^{5}F_{1} + 2.19 {}^{5}F_{3}$
72	Γ_1		13069	$97.92 {}^{5}F_{2} + 1.45 {}^{5}F_{4} + 0.27 {}^{5}F_{3}$
73	Γ_{2}		13279	$93.11{}^{5}F_{2}^{-} + 2.99{}^{5}F_{3} + 2.97{}^{5}F_{1}$
74	Γ_2	${}^{5}F_{3}$	13727	$96.86 {}^{5}F_{3} + 2.28 {}^{5}F_{4} + 0.31 {}^{5}F_{1}$
75	Γ_2	13651	13744	$95.62^{5}F_{3} + 1.89^{5}F_{2} + 1.48^{5}F_{1}$
76	Γ_1		13823	$94.53 {}^{5}F_{3} + 2.78 {}^{5}F_{4} + 1.84 {}^{5}F_{2}$
77 70	Γ_2		13827 13918	93.58 ${}^{5}F_{3}^{3}$ + 2.43 ${}^{5}F_{2}^{4}$ + 2.33 ${}^{5}F_{4}^{2}$ 93.41 ${}^{5}F_{3}$ + 4.35 ${}^{5}F_{4}$ + 1.31 ${}^{5}F_{2}$
78 79	$egin{array}{c} \Gamma_1 \ \Gamma_1 \end{array}$		13987	$93.14 {}^{5}F_{3} + 2.80 {}^{5}F_{4} + 2.32 {}^{5}F_{1}$ $93.14 {}^{5}F_{3} + 2.80 {}^{5}F_{4} + 2.32 {}^{5}F_{1}$
80	Γ_2^1		14074	$96.57 {}^{5}F_{3} + 2.40 {}^{5}F_{4} + 0.45 {}^{5}F_{2}$
81		⁵ S ₂	14550	$99.78 {}^{5}S_{2} + 0.14 {}^{5}F_{4} + 0.02 {}^{5}F_{3}$
82	$rac{\Gamma_1}{\Gamma_2}$	14337	14552	$99.52 {}^{5}S_{2} + 0.37 {}^{5}F_{4} + 0.04 {}^{5}F_{5}$
83	Γ_1^2	14557	14558	$99.58 {}^{5}S_{2}^{2} + 0.27 {}^{5}F_{4} + 0.06 {}^{5}F_{5}$
84	Γ_2^1		14559	$99.87 {}^{5}S_{2}^{2} + 0.05 {}^{5}F_{4}^{4} + 0.02 {}^{5}F_{3}$
85	Γ_1^2		14561	$99.70^{5}S_{2}^{2} + 0.15^{5}F_{4}^{4} + 0.06^{5}F_{5}^{3}$
86	Γ_1	${}^{5}F_{4}$	14714	$97.60^{5}F_{4} + 1.44^{5}F_{5} + 0.41^{5}F_{2}$
87	$\Gamma_2^{'}$	14561	14728	$94.03{}^{5}F_{4} + 3.47{}^{5}F_{5} + 2.00{}^{5}F_{2}$
88	Γ_1^-		14738	$95.69 {}^{5}F_{4} + 1.92 {}^{5}F_{5} + 1.65 {}^{5}F_{2}$
89	Γ_2		14767	$94.20{}^{5}F_{4} + 2.99{}^{5}F_{5} + 1.89{}^{5}F_{2}$
90	Γ_1^-		14793	$93.50 {}^{5}F_{4} + 4.94 {}^{5}F_{3} + 1.16 {}^{5}F_{5}$
91	Γ_2		14853	$96.25{}^{5}F_{4}^{4} + 1.46{}^{5}F_{3}^{3} + 1.05{}^{5}F_{5}^{5}$
92	Γ_1		14857	$96.12 {}^{5}F_{4} + 3.09 {}^{5}F_{3} + 0.48 {}^{5}F_{5}$
93 94	Γ_1		14865 14868	$97.02{}^{5}F_{4}^{7} + 1.35{}^{5}F_{2}^{7} + 0.98{}^{5}F_{5}^{7}$ $96.38{}^{5}F_{4}^{7} + 2.53{}^{5}F_{3}^{7} + 0.43{}^{5}F_{5}^{7}$
94	Γ_2	5r		$14 \pm 2.00 \cdot 13 \pm 0.40 \cdot 15$
95 96	Γ_2	⁵ F ₅ 15862	15865 15874	$98.90^{5}F_{5} + 0.33^{3}K_{6} + 0.27^{5}F_{3}$ $98.16^{5}F_{5} + 0.90^{5}F_{4} + 0.54^{3}K_{6}$
96 97	$\Gamma_2 \ \Gamma_1$	${}^{3}K_{6}$	15929	$96.69 {}^{5}F_{5} + 1.83 {}^{3}K_{6} + 0.91 {}^{5}F_{4}$
71	1 1	1 6	10727	50.05 15 11.00 16 10.51 14

Table 27 (cont'd). Predicted energy levels for Pm^{3+} in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	I. R.	$[(S,L)J]^a$	Energy	Free ion
			(cm ⁻¹)	mixture (%)
9 8	Γ_1	15874	15940	$94.50^{5}F_{5} + 3.20^{3}K_{6} + 1.94^{5}F_{4}$
99	Γ_1		16025	$98.68^{3}K_{6} + 1.28^{5}F_{5} + 0.03^{5}F_{4}$
100	Γ_1^-		16026	$97.35^{3}K_{6} + 2.62^{5}F_{5} + 0.01^{5}F_{4}$
101	Γ_2		16065	$99.61^{3}K_{6} + 0.36^{5}F_{5} + 0.02^{5}F_{4}$
102	Γ_2^-		16067	$99.09^{3}K_{6} + 0.86^{5}F_{5} + 0.03^{5}F_{3}$
103	Γ_1^-		16079	$98.13^{3}K_{6} + 1.71^{5}F_{5} + 0.14^{5}F_{4}$
104	Γ_2		16080	$99.08 {}^{3}K_{6} + 0.83 {}^{5}F_{5} + 0.07 {}^{5}F_{4}$
105	Γ_1^-		16101	$99.02^{3}K_{6} + 0.95^{5}F_{5} + 0.02^{5}F_{3}$
106	Γ_1^-		16101	$99.16^{3}K_{6} + 0.79^{5}F_{5} + 0.03^{5}F_{4}$
107	Γ_2		16111	$90.74^{3}K_{6} + 9.06^{5}F_{5} + 0.17^{5}F_{4}$
108	Γ_2^-		16120	$94.40^{3}K_{6} + 5.39^{5}F_{5} + 0.18^{5}F_{4}$
109	Γ_1^-		16120	$99.45^{3}K_{6} + 0.52^{5}F_{5} + 0.02^{5}F_{3}$
110	Γ_2		16135	$75.39 {}^{3}K_{6} + 23.65 {}^{5}F_{5} + 0.88 {}^{5}F_{4}$
111	Γ_1		16143	$98.92\ {}^{3}K_{6} + 1.00\ {}^{5}F_{5} + 0.04\ {}^{5}F_{4}$
112	Γ_2		16151	$61.89 {}^{5}F_{5} + 36.02 {}^{3}K_{6} + 1.90 {}^{5}F_{4}$
113	Γ_1^-		16173	$96.43{}^{5}F_{5} + 1.88{}^{3}K_{6} + 1.44{}^{5}F_{4}$
114	Γ_2		16210	$96.73 {}^{5}F_{5} + 2.13 {}^{5}F_{4} + 0.70 {}^{3}K_{6}$
115	Γ_1^{-}		16218	$97.04 {}^{5}F_{5} + 1.59 {}^{3}K_{6} + 1.07 {}^{5}F_{4}$
116	Γ_2		16238	$95.27^{5}F_{5} + 3.55^{3}K_{6} + 0.88^{5}F_{4}$
117	Γ_2		16347	$98.48 {}^{5}F_{5} + 0.70 {}^{5}F_{4} + 0.35 {}^{5}F_{3}$
118	Γ_1		16349	$98.24 {}^{5}F_{5} + 0.79 {}^{5}F_{4} + 0.50 {}^{3}K_{6}$

^aAqueous centroids (cm⁻¹).

Table 28. Predicted energy levels for Sm^{3+} in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	$[(S,L)J]^a$	Energy	Free ion
•		(cm ⁻¹)	mixture (%)
1	⁶ H _{5/2}	0	$96.70^{6}H_{5/2} + 2.54^{6}H_{7/2} + 0.25^{6}H_{9/2}$
2	46	241	$94.54 ^{\circ}H_{5/2} + 4.17 ^{\circ}H_{7/2} + 0.84 ^{\circ}H_{9/2}$
3		509	$94.54 {}^{6}H_{5/2} + 4.17 {}^{6}H_{7/2} + 0.84 {}^{6}H_{9/2} 87.61 {}^{6}H_{5/2} + 11.24 {}^{6}H_{7/2} + 0.84 {}^{6}H_{9/2}$
4	$^{6}H_{7/2}$	1135	$93.83^{6}H_{7/2} + 2.71^{6}H_{9/2} + 2.62^{6}H_{5/2}$
5	1084	1241	$93.81 ^{\circ}H_{7/2} + 3.25 ^{\circ}H_{5/2} + 1.81 ^{\circ}H_{0/2}$
6		1472	$84.91 ^{\circ}H_{7/2} + 8.89 ^{\circ}H_{5/2} + 5.16 ^{\circ}H_{9/2}$
7		1580	$91.58^{\circ}H_{7/2} + 5.47^{\circ}H_{9/2} + 2.19^{\circ}H_{5/2}$
8	$^{6}H_{9/2}$	2349	$94.81 ^{6}H_{9/2} + 2.32 ^{6}H_{11/2} + 1.62 ^{6}H_{7/2}$ $94.72 ^{6}H_{9/2} + 2.58 ^{6}H_{7/2} + 1.35 ^{6}H_{11/2}$
9	2299	2449	$94.72^{6}H_{9/2}^{7/2} + 2.58^{6}H_{7/2}^{7/2} + 1.35^{6}H_{11/2}^{7/2}$
10		2549	$90.37 ^{6}H_{9/2} + 3.81 ^{6}H_{11/2} + 3.50 ^{6}H_{7/2}$ $90.04 ^{6}H_{9/2} + 4.29 ^{6}H_{11/2} + 4.14 ^{6}H_{7/2}$
11		2712	$90.04^{6}H_{9/2}^{7/2} + 4.29^{6}H_{11/2}^{11/2} + 4.14^{6}H_{7/2}^{7/2}$
12		2811	$93.46 ^{6}H_{9/2}^{9/2} + 4.06 ^{6}H_{11/2}^{11/2} + 1.59 ^{6}H_{7/2}^{7/2}$
13	$^{6}H_{11/2}$	3653	$94.84^{6}H_{11/2} + 2.06^{6}H_{12/2} + 1.51^{6}H_{0/2}$
14	3638	3783	$95.60 ^{\circ}H_{11/2} + 1.67 ^{\circ}H_{13/2} + 1.29 ^{\circ}H_{9/2}$
15		3855	$91.64 ^{\circ}\text{H}_{11/2} + 4.08 ^{\circ}\text{H}_{0/2} + 2.53 ^{\circ}\text{H}_{12/2}$
16		3925	$92.37 ^{6}H_{11/2} + 2.79 ^{6}H_{0/2} + 2.78 ^{6}H_{12/2}$
17		4065	$90.51 ^{\circ}H_{11/2} + 4.70 ^{\circ}H_{13/2} + 3.56 ^{\circ}H_{9/2}$
18		4181	$93.36^{6}H_{11/2}^{11/2} + 4.79^{6}H_{13/2}^{13/2} + 1.04^{6}H_{9/2}^{9/2}$
19	$^{6}H_{13/2}$	4984	$95.39^{6}H_{13/2} + 1.31^{6}H_{15/2} + 1.16^{6}H_{11/2}$
20	5060	5178	$92.68 ^{\circ}H_{12/2} + 2.63 ^{\circ}H_{15/2} + 2.42 ^{\circ}H_{11/2}$
21		5257	$93.16 ^{\circ}H_{12/2} + 3.69 ^{\circ}H_{11/2} + 1.35 ^{\circ}H_{15/2}$
22		5300	$95.00^{\circ}H_{12} = + 2.21^{\circ}H_{15} = + 1.39^{\circ}H_{14} =$
23		5385	92.31 ${}^{6}H_{13/2} + 3.22 {}^{6}H_{11/2} + 2.72 {}^{6}H_{15/2}$
24		5513	$88.78 {}^{6}H_{13/2} + 5.21 {}^{6}H_{15/2} + 4.42 {}^{6}H_{11/2}$
25		5715	$94.47 ^{6}H_{13/2} + 3.61 ^{6}H_{15/2} + 0.94 ^{6}H_{11/2}$
		0.10	111/2

Table 28 (cont'd). Predicted energy levels for Sm^{3+} in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	$[(S,L)J]^a$	Energy (cm ⁻¹)	Free ion mixture (%)
26 27 28	⁶ F _{1/2} 6422 ⁶ H _{15/2}	6326 6467 6657	$96.32{}^{6}H_{15/2} + 0.96{}^{6}F_{9/2} + 0.82{}^{6}H_{13/2} 95.39{}^{6}H_{15/2} + 1.83{}^{6}H_{13/2} + 0.96{}^{6}F_{11/2} 92.85{}^{6}H_{15/2} + 2.79{}^{6}H_{13/2} + 1.82{}^{6}F_{3/2}$
29 30	6531 ² 6F _{3/2} 6666	6698 6744	94.05.6H _ + 3.04.6H _ + 0.86.6F _ /2
31 32 33 34 35		6859 6972 7004 7038 7173	87.21 ${}^{6}F_{1/2} + 7.87 {}^{6}F_{3/2} + 1.47 {}^{6}H_{15/2}$ 91.58 ${}^{6}H_{15/2} + 3.42 {}^{6}F_{3/2} + 2.57 {}^{6}H_{13/2}$ 83.31 ${}^{6}H_{15/2} + 11.40 {}^{6}F_{3/2} + 1.79 {}^{6}H_{13/2}$ 72.34 ${}^{6}F_{3/2} + 13.91 {}^{6}H_{15/2} + 6.51 {}^{6}F_{5/2}$ 88.44 ${}^{6}F_{3/2} + 3.64 {}^{6}F_{1/2} + 3.44 {}^{6}H_{15/2}$ 91.25 ${}^{6}H_{15/2} + 3.28 {}^{6}H_{13/2} + 2.92 {}^{6}F_{5/2}$
36 37 38 39	⁶ F _{5/2} 7158	7437 7471 7552 7618	$89.08 {}^{6}H_{15/2}^{15/2} + 7.35 {}^{6}F_{5/2}^{15/2} + 1.27 {}^{6}F_{7/2}^{15/2}$ $89.61 {}^{6}F_{5/2}^{15/2} + 6.62 {}^{6}H_{15/2}^{15/2} + 0.84 {}^{6}F_{3/2}^{15/2}$ $89.25 {}^{6}F_{5/2}^{15/2} + 4.09 {}^{6}H_{15/2}^{15/2} + 3.14 {}^{6}F_{3/2}^{15/2}$ $90.01 {}^{6}F_{5/2}^{15/2} + 4.67 {}^{6}F_{3/2}^{15/2} + 1.87 {}^{6}H_{15/2}^{15/2}$
40 41 42 43	⁶ F _{7/2} 8006	8303 8327 8416 8495	$96.12 {}^{6}F_{7/2} + 1.77 {}^{6}H_{15/2} + 0.66 {}^{6}H_{13/2} \\ 96.74 {}^{6}F_{7/2} + 0.66 {}^{6}F_{9/2} + 0.63 {}^{6}H_{13/2} \\ 95.05 {}^{6}F_{7/2} + 1.35 {}^{6}F_{5/2} + 1.12 {}^{6}H_{15/2} \\ 95.54 {}^{6}F_{7/2} + 1.53 {}^{6}H_{15/2} + 0.65 {}^{6}H_{13/2}$
44 45 46 47 48	⁶ F _{9/2} 9167	9418 9506 9541 9604 9630	$\begin{array}{l} 97.78{}^{6}F_{9/2} + 1.18{}^{6}H_{15/2} + 0.43{}^{6}F_{7/2} \\ 96.60{}^{6}F_{9/2} + 1.31{}^{6}F_{11/2} + 0.67{}^{6}H_{15/2} \\ 95.80{}^{6}F_{9/2} + 1.92{}^{6}F_{11/2} + 0.68{}^{6}H_{15/2} \\ 97.44{}^{6}F_{9/2} + 1.10{}^{6}H_{15/2} + 0.38{}^{6}H_{13/2} \\ 97.11{}^{6}F_{9/2} + 0.94{}^{6}H_{15/2} + 0.64{}^{6}F_{7/2} \end{array}$
49 50 51 52 53 54	⁶ F _{11/2} 10552	10742 10798 10943 10980 10988 11125	$\begin{array}{c} 98.57{}^{6}F_{11/2} + 0.77{}^{6}H_{15/2} + 0.26{}^{6}F_{9/2} \\ 98.51{}^{6}F_{11/2} + 0.42{}^{6}H_{13/2} + 0.41{}^{6}H_{15/2} \\ 97.43{}^{6}F_{11/2} + 1.12{}^{6}F_{9/2} + 0.92{}^{6}H_{15/2} \\ 98.80{}^{6}F_{11/2} + 0.48{}^{6}F_{9/2} + 0.42{}^{6}H_{15/2} \\ 97.76{}^{6}F_{11/2} + 1.08{}^{6}F_{9/2} + 0.70{}^{6}H_{15/2} \\ 97.37{}^{6}F_{11/2} + 1.78{}^{6}H_{15/2} + 0.33{}^{6}H_{13/2} \end{array}$
55 56 57	⁴ G _{5/2} 17935	17857 18234 18597	$98.44 {}^{4}G_{5/2} + 1.55 {}^{4}F_{3/2} 97.84 {}^{4}G_{5/2} + 2.16 {}^{4}F_{3/2} 98.86 {}^{4}G_{5/2} + 1.14 {}^{4}F_{3/2}$
58 59	$^{4}F_{3/2}$ 18899	19211 19261	$98.18 {}^{4}F_{3/2} + 1.82 {}^{4}G_{5/2} $ $96.97 {}^{4}F_{3/2} + 3.03 {}^{4}G_{5/2}$

^aAqueous centroids (cm⁻¹).

Table 29. Predicted energy levels for Eu³⁺ in Ca₅(PO₄)₃F, C_s site. B_{nm} from table 9.

Level	I. R.	[(S,L)]] ^a	Energy (cm ⁻¹)	Free ion mixture (%)
1	Γ,	$^{7}F_{0}$	0	$91.81 {}^{7}F_{0} + 6.51 {}^{7}F_{2} + 1.56 {}^{7}F_{4}$
2	$\Gamma_2^{'}$	$7_{F_1}^{\circ}$	252	$95.54^{7}F_{1} + 1.82^{7}F_{2} + 1.35^{7}F_{2}$
3	Γ_2^2	354	288	$92.28 {}^{7}F_{1} + 3.93 {}^{7}F_{3} + 2.71 {}^{7}F_{2}$
4	Γ_1^2		670	$89.80^{7}F_{1} + 5.46^{7}F_{3} + 3.44^{7}F_{2}$
5	Γ,	$^{7}F_{2}$	819	$91.25^{7}F_{2} + 5.93^{7}F_{3} + 1.49^{7}F_{1}$
6	$\Gamma_1^{'}$	1018	919	$85.02^{7}F_{2} + 11.01^{7}F_{3} + 2.49^{7}F_{1}$
7	$\Gamma_2^{'}$		1065	$93.35^{7}F_{2} + 2.66^{7}F_{1} + 1.51^{7}F_{5}$
8	Γ_1^2		1258	$87.02^{7}F_{2} + 5.12^{7}F_{0} + 4.73^{7}F_{3}$
9	Γ_1^2		1384	$80.73^{7}F_{2}^{2} + 16.47^{7}F_{3} + 1.67^{7}F_{4}$

Table 29 (cont'd). Predicted energy levels for Eu³⁺ in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	I. R.	[(S,L)]] ^a	Energy (cm ⁻¹)	Free ion
10	Γ_2	7 _{F3}	(cm ⁻¹) 1823	mixture (%) $91.05 {}^{7}F_{3} + 6.67 {}^{7}F_{4} + 1.06 {}^{7}F_{5}$
11	Γ_2^2	1881	1911	$77.28 {}^{7}F_{3} + 12.51 {}^{7}F_{2} + 8.94 {}^{7}F_{4}$
12	Γ_1^2		1963	$79.43^{7}F_{2} + 10.43^{7}F_{4} + 8.37^{7}F_{2}$
13	Γ_1		2077	$90.54 F_3 + 3.54 F_1 + 3.31 F_5$
14	Γ_2		2085	$90.82 {}^{\prime}F_{3} + 3.93 {}^{\prime}F_{2} + 3.50 {}^{\prime}F_{5}$
15	Γ_1		2114	$74.11^{7}F_{3} + 13.83^{7}F_{4} + 9.92^{7}F_{2}$
16	Γ_2		2133	$89.66^{7}F_{3} + 5.35^{7}F_{1} + 3.97^{7}F_{4}$
17	Γ_1	$^{7}F_{4}$	2764	$84.91 {}^{7}F_{4} + 8.45 {}^{7}F_{3} + 3.21 {}^{7}F_{5}$
18	Γ_2	2867	2772	$94.17^{7}F_{4}^{4} + 2.44^{7}F_{5}^{5} + 1.30^{7}F_{3}^{5}$ $84.96^{7}F_{4} + 7.07^{7}F_{5} + 4.85^{7}F_{3}$
19	Γ_2		2934	$84.96 F_4 + 7.07 F_5 + 4.85 F_3$
20	Γ_1		2937	$78.74 \stackrel{7}{7}_{4} + 12.21 \stackrel{7}{7}_{3} + 5.82 \stackrel{7}{7}_{5}$
21 22	Γ_1		3091 3101	$92.30^{7}F_{4} + 3.22^{7}F_{5} + 2.53^{7}F_{6}$
23	$rac{\Gamma_2}{\Gamma_1}$		3174	$88.56.7F_{1} + 8.03.7F_{2} + 1.71.7F_{3}$
24	Γ_1		3208	$90.44^{7}F_{*} + 4.77^{7}F_{-} + 2.08^{7}F_{*}$
25	Γ_2^1		3230	$84.81 {}^{7}F_{4} + 8.81 {}^{7}F_{3} + 4.55 {}^{7}F_{5} \\ 88.56 {}^{7}F_{4} + 8.03 {}^{7}F_{5} + 1.71 {}^{7}F_{6} \\ 90.44 {}^{7}F_{4} + 4.77 {}^{7}F_{5} + 2.08 {}^{7}F_{6} \\ 87.37 {}^{7}F_{4} + 5.89 {}^{7}F_{5} + 3.79 {}^{7}F_{3}$
26	Γ_1	$^{7}F_{5}$	3858	$86.02 {}^{7}F_{5} + 10.09 {}^{7}F_{6} + 2.71 {}^{7}F_{4}$
27	Γ_2^1	3928	3875	$83.05 {}^{7}F_{5} + 10.16 {}^{7}F_{6} + 4.50 {}^{7}F_{4}$
28	Γ_2^2		3892	$85.02^{7}F_{5} + 8.73^{7}F_{6} + 4.88^{7}F_{4}$
29	Γ_1		3921	$86.95 {}^{\prime}F_{5} + 7.19 {}^{\prime}F_{6} + 4.83 {}^{\prime}F_{4}$
30	Γ_2		3977	$89.33 {}^{\prime}F_{E} + 7.54 {}^{\prime}F_{C} + 2.00 {}^{\prime}F_{A}$
31	Γ_1		3986	$87.03 {}^{\prime}F_{c} + 8.56 {}^{\prime}F_{c} + 1.86 {}^{\prime}F_{s}$
32	Γ_2		4121	$90.83^{\prime}F_5 + 3.05^{\prime}F_6 + 2.99^{\prime}F_2$
33	Γ_1^-		4148	$83.94'F_5 + 7.83'F_A + 7.14'F_A$
34 35	Γ_1		4290 4437	$86.19 {}^{7}F_{5} + 7.86 {}^{7}F_{4} + 4.44 {}^{7}F_{6}$ $93.69 {}^{7}F_{5} + 4.60 {}^{7}F_{6} + 0.88 {}^{7}F_{4}$
36	$\Gamma_2 \ \Gamma_2$		4463	$95.34 {}^{7}F_{5} + 2.57 {}^{7}F_{6} + 1.47 {}^{7}F_{4}$
37	_	7 _{F6}	4908	01 2775 + 4 2975 + 2 4675
38	$\Gamma_1 \ \Gamma_2$	5029	4908	$91.27^{7}F_{6} + 4.38^{7}F_{5} + 3.66^{7}F_{4}$ $90.66^{7}F_{5} + 4.84^{7}F_{5} + 3.92^{7}F_{5}$
39	Γ_1^2	302)	4951	90.66 ${}^{7}F_{6}$ + 4.84 ${}^{7}F_{5}$ + 3.92 ${}^{7}F_{4}$ 96.59 ${}^{7}F_{6}$ + 1.72 ${}^{7}F_{5}$ + 1.47 ${}^{7}F_{4}$ 95.71 ${}^{7}F_{6}$ + 2.96 ${}^{7}F_{5}$ + 0.88 ${}^{7}F_{4}$ 90.70 ${}^{7}F_{6}$ + 6.69 ${}^{7}F_{5}$ + 1.99 ${}^{7}F_{4}$ 90.80 ${}^{7}F_{6}$ + 7.80 ${}^{7}F_{5}$ + 0.79 ${}^{7}F_{4}$
40	Γ_2^1		4955	$95.71 {}^{7}F_{4} + 2.96 {}^{7}F_{5} + 0.88 {}^{7}F_{4}$
41	Γ_1^2		5162	$90.70^{7}F_{6} + 6.69^{7}F_{5} + 1.99^{7}F_{4}$
42	Γ_2		5201	$90.80^{7}F_{6} + 7.80^{7}F_{5} + 0.79^{7}F_{4}$
43	Γ_2		5321	$00.27^{\circ}F_{6} + 10.49^{\circ}F_{5} + 0.94^{\circ}F_{A}$
44	Γ_1		5409	$89.29 {}^{7}F_{6} + 9.68 {}^{7}F_{5} + 0.91 {}^{7}F_{4}$
45	Γ_1		5447	$86.94 {}^{7}F_{6} + 12.83 {}^{7}F_{5} + 0.14 {}^{7}F_{4}$
46 47	Γ_2		5611 5617	$96.66 {}^{7}F_{6} + 2.63 {}^{7}F_{5} + 0.47 {}^{7}F_{4}$
48	$rac{\Gamma_2}{\Gamma_1}$		5719	$96.53 {}^{7}F_{6} + 2.83 {}^{7}F_{5} + 0.37 {}^{7}F_{4}$ $98.33 {}^{7}F_{6} + 1.05 {}^{7}F_{5} + 0.54 {}^{7}F_{4}$
49	Γ_1^1		5720	$98.42 {}^{7}F_{6} + 0.95 {}^{7}F_{5} + 0.55 {}^{7}F_{4}$
50	Γ_1	$^{5}D_{0}$	17447	$99.89 {}^{5}D_{0} + 0.06 {}^{5}D_{2} + 0.05 {}^{5}L_{6}$
E1	-	17286	10105	00.01.50
51 52	Γ_2	⁵ D ₁	19135	$99.91 {}^{5}D_{1} + 0.05 {}^{5}D_{2} + 0.03 {}^{5}D_{3}$
52 53	$rac{\Gamma_2}{\Gamma_1}$	19026	19167 19270	$99.89 {}^{5}D_{1}^{1} + 0.09 {}^{5}D_{2}^{2} + 0.02 {}^{5}L_{6}^{3}$ $99.94 {}^{5}D_{1} + 0.04 {}^{5}D_{3} + 0.02 {}^{5}L_{6}^{3}$
		50		
54 55	Γ_2	⁵ D ₂ 21499	21619	$99.78 {}^{5}D_{2} + 0.13 {}^{5}D_{3} + 0.05 {}^{5}D_{1}$
56	$\Gamma_1 \ \Gamma_1$	41 4 77	21626 21649	$99.85 {}^{5}D_{2}^{2} + 0.10 {}^{5}D_{3}^{3} + 0.03 {}^{5}L_{6}^{1}$
57	Γ_2^1		21649	$99.81 {}^{5}D_{2}^{2} + 0.14 {}^{5}D_{3}^{3} + 0.03 {}^{5}L_{6}^{6}$ $99.77 {}^{5}D_{2} + 0.10 {}^{5}D_{3} + 0.09 {}^{5}D_{1}^{2}$
58	Γ_1^2		21728	$99.94 {}^{5}D_{2} + 0.03 {}^{5}D_{0} + 0.02 {}^{5}L_{6}$
				4 00

Table 29 (cont'd). Predicted energy levels for Eu³⁺ in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	I. R.	$[(S,L)J]^a$	Energy	Free ion
			(cm ⁻¹)	mixture (%)
59	Γ_1	⁵ D ₃	24504	$99.87^{5}D_{3} + 0.06^{5}D_{2} + 0.04^{5}L_{6}$
60	Γ_2	24390	24514	$99.85 {}^{5}D_{3} + 0.09 {}^{5}D_{2} + 0.03 {}^{5}L_{6}$
61	Γ_2		24523	$99.88 {}^{5}D_{3} + 0.10 {}^{5}D_{2} + 0.02 {}^{5}L_{6}$
62	Γ_1^2		24560	$99.87 {}^{5}D_{3} + 0.07 {}^{5}L_{6} + 0.06 {}^{5}D_{2}$
63	Γ_1		24581	$99.83 {}^{5}D_{3} + 0.13 {}^{5}D_{2} + 0.04 {}^{5}L_{6}$
64	Γ_2		24610	$99.92{}^{5}D_{3} + 0.04{}^{5}L_{6} + 0.04{}^{5}D_{2}$
65	Γ_2^2		24626	$99.96{}^{5}D_{3} + 0.03{}^{5}L_{6} + 0.01{}^{5}D_{1}$
66	Γ_1	$^{5}L_{6}$	25171	$99.90 {}^{5}L_{6} + 0.06 {}^{5}D_{3} + 0.02 {}^{5}D_{2}$
67	Γ_2	25375	25201	$99.93 {}^{5}L_{6} + 0.04 {}^{5}D_{3} + 0.02 {}^{5}D_{2}$
68	Γ_1		25214	$99.93^{5}L_{6} + 0.04^{5}D_{3} + 0.02^{5}D_{2}$
69	$\Gamma_2^{'}$		25246	$99.96^{5}L_{6} + 0.01^{5}D_{2} + 0.01^{5}D_{3}$
70	Γ_2^2		25407	$99.96 {}^{5}L_{6} + 0.02 {}^{5}D_{3} + 0.01 {}^{5}D_{2}$
7 1	Γ_1^2		25436	$99.96 {}^{5}L_{6} + 0.03 {}^{5}D_{3} + 0.01 {}^{5}D_{2}$
7 2	Γ_1^1		25509	$99.98 {}^{5}L_{6} + 0.01 {}^{5}D_{0} + 0.01 {}^{5}D_{2}$
7 3	$\Gamma_2^{'}$		25656	$99.96 {}^{5}L_{6} + 0.02 {}^{5}D_{3} + 0.01 {}^{5}D_{2}$
74	Γ_2^2		25718	$99.98 {}^{5}L_{6} + 0.01 {}^{5}D_{2} + 0.01 {}^{5}D_{3}$
<i>7</i> 5	Γ_1^2		25835	$99.98 {}^{5}L_{6} + 0.01 {}^{5}D_{0} + 0.01 {}^{5}D_{3}$
7 6	Γ_1^1		25856	$99.98 {}^{5}L_{6} + 0.01 {}^{5}D_{2}$
<i>7</i> 7	Γ_1		25908	$99.97^{5}L_{6} + 0.02^{5}D_{2} + 0.01^{5}D_{3}$
78	Γ_2		25915	$99.96{}^{5}L_{6}^{\circ} + 0.02{}^{5}D_{3}^{\circ} + 0.02{}^{5}D_{2}^{\circ}$

^aAqueous centroids (cm⁻¹).

Table 30. Predicted energy levels for Gd^{3+} in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	$[(S,L)J]^a$	Energy (cm ⁻¹)	Free ion mixture (%)
1 2 3 4	⁸ S _{7/2} 14	0 0.3 0.8 1.4	100.00 ⁸ S _{7/2} 100.00 ⁸ S _{7/2} 100.00 ⁸ S _{7/2} 100.00 ⁸ S _{7/2}
5 6 7 8	⁶ <i>p</i> _{7/2} 32224	32074 32127 32217 32340	$99.44 ^{6}P_{7/2} + 0.15 ^{6}P_{3/2} + 0.09 ^{6}P_{5/2} $ $98.84 ^{6}P_{7/2} + 0.69 ^{6}P_{5/2} + 0.15 ^{6}P_{3/2} $ $98.59 ^{6}P_{7/2} + 1.06 ^{6}P_{5/2} + 0.07 ^{6}I_{13/2} $ $99.54 ^{6}P_{7/2} + 0.08 ^{6}I_{17/2} + 0.06 ^{6}I_{11/2} $
9 10 11	⁶ P _{5/2} 32767	32661 32706 32815	$98.30 {}^{6}P_{5/2} + 0.78 {}^{6}P_{3/2} + 0.40 {}^{6}P_{7/2} 95.08 {}^{6}P_{5/2} + 3.74 {}^{6}P_{3/2} + 0.73 {}^{6}P_{7/2} 98.55 {}^{6}P_{5/2} + 0.82 {}^{6}P_{7/2} + 0.16 {}^{6}I_{17/2}$
12 13	⁶ P _{3/2} 33303	33247 33319	$95.61^{6}P_{3/2} + 3.74^{6}P_{5/2} + 0.13^{6}I_{13/2}$ $98.30^{6}P_{3/2} + 1.01^{6}P_{5/2} + 0.14^{6}I_{13/2}$
14 15 16 17	⁶ I _{7/2} 35879	35823 35841 35890 35917	$\begin{array}{l} 99.54 \ ^{6}I_{7/2} + 0.21 \ ^{6}I_{9/2} + 0.13 \ ^{6}P_{5/2} \\ 99.77 \ ^{6}I_{7/2} + 0.17 \ ^{6}I_{9/2} + 0.01 \ ^{6}P_{7/2} \\ 99.49 \ ^{6}I_{7/2} + 0.28 \ ^{6}I_{9/2} + 0.13 \ ^{6}P_{5/2} \\ 99.52 \ ^{6}I_{7/2} + 0.24 \ ^{6}I_{9/2} + 0.13 \ ^{6}P_{5/2} \end{array}$
18 19 20 21 22	⁶ I _{9/2} 36231	36164 36185 36206 36261 36278	$\begin{array}{c} 99.09 ^6I_{9/2} + 0.28 ^6I_{11/2} + 0.18 ^6I_{13/2} \\ 99.36 ^6I_{9/2} + 0.30 ^6I_{11/2} + 0.17 ^6I_{7/2} \\ 98.77 ^6I_{9/2} + 0.64 ^6I_{11/2} + 0.22 ^6I_{7/2} \\ 98.95 ^6I_{9/2} + 0.42 ^6I_{11/2} + 0.18 ^6I_{7/2} \\ 98.77 ^6I_{9/2} + 0.58 ^6I_{11/2} + 0.15 ^6I_{15/2} \end{array}$

Table 30 (cont'd). Predicted energy levels for Gd^{3+} in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	$[(S,L)J]^a$	Energy	Free ion
		(cm ⁻¹)	mixture (%)
23 24 25 26 27 28 29 30 31	⁶ I _{17/2} 36462	36433 36441 36443 36444 36445 36446 36447 36449 36450	$\begin{array}{c} 67.66 ^{6}I_{17/2} + 29.81 ^{6}I_{11/2} + 1.19 ^{6}I_{15/2} \\ 86.79 ^{6}I_{17/2} + 10.77 ^{6}I_{11/2} + 1.35 ^{6}I_{13/2} \\ 93.57 ^{6}I_{17/2} + 3.69 ^{6}I_{11/2} + 2.05 ^{6}I_{15/2} \\ 96.25 ^{6}I_{17/2} + 2.07 ^{6}I_{11/2} + 1.40 ^{6}I_{15/2} \\ 94.20 ^{6}I_{17/2} + 4.08 ^{6}I_{11/2} + 0.91 ^{6}I_{15/2} \\ 97.16 ^{6}I_{17/2} + 1.66 ^{6}I_{15/2} + 0.53 ^{6}I_{11/2} \\ 96.36 ^{6}I_{17/2} + 2.46 ^{6}I_{11/2} + 0.61 ^{6}I_{13/2} \\ 93.64 ^{6}I_{17/2} + 4.81 ^{6}I_{11/2} + 0.90 ^{6}I_{15/2} \\ 97.62 ^{6}I_{17/2} + 0.96 ^{6}I_{11/2} + 0.74 ^{6}I_{15/2} \end{array}$
32 33 34 35 36 37	⁶ I _{11/2} 36526	36459 36478 36495 36514 36567 36579	$\begin{array}{l} 54.77 ^6I_{11/2} + 42.19 ^6I_{17/2} + 2.43 ^6I_{15/2} \\ 95.57 ^6I_{11/2} + 3.00 ^6I_{17/2} + 0.71 ^6I_{13/2} \\ 91.18 ^6I_{11/2} + 6.30 ^6I_{17/2} + 1.53 ^6I_{13/2} \\ 92.91 ^6I_{11/2} + 4.95 ^6I_{17/2} + 0.89 ^6I_{13/2} \\ 95.23 ^6I_{11/2} + 1.54 ^6I_{13/2} + 1.41 ^6I_{17/2} \\ 94.45 ^6I_{11/2} + 2.05 ^6I_{15/2} + 1.71 ^6I_{17/2} \end{array}$
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	6I _{13/2} 36711 6I _{15/2} 36725	36636 36655 36658 36663 36689 36696 36701 36709 36714 36723 36753 36756 36793 36793	$\begin{array}{c} 92.62 ^{6}I_{13/2} + 3.89 ^{6}I_{15/2} + 2.32 ^{6}I_{17/2} \\ 71.13 ^{6}I_{13/2} + 25.86 ^{6}I_{15/2} + 1.98 ^{6}I_{11/2} \\ 55.23 ^{6}I_{13/2} + 42.27 ^{6}I_{15/2} + 1.44 ^{6}I_{11/2} \\ 76.12 ^{6}I_{15/2} + 19.74 ^{6}I_{13/2} + 2.59 ^{6}I_{17/2} \\ 63.95 ^{6}I_{13/2} + 34.61 ^{6}I_{15/2} + 0.77 ^{6}I_{17/2} \\ 64.41 ^{6}I_{15/2} + 34.09 ^{6}I_{13/2} + 0.74 ^{6}I_{17/2} \\ 60.46 ^{6}I_{13/2} + 38.14 ^{6}I_{15/2} + 0.73 ^{6}I_{17/2} \\ 62.26 ^{6}I_{15/2} + 35.63 ^{6}I_{13/2} + 1.18 ^{6}I_{11/2} \\ 82.56 ^{6}I_{15/2} + 15.83 ^{6}I_{13/2} + 0.80 ^{6}I_{17/2} \\ 71.72 ^{6}I_{15/2} + 26.08 ^{6}I_{13/2} + 1.27 ^{6}I_{11/2} \\ 71.83 ^{6}I_{15/2} + 26.57 ^{6}I_{13/2} + 0.88 ^{6}I_{17/2} \\ 52.22 ^{6}I_{13/2} + 45.77 ^{6}I_{15/2} + 1.16 ^{6}I_{17/2} \\ 50.26 ^{6}I_{13/2} + 47.79 ^{6}I_{15/2} + 1.15 ^{6}I_{11/2} \\ 61.83 ^{6}I_{15/2} + 36.53 ^{6}I_{13/2} + 1.02 ^{6}I_{17/2} \\ 52.08 ^{6}I_{15/2} + 46.12 ^{6}I_{13/2} + 1.26 ^{6}I_{17/2} \\ \end{array}$
53 54 55 56 57	⁶ D _{9/2} 39779	39617 39672 39776 39809 39947	$\begin{array}{l} 99.01 ^6D_{9/2} + 0.50 ^6D_{7/2} + 0.18 ^6D_{1/2} \\ 98.50 ^6D_{9/2} + 1.08 ^6D_{7/2} + 0.12 ^6D_{1/2} \\ 98.44 ^6D_{9/2} + 1.31 ^6D_{7/2} + 0.06 ^6D_{5/2} \\ 99.39 ^6D_{9/2} + 0.31 ^6D_{7/2} + 0.07 ^6P_{5/2} \\ 99.09 ^6D_{9/2} + 0.43 ^6D_{7/2} + 0.26 ^6D_{1/2} \end{array}$
58 59 60 61 62	⁶ D _{1/2} 40621 ⁶ D _{7/2} 40713	40553 40661 40691 40710 40719	$73.98 ^{6}D_{1/2} + 11.90 ^{6}D_{7/2} + 8.71 ^{6}D_{3/2}$ $70.51 ^{6}D_{7/2} + 22.33 ^{6}D_{3/2} + 4.19 ^{6}D_{1/2}$ $87.94 ^{6}D_{7/2} + 5.82 ^{6}D_{3/2} + 3.87 ^{6}D_{5/2}$ $94.21 ^{6}D_{7/2} + 3.45 ^{6}D_{5/2} + 1.14 ^{6}D_{1/2}$ $82.47 ^{6}D_{7/2} + 9.30 ^{6}D_{7/2} + 4.21 ^{6}D_{7/2}$
63 64 65 66 67	⁶ D _{3/2} 40851 ⁶ D _{5/2} 40978	40795 40892 40955 41028 41082	$82.47 ^{6}D_{7/2} + 9.30 ^{6}D_{1/2} + 4.21 ^{6}D_{5/2}$ $63.05 ^{6}D_{3/2} + 22.15 ^{6}D_{7/2} + 13.44 ^{6}D_{5/2}$ $58.96 ^{6}D_{5/2} + 33.16 ^{6}D_{3/2} + 6.37 ^{6}D_{7/2}$ $47.55 ^{6}D_{5/2} + 36.75 ^{6}D_{3/2} + 11.35 ^{6}D_{7/2}$ $73.36 ^{6}D_{5/2} + 17.28 ^{6}D_{3/2} + 6.71 ^{6}D_{7/2}$ $87.80 ^{6}D_{5/2} + 8.73 ^{6}D_{3/2} + 2.17 ^{6}D_{7/2}$

^aAqueous centroids (cm⁻¹).

Table 31. Predicted energy levels for $\mathrm{Tb^{3+}}$ in $\mathrm{Ca_5(PO_4)_3F}$, C_s site. B_{nm} from table 9.

Love	I D	[(C I \ma	Enorma	Free ion
Level	I. R.	$[(S,L)J]^{a}$	Energy (cm ⁻¹)	mixture (%)
1	Γ_1	⁷ F ₆	0	$99.38 {}^{7}F_{6} + 0.30 {}^{7}F_{5} + 0.27 {}^{7}F_{4}$
2	Γ_1	74	1	$99.34 ^{7}F_{c} + 0.37 ^{7}F_{e} + 0.25 ^{7}F_{s}$
3	Γ_2		119	$98.84 ^{\prime}F_{c} + 0.83 ^{\prime}F_{z} + 0.20 ^{\prime}F_{A}$
4	Γ_2		124	$98.78 ^{\prime}F_{c} + 0.92 ^{\prime}F_{c} + 0.16 ^{\prime}F_{A}$
5	Γ_1		340	$95.55 {}^{7}F_{6} + 4.25 {}^{7}F_{5} + 0.15 {}^{7}F_{4}$
6	Γ_1		362	$96.10^{7}F_{6} + 3.51^{7}F_{5} + 0.32^{7}F_{4}$
7	Γ_2		481	$94.84 {}^{7}F_{6} + 4.68 {}^{7}F_{5} + 0.30 {}^{7}F_{4}$
8	Γ_2		557	$96.99 {}^{7}F_{6} + 2.43 {}^{7}F_{5} + 0.30 {}^{7}F_{4}$
9	Γ_1		604	$96.75 {}^{7}F_{6} + 2.19 {}^{7}F_{5} + 0.75 {}^{7}F_{4}$
10	Γ_1		768	99.21 ${}^{7}F_{6} + 0.35 {}^{7}F_{5} + 0.31 {}^{7}F_{4}$ 99.19 ${}^{7}F_{6} + 0.35 {}^{7}F_{5} + 0.26 {}^{7}F_{4}$
11	Γ_2		770 841	$99.19^{\circ} F_6 + 0.35^{\circ} F_5 + 0.20^{\circ} F_4$
12	Γ_1		841	97.36 ${}^{7}F_{6} + 1.25 {}^{7}F_{4} + 1.15 {}^{7}F_{5}$ 97.33 ${}^{7}F_{6} + 1.28 {}^{7}F_{4} + 1.17 {}^{7}F_{5}$
13	Γ_2	7_		97.55 76 + 1.20 74 + 1.17 75
14	Γ_2	$^{7}F_{5}$	2181	$97.81^{7}F_{5} + 0.92^{7}F_{4} + 0.75^{7}F_{6}$
15	Γ_2	2112	2198	$97.71^{7}F_{5} + 0.96^{7}F_{4} + 0.82^{7}F_{6}$
16	Γ_1		2355	$92.56^{7}F_{5} + 5.07^{7}F_{4} + 1.22^{7}F_{6}$
17	Γ_1		2460	$91.22 {}^{7}F_{5} + 5.29 {}^{7}F_{4} + 2.66 {}^{7}F_{6}$
18	Γ_2		2507	$94.33^{7}F_{5} + 1.94^{7}F_{3} + 1.76^{7}F_{6}$
19	Γ_1		2584 2617	$91.93 {}^{7}F_{5} + 4.50 {}^{7}F_{6} + 2.28 {}^{7}F_{4}$
20	Γ_2		2678	$93.75 {}^{7}F_{5} + 2.63 {}^{7}F_{6} + 2.63 {}^{7}F_{4}$ $91.44 {}^{7}F_{5} + 3.84 {}^{7}F_{6} + 3.54 {}^{7}F_{4}$
21 22	Γ_2		2696	$94.16 {}^{7}F_{5} + 2.79 {}^{7}F_{4} + 1.57 {}^{7}F_{6}$
23	Γ_1		2726	$94.74 {}^{7}F_{5} + 2.06 {}^{7}F_{6} + 1.79 {}^{7}F_{4}$
24	Γ_1		2735	$94.39 {}^{7}F_{5} + 2.66 {}^{7}F_{4} + 1.21 {}^{7}F_{3}$
	Γ_2	7 . c		
25	Γ_2	⁷ F ₄	3595 3616	$90.69 {}^{7}F_{4} + 3.75 {}^{7}F_{3} + 3.38 {}^{7}F_{5}$ $93.49 {}^{7}F_{4} + 3.05 {}^{7}F_{5} + 1.14 {}^{7}F_{3}$
26 27	Γ_1	3370	3616 3641	$92.09 {}^{7}F_{4} + 5.24 {}^{7}F_{5} + 1.30 {}^{7}F_{0}$
27 28	Γ_1		3719	$94.35 {}^{7}F_{4} + 2.56 {}^{7}F_{5} + 1.67 {}^{7}F_{2}$
29	$rac{\Gamma_1}{\Gamma_2}$		3726	$86.45 {}^{7}F_{4} + 8.65 {}^{7}F_{3} + 3.18 {}^{7}F_{5}$
30	Γ_2		3857	$87.56 {}^{7}F_{4} + 5.63 {}^{7}F_{3} + 5.31 {}^{7}F_{5}$
31	Γ_1		3869	$82.10^{7}F_{4} + 11.45^{7}F_{3} + 3.81^{7}F_{5}$
32	Γ_1^1		4027	$86.42 {}^{7}F_{4} + 8.24 {}^{7}F_{3} + 2.53 {}^{7}F_{5}$
33	Γ_2^1		4029	$94.90^{7}F_{4} + 1.79^{7}F_{5} + 1.61^{7}F_{2}$
34	Γ_2	$^{7}F_{3}$	4666	$87.52 {}^{7}F_{3} + 7.88 {}^{7}F_{1} + 3.97 {}^{7}F_{4}$
35	Γ_1^2	4344	4682	$75.22 {}^{7}F_{3} + 10.30 {}^{7}F_{2} + 9.27 {}^{7}F_{4}$
36	Γ_2^1	1011	4708	$86.98 {}^{7}F_{3} + 8.53 {}^{7}F_{2} + 2.75 {}^{7}F_{5}$
37	Γ_1^2		4714	$85.77^{7}F_{2} + 5.43^{7}F_{4} + 4.11^{7}F_{1}$
38	Γ_1^{i}		4826	$75.89^{7}F_{3} + 11.86^{7}F_{2} + 10.13^{7}F_{4}$
39	$\Gamma_2^{'}$		4889	$74.05 F_3 + 16.14 F_2 + 8.95 F_4$
40	Γ_2^2		4981	$91.46 {}^{7}F_{3} + 6.76 {}^{7}F_{4} + 0.80 {}^{7}F_{5}$
41	Γ_2	$^{7}F_{2}$	5296	$71.96^{7}F_{2} + 24.73^{7}F_{3} + 2.15^{7}F_{4}$
42	Γ_1^2	5028	5363	$79.11^{7}F_{2} + 9.33^{7}F_{0} + 7.73^{7}F_{3}$
43	Γ_2	${}^{7}F_{1}$	5559	$91.29^{7}F_{2} + 4.10^{7}F_{1} + 1.58^{7}F_{3}$
44	Γ_1^2	5481	5707	$55.08 F_0 + 33.96 F_1 + 8.92 F_2$
45	Γ_1		5788	$46.71^{7}F_{2}^{2} + 39.60^{7}F_{1}^{4} + 12.64^{7}F_{2}^{4}$
46	Γ_1		5826	$46.71 ^{7}F_{2} + 39.60 ^{7}F_{1} + 12.64 ^{7}F_{2} + 35.55 ^{7}F_{2} + 16.79 ^{7}F_{1} + 8.00 ^{7}F_{3}$
47	Γ_2^1		6158	$90.88 {}^{\prime}F_1 + 3.98 {}^{\prime}F_3 + 3.66 {}^{\prime}F_2$
48	Γ_2^2		6189	$91.91 {}^{7}F_{1}^{1} + 4.21 {}^{7}F_{3}^{2} + 2.74 {}^{7}F_{2}^{2}$
	-			

Table 31 (cont'd). Predicted energy levels for Tb³⁺ in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	I.R.	$[(S,L)J]^a$	Energy	Free ion
		, . , .	(cm^{-1})	mixture (%)
	-	7-		
49	Γ_1	${}^{7}F_{0}$	6307	$85.53^{7}F_{0} + 12.33^{7}F_{2} + 1.90^{7}F_{4}$
		5703		
50	Γ_1	$^{5}D_{4}$	20834	$99.87 {}^{5}D_{4} + 0.07 {}^{5}G_{6} + 0.02 {}^{5}L_{10}$
51	Γ_1^*	20542	20836	$99.87 {}^{\circ}D_{A} + 0.07 {}^{\circ}G_{C} + 0.02 {}^{\circ}G_{E}$
52	Γ_2		20935	$99.73 {}^{5}D_{4}^{4} + 0.16 {}^{5}G_{6}^{6} + 0.04 {}^{5}G_{5}^{6}$
53	Γ_1^2		20939	$99.68 ^5D_4 + 0.22 ^5G_6 + 0.03 ^5G_5$
54			20958	$99.82 ^{5}D_{+}^{4} + 0.022 ^{6}C_{+}^{6} + 0.03 ^{6}D_{-}^{5}$
55	Γ_2		20970	$99.82 {}^{5}D_{4}^{7} + 0.06 {}^{5}G_{6}^{7} + 0.06 {}^{5}D_{3}^{7}$
	Γ_2			$99.85 {}^{5}D_{4}^{7} + 0.05 {}^{5}G_{6}^{6} + 0.05 {}^{5}D_{3}^{3}$
56	Γ_1		21025	$99.83 \cdot ^{5}D_{4}^{4} + 0.08 \cdot ^{5}G_{6}^{6} + 0.04 \cdot ^{5}D_{3}^{7}$
57 50	Γ_1		21074	$99.88 {}^{5}D_{4}^{4} + 0.03 {}^{5}G_{6}^{6} + 0.02 {}^{5}L_{10}^{3}$
58	Γ_2		21078	$99.88 {}^{5}D_{4}^{4} + 0.05 {}^{5}G_{6}^{6} + 0.02 {}^{5}L_{10}^{10}$
59	Γ_1	⁵ G ₆	26498	$94.72{}^{5}G_{6} + 2.60{}^{5}D_{3} + 1.27{}^{5}L_{10}$
60		26424	26500	$04.74.50 \pm 2.60.50 \pm 1.21.51$
61	Γ_1	5n		$94.74 {}^{5}G_{6} + 2.60 {}^{5}D_{3} + 1.31 {}^{5}L_{10}$
	Γ_2	⁵ D ₃	26580	$69.67^{5}G_{6} + 29.04^{5}D_{3} + 0.49^{5}L_{10}$
62	Γ_2	26336	26601	$74.49 {}^{5}G_{6} + 23.56 {}^{5}D_{3} + 0.95 {}^{5}L_{10}$
63	Γ_1		26688	$61.68 {}^{5}D_{3} + 36.35 {}^{5}G_{6} + 0.83 {}^{5}G_{5}$
64	Γ_1		26724	$81.15 {}^{5}D_{3} + 17.78 {}^{5}G_{6} + 0.34 {}^{5}G_{5}$
65	Γ_1		26731	$49.31 {}^{3}G_{6} + 45.29 {}^{3}D_{3} + 3.62 {}^{3}L_{10}$
66	Γ_2		26737	$82.48^{5}D_{3} + 14.96^{5}G_{6} + 1.18^{5}G_{5}$
67	Γ_2		26743	$68.35 {}^{5}D_{3} + 29.51 {}^{5}G_{6} + 1.17 {}^{5}L_{10}$
68	Γ_1^2		26756	$62.83 {}^{5}D_{3}^{3} + 34.10 {}^{5}G_{6}^{6} + 1.99 {}^{5}L_{10}^{10}$
69	Γ_2^1		26769	$83.39 {}^{5}D_{3} + 15.23 {}^{5}G_{6} + 0.73 {}^{5}G_{5}$
70	Γ_2^2		26777	$72.33 ^{5}D_{3} + 26.22 ^{5}G_{6} + 0.93 ^{5}L_{10}$
71	Γ ²		26794	76.59 5C + 21.27 5D + 1.00 5L
7 2	Γ_1			$76.58 {}^{5}G_{6} + 21.27 {}^{5}D_{3} + 1.00 {}^{5}L_{10}$
	Γ_2		26842	$77.59 {}^{5}G_{6} + 14.07 {}^{5}D_{3} + 6.02 {}^{5}L_{10}$
73	Γ_2		26931	$85.79 {}^{5}G_{6} + 10.78 {}^{5}D_{3} + 1.37 {}^{5}G_{5}$
74	Γ_1^-		27003	$73.95 {}^{5}G_{6} + 13.32 {}^{5}L_{10} + 10.29 {}^{5}D_{3}$
75	Γ_1		27012	$93.57^{\circ}G_{6} + 2.87^{\circ}D_{2} + 2.16^{\circ}L_{10}$
76	Γ_2		27020	$87.78{}^{5}G_{6} + 7.46{}^{5}L_{10} + 2.67{}^{5}D_{2}$
77	Γ_1		27056	$88.18 {}^{3}G_{6} + 5.09 {}^{3}D_{2} + 4.67 {}^{3}L_{10}$
78	Γ_2		27090	$83.53 {}^{5}G_{6}^{0} + 8.40 {}^{5}D_{3}^{3} + 5.89 {}^{5}L_{10}^{10}$
79		5 <i>1</i>	27142	
80	Γ_2	$^{5}L_{10}$		$81.76 {}^{5}L_{10} + 17.33 {}^{5}G_{6} + 0.45 {}^{5}D_{3}$
	Γ_1	27146	27145	$79.73^{5}L_{10} + 19.04^{5}G_{6} + 0.67^{5}D_{3}$
81	Γ_1	$^{5}G_{5}$	27224	$98.05 {}^{5}L_{10} + 1.39 {}^{5}G_{6} + 0.45 {}^{5}L_{9}$
82	Γ_1	27795	27225	$97.67^{5}L_{10}^{10} + 1.69^{5}G_{6}^{6} + 0.51^{5}L_{9}^{9}$
83	Γ_2		27294	$98.73^{3}L_{10} + 0.56^{3}G_{6} + 0.43^{3}L_{9}$
84	Γ_2		27299	$98.21^{3}L_{10} + 0.93^{3}G_{6} + 0.56^{3}L_{0}$
85	Γ_1		27449	$97.06^{5}L_{10} + 1.60^{5}L_{0} + 1.17^{5}G_{6}$
86	Γ_1		27476	$96.13 {}^{5}L_{10} + 2.27 {}^{5}L_{9} + 1.41 {}^{5}G_{6}$
87	Γ_2		27477	$93.69 {}^{5}L_{10}^{10} + 4.30 {}^{5}L_{9}^{9} + 1.72 {}^{5}G_{6}^{0}$
88	Γ_1^2		27491	$95.83 {}^{5}L_{10} + 2.98 {}^{5}L_{9} + 1.09 {}^{5}G_{6}$
89	Γ_2^{-1}		27544	$97.24 {}^{5}L_{10} + 1.38 {}^{5}L_{9} + 0.87 {}^{5}G_{6}$
90			27600	06.0051 + 1.975C + 1.2051
	Γ_2			$96.09 {}^{5}L_{10} + 1.87 {}^{5}G_{6} + 1.38 {}^{5}L_{9}$
91	Γ_1		27646	$97.19 {}^{5}L_{10} + 1.35 {}^{5}L_{9} + 1.35 {}^{5}G_{6}$
92	Γ_1		27690	$97.46 {}^{5}L_{10} + 1.71 {}^{5}L_{9} + 0.68 {}^{5}G_{6}$
93	Γ_2		27 690	$97.55 {}^{5}L_{10} + 1.64 {}^{5}L_{9} + 0.44 {}^{5}G_{6}$
94	Γ_2		27771	$96.58 {}^{5}L_{10} + 1.76 {}^{5}G_{5} + 0.84 {}^{5}G_{6}$
95	Γ_1^-		27773	96.58 ${}^{5}L_{10}^{10} + 1.76 {}^{5}G_{5}^{5} + 0.84 {}^{5}G_{6}^{6}$ 96.97 ${}^{5}L_{10}^{10} + 1.12 {}^{5}G_{6} + 1.09 {}^{5}G_{5}^{5}$
96	Γ_2		27932	$48.91 {}^{5}G_{5} + 48.17 {}^{5}L_{10} + 1.50 {}^{5}G_{4}$
	4		-	-5 -10 -10 -4

Table 31 (cont'd). Predicted energy levels for $\mathrm{Tb^{3+}}$ in $\mathrm{Ca_5(PO_4)_3F}$, C_s site. B_{nm} from table 9.

Level	I. R.	[(S,L)]] ^a	Energy	Free ion
		. ,-	(cm ⁻¹)	mixture (%)
97	Γ_2		27939	$53.31 {}^{5}L_{10} + 44.33 {}^{5}G_{5} + 1.21 {}^{5}G_{4}$
98	Γ_1^2		27977	$90.21 {}^{5}L_{10} + 8.83 {}^{5}G_{5} + 0.51 {}^{5}L_{9}$
99	Γ_1		27981	$89.45^{5}L_{10} + 9.64^{5}G_{5} + 0.46^{5}L_{0}$
100	$\Gamma_2^{'}$		28036	$50.38 ^{5}L_{10} + 44.99 ^{5}G_{5} + 2.55 ^{5}G_{4}$
101	Γ_2^2		28039	$51.89 {}^{5}G_{5} + 43.56 {}^{5}L_{10} + 2.94 {}^{5}G_{4}$
102	Γ_1^2		28145	$84.92{}^{5}G_{5} + 8.04{}^{5}L_{10} + 3.92{}^{5}G_{4}$
103	Γ_1		28161	$86.76 {}^{5}G_{5} + 8.61 {}^{5}L_{10} + 2.84 {}^{5}D_{2}$
104	Γ_2		28182	$84.13{}^{5}G_{5} + 8.74{}^{5}G_{4} + 3.07{}^{5}L_{10}$
105	Γ_1	•	28255	$87.10^{5}G_{5} + 9.53^{5}G_{4} + 1.30^{5}L_{10}$
106	Γ_2		28259	$94.20{}^{5}G_{5} + 1.99{}^{5}G_{4} + 1.64{}^{5}G_{6}$
107	Γ_1		28282	$85.85 {}^{5}G_{5} + 9.41 {}^{5}G_{4} + 1.81 {}^{5}D_{2}$
108	Γ_2		28349	$87.48{}^{5}G_{5} + 5.69{}^{5}G_{4} + 4.70{}^{5}D_{2}$
109	Γ_2		28366	$90.89{}^{5}G_{5} + 4.61{}^{5}D_{2} + 2.09{}^{5}G_{4}$
110	Γ_1		28377	$83.71 {}^{5}G_{5} + 9.34 {}^{5}G_{4} + 4.12 {}^{5}D_{2}$
111	Γ_2	$^{5}D_{2}$	28490	$85.95 {}^{5}D_{2} + 8.57 {}^{5}G_{5} + 4.48 {}^{5}G_{4}$
112	Γ_1^2	28150	28505	$82.53 ^{5}D_{2} + 13.15 ^{5}G_{4} + 3.61 ^{5}G_{5}$
113	Γ_2	${}^{5}G_{4}$	28562	$73.91~^{5}D_{2} + 18.43~^{5}G_{4} + 5.90~^{5}G_{5}$
114	Γ_1^2	28307	28595	$52.44 {}^{5}G_{4} + 43.56 {}^{5}D_{2} + 2.03 {}^{5}L_{9}$
115	Γ_1	$^{5}L_{9}$	28624	$84.77{}^{5}G_{4} + 7.18{}^{5}D_{2} + 4.39{}^{5}G_{5}$
116	Γ_2	28503	28640	$96.68^{5}L_{9} + 2.05^{5}G_{4} + 0.65^{5}L_{10}$
117	Γ_2^-		28642	$96.27 {}^{5}L_{9} + 2.17 {}^{5}G_{4} + 0.62 {}^{5}L_{10}$
118	Γ_1		28657	$71.65 {}^{5}D_{2} + 18.79 {}^{5}G_{4} + 5.54 {}^{5}L_{9}$
119	Γ_1		28668	$35.09^{5}L_{9}^{2} + 31.45^{5}G_{4}^{4} + 22.96^{5}D_{2}^{5}$
120	Γ_2		28677	$92.70^{5}L_{9} + 3.58^{5}L_{10} + 1.33^{5}G_{5}$
121	L^1		28681	$56.52^{5}L_{9} + 20.48^{5}D_{2} + 13.89^{5}G_{4}$
122	Γ_1		28751	$92.33^{5}L_{9} + 3.56^{5}G_{4} + 2.37^{5}D_{2}$
123	$\frac{\Gamma_1}{2}$		28761	$89.88^{5}L_{9} + 6.91^{5}G_{4} + 1.30^{5}L_{10}$
124	Γ_2		28765	$90.06 {}^{5}G_{4} + 4.95 {}^{5}G_{5} + 4.56 {}^{5}L_{9}$
125	Γ_2		28797	$86.05 {}^{5}G_{4}^{7} + 5.17 {}^{5}G_{5}^{7} + 4.30 {}^{5}L_{9}^{7}$
126	Γ_1		28853	$80.07 {}^{5}G_{4} + 11.03 {}^{5}D_{2} + 6.59 {}^{5}L_{9}$
127	Γ_2		28860	$60.88 {}^{5}G_{4}^{4} + 24.35 {}^{5}L_{9}^{2} + 7.02 {}^{5}D_{2}^{2}$
128	Γ_1		28875	$75.75 {}^{5}G_{4} + 13.01 {}^{5}D_{2} + 5.53 {}^{5}G_{5}$ $49.16 {}^{5}G_{4} + 35.59 {}^{5}L_{9} + 8.61 {}^{5}D_{2}$
129	Γ_2		28879 28881	$66.18 {}^{5}G_{4} + 15.63 {}^{5}L_{9} + 9.85 {}^{5}D_{2}$
130	Γ_1			$61.97 {}^{5}L_{9} + 35.02 {}^{5}G_{4} + 1.73 {}^{5}D_{2}$
131	Γ_2		28911 28924	$81.13 {}^{5}L_{9} + 14.83 {}^{5}G_{4} + 1.58 {}^{5}D_{2}$
132 133	$\frac{\Gamma_2}{\Gamma}$		28966	$85.16 {}^{5}L_{9} + 11.49 {}^{5}G_{4} + 1.22 {}^{5}D_{2}$
134	Γ_1		28974	$95.37 {}^{5}L_{9} + 2.71 {}^{5}G_{4} + 1.41 {}^{5}L_{10}$
135	$rac{\Gamma_2}{\Gamma_1}$		28991	$97.92{}^{5}L_{9} + 0.90{}^{5}G_{4} + 0.77{}^{5}L_{10}$
136	Γ_1^1		29041	$98.17 ^{5}L_{0} + 0.71 ^{5}L_{10} + 0.65 ^{5}G_{4}$
137	Γ_2		29068	$98.60^{5}L_{0} + 0.81^{5}G_{c} + 0.32^{5}L_{10}$
138	Γ_2^2		29141	$96.15 {}^{9}L_{o} + 2.51 {}^{9}G_{c} + 0.75 {}^{9}G_{c}$
139	Γ_1^2		29151	$95.69 ^{5}L_{0} + 2.98 ^{5}G_{4} + 0.90 ^{5}G_{6}$
140	Γ_1		29249	$96.68 ^{5}L_{0} + 2.04 ^{5}L_{10} + 0.99 ^{5}G_{4}$
141	Γ_2		29249	$96.97 {}^{5}L_{0} + 1.93 {}^{5}L_{10} + 0.76 {}^{5}G_{4}$
142	Γ_1 Γ_2		29255	$96.79 {}^{5}L_{9}^{9} + 1.85 {}^{5}L_{10}^{10} + 0.92 {}^{5}G_{4}^{9}$ $96.77 {}^{5}L_{9} + 1.68 {}^{5}L_{10} + 1.06 {}^{5}G_{4}^{9}$
143			29257	

^aAqueous centroids (cm⁻¹).

Table 32. Predicted energy levels for Dy³⁺ in Ca₅(PO₄)₃F, C_s site. B_{nm} from table 9.

Level	$[(S,L)J]^a$	Energy	Free ion
		(cm ⁻¹)	mixture (%)
1	⁶ H _{15/2}	0	$99.72^{6}H_{15/2} + 0.12^{6}F_{11/2} + 0.11^{6}H_{13/2}$
2	40	286	$99.29 {}^{\circ}H_{15/2} + 0.60 {}^{\circ}H_{13/2} + 0.07 {}^{\circ}F_{9/2}$
3		461	$99.37 ^{\circ}H_{15/2} + 0.31 ^{\circ}F_{11/2} + 0.26 ^{\circ}H_{12/2}$
4		564	$99.32 ^{\circ}H_{15/2} + 0.49 ^{\circ}H_{13/2} + 0.10 ^{\circ}F_{11/2}$
5		722	$99.49 ^{\circ}H_{15/2} + 0.37 ^{\circ}H_{12/2} + 0.06 ^{\circ}F_{11/2}$
6		765	$99.36 {}^{6}H_{15/2} + 0.44 {}^{6}H_{13/2} + 0.11 {}^{6}F_{11/2}$
7		883	99.38 $^{\circ}H_{15/2} + 0.28 ^{\circ}F_{11/2} + 0.21 ^{\circ}H_{13/2}$
8		1016	$99.56^{\circ}H_{15/2} + 0.23^{\circ}F_{11/2} + 0.10^{\circ}F_{9/2}$
9	$^{6}H_{13/2}$	3672	$98.71^{6}H_{13/2} + 0.58^{6}H_{15/2} + 0.34^{6}H_{11/2}$
10	3506	3869	$97.43^{\circ}H_{13/2} + 1.48^{\circ}H_{11/2} + 0.73^{\circ}H_{15/2}$
11		4029	$98.20^{\circ}H_{13/2} + 1.04^{\circ}H_{11/2} + 0.40^{\circ}H_{15/2}$
12		4090	$98.75^{\circ}H_{12/2} + 0.40^{\circ}H_{11/2} + 0.28^{\circ}H_{15/2}$
13		4123	$97.96 {}^{\circ}H_{13/2} + 1.00 {}^{\circ}H_{11/2} + 0.42 {}^{\circ}F_{11/2}$
14		4194	$98.11 ^{\circ}H_{13/2} + 0.94 ^{\circ}H_{11/2} + 0.25 ^{\circ}H_{15/2}$
15		4361	$98.76^{6}H_{13/2}^{13/2} + 0.38^{6}H_{11/2}^{11/2} + 0.25^{6}F_{11/2}^{13/2}$
16	$^{6}H_{11/2}$	6117	$97.22^{6}H_{11/2} + 1.63^{6}H_{13/2} + 0.45^{6}H_{9/2}$
17	5833	6217	$95.86 ^{\circ}H_{11/2} + 1.61 ^{\circ}H_{9/2} + 1.50 ^{\circ}H_{13/2}$
18		6337	$96.90 ^{\circ}H_{11/2} + 0.86 ^{\circ}H_{9/2} + 0.76 ^{\circ}F_{9/2}$
19		6436	$96.19 {}^{\circ}H_{11/2} + 1.52 {}^{\circ}H_{9/2} + 0.80 {}^{\circ}F_{9/2}$
20		6534	$96.72 ^{\circ}H_{11/2} + 1.07 ^{\circ}H_{9/2} + 0.87 ^{\circ}F_{11/2}$
21		6610	$97.52^{6}H_{11/2}^{11/2} + 0.90^{6}F_{11/2}^{7/2} + 0.85^{6}H_{13/2}^{17/2}$
22	$^{6}H_{9/2}$	7 980	$81.83^{6}H_{9/2} + 13.74^{6}F_{11/2} + 2.46^{6}H_{11/2}$
23	7692	8027	$69.92^{\circ}H_{9/2} + 24.75^{\circ}F_{11/2} + 2.61^{\circ}H_{7/2}$
24	$^{6}F_{11/2}$	8128	$55.99 {}^{\circ}F_{11/2} + 40.68 {}^{\circ}H_{0/2} + 0.87 {}^{\circ}H_{7/2}$
25	7730	8196	$60.12 {}^{\circ}F_{11/2} + 37.36 {}^{\circ}H_{0/2} + 0.87 {}^{\circ}F_{0/2}$
26		8250	$61.22 ^{\circ}F_{11}$ (2 + 35.67 $^{\circ}H_{0}$ (2 + 1.10 $^{\circ}F_{0}$ (2
27		8273	$49.07 ^{\circ}F_{11/2} + 47.09 ^{\circ}H_{0/2} + 1.04 ^{\circ}H_{7/2}$
28		8321	$59.06^{\circ}F_{11/2} + 38.73^{\circ}H_{0/2} + 0.61^{\circ}F_{0/2}$
29		8366	$54.64^{\circ}F_{11/2} + 42.78^{\circ}H_{0/2} + 1.18^{\circ}F_{0/2}$
30		8424	$64.59 ^{\circ}F_{11/2} + 33.38 ^{\circ}H_{0/2} + 0.58 ^{\circ}H_{7/2}$
31		8541	$84.55 ^{\circ}F_{11/2} + 12.91 ^{\circ}H_{9/2} + 0.93 ^{\circ}H_{11/2}$
32	,	8625	$63.34 {}^{\circ}F_{11/2} + 33.26 {}^{\circ}H_{9/2} + 1.31 {}^{\circ}H_{7/2}$
33	$^{6}H_{7/2}$	9401	$62.72^{6}H_{7/2} + 30.69^{6}F_{9/2} + 4.43^{6}H_{9/2}$
34	9110	9469	$73.28^{6}H_{7/2} + 18.69^{6}F_{9/2} + 4.98^{6}H_{5/2}$
35	$^{6}F_{9/2}$	9606	$59.63^{6}F_{9/2} + 37.47^{6}H_{7/2} + 0.87^{6}H_{9/2}$
36 37	9087	9650	$55.16^{6}F_{9/2} + 40.01^{6}H_{7/2} + 1.42^{6}H_{9/2}$
38		9689 9741	$82.18 ^{6}F_{9/2} + 14.41 ^{6}H_{7/2} + 1.34 ^{6}H_{9/2}$
39		9819	$88.19 ^{6}F_{9/2} + 9.44 ^{6}H_{7/2} + 0.90 ^{6}H_{9/2}$
4 0		9833	$66.88 ^{6}F_{9/2} + 27.38 ^{6}H_{7/2} + 2.60 ^{6}H_{5/2}$
41		9964	$50.40^{6}F_{9/2} + 42.72^{6}H_{7/2} + 3.61^{6}H_{5/2}$ $59.75^{6}H_{7/2} + 31.76^{6}F_{9/2} + 3.74^{6}H_{5/2}$
42	6ப	10546	
43	⁶ H _{5/2} 10169	10546	$83.63^{6}H_{5/2} + 11.77^{6}H_{7/2} + 2.11^{6}F_{9/2}$
44	10109	10704	$91.74 ^{6}H_{5/2} + 2.73 ^{6}H_{7/2} + 2.23 ^{6}F_{7/2}$
	6r		$87.71 ^{6}H_{5/2} + 8.61 ^{6}F_{7/2} + 1.10 ^{6}H_{7/2}$
4 5	⁶ F _{7/2}	11621	95.78 ${}^{6}F_{7/2}$ + 2.41 ${}^{6}H_{5/2}$ + 0.67 ${}^{6}H_{7/2}$ 92.59 ${}^{6}F_{7/2}$ + 4.84 ${}^{6}H_{5/2}$ + 1.14 ${}^{6}H_{7/2}$ 97.66 ${}^{6}F_{7/2}$ + 0.85 ${}^{6}H_{7/2}$ + 0.48 ${}^{6}H_{9/2}$
4 6	11025	11649	$92.59 ^{\circ}F_{7/2} + 4.84 ^{\circ}H_{5/2} + 1.14 ^{\circ}H_{7/2}$
47		11694	$97.66^{\circ}H_{7/2} + 0.85^{\circ}H_{7/2} + 0.48^{\circ}H_{9/2}$
48		11736	$93.35 {}^{6}F_{7/2} + 3.90 {}^{6}H_{5/2} + 1.38 {}^{6}H_{7/2}$

Table 32 (cont'd). Predicted energy levels for Dy³⁺ in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	[(S,L)J] ^a	Energy (cm ⁻¹)	Free ion mixture (%)
49 50 51	⁶ F _{5/2} 12432	13008 13052 13122	$96.41 {}^{6}F_{5/2} + 1.23 {}^{6}H_{5/2} + 1.04 {}^{6}F_{3/2} 97.37 {}^{6}F_{5/2} + 1.06 {}^{6}F_{3/2} + 0.67 {}^{6}H_{7/2} 97.58 {}^{6}F_{5/2} + 1.24 {}^{6}H_{5/2} + 0.38 {}^{6}F_{7/2}$
52 53	⁶ F _{3/2} 13212	13825 13865	$96.61 {}^{6}F_{3/2} + 1.79 {}^{6}F_{1/2} + 0.58 {}^{6}H_{5/2} 96.27 {}^{6}F_{3/2} + 2.11 {}^{6}F_{5/2} + 0.69 {}^{6}H_{5/2}$
54	⁶ F _{1/2} 13760	14401	$96.62^{6}F_{1/2} + 2.01^{6}F_{3/2} + 0.54^{6}H_{5/2}$
55 56 57 58 59	⁴ F _{9/2} 21144	21456 21560 21633 21774 21865	$\begin{array}{l} 97.42{}^4F_{9/2} + 2.02{}^4I_{15/2} + 0.55{}^4G_{11/2} \\ 96.33{}^4F_{9/2} + 2.68{}^4I_{15/2} + 0.99{}^4G_{11/2} \\ 97.24{}^4F_{9/2} + 1.73{}^4I_{15/2} + 1.03{}^4G_{11/2} \\ 92.89{}^4F_{9/2} + 5.53{}^4I_{15/2} + 1.57{}^4G_{11/2} \\ 93.57{}^4F_{9/2} + 5.38{}^4I_{15/2} + 1.05{}^4G_{11/2} \end{array}$
60 61 62 63 64 65 66	⁴ I _{15/2} 22293	22457 22708 22746 22889 22957 23003 23045 23219	$\begin{array}{l} 98.87^4I_{15/2} + 0.94^4G_{11/2} + 0.19^4F_{9/2} \\ 93.35^4I_{15/2} + 6.10^4F_{9/2} + 0.55^4G_{11/2} \\ 97.43^4I_{15/2} + 1.66^4G_{11/2} + 0.90^4F_{9/2} \\ 95.14^4I_{15/2} + 3.39^4F_{9/2} + 1.46^4G_{11/2} \\ 96.06^4I_{15/2} + 3.08^4G_{11/2} + 0.86^4F_{9/2} \\ 96.88^4I_{15/2} + 2.06^4G_{11/2} + 1.05^4F_{9/2} \\ 94.90^4I_{15/2} + 2.57^4F_{9/2} + 2.53^4G_{11/2} \\ 95.57^4I_{15/2} + 2.30^4G_{11/2} + 2.13^4F_{9/2} \end{array}$
68 69 70 71 72 73	⁴ G _{11/2} 23321	23669 23788 23944 24034 24088 24120	$\begin{array}{l} 96.58{}^4G_{11/2} + 3.17{}^4I_{15/2} + 0.25{}^4F_{9/2} \\ 95.24{}^4G_{11/2} + 3.76{}^4I_{15/2} + 1.00{}^4F_{9/2} \\ 95.57{}^4G_{11/2} + 2.58{}^4I_{15/2} + 1.85{}^4F_{9/2} \\ 97.08{}^4G_{11/2} + 1.57{}^4I_{15/2} + 1.35{}^4F_{9/2} \\ 97.85{}^4G_{11/2} + 1.58{}^4I_{15/2} + 0.56{}^4F_{9/2} \\ 97.90{}^4G_{11/2} + 1.78{}^4I_{15/2} + 0.32{}^4F_{9/2} \end{array}$

^aAqueous centroids (cm⁻¹).

Table 33. Predicted energy levels for $\mathrm{Ho^{3+}}$ in $\mathrm{Ca_5(PO_4)_3F}$, C_s site. B_{nm} from table 9.

Level	I. R.	$[(S,L)J]^a$	Energy	Free ion
			(cm^{-1})	mixture (%)
1	Γ_1	⁵ I ₈	0	99.93 ${}^{5}I_{8}$ + 0.04 ${}^{5}I_{7}$ + 0.01 ${}^{5}G_{6}$
2	Γ_1	8Ŏ -	2	$99.93^{5}I_{8} + 0.04^{5}I_{7} + 0.01^{5}G_{6}$
3	Γ_{r}^{2}		94	$99.89^{5}I_{8} + 0.06^{5}I_{7} + 0.02^{5}F_{5}$
4	Γ_2^2		105	$99.89^{5}I_{8} + 0.07^{5}I_{7} + 0.02^{5}F_{5}$
5	Γ_1^2		163	$99.91^{5}I_{8} + 0.05^{5}I_{7} + 0.02^{5}G_{6}$
6	$\Gamma_2^{'}$		178	$99.93^{5}I_{8} + 0.03^{5}I_{7} + 0.02^{5}G_{6}$
7	Γ_1^2		238	$99.82^{5}I_{8} + 0.13^{5}I_{7} + 0.02^{5}F_{5}$
8	Γ_1^1		290	$99.91^{5}I_{8} + 0.06^{5}I_{7} + 0.01^{5}G_{6}$
9	$\Gamma_2^{'}$		316	$99.90^{5}I_{8} + 0.04^{5}I_{7} + 0.03^{5}G_{6}$
10	Γ_1^2		343	$99.93^{5}I_{8} + 0.03^{5}I_{7} + 0.02^{5}G_{6}$
11	$\Gamma_2^{'}$		395	$99.89^{5}I_{8} + 0.06^{5}I_{7} + 0.03^{5}G_{6}$
12	Γ_2^2		403	$99.90^{5}I_{8} + 0.05^{5}I_{7} + 0.04^{5}G_{6}$
13	Γ_1^2		413	$99.89^{5}I_{8} + 0.05^{5}I_{7} + 0.04^{5}G_{6}$
14	$\Gamma_2^{'}$		428	$99.85^{5}I_{8} + 0.11^{5}I_{7} + 0.02^{5}G_{6}$
15	Γ_1^2		467	$99.88^{5}I_{8} + 0.06^{5}I_{7} + 0.04^{5}G_{6}$
16	Γ_1		553	$99.85^{5}I_{8} + 0.06^{5}I_{7} + 0.04^{5}G_{6}$
17	Γ_1^2		556	$99.86^{5}I_{8} + 0.06^{5}I_{7} + 0.05^{5}G_{6}$

Table 33 (cont'd). Predicted energy levels for Ho^{3+} in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	I. R.	[(S,L)J] ^a	Energy (cm ⁻¹)	Free ion mixture (%)
18	Г.	⁵ I ₇	5116	$99.81 {}^{5}I_{7} + 0.08 {}^{5}I_{6} + 0.05 {}^{5}I_{8}$
19	$rac{\Gamma_2}{\Gamma_1}$	5116	5116	$99.81 {}^{5}I_{7} + 0.08 {}^{5}I_{6} + 0.06 {}^{5}I_{8}$ $99.81 {}^{5}I_{7} + 0.08 {}^{5}I_{6} + 0.06 {}^{5}I_{8}$
20	Γ_2^1	311 0	5229	$99.72 {}^{5}I_{7} + 0.13 {}^{5}I_{6} + 0.10 {}^{5}I_{8}$
21	Γ_1^2		5230	$99.68 {}^{5}I_{7} + 0.13 {}^{5}I_{8} + 0.13 {}^{5}I_{6}$
22	Γ_2		5282	$99.84 {}^{5}I_{7} + 0.06 {}^{5}I_{8} + 0.05 {}^{5}I_{6}$
23			5283	$99.84 {}^{5}I_{7} + 0.03 {}^{5}I_{8} + 0.03 {}^{5}I_{6}$ $99.84 {}^{5}I_{7} + 0.07 {}^{5}I_{8} + 0.03 {}^{5}I_{6}$
24	$rac{\Gamma_1}{\Gamma_2}$		5332	$99.68 {}^{5}I_{7} + 0.17 {}^{5}I_{6} + 0.09 {}^{5}I_{8}$
25	Γ_{-}^{2}		5335	$99.64 {}^{5}I_{7} + 0.16 {}^{5}I_{6} + 0.11 {}^{5}I_{8}$
26	$rac{\Gamma_2}{\Gamma_1}$		5392	$99.69 {}^{5}I_{7} + 0.20 {}^{5}I_{6} + 0.04 {}^{5}I_{8}$
27			5398	$99.79 {}^{5}I_{7} + 0.11 {}^{5}I_{6} + 0.04 {}^{5}I_{8}$
28	$rac{\Gamma_2}{\Gamma_1}$		5403	$99.68 {}^{5}I_{7} + 0.18 {}^{5}I_{6} + 0.06 {}^{5}I_{8}$
29	Γ_1		5407	$99.85 {}^{5}I_{7} + 0.05 {}^{5}I_{8} + 0.03 {}^{5}F_{5}$
30	Γ_2^1		5424	$99.77 {}^{5}I_{7} + 0.11 {}^{5}I_{6} + 0.04 {}^{5}F_{5}$
31	Γ_1^2		5496	$99.68 {}^{5}I_{7} + 0.14 {}^{5}I_{6} + 0.06 {}^{5}I_{8}$
32	Γ_2^1		5497	$99.73 {}^{5}I_{7} + 0.11 {}^{5}I_{6} + 0.05 {}^{5}I_{8}$
33		⁵ I ₆	8635	
34	Γ_1	8614		$99.62^{5}I_{6} + 0.14^{5}I_{7} + 0.14^{5}I_{5}$
3 4 35	Γ_1	0014	8635 8753	$99.59 {}^{5}I_{6} + 0.16 {}^{5}I_{7} + 0.15 {}^{5}I_{5}$
36	Γ_2			$99.36 {}^{5}I_{6} + 0.29 {}^{5}I_{7} + 0.25 {}^{5}I_{5}$
37	Γ_2		8760 8806	$99.34^{5}I_{6} + 0.32^{5}I_{5} + 0.23^{5}I_{7}$
38	Γ_1		8813	$99.72^{5}I_{6} + 0.12^{5}I_{7} + 0.07^{5}I_{5}$
39	Γ_2		8847	$99.68 {}^{5}I_{6} + 0.17 {}^{5}I_{5} + 0.09 {}^{5}I_{7}$
40	Γ_1		8854	$99.36^{5}I_{6} + 0.36^{5}I_{5} + 0.16^{5}I_{7}$
41	Γ_1		8881	99.43 ${}^{5}I_{6} + 0.35 {}^{5}I_{5} + 0.10 {}^{5}I_{7}$ 99.47 ${}^{5}I_{6} + 0.38 {}^{5}I_{5} + 0.04 {}^{5}F_{5}$
42	$rac{\Gamma_2}{\Gamma_1}$		8916	$99.47 {}^{5}I_{6} + 0.40 {}^{5}I_{5} + 0.04 {}^{5}I_{7}$ $99.47 {}^{5}I_{6} + 0.40 {}^{5}I_{5} + 0.04 {}^{5}I_{7}$
43	Γ_2^1		8919	$99.62 {}^{5}I_{6} + 0.21 {}^{5}I_{5} + 0.05 {}^{5}I_{7}$
44	Γ_2		8966	$99.31 {}^{5}I_{6} + 0.40 {}^{5}I_{5} + 0.15 {}^{5}I_{7}$
45	Γ_1^2		8972	$99.52 {}^{5}I_{6} + 0.21 {}^{5}I_{5} + 0.13 {}^{5}I_{7}$
4 6	Γ_2	$^5\!I_5$	11211	$99.03 {}^{5}I_{5} + 0.46 {}^{5}I_{6} + 0.37 {}^{5}I_{4}$
47	Γ_2^2	11164	11216	$99.31_{5}^{5}I_{5} + 0.38_{5}^{5}I_{6} + 0.18_{5}^{5}I_{4}$
48	Γ_1^2		11342	$98.81_{5}^{5}I_{5}^{3} + 0.55_{5}^{5}I_{6}^{6} + 0.53_{5}^{5}I_{4}^{4}$
49	Γ_1		11349	$98.97^{5}I_{5} + 0.53^{5}I_{6} + 0.44^{5}I_{4}$
50	Γ_{\bullet}		11375	$99.20 {}^{5}I_{5} + 0.42 {}^{5}I_{4} + 0.31 {}^{5}I_{6}$
51	Γ_2		11382	$99.47 {}^{5}I_{5} + 0.30 {}^{5}I_{6} + 0.16 {}^{5}I_{4}$
52	$\overline{\Gamma_2}$		11414	$99.34 I_5 + 0.45 I_4 + 0.10 I_6$
53	$\Gamma_2 \Gamma_2$		11438	$99.33^{5}I_{5} + 0.38^{5}I_{4} + 0.16^{5}I_{6}$
54	Γ_1^-		11454	$99.15^{5}I_{5} + 0.67^{5}I_{4} + 0.06^{5}I_{6}$
55	Γ_1		11504	$99.00^{5}I_{5} + 0.63^{5}I_{4} + 0.25^{5}I_{6}$
56	Γ_2^-		11506	$98.84^{5}I_{5}^{\circ} + 0.71^{5}I_{4}^{\circ} + 0.33^{5}I_{6}^{\circ}$
57	Γ_1	$^{5}I_{4}$	13205	99 21 51 + 0 63 51 + 0 06 51
58	Γ_1^1	13219	13241	98.58 ${}^{5}I_{4} + 0.38 {}^{5}I_{5} + 0.04 {}^{5}F_{2}$ 99.47 ${}^{5}I_{4} + 0.39 {}^{5}I_{5} + 0.04 {}^{5}F_{3}$ 99.47 ${}^{5}I_{4} + 0.38 {}^{5}I_{5} + 0.06 {}^{5}I_{6}$
59	$\Gamma_2^{'}$		13360	$99.47^{5}I_{4} + 0.39^{5}I_{5} + 0.04^{5}F_{2}$
60	Γ_1^2		13425	$99.47^{5}I_{4} + 0.38^{5}I_{5} + 0.06^{5}I_{6}$
61	$\Gamma_2^{'}$		13431	99.09 1/1 + 0./1 1/2 + 0.08 1/2
62	Γ_2^2		13504	99.17 % + 0.69 % + 0.05 %
63	Γ_1^2		13527	$99.72^{5}I_{A}^{4} + 0.13^{5}I_{5} + 0.03^{5}I_{6}^{6}$
64	Γ_2		13655	$99.72 {}^{5}I_{4} + 0.13 {}^{5}I_{5} + 0.03 {}^{5}I_{6}$ $99.37 {}^{5}I_{4} + 0.49 {}^{5}I_{5} + 0.03 {}^{5}F_{1}$
65	$rac{\Gamma_2}{\Gamma_1}$		13679	$99.58^{5}I_{4}^{4} + 0.27^{5}I_{5}^{3} + 0.05^{5}I_{6}^{1}$
	•			7 J

Table 33 (cont'd). Predicted energy levels for Ho^{3+} in $\text{Ca}_5(\text{PO}_4)_3\text{F}$, C_s site. B_{nm} from table 9.

Level I. R. [(S,L)] ^a Energy (cm ⁻¹) Free ion mixture (%)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Level	I. R.	$[(S,L)J]^a$	Energy	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				(cm ⁻¹)	mixture (%)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	66	Γ,	5 _{F5}	15552	$99.51 {}^{5}F_{5} + 0.19 {}^{5}F_{4} + 0.11 {}^{5}G_{6}$
$ \begin{array}{c} 68 \\ 69 \\ \hline \Gamma_1 \\ \hline \\ 71 \\ \hline \\ 70 \\ \hline \\ 72 \\ \hline \\ 70 \\ \hline \\ 72 \\ \hline \\ 71 \\ \hline \\ 71 \\ \hline \\ 71 \\ \hline \\ 72 \\ \hline \\ 73 \\ \hline \\ 71 \\ \hline \\ 71 \\ \hline \\ 71 \\ \hline \\ 71 \\ \hline \\ 72 \\ \hline \\ 72 \\ \hline \\ 72 \\ \hline \\ 73 \\ \hline \\ 71 \\ \hline \\ 71 \\ \hline \\ 71 \\ \hline \\ 72 \\ \hline \\ 73 \\ \hline \\ 71 \\ \hline \\ 71 \\ \hline \\ 71 \\ \hline \\ 72 \\ \hline \\ 73 \\ \hline \\ 71 \\ \hline \\ 71 \\ \hline \\ 71 \\ \hline \\ 72 \\ \hline \\ 73 \\ \hline \\ 71 \\ \hline \\ 71 \\ \hline \\ 72 \\ \hline \\ 73 \\ \hline \\ 71 \\ \hline \\ 71 \\ \hline \\ 72 \\ \hline \\ 73 \\ \hline \\ 71 \\ \hline \\ 71 \\ \hline \\ 72 \\ \hline \\ 73 \\ \hline \\ 71 \\ \hline \\ 71 \\ \hline \\ 72 \\ \hline \\ 73 \\ \hline \\ 71 \\ \hline \\ 71 \\ \hline \\ 72 \\ \hline \\ 72 \\ \hline \\ 73 \\ \hline \\ 71 \\ \hline \\ 71 \\ \hline \\ 72 \\ \hline \\ 73 \\ \hline \\ 71 \\ \hline \\ 72 \\ \hline \\ 73 \\ \hline \\ 71 \\ \hline \\ 72 \\ \hline \\ 73 \\ \hline \\ 71 \\ \hline \\ 72 \\ \hline \\ 74 \\ \hline \\ 71 \\ \hline \\ 74 \\ \hline \\ 71 \\ \hline \\ 72 \\ \hline \\ 73 \\ \hline \\ 74 \\ \hline \\ 74 \\ \hline \\ 71 \\ \hline \\ 72 \\ \hline \\ 74 \\ \hline \\ 71 \\ \hline \\ 72 \\ \hline \\ 75 \\ \hline \\ 72 \\ \hline \\ 75 \\ \hline \\ 72 \\ \hline \\ 75 \\ \hline \\ 72 \\ \hline \\ 72 \\ \hline \\ 73 \\ \hline \\ 74 \\ \hline \\ 71 \\ \hline \\ 72 \\ \hline \\ 73 \\ \hline \\ 74 \\ \hline \\ 75 \\ \hline \\ 72 \\ \hline \\ 75 \\ \hline \\ 71 \\ \hline \\ 18353 \\ \hline \\ 38540 \\ \hline \\ 87 \\ 75 \\ \hline $			15519	15555	$99.54 {}^{5}F_{5} + 0.14 {}^{5}F_{4} + 0.10 {}^{5}G_{6}$
$ \begin{array}{c} 69 & \Gamma_1 \\ 70 & \Gamma_2 \\ 71 & \Gamma_1 \\ 15637 & 99.05 {}^5F_5 + 0.28 {}^3G_6 + 0.06 {}^5F_4 \\ 71 & \Gamma_1 \\ 15667 & 99.17 {}^5F_5 + 0.40 {}^5G_6 + 0.36 {}^5F_4 \\ 72 & \Gamma_2 \\ 15716 & 99.18 {}^5F_5 + 0.44 {}^5F_4 + 0.18 {}^5G_6 \\ 74 & \Gamma_1 \\ 15863 & 99.37 {}^5F_5 + 0.24 {}^5F_4 + 0.18 {}^5G_6 \\ 74 & \Gamma_1 \\ 15874 & 99.36 {}^5F_5 + 0.24 {}^5F_4 + 0.18 {}^5G_6 \\ 75 & \Gamma_2 \\ 15910 & 99.49 {}^5F_5 + 0.27 {}^5G_6 + 0.05 {}^3G_5 \\ 76 & \Gamma_2 \\ 15918 & 99.50 {}^5F_5 + 0.24 {}^5G_6 + 0.05 {}^3G_5 \\ 78 & \Gamma_1 \\ 18353 & 18540 \\ 87.19 {}^5S_2 + 12.48 {}^5F_4 + 0.17 {}^5G_6 \\ 80 & \Gamma_2 \\ 18564 & 94.07 {}^5S_2 + 1.56 {}^5F_4 + 0.17 {}^5G_6 \\ 81 & \Gamma_1 \\ 18568 & 96.66 {}^5S_2 + 2.64 {}^5F_4 + 0.17 {}^5G_6 \\ 82 & \Gamma_2 \\ 5F_4 \\ 83 & \Gamma_1 \\ 18612 & 18732 \\ 84 & \Gamma_1 \\ 18750 & 95.74 {}^5F_4 + 3.33 {}^5S_2 + 0.34 {}^5F_6 \\ 85 & \Gamma_2 \\ 18834 & 96.11 {}^5F_4 + 2.95 {}^5S_2 + 0.34 {}^5G_6 \\ 86 & \Gamma_1 \\ 18831 & 98.44 {}^5F_4 + 0.55 {}^5G_6 + 0.05 {}^5G_6 \\ 88 & \Gamma_2 \\ 18838 & 95.71 {}^5F_4 + 0.55 {}^5G_6 + 0.04 {}^5G_6 \\ 88 & \Gamma_2 \\ 18838 & 95.71 {}^5F_4 + 3.33 {}^5S_2 + 0.34 {}^5G_6 \\ 89 & \Gamma_1 \\ 18967 & 97.91 {}^5F_4 + 0.55 {}^5G_6 + 0.04 {}^5G_6 \\ 90 & \Gamma_1 \\ 18973 & 97.84 {}^5F_4 + 1.05 {}^5S_2 + 0.24 {}^5G_6 \\ 90 & \Gamma_1 \\ 20821 & 93.99 {}^5F_3 + 3.43 {}^5F_2 + 0.34 {}^5G_6 \\ 90 & \Gamma_2 \\ 200872 & 20786 \\ 96.24 {}^5F_3 + 1.34 {}^5F_2 + 0.54 {}^5G_6 + 0.05 {}^5G_6 \\ 99 & \Gamma_2 \\ 21007 & 93.86 {}^5F_3 + 0.51 {}^5F_2 + 0.28 {}^5G_6 \\ 99 & \Gamma_2 \\ 21007 & 93.86 {}^5F_3 + 0.51 {}^5F_2 + 0.28 {}^5G_6 \\ 99 & \Gamma_2 \\ 21007 & 93.86 {}^5F_3 + 0.51 {}^5F_2 + 0.35 {}^5F_3 + 1.13 {}^5F_1 \\ 99 & \Gamma_1 \\ 21130 & 21327 & 98.47 {}^5F_2 + 9.37 {}^5F_3 + 1.13 {}^5F_1 \\ 99 & \Gamma_1 \\ 21130 & 21327 & 98.47 {}^5F_2 + 9.37 {}^5F_3 + 1.13 {}^5F_1 \\ 99 & \Gamma_1 \\ 21140 & 99.23 {}^3K_8 + 0.49 {}^5F_2 + 0.25 {}^5F_1 \\ 100 & \Gamma_1 & 3K_8 \\ 21381 & 99.23 {}^3K_8 + 0.49 {}^5F_2 + 0.25 {}^5G_6 \\ 107 & \Gamma_2 \\ 21483 & 99.83 {}^3K_8 + 0.07 {}^5$				15608	$99.34 {}^{5}F_{5} + 0.32 {}^{5}G_{6} + 0.16 {}^{5}F_{4}$
70	69			15634	$99.51{}^{5}F_{5} + 0.28{}^{5}G_{6} + 0.06{}^{5}F_{4}$
71	70			15637	$99.05{}^{5}F_{5} + 0.38{}^{5}G_{6} + 0.36{}^{5}F_{4}$
72	7 1			15667	$99.17 {}^{5}F_{5} + 0.40 {}^{5}G_{6} + 0.26 {}^{5}F_{4}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	72				$99.18{}^{5}F_{5} + 0.44{}^{5}F_{4} + 0.18{}^{5}G_{6}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Γ_1			$99.37^{5}F_{5} + 0.24^{5}F_{4} + 0.20^{5}G_{6}$
76		Γ_1			$99.36 ^{5}F_{5} + 0.29 ^{5}F_{4} + 0.18 ^{3}G_{6}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$99.49^{5}F_{5} + 0.27^{5}G_{6} + 0.05^{5}G_{5}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76			15918	
78	<i>7</i> 7	Γ_2	5S_2	18527	$95.89 {}^{5}S_{2} + 3.45 {}^{5}F_{4} + 0.51 {}^{5}G_{6}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78	Γ_1^-	18353		$87.19 {}^{5}S_{2} + 12.48 {}^{5}F_{4} + 0.17 {}^{5}G_{6}$
81 Γ_1 18568 96.66 ${}^5S_2 + 2.64 {}^3F_4 + 0.61 {}^3G_6$ 82 Γ_2 5 F_4 18705 95.74 ${}^5F_4 + 3.33 {}^5S_2 + 0.35 {}^5F_3$ 83 Γ_1 18612 18732 87.29 ${}^5F_4 + 11.75 {}^5S_2 + 0.34 {}^5F_2$ 84 Γ_1 18750 95.91 ${}^5F_4 + 2.95 {}^5S_2 + 0.34 {}^5G_6$ 85 Γ_2 18784 96.11 ${}^5F_4 + 3.02 {}^5S_2 + 0.23 {}^5F_2$ 86 Γ_1 18831 98.44 ${}^5F_4 + 0.55 {}^5G_6 + 0.41 {}^5F_3$ 87 Γ_2 18838 95.71 ${}^5F_4 + 2.53 {}^5S_2 + 0.60 {}^5G_6$ 88 Γ_2 18874 98.35 ${}^5F_4 + 0.54 {}^5G_6 + 0.48 {}^5F_5$ 89 Γ_1 18967 97.91 ${}^5F_4 + 0.96 {}^5S_2 + 0.23 {}^5F_3$ 90 Γ_1 18973 97.84 ${}^5F_4 + 1.05 {}^5S_2 + 0.28 {}^5F_3$ 91 Γ_2 3 F_3 20706 98.57 ${}^5F_3 + 0.51 {}^5F_2 + 0.28 {}^3G_5$ 92 Γ_1 20672 20786 96.24 ${}^5F_3 + 1.90 {}^5F_2 + 0.52 {}^5F_1$ 93 Γ_1 20821 95.22 ${}^5F_3 + 1.90 {}^5F_2 + 0.52 {}^5F_1$ 94 Γ_1 20897 93.99 ${}^5F_3 + 4.31 {}^5F_2 + 0.68 {}^5G_6$ 95 Γ_2 20899 92.78 ${}^5F_3 + 4.31 {}^5F_2 + 0.68 {}^5G_6$ 96 Γ_2 21007 93.86 ${}^5F_3 + 4.53 {}^5F_2 + 0.63 {}^5G_6$ 97 Γ_2 21025 96.75 ${}^5F_3 + 1.64 {}^5F_2 + 0.47 {}^5G_6$ 98 Γ_2 5 F_2 21253 89.00 ${}^5F_2 + 9.37 {}^5F_3 + 1.03 {}^5F_1$ 100 Γ_1 3 K_8 21381 92.21 ${}^5F_2 + 2.65 {}^5F_3 + 1.13 {}^3K_8$ 101 Γ_2 21307 21382 93.79 ${}^5F_2 + 2.65 {}^5F_3 + 1.13 {}^3K_8$ 101 Γ_2 212428 99.23 ${}^3K_8 + 0.21 {}^5G_6 + 0.11 {}^5F_1$ 102 Γ_2 21427 99.62 ${}^3K_8 + 0.21 {}^5G_6 + 0.11 {}^5F_1$ 104 Γ_1 21461 99.20 ${}^3K_8 + 0.68 {}^5F_2 + 0.06 {}^5G_6$ 105 Γ_1 21478 86.72 ${}^3K_8 + 0.21 {}^5G_6 + 0.03 {}^5F_2$ 106 Γ_2 21483 99.88 ${}^3K_8 + 0.07 {}^5G_6 + 0.03 {}^5F_2$ 107 Γ_2 21485 99.89 ${}^3K_8 + 0.17 {}^5G_6 + 0.03 {}^5F_2$ 109 Γ_1 21490 82.04 ${}^5F_2 + 1.10 {}^5G_6 + 0.01 {}^5G_6$ 110 Γ_1 21479 99.12 ${}^3K_8 + 0.19 {}^5G_6 + 0.01 {}^5G_6$ 111 Γ_2 21530 98.57 ${}^3K_8 + 0.19 {}^5G_6 + 0.01 {}^3G_5$ 112 Γ_1 21530 98.57 ${}^3K_8 + 0.19 {}^5G_6 + 0.01 {}^5G_6$ 113 Γ_1 21547 99.79 ${}^3K_8 + 0.$	<i>7</i> 9	Γ_1			$97.94 {}^{3}S_{2} + 1.56 {}^{3}F_{4} + 0.28 {}^{3}G_{6}$
82		Γ_2			$94.07 {}^{5}S_{2} + 5.49 {}^{5}F_{4} + 0.19 {}^{5}G_{6}$
83 Γ_1 18612 18732 87.29 ${}^5F_4 + 11.75 {}^5S_2 + 0.34 {}^3F_2$ 84 Γ_1 18750 95.91 ${}^5F_4 + 2.95 {}^5S_2 + 0.34 {}^5G_6$ 85 Γ_2 18784 96.11 ${}^5F_4 + 3.02 {}^5S_2 + 0.23 {}^5F_2$ 86 Γ_1 18831 98.44 ${}^5F_4 + 0.55 {}^5G_6 + 0.41 {}^5F_3$ 87 Γ_2 18838 95.71 ${}^5F_4 + 2.53 {}^5S_2 + 0.25 {}^5F_6$ 88 Γ_2 18874 98.35 ${}^5F_4 + 0.54 {}^5G_6 + 0.48 {}^5F_5$ 89 Γ_1 18973 97.84 ${}^5F_4 + 0.96 {}^5S_2 + 0.25 {}^5F_3$ 90 Γ_1 18973 97.84 ${}^5F_4 + 1.05 {}^5S_2 + 0.28 {}^5F_3$ 91 Γ_2 3 F_3 20706 98.57 ${}^5F_3 + 0.51 {}^5F_5 + 0.28 {}^3G_5$ 92 Γ_1 20672 20786 96.24 ${}^5F_3 + 1.90 {}^5F_2 + 0.52 {}^5F_1$ 93 Γ_1 20821 95.22 ${}^5F_3 + 2.77 {}^5F_2 + 0.81 {}^5G_6$ 94 Γ_1 20897 93.99 ${}^5F_3 + 4.31 {}^5F_2 + 0.68 {}^5G_6$ 95 Γ_2 20899 92.78 ${}^5F_3 + 3.43 {}^5F_2 + 0.63 {}^5G_6$ 97 Γ_2 21007 93.86 ${}^5F_3 + 3.45 {}^5F_2 + 0.47 {}^5G_6$ 98 Γ_2 21025 96.75 ${}^5F_3 + 1.64 {}^5F_2 + 0.47 {}^5G_6$ 99 Γ_1 21130 21327 98.47 ${}^5F_2 + 0.39 {}^3K_8 + 0.38 {}^5F_4$ 100 Γ_1 3 K_8 21381 92.21 ${}^5F_2 + 5.35 {}^5F_3 + 1.13 {}^3K_8$ 101 Γ_2 21307 21382 93.79 ${}^5F_2 + 5.35 {}^5F_3 + 1.14 {}^5F_1$ 102 Γ_2 21427 99.62 ${}^3K_8 + 0.21 {}^5G_6 + 0.11 {}^5F_2$ 103 Γ_1 21428 99.23 ${}^3K_8 + 0.49 {}^5F_2 + 0.50 {}^5F_3$ 106 Γ_2 21479 99.12 ${}^3K_8 + 0.49 {}^5F_2 + 0.50 {}^5F_3$ 107 Γ_2 21483 99.88 ${}^3K_8 + 0.49 {}^5F_2 + 0.50 {}^5F_3$ 108 Γ_2 21483 99.88 ${}^3K_8 + 0.07 {}^5G_6 + 0.03 {}^5F_2$ 109 Γ_1 21490 82.04 ${}^5F_2 + 1.10 {}^3G_6 + 0.03 {}^5F_2$ 110 Γ_1 21490 82.04 ${}^5F_2 + 1.10 {}^3G_6 + 0.01 {}^3G_5$ 111 Γ_2 21510 99.76 ${}^3K_8 + 0.12 {}^5G_6 + 0.01 {}^3G_5$ 112 Γ_1 21530 98.57 ${}^3K_8 + 0.12 {}^5G_6 + 0.03 {}^5F_2$ 113 Γ_1 21547 99.79 ${}^3K_8 + 0.12 {}^5G_6 + 0.01 {}^3G_5$ 114 Γ_2 21519 99.77 ${}^3K_8 + 0.12 {}^5G_6 + 0.01 {}^3G_5$ 115 Γ_1 21547 99.79 ${}^3K_8 + 0.12 {}^5G_6 + 0.01 {}^3G_5$ 116 Γ_2 21519 99.77 ${}^3K_8 + 0.12 {}^5G_6 + 0.04 {}^5F_3$	81	Γ_1		18568	
83 Γ_1 18612 18732 87.29 ${}^5F_4 + 11.75 {}^5S_2 + 0.34 {}^3F_2$ 84 Γ_1 18750 95.91 ${}^5F_4 + 2.95 {}^5S_2 + 0.34 {}^5G_6$ 85 Γ_2 18784 96.11 ${}^5F_4 + 3.02 {}^5S_2 + 0.23 {}^5F_2$ 86 Γ_1 18831 98.44 ${}^5F_4 + 0.55 {}^5G_6 + 0.41 {}^5F_3$ 87 Γ_2 18838 95.71 ${}^5F_4 + 2.53 {}^5S_2 + 0.25 {}^5F_6$ 88 Γ_2 18874 98.35 ${}^5F_4 + 0.54 {}^5G_6 + 0.48 {}^5F_5$ 89 Γ_1 18973 97.84 ${}^5F_4 + 0.96 {}^5S_2 + 0.25 {}^5F_3$ 90 Γ_1 18973 97.84 ${}^5F_4 + 1.05 {}^5S_2 + 0.28 {}^5F_3$ 91 Γ_2 3 F_3 20706 98.57 ${}^5F_3 + 0.51 {}^5F_5 + 0.28 {}^3G_5$ 92 Γ_1 20672 20786 96.24 ${}^5F_3 + 1.90 {}^5F_2 + 0.52 {}^5F_1$ 93 Γ_1 20821 95.22 ${}^5F_3 + 2.77 {}^5F_2 + 0.81 {}^5G_6$ 94 Γ_1 20897 93.99 ${}^5F_3 + 4.31 {}^5F_2 + 0.68 {}^5G_6$ 95 Γ_2 20899 92.78 ${}^5F_3 + 3.43 {}^5F_2 + 0.63 {}^5G_6$ 97 Γ_2 21007 93.86 ${}^5F_3 + 3.45 {}^5F_2 + 0.47 {}^5G_6$ 98 Γ_2 21025 96.75 ${}^5F_3 + 1.64 {}^5F_2 + 0.47 {}^5G_6$ 99 Γ_1 21130 21327 98.47 ${}^5F_2 + 0.39 {}^3K_8 + 0.38 {}^5F_4$ 100 Γ_1 3 K_8 21381 92.21 ${}^5F_2 + 5.35 {}^5F_3 + 1.13 {}^3K_8$ 101 Γ_2 21307 21382 93.79 ${}^5F_2 + 5.35 {}^5F_3 + 1.14 {}^5F_1$ 102 Γ_2 21427 99.62 ${}^3K_8 + 0.21 {}^5G_6 + 0.11 {}^5F_2$ 103 Γ_1 21428 99.23 ${}^3K_8 + 0.49 {}^5F_2 + 0.50 {}^5F_3$ 106 Γ_2 21479 99.12 ${}^3K_8 + 0.49 {}^5F_2 + 0.50 {}^5F_3$ 107 Γ_2 21483 99.88 ${}^3K_8 + 0.49 {}^5F_2 + 0.50 {}^5F_3$ 108 Γ_2 21483 99.88 ${}^3K_8 + 0.07 {}^5G_6 + 0.03 {}^5F_2$ 109 Γ_1 21490 82.04 ${}^5F_2 + 1.10 {}^3G_6 + 0.03 {}^5F_2$ 110 Γ_1 21490 82.04 ${}^5F_2 + 1.10 {}^3G_6 + 0.01 {}^3G_5$ 111 Γ_2 21510 99.76 ${}^3K_8 + 0.12 {}^5G_6 + 0.01 {}^3G_5$ 112 Γ_1 21530 98.57 ${}^3K_8 + 0.12 {}^5G_6 + 0.03 {}^5F_2$ 113 Γ_1 21547 99.79 ${}^3K_8 + 0.12 {}^5G_6 + 0.01 {}^3G_5$ 114 Γ_2 21519 99.77 ${}^3K_8 + 0.12 {}^5G_6 + 0.01 {}^3G_5$ 115 Γ_1 21547 99.79 ${}^3K_8 + 0.12 {}^5G_6 + 0.01 {}^3G_5$ 116 Γ_2 21519 99.77 ${}^3K_8 + 0.12 {}^5G_6 + 0.04 {}^5F_3$	82	Γ_2	$^{5}F_{4}$	18705	$95.74 {}^{5}F_{4} + 3.33 {}^{5}S_{2} + 0.35 {}^{5}F_{3}$
84	83		18612	18732	$87.29 {}^{5}F_{4} + 11.75 {}^{5}S_{2} + 0.34 {}^{5}F_{2}$
86 Γ_1 18831 98.44 ${}^5F_4 + 0.55 {}^5G_6 + 0.41 {}^3F_3$ 87 Γ_2 18838 95.71 ${}^5F_4 + 2.53 {}^5S_2 + 0.60 {}^5G_6$ 88 Γ_2 18874 98.35 ${}^5F_4 + 0.54 {}^5G_6 + 0.48 {}^5F_5$ 89 Γ_1 18967 97.91 ${}^5F_4 + 0.96 {}^5S_2 + 0.25 {}^5F_3$ 90 Γ_1 18973 97.84 ${}^5F_4 + 1.05 {}^5S_2 + 0.28 {}^3G_5$ 91 Γ_2 3 F_3 20706 98.57 ${}^5F_3 + 0.51 {}^5F_2 + 0.28 {}^3G_5$ 92 Γ_1 20672 20786 96.24 ${}^5F_3 + 1.90 {}^5F_2 + 0.52 {}^5F_1$ 93 Γ_1 20821 95.22 ${}^5F_3 + 2.77 {}^5F_2 + 0.81 {}^5G_6$ 94 Γ_1 20897 93.99 ${}^5F_3 + 4.31 {}^5F_2 + 0.68 {}^5G_6$ 95 Γ_2 20899 92.78 ${}^5F_3 + 5.42 {}^5F_2 + 0.77 {}^5G_6$ 96 Γ_2 21007 93.86 ${}^5F_3 + 4.31 {}^5F_2 + 0.63 {}^5G_6$ 97 Γ_2 21025 96.75 ${}^5F_3 + 1.64 {}^5F_2 + 0.47 {}^5G_6$ 98 Γ_2 27025 96.75 ${}^5F_3 + 1.64 {}^5F_2 + 0.47 {}^5G_6$ 98 Γ_2 21025 98.77 ${}^5F_2 + 0.39 {}^3F_8 + 0.38 {}^5F_4$ 100 Γ_1 3 K_8 21381 92.21 ${}^5F_2 + 0.39 {}^3F_8 + 0.38 {}^5F_4$ 101 Γ_2 21307 21382 93.79 ${}^5F_2 + 2.65 {}^5F_3 + 1.14 {}^5F_1$ 102 Γ_2 21427 99.62 ${}^3K_8 + 0.49 {}^5F_2 + 0.22 {}^5G_6$ 104 Γ_1 21461 99.20 ${}^3K_8 + 0.49 {}^5F_2 + 0.05 {}^5F_3$ 106 Γ_2 21478 86.72 ${}^3K_8 + 0.04 {}^5F_2 + 0.05 {}^5F_3$ 107 Γ_2 21483 99.88 ${}^3K_8 + 0.07 {}^5G_6 + 0.03 {}^5F_2$ 109 Γ_1 21483 99.88 ${}^3K_8 + 0.07 {}^5G_6 + 0.03 {}^5F_2$ 109 Γ_1 21483 99.88 ${}^3K_8 + 0.07 {}^5G_6 + 0.03 {}^5F_2$ 109 Γ_1 21483 99.88 ${}^3K_8 + 0.07 {}^5G_6 + 0.03 {}^5F_2$ 109 Γ_1 21490 82.04 ${}^5F_7 + 1.10 {}^3K_8 + 0.10 {}^5G_6 + 0.03 {}^5F_2$ 110 Γ_1 21510 99.76 ${}^3K_8 + 0.19 {}^5G_6 + 0.01 {}^3G_5$ 111 Γ_2 21519 99.77 ${}^3K_8 + 0.19 {}^5G_6 + 0.01 {}^3G_5$ 112 Γ_1 21530 98.57 ${}^3K_8 + 0.11 {}^5G_6 + 0.01 {}^3G_5$ 113 Γ_1 21547 99.79 ${}^3K_8 + 0.11 {}^5G_6 + 0.01 {}^5F_2$ 114 Γ_2 21577 99.40 ${}^3K_8 + 0.51 {}^5G_6 + 0.04 {}^5F_3$	84				$95.91{}^{5}F_{4} + 2.95{}^{5}S_{2} + 0.34{}^{5}G_{6}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Γ_2			$96.11 {}^{5}F_{4} + 3.02 {}^{5}S_{2} + 0.23 {}^{5}F_{2}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Γ_1			$98.44 {}^{5}F_{4} + 0.55 {}^{5}G_{6} + 0.41 {}^{5}F_{3}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87	Γ_2			$95.71 {}^{5}F_{4} + 2.53 {}^{5}S_{2} + 0.60 {}^{5}G_{6}$
90 Γ_1 18973 97.84 5F_4 + 1.05 5S_2 + 0.28 5F_3 91 Γ_2 3 F_3 20706 98.57 5F_3 + 0.51 5F_2 + 0.28 3G_5 92 Γ_1 20672 20786 96.24 5F_3 + 1.90 5F_2 + 0.52 5F_1 93 Γ_1 20821 95.22 5F_3 + 2.77 5F_2 + 0.81 5G_6 94 Γ_1 20897 93.99 5F_3 + 4.31 5F_2 + 0.68 5G_6 95 Γ_2 20899 92.78 5F_3 + 5.42 5F_2 + 0.77 5G_6 96 Γ_2 21007 93.86 5F_3 + 4.53 5F_2 + 0.63 5G_6 97 Γ_2 21025 96.75 5F_3 + 1.64 5F_2 + 0.47 5G_6 98 Γ_2 5 F_2 21253 89.00 5F_2 + 9.37 5F_3 + 1.03 5F_1 99 Γ_1 21130 21327 98.47 5F_2 + 0.39 3K_8 + 0.38 5F_4 100 Γ_1 3 K_8 21381 92.21 5F_2 + 5.35 5F_3 + 1.13 3K_8 101 Γ_2 21307 21382 93.79 5F_2 + 2.65 5F_3 + 1.14 5F_1 102 Γ_2 21427 99.62 3 K_8 + 0.21 5G_6 + 0.11 5F_2 103 Γ_1 21428 99.23 3 K_8 + 0.49 5F_2 + 0.22 5G_6 104 Γ_1 21461 99.20 3 K_8 + 0.68 5F_2 + 0.06 5G_6 105 Γ_1 21478 86.72 3 K_8 + 1.244 5F_2 + 0.50 5F_3 106 Γ_2 21483 99.88 3 K_8 + 0.69 5F_2 + 0.10 5G_6 107 Γ_2 21483 99.88 3 K_8 + 0.69 5F_2 + 0.10 5G_6 109 Γ_1 21485 99.68 3 K_8 + 0.27 5G_6 + 0.03 5F_2 110 Γ_1 21485 99.68 3 K_8 + 0.27 5G_6 + 0.03 5F_2 111 Γ_2 21510 99.76 3 K_8 + 0.19 5G_6 + 0.01 3 5F_2 111 Γ_2 21510 99.76 3 K_8 + 0.19 5 G_6 + 0.01 3 G_5 112 Γ_1 21510 99.77 3 K_8 + 0.19 5 G_6 + 0.01 3 G_5 112 Γ_1 21530 98.57 3 K_8 + 1.03 5 G_6 + 0.01 5 G_6 113 Γ_1 21547 99.79 3 K_8 + 0.11 5 G_6 + 0.07 5 G_6 113 Γ_1 21550 99.79 3 K_8 + 0.11 5 G_6 + 0.07 5 G_6 113 Γ_1 21547 99.79 3 K_8 + 0.11 5 G_6 + 0.07 5 G_6 114 Γ_2 21577 99.40 3 K_8 + 0.54 5 G_6 + 0.04 5 G_6 115 G_6 100 90.79 3 K_8 + 0.11 5 G_6 + 0.07 5 G_6 114 G_6 115 99.79 3 K_8 + 0.11 5 G_6 + 0.07 5 G_6 115 99.79 3 K_8 + 0.11 5 G_6 + 0.07 5 G_6 115 99.79 3 K_8 + 0.11 5 G_6 + 0.07 5 G_6 115 99.79 3 K_8 + 0.11 5 G_6 + 0.07 5 G_6 115 99.99 3	88	Γ_2			$98.35 {}^{5}F_{4} + 0.54 {}^{5}G_{6} + 0.48 {}^{5}F_{5}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$97.91 {}^{5}F_{4} + 0.96 {}^{5}S_{2} + 0.25 {}^{5}F_{3}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	Γ_1		18973	- · · · · · · · · · · · · · · · · · · ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91	Γ_2	${}^{3}F_{3}$	20706	$98.57 {}^{5}F_{3} + 0.51 {}^{5}F_{2} + 0.28 {}^{3}G_{5}$
94 Γ_1 20897 93.99 5F_3 + 4.31 5F_2 + 0.68 5G_6 95 Γ_2 20899 92.78 5F_3 + 5.42 5F_2 + 0.77 5G_6 96 Γ_2 21007 93.86 5F_3 + 4.53 5F_2 + 0.63 5G_6 97 Γ_2 21025 96.75 5F_3 + 1.64 5F_2 + 0.47 5G_6 98 Γ_2 5F_2 21253 89.00 5F_2 + 9.37 5F_3 + 1.03 5F_1 99 Γ_1 21130 21327 98.47 5F_2 + 0.39 3K_8 + 0.38 5F_4 100 Γ_1 3 K_8 21381 92.21 5F_2 + 5.35 5F_3 + 1.13 3K_8 101 Γ_2 21307 21382 93.79 5F_2 + 2.65 5F_3 + 1.14 5F_1 102 Γ_2 21427 99.62 3K_8 + 0.21 5G_6 + 0.11 5F_2 103 Γ_1 21428 99.23 3K_8 + 0.49 5F_2 + 0.22 5G_6 104 Γ_1 21461 99.20 3K_8 + 0.68 5F_2 + 0.06 5G_6 105 Γ_1 21478 86.72 3K_8 + 12.44 5F_2 + 0.50 5F_3 106 Γ_2 21483 99.88 3K_8 + 0.07 5G_6 + 0.01 5G_6 107 Γ_2 21483 99.88 3K_8 + 0.07 5G_6 + 0.03 5F_2 109 Γ_1 21490 82.04 5F_2 + 14.10 3K_8 + 3.02 5F_3 110 Γ_1 21510 99.76 3K_8 + 0.12 5G_6 + 0.01 3G_5 112 Γ_1 21520 99.77 3K_8 + 0.19 5G_6 + 0.01 3G_5 112 Γ_1 21530 98.57 3K_8 + 0.11 5G_6 + 0.07 5F_2 113 Γ_1 21547 99.79 3K_8 + 0.11 5G_6 + 0.04 5F_3 114 Γ_2 21577 99.40 3K_8 + 0.11 5G_6 + 0.04 5F_3 114 Γ_2 21577 99.40 3K_8 + 0.11 5G_6 + 0.04 5F_3 114 Γ_2 21577 99.40 3K_8 + 0.25 5G_6 + 0.04 5F_3 114 Γ_2 21577 99.40 3K_8 + 0.27 5G_6 + 0.04 5F_3 115		Γ_1	20672		$96.24 {}^{5}F_{3} + 1.90 {}^{5}F_{2} + 0.52 {}^{5}F_{1}$
95 Γ_2 20899 92.78 5F_3 + 5.42 5F_2 + 0.77 5G_6 96 Γ_2 21007 93.86 5F_3 + 4.53 5F_2 + 0.63 5G_6 97 Γ_2 21025 96.75 5F_3 + 1.64 5F_2 + 0.47 5G_6 98 Γ_2 5 F_2 21253 89.00 5F_2 + 9.37 5F_3 + 1.03 5F_1 99 Γ_1 21130 21327 98.47 5F_2 + 0.39 3K_8 + 0.38 5F_4 100 Γ_1 3 K_8 21381 92.21 5F_2 + 5.35 5F_3 + 1.13 3K_8 101 Γ_2 21307 21382 93.79 5F_2 + 2.65 5F_3 + 1.14 5F_1 102 Γ_2 21427 99.62 3K_8 + 0.21 5G_6 + 0.11 5F_2 103 Γ_1 21428 99.23 3K_8 + 0.49 5F_2 + 0.22 5G_6 104 Γ_1 21461 99.20 3K_8 + 0.68 5F_2 + 0.06 5G_6 105 Γ_1 21478 86.72 3K_8 + 12.44 5F_2 + 0.50 5F_3 106 Γ_2 21479 99.12 3K_8 + 0.69 5F_2 + 0.10 5G_6 107 Γ_2 21483 99.88 3K_8 + 0.07 5G_6 + 0.03 5F_2 108 Γ_2 21485 99.68 3K_8 + 0.07 5G_6 + 0.03 5F_2 109 Γ_1 21490 82.04 5F_2 + 14.10 3K_8 + 3.02 5F_3 110 Γ_1 21510 99.76 3K_8 + 0.12 5G_6 + 0.01 3G_5 112 Γ_1 21530 98.57 3K_8 + 1.03 5F_2 + 0.33 5G_6 113 Γ_1 21547 99.79 3K_8 + 0.11 5G_6 + 0.07 5F_2 114 Γ_2 21577 99.40 3K_8 + 0.54 5G_6 + 0.04 5F_3 114 Γ_2 21577 99.40 3K_8 + 0.54 5G_6 + 0.04 5F_3 114 Γ_2 21577 99.40 3K_8 + 0.54 5G_6 + 0.04 5F_3 115		Γ_1			$95.22 {}^{5}F_{3} + 2.77 {}^{5}F_{2} + 0.81 {}^{5}G_{6}$
96 Γ_2 21007 93.86 ${}^5F_3 + 4.53 {}^5F_2 + 0.63 {}^5G_6$ 97 Γ_2 21025 96.75 ${}^5F_3 + 1.64 {}^5F_2 + 0.47 {}^5G_6$ 98 Γ_2 5F_2 21253 89.00 ${}^5F_2 + 9.37 {}^5F_3 + 1.03 {}^5F_1$ 99 Γ_1 21130 21327 98.47 ${}^5F_2 + 0.39 {}^3K_8 + 0.38 {}^5F_4$ 100 Γ_1 3K_8 21381 92.21 ${}^5F_2 + 5.35 {}^5F_3 + 1.13 {}^3K_8$ 101 Γ_2 21307 21382 93.79 ${}^5F_2 + 2.65 {}^5F_3 + 1.14 {}^5F_1$ 102 Γ_2 21427 99.62 ${}^3K_8 + 0.21 {}^5G_6 + 0.11 {}^5F_2$ 103 Γ_1 21428 99.23 ${}^3K_8 + 0.49 {}^5F_2 + 0.22 {}^5G_6$ 104 Γ_1 21461 99.20 ${}^3K_8 + 0.68 {}^5F_2 + 0.06 {}^5G_6$ 105 Γ_1 21478 86.72 ${}^3K_8 + 12.44 {}^5F_2 + 0.50 {}^5F_3$ 106 Γ_2 21479 99.12 ${}^3K_8 + 0.69 {}^5F_2 + 0.10 {}^5G_6$ 107 Γ_2 21483 99.88 ${}^3K_8 + 0.07 {}^5G_6 + 0.03 {}^5F_2$ 108 Γ_2 21483 99.88 ${}^3K_8 + 0.07 {}^5G_6 + 0.03 {}^5F_2$ 109 Γ_1 21490 82.04 ${}^5F_2 + 14.10 {}^3K_8 + 3.02 {}^5F_3$ 110 Γ_1 21510 99.76 ${}^3K_8 + 0.12 {}^5G_6 + 0.01 {}^3G_5$ 111 Γ_2 21519 99.77 ${}^3K_8 + 0.19 {}^5G_6 + 0.01 {}^3G_5$ 112 Γ_1 21530 98.57 ${}^3K_8 + 1.03 {}^5F_2 + 0.33 {}^5G_6$ 113 Γ_1 21547 99.79 ${}^3K_8 + 0.11 {}^5G_6 + 0.07 {}^5F_2$ 114 Γ_2 21577 99.40 ${}^3K_8 + 0.54 {}^5G_6 + 0.04 {}^5F_3$					$93.99 ^{5}F_{3} + 4.31 ^{5}F_{2} + 0.68 ^{5}G_{6}$
97 Γ_2^2 21025 96.75 5F_3 + 1.64 5F_2 + 0.47 5G_6 98 Γ_2 5 F_2 21253 89.00 5F_2 + 9.37 5F_3 + 1.03 5F_1 99 Γ_1 21130 21327 98.47 5F_2 + 0.39 3K_8 + 0.38 5F_4 100 Γ_1 3 K_8 21381 92.21 5F_2 + 5.35 5F_3 + 1.13 3K_8 101 Γ_2 21307 21382 93.79 5F_2 + 2.65 5F_3 + 1.14 5F_1 102 Γ_2 21427 99.62 3K_8 + 0.21 5G_6 + 0.11 5F_2 103 Γ_1 21428 99.23 3K_8 + 0.49 5F_2 + 0.22 5G_6 104 Γ_1 21461 99.20 3K_8 + 0.68 5F_2 + 0.06 5G_6 105 Γ_1 21478 86.72 3K_8 + 12.44 5F_2 + 0.50 5F_3 106 Γ_2 21479 99.12 3K_8 + 0.69 5F_2 + 0.10 5G_6 107 Γ_2 21483 99.88 3K_8 + 0.07 5G_6 + 0.03 5F_2 108 Γ_2 21485 99.68 3K_8 + 0.07 5G_6 + 0.03 5F_2 109 Γ_1 21490 82.04 5F_2 + 14.10 3K_8 + 3.02 5F_3 110 Γ_1 21510 99.76 3K_8 + 0.12 5G_6 + 0.01 3G_5 112 Γ_1 21530 98.57 3K_8 + 0.19 5G_6 + 0.01 3G_5 112 Γ_1 21530 98.57 3K_8 + 0.11 5G_6 + 0.07 5F_2 113 Γ_1 21547 99.79 3K_8 + 0.11 5G_6 + 0.04 5F_3 114 Γ_2 21577 99.40 3K_8 + 0.54 5G_6 + 0.04 5F_3 114 Γ_2 21577 99.40 3K_8 + 0.54 5G_6 + 0.04 5F_3					$92.78^{3}F_{3} + 5.42^{3}F_{2} + 0.77^{3}G_{6}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$93.86 ^{\circ}F_3 + 4.53 ^{\circ}F_2 + 0.63 ^{\circ}G_6$
99 Γ_1 21130 21327 98.47 ${}^5F_2 + 0.39 {}^3K_8 + 0.38 {}^5F_4$ 100 Γ_1 3K_8 21381 92.21 ${}^5F_2 + 5.35 {}^5F_3 + 1.13 {}^3K_8$ 101 Γ_2 21307 21382 93.79 ${}^5F_2 + 2.65 {}^5F_3 + 1.14 {}^5F_1$ 102 Γ_2 21427 99.62 ${}^3K_8 + 0.21 {}^5G_6 + 0.11 {}^5F_2$ 103 Γ_1 21428 99.23 ${}^3K_8 + 0.49 {}^5F_2 + 0.22 {}^5G_6$ 104 Γ_1 21461 99.20 ${}^3K_8 + 0.68 {}^5F_2 + 0.06 {}^5G_6$ 105 Γ_1 21478 86.72 ${}^3K_8 + 12.44 {}^5F_2 + 0.50 {}^5F_3$ 106 Γ_2 21479 99.12 ${}^3K_8 + 0.69 {}^5F_2 + 0.10 {}^5G_6$ 107 Γ_2 21483 99.88 ${}^3K_8 + 0.07 {}^5G_6 + 0.03 {}^5F_2$ 108 Γ_2 21485 99.68 ${}^3K_8 + 0.27 {}^5G_6 + 0.03 {}^5F_2$ 109 Γ_1 21490 82.04 ${}^5F_2 + 14.10 {}^3K_8 + 3.02 {}^5F_3$ 110 Γ_1 21510 99.76 ${}^3K_8 + 0.12 {}^5G_6 + 0.09 {}^5F_2$ 111 Γ_2 21519 99.77 ${}^3K_8 + 0.19 {}^5G_6 + 0.01 {}^3G_5$ 112 Γ_1 21530 98.57 ${}^3K_8 + 0.11 {}^5G_6 + 0.07 {}^5F_2$ 113 Γ_1 21547 99.79 ${}^3K_8 + 0.11 {}^5G_6 + 0.07 {}^5F_2$ 114 Γ_2 21577 99.40 ${}^3K_8 + 0.54 {}^5G_6 + 0.04 {}^5F_3$		1 2	-		_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$89.00 {}^{5}F_{2} + 9.37 {}^{5}F_{3} + 1.03 {}^{5}F_{1}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Γ_1	21130		$98.47^{5}F_{2} + 0.39^{5}K_{8} + 0.38^{5}F_{4}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3K ₈		$92.21^{\circ}F_{2} + 5.35^{\circ}F_{3} + 1.13^{\circ}K_{8}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			21307		$93.79^{\circ}F_{2} + 2.03^{\circ}F_{3} + 1.14^{\circ}F_{1}$ $90.62.3V + 0.21.5C + 0.11.5F_{1}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$99.02 \text{ R}_8 + 0.21 \text{ G}_6 + 0.11 \text{ I}_2$ $99.02 \text{ R}_8 + 0.49 \text{ F}_5 + 0.22 \text{ G}_6$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$99.20^{3}K_{8} + 0.45^{2}F_{2} + 0.22^{2}G_{6}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$86.72 {}^{3}K_{o} + 12.44 {}^{5}F_{o} + 0.50 {}^{5}F_{o}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$99.12^{3}K_{0} + 0.69^{5}F_{2} + 0.10^{5}G_{c}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$99.88^{3}K_{o} + 0.07^{5}G_{c} + 0.03^{5}F_{2}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$99.68^{3}K_{8} + 0.27^{5}G_{6} + 0.03^{5}F_{2}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$82.04 {}^{5}F_{2}^{\circ} + 14.10 {}^{3}K_{8}^{\circ} + 3.02 {}^{5}F_{3}^{2}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$99.76^{3}K_{8} + 0.12^{5}G_{6} + 0.09^{5}F_{2}$
112 Γ_1 21530 98.57 ${}^3K_8 + 1.03 {}^5F_2 + 0.33 {}^5G_6$ 113 Γ_1 21547 99.79 ${}^3K_8 + 0.11 {}^5G_6 + 0.07 {}^5F_2$ 114 Γ_2 21577 99.40 ${}^3K_8 + 0.54 {}^5G_6 + 0.04 {}^5F_3$					$99.77^{3}K_{8} + 0.19^{5}G_{6} + 0.01^{3}G_{5}$
113 Γ_1 21547 99.79 ${}^3K_8 + 0.11 {}^5G_6 + 0.07 {}^5F_2$ 114 Γ_2 21577 99.40 ${}^3K_8 + 0.54 {}^5G_6 + 0.04 {}^5F_3$				21530	$98.57^{3}K_{8} + 1.03^{5}F_{2} + 0.33^{5}G_{6}$
114 Γ_2 21577 99.40 ${}^3K_8 + 0.54 {}^5G_6 + 0.04 {}^5F_3$				21547	$99.79^{3}K_{8} + 0.11^{5}G_{6} + 0.07^{5}F_{2}$
				21577	$99.40^{3}K_{8} + 0.54^{5}G_{6} + 0.04^{5}F_{3}$
	115			21583	$99.56^{3}K_{8} + 0.39^{5}G_{6} + 0.03^{5}F_{3}$

Table 33 (cont'd). Predicted energy levels for $\mathrm{Ho^{3+}}$ in $\mathrm{Ca_5(PO_4)_3F}$, C_s site. B_{nm} from table 9.

Level	I.R.	$[(S,L)J]^a$	Energy	Free ion
			(cm ⁻¹)	mixture (%)
116	Γ_2		21602	$99.77^{3}K_{8} + 0.19^{5}G_{6} + 0.01^{5}F_{3}$
117	Γ_2^2		21606	$99.76^{3}K_{8}^{\circ} + 0.20^{5}G_{6}^{\circ} + 0.01^{3}G_{5}^{\circ}$
118	$\Gamma_2^ \Gamma_1^-$		21640	$99.36^{3}K_{8}^{\circ} + 0.56^{5}G_{6}^{\circ} + 0.04^{5}F_{2}^{\circ}$
119	Γ_1		21641	$99.48{}^{3}K_{8}^{\circ} + 0.43{}^{5}G_{6}^{\circ} + 0.08{}^{5}F_{2}^{2}$
120	Γ_1	${}^{5}G_{6}$	22141	$97.52{}^{5}G_{6} + 0.59{}^{3}K_{8} + 0.52{}^{5}F_{4}$
121	Γ_2	22094	22154	$97.99 {}^{5}G_{6} + 0.50 {}^{5}F_{4} + 0.40 {}^{3}G_{5}$
122	Γ_1^-	${}^{5}F_{1}$	22160	$97.76 {}^{5}G_{6} + 0.57 {}^{3}K_{8} + 0.37 {}^{5}F_{2}$
123	Γ_2	22375	22170	$97.53 {}^{5}G_{6} + 0.64 {}^{3}G_{5} + 0.61 {}^{5}F_{1}$
124	Γ_2^-		22264	$97.21\ {}^{5}G_{6} + 0.81\ {}^{5}F_{3} + 0.59\ {}^{3}G_{5}$
125	Γ_1^-		22279	$97.05{}^{5}G_{6} + 0.88{}^{3}G_{5} + 0.70{}^{5}F_{3}$
126	Γ_1		22330	$97.02 {}^{5}G_{6} + 0.86 {}^{3}G_{5} + 0.62 {}^{5}F_{3}$
127	Γ_2		22426	$98.03{}^{5}G_{6} + 0.42{}^{3}G_{5} + 0.39{}^{5}F_{5}$
128	Γ_2^-		22478	$97.65{}^{5}G_{6} + 0.41{}^{5}F_{5} + 0.40{}^{5}F_{1}$
129	Γ_1^-		22480	$57.93 {}^{5}F_{1} + 39.88 {}^{5}G_{6} + 1.09 {}^{3}G_{5}$
130	Γ_1^-		22512	$90.39{}^{5}G_{6} + 7.94{}^{5}F_{1} + 0.77{}^{3}G_{5}$
131	Γ_1^-		22545	$71.57{}^{5}G_{6}+27.04{}^{5}F_{1}+0.68{}^{3}G_{5}$
132	Γ_2		22554	$96.83 {}^{5}G_{6} + 1.72 {}^{5}F_{1} + 0.71 {}^{3}G_{5}$
133	Γ_1		22557	$94.25{}^{5}G_{6} + 4.49{}^{5}F_{1} + 0.27{}^{5}F_{2}$
134	Γ_2		22673	$95.73{}^{5}F_{1} + 1.67{}^{5}G_{6} + 1.59{}^{5}F_{2}$
135	Γ_2		22723	$97.27 {}^{5}F_{1} + 1.19 {}^{5}G_{6} + 0.71 {}^{5}F_{2}$
136	Γ_1	$^{3}G_{5}$	24018	$98.73 {}^{3}G_{5} + 0.45 {}^{5}F_{3} + 0.29 {}^{5}G_{6}$
137	Γ_2	23887	24023	$98.99{}^{3}G_{5} + 0.34{}^{5}F_{3} + 0.34{}^{5}F_{2}$
138	Γ_1		24079	$98.83 {}^{3}G_{5} + 0.55 {}^{5}G_{6} + 0.30 {}^{5}F_{3}$
139	Γ_2		24 088	$99.19 {}^{3}G_{5} + 0.30 {}^{5}G_{6} + 0.26 {}^{5}F_{3}$
140	Γ_2		24103	$98.31^{3}G_{5} + 0.99^{5}G_{6} + 0.21^{5}F_{3}$
141	Γ_1		24163	$99.00^{3}G_{5} + 0.69^{5}G_{6} + 0.11^{5}F_{4}$
142	Γ_2		24177	$98.31\ {}^{3}G_{5} + 1.32\ {}^{5}G_{6} + 0.23\ {}^{5}F_{3}$
143	Γ_1		24204	$97.87 {}^{3}G_{5} + 1.42 {}^{5}G_{6} + 0.34 {}^{5}F_{2}$
144	$\frac{\Gamma_1}{\Gamma_1}$		24212	$97.50^{3}G_{5}^{5} + 1.83^{5}G_{6}^{6} + 0.26^{5}F_{2}^{2}$
145	Γ_2		24293	$99.42 {}^{3}G_{5} + 0.26 {}^{5}G_{6} + 0.11 {}^{5}F_{5}$
146	Γ_2		24296	$99.27^{3}G_{5} + 0.39^{5}G_{6} + 0.11^{5}F_{5}$

^aAqueous centroids (cm⁻¹).

Table 34. Predicted energy levels for Tm^{3+} in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

•		, , , , ,		
Level	I. R.	$[(S,L)J]^a$	Energy	Free ion
			(cm ⁻¹)	mixture (%)
1	Γ ₁	³ H ₆	0	$99.61 {}^{3}H_{6} + 0.33 {}^{3}F_{4} + 0.02 {}^{3}H_{4}$ $99.65 {}^{3}H_{6} + 0.29 {}^{3}F_{4} + 0.02 {}^{3}F_{3}$
2	Γ_2	202 202	9	$99.65^{3}H_{6} + 0.29^{3}F_{4} + 0.02^{3}F_{3}$
3	Γ_2		143	$99.49 {}^{3}H_{6} + 0.45 {}^{3}F_{A} + 0.02 {}^{3}H_{A}$
4	Γ_1		145	$99.63^{3}H_{6} + 0.29^{3}F_{4} + 0.03^{3}H_{5}$
5	Γ_2		292	$99.89^{3}H_{6} + 0.06^{3}H_{5} + 0.04^{3}F_{4}$
6	Γ_1		373	$99.77^{3}H_{c} + 0.16^{3}F_{A} + 0.05^{3}H_{c}$
7	Γ_1		406	$99.83^{3}H_{6} + 0.09^{3}F_{4} + 0.06^{3}H_{5}$
8	Γ_2		513	$99.72^{3}H_{6} + 0.25^{3}F_{A} + 0.02^{3}H_{A}$
9	Γ_1		534	$99.51^{3}H_{6} + 0.43^{3}F_{4} + 0.03^{3}H_{4}$
10	Γ_2		691	$99.86^{3}H_{6} + 0.07^{3}H_{5} + 0.05^{3}F_{4}$
11	Γ_2		726	$99.80^{3}H_{6} + 0.11^{3}F_{4} + 0.06^{3}H_{5}$
12	Γ_1		1090	$99.71^{3}H_{6} + 0.24^{3}F_{4} + 0.03^{3}H_{5}$
13	Γ_1		1092	$99.72^{3}H_{6}^{3} + 0.23^{3}F_{4}^{4} + 0.03^{3}H_{5}^{3}$

Table 34 (cont'd). Predicted energy levels for Tm^{3+} in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	I.R.	$[(S,L)]^a$	Energy	Free ion
			(cm ⁻¹)	mixture (%)
14	Γ_1	$^{3}F_{4}$	5805	$99.45 {}^{3}F_{4} + 0.28 {}^{3}H_{6} + 0.12 {}^{3}H_{5}$
15	Γ_2	5812	586 7	$99.23^{3}F_{A} + 0.34^{3}H_{C} + 0.32^{3}H_{5}$
16	Γ_1^z		5892	$99.18^{3}F_{4} + 0.44^{3}H_{5} + 0.28^{3}H_{6}$
17	Γ_2^1		5994	$98.97{}^{3}F_{4}^{4} + 0.85{}^{3}H_{5} + 0.16{}^{3}H_{6}$
18	Γ_2^2		6096	$99.59^{3}F_{4}^{4} + 0.23^{3}H_{5} + 0.10^{3}H_{6}^{3}$
19	Γ_1^2		6244	$98.83{}^{3}F_{4}^{4} + 0.69{}^{3}H_{5} + 0.34{}^{3}H_{6}^{6}$
20			6263	$99.42{}^{3}F_{4}+0.28{}^{3}H_{6}+0.16{}^{3}H_{5}$
21	$\frac{\Gamma_1}{\Gamma}$		6298	$98.75 {}^{3}F_{4} + 0.63 {}^{3}H_{6} + 0.51 {}^{3}H_{5}$
21 22	Γ_1		6338	$98.84 {}^{3}F_{4} + 0.59 {}^{3}H_{6} + 0.43 {}^{3}H_{5}$
	Γ_2	2 -		
23	Γ_{2}	$^{3}H_{5}$	8258	$98.76^{3}H_{5} + 0.77^{3}F_{4} + 0.18^{3}H_{4}$
24	Γ_1	8390	8264	$99.09^{3}H_{5} + 0.50^{3}F_{4} + 0.25^{3}F_{3}$
25	Γ_1		8404	$98.68^{3}H_{5} + 0.74^{3}F_{4} + 0.34^{3}H_{4}$
26	Γ_2		8458	$99.33^{\circ}H_{5} + 0.42^{\circ}F_{2} + 0.13^{\circ}H_{A}$
27	Γ_2^{-}		8547	$99.38^{3}H_{5} + 0.28^{3}H_{4} + 0.24^{3}F_{4}$
28	Γ_2^2		8682	$99.42^{3}H_{5} + 0.26^{3}F_{4} + 0.25^{3}F_{3}$
29	Γ_1^2		8685	$99.14^{3}H_{E} + 0.42^{3}F_{A} + 0.32^{3}F_{2}$
30	$\Gamma_1^{'}$		8781	$99.40^{3}H_{5}^{3} + 0.19^{3}H_{4}^{4} + 0.15^{3}F_{4}$
31	Γ_1^1		8796	$99.52^{3}H_{5} + 0.16^{3}H_{4} + 0.13^{3}F_{4}$
32	Γ_2^1		9186	$99.34^{3}H_{5} + 0.24^{3}F_{4} + 0.24^{3}H_{4}$
33	Γ_2^2		9189	$99.30^{3}H_{5}^{3} + 0.26^{3}F_{4}^{4} + 0.22^{3}H_{4}^{4}$
		311		$97.03^{3}H_{4} + 2.49^{3}F_{3} + 0.24^{3}F_{2}$
34	Γ_2	$^{3}H_{4}$	12685	$97.03 \cdot H_4 + 2.49 \cdot F_3 + 0.24 \cdot F_2$
35	Γ_1	12720	12751	$97.81^{3}H_{4} + 1.65^{3}F_{3} + 0.43^{3}F_{2}$
36	$\frac{\Gamma_1}{\Gamma_1}$		12758	$98.02^{3}H_{4}^{4} + 1.42^{3}F_{2} + 0.20^{3}F_{3}^{2}$
37	Γ_2		12911	$97.31^{3}H_{4} + 1.94^{3}F_{2} + 0.36^{3}F_{3}$
38	$\underline{\Gamma}_1$		12990	$98.73^{3}H_{4} + 0.57^{3}F_{2} + 0.39^{3}F_{3}$
39	Γ_2		12993	$99.39^{3}H_{4} + 0.38^{3}H_{5} + 0.12^{3}F_{3}$
40	Γ_1		13081	$98.88^{3}H_{4}^{4} + 0.51^{3}F_{3} + 0.32^{3}H_{5}^{3}$
41	Γ_1		13283	$97.43^{3}H_{4} + 1.91^{3}F_{3} + 0.27^{3}F_{2}$
42	Γ_2		13309	$96.97^{3}H_{4}^{4} + 2.38^{3}F_{3}^{3} + 0.31^{3}F_{2}^{2}$
43	Γ_2	$^{3}F_{3}$	14677	$99.03^{3}F_{3} + 0.66^{3}H_{4} + 0.22^{3}H_{5}$
44	Γ_2^2	14510	14719	$97.09 {}^{3}F_{3} + 1.54 {}^{3}H_{4} + 1.15 {}^{3}F_{2}$
45	Γ_1^2		14794	$95.52^{3}F_{3} + 2.13^{3}H_{4} + 2.01^{3}F_{2}$
46	Γ_1^1		14818	$91.94 \ ^{3}F_{3} + 5.64 \ ^{3}F_{2} + 2.19 \ ^{3}H_{4}$
47	Γ_2		14860	$96.63^{3}F_{3}^{3} + 3.17^{3}F_{2}^{2} + 0.09^{3}H_{4}^{3}$
48	Γ_1^2		14897	$88.59 {}^{3}F_{3} + 9.72 {}^{3}F_{2} + 1.13 {}^{3}H_{4}$
49	Γ_2		14914	$97.80^{3}F_{3}^{3} + 1.21^{3}H_{4}^{2} + 0.59^{3}H_{5}^{3}$
		3.5		
50	Γ_1	$^{3}F_{2}$	15196	$97.65^{3}F_{2} + 1.29^{3}F_{3} + 0.81^{3}H_{4}$
51	Γ_1	15116	15342	$87.25 {}^{3}F_{2} + 11.27 {}^{3}F_{3} + 1.28 {}^{3}H_{4}$
52	Γ_2		15488	$94.12 {}^{3}F_{2} + 3.30 {}^{3}F_{3} + 2.21 {}^{3}H_{4}$
53	Γ_1		15608	$93.97 {}^{3}F_{2}^{2} + 3.65 {}^{3}F_{3} + 2.03 {}^{3}H_{4}^{3}$
54	Γ_2		15638	$98.19^{3}F_{2}^{2} + 1.32^{3}F_{3}^{3} + 0.29^{3}H_{4}^{2}$
55	Γ_1	$^{1}G_{4}$	21212	$99.78 {}^{1}G_{4} + 0.05 {}^{1}I_{6} + 0.05 {}^{1}D_{2}$
56	$\Gamma_2^{'}$	$213\overline{7}4$	21263	$99.83 {}^{1}G_{4}^{7} + 0.05 {}^{3}F_{3} + 0.04 {}^{1}I_{6}^{2}$
57	Γ_1^2		21391	$99.75 {}^{1}G_{4} + 0.08 {}^{1}D_{2} + 0.06 {}^{1}I_{6}$
58	Γ_2		21577	$99.87 {}^{1}G_{4} + 0.09 {}^{1}I_{6} + 0.01 {}^{3}H_{4}$
59	Γ_2		21614	$99.81 {}^{1}G_{4} + 0.11 {}^{1}D_{2} + 0.03 {}^{3}F_{2}$
60	Γ_1^2		21781	$99.58 {}^{1}G_{4} + 0.17 {}^{1}I_{6} + 0.15 {}^{1}D_{2}$
61			21869	$99.64 {}^{1}G_{4} + 0.16 {}^{1}D_{2} + 0.11 {}^{1}I_{6}$
62	$rac{\Gamma_2}{\Gamma_1}$		22041	$99.81 {}^{1}G_{4} + 0.05 {}^{1}I_{6} + 0.04 {}^{3}H_{4}$
63	r 1		22041	$99.85 {}^{1}G_{4} + 0.05 {}^{1}I_{6} + 0.03 {}^{3}H_{4}$
03	Γ_1		22043	77.03 G4 + 0.03 I6 + 0.03 II4

Table 34 (cont'd). Predicted energy levels for Tm^{3+} in $Ca_5(PO_4)_3F$, C_s site. B_{nm} from table 9.

Level	I. R.	[(S,L)J] ^a	Energy (cm ⁻¹)	Free ion mixture (%)
64 65	Γ_1	¹ D ₂ 28032	28104 28135	$99.78 {}^{1}D_{2} + 0.07 {}^{1}G_{4} + 0.05 {}^{1}I_{6}$ $99.70 {}^{1}D_{2} + 0.13 {}^{1}G_{4} + 0.05 {}^{3}F_{2}$
66	$rac{\Gamma_1}{\Gamma_2}$	20032	28379	$99.33 {}^{1}D_{2} + 0.31 {}^{3}P_{1} + 0.21 {}^{1}G_{4}$ $99.33 {}^{1}D_{2} + 0.31 {}^{3}P_{1} + 0.21 {}^{1}G_{4}$
6 7	Γ_2		28433	$99.54 {}^{1}D_{2} + 0.19 {}^{3}P_{1} + 0.08 {}^{1}G_{4}$
68	Γ_1^2		28557	$99.69 {}^{1}D_{2} + 0.13 {}^{1}G_{4} + 0.03 {}^{3}P_{0}$
69	Γ_1	$^{1}I_{6}$	34407	99.75 ${}^{1}I_{6}$ + 0.12 ${}^{1}G_{4}$ + 0.08 ${}^{3}P_{2}$
70	Γ_2	34886	34408	$99.82 {}^{1}I_{6}^{0} + 0.12 {}^{1}G_{4}^{0} + 0.03 {}^{3}P_{2}^{2}$ $99.87 {}^{1}I_{6} + 0.08 {}^{3}P_{2} + 0.03 {}^{1}G_{4}$
71	Γ_2^-	$^{3}P_{0}$	34574	$99.87 {}^{1}I_{6} + 0.08 {}^{3}P_{2} + 0.03 {}^{1}G_{4}$
72	Γ_1^-	35637	34587	$99.84 {}^{1}I_{6} + 0.10 {}^{3}P_{2} + 0.02 {}^{1}G_{4}$
7 3	Γ_1		34799	$99.79 {}^{1}I_{6} + 0.09 {}^{3}P_{2} + 0.07 {}^{1}G_{4}$
74	Γ_2		34917	$99.66 {}^{1}I_{6} + 0.23 {}^{3}P_{2} + 0.05 {}^{1}D_{2}$
7 5	Γ_2		34981	$99.96 {}^{1}I_{6} + 0.02 {}^{1}G_{4} + 0.01 {}^{3}P_{2}$
7 6	Γ_1		35277	$99.51 {}^{1}I_{6} + 0.33 {}^{3}P_{0} + 0.11 {}^{3}P_{2}$
77	Γ_1		35312	$99.85 {}^{1}I_{6} + 0.07 {}^{3}P_{2} + 0.05 {}^{1}G_{4}$
78	Γ_{2}		35852	$99.84 {}^{1}I_{6} + 0.10 {}^{3}P_{2} + 0.03 {}^{3}P_{1}$
<i>7</i> 9	Γ_2		35864	$99.90^{1}I_{6} + 0.04^{3}P_{2} + 0.03^{1}G_{4}$
80	Γ_1		35911	$97.65 \stackrel{3P_0}{=} + 1.21 \stackrel{3P_2}{=} + 0.99 \stackrel{1}{=} 16$
81	Γ_1		36146	$99.73^{1}I_{6} + 0.14^{3}P_{2} + 0.06^{3}P_{1}$
82	Γ_1		36151	$99.14 {}^{1}I_{6} + 0.62 {}^{3}P_{0} + 0.13 {}^{3}P_{2}$
83	Γ_1	$^{3}P_{1}$	36315	$99.59^{3}P_{1} + 0.18^{3}P_{2} + 0.12^{1}I_{6}$
84	Γ_2	36298	36652	$96.99 {}^{3}P_{1} + 2.60 {}^{3}P_{2} + 0.30 {}^{1}D_{2}$
85	Γ_2^-		36798	$98.72 {}^{3}P_{1}^{1} + 0.95 {}^{3}P_{2}^{2} + 0.20 {}^{1}D_{2}^{2}$
86	Γ_1	$^{3}P_{2}$	38066	$99.51^{3}P_{2} + 0.32^{1}I_{6} + 0.08^{3}P_{1}$
87	$\Gamma_1^{'}$	38193	38269	$99.51^{3}P_{2}^{2} + 0.29^{1}I_{6}^{6} + 0.10^{3}P_{1}^{1}$
88	$\Gamma_2^{'}$		38520	$97.06^{3}P_{2}^{2} + 2.61^{3}P_{1}^{2} + 0.24^{1}I_{6}^{1}$
89	Γ_1^2		38759	$98.60^{3}P_{2}^{2} + 1.19^{3}P_{0}^{1} + 0.10^{1}I_{6}^{8}$
90	$\Gamma_2^{'}$		38976	$98.74^{3}P_{2}^{2} + 0.98^{3}P_{1} + 0.19^{1}I_{6}$
91	Γ_1	¹ S ₀ 79592	79891	$99.97{}^{1}S_{0} + 0.01{}^{3}P_{2} + 0.01{}^{1}G_{4}$

^aAqueous centroids (cm⁻¹).

Table 35. Predicted energy levels for Yb³⁺ in Ca₅(PO₄)₃F C_s site. B_{nm} from table 9.

Level	[(S,L)J] ^a	Energy (cm ⁻¹)	Free ion mixture (%)
1	$^{2}F_{7/2}$	0	$99.94^{2}F_{7/2} + 0.06^{2}F_{5/2}$
2	$\frac{^{2}F_{7/2}}{250}$	186	$99.96^{2}F_{7/2} + 0.04^{2}F_{5/2}$
3		702	$99.92^{2}F_{7/2} + 0.08^{2}F_{5/2}$
4		1036	$99.94 {}^{2}F_{7/2} + 0.06 {}^{2}F_{5/2}$ $99.96 {}^{2}F_{7/2} + 0.04 {}^{2}F_{5/2}$ $99.92 {}^{2}F_{7/2} + 0.08 {}^{2}F_{5/2}$ $99.98 {}^{2}F_{7/2} + 0.02 {}^{2}F_{5/2}$
5	$^{2}F_{5/2}$	10217	$99.96^{2}F_{5/2} + 0.04^{2}F_{7/2}$
6	$\frac{^{2}F_{5/2}}{10450}$	10694	$99.90^{2}F_{5/2}^{3/2} + 0.10^{2}F_{7/2}^{7/2}$
7		11169	$99.96 {}^{2}F_{5/2} + 0.04 {}^{2}F_{7/2}$ $99.90 {}^{2}F_{5/2} + 0.10 {}^{2}F_{7/2}$ $99.94 {}^{2}F_{5/2} + 0.06 {}^{2}F_{7/2}$

^aAqueous centroids (cm⁻¹).

5. Conclusion

The results of analyzing the optical spectra of ${\rm Er^{3+}}$ in the two ${\rm Ca^{2+}}$ sites in Ca₅(PO₄)₃F have been used in the derivation of two sets of crystal-field parameters for the entire series of rare-earth ions, Ln^{3+} . These crystal-field parameters were then used to predict the energy levels of these ions in each of the two different sites: Ca1 (C_3 symmetry) and Ca2 (C_s symmetry). The very large values of the crystal fields (especially the B_{2m} components) cause a very severe mixing of the higher crystal-field energy levels. The mixing is so severe in many of the ions that it precludes completely any purely experimental attempts to analyze the data by analogy to known spectra taken in host materials where the crystal field is much weaker. I hope that the results presented here will serve as a rough guide to experimenters in attempts to unravel their experimental data. In addition to the energy levels, I have used the point-charge model to evaluate the crystalfield components, A_{nm} , and thereby obtained estimates of the Judd-Ofelt intensity parameters, Ω_k . The energy-level eigenfunctions have been used to predict the Zeeman g factors for both sites. These latter quantities may also serve as aids in the interpretation of the experimental data.

References

- 1. R.W.G. Wyckoff, Crystal Structures, 3, Interscience (1965), 228.
- 2. J. M. Hughes, M. Cameron, and K. D. Crowley, Structural Variations in Natural F, OH, and Cl Apatites, Am. Mineral. 74 (1989), 870.
- 3. D. L. Dexter, A Theory of Sensitized Luminescence in Solids, J. Chem. Phys. 21 (1953), 836.
- 4. C. A. Morrison, Angular Momentum Theory Applied to Interactions in Solids, Lecture Notes in Chemistry 47, Springer-Verlag (1988).
- 5. C. A. Morrison and R. P. Leavitt, *Crystal-Field Analysis of Triply Ionized Rare-Earth Ions in Lanthanum Trifluoride*, J. Chem. Phys. **71** (1979), 2366. (The $\rho_4(Gd) = 0.4490 \text{ Å}^4$, not 0.4990 Å⁴, as given in table II.)
- 6. C. A. Morrison and R. P. Leavitt, "Spectroscopic Properties of Triply Ionized Lanthanides in Transparent Host Materials," in Volume 5, Handbook of the Physics and Chemistry of Rare Earths, ed. by K. A. Gschneidner, Jr., and L. Eyring, North-Holland Publishers, New York, NY (1982).
- 7. T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, *Crystallography*, *Spectroscopic Analysis*, and *Lasing Properties of Nd*³⁺:*Y*₃*Sc*₂*Al*₃*O*₁₂, Phys. Rev. **B41** (1990), 21.
- N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, Optical Spectra, Energy Levels, and Crystal-Field Analysis of Tripositive Rare-Earth Ions in Y₂O₃. I. Kramers Ions in C₂ Sites, J. Chem. Phys. 76 (1982), 3877. See also C. A. Morrison, R. P. Leavitt, and D. E. Wortman, Crystal-Field Analysis of Triply Ionized Lanthanides in CS₂NaLnCl₆, J. Chem. Phys. 73 (1980), 2580.
- 9. G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, *Properties of the Thirty-Two Point Groups*, MIT Press, Cambridge, MA (1963).
- 10. J. B. Gruber, M. D. Seltzer, M. E. Hills, T. H. Allik, J. A. Hutchinson, C. A. Morrison, and B.H.T. Chai, *Site-Selective Spectra and Energy Levels of Trivalent Erbium in Calcium Fluorophosphate*, Opt. Mat. **3** (1994), 99.
- 11. R. P. Leavitt and C. A. Morrison, Crystal-Field Analysis of Triply Ionized Rare-Earth Ions in Lanthanum Trifluoride. II. Intensity Calculations, J. Chem. Phys. 73 (1980), 749.

Appendix A. Selection Rules for Dipole Electronic Transitions in $Ca_5(PO_4)_3F$

Contents

A-1.	C ₃ Symmetry Site (Ca1)	60
	A-1.1 Electric Dipole in C ₃ Symmetry	60
	A-1.2 Magnetic Dipole in C ₃ Symmetry	61
A-2.	C _s Symmetry Site (Ca2)	
	A-2.1 Electric Dipole in C _s Symmetry	
	A-2.2 Magnetic Dipole in C _s Symmetry	63
	Tables	
A-1.	Allowed electric dipole transitions for $4f^N$ electronic configuration in C_3 symmetry	60
A-2.	Allowed magnetic dipole transitions for $4f^N$ electronic configuration in C_3 symmetry	61
A-3.	Allowed electric dipole transitions for $4f^N$ electronic configuration in C_s symmetry	62
A-4.	Allowed magnetic dipole transitions for $4f^N$ electronic configuration in C_s symmetry	63

The electric dipole operator, p, interacting with an external electric field, E, gives rise to the Hamiltonian

$$H^{ed} = -\mathbf{p} \cdot \mathbf{E} \quad , \tag{A-1}$$

where

$$\mathbf{p} = -e \sum_{i} \mathbf{r}_{i} . \tag{A-2}$$

For the magnetic dipole, the interaction with an external magnetic field *H* is

$$H^{md} = e\left(\frac{\alpha_0}{2}\right) \mathbf{m} \cdot \mathbf{H} \quad , \tag{A-3}$$

where

$$\mathbf{m} = \mathbf{L} + g_{\rho} \mathbf{S} \,, \tag{A-4}$$

and L is the total orbital angular momentum, S is the total spin angular momentum, g_e is the free electron g factor, and α_o is the fine structure constant. For ions occupying either of the sites Ca1 or Ca2 in fluoroapatite, the principal axis is the c-axis of the crystal, which I take as the z-axis in the following. The two types of polarization data, $\mathbf{k} \perp z$ and $\mathbf{k} \mid z$, with \mathbf{k} the direction of propagation of the fields E and H, are referred to simply as the polarization spectra and the axial spectra. The axial spectra arise where $\mathbf{k} \mid z$ (note that I am considering only propagation along the principal axis so that $\mathbf{k} \cdot \mathbf{E} = \mathbf{k} \cdot \mathbf{H} = 0$). The result with $\mathbf{E} \mid z$ is referred to as π and with $\mathbf{E} \perp z$ is referred to as σ . (This labeling always refers to the E vector even for magnetic dipole transitions.)

A-1. C₃ Symmetry Site (Ca1)

Electric Dipole in C_3 Symmetry A-1.1

The electric dipole interaction can be written

$$H^{ed} = e\left(xE_x + yE_y + zE_z\right), \tag{A-5}$$

where x represents the total x component of $\Sigma_{i}r_{i}$ and y and z represent similar abbreviations. From table 42, page 51 of Koster et al¹ (I refer to the tables and pages in this reference in all the following), we have the following:

$$x \to \Gamma_2 + \Gamma_3$$
,
 $y \to \Gamma_2 + \Gamma_3$, (A-6)
 $z \to \Gamma_1$,

and from the group multiplication (Koster et al, table 43), we have the result given in table A-1 for the four types of experimental arrangement. In C_3 symmetry, the Γ_2 and Γ_3 irreducible representations are degenerate, and we label them $\Gamma_{2,3}$. Similarly, for the Γ_4 and Γ_5 , we label them $\Gamma_{4,5}$.

Table A-1. Allowed electric dipole transitions for 4fN electronic configuration in C_3 symmetry.

(a) N even (J integer) (k 1 7)a

$(\mathbf{R} \perp 2)$		
-	Γ_1	Г2,3
Γ_1	π	σ
Γ2,3	σ	π, σ

(b) N odd (J half integer)

$(\mathbf{K} \perp \mathbf{Z})^{2}$		
	Γ4,5	Γ6
Γ4,5	π, σ	σ
Γ_6	σ	π

 $(\mathbf{k} \mid\mid z)^{\mathbf{a}}$

	Γ_1	Γ2,3
Γ_1	0	σ
Γ2,3	σ	σ

 $(\mathbf{k} \mid\mid z)^{\mathbf{b}}$ Γ_6 $\Gamma_{4,5}$ $\Gamma_{4.5}$ σ σ

^aApplicable to the following tables in the main body: 14, 16, 18, 20, 22, 23.

^bApplicable to the following tables in the main body: 5, 13, 15, 17, 19, 21, 24.

 $[\]overline{{}^{1}G.F.}$ Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the Thirty-Two Point Groups, MIT Press, Cambridge, MA (1963).

A-1.2 Magnetic Dipole in C_3 Symmetry

The magnetic dipole interaction can be written

$$H^{md} = e\left(\frac{\alpha_o}{2}\right) \left(m_x H_x + m_y H_y + m_z H_z\right) , \qquad (A-7)$$

and again (table 42, page 51 of Koster et al), we have

$$m_x \to \Gamma_2 + \Gamma_3$$
,
 $m_y \to \Gamma_2 + \Gamma_3$, (A-8)
 $m_z \to \Gamma_1$

(m_i is read as S_i in table 42). Using the multiplication table given in table 43 of Koster et al, we obtain the result given in table A-2.

Table A-2. Allowed magnetic dipole transitions for $4f^N$ electronic configuration in C_3 symmetry.

a)	N	even	(J	inte	ger)
_					_

 $\begin{array}{c|cccc}
(\mathbf{k} \perp z)^{\mathbf{a}} & & & & \\
\hline
\Gamma_1 & & \Gamma_{2,3} & & \\
\hline
\Gamma_{1} & \sigma & \pi & \\
\hline
\Gamma_{2,3} & \pi & \sigma, \pi
\end{array}$

(b) N odd (J half integer)

 Γ_6

 $\begin{array}{c|cccc}
(\mathbf{k} \perp z)^{\mathbf{b}} & & & & & \\
\hline
\Gamma_{4.5} & & \Gamma_{6.5} & & & & \\
\hline
\Gamma_{4.5} & & & & & & \\
\end{array}$

π

$(\mathbf{k} \mid\mid z)^{\mathbf{a}}$		
	Γ_1	Γ2,3
Γ_1	0	σ
Γ2.3	σ	σ

$$\begin{array}{c|cccc}
(k \mid\mid z)^b & & & & & & & & & & \\
\hline
\Gamma_{4,5} & \sigma & \sigma & \sigma & & & & & \\
\hline
\Gamma_{6} & \sigma & \sigma & & & & & & & \\
\end{array}$$

^aApplicable to the following tables in the main body: 14, 16, 18, 20, 22, 23.

^bApplicable to the following tables in the main body: 5, 13, 15, 17, 19, 21, 24.

A-2. C_s Symmetry Site (Ca2)

A-2.1 Electric Dipole in C_s Symmetry

In C_s symmetry, the components of the electric dipole interaction given in equation (A-5) transform as

$$x \to \Gamma_1$$
,
 $y \to \Gamma_1$, (A-9)
 $z \to \Gamma_2$,

given in table 9, page 33, of Koster et al. Using equation (A-9) and the multiplication table given in table 10 of Koster et al, we obtain the results given in table A-3.

 $(\mathbf{k} \mid\mid z)^{\mathbf{a}}$

Table A-3. Allowed electric dipole transitions for $4f^N$ electronic configuration in C_s symmetry.

(a) N even (J integer)

 $\begin{array}{c|cccc} (k \perp z)^{a} & & & \\ \hline & \Gamma_1 & \Gamma_2 \\ \hline \Gamma_1 & \sigma & \pi \\ \hline \Gamma_2 & \pi & \sigma \\ \end{array}$

T

 $\begin{array}{c|ccc} & \Gamma_1 & \Gamma_2 \\ \hline \Gamma_1 & \sigma & 0 \\ \hline \Gamma_2 & 0 & \sigma \\ \end{array}$

(b) N odd (J half integer) b (k $\perp z$) c Γ_3 Γ_4 Γ_3 σ π Γ_4 π σ

$(\mathbf{k} \mid z)^{\mathbf{C}}$		
	Гз	Γ4
Гз	σ	0
Γ4	0	σ

^aApplicable to the following tables in the main body: 26, 28, 30, 32, 34, 35. bIn the double C_S group, the energy levels are all in the degenerate Kramer's doublet $\Gamma_3 + \Gamma_4$, but the tables are useful in the study of the Zeeman effect.

^cApplicable to the following tables in the main body: 6, 25, 27, 29, 31, 33, 36.

A-2.2 Magnetic Dipole in C_s Symmetry

The magnetic dipole interaction given in equation (A-3) has components that transform in C_s symmetry as

$$m_x \to \Gamma_2$$
 ,
$$m_y \to \Gamma_2$$
 , (A-10)
$$m_z \to \Gamma_1$$
 ,

from table 9, page 33, of Koster et al. Using the multiplication table (again the π and σ refer to the *electric vector* being parallel or perpendicular to the *z*-axis, respectively), we obtain the result given in table A-4.

Table A-4. Allowed magnetic dipole transitions for $4f^N$ electronic configuration in C_s symmetry.

(a) N even (J integer)

 $\begin{array}{c|cccc}
 & \Gamma_1 & \Gamma_2 \\
\hline
 & \Gamma_1 & \sigma & \pi \\
\hline
 & \Gamma_2 & \pi & \sigma
\end{array}$

()	k z)a		
		Γ1	Γ2
	Γ1	0	σ
	Γ2	σ	0

(b) N odd (J half integer) b $(k+z)^{C}$

(K ± 2)		
	Гз	Γ4
Гз	σ	π
Γ4	π	σ

$(\mathbf{k} \mid\mid z)^{\mathbf{C}}$		
	Гз	Γ4
Гз	0	σ
Γ4	σ	0

^aApplicable to the following tables in the main body: 26, 28, 30, 32, 34, 35. bIn the double C_S group, the energy levels are all in the degenerate doublet $\Gamma_3 + \Gamma_4$, but the tables are useful in the study of the Zeeman effect

^cApplicable to the following tables in the main body: 6, 25, 27, 29, 31, 33, 36.

Appendix B. Bibliography of Articles on Fluoroapatites

Ca₅(PO₄)₅F, investigated in the main body of this report, is one of the fluoroapatites, a subgroup of the apatites. The fluoroapatites are the most stable and practical apatites for use in lasers and fluorescent light sources. The following bibliography provides a range of references on this useful group.

- Abdulsabirov, R. Yu., and I. N. Kurkin, Parameters of a Crystalline Field at Ca II Positions in Single Crystals of Fluoroapatite, Opt. Spectrosc. **32** (1971), 324.
- Aleksandrov, V. I., A. A. Kaminskii, G. V. Maksimova, A. M. Prokhorov, S. E. Sarkisov, A. A. Sobol´, and V. M. Tatarintsev, *Stimulated Radiation of Nd*³⁺ *Ions in Crystals for the* ${}^4F_{3/2} \rightarrow {}^4I_{13/2}$ *Transition*, Sov. Phys. Dokl. **18** (1974), 495.
- Altchuler, Z. S., S. Berman, and F. Cuttitta, Rare Earths in Phosphorites—Geochemistry and Potential Recovery, US Geol. Surv., Prof. Paper 575-b (1967).
- Anderson, J. B., and E. Kostiner, *The Crystal Structure of Cobalt-Substituted Calcium Chlorapatite*, J. Solid State Chem. **66** (1987), 343.
- Avanesov, A. G., T. T. Basiev, Yu. K. Voron'ko, B. I. Denker, G. C. Maksimova, V. A. Myzina, V. V. Osiko, and V. S. Fedorov, *Investigation of Spatial Distribution of Impurities in Solids by the Method of Kinetic Luminescent Spectroscopy*, Sov. Phys. JETP **57** (1983), 596.
- Bhatnagar, V. M., *The Cell Parameters of Synthetic Calcium Apatites*, Rev. Roumaine Chim. **15** (1970), 1735.
- Bhatnager, V. M., *Preparation and X-Ray Powder Diffraction Patterns of Lead Apatites*, Chem. Ind. (London) **48** (1970), 1538.
- Bhatnager, V. M., *The Cell Parameters of Synthetic Fluorapatite*, $Ca_{10}(PO_4)_6F_2$, Rev. Roumaine Chim. **15** (1970), 87.
- Bhatnager, V. M., The Melting Points of Synthetic Apatites, Mineral. Mag. 37 (1968), 527.
- Daraseliya, D. M., G. V. Maksimov, and A. A. Manenkov, Relaxation Processes and Discrete Saturation Effects in the EPR Spectrum of Nd^{3+} in $Ca_5(PO_4)_3F$, JETP Lett. **10** (1969), 229.
- DeLoach, L. D., S. A. Payne, L. K. Smith, W. L. Kway, and W. F. Krupke, *Laser and Spectroscopic Properties of Sr*₅(*PO*₄)₃*F:Yb*, J. Opt. Soc. Am. **B11** (1994), 269.
- Elliott, J. C., Recent Progress in the Chemistry, Crystal Chemistry and Structure of the Apatites, Calc. Tissue Res. **3** (1969), 293.
- Engel, G., Einige Cadmiumapatite Sowie die Verbindungen Cd_2XO_4F mit X = P, As und V, Zeits. Anorg. Allg. Chem. **378** (1970), 49.
- Engel, G., Hydrothermalsynthese von Bleihydroxylapatiten $Pb_5(XO_4)OH$ mit X=P, As, V, Naturwiss. **57** (1970), 355.
- Federov, N. F., I. F. Andreev, A. M. Shevjokov, and T. A. Tunik, *Silicoapatites of Sr and Nb*, Izvest. Akad. Nauk SSSR, Neorg. Mater. **6** (1970), 2018.
- Felsche, J., A New Cerium (III) Orthosilicate with the Apatite Structure, Naturwiss. **56** (1969), 325.
- Fleet, M.E., and Y. Pan, Site Preference of Nd in Fluorapatite $[Ca_{10}(PO_4)_6F_2]$, J. Solid State Chem. **112** (1994), 78.

- Foreman, D. W., Jr., *Neutron and X-Ray Diffraction Study of Ca*₃*Al*₂(*O*₄*D*₄)₃, a Garnetoid, Chem. Phys. **48** (1968), 3037.
- Grisafe, D. A., and F. A. Hummel, *Pentavalent Ion Substitutions in the Apatite Structure*. *Part A. Crystal Chemistry*, J. Solid State Chem. **2** (1970), 160.
- Johnson, P. D., J. S. Prener, and J. D. Kingsley, *Apatite: Origin of Blue Color*, Science **141** (1963), 1179.
- Johnson, W., Two Synthetic Compounds Containing Chromium in Different Valency States, Mineral. Mag. **32** (1960), 408.
- Kaplyanskii, A. A., and E. G. Kuzminov, *Piezospectroscopic Effect and Local-Field Symmetry in Neodymium-Doped Fluorapatite Crystals*, Opt. Spektrosk. **29** (1970), 706 [trans. Opt. Spectrosc. **29** (1970), 376].
- Kaplyanskii, A. A., V. N. Medvedev, and A. P. Skvortsov, *Linear Stark Effect in the Spectra of Fluorapatite Crystals Activated by Rare-Earth Ions*, Opt. Spektrosk. **36** (1974), 368 [trans. Opt. Spectrosc. **36** (1974), 213].
- Klee, W. E., *The Vibrational Spectra of the Phosphate Ions in Fluorapatite*, **Zeits**. Kristallogr. **131** (1970), 95.
- Klee, W. E., and G. Engel, I. R. Spectra of the Phosphate Ions in Various Apatites, J. Inorg. Nucl. Chem. **32** (1970), 1837.
- Klement, R., Natrium-Calcium-Sulfapatite Na₆Ca₄(SO₄)₆F₂, Naturwiss. **27** (1939), 568.
- Larsen, E. S., Jr., M. H. Fletcher, and E. A. Cisney, *Strontian Apatite*, Am. Mineral. **37** (1952), 656.
- Lavat, A. E., S. B. Etcheverry, and E. J. Baran, *Crystallographic and Spectroscopic Behavior of Some Mixed Phosphate Vanadate Fluoroapatite*, Z. Naturforsch. **41b** (1986), 987 [in German].
- Levitt, S. R., and R. A. Condrate, Sr., *The Vibrational Spectra of Lead Apatites*, Am. Mineral. 55 (1970), 1562.
- Maksimova, G. V., and A. A. Sobol´, Local Charge Compensation of the Nd³+ Ion in Fluorapatite Crystals, Akad. Nauk SSSR Neorg. Mat. 8 (1972), 1077.
- Maksimova, G. V., and A. A. Sobol', Nd³⁺ Optical Centers in Crystals of Calcium and Strontium Fluorophosphates, (1972) Proceedings (Trudy) of the P. N. Lebedev Physics Institute, **60**, pp 59–73.
- Mayer, I., and V. Makogon-Loewy, *Eu(II)-Hydroxyapatite*. *Preparation and Crystal Data*, Israel J. Chem. **7** (1969), 717.
- Mazelsky, R., R. H. Hopkins, and W. E. Kramer, *Czochralski-Growth of Fluorophosphate*, J. Cryst. Growth **3**, **4** (1968), 360.
- McConnell, D., Infrared Absorption of Carbonate Apatite, Science 155 (1967), 607.
- McConnell, D., Crystal Chemical Calculations, Geochim. Cosmochim. Acta 31 (1967), 1479.

- McConnell, D., Calculation of the Unit-Cell Volume of a Complex Mineral Structure, Zeits. Kristallogr. **123** (1966), 58.
- McConnell, D., Crystal Chemistry of Hydroxyapatite: Its Relation to Bone Mineral, Arch. Oral. Biol. **10** (1965), 421.
- McConnell, D., Deficiency of Phosphate Ions in Apatite, Naturwiss. 52 (1965), 183.
- McConnell, D., and D. W. Foreman, Jr., *The Properties and Structure of* Ca₁₀(PO₄)₆ (OH)₂; *Its Relation to Tin (II) Apatite*, Can. Mineral. **8** (1966), 431.
- Moreno, E. C., T. M. Gregory, and W. E. Brown, *Preparation and Solubility of Hydroxyapatite*, Nat. Bur. Stand. J. Res. **72A** (1968), 773.
- Morozov, A. M., L. G. Morozova, A. K. Trefimov, and P. P. Feofilov, *Spectral and Luminescent Characteristics of Fluoroapatite Single Crystals Activated by Rare Earth Ions*, Opt. Spektrosk. **29** (1970), 1106 [trans. Opt. Spectrosc. **29** (1970), 590].
- Ohlmann, R. C., N. T. Melamed, R. Mazelsky, and W. E. Kramer, Sensitized Fluorescence of Rare-Earth Ions in Crystals, Air Force Materials Laboratory, AFML-TR-67-283 (July 1967).
- Prener, J. S., *The Growth and Crystallographic Properties of Calcium Fluor- and Chlor-Apatite Crystals*, J. Electrochem. Soc. **114** (1967), 77.
- Proceedings of the Advanced Solid-State Laser Conference, 7–10 February 1994, Salt Lake City Utah, Opt. Soc. Am., 2010 Mass. Avenue, NW, Washington, DC 20036.
- Shcherbokova, M. Y., L. G. Gilinskaya, and A. A. Godovikov, *Paramagnetic Centers in Apatite*, Kristallografiya **13** (1968), 353 [transl. **13**, 289].
- Simpson, D. R., Partitioning of Fluoride Between Solution and Apatite, Am. Mineral. **54** (1969), 1711.
- Simpson, D. R., *Substitutions in Apatite: I. Potassium-Bearing Apatite,* Am. Mineral. **53** (1968), 432.
- Simpson, D. R., Substitutions in Apatite: II. Low Temperature Fluoride-Hydroxyl Apatite, Am. Mineral. **53** (1968), 1953.
- St. Náray-Szabo, *The Structure of Apatite (CaF)Ca4(PO4)3*, Zeits. Kristallogr. **75** (1930), 387.
- Steinbruegge, K. B., T. Henningsen, R. H. Hopkins, R. Mazelsky, N. T. Melamed, E. P. Riedel, and R. C. Ohlmann, *Laser Properties of Nd*³⁺ and Ho³⁺ Doped Crystals with the Apatite Structure, Appl. Opt. 7 (1968), 905.
- Trotter, J., and W. H. Barnes, The Structure of Vanadinite, Can. Mineral. 6 (1958), 161.
- Voronko, Yu. K., G. V. Maksimova, and A. A. Sobol', *Anisotropic Luminescence Centers of TR*³⁺ *Ions in Fluoroapatite Crystals*, Opt. Spectrosc. **70** (1991), 203.
- Wanmaker, W. L., J. W. Ter Brugt, and J. G. Verlijskdonk, *Synthesis of New Compounds with Apatite Structure*, Phillips Res. Repts. **26** (1971), 373.

- Wollentin, R. W., Lead and Manganese-Activated Cadmium Fluorophosphate Phosphors, J. Electrochem. Soc. **103** (1956), 17.
- Yefimov, A. F., S. M. Kravchenko, and Z. V. Vasil´eva, *Strontiapatite* a *New Mineral*, Dokl. Akad. Nauk **142** (1962), 439 [transl. **142**, 113].
- Yoon, H. S., and R. E. Newnham, *Elastic Properties of Fluorapatite*, Am. Mineral. **54** (1969), 1193.
- Zounami, A., D. Zambon, and J. C. Cousseins, *Optical Properties of Eu*³⁺ *Activated Sr*₁₀ $F_2(PO_4)_6$ *Elaborated by Coprecipitation*, J. Alloys Comp. **188** (1992), 82.

Admnstr

Defns Techl Info Ctr

Attn DTIC-DDA (2 copies)

Cameron Sta Bldg 5

Alexandria VA 22304-6145

Defns Advncd Rsrch Proj Agcy

Attn A Yang 1400 Wilson Blvd Arlington VA 22290

Director

Defns Nuc Agcy Attn TITL Tech Lib 6801 Telegraph Rd

Alexandria VA 22310-3398

Ofc of the Dpty Chief of Staf for Rsrch

Dev & Acqstn

Attn DAMA-ARZ-B IR Hershner

Dept of the Army Washington DC 20310

Under Secy of Defns Rsrch & Engrg

Attn Techl Lib 3C128 Washington DC 20301

Commander

Atmospheric Sci Lab

Attn Techl Lib

White Sands Missile Range NM 88002-5030

Night Vsn & Electro-Optics Lab LABCOM

Attn A Pinto (2 copies)

Attn B Zandi
Attn J Daunt
Attn L Merkel
Attn R Buser
Attn Techl Lib
Attn W Tressel

FT Belvoir VA 22060

Commander

US Army Mis & Munitions Ctr & Schl Attn AMSMI-TB Redstone Sci Info Ctr

Attn ATSK-CTD-F

Redstone Arsenal AL 35809

US Army Mtrl & Mech Rsrch Ctr Attn SLCMT-TL Techl Lib

Watertown MA 02172

US Army Rsrch Ofc

Attn G Iafrate

Attn M Strosio

Attn M Ciftan

Attn R Guenther

PO Box 12211

Research Triangle Park NJ 07709-2211

US Army Test & Eval Cmnd

Attn D H Sliney

Attn Techl Lib

Aberdeen Proving Ground MD 21005

US Army Troop Spprt Cmnd

Attn STRNC-RTL Techl Lib

Natick MA 01762

US Frgn Sci & Techlgy Ctr

Attn AIAST-BS Basic Sci Div

Federal Office Building Charlottesville VA 22901

Nav Rsrch Lab

Attn A Rosenbaum

Attn Code 2620 Tech Lib Br

Attn Code 5554 F Bartoli

Attn Code 5554 L Esterowitz

Attn Code 5554 R E Allen

Attn G Quarles

Attn G Risenblatt

Washington DC 20375

Nav Weapons Ctr

Attn A Wright

Attn Code 3854 M Nader

Attn Code 3854 R L Atkins

Attn DOCE343 Techl Info Dept

China Lake CA 93555

Ames Lab Dow Iowa State Univ

Attn K A Gschneidner Jr (2 copies)

Ames IA 50011

Argonne Natl Lab Attn W T Carnall 9700 South Cass Ave Argonne IL 60439

Lawrence Radiation Lab

Attn M J Weber Attn W Krupke Attn L D DeLoach Livermore CA 94550

Los Alamos Natl Lab Attn E T Salesky 505 Openheimer Dr Los Alamos NM 87544

Oak Ridge Natl Lab Attn R G Haire Oak Ridge TN 37839

NASA Langley Rsrch Ctr

Attn C Blair Attn D Getteny Attn G Armagen Attn J Barnes

Attn M Buoncristiani Attn N P Barnes (2 copies)

Attn P Cross Hampton VA 23665

Natl Inst of Stand & Techlgy Attn Lib

Gaithersburg MD 20899

Natl Oceanic & Atmospheric Adm Envir Rsrch Lab

Attn Lib R-51 Techl Rpt Boulder CO 80302

Arizona State Univ Dept of Chemistry

Attn L Eyring Tempe AZ 85281

Colorado State Univ Physics Dept

Attn S Kern

FT Collins CO 80523

Departmento de Química Fundamental &

Departmento de Fisica

Attn A da Gama Attn G F de Sá Attn O L Malta

da UFPE Cidade Universitaria

50.000 Recife Pe

Brasil

Howard Univ Dept of Physics Attn Prof V Kushamaha 25 Bryant Stret NW Washington DC 20059

Johns Hopkins Univ Dept of Physics

Attn B R Judd Baltimore MD 21218

Kalamazoo Colg Dept of Physics

Attn K Rajnak

Kalamazoo MI 49007

MA Inst of Techlgy Crystal Physics Lab

Attn H P Jenssen Cambridge MA 02139

Princeton Univ Dept of Chemistry

Attn C Weaver Attn D S McClure Princeton NJ 08544

San Jose State Univ Dept of Physics

Attn J B Gruber San Jose CA 95192

Seton Hall Univ Chemistry Dept

Attn H Brittain

South Orange NJ 07099

Univ of Central Florida Dept of Physics

Attn B H T Chai Attn R E Peale Orlando FL 32816

Univ of Connecticut Dept of Physics

Attn R H Bartram Storrs CT 06269

Univ of Dayton Dept of Physics

Attn S P Sinha 300 College Park

Dayton OH 45469-2350

Univ of Illinois Everitt Lab

Attn J G Eden 1406 W Green Stret Urbana IL 61801

Univ of Michigan Dept of Physics

Attn S C Rand Ann Arbor MI 48109

Univ of Minnesota Duluth Dept of Chemistry

Attn L C Thompson Duluth MN 55812

Univ of South Florida Physics Dept

Attn R Chang Attn Sengupta Tampa FL 33620

Univ of Southern California

Attn M Birnbaum Los Angeles CA 90089

Univ of Virginia Dept of Chemistry Attn F S Richardson (2 copies) Charlottesville VA 22901

Univ of Wisconsin Chemistry Dept

Attn J Wright Madison WI 53706

Université Claude Bernard

Attn R Moncorgé

43 boulevard du 11 Novembre 1918

69622 Villeurbanne

France

UPR 210 CNRS Attn M Faucher Attn P Caro Attn P Porcher

1 Place A Briand 92195 Meudon

France

Allied Signal Inc Attn R Morris POB 1021 R

Morristown NJ 07960

Arspc Corp Attn N C Chang PO Box 92957

Los Angeles CA 90009

Battelle Pac Northwest Lab Battelle Blvd

Attn N Hess PO Box 999

Richland WA 99352

Dept of Mech Indus & Arspc Eng

Attn S Temkin PO Box 909

Piscataway NJ 08854

Engrg Societies Lib Attn Acqstn Dept 345 East 47th Stret New York NY 10017

Fibertech Inc

Attn H R Verdin (3 copies)

510-A Herdon Pky Herdon VA 22070

Hughes Aircraft Comp

Attn D Sumida

Attn MS RL65 R A McFarlane

3011 Malibu Canyon Rd

Malibu CA 90265

IBM Rsrch Div Almaden Rsrch Ctr

Attn R M Macfarlane Mail Stop K32 802(d)

650 Harry Rd San Jose CA 95120

Inst for Low Temp & Struc Rsrch Polish

Academy of Sci Attn R Troc

50-950 Wroclaw PO Box 937

ul. Okolna 2 Poland

Lawrence Berkeley Lab

Attn N Edelstein MS 70A-1150 Berkeley CA 94720

LTV

Attn M Kock (WT-50)

PO Box 650003 Dallas GX 75265

Martin Marietta
Attn F Crowne
Attn J Little
Attn P Caldwell
Attn T Worchesky
1450 South Rolling Rd
Baltimore MD 21227

McDonnell Douglass Elect Sys Comp Attn Dept Y440 Bldg 101 Lev 2Rm/PTB54

D M Andrauskas MS-2066267

PO Box 516

ST Louis MO 63166

MIT Lincoln Lab Attn B Aull PO Box 73

Lexington MA 02173

Montana Analytic Services

Attn M Schwan 325 Icepond Rd Bozeman MT 59715

Sci Appletn Intrntl Corp

Attn T Allik 1710 Goodridge Dr McLean VA 22102

Southwest Rsrch Inst Attn M J Sablik PO Drawer 28510

San Antonio TX 78228-0510

Swartz Electro-Optic Inc

Attn G A Rines 45 Winthrop Stret Concord MA 01742

Union Carbide Corp Attn M R Kokta 50 South 32nd Stret Washougal WA 98671

Univ of Toronto Dept of Physics

Attn D May

Toronto Ontario MSS1A7

Canada

W J Schafer Assoc Attn J W Collins 321 Ballerica Rd Chelmsford MA 01824

US Army Rsrch Lab

Attn AMSRL-PS C Thornton Attn AMSRL-PS M Thompsett Attn AMSRL-PS T Aucoin FT Monmouth NJ 07703-5601

US Army Rsrch Lab

Attn AMSRL-PS-AA C Morrison

(10 copies)

Attn AMSRL-PS-AA D Wortman

(10 copies)

Attn AMSRL-PS-AA G Simonis Attn AMSRL-PS-AA J Bradshaw Attn AMSRL-PS-AA J Bruno Attn AMSRL-PS-AA J Pham Attn AMSRL-PS-AA M Stead Attn AMSRL-PS-AA M Tobin Attn AMSRL-PS-AA R Leavitt Attn AMSRL-PS-AA R Tober Attn AMSRL-PS-AA T Bahder

Attn AMSRL-OP-SD-TA Mail & Records

Mgmt

US Army Rsrch Lab (cont'd)
Attn AMSRL-OP-SD-TL Tech Library
(3 copies)
Attn AMSRL-OP-SD-TP Tech Pub
Attn AMSRL-SS-FA G Turner
Attn AMSRL-SE-RU B Zabludowski
Attn AMSRL-SE-EO C Garvin
Attn AMSRL-SEE-EO J Goff

US Army Rsrch Lab (cont'd)
Attn AMSRL-SSE-RM (A) Chf
Attn AMSRL-SE-RU A A Bencivenga
Attn AMSRL-SE-EP J Nemarich
Attn AMSRL-WT Chf Scntst
Attn AMSRL-WT-NG B McLean
Attn AMSRL-WT-NG Chf