

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

$$CB=b, \angle ECA=\theta, \angle DCE=\angle CEG=\phi, \angle EKX=\beta$$
, co-ordinates of $E=(x,y)$.

Then
$$\tan \beta = -\frac{b^2 x}{a^2 y}$$
, $\tan \theta = \frac{y}{x}$, also
 $\beta = 90^\circ + \theta + \phi$, $\tan \beta = \tan (90^\circ + \theta + \phi)$
 $= -\cot (\theta + \phi)$.

$$\therefore \frac{b^2 x}{a^2 y} = \cot (\theta + \phi) = \frac{\cot \theta \cot \phi - 1}{\cot \theta + \cot \phi}$$

$$= \frac{\frac{x}{y} \cot \phi - 1}{\frac{x}{y} + \cot \phi}$$

$$\therefore \tan \phi = \frac{a^2 - b^2}{a^2 b^2} xy = \text{maximum} \dots (1). \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \dots (2).$$

The first differentials of (1) and (2) give $b^2x^2 = a^2y^2$.

$$\therefore x = \frac{a}{\sqrt{2}}, y = \frac{b}{\sqrt{2}}, \therefore \tan \theta = \frac{b}{a} = (.9933254)^{\frac{1}{2}} = .996659, \therefore \theta = 44^{\circ} 54'$$

14".9=the latitude
$$\tan \phi = \frac{a^2 - b^2}{2ab} = \frac{.0066746}{1.993318} = .003348$$
, $\therefore \phi = 1'30".5$

= maximum angle made with the perpendicular.

Also solved by Professor C. W. M. Black, and the Proposer.

PROBLEMS.

36. Proposed by H. C. WHITAKER, B. Sc., M. E., Professor of Mathematics, Manual Training School, Philadelphia, Pennsylvania.

A cube is revolved on its diagonal as an axis. Define the figure described and calculate its volume.

37. Proposed by J. A. CALDERHEAD, Superintendent of Schools, Limaville, Ohio.

A man ties two mules—one to the outside of a circular wall, the other to the inside. If the lengths of the ropes of each is one-fourth the circumference of the wall, and both together can graze over one acre of ground; find the circumference of the wall.