Maths refresher course HSLU, Semester 1

Matteo Frongillo

September 16, 2024

Contents

Ι	W	eek 1			
1	The set theory				
	1.1	1 Definition of a set			
	1.2	Logica	al symbols		
		1.2.1	Definition		
		1.2.2	Equal		
		1.2.3	Belongs to		
		1.2.4			
		1.2.5	Inclusion and contains		
		1.2.6	For all/any		
		1.2.7	Implication		
		1.2.8	If and only if		
	1.3		rical sets		
			Inclusion of sets		
2	The	e real l	ine		

Part I

Week 1

1 The set theory

1.1 Definition of a set

A set is a collection of objects or elements.

Remark: The collection of all sets is not a set.

1.2 Logical symbols

1.2.1 Definition

Braces and the definition symbol ":=" are used to define a set giving all its elements:

$$A:=\{a,b,c,d,e\}$$

1.2.2 Equal

In this case, the equal symbol means that the set A is equal to the set B:

$$A = B$$

1.2.3 Belongs to

The symbols \in and \ni describe an element which is part of the set:

$$a \in A \Longleftrightarrow A \ni a$$

1.2.4 Does not belong to

The symbols \notin mean that an element does not belong to the set:

$$f \notin A$$

1.2.5 Inclusion and contains

The symbols \subset and \supset mean that a set has another set included in its set:

$$\mathbb{N}\subset\mathbb{Z}\Longleftrightarrow\mathbb{Z}\supset\mathbb{N}$$

1.2.6 For all/any

The symbol \forall means that we are considering any type of element:

$$\forall x \in \mathbb{R}, \ x > 0$$

In this case, we've defined a new set.

1.2.7 Implication

The symbol \Rightarrow means that by setting a rule, we imply an event or an action:

if
$$x = 1 \Longrightarrow x \in \mathbb{N}$$
, but if $x \in \mathbb{N}$ we do not know if $x = 1$

The symbol \Leftarrow is called inference (it is inferred).

1.2.8 If and only if

The symbol \Leftrightarrow means that two events happen simultaneously (double implication):

$$x \in \mathbb{N}, \ x \neq 0 \Longleftrightarrow x \in \mathbb{N}^*$$

<u>Proof</u>: Lets prove that $2x = 10 \iff x = 5$

$$2x = 10 \Rightarrow x = 5$$

$$\frac{2x}{2} = \frac{10}{2}$$

$$x = 5$$

1.3 Numerical sets

- $\mathbb{N} := \text{Natural numbers (including 0)};$
- $\mathbb{Z} := \text{Integer numbers};$
- $\mathbb{Q} := \text{Rational numbers};$
- $\mathbb{R} := \text{Real numbers} := \mathbb{Q} \cup \{ \text{irrational numbers} \}$.

Notation: The "*" symbol means that the set does not include 0.

1.3.1 Inclusion of sets

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

$$\begin{split} B &:= \{\pi, 1, -1, 0\}\,;\\ C &:= \{\pi, 1\}\,;\\ D &:= \{\pi\}\,. \end{split}$$

Then we write some examples: $\pi \in B$, $D \subset B$, $C \subset B$, $B \not\subset C$, $0 \in B$, $0 \notin C$.

2 The real line

