TELECOM CHURN CASE STUDY

PRESENTED BY

NAVEEN UPADHYAY(DSC-43)

SARATH CHANDRAN (DSC-43)

THIPPESSH H K (DSC-43)

DATE: 06 DEC 22

PROBLEM STATEMENT

- In the telecom industry, customers switch their operators when they come across better deals.
- It costs 5-10 times more to acquire a new customer than to retain an existing one.
- Thus, customer retention is more important than customer acquisition.
- In this project, we predict the churn for pre-paid customers who are predominant in the Indian and Southeast Asian market.
- The business objective is to predict the churn in the ninth month using the data from the first three months.

GOALS OF THE CASE STUDY

- We start with exploratory data analysis, impute null values and drop columns that do not add additional information.
- We then filter for high value customers who have recharged with an amount more than or equal the 70th percentile of the average recharge amount in the first two months.
- We also derived 6 columns. We then prepared the data and applied multiple algorithms to generate a model by hyperparameter tuning.
- We first applied four machine learning algorithms and measured the effectiveness of the models by using ROC AUC score and stratified accuracy scores for Churn and Non Churn Customers.
 - 1. Basic Logistic Regression
 - 2. Logistic Regression with PCA
 - 3. Random Forest with Hyperparameter tuning
 - 4. SVM with Hyperparameter tuning

SOURCING AND UNDERSTANDING DATA

- Importing the given dataset.
- Converting the dataset into a data frame.
- Understanding the data dictionary.
- Inspecting Data for EDA.
- Performing Data Cleaning.

READING AND EXPLORING THE DATA

- Shape of dataframe: 99999 rows and 226 columns.
- Checking for missing values using info().
- Confirming outliers with describe().
- Checking for duplicates using duplicated().sum().
- Checking for Null values.
- Segregating relevant data and removing irrelevant data.

DATA PREPARATION

- Filter high-value customer.
- Handling columns with higher percentage of Null Values.
- Identify Numerical and Categorical Features.
- Performing Univariate and Multivariate Analysis.
- Imputing data for null value entries.

FEATURES IDENTIFICATION WITH NO SIGNIFICANT VALUE

- Analyze for Numerical Variables.
- Analyze for Categorical Variables.
- Other Columns Null Value Treatment.
- Tag churners and remove attributes of the churn phase.

EXPLORATORY DATA ANALYSIS (EDA)

- Analyze for Churn and Non Churn customers distribution.
- Outliers analysis.
- Derive features to obtain percentage of calls for months 6,7,8 & 9.
- Treating Nan values.
- Visualization by plotting Histogram.
- Visualization by plotting Correlation Matrix.
- Visualization by plotting Scatter Plots.
- Visualization by plotting Distribution Plots.

EXPLORATORY DATA ANALYSIS (EDA)

```
In [1223]: fig = plt.figure(figsize=(20,100))
              for i in range(len(numCols)):
                   fig.add_subplot(34, 4, i+1)
                   sns.boxplot(y=data high val cust.loc[:, numCols].iloc[:,i],x=data high val cust['churn'])
              plt.tight layout()
              plt.show()
                7.0025
                                                                                                                                                                       [6]
                                                                                                                                       30000
                7.0020
                                                                                                                                      25000
                                                                                                                                     m 20000
                 7.0025
                                                       ¢, 15000
                                                                                                                                     £ 15000
                                                      E 10000
                7.0010
                                                                                               10000
                                                                                                                                      10000
                                                         5000
                                                                                                                                       5000
                                                                                                                                     w 6000
                                                                                                6000
                 4000
                                                       E, 4000
                                                                                                                                       4000
                                                                                                4000
                  2000
                                                         2000
                                                                                                2000
                                                        12000
                 8000
```

Inference

- · Majorily seen under Non-Churn customers data
- · As part of outlier treatment, lets drop those outlier data

Visualization by plotting Distribution Plots.

Visualization by plotting Scatter Plots.

Analyze for Churn and Non Churn customers distribution.

PREDICTION MODELING USING LOGISTIC REGRESSION

- Data Standardisation.
- Splitting data into 80% for train and 20% for test
- Obtaining Confusion Matrix
- Plotting ROC (Receiver Operating Characteristics) Curve

HANDLING IMBALANCED DATA

- Data Standardization.
- Splitting data into 80% for train and 20% for test.
- Obtaining Confusion Matrix.
- Plotting ROC (Receiver Operating Characteristics) Curve.

HANDLING IMBALANCED DATA

Plotting Class Distribution of Imbalanced Data

PREDICTION POST IMBALANCED TREATMENT

- RANDOM FOREST : SMOTE (SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE)
- PLOTTING ROC CURVES

PREDICTION POST IMBALANCED TREATMENT

Plotting ROC (Receiver Operating Characteristics) Curve

RANDOM FOREST: SMOTE

Random Forest - SMOTE

```
In [913]:
           M from sklearn.ensemble import RandomForestClassifier
              rf smt = RandomForestClassifier()
              rf smt.fit(x resampled smt, y resampled smt)
              y pred rf smt = rf smt.predict(X test)
          M print ('Accuracy: ', accuracy score(y test, y pred rf smt))
In [914]:
              print ('F1 score: ', f1 score(y test, y pred rf smt))
              print ('Recall: ', recall score(y test, y pred rf smt))
              print ('Precision: ', precision score(y test, y pred rf smt))
              print ('\n clasification report:\n', classification report(y test,y pred rf smt))
              print ('\n confussion matrix:\n',confusion matrix(y test, y pred rf smt))
              Accuracy: 0.9253931080628973
              F1 score: 0.6477093206951027
              Recall: 0.6765676567656765
              Precision: 0.6212121212121212
               clasification report:
                             precision
                                          recall fi-score
                                                             support
                                 0.96
                                           0.95
                                                     0.96
                                                               5372
                         1
                                 0.62
                                           0.68
                                                     0.65
                                                                606
                                                     0.93
                                                               5978
                  accuracy
                                           0.82
                                                     0.80
                 macro avg
                                 0.79
                                                               5978
              weighted avg
                                 0.93
                                           0.93
                                                     0.93
                                                               5978
               confussion matrix:
               [[5122 250]
               [ 196 410]]
```

RANDOM FOREST: SMOTE

RANDOM FOREST: SMOTE

RANDOM FOREST : SMOTE ROC CURVE

DECISION TREE: SMOTE

```
Decision Trees - SMOTE
In [916]:
           M from sklearn.tree import DecisionTreeClassifier
              dtc smt = DecisionTreeClassifier(random state=0)
              dtc smt.fit(X resampled smt, y resampled smt)
              y pred dtc smt = dtc smt.predict(X test)
In [917]: M print ('Accuracy: ', accuracy score(y test, y pred dtc smt))
              print ('F1 score: ', f1 score(y test, y pred dtc smt))
              print ('Recall: ', recall score(y test, y pred dtc smt))
              print ('Precision: ', precision score(y test, y pred dtc smt))
              print ('\n clasification report:\n', classification report(y test,y pred dtc smt))
              print ('\n confussion matrix:\n',confusion matrix(y test, y pred dtc smt))
              Accuracy: 0.8723653395784543
              F1 score: 0.4855023600809171
              Recall: 0.594059405940594
              Precision: 0.4104903078677309
               clasification report:
                             precision
                                          recall
                                                 f1-score
                                                            support
                                          0.90
                                 0.95
                                                     0.93
                                                              5372
                                 0.41
                                          0.59
                                                     0.49
                                                               505
                  accuracy
                                                    0.87
                                                              5978
                 macro avg
                                0.68
                                           0.75
                                                     0.71
                                                              5978
              weighted avg
                                0.90
                                           0.87
                                                     0.88
                                                              5978
               confussion matrix:
               [4855 517]
               246 360]]
```

DECISION TREE: SMOTE

DECISION TREE: SMOTE

DECISION TREE : SMOTE ROC CURVE

FEATURE IMPORTANT ANALYSIS

21]:	Feature	Importance	
80	total_ic_mou_8	0.045455	
2	arpu_8	0.039494	
59	loc_ic_t2m_mou_8	0.035565	
145	loc_ic_mou_8_perc	0.033872	
95	total_rech_amt_8	0.030451	
65	loc_ic_mou_8	0.029687	
141	loc_og_mou_8_perc	0.026847	
53	total_og_mou_8	0.022870	
20	loc_og_t2m_mou_8	0.021476	
98	max_rech_amt_8	0.020809	
8	offnet_mou_8	0.018339	
101	last_day_rch_amt_8	0.017916	
29	loc_og_mou_8	0.015629	₹2
14	roam_og_mou_8	0.014498	
5	onnet_mou_8	0.013978	

FEATURE IMPORTANCE ANALYSIS

FEATURE IMPORTANT ANALYSIS

FEATURE PLOT FOR NON ZERO COEFFICIENTS

CONCLUSION

- In terms of modeling effectiveness, observe Random Forest post SMOTE class imbalance treatment, there is a better ROC curve of 0.81 with accuracy as 92%.
- Features that majorly influences the Churn are as below Mainly its covering the Customer behavior on Recharge, Outgoing Calls
- arpu_8
- loc_ic_t2m_mou_8
- total_ic_mou_8
- loc_og_mou_8_perc
- loc_og_t2m_mou_8
- total_rech_amt_8
- loc_ic_t2t_mou_8
- loc_og_mou_8
- max_rech_amt_8
- loc_ic_mou_8_perc
- last_day_rch_amt_8
- total_og_mou_8
- loc_og_t2t_mou_8
- offnet_mou_8.

RECOMMENDATIONS

- There is a need to observe Month on Month on ARPU, Recharge and Call Activities to watch for the decline trend which need to be reversed by:
 - 1. Giving Recharge Discounts.
 - 2. Value added packs for recharges.
 - 3. Hidden concerns on the network quality to see if the network performance hindering the call activities.