A Proportional Integral Controller-Enhanced Non-negative Latent Factor Analysis Model Supplementary File

Ye Yuan, Member, IEEE, Zechao Li, Senior Member, IEEE, and Xin Luo, Senior Member, IEEE

I. INTRODUCTION

This is the supplementary file for the paper entitled "A Proportional Integral Controller-Enhanced Non-negative Latent Factor Analysis Model". It mainly contains the tables and figures of experimental results.

II. SUPPLEMENTARY TABLES

TABLE S(I). The comparison results on total time cost (Secs), where o points out that PI-NLF is outperformed by its peer.

No.	Time	D1	D2	D3	D4	D5	D6	D7	D8	OLoss/Win
PI-NLF	Time _(RMSE)	794.6±8.2	484.4±4.3	26.7 _{±0.4}	72.1 _{±2.3}	39.8 _{±0.3}	13.3 _{±0.3}	29.5 _{±0.2}	59.3 _{±1.2}	
	Time _(MAE)	712.1 _{±6.7}	442.3 _{±11.7}	24.2 _{±0.8}	64.7 _{±3.17}	54.4 _{±1.1}	$14.5_{\pm 0.5}$	$22.2_{\pm 0.2}$	53.6 _{±1.8}	
NLF	Time _(RMSE)	$1481.8_{\pm 75.3}$	$813.3_{\pm 37.4}$	$41.8_{\pm 1.1}$	$127.6_{\pm 5.6}$	$83.4_{\pm 1.7}$	$34.3_{\pm 1.1}$	$32.1_{\pm 0.3}$	$116.5_{\pm 2.1}$	0/16
	Time _(MAE)	1401.1 _{±88.7}	$804.9_{\pm 66.8}$	48.1 _{±1.5}	$115.9_{\pm 3.7}$	82.8 _{±0.9}	$26.9_{\pm 0.4}$	27.3 _{±0.2}	106.4 _{±0.9}	
PIDLF	Time _(RMSE)	2531.7 _{±98.3}	1032.5±107.6	137.4 _{±2.5}	193.6 _{±4.2}	146.6 _{±2.3}	147.6 _{±1.7}	165.1 _{±5.6}	406.4 _{±5.5}	0/16
	Time _(MAE)	$2337.6 \scriptstyle{\pm 65.2}$	$1066.8_{\pm 97.8}$	$142.3_{\pm 3.1}$	$176.8_{\pm 5.6}$	$147.8_{\pm 1.4}$	$120.9_{\pm 2.1}$	$146.5_{\pm 3.2}$	$378.2_{\pm 6.2}$	
VAE	Time _(RMSE)	5722.2 _{±89.3}	632.0 _{±12.8}	$27.9_{\pm 0.9}$	632.2 _{±32.4}	61.4 _{±0.4}	28.2 _{±0.6}	33.2 _{±0.7}	127.3 _{±1.1}	0/16
	Time _(MAE)	$5831.7 {\scriptstyle \pm 106.8}$	$597.1_{\pm 21.5}$	$26.9_{\pm 0.5}$	$597.1_{\pm 28.6}$	$64.2_{\pm 0.8}$	$29.8_{\pm 1.1}$	$34.6_{\pm 0.3}$	$126.7_{\pm 1.6}$	
SIF	Time _(RMSE)	8858.7 _{±99.4}	56766.3±325.1	7582.3±110.7	4594.2±99.6	802.4 _{±12.1}	765.3 _{±11.2}	1961.3±33.9	1487.5 _{±45.9}	0/16
	Time _(MAE)	$8966.1_{\pm 125.7}$	$55128.1_{\pm 227.9}$	$7471.8_{\pm 99.5}$	4722.5±57.9	$794.2_{\pm 9.9}$	$778.2_{\pm 15.1}$	$1922.7_{\pm 48.9}$	$1422.8_{\pm 85.2}$	
MetaMF	Time _(RMSE)	8121.4 _{±229.2}	6511.5 _{±144.6}	236.5 _{±2.3}	$529.4_{\pm 6.2}$	375.1 _{±5.5}	$224.9_{\pm 2.8}$	446.4 _{±7.7}	785.8 _{±26.5}	0/16
	Time _(MAE)	8004.2 _{±167.3}	6633.7 _{±132.8}	234.2 _{±2.9}	522.1 _{±8.8}	370.8±6.1	227.5 _{±3.6}	455.2 _{±4.4}	771.2 _{±38.2}	
LightGCN	Time _(RMSE)	$5264.1_{\pm 96.1}$	2940.2 _{±69.2}	173.4 _{±5.7}	$118.9_{\pm 4.1}$	409.8 _{±3.8}	$149.1_{\pm 2.2}$	173.2 _{±4.5}	636.1 _{±12.3}	0/16
	Time _(MAE)	5100.7 _{±88.7}	2998.8±77.1	171.5±4.9	120.5 _{±4.2}	416.6 _{±6.3}	142.4 _{±3.6}	175.6 _{±6.2}	622.7 _{±9.9}	
DGCN-HN	Time _(RMSE)	197924.1 _{±511.4}	67741.6 _{±385.2}	$150.9_{\pm 5.2}$	$1677.9_{\pm 131.8}$	2773.4 _{±111.9}	$5400.8_{\pm 309.2}$	645.5 _{±35.1}	327.3 _{±12.1}	0/16
	Time _(MAE)	192205.4 _{±496.5}	86776.4 _{±578.2}	151.1 _{±4.3}	1814.6 _{±142.9}	2612.7 _{±142.5}	2427.1 _{±279.5}	$302.6_{\pm 8.9}$	363.8 _{±15.5}	
HMLET	Time _(RMSE)	146128.8 _{±211.9}	53277.9 _{±510.9}	15935.2 _{±366.2}	$5923.5_{\pm 205.3}$	4150.4 _{±156.7}	2296.2 _{±172.3}	2982.6 _{±177.2}	$6939.9_{\pm 366.7}$	0/16
	Time _(MAE)	138659.2 _{±389.2}	55165.3±677.5	$16262.5_{\pm 412.8}$	5183.1±99.6	4205.7 _{±205.2}	1649.2 _{±134.6}	2544.8 _{±98.5}	8238.1 _{±415.6}	
SGL	Time _(RMSE)	96874.1 _{±488.7}	13357.8 _{±177.5}	3765.8 _{±125.6}	3621.8 _{±144.5}	966.4 _{±14.2}	856.6 _{±37.4}	1080.9 _{±77.5}	1978.5 _{±85.3}	0/16
	Time _(MAE)	$95005.2_{\pm 439.5}$	$13728.3_{\pm 210.9}$	$3960.7_{\pm 77.3}$	$3477.9_{\pm 132.2}$	$1041.9_{\pm 22.9}$	$229.4_{\pm 9.5}$	$996.5_{\pm 62.3}$	$2223.1_{\pm 99.7}$	

TABLE S(II). The comparison results on RMSE/MAE, where opints out that PI-NLF is outperformed by its peer.

No.	Case	D1	D2	D3	D4	D5	D6	D7	D8	OLoss/Win
PI-NLF	RMSE	$0.7988_{\pm 1.3E-4}$	$0.8124_{\pm 2.4E-4}$	$1.0096_{\pm 1.4E-3}$	$0.7695_{\pm 5.6E-4}$	$0.8589_{\pm 1.3E-4}$	$0.1126_{\pm 2.4E-4}$	$0.1220_{\pm 4.3E-4}$	$0.2352_{\pm 2.3E-4}$	
	MAE	0.6115 _{±2.1E-4}	0.6237 _{±3.3E-4}	$0.7794_{\pm 2.2E-3}$	$0.5776_{\pm 4.2E-4}$	$0.6723_{\pm 2.5E-4}$	$0.0739_{\pm 3.1E-4}$	$0.0807_{\pm 2.3E-4}$	$0.1795_{\pm 1.3E-4}$	
NLF	RMSE	$0.8037_{\pm 2.1E-4}$	$0.8146_{\pm 2.2E-4}$	$1.0114_{\pm 2.1E-3}$	$0.7716_{\pm 4.1E-4}$	$0.8612_{\pm 3.3E-4}$	$0.1127_{\pm 2.9E-4}$	$0.1221_{\pm 3.7E-4}$	$0.2376 {\scriptstyle \pm 5.3E-4}$	2/14
	MAE	$0.6246_{\pm 2.1E-4}$	$0.6380_{\pm 5.6E-4}$	$0.7960_{\pm 8.5E-4}$	$0.5980_{\pm 3.6E-4}$	$0.6827_{\pm 2.9E-4}$	© 0.0738±2.6E-4	© 0.0801±2.6E-4	$0.1859_{\pm 4.3E-4}$	
PIDLF	RMSE	$0.8039_{\pm 4.5E-4}$	$0.8155_{\pm 3.2E-4}$	○1.0067 ±2.4E-3	$0.7742_{\pm 4.2E-4}$	$0.8595_{\pm 2.3E-4}$	$0.1193_{\pm 3.3E-4}$	$0.1296_{\pm 3.9E-4}$	$0.2699 {\scriptstyle \pm 1.4E\text{-}4}$	1/15
	MAE	$0.6253_{\pm 1.3E-3}$	$0.6400_{\pm 5.1E-4}$	$0.7907_{\pm 6.3E-4}$	$0.5907_{\pm 2.9E-4}$	$0.6817_{\pm 4.5E-4}$	$0.0742_{\pm 3.9E-4}$	$0.0824_{\pm 5.2E-4}$	$0.2204_{\pm 2.4E-4}$	
VAE	RMSE	$0.8755_{\pm 2.6E-3}$	$0.9386 \pm 4.5 E-3$	$1.2419_{\pm 3.4E-4}$	$0.8223{\scriptstyle\pm7.6E\text{-}4}$	$0.9352_{\pm 1.7E-4}$	○ 0.1121 _{±2.1E-4}	$0.1256_{\pm 1.5E-4}$	$0.2357 {\scriptstyle \pm 2.6E\text{-}4}$	1/15
	MAE	$0.6821_{\pm 1.4E-3}$	$0.7671_{\pm 5.7E-4}$	1.0299 _{±3.4E-4}	$0.6261_{\pm 3.9E-4}$	$0.7388_{\pm 1.4E-4}$	$0.0741_{\pm 4.3E-4}$	$0.0858_{\pm 1.9E-4}$	$0.1899_{\pm 1.9E-4}$	
SIF	RMSE	$0.8852 {\scriptstyle \pm 1.4E\text{-}4}$	$0.8758_{\pm 4.4E-4}$	$1.1415{\scriptstyle \pm 1.2E\text{-}3}$	$0.8124_{\pm 5.1E-4}$	$0.9295_{\pm 6.2E-4}$	$0.1424_{\pm 6.6E-4}$	$0.1590 {\scriptstyle \pm 1.1E-4}$	$0.2776 {\scriptstyle \pm 1.3E\text{-}3}$	0/16
	MAE	0.6871 _{±2.6E-4}	0.6985 _{±5.1E-4}	0.9265 _{±4.8E-4}	0.6177 _{±4.6E-4}	0.7361 _{±4.5E-4}	0.0941 _{±4.3E-4}	$0.1098_{\pm 1.2E-4}$	$0.2210_{\pm 1.1E-3}$	
MetaMF	RMSE	$0.8373_{\pm 2.1E-4}$	$0.8513_{\pm 3.3E-4}$	$1.0336_{\pm 4.1E-4}$	$0.7988 \pm 2.9E-4$	$0.8964_{\pm 3.3E-4}$	$0.1461_{\pm 2.9E\text{-}4}$	$0.1678_{\pm 3.1E-4}$	$0.2372 {\scriptstyle \pm 1.4E\text{-}4}$	0/16
	MAE	$0.6595_{\pm 1.9E-4}$	0.6618 _{±3.7E-4}	0.8026 _{±2.7E-4}	$0.6029_{\pm 4.2E-4}$	$0.7041_{\pm 1.1E-4}$	$0.0950_{\pm 2.2E-4}$	$0.1137_{\pm 1.9E-4}$	$0.1845_{\pm 2.1E-4}$	
LightGCN	RMSE	$0.7999 {\scriptstyle \pm 1.9E\text{-}4}$	$0.8141_{\pm 3.4E-4}$	$1.0136_{\pm 2.7E-4}$	$0.7714_{\pm 3.7E-4}$	$0.8661_{\pm 1.8E-4}$	©0.1101 ±2.6E-4	$0.1232_{\pm 2.1E-4}$	$0.2362 {\scriptstyle \pm 1.4E\text{-}4}$	3/13
	MAE	0.6137 _{±2.1E-4}	$0.6266_{\pm 1.8E-4}$	0.7859 _{±4.1E-4}	$0.5803_{\pm 2.6E-4}$	$0.6798_{\pm 1.5E-4}$	©0.0676±2.8E-4	© 0.0791±3.3E-4	0.1813 _{±3.6E-4}	
DGCN-HN	RMSE	$0.8195 {\scriptstyle \pm 1.2E\text{-}4}$	$0.8180_{\pm 1.5E4}$	$1.0379_{\pm 3.1E-4}$	$0.8090_{\pm 2.2E-4}$	$0.8592_{\pm 1.3E-4}$	⊙ 0.1124 _{±1.5E-4}	$0.1229_{\pm 3.3E-4}$	$0.2416 {\scriptstyle \pm 1.3E\text{-}4}$	2/14
	MAE	$0.6291_{\pm 1.3E-4}$	$0.6341_{\pm 2.3E-4}$	0.8118 _{±3.1E-4}	$0.6041_{\pm 2.9E-4}$	$0.6726_{\pm 1.5E-4}$	○ 0.0735 _{±1.1E-4}	$0.0809_{\pm 3.2E-4}$	$0.1870_{\pm 1.2E-4}$	
HMLET	RMSE	$0.8357 {\scriptstyle \pm 0.7E\text{-}4}$	$0.8395 {\pm 1.5 \text{E-4}}$	$1.0137_{\pm 1.6E-4}$	$0.8271_{\pm 2.6E-4}$	$0.8818_{\pm 2.7E-4}$	$0.1141_{\pm 1.9E\text{-}4}$	$0.1245_{\pm 2.9E-4}$	$0.2484 {\scriptstyle \pm 2.3E-4}$	0/16
	MAE	$0.6399_{\pm 1.5E-4}$	$0.6466_{\pm 1.8E-4}$	$0.7895_{\pm 1.8E-4}$	$0.6211_{\pm 2.2E-4}$	$0.6912_{\pm 2.2E-4}$	$0.0741_{\pm 1.6E-4}$	0.0844 _{±3.5E-4}	$0.1905_{\pm 2.5E-4}$	
SGL	RMSE	$0.8177_{\pm 1.7E-4}$	0.8141 _{±2.5E-4}	1.0223 _{±2.3E-4}	$0.7832_{\pm 1.4E-4}$	$0.8607_{\pm 1.2E-4}$	0.1351 _{±2.9E-4}	0.1442 _{±.0.6E-4}	0.2505 _{±3.3E-4}	0/16
	MAE	$0.6274_{\pm 1.4E-4}$	$0.6259_{\pm 3.1E-4}$	$0.7958 {\scriptstyle \pm 2.9E4}$	$0.5891_{\pm 2.2E-4}$	$0.6744_{\pm 1.1E-4}$	$0.0974_{\pm 4.1E-4}$	$0.1042_{\pm 0.7E-4}$	$0.1942_{\pm 2.1E-4}$	

III. SUPPLEMENTARY FIGURES

Fig. S1. Convergence curves in RMSE; all panels' legends are the same with panel (a)'s.

 $Fig. \ S2. \ Convergence \ curves \ in \ MAE; all \ panels' \ legends \ are \ the \ same \ with \ panel \ (a)'s.$

Fig. S3. Total time cost of compared models; all panels' legends are the same with panel (a)'s.

Fig. S4. Lowest RMSE/MAE of compared models; all panels' legends are the same with panel (a)'s.