

ILÍDIO OLIVEIRA ico@ua.pt v2022-12-16

Aplicações principais da UML

estrutura e comportamento de sistemas de software

análise, desenho e implementação de sistemas baseados em software

elementos do modelo representam entidades do mundo do software

especialmente adequada para o desenvolvimento orientado por objetos

processos organizacionais novos ou já existentes

especificar ou documentar processos de negócio

não implica ou assume uma implementação em software

Analista

UML ver. 2.0

3

ELEMENTOS COMUNS

Anotações

Um comentário que pode ser usado para anotar qualquer elemento

Pacotes

um mecanismo para dividir um modelo em partes

serve como mecanismo genérico para fazer agrupamentos

Estereotipo (stereotype)

uma especialização da semântica de um elemento do modelação

marcada com «...» ou com a alteração da decoração

Valores etiquetados (tagged values)

Estender elementos do modelo com uma linguagem "computável" (pares atributo/valor)

«Computer» {Vendor = "Acer", CPU = "AMD Phenom X4", Memory = "4 GB DDR2"} Aspire X1300

I Oliveira (2017)

Restrições

Linguagem para adicionar regras ao modelo ou condicionar a sua interpretação

condição ou restrição relacionada com um ou mais elementos

Bank Account

+owner: String {owner->notEmpty()} +balance: Number {balance >= 0}

UML AO LONGO DO PROCESSO DE SOFTWARE

Modelos ao longo do SDLC

1 Oliveira (2017)

UML & OpenUP

I Oliveira (2017)

São usadas várias disciplinas em cada iteração, com intensidade distinta

O nível de abstração da análise varia ao longo do projeto

FIGURE 14: WORK PRODUCT LEVELS OF DETAIL

Resultados do OpenUP

- - Architecture Notebook
- E B Deployment
 - Product Documentation
 - Support Documentation
 - User Documentation
 - Training Materials
 - Backout Plan
 - Deployment Plan
 - Infrastructure
 - Release Communications
 - Release Controls
- E B Development
 - Implementation
 - Build
 - Developer Test
 - Design

- □ Requirements
 - ☐ Glossary
 - Vision
 - System-Wide Requirements
 - Use-Case Model
 - Use Case
- E 👪 Test
 - Test Case
 - Test Script
 - Test Log

15

Sample Unified Process Artifact Relationships

Visão geral dos resultados da aplicação do Unified Process

In: Larmam

conceptual classes in the domain inspire the names of some software classes in the design

MODELO 4+1 (PHILIPE KRUCHTEN)

Diversos diagramas para abranger diferentes perspetivas de análise - Modelo 4+1 (Philipe Kruchten)

1 Oliveira (2017)

CaU do Sistema: organizar a funcionalidade do sistema em episódios de utilização

Diversos diagramas para abranger diferentes perspetivas de análise

1 Oliveira (2017) **21**

Diagramas de atividades para explicar procedimentos do domínio

1 Oliveira (2017)

Classes para representar os conceitos da área do problema (modelo do domínio)

Máquina de estados de entidades/objetos

Interação entre atores e cenários dos CaU

Caso particular: DS de sistema

Pensar a arquitetura lógica com D. Pacotes

Pacotes do SDK do Java 1.7

Classes para visualizar objetos de um linguagem de programação

Interações entre componentes do software

DA para explicar algoritmos

Os DA incluem semântica para mostrar eventos e passagem de informação

Diversos diagramas para abranger diferentes perspetivas de análise

I Oliveira (2017)

Módulos (executáveis) da solução captados em componentes

I Oliveira (2017)

Os componentes têm correspondência em artefactos concretos

D. Instalação: mostrar o setup para produção

I Oliveira (2017)

O nível de detalhe é variável, conforme aquilo que se quer comunicar

37