Online approximation of quantiles: a case study in Haskell

Criteria

- ▶ Memory $O(n^k)$: n < 1 (but preferably constant).
- ▶ Time $O(n^k)$: n < 2 (but preferably linear).
- Accuracy as good as we can get given the above.

Reference implementation

Types

```
data Quantile = Quantile Int Int
 deriving (Eq, Show)
quantile :: Int -> Int -> Quantile
quantile k q
  | q > k = Quantile k q
  | otherwise = error "quantile not defined where k >= q"
qidx :: Quantile -> Int -> Int
qidx (Quantile k q) n =
  let i = (fromIntegral (n * k)) / (fromIntegral q)
  in floor i
```

Types

```
newtype Stream m = Stream (Producer Double m ())
newtype Selector m =
   Selector
    { unSelector ::
        ( Quantile
        -> Stream m
        -> m Double
      )
   }
```

Baseline: exact, slow and stupid

Baseline

- \triangleright $O(n \log_2 n)$ time.
- ▶ *O*(1) space.

Algorithm

- ▶ Sort *P* using a disk-optimised external merge sort.
- ▶ Select $P_{qidx(k,q,|P|)}$.

Baseline: code

```
external' q src = do
  (fp, fh) <- liftIO $
    openTempFile tmpDir "quantile"
  n <- countOut fh src</pre>
  fp' <- liftIO $ do
    hClose fh
    externalMergeSort fp
  fh' <- openFile fp' ReadMode
  quant <- select (qidx q n) $
                 P.fromHandle fh'
             >-> P.map read
  removeFile fp >> removeFile fp'
  pure quant
```

Sampling

Systematic random sampling

- ► Textbook definition: pick a starting index uniformly at random. Treating the input stream as a circular buffer, select every *k*th element.
- ► Code monkey's definition: pick a starting index uniformly from $[0, \frac{n}{k})$, select every kth element.
- ► Easy to implement, but entirely useless if there's any periodicity in the data.

Bernoulli sampling

- ▶ Iterate over the input stream, selecting every element with probability $\frac{1}{n/k} = \frac{k}{n}$.
- Works well on periodic and nonperiodic data.
- ▶ It's tempting to exit early after k or $k + \epsilon$ elements to avoid running out of memory every so often; usually a bad idea.
- ▶ Alternatively: when the subsample is too large, throw it out and try again. Try and avoid this happening too often.

Sampling: probably good enough

- \triangleright O(n) time.
- ightharpoonup O(f(n)) space.
- $f(n) = \sqrt{n}$ seems to work pretty well in practice.

Algorithm

- ▶ Set $n = |\hat{P}|$.
- $\blacktriangleright \text{ Set } k = f(n).$
- ▶ Iterate over P; insert into a rank/select structure R with probability $\frac{n}{k}^{-1}$.
- ► Take $R_{qidx(k,q,|R|)}$.

Estimating |P|

- Precomputation is quite costly if streaming from disk.
- ▶ In practice, dividing the file size by a constant works pretty well.

Sampling: code

```
sampling' k n q (Stream s) = withSystemRandom $ \gen -> do
  P.foldM (sample gen) (pure []) select s
  where choose g = choose' <$> uniformR (0.0, invP) g
         choose' x
          | x < 1.0 = True
          | otherwise = False
         invP = (fromIntegral n) / (fromIntegral k)
         sample g (vs,c) v = choose g >>= \case
           True -> let vs' = insertBag v vs in
                   pure (vs', c+1)
           False -> pure (vs,c)
         select (vs, c) = pure $ vs !! (qidx q c)
                                     4□ > 4□ > 4□ > 4 = > 4 = > 9 < 0</p>
```

Improvements: jackknifed sampling

```
Q_{jackknife}(X_i) = Q(X_{j \neq i}^{|X|})
import Statistics.Resampling

jackknifeQ vs =

pure . quickselect median $

jackknife (quickselect q) $ V.fromList vs
```

Greenwald-Khanna online quantiles

Greenwald and Khanna (2001)

- Estimates quantiles to within $\epsilon |X|$.
- ▶ Space complexity of $O(\frac{1}{\epsilon} \log \epsilon |X|)$.
- ▶ Maintains an ordered list of tuples (v, r_{min}, r_{max}) such that $r_{min} <= rank(v) <= r_{max}$.
- ▶ When the list is approaching its maximum size, merge the tuples which match the fewest observations.

Benchmarks

Results - performance

Figure 1:Runtime summary

Results - performance

```
benchmarking median/exact/100000
time
                      1.015 s (401.8 ms .. 1.598 s)
                      0.956 R<sup>2</sup> (0.848 R<sup>2</sup> .. 1.000 R<sup>2</sup>)
                      1.396 s (1.314 s .. <u>1.447 s</u>)
mean
         77.68 ms (0.0 s .. 89.29 ms)
std dev
variance introduced by outliers: 19% (moderately inflated)
benchmarking median/sampling-sqrt(n)/100000
                      77.74 ms (72.62 ms .. 80.57 ms)
time
                      0.994 R<sup>2</sup> (0.981 R<sup>2</sup> .. 1.000 R<sup>2</sup>)
                      81.28 ms (78.98 ms .. 87.73 ms)
mean
         6.280 ms (870.5 μs .. 9.831 ms)
std dev
variance introduced by outliers: 19% (moderately inflated)
benchmarking median/jackknife-sampling-sgrt(n)/100000
time
                      110.5 ms (80.98 ms .. 178.4 ms)
                      0.771 R^2 \quad (0.602 R^2 \dots 0.999 R^2)
          90.71 ms (81.69 ms .. 116.6 ms)
24.32 ms (2.091 ms .. 36.54 ms)
mean
std dev
variance introduced by outliers: 76% (severely inflated)
```

Figure 2:Runtime measurements

Results - accuracy

Gaussian -
$$n=10^6~\mu=9000~\sigma=1000$$

estimator N	/ISE	stddev
		ordae v
sampling/sqrt 1	656.9	0.0 1309.2 1144.4

Gamma -
$$\mathit{n} = 10^6~\alpha = 100~\beta = 50$$

estimator	MSE	stddev
exact	0.0	0.0
sampling/sqrt	330.8	356.4
jackknife/sqrt	475.1	620.8

[work in progress]

https://tesser.org/doc/slides

https://github.com/olorin/approx-quantiles

Other approaches

- CKMS biased quantiles. Cormode et al. (2005)
- ► Shrivastava-Buragohain-Agrawal-Suri sensor aggregation. Shrivastava et al. (2004)

References

Cormode, G., F. Korn, S. Muthukrishnan, and D. Srivastava. 2005. "Effective Computation of Biased Quantiles over Data Streams." In 21st International Conference on Data Engineering (ICDE05). Institute of Electrical & Electronics Engineers (IEEE). doi:10.1109/icde.2005.55.

Greenwald, Michael, and Sanjeev Khanna. 2001. "Space-Efficient Online Computation of Quantile Summaries." In *ACM SIGMOD Record*, 30:58–66. 2. ACM.

Shrivastava, Nisheeth, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash Suri. 2004. "Medians and Beyond." In *Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems - SenSys 04*. Association for Computing Machinery (ACM). doi:10.1145/1031495.1031524.