МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО"

ФАКУЛЬТЕТ СИСТЕМ УПРАВЛЕНИЯ И РОБОТОТЕХНИКИ

Отчёт по лабораторной работе №1 "Операционный усилитель в основных схемах включения"

по дисциплине "Электронные устройства мехатронных и робототехнических систем" Вариант №5

Выполнили: Студенты группы R34362 Ванчукова Татьяна Сергеевна Симонян Анна Юрьевна Преподаватель: Николаев Николай Анатольевич, доцент факультета СУиР

1 Цель работы

Изучение характеристик операционного усилителя (ОУ) в различных режимах работы, исследование ОУ в различных схемах включения.

При выполнении лабораторной работы исследуются следующие схемы на OУ:

- дифференциальный усилитель;
- инвертирующий и не инвертирующий сумматор;
- интегратор;
- дифференциатор.

2 Материалы работы

Таблица 1 – Исходные данные

ОУ	Коэф. усиления	K_1	K_2	Рабочая частота схем, кГц
AD746	8	2,5	4	5

2.1 Исследование дифференциального усилителя

Дифференциальный усилитель служит для усиления разности сигналов, поступающих на его вход.

Рис. 1: Схема дифференциального усилителя

Коэффициент усиления данного усилителя определяется соотношением

$$U_{\text{BMX}} = U_1 \frac{R_2}{R_1 + R_2} \left(\frac{R_3 + R_4}{R_3}\right) - U_2 \frac{R_4}{R_3}$$

Если значение сопротивлений выбрать следующим образом $\frac{R_2}{R_1} = \frac{R_4}{R_3}$, то выходное напряжение будет определяться отношением сопротивлений резисторов $\frac{R_2}{R_1}$, при этом значение напряжения на выходе дифференциального усилителя определяется следующим соотношением:

$$U_{\text{вых}} = \frac{R_2}{R_1}(U_2 - U_1) = K(U_2 - U_1),$$

где K - коэффициент усиления.

$$R_2 = 10 \text{ кОм}, \ K = 8 \implies R_1 = \frac{R_2}{K} = 1.25 \text{ кОм}$$

Измерим значения $U_{\text{вых}}$ при различных комбинациях U_1 и U_2 , занесем данные в таблицу.

Таблица 2 – Выходное напряжение дифференциального усилителя

U_1 , B	U_2 , B	$U_{\text{вых}}$, В	$U_{\text{вых расч}}$, В
1	-1	-13.66	-16
-1	1	13.664	16
0.4	-0.4	-6.4	-6.4
-0.4	0.4	6.4	6.4
0.8	-0.8	-12.799	-12.8
-0.8	0.8	12.8	12.8
0.1	-0.1	-1.6	-1.6
-0.1 0.1		1.6	1.6

Экспериментальное напряжение сходится с вычисленными значениями, кроме (1,-1) и (-1, 1). В этом случае получить -16 и 16 невозможно, так как питание операционного усилителя равно 15 В.

Далее проведем исследование влияния синфазной и противофазной помехи на работу дифференциального усилителя.

Рис. 2: Дифференциальный усилитель при имитации синфазной помехи

Рис. 3: График выходного напряжения и синфазной помехи

Рис. 4: Дифференциальный усилитель при имитации противофазной помехи

Рис. 5: График выходного напряжения и противофазной помехи

Из графиков видно, что при воздействии синфазной помехи дифференциальный сигнал уменьшает свою амплитуду, и на выходе мы наблюдаем, по сути, постоянный сигнал. В случае противофазной помехи сигнал усиливается на выходе.

2.2 Исследование ОУ в режиме суммирования постоянных сигналов

Рис. 6: Инвертирующщий сумматор

Для расчета выходного напряжения схемы можно использовать следующее соотношение:

$$U_{\text{вых}} = -\frac{R_2}{R_1}(U_2 + U_1) = -K(U_2 + U_1),$$

Измерим значения выходного напряжения $U_{\text{вых}}$ при различных комбинациях U_1 и U_2 , занесем данные в таблицу.

Таблица 3 – Выходное напряжение инвертирующего сумматора

U_1, B	U_2 , B	$U_{\text{вых}}, B$	$U_{\text{вых расч}}, B$
0.5	0.5	-7.9999	-8
-0.5	-0.5	7.9999	8
0.4	0.4	-6.4	-6.4
-0.4	-0.4	6.4	6.4
0.1	0.1	-1.5999	-1.6
-0.1	-0.1	1.6	1.6
0.3	0.5	-6.4	-6.4

По результатам видно, что экспериментальное и вычисленное значения совпали.

Далее рассмотрим неинвертирующий сумматор

Рис. 7: Неинвертирующий сумматор

Для расчета выходного напряжения схемы можно использовать следующее соотношение:

$$U_{\text{вых}} = \frac{R_6}{R_1}(U_1) + \frac{R_6}{R_3}(U_2) + \frac{R_6}{R_4}(U_3) = K_1U_1 + K_2U_2)$$

$$\frac{R_2}{R_5} = \frac{R_6}{R_1} + \frac{R_6}{R_3}, R_5 = R_6 = 100 \text{ кОм}$$

$$K_1 = \frac{R_6}{R_1} = 2.5 \Rightarrow R_1 = 40 \text{ кОм}$$

$$K_2 = \frac{R_6}{R_2} = 4 \Rightarrow R_3 = 25 \text{ кОм}, R_2 = 650 \text{ кОм}$$

Измерим значения выходного напряжения $U_{\rm вых}$ при различных комбинациях U_1 и U_2 , занесем данные в таблицу.

Таблица 4 – Выходное напряжение неинвертирующего сумматора

U_1 , B	U_2 , B	$U_{\text{вых}}$, В	$U_{\text{вых расч}}, B$
0.5 0.5		3.25	3.25
-0.5	-0.5	-3.25	-3.25
0.4	0.4	2.6	2.6
-0.4	-0.4	-2.59999	2.6
0.1	0.1	0.65	0.65
-0.1	-0.1	-0.64998	-0.65
0.3	0.5	2.75	2.75

По результатам видно, что экспериментальное и вычисленное значения совпали.

2.3 Исследование интегратора

Пусть задано, что интегратор будет работать на частоте 5 к Γ ц. Выберем минимальное и максимальное значение рабочей частоты $f_{min}=0,01f_0,$ $f_{max}=100f_0$. Выбираем стандартное значение резистора $R_1=100$ кОм.

Рис. 8: Схема интегратора

Рис. 9: АЧХ интегратора

Рис. 10: Выходной сигнал интегратора с синусоидальным сигналом

Рис. 11: Выходной сигнал интегратора с треугольным сигналом

Рис. 12: Выходной сигнал интегратора с прямоугольным сигналом

2.4 Исследование дифференциатора

Зададим значение резистора в цепи обратной связи равное 50 кОм. Вычислим соответствующее значение емкости фильтра исходя из известной рабочей частоты $f_1=5$ к Γ ц, тогда

$$C = \frac{1}{2\pi f_1 R} = 6,4$$
 нФ

Вычислим значение емкости конденсатора C_1

$$C_1 \geq rac{1}{2\pi R_2 f_{min}} = 0,6$$
 н Φ

Вычислим значение сопротивления резистора R_1

$$R_1 \le \frac{1}{2\pi C_1 f_{max}} = 530 \text{ Om}$$

Рассчитываем полосу пропускания ОУ, вычисленное значение должно иметь значение меньше полосы пропускания ОУ, указанного в документации на ОУ. Если параллельно с R_2 подключить конденсатор C_2 , то частота среза может быть рассчитана по формуле

$$f_c = rac{1}{2\pi C_2 R_2} = 5$$
 к Γ ц

.ac dec 10 0.01 100k

Рис. 13: Идеальный дифференциатор

Рис. 14: Реальный дифференциатор

Рис. 15: АЧХ дифференциатора

Рис. 16: Выходной сигнал дифференциатора с синусоидальным сигналом

Рис. 17: Выходной сигнал дифференциатора с треугольным сигналом

Рис. 18: Выходной сигнал дифференциатора с прямоугольным сигналом

3 Выводы

В процессе выполнения лабораторной работы мы изучили операционный усилитель, познакомились с разными режимами работы: исследовали дифференциальный усилитель, инвертирующий и неинвертирующий сумматоры, интегратор и дифференциатор.