Admitere * Universitatea Politehnica din București 2004 Disciplina: Algebră și Elemente de Analiză Matematică

1. Să se calculeze $L = \lim_{n \to \infty} \left(\sqrt{n+2} - \sqrt{n+1} \right)$.

a)
$$L=-1$$
; b) $L=1$; c) $L=\infty$; d) $L=2$; e) $L=0$; f) nu există.

Solutie.

$$L = \lim_{n \to \infty} (\sqrt{n+2} - \sqrt{n+1}) = \lim_{n \to \infty} \frac{n+2-n-1}{\sqrt{n+2} + \sqrt{n+1}} = \lim_{n \to \infty} \frac{1}{\sqrt{n+2} + \sqrt{n+1}} = 0$$

2. Să se determine suma S a coeficienților polinomului $f = \left(8X^3 - 7\right)^4$.

a)
$$S = 0$$
; b) $S = 3$; c) $S = 1$; d) $S = 2$; e) $S = 2^{10}$; f) $S = -2$.

Soluție. Suma coeficienților polinomului $f = \sum_{k=0}^{n} a_k x^k$ este $a_0 + \ldots + a_n = f(1)$. În cazul de față $f(1) = (8-7)^4 = 1$.

3. Să se calculeze $\sqrt{0.09} - \sqrt[3]{0.008}$

a)
$$0.3$$
; b) 0.5 ; c) 0.1 ; d) $\frac{1}{3}$; e) -0.1 ; f) 0.

Soluţie. Avem
$$\sqrt{0,09} - \sqrt[3]{0,008} = \sqrt{\frac{9}{100}} - \sqrt[3]{\frac{8}{1000}} = \frac{3}{10} - \frac{2}{10} = \frac{1}{10} = 0, 1$$
.

4. Funcția $f:\mathbb{R}\to\mathbb{R},\, f(x)=\left\{egin{array}{cc} x^2+x+1,&x>0\\ 2x+a,&x\leq 0 \end{array}
ight.$ este continuă dacă

a)
$$a = 1$$
; b) $a = 2$; c) $a \in \mathbf{R}$; d) $a = 0$; e) $a = -1$; f) $a = \frac{3}{2}$.

Soluție. Restrictiile funcției f la intervalele $(-\infty,0)$ și $(0,\infty)$ sunt continue deoarece acestea sunt funcții polinomiale. Pentru punctul x=0 avem condițiile

$$f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} f(x) \Leftrightarrow a = 1,$$

deci f continua d.n.d. a = 1.

5. Să se determine $m \in \mathbb{R}$ dacă ecuația $|\ln x| = mx$ are trei soluții reale și distincte.

a)
$$m \in \left(0, \frac{1}{e}\right)$$
; b) $m > \frac{1}{e}$; c) $m = \frac{1}{e}$; d) $m < \frac{1}{e}$; e) $m = e$; f) $m > 0$.

Soluție. Existenta logaritmului cere condiția $x \in (0, \infty)$. Ecuația se rescrie sub forma $\frac{|\ln x|}{x} = m$, și are soluții d.n.d. $m \in \text{Im } g$, unde $g(x) = \frac{|\ln x|}{x}$, $g:(0,\infty) \to \mathbb{R}$, deci

$$g(x) = \begin{cases} -\frac{\ln x}{x}, & x \in (0, 1] \\ \frac{\ln x}{x}, & x \in (1, +\infty). \end{cases}$$

Funcția g este compunere de funcții continue, deci continuă. Folosind substituția $x = e^t$, rezultă

$$\lim_{x \searrow 0} g(x) = \lim_{t \to -\infty} -\frac{t}{e^t} = \infty, \quad \lim_{x \to +\infty} g(x) = \lim_{t \to +\infty} \frac{t}{e^t} = 0,$$

iar g(1) = 0. Avem $g'_s(1) = -1 \neq g'_d(1) = 1$ și

$$g'(x) = \begin{cases} \frac{-\ln x \cdot (1 - \ln x)}{x^2}, & x \in (0, 1) \\ \frac{\ln x \cdot (1 - \ln x)}{x^2}, & x \in (1, +\infty). \end{cases}$$

Se observă că $g'(x) = 0 \Leftrightarrow x = e$ iar $g(e) = \frac{1}{e}$. Avem deci tabelul de variație al funcției g.

x	0		1		e		∞
g'(x)	_	_	-1 1	+	0	_	_
g(x)	∞	\searrow	0	7	$\frac{1}{e}$	\searrow	0

Deci ecuația are g(x) = m are 3 rădăcini distincte d.n.d. $m \in (0, \frac{1}{a})$.

- 6. Să se scrie în ordine crescătoare numerele: $a = \sqrt{3} 1$, $b = \sqrt{5} 2$, c = 1.
 - a) a, b, c; b) c, a, b; c) c, b, a; d) b, c, a; e) b, a, c; f) a, c, b.

Soluție. Avem $a = \sqrt{3} - 1$, $b = \sqrt{5} - 2$, c = 1. Obținem a > 1.7 - 1 = 0.7 și a < 1.8 - 1 = 0.8 iar b < 2.3 - 2 = 0.3, deci b < 0.3 < 0.7 < a < 0.8 < 1 = c. Prin urmare cele trei numere scrise în ordine crescătoare sunt b, a, c.

7. Fie funcţia $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt[3]{x^2 + x + 1}$. Atunci f'(1) este a) 0; b) $\frac{1}{2}$; c) -1; d) $\frac{1}{3}$; e) $\frac{1}{3/6}$; f) $\frac{1}{3/6}$.

Soluție. Avem $f'(x) = \frac{2x+1}{3\sqrt[3]{(x^2+x+1)^2}}$ și deci

$$f'(1) = \frac{3}{3\sqrt[3]{3^2}} = \frac{1}{\sqrt[3]{9}}$$

- 8. Să se determine $m \in \mathbb{R}$ astfel încât sistemul $\begin{cases} mx + y + z = 0 \\ x + my + 2z = 0 \end{cases}$ să admită numai soluția nulă (banală). x y z = 0
 - a) $m \neq -1$ și $m \neq 2$; b) m = 0; c) m = 2; d) $m \in \mathbb{R}$; e) nu există; f) m = -1.

Soluție. Sistemul este omogen, deci compatibil (admite soluții). Pentru ca sistemul să aibă soluție unică, este necesar și suficient ca determinantul D al matricei coeficienților să fie nenul, $D = \begin{bmatrix} m & 1 & 1 \\ 1 & m & 2 \\ 1 & -1 & -1 \end{bmatrix} \neq 0$. Adunăm prima coloana la coloana a doua și a treia, dezvoltăm D după linia a treia și obținem condiția $(m+1)(3-m-1) \neq 0$, deci $m \in \mathbb{R} \setminus \{-1,2\}$.

- 9. Să se calculeze limita $L = \lim_{x \to 0} \frac{\sin^2 2x}{\sin^2 3x}$.
 - a) $L=\frac{2}{3}$; b) $L=\frac{4}{9}$; c) $L=\infty$; d) nu există; e) L=-1; f) L=0.

Solutie. Avem

$$L = \lim_{x \to 0} \left(\frac{\sin 2x}{2x}\right)^2 \left(\frac{3x}{\sin 3x}\right)^2 \frac{2^2}{3^2} = \frac{4}{9}.$$

- 10. Multimea soluțiilor ecuației $\sqrt[3]{x-1} x = -1$ este
 - a) $\{0\}$; b) $\{1, 2, 3\}$; c) \emptyset ; d) $\{0, 1, 2\}$; e) $\{-1, 0, 1\}$; f) $\{1\}$.

Soluție. Ecuația se scrie $\sqrt[3]{x-1} = x-1$. Prin ridicare la puterea a treia (putere impară), rezultă o ecuație echivalentă cu ecuația din enunț

$$x-1 = (x-1)^3 \Leftrightarrow (x-1)[(x-1)^2 - 1] = 0 \Leftrightarrow (x-1)(x-2)x = 0$$

 $\text{deci } x \in \{0, 1, 2\}.$

- 11. Să se determine $a \in \mathbb{R}$ astfel încât polinomul $f = 6X^4 7X^3 + aX^2 + 3X + 2$ să se dividă prin polinomul $g = X^2 X 1$.
 - a) a = -2; b) a = 2; c) a = -1; d) a = -7; e) a = 0; f) a = 1.

Soluție. Facând împărtirea, se obtine câtul $6x^2 - x + a - 7$ și restul (a + 7)(x + 1). Condiția de divizibilitate revine la anularea restului, deci rezultă a = -7.

12. Funcția $f:(0,\;2) \to \mathbb{R},\, f(x)=rac{2}{x^2+2x}.$ Să se calculeze

$$S_n = \sum_{k=1}^{n} (f^{(k)}(1) - f^{(k+1)}(1))$$

- a) $S_n = (-1)^n \left(1 \frac{1}{3^{n+2}}\right)$; b) $S_n = -\frac{8}{9} + 2(-1)^n \left(1 \frac{1}{3^{n+2}}\right)$; c) $S_n = 1 \frac{1}{3^{n+2}}$;
- d) $S_n = -\frac{8}{9} + (-1)^n \left(1 \frac{3}{3^{n+2}}\right)$; e) $S_n = (-1)^n \left(1 \frac{1}{3^{n+1}}\right)$; f) $S_n = -\frac{8}{9} + (-1)^n (n+1)! \left(1 \frac{1}{3^{n+2}}\right)$.

Soluţie. Avem $f(x) = \frac{2}{x^2 + 2x} = \frac{1}{x(x+2)} = \frac{1}{x} - \frac{1}{x+2}$. Dar

$$\left(\frac{1}{ax+b}\right)^{(n)} = \frac{(-1)^n n! a^n}{(ax+b)^{n+1}} \Rightarrow f^{(k)}(x) = \frac{(-1)^k k!}{x^{k+1}} - \frac{(-1)^k k!}{(x+2)^{k+1}}$$

Enunțuri și soluții * Admiterea U.P.B. 2004 * M1A - 2

deci $f^{(k)}(1) = (-1)^k k \left(1 - \frac{1}{3^{k+1}}\right)$. Dezvoltând suma şi reducând termenii egali, obţinem

$$S_n = \sum_{k=1}^n (f^{(k)}(1) - f^{(k+1)}(1)) = f^{(1)}(1) - f^{(n+1)}(1) =$$

$$= -\frac{8}{9} - (-1)^{n+1}(n+1)! \left(1 - \frac{1}{3^{n+2}}\right) = -\frac{8}{9} + (-1)^n (n+1)! \left(1 - \frac{1}{3^{(n+2)}}\right).$$

- 13. Fie $A=\left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right)$ și $B=\left(\begin{array}{cc} a & b \\ 0 & 2 \end{array}\right)$. Determinați $a,b\in\mathbb{R}$ astfel încât AB=BA.
 - a) a = b = 1; b) $a \in \mathbb{R}$, b = 2; c) a = -1, b = 3; d) a = -2, b = 0;
 - e) nu există; f) $a = 2, b \in \mathbb{R}$.

Solutie. Din AB = BA deducem

$$\left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} a & b \\ 0 & 2 \end{array}\right) = \left(\begin{array}{cc} a & b \\ 0 & 2 \end{array}\right) \left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right) \Leftrightarrow \left(\begin{array}{cc} a & b+4 \\ 0 & 2 \end{array}\right) = \left(\begin{array}{cc} a & 2a+b \\ 0 & 2 \end{array}\right),$$

deci b+4=2a+b adică a=2 și $b \in \mathbb{R}$.

- 14. Să se calculeze $i + i^3 + i^5$, $(i^2 = -1)$.
 - a) 0; b) 3i; c) -1; d) i; e) -i; f) 2i.

Solutie. Avem $i + i^3 + i^5 = i - i + i = i$.

- 15. Să se determine mulțimea $A = \{x \in \mathbb{R} \mid (2x-3)(3x-2) \ge 0 \}$.
 - a) $A = (\frac{2}{3}, \frac{3}{2})$; b) $A = \mathbb{R}$; c) $A = \emptyset$; d) A = (-1, 1); e) $A = [\frac{3}{2}, \infty)$; f) $A = (-\infty, \frac{2}{3}] \cup [\frac{3}{2}, \infty)$.

Soluție. Inecuația $(2x-3)(3x-2) \ge 0 \Leftrightarrow (x-\frac{3}{2})(x-\frac{2}{3}) \ge 0$ are soluțiile $x \in (-\infty,\frac{2}{3}] \cup \left[\frac{3}{2},\infty\right)$.

- 16. Numărul $x = C_6^4 + A_5^2 P_4$ este
 - a) x = 0; b) $x = \frac{11}{2}$; c) x = 11; d) x = 10; e) x = 15; f) x = 25.

Soluţie. Avem $C_6^4 + A_5^2 - P_4 = \frac{6 \cdot 5}{1 \cdot 2} + 5 \cdot 4 - 24 = 15 + 20 - 24 = 11.$

- 17. Să se rezolve ecuația $\log_2 x + \log_2 2x = 3$.
 - a) x = 0; b) x = -2; c) nu are soluții; d) $x = \pm 2$; e) x = 1; f) x = 2.

Soluție. Obținem $\log_2 x + \log_2 2x = 3 \Leftrightarrow \log_2 x \cdot 2x = \log_2 2^3$ cu x > 0 deci $2x^2 = 2^3$, de unde rezultă

- 18. Să se calculeze $I = \int_{\hat{a}}^{1} x e^{x} dx$.
 - a) I = e; b) I = -1; c) I = 1; d) I = 0; e) I = 2e; f) I = -e.

Soluţie. Calculăm $I = \int_0^1 x e^x dx$. Integrând prin părţi $g'(x) = e^x$, f(x) = x, rezultă

$$I = e^x x \Big|_0^1 - \int_0^1 e^x dx = e - e^x \Big|_0^1 = e - (e - 1) = 1.$$