MA 105: Calculus

D1 - Lecture 2

Sandip Singh

Department of Mathematics

Autumn 2023, IIT Bombay, Mumbai

Remarks on the definition

- 1. Note that the N will (of course) depend on ϵ , as it did in our example, so it would have been more correct to write $N(\epsilon)$ in the definition of the limit. However, we usually omit this extra bit of notation.
- 2. We have already shown that $\lim_{n\to\infty} 1/n^2 = 0$. The same argument works for $\lim_{n\to\infty} 1/n^{\alpha}$, for any real $\alpha>0$. We just take N to be any integer bigger than $1/\epsilon^{1/\alpha}$ for a given ϵ . Recall that for x>0, x^{α} is defined as $e^{\alpha \log x}$.
- 3. For a given ϵ , once one N works, any larger N will also work. In order to show that a sequence tends to a limit ℓ we are not obliged to find the best possible N for a given ϵ , just some N that works. Thus, for the sequence $1/n^2$ and $\epsilon=0.1$, we took N=3, but we can also take N=10,100,1729, or any other number bigger than 3.
- 4. Showing that a sequence converges to a limit ℓ is not easy. One first has to guess the value ℓ and then prove that ℓ satisfies the definition. We will see how to get around this in various ways.

More examples of limits

Let us show that $\lim_{n\to\infty} \sin\left(\frac{1}{n}\right) = 0$.

For this we note that for $x \in [0, \pi/2]$, $0 \le \sin x \le x$ (try to remember why this is true).

Hence,

$$|\sin 1/n - 0| = |\sin 1/n| \le 1/n.$$

Thus, given any $\epsilon > 0$, if we choose some $N > 1/\epsilon$, n > N implies $1/n < 1/N < \epsilon$. It follows that $|\sin 1/n - 0| < \epsilon$.

Let us consider Exercise 1.1.(ii) of the tutorial sheet. Here we have to show that $\lim_{n\to\infty} 5/(3n+1)=0$. Once again, we have only to note that

$$\frac{5}{3n+1}<\frac{5}{3n},$$

and if this is to be smaller than ϵ , we must have $n > N > 5/3\epsilon$.

Formulæ for limits

If a_n and b_n are two convergent sequences then

- 1. $\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n$
- 2. $\lim_{n\to\infty} (a_n b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$.
- 3. $\lim_{n\to\infty} (a_n/b_n) = \lim_{n\to\infty} a_n/\lim_{n\to\infty} b_n$, provided $\lim_{n\to\infty} b_n \neq 0$.

Implicit in the formulæ is the fact that the limits on left hand side exist.

Note that the constant sequence $a_n = c$ has limit c, so as a special case of (2) above we have

$$\lim_{n\to\infty}(c\cdot b_n)=c\cdot\lim_{n\to\infty}b_n.$$

Using the formulæ above we can break down the limits of more complicated sequences into simpler ones and evaluate them.

The Sandwich Theorem(s)

Theorem 1: If a_n , b_n and c_n are convergent sequences such that $a_n \le b_n \le c_n$ for all n, then

$$\lim_{n\to\infty}a_n\leq\lim_{n\to\infty}b_n\leq\lim_{n\to\infty}c_n.$$

A second version of the theorem is especially useful:

Theorem 2: Suppose $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n$. If b_n is a sequence satisfying $a_n \le b_n \le c_n$ for all n, then b_n converges and

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\lim_{n\to\infty}c_n.$$

Note that we do not assume that b_n converges in this version of the theorem - we get the convergence of b_n for free.

Together with the rules for sums, differences, products and quotients, this theorem allows us to handle a large number of more complicated limits.

An example using the theorems above

Consider Exercise 1.2.(iii) on the tutorial sheet. We have to show that

$$\lim_{n \to \infty} \frac{n^3 + 3n^2 + 1}{n^4 + 8n^2 + 2}$$

exists and to evaluate it.

It is clear that

$$0 < \frac{n^3 + 3n^2 + 1}{n^4 + 8n^2 + 2} \le \frac{1}{n} + \frac{3}{n^2} + \frac{1}{n^4}.$$

(How do we get this? Note that $n^3/(n^4+8n^2+2) < n^3/n^4 = 1/n$, and the other two terms can be handled similarly.)

Hence, applying the Sandwich Theorem (Theorem 2) to the sequences

$$a_n = 0$$
, $b_n = \frac{n^3 + 3n^2 + 1}{n^4 + 8n^2 + 2}$ and $c_n = \frac{1}{n} + \frac{3}{n^2} + \frac{1}{n^4}$

we see that the limit we want exists provided $\lim_{n\to\infty} c_n$ exists, so this is what we must concentrate on proving.

The limit $\lim_{n\to\infty} c_n$ exists provided each of the terms appearing in the sum has a limit and in that case it is equal to the sum of the limits (by the first formula). But each of these limits is quite easy to evaluate.

We already know that

$$\lim_{n\to\infty} 1/n = 0 = \lim_{n\to\infty} 1/n^4,$$

while

$$\lim_{n\to\infty} 3/n^2 = 3 \cdot \lim_{n\to\infty} 1/n^2 = 0$$

where we have used the special case of the second formula (limit of the product is the product of the limits) for the first equality in the equation above. Since all three limits converge to 0, it follows that the given limit is 0+0+0=0.

Bounded Sequences

The formulæ and theorems stated above can be easily proved starting from the definitions. We will prove the second formula and leave the other proofs as exercises.

Definition: A sequence a_n is said to be bounded if there is a real number M>0 such that $|a_n|\leq M$ for every $n\in\mathbb{N}$. A sequence that is not bounded is called unbounded.

In our list of examples, Example 1 $(a_n = n)$ is an example of an unbounded sequence, while Examples 2 - 5 $(a_n = 1/n, \sin(1/n), n!/n^n, n^{1/n})$ are examples of bounded sequences.

Bounded sequences don't necessarily converge - for instance $a_n = (-1)^n$. However,

Convergent sequences are bounded

Lemma: Every convergent sequence is bounded.

Proof: Suppose a_n converges to ℓ . Choose $\epsilon = 1$. There exists $N \in \mathbb{N}$ such that $|a_n - \ell| < 1$ for all n > N.

It follows from $|a_n|=|(a_n-\ell)+\ell|$ and the triangle inequality that $|a_n|\leq |a_n-\ell|+|\ell|< 1+|\ell|$ for all n>N. Now, let

$$M_1 = \max\{|a_1|, |a_2|, \dots, |a_N|\}$$

and let $M = \max\{M_1, |\ell| + 1\}$. Then, M > 0 and $|a_n| \leq M$ for all $n \in \mathbb{N}$.

We will use this Lemma to prove the product rule for limits.