Hana Science Hall A b131 (Tuesday, Thursday 17:00 – 18: 15)

Sung Wook Chi (Hana Science Hall A312, chi13@korea.ac.kr)

LIST307
Functional Genomics

Genetics
Genomics
Bioinformatics

- Molecular biology
- Biochemistry

Functional Genomics

> Author Lind of functions So genes do

Human & manation or focus

- * Evaluation
- Attendance: 20% (Please don't forget to write your signature on attendance sheet)
- Middle-term exam: 40% Final-term exam: 40%
- * Handout (uploaded in Blackboard)
- Lecture slides
- Review papers, research articles, and exercises from textbook #1

* Textbook #1

- "A Primer of Genome Science", 3rd Edition (2009), by Gibson and Muse

* Textbook #2

- "Introduction to Genomics", 3rd Edition (2017), by Lesk
- Second edition is provided (Blackboard)

驾此 显岩

* Textbook #1

* Textbook #2

2017 published

Week	Date	Contents	Genomics	Textbook1	Textbook2
1	3/6 (Tue)	Orientation			
	3/8 (Thu)	u) No class			Chapter 1,2
2	3/13 (Tue)	1. Introduction to Genomics		Chapter 1	Chapter 1
	3/15 (Thu)	: Genome	Mapping	Chapter 1,2	Chapter 1,3
3	3/20 (Tue)	2. Human Genome Project		Chapter 1,2	Chapter 2
	3/22 (Thu)	: Genome Annotation	Sequencing, Analyses a	nd Chapter 1,2	Chapter 3,4
4	3/27 (Tue)	3. Next-Generation Sequencing (NGS)		Handout	Chapter 2
	3/29 (Thu)	: Whole Ger	nome Sequencing (WGS)		
5	4/3 (Tue)	4. Genomic Variation (LD, SNP, GWAS)		Chapter 3	Chapter 4
	4/5 (Thu)	: Linkage Di	sequilibrium (LD), haplotyp	e Chapter 4	Chapter 7,8
6	4/10 (Tue)	: SNP, GWAS, Exome-Seq		Handout	
	4/12 (Thu)	5. Basics of F	unctional Genomics	Chapter 5	
7	4/17 (Tue)	6. Comparati	ve Genomics (phylogenetic	s) Chapter 3,4	Chapter 4,9
	4/19 (Thu)	* Review of p	part I	Lecture slides	Lecture slides
8	4/24(Thu) 4/26(Tue)	Middle-term Exam			

Functional Genomics

patient us normal

	. 0				
9	5/1 (Tue)	7. Gene expression analysis (microarray)	Chapter 4	Chapter 10	
	5/3 (Thu)	: Gene expression (RNA-Seq)	Handout		
10	5/8 (Tue)	: Gene expression analysis	Chapter 4	Chapter 10	
	5/10 (Thu)	8. Transcriptomics (ChIP-Seq)	Handout		
11	5/15 (Tue)	: regulation (Ribo-Seq, CLIP-Seq)	Handout	Handout	
	5/17 (Thu)	9. Proteomics	Chapter 5	Chapter 11	
12	5/22 (Tue)	Holiday (No class)			
	5/24 (Thu)	10. Structural Genomics	Chapter 5	Chapter 11	
13	5/29 (Tue)	11. Metabolomics and other omics.	Chapter 6	Chapter 12	
	5/31 (Thu)	12. Systems Biology	Chapter 6	Chapter 13	
14	6/5 (Tue)	: Biological network	Chapter 6	Chapter 13	
	6/7 (Thu)	: Modeling & analysis	handout		
15	6/12 (Tue)	13. Bioinformatics	handout		
	6/14 (Thu)	* Review of part II	Lecture slides	Lecture slides	
16	6/19 (Tue)	Final-term Exam			
	6/21 (Thu)				

- 1. Genomics / Genetics
- 2. <u>Sequencing</u>
- Human Genome Project
- Next-generation Sequencing (NGS)
- 3. Genome analysis
- Linkage Disequilibrium
- Variation (SNP, SWAS)
- WGS, Exom-Seq
- 4. Functional Genomics
- 5. Comparative Genomics
- 1. Gene expression analysis
- Microarray, RNA-Seq
- Transcriptomics
- 2. <u>Transcriptomics</u>
- Regulation (ChIP-Seq)
- Ribo-Seq, CLIP-Seq
- 3. Proteomics
- Structural genomics
- 4. Systems biology
- Network biology
- 5. <u>Bioinformatics (integration)</u>

* Textbook #1

- "A Primer of Genome Science", 3rd Edition (2009), by Gibson and Muse

Part I

Part II

1 Genome Projects: Organization and Objectives 1

The Core Aims of Genome Science 1 Mapping Genomes 4

Genetic Maps 4

EXERCISE 1.1 Constructing a genetic map 7

Physical Maps 8

Cytological Maps 8

Comparative Genomics 10

The Human Genome Project 13

Objectives 13

The Content of the Human Genome 16

BOX 1.1 The Ethical, Legal, and Social Implications of the Human Genome Project 18

EXERCISE 1.2 Use the NCBI and Ensembl genome browsers to examine a human disease gene 22

Internet Resources 22

BOX 1.2 GenBank Files 26

Animal Genome Projects 28

Primate Genome Projects 28 Rodent Genome Projects 30

EXERCISE 1.3 Compare the structure of a gene in a mouse and a human 33

Other Vertebrate Biomedical Models 34 Animal Breeding Projects 35 Invertebrate Model Organisms 36

BOX 1.3 Managing and Distributing Genome

Plant Genome Projects 40

Arabidopsis thaliana 40

Grasses and Legumes 44
Other Flowering Plants 46

Microbial Genome Projects 48

The Minimal Genome 48

Sequenced Microbial Genomes 51

EXERCISE 1.4 Compare two microbial genomes using the CMR 53

Yeast 54

EXERCISE 1.5 Examining a gene in the Saccharomyces Genome Database 56

Metagenomics 59

Summary • Discussion Questions • Literature Cited 60

2 Genome Sequencing and Annotation 65

Automated DNA Sequencing 65

The Principle of Sanger Sequencing 65
High-Throughput Sequencing 68

Reading Sequence Traces 68

EXERCISE 2.1 Reading a sequence trace 71

Contig Assembly 71

BOX 2.1 Pairwise Sequence Alignment 74

EXERCISE 2.2 Computing an optimal sequence alignment 78

Emerging Sequencing Methods:

The Next Generation 79

Genome Sequencing 83

Hierarchical Sequencing 84

Shotgun Sequencing 88

BOX 2.2 Searching Sequence Databases

Using BLAST 90

Sequence Verification 94

Genome Annotation 95

EST Sequencing 95

Ab Initio Gene Discovery 98

BOX 2.3 Hidden Markov Models and Gene Finding 100

Regulatory Sequences 103

Non-Protein Coding Genes 104

Structural Features of Genome Sequences 107

Functional Annotation and Clusters of Gene Families 113

EXERCISE 2.3 Perform a BLAST search 114

Clustering of Genes by Sequence Similarity 114

Clusters of Orthologous Genes 116

Phylogenetic Classification of Genes 119

BOX 2.4 Phylogenetics 120

EXERCISE 2.4 A simple phylogenetic analysis 123

Gene Ontology 124

BOX 2.5 Gene Ontologies 126

Summary • Discussion Questions • Web Site

Exercises • Literature Cited 128

3 Genomic Variation 133

The Nature of Single Nucleotide Polymorphisms 133

Classification of SNPs 133 Distribution of SNPs 136

Linkage Disequilibrium and Haplotype Maps 138

BOX 3.1 Disequilibrium between Alleles at Two Loci 138

EXERCISE 3.1 Quantifying heterozygosity and LD 143

Applications of SNP Technology 146

Population Genetics 146

BOX 3.2 The Coalescent 148
Recombination Mapping 152

EXERCISE 3.2 *Inferring haplotype structure* 154

QTL Mapping 155

Linkage Disequilibrium Mapping 158

BOX 3.3 Case-Control Association Studies 164

BOX 3.4 Family-Based Association Tests 167

EXERCISE 3.3 Perform a case-control association test 170

BOX 3.5 Genome-Wide Association Studies 173

SNP Genotyping 177

SNP Discovery 177
SNP Genotyping 178

EXERCISE 3.4 Designing a genotyping assay for a double polymorphism 183

High-throughput genotyping platforms 183 Haplotype phasing methods 185

Summary • Discussion Questions • Web Site

4 Gene Expression and the Transcriptome 191

Parallel Analysis of Gene Expression: Microarrays 191

Applications of Microarray Technology 192 Experimental Design 194

EXERCISE 4.1 Design a microarray experiment 196

Microarray Technologies 198

Labeling and Hybridization of cDNAs 205

Statistical Analysis of cDNA Microarray Data 207

EXERCISE 4.2 Calculate which genes are differentially exposed 209

BOX 4.1 Microarray Image Processing 211 **BOX 4.2** Basic Statistical Methods 214

EXERCISE 4.3 Evaluate the significance of the following gene expression differences 217

Microarray Data Mining 220

BOX 4.3 Clustering Methods 221

EXERCISE 4.4 Perform a cluster analysis on gene expression profiles 224

ChIP Chips and Gene Regulation 225

DNA Applications of Microarrays 227

BOX 4.4 Motif Detection in Promoter Sequences 228

Parallel Analysis of Gene Expression: RNA Sequencing 231

Serial Analysis of Gene Expression 231 RNA-Seq 234

Single-Gene Analyses 236

Northern Blots 236

Quantitative PCR 237

Properties of Transcriptomes 239

Microbial Transcriptomics 239
Cancer and Clinical Applications 243

Development, Physiology, and Behavior 246

Evolutionary and Ecological Functional Genomics 248

Gene Expression Databases 252

Summary • Discussion Questions • Web Site Exercises • Literature Cited 253

5 Proteomics and Functional Genomics 259

Functional Proteomics 259

Protein Annotation 259

EXERCISE 5.1 Structural annotation of a protein 262

BOX 5.1 Hidden Markov Models in Domain Profiling 264

Protein Separation and 2D-PAGE 267 Mass Spectrometry 270

EXERCISE 5.2 *Identification of a protein on the basis of a mass spectrometry profile* 273

Immunochemistry 276
Protein Microarrays 277

Protein Interaction Maps 280

EXERCISE 5.3 Formulating a network of protein interactions 281

BOX 5.2 Biological Networks in Genome Science 283

Structural Proteomics 286

Objectives of Structural Proteomics 286 Protein Structure Determination 288

Protein Structure Prediction and Threading 291

Functional Genomics 294

Saturation Forward Genetics 295

High-Throughput Reverse Genetics 300

BOX 5.3 Transgenic Animals and Plants 304

Fine-Structure Genetics 308

EXERCISE 5.4 Designing a genetic screen 309

Genetic Fingerprinting 314

Summary • Discussion Questions • Web Site Exercises • Literature Cited 317

6 Integrative Genomics 323

Metabolomics 325

Analysis of Cellular Constituents 325

Metabolic Profiling 328

Metabolic and Biochemical Databases 331

In Silico Genomics 333

Metabolic Control Analysis 333

Systems-Level Modeling of Gene Networks 338

Summary • Discussion Questions • Literature Cited 342

* Textbook #2

- "Introduction to Genomics", 3rd Edition (2017), by Lesk

Table of Contents

- 1: Introduction
- 2: The Human Genome Project
- 3: Mapping, Sequencing, Annotation, and Databases
- 4: Evolution and Genomic Change
- 5: Genomes of Prokaryotes and Viruses
- 6: Genomes of Eukaryotes
- 7: Comparative Genomics
- 8: The Impact of Genomics on

Human Health and Disease

- 9: Genomics and Anthropology
- 10: Transcriptomics
- 11: Proteomics
- 12: Metabolomics
- 13: Systems Biology