### **Funzioni Reali - Sommario**

Funzioni di variabile reale; funzioni di potenza e di radice; funzione del valore assoluto; funzioni trigonometriche.

# A. Funzioni di potenza, radice e valore assoluto

### Funzioni di potenza, radice e valore assoluto

Definizioni di funzione potenza  $p_n$  e radice  $p_n^{-1}$ . Definizione del valore assoluto  $|\cdot|$ ; disuguaglianza triangolare. Alcuni esercizi generali.

## 1. Funzione potenza

**DEF 1.1.** Sia  $n \in \mathbb{N} \setminus \{0\}$ ; definiamo quindi la **funzione potenza** n-esima come

$$p_n:[0,+\infty)\longrightarrow [0,+\infty); x\mapsto p_n(x)=x^n$$

Si riporta un grafico di alcune funzioni potenza  $p_n$ .



OSS 1.1. Si nota che

$$egin{aligned} orall x \in [0,1): p_1(x) > p_2(x) > \ldots > p_n(x) \ orall x \in (1,+\infty): p_1(x) < p_2(x) < \ldots < p_n(x) \end{aligned}$$

**OSS 1.2.** Si vede dal grafico che la funzione è *strettamente crescente*, ovvero se prendiamo  $x_1,x_2\in E$  (dominio) ove  $x_2>x_1$ , allora sicuramente abbiamo

$$p_n(x_2)>p_n(x_1)$$

### **DIMOSTRAZIONE.**

Prendiamo ad esempio  $p_2$ ; abbiamo innanzitutto

$$0 \le x_1 < x_2$$

allora li moltiplichiamo per  $x_1$  e  $x_2$ , ottenendo

$$egin{cases} x_1 < x_2 x_1 \ x_1 x_2 < x_2^2 \end{cases}$$

quindi

$$0 \leq x_1^2 < x_2^2 \iff p_2(x_1) < p_2(x_2), orall x_1, x_2$$

Notare che questa dimostra che è vera solo per  $p_2$ ; sarebbe da dimostrare che è vera anche per  $p_n$  (forse si va per induzione? boh, vedrò o chiederò al prof qualcosa)

**OSS 1.3.** Notiamo che la funzione potenza  $p_n$  (o  $x^n$ ) è biiettiva (Funzioni, **DEF 3.3.**), ovvero è sia suriettiva che iniettiva.

#### **DIMOSTRAZIONE.**

Per dimostrare che è iniettiva basta riosservare quanto visto in **OSS 1.2.**; ovvero che la funzione è strettamente crescente.

Dopodiché la funzione è anche suriettiva in quanto una conseguenza dell'assioma di separazione S).

### 2. Funzione radice

**OSS 2.1.** Dall'**OSS 1.3.** abbiamo notato che la funzione potenza  $p_n(x)$  è biiettiva; pertanto per il teorema dell'esistenza della funzione inversa (Funzioni, **TEOREMA 1.**) esiste una funzione inversa che definiremo.

**DEF 2.1.** Definiamo la funzione radice n-esima  $p_n^{-1}$ 

$$p_n^{-1}:[0,+\infty)\longrightarrow [0,+\infty); x^n\mapsto x$$

Graficamente questo equivale a "scambiare le assi" del grafico della funzione, oppure di "cambiare la prospettiva da cui si guarda il grafico", ovvero



### 3. Valore assoluto

**DEF 3.1.** Sia il valore assoluto una funzione

$$|\cdot|: \mathbb{R} \longrightarrow \mathbb{R}; x \mapsto |x| = egin{cases} x: x \geq 0 \ -x: x < 0 \end{cases}$$

Ad esempio, il grafico di |x| si rappresenta nel modo seguente:



OSS 3.1.1. Notare che

$$\sqrt{x^2} = |x|$$

## 3.1. Proprietà, disuguaglianza triangolare

OSS 3.1.1. Si può osservare alcune proprietà del valore assoluto, ovvero:

1. Sia  $a \geq 0$ ,  $x \in \mathbb{R}$ , allora

$$|x| \le a \iff -a \le x \le a$$

### **DIMOSTRAZIONE.**

Posso considerare due casi, ovvero  $x \geq 0$ : abbiamo quindi |x| = x, pertanto

$$\begin{cases} |x| \leq a \implies x \leq a \\ x \geq 0 \implies x \geq -a \end{cases} \longrightarrow -a \leq x \leq a$$

 $x \le 0$ : abbiamo quindi |x| = -x e il discorso è analogo:

$$\begin{cases} |x| \leq a \implies -x \leq a \iff x \geq -a \\ x \leq 0 \implies x \leq a \end{cases} \longrightarrow -a \leq x \leq a$$

2. Prendendo le stesse premesse di prima, abbiamo

$$|x| \geq a \iff x \leq -a \land x \geq a$$

3. LA DISUGUAGLIANZA TRIANGOLARE.

Siano  $x,y\in\mathbb{R}$ , allora abbiamo

$$|x+y| \le |x| + |y|$$

#### **DIMOSTRAZIONE.**

Se abbiamo da un lato

$$-|x| \leq x \leq |x|$$

е

$$-|y| \le y \le |y|$$

allora sommandoli si avrebbe

$$-(|x|+|y|) \leq x+y \leq |x|+|y|$$

che per la prima proprietà equivale a dire

$$|x+y| \le |x| + |y|$$

## 4. Esercizi misti

Presentiamo degli esercizi, ovvero *equazioni* (Equazioni e soluzione) o *disequazioni* contenenti queste funzioni appena presentate.

**ESERCIZIO 4.1.** Determinare

$$3x + 5 = 0$$

ESERCIZIO 4.2. Disegnare il grafico di

$$f(x) = 3x + 5$$

 $\mathsf{con}\ f:\mathbb{R}\longrightarrow\mathbb{R}.$ 

ESERCIZIO 4.3. Risolvere

$$x^2 - 2x - 3 = 0$$

ESERCIZIO 4.4. Disegnare

$$f: \mathbb{R} \longrightarrow \mathbb{R}; x \mapsto x^2 - 2x - 3$$

ESERCIZIO 4.5. Risolvere

$$\frac{x^2-2x+3}{x-3} \ge 0$$

ESERCIZIO 4.6. Risolvere

$$\sqrt{x+1} \ge 3x+2$$

ESERCIZIO 4.8. Risolvere

$$\frac{x-3}{2x+1} > \frac{x-1}{x+1}$$

ESERCIZIO 4.8. Risolvere

$$\sqrt{6x+1} \ge 3 - 2x$$

ESERCIZIO 4.9. Risolvere

$$|x + 4| < 8$$

ESERCIZIO 4.10. Risolvere

$$|\frac{2x+1}{x^2-4}| \geq 1$$

ESERCIZIO 4.11. Risolvere

$$|x+1| \ge |x-1|$$

6

# **B. Funzioni trigonometriche**

# Funzioni trigonometriche

Definizione delle funzioni trigonometriche sin, cos; le proprietà di queste funzioni; alcuni valori noti; funzioni inverse arcsin, arccos. Forme di somma e sottrazione di sin e cos. Funzioni tan, arctan.

### O. Preambolo

Per ora non abbiamo ancora gli strumenti per poter *rigorosamente* definire le funzioni di *seno* e *coseno*, tuttavia possiamo definirle per ora in questo modo.

Però prima di tutto bisogna fare delle considerazioni.

Ovvero prendo il piano cartesiano (**ESEMPIO 2.1.**) e considero la circonferenza unitaria  $\Gamma$ :

$$\Gamma:=\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\}$$

e considero l'asse  $r_1$  concorde con l'asse y e che "appoggiamo" in (1,0). Quindi prendo un punto qualsiasi  $\alpha \in \mathbb{R}$  dell'asse, lo "avvolgo" su  $\Gamma$ , poi la retta si avvicina man mano all'arco, infine il punto "finisce" su  $\Gamma$  e ottengo il punto  $(c(\alpha),s(\alpha))$ 

Graficamente questo processo rappresenta il seguente.



### **OSS 0.1.**

Si osserva che in questo processo di "avvolgimento" si suppone che la lunghezza del segmento non si cambia mai, in quanto viene solo "piegato"; quindi se il segmento  $r_1$  è lungo  $\alpha$ , allora l'arco è lungo  $\alpha$ , che non è banale da misurare. Infatti si deve fare un procedimento di approssimazione con segmenti. Questo è il problema di questa definizione non-rigorosa.

### 1. Definizione di seno e coseno

Considerando tutto detto sopra, consideriamo la funzione

$$f: \mathbb{R} \longrightarrow \Gamma \ lpha \mapsto (c(lpha), s(lpha))$$

Dove  $\Gamma$  varia nell'intervallo [0,1].

Così otteniamo le seguenti funzioni:

DEF 1.

$$egin{aligned} \cos: & \mathbb{R} \longrightarrow [-1,1] \ & lpha \mapsto \cos(lpha) \in \Gamma \ \sin: & \mathbb{R} \longrightarrow [-1,1] \ & lpha \mapsto \sin(lpha) \in \Gamma \end{aligned}$$

Dove  $(\cos\alpha,\sin\alpha)$  rappresenta la posizione del punto dell'arco piegato e  $\alpha$  rappresenta la lunghezza dell'arco. Se  $\alpha$  è negativa, allora si orienta l'asso in basso. Graficamente,



# 2. Proprietà

**PROP 2.1.** Diamo un nome alla lunghezza della semi-circonferenza unitaria,

$$(\pi \in \mathbb{R}, \pi \sim 3.14\ldots)$$

quindi la *circonferenza* è lunga  $2\pi$ .

**PROP 2.2.** Dato un  $\alpha \in \mathbb{R}$ , si verifica che

$$(\cos \alpha)^2 + (\sin \alpha)^2 = 1$$

in quanto entrambi i punti  $(\cos \alpha, \sin \alpha)$  appartengono alla circonferenza  $\Gamma$ ; infatti  $x^2 + y^2 = 1$  è la proprietà caratterizzante di  $\Gamma$ .

**PROP 2.3.** Le funzioni  $\cos$ ,  $\sin$  sono *periodiche*, ovvero che prendendo un  $k \in \mathbb{Z}$ ,

i. 
$$\cos(\alpha + 2k\pi) = \cos \alpha$$

ii. 
$$\sin(\alpha + 2k\pi) = \sin \alpha$$

Questo si verificai n quanto  $2\pi$  rappresenta un giro intero; quindi prendendo un punto  $\alpha$  e facendoci un giro intero, arrivo allo stesso punto.

**PROP 2.4.** Le funzioni  $\cos$ ,  $\sin$  sono rispettivamente delle funzioni *pari* e *dispari*, ovvero che si verificano le seguenti.

$$\cos(-\alpha) = \cos(\alpha)$$
  
 $\sin(-\alpha) = -\sin(\alpha)$ 

Questo in quanto, come detto prima in **DEF 1.**, la "lunghezza negativa" rappresenterebbe la stessa lunghezza orientato verso il basso. Quindi graficamente lo si può evincere chiaramente.

**PROP 2.5.** Se al posto di aggiungere un *giro intero* aggiungo un *mezzo giro*, ovvero  $\pi$ , ottengo il suo opposto:

$$cos(\alpha + \pi) = -cos(\alpha)$$
$$sin(\alpha + \pi) = -sin(\alpha)$$

**PROP 2.6.** Ricorrendoci alla definizione etimologica del *coseno*, ovvero "complementi sinus", notiamo che sottraendo l'angolo complementare  $\frac{\pi}{2}$  da  $\alpha$  ottengo sin. Ovvero

$$orall lpha, \cos(rac{\pi}{2} - lpha) = \sin(lpha)$$

## 2.1. Riassunto grafico

Graficamente si può riassumere (quasi) tutte le proprietà nel seguente grafico (con i grafici di  $\cos$ ,  $\sin$  stessi).



## 2.2. Alcuni valori noti

Dai risultati della *geometria elementare* sappiamo i seguenti valori noti del seno e del coseno:

| $\alpha$        | $\cos lpha$          | $\sinlpha$           |
|-----------------|----------------------|----------------------|
| 0               | 1                    | 0                    |
| $\frac{\pi}{6}$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$        |
| $\frac{\pi}{4}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{2}}{2}$ |
| $\frac{\pi}{3}$ | $\frac{1}{2}$        | $\frac{\sqrt{3}}{2}$ |
| $\frac{\pi}{2}$ | 0                    | 1                    |

che verranno dati per noti.

# 2.3. Forme di somma e di sottrazione

Consideriamo due angoli:  $lpha,eta\in\mathbb{R}.$ 

Quindi disegniamo il seguente grafico:





Da cui si evince che

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \sin \beta \cos \alpha$$
  
 $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ 

Queste formule saranno molto importanti per le formule di *prostaferesi* e di *Werner*.

# 2.4. Formule di prostaferesi

Recuperato dalla lezione del 26.10.2023

Voglio calcolare  $\sin a + \sin b$ . Allora riscrivo le forme di sottrazione e di addizione;

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$$
  
 $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \sin \beta \cos \alpha$ 

e li sommo:

$$\sin(\alpha + \beta) + \sin(\alpha - \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha - \sin \alpha \cos \beta + \sin \beta \cos \alpha$$
  
=  $2 \sin \beta \cos \alpha$ 

e ponendo  $\alpha+\beta=a$ ,  $\alpha-\beta=b$ , (dunque  $a+b=2\alpha$  e  $a-b=2\beta$ ) ottengo

$$\sin a + \sin b = 2\sin \frac{a-b}{2}\cos \frac{a+b}{2}$$

Analogo il procedimento per  $\cos \alpha + \cos \beta$ .

## 3. Definizione di arcocoseno e arcoseno

**OSS 3.1.** Considero la funzione  $\cos$ , però con una restrizione al suo dominio e codominio.

$$\cos_{[0,\pi]}:[0,\pi]\longrightarrow [-1,1] \ x\mapsto \cos(x)$$

Questa funzione allora è *biiettiva* (Funzioni, **DEF 3.3.**); ovvero p sia *suriettiva* che *iniettiva* e *strettamente decrescente*.

- 1. Questa è *iniettiva* in quanto considerando tutti gli  $x \in [0, \pi]$  si tocca un *solo* punto ad ogni x considerato. Inoltre è *strettamente decrescente* in quanto il valore parte da  $\cos 0 = 1$  e finisce con  $\cos \pi = -1$ .
- 2. Per lo stesso motivo di prima cos è suriettiva.

#### **DEF 3.1.**

Pertanto secondo il *teorema dell'esistenza della funzione inversa* (Funzioni, **TEOREMA 1.**) la funzione  $\cos_{[0,\pi]}$  ha una sua inversa che chiameremo **l'arcocoseno**;

$$\arccos := \cos_{[0,\pi]}$$

### **DEF 3.2.**

Analogamente si definisce  $\arcsin$  considerando però la restrizione di  $\sin_{[-\frac{\pi}{2},\frac{\pi}{2}]}.$ 

Quindi

$$\arcsin := \sin_{[-\frac{\pi}{2},\frac{\pi}{2}]}$$

Ecco alcuni grafici delle funzioni arccos, arcsin.



# 4. Funzione tangente e arcotangente

**DEF 4.1.** Definiamo la funzione **tangente**  $\tan \alpha$  periodica in come

$$an: \mathbb{R} \diagdown [rac{\pi}{2}]_{\equiv \pi} \longrightarrow \mathbb{R}$$

come il rapporto tra la funzione seno e coseno, ovvero

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

Notiamo che le funzioni  $\sin,\cos$  sono periodiche di  $2\pi$ ; quindi prendendo il rapporto abbiamo che  $\tan$  è periodica di  $\pi$ .

Osservando i *limiti* (Esempi di Limiti di Funzione, **ESEMPIO 5.3.**) di questa funzione possiamo disegnare il seguente grafico:



**DEF 4.2.** Se ho la restrizione della *tangente* in  $]-\frac{\pi}{2},\frac{\pi}{2}[$  allora ho:

$$an_{|(-rac{\pi}{2},rac{\pi}{2})}:(-rac{\pi}{2},rac{\pi}{2})\longrightarrow \mathbb{R};x\mapsto an x$$

e questa diventa *biiettiva*, quindi invertibile, posso definire l'**arcotangente** la sua funzione inversa:

$$\arctan:=(\tan_{|(-\frac{\pi}{2},\frac{\pi}{2})})^{-1}$$

