

1 TMS320DA830/TMS320DA828 Digital Audio System-on-Chip (SoC)

1.1 Features

- Applications
 - Next-Generation A/V Receivers Supporting HD (for Blu-ray, HD-DVD), USB, Networking
 - High-Speed Encoding
 - Automotive Amplifier
 - Amusement
 - Professional Audio
- Software Support
 - Dolby® TrueHD, Dolby® Digital Plus,
 Dolby® Digital EX, Dolby® Pro Logic® Ilx,
 Dolby® Headphone, Dolby® Volume,
 Dolby® Virtual Speaker, Dolby® Consumer
 Encoder,
 Dolby® Automotive Entertainment,
 - DTS-HDTM, DTS-ES 96/24TM,DTS Neo:6TM,
 DTS Surround SensationTM, DTS® 5.1,
 Consumer Encoder
 - MPEG-2 AAC-LC Decode/Encode, MP3
 Decode/Encode, MPEG-4 AAC-LC
 Decode/Encode, MPEG-4 AAC-HE V1
 Decode/Encode
 - WMA9 Decode, WMA8 Encode
 - ATRAC3plus® Decode/Encode
 - THX® Ultra2, THX® Select2, Neural-THX® Surround
 - Audyssey MultEQ XT®, MultEQ®, PrevEQ®, 2EQ®, Dynamic Volume
 - SRS® Circle Surround™ II (CS II), WOWHD, TruBass
 - Expamedia QBS 3D Sound
 - Dimagic Virtualizer
 - TI Perfect Playback™
 - TI RoomEQ
 - TI Bass Boost
 - TI Virtualizer/Headphone Surround
 - TI Effects Library
 - TI Filter Library
 - TI DSD-to-PCM Decode
 - TI Performance Audio Framework (PA/F)
 - TI DSP/BIOS™
 - Chip Support Library and DSP Library
- Dual Core Digital Audio SoC
 - 300-MHz ARM926EJ-S™ RISC MPU
 - 300-MHz C674x[™] VLIW DSP

- Comprehensive System-Wide Security
- ARM926EJ-S Core
 - 32-Bit and 16-Bit (Thumb®) Instructions
 - DSP Instruction Extensions
 - Single Cycle MAC
 - ARM® Jazelle® Technology
 - EmbeddedICE-RT™ for Real-Time Debug
- ARM9 Memory Architecture
- C674x Instruction Set Features
 - Superset of the C67x+™ and C64x+™ ISAs
 - 2400/1800 C674x MIPS/MFLOPS
 - Byte-Addressable (8-/16-/32-/64-Bit Data)
 - 8-Bit Overflow Protection
 - Bit-Field Extract, Set, Clear
 - Normalization, Saturation, Bit-Counting
 - Compact 16-Bit Instructions
- C674x Two Level Cache Memory Architecture
 - 32K-Byte L1P Program RAM/Cache
 - 32K-Byte L1D Data RAM/Cache
 - 256K-Byte L2 Unified Mapped RAM/Cache
 - Flexible RAM/Cache Partition (L1 and L2)
 - 1024KB L2 ROM
- Enhanced Direct-Memory-Access Controller 3 (EDMA3):
 - 2 Transfer Controllers
 - 32 Independent DMA Channels
 - 8 Quick DMA Channels
 - Programmable Transfer Burst Size
- dMAX Dual Data Movement Accelerator:
 - Memory-to-Memory Transfers
 - Memory-to-Peripheral Transfers
 - Packing/Unpacking Delay Data
 - Circular Addressing
 - Non-Sequential Addressing for Reverb
- TMS320C674x[™] Fixed/Floating-Point VLIW DSP Core
 - Load-Store Architecture With Non-Aligned Support
 - 64 General-Purpose Registers (32 Bit)
 - Six ALU (32-/40-Bit) Functional Units
 - Supports 32-Bit Integer, SP (IEEE Single Precision/32-Bit) and DP (IEEE Double Precision/64-Bit) Floating Point

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this document.

C674x, TMS320C6000, C6000 are trademarks of Texas Instruments. ARM926EJ-S, ETM9, CoreSight are trademarks of ARM Limited. All other trademarks are the property of their respective owners.

Supports up to Four SP Additions Per Clock, Four DP Additions Every 2

Clocks

Supports up to Two Floating Point (SP or DP) Approximate Reciprocal or **Square Root Operations Per Cycle**

- Two Multiply Functional Units
 - Mixed-Precision IEEE Floating Point Multiply Supported up to:
 - 2 SP x SP -> SP Per Clock
 - 2 SP x SP -> DP Every Two Clocks
 - 2 SP x DP -> DP Every Three Clocks
 - 2 DP x DP -> DP Every Four Clocks
 - Fixed Point Multiply Supports Two 32 x 32-Bit Multiplies, Four 16 x 16-Bit Multiplies, or Eight 8 x 8-Bit Multiplies per Clock Cycle, and Complex Multiples
- **Instruction Packing Reduces Code Size**
- **All Instructions Conditional**
- **Hardware Support for Modulo Loop** Operation
- Protected Mode Operation
- **Exceptions Support for Error Detection and Program Redirection**
- 128K-Byte RAM Shared Memory
- **Two External Memory Interfaces:**
 - EMIFA
 - NOR (8-/16-Bit-Wide Data)
 - NAND (8-/16-Bit-Wide Data)
 - 16-bit SDRAM, up to 128 Mbit (DA830 only)
 - EMIFB
 - 16/32-bit SDRAM, up to 512 Mbit (DA830)
 - 16-bit SDRAM, up to 256 Mbit (DA828)
- Three Configurable 16550 type UART Modules:
 - UART0 With Modem Control Signals
 - 16-byte FIFO
 - 16x or 13x Oversampling Option
- **LCD Controller**
- Two Serial Peripheral Interfaces (SPI) Each With One Chip-Select
- Multimedia Card (MMC)/Secure Digital (SD) Card Interface with Secure Data I/O (SDIO)
- Two Master/Slave Inter-Integrated Circuit (I²C Bus™)
- One Host-Port Interface (HPI) With 16-Bit-Wide Muxed Address/Data Bus For High Bandwidth
- **USB 1.1 OHCI (Host) With Integrated PHY** (USB1)

- **USB 2.0 OTG Port With Integrated PHY (USB0):**
 - USB 2.0 High-/Full-Speed Client
 - **USB 2.0 High-/Full-/Low-Speed Host**
 - High-speed functionality available on DA830 device only
 - **End Point 0 (Control)**
 - End Points 1,2,3,4 (Control, Bulk, Interrupt or ISOC) Rx and Tx
- **Three Multichannel Audio Serial Ports:**
 - Transmit/Receive Clocks up to 50 MHz
 - Six Clock Zones and 28 Serial Data Pins
 - Supports TDM, I2S, and Similar Formats
 - **DIT-Capable (McASP2)**
 - FIFO buffers for Transmit and Receive
- 10/100 Mb/s Ethernet MAC (EMAC):
 - IEEE 802.3 Compliant (3.3-V I/O Only)
 - RMII Media Independent Interface
 - Management Data I/O (MDIO) Module
- Real-Time Clock With 32 KHz Oscillator and Separate Power Rail
- **One 64-Bit General-Purpose Timer** (Configurable as Two 32-Bit Timers)
- One 64-Bit General-Purpose Timer (Watch Dog)
- **Three Enhanced Pulse Width Modulators** (eHRPWM):
 - **Dedicated 16-Bit Time-Base Counter With Period And Frequency Control**
 - 6 Single Edge, 6 Dual Edge Symmetric or 3 **Dual Edge Asymmetric Outputs**
 - **Dead-Band Generation**
 - **PWM Chopping by High-Frequency Carrier**
 - **Trip Zone Input**
- **Three 32-Bit Enhanced Capture Modules** (eCAP):
 - Configurable as 3 Capture Inputs or 3 **Auxiliary Pulse Width Modulator (APWM)** outputs
 - Single Shot Capture of up to Four Event Time-Stamps
- Two 32-Bit Enhanced Quadrature Encoder Pulse Modules (eQEP)
- DA830 Device:
 - 256-Ball Pb-Free Plastic Ball Grid Array (PBGA) [ZKB Suffix], 1.0-mm Ball Pitch
- **DA828 Device**
 - 176-pin PowerPADTM Plastic Quad Flat Pack [PTP suffix], 0.5-mm Pin Pitch
- **Commercial or Extended Temperature**

1.2 Trademarks

Perfect Playback, DSP/BIOS, TMS320C6000, C6000, TMS320, TMS320C62x, and TMS320C67x are trademarks of Texas Instruments.

Audyssey MultEQ XT, MultEQ, PrevEQ, and 2EQ are registered trademarks of Audyssey Laboratories.

SRS is a registered trademark of SRS Labs, Inc. in the U.S. and selected foreign countries.

Circle Surround II is a trademark of SRS Labs, Inc.

DTS-ES, DTS Neo:6, DTS 96/24, DTS-ES 96/24, and DTS-HD are trademarks of Digital Theater Systems, Inc.

DTS is a registered trademark of Digital Theater Systems, Inc.

Dolby and Pro Logic are registered trademarks of Dolby Laboratories.

ATRAC3plus is a registered trademark of Sony Corporation in Japan and/or other countries/territories.

THX is a registered trademark of THX Ltd.

All trademarks are the property of their respective owners.

1.3 Description

The TMS320DA830/TMS320DA828 (also referenced as DA830/DA828) is an Audio System-on-Chip (SoC) based on an ARM926EJ-S™ and a C674x™ DSP core. It provides significantly lower power than other members of the TMS320C6000™ platform of DSPs.

The device enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance life through the maximum flexibility of a fully integrated mixed processor solution.

The dual-core architecture of the device provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an ARM926EJ-S core.

The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously.

The ARM core has a coprocessor 15 (CP15), protection module, and Data and program Memory Management Units (MMUs) with table look-aside buffers. It has separate 16K-byte instruction and 16K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The ARM core also has a 8KB RAM (Vector Table) and 64KB ROM.

The DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256KB memory space that is shared between program and data space. L2 also has a 1024KB ROM. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by ARM and other hosts in the system, an additional 128KB RAM shared memory is available for use by other hosts without affecting DSP performance.

The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; two inter-integrated circuit (I2C) Bus interfaces; 3 multichannel audio serial port (McASP0) with 16/12/4 serializers and FIFO buffers; 2 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host port interface (HPI); up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with RTS and CTS); 3 enhanced hi-res pulse width modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; 2 32-bit enhanced quadrature pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM.

The Ethernet Media Access Controller (EMAC) provides an efficient interface between the device and the network. The device EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO) interface is available for PHY configuration.

The HPI, I2C, SPI, USB1.1 and USB2.0 ports allow the device to easily control peripheral devices and/or communicate with host processors.

The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.

The device has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows[™] debugger interface for visibility into source code execution.

1.4 Functional Block Diagram

Figure 1-1 shows the functional block diagram of the device.

Figure 1-1. TMS320DA830/TMS320DA828 Functional Block Diagram

1	۲.	_	n	4	^	n	4	·
ı		n	п	П	μ	п	T'	٠

1		320DA830/TMS320DA828 Digital Audio			6.10	External Memory Interface A (EMIFA)	. <u>73</u>
	-	em-on-Chip (SoC)			6.11	External Memory Interface B (EMIFB)	<u>83</u>
	1.1	Features			6.12	MMC / SD / SDIO (MMCSD)	. <u>88</u>
	1.2	Trademarks	_		6.13	Ethernet Media Access Controller (EMAC)	<u>91</u>
	1.3	Description			6.14	Management Data Input/Output (MDIO)	<u>97</u>
	1.4	Functional Block Diagram			6.15	Multichannel Audio Serial Ports (McASP0, McASP	
2		sion History				and McASP2)	
3	Devi	ce Overview	<u>8</u>		6.16	Serial Peripheral Interface Ports (SPI0, SPI1)	
	3.1	Device Characteristics	<u>8</u>		6.17	Enhanced Capture Module (eCAP)	
	3.2	Device Compatibility	9		6.18	Enhanced Quadrature Encoder Module (eQEP)	
	3.3	ARM Subsystem	<u>9</u>		6.19	Enhanced High-Resolution Pulse-Width Modulator	
	3.4	DSP Subsystem	<u>12</u>			(eHRPWM)	
	3.5	Memory Map Summary	<u>18</u>		6.20	LCD Controller	
	3.6	Pin Assignments	<u>22</u>		6.21	Timers	
	3.7	Terminal Functions	<u>24</u>		6.22	Inter-Integrated Circuit Serial Ports (I2C0, I2C1)	<u>156</u>
4	Devi	ce Configuration	<u>41</u>		6.23	Universal Asynchronous Receiver/Transmitter (UART)	<u>160</u>
	4.1	Introduction	<u>41</u>		6.24	USB1 Host Controller (USB1.1 OHCI)	
	4.2	Boot Modes Supported	41		-	USB0 OTG (USB2.0 OTG)	
	4.3	SYSCFG Module	<u>41</u>		6.25	,	
5	Devi	ce Operating Conditions			6.26	Universal Host-Port Interface (UHPI)	
	5.1	Absolute Maximum Ratings Over Operating Case			6.27	Memory Protection Units (MPU)	
		Temperature Range			6.28	Power and Sleep Controller (PSC)	
	•	ss Otherwise Noted)	_		6.29	Emulation Logic	
	5.2	Recommended Operating Conditions	<u>45</u>	_	6.30	Real Time Clock (RTC)	<u>187</u>
	5.3	Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case		7		ce and Document Support	
		Temperature (Unless Otherwise Noted)	46		7.1	Device Support	
6	Perin	oheral Information and Electrical		_	7.2	Documentation Support	<u>191</u>
		cifications	<u>47</u>	8		nanical Packaging and Orderable	102
	6.1	Parameter Information	<u>47</u>		8.1	mation Device and Development-Support Tool	193
	6.2	Recommended Clock and Control Signal Transition			0.1	Nomenclature	193
		Behavior	<u>48</u>		8.2	Packaging Materials Information	
	6.3	Power Supplies	<u>49</u>		8.3	Thermal Data for ZKB	
	6.4	Reset	<u>50</u>		8.4	Thermal Data for PTP	
	6.5	Crystal Oscillator or External Clock Input	<u>52</u>		8.5	Supplementary Information About the 176-pin PTP	
	6.6	Clock PLLs	<u>53</u>		5.5	PowerPAD™ Package	
	6.7	Interrupts	<u>56</u>		8.6	Packaging Information	
	6.8	General-Purpose Input/Output (GPIO)	<u>65</u>		8.7	Mechanical Drawings	
	6.9	EDMA			- '		

2 Revision History

This data manual revision history highlights the changes made to the SPRS483 device-specific data manual to make it an SPRS483A revision.

Scope: Applicable updates, specifically relating to TMS320DA830 device which is now in the Production Data (PD) stage of development have been incorporated. TMS320DA828 is still at Advance Information (AI) stage of development.

Table 2-1. Revision History

ADDITIONS/MODIFICATIONS/DELETIONS

Global: Updated "Floating-Point" to "Fixed/Floating-Point".

Global: Updated the document to correct typos.

Global: Updated the document to highlight USB0 on DA828 does not support HS.

Global: Deleted the following sections since they are covered in TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide - Literature Number SPRUFK9

- Pin Multiplexing
- Bus Master Priority Configuration
- Chip Configuration Registers (CFGCHIP and SUSPSRC)
- DSP Communication Registers

Global: Added the following note to the tables that support multiplexed pins: "The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output."

Global: Updated reference literature titles throughout document.

Global: Added a new section Section 7 and moved the device and document support to this new section.

Table 3-1, Characteristics of the DA830/DA828 Processor: Updated the EMIFB entry.

Section 3.7.1, Device Reset and JTAG: Updated TDO PULL from "IPU" to IPD"

Added Section 6.3.2, Unused USB0 (USB2.0) and USB1 (USB1.1) Pin Configurations

Section 6.4.2, Warm Reset: Added Emulation content.

Added Table 6-6, PLL Controller 0 Registers

Added Section 6.29.3, Initial Scan Chain Configuration

Added Section 6.29.4, JTAG 1149.1 Boundary Scan Considerations

Table 6-89, UART Registers: Added Modem Status Register and Scratchpad Register.

Section 5.1, Absolute Maximum Ratings Over Operating Case Temperature Range:

- Updated "Transient" to "Transient Overshoot/Undershoot"
- Updated the right column entry to "20% of DVDD for up to 20% of the signal period"

Updated Section 5.2, Recommended Operating Conditions

Updated Figure 8-3, Device Nomenclature

Added Section 8.5, Supplementary Information About the 176-pin PTP PowerPAD™ Package

Device Overview

3.1 Device Characteristics

Table 3-1 provides an overview of TMS320DA830/TMS320DA828. The table shows significant features of the device, including the capacity of on-chip RAM, peripherals, and the package type with pin count.

Table 3-1. Characteristics of the DA830/DA828 Processor

<u> </u>	14510 0 11 011	aracteristics of the DA830/DA828 F	1000001				
HARDWARE	FEATURES	DA828	DA830				
	EMIFB	SDRAM only, 16-bit bus width, up to 256 Mbit	SDRAM only, 16/32-bit bus width, up to 512 Mbit				
	EMIFA	Asynchronous (8-bit bus width) RAM, Flash, NOR, NAND	Asynchronous (8/16-bit bus width) RAM, Flash, 16-bit SDRAM up to 128 Mbit , NOR, NAND				
	Flash Card Interface	MMC and SD c	ards supported.				
	EDMA3	32 independent channels, 8 QDM	A channels, 2 Transfer controllers				
	dMAX	16 independ	ent channels				
	Timers	2 64-Bit General Purpose (configurable as 2 separate 32-bit timers, 1 configuration Watch Dog)					
	UART	3 (one with RTS an	nd CTS flow control)				
	SPI	2 (Each with one ha	ardware chip select)				
Davinhanala	I ² C	2 (both Ma	ster/Slave)				
Not all peripherals pins are available at the same time (for more detail, see the Device Configurations section).	Multichannel Audio Serial Port [McASP]	3 (each with transmit/receive, F	FIFO buffer, 16/12/4 serializers)				
	10/100 Ethernet MAC with Management Data I/O	1 (RMII I	nterface)				
	eHRPWM	6 Single Edge, 6 Dual Edge Symmetri	c, or 3 Dual Edge Asymmetric Outputs				
	eCAP	3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs					
	eQEP	2 32-bit QEP channels	s with 4 inputs/channel				
	UHPI	-	1 (16-bit multiplexed address/data)				
	USB 2.0 (USB0)	Full Speed Host Or Device with On-Chip PHY	High-Speed OTG Controller with on-chip OTG PHY				
	USB 1.1 (USB1)	-	Full-Speed OHCI (as host) with on-chip PHY				
	General-Purpose Input/Output Port	8 banks of 16-bit					
	LCD Controller	•	1				
	RTC		II. Provides time and date tracking and alarm bility.)				
	Size (Bytes)	488KB RAM,	1088KB ROM				
On-Chip Memory	Organization	32KB L1 Program (L1) 32KB L1 Data (L1D) 256KB Unified Mapp 1024KB I DSP Memories can be made accessible AF 16KB I	SP P)/Cache (up to 32KB) /Cache (up to 32KB) /Cache (up to 32KB) ped RAM/Cache (L2) ROM (L2) to ARM, EDMA3, and other peripherals. RM -Cache D-Cache				
		8KB RAM (\ 64KB ADDITIONAL S H	/ector Table) ROM IARED MEMORY 3 RAM				
C674x CPU ID + CPU Rev ID	Control Status Register (CSR.[31:16])	0x1	400				

Table 3-1. Characteristics of the DA830/DA828 Processor (continued)

HARDWAF	RE FEATURES	DA828	DA830				
C674x Megamodule Revision	Revision ID Register (MM_REVID[15:0])	0x0000					
JTAG BSDL_ID	DEVIDR0 register	0x8B7	DF02F				
CDI I Fraguency	NAL I -	674x DSP	300 MHz				
CPU Frequency	MHz	ARM926	300 MHz				
Out True		674x DSI	⊇ 3.3 3 ns				
Cycle Time	ns	ARM926 3.33 ns					
Voltage	Core (V)	1.2 V					
voitage	I/O (V)	3.3 V					
Package		24 mm x 24 mm, 176-Pin, 0.5 mm pitch, TQFP (PTP)	17 mm x 17 mm, 256-Ball 1 mm pitch, PBGA (ZKB)				
Product Status ⁽¹⁾	Product Preview (PP), Advance Information (AI), or Production Data (PD)	Al	PD				

⁽¹⁾ ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice.

3.2 Device Compatibility

The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc.

The C674x DSP core is code-compatible with the C6000TM DSP platform and supports features of both the C64x+ and C67x+ DSP families.

3.3 ARM Subsystem

The ARM Subsystem includes the following features:

- ARM926EJ-S RISC processor
- ARMv5TEJ (32/16-bit) instruction set
- Little endian
- System Control Co-Processor 15 (CP15)
- MMU
- 16KB Instruction cache
- 16KB Data cache
- Write Buffer
- Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
- ARM Interrupt controller

3.3.1 ARM926EJ-S RISC CPU

The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications where full memory management, high performance, low die size, and low power are all important. The ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to trade off between high performance and high code density. Specifically, the ARM926EJ-S processor supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes, providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code overhead.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a complete high performance subsystem, including:

- ARM926EJ -S integer core
- CP15 system control coprocessor
- Memory Management Unit (MMU)
- Separate instruction and data Caches
- Write buffer
- Separate instruction and data (internal RAM) interfaces
- Separate instruction and data AHB bus interfaces
- Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)

For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available at http://www.arm.com

3.3.2 CP15

The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and data caches, Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as supervisor or system mode.

3.3.3 MMU

A single set of two level page tables stored in main memory is used to control the address translation, permission checks and memory region attributes for both data and instruction accesses. The MMU uses a single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The MMU features are:

- Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme.
- Mapping sizes are:
 - 1MB (sections)
 - 64KB (large pages)
 - 4KB (small pages)
 - 1KB (tiny pages)
- Access permissions for large pages and small pages can be specified separately for each quarter of the page (subpage permissions)
- Hardware page table walks
- Invalidate entire TLB, using CP15 register 8
- Invalidate TLB entry, selected by MVA, using CP15 register 8
- Lockdown of TLB entries, using CP15 register 10

3.3.4 Caches and Write Buffer

The size of the Instruction Cache is 16KB, Data cache is 16KB. Additionally, the Caches have the following features:

- Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA)
- Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with two dirty bits in the Dcache
- Dcache supports write-through and write-back (or copy back) cache operation, selected by memory region using the C and B bits in the MMU translation tables.
- Critical-word first cache refilling
- Cache lockdown registers enable control over which cache ways are used for allocation on a line fill, providing a mechanism for both lockdown, and controlling cache corruption

- Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the possibility of TLB misses related to the write-back address.
- Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of the Dcache or Icache, and regions of virtual memory.

The write buffer is used for all writes to a noncachable bufferable region, write-through region and write misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a four-address buffer. The Dcache write-back has eight data word entries and a single address entry.

3.3.5 Advanced High-Performance Bus (AHB)

The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the Config Bus and the external memories bus.

3.3.6 Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB)

To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an Embedded Trace Macrocell (ETM). The ARM926EJ-S Subsystem in the device also includes the Embedded Trace Buffer (ETB). The ETM consists of two parts:

- Trace Port provides real-time trace capability for the ARM9.
- Triggering facilities provide trigger resources, which include address and data comparators, counter, and sequencers.

The device trace port is not pinned out and is instead only connected to the Embedded Trace Buffer. The ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured trace data.

This device uses ETM9[™] version r2p2 and ETB version r0p1. Documentation on the ETM and ETB is available from ARM Ltd. Reference the 'CoreSight[™] ETM9[™] Technical Reference Manual, revision r0p1' and the 'ETM9 Technical Reference Manual, revision r2p2'.

3.3.7 ARM Memory Mapping

By default the ARM has access to most on and off chip memory areas, including the DSP Internal memories, EMIFA, EMIFB, and the additional 128K byte on chip shared SRAM. Likewise almost all of the on chip peripherals are accessible to the ARM by default.

To improve security and/or robustness the device has extensive memory and peripheral protection units which can be configured to limit access rights to the various on / off chip resources to specific hosts; including the ARM as well as other master peripherals. This allows the system tasks to be partitioned between the ARM and DSP as best suites the particular application; while enhancing the overall robustness of the solution.

See Table 3-3 for a detailed top level DA830/DA828 memory map that includes the ARM memory space.

TEXAS INSTRUMENTS

3.4 DSP Subsystem

The DSP Subsystem includes the following features:

- C674x DSP CPU
- 32KB L1 Program (L1P)/Cache (up to 32KB)
- 32KB L1 Data (L1D)/Cache (up to 32KB)
- 256KB Unified Mapped RAM/Cache (L2)
- 1MB Mask-programmable ROM
- Little endian

Figure 3-1. C674x Megamodule Block Diagram

12 Device Overview Submit Documentation Feedback

3.4.1 C674x DSP CPU Description

The C674x Central Processing Unit (CPU) consists of eight functional units, two register files, and two data paths as shown in Figure 3-2. The two general-purpose register files (A and B) each contain 32 32-bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40-bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-numbered register).

The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from memory to the register file and store results from the register file into memory.

The C674x CPU combines the performance of the C64x+ core with the floating-point capabilities of the C67x core.

Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x 32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with add/subtract capabilities, four 8 x 8 bit multiplies with add operations, and four 16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and modems require complex multiplication. The complex multiply (CMPY) instruction takes four 16-bit inputs and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The 32 x 32 bit multiply instructions provide the extended precision necessary for audio and other high-precision algorithms on a variety of signed and unsigned 32-bit data types.

The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions.

The C674x core enhances the .S unit in several ways. On previous cores, dual 16-bit MIN2 and MAX2 comparisons were only available on the .L units. On the C674x core they are also available on the .S unit which increases the performance of algorithms that do searching and sorting. Finally, to increase data packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack instructions return parallel results to output precision including saturation support.

Other new features include:

- **SPLOOP** A small instruction buffer in the CPU that aids in creation of software pipelining loops where multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible.
- Compact Instructions The native instruction size for the C6000 devices is 32 bits. Many common instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C674x compiler can restrict the code to use certain registers in the register file. This compression is performed by the code generation tools.
- Instruction Set Enhancement As noted above, there are new instructions such as 32-bit multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field multiplication.
- Exceptions Handling Intended to aid the programmer in isolating bugs. The C674x CPU is able to detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and from system events (such as a watchdog time expiration).
- **Privilege** Defines user and supervisor modes of operation, allowing the operating system to give a basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with read, write, and execute permissions.

• **Time-Stamp Counter** - Primarily targeted for Real-Time Operating System (RTOS) robustness, a free-running time-stamp counter is implemented in the CPU which is *not* sensitive to system stalls.

For more details on the C674x CPU and its enhancements over the C64x architecture, see the following documents:

- TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732)
- TMS320C64x Technical Overview (literature number SPRU395)

- A. On .M unit, dst2 is 32 MSB.
- On .M unit, dst1 is 32 LSB. B.
- On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits.
- D. On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.

Figure 3-2. TMS320C674x[™] CPU (DSP Core) Data Paths

3.4.2 DSP Memory Mapping

The DSP memory map is shown in Section 3.5

By default the DSP also has access to most on and off chip memory areas, with the exception of the ARM RAM, ROM, and AINTC interrupt controller. The DSP also boots first, and must release the ARM from reset before the ARM can execute any code.

Additionally, the DSP megamodule includes the capability to limit access to its internal memories through its SDMA port; without needing an external MPU unit.

3.4.2.1 ARM Internal Memories

The DSP does not have access to the ARM internal memory.

3.4.2.2 External Memories

The DSP has access to the following External memories:

- Asynchronous EMIF / SDRAM / NAND / NOR Flash (EMIFA)
- SDRAM (EMIFB)

3.4.2.3 DSP Internal Memories

The DSP has access to the following DSP memories:

- L2 RAM
- L1P RAM
- L1D RAM

3.4.2.4 C674x CPU

The C674x core uses a two-level cache-based architecture. The Level 1 Program cache (L1P) is 32 KB direct mapped cache and the Level 1 Data cache (L1D) is 32 KB 2-way set associated cache. The Level 2 memory/cache (L2) consists of a 256 KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or a combination of both.

Table 3-2 shows a memory map of the C674x CPU cache registers for the device.

Table 3-2. C674x Cache Registers

HEX ADDRESS RANGE	REGISTER ACRONYM	DESCRIPTION				
0x0184 0000	L2CFG	L2 Cache configuration register				
0x0184 0020	L1PCFG	L1P Size Cache configuration register				
0x0184 0024	L1PCC	L1P Freeze Mode Cache configuration register				
0x0184 0040	L1DCFG	L1D Size Cache configuration register				
0x0184 0044	L1DCC	L1D Freeze Mode Cache configuration register				
0x0184 0048 - 0x0184 0FFC	-	Reserved				
0x0184 1000	EDMAWEIGHT	L2 EDMA access control register				
0x0184 1004 - 0x0184 1FFC	-	Reserved				
0x0184 2000	L2ALLOC0	L2 allocation register 0				
0x0184 2004	L2ALLOC1	L2 allocation register 1				
0x0184 2008	L2ALLOC2	L2 allocation register 2				
0x0184 200C	L2ALLOC3	L2 allocation register 3				
0x0184 2010 - 0x0184 3FFF	-	Reserved				
0x0184 4000	L2WBAR	L2 writeback base address register				
0x0184 4004	L2WWC	L2 writeback word count register				
0x0184 4010	L2WIBAR	L2 writeback invalidate base address register				
0x0184 4014	L2WIWC	L2 writeback invalidate word count register				
0x0184 4018	L2IBAR	L2 invalidate base address register				

Device Overview

Table 3-2. C674x Cache Registers (continued)

HEX ADDRESS RANGE	REGISTER ACRONYM	DESCRIPTION				
0x0184 401C	L2IWC	L2 invalidate word count register				
0x0184 4020	L1PIBAR	L1P invalidate base address register				
0x0184 4024	L1PIWC	L1P invalidate word count register				
0x0184 4030	L1DWIBAR	L1D writeback invalidate base address register				
0x0184 4034	L1DWIWC	L1D writeback invalidate word count register				
0x0184 4038	-	Reserved				
0x0184 4040	L1DWBAR	L1D Block Writeback				
0x0184 4044	L1DWWC	L1D Block Writeback				
0x0184 4048	L1DIBAR	L1D invalidate base address register				
0x0184 404C	L1DIWC	L1D invalidate word count register				
0x0184 4050 - 0x0184 4FFF	-	Reserved				
0x0184 5000	L2WB	L2 writeback all register				
0x0184 5004	L2WBINV	L2 writeback invalidate all register				
0x0184 5008	L2INV	L2 Global Invalidate without writeback				
0x0184 500C - 0x0184 5027	-	Reserved				
0x0184 5028	L1PINV	L1P Global Invalidate				
0x0184 502C - 0x0184 5039	-	Reserved				
0x0184 5040	L1DWB	L1D Global Writeback				
0x0184 5044	L1DWBINV	L1D Global Writeback with Invalidate				
0x0184 5048	L1DINV	L1D Global Invalidate without writeback				
0x0184 8000 - 0x0184 80FF	MAR0 - MAR63	Reserved 0x0000 0000 – 0x3FFF FFFF				
0x0184 8100 – 0x0184 817F	MAR64 – MAR95	Memory Attribute Registers for EMIFA SDRAM Data (CS0) 0x4000 0000 – 0x5FFF FFFF				
0x0184 8180 – 0x0184 8187	MAR96 - MAR97	Memory Attribute Registers for EMIFA Async Data (CS2) 0x6000 0000 – 0x61FF FFFF				
0x0184 8188 – 0x0184 818F	MAR98 – MAR99	Memory Attribute Registers for EMIFA Async Data (CS2) 0x6200 0000 – 0x63FF FFFF				
0x0184 8190 – 0x0184 8197	MAR100 – MAR101	Memory Attribute Registers for EMIFA Async Data (CS2) 0x6400 0000 – 0x65FF FFFF				
0x0184 8198 – 0x0184 819F	MAR102 – MAR103	Memory Attribute Registers for EMIFA Async Data (CS2) 0x6600 0000 – 0x67FF FFFF				
0x0184 81A0 - 0x0184 81FF	MAR104 – MAR127	Reserved 0x6800 0000 – 0x7FFF FFFF				
0v0404 0000	MAD400	Memory Attribute Register for Shared RAM 0x8000 0000 – 0x8001 FFFF				
0x0184 8200 MAR128		Reserved 0x8002 0000 – 0x81FF FFFF				
0x0184 8204 – 0x0184 82FF	MAR129 – MAR191	Reserved 0x8200 0000 – 0xBFFF FFFF				
0x0184 8300 – 0x0184 837F	MAR192 – MAR223	Memory Attribute Registers for EMIFD SDRAM Data (CS2) 0xC000 0000 – 0xDFFF FFFF				
0x0184 8380 – 0x0184 83FF	MAR224 – MAR255	Reserved 0xE000 0000 – 0xFFFF FFFF				

See Table 3-3 for a detailed top level DA830/DA828 memory map that includes the DSP memory space.

3.5 Memory Map Summary

Table 3-3. DA830/DA828 Top Level Memory Map

		rabie	3-3. DA630/D	A828 Top Leve	er wernory wi	ap						
Start Address	End Address	Size	ARM Mem Map	DSP Mem Map	EDMA Mem Map	dMAX Mem Map	Master Peripheral Mem Map	LCDC Mem Map				
0x0000 0000	0x0000 0FFF	4K		-		dMAX Local Address Space	-					
0x0000 1000	0x006F FFFF	6M + 1020K			-							
0x0070 0000	0x007F FFFF	1024K	-	DSP L2 ROM		-						
0x0080 0000	0x0083 FFFF	256K	-	- DSP L2 RAM -								
0x0084 0000	0x00DF FFFF	5M + 768K										
0x00E0 0000	0x00E0 7FFF	32K	-	DSP L1P RAM		-						
0x00E0 8000	0x00EF FFFF	992K			-							
0x00F0 0000	0x00F0 7FFF	32K	-	DSP L1D RAM		-						
0x00F0 8000	0x017F FFFF	8M + 992K			-							
0x0180 0000	0x0180 FFFF	64K	-	DSP Interrupt Controller		-						
0x0181 0000	0x0181 0FFF	4K	-	- DSP Powerdown - Controller								
0x0181 1000	0x0181 1FFF	4K	-	DSP Security ID		-						
0x0181 2000	0x0181 2FFF	4K	-	DSP Revision ID	-							
0x0181 3000	0x0181 FFFF	52K	-									
0x0182 0000	0x0182 FFFF	64K	-	- DSP EMC -								
0x0183 0000	0x0183 FFFF	64K	-	- DSP Internal - Reserved								
0x0184 0000	0x0184 FFFF	64K	-	DSP Memory System		-						
0x0185 0000	0x0187 FFFF	192K			-							
0x0188 0000	0x01BC 03FF	3M + 257K			-							
0x01BC 0400	0x01BC 042F	48			-							
0x01BC 0430	0x01BC 044F	32			-							
0x01BC 0000	0x01BC 0FFF	4K	ARM ETB memory			-						
0x01BC 1000	0x01BC 17FF	2K	ARM ETB reg			-						
0x01BC 1800	0x01BC 18FF	256	ARM Ice Crusher			-						
0x01BC 0500	0x01BC FFFF	62K + 768			-							
0x01BD 0000	0x01BD FFFF	64K			-							
0x01BE 0000	0x01BF FFFF	128K			-							
0x01C0 0000	0x01C0 7FFF	32K	EDMA3 CC -									
0x01C0 8000	0x01C0 83FF	1024	EDMA3 TC0 -									
0x01C0 8400	0x01C0 87FF	1024	EDMA3 TC1 -									
0x01C0 8800	0x01C0 FFFF	30K	•									
0x01C1 0000	0x01C1 0FFF	4K	PSC 0									
0x01C1 1000	0x01C1 1FFF	4K		PLL Controller -								
0x01C1 2000	0x01C1 3FFF	8K			-							
0x01C1 4000	0x01C1 4FFF	4K		SYSCFG -								
0.001014000	UAUTOT 4FFF	41\	SYSUFG -									

Table 3-3. DA830/DA828 Top Level Memory Map (continued)

				TOP LEVEL MEIN		,	1					
Start Address	End Address	Size	ARM Mem Map	DSP Mem Map	EDMA Mem Map	dMAX Mem Map	Master Peripheral Mem Map	LCDC Mem Map				
0x01C1 5000	0x01C1 5FFF	4K			-							
0x01C1 6000	0x01C1 6FFF	4K			-							
0x01C1 7000	0x01C1 7FFF	4K			-							
0x01C1 8000	0x01C1 FFFF	32K			-							
0x01C2 0000	0x01C2 0FFF	4K			Timer64P 0			-				
0x01C2 1000	0x01C2 1FFF	4K		Timer64P 1								
0x01C2 2000	0x01C2 2FFF	4K			I2C 0			-				
0x01C2 3000	0x01C2 3FFF	4K			RTC			-				
0x01C2 4000	0x01C2 4FFF	4K			-							
0x01C2 5000	0x01C2 FFFF	44K			-							
0x01C3 0000	0x01C3 01FF	512		dMA	AX Data RAM 0			-				
0x01C3 0200	0x01C3 1FFF	7K + 512			-							
0x01C3 2000	0x01C3 21FF	512		dMA	AX Data RAM 1			-				
0x01C3 2200	0x01C3 3FFF	7K + 512		-								
0x01C3 4000	0x01C3 7FFF	16K		dMAX	Control Register	 S		-				
0x01C3 8000	0x01C3 8FFF	4K			Configuration M			-				
0x01C3 9000	0x01C3 BFFF	12K			-							
0x01C3 C000	0x01C3 CFFF	4K		dMAX MAX	1 Configuration M	1emory		-				
0x01C3 D000	0x01C3 FFFF	12K			-	,						
0x01C4 0000	0x01C4 0FFF	4K			MMC/SD 0			_				
0x01C4 1000	0x01C4 1FFF	4K			SPI 0			-				
0x01C4 2000	0x01C4 2FFF	4K			UART 0			-				
0x01C4 3000	0x01C4 3FFF	4K			-							
0x01C4 4000	0x01CF FFFF	752K			-							
0x01D0 0000	0x01D0 0FFF	4K		Mc	ASP 0 Control			-				
0x01D0 1000	0x01D0 1FFF	4K		McA	SP 0 AFIFO Ctrl			-				
0x01D0 2000	0x01D0 2FFF	4K		M	lcASP 0 Data			-				
0x01D0 3000	0x01D0 3FFF	4K			-							
0x01D0 4000	0x01D0 4FFF	4K		Mc	ASP 1 Control			-				
0x01D0 5000	0x01D0 5FFF	4K			SP 1 AFIFO Ctrl			-				
0x01D0 6000	0x01D0 6FFF	4K		M	lcASP 1 Data			-				
0x01D0 7000	0x01D0 7FFF	4K			-							
0x01D0 8000	0x01D0 8FFF	4K		Mc	ASP 2 Control			-				
0x01D0 9000	0x01D0 9FFF	4K			SP 2 AFIFO Ctrl			-				
0x01D0 A000	0x01D0 AFFF	4K			lcASP 2 Data			-				
0x01D0 B000	0x01D0 BFFF	4K										
0x01D0 C000	0x01D0 CFFF	4K			UART 1			-				
0x01D0 D000	0x01D0 DFFF	4K	UART 2									
0x01D0 E000	0x01D0 EFFF	4K			_							
0x01D0 F000	0x01DF FFFF	964K			-							
0x01E0 0000	0x01E0 FFFF	64K			USB0			_				
0x01E1 0000	0x01E1 0FFF	4K			UHPI			-				
0x01E1 1000	0x01E1 1FFF	4K										
0x01E1 2000	0x01E1 2FFF	4K			SPI 1			_				
370 IL 1 2000	0.01E12111	711			J. 1 1							

Texas Instruments

Table 3-3. DA830/DA828 Top Level Memory Map (continued)

Start Address	End Address	Size	ARM Mem Map	DSP Mem Map	EDMA Mem Map	dMAX Mem Map	Master Peripheral	LCDC Mem				
			Мар		Iviap	Wap	Mem Map	Мар				
0x01E1 3000	0x01E1 3FFF	4K		L	CD Controller			-				
0x01E1 4000	0x01E1 4FFF	4K			MPU 1			-				
0x01E1 5000	0x01E1 5FFF	4K		MPU 2								
0x01E1 6000	0x01E1 FFFF	40K		-								
0x01E2 0000	0x01E2 1FFF	8K		EMAC Control Module RAM								
0x01E2 2000	0x01E2 2FFF	4K		EMAC Cor	ntrol Module Reg	isters		-				
0x01E2 3000	0x01E2 3FFF	4K		EMAC	Control Register	'S		-				
0x01E2 4000	0x01E2 4FFF	4K		EM	MAC MDIO port			-				
0x01E2 5000	0x01E2 5FFF	4K			USB1			-				
0x01E2 6000	0x01E2 6FFF	4K			GPIO			-				
0x01E2 7000	0x01E2 7FFF	4K			PSC 1			-				
0x01E2 8000	0x01E2 8FFF	4K			I2C 1			-				
0x01E2 9000	0x01E2 9FFF	4K			-							
0x01E2 A000	0x01EF FFFF	856K			-							
0x01F0 0000	0x01F0 0FFF	4K			EPWM 0			-				
0x01F0 1000	0x01F0 1FFF	4K			HRPWM 0			-				
0x01F0 2000	0x01F0 2FFF	4K			eHRPWM 1			-				
0x01F0 3000	0x01F0 3FFF	4K			HRPWM 1			-				
0x01F0 4000	0x01F0 4FFF	4K		1	eHRPWM 2			-				
0x01F0 5000	0x01F0 5FFF	4K			HRPWM 2			-				
0x01F0 6000	0x01F0 6FFF	4K			ECAP 0			-				
0x01F0 7000	0x01F0 7FFF	4K			ECAP 1			-				
0x01F0 8000	0x01F0 8FFF	4K			ECAP 2			-				
0x01F0 9000	0x01F0 9FFF	4K			EQEP 0			-				
0x01F0 A000	0x01F0 AFFF	4K			EQEP 1			-				
0x01F0 B000	0x01F0 BFFF	4K			-							
0x01F0 C000	0x116F FFFF	247M + 976K			-							
0x1170 0000	0x117F FFFF	1024K		С	OSP L2 ROM			-				
0x1180 0000	0x1183 FFFF	256K			OSP L2 RAM			-				
0x1184 0000	0x11DF FFFF	5M + 768K			-							
0x11E0 0000	0x11E0 7FFF	32K		D	SP L1P RAM			-				
0x11E0 8000	0x11EF FFFF	992K			-							
0x11F0 0000	0x11F0 7FFF	32K		D	SP L1D RAM			-				
0x11F0 8000	0x3FFF FFFF	736M + 992K			-							
0x4000 0000	0x5FFF FFFF	512M	EMIFA SDRAM data (CS0)									
0x6000 0000	0x61FF FFFF	32M	EMIFA async data (CS2)									
0x6200 0000	0x63FF FFFF	32M	EMIFA async data (CS3)									
0x6400 0000	0x65FF FFFF	32M		EMIFA	async data (CS	4)		-				
0x6600 0000	0x67FF FFFF	32M		EMIFA async data (CS5)								
0x6800 0000	0x6800 7FFF	32K		EMI	FA Control Regs			-				
0x6800 8000	0x7FFF FFFF	383M + 992K		_								
0x8000 0000	0x8001 FFFF	128K	Shared RAM									

ADVANCE INFORMATION

Table 3-3. DA830/DA828 Top Level Memory Map (continued)

Start Address	End Address	Size	ARM Mem Map	DSP Mem Map	EDMA Mem Map	dMAX Mem Map	Master Peripheral Mem Map	LCDC Mem Map		
0x8002 0000	0xAFFF FFFF	767M + 896K			-					
0xB000 0000	0xB000 7FFF	32K	EMIFB Control Regs							
0xB000 8000	0xBFFF FFFF	255M + 992K		-						
0xC000 0000	0xDFFF FFFF	512M	EMIFB SDRAM Data							
0xE000 0000	0xFFFC FFFF	511M + 832K			-					
0xFFFD 0000	0xFFFD FFFF	64K	ARM local ROM			-				
0xFFFE 0000	0xFFFE DFFF	56K			-					
0xFFFE E000	0xFFFE FFFF	8K	ARM Interrupt Controller			-				
0xFFFF 0000	0xFFFF 1FFF	8K	ARM local RAM			-				
0xFFFF 2000	0xFFFF FFFF	56K			-					

3.6 Pin Assignments

Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in the smallest possible package. Pin multiplexing is controlled using a combination of hardware configuration at device reset and software programmable register settings.

3.6.1 Pin Map (Bottom View)

Figure 3-3 and Figure 3-4 show the pin assignments for ZKB package and PTP package respectively. Note that micro-vias are not required. Contact your TI representative for routing recommendations.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Т	V _{SS}	V _{SS}	AXR1[0]/ GP4[0]	AXR1[11]/ GP5[11]	SPI0_CLK/ EQEP1I/ GP5[2]/ BOOT[2]	SPI1_CLK/ EQEP1S/ GP5[7]/ BOOT[7]	EMA_CS[3]/ AMUTE2/ GP2[6]	EMA_CS[0]/ UHPI_HAS/ GP2[4]	EMA_A[0]/ LCD_D[7]/ GP1[0]	EMA_A[4]/ LCD_D[3]/ GP1[4]	EMA_A[8]/ LCD_PCLK/ GP1[8]	EMA_SDCKE/ GP2[0]	EMA_D[0]/ MMCSD_DAT[0]/ UHPI_HD[0]/ GP0[0]/ BOOT[12]	EMA_D[9]/ UHPI_HD[9]/ LCD_D[9]/ GP0[9]	V _{SS}	V _{SS}	т
R	DV _{DD}	AXR1[1]/ GP4[1]	UARTO_RXD/ 12C0_SDA/ TM64P0_IN12/ GP5[8]/ BOOT[8]	SPI1_ENA/ UART2_RXD/ GP5[12]	SPIO_ENA/ UARTO_CTS/ EQEPOA/ GP5[3]/ BOOT[3]	SPI0_SOMI[0]/ EQEPOI/ GP5[0]/ BOOT[0]	EMA_OE/ UHPI_HDS1/ AXR0[13]/ GP2[7]	EMA_BA[0]/ LCD_D[4]/ GP1[14]	EMA_A[1]/ MMCSD_CLK/ UHPI_HCNTL0/ GP1[1]	EMA_A[5]/ LCD_D[2]/ GP1[5]	EMA_A[9]/ LCD_HSYNC/ GP1[9]	EMA_CLK/ OBSCLK/ AHCLKR2/ GP1[15]	EMA_D[2]/ MMCSD_DAT[2]/ UHPI_HD[2]/ GP0[2]	EMA_D(10)/ UHPI_HD(10)/ LCD_D(10)/ GP0(10)	EMA_D[1]/ MMCSD_DAT[1]/ UHPI_HD[1]/ GP0[1]	DV _{DD}	R
Р	AXR1[3]/ EQEP1A/ GP4[3]	AXR1[2]/ GP4[2]	UART0_TXD/ 12C0_SCL/ TM64P0_OUT12/ GP5[9]/ BOOT[9]	SPI1_SCS[0]/ UART2_TXD/ GP5[13]	SPI1_SOMI[0]/ I2C1_SCL/ GP5[5]/ BOOT[5]	SPI0_SIMO[0]/ EQEP0S/ GP5[1]/ BOOT[1]	EMA_CS[2]/ UHPI_HCS/ GP2[5]/ BOOT[15]	EMA_BA[1]/ LCD_D[5]/ UHPI_HHWIL/ GP1[13]	EMA_A(2)/ MMCSD_CMD/ UHPI_HCNTL1/ GP1[2]	EMA_A[6]/ LCD_D[1]/ GP1[6]	EMA_A[11]/ LCD_AC_ ENB_CS/ GP1[11]	EMA_WE_ DQM[1]/ UHPI_HDS2/ AXR0[14]/ GP2[8]	EMA_D[4]/ MMCSD_DAT[4]/ UHPI_HD[4]/ GP0[4]	EMA_D(12)/ UHPI_HD[12)/ LCD_D[12)/ GP0(12)	EMA_D[3]/ MMCSD_DAT[3]/ UHPI_HD[3]/ GP0[3]	EMA_D[11]/ UHPI_HD[11]/ LCD_D[11] GP0[11]	Р
N	AXR1[5]/ EPWM2B/ GP4[5]	AXR1[4]/ EQEP1B/ GP4[4]	AXR1[10]/ GP5[10]	SPI0_SCS[0]/ UART0_RTS/ EQEP0B/ GP5[4]/ BOOT[4]	SPI1_SIMO[0]/ I2C1_SDA/ GP5[6]/ BOOT[6]	EMA_WAIT[0]/ UHPI_HRDY/ GP2[10]	EMA_RAS/ EMA_CS[5]/ GP2[2]	EMA_A[10]/ LCD_VSYNC/ GP1[10]	EMA_A[3]/ LCD_D[6]/ GP1[3]	EMA_A[7]/ LCD_D[0]/ GP1[7]	EMA_A[12]/ LCD_MCLK/ GP1[12]	EMA_D[8]/ UHPI_HD[8]/ LCD_D[8]/ GP0[8]	EMA_D[6]/ MMCSD_DAT[6]/ UHPI_HD[6]/ GP0[6]	EMA_D[14]/ UHPI_HD[14]/ LCD_D[14]/ GP0[14]	EMA_D[5]/ MMCSD_DAT[5]/ UHPI_HD[5]/ GP0[5]	EMA_D[13]/ UHPI_HD[13]/ LCD_D[13]/ GP0[13]	N
М	AXR1[9]/ GP4[9]	AXR1[8]/ EPWM1A/ GP4[8]	AXR1[7]/ EPWM1B/ GP4[7]	AXR1[6]/ EPWM2A/ GP4[6]	DV _{DD}	V _{SS}	V _{SS}	DV _{DD}	DV _{DD}	V _{SS}	Vss	DV _{DD}	EMA_WE/ UHPI_HRW/ AXR0[12]/ GP2[3]/ BOOT[14]]	EMA_WE_ DQM[0]/ UHPI_HINT/ AXR0[15]/ GP2[9]	EMA_D[7]/ MMCSD_DAT[7]/ UHPI_HD[7]/ GP0[7]/ BOOT[13]	EMA_D[15]/ UHPI_HD[15]/ LCD_D[15]/ GP0[15]	М
L	AHCLKR1/ GP4[11]	ACLKR1/ ECAP2/ APWM2/ GP4[12]	AFSR1/ GP4[13]	AMUTE0/ RESETOUT	DV _{DD}	CV _{DD}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	DV _{DD}	DV _{DD}	EMB_CAS	EMB_D[22]	EMB_D[23]	EMA_CAS/ EMA_CS[4]/ GP2[1]	L
K	RTCK/GP7[14]	AHCLKX1/ EPWM0B/ GP3[14]	ACLKX1/ EPWM0A/ GP3[15]	AFSX1/ EPWMSYNCI/ EPWMSYNCO/ GP4[10]	DV _{DD}	CV _{DD}	CV _{DD}	V _{SS}	V _{SS}	CV _{DD}	CV _{DD}	DV _{DD}	EMB_D[20]	EMB_WE_ DQM[0]/ GP5[15]	EMB_WE	EMB_D[21]	К
J	TMS	TDI	TDO	TRST	EMU0/GP7[15]	CV _{DD}	CV _{DD}	V _{SS}	V _{SS}	CV _{DD}	CV _{DD}	CV _{DD}	EMB_D[5]/ GP6[5]	EMB_D[19]	EMB_D[6]/ GP6[6]	EMB_D[7]/ GP6[7]	J
Н	RTC_XI	RTC_XO	тск	NC	USB0_ VDDA33	CV _{DD}	CV _{DD}	V _{SS}	V _{SS}	CV _{DD}	CV _{DD}	CV _{DD}	EMB_D[3]/ GP6[3]	EMB_D[17]	EMB_D[18]	EMB_D[4]/ GP6[4]	н
G	RTC_CV _{DD}	RTC_V _{SS}	RESET	USB0_DM	DV _{DD}	CV _{DD}	CV _{DD}	V _{SS}	V _{SS}	CV _{DD}	CV _{DD}	DV _{DD}	EMB_D[1]/ GP6[1]	EMB_D[31]	EMB_D[16]	EMB_D[2]/ GP6[2]	G
F	OSCOUT	OSCIN	NC	USB0_DP	DV _{DD}	CV _{DD}	RSV1	V _{SS}	V _{SS}	V _{SS}	DV _{DD}	DV _{DD}	EMB_D[15]/ GP6[15]	EMB_D[29]	EMB_D[30]	EMB_D[0]/ GP6[0]	F
Е	PLL0_VSSA	OSCVSS	USB0_ VDDA18	USB0_ DRVVBUS/ GP4[15]	DV _{DD}	V _{SS}	V _{SS}	DV _{DD}	DV _{DD}	V _{SS}	Vss	DV _{DD}	EMB_D[13]/ GP6[13]	EMB_D[27]	EMB_D[28]	EMB_D[14]/ GP6[14]	E
D	PLL0_VDDA	USB0_ID	USB0_VBUS	AMUTE1/ EHRPWMTZ/ GP4[14]	AFSX0/ GP2[13]/ BOOT[10]	UART1_TXD/ AXR0[10]/ GP3[10]	AXR0[6]/ RMII_RXER/ ACLKR2/ GP3[6]	AXR0[2]/ RMII_TXEN/ AXR2[3]/ GP3[2]	EMB_CS[0]	EMB_A[0]/ GP7[2]	EMB_A[4]/ GP7[6]	EMB_A[8]/ GP7[10]	EMB_D[9]/ GP6[9]	EMB_D[10]/ GP6[10]	EMB_D[11]/ GP6[11]	EMB_D[12]/ GP6[12]	D
С	USB1_ VDDA33	USB1_ VDDA18	USB0_ VDDA12	AFSR0/ GP3[12]	ACLKX0/ ECAP0/ APWM0/ GP2[12]	UART1_RXD/ AXR0[9]/ GP3[9]	AXR0[5]/ RMII_RXD[1]/ AFSX2/ GP3[5]	AXR0[1]/ RMII_TXD[1]/ ACLKX2/ GP3[1]	EMB_BA[0]/ GP7[1]	EMB_A[1]/ GP7[3]	EMB_A[5]/ GP7[7]	EMB_A[9]/ GP7[11]	EMB_SDCKE	EMB_CLK	EMB_WE_ DQM[1]/ GP5[14]	EMB_D[8]/ GP6[8]	С
В	RSV2	V _{SS}	USB1_DM	ACLKR0/ ECAP1/ APWM1/ GP2[15]	AHCLKX0/ AHCLKX2/ USB_ REFCLKIN/ GP2[11]	AXR0[8]/ MDIO_D/ GP3[8]	AXR0[4]/ RMII_RXD[0]/ AXR2[1]/ GP3[4]	AXR0[0]/ RMII_TXD[0]/ AFSR2/ GP3[0]	EMB_BA[1]/ GP7[0]	EMB_A[2]/ GP7[4]	EMB_A[6]/ GP7[8]	EMB_A[11]/ GP7[13]	EMB_WE_ DQM[2]	EMB_D[25]	EMB_A[12]/ GP3[13]	DV _{DD}	В
Α	V _{SS}	V _{SS}	USB1_DP	AHCLKR0/ RMII_MHZ_ 50_CLK/ GP2[14]/ BOOT[11]	AXR0[11]/ AXR2[0]/ GP3[11]	AXR0[7]/ MDIO_CLK/ GP3[7]	AXR0[3]/ RMII_CRS_DV/ AXR2[2]/ GP3[3]	EMB_RAS	EMB_A[10]/ GP7[12]	EMB_A[3]/ GP7[5]	EMB_A[7]/ GP7[9]	EMB_WE_ DQM[3]	EMB_D[24]	EMB_D[26]	V _{SS}	V _{SS}	A
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

Figure 3-3. Pin Map (ZKB)

22 Device Overview

Figure 3-4. Pin Map (PTP)

3.7 Terminal Functions

Table 3-4 to Table 3-24 identify the external signal names, the associated pin/ball numbers along with the mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin description.

3.7.1 Device Reset and JTAG

Table 3-4. Reset and JTAG Terminal Functions

CIONAL NAME	PIN NO		TYPE ⁽¹⁾	PULL ⁽²⁾	DECORIDATION
SIGNAL NAME	PTP	ZKB	ITPE	PULL(-)	DESCRIPTION
				RESET	
RESET	146	G3	I		Device reset input
AMUTE0/RESETOUT	-	L4	O ⁽³⁾	IPD	Reset output. Multiplexed with McASP0 mute output.
			JTAG		
TMS	152	J1	I	IPU	JTAG test mode select
TDI	153	J2	I	IPU	JTAG test data input
TDO	156	J3	0	IPD	JTAG test data output
TCK	155	НЗ	I	IPU	JTAG test clock
TRST	150	J4	I	IPD	JTAG test reset
EMU[0]/GP7[15]	-	J5	I/O	IPU	Miscellaneous emulation pin.
RTCK /GP7[14]	157	K1	I/O	IPD	JTAG test-port return clock output.

- I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
- IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
- Open drain mode for RESETOUT function.

High-Frequency Oscillator and PLL

Table 3-5. High-Frequency Oscillator and PLL Terminal Functions

SIGNAL NAME	SIGNAL NAME PIN NO TYPE ⁽¹⁾ PULL ⁽²⁾		DIII 1 (2)	DESCRIPTION						
SIGNAL NAME	PTP	ZKB	ITPE\'	PULL '	DESCRIPTION					
EMA_CLK/ OBSCLK /AHCLKR2/ GP1[15]	-	R12	0	IPU	PLL Observation Clock					
1.2-V OSCILLATOR										
OSCIN	143	F2	I		Oscillator input					
OSCOUT	145	F1	0		Oscillator output					
oscvss	144	E2	GND		Oscillator ground (for filter only)					
			1.:	2-V PLL						
PLL0_VDDA	141	D1	PWR		PLL analog V _{DD} (1.2-V filtered supply)					
PLL0_VSSA	142	E1	GND		PLL analog V _{SS} (for filter)					

⁽¹⁾ I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

3.7.3 Real-Time Clock and 32-kHz Oscillator

Table 3-6. Real-Time Clock (RTC) and 1.2-V, 32-kHz Oscillator Terminal Functions

SIGNAL NAME	PIN NO		TYPE ⁽¹⁾	PULL ⁽²⁾	DESCRIPTION
SIGNAL NAME	PTP	ZKB	ITPE\'	PULL	DESCRIPTION
RTC_CVDD	149	G1	PWR		RTC module core power (isolated from rest of chip CV _{DD})
RTC_XI	148	H1	I		Low-frequency (32-kHz) oscillator receiver for real-time clock
RTC_XO	-	H2	0		Low-frequency (32-kHz) oscillator driver for real-time clock
RTC_VSS	-	G2	GND		Oscillator ground (for filter)

⁽¹⁾ I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

3.7.4 External Memory Interface A (ASYNC, SDRAM)

Table 3-7. External Memory Interface A (EMIFA) Terminal Functions

0.000	PIN	NO	T) (D= (1)	D (2)	MUNED	DECODIDEION			
SIGNAL NAME	PTP	ZKB	TYPE ⁽¹⁾	PULL ⁽²⁾	MUXED	DESCRIPTION			
EMA_D[15]/UHPI_HD[15]/LCD_D[15]/GP0[15]	-	M16	I/O	IPD					
EMA_D[14]/UHPI_HD[14]/LCD_D[14]/GP0[14]	-	N14	I/O	IPD					
EMA_D[13]/UHPI_HD[13]/LCD_D[13]/GP0[13]	-	N16	I/O	IPD					
EMA_D[12]/UHPI_HD[12]/LCD_D[12]/GP0[12]	-	P14	I/O	IPD	UHPI, LCD,				
EMA_D[11]/UHPI_HD[11]/LCD_D[11]/GP0[11]	-	P16	I/O	IPD	GPIO				
EMA_D[10]/UHPI_HD[10]/LCD_D[10]/GP0[10]	-	R14	I/O	IPD					
EMA_D[9]/UHPI_HD[9]/LCD_D[9]/GP0[9]	-	T14	I/O	IPD					
EMA_D[8]/UHPI_HD[8]/LCD_D[8]/GP0[8]	-	N12	I/O	IPD					
EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13]	54	M15	I/O	IPU	MMC/SD, UHPI, GPIO, BOOT	EMIFA data bus			
EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6]	52	N13	I/O	IPU					
EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5]	51	N15	I/O	IPU					
EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4]	49	P13	I/O	IPU	MMC/SD,				
EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3]	48	P15	I/O	IPU	UHPI, GPIO				
EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2]	46	R13	I/O	IPU					
EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1]	45	R15	I/O	IPU					
EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12]	44	T13	I/O	IPU	MMC/SD, UHPI, GPIO, BOOT				

⁽¹⁾ I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

⁽²⁾ IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

⁽²⁾ IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

Table 3-7. External Memory Interface A (EMIFA) Terminal Functions (continued)

Table 3-7. External Memory III	1	NO			`	,	
SIGNAL NAME	PTP	ZKB	TYPE ⁽¹⁾	PULL ⁽²⁾	MUXED	DESCRIPTION	
EMA_A[12]/LCD_MCLK/GP1[12]	42	N11	0	IPU			
EMA_A[11]/LCD_AC_ENB_CS/GP1[11]	41	P11	0	IPU			
EMA_A[10]/LCD_VSYNC/GP1[10]	27	N8	0	IPU			
EMA_A[9]/LCD_HSYNC/GP1[9]	40	R11	0	IPU			
EMA_A[8]/LCD_PCLK/GP1[8]	39	T11	0	IPU	LCD, GPIO	EMIFA address bus	
EMA_A[7]/ LCD_D[0]/GP1[7]	37	N10	0	IPD	LCD, GFIO	LIVIII A address bus	
EMA_A[6]/ LCD_D[1]/GP1[6]	36	P10	0	IPD			
EMA_A[5]/ LCD_D[2]/GP1[5]	35	R10	0	IPD			
EMA_A[4]/ LCD_D[3]/GP1[4]	34	T10	0	IPD			
EMA_A[3]/LCD_D[6]/GP1[3]	32	N9	0	IPD			
EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2]	31	P9	0	IPU	MMCSD,		
EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1]	30	R9	0	IPU	UHPI, GPIO	EMIFA address bus.	
EMA_A[0]/ LCD_D[7]/GP1[0]	29	Т9	0	IPD	LCD, GPIO		
EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13]	26	P8	0	IPU	LCD, UHPI, GPIO	EMIFA bank address	
EMA_BA[0]/LCD_D[4]/GP1[14]	25	R8	0	IPU	LCD, GPIO		
EMA_CLK/OBSCLK/AHCLKR2/GP1[15]	-	R12	0	IPU	McASP2, GPIO	EMIFA clock.	
EMA_SDCKE/GP2[0]	-	T12	0	IPU	GPIO	EMIFA SDRAM clock enable.	
EMA_RAS/EMA_CS[5]/GP2[2]	-	N7	0	IPU		EMIFA SDRAM row address strobe.	
EMA_CAS/EMA_CS[4]/GP2[1]	-	L16	0	IPU	EMIF A chip select, GPIO	EMIFA SDRAM column address strobe.	
EMA_RAS/ EMA_CS[5] /GP2[2]	-	N7	0	IPU	EMIF A		
EMA_CAS/EMA_CS[4]/GP2[1]	-	L16	0	IPU	SDRAM, GPIO		
EMA_CS[3]/AMUTE2/GP2[6]	21	T7	0	IPU	McASP2, GPIO	EMIFA Async Chip Select	
EMA_CS[2]/UHPI_HCS/GP2[5]/BOOT[15]	23	P7	0	IPU	UHPI, GPIO, BOOT	Colosi	
EMA_CS[0]/UHPI_HAS/GP2[4]	-	T8	0	IPU	UHPI, GPIO		
EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14]	55	M13	0	IPU	UHPI, MCASP0, GOPIO, BOOT	EMIFA SDRAM write enable.	
EMA_WE_DQM[1]/UHPI_HDS2/AXR0[14]/GP2[8]	-	P12	0	IPU	UHPI, McASP,	EMIFA write enable/data mask for EMA_D[15:8]	
EMA_WE_DQM[0]/UHPI_HINT/AXR0[15]/GP2[9]	-	M14	0	IPU	GPIO , MORKET ,	EMIFA write enable/data mask for EMA_D[7:0].	
EMA_OE/UHPI_HDS1/AXR0[13]/GP2[7]	22	R7	0	IPU	UHPI, McASP0, GPIO	EMIFA output enable.	
EMA_WAIT[0]/UHPI_HRDY/GP2[10]	19	N6	I	IPU	UHPI, GPIO	EMIFA wait input/interrupt.	

Device Overview

3.7.5 External Memory Interface B (only SDRAM)

Table 3-8. External Memory Interface B (EMIFB) Terminal Functions

	PIN	I NO	(4)	(0)				
SIGNAL NAME	PTP	ZKB	TYPE ⁽¹⁾	PULL ⁽²⁾	MUXED	DESCRIPTION		
EMB_D[31]	-	G14	I/O	IPD				
EMB_D[30]	-	F15	I/O	IPD				
EMB_D[29]	-	F14	I/O	IPD				
EMB_D[28]	-	E15	I/O	IPD				
EMB_D[27]	-	E14	I/O	IPD				
EMB_D[26]	-	A14	I/O	IPD				
EMB_D[25]	-	B14	I/O	IPD				
EMB_D[24]	-	A13	I/O	IPD				
EMB_D[23]	-	L15	I/O	IPD				
EMB_D[22]	-	L14	I/O	IPD				
EMB_D[21]	-	K16	I/O	IPD				
EMB_D[20]	-	K13	I/O	IPD				
EMB_D[19]	-	J14	I/O	IPD				
EMB_D[18]	-	H15	I/O	IPD				
EMB_D[17]	-	H14	I/O	IPD				
EMB_D[16]	-	G15	I/O	IPD		- EMIFB SDRAM data bus.		
EMB_D[15] /GP6[15]	74	F13	I/O	IPD		- EIVIIFB SDRAWI data bus.		
EMB_D[14] /GP6[14]	76	E16	I/O	IPD				
EMB_D[13] /GP6[13]	78	E13	I/O	IPD				
EMB_D[12] /GP6[12]	79	D16	I/O	IPD				
EMB_D[11] /GP6[11]	80	D15	I/O	IPD				
EMB_D[10] /GP6[10]	82	D14	I/O	IPD				
EMB_D[9] /GP6[9]	83	D13	I/O	IPD				
EMB_D[8] /GP6[8]	84	C16	I/O	IPD	GPIO			
EMB_D[7] /GP6[7]	62	J16	I/O	IPD	GFIO			
EMB_D[6] /GP6[6]	63	J15	I/O	IPD				
EMB_D[5] /GP6[5]	64	J13	I/O	IPD				
EMB_D[4]/ GP6[4]	66	H16	I/O	IPD				
EMB_D[3] /GP6[3]	68	H13	I/O	IPD				
EMB_D[2] /GP6[2]	70	G16	I/O	IPD				
EMB_D[1] /GP6[1]	72	G13	I/O	IPD				
EMB_D[0]/ GP6[0]	73	F16	I/O	IPD				
EMB_A[12]/GP3[13]	89	B15	0	IPD				
EMB_A[11]/GP7[13]	91	B12	0	IPD				
EMB_A[10]/GP7[12]	105	A9	0	IPD				
EMB_A[9]/GP7[11]	92	C12	0	IPD	GPIO	EMIFB SDRAM row/column		
EMB_A[8] /GP7[10]	94	D12	0	IPD	J GF IO	address bus.		
EMB_A[7] /GP7[9]	95	A11	0	IPD				
EMB_A[6]/GP7[8]	96	B11	0	IPD				
EMB_A[5] /GP7[7]	97	C11	0	IPD				

⁽¹⁾ I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

⁽²⁾ IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

INSTRUMENTS

TMS320DA830/TMS320DA828 Digital Audio System-on-Chip (SoC)

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

Table 3-8. External Memory Interface B (EMIFB) Terminal Functions (continued)

SIGNAL NAME	PIN	NO	TYPE ⁽¹⁾	PULL ⁽²⁾	MUXED	DESCRIPTION	
SIGNAL NAME	PTP	ZKB	ITPE'	PULL	MIOVED	DESCRIPTION	
EMB_A[4]/GP7[6]	98	D11	0	IPD			
EMB_A[3] /GP7[5]	100	A10	0	IPD			
EMB_A[2] /GP7[4]	101	B10	0	IPD		EMIFB SDRAM row/column address.	
EMB_A[1]/GP7[3]	102	C10	0	IPD	GPIO	dddiooo.	
EMB_A[0]/GP7[2]	103	D10	0	IPD			
EMB_BA[1]/GP7[0]	106	В9	0	IPU		EMIFB SDRAM bank	
EMB_BA[0]/GP7[1]	107	C9	0	IPU		address.	
EMB_CLK	86	C14	0	IPU		EMIF SDRAM clock.	
EMB_SDCKE	88	C13	I/O	IPU		EMIFB SDRAM clock enable.	
EMB_WE	59	K15	0	IPU		EMIFB write enable	
EMB_RAS	110	A8	0	IPU		EMIFB SDRAM row address strobe.	
EMB_CAS	57	L13	0	IPU		EMIFB column address strobe.	
EMB_CS[0]	108	D9	0	IPU		EMIFB SDRAM chip select 0.	
EMB_WE_DQM[3]	-	A12	0	IPU			
EMB_WE_DQM[2]	-	B13	0	IPU		EMIFB write enable/data	
EMB_WE_DQM[1]/GP5[14]	85	C15	0	IPU	GPIO	mask for EMB_D.	
EMB_WE_DQM[0] /GP5[15]	60	K14	0	IPU	GFIU		

Serial Peripheral Interface Modules (SPI0, SPI1) 3.7.6

Table 3-9. Serial Peripheral Interface (SPI) Terminal Functions

	PIN	I NO	T)(D=(1)	D (2)	MUVED	DECODIDE		
SIGNAL NAME	PTP ZKB		TYPE ⁽¹⁾	PULL ⁽²⁾	MUXED	DESCRIPTION		
SPI0								
SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4]	9	N4	I/O	IPU	UARTO, EQEPOB, GPIO, BOOT	SPI0 chip select.		
SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3]	12	R5	I/O	IPU	UARTO, EQEPOA, GPIO, BOOT	SPI0 enable.		
SPI0_CLK/EQEP1I/GP5[2]/BOOT[2]	11	T5	I/O	IPD	eQEP1, GPIO, BOOT	SPI0 clock.		
SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1]	18	P6	I/O	IPD	COEDO CRIO ROOT	SPI0 data slave-in-master- out.		
SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0]	17	R6	I/O	IPD	eQEP0, GPIO, BOOT	SPI0 data slave-out-master- in.		
		SPI1						
SPI1_SCS[0]/UART2_TXD/GP5[13]	8	P4	I/O	IPU	UART2, GPIO	SPI1 chip select.		
SPI1_ENA/UART2_RXD/GP5[12]	7	R4	I/O	IPU	UAR 12, GPIO	SPI1 enable.		
SPI1_CLK/EQEP1S/GP5[7]/BOOT[7]`	16	T6	I/O	IPD	eQEP1, GPIO, BOOT	SPI1 clock.		

28

⁽¹⁾ I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor (2)

Table 3-9. Serial Peripheral Interface (SPI) Terminal Functions (continued)

SIGNAL NAME	PIN NO		TYPE ⁽¹⁾	PULL ⁽²⁾	MUXED	DESCRIPTION
	PTP	ZKB	ITPE\'	FULL. /	MOXED	DESCRIPTION
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6]	14	N5	I/O	IPU		SPI1 data slave-in-master- out.
SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5]	13	P5	I/O	IPU	12C1, GPIO, BOOT	SPI1 data slave-out-master- in.

NSTRUMENTS

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

3.7.7 Enhanced Capture/Auxiliary PWM Modules (eCAP0, eCAP1, eCAP2)

The eCAP Module pins function as either input captures or auxiliary PWM 32-bit outputs, depending upon how the eCAP module is programmed.

Table 3-10. Enhanced Capture Module (eCAP) Terminal Functions

SIGNAL NAME	PIN NO		TYPE ⁽¹⁾	PULL ⁽²⁾) MUXED	DESCRIPTION		
SIGNAL NAME	PTP	ZKB	ITPE'	FULL	WOXED	DESCRIPTION		
eCAP0								
ACLKX0/ECAP0/APWM0/GP2[12]	126	C5	I/O	IPD	McASP0, GPIO	enhanced capture 0 input or auxiliary PWM 0 output.		
	eCAP1							
ACLKR0/ECAP1/APWM1/GP2[15]	130	B4	I/O	IPD	McASP0, GPIO	enhanced capture 1 input or auxiliary PWM 1 output.		
		eCAP2	2					
ACLKR1/ECAP2/APWM2/GP4[12]	165	L2	I/O	IPD	McASP1, GPIO	enhanced capture 2 input or auxiliary PWM 2 output.		

I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

3.7.8 Enhanced Pulse Width Modulators (eHRPWM0, eHRPWM1, eHRPWM2)

Table 3-11. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions

CIONAL NAME	PIN	NO	TYPE ⁽¹⁾	PULL ⁽²⁾	MUVED	DESCRIPTION			
SIGNAL NAME	PTP	ZKB	IYPE	PULL(-/	MUXED	DESCRIPTION			
eHRPWM0									
ACLKX1/ EPWM0A /GP3[15]	162	K3	I/O	IPD	McASP1, GPIO	eHRPWM0 A output.			
AHCLKX1/EPWM0B/GP3[14]	160	K2	I/O	IPD	WCASF1, GFIO	eHRPWM0 B output.			
AMUTE1/EPWMTZ/GP4[14]	132	D4	I/O	IPD	McASP1, eHRPWM1, GPIO, eHRPWM2	eHRPWM0 trip zone input.			
AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10]	163	K4	I/O	IPD	McASP1, eHRPWM0, GPIO	Sync input to eHRPWM0 module or sync output to external PWM.			
		eHRPWI	V 11						
AXR1[8]/ EPWM1A /GP4[8]	168	M2	I/O	IPD	McASP1, GPIO	eHRPWM1 A (with high-resolution).			
AXR1[7]/ EPWM1B /GP4[7]	169	М3	I/O	IPD		eHRPWM1 B.			
AMUTE1/EPWMTZ/GP4[14]	132	D4	I/O	IPD	McASP1, eHRPWM0, GPIO, eHRPWM2	eHRPWM1 trip zone input.			
		eHRPWI	/ 12						

⁽¹⁾ I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor (2)

IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

Table 3-11. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions (continued)

SIGNAL NAME	PIN NO		TYPE ⁽¹⁾	PULL ⁽²⁾	MUXED	DESCRIPTION
	PTP	ZKB	ITPE''	TOLL	MIUXED	DESCRIPTION
AXR1[6]/ EPWM2A /GP4[6]	170	M4	I/O	IPD	McASP1, GPIO	eHRPWM2 A (with high-resolution).
AXR1[5]/ EPWM2B /GP4[5]	171	N1	I/O	IPD		eHRPWM2 B.
AMUTE1/EPWMTZ/GP4[14]	132	D4	I/O	IPD	McASP1, eHRPWM0, GPIO, eHRPWM2	eHRPWM2 trip zone input.

3.7.9 Enhanced Quadrature Encoder Pulse Module (eQEP)

Table 3-12. Enhanced Quadrature Encoder Pulse Module (eQEP) Terminal Functions

CIONAL NAME	PIN	NO	TYPE ⁽¹⁾	PULL ⁽²⁾	MUVED	DESCRIPTION			
SIGNAL NAME	PTP	ZKB	ITPE	PULL	MUXED	DESCRIPTION			
	eQEP0								
SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3]	12	R5	ı	IPU	SPIO, UARTO,	eQEP0A quadrature input.			
SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4]	9	N4	ı	IPU	GPIO, BOOT	eQEP0B quadrature input.			
SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0]	17	R6	I	IPD	SDIO CDIO POOT	eQEP0 index.			
SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1]	18	P6	I	IPD	SPI0, GPIO, BOOT	eQEP0 strobe.			
		eQEP1							
AXR1[3]/ EQEP1A /GP4[3]	174	P1	I	IPD	MaASD4 CDIO	eQEP1A quadrature input.			
AXR1[4]/ EQEP1B /GP4[4]	173	N2	ı	IPD	McASP1, GPIO	eQEP1B quadrature input.			
SPI0_CLK/ EQEP1I /GP5[2]/BOOT[2]	11	T5	I	IPD	SPI0, GPIO, BOOT	eQEP1 index.			
SPI1_CLK/ EQEP1S /GP5[7]/BOOT[7]	16	T6	I	IPD	SPI1, GPIO, BOOT	eQEP1 strobe.			

⁽¹⁾ I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

3.7.10 Boot

Table 3-13. Boot Terminal Functions⁽¹⁾

SIGNAL NAME	PIN NO		TYPE ⁽²⁾	PULL ⁽³⁾	MUXED	DESCRIPTION	
SIGNAL NAME		ZKB	ITPE\/	PULL	MIUXED	DESCRIPTION	
EMA_CS[2]/UHPI_HCS/GP2[5]/BOOT[15]	23	P7	I	IPU	EMIFA, UHPI, GPIO	BOOT[15].	
EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14]	55	M13	ı	IPU	EMIFA, UHPI, McASP0, GPIO	BOOT[14].	
EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13]	54	M15	I	IPU	EMIFA, MMC/SD,	BOOT[13].	
EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12]	44	T13	I	IPU	UHPI, GPIO	BOOT[12].	
AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11]	129	A4	ı	IPD	McASP0, EMAC, GPIO	BOOT[11].	
AFSX0/GP2[13]/ BOOT[10]	127	D5	I	IPD	McASP0, GPIO	BOOT[10].	

⁽¹⁾ Boot decoding will be defined in the ROM datasheet.

⁽²⁾ IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

⁽²⁾ I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

⁽³⁾ IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

NSTRUMENTS

TMS320DA830/TMS320DA828

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

Table 3-13. Boot Terminal Functions (continued)

SIGNAL NAME		PIN NO		PULL ⁽³⁾	MUVED	DECORPTION	
SIGNAL NAME	PTP	ZKB	TYPE ⁽²⁾	PULL	MUXED	DESCRIPTION	
UARTO_TXD/I2CO_SCL/TM64P0_OUT12/GP5[9]/BOOT[9]	3	P3	1	IPU	UARTO, I2CO, TimerO, GPIO	BOOT[9].	
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/ BOOT[8]	2	R3	1	IPU	UARTO, I2CO, Timer0, GPIO	BOOT[8].	
SPI1_CLK/EQEP1S/GP5[7]/BOOT[7]	16	T6	1	IPD	SPI1, eQEP1, GPIO	BOOT[7].	
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/ BOOT[6]	14	N5	1	IPU	CD14 12C4 CD10	BOOT[6].	
SPI1_SOMI[0]/I2C1_SCL/GP5[5]/ BOOT[5]	13	P5	I	IPU	SPI1, I2C1, GPIO	BOOT[5].	
SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4]	9	N4	1	IPU	SPI0, UART0, eQEP0, GPIO	BOOT[4].	
SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3]	12	R5	1	IPU	SPI0, UART0, eQEP0, GPIO	BOOT[3].	
SPI0_CLK/EQEP1I/GP5[2]/BOOT[2]	11	T5	I	IPD	SPIO, eQEP1, GPIO	BOOT[2].	
SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1]	18	P6	I	IPD	CDIO AOEDO CDIO	BOOT[1].	
SPI0_SOMI[0]/EQEP0]/GP5[0]/BOOT[0]	17	R6	ı	IPD	SPI0, eQEP0, GPIO	BOOT[0].	

3.7.11 Universal Asynchronous Receiver/Transmitters (UART0, UART1, UART2)

Table 3-14. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions

	DIN	NO		•	*					
SIGNAL NAME		NO	TYPE(1)	PULL ⁽²⁾	MUXED	DESCRIPTION				
	PTP	ZKB								
UART0										
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8]	2	R3	I	IPU	I2C0, BOOT, Timer0, GPIO,	UART0 receive data.				
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9]	3	P3	0	IPU	I2C0, Timer0, GPIO, BOOT	UART0 transmit data.				
SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4]	9	N4	0	IPU	SPIO, eQEP0, GPIO, BOOT	UART0 ready-to-send output				
SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3]	12	R5	I	IPU	GPIO, BOOT	UART0 clear-to-send input				
	U	ART1								
UART1_RXD /AXR0[9]/GP3[9] ⁽³⁾	122	C6	I	IPD	McASP0, GPIO	UART1 receive data.				
UART1_TXD/AXR0[10]/GP3[10] ⁽³⁾	123	D6	0	IPD	WICASPU, GPIO	UART1 transmit data.				
	U	ART2								
SPI1_ENA/UART2_RXD/GP5[12]	7	R4	I	IPU	SPI1, GPIO	UART2 receive data.				
SPI1_SCS[0]/UART2_TXD/GP5[13]	8	P4	0	IPU	SFII, GPIO	UART2 transmit data.				

I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

32 Device Overview

IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

As these signals are internally pulled down while the device is in reset, it is necessary to externally pull them high with resistors if UART1 boot mode is used. Please see the TMS320DA828/DA830 Digital Audio Processor System Reference Guide - Literature Number **SPRUG83** for more for details on entering UART1 boot mode.

3.7.12 Inter-Integrated Circuit Modules(I2C0, I2C1)

Table 3-15. Inter-Integrated Circuit (I2C) Terminal Functions

SIGNAL NAME	PIN NO		TYPE ⁽¹⁾	PULL ⁽²⁾	MUVED	DESCRIPTION	
SIGNAL NAME		ZKB	ITPE	PULL	MUXED	DESCRIPTION	
	I2C0						
UART0_RXD/ I2C0_SDA /TM64P0_IN12/GP5[8]/BOOT[8]	2	R3	I/O	IPU	UART0, Timer0, GPIO, BOOT	I2C0 serial data.	
UART0_TXD/ I2C0_SCL /TM64P0_OUT12/GP5[9]/BOOT[9]	3	P3	I/O	IPU	UART0, Timer0, GPIO, BOOT	I2C0 serial clock.	
	ı	2C1					
SPI1_SIMO[0]/ I2C1_SDA /GP5[6]/BOOT[6]	14	N5	I/O	IPU	SPI1, GPIO,	I2C1 serial Data.	
SPI1_SOMI[0]/ I2C1_SCL /GP5[5]/BOOT[5]	13	P5	I/O	IPU	BOOT	I2C1 serial clock.	

⁽¹⁾ I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

3.7.13 Timers

Table 3-16. Timers Terminal Functions

SIGNAL NAME	PIN NO		TYPE(1)	PULL ⁽²⁾	MUVED	DESCRIPTION			
SIGNAL NAME	PTP	ZKB	ITPE	PULL(-)	MUXED	DESCRIPTION			
TIMERO									
UARTO_RXD/I2CO_SDA/ TM64P0_IN12 /GP5[8]/BOOT[8]	2	R3	I	IPU	UART0, I2C0,	Timer0 lower input.			
UARTO_TXD/I2CO_SCL/ TM64P0_OUT12 /GP5[9]/BOOT[9]	3	P3	0	IPU	GPIO, BOOT	Timer0 lower output			
TIMER1 (Watchdog)									
No external pins. The Timer1 peripheral pins are not pinned	out as e	external p	oins.						

⁽¹⁾ I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

3.7.14 Universal Host-Port Interface (UHPI)

Note:

The UHPI module requires 16 data pins for the host port interface to function. Therefore on the PTP, the UHPI is not available.

⁽²⁾ IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

⁽²⁾ IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

NSTRUMENTS

TMS320DA830/TMS320DA828

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

Table 3-17. Universal Host-Port Interface (UHPI) Terminal Functions

		PIN NO							
SIGNAL NAME	PTP	ZKB	TYPE ⁽	PULL ⁽²⁾	MUXED	DESCRIPTION			
EMA_D[15]/ UHPI_HD[15] /LCD_D[15]/GP0[15]	-	M16	I/O	IPD					
EMA_D[14]/ UHPI_HD[14] /LCD_D[14]/GP0[14]	-	N14	I/O	IPD	-				
EMA_D[13]/ UHPI_HD[13] /LCD_D[13]/GP0[13]	-	N16	I/O	IPD					
EMA_D[12]/ UHPI_HD[12] /LCD_D[12]/GP0[12]	-	P14	I/O	IPD	EMIFA, LCD, GPIO				
EMA_D[11]/ UHPI_HD[11] /LCD_D[11]/GP0[11]	1	P16	I/O	IPD	EIMIFA, LCD, GFIO				
EMA_D[10]/ UHPI_HD[10] /LCD_D[10]/GP0[10]	-	R14	I/O	IPD					
EMA_D[9]/ UHPI_HD[9] /LCD_D[9]/GP0[9]	-	T14	I/O	IPD					
EMA_D[8]/ UHPI_HD[8] /LCD_D[8]/GP0[8]	-	N12	I/O	IPD					
EMA_D[7]/MMCSD_DAT[7]/ UHPI_HD[7] /GP0[7]/BOOT[13]	54	M15	I/O	IPU	EMIFA, MMC/SD, GPIO, BOOT	UHPI data bus.			
EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6]	52	N13	I/O	IPU					
EMA_D[5]/MMCSD_DAT[5]/ UHPI_HD[5] /GP0[5]	51	N15	I/O	IPU					
EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4]	49	P13	I/O	IPU	EMIFA, MMC/SD,				
EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3]	48	P15	I/O	IPU	GPIO				
EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2]	46	R13	I/O	IPU					
EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1]	45	R15	I/O	IPU					
EMA_D[0]/MMCSD_DAT[0]/ UHPI_HD[0] /GP0[0]/BOOT[12]	44	T13	I/O	IPU	EMIFA, MMC/SD, GPIO, BOOT				
EMA_A[2]/MMCSD_CMD/ UHPI_HCNTL1 /GP1[2]	31	P9	I/O	IPU	EMIFA,	UHPI access			
EMA_A[1]/MMCSD_CLK/ UHPI_HCNTL0 /GP1[1]	30	R9	I/O	IPU	MMCSD_CMD, GPIO	control.			
EMA_BA[1]/LCD_D[5]/ UHPI_HHWIL /GP1[13]	26	P8	I/O	IPU	EMIFA, LCD, GPIO	UHPI half-word identification control.			
EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14]	55	M13	I/O	IPU	EMIFA, McASP, GPIO, BOOT	UHPI read/write.			
EMA_CS[2]/UHPI_HCS/GP2[5]/BOOT[15]	23	P7	I/O	IPU	EMIFA, GPIO, BOOT	UHPI chip select.			
EMA_WE_DQM[1]/UHPI_HDS2/AXR0[14]/GP2[8]	-	P12	I/O	IPU		UHPI data strobe.			
EMA_OE/UHPI_HDS1/AXR0[13]/GP2[7]	22	R7	I/O	IPU	EMIFA, McASP0, GPIO	OTIFT UAIA SHODE.			
EMA_WE_DQM[0]/UHPI_HINT/AXR0[15]/GP2[9]	-	M14	I/O	IPU		UHPI host interrupt.			
EMA_WAIT[0]/UHPI_HRDY/GP2[10]	19	N6	I/O	IPU		UHPI ready.			
EMA_CS[0]/UHPI_HAS/GP2[4]	-	Т8	I/O	IPU	EMIFA, GPIO	UHPI address strobe.			

I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

3.7.15 Multichannel Audio Serial Ports (McASP0, McASP1, McASP2)

Table 3-18. Multichannel Audio Serial Ports (McASPs) Terminal Functions

SIGNAL NAME	PIN NO	TYPE ⁽¹⁾	PULL ⁽²⁾	MUXED	DESCRIPTION			
	PTP ZKB	I I FE ' '	PULL					
McASP0								

⁽¹⁾ I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

34

IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor (2)

Table 3-18. Multichannel Audio Serial Ports (McASPs) Terminal Functions (continued)

		NO	(1)	(2)		
SIGNAL NAME	PTP	ZKB	TYPE ⁽¹⁾	PULL ⁽²⁾	MUXED	DESCRIPTION
EMA_WE_DQM[0]/UHPI_HINT/AXR0[15]/GP2[9]	-	M14	I/O	IPU		
EMA_WE_DQM[1]/UHPI_HDS2/AXR0[14]/GP2[8]	-	P12	I/O	IPU	EMIFA, UHPI, GPIO	
EMA_OE/UHPI_HDS1/AXR0[13]/GP2[7]	24	R7	I/O	IPU	0110	
EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14]	55	M13	I/O	IPU	EMIFA, UHPI, GPIO, BOOT	
AXR0[11]/ AXR2[0]/GP3[11]	124	A5	I/O	IPD	McASP2, GPIO	
AXR0[10] /GP3[10]	123	D6	I/O	IPD	GPIO	
AXR0[9] /GP3[9]	122	C6	I/O	IPD	GPIO	McASP0 serial
AXR0[8]/MDIO_D/GP3[8]	121	B6	I/O	IPU	MDIO CDIO	data.
AXR0[7]/MDIO_CLK/GP3[7]	120	A6	I/O	IPD	MDIO, GPIO	
AXR0[6]/RMII_RXER[0]/ACLKR2/GP3[6]	118	D7	I/O	IPD		
AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5]	117	C7	I/O	IPD		
AXR0[4]/ RMII_RXD[0]/AXR2[1]/GP3[4]	116	В7	I/O	IPD	EMAC,	
AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3]	115	A7	I/O	IPD	McASP2,	
AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2]	113	D8	I/O	IPD	GPIO	
AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1]	112	C8	I/O	IPD		
AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0]	111	В8	I/O	IPD		
AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11]	125	B5	I/O	IPD	McASP2, USB, GPIO	McASP0 transmit master clock.
ACLKX0/ECAP0/APWM0/GP2[12]	126	C5	I/O	IPD	eCAP0, GPIO	McASP0 transmit bit clock.
AFSX0/GP2[13]/BOOT[10]	127	D5	I/O	IPD	GPIO, BOOT	McASP0 transmit frame sync.
AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11]	129	A4	I/O	IPD	EMAC, GPIO, BOOT	McASP0 receive master clock.
ACLKR0/ECAP1/APWM1/GP2[15]	130	B4	I/O	IPD	eCAP1, GPIO	McASP0 receive bit clock.
AFSR0 /GP3[12]	131	C4	I/O	IPD	GPIO	McASP0 receive frame sync.
AMUTEO/RESETOUT	-	L4	0	IPD	RESET OUT	McASP0 mute output.
McAS	SP1					

Texas Instruments

TMS320DA830/TMS320DA828

Table 3-18. Multichannel Audio Serial Ports (McASPs) Terminal Functions (continued)

Table 5-16. Multichamier Addio Geriai i Orto		NO				
SIGNAL NAME	PTP	ZKB	TYPE ⁽¹⁾	PULL ⁽²⁾	MUXED	DESCRIPTION
AXR1[11]/ GP5[11]	6	T4	I/O	IPU		
AXR1[10]/GP5[10]	4	N3	I/O	IPU	GPIO	
AXR1[9]/GP4[9]	-	M1	I/O	IPD		
AXR1[8] /EPWM1A/GP4[8]	168	M2	I/O	IPD	eHRPWM1 A, GPIO	
AXR1[7] /EPWM1B/GP4[7]	169	МЗ	I/O	IPD	eHRPWM1 B, GPIO	
AXR1[6] /EPWM2A/GP4[6]	170	M4	I/O	IPD	eHRPWM2 A, GPIO	McASP1 serial data.
AXR1[5] /EPWM2B/GP4[5]	171	N1	I/O	IPD	eHRPWM2 B, GPIO	
AXR1[4] /EQEP1B/GP4[4]	173	N2	I/O	IPD	eQEP, GPIO	
AXR1[3]/ EQEP1A/GP4[3]	174	P1	I/O	IPD	eqLi, di lo	
AXR1[2] /GP4[2]	175	P2	I/O	IPD		
AXR1[1] /GP4[1]	176	R2	I/O	IPD	GPIO	
AXR1[0] /GP4[0]	1	T3	I/O	IPD		
AHCLKX1/EPWM0B/GP3[14]	160	K2	I/O	IPD	eHRPWM0, GPIO	McASP1 transmit master clock.
ACLKX1/EPWM0A/GP3[15]	162	КЗ	I/O	IPD	eHRPWM0, GPIO	McASP1 transmit bit clock.
AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10]	163	K4	I/O	IPD	eHRPWM0, GPIO	McASP1 transmit frame sync.
AHCLKR1/GP4[11]	-	L1	I/O	IPD	GPIO	McASP1 receive master clock.
ACLKR1/ECAP2/APWM2/GP4[12]	165	L2	I/O	IPD	eCAP2, GPIO	McASP1 receive bit clock.
AFSR1/GP4[13]	166	L3	I/O	IPD	GPIO	McASP1 receive frame sync.
AMUTE1/EPWMTZ/GP4[14]	132	D4	0	IPD	eHRPWM0, eHRPWM1, GPIO, eHRPWM2	McASP1 mute output.
McAS	3P2					
AXR0[2]/RMII_TXEN/ AXR2[3] /GP3[2]	113	D8	I/O	IPD	Manco	
AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3]	115	A7	I/O	IPD	McASP0, EMAC, GPIO	McASP2 serial
AXR0[4]/RMII_RXD[0]/ AXR2[1] /GP3[4]	116	B7	I/O	IPD	-, -	data.
AXR0[11]/ AXR2[0] /GP3[11]	124	A5	I/O	IPD	McASP0, GPIO	
AHCLKX0/ AHCLKX2 /USB_REFCLKIN/GP2[11]	125	B5	I/O	IPD	McASP0, USB,	McASP2 transmit master clock.
AXR0[1]/RMII_TXD[1]/ ACLKX2 /GP3[1]	112	C8	I/O	IPD	GPIO	McASP2 transmit bit clock.
AXR0[5]/RMII_RXD[1]/ AFSX2 /GP3[5]	117	C7	I/O	IPD	McASP0, EMAC, GPIO	McASP2 transmit frame sync.
EMA_CLK/OBSCLK/AHCLKR2/GP1[15]	-	R12	I/O	IPU	EMIFA, GPIO	McASP2 receive master clock.
AXR0[6]/RMII_RXER[0]/ ACLKR2 /GP3[6]	118	D7	I/O	IPD	McASP0, EMAC, GPIO	McASP2 receive bit clock.

Table 3-18. Multichannel Audio Serial Ports (McASPs) Terminal Functions (continued)

SIGNAL NAME		PIN NO		PULL ⁽²⁾	MUXED	DESCRIPTION
		PTP ZKB		FULL	WIOXED	DESCRIPTION
EMA_CS[3]/AMUTE2/GP2[6]	21	T7	0	IPU	EMIFA, GPIO	McASP2 mute output.

3.7.16 Universal Serial Bus Modules (USB0, USB1)

Table 3-19. Universal Serial Bus (USB) Terminal Functions

SIGNAL NAME	PIN	NO	TYPE ⁽¹⁾	PULL ⁽²⁾	DESCRIPTION
SIGNAL NAME	PTP	ZKB	ITPE	PULL	DESCRIPTION
		USB0	2.0 OTG		
USB0_DM	138	G4	Α		USB0 PHY data minus
USB0_DP	137	F4	Α		USB0 PHY data plus
USB0_VDDA33	140	H5	PWR		USB0 PHY 3.3-V supply
USB0_VDDA18	135	E3	PWR		USB0 PHY 1.8-V supply input
USB0_VDDA12 ⁽³⁾	134	C3	PWR		USB0 PHY 1.2-V LDO output for bypass cap
USB0_ID	-	D2	Α		USB0 PHY identification (mini-A or mini-B plug)
USB0_VBUS	-	D3	Α		USB0 bus voltage
USB0_DRVVBUS/GP4[15]	-	E4	0	IPD	USB0 controller VBUS control output. Multiplexed with GPIO bank 4 pin 15.
AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11]	125	B5	I	IPD	USB_REFCLKIN. Optional 48 MHz clock input.
		USB1	1.1 OHCI		
USB1_DM	-	В3	Α		USB1 PHY data minus
USB1_DP	-	АЗ	Α		USB1 PHY data plus
USB1_VDDA33	-	C1	PWR		USB1 PHY 3.3-V supply
USB1_VDDA18	-	C2	PWR		USB1 PHY 1.8-V supply
AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11]	125	B5	1	IPD	USB_REFCLKIN. Optional 48 MHz clock input.

⁽¹⁾ I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

3.7.17 Ethernet Media Access Controller (EMAC)

Table 3-20. Ethernet Media Access Controller (EMAC) Terminal Functions

SIGNAL NAME		PIN NO		PULL ⁽²⁾	MUXED	DESCRIPTION		
		ZKB	TYPE ⁽¹⁾	PULL ()	WIONED	DESCRIPTION		
	RMII							
AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11]	129	A4	I/O	IPD	McASP0, GPIO, BOOT	EMAC 50-MHz clock input or output.		

⁽¹⁾ I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

⁽³⁾ Core power supply LDO output for USB PHY. This pin must be connected via a 0.22 -μF capacitor to VSS. When the USB peripheral is not used, the USB_VDDA12 signal should still be connected via a 1-μF capacitor to VSS.

Table 3-20. Ethernet Media Access Controller (EMAC) Terminal Functions (continued)

SIGNAL NAME		NO	TYPE ⁽¹⁾	PULL ⁽²⁾	MUXED	DESCRIPTION	
SIGNAL NAME	PTP	ZKB	ITPE\/	PULL	MUXED	DESCRIPTION	
AXR0[6]/ RMII_RXER[0] /ACLKR2/GP3[6]	118	D7	I	IPD		EMAC RMII receiver error.	
AXR0[5]/ RMII_RXD[1] /AFSX2/GP3[5]	117	C7	I	IPD		EMAC RMII	
AXR0[4]/ RMII_RXD[0] /AXR2[1]/GP3[4]	116	B7	I	IPD		receive data.	
AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3]	115	A7	I	IPD	McASP0, McASP2, GPIO	EMAC RMII carrier sense data valid.	
AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2]	113	D8	0	IPD		EMAC RMII transmit enable.	
AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1]	112	C8	0	IPD		EMAC RMII trasmit	
AXR0[0]/ RMII_TXD[0] /AFSR2/GP3[0]	111	B8	0	IPD		data.	
AXR0[8]/ MDIO_D/ GP3[8]	121	B6	I/O	IPU	McASP0, GPIO	MDIO data alaak	
AXR0[7]/MDIO_CLK/GP3[7]	120	A6	0	IPD	WICASPU, GPIO	MDIO data clock.	

3.7.18 Multimedia Card/Secure Digital (MMC/SD)

Table 3-21. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions

SIGNAL NAME		NO	TYPE ⁽¹⁾	PULL ⁽²⁾	MUXED	DESCRIPTION
SIGNAL NAME	PTP	ZKB	I I PE'	PULL. /	MOXED	DESCRIPTION
EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1]	30	R9	0	IPU	EMIFA, UHPI, GPIO	MMCSD_CLK.
EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2]	31	P9	I/O	IPU	EIVIIFA, UHFI, GFIO	MMCSD_CMD.
EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13]	54	M15	I/O	IPU	EMIFA, UHPI, GPIO, BOOT	
EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6]	52	N13	I/O	IPU		MMO/OD data
EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5]	51	N15	I/O	IPU		
EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4]	49	P13	I/O	IPU	EMIFA, UHPI, GPIO	
EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3]	48	P15	I/O	IPU	EIVIIFA, UHFI, GFIO	MMC/SD data.
EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2]	46	R13	I/O	IPU		
EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1]	45	R15	I/O	IPU		
EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12]	44	T13	I/O	IPU	EMIFA, UHPI, GPIO, BOOT	

I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

3.7.19 Liquid Crystal Display Controller(LCD)

Table 3-22. Liquid Crystal Display Controller (LCD) Terminal Functions

SIGNAL NAME		NO	TYPE ⁽¹⁾	PULL ⁽²⁾	MUVED	DESCRIPTION
SIGNAL NAME	PTP ZKB		IYPE	PULL'-	MUXED	DESCRIPTION
EMA_D[15]/UHPI_HD[15]/LCD_D[15]/GP0[15]	-	M16	I/O	IPD		
EMA_D[14]/UHPI_HD[14]/ LCD_D[14] /GP0[14]	-	N14	I/O	IPD		
EMA_D[13]/UHPI_HD[13]/ LCD_D[13] /GP0[13]	-	N16	I/O	IPD		
EMA_D[12]/UHPI_HD[12]/ LCD_D[12] /GP0[12]	-	P14	I/O	IPD	EMIFA, UHPI,	
EMA_D[11]/UHPI_HD[11]/ LCD_D[11] /GP0[11]	-	P16	I/O	IPD	GPIO	
EMA_D[10]/UHPI_HD[10]/ LCD_D[10] /GP0[10]	-	R14	I/O	IPD		
EMA_D[9]/UHPI_HD[9]/ LCD_D[9] /GP0[9]	-	T14	I/O	IPD		LCD data bus.
EMA_D[8]/UHPI_HD[8]/ LCD_D[8] /GP0[8]	-	N12	I/O	IPD		
EMA_A[0]/ LCD_D[7] /GP1[0]	29	Т9	I/O	IPD	EMIEA CDIO	
EMA_A[3]/ LCD_D[6] /GP1[3]	32	N9	I/O	IPD	EMIFA, GPIO	
EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13]	26	P8	I/O	IPU	EMIFA, UHPI, GPIO	
EMA_BA[0]/ LCD_D[4]/ GP1[14]	25	R8	I/O	IPU		
EMA_A[4]/ LCD_D[3] /GP1[4]	34	T10	I/O	IPD		
EMA_A[5]/ LCD_D[2] /GP1[5]	35	R10	I/O	IPD		
EMA_A[6]/ LCD_D[1] /GP1[6]	36	P10	I/O	IPD		
EMA_A[7]/ LCD_D[0] /GP1[7]	37	N10	I/O	IPD		
EMA_A[8]/LCD_PCLK/GP1[8]	39	T11	0	IPU	EMIFA, GPIO	LCD pixel clock.
EMA_A[9]/LCD_HSYNC/GP1[9]	40	R11	0	IPU		LCD horizontal sync.
EMA_A[10]/LCD_VSYNC/GP1[10]	27	N8	0	IPU		LCD vertical sync.
EMA_A[11]/LCD_AC_ENB_CS/GP1[11]	41	P11	0	IPU		LCD AC bias enable chip select.
EMA_A[12]/ LCD_MCLK /GP1[12]	42	N11	0	IPU		LCD memory clock.

⁽¹⁾ I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

3.7.20 Reserved and No-connect

Table 3-23. Reserved and No-connect Terminal Functions

CIONAL NAME	PIN NO		TYPE ⁽¹⁾	DESCRIPTION		
SIGNAL NAME	PTP	ZKB	ITPE	DESCRIPTION		
RSV1	-	F7	-	Reserved. (Leave unconnected, <i>do not</i> connect to power or ground.)		
RSV2	133	B1	PWR	Reserved. For proper device operation, this pin must be tied directly to CV _{DD} .		
NC	139	H4	-	-		
NC	136	F3	-	-		

⁽¹⁾ PWR = Supply voltage.

⁽²⁾ IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

3.7.21 Supply and Ground

Table 3-24. Supply and Ground Terminal Functions

CIONIAL NAME	PIN	N NO	TYPE ⁽¹⁾	DESCRIPTION
SIGNAL NAME	PTP	ZKB	ITPE	DESCRIPTION
CVDD (Core supply)	10, 20, 28, 38, 50, 56, 61, 67, 69, 77, 93, 104, 114, 147, 154, 159, 161, 167,	F6,G6, G7, G10, G11,H6, H7, H10, H11, H12,J6, J7, J10, J11, J12, K6, K7, K10, K11,L6	PWR	1.2-V core supply voltage pins
DVDD (I/O supply)	5, 15, 24, 33, 43, 47, 53, 58, 65, 71, 75, 81, 87, 90, 99, 109, 119, 128, 151, 158, 164, 172,	B16, E5, E8, E9, E12, F5, F11, F12, G5, G12, K5, K12, L5, L11, L12, M5, M8, M9, M12, R1, R16	PWR	3.3-V I/O supply voltage pins.
VSS (Ground)	177	A1, A2, A15, A16, B2, E6, E7, E10, E11, F8, F9, F10, G8, G9, H8, H9, J8, J9, K8, K9, L7, L8, L9, L10, M6, M7, M10, M11, T1, T2, T15, T16	GND	Ground pins.

⁽¹⁾ PWR = Supply voltage, GND - Ground.

4 Device Configuration

4.1 Introduction

This device supports a variety of boot modes through an internal DSP ROM bootloader. This device does not support dedicated hardware boot modes; therefore, all boot modes utilize the internal DSP ROM. The input states of the BOOT pins are sampled and latched into the BOOTCFG register, which is part of the system configuration (SYSCFG) module, when device reset is deasserted. Boot mode selection is determined by the values of the BOOT pins.

See *Using the D800K001 Bootloader Application Report* (SPRAB04) for more details on the ROM Boot Loader.

4.2 Boot Modes Supported

The following boot modes are supported:

- NAND Flash boot
 - 8-bit NAND
 - 16-bit NAND
- NOR Flash boot
 - NOR Direct boot
 - NOR Legacy boot
 - NOR AIS boot
- HPI Boot
- I2C0/I2C1 Boot
 - Master boot
 - Slave boot
- SPI0/SPI1 Boot
 - Master boot
 - Slave boot

For more details on the boot mode selection, see *TMS320DA830/DA828 Digital Audio System-on-Chip User's Guide* SPRUG83.

4.3 SYSCFG Module

The following system level features of the chip are controlled by the SYSCFG peripheral:

- Readable Device, Die, and Chip Revision ID
- Control of Pin Multiplexing
- Priority of bus accesses different bus masters in the system
- Capture at power on reset the chip BOOT[15:0] pin values and make them available to software
- Special case settings for peripherals:
 - Locking of PLL controller settings
 - Default burst sizes for EDMA3 TC0 and TC1
 - Selection of the source for the eCAP module input capture (including on chip sources)
 - McASP AMUTEIN selection and clearing of AMUTE status for the three McASP peripherals
 - Control of the reference clock source and other side-band signals for both of the integrated USB PHYs
 - Clock source selection for EMIFA and EMIFB
- Selects the source of emulation suspend signal (from either ARM or DSP) from peripherals supporting this function.
- Control of on-chip inter-processor interrupts for signaling between ARM and DSP

Since the SYSCFG peripheral controls global operation of the device, its registers are protected against erroneous accesses by several mechanisms:

- · A special key sequence must be written to KICK0, KICK1 registers before any other registers are writeable.
- Additionally, many registers are accessible only by a host (ARM or DSP) when it is operating in its privileged mode. (ex. from the kernel, but not from user space code).
- On a secure DA8xx device, some accesses are further restricted to the DSP running in secure mode. Note that this protection does not apply to DA8xx devices that are ordered with the "No Security Option".

Table 4-1. System Configuration (SYSCFG) Module Register Access

Offset	Acronym	Register Description	Access
0x01C1 4000	REVID	Revision Identification Register	_
0x01C14008	DIEIDR0	Device Identification Register 0	_
0x01C1 400C	DIEIDR1	Device Identification Register 1	_
0x01C1 4010	DIEIDR2	Device Identification Register 2	_
0x01C1 4014	DIEIDR3	Device Identification Register 3	_
0x01C1 4018	DEVIDR0	Device Identification Register 0	_
0x01C1 4020	BOOTCFG	Boot Configuration Register	Privileged mode
0x01C1 4038	KICK0R	Kick 0 Register	Privileged mode
0x01C1 403C	KICK1R	Kick 1 Register	Privileged mode
0x01C1 4040	HOST0CFG	Host 0 Configuration Register	_
0x01C1 4044	HOST1CFG	Host 1 Configuration Register	_
0x01C1 40E0	IRAWSTAT	Interrupt Raw Status/Set Register	Privileged mode
0x01C1 40E4	IENSTAT	Interrupt Enable Status/Clear Register	Privileged mode
0x01C1 40E8	IENSET	Interrupt Enable Register	Privileged mode
0x01C1 40EC	IENCLR	Interrupt Enable Clear Register	Privileged mode
0x01C1 40F0	EOI	End of Interrupt Register	Privileged mode
0x01C1 40F4	FLTADDRR	Fault Address Register	Privileged mode
0x01C1 40F8	FLTSTAT	Fault Status Register	_
0x01C1 4110	MSTPRI0	Master Priority 0 Register	Privileged mode
0x01C1 4114	MSTPRI1	Master Priority 1 Register	Privileged mode
0x01C1 4118	MSTPRI2	Master Priority 2 Register	Privileged mode
0x01C1 4120	PINMUX0	Pin Multiplexing Control 0 Register	Privileged mode
0x01C1 4124	PINMUX1	Pin Multiplexing Control 1 Register	Privileged mode
0x01C1 4128	PINMUX2	Pin Multiplexing Control 2 Register	Privileged mode
0x01C1 412C	PINMUX3	Pin Multiplexing Control 3 Register	Privileged mode
0x01C1 4130	PINMUX4	Pin Multiplexing Control 4 Register	Privileged mode
0x01C1 4134	PINMUX5	Pin Multiplexing Control 5 Register	Privileged mode
0x01C1 4138	PINMUX6	Pin Multiplexing Control 6 Register	Privileged mode
0x01C1 413C	PINMUX7	Pin Multiplexing Control 7 Register	Privileged mode
0x01C1 4140	PINMUX8	Pin Multiplexing Control 8 Register	Privileged mode
0x01C1 4144	PINMUX9	Pin Multiplexing Control 9 Register	Privileged mode
0x01C1 4148	PINMUX10	Pin Multiplexing Control 10 Register	Privileged mode
0x01C1 414C	PINMUX11	Pin Multiplexing Control 11 Register	Privileged mode
0x01C1 4150	PINMUX12	Pin Multiplexing Control 12 Register	Privileged mode
0x01C1 4154	PINMUX13	Pin Multiplexing Control 13 Register	Privileged mode
0x01C1 4158	PINMUX14	Pin Multiplexing Control 14 Register	Privileged mode
0x01C1 415C	PINMUX15	Pin Multiplexing Control 15 Register	Privileged mode

Table 4-1. System Configuration (SYSCFG) Module Register Access (continued)

Offset	Acronym	Register Description	Access
0x01C1 4160	PINMUX16	Pin Multiplexing Control 16 Register	Privileged mode
0x01C1 4164	PINMUX17	Pin Multiplexing Control 17 Register	Privileged mode
0x01C1 4168	PINMUX18	Pin Multiplexing Control 18 Register	Privileged mode
0x01C1 416C	PINMUX19	Pin Multiplexing Control 19 Register	Privileged mode
0x01C1 4170	SUSPSRC	Suspend Source Register	Privileged mode
0x01C1 4174	CHIPSIG	Chip Signal Register	_
0x01C1 4178	CHIPSIG_CLR	Chip Signal Clear Register	_
0x01C1 417C	CFGCHIP0	Chip Configuration 0 Register	Privileged mode
0x01C1 4180	CFGCHIP1	Chip Configuration 1 Register	Privileged mode
0x01C1 4184	CFGCHIP2	Chip Configuration 2 Register	Privileged mode
0x01C1 4188	CFGCHIP3	Chip Configuration 3 Register	Privileged mode
0x01C1 418C	CFGCHIP4	Chip Configuration 4 Register	Privileged mode

5 Device Operating Conditions

5.1 Absolute Maximum Ratings Over Operating Case Temperature Range (Unless Otherwise Noted) (1)

	Core (CVDD, RTC_CVDD, PLL0_VDDA , USB0_VDDA12 ⁽²⁾) ⁽³⁾	-0.5 V to 1.4 V
Supply voltage ranges	I/O, 1.8V (USB0_VDDA18, USB1_VDDA18) ⁽³⁾	-0.5 V to 2 V
	I/O, 3.3V (DVDD, USB0_VDDA33, USB1_VDDA33) ⁽³⁾	-0.5 V to 3.8 V
	V ₁ I/O, 1.2V (OSCIN, RTC_XI)	-0.3 V to CVDD + 0.3V
	V _I I/O, 3.3V (Steady State)	-0.3V to DVDD + 0.3V
Input voltage ranges	V _I I/O, 3.3V (Transient)	DVDD + 20% up to 20% of Signal Period
	V _I I/O, USB 5V Tolerant Pins: (USB0_DM, USB0_DP, USB0_ID, USB1_DM, USB1_DP)	5.25V ⁽⁴⁾
	V _I I/O, USB0 VBUS	5.50V ⁽⁴⁾
Output valtage renge	V _O I/O, 3.3V (Steady State)	-0.5 V to DVDD + 0.3V
Output voltage ranges	V _O I/O, 3.3V (Transient Overshoot/Undershoot)	20% of DVDD for up to 20% of the signal period
Clamp Current	Input or Output Voltages 0.3V above or below their respective power rails. Limit clamp current that flows through the I/O's internal diode protection cells.	±20mA
Operating Junction Temperature	(default)	0°C to 90°C
ranges, T _J	Automotive (T suffix)	-40°C to 125°C
Storage temperature range, T _{stg}	(default)	-55°C to 150°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ This pin is an internal LDO output and connected via 0.22 μF capacitor to USB0_VDDA12.

⁽³⁾ All voltage values are with respect to VSS, PLL0_VSSA, OSCVSS, RTC_VSS

⁽⁴⁾ Up to a max of 24 hours.

INSTRUMENTS

ADVANCE INFORMATION

5.2 Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
CVDD	Supply voltage, Core (CVDD, RTC_CVDD, PLL0_VDDA , USBO)_VDDA12 ⁽¹⁾)	1.14	1.2 or 1.26	1.32	٧
DVDD	Supply voltage, I/O, 1.8V (USB0_VDDA18, USB1_VDDA18)		1.71	1.8	1.89	٧
DVDD	Supply voltage, I/O, 3.3V (DVDD, USB0_VDDA33, USB1_VDDA33)		3.15	3.3	3.45	٧
VSS	Supply ground (VSS, PLL0_VSSA, OSCVSS ⁽²⁾ , RTC_VS	ŚŚ, PLL0_VSSA, OSCVSS ⁽²⁾ , RTC_VSS ⁽²⁾)		0	0	٧
	High-level input voltage, I/O, 3.3V		2			V
$V_{IH}^{(3)}$	High-level input voltage, RTC_XI		0.8*RTC_CVDD			V
	High-level input voltage, OSCIN		0.8*CVDD			
	Low-level input voltage, I/O, 3.3V				0.8	V
$V_{IL}^{(3)}$	Low-level input voltage, RTC_XI				0.2*RTC_CVDD	V
	Low-level input voltage, OSCIN				0.2*CVDD	
V _{HYS}	Input Hysteresis			160		mV
USB	USB0_VBUS		4.75	5	5.25	V
t _t	Transition time, 10%-90%, All Inputs				10	ns
		Default	0		70	°C
T _A	Operating ambient temperature range	Automotive (T suffix)	-40		105	°C
	DSP and ARM Operating Frequency	Default	0		300	MHz
F _{SYSCLK1,6}	(SYSCLK1,6)	Automotive (T suffix)	0		300	MHz

This pin is an internal LDO output and connected via 0.22 μF capacitor to VSS.

When an external crystal is used, oscillator ground (OSC_VSS, RTC_VSS) must be kept separate from other grounds and connected directly to the crystal load capacitor ground. These pins are shorted to VSS on the device itself and should not be connected to VSS on the circuit board. If a crystal is not used and the clock input is driven directly, then the oscillator VSS may be connected to board ground. These I/O specifications do not apply to USB I/Os. USB0 I/Os adhere to USB2.0 specification. USB1 I/Os adhere to USB1.1

specification.

5.3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case Temperature (Unless Otherwise Noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
	Low/full speed: USB0_DM and USB0_DP		2.8	USB0_VDDA33	V
	High speed: USB0_DM and USB0_DP		360	440	mV
V _{OH}	Low/full speed: USB1_DM and USB1_DP		2.8	USB1_VDDA33	V
	Hi I I I I I I I I I I I I I I I I I I I	DVDD = 3.15V, I _{OH} = -4 mA	2.4		V
	High-level output voltage (3.3V I/O)	DVDD = 3.15V, I _{OH} = -100 μA	2.95		V
	Low/full speed: USB0_DM and USB0_DP		0.0	0.3	V
	High speed: USB0_DM and USB0_DP		-10	10	mV
V _{OL}	Low/full speed: USB1_DM and USB1_DP		0.0	0.3	V
	Low-level output voltage (3.3V I/O)	DVDD = 3.15V, I _{OL} = 4mA		0.4	V
	Low-level output voltage (3.3V I/O)	DVDD = 3.15V, I_{OL} = +100 μ A		0.2	V
		V _I = VSS to DVDD without opposing internal resistor		±35	μА
l _i ⁽¹⁾		V _I = VSS to DVDD with opposing internal pullup resistor ⁽²⁾	-30	-200	μА
l ₁ (''	Input current	V _I = VSS to DVDD with opposing internal pulldown resistor ⁽²⁾	50	300	μА
		V _I = VSS to USB1_VDDA33 - USB1_DM and USB1_DP		±40	μА
I _{OH}	High-level output current	All peripherals		-4	mA
I _{OL}	Low-level output current	All peripherals		4	mA
I _{OZ} (3)	I/O Off-state output current	VO = VDD or VSS; Internal pull disabled		±35	μА

I_I applies to input-only pins and bi-directional pins. For input-only pins, I_I indicates the input leakage current. For bi-directional pins, I_I indicates the input leakage current and off-state (Hi-Z) output leakage current. Does not apply to USB0 pins. Please see USB2.0 specification.

⁽²⁾ Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor.

⁽³⁾ I_{OZ} applies to output-only pins, indicating off-state (Hi-Z) output leakage current.

6 Peripheral Information and Electrical Specifications

6.1 Parameter Information

6.1.1 Parameter Information Device-Specific Information

A. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data sheet timings. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin.</p>

Figure 6-1. Test Load Circuit for AC Timing Measurements

The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving.

6.1.1.1 Signal Transition Levels

All input and output timing parameters are referenced to V_{ref} for both "0" and "1" logic levels. For 3.3 V I/O, $V_{ref} = 1.65$ V. For 1.8 V I/O, $V_{ref} = 0.9$ V.

Figure 6-2. Input and Output Voltage Reference Levels for AC Timing Measurements

All rise and fall transition timing parameters are referenced to V_{IL} MAX and V_{IH} MIN for input clocks, V_{OL} MAX and V_{OH} MIN for output clocks.

Figure 6-3. Rise and Fall Transition Time Voltage Reference Levels

6.2 Recommended Clock and Control Signal Transition Behavior

All clocks and control signals must transition between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.

6.3 Power Supplies

6.3.1 Power-on Sequence

DA8xx devices include on chip logic that ensures I/O pins are tri-stated during the power on ramp, as long as the RESET pin is asserted. This is true even if the core voltage (CVDD) has not yet ramped.

Normally, the only requirement during the power on ramp is that both the RESET and TRST pins remain asserted (low) until after the power supply rails have fully ramped.

However, if the on chip USB modules are used; then to limit any noise on the USB0_DM, USB0_DP, USB1_DM, and USB1_DP pins to less than 200mV during the power on ramp, the sequence illustrated in Figure 6-4 must be followed. The requirement is that the core supply (CVDD) must ramp to at least 0.9V (1) before the IO supply (DVDD) reaches the 1.65V point in its ramp (2). And as is always the case, RESET and TRST must remain asserted during the power on ramp and released only after CVDD and DVDD are within their specified ranges.

Figure 6-4. Power Sequence

6.3.2 Unused USB0 (USB2.0) and USB1 (USB1.1) Pin Configurations

If one or both USB modules on the device are not used, then some of the power supplies to those modules may not be required. This can eliminate the requirement for a 1.8V power supply to the USB modules. The required pin configurations for unused USB modules are shown below.

Table 6-1. Unused USB0 and USB1 Pin Configurations

SIGNAL NAME	Configuration (When USB0 and USB1 are not used)	Configuration (When USB0 is used and USB1 is not used)
USB0_DM	No connect	Use as USB0 function
USB0_DP	No connect	Use as USB0 function
USB0_VDDA33	No connect	3.3V
USB0_VDDA18	No connect	1.8V
USB0_ID	No connect	Use as USB0 function
USB0_VBUS	No connect	Use as USB0 function
USB0_DRVVBUS/GP4[15]	No connect or use as alternate function	Use as USB0 or alternate function
USB0_VDDA12	No connect	Internal USB0 PHY output connected to an external filter capacitor
USB1_DM	No connect	Ground
USB1_DP	No connect	Ground
USB1_VDDA33	No connect	No connect
USB1_VDDA18	No connect	No connect

NSTRUMENTS

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

Table 6-1. Unused USB0 and USB1 Pin Configurations (continued)

SIGNAL NAME	Configuration (When USB0 and USB1 are not used)	Configuration (When USB0 is used and USB1 is not used)
AHCLKX0/AHCLKX2/USB_REFCLKIN/ GP2[11]	No connect or use as alternate function	Use as USB0 or alternate function

6.4 Reset

6.4.1 Power-On Reset (POR)

A power-on reset (POR) is required to place the device in a known good state after power-up. Power-On Reset is initiated by bringing RESET and TRST low at the same time. POR sets all of the device internal logic to its default state. All pins are tri-stated with the exception of RESETOUT which remains active through the reset sequence. RESETOUT is an output for use by other controllers in the system that indicates the device is currently in reset.

RTCK is maintained active through a POR.

A summary of the effects of Power-On Reset is given below:

- All internal logic (including emulation logic and the PLL logic) is reset to its default state
- Internal memory is not maintained through a POR
- **RESETOUT** goes active
- All device pins go to a high-impedance state
- The RTC peripheral is not reset during a POR. A software sequence is required to reset the RTC

CAUTION

A watchdog reset triggers a POR.

6.4.2 Warm Reset

A warm reset provides a limited reset to the device. Warm Reset is initiated by bringing only RESET low (TRST is maintained high through a warm reset). Warm reset sets certain portions of the device to their default state while leaving others unaltered. All pins are tri-stated with the exception of RESETOUT which remains active through the reset sequence. RESETOUT is an output for use by other controllers in the system that indicates the device is currently in reset.

During emulation, the emulator will maintain TRST high and hence only warm reset (not POR) is available during emulation debug and development.

RTCK is maintained active through a POR.

A summary of the effects of Warm Reset is given below:

- All internal logic (except for the emulation logic and the PLL logic) is reset to its default state
- Internal memory is maintained through a warm reset
- RESETOUT goes active
- All device pins go to a high-impedance state
- The RTC peripheral is not reset during a warm reset. A software sequence is required to reset the **RTC**

6.4.3 Reset Electrical Data Timings

Table 6-2 assumes testing over the recommended operating conditions.

Table 6-2. Reset Timing Requirements ((1), (2))

NO		PARAMETER			UNIT
1	t _{w(RSTL)}	Pulse width, RESET/TRST low	100		ns
2	t _{su(BPV-RSTH)}	Setup time, boot pins valid before RESET/TRST high			ns
3	t _{h(RSTH-BPV)}	h(RSTH-BPV) Hold time, boot pins valid after RESET/TRST high			ns
4	t _{d(RSTH-RESETOUTH)}	RESET high to RESETOUT high; Warm reset			cycles (3)
		RESET high to RESETOUT high; Power-on Reset	6192		

- (1) RESETOUT is multiplexed with other pin functions. See the Terminal Functions table, Table 3-4 for details.
- (2) For power-on reset (POR), the reset timings in this table refer to RESET and TRST together. For warm reset, the reset timings in this table refer to RESET only (TRST is held high).
- (3) OSCIN cycles

Figure 6-5. Power-On Reset (RESET and TRST active) Timing

Figure 6-6. Warm Reset (RESET active, TRST high) Timing

INSTRUMENTS

6.5 Crystal Oscillator or External Clock Input

The device includes two choices to provide an external clock input, which is fed to the on-chip PLL to generate high-frequency system clocks. These options are illustrated in Figure 6-7 and Figure 6-8. For input clock frequencies between 12 and 20 MHz, a crystal with 80 ohm max ESR is recommended. For input clock frequencies between 20 and 30 MHz, a crystal with 60 ohm max ESR is recommended. Typical C1, C2 values are 10-20 pF.

- Figure 6-7 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit.
- Figure 6-8 illustrates the option that uses an external 1.2V clock input.

Figure 6-7. On-Chip 1.2V Oscillator

Table 6-3. Oscillator Timing Requirements

NO	PARAMETER	MIN	MAX	UNIT
f _{osc}	Oscillator frequency range (OSCIN/OSCOUT)	12	30	MHz

Figure 6-8. External 1.2V Clock Source

Table 6-4. CLKIN Timing Requirements

NO	PARAMETER	MIN	MAX	UNIT
f _{CLKIN}	CLKIN frequency range (OSCIN)	12	50	MHz
t _{c(CLKIN)}	Cycle time, external clock driven on OSCIN	20		ns
t _{w(CLKINH)}	Pulse width high, external clock on OSCIN			ns
, ,		t _{c(CLKIN)}		

Table 6-4. CLKIN Timing Requirements (continued)

NO	PARAMETER	MIN	MAX	UNIT
t _{w(CLKINL)}	Pulse width low, external clock on OSCIN	0.4		ns
, ,		$t_{c(CLKIN)}$		
t _{t(CLKIN)}	Transition time, CLKIN	5		ns

6.6 Clock PLLs

The device has one PLL controller that provides clock to different parts of the system. PLL0 provides clocks (though various dividers) to most of the components of the device.

The PLL controller provides the following:

- Glitch-Free Transitions (on changing clock settings)
- Domain Clocks Alignment
- Clock Gating
- PLL power down

The various clock outputs given by the controller are as follows:

- Domain Clocks: SYSCLK [1:n]
- Auxiliary Clock from reference clock source: AUXCLK

Various dividers that can be used are as follows:

Post-PLL Divider: POSTDIVSYSCLK Divider: D1, , Dn

Various other controls supported are as follows:

- PLL Multiplier Control: PLLM
- Software programmable PLL Bypass: PLLEN

6.6.1 PLL Device-Specific Information

The device DSP generates the high-frequency internal clocks it requires through an on-chip PLL.

The PLL requires some external filtering components to reduce power supply noise as shown in Figure 6-9.

Figure 6-9. PLL External Filtering Components

The input to the PLL is either from the on-chip oscillator (OSCIN pin) or from an external clock on the CLKIN pin. The PLL outputs seven clocks that have programmable divider options. Figure 6-10 illustrates the PLL Topology.

The PLL is disabled by default after a device reset. It must be configured by software according to the allowable operating conditions listed in Table 6-5 before enabling the DSP to run from the PLL by setting PLLEN = 1.

INSTRUMENTS SPRS483A-NOVEMBER 2008-REVISED MAY 2009

Figure 6-10. PLL Topology

Table 6-5. Allowed PLL Operating Conditions

NO	PARAMETER	Default Value	MIN	MAX	UNIT
1	PLLRST: Assertion time during initialization	N/A	125	N/A	ns
2	Lock time: The time that the application has to wait for the PLL to acquire locks before setting PLLEN, after changing PREDIV, PLLM, or OSCIN	N/A	N/A	$\frac{2000 \text{ N}}{\sqrt{M}}$ where N = Pre-Divider Ratio $M = PLL \text{ Multiplier}$	ns
3	PREDIV	/1	/1	/32	ns
4	PLL input frequency (PLLREF)		12	50	MHz
5	PLL multiplier values (PLLM)	x20	x4	x32	
6	PLL output frequency. (PLLOUT)	N/A	400	600 ⁽¹⁾	MHz
7	POSTDIV	/1	/2 ⁽¹⁾	/32	ns

PLL post divider / 2 must be used. The /4.5 clock path can be used to generate an EMIF clock from the undivided (i.e. 600 MHz) PLL output clock.

6.6.2 Device Clock Generation

PLL0 is controlled by PLL Controller 0. The PLLC0 manages the clock ratios, alignment, and gating for the system clocks to the chip. The PLLC is responsible for controlling all modes of the PLL through software, in terms of pre-division of the clock inputs, multiply factor within the PLL, and post-division for each of the chip-level clocks from the PLL output. The PLLC also controls reset propagation through the chip, clock alignment, and test points.

6.6.3 PLL Controller 0 Registers

Table 6-6. PLL Controller 0 Registers

ADDRESS	ACRONYM	REGISTER DESCRIPTION		
0x01C1 1000	REVID	Revision Identification Register		
0x01C1 10E4	RSTYPE	Reset Type Status Register		
0x01C1 1100	PLLCTL	PLL Control Register		
0x01C1 1104	OCSEL	OBSCLK Select Register		
0x01C1 1110	PLLM	PLL Multiplier Control Register		
0x01C1 1114	PREDIV	PLL Pre-Divider Control Register		
0x01C1 1118	PLLDIV1	PLL Controller Divider 1 Register		
0x01C1 111C	PLLDIV2	PLL Controller Divider 2 Register		
0x01C1 1120	PLLDIV3	PLL Controller Divider 3 Register		
0x01C1 1124	OSCDIV	Oscillator Divider 1 Register (OBSCLK)		
0x01C1 1128	POSTDIV	PLL Post-Divider Control Register		
0x01C1 1138	PLLCMD	PLL Controller Command Register		
0x01C1 113C	PLLSTAT	PLL Controller Status Register		
0x01C1 1140	ALNCTL	PLL Controller Clock Align Control Register		
0x01C1 1144	DCHANGE	PLLDIV Ratio Change Status Register		
0x01C1 1148	CKEN	Clock Enable Control Register		
0x01C1 114C	CKSTAT	Clock Status Register		
0x01C1 1150	SYSTAT	SYSCLK Status Register		
0x01C1 1160	PLLDIV4	PLL Controller Divider 4 Register		
0x01C1 1164	PLLDIV5	PLL Controller Divider 5 Register		
0x01C1 1168	PLLDIV6	PLL Controller Divider 6 Register		
0x01C1 116C	PLLDIV7	PLL Controller Divider 7 Register		
0x01C1 11F0	EMUCNT0	Emulation Performance Counter 0 Register		
0x01C1 11F4	EMUCNT1	Emulation Performance Counter 1 Register		

6.7 Interrupts

The device has a large number of interrupts to service the needs of its many peripherals and subsystems. Both the ARM and C674x CPUs are capable of servicing these interrupts equally. The interrupts can be selectively enabled or disabled in either of the controllers. Also, the ARM and DSP can communicate with each other through interrupts controlled by registers in the SYSCFG module.

6.7.1 ARM CPU Interrupts

The ARM9 CPU core supports 2 direct interrupts: FIQ and IRQ. The ARM Interrupt Controller on the DA8xx extends the number of interrupts to 100, and provides features like programmable masking, priority, hardware nesting support, and interrupt vector generation. The DA8xx ARM Interrupt controller is enhanced from previous devices like the DM6446 and DM355.

6.7.1.1 ARM Interrupt Controller (AINTC) Interrupt Signal Hierarchy

On DA8xx, the ARM Interrupt controller organizes interrupts into the following hierarchy:

- Peripheral Interrupt Requests
 - Individual Interrupt Sources from Peripherals
- 100 System Interrupts
 - One or more Peripheral Interrupt Requests are combined (fixed configuration) to generate a System Interrupt.
 - After prioritization, the AINTC will provide an interrupt vector based unique to each System Interrupt
- 32 Interrupt Channels
 - Each System Interrupt is mapped to one of the 32 Interrupt Channels
 - Channel Number determines the first level of prioritization, Channel 0 is highest priority and 31 lowest.
 - If more than one system interrupt is mapped to a channel, priority within the channel is determined by system interrupt number (0 highest priority)
- Host Interrupts (FIQ and IRQ)
 - Interrupt Channels 0 and 1 generate the ARM FIQ interrupt
 - Interrupt Channels 2 through 31 Generate the ARM IRQ interrupt
- · Debug Interrupts
 - Two Debug Interrupts are supported and can be used to trigger events in the debug subsystem.
 - Sources can be selected from any of the System Interrupts or Host Interrupts

6.7.1.2 AINTC Hardware Vector Generation

The AINTC also generates an interrupt vector in hardware for both IRQ and FIQ host interrupts. This may be used to accelerate interrupt dispatch. A unique vector is generated for each of the 100 system interrupts. The vector is computed in hardware as:

VECTOR = BASE + (SYSTEM INTERRUPT NUMBER × SIZE)

Where BASE and SIZE are programmable. The computed vector is a 32-bit address which may dispatched to using a single instruction of type LDR PC, [PC, #-<offset_12>] at the FIQ and IRQ vector locations (0xFFFF0018 and 0xFFFF001C respectively).

6.7.1.3 AINTC Hardware Interrupt Nesting Support

Interrupt nesting occurs when an interrupt service routine re-enables interrupts, to allow the CPU to interrupt the ISR if a higher priority event occurs. The AINTC provides hardware support to facilitate interrupt nesting. It supports both global and per host interrupt (FIQ and IRQ in this case) automatic nesting. If enabled, the AINTC will automatically update an internal nesting register that temporarily masks interrupts at and below the priority of the current interrupt channel. Then if the ISR re-enables interrupts; only higher priority channels will be able to interrupt it. The nesting level is restored by the ISR by writing to the nesting level register on completion. Support for nesting can be enabled/disabled by software, with the option of automatic nesting on a global or per host interrupt basis; or manual nesting.

6.7.1.4 AINTC System Interrupt Assignments on TMS320DA830/TMS320DA828

System Interrupt assignments for the TMS320DA830/TMS320DA828 are listed in Table 6-7

TEXAS INSTRUMENTS

Table 6-7. AINTC System Interrupt Assignments							
System Interrupt	Interrupt Name	Source	System Interrupt	Interrupt Name	Source		
0	COMMTX	ARM	51	IIC1_INT	I2C1		
1	COMMRX	ARM	52	LCDC_INT	LCD Controller		
2	NINT	ARM	53	UART_INT1	UART1		
3	DMAX_EVTOUT0	dMAX	54	MCASP_INT	McASP0, 1, 2 Combined RX / TX Interrupts		
4	DMAX_EVTOUT1	dMAX	55	PSC1_ALLINT	PSC1		
5	DMAX_EVTOUT2	dMAX	56	SPI1_INT	SPI1		
6	DMAX_EVTOUT3	dMAX	57	UHPI_ARMINT	UHPI Arm Interrupt		
7	DMAX_EVTOUT4	dMAX	58	USB0_INT	USB0 Interrupt		
8	DMAX_EVTOUT5	dMAX	59	USB1_HCINT	USB1 OHCI Host Controller Interrupt		
9	DMAX_EVTOUT6	dMAX	60	USB1_RWAKEUP	USB1 Remote Wakeup Interrupt		
10	DMAX_EVTOUT7	dMAX	61	UART2_INT	UART2		
11	EDMA3_CC0_CCINT	EDMA CC Region 0	62	-	Reserved		
12	EDMA3_CC0_CCERRINT	EDMA CC	63	EHRPWM0	HiResTimer / PWM0 Interrupt		
13	EDMA3_TC0_TCERRINT	EDMA TC0	64	EHRPWM0TZ	HiResTimer / PWM0 Trip Zone Interrupt		
14	EMIFA_INT	EMIFA	65	EHRPWM1	HiResTimer / PWM1 Interrupt		
15	IIC0_INT	I2C0	66	EHRPWM1TZ	HiResTimer / PWM1 Trip Zone Interrupt		
16	MMCSD_INT0	MMCSD	67	EHRPWM2	HiResTimer / PWM2 Interrupt		
17	MMCSD_INT1	MMCSD	68	EHRPWM2TZ	HiResTimer / PWM2 Trip Zone Interrupt		
18	PSC0_ALLINT	PSC0	69	ECAP0	ECAP0		
19	RTC_IRQS[1:0]	RTC	70	ECAP1	ECAP1		
20	SPI0_INT	SPI0	71	ECAP2	ECAP2		
21	T64P0_TINT12	Timer64P0 Interrupt 12	72	EQEP0	EQEP0		
22	T64P0_TINT34	Timer64P0 Interrupt 34	73	EQEP1	EQEP1		
23	T64P1_TINT12	Timer64P1 Interrupt 12	74	T64P0_CMPINT0	Timer64P0 - Compare 0		
24	T64P1_TINT34	Timer64P1 Interrupt 34	75	T64P0_CMPINT1	Timer64P0 - Compare 1		
25	UART0_INT	UART0	76	T64P0_CMPINT2	Timer64P0 - Compare 2		
26	-	Reserved	77	T64P0_CMPINT3	Timer64P0 - Compare 3		
27	PROTERR	MPU1, 2, and SYSCFG Protection Shared Interrupt	78	T64P0_CMPINT4	Timer64P0 - Compare 4		
28	SYSCFG_CHIPINT0	SYSCFG CHIPSIG Register	79	T64P0_CMPINT5	Timer64P0 - Compare 5		
29	SYSCFG_CHIPINT1	SYSCFG CHIPSIG Register	80	T64P0_CMPINT6	Timer64P0 - Compare 6		
30	SYSCFG_CHIPINT2	SYSCFG CHIPSIG Register	81	T64P0_CMPINT7	Timer64P0 - Compare 7		
31	SYSCFG_CHIPINT3	SYSCFG CHIPSIG Register	82	T64P1_CMPINT0	Timer64P1 - Compare 0		
32	EDMA3_TC1_TCERRINT	EDMA TC1	83	T64P1_CMPINT1	Timer64P1 - Compare 1		
33	EMAC_CORXTHRESH	EMAC - Core 0 Receive Threshold Interrupt	84	T64P1_CMPINT2	Timer64P1 - Compare 2		
34	EMAC_CORX	EMAC - Core 0 Receive Interrupt	85	T64P1_CMPINT3	Timer64P1 - Compare 3		

Table 6-7. AINTC System Interrupt Assignments (continued)

System Interrupt	Interrupt Name	Source	System Interrupt	Interrupt Name	Source
35	EMAC_COTX	EMAC - Core 0 Transmit Interrupt	86	T64P1_CMPINT4	Timer64P1 - Compare 4
36	EMAC_COMISC	EMAC - Core 0 Miscellaneous Interrupt	87	T64P1_CMPINT5	Timer64P1 - Compare 5
37	EMAC_C1RXTHRESH	EMAC - Core 1 Receive Threshold Interrupt	88	T64P1_CMPINT6	Timer64P1 - Compare 6
38	EMAC_C1RX	EMAC - Core 1 Receive Interrupt	89	T64P1_CMPINT7	Timer64P1 - Compare 7
39	EMAC_C1TX	EMAC - Core 1 Transmit Interrupt	90	ARMCLKSTOPREQ	PSC0
40	EMAC_C1MISC	EMAC - Core 1 Miscellaneous Interrupt	91	-	Reserved
41	EMIF_MEMERR	EMIFB	92	-	Reserved
42	GPIO_B0INT	GPIO Bank 0 Interrupt	93	-	Reserved
43	GPIO_B1INT	GPIO Bank 1 Interrupt	94	-	Reserved
44	GPIO_B2INT	GPIO Bank 2 Interrupt	95	-	Reserved
45	GPIO_B3INT	GPIO Bank 3 Interrupt	96	-	Reserved
46	GPIO_B4INT	GPIO Bank 4 Interrupt	97	-	Reserved
47	GPIO_B5INT	GPIO Bank 5 Interrupt	98	-	Reserved
48	GPIO_B6INT	GPIO Bank 6 Interrupt	99	-	Reserved
49	GPIO_B7INT	GPIO Bank 7 Interrupt	100	-	Reserved
50	-	Reserved			

Texas Instruments

6.7.1.5 AINTC Memory Map

Table 6-8. AINTC Memory Map

BYTE ADDRESS	REGISTER NAME	DESCRIPTION
0xFFFE E000	REV	Revision Register
0xFFFE E004	CR	Control Register
0xFFFE E008 - 0xFFFE E00F	-	Reserved
0xFFFE E010	GER	Global Enable Register
0xFFFE E014 - 0xFFFE E01B	-	Reserved
0xFFFE E01C	GNLR	Global Nesting Level Register
0xFFFE E020	SISR	System Interrupt Status Indexed Set Register
0xFFFE E024	SICR	System Interrupt Status Indexed Clear Register
0xFFFE E028	EISR	System Interrupt Enable Indexed Set Register
0xFFFE E02C	EICR	System Interrupt Enable Indexed Clear Register
0xFFFE E030	-	Reserved
0xFFFE E034	HIEISR	Host Interrupt Enable Indexed Set Register
0xFFFE E038	HIDISR	Host Interrupt Enable Indexed Clear Register
0xFFFE E03C - 0xFFFE E04F	-	Reserved
0xFFFE E050	VBR	Vector Base Register
0xFFFE E054	VSR	Vector Size Register
0xFFFE E058	VNR	Vector Null Register
0xFFFE E05C - 0xFFFE E07F	VIVIX	Reserved
0xFFFE E080	GPIR	Global Prioritized Index Register
0xFFFE E084	GPVR	Global Prioritized Vector Register
0xFFFE E088 - 0xFFFE E1FF	GFVK	Reserved
0xFFFE E200 - 0xFFFE E20F	CDCD[0] CDCD[3]	
0xFFFE E210- 0xFFFE E27F	SRSR[0] - SRSR[3]	System Interrupt Status Raw / Set Registers Reserved
0xFFFE E280 - 0xFFFE E28B	SECR[0] - SECR[3]	
0xFFFE E28C - 0xFFFE E2FF	SECK[U] - SECK[S]	System Interrupt Status Enabled / Clear Registers Reserved
	-	
0xFFFE E300 - 0xFFFE E30F	ESR[0] - ESR[3]	System Interrupt Enable Set Registers
0xFFFE E310 - 0xFFFE E37F		Reserved
0xFFFE E380 - 0xFFFE E38B	ECR[0] - ECR[3]	System Interrupt Enable Clear Registers
0xFFFE E38C - 0xFFFE E3FF 0xFFFE E400 - 0xFFFE E458	- CMDIOI CMDIOOI	Reserved Channel Man Parietan (Puta Wide Parietan)
	CMR[0] - CMR[22]	Channel Map Registers (Byte Wide Registers)
0xFFFE E45C - 0xFFFE E7FF	-	Reserved
0xFFFE E800 - 0xFFFE E81F	-	Reserved
0xFFFE E820 - 0xFFFE E8FF	-	Reserved
0xFFFE E900 - 0xFFFE E904	HIPIR[0] - HIPIR[1]	Host Interrupt Prioritized Index Registers
0xFFFE E908 - 0xFFFE EEFF	-	Reserved
0xFFFE EF00 - 0xFFFE EF04	DSR[0] - DSR[1]	Debug Select Registers
0xFFFE EF08 - 0xFFFE F0FF	-	Reserved
0xFFFE F100 - 0xFFFE F104	HINLR[0] - HINLR[1]	Host Interrupt Nesting Level Registers
0xFFFE F108 - 0xFFFE F4FF	-	Reserved
0xFFFE F500	HIER[0]	Host Interrupt Enable Register
0xFFFE F504 - 0xFFFE F5FF	-	Reserved
0xFFFE F600	HIPVR[0] - HIPVR[1]	Host Interrupt Prioritized Vector Registers
0xFFFE F608 - 0xFFFE FFFF	-	Reserved

ADVANCE INFORMATION

6.7.2 DSP Interrupts

The C674x DSP interrupt controller combines device events into 12 prioritized interrupts. The source for each of the 12 CPU interrupts is user programmable and is listed in Table 6-9. Also, the interrupt controller controls the generation of the CPU exception, NMI, and emulation interrupts. Table 6-10 summarizes the C674x interrupt controller registers and memory locations. For more details on DSP interrupt control, see the TMS320C64x+ DSP Megamodule Reference Guide, Literature Number - SPRU871.

Texas Instruments

www.ti.com

Table 6-9. TMS320DA830/TMS320DA828 DSP Interrupts

EVT#	Interrupt Name	Source	EVT#	Interrupt Name	Source
0	EVT0	C674x Int Ctl 0	64	T64P0_TINT34	Timer64P0 Interrupt 34
1	EVT1	C674x Int Ctl 1	65	GPIO_B0INT	GPIO Bank 0 Interrupt
2	EVT2	C674x Int Ctl 2	66	DMAX_EVTOUT4	dMAX
3	EVT3	C674x Int Ctl 3	67	SYSCFG_CHIPINT3	SYSCFG_CHIPSIG Register
4	T64P0_TINT12	Timer64P0 - TINT12	68	EQEP0	EQEP0
5	SYSCFG_CHIPINT2	SYSCFG _CHIPSIG Register	69	UART2_INT	UART2
6	DMAX_EVTOUT0	dMAX	70	PSC0_ALLINT	PSC0
7	EHRPWM0	HiResTimer/PWM0 Interrupt	71	PSC1_ALLINT	PSC1
8	EDMA3_CC0_INT1	EDMA3 CC0 Region 1 interrupt	72	GPIO_B7INT	GPIO Bank 7 Interrupt
9	EMU-DTDMA	C674x-ECM	73	LCDC_INT	LCD ControllerReserved
10	EHRPWM0TZ	HiResTimer/PWM0 Trip Zone Interrupt	74	PROTERR	MPU1, 2, SYSCFG Protection Shared Interrupt
11	EMU-RTDXRX	C674x-RTDX	75	-	Reserved
12	EMU-RTDXTX	C674x-RTDX	76	-	Reserved
13	IDMAINT0	C674x-EMC	77	-	Reserved
14	IDMAINT1	C674x-EMC	78	T64P0_CMPINT0	Timer64P0 - Compare 0
15	MMCSD_INT0	MMCSD MMC/SD Interrupt	79	T64P0_CMPINT1	Timer64P0 - Compare 1
16	MMCSD_INT1	MMCSD SDIO Interrupt	80	T64P0_CMPINT2	Timer64P0 - Compare 2
17	DMAX_EVTOUT1	dMAX	81	T64P0_CMPINT3	Timer64P0 - Compare 3
18	EHRPWM1	HiResTimer/PWM1 Interrupt	82	T64P0_CMPINT4	Timer64P0 - Compare 4
19	USB0_INT	USB0 Interrupt	83	T64P0_CMPINT5	Timer64P0 - Compare 5
20	USB1_HCINT	USB1 OHCI Host Controller Interrupt	84	T64P0_CMPINT6	Timer64P0 - Compare 6
21	USB1_RWAKEUP	USB1 Remote Wakeup Interrupt	85	T64P0_CMPINT7	Timer64P0 - Compare 7
22	DMAX_EVTOUT2	dMAX	86	T64P1_CMPINT0	Timer64P1 - Compare 0
23	EHRPWM1TZ	HiResTimer/PWM1 Trip Zone Interrupt	87	T64P1_CMPINT1	Timer64P1 - Compare 1
24	EHRPWM2	HiResTimer/PWM2 Interrupt	88	T64P1_CMPINT2	Timer64P1 - Compare 2
25	EHRPWM2TZ	HiResTimer/PWM2 Trip Zone Interrupt	89	T64P1_CMPINT3	Timer64P1 - Compare 3
26	EMAC_CORXTHRESH	EMAC - Core 0 Receive Threshold Interrupt	90	T64P1_CMPINT4	Timer64P1 - Compare 4
27	EMAC_CORX	EMAC - Core 0 Receive Interrupt	91	T64P1_CMPINT5	Timer64P1 - Compare 5
28	EMAC_C0TX	EMAC - Core 0 Transmit Interrupt	92	T64P1_CMPINT6	Timer64P1 - Compare 6
29	EMAC_COMISC	EMAC - Core 0 Miscellaneous Interrupt	93	T64P1_CMPINT7	Timer64P1 - Compare 7
30	EMAC_C1RXTHRESH	EMAC - Core 1 Receive Threshold Interrupt	94	-	Reserved
31	EMAC_C1RX	EMAC - Core 1 Receive Interrupt	95	-	Reserved
32	EMAC_C1TX	EMAC - Core 1 Transmit Interrupt	96	INTERR	C674x-Int Ctl
33	EMAC_C1MISC	EMAC - Core 1 Miscellaneous Interrupt	97	EMC_IDMAERR	C674x-EMC
34	UHPI_DSPINT	UHPI DSP Interrupt	98	-	Reserved
35	DMAX_EVTOUT3	dMAX	99	-	Reserved
36	IIC0_INT	I2C0	100		Reserved
37	SP0_INT	SPI0	101	-	Reserved
38	UART0_INT	UART0	102	-	Reserved
39	DMAX_EVTOUT5	dMAX	103	-	Reserved

Table 6-9. TMS320DA830/TMS320DA828 DSP Interrupts (continued)

EVT#	Interrupt Name	Source	EVT#	Interrupt Name	Source
40	T64P1_TINT12	Timer64P1 Interrupt 12	104	-	Reserved
41	GPIO_B1INT	GPIO Bank 1 Interrupt	105	-	Reserved
42	IIC1_INT	I2C1	106	-	Reserved
43	SPI1_INT	SPI1	107	-	Reserved
44	DMAX_EVTOUT6	dMAX	108	-	Reserved
45	ECAP0	ECAP0	109	-	Reserved
46	UART_INT1	UART1	110	-	Reserved
47	ECAP1	ECAP1	111	-	Reserved
48	T64P1_TINT34	Timer64P1 Interrupt 34	112	=	Reserved
49	GPIO_B2INT	GPIO Bank 2 Interrupt	113	PMC_ED	C674x-PMC
50	DMAX_EVTOUT7	dMAX	114	-	Reserved
51	ECAP2	ECAP2	115	-	Reserved
52	GPIO_B3INT	GPIO Bank 3 Interrupt	116	UMC_ED1	C674x-UMC
53	EQEP1	EQEP1	117	UMC_ED2	C674x-UMC
54	GPIO_B4INT	GPIO Bank 4 Interrupt	118	PDC_INT	C674x-PDC
55	EMIFA_INT	EMIFA	119	SYS_CMPA	C674x-SYS
56	EDMA3_CC0_ERRINT	EDMA3 Channel Controller 0	120	PMC_CMPA	C674x-PMC
57	EDMA3_TC0_ERRINT	EDMA3 Transfer Controller 0	121	PMC_CMPA	C674x-PMC
58	EDMA3_TC1_ERRINT	EDMA3 Transfer Controller 1	122	DMC_CMPA	C674x-DMC
59	GPIO_B5INT	GPIO Bank 5 Interrupt	123	DMC_CMPA	C674x-DMC
60	EMIFB_INT	EMIFB Memory Error Interrupt	124	UMC_CMPA	C674x-UMC
61	MCASP_INT	McASP0,1,2 Combined RX/TX Interrupts	125	UMC_CMPA	C674x-UMC
62	GPIO_B6INT	GPIO Bank 6 Interrupt	126	EMC_CMPA	C674x-EMC
63	RTC_IRQS	RTC Combined	127	EMC_BUSERR	C674x-EMC

Table 6-10. C674x DSP Interrupt Controller Registers

BYTE ADDRESS REGISTER NAME DESCRIPTION 0x0180 0000 **EVTFLAG0** Event flag register 0 0x0180 0004 **EVTFLAG1** Event flag register 1 0x0180 0008 **EVTFLAG2** Event flag register 2 0x0180 000C **EVTFLAG3** Event flag register 3 0x0180 0020 Event set register 0 EVTSET0 0x0180 0024 EVTSET1 Event set register 1 0x0180 0028 **EVTSET2** Event set register 2 0x0180 002C EVTSET3 Event set register 3 0x0180 0040 EVTCLR0 Event clear register 0 0x0180 0044 EVTCLR1 Event clear register 1 0x0180 0048 **EVTCLR2** Event clear register 2 0x0180 004C EVTCLR3 Event clear register 3 0x0180 0080 Event mask register 0 **EVTMASK0** 0x0180 0084 EVTMASK1 Event mask register 1 0x0180 0088 **EVTMASK2** Event mask register 2 0x0180 008C **EVTMASK3** Event mask register 3 0x0180 00A0 MEVTFLAG0 Masked event flag register 0 0x0180 00A4 MEVTFLAG1 Masked event flag register 1 0x0180 00A8 MEVTFLAG2 Masked event flag register 2 0x0180 00AC MEVTFLAG3 Masked event flag register 3 0x0180 00C0 EXPMASK0 Exception mask register 0 0x0180 00C4 EXPMASK1 Exception mask register 1 EXPMASK2 Exception mask register 2 0x0180 00C8 0x0180 00CC EXPMASK3 Exception mask register 3 0x0180 00E0 MEXPFLAG0 Masked exception flag register 0 0x0180 00E4 MEXPFLAG1 Masked exception flag register 1 MEXPFLAG2 0x0180 00E8 Masked exception flag register 2 0x0180 00EC MEXPFLAG3 Masked exception flag register 3 0x0180 0104 INTMUX1 Interrupt mux register 1 0x0180 0108 INTMUX2 Interrupt mux register 2 **INTMUX3** 0x0180 010C Interrupt mux register 3 0x0180 0140 - 0x0180 0144 Reserved 0x0180 0180 **INTXSTAT** Interrupt exception status 0x0180 0184 **INTXCLR** Interrupt exception clear 0x0180 0188 **INTDMASK** Dropped interrupt mask register

6.7.3 ARM/DSP Communications Interrupts

EVTASRT

Communications Interrupts between the ARM and DSP are part of the SYSCFG module on the DA8xx family of devices.

Event assert register

0x0180 01C0

6.8 General-Purpose Input/Output (GPIO)

The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs. When configured as an output, a write to an internal register can control the state driven on the output pin. When configured as an input, the state of the input is detectable by reading the state of an internal register. In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in different interrupt/event generation modes. The GPIO peripheral provides generic connections to external devices. The GPIO pins are grouped into banks of 16 pins per bank (i.e., bank 0 consists of GPIO [0:15]).

The device GPIO peripheral supports the following:

- Up to 128 Pins on ZKB and up to 109 Pins on PTP package configurable as GPIO
- External Interrupt and DMA request Capability
 - Every GPIO pin may be configured to generate an interrupt request on detection of rising and/or falling edges on the pin.
 - The interrupt requests within each bank are combined (logical or) to create eight unique bank level interrupt requests.
 - The bank level interrupt service routine may poll the INTSTATx register for its bank to determine which pin(s) have triggered the interrupt.
 - GPIO Banks 0, 1, 2, 3, 4, 5, 6, and 7 Interrupts assigned to ARM INTC Interrupt Requests 42, 43, 44, 45, 46, 47, 48, and 49 respectively
 - GPIO Banks 0, 1, 2, 3, 4, 5, 6, and 7 Interrupts assigned to DSP Events 65, 41, 49, 52, 54, 59, 62 and 72 respectively
 - Additionally, GPIO Banks 0, 1, 2, 3, 4, and 5 Interrupts assigned to EDMA events 6, 7, 22, 23, 28, and 29 respectively.
- Set/clear functionality: Firmware writes 1 to corresponding bit position(s) to set or to clear GPIO signal(s). This allows multiple firmware processes to toggle GPIO output signals without critical section protection (disable interrupts, program GPIO, re-enable interrupts, to prevent context switching to anther process during GPIO programming).
- · Separate Input/Output registers
- Output register in addition to set/clear so that, if preferred by firmware, some GPIO output signals can be toggled by direct write to the output register(s).
- Output register, when read, reflects output drive status. This, in addition to the input register reflecting pin status and open-drain I/O cell, allows wired logic be implemented.

The memory map for the GPIO registers is shown in Table 6-11. See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number <u>SPRUFK9</u> for more details.

6.8.1 GPIO Register Description(s)

Table 6-11. GPIO Registers

GPIO BYTE ADDRESS	Acronym	Register Description
0x01E2 6000	REV	Peripheral Revision Register
0x01E2 6004	-	Reserved
0x01E2 6008	BINTEN	GPIO Interrupt Per-Bank Enable Register
		GPIO Banks 0 and 1
0x01E2 6010	DIR01	GPIO Banks 0 and 1 Direction Register
0x01E2 6014	OUT_DATA01	GPIO Banks 0 and 1 Output Data Register
0x01E2 6018	SET_DATA01	GPIO Banks 0 and 1 Set Data Register
0x01E2 601C	CLR_DATA01	GPIO Banks 0 and 1 Clear Data Register
0x01E2 6020	IN_DATA01	GPIO Banks 0 and 1 Input Data Register
0x01E2 6024	SET_RIS_TRIG01	GPIO Banks 0 and 1 Set Rising Edge Interrupt Register

NSTRUMENTS

Digital Audio System-on-Chip (SoC) SPRS483A-NOVEMBER 2008-REVISED MAY 2009

Table 6-11. GPIO Registers (continued)

Table 6-11. GFIO Registers (continued)				
GPIO BYTE ADDRESS	Acronym	Register Description		
0x01E2 6028	CLR_RIS_TRIG01	GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register		
0x01E2 602C	SET_FAL_TRIG01	GPIO Banks 0 and 1 Set Falling Edge Interrupt Register		
0x01E2 6030	CLR_FAL_TRIG01	GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register		
0x01E2 6034	INTSTAT01	GPIO Banks 0 and 1 Interrupt Status Register		
	<u>.</u>	GPIO Banks 2 and 3		
0x01E2 6038	DIR23	GPIO Banks 2 and 3 Direction Register		
0x01E2 603C	OUT_DATA23	GPIO Banks 2 and 3 Output Data Register		
0x01E2 6040	SET_DATA23	GPIO Banks 2 and 3 Set Data Register		
0x01E2 6044	CLR_DATA23	GPIO Banks 2 and 3 Clear Data Register		
0x01E2 6048	IN_DATA23	GPIO Banks 2 and 3 Input Data Register		
0x01E2 604C	SET_RIS_TRIG23	GPIO Banks 2 and 3 Set Rising Edge Interrupt Register		
0x01E2 6050	CLR_RIS_TRIG23	GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register		
0x01E2 6054	SET_FAL_TRIG23	GPIO Banks 2 and 3 Set Falling Edge Interrupt Register		
0x01E2 6058	CLR_FAL_TRIG23	GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register		
0x01E2 605C	INTSTAT23	GPIO Banks 2 and 3 Interrupt Status Register		
	<u>, </u>	GPIO Banks 4 and 5		
0x01E2 6060	DIR45	GPIO Banks 4 and 5 Direction Register		
0x01E2 6064	OUT_DATA45	GPIO Banks 4 and 5 Output Data Register		
0x01E2 6068	SET_DATA45	GPIO Banks 4 and 5 Set Data Register		
0x01E2 606C	CLR_DATA45	GPIO Banks 4 and 5 Clear Data Register		
0x01E2 6070	IN_DATA45	GPIO Banks 4 and 5 Input Data Register		
0x01E2 6074	SET_RIS_TRIG45	GPIO Banks 4 and 5 Set Rising Edge Interrupt Register		
0x01E2 6078	CLR_RIS_TRIG45	GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register		
0x01E2 607C	SET_FAL_TRIG45	GPIO Banks 4 and 5 Set Falling Edge Interrupt Register		
0x01E2 6080	CLR_FAL_TRIG45	GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register		
0x01E2 6084	INTSTAT45	GPIO Banks 4 and 5 Interrupt Status Register		
		GPIO Banks 6 and 7		
0x01E2 6088	DIR67	GPIO Banks 6 and 7 Direction Register		
0x01E2 608C	OUT_DATA67	GPIO Banks 6 and 7 Output Data Register		
0x01E2 6090	SET_DATA67	GPIO Banks 6 and 7 Set Data Register		
0x01E2 6094	CLR_DATA67	GPIO Banks 6 and 7 Clear Data Register		
0x01E2 6098	IN_DATA67	GPIO Banks 6 and 7 Input Data Register		
0x01E2 609C	SET_RIS_TRIG67	GPIO Banks 6 and 7 Set Rising Edge Interrupt Register		
0x01E2 60A0	CLR_RIS_TRIG67	GPIO Banks 6 and 7 Clear Rising Edge Interrupt Register		
0x01E2 60A4	SET_FAL_TRIG67	GPIO Banks 6 and 7 Set Falling Edge Interrupt Register		
0x01E2 60A8	CLR_FAL_TRIG67	GPIO Banks 6 and 7 Clear Falling Edge Interrupt Register		
0x01E2 60AC	INTSTAT67	GPIO Banks 6 and 7 Interrupt Status Register		

6.8.2 GPIO Peripheral Input/Output Electrical Data/Timing

Table 6-12. Timing Requirements for GPIO Inputs⁽¹⁾ (see Figure 6-11)

NO.		MIN MAX	UNIT
1	$t_{w(GPIH)}$ Pulse duration, GPIx high	2C ⁽¹⁾⁽²⁾	ns

⁽¹⁾ The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have the device recognize the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to allow the device enough time to access the GPIO register through the internal bus.

C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns. (2)

Table 6-12. Timing Requirements for GPIO Inputs (see Figure 6-11) (continued)

1	NO.			MIN MAX	UNIT
	2	t _{w(GPIL)}	Pulse duration, GPIx low	2C ⁽¹⁾⁽²⁾	ns

Table 6-13. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs (see Figure 6-11)

NO.	PARAMETER	MIN MAX	UNIT
3	t _{w(GPOH)} Pulse duration, GPOx high	2C ⁽¹⁾ (2)	ns
4	t _{w(GPOL)} Pulse duration, GPOx low	2C ⁽¹⁾⁽²⁾	ns

- (1) This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the GPIO is dependent upon internal bus activity.
- (2) C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns.

Figure 6-11. GPIO Port Timing

6.8.3 GPIO Peripheral External Interrupts Electrical Data/Timing

Table 6-14. Timing Requirements for External Interrupts⁽¹⁾ (see Figure 6-12)

				1
NO			MIN MAX	UNIT
1	t _{w(ILOW)}	Width of the external interrupt pulse low	2C ⁽¹⁾⁽²⁾	ns
2	t _{w(IHIGH)}	Width of the external interrupt pulse high	2C ⁽¹⁾⁽²⁾	ns

- (1) The pulse width given is sufficient to generate an interrupt or an EDMA event. However, if a user wants to have the device recognize the GPIO changes through software polling of the GPIO register, the GPIO duration must be extended to allow the device enough time to access the GPIO register through the internal bus.
- (2) C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns.

Figure 6-12. GPIO External Interrupt Timing

6.9 EDMA

Table 6-15 is the list of EDMA3 Channel Contoller Registers and Table 6-16 is the list of EDMA3 Transfer Controller registers. See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number <u>SPRUFK9</u> for more details.

Table 6-15. EDMA3 Channel Controller (EDMA3CC) Registers

BYTE ADDRESS	Acronym	Register Description			
0x01C0 0000	PID	Peripheral Identification Register			
0x01C0 0004	CCCFG	EDMA3CC Configuration Register			
	Global Registers				
0x01C0 0200	QCHMAP0	QDMA Channel 0 Mapping Register			
0x01C0 0204	QCHMAP1	QDMA Channel 1 Mapping Register			
0x01C0 0208	QCHMAP2	QDMA Channel 2 Mapping Register			
0x01C0 020C	QCHMAP3	QDMA Channel 3 Mapping Register			
0x01C0 0210	QCHMAP4	QDMA Channel 4 Mapping Register			
0x01C0 0214	QCHMAP5	QDMA Channel 5 Mapping Register			
0x01C0 0218	QCHMAP6	QDMA Channel 6 Mapping Register			
0x01C0 021C	QCHMAP7	QDMA Channel 7 Mapping Register			
0x01C0 0240	DMAQNUM0	DMA Channel Queue Number Register 0			
0x01C0 0244	DMAQNUM1	DMA Channel Queue Number Register 1			
0x01C0 0248	DMAQNUM2	DMA Channel Queue Number Register 2			
0x01C0 024C	DMAQNUM3	DMA Channel Queue Number Register 3			
0x01C0 0260	QDMAQNUM	QDMA Channel Queue Number Register			
0x01C0 0284	QUEPRI	Queue Priority Register ⁽¹⁾			
0x01C0 0300	EMR	Event Missed Register			
0x01C0 0308	EMCR	Event Missed Clear Register			
0x01C0 0310	QEMR	QDMA Event Missed Register			
0x01C0 0314	QEMCR	QDMA Event Missed Clear Register			
0x01C0 0318	CCERR	EDMA3CC Error Register			
0x01C0 031C	CCERRCLR	EDMA3CC Error Clear Register			
0x01C0 0320	EEVAL	Error Evaluate Register			
0x01C0 0340	DRAE0	DMA Region Access Enable Register for Region 0			
0x01C0 0348	DRAE1	DMA Region Access Enable Register for Region 1			
0x01C0 0350	DRAE2	DMA Region Access Enable Register for Region 2			
0x01C0 0358	DRAE3	DMA Region Access Enable Register for Region 3			
0x01C0 0380	QRAE0	QDMA Region Access Enable Register for Region 0			
0x01C0 0384	QRAE1	QDMA Region Access Enable Register for Region 1			
0x01C0 0388	QRAE2	QDMA Region Access Enable Register for Region 2			
0x01C0 038C	QRAE3	QDMA Region Access Enable Register for Region 3			
0x01C0 0400 - 0x01C0 043C	Q0E0-Q0E15	Event Queue Entry Registers Q0E0-Q0E15			
0x01C0 0440 - 0x01C0 047C	Q1E0-Q1E15	Event Queue Entry Registers Q1E0-Q1E15			
0x01C0 0600	QSTAT0	Queue 0 Status Register			
0x01C0 0604	QSTAT1	Queue 1 Status Register			
0x01C0 0620	QWMTHRA	Queue Watermark Threshold A Register			
0x01C0 0640	CCSTAT	EDMA3CC Status Register			
		Global Channel Registers			
0x01C0 1000	ER	Event Register			

⁽¹⁾ On previous architectures, the EDMA3TC priority was controlled by the queue priority register (QUEPRI) in the EDMA3CC memory-map. However for this device, the priority control for the transfer controllers is controlled by the chip-level registers in the System Configuration Module. You should use the chip-level registers and not QUEPRI to configure the TC priority.

Table 6-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued)

BYTE ADDRESS	Acronym	Register Description
0x01C0 1008	ECR	Event Clear Register
0x01C0 1010	ESR	Event Set Register
0x01C0 1018	CER	Chained Event Register
0x01C0 1020	EER	Event Enable Register
0x01C0 1028	EECR	Event Enable Clear Register
0x01C0 1030	EESR	Event Enable Set Register
0x01C0 1038	SER	Secondary Event Register
0x01C0 1040	SECR	Secondary Event Clear Register
0x01C0 1050	IER	Interrupt Enable Register
0x01C0 1058	IECR	Interrupt Enable Clear Register
0x01C0 1060	IESR	Interrupt Enable Set Register
0x01C0 1068	IPR	Interrupt Pending Register
0x01C0 1070	ICR	Interrupt Clear Register
0x01C0 1078	IEVAL	Interrupt Evaluate Register
0x01C0 1080	QER	QDMA Event Register
0x01C0 1084	QEER	QDMA Event Enable Register
0x01C0 1088	QEECR	QDMA Event Enable Clear Register
0x01C0 108C	QEESR	QDMA Event Enable Set Register
0x01C0 1090	QSER	QDMA Secondary Event Register
0x01C0 1094	QSECR	QDMA Secondary Event Clear Register
	Sha	adow Region 0 Channel Registers
0x01C0 2000	ER	Event Register
0x01C0 2008	ECR	Event Clear Register
0x01C0 2010	ESR	Event Set Register
0x01C0 2018	CER	Chained Event Register
0x01C0 2020	EER	Event Enable Register
0x01C0 2028	EECR	Event Enable Clear Register
0x01C0 2030	EESR	Event Enable Set Register
0x01C0 2038	SER	Secondary Event Register
0x01C0 2040	SECR	Secondary Event Clear Register
0x01C0 2050	IER	Interrupt Enable Register
0x01C0 2058	IECR	Interrupt Enable Clear Register
0x01C0 2060	IESR	Interrupt Enable Set Register
0x01C0 2068	IPR	Interrupt Pending Register
0x01C0 2070	ICR	Interrupt Clear Register
0x01C0 2078	IEVAL	Interrupt Evaluate Register
0x01C0 2080	QER	QDMA Event Register
0x01C0 2084	QEER	QDMA Event Enable Register
0x01C0 2088	QEECR	QDMA Event Enable Clear Register
0x01C0 208C	QEESR	QDMA Event Enable Set Register
0x01C0 2090	QSER	QDMA Secondary Event Register
0x01C0 2094	QSECR	QDMA Secondary Event Clear Register
	Sha	adow Region 1 Channel Registers
0x01C0 2200	ER	Event Register
0x01C0 2208	ECR	Event Clear Register
0x01C0 2210	ESR	Event Set Register
0x01C0 2218	CER	Chained Event Register

Instruments

TMS320DA830/TMS320DA828

Table 6-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued)

BYTE ADDRESS	Acronym	Register Description
0x01C0 2220	EER	Event Enable Register
0x01C0 2228	EECR	Event Enable Clear Register
0x01C0 2230	EESR	Event Enable Set Register
0x01C0 2238	SER	Secondary Event Register
0x01C0 2240	SECR	Secondary Event Clear Register
0x01C0 2250	IER	Interrupt Enable Register
0x01C0 2258	IECR	Interrupt Enable Clear Register
0x01C0 2260	IESR	Interrupt Enable Set Register
0x01C0 2268	IPR	Interrupt Pending Register
0x01C0 2270	ICR	Interrupt Clear Register
0x01C0 2278	IEVAL	Interrupt Evaluate Register
0x01C0 2280	QER	QDMA Event Register
0x01C0 2284	QEER	QDMA Event Enable Register
0x01C0 2288	QEECR	QDMA Event Enable Clear Register
0x01C0 228C	QEESR	QDMA Event Enable Set Register
0x01C0 2290	QSER	QDMA Secondary Event Register
0x01C0 2294	QSECR	QDMA Secondary Event Clear Register
0x01C0 4000 - 0x01C0 4FFF	_	Parameter RAM (PaRAM)

Table 6-16. EDMA3 Transfer Controller (EDMA3TC) Registers

Offset	Transfer Controller	Transfer Controller	Acronym	Register Description	
	BYTE ADDRESS	BYTE ADDRESS			
0h	0x01C0 8000	0x01C0 8400	PID	Peripheral Identification Register	
4h	0x01C0 8004	0x01C0 8404	TCCFG	EDMA3TC Configuration Register	
100h	0x01C0 8100	0x01C0 8500	TCSTAT	EDMA3TC Channel Status Register	
120h	0x01C0 8120	0x01C0 8520	ERRSTAT	Error Status Register	
124h	0x01C0 8124	0x01C0 8524	ERREN	Error Enable Register	
128h	0x01C0 8128	0x01C0 8528	ERRCLR	Error Clear Register	
12Ch	0x01C0 812C	0x01C0 852C	ERRDET	Error Details Register	
130h	0x01C0 8130	0x01C0 8530	ERRCMD	Error Interrupt Command Register	
140h	0x01C0 8140	0x01C0 8540	RDRATE	Read Command Rate Register	
240h	0x01C0 8240	0x01C0 8640	SAOPT	Source Active Options Register	
244h	0x01C0 8244	0x01C0 8644	SASRC	Source Active Source Address Register	
248h	0x01C0 8248	0x01C0 8648	SACNT	Source Active Count Register	
24Ch	0x01C0 824C	0x01C0 864C	SADST	Source Active Destination Address Register	
250h	0x01C0 8250	0x01C0 8650	SABIDX	Source Active B-Index Register	
254h	0x01C0 8254	0x01C0 8654	SAMPPRXY	Source Active Memory Protection Proxy Register	
258h	0x01C0 8258	0x01C0 8658	SACNTRLD	Source Active Count Reload Register	
25Ch	0x01C0 825C	0x01C0 865C	SASRCBREF	Source Active Source Address B-Reference Register	
260h	0x01C0 8260	0x01C0 8660	SADSTBREF	Source Active Destination Address B-Reference Register	
280h	0x01C0 8280	0x01C0 8680	DFCNTRLD	Destination FIFO Set Count Reload Register	
284h	0x01C0 8284	0x01C0 8684	DFSRCBREF	Destination FIFO Set Source Address B-Reference Register	
288h	0x01C0 8288	0x01C0 8688	DFDSTBREF	Destination FIFO Set Destination Address B-Reference Register	
300h	0x01C0 8300	0x01C0 8700	DFOPT0	Destination FIFO Options Register 0	
304h	0x01C0 8304	0x01C0 8704	DFSRC0	Destination FIFO Source Address Register 0	
308h	0x01C0 8308	0x01C0 8708	DFCNT0	Destination FIFO Count Register 0	

Table 6-16. EDMA3 Transfer Controller (EDMA3TC) Registers (continued)

Offset	Transfer Controller 0 BYTE ADDRESS	Transfer Controller 1 BYTE ADDRESS	Acronym	Register Description
30Ch	0x01C0 830C	0x01C0 870C	DFDST0	Destination FIFO Destination Address Register 0
310h	0x01C0 8310	0x01C0 8710	DFBIDX0	Destination FIFO B-Index Register 0
314h	0x01C0 8314	0x01C0 8714	DFMPPRXY0	Destination FIFO Memory Protection Proxy Register 0
340h	0x01C0 8340	0x01C0 8740	DFOPT1	Destination FIFO Options Register 1
344h	0x01C0 8344	0x01C0 8744	DFSRC1	Destination FIFO Source Address Register 1
348h	0x01C0 8348	0x01C0 8748	DFCNT1	Destination FIFO Count Register 1
34Ch	0x01C0 834C	0x01C0 874C	DFDST1	Destination FIFO Destination Address Register 1
350h	0x01C0 8350	0x01C0 8750	DFBIDX1	Destination FIFO B-Index Register 1
354h	0x01C0 8354	0x01C0 8754	DFMPPRXY1	Destination FIFO Memory Protection Proxy Register 1
380h	0x01C0 8380	0x01C0 8780	DFOPT2	Destination FIFO Options Register 2
384h	0x01C0 8384	0x01C0 8784	DFSRC2	Destination FIFO Source Address Register 2
388h	0x01C0 8388	0x01C0 8788	DFCNT2	Destination FIFO Count Register 2
38Ch	0x01C0 838C	0x01C0 878C	DFDST2	Destination FIFO Destination Address Register 2
390h	0x01C0 8390	0x01C0 8790	DFBIDX2	Destination FIFO B-Index Register 2
394h	0x01C0 8394	0x01C0 8794	DFMPPRXY2	Destination FIFO Memory Protection Proxy Register 2
3C0h	0x01C0 83C0	0x01C0 87C0	DFOPT3	Destination FIFO Options Register 3
3C4h	0x01C0 83C4	0x01C0 87C4	DFSRC3	Destination FIFO Source Address Register 3
3C8h	0x01C0 83C8	0x01C0 87C8	DFCNT3	Destination FIFO Count Register 3
3CCh	0x01C0 83CC	0x01C0 87CC	DFDST3	Destination FIFO Destination Address Register 3
3D0h	0x01C0 83D0	0x01C0 87D0	DFBIDX3	Destination FIFO B-Index Register 3
3D4h	0x01C0 83D4	0x01C0 87D4	DFMPPRXY3	Destination FIFO Memory Protection Proxy Register 3

Table 6-17 shows an abbreviation of the set of registers which make up the parameter set for each of 128 EDMA events. Each of the parameter register sets consist of 8 32-bit word entries. Table 6-18 shows the parameter set entry registers with relative memory address locations within each of the parameter sets.

Table 6-17. EDMA Parameter Set RAM

HEX ADDRESS RANGE	DESCRIPTION
0x01C0 4000 - 0x01C0 401F	Parameters Set 0 (8 32-bit words)
0x01C0 4020 - 0x01C0 403F	Parameters Set 1 (8 32-bit words)
0x01C0 4040 - 0x01cC0 405F	Parameters Set 2 (8 32-bit words)
0x01C0 4060 - 0x01C0 407F	Parameters Set 3 (8 32-bit words)
0x01C0 4080 - 0x01C0 409F	Parameters Set 4 (8 32-bit words)
0x01C0 40A0 - 0x01C0 40BF	Parameters Set 5 (8 32-bit words)
0x01C0 4FC0 - 0x01C0 4FDF	Parameters Set 126 (8 32-bit words)
0x01C0 4FE0 - 0x01C0 4FFF	Parameters Set 127 (8 32-bit words)

Table 6-18. Parameter Set Entries

HEX OFFSET ADDRESS WITHIN THE PARAMETER SET	ACRONYM	PARAMETER ENTRY
0x0000	OPT	Option
0x0004	SRC	Source Address
0x0008	A_B_CNT	A Count, B Count
0x000C	DST	Destination Address
0x0010	SRC_DST_BIDX	Source B Index, Destination B Index

Texas Instruments

Table 6-18. Parameter Set Entries (continued)

	•	•
HEX OFFSET ADDRESS WITHIN THE PARAMETER SET	ACRONYM	PARAMETER ENTRY
0x0014	LINK_BCNTRLD	Link Address, B Count Reload
0x0018	SRC_DST_CIDX	Source C Index, Destination C Index
0x001C	CCNT	C Count

Table 6-19. EDMA Events

Event	Event Name / Source	Event	Event Name / Source
0	McASP0 Receive	16	MMCSD Receive
1	McASP0 Transmit	17	MMCSD Transmit
2	McASP1 Receive	18	SPI1 Receive
3	McASP1 Transmit	19	SPI1 Transmit
4	McASP2 Receive	20	dMAX EVTOUT[6]
5	McASP2 Transmit	21	dMAX EVTOUT[7]
6	GPIO Bank 0 Interrupt	22	GPIO Bank 2 Interrupt
7	GPIO Bank 1 Interrupt	23	GPIO Bank 3 Interrupt
8	UART0 Receive	24	I2C0 Receive
9	UART0 Transmit	25	I2C0 Transmit
10	Timer64P0 Event Out 12	26	I2C1 Receive
11	Timer64P0 Event Out 34	27	I2C1 Transmit
12	UART1 Receive	28	GPIO Bank 4 Interrupt
13	UART1 Transmit	29	GPIO Bank 5 Interrupt
14	SPI0 Receive	30	UART2 Receive
15	SPI0 Transmit	31	UART2 Transmit

6.10 External Memory Interface A (EMIFA)

EMIFA is one of two external memory interfaces supported on the device. It is primarily intended to support asynchronous memory types, such as NAND and NOR flash and Asynchronous SRAM. However on this device, EMIFA also provides a secondary interface to SDRAM. See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number SPRUFK9 for more details.

6.10.1 EMIFA Asynchronous Memory Support

EMIFA supports asynchronous:

- SRAM memories
- NAND Flash memories
- NOR Flash memories

The EMIFA data bus width is up to 16-bits on the ZKB package and 8 bits on the PTP package. Both devices support up to fifteen address lines and an external wait/interrupt input. Up to four asynchronous chip selects are supported by EMIFA (EMA_CS[5:2]). All four chip selects are available on the ZKB package. Two of the four are available on the PTP package (EMA_CS[3:2]).

Each chip select has the following individually programmable attributes:

- Data Bus Width
- Read cycle timings: setup, hold, strobe
- Write cycle timings: setup, hold, strobe
- Bus turn around time
- Extended Wait Option With Programmable Timeout
- Select Strobe Option
- NAND flash controller supports 1-bit and 4-bit ECC calculation on blocks of 512 bytes.

6.10.2 EMIFA Synchronous DRAM Memory Support

The ZKB package supports 16-bit SDRAM in addition to the asynchronous memories listed in Section 6.10.1. It has a single SDRAM chip select (EMA_CS[0]). SDRAM configurations that are supported are:

- One, Two, and Four Bank SDRAM devices
- · Devices with Eight, Nine, Ten, and Eleven Column Address
- · CAS Latency of two or three clock cycles
- Sixteen Bit Data Bus Width
- 3.3V LVCMOS Interface

Additionally, the SDRAM interface of EMIFA supports placing the SDRAM in Self Refresh and Powerdown Modes. Self Refresh mode allows the SDRAM to be put into a low power state while still retaining memory contents; since the SDRAM will continue to refresh itself even without clocks from the DSP. Powerdown mode achieves even lower power, except the DSP must periodically wake the SDRAM up and issue refreshes if data retention is required.

Finally, note that the EMIFA does not support Mobile SDRAM devices.

6.10.3 EMIFA Connection Examples

Figure 6-13 illustrates an example of how SDRAM, NOR, and NAND flash devices might be connected to EMIFA of the device simultaneously. The SDRAM chip select must be EMA_CS[0]. Note that the NOR flash is connected to EMA_CS[2] and the NAND flash is connected to EMA_CS[3] in this example. Note that any type of asynchronous memory may be connected to EMA_CS[5:2].

The on-chip bootloader makes some assumptions on which chip select the contains the boot image, and this depends on the boot mode. For NOR boot mode; the on-chip bootloader requires that the image be stored in NOR flash on EMA_CS[2]. For NAND boot mode, the bootloader requires that the boot image is stored in NAND flash on EMA_CS[3]. It is always possible to have the image span multiple chip selects, but this must be supported by second stage boot code stored in the external flash.

A likely use case with more than one EMIFA chip select used for NAND flash is illustrated in Figure 6-14. This figure shows how two multiplane NAND flash devices with two chip selects each would connect to the device EMIFA. In this case if NAND is the boot memory, then the boot image needs to be stored in the NAND area selected by EMA_CS[3]. Part of the application image could spill over into the NAND regions selected by other EMIFA chip selects; but would rely on the code stored in the EMA_CS[3] area to bootload it. Note that this example could also apply to the DA828 device; except only one multiplane NAND could be supported with only EMA_CS[3:2] available.

Figure 6-13. TMS320DA830/TMS320DA828 Connection Diagram: SDRAM, NOR, NAND

Figure 6-14. TMS320DA830/TMS320DA828 EMIFA Connection Diagram: Multiple NAND Flash Planes

6.10.4 External Memory Interface (EMIF)

Table 6-20 is a list of the EMIF registers. For more information about these registers, see the C674x DSP External Memory Interface (EMIF) User's Guide (literature number SPRU711).

Table 6-20. External Memory Interface (EMIFA) Registers

BYTE ADDRESS	Register Name	Register Description
0x6800 0000	MIDR	Module ID Register
0x6800 0004	AWCC	Asynchronous Wait Cycle Configuration Register
0x6800 0008	SDCR	SDRAM Configuration Register
0x6800 000C	SDRCR	SDRAM Refresh Control Register
0x6800 0010	CE2CFG	Asynchronous 1 Configuration Register
0x6800 0014	CE3CFG	Asynchronous 2 Configuration Register
0x6800 0018	CE4CFG	Asynchronous 3 Configuration Register
0x6800 001C	CE5CFG	Asynchronous 4 Configuration Register
0x6800 0020	SDTIMR	SDRAM Timing Register
0x6800 003C	SDSRETR	SDRAM Self Refresh Exit Timing Register
0x6800 0040	INTRAW	EMIFA Interrupt Raw Register
0x6800 0044	INTMSK	EMIFA Interrupt Mask Register
0x6800 0048	INTMSKSET	EMIFA Interrupt Mask Set Register
0x6800 004C	INTMSKCLR	EMIFA Interrupt Mask Clear Register
0x6800 0060	NANDFCR	NAND Flash Control Register
0x6800 0064	NANDFSR	NAND Flash Status Register
0x6800 0070	NANDF1ECC	NAND Flash 1 ECC Register (CS2 Space)
0x6800 0074	NANDF2ECC	NAND Flash 2 ECC Register (CS3 Space)
0x6800 0078	NANDF3ECC	NAND Flash 3 ECC Register (CS4 Space)
0x6800 007C	NANDF4ECC	NAND Flash 4 ECC Register (CS5 Space)
0x6800 00BC	NAND4BITECCLOAD	NAND Flash 4-Bit ECC Load Register
0x6800 00C0	NAND4BITECC1	NAND Flash 4-Bit ECC Register 1
0x6800 00C4	NAND4BITECC2	NAND Flash 4-Bit ECC Register 2

Texas Instruments

Table 6-20. External Memory Interface (EMIFA) Registers (continued)

BYTE ADDRESS	Register Name	Register Description
0x6800 00C8	NAND4BITECC3	NAND Flash 4-Bit ECC Register 3
0x6800 00CC	NAND4BITECC4	NAND Flash 4-Bit ECC Register 4
0x6800 00D0	NANDERRADD1	NAND Flash 4-Bit ECC Error Address Register 1
0x6800 00D4	NANDERRADD2	NAND Flash 4-Bit ECC Error Address Register 2
0x6800 00D8	NANDERRVAL1	NAND Flash 4-Bit ECC Error Value Register 1
0x6800 00DC	NANDERRVAL2	NAND Flash 4-Bit ECC Error Value Register 2

6.10.5 EMIFA Electrical Data/Timing

Table 6-21 through Table 6-24 assume testing over recommended operating conditions.

Table 6-21. EMIFA SDRAM Interface Timing Requirements (DA830 Only)

NO.		MIN MAX	UNIT
19	$t_{\text{su(DV-CLKH)}} \qquad \qquad \text{Input setup time, read data valid on EMA_D[31:0] before EMA_CLK rising}$	1.3	ns
20	Input hold time, read data valid on EMA_D[31:0] after EMA_CLK rising	1.5	ns

Table 6-22. EMIFA SDRAM Interface Switching Characteristics (DA830 Only)

NO.		PARAMETER	MIN	MAX	UNIT
1	t _{c(CLK)}	Cycle time, EMIF clock EMA_CLK	10		ns
2	t _{w(CLK)}	Pulse width, EMIF clock EMA_CLK high or low	3		ns
3	t _{d(CLKH-CSV)}	Delay time, EMA_CLK rising to EMA_CS[0] valid		7	ns
4	toh(CLKH-CSIV)	Output hold time, EMA_CLK rising to EMA_CS[0] invalid	1		ns
5	t _{d(CLKH-DQMV)}	Delay time, EMA_CLK rising to EMA_WE_DQM[1:0] valid		7	ns
6	toh(CLKH-DQMIV)	Output hold time, EMA_CLK rising to EMA_WE_DQM[1:0] invalid	1		ns
7	t _{d(CLKH-AV)}	Delay time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0] valid		7	ns
8	t _{oh(CLKH-AIV)}	Output hold time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0] invalid	1		ns
9	t _{d(CLKH-DV)}	Delay time, EMA_CLK rising to EMA_D[15:0] valid		7	ns
10	t _{oh(CLKH-DIV)}	Output hold time, EMA_CLK rising to EMA_D[15:0] invalid	1		ns
11	t _{d(CLKH-RASV)}	Delay time, EMA_CLK rising to EMA_RAS valid		7	ns
12	t _{oh(CLKH-RASIV)}	Output hold time, EMA_CLK rising to EMA_RAS invalid	1		ns
13	t _{d(CLKH-CASV)}	Delay time, EMA_CLK rising to EMA_CAS valid		7	ns
14	toh(CLKH-CASIV)	Output hold time, EMA_CLK rising to EMA_CAS invalid	1		ns
15	t _{d(CLKH-WEV)}	Delay time, EMA_CLK rising to EMA_WE valid		7	ns
16	toh(CLKH-WEIV)	Output hold time, EMA_CLK rising to EMA_WE invalid	1		ns
17	t _{dis(CLKH-DHZ)}	Delay time, EMA_CLK rising to EMA_D[15:0] tri-stated		7	ns
18	t _{ena(CLKH-DLZ)}	Output hold time, EMA_CLK rising to EMA_D[15:0] driving	1		ns

Table 6-23. EMIFA Asynchronous Memory Timing Requirements⁽¹⁾

NO			DA830/DA828			UNIT
			MIN	Nom	MAX	UNII
		READS and WRI	TES			
2	t _{w(EM_WAIT)}	Pulse duration, EM_WAIT assertion and deassertion	2E			ns
		READS				
12	t _{su(EMDV-EMOEH)}	Setup time, EM_D[15:0] valid before EM_OE high	3			ns
13	t _{h(EMOEH-EMDIV)}	Hold time, EM_D[15:0] valid after EM_OE high	0.5			ns
14	t _{su(EMOEL} - EMWAIT)	Setup Time, EM_WAIT asserted before end of Strobe Phase (2)	4E+3			ns
		WRITES				

⁽¹⁾ E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz, E=10ns.

⁽²⁾ Setup before end of STROBE phase (if no extended wait states are inserted) by which EM_WAIT must be asserted to add extended wait states. Figure 6-19 and Figure 6-20 describe EMIF transactions that include extended wait states inserted during the STROBE phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where the HOLD phase would begin if there were no extended wait cycles.

NSTRUMENTS

TMS320DA830/TMS320DA828

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

Table 6-23. EMIFA Asynchronous Memory Timing Requirements (continued)

N	NO]	DA830/DA828		UNIT	
.			MIN	Nom	MAX	UNII	
2	8 t _{su(EMWEL-EMWAIT)}	Setup Time, EM_WAIT asserted before end of Strobe Phase (2)	4E+3			ns	

Table 6-24. EMIFA Asynchronous Memory Switching Characteristics (1)(2)(3)

NO.		DADAMETED	DA830/DA828			UNI
NO.		PARAMETER	MIN	Nom	MAX	Т
		READS an	d WRITES			
1	t _{d(TURNAROUND)}	Turn around time	(TA)*E - 3	(TA)*E	(TA)*E + 3	ns
		REA	DS			
3	0 1	EMIF read cycle time (EW = 0)	(RS+RST+RH)*E - 3	(RS+RST+RH)*E	(RS+RST+RH)*E + 3	ns
3	t _c (EMRCYCLE)	EMIF read cycle time (EW = 1)	(RS+RST+RH+(E WC*16))*E - 3	(RS+RST+RH+(EWC* 16))*E	(RS+RST+RH+(E WC*16))*E + 3	ns
4		Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 0)	(RS)*E-3	(RS)*E	(RS)*E+3	ns
4	t _{su} (EMCEL-EMOEL)	Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 1)	-3	0	+3	ns
-		Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 0)	(RH)*E - 3	(RH)*E	(RH)*E + 3	ns
5	t _h (EMOEH-EMCEH)	Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 1)	-3	0	+3	ns
6	t _{su(EMBAV-EMOEL)}	Output setup time, EMA_BA[1:0] valid to EMA_OE low	(RS)*E-3	(RS)*E	(RS)*E+3	ns
7	t _{h(EMOEH-EMBAIV)}	Output hold time, EMA_OE high to EMA_BA[1:0] invalid	(RH)*E-3	(RH)*E	(RH)*E+3	ns
8	t _{su(EMBAV-EMOEL)}	Output setup time, EMA_A[13:0] valid to EMA_OE low	(RS)*E-3	(RS)*E	(RS)*E+3	ns
9	t _{h(EMOEH-EMAIV)}	Output hold time, EMA_OE high to EMA_A[13:0] invalid	(RH)*E-3	(RH)*E	(RH)*E+3	ns
		EMA_OE active low width (EW = 0)	(RST)*E-3	(RST)*E	(RST)*E+3	ns
10	t _{w(EMOEL)}	EMA_OE active low width (EW = 1)	(RST+(EWC*16))* E-3	(RST+(EWC*16))*E	(RST+(EWC*16))* E+3	ns
11	t _{d(EMWAITH} - EMOEH)	Delay time from EMA_WAIT deasserted to EMA_OE high	3E-3	4E	4E+3	ns
		WRI	TES			•
15		EMIF write cycle time (EW = 0)	(WS+WST+WH)* E-3	(WS+WST+WH)*E	(WS+WST+WH)* E+3	ns
15	t _c (EMWCYCLE)	EMIF write cycle time (EW = 1)	(WS+WST+WH+(EWC*16))*E - 3	(WS+WST+WH+(EW C*16))*E	(WS+WST+WH+(EWC*16))*E + 3	ns
16		Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 0)	(WS)*E - 3	(WS)*E	(WS)*E + 3	ns
10	t _{su(EMCEL-EMWEL)}	Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 1)	-3	0	+3	ns

⁽¹⁾ TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold, MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle Configuration Registers. These support the following range of values: TA[4-1], RST[64-1], RST[64-1], RH[8-1], WS[16-1], WST[64-1], WH[8-1], and MEW[1-256]. See the TMS320DA830/TMS320DA828 DMSoC Asynchronous External Memory Interface (EMIF) User's Guide (SPRUED1) for more information.

E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz, E=10ns.

EWC = external wait cycles determined by EMA_WAIT input signal. EWC supports the following range of values EWC[256-1]. Note that the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. See the TMS320DA830/TMS320DA828 DMSoC Asynchronous External Memory Interface (EMIF) User's Guide (SPRUED1) for more

Table 6-24. EMIFA Asynchronous Memory Switching Characteristics (continued)

NO.	PARAMETER		DA830/DA828			
NO.		PARAMETER	MIN	Nom	MAX	Т
17	•	Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 0)	(WH)*E-3	(WH)*E	(WH)*E+3	ns
17	t _h (EMWEH-EMCEH)	Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 1)	-3	0	+3	ns
18	t _{su(EMDQMV} - EMWEL)	Output setup time, EMA_BA[1:0] valid to EMA_WE low	(WS)*E-3	(WS)*E	(WS)*E+3	ns
19	t _{h(EMWEH} - EMDQMIV)	Output hold time, EMA_WE high to EMA_BA[1:0] invalid	(WH)*E-3	(WH)*E	(WH)*E+3	ns
20	t _{su(EMBAV-EMWEL)}	Output setup time, EMA_BA[1:0] valid to EMA_WE low	(WS)*E-3	(WS)*E	(WS)*E+3	ns
21	t _{h(EMWEH-EMBAIV)}	Output hold time, EMA_WE high to EMA_BA[1:0] invalid	(WH)*E-3	(WH)*E	(WH)*E+3	ns
22	t _{su(EMAV-EMWEL)}	Output setup time, EMA_A[13:0] valid to EMA_WE low	(WS)*E-3	(WS)*E	(WS)*E+3	ns
23	t _{h(EMWEH-EMAIV)}	Output hold time, EMA_WE high to EMA_A[13:0] invalid	(WH)*E-3	(WH)*E	(WH)*E+3	ns
		EMA_WE active low width (EW = 0)	(WST)*E-3	(WST)*E	(WST)*E+3	ns
24	t _{w(EMWEL)}	EMA_WE active low width (EW = 1)	(WST+(EWC*16)) *E-3	(WST+(EWC*16))*E	(WST+(EWC*16)) *E+3	ns
25	t _{d(EMWAITH} - EMWEH)	Delay time from EMA_WAIT deasserted to EMA_WE high	3E-3	4E	4E+3	ns
26	t _{su(EMDV-EMWEL)}	Output setup time, EMA_D[15:0] valid to EMA_WE low	(WS)*E-3	(WS)*E	(WS)*E+3	ns
27	t _{h(EMWEH-EMDIV)}	Output hold time, EMA_WE high to EMA_D[15:0] invalid	(WH)*E-3	(WH)*E	(WH)*E+3	ns

Figure 6-15. EMIFA Basic SDRAM Write Operation

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

Figure 6-16. EMIFA Basic SDRAM Read Operation

Figure 6-17. Asynchronous Memory Read Timing for EMIFA

Figure 6-18. Asynchronous Memory Write Timing for EMIFA

Figure 6-19. EMA_WAIT Read Timing Requirements

Texas Instruments

STROBE HOLD **SETUP** STROBE Extended Due to EMA_WAIT EMA_CE[5:2] EMA_BA[1:0] EMA_A[12:0] EMA_D[15:0] 28 25 EMA_WE EMA_WAIT Asserted Deasserted

6.11 External Memory Interface B (EMIFB)

Figure 6-21, EMIFB Functional Block Diagram illustrates a high-level view of the EMIFB and its connections within the device. Multiple requesters have access to EMIFB through a switched central resource (indicated as crossbar in the figure). The EMIFB implements a split transaction internal bus, allowing concurrence between reads and writes from the various requesters. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. — Literature Number SPRUFK9 for more details.

Figure 6-21. EMIFB Functional Block Diagram

EMIFB supports a 3.3V LVCMOS Interface.

6.11.1 Interfacing to SDRAM

The EMIFB supports a glueless interface to SDRAM devices with the following characteristics:

- Pre-charge bit is A[10]
- The number of column address bits is 8, 9, 10 or 11
- The number of row address bits is 13 (in case of mobile SDR, number of row address bits can be 9, 10, 11, 12, or 13)
- The number of internal banks is 1, 2 or 4

Figure 6-22 shows an interface between the EMIFB and a $2M \times 16 \times 4$ bank SDRAM device. In addition, Figure 6-23 shows an interface between the EMIFB and a $2M \times 32 \times 4$ bank SDRAM device and Figure 6-24 shows an interface between the EMIFB and two $4M \times 16 \times 4$ bank SDRAM devices. Refer to Table 6-25, as an example that shows additional list of commonly-supported SDRAM devices and the required connections for the address pins. Note that in Table 6-25, page size/column size (not indicated in the table) is varied to get the required addressability range.

Figure 6-22. EMIFB to $2M \times 16 \times 4$ bank SDRAM Interface

Figure 6-23. EMIFB to $2M \times 32 \times 4$ bank SDRAM Interface

Figure 6-24. EMIFB to Dual 4M \times 16 \times 4 bank SDRAM Interface

Table 6-25. Example of 16/32-bit EMIFB Address Pin Connections

SDRAM Size	Width	Banks		Address Pins
64M bits	×16	4	SDRAM	A[11:0]
			EMIFB	EMB_A[11:0]
•	×32	4	SDRAM	A[10:0]
			EMIFB	EMB_A[10:0]
128M bits	×16	4	SDRAM	A[11:0]
			EMIFB	EMB_A[11:0]
•	×32	4	SDRAM	A[11:0]
			EMIFB	EMB_A[11:0]
256M bits	×16	4		A[12:0]
			EMIFB	EMB_A[12:0]
•	×32	4	SDRAM	A[11:0]
			EMIFB	EMB_A[11:0]
512M bits	×16	4	SDRAM	A[12:0]
			EMIFB	EMB_A[12:0]
•	×32	4	SDRAM	A[12:0]
			EMIFB	EMB_A[12:0]

Table 6-26 is a list of the EMIFB registers.

Table 6-26. EMIFB Base Controller Registers

BYTE ADDRESS	Acronym	Register
0xB000 0000	MIDR	Module ID Register
0xB000 0008	SDCFG	SDRAM Configuration Register
0xB000 000C	SDRFC	SDRAM Refresh Control Register
0xB000 0010	SDTIM1	SDRAM Timing Register 1
0xB000 0014	SDTIM2	SDRAM Timing Register 2
0xB000 001C	SDCFG2	SDRAM Configuration 2 Register
0xB000 0020	BPRIO	Peripheral Bus Burst Priority Register
0xB000 0040	PC1	Performance Counter 1 Register
0xB000 0044	PC2	Performance Counter 2 Register
0xB000 0048	PCC	Performance Counter Configuration Register
0xB000 004C	PCMRS	Performance Counter Master Region Select Register
0xB000 0050	PCT	Performance Counter Time Register
0xB000 00C0	IRR	Interrupt Raw Register
0xB000 00C4	IMR	Interrupt Mask Register
0xB000 00C8	IMSR	Interrupt Mask Set Register
0xB000 00CC	IMCR	Interrupt Mask Clear Register

6.11.2 EMIFB Electrical Data/Timing

Table 6-27. EMIFB SDRAM Interface Timing Requirements

NO.			MIN MAX	UNIT
19	t _{su(DV-CLKH)}	Input setup time, read data valid on EMB_D[31:0] before EMB_CLK rising	0.8	ns
20	t _{h(CLKH-DIV)}	Input hold time, read data valid on EMB_D[31:0] after EMB_CLK rising	1.5	ns

Table 6-28. EMIFB SDRAM Interface Switching Characteristics

NO.		PARAMETER	MIN	MAX	UNIT
1	t _{c(CLK)}	Cycle time, EMIF clock EMB_CLK	7.5		ns
2	t _{w(CLK)}	Pulse width, EMIF clock EMB_CLK high or low	3		ns
3	t _{d(CLKH-CSV)}	Delay time, EMB_CLK rising to EMB_CS[0] valid		5.1	ns
4	toh(CLKH-CSIV)	Output hold time, EMB_CLK rising to EMB_CS[0] invalid	0.9		ns
5	t _{d(CLKH-DQMV)}	Delay time, EMB_CLK rising to EMB_WE_DQM[3:0] valid		5.1	ns
6	toh(CLKH-DQMIV)	Output hold time, EMB_CLK rising to EMB_WE_DQM[3:0] invalid	0.9		ns
7	t _{d(CLKH-AV)}	Delay time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0] valid		5.1	ns
8	t _{oh(CLKH-AIV)}	Output hold time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0] invalid	0.9		ns
9	t _{d(CLKH-DV)}	Delay time, EMB_CLK rising to EMB_D[31:0] valid		5.1	ns
10	t _{oh(CLKH-DIV)}	Output hold time, EMB_CLK rising to EMB_D[31:0] invalid	0.9		ns
11	t _{d(CLKH-RASV)}	Delay time, EMB_CLK rising to EMB_RAS valid		5.1	ns
12	t _{oh(CLKH-RASIV)}	Output hold time, EMB_CLK rising to EMB_RAS invalid	0.9		ns
13	t _{d(CLKH-CASV)}	Delay time, EMB_CLK rising to EMB_CAS valid		5.1	ns
14	t _{oh(CLKH-CASIV)}	Output hold time, EMB_CLK rising to EMB_CAS invalid	0.9		ns
15	t _{d(CLKH-WEV)}	Delay time, EMB_CLK rising to EMB_WE valid		5.1	ns
16	t _{oh(CLKH-WEIV)}	Output hold time, EMB_CLK rising to EMB_WE invalid	0.9		ns
17	t _{dis(CLKH-DHZ)}	Delay time, EMB_CLK rising to EMB_D[31:0] tri-stated		5.1	ns
18	t _{ena(CLKH-DLZ)}	Output hold time, EMB_CLK rising to EMB_D[31:0] driving	0.9		ns

Figure 6-25. EMIFB Basic SDRAM Write Operation

Figure 6-26. EMIFB Basic SDRAM Read Operation

TEXAS INSTRUMENTS

6.12 MMC / SD / SDIO (MMCSD)

6.12.1 MMCSD Peripheral Description

The device includes an MMCSD controller which are compliant with MMC V3.31, Secure Digital Part 1 Physical Layer Specification V1.1 and Secure Digital Input Output (SDIO) V2.0 specifications.

The device MMC/SD Controller has following features:

- MultiMediaCard (MMC).
- Secure Digital (SD) Memory Card.
- MMC/SD protocol support.
- SDIO protocol support.
- Programmable clock frequency.
- 512 bit Read/Write FIFO to lower system overhead.
- Slave EDMA transfer capability.

The MMC/SD Controller does not support SPI mode. See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number <u>SPRUFK9</u> for more details.

6.12.2 MMCSD Peripheral Register Description(s)

Table 6-29. Multimedia Card/Secure Digital (MMC/SD) Card Controller Registers

Offset	Acronym	Register Description
0x01C4 0000	MMCCTL	MMC Control Register
0x01C4 0004	MMCCLK	MMC Memory Clock Control Register
0x01C4 0008	MMCST0	MMC Status Register 0
0x01C4 000C	MMCST1	MMC Status Register 1
0x01C4 0010	MMCIM	MMC Interrupt Mask Register
0x01C4 0014	MMCTOR	MMC Response Time-Out Register
0x01C4 0018	MMCTOD	MMC Data Read Time-Out Register
0x01C4 001C	MMCBLEN	MMC Block Length Register
0x01C4 0020	MMCNBLK	MMC Number of Blocks Register
0x01C4 0024	MMCNBLC	MMC Number of Blocks Counter Register
0x01C4 0028	MMCDRR	MMC Data Receive Register
0x01C4 002C	MMCDXR	MMC Data Transmit Register
0x01C4 0030	MMCCMD	MMC Command Register
0x01C4 0034	MMCARGHL	MMC Argument Register
0x01C4 0038	MMCRSP01	MMC Response Register 0 and 1
0x01C4 003C	MMCRSP23	MMC Response Register 2 and 3
0x01C4 0040	MMCRSP45	MMC Response Register 4 and 5
0x01C4 0044	MMCRSP67	MMC Response Register 6 and 7
0x01C4 0048	MMCDRSP	MMC Data Response Register
0x01C4 0050	MMCCIDX	MMC Command Index Register
0x01C4 0064	SDIOCTL	SDIO Control Register
0x01C4 0068	SDIOST0	SDIO Status Register 0
0x01C4 006C	SDIOIEN	SDIO Interrupt Enable Register
0x01C4 0070	SDIOIST	SDIO Interrupt Status Register
0x01C4 0074	MMCFIFOCTL	MMC FIFO Control Register

6.12.3 MMC/SD Electrical Data/Timing

Table 6-30. Timing Requirements for MMC/SD Module

NO.			MIN	MAX	UNIT
1	t _{su(CMDV-CLKH)}	Setup time, MMCSD_CMD valid before MMCSD_CLK high	3.2		ns
2	t _{h(CLKH-CMDV)}	Hold time, MMCSD_CMD valid after MMCSD_CLK high	1.5		ns
3	t _{su(DATV-CLKH)}	Setup time, MMCSD_DATx valid before MMCSD_CLK high	3.2		ns
4	t _{h(CLKH-DATV)}	Hold time, MMCSD_DATx valid after MMCSD_CLK high	1.5		ns

Table 6-31. Switching Characteristics Over Recommended Operating Conditions for MMC/SD Module

NO.	PARA	METER	MIN	MAX	UNIT
7	f _(CLK) Operating frequency, MMCSD_C	LK	0	52	MHz
8	f _(CLK_ID) Identification mode frequency, M	MCSD_CLK	0	400	KHz
9	t _{W(CLKL)} Pulse width, MMCSD_CLK low		6.5		ns
10	t _{W(CLKH)} Pulse width, MMCSD_CLK high		6.5		ns
11	t _{r(CLK)} Rise time, MMCSD_CLK			3	ns
12	t _{f(CLK)} Fall time, MMCSD_CLK			3	ns
13	t _{d(CLKL-CMD)} Delay time, MMCSD_CLK low to	MMCSD_CMD transition	-4.5	2.5	ns
14	t _{d(CLKL-DAT)} Delay time, MMCSD_CLK low to	MMCSD_DATx transition	-4.5	2	ns

Figure 6-27. MMC/SD Host Command Timing

Figure 6-28. MMC/SD Card Response Timing

Figure 6-29. MMC/SD Host Write Timing

Figure 6-30. MMC/SD Host Read and Card CRC Status Timing

6.13 Ethernet Media Access Controller (EMAC)

The Ethernet Media Access Controller (EMAC) provides an efficient interface between device and the network. The device EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support.

The EMAC controls the flow of packet data from the device to the PHY. The MDIO module controls PHY configuration and status monitoring.

Both the EMAC and the MDIO modules interface to the device through a custom interface that allows efficient data transmission and reception. This custom interface is referred to as the EMAC control module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to multiplex and control interrupts. See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number SPRUFK9 for more details.

6.13.1 EMAC Peripheral Register Description(s)

Table 6-32. Ethernet Media Access Controller (EMAC) Registers

BYTE ADDRESS	REGISTER	Register Description
0x01E2 3000	TXREV	Transmit Revision Register
0x01E2 3004	TXCONTROL	Transmit Control Register
0x01E2 3008	TXTEARDOWN	Transmit Teardown Register
0x01E2 3010	RXREV	Receive Revision Register
0x01E2 3014	RXCONTROL	Receive Control Register
0x01E2 3018	RXTEARDOWN	Receive Teardown Register
0x01E2 3080	TXINTSTATRAW	Transmit Interrupt Status (Unmasked) Register
0x01E2 3084	TXINTSTATMASKED	Transmit Interrupt Status (Masked) Register
0x01E2 3088	TXINTMASKSET	Transmit Interrupt Mask Set Register
0x01E2 308C	TXINTMASKCLEAR	Transmit Interrupt Clear Register
0x01E2 3090	MACINVECTOR	MAC Input Vector Register
0x01E2 3094	MACEOIVECTOR	MAC End Of Interrupt Vector Register
0x01E2 30A0	RXINTSTATRAW	Receive Interrupt Status (Unmasked) Register
0x01E2 30A4	RXINTSTATMASKED	Receive Interrupt Status (Masked) Register
0x01E2 30A8	RXINTMASKSET	Receive Interrupt Mask Set Register
0x01E2 30AC	RXINTMASKCLEAR	Receive Interrupt Mask Clear Register
0x01E2 30B0	MACINTSTATRAW	MAC Interrupt Status (Unmasked) Register
0x01E2 30B4	MACINTSTATMASKED	MAC Interrupt Status (Masked) Register
0x01E2 30B8	MACINTMASKSET	MAC Interrupt Mask Set Register
0x01E2 30BC	MACINTMASKCLEAR	MAC Interrupt Mask Clear Register
0x01E2 3100	RXMBPENABLE	Receive Multicast/Broadcast/Promiscuous Channel Enable Register
0x01E2 3104	RXUNICASTSET	Receive Unicast Enable Set Register
0x01E2 3108	RXUNICASTCLEAR	Receive Unicast Clear Register
0x01E2 310C	RXMAXLEN	Receive Maximum Length Register
0x01E2 3110	RXBUFFEROFFSET	Receive Buffer Offset Register
0x01E2 3114	RXFILTERLOWTHRESH	Receive Filter Low Priority Frame Threshold Register
0x01E2 3120	RX0FLOWTHRESH	Receive Channel 0 Flow Control Threshold Register
0x01E2 3124	RX1FLOWTHRESH	Receive Channel 1 Flow Control Threshold Register
0x01E2 3128	RX2FLOWTHRESH	Receive Channel 2 Flow Control Threshold Register
0x01E2 312C	RX3FLOWTHRESH	Receive Channel 3 Flow Control Threshold Register
0x01E2 3130	RX4FLOWTHRESH	Receive Channel 4 Flow Control Threshold Register
0x01E2 3134	RX5FLOWTHRESH	Receive Channel 5 Flow Control Threshold Register

Texas Instruments

Table 6-32. Ethernet Media Access Controller (EMAC) Registers (continued)

	PAGE 4-32. Ethernet Media Access Controller (EMAC) Registers (Continued)			
BYTE ADDRESS	REGISTER	Register Description		
0x01E2 3138	RX6FLOWTHRESH	Receive Channel 6 Flow Control Threshold Register		
0x01E2 313C	RX7FLOWTHRESH	Receive Channel 7 Flow Control Threshold Register		
0x01E2 3140	RX0FREEBUFFER	Receive Channel 0 Free Buffer Count Register		
0x01E2 3144	RX1FREEBUFFER	Receive Channel 1 Free Buffer Count Register		
0x01E2 3148	RX2FREEBUFFER	Receive Channel 2 Free Buffer Count Register		
0x01E2 314C	RX3FREEBUFFER	Receive Channel 3 Free Buffer Count Register		
0x01E2 3150	RX4FREEBUFFER	Receive Channel 4 Free Buffer Count Register		
0x01E2 3154	RX5FREEBUFFER	Receive Channel 5 Free Buffer Count Register		
0x01E2 3158	RX6FREEBUFFER	Receive Channel 6 Free Buffer Count Register		
0x01E2 315C	RX7FREEBUFFER	Receive Channel 7 Free Buffer Count Register		
0x01E2 3160	MACCONTROL	MAC Control Register		
0x01E2 3164	MACSTATUS	MAC Status Register		
0x01E2 3168	EMCONTROL	Emulation Control Register		
0x01E2 316C	FIFOCONTROL	FIFO Control Register		
0x01E2 3170	MACCONFIG	MAC Configuration Register		
0x01E2 3174	SOFTRESET	Soft Reset Register		
0x01E2 31D0	MACSRCADDRLO	MAC Source Address Low Bytes Register		
0x01E2 31D4	MACSRCADDRHI	MAC Source Address High Bytes Register		
0x01E2 31D8	MACHASH1	MAC Hash Address Register 1		
0x01E2 31DC	MACHASH2	MAC Hash Address Register 2		
0x01E2 31E0	BOFFTEST	Back Off Test Register		
0x01E2 31E4	TPACETEST	Transmit Pacing Algorithm Test Register		
0x01E2 31E8	RXPAUSE	Receive Pause Timer Register		
0x01E2 31EC	TXPAUSE	Transmit Pause Timer Register		
0x01E2 3200 - 0x01E2 32FC	(see Table 6-33)	EMAC Statistics Registers		
0x01E2 3500	MACADDRLO	MAC Address Low Bytes Register, Used in Receive Address Matching		
0x01E2 3504	MACADDRHI	MAC Address High Bytes Register, Used in Receive Address Matching		
0x01E2 3508	MACINDEX	MAC Index Register		
0x01E2 3600	TX0HDP	Transmit Channel 0 DMA Head Descriptor Pointer Register		
0x01E2 3604	TX1HDP	Transmit Channel 1 DMA Head Descriptor Pointer Register		
0x01E2 3608	TX2HDP	Transmit Channel 2 DMA Head Descriptor Pointer Register		
0x01E2 360C	TX3HDP	Transmit Channel 3 DMA Head Descriptor Pointer Register		
0x01E2 3610	TX4HDP	Transmit Channel 4 DMA Head Descriptor Pointer Register		
0x01E2 3614	TX5HDP	Transmit Channel 5 DMA Head Descriptor Pointer Register		
0x01E2 3618	TX6HDP	Transmit Channel 6 DMA Head Descriptor Pointer Register		
0x01E2 361C	TX7HDP	Transmit Channel 7 DMA Head Descriptor Pointer Register		
0x01E2 3620	RX0HDP	Receive Channel 0 DMA Head Descriptor Pointer Register		
0x01E2 3624	RX1HDP	Receive Channel 1 DMA Head Descriptor Pointer Register		
0x01E2 3628	RX2HDP	Receive Channel 2 DMA Head Descriptor Pointer Register		
0x01E2 362C	RX3HDP	Receive Channel 3 DMA Head Descriptor Pointer Register		
0x01E2 3630	RX4HDP	Receive Channel 4 DMA Head Descriptor Pointer Register		
0x01E2 3634	RX5HDP	Receive Channel 5 DMA Head Descriptor Pointer Register		
0x01E2 3638	RX6HDP	Receive Channel 6 DMA Head Descriptor Pointer Register		
0x01E2 363C	RX7HDP	Receive Channel 7 DMA Head Descriptor Pointer Register		
0x01E2 3640	TX0CP	Transmit Channel 0 Completion Pointer Register		
0x01E2 3644	TX1CP	Transmit Channel 1 Completion Pointer Register		
0x01E2 3648	TX2CP	Transmit Channel 2 Completion Pointer Register		
5 TEE 5570		The state of the s		

Table 6-32. Ethernet Media Access Controller (EMAC) Registers (continued)

BYTE ADDRESS	REGISTER	Register Description
0x01E2 364C	TX3CP	Transmit Channel 3 Completion Pointer Register
0x01E2 3650	TX4CP	Transmit Channel 4 Completion Pointer Register
0x01E2 3654	TX5CP	Transmit Channel 5 Completion Pointer Register
0x01E2 3658	TX6CP	Transmit Channel 6 Completion Pointer Register
0x01E2 365C	TX7CP	Transmit Channel 7 Completion Pointer Register
0x01E2 3660	RX0CP	Receive Channel 0 Completion Pointer Register
0x01E2 3664	RX1CP	Receive Channel 1 Completion Pointer Register
0x01E2 3668	RX2CP	Receive Channel 2 Completion Pointer Register
0x01E2 366C	RX3CP	Receive Channel 3 Completion Pointer Register
0x01E2 3670	RX4CP	Receive Channel 4 Completion Pointer Register
0x01E2 3674	RX5CP	Receive Channel 5 Completion Pointer Register
0x01E2 3678	RX6CP	Receive Channel 6 Completion Pointer Register
0x01E2 367C	RX7CP	Receive Channel 7 Completion Pointer Register

Table 6-33. EMAC Statistics Registers

HEX ADDRESS RANGE	ACRONYM	REGISTER NAME		
0x01E2 3200	RXGOODFRAMES	Good Receive Frames Register		
0x01E2 3204	RXBCASTFRAMES	Broadcast Receive Frames Register (Total number of good broadcast frames received)		
0x01E2 3208	RXMCASTFRAMES	Multicast Receive Frames Register (Total number of good multicast frames received)		
0x01E2 320C	RXPAUSEFRAMES	Pause Receive Frames Register		
0x01E2 3210	RXCRCERRORS	Receive CRC Errors Register (Total number of frames received with CRC errors)		
0x01E2 3214	RXALIGNCODEERRORS	Receive Alignment/Code Errors Register (Total number of frames received with alignment/code errors)		
0x01E2 3218	RXOVERSIZED	Receive Oversized Frames Register (Total number of oversized frames received)		
0x01E2 321C	RXJABBER	Receive Jabber Frames Register (Total number of jabber frames received)		
0x01E2 3220	RXUNDERSIZED	Receive Undersized Frames Register (Total number of undersized frames received)		
0x01E2 3224	RXFRAGMENTS	Receive Frame Fragments Register		
0x01E2 3228	RXFILTERED	Filtered Receive Frames Register		
0x01E2 322C	RXQOSFILTERED	Received QOS Filtered Frames Register		
0x01E2 3230	RXOCTETS	Receive Octet Frames Register (Total number of received bytes in good frames)		
0x01E2 3234	TXGOODFRAMES	Good Transmit Frames Register (Total number of good frames transmitted)		
0x01E2 3238	TXBCASTFRAMES	Broadcast Transmit Frames Register		
0x01E2 323C	TXMCASTFRAMES	Multicast Transmit Frames Register		
0x01E2 3240	TXPAUSEFRAMES	Pause Transmit Frames Register		
0x01E2 3244	TXDEFERRED	Deferred Transmit Frames Register		
0x01E2 3248	TXCOLLISION	Transmit Collision Frames Register		
0x01E2 324C	TXSINGLECOLL	Transmit Single Collision Frames Register		
0x01E2 3250	TXMULTICOLL	Transmit Multiple Collision Frames Register		
0x01E2 3254	TXEXCESSIVECOLL	Transmit Excessive Collision Frames Register		
0x01E2 3258	TXLATECOLL	Transmit Late Collision Frames Register		
0x01E2 325C	TXUNDERRUN	Transmit Underrun Error Register		
0x01E2 3260	TXCARRIERSENSE	Transmit Carrier Sense Errors Register		

TEXAS INSTRUMENTS

Table 6-33. EMAC Statistics Registers (continued)

HEX ADDRESS RANGE	ACRONYM	REGISTER NAME		
0x01E2 3264	TXOCTETS	Transmit Octet Frames Register		
0x01E2 3268	FRAME64	Transmit and Receive 64 Octet Frames Register		
0x01E2 326C	FRAME65T127	Transmit and Receive 65 to 127 Octet Frames Register		
0x01E2 3270	FRAME128T255	Transmit and Receive 128 to 255 Octet Frames Register		
0x01E2 3274	FRAME256T511	Transmit and Receive 256 to 511 Octet Frames Register		
0x01E2 3278	FRAME512T1023	Transmit and Receive 512 to 1023 Octet Frames Register		
0x01E2 327C	FRAME1024TUP	Transmit and Receive 1024 to 1518 Octet Frames Register		
0x01E2 3280	NETOCTETS	Network Octet Frames Register		
0x01E2 3284	RXSOFOVERRUNS	Receive FIFO or DMA Start of Frame Overruns Register		
0x01E2 3288	RXMOFOVERRUNS	Receive FIFO or DMA Middle of Frame Overruns Register		
0x01E2 328C	RXDMAOVERRUNS	Receive DMA Start of Frame and Middle of Frame Overruns Register		

Table 6-34. EMAC Control Module Registers

BYTE ADDRESS	Acronym	Register Description
0x01E2 2000	REV	EMAC Control Module Revision Register
0x01E2 2004	SOFTRESET	EMAC Control Module Software Reset Register
0x01E2 200C	INTCONTROL	EMAC Control Module Interrupt Control Register
0x01E2 2010	CORXTHRESHEN	EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Enable Register
0x01E2 2014	CORXEN	EMAC Control Module Interrupt Core 0 Receive Interrupt Enable Register
0x01E2 2018	C0TXEN	EMAC Control Module Interrupt Core 0 Transmit Interrupt Enable Register
0x01E2 201C	COMISCEN	EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Enable Register
0x01E2 2020	C1RXTHRESHEN	EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Enable Register
0x01E2 2024	C1RXEN	EMAC Control Module Interrupt Core 1 Receive Interrupt Enable Register
0x01E2 2028	C1TXEN	EMAC Control Module Interrupt Core 1 Transmit Interrupt Enable Register
0x01E2 202C	C1MISCEN	EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Enable Register
0x01E2 2030	C2RXTHRESHEN	EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Enable Register
0x01E2 2034	C2RXEN	EMAC Control Module Interrupt Core 2 Receive Interrupt Enable Register
0x01E2 2038	C2TXEN	EMAC Control Module Interrupt Core 2 Transmit Interrupt Enable Register
0x01E2 203C	C2MISCEN	EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Enable Register
0x01E2 2040	CORXTHRESHSTAT	EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Status Register
0x01E2 2044	CORXSTAT	EMAC Control Module Interrupt Core 0 Receive Interrupt Status Register
0x01E2 2048	COTXSTAT	EMAC Control Module Interrupt Core 0 Transmit Interrupt Status Register
0x01E2 204C	COMISCSTAT	EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Status Register
0x01E2 2050	C1RXTHRESHSTAT	EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Status Register
0x01E2 2054	C1RXSTAT	EMAC Control Module Interrupt Core 1 Receive Interrupt Status Register
0x01E2 2058	C1TXSTAT	EMAC Control Module Interrupt Core 1 Transmit Interrupt Status Register
0x01E2 205C	C1MISCSTAT	EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Status Register
0x01E2 2060	C2RXTHRESHSTAT	EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Status Register
0x01E2 2064	C2RXSTAT	EMAC Control Module Interrupt Core 2 Receive Interrupt Status Register

Table 6-34. EMAC Control Module Registers (continued)

BYTE ADDRESS	Acronym	Register Description
0x01E2 2068	C2TXSTAT	EMAC Control Module Interrupt Core 2 Transmit Interrupt Status Register
0x01E2 206C	C2MISCSTAT	EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Status Register
0x01E2 2070	CORXIMAX	EMAC Control Module Interrupt Core 0 Receive Interrupts Per Millisecond Register
0x01E2 2074	COTXIMAX	EMAC Control Module Interrupt Core 0 Transmit Interrupts Per Millisecond Register
0x01E2 2078	C1RXIMAX	EMAC Control Module Interrupt Core 1 Receive Interrupts Per Millisecond Register
0x01E2 207C	C1TXIMAX	EMAC Control Module Interrupt Core 1 Transmit Interrupts Per Millisecond Register
0x01E2 2080	C2RXIMAX	EMAC Control Module Interrupt Core 2 Receive Interrupts Per Millisecond Register
0x01E2 2084	C2TXIMAX	EMAC Control Module Interrupt Core 2 Transmit Interrupts Per Millisecond Register

Table 6-35. EMAC Control Module RAM

HEX ADDRESS RANGE ACRONYM		REGISTER NAME	
0x01E2 0000 - 0x01E2 1FFF		EMAC Local Buffer Descriptor Memory	

Table 6-36. RMII Timing Requirements

NO.	PARAMETER		MIN	TYP	MAX	UNIT
1	tc(REFCLK)	Cycle Time, REF_CLK		20		ns
2	tw(REFCLKH)	Pulse Width, REF_CLK High	7		13	ns
3	tw(REFCLKL)	Pulse Width, REF_CLK Low	7		13	ns
6	tsu(RXD-REFCLK)	Input Setup Time, RXD Valid before REF_CLK High	4			ns
7	th(REFCLK-RXD)	Input Hold Time, RXD Valid after REF_CLK High	2			ns
8	tsu(CRSDV-REFCLK)	Input Setup Time, CRSDV Valid before REF_CLK High	4			ns
9	th(REFCLK-CRSDV)	Input Hold Time, CRSDV Valid after REF_CLK High	2			ns
10	tsu(RXER-REFCLK)	Input Setup Time, RXER Valid before REF_CLK High	4			ns
11	th(REFCLKR-RXER)	Input Hold Time, RXER Valid after REF_CLK High	2			ns

Table 6-37. RMII Timing Requirements

NO.	PARAMETER			TYP	MAX	UNIT
4	td(REFCLK-TXD)	Output Delay Time, REF_CLK High to TXD Valid	2.5		13	ns
5	td(REFCLK-TXEN)	Output Delay Time, REF_CLK High to TXEN Valid	2.5		13	ns

Figure 6-31. RMII Timing Diagram

6.14 Management Data Input/Output (MDIO)

The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system.

The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface to interrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIO module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the negotiation results, and configure required parameters in the EMAC module for correct operation. The module is designed to allow almost transparent operation of the MDIO interface, with very little maintenance from the core processor. Only one PHY may be connected at any given time. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. — Literature Number SPRUFK9 for more details.

6.14.1 MDIO Registers

For a list of supported MDIO registers see Table 6-38 [MDIO Registers].

Table 6-38. MDIO Register Memory Map

	I	
HEX ADDRESS RANGE	ACRONYM	REGISTER NAME
0x01E2 4000	REV	Revision Identification Register
0x01E2 4004	CONTROL	MDIO Control Register
0x01E2 4008	ALIVE	MDIO PHY Alive Status Register
0x01E2 400C	LINK	MDIO PHY Link Status Register
0x01E2 4010	LINKINTRAW	MDIO Link Status Change Interrupt (Unmasked) Register
0x01E2 4014	LINKINTMASKED	MDIO Link Status Change Interrupt (Masked) Register
0x01E2 4018	_	Reserved
0x01E2 4020	USERINTRAW	MDIO User Command Complete Interrupt (Unmasked) Register
0x01E2 4024	USERINTMASKED	MDIO User Command Complete Interrupt (Masked) Register
0x01E2 4028	USERINTMASKSET	MDIO User Command Complete Interrupt Mask Set Register
0x01E2 402C	USERINTMASKCLEAR	MDIO User Command Complete Interrupt Mask Clear Register
0x01E2 4030 - 0x01E2 407C	_	Reserved
0x01E2 4080	USERACCESS0	MDIO User Access Register 0
0x01E2 4084	USERPHYSEL0	MDIO User PHY Select Register 0
0x01E2 4088	USERACCESS1	MDIO User Access Register 1
0x01E2 408C	USERPHYSEL1	MDIO User PHY Select Register 1
0x01E2 4090 - 0x01E2 47FF	_	Reserved

6.14.2 Management Data Input/Output (MDIO) Electrical Data/Timing

Table 6-39. Timing Requirements for MDIO Input (see Figure 6-32 and Figure 6-33)

NO.			MIN	MAX	UNIT
1	t _{c(MDIO_CLK)}	Cycle time, MDIO_CLK	400		ns
2	t _{w(MDIO_CLK)}	Pulse duration, MDIO_CLK high/low	180		ns
3	t _{t(MDIO_CLK)}	Transition time, MDIO_CLK		5	ns
4	t _{su(MDIO-MDIO_CLKH)}	Setup time, MDIO data input valid before MDIO_CLK high	10		ns
5	t _{h(MDIO_CLKH-MDIO)}	Hold time, MDIO data input valid after MDIO_CLK high	10		ns

Instruments

Figure 6-32. MDIO Input Timing

Table 6-40. Switching Characteristics Over Recommended Operating Conditions for MDIO Output (see Figure 6-33)

Figure 6-33. MDIO Output Timing

6.15 Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2)

The McASP serial port is specifically designed for multichannel audio applications. Its key features are:

- Flexible clock and frame sync generation logic and on-chip dividers
- Up to sixteen transmit or receive data pins and serializers
- · Large number of serial data format options, including:
 - TDM Frames with 2 to 32 time slots per frame (periodic) or 1 slot per frame (burst)
 - Time slots of 8,12,16, 20, 24, 28, and 32 bits
 - First bit delay 0, 1, or 2 clocks
 - MSB or LSB first bit order
 - Left- or right-aligned data words within time slots
- DIT Mode (optional) with 384-bit Channel Status and 384-bit User Data registers
- Extensive error checking and mute generation logic
- All unused pins GPIO-capable

Additionally, while the DA8xx McASP modules are backward compatible with the McASP on previous devices, the DA8xx McASP includes the following new features:

- Transmit & Receive FIFO Buffers for each McASP. Allows the McASP to operate at a higher sample rate by making it more tolerant to DMA latency.
- Dynamic Adjustment of Clock Dividers
 - Clock Divider Value may be changed without resetting the McASP

The three McASPs on the device are configured with the following options:

Table 6-41. TMS320DA830/TMS320DA828 McASP Configurations⁽¹⁾

Module	Serialize rs	AFIFO	DIT	DA830 Pins	DA828Pins
McASP0	16	64 Word RX 64 Word TX	N	AXR0[15:0], AHCLKR0, ACLKR0, AFSR0, AHCLKX0, ACLKX0, AFSX0, AMUTE0	AXR0[13:0], AHCLKR0, ACLKR0, AFSR0, AHCLKX0, ACLKX0, AFSX0
McASP1	12	64 Word RX 64 Word TX	Z	AXR1[11:10], AXR1[8:0], AHCLKR1, ACLKR1, AFSR1, AHCLKX1, ACLKX1, AFSX1, AMUTE1	AXR1[11:10], AXR1[8:0], ACLKR1, AFSR1, AHCLKX1, ACLKX1, AFSX1, AMUTE1
McASP2	4	16 Word RX 16 Word TX	Υ	AXR2[3:0], AHCLKR2, ACLKR2, AFSR2, AHCLKX2, ACLKX2, AFSX2, AMUTE2	AXR2[3:0], ACLKR2, AFSR2, AHCLKX2, ACLKX2, AFSX2, AMUTE2

⁽¹⁾ Pins available are the maximum number of pins that may be configured for a particular McASP; not including pin multiplexing.

INSTRUMENTS

Figure 6-34. McASP Block Diagram

6.15.1 McASP Peripheral Registers Description(s)

Registers for the McASP are summarized in Table 6-42. The registers are accessed through the peripheral configuration port. The receive buffer registers (RBUF) and transmit buffer registers (XBUF) can also be accessed through the DMA port, as listed in Table 6-43

Registers for the McASP Audio FIFO (AFIFO) are summarized in Table 6-44. Note that the AFIFO Write FIFO (WFIFO) and Read FIFO (RFIFO) have independent control and status registers. The AFIFO control registers are accessed through the peripheral configuration port. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details.

Table 6-42. McASP Registers Accessed Through Peripheral Configuration Port

Offset	McASP0 BYTE ADDRESS	McASP1 BYTE ADDRESS	McASP2 BYTE ADDRESS	Acronym	Register Description
0h	0x01D0 0000	0x01D0 4000	0x01D0 8000	REV	Revision identification register
10h	0x01D0 0010	0x01D0 4010	0x01D0 8010	PFUNC	Pin function register
14h	0x01D0 0014	0x01D0 4014	0x01D0 8014	PDIR	Pin direction register
18h	0x01D0 0018	0x01D0 4018	0x01D0 8018	PDOUT	Pin data output register
1Ch	0x01D0 001C	0x01D0 401C	0x01D0 801C	PDIN	Read returns: Pin data input register
1Ch	0x01D0 001C	0x01D0 401C	0x01D0 801C	PDSET	Writes affect: Pin data set register (alternate write address: PDOUT)
20h	0x01D0 0020	0x01D0 4020	0x01D0 8020	PDCLR	Pin data clear register (alternate write address: PDOUT)
44h	0x01D0 0044	0x01D0 4044	0x01D0 8044	GBLCTL	Global control register
48h	0x01D0 0048	0x01D0 4048	0x01D0 8048	AMUTE	Audio mute control register
4Ch	0x01D0 004C	0x01D0 404C	0x01D0 804C	DLBCTL	Digital loopback control register
50h	0x01D0 0050	0x01D0 4050	0x01D0 8050	DITCTL	DIT mode control register
60h	0x01D0 0060	0x01D0 4060	0x01D0 8060	RGBLCTL	Receiver global control register: Alias of GBLCTL, only receive bits are affected - allows receiver to be reset independently from transmitter
64h	0x01D0 0064	0x01D0 4064	0x01D0 8064	RMASK	Receive format unit bit mask register
68h	0x01D0 0068	0x01D0 4068	0x01D0 8068	RFMT	Receive bit stream format register
6Ch	0x01D0 006C	0x01D0 406C	0x01D0 806C	AFSRCTL	Receive frame sync control register
70h	0x01D0 0070	0x01D0 4070	0x01D0 8070	ACLKRCTL	Receive clock control register

Table 6-42. McASP Registers Accessed Through Peripheral Configuration Port (continued)

Offset	McASP0 Byte Address	McASP1 BYTE ADDRESS	McASP2 BYTE ADDRESS	Acronym	Register Description
74h	0x01D0 0074	0x01D0 4074	0x01D0 8074	AHCLKRCTL	Receive high-frequency clock control register
78h	0x01D0 0078	0x01D0 4078	0x01D0 8078	RTDM	Receive TDM time slot 0-31 register
7Ch	0x01D0 007C	0x01D0 407C	0x01D0 807C	RINTCTL	Receiver interrupt control register
80h	0x01D0 0080	0x01D0 4080	0x01D0 8080	RSTAT	Receiver status register
84h	0x01D0 0084	0x01D0 4084	0x01D0 8084	RSLOT	Current receive TDM time slot register
88h	0x01D0 0088	0x01D0 4088	0x01D0 8088	RCLKCHK	Receive clock check control register
8Ch	0x01D0 008C	0x01D0 408C	0x01D0 808C	REVTCTL	Receiver DMA event control register
ACh	0x01D0 00A0	0x01D0 40A0	0x01D0 80A0	XGBLCTL	Transmitter global control register. Alias of GBLCTL, only transmit bits are affected - allows transmitter to be reset independently from receiver
A4h	0x01D0 00A4	0x01D0 40A4	0x01D0 80A4	XMASK	Transmit format unit bit mask register
A8h	0x01D0 00A8	0x01D0 40A8	0x01D0 80A8	XFMT	Transmit bit stream format register
ACh	0x01D0 00AC	0x01D0 40AC	0x01D0 80AC	AFSXCTL	Transmit frame sync control register
B0h	0x01D0 00B0	0x01D0 40B0	0x01D0 80B0	ACLKXCTL	Transmit clock control register
B4h	0x01D0 00B4	0x01D0 40B4	0x01D0 80B4	AHCLKXCTL	Transmit high-frequency clock control register
B8h	0x01D0 00B8	0x01D0 40B8	0x01D0 80B8	XTDM	Transmit TDM time slot 0-31 register
BCh	0x01D0 00BC	0x01D0 40BC	0x01D0 80BC	XINTCTL	Transmitter interrupt control register
C0h	0x01D0 00C0	0x01D0 40C0	0x01D0 80C0	XSTAT	Transmitter status register
C4h	0x01D0 00C4	0x01D0 40C4	0x01D0 80C4	XSLOT	Current transmit TDM time slot register
C8h	0x01D0 00C8	0x01D0 40C8	0x01D0 80C8	XCLKCHK	Transmit clock check control register
CCh	0x01D0 00CC	0x01D0 40CC	0x01D0 80CC	XEVTCTL	Transmitter DMA event control register
100h	0x01D0 0100	0x01D0 4100	0x01D0 8100	DITCSRA0	Left (even TDM time slot) channel status register (DIT mode) 0
104h	0x01D0 0104	0x01D0 4104	0x01D0 8104	DITCSRA1	Left (even TDM time slot) channel status register (DIT mode) 1
108h	0x01D0 0108	0x01D0 4108	0x01D0 8108	DITCSRA2	Left (even TDM time slot) channel status register (DIT mode) 2
10Ch	0x01D0 010C	0x01D0 410C	0x01D0 810C	DITCSRA3	Left (even TDM time slot) channel status register (DIT mode) 3
110h	0x01D0 0110	0x01D0 4110	0x01D0 8110	DITCSRA4	Left (even TDM time slot) channel status register (DIT mode) 4
114h	0x01D0 0114	0x01D0 4114	0x01D0 8114	DITCSRA5	Left (even TDM time slot) channel status register (DIT mode) 5
118h	0x01D0 0118	0x01D0 4118	0x01D0 8118	DITCSRB0	Right (odd TDM time slot) channel status register (DIT mode) 0
11Ch	0x01D0 011C	0x01D0 411C	0x01D0 811C	DITCSRB1	Right (odd TDM time slot) channel status register (DIT mode) 1
120h	0x01D0 0120	0x01D0 4120	0x01D0 8120	DITCSRB2	Right (odd TDM time slot) channel status register (DIT mode) 2
124h	0x01D0 0124	0x01D0 4124	0x01D0 8124	DITCSRB3	Right (odd TDM time slot) channel status register (DIT mode) 3
128h	0x01D0 0128	0x01D0 4128	0x01D0 8128	DITCSRB4	Right (odd TDM time slot) channel status register (DIT mode) 4
12Ch	0x01D0 012C	0x01D0 412C	0x01D0 812C	DITCSRB5	Right (odd TDM time slot) channel status register (DIT mode) 5
130h	0x01D0 0130	0x01D0 4130	0x01D0 8130	DITUDRA0	Left (even TDM time slot) channel user data register (DIT mode) 0
134h	0x01D0 0134	0x01D0 4134	0x01D0 8134	DITUDRA1	Left (even TDM time slot) channel user data register (DIT mode) 1
138h	0x01D0 0138	0x01D0 4138	0x01D0 8138	DITUDRA2	Left (even TDM time slot) channel user data register (DIT mode) 2

Texas Instruments

Table 6-42. McASP Registers Accessed Through Peripheral Configuration Port (continued)

Offset Briss ADRESS McASPE ADDRESS McASPE ADDRESS Acronym ADDRESS Register Description 130h 0x01D0 0130 0x01D0 0140 0x01D0 0140 0x01D0 0140 0x01D0 0140 0x01D0 0140 0x01D0 01440 0x01D0 01440 0x01D0 01440 0x01D0 01444 0x01D0 01444 0x01D0 01444 0x01D0 01444 0x01D0 01444 0x01D0 01440 0x01D0 01540 0x01D0 01540 0x01D0 01540 0x01D0 01540 0x01D0 01540 0x01D0 01540 0x01D0 01550 0x01D0 01550 <th></th> <th>1</th> <th></th> <th></th> <th></th> <th>pheral Configuration Port (Continued)</th>		1				pheral Configuration Port (Continued)
140h	Offset	BYTE	BYTE	BYTE	Acronym	Register Description
144h	13Ch	0x01D0 013C	0x01D0 413C	0x01D0 813C	DITUDRA3	
CDT mode) 5	140h	0x01D0 0140	0x01D0 4140	0x01D0 8140	DITUDRA4	,
14Ch	144h	0x01D0 0144	0x01D0 4144	0x01D0 8144	DITUDRA5	
150h	148h	0x01D0 0148	0x01D0 4148	0x01D0 8148	DITUDRB0	
(DiT mode) 2 (DiT mode) 2 (DiT mode) 2 (DiT mode) 3 (DiT mode) 4 (DiT mode) 5 (DiT	14Ch	0x01D0 014C	0x01D0 414C	0x01D0 814C	DITUDRB1	Right (odd TDM time slot) channel user data register (DIT mode) 1
158h	150h	0x01D0 0150	0x01D0 4150	0x01D0 8150	DITUDRB2	
15Ch	154h	0x01D0 0154	0x01D0 4154	0x01D0 8154	DITUDRB3	
180h	158h	0x01D0 0158	0x01D0 4158	0x01D0 8158	DITUDRB4	
184h 0x01D0 0184 0x01D0 4184 0x01D0 8184 SRCTL1 Serializer control register 1 188h 0x01D0 0188 0x01D0 4188 0x01D0 8188 SRCTL2 Serializer control register 2 180h 0x01D0 0190 0x01D0 4190 0x01D0 8180 SRCTL3 Serializer control register 3 190h 0x01D0 0190 0x01D0 4190 0x01D0 8190 SRCTL4 Serializer control register 4 194h 0x01D0 0194 0x01D0 4198 0x01D0 8194 SRCTL5 Serializer control register 5 198h 0x01D0 0195 0x01D0 4198 0x01D0 8198 SRCTL6 Serializer control register 6 19Ch 0x01D0 019C 0x01D0 419C 0x01D0 8196 SRCTL7 Serializer control register 7 1A0h 0x01D0 01A0 0x01D0 41A0 0x01D0 81A0 SRCTL8 Serializer control register 8 1A2h 0x01D0 01A4 0x01D0 41A0 0x01D0 81A3 SRCTL1 Serializer control register 9 1A2h 0x01D0 01A0 0x01D0 41AC 0x01D0 81A0 SRCTL1 Serializer control register 11 1B0h 0x01D0 01B	15Ch	0x01D0 015C	0x01D0 415C	0x01D0 815C	DITUDRB5	
188h 0x01D0 0188 0x01D0 4188 0x01D0 8188 SRCTL2 Serializer control register 2 18Ch 0x01D0 018C 0x01D0 418C 0x01D0 818C SRCTL3 Serializer control register 3 190h 0x01D0 0190 0x01D0 4190 0x01D0 8194 SRCTL4 Serializer control register 4 194h 0x01D0 0194 0x01D0 4194 0x01D0 8198 SRCTL5 Serializer control register 5 198h 0x01D0 0198 0x01D0 4199 0x01D0 8198 SRCTL6 Serializer control register 6 19Ch 0x01D0 019C 0x01D0 419C 0x01D0 819C SRCTL7 Serializer control register 7 1A0h 0x01D0 01A0 0x01D0 41A0 0x01D0 81A0 SRCTL8 Serializer control register 8 1A4h 0x01D0 01A4 0x01D0 81A4 SRCTL9 Serializer control register 9 1A2h 0x01D0 01AC 0x01D0 41A8 0x01D0 81A8 SRCTL10 Serializer control register 10 1A2h 0x01D0 01B0 0x01D0 41B0 0x01D0 81A2 SRCTL12 Serializer control register 11 1B0h 0x01D0 01B0 0x01D0	180h	0x01D0 0180	0x01D0 4180	0x01D0 8180	SRCTL0	Serializer control register 0
18Ch 0x01D0 018C 0x01D0 418C 0x01D0 818C SRCTL3 Serializer control register 3 190h 0x01D0 0190 0x01D0 4190 0x01D0 8190 SRCTL4 Serializer control register 4 194h 0x01D0 0194 0x01D0 4194 0x01D0 8194 SRCTL5 Serializer control register 5 198h 0x01D0 0198 0x01D0 419C 0x01D0 8198 SRCTL6 Serializer control register 6 19Ch 0x01D0 019C 0x01D0 419C 0x01D0 819C SRCTL7 Serializer control register 7 1A0h 0x01D0 01A0 0x01D0 41A0 0x01D0 81A0 SRCTL8 Serializer control register 8 1A4h 0x01D0 01A4 0x01D0 41A4 0x01D0 81A4 SRCTL9 Serializer control register 9 1A8h 0x01D0 01A8 0x01D0 41A8 0x01D0 81A8 SRCTL10 Serializer control register 10 1ACh 0x01D0 01AC 0x01D0 41AC 0x01D0 81AC SRCTL11 Serializer control register 11 1B0h 0x01D0 01B0 0x01D0 41B0 0x01D0 81B0 SRCTL12 Serializer control register 12 1B4h 0x01D0 01B4 0x01D0 41B4 0x01D0 81B8 SRCTL13 Serializer control register 13 1B8h 0x01D0 01B8 0x01D0 41B8 0x01D0 81B8 SRCTL14 Serializer control register 14 1BCh 0x01D0 01BC 0x01D0 41BC 0x01D0 81BC SRCTL15 Serializer control register 14 1BCh 0x01D0 0200 0x01D0 4200 0x01D0 8200 XBUF0 ⁽¹⁾ Transmit buffer register for serializer 0 204h 0x01D0 0204 0x01D0 4204 0x01D0 8204 XBUF4 ⁽¹⁾ Transmit buffer register for serializer 2 20Ch 0x01D0 0205 0x01D0 4206 0x01D0 8206 XBUF3 ⁽¹⁾ Transmit buffer register for serializer 3 210h 0x01D0 0214 0x01D0 4214 0x01D0 8214 XBUF5 ⁽¹⁾ Transmit buffer register for serializer 3 210h 0x01D0 0216 0x01D0 4216 0x01D0 8216 XBUF4 ⁽¹⁾ Transmit buffer register for serializer 3 210h 0x01D0 0216 0x01D0 4216 0x01D0 8202 XBUF6 ⁽¹⁾ Transmit buffer register for serializer 5 218h 0x01D0 0216 0x01D0 4220 0x01D0 8210 XBUF6 ⁽¹⁾ Transmit buffer register for serializer 7 220h 0x01D0 0220 0x01D0 4220 0x01D0 8220 XBUF6 ⁽¹⁾ Transmit buffer re	184h	0x01D0 0184	0x01D0 4184	0x01D0 8184	SRCTL1	Serializer control register 1
190h	188h	0x01D0 0188	0x01D0 4188	0x01D0 8188	SRCTL2	Serializer control register 2
194h	18Ch	0x01D0 018C	0x01D0 418C	0x01D0 818C	SRCTL3	Serializer control register 3
198h	190h	0x01D0 0190	0x01D0 4190	0x01D0 8190	SRCTL4	Serializer control register 4
19Ch	194h	0x01D0 0194	0x01D0 4194	0x01D0 8194	SRCTL5	Serializer control register 5
1A0h 0x01D0 01A0 0x01D0 41A0 0x01D0 81A0 SRCTL8 Serializer control register 8 1A4h 0x01D0 01A4 0x01D0 41A4 0x01D0 81A4 SRCTL9 Serializer control register 9 1A8h 0x01D0 01A8 0x01D0 41A8 0x01D0 81A8 SRCTL10 Serializer control register 10 1ACh 0x01D0 01AC 0x01D0 41AC 0x01D0 81AC SRCTL11 Serializer control register 11 1B0h 0x01D0 01B0 0x01D0 41B0 0x01D0 81B0 SRCTL12 Serializer control register 12 1B4h 0x01D0 01B4 0x01D0 41B4 0x01D0 81B4 SRCTL13 Serializer control register 13 1B8h 0x01D0 01B6 0x01D0 41B8 0x01D0 81B8 SRCTL14 Serializer control register 14 1BCh 0x01D0 01BC 0x01D0 41BC 0x01D0 8200 XBUF0 ⁽¹⁾ Transmit buffer register for serializer 0 204h 0x01D0 0200 0x01D0 4200 0x01D0 8200 XBUF1 ⁽¹⁾ Transmit buffer register for serializer 1 206h 0x01D0 0204 0x01D0 4208 0x01D0 8208 XBUF2 ⁽¹⁾ Transmit buffer register for serializer 2 </td <td>198h</td> <td>0x01D0 0198</td> <td>0x01D0 4198</td> <td>0x01D0 8198</td> <td>SRCTL6</td> <td>Serializer control register 6</td>	198h	0x01D0 0198	0x01D0 4198	0x01D0 8198	SRCTL6	Serializer control register 6
1A4h 0x01D0 01A4 0x01D0 41A4 0x01D0 81A4 SRCTL9 Serializer control register 9 1A8h 0x01D0 01A8 0x01D0 41A8 0x01D0 81A8 SRCTL10 Serializer control register 10 1ACh 0x01D0 01AC 0x01D0 41AC 0x01D0 81AC SRCTL11 Serializer control register 11 1B0h 0x01D0 01B0 0x01D0 41B0 0x01D0 81B0 SRCTL12 Serializer control register 12 1B4h 0x01D0 01B4 0x01D0 41B4 0x01D0 81B4 SRCTL13 Serializer control register 13 1B8h 0x01D0 01B8 0x01D0 41B8 0x01D0 81BC SRCTL14 Serializer control register 14 1BCh 0x01D0 01BC 0x01D0 41BC 0x01D0 81BC SRCTL15 Serializer control register 15 200h 0x01D0 0200 0x01D0 4200 0x01D0 81BC SRCTL15 Serializer control register 15 200h 0x01D0 0200 0x01D0 4200 0x01D0 81BC SRCTL15 Serializer control register 13 200h 0x01D0 0200 0x01D0 4200 0x01D0 81BC SRCTL15 Serializer control register 13 200h	19Ch	0x01D0 019C	0x01D0 419C	0x01D0 819C	SRCTL7	Serializer control register 7
1A8h 0x01D0 01A8 0x01D0 41A8 0x01D0 81A8 SRCTL10 Serializer control register 10 1ACh 0x01D0 01AC 0x01D0 41AC 0x01D0 81AC SRCTL11 Serializer control register 11 1B0h 0x01D0 01B0 0x01D0 41B0 0x01D0 81B0 SRCTL12 Serializer control register 12 1B4h 0x01D0 01B4 0x01D0 41B4 0x01D0 81B4 SRCTL13 Serializer control register 13 1B8h 0x01D0 01B8 0x01D0 41B8 0x01D0 81BB SRCTL14 Serializer control register 14 1BCh 0x01D0 01BC 0x01D0 41BC 0x01D0 81BC SRCTL15 Serializer control register 15 200h 0x01D0 0200 0x01D0 4200 0x01D0 8200 XBUF0(1) Transmit buffer register for serializer 0 204h 0x01D0 0204 0x01D0 4204 0x01D0 8204 XBUF1(1) Transmit buffer register for serializer 1 208h 0x01D0 0208 0x01D0 4208 0x01D0 820C XBUF3(1) Transmit buffer register for serializer 2 20Ch 0x01D0 0201 0x01D0 4210 0x01D0 8210 XBUF4(1) Transmit buffer register for serializer 3 </td <td>1A0h</td> <td>0x01D0 01A0</td> <td>0x01D0 41A0</td> <td>0x01D0 81A0</td> <td>SRCTL8</td> <td>Serializer control register 8</td>	1A0h	0x01D0 01A0	0x01D0 41A0	0x01D0 81A0	SRCTL8	Serializer control register 8
1ACh 0x01D0 01AC 0x01D0 41AC 0x01D0 81AC SRCTL11 Serializer control register 11 1B0h 0x01D0 01B0 0x01D0 41B0 0x01D0 81B0 SRCTL12 Serializer control register 12 1B4h 0x01D0 01B4 0x01D0 41B4 0x01D0 81B4 SRCTL13 Serializer control register 13 1B8h 0x01D0 01B8 0x01D0 41B8 0x01D0 81B8 SRCTL14 Serializer control register 14 1BCh 0x01D0 01BC 0x01D0 41BC 0x01D0 81BC SRCTL15 Serializer control register 15 200h 0x01D0 0200 0x01D0 4200 0x01D0 8200 XBUF0 ⁽¹⁾ Transmit buffer register for serializer 0 204h 0x01D0 0204 0x01D0 4204 0x01D0 8204 XBUF1 ⁽¹⁾ Transmit buffer register for serializer 1 208h 0x01D0 0208 0x01D0 4208 0x01D0 8208 XBUF2 ⁽¹⁾ Transmit buffer register for serializer 2 20Ch 0x01D0 020C 0x01D0 420C 0x01D0 820C XBUF3 ⁽¹⁾ Transmit buffer register for serializer 3 210h 0x01D0 0210 0x01D0 4214 0x01D0 8214 XBUF6 ⁽¹⁾ Transmit buffer regis	1A4h	0x01D0 01A4	0x01D0 41A4	0x01D0 81A4	SRCTL9	Serializer control register 9
180h 0x01D0 01B0 0x01D0 41B0 0x01D0 81B0 SRCTL12 Serializer control register 12 184h 0x01D0 01B4 0x01D0 41B4 0x01D0 81B4 SRCTL13 Serializer control register 13 188h 0x01D0 01B8 0x01D0 41B8 0x01D0 81BC SRCTL14 Serializer control register 14 18Ch 0x01D0 01BC 0x01D0 41BC 0x01D0 81BC SRCTL15 Serializer control register 15 200h 0x01D0 0200 0x01D0 4200 0x01D0 8200 XBUF0(1) Transmit buffer register for serializer 0 204h 0x01D0 0204 0x01D0 4204 0x01D0 8204 XBUF1(1) Transmit buffer register for serializer 1 208h 0x01D0 0208 0x01D0 4208 0x01D0 8208 XBUF2(1) Transmit buffer register for serializer 2 20Ch 0x01D0 020C 0x01D0 420C 0x01D0 820C XBUF3(1) Transmit buffer register for serializer 3 210h 0x01D0 0210 0x01D0 4210 0x01D0 8210 XBUF4(1) Transmit buffer register for serializer 4 214h 0x01D0 0214 0x01D0 4214 0x01D0 8214 XBUF6(1) Transmit buffer reg	1A8h	0x01D0 01A8	0x01D0 41A8	0x01D0 81A8	SRCTL10	Serializer control register 10
1B4h 0x01D0 01B4 0x01D0 41B4 0x01D0 81B4 SRCTL13 Serializer control register 13 1B8h 0x01D0 01B8 0x01D0 41B8 0x01D0 81B8 SRCTL14 Serializer control register 14 1BCh 0x01D0 01BC 0x01D0 41BC 0x01D0 81BC SRCTL15 Serializer control register 15 200h 0x01D0 0200 0x01D0 4200 0x01D0 8200 XBUF0 ⁽¹⁾ Transmit buffer register for serializer 0 204h 0x01D0 0204 0x01D0 4204 0x01D0 8204 XBUF1 ⁽¹⁾ Transmit buffer register for serializer 1 208h 0x01D0 0208 0x01D0 4208 0x01D0 8208 XBUF2 ⁽¹⁾ Transmit buffer register for serializer 2 20Ch 0x01D0 020C 0x01D0 420C 0x01D0 820C XBUF3 ⁽¹⁾ Transmit buffer register for serializer 3 210h 0x01D0 0210 0x01D0 4210 0x01D0 8210 XBUF4 ⁽¹⁾ Transmit buffer register for serializer 4 214h 0x01D0 0214 0x01D0 4214 0x01D0 8214 XBUF5 ⁽¹⁾ Transmit buffer register for serializer 5 218h 0x01D0 0218 0x01D0 4216 0x01D0 8216 XBUF9 ⁽¹⁾	1ACh	0x01D0 01AC	0x01D0 41AC	0x01D0 81AC	SRCTL11	Serializer control register 11
1B8h 0x01D0 01B8 0x01D0 41B8 0x01D0 81B8 SRCTL14 Serializer control register 14 1BCh 0x01D0 01BC 0x01D0 41BC 0x01D0 81BC SRCTL15 Serializer control register 15 200h 0x01D0 0200 0x01D0 4200 0x01D0 8200 XBUF0 ⁽¹⁾ Transmit buffer register for serializer 0 204h 0x01D0 0204 0x01D0 4204 0x01D0 8204 XBUF1 ⁽¹⁾ Transmit buffer register for serializer 1 208h 0x01D0 0208 0x01D0 4208 0x01D0 8208 XBUF2 ⁽¹⁾ Transmit buffer register for serializer 2 20Ch 0x01D0 020C 0x01D0 420C 0x01D0 820C XBUF3 ⁽¹⁾ Transmit buffer register for serializer 3 210h 0x01D0 0210 0x01D0 4210 0x01D0 8210 XBUF4 ⁽¹⁾ Transmit buffer register for serializer 4 214h 0x01D0 0214 0x01D0 4214 0x01D0 8214 XBUF5 ⁽¹⁾ Transmit buffer register for serializer 5 218h 0x01D0 0218 0x01D0 4218 0x01D0 8218 XBUF6 ⁽¹⁾ Transmit buffer register for serializer 6 21ch 0x01D0 0220 0x01D0 4220 0x01D0 8220 XBUF8 ⁽	1B0h	0x01D0 01B0	0x01D0 41B0	0x01D0 81B0	SRCTL12	Serializer control register 12
1BCh 0x01D0 01BC 0x01D0 41BC 0x01D0 81BC SRCTL15 Serializer control register 15 200h 0x01D0 0200 0x01D0 4200 0x01D0 8200 XBUF0 ⁽¹⁾ Transmit buffer register for serializer 0 204h 0x01D0 0204 0x01D0 4204 0x01D0 8204 XBUF1 ⁽¹⁾ Transmit buffer register for serializer 1 208h 0x01D0 0208 0x01D0 4208 0x01D0 8208 XBUF2 ⁽¹⁾ Transmit buffer register for serializer 2 20Ch 0x01D0 020C 0x01D0 420C 0x01D0 820C XBUF3 ⁽¹⁾ Transmit buffer register for serializer 3 210h 0x01D0 0210 0x01D0 4210 0x01D0 8210 XBUF4 ⁽¹⁾ Transmit buffer register for serializer 4 214h 0x01D0 0214 0x01D0 4214 0x01D0 8214 XBUF5 ⁽¹⁾ Transmit buffer register for serializer 5 218h 0x01D0 0218 0x01D0 4218 0x01D0 8218 XBUF7 ⁽¹⁾ Transmit buffer register for serializer 6 21Ch 0x01D0 0210 0x01D0 4220 0x01D0 8220 XBUF8 ⁽¹⁾ Transmit buffer register for serializer 7 220h 0x01D0 0220 0x01D0 4224 0x01D0 8224	1B4h	0x01D0 01B4	0x01D0 41B4	0x01D0 81B4	SRCTL13	Serializer control register 13
200h 0x01D0 0200 0x01D0 4200 0x01D0 8200 XBUF0 ⁽¹⁾ Transmit buffer register for serializer 0 204h 0x01D0 0204 0x01D0 4204 0x01D0 8204 XBUF1 ⁽¹⁾ Transmit buffer register for serializer 1 208h 0x01D0 0208 0x01D0 4208 0x01D0 8208 XBUF2 ⁽¹⁾ Transmit buffer register for serializer 2 20Ch 0x01D0 020C 0x01D0 420C 0x01D0 820C XBUF3 ⁽¹⁾ Transmit buffer register for serializer 3 210h 0x01D0 0210 0x01D0 4210 0x01D0 8210 XBUF4 ⁽¹⁾ Transmit buffer register for serializer 4 214h 0x01D0 0214 0x01D0 4214 0x01D0 8214 XBUF5 ⁽¹⁾ Transmit buffer register for serializer 5 218h 0x01D0 0218 0x01D0 4218 0x01D0 8218 XBUF6 ⁽¹⁾ Transmit buffer register for serializer 6 21Ch 0x01D0 021C 0x01D0 421C 0x01D0 821C XBUF7 ⁽¹⁾ Transmit buffer register for serializer 7 220h 0x01D0 0220 0x01D0 4220 0x01D0 8220 XBUF8 ⁽¹⁾ Transmit buffer register for serializer 9 228h 0x01D0 0228 0x01D0 4228 0x01D0 8	1B8h	0x01D0 01B8	0x01D0 41B8	0x01D0 81B8	SRCTL14	Serializer control register 14
204h 0x01D0 0204 0x01D0 4204 0x01D0 8204 XBUF1 ⁽¹⁾ Transmit buffer register for serializer 1 208h 0x01D0 0208 0x01D0 4208 0x01D0 8208 XBUF2 ⁽¹⁾ Transmit buffer register for serializer 2 20Ch 0x01D0 020C 0x01D0 420C 0x01D0 820C XBUF3 ⁽¹⁾ Transmit buffer register for serializer 3 210h 0x01D0 0210 0x01D0 4210 0x01D0 8210 XBUF4 ⁽¹⁾ Transmit buffer register for serializer 4 214h 0x01D0 0214 0x01D0 4214 0x01D0 8214 XBUF5 ⁽¹⁾ Transmit buffer register for serializer 5 218h 0x01D0 0218 0x01D0 4218 0x01D0 8218 XBUF6 ⁽¹⁾ Transmit buffer register for serializer 6 21Ch 0x01D0 021C 0x01D0 421C 0x01D0 821C XBUF7 ⁽¹⁾ Transmit buffer register for serializer 7 220h 0x01D0 0220 0x01D0 4220 0x01D0 8220 XBUF8 ⁽¹⁾ Transmit buffer register for serializer 8 224h 0x01D0 0224 0x01D0 4224 0x01D0 8224 XBUF9 ⁽¹⁾ Transmit buffer register for serializer 10 22Ch 0x01D0 022C 0x01D0 422C 0x01D0	1BCh	0x01D0 01BC	0x01D0 41BC	0x01D0 81BC	SRCTL15	Serializer control register 15
208h 0x01D0 0208 0x01D0 4208 0x01D0 8208 XBUF2 ⁽¹⁾ Transmit buffer register for serializer 2 20Ch 0x01D0 020C 0x01D0 420C 0x01D0 820C XBUF3 ⁽¹⁾ Transmit buffer register for serializer 3 210h 0x01D0 0210 0x01D0 4210 0x01D0 8210 XBUF4 ⁽¹⁾ Transmit buffer register for serializer 4 214h 0x01D0 0214 0x01D0 4214 0x01D0 8214 XBUF5 ⁽¹⁾ Transmit buffer register for serializer 5 218h 0x01D0 0218 0x01D0 4218 0x01D0 8218 XBUF6 ⁽¹⁾ Transmit buffer register for serializer 6 21Ch 0x01D0 021C 0x01D0 421C 0x01D0 821C XBUF7 ⁽¹⁾ Transmit buffer register for serializer 7 220h 0x01D0 0220 0x01D0 4220 0x01D0 8220 XBUF8 ⁽¹⁾ Transmit buffer register for serializer 8 224h 0x01D0 0224 0x01D0 4224 0x01D0 8224 XBUF9 ⁽¹⁾ Transmit buffer register for serializer 10 22Ch 0x01D0 022C 0x01D0 422C 0x01D0 822C XBUF11 ⁽¹⁾ Transmit buffer register for serializer 12 230h 0x01D0 0230 0x01D0 4230 0x01D	200h	0x01D0 0200	0x01D0 4200	0x01D0 8200	XBUF0 ⁽¹⁾	Transmit buffer register for serializer 0
20Ch 0x01D0 020C 0x01D0 420C 0x01D0 820C XBUF3 ⁽¹⁾ Transmit buffer register for serializer 3 210h 0x01D0 0210 0x01D0 4210 0x01D0 8210 XBUF4 ⁽¹⁾ Transmit buffer register for serializer 4 214h 0x01D0 0214 0x01D0 4214 0x01D0 8214 XBUF5 ⁽¹⁾ Transmit buffer register for serializer 5 218h 0x01D0 0218 0x01D0 4218 0x01D0 8218 XBUF6 ⁽¹⁾ Transmit buffer register for serializer 6 21Ch 0x01D0 021C 0x01D0 421C 0x01D0 821C XBUF7 ⁽¹⁾ Transmit buffer register for serializer 7 220h 0x01D0 0220 0x01D0 4220 0x01D0 8220 XBUF8 ⁽¹⁾ Transmit buffer register for serializer 8 224h 0x01D0 0224 0x01D0 4224 0x01D0 8224 XBUF9 ⁽¹⁾ Transmit buffer register for serializer 9 228h 0x01D0 0228 0x01D0 4228 0x01D0 8228 XBUF10 ⁽¹⁾ Transmit buffer register for serializer 10 22Ch 0x01D0 0230 0x01D0 4230 0x01D0 8230 XBUF12 ⁽¹⁾ Transmit buffer register for serializer 12	204h	0x01D0 0204	0x01D0 4204	0x01D0 8204	XBUF1 ⁽¹⁾	Transmit buffer register for serializer 1
210h 0x01D0 0210 0x01D0 4210 0x01D0 8210 XBUF4 ⁽¹⁾ Transmit buffer register for serializer 4 214h 0x01D0 0214 0x01D0 4214 0x01D0 8214 XBUF5 ⁽¹⁾ Transmit buffer register for serializer 5 218h 0x01D0 0218 0x01D0 4218 0x01D0 8218 XBUF6 ⁽¹⁾ Transmit buffer register for serializer 6 21Ch 0x01D0 021C 0x01D0 421C 0x01D0 821C XBUF7 ⁽¹⁾ Transmit buffer register for serializer 7 220h 0x01D0 0220 0x01D0 4220 0x01D0 8220 XBUF8 ⁽¹⁾ Transmit buffer register for serializer 8 224h 0x01D0 0224 0x01D0 4224 0x01D0 8224 XBUF9 ⁽¹⁾ Transmit buffer register for serializer 9 228h 0x01D0 0228 0x01D0 4228 0x01D0 8228 XBUF10 ⁽¹⁾ Transmit buffer register for serializer 10 22Ch 0x01D0 0230 0x01D0 4230 0x01D0 8230 XBUF11 ⁽¹⁾ Transmit buffer register for serializer 12	208h	0x01D0 0208			XBUF2 ⁽¹⁾	
214h 0x01D0 0214 0x01D0 4214 0x01D0 8214 XBUF5 ⁽¹⁾ Transmit buffer register for serializer 5 218h 0x01D0 0218 0x01D0 4218 0x01D0 8218 XBUF6 ⁽¹⁾ Transmit buffer register for serializer 6 21Ch 0x01D0 021C 0x01D0 421C 0x01D0 821C XBUF7 ⁽¹⁾ Transmit buffer register for serializer 7 220h 0x01D0 0220 0x01D0 4220 0x01D0 8220 XBUF8 ⁽¹⁾ Transmit buffer register for serializer 8 224h 0x01D0 0224 0x01D0 4224 0x01D0 8224 XBUF9 ⁽¹⁾ Transmit buffer register for serializer 9 228h 0x01D0 0228 0x01D0 4228 0x01D0 8228 XBUF10 ⁽¹⁾ Transmit buffer register for serializer 10 22Ch 0x01D0 022C 0x01D0 422C 0x01D0 822C XBUF11 ⁽¹⁾ Transmit buffer register for serializer 11 230h 0x01D0 0230 0x01D0 4230 0x01D0 8230 XBUF12 ⁽¹⁾ Transmit buffer register for serializer 12	20Ch	0x01D0 020C	0x01D0 420C	0x01D0 820C	XBUF3 ⁽¹⁾	Transmit buffer register for serializer 3
218h 0x01D0 0218 0x01D0 4218 0x01D0 8218 XBUF6 ⁽¹⁾ Transmit buffer register for serializer 6 21Ch 0x01D0 021C 0x01D0 421C 0x01D0 821C XBUF7 ⁽¹⁾ Transmit buffer register for serializer 7 220h 0x01D0 0220 0x01D0 4220 0x01D0 8220 XBUF8 ⁽¹⁾ Transmit buffer register for serializer 8 224h 0x01D0 0224 0x01D0 4224 0x01D0 8224 XBUF9 ⁽¹⁾ Transmit buffer register for serializer 9 228h 0x01D0 0228 0x01D0 4228 0x01D0 8228 XBUF10 ⁽¹⁾ Transmit buffer register for serializer 10 22Ch 0x01D0 022C 0x01D0 422C 0x01D0 822C XBUF11 ⁽¹⁾ Transmit buffer register for serializer 11 230h 0x01D0 0230 0x01D0 4230 0x01D0 8230 XBUF12 ⁽¹⁾ Transmit buffer register for serializer 12	210h	0x01D0 0210	0x01D0 4210	0x01D0 8210	XBUF4 ⁽¹⁾	Transmit buffer register for serializer 4
21Ch 0x01D0 021C 0x01D0 421C 0x01D0 821C XBUF7 ⁽¹⁾ Transmit buffer register for serializer 7 220h 0x01D0 0220 0x01D0 4220 0x01D0 8220 XBUF8 ⁽¹⁾ Transmit buffer register for serializer 8 224h 0x01D0 0224 0x01D0 4224 0x01D0 8224 XBUF9 ⁽¹⁾ Transmit buffer register for serializer 9 228h 0x01D0 0228 0x01D0 4228 0x01D0 8228 XBUF10 ⁽¹⁾ Transmit buffer register for serializer 10 22Ch 0x01D0 022C 0x01D0 422C 0x01D0 822C XBUF11 ⁽¹⁾ Transmit buffer register for serializer 11 230h 0x01D0 0230 0x01D0 4230 0x01D0 8230 XBUF12 ⁽¹⁾ Transmit buffer register for serializer 12	214h	0x01D0 0214	0x01D0 4214	0x01D0 8214	XBUF5 ⁽¹⁾	Transmit buffer register for serializer 5
220h 0x01D0 0220 0x01D0 4220 0x01D0 8220 XBUF8 ⁽¹⁾ Transmit buffer register for serializer 8 224h 0x01D0 0224 0x01D0 4224 0x01D0 8224 XBUF9 ⁽¹⁾ Transmit buffer register for serializer 9 228h 0x01D0 0228 0x01D0 4228 0x01D0 8228 XBUF10 ⁽¹⁾ Transmit buffer register for serializer 10 22Ch 0x01D0 022C 0x01D0 422C 0x01D0 822C XBUF11 ⁽¹⁾ Transmit buffer register for serializer 11 230h 0x01D0 0230 0x01D0 4230 0x01D0 8230 XBUF12 ⁽¹⁾ Transmit buffer register for serializer 12	218h	0x01D0 0218	0x01D0 4218	0x01D0 8218	XBUF6 ⁽¹⁾	Transmit buffer register for serializer 6
224h 0x01D0 0224 0x01D0 4224 0x01D0 8224 XBUF9 ⁽¹⁾ Transmit buffer register for serializer 9 228h 0x01D0 0228 0x01D0 4228 0x01D0 8228 XBUF10 ⁽¹⁾ Transmit buffer register for serializer 10 22Ch 0x01D0 022C 0x01D0 422C 0x01D0 822C XBUF11 ⁽¹⁾ Transmit buffer register for serializer 11 230h 0x01D0 0230 0x01D0 4230 0x01D0 8230 XBUF12 ⁽¹⁾ Transmit buffer register for serializer 12	21Ch	0x01D0 021C	0x01D0 421C	0x01D0 821C	XBUF7 ⁽¹⁾	Transmit buffer register for serializer 7
228h 0x01D0 0228 0x01D0 4228 0x01D0 8228 XBUF10 ⁽¹⁾ Transmit buffer register for serializer 10 22Ch 0x01D0 022C 0x01D0 422C 0x01D0 822C XBUF11 ⁽¹⁾ Transmit buffer register for serializer 11 230h 0x01D0 0230 0x01D0 4230 0x01D0 8230 XBUF12 ⁽¹⁾ Transmit buffer register for serializer 12	220h	0x01D0 0220	0x01D0 4220	0x01D0 8220	XBUF8 ⁽¹⁾	Transmit buffer register for serializer 8
22Ch 0x01D0 022C 0x01D0 422C 0x01D0 822C XBUF11 ⁽¹⁾ Transmit buffer register for serializer 11 230h 0x01D0 0230 0x01D0 4230 0x01D0 8230 XBUF12 ⁽¹⁾ Transmit buffer register for serializer 12	224h	0x01D0 0224	0x01D0 4224	0x01D0 8224	XBUF9 ⁽¹⁾	Transmit buffer register for serializer 9
230h 0x01D0 0230 0x01D0 4230 0x01D0 8230 XBUF12 ⁽¹⁾ Transmit buffer register for serializer 12	228h	0x01D0 0228	0x01D0 4228	0x01D0 8228	XBUF10 ⁽¹⁾	Transmit buffer register for serializer 10
	22Ch	0x01D0 022C	0x01D0 422C	0x01D0 822C	XBUF11 ⁽¹⁾	Transmit buffer register for serializer 11
234h 0x01D0 0234 0x01D0 4234 0x01D0 8234 XBUF13 ⁽¹⁾ Transmit buffer register for serializer 13	230h	0x01D0 0230	0x01D0 4230	0x01D0 8230	XBUF12 ⁽¹⁾	Transmit buffer register for serializer 12
	234h	0x01D0 0234	0x01D0 4234	0x01D0 8234	XBUF13 ⁽¹⁾	Transmit buffer register for serializer 13

Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT. (1)

Table 6-42. McASP Registers Accessed Through Peripheral Configuration Port (continued)

Offset	McASP0 BYTE ADDRESS	McASP1 BYTE ADDRESS	McASP2 BYTE ADDRESS	Acronym	Register Description
238h	0x01D0 0238	0x01D0 4238	0x01D0 8238	XBUF14 ⁽¹⁾	Transmit buffer register for serializer 14
23Ch	0x01D0 023C	0x01D0 423C	0x01D0 823C	XBUF15 ⁽¹⁾	Transmit buffer register for serializer 15
280h	0x01D0 0280	0x01D0 4280	0x01D0 8280	RBUF0 ⁽²⁾	Receive buffer register for serializer 0
284h	0x01D0 0284	0x01D0 4284	0x01D0 8284	RBUF1 ⁽²⁾	Receive buffer register for serializer 1
288h	0x01D0 0288	0x01D0 4288	0x01D0 8288	RBUF2 ⁽²⁾	Receive buffer register for serializer 2
28Ch	0x01D0 028C	0x01D0 428C	0x01D0 828C	RBUF3 ⁽²⁾	Receive buffer register for serializer 3
290h	0x01D0 0290	0x01D0 4290	0x01D0 8290	RBUF4 ⁽²⁾	Receive buffer register for serializer 4
294h	0x01D0 0294	0x01D0 4294	0x01D0 8294	RBUF5 ⁽²⁾	Receive buffer register for serializer 5
298h	0x01D0 0298	0x01D0 4298	0x01D0 8298	RBUF6 ⁽²⁾	Receive buffer register for serializer 6
29Ch	0x01D0 029C	0x01D0 429C	0x01D0 829C	RBUF7 ⁽²⁾	Receive buffer register for serializer 7
2A0h	0x01D0 02A0	0x01D0 42A0	0x01D0 82A0	RBUF8 ⁽²⁾	Receive buffer register for serializer 8
2A4h	0x01D0 02A4	0x01D0 42A4	0x01D0 82A4	RBUF9 ⁽²⁾	Receive buffer register for serializer 9
2A8h	0x01D0 02A8	0x01D0 42A8	0x01D0 82A8	RBUF10 ⁽²⁾	Receive buffer register for serializer 10
2ACh	0x01D0 02AC	0x01D0 42AC	0x01D0 82AC	RBUF11 ⁽²⁾	Receive buffer register for serializer 11
2B0h	0x01D0 02B0	0x01D0 42B0	0x01D0 82B0	RBUF12 ⁽²⁾	Receive buffer register for serializer 12
2B4h	0x01D0 02B4	0x01D0 42B4	0x01D0 82B4	RBUF13 ⁽²⁾	Receive buffer register for serializer 13
2B8h	0x01D0 02B8	0x01D0 42B8	0x01D0 82BB	RBUF14 ⁽²⁾	Receive buffer register for serializer 14
2BCh	0x01D0 02BC	0x01D0 42BC	0x01D0 82BC	RBUF15 ⁽²⁾	Receive buffer register for serializer 15

⁽²⁾ Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT.

Table 6-43. McASP Registers Accessed Through DMA Port

Hex Address	Register Name	McASP0 BYTE ADDRESS	McASP1 BYTE ADDRESS	McASP2 BYTE ADDRESS	Register Description
Read Accesses	RBUF	01D0 2000	01D0 6000	01D0 A000	Receive buffer DMA port address. Cycles through receive serializers, skipping over transmit serializers and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Reads from DMA port only if XBUSEL = 0 in XFMT.
Write Accesses	XBUF	01D0 2000	01D0 6000	01D0 A000	Transmit buffer DMA port address. Cycles through transmit serializers, skipping over receive and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Writes to DMA port only if RBUSEL = 0 in RFMT.

Table 6-44. McASP AFIFO Registers Accessed Through Peripheral Configuration Port

McASP0 BYTE ADDRESS	McASP1 BYTE ADDRESS	McASP2 BYTE ADDRESS	Acronym	Register Description
0x01D0 1000	0x01D0 5000	0x01D0 9000	AFIFOREV	AFIFO revision identification register
0x01D0 1010	0x01D0 5010	0x01D0 9010	WFIFOCTL	Write FIFO control register
0x01D0 1014	0x01D0 5014	0x01D0 9014	WFIFOSTS	Write FIFO status register
0x01D0 1018	0x01D0 5018	0x01D0 9018	RFIFOCTL	Read FIFO control register
0x01D0 101C	0x01D0 501C	0x01D0 901C	RFIFOSTS	Read FIFO status register

6.15.2 McASP Electrical Data/Timing

6.15.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing

Table 6-45 and Table 6-46 assume testing over recommended operating conditions (see Figure 6-35 and Figure 6-36).

Table 6-45. McASP0 Timing Requirements (1)(2)

NO.			MIN	MAX	UNIT
1	•	Cycle time, AHCLKR0 external, AHCLKR0 input	20		ns
'	t _{c(AHCLKRX)}	Cycle time, AHCLKX0 external, AHCLKX0 input	20		113
2	4	Pulse duration, AHCLKR0 external, AHCLKR0 input	10		ns
2	t _{w(AHCLKRX)}	Pulse duration, AHCLKX0 external, AHCLKX0 input	10		115
3	4	Cycle time, ACLKR0 external, ACLKR0 input	greater of 2P or 20		20
3	t _{c(ACLKRX)}	Cycle time, ACLKX0 external, ACLKX0 input	greater of 2P or 20		ns
4		Pulse duration, ACLKR0 external, ACLKR0 input	10		20
4	t _{w(ACLKRX)}	Pulse duration, ACLKX0 external, ACLKX0 input	10		ns
		Setup time, AFSR0 input to ACLKR0 internal (3)	9.4		
		Setup time, AFSX0 input to ACLKX0 internal	9.4		
5		Setup time, AFSR0 input to ACLKR0 external input (3)	3		20
5	t _{su(AFSRX-ACLKRX)}	Setup time, AFSX0 input to ACLKX0 external input	3		ns
		Setup time, AFSR0 input to ACLKR0 external output (3)	3		
		Setup time, AFSX0 input to ACLKX0 external output	3		
		Hold time, AFSR0 input after ACLKR0 internal (3)	-1.9		
		Hold time, AFSX0 input after ACLKX0 internal	-1.9		
		Hold time, AFSR0 input after ACLKR0 external input (3)	0.5		
6	t _{h(ACLKRX-AFSRX)}	Hold time, AFSX0 input after ACLKX0 external input	0.8		ns
		Hold time, AFSR0 input after ACLKR0 external output (3)	0.5		
		Hold time, AFSX0 input after ACLKX0 external output	0.5		
		Setup time, AXR0[n] input to ACLKR0 internal (3)	9.4		
		Setup time, AXR0[n] input to ACLKX0 internal (4)	9.4		
		Setup time, AXR0[n] input to ACLKR0 external input (3)	3		
7	t _{su(AXR-ACLKRX)}	Setup time, AXR0[n] input to ACLKX0 external input (4)	3		ns
	Sale VIII NOEMON	Setup time, AXR0[n] input to ACLKR0 external output ⁽³⁾	3		
		Setup time, AXR0[n] input to ACLKX0 external output ⁽⁴⁾	3		

⁽¹⁾ ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR = 1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
(2) P = SYSCLK2 period

⁽³⁾ McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0

⁽⁴⁾ McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0

Table 6-45. McASP0 Timing Requirements (continued)

NO.			MIN MAX	UNIT
		Hold time, AXR0[n] input after ACLKR0 internal (3)	-1.7	
		Hold time, AXR0[n] input after ACLKX0 internal (4)	-1.7	
		Hold time, AXR0[n] input after ACLKR0 external input (3)	0.6	
8	t _{h(ACLKRX-AXR)}	Hold time, AXR0[n] input after ACLKX0 external input (4)	0.6	ns
		Hold time, AXR0[n] input after ACLKR0 external output (3)	0.6	
		Hold time, AXR0[n] input after ACLKX0 external output (4)	0.6	

INSTRUMENTS

TMS320DA830/TMS320DA828

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

Table 6-46. McASP0 Switching Characteristics⁽¹⁾

NO.		PARAMETER	MIN	MAX	UNIT
9	t _{c(AHCLKRX)}	Cycle time, AHCLKR0 internal, AHCLKR0 output	20		ns
		Cycle time, AHCLKR0 external, AHCLKR0 output	20		
		Cycle time, AHCLKX0 internal, AHCLKX0 output	20		
		Cycle time, AHCLKX0 external, AHCLKX0 output	20		
	t _{w(AHCLKRX)}	Pulse duration, AHCLKR0 internal, AHCLKR0 output	(AHR/2) – 2.5 ⁽²⁾		
4.0		Pulse duration, AHCLKR0 external, AHCLKR0 output	(AHR/2) – 2.5 ⁽²⁾		ns
10		Pulse duration, AHCLKX0 internal, AHCLKX0 output	(AHX/2) – 2.5 ⁽³⁾		
		Pulse duration, AHCLKX0 external, AHCLKX0 output	(AHX/2) – 2.5 ⁽³⁾		
		Cycle time, ACLKR0 internal, ACLKR0 output	greater of 2P or 20 ns ⁽⁴⁾		
4.4	t _{c(ACLKRX)}	Cycle time, ACLKR0 external, ACLKR0 output	greater of 2P or 20 ns ⁽⁴⁾		ns
11		Cycle time, ACLKX0 internal, ACLKX0 output	greater of 2P or 20 ns ⁽⁴⁾		
		Cycle time, ACLKX0 external, ACLKX0 output	greater of 2P or 20 ns ⁽⁴⁾		
	t _{w(ACLKRX)}	Pulse duration, ACLKR0 internal, ACLKR0 output	(AR/2) - 2.5 ⁽⁵⁾		ns
12		Pulse duration, ACLKR0 external, ACLKR0 output	(AR/2) - 2.5 ⁽⁵⁾		
12		Pulse duration, ACLKX0 internal, ACLKX0 output	$(AX/2) - 2.5^{(6)}$		
		Pulse duration, ACLKX0 external, ACLKX0 output	$(AX/2) - 2.5^{(6)}$		
	t _{d(ACLKRX-AFSRX)}	Delay time, ACLKR0 internal, AFSR output (7)	0	6	
		Delay time, ACLKX0 internal, AFSX output	0	6	
		Delay time, ACLKR0 external input, AFSR output (7)	3	11.7	
13		Delay time, ACLKX0 external input, AFSX output	3	11.7	ns
		Delay time, ACLKR0 external output, AFSR output ⁽⁷⁾	3	11.7	
		Delay time, ACLKX0 external output, AFSX output	3	11.7	
14	t _{d(ACLKX-AXRV)}	Delay time, ACLKX0 internal, AXR0[n] output	0	6	
		Delay time, ACLKX0 external input, AXR0[n] output	2.75	11.7	ns
		Delay time, ACLKX0 external output, AXR0[n] output	3	11.7	
	^t dis(ACLKX-AXRHZ)	Disable time, ACLKX0 internal, AXR0[n] output	0	6	
15		Disable time, ACLKX0 external input, AXR0[n] output	3	11.7	ns
		Disable time, ACLKX0 external output, AXR0[n] output	3	11.7	

- (1) McASP0 ACLKX0 internal ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input - McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output - McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal - McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input - McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output - McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
- AHR Cycle time, AHCLKR0.
- AHX Cycle time, AHCLKX0.
- (4) P = SYSCLK2 period
- (5) AR - ACLKR0 period.
- AX ACLKX0 period.
- McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0

6.15.2.2 Multichannel Audio Serial Port 1 (McASP1) Timing

Table 6-47 and Table 6-48 assume testing over recommended operating conditions (see Figure 6-35 and Figure 6-36).

Table 6-47. McASP1 Timing Requirements (1)(2)

NO.			MIN	MAX	UNIT
1	t _{c(AHCLKRX)}	Cycle time, AHCLKR1 external, AHCLKR1 input	20		ns
		Cycle time, AHCLKX1 external, AHCLKX1 input	20		
2	t _{w(AHCLKRX)}	Pulse duration, AHCLKR1 external, AHCLKR1 input	10		ns
		Pulse duration, AHCLKX1 external, AHCLKX1 input	10		
2	t _{c(ACLKRX)}	Cycle time, ACLKR1 external, ACLKR1 input	greater of 2P or 20		ns
3		Cycle time, ACLKX1 external, ACLKX1 input	greater of 2P or 20		
4	t _{w(ACLKRX)}	Pulse duration, ACLKR1 external, ACLKR1 input	10		ns
		Pulse duration, ACLKX1 external, ACLKX1 input	10		
	t _{su(AFSRX-ACLKRX)}	Setup time, AFSR1 input to ACLKR1 internal (3)	10.4		ns
		Setup time, AFSX1 input to ACLKX1 internal	10.4		
-		Setup time, AFSR1 input to ACLKR1 external input (3)	2.6		
5		Setup time, AFSX1 input to ACLKX1 external input	2.6		
		Setup time, AFSR1 input to ACLKR1 external output (3)	2.6		
		Setup time, AFSX1 input to ACLKX1 external output	2.6		
	t _{h(ACLKRX-AFSRX)}	Hold time, AFSR1 input after ACLKR1 internal ⁽³⁾	-2.4		ns
		Hold time, AFSX1 input after ACLKX1 internal	-2.4		
		Hold time, AFSR1 input after ACLKR1 external input (3)	0.85		
6		Hold time, AFSX1 input after ACLKX1 external input	0.8		
		Hold time, AFSR1 input after ACLKR1 external output (3)	0.3		
		Hold time, AFSX1 input after ACLKX1 external output	0.3		
	t _{su(AXR-ACLKRX)}	Setup time, AXR1[n] input to ACLKR1 internal ⁽³⁾	10.4		ns
		Setup time, AXR1[n] input to ACLKX1 internal (4)	10.4		
		Setup time, AXR1[n] input to ACLKR1 external input (3)	2.6		
7		Setup time, AXR1[n] input to ACLKX1 external input (4)	2.6		
		Setup time, AXR1[n] input to ACLKR1 external output ⁽³⁾	2.6		
		Setup time, AXR1[n] input to ACLKX1 external output ⁽⁴⁾	2.6		
	t _{h(ACLKRX-AXR)}	Hold time, AXR1[n] input after ACLKR1 internal ⁽³⁾	-2.4		
		Hold time, AXR1[n] input after ACLKX1 internal (4)	-2.4		
		Hold time, AXR1[n] input after ACLKR1 external input (3)	0.65		
8		Hold time, AXR1[n] input after ACLKX1 external input (4)	0.4		ns
		Hold time, AXR1[n] input after ACLKR1 external output ⁽³⁾	0.4		
		Hold time, AXR1[n] input after ACLKX1 external output ⁽⁴⁾	0.4		

⁽¹⁾ ACLKX1 internal – McASP1 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX1 external input – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX1 external output – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR1 internal – McASP1 ACLKRCTL.CLKRM = 1, PDIR.ACLKR = 1 ACLKR1 external input – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR1 external output – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1

⁽²⁾ P = SYSCLK2 period

⁽³⁾ McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1

⁽⁴⁾ McASP1 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX1

INSTRUMENTS

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

Table 6-48. McASP1 Switching Characteristics⁽¹⁾

NO.		PARAMETER	MIN	MAX	UNIT
9	t _{c(AHCLKRX)}	Cycle time, AHCLKR1 internal, AHCLKR1 output	20		ns
		Cycle time, AHCLKR1 external, AHCLKR1 output	20		
		Cycle time, AHCLKX1 internal, AHCLKX1 output	20		
		Cycle time, AHCLKX1 external, AHCLKX1 output	20		
	t _{w(AHCLKRX)}	Pulse duration, AHCLKR1 internal, AHCLKR1 output	(AHR/2) – 2.5 ⁽²⁾		ns
10		Pulse duration, AHCLKR1 external, AHCLKR1 output	(AHR/2) – 2.5 ⁽²⁾		
10		Pulse duration, AHCLKX1 internal, AHCLKX1 output	(AHX/2) – 2.5 ⁽³⁾		
		Pulse duration, AHCLKX1 external, AHCLKX1 output	(AHX/2) – 2.5 ⁽³⁾		
	t _{c(ACLKRX)}	Cycle time, ACLKR1 internal, ACLKR1 output	greater of 2P or 20 ns ⁽⁴⁾		
4.4		Cycle time, ACLKR1 external, ACLKR1 output	greater of 2P or 20 ns ⁽⁴⁾		
11		Cycle time, ACLKX1 internal, ACLKX1 output	greater of 2P or 20 ns ⁽⁴⁾		ns
		Cycle time, ACLKX1 external, ACLKX1 output	greater of 2P or 20 ns ⁽⁴⁾		
	t _{w(ACLKRX)}	Pulse duration, ACLKR1 internal, ACLKR1 output	$(AR/2) - 2.5^{(5)}$		na
12		Pulse duration, ACLKR1 external, ACLKR1 output	(AR/2) - 2.5 ⁽⁵⁾		
12		Pulse duration, ACLKX1 internal, ACLKX1 output	(AX/2) - 2.5 ⁽⁶⁾		ns
		Pulse duration, ACLKX1 external, ACLKX1 output	$(AX/2) - 2.5^{(6)}$		
	t _{d(ACLKRX-AFSRX)}	Delay time, ACLKR1 internal, AFSR output (7)	0.5	6.7	
		Delay time, ACLKX1 internal, AFSX output	0.5	6.7	
		Delay time, ACLKR1 external input, AFSR output (7)	3.9	13.8	
13		Delay time, ACLKX1 external input, AFSX output	3.9	13.8	ns
		Delay time, ACLKR1 external output, AFSR output ⁽⁷⁾	3.9	13.8	
		Delay time, ACLKX1 external output, AFSX output	3.9	13.8	
	t _{d(ACLKX-AXRV)}	Delay time, ACLKX1 internal, AXR1[n] output	0.5	6.7	
14		Delay time, ACLKX1 external input, AXR1[n] output	3.8	13.8	ns
17		Delay time, ACLKX1 external output, AXR1[n] output	3.9	13.8	110
	t _{dis(ACLKX-AXRHZ)}	Disable time, ACLKX1 internal, AXR1[n] output	0.5	6.7	
15		Disable time, ACLKX1 external input, AXR1[n] output	3.9	13.8	ns
		Disable time, ACLKX1 external output, AXR1[n] output	3.9	13.8	

- (1) McASP1 ACLKX1 internal ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 McASP1 ACLKX1 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 McASP1 ACLKX1 external output - ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 McASP1 ACLKR1 internal - ACLKR1CTL.CLKRM = 1, PDIR.ACLKR =1 McASP1 ACLKR1 external input - ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 McASP1 ACLKR1 external output - ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
- AHR Cycle time, AHCLKR1.
- AHX Cycle time, AHCLKX1.
- (4) P = SYSCLK2 period
- (5) AR ACLKR1 period.
- AX ACLKX1 period.
- McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1

6.15.2.3 Multichannel Audio Serial Port 2 (McASP2) Timing

Table 6-49 and Table 6-50 assume testing over recommended operating conditions (see Figure 6-35 and Figure 6-36).

Table 6-49. McASP2 Timing Requirements (1)(2)

NO.			MIN	MAX	UNIT
4		Cycle time, AHCLKR2 external, AHCLKR2 input	13		
1	^t c(AHCLKRX)	Cycle time, AHCLKX2 external, AHCLKX2 input	13		ns
_		Pulse duration, AHCLKR2 external, AHCLKR2 input	6.5		
2	^t w(AHCLKRX)	Pulse duration, AHCLKX2 external, AHCLKX2 input	6.5		ns
2		Cycle time, ACLKR2 external, ACLKR2 input	greater of 2P or 13		
3	^t c(ACLKRX)	Cycle time, ACLKX2 external, ACLKX2 input	greater of 2P or 13		ns
4		Cycle time, AHCLKR2 external, AHCLKR2 input Cycle time, AHCLKX2 external, AHCLKX2 input Pulse duration, AHCLKX2 external, AHCLKX2 input Cycle time, AHCLKX2 external, AHCLKX2 input Edward Cycle time, ACLKR2 external, AHCLKX2 input Cycle time, ACLKR2 external, AHCLKX2 input Cycle time, ACLKR2 external, ACLKR2 input Cycle time, ACLKX2 external, ACLKX2 input Cycle time, ACLKX2 external, ACLKX2 input Pulse duration, ACLKX2 external, ACLKX2 input Pulse duration, ACLKX2 external, ACLKX2 input Setup time, AFSR2 input to ACLKX2 internal Setup time, AFSR2 input to ACLKX2 external input Setup time, AFSR2 input to ACLKX2 external input Setup time, AFSR2 input to ACLKX2 external output 1.6 Setup time, AFSR2 input after ACLKX2 external output Hold time, AFSR2 input after ACLKX2 internal 2 Hold time, AFSR2 input after ACLKX2 external input 1.4			
4	^t w(ACLKRX)	Pulse duration, ACLKX2 external, ACLKX2 input	6.5		ns
		Setup time, AFSR2 input to ACLKR2 internal (3)	10		
		Setup time, AFSX2 input to ACLKX2 internal	10		
_		Setup time, AFSR2 input to ACLKR2 external input ⁽³⁾	1.6		
5	t _{su(AFSRX-ACLKRX)}	Setup time, AFSX2 input to ACLKX2 external input	1.6		ns
		Setup time, AFSR2 input to ACLKR2 external output (3)	1.6		
		Setup time, AFSX2 input to ACLKX2 external output	1.6		
	t _{h(ACLKRX-AFSRX)}	Hold time, AFSR2 input after ACLKR2 internal (3)	-1.9		
		Hold time, AFSX2 input after ACLKX2 internal	-2		
		Hold time, AFSR2 input after ACLKR2 external input ⁽³⁾	1.4		
6		Hold time, AFSX2 input after ACLKX2 external input	1.4		ns
			1.4		
		Hold time, AFSX2 input after ACLKX2 external output	1.4		
		Setup time, AXR2[n] input to ACLKR2 internal (3)	10		
		Setup time, AXR2[n] input to ACLKX2 internal ⁽⁴⁾	10		
		Setup time, AXR2[n] input to ACLKR2 external input (3)	1.6		
7	ten(AVP-ACI KPV)	Setup time, AXR2[n] input to ACLKX2 external input (4)	1.6		ns
	-su(AXIV-ACERIXX)		1.6		
			1.6		
		Hold time, AXR2[n] input after ACLKR2 internal ⁽³⁾	-2.2		
		Hold time, AXR2[n] input after ACLKX2 internal (4)	-2.2		
		Hold time, AXR2[n] input after ACLKR2 external input ⁽³⁾	1.3		
8	t _{h(ACLKRX-AXR)}	Hold time, AXR2[n] input after ACLKX2 external input (4)	1.3		ns
		Hold time, AXR2[n] input after ACLKR2 external output ⁽³⁾	1.3		
		Hold time, AXR2[n] input after ACLKX2 external output ⁽⁴⁾	1.3		

⁽¹⁾ ACLKX2 internal – McASP2 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX2 external input – McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX2 external output – McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR2 internal – McASP2 ACLKRCTL.CLKRM = 1, PDIR.ACLKR = 1 ACLKR2 external input – McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR2 external output – McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1

 ⁽²⁾ P = SYSCLK2 period
 (3) McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2

⁽⁴⁾ McASP2 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX2

Table 6-50. McASP2 Switching Characteristics⁽¹⁾

NO.		PARAMETER	MIN	MAX	UNIT
		Cycle time, AHCLKR2 internal, AHCLKR2 output	13		
9		Cycle time, AHCLKR2 external, AHCLKR2 output	13		
9	t _{c(AHCLKRX)}	Cycle time, AHCLKX2 internal, AHCLKX2 output	13		ns
		Cycle time, AHCLKX2 external, AHCLKX2 output	13		
		Pulse duration, AHCLKR2 internal, AHCLKR2 output	(AHR/2) – 2.5 ⁽²⁾		
10		Pulse duration, AHCLKR2 external, AHCLKR2 output	(AHR/2) – 2.5 ⁽²⁾		
10	t _{w(AHCLKRX)}	Pulse duration, AHCLKX2 internal, AHCLKX2 output	(AHX/2) – 2.5 ⁽³⁾		ns
		Pulse duration, AHCLKX2 external, AHCLKX2 output	(AHX/2) – 2.5 ⁽³⁾		
		Cycle time, ACLKR2 internal, ACLKR2 output	greater of 2P or 13 ns ⁽⁴⁾		
	t _{c(ACLKRX)}	Cycle time, ACLKR2 external, ACLKR2 output	greater of 2P or 13 ns ⁽⁴⁾		
11		Cycle time, ACLKX2 internal, ACLKX2 output	greater of 2P or 13 ns ⁽⁴⁾		ns
		Cycle time, ACLKX2 external, ACLKX2 output	greater of 2P or 13 ns ⁽⁴⁾		
		Pulse duration, ACLKR2 internal, ACLKR2 output	(AR/2) - 2.5 ⁽⁵⁾		
12		Pulse duration, ACLKR2 external, ACLKR2 output	$(AR/2) - 2.5^{(5)}$		
12	t _{w(ACLKRX)}	Pulse duration, ACLKX2 internal, ACLKX2 output	$(AX/2) - 2.5^{(6)}$		ns
		Pulse duration, ACLKX2 external, ACLKX2 output	$(AX/2) - 2.5^{(6)}$		
		Delay time, ACLKR2 internal, AFSR output (7)	-1.4	2.8	
		Delay time, ACLKX2 internal, AFSX output	-1.4	2.8	
		Delay time, ACLKR2 external input, AFSR output (7)	2.6	10	
13	$t_{d(ACLKRX-AFSRX)}$	Delay time, ACLKX2 external input, AFSX output	2.9	10	ns
		Delay time, ACLKR2 external output, AFSR output ⁽⁷⁾	2.9	10	
		Delay time, ACLKX2 external output, AFSX output	2.9	10	
		Delay time, ACLKX2 internal, AXR2[n] output	-1.4	2.8	
14	t _{d(ACLKX-AXRV)}	Delay time, ACLKX2 external input, AXR2[n] output	2.75	10	ns
	-u(AOLNA-AARV)	Delay time, ACLKX2 external output, AXR2[n] output	2.75	10	
		Disable time, ACLKX2 internal, AXR2[n] output	-1.4	2.8	
15	t _{dis(ACLKX-AXRHZ)}	Disable time, ACLKX2 external input, AXR2[n] output	2.9	10	ns
		Disable time, ACLKX2 external output, AXR2[n] output	2.9	10	

McASP2 ACLKX2 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 McASP2 ACLKX2 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 McASP2 ACLKX2 external output - ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 McASP2 ACLKR2 internal - ACLKR2CTL.CLKRM = 1, PDIR.ACLKR =1 McASP2 ACLKR2 external input - ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 McASP2 ACLKR2 external output - ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1

AHR - Cycle time, AHCLKR2.

AHX - Cycle time, AHCLKX2.

⁽⁴⁾ P = SYSCLK2 period

⁽⁵⁾ AR - ACLKR2 period.

AX - ACLKX2 period.

McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2

- A. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP receiver is configured for falling edge (to shift data in).
- B. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP receiver is configured for rising edge (to shift data in).

Figure 6-35. McASP Input Timings

9 - 10

AHCLKR/X (Falling Edge Polarity)

AHCLKR/X (Rising Edge Polarity)

- A. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP receiver is configured for rising edge (to shift data in).
- B. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP receiver is configured for falling edge (to shift data in).

Figure 6-36. McASP Output Timings

6.16 Serial Peripheral Interface Ports (SPI0, SPI1)

Figure 6-37 is a block diagram of the SPI module, which is a simple shift register and buffer plus control logic. Data is written to the shift register before transmission occurs and is read from the buffer at the end of transmission. The SPI can operate either as a master, in which case, it initiates a transfer and drives the SPIx_CLK pin, or as a slave. Four clock phase and polarity options are supported as well as many data formatting options.

Figure 6-37. Block Diagram of SPI Module

The SPI supports 3-, 4-, and 5-pin operation with three basic pins (SPIx_CLK, SPIx_SIMO, and SPIx_SOMI) and two optional pins (SPIx_SCS, SPIx_ENA).

The optional SPIx_SCS (Slave Chip Select) pin is most useful to enable in slave mode when there are other slave devices on the same SPI port. The device will only shift data and drive the SPIx_SOMI pin when SPIx_SCS is held low.

In slave mode, SPIx_ENA is an optional output and can be driven in either a push-pull or open-drain manner. The SPIx_ENA output provides the status of the internal transmit buffer (SPIDATO/1 registers). In four-pin mode with the enable option, SPIx_ENA is asserted only when the transmit buffer is full, indicating that the slave is ready to begin another transfer. In five-pin mode, the SPIx_ENA is additionally qualified by SPIx_SCS being asserted. This allows a single handshake line to be shared by multiple slaves on the same SPI bus.

In master mode, the SPIx_ENA pin is an optional input and the master can be configured to delay the start of the next transfer until the slave asserts SPIx_ENA. The addition of this handshake signal simplifies SPI communications and, on average, increases SPI bus throughput since the master does not need to delay each transfer long enough to allow for the worst-case latency of the slave device. Instead, each transfer can begin as soon as both the master and slave have actually serviced the previous SPI transfer.

Figure 6-38. Illustration of SPI Master-to-SPI Slave Connection

6.16.1 SPI Peripheral Registers Description(s)

Table 6-51 is a list of the SPI registers. See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number SPRUFK9 for more details.

Table 6-51. SPIx Configuration Registers

SPI0 BYTE ADDRESS	SPI1 BYTE ADDRESS	REGISTER NAME	DESCRIPTION
0x01C4 1000	0x01E1 2000	SPIGCR0	Global Control Register 0
0x01C4 1004	0x01E1 2004	SPIGCR1	Global Control Register 1
0x01C4 1008	0x01E1 2008	SPIINT0	Interrupt Register
0x01C4 100C	0x01E1 200C	SPILVL	Interrupt Level Register
0x01C4 1010	0x01E1 2010	SPIFLG	Flag Register
0x01C4 1014	0x01E1 2014	SPIPC0	Pin Control Register 0 (Pin Function)
0x01C4 1018	0x01E1 2018	SPIPC1	Pin Control Register 1 (Pin Direction)
0x01C4 101C	0x01E1 201C	SPIPC2	Pin Control Register 2 (Pin Data In)
0x01C4 1020	0x01E1 2020	SPIPC3	Pin Control Register 3 (Pin Data Out)
0x01C4 1024	0x01E1 2024	SPIPC4	Pin Control Register 4 (Pin Data Set)
0x01C4 1028	0x01E1 2028	SPIPC5	Pin Control Register 5 (Pin Data Clear)
0x01C4 102C	0x01E1 202C	Reserved	Reserved - Do not write to this register
0x01C4 1030	0x01E1 2030	Reserved	Reserved - Do not write to this register
0x01C4 1034	0x01E1 2034	Reserved	Reserved - Do not write to this register
0x01C4 1038	0x01E1 2038	SPIDAT0	Shift Register 0 (without format select)
0x01C4 103C	0x01E1 203C	SPIDAT1	Shift Register 1 (with format select)
0x01C4 1040	0x01E1 2040	SPIBUF	Buffer Register

Table 6-51. SPIx Configuration Registers (continued)

SPI0 BYTE ADDRESS	SPI1 BYTE ADDRESS	REGISTER NAME	DESCRIPTION
0x01C4 1044	0x01E1 2044	SPIEMU	Emulation Register
0x01C4 1048	0x01E1 2048	SPIDELAY	Delay Register
0x01C4 104C	0x01E1 204C	SPIDEF	Default Chip Select Register
0x01C4 1050	0x01E1 2050	SPIFMT0	Format Register 0
0x01C4 1054	0x01E1 2054	SPIFMT1	Format Register 1
0x01C4 1058	0x01E1 2058	SPIFMT2	Format Register 2
0x01C4 105C	0x01E1 205C	SPIFMT3	Format Register 3
0x01C4 1060	0x01E1 2060	Reserved	Reserved - Do not write to this register
0x01C4 1064	0x01E1 2064	INTVEC1	Interrupt Vector for SPI INT1

TEXAS INSTRUMENTS

6.16.2 SPI Electrical Data/Timing

6.16.2.1 Serial Peripheral Interface (SPI) Timing

Table 6-52 through Table 6-67 assume testing over recommended operating conditions (see Figure 6-39 through Figure 6-42).

Table 6-52. General Timing Requirements for SPI0 Master Modes⁽¹⁾

NO.				MIN	MAX	UNIT	
1	t _{c(SPC)M}	Cycle Time, SPI0_CLK, All M	Master Modes	greater of 2P or 20 ns	256P	ns	
2	t _{w(SPCH)M}	Pulse Width High, SPI0_CLK, All Master Modes		0.5t _{c(SPC)M} - 1		ns	
3	$t_{w(SPCL)M}$	Pulse Width Low, SPI0_CLK	, All Master Modes	0.5t _{c(SPC)M} - 1		ns	
			Polarity = 0, Phase = 0, to SPI0_CLK rising		5		
4	t venue en en	Delay, initial data bit valid on SPI0 SIMO after initial	Polarity = 0, Phase = 1, to SPI0_CLK rising		$-0.5t_{c(SPC)M} + 5$	ns	
7	t _d (SIMO_SPC)M	edge on SPI0_CLK ⁽²⁾	Polarity = 1, Phase = 0, to SPI0_CLK falling		5	113	
			Polarity = 1, Phase = 1, to SPI0_CLK falling		$-0.5t_{c(SPC)M} + 5$		
			Polarity = 0, Phase = 0, from SPI0_CLK rising		5		
5	t vana annavi	Delay, subsequent bits valid on SPI0_SIMO after	Polarity = 0, Phase = 1, from SPI0_CLK falling		5	ns	
J	t _d (SPC_SIMO)M	ld(SPC_SIMO)M	transmit edge of SPI0_CLK	Polarity = 1, Phase = 0, from SPI0_CLK falling		5	113
		Polarity = 1, Phase = 1, from SPI0_CLK rising	5				
			Polarity = 0, Phase = 0, from SPI0_CLK falling	0.5t _{c(SPC)M} -3			
6	Output hold time, toh(SPC_SIMO)M Output hold time, SPI0_SIMO valid after receive edge of SPI0_CLK	0010 0110 1111	Polarity = 0, Phase = 1, from SPI0_CLK rising	0.5t _{c(SPC)M} -3		no	
0		Polarity = 1, Phase = 0, from SPI0_CLK rising	0.5t _{c(SPC)M} -3		ns		
			Polarity = 1, Phase = 1, from SPI0_CLK falling	0.5t _{c(SPC)M} -3			
			Polarity = 0, Phase = 0, to SPI0_CLK falling	0			
7	•	Input Setup Time, SPI0_SOMI valid before	Polarity = 0, Phase = 1, to SPI0_CLK rising	0		nc	
,	t _{su(SOMI_SPC)M}	receive edge of SPI0_CLK	Polarity = 1, Phase = 0, to SPI0_CLK rising	0		ns	
			Polarity = 1, Phase = 1, to SPI0_CLK falling	0			
			Polarity = 0, Phase = 0, from SPI0_CLK falling	5			
8	tu cana constitu	Input Hold Time, SPI0_SOMI valid after	Polarity = 0, Phase = 1, from SPI0_CLK rising	5		ns	
O	tih(SPC_SOMI)M	receive edge of SPI0_CLK	Polarity = 1, Phase = 0, from SPI0_CLK rising	5		115	
			Polarity = 1, Phase = 1, from SPI0_CLK falling	5			

⁽¹⁾ P = SYSCLK2 period

⁽²⁾ First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on SPI0_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI0_SOMI.

Table 6-53. General Timing Requirements for SPI0 Slave Modes⁽¹⁾

NO.				MIN	MAX	UNIT	
9	t _{c(SPC)S}	Cycle Time, SPI0_CLK, All S	Slave Modes	greater of 2P or 40 ns	256P	ns	
10	t _{w(SPCH)S}	Pulse Width High, SPI0_CLK, All Slave Modes		18		ns	
11	t _{w(SPCL)S}	Pulse Width Low, SPI0_CLK	C, All Slave Modes	18		ns	
			Polarity = 0, Phase = 0, to SPI0_CLK rising	2P			
40		Setup time, transmit data written to SPI before initial	Polarity = 0, Phase = 1, to SPI0_CLK rising	2P			
12	t _{su(SOMI_SPC)S}	clock edge from master. $^{(2)(3)}$	Polarity = 1, Phase = 0, to SPI0_CLK falling	2P		ns	
			Polarity = 1, Phase = 1, to SPI0_CLK falling	2P			
			Polarity = 0, Phase = 0, from SPI0_CLK rising		18.5		
13		Delay, subsequent bits valid on SPI0 SOMI after	Polarity = 0, Phase = 1, from SPI0_CLK falling		18.5	ns	
13	u(01 0_00111)0	u(or o_oown)o	transmit edge of SPI0_CLK	Polarity = 1, Phase = 0, from SPI0_CLK falling		18.5	115
			Polarity = 1, Phase = 1, from SPI0_CLK rising		18.5		
			Polarity = 0, Phase = 0, from SPI0_CLK falling	0.5t _{c(SPC)S} -3			
4.4	t _{oh(SPC_SOMI)S}	Output hold time,	Polarity = 0, Phase = 1, from SPI0_CLK rising	0.5t _{c(SPC)S} -3			
14		SPI0_SOMI valid after receive edge of SPI0_CLK	Polarity = 1, Phase = 0, from SPI0_CLK rising	0.5t _{c(SPC)S} -3		ns	
			Polarity = 1, Phase = 1, from SPI0_CLK falling	0.5t _{c(SPC)S} -3			
			Polarity = 0, Phase = 0, to SPI0_CLK falling	0			
45		Input Setup Time,	Polarity = 0, Phase = 1, to SPI0_CLK rising	0			
15	t _{su} (SIMO_SPC)S	SPI0_SIMO valid before receive edge of SPI0_CLK	Polarity = 1, Phase = 0, to SPI0_CLK rising	0		ns	
			Polarity = 1, Phase = 1, to SPI0_CLK falling	0			
			Polarity = 0, Phase = 0, from SPI0_CLK falling	5			
46		Input Hold Time,	Polarity = 0, Phase = 1, from SPI0_CLK rising	5			
16	t _{ih} (SPC_SIMO)S	SPI0_SIMO valid after receive edge of SPI0_CLK	Polarity = 1, Phase = 0, from SPI0_CLK rising	5		ns	
			Polarity = 1, Phase = 1, from SPI0_CLK falling	5			

⁽¹⁾ P = SYSCLK2 period

⁽²⁾ First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on SPI0_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI0_SIMO.

⁽³⁾ Measured from the termination of the write of new data to the SPI module, in analyzing throughput requirements, additional internal bus cycles must be accounted for to allow data to be written to the SPI module by either the DSP CPU or the dMAX.

ISTRUMENTS

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

Table 6-54. Additional⁽¹⁾ SPI0 Master Timings, 4-Pin Enable Option⁽²⁾⁽³⁾

NO.				MIN MAX	UNIT
			Polarity = 0, Phase = 0, to SPI0_CLK rising	P + 3	
17	.	Delay from slave assertion of	Polarity = 0, Phase = 1, to SPI0_CLK rising	$0.5t_{c(SPC)M} + P + 3$	ns
17	t _{d(ENA_SPC)M} SPI0_ENA active to first SPI0_CLK from master. (4)	Polarity = 1, Phase = 0, to SPI0_CLK falling	P+3		
		Polarity = 1, Phase = 1, to SPI0_CLK falling	$0.5t_{c(SPC)M} + P + 3$		
			Polarity = 0, Phase = 0, from SPI0_CLK falling	P+5	
18	t _{d(SPC_ENA)M} SPI0_ENA after edge to ensure	Max delay for slave to deassert SPI0 ENA after final SPI0 CLK	Polarity = 0, Phase = 1, from SPI0_CLK falling	0.5t _{c(SPC)M} +P+5	20
10		edge to ensure master does not begin the next transfer. (5)	Polarity = 1, Phase = 0, from SPI0_CLK rising	P+5	ns
			Polarity = 1, Phase = 1, from SPI0_CLK rising	0.5t _{c(SPC)M} +P+5	

- These parameters are in addition to the general timings for SPI master modes (Table 6-52).
- (2)P = SYSCLK2 period
- Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before <u>SPI0_ENA</u> assertion. (3)
- In the case where the master SPI is ready with new data before SPI0_ENA deassertion.

Table 6-55. Additional (1) SPI0 Master Timings, 4-Pin Chip Select Option (2)(3)

NO.				MIN	MAX	UNIT
			Polarity = 0, Phase = 0, to SPI0_CLK rising	2P -5		
19	.	Delay from SPI0_SCS active to first SPI0_CLK ⁽⁴⁾⁽⁵⁾	Polarity = 0, Phase = 1, to SPI0_CLK rising	0.5t _{c(SPC)M} + 2P -5		ns
19	'd(SCS_SPC)M		Polarity = 1, Phase = 0, to SPI0_CLK falling	2P -5		115
		Polarity = 1, Phase = 1, to SPI0_CLK falling	0.5t _{c(SPC)M} + 2P -5		I	
			Polarity = 0, Phase = 0, from SPI0_CLK falling	0.5t _{c(SPC)M} -3		
20		Delay from final SPI0_ <u>CLK edge</u> to master deasserting <u>SPI0_SCS</u> (6) (7)	Polarity = 0, Phase = 1, from SPI0_CLK falling	-3		
20	ld(SPC_SCS)M		Polarity = 1, Phase = 0, from SPI0_CLK rising	0.5t _{c(SPC)M} -3		ns
			Polarity = 1, Phase = 1, from SPI0_CLK rising	-3		ı

- These parameters are in addition to the general timings for SPI master modes (Table 6-52).
- P = SYSCLK2 period
- Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_SCS assertion.
- This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
- Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted.
- This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].

Table 6-56. Additional⁽¹⁾ SPI0 Master Timings, 5-Pin Option⁽²⁾⁽³⁾

NO.				MIN	MAX	UNIT		
		Max delay for slave to	Polarity = 0, Phase = 0, from SPI0_CLK falling		P+5			
18	twopo snam	deassert SPI0_ENA after final SPI0_CLK edge to	Polarity = 0, Phase = 1, from SPI0_CLK falling		$0.5t_{c(SPC)M}+P+5$	ns		
10	t _d (SPC_ENA)M	ensure master does not begin the next transfer. (4)	Polarity = 1, Phase = 0, from SPI0_CLK rising		P+5	113		
		tianotti.	Polarity = 1, Phase = 1, from SPI0_CLK rising		$0.5t_{c(SPC)M}$ +P+5			
			Polarity = 0, Phase = 0, from SPI0_CLK falling	$0.5t_{c(SPC)M}$ -3				
20	twee conv	Delay from final SPI0_CLK edge to	Polarity = 0, Phase = 1, from SPI0_CLK falling	-3		ns		
20	td(SPC_SCS)M master deasserting SPI0_SCS (5)(6)		Polarity = 1, Phase = 0, from SPI0_CLK rising	$0.5t_{c(SPC)M}$ -3		115		
		Polarity = 1, Phase = 1, from SPI0_CLK rising	-3					
21	t _d (SCSL_ENAL)M	Max delay for slave SPI to after master asserts SPI0 master from beginning the	SCS to delay the		C2TDELAY + P	ns		
			Polarity = 0, Phase = 0, to SPI0_CLK rising	2P -5				
22		Delay from SPI0_SCS	Polarity = 0, Phase = 1, to SPI0_CLK rising	$0.5t_{c(SPC)M} + 2P -5$		ns		
22	t _d (SCS_SPC)M	active to first SPI0_CLK ⁽⁷⁾⁽⁸⁾⁽⁹⁾	Polarity = 1, Phase = 0, to SPI0_CLK falling	2P -5		115		
			Polarity = 1, Phase = 1, to SPI0_CLK falling	$0.5t_{c(SPC)M} + 2P -5$				
			Polarity = 0, Phase = 0, to SPI0_CLK rising		P + 3			
23	t _{d(ENA SPC)M} SPI0_EN			Delay from assertion of	Polarity = 0, Phase = 1, to SPI0_CLK rising		$0.5t_{c(SPC)M} + P + 3$	20
23		SPI0_ENA low to first SPI0_CLK edge. (10)	Polarity = 1, Phase = 0, to SPI0_CLK falling		P+3	ns		
			Polarity = 1, Phase = 1, to SPI0_CLK falling		$0.5t_{c(SPC)M} + P + 3$			

- These parameters are in addition to the general timings for SPI master modes (Table 6-53).
- P = SYSCLK2 period
- Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_ENA deassertion.
- (4)
- Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPIO SCS will remain asserted.
- This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
- If SPI0_ENA is asserted immediately such that the transmission is not delayed by SPI0_ENA.
- In the case where the master SPI is ready with new data before SPI0_SCS assertion.
- This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
- (10) If SPI0_ENA was initially deasserted high and SPI0_CLK is delayed.

NSTRUMENTS

Table 6-57. Additional⁽¹⁾ SPI0 Slave Timings, 4-Pin Enable Option⁽²⁾⁽³⁾

NO.				MIN	MAX	UNIT
24			Polarity = 0, Phase = 0, from SPI0_CLK falling	1.5 P -3	2.5 P + 18.5	
		Delay from final SPI0_CLK edge to slave deasserting SPI0_ENA.	Polarity = 0, Phase = 1, from SPI0_CLK falling	- 0.5t _{c(SPC)M} + 1.5 P -3	- 0.5t _{c(SPC)M} + 2.5 P + 18.5	
			Polarity = 1, Phase = 0, from SPI0_CLK rising	1.5 P -3	2.5 P + 18.5	ns
			Polarity = 1, Phase = 1, from SPIO_CLK rising	- 0.5t _{c(SPC)M} + 1.5 P -3	- 0.5t _{c(SPC)M} + 2.5 P + 18.5	

- These parameters are in addition to the general timings for SPI slave modes (Table 6-53).
- P = SYSCLK2 period
- (2) (3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.

Table 6-58. Additional⁽¹⁾ SPI0 Slave Timings, 4-Pin Chip Select Option⁽²⁾⁽³⁾

NO.				MIN MAX	UNIT
25	t _{d(SCSL_SPC)S}	Required delay from SPI0_SCS asserted at slave to first SPI0_CLK edge at slave.		Р	ns
			Polarity = 0, Phase = 0, from SPI0_CLK falling	0.5t _{c(SPC)M} + P+5	
00		Required delay from final	Polarity = 0, Phase = 1, from SPI0_CLK falling	P+5	
26		SPI0_CLK edge before SPI0_SCS is deasserted.	Polarity = 1, Phase = 0, from SPI0_CLK rising	0.5t _{c(SPC)M} + P+5	ns
			Polarity = 1, Phase = 1, from SPI0_CLK rising	P+5	
27	t _{ena(SCSL_SOMI)S}	Delay from master asserting SSPI0_SOMI valid	PI0_SCS to slave driving	P + 18.5	ns
28	t _{dis(SCSH_SOMI)S}	Delay from master deasserting SPI0_SCS to slave 3-stating SPI0_SOMI		P + 18.5	ns

- These parameters are in addition to the general timings for SPI slave modes (Table 6-53).
- P = SYSCLK2 period
- Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.

Table 6-59. Additional⁽¹⁾ SPI0 Slave Timings, 5-Pin Option⁽²⁾⁽³⁾

NO.				MIN MAX	UNIT	
25	t _d (SCSL_SPC)S	Required delay from SPI0_SC SPI0_CLK edge at slave.	S asserted at slave to first	Р	ns	
			Polarity = 0, Phase = 0, from SPI0_CLK falling	0.5t _{c(SPC)M} + P+5		
26		Required delay from final SPI0_CLK edge before	Polarity = 0, Phase = 1, from SPI0_CLK falling	P+5	ns	
20	t _d (SPC_SCSH)S	SPI0_SCS is deasserted.	Polarity = 1, Phase = 0, from SPI0_CLK rising	0.5t _{c(SPC)M} + P+5	115	
				Polarity = 1, Phase = 1, from SPI0_CLK rising	P+5	
27	t _{ena(SCSL_SOMI)S}	Delay from master asserting SSI0_SOMI valid	Delay from master asserting SPI0_SCS to slave driving SPI0_SOMI valid		ns	
28	t _{dis(SCSH_SOMI)S}	Delay from master deasserting SPI0_SOMI	g SPI0_SCS to slave 3-stating	P + 18.5	ns	
29	t _{ena(SCSL_ENA)S}	Delay from master deasserting SPI0_ENA valid	g SPI0_SCS to slave driving	18.5	ns	
			Polarity = 0, Phase = 0, from SPI0_CLK falling	2.5 P + 18.5		
30		Delay from final clock receive edge on SPI0_CLK to slave	Polarity = 0, Phase = 1, from SPI0_CLK rising	2.5 P + 18.5		
30		3-stating or driving high SPI0_ENA. (4)	Polarity = 1, Phase = 0, from SPI0_CLK rising	2.5 P + 18.5	ns	
			Polarity = 1, Phase = 1, from SPI0_CLK falling	2.5 P + 18.5		

- (1) These parameters are in addition to the general timings for SPI slave modes (Table 6-53).
- (2) P = SYSCLK2 period
- (3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
- (4) SPIO_ENA is driven low after the transmission completes if the SPIINTO.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tri-stated. If tri-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master.

Table 6-60. General Timing Requirements for SPI1 Master Modes⁽¹⁾

NO.				MIN	MAX	UNIT
1	t _{c(SPC)M}	Cycle Time, SPI1_CLK, All I	Master Modes	greater of 2P or 20 ns	256P	ns
2	t _{w(SPCH)M}	Pulse Width High, SPI1_CLK, All Master Modes		0.5t _{c(SPC)M} - 1		ns
3	t _{w(SPCL)M}	Pulse Width Low, SPI1_CLK	Pulse Width Low, SPI1_CLK, All Master Modes			ns
			Polarity = 0, Phase = 0, to SPI1_CLK rising		5	
	t _d (SIMO_SPC)M	Delay, initial data bit valid	Polarity = 0, Phase = 1, to SPI1_CLK rising		-0.5t _{c(SPC)M} + 5	
4		on SPI1_SIMO after initial edge on SPI1_CLK ⁽²⁾	Polarity = 1, Phase = 0, to SPI1_CLK falling		5	ns
			Polarity = 1, Phase = 1, to SPI1_CLK falling	-0.5t _{c(SPC)M} +	-0.5t _{c(SPC)M} + 5	
			Polarity = 0, Phase = 0, from SPI1_CLK rising		5	
5	_	Delay, subsequent bits valid on SPI1 SIMO after	Polarity = 0, Phase = 1, from SPI1_CLK falling		5	
5		transmit edge of SPI1_CLK	Polarity = 1, Phase = 0, from SPI1_CLK falling		5	ns
			Polarity = 1, Phase = 1, from SPI1_CLK rising		5	

- (1) P = SYSCLK2 period
- (2) First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on SPI1_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI1_SOMI.

INSTRUMENTS

Digital Audio System-on-Chip (SoC)

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

Table 6-60. General Timing Requirements for SPI1 Master Modes (continued)

NO.				MIN	MAX	UNIT
			Polarity = 0, Phase = 0, from SPI1_CLK falling	0.5t _{c(SPC)M} -3		
6		Output hold time, SPI1_SIMO valid after	Polarity = 0, Phase = 1, from SPI1_CLK rising	0.5t _{c(SPC)M} -3		- ns
	^t oh(SPC_SIMO)M	receive edge of SPI1_CLK	Polarity = 1, Phase = 0, from SPI1_CLK rising	0.5t _{c(SPC)M} -3		113
			Polarity = 1, Phase = 1, from SPI1_CLK falling	0.5t _{c(SPC)M} -3		
			Polarity = 0, Phase = 0, to SPI1_CLK falling	0		
7		Input Setup Time, to	Polarity = 0, Phase = 1, to SPI1_CLK rising	0		
,	t _{su(SOMI_SPC)M}	SPI1_SOMI valid before receive edge of SPI1_CLK	Polarity = 1, Phase = 0, to SPI1_CLK rising	0		TIS
			Polarity = 1, Phase = 1, to SPI1_CLK falling	0		
			Polarity = 0, Phase = 0, from SPI1_CLK falling	5		
		Input Hold Time,	Polarity = 0, Phase = 1, from SPI1_CLK rising	5	n:	-
8	tih(SPC_SOMI)M	SPI1_SOMI valid after receive edge of SPI1_CLK	Polarity = 1, Phase = 0, from SPI1_CLK rising	5		ns
			Polarity = 1, Phase = 1, from SPI1_CLK falling	5		

Table 6-61. General Timing Requirements for SPI1 Slave Modes⁽¹⁾

NO.				MIN	MAX	UNIT
9	t _{c(SPC)S}	Cycle Time, SPI1_CLK, All S	Slave Modes	greater of 2P or 40 ns	256P	ns
10	t _{w(SPCH)S}	Pulse Width High, SPI1_CLK, All Slave Modes		18		ns
11	t _{w(SPCL)S}	Pulse Width Low, SPI1_CLK	X, All Slave Modes	18		ns
			Polarity = 0, Phase = 0, to SPI1_CLK rising	2P		
40	$t_{su(SOMI_SPC)S}$	Setup time, transmit data written to SPI before initial	Polarity = 0, Phase = 1, to SPI1_CLK rising	2P		
12		clock edge from master. (2)(3)	Polarity = 1, Phase = 0, to SPI1_CLK falling	2P		ns
			Polarity = 1, Phase = 1, to SPI1_CLK falling	2P		
			Polarity = 0, Phase = 0, from SPI1_CLK rising		19	
13		Delay, subsequent bits	Polarity = 0, Phase = 1, from SPI1_CLK falling		19	20
13	^t d(SPC_SOMI)S	valid on SPI1_SOMI after transmit edge of SPI1_CLK Polarity = 1, Phase = 0, from SPI1_CLK falling	19	ns		
			Polarity = 1, Phase = 1, from SPI1_CLK rising		19	

⁽¹⁾ P = SYSCLK2 period

First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on SPI1_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI1_SIMO.

Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus cycles must be accounted for to allow data to be written to the SPI module by either the DSP CPU or the dMAX.

Table 6-61. General Timing Requirements for SPI1 Slave Modes (continued)

NO.				MIN	MAX	UNIT
			Polarity = 0, Phase = 0, from SPI1_CLK falling	0.5t _{c(SPC)S} -3		
14		Output hold time, SPI1_SOMI valid after	Polarity = 0, Phase = 1, from SPI1_CLK rising	0.5t _{c(SPC)S} -3		ns
14	toh(SPC_SOMI)S	receive edge of SPI1_CLK	Polarity = 1, Phase = 0, from SPI1_CLK rising	0.5t _{c(SPC)S} -3		115
			Polarity = 1, Phase = 1, from SPI1_CLK falling	0.5t _{c(SPC)S} -3	n	
			Polarity = 0, Phase = 0, to SPI1_CLK falling	0		
15		Input Setup Time,	Polarity = 0, Phase = 1, to SPI1_CLK rising	0		
15	^L su(SIMO_SPC)S	t _{su(SIMO_SPC)S} SPI1_SIMO valid before receive edge of SPI1_CLK Polarity = 1, Phase = 0 to SPI1_CLK rising	Polarity = 1, Phase = 0, to SPI1_CLK rising	0		ns
			Polarity = 1, Phase = 1, to SPI1_CLK falling	0		
			Polarity = 0, Phase = 0, from SPI1_CLK falling	5		
16		Input Hold Time,	Polarity = 0, Phase = 1, from SPI1_CLK rising	5		
16	t _{ih} (SPC_SIMO)S	SPI1_SIMO valid after receive edge of SPI1_CLK	Polarity = 1, Phase = 0, from SPI1_CLK rising	5		ns
			Polarity = 1, Phase = 1, from SPI1_CLK falling	5		

Table 6-62. Additional⁽¹⁾ SPI1 Master Timings, 4-Pin Enable Option⁽²⁾⁽³⁾

NO.				MIN MAX	UNIT
			Polarity = 0, Phase = 0, to SPI1_CLK rising	P+3	
17		Delay from slave assertion of SPI1 ENA active to first	Polarity = 0, Phase = 1, to SPI1_CLK rising	0.5t _{c(SPC)M} + P + 3	no
''	SPI1_CLK from master. (4) Polarity = 1, Phase = 0, to SPI1_CLK falling	P+3	ns		
			Polarity = 1, Phase = 1, to SPI1_CLK falling	$0.5t_{c(SPC)M} + P + 3$	
			Polarity = 0, Phase = 0, from SPI1_CLK falling	P+5	
18		Max delay for slave to deassert SPI1_ENA after final SPI1_CLK	Polarity = 0, Phase = 1, from SPI1_CLK falling	0.5t _{c(SPC)M} +P+5	
10	t _d (SPC_ENA)M	edge to ensure master does not begin the next transfer. (5)	Polarity = 1, Phase = 0, from SPI1_CLK rising	P+5	ns
			Polarity = 1, Phase = 1, from SPI1_CLK rising	0.5t _{c(SPC)M} +P+5	

- These parameters are in addition to the general timings for SPI master modes (Table 6-60).
- P = SYSCLK2 period
- Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI1_ENA assertion.

 In the case where the master SPI is ready with new data before SPI1_ENA deassertion.

NSTRUMENTS

TMS320DA830/TMS320DA828

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

Table 6-63. Additional⁽¹⁾ SPI1 Master Timings, 4-Pin Chip Select Option⁽²⁾⁽³⁾

NO.				MIN	MAX	UNIT
			Polarity = 0, Phase = 0, to SPI1_CLK rising	2P -5		
10	9 t _{d(SCS_SPC)M} Delay from SPI1_SCS active to first SPI1_CLK ⁽⁴⁾⁽⁵⁾ Polarity = 0, Phase = 1, to SPI1_CLK rising Polarity = 1, Phase = 0, to SPI1_CLK falling	0.5t _{c(SPC)M} + 2P -5		ns		
19		first SPI1_CLK ⁽⁴⁾⁽⁵⁾	1 dianty = 1, $1 hadd = 0$,	2P -5		115
			Polarity = 1, Phase = 1, to SPI1_CLK falling	$0.5t_{c(SPC)M} + 2P -5$		
			Polarity = 0, Phase = 0, from SPI1_CLK falling	$0.5t_{c(SPC)M}$ -3		
20		Delay from final SPI1_CLK edge Polarity = 0, Phase = 1, from SPI1_CLK falling -3	-3			
20	t _d (SPC_SCS)M	(6)(7)	o master deasserting SPI1_SCS 6)(7) Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5t _{c(SPC)M} -3			ns
			Polarity = 1, Phase = 1, from SPI1_CLK rising	-3		

- These parameters are in addition to the general timings for SPI master modes (Table 6-60).
- (2)P = SYSCLK2 period
- (3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
- In the case where the master SPI is ready with new data before SPI1_SCS assertion.
- This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. (5)
- Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain (6)asserted.
- This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].

Table 6-64. Additional⁽¹⁾ SPI1 Master Timings, 5-Pin Option⁽²⁾⁽³⁾

NO.				MIN MAX	UNIT
		Max delay for slave to	Polarity = 0, Phase = 0, from SPI1_CLK falling	P+3	
18		deassert SPI1_ENA after final SPI1_CLK edge to	Polarity = 0, Phase = 1, from SPI1_CLK falling	0.5t _{c(SPC)M} +P+3	no
10	t _d (SPC_ENA)M	ensure master does not begin the next transfer. (4)	Polarity = 1, Phase = 0, from SPI1_CLK rising	P+3	ns
		transier.\^	Polarity = 1, Phase = 1, from SPI1_CLK rising	0.5t _{c(SPC)M} +P+3	
			Polarity = 0, Phase = 0, from SPI1_CLK falling	0.5t _{c(SPC)M} -3	
20		Delay from final SPI1_CLK edge to	Polarity = 0, Phase = 1, from SPI1_CLK falling	-3	
20	t _{d(SPC_SCS)M}	master deasserting SPI1_SCS (5)(6)	Polarity = 1, Phase = 0, from SPI1_CLK rising	0.5t _{c(SPC)M} -3	ns
			from SPI1_CLK rising Polarity = 1, Phase = 1, from SPI1_CLK rising -3		
21	t _{d(SCSL_ENAL)M}	Max delay for slave SPI to after master asserts SPI1 master from beginning the	SCS to delay the	C2TDELAY + P	ns

- These parameters are in addition to the general timings for SPI master modes (Table 6-61).
- P = SYSCLK2 period
- (3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
- In the case where the master SPI is ready with new data before SPI1_ENA deassertion.
- Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain (5)
- This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].

Table 6-64. Additional SPI1 Master Timings, 5-Pin Option (continued)

NO.				MIN	MAX	UNIT
			Polarity = 0, Phase = 0, to SPI1_CLK rising	2P -5		
22		Delay from SPI1_SCS active to first	Polarity = 0, Phase = 1, to SPI1_CLK rising	0.5t _{c(SPC)M} + 2P -5	P + 3 0.5t _{c(SPC)M} + P + 3	ns
22	t _d (SCS_SPC)M	SPI1_CLK ⁽⁷⁾ (8)(9)	Polarity = 1, Phase = 0, to SPI1_CLK falling	2P -5		
			Polarity = 1, Phase = 1, to SPI1_CLK falling	$0.5t_{c(SPC)M} + 2P - 5$	D . 2	
			Polarity = 0, Phase = 0, to SPI1_CLK rising		P+3	
23		Delay from assertion of SPI1 ENA low to first	Polarity = 0, Phase = 1, to SPI1_CLK rising		0.5t _{c(SPC)M} + P + 3	ns
23	t _d (ENA_SPC)M	SPI1_CLK edge. (10)	Polarity = 1, Phase = 0, to SPI1_CLK falling		P+3	115
			Polarity = 1, Phase = 1, to SPI1_CLK falling		$0.5t_{c(SPC)M} + P + 3$	

- (7) If SPI1_ENA is asserted immediately such that the transmission is not delayed by SPI1_ENA.
- (8) In the case where the master SPI is ready with new data before SPI1_SCS assertion.
- (9) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
- (10) If SPI1_ENA was initially deasserted high and SPI1_CLK is delayed.

Table 6-65. Additional⁽¹⁾ SPI1 Slave Timings, 4-Pin Enable Option⁽²⁾⁽³⁾

NO.				MIN	MAX	UNIT
			Polarity = 0, Phase = 0, from SPI1_CLK falling	1.5 P -3	2.5 P + 19	
24		Delay from final	Polarity = 0, Phase = 1, from SPI1_CLK falling	- 0.5t _{c(SPC)M} + 1.5 P -3	- 0.5t _{c(SPC)M} + 2.5 P + 19	
24	^t d(SPC_ENAH)S	SPI1_CLK edge to slave deasserting SPI1_ENA.	Polarity = 1, Phase = 0, from SPI1_CLK rising	1.5 P -3	2.5 P + 19	ns
			Polarity = 1, Phase = 1, from SPI1_CLK rising	- 0.5t _{c(SPC)M} + 1.5 P -3	- 0.5t _{c(SPC)M} + 2.5 P + 19	

- (1) These parameters are in addition to the general timings for SPI slave modes (Table 6-61).
- (2) P = SYSCLK2 period
- (3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.

Table 6-66. Additional (1) SPI1 Slave Timings, 4-Pin Chip Select Option (2)(3)

NO.				MIN MA	X UNIT
25	t _d (SCSL_SPC)S	Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at slave.		Р	ns
			Polarity = 0, Phase = 0, from SPI1_CLK falling	0.5t _{c(SPC)M} + P+5	
26		Required delay from final	Polarity = 0, Phase = 1, from SPI1_CLK falling	P+5	nc
20	t _d (SPC_SCSH)S	SPI1_CLK edge before SPI1_SCS is deasserted.	Polarity = 1, Phase = 0, from SPI1_CLK rising	0.5t _{c(SPC)M} + P+5	ns
			Polarity = 1, Phase = 1, from SPI1_CLK rising	P+5	
27	t _{ena(SCSL_SOMI)S}	Delay from master asserting SF SPI1_SOMI valid	Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid		9 ns
28	t _{dis(SCSH_SOMI)S}	Delay from master deasserting SPI1_SOMI	SPI1_SCS to slave 3-stating	P + 1	9 ns

- (1) These parameters are in addition to the general timings for SPI slave modes (Table 6-61).
- 2) P = SYSCLK2 period
- (3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.

Instruments

Digital Audio System-on-Chip (SoC)
SPRS483A-NOVEMBER 2008-REVISED MAY 2009

Table 6-67. Additional⁽¹⁾ SPI1 Slave Timings, 5-Pin Option⁽²⁾⁽³⁾

NO.				MIN	MAX	UNIT
25	t _d (SCSL_SPC)S	Required delay from SPI1_SC SPI1_CLK edge at slave.	Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at slave.			ns
			Polarity = 0, Phase = 0, from SPI1_CLK falling	$0.5t_{c(SPC)M} + 0$		
26		Required delay from final SPI1_CLK edge before	Polarity = 0, Phase = 1, from SPI1_CLK falling	0		ns
20	t _d (SPC_SCSH)S	SPI1_SCS is deasserted.	Polarity = 1, Phase = 0, from SPI1_CLK rising	$0.5t_{c(SPC)M} + 0$		115
			Polarity = 1, Phase = 1, from SPI1_CLK rising	0		
27	t _{ena(SCSL_SOMI)S}	Delay from master asserting SSPI1_SOMI valid	PI1_SCS to slave driving		P + 19	ns
28	t _{dis(SCSH_SOMI)S}	Delay from master deasserting SPI1_SOMI	SPI1_SCS to slave 3-stating		P + 19	ns
29	t _{ena(SCSL_ENA)S}	Delay from master deasserting SPI1_ENA valid	SPI1_SCS to slave driving		19	ns
			Polarity = 0, Phase = 0, from SPI1_CLK falling		2.5 P + 19	
30		Delay from final clock receive edge on SPI1_CLK to slave	Polarity = 0, Phase = 1, from SPI1_CLK rising		2.5 P + 19	20
30	t _{dis} (SPC_ENA)S	3-stating or driving high SPI1_ENA. (4)	Polarity = 1, Phase = 0, from SPI1_CLK rising		2.5 P + 19	ns
			Polarity = 1, Phase = 1, from SPI1_CLK falling		2.5 P + 19	

These parameters are in addition to the general timings for SPI slave modes (Table 6-61).

⁽²⁾ (3) (4) P = SYSCLK2 period

Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.

SPI1_ENA is driven low after the transmission completes if the SPIINTO.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tri-stated. If tri-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master.

Figure 6-39. SPI Timings—Master Mode

Figure 6-40. SPI Timings—Slave Mode

Figure 6-41. SPI Timings—Master Mode (4-Pin and 5-Pin)

Figure 6-42. SPI Timings—Slave Mode (4-Pin and 5-Pin)

6.17 Enhanced Capture Module (eCAP)

The device contains up to three enhanced capture (eCAP) modules. Figure 6-43 shows a functional block diagram of a module.

Uses for ECAP include:

- Speed measurements of rotating machinery (e.g. toothed sprockets sensed via Hall sensors)
- Elapsed time measurements between position sensor triggers
- Period and duty cycle measurements of Pulse train signals
- Decoding current or voltage amplitude derived from cuty cycle encoded current/voltage sensors

The ECAP module described in this specification includes the following features:

- 32 bit time base
- 4 event time-stamp registers (each 32 bits)
- Edge polarity selection for up to 4 sequenced time-stamp capture events
- Interrupt on either of the 4 events
- Single shot capture of up to 4 event time-stamps
- · Continuous mode capture of time-stamps in a 4 deep circular buffer
- Absolute time-stamp capture
- Difference mode time-stamp capture
- All the above resources are dedicated to a single input pin

The eCAP modules are clocked at the SYSCLK2 rate.

The clock enable bits (ECAP1/2/3/4ENCLK) in the PCLKCR1 register are used to turn off the eCAP modules individually (for low power operation). Upon reset, ECAP1ENCLK, ECAP2ENCLK, ECAP3ENCLK, and ECAP4EN CLK are set to low, indicating that the peripheral clock is off.

Figure 6-43. eCAP Functional Block Diagram

Table 6-68 is the list of the ECAP registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. - Literature Number SPRUFK9 for more details.

Table 6-68. ECAPx Configuration Registers

ECAP0 BYTE ADDRESS	ECAP1 BYTE ADDRESS	ECAP2 BYTE ADDRESS	REGISTER NAME	DESCRIPTION
0x01F0 6000	0x01F0 7000	0x01F0 8000	TSCTR	Time-Stamp Counter
0x01F0 6004	0x01F0 7004	0x01F0 8004	CTRPHS	Counter Phase Offset Value Register

Table 6-68. ECAPx Configuration Registers (continued)

ECAP0 BYTE ADDRESS	ECAP1 BYTE ADDRESS	ECAP2 BYTE ADDRESS	REGISTER NAME	DESCRIPTION
0x01F0 6008	0x01F0 7008	0x01F0 8008	CAP1	Capture 1 Register
0x01F0 600C	0x01F0 700C	0x01F0 800C	CAP2	Capture 2 Register
0x01F0 6010	0x01F0 7010	0x01F0 8010	CAP3	Capture 3 Register
0x01F0 6014	0x01F0 7014	0x01F0 8014	CAP4	Capture 4 Register
0x01F0 6028	0x01F0 7028	0x01F0 8028	ECCTL1	Capture Control Register 1
0x01F0 602A	0x01F0 702A	0x01F0 802A	ECCTL2	Capture Control Register 2
0x01F0 602C	0x01F0 702C	0x01F0 802C	ECEINT	Capture Interrupt Enable Register
0x01F0 602E	0x01F0 702E	0x01F0 802E	ECFLG	Capture Interrupt Flag Register
0x01F0 6030	0x01F0 7030	0x01F0 8030	ECCLR	Capture Interrupt Clear Register
0x01F0 6032	0x01F0 7032	0x01F0 8032	ECFRC	Capture Interrupt Force Register
0x01F0 605C	0x01F0 705C	0x01F0 805C	REVID	Revision ID

Table 6-69 shows the eCAP timing requirement and Table 6-70 shows the eCAP switching characteristics.

Table 6-69. Enhanced Capture (eCAP) Timing Requirement

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
t _{w(CAP)}	Capture input pulse width	Asynchronous	2t _{c(SCO)}	cycles
		Synchronous	2t _{c(SCO)}	cycles

Table 6-70. eCAP Switching Characteristics

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
t _{w(APWM)}	Pulse duration, APWMx output high/low		20	ns

6.18 Enhanced Quadrature Encoder Module (eQEP)

The device contains up to two enhanced quadrature encoder (eQEP) modules.

Figure 6-44. eQEP Functional Block Diagram

Table 6-71 is the list of the EQEP registers. See the *TMS320C674x/OMAP-L1x Processor Peripherals* Overview Reference Guide. – Literature Number SPRUFK9 for more details.

Table 6-72 shows the eQEP timing requirement and Table 6-73 shows the eQEP switching characteristics.

Table 6-71. EQEP Registers

EOED4		
BYTE ADDRESS	REGISTER NAME	DESCRIPTION
0x01F0 A000	QPOSCNT	eQEP Position Counter
0x01F0 A004	QPOSINIT	eQEP Initialization Position Count
0x01F0 A008	QPOSMAX	eQEP Maximum Position Count
0x01F0 A00C	QPOSCMP	eQEP Position-compare
0x01F0 A010	QPOSILAT	eQEP Index Position Latch
0x01F0 A014	QPOSSLAT	eQEP Strobe Position Latch
0x01F0 A018	QPOSLAT	eQEP Position Latch
0x01F0 A01C	QUTMR	eQEP Unit Timer
0x01F0 A020	QUPRD	eQEP Unit Period Register
0x01F0 A024	QWDTMR	eQEP Watchdog Timer
0x01F0 A026	QWDPRD	eQEP Watchdog Period Register
0x01F0 A028	QDECCTL	eQEP Decoder Control Register
0x01F0 A02A	QEPCTL	eQEP Control Register
0x01F0 A02C	QCAPCTL	eQEP Capture Control Register
0x01F0 A02E	QPOSCTL	eQEP Position-compare Control Register
0x01F0 A030	QEINT	eQEP Interrupt Enable Register
0x01F0 A032	QFLG	eQEP Interrupt Flag Register
0x01F0 A034	QCLR	eQEP Interrupt Clear Register
0x01F0 A036	QFRC	eQEP Interrupt Force Register
0x01F0 A038	QEPSTS	eQEP Status Register
0.011 0 7.000		3
0x01F0 A03A	QCTMR	eQEP Capture Timer
0x01F0 A03A	QCTMR	eQEP Capture Timer
0x01F0 A03A 0x01F0 A03C	QCTMR QCPRD	eQEP Capture Timer eQEP Capture Period Register
	0x01F0 A000 0x01F0 A004 0x01F0 A008 0x01F0 A00C 0x01F0 A010 0x01F0 A014 0x01F0 A018 0x01F0 A01C 0x01F0 A020 0x01F0 A024 0x01F0 A026 0x01F0 A028 0x01F0 A028 0x01F0 A02C 0x01F0 A02E 0x01F0 A030 0x01F0 A032 0x01F0 A034 0x01F0 A034 0x01F0 A036	BYTE ADDRESS REGISTER NAME 0x01F0 A000 QPOSCNT 0x01F0 A004 QPOSINIT 0x01F0 A008 QPOSMAX 0x01F0 A00C QPOSCMP 0x01F0 A010 QPOSILAT 0x01F0 A014 QPOSSLAT 0x01F0 A018 QPOSLAT 0x01F0 A01C QUTMR 0x01F0 A020 QUPRD 0x01F0 A024 QWDTMR 0x01F0 A026 QWDPRD 0x01F0 A028 QDECCTL 0x01F0 A02A QEPCTL 0x01F0 A02C QCAPCTL 0x01F0 A030 QEINT 0x01F0 A032 QFLG 0x01F0 A034 QCLR

Table 6-72. Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements

			-	
		TEST CONDITIONS	MIN MAX	UNIT
t _{w(QEPP)}	QEP input period	Asynchronous/synchronous	2t _{c(SCO)}	cycles
t _{w(INDEXH)}	QEP Index Input High time	Asynchronous/synchronous	2t _{c(SCO)}	cycles
t _{w(INDEXL)}	QEP Index Input Low time	Asynchronous/synchronous	2t _{c(SCO)}	cycles
t _{w(STROBH)}	QEP Strobe High time	Asynchronous/synchronous	2t _{c(SCO)}	cycles
t _{w(STROBL)}	QEP Strobe Input Low time	Asynchronous/synchronous	2t _{c(SCO)}	cycles

Table 6-73. eQEP Switching Characteristics

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
$t_{d(CNTR)xin}$	Delay time, external clock to counter increment			4t _{c(SCO)}	cycles
$t_{d(PCS\text{-}OUT)QEP}$	Delay time, QEP input edge to position compare sync output			6t _{c(SCO)}	cycles

6.19 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM)

The device contains up to three enhanced PWM Modules (eHRPWM). Figure 6-45 shows a block diagram of multiple eHRPWM modules. Figure 4-4 shows the signal interconnections with the eHRPWM. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details.

Figure 6-45. Multiple PWM Modules in the device

Table 6-74. eHRPWM Module Control and Status Registers Grouped by Submodule

eHRPWM0 BYTE ADDRESS	eHRPWM1 BYTE ADDRESS	eHRPWM2 BYTE ADDRESS	Acronym	Size (×16)	Sh ad ow	Register Description
			Time-Base Submodule Registers			
0x01F0 0000	0x01F0 2000	0x01F0 4000	TBCTL	1	No	Time-Base Control Register
0x01F0 0002	0x01F0 2002	0x01F0 4002	TBSTS	1	No	Time-Base Status Register
0x01F0 0004	0x01F0 2004	0x01F0 4004	TBPHSHR	1	No	Extension for HRPWM Phase Register (1)

These registers are only available on eHRPWM instances that include the high-resolution PWM (HRPWM) extension; otherwise, these locations are reserved.

Table 6-74. eHRPWM Module Control and Status Registers Grouped by Submodule (continued)

eHRPWM0 BYTE ADDRESS	eHRPWM1 BYTE ADDRESS	eHRPWM2 BYTE ADDRESS	Acronym	Size (×16)	Sh ad ow	Register Description
0x01F0 0006	0x01F0 2006	0x01F0 4006	TBPHS	1	No	Time-Base Phase Register
0x01F0 0008	0x01F0 2008	0x01F0 4008	TBCNT	1	No	Time-Base Counter Register
0x01F0 000A	0x01F0 200A	0x01F0 400A	TBPRD	1	Yes	Time-Base Period Register
			Counter-Compare Submo	dule Re	giste	rs
0x01F0 000E	0x01F0 200E	0x01F0 400E	CMPCTL	1	No	Counter-Compare Control Register
0x01F0 0010	0x01F0 2010	0x01F0 4010	CMPAHR	1	No	Extension for HRPWM Counter-Compare A Register ⁽¹⁾
0x01F0 0012	0x01F0 2012	0x01F0 4012	CMPA	1	Yes	Counter-Compare A Register
0x01F0 0014	0x01F0 2014	0x01F0 4014	СМРВ	1	Yes	Counter-Compare B Register
			Action-Qualifier Submodu	le Regi	sters	
0x01F0 0016	0x01F0 2016	0x01F0 4016	AQCTLA	1	No	Action-Qualifier Control Register for Output A (eHRPWMxA)
0x01F0 0018	0x01F0 2018	0x01F0 4018	AQCTLB	1	No	Action-Qualifier Control Register for Output B (eHRPWMxB)
0x01F0 001A	0x01F0 201A	0x01F0 401A	AQSFRC	1	No	Action-Qualifier Software Force Register
0x01F0 001C	0x01F0 201C	0x01F0 401C	AQCSFRC	1	Yes	Action-Qualifier Continuous S/W Force Register Set
			Dead-Band Generator Submodule Registers			
0x01F0 001E	0x01F0 201E	0x01F0 401E	DBCTL	1	No	Dead-Band Generator Control Register
0x01F0 0020	0x01F0 2020	0x01F0 4020	DBRED	1	No	Dead-Band Generator Rising Edge Delay Count Register
0x01F0 0022	0x01F0 2022	0x01F0 4022	DBFED	1	No	Dead-Band Generator Falling Edge Delay Count Register
			PWM-Chopper Submodule	Regis	ters	
0x01F0 003C	0x01F0 203C	0x01F0 403C	PCCTL	1	No	PWM-Chopper Control Register
			Trip-Zone Submodule Reg	jisters		
0x01F0 0024	0x01F0 2024	0x01F0 4024	TZSEL	1	No	Trip-Zone Select Register
0x01F0 0028	0x01F0 2028	0x01F0 4028	TZCTL	1	No	Trip-Zone Control Register
0x01F0 002A	0x01F0 202A	0x01F0 402A	TZEINT	1	No	Trip-Zone Enable Interrupt Register
0x01F0 002C	0x01F0 202C	0x01F0 402C	TZFLG	1	No	Trip-Zone Flag Register
0x01F0 002E	0x01F0 202E	0x01F0 402E	TZCLR	1	No	Trip-Zone Clear Register
0x01F0 0030	0x01F0 2030	0x01F0 4030	TZFRC	1	No	Trip-Zone Force Register
			Event-Trigger Submodule	Regist	ers	
0x01F0 0032	0x01F0 2032	0x01F0 4032	ETSEL	1	No	Event-Trigger Selection Register
0x01F0 0034	0x01F0 2034	0x01F0 4034	ETPS	1	No	Event-Trigger Pre-Scale Register
0x01F0 0036	0x01F0 2036	0x01F0 4036	ETFLG	1	No	Event-Trigger Flag Register
0x01F0 0038	0x01F0 2038	0x01F0 4038	ETCLR	1	No	Event-Trigger Clear Register
0x01F0 003A	0x01F0 203A	0x01F0 403A	ETFRC	1	No	Event-Trigger Force Register
			High-Resolution PWM (HR	RPWM)	Subm	nodule Registers
0x01F0 1020	0x01F0 3020	0x01F0 5020	HRCNFG	1	No	HRPWM Configuration Register (1)

6.19.1 Enhanced Pulse Width Modulator (eHRPWM) Timing

PWM refers to PWM outputs on eHRPWM1-6. Table 6-75 shows the PWM timing requirements and Table 6-76, switching characteristics.

ISTRUMENTS

Digital Audio System-on-Chip (SoC)

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

Table 6-75. eHRPWM Timing Requirements

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
t _{w(SYNCIN)}	Sync input pulse width	Asynchronous	2t _{c(SCO)}	cycles
		Synchronous	2t _{c(SCO)}	cycles

Table 6-76. eHRPWM Switching Characteristics

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
t _{w(PWM)}	Pulse duration, PWMx output high/low		20		ns
t _{w(SYNCOUT)}	Sync output pulse width		8t _{c(SCO)}		cycles
t _{d(PWM)TZA}	Delay time, trip input active to PWM forced high Delay time, trip input active to PWM forced low	no pin load		25	ns
t _{d(TZ-PWM)HZ}	Delay time, trip input active to PWM Hi-Z			20	ns

6.19.2 Trip-Zone Input Timing

PWM refers to all the PWM pins in the device. The state of the PWM pins after \overline{TZ} is taken high depends on the PWM recovery software.

Figure 6-46. PWM Hi-Z Characteristics

Table 6-77. Trip-Zone input Timing Requirements

			MIN MAX	UNIT
$t_{w(TZ)}$	Pulse duration, \overline{TZx} input low	Asynchronous	1t _{c(SCO)}	cycles
		Synchronous	2t _{c(SCO)}	cycles

Table 6-78 shows the high-resolution PWM switching characteristics.

Table 6-78. High Resolution PWM Characteristics at SYSCLKOUT = (60 - 100 MHz)

	MIN	TYP	MAX	UNIT
Micro Edge Positioning (MEP) step size ⁽¹⁾		200		ps

Maximum MEP step size is based on worst-case process, maximum temperature and maximum voltage. MEP step size will increase with low voltage and high temperature and decrease with voltage and cold temperature. Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per SYSCLKOUT period dynamically while the HRPWM is in operation.

6.20 LCD Controller

Table 6-79 lists the LCD Controller registers. See the *TMS320C674x/OMAP-L1x Processor Peripherals* Overview Reference Guide. – Literature Number <u>SPRUFK9</u> for more details.

Table 6-79. LCD Controller (LCDC) Registers

Address Offset	Acronym	Register Description
0x01E1 3000	REVID	LCD Revision Identification Register
0x01E1 3004	LCD_CTRL	LCD Control Register
0x01E1 3008	LCD_STAT	LCD Status Register
0x01E1 300C	LIDD_CTRL	LCD LIDD Control Register
0x01E1 3010	LIDD_CS0_CONF	LCD LIDD CS0 Configuration Register
0x01E1 3014	LIDD_CS0_ADDR	LCD LIDD CS0 Address Read/Write Register
0x01E1 3018	LIDD_CS0_DATA	LCD LIDD CS0 Data Read/Write Register
0x01E1 301C	LIDD_CS1_CONF	LCD LIDD CS1 Configuration Register
0x01E1 3020	LIDD_CS1_ADDR	LCD LIDD CS1 Address Read/Write Register
0x01E1 3024	LIDD_CS1_DATA	LCD LIDD CS1 Data Read/Write Register
0x01E1 3028	RASTER_CTRL	LCD Raster Control Register
0x01E1 302C	RASTER_TIMING_0	LCD Raster Timing 0 Register
0x01E1 3030	RASTER_TIMING_1	LCD Raster Timing 1 Register
0x01E1 3034	RASTER_TIMING_2	LCD Raster Timing 2 Register
0x01E1 3038	RASTER_SUBPANEL	LCD Raster Subpanel Display Register
0x01E1 3040	LCDDMA_CTRL	LCD DMA Control Register
0x01E1 3044	LCDDMA_FB0_BASE	LCD DMA Frame Buffer 0 Base Address Register
0x01E1 3048	LCDDMA_FB0_CEILING	LCD DMA Frame Buffer 0 Ceiling Address Register
0x01E1 304C	LCDDMA_FB1_BASE	LCD DMA Frame Buffer 1 Base Address Register
0x01E1 3050	LCDDMA_FB1_CEILING	LCD DMA Frame Buffer 1 Ceiling Address Register

6.20.1 LCD Interface Display Driver (LIDD Mode)

Table 6-80. LCD LIDD Mode Timing Requirements⁽¹⁾

NO	PARAMETER		MIN	MAX	UNIT
16	t _{su(LCD_D)}	Setup time, LCD_D[15:0] valid before LCD_CLK (SYSCLK2) ↑	7		ns
17	t _{h(LCD_D)}	Hold time, LCD_D[15:0] valid after LCD_CLK (SYSCLK2) ↑	0		ns

⁽¹⁾ Over operating free-air temperature range (unless otherwise noted)

Table 6-81. LCD LIDD Mode Timing Characteristics

NO	PARAMETER		MIN	MAX	UNIT
4	t _{d(LCD_D_V)}	Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_D[15:0] valid (write)	0	7	ns
5	t _{d(LCD_D_I)}	Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_D[15:0] invalid (write)	0	7	ns
6	t _{d(LCD_E_A})	Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_AC_ENB_CS↓	0	7	ns
7	t _{d(LCD_E_I)}	Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_AC_ENB_CS↑	0	7	ns
8	t _{d(LCD_A_A)}	Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_VSYNC↓	0	7	ns
9	t _{d(LCD_A_I)}	Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_VSYNC↑	0	7	ns

Instruments

Table 6-81. LCD LIDD Mode Timing Characteristics (continued)

NO	PARAMETER		MIN	MAX	UNIT
10	t _{d(LCD_W_A)}	Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_HSYNC↓	0	7	ns
11	t _{d(LCD_W_I)}	Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_HSYNC↑	0	7	ns
12	t _{d(LCD_STRB_A)}	Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_PCLK↑	0	7	ns
13	t _{d(LCD_STRB_I)}	Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_PCLK↓	0	7	ns
14	t _{d(LCD_D_Z)}	Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_D[15:0] in 3-state	0	7	ns
15	t _{d(Z_LCD_D)}	Delay time, LCD_CLK (SYSCLK2) ↑ to 15 td(Z_LCD_D) 3-state) LCD_D[15:0] (valid from 3-state)	0	7	ns

Figure 6-47. Character Display HD44780 Write

Figure 6-48. Character Display HD44780 Read

Figure 6-49. Micro-Interface Graphic Display 6800 Write

Figure 6-50. Micro-Interface Graphic Display 6800 Read

Figure 6-51. Micro-Interface Graphic Display 6800 Status

Figure 6-52. Micro-Interface Graphic Display 8080 Write

Figure 6-53. Micro-Interface Graphic Display 8080 Read

Figure 6-54. Micro-Interface Graphic Display 8080 Status

6.20.2 LCD Raster Mode

Table 6-82. LCD Raster Mode Timing

See Figure 6-56 through Figure 6-59

NO.		PARAMETER	MIN	MAX	UNIT
	f _{clock(PIXEL_CLK)}	Clock frequency, pixel clock		F/2 ⁽¹⁾	MHz
1	t _{c(PIXEL_CLK)}	Cycle time, pixel clock	26.6		ns
2	t _{w(PIXEL_CLK_H)}	Pulse duration, pixel clock high	10		ns
3	t _{w(PIXEL_CLK_L)}	Pulse duration, pixel clock low	10		ns
4	t _{d(LCD_D_V)}	Delay time, LCD_PCLK↑ to LCD_D[15:0] valid (write)	0	12	ns
5	t _{d(LCD_D_IV)}	Delay time, LCD_PCLK↑ to LCD_D[15:0] invalid (write)	0	12	ns
6	t _{d(ECD_AC_ENB_CS_A)}	Delay time, LCD_PCLK↓ to LCD_AC_ENB_CS↑	0	12	ns
7	t _{d(ECD_AC_ENB_CS_I)}	Delay time, LCD_PCLK↓ to LCD_AC_ENB_CS↓	0	12	ns
8	t _{d(LCD_VSYNC_A)}	Delay time, LCD_PCLK↓ to LCD_VSYNC↑	0	12	ns
9	t _{d(LCD_VSYNC_I)}	Delay time, LCD_PCLK↓ to LCD_VSYNC↓	0	12	ns
10	t _{d(LCD_HSYNC_A)}	Delay time, LCD_PCLK↑ to LCD_HSYNC↑	0	12	ns
11	t _{d(LCD_HSYNC_I)}	Delay time, LCD_PCLK↑ to LCD_HSYNC↓	0	12	ns

(1) F = frequency of LCD_PCLK in ns

Frame-to-frame timing is derived through the following parameters in the LCD (RASTER_TIMING_1) register:

- Vertical front porch (VFP)
- Vertical sync pulse width (VSW)
- Vertical back porch (VBP)
- Lines per panel (LPP)

Line-to-line timing is derived through the following parameters in the LCD (RASTER_TIMING_0) register:

- Horizontal front porch (HFP)
- Horizontal sync pulse width (HSW)
- Horizontal back porch (HBP)
- Pixels per panel (PPL)

LCD_AC_ENB_CS timing is derived through the following parameter in the LCD (RASTER_TIMING_2) register:

· AC bias frequency (ACB)

The display format produced in raster mode is shown in Figure 6-55. An entire frame is delivered one line at a time. The first line delivered starts at data pixel (1, 1) and ends at data pixel (P, 1). The last line delivered starts at data pixel (1, L) and ends at data pixel (P, L). The beginning of each new frame is denoted by the activation of I/O signal LCD_VSYNC. The beginning of each new line is denoted by the activation of I/O signal LCD_HSYNC.

Figure 6-55. LCD Raster-Mode Display Format

Figure 6-56. LCD Raster-Mode Active

Figure 6-57. LCD Raster-Mode Passive

Figure 6-58. LCD Raster-Mode Control Signal Activation

Figure 6-59. LCD Raster-Mode Control Signal Deactivation

NSTRUMENTS

Digital Audio System-on-Chip (SoC)

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

6.21 Timers

The timers support the following features:

- Configurable as single 64-bit timer or two 32-bit timers
- Period timeouts generate interrupts, DMA events or external pin events
- Eight 32-bit compare registers
- Compare matches generate interrupt events
- Capture capability
- 64-bit Watchdog capability (Timer64P1 only)

Table 6-83 lists the timer registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. - Literature Number SPRUFK9 for more details.

Table 6-83. Timer Registers

Timer64P 0	Timer64P 1	Acronym	Register Description
0x01C2 0000	0x01C2 1000	REV	Revision Register
0x01C2 0004	0x01C2 1004	EMUMGT	Emulation Management Register
0x01C2 0008	0x01C2 1008	GPINTGPEN	GPIO Interrupt and GPIO Enable Register
0x01C2 000C	0x01C2 100C	GPDATGPDIR	GPIO Data and GPIO Direction Register
0x01C2 0010	0x01C2 1010	TIM12	Timer Counter Register 12
0x01C2 0014	0x01C2 1014	TIM34	Timer Counter Register 34
0x01C2 0018	0x01C2 1018	PRD12	Timer Period Register 12
0x01C2 001C	0x01C2 101C	PRD34	Timer Period Register 34
0x01C2 0020	0x01C2 1020	TCR	Timer Control Register
0x01C2 0024	0x01C2 1024	TGCR	Timer Global Control Register
0x01C2 0028	0x01C2 1028	WDTCR	Watchdog Timer Control Register
0x01C2 0034	0x01C2 1034	REL12	Timer Reload Register 12
0x01C2 0038	0x01C2 1038	REL34	Timer Reload Register 34
0x01C2 003C	0x01C2 103C	CAP12	Timer Capture Register 12
0x01C2 0040	0x01C2 1040	CAP34	Timer Capture Register 34
0x01C2 0044	0x01C2 1044	INTCTLSTAT	Timer Interrupt Control and Status Register
0x01C2 0060	0x01C2 1060	CMP0	Compare Register 0
0x01C2 0064	0x01C2 1064	CMP1	Compare Register 1
0x01C2 0068	0x01C2 1068	CMP2	Compare Register 2
0x01C2 006C	0x01C2 106C	CMP3	Compare Register 3
0x01C2 0070	0x01C2 1070	CMP4	Compare Register 4
0x01C2 0074	0x01C2 1074	CMP5	Compare Register 5
0x01C2 0078	0x01C2 1078	CMP6	Compare Register 6
0x01C2 007C	0x01C2 107C	CMP7	Compare Register 7

Timer Electrical Data/Timing 6.21.1

Table 6-84. Timing Requirements for Timer Input⁽¹⁾⁽²⁾ (see Figure 6-60)

NO.		MIN MAX	UNIT
1	t _{c(TIN)} Cycle time, TIM_IN	4P	ns
2	t _{w(TINPH)} Pulse duration, TIM_IN high	0.45C 0.55C	ns
3	t _{w(TINPL)} Pulse duration, TIM_IN low	0.45C 0.55C	ns
4	t _{t(TIN)} Transition time, TIM_IN	0.05C	ns

P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = $37.0\overline{37}$ ns.

C = TM64P0_IN12 cycle time in ns. For example, when TM64Px_IN12 frequency is 27 MHz, use C = 37.037 ns

Figure 6-60. Timer Timing

Table 6-85. Switching Characteristics Over Recommended Operating Conditions for Timer Output (1)

NO.		MIN	MAX	UNIT
5	t _{w(TOUTH)} Pulse duration, TM64P0_OUT12 high	4P		ns
6	t _{w(TOUTL)} Pulse duration, TM64P0_OUT12 low	4P		ns

(1) P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use $P = 37.0\overline{37}$ ns.

Figure 6-61. Timer Timing

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

6.22 Inter-Integrated Circuit Serial Ports (I2C0, I2C1)

6.22.1 I2C Device-Specific Information

Having two I2C modules on the device simplifies system architecture, since one module may be used by the DSP to control local peripherals ICs (DACs, ADCs, etc.) while the other may be used to communicate with other controllers in a system or to implement a user interface. Figure Figure 6-62 is block diagram of the I2C Module.

Each I2C port supports:

- Compatible with Philips® I2C Specification Revision 2.1 (January 2000)
- Fast Mode up to 400 Kbps (no fail-safe I/O buffers)
- Noise Filter to Remove Noise 50 ns or less
- Seven- and Ten-Bit Device Addressing Modes
- Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality
- Events: DMA, Interrupt, or Polling
- General-Purpose I/O Capability if not used as I2C

Figure 6-62. I2C Module Block Diagram

6.22.2 I2C Peripheral Registers Description(s)

Table 6-86 is the list of the I2C registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details.

Table 6-86. Inter-Integrated Circuit (I2C) Registers

I2C0 BYTE ADDRESS	I2C1 BYTE ADDRESS	Acronym	Register Description
0x01C2 2000	0x01E2 8000	ICOAR	I2C Own Address Register
0x01C2 2004	0x01E2 8004	ICIMR	I2C Interrupt Mask Register
0x01C2 2008	0x01E2 8008	ICSTR	I2C Interrupt Status Register
0x01C2 200C	0x01E2 800C	ICCLKL	I2C Clock Low-Time Divider Register
0x01C2 2010	0x01E2 8010	ICCLKH	I2C Clock High-Time Divider Register
0x01C2 2014	0x01E2 8014	ICCNT	I2C Data Count Register
0x01C2 2018	0x01E2 8018	ICDRR	I2C Data Receive Register
0x01C2 201C	0x01E2 801C	ICSAR	I2C Slave Address Register
0x01C2 2020	0x01E2 8020	ICDXR	I2C Data Transmit Register
0x01C2 2024	0x01E2 8024	ICMDR	I2C Mode Register
0x01C2 2028	0x01E2 8028	ICIVR	I2C Interrupt Vector Register
0x01C2 202C	0x01E2 802C	ICEMDR	I2C Extended Mode Register
0x01C2 2030	0x01E2 8030	ICPSC	I2C Prescaler Register
0x01C2 2034	0x01E2 8034	REVID1	I2C Revision Identification Register 1
0x01C2 2038	0x01E2 8038	REVID2	I2C Revision Identification Register 2
0x01C2 2048	0x01E2 8048	ICPFUNC	I2C Pin Function Register
0x01C2 204C	0x01E2 804C	ICPDIR	I2C Pin Direction Register
0x01C2 2050	0x01E2 8050	ICPDIN	I2C Pin Data In Register
0x01C2 2054	0x01E2 8054	ICPDOUT	I2C Pin Data Out Register
0x01C2 2058	0x01E2 8058	ICPDSET	I2C Pin Data Set Register
0x01C2 205C	0x01E2 805C	ICPDCLR	I2C Pin Data Clear Register

6.22.3 I2C Electrical Data/Timing

6.22.3.1 Inter-Integrated Circuit (I2C) Timing

Table 6-87 and Table 6-88 assume testing over recommended operating conditions (see Figure 6-63 and Figure 6-64).

Table 6-87. I2C Input Timing Requirements

NO.				MIN	MAX	UNIT
4		Cools time 1000 COI	Standard Mode	10		
1	t _{c(SCL)}	Cycle time, I2Cx_SCL	Fast Mode	2.5		μs
2		Setup time, I2Cx_SCL high before I2Cx_SDA	Standard Mode	4.7		
2	t _{su} (SCLH-SDAL)	SCLH-SDAL) low	Fast Mode	0.6		μs
2		Hold time 120x CCL law ofter 120x CDA law	Standard Mode	4		
3	$t_{h(SCLL-SDAL)}$	Hold time, I2Cx_SCL low after I2Cx_SDA low	Fast Mode	0.6		μs
4		Pulse duration, I2Cx_SCL low	Standard Mode	4.7		
4	t _{w(SCLL)}		Fast Mode	1.3		μs
5	t _{w(SCLH)}	Pulse duration, I2Cx_SCL high	Standard Mode	4		
5			Fast Mode	0.6		μs
6		Out on the a 100 of ODA had and 100 of OOL high	Standard Mode	250		
6	t _{su(SDA-SCLH)}	Setup time, I2Cx_SDA before I2Cx_SCL high	Fast Mode	100		ns
7		Hold time 12Cv CDA ofter 12Cv CCL law	Standard Mode	0		
,	t _{h(SDA-SCLL)}	Hold time, I2Cx_SDA after I2Cx_SCL low	Fast Mode	0	0.9	μs
0		Dules duration 12Cv SDA high	Standard Mode	4.7		
8	t _{w(SDAH)}	Pulse duration, I2Cx_SDA high	Fast Mode	1.3		μs

INSTRUMENTS

Table 6-87. I2C Input Timing Requirements (continued)

NO.				MIN	MAX	UNIT
9		Diag time 120v CDA	Standard Mode		1000	
9	t _{r(SDA)}	Rise time, I2Cx_SDA	Fast Mode	20 + 0.1C _b	300	ns
40		Dies times 1900, CCI	Standard Mode		1000	
10	t _{r(SCL)}	Rise time, I2Cx_SCL	Fast Mode	20 + 0.1C _b	300	ns
44		Fall time, I2Cx_SDA	Standard Mode		300	ns
11	11 t _{f(SDA)}		Fast Mode	20 + 0.1C _b	300	
40		Fall time, I2Cx_SCL	Standard Mode		300	ns
12	t _{f(SCL)}		Fast Mode	20 + 0.1C _b	300	
40		Setup time, I2Cx_SCL high before I2Cx_SDA high	Standard Mode	4		μs
13	t _{su(SCLH-SDAH)}		Fast Mode	0.6		
4.4		Dules duration spile (second by supplied of)	Standard Mode	N/A		ns
14 t _{w(SP)}	^t w(SP)	Pulse duration, spike (must be suppressed)	Fast Mode	0	50	
4.5		Capacitive load for each bus line	Standard Mode		400	F
15	C _b		Fast Mode		400	pF

Table 6-88. I2C Switching Characteristics⁽¹⁾

NO.		PARAMETER		MIN I	MAX	UNIT
16		Cycle time, I2Cx SCL	Standard Mode	10		
10	t _{c(SCL)}		Fast Mode	2.5		μs
17		Setup time, I2Cx_SCL high before I2Cx_SDA	Standard Mode	4.7		
17	t _{su(SCLH-SDAL)}	low	Fast Mode	0.6		μs
18		Hold time, I2Cx_SCL low after I2Cx_SDA low	Standard Mode	4		
10	th(SDAL-SCLL)	Hold time, IZCX_SCL low after IZCX_SDA low	Fast Mode	0.6		μs
19		Pulse duration, I2Cx_SCL low	Standard Mode	4.7		μs
19	t _{w(SCLL)}		Fast Mode	1.3		
20		Pulse duration, I2Cx_SCL high	Standard Mode	4		μs
20	t _{w(SCLH)}		Fast Mode	0.6		
21		Setup time, I2Cx_SDA valid before I2Cx_SCL	Standard Mode	250		ns
21	t _{su(SDAV-SCLH)}	high	Fast Mode	100		
22		Hold time 12Cx SDA volid after 12Cx SCL low	Standard Mode	0		
22	t _h (SCLL-SDAV)	Hold time, I2Cx_SDA valid after I2Cx_SCL low	Fast Mode	0	0.9	μs
23		Bulgo duration 12Cv SDA high	Standard Mode	4.7		
23	t _w (SDAH)	Pulse duration, I2Cx_SDA high	Fast Mode	1.3		μs
28	t _{su(SCLH-SDAH)}	Setup time, I2Cx_SCL high before I2Cx_SDA high	Standard Mode	4		116
20			Fast Mode	0.6		μs

⁽¹⁾ I2C must be configured correctly to meet the timings in Table 6-88.

Figure 6-63. I2C Receive Timings

Figure 6-64. I2C Transmit Timings

NSTRUMENTS

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

Universal Asynchronous Receiver/Transmitter (UART)

The device has 3 UART peripherals. Each UART has the following features:

- 16-byte storage space for both the transmitter and receiver FIFOs
- 1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMA
- DMA signaling capability for both received and transmitted data
- Programmable auto-rts and auto-cts for autoflow control
- Programmable Baud Rate up to 3MBaud
- Programmable Oversampling Options of x13 and x16
- Frequency pre-scale values from 1 to 65,535 to generate appropriate baud rates
- Prioritized interrupts
- Programmable serial data formats
 - 5, 6, 7, or 8-bit characters
 - Even, odd, or no parity bit generation and detection
 - 1, 1.5, or 2 stop bit generation
- False start bit detection
- Line break generation and detection
- Internal diagnostic capabilities
 - Loopback controls for communications link fault isolation
 - Break, parity, overrun, and framing error simulation
- Modem control functions (CTS, RTS) on UARTO only.

The UART registers are listed in Section 6.23.1

6.23.1 UART Peripheral Registers Description(s)

Table 6-89 is the list of UART registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details.

Table 6-89. UART Registers

UARTO BYTE ADDRESS	UART1 BYTE ADDRESS	UART2 BYTE ADDRESS	REGISTER NAME	Register Description
0x01C4 2000	0x01D0 C000	0x01D0 D000	RBR	Receiver Buffer Register (read only)
0x01C4 2000	0x01D0 C000	0x01D0 D000	THR	Transmitter Holding Register (write only)
0x01C4 2004	0x01D0 C004	0x01D0 D004	IER	Interrupt Enable Register
0x01C4 2008	0x01D0 C008	0x01D0 D008	IIR	Interrupt Identification Register (read only)
0x01C4 2008	0x01D0 C008	0x01D0 D008	FCR	FIFO Control Register (write only)
0x01C4 200C	0x01D0 C00C	0x01D0 D00C	LCR	Line Control Register
0x01C4 2010	0x01D0 C010	0x01D0 D010	MCR	Modem Control Register
0x01C4 2014	0x01D0 C014	0x01D0 D014	LSR	Line Status Register
0x01C4 2018	0x01D0 C018	0x01D0 D018	MSR	Modem Status Register
0x01C4 201C	0x01D0 C01C	0x01D0 D01C	SCR	Scratchpad Register
0x01C4 2020	0x01D0 C020	0x01D0 D020	DLL	Divisor LSB Latch
0x01C4 2024	0x01D0 C024	0x01D0 D024	DLH	Divisor MSB Latch
0x01C4 2028	0x01D0 C028	0x01D0 D028	REVID1	Revision Identification Register 1
0x01C4 2030	0x01D0 C030	0x01D0 D030	PWREMU_MGMT	Power and Emulation Management Register
0x01C4 2034	0x01D0 C034	0x01D0 D034	MDR	Mode Definition Register

6.23.2 UART Electrical Data/Timing

Table 6-90. Timing Requirements for UARTx Receive⁽¹⁾ (see Figure 6-65)

NO.			MIN	MAX	UNIT
4	t _{w(URXDB)}	Pulse duration, receive data bit (RXDn)	0.96U	1.05U	ns
5	t _{w(URXSB)}	Pulse duration, receive start bit	0.96U	1.05U	ns

⁽¹⁾ U = UART baud time = 1/programmed baud rate.

Table 6-91. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit⁽¹⁾ (see Figure 6-65)

NO.	PARAMETER MIN MAX			
1	f _(baud) Maximum programmable baud rate		3	MBaud
2	t _{w(UTXDB)} Pulse duration, transmit data bit (TXDn)	U - 2	U + 2	ns
3	t _{w(UTXSB)} Pulse duration, transmit start bit	U - 2	U + 2	ns

(1) U = UART baud time = 1/programmed baud rate.

Figure 6-65. UART Transmit/Receive Timing

TEXAS INSTRUMENTS

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

6.24 USB1 Host Controller (USB1.1 OHCI)

All DA830/DA828 USB interfaces are compliant with Universal Serial Bus Specifications, Revision 1.1.

Table 6-92 is the list of USB Host Controller registers. See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number <u>SPRUFK9</u> for more details.

Table 6-92. USB Host Controller (USB1) Registers

USB BYTE ADDRESS	REGISTER NAME	Register Description
0x01E2 5000	HCREVISION	OHCI Revision Number Register
0x01E2 5004	HCCONTROL	HC Operating Mode Register
0x01E2 5008	HCCOMMANDSTATUS	HC Command and Status Register
0x01E2 500C	HCINTERRUPTSTATUS	HC Interrupt and Status Register
0x01E2 5010	HCINTERRUPTENABLE	HC Interrupt Enable Register
0x01E2 5014	HCINTERRUPTDISABLE	HC Interrupt Disable Register
0x01E2 5018	HCHCCA	HC HCAA Address Register ⁽¹⁾
0x01E2 501C	HCPERIODCURRENTED	HC Current Periodic Register ⁽¹⁾
0x01E2 5020	HCCONTROLHEADED	HC Head Control Register ⁽¹⁾
0x01E2 5024	HCCONTROLCURRENTED	HC Current Control Register ⁽¹⁾
0x01E2 5028	HCBULKHEADED	HC Head Bulk Register ⁽¹⁾
0x01E2 502C	HCBULKCURRENTED	HC Current Bulk Register ⁽¹⁾
0x01E2 5030	HCDONEHEAD	HC Head Done Register ⁽¹⁾
0x01E2 5034	HCFMINTERVAL	HC Frame Interval Register
0x01E2 5038	HCFMREMAINING	HC Frame Remaining Register
0x01E2 503C	HCFMNUMBER	HC Frame Number Register
0x01E2 5040	HCPERIODICSTART	HC Periodic Start Register
0x01E2 5044	HCLSTHRESHOLD	HC Low-Speed Threshold Register
0x01E2 5048	HCRHDESCRIPTORA	HC Root Hub A Register
0x01E2 504C	HCRHDESCRIPTORB	HC Root Hub B Register
0x01E2 5050	HCRHSTATUS	HC Root Hub Status Register
0x01E2 5054	HCRHPORTSTATUS1	HC Port 1 Status and Control Register (2)
0x01E2 5058	HCRHPORTSTATUS2	HC Port 2 Status and Control Register (3)

⁽¹⁾ Restrictions apply to the physical addresses used in these registers.

Table 6-93. Switching Characteristics Over Recommended Operating Conditions for USB1

NO.	PARAMETER		LOW	SPEED	FULL SPEED		UNIT
NO.			MIN	MAX	MAX	MAX	UNII
U1	t _r	Rise time, USB.DP and USB.DM signals ⁽¹⁾	75 ⁽¹⁾	300 ⁽¹⁾	4 ⁽¹⁾	20 ⁽¹⁾	ns
U2	t _f	Fall time, USB.DP and USB.DM signals ⁽¹⁾	75 ⁽¹⁾	300 ⁽¹⁾	4 ⁽¹⁾	20 ⁽¹⁾	ns
U3	t _{RFM}	Rise/Fall time matching ⁽²⁾	80 ⁽²⁾	120 ⁽²⁾	90 ⁽²⁾	110 ⁽²⁾	%
U4	V _{CRS}	Output signal cross-over voltage ⁽¹⁾	1.3 ⁽¹⁾	2 ⁽¹⁾	1.3 ⁽¹⁾	2 ⁽¹⁾	V
U5	t _j	Differential propagation jitter ⁽³⁾	-25 ⁽³⁾	25 ⁽³⁾	-2 ⁽³⁾	2 ⁽³⁾	ns
U6	f _{op}	Operating frequency ⁽⁴⁾		1.5		12	MHz

⁽¹⁾ Low Speed: $C_L = 200 \text{ pF}$. High Speed: $C_L = 50 \text{pF}$

⁽²⁾ Connected to the integrated USB1.1 phy pins (USB1_DM, USB1_DP).

⁽³⁾ Although the controller implements two ports, the second port cannot be used.

⁽²⁾ $t_{RFM} = (t_r/t_f) \times 100$

⁽³⁾ $t_{jr} = t_{px(1)} - t_{px(0)}$

 $⁽⁴⁾ f_{op} = 1/t_{per}$

6.25 USB0 OTG (USB2.0 OTG)

The USB2.0 peripheral supports the following features:

- USB 2.0 peripheral at speeds high speed (HS: 480 Mb/s DA830 only) and full speed (FS: 12 Mb/s)
- USB 2.0 host at speeds HS (DA830 only), FS, and low speed (LS: 1.5 Mb/s)
- All transfer modes (control, bulk, interrupt, and isochronous)
- 4 Transmit (TX) and 4 Receive (RX) endpoints in addition to endpoint 0
- FIFO RAM
 - 4K endpoint
 - Programmable size
- Integrated USB 2.0 High Speed PHY
- Connects to a standard Charge Pump for VBUS 5 V generation
- RNDIS mode for accelerating RNDIS type protocols using short packet termination over USB

Table 6-94 is the list of USB OTG registers. See the *TMS320C674x/OMAP-L1x Processor Peripherals* Overview Reference Guide. – Literature Number SPRUFK9 for more details.

Table 6-94. Universal Serial Bus OTG (USB0) Registers

BYTE ADDRESS	Acronym	Register Description
0x01E0 0000		Revision Register
0x01E0 0004	CTRLR	Control Register
0x01E0 0008	STATR	Status Register
0x01E0 000C		Emulation Register
0x01E0 0010		Mode Register
0x01E0 0014	AUTOREQ	Autorequest Register
0x01E0 0018		SRP Fix Time Register
0x01E0 001C		RX Teardown Register
0x01E0 0020	INTSRCR	USB Interrupt Source Register
0x01E0 0024	INTSETR	USB Interrupt Source Set Register
0x01E0 0028	INTCLRR	USB Interrupt Source Clear Register
0x01E0 002C	INTMSKR	USB Interrupt Mask Register
0x01E0 0030	INTMSKSETR	USB Interrupt Mask Set Register
0x01E0 0034	INTMSKCLRR	USB Interrupt Mask Clear Register
0x01E0 0038	INTMASKEDR	USB Interrupt Source Masked Register
0x01E0 003C	EOIR	USB End of Interrupt Register
0x01E0 0040	INTVECTR	USB Interrupt Vector Register
0x01E0 0050	RNDISEP1	Generic RNDIS Size EP1
0x01E0 0054	RNDISEP2	Generic RNDIS Size EP2
0x01E0 0058	RNDISEP3	Generic RNDIS Size EP3
0x01E0 005C	RNDISEP4	Generic RNDIS Size EP4
0x01E0 0400	FADDR	Function Address Register
0x01E0 0401	POWER	Power Management Register
0x01E0 0402	INTRTX	Interrupt Register for Endpoint 0 plus Transmit Endpoints 1 to 4
0x01E0 0404	INTRRX	Interrupt Register for Receive Endpoints 1 to 4
0x01E0 0406	INTRTXE	Interrupt enable register for INTRTX
0x01E0 0408	INTRRXE	Interrupt Enable Register for INTRRX
0x01E0 040A	INTRUSB	Interrupt Register for Common USB Interrupts
0x01E0 040B	INTRUSBE	Interrupt Enable Register for INTRUSB
0x01E0 040C	FRAME	Frame Number Register
0x01E0 040E	INDEX	Index Register for Selecting the Endpoint Status and Control Registers

Texas Instruments

BYTE ADDRESS	Acronym	Register Description		
0x01E0 040F	TESTMODE	Register to Enable the USB 2.0 Test Modes		
		ed Registers endpoint selected by the INDEX register		
0x01E0 0410	TXMAXP	Maximum Packet Size for Peripheral/Host Transmit Endpoint (Index register set to select Endpoints 1-4 only)		
0x01E0 0412	PERI_CSR0	Control Status Register for Endpoint 0 in Peripheral Mode. (Index register set to select Endpoint 0)		
	HOST_CSR0	Control Status Register for Endpoint 0 in Host Mode. (Index register set to select Endpoint 0)		
	PERI_TXCSR	Control Status Register for Peripheral Transmit Endpoint. (Index register set to select Endpoints 1-4)		
	HOST_TXCSR	Control Status Register for Host Transmit Endpoint. (Index register set to select Endpoints 1-4)		
0x01E0 0414	RXMAXP	Maximum Packet Size for Peripheral/Host Receive Endpoint (Index register set to select Endpoints 1-4 only)		
0x01E0 0416	PERI_RXCSR	Control Status Register for Peripheral Receive Endpoint. (Index register set to select Endpoints 1-4)		
	HOST_RXCSR	Control Status Register for Host Receive Endpoint. (Index register set to select Endpoints 1-4)		
0x01E0 0418	COUNT0	Number of Received Bytes in Endpoint 0 FIFO. (Index register set to select Endpoint 0)		
	RXCOUNT	Number of Bytes in Host Receive Endpoint FIFO. (Index register set to select Endpoints 1- 4)		
0x01E0 041A	HOST_TYPE0	Defines the speed of Endpoint 0		
0x01E0 041B	HOST_TXTYPE	Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. (Index register set to select Endpoints 1-4 only)		
	HOST_NAKLIMIT0	Sets the NAK response timeout on Endpoint 0. (Index register set to select Endpoint 0)		
	HOST_TXINTERVAL	Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. (Index register set to select Endpoints 1-4 only)		
0x01E0 041C	HOST_RXTYPE	Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. (Index register set to select Endpoints 1-4 only)		
0x01E0 041D	HOST_RXINTERVAL	Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. (Index register set to select Endpoints 1-4 only)		
0x01E0 041F	CONFIGDATA	Returns details of core configuration. (Index register set to select Endpoint 0)		
		FIFO		
0x01E0 0420	FIFO0	Transmit and Receive FIFO Register for Endpoint 0		
0x01E0 0424	FIFO1	Transmit and Receive FIFO Register for Endpoint 1		
0x01E0 0428	FIFO2	Transmit and Receive FIFO Register for Endpoint 2		
0x01E0 042C	FIFO3	Transmit and Receive FIFO Register for Endpoint 3		
0x01E0 0430	FIFO4	Transmit and Receive FIFO Register for Endpoint 4		
	OTG Device Control			
0x01E0 0460	0x01E0 0460 DEVCTL Device Control Register			
	Dynami	c FIFO Control		
0x01E0 0462	TXFIFOSZ	Transmit Endpoint FIFO Size (Index register set to select Endpoints 1-4 only)		
0x01E0 0463	RXFIFOSZ	Receive Endpoint FIFO Size (Index register set to select Endpoints 1-4 only)		
0x01E0 0464	TXFIFOADDR	Transmit Endpoint FIFO Address (Index register set to select Endpoints 1-4 only)		

Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 1 Control Registers, Valid Only in Host Mode 0x01E0 0488	BYTE ADDRESS	Acronym	Register Description
Ox01E0 0480 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TXHUBPORT TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0483 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0484 RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0487 RXHUBPORT Port of the hub that has to be accessed through the associated Receive is connected via a USB2.0 high-speed hub. Target Endpoint 1 Control Registers, Valid Only in Host Mode Ox01E0 0488 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. Ox01E0 048A TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 048B TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 048B TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 048B TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 048E RXHUBPORT Port of the hub that has to be accessed	0x01E0 0466	RXFIFOADDR	
Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Address of the hub that has to be accessed through the associated Receive Endpoint. Address of the target function that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 1 Control Registers, valid Only in Host Mode TARJUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 1 Control Registers, valid Only in Host Mode TARJUBPORT Address of the target function that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is con		Target Endpoint 0 Contro	ol Registers, Valid Only in Host Mode
Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TXHUBPORT TXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Address of the target function that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 1 Control Registers, Valid Only in Host Mode Address of the target function that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 1 Control Registers, Valid Only in Host Mode Address of the target function that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TXHUBPORT Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TXHUBPORT TXHUBPORT Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Address of the target function that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TXHUBPORT Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TXFUNCADDR Address of the hub that has to be accesse	0x01E0 0480	TXFUNCADDR	
Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0484 RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. 0x01E0 0486 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0487 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 1 Control Registers, Valid Only in Host Mode 0x01E0 0488 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 048A TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 048B TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 048C RXFUNCADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 048C RXFUNCADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 1xFuncaddress of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 1xFuncaddress of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 1xFuncaddress of the hub that has t	0x01E0 0482	TXHUBADDR	Transmit Endpoint. This is used only when full speed or low speed
associated Receive Endpoint. Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 1 Control Registers, Valid Only in Host Mode Ox01E0 0488 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 1 Control Registers, Valid Only in Host Mode Ox01E0 0488 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 048B TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 048B TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 048C RXFUNCADDR Address of the arget function that so be accessed through the associated Receive Endpoint. Ox01E0 048E RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. Ox01E0 048E RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 2 Control Registers, Valid Only in Host Mode Ox01E0 0490 TXFUNCADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub	0x01E0 0483	TXHUBPORT	Transmit Endpoint. This is used only when full speed or low speed
Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0487 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 1 Control Registers, Valid Only in Host Mode Ox01E0 0488 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. Ox01E0 048A TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 048B TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 048C RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. Ox01E0 048E RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 048F RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 2 Control Registers, Valid Only in Host Mode Ox01E0 0490 TXFUNCADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 2 Control Registers, Valid Only in Host Mode Ox01E0 0490 TXFUNCADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0493 TXHUBPORT Port of the hub that has to be accessed through the associated T	0x01E0 0484	RXFUNCADDR	
Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 1 Control Registers, Valid Only in Host Mode 0x01E0 0488	0x01E0 0486	RXHUBADDR	Receive Endpoint. This is used only when full speed or low speed
Ox01E0 0488 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Address of the target function that has to be accessed through the associated Receive Endpoint. Ox01E0 048C RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 048E RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 2 Control Registers, Valid Only in Host Mode TXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 2 Control Registers, Valid Only in Host Mode TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. Ox01E0 0492 TXHUBADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0493 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB	0x01E0 0487	RXHUBPORT	
Address of the hub that has to be accessed through the associated Transmit Endpoint. Novited 048B TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Address of the target function that has to be accessed through the associated Receive Endpoint. RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 2 Control Registers, Valid Only in Host Mode TXFUNCADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 2 Control Registers, Valid Only in Host Mode TXFUNCADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 3 Control Regist		Target Endpoint 1 Contro	ol Registers, Valid Only in Host Mode
Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Address of the target function that has to be accessed through the associated Receive Endpoint. EXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. EXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 2 Control Registers, Valid Only in Host Mode EXHUBADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. Exhubadded Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. EXHUBADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. EXHUBADDR EXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. EXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. EXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. EXHUBADDR EXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is conn	0x01E0 0488	TXFUNCADDR	
Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 048E RXHUBADDR Address of the target function that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 048F RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 2 Control Registers, Valid Only in Host Mode Ox01E0 0490 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0492 TXHUBADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0493 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0494 RXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0496 RXHUBADDR Address of the target function that has to be accessed through the associated Receive Endpoint. Ox01E0 0496 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0497 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 3 Control Registers, Valid Only in Host Mode	0x01E0 048A	TXHUBADDR	Transmit Endpoint. This is used only when full speed or low speed
associated Receive Endpoint. 0x01E0 048E RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 048F RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 2 Control Registers, Valid Only in Host Mode 0x01E0 0490 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 0492 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0493 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0494 RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. 0x01E0 0494 RXFUNCADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0496 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0497 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 3 Control Registers, Valid Only in Host Mode	0x01E0 048B	TXHUBPORT	Transmit Endpoint. This is used only when full speed or low speed
Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 2 Control Registers, Valid Only in Host Mode 0x01E0 0490 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 0492 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0493 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0494 RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. Ox01E0 0496 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0497 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 3 Control Registers, Valid Only in Host Mode	0x01E0 048C	RXFUNCADDR	
Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 2 Control Registers, Valid Only in Host Mode 0x01E0 0490 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 0492 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0493 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0494 RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. 0x01E0 0496 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0497 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 3 Control Registers, Valid Only in Host Mode	0x01E0 048E	RXHUBADDR	Receive Endpoint. This is used only when full speed or low speed
Ox01E0 0490 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. Ox01E0 0492 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0493 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0494 RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. Ox01E0 0496 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0497 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 3 Control Registers, Valid Only in Host Mode	0x01E0 048F	RXHUBPORT	Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub.
associated Transmit Endpoint. Ox01E0 0492 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0493 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0494 RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. Ox01E0 0496 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0497 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 3 Control Registers, Valid Only in Host Mode		Target Endpoint 2 Contro	ol Registers, Valid Only in Host Mode
Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0493 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0494 RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. Ox01E0 0496 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0497 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 3 Control Registers, Valid Only in Host Mode	0x01E0 0490	TXFUNCADDR	
Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0494 RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. Ox01E0 0496 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0497 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 3 Control Registers, Valid Only in Host Mode	0x01E0 0492	TXHUBADDR	Transmit Endpoint. This is used only when full speed or low speed
associated Receive Endpoint. Ox01E0 0496 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0497 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 3 Control Registers, Valid Only in Host Mode	0x01E0 0493	TXHUBPORT	Transmit Endpoint. This is used only when full speed or low speed
Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Ox01E0 0497 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 3 Control Registers, Valid Only in Host Mode	0x01E0 0494	RXFUNCADDR	
Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 3 Control Registers, Valid Only in Host Mode	0x01E0 0496	RXHUBADDR	Receive Endpoint. This is used only when full speed or low speed
	0x01E0 0497	RXHUBPORT	
		Target Endpoint 3 Contro	ol Registers, Valid Only in Host Mode
0x01E0 0498 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint.	0x01E0 0498	TXFUNCADDR	

Texas Instruments

BYTE ADDRESS	Acronym	Register Description
0x01E0 049A	TXHUBADDR	Address of the hub that has to be accessed through the associated
		Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub.
0x01E0 049B	TXHUBPORT	Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub.
0x01E0 049C	RXFUNCADDR	Address of the target function that has to be accessed through the associated Receive Endpoint.
0x01E0 049E	RXHUBADDR	Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub.
0x01E0 049F	RXHUBPORT	Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub.
	Target Endpoint 4 Control	Registers, Valid Only in Host Mode
0x01E0 04A0	TXFUNCADDR	Address of the target function that has to be accessed through the associated Transmit Endpoint.
0x01E0 04A2	TXHUBADDR	Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub.
0x01E0 04A3	TXHUBPORT	Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub.
0x01E0 04A4	RXFUNCADDR	Address of the target function that has to be accessed through the associated Receive Endpoint.
0x01E0 04A6	RXHUBADDR	Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub.
0x01E0 04A7	RXHUBPORT	Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub.
	Control and State	us Register for Endpoint 0
0x01E0 0502	PERI_CSR0	Control Status Register for Endpoint 0 in Peripheral Mode
	HOST_CSR0	Control Status Register for Endpoint 0 in Host Mode
0x01E0 0508	COUNT0	Number of Received Bytes in Endpoint 0 FIFO
0x01E0 050A	HOST_TYPE0	Defines the Speed of Endpoint 0
0x01E0 050B	HOST_NAKLIMIT0	Sets the NAK Response Timeout on Endpoint 0
0x01E0 050F	CONFIGDATA	Returns details of core configuration.
	Control and State	us Register for Endpoint 1
0x01E0 0510	TXMAXP	Maximum Packet Size for Peripheral/Host Transmit Endpoint
0x01E0 0512	PERI_TXCSR	Control Status Register for Peripheral Transmit Endpoint (peripheral mode)
	HOST_TXCSR	Control Status Register for Host Transmit Endpoint (host mode)
0x01E0 0514	RXMAXP	Maximum Packet Size for Peripheral/Host Receive Endpoint
0x01E0 0516	PERI_RXCSR	Control Status Register for Peripheral Receive Endpoint (peripheral mode)
	HOST_RXCSR	Control Status Register for Host Receive Endpoint (host mode)
0x01E0 0518	RXCOUNT	Number of Bytes in Host Receive endpoint FIFO
0x01E0 051A	HOST_TXTYPE	Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint.
0x01E0 051B	HOST_TXINTERVAL	Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint.

BYTE ADDRESS	Acronym	Register Description		
0x01E0 051C	HOST_RXTYPE	Sets the operating speed, transaction protocol and peripheral endpoin number for the host Receive endpoint.		
0x01E0 051D	HOST_RXINTERVAL	Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint.		
	Control and Stat	tus Register for Endpoint 2		
0x01E0 0520	TXMAXP	Maximum Packet Size for Peripheral/Host Transmit Endpoint		
0x01E0 0522	PERI_TXCSR	Control Status Register for Peripheral Transmit Endpoint (peripheral mode)		
	HOST_TXCSR	Control Status Register for Host Transmit Endpoint (host mode)		
0x01E0 0524	RXMAXP	Maximum Packet Size for Peripheral/Host Receive Endpoint		
0x01E0 0526	PERI_RXCSR	Control Status Register for Peripheral Receive Endpoint (peripheral mode)		
	HOST_RXCSR	Control Status Register for Host Receive Endpoint (host mode)		
0x01E0 0528	RXCOUNT	Number of Bytes in Host Receive endpoint FIFO		
0x01E0 052A	HOST_TXTYPE	Sets the operating speed, transaction protocol and peripheral endpoin number for the host Transmit endpoint.		
0x01E0 052B	HOST_TXINTERVAL	Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint.		
0x01E0 052C	HOST_RXTYPE	Sets the operating speed, transaction protocol and peripheral endpoin number for the host Receive endpoint.		
0x01E0 052D	HOST_RXINTERVAL	Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint.		
	Control and Stat	tus Register for Endpoint 3		
0x01E0 0530	TXMAXP	Maximum Packet Size for Peripheral/Host Transmit Endpoint		
0x01E0 0532	PERI_TXCSR	Control Status Register for Peripheral Transmit Endpoint (peripheral mode)		
	HOST_TXCSR	Control Status Register for Host Transmit Endpoint (host mode)		
0x01E0 0534	RXMAXP	Maximum Packet Size for Peripheral/Host Receive Endpoint		
0x01E0 0536	PERI_RXCSR	Control Status Register for Peripheral Receive Endpoint (peripheral mode)		
	HOST_RXCSR	Control Status Register for Host Receive Endpoint (host mode)		
0x01E0 0538	RXCOUNT	Number of Bytes in Host Receive endpoint FIFO		
0x01E0 053A	HOST_TXTYPE	Sets the operating speed, transaction protocol and peripheral endpoin number for the host Transmit endpoint.		
0x01E0 053B	HOST_TXINTERVAL	Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint.		
0x01E0 053C	HOST_RXTYPE	Sets the operating speed, transaction protocol and peripheral endpoin number for the host Receive endpoint.		
0x01E0 053D	HOST_RXINTERVAL	Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint.		
	Control and Stat	tus Register for Endpoint 4		
0x01E0 0540	TXMAXP	Maximum Packet Size for Peripheral/Host Transmit Endpoint		
0x01E0 0542	PERI_TXCSR	Control Status Register for Peripheral Transmit Endpoint (peripheral mode)		
	HOST_TXCSR	Control Status Register for Host Transmit Endpoint (host mode)		
0x01E0 0544	RXMAXP	Maximum Packet Size for Peripheral/Host Receive Endpoint		

Texas Instruments

_ 	Table 6-94. Universal Serial Bus OTG (USBU) Registers (Continued)							
BYTE ADDRESS	Acronym	Register Description						
0x01E0 0546	PERI_RXCSR	Control Status Register for Peripheral Receive Endpoint (peripheral mode)						
	HOST_RXCSR	Control Status Register for Host Receive Endpoint (host mode)						
0x01E0 0548	RXCOUNT	Number of Bytes in Host Receive endpoint FIFO						
0x01E0 054A	HOST_TXTYPE	Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint.						
0x01E0 054B	HOST_TXINTERVAL	Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint.						
0x01E0 054C	HOST_RXTYPE	Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint.						
0x01E0 054D	HOST_RXINTERVAL	Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint.						
	DMA Registers							
0x01E0 1000	DMAREV	DMA Revision Register						
0x01E0 1004	TDFDQ	DMA Teardown Free Descriptor Queue Control Register						
0x01E0 1008	DMAEMU	DMA Emulation Control Register						
0x01E0 1800	TGCR[0]	Transmit Channel 0 Global Configuration Register						
0x01E0 1808	RXGCR[0]	Receive Channel 0 Global Configuration Register						
0x01E0 180C	RXHPCRA[0]	Receive Channel 0 Host Packet Configuration Register A						
0x01E0 1810	RXHPCRB[0]	Receive Channel 0 Host Packet Configuration Register B						
0x01E0 1820	TGCR[1]	Transmit Channel 1 Global Configuration Register						
0x01E0 1828	RXGCR[1]	Receive Channel 1 Global Configuration Register						
0x01E0 182C	RXHPCRA[1]	Receive Channel 1 Host Packet Configuration Register A						
0x01E0 1830	RXHPCRB[1]	Receive Channel 1 Host Packet Configuration Register B						
0x01E0 1840	TGCR[2]	Transmit Channel 2 Global Configuration Register						
0x01E0 1848	RXGCR[2]	Receive Channel 2 Global Configuration Register						
0x01E0 184C	RXHPCRA[2]	Receive Channel 2 Host Packet Configuration Register A						
0x01E0 1850	RXHPCRB[2]	Receive Channel 2 Host Packet Configuration Register B						
0x01E0 1860	TGCR[3]	Transmit Channel 3 Global Configuration Register						
0x01E0 1868	RXGCR[3]	Receive Channel 3 Global Configuration Register						
0x01E0 186C	RXHPCRA[3]	Receive Channel 3 Host Packet Configuration Register A						
0x01E0 1870	RXHPCRB[3]	Receive Channel 3 Host Packet Configuration Register B						
0x01E0 2C00	DMA_SCHED_CTRL	DMA Scheduler Control Register						
0x01E0 2D00	ENTRY[0]	DMA Scheduler Table Word 0						
0x01E0 2D04	ENTRY[1]	DMA Scheduler Table Word 1						
0x01E0 2DFC	ENTRY[63]	DMA Scheduler Table Word 63						
	Queue M	anager Registers						
0x01E0 4000	QMGRREV	Queue Manager Revision Register						
0x01E0 4008	DIVERSION	Queue Diversion Register						
0x01E0 4020	FDBSC0	Free Descriptor/Buffer Starvation Count Register 0						
0x01E0 4024	FDBSC1	Free Descriptor/Buffer Starvation Count Register 1						
0x01E0 4028	FDBSC2	Free Descriptor/Buffer Starvation Count Register 2						
0x01E0 402C	FDBSC3	Free Descriptor/Buffer Starvation Count Register 3						
0x01E0 4080	LRAMOBASE	Linking RAM Region 0 Base Address Register						
0x01E0 4084	LRAM0SIZE	Linking RAM Region 0 Size Register						
0x01E0 4088	LRAM1BASE	Linking RAM Region 1 Base Address Register						
0x01E0 4090	PEND0	Queue Pending Register 0						
		1 0						

Table 6-94. Universal Serial Bus OTG (USB0) Registers (continued)

DVTE 4 DDDESS	<u> </u>	De tra (Contractor)
BYTE ADDRESS	Acronym	Register Description
0x01E0 4094	PEND1	Queue Pending Register 1
0x01E0 5000	QMEMRBASE[0]	Memory Region 0 Base Address Register
0x01E0 5004	QMEMRCTRL[0]	Memory Region 0 Control Register
0x01E0 5010	QMEMRBASE[1]	Memory Region 1 Base Address Register
0x01E0 5014	QMEMRCTRL[1]	Memory Region 1 Control Register
0x01E0 5070	QMEMRBASE[7]	Memory Region 7 Base Address Register
0x01E0 5074	QMEMRCTRL[7]	Memory Region 7 Control Register
0x01E0 6000	QCTRL_CTRLA[0]	Queue Manager Queue 0 Control Register A
0x01E0 6004	QCTRL_CTRLB[0]	Queue Manager Queue 0 Control Register B
0x01E0 6008	QCTRL_CTRLC[0]	Queue Manager Queue 0 Control Register C
0x01E0 600C	QCTRL_CTRLD[0]	Queue Manager Queue 0 Control Register D
0x01E0 6010	QCTRL_CTRLA[1]	Queue Manager Queue 1 Control Register A
0x01E0 6014	QCTRL_CTRLB[1]	Queue Manager Queue 1 Control Register B
0x01E0 6018	QCTRL_CTRLC[1]	Queue Manager Queue 1 Control Register C
0x01E0 601C	QCTRL_CTRLD[1]	Queue Manager Queue 1 Control Register D
0x01E0 63F0	QCTRL_CTRLA[63]	Queue Manager Queue 63 Status Register A
0x01E0 63F4	QCTRL_CTRLB[63]	Queue Manager Queue 63 Status Register B
0x01E0 63F8	QCTRL_CTRLC[63]	Queue Manager Queue 63 Status Register C
0x01E0 63FC	QCTRL_CTRLD[63]	Queue Manager Queue 63 Status Register D
0x01E0 6800	QCTRL_STATA[0]	Queue Manager Queue 0 Status Register A
0x01E0 6804	QCTRL_STATB[0]	Queue Manager Queue 0 Status Register B
0x01E0 6808	QCTRL_STATC[0]	Queue Manager Queue 0 Status Register C
0x01E0 6810	QCTRL_STATA[1]	Queue Manager Queue 1 Status Register A
0x01E0 6814	QCTRL_STATB[1]	Queue Manager Queue 1 Status Register B
0x01E0 6818	QCTRL_STATC[1]	Queue Manager Queue 1 Status Register C
0x01E0 6BF0	QCTRL_STATA[63]	Queue Manager Queue 63 Status Register A
0x01E0 6BF4	QCTRL_STATB[63]	Queue Manager Queue 63 Status Register B
0x01E0 6BF8	QCTRL_STATC[63]	Queue Manager Queue 63 Status Register C

6.25.1 USB0 Electrical Data/Timing

Table 6-95. Switching Characteristics Over Recommended Operating Conditions for USB0 (see Figure 6-66)

NO.		PARAMETER		LOW SPEED 1.5 Mbps		FULL SPEED 12 Mbps		HIGH SPEED 480 Mbps	
			MIN	MAX	MIN	MAX	MIN	MAX	
1	t _{r(D)}	Rise time, USB0_DP and USB0_DM signals ⁽¹⁾	75	300	4	20	0.5		ns
2	t _{f(D)}	Fall time, USB0_DP and USB0_DM signals ⁽¹⁾	75	300	4	20	0.5		ns
3	t _{rfM}	Rise/Fall time, matching ⁽²⁾	80	120	90	111	-	-	%
4	V _{CRS}	Output signal cross-over voltage ⁽¹⁾	1.3	2	1.3	2	-	-	V
5	t _{jr(source)NT}	Source (Host) Driver jitter, next transition		2		2			⁽³⁾ ns
	t _{jr(FUNC)NT}	Function Driver jitter, next transition		25		2		(3)	ns

- (1) Low Speed: C_L = 200 pF, Full Speed: C_L = 50 pF, High Speed: C_L = 50 pF
- 2) $t_{RFM} = (t_r/t_f) \times 100$. [Excluding the first transaction from the Idle state.]
- (3) For more detailed information, see the Universal Serial Bus Specification Revision 2.0, Chapter 7. Electrical.

Table 6-95. Switching Characteristics Over Recommended Operating Conditions for USB0 (see Figure 6-66) (continued)

NO.		PARAMETER		LOW SPEED 1.5 Mbps		FULL SPEED 12 Mbps		HIGH SPEED 480 Mbps	
			MIN	MAX	MIN	MAX	MIN	MAX	
6	t _{jr(source)PT}	Source (Host) Driver jitter, paired transition (4)		1		1		(3)	ns
	t _{jr(FUNC)PT}	Function Driver jitter, paired transition		10		1		(3)	ns
7	t _{w(EOPT)}	Pulse duration, EOP transmitter	1250	1500	160	175	-	-	ns
8	t _{w(EOPR)}	Pulse duration, EOP receiver	670		82		-		ns
9	t _(DRATE)	Data Rate		1.5		12		480	Mb/s
10	Z _{DRV}	Driver Output Resistance	_	_	40.5	49.5	40.5	49.5	Ω
11	Z _{INP}	Receiver Input Impedance	100k		100k		-	-	Ω

(4) $t_{jr} = t_{px(1)} - t_{px(0)}$

Figure 6-66. USB0 Integrated Transceiver Interface Timing

6.26 Universal Host-Port Interface (UHPI)

6.26.1 HPI Device-Specific Information

The device includes a user-configurable 16-bit Host-port interface (HPI16). See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. — Literature Number SPRUFK9 for more details.

6.26.2 HPI Peripheral Register Description(s)

Table 6-96. HPI Control Registers

HEX ADDRESS RANGE	ACRONYM	REGISTER NAME	COMMENTS
0x01E1 0000	PID	Peripheral Identification Register	
0x01E1 0004	PWREMU_MGMT	HPI power and emulation management register	The CPU has read/write access to the PWREMU_MGMT register.
0x01E1 0008	-	Reserved	
0x01E1 000C	GPIO_EN	General Purpose IO Enable Register	
0x01E1 0010	GPIO_DIR1	General Purpose IO Direction Register 1	
0x01E1 0014	GPIO_DAT1	General Purpose IO Data Register 1	
0x01E1 0018	GPIO_DIR2	General Purpose IO Direction Register 2	
0x01E1 001C	GPIO_DAT2	General Purpose IO Data Register 2	
0x01E1 0020	GPIO_DIR3	General Purpose IO Direction Register 3	
0x01E1 0024	GPIO_DAT3	General Purpose IO Data Register 3	
0x01E1 0028	-	Reserved	
0x01E1 002C	-	Reserved	
0x01E1 0030	HPIC	HPI control register	The Host and the CPU both have read/write access to the HPIC register.
0x01E1 0034	HPIA (HPIAW) ⁽¹⁾	HPI address register (Write)	The Host has read/write access to the HPIA registers.
0x01E1 0038	HPIA (HPIAR) ⁽¹⁾	HPI address register (Read)	The CPU has only read access to the HPIA registers.
0x01E1 000C - 0x01E1 07FF	-	Reserved	

⁽¹⁾ There are two 32-bit HPIA registers: HPIAR for read operations and HPIAW for write operations. The HPI can be configured such that HPIAR and HPIAW act as a single 32-bit HPIA (single-HPIA mode) or as two separate 32-bit HPIAs (dual-HPIA mode) from the perspective of the Host. The CPU can access HPIAW and HPIAR independently.

6.26.3 HPI Electrical Data/Timing

Table 6-97. Timing Requirements for Host-Port Interface Cycles (1)(2)

NO.			MIN	MAX	UNIT
1	t _{su(SELV-HSTBL)}	Setup time, select signals (3) valid before HSTROBE low	5		ns
2	t _{h(HSTBL-SELV)}	Hold time, select signals ⁽³⁾ valid after HSTROBE low	2		ns
3	t _{w(HSTBL)}	Pulse duration, HSTROBE active low	15		ns
4	t _{w(HSTBH)}	Pulse duration, HSTROBE inactive high between consecutive accesses	2M		ns
11	t _{su(HDV-HSTBH)}	Setup time, host data valid before HSTROBE high	5		ns
12	t _{h(HSTBH-HDV)}	Hold time, host data valid after HSTROBE high	1		ns
13	t _{h(HRDYL-HSTBH)}	Hold time, HSTROBE high after HRDY low. HSTROBE should not be inactivated until HRDY is active (low); otherwise, HPI writes will not complete properly.	0		ns

- HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
- M=SYSCLK2 period (CPU clock frequency)/2 in ns. For example, when running parts at 300 MHz, use M=6.67 ns. Select signals include: HCNTL[1:0], HR/W and HHWIL.

Table 6-98. Switching Characteristics for Host-Port Interface Cycles (1)(2)(3)

NO.		PARAMETE	:R	MIN	MAX	UNIT
_		Delay time, HSTROBE low to	For HPI Write, HRDY can go high (not ready) for these HPI Write conditions; otherwise, HRDY stays low (ready): Case 1: Back-to-back HPIA writes (can be either first or second half-word) Case 2: HPIA write following a PREFETCH command (can be either first or second half-word) Case 3: HPID write when FIFO is full or flushing (can be either first or second half-word) Case 4: HPIA write and Write FIFO not empty For HPI Read, HRDY can go high (not ready) for these HPI Read conditions: Case 1: HPID read (with			
5	[†] d(HSTBL-HRDYV)	HRDY valid	auto-increment) and data not in Read FIFO (can only happen to first half-word of HPID access) Case 2: First half-word access of HPID Read without auto-increment For HPI Read, HRDY stays low (ready) for these HPI Read conditions: Case 1: HPID read with auto-increment and data is already in Read FIFO (applies to either half-word of HPID access) Case 2: HPID read without auto-increment and data is already in Read FIFO (always applies to second half-word of HPID access) Case 3: HPIC or HPIA read (applies to either half-word access)		12	ns
6	t _{en(HSTBL-HD)}	Enable time, HD driven from H	STROBE low	2		ns
7	t _{d(HRDYL-HDV)}	Delay time, HRDY low to HD va			0	ns
8	t _{oh(HSTBH-HDV)}	Output hold time, HD valid after HSTROBE high		1.5		ns
14	t _{dis(HSTBH-HDV)}	Disable time, HD high-impedan	Disable time, HD high-impedance from HSTROBE high		12	ns
15	t _{d(HSTBL-HDV)}	Delay time, HSTROBE low to HD valid	For HPI Read. Applies to conditions where data is already residing in HPID/FIFO: Case 1: HPIC or HPIA read Case 2: First half-word of HPID read with auto-increment and data is already in Read FIFO Case 3: Second half-word of HPID read with or without auto-increment		15	ns
18	t _d (HSTBH-HRDYV)	Delay time, HSTROBE high to HRDY valid	For HPI Write, HRDY can go high (not ready) for these HPI Write conditions; otherwise, HRDY stays low (ready): Case 1: HPID write when Write FIFO is full (can happen to either half-word) Case 2: HPIA write (can happen to either half-word) Case 3: HPID write without auto-increment (only happens to second half-word)		12	ns

By design, whenever HCS is driven inactive (high), HPI will drive HRDY active (low).

Instruments

- A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(HDS1 XOR HDS2)] OR UHPI HCS.
- Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur.
- UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE.
- The diagram above assumes UHPI_HAS has been pulled high.

Figure 6-67. UHPI Read Timing (HAS Not Used, Tied High)

- A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(HDS1 XOR HDS2)] OR UHPI HCS.
- B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur.
- C. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for $\overline{\mbox{UHPI_HSTROBE}}.$
- The diagram above assumes UHPI_HAS has been pulled high.

Figure 6-68. UHPI Write Timing (HAS Not Used, Tied High)

6.27 Memory Protection Units (MPU)

The MPU performs memory protection checking. It inputs a VBUSM or VBUSP bus, checks the address against the fixed and programmable regions to see if the access is allowed. If allowed the transfer is passed unmodified to the output VBUSM or VBUSP bus. If the transfer is illegal (fails the protection check) then the MPU does not pass the transfer to the output bus but rather services the transfer internally back to the input bus (to prevent a hang) returning the fault status to the requestor as well as generating an interrupt about the fault. The following features are supported by the MPU:

- Provides memory protection for fixed and programmable address ranges.
- Supports multiple programmable address region.
- Supports secure and debug access privileges.
- Supports read, write, and execute access privileges.
- Supports privid(8) associations with ranges.
- Generates an interrupt when there is a protection violation, and saves violating transfer parameters.
- MMR access is also protected.

TEXAS INSTRUMENTS

Table 6-99. MPU Register Descriptions

MDU	MPUIO	· · · · · · · · · · · · · · · · · · ·		
MPU1 BYTE ADDRESS	MPU2 BYTE ADDRESS	REGISTER NAME	DESCRIPTION	
0x01E1 4000	0x01E1 5000	REVISION	Revision	
0x01E1 4004	0x01E1 5004	CONFIGURATION	Configuration	
0x01E1 4008 - 0x01E1 4009	0x01E1 5008 - 0x01E1 5009	RSVD	Reserved	
0x01E1 4010	0x01E1 5010	INTR_RAW_STATUS	Interrupt Raw Status/Set	
0x01E1 4014	0x01E1 5014	INTR_ENABLED_STATUS	Interrupt Enabled Status/Clear	
0x01E1 4018	0x01E1 5018	INTR_ENABLE	Interrupt Enable	
0x01E1 401C	0x01E1 501C	INTR_ENABLE_CLR	Interrupt Enable Clear	
0x01E1 4020	0x01E1 5020	RSVD	Reserved	
0x01E1 4024	0x01E1 5024	RSVD	Reserved	
0x01E1 4028 - 0x01E1 40FF	0x01E1 5028 - 0x01E1 50FF	RSVD	Reserved	
0x01E1 4100	0x01E1 5100	FIXED_MPSAR	Fixed 1 Start Address	
0x01E1 4104	0x01E1 5104	FIXED_MPEAR	Fixed 1 End Address	
0x01E1 4108	0x01E1 5108	FIXED_MPPA	Fixed 1 MPPA	
0x01E1 410C	0x01E1 510C	RSVD	Reserved	
0x01E1 4110 - 0x01E1 41FF	0x01E1 5110 - 0x01E1 51FF	RSVD	Reserved	
0x01E1 4200	0x01E1 5200	Prog		
0x01E1 4204			Programmable 1 End Address	
0x01E1 4208	0x01E1 4208		Programmable 1 MPPA	
0x01E1 420C	0x01E1 520C	RSVD	Reserved	
0x01E1 4210	0x01E1 4210		Additional Programmable Range MMRs	
0x01E1 4214	0x01E1 5214	PROG1_MPEAR		
0x01E1 4218	0x01E1 5218	0x01E1 5218 PROG1_MPPA		
0x01E1 421C				
0x01E1 4220		PROG2_MPSAR		
0x01E1 4224		PROG2_MPEAR		
0x01E1 4228		PROG2_MPPA		
0x01E1 422C	0x01E1 522C	RSVD		
0x01E1 4230	0x01E1 5230	PROG3_MPSAR		
0x01E1 4234	0x01E1 5234	PROG3_MPEAR		
0x01E1 4238	0x01E1 5238	PROG3_MPPA		
0x01E1 423C	0x01E1 523C	RSVD		
0x01E1 4240	0x01E1 5240	PROG4_MPSAR		
		PROG4_MPEAR		
0x01E1 4248	0x01E1 5248	PROG4_MPPA		
0x01E1 4246		RSVD		
0x01E1 4250		PROG5_MPSAR		
0x01E1 4254				
0x01E1 4258	0x01E1 5258	PROG5_MPPA		
0x01E1 425C - 0x01E1 42FF	0x01E1 525C	RSVD		
-	0x01E1 5260	PROG6_MPSAR		
_	0x01E1 5264	PROG6_MPEAR		

Table 6-99. MPU Register Descriptions (continued)

rable to the model of the first termination,					
MPU1 BYTE ADDRESS	MPU2 BYTE ADDRESS	REGISTER NAME	DESCRIPTION		
-	0x01E1 5268	PROG6_MPPA			
-	0x01E1 526C	RSVD			
-	0x01E1 5270	PROG7_MPSAR			
-	0x01E1 5274	PROG7_MPEAR			
=	0x01E1 5278	PROG7_MPPA			
-	0x01E1 527C	RSVD			
-	0x01E1 5280	PROG8_MPSAR			
-	0x01E1 5284	PROG8_MPEAR			
-	0x01E1 5288	PROG8_MPPA			
-	0x01E1 528C	RSVD			
-	0x01E1 5290	PROG9_MPSAR			
-	0x01E1 5294	PROG9_MPEAR			
-	0x01E1 5298	PROG9_MPPA			
-	- 0x01E1 529C RSVD				
-	- 0x01E1 52A0 PROG10_MPSAR				
- 0x01E1 52A4 PROG10_MPEAR					
- 0x01E1 52A8		PROG10_MPPA			
-	0x01E1 52AC	RSVD			
-	0x01E1 52B0	PROG11_MPSAR			
- 0x01E1 52B4 PROG11_MPEAR					
- 0x01E1 52B8		PROG11_MPPA			
0x01E1 52BC - 0x01E1 52FF		RSVD			
0x01E1 4300		MPFAR	Fault 1 Address		
0x01E1 4304	0x01E1 5304	MPFSR	Fault 1 Status		
0x01E1 4308	0x01E1 5308	MPFCR	Fault 1 Clear		

6.28 Power and Sleep Controller (PSC)

The Power and Sleep Controllers (PSC) are responsible for managing transitions of system power on/off, clock on/off, resets (device level and module level). It is used primarily to provide granular power control for on chip modules (peripherals and CPU). A PSC module consists of a Global PSC (GPSC) and a set of Local PSCs (LPSCs). The GPSC contains memory mapped registers, PSC interrupts, a state machine for each peripheral/module it controls. An LPSC is associated with every module that is controlled by the PSC and provides clock and reset control. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. — Literature Number SPRUFK9 for more details.

The PSC includes the following features:

- Provides a software interface to:
 - Control module clock enable/disable
 - Control module reset
 - Control CPU local reset
- Supports ICEpick TAP Router power, clock and reset features. For details on ICEpick features see http://tiexpressdsp.com/wiki/index.php?title=ICEPICK.

NSTRUMENTS

Table 6-100. Power and Sleep Controller (PSC) Registers

PSC0	PSC1	Register	Description	
0x01C1 0000	0x01E2 7000	REVID	Peripheral Revision and Class Information Register	
0x01C1 0018	0x01E2 7018	INTEVAL	Interrupt Evaluation Register	
0x01C1 0040	0x01E2 7040	MERRPR0	Module Error Pending Register 0 (module 0-15) (PSC0)	
			Module Error Pending Register 0 (module 0-31) (PSC1)	
0x01C1 0050	0x01E2 7050	MERRCR0	Module Error Clear Register 0 (module 0-15) (PSC0)	
			Module Error Clear Register 0 (module 0-31) (PSC1)	
0x01C1 0060	0x01E2 7060	PERRPR	Power Error Pending Register	
0x01C1 0068	0x01E2 7068	PERRCR	Power Error Clear Register	
0x01C1 0120	0x01E2 7120	PTCMD	Power Domain Transition Command Register	
0x01C1 0128	0x01E2 7128	PTSTAT	Power Domain Transition Status Register	
0x01C1 0200	0x01E2 7200	PDSTAT0	Power Domain 0 Status Register	
0x01C1 0204	0x01E2 7204	PDSTAT1	Power Domain 1 Status Register	
0x01C1 0300	0x01E2 7300	PDCTL0	Power Domain 0 Control Register	
0x01C1 0304	0x01E2 7304	PDCTL1	Power Domain 1 Control Register	
0x01C1 0400	0x01E2 7400	PDCFG0	Power Domain 0 Configuration Register	
0x01C1 0404	0x01E2 7404	E2 7404 PDCFG1 Power Domain 1 Configuration Register		
0x01C1 0800 - 0x01C1 083C	0x01E2 7800 - 0x01E2 787C	MDSTAT0- MDSTAT15	Module Status <i>n</i> Register (modules 0-15) (PSC0)	
		MDSTAT0- MDSTAT31	Module Status <i>n</i> Register (modules 0-31) (PSC1)	
0x01C1 0A00 - 0x01C1 0A3C	0x01E2 7A00 - 0x01E2 7A7C	MDCTL0- MDCTL15	Module Control <i>n</i> Register (modules 0-15) (PSC0)	
		MDCTL0- MDCTL31	Module Control <i>n</i> Register (modules 0-31) (PSC1)	

6.28.1 Power Domain and Module Topology

The device includes two PSC modules. Each PSC module consists of an Always On power domain and an additional pseudo/internal power domain that manages the sleep modes for the RAMs present in the DSP subsystem and the L3 RAM, respectively.

Each PSC module controls clock states for several of the on chip modules, controllers and interconnect components. Table 6-101 and Table 6-102 lists the set of peripherals/modules that are controlled by the PSC, the power domain they are associated with, the LPSC assignment and the default (power-on reset) module states. See the device-specific data manual for the peripherals available on a given device. The module states and terminology are defined in Section 6.28.1.2.

Table 6-101. PSC0 Default Module Configuration

LPSC Number	Module Name	Power Domain	Default Module State	Auto Sleep/Wake Only
0	EDMA3 Channel Controller	AlwaysON (PD0)	SwRstDisable	_
1	EDMA Transfer Controller 0	AlwaysON (PD0)	SwRstDisable	_
2	EDMA Transfer Controller 1	AlwaysON (PD0)	SwRstDisable	_
3	EMIFA (BR7)	AlwaysON (PD0)	SwRstDisable	_
4	SPI 0	AlwaysON (PD0)	SwRstDisable	_
5	MMC/SD 0	AlwaysON (PD0)	SwRstDisable	_
6	Arm Interrupt Controller	AlwaysON (PD0)	SwRstDisable	_
7	ARM RAM/ROM	AlwaysON (PD0)	Enable	Yes

Table 6-101. PSC0 Default Module Configuration (continued)

LPSC Number	Module Name	Power Domain	Default Module State	Auto Sleep/Wake Only
8	-	-	-	_
9	UART 0	AlwaysON (PD0)	SwRstDisable	_
10	SCR0 (Br 0, Br 1, Br 2, Br 8)	AlwaysON (PD0)	Enable	Yes
11	SCR1 (Br 4)	AlwaysON (PD0)	Enable	Yes
12	SCR2 (Br 3, Br 5, Br 6)	AlwaysON (PD0)	Enable	Yes
13	dMAX	AlwaysON (PD0)	SwRstDisable	_
14	ARM	AlwaysON (PD0)	SwRstDisable	_
15	DSP	PD_DSP (PD1)	Enable	_

Table 6-102. PSC1 Default Module Configuration

LPSC Number	Module Name	Power Domain	Module State	Auto Sleep/Wake Only
0	-	_	_	_
1	USB0 (USB2.0)	AlwaysON (PD0)	SwRstDisable	_
2	USB1 (USB1.1)	AlwaysON (PD0)	SwRstDisable	_
3	GPIO	AlwaysON (PD0)	SwRstDisable	_
4	UHPI	AlwaysON (PD0)	SwRstDisable	_
5	EMAC	AlwaysON (PD0)	SwRstDisable	_
6	EMIFB (Br 20)	AlwaysON (PD0)	SwRstDisable	_
7	McASP0 (+ McASP0 FIFO)	AlwaysON (PD0)	SwRstDisable	_
8	McASP1 (+ McASP1 FIFO)	AlwaysON (PD0)	SwRstDisable	_
9	McASP2(+ McASP2 FIFO)	AlwaysON (PD0)	SwRstDisable	_
10	SPI 1	AlwaysON (PD0)	SwRstDisable	_
11	I2C 1	AlwaysON (PD0)	SwRstDisable	_
12	UART 1	AlwaysON (PD0)	SwRstDisable	_
13	UART 2	AlwaysON (PD0)	SwRstDisable	_
14-15	_	_	_	_
16	LCDC	AlwaysON (PD0)	SwRstDisable	_
17	eHRPWM0/1/2	AlwaysON (PD0)	SwRstDisable	_
18-19	Not Used	_	_	_
20	ECAP0/1/2	AlwaysON (PD0)	SwRstDisable	_
21	EQEP0/1	AlwaysON (PD0)	SwRstDisable	_
22-23	-	_	_	_
24	SCR8 (Br 15)	AlwaysON (PD0)	Enable	Yes
25	SCR7 (Br 12)	AlwaysON (PD0)	Enable	Yes
26	SCR12 (Br 18)	AlwaysON (PD0)	Enable	Yes
27-30	-	_	_	_
31	Shared RAM (Br 13)	PD_SHRAM (PD1)	Enable	Yes

NSTRUMENTS

Digital Audio System-on-Chip (SoC)

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

6.28.1.1 Power Domain States

A power domain can only be in one of the two states: ON or OFF, defined as follows:

- ON: power to the domain is on
- OFF: power to the domain is off

In the device, for both PSC0 and PSC1, the Always ON domain, or PD0 power domain, is always in the ON state when the chip is powered-on. This domain is not programmable to OFF state.

- On PSC0 PD1/PD DSP Domain: Controls the sleep state for DSP L1 and L2 Memories
- On PSC1 PD1/PD_SHRAM Domain: Controls the sleep state for the 128K Shared RAM

6.28.1.2 Module States

The PSC defines several possible states for a module. This states are essentially a combination of the module reset asserted or de-asserted and module clock on/enabled or off/disabled. The module states are defined in Table 6-103.

Table 6-103. Module States

Module State	Module Reset	Module Clock	Module State Definition
Enable	De-asserted	On	A module in the enable state has its module reset de-asserted and it has its clock on. This is the normal operational state for a given module
SwRstDisable	Asserted	Off	A module in the SwResetDisable state has its module reset asserted and it has its clock disabled. After initial power-on, several modules come up in the SwRstDisable state. Generally, software is not expected to initiate this state

6.29 Emulation Logic

This section describes the steps to use a third party debugger. The debug capabilities and features for DSP and ARM are as shown below.

For TI's latest debug and emulation information see :

http://tiexpressdsp.com/wiki/index.php?title=Category:Emulation

DSP:

- Basic Debug
 - Execution Control
 - System Visibility
- Real-Time Debug
 - Interrupts serviced while halted
 - Low/non-intrusive system visibility while running
- Advanced Debug
 - Global Start
 - Global Stop
 - Specify targeted memory level(s) during memory accesses
 - HSRTDX (High Speed Real Time Data eXchange)
- Advanced System Control
 - Subsystem reset via debug
 - Peripheral notification of debug events
 - Cache-coherent debug accesses
- Security
 - Configurable levels of security and debug visibility
 - Halting on a security violation
 - Debug halts prevented during secure code execution

- Memory accesses prevented to secure memory
- Analysis Actions
 - Stop program execution
 - Generate debug interrupt
 - Benchmarking with counters
 - External trigger generation
 - Debug state machine state transition
 - Combinational and Sequential event generation
- Analysis Events
 - Program event detection
 - Data event detection
 - External trigger Detection
 - System event detection (i.e. cache miss)
 - Debug state machine state detection
- Analysis Configuration
 - Application access
 - Debugger access

Table 6-104. DSP Debug Features

Category	Hardware Feature	Availability
	Software breakpoint	Unlimited
		Up to 10 HWBPs, including:
Basic Debug	Handriana hanalaraint	4 precise ⁽¹⁾ HWBPs inside DSP core and one of them is associated with a counter.
	Hardware breakpoint	2 imprecise ⁽¹⁾ HWBPs from AET.
		4 imprecise ⁽¹⁾ HWBPs from AET which are shared for watch point.
	Watch point	Up to 4 watch points, which are shared with HWBPs, and can also be used as 2 watch points with data (32 bits)
Analysis	Watch point with Data	Up to 2, Which can also be used as 4 watch points.
	Counters/timers	1x64-bits (cycle only) + 2x32-bits (water marke counters)
	External Event Trigger In	1
	External Event Trigger Out	1

⁽¹⁾ Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints will halt the processor some number of cycles after the selected instruction depending on device conditions.

ARM:

- Basic Debug
 - Execution Control
 - System Visibility
- Advanced Debug
 - Global Start
 - Global Stop
- Advanced System Control
 - Subsystem reset via debug
 - Peripheral notification of debug events
 - Cache-coherent debug accesses
- Security
 - Halting on a security violation (by cross-triggering via INTC)

NSTRUMENTS

Memory accesses prevented to secure memory (this is ensured by system level security mechanism)

- **Program Trace**
 - Program flow corruption
 - Code coverage
 - Path coverage
 - Thread/interrupt synchronization problems
- Data Trace
 - Memory corruption
- Timing Trace
 - Profiling
- **Analysis Actions**
 - Stop program execution
 - Control trace streams
 - Generate debug interrupt
 - Benchmarking with counters
 - External trigger generation
 - Debug state machine state transition
 - Combinational and Sequential event generation
- **Analysis Events**
 - Program event detection
 - Data event detection
 - External trigger Detection
 - System event detection (i.e. cache miss)
 - Debug state machine state detection
- **Analysis Configuration**
 - Application access
 - Debugger access

Table 6-105. ARM Debug Features

Category	Hardware Feature	Availability
	Software breakpoint	Unlimited
		Up to 14 HWBPs, including:
Basic Debug		2 precise ⁽¹⁾ HWBP inside ARM core which are shared with watch points.
Busic Besug	Hardware breakpoint	8 imprecise ⁽¹⁾ HWBPs from ETM's address comparators, which are shared with trace function, and can be used as watch point too.
		4 imprecise ⁽¹⁾ HWBPs from ICECrusher.

Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints will halt the processor some number of cycles after the selected instruction depending on device conditions.

Table 6-105. ARM Debug Features (continued)

Category	Hardware Feature	Availability
		Up to 6 watch points, including:
	Watch point	2 from ARM core which is shared with HWBPs and can be associated with a data.
		8 from ETM's address comparators, which are shared with trace function, and HWBPs.
		2 from ARM core which is shared with HWBPs.
Analysis	Watch point with Data	8 watch points from ETM can be associated with a data comparator, and ETM has total 4 data comparators.
	Counters/timers	3x32-bit (1 cycle; 2 event)
	External Event Trigger In	1
	External Event Trigger Out	1
	Internal Cross-Triggering Signals	One between ARM and DSP
	Address range for trace	4
	Data qualification for trace	2
	System events for trace control	20
Trace Control	Counters/Timers for trace control	2x16-bit
	State Machines/Sequencers	1x3-State State Machine
	Context/Thread ID Comparator	1
	Independent trigger control units	12
	Capture depth PC	4k bytes ETB
On-chip Trace Capture	Capture depth PC + Timing	4k bytes ETB
Capitale	Application accessible	Y

6.29.1 JTAG Port Description

The target debug interface uses the five standard IEEE 1149.1(JTAG) signals (TRST, TCK, TMS, TDI, and TDO), a return clock (RTCK) due to the clocking requirements of the ARM926EJ-S and EMU0.

 $\overline{\text{TRST}}$ holds the debug and boundary scan logic in reset (normal DSP operation) when pulled low (its default state). Since $\overline{\text{TRST}}$ has an internal pull-down resistor, this ensures that at power up the device functions in its normal (non-test) operation mode if $\overline{\text{TRST}}$ is not connected. Otherwise, $\overline{\text{TRST}}$ should be driven inactive by the emulator or boundary scan controller. Boundary scan test cannot be performed while the $\overline{\text{TRST}}$ pin is pulled low.

Table 6-106. JTAG Port Description

PIN	TYPE	NAME	DESCRIPTION			
TRST	I	Test Logic Reset	When asserted (active low) causes all test and debug logic in DA830/DA828 to be reset along with the IEEE 1149.1 interface			
тск	I	Test Clock	This is the test clock used to drive an IEEE 1149.1 TAP state maching and logic. Depending on the emulator attached to DA830/DA828, this a free running clock or a gated clock depending on RTCK monitoring.			
RTCK	0	Returned Test Clock	Synchronized TCK. Depending on the emulator attached to DA830/DA828, the JTAG signals are clocked from RTCK or RTCK is monitored by the emulator to gate TCK.			
TMS	I	Test Mode Select	Directs the next state of the IEEE 1149.1 test access port state machine			
TDI	I	Test Data Input	Scan data input to the device			
TDO	0	Test Data Output	Scan data output of the device			
EMU0	I/O	Emulation 0	Channel 0 trigger + HSRTDX			

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

6.29.2 Scan Chain Configuration Parameters

Table 6-107 shows the TAP configuration details required to configure the router/emulator for this device.

Table 6-107. JTAG Port Description

Router Port ID	Default TAP	TAP Name	Tap IR Length
17	No	C674x	38
18	No	ARM926	4
19	No	ETB	4

The router is ICEpick revision C and has a 6-bit IR length.

6.29.3 Initial Scan Chain Configuration

The first level of debug interface that sees the scan controller is the TAP router module. The debugger can configure the TAP router for serially linking up to 16 TAP controllers or individually scanning one of the TAP controllers without disrupting the IR state of the other TAPs.

6.29.3.1 Adding TAPS to the Scan Chain

A Power-On Reset (POR) or the JTAG Test-Logic Reset state configures the TAP router to contain only the router's TAP.

The TAP router must be programmed to add additional TAPs to the scan chain. The following JTAG scans must be completed to add the ARM926EJ-S to the scan chain.

Figure 6-69. Adding ARM926EJ-S to the scan chain

Pre-amble: The device whose data reaches the emulator first is listed first in the board configuration file. This device is a pre-amble for all the other devices. This device has the lowest device ID.

Post-amble: The device whose data reaches the emulator last is listed last in the board configuration file. This device is a post-amble for all the other devices. This device has the highest device ID.

- Function: Update the JTAG preamble and post-amble counts.
 - Parameter: The IR pre-amble count is '0'.
 - Parameter: The IR post-amble count is '0'.
 - Parameter: The DR pre-amble count is '0'.
 - Parameter: The DR post-amble count is '0'.
 - Parameter: The IR main count is '6'.
 - Parameter: The DR main count is '1'.
- Function: Do a send-only JTAG IR/DR scan.
 - Parameter: The route to JTAG shift state is 'shortest transition'.
 - Parameter: The JTAG shift state is 'shift-ir'.
 - Parameter: The JTAG destination state is 'pause-ir'.

- Parameter: The bit length of the command is '6'.
- Parameter: The send data value is '0x00000007'.
- Parameter: The actual receive data is 'discarded'.
- Function: Do a send-only JTAG IR/DR scan.
 - Parameter: The route to JTAG shift state is 'shortest transition'.
 - Parameter: The JTAG shift state is 'shift-dr'.
 - Parameter: The JTAG destination state is 'pause-dr'.
 - Parameter: The bit length of the command is '8'.
 - Parameter: The send data value is '0x00000089'.
 - Parameter: The actual receive data is 'discarded'.
- Function: Do a send-only JTAG IR/DR scan.
 - Parameter: The route to JTAG shift state is 'shortest transition'.
 - Parameter: The JTAG shift state is 'shift-ir'.
 - Parameter: The JTAG destination state is 'pause-ir'.
 - Parameter: The bit length of the command is '6'.
 - Parameter: The send data value is '0x00000002'.
 - Parameter: The actual receive data is 'discarded'.
- Function: Embed the port address in next command.
 - Parameter: The port address field is '0x0f000000'.
 - Parameter: The port address value is '3'.
- Function: Do a send-only JTAG IR/DR scan.
 - Parameter: The route to JTAG shift state is 'shortest transition'.
 - Parameter: The JTAG shift state is 'shift-dr'.
 - Parameter: The JTAG destination state is 'pause-dr'.
 - Parameter: The bit length of the command is '32'.
 - Parameter: The send data value is '0xa2002108'.
 - Parameter: The actual receive data is 'discarded'.
- Function: Do a send-only all-ones JTAG IR/DR scan.
 - Parameter : The JTAG shift state is 'shift-ir'.
 - Parameter: The JTAG destination state is 'run-test/idle'.
 - Parameter: The bit length of the command is '6'.
 - Parameter: The send data value is 'all-ones'.
 - Parameter: The actual receive data is 'discarded'.
- Function: Wait for a minimum number of TCLK pulses.
 - Parameter: The count of TCLK pulses is '10'.
- Function: Update the JTAG preamble and post-amble counts.
 - Parameter: The IR pre-amble count is '0'.
 - Parameter: The IR post-amble count is '6'.
 - Parameter: The DR pre-amble count is '0'.
 - Parameter: The DR post-amble count is '1'.
 - Parameter : The IR main count is '4'.
 - Parameter: The DR main count is '1'.

The initial scan chain contains only the TAP router module. The following steps must be completed in order to add ETB TAP to the scan chain.

Instruments

Texas

SPRS483A-NOVEMBER 2008-REVISED MAY 2009

ARM926EJ-S/ETM TDI Router TDO Steps CLK **TMS** ARM926EJ-S/ET ETB Router

Figure 6-70. Adding ETB to the scan chain

- Function: Do a send-only JTAG IR/DR scan.
 - Parameter: The route to JTAG shift state is 'shortest transition'.
 - Parameter: The JTAG shift state is 'shift-ir'.
 - Parameter: The JTAG destination state is 'pause-ir'.
 - Parameter: The bit length of the command is '6'.
 - Parameter: The send data value is '0x00000007'.
 - Parameter: The actual receive data is 'discarded'.
- Function: Do a send-only JTAG IR/DR scan.
 - Parameter: The route to JTAG shift state is 'shortest transition'.
 - Parameter: The JTAG shift state is 'shift-dr'.
 - Parameter: The JTAG destination state is 'pause-dr'.
 - Parameter: The bit length of the command is '8'.
 - Parameter: The send data value is '0x00000089'.
 - Parameter: The actual receive data is 'discarded'.
- Function: Do a send-only JTAG IR/DR scan.
 - Parameter: The route to JTAG shift state is 'shortest transition'.
 - Parameter: The JTAG shift state is 'shift-ir'.
 - Parameter: The JTAG destination state is 'pause-ir'.
 - Parameter: The bit length of the command is '6'.
 - Parameter: The send data value is '0x00000002'.
 - Parameter: The actual receive data is 'discarded'.
- Function: Embed the port address in next command.
 - Parameter: The port address field is '0x0f000000'.
 - Parameter: The port address value is '3'.
- Function: Do a send-only JTAG IR/DR scan.
 - Parameter: The route to JTAG shift state is 'shortest transition'.
 - Parameter: The JTAG shift state is 'shift-dr'.
 - Parameter: The JTAG destination state is 'pause-dr'.
 - Parameter: The bit length of the command is '32'.
 - Parameter: The send data value is '0xa3302108'.
 - Parameter: The actual receive data is 'discarded'.
- Function: Do a send-only all-ones JTAG IR/DR scan.
 - Parameter: The JTAG shift state is 'shift-ir'.
 - Parameter: The JTAG destination state is 'run-test/idle'.
 - Parameter: The bit length of the command is '6'.
 - Parameter: The send data value is 'all-ones'.

- Parameter: The actual receive data is 'discarded'.
- Function: Wait for a minimum number of TCLK pulses.
 - Parameter: The count of TCLK pulses is '10'.
- Function: Update the JTAG preamble and post-amble counts.
 - Parameter: The IR pre-amble count is '0'.
 - Parameter: The IR post-amble count is '6 + 4'.
 - Parameter: The DR pre-amble count is '0'.
 - Parameter: The DR post-amble count is '1 + 1'.
 - Parameter: The IR main count is '4'.
 - Parameter: The DR main count is '1'.

6.29.4 JTAG 1149.1 Boundary Scan Considerations

To use boundary scan, the following sequence should be followed:

- Execute a valid reset sequence and exit reset
- Wait at least 6000 OSCIN clock cycles
- Enter boundary scan mode using the JTAG pins

No specific value is required on the EMU0 pin for boundary scan testing. If TRST is not driven by the boundary scan tool or tester, TRST should be externally pulled high during boundary scan testing.

6.30 Real Time Clock (RTC)

The RTC provides a time reference to an application running on the device. The current date and time is tracked in a set of counter registers that update once per second. The time can be represented in 12-hour or 24-hour mode. The calendar and time registers are buffered during reads and writes so that updates do not interfere with the accuracy of the time and date.

Alarms are available to interrupt the CPU at a particular time, or at periodic time intervals, such as once per minute or once per day. In addition, the RTC can interrupt the CPU every time the calendar and time registers are updated, or at programmable periodic intervals.

The real-time clock (RTC) provides the following features:

- 100-year calendar (xx00 to xx99)
- Counts seconds, minutes, hours, day of the week, date, month, and year with leap year compensation
- Binary-coded-decimal (BCD) representation of time, calendar, and alarm
- 12-hour clock mode (with AM and PM) or 24-hour clock mode
- Alarm interrupt
- Periodic interrupt
- Single interrupt to the CPU
- Supports external 32.768-kHz crystal or external clock source of the same frequency
- Separate isolated power supply

Figure 6-71 shows a block diagram of the RTC. See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number <u>SPRUFK9</u> for more details.

Figure 6-71. Real-Time Clock Block Diagram

6.30.1 Clock Source

The clock reference for the RTC is an external 32.768-kHz crystal or an external clock source of the same frequency. The RTC also has a separate power supply that is isolated from the rest of the system. When the CPU and other peripherals are without power, the RTC can remain powered to preserve the current time and calendar information.

The source for the RTC reference clock may be provided by a crystal or by an external clock source. The RTC has an internal oscillator buffer to support direct operation with a crystal. The crystal is connected between pins RTC_XI and RTC_XO. RTC_XI is the input to the on-chip oscillator and RTC_XO is the output from the oscillator back to the crystal. A crystal with 70k-ohm max ESR is recommended. Typical C1, C2 values are 10-20 pF.

An external 32.768-kHz clock source may be used instead of a crystal. In such a case, the clock source is connected to RTC_XI, and RTC_XO is left unconnected.

If the RTC is not used, the RTC_XI pin should be held high and RTC_XO should be left unconnected.

Figure 6-72. Clock Source

6.30.2 Registers

Table 6-108 lists the memory-mapped registers for the RTC. See the device-specific data manual for the memory address of these registers.

Table 6-108. Real-Time Clock (RTC) Registers

BYTE ADDRESS	Acronym	Register Description
0x01C2 3000	SECOND	Seconds Register
0x01C2 3004	MINUTE	Minutes Register
0x01C2 3008	HOUR	Hours Register
0x01C2 300C	DAY	Day of the Month Register
0x01C2 3010	MONTH	Month Register
0x01C2 3014	YEAR	Year Register
0x01C2 3018	DOTW	Day of the Week Register
0x01C2 3020	ALARMSECOND	Alarm Seconds Register
0x01C2 3024	ALARMMINUTE	Alarm Minutes Register
0x01C2 3028	ALARMHOUR	Alarm Hours Register
0x01C2 302C	ALARMDAY	Alarm Days Register
0x01C2 3030	ALARMMONTH	Alarm Months Register
0x01C2 3034	ALARMYEAR	Alarm Years Register
0x01C2 3040	CTRL	Control Register
0x01C2 3044	STATUS	Status Register
0x01C2 3048	INTERRUPT	Interrupt Enable Register
0x01C2 304C	COMPLSB	Compensation (LSB) Register
0x01C2 3050	COMPMSB	Compensation (MSB) Register
0x01C2 3054	OSC	Oscillator Register
0x01C2 3060	SCRATCH0	Scratch 0 (General-Purpose) Register
0x01C2 3064	SCRATCH1	Scratch 1 (General-Purpose) Register

Table 6-108. Real-Time Clock (RTC) Registers (continued)

BYTE ADDRESS	Acronym	Register Description
0x01C2 3068 SCRATCH2 Scratch 2 (General-Purpose) Register		Scratch 2 (General-Purpose) Register
0x01C2 306C	KICK0	Kick 0 (Write Protect) Register
0x01C2 3070	KICK1	Kick 1 (Write Protect) Register

7 Device and Document Support

7.1 Device Support

TI offers an extensive line of development tools for the TMS320DA830/TMS320DA828 platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The tool's support documentation is electronically available within the Code Composer StudioTM Integrated Development Environment (IDE).

The following products support development of applications:

Software Development Tools:

Code Composer Studio™ Integrated Development Environment (IDE): including Editor

C/C++/Assembly Code Generation, and Debug plus additional development tools

Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time target software needed to support any application.

Hardware Development Tools:

Extended Development System (XDS™) Emulator

For a complete listing of development-support tools for TMS320DA828/DA830 , visit the Texas Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL). For information on pricing and availability, contact the nearest TI field sales office or authorized distributor.

7.2 Documentation Support

The following documents describe the Applications Processor. Copies of these documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box provided at www.ti.com.

DSP Reference Guides

SPRUG82

TMS320C674x DSP Cache User's Guide. Explains the fundamentals of memory caches and describes how the two-level cache-based internal memory architecture in the TMS320C674x digital signal processor (DSP) can be efficiently used in DSP applications. Shows how to maintain coherence with external memory, how to use DMA to reduce memory latencies, and how to optimize your code to improve cache efficiency. The internal memory architecture in the C674x DSP is organized in a two-level hierarchy consisting of a dedicated program cache (L1P) and a dedicated data cache (L1D) on the first level. Accesses by the CPU to the these first level caches can complete without CPU pipeline stalls. If the data requested by the CPU is not contained in cache, it is fetched from the next lower memory level, L2 or external memory.

SPRUFE8

TMS320C674x DSP CPU and Instruction Set Reference Guide. Describes the CPU architecture, pipeline, instruction set, and interrupts for the TMS320C674x digital signal processors (DSPs). The C674x DSP is an enhancement of the C64x+ and C67x+ DSPs with added functionality and an expanded instruction set.

SPRU186

TMS320C6000 Assembly Language Tools User's Guide. Describes the assembly language tools (assembler, linker, and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the TMS320C6000 platform of devices (including the C64x+, C67x+, and C674x generations).

SPRU187

TMS320C6000 Optimizing Compiler User's Guide. Describes the TMS320C6000 C compiler and the assembly optimizer. This C compiler accepts ANSI standard C source code and produces assembly language source code for the TMS320C6000 platform of devices (including the C64x+, C67x+, and C674x generations). The assembly optimizer helps you optimize your assembly code.

SPRUG83

TMS320DA830/DA828 Digital Audio Processor System Reference Guide. Describes the

SPRUFK9

ARM subsystem, DSP subsystem, system memory, device clocking, phase-locked loop controller (PLLC), power and sleep controller (PSC), power management, ARM interrupt controller (AINTC), and system configuration module.

SPRUFK5TMS320C674x DSP Megamodule Reference Guide. Describes the TMS320C674x digital signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access (IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth management, and the memory and cache.

TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. Provides an overview and briefly describes the peripherals available on the device.

8 Mechanical Packaging and Orderable Information

This section describes the device orderable part numbers, packaging options, materials, thermal and mechanical parameters.

8.1 Device and Development-Support Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS (e.g., TMS320C6745). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).

Device development evolutionary flow:

TMX Experimental device that is not necessarily representative of the final device's electrical

specifications.

TMP Final silicon die that conforms to the device's electrical specifications but has not completed

quality and reliability verification.

TMS Fully-qualified production device.

Support tool development evolutionary flow:

TMDX Development-support product that has not yet completed Texas Instruments internal

qualification testing.

TMDS Fully qualified development-support product.

TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. Tl's standard warranty applies.

Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, ZWT), the temperature range (for example, "Blank" is the commercial temperature range), and the device speed range in megahertz (for example, "Blank" is the default).

Figure 8-3 provides a legend for reading the complete device name of any DA8xx device family member.

8.2 Packaging Materials Information

The 256-ball ZKB and 176-pin PTP packages are lead-free (Pb-free) and green. "Lead-free" and "green" are defined as follows:

- **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

8.3 Thermal Data for ZKB

The following table(s) show the thermal resistance characteristics for the PBGA-ZKB mechanical package.

Table 8-1. Thermal Resistance Characteristics (PBGA Package) [ZKB]

NO.			°C/W ⁽¹⁾	°C/W ⁽²⁾	AIR FLOW (m/s) ⁽³⁾
1	RΘ _{JC}	Junction-to-case	12.8	13.5	N/A
2	$R\Theta_{JB}$	Junction-to-board	15.1	19.7	N/A
3	$R\Theta_{JA}$	Junction-to-free air	24.5	33.8	0.00
4			21.9	30	0.50
5	DO.	lunation to moving air	21.1	28.7	1.00
6	RΘ _{JMA}	Junction-to-moving air	20.4	27.4	2.00
7			19.6	26	4.00
8			0.6	0.8	0.00
9			0.8	1	0.50
10	Psi _{JT}	Junction-to-package top	0.9	1.2	1.00
11			1.1	1.4	2.00
12			1.3	1.8	4.00
13			14.9	19.1	0.00
14			14.4	18.2	0.50
15	Psi _{JB}	Junction-to-board	14.4	18	1.00
16			14.3	17.7	2.00
17			14.1	17.4	4.00

⁽¹⁾ These measurements were conducted in a JEDEC defined 2S2P system and will change based on environment as well as application. For more information, see these EIA/JEDEC standards – EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages. Power dissipation of 1W and ambient temp of 70C assumed. PCB with 2oz (70um) top and bottom copper thickness and 1.5oz (50um) inner copper thickness

⁽²⁾ Simulation data, using the same model but with 1oz (35um) top and bottom copper thickness and 0.5oz (18um) inner copper thickness. Power dissipation of 1W and ambient temp of 70C assumed.

⁽³⁾ m/s = meters per second

8.4 Thermal Data for PTP

The following table(s) show the thermal resistance characteristics for the PowerPADTM PTP mechanical package.

Table 8-2. Thermal Resistance Characteristics (PowerPADTM Package) [PTP]

NO.			°C/W ⁽¹⁾	°C/W ⁽²⁾	°C/W ⁽³⁾	°C/W ⁽⁴⁾	AIR FLOW (m/s) ⁽⁵⁾
1	RΘ _{JC}	Junction-to-case	7.8	9.4	8.6	10.1	N/A
2	$R\Theta_{JB}$	Junction-to-board	6.2	9.9	7.1	10.6	N/A
3	$R\Theta_{JA}$	Junction-to-free air	21.3	27.9	23.2	30.6	0.00
4			14.3	20.2		22.6	0.50
5	DO.	lunction to moving oir	13.1	18.6		21.0	1.00
6	RΘ _{JMA}	Junction-to-moving air	12.1	17.4		19.6	2.00
7			11.2	16.2		18.2	4.00
8			0.5	0.7		0.8	0.00
9			0.6	0.9		1.0	0.50
10	Psi _{JT}	Junction-to-package top	0.7	1.0		1.1	1.00
11			0.8	1.1		1.3	2.00
12			1.0	1.3		1.5	4.00
13			6.3	9.5		10.8	0.00
14			5.9	8.8		9.9	0.50
15	Psi _{JB}	Junction-to-board	5.9	8.7		9.8	1.00
16			5.8	8.6		9.7	2.00
17			5.8	8.5		9.6	4.00

- (1) Simulation data, using a model of a JEDEC defined 2S2P system with a 12mmx12mm copper pad on the top and bottom copper layers connected with an 8x8 thermal via array and soldered to the package thermal pad. Power dissipation of 1W assumed, 70C Ambient temp assumed. Signal layer copper coverage 20%, inner layer copper coverage 90%. Actual performance will change based on environment as well as application. For more information, see these EIA/JEDEC standards EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages.
- (2) Simulation data, using the same model but with 1oz (35um) top and bottom copper thickness and 0.5oz (18um) inner copper thickness. Power dissipation of 1W and ambient temp of 70C assumed.
- (3) Simulation data, 1S1P PCB model with 12x12mm copper pad on the top layer soldered to device thermal pad and connected to the bottom copper layer (90% copper) with an 8x8 thermal via array. Power dissipation of 1W and ambient temp of 70C assumed. Copper thickness 2oz (70um) top and bottom.
- (4) Simulation data, 1S1P PCB model with 12x12mm copper pad on the top layer soldered to device thermal pad and connected to the bottom copper layer (90% copper) with an 8x8 thermal via array. Power dissipation of 1W and ambient temp of 70C assumed. Copper thickness 1oz (35um) top and bottom.
- (5) m/s = meters per second

8.5 Supplementary Information About the 176-pin PTP PowerPAD™ Package

This section highlights a few important details about the 176-pin PTP PowerPAD™ package. Texas Instruments' PowerPAD Thermally Enhanced Package Technical Brief (literature number SLMA002) should be consulted when creating a PCB footprint for this device.

8.5.1 Standoff Height

As illustrated in Figure 8-1, the standoff height specification for this device (between 0.050 mm and 0.150 mm) is measured from the seating plane established by the three lowest package pins to the **lowest** point on the package body. Due to warpage, the lowest point on the package body is located in the center of the package at the exposed thermal pad.

Using this definition of standoff height provides the correct result for determining the correct solder paste thickness. According to Tl's PowerPAD Thermally Enhanced Package Technical Brief (literature number SLMA002), the recommended range of solder paste thickness for this package is between 0.152 mm and 0.178 mm.

Figure 8-1. Standoff Height Measurement on 176-pin PTP Package

8.5.2 PowerPAD™ PCB Footprint

In general, for proper thermal performance, the thermal pad under the package body should be as large as possible. However, the soldermask opening for the PowerPAD TM should be sized to match the pad size on the 176-pin PTP package; as illustrated in Figure 8-2.

Figure 8-2. Soldermask Opening Should Match Size of DSP Thermal Pad

8.6 Packaging Information

Table 8-3. Orderable Part Numbers

ORDERABLE PART NUMBER ⁽¹⁾	PACKAGE	CPU SPEED	EMIFB SDRAM SPEED	CORE SUPPLY	I/O SUPPLY	OPERATING AMBIENT TEMPERATURE RANGE
D830 yabc AZKB300	256 ZKB	300 MHz	133 MHz	1.2 V	3.3 V	0°C to 70°C

(1) y = ROM type/application abc = Security option (a) + IP selection (b) + ROM revision (c)

Figure 8-3 provides a legend for reading the complete device name of any DA8xx device family member.

- (1) Not included in device marking on package.
- (2) Not included in orderable part number. Please see Table 8-3.

Figure 8-3. Device Nomenclature

8.7 Mechanical Drawings

This section contains detailed mechanical drawings for the ZKB Plastic Ball Grid Array package and the PTP PowerPADTM plastic quad flat pack package. Additionally, for the PTP package a detailed drawing of the actual thermal pad dimensions as well as a recommended PCB footprint are provided.

8.7.1 ZKB (S-PBGA-N256)

ZKB (S-PBGA-N256)

PLASTIC BALL GRID ARRAY

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. This is a lead-free solder ball design.

8.7.2 PTP (S-PQFP-G176)

PTP (S-PQFP-G176)

PowerPAD™ PLASTIC QUAD

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion.
 - D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package. Texas Instruments Literature No. SLMA002 for information regarding recommend board layout. This document is available at http://www.ti.com>.
 - E. Falls within JEDEC MS-026

PowerPAD is a trademark of Texas Instruments Incorporated.

PTP (S-PQFP-G176) PowerPAD™

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com https://www.ti.com. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD is a trademark of Texas Instruments.

THERMAL PAD MECHANICAL DATA

PTP (S-PQFP-G176)

THERMAL INFORMATION

This PowerPAD package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Exposed Thermal Pad Dimensions

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications Products Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters Automotive www.ti.com/automotive dataconverter.ti.com DLP® Products Broadband www.dlp.com www.ti.com/broadband DSP Digital Control dsp.ti.com www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface www.ti.com/military interface.ti.com Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Telephony Microcontrollers microcontroller.ti.com www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated