

Convolutional Neural Networks for Sentence Classification

연세대학교 응용통계학과 이규민

NLP에 CNN을 써보자!

Yoon Kim

yoonkim@seas.harvard.edu
http://www.people.fas.harvard.edu/~yoonkim

Employment

Jun 2020 – Research Scientist MIT-IBM Watson AI Lab

Education

2020 Ph.D., Computer Science Harvard University Advisor: Alexander Rush

Thesis: "Deep Latent Variable Models of Natural Language"

Notation

 $x_i \in \mathbb{R}^k$: k – dimension word vector of i^{th} word

 $x_{1:n} = x_1 \oplus ... \oplus x_n$: sentence of length n (n words)

 $w \in \mathbb{R}^{hk}$: filter applied to a window of h words

 $b \in \mathbb{R}$: bias term

f : non-linear function (ex. hyperbolic function)

Model

 $c_i = f(\mathbf{w} \cdot \mathbf{x}_{i:i+h-1} + b)$: non-linear function (ex. hyperbolic function)

Model

$$c_i = f(\mathbf{w} \cdot \mathbf{x}_{i:i+h-1} + b)$$
: non-linear function (ex. hyperbolic function)

→ $\{x_{1:h}, x_{2:h+1}, ..., x_{n-h+1:n}\}$ 이라는 문장에 대하여 $\mathbb{C} = [c_1, c_2, ..., c_{n-h+1}]$ 이라는 feature map 생성 ($\mathbb{C} \in \mathbb{R}^{n-h+1}$) 이후 max pooling을 통해 1개의 feature 획득

- → Window size 를 다르게 하며 multiple filter 로 학습
- → 그렇게 얻은 multiple feature 를 fully connected softmax layer 에 넣으면 label에 대한 distribution 얻을 수 있다.

Model

Model

- 1. Filter 에 대해 convolution
- 2. f 라는 activation function에 대입
- 3. Max pooling
- 4. 위 1~3을 여러 filter에 대해 시행 5. 얻은 값을 fully connected softmax layer로 학습!

2.1 regularization

• Dropout Model $c_i = f(\mathbf{w} \cdot \mathbf{x}_{i:i+h-1} + b)$ 에서

- w·x+b 대신 w·(x*r)+b로 학습 (*는 element-wise multiplication) r은 m dimension Bernoulli random variable with prob. P of being 1
- 이후 test 시 $\widehat{\mathbf{w}} = p\mathbf{w}$ 를 weight 로 사용
- $\|\mathbf{w}_c\| > s$ 이면 $\|\mathbf{w}_c\| = s$ 로 rescale

Data set

Data	c	l	N	$ V $ $ V_{pre} $		Test	
MR	2	20	10662	18765	16448	CV	
SST-1	5	18	11855	17836	16262	2210	
SST-2	2	19	9613	16185	14838	1821	
Subj	2	23	10000	21323	17913	CV	
TREC	6	10	5952	9592	9125	500	
CR	2	19	3775	5340	5046	CV	
MPQA	2	3	10606	6246	6083	CV	

• Column 은 순서대로

target class의 수 평균 문장 길이 전체 data set size 단어 size pre-trained word vector 에 있는 단어의 수 test set size

3.1 Hyperparameter & 3.2 pre-trained data

- Find hyperparameters based on dev set
- Nonlinearity: ReLU
- Window filter sizes h = 3, 4, 5
- Each filter size has 100 feature maps
- Dropout p = 0.5
- L2 constraint s for rows of softmax, s = 3
- Mini batch size for SGD training: 50
- Word vectors: pre-trained with word2vec, k = 300

3.3 Model variation

Static/ Non-static, Single channel / Multi-channel 에 따라

CNN-rand, CNN-static, CNN-nonstatic, CNN-multichannel 로 구분하여 학습

04 result

4. Result

Model		SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static		45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	_	_	_	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	_	_	_	_
RNTN (Socher et al., 2013)	_	45.7	85.4	_	_	_	_
DCNN (Kalchbrenner et al., 2014)	_	48.5	86.8	_	93.0	_	_
Paragraph-Vec (Le and Mikolov, 2014)	_	48.7	87.8	_	_	_	_
CCAE (Hermann and Blunsom, 2013)	77.8	_	_	_	_	_	87.2
Sent-Parser (Dong et al., 2014)	79.5	_	_	_	_	_	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	_	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_	_	93.6	_	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	_	93.4	_	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_	_	93.6	_	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	_	_	_	_	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	_	_	_	_	_	82.7	_
SVM_S (Silva et al., 2011)	_	_	_	_	95.0	_	

4.1 Multi vs single channel

→ Mixed results......

4.2 Static vs non-static channel

→ more specific to the task-at-hand!

4.3 Others.....

→ Dropout : effective!

→ Random initialization : can be improved!

	Most Similar Words for				
	Static Channel	Non-static Channel			
bad	good	terrible			
	terrible	horrible			
	horrible	lousy			
	lousy	stupid			
good	great	nice			
	bad	decent			
	terrific	solid			
	decent	terrific			
n't	os	not			
	ca	never			
	ireland	nothing			
	wo	neither			
!	2,500	2,500			
	entire	lush			
	jez	beautiful			
	changer	terrific			
,	decasia	but			
	abysmally	dragon			
	demise	a			
	valiant	and			

5. conclusion

In the present work we have described a series of experiments with convolutional neural networks built on top of word2vec. Despite little tuning of hyperparameters, a simple CNN with one layer of convolution performs remarkably well. Our results add to the well-established evidence that unsupervised pre-training of word vectors is an important ingredient in deep learning for NLP.

→ simple CNN works good for NLP tasks, especially sentence classification!

Thank You:)

감사합니다