Chapter 2 Configuration Space

- 2.1 DOF of a Rigid Body
- 2.2 DOF of a Robot
- 2.3 C-space Topology and Representation

Chapter 3	Rigid-Body Motions
Chapter 4	Forward Kinematics
Chapter 5	Velocity Kinematics and Statics
Chapter 6	Inverse Kinematics
Chapter 7	Kinematics of Closed Chains
Chapter 8	Dynamics of Open Chains
Chapter 9	Trajectory Generation
Chapter 10	Motion Planning
Chapter 11	Robot Control
Chapter 12	Grasping and Manipulation
Chapter 13	Wheeled Mobile Robots

Important concepts, symbols, and equations

- Two C-spaces may have the same dof but differ in other ways. The topology ("shape") of a space is independent of how we represent it.
- Two spaces are topologically equivalent if one can be continuously deformed to the other without cutting or pasting.
- Some spaces are Cartesian products of spaces of lower dimension, e.g.,

(1d)
$$\mathbb{E}$$
, $S = T$ (2d) $\mathbb{E} \times \mathbb{E} = \mathbb{E}^2$, $S \times S = T^2$, S^2 , $\mathbb{E} \times S$ (higher) $\mathbb{E}^k \times S^m \times T^n$

- Represent Euclidean ("flat") spaces \mathbb{E}^n as \mathbb{R}^n . For curved spaces, choose
 - minimum-parameter explicit parameterizations (choose between singularities or an atlas of coordinate charts), OR
 - implicit representation (use more numbers subject to constraints).

Any value in an atlas of coordinate charts? An implicit representation?

Any value in an atlas of coordinate charts? An implicit representation?

Any value in an atlas of coordinate charts? An implicit representation?

C-space topology, with and without arm joint limits, rotor angles? Implicit/explicit representations? Grübler's formula?

body: \$3 x 52 x 5'
rotors: 5'x5'... = T6
6 times

arm: T5 (no joint limits)

R3 × 52 × 51 × T6 × T5 × T5 =

R3 × +17 × 52

hexrotor with two 5-DOF arms

https://www.prodrone.com/archives/1420/

each arm joint 6 (0, T)

R3 x 52 x 5 x T6 x R10 = R13 x 52 x T

R3 x 52 x 5 x T6 x R10 = R13 x 52 x T

KUKA youBot mecanum-wheel omnidirectional base moving on flat ground plus 5-DOF robot arm + gripper

C-space topology and representation? Include gripper, wheel angles?