Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Programa de Pós-Graduação em Ciência da Computação

GRAFOS

Fluxo Máximo em Redes

Nelson Cruz Sampaio Neto nelsonneto@ufpa.br

- Dada uma rede, com 1 (um) nó de entrada e 1 (um) nó de saída, com <u>capacidades</u> associadas a cada aresta, pretende-se saber qual é o fluxo máximo que se pode enviar da entrada para a saída.
- Exemplo: Maximizar o fluxo de água de um sistema de aquedutos.
 O valor das arestas é a capacidade de cada tubulação.

Uma rede com fluxo será representada por D = (V, E, f), onde f é um vetor de dimensão e + 1, sendo e o número de arestas:

$$f = (f_0, f_1, f_2, ..., f_e)$$
, onde f_0 é o fluxo máximo e $0 \le f_i \le c_i$, onde c_i é a capacidade da aresta i

- O fluxo é considerado <u>linear</u>, ou seja, seu valor não muda ao longo do percurso. Sabe-se que todo fluxo linear é <u>conservativo</u>.
- <u>Lei da conservação</u>: Todo fluxo que chega a um vértice sai dele.

$$\sum f(w, v) = \sum f(v, y)$$

w y

- Não confundir fluxo maximal com fluxo máximo.
- Um fluxo é dito maximal quando todo caminho entre a fonte e o sumidouro contém alguma aresta saturada.
- Todo fluxo máximo é maximal, mas a recíproca não é verdadeira.

Rede com fluxo maximal, mas não máximo

- Seja D = (V, E, f) uma rede com fluxo e um subconjunto de vértices
 X C V, tal que s ∈ X e t ∉ X.
- Então, um <u>corte</u> (X , V X) em D é o conjunto de arestas de D com extremidade inicial em X e extremidade final em V – X.

Corte Mínimo vs Fluxo Máximo

• Em resumo, para encontrar o fluxo máximo de uma rede basta descobrir seu corte mínimo.

Teorema de Ford e Fulkerson

Teorema de Ford e Fulkerson:

"O valor do fluxo máximo em uma rede **D** é igual a capacidade do corte mínimo de **D**".

$$f_0 = c_{\min}(X, V - X)$$

- O corte mínimo é o "gargalo" da rede, ou seja, o ponto de passagem mais estreito entre os vértices s e t. Só vai passar pela rede o fluxo que couber nesse gargalo.
- Algoritmo de Ford e Fulkerson ou algoritmo do fluxo máximo: http://ranger.uta.edu/~weems/NOTES5311/ffLab.c

```
função Ford-Fulkerson(G, s, t)
para cada (u, v) em E[G]
fluxo(u, v) := 0
enquanto existir caminho p de s para t na rede residual
Cf(p) := menor folga entre os arcos do caminho p
// Cf(p) = Min [ capacidade(u,v) - fluxo(u,v) ]
para cada (u, v) no caminho p
fluxo(u, v) := fluxo(u, v) + Cf(p)
 Fo = Fo + Cf(p) // valor do fluxo máximo
atualizar a rede residual
```


• Usando busca em largura, escolher sempre o caminho de menor comprimento, isto é, com menor número de arestas.

• Atualizar o fluxo máximo e o fluxo das arestas que compõem o caminho com base na menor folga do caminho.

• Montar a rede residual. En seguida, o mesmo procedimento deve ser realizado enquanto existir um caminho entre **s** e **t**.

• Verifique qual foi o fluxo estipulado para a rede abaixo? Esse valor estipulado é máximo? Caso negativo, encontre o valor ótimo para o fluxo máximo da rede.

• O fluxo estipulado para a rede foi 4.

- Contudo, esse fluxo estipulado não é máximo.
- O fluxo máximo da rede é igual a 7 dado pelo corte mínimo abaixo.

Conclusão

- A cada iteração busca-se um caminho por onde passar o fluxo.
 Passamos o fluxo por aí e montamos uma rede residual.
- A ideia é fazer uma busca na rede residual por caminhos com arestas onde f(u,v) < c(u,v).
- O que muda nos diversos algoritmos que se baseiam em Ford-Fulkerson é o modo de achar o "augmenting path".
- O algoritmo que emprega busca em largura para selecionar o caminho mais curto (conhecido como algoritmo de <u>Edmonds-</u> <u>Karp</u>) tem complexidade *O(v e²)*.

Conclusão

Algoritmo	Complexidade no tempo
Ford e Fulkerson [1962]	-
Dinic [1970]	O(v² e)
Edmonds e Karp [1972]	<i>O</i> (v e²)
Karzanov [1974]	$O(V^3)$
Galil [1978]	$O(v^{5/3} e^{1/2})$
Galil e Naamad [1980]	O(v e log² v)
Sleator e Tarjan [1983]	O(v e log v)
Gabow [1985]	O(v e log u)
Ahuja, Orlin e Tarjan [1989]	$O(v e + v^2 log^{1/2} u)$

u : valor máximo permitido para as capacidades das arestas.

Use o algoritmo de Edmonds-Karp para encontrar o fluxo máximo da rede abaixo. A valoração da aresta indica sua capacidade. O vértice **A** é a fonte e o vértice **G** é o sumidouro.

Encontre a vazão máxima da rede abaixo. Em seguida, suponha que a vazão das tubulações não está sendo suficiente. Assim, um engenheiro decide construir uma nova tubulação de **p** para **t** com uma vazão 3.

- 1) Em quanto a vazão máxima do sistema irá aumentar com essa nova tubulação? Por quê?
- 2) Dada essa nova tubulação, que outra tubulação você alteraria para aumentar a vazão máxima do sistema para 8? Por quê?

Quanto custaria no mínimo enviar o fluxo máximo da rede abaixo tendo como origem sua fonte e destino seu sumidouro? Explique de forma detalhada sua resposta.

Note que além da capacidade, cada aresta também é valorada com o custo unitário associado ao transporte. Por exemplo, a aresta (s, 1) tem capacidade de 50 a um custo unitário de 20.

Responda os itens a seguir de acordo com a rede abaixo.

- a) Quanto custaria no mínimo passar 25 unidades de fluxo pela rede?
- b) Quanto custaria no mínimo passar 35 unidades de fluxo pela rede?
- c) Se eu dispuser de 2.600 unidade de transporte, quantas unidades de fluxo no máximo poderei passar?

- O problema de alocação linear pode ser aplicado a escolha de n pessoas a serem contratadas para executar n serviços, levando-se em conta que a pessoa i cobra um preço c_{ij} para executar o serviço j, de tal modo que o custo total seja mínimo.
- Ele pode ser resolvido considerando-se o grafo bipartido G = (P U S, E), onde P = {pessoas}, S = {serviços} e o arco (p_i, s_j) tem custo c_{ij} e capacidade 1. Adiciona-se uma fonte fictícia ligada aos vértices de P e um sumidouro fictício ligado aos vértices de S, onde todos os novos arcos têm custo zero e capacidade 1.
- Assim, um fluxo máximo de custo mínimo fornecerá uma alocação de custo mínimo e seu valor respectivo.

• Agora, aplique o algoritmo apresentado no slide anterior para calcular a alocação de custo mínimo usando os dados da tabela abaixo.

	1	2	3	4	5
1	18	11	7	9	13
2	7	4	9	15	14
3	6	12	13	17	18
4	13	10	12	14	17
5	12	9	9	14	14

- Dado o corte mínimo acima, o fluxo máximo é igual a 5 (cinco).
- A aresta (D, E) não é considerada no cálculo da capacidade do corte.

- A vazão máxima da rede é 5, de acordo com o corte mínimo.
- Acrescentando a aresta (p,t), de vazão 3, o corte mínimo passa a ser formado pelas arestas (s,o) e (s,p); e a vazão máxima passa a ser 6, ou seja, seria aumentada apenas de uma unidade.
- Mantendo a aresta (p,t) (3) e aumentando a vazão da aresta (s,p) para 5, a vazão máxima da rede passaria a ser igual a 8, por exemplo.

- O fluxo máximo da rede acima é igual a 70 usando dois únicos caminhos.
- O caminho $\mathbf{s} \mathbf{1} \mathbf{2} \mathbf{t}$ entrega um fluxo de 30 a um custo de 70 (= 2.100) e o caminho $\mathbf{s} \mathbf{3} \mathbf{4} \mathbf{t}$ entrega um fluxo de 40 a um custo de 45 (= 1.800).
- Com isso, o custo mínimo para enviar o fluxo máximo é igual a 3.900.

- a) Primeiro caminho mínimo: $\mathbf{s} \mathbf{3} \mathbf{2} \mathbf{t}$ com custo 40 e fluxo 30. Logo, passar 25 unidades de fluxo custa no mínimo 1.000.
- b) Segundo caminho mínimo: $\mathbf{s} \mathbf{3} \mathbf{4} \mathbf{t}$ com custo 45 e fluxo 10. Logo, passar 35 unidades de fluxo custa no mínimo 1.200 + 225 = 1.425.
- c) Terceiro caminho mínimo: $\mathbf{s} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \mathbf{t}$ com custo 75 e fluxo 30. Logo, com 2.600 é possível passar no máximo 52 unidades de fluxo com custo 1.200 + 450 + 900 = 2.550.

• Montando a rede, alocação mínima é igual a 4 + 6 + 7 + 14 + 14 = 45

	1	2	3	4	5
1	18	11	7	9	13
2	7	4	9	15	14
3	6	12	13	17	18
4	13	10	12	14	17
5	12	9	9	14	14