Ejercicios: Clase

Karla Romina Juárez Torres February 6, 2024 1 Ejercicios 1

2 Ejercicios 2

Ejercicios elaborados por: Karla Romina Juárez Torres, $N^{\underline{o}}$ cuenta : 318013712

2.1 Sea $z \in \mathbb{C}$ Demuestra las siguientes desigualdades.

 $2|\operatorname{Re}(z)||\operatorname{Im}(z)| \le |z|^2$

Expresamos z en términos de su parte real y su parte imaginaria:

$$z = x + yi$$

donde x = Re(z) y y = Im(z).

Entonces, la desigualdad se convierte en:

$$2|x|\cdot|y| \le |x+yi|^2$$

Usando la definición del módulo de un número complejo:

$$|x + yi|^2 = (x + yi)(x - yi) = x^2 + y^2$$

Entonces, la desigualdad se convierte en:

$$2|x|\cdot|y| \le x^2 + y^2$$

Aplicando la desigualdad de la media aritmética-geométrica (AM-GM), tenemos:

$$\frac{x^2+y^2}{2} \geq 2|x|\cdot|y|$$

Por lo tanto,

$$x^2 + y^2 \ge 2|x| \cdot |y|$$

Entonces,

$$|x + yi|^2 \ge 2|x| \cdot |y|$$

Por lo tanto $2|\operatorname{Re}(z)||\operatorname{Im}(z)| \le |z|^2$.

$$|\operatorname{Re}(z)| + |\operatorname{Im}(z)| \le \sqrt{2}|z|$$

Expresamos z en términos de su parte real y su parte imaginaria:

$$z = x + yi$$

donde x = Re(z) y y = Im(z).

Entonces, la desigualdad se convierte en:

$$|\operatorname{Re}(z)| + |\operatorname{Im}(z)| \le \sqrt{2}|x + yi|$$

Usando la definición del módulo de un número complejo:

$$|x+yi| = \sqrt{x^2 + y^2}$$

Entonces, la desigualdad se convierte en:

$$|\operatorname{Re}(z)| + |\operatorname{Im}(z)| \le \sqrt{2}\sqrt{x^2 + y^2}$$

Ahora, aplicamos la desigualdad triangular para módulos:

$$|\operatorname{Re}(z)| + |\operatorname{Im}(z)| \le \sqrt{2}(|\operatorname{Re}(z)| + |\operatorname{Im}(z)|)$$

Definimos $a = |\operatorname{Re}(z)|$ y $b = |\operatorname{Im}(z)|$, entonces:

$$a+b \le \sqrt{2}(a+b)$$

Dividimos ambos lados de la desigualdad por a+b (que es positivo porque es la suma de dos valores absolutos):

$$1 < \sqrt{2}$$

Como $\sqrt{2}$ es mayor que 1, la desigualdad $1 \leq \sqrt{2}$ es verdadera. Por lo tanto

$$|\operatorname{Re}(z)| + |\operatorname{Im}(z)| \le \sqrt{2}|z|$$

.

2.2 Sean $z_1, z_2, ..., z_n \in \mathbb{C}$ y $t_1, t_2, ..., t_n \in \mathbb{R}$ tales que $|z_i| \le 1$, $t_i \ge 0$, para cada i = 1, 2, ..., n, y $t_1 + t_2 + ..., t_n = 1$ Demuestra que: $|t_1 z_1 + t_2 z_2 + ... + t_n z_n| < 1$

Sea z_i en términos de sus partes real e imaginaria:

$$z_i = x_i + y_i$$

donde $x_i = \text{Re}(z_i)$ y $y_i = \text{Im}(z_i)$.

Entonces, tenemos:

$$|t_1z_1 + t_2z_2 + \dots + t_nz_n| = |t_1(x_1 + y_1) + t_2(x_2 + y_2) + \dots + t_n(x_n + y_n)|$$

Por la desigualdad triangular:

$$|t_1(x_1+y_1)+t_2(x_2+y_2)+\cdots+t_n(x_n+y_n)| \leq |t_1(x_1)+t_1(y_1)|+|t_2(x_2)+t_2(y_2)|+\cdots+|t_n(x_n)+t_n(y_n)|$$

Dado que $|t_i| = t_i$ para $t_i \ge 0$, podemos simplificar esto aún más:

$$|t_1(x_1)+t_1(y_1)|+|t_2(x_2)+t_2(y_2)|+\cdots+|t_n(x_n)+t_n(y_n)|=t_1|x_1+y_1|+t_2|x_2+y_2|+\cdots+t_n|x_n+y_n|$$

Dado que $|z_i| \le 1$, tenemos que $|x_i + y_i| \le 1$, por lo tanto:

$$t_1|x_1+y_1|+t_2|x_2+y_2|+\cdots+t_n|x_n+y_n| \le t_1+t_2+\cdots+t_n$$

Dado que $t_1 + t_2 + \dots + t_n = 1$

Por lo tanto, $|t_1z_1 + t_2z_2 + \cdots + t_nz_n| < 1$.

, tenemos que:

$$t_1 + t_2 + \dots + t_n = 1$$

Sean $z,w\in\mathbb{C}$, con $w\neq 0$. Demuestra que $|z+w|^2=|z^2|+|w|^2$ si y 2.3 sólo si, Re $\frac{z}{w}=0$

Expresamos z y w en términos de sus partes real e imaginaria.

Dado que z = a + bi y w = c + di, donde a, b, c, d son números reales, tenemos:

$$|z + w|^2 = |(a + c) + (b + d)i|^2$$

Usando la definición del módulo de un número complejo:

$$|(a+c) + (b+d)i|^2 = (a+c)^2 + (b+d)^2$$

Ahora, expresamos z^2 en términos de sus partes real e imaginaria:

$$z^2 = (a^2 - b^2) + 2abi$$

Usando la definición del módulo de un número complejo:

$$|z^2| = |(a^2 - b^2) + 2abi| = (a^2 - b^2)^2 + (2ab)^2$$

Dado que la igualdad $|z + w|^2 = |z^2| + |w|^2$ se mantiene si y solo si:

$$(a+c)^2 + (b+d)^2 = (a^2 - b^2)^2 + (2ab)^2 + c^2 + d^2$$

Expandiendo esta ecuación y cancelando los términos comunes, obtenemos:

$$2ac + 2bd = 0$$

Dividiendo ambos lados por 2, obtenemos:

$$ac + bd = 0$$

Ahora, la parte real de $\frac{z}{w}$ es:

$$\operatorname{Re}\left(\frac{z}{w}\right) = \frac{ac + bd}{c^2 + d^2}$$

Entonces, Re $\left(\frac{z}{w}\right)=0$ si y solo si ac+bd=0. Por lo tanto $|z+w|^2=|z^2|+|w|^2$ si y solo si Re $\frac{z}{w}=0$.