Faculté Mathématique et Informatique

Département d'informatique

Module : Algèbre II

1 Année LMD - MI Date : 24/05/2023 Durée : 01h :30 m

Examen final semestre 2

Exercice 01:(06 points)

Soient les ensembles suivants:

$$E = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\} \text{ et } F = \{(x, y, z) \in \mathbb{R}^3 \mid x - y = x + z = 0\}$$

- $oldsymbol{0}$ Montrer que E et F sont des sous espace vectoriel de \mathbb{R}^3
- $oldsymbol{2}$ Donner une base de E et une base de F et en déduire dimE et dimF .
- **3** Montrer que E et F sont supplémentaires dans \mathbb{R}^3 ?

Exercice 02:(09 points)

On considère l'application f définie de \mathbb{R}^3 vers \mathbb{R}^3 par: f((x,y,z))=(y-z,x+z,z)

- $oldsymbol{0}$ Montrer que l'application f est linéaire.
- $oldsymbol{2}$ Déterminer $\operatorname{Ker}(f)$ et $\operatorname{Im}(f)$, puis calculer $\dim \operatorname{Ker}(f)$ et $\dim \operatorname{Im}(f)$
- $oldsymbol{3}$ En déduire que f est un automorphisme.

Soient $\mathcal{B} = \{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 :

- **9** Donner la matrice M associée à f dans la base canonique de \mathbb{R}^3 .
- **6** Montrer que M est inversible et donner M^{-1} .

Exercice 03:(05 points)

Soient la matrice $A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$,

- Calculer A^2 .
- $Montrer que <math>A^2 = A + 2I_3.$
- **3** En déduire A^{-1} .

Département d'informatique

Module : Algèbre II Date : 24/05/2023

 1^{ere} Année LMD - MI

Durée : $01^h : 30^m$

Corrigé de l'examen semestre 2

Exercice 01:(06 points)

$oldsymbol{0}$ Montrer que E et F sont des sous espace vectoriel de \mathbb{R}^3 . (1.5 points)

Soient les ensembles suivants:

$$E = \{(x, y, z) \in \mathbb{R}^3; x + y + z = 0\} \text{ et } F = \{(x, y, z) \in \mathbb{R}^3; x - y = x + z = 0\}$$

1. • Commençons par E

$$soit (0,0,0) \in \mathbb{R}^3 \ et \ 0 + 0 + 0 = 0 \ alors \ 0_{\mathbb{R}^3} \in E................(0.25pt)$$

Soit
$$X = (x, y, z)$$
, $Y = (x', y', z') \in E$, et soit $\alpha, \beta \in \mathbb{R}$, il est clair que

$$\alpha X + \beta Y \in E \text{ alors } \alpha(x+y+z) + \beta(x'+y'+z') = 0 \text{ car } X, Y \in E............(0.5pt)$$

2. •
$$soit (0,0,0) \in \mathbb{R}^3$$
 et $0-0=0+0=0$ alors $0_{\mathbb{R}^3} \in F..............(0.25pt)$

Soit
$$X=(x,\ y,\ z)$$
, $Y=(x',\ y',\ z')\in F,\ et\ soit\ \alpha,\ \beta\ deux\ r\'eels\ quelconques.$

Par hypothèse on a d'une part x - y = x + z, alors

$$\alpha(x-y) = \alpha(x+z) = 0. (1)$$

Et d'autre part x' - y' = x' + z', d'où

$$\beta(x'-y') = \beta(x'+z') = 0$$
 (2)

(1) + (2) donne:

$$\alpha x + \beta x' - (\alpha y + \beta y') = \alpha x + \beta x' + \alpha z + \beta z' = 0.$$

Ainsi $\alpha X + \beta Y \in F_{\cdot, \cdot, \cdot, \cdot, \cdot}$ (0.5pt)

- lacktriangle Donner une base de E et une base de F et en déduire dimE et dimF . (2.5 points)
- La base de E, on a $X \in E$ alors $x + y + z = 0 \Rightarrow x = -y z$

alors
$$(x, y, z) = (-y - z, y, z) = (-y, y, 0) + (-z, 0, z) = y(-1, 1, 0) + z(-1, 0, 1)$$
,(0.25pt)

Posons
$$a_E = (-1, 1, 0) \in E$$
 et $b_E = (-1, 0, 1) \in E$,

donc
$$B_E = \{a_E, b_E\}$$
 est une partie génératrice de E(0.25pt)

Soit $\lambda_1, \lambda_2 \in \mathbb{R}$, on a:

$$\lambda_1 \bullet a_E + \lambda_2 \bullet b_E = 0_{\mathbb{R}^3} \Rightarrow \lambda_1 = \lambda_2 = 0.....(0.25 \mathrm{pts})$$

Donc B_E est libre. et par suite la base de E est $\{(-1,1,0), (-1,0,1)\}$ alors la dim(E) = 2.....(0.5pt)

• La base de F, soit $X \in F$ alors $x - y = x + z = 0 \Rightarrow z = -y$ et y = x

alors
$$(x, y, z) = (y, y, -y) = y(1, 1, -1), \dots (0.25pt)$$

Posons $c_F = (1, 1, -1) \in F$, donc $B_F = \{c_F\}$ est une partie génératrice de F.....(0.25pt)

Soit
$$\lambda \in \mathbb{R}$$
, on a: $\lambda \bullet c_F = 0_{\mathbb{R}^3} \Rightarrow \lambda = 0.............(0.25 pts)$

Donc B_F est libre. et par suite la base de F est $\{(1, 1, -1)\}$ alors la dim(F) = 1.(0.5pt)

3 Montrer que E et F sont supplémentaires dans \mathbb{R}^3 . (2 points)

Pour l'intersection entre E et F, soit $X \in E \cap F$ donc $X \in E$ et $X \in E$, ce qui donne

$$x + y + z = 0$$
 et $x - y = x + z = 0 \Rightarrow x = y = z = 0$

alors
$$E \cap F = \{(0,0,0)\}$$
. (et par conséquent, $dim(E \cap F) = 0$),(0.5pt)

on utilise la dimension, puisque

$$dim(E+F)=dim(E)+dim(F)-dim(E\cap F)=2+1-0=3=dim(\mathbb{R}^3)$$
 et d'autre part on à

 $E+F\subset\mathbb{R}^3$ est un sous espace vectoriel de \mathbb{R}^3 , donc $E+F=\mathbb{R}^3$ (1pt)

Par suite E et F sont supplémentaires dans \mathbb{R}^3(0.5pt)

Exercice 02:(09 points)

 \bullet Montrer que l'application f est linéaire. (1.5 points)

Soit
$$u = (x, y, z), v = (x', y', z') \in \mathbb{R}^3$$
,

On vérifie que $\forall \alpha, \beta \in \mathbb{R}$, on a : $f(\alpha u + \beta v) = \alpha f(u) + \beta f(v)$.

$$f(\alpha u + \beta v) = f(\alpha(x, y, z) + (x', y', z'))$$

$$= f(\alpha x + \beta x', \alpha y + \beta y', \alpha z + \beta z')$$

$$= (\alpha y + \beta y' - (\alpha z + \beta z'), \alpha x + \beta x' + \alpha z + \beta z', \alpha z + \beta z')$$

$$= \alpha (y - z, x + z, z) + \beta (y' - z', x' + z', z')$$

$$= \alpha f(u) + \beta f(v).$$

2 Déterminer Ker(f) et Im(f). (2.5 points)

•
$$\ker f = \{(x, y, z) \in \mathbb{R}^3 / f(x, y, z) = 0_{\mathbb{R}^2} \}.$$

On a:
$$f(x, y, z) = 0_{\mathbb{R}^2} \Leftrightarrow \begin{cases} y - z = 0 \\ x + z = 0 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$

 $\ker f = \{(x, y, z) \in \mathbb{R}^3 | x = y = z = 0\} = \{(0, 0, 0)\}, \dots (0.5pt)$

Par suite dim ker f = 0....(0, 25pt)

• $\operatorname{Im} f = \{ f(x, y, z) / (x, y, z) \in \mathbb{R}^3 \} = \{ (y - z, x + z, z) / (x, y, z) \in \mathbb{R}^3 \}.$

 $\operatorname{Im} f = \{(y - z, x + z, z) / (x, y, z) \in \mathbb{R}^3\} = \{x(0, 1, 0) + y(1, 0, 0) + z(-1, 1, 1) / (x, y, z) \in \mathbb{R}^3\},\$

 $\dots \dots (0.5pt)$

On à: $f = (e_1) = (0, 1, 0), f = (e_2) = (1, 0, 0)$ et $f = (e_3) = (-1, 1, 1)$

Posons $a = (0, 1, 0) \in \text{Im} f$; $b = (1, 0, 0) \in \text{Im} f$ et $c = (-1, 1, 1) \in \text{Im} f$,

donc $B = \{a, b, c\}$ est une partie génératrice de E'.....(0.5pt)

Soit $\lambda_1, \lambda_2 \text{et} \lambda_3 \in \mathbb{R}$, on a:

$$\lambda_1 a + \lambda_2 b + \lambda_3 c = 0_{\mathbb{R}^3} \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0.\dots(0.25 \text{pts})$$

Donc B est libre. Par suite B est une base de $\operatorname{Im} f$ et dim $\operatorname{Im} f = 3 \dots (0, 5pt)$

- \bullet Montrer que l'application f est un Automorphisme. (1.5 points)
- Comme dim $\mathrm{Im} f = 3 = \dim \mathbb{R}^3$, et puisque $\mathrm{Im} f$ est un sous espace vectoriel de \mathbb{R}^3 , alors $\mathrm{Im} f = \mathbb{R}^3$, donc f est surjective $\cdots (0.25 \mathrm{pts})$

ce implique que f est bijective.....(0.25pts)

- Et comme f est linéaire de \mathbb{R}^3 vers \mathbb{R}^3 et bijective, donc f est un **Automorphisme**.....(0.75pt
- $oldsymbol{\Phi}$ Donner la matrice M associée à f dans la base canonique de \mathbb{R}^3 . (1 points)

 $B_{\mathbb{R}^3}=\{(1,0,0),\ (0,1,0),\ (0,0,1)\}$ est la base canonique de \mathbb{R}^3

On a:
$$\begin{cases} f(e_1) = f(1,0,0) = (0,1,0) \\ f(e_2) = f(0,1,0) = (1,0,0) \\ f(e_3) = f(-1,1,1) = (-1,1,1) \end{cases}$$
 donc $M = Mat_f(B_{\mathbb{R}^3}, B_{\mathbb{R}^3}) = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

est la matrice de f relativement aux bases $B_{\mathbb{R}^3}$ et $B_{\mathbb{R}^3}$(1pt)

4 Montrer que M est inversible et donner M^{-1} . (2.5 points)

) Soit
$$M = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Cherchons
$$M' = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
 telle que $M.M' = I_3$, on a:

$$M.M' = I_{3} \Leftrightarrow \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \dots \dots (0,5pt)$$

$$\begin{cases} b = 1 & a = 0 \\ a = 0 & b = 1 \\ -a + b + c = 0 & c = -1 \\ e = 0 & d = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} d = 1 & \Leftrightarrow \\ d = 1 & \Leftrightarrow \\ -d + e + f = 0 & f = 1 \\ h = 0 & g = 0 \\ -g + h + i = 1 & i = 1 \end{cases}$$

$$\Rightarrow \begin{cases} 0 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{cases} \qquad 0 \Rightarrow \begin{cases} 0 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{cases} \Rightarrow \begin{cases} 0 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{cases} \Rightarrow \begin{cases} 0 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{cases} \Rightarrow \begin{cases} 0 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{cases} \Rightarrow \begin{cases} 0 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{cases} \Rightarrow \begin{cases} 0 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{cases} \Rightarrow \begin{cases} 0 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{cases} \Rightarrow \begin{cases} 0 & 1 & -1 \\ 0 & 0 & 1 \end{cases}$$

Alors M est inversible et $M^{-1} = M' \dots (01pt)$

Exercice 03:(05 points)

Soit la matrice
$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$

1. • Calculons A^2 . (1.5 points)

$$A^{2} = A.A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix}$$

Donc

$$A^{2} = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix} \dots \dots (1.5pt)$$

$$5/6$$

2. **2** Montrer que $A^2 = A + 2I_3$. (1.5 points)

$$A^{2} = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Alors: $A^2 = A + 2I_3 \dots (1.5pt)$

3. **3** En déduire A^{-1} . (2 points)

$$A^{2} = A + 2I_{3} \Rightarrow A^{2} - A = 2I_{3} \Rightarrow A(A - I_{3}) = 2I_{3}$$

Ce qui implique que:

$$A^{-1} = 1/2(A - I_3)$$
(1pt)
donc: $A^{-1} = 1/2\begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$ (1pt)