# Combinational Logic: Binary-to-Seven-Segment Decoder

### Ezra John Guia 30031697

February  $8^{th}$ , 2019

# Design Method

1 State the problem in words

Design a combinational logic circuit that takes a 4-bit binary number as an input and produces 7 outputs, one each for the 7 segments of the display unit to show the corresponding hexadecimal number.

2 Determine the input and output variables

4-bit Input variables: Output variables:

- bit 3 (w)
- A

• bit - 2 (x)

• B

• bit - 1 (y)

• C

• bit - 0 (z)

- $\bullet$  D
- E
- F
- G
- 3 Assign letter symbols to the variables.

The 4-bit input variables will be represented by w, x, y, z respectively.

4 Create the truth table that defines the relationships between inputs and outputs.

| w | x | у | Z |   | А | В | С | D | Е | F | G |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 2 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 4 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 | 5 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 6 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 7 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 9 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | Α | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 | b | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | С | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | d | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 | Е | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | F | 1 | 0 | 0 | 0 | 1 | 1 | 1 |

5 Obtain the simplified function for each output (show all steps for this, whether done algebraically or using the map method).

### Karnaugh Map for A



$$A = wz' + x'z' + wx'y' + w'xz + w'y + xy$$

Karnaugh Map for B

| wx yz | 00 | 01 | 11 | 10 |  |
|-------|----|----|----|----|--|
| 00    | 1  | 1  | 1  | 1  |  |
| 01    | 1  | 0  | 1  | 0  |  |
| 11    | 0  | 1  | 0  | 0  |  |
| 10    | 1  | 1  | 0  | 1  |  |

$$B = x'z' + w'x' + w'y'z' + w'yz + wy'z$$

Karnaugh Map for C



$$C=y'z+wx'+w'x+w'y'+w'z$$

Karnaugh Map for D

$$D=wy'+\,x'yz\,+\,xy'z\,+\,w'x'z'\,+\,xyz'$$

Karnaugh Map for E

| wx yz | z 00 <sub> </sub> | 01 | 11 | 10 |
|-------|-------------------|----|----|----|
| 00    | 1                 | 0  | 0  | 1  |
| 01    | 0                 | 0  | 0  | 1  |
| 11    | 1                 | 1  | 1  | 1  |
| 10    | 1                 | 0  | 1  | 1  |

$$E = x'z' + yz' + wx + wy$$

Karnaugh Map for F



$$F = wx' + xz' + wy + y'z' + w'xy'$$

Karnaugh Map for G

$$G = x'y + wx' + yz' + wz + w'xy'$$

 $6\,$  Implement the functions using the appropriate gates (show a logic diagram for this).

Logic Diagram for A







# Logic Diagram for D



### Logic Diagram for E



Logic Diagram for F



