

物理中的數學

2021年

作者:李宥頡、王琳嘉 組織:拓普科學組

目錄

	函數	1
1.1	意義	1
1.2	銳角三角函數	1
1.3	命名的由來	1
1.4	特殊角	2
1.5	基本關係	2
1.6	補充	2
1.7	應用	3
微積	***	4
2.1	斜率	4
2.2	函數下的面積	4
2.3	多項式微積分	4

第1章 三角函數

1.1 意義

三角函數描述角度與邊長比值的函數關係,由相似形可以知道,固定角度的三角形,其邊長之間的比例也 為固定。故我們只要知道三角形的一邊和一角,即可表示其他邊。換句話說,三角函數就是由角度(自變數)得 到邊長比例(應變數)。

1.2 銳角三角函數

定義一個直角三角形,並使角度為 θ ,規定直角三角形的三邊分別為

- 1. 斜邊 c (最長邊)
- 2. 對邊 b (正對 θ)
- 3. 鄰邊 a (和 θ 相鄰)

一般來說有六個三角函數

- 1. 正弦 $\sin \theta = \frac{a}{c}$
- 2. 餘弦 $\cos \theta = \frac{b}{c}$
- 3. 正切 $\tan \theta = \frac{a}{b}$
- 4. 正割 $\sec \theta = \frac{c}{b}$
- 5. 餘割 $\csc \theta = \frac{c}{a}$
- 6. 餘切 $\cot \theta = \frac{b}{a}$

1.3 命名的由來

1.4 特殊角

物理常見的特殊角度有30、37、45、53、60,從直角三角形的邊長比值可求出它們的三角函數。

$\angle A$	sinA	cosA	tanA	cotA	secA	cscA
30°						
45°						
60°						

1.5 基本關係

- 1. 倒數關係
 - $\sin \theta \csc \theta = 1$
 - $\cos \theta \sec \theta = 1$
 - $\tan \theta \cot \theta = 1$
- 2. 平方關係
 - $\sin^2 \theta + \cos^2 \theta = 1$
 - $1 + \tan^2 \theta = \sec^2 \theta$
 - $1 + \cot^2 \theta = \csc^2 \theta$
- 3. 商數關係
 - $\bullet \ \frac{\sin \theta}{\cos \theta} = \tan \theta$
- 4. 互餘關係
 - $\sin(90^{\circ} \theta) = \cos \theta$, $\cos(90^{\circ} \theta) = \sin \theta$
 - $\tan(90^{\circ} \theta) = \cot \theta$, $\cot(90^{\circ} \theta) = \tan \theta$
 - $\sec(90^{\circ} \theta) = \csc \theta$, $\csc(90^{\circ} \theta) = \sec \theta$

1.6 補充

1.7 應用

由於物理上經常將向量(有大小有方向的量)依照兩個正交的方向分解,因此配合三角函數,就可以輕鬆 表示分量。且由於運動獨立性,互相正交的運動不會互相干擾,方便計算。

1. 斜面

2. 斜抛

3. 三力平衡

第2章 微積分

2.1 斜率

斜率是用來表示一直線的傾斜程度,亦即橫坐標向正方向每前進一格,縱坐標上升或下降多少格。物理上,橫軸常為時間,則斜率表示物理量的時變率。

$$slope = m = \tan \theta = \frac{\Delta y}{\Delta x} \tag{2.1}$$

若函數圖形並非直線, 而是曲線, 則斜率需區分為割線斜率與切線斜率。

- 1. 割線斜率 = 平均時變率 = 一段時間內某物理量的變化率 = $\frac{\Delta y}{\Delta x}$
- 2. 切線斜率 = 瞬間時變率 = 某個時刻上某物理量的變化率 = $\frac{dy}{dx}$ = 微分

2.2 函數下的面積

函數圖形下的面積代表累積量,物理上橫軸常為時間,則函數下的面積代表物理量隨時間的累積量。若函數為直線,則面積大多可以利用基礎幾何求出,不過若函數為曲線,則面積須以積分求出。

2.3 多項式微積分

多項式 (polynoimal) 代表函數的每一項都可以表示為 cx^n , 在中學範疇比較常用, 故在此介紹。

- 1. 指數向前乘係數
- 2. 次方降一次
- 3. 常數微分為零

由微積分基本定理,可知微分積分互為逆運算,由上面規則即可反推出積分規則。 練習:

2.4 補充