Complex Analysis: Homework 6

Peter Kagey

February 21, 2018

Problem 2. (page 129f)

Show that a function which is analytic in the whole plane and has a nonessential singularity at ∞ reduces to a polynomial.

Proof.

Let f be a function which is analytic in the whole plane and has a nonessential singularity at ∞ .

Case 1 (removable singularity) Assume that f has a removable singularity at ∞ . Then $\lim_{z\to\infty} f(z) \in \mathbb{C}$, and since f is analytic on the whole plane by Liouville's Theorem, f is constant.

Case 2 (pole) Assume f has a pole at ∞ , and let g(z) = f(1/z). In this case $\lim_{z\to\infty} f(z) = \infty$, so $\lim_{z\to 0} g(z) = \infty$. Then $h(z) = z^m \cdot g(z)$ is analytic in the whole plane, so by Taylor's Theorem expanded about 0,

$$z^{m} \cdot g(z) = h(0) + \frac{h'(0)}{1!}z + \ldots + \frac{h^{(m-1)}(0)}{(m-1)!}z^{m-1} + h_{m}(z)z^{m}.$$

Dividing by z^m yields

$$g(z) = \frac{h(0)}{z^m} + \frac{h'(0)}{1!z^{m-1}} + \ldots + \frac{h^{(m-1)}(0)}{(m-1)!z} + h_m(z),$$

and so

$$f(z) = g(1/z) = h(0)z^m + \frac{h'(0)}{1!}z^{m-1} + \dots + \frac{h^{(m-1)}(0)}{(m-1)!}z + h_m(1/z).$$

So it is sufficient to show that h_m reduces to a constant. But this follows because

$$h_m(z) = g(z) - \left(\frac{h(0)}{z^m} + \frac{h'(0)}{1!z^{m-1}} + \dots + \frac{h^{(m-1)}(0)}{(m-1)!z}\right)$$

is bounded and analytic on the whole plane, so must be a constant by Liouville's Theorem.

Problem 4. (page 129f)

Show that any function which is meromorphic in the extended plane is rational.

Proof.

Let f be a function which is meromorphic in the extended plane with poles $\{p_1, p_2, \dots, p_n\} \subset \mathbb{C}$. Then if k_i is the order of p_i , let

$$g(z) = f(z) \cdot \prod_{i=1}^{n} (z - p_i)^{k_i}$$

which is analytic on \mathbb{C} . From the above question (Problem 2), we know g(z) is rational, because any singularities at ∞ are nonessential. Therefore

$$f(z) = \frac{g(z)}{\prod_{i=1}^{n} (z - p_i)^{k_i}}$$

is a rational function. $\hfill\Box$

Problem 5. (page 129f)

Prove that an isolated singularity of f(z) is removable as soon as either Re f(z) or Im f(z) is bounded above or below.

(Hint: Apply a fractional linear transformation.)

Proof.

In any of these four cases, the half-plane can be mapped into the unit disk. For example, if Re(f(z)) > M, then the transformation $z \mapsto z - M$ followed by $z \mapsto (z - 1)/(z + 1)$ yields a bounded function

$$g(z) = \frac{f(z) - M - 1}{f(z) - M + 1},$$

where $|g(z)| \leq 1$. Therefore g has a removable singularity. Extending g and applying the inverse linear transformation results in an analytic extension of f, showing that the singularity is removable.

Problem 6. (page 129f)

Show that an isolated singularity of f(z) cannot be a pole of exp f(z). (Hint: f and e^f cannot have a common pole (why?). Now apply Theorem 9.)

Proof.

Firstly f and e^f cannot have a common pole because if f has a pole at z_0 , then g(z) = f(1/z) has a zero at z_0 , and so $e^{g(z_0)} = 1$, and thus $e^f = 1$ at every pole of f.

In every neighborhood of a isolated singularity of f, f(z) can be made arbitrarily close to ∞ (on the Riemann Sphere), and so $\exp(f(z))$ can be made arbitrarily close to any complex value $w = \alpha + \beta i$, by choosing z such that f(z) = a + bi has a near α and b near $\beta + 2\pi k$ for some (large) k.

Therefore by Theorem 9, the pole at f(z) is an essential singularity of exp f(z).

Problem 1. (page 133)

Determine explicitly the largest disk about the origin whose image under the mapping $f(z) = z^2 + z$ is one to one.

Proof.

By corollary 2, because f'(z) = 2z + 1 vanishes at z = 1/2, the disk must not contain the point z = 1/2.

Thus, the disk can have radius at most 1/2.

Suppose that $w \neq z$ but $w^2 + w = z^2 + z$. Then $w^2 - z^2 = z - w$, so (w + z) = -1. If w and z are in the disk of radius 1/2, then $w + z \neq -1$, so f is indeed injective on the disk of radius 1/2.

Problem 3. (page 133)

Apply the representation $f(z) = w_0 + \zeta(z)^n$ to $\cos z$ with $z_0 = 0$. Determine $\zeta(z)$ explicitly.

Proof.

Firstly cos(0) = 1, so we can write

$$\cos(z) - 1 = z^2 \frac{\cos(z) - 1}{z^2}$$

so $g(z) = (\cos(z) - 1)/z^2$ and so by the double-angle formula

$$\begin{split} h(z) &= \sqrt{g(z)} \\ &= \sqrt{\frac{\cos(z) - 1}{z^2}} \\ &= \sqrt{\frac{-2\sin^2(z/2)}{z^2}} \\ &= \frac{i\sqrt{2}\sin(z/2)}{z}. \end{split}$$

And therefore $\zeta(z)=zh(z)=i\sqrt{2}\sin(z/2).$