Data Analysis Tutorials

The Experiment

Data are taken with an array consisting of 3 gamma-ray detectors positioned around a target position on an accelerator beam line. The 3 detectors are positioned, with respect to the target and beam, at angles of 45,90,135 degrees.

Data are stored in root "trees", effectively long lists of individual events; an event being a single moment in time, in which the data acquisition computer detected an input and recorded all data from detectors during a short time window.

A series of .root data files are provided from the experiment:

Run1 - A source of 60Co at the target position

Run2 - A source of ¹⁵²Eu at the target position

Run3 - A source of ¹³³Ba at the target position

Run4 - An A=36 beam with an energy of 250 MeV impinging on a thin A=40 target.

Run5 - A decaying source feeding the nucleus observed in Run4

Exercise 1 - Determine Array Efficiency

The file BlankEffCal.C will draw data points for the relative efficiency of the array as a function of energy, calculated from a ¹⁵²Eu source.

Modify the script to fit the curve with the following function, with N=2

$$y = e^{\left(\sum_{n=0}^{n=N} P_n \log(x)^n\right)}$$

A) What is unphysical about this initial function?

B) The data are in ns so Run1.root last 333 s. The activity of the ⁶⁰ Co source is 5.4 KBq. What is the absolute efficiency at 1332 keV?	
C) What is the absolute efficiency at 400 keV?	
Exercise 2 - Determining Fit Uncertainties	
ROOT's TMinuit fitting functionality can calculate uncertainty bands for you. Use the following command (directly after fitting) to evaluate the uncertainty of your efficiency function at a series of points:	
(TVirtualFitter::GetFitter())->GetConfidenceIntervals(hist,interval);	
"hist" should be a pointer to a histogram with binning defining the points at which to calculate (a TGraphErrors can also be used as per example https://root.cern/doc/master/ConfidenceIntervals_8C.html) and interval should be a number giving the desired central probability interval.	
Now the histogram has the fitted function values as the bin contents and the confidence intervals as bin errors.	
Retrieve the data and plot the error bands alongside the 152Eu data	
D) What is the % uncertainty of the array efficiency at 1000 keV?	
Exercise 3 – Kinematic Correction Sort Run4.root, which is data from a simulated experiment in which an A=36 beam with an energy of 250 MeV impinges on a thin A=40 target.	
You should immediately see the spectrum is worse than those seen before.	
E) Why is the spectrum poor?	
In such an experiment the energy is sufficient to overcome Coulomb repulsion	

In such an experiment the energy is sufficient to overcome Coulomb repulsion and the fusion of the beam and target occurs. A small number of protons and neutrons are subsequently evaporated (a fusion-evaporation reaction). This leaves an excited compound-like nucleus which subsequently gamma-decays.

Due the relativistic energy there is energy difference between the frame of the compound nucleus and the lab frame.

The relationship (for a photon) is given by:

$$E' = \frac{E(1 - \beta \cos \theta)}{\sqrt{1 - \beta^2}}$$

Where E is the lab frame energy, E' the nuclear frame energy and theta the angle between the photon and the relative frame velocity beta.

Use the function $Hit::GetTime()$ and produce a 1D histogram showing the time between coincident hits.
H) Explain the features of the time spectrum?