

Outline of our Presentation

I. INTRODUCTION

i) Our Dataset

II. DATA WAREHOUSING

- i) Objective
- ii) Data Preprocessing
- iii) Implementation
- iv) Data Mart Demo

III. DATA MINING

- i) Motivation
- ii) Representative Models
- iii) Data Preprocessing
- iv) Predictive Models
- v) Findings

IV. CONCLUSION

- i) Knowledge Gained
- ii) Challenges Faced
- iii) References
- iv) Questions

Introduction

Everything you need to know about our dataset!

Our Dataset

- Dataset contains customer information and their payment history over a six month period.
 - Time period, April September 2015
 - Target class is the default status of the month of November 2015
 - Dataset information originates from studies conducted in Taiwan

World Map

30,000 Records⁵ That's a lot of records!

24 Attributes

Education, sex, age, pay status, bill and pay amounts, default status!

Source: UCI

Machine Learning Repository

https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

Data Warehousing

Creating a data mart for analytical purposes!

Objective

 Create a functional data mart capable of retrieving records for our users

Motivation

- What customers are defaulting on their payment?
- What is the proportion of payment defaults with certain customer attributes?

Star Schema

Implementation

- Database
 - ConvertCSV
 - MySQL
- → Data Mart
 - Front-End
 - · PHP
 - · HTML / CSS

Data Preprocessing

- Cleaning
 - Dataset contained undefined values.
 - Reencode values into proper category.
- → Transformation
 - Dataset completely in numeric form.
 - Convert Marital Status, Sex, and Education attributes into strings for readability.
 - · 1 -> "Male"
 - 2 -> "Female"

Adding the Data to MySQL

Create Customer dimension

Insert data into Customer table

```
/* INSERT QUERY */INSERT INTO customer_dim(customer_id,given_credit,gender,education,marital_status,age) VALUES(
1,20000, 'Female', 'University', 'Married',24);
/* INSERT QUERY */INSERT INTO customer_dim(customer_id,given_credit,gender,education,marital_status,age) VALUES(
2,120000, 'Female', 'University', 'Single',26);
/* INSERT QUERY */INSERT INTO customer_dim(customer_id,given_credit,gender,education,marital_status,age) VALUES(
3,90000, 'Female', 'University', 'Single',34);
/* INSERT QUERY */INSERT INTO customer_dim(customer_id,given_credit,gender,education,marital_status,age) VALUES(
4,50000, 'Female', 'University', 'Married',37);
/* INSERT QUERY */INSERT INTO customer_dim(customer_id,given_credit,gender,education,marital_status,age) VALUES(
5,50000, 'Male', 'University', 'Married',57);
```


Data Mart

Team 09, Data Mart	× \ +					-
(i) athena.ecs.csus.ec	lu/~gomezja/d	atamart.php		C Q Search	☆ 🗅 🕨	@ - B - 🚡
CSc 177	Home	Research Paper & Proposal	Progress Report	Project Oral Presentation	Final Project Report	Data Mart
			Data N	lart .		
	DB Description: Our database contains 30,000			Custome	r Info	
	customer records from the country of Taiwan. Data included in this database includes customer information such as age, gender, and education as well as their respective payment history over a			Highest Education Level Comp	eleted: All	
				Sex:	All v	
	six month period, amount owed, and their default status for the seventh month.		their default	Marital Status:	All	
	Instruc	Instructions: Select the customer's information		Age:	All v	
	from the drop down menus and press "Submit" when finished.			Payment Default on 7 th Month:	All	
	WITCH	en tinisned.		Submit	1	
Search Windows		0 .	<u>s</u> 4 <u> </u>	9 0 0	^ = 40	€ 5:15 PM 5/7/2017

http://athena.ecs.csus.edu/~gomezja/datamart.php

Data Mining

Gaining knowledge from data!

Motivation

- ⊸ To learn...
 - What combination of customer characteristics will maximize the probability of payment default.
 - Minimize the probability?
 - What customer attribute is the most influential to the probability of payment default.

Tools / Software Used

- ⊸ R / RStudio
 - https://www.rstudio.com/
- → Tableau
 - http://www.tableau.com/public/
- → Excel
 - https://products.office.com/en-us/excel

Algorithm

Naive Bayesian Classification

Data Exploration

Our data BEFORE preprocessing

Data Preprocessing

- Data Reduction
 - Numerosity Reduction
 - · Class imbalance in our data
 - Reduced dataset from 30,000 to 13,272
 - Dimensionality Reduction
 - Removed customer ID column
- Data Transformation
 - Attribute construction
 - Discretization

Data Preprocessing Cont.

Discretization

Raw values of numeric attributes are replaced with interval labels or conceptual labels

```
\label{eq:dataset} $\text{dataset}$SEX < -factor(dataset$SEX, levels = c(1,2), labels = c("Male", "Female")) \\ \text{dataset}$EDUCATION < -factor(dataset$EDUCATION, levels = c(1,2,3,4), labels = c("Graduate School", "University", "High School", "Others")) \\ \text{dataset}$MARRIAGE < -factor(dataset$MARRIAGE, levels = c(1,2,3), labels = c("Married", "Single", "Others")) \\ \end{tabular}
```

Data Exploration

Our data AFTER preprocessing

Target class distribution

Relation between SEX, AGE, and DEFAULT

Data Exploration Cont.

Our data AFTER preprocessing

30,000 <u>Records</u>

24 Attributes 13,272 <u>Records</u>

7 Attributes

Data Partition

- Holdout Procedure
- - 10,618 records
- Training Set, 80% Testing Set, 20%
 - 2,654 records

#Script to partition dataset

set.seed(123) split = sample.split(dataset\$DEFAULT, SplitRatio = 0.8) training set = subset(dataset, split == TRUE) test_set = subset(dataset, split == FALSE)

Confusion Matrix

Training Set - Accuracy: 69%

	1	0
1	3,255	2,054
0	1,190	4,119

Testing Set - Accuracy: 71%

	1	0
1	832	495
0	283	1,044

Accuracy Rate Comparison

	Training	Testing
Before preprocessing	0.59	0.60
After preprocessing	0.69	0.71

Conditional Probabilities

P(DEFAULT=0) = .500 P(DEFAULT=1) = .500

P(LIMIT_BAL="Low" | DEFAULT=0) = .348 P(LIMIT_BAL="Low" | DEFAULT=1) = .515 P(LIMIT_BAL="Medium" | DEFAULT=0) = .617 P(LIMIT_BAL="Medium" | DEFAULT=1) = .469 P(LIMIT_BAL="High" | DEFAULT=0) = .035 P(LIMIT_BAL="High" | DEFAULT=1) = .015

P(SEX="MALE" | DEFAULT=0) = .389 P(SEX="MALE" | DEFAULT=1) = .430 P(SEX="FEMALE" | DEFAULT=0) = .611 P(SEX="FEMALE" | DEFAULT=1) = .570

P(EDUCATION="Graduate School" | DEFAULT=0) = .360 P(EDUCATION="Graduate School" | DEFAULT=1) = .305 P(EDUCATION="University" | DEFAULT=0) = .461 P(EDUCATION="University" | DEFAULT=1) = .505 P(EDUCATION="High School" | DEFAULT=0) = .163 P(EDUCATION="Others" | DEFAULT=1) = .185 P(EDUCATION="Others" | DEFAULT=1) = .018 P(EDUCATION="Others" | DEFAULT=1) = .005 P(EDUCATION="Graduate School" | DEFAULT=0) = .360 P(EDUCATION="Graduate School" | DEFAULT=1) = .305 P(EDUCATION="University" | DEFAULT=0) = .461 P(EDUCATION="University" | DEFAULT=1) = .505 P(EDUCATION="High School" | DEFAULT=0) = .163 P(EDUCATION="High School" | DEFAULT=1) = .185 P(EDUCATION="Others" | DEFAULT=0) = .018 P(EDUCATION="Others" | DEFAULT=1) = .005

P(MARRIAGE="Married" | DEFAULT=0) = 0.440 P(MARRIAGE="Married" | DEFAULT=1) = 0.482 P(MARRIAGE="Single" | DEFAULT=0) = 0.547 P(MARRIAGE="Single" | DEFAULT=1) = 0.504 P(MARRIAGE="Others" | DEFAULT=0) = 0.013 P(MARRIAGE="Others" | DEFAULT=1) = 0.014

P(AGE="20-29" | DEFAULT=0) = 0.327 P(AGE="20-29" | DEFAULT=1) = 0.331 P(AGE="30-39" | DEFAULT=0) = 0.382 P(AGE="30-39" | DEFAULT=1) = 0.341

Findings

- What combination of customer characteristics will maximize the probability of payment default?
 - X=(Sex="Male", Education="High School", Marital="Married", Age="60-69")
 - 53% chance of payment default
- Minimize the probability of payment default?
 Y=(Sex="Female", Education="Graduate School", Marital="Single", Age="30-39")

4

- 53% chance of not defaulting
- What customer attribute is the most influential to the probability of payment default?
 - AGE="60-69"
 - 56% chance of payment default

Data Mining

http://athena.ecs.csus.edu/~gomezja/datamining.php

Conclusion

What we learned from this project!

Challenges Faced

- Finding the right classification algorithm
 - Low accuracy results
 - More data preprocessing was needed
- Data Preprocessing
 - Removing correlation between attributes values
 - Attributes were heavily correlated with one another
- Understanding the data set
 - Some attribute values were undefined
 - Very little documentation

Knowledge Gained

- Hands-on experience with the process of knowledge discovery
 - Preprocessing, data mining, evaluation, presentation
- Experience with Data Analysis & Visualization Tools
 - RStudio, Tableau
- Preprocessing is the most important step
 - Crucial part for proper data analysis
- Deeper understanding of classification
 - Algorithms and performance evaluation

References

- Han, Jiawei, Micheline Kamber, and Jian Pei. *Data mining: concepts and techniques*. Waltham, MA: Morgan Kaufmann, 2012. Print.
- Yeh, I-Cheng, and Che-Hui Lien. "The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients." *Expert Systems with Applications* 36.2 (2009): 2473-480. Web.
- → Dataset:
 - http://archive.ics.uci.edu/ml/
- Conditional Probabilities:
 - http://www.cs.ccsu.edu/~markov/ccsu_courses/DataMining-8.html
- This Presentation Template:
 - http://www.slidescarnival.com/

