University of Toronto CSC343

Sample BCNF Problem

Questions

Consider a relation schema R with attributes ABCDEFGH with functional dependencies S:

$$S = \{B \to CD, BF \to H, C \to AG, CEH \to F, CH \to B\}$$

- 1. Which of these functional dependencies violate BCNF?
- 2. Employ the BCNF decomposition algorithm to obtain a lossless decomposition of R into a collection of relations that are in BCNF. Make sure it is clear which relations are in the final decomposition and project the dependencies onto each relation in that final decomposition.
- 3. Is your decomposition dependency-preserving?

Explain all your answers and show your rough work.

Solutions

Although one can often skip ahead to some of the conclusions or combine steps, these solutions are very systematic, so that you can see the full pattern.

- 1. Which of these functional dependencies violate BCNF?
 - BCNF requires that the LHS of an FD be a superkey.
 - \times $B^+ = BCDAG$, so B is not a superkey and $B \to CD$ violates BCNF.
 - \times $BF^+ = BFHCDAG$ (but not E) so $BF \to H$ also violates BCNF.
 - \times $C^+ = CAG$ so $C \to AG$ also violates BCNF.
 - $\checkmark CEH^+ = CEHAGFBD$ so CEH is a superkey and $CEH \rightarrow F$ does not violate BCNF.
 - \times $CH^+ = CHAGBD$ (but not EF) so $CH \to B$ also violates BCNF.
- 2. Employ the BCNF decomposition algorithm to obtain a lossless decomposition of R into a collection of relations that are in BCNF. Make sure it is clear which relations are in the final decomposition and project the dependencies onto each relation in that final decomposition.
 - Decompose R using FD $B \to CD$. $B^+ = BCDAG$, so this yields two relations: R1 = ABCDG and R2 = BEFH.
 - Project the FDs onto R1 = ABCDG.

A	В	С	D	G	closure	FDs
\checkmark					$A^+ = A$	nothing
	✓				$B^+ = BCDAG$	$B \to ACDG$
		√			$C^+ = CAG$	$C \to AG$: violates BCNF; abort the projection

We must decompose R1 further.

- Decompose R1 using FD $C \to AG$. This yields two relations: R3 = ACG and R4 = BCD.
- Project the FDs onto R3 = ACG

A	С	G	closure	FDs			
\checkmark	\checkmark $A^+ = A$			nothing			
	√		$C^+ = CAG$	$C \to AG$; C is a superkey of R3			
		✓	$G^+ = G$	nothing			
sup	supersets of C		irrelevant	can only generate weaker FDs than what we already have			
$\sqrt{}$		✓	$AG^+ = AG$	nothing			

This relation satisfies BCNF.

• Project the FDs onto R4 = BCD

В	С	D	closure	FDs				
\checkmark			$B^+ = BCDAG$	$B \to CD$; B is a superkey of R4				
	√		$C^+ = CAG$	nothing				
		✓	$D^+ = D$	nothing				
sup	supersets of B		irrelevant	can only generate weaker FDs than what we already have				
	√	✓	$CD^+ = CDAG$	nothing				

This relation satisfies BCNF.

• Return to R2 = BEFH and project the FDs onto it.

В	Е	F	Н	closure	FDs
\checkmark				$B^+ = BCDAG$	nothing
	✓			$E^+ = E$	nothing
		√		$F^+ = F$	nothing
			√	$H^+ = H$	nothing
\checkmark	✓			$BE^+ = BECDAG$	nothing
\checkmark		✓		$BF^+ = BFCDHAG$	$BF \to H$: violates BCNF; abort the projection

We must decompose R2 further.

- Decompose R2 using FD $BF \to H$. This yields two relations: R5 = BFH and R6 = BEF.
- Project the FDs onto R5 = BFH

В	F	Н	closure	FDs
\checkmark			$B^+ = BCDAG$	nothing
	√		$F^+ = F$	nothing
		√	$H^+ = H$	nothing
\checkmark	√		$BF^+ = BFCDHAG$	$BF \to H$
\checkmark		√	$BH^+ = BHCDAG$	nothing
	√	√	$FH^+ = FH$	nothing

This relation satisfies BCNF.

• Project the FDs onto R6 = BEF

В	Е	F	closure	FDs
\checkmark			$B^+ = BCDAG$	nothing
	✓		$E^+ = E$	nothing
		✓	$F^+ = F$	nothing
√	√		$BE^+ = BECDAG$	nothing
\checkmark		✓	we can't possibly get E since it's not on a RHS	nothing
	√	✓	$EF^+ = EF$	nothing

This relation satisfies BCNF.

- Final decomposition:
 - (a) R3 = ACG with FD $C \to AG$,
 - (b) R4 = BCD with FD $B \to CD$,
 - (c) R5 = BFH with FD $BF \rightarrow H$,
 - (d) R6 = BEF with no FDs.
- 3. Is your decomposition dependency-preserving?

No, it is not. For each of the first three of the original FDs in set S, there is a relation that includes all of the FD's attributes. This ensures that they are preserved. However, at least one FD is not: $CEH \to F$. The fact that no relation in the final schema encompasses C, E, H and F doesn't necessarily mean the FD is not preserved. However, one can construct valid instances of the relations in the final schema that, when joined, create a table that violates $CEH \to F$. Here is an example:

The natural join of these four tables is:

A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	G	Η
a	b	1	c	2	4	d	3
a	\mathbf{f}	1	g	2	5	d	3

This relation violates $CEH \to F$. This demonstrates that our decomposition of R into R3, R4, R5 and R6 is not a dependency-preserving decomposition.