

Universidad Nacional Mayor de San Marcos

Universidad del Perú, Decana de América

Atmósferas Estelares

Práctica N° 1

Problema 1

Determine la *longitud de onda equivalente* para cada una de las curvas de sensibilidad dadas en la tabla 1.

Problema 2

Calcular la longitud de onda efectiva del filtro V para el flujo de un cuerpo negro con las siguientes temperaturas: T=25000K, T=10000K, T=5000K.

Problema 3

Se tiene el flujo de cuerpo negro observado con un receptor cuya curva de sensibilidad es la curva de sensibilidad del filtro V del sistema fotometrico UBV. Determine la longitud de onda del flujo monocromático efectivo para las temperaturas T=25000K, 10000K y 5000K.

Recomendación: Considerando que el flujo monocromático efectivo está dado por

$$\langle B \rangle = \frac{\int_0^\infty V_\lambda B_\lambda (T) \, \mathrm{d}\lambda}{\int_0^\infty V_\lambda \mathrm{d}\lambda},$$

determine para que valores de λ se da la igualdad $\langle B \rangle = B_{\lambda}(T)$.

Problema 4

¿Cuál es el cambio δV en la magnitud V del sistema fotmétrico UBV que produce un cambio $\delta \lambda$ en la longitud de onda efectiva calculada en 2? Calcular $\delta \lambda = \lambda_{eq} - \lambda_{eff}$.

Recomendación: Si $V = -2.5 \log f_V + C$ tomar $f_V \simeq B(T)$, $T = T(\lambda_{eff})$; suponer $B_{\lambda} \alpha \lambda^{-v} e^{-\frac{hc}{\lambda kT}}$ (Ley de Wien); calcular $\left(\frac{\mathrm{d} \ln f_{\lambda}}{\mathrm{d} \lambda}\right)_{\lambda = \lambda_{eq}}$

Problema 5

¿Cuál es el cambio pocentual en f_V que representa el cambio δV calculado en 4?.

Problema 6

Usando las tablas adjuntas (Referencia del COX) y considerando los tipos espectrales *O9*, *B0*, *B2*, *B5*, *A0*, *A5*, *F0*, *F5*, *G0*, *G5*, *K0*, *K5* y *M0*.

- a) Graficar M_V vs. $(B-V)_0$ para cada clase de lumninosidad V, III y I.
- b) Calcular la temperatura de color T_{BV} para los tipos espectrales de la secuencia principal.
- c) Usando los datos de la tabla 6 de colores intrínsecos $(U B)_O$, calcular las temperaturas de color T_{UB} .
- d) Comparar los tipos de colores T_{UV} y T_{VB} de los tipos espectrales dados en 6c.
- e) Comparar las temperaturas de color T_{BV} y T_{UV} de los espectrales dados en 6b con las temperaturas espectrales de la tabla adjuntada.
- ¿Cuál de las tempraturas de color parece aproximarse mejor desde un punto de vista cuantitativo a la temperatura afectiva?
- ¿Cúal de las tempraturas de color parece aproximarse mejor desde un punto de vista cualitativo a la temperatura efectiva?

Problema 7

Dibuja un diagrama $(V-B)_O$ vs. $(B-V)_O$ pero los tipos espectrales del ejercicio 6b. Superponer en el mismo diagrama la relación color-color del cuerpo negro. El cuerpo negro ajusto bien las observaciones.

Problema 8

Para los tipos espectrales de la tabla 6

- a) Calcular el coeficiente Φ .
- b) Calcular Φ suponiendo $T_{BV} = T_{UB} = T_{eff}$.
- c) Calcular Φ usando sólo T_{BV} .
- d) Calcular Φ usando sólo T_{UB} .

Problema 9

- a) Calcular un diagrama $\log(L/L_{\odot})$ vs $\log(T_{FF})$ para $\log(R/R_{\odot})=-3,-2,-1,$ 0,+1,+2.
- b) Mostrar que la correccion bolometrica entre magnitudes relativas es igual a la correccion bolometrica entre magnitudes absolutas.

Problema 10

Discutir porque la correccion bolometrica es funcion proncipalmente de la temperatura efectiva y no del sodio.

En esas condiciones la correccion bolometrica depende de la clase de luminosidad?¿Porque?

Problema 11

Si $\log f_{\lambda} = a \log \lambda + b$ en un intervalo (λ_1, λ_2) donde f_{λ} es el flujo monocromatico observado de una estrella, mientras que el gradiente de color en ese intervalo es $\Phi_{\lambda_1,\lambda_2} = (5+a) \, \lambda$. Donde λ

Problema 12

a) Mostrar que el gradiente de color de una radiación de cuerpo negro esta dado por

$$\Phi = \frac{c_2}{T} \left(1 - e^{-\frac{c_2}{\lambda T}} \right)$$

$$c_2 = \frac{hc}{k} \approx 1,43883 \text{ cm} \cdot \text{K}$$

- b) ¿En que region $\Phi = \frac{c_2}{\lambda T}$?
- c) Calcular Φ usando $\lambda = \frac{1}{2} (\lambda_B + \lambda_V)_{eq}$ y $T = T_{BV}$ para los tipos espectrales de 6d.

Problema 13

Transofrmar

- M_V en M_{bol} .
- M_V en T_{BV} .

Para los tipos espectrales de la tabla 6 para las claves de limunosidad V, IV, III, I_b , I_a .

Usar para V, IV, III los (B-V) de las clase de luminosidad V. Para los supergigantes III, I_b , I_a usar los datos de la tabla 7.

Problema 14

Grafica los potenciales de ionizacion Ξ de los elementos "enrarecidos?" como fuente para tipo espectral en función del logaritmo de la temperatura efectiva. Comentar.

Problema 15

a) Graficar $\log\left(\frac{L}{L_{\odot}}\right)$ vs T_{BV} e interpretar, usando para ello el diagrama calculado en el ejecrcicio 4.

Tabla 1: Curvas de sensibilidad de los filtros U, B y V del sistema fotométrico UBV, y del ojo humano para el día y la noche. (Problema 1)

$\lambda(\mu)$	U_{λ}	B_{λ}	V_{λ}	$O_{día}$	O_{noche}
0.28	0.00	-	-	-	-
0.30	0.13	-	-	-	-
0.32	0.60	-	-	-	-
0.34	0.92	-	-	-	-
0.36	1.00	0.00	-	-	-
0.38	0.72	0.13	-	-	0.00
0.40	0.09	0.92	-	-	0.02
0.42	0.00	1.00	-	0.00	0.08
0.44	-	0.92	-	0.02	0.21
0.46	-	0.76	0.00	0.06	0.41
0.48	-	0.56	0.01	0.14	0.65
0.50	-	0.39	0.36	0.32	0.90
0.52	-	0.20	0.91	0.71	0.96
0.54	-	0.07	0.98	0.95	0.68
0.56	-	0.00	0.80	1.00	0.35
0.58	-	-	0.59	0.87	0.14
0.60	-	-	0.39	0.63	0.05
0.62	-	-	0.22	0.38	0.02
0.64	-	-	0.09	0.18	0.01
0.66	-	-	0.03	0.06	0.00
0.68	-	-	0.01	0.02	-
0.70	-	-	0.00	0.00	-

Tabla 2: Magnitudes Visuales Absolutas (Problema 6)

T. Sp.	V	IV	III	II	Ib	Ia
09	-4.8	-5.4	-6.0	-	-	-
В0	-4.1	-4.6	-5.0	-5.6	-6.2	-7.0
B1	-3.5	-3.9	-4.4	-5.1	-6.0	-7.0
B2	-2.5	-3.0	-3.6	-4.4	-5.9	-7.0
В3	-1.7	-2.3	-2.9	-3.9	-5.8	-7.0
В5	-1.1	-1.6	-2.2	-3.7	-5.7	-7.0
В7	-0.6	-1.0	-1.6	-3.6	-5.6	-7.0
В8	-0.2	-0.6	-1.2	-3.4	-5.5	-7.0
В9	+0.2	-0.3	-0.8	-3.1	-5.4	-7.0
A0	+0.6	+0.0	-0.6	-2.8	-4.9	-7.0
A1	+1.2	+0.3	-0.4	-2.6	-4.8	-7.0
A3	+1.7	+0.9	+0.0	-2.3	-4.6	-7.0
A5	+2.1	+1.2	+0.3	-2.1	-4.5	-7.0
A7	+2.4	+1.5	+0.5	-2.0	-4.5	-7.0
FO	+2.6	+1.7	+0.6	-2.0	-4.5	-7.0
F2	+3.0	+1.9	+0.6	-2.0	-4.5	-7.0
F5	+3.4	+2.1	+0.7	-2.0	-4.5	-7.0
F6	+3.7	+2.2	+0.7	-2.0	-4.5	-7.0
F8	+4.0	+2.4	+0.6	-2.0	-4.5	-7.0
G0	+4.4	+2.8	+0.6	-2.0	-4.5	-7.0
G2	+4.7	+3.0	+0.4	-2.1	-4.5	-7.0
G5	+5.2	+3.2	+0.3	-2.1	-4.5	-7.0
G8	+5.6	+3.2	+0.3	-2.1	-4.5	-7.0
KO	+5.9	+3.2	+0.2	-2.1	-4.5	-7.0
K2	+6.3	-	-0.1	-2.2	-4.5	-7.0
КЗ	+6.9	-	-0.2	-2.3	-4.5	-7.0
K5	+8.0	-	-0.3	-2.3	-4.5	-7.0
MO	+9.2	-	-0.4	-2.4	-4.5	-7.0
M1	+9.7	-	-0.5	-2.4	-4.5	-7.0
M2	+10.1	-	-0.5	-2.4	-4.5	-7.0
M3	+10.6	-	-0.5	-2.4	-4.5	-
M4	+11.3	-	-0.5	-2.4	-4.5	-
M5	+12.3	-	-	-	-	-
M6	+13.4	-	-	-	-	-

^{*}Jhon P. Cox, R. Thomas Giuli, *Stellar Structure, Physical Principles*, p. 10)

Tabla 3: Temperatura efectiva para tipos MK (Problema 6)

T. Sp.			T_{eff}	(K)		
В0		27,000				
B1		23,000				
B2		20,000				
В3			18,0	000		
B5			16,	000		
B6.5			14,0	000		
В8			12,	500		
В9			11,	200		
A0			10,	400		
A1			9,7	'00		
A2			9,1	.00		
A3			8,5	00		
A5			8,2	00		
A7			7,6	000		
F0		7,200				
	V	IV	III	II	Ιb	Ia
F2	6900	6830	6800	6700	6600	
F5	6700	6600	6500	6350	6200	
F6	6500	6370	6250	6020	5800	
F8	6200	6050	5900	5720	5450	
G0	6000	5720	5500	5350	5050	
G2	5740	5420	5100	4950	4750	
G5	5520	5150	4800	4650	4500	
G8	5320	4950	4600	4450	4300	
K0	5120	4750	4400	4350	4100	
K1	4920	4550	4150	4000	3850	
K2	4760	4400	3970	3860	3750	
К3	4600	-	3820	3720	3600	
K5	4350	-	3700	3600	3500	
К6	4000	-	-	-	-	
MO	3750	-	3500	3400	3300	
M1	3600	-	3300	3150	3050	
M2	3350	-	3100	2050	-	
M3	3100	-	2900	-	-	
M4	-	-	2700	-	-	

^{*}Jhon P. Cox, R. Thomas Giuli, Stellar Structure, Physical Principles, p. 11)

Tabla 4: Colores intrínsecos y correción bolométrica (Problema 6)

	B-V			B.C.	
T. Sp.	Clase de Luminosidad		Classe de Luminosida		
	\overline{V}	III	I	V	III
05	(-0.32)	(-0.32)	(-0.32)	[-4.31]	
09	(-0.31)	(-0.31)	(-0.28)	-3.34	
09.5	(-0.30)	(-0.30)	(-0.27)	[-3.68]	
В0	(-0.30)	(-0.30)	(-0.24)	-3.17	
B1	(-0.26)	(-0.26)	(-0.19)	-2.50	
B2	(-0.24)	(-0.24)	(-0.17)	-2.23	
В3	(-0.20)	(-0.20)	(-0.13)	-1.77	
B5	(-0.16)	(-0.16)	(-0.09)	-1.39	
В6	(-0.14)	(-0.14)	(-0.07)	-1.21	
В7	(-0.12)	(-0.12)	(-0.05)	-1.04	
В8	(-0.09)	(-0.09)	(-0.02)	-0.85	
В9	(-0.06)	(-0.06)	(0.00)	-0.66	
A0	(0.00)	(0.00)	(+0.01)	-0.40	
A1	(+0.03)	(+0.03)	(+0.01)	-0.32	
A2	(+0.06)	(+0.06)	(0.00)	-0.25	
A3	(+0.09)	-	(0.00)	-0.20	
A5	(+0.15)	(+0.15)	(+0.07)	-0.15	
A7	(+0.20)	-	(+0.13)	-0.12	
F0	(+0.30)	-	(+0.24)	-0.08	
F2	(+0.38)	-	(+0.34)	-0.06	
F5	(+0.45)	-	(+0.45)	-0.04	
F6	+0.47	[+0.48]	-	-0.04	
F7	+0.50	-	-	-0.04	
F8	+0.53	-	[+0.68]	-0.05	
G0	+0.60	-	[+0.83]	-0.06	
G2	+0.64	-	-	-0.07	
G4	-	-	[+0.97]	-	
G5	+0.68	+0.86	-	-0.10	
G8	+0.72	+0.93	-	-0.15	

^(*) Jhon P. Cox, R. Thomas Giuli, Stellar Structure, Physical Principles, pp. 12-13)

^(**) Continúa en la pág. siguiente

Continuación de la tabla 4

Continuación de la tabla 7					
	B-V			B.C.	
T. Sp.	Clase	e de Lumino	sidad	Classe de L	uminosidad
	V	III	I	V	III
КО	+0.81	+1.01	-	-0.19	
K2	+0.92	+1.16	[+1.37]	-0.25	
КЗ	+0.98	+1.29	-	-0.35	
K4	-	+1.40	-	-	
K5	+1.18	+1.52	[+1.45]	-0.71	
K7	+1.38	-	-	-1.02	
MO	-	-	-	-	
M1	+1.48	-	-	[-1.70]	
M2	-	-	[+1.67]	[-2.03]	
M3	+1.49	-	-	[-2.35]	
M4	-	-	-	[-2.7]	
M5	+1.69	-	-	[-3.1]	
M6	-	-	-	-	

^(*) Jhon P. Cox, R. Thomas Giuli, Stellar Structure, Physical Principles, pp. 12-13)

^(**) Continúa en la pág. siguiente

Tabla 5: Estándar de la secuencia principal de edad cero (Problema 6)

B-V	Mv	U-B	Mv
-0.25	-2.10	-0.90	-1.98
-0.20	-1.10	-0.80	-1.50
-0.15	-0.30	-0.70	-1.03
-0.10	+0.50	-0.60	-0.59
-0.05	+1.10	-0.50	-0.13
0.00	+1.50	-0.40	+0.27
+0.05	+1.74	-0.30	+0.66
+0.10	+2.00	-0.20	+1.02
+0.20	+2.45	-0.10	+1.30
+0.30	+2.95	0.00	+1.50
+0.40	+3.56		
+0.50	+4.23		
+0.60	+4.79		
+0.70	+5.38		
+0.80	+5.88		
+0.90	+6.32		
+1.00	+6.78		
+1.10	+7.20		
+1.20	+7.66		
+1.30	+8.11		

^(*) Jhon P. Cox, R. Thomas Giuli, Stellar Structure, Physical Principles, p. 13

T. Sp.	$(U-B)_o$
BO V	-1.06
B5 V	-0.55
A0 V	-0.02
A5 V	0.10
F0 V	0.07
F5 V	0.03
G0 V	0.05
G5 V	0.19
K0 V	0.47
K5 V	1.10
M0 V	1.28

Tabla 6: Colores intrínsecos $(U-B)_O$

T. Sp.	$(B-V)_o$
ВО	-0.25
A0	0.00
F0	0.25
G0	0.70
G5	1.06
K0	1.39
K5	1.70
MO	1.94

Tabla 7: Colores intrínsecos $(U-B)_O$