

ECE311 FinalRC

Before we start...

Reminders

- 1. Difficult exam!
- 2. Must go over all the questions!
- 3. Don't stick on one question!
- 4. More about understanding rather than calculating!

Contents

- 1 Frequency Domain
 - Bode Plot
- 3 First Order Systems
- 4 Parasitic Capacitance
- 5 Miller Effect

Definition Review

- 1. Transfer Function H(s) ViA(S) | Circuit | Out H(S) = Vout Volt.
- 2. Use S-domain to Get Time Response
- 3. Partial Fraction Expansion

Definition Review

Capacitors and Inductors

Pole and Zero

$$|H\left(s_{z}\right)|=0 \qquad \qquad \forall \left(\varsigma\right)=0$$

$$|H(s_p)| = \infty$$

$$G_{(s)} = \frac{s+2}{s^2+5s}$$

$$G(s) = \frac{s+2}{s \cdot (s+5)}$$

Get Diff. Eq from H(s)

$$H(s) = 3 \frac{(s+4)}{s^2 + 2s + 5} \frac{f(s)}{\chi(s)} \qquad s^n \chi(s) \frac{1}{s^2 + 2s + 5} \frac{ds}{dx} \frac{ds}{dx}$$

$$(\frac{\zeta}{4} + 2s + 5) \cdot f(s) = 3(s + \varphi) \cdot \chi(s)$$

$$\frac{d^2 y(t)}{dt^2} + 2 \cdot \frac{y(t)}{dt} + y(t) = 3 \frac{d\chi(t)}{dt} + 12\chi(t)$$

Magnitude and Phase

$$|H(s)| = K \frac{r_1 \dots r_m}{q_1 \dots q_n}$$

$$\angle H(s) = (\phi_1 + \ldots + \phi_m) - (\theta_1 + \ldots + \theta_n)$$

Bandwidth and Gain-Bandwidth Product

- f(t) (ω_t) is ω where $|A(j\omega)| = 1$
 - $A(j\omega) = \frac{A_0}{1 + j\omega/\omega_h}$ (24)
 - $1 \approx \frac{A_0}{\omega_{T/\omega_b}} \Rightarrow \omega_T \approx A_0 \omega_b \quad (25)$
 - (26) $\omega_T \approx A_0 \omega_b$

Recommendations for GBW calculation:

Draw the magnitude plot in dB directly to solve for

bandwidth!

Or derive the equation and set it to 1 Both are OK!

Typically only one solution is needed to be considered!

$$\frac{5^2}{Wb^2} = 1 \rightarrow \left[5 = Wb \right].$$

- For lefthand plane
 - Slope changes by -20 dB/decade
 - Phase decreases by 90°
- Zero
 - Slope changes by 20 dB/decade
 - Phase increase by 90°

Bandwidth and Gain-Bandwidth Product

$$V_{out}(\omega) = A(\omega)V_{Id} = A(\omega)(V_{in} - V_n) \quad V_{out} = \frac{A_0}{1 + \frac{S}{\omega b}} \quad (V_{in} - \frac{S}{\omega b})$$

$$= A(\omega)(V_{in} - \beta V_{out}) \quad A_0 = \frac{A_0}{1 + \frac{S}{\omega b}} \quad (V_{in} - \beta V_{out}) \quad A_0 = \frac{A_0}{1 + \frac{S}{\omega b}} \quad V_{in} = \frac{A_$$

First Order Systems

Definition

Contains 1 pole and at most 1 zero

$$H(S) = \frac{a_0 + a_1 S}{1 + bS}$$

$$H(s) = \frac{H^0 + H^1 \tau s}{1 + \tau s}$$

$$\tau = RC_1 \qquad \tau = \frac{L_1}{R_0}$$

To find the time constant, remove the cap/ind nulling all the sources, find the resistance.

To find transfer constant H^0 , it is just the low frequency gain. $M \longrightarrow \text{short}$

To find the transfer constant H^1 , we look into high frequency response, so the cap shall be shorted. For inductor it is the opposite.

independent source.

First Order Systems

First Order Systems

Nth Order Systems

Example

$$H(s) = \frac{a_0 + a_1 S + a_2 S^2 + \dots}{1 + b_1 S + b_2 S^2 + \dots}$$

Too hard for me to explain it explicitly...(For myself I can not understand what prof is talking about...)

Too many parameters

Suggest ECE216 methods for analyzing and work out the parameter conversely

Tips: the voltage and current relationship in frequency domain still holds!

Bandwidth Estimation

$$H(s) \approx \frac{a_0}{1 + b_1 s + b_2 s^2 + \cdots + b_n s^n}$$

$$H(s) \approx \frac{a_0}{1 + b_1 s}$$

$$\omega_h \approx \frac{1}{b_1} = \frac{1}{\sum_{i=1}^{N} \tau_i^0}$$

Parasitic Capacitance

Definition

Triode

$$C_{GS} = W_{ov} + 1/2 (WLC_{ox})$$
 (1)

$$C_{CD} = WC_{ov} + 1/2 (WLC_{ov})$$
 (2)

$$C_{GD} = WC_{ov} + 1/2 (WLC_{ox})$$
 (2)

$$C_{GS} = WC_{ov} + 2/3 (WLC_{ox})$$
 (5)

$$C_{GD} = WC_{ov} \tag{6}$$

$$C_{SB} = WEC_{j} + 2(W + E)C_{jsw}$$
 (3)

$$C_{DB} = WEC_j + 2(W+E)C_{jsw}$$
 (4)

$$C_{SB} = WC_j + 2(W + E)C_{jsw}$$
 (7)

$$C_{DB} = WEC_j + 2(W+E)C_{jsw}$$
 (8)

Parasitic Capacitance

Parameter

NMOS Model
LEVEL = 1
NSUB =
$$9e + 14$$

TOX = $9e - 9$
MJ = 0.45
PMOS Model
LEVEL = 1
NSUB = $5e + 14$

MJ = 0.5

VTO = 0.7

Parasitic Capacitance

Example

NMOS

Miller Effect

Definition

$$X \stackrel{Z}{\smile} Y$$

$$Z_1 = \frac{Z}{1 - A_v} \tag{31}$$

Note: There must be another way between X and Y

Miller Effect

Example

$$Z_1 = \frac{\frac{1}{SC_F}}{1+A} = \frac{1}{S(1+A)C_F}$$

$$Z_2 = \frac{\frac{1}{SC_F}}{1 + \frac{1}{A}} = \frac{1}{S\left(1 + \frac{1}{A}\right)C_F}$$

Miller Effect

Example

Output impedance

Figure 2: Miller

Thanks!

