CHEM 22200 (Organic Chemistry III) Notes

Steven Labalme

April 5, 2022

Contents

16 Aldehydes and Ketones	1
16.1 Electron Pushing	1
16.2 Aldehydes and Ketones 1	6
References	14

List of Figures

16.1	Oxidation of alcohols mechanism
16.2	Friedel-Crafts acylation mechanism.
16.3	Diol cleavage mechanism
16.4	Alkyne hydrogenation mechanism
16.5	9-Borabicyclo[3.3.1]nonane (9-BBN-H)
16.6	Alkyne hydroboration mechanism
16.7	The key mechanism in CHEM 22200
16.8	Nucleophilic addition/elimination with carbonyls (acid-promoted)
16.9	Nucleophilic addition/elimination with carbonyls (base-promoted)
16.10	Carbonyl hydrate $(R' = H, C)$
16.11	Anhydrous nongaseous formaldehyde forms
16.12	Ketal
	Acetal
16.14	Ketal formation mechanism
16.15	Dean-Stark apparatus
	Using ketals as protecting groups
16.17	Imine
16.18	Hemiaminal
16.19	Oxime
16.20	Hydrazone
16.21	Wolff-Kirshner reduction mechanism
16.22	Enamine
16.23	Iminium

Chapter 16

Aldehydes and Ketones

16.1 Electron Pushing

3/28:

- Levin and Weixin^[1] are teaching.
- Problem sets are based on lecture content.
- Levin took the class just 13 years ago.
- We're gonna learn a lot about carbonyls this quarter.
- Unit 1: Additions to carbonyls.
- Defines carbonyls, ketones, aldehydes, and formaldehyde.
 - Formaldehyde is the most electrophilic carbonyl compound due to electronics and sterics: Carbons
 are both electron-donating and bulky.
 - Note that sterics are the primary factor.
- Carbonyls are electrophilic at the carbon (Levin draws the resonance structure).
- Reviews curved arrow formalism.
 - You should be able to write a full English sentence to describe each arrow.
 - In the formaldehyde resonance structure, for example, we can write, "The C=O π bond breaks and the electrons become a lone pair on the oxygen."
 - As another example, consider Et₃N attacking acetic acid, leaving behind the acetate ion. In this case, we can write the two sentences, "The nitrogen lone pair makes a new bond to the hydrogen" and "The O-H bond breaks and the electrons become a lone pair on oxygen."
 - You can draw arrows from negative charges; this notation is assumed to imply there's a lone pair
 on the negatively charged atom that actually does the attacking.
- Ways to make carbonyls.
 - 1. Oxidation of alcohols.
 - 2. Friedel-Crafts acylation.
 - 3. Ozonolysis.
 - 4. Diol cleavage.
 - 5. Alkyne hydration.
 - 6. Alkyne hydroboration.

 $^{^1{\}rm WAY\text{-}shin}$

- Oxidation of alcohols.
- General form.

$$\begin{array}{ccc} OH & PCC & O \\ & & & \\ B & & & \\ B & & & \\ \end{array}$$

• Mechanism.

Figure 16.1: Oxidation of alcohols mechanism.

- We could also draw a resonance structure of the $\rm CrO_2OH$ product that puts the negative charge on one of the previously double-bonded oxygens.
- The mechanism of this reaction is hotly debated, and the above is only the most likely case.
 - One contested point of this mechanism is what the role of pyridinium is. Some mechanisms show it doing the third-step deprotonation, for example.
- Note that the numbering of the curved arrows identifies them with the following sentences.
 - 1. Oxygen lone pair makes Cr-O bond.
 - 2. Cr-Cl bond breaks; becomes Cl l.p.
 - 3. Cl l.p. makes H-Cl bond.
 - 4. O-H bond breaks; becomes O l.p.
 - 5. O l.p. makes new OH bond.
 - 6. CH bond breaks and electrons make a new C=O π bond.
 - 7. O-Cr bond breaks; becomes a Cr l.p.
- Friedel-Crafts acylation.
- General form.

$$\begin{array}{c} O \\ \text{MeO} \end{array} \begin{array}{c} O \\ + \\ Cl \end{array} \begin{array}{c} O \\ \text{MeO} \end{array} \begin{array}{c} O \\ \\ \text{MeO} \end{array}$$

• Mechanism.

Figure 16.2: Friedel-Crafts acylation mechanism.

- Note that the charge on aluminum in AlCl₄ is a formal charge; it is not indicative of the presence of a lone pair.
- Remember that we form the ortho/para product because those dearomatized intermediates benefit
 more greatly from resonance stabilization.
- Sentences.
 - 1. Cl l.p. makes a bond to aluminum.
 - 2. O l.p. makes C=O π bond.
 - 3. C-Cl bond breaks; becomes Cl l.p.
 - 4. $C-C \pi$ bond breaks, and makes a new C-C bond.
 - 5. C \equiv O π bond breaks; makes O l.p.
 - 6. Cl l.p. makes a bond to H.
 - 7. C-H bond breaks; becomes a C=C π bond.
- We will not show any sentences hereafter, but it's a good idea to write them if you're still unclear on what the arrows are doing.
- Ozonolysis.
- General form.

- Mechanism.
 - Nearly identical to Dong's first quarter (Figure 7.3 of Labalme (2021)), but a few steps are combined and a few others are separated.
 - If you don't add Me₂S, you can isolate the ozonide intermediate. Use caution, however, as ozonides
 are explosive.
- Diol cleavage.
- General form.

- Cis-diols react faster, but aren't necessarily required.
- Mechanism.

Figure 16.3: Diol cleavage mechanism.

- Alkyne hydration.
- General form.

$$R = H \xrightarrow{Ph_3PAu^+} R \xrightarrow{O} H$$

- Every place gold is we can use mercury instead, but since gold is less toxic and more active, we prefer to use it (even though it's more expensive). Any of the soft Lewis acid transition metals in the bottom-right corner island will work, though.
- \bullet Mechanism.

Figure 16.4: Alkyne hydrogenation mechanism.

- We won't need to know the arrow-pushing mechanism for the tautomerization until Unit 3.
- Alkyne hydroboration.
- General form.

$$R = H \xrightarrow{1. 9-BBN-H} R \xrightarrow{H H O} H$$

• 9-BBN-H: 9-Borabicyclo[3.3.1]nonane, a source of R_2B-H with really big R groups, just like $(sia)_2BH$. Structure

Figure 16.5: 9-Borabicyclo[3.3.1]nonane (9-BBN-H).

- Mechanism.
 - The **enol boronate** undergoes another kind of tautomerization (which, again, we'll see in Unit 3) to yield the final product.

Figure 16.6: Alkyne hydroboration mechanism.

• The two(-ish) most important mechanisms in CHEM 222 are Figure 16.7 promoted either by acid or base.

Figure 16.7: The key mechanism in CHEM 22200.

• Acidic mechanism.

Figure 16.8: Nucleophilic addition/elimination with carbonyls (acid-promoted).

- The forward and reverse mechanisms are the same.
- Principle of microscopic reversibility: The lowest energy path in the forward direction must be the lowest energy path in the reverse direction.
- Basic mechanism.
 - B: means base, not boron.

Figure 16.9: Nucleophilic addition/elimination with carbonyls (base-promoted).

16.2 Aldehydes and Ketones 1

- 3/31: Final exam: Tuesday, May 31 from 8-10 PM. A few different rooms; more on that later.
 - Picking up from last time with acid- and base-catalyzed nucleophilic addition to carbonyls (Figures 16.8 and 16.9).
 - Today: Specific nucleophiles and mechanisms.
 - \bullet Carbonyl hydrate: The class of molecules resulting from the nucleophilic addition of H_2O to a carbonyl group. *Structure*

Figure 16.10: Carbonyl hydrate (R' = H, C).

- Carbonyl hydrate formation constants in aqueous solution.
 - COMe₂ \rightleftharpoons C(OH)₂Me₂: $K = 1.4 \times 10^{-3}$.
 - COMeH \rightleftharpoons C(OH)₂MeH: $K \approx 1$.
 - $-\text{COH}_2 \xrightarrow{} \text{C(OH)}_2\text{H}_2$: $K = 2.2 \times 10^3$.
 - This means that in aqueous solution, formaldehyde largely exists as a diol.
 - COPhH \rightleftharpoons C(OH)₂PhH: $K = 8.3 \times 10^{-3}$.
 - Conjugation stablilizes the aldehyde; when you go to the hydrate, you break that conjugation.
 - $-\text{CO}^i\text{PrH} \rightleftharpoons \text{C(OH)}_2{}^i\text{PrH}$: K = 0.6.
 - Sterically bulky aldehydes favor the carbonyl form because the diol is bulkier and thus less thermodynamically stable (more steric clashing).
- Aside: Formaldehyde's state at STP is gaseous.
 - Outside of the gas phase (and aqueous solution), formaldehyde is very unstable; it will either exist as **trioxane** or **paraformaldehyde** (see Figure 16.11).

Figure 16.11: Anhydrous nongaseous formaldehyde forms.

- Hydrate formation.
 - Occurs under both acidic and basic conditions.
- Mechanism.
 - The mechanisms are identical to Figures 16.8a and 16.9a with Nu-H = HO-H and $H-X = H-OH_2^+$ or $B = OH^-$, respectively.
 - Note that it is not necessary to show the first step of Figure 16.9a (deprotonation of the nucleophile by the base) in this case because this is just the reaction $HO-H+OH^- \longrightarrow HO^-+H-OH$.
- Note that H_3O^+ or H^+ is an abbreviation for some strong acid in solution, but there is always a counterion present; if there were even a couple of excess positive molecules, you would generate a huge static field.
- **Ketal**: The class of molecules resulting from the nucleophilic addition of an alcohol (ROH) to a ketone. Structure

Figure 16.12: Ketal.

• Acetal: The class of molecules resulting from the nucleophilic addition of an alcohol (ROH) to an aldehyde. Structure

Figure 16.13: Acetal.

• General form.

O + 2 MeOH
$$\xrightarrow{H^+}$$
 MeO OMe

- We have an acid catalyst, and we are *removing water* in the process.
 - Water is generated as a byproduct during the course of the reaction, and removing it drives the reaction in the forward direction by Le Châtelier's principle.
- The formation of ketals and acetals incorporates two molecules of ROH.
- Ketals and acetals can only form under acidic conditions.

• Mechanism.

Figure 16.14: Ketal formation mechanism.

- Basic conditions don't work because we need water as a good leaving group; OH⁻ is a terrible leaving group, so if we were to try to run this reaction in basic media, we would get stuck at the hemiketal.
- Energetically, this is not always the most favored mechanism. This is why removing water is important if we want to form a ketal.
 - Indeed, if we have a ketal and add an excess of water and acid, we will recover the original ketone.
- Note that just like there are hemiketals, there are hemiacetals.
- We should know both the forward and reverse direction for ketal formation, even though Levin only showed the forward mechanism explicitly. (Know that microscopic reversibility still holds here.)
- Dean-Stark apparatus: An experimental setup that removes water during the course of a reaction.

Figure 16.15: Dean-Stark apparatus.

- The bowl at the bottom of Figure 16.15 is a heat bath. The orange solvent is toluene, and we can see water evaporating from the mixture as it is formed during the reaction and then boiled off.
- As water evaporates, it moves upward to the reflux condenser, where it condenses and falls into the bath of toluene below.
- Toluene is not miscible with water and it floats above water. Thus, droplets that fall off of the condenser sink to the bottom of the toluene bath to be trapped and displace more toluene back into the reaction flask at the same time.
 - Note that the immiscibility with and lower density than water are the two key properties we look for in the solvent we use for such a reaction. Toluene is a common choice, but not the only possible one.

- The Dean-Stark apparatus is a *physical* method for removing water.
- An example of a *chemical* method would be using a drying agent.
 - Although we could use Na₂SO₄ or MgSO₄ as we have in lab, these materials tend to get a bit clumpy, hindering the reaction.
 - As such, the substance of choice is a 3 Å molecular sieve (an aluminosilicate).
 - Aluminsilicates have pores so small that they can selectively absorb very tiny molecules, such as water, even at the exclusion of methanol.
- Note that we will not be asked names on exams, but it's good to know them for continuing studies in chemistry as well as knowing what he's talking about in class.
- Since ketals are stable through basic conditions and their formation is reversible, we can use them as protecting groups.
- Example syntheses using ketals as protecting groups.

$$\begin{array}{c} O \\ \\ Br \end{array} \xrightarrow{HO OH} OOO \\ Br \end{array} \xrightarrow{HO OH} OOO \\ Br \end{array} \xrightarrow{Mg^{\circ}} OOO \\ MgBr \\ \downarrow 1. \ PhCOH \\ 2. \ H_3O^+ \end{array} OOO \\ OOO$$

(a) Protecting carbonyls.

OH OH
$$HO$$
 OH HO OH

Figure 16.16: Using ketals as protecting groups.

• Using a ketal to protect a carbonyl (Figure 16.16a).

- If we convert 1-bromo-5-hexanone (the starting material in Figure 16.16a) to a Grignard directly, we can't prevent the intramolecular attack.
- However, we can first add an alcohol under acidic conditions while removing water.
 - Chemists usually use ethylene glycol, which forms a cyclic diol.
 - Ethylene glycol is cheap, provides a more stable ring, and forms faster due to increased local concentration.
- Now that no part of the molecule is electrophilic, we are free to make it into a Grignard and carry out our desired Grignard-based synthesis.
- As a last step, we can remove the alcohol.
 - Note that adding H₃O⁺ for a few seconds quenches the alkoxides, yielding the fourth molecule in Figure 16.16a. If we let that molecule sit with the acid for a few hours, though, then the alcohol will come off, and we can isolate the fifth molecule in Figure 16.16a.
- Using a ketal to protect a 1,2-diol (Figure 16.16b).
 - The initial reaction selectively forms the five-membered rings because five- and six-membered rings have extra stability.
 - This implies that we can also use this method to protect 1,3-diols.
 - For the purposes of this class, medium sized rings will not form.
 - Once we have protected our alcohols, we can react the rest of the molecule, finally removing our protecting group with $H_3O^+ + H_2O$.
 - We'd need methods beyond the scope of this class to convert the other alcohols to aldehydes.
- Hemiacetals and hemiketals are rarely isolable.
 - Exception: Hemiacetals in ring systems.
 - For example, glucose contains a hemiacetal.
 - Hemiketals are almost never observed.
- Imine: The class of molecules containing a C=N double bond. Structure

Figure 16.17: Imine.

- Note that all three R groups can be carbon, hydrogen, or another heteroatom such as oxygen (see the below discussion of oximes and hydrazones, for instance).
- General form.

$$0 + MeNH_2 \longrightarrow N$$

- Can form under acidic, basic, and neutral conditions.
- The mechanism is pretty complicated with a lot of variations, but we are only responsible for the one described below.
 - Others are provided in the notes posted on Canvas.
- Nitrogen is tricky.

- Electronegativity: C = 2.55, N = 3.04, and O = 3.44.
- Methylamine is more basic and more nucleophilic than methanol.
 - Water and methanol both have p $K_a \approx 15$, whereas methylamine has p $K_a \approx 40$.
 - Similarly, methylammonium has $pK_a \approx 10$, while MeOH₂⁺ has $pK_a \approx -4$ and a protonated carbonyl has $pK_a \approx -6$.
- Further equilibrium constants.
 - $\text{CMe}_2(\text{OH})^+ + \text{MeOH} \longrightarrow \text{COMe}_2 + \text{MeOH}_2$: $K \approx 100$.
 - This equilibrium is related to ketal formation (Figure 16.14).
 - In particular, it shows that even though only one out of every hundred molecules of acetone will exist in the protonated form (on average), that is enough to proceed with ketal formation.
 - $\text{CMe}_2(\text{OH})^+ + \text{MeNH}_2 \longrightarrow \text{COMe}_2 + \text{MeNH}_3^+ : K \approx 10^{16}.$
 - Thus, acid catalysis is far slower for amines than for alcohols.
- Mechanism (acidic conditions).
 - The mechanism is entirely analogous to Figure 16.14 up until the formation of the **iminium** ion.
 This intermediate is simply deprotonated at the nitrogen to yield the final imine.
 - Note that it proceeds through a **hemiaminal** intermediate as opposed to a hemiketal/hemiacetal.
- **Hemiaminal**: The functional group consisting of a hydroxyl and amine group bound to the same carbon. *Structure*

Figure 16.18: Hemiaminal.

- Regeneration of the acid catalyst in both Figure 16.14 and the acid imine formation mechanism.
 - It is correct to depict MeOH and MeNH₂, respectively, taking off the proton in the last step.
 - However, neither MeOH₂⁺ nor MeNH₃⁺ sticks around long.
 - Indeed, there is a background proton transfer equilibrium between the strong acid and the alcohol/amine. Such equilibria are typically established much more quickly than other kinds of equilibria and serve to quickly replenish the quantity of free acid in solution.
- Hydroxylamine: The compound H_2N-OH .
- Oxime: The class of molecules resulting from the nucleophilic addition of hydroxylamine to a carbonyl group. *Structure*

Figure 16.19: Oxime.

• General form.

- **Hydrazine**: The compound H_2N-NH_2 .
 - Hydrazine is used as rocket fuel.
 - It is highly explosive as a reduced (and thus less stable) form of dinitrogen (one of the most stable molecules in existence) that can, in addition, release hydrogen gas.
- **Hydrazone**: The class of molecules resulting from the nucleophilic addition of hydrazine to a carbonyl group. *Structure*

Figure 16.20: Hydrazone.

• General form.

- Imine stability.
 - Imines are sensitive; they are prone to hydrolysis and can convert back to carbonyls easily.
 - Oximes and hydrazones are much more stable.
- Reasons why oximes and hydrazones are more stable.
 - Oximes.
 - The starting material (hydroxylamine) is destabilized by the α -effect.
 - \blacksquare There is increased s-character in the nitrogen lone pair of an oxime, which stabilizes the product.
 - Hydrazones.
 - Resonance lends stability (we can push the lone pair of the terminal nitrogen toward the N-N single bond, and push the N-C double bond toward the carbon to form a carbanion).
- α -effect: The destabilizing effect of the repulsion of lone pairs across a chemical bond.
- The Wolff-Kirshner reduction.
 - Again, we won't need to know names for tests ("the old white men who developed these reactions get enough credit"), but we will need them as we more forward in chemistry.
- General form.

$$\begin{array}{c} \text{NH}_2 \\ \hline \\ \Delta \text{ (200 °C +)} \end{array} \xrightarrow{\text{H H H}} + \text{N} \equiv \text{N}$$

- The driving force is the creation of N₂, which is a huge thermodynamic sink.

• Mechanism.

Figure 16.21: Wolff-Kirshner reduction mechanism.

- Essentially, what we do is we return the hydrazone to a carbonyl, and then we remove the carbonyl.
- Enamine: The class of molecules resulting from the nucleophilic addition of dialkyl amines (R₂NH) to a ketone or aldehyde. *Structure*

Figure 16.22: Enamine.

• General form.

$$\begin{array}{c|c}
O \\
+ \\
N \\
H
\end{array}$$

$$\begin{array}{c}
\text{cat. H}^+ \\
\end{array}$$

• Iminium: The class of ions containing a C=N⁺ double bond. Structure

Figure 16.23: Iminium.

- Mechanism.
 - As with the formation of imines, we get to an iminium intermediate.
 - After that, however, we deprotonate at the α -carbon and rearrange into our final enamine.
- Summary of today: Acetone can combine with...
 - 1. Water to form a hydrate;
 - 2. Alcohols to form a ketal;
 - 3. Primary amines to form imines;
 - 4. Secondary amines to form enamines.

References

 $Labalme, S.~(2021).~\it CHEM~22000~(Organic~Chemistry~I)~notes. ~Retrieved~March~29,~2022,~from~https://github.com/shadypuck/CHEM22000Notes/blob/master/Notes/notes.pdf \\$