Course Code MAT3016	Stochastic Process	Course Type	LT
		Credits	3
		Version	1.1
Prerequisite:	Students should have the knowledge of basics of probabilities.		

Course Objectives: The purpose of this course is to equip students with theoretical and practical knowledge of random theory and stochastic processes essential for their subsequent studies.

Course Outcomes (COs):

On successful completion of this course, the students will be able to:

CO1: Apply the Chapman-Kolmogorov equation based on classifying stochastic processes, including Markov processes and chains for problem-solving. (KL2, KL3)

CO2: Analyze limiting behavior, stationary distributions, and types of Markov chains based on cclassifying states and chains in Markov processes. (KL2, KL3)

CO3: Apply Chapman-Kolmogorov equations, transition rates, and Kolmogorov forward and backward equations in continuous-time discrete-state-space Markov chains. (KL2, KL3)

CO4: Use Brownian motion and its properties for the problems related to random walk in continuous-time continuous-state-space Markov chains. (KL2, KL3)

CO5: Employ the concepts of Gaussian processes, covariance functions, kernel functions, and martingales for problem-solving related to the context of stochastic processes. (KL2, KL3)

Correlation of COs with POs

CO \ PO	CKL	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PKL		3	5	6	5	6	3	3	3	NA	M	3	M	3	3	
CO1	1	2	1	1	1	1	2	2	2	NA	M					
CO2	3	3	2	2	2	2	3	3	3	NA	M					
CO3	3	3	2	1	2	1	3	3	3	NA	M					
CO4	3	3	2	1	2	1	3	3	3	NA	M					
CO5	1	2	1	1	1	1	2	2	2	NA	M					

COs	Topics to be discussed	Lectures	
CO1	Introduction to Stochastic Processes: Definitions and classification of general stochastic processes, Markov processes, Markov chains: definition, transition graphs, transition probability matrix, order of a Markov chain, Chapman-Kolmogorov equation.		
CO2	Classification of States and Chains: Transient, persistent and ergodic states, limiting behavior of n-step transition probabilities, stationary distribution, stationary distribution of the chain, types of states, periodicity of a state, Types of Markov chain - irreducible, regular, ergodic, absorbing, mean time spent in a transient state, average number of visits to a state before absorption, probability of absorption, Markov chains with finite and countable state space, reducible chains, continuous time Markov processes, random walk, gambler ruins problem.	6	

	Continuous-Time Discrete-State-Space Markov Chains						
CO3	Chapman-Kolmogorov Equations: Derivation and interpretation, Application in						
	computing transition probabilities, Transition Rates, Infinitesimal Generator,	6					
	Kolmogorov Forward and Backward Equations: Derivation and interpretation, Solution						
	methods and applications.						
	Continuous-Time Continuous -State-Space Markov Chains						
CO4	Brownian Motion: Definition, Construction and basic properties, Connection to random						
	walk, Brownian motion as a limit of random walk.						
	Gaussian Processes and Martingales						
CO5	Gaussian Processes: Definition and properties, Covariance function and kernel functions,						
	Martingales: Definition and properties, Martingales with respect to other process.						
Contemporary topics and Guest Lecture							
Total Lecture:							
(1 Lecture = 1.5 Hrs.)							

Text Books:

- 1. J. Medhi, Stochastic Processes, 2nd Edition, New Age International Limited, 1994.
- 2. Sheldon M. Ross, Stochastic Processes, 2nd edition. John Wiley & Sons, 1995.

Reference Books:

- 1. N. T. Bailey, The Elements of Stochastic Processes with Applications to the Natural Sciences, John Wiley & Sons, New York, 1991.
- 2. V. Sundarapandian, Probability, Statistics and Queuing Theory, PHI Learning, 2009.
- 3. H. M.Taylor and S. Karlin, An Introduction to Stochastic Modelling, 3rd Edition, Academic Press, 1998.
- **4.** U. Narayan Bhat, Gregory K. Miller, Elements of Applied Stochastic Processes, 3rd edition, John Wiley & Sons, New York (Indian Edition)

Recommendation by the Board of Studies on	02/08/2021/ Revised on 15 March 2024
Approval by Academic council on:	23.05.2024
Compiled and revised by:	Dr. Jyoti Badge & Dr. Sayed Mohammed Zeeshan