# Relatório de Análise Estatística (SAR)

# Consistência de mensurações radiológicas para diagnóstico de sindesmose

**DOCUMENTO: SAR-2022-012-IC-v01** 

De: Felipe Figueiredo Para: Isnar Castro

2022-05-20

# **SUMÁRIO**

|   | LISTA DE ABREVIATURAS                                                      |   |
|---|----------------------------------------------------------------------------|---|
| 2 | CONTEXTO                                                                   | 2 |
|   | 2.1 Objetivos                                                              | 2 |
|   | 2.2 Recepção e tratamento dos dados                                        | 2 |
| 3 | METODOLOGIA                                                                | 3 |
|   | 3.1 Parâmetros do estudo                                                   | 3 |
|   | 3.1.1 Desenho do estudo                                                    | 3 |
|   | 3.1.2 Critérios de inclusão e exclusão                                     |   |
|   | 3.1.3 Exposições                                                           | 3 |
|   | 3.1.4 Desfechos                                                            | 3 |
|   | 3.1.5 Covariáveis                                                          |   |
|   | 3.2 Análises Estatísticas                                                  | 3 |
| 4 | RESULTADOS                                                                 |   |
|   | 4.1 População do estudo e acompanhamento                                   | 4 |
|   | 4.2 Consistência das mensurações radiológicas para avaliação de sindesmose | 7 |
|   | 4.2.1 Consistência intra-avaliador                                         | 7 |
|   | 4.2.2 Consistência inter-avaliador                                         | 7 |
| 5 | OBSERVAÇÕES E LIMITAÇÕES                                                   | 8 |
| 6 | CONCLUSÕES                                                                 | 8 |
| 7 | REFERÊNCIAS                                                                | 8 |
| 8 | APÊNDICE                                                                   |   |
|   | 8.1 Análise exploratória de dados                                          | 9 |
|   | 8.2 Disponibilidade                                                        | 9 |
|   | 8.3 Dados utilizados                                                       | 9 |

| FF Consultoria em Bioestatística e Epidemiologia | Versão | Ano | Página |       |
|--------------------------------------------------|--------|-----|--------|-------|
| CNPJ: 42.154.074/0001-22                         | SAR    |     |        |       |
| https://philsf-biostat.github.io/                |        | 1   | 2022   | 1 / 9 |

#### Relatório de Análise Estatística (SAR)

# Consistência de mensurações radiológicas para diagnóstico de sindesmose

## Histórico do documento

| Versão | Alterações     |
|--------|----------------|
| 01     | Versão inicial |

# 1 LISTA DE ABREVIATURAS

- CV: coeficiente de variação
- DP: desvio padrão
- IC: intervalo de confiança
- ICC: Correlação intra-classe (intra-class correlation)

# 2 CONTEXTO

# 2.1 Objetivos

Avaliar consistência intra- e inter-avaliador de mensurações radiográficas para diagnóstico de sindesmose tibiofibular distal, em tornozelos normais, nas posições de flexão dorsal 15 graus e flexão plantar 20 graus, através de cortes tomográficos no plano axial.

# 2.2 Recepção e tratamento dos dados

A base de dados original possuía 13 variáveis coletadas de 174 observações.

As distâncias A, B e C foram mensuradas conforme segue:

- Distância A = entre o ponto mais anterior da incisura e o ponto mais anterior da fíbula;
- Distância B = entre o ponto mais posterior da incisura até o ponto mais posterior da fíbula;
- Distância C = menor distância entre a tíbia e a fíbula, medida no ponto médio da incisura.

| FF Consultoria em Bioestatística e Epidemiologia | Versão | Ano | Página |       |
|--------------------------------------------------|--------|-----|--------|-------|
| CNPJ: 42.154.074/0001-22                         | SAR    |     |        |       |
| https://philsf-biostat.github.io/                |        | 1   | 2022   | 2 / 9 |

## Relatório de Análise Estatística (SAR)

Todas as mensurações foram realizadas por 5 avaliadores independentes, em duas posições (dorsal e plantar). Com base nas distâncias A, B e C foram calculados os parâmetros:

- Rotação 1 = A/B
- Rotação 2 = B A
- Translação lateral = C

Após os cálculos dos parâmetros de rotação e translação, a tabela de dados foi redesenhada de modo que todas as mensurações estejam dispostas em uma única coluna, com as posições dorsal e plantar identificadas em uma variável categórica.

Depois dos procedimentos de limpeza e seleção 10 variáveis foram incluídas na análise com 348 observações.

## 3 METODOLOGIA

## 3.1 Parâmetros do estudo

## 3.1.1 Desenho do estudo

Observacional, com coleta de dados transversal.

#### 3.1.2 Critérios de inclusão e exclusão

N/A

## 3.1.3 Exposições

N/A

#### 3.1.4 Desfechos

Esta análise não avaliará desfecho clínico, portanto não há desfecho a ser definido.

#### 3.1.5 Covariáveis

Não foram coletados dados demográficos e clínicos dos participantes de pesquisa.

## 3.2 Análises Estatísticas

As mensurações referentes às medidas de rotação e translação lateral da fíbula foram descritas como média (DP). As distribuições das mensurações foram resumidas em tabelas e visualizadas em gráficos exploratórios Todas as comparações entre as mensurações foram avaliadas como análises univariadas. As análises foram feitas agrupando-se as medidas de rotação e translação lateral da fíbula por avaliador e por

| FF Consultoria em Bioestatística e Epidemiologia | Versão | Ano | Página |       |
|--------------------------------------------------|--------|-----|--------|-------|
| CNPJ: 42.154.074/0001-22                         | SAR    |     |        |       |
| https://philsf-biostat.github.io/                |        | 1   | 2022   | 3 / 9 |

#### Relatório de Análise Estatística (SAR)

tipo de mensuração. A consistência das mensurações feitas por um mesmo avaliador nas posições dorsal e plantar foram avaliadas com o teste t pareado. A consistência entre os avaliadores, quando realizam a mesma mensuração, foi avaliada com a ICC. Todas as avaliações foram realizadas como análises de casos completos. Todas as análises foram realizadas ao nível de significância de 5%. Todos os testes de hipóteses e intervalos de confiança calculados foram bicaudais.

Esta análise foi realizada utilizando-se o software R versão 4.1.3.

## 4 RESULTADOS

# 4.1 População do estudo e acompanhamento

Ao todo 47 participantes foram incluídos no estudo. Mensurações de cinco métricas foram realizadas em duas posições, plantar e dorsal (Tabela 1, Figura 1), por cinco avaliadores diferentes. A partir das distâncias A e B as métricas Rotação 1 e Rotação 2 foram calculadas.

**Tabela 1** Mensurações do estudo (N = 47 participantes, 5 avaliadores).

| Mensurações                        | Dorsal, N = 174 | Plantar, N = 174 |
|------------------------------------|-----------------|------------------|
| Distância A, Média (Desvio Padrão) | 0.33 (0.12)     | 0.35 (0.13)      |
| Desconhecido                       | 11              | 10               |
| Distância B, Média (Desvio Padrão) | 0.66 (0.21)     | 0.63 (0.25)      |
| Desconhecido                       | 11              | 10               |
| Distância C, Média (Desvio Padrão) | 0.32 (0.12)     | 0.35 (0.16)      |
| Desconhecido                       | 11              | 10               |
| Rotação 1, Média (Desvio Padrão)   | 0.53 (0.19)     | 0.62 (0.30)      |
| Desconhecido                       | 11              | 10               |
| Rotação 2, Média (Desvio Padrão)   | 0.33 (0.19)     | 0.28 (0.22)      |
| Desconhecido                       | 11              | 10               |
| Phisitiku, Média (Desvio Padrão)   | 0.20 (0.15)     | 0.20 (0.15)      |
| Desconhecido                       | 11              | 10               |
| Zwipp, Média (Desvio Padrão)       | 89 (8)          | 90 (8)           |
| Desconhecido                       | 11              | 10               |

As distribuições das mensurações mostram razoável consistência nas mensurações brutas, com boa parte dos parâmetros apresentando distribuições unimodais razoavelmente simétricas tanto na posição dorsal como plantar. Uma possível exceção é

| FF Consultoria em Bioestatística e Epidemiologia |     | Versão | Ano  | Página |
|--------------------------------------------------|-----|--------|------|--------|
| CNPJ: 42.154.074/0001-22                         | SAR |        |      | _      |
| https://philsf-hiostat github io/                |     | 1      | 2022 | 4 / 9  |

## Relatório de Análise Estatística (SAR)

a Distância B, mas esta aparente bimodalidade da distribuição parece não se refletir em complexidade na distribuição dos parâmetros calculados a partir dela: as rotações externas ROT1 e ROT2 (figura 1) não apresentam características particularmente complexas em suas distribuições.



5 avaliadores

Figura 1 Distribuição de densidade das mensurações do estudo.

A tabela 2 exibe o resumo numérico das distribuições dos parâmetros, mensurados nos 47 participantes, estratificada por avaliador. Esta tabela indica a dificuldade em se realizar as mensurações dos parâmetros avaliados. Embora a variabilidade de cada parâmetro mensurado pelos avaliadores seja baixa, relativa à sua média, as médias de cada parâmetro variam notavelmente entre um avaliador e outro.

| FF Consultoria em Bioestatística e Epidemiologia |     | Versão | Ano  | Página |
|--------------------------------------------------|-----|--------|------|--------|
| CNPJ: 42.154.074/0001-22                         | SAR |        |      | _      |
| https://philsf-biostat github io/                |     | 1      | 2022 | 5 / 9  |

# Relatório de Análise Estatística (SAR)

Tabela 2 Mensurações de cada avaliador.

| Mensurações                        | Avaliador 1 | Avaliador 2 | Avaliador 3 | Avaliador 4 | Avaliador 5 |
|------------------------------------|-------------|-------------|-------------|-------------|-------------|
| Distância A, Média (Desvio Padrão) | 0.42 (0.11) | 0.35 (0.14) | 0.35 (0.12) | 0.38 (0.13) | 0.26 (0.10) |
| Desconhecido                       | 7           | 0           | 2           | 0           | 1           |
| Distância A, Média (Desvio Padrão) | 0.41 (0.10) | 0.33 (0.11) | 0.31 (0.10) | 0.36 (0.13) | 0.28 (0.10) |
| Desconhecido                       | 8           | 0           | 2           | 0           | 1           |
| Distância B, Média (Desvio Padrão) | 0.78 (0.18) | 0.71 (0.23) | 0.45 (0.22) | 0.79 (0.22) | 0.43 (0.11) |
| Desconhecido                       | 7           | 0           | 2           | 0           | 1           |
| Distância B, Média (Desvio Padrão) | 0.78 (0.20) | 0.72 (0.17) | 0.64 (0.16) | 0.75 (0.20) | 0.46 (0.11) |
| Desconhecido                       | 8           | 0           | 2           | 0           | 1           |
| Distância C, Média (Desvio Padrão) | 0.33 (0.12) | 0.32 (0.14) | 0.53 (0.20) | 0.33 (0.12) | 0.28 (0.10) |
| Desconhecido                       | 7           | 0           | 2           | 0           | 1           |
| Distância C, Média (Desvio Padrão) | 0.34 (0.13) | 0.33 (0.12) | 0.33 (0.12) | 0.33 (0.12) | 0.29 (0.09) |
| Desconhecido                       | 8           | 0           | 2           | 0           | 1           |
| Rotação 1, Média (Desvio Padrão)   | 0.55 (0.14) | 0.52 (0.23) | 0.88 (0.41) | 0.51 (0.20) | 0.64 (0.29) |
| Desconhecido                       | 7           | 0           | 2           | 0           | 1           |
| Rotação 1, Média (Desvio Padrão)   | 0.54 (0.13) | 0.47 (0.17) | 0.50 (0.20) | 0.50 (0.21) | 0.62 (0.22) |
| Desconhecido                       | 8           | 0           | 2           | 0           | 1           |
| Rotação 2, Média (Desvio Padrão)   | 0.36 (0.16) | 0.36 (0.22) | 0.10 (0.20) | 0.41 (0.23) | 0.17 (0.12) |
| Desconhecido                       | 7           | 0           | 2           | 0           | 1           |
| Rotação 2, Média (Desvio Padrão)   | 0.38 (0.17) | 0.39 (0.17) | 0.33 (0.16) | 0.39 (0.23) | 0.18 (0.11) |
| Desconhecido                       | 8           | 0           | 2           | 0           | 1           |
| Phisitiku, Média (Desvio Padrão)   | 0.21 (0.15) | 0.20 (0.15) | 0.27 (0.15) | 0.23 (0.10) | 0.11 (0.15) |
| Desconhecido                       | 7           | 0           | 2           | 0           | 1           |
| Phisitiku, Média (Desvio Padrão)   | 0.19 (0.11) | 0.15 (0.15) | 0.32 (0.19) | 0.21 (0.09) | 0.12 (0.11) |
| Desconhecido                       | 8           | 0           | 2           | 0           | 1           |
| Zwipp, Média (Desvio Padrão)       | 85 (11)     | 92 (8)      | 92 (7)      | 91 (7)      | 91 (7)      |
| Desconhecido                       | 7           | 0           | 2           | 0           | 1           |
| Zwipp, Média (Desvio Padrão)       | 84 (8)      | 91 (7)      | 91 (8)      | 91 (8)      | 88 (7)      |
| Desconhecido                       | 8           | 0           | 2           | 0           | 1           |

As consistências das mensurações dos parâmetros (como proxy da dificuldade em realizar a mensuração) será avaliada na próxima seção.

| FF Consultoria em Bioestatística e Epidemiologia |     | Versão | Ano  | Página |
|--------------------------------------------------|-----|--------|------|--------|
| CNPJ: 42.154.074/0001-22                         | SAR |        |      | _      |
| https://philsf-biostat github io/                |     | 1      | 2022 | 6 / 9  |

#### Relatório de Análise Estatística (SAR)

# 4.2 Consistência das mensurações radiológicas para avaliação de sindesmose

## 4.2.1 Consistência intra-avaliador

A consistência intra-avaliador foi avaliada comparando as médias pareadas entre as posições dorsal e plantar (Tabela 3). As três mensurações principais (Rotação 1, Rotação 2 e Distância C) foram significativamente diferentes entre as posições. Não há evidências de que as mensurações Phisitiku e Zwipp sejam diferentes entre as duas posições.

**Tabela 3** Comparação intra-avaliador dos parâmetros indicativos de sindesmose.

| Mensurações                                                              | Dorsal, N = 163 | Plantar, N = 163 | Diferença¹ | 95% IC <sup>1,2</sup> | Valor p¹ |
|--------------------------------------------------------------------------|-----------------|------------------|------------|-----------------------|----------|
| Rotação 1, Média (Desvio<br>Padrão)                                      | 0,53 (0,19)     | 0,62 (0,30)      | 0,09       | 0,04 até 0,14         | <0,001   |
| Rotação 2, Média (Desvio<br>Padrão)                                      | 0,33 (0,19)     | 0,28 (0,23)      | -0,05      | -0,08 até -<br>0,02   | 0,004    |
| Distância C, Média (Desvio<br>Padrão)                                    | 0,32 (0,12)     | 0,35 (0,16)      | 0,03       | 0,01 até 0,05         | 0,011    |
| Phisitiku, Média (Desvio Padrão)                                         | 0,20 (0,15)     | 0,20 (0,15)      | 0,01       | -0,01 até 0,02        | 0,597    |
| Zwipp, Média (Desvio Padrão)                                             | 89 (8)          | 90 (8)           | 1,0        | -0,11 até 2,1         | 0,076    |
| <sup>1</sup> Teste t pareado<br><sup>2</sup> IC = Intervalo de confiança |                 |                  |            |                       |          |

## 4.2.2 Consistência inter-avaliador

A consistência inter-avaliador foi avaliada usando-se o ICC. Trocando-se os avaliadores, as mensurações de sindesmose apresentaram consistência pobre na amostra do estudo (Koo, 2016). A estimativa de ICC da Distância C foi 0,3 (de 0,16 a 0,49), da Rotação 1 ICC = 0,1 (de 0,01 a 0,23) e da Rotação 2 ICC = 0,2 (de 0,11 a 0,41).

**Tabela 4** Correlação intra-classe (ICC) inter-observador dos parâmetros indicativos de sindemose.

| Métrica     | ICC  | IC            | Valor p |
|-------------|------|---------------|---------|
| Distância C | 0.29 | [0.16, 0.49]  | <0.001  |
| Rotação 1   | 0.09 | [0.01, 0.23]  | 0.008   |
| Rotação 2   | 0.23 | [0.11, 0.41]  | <0.001  |
| Phisitiku   | 0.31 | [0.18, 0.50]  | <0.001  |
| Zwipp       | 0.02 | [-0.03, 0.13] | 0.2     |

Nas mensurações de Phisitiku foi observada ICC pobre a moderada (ICC = 0,3, de 0,18 a 0,50). Não há evidências de que as medidas de Zwipp tenham consistência mensurável.

| FF Consultoria em Bioestatística e Epidemiologia |     | Versão | Ano  | Página |
|--------------------------------------------------|-----|--------|------|--------|
| CNPJ: 42.154.074/0001-22                         | SAR |        |      | _      |
| https://philsf-hiostat github io/                |     | 1      | 2022 | 7 / 9  |

#### Relatório de Análise Estatística (SAR)

# 5 OBSERVAÇÕES E LIMITAÇÕES

N/A

# **6 CONCLUSÕES**

As mensurações avaliadas apresentaram baixa consistência intra-avaliador ente as posições plantar e dorsal. Não houve consistência nas mensurações de rotação 1 (diferença média 0,09), rotação 2 (diferença média -0,05) e distância C (diferença média 0,03). As mensurações de Phisitiku e Zwipp não foram significativamente diferentes.

A consistência inter-avaliador foi pobre nas mensurações de rotação 1 (ICC 0,09), rotação 2 (ICC 0,23) e Distância C (ICC 0,29). As mensurações de Phisitiku e Zwipp também apresentaram consistência pobre (ICC 0,31 e 0,02, respectivamente).

# 7 REFERÊNCIAS

- **SAP-2022-012-IC-v01** Plano Analítico para Consistência de mensurações radiológicas para diagnóstico de sindesmose
- Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of chiropractic medicine, 15(2), 155-163.

| FF Consultoria em Bioestatística e Epidemiologia |     | Versão | Ano  | Página |
|--------------------------------------------------|-----|--------|------|--------|
| CNPJ: 42.154.074/0001-22                         | SAR |        |      |        |
| https://philsf-biostat.github.io/                |     | 1      | 2022 | 8 / 9  |

#### Relatório de Análise Estatística (SAR)

# 8 APÊNDICE

# 8.1 Análise exploratória de dados

N/A

# 8.2 Disponibilidade

Todos os documentos gerados nessa consultoria foram incluídos no portfólio do consultor.

O portfólio pode ser visto em:

https://philsf-biostat.github.io/SAR-2022-012-IC/

## 8.3 Dados utilizados

A tabela A1 mostra a estrutura da tabela de dados analíticos.

**Tabela A1** Estrutura da tabela de dados analíticos

| id | avaliador | posicao | а | Ь | С | rot1 | rot2 | phisitiku | zwipp |
|----|-----------|---------|---|---|---|------|------|-----------|-------|
| 1  |           |         |   |   |   |      |      |           |       |
| 2  |           |         |   |   |   |      |      |           |       |
| 3  |           |         |   |   |   |      |      |           |       |
|    |           |         |   |   |   |      |      |           |       |
| N  |           |         |   |   |   |      |      |           |       |

Os dados utilizados neste relatório não podem ser publicados online por questões de sigilo.