Stanford, 2016 fall, A. Ng, J. Duchi, HW2, pr. 6.d25

Apachitei Maria-Luisa MOC1, Bumbu Ana-Maria MISS1 February 2021

1 Cerinta

- (d) [11 points] Now you will implement boosting on data developed from a physics-based simulation of a high-energy particle accelerator. We provide two datasets, boosting-train.csv and boosting-test.csv, which consist of training data and test data for a binary classification problem on which you will apply boosting techniques. (For those not using Matlab, the files are comma-separated files, the first column of which consists of binary ±1-labels y⁽ⁱ⁾, the remaining 18 columns are the raw attribtues.) The file load_data.m, which we provide, loads the datasets into memory, storing training data and labels in appropriate vectors and matrices, and then performs boosting using your implemented code, and plots the results.
 - i. [5 points] Implement a method that finds the optimal thresholded decision stump for a training set $\{x^{(i)}, y^{(i)}\}_{i=1}^m$ and distribution $p \in \mathbb{R}_+^m$ on the training set. In particular, fill out the code in the method find_best_threshold.m. Include your code in your solution.
 - ii. [2 points] Implement boosted decision stumps by filling out the code in the method stump_booster.m. Your code should implement the weight updating at each iteration $t=1,2,\ldots$ to find the optimal value θ_t given the feature index and threshold. Include your code in your solution.
 - iii. [2 points] Implement random boosting, where at each step the choice of decision stump is made completely randomly. In particular, at iteration t random boosting chooses a random index $j \in \{1, 2, ..., n\}$, then chooses a random threshold s from among the data values $\{x_j^{(i)}\}_{i=1}^m$, and then chooses the tth weight θ_t optimally for this (random) classifier $\phi_{s,+}(x) = \text{sign}(x_j s)$. Implement this by filling out the code in random_booster.m.
 - iv. [2 points] Run the method $load_data.m$ with your implemented boosting methods. Include the plots this method displays, which show the training and test error for boosting at each iteration $t = 1, 2, \ldots$ Which method is better?

1.1 Notatii

 Algoritmul RDS_B = algoritmul bazat pe alegerea random a compasilor de decizie ullet Algoritmul $BDS_B=$ algoritmul bazat pe alegerea compasilor de decizie in mod greedy

2 Detaliile de implementare

2.1 load_dataset.py

- 1. Incarcarea datelor de antrenament si test
- 2. Rularea algoritmilor RDS_B si BDS_B
- 3. Generarea rapoartelor bazate pe erorile gasite pe setul de test si setul de antrenament
 - \bullet Se preia eroarea minima rezultata la rularea algoritmului RDS_B pe setul de antrenament si setul de test
 - Se compara cu erorile rezultate din rularea algoritmului BDS_B, astfel incat sa se determine cel mai apropiat vecin de minimul gasit de RDS_B
 - Se creaza un fisier *.json* cu rezultatele obtinute astfel vom putea trage concluziile pentru rezolvarea subpunctului *iv*.

$2.2 \quad find_best_threshold.py$

• Alegerea celui mai bun compas de decizie in mod greedy

2.3 stump_booster.py

- $\bullet\,$ Implementarea Algoritmului BDS_B
- Alegerea compasului de decizie se va face cu ajutorul functiei implementate in modulul find_best_threshold.py
- La fiecare iteratie, se vor afisa riscul/pierderea empiric/a si eroarea empirica
- Valorile returnate: theta, feature_inds, thresholds

2.4 random_booster.py

- \bullet Implementarea Algoritmului RDS_B
- Alegerea compasului de decizie se va face aleator
- La fiecare iteratie, se vor afisa riscul/pierderea empiric/a si eroarea empirica
- Valorile returnate theta, feature_inds, thresholds

3 Concluzii bazate pe rezultate

Exercitiul a avut ca scop evidentierea diferentelor dintre comportamentul algoritmilor RDS_B si BDS_B , prin analizarea graficelor ce arata eroarea de clasificare a algoritmilor de-a lungul iteratiilor - pe seturile de test si antrenament.

```
REPORT PLOT 1
{
    "MIN_TRAIN_ERROR_RND": 0.2206058190514149,
    "MIN_TRAIN_ERROR_STP": 0.19230769230769232,
    "MIN_TEST_ERROR_RND": 0.22501998401278978,
    "MIN_TEST_ERROR_STP": 0.2090327737809752,
    "ITERATION_RND_TRAIN": 181,
    "ITERATION_STP_TRAIN": 17,
    "ITERATION_RND_TEST": 196,
    "ITERATION_STP_TEST": 10
}
REPORT PLOT 2
{
    "MIN_TRAIN_ERROR_RND": 0.22518931845356716,
    "MIN_TRAIN_ERROR_STP": 0.19230769230769232,
    "MIN_TEST_ERROR_RND": 0.2322142286171063,
    "MIN_TEST_ERROR_STP": 0.2090327737809752,
    "ITERATION_RND_TRAIN": 194,
    "ITERATION_STP_TRAIN": 15,
    "ITERATION_RND_TEST": 197,
    "ITERATION_STP_TEST": 9
}
```

3.1 Rezolvarea subpunctului iv.

Din graficele si rapoartele prezentate mai sus, putem afirma cu certitudine ca algoritmul BDS_B ajunge la o eroare de antrenare si testare in semnificativ mai putini pasi decat algoritmul RDS_B . Motivatie: Raportul de la Plot 1 arata ca RDS_B ajunge la o eroare de 22.06% peste setul de antrenament dupa 181 iteratii, in comparatie cu BDS_B , care ajunge la o eroare aproximativ egala in doar 17 iteratii. Pe setul de test, rezultatele stau asemanator - in 10 iteratii, BDS_B ajunge la o eroare pe care RDS_B o poate atinge in 196 iteratii.

Asadar, algoritmul BDS_B demonstreaza acuratete si eficienta de rulare mai bune decat cele ale algoritmului RDS_B .

Figure 1: Plot 1

Figure 2: Plot 2

References

- [1] https://profs.info.uaic.ro/ ciortuz/ML.ex-book/implementation-exercises/Stanford.2016f.ANg+JDuchi.HW2.pr6.AdaBoost+HighEnergyPhysics.sol.data.Matlabcode/ps2 $_key.pdf$
- [2] http://cs229.stanford.edu/extra-notes/boosting.pdf