Билет 23. Разрыв логарифмического потенциала двойного слоя на границе области

Логарифмический потенциал двойного слоя: $U_1(x) = \int\limits_r \rho_2 \frac{d}{dn} (ln \frac{1}{r}) dL$ ho_2 - плотность двойного слоя. В области, не содержащей L, U_1 гармонична. Учитывая, что $\frac{d}{dn}(ln\frac{1}{r})dL = \frac{cos\phi}{r}$, где ϕ это угол между n и r, можно преобразовать так: $U_1(x) = \int\limits_L \rho_2 cos\frac{\phi}{r}dL$. Если L представляет собой замкнутый контур, удовлетворяющий условиям Ляпунова для поверхностей, и имеющий в каждой точке касательную, то разрыв можно охарактеризовать равенствами: $\begin{cases} U_{1i} = U_{10} - \pi * \rho_{20} \\ U_{1e} = U_{10} + \pi * \rho_{20} \end{cases}$, где U_{10} - прямое значение U_1 , ρ_{20} - значение плотности ρ_2 в какой-нибудь точке ξ , лежащей на контуре L. U_{1i} и U_{1e} - предельные значения того же потенциала, когда точка xстремится совпасть с точкой ξ , подходя к ней или изнутри или извне контура L. В частном случае $ho_2=1$ интеграл

стремится совпасть с точкой
$$\xi$$
, подходя к ней или изнутри или извне контура L. В частном случае $\rho_2=1$ интеграл
$$\int_L \cos\frac{\phi}{r} dL$$
 аналогичный интегралу в формуле Гаусса, имеет три различных значения:
$$\begin{cases} -2*\pi, \\ 0, \\ -\pi \end{cases}$$
 того, находится точка х внутри, вне, или на контуре.

Теормин. Преобразование Хопфа-Коула для уравнения Бюргерса

Уравнение Бюргерса описывает нелинейность и диффузию (вязкость)

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = D \frac{\partial^2 u}{\partial x^2}$$

Проведём преобразование Хопфа-Коула для этого уравнения: $u=\psi_x=\frac{\partial \psi}{\partial x}$

Тогда: $\frac{\partial^2 \psi}{\partial x \partial t} + \frac{\partial}{\partial x} \left(\frac{1}{2} \left(\frac{\partial \psi}{\partial x}\right)^2\right) = D \frac{\partial^3 \psi}{\partial x^3}$ Проинтегрируем по x: $\frac{\partial \psi}{\partial t} + \frac{1}{2} \left(\frac{\partial \psi}{\partial x}\right)^2 = D \frac{\partial^2 \psi}{\partial x^2} + C$

Пусть C=0. Замена $\psi(x,t)=-2D\ln v$. Тогда $\frac{\partial \psi}{\partial t}=-2D\frac{v_t}{v}; \frac{\partial \psi}{\partial x}=-2D\frac{v_x}{v}; \frac{\partial^2 \psi}{\partial x^2}=-2D\frac{v_{xx}v-v_x^2}{v^2}$ Подставим: $-2D\frac{v_t}{v}+2D^2\frac{v_x^2}{v^2}=-2D\frac{v_{xx}v-v_x^2}{v^2}$. Тогда $2D^2\frac{v_x^2}{v^2}$ сокращается. $v_t=Dv_{xx}$ - получили линейное уравнение вместо нелинейного.