Chapitre 12: Puissances de 10

1. Puissances

Définition:

Lorsqu'un nombre a est multiplié n fois par lui-même, on peut noter le produit a^n

Exemple

$$2^4 = 2 \times 2 \times 2 \times 2$$

Vocabulaire

- Dans a^n , le nombre n est appelé l'exposant
- 5⁷ peut se lire « 5 exposant 7 » ou « 5 puissance 7 »
- 5² se lit « 5 carré »
- 5³ se lit « 5 cube »

2. Puissances de 10

Propriété

Un nombre de la forme 10^n est appelé une puissance de 10.

- Si n > 0, $10^n = 10 \dots 0$ avec n zéros
- Si n < 0, $10^n = 0.0 \dots 01$ avec n zéros

Exemples

$$10^{3} = 1000$$

$$10^{7} = 10000000$$

$$10^{-1} = 0.1$$

$$10^{-3} = 0.001$$

$$10^{-8} = 0.000000001$$

Définition: Notation scientifique

Pour simplifier l'écriture de très grands ou de très petits nombres, on utilise l'écriture scientifique. Il s'agit de modifier l'écriture d'un nombre pour le mettre sous la forme $a \times 10^n$ où a n'a qu'un chiffre dans sa partie entière.

Exemples

$$7\ 000\ 000 = 7 \times 10^{6}$$
 $5\ 000 = 5.10^{3}$
 $8\ 000\ 000\ 000\ 000\ 000 = 8.10^{15}$
 $98\ 700\ 000\ 000 = 9,87.10^{10}$
 $0,000\ 000\ 04 = 4.10^{-8}$

3. Propriétés

Propriété : Somme en notation scientifique

Pour ajouter deux nombres en notation scientifique, il faut qu'ils aient le même exposant, ou les passer en notation décimale.

Exemples

•
$$4.10^6 + 3.10^6 = 7.10^6$$

•
$$5 \times 10^3 + 2 \times 10^7 = 5000 + 20000000 = 20005000$$

Propriété: Produits et quotients

Quels que soient les nombres a, n et p, on a $a^n \times a^p = a^{n+p}$ et $\frac{a^n}{a^p} = a^{n-p}$

Exemples

•
$$10^3 \times 10^7 = 10^{3+7} = 10^{10}$$

•
$$10^{15} \times 10^{-4} = 10^{11}$$

$$\bullet \quad \frac{10^3}{10^7} = 10^{3-7} = 10^{-4}$$