Mathematik für die Informatik B

Serie 3

Abgabe der Hausaufgaben: Fr, 5.05.2023, 23:59 Uhr im OLAT

Benötigtes Vorwissen: Skript bis Kapitel 2 §3 einschließlich; zugehörige Vorlesungen; Globalübung vom 24.04. (siehe ggf. Video).

Bevor Sie mit den Präsenzaufgaben von Serie 3 beginnen, bearbeiten Sie in den Übungen zunächst übrige Präsenzaufgaben von Serie 2!

Es ist OK, wenn Sie Präsenzaufgabe 3 von Serie 3 diese Woche nicht schaffen zu bearbeiten; nehmen Sie aber die Aussage zur Kenntnis!

Präsenzaufgabe 1: Unbestimmte Divergenz

Die Folge $((-1)^n)_n$ divergiert unbestimmt.

Präsenzaufgabe 2: Monotonie des Limes

Wir wissen, dass der Limes monoton ist. Ist er auch streng monoton?

Präsenzaufgabe 3: Inverse Folge

Es sei $(x_n)_n \in \mathcal{S}(\mathbb{R})$ so, dass $\lim_n x_n = 1$ gilt. Dann gilt $\lim_n \frac{1}{x_n} = 1$.

Hinweis. Man diskutiere zunächst, wie $(\frac{1}{x_n})_n$ überhaupt zu verstehen ist, denn immerhin könnte $(x_n)_n$ den Wert 0 annehmen.

Hausaufgabe 1: Konvergenz oder (un)bestimmte Divergenz (10 Punkte)

Für alle $n \in \mathbb{N}_1$ definiere:

$$x_n \coloneqq \begin{cases} \frac{1}{n} & n \text{ odd} \\ n & n \text{ even} \end{cases}$$

Untersuchen Sie, ob $(x_n)_{n\geq 1}$ konvergiert, bestimmt divergiert oder unbestimmt divergiert. Formulieren Sie dann Ihr Ergebnis als Behauptung und geben einen Beweis; abzugeben sind nur Behauptung und Beweis.

Hausaufgabe 2: Wurzel aus positiver Konstante (15 Punkte)

Zeigen oder widerlegen Sie:

Es gilt $\lim_{n} \sqrt[n]{c} = 1$ für alle c > 0.

Tipp. Wenn n groß genug ist, gilt $\frac{1}{n} \le c \le n$.

Lösung zu Präsenzaufgabe 1

Die Folge $((-1)^n)_n$ divergiert unbestimmt.

Beweis. Es sei $p \in \overline{\mathbb{R}}$. Wir zeigen $\lim_{n} (-1)^n \neq p$.

Fall p = 1: Definiere A := B(1,1). Dann gilt $x_n = -1 \notin A$ für alle odd n.

Fall p = -1: Definiere A := B(-1, 1). Dann gilt $x_n = 1 \notin A$ für alle even n.

Fall $p \in \mathbb{R} \setminus \{1, -1\}$: Definiere $\delta := \min\{|1 - p|, |-1 - p|\} > 0$ und $A := B(p, \delta)$. Dann gilt $1, -1 \notin A$, denn $|1 - p| \ge \delta$ und $|-1 - p| \ge \delta$. Also liegen alle Komponenten außerhalb von A.

Fall $p = +\infty$: Offenbar liegen alle Komponenten außerhalb von $]1, +\infty[$.

Fall $p = -\infty$: Offenbar liegen alle Komponenten außerhalb von $[-\infty, -1[$.

Lösung zu Präsenzaufgabe 2

Für alle $n \in \mathbb{N}_1$ definiere $x_n \coloneqq -\frac{1}{n}$ und $y_n \coloneqq \frac{1}{n}$. Dann gilt $x_n < y_n$ für alle n und $\lim_n x_n = 0 = \lim_n y_n$.

Beweis. Die Aussage $x_n < y_n$ für alle n ist klar. Wir wissen bereits $\lim_n y_n = 0$; wegen $|-\frac{1}{n} - 0| = \frac{1}{n}$ überträgt sich der Beweis auf $(x_n)_n$.

Lösung zu Präsenzaufgabe 3

Zum Verständnis der inversen Folge. Die gegebene Folge habe die Form $(x_n)_{n\geq\mu}$, also μ sei der Startindex. Definiere:

$$M := \{ m \in \mathbb{Z}_u ; \ \forall n \ge m : x_n \ne 0 \}$$

Wegen $\lim_n x_n = 1$ ist $M \neq \emptyset$. Die Folge $\left(\frac{1}{x_n}\right)_n$ ist zu verstehen als $\left(\frac{1}{x_n}\right)_{n \geq \nu}$, wobei $\nu \coloneqq \min(M)$ definiert ist. Für die Limesbetrachtung könnte man die Folge aber auch bei jedem Index größer als ν starten lassen.

Zum Konvergenzbeweis.

Es sei $(x_n)_n \in \mathcal{S}(\mathbb{R})$ so, dass $\lim_n x_n = 1$ gilt. Dann gilt $\lim_n \frac{1}{x_n} = 1$.

Beweis. Definiere:

$$n_1 \coloneqq n_0(B(1, \frac{1}{2}), x) \qquad \qquad n_2 \coloneqq n_0(B(1, \frac{\varepsilon}{2}), x)$$

Definiere $n_0 := \max\{n_1, n_2\}$. Es sei $n \ge n_0$. Dann gilt:

$$\left|\frac{1}{x_n} - 1\right| = \frac{|1 - x_n|}{|x_n|}$$

$$\leq 2|1 - x_n| \qquad n \geq n_1, \text{ also } |x_n| > \frac{1}{2}$$

$$< 2\frac{\varepsilon}{2} \qquad n \geq n_2$$

$$= \varepsilon$$

Seite 4 von 4