Gabe Cayofe Vincel resavarapu Mark Peralta

00		Mark Peralta
0		
0		4330 Assignment 6
0)	hwb-Coyote, pria Ha, kesavarapu. pof
0		gcd (1644,1264) 1644-1264 = 380
0		gcd (1264, 380) 1264- (300 x3) = 124
0		9 cd (380, 124) 380 - (124 x 3) = 8
		gcd (124,8) 124-(8x15)=4
6		gcd (8,4) 8/4=2 no remainder 0
-		gcd (4,0) Total of 5 divisions
-		
	2.	Show for every pair m, n of positive integers with m>n,
100		$(m \mod n) \leq m/2,$
0		where m mad n is the remainder of m/n
0		as given by D.A.
0		$\frac{\text{Proof!}}{\text{Colored}}$
		(1) If m > 2n by the D.A 7! q,r s.t
9		m=ngtr and 0 = r < n.
0		But ranan/2
		(m mod n) L n L m/2
10		(2) Seperate n/m <2n
		m=ng+r, o < r < n
		0 < n-r < m-r < 2n-r < 2n
		0 (m-r / 2
		$\frac{0}{n}$ $\frac{m-r}{2}$
0		0 4 Q 6 2 Q = 1 positive integer
0		m=htr 3 r Zn.
		$(m \mod n) = r = m - n$
		r=m-n < m- m/2 - r=m-n < m/2
O.		· (m mod n) 2 m/2

0

0

3. bk+2 = ak+1 mod bk+1 < anti/2 (by problem 2) Cbk mod ak modbe < b4/2 Cbk O L bk mod bk+1 < bk/2 cbk O < ak+1 mod bx+1 < bh/2
 Lbk 0 < bx+2 < bx/2 < bx Size of but 2 compared with bk. b 2x+2 < bk , for x > 1 If b1, b2, b3, ..., b1+210g2b2 are non zero Hen b2+210g2b2 < 710g2b2 = 1 And, for some number [bz + 2logzbz] < 1, then it 0 must be zero. 0 Let bkn 6 2, so lets state for some value bz 0 0 by \(\frac{b_2}{73} \) 50 b_1x+2 < \frac{b_2}{7x}, for x ≥ 1. Upperbound on maximum size k is 2 + 210g 2b.