Content Centric Network Lazzeretti Riccardo Daniele Cono D'Elia

Dirk.Kutscher@neclab.eu Boerje.Ohlman@ericsson.com

Materiale di Dirk Kutschner, Boerje Ohlman,

Mobile Data Traffic Prediction

From 2010 to 2015: factor 26 increase expected

Video Data Traffic Prediction

From 2010 to 2015: factor 5 increase expected

Popular Conception: Content Distribution Over the Internet Does Not Scale

Problems with Today's Networks

- URLs and IP addresses are overloaded with locator and identifier functionality
 - Moving information = changing it's name => 404 file not found
- No consistent way to keep track of identical copies
 - No consistent representation of information (copy-independent)
- Information dissemination is inefficient
 - Can't benefit from existing copies (e.g. local copy on client)
 - No "anycast": e.g., get "nearest" copy
 - Problems like Denial of Service, ...
- Can't trust a copy received from an untrusted node
 - Security is host-centric
 - Mainly based on securing channels (encryption) and trusting servers (authentication)

Content Centric Networking

- Considering important requirements
 - Accessing named resources not hosts
 - Scalable distribution through replication and caching
 - Good control of resolution/routing and access

- With ubiquitous caching
 - But for all applications
 - And for all users and content/service providers

Why CCN Would be Useful

- Topic seems important quite some interest
 - Content-distribution perspective
 - Internet evolution perspective

- A trending topic : one idea, many names
 - Content Centric Networking
 - Content Delivery Networking
 - Named Data Networking
 - Information Centric Networking
 - Data Oriented architecture

- Data is requested by name
 - get '/parc.com/van/presentation.pdf'
- Any node that hears the request and has a valid copy of the data can respond
- The returned data is signed, and secured, so its integrity & association with name can be validated (data centric security)

CCN Packets

Interest Data

Content Name

Selector (order preference, publisher filter, scope, ...)

Nonce

Content Name

Signature (digest algorithm, witness, ...)

Signed Info (publisher ID, key locator, stale time, ...)

Data

- There are just two CCN packet types interest (similar to http "get") and data (similar to http response).
- Both are encoded in an efficient binary XML

CCN Node Model

- Each CCN entity has 3 main data structures
 - Content Store, Pending Interest Table, Forwarding Information Base
- Uses multicast/broadcast
- Uses "longest prefix matching" lookup for content names

Interest Processing

Interest Processing

Interest processing

- Content goes only where there's interest.
- It takes at most one trip across any link.
- Average latency is minimized.
- Total bandwidth is minimized.
- There's no routing or control traffic associated with the replicas

CCN communication

IP communication

- End host-to-end host communication
- Client/Server-based networking

IP vs CCN protocol stacks

- Replace packets with Data Objects or Interests
- Replace Addresses
 with Names of
 Objects

Conclusion

- Content Centric Network
 - uses "named content" as its central abstraction
 rather than host identifiers
 - retains the simplicity and scalability of IP
 - offers better security, delivery efficiency
 - designed to replace IP, but can be incrementally deployed as an overlay