Savitribai Phule Pune University

Third Year of Artificial Intelligence and Data Science (2019 Cour Home

310241: Database Management Systems

Teaching Scheme: Credit: 03 Examination Scheme:

Lecture: 03 Hours/Week

Mid-Sem (TH): 30 Marks

End-Sem (TH): 70 Marks

Prerequisites Courses: Discrete Mathematics (210241), Data Structures and Algorithms (210252)

Companion Course: Software LaboratoryI(317523)

Course Objectives:

- To understand the fundamental concepts of Database Management Systems
- To acquire the knowledge of database query languages and transaction processing
- To understand systematic database design approaches
- To acquire the skills to use a powerful, flexible, and scalable general-purpose databases to handle Big Data
- To be familiar with advances in databases and applications

Course Outcomes:

On completion of the course, learners should be able to

CO1: Analyze and design Database Management System using ER model

CO2: Implement database queries using database languages

CO3: Normalize the database design using normal forms

CO4: Apply Transaction Management concepts in real-time situations

CO5: Use NoSQL databases for processing unstructured data

CO6: Differentiate between Complex Data Types and analyze the use of appropriate data types

Course Contents

Unit I	Introduction to Database Management Systems	06 Hours
	and ER Model	

Introduction, Purpose of Database Systems, Database-System Applications, View of Data, Database Languages, Database System Structure, Data Models. **Database Design and ER Model**: Entity, Attributes, Relationships, Constraints, Keys, Design Process, Entity-Relationship Model, ER Diagram, Design Issues, Extended E-R Features, converting ER and EER diagram into tables.

#Exemplar/Case Studies		dies	Analyze and design database using ER Model for any real-time				
			application and convert the same into tables.				
*Mapping Outcomes for	of Unit I	Course	CO1				
Unit II			SOL and PL/SOL 07 Hours				

SQL: Characteristics and Advantages, SQL Data Types and Literals, DDL, DML, DCL, TCL, SQL Operators. **Tables**: Creating, Modifying, Deleting, Updating.**SQL DML Queries**: SELECT Query and clauses, Index and Sequence in SQL. **Views**: Creating, Dropping, Updating using Indexes, Set Operations, Predicates and Joins, Set membership, Tuple Variables, Set comparison, Ordering of Tuples, Aggregate Functions, SQL Functions, Nested Queries.**PL/SQL**: Concept of Stored Procedures and Functions, Cursors, Triggers, Assertions, Roles and Privileges.

#Exemplar/Case Studies	Implementation of Unit 1 case study using SQL and PL/SQL.				
*Mapping of Course Outcomes for Unit II	CO1, CO2				

Unit III Relational Database Design 06 Hours

Relational Model: Basic concepts, Attributes and Domains, CODD's Rules. **Relational Integrity**: Domain, Referential Integrities, Enterprise Constraints. **Database Design**: Features of Good Relational Designs, Normalization, Atomic Domains and First Normal Form, Decomposition using Functional Dependencies, Algorithms for Decomposition, 2NF, 3NF, BCNF.

#Exemplar/Case Studies	Normalize relational database designed in Unit I.			
*Mapping of Course Outcomes for Unit III	CO1, CO3			

Unit IV Database Transaction Management 07 Hours

Introduction to Database Transaction, Transaction states, ACID properties, Concept of Schedule, Serial Schedule. Serializability: Conflict and View, Cascaded Aborts, Recoverable and Non-recoverable Schedules. Concurrency Control: Lock-based, Time-stamp based Deadlock handling. Recovery methods: Shadow-Paging and Log-Based Recovery, Checkpoints. Log-Based Recovery: Deferred Database Modifications and Immediate Database Modifications.

#Exemplar/Case Studies	Study of Transaction Management in Postgre SQL			
*Mapping of Course Outcomes for Unit IV	CO3, CO4			

Unit V NoSQL Databases 07 Hours

Introduction to Distributed Database System, Advantages, Disadvantages, CAP Theorem.

Types of Data: Structured, Unstructured Data and Semi-Structured Data.

NoSQL Database: Introduction, Need, Features. **Types of NoSQL Databases:** Key-value store, document store, graph, wide column stores, BASE Properties, Data Consistency model, ACID Vs BASE, Comparative study of RDBMS and NoSQL. **MongoDB** (with syntax and usage): CRUD Operations, Indexing, Aggregation, MapReduce, Replication, Sharding.

#Exemplar/Case Studies	Use of NoSQL databases for processing unstructured data from social media.
*Mapping of Course Outcomes for Unit V	CO5, CO6

Unit VI Advances in Databases 07 Hours

Emerging Databases: Active and Deductive Databases, Main Memory Databases, Semantic Databases.

Complex Data Types:

Semi-Structured Data, Features of Semi-Structured Data Models. **Nested Data Types**: JSON, XML. **Object Orientation:** Object-Relational Database System, Table Inheritance, Object-Relational Mapping. **Spatial Data:** Geographic Data, Geometric Data.

#Exemplar/Case Studies	Applications of advanced databases in real time environment.
*Mapping of Course Outcomes for Unit VI	CO5, CO6

Learning Resources

Text Books:

- 1. Silberschatz A., Korth H., Sudarshan S., "Database System Concepts", McGraw Hill Publishers, ISBN 0-07-120413-X, 6th edition
- 2. Connally T, Begg C., "Database Systems", Pearson Education, ISBN 81-7808-861-4
- **3.** Pramod J. Sadalage and Martin Fowler, "NoSQL Distilled", Addison Wesley, ISBN-10: 0321826620, ISBN-13: 978-0321826626

Reference Books:

- 1. C J Date, "An Introduction to Database Systems", Addison-Wesley, ISBN: 0201144719
- **2.** S.K.Singh, "Database Systems: Concepts, Design and Application", Pearson Education, ISBN 978-81-317-6092-5
- **3.** Kristina Chodorow, Michael Dierolf, "MongoDB: The Definitive Guide", O'Reilly Publications, ISBN: 978-1-449-34468-9
- 4. Adam Fowler, "NoSQL For Dummies", John Wiley & Sons, ISBN-1118905628
- **5.** Kevin Roebuck, "Storing and Managing Big Data NoSQL, HADOOP and More", Emereopty Limited, ISBN: 1743045743, 9781743045749
- 6. Joy A. Kreibich, "Using SQLite", O'REILLY, ISBN: 13:978-93-5110-934-1
- 7. Ivan Bayross, "SQL, PL/SQL the Programming Language of Oracle", BPB Publications ISBN: 9788176569644, 9788176569644
- 8. Seema Acharya, "Demystifying NoSQL", Wiley Publications, ISBN: 9788126579969

e-Books:

- 1. SQL and Relational Theory
 - a. (How to Write Accurate SQL code), C.J. Date, O'REILLY Publication
- 2. SQL A Beginner's Guide, Andy Oppel, Robert Sheldon, McGraw Hill Publication

MOOCs Courses Links:

http://www.nptelvideos.com/lecture.php?id=6518

<u>@ The CO-PO Mapping Matrix</u>												
CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	PO
PO CO1	2	2	3	1	_	_	_	1	_	10	-	12 3
CO2	-	2	3	-	-	2	-	-	-	-	-	3
CO3	-	2	3	-	1	-	_	-	_	-	-	3
CO4	2	2	2	2	_	_	_	-	_	1	_	3
CO5	-	2	3	-	-	-	-	-	_	-	1	3
CO6	2	2	-	-	-	-	1	-	2	-	1	1