MA-106 Linear Algebra

H. Ananthnarayan

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 11th January 2018 D1 - Lecture 4

Recall: Properties of Matrix Multiplication

If *A* is $m \times n$ and *B* is $n \times r$, then *AB* is $m \times r$, and

a)
$$(AB)_{ij} = A_{i*} \cdot B_{*j}$$

b)
$$(AB)_{*j} = AB_{*j}$$

c)
$$(AB)_{i*} = A_{i*}B$$

Properties of Matrix Multiplication:

- (associativity) (AB)C = A(BC)
- (distributivity) A(B+C) = AB + AC(B+C)D = BD + CD
- (non-commutativity) $AB \neq BA$ in general.
- (Identity) Let $I = \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix}$ be $n \times n$. If A is $n \times n$, then AI = A = IA

Inverse of a Matrix

Defn. Given *A* of size $n \times n$, we say *B* is an inverse of *A* if AB = I = BA. If this happens, we say *A* is *invertible*.

- An inverse may not exist. Find an example. Hint: n = 1.
- An inverse of A, if it exists, has size $n \times n$.
- If the inverse of A exists, it is unique, and is denoted A^{-1} . *Proof.* Let B and C be inverses of A.

```
\Rightarrow BA = I by definition of inverse.

\Rightarrow (BA)C = IC multiply both sides on the right by C.

\Rightarrow B(AC) = IC by associativity.

\Rightarrow BI = IC since C is an inverse of A.

\Rightarrow B = C by property of the identity matrix I.
```

Inverse of a Matrix

- If A and B are invertible, what about AB? AB is invertible, with inverse $(AB)^{-1} = B^{-1}A^{-1}$. Proof. Exercise.
- If A, B are invertible, what about A + B? A + B may not be invertible. Example: I + (-I) = (0).
- If *A* is invertible, what about A^T ? A^T is invertible with inverse $(A^T)^{-1} = (A^{-1})^T$. *Proof.* Use $AA^{-1} = I$. Take transpose.
- If A is symmetric and invertible, then is A^{-1} symmetric? Yes. *Proof.* Exercise!
- (Identity) $I^{-1} = I$.

Inverses and Linear Systems

- If A is invertible then the system Ax = b has a solution for every constant vector b, namely $x = A^{-1}b$. Is this unique?
- Since x = 0 is always a solution of Ax = 0, if Ax = 0 has a non-zero solution, then A is not invertible by the last remark.
- If *A* is invertible, then the Gaussian elimination of *A* produces *n* pivots.

Exercise:

- 1. A diagonal matrix A is invertible if and only if ____. (Hint: When are the diagonal entries pivots?)
- 2. When is an upper triangular matrix invertible?
- Since $AB = (AB_{*1} AB_{*2} \cdots AB_{*n})$ and $I = (e_1 e_2 \cdots e_n)$, if $B = A^{-1}$, then B_{*j} is a solution of $Ax = e_j$ for all j.
- Strategy to find A^{-1} : Let A be an $n \times n$ invertible matrix. Solve $Ax = e_1, Ax = e_2, \dots, Ax = e_n$.

Solutions to Multiple Systems

Question: Let
$$A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 1 \\ 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} b_1 & b_2 \end{pmatrix}$.

Is there a matrix C such that AC = B, i.e., such that $AC_{*1} = b_1$, $AC_{*2} = b_2$?

Rephrased question: Are $Ax = b_1$ and $Ax = b_2$ both consistent?

$$[A|B] = \begin{pmatrix} 0 & 1 & -1 & | & -1 & 1 \\ 1 & 0 & 2 & | & 2 & 0 \\ 1 & 2 & 0 & | & 0 & 2 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} \mathbf{1} & 0 & 2 & | & 2 & 0 \\ 0 & 1 & -1 & | & -1 & 1 \\ 1 & 2 & 0 & | & 0 & 2 \end{pmatrix}$$

$$\xrightarrow{R_3-R_1} \begin{pmatrix} 1 & 0 & 2 & | & 2 & 0 \\ 0 & 1 & -1 & | & -1 & 1 \\ 0 & 2 & -2 & | & -2 & 2 \end{pmatrix} \xrightarrow{R_3-2R_2} \begin{pmatrix} 1 & 0 & 2 & | & 2 & 0 \\ 0 & 1 & -1 & | & -1 & 1 \\ 0 & 0 & 0 & | & 0 & 0 \end{pmatrix}$$

Solutions to Multiple Systems (Contd.)

Question: Given matrices A, $B = \begin{pmatrix} b_1 & b_2 \end{pmatrix}$, is there a matrix C such that AC = B?

STRATEGY: Solve $Ax = b_1$ and $Ax = b_2$.

$$[A|B] = \begin{pmatrix} 0 & 1 & -1 & | & -1 & 1 \\ 1 & 0 & 2 & | & 2 & 0 \\ 1 & 2 & 0 & | & 0 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 2 & | & 2 & 0 \\ 0 & 1 & -1 & | & -1 & 1 \\ 0 & 0 & 0 & | & 0 & 0 \end{pmatrix}$$

A solution to
$$Ax = b_1$$
 is $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, and to $Ax = b_2$ is $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

(Verify)! So $C = (e_3 \ e_2)$ works! Is it unique?

Observe: In the above process, we used a *row exchange*: $R_1 \leftrightarrow R_2$ and *elimination using pivots*: $R_3 = R_3 - R_1$, $R_3 = R_3 - 2R_2$. Both can be achieved by left multiplication by special matrices.

H. Ananthnarayan D1 - Lecture 4 11th January 2018 7 / 12

Random Attendance

	170050008	Sawant Sohan Madhukar	
2	170050009	Onkar Manik Deshpande	
3	170050032	Krishna Yadav	
4	170050063	Arpit Prajapat	
5	170050073	Debabrata Mandal	
6	170050088	Sreyas Raghavan	
7	170050101	Ambati Satvik	
8	170050105	Himanshu Sheoran	Absent
9	170070052	Meruva Anjaneya Prasad	
10	17D070005	Prajwal Subhash Barapatre	
1	17D070006	Utkarsh Rajendra Bhalode	
12	17D070016	Rishikesh Shuddhodhan Meshram	

Row Operations: Elementary Matrices

Example:
$$E x = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} u \\ v - 2u \\ w \end{pmatrix}.$$

If
$$A = (A_{*1} \quad A_{*2} \quad A_{*3})$$
, then $EA = (EA_{*1} \quad EA_{*2} \quad EA_{*3})$.

Thus, EA has the same effect on A as the row operation $R_2 \mapsto R_2 + (-2)R_1$ on the matrix A.

Note: *E* is obtained from the identity matrix *I* by the row operation $R_2 \mapsto R_2 + (-2)R_1$.

Such a matrix (diagonal entries 1 and atmost one off-diagonal entry non-zero) is called an *elementary* (or elimination) matrix.

Notation: $E := E_{21}(-2)$. Similarly define $E_{ii}(\lambda)$.

Row Operations: Permutation Matrices

Example:
$$P x = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} v \\ u \\ w \end{pmatrix}$$

If
$$A = (A_{*1} \quad A_{*2} \quad A_{*3})$$
, then $PA = (PA_{*1} \quad PA_{*2} \quad PA_{*3})$.

Thus PA has the same effect on A as the row interchange $R_1 \leftrightarrow R_2$.

Note: We get *P* from the *I* by interchanging first and second rows. A matrix obtained from *I* by row exchanges is called a *permutation* (or row exchange) matrix.

Notation: $P = P_{12}$. Similarly define P_{ij} .

Remark: Row operations correspond to multiplication by elementary matrices $E_{ij}(\lambda)$ or permutation matrices P_{ij} on the left.

Elementary and Permutation Matrices: Inverses

For any $n \times n$ matrix A, observe that the row operations $R_2 \mapsto R_2 - 2R_1$, $R_2 \mapsto R_2 + 2R_1$ leave the matrix unchanged. In matrix terms, $E_{21}(2)E_{21}(-2)A = IA = A$ since

$$E_{21}(-2)\; E_{21}(2) = \; \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \; \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \; = \; \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

• If $E_{21}(\lambda) = \begin{pmatrix} 1 & 0 & 0 \\ \lambda & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, what is your guess for $E_{21}(\lambda)^{-1}$? Verify.

• Let
$$P_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} e_2^T \\ e_1^T \\ e_2^T \end{pmatrix}$$
. What is P_{12}^T ? P_{12}^T P_{12} ? P_{12}^{-1} ?

H. Ananthnarayan D1 - Lecture 4 11th January 2018

11 / 12

Elementary and Permutation Matrices: Inverses

Notice that the row interchange $R_1 \leftrightarrow R_2$ followed by $R_1 \leftrightarrow R_2$ leaves a matrix unchanged.

In matrix terms, $P_{12}P_{12}A = IA = A$, since

$$P_{12}P_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

• Let P_{ij} be obtained by interchanging the *i*th and *j*th rows of *I*. Show that $P_{ij}^T = P_{ij} = P_{ij}^{-1}$.

• Let
$$P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} e_3^T \\ e_1^T \\ e_2^T \end{pmatrix}$$
. Show that $P = P_{12}P_{23}$. Hence, $P^{-1} = (P_{12}P_{23})^{-1} = P_{22}^{-1}P_{12}^{-1} = P_{22}^TP_{12}^T = P^T$.