

আদর্শ গ্যাস ও বাস্তব গ্যাস

• আদর্শ গ্যাস ও বাস্তব গ্যাসের মধ্যে পার্থক্যঃ

বাস্তব গ্যাস:	আদর্শ গ্যাস:
$\left(i\right)\left(p+rac{n^{2}a}{V^{2}}\right)\left(V-nb\right)=nRT$ সূত্র মেনে চলে	(i) PV = nRT সূত্র মেনে চলে
(ii) অণুদের নিজস্ব আয়তন বিদ্যমান।	(ii) নেই
(iii) আন্তঃ আণবিক আকর্ষণ বিদ্যমান	(iii) নেই
(iv) অভ্যন্তরীণ শক্তি আয়তনের উপর নির্ভর করে না।	(iv) করে
(v) সংকোচনশীল গুণাঙ্ক, $z \neq 1$	(v) z = 1

- "উচ্চ তাপমাত্রা ও নিম্ন চাপে বাস্তব গ্যাস আদর্শ গ্যাসের মতো আচরণ করে "
- আদর্শ গ্যাস ও বাস্তব গ্যাসে P vs V গ্রাফ:

• সংকোচনশীল গুণাক (Z): (Compressibility factor)

$$Z = \frac{PV}{nRT}$$

$$Z = 1 \rightarrow$$
 আদর্শ গ্যাস

$$Z \neq 1 \rightarrow$$
 বাস্তব গ্যাস

$$P = 1$$
 atm; $n = 1$ mol; $T = 273K$

- Z > 1 \rightarrow V_{real} > V_{ideal} [Gas expand বিকর্ষণ \uparrow] Z < 1 \rightarrow V_{real} > V_{ideal} [Gas compressed আকর্ষণ \uparrow]
- বিচ্যুতির মাত্রা = 1~Z

$$Z > 1$$
 হলে , বিচ্যুতির মাত্রা $\rightarrow Z - 1$

$$Z < 1$$
 হলে, বিচ্নাতির মাত্রা $\rightarrow 1 - Z$

01. STP তে 1 mol গ্যাসের আয়তন 25 L গ্যাসটির প্রকৃতি ব্যাখ্যা কর ও কোন বল অধিক প্রাধান্য পাচ্ছে?

সমাধানঃ
$$\Rightarrow z = \frac{v_{real}}{v_{iseal}} = \frac{25L(প্রদত্ত)}{22.4L} = 1.116$$

$$\therefore$$
 Z \neq 1 তাই এটি বাস্তব গ্যাস \therefore $V_{real} > V_{ideal}$ হওয়ায় বিকর্ষণ বল অধিক প্রাধান্য পাচ্ছে।

- 02. Gases: A B C I Z: 1.4 0.8 1.6 0.4
 - (i) আদর্শ আচরণ থেকে বিচ্যুতির কম অনুসারে সাজাও।
 - (ii) আকর্ষণ বলের ক্রমানুসারে গ্যাসগুলোকে সাজাও।

সমাধানঃ (i) A এর বিচ্যুতি = Z - 1 = 1.4 - 1 = 0.4

$$C$$
 এর বিচ্যুতি = $Z - 1 = 1.6 - 1 = 0.6$

D এর বিচ্যুতি =
$$1 - Z = 1 - 0.4 - 0.6$$

বিচ্যুতির ক্রম: C = D > A > B (most ideal)

(ii) $Z = \frac{V_{real}}{V_{ldal}}$ হওয়ায় যার Z এর মান কম তার আকর্ষণ বল বেশি।

আকর্ষণ বলের ক্রমঃ D > B > A > C

- Z vs P এর গ্রাফ:
- ${
 m H}_2,~{
 m He}$ এর ক্ষেত্রে ightarrow Z>1 [আণবিক ভর কম হওয়ায় বিকর্ষণ প্রাধান্য পায়]
- বাকি সবার জন্য $\to Z < 1 \ [N_2, O_2, CO_2]$ এসব গ্যাসের আণবিক ভর বেশি হওয়ায় আকর্ষণ বল প্রাধান্য পায়। যার আণবিক ভর বেশি, তার আকর্ষণ বল তত বেশি এবং Z তত বেশি ঋণাত্মক।

03. Z vs P গ্রাফ দেয়া আছে।

আকর্ষন বল বৃদ্ধির ক্রমাণুসারে A, B ও C কে সাজাও। সমাধানঃ লেখচিত্র হতে, C এর Z সবচেয়ে ক্রম

$$Z = \frac{V_{real}}{V_{ideal}}$$

$$= \frac{V_{real}}{V_{ideal}} < 1 ; V_{real} \angle V_{ideal}$$

∴ Attraction force অনুসারে: A < B < C

• Z vs T 到 容:

যে তাপমাত্রায় বাস্তব গ্যাস বয়েলের সূত্র মেনে চলে, তাকে বয়েলের তাপমাত্রা বলে। তাপমাত্রা যত বৃদ্ধি পায়, বাস্তব গ্যাস তত বেশি আদর্শ গ্যাসের ন্যায় আচরণ করে। তাই T_4 সবচেয়ে বেশি।

তাপমাত্রার ক্রম: $T_4 > T_3 > T_2 > T_1$

(a) H₂

(b) He

(c) O2

(d) CO₂

সমাধানঃ (a) | Z এর value বেশি H2 এর

05. কোন গ্যাসটি অধিক পেষণযোগা?

(a) H₂

(b) H

(c) O2

(d) co

সমাধানঃ (d) | যাদের আণবিক ভর বেশি, তাদের মধ্যবতী আকর্ষণ বল বেশি, তাদের বিচ্নাতির মাত্রা বেশি। তারা অধিক পেষণযোগ্য।

04. আদর্শ গ্যাস আচরণ থেকে বিচ্যুতির ক্রম কোনটি?

(a) $H_2 < N_2 < CO_2 < NH_3$

(b) $H_2 < N_2 < NH_3 < CO_2$

(c) $CO_2 > NH_3 > H_2 > N_2$

(d) $N_2 > H_2 > CO_2 > NH_2$

সমাধানঃ (a)

- আকর্ষণ বল বেশি হয় 2টি কারণে
- (i) আণবিক ভর

(ii) H2 वन्नन (পোলার আকর্ষণ)

 $\mathrm{NH_3}$ এর আণবিক ভর $\mathrm{CO_2}$ থেকে কম হলেও তাদের মধ্যে $\mathrm{H_2}$ বন্ধন বিদ্যমান। ফলে আকর্ষণ বল বেশি ও বিচ্যুতির

- 06. কত ডিগ্রী সেলসিয়াস তাপমাত্রায় 100 kPa চাপে $2.24~\mathrm{dm^3}$ একটি পাত্রে $14.0~\mathrm{g~N_2}$ গ্যাসের সংকোচনশীলতা গুণাঙ্ক 0.10 হবে? [KUET'14-15]
 - (a) -3.64° C
- (b) 265.72°C
- (c) 269.36°C
- (d) 538.7°C
- (e) 273K

সমাধানঃ (b) | $Z = \frac{PV}{nRT} \Rightarrow 0.1 = \frac{\frac{100}{10.325} \times 2.24}{0.5 \times 0.0821 \times T} \Rightarrow T = 538.72K = 265.72°C$

07. কী অবস্থায় বাস্তব গ্যাস আদর্শ গ্যাস সমীকরণ অনুসরণ করে?

- (a) নিম্ন তাপমাত্রা ও উচ্চ তাপমাত্রা (b) উচ্চ তাপমাত্রা ও নিম্নচাপ (c) পরম শূন্য তাপমাত্রা (d) উচ্চ চাপ সমাধানঃ (b) | উচ্চতাপমাত্রা ও নিম্নচাপে অণুসমূহের গতি বেড়ে যাওয়ায় আন্তঃআণবিক আকর্ষণ কমে যায়, ফলে বাস্তব গ্যাস আদর্শ সমীকরণ অনুসরণ করে।
- 08. আদর্শ গ্যাস আচরণ থেকে বিচ্যুতির ক্রম কোনটি?

[DU'15-16]

(a) $H_2 < N_2 < CO_2 < NH_3$

(b) $H_2 < N_2 < NH_3 < CO_2$

(c) $CO_2 > NH_3 > H_2 > N_2$

(d) $N_2 > H_2 > CO_2 > NH_3$

সমাধানঃ (a) । একপরমাণুক গ্যাসের বিচ্যুতি দ্বিপরমাণুক গ্যাস অপেক্ষা কম। আবার আণবিক ভর বাড়ার সাথে সাথে বিচ্যুতি বাড়ে। H-bond থাকার কারণে NH3 এর বিচ্যুতি সর্বাধিক।

09. 17°C উষ্ণতায় 30L আয়তনের পাত্রে রাখা 1.0 মোল পরিমাণের একটি গ্যাস 98.9 kPa চাপ প্রদান করে। গ্যাসটির সংকোচনশীলতা গুণাংকের মান কত? আদর্শ আচরণ থেকে গ্যাসটির বিচ্যুতির মাত্রা কত?

সমাধানঃ

$$Z = \frac{PV}{RT}$$
 :: $Z = \frac{98.9 \times 30}{101.325 \times 0.0821 \times 290} = 1.23$

চাপ,
$$P = \frac{90.9}{101.325}$$
atm,

তাপমাত্রা, T = 17 + 273 = 290 K

আমরা জানি, আদর্শ গ্যাসের জন্য Z = 1.0 : আদর্শ আচরণ থেকে বিচ্যুতি = 1.23 - 1.0 = আয়তন, V = 30 L; n = 1.0

0.23

গ্যাস ধ্রুবক, R = 0.0821Latmmol K-1 সংকোচনশীলতা গুণাংক, Z =?

10. A গ্যাসটি আদর্শ গ্যাস অপেক্ষা কম পেষণযোগ্য। আদর্শ গ্যাস থেকে ইহার বিচ্যুতির মাত্রা 10%। গ্যাসটির 0.45 mol পরিমাণ 20 L আয়তনের একটি পাত্রে 60 kPa চাপ প্রদান করে। তাপমাত্রা নির্ণয় কর।

সমাধানঃ গ্যাসটি আদর্শ গ্যাস অপেক্ষা কম পেষণযোগ্য

অর্থাৎ,
$$Z > 1$$
 :: $Z = 1 + \frac{10}{100} = 1.1$; PV = ZnRT

$$T = \frac{PV}{ZnR} = \frac{\frac{60}{101.325} \times 20}{1.1 \times 0.45 \times 0.0821} = 291.42 \text{ K} = 18.42^{\circ}\text{C}$$

ভাভার ওয়ালস সমীকরণ এবং অ্যামাগা বক্র

• ভ্যান্ডার-ওয়ালস সমীকরণ:

• আয়তন সংশোধন ফ্যাক্টর: (b/nb)

b∞গ্যাস অণুর আকার

01. $\mathbf{F_2}$ ও $\mathbf{Cl_2}$ এর মধ্যে কার \mathbf{b} এর মান বেশি? \Rightarrow $\mathbf{Cl_2}$ অপুর আকার বড়, তাই \mathbf{b} এর মান বেশি। \mathbf{b} এর একক: $\mathbf{L} \ \mathbf{mol}^{-1}$

b = 1 mol গ্যাসের নিজস্ব আয়তন

4 किता वाञला?

• চাপ সংশোধন ফ্যাক্টর $\left(\frac{n^2a}{v^2}\right)$

• a এর একক: atm L² mol⁻²

• a \propto Force of attraction \rightarrow (i) পোলার যৌগে a এর মান বেশি

(ii) H₂ বন্ধন থাকলে a এর মান বেশি

external internal

ধ্রুবক 'a' এর তাৎপর্য: n ও V নির্দিষ্ট থাকলে P_a এর মান 'a' ধ্রুবকের ওপর নির্ভর করে। তখন 'a' এর মান বেশি হলে অণুগুলোর আন্তঃআণবিক আকর্ষণ বল বেশি হয়। গ্যাসের আণবিক ভর বেশি হরে। এর মান বেশি হয়। ফলে ঐ গ্যাসের তরলীকরণ অল্প চাপে ঘটে।

02. Compare a for: F_2 , Cl_2 , Br_2 , I_2 সমাধানঃ I_2 এ সবচেয়ে বেশি, I_2 এর আণবিক ভর সবচেয়ে বেশি হওয়ায় ভ্যান্ডার ওয়ালস আকর্ষণ বলের মান বেশি। I_2 এর মান বেশি।