hw7 1

April 8, 2023

[84]: import torch

```
import torch.nn as nn
    from torch.utils.data import Dataset, DataLoader
    from torchvision import datasets, transforms
    import torch.nn.functional as F
    import torch.optim as optim
    from tqdm import tqdm
    import matplotlib.pyplot as plt
    import numpy as np
    import time
    from skorch import NeuralNetClassifier
    from sklearn.model_selection import GridSearchCV
[4]: ## this function is from Prof. Chugg's torch_fmnist_loader notebook
     ## https://github.com/keithchugg/ee559_spring2023/blob/main/hw_helpers/
     ⇔torch_fmnist_loader.py
    class FashionMNISTDataset(Dataset):
        def __init__(self, data):
            self.data = data
        def __getitem__(self, index):
            image, label = self.data[index]
            return image, label
        def __len__(self):
            return len(self.data)
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.
      45,), (0.5,),])
    trainset = datasets.FashionMNIST('~/.pytorch/F_MNIST_data/', download=True,_
      →train=True, transform=transform)
    testset = datasets.FashionMNIST('~/.pytorch/F_MNIST_data/', download=True, __
```

```
print(f'Train set size: {len(trainset)}, Validation set size: {len(valset)}, ∪ oTest set size: {len(testset)}')
```

Train set size: 48000, Validation set size: 12000, Test set size: 10000

1 ANN/MLP Model Definition

Start with =48 hidden nodes, =0.01, $=10^-3$ and =32

```
[157]: | ## this function is from Prof. Chuqq's fmnist_mlp_torch notebook
       ## https://qithub.com/keithchuqq/ee559_sprinq2023/blob/main/hw_helpers/
        \hookrightarrow fmnist_mlp\_torch.py
       # Parameters for the model
       n pixels = 28 * 28
       n_{classes} = 10
       n hidden = 48
       # Define the model
       class MLP(nn.Module):
           def __init__(self, n_hidden): # Define layers in the constructor
               super().__init__()
               self.fc1 = nn.Linear(28 * 28, n_hidden)
               self.relu = nn.ReLU()
               self.fc2 = nn.Linear(n_hidden, 10)
           def forward(self, x): # Define forward pass in the forward method
               x = x.view(x.shape[0], -1) #flatten into a 784 length tensor
               x = self.relu(self.fc1(x))
               x = self.fc2(x)
               return x # note: no softmax, as this is included in the loss function
        →in PyTorch
```

2 Train Model

```
[199]: ## this function is from Prof. Chugg's fmnist_mlp_torch notebook

## https://github.com/keithchugg/ee559_spring2023/blob/main/hw_helpers/

□ fmnist_mlp_torch.py

# Define function to call for each training epoch (one complete pass over the training set)

def train(model, trainloader, criterion, optimizer, device):

model.train() # set model to training mode

running_loss = 0; running_acc = 0

# with tqdm(total=len(trainloader), desc=f"Train", unit="batch") as pbar:
```

```
for n_batch, (images, labels) in enumerate(trainloader): # Iterate_
 ⇔over batches
              images, labels = images.to(device), labels.to(device) # Move
 ⇒batch to device
              optimizer.zero_grad()
              output = model(images) # Forward pass
#
              loss = criterion(output, labels) # Compute loss
#
              loss.backward() # Backward pass
#
              optimizer.step() # Update weights
              running_loss += loss.item()
#
#
              running acc += (output.argmax(1) == labels).float().mean().item()
              pbar.set_postfix({'loss': loss.item(), 'acc': 100. * running_acc /
 (n_batch+1)
              pbar.update() # Update progress bar
   for n_batch, (images, labels) in enumerate(trainloader): # Iterate over__
 \hookrightarrow batches
            images, labels = images.to(device), labels.to(device) # Move batch_
 →to device
            optimizer.zero_grad()
            output = model(images) # Forward pass
            loss = criterion(output, labels) # Compute loss
            loss.backward() # Backward pass
            optimizer.step() # Update weights
            running_loss += loss.item()
            running acc += (output.argmax(1) == labels).float().mean().item()
   return running_loss / len(trainloader), running_acc / len(trainloader) #__
 →return loss and accuracy for this epoch
## https://qithub.com/keithchuqq/ee559_sprinq2023/blob/main/hw_helpers/
 ⇔fmnist_mlp_torch.py
```

```
[200]: ## this function is from Prof. Chuqq's fmnist_mlp_torch notebook
       # Define function to call for each validation epoch (one complete pass over the \Box
        ⇔validation set)
       def validate(model, valloader, criterion, device):
           model.eval() # set model to evaluation mode (e.g. turn off dropout,
        ⇒batchnorm, etc.)
           running_loss = 0; running_acc = 0
           with torch.no_grad(): # no need to compute gradients for validation
                 with tqdm(total=len(valloader), desc=f"Eval", unit="batch") as pbar:
                     for n_batch, (images, labels) in enumerate(valloader): # Iterate_
        →over batches
                         images, labels = images.to(device), labels.to(device) # Moveu
        ⇒batch to device
       #
                         output = model(images) # Forward pass
       #
                         loss = criterion(output, labels) # Compute loss
```

```
#
                  running_loss += loss.item()
                  running_acc += (output.argmax(1) == labels).float().mean().
 \rightarrow item()
                  pbar.set_postfix({'loss': loss.item(), 'acc': 100. *_
 →running_acc / (n_batch+1)})
                  pbar.update() # Update progress bar
        for n_batch, (images, labels) in enumerate(valloader): # Iterate over__
 \hookrightarrow batches
            images, labels = images.to(device), labels.to(device) # Move batch_
 →to device
            output = model(images) # Forward pass
            loss = criterion(output, labels) # Compute loss
            running_loss += loss.item()
            running acc += (output.argmax(1) == labels).float().mean().item()
   return running_loss / len(valloader), running_acc / len(valloader) #_U
 ⇔return loss and accuracy for this epoch
```

```
[173]: def report_runtime(batchsize):
           runtime_history = []
           # Create a model
           model = MLP(n_hidden)
                 print(model)
           lr = 0.01 ## the learning rate in TF is part of the optimizer. Default
        ⇔is 1e-2
           reg_val = 1e-3
           criterion = nn.CrossEntropyLoss() # includes softmax (for numericalu
        \hookrightarrowstability)
           optimizer = optim.SGD(model.parameters(), lr=lr, weight_decay=reg_val)
           device = torch.device("cpu")
                 print(f'Using device: {device}')
           model.to(device) # Move model to device
           ite = 0
           for ite in range(5): # Run 5 times
               val_acc_checkpoint = -1
               epoch = 0
               # Shuffle the data at the start of each epoch (only useful for training_
        ⇔set)
               trainloader = torch.utils.data.DataLoader(trainset,
        ⇒batch_size=batchsize, shuffle=True)
               valloader = torch.utils.data.DataLoader(valset, batch_size=batchsize,_u
        ⇔shuffle=False)
```

```
testloader = torch.utils.data.DataLoader(testset, batch_size=batchsize,__
        ⇒shuffle=False)
               start = time.time()
               while(val_acc_checkpoint <= 0.8):</pre>
                   print(f"Epoch {epoch+1} in time {ite+1}")
                   train_loss, train_acc = train(model, trainloader, criterion, __
        ⇔optimizer, device) # Train
                   val_loss, val_acc = validate(model, valloader, criterion, device) #__
        \hookrightarrow Validate
                   val_acc_checkpoint = val_acc
                     train loss history.append(train loss)
                     train_acc_history.append(train_acc)
       #
                     val_loss_history.append(val_loss)
                     val_acc_history.append(val_acc)
                   epoch += 1
               end = time.time()
               runtime = end - start
               runtime_history.append(runtime)
           print(f'The batch size is {batchsize}, and the mean is {np.
        omean(runtime_history)}, the std is {np.std(runtime_history)}')
[176]: report_runtime(32)
      Epoch 1 in time 1
      Train: 100%|
                      | 1500/1500 [00:10<00:00, 137.23batch/s, loss=0.452, acc=76.6]
                      | 375/375 [00:02<00:00, 183.02batch/s, loss=0.611, acc=81.4]
      Eval: 100%|
      Epoch 1 in time 2
                      | 1500/1500 [00:10<00:00, 139.36batch/s, loss=0.418, acc=82.8]
      Train: 100%
                       | 375/375 [00:02<00:00, 179.11batch/s, loss=0.46, acc=83.2]
      Eval: 100%|
      Epoch 1 in time 3
      Train: 100%|
                      | 1500/1500 [00:10<00:00, 138.12batch/s, loss=0.516, acc=84.2]
      Eval: 100%|
                      | 375/375 [00:02<00:00, 187.26batch/s, loss=0.494, acc=83.9]
      Epoch 1 in time 4
      Train: 100%|
                      | 1500/1500 [00:10<00:00, 142.40batch/s, loss=0.539, acc=84.9]
      Eval: 100%|
                      | 375/375 [00:02<00:00, 183.65batch/s, loss=0.546, acc=84.3]
      Epoch 1 in time 5
                      | 1500/1500 [00:10<00:00, 140.99batch/s, loss=0.258, acc=85.5]
      Train: 100%|
                      | 375/375 [00:01<00:00, 189.47batch/s, loss=0.487, acc=85.4]
      Eval: 100%|
```

The batch size is 32, and the mean is 12.781783056259155, the std is

0.15533816985575313

[177]: report_runtime(16) Epoch 1 in time 1 Train: 100%| | 3000/3000 [00:15<00:00, 191.67batch/s, loss=0.348, acc=78.3] | 750/750 [00:02<00:00, 278.11batch/s, loss=0.684, acc=82.1] Eval: 100%| Epoch 1 in time 2 Train: 100%| | 3000/3000 [00:15<00:00, 192.16batch/s, loss=0.575, acc=83.7] Eval: 100%| | 750/750 [00:02<00:00, 282.17batch/s, loss=0.557, acc=83.9] Epoch 1 in time 3 | 3000/3000 [00:16<00:00, 183.83batch/s, loss=0.306, acc=85.1] Train: 100%| Eval: 100%| | 750/750 [00:02<00:00, 280.37batch/s, loss=0.621, acc=84.7] Epoch 1 in time 4 Train: 100%| | 3000/3000 [00:15<00:00, 195.21batch/s, loss=0.363, acc=85.8] | 750/750 [00:02<00:00, 278.45batch/s, loss=0.745, acc=86] Eval: 100%| Epoch 1 in time 5 | 3000/3000 [00:15<00:00, 195.51batch/s, loss=0.403, acc=86.4] Train: 100%| | 750/750 [00:02<00:00, 279.10batch/s, loss=0.648, acc=86] Eval: 100% The batch size is 16, and the mean is 18.344105577468873, the std is 0.34812015279238673 [174]: report_runtime(64) Epoch 1 in time 1 | 750/750 [00:07<00:00, 103.70batch/s, loss=0.543, acc=72.6] Train: 100%| | 188/188 [00:01<00:00, 120.15batch/s, loss=0.714, acc=78.7] Eval: 100%| Epoch 2 in time 1 Train: 100%| | 750/750 [00:07<00:00, 106.36batch/s, loss=0.723, acc=80.9] Eval: 100%| | 188/188 [00:01<00:00, 119.93batch/s, loss=0.579, acc=81.4] Epoch 1 in time 2 Train: 100%| | 750/750 [00:07<00:00, 101.41batch/s, loss=0.412, acc=82.7] | 188/188 [00:01<00:00, 117.27batch/s, loss=0.495, acc=82.7] Eval: 100%| Epoch 1 in time 3 Train: 100%| | 750/750 [00:07<00:00, 104.89batch/s, loss=0.51, acc=83.6] Eval: 100%| | 188/188 [00:01<00:00, 120.18batch/s, loss=0.514, acc=83.3]

Epoch 1 in time 4

Train: 100% | 750/750 [00:07<00:00, 106.86batch/s, loss=0.469, acc=84.2] Eval: 100% | 188/188 [00:01<00:00, 119.63batch/s, loss=0.485, acc=83.8]

Epoch 1 in time 5

Train: 100% | 750/750 [00:07<00:00, 103.82batch/s, loss=0.406, acc=84.7] Eval: 100% | 188/188 [00:01<00:00, 118.31batch/s, loss=0.42, acc=84.4]

The batch size is 64, and the mean is 10.510799455642701, the std is

3.460327396677144

[175]: report_runtime(128)

Epoch 1 in time 1

Train: 100% | 375/375 [00:06<00:00, 59.67batch/s, loss=0.684, acc=67.2] Eval: 100% | 94/94 [00:01<00:00, 69.22batch/s, loss=0.816, acc=75.4]

Epoch 2 in time 1

Train: 100% | 375/375 [00:06<00:00, 59.62batch/s, loss=0.621, acc=77.4] Eval: 100% | 94/94 [00:01<00:00, 67.08batch/s, loss=0.691, acc=78.4]

Epoch 3 in time 1

Train: 100% | 375/375 [00:06<00:00, 58.70batch/s, loss=0.52, acc=80] Eval: 100% | 94/94 [00:01<00:00, 69.30batch/s, loss=0.63, acc=80.3]

Epoch 1 in time 2

Train: 100% | 375/375 [00:06<00:00, 59.94batch/s, loss=0.413, acc=81.5] Eval: 100% | 94/94 [00:01<00:00, 68.80batch/s, loss=0.591, acc=81.3]

Epoch 1 in time 3

Train: 100% | 375/375 [00:06<00:00, 59.43batch/s, loss=0.576, acc=82.3] Eval: 100% | 94/94 [00:01<00:00, 67.95batch/s, loss=0.558, acc=82.3]

Epoch 1 in time 4

Train: 100% | 375/375 [00:06<00:00, 59.20batch/s, loss=0.439, acc=83] Eval: 100% | 94/94 [00:01<00:00, 67.02batch/s, loss=0.538, acc=82.7]

Epoch 1 in time 5

Train: 100% | 375/375 [00:06<00:00, 58.89batch/s, loss=0.426, acc=83.5] Eval: 100% | 94/94 [00:01<00:00, 64.57batch/s, loss=0.504, acc=83.1]

The batch size is 128, and the mean is 10.795682621002197, the std is 6.1475982896351065

2.1 Using batchsize = 64 according to the result above

```
[158]: def grid_search():
           # create model with skorch
           model = NeuralNetClassifier(
               MLP,
               criterion=nn.CrossEntropyLoss,
               optimizer=optim.SGD,
               max_epochs=30,
               batch_size=64,
               lr=1e-02,
               iterator_train__shuffle=True
           # define the grid search parameters
           param_grid = {
               'optimizer__lr': [0.001, 0.01, 0.1],
               'optimizer__weight_decay': [1e-04, 1e-03, 1e-02],
               'module__n_hidden': [40, 80, 160]
           }
           grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1,_u

cv=3, scoring='accuracy',return_train_score = True)
           trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,_
        ⇔shuffle=False)
           X_train = np.array([X_train.cpu().detach().numpy() for X_train, y_train in_
        ⇔trainloader])
           X_train = np.squeeze(np.concatenate(X_train, axis=0))
           y_train = np.array([y_train.cpu().detach().numpy() for X_train, y_train in_
        →trainloader])
           y_train = np.squeeze(np.concatenate(y_train, axis=0))
           grid_result = grid.fit(X_train,y_train)
           return grid_result
```

[143]: grid_result = grid_search()

dur	valid_loss	valid_acc	train_loss	epoch
	1.0495	0.7053	1.5381	1 1.3321
dur	valid_loss	valid_acc	train_loss	epoch
	1.0052	0.7103	1.4536	1 1.3613
dur	valid_loss	valid_acc	train_loss	epoch
	0.5398	0.8050	0.7201	1

1.3827				
epoch	train_loss	valid_acc	valid_loss	dur
1 1.4039	1.4985	0.7120	1.0097	
epoch	train_loss	valid_acc	valid_loss	dur
1 1.4641	1.5301	0.7048	1.0365	
epoch	train_loss	valid_acc	valid_loss	dur
1 1.4135	1.4608	0.7102	0.9700	
epoch	train_loss	valid_acc	valid_loss	dur
1 1.4805	1.5022	0.7013	1.0278	
epoch	train_loss	valid_acc	valid_loss	dur
1 1.4221	1.4664	0.7136	0.9741	
epoch	train_loss	valid_acc	valid_loss	dur
1 1.4953	1.4430	0.7125	0.9813	
epoch	train_loss	valid_acc	valid_loss	dur
1	1.4218	0.7234	0.9705	
1.4497	0.8856	0.7392	0.7859	
1.1391	0.8555	0.7478	0.7662	
1.1109	0.8328	0.7559	0.7474	
1.1180	0.8602	0.7459	0.7738	
1.1774	0.8749	0.7453	0.7770	
1.1427	0.8396	0.7448	0.7531	
1.1224 2	0.8309	0.7541	0.7448	
1.1173 2	0.4952	0.8239	0.4933	
1.1989 2	0.8729	0.7402	0.7855	
1.1588			0.7540	
2	0.8372	0.7472	0.7548	

1.1601	0.5400	0. 5044	0.0040
3 1.0385	0.7183	0.7641	0.6913
3	0.7006	0.7738	0.6662
1.0847	0.7004	0.7677	0.0046
3 1.1097	0.7091	0.7677	0.6816
3	0.7276	0.7539	0.6977
1.1669 3	0.4517	0.8406	0.4549
1.0724	0.4517	0.0400	0.4549
3	0.7198	0.7650	0.6853
1.1290 3	0.7297	0.7580	0.6983
1.0959	0.1201	0.7000	0.0000
3	0.7105	0.7698	0.6744
1.1406 3	0.7022	0.7742	0.6701
1.1342			
3 1.1698	0.6944	0.7739	0.6632
4	0.6553	0.7723	0.6479
1.1429			
4 1.1301	0.6596	0.7678	0.6495
4	0.6427	0.7800	0.6329
1.1583	0 4055	0.0447	0.4460
4 1.1375	0.4255	0.8417	0.4469
4	0.6519	0.7812	0.6329
1.1400	0.6386	0.7881	0.6176
1.2097	0.0000	0.7001	0.0170
4	0.6660	0.7741	0.6490
1.1555 4	0.6521	0.7830	0.6307
1.1694			
4 1.1856	0.6414	0.7855	0.6242
4	0.6337	0.7841	0.6149
1.1553			
5 1.1283	0.6165	0.7852	0.6168
5	0.6177	0.7809	0.6160
1.1469	0.6060	0.7040	0 6445
5 1.1023	0.6269	0.7842	0.6145
5	0.5986	0.7986	0.5834

1.1409			
5	0.6007	0.7906	0.5998
1.1801	0.0007	0.7900	0.0990
5	0.6105	0.7922	0.5990
1.1615	0.0100	0.1022	0.0000
5	0.6022	0.7945	0.5901
1.1004			
5	0.6155	0.7923	0.5991
1.1694			
5	0.4082	0.8453	0.4355
1.2452			
5	0.5958	0.7987	0.5828
1.1639			
6	0.5892	0.7917	0.5943
1.1501			
6	0.5983	0.7963	0.5879
1.1036	0 5071	0.7044	0 5000
6 1.1444	0.5871	0.7841	0.5926
6	0.5816	0.8017	0.5710
1.1177	0.3010	0.0017	0.0710
6	0.5700	0.8084	0.5590
1.1437			
6	0.5710	0.7992	0.5740
1.1752			
6	0.5888	0.8044	0.5757
1.1278			
6	0.5746	0.8031	0.5642
1.1537			
6	0.5686	0.8072	0.5582
1.1379 6	0.3914	0.8489	0.4291
1.1702	0.3914	0.0409	0.4231
7	0.5683	0.8000	0.5751
1.0900			0.0.01
7	0.5768	0.8033	0.5677
1.0848			
7	0.5638	0.7956	0.5695
1.0959			
7	0.5478	0.8159	0.5378
1.0925			
7	0.5593	0.8086	0.5525
1.1319	0 5601	0.0126	0 5557
7 1.0859	0.5681	0.8136	0.5557
7	0.5484	0.8042	0.5581
1.1061	0.0101	0.0012	0.0001
7	0.5527	0.8117	0.5433

1.1078				
7	0.5476	0.8128	0.5402	
1.1082	0.0000	0.0406	0.4455	4 4004
7			0.4455	
8	0.5514	0.8048	0.5594	
1.0834	0 5500	0.0000	0 5545	
8	0.5598	0.8092	0.5515	
1.1175	0 5440	0.0000	0 5546	
1 1427	0.5442	0.8020	0.5546	
1.1437	0 5300	0.0012	0 5020	
8	0.5309	0.8213	0.5232	
1.1548	0.5000	0.0400	0 5405	
8	0.5306	0.8106	0.5405	
1.1093	0 5440	0.040	0.5040	
8	0.5419	0.8137	0.5346	
1.1305				
8	0.5518	0.8173	0.5412	
1.1426				
8	0.5351	0.8184	0.5261	
1.1162				
8	0.3697	0.8558	0.4111	
1.1059				
8	0.5308	0.8172	0.5250	
1.1423				
9	0.5278	0.8175	0.5205	
1.1206				
9	0.5457	0.8150	0.5385	
1.2550				
9	0.5163	0.8230	0.5109	
1.2016				
9	0.5286	0.8070	0.5404	
1.2575				
9	0.5380	0.8189	0.5322	
1.2047				
9	0.5376	0.8092	0.5483	
1.4088				
9	0.5159	0.8161	0.5283	
1.2508				
9	0.3607	0.8523	0.4113	1.2143
9	0.5166	0.8216	0.5133	
1.2109				
9	0.5205	0.8219	0.5135	
1.3101				
10	0.5158	0.8216	0.5106	
1.1247				
10	0.5340	0.8166	0.5306	
1.2169				
10	0.5148	0.8127	0.5278	

1.1626				
10	0.5265	0.8095	0.5396	
1.1794				
10	0.5050	0.8283	0.5000	
1.2635				
10	0.5269	0.8220	0.5200	
1.2149 10	0 5052	0.8253	0 5000	
1.1551	0.5053	0.0253	0.5029	
10	0.5039	0.8180	0.5203	
1.2260		0.0200	0.0200	
10	0.3514	0.8630	0.3964	
1.1815				
10	0.5083	0.8211	0.5053	1.2041
11	0.5059	0.8211	0.5006	1.1249
11	0.5241	0.8228	0.5191	
1.0609				
11	0.5036	0.8158	0.5192	
1.1588	0 5465	0.0450	0 5000	
11 1.1391	0.5165	0.8150	0.5306	
1.1391	0.5169	0.8241	0.5116	
1.1093	0.5103	0.0241	0.5110	
11	0.4949	0.8286	0.4913	
1.1159				
11	0.4932	0.8220	0.5098	
1.1122				
11	0.3442	0.8612	0.3978	1.1147
11	0.4953	0.8273	0.4939	
1.1540				
11	0.4984	0.8259	0.4932	
1.1425 12	0.4973	0.8277	0.4921	
1.1592	0.4973	0.0211	0.4921	
1.1002	0.5160	0.8255	0.5110	
1.1647	0.0100	0.0200	0.0110	
12	0.4933	0.8144	0.5134	1.0911
12	0.5087	0.8284	0.5037	
1.0864				
12	0.5086	0.8164	0.5235	
1.1330				
12	0.4862	0.8273	0.4882	1.1502
12	0.4869	0.8297	0.4855	
1.1113	0 4042	0 0050	0 5000	
12 1.1545	0.4843	0.8252	0.5008	
1.1545	0.3357	0.8638	0.3966	1.2008
12	0.4896	0.8292	0.4856	1.2000
	0.1000		3.2000	

1.1816				
13	0.4897	0.8291	0.4853	
1.2483	0.4050	0.0040	0 5040	
13	0.4850	0.8213	0.5042	
1.1978 13	0.5084	0.8263	0.5051	
1.2518	0.5064	0.0203	0.5051	
1.2010	0.5009	0.8300	0.4972	
1.2207			0 7 20 7 2	
13	0.4766	0.8253	0.4944	
1.1534				
13	0.5013	0.8191	0.5166	
1.2282				
13	0.4797	0.8327	0.4794	
1.1983			0 4554	
13	0.4787	0.8380	0.4774	
1.2197 13	0.3295	0.8581	0.3962	1 1725
13	0.4817	0.8355	0.3902	1.1755
1.2687	0.4017	0.0000	0.4701	
14	0.4824	0.8305	0.4788	
1.1573				
14	0.5021	0.8319	0.4967	
1.1486				
14	0.4690	0.8292	0.4876	
1.0888				
14	0.4774	0.8203	0.4998	1.1787
14 1.1205	0.4949	0.8223	0.5128	
1.1203	0.4946	0.8342	0.4921	
1.1678	0.1310	0.0012	0.1021	
14	0.3230	0.8586	0.3969	1.1429
14	0.4719	0.8348	0.4741	1.1893
14	0.4726	0.8345	0.4741	
1.2276				
14	0.4750	0.8363	0.4717	
1.1381			0 4545	
15	0.4769	0.8355	0.4747	
1.1450 15	0.4963	0.8319	0.4921	1.1194
15	0.4706	0.8267	0.4921	1.1134
1.1409	0.1100	0.0201	0.4000	
15	0.4627	0.8291	0.4848	1.1789
15	0.4889	0.8330	0.4856	1.1531
15	0.4895	0.8213	0.5069	1.1784
15	0.3162	0.8666	0.3801	
1.1484				
15	0.4665	0.8373	0.4680	

1.1413				
15	0.4661	0.8391	0.4692	
1.1932				
15	0.4687	0.8403	0.4662	
1.1499				
16	0.4907	0.8311	0.4895	1.0820
16	0.4712	0.8342	0.4684	1.1427
16	0.4645	0.8278	0.4855	
1.1136				
16	0.4566	0.8298	0.4807	
1.1090				
16	0.4842	0.8231	0.5027	
1.0844				
16	0.4834	0.8355	0.4817	
1.0984				
16	0.3094	0.8614	0.3954	1.1324
16	0.4607	0.8402	0.4649	
1.0858				
16	0.4612	0.8397	0.4640	
1.1464	0.1012	0.0001	0.1010	
16	0.4628	0.8380	0.4605	1.0612
17	0.4862	0.8353	0.4836	1.0012
1.0687	0.1002	0.0000	0.1000	
17	0.4657	0.8387	0.4630	
1.0917	0.4007	0.0001	0.1000	
17	0.4797	0.8225	0.5027	1.0742
17	0.4585	0.8281	0.4836	1.0742
1.1208	0.4000	0.0201	0.4000	
17	0.4518	0.8297	0.4767	1.1068
17	0.4318	0.8377	0.4771	1.1000
	0.4700	0.0311	0.4771	
1.1056 17	0.4554	0.8430	0.4594	
	0.4554	0.0430	0.4594	
1.1113	0.2042	0.0010	0 2042	1 1100
17	0.3043	0.8612	0.3943	1.1468
17	0.4561	0.8408	0.4598	
1.1482	0.4570	0.0000	0 4500	4 4400
17	0.4578	0.8389	0.4560	1.1106
18	0.4820	0.8377	0.4798	
1.1022	0.4044			
18	0.4611	0.8392	0.4603	
1.0614				
18	0.4757	0.8256	0.4953	
1.0845				
18	0.4747	0.8353	0.4751	1.0747
18	0.4532	0.8313	0.4762	
1.1128				
18	0.4465	0.8325	0.4710	
1.1305				

18	0.4506	0.8400	0.4586	
18	0.2987	0.8603	0.3975	1.0803
18	0.4512	0.8417	0.4556	
1.1057				
18	0.4527	0.8419	0.4527	
1.0928				
19	0.4781	0.8391	0.4766	
1.1419				
19	0.4569	0.8417	0.4566	
1.1391				
19	0.4719	0.8273	0.4911	
1.1448				
19	0.4706	0.8413	0.4703	
1.1441				
19	0.4416	0.8331	0.4673	
1.1404				
19	0.4483	0.8317	0.4720	
1.1688				
19	0.2945	0.8709	0.3769	
1.0998				
19	0.4466	0.8445	0.4529	
1.1284				
19	0.4481	0.8414	0.4517	1.1499
19	0.4470	0.8434	0.4533	
1.2036				
20	0.4524	0.8423	0.4539	
1.1494				
20	0.4744	0.8375	0.4738	1.1715
20	0.4667	0.8375	0.4705	1.1063
20	0.4687	0.8295	0.4888	
1.1522				
20	0.4441	0.8350	0.4692	
1.1083				
20	0.4425	0.8472	0.4494	
1.0745				
20	0.2899	0.8647	0.3828	1.1004
20	0.4378	0.8375	0.4620	
1.1820				
20	0.4439	0.8406	0.4449	1.0973
20	0.4428	0.8444	0.4488	
1.1351				
21	0.4487	0.8427	0.4507	
1.0884				
21	0.4711	0.8414	0.4715	
1.1069				
21	0.4636	0.8433	0.4655	
1.1352	0.12000	110100	0.12000	
21	0.4655	0.8270	0.4890	1.1319
	0.1000	0.02.0	2.1000	

21	0.4387	0.8455	0.4475	1.0894
21	0.4398	0.8328	0.4692	
21	0.4339	0.8377	0.4591	
1.1460				
21	0.2849	0.8627	0.3934	1.1940
21	0.4396	0.8455	0.4415	
1.1325				
21	0.4391	0.8450	0.4468	
1.0879				
22	0.4449	0.8459	0.4464	
1.1110				
22	0.4680	0.8419	0.4677	
1.1510				
22	0.4603	0.8414	0.4631	1.1155
22	0.4351	0.8483	0.4440	
1.0924				
22	0.4357	0.8359	0.4631	
1.1384				
22	0.4299	0.8358	0.4585	1.1042
22	0.4626	0.8305	0.4840	
1.2259				
22	0.2793	0.8656	0.3823	
22	0.4360	0.8441	0.4382	
22	0.4354	0.8444	0.4451	
23	0.4418	0.8445	0.4434	1.1022
23	0.4573	0.8442	0.4595	
1.1095	0.4650	0.0404	0.4656	
23	0.4653	0.8431	0.4656	
1.1677	0 4210	0.0450	0 4410	1 1/120
23	0.4318 0.4317	0.8458 0.8372	0.4412 0.4605	1.1438
23 1.1255	0.4317	0.0372	0.4005	
23	0.2756	0.8648	0.3867	1 1155
23	0.4264	0.8363	0.4555	1.1155 1.1585
23	0.4596	0.8292	0.4830	
23	0.4321	0.8428	0.4418	
23	0.4324	0.8467	0.4373	1.1400
1.2031	0.4021	0.0101	0.4070	
24	0.4383	0.8486	0.4417	
1.3662	0.1000	0.0200	******	
24	0.4541	0.8431	0.4586	1.2474
24	0.4285	0.8398	0.4571	
1.1857				
24	0.4620	0.8438	0.4642	
1.2750				
24	0.4287	0.8492	0.4392	
1.3671				
24	0.4573	0.8328	0.4793	

1 0157				
1.2157	0 4004	0.0000	0.4500	
24	0.4231	0.8392	0.4530	
1.2860				
24	0.2707	0.8662	0.3850	1.3422
24	0.4280	0.8456	0.4393	
1.1973				
24	0.4290	0.8461	0.4350	1.2493
25	0.4248	0.8366	0.4567	1.1306
25	0.4522	0.8444	0.4564	
1.1707				
25	0.4597	0.8445	0.4607	
1.1303				
25	0.4355	0.8448	0.4391	1.1804
25	0.4257	0.8464	0.4406	1.0523
25	0.4548	0.8323	0.4778	1.0762
25	0.4197	0.8409	0.4495	
1.1262				
25	0.2655	0.8669	0.3843	1.1163
25	0.4256	0.8492	0.4352	
1.1117				
25	0.4257	0.8494	0.4315	
1.1144				
26	0.4218	0.8381	0.4522	1.1055
26	0.4573	0.8436	0.4600	
26	0.4227	0.8506	0.4355	
1.0644	V		0.1200	
26	0.4497	0.8445	0.4554	
1.1332	0.1101	0.0110	0.1001	
26	0.4320	0.8480	0.4366	1.1701
26	0.4524	0.8345	0.4766	1.1/01
1.0785	0.4024	0.0040	0.4700	
26	0.4170	0.8400	0.4460	1.1211
26	0.2616	0.8634	0.3873	
26	0.4228	0.8486	0.4349	1.0856
26	0.4229 0.4190	0.8477	0.4291	1.0786 1.0958
27		0.8389	0.4488	
27	0.4552	0.8436	0.4603	1.0980
27	0.4199	0.8464	0.4350	1.1134
27	0.4473	0.8478	0.4516	
1.0961	0. 4000	0.0477	0.4055	4 0000
27	0.4292	0.8477	0.4355	1.0886
27	0.4501	0.8352	0.4744	
1.1101				
27	0.4135	0.8403	0.4456	1.0776
27	0.2572	0.8658	0.3930	1.1010
27	0.4201	0.8486	0.4316	1.1318
27	0.4199	0.8502	0.4271	
1.0936				

28	0.4176	0.8498	0.4341	1.0635
28	0.4531	0.8456	0.4552	
1.1035				
28	0.4158	0.8398	0.4482	1.1156
28	0.4455	0.8464	0.4515	1.1315
28	0.4268	0.8469	0.4338	1.1158
28	0.4483	0.8341	0.4728	1.1423
28	0.4112	0.8427	0.4434	1.1120
1.1074	0.4112	0.0427	0.4404	
28	0.2558	0.8670	0.3851	1.1193
				1.1195
28	0.4172	0.8514	0.4231	
1.0867	0.4470	0.0540	0.4000	
28	0.4170	0.8512	0.4292	
1.1365	0 4440	0.0404	0.4000	
29	0.4149	0.8494	0.4308	1.0669
29	0.4128	0.8411	0.4481	
1.0763				
29	0.4510	0.8452	0.4558	1.1160
29	0.4430	0.8475	0.4502	1.1046
29	0.4240	0.8472	0.4306	1.0932
29	0.4462	0.8322	0.4735	1.0700
29	0.4082	0.8433	0.4405	
1.1457				
29	0.2509	0.8700	0.3769	1.1289
29	0.4141	0.8511	0.4210	1.1045
29	0.4148	0.8491	0.4281	1.1071
30	0.4124	0.8511	0.4316	1.1742
30	0.4105	0.8439	0.4444	
1.1412				
30	0.4493	0.8483	0.4525	
1.1954				
30	0.4415	0.8472	0.4480	1.1674
30	0.4448	0.8344	0.4701	1.1583
30	0.4211	0.8512	0.4272	
1.2023				
30	0.2479	0.8681	0.3829	1.0960
30	0.4113	0.8506	0.4216	
30	0.4057	0.8430	0.4377	
30	0.4123	0.8500	0.4256	
	train_loss			
1	0.7189	0.8114	0.5257	
1.2964	0.1103	0.0114	0.0201	
	train_loss	valid_acc	valid_loss	dur
	014111_1055	varia_acc		
1	0.7280	0.8047	0.5345	
1.3101	0.7200	0.0041	0.0040	
	+moin 700-	unlid and	rolid loss	4
epoch	${\tt train_loss}$	valid_acc	valid_loss	dur

1 1.2333	0.7231	0.8078	0.5362	
epoch	train_loss	valid_acc	valid_loss	dur
1 1.1445	0.7394	0.8061	0.5344	
epoch	train_loss	valid_acc	valid_loss	dur
1 1.2524	0.7445	0.8127	0.5319	
epoch	train_loss	valid_acc	valid_loss	dur
1 1.2339	0.7356	0.8075	0.5605	
epoch	train_loss	valid_acc	valid_loss	dur
1	0.7347	0.8172	0.5284	
1.1753 epoch	train_loss	valid_acc	valid_loss	dur
1	0.7343	0.8045	0.5506	
1.1388 epoch	train_loss	valid_acc	valid_loss	dur
1	0.6159	0.8302	0.4710	
1.1884				J
epoch	train_loss	valid_acc	valid_loss	dur
1	train_loss 0.6188	valid_acc 0.8320	valid_loss 0.4619	
1 1.2794 2				
1 1.2794 2 1.1108	0.6188	0.8320	0.4619	
1.2794 2 1.1108 2 1.1077	0.6188	0.8320	0.4619	
1.2794 2 1.1108 2 1.1077 2 1.2297	0.6188 0.4947 0.4969	0.8320 0.8319 0.8311	0.4619 0.4732 0.4807	
1.2794 2 1.1108 2 1.1077 2 1.2297 2 1.2394	0.6188 0.4947 0.4969 0.5007	0.8320 0.8319 0.8311 0.8352	0.4619 0.4732 0.4807 0.4636	
1.2794 2 1.1108 2 1.1077 2 1.2297 2 1.2394 2 1.0807	0.6188 0.4947 0.4969 0.5007	0.8320 0.8319 0.8311 0.8352 0.8302	0.4619 0.4732 0.4807 0.4636 0.4665	
1.2794 2 1.1108 2 1.1077 2 1.2297 2 1.2394 2 1.0807 2	0.6188 0.4947 0.4969 0.5007 0.4958 0.5121	0.8320 0.8319 0.8311 0.8352 0.8302 0.8252	0.4619 0.4732 0.4807 0.4636 0.4665 0.4912	
1 1.2794 2 1.1108 2 1.1077 2 1.2297 2 1.2394 2 1.0807 2 1.1631 2 1.1705 2	0.6188 0.4947 0.4969 0.5007 0.4958 0.5121 0.5113	0.8320 0.8319 0.8311 0.8352 0.8302 0.8252 0.8252	0.4619 0.4732 0.4807 0.4636 0.4665 0.4912 0.5001	dur
1.2794 2 1.1108 2 1.1077 2 1.2297 2 1.2394 2 1.0807 2 1.1631 2	0.6188 0.4947 0.4969 0.5007 0.4958 0.5121 0.5113 0.4995	0.8320 0.8319 0.8311 0.8352 0.8302 0.8252 0.8223 0.8223	0.4619 0.4732 0.4807 0.4636 0.4665 0.4912 0.5001 0.4838	dur

1.1237				
2	0.4679	0.8389	0.4437	
1.1598				
3	0.4515	0.8383	0.4518	
1.0750				
3	0.4572	0.8442	0.4363	
1.1014	0.4012	0.0112	0.4000	
	0.4524	0.0250	0.4645	
3	0.4531	0.8359	0.4645	
1.1447	0 4500	0.0004	0 4454	
3	0.4520	0.8384	0.4471	
1.1106				
3	0.4556	0.8220	0.4735	1.0778
3	0.4760	0.8245	0.4903	
1.1099				
3	0.4752	0.8378	0.4624	
1.1589				
3	0.4806	0.8398	0.4640	
1.1685				
3	0.4285	0.8363	0.4703	1.1263
3	0.4253	0.8464	0.4165	
1.1126	0.1200	0.0101	0.1100	
4	0.4258	0.8494	0.4241	
1.0826	0.4250	0.0434	0.4241	
	0 4214	0.0450	0.4051	
4	0.4314	0.8459	0.4251	
1.1195				
4	0.4273	0.8337		1.1577
4	0.4261	0.8517	0.4233	
1.0994				
4	0.4565	0.8341	0.4645	1.0755
4	0.4575	0.8367	0.4667	
1.1458				
4	0.4290	0.8462	0.4315	
1.1925				
4	0.4605	0.8436	0.4546	
1.1763				
4	0.4028	0.8534	0.4148	
1.1729				
4	0.3945	0.8589	0.4081	
1.1960	0.0010	0.0000	0.1001	
5	0.4073	0.8458	0 4282	1.1643
5		0.8523		1.1045
	0.4132	0.0523	0.4083	
1.1874	0 4400	0.0400	0 4440	
5	0.4432	0.8489	0.4419	
1.1137				
5	0.4090	0.8434	0.4389	
1.2163				
5	0.4079	0.8459		1.2536
5	0.4464	0.8405	0.4571	

1.1727				
5	0.4104	0.8545	0.4170	
1.2349				
5	0 4465	0.0530	0 4404	
	0.4465	0.8538	0.4404	
1.1743				
5	0.3779	0.8536	0.4143	
1.1968				
5	0.3769	0.8342	0.4860	1.2219
6	0.3910	0.8570	0.4101	
1.3204				
6	0.3989	0.8531	0.4030	
1.2191	0.0000	0.0001	0.1000	
	0 2027	0.0470	0 4000	1 1000
6	0.3937	0.8478	0.4200	
6	0.4346	0.8453	0.4395	1.3228
6	0.3933	0.8438	0.4272	
1.3251				
6	0.4387	0.8436	0.4595	1.2772
6	0.4381	0.8462	0.4408	1.2015
6	0.3682	0.8555	0.4057	
1.2179	0.0002	0.0000	0.1001	
	0 2050	0.0500	0 4025	
6	0.3959	0.8580	0.4035	
1.3843				
6	0.3626	0.8544	0.4085	
7	0.3794	0.8541	0.4064	1.2456
7	0.3870	0.8572	0.4014	
1.1514				
7	0.3810	0.8619	0.3940	
1.1356				
7	0.3836	0.8361	0.4605	1.1163
7	0.4282	0.8500		
			0.4413	
7	0.4316	0.8383	0.4545	1.1656
7	0.4312	0.8539	0.4334	
1.1732				
7	0.3838	0.8614	0.3874	
1.1031				
7	0.3499	0.8472	0.4539	1.1594
7	0.3478	0.8575	0.4117	1.1133
8	0.3670	0.8633	0.3844	
1.0563	0.0010	0.0000	0.0011	
	0.2750	0.0640	0 2006	
8	0.3759	0.8648	0.3886	
1.1346				
8	0.3706	0.8598	0.3881	1.1378
8	0.3734	0.8500	0.4134	
1.1387				
8	0.4213	0.8427	0.4436	1.1588
8	0.4262	0.8363	0.4607	1.1134
8	0.4256	0.8555	0.4227	
1.0881				
1.0001				

8	0.3747	0.8544	0.3946	1.1323
8	0.3446	0.8548	0.4255	1.0884
8	0.3370	0.8622	0.3937	
1.1616				
9	0.3576	0.8617	0.3955	1.0715
9	0.3685	0.8642	0.3792	1.1096
9	0.3612	0.8620	0.3843	
1.0846				
9	0.4165	0.8417	0.4482	1.1175
9	0.3630	0.8530	0.4163	1.1630
9	0.4233	0.8416	0.4543	1.1103
9	0.4215	0.8478	0.4314	1.0931
9	0.3290	0.8073	0.5926	1.1086
9	0.3653	0.8589	0.3841	1.1371
9	0.3286	0.8708	0.3642	
1.1136				
10	0.3479	0.8662	0.3813	
1.1246				
10	0.3568	0.8611	0.3841	1.1998
10	0.3532	0.8669	0.3745	
1.1864				
10	0.4132	0.8530	0.4220	
1.1411				
10	0.3558	0.8605	0.4036	
1.1564				
10	0.4196	0.8423	0.4432	1.1635
10	0.4181	0.8517	0.4253	1.1328
10	0.3205	0.8534	0.4322	1.1018
10	0.3571	0.8523	0.4053	1.1500
10	0.3243	0.8666	0.3989	1.1341
11	0.3391	0.8661	0.3755	1.0853
11	0.3516	0.8652	0.3757	
1.1156	0.0470	0.0044	0.0700	
11	0.3473	0.8641	0.3782	1.1488
11	0.4121	0.8541	0.4259	1.1261
11	0.4165	0.8462	0.4406	
1.1147	0.4154	0.0544	0.4000	1 1000
11	0.4154	0.8544	0.4290	1.1008
11	0.3481	0.8573	0.4013	1.1617
11 11	0.3110	0.8539	0.4380	1.0616
	0.3493	0.8617	0.3903	1.1186
11 12	0.3130 0.3306	0.8666 0.8661	0.4015	1.1274 1.1416
12	0.3428	0.8673	0.3729 0.3767	1.1416
12	0.3428	0.8586	0.3852	1.1601
12	0.4088	0.8516	0.3652	1.1861
12	0.4127	0.8541	0.4293	1.1401
12	0.4137	0.8333	0.4571	1.1626
14	0.4101	0.0000	0.1011	1.1020

12	0.3057	0.8617	0.4161	1.1396
12	0.3415	0.8520	0.4167	1.1520
12	0.3451	0.8686	0.3718	
1.0948	0.0101	0.0000	0.0710	
	0.0070	0.0004	0.0074	4 4000
12	0.3073	0.8661	0.3876	1.1036
13	0.3243	0.8705	0.3649	
1.0907				
13	0.3356	0.8702	0.3770	1.1444
13	0.3331	0.8633	0.3792	1.0805
13	0.4063	0.8561	0.4227	1.1367
13	0.4102	0.8431	0.4394	1.1103
13	0.3355	0.8617	0.3918	
1.1070	0.0000	0.0011	0.0010	
13	0.4114	0.8536	0.4251	1.1346
				1.1340
13	0.2998	0.8647	0.3996	
1.1349				
13	0.3390	0.8739	0.3620	
1.1361				
13	0.3005	0.8428	0.4785	1.1012
14	0.3184	0.8714	0.3662	1.0865
14	0.3290	0.8727	0.3641	
1.1186				
14	0.3278	0.8733	0.3656	
1.1135				
14	0.3300	0.8622	0.3859	
1.0724		***************************************	0.000	
14	0.4080	0.8575	0.4161	
1.0871	0.4000	0.0373	0.4101	
	0 4000	0.0464	0 4410	1 1020
14	0.4098	0.8464	0.4418	1.1239
14	0.4064	0.8444	0.4324	
14	0.2912	0.8600	0.4214	1.1463
14	0.3332	0.8686	0.3699	1.1295
14	0.2906	0.8495	0.4518	1.1397
15	0.3114	0.8730	0.3631	
1.0843				
15	0.3228	0.8606	0.3807	1.0894
15	0.3227	0.8653	0.3759	1.1204
15	0.3249	0.8506	0.4188	1.0950
15	0.4061	0.8514	0.4293	1.1341
15	0.4037	0.8581	0.4137	
1.1000	0.1001	0.0001	0.1101	
	0 4075	0 0505	0 4265	
15	0.4075	0.8505	0.4365	
1.1225	0.0050	0.0500	0 4070	4 4440
15	0.2858	0.8586	0.4376	1.1412
15	0.3278	0.8728	0.3598	1.0858
15	0.2818	0.8520	0.4219	1.1421
16	0.3066	0.8719	0.3651	1.1069
16	0.3171	0.8727	0.3588	1.1045

16	0.3188	0.8686	0.3617	1.1232
16	0.3196	0.8650	0.3877	1.0961
16	0.4066	0.8589	0.4121	1.0950
16	0.4071	0.8438	0.4406	1.1387
16	0.2784	0.8562	0.4366	1.0790
16	0.3231	0.8695	0.3680	1.0947
16	0.4033	0.8477	0.4340	1.1864
16	0.2788	0.8625	0.4325	1.0975
17	0.3009	0.8714	0.3659	1.1265
17	0.3109	0.8716	0.3591	1.0766
17	0.3129	0.8700	0.3674	1.0944
17	0.3154	0.8653	0.3855	1.0011
1.0911	0.0101	0.0000	0.0000	
17	0.4030	0.8544	0.4196	1.1055
17	0.4047	0.8517	0.4370	1.1187
17	0.2756	0.8562	0.4280	1.1158
17	0.4012	0.8527	0.4247	1.1345
17	0.3183	0.8755	0.3577	1.1343
	0.3103	0.0755	0.3311	
1.1403	0 0003	0.0570	0 4642	1 11/0
17	0.2803	0.8570	0.4643	1.1148
18	0.2950	0.8747	0.3569	
1.1100	0.0050	0.0746	0.0640	4 0040
18	0.3053	0.8716	0.3648	1.2048
18	0.3077	0.8600	0.3779	1.1818
18	0.3097	0.8672	0.3870	1.1397
18	0.4033	0.8511	0.4128	1.1766
18	0.4036	0.8462	0.4325	1.1446
18	0.3149	0.8750	0.3505	1.1290
18	0.4012	0.8595	0.4180	1.1318
18	0.2681	0.8516	0.4539	1.1809
18	0.2698	0.8759	0.3877	1.2466
19	0.2889	0.8708	0.3637	1.2218
19	0.3049	0.8647	0.3847	1.2213
19	0.3050	0.8719	0.3569	1.3268
19	0.3004	0.8762	0.3502	
1.3723				
19	0.4026	0.8497	0.4319	1.1819
19	0.4032	0.8617	0.4056	1.2755
19	0.2675	0.8558	0.4865	1.3232
19	0.3989	0.8600	0.4095	
1.3723				
19	0.3097	0.8698	0.3613	1.3761
19	0.2659	0.8666	0.3952	1.2748
20	0.2841	0.8686	0.3733	1.3334
20	0.3014	0.8612	0.3868	1.1594
20	0.2999	0.8697	0.3607	1.2086
20	0.4014	0.8462	0.4349	1.2056
20	0.4004	0.8536	0.4116	1.1831
	0.2002	3.000	0.1110	• • •

	0.0000	0.000		4 0070
20	0.2979	0.8706	0.3577	1.2872
20	0.2612	0.8698	0.4213	1.2087
20	0.3063	0.8730	0.3638	1.2177
20	0.3995	0.8500	0.4231	1.2413
20	0.2628	0.8655	0.4226	1.1154
21	0.2798	0.8816	0.3446	
1.1393				
21	0.2971	0.8653	0.3807	1.1101
21	0.4006	0.8413	0.4432	1.1003
21	0.2974	0.8739	0.3576	1.1283
21	0.3997	0.8530	0.4198	1.1233
21	0.2926	0.8791	0.3477	1.1200
	0.2920	0.0791	0.5411	
1.1318	0.0000	0.0000	0 4100	4 4454
21	0.2608	0.8633	0.4198	1.1154
21	0.3015	0.8728	0.3576	1.0824
21	0.3978	0.8514	0.4229	1.1206
21	0.2597	0.8692	0.3907	1.1574
22	0.2750	0.8773	0.3495	1.1498
22	0.2938	0.8644	0.3914	1.1504
22	0.2928	0.8638	0.3668	1.0701
22	0.3998	0.8480	0.4326	1.1153
22	0.4006	0.8603	0.4057	1.0881
22	0.2859	0.8716	0.3564	1.1551
22	0.2554	0.8616	0.4273	1.1379
22	0.2994	0.8708	0.3550	1.1237
22	0.2541	0.8697	0.4052	1.0765
22	0.3960	0.8520	0.4231	1.1520
23	0.2714	0.8780	0.3447	1.1020
23	0.2885	0.8705	0.3680	1.1099
	0.2005	0.0705	0.3000	
1.1095	0.0004	0.0700	0.0500	4 4070
23	0.2901	0.8733	0.3563	1.1073
23	0.3981	0.8413	0.4530	1.0946
23	0.3992	0.8602	0.4108	1.1132
23	0.2836	0.8736	0.3617	1.1012
23	0.2957	0.8731	0.3486	1.1096
23	0.2499	0.8598	0.4597	1.1116
23	0.2473	0.8672	0.4153	1.1337
23	0.3979	0.8602	0.4098	1.1288
24	0.2673	0.8784	0.3500	1.1111
24	0.2843	0.8697	0.3762	1.1159
24	0.3982	0.8500	0.4273	1.0744
24	0.2866	0.8661	0.3693	1.1651
24	0.2790	0.8802	0.3475	
1.0591	3.2.00	3.0002	3.3173	
24	0.3986	0.8605	0.4096	1.1733
24	0.2460	0.8548	0.4698	1.1733
				1.1040
24	0.2927	0.8777	0.3444	
1.1080				

24	0.2457	0.8750	0.3894	1.1450
24	0.3961	0.8550	0.4192	1.1412
25	0.2628	0.8748	0.3632	1.0777
25	0.2817	0.8719	0.3679	
1.1040				
25	0.3961	0.8489	0.4326	1.1082
25	0.2832	0.8730	0.3474	1.0809
25	0.2744	0.8733	0.3575	1.1273
25	0.3976	0.8544	0.4214	1.1166
25	0.2427	0.8709	0.4128	1.1173
25	0.2883	0.8669	0.3594	1.1473
25	0.3945	0.8472	0.4292	1.1109
25	0.2453	0.8617	0.4356	1.1395
26	0.2590	0.8744	0.3599	1.1534
26	0.3960	0.8545	0.4300	1.0952
26	0.2809	0.8684	0.3690	1.1474
26	0.2805	0.8752	0.3454	
1.1508				
26	0.3982	0.8600	0.4087	1.0951
26	0.2706	0.8812	0.3436	
1.1087				
26	0.2422	0.8648	0.4480	1.0858
26	0.2850	0.8745	0.3560	1.1143
26	0.3943	0.8608	0.4098	1.1151
26	0.2429	0.8744	0.3900	1.1405
27	0.2544	0.8806	0.3485	1.1093
27	0.3960	0.8484	0.4278	1.1483
27	0.2768	0.8627	0.3922	1.1705
27	0.3975	0.8608	0.4057	1.1439
27	0.2771	0.8677	0.3559	1.2123
27	0.2671	0.8747	0.3619	1.1689
27	0.2355	0.8614	0.4353	1.1877
27	0.2818	0.8742	0.3559	1.3636
27	0.3954	0.8577	0.4113	1.3350
27	0.2424	0.8655	0.4356	1.3761
28	0.2504	0.8720	0.3674	1.3686
28	0.3939	0.8534	0.4271	1.3874
28	0.2738	0.8681	0.3743	1.4723
28	0.2734	0.8750	0.3475	1.4147
28				
	0.3956	0.8577	0.4151	1.4136
28	0.2625	0.8789	0.3571	1.4076
28	0.2372	0.8620	0.4394	1.3009
28	0.2785	0.8755	0.3540	1.1797
28	0.3936	0.8570	0.4078	1.2716
28	0.2327	0.8578	0.4200	1.3005
29	0.2487	0.8850	0.3428	
1.2256	0.0000	0.0444	0 4055	4 4500
29	0.3936	0.8444	0.4379	1.1529

29	0.2701	0.8630	0.3957	1.1785
29	0.3957	0.8531	0.4226	1.1517
29	0.2707	0.8686	0.3575	1.1649
29	0.2579	0.8809	0.3551	1.2062
29	0.2325	0.8589	0.4468	1.1784
29	0.2773	0.8658	0.3651	1.1392
29	0.3928	0.8527	0.4163	1.1923
29	0.2325	0.8717	0.4119	1.1092
30	0.2450	0.8834	0.3496	1.1694
30	0.3937	0.8548	0.4160	1.1401
30	0.2669	0.8648	0.3765	1.1781
30	0.3964	0.8556	0.4122	1.1481
30	0.2680	0.8670	0.3719	1.1536
30	0.2558	0.8784	0.3515	1.1243
30	0.2311	0.8495	0.5186	1.1552
30	0.2724	0.8789	0.3401	
1.1115				
30	0.3939	0.8545	0.4173	1.1434
30	0.2259	0.8698	0.4237	1.1795
epoch	train_loss	valid_acc	valid_loss	dur
1	0.6272	0.8308	0.4754	
1.1333				
epoch	train_loss	valid_acc	valid_loss	dur
1	0.6213	0.8116	0.5129	
1.1747	0.0220	0.0220	3.0223	
epoch	train_loss	valid_acc	valid_loss	dur
1	0.6237	0.8314	0.4675	
1.2071				
epoch	train_loss	valid_acc	valid_loss	dur
1	0.6160	0.8394	0.4436	
1.1721				
epoch	train_loss	valid_acc	valid_loss	dur
1	0.6606	0.7297	0.7176	
1.1453				
	train_loss	valid acc	valid loss	dur
1	0.6625	0.8167	0.5261	
1.1864	0.0020	0.0101	0.0201	
epoch	train_loss	valid_acc	valid_loss	dur
1	0.6682	0.8245	0.4945	
1.2418	0.0002	0.02.10	0.1010	
epoch	train_loss		valid_loss	dur

1	1.4754	0.7137	0.9868	
	train_loss	valid_acc	valid_loss	dur
1 1.3232	1.4202	0.7253	0.9487	
1.3232 2 1.1800	0.4743	0.8455	0.4309	
epoch	train_loss	valid_acc	valid_loss	dur
1 1.3885	1.4209	0.7383	0.9411	
2 1.1851	0.4796	0.8183	0.5109	
2	0.4799	0.8422	0.4486	
1.2436	0 4010	0.0004	0 5004	1 0707
2	0.4819	0.8094	0.5024	1.2727
2 1.2767	0.5634	0.7889	0.5634	
2	0.5689	0.8163	0.4990	1.2785
2	0.5683	0.8028	0.5653	1.2187
2 1.3802	0.8375	0.7450	0.7574	
3 1.4233	0.4300	0.8602	0.3769	
2 1.5464	0.8190	0.7577	0.7355	
2 1.6231	0.8048	0.7672	0.7253	
3	0.4410	0.8211	0.5019	
3	0.4400	0.8270	0.4840	1.3633
3	0.5603	0.7933	0.5967	1.2981
3	0.4500	0.8423	0.4318	1.2301
1.3693	0.4000	0.0420	0.4010	
3	0.5541	0.7809	0.6035	1.3521
3	0.5583	0.7858	0.5979	1.3614
3	0.6992	0.7631	0.6768	1.3014
1.4357	0.0992	0.7631	0.0708	
4	0.4086	0.8123	0.5190	1.1493
3				1.1493
1.3773	0.6899	0.7756	0.6558	
4 1.1407	0.4185	0.8370	0.4520	
3 1.4331	0.6784	0.7811	0.6512	
4	0.4225	0.8464	0.4132	

1.1653				
4	0.5581	0.7648	0.6776	1.1473
4	0.5576	0.7795	0.5858	1.2506
4	0.4236	0.8522	0.3923	
1.2241				
4	0.5414	0.8044	0.5507	
1.2362				
5	0.3905	0.8603	0.3986	1.1526
4	0.6379	0.7767	0.6328	
1.3787				
5	0.4095	0.8441	0.4288	
1.1914				
4	0.6298	0.7908	0.6107	
1.3266				
5	0.4054	0.8542	0.4059	
1.1436				
5	0.5596	0.7914	0.5627	1.1404
5	0.5573	0.7869	0.5662	1.1274
5	0.5479	0.8192	0.5210	1.1437
4	0.6224	0.7937	0.6064	
1.3254				
5	0.4071	0.8344	0.4439	1.2103
6	0.3696	0.8497	0.4043	1.1726
5	0.5998	0.7858	0.6034	
1.2878				
6	0.3960	0.8377	0.4559	1.1239
6	0.3925	0.8509	0.4175	1.1088
6	0.5523	0.7886	0.5402	1.1524
5	0.5909	0.8027	0.5753	
1.3929	0 5500	0.7001	0 5049	1 0100
6	0.5522	0.7681	0.5943 0.5174	1.2123
6 6	0.5448	0.8098	0.5174	1.2261 1.2533
5	0.4016	0.8472		1.2000
1.3714	0.5873	0.8039	0.5763	
7	0.3597	0.8527	0.4086	1.2051
7	0.3863	0.8384	0.4661	1.1430
7	0.3902	0.8575	0.3952	1.1450
1.1529	0.0002	0.0070	0.0002	
6	0.5727	0.7905	0.5815	
1.4185	0.0121	0.1000	0.0010	
7	0.5523	0.7597	0.6327	1.1540
7	0.5497	0.8106	0.5174	1.2105
7	0.5423	0.8067	0.5462	1.1942
6	0.5632	0.8128	0.5516	
1.3445			110010	
7	0.3878	0.8491	0.4247	1.1878
6	0.5617	0.8117	0.5521	· •
· ·				

1 2004				
1.3904	0.3434	0.8620	0.3771	1.1491
8	0.3434	0.8503	0.4326	1.1491
	0.3821			
8		0.8467	0.4284	1.0827
8	0.5489	0.8152	0.5145	1.1628
7	0.5516	0.7986	0.5647	
1.3615	0 5404	0.0400	0 5000	4 4070
8	0.5494	0.8192	0.5080	1.1376
8	0.5491	0.8155	0.5134	1.1985
8	0.3840	0.8341	0.4481	1.1183
7	0.5419	0.8186	0.5327	
1.3039				
9	0.3413	0.8719	0.3640	
1.1200				
7	0.5420	0.8164	0.5339	
1.3840				
9	0.3735	0.8483	0.4279	1.2436
9	0.3794	0.8658	0.3890	
1.1336				
9	0.5528	0.8153	0.4958	1.2173
9	0.5423	0.7955	0.5576	1.1323
9	0.5462	0.8187	0.4972	
1.1485				
9	0.3787	0.8134	0.5348	1.1725
8	0.5343	0.8047	0.5499	
1.3466				
10	0.3280	0.8561	0.4116	1.1512
8	0.5247	0.8209	0.5187	
1.3092				
10	0.3753	0.8402	0.4343	1.0772
10	0.3687	0.8272	0.4840	1.1399
8	0.5263	0.8219	0.5183	
1.3720				
10	0.5526	0.8219	0.4845	1.1845
10	0.5466	0.7983	0.5579	1.1197
10	0.5431	0.8047	0.5629	1.1509
10	0.3792	0.8430	0.4369	1.1406
9	0.5209	0.8105	0.5375	
1.4130				
11	0.3213	0.8738	0.3523	
1.3264				
9	0.5110	0.8258	0.5046	
1.5113	0.0110	2.020	2.0020	
11	0.3681	0.8231	0.5027	1.2871
11	0.3691	0.8542	0.4092	1.3516
9	0.5133	0.8220	0.5080	
1.6428	0.0100	0.0220	0.0000	
11	0.5400	0.7986	0.5201	1.5256
11	0.0±00	0.1000	0.0201	1.0200

	0 5400		0 5040	
11	0.5493	0.7759	0.5819	1.5417
11	0.5429	0.7780	0.6026	1.5145
11	0.3716	0.8480	0.4024	1.5847
12	0.3111	0.8698	0.3718	1.5482
10	0.5088	0.8137	0.5264	
1.7175				
12	0.3626	0.8483	0.4213	1.4503
10	0.4993	0.8272	0.4944	1.4000
	0.4993	0.0212	0.4944	
1.6823				
12	0.3639	0.8470	0.4286	1.4912
12	0.5424	0.8091	0.5217	1.2476
12	0.5501	0.7978	0.5317	1.2301
12	0.5392	0.7736	0.6019	1.2953
10	0.5027	0.8270	0.4970	
1.5554				
12	0.3715	0.8606	0.3855	
1.2213	0.0110	0.0000	0.000	
13	0.3069	0.8502	0.4170	1.1084
13	0.3631	0.8356	0.4600	1.1073
11	0.4986	0.8169	0.5187	
1.3590				
13	0.3637	0.8600	0.4003	1.1449
11	0.4893	0.8305	0.4861	
1.3189				
13	0.5386	0.7955	0.5423	1.0842
13	0.5487	0.8155	0.5093	1.1392
13	0.3689	0.8575	0.3831	1.1404
13	0.5478	0.8109	0.5261	1.2119
			0.3201	1.2113
11	0.4931	0.8272	0.4906	
1.3100				
14	0.3023	0.8722	0.3726	1.1485
14	0.3616	0.8462	0.4270	1.1510
14	0.3637	0.8455	0.4310	1.1816
12	0.4896	0.8213	0.5102	
1.4387				
12	0.4803	0.8334	0.4777	
1.4773				
14	0.5433	0.7945	0.5245	1.3573
14	0.5496	0.8025	0.5378	1.3101
14	0.5477	0.8053	0.5506	1.2553
14	0.3671	0.8564	0.4014	1.3120
12	0.4851	0.8337	0.4813	
1.6345				
15	0.2934	0.8572	0.4091	1.5502
15	0.3564	0.8347	0.4396	1.5804
15	0.3555	0.8570	0.3958	1.7354
13	0.4817	0.8214	0.5039	
2.0508				
. = = =				

15	0.3663	0.8586	0.3910	1.6700
13	0.4730	0.8345	0.4727	
2.0302				
15	0.5514	0.7972	0.5296	1.9306
15	0.5463	0.8192	0.4927	1.9785
15	0.5412	0.7816	0.5953	1.9211
13	0.4781	0.8358	0.4744	
1.8797	312.32	0.000	0.1.11	
16	0.2892	0.8658	0.3819	1.8457
16	0.3588	0.8592	0.3977	1.6323
16	0.3565	0.8691	0.3724	1.5134
16	0.5500	0.8039	0.5310	1.2021
16	0.3590	0.8680	0.3727	1.2021
1.3013	0.5590	0.0000	0.5121	
1.3013	0.5429	0.8072	0.5367	1.2157
14	0.4746	0.8236	0.4975	1.2137
1.5222	0.4746	0.0230	0.4975	
	0 5475	0.7941	0 5502	1 0/10
16	0.5475		0.5523	1.2419
14	0.4662	0.8378	0.4645	
1.4819	0.0000	0.0700	0.0050	4 0440
17	0.2880	0.8738	0.3650	1.2140
14	0.4714	0.8395	0.4684	
1.4138				
17	0.3501	0.8566	0.4169	1.2213
17	0.3499	0.8619	0.3906	1.1667
17	0.5486	0.8091	0.5403	1.2168
17	0.3605	0.8250	0.4668	1.2493
17	0.5416	0.7756	0.6026	1.2653
17	0.5430	0.8005	0.5390	1.2304
15	0.4676	0.8247	0.4926	
1.3636				
15	0.4597	0.8384	0.4602	
1.3379				
18	0.2806	0.8711	0.3837	1.0827
18	0.3527	0.8517	0.4137	1.1787
18	0.3540	0.8653	0.3790	1.1198
15	0.4658	0.8406	0.4631	
1.3290				
18	0.3582	0.8600	0.3854	1.1867
18	0.5471	0.7681	0.5888	1.2228
18	0.5429	0.8087	0.5324	1.2290
18	0.5413	0.7827	0.6047	1.1705
16	0.4616	0.8280	0.4900	
1.3783				
19	0.2751	0.8584	0.4204	1.2055
19	0.3532	0.8527	0.4083	1.1280
16	0.4542	0.8391	0.4584	
1.3430	0.1012	0.0001	0.4004	
1.0100				

19	0.3574	0.8630	0.3850	1.1535
16	0.4601	0.8434	0.4583	
1.3695				
19	0.3581	0.8616	0.3902	1.1736
19	0.5520	0.7822	0.5975	1.1809
19	0.5388	0.8153	0.5030	1.1237
19	0.5466	0.8195	0.4965	1.1543
20	0.2703	0.8664	0.4036	1.1560
20	0.3486	0.8636	0.3987	1.1089
17	0.4566	0.8303	0.4822	
1.3645				
20	0.3515	0.8530	0.4042	1.1636
17	0.4493	0.8419	0.4534	_,
1.3203	0,1100	0.0120	0.1001	
17	0.4552	0.8441	0.4547	
1.3078	0.1002	0.0111	0.1011	
20	0.5454	0.8037	0.5375	1.1378
20	0.3583	0.8556	0.3892	1.1791
20	0.5428	0.7275	0.7727	1.1751
20	0.5413	0.7273	0.7727	1.1458
20	0.2695	0.8569	0.3099	1.1353
21	0.2695	0.8558		1.1651
			0.3998	
21	0.3494	0.8622	0.3992	1.1214
18	0.4508	0.8275	0.4808	1.2981
18	0.4443	0.8434	0.4482	
1.3405	0 5405	0 7070	0.0400	
21	0.5465	0.7678	0.6492	1.0978
21	0.5417	0.8100	0.5026	1.1046
21	0.3541	0.8600	0.3999	1.1159
21	0.5371	0.7922	0.5730	1.1302
18	0.4501	0.8448	0.4505	
1.3401				
22	0.2615	0.8598	0.4099	1.0489
22	0.3471	0.8602	0.4038	1.1521
22	0.3468	0.8336	0.4916	1.1543
19	0.4465	0.8303	0.4752	1.3174
19	0.4399	0.8464	0.4452	
1.2928				
22	0.5479	0.7983	0.5558	1.1091
22	0.5449	0.8078	0.5236	1.1489
22	0.3580	0.8323	0.4543	1.1378
22	0.5450	0.8081	0.5057	1.1884
19	0.4464	0.8484	0.4468	
1.2954				
23	0.2574	0.8717	0.3790	1.1084
23	0.3439	0.8614	0.4056	1.0534
23	0.3446	0.8694	0.3692	
1.1299				

23	0.5500	0.7811	0.5744	1.1854
20	0.4419	0.8320	0.4713	
1.3595				
23	0.3519	0.8505	0.4216	1.1496
23	0.5388	0.8245	0.4893	1.1716
20	0.4356	0.8472	0.4407	
1.3039				
23	0.5454	0.8202	0.4770	1.1687
24	0.2576	0.8728	0.3730	1.1076
24	0.3444	0.8531	0.4446	1.1711
20	0.4420	0.8452	0.4453	1.3522
24	0.3457	0.8642	0.3845	1.1554
24	0.3540	0.8517	0.4100	1.0835
24	0.5481	0.7978	0.6000	1.1703
24	0.5436	0.7937	0.5702	1.1714
24	0.5387	0.8028	0.5615	1.1145
21	0.4377	0.8345	0.4675	
1.2870	0.1011	0.0010	0.1010	
25	0.2510	0.8600	0.4326	1.0968
21	0.4321	0.8481	0.4374	1.0000
1.3077	0.1021	0.0101	0.1071	
25	0.3432	0.8419	0.4422	1.1723
25	0.3427	0.8581	0.3836	1.2035
21	0.4382	0.8475	0.4421	1.4134
25	0.3553	0.8456	0.4175	1.1366
25 25	0.5442	0.7706	0.4173	1.2165
25	0.5424	0.7823	0.5934	1.1924
25	0.5399	0.7986	0.6010	1.2683
26	0.2518	0.8741	0.3687	1.2343
22	0.4336	0.8373	0.4626	
1.4111	0.4000	0 0447	0 4070	4 4400
22	0.4286	0.8447	0.4378	1.4186
26	0.3429	0.8323	0.5080	
26	0.3401	0.8628	0.3766	1.2124
22	0.4344	0.8483	0.4374	
26	0.3542	0.8280	0.4923	1.1949
26	0.5413	0.8028	0.5276	1.1765
26	0.5496	0.8283	0.4882	1.2534
26	0.5433	0.8150	0.5259	1.2080
27	0.2459	0.8636	0.4229	1.1296
27	0.3439	0.8364	0.4770	1.1467
23	0.4301	0.8337	0.4640	1.4302
27	0.3432	0.8511	0.4365	1.1194
23	0.4247	0.8484	0.4352	
1.3914				
27	0.3540	0.8525	0.3986	1.1430
23	0.4308	0.8502	0.4342	
1.2825				

27	0.5489	0.7806	0.6052	1.1125
27	0.5481	0.8216	0.4841	1.1233
28	0.2432	0.8723	0.4047	1.1172
27	0.5424	0.7992	0.5462	1.1375
28	0.3444	0.8302	0.4792	1.1327
28	0.3419	0.8723	0.3652	1.0875
24	0.4264	0.8394	0.4575	
1.3127				
24	0.4216	0.8495	0.4299	
1.3141				
28	0.3518	0.8661	0.3696	1.1687
28	0.5409	0.8152	0.5172	1.1237
28	0.5449	0.7878	0.5861	1.2086
24	0.4277	0.8498	0.4321	1.3604
29	0.2400	0.8784	0.4048	1.2150
28	0.5419	0.7712	0.5988	1.2508
29	0.3444	0.8509	0.4307	1.2578
29	0.3379	0.8552	0.4160	1.1640
25	0.4230	0.8377	0.4557	1.3344
25	0.4185	0.8516	0.4282	
1.6039	37.1233	0.0020	0.1202	
29	0.3536	0.8605	0.3844	1.3767
29	0.5483	0.7609	0.6992	1.3437
29	0.5417	0.8214	0.4925	1.5014
29	0.5442	0.7600	0.7225	1.2312
30	0.2383	0.8716	0.3862	1.2985
25	0.4243	0.8538	0.4322	1.6326
30	0.3383	0.8620	0.4045	1.1788
30	0.3407	0.8573	0.4051	1.3728
26	0.4198	0.8394	0.4531	1.4832
30	0.3494	0.8520	0.4057	1.2436
30	0.5448	0.8037	0.5420	1.1540
30	0.5412	0.7698	0.6243	
26	0.4154	0.8517	0.4256	1.1100
1.4191	0.1101	0.0017	0.1200	
30	0.5409	0.8108	0.4944	1.1933
26	0.4214	0.8512	0.4261	1.4109
epoch	train_loss		valid_loss	dur
1	1.4739	0.7102	0.9749	
1.3708	1.1100	0.7102	0.0110	
epoch	train_loss	valid_acc	valid_loss	dur
1	1.4252	0.7228	0.9629	
1.3836	1.1202	3.7220	0.0020	
27	0.4167	0.8420	0.4499	
1.3522	0.1101	0.0120	0.1100	
epoch	train_loss	valid_acc	valid_loss	dur
chocu	010111 1000	Valia_acc	AGTTG_T099	aui

1	1.4555	0.7142	0.9755	
1.3131	0.4125	0.8519	0.4236	
1.4082 epoch	train_loss	valid_acc	valid_loss	dur
1	1.4595	0.7192	0.9689	
epoch	train_loss	valid_acc	valid_loss	dur
1 1.3838	1.4445	0.7222	0.9758	
epoch	train_loss	valid_acc	valid_loss	dur
1 1.3894	1.4530	0.7122	0.9957	
27	0.4180	0.0510	0.4261	1.4327
		0.8512		
epoch	train_loss	valid_acc	valid_loss	dur
1 1.3532	0.7152	0.8089	0.5354	
2 1.3837	0.8355	0.7486	0.7536	
28	0.4130	0.8400	0.4505	1.3586
2	0.8350	0.7550	0.7487	
1.3523				
2	0.8303	0.7559	0.7460	
1.4097				
28	0.4098	0.8533	0.4223	
1.3874				
2	0.8322	0.7494	0.7528	
1.4000				
2	0.8408	0.7572	0.7529	
1.3574 2	0.8528	0.7455	0.7678	
1.3486	0.0320	0.7433	0.7078	
28	0.4158	0.8525	0.4215	1.3558
2	0.4936	0.8191	0.5026	
1.4308				
3	0.7009	0.7638	0.6753	
1.5019	0 4400	0.0400	0 4465	4 4455
29	0.4108	0.8408	0.4465	1.4155
3 1.4324	0.6990	0.7725	0.6666	
1.4324	0.6973	0.7667	0.6670	
1.4963	0.0913	0.7007	0.0070	
29	0.4069	0.8508	0.4209	1.4091

3	0.7072	0.7706	0.6712	
1.4131 29	0.4131	0.8541	0.4194	
1.3798 3	0.7176	0.7650	0.6869	
1.4448 3	0.7014	0.7672	0.6777	
1.4752 3	0.4501	0.8286	0.4736	
1.3106 4	0.6392	0.7753	0.6318	
1.4370 4	0.6376	0.7883	0.6203	
1.3370 30	0.4077	0.8397	0.4498	1.4379
4	0.6354	0.7850	0.6186	
1.3541	0 4049	0.0400	0 4000	1 2000
30 30	0.4048 0.4100	0.8492 0.8548	0.4220 0.4180	1.3229
1.3524	0.4100	0.0040	0.4100	
4	0.6476	0.7848	0.6254	
1.4041				
4	0.6424	0.7803	0.6363	
1.3412	0.6565	0.7837	0.6375	
1.4246	0.4226	0.8387	0.4518	
1.4132	0.5991	0.7933	0.5895	
1.3041	0.6003	0.7880	0.6003	
1.4001	0.5964	0.7981	0.5841	
1.4085 epoch	_	_	valid_loss	dur
1	0.7147	0.8098	0.5288	
1.4109 5	0.6101	0.7964	0.5950	
1.3674	0.6058	0.7886	0.6061	
1.3993 epoch	train_loss	valid_acc	valid_loss	dur
1 3579	0.7170	0.8189	0.5247	
1.3578 5 1.3829	0.6177	0.7931	0.6061	

5	0.4026	0.8406	0.4457	
1.3648 6	0.5718	0.8067	0.5618	
1.3052 6	0.5716	0.7989	0.5760	
1.4394 epoch	train_loss	valid_acc	valid_loss	dur
1	0.7291	0.8087	0.5350	
1.4253 6	0.5680	0.8069	0.5598	
1.4551 2	0.4880	0.8367	0.4601	
1.3653 6	0.5831	0.8025	0.5702	
1.2975				
6 1.3865	0.5799	0.7955	0.5841	
2 1.3863	0.4933	0.8320	0.4713	
6	0.3857	0.8545	0.4090	
1.3600 6	0.5895	0.7992	0.5800	
1.4112 7	0.5509	0.8113	0.5436	
1.3796 7	0.5498	0.8031	0.5577	
1.3355 2	0.4912	0.8269	0.4767	
1.4347				
7 1.4135	0.5465	0.8094	0.5382	
3 1.4241	0.4455	0.8452	0.4329	
7 1.4356	0.5625	0.8089	0.5529	
7	0.5602	0.8022	0.5677	
1.4349 7	0.3726	0.8422	0.4503	1.3992
3 1.4368	0.4478	0.8417	0.4496	
7	0.5684	0.8086	0.5606	
1.4317	0.5343	0.8170	0.5275	
1.4602 8	0.5319	0.8097	0.5421	
1.5224 3	0.4476	0.8397	0.4501	

1.5490				
8	0.5292	0.8186	0.5226	
1.4754				
8	0.5459	0.8150	0.5365	
1.4058				
4	0.4179	0.8555	0.4114	
1.5504				
8	0.5443	0.8075	0.5539	
1.4628				
8	0.3589	0.8577	0.4058	
1.4607				
4	0.4228	0.8509	0.4184	
1.4691				
8	0.5515	0.8116	0.5450	
1.4479				
9	0.5204	0.8216	0.5150	
1.4947				
9	0.5173	0.8167	0.5280	
1.4224				
9	0.5147	0.8219	0.5112	
1.2923				
4	0.4205	0.8452	0.4323	
1.4253				
9	0.5324	0.8181	0.5245	
1.5209				
9	0.5313	0.8097	0.5441	
1.5073				
9	0.3503	0.8522	0.4078	1.5331
5	0.3979	0.8570	0.3993	
1.6566				
9	0.5378	0.8217	0.5310	
1.5592				
5	0.3996	0.8591	0.4042	
1.5954				
10	0.5095	0.8256	0.5028	
1.5139				
10	0.5051	0.8209	0.5173	
1.4866				
10	0.5026	0.8255	0.4992	
1.5276				
5	0.4019	0.8442	0.4292	1.5441
10	0.5208	0.8205	0.5169	
1.4053				
6	0.3838	0.8566	0.4024	1.3731
10	0.5210	0.8109	0.5352	
1.4632				
10	0.5267	0.8208	0.5213	1.3670
6	0.3842	0.8645	0.3833	

1.3756				
10	0.3396	0.8638	0.3886	
1.4627				
11	0.4995	0.8269	0.4973	
1.3738	0 4045	0.0006	0 5000	
11	0.4945	0.8236	0.5092	
1.3489 11	0.4925	0.8267	0.4897	
1.3604	0.4925	0.0207	0.4091	
6	0.3888	0.8505	0.4171	
1.3322	0.0000	0.0000	0.11/1	
11	0.5115	0.8280	0.5051	
1.3576				
11	0.5119	0.8137	0.5258	
1.3600				
7	0.3703	0.8616	0.3828	1.3380
11	0.5171	0.8220	0.5134	
1.3872				
7	0.3709	0.8616	0.3858	
1.4056				
11		0.8620		1.4242
12	0.4914	0.8308	0.4875	
1.3591				
12	0.4855	0.8259	0.5010	
1.3381	0 4004	0.0004	0 4050	
12	0.4834	0.8281	0.4850	
1.3434 7	0.3742	0.0560	0.4015	
1.3523	0.3742	0.8569	0.4015	
1.3323	0.5029	0.8284	0.4993	
1.3086	0.0023	0.0201	0.4000	
12	0.5040	0.8167	0.5217	
1.3550				
8	0.3593	0.8745	0.3618	
1.3665				
12	0.5089	0.8241	0.5070	
1.3912				
8	0.3594	0.8616	0.3784	
12	0.3234	0.8631	0.3866	1.3622
13	0.4836	0.8333	0.4816	
1.3530				
13	0.4776	0.8267	0.4938	
1.3579		0		
13	0.4760	0.8330	0.4753	
1.3673	0.0040	0.0504	0 4000	1 0 4 4 4
8	0.3648	0.8534	0.4032	1.3444
13	0.4955	0.8328	0.4938	
1.3686				

9 13	0.3508 0.4970	0.8662 0.8222	0.3744 0.5139	1.3524
1.3875 13 1.3463	0.3156	0.8644	0.3829	
9	0.3490	0.8672	0.3761	
13 1.4221	0.5017	0.8295	0.4976	
14 1.3287	0.4770	0.8334	0.4766	
14 1.3367	0.4705	0.8291	0.4885	
14 1.3626 9	0.4684	0.8367	0.4693	
1.3664 14	0.4888	0.8347	0.4860	
1.2954 14	0.4912	0.8222	0.5083	1.3684
10 14	0.3398	0.8688 0.8642	0.3706	
14 1.3876 10	0.4954	0.8319	0.4922	1.3940
15 1.4049	0.4709	0.8339	0.4709	210020
15 15	0.4640 0.4623	0.8287 0.8347	0.4842 0.4661	1.4165
10 15	0.3474 0.4831	0.8570 0.8363	0.3945	1.4348
1.4519 15 1.3760	0.3011	0.8697	0.3781	
11 1.4416	0.3319	0.8694	0.3683	
15 1.5535	0.4859	0.8256	0.5042	
15 1.4803	0.4895	0.8358	0.4901	4 0050
11 16 1.3985	0.3324 0.4654	0.8722 0.8359	0.3506	1.6056
1.3905 16 1.4038	0.4576	0.8317	0.4789	
16 1.4561	0.4567	0.8386	0.4585	
11	0.3383	0.8481	0.4102	1.4651

16	0.4776	0.8386	0.4770	
1.4195				
16	0.2936	0.8387	0.4539	1.3221
16	0.4807	0.8245	0.5000	1.3800
12	0.3218	0.8683	0.3687	1.4113
16	0.4847	0.8331	0.4831	1.3750
12	0.3224	0.8689	0.3606	1.3918
17	0.4604	0.8395	0.4611	
1.3933				
17	0.4528	0.8342	0.4767	
1.3768				
17	0.4515	0.8438	0.4534	
1.4344				
12	0.3317	0.8639	0.3883	
1.3417				
17	0.4731	0.8380	0.4728	1.4673
17	0.2883	0.8583	0.3995	1.4536
13	0.3155	0.8698	0.3592	
1.4003				
17	0.4800	0.8367	0.4810	
1.3861				
17	0.4765	0.8255	0.4979	1.4781
13	0.3157	0.8758	0.3443	
1.4614				
18	0.4559	0.8428	0.4558	
1.3883				
18	0.4479	0.8319	0.4725	1.3293
18	0.4462	0.8452	0.4505	_,,,_,
1.4227	0,1101	0.0101	0.7.2000	
13	0.3245	0.8611	0.3905	1.4226
18	0.4687	0.8413	0.4691	
1.4408	3,7233,	0.0120	0.7.200.2	
18	0.2823	0.8722	0.3670	
1.5291	0.2020	0.0122	0.0010	
18	0.4760	0.8372	0.4753	
1.5735	0.1100	0.0012	0.1100	
14	0.3088	0.8730	0.3554	
1.5684	0.0000	0.0100	0.0001	
18	0.4721	0.8275	0.4920	
1.5553	0.1721	0.0210	0.1020	
19	0.4517	0.8434	0.4530	
1.5464	0.4017	0.0404	0.4000	
1.5464	0.3076	0.8706	0.3552	1.5894
19	0.4434	0.8353	0.4660	1.0034
1.5700	0.4404	0.0000	0.4000	
1.5700	0.3177	0.8645	0.3836	
1.4744	0.3111	0.0040	0.3030	
1.4744	0.4419	0.8425	0.4471	1 5657
19	0.4419	0.0423	0.4411	1.5057

19	0.4650	0.8414	0.4665	
1.3282				
19	0.2763	0.8672	0.3750	1.4033
19	0.4687	0.8291	0.4902	
1.4027	0.1001	0.0201	0.1002	
	0 4704	0.0275	0 4715	
19	0.4721	0.8375	0.4715	
1.4507				
15	0.3008	0.8773	0.3469	
1.5072				
20	0.4475	0.8419	0.4488	1.4435
15	0.3021	0.8728	0.3505	1.5153
20	0.4389	0.8358	0.4645	
1.4624	0.1003	0.0000	0.1010	
	0.2400	0.0714	0.007	
15	0.3122	0.8714	0.3687	
1.3924				
20	0.4373	0.8447	0.4437	1.4358
20	0.4611	0.8423	0.4639	
1.4148				
20	0.2696	0.8630	0.3859	1.4083
20	0.4651	0.8300	0.4863	
1.5600	0.1001	0.0000	0.1000	
	0.4694	0.0205	0.4600	
20	0.4684	0.8395	0.4690	
1.5569				
16	0.2934	0.8734	0.3672	1.4988
21	0.4435	0.8447	0.4456	
1.5096				
16	0.2964	0.8769	0.3436	
1.5206				
21	0.4351	0.8378	0.4601	
1.5909	0.1001	0.0070	0.4001	
	0.2070	0.0600	0 2672	1 5105
16	0.3070	0.8692	0.3673	1.5135
21	0.4332	0.8455	0.4428	
1.4287				
21	0.4576	0.8441	0.4609	
1.4032				
21	0.2652	0.8738	0.3644	
1.3668				
21	0.4622	0.8295	0.4847	1.3642
17	0.2891	0.8780	0.3464	1.0012
	0.2001	0.0700	0.0404	
1.3653	0.4050	0.0005	0 4000	4 0000
21	0.4653	0.8395	0.4660	
22	0.4403	0.8434	0.4453	1.3644
17	0.2900	0.8833	0.3320	
1.3631				
22	0.4313	0.8386	0.4572	
1.3985				
22	0.4297	0.8470	0.4385	
1.3614	0.1201	0.0110	0.1000	
1.0014				

17	0.2998	0.8620	0.3848	1.4828
22	0.4544	0.8453	0.4583	
1.4079				
22	0.2608	0.8708	0.3674	1.3903
22	0.4591	0.8311	0.4815	
1.4020				
22	0.4620	0.8422	0.4632	
1.4051				
23	0.4369	0.8477	0.4404	
1.4712	0.1000	0.0177	0.1101	
18	0.2822	0.8748	0.3470	1.5701
18	0.2838	0.8755	0.3528	1.4068
23	0.4276	0.8402	0.4538	
1.4682				
23	0.4260	0.8489	0.4351	
1.4244				
18	0.2951	0.8680	0.3706	1.4132
23	0.4515	0.8441	0.4562	1.4319
23	0.2547	0.8748	0.3653	1.5453
23	0.4563	0.8323	0.4793	
1.4535				
23	0.4594	0.8444	0.4613	
1.4467				
24	0.4333	0.8462	0.4379	1.4628
19	0.2785	0.8795	0.3364	1.5173
19	0.2764	0.8767	0.3409	1.5772
24	0.4242	0.8397	0.4533	1.4035
24	0.4242			1.5110
		0.8481	0.4352	
19	0.2901	0.8639	0.3727	1.5406
24	0.4486	0.8459	0.4550	
1.4711				
24	0.2491	0.8783	0.3575	
1.3911				
24	0.4564	0.8442	0.4585	1.4010
24	0.4535	0.8325	0.4790	
1.5012				
20	0.2741	0.8798	0.3396	1.4612
25	0.4302	0.8477	0.4386	1.6105
25	0.4206	0.8395	0.4487	1.4935
20	0.2708	0.8778	0.3440	1.5116
25	0.4198	0.8495	0.4289	
1.4932				
20	0.2860	0.8548	0.3926	1.4914
25	0.4463	0.8472	0.4509	
1.4278	3.1100	0.0112	0.4000	
25	0.2462	0.8623	0.3995	1.3288
25 25				
	0.4542	0.8431	0.4569	1.3941
25	0.4512	0.8339	0.4748	

4 0400				
1.3402		0.0000	0.000	4 0070
21	0.2679	0.8806	0.3322	1.3873
26	0.4270	0.8469	0.4339	1.3909
21	0.2639	0.8806	0.3362	
1.4233				
26	0.4179	0.8419	0.4490	1.4463
26	0.4167	0.8514	0.4281	
1.3867				
21	0.2815	0.8672	0.3716	1.3597
26	0.4440	0.8452	0.4503	1.3952
26	0.2405	0.8761	0.3653	1.4464
26	0.4519	0.8441	0.4549	1.4737
26	0.4491	0.8300	0.4749	1.4988
22	0.2625	0.8831	0.3266	1.4368
27	0.4243	0.8498	0.4314	
1.4112				
22	0.2599	0.8708	0.3603	1.3939
27	0.4149	0.8427	0.4446	
1.4350				
27	0.4135	0.8527	0.4254	
1.3857	0.1200	0.002.	0.1201	
22	0.2757	0.8711	0.3641	1.3677
27	0.4417	0.8459	0.4494	1.4246
27	0.2372	0.8764	0.3635	1.4531
27	0.4466	0.8344	0.4724	1.1001
1.3948	0.1100	0.0011	0.1/21	
27	0.4493	0.8489	0.4532	
1.4605	0.4430	0.0403	0.4002	
23	0.2578	0.8856	0.3242	
1.4278	0.2570	0.0000	0.3242	
28	0.4217	0.8495	0.4300	1.4431
23	0.2545	0.8764	0.4300	
23 28				1.4484
	0.4118	0.8433	0.4429	
1.4375	0 4440	0.0500	0.4006	
28	0.4110	0.8530	0.4226	
1.4995	0.0700	0.0004	0.0007	4 4704
23	0.2732	0.8661	0.3697	1.4784
28	0.4396	0.8459	0.4461	1.3682
28	0.2313	0.8683	0.3916	1.4545
28	0.4447	0.8345	0.4708	
1.3413				
28	0.4472	0.8466	0.4531	1.4077
24	0.2516	0.8806	0.3284	1.3159
29	0.4189	0.8514	0.4278	
1.4254				
29	0.4092	0.8400	0.4432	1.3868
24	0.2506	0.8772	0.3430	1.4510
24	0.2688	0.8717	0.3634	

1.3584				
29	0.4082	0.8522	0.4226	1.4488
29	0.4374	0.8486	0.4444	
1.3833				
29	0.2287	0.8711	0.3785	1.4099
29	0.4430	0.8333	0.4710	1.3639
29	0.4454	0.8477	0.4493	1.4053
25	0.2474	0.8781	0.3325	1.3617
30	0.4165	0.8523	0.4277	
1.3715	0.1200	0.0020	0.7.2	
30	0.4068	0.8464	0.4374	
1.3609	0.4000	0.0101	0.1071	
25	0.2449	0.8802	0.3303	1.3993
25 25	0.2449	0.8758	0.3569	1.3993
1.3902	0.2044	0.0750	0.3509	
	0 4050	0.0503	0 4100	1 2022
30	0.4058	0.8523	0.4198	1.3833
30	0.4353	0.8481	0.4423	1.3790
30	0.2246	0.8708	0.3770	1.4610
30	0.4435	0.8486	0.4474	1.3353
30	0.4409	0.8364	0.4675	
1.4649				
26	0.2442	0.8719	0.3458	1.4117
26	0.2407	0.8833	0.3350	1.4539
26	0.2622	0.8753	0.3555	1.4506
epoch	train_loss	valid_acc	valid_loss	dur
1	0.7225	0.8219	0.5153	
1.4155				
epoch	${\tt train_loss}$	valid_acc	valid_loss	dur
1	0.7200	0.8194	0.5149	
1.5410				
epoch	${\tt train_loss}$	valid_acc	${\tt valid_loss}$	dur
1	0.7257	0.8025	0.5533	
1.4885				
epoch	train_loss	valid_acc	valid_loss	dur
1	0.7252	0.8161	0.5295	
1.6438				
27	0.2390	0.8811	0.3304	1.5113
epoch	train_loss		valid_loss	dur
1	0.7334	0.7992	0.5569	
1.5197	3	21.002	3.2230	
27	0.2572	0.8658	0.3729	1.5463
27	0.2366	0.8817	0.3373	1.5952
21				
epoch	train_loss		valid_loss	dur

1 1.5010	0.6016	0.8205	0.4784	
epoch	train_loss	valid_acc	valid_loss	dur
1	0.6091	0.8389	0.4574	
1.5257 2	0.4940	0.8366	0.4662	
1.3514 2	0.4974	0.8361	0.4605	
1.4334 2	0.5114	0.8173	0.5164	
1.4063 2	0.5071	0.8227	0.5024	
1.4941 28	0.2352	0.8842	0.3286	1.4648
2 1.4058	0.5161	0.8303	0.4854	
28 28	0.2539 0.2321	0.8753 0.8788	0.3586 0.3465	1.4219 1.5042
2	0.4592	0.8406	0.4410	
2 1.4192	0.4577	0.8453	0.4170	
3	0.4515	0.8486	0.4322	
3	0.4491	0.8394	0.4455	
3	0.4732	0.8270	0.4849	
1.3826	0.4718	0.8375	0.4599	
1.4111	0.2303	0.8803	0.3306	1.4799
3 1.4307	0.4805	0.8384	0.4617	
29	0.2284	0.8820	0.3359	1.3437
29	0.2506	0.8734	0.3568	1.4488
3	0.4161	0.8144	0.5027	1.4426
3	0.4095	0.8427	0.4207	1.4392
4 1.4861	0.4253	0.8547	0.4154	
4 1.4619	0.4234	0.8519	0.4111	
4 1.5005	0.4532	0.8397	0.4606	
4	0.4524	0.8444	0.4433	
30	0.2272	0.8864	0.3210	

1.4439				
30	0.2239	0.8834	0.3405	1.3919
4	0.4606	0.8403	0.4554	
1.5202				
30	0.2479	0.8727	0.3592	1.4218
4	0.3838	0.8534	0.4086	
1.4644				
4	0.3802	0.8623	0.3904	
1.4847				
5	0.4060	0.8488	0.4229	1.4098
5	0.4024	0.8506	0.4188	1.3746
5	0.4418	0.8372	0.4661	1.3600
5	0.4383	0.8508	0.4273	2.0000
1.3619	0.12000	0.0000	0.122.0	
5	0.4482	0.8456	0.4381	
1.3639	0.1102	0.0100	0.1001	
5	0.3638	0.8572	0.4147	1.3288
5	0.3602	0.8416	0.4371	1.3777
epoch	train_loss		valid_loss	dur
1	0.6076	0.8453	0.4320	
1.3928				
6	0.3909	0.8577	0.4011	
1.3969				
6	0.3886	0.8569	0.4035	
-	0.3886	0.8569	0.4035	
6 1.3881 6				
1.3881	0.3886	0.8569	0.4035	
1.3881 6 1.3356	0.4336	0.8450	0.4489	dur
1.3881				dur
1.3881 6 1.3356	0.4336	0.8450	0.4489	dur
1.3881 6 1.3356 epoch	0.4336 train_loss	0.8450 valid_acc	0.4489 valid_loss	dur
1.3881 6 1.3356 epoch 1 1.3225	0.4336 train_loss 0.6107	0.8450 valid_acc 0.8003	0.4489 valid_loss 0.5342	dur dur
1.3881 6 1.3356 epoch	0.4336 train_loss	0.8450 valid_acc	0.4489 valid_loss	
1.3881 6 1.3356 epoch 1 1.3225	0.4336 train_loss 0.6107	0.8450 valid_acc 0.8003	0.4489 valid_loss 0.5342	
1.3881 6 1.3356 epoch 1 1.3225 epoch	0.4336 train_loss 0.6107 train_loss	0.8450 valid_acc 0.8003 valid_acc	0.4489 valid_loss 0.5342 valid_loss	
1.3881 6 1.3356 epoch 1 1.3225 epoch	0.4336 train_loss 0.6107 train_loss 0.6040	0.8450 valid_acc 0.8003 valid_acc 0.7784	0.4489 valid_loss 0.5342 valid_loss 0.5727	dur
1.3881 6 1.3356 epoch 1 1.3225 epoch 1 1.4359 6	0.4336 train_loss 0.6107 train_loss 0.6040 0.4285	0.8450 valid_acc 0.8003 valid_acc 0.7784 0.8469	0.4489 valid_loss 0.5342 valid_loss 0.5727 0.4334	dur
1.3881 6 1.3356 epoch 1 1.3225 epoch 1 1.4359 6 6	0.4336 train_loss 0.6107 train_loss 0.6040 0.4285 0.4383	0.8450 valid_acc 0.8003 valid_acc 0.7784 0.8469 0.8456	0.4489 valid_loss 0.5342 valid_loss 0.5727 0.4334 0.4389	dur 1.3068 1.3185
1.3881 6 1.3356 epoch 1 1.3225 epoch 1 1.4359 6	0.4336 train_loss 0.6107 train_loss 0.6040 0.4285	0.8450 valid_acc 0.8003 valid_acc 0.7784 0.8469	0.4489 valid_loss 0.5342 valid_loss 0.5727 0.4334	dur 1.3068 1.3185
1.3881 6 1.3356 epoch 1 1.3225 epoch 1 1.4359 6 6 6	0.4336 train_loss 0.6107 train_loss 0.6040 0.4285 0.4383 0.3461	0.8450 valid_acc 0.8003 valid_acc 0.7784 0.8469 0.8456 0.8555	0.4489 valid_loss 0.5342 valid_loss 0.5727 0.4334 0.4389 0.4149	dur 1.3068 1.3185
1.3881 6 1.3356 epoch 1 1.3225 epoch 1 1.4359 6 6 6 6	0.4336 train_loss 0.6107 train_loss 0.6040 0.4285 0.4383 0.3461	0.8450 valid_acc 0.8003 valid_acc 0.7784 0.8469 0.8456 0.8555 0.8666	0.4489 valid_loss 0.5342 valid_loss 0.5727 0.4334 0.4389 0.4149	dur 1.3068 1.3185
1.3881 6 1.3356 epoch 1 1.3225 epoch 1 1.4359 6 6 6 6 6	0.4336 train_loss 0.6107 train_loss 0.6040 0.4285 0.4383 0.3461 0.3479	0.8450 valid_acc 0.8003 valid_acc 0.7784 0.8469 0.8456 0.8555	0.4489 valid_loss 0.5342 valid_loss 0.5727 0.4334 0.4389 0.4149 0.3751	dur 1.3068 1.3185
1.3881 6 1.3356 epoch 1 1.3225 epoch 1 1.4359 6 6 6 6 1.3665	0.4336 train_loss 0.6107 train_loss 0.6040 0.4285 0.4383 0.3461 0.3479	0.8450 valid_acc 0.8003 valid_acc 0.7784 0.8469 0.8456 0.8555 0.8666	0.4489 valid_loss 0.5342 valid_loss 0.5727 0.4334 0.4389 0.4149 0.3751	dur 1.3068 1.3185
1.3881 6 1.3356 epoch 1 1.3225 epoch 1 1.4359 6 6 6 6 1.3665 2 1.3663	0.4336 train_loss 0.6107 train_loss 0.6040 0.4285 0.4383 0.3461 0.3479 0.4648	0.8450 valid_acc 0.8003 valid_acc 0.7784 0.8469 0.8456 0.8555 0.8666 0.8541	0.4489 valid_loss 0.5342 valid_loss 0.5727 0.4334 0.4389 0.4149 0.3751 0.4093	dur 1.3068 1.3185
1.3881 6 1.3356 epoch 1 1.3225 epoch 1 1.4359 6 6 6 6 1.3665 2 1.3663	0.4336 train_loss 0.6107 train_loss 0.6040 0.4285 0.4383 0.3461 0.3479 0.4648 0.3766	0.8450 valid_acc 0.8003 valid_acc 0.7784 0.8469 0.8456 0.8555 0.8666 0.8541 0.8592	0.4489 valid_loss 0.5342 valid_loss 0.5727 0.4334 0.4389 0.4149 0.3751 0.4093 0.3878	dur 1.3068 1.3185
1.3881 6 1.3356 epoch 1 1.3225 epoch 1 1.4359 6 6 6 1.3665 2 1.3663 7 1.3309	0.4336 train_loss 0.6107 train_loss 0.6040 0.4285 0.4383 0.3461 0.3479 0.4648	0.8450 valid_acc 0.8003 valid_acc 0.7784 0.8469 0.8456 0.8555 0.8666 0.8541	0.4489 valid_loss 0.5342 valid_loss 0.5727 0.4334 0.4389 0.4149 0.3751 0.4093	dur 1.3068 1.3185
1.3881 6 1.3356 epoch 1 1.3225 epoch 1 1.4359 6 6 6 1.3665 2 1.3663 7 1.3309 7	0.4336 train_loss 0.6107 train_loss 0.6040 0.4285 0.4383 0.3461 0.3479 0.4648 0.3766	0.8450 valid_acc 0.8003 valid_acc 0.7784 0.8469 0.8456 0.8555 0.8666 0.8541 0.8592	0.4489 valid_loss 0.5342 valid_loss 0.5727 0.4334 0.4389 0.4149 0.3751 0.4093 0.3878	dur 1.3068 1.3185 1.3597

2	0.4696	0.8367	0.4650	
1.3141 2	0.4628	0.8228	0.4871	
1.4193 7	0.4213	0.8531	0.4220	
1.3634 7	0.4309	0.8533	0.4247	
1.3749 7	0.3328	0.8616	0.4053	
1.3944 7	0.3297	0.8712	0.3751	
1.3991	0.4235	0.8462	0.4364	1.4096
8	0.3646	0.8552	0.4067	1.4372
8	0.4190	0.8358	0.4660	1.4018
8	0.3662	0.8655	0.3717	1.4010
1.4983	0.3002	0.8033	0.3717	
1.4303	0.4293	0.8383	0.4306	
1.4562	0.4233	0.0303	0.4300	
1.4502	0.4236	0.8287	0.4873	1.4182
8	0.4236	0.8550	0.4196	1.4102
1.4369	0.4170	0.6550	0.4190	
1.4309	0.4259	0.8488	0.4310	1.4763
8	0.4239	0.8594	0.4091	1.4230
8	0.3222	0.8666	0.3781	1.4230
4	0.3934	0.8506	0.4150	1.5714
9	0.4144	0.8409	0.4450	1.4286
9	0.3548	0.8619	0.3845	
1.4824	0.2575	0.0014	0.2024	4 4747
9	0.3575	0.8614	0.3834	1.4717
4	0.4023	0.8361	0.4329	1.5918
4	0.4024	0.8520	0.4235	
1.6186	0 4110	0.0520	0.4056	1 1510
9	0.4118	0.8530	0.4256	1.4519
9	0.4215	0.8548	0.4166	
1.4251	0.2024	0 0747	0.2660	
9	0.3034	0.8747	0.3668	
1.3764	0.2075	0.0570	0 4050	1 5010
9	0.3075	0.8570	0.4258	1.5210
5	0.3723	0.8639	0.3705	
1.3285	0.4400	0.0400	0 4404	1 0440
10	0.4123	0.8423	0.4461	1.3410
10	0.3472	0.8688	0.3741	1.4005
10	0.3468	0.8647	0.3756	
1.4562	0.0000	0.0000	0.5004	4 - 744
5	0.3902	0.8086	0.5804	1.5411
5	0.3862	0.8530	0.4042	
1.4341				

10	0.4088	0.8525	0.4243	1.4380
10	0.4167	0.8514	0.4298	1.4909
10	0.3011	0.8588	0.4256	1.4342
10	0.2956	0.8720	0.3704	1.5383
6	0.3522	0.8645	0.3775	1.4639
11	0.4091	0.8488	0.4354	
1.5135	0.1001	0.0100	0.1001	
1.0100	0.3384	0.8664	0.3779	1.3893
11	0.3399	0.8664	0.3773	1.3945
6	0.3741	0.8511	0.4061	
1.4155				
6	0.3720	0.8564	0.4093	1.4247
11	0.4045	0.8536	0.4209	1.4008
11	0.4135	0.8481	0.4329	1.3927
11	0.2872	0.8662	0.3801	1.4084
11	0.2915	0.8644	0.4030	
1.5669				
12	0.3316	0.8652	0.3762	1.4082
7	0.3369	0.8736	0.3566	
1.5301				
12	0.4071	0.8495	0.4368	1.4971
12	0.3329	0.8691	0.3630	1.10.1
1.4845	0.0020	0.0031	0.0000	
7	0.3703	0.8642	0.3730	
1.5451	0.3703	0.0042	0.3730	
	0.0050	0.0545	0.0000	4 5000
7	0.3658	0.8545	0.3889	1.5602
12	0.4024	0.8523	0.4176	1.6393
12	0.4105	0.8544	0.4182	1.4824
12	0.2768	0.8770	0.3668	
1.5679				
12	0.2815	0.8542	0.4575	1.5442
8	0.3241	0.8777	0.3400	
1.4242				
13	0.3255	0.8597	0.3725	1.4010
13	0.4038	0.8461	0.4342	1.4909
13	0.3240	0.8608	0.3906	1.5678
8	0.3604	0.8567	0.3993	1.3838
8	0.3604	0.8603	0.3868	_,,,,,,
1.4533	0.0001	0.0000	0.0000	
13	0.4005	0.8531	0.4172	1.4168
				1.4100
13	0.4079	0.8612	0.4052	
1.3596	0.0076	0.0050	0.4446	4 0000
13	0.2679	0.8656	0.4118	1.3998
9	0.3114	0.8597	0.4092	1.3832
13	0.2725	0.8666	0.4115	1.4757
14	0.3196	0.8772	0.3505	
1.4682				
14	0.4025	0.8472	0.4335	1.3983

14	0.3180	0.8664	0.3784	1.3981
9	0.3606	0.8294	0.4731	1.3600
9	0.3551	0.8547	0.3989	1.4279
14	0.4003	0.8555	0.4099	
1.3891				
14	0.4057	0.8570	0.4132	1.3552
14	0.2621	0.8756	0.3740	1.3883
14	0.2666	0.8523	0.4779	1.3148
10	0.3048	0.8733	0.3661	1.3767
15	0.3138	0.8706	0.3608	1.4086
15	0.3129	0.8761	0.3585	
1.4373				
15	0.4016	0.8531	0.4287	
1.4604				
10	0.3499	0.8684	0.3717	
1.4578				
10	0.3503	0.7852	0.6193	1.3793
15	0.3982	0.8506	0.4225	1.3942
15	0.4040	0.8419	0.4335	1.3759
15	0.2555	0.8817	0.3665	
1.4144				
15	0.2592	0.8534	0.4495	1.4595
11	0.2911	0.8841	0.3449	1.4450
16	0.3085	0.8731	0.3558	1.4242
16	0.3078	0.8722	0.3627	1.4094
16	0.3988	0.8502	0.4342	1.4143
11	0.3460	0.8644	0.3818	1.3602
11	0.3450	0.8555	0.4168	1.4049
16	0.3967	0.8636	0.4064	
1.4455				
16	0.4011	0.8523	0.4146	1.3774
16	0.2472	0.8778	0.3700	1.3381
12	0.2848	0.8711	0.3890	1.3431
16	0.2507	0.8767	0.4098	1.3993
17	0.3026	0.8720	0.3559	1.3630
17	0.3987	0.8505	0.4253	1.3819
17	0.3022	0.8759	0.3590	1.4591
12	0.3419	0.8603	0.3943	1.4165
12	0.3429	0.8430	0.4378	1.3702
17	0.3955	0.8584	0.4193	1.4513
17 17	0.4013	0.8631	0.4031	1.3518
17	0.2491	0.8800	0.3999	1.4521
13	0.2763	0.8822	0.3449	1.4277
17	0.2484	0.8652	0.4552	1.3873
18	0.2986	0.8773	0.3463	
1.4786	0.2067	0 0706	0 2561	
18	0.2967	0.8786	0.3561	
1.3726				

18	0.3986	0.8408	0.4407	1.5833
13	0.3408	0.8578	0.4145	1.3889
13	0.3432	0.8583	0.3902	1.5372
18	0.3935	0.8572	0.4135	1.3640
18	0.3991	0.8550	0.4136	1.3982
18	0.2394	0.8762	0.4017	1.4135
18	0.2406	0.8706	0.4057	1.4361
14	0.2670	0.8603	0.4153	1.4491
19	0.2922	0.8770	0.3407	1.3844
19	0.2913	0.8725	0.3666	1.4586
19	0.3968	0.8481	0.4340	1.3978
14	0.3365	0.8605	0.4021	1.3771
14	0.3382	0.8450	0.4235	1.4042
19	0.3933	0.8497	0.4157	1.4135
19	0.3971	0.8564	0.4183	1.4896
19	0.2361	0.8711	0.3963	1.4093
15	0.2583	0.8744	0.3580	1.3925
19	0.2379	0.8594	0.4691	1.4388
20	0.2876	0.8664	0.3708	1.3809
20	0.2877	0.8733	0.3599	1.4075
20	0.3958	0.8438	0.4367	1.3622
15	0.3330	0.8542	0.4202	1.3244
15	0.3377	0.8597	0.3894	1.4028
20	0.3918	0.8586	0.4050	1.4181
20	0.3974	0.8597	0.4013	1.3456
20	0.2274	0.8789	0.3901	1.4098
16	0.2515	0.8722	0.3710	1.3543
20	0.2320	0.8691	0.4222	1.4274
21	0.2837	0.8742	0.3570	1.4324
21	0.2821	0.8786	0.3436	1.3989
21	0.3952	0.8405	0.4448	1.4342
16	0.3372	0.8544	0.4060	1.3957
16	0.3333	0.8716	0.3635	
1.3811				
21	0.3912	0.8525	0.4114	1.3830
21	0.3954	0.8642	0.3997	
1.3923				
21	0.2206	0.8811	0.3826	1.3642
17	0.2438	0.8773	0.3581	1.3765
21	0.2245	0.8689	0.4312	1.3501
22	0.2804	0.8716	0.3515	1.3974
22	0.2782	0.8805	0.3437	1.3595
22	0.3938	0.8492	0.4378	1.3162
17	0.3331	0.8473	0.4226	1.3818
17	0.3339	0.8662	0.3811	1.3647
22	0.3908	0.8662	0.3961	
1.3682	0.00==	0.000:	A 42	
22	0.3952	0.8661	0.4017	1.3084

22	0.2187	0.8769	0.4104	1.3971
18	0.2412	0.8750	0.3619	1.3930
22	0.2257	0.7980	0.7500	1.3726
23	0.2765	0.8772	0.3391	1.4228
23	0.2736	0.8727	0.3580	1.3951
23	0.3930	0.8472	0.4397	1.4225
18	0.3309	0.8606	0.3850	
1.5284				
18	0.3335	0.8712	0.3628	1.5037
23	0.3896	0.8583	0.4046	1.5141
23	0.3939	0.8586	0.4084	1.4640
23	0.2133	0.8708	0.4313	1.3984
19	0.2351	0.8742	0.3677	1.4721
23	0.2192	0.8561	0.4980	1.4525
24	0.2714	0.8842	0.3310	
1.5371				
24	0.2714	0.8725	0.3472	1.6005
24	0.3915	0.8444	0.4352	1.5672
19	0.3256	0.8645	0.3822	
1.4304				
19	0.3317	0.8516	0.4110	1.4786
24	0.3881	0.8552	0.4068	1.3919
24	0.3936	0.8597	0.4044	1.4954
24	0.2118	0.8772	0.4129	1.4571
20	0.2302	0.8470	0.4868	1.4254
24	0.2168	0.8667	0.4551	1.4166
25	0.2680	0.8759	0.3449	1.3484
25	0.2648	0.8806	0.3371	1.4093
25	0.3922	0.8516	0.4289	1.4412
20	0.3312	0.8577	0.4036	1.4258
20	0.3253	0.8691	0.3568	1.4586
25	0.3886	0.8608	0.4004	1.4119
25	0.3930	0.8605	0.4052	1.4884
25	0.2072	0.8661	0.4373	1.3892
21	0.2261	0.8739	0.3812	1.3671
25	0.2114	0.8608	0.4566	1.3863
26	0.2623	0.8742	0.3417	1.3884
26	0.2637	0.8784	0.3549	1.3938
26	0.3913	0.8498	0.4284	1.4273
21	0.3281	0.8527	0.4204	1.4459
21	0.3272			
		0.8630	0.3839	1.4266
26 26	0.3872	0.8659	0.3949	1.4188
26 26	0.3920	0.8653	0.3970	1.3642
26 26	0.2041	0.8748	0.4026	1.3766
26	0.2106	0.8664	0.4378	1.3671
22	0.2231	0.8739	0.3887	1.4514
27	0.2587	0.8788	0.3409	1.4098
27	0.2592	0.8819	0.3352	

1.4525				
27	0.3900	0.8511	0.4220	1.4568
22	0.3222	0.8600	0.3960	1.4275
27	0.3877	0.8614	0.3990	1.3755
22	0.3260	0.8641	0.3971	1.5211
27	0.3920	0.8627	0.3973	1.4030
27	0.1983	0.8753	0.4064	1.4104
27	0.2059	0.8616	0.4989	1.3375
23	0.2162	0.8723	0.3873	1.3763
28	0.2549	0.8825	0.3316	1.3467
28	0.2554	0.8800	0.3375	1.3933
28	0.3904	0.8531	0.4214	1.3789
23	0.3278	0.8645	0.3820	1.3624
28	0.3861	0.8612	0.4002	1.3849
23	0.3254	0.8444	0.4452	1.3267
28	0.3910	0.8545	0.4095	1.3359
28	0.1962	0.8748	0.4363	1.3656
28	0.1972	0.8695	0.4633	1.3817
24	0.2095	0.8730	0.3907	1.3429
29	0.2537	0.8712	0.3630	1.3879
29	0.2529	0.8803	0.3448	1.4869
24	0.3271	0.8694	0.3880	1.4004
29	0.3905	0.8498	0.4271	1.4418
24	0.3296	0.8727	0.3653	1.3859
29	0.3859	0.8594	0.4128	1.4971
29	0.3915	0.8652	0.3948	1.3938
29	0.1940	0.8766	0.4226	1.4276
29	0.2057	0.8680	0.5021	1.4314
25	0.2047	0.8803	0.3879	1.4020
30	0.2508	0.8814	0.3302	1.5178
30	0.2496	0.8783	0.3575	1.4874
25	0.3214	0.8647	0.4002	1.4019
30	0.3883	0.8500	0.4229	1.4577
25	0.3246	0.8778	0.3657	1.4592
30	0.3859	0.8614	0.4024	1.4388
30	0.3907	0.8602	0.4018	1.4189
26	0.2012	0.8692	0.3996	
30	0.1927	0.8730	0.4031	1.5353
30	0.1981	0.8633	0.4666	1.5028
26	0.3188	0.8350	0.4520	1.3686
26	0.3261	0.8719	0.3738	1.3883
epoch	train_loss	valid_acc	valid_loss	dur
1	0.6504	0.7192	0.7573	
1.3487				
epoch	train_loss	valid_acc	valid_loss	dur
1	0.6153	0.8308	0.4650	

1.4187				
epoch	train_loss	valid_acc	valid_loss	dur
1 1.4155	0.6480	0.7978	0.5518	
epoch	train_loss	valid_acc	valid_loss	dur
1 1.3776	0.6456	0.7944	0.5491	
27	0.2012	0.8873	0.3851	1.4183
epoch	train_loss	valid_acc	valid_loss	dur
1 1.8305	1.3951	0.7214	0.9338	
27	0.3233	0.8634	0.3998	1.4132
27	0.3247	0.8486	0.4047	1.3544
2 1.3945	0.5526	0.7741	0.6078	
2 1.3675	0.4739	0.8356	0.4524	
epoch	train_loss	valid_acc	valid_loss	dur
1 1.8283	1.4109	0.7153	0.9585	
epoch	train_loss	valid_acc	valid_loss	dur
1 1.8013	1.4626	0.7245	0.9702	
2	0.5525	0.7891	0.5589	1.4251
2	0.5591	0.7909	0.5645	1.3794
28	0.1969	0.8825	0.3959	1.4234
28	0.3243	0.8508	0.4174	1.4195
28	0.3217	0.8583	0.3985	1.3519
2	0.8112	0.7533	0.7379	
1.8032	0 5474	0.0400	0 5000	
3 1.3833	0.5471	0.8128	0.5082	
3	0.4318	0.8405	0.4250	
1.3886	0.1010	0.0100	0.1200	
3	0.5523	0.7617	0.6290	1.3944
3	0.5417	0.8320	0.4826	
1.4783				
2	0.8279	0.7573	0.7436	
1.7774				
29	0.1975	0.8756	0.4303	1.4235
2	0.8286	0.7578	0.7436	
1.9422				
29	0.3180	0.8536	0.4285	1.3239

29	0.3238	0.8617	0.3898	1.4500
4	0.5445	0.8125	0.5248	1.4117
4	0.4106	0.8384	0.4540	1.4266
3	0.6870	0.7725	0.6626	
1.8276	0.0010	0.1120	0.0020	
4	0.5472	0.8161	0.5245	1.4074
4	0.5484	0.7678	0.6080	1.5978
30	0.1902	0.8725	0.4190	1.5676
3	0.6932	0.7750	0.6601	1.5070
2.0395	0.0952	0.1750	0.0001	
30	0 2017	0 0216	0 5051	1 6164
	0.3217	0.8316	0.5051	1.6164
3	0.6959	0.7742	0.6603	
2.2016	0.0004	0.0577	0 4004	4 7404
30	0.3204	0.8577	0.4031	1.7124
5	0.5429	0.7555	0.6256	1.4987
5	0.3919	0.8544	0.4054	
1.5704				
5	0.5390	0.8120	0.5310	1.5111
5	0.5523	0.8220	0.4787	1.4207
4	0.6276	0.7823	0.6191	
1.8178				
6	0.5421	0.8067	0.5217	1.3757
6	0.3833	0.8316	0.4389	1.3871
4	0.6316	0.7887	0.6123	
1.8771				
4	0.6339	0.7905	0.6120	
1.8397				
epoch	train_loss	valid_acc	valid_loss	dur
1	1.4263	0.7212	0.9610	
1.7899				
6	0.5389	0.8156	0.5098	1.3977
6	0.5465	0.8053	0.5558	1.4079
epoch		valid_acc		dur
1	1.4178	0.7236	0.9551	
1.8455	1.1110	0.7200	0.0001	
	train_loss	valid acc	valid logg	dur
		variu_acc	variu_ioss	
1	1.4559	0.7133	0.9783	
1.7572	1.4559	0.7133	0.9103	
	0 5002	0.7000	0 5000	
5	0.5893	0.7920	0.5888	
1.7742	0.5003	0 7000	0 5044	4 4405
7	0.5391	0.7898	0.5811	1.4105
7	0.3720	0.8612	0.3894	
1.4109		0.2125		4 45=5
7	0.5409	0.8137	0.5008	
7	0.5482	0.7831	0.5591	1.3641

5	0.5941	0.8020	0.5800	
1.8128	0.5944	0.7967	0.5816	
1.7878	0.8226	0.7494	0.7448	
1.7916	0.8232	0.7580	0.7383	
1.8152	0.8358	0.7530	0.7527	
1.8172 8	0.5413	0.8058	0.5313	1.3842
6	0.5618	0.8013	0.5655	1.3042
1.7573	0.0010	0.0013	0.0000	
8	0.3659	0.8662	0.3564	
1.3991				
8	0.5366	0.7956	0.5684	1.4235
8	0.5457	0.7873	0.5591	1.4044
6	0.5665	0.8077	0.5547	
1.7105				
6	0.5660	0.8055	0.5554	
1.7969				
3	0.6896	0.7678	0.6672	
1.7927				
9	0.5366	0.8233	0.4881	
1.3948	0.0000	0.0500	0.0070	4 4050
9	0.3603	0.8580	0.3872	1.4059
3	0.6920	0.7761	0.6574	
1.8317	0.6997	0.7686	0.6699	
1.8328	0.0331	0.7000	0.0099	
7	0.5405	0.8080	0.5478	
1.7975				
9	0.5404	0.7877	0.5489	1.3925
9	0.5455	0.7442	0.6760	1.4347
7	0.5456	0.8159	0.5343	
1.7730				
10	0.5360	0.7963	0.5504	1.4071
7	0.5443	0.8145	0.5342	
1.7842				
4	0.6291	0.7794	0.6260	
1.8402	0.0554	0.0004	0.0770	4 4500
10	0.3551	0.8634	0.3773	
10 4	0.5445 0.6308	0.8037 0.7900	0.5428	1.4122
4 1.7818	0.0308	0.7900	0.6104	
1.7616	0.5476	0.7892	0.5721	1.5126
4	0.6382	0.7841	0.6200	1.0120
1.7616				

8	0.5241	0.8123	0.5358	
1.7842				
11	0.5417	0.7931	0.5836	1.3925
8	0.5282	0.8177	0.5204	
1.7457				
11	0.3465	0.8473	0.4195	1.3967
8	0.5265	0.8202	0.5185	
1.7475				
11	0.5302	0.8164	0.5032	1.3638
5	0.5911	0.7916	0.5957	
1.7898				
11	0.5454	0.7936	0.5399	1.4581
5	0.5920	0.8000	0.5782	
1.7842				
5	0.5988	0.7928	0.5877	
1.7953				
9	0.5103	0.8164	0.5235	
1.8142				
12	0.5399	0.7994	0.5573	1.3750
12	0.3465	0.8538	0.4019	
12	0.5364	0.7812	0.5976	1.4307
9	0.5148	0.8213	0.5091	
1.7767	0 5450	0.7700	0.6047	4 0704
12	0.5450	0.7780	0.6017	1.3794
9	0.5118	0.8214	0.5098	
1.7652	0 FC/11	0.7000	0 5700	
6 1.8269	0.5641	0.7992	0.5709	
1.0209	0.5641	0.8111	0.5526	
1.7539	0.5041	0.0111	0.5526	
1.7559	0.5415	0.7963	0.5499	1.3550
6	0.5710	0.8037	0.5433	1.5550
1.8058	0.0710	0.0007	0.0011	
10	0.4988	0.8183	0.5143	
1.8156	0.4500	0.0100	0.0110	
13	0.3449	0.8677	0.3523	
1.4385	0.0110	0.0011	0.0020	
13	0.5408	0.8113	0.5519	1.3971
13	0.5434	0.8128	0.5158	1.3637
10	0.5034	0.8263	0.4959	
1.7673				
10	0.5000	0.8283	0.4949	
1.7578				
14	0.5420	0.7931	0.5559	1.3565
7	0.5436	0.8034	0.5547	
1.7790				
14	0.3401	0.8527	0.3929	1.4117
7	0.5425	0.8163	0.5332	

1.8135				
7	0.5492	0.8133	0.5412	
1.7823	0.0102	0.0100	0.0112	
14	0.5388	0.8161	0.5002	1.4592
14	0.5430	0.8033	0.5396	1.3925
11	0.4891	0.8219	0.5063	1.0020
1.7977	0.4031	0.0219	0.5005	
1.7977	0.5367	0.8120	0.5242	1.4434
11	0.4933	0.8120	0.3242	1.4434
	0.4933	0.0292	0.4071	
1.8245	0.4007	0.0000	0.4054	
11	0.4897	0.8308	0.4851	
1.8914	0.0406	0.0504	0.4004	4 4704
15	0.3406	0.8534	0.4004	1.4721
8	0.5268	0.8108	0.5399	
1.9843				
15	0.5386	0.8123	0.5171	1.5706
8	0.5260	0.8191	0.5188	
1.8764				
15	0.5392	0.7727	0.5993	1.6066
8	0.5320	0.8184	0.5236	
1.8215				
12	0.4802	0.8231	0.4986	
2.0689				
16	0.5405	0.7814	0.5795	1.5768
16	0.3436	0.8645	0.3617	1.4682
12	0.4851	0.8337	0.4774	
1.9789				
12	0.4805	0.8303	0.4799	1.8856
16	0.5324	0.8153	0.5344	1.5175
16	0.5468	0.8187	0.4925	1.4957
9	0.5134	0.8111	0.5284	
1.8491				
9	0.5120	0.8245	0.5053	
1.8537				
9	0.5179	0.8203	0.5129	
1.9978				
17	0.5373	0.7956	0.5379	1.4851
13	0.4727	0.8298	0.4908	
1.8915				
17	0.3350	0.8558	0.3895	1.4129
17	0.5397	0.7998	0.5441	1.4951
13	0.4767	0.8344	0.4731	
1.8593	3.2.3.	0.0011	0.1.01	
17	0.5455	0.8164	0.5171	1.4861
13	0.4724	0.8337	0.4717	1.1001
1.8084	V. 1121	0.0001	V. 1111	
1.0004	0.5019	0.8163	0.5196	
1.9577	0.0019	0.0103	0.0190	
1.5511				

18	0.5474	0.8122	0.5081	1.4828
10	0.4997	0.8242	0.4988	1.8382
18	0.3320	0.8348	0.4425	1.4803
10	0.5064	0.8258	0.5004	
1.8941				
14	0.4658	0.8303	0.4858	
1.8021	0.4000	0.0303	0.4000	
	0 5440	0.7100	0 7770	1 0540
18	0.5412	0.7180	0.7773	1.3543
18	0.5421	0.7831	0.5712	1.3941
14	0.4704	0.8367	0.4647	
1.8091				
14	0.4654	0.8352	0.4645	
1.7816				
19	0.5364	0.7805	0.5867	1.4111
19	0.3349	0.8567	0.3927	1.4113
11	0.4922	0.8217	0.5089	
1.8544				
11	0.4904	0.8313	0.4878	
1.7838	0.1001	0.0010	0.1070	
1.7656	0 5266	0.0167	0 5005	1 2760
	0.5366	0.8167	0.5205	1.3760
11	0.4964	0.8294	0.4896	
1.7623				
19	0.5428	0.7081	0.7320	
15	0.4599	0.8297	0.4818	1.7667
20	0.5396	0.7886	0.5623	1.3582
15	0.4640	0.8414	0.4599	
1.8306				
15	0.4584	0.8377	0.4606	
1.7705				
20	0.3310	0.8752	0.3590	1.4026
20	0.5365	0.8202	0.5210	1.4145
20	0.5415	0.7697	0.6200	1.3914
12	0.4833	0.8220	0.5036	1.0014
	0.4033	0.0220	0.5030	
1.8122	0 4040	0.0047	0 4770	
12	0.4818	0.8347	0.4778	
1.8902				
12	0.4874	0.8330	0.4822	
1.8664				
16	0.4541	0.8322	0.4764	
1.7807				
21	0.5398	0.7694	0.5874	1.3654
21	0.3309	0.8536	0.4056	1.3934
16	0.4530	0.8391	0.4564	
1.6749				
16	0.4581	0.8411	0.4541	1.7815
21	0.5341	0.7964	0.5400	1.3987
21	0.5460	0.8300	0.4703	
				1.0/30
13	0.4758	0.8225	0.4970	

1.8074				
13	0.4740	0.8353	0.4756	
1.8470				
22	0.5386	0.7216	0.7642	1.4222
13	0.4797	0.8350	0.4745	
1.8801				
17	0.4490	0.8339	0.4729	
1.8808	0.1100	0.0000	0.1120	
22	0.3313	0.8478	0.4056	1.4858
22	0.5403	0.8069	0.5246	1.3962
22	0.5418	0.7995	0.5590	1.3868
17	0.4471	0.8395	0.4540	
1.8422				
17	0.4526	0.8423	0.4509	
1.9194				
23	0.5397	0.8050	0.5457	1.5074
14	0.4686	0.8261	0.4908	
1.9041				
14	0.4672	0.8372	0.4697	
1.8531				
23	0.3278	0.8564	0.3893	1.4834
14	0.4727	0.8397	0.4676	1.1001
1.8291	0.4121	0.0007	0.4070	
23	0 5206	0.7745	0 5000	1.6187
	0.5386		0.5922	
18	0.4443	0.8336	0.4700	
23	0.5422	0.8014	0.5384	1.6223
18	0.4421	0.8459	0.4465	
1.8203				
24	0.5390	0.8034	0.5413	1.4480
18	0.4479	0.8436	0.4463	
1.8932				
24	0.3297	0.8695	0.3465	1.5042
15	0.4627	0.8294	0.4854	
1.8297				
15	0.4613	0.8403	0.4619	
1.8405				
24	0.5369	0.8097	0.5250	1.4286
24	0.5409	0.8206	0.4874	1.3738
15				
	0.4663	0.8389	0.4631	1.8374
19	0.4399	0.8350	0.4687	
1.8760				
25	0.5385	0.7850	0.5975	1.4308
19	0.4377	0.8434	0.4434	1.7366
19	0.4431	0.8448	0.4429	
1.7300				
25	0.3259	0.8531	0.4086	1.3941
25	0.5383	0.8203	0.4892	1.3759
25	0.5451	0.7847	0.5770	1.4331

16	0.4549	0.8419	0.4573	
1.8196				
16	0.4569	0.8305	0.4802	
1.9764				
16	0.4604	0.8411	0.4590	
1.8943				
26	0.5366	0.7864	0.5893	1.5862
20	0.4358	0.8384	0.4611	1.0002
	0.4356	0.0304	0.4011	
1.8640	0.0074	0.0740	0.0400	4 4440
26	0.3276	0.8742	0.3498	1.4416
20	0.4334	0.8452	0.4390	1.9542
26	0.5416	0.8031	0.5237	1.5264
26	0.5423	0.7939	0.5564	1.5404
20	0.4386	0.8475	0.4398	
1.9916				
17	0.4501	0.8453	0.4527	
2.0572				
17	0.4515	0.8327	0.4755	
2.2309	31.1313	0.002.	0.1.00	
27	0.5409	0.7502	0.6934	1.7448
27	0.3256	0.8659	0.3813	
21	0.4317	0.8373	0.4590	2.0533
17	0.4550	0.8434	0.4535	
2.2561				
27	0.5352	0.8089	0.5388	1.5451
27	0.5404	0.8073	0.5305	1.7027
21	0.4291	0.8464	0.4360	
2.1682				
21	0.4349	0.8453	0.4364	2.0540
28	0.5339	0.7623	0.6175	1.4218
28	0.3214	0.8716	0.3531	1.4262
18	0.4453	0.8436	0.4504	1.9826
28	0.5353	0.7922	0.5531	
				1.4503
18	0.4469	0.8350	0.4724	
1.9063				
28	0.5439	0.8202	0.5053	1.4677
18	0.4501	0.8436	0.4513	
1.8855				
22	0.4278	0.8392	0.4554	
1.9286				
22	0.4248	0.8492	0.4348	
1.8203				
29	0.5415	0.8164	0.5116	1.4418
22	0.4306	0.8461	0.4332	1.8701
29	0.3211	0.8619	0.3733	1.4019
29	0.5404	0.7919	0.5733	1.4584
29	0.5436	0.8075	0.5232	1.3923
19	0.4405	0.8458	0.4468	

1.8294				
19	0.4420	0.8352	0.4679	
1.9116				
19	0.4452	0.8438	0.4479	
1.8589				
23	0.4245	0.8387	0.4564	1.9165
30	0.5372	0.7616	0.6090	1.4956
30	0.3286	0.8602	0.3675	
30	0.5384	0.7980	0.5422	
23	0.4211	0.8491	0.4324	2.0005
23	0.4268	0.8512	0.4276	
1.9547	0.1200	0.0022	0.12.0	
30	0.5429	0.8159	0.5262	1.4653
20	0.4361	0.8466	0.4418	1.1000
1.9203	0.1001	0.0100	0.1110	
20	0.4376	0.8356	0.4687	1.8989
20	0.4410	0.8466	0.4431	1.0000
1.8800	0.1110	0.0100	0.1101	
24	0.4210	0.8397	0.4503	
1.8833	0.4210	0.0091	0.4303	
24	0.4172	0.8514	0.4278	
1.9155	0.4172	0.0514	0.4270	
24	0.4232	0.8483	0.4278	1.9274
		valid_acc	valid_loss	
epoch	${\tt train_loss}$	vallu acc	variu 1088	dur
1	1 /057			
1 0177	1.4057	0.7288	0.9476	
1.9177		0.7288	0.9476	
	1.4057 train_loss			dur
1.9177 epoch	train_loss	0.7288 valid_acc	0.9476 valid_loss	dur
1.9177 epoch		0.7288	0.9476	dur
1.9177 epoch 1 1.8789	train_loss 	0.7288 valid_acc 0.7189	0.9476 valid_loss 	
1.9177 epoch	train_loss	0.7288 valid_acc	0.9476 valid_loss	dur
1.9177 epoch 1 1.8789 epoch	train_loss 1.4368 train_loss	0.7288 valid_acc 0.7189 valid_acc	0.9476 valid_loss 0.9674 valid_loss	
1.9177 epoch 1 1.8789 epoch 1	train_loss 	0.7288 valid_acc 0.7189	0.9476 valid_loss 	
1.9177 epoch 1 1.8789 epoch 1 1.9056	train_loss 1.4368 train_loss 1.4313	0.7288 valid_acc 0.7189 valid_acc 0.7223	0.9476 valid_loss 0.9674 valid_loss 0.9705	
1.9177 epoch 1 1.8789 epoch 1 1.9056 21	train_loss 1.4368 train_loss	0.7288 valid_acc 0.7189 valid_acc	0.9476 valid_loss 0.9674 valid_loss	
1.9177 epoch 1 1.8789 epoch 1 1.9056 21 1.9427	train_loss 1.4368 train_loss 1.4313 0.4327	0.7288 valid_acc 0.7189 valid_acc 0.7223 0.8489	0.9476 valid_loss 0.9674 valid_loss 0.9705 0.4394	dur
1.9177 epoch 1 1.8789 epoch 1 1.9056 21 1.9427	train_loss 1.4368 train_loss 1.4313	0.7288 valid_acc 0.7189 valid_acc 0.7223 0.8489	0.9476 valid_loss 0.9674 valid_loss 0.9705 0.4394	
1.9177 epoch 1.8789 epoch 1.9056 21 1.9427 epoch	train_loss	0.7288 valid_acc 0.7189 valid_acc 0.7223 0.8489 valid_acc	0.9476 valid_loss 0.9674 valid_loss 0.9705 0.4394 valid_loss	dur
1.9177 epoch 1.8789 epoch 1.9056 21 1.9427 epoch 1	train_loss 1.4368 train_loss 1.4313 0.4327	0.7288 valid_acc 0.7189 valid_acc 0.7223 0.8489	0.9476 valid_loss 0.9674 valid_loss 0.9705 0.4394	dur
1.9177 epoch 1.8789 epoch 1.9056 21 1.9427 epoch 1.9485	train_loss	0.7288 valid_acc 0.7189 valid_acc 0.7223 0.8489 valid_acc 0.8094	0.9476 valid_loss 0.9674 valid_loss 0.9705 0.4394 valid_loss 0.5293	dur
1.9177 epoch 1.8789 epoch 1.9056 21 1.9427 epoch 1.9485 21	train_loss	0.7288 valid_acc 0.7189 valid_acc 0.7223 0.8489 valid_acc	0.9476 valid_loss 0.9674 valid_loss 0.9705 0.4394 valid_loss	dur
1.9177 epoch 1 1.8789 epoch 1 1.9056 21 1.9427 epoch 1 1.9485 21 1.9775	train_loss 1.4368 train_loss 1.4313 0.4327 train_loss 0.6975 0.4336	0.7288 valid_acc 0.7189 valid_acc 0.7223 0.8489 valid_acc 0.8094 0.8380	0.9476 valid_loss	dur
1.9177 epoch 1.8789 epoch 1.9056 21 1.9427 epoch 1.9485 21 1.9775 21	train_loss	0.7288 valid_acc 0.7189 valid_acc 0.7223 0.8489 valid_acc 0.8094	0.9476 valid_loss 0.9674 valid_loss 0.9705 0.4394 valid_loss 0.5293	dur
1.9177 epoch 1.8789 epoch 1.9056 21 1.9427 epoch 1.9485 21 1.9485 21 1.9775 21 1.8989	train_loss	0.7288 valid_acc 0.7189 valid_acc 0.7223 0.8489 valid_acc 0.8094 0.8380 0.8494	0.9476 valid_loss 0.9674 valid_loss 0.9705 0.4394 valid_loss 0.5293 0.4621 0.4369	dur
1.9177 epoch 1.8789 epoch 1.9056 21 1.9427 epoch 1.9485 21 1.9775 21 1.8989 25	train_loss	0.7288 valid_acc 0.7189 valid_acc 0.7223 0.8489 valid_acc 0.8094 0.8380 0.8494 0.8391	0.9476 valid_loss 0.9674 valid_loss 0.9705 0.4394 valid_loss 0.5293 0.4621 0.4369 0.4526	dur dur
1.9177 epoch 1.8789 epoch 1.9056 21 1.9427 epoch 1.9485 21 1.9485 21 1.9775 21 1.8989	train_loss	0.7288 valid_acc 0.7189 valid_acc 0.7223 0.8489 valid_acc 0.8094 0.8380 0.8494	0.9476 valid_loss 0.9674 valid_loss 0.9705 0.4394 valid_loss 0.5293 0.4621 0.4369	dur dur

1.8961				
2	0.8342	0.7578	0.7480	
1.9321	0.0012	0.1010	0.1120	
2	0.8206	0.7509	0.7482	
2.0256	0.0200	011000	0., 102	
2	0.8334	0.7512	0.7555	
2.0991	0.000±	0.7012	0.1000	
2.0331	0.4857	0.8305	0.4777	
1.9936	0.4007	0.0000	0.4111	
22	0.4287	0.8475	0.4364	2.0242
22	0.4298	0.8391	0.4591	2.0212
1.8660	0.4250	0.0051	0.4001	
22	0.4330	0.8500	0.4350	
2.0460	0.4000	0.0000	0.4000	
2.0400	0.4149	0.8383	0.4503	1.9868
26	0.4109	0.8500	0.4231	
26	0.4168	0.8522	0.4231	1.3004
1.9523	0.4100	0.0022	0.4210	
3	0.6964	0.7655	0.6769	
1.9906	0.0904	0.7055	0.0709	
3	0.7021	0.7769	0.6664	
2.1026	0.7021	0.1109	0.0004	
3	0.7030	0.7708	0.6739	
1.8942	0.7030	0.7700	0.0739	
3	0.4431	0.8395	0.4492	
1.9674	0.4431	0.0393	0.4432	
23	0.4252	0.8478	0.4365	2.0543
23	0.4252	0.8380	0.4583	
23 27	0.4118	0.8438	0.456	2.0155
1.9023	0.4110	0.0430	0.4450	
23	0.4291	0.8492	0.4318	2.0870
23 27	0.4291	0.8516	0.4318	2.0070
1.9184	0.4076	0.0510	0.4212	
27	0.4136	0.8520	0.4200	1 0720
4	0.6396	0.7780	0.4200	1.9730
1.9317	0.0390	0.7760	0.0550	
4	0.6420	0.7897	0.6204	
1.9190	0.0420	0.1091	0.0204	
4	0.6443	0.7863	0.6274	
1.9388	0.0443	0.7003	0.0274	
4	0.4142	0.8464	0.4292	
1.9454	0.4142	0.0404	0.4232	
	0 4220	0 9207	0 4552	
24	0.4229	0.8397	0.4553	
1.9701 24	0.4219	0.8475	0.4322	1.9985
2 4 28	0.4219	0.8442	0.4322	1.5500
1.8464	0.4030	0.0442	0.4420	
24	0.4257	0.8519	0.4292	
24	0.4201	0.0013	0.4232	

1.9831				
28	0.4052	0.8519	0.4179	
1.9826	31.1332	0.0020	0.12.0	
	0 4405	0.0540	0 4450	0 0000
28	0.4105	0.8512		2.0302
5	0.6036	0.7889	0.6040	
2.0540				
5	0.6050	0.7966	0.5897	
2.2680		0.,000		
	0.0070	0.7044	0 5054	
5	0.6072	0.7941	0.5954	
2.0950				
5	0.3939	0.8461	0.4219	2.1292
25	0.4189	0.8492	0.4306	
2.3063	0.1100	0.0102	0.1000	
	0 4405	0.000	0.4540	
25	0.4195	0.8398	0.4519	
2.3504				
29	0.4064	0.8439	0.4411	2.2993
25	0.4223	0.8519	0.4251	2.1509
29	0.4019	0.8541	0.4174	_,
	0.4019	0.0541	0.4114	
2.0825				
29	0.4076	0.8531	0.4180	2.1457
6	0.5776	0.7994	0.5820	
2.0597				
6	0.5782	0.8091	0.5653	
_	0.5762	0.0091	0.0000	
2.0028				
6	0.5811	0.8028	0.5721	
2.0366				
6	0.3767	0.8517	0.4141	
1.9389	0.0.0.	0.002.	*******	
	0 4450	0.0506	0 4070	
26	0.4153	0.8506	0.4272	
1.9326				
26	0.4162	0.8422	0.4490	
1.9854				
30	0.4036	0.8472	0.4398	
	0.4000	0.0472	0.4000	
1.9296				
26	0.4189	0.8508	0.4240	1.9603
30	0.3992	0.8545	0.4133	
2.0438				
30	0.4045	0.8544	0.4132	
	0.4040	0.0044	0.4152	
1.9344				
7	0.5577	0.8002	0.5678	
1.9766				
7	0.5579	0.8114	0.5483	
1.8674				
	0 5606	0.0105	0 EE67	
7	0.5606	0.8105	0.5567	
1.8851				
7	0.3643	0.8578	0.4031	
2.1817				
27	0.4125	0.8488	0.4255	2.0514
21	0.4120	0.0100	0.4200	2.0014

27 2.1582	0.4138	0.8439	0.4458	
2.1362 27 2.1726	0.4159	0.8533	0.4213	
	train_loss	valid_acc	valid_loss	dur
1 2.1170	0.7027	0.8170	0.5139	
8 2.1279	0.5420	0.8047	0.5540	
8	0.5420	0.8145	0.5347	
8	0.5446	0.8098	0.5434	2.0645
epoch			valid_loss	dur
1 2.1231	0.7025	0.8108	0.5347	
	train_loss	valid_acc	valid_loss	dur
1 2.1754	0.7156	0.8041	0.5419	
8	0.3515	0.8572	0.3943	1.9306
28	0.4099	0.8512	0.4251	1.9500
1.8859	0.4099	0.0012	0.4201	
28 2.1129	0.4106	0.8444	0.4457	
2.1129	0.4129	0.8525	0.4206	1.9395
20	0.4859	0.8392	0.4559	1.3030
1.9346	0.4003	0.0002	0.4003	
9	0.5290	0.8202	0.5257	
1.8592	0.0200	0.0202	0.0201	
9	0.5293	0.8105	0.5408	
1.9939				
9	0.5317	0.8214	0.5257	
1.9194				
2	0.4888	0.8355	0.4629	
1.9638				
2	0.4886	0.8320	0.4719	
1.8743				
9	0.3402	0.8603	0.3967	1.9554
29	0.4069	0.8498	0.4215	
29	0.4080	0.8436	0.4448	1.9482
29	0.4101	0.8545	0.4191	
1.9483	0 0011	0.0470	0.4044	
3	0.4411	0.8473	0.4314	
1.8362	O E100	0 0101	O E206	
10046	0.5182	0.8181	0.5306	
1.9046				

10	0.5183	0.8253	0.5121	
1.9499 10	0.5205	0.8203	0.5175	1.9046
3	0.4444	0.8467	0.4294	1.9040
1.9218	0.1111	0.0407	0.4234	
3	0.4433	0.8409	0.4483	
1.8545	0.1100	0.0100	0.1100	
10	0.3307	0.8578	0.3949	1.9131
30	0.4041	0.8522	0.4184	
1.9567				
30	0.4053	0.8423	0.4429	1.9371
30	0.4072	0.8572	0.4137	
1.9135				
4	0.4123	0.8577	0.4011	
1.9679				
11	0.5094	0.8170	0.5234	1.8175
11	0.5118	0.8280	0.5079	
1.8126	0 5000	0.0000	0.5040	
11	0.5092	0.8280	0.5043	
1.8739 4	0.4159	0.8559	0.4062	
1.8914	0.4159	0.0009	0.4002	
4	0.4161	0.8408	0.4466	1.8698
11	0.3212	0.8566	0.4043	1.9230
epoch	train loss		valid loss	dur
epoch	train_loss		valid_loss	dur
epoch 1	train_loss 0.7117		valid_loss 0.5184	dur
		valid_acc		dur
1		valid_acc		
1 1.9448	0.7117	valid_acc 0.8119	0.5184	
1 1.9448 5 epoch	0.7117 0.3912 train_loss	valid_acc 0.8119 0.8564 valid_acc	0.5184 0.3990 valid_loss	1.8900
1 1.9448 5 epoch	0.7117	valid_acc 0.8119 0.8564	0.5184	1.8900
1 1.9448 5 epoch 1 1.8827	0.7117 0.3912 train_loss	valid_acc 0.8119 0.8564 valid_acc 0.8102	0.5184 0.3990 valid_loss	1.8900 dur
1 1.9448 5 epoch 1 1.8827	0.7117 0.3912 train_loss	valid_acc 0.8119 0.8564 valid_acc	0.5184 0.3990 valid_loss	1.8900 dur
1 1.9448 5 epoch 1 1.8827	0.7117 0.3912 train_loss 	valid_acc 0.8119 0.8564 valid_acc 0.8102	0.5184 0.3990 valid_loss	1.8900 dur
1.9448 5 epoch 1 1.8827 epoch	0.7117 0.3912 train_loss	valid_acc 0.8119 0.8564 valid_acc 0.8102 valid_acc	0.5184 0.3990 valid_loss 0.5280 valid_loss	1.8900 dur
1.9448 5 epoch 1.8827 epoch	0.7117 0.3912 train_loss 	valid_acc 0.8119 0.8564 valid_acc 0.8102 valid_acc	0.5184 0.3990 valid_loss 0.5280 valid_loss	1.8900 dur
1.9448 5 epoch 1.8827 epoch 1.9534	0.7117 0.3912 train_loss 	valid_acc 0.8119 0.8564 valid_acc 0.8102 valid_acc 0.8064	0.5184 0.3990 valid_loss 0.5280 valid_loss 	1.8900 dur
1 1.9448 5 epoch 1 1.8827 epoch 1 1.9534 12	0.7117 0.3912 train_loss 	valid_acc 0.8119 0.8564 valid_acc 0.8102 valid_acc 0.8064 0.8214	0.5184 0.3990 valid_loss 0.5280 valid_loss 	1.8900 dur dur
1 1.9448 5 epoch 1 1.8827 epoch 1 1.9534 12 1.9391	0.7117 0.3912 train_loss 0.7110 train_loss 0.7235 0.5011	valid_acc 0.8119 0.8564 valid_acc 0.8102 valid_acc 0.8064 0.8214 0.8280	0.5184 0.3990 valid_loss 0.5280 valid_loss 0.5437 0.5167	1.8900 dur dur
1 1.9448 5 epoch 1 1.8827 epoch 1 1.9534 12 1.9391 12	0.7117 0.3912 train_loss 0.7110 train_loss 0.7235 0.5011 0.5013 0.5038	valid_acc 0.8119 0.8564 valid_acc 0.8102 valid_acc 0.8064 0.8214 0.8280 0.8289	0.5184 0.3990 valid_loss 0.5280 valid_loss 0.5437 0.5167 0.4996 0.5001	1.8900 dur dur
1 1.9448 5 epoch 1 1.8827 epoch 1 1.9534 12 1.9391 12 12 1.9433 5	0.7117 0.3912 train_loss 0.7110 train_loss 0.7235 0.5011 0.5013 0.5038 0.3945	valid_acc 0.8119 0.8564 valid_acc 0.8102 valid_acc 0.8064 0.8214 0.8280 0.8289 0.8541	0.5184 0.3990 valid_loss 0.5280 valid_loss 0.5437 0.5167 0.4996 0.5001 0.3975	1.8900 dur dur
1.9448 5 epoch 1.8827 epoch 1.9534 12 1.9391 12 1.9433 5 5	0.7117 0.3912 train_loss 0.7110 train_loss 0.7235 0.5011 0.5013 0.5038	valid_acc 0.8119 0.8564 valid_acc 0.8102 valid_acc 0.8064 0.8214 0.8280 0.8289	0.5184 0.3990 valid_loss 0.5280 valid_loss 0.5437 0.5167 0.4996 0.5001	1.8900 dur dur
1.9448 5 epoch 1.8827 epoch 1.9534 12 1.9391 12 1.9433 5 5 1.9297	0.7117 0.3912 train_loss 0.7110 train_loss 0.7235 0.5011 0.5013 0.5038 0.3945 0.3958	valid_acc 0.8119 0.8564 valid_acc 0.8102 valid_acc 0.8064 0.8214 0.8280 0.8289 0.8541 0.8417	0.5184 0.3990 valid_loss 0.5280 valid_loss 0.5437 0.5167 0.4996 0.5001 0.3975 0.4368	1.8900 dur dur 1.8883
1.9448 5 epoch 1.8827 epoch 1.8827 epoch 1.9534 12 1.9391 12 12 1.9433 5 5 1.9297 12	0.7117 0.3912 train_loss 0.7110 train_loss 0.7235 0.5011 0.5013 0.5038 0.3945 0.3958 0.3118	valid_acc 0.8119 0.8564 valid_acc 0.8102 valid_acc 0.8064 0.8214 0.8280 0.8289 0.8541 0.8417 0.8572	0.5184 0.3990 valid_loss 0.5280 valid_loss 0.5437 0.5167 0.4996 0.5001 0.3975 0.4368 0.4032	1.8900 dur dur
1.9448 5 epoch 1.8827 epoch 1.9534 12 1.9391 12 1.9433 5 5 1.9297	0.7117 0.3912 train_loss 0.7110 train_loss 0.7235 0.5011 0.5013 0.5038 0.3945 0.3958	valid_acc 0.8119 0.8564 valid_acc 0.8102 valid_acc 0.8064 0.8214 0.8280 0.8289 0.8541 0.8417 0.8572	0.5184 0.3990 valid_loss 0.5280 valid_loss 0.5437 0.5167 0.4996 0.5001 0.3975 0.4368	1.8900 dur dur 1.8883

6	0.3742	0.8580	0.3931	
1.9847 2	0.4920	0.8423	0.4458	
2.1156 2	0.5090	0.8108	0.5190	
2.0317 13	0.4944	0.8323	0.4904	
2.1567 13	0.4971	0.8303	0.4943	
2.1609	0.4943	0.8206	0.5128	2 2320
6	0.3789	0.8611	0.3818	2.2320
2.1543	0.3799	0.8555	0.4067	
2.1912 13	0.3040	0.8684	0.3867	
2.0002 7	0.3614	0.8661	0.3717	
2.0059 3	0.4442	0.8411	0.4426	
2.1340 3	0.4686	0.8269	0.4812	
1.9425 3	0.4477	0.8316	0.4552	2.0783
14 1.9107	0.4877	0.8347	0.4852	
14 1.8945	0.4882	0.8234	0.5052	
14 1.9856	0.4907	0.8331	0.4909	
7	0.3654 0.3679	0.8653 0.8620	0.3819	1.9018
1.9111				
14 1.8792	0.2964	0.8706	0.3701	
8	0.3478 0.4161	0.8673 0.8492	0.3733 0.4235	1.8933
1.9485 4	0.4492	0.8242	0.4856	1.9041
4 1.9257	0.4203	0.8572	0.4154	
15 1.9180	0.4824	0.8372	0.4827	
15 15	0.4830 0.4858	0.8202 0.8355	0.5021 0.4836	1.9110
1.9334 8	0.3514	0.8728	0.3633	
1.8985				

8 15	0.3562 0.2896	0.8589 0.8752	0.3978 0.3580	1.8617
1.9015				
9 1.9056	0.3373	0.8705	0.3627	
5 1.9146	0.3948	0.8606	0.3952	
5 1.9335	0.4353	0.8356	0.4656	
16	0.4775	0.8373	0.4763	
1.8821 16	0.4779	0.8228	0.4986	1.8772
5 1.9216	0.4005	0.8586	0.3941	
16 1.9030	0.4807	0.8373	0.4796	
9	0.3407	0.8714	0.3645	1.9009
9	0.3463	0.8527	0.4026	1.9020
16	0.2823	0.8739	0.3645	1.8849
10	0.3282	0.8709	0.3584	
1.9291				
6	0.3775	0.8530	0.4067	1.9968
6	0.4283	0.8419	0.4470	
1.9052				
17	0.4725	0.8398	0.4727	
1.8625	0.4724	0.0070	0 4049	
17 1.8935	0.4734	0.8272	0.4948	
1.0933	0.3859	0.8514	0.4043	1.9032
17	0.4763	0.8372	0.4773	
10	0.3375	0.8616	0.3896	1.9020
10	0.3312	0.8731	0.3580	
1.9278				
17	0.2739	0.8731	0.3572	1.9148
11	0.3172	0.8742	0.3545	
1.8964				
7	0.3660	0.8672	0.3752	
1.9479				
7	0.4208	0.8430	0.4454	
1.8952	0.4005	0.0007	0 4000	
18	0.4695	0.8287	0.4897	
1.8523	0.4604	0.0207	0.4600	1 0051
18	0.4684	0.8387	0.4693	1.9851
7 1.9365	0.3726	0.8623	0.3764	
1.9365	0.4720	0.8394	0.4723	
1.9568	0.4120	0.0034	0.4120	
11	0.3288	0.8647	0.3825	

1.9082				
11	0.3236	0.8756	0.3550	
1.9210				
	0.0004	0.000	0 0775	1 0000
18	0.2684	0.8633	0.3775	
12	0.3098	0.8619	0.3743	1.9235
8	0.3554	0.8669	0.3776	1.9394
8	0.4149	0.8419	0.4463	1.9139
19	0.4647	0.8394	0.4669	1.9189
	0.4660	0.8309		1.0100
19	0.4000	0.0309	0.4853	
2.0271				
8	0.3614	0.8658	0.3722	
1.9547				
19	0.4685	0.8397	0.4689	
	0.4000	0.0031	0.4005	
1.9390				
12	0.3218	0.8683	0.3793	
1.8908				
12	0.3143	0.8731	0.3566	1.9164
19	0.2613	0.8717	0.3678	1.9100
				1.0100
13	0.3017	0.8803	0.3390	
2.1365				
9	0.4116	0.8431	0.4436	
2.2446				
9	0.3449	0.8689	0.3640	
2.2981	0.0110	0.0000	0.0010	
	0.04.44	0.0000	0.0700	
13	0.3141	0.8689	0.3730	
1.9221				
20	0.4613	0.8422	0.4629	
2.2997				
9	0.3511	0.8634	0.3861	2 2725
20	0.4621	0.8289	0.4843	
20	0.4650	0.8364	0.4683	2.3300
13	0.3041	0.8747	0.3559	2.3038
20	0.2567	0.8730	0.3655	2.3102
14	0.2936	0.8780	0.3452	2 3222
14				
	0.3074	0.8572	0.3988	1.8933
10	0.3348	0.8711	0.3691	2.1718
10	0.4083	0.8434	0.4389	
2.2738				
21	0.4579	0.8436	0.4602	
2.2076	0.1010	0.0100	0.1002	
	0 0444	0.0700	0.0505	
10	0.3411	0.8722	0.3565	
2.2116				
21	0.4590	0.8273	0.4846	2.3902
21	0.4618	0.8405	0.4632	
2.3776				
	0.0070	0.0704	0.2200	
14	0.2979	0.8791	0.3389	
2.3907				
21	0.2494	0.8689	0.3805	2.2905

15	0.3022	0.8681	0.3829	
15	0.2865	0.8742	0.3517	2.3431
11	0.3272	0.8748	0.3556	
2.2674				
11	0.4048	0.8489	0.4318	
2.2929				
22	0.4550	0.8414	0.4595	2.2660
11	0.3325	0.8708	0.3577	
22	0.4587	0.8422	0.4605	
2.1424	0.1007	0.0122	0.1000	
22	0.4562	0.8316	0.4784	
	0.4502	0.0310	0.4704	
2.3101	0.0000	0.0000	0.0004	
15	0.2889	0.8809	0.3334	
2.1341				
22	0.2439	0.8744	0.3594	
16	0.2956	0.8658	0.3731	1.7324
16	0.2802	0.8703	0.3562	2.1424
12	0.3193	0.8725	0.3585	2.1380
23	0.4522	0.8461	0.4553	
2.1796				
12	0.4022	0.8503	0.4282	
2.3506				
12	0.3252	0.8664	0.3709	2.2868
23	0.4557	0.8428	0.4580	_,,
2.0837	0.1001	0.0120	0.1000	
23	0.4533	0.8323	0.4771	
	0.4555	0.0323	0.4771	
2.2594	0.0004	0.0700	0 0454	0.0450
16	0.2821	0.8780	0.3451	2.2459
23	0.2388	0.8783	0.3517	
2.1802				
17	0.2897	0.8720	0.3675	
1.7771				
17	0.2719	0.8806	0.3382	
2.1912				
13	0.3118	0.8730	0.3467	2.1921
24	0.4494	0.8445	0.4551	2.1673
18	0.2845	0.8689	0.3697	1.7582
24	0.4532	0.8456	0.4554	
2.1638				
13	0.4002	0.8472	0.4277	2.2993
13	0.3176	0.8759	0.3432	_,,
2.2617	0.0110	0.0700	0.0102	
2.2017	0.4505	0.8336	0.4751	
2.1401	0.4000	0.0000	0.4/31	
	0.0007	0.0044	0.2400	
24	0.2337	0.8811	0.3429	
2.1262	0 0===	0.05==		
17	0.2756	0.8855	0.3286	
2.2266				

18	0.2658	0.8788	0.3381	1.9923
14	0.3049	0.8772	0.3501	1.9480
19	0.2787	0.8762	0.3561	
1.7592				
25	0.4467	0.8477	0.4521	
2.0093	0.1101	0.0111	0.1021	
25	0.4508	0.8439	0.4536	2.0800
14	0.3100	0.8691	0.3668	2.0288
14	0.3974	0.8530	0.4241	
2.0479				
25	0.4481	0.8361	0.4725	
1.9591				
25	0.2289	0.8777	0.3526	1.9813
18	0.2694	0.8852	0.3340	2.0753
20	0.2737	0.8664	0.3829	1.7413
19	0.2609	0.8691	0.3566	2.0858
15	0.2973	0.8722	0.3515	2.0244
26	0.4446	0.8445	0.4514	2.0880
15	0.3961	0.8478	0.4246	2.0152
15	0.3032	0.8733	0.3418	2.0102
26	0.4483	0.8455	0.4524	2.0612
26	0.4458	0.8334	0.4725	1.9659
26	0.2228	0.8762	0.3595	2.0482
19	0.2638	0.8839	0.3354	2.0902
21	0.2688	0.8770	0.3522	
1.7251				
20	0.2538	0.8711	0.3567	2.0456
16	0.2920	0.8784	0.3450	
2.0553				
27	0.4417	0.8466	0.4490	2.1748
27	0.4439	0.8342	0.4691	1.9767
16	0.3941	0.8498	0.4298	2.0568
16	0.2972	0.8791	0.3371	2.0000
	0.2312	0.0791	0.5571	
2.0980	0.4464	0.0456	0.4404	0 1010
27	0.4464	0.8456	0.4494	
27	0.2198	0.8759	0.3520	2.0424
20	0.2573	0.8861	0.3221	
2.0817				
22	0.2637	0.8662	0.3747	1.7233
21	0.2488	0.8800	0.3397	1.9830
17	0.2859	0.8794	0.3416	
2.0119				
28	0.4418	0.8366	0.4670	
2.0039				
28	0.4401	0.8486	0.4462	
2.0396	0.1101	0.0100	0.1402	
2.0390	0.3930	0.8506	0 4304	2 N221
			0.4304	2.0321
28	0.4439	0.8470	0.4475	

1.9308				
17	0.2912	0.8778	0.3412	2.0616
28	0.2142	0.8762	0.3517	2.0411
23	0.2587	0.8664	0.3821	1.7676
21	0.2523	0.8800	0.3315	2.0456
18	0.2807	0.8767	0.3452	2.1885
22	0.2424	0.8758	0.3508	2.4268
29	0.4398	0.8372	0.4650	2. 1200
2.0860	0.1000	0.0012	0.1000	
29	0.4424	0.8477	0.4472	
2.1028	0.1121	0.0111	0.11,2	
29	0.4382	0.8478	0.4449	2.1703
18	0.3916	0.8442	0.4325	2.1727
24	0.2550	0.8706	0.3618	1.7755
18	0.2865	0.8789	0.3340	2.1594
29	0.2089	0.8823	0.3447	2.0673
22	0.2461	0.8848	0.3296	2.0920
19	0.2756	0.8822	0.3371	2.0020
1.9501	0.2100	0.0022	0.0011	
23	0.2377	0.8794	0.3489	1.9801
25	0.2506	0.8784	0.3538	1.7738
30	0.4403	0.8483	0.4448	111100
1.8955	0.1100	0.0100	0.1110	
30	0.4377	0.8378	0.4642	
1.9891	0.1011	0.0010	0.1012	
30	0.4361	0.8483	0.4437	1.9510
19	0.3917	0.8481	0.4296	1.9414
19	0.2813	0.8781	0.3421	1.9511
30	0.2048	0.8819	0.3510	1.9511
23	0.2409	0.8856	0.3234	1.9618
20	0.2700	0.8842	0.3298	1.0010
1.8964	0.2.00	0,0012	0.0200	
24	0.2330	0.8852	0.3328	
1.9230	0.2000	0.0002	0.0020	
26	0.2459	0.8733	0.3515	1.7152
20	0.2754	0.8750	0.3414	1.9080
20	0.3905	0.8484	0.4229	1.9872
24	0.2354	0.8781	0.3427	2.0160
epoch	train_loss	valid_acc	valid_loss	dur
1	0.7259	0.8106	0.5439	
1.9759				
epoch	train_loss	valid_acc	valid_loss	dur
1	0.7092	0.8178	0.5291	
1.9851				
epoch	train_loss	valid_acc	valid_loss	dur
		_ " " "		

1	0.6016	0.8136	0.4926	
2.0887 epoch	train_loss	valid_acc	valid_loss	dur
1	0.6005	0.8367	0.4401	
27 1.7335	0.2426	0.8786	0.3464	
21	0.2645	0.8836	0.3300	2.0818
25	0.2258	0.8778	0.3428	2.0619
21	0.2699	0.8755	0.3422	2.1408
21	0.3900	0.8491	0.4227	2.1457
25	0.2292	0.8845	0.3270	2.0491
2	0.5077	0.8203	0.4921	
2.0081				
2	0.5123	0.8298	0.4868	
2.0555				
2	0.4534	0.8348	0.4865	
2.0126				
2	0.4483	0.8331	0.4551	2.0039
28	0.2383	0.8711	0.3646	1.7011
22	0.2602	0.8833	0.3292	2.0487
26	0.2225	0.8853	0.3271	
2.0947	0.0000	0.0050	0.0007	
22	0.2662	0.8853	0.3287	
1.9938	0 2004	0 0475	0 4060	0 0505
22 26	0.3884 0.2251	0.8475 0.8842	0.4262 0.3255	2.0525 2.0055
3	0.2231	0.8367	0.4665	2.0055
2.0569	0.4734	0.0307	0.4005	
3	0.4763	0.8389	0.4651	
2.1208	312133	0.0000	0,1001	
29	0.2339	0.8781	0.3461	1.7369
3	0.4064	0.8216	0.5029	2.0519
3	0.4066	0.8558	0.4061	
2.0517				
23	0.2557	0.8797	0.3450	2.0708
27	0.2159	0.8862	0.3256	
2.0870				
23	0.2606	0.8850	0.3209	1.9986
23	0.3896	0.8541	0.4172	2.0210
27	0.2200	0.8673	0.3622	1.9832
30	0.2316	0.8778	0.3494	1.7558
4	0.4518	0.8391	0.4680	1.9609
4	0.3760	0.8584	0.3903	
1.8540				
4	0.3799	0.8581	0.4036	
1.8924				

4	0 4500	0.0405	0 4400	
=	0.4582	0.8425	0.4490	
2.0066				
24	0.2524	0.8803	0.3373	1.8911
28	0.2137	0.8831	0.3380	2.0229
24	0.2559	0.8869	0.3214	2.0007
24	0.3876	0.8498	0.4240	1.9738
28	0.2152	0.8811	0.3237	1.9773
5	0.4397	0.8391	0.4507	2.0627
5	0.3591	0.8661	0.3946	
1.9125				
5	0.3518	0.8648	0.3801	
1.9781	0.0010	0.0010	0.0001	
1.9701	0 4450	0.0500	0 4225	
	0.4458	0.8509	0.4335	
1.9829				
epoch	train_loss	valid_acc	valid_loss	dur
1	0.5969	0.8319	0.4624	
1.6811				
25	0.2476	0.8803	0.3385	2.0589
29	0.2089	0.8855	0.3253	2.2129
25	0.2529	0.8823	0.3349	2.0989
25	0.3853	0.8466	0.4278	2.3012
6	0.3381	0.8514	0.4239	1.9660
2	0.4544	0.8483	0.4067	
1.8266				
6	0.4303	0.8480	0.4388	
2.1054	0.1000	0.0100	0.1000	
2.1054	0.2103	0.8883	0.3119	
2.3378	0.2103	0.0003	0.5119	
	0 4250	0.0420	0.4550	0 1076
6	0.4352	0.8438	0.4559	2.1276
6	0.3361	0.8689	0.3584	
2.2689				
26	0.2435	0.8869	0.3217	
2.3242				
30	0.2046	0.8833	0.3444	2.0297
26	0.2496	0.8856	0.3143	2.1251
3	0.4116	0.8447	0.4175	1.7329
7	0.3262	0.8605	0.4007	1.9850
26	0.3869	0.8564	0.4203	2.0480
7	0.4207	0.8484	0.4331	
1.9806				
30	0.2059	0.8888	0.3206	2.0308
7	0.4294	0.8569	0.4200	2.0000
	0.4234	0.0009	0.4200	
2.0041	0.04.00	0.0001	0 0744	0 0750
7	0.3168	0.8681	0.3711	2.0753
27	0.2393	0.8884	0.3162	
1.9416				
4	0.3804	0.8645	0.3802	

1.6987				
27	0.2448	0.8775	0.3302	1.9003
8	0.3073	0.8598	0.4097	1.9496
27	0.3855	0.8558	0.4148	2.0482
epoch	train_loss	valid_acc	valid_loss	dur
1	0.6003	0.8163	0.5166	
1.9415				
8	0.4163	0.8519	0.4256	
1.9454				
8	0.4227	0.8552	0.4191	1.9884
8	0.3026	0.8627	0.3931	1.8855
epoch	train_loss	valid_acc	valid_loss	dur
1	0.6019	0.8434	0.4479	
2.0208	0.0013	0.0101	0.1173	
5	0.3629	0.8677	0.3524	
1.7041	0.0020	0.0011	0.0021	
28	0.2360	0.8822	0.3416	2.0557
28	0.2410	0.8866	0.3262	2.0830
9	0.2911	0.8705	0.4043	2.0961
28	0.3842	0.8578	0.4198	2.1532
2	0.4608	0.8244	0.4767	
2.1827				
9	0.4123	0.8519	0.4243	2.1512
9	0.2918	0.8528	0.4260	2.0180
9	0.4184	0.8531	0.4248	2.1877
6	0.3404	0.8598	0.3918	1.7308
2	0.4552	0.8544	0.4194	
2.0853				
29	0.2331	0.8881	0.3285	2.1356
29	0.2368	0.8862	0.3162	2.0322
10	0.2867	0.8728	0.3932	
1.9665				
29	0.3843	0.8531	0.4268	2.0297
3	0.4229	0.8456	0.4388	
2.0479	0 4000	0.0516	0 4045	0 1070
10	0.4069	0.8516	0.4245	2.1070
10 10	0.2846 0.4136	0.8556 0.8506	0.4404 0.4314	2.0304 2.0050
7	0.4130	0.8459	0.4183	1.7406
3	0.4224	0.8627	0.3763	1.7400
ء 1.9538	0.4224	0.0021	0.3103	
30	0.2287	0.8822	0.3316	1.9247
30	0.2328	0.8877	0.3146	1.9763
11	0.2767	0.8695	0.3930	1.9272
30	0.3835	0.8525	0.4188	1.9722
4	0.3957	0.8475	0.4366	1.0122
•	3.0001	0.0110	3.1000	

2.0071				
8	0.3104	0.8722	0.3636	1.7026
11	0.4050	0.8550	0.4149	
2.0125				
11	0.2723	0.8731	0.3783	2.0614
11	0.4093	0.8486	0.4244	1.9334
4	0.3931	0.8538	0.3883	2.1417
epoch	train_loss	valid_acc	valid_loss	dur
1	0.6068	0.8063	0.5120	
1.9908				
9	0.2989	0.8775	0.3527	1.7087
12	0.2611	0.8697	0.4011	2.1403
5	0.3809	0.8491	0.4214	
2.0003				
epoch	train_loss	valid_acc	valid_loss	dur
1	0.6436	0.7939	0.5624	
1.9794				
12	0.4018	0.8536	0.4259	2.0681
12	0.2632	0.8712	0.3744	2.0540
12	0.4084	0.8444	0.4263	2.0888
epoch	train_loss	valid_acc	valid_loss	dur
1	0.6364	0.8114	0.5111	
1 2.0260	0.6364	0.8114	0.5111	
	0.6364	0.8114	0.5111	2.0184
2.0260				2.0184 1.7231
2.0260 5	0.3812	0.8592	0.4007	
2.0260 5 10	0.3812 0.2865	0.8592 0.8702	0.4007 0.3607	
2.0260 5 10 2 1.9251 13	0.3812 0.2865 0.4631 0.2587	0.8592 0.8702	0.4007 0.3607 0.4369 0.3931	1.7231
2.0260 5 10 2 1.9251 13 6	0.3812 0.2865 0.4631	0.8592 0.8702 0.8386 0.8747 0.8148	0.4007 0.3607 0.4369 0.3931 0.5223	1.7231 1.9751 2.0749
2.0260 5 10 2 1.9251 13 6 2	0.3812 0.2865 0.4631 0.2587 0.3678 0.5494	0.8592 0.8702 0.8386 0.8747 0.8148 0.6398	0.4007 0.3607 0.4369 0.3931 0.5223 1.5004	1.7231 1.9751 2.0749 2.0683
2.0260 5 10 2 1.9251 13 6 2 13	0.3812 0.2865 0.4631 0.2587 0.3678 0.5494 0.3991	0.8592 0.8702 0.8386 0.8747 0.8148 0.6398 0.8542	0.4007 0.3607 0.4369 0.3931 0.5223 1.5004 0.4190	1.7231 1.9751 2.0749 2.0683 2.0907
2.0260 5 10 2 1.9251 13 6 2 13 13	0.3812 0.2865 0.4631 0.2587 0.3678 0.5494 0.3991 0.2571	0.8592 0.8702 0.8386 0.8747 0.8148 0.6398 0.8542 0.8795	0.4007 0.3607 0.4369 0.3931 0.5223 1.5004 0.4190 0.3603	1.7231 1.9751 2.0749 2.0683 2.0907
2.0260 5 10 2 1.9251 13 6 2 13 13 13	0.3812 0.2865 0.4631 0.2587 0.3678 0.5494 0.3991	0.8592 0.8702 0.8386 0.8747 0.8148 0.6398 0.8542	0.4007 0.3607 0.4369 0.3931 0.5223 1.5004 0.4190	1.7231 1.9751 2.0749 2.0683 2.0907
2.0260 5 10 2 1.9251 13 6 2 13 13 13 2.0811	0.3812 0.2865 0.4631 0.2587 0.3678 0.5494 0.3991 0.2571 0.4052	0.8592 0.8702 0.8386 0.8747 0.8148 0.6398 0.8542 0.8795 0.8595	0.4007 0.3607 0.4369 0.3931 0.5223 1.5004 0.4190 0.3603 0.4058	1.7231 1.9751 2.0749 2.0683 2.0907 2.1122
2.0260 5 10 2 1.9251 13 6 2 13 13 13 2.0811 6	0.3812 0.2865 0.4631 0.2587 0.3678 0.5494 0.3991 0.2571 0.4052	0.8592 0.8702 0.8386 0.8747 0.8148 0.6398 0.8542 0.8795 0.8595	0.4007 0.3607 0.4369 0.3931 0.5223 1.5004 0.4190 0.3603 0.4058	1.7231 1.9751 2.0749 2.0683 2.0907
2.0260 5 10 2 1.9251 13 6 2 13 13 2.0811 6 2	0.3812 0.2865 0.4631 0.2587 0.3678 0.5494 0.3991 0.2571 0.4052	0.8592 0.8702 0.8386 0.8747 0.8148 0.6398 0.8542 0.8795 0.8595	0.4007 0.3607 0.4369 0.3931 0.5223 1.5004 0.4190 0.3603 0.4058	1.7231 1.9751 2.0749 2.0683 2.0907 2.1122
2.0260 5 10 2 1.9251 13 6 2 13 13 13 2.0811 6 2 2.2281	0.3812 0.2865 0.4631 0.2587 0.3678 0.5494 0.3991 0.2571 0.4052 0.3692 0.5456	0.8592 0.8702 0.8386 0.8747 0.8148 0.6398 0.8542 0.8795 0.8595	0.4007 0.3607 0.4369 0.3931 0.5223 1.5004 0.4190 0.3603 0.4058 0.3902 0.4962	1.7231 1.9751 2.0749 2.0683 2.0907 2.1122
2.0260 5 10 2 1.9251 13 6 2 13 13 13 2.0811 6 2 2.2281 11	0.3812 0.2865 0.4631 0.2587 0.3678 0.5494 0.3991 0.2571 0.4052	0.8592 0.8702 0.8386 0.8747 0.8148 0.6398 0.8542 0.8795 0.8595	0.4007 0.3607 0.4369 0.3931 0.5223 1.5004 0.4190 0.3603 0.4058	1.7231 1.9751 2.0749 2.0683 2.0907 2.1122
2.0260 5 10 2 1.9251 13 6 2 13 13 13 2.0811 6 2 2.2281	0.3812 0.2865 0.4631 0.2587 0.3678 0.5494 0.3991 0.2571 0.4052 0.3692 0.5456	0.8592 0.8702 0.8386 0.8747 0.8148 0.6398 0.8542 0.8795 0.8595 0.8612 0.8219	0.4007 0.3607 0.4369 0.3931 0.5223 1.5004 0.4190 0.3603 0.4058 0.3902 0.4962	1.7231 1.9751 2.0749 2.0683 2.0907 2.1122
2.0260 5 10 2 1.9251 13 6 2 13 13 13 2.0811 6 2 2.2281 11 1.7817 3	0.3812 0.2865 0.4631 0.2587 0.3678 0.5494 0.3991 0.2571 0.4052 0.3692 0.5456	0.8592 0.8702 0.8386 0.8747 0.8148 0.6398 0.8542 0.8795 0.8595	0.4007 0.3607 0.4369 0.3931 0.5223 1.5004 0.4190 0.3603 0.4058 0.3902 0.4962	1.7231 1.9751 2.0749 2.0683 2.0907 2.1122
2.0260 5 10 2 1.9251 13 6 2 13 13 13 2.0811 6 2 2.2281 11 1.7817	0.3812 0.2865 0.4631 0.2587 0.3678 0.5494 0.3991 0.2571 0.4052 0.3692 0.5456	0.8592 0.8702 0.8386 0.8747 0.8148 0.6398 0.8542 0.8795 0.8595 0.8612 0.8219	0.4007 0.3607 0.4369 0.3931 0.5223 1.5004 0.4190 0.3603 0.4058 0.3902 0.4962 0.3402	1.7231 1.9751 2.0749 2.0683 2.0907 2.1122
2.0260 5 10 2 1.9251 13 6 2 13 13 13 2.0811 6 2 2.2281 11 1.7817 3 2.3222	0.3812 0.2865 0.4631 0.2587 0.3678 0.5494 0.3991 0.2571 0.4052 0.3692 0.5456 0.2783	0.8592 0.8702 0.8386 0.8747 0.8148 0.6398 0.8542 0.8795 0.8595 0.8612 0.8219 0.8812	0.4007 0.3607 0.4369 0.3931 0.5223 1.5004 0.4190 0.3603 0.4058 0.3902 0.4962	1.7231 1.9751 2.0749 2.0683 2.0907 2.1122
2.0260 5 10 2 1.9251 13 6 2 13 13 13 2.0811 6 2 2.2281 11 1.7817 3 2.3222 14	0.3812 0.2865 0.4631 0.2587 0.3678 0.5494 0.3991 0.2571 0.4052 0.3692 0.5456 0.2783 0.4307	0.8592 0.8702 0.8386 0.8747 0.8148 0.6398 0.8542 0.8795 0.8595 0.8612 0.8219 0.8812 0.8452	0.4007 0.3607 0.4369 0.3931 0.5223 1.5004 0.4190 0.3603 0.4058 0.3902 0.4962 0.3402 0.4095	1.7231 1.9751 2.0749 2.0683 2.0907 2.1122

14	0.3974	0.8491	0.4178	2.2149
14	0.2470	0.8755	0.3754	2.1952
14	0.4036	0.8570	0.4097	2.2545
7	0.3623	0.7934	0.5448	2.1143
12	0.2638	0.8828	0.3520	1.7042
3	0.5414	0.7913	0.5604	2.1570
4	0.4016	0.8477	0.4355	2.0463
15	0.2422	0.8642	0.4178	1.9540
8	0.3562	0.8500	0.4220	1.9438
15	0.3954	0.8608	0.4018	
2.0034				
4	0.5406	0.8031	0.5545	
2.0411				
15	0.2389	0.8717	0.3846	2.0033
15	0.4005	0.8559	0.4137	1.9517
13	0.2576	0.8805	0.3644	1.7365
8	0.3546	0.8612	0.3704	2.0091
4	0.5421	0.8325	0.4746	2.0782
16	0.2323	0.8711	0.4249	1.9463
5	0.3865	0.8658	0.3811	
2.0145				
9	0.3498	0.8419	0.4627	2.1067
14	0.2471	0.8673	0.3811	1.7408
5	0.5389	0.7947	0.5256	2.0166
16	0.3944	0.8581	0.4026	2.0554
16	0.2311	0.8830	0.3592	2.0214
16	0.4002	0.8627	0.4026	
2.0185				
5	0.5367	0.8039	0.5274	1.9956
9	0.3487	0.7817	0.5987	2.0366
17	0.2236	0.8586	0.4691	2.2331
6	0.3764	0.8677	0.3749	
2.2256				
15	0.2415	0.8753	0.3784	1.7421
17	0.3927	0.8464	0.4296	2.2395
10	0.3387	0.8606	0.3946	
2.3982				
6	0.5454	0.8028	0.5433	2.3121
17	0.2230	0.8847	0.3546	
2.2731				
17	0.3986	0.8620	0.4015	2.3907
6	0.5388	0.8092	0.5184	2.2144
10	0.3390	0.8552	0.4156	2.2872
16	0.2345	0.8678	0.3816	1.7865
7	0.3641	0.8658	0.3670	2.1320
18	0.2218	0.8734	0.4044	2.1637
18	0.2172	0.8764	0.3981	2.1747
18	0.3924	0.8562	0.4150	2.2303

11	0.3411	0.8600	0.4029	2.2462
7	0.5373	0.8094	0.5333	2.2220
18	0.3967	0.8598	0.4006	2.1026
7	0.5364	0.7595	0.5903	2.1214
11	0.3387	0.8492	0.3991	2.1375
17	0.2260	0.8762	0.3847	1.7128
8	0.3586	0.8250	0.4702	2.0271
19	0.2145	0.8742	0.4186	2.1150
19	0.3891	0.8567	0.4116	1.9215
8	0.5416	0.7778	0.6103	1.9535
19	0.2104	0.8742	0.4004	2.0077
12	0.3326	0.8392	0.4906	1.9874
19	0.3958	0.8588	0.4073	1.9792
18	0.2157	0.8734	0.3740	1.6953
8	0.5387	0.7959	0.5473	1.9663
12	0.3372	0.8617	0.3832	1.9354
20	0.2061	0.8738	0.4052	1.9503
9	0.3530	0.8506	0.4054	1.9526
20	0.3893	0.8506	0.4195	1.8962
13	0.3361	0.8591	0.4111	1.9029
20	0.2038	0.8819	0.3631	2.0213
20	0.3941	0.8630	0.3996	_,,,_,
1.9838	0.0011			
9	0.5351	0.8314	0.4792	
1.9432	0.0001	0.0011	0.1102	
19	0.2141	0.8669	0.4352	1.7474
13	0.3325	0.8686	0.3747	1.9249
9	0.5378	0.8078	0.5397	1.9275
21	0.2045	0.8770	0.4148	2.0717
10	0.3458	0.8561	0.3963	2.0735
21	0.3885	0.8406	0.4351	2.0094
14	0.3301	0.8528	0.4212	2.0326
21	0.2036	0.8703	0.4100	2.0122
20	0.2083	0.8756	0.3890	1.8654
10	0.5405	0.8064	0.5140	2.0420
21	0.3923	0.8572	0.4093	2.0605
14	0.3300	0.8281	0.4730	2.0300
10	0.5356	0.6636	0.8248	2.1157
22	0.2008	0.8603	0.4581	2.1197
11	0.3471	0.8667	0.3729	2.1558
21	0.2044	0.8897	0.3528	1.7121
22	0.3886	0.8600	0.4091	2.1863
11	0.5411	0.7733	0.4091	2.1003
22	0.1966	0.8739	0.3968	2.1681
15	0.1966	0.8605		2.1661
			0.4098	
22	0.3921	0.8636	0.4022	2.1299
11	0.5403	0.7694	0.6336	2.0526
15	0.3290	0.8616	0.3801	2.2849

22	0.2003	0.8650	0.4144	1.7359
23	0.1942	0.8681	0.4559	2.1556
12	0.3376	0.8387	0.4612	2.2304
23	0.3871	0.8609	0.4062	2.1717
16	0.3279	0.8355	0.4533	2.0382
12	0.5386	0.8064	0.5205	2.0991
23	0.1906	0.8939	0.3541	
2.1276				
23	0.3915	0.8645	0.3938	
2.1537				
12	0.5319	0.7984	0.5228	2.0898
16	0.3232	0.8625	0.3884	2.0367
23	0.1959	0.8508	0.5232	1.7323
24	0.1851	0.8688	0.4528	2.0684
13	0.3360	0.8575	0.3846	2.1710
17	0.3210	0.8573	0.4055	2.0596
24	0.3855	0.8592	0.4077	2.2397
13	0.5373	0.8017	0.5396	2.1994
24	0.1857	0.8830	0.3757	2.1976
24	0.3900	0.8659	0.3936	2.1010
2.2583	0.0000	0.0000	0.0000	
17	0.3203	0.8389	0.4545	2.0676
13	0.5384	0.8277	0.4764	2.1249
24	0.1877	0.8812	0.3866	1.7564
25	0.1826	0.8802	0.4203	2.0644
14				2.0552
	0.3302	0.8670	0.3724	
18	0.3215	0.8586	0.3907	2.1014
25	0.3847	0.8558	0.4056	2.0866
14	0.5374	0.7989	0.5450	2.0613
25	0.3909	0.8630	0.3973	1.9885
25	0.1796	0.8839	0.3765	1.7095
25	0.1768	0.8786	0.3950	2.1733
18	0.3228	0.8808	0.3365	1.9082
14	0.5370	0.8223	0.4798	1.9669
26	0.1813	0.8723	0.4616	1.9068
15	0.3318	0.8662	0.3637	1.9437
19	0.3179	0.8342	0.4592	1.8933
26	0.1793	0.8720	0.4429	1.7452
26	0.3842	0.8553	0.4086	1.9591
15	0.5357	0.7719	0.5914	2.0009
26	0.3890	0.8592	0.4034	1.9618
26	0.1765	0.8784	0.4240	1.9862
15	0.5369	0.8117	0.5088	1.9560
19	0.3155	0.8708	0.3736	2.0962
27	0.1704	0.8664	0.5046	1.9254
16	0.3282	0.8697	0.3608	
1.9223				
27	0.1713	0.8773	0.4038	1.7388

20	0.3184	0.8542	0.4146	2.0733
27	0.3839	0.8583	0.3995	2.0403
16	0.5396	0.8145	0.5045	2.0943
27	0.3881	0.8600	0.4008	2.0041
27	0.1748	0.8722	0.4469	2.0120
20	0.3135	0.8605	0.3852	1.9462
16	0.5339	0.8105	0.5158	2.0690
28	0.1723	0.8761	0.4547	1.8873
28	0.1720	0.8830	0.3880	1.7003
17	0.3248	0.8636	0.3804	1.9004
21	0.3163	0.8466	0.4277	1.9577
28	0.3831	0.8602	0.3999	1.9189
17	0.5376	0.7605	0.6492	1.9232
28	0.3899	0.8614	0.4025	1.9161
28	0.1707	0.8747	0.4255	1.9852
17	0.5374	0.8125	0.5149	1.9289
21	0.3178	0.8572	0.4447	2.0189
29	0.1687	0.8770	0.4227	1.7189
29	0.1722	0.8734	0.4772	2.0246
18	0.3271	0.8530	0.4152	1.9886
22	0.3138	0.8442	0.4191	2.0990
29	0.3829	0.8609	0.4010	1.9972
29	0.3886	0.8536	0.4136	2.0593
18	0.5334	0.8095	0.5143	2.1315
29	0.1646	0.8708	0.4529	2.0771
18	0.5376	0.7375	0.6796	2.0516
22	0.3188	0.8647	0.3760	2.0891
30	0.1643	0.8702	0.4275	1.7724
30	0.1689	0.8748	0.4497	2.0287
19	0.3201	0.8733	0.3494	2.0201
1.9730	0.0201	0.0700	0.0101	
30	0.3813	0.8577	0.4047	1.8955
23	0.3184	0.8494	0.4283	1.9270
30	0.3887	0.8594	0.4086	
19	0.5411	0.7825	0.5931	
30	0.1649	0.8784	0.3945	
19	0.5361	0.8013	0.5224	
23	0.3140	0.8569		
	train_loss			
1	0.6478	0.7950	0.5484	
1.6580				
20	0.3199	0.8783	0.3324	
1.7340	0.0100	3.0.00	0.0021	
24	0.3144	0.8609	0.3960	1.6157
20	0.5379	0.8189	0.5028	
20	0.5392	0.7903	0.5490	
24	0.3129	0.8675	0.3656	
21	0.0120	0.0010	0.0000	1.0002

21	0.3205	0.8781	0.3489	1.5365
2	0.5639	0.8170	0.4852	
1.5931				
25	0.3104	0.8436	0.4556	1.3715
21	0.5380	0.7620	0.6213	1.4773
21	0.5399	0.7978	0.5338	1.5581
25	0.3098	0.8681	0.3742	1.3575
22	0.3209	0.8583	0.3960	1.3740
3	0.5541	0.8292	0.4737	1.0740
1.5850	0.0041	0.0292	0.4131	
26	0.3126	0.8550	0.4085	1.5062
22	0.5361	0.7622	0.6267	1.3269
22	0.5353	0.8223	0.4964	1.5125
26	0.3121	0.8520	0.4056	1.5356
23	0.3186	0.8689	0.3480	1.4926
27	0.3135	0.8555	0.4226	1.3607
4	0.5438	0.7922	0.5305	1.5825
23	0.5393	0.8170	0.5125	1.4430
27	0.3119	0.8744	0.3533	1.4528
23	0.5333	0.8128	0.5091	1.5297
24	0.3173	0.8492	0.4024	1.4802
28	0.3088	0.8395	0.4512	1.4522
24	0.5402	0.7564	0.6121	1.4146
5	0.5405	0.8006	0.5510	1.5673
28	0.3129	0.8742	0.3565	1.4359
24	0.5365	0.8086	0.4997	1.4483
25	0.3181	0.8728	0.3572	1.4553
29	0.3100	0.8652	0.3878	1.4287
25	0.5329	0.8098	0.5194	1.4096
29	0.3085	0.8450	0.4227	1.3764
6	0.5419	0.8066	0.5211	1.5788
25	0.5342	0.7998	0.5398	1.4700
26	0.3151	0.8548	0.4001	1.4591
30	0.3091	0.8681	0.3764	1.5496
26	0.5457	0.7948	0.5415	1.4693
30	0.3082	0.8703	0.3413	1.3280
7		0.8233		
	0.5473		0.4856	1.5690
26	0.5365	0.8084	0.5148	1.5345
27	0.3123	0.8559	0.3921	1.5015
27	0.5380	0.8064	0.5373	1.5573
8	0.5457	0.8159	0.4983	1.5707
27	0.5348	0.8236	0.4860	1.5706
28	0.3178	0.8653	0.3631	1.5540
28	0.5381	0.7762	0.6063	1.4384
28	0.5309	0.7887	0.5883	1.4441
9	0.5422	0.8177	0.5007	1.5286
29	0.3134	0.8428	0.4277	1.5186
29	0.5320	0.8097	0.5383	1.5601

29	0.5444	0.7583	0.6762	1.5841
10	0.5436	0.7792	0.5750	1.5826
30	0.3122	0.8625	0.3650	1.5796
30	0.5389	0.8164	0.4972	1.5690
30	0.5399	0.8013	0.5503	1.5184
11	0.5435	0.8241	0.4852	1.5168
12	0.5425	0.8383	0.4573	1.2396
13	0.5397	0.8225	0.4904	1.2359
14	0.5412	0.8109	0.5093	1.2442
15	0.5443	0.8141	0.5088	1.2350
16	0.5414	0.8164	0.5066	1.2309
17	0.5473	0.8097	0.5089	1.2318
18	0.5397	0.7806	0.5891	1.2277
19	0.5418	0.7744	0.6019	1.2340
20	0.5420	0.8080	0.5108	1.2451
21	0.5441	0.8089	0.5420	1.2746
22	0.5488	0.7775	0.6435	1.2476
23	0.5438	0.8273	0.4894	1.2463
24	0.5486	0.8031	0.5280	1.2265
25	0.5422	0.8180	0.5155	1.2281
26	0.5425	0.8330	0.4520	1.2470
27	0.5430	0.7963	0.5545	1.2368
28	0.5452	0.7711	0.5810	1.2453
29	0.5379	0.7522	0.6820	1.2385
		0.1022		
30	0 5/15	Λ 919Λ	0 5067	1 2260
30	0.5415	0.8180	0.5067	1.2260
30 epoch	0.5415 train_loss	0.8180 valid_acc	0.5067 valid_loss	1.2260 dur
epoch	train_loss	valid_acc	valid_loss	
epoch 1				
epoch 1 4.8581	train_loss 0.6412	valid_acc 0.8183	valid_loss 0.5092	
epoch 1	train_loss	valid_acc	valid_loss	
epoch 1 4.8581	train_loss 0.6412	valid_acc 0.8183	valid_loss 0.5092	
epoch 1 4.8581 2	train_loss 0.6412	valid_acc 0.8183	valid_loss 0.5092	
epoch 1 4.8581 2 4.3079	train_loss 0.6412 0.4574	valid_acc 0.8183 0.8408	valid_loss 0.5092 0.4464	
epoch 1 4.8581 2 4.3079 3	train_loss 0.6412 0.4574	valid_acc 0.8183 0.8408	valid_loss 0.5092 0.4464	
epoch 1 4.8581 2 4.3079 3 4.1294	train_loss 0.6412 0.4574 0.4179	valid_acc 0.8183 0.8408 0.8527	valid_loss 0.5092 0.4464 0.4154	
epoch 1 4.8581 2 4.3079 3 4.1294 4 5.0327	0.6412 0.4574 0.4179 0.3937	valid_acc 0.8183 0.8408 0.8527 0.8588	valid_loss 0.5092 0.4464 0.4154 0.3962	
epoch 1 4.8581 2 4.3079 3 4.1294 4 5.0327 5	train_loss 0.6412 0.4574 0.4179	valid_acc 0.8183 0.8408 0.8527	valid_loss 0.5092 0.4464 0.4154	
epoch 1 4.8581 2 4.3079 3 4.1294 4 5.0327 5 4.6556	train_loss 	valid_acc 0.8183 0.8408 0.8527 0.8588 0.8627	valid_loss 	
epoch 1 4.8581 2 4.3079 3 4.1294 4 5.0327 5 4.6556 6	0.6412 0.4574 0.4179 0.3937	valid_acc 0.8183 0.8408 0.8527 0.8588	valid_loss 0.5092 0.4464 0.4154 0.3962	
epoch 1 4.8581 2 4.3079 3 4.1294 4 5.0327 5 4.6556 6 5.3332	train_loss 	valid_acc 	valid_loss 	
epoch 1 4.8581 2 4.3079 3 4.1294 4 5.0327 5 4.6556 6 5.3332 7	train_loss 	valid_acc 0.8183 0.8408 0.8527 0.8588 0.8627	valid_loss 	
epoch 1 4.8581 2 4.3079 3 4.1294 4 5.0327 5 4.6556 6 5.3332 7 4.1908	train_loss 0.6412 0.4574 0.4179 0.3937 0.3759 0.3609 0.3485	valid_acc 0.8183 0.8408 0.8527 0.8588 0.8627 0.8692 0.8725	valid_loss 	
epoch 1 4.8581 2 4.3079 3 4.1294 4 5.0327 5 4.6556 6 5.3332 7 4.1908 8	train_loss 	valid_acc 	valid_loss 	
epoch 1 4.8581 2 4.3079 3 4.1294 4 5.0327 5 4.6556 6 5.3332 7 4.1908 8 5.0216	train_loss 0.6412 0.4574 0.4179 0.3937 0.3759 0.3609 0.3485	valid_acc 0.8183 0.8408 0.8527 0.8588 0.8627 0.8692 0.8725	valid_loss 	dur
epoch 1 4.8581 2 4.3079 3 4.1294 4 5.0327 5 4.6556 6 5.3332 7 4.1908 8	train_loss 0.6412 0.4574 0.4179 0.3937 0.3759 0.3609 0.3485	valid_acc 0.8183 0.8408 0.8527 0.8588 0.8627 0.8692 0.8725	valid_loss 	
epoch 1 4.8581 2 4.3079 3 4.1294 4 5.0327 5 4.6556 6 5.3332 7 4.1908 8 5.0216	train_loss 0.6412 0.4574 0.4179 0.3937 0.3759 0.3609 0.3485 0.3385	valid_acc 	valid_loss 	dur
epoch 1 4.8581 2 4.3079 3 4.1294 4 5.0327 5 4.6556 6 5.3332 7 4.1908 8 5.0216 9	train_loss 0.6412 0.4574 0.4179 0.3937 0.3759 0.3609 0.3485 0.3385 0.3275	valid_acc 0.8183 0.8408 0.8527 0.8588 0.8627 0.8692 0.8725 0.8759 0.8705	valid_loss 	dur 4.7417 5.2591
epoch 1 4.8581 2 4.3079 3 4.1294 4 5.0327 5 4.6556 6 5.3332 7 4.1908 8 5.0216 9 10	train_loss 0.6412 0.4574 0.4179 0.3937 0.3759 0.3609 0.3485 0.3385 0.3275 0.3194	valid_acc 0.8183 0.8408 0.8527 0.8588 0.8627 0.8692 0.8725 0.8759 0.8705 0.8683	valid_loss 	dur 4.7417 5.2591 5.7519
epoch 1 4.8581 2 4.3079 3 4.1294 4 5.0327 5 4.6556 6 5.3332 7 4.1908 8 5.0216 9 10 11	train_loss 0.6412 0.4574 0.4179 0.3937 0.3759 0.3609 0.3485 0.3385 0.3275 0.3194 0.3122	valid_acc 0.8183 0.8408 0.8527 0.8588 0.8627 0.8692 0.8725 0.8759 0.8705 0.8683 0.8686	valid_loss 	dur 4.7417 5.2591 5.7519

```
0.2923
                                   0.8796
                                                  0.3389 5.2797
           14
           15
                      0.2856
                                   0.8818
                                                  0.3377
                                                          4.7672
           16
                      0.2799
                                   0.8854
                                                  0.3226
      4.9526
                                   0.8791
                                                  0.3337
           17
                      0.2747
                                                          4.7476
           18
                      0.2704
                                   0.8880
                                                  0.3210
      4.8573
                      0.2661
                                   0.8893
                                                  0.3174
           19
      4.5520
                     0.2612
                                   0.8870
                                                  0.3193 4.3004
           20
           21
                      0.2578
                                                  0.3316 4.5095
                                   0.8789
           22
                      0.2532
                                   0.8875
                                                  0.3183 4.3813
           23
                      0.2499
                                   0.8854
                                                  0.3235
                                                         4.8678
           24
                      0.2459
                                   0.8783
                                                  0.3394 4.5546
           25
                      0.2425
                                   0.8900
                                                  0.3169
      5.3659
                                                  0.3383 5.3259
           26
                      0.2402
                                   0.8830
                     0.2361
           27
                                   0.8854
                                                  0.3282 5.2189
           28
                      0.2335
                                   0.8888
                                                  0.3182 6.6584
           29
                      0.2306
                                   0.8894
                                                  0.3112 6.2885
           30
                      0.2276
                                   0.8866
                                                  0.3192 6.3759
[144]: # summarize results
       print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
      Best: 0.881729 using {'module_n_hidden': 160, 'optimizer_lr': 0.01,
      'optimizer weight decay': 0.001}
[149]: # print(qrid_result.cv_results_)
[160]: def train_valid_wrapper(batchsize = 32, n_hidden = 48, lr = 1e-2, reg_val = __
        \rightarrow1e-4, device = "cpu"):
           # lr: the learning rate in TF is part of the optimizer. Default is 1e-2
           # dataloader
           trainloader = torch.utils.data.DataLoader(trainset, batch_size=batchsize,_u
        ⇔shuffle=True)
           valloader = torch.utils.data.DataLoader(valset, batch size=batchsize,
        ⇔shuffle=False)
           # model
           model = MLP(n_hidden)
           # loss function and optimier
           criterion = nn.CrossEntropyLoss() # includes softmax (for numerical_
        \hookrightarrowstability)
           optimizer = optim.SGD(model.parameters(), lr=lr, weight_decay=reg_val)
```

5.0761

```
# Run training and validation loop
  # Save the best model based on validation accuracy
  n_{epochs} = 30
  best_acc = -1
  train_loss_history = []; train_acc_history = []
  val_loss_history = []; val_acc_history = []
  for epoch in tqdm(range(n_epochs), unit="epoch"): # Iterate over epochs
       # print(f"Epoch {epoch+1} of {n_epochs}")
       train_loss, train_acc = train(model, trainloader, criterion,__
⇔optimizer, device) # Train
       val loss, val acc = validate(model, valloader, criterion, device) #__
\hookrightarrow Validate
       train_loss_history.append(train_loss); train_acc_history.
→append(train_acc)
       val_loss history.append(val_loss); val_acc_history.append(val_acc)
       if val acc > best acc: # Save best model
           best_acc = val_acc
           torch.save(model, "best_model.pt")
           \# torch.save(model.state_dict(), "best_model.pt") \# saving model_\sqcup
→parameters ("state_dict") saves memory and is faster than saving the entire
  return train loss history, train acc history, val loss history,
→val_acc_history
```

```
[181]: def plot_learningcurve(hidden):
           batchsize = 64
           # plot train and val learning curve
           hidden_nodes = [40, 80, 160]
           lr_list = [0.001, 0.01, 0.1]
           reg_list = [1e-04, 1e-03, 1e-02]
           train_loss_history = []
       #
           train acc history = []
            val_loss_history = []
            val\_acc\_history = []
             for hidden in hidden nodes:
           print(f"Hidden nodes: {hidden}")
           plt.title(f"Loss and Accuracy (Hidden Nodes: {hidden}")
           for lr in lr_list:
               print(f"lr : {lr}")
               for reg_val in reg_list:
                   print(f"reg_val : {reg_val}")
                   # Create a model
```

```
model = MLP(hidden)
#
                  lr = params['optimizer__lr']
#
                  req_val = params['optimizer__weight_decay']
            criterion = nn.CrossEntropyLoss() # includes softmax (for numerical_
 ⇔stability)
            optimizer = optim.SGD(model.parameters(), lr=lr,__
 →weight_decay=reg_val)
            device = torch.device("cpu")
            model.to(device) # Move model to device
            train_loss_history = []
            train acc history = []
            val_loss_history = []
            val_acc_history = []
            trainloader = torch.utils.data.DataLoader(trainset,_
 ⇒batch_size=batchsize, shuffle=True)
            valloader = torch.utils.data.DataLoader(valset,__
 ⇔batch_size=batchsize, shuffle=False)
            epoch = 0
            for epoch in range(30):
                train_loss, train_acc = train(model, trainloader, criterion,__
 ⇔optimizer, device) # Train
                val_loss, val_acc = validate(model, valloader, criterion, u
 →device) # Validate
                train_loss_history.append(train_loss)
                train_acc_history.append(train_acc)
                val_loss_history.append(val_loss)
                val_acc_history.append(val_acc)
                  train_loss_history, train_acc_history, val_loss_history, u
oval acc_history = train_valid_wrapper(batchsize = 32, n_hidden = hidden, lr⊔
 →= lr, req_val = req_val, device = "cpu")
            plt.plot(train_loss_history, label=f'Train loss:lr={lr},__

¬reg={reg_val}')
            plt.plot(val_loss_history, label=f'Val loss:lr={lr}, reg={reg_val}')
            plt.plot(train_acc_history, label=f'Train acc:lr={lr},__
 →reg={reg_val}')
            plt.plot(val_acc_history, label=f'Val acc:lr={lr}, reg={reg_val}')
           plt.xlabel('Epoch')
            plt.ylabel('Loss / Accuracy')
            plt.legend()
```

plt.show()

[182]: plot_learningcurve(40)

Hidden nodes: 40

lr: 0.001

reg_val : 0.0001 | 750/750 [00:07<00:00, 106.12batch/s, loss=1.47, acc=49.2] Train: 100%| | 188/188 [00:01<00:00, 126.19batch/s, loss=1.37, acc=66.1] Eval: 100%| Train: 100%| | 750/750 [00:07<00:00, 100.45batch/s, loss=1.08, acc=69.2] Eval: 100%| | 188/188 [00:01<00:00, 119.27batch/s, loss=0.993, acc=70.6] | 750/750 [00:06<00:00, 110.24batch/s, loss=0.88, acc=72.3] Train: 100%| | 188/188 [00:01<00:00, 118.55batch/s, loss=0.878, acc=72.8] Eval: 100%| | 750/750 [00:07<00:00, 104.67batch/s, loss=0.754, acc=74] Train: 100%| Eval: 100%| | 188/188 [00:01<00:00, 119.05batch/s, loss=0.83, acc=74.2] | 750/750 [00:07<00:00, 103.58batch/s, loss=0.68, acc=75.3] Train: 100%| Eval: 100%| | 188/188 [00:01<00:00, 120.18batch/s, loss=0.795, acc=75.3] Train: 100%| | 750/750 [00:07<00:00, 106.58batch/s, loss=0.756, acc=76.4] | 188/188 [00:01<00:00, 120.19batch/s, loss=0.783, acc=76.3] Eval: 100%| Train: 100%| | 750/750 [00:06<00:00, 108.50batch/s, loss=0.609, acc=77.3] | 188/188 [00:01<00:00, 121.56batch/s, loss=0.752, acc=77] Eval: 100%| Train: 100%| | 750/750 [00:06<00:00, 108.97batch/s, loss=0.674, acc=78] Eval: 100%| | 188/188 [00:01<00:00, 122.89batch/s, loss=0.73, acc=77.7] Train: 100%| | 750/750 [00:07<00:00, 105.72batch/s, loss=0.573, acc=78.8] Eval: 100%| | 188/188 [00:01<00:00, 120.07batch/s, loss=0.711, acc=78.3] | 750/750 [00:06<00:00, 109.66batch/s, loss=0.733, acc=79.3] Train: 100%| Eval: 100%| | 188/188 [00:01<00:00, 119.17batch/s, loss=0.694, acc=78.9] Train: 100%| | 750/750 [00:06<00:00, 107.75batch/s, loss=0.606, acc=79.8] Eval: 100%| | 188/188 [00:01<00:00, 119.73batch/s, loss=0.685, acc=79.4] Train: 100%| | 750/750 [00:06<00:00, 108.89batch/s, loss=0.639, acc=80.2] Eval: 100%| | 188/188 [00:01<00:00, 120.26batch/s, loss=0.672, acc=79.7] | 750/750 [00:07<00:00, 105.67batch/s, loss=0.525, acc=80.6] Train: 100%| Eval: 100%| | 188/188 [00:01<00:00, 119.02batch/s, loss=0.657, acc=80.2] Train: 100%| | 750/750 [00:06<00:00, 108.68batch/s, loss=0.418, acc=80.9] Eval: 100%| | 188/188 [00:01<00:00, 119.73batch/s, loss=0.64, acc=80.3] Train: 100%| | 750/750 [00:07<00:00, 104.13batch/s, loss=0.416, acc=81.2] | 188/188 [00:01<00:00, 119.76batch/s, loss=0.639, acc=80.7] Eval: 100%| | 750/750 [00:07<00:00, 105.23batch/s, loss=0.546, acc=81.6] Train: 100%| | 188/188 [00:01<00:00, 117.45batch/s, loss=0.647, acc=80.8] Eval: 100%| Train: 100%| | 750/750 [00:07<00:00, 106.00batch/s, loss=0.528, acc=81.8] Eval: 100%| | 188/188 [00:01<00:00, 120.04batch/s, loss=0.624, acc=81.2] Train: 100%| | 750/750 [00:07<00:00, 105.03batch/s, loss=0.631, acc=82] Eval: 100%| | 188/188 [00:01<00:00, 117.24batch/s, loss=0.628, acc=81.4] | 750/750 [00:07<00:00, 106.71batch/s, loss=0.442, acc=82.2] Train: 100%| Eval: 100%| | 188/188 [00:01<00:00, 120.68batch/s, loss=0.602, acc=81.5] | 750/750 [00:07<00:00, 104.85batch/s, loss=0.464, acc=82.4] Train: 100%|

```
Eval: 100%|
                | 188/188 [00:01<00:00, 120.16batch/s, loss=0.601, acc=81.7]
                | 750/750 [00:07<00:00, 106.73batch/s, loss=0.437, acc=82.6]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 119.13batch/s, loss=0.603, acc=81.7]
Train: 100%|
                | 750/750 [00:07<00:00, 104.72batch/s, loss=0.428, acc=82.8]
                 | 188/188 [00:01<00:00, 119.14batch/s, loss=0.598, acc=82]
Eval: 100%|
Train: 100%|
                | 750/750 [00:07<00:00, 103.43batch/s, loss=0.445, acc=82.9]
Eval: 100%|
                | 188/188 [00:01<00:00, 118.52batch/s, loss=0.592, acc=82.2]
Train: 100%|
                  | 750/750 [00:07<00:00, 104.17batch/s, loss=0.46, acc=83]
Eval: 100%|
                | 188/188 [00:01<00:00, 120.22batch/s, loss=0.573, acc=82.3]
                | 750/750 [00:07<00:00, 102.92batch/s, loss=0.538, acc=83.1]
Train: 100%|
                | 188/188 [00:01<00:00, 119.11batch/s, loss=0.577, acc=82.5]
Eval: 100%|
                | 750/750 [00:07<00:00, 106.23batch/s, loss=0.443, acc=83.2]
Train: 100%|
                | 188/188 [00:01<00:00, 120.02batch/s, loss=0.558, acc=82.6]
Eval: 100%|
                | 750/750 [00:06<00:00, 107.42batch/s, loss=0.514, acc=83.4]
Train: 100%|
                | 188/188 [00:01<00:00, 119.68batch/s, loss=0.56, acc=82.7]
Eval: 100%|
Train: 100%|
                | 750/750 [00:07<00:00, 105.11batch/s, loss=0.588, acc=83.4]
Eval: 100%|
                | 188/188 [00:01<00:00, 119.61batch/s, loss=0.543, acc=82.6]
Train: 100%|
                 | 750/750 [00:07<00:00, 97.92batch/s, loss=0.513, acc=83.5]
Eval: 100%|
                | 188/188 [00:01<00:00, 115.77batch/s, loss=0.546, acc=82.9]
                | 750/750 [00:07<00:00, 106.29batch/s, loss=0.605, acc=83.6]
Train: 100%|
Eval: 100%|
                 | 188/188 [00:01<00:00, 121.23batch/s, loss=0.552, acc=83]
reg_val : 0.001
                 | 750/750 [00:06<00:00, 107.40batch/s, loss=1.5, acc=43.7]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 124.68batch/s, loss=1.41, acc=61.9]
Train: 100%|
                 | 750/750 [00:07<00:00, 106.81batch/s, loss=1.07, acc=66.8]
                | 188/188 [00:01<00:00, 125.25batch/s, loss=0.992, acc=69.8]
Eval: 100%|
                | 750/750 [00:06<00:00, 107.32batch/s, loss=0.954, acc=71.4]
Train: 100%|
                | 188/188 [00:01<00:00, 123.39batch/s, loss=0.85, acc=72.4]
Eval: 100%|
Train: 100%|
                 | 750/750 [00:07<00:00, 97.93batch/s, loss=0.666, acc=73.4]
Eval: 100%|
                | 188/188 [00:01<00:00, 126.55batch/s, loss=0.793, acc=73.7]
Train: 100%|
                | 750/750 [00:06<00:00, 109.99batch/s, loss=0.794, acc=74.8]
Eval: 100%|
                | 188/188 [00:01<00:00, 126.22batch/s, loss=0.762, acc=74.6]
Train: 100%|
                | 750/750 [00:06<00:00, 110.33batch/s, loss=0.563, acc=75.8]
                | 188/188 [00:01<00:00, 117.02batch/s, loss=0.749, acc=75.6]
Eval: 100%|
                | 750/750 [00:06<00:00, 110.87batch/s, loss=0.642, acc=76.6]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 123.82batch/s, loss=0.731, acc=76.5]
Train: 100%|
                | 750/750 [00:06<00:00, 110.83batch/s, loss=0.709, acc=77.3]
Eval: 100%|
                | 188/188 [00:01<00:00, 125.24batch/s, loss=0.712, acc=77.2]
                 | 750/750 [00:06<00:00, 109.16batch/s, loss=0.605, acc=78]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 120.22batch/s, loss=0.696, acc=77.9]
Train: 100%|
                | 750/750 [00:06<00:00, 112.67batch/s, loss=0.626, acc=78.6]
Eval: 100%|
                | 188/188 [00:01<00:00, 120.08batch/s, loss=0.692, acc=78.3]
                | 750/750 [00:06<00:00, 109.41batch/s, loss=0.736, acc=79.1]
Train: 100%|
                | 188/188 [00:01<00:00, 120.13batch/s, loss=0.677, acc=78.7]
Eval: 100%|
Train: 100%|
                | 750/750 [00:06<00:00, 111.74batch/s, loss=0.484, acc=79.6]
Eval: 100%|
                | 188/188 [00:01<00:00, 119.36batch/s, loss=0.657, acc=79.2]
Train: 100%|
                  | 750/750 [00:06<00:00, 110.44batch/s, loss=0.53, acc=80]
```

```
Eval: 100%|
                | 188/188 [00:01<00:00, 119.99batch/s, loss=0.655, acc=79.8]
                | 750/750 [00:07<00:00, 104.81batch/s, loss=0.676, acc=80.3]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 113.39batch/s, loss=0.641, acc=79.9]
Train: 100%|
                | 750/750 [00:07<00:00, 101.87batch/s, loss=0.585, acc=80.7]
                | 188/188 [00:01<00:00, 120.66batch/s, loss=0.619, acc=80.3]
Eval: 100%|
Train: 100%|
                 | 750/750 [00:06<00:00, 107.95batch/s, loss=0.485, acc=81]
Eval: 100%|
                | 188/188 [00:01<00:00, 120.70batch/s, loss=0.607, acc=80.4]
                | 750/750 [00:06<00:00, 110.39batch/s, loss=0.539, acc=81.3]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 119.46batch/s, loss=0.617, acc=80.8]
Train: 100%|
                | 750/750 [00:07<00:00, 104.94batch/s, loss=0.603, acc=81.6]
                 | 188/188 [00:01<00:00, 119.51batch/s, loss=0.602, acc=81]
Eval: 100%|
Train: 100%|
                | 750/750 [00:06<00:00, 107.82batch/s, loss=0.567, acc=81.8]
                | 188/188 [00:01<00:00, 119.82batch/s, loss=0.611, acc=81.4]
Eval: 100%|
                 | 750/750 [00:07<00:00, 106.60batch/s, loss=0.781, acc=82]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 120.21batch/s, loss=0.597, acc=81.4]
Train: 100%|
                | 750/750 [00:07<00:00, 106.91batch/s, loss=0.453, acc=82.2]
Eval: 100%|
                | 188/188 [00:01<00:00, 120.60batch/s, loss=0.596, acc=81.8]
Train: 100%|
                | 750/750 [00:07<00:00, 107.06batch/s, loss=0.405, acc=82.3]
Eval: 100%|
                | 188/188 [00:01<00:00, 119.40batch/s, loss=0.592, acc=81.9]
                | 750/750 [00:06<00:00, 107.20batch/s, loss=0.432, acc=82.5]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 119.81batch/s, loss=0.583, acc=82.1]
                | 750/750 [00:06<00:00, 107.28batch/s, loss=0.632, acc=82.7]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 119.90batch/s, loss=0.578, acc=82.1]
Train: 100%|
                 | 750/750 [00:06<00:00, 107.53batch/s, loss=0.59, acc=82.8]
Eval: 100%|
                | 188/188 [00:01<00:00, 120.21batch/s, loss=0.587, acc=82.3]
                | 750/750 [00:06<00:00, 107.45batch/s, loss=0.608, acc=82.9]
Train: 100%|
                | 188/188 [00:01<00:00, 120.13batch/s, loss=0.581, acc=82.4]
Eval: 100%|
                  | 750/750 [00:09<00:00, 79.71batch/s, loss=0.547, acc=83]
Train: 100%|
Eval: 100%|
                 | 188/188 [00:01<00:00, 119.42batch/s, loss=0.57, acc=82.5]
Train: 100%|
                | 750/750 [00:06<00:00, 110.67batch/s, loss=0.719, acc=83.2]
Eval: 100%|
                | 188/188 [00:01<00:00, 120.18batch/s, loss=0.569, acc=82.7]
Train: 100%|
                | 750/750 [00:06<00:00, 107.64batch/s, loss=0.587, acc=83.2]
Eval: 100%|
                | 188/188 [00:01<00:00, 120.70batch/s, loss=0.563, acc=82.8]
Train: 100%|
                | 750/750 [00:06<00:00, 108.13batch/s, loss=0.513, acc=83.3]
                 | 188/188 [00:01<00:00, 120.93batch/s, loss=0.541, acc=83]
Eval: 100%|
reg_val : 0.01
Train: 100%|
                 | 750/750 [00:07<00:00, 106.74batch/s, loss=1.25, acc=47.3]
Eval: 100%|
                 | 188/188 [00:01<00:00, 120.79batch/s, loss=1.42, acc=66]
                  | 750/750 [00:06<00:00, 110.16batch/s, loss=1.04, acc=70]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 118.96batch/s, loss=1.04, acc=71.6]
Train: 100%|
                | 750/750 [00:06<00:00, 107.28batch/s, loss=0.724, acc=73.1]
Eval: 100%|
                | 188/188 [00:01<00:00, 120.19batch/s, loss=0.908, acc=73.6]
                | 750/750 [00:07<00:00, 102.51batch/s, loss=0.759, acc=74.5]
Train: 100%|
                | 188/188 [00:01<00:00, 120.14batch/s, loss=0.842, acc=74.8]
Eval: 100%|
Train: 100%|
                | 750/750 [00:06<00:00, 110.42batch/s, loss=0.598, acc=75.7]
Eval: 100%|
                | 188/188 [00:01<00:00, 120.23batch/s, loss=0.808, acc=75.5]
Train: 100%|
                | 750/750 [00:06<00:00, 112.37batch/s, loss=0.686, acc=76.6]
```

```
Eval: 100%|
                | 188/188 [00:01<00:00, 115.97batch/s, loss=0.775, acc=76.3]
                | 750/750 [00:06<00:00, 108.51batch/s, loss=0.534, acc=77.3]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 120.10batch/s, loss=0.754, acc=77.1]
Train: 100%|
                 | 750/750 [00:06<00:00, 111.35batch/s, loss=0.635, acc=78]
                | 188/188 [00:01<00:00, 120.34batch/s, loss=0.74, acc=77.9]
Eval: 100%|
Train: 100%|
                | 750/750 [00:06<00:00, 107.95batch/s, loss=0.639, acc=78.6]
Eval: 100%|
                | 188/188 [00:01<00:00, 122.36batch/s, loss=0.73, acc=78.4]
                | 750/750 [00:06<00:00, 109.31batch/s, loss=0.564, acc=79.1]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 120.46batch/s, loss=0.705, acc=78.8]
Train: 100%|
                 | 750/750 [00:08<00:00, 85.80batch/s, loss=0.486, acc=79.6]
                | 188/188 [00:01<00:00, 109.79batch/s, loss=0.693, acc=79.2]
Eval: 100%|
Train: 100%|
                  | 750/750 [00:08<00:00, 83.91batch/s, loss=0.581, acc=80]
Eval: 100%|
                | 188/188 [00:01<00:00, 111.40batch/s, loss=0.691, acc=79.4]
                 | 750/750 [00:08<00:00, 84.68batch/s, loss=0.698, acc=80.3]
Train: 100%|
                | 188/188 [00:01<00:00, 101.73batch/s, loss=0.665, acc=79.8]
Eval: 100%|
Train: 100%|
                 | 750/750 [00:09<00:00, 80.37batch/s, loss=0.493, acc=80.6]
Eval: 100%|
                | 188/188 [00:01<00:00, 102.64batch/s, loss=0.65, acc=80.1]
Train: 100%|
                 | 750/750 [00:09<00:00, 81.58batch/s, loss=0.592, acc=80.9]
Eval: 100%|
                | 188/188 [00:01<00:00, 113.70batch/s, loss=0.646, acc=80.3]
Train: 100%|
                 | 750/750 [00:09<00:00, 75.37batch/s, loss=0.512, acc=81.1]
                | 188/188 [00:01<00:00, 112.97batch/s, loss=0.638, acc=80.5]
Eval: 100%|
                 | 750/750 [00:08<00:00, 87.89batch/s, loss=0.482, acc=81.3]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 112.82batch/s, loss=0.627, acc=80.7]
Train: 100%|
                 | 750/750 [00:10<00:00, 72.00batch/s, loss=0.635, acc=81.6]
Eval: 100%|
                | 188/188 [00:01<00:00, 120.61batch/s, loss=0.624, acc=80.9]
                | 750/750 [00:07<00:00, 106.61batch/s, loss=0.613, acc=81.8]
Train: 100%|
                | 188/188 [00:01<00:00, 112.53batch/s, loss=0.61, acc=81.1]
Eval: 100%|
                 | 750/750 [00:07<00:00, 106.58batch/s, loss=0.359, acc=82]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 119.85batch/s, loss=0.609, acc=81.3]
Train: 100%|
                 | 750/750 [00:06<00:00, 107.17batch/s, loss=0.526, acc=82]
Eval: 100%|
                | 188/188 [00:01<00:00, 112.84batch/s, loss=0.606, acc=81.5]
Train: 100%|
                | 750/750 [00:06<00:00, 107.61batch/s, loss=0.447, acc=82.3]
Eval: 100%|
                | 188/188 [00:01<00:00, 118.85batch/s, loss=0.594, acc=81.4]
Train: 100%|
                 | 750/750 [00:07<00:00, 99.48batch/s, loss=0.395, acc=82.4]
                | 188/188 [00:01<00:00, 114.14batch/s, loss=0.589, acc=81.8]
Eval: 100%|
                | 750/750 [00:07<00:00, 106.09batch/s, loss=0.429, acc=82.5]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 119.93batch/s, loss=0.588, acc=81.7]
Train: 100%|
                | 750/750 [00:07<00:00, 106.71batch/s, loss=0.473, acc=82.6]
Eval: 100%|
                | 188/188 [00:01<00:00, 120.31batch/s, loss=0.579, acc=81.9]
                | 750/750 [00:07<00:00, 106.95batch/s, loss=0.455, acc=82.7]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 119.85batch/s, loss=0.57, acc=82.1]
Train: 100%|
                | 750/750 [00:07<00:00, 106.45batch/s, loss=0.748, acc=82.8]
Eval: 100%|
                | 188/188 [00:01<00:00, 119.40batch/s, loss=0.581, acc=82.2]
                | 750/750 [00:06<00:00, 109.32batch/s, loss=0.423, acc=82.9]
Train: 100%|
                | 188/188 [00:01<00:00, 120.35batch/s, loss=0.563, acc=82.3]
Eval: 100%|
Train: 100%|
                | 750/750 [00:07<00:00, 106.76batch/s, loss=0.362, acc=83.1]
Eval: 100%|
                | 188/188 [00:01<00:00, 120.24batch/s, loss=0.572, acc=82.2]
Train: 100%|
                | 750/750 [00:06<00:00, 110.01batch/s, loss=0.621, acc=83.1]
```


lr : 0.01

reg_val : 0.0001

Train: 100%| | 750/750 [00:08<00:00, 89.98batch/s, loss=0.426, acc=71.9] Eval: 100%| | 188/188 [00:01<00:00, 124.14batch/s, loss=0.757, acc=77.9] Train: 100%| | 750/750 [00:06<00:00, 113.10batch/s, loss=0.479, acc=80.5] | 188/188 [00:01<00:00, 126.32batch/s, loss=0.581, acc=81.3] Eval: 100%| Train: 100%| | 750/750 [00:06<00:00, 116.64batch/s, loss=0.543, acc=82.6] Eval: 100%| | 188/188 [00:01<00:00, 130.26batch/s, loss=0.556, acc=82.8] | 750/750 [00:06<00:00, 113.97batch/s, loss=0.321, acc=83.5] Train: 100%| Eval: 100%| | 188/188 [00:01<00:00, 130.06batch/s, loss=0.529, acc=83.2] Train: 100%| | 750/750 [00:06<00:00, 122.01batch/s, loss=0.537, acc=84.2] Eval: 100%| | 188/188 [00:01<00:00, 140.95batch/s, loss=0.518, acc=83.7] | 750/750 [00:06<00:00, 123.11batch/s, loss=0.453, acc=84.7] Train: 100%| | 188/188 [00:01<00:00, 131.46batch/s, loss=0.465, acc=84.3] Eval: 100%| Train: 100%| | 750/750 [15:50<00:00, 1.27s/batch, loss=0.318, acc=85] | 188/188 [00:02<00:00, 67.12batch/s, loss=0.457, acc=84.7] Eval: 100%| Train: 100%| | 750/750 [00:11<00:00, 67.52batch/s, loss=0.429, acc=85.5] Eval: 100%| | 188/188 [00:02<00:00, 76.33batch/s, loss=0.47, acc=84.8]

```
Train: 100%|
                 | 750/750 [00:10<00:00, 72.22batch/s, loss=0.355, acc=85.6]
Eval: 100%|
                | 188/188 [00:02<00:00, 80.82batch/s, loss=0.426, acc=85.2]
Train: 100%|
                  | 750/750 [00:13<00:00, 56.76batch/s, loss=0.373, acc=86]
Eval: 100%|
                | 188/188 [00:02<00:00, 74.40batch/s, loss=0.508, acc=84.8]
                  | 750/750 [00:11<00:00, 62.55batch/s, loss=0.368, acc=86]
Train: 100%|
Eval: 100%|
                | 188/188 [00:02<00:00, 73.16batch/s, loss=0.476, acc=85.3]
Train: 100%|
                 | 750/750 [00:10<00:00, 68.88batch/s, loss=0.446, acc=86.4]
Eval: 100%|
                | 188/188 [10:46<00:00, 3.44s/batch, loss=0.498, acc=85.4]
                 | 750/750 [00:09<00:00, 77.31batch/s, loss=0.43, acc=86.6]
Train: 100%|
                 | 188/188 [00:01<00:00, 97.68batch/s, loss=0.49, acc=85.6]
Eval: 100%|
Train: 100%|
                | 750/750 [00:07<00:00, 100.66batch/s, loss=0.544, acc=86.7]
                 | 188/188 [00:01<00:00, 120.12batch/s, loss=0.48, acc=85.8]
Eval: 100%|
Train: 100%|
                | 750/750 [00:07<00:00, 106.50batch/s, loss=0.333, acc=86.8]
                | 188/188 [00:01<00:00, 119.64batch/s, loss=0.496, acc=85.9]
Eval: 100%|
Train: 100%|
                 | 750/750 [00:07<00:00, 105.04batch/s, loss=0.318, acc=87]
Eval: 100%|
                | 188/188 [00:01<00:00, 118.67batch/s, loss=0.452, acc=86.2]
Train: 100%|
                | 750/750 [00:06<00:00, 107.74batch/s, loss=0.393, acc=87.2]
Eval: 100%|
                | 188/188 [00:01<00:00, 119.00batch/s, loss=0.486, acc=85.9]
Train: 100%|
                | 750/750 [00:06<00:00, 110.13batch/s, loss=0.235, acc=87.3]
Eval: 100%|
                | 188/188 [00:01<00:00, 124.88batch/s, loss=0.427, acc=86.1]
                | 750/750 [00:07<00:00, 105.36batch/s, loss=0.267, acc=87.4]
Train: 100%|
                | 188/188 [00:01<00:00, 120.19batch/s, loss=0.446, acc=86.3]
Eval: 100%|
Train: 100%|
                | 750/750 [00:06<00:00, 108.64batch/s, loss=0.399, acc=87.6]
                | 188/188 [00:01<00:00, 119.37batch/s, loss=0.456, acc=86.3]
Eval: 100%|
Train: 100%|
                | 750/750 [00:07<00:00, 105.73batch/s, loss=0.248, acc=87.7]
                | 188/188 [00:01<00:00, 120.53batch/s, loss=0.448, acc=86.5]
Eval: 100%|
                | 750/750 [00:07<00:00, 106.16batch/s, loss=0.421, acc=87.9]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 120.48batch/s, loss=0.447, acc=86.4]
                | 750/750 [00:07<00:00, 106.64batch/s, loss=0.244, acc=87.9]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 121.36batch/s, loss=0.448, acc=86.6]
Train: 100%|
                | 750/750 [00:07<00:00, 103.28batch/s, loss=0.304, acc=88.1]
Eval: 100%|
                | 188/188 [00:01<00:00, 122.18batch/s, loss=0.424, acc=86.8]
Train: 100%|
                | 750/750 [00:07<00:00, 104.86batch/s, loss=0.268, acc=88.1]
Eval: 100%|
                | 188/188 [00:01<00:00, 121.74batch/s, loss=0.476, acc=86.8]
                | 750/750 [00:07<00:00, 103.36batch/s, loss=0.289, acc=88.3]
Train: 100%|
                 | 188/188 [00:01<00:00, 120.53batch/s, loss=0.442, acc=87]
Eval: 100%|
Train: 100%|
                | 750/750 [00:07<00:00, 101.81batch/s, loss=0.408, acc=88.4]
Eval: 100%|
                | 188/188 [00:01<00:00, 119.10batch/s, loss=0.514, acc=86.1]
Train: 100%|
                | 750/750 [00:07<00:00, 106.78batch/s, loss=0.272, acc=88.4]
Eval: 100%|
                | 188/188 [00:01<00:00, 119.83batch/s, loss=0.474, acc=86.9]
Train: 100%|
                | 750/750 [00:06<00:00, 107.58batch/s, loss=0.461, acc=88.5]
Eval: 100%|
                 | 188/188 [00:01<00:00, 119.46batch/s, loss=0.5, acc=86.6]
Train: 100%|
                | 750/750 [00:06<00:00, 108.17batch/s, loss=0.292, acc=88.5]
                 | 188/188 [00:01<00:00, 119.61batch/s, loss=0.467, acc=87]
Eval: 100%|
reg_val : 0.001
Train: 100%|
                | 750/750 [00:07<00:00, 102.63batch/s, loss=0.486, acc=70.8]
Eval: 100%|
                 | 188/188 [00:01<00:00, 118.26batch/s, loss=0.709, acc=79]
```

```
| 750/750 [00:07<00:00, 101.74batch/s, loss=0.407, acc=80.6]
Train: 100%|
                | 188/188 [00:01<00:00, 119.25batch/s, loss=0.594, acc=81.4]
Eval: 100%|
Train: 100%|
                | 750/750 [00:07<00:00, 103.65batch/s, loss=0.504, acc=82.5]
Eval: 100%|
                | 188/188 [00:01<00:00, 116.99batch/s, loss=0.505, acc=82.6]
                | 750/750 [00:07<00:00, 102.92batch/s, loss=0.486, acc=83.4]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 120.24batch/s, loss=0.535, acc=83.7]
Train: 100%|
                | 750/750 [00:06<00:00, 108.34batch/s, loss=0.425, acc=84.2]
Eval: 100%|
                | 188/188 [00:01<00:00, 118.49batch/s, loss=0.547, acc=83.6]
                | 750/750 [00:07<00:00, 100.98batch/s, loss=0.407, acc=84.6]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 118.97batch/s, loss=0.491, acc=84.5]
Train: 100%|
                | 750/750 [00:07<00:00, 105.65batch/s, loss=0.415, acc=84.9]
                | 188/188 [00:01<00:00, 117.52batch/s, loss=0.517, acc=84.3]
Eval: 100%|
Train: 100%|
                | 750/750 [00:06<00:00, 110.60batch/s, loss=0.373, acc=85.2]
                | 188/188 [00:01<00:00, 118.67batch/s, loss=0.421, acc=84.9]
Eval: 100%|
                | 750/750 [00:06<00:00, 113.43batch/s, loss=0.476, acc=85.6]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 120.14batch/s, loss=0.441, acc=85.1]
Train: 100%|
                | 750/750 [00:06<00:00, 110.42batch/s, loss=0.656, acc=85.8]
Eval: 100%|
                | 188/188 [00:01<00:00, 120.03batch/s, loss=0.519, acc=84.8]
Train: 100%|
                | 750/750 [00:07<00:00, 104.85batch/s, loss=0.393, acc=86.1]
Eval: 100%|
                | 188/188 [00:01<00:00, 119.40batch/s, loss=0.473, acc=85.6]
Train: 100%|
                 | 750/750 [00:07<00:00, 106.57batch/s, loss=0.36, acc=86.4]
                | 188/188 [00:01<00:00, 118.36batch/s, loss=0.499, acc=85.6]
Eval: 100%|
Train: 100%|
                | 750/750 [00:07<00:00, 105.75batch/s, loss=0.396, acc=86.4]
                | 188/188 [00:01<00:00, 116.56batch/s, loss=0.458, acc=86.1]
Eval: 100%|
Train: 100%|
                | 750/750 [00:07<00:00, 103.29batch/s, loss=0.366, acc=86.6]
Eval: 100%|
                | 188/188 [00:01<00:00, 120.23batch/s, loss=0.476, acc=85.7]
                | 750/750 [00:07<00:00, 103.75batch/s, loss=0.339, acc=86.8]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 117.19batch/s, loss=0.444, acc=86.1]
Train: 100%|
                 | 750/750 [00:07<00:00, 106.68batch/s, loss=0.401, acc=87]
Eval: 100%|
                | 188/188 [00:01<00:00, 119.38batch/s, loss=0.46, acc=86.3]
Train: 100%|
                | 750/750 [00:07<00:00, 100.79batch/s, loss=0.321, acc=87.2]
Eval: 100%|
                | 188/188 [00:01<00:00, 121.22batch/s, loss=0.422, acc=86.6]
Train: 100%|
                | 750/750 [00:07<00:00, 101.82batch/s, loss=0.366, acc=87.2]
Eval: 100%|
                | 188/188 [00:01<00:00, 121.53batch/s, loss=0.475, acc=86.2]
                 | 750/750 [00:07<00:00, 99.13batch/s, loss=0.594, acc=87.5]
Train: 100%|
                | 188/188 [00:01<00:00, 125.44batch/s, loss=0.494, acc=86.4]
Eval: 100%|
Train: 100%|
                | 750/750 [00:07<00:00, 103.06batch/s, loss=0.352, acc=87.5]
Eval: 100%|
                | 188/188 [00:01<00:00, 118.19batch/s, loss=0.389, acc=86.6]
                | 750/750 [00:06<00:00, 107.43batch/s, loss=0.333, acc=87.7]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 118.45batch/s, loss=0.445, acc=86.5]
Train: 100%|
                | 750/750 [00:06<00:00, 108.88batch/s, loss=0.279, acc=87.8]
Eval: 100%|
                | 188/188 [00:01<00:00, 115.58batch/s, loss=0.364, acc=86.1]
Train: 100%|
                | 750/750 [00:07<00:00, 105.63batch/s, loss=0.343, acc=87.9]
                | 188/188 [00:01<00:00, 117.80batch/s, loss=0.45, acc=86.9]
Eval: 100%|
                | 750/750 [00:06<00:00, 108.53batch/s, loss=0.401, acc=88.1]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 116.85batch/s, loss=0.458, acc=86.8]
Train: 100%|
                | 750/750 [00:07<00:00, 103.30batch/s, loss=0.487, acc=88.1]
Eval: 100%|
                | 188/188 [00:01<00:00, 120.54batch/s, loss=0.495, acc=86.9]
```

```
Train: 100%|
                | 750/750 [00:06<00:00, 108.73batch/s, loss=0.482, acc=88.2]
                | 188/188 [00:01<00:00, 125.59batch/s, loss=0.473, acc=86.7]
Eval: 100%|
Train: 100%|
                | 750/750 [00:07<00:00, 103.31batch/s, loss=0.279, acc=88.2]
Eval: 100%|
                | 188/188 [00:01<00:00, 120.43batch/s, loss=0.417, acc=87.2]
                 | 750/750 [00:07<00:00, 99.47batch/s, loss=0.38, acc=88.3]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 111.99batch/s, loss=0.476, acc=86.8]
Train: 100%|
                | 750/750 [00:07<00:00, 105.84batch/s, loss=0.367, acc=88.5]
Eval: 100%|
                | 188/188 [00:01<00:00, 115.19batch/s, loss=0.463, acc=86.8]
Train: 100%|
                | 750/750 [00:07<00:00, 101.82batch/s, loss=0.467, acc=88.5]
Eval: 100%|
                | 188/188 [00:01<00:00, 122.10batch/s, loss=0.429, acc=87.3]
reg_val : 0.01
                | 750/750 [00:07<00:00, 101.65batch/s, loss=0.663, acc=71.9]
Train: 100%|
                | 188/188 [00:01<00:00, 118.07batch/s, loss=0.732, acc=78.5]
Eval: 100%|
                | 750/750 [00:07<00:00, 103.07batch/s, loss=0.548, acc=80.4]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 117.66batch/s, loss=0.61, acc=81.2]
Train: 100%|
                | 750/750 [00:07<00:00, 103.37batch/s, loss=0.662, acc=82.2]
Eval: 100%|
                 | 188/188 [00:01<00:00, 119.47batch/s, loss=0.571, acc=82]
Train: 100%|
                | 750/750 [00:07<00:00, 107.03batch/s, loss=0.488, acc=83.1]
Eval: 100%|
                  | 188/188 [00:01<00:00, 122.06batch/s, loss=0.56, acc=83]
Train: 100%|
                 | 750/750 [00:07<00:00, 99.11batch/s, loss=0.529, acc=83.6]
                | 188/188 [00:01<00:00, 120.58batch/s, loss=0.495, acc=83.5]
Eval: 100%|
Train: 100%|
                | 750/750 [00:07<00:00, 102.17batch/s, loss=0.566, acc=84.1]
                | 188/188 [00:01<00:00, 120.85batch/s, loss=0.464, acc=83.7]
Eval: 100%|
Train: 100%|
                | 750/750 [00:07<00:00, 105.49batch/s, loss=0.408, acc=84.4]
                | 188/188 [00:01<00:00, 116.01batch/s, loss=0.513, acc=83.9]
Eval: 100%|
                 | 750/750 [00:07<00:00, 96.36batch/s, loss=0.349, acc=84.6]
Train: 100%|
                | 188/188 [00:01<00:00, 119.31batch/s, loss=0.465, acc=84.1]
Eval: 100%|
                | 750/750 [00:07<00:00, 101.31batch/s, loss=0.526, acc=84.9]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 118.62batch/s, loss=0.49, acc=84.1]
Train: 100%|
                  | 750/750 [00:07<00:00, 96.28batch/s, loss=0.383, acc=85]
Eval: 100%|
                | 188/188 [00:01<00:00, 114.58batch/s, loss=0.494, acc=84.4]
Train: 100%|
                 | 750/750 [00:08<00:00, 91.87batch/s, loss=0.415, acc=85.1]
                | 188/188 [00:01<00:00, 111.43batch/s, loss=0.516, acc=84.3]
Eval: 100%|
                 | 750/750 [00:07<00:00, 94.23batch/s, loss=0.586, acc=85.3]
Train: 100%|
                | 188/188 [00:01<00:00, 115.90batch/s, loss=0.518, acc=84.7]
Eval: 100%|
Train: 100%|
                 | 750/750 [00:08<00:00, 89.03batch/s, loss=0.372, acc=85.3]
Eval: 100%|
                | 188/188 [00:01<00:00, 119.14batch/s, loss=0.507, acc=84.7]
Train: 100%|
                 | 750/750 [00:08<00:00, 90.52batch/s, loss=0.313, acc=85.5]
Eval: 100%|
                 | 188/188 [00:01<00:00, 117.13batch/s, loss=0.459, acc=85]
Train: 100%|
                 | 750/750 [00:07<00:00, 93.96batch/s, loss=0.443, acc=85.5]
Eval: 100%|
                 | 188/188 [00:01<00:00, 116.38batch/s, loss=0.493, acc=85]
Train: 100%|
                 | 750/750 [00:11<00:00, 67.87batch/s, loss=0.412, acc=85.8]
                 | 188/188 [00:01<00:00, 119.91batch/s, loss=0.495, acc=85]
Eval: 100%|
                 | 750/750 [00:07<00:00, 95.08batch/s, loss=0.303, acc=85.8]
Train: 100%|
Eval: 100%|
                 | 188/188 [00:01<00:00, 108.72batch/s, loss=0.517, acc=85]
Train: 100%|
                 | 750/750 [00:07<00:00, 96.23batch/s, loss=0.367, acc=85.7]
Eval: 100%|
                | 188/188 [00:01<00:00, 110.98batch/s, loss=0.488, acc=85.1]
```

Train: 100%| | 750/750 [00:07<00:00, 95.13batch/s, loss=0.485, acc=85.8] Eval: 100%| | 188/188 [00:01<00:00, 119.67batch/s, loss=0.479, acc=84.9] | 750/750 [00:07<00:00, 100.34batch/s, loss=0.369, acc=85.9] Train: 100%| Eval: 100%| | 188/188 [00:01<00:00, 120.32batch/s, loss=0.556, acc=84.4] Train: 100%| | 750/750 [00:07<00:00, 96.98batch/s, loss=0.452, acc=86] Eval: 100%| | 188/188 [00:01<00:00, 115.79batch/s, loss=0.478, acc=85.2] Train: 100%| | 750/750 [00:08<00:00, 83.51batch/s, loss=0.546, acc=86] | 188/188 [00:01<00:00, 115.54batch/s, loss=0.497, acc=85.1] Eval: 100%| Train: 100%| | 750/750 [00:08<00:00, 91.35batch/s, loss=0.481, acc=86] | 188/188 [00:01<00:00, 109.89batch/s, loss=0.49, acc=85.3] Eval: 100%| Train: 100%| | 750/750 [00:08<00:00, 90.25batch/s, loss=0.402, acc=86.1] Eval: 100%| | 188/188 [00:01<00:00, 118.01batch/s, loss=0.516, acc=85.1] Train: 100%| | 750/750 [00:07<00:00, 97.77batch/s, loss=0.421, acc=86] Eval: 100%| | 188/188 [00:01<00:00, 100.60batch/s, loss=0.493, acc=85.2] | 750/750 [00:08<00:00, 92.75batch/s, loss=0.333, acc=86.1] Train: 100%| Eval: 100%| | 188/188 [00:01<00:00, 114.42batch/s, loss=0.489, acc=85.1] Train: 100%| | 750/750 [00:08<00:00, 92.93batch/s, loss=0.391, acc=86.2] Eval: 100%| | 188/188 [00:01<00:00, 115.99batch/s, loss=0.485, acc=85.3] Train: 100%| | 750/750 [00:06<00:00, 109.31batch/s, loss=0.329, acc=86.2] | 188/188 [00:01<00:00, 117.61batch/s, loss=0.509, acc=85.4] Eval: 100%| Train: 100%| | 750/750 [00:07<00:00, 105.16batch/s, loss=0.291, acc=86.3] Eval: 100%| | 188/188 [00:01<00:00, 116.37batch/s, loss=0.504, acc=85.2] Train: 100%| | 750/750 [00:07<00:00, 96.28batch/s, loss=0.438, acc=86.3] Eval: 100%| | 188/188 [00:01<00:00, 117.02batch/s, loss=0.493, acc=85]

lr : 0.1 reg_val : 0.0001

```
| 750/750 [00:06<00:00, 108.74batch/s, loss=0.44, acc=79.1]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 120.01batch/s, loss=0.735, acc=81.3]
Train: 100%|
                 | 750/750 [00:08<00:00, 91.98batch/s, loss=0.585, acc=84.5]
Eval: 100%|
                | 188/188 [00:01<00:00, 119.20batch/s, loss=0.641, acc=82.4]
Train: 100%|
                 | 750/750 [00:07<00:00, 99.08batch/s, loss=0.397, acc=85.9]
                | 188/188 [00:01<00:00, 121.03batch/s, loss=0.642, acc=85.5]
Eval: 100%|
                | 750/750 [00:07<00:00, 100.13batch/s, loss=0.378, acc=86.5]
Train: 100%|
                | 188/188 [00:01<00:00, 118.83batch/s, loss=0.538, acc=85.9]
Eval: 100%|
                | 750/750 [00:07<00:00, 102.32batch/s, loss=0.151, acc=87.1]
Train: 100%|
                | 188/188 [00:01<00:00, 117.46batch/s, loss=0.467, acc=87.1]
Eval: 100%|
Train: 100%|
                 | 750/750 [00:08<00:00, 86.38batch/s, loss=0.23, acc=87.7]
Eval: 100%|
                 | 188/188 [00:01<00:00, 104.89batch/s, loss=0.471, acc=87]
Train: 100%|
                  | 750/750 [00:08<00:00, 92.67batch/s, loss=0.386, acc=88]
Eval: 100%|
                | 188/188 [00:01<00:00, 115.07batch/s, loss=0.503, acc=86.7]
                | 750/750 [00:07<00:00, 100.55batch/s, loss=0.224, acc=88.3]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 121.26batch/s, loss=0.478, acc=87.1]
                | 750/750 [00:06<00:00, 109.89batch/s, loss=0.222, acc=88.7]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 120.13batch/s, loss=0.541, acc=87.2]
Train: 100%|
                 | 750/750 [00:06<00:00, 109.80batch/s, loss=0.39, acc=88.9]
Eval: 100%|
                | 188/188 [00:01<00:00, 120.52batch/s, loss=0.524, acc=86.6]
                | 750/750 [00:07<00:00, 106.81batch/s, loss=0.177, acc=89.2]
Train: 100%|
                | 188/188 [00:01<00:00, 120.34batch/s, loss=0.481, acc=87.4]
Eval: 100%|
Train: 100%|
                | 750/750 [00:06<00:00, 109.08batch/s, loss=0.458, acc=89.4]
                | 188/188 [00:01<00:00, 117.21batch/s, loss=0.429, acc=86.6]
Eval: 100%|
Train: 100%|
                | 750/750 [00:06<00:00, 109.47batch/s, loss=0.242, acc=89.7]
Eval: 100%|
                | 188/188 [00:01<00:00, 120.25batch/s, loss=0.552, acc=87.3]
Train: 100%|
                | 750/750 [00:06<00:00, 112.35batch/s, loss=0.251, acc=89.8]
Eval: 100%|
                | 188/188 [00:01<00:00, 118.87batch/s, loss=0.432, acc=87.8]
Train: 100%|
                | 750/750 [00:06<00:00, 110.98batch/s, loss=0.437, acc=89.9]
                | 188/188 [00:01<00:00, 120.26batch/s, loss=0.545, acc=85.7]
Eval: 100%|
                | 750/750 [00:06<00:00, 107.27batch/s, loss=0.365, acc=90.2]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 108.82batch/s, loss=0.592, acc=87.5]
Train: 100%|
                 | 750/750 [00:08<00:00, 86.15batch/s, loss=0.184, acc=90.4]
Eval: 100%|
                | 188/188 [00:01<00:00, 119.17batch/s, loss=0.612, acc=88.1]
Train: 100%|
                 | 750/750 [00:07<00:00, 99.61batch/s, loss=0.197, acc=90.4]
Eval: 100%|
                | 188/188 [00:01<00:00, 117.69batch/s, loss=0.508, acc=87.9]
Train: 100%|
                 | 750/750 [00:07<00:00, 96.44batch/s, loss=0.253, acc=90.7]
Eval: 100%|
                | 188/188 [00:01<00:00, 119.33batch/s, loss=0.566, acc=87.5]
                | 750/750 [00:06<00:00, 108.14batch/s, loss=0.162, acc=90.8]
Train: 100%|
                 | 188/188 [00:01<00:00, 120.81batch/s, loss=0.424, acc=88]
Eval: 100%|
Train: 100%|
                 | 750/750 [00:08<00:00, 88.14batch/s, loss=0.258, acc=90.8]
Eval: 100%|
                | 188/188 [00:01<00:00, 108.48batch/s, loss=0.49, acc=87.1]
Train: 100%|
                  | 750/750 [00:08<00:00, 90.15batch/s, loss=0.145, acc=91]
```

```
Eval: 100%|
                | 188/188 [00:01<00:00, 117.56batch/s, loss=0.587, acc=87.3]
                 | 750/750 [00:07<00:00, 96.90batch/s, loss=0.175, acc=91.2]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 116.62batch/s, loss=0.554, acc=88.3]
Train: 100%|
                 | 750/750 [00:08<00:00, 85.77batch/s, loss=0.264, acc=91.3]
                | 188/188 [00:01<00:00, 109.61batch/s, loss=0.443, acc=87.2]
Eval: 100%|
Train: 100%|
                 | 750/750 [00:08<00:00, 90.16batch/s, loss=0.136, acc=91.3]
Eval: 100%|
                | 188/188 [00:01<00:00, 110.85batch/s, loss=0.613, acc=86.3]
Train: 100%|
                 | 750/750 [00:09<00:00, 80.92batch/s, loss=0.199, acc=91.4]
Eval: 100%|
                | 188/188 [00:01<00:00, 118.24batch/s, loss=0.54, acc=87.8]
Train: 100%|
                 | 750/750 [00:07<00:00, 94.42batch/s, loss=0.22, acc=91.5]
Eval: 100%|
                | 188/188 [00:01<00:00, 117.88batch/s, loss=0.686, acc=87.2]
Train: 100%|
                 | 750/750 [00:08<00:00, 88.37batch/s, loss=0.241, acc=91.6]
                | 188/188 [00:01<00:00, 119.13batch/s, loss=0.682, acc=87.8]
Eval: 100%|
                 | 750/750 [00:08<00:00, 92.13batch/s, loss=0.282, acc=91.7]
Train: 100%|
                | 188/188 [00:01<00:00, 115.97batch/s, loss=0.633, acc=86.9]
Eval: 100%|
Train: 100%|
                 | 750/750 [00:08<00:00, 90.11batch/s, loss=0.174, acc=91.8]
Eval: 100%|
                | 188/188 [00:01<00:00, 118.94batch/s, loss=0.497, acc=87.7]
reg_val : 0.001
Train: 100%|
                | 750/750 [00:07<00:00, 104.90batch/s, loss=0.563, acc=78.8]
                | 188/188 [00:01<00:00, 116.06batch/s, loss=0.683, acc=80.6]
Eval: 100%|
                 | 750/750 [00:07<00:00, 96.63batch/s, loss=0.314, acc=84.2]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 109.09batch/s, loss=0.437, acc=85.1]
Train: 100%|
                 | 750/750 [00:09<00:00, 80.44batch/s, loss=0.322, acc=85.3]
Eval: 100%|
                | 188/188 [00:01<00:00, 115.16batch/s, loss=0.451, acc=85.9]
Train: 100%|
                  | 750/750 [00:08<00:00, 86.91batch/s, loss=0.4, acc=86.2]
                 | 188/188 [00:01<00:00, 104.02batch/s, loss=0.64, acc=83.7]
Eval: 100%|
                 | 750/750 [00:08<00:00, 85.71batch/s, loss=0.293, acc=86.7]
Train: 100%|
                | 188/188 [00:01<00:00, 110.67batch/s, loss=0.493, acc=85.7]
Eval: 100%|
Train: 100%|
                 | 750/750 [00:09<00:00, 78.49batch/s, loss=0.572, acc=87.1]
Eval: 100%|
                 | 188/188 [00:01<00:00, 118.93batch/s, loss=0.442, acc=84]
                 | 750/750 [00:07<00:00, 95.22batch/s, loss=0.416, acc=87.5]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 117.23batch/s, loss=0.407, acc=86.8]
Train: 100%|
                | 750/750 [00:07<00:00, 105.81batch/s, loss=0.294, acc=87.8]
                | 188/188 [00:01<00:00, 117.44batch/s, loss=0.366, acc=86.4]
Eval: 100%|
                  | 750/750 [00:08<00:00, 87.12batch/s, loss=0.404, acc=88]
Train: 100%|
Eval: 100%|
                | 188/188 [00:02<00:00, 80.68batch/s, loss=0.381, acc=86.4]
Train: 100%|
                 | 750/750 [00:09<00:00, 82.54batch/s, loss=0.356, acc=88.1]
Eval: 100%|
                | 188/188 [00:01<00:00, 108.61batch/s, loss=0.378, acc=86.7]
Train: 100%|
                 | 750/750 [00:08<00:00, 87.79batch/s, loss=0.355, acc=88.2]
Eval: 100%|
                | 188/188 [00:01<00:00, 102.83batch/s, loss=0.441, acc=86.6]
Train: 100%|
                 | 750/750 [00:08<00:00, 87.74batch/s, loss=0.575, acc=88.6]
Eval: 100%|
                | 188/188 [00:01<00:00, 105.95batch/s, loss=0.617, acc=84.9]
                 | 750/750 [00:08<00:00, 89.85batch/s, loss=0.318, acc=88.8]
Train: 100%|
                | 188/188 [00:01<00:00, 106.18batch/s, loss=0.426, acc=86.5]
Eval: 100%|
Train: 100%|
                 | 750/750 [00:09<00:00, 83.14batch/s, loss=0.311, acc=88.8]
Eval: 100%|
                | 188/188 [00:01<00:00, 107.84batch/s, loss=0.411, acc=87.6]
Train: 100%|
                   | 750/750 [00:08<00:00, 87.48batch/s, loss=0.24, acc=89]
```

```
Eval: 100%|
                 | 188/188 [00:01<00:00, 97.87batch/s, loss=0.42, acc=86.7]
Train: 100%|
                  | 750/750 [00:08<00:00, 83.97batch/s, loss=0.53, acc=89]
Eval: 100%|
                | 188/188 [00:01<00:00, 109.78batch/s, loss=0.407, acc=87.7]
Train: 100%|
                 | 750/750 [00:08<00:00, 89.96batch/s, loss=0.422, acc=89.2]
                | 188/188 [00:01<00:00, 110.05batch/s, loss=0.494, acc=84.8]
Eval: 100%|
Train: 100%|
                 | 750/750 [00:09<00:00, 78.53batch/s, loss=0.388, acc=89.2]
Eval: 100%|
                 | 188/188 [00:01<00:00, 117.47batch/s, loss=0.378, acc=87]
Train: 100%|
                 | 750/750 [00:07<00:00, 97.51batch/s, loss=0.365, acc=89.3]
Eval: 100%|
                | 188/188 [00:01<00:00, 112.86batch/s, loss=0.431, acc=86.7]
Train: 100%|
                 | 750/750 [00:08<00:00, 83.57batch/s, loss=0.198, acc=89.5]
Eval: 100%|
                | 188/188 [00:01<00:00, 106.18batch/s, loss=0.548, acc=87.4]
Train: 100%|
                 | 750/750 [00:08<00:00, 93.42batch/s, loss=0.181, acc=89.5]
Eval: 100%|
                | 188/188 [00:01<00:00, 112.77batch/s, loss=0.454, acc=87.8]
                 | 750/750 [00:08<00:00, 91.05batch/s, loss=0.252, acc=89.6]
Train: 100%|
                | 188/188 [00:01<00:00, 104.07batch/s, loss=0.363, acc=87.6]
Eval: 100%|
Train: 100%|
                 | 750/750 [00:09<00:00, 80.99batch/s, loss=0.299, acc=89.5]
Eval: 100%|
                | 188/188 [00:01<00:00, 104.25batch/s, loss=0.408, acc=87.6]
Train: 100%|
                 | 750/750 [00:08<00:00, 89.87batch/s, loss=0.363, acc=89.7]
Eval: 100%|
                | 188/188 [00:01<00:00, 112.77batch/s, loss=0.473, acc=87.3]
Train: 100%|
                 | 750/750 [00:07<00:00, 97.35batch/s, loss=0.339, acc=89.7]
Eval: 100%|
                | 188/188 [00:01<00:00, 115.75batch/s, loss=0.416, acc=87.9]
Train: 100%|
                 | 750/750 [00:07<00:00, 94.72batch/s, loss=0.187, acc=89.8]
Eval: 100%|
                | 188/188 [00:01<00:00, 104.82batch/s, loss=0.506, acc=87.5]
Train: 100%|
                 | 750/750 [00:07<00:00, 99.02batch/s, loss=0.244, acc=89.8]
Eval: 100%|
                | 188/188 [00:01<00:00, 117.82batch/s, loss=0.481, acc=87.2]
Train: 100%|
                 | 750/750 [00:07<00:00, 98.18batch/s, loss=0.294, acc=89.9]
                | 188/188 [00:01<00:00, 115.25batch/s, loss=0.438, acc=87.7]
Eval: 100%|
Train: 100%|
                 | 750/750 [00:07<00:00, 99.58batch/s, loss=0.46, acc=89.9]
                | 188/188 [00:01<00:00, 116.90batch/s, loss=0.393, acc=87.1]
Eval: 100%|
Train: 100%|
                  | 750/750 [00:07<00:00, 96.33batch/s, loss=0.177, acc=90]
Eval: 100%|
                | 188/188 [00:01<00:00, 119.13batch/s, loss=0.343, acc=87.6]
reg_val : 0.01
Train: 100%|
                | 750/750 [00:07<00:00, 104.18batch/s, loss=0.367, acc=77.9]
                 | 188/188 [00:01<00:00, 119.98batch/s, loss=0.526, acc=81]
Eval: 100%|
                | 750/750 [00:06<00:00, 107.18batch/s, loss=0.469, acc=82.4]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 125.97batch/s, loss=0.444, acc=81.2]
Train: 100%|
                 | 750/750 [00:07<00:00, 94.33batch/s, loss=0.408, acc=82.8]
Eval: 100%|
                | 188/188 [00:01<00:00, 109.38batch/s, loss=0.635, acc=82.5]
Train: 100%|
                 | 750/750 [00:08<00:00, 87.52batch/s, loss=0.421, acc=83.3]
Eval: 100%|
                | 188/188 [00:01<00:00, 117.17batch/s, loss=0.463, acc=83.9]
Train: 100%|
                | 750/750 [00:07<00:00, 102.66batch/s, loss=0.431, acc=83.5]
Eval: 100%|
                 | 188/188 [00:01<00:00, 112.71batch/s, loss=0.529, acc=81]
                | 750/750 [00:07<00:00, 100.78batch/s, loss=0.291, acc=83.4]
Train: 100%|
                | 188/188 [00:01<00:00, 115.96batch/s, loss=0.542, acc=84.3]
Eval: 100%|
Train: 100%|
                | 750/750 [00:07<00:00, 105.37batch/s, loss=0.424, acc=83.6]
Eval: 100%|
                 | 188/188 [00:01<00:00, 120.38batch/s, loss=0.521, acc=84]
Train: 100%|
                 | 750/750 [00:07<00:00, 93.83batch/s, loss=0.462, acc=83.7]
```

```
Eval: 100%|
                 | 188/188 [00:01<00:00, 98.08batch/s, loss=0.585, acc=84.2]
Train: 100%|
                 | 750/750 [00:08<00:00, 93.11batch/s, loss=0.51, acc=83.8]
Eval: 100%|
                | 188/188 [00:01<00:00, 117.59batch/s, loss=0.429, acc=83.7]
Train: 100%|
                 | 750/750 [00:08<00:00, 93.23batch/s, loss=0.446, acc=83.7]
                | 188/188 [00:01<00:00, 120.17batch/s, loss=0.552, acc=83.1]
Eval: 100%|
Train: 100%|
                | 750/750 [00:06<00:00, 110.20batch/s, loss=0.321, acc=83.9]
Eval: 100%|
                | 188/188 [00:01<00:00, 114.57batch/s, loss=0.459, acc=83.8]
                | 750/750 [00:07<00:00, 103.23batch/s, loss=0.453, acc=83.7]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 120.43batch/s, loss=0.434, acc=82.8]
Train: 100%|
                | 750/750 [00:06<00:00, 115.61batch/s, loss=0.286, acc=83.9]
                | 188/188 [00:01<00:00, 119.84batch/s, loss=0.537, acc=82.7]
Eval: 100%|
Train: 100%|
                | 750/750 [00:06<00:00, 110.79batch/s, loss=0.542, acc=83.8]
                | 188/188 [00:01<00:00, 119.11batch/s, loss=0.721, acc=81.2]
Eval: 100%|
                | 750/750 [00:06<00:00, 109.62batch/s, loss=0.592, acc=83.8]
Train: 100%|
                  | 188/188 [00:01<00:00, 116.40batch/s, loss=0.48, acc=83]
Eval: 100%|
Train: 100%|
                | 750/750 [00:06<00:00, 108.98batch/s, loss=0.441, acc=83.8]
Eval: 100%|
                | 188/188 [00:01<00:00, 119.71batch/s, loss=0.463, acc=82.5]
Train: 100%|
                 | 750/750 [00:07<00:00, 100.97batch/s, loss=0.376, acc=84]
Eval: 100%|
                | 188/188 [00:01<00:00, 110.80batch/s, loss=0.589, acc=83.2]
                | 750/750 [00:06<00:00, 113.94batch/s, loss=0.478, acc=83.9]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 119.68batch/s, loss=0.484, acc=84.2]
                | 750/750 [00:06<00:00, 107.72batch/s, loss=0.451, acc=83.9]
Train: 100%|
Eval: 100%|
                 | 188/188 [00:01<00:00, 120.30batch/s, loss=0.502, acc=83]
Train: 100%|
                  | 750/750 [00:06<00:00, 111.20batch/s, loss=0.47, acc=84]
Eval: 100%|
                | 188/188 [00:01<00:00, 110.94batch/s, loss=0.521, acc=84.1]
                | 750/750 [00:06<00:00, 112.37batch/s, loss=0.527, acc=84.2]
Train: 100%|
                | 188/188 [00:01<00:00, 121.18batch/s, loss=0.653, acc=82.7]
Eval: 100%|
Train: 100%|
                  | 750/750 [00:07<00:00, 96.99batch/s, loss=0.569, acc=84]
Eval: 100%|
                | 188/188 [00:01<00:00, 113.68batch/s, loss=0.525, acc=83.4]
Train: 100%|
                  | 750/750 [00:08<00:00, 90.09batch/s, loss=0.243, acc=84]
Eval: 100%|
                | 188/188 [00:01<00:00, 119.74batch/s, loss=0.571, acc=83.7]
Train: 100%|
                 | 750/750 [00:07<00:00, 94.42batch/s, loss=0.286, acc=84.3]
Eval: 100%|
                | 188/188 [00:01<00:00, 115.83batch/s, loss=0.552, acc=81.9]
Train: 100%|
                 | 750/750 [00:07<00:00, 97.87batch/s, loss=0.315, acc=84.1]
                | 188/188 [00:01<00:00, 109.96batch/s, loss=0.419, acc=83.5]
Eval: 100%|
                 | 750/750 [00:08<00:00, 90.55batch/s, loss=0.62, acc=84.3]
Train: 100%|
Eval: 100%|
                | 188/188 [00:01<00:00, 109.78batch/s, loss=0.645, acc=80.4]
Train: 100%|
                 | 750/750 [00:07<00:00, 94.23batch/s, loss=0.469, acc=84.2]
Eval: 100%|
                | 188/188 [00:01<00:00, 116.54batch/s, loss=0.583, acc=83.7]
Train: 100%|
                  | 750/750 [00:08<00:00, 93.14batch/s, loss=0.411, acc=84]
Eval: 100%|
                | 188/188 [00:01<00:00, 110.08batch/s, loss=0.603, acc=83.2]
Train: 100%|
                 | 750/750 [00:07<00:00, 97.84batch/s, loss=0.579, acc=84.3]
Eval: 100%|
                | 188/188 [00:01<00:00, 114.18batch/s, loss=0.623, acc=82.5]
                 | 750/750 [00:07<00:00, 97.17batch/s, loss=0.445, acc=84.2]
Train: 100%|
                 | 188/188 [00:01<00:00, 119.25batch/s, loss=0.5, acc=83.5]
Eval: 100%|
```


[201]: plot_learningcurve(80)

Hidden nodes: 80

lr : 0.001

Loss and Accuracy (Hidden Nodes: 80

lr : 0.01

lr : 0.1

[202]: plot_learningcurve(160)

Hidden nodes: 160

lr : 0.001

Loss and Accuracy (Hidden Nodes: 160

lr : 0.01

lr : 0.1


```
[203]: def use_best_hp(hidden, lr, reg_val):
           run = 0
           val_acc_list = []
           best acc = -1
           for run in range(5):
               # Create a model
               model = MLP(hidden)
                          lr = params['optimizer__lr']
       #
                          reg_val = params['optimizer__weight_decay']
               criterion = nn.CrossEntropyLoss() # includes softmax (for numerical ⊔
        \hookrightarrow stability)
               optimizer = optim.SGD(model.parameters(), lr=lr, weight_decay=reg_val)
               device = torch.device("cpu")
               model.to(device) # Move model to device
               trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,__
        ⇒shuffle=True)
               valloader = torch.utils.data.DataLoader(valset, batch_size=batchsize,_
        ⇒shuffle=False)
               epoch = 0
```

```
highest_acc = -1
       for epoch in range(100):
           train loss, train acc = train(model, trainloader, criterion, ___
⇔optimizer, device) # Train
           val loss, val acc = validate(model, valloader, criterion, device) #
\hookrightarrow Validate
           if(val_acc > highest_acc):
               highest_acc = val_acc
       val_acc_list.append(highest_acc)
       if val_acc > best_acc: # Save best model
           best_acc = val_acc
           torch.save(model.state_dict(), "best_model.pt") # saving model_
→parameters ("state_dict") saves memory and is faster than saving the entire
→model.
  print('The best accuracy (over epochs) on val for each run is',val_acc_list)
  print('The mean, max, and std deviation for these 5 values is', np.
→mean(val_acc_list), max(val_acc_list), np.std(val_acc_list))
    model.load state dict(torch.load("best model.pt"))
     testloader = torch.utils.data.DataLoader(testset, batch_size=batchsize,_u
⇔shuffle=False)
     test_loss, test_acc = validate(model, testloader, criterion, device)
    print(f"Test accuracy: {test acc:.4f}")
```

```
[205]: use_best_hp(160, 0.01, 0.001)
```

```
[211]: val_acc_list = [0.891666666666667, 0.892416666666666, 0.890916666666667, 0.

$8925, 0.892083333333333]

print('The best accuracy (over epochs) on val for each run is',val_acc_list)

print('The mean, max, and std deviation for these 5 values is', np.

$\text{mean(val_acc_list),max(val_acc_list),np.std(val_acc_list))}$
```

The best accuracy (over epochs) on val for each run is [0.89166666666667, 0.8924166666666666, 0.890916666666667, 0.8925, 0.892083333333333]
The mean, max, and std deviation for these 5 values is 0.891916666666666 0.8925 0.0005797509043641774

```
[209]: def test():
    model = MLP(160)
    model.load_state_dict(torch.load("best_model.pt"))
    testloader = torch.utils.data.DataLoader(testset, batch_size=batchsize, ushuffle=False)

    test_loss, test_acc = validate(model, testloader, criterion, device)
    print(f"Test accuracy: {test_acc:.4f}")
test()
```

Test accuracy: 0.8838

[]:

hw7 2

April 8, 2023

```
[310]: import numpy as np
       import matplotlib.pyplot as plt
       from sklearn.metrics.pairwise import rbf_kernel
       from sklearn.linear_model import LinearRegression
       from sklearn.metrics.pairwise import euclidean_distances
       from sklearn.metrics import mean_squared_error
       from sklearn.model_selection import KFold
       from sklearn.cluster import KMeans
  [3]: xdata_train = np.load('datasetA_X_train.npy')
       xdata_test = np.load('datasetA_X_test.npy')
       ydata train = np.load('datasetA y train.npy')
       ydata_test = np.load('datasetA_y_test.npy')
  [6]: | print(f'xdata_train.shape:{xdata_train.shape}')
       print(f'xdata_test.shape:{xdata_test.shape}')
       print(f'ydata_train.shape:{xdata_train.shape}')
       print(f'ydata_test.shape:{xdata_test.shape}')
      xdata_train.shape:(4000, 2)
      xdata_test.shape:(2000, 2)
      ydata_train.shape:(4000, 2)
      ydata_test.shape:(2000, 2)
[72]: def gamma_d(M):
           return M / 200
[105]: def Network(xdata, miu, gamma, ydata):
           layer1 = rbf_kernel(xdata, miu, gamma = gamma)
           layer2 = LinearRegression().fit(layer1, ydata)
           return layer2
[23]: def RMSE_y(ydata):
           # Compute the mean value of y on the training set
           y_mean = np.mean(ydata)
           y_trival = np.ones(ydata.shape) * y_mean
           # Compute the root mean squared error (RMSE)
```

```
rmse = np.sqrt(mean_squared_error(y_trival, ydata))
return rmse
RMSE_y(ydata_train)
```

[23]: 3.2035150890062902

```
[19]: def RMSE(xdata, ydata, reg):
    predict = reg.predict(xdata)
    MSE = mean_squared_error(ydata, predict)
    return np.sqrt(MSE)
```

0.1 Question c

Choose the basis function centers as the data points: $_{\rm m}={\rm x_m}$, ${\rm m}=1,2,...{\rm N}$, in which N is the number of training data points during each fold in cross validation. For this part, the only hyperparameter to choose during model selection is .

```
[160]: def model_selection_c(xdata, ydata):
           gamma = gamma_d(3000)
           RMSE_train_list = np.zeros([6, 4])
           RMSE_val_list = np.zeros([6, 4])
           MSE_list = np.zeros([6, 4])
           p_list = np.zeros(4)
           gamma_range = np.array([0.01, 0.1, 1, 10, 100, 1000]) * np.array(gamma)
           print(f'Gamma range is {gamma_range}')
           idx = 0 # in range of 6
           for p in gamma_range:
               # Define the cross-validation object
               cv = KFold(n_splits=4)
               for i, (train_index, val_index) in enumerate(cv.split(xdata)): # i in_
        ⇔range of 4
                   D_train_xdata = xdata[train_index]
                   D train ydata = ydata[train index]
                   D_val_xdata = xdata[val_index]
                   D_val_ydata = ydata[val_index]
                   model = Network(D_train_xdata, D_train_xdata, p, D_train_ydata) #__
        →3000 * 3000
                   kernel = rbf_kernel(D_val_xdata, D_train_xdata, p) # 1000 * 3000
                   predict = model.predict(kernel)
                   MSE = mean_squared_error(D_val_ydata, predict)
                   MSE_list[idx][i] = MSE
                   RMSE_val_list[idx][i] = np.sqrt(MSE)
```

```
kernel_train = rbf_kernel(D_train_xdata, D_train_xdata, p)
                   predict_train = model.predict(kernel_train)
                   MSE_train = mean_squared_error(D_train_ydata, predict_train)
                   RMSE_train_list[idx][i] = np.sqrt(MSE_train)
               idx += 1
           return gamma_range, RMSE_train_list, RMSE_val_list
[210]: gamma_range_c, RMSE_train_list_c, RMSE_val_list_c =
        model_selection_c(xdata_train, ydata_train)
      Gamma range is [1.5e-01 1.5e+00 1.5e+01 1.5e+02 1.5e+03 1.5e+04]
[211]: RMSE_mean_train_c = np.mean(RMSE_train_list_c, axis = 1)
       RMSE_std_train_c = np.std(RMSE_train_list_c, axis = 1)
       RMSE_mean_val_c = np.mean(RMSE_val_list_c, axis = 1)
       RMSE_std_val_c = np.std(RMSE_val_list_c, axis = 1)
       print(f'The mean of train RMSE is {RMSE mean train c}')
       print(f'The mean of validatation RMSE is {RMSE_mean_val_c}')
       print(f'The std of train RMSE is {RMSE std train c}')
       print(f'The std of validatation RMSE is {RMSE_std_val_c}')
       print(f'Therefore, the best gamma is {gamma_range_c[np.
        →argmin(RMSE_mean_val_c)]}')
      The mean of train RMSE is [1.13475822e+00 3.11643033e-02 3.05638622e-08
      3.58646810e-12
       3.23542139e-14 2.06211531e-14]
      The mean of validatation RMSE is [1.15403078e+00 3.66475529e-02 7.73597943e-07
      5.21484373e-03
       1.75331839e+00 2.86271151e+00]
      The std of train RMSE is [7.33129502e-02 3.26677428e-03 7.91081453e-09
      5.94505790e-13
       5.27441228e-15 3.43880324e-16]
      The std of validatation RMSE is [7.89945707e-02 5.67047695e-03 5.96283883e-07
      3.39567285e-03
       3.53033549e-01 4.21701206e-02]
      Therefore, the best gamma is 15.0
[213]: def plot RMSE gamma(RMSE train list, RMSE val list, gamma range):
           gamma_range = np.log10(gamma_range)
```

plt.plot(gamma_range,RMSE_train_list, label = 'RMSE for training')

```
plt.plot(gamma_range,RMSE_val_list, label = 'RMSE for validate')
plt.xlabel('log_10(Gamma range)')
plt.ylabel('RMSE')
plt.title("RMSE vs Gamma using a log_10 scale")
plt.legend()
plt.show()
plot_RMSE_gamma(RMSE_mean_train_c,RMSE_mean_val_c, gamma_range_c)
```


0.2 Question d

Randomly choose the basis function centers, without replacement, from the training-set data. Use number of basis function centers M varying from 30 to 300 (e.g., values 30, 60, 100, 300, 600).

```
RMSE_val_std = np.zeros([len(M_range), 6])
  gamma_range_M = []
  for k in range(len(M_range)):
      gamma = gamma_d(M_range[k])
      gamma_range = np.array([0.01, 0.1, 1, 10, 100, 1000]) * np.array(gamma)
      print(f'Gamma range is {gamma range}')
      gamma_range_M.append(gamma_range)
      idx = 0 # idx in range of 6
      for p in gamma_range:
           # Define the cross-validation object
           cv = KFold(n_splits=4)
          train_history = []
           val_history = []
           for i, (train_index, val_index) in enumerate(cv.split(xdata)): # i_
⇒in range of 4
              D_train_xdata = xdata[train_index]
              D train ydata = ydata[train index]
               D_val_xdata = xdata[val_index]
              D_val_ydata = ydata[val_index]
              miu = D_train_xdata[np.random.choice(len(D_train_xdata), size =__
→M_range[k], replace = False)]
               model = Network(D_train_xdata, miu, p, D_train_ydata) #
              kernel = rbf_kernel(D_val_xdata, miu, p) # 1000 3000
               predict = model.predict(kernel)
               MSE = mean_squared_error(D_val_ydata, predict)
               val_history.append(np.sqrt(MSE))
               kernel_train = rbf_kernel(D_train_xdata, miu, p)
              predict_train = model.predict(kernel_train)
               MSE_train = mean_squared_error(D_train_ydata, predict_train)
               train_history.append(np.sqrt(MSE_train))
           # Calculate the mean value of each gamma
           RMSE_train_list[k][idx] = np.mean(train_history)
           RMSE_val_list[k][idx] = np.mean(val_history)
           RMSE_train_std[k][idx] = np.std(train_history)
           RMSE_val_std[k][idx] = np.std(val_history)
           idx += 1
  return gamma_range_M, RMSE_train_list, RMSE_val_list, RMSE_train_std,_
→RMSE val std
```

```
[227]: gamma_range_d, RMSE_train_list_d, RMSE_val_list_d, RMSE_train_std_d,
        →RMSE_val_std_d = model_selection_d(xdata_train, ydata_train)
      Gamma range is [1.5e-03 1.5e-02 1.5e-01 1.5e+00 1.5e+01 1.5e+02]
      Gamma range is [3.e-03 3.e-02 3.e-01 3.e+00 3.e+01 3.e+02]
      Gamma range is [5.e-03 5.e-02 5.e-01 5.e+00 5.e+01 5.e+02]
      Gamma range is [1.5e-02 1.5e-01 1.5e+00 1.5e+01 1.5e+02 1.5e+03]
      Gamma range is [3.e-02 3.e-01 3.e+00 3.e+01 3.e+02 3.e+03]
[300]: # RMSE mean train = np.mean(RMSE train list)
       # RMSE std train = np.std(RMSE train list)
       # RMSE mean val = np.mean(RMSE val list, axis = 1)
       # RMSE std val = np.std(RMSE val list, axis = 1)
       print(f'The mean of train RMSE is {RMSE_train_list_d}')
       print(f'The mean of validatation RMSE is {RMSE_val_list_d}')
       print(f'The std of train RMSE is {RMSE_train_std_d}')
       print(f'The std of validatation RMSE is {RMSE_val_std_d}')
       # print(np.arqmin(RMSE_val_list))
       print(np.asarray(gamma_range_d))
       best_idx = 4
       M \text{ range} = [30, 60, 100, 300, 600]
       # qamma range array = np.asarray(qamma range d).reshape(-1)
       print(f'The best gamma is {gamma_range_array[np.argmin(RMSE_train_list_d)]},__
        →the M = {M_range[best_idx]}')
      The mean of train RMSE is [[4.45179750e+00 1.91465386e+00 1.60695655e+00
      1.59816478e+00
        1.71101813e+00 2.83645023e+00]
       [2.28085926e+00 1.59204191e+00 1.15356872e+00 8.10422413e-01
        1.30890640e+00 2.72435322e+00]
       [3.33697895e+00 1.44370894e+00 5.96414971e-01 2.14450588e-01
        1.06422059e+00 2.79012141e+00]
       [3.35493428e+00 1.17856910e+00 4.10191996e-02 4.47287837e-03
        9.15911706e-01 2.70222241e+00]
       [2.30346963e+00 6.97067038e-01 2.48271892e-03 1.79378026e-03
        8.75490450e-01 2.52306720e+00]]
      The mean of validatation RMSE is [[4.44080402e+00 1.95377118e+00 1.61148995e+00
      1.60435959e+00
        1.71059315e+00 2.83699548e+00]
       [2.32321219e+00 1.64184933e+00 1.19648210e+00 8.37349842e-01
        1.31558598e+00 2.78517231e+00]
       [3.34377336e+00 1.45976893e+00 6.24635057e-01 2.23584693e-01
        1.08798621e+00 2.83303000e+00]
```

```
[3.35234670e+00 1.20668983e+00 4.53877066e-02 5.75480131e-03
  1.01493664e+00 2.81418989e+00]
 [2.28566428e+00 7.30729809e-01 3.41404257e-03 2.97683835e-03
  1.04051149e+00 2.81379265e+00]]
The std of train RMSE is [[1.72824176e+00 3.90227858e-02 7.67917005e-02
4.56578670e-02
  1.29773013e-01 8.35803005e-02]
 [1.17106239e-01 6.31297122e-02 1.08666735e-01 4.46803929e-02
 2.28276814e-01 6.06963467e-02]
 [8.20273880e-01 1.33862825e-02 3.63397965e-02 9.78927784e-02
  1.66986569e-01 6.44855648e-03]
 [7.45362729e-01 6.69303116e-03 1.50332668e-03 6.51992364e-04
  1.29462761e-01 2.42484940e-02]
 [5.35818957e-01 1.61335341e-02 1.03529954e-04 2.62566146e-04
  1.04751933e-01 3.33667505e-02]]
The std of validatation RMSE is [[1.70213297e+00 6.18803269e-02 8.47780020e-02
3.27101955e-02
  1.23407094e-01 4.85061256e-02]
 [1.04444245e-01 7.89385778e-02 1.22902386e-01 6.58137238e-02
 2.27517650e-01 4.97531895e-02]
 [7.92319193e-01 5.41196716e-02 3.16149611e-02 1.03746207e-01
  1.54592931e-01 5.17729150e-02]
 [7.52317193e-01 1.01550063e-02 2.20893959e-03 1.01218304e-03
  1.07575213e-01 8.15113919e-02]
 [4.77663186e-01 1.83054271e-02 4.17104497e-04 8.32066505e-04
  1.72934319e-01 3.20417258e-02]]
[[1.5e-03 1.5e-02 1.5e-01 1.5e+00 1.5e+01 1.5e+02]
 [3.0e-03 3.0e-02 3.0e-01 3.0e+00 3.0e+01 3.0e+02]
 [5.0e-03 5.0e-02 5.0e-01 5.0e+00 5.0e+01 5.0e+02]
 [1.5e-02 1.5e-01 1.5e+00 1.5e+01 1.5e+02 1.5e+03]
 [3.0e-02 3.0e-01 3.0e+00 3.0e+01 3.0e+02 3.0e+03]]
The best gamma is 30.0, the M = 600
```

[224]: plot_RMSE_gamma(RMSE_train_list_d[best_idx], RMSE_val_list_d[best_idx], np.

→asarray(gamma_range_d)[best_idx])


```
[244]: def RCC_d(xdata, ydata):
           M_{range} = [30, 60, 100, 300, 600]
           RMSE_train_list = np.zeros([len(M_range), 6])
           RMSE_val_list = np.zeros([len(M_range), 6])
           RMSE_train_std = np.zeros([len(M_range), 6])
           RMSE_val_std = np.zeros([len(M_range), 6])
           checkpoint = RMSE_y(ydata)
           gamma_range_M = []
           for k in range(len(M_range)):
               gamma = gamma_d(M_range[k])
               gamma_range = np.array([0.01, 0.1, 1, 10, 100, 1000]) * np.array(gamma)
               print(f'Gamma range is {gamma_range}')
               gamma_range_M.append(gamma_range)
               idx = 0 # idx in range of 6
               for p in gamma_range:
                   # Define the cross-validation object
```

```
cv = KFold(n_splits=4)
                     train_history = []
                   val_history = []
                   for i, (train_index, val_index) in enumerate(cv.split(xdata)): # i_
        ⇒in range of 4
                       D_train_xdata = xdata[train_index]
                       D_train_ydata = ydata[train_index]
                       D_val_xdata = xdata[val_index]
                       D_val_ydata = ydata[val_index]
                       miu = D_train_xdata[np.random.choice(len(D_train_xdata), size =__
        →M_range[k], replace = False)]
                       model = Network(D_train_xdata, miu, p, D_train_ydata)
                       kernel = rbf_kernel(D_val_xdata, miu, p) # 1000 3000
                       predict = model.predict(kernel)
                       MSE = mean_squared_error(D_val_ydata, predict)
                       val_history.append(np.sqrt(MSE))
                         kernel_train = rbf_kernel(D_train_xdata, miu, p)
                         predict_train = model.predict(kernel_train)
       #
                         MSE_train = mean_squared_error(D_train_ydata, predict_train)
       #
                         train_history.append(np.sqrt(MSE_train))
                   # Calculate the mean value of each gamma
                   if(np.mean(val_history) < checkpoint / 10):</pre>
                       return M_range[k], p
[245]: M_rcc_d, gamma_rcc_d = RCC_d(xdata_train, ydata_train)
      Gamma range is [1.5e-03 1.5e-02 1.5e-01 1.5e+00 1.5e+01 1.5e+02]
      Gamma range is [3.e-03 3.e-02 3.e-01 3.e+00 3.e+01 3.e+02]
      Gamma range is [5.e-03 5.e-02 5.e-01 5.e+00 5.e+01 5.e+02]
[246]: print(f'The smallest M is {M rcc_d}, the gamma = {gamma_rcc_d}')
      The smallest M is 100, the gamma = 5.0
[296]: def plot_cluster(xdata, M, title):
           cv = KFold(n_splits=4)
           for i, (train_index, val_index) in enumerate(cv.split(xdata)): # i in range_u
        \rightarrow of 4
               D_train_xdata = xdata[train_index]
```

Train data & cluster centers when M = 600

Train data & cluster centers when M = 30


```
[309]: def plot_M_std(RMSE_val_list,RMSE_val_std):
           M_{range} = [30, 60, 100, 300, 600]
           mean = []
           std = []
           idx = 0
           for item in np.argmin(RMSE_val_list, axis = 1):
               mean.append(RMSE_val_list[idx][item])
               idx+=1
           idx = 0
           for item in np.argmin(RMSE_val_list, axis = 1):
               std.append(RMSE_val_std[idx][item])
               idx+=1
             plt.plot(M_range, RMSE_val_list[:,np.argmin(RMSE_val_list, axis = 1)],__
        ⇒ label = 'Validate RMSE')
             plt.plot(M_range, RMSE_val_std[:,np.argmin(RMSE_val_list, axis = 1)],__
        ⇔label = 'Validate std')
           plt.plot(M_range, mean, label = 'Validate RMSE')
           plt.plot(M_range, std, label = 'Validate std')
           plt.legend()
           plt.xlabel("The range of M")
```

```
plt.ylabel("RMSE / std")
  plt.title("The RMSE & std vs M")
  plt.show()

plot_M_std(RMSE_val_list_d,RMSE_val_std_d)
```


0.3 Question e

Use K-means clustering to choose basis function centers for a given K; vary K using model selection (e.g., use values 30, 60, 100, 300, 600). For each value of K, choose your initial cluster centers randomly (i.e., in sklearn's K-means).

```
[313]: def model_selection_e(xdata, ydata):
    K_range = [30, 60, 100, 300, 600]
    RMSE_train_list = np.zeros([len(K_range), 6])
    RMSE_val_list = np.zeros([len(K_range), 6])
    RMSE_train_std = np.zeros([len(K_range), 6])
    RMSE_val_std = np.zeros([len(K_range), 6])
```

```
gamma_range_K = []
  for k in range(len(K_range)):
      gamma = gamma_d(K_range[k])
      gamma_range = np.array([0.01, 0.1, 1, 10, 100, 1000]) * np.array(gamma)
      print(f'Gamma range is {gamma_range}')
      gamma_range_K.append(gamma_range)
      idx = 0 # idx in range of 6
      for p in gamma_range:
           # Define the cross-validation object
           cv = KFold(n splits=4)
           train_history = []
           val_history = []
           for i, (train index, val index) in enumerate(cv.split(xdata)): # iu
⇒in range of 4
              D train xdata = xdata[train index]
               D_train_ydata = ydata[train_index]
               D val xdata = xdata[val index]
              D_val_ydata = ydata[val_index]
               kmeans = KMeans(n_clusters=K_range[k], init="random").
→fit(D_train_xdata)
                miu = D train xdata[np.random.choice(len(D train xdata), size,
→= K_range[k], replace = False)]
              miu = kmeans.cluster_centers_
               model = Network(D_train_xdata, miu, p, D_train_ydata)
               kernel = rbf_kernel(D_val_xdata, miu, p) # 1000 3000
               predict = model.predict(kernel)
              MSE = mean_squared_error(D_val_ydata, predict)
               val_history.append(np.sqrt(MSE))
               kernel_train = rbf_kernel(D_train_xdata, miu, p)
               predict_train = model.predict(kernel_train)
               MSE_train = mean_squared_error(D_train_ydata, predict_train)
               train_history.append(np.sqrt(MSE_train))
           # Calculate the mean value of each gamma
           RMSE_train_list[k][idx] = np.mean(train_history)
           RMSE_val_list[k][idx] = np.mean(val_history)
           RMSE_train_std[k][idx] = np.std(train_history)
           RMSE_val_std[k][idx] = np.std(val_history)
```

```
idx += 1
           return gamma range K, RMSE train_list, RMSE_val_list, RMSE train_std, u
        →RMSE_val_std
[314]: gamma_range_e, RMSE_train_list_e, RMSE_val_list_e, RMSE_train_std_e,
        →RMSE_val_std_e = model_selection_e(xdata_train, ydata_train)
      Gamma range is [1.5e-03 1.5e-02 1.5e-01 1.5e+00 1.5e+01 1.5e+02]
      Gamma range is [3.e-03 3.e-02 3.e-01 3.e+00 3.e+01 3.e+02]
      Gamma range is [5.e-03 5.e-02 5.e-01 5.e+00 5.e+01 5.e+02]
      Gamma range is [1.5e-02 1.5e-01 1.5e+00 1.5e+01 1.5e+02 1.5e+03]
      Gamma range is [3.e-02 3.e-01 3.e+00 3.e+01 3.e+02 3.e+03]
[318]: print(f'The mean of train RMSE is {RMSE_train_list_e}')
       print(f'The mean of validatation RMSE is {RMSE_val_list_e}')
       print(f'The std of train RMSE is {RMSE train std e}')
       print(f'The std of validatation RMSE is {RMSE_val_std_e}')
       print(np.argmin(RMSE val list e))
       print(np.asarray(gamma_range_e))
       best_idx_k = 4
       K \text{ range} = [30, 60, 100, 300, 600]
       # gamma_range_array = np.asarray(gamma_range_d).reshape(-1)
       print(f'The best gamma is {gamma_range_array[np.argmin(RMSE_train_list_e)]},_u
        →the K = {K_range[best_idx_k]}')
      The mean of train RMSE is [[3.17663870e+00 2.28743449e+00 1.50812954e+00
      1.62213280e+00
        1.70737407e+00 2.77255375e+001
       [2.30468917e+00 1.75047769e+00 1.13160138e+00 8.06278503e-01
        7.71688629e-01 2.59907064e+00]
       [4.07421453e+00 1.43521740e+00 5.25773302e-01 1.61589376e-01
        4.50620011e-01 2.56324929e+00]
       [2.45798520e+00 1.21651572e+00 3.84991032e-02 3.95311604e-03
        3.59920142e-01 2.36214077e+00]
       [1.66095430e+00 6.85655228e-01 2.46499798e-03 1.22911695e-03
        3.62813619e-01 2.03885833e+00]]
      The mean of validatation RMSE is [[3.16923859e+00 2.33095153e+00 1.51877461e+00
      1.63575688e+00
        1.73887304e+00 2.86843057e+00]
       [2.34332994e+00 1.79674960e+00 1.16123748e+00 8.21192046e-01
        8.03159811e-01 2.68114546e+00]
       [4.08728352e+00 1.45649433e+00 5.65270843e-01 1.70310210e-01
        4.75244767e-01 2.71260080e+00]
       [2.49456692e+00 1.26578002e+00 4.32094314e-02 5.35701314e-03
        4.55467526e-01 2.86491319e+00]
```

```
[1.66039080e+00 7.12829752e-01 3.37635740e-03 2.38184368e-03
        5.50008578e-01 3.70961585e+00]]
      The std of train RMSE is [[2.43479272e-01 2.46855778e-01 1.33805483e-02
      2.99488670e-03
        1.96617659e-02 3.45327146e-02]
       [1.09703059e-01 1.15534467e-01 8.74993272e-03 3.77784681e-02
        1.00069581e-01 3.70031521e-02]
       [1.34794150e+00 1.42203615e-02 2.92377730e-02 5.30098708e-03
        3.66860139e-02 1.54671647e-02]
       [6.95814156e-01 7.67864105e-02 6.21501083e-04 6.06786850e-04
        1.44977589e-02 4.53391195e-02]
       [4.80972662e-02 1.35806481e-02 6.87602201e-05 6.64829953e-05
        1.72432214e-02 5.87998623e-02]]
      The std of validatation RMSE is [[2.13486901e-01 2.62599828e-01 2.38942312e-02
      2.76452448e-02
        1.45549403e-02 4.35274540e-02]
       [1.05690485e-01 1.31306196e-01 1.74600032e-02 3.65774222e-02
        1.05154343e-01 6.27359836e-02]
       [1.35627427e+00 2.98839605e-02 1.04921575e-02 5.03146150e-03
        3.58754750e-02 4.33283289e-021
       [7.10305241e-01 9.98095365e-02 1.51999187e-03 1.79993269e-03
        1.24710309e-02 1.98708682e-01]
       [6.37824637e-02 1.01025377e-02 4.06156840e-04 2.95467462e-04
        3.11428625e-02 4.36848908e-01]]
      27
      [[1.5e-03 1.5e-02 1.5e-01 1.5e+00 1.5e+01 1.5e+02]
       [3.0e-03 3.0e-02 3.0e-01 3.0e+00 3.0e+01 3.0e+02]
       [5.0e-03 5.0e-02 5.0e-01 5.0e+00 5.0e+01 5.0e+02]
       [1.5e-02 1.5e-01 1.5e+00 1.5e+01 1.5e+02 1.5e+03]
       [3.0e-02 3.0e-01 3.0e+00 3.0e+01 3.0e+02 3.0e+03]]
      The best gamma is 30.0, the K = 600
[319]: |plot_RMSE_gamma(RMSE_train_list_e[best_idx_k],RMSE_val_list_e[best_idx_k], np.
```

→asarray(gamma_range_e)[best_idx_k])


```
[320]: def RCC_e(xdata, ydata):
           K_{range} = [30, 60, 100, 300, 600]
             RMSE_train_list = np.zeros([len(M_range), 6])
       #
             RMSE_val_list = np.zeros([len(M_range), 6])
             RMSE_train_std = np.zeros([len(M_range), 6])
       #
             RMSE_val_std = np.zeros([len(M_range), 6])
           checkpoint = RMSE_y(ydata)
             qamma_range_K = []
           for k in range(len(K_range)):
               gamma = gamma_d(M_range[k])
               gamma_range = np.array([0.01, 0.1, 1, 10, 100, 1000]) * np.array(gamma)
               print(f'Gamma range is {gamma_range}')
                 gamma_range_M.append(gamma_range)
               idx = 0 # idx in range of 6
               for p in gamma_range:
                   # Define the cross-validation object
```

```
cv = KFold(n_splits=4)
                     train_history = []
                   val_history = []
                   for i, (train_index, val_index) in enumerate(cv.split(xdata)): # i_
        ⇒in range of 4
                       D_train_xdata = xdata[train_index]
                       D_train_ydata = ydata[train_index]
                       D_val_xdata = xdata[val_index]
                       D_val_ydata = ydata[val_index]
                       kmeans = KMeans(n_clusters=K_range[k], init="random").
        →fit(D_train_xdata)
                         miu = D_train_xdata[np.random.choice(len(D_train_xdata), size_
        →= K_range[k], replace = False)]
                       miu = kmeans.cluster_centers_
                       model = Network(D_train_xdata, miu, p, D_train_ydata)
                       kernel = rbf_kernel(D_val_xdata, miu, p) # 1000 3000
                       predict = model.predict(kernel)
                       MSE = mean_squared_error(D_val_ydata, predict)
                       val history.append(np.sqrt(MSE))
                         kernel train = rbf kernel(D train xdata, miu, p)
                         predict_train = model.predict(kernel_train)
                         MSE_train = mean_squared_error(D_train_ydata, predict_train)
                         train_history.append(np.sqrt(MSE_train))
                   # Calculate the mean value of each gamma
                   if(np.mean(val_history) < checkpoint / 10):</pre>
                       return K_range[k], p
[321]: K_rcc_e, gamma_rcc_e = RCC_e(xdata_train, ydata_train)
      Gamma range is [1.5e-03 1.5e-02 1.5e-01 1.5e+00 1.5e+01 1.5e+02]
      Gamma range is [3.e-03 3.e-02 3.e-01 3.e+00 3.e+01 3.e+02]
      Gamma range is [5.e-03 5.e-02 5.e-01 5.e+00 5.e+01 5.e+02]
[322]: print(f'The smallest K is {K_rcc_e}, the gamma = {gamma_rcc_e}')
      The smallest K is 100, the gamma = 5.0
[323]: def plot cluster e(xdata, K, title):
           cv = KFold(n splits=4)
```

Train data & cluster centers when K = 600

Train data & cluster centers when K = 30


```
[324]: def plot_K_std(RMSE_val_list,RMSE_val_std):
           K_{range} = [30, 60, 100, 300, 600]
           mean = []
           std = []
           idx = 0
           for item in np.argmin(RMSE_val_list, axis = 1):
               mean.append(RMSE_val_list[idx][item])
               idx+=1
           idx = 0
           for item in np.argmin(RMSE_val_list, axis = 1):
               std.append(RMSE_val_std[idx][item])
               idx+=1
             plt.plot(M_range, RMSE_val_list[:,np.argmin(RMSE_val_list, axis = 1)],__
        ⇒ label = 'Validate RMSE')
             plt.plot(M_range, RMSE_val_std[:,np.argmin(RMSE_val_list, axis = 1)],__
        ⇔label = 'Validate std')
           plt.plot(K_range, mean, label = 'Validate RMSE')
           plt.plot(K_range, std, label = 'Validate std')
           plt.legend()
           plt.xlabel("The range of K")
```

```
plt.ylabel("RMSE / std")
  plt.title("The RMSE & std vs K")
  plt.show()

plot_K_std(RMSE_val_list_e,RMSE_val_std_e)
```


0.4 Question g

Run the best model from each of (c), (d), and (e); and run the RCC model of (d), (e), on your test set. Report the RMSE of each (5 models total).

```
[384]: def test(xdata_train, ydata_train, xdata_test, ydata_test, miu, gamma):
    model = Network(xdata_train, miu, gamma, ydata_train)
    kernel = rbf_kernel(xdata_test, miu, gamma)
    predict = model.predict(kernel)
    MSE = mean_squared_error(ydata_test, predict)
    return np.sqrt(MSE)
```

```
[385]: miu_c = xdata_train
   gamma_c = 15.0
   RMSE_c = test(xdata_train, ydata_train, xdata_test, ydata_test, miu_c, gamma_c)
   print(f'The RMSE of best model from c is {RMSE_c}')
```

The RMSE of best model from c is 2.5778315496757243e-07

```
[333]: miu_d = xdata_train[np.random.choice(len(xdata_train), size = 600, replace = False)]

gamma_d = 30.0

RMSE_d = test(xdata_train, ydata_train, xdata_test, ydata_test, miu_d, gamma_d)

print(f'The RMSE of best model from d is {RMSE_d}')
```

The RMSE of best model from d is 0.0021838235900409615

```
[334]: kmeans_e = KMeans(n_clusters=600, init="random").fit(xdata_train)
miu_e = kmeans_e.cluster_centers_
gamma_e = 30.0
RMSE_e = test(xdata_train, ydata_train, xdata_test, ydata_test, miu_e, gamma_e)
print(f'The RMSE of best model from e is {RMSE_e}')
```

The RMSE of best model from e is 0.0018462935462773137

```
[335]: miu_d_rcc = xdata_train[np.random.choice(len(xdata_train), size = 100, replace_u ← False)]

gamma_d_rcc = 5.0

RMSE_d_rcc = test(xdata_train, ydata_train, xdata_test, ydata_test, miu_d_rcc, u ← gamma_d_rcc)

print(f'The RMSE of RCC model from d is {RMSE_d_rcc}')
```

The RMSE of RCC model from d is 0.17901963364551002

```
[336]: kmeans_e_rcc = KMeans(n_clusters=100, init="random").fit(xdata_train)
miu_e_rcc = kmeans_e_rcc.cluster_centers_
gamma_e_rcc = 5.0
RMSE_e_rcc = test(xdata_train, ydata_train, xdata_test, ydata_test, miu_e_rcc, \_
\( \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\
```

The RMSE of RCC model from e is 0.1661766513476608

0.5 Question i

```
[340]: def target_function(x1, x2):
    return 10 * np.cos(np.pi / 2 * x1) * np.sin(5 * np.pi / (x1**2 + 1)) * np.
    sin(np.pi * x2)
```

```
[375]: def plot_target_function():
           x1 = np.linspace(0,2, 5000)
           x2 = 0.5
          y = target_function(x1, x2)
          plt.plot(x1, y)
           plt.title("y(x1,x2) vs. x1 for x2 = 0.5")
          plt.show()
          x2 = 1.5
           y = target_function(x1, x2)
          plt.plot(x1, y)
          plt.title("y(x1,x2) vs. x1 for x2 = 1.5")
          plt.show()
          x2 = np.linspace(0,2, 5000)
          x1 = 0.3
           y = target_function(x1, x2)
          plt.plot(x2, y)
           plt.title("y(x1,x2) vs. x2 for x1 = 0.3")
           plt.show()
       plot_target_function()
```


y(x1,x2) vs. x2 for x1 = 0.3


```
[378]: def predict(xdata, ydata, miu, gamma ):
    model = Network(xdata, miu, gamma, ydata)
    x1 = np.linspace(0,2, 4000)
    x2 = 0.5
    dataset = np.column_stack((x1, np.full_like(x1, x2)))
# print(dataset)
kernel = rbf_kernel(dataset, miu, gamma)
predict = model.predict(kernel)
plt.plot(x1, predict, label = 'predict vs x1')

y = target_function(x1, x2)
plt.plot(x1, y, label = "y(x1, x2) vs x1")
plt.legend()
plt.show()
```

[379]: predict(xdata_train, ydata_train, miu_c, gamma_c)

[371]: predict(xdata_train, ydata_train, miu_d, gamma_d)

[372]: predict(xdata_train, ydata_train, miu_e, gamma_e)

[373]: predict(xdata_train, ydata_train, miu_d_rcc, gamma_d_rcc)

[374]: predict(xdata_train, ydata_train, miu_e_rcc, gamma_e_rcc)

[]:[