ADAMAS UNIVERSITY **END-SEMESTER EXAMINATION: JANUARY 2021** (Academic Session: 2020 – 21) B.TECH(CSE) III Name of the Program: Semester: (Example: B. Sc./BBA/MA/B.Tech.) (I/III/V/VII/IX)Paper Title : FORMAL LANGUAGE & AUTOMATA ECS42103 **Paper Code: THEORY** 40 Time duration: 3 Hrs **Maximum Marks: Total No of questions:** 8 **Total No of** 2 Pages: (Any other information for the student may be mentioned here)

Answer all the Groups Group A

Answer all the questions of the following

 $5 \times 1 = 5$

a) A DFA which accepts even number of 0's and odd number of 1's consists of number of states.			
b) Define Grammar.			
c) C is a	Language		
i) Regular	ii) Context Free	iii) Context Sensitive	iv) Recursive
d) State Pegionhole principle.			
e) What is parsir	ng		

Answer any three of the following

 $3 \times 5 = 15$

- 2. Construct the DFA over $\Sigma = \{a,b\}$ for $L_3 = L_1 v L_2$, where $L_1 = \{\omega | \eta_a(\omega) \mod 3\}$ $> \Pi_b(\omega) \mod 3$ & L₂= { ω | every strings holds either "101" as a substring or "000" as a substring}
- State a DFA that accepts the language L over $\Sigma = \{a,b\}$ such that number a's and b's is **3.** divisible by 2 and 3 respectively. Construct the homomorphic image of L provided Γ $=\{0,1\}, h(a)="0" \& h(b)="1".$
- Explain the necessity of push down automata with respect to deterministic finite 4. automata. State the working principle of push down automata with diagram.
- 5. Suppose G_1 is a context free grammar with λ -productions, after removal of λ productions if there exists a grammar G₂without unit production. Can we state that $G_1\&G_2$ are equivalent? - state your answer with reason.

GROUP -C

Answer *any two* of the following

 $2 \times 10 = 20$

Construct a DPDA which accepts the language $L=\{a^mb^nc^m|m,n>0\}$. State the 6. difference between DFA and PDA.

- 7. If L_1 and L_2 are the regular language, then prove that $L_1 \cdot L_2$ and $(L_1)^*$ is regular.
- **8.** Construct the state diagram of the deterministic finite automaton of a binary adder. State a context free grammar which represents the set of integer numbers in C.
