Parábola:

- Foco: ponto □;
- Diretriz: reta □;
- Eixo ou reta focal: reta □;
- Vértice: ponto de interseção da parábola com o eixo

Equação da parábola com vértice V(0,0)

Caso 1: V(0,0) e eixo sobre o eixo \square :

Temos a equação: $\Box^2 = \pm 2 \Box \Box$,

1) Se o foco está acima do vértice:

 $\square^2 = 2 \square \square$.

2) Se o foco está abaixo do vértice:

 $\square^2 = -2 \square \square$.

Caso 2: V(0,0) e eixo sobre o eixo x:

Temos a equação: $\Box^2 = \pm 2 \Box \Box$

- 1) Se o foco está à direita do vértice: $\Box^2 = 2 \Box \Box$.
- 2) Se o foco está à esquerda do vértice: $y^2 = -2 \square \square$.

fórmulas de translação: $\begin{cases} x' = x - x_0 \\ y' = y - y_0 \end{cases}$

Equação da parábola com $\Box(\Box 0, \Box 0)$:

Caso 1: eixo de simetria é paralelo ao eixo □:

A equação da parábola no novo sistema $\Box'\Box'$ é:

$$(\square')^2 = \pm 2 \square (\square')$$

$$(\square - \square_0)^2 = \pm 2 \square (\square - \square_0)$$

Caso 2: eixo de simetria é paralelo ao eixo □:

A equação da parábola no novo sistema $\Box'\Box'\Box'$ é:

$$(\square')^2 = \pm 2 \square (\square')$$

$$(\square - \square_0)^2 = \pm 2 \square (\square - \square_0)$$

Equação na forma explícita:

• Caso 1: parábola com eixo de simetria paralelo ao eixo y: □ = □□² + □□ + □

• Caso 2: parábola com eixo de simetria paralelo ao eixo x: □ = □ □² + □ □ + □.

Elípse:

• □1,

□2:

Focos;

Segmento focal;

• Ponto médio de □1□2: Centro □;

• Distância focal: 2□;

- Eixo maior: $\Box 1 \Box 2$ com comprimento $2 \Box$;
- Eixo menor: $\Box 1 \Box 2$ com comprimento $2 \Box$;
- Vértices: $\Box 1$, $\Box 2$, $\Box 1$ e $\Box 2$;
- Excentricidade: $\Box = \Box/a$

Equação da Elipse: Centro em C(0,0):

Caso 1: Eixo maior sobre o eixo \square (focos sobre o eixo \square)

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

equação reduzida

Caso 2: Eixo maior sobre o eixo \Box (focos sobre o eixo \Box)

 $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$

equação reduzida

Equação da Elipse: Centro em $\Box(\Box 0, \Box 0)$

Caso 1: O eixo focal $\Box 1 \Box 2$ é paralelo ao eixo x

$$\frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} = 1$$