Universidade de Aveiro, Departamento de Matemática Cálculo I

Ficha de Exercícios 3

Integral de Riemann; Teorema Fundamental do Cálculo integral; Cálculo de áreas.

- 1. Diga, justificando, se as seguintes funções são integráveis.
 - (a) $f:[0,4] \to \mathbb{R}$ definida por $f(x) = \cos(x^2 2x)$.

(b)
$$f: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}$$
 definida por $f(x) = \begin{cases} \operatorname{tg} x \text{ se } x \in \left[0, \frac{\pi}{2}\right] \\ 2 \text{ se } x = \frac{\pi}{2}. \end{cases}$

(c)
$$f: [-2,1] \to \mathbb{R}$$
 definida por $f(x) = \begin{cases} x+1 \text{ se } x \in [-2,0[\\ 2 & \text{se } x = 0\\ x & \text{se } x \in]0,1]. \end{cases}$

2. Calcule F'(x) sendo F a função real de variável real dada por

(a)
$$F(x) = \int_0^{x^2} e^{t^2} dt$$

Resolução: A função f definida por $f(t) = e^{t^2}$ é contínua em \mathbb{R} e as funções g_1 e g_2 dadas por $g_1(x) = x^2$ e $g_2(x) = 0$ são diferenciáveis em \mathbb{R} . Então, como consequência do Teorema Fundamental do Cálculo Integral, tem-se que, para todo o $x \in \mathbb{R}$,

$$F'(x) = e^{(x^2)^2} \cdot 2x - e^{0^2} \cdot 0 = 2xe^{x^4}.$$

(b)
$$F(x) = \int_0^x \frac{t^2}{t^2 + 1} dt$$
 (c) $F(x) = \int_x^0 e^{-s^2} ds$ (d) $F(x) = \int_1^x (\sin t^2 + e^{-t^2}) dt$

(e)
$$F(x) = x^3 \int_1^x e^{-s^2} ds$$
 (f) $F(x) = \int_{x^2}^{1+e^{3x}} \sin t^2 dt$

(g)
$$F(x) = \int_{x}^{2} \cos t^{4} dt$$
 (h) $F(x) = \int_{\cos x}^{x^{3}} \ln(t^{2} + 1) dt$

- 3. Seja F uma função definida por $F(x) = \int_0^{\sin x} (x+1)^2 \cdot \arcsin t \, dt$, para todo o $x \in \left[0, \frac{\pi}{2}\right]$. Determine F'(x).
- 4. Seja $f(x) = \int_0^{x^2} \sin t^2 dt$. Calcule $f'\left(\sqrt[4]{\frac{\pi}{4}}\right)$.
- 5. Seja F a função definida por $F(x) = \int_0^x \left(\int_0^t e^{-u^2} du \right) dt$. Calcule F''(x).
- 6. Considere a função G definida em \mathbb{R} por $G(x) = \int_0^x e^{3t^4 + 4t^3} dt$.
 - (a) Estude a função G quanto à monotonia.
 - (b) Determine, se existirem, os pontos de inflexão ao gráfico de G.
- 7. Considere a função F definida em \mathbb{R} por

$$F(x) = \int_{1}^{x^{2}} (1 + e^{t^{2}}) dt.$$

1

- (a) Calcule F'(x), para todo o $x \in \mathbb{R}$.
- (b) Estude a função F quanto à monotonia e existência de extremos locais.
- 8. Considere a função F definida em \mathbb{R} por

$$F(x) = \int_0^{x^2} (4 + \operatorname{sen}t) \, dt.$$

- (a) Calcule F'(x), para todo o $x \in \mathbb{R}$.
- (b) Estude a função F quanto à monotonia e existência de extremos locais.
- 9. Usando a Regra de Cauchy, calcule o seguinte limite

$$\lim_{x \to 1} \frac{\int_1^{x^2} t \cos(1 - e^{1 - t}) dt}{x^2 - 1}.$$

10. Considere as funções F e G definidas em \mathbb{R} , respetivamente, por

$$F(x) = \int_0^x \cos(t^2) dt$$
 e $G(x) = \int_x^{x^2} e^{t^2} dt$

Usando a Regra de Cauchy calcule o seguinte limite

$$\lim_{x \to 0} \frac{F(x)}{G(x)}.$$

- 11. Mostre que a função F definida em $[1, +\infty[$ por $F(x) = \int_0^{\ln x} \frac{e^t}{t+1} dt$ é estritamente crescente.
- 12. Calcule $\lim_{x \to 1} \frac{F(x)}{x-1}$ sendo F a função dada por $F(x) = \int_0^{\ln x} \frac{e^t}{t^2+1} dt$.
- 13. Calcule

(a)
$$\int_0^2 6x^4 dx$$
Resolução

$$\int_0^2 6x^4 dx = 6 \int_0^2 x^4 dx = 6 \left[\frac{x^5}{5} \right]_0^2 = 6 \left(\frac{2^5}{5} - 0 \right) = \frac{192}{5}$$
(b)
$$\int_3^2 \left(\frac{t^2}{3} - \sqrt{t} \right) dt$$
 (c)
$$\int_{-4}^{-3} \frac{e^x}{3} dx$$
 (d)
$$\int_1^3 \frac{x^3}{\sqrt{x}} dx$$

(e)
$$\int_0^1 \frac{1}{1+t^2} dt$$
 (f) $\int_0^{\frac{\pi}{3}} \sec x \, \operatorname{tg} x \, dx$ (g) $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \sec^2 x \, dx$

(h)
$$\int_0^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}} dx$$
 (i) $\int_{-\pi}^0 \sin(3x) dx$ (j) $\int_0^1 \frac{2x}{1+x^2} dx$

(k)
$$\int_{3}^{6} \frac{1}{x} dx$$
 (l) $\int_{3}^{11} \frac{1}{\sqrt{2x+3}} dx$ (m) $\int_{0}^{1} \sqrt[3]{x} (x-1) dx$

(n)
$$\int_{e}^{e^2} \frac{1}{x(\ln x)^2} dx$$
 (o) $\int_{0}^{1} x\sqrt{1+x^2} dx$ (p) $\int_{1}^{2} \frac{1}{x^2+2x+5} dx$

14. Calcule

(a)
$$\int_{-\ln 2}^{\ln 2} \frac{1}{e^x + 4} dx$$
 (b) $\int_{0}^{1} \frac{x}{1 + x^4} dx$ (c) $\int_{0}^{1} \sqrt{4 - x^2} dx$ (d) $\int_{1}^{e} x \ln x dx$ (e) $\int_{1}^{e} \ln^2 x dx$

15. Calcule

(a)
$$\int_{0}^{2} f(x) dx$$
 onde $f(x) = \begin{cases} 2 & \text{se} & 0 \le x < 1 \\ \frac{1}{x} & \text{se} & 1 \le x \le 2 \end{cases}$
(b) $\int_{-1}^{1} f(x) dx$ onde $f(x) = \begin{cases} \frac{2}{1+x^{2}} & \text{se} & x \in [-1,0[\\ 7 & \text{se} & x = 0 \end{cases}$
(c) $\int_{-1}^{3} f(x) dx$ onde $f(x) = \begin{cases} \frac{1}{1+x^{2}} & \text{se} & x \in]0,1] \\ 5 & \text{se} & x = 1 \end{cases}$
(d) $\int_{0}^{2\pi} f(x) dx$ onde $f(x) = \begin{cases} -2 & \text{se} & x \in [0,\frac{\pi}{2}[\\ \cos x & \text{se} & x \in [\frac{\pi}{2},\frac{3\pi}{2}] \end{cases}$
 $\frac{1}{1+x^{2}} & \text{se} & x \in [0,\frac{\pi}{2}[]$

- 16. Considere a função f definida por $f(x) = \frac{1}{x \ln x}$.
 - (a) Determine a primitiva de f que se anula no ponto $x = e^2$.

Resolução: Uma vez que

$$\int f(x)dx = \int \frac{1}{x \ln x} dx = \int \frac{\frac{1}{x}}{\ln x} dx = \ln|\ln x| + C, \quad C \in \mathbb{R}$$

a primitiva de f que se anula no ponto $x=e^2$ tem de verificar a igualdade

$$\ln|\ln(e^2)| + C = 0.$$

Logo

$$C = -\ln 2$$

e a primitiva de f que se anula no ponto $x=e^2$ é a função F definida por $F(x)=\ln|\ln x|-\ln 2$.

(b) Calcule o valor da área da região do plano situada entre as retas de equações x=e e $x=e^3$, limitada pelo eixo das abcissas e pelo gráfico de f.

Resolução: Uma vez que para todo o $x \ge e$,

$$\ln x \ge \ln e \Leftrightarrow \ln x \ge 1$$

podemos concluir que para todo o $x \in [e, e^3], x \ln x > 0$ e, portanto,

$$\frac{1}{x \ln x} > 0.$$

Como f é contínua e positiva em $[e, e^3]$ a área pedida é dada por

$$\int_{e}^{e^3} f(x)dx = \left[\ln|\ln x| \right]_{e}^{e^3} = \ln|\ln(e^3)| - \ln|\ln e| = \ln 3 - \ln 1 = \ln 3.$$

- 17. Calcule o valor da área da região limitada do plano situada entre x=0 e x=2 e limitada pelo eixo das abcissas e pelo gráfico da função g definida por $g(x)=x\ln(x+1)$.
- 18. Calcule o valor da área da região (limitada) do plano situada entre x=0 e x=2 e limitada pelo eixo das abcissas e pelo gráfico da função g definida por $g(x)=\frac{e^{2x}+1}{e^x+1}$.
- 19. Seja $f(x) = x^3 3x^2 + 2x$. Calcule a área da região limitada do plano situada entre as retas de equação x = 0 e x = 2 e limitada pelo gráfico de f e pelo eixo Ox.
- 20. Calcule o valor da área da região do plano situada entre os gráficos das funções f e g definidas, respetivamente, por

$$f(x) = \frac{4 + \sin^2 x}{1 + 4x^2}$$
 e $g(x) = \frac{\sin^2 x}{1 + 4x^2}$

e pelas retas de equações x = 0 e $x = \frac{1}{2}$.

 $\textbf{Resolução} \text{: Uma vez que as funções } f \text{ e } g \text{ são contínuas em } \left[0,\frac{1}{2}\right] \text{ e, para todo o } x \in \left[0,\frac{1}{2}\right],$

$$f(x) = \frac{4 + \sin^2 x}{1 + 4x^2} > \frac{\sin^2 x}{1 + 4x^2} = g(x)$$

podemos afirmar que a área pedida é dada pelo seguinte integral de Riemann:

$$\int_0^{\frac{1}{2}} (f(x) - g(x)) \, dx = \int_0^{\frac{1}{2}} \frac{4}{1 + 4x^2} dx.$$

Como

$$\int_0^{\frac{1}{2}} \frac{4}{1+4x^2} dx = \frac{4}{2} \int_0^{\frac{1}{2}} \frac{2}{1+(2x)^2} dx = 2 \left[\operatorname{arctg}(2x) \right]_0^{\frac{1}{2}} = 2 \left(\operatorname{arctg}(1) - \operatorname{arctg}(0) \right) = 2 \frac{\pi}{4} = \frac{\pi}{2}$$

podemos concluir que a área é igual a $\frac{\pi}{2}$

- 21. Calcule a área da região limitada do plano delimitada pelos gráficos das funções f e g definidas por $f(x) = x^2$ e g(x) = x.
- 22. Calcule a área da região do plano delimitada pelos gráficos das funções f e g definidas, respetivamente, por $f(x) = e^{2x+1}$ e $g(x) = xe^{2x+1}$, e pelas retas de equações x = -1 e $x = -\frac{1}{2}$.
- 23. Calcule a área da região (limitada) de \mathbb{R}^2 delimitada pelos gráficos das funções f e g definidas, respetivamente, por $f(x) = \frac{1}{x}$ e $g(x) = x^2$, e pelas retas x = 2 e y = 0.
- 24. Determine a área da região limitada do plano delimitada pelo gráfico da função f definida por $f(x) = x \cos x$ e pelas retas de equação y = x, x = 0 e $x = \frac{\pi}{2}$.
- 25. Exprima, em termos de integrais definidos, o valor da área da região limitada do plano situada entre $x = -\pi$ e $x = \pi$ e limitada pelos gráficos das funções f e g definidas por $f(x) = \sin x$ e $g(x) = \cos x$, respetivamente.

- 26. Seja $A = \{(x, y) \in \mathbb{R}^2 : y \ge (x 3)^2, y \ge x 1, y \le 4\}.$
 - (a) Represente geometricamente a região A.
- ricamente a região A.
 - (b) Calcule o valor da área da região A.
- 27. Calcule a área da região do plano situada entre $x=-\frac{1}{2}$ e x=0 e limitada pelo eixo das abcissas e pelo gráfico da função h definida por $\arcsin x$

 $h(x) = \frac{\arcsin x}{\sqrt{1 - x^2}}.$

28. Recorrendo ao cálculo integral, determine o valor da área da região sombreada representada nas figuras seguintes:

(a)

(b)

Exercícios de testes/exames de anos anteriores

29. Diga, justificando, se a função h definida por

$$h(x) = \begin{cases} \operatorname{arccotg}(x^2 - 4) & \text{se } x < 2 \\ \pi & \text{se } x = 2 \\ \cos(1 - e^{x-2}) & \text{se } x > 2 \end{cases}$$

é integrável (no sentido de Riemann) no intervalo [-1,4]. (2ª Prova de Avaliação Discreta, Cálculo I - Semestre Extraordinário, 2011/2012)

- 30. Considere a função F definida em \mathbb{R} por $F(x) = \int_0^{x^3} t e^{\operatorname{sen} t} dt$.
 - (a) Justifique que F é diferenciável em \mathbb{R} e determine F'(x) para todo o $x \in \mathbb{R}$.
 - (b) Calcule $\lim_{x\to 0} \frac{F(x)}{\operatorname{sen} x}$.

 $(2^a\ Prova\ de\ Avaliação\ Discreta,\ Cálculo\ I,\ 2011/2012)$

- 31. Considere a função f definida por $f(x) = \frac{x}{(x^2+1)^{\frac{3}{2}}}$.
 - (a) Determine $\int f(x) dx$.
 - (b) Calcule o valor da área da região delimitada pelo gráfico da função f, pelo eixo das abcissas e pelas retas de equações x=-1 e $x=\sqrt{3}$. (2ª Prova de Avaliação Discreta, Cálculo I, 2011/2012)

5

32. Sejam I um intervalo de \mathbb{R} , $a \in I$ e $f: I \to \mathbb{R}$ uma função de classe C^2 (isto é, tal que f'' é contínua). Observando que $f(x) = f(a) + \int_a^x f'(t)dt$, mostre que

$$f(x) = f(a) + (x - a)f'(a) + \int_a^x (x - t)f''(t)dt, \quad \forall x \in I.$$

(Sugestão: use o método de integração por partes). (2ª Prova de Avaliação Discreta, Cálculo I, 2014/2015)

33. Seja $f:\mathbb{R}\to\mathbb{R}$ uma função contínua e par
. Considere a função $F:\mathbb{R}\to\mathbb{R}$ definida por

$$F(x) = f\left(\frac{x}{2}\right) \cdot \int_0^{2x} f(t) dt.$$

Mostre que F é uma função ímpar. (Sugestão: use o método de integração por substituição) (Exame de Recurso, Cálculo I, 2014/2015)

- 34. Seja $F: \left]0, \frac{\pi}{2}\right[\to \mathbb{R}$ a função definida por $F(x) = \int_0^{\operatorname{sen} x} \frac{1}{\sqrt{(1-t^2)(4-t^2)}} \, dt$.
 - (a) Justifique que F é diferenciável e mostre que $F'(x) = \frac{1}{\sqrt{4-\sin^2 x}}, x \in \left]0, \frac{\pi}{2}\right[.$
 - (b) Calcule $\lim_{x\to 0^+} \frac{F(x)}{\sin x \cos x}$. (Exame Final, Cálculo I - Agrupamento IV, 2017/2018)
- 35. Calcule a área da região do plano delimitada pelo gráfico da função f definida por

$$f(x) = \frac{2\operatorname{arctg} x}{1 + x^2}$$

e pelas retas de equações y=0, x=-1 e x=1. (Exame Final, Cálculo I - Agrupamento IV, 2017/2018)

- 36. Considere a função F de domínio [-1,1] definida por $F(x) = \int_{\arccos x}^{0} \frac{(\sin t)^2}{e^t + 1} dt$.
 - (a) Justifique que F é diferenciável em]-1,1[e determine F'(x) para $x\in]-1,1[$.
 - (b) Estude F quanto à monotonia e identifique os extremantes globais de F. (Exame de Recurso, Cálculo I Agrupamento IV, 2017/2018)