Math 104 Final Exam April 27, 2006

	Penn Student ID					
	Lecturer (circle the name of exactly 1 lecture and exactly 1 TA):					
	Lecturer: Rob Schneiderman Erik van Erp Mark Daniel Ward	Tong Zhu C	TA's: Chenxu He nris Jankowski Tian Liang			
1.	6	11	16			
2.	7	12	17			
3.	8	13	18. free response			
4.	9	14	19. free response			
5.	10	15	20. free response			
	Score:	(100 points possib	le)			

- 1. The testing booklet contains 20 pages of questions.
- 2. No calculators are permitted.
- 3. One piece of paper (8.5 in. by 11 in.) is permitted, with writing on both sides allowed.
- 4. Make sure to supply answers to all the questions. There is no penalty for guessing.
- 5. No credit will be given for problems with no answers or problems with multiple answers.
- 6. No partial credit will be given on Problems 1–17.
- 7. Write all calculations on the pages provided. Extra pages are available if needed.

1. Find the volume of the solid obtained by rotating the region bounded by the curves

$$y = x^2, \qquad y = 0, \qquad x = 2$$

about the line x = 4.

- A.) $10\pi/3$
- B.) $16\pi/3$
- C.) $20\pi/3$ D.) $32\pi/3$ E.) $40\pi/3$ F.) $64\pi/3$

- 2. A tank with a square base and rectangular sides is filled with a liquid of density $3 \, \text{lb/ft}^3$. The tank is exactly 2 feet long, 2 feet wide, and 5 feet tall. Find the work required to pump the liquid out of the top of the tank.
- A.) 8 ft-lb
- B.) 20 ft-lb
- C.) 32 ft-lb
- D.) 40 ft-lb
- E.) 150 ft-lb
- F.) 300 ft-lb

 ${\bf 3.}\;$ Find the area of the region bounded by the curves

 $y = x^2 - 2x + 1$ and $y = -x^2 + 4x + 1$.

- A.) 1

- B.) 3 C.) 6 D.) 9 E.) 12
- F.) 24

 ${\bf 4.}\;\;{\rm Find}\;{\rm the}\;{\rm correct}\;{\rm value}\;{\rm of}\;{\rm the}\;{\rm limit}$

$$\lim_{x \to 0} \frac{(\cos x) - 1}{x^2} \,.$$

- A.) 0

5. Evaluate the integral

$$\int_2^5 \frac{1}{4-x} \, dx \, .$$

- A.) 0
- B.) $\ln 2$
- C.) $-\ln 2$
- D.) 1
- E.) 3
- F.) the integral diverges

$$\int_0^1 x \ln x \, dx \, .$$

A.) -1 B.) -1/2 C.) -1/4 D.) 0 E.) 1 F.) the integral diverges

$$\int_0^{\pi/2} \cos^3 x \, dx \, .$$

A.) 0

B.) 1/3

C.) 1/2

D.) 2/3

E.) 1

F.) the integral diverges

$$\int_0^1 (2x+1)e^{x^2+x} \, dx \, .$$

A.) $3e^2$ B.) e-1 C.) $3e^2-1$ D.) $2e^2$ E.) e^2-1 F.) $\frac{1}{3}e^2-1$

$$\int_3^4 \frac{1}{(x-1)(x-2)} \, dx \, .$$

A.) ln(1/2)

B.) $\ln(2/3)$ C.) $\ln(3/4)$ D.) $\ln(4/3)$ E.) $\ln(3/2)$ F.) $\ln(2)$

$$\int_{-1}^{1} \sqrt{1 - x^2} \, dx \, .$$

A.) 0 B.) $\pi/8$ C.) $\pi/4$ D.) $\pi/2$ E.) π F.) 2π

- 11. Set up, but do not evaluate, an integral for the length of the curve $y = \ln(\cos x)$ over the interval $0 \le x \le \pi/6$.
- A.) $\int_0^{\pi/6} \sin x \, dx$
- $B.) \int_0^{\pi/6} \cos x \, dx$
- C.) $\int_0^{\pi/6} \tan x \, dx$
- D.) $\int_0^{\pi/6} \csc x \, dx$
- E.) $\int_0^{\pi/6} \sec x \, dx$
- F.) $\int_0^{\pi/6} \cot x \, dx$

 ${f 12.}$ Set up, but do not evaluate, an integral for the area of the surface obtained by rotating the curve

$$y = e^x, \qquad 0 \le x \le 2$$

about the x-axis.

- A.) $\int_0^2 2\pi e^x \sqrt{1+x^2} \, dx$
- B.) $\int_0^2 2\pi x \sqrt{1 + e^{2x}} \, dx$
- C.) $\int_0^{2\pi} x \sqrt{1 + x^2} \, dx$
- D.) $\int_0^2 2\pi \sqrt{1 + e^{2x}} \, dx$
- E.) $\int_0^2 2\pi x \sqrt{1+x^2} \, dx$
- F.) $\int_0^2 2\pi e^x \sqrt{1 + e^{2x}} \, dx$

13. Find an equation for the tangent line to the curve

$$y = \sin(3t), \qquad x = e^t$$

- at the point (x, y) = (1, 0).
- A.) y = 3x 3

- B.) y = -3x + 3C.) $y = \frac{1}{3}x \frac{1}{3}$ D.) y = -x + 1E.) y = x 1F.) $y = -\frac{1}{3}x + \frac{1}{3}$

- 14. Find the area of the region enclosed by one loop of the curve $r = \sin 4\theta$.
- A.) $\pi/16$
- B.) $\pi/8$ C.) $\pi/4$
- D.) $\pi/2$
- E.) π
- F.) 2π

- **15.** Consider the Cartesian coordinate $(x,y)=(2\sqrt{3},-2)$. Find the polar coordinates (r,θ) of the point, where r>0 and $0\leq\theta<2\pi$.
- A.) $(r, \theta) = (2, \frac{7\pi}{6})$
- B.) $(r, \theta) = (4, \frac{7\pi}{6})$
- C.) $(r, \theta) = (2, \frac{\pi}{6})$
- D.) $(r, \theta) = (2, \frac{5\pi}{6})$
- E.) $(r, \theta) = (4, \frac{5\pi}{6})$
- F.) $(r, \theta) = (4, \frac{11\pi}{6})$

16. Find the interval of convergence for the powers series

$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n} \, .$$

- A.) (1,3)

- B.) [1,3) C.) (1,3] D.) (-1,1) E.) [-1,1) F.) (-1,1]

17. Find the Maclaurin series for $f(x) = x^2 e^{3x}$. What is the radius of convergence?

- A.) $f(x) = \sum_{n=0}^{\infty} \frac{3^n x^{n+2}}{n!}$ with radius of convergence 1 B.) $f(x) = \sum_{n=0}^{\infty} \frac{3^n x^{n+2}}{n!}$ with radius of convergence 3 C.) $f(x) = \sum_{n=0}^{\infty} \frac{3^n x^{n+2}}{n!}$ with radius of convergence ∞ D.) $f(x) = \sum_{n=0}^{\infty} \frac{(3x)^{n+2}}{n!}$ with radius of convergence 1 E.) $f(x) = \sum_{n=0}^{\infty} \frac{(3x)^{n+2}}{n!}$ with radius of convergence 3 F.) $f(x) = \sum_{n=0}^{\infty} \frac{(3x)^{n+2}}{n!}$ with radius of convergence ∞

18. Does the series

$$\sum_{n=1}^{\infty} \frac{3 + \cos n}{2^n}$$

converge or diverge? Justify your answer.

 ${\bf 19.}\,$ Find the Maclaurin series, and radius of convergence for

$$g(x) = \frac{x^3}{(1-x)^2} \,.$$

Justify your answer.

20. Consider the series

$$\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}} \, .$$

Does the series converge or diverge? Justify your answer.