From Conventional to Semantic Communications based on Deep Learning

Professor Geoffrey Li Imperial College London London, UK

Outline

- Overview
- DL-based Conventional Communications
 - * Block-Wise
 - * End-to-End
- DL-based Semantic Communications
- Conclusions

Motivation

- ➤ Challenges in current/conventional communication systems
 - Mathematical models versus practical imperfection
 - Block structures versus global optimality
 - ☐ Complexity and performance of optimization
 - Spectrum efficiency limited by Shannon capacity
- ➤ Why deep learning?
 - No need for models for data-driven method
 - End-to-end loss optimization for global optimality
 - Deep learning enabled end-to-end and semantic communications

W. Tong and G. Y. Li "Nine critical issues in AI and wireless communications to ensure successful 6G," in *IEEE Wireless Commun.*, also at https://arxiv.org/abs/2109.11320, Aug. 2021.

Block Structure or End-to-End for Conventional Communications

Conventional Communications:

Transmit symbols or bits, following Shannon Limit

DL in Physical Layer Conventional Communications

- > Z.-J. Qin, H. Ye, G. Y. Li, and B.-H. Juang, "Deep learning in physical layer communications," *IEEE Wireless Commun.*, vol. 26, no. 2, pp. 93-98, April 2019. (2022 IEEE ComSoc Fred W. Ellersick Prize Paper Award)
- H.-T. He, S. Jin, C.-K. Wen, F.-F. Gao, G. Y. Li, and Z.-B. Xu, "Model-driven deep learning for physical layer communications," *IEEE Wireless Commun.*, vol. 26, no. 5, pp. 77-83, Oct. 2019
- ▶ H. Ye, G. Y. Li, and B.-H. F. Juang, "Power of deep learning for channel estimation and signal detection in OFDM systems," *IEEE Wireless Commun. Lett.*, vol. 7, no. 1, pp. 114 117, Feb. 2018.

Information Content of English and Semantic Encoding

Encoding English Words Letter-by-Letter

- In English, on average there are 4.5 letters per word
- 5.5 characters per word if including space
- 5 bits to encode each letter (26 letters)
- 27.5 bits/word (5X5.5=27.5)

Need a codebook of 26 letters

Encoding English Words Word-by-Word

- 171,476 English words (from Google)
- $18 \text{ bits/word } (2^{17} < 171,476 < 2^{18})$ Need a codebook of 171,476 words

Encoding English Semantically

- For example, only 1 bit if answering a YES or NO question
- More Efficient!

Need an extremely huge codebook

From Symbol to Semantic Transmission

- Three Levels of Communications: Shannon and Weaver
 - ➤ Transmission of symbols (Shannon Paradigm) following Shannon limit & well-developed near limit
 - ➤ Semantic exchange of source information semantic communications (transmission of intelligence)
 - > Effects of semantic information exchange
- Semantic Communications: <u>Significantly improved efficiency</u>!

C. E. Shannon and W. Weaver, *The Mathematical Theory of Communication*. The University of Illinois Press, 1949.

Conventional Communications

- Only consider the data recovery accurately
- Information redundancy are removed in entropy-domain
- All information (including useless and irrelevant) is transmitted to the receiver, part is useless for the target network

Semantic Communications

- Feature networks and action networks considered
- Information redundancy removed in semantic domain
- > Only useful and relevant information transmitted to the receiver
- > The features can serve different action networks

Z.-J. Qin, X.-M. Tao, J.-H. Lu, and G. Y. Li, "Semantic communications: Principles and challenges," https://arxiv.org/abs/2201.01389.

Outline

- Overview
- DL-based Conventional Communications
 - * Block-Wise
 - * End-to-End
- DL-based Semantic Communications
- Conclusions

DL in for Conventional Communications

Channel Estimation (CE) and Signal Detection (SD)

Related works:

- □ MMSE for channel estimation
- Neural networks and DL in equalization and decoding

Challenges:

□ Nonlinear distortion and interference

> Innovations:

- □ DL for joint channel estimation and symbol detection
- □ DL-based method: robust and insensitive to nonlinear distortion and interference

Traditional CE and SD mation for OFDM Systems with Rapid Dispersive Fading Channels

Ye (Geoffrey) Li, Senior Member, IEEE, Leonard J. Cimini, Jr., Senior Member, IEEE,

timator domain idied. re-error //e first of the it times els, the it times in of the idee, our in filter // time-end on

ITP Lab

1. INTRODUCTION

channel statistics. Computer simulation demonstrates that the performance of OFDM systems using coherent demedulated.

DL-based CE and SD

- ➤ Input: received pilot OFDM block + received data OFDM block
- ➤ Output: recovered data

H. Ye, G. Y. Li, and B.-H. F. Juang, "Power of deep learning for channel estimation and signal detection in OFDM systems," *IEEE Wireless Commun. Lett.*, vol. 7, no. 1, pp. 114 – 117, Feb. 2018.

DL-based CE and SD: DNN Model Training

- ➤ Training DNN to predict transmit data
- ➤ Training with received OFDM samples corresponding to pilots and data
- ➤ Generating label data under diverse channel conditions
- \triangleright Optimizing model parameters to minimize L_2 loss function

$$L_2 = \frac{1}{N} \sum_{k} (\hat{X}(k) - X(k))^2$$

DL-based CE and SD: Impact of Pilot Number

64 pilots:

- Better than LS
- Comparable to LMMSE

8 pilots:

➤ Better than LMMSE

DL in for Conventional Communications

Model-Driven DL

- ☐ Relying on relatively accurate model
- ☐ Exploiting rich domain/expert knowledge
- ☐ Easy to train with a small amount of data
- Explainable and predictable neural networks
- ☐ Deep unfolding: a popular model-driven approach

H.-T. He, S. Jin, C.-K. Wen, F.-F. Gao, G. Y. Li, and Z.-B. Xu, "Model-driven deep learning for physical layer communications," *IEEE Wireless Commun*, vol. 26, no. 5, pp. 77-83, Oct. 2019.

Example: MIMO Detection

> MIMO System:

$$y = Hx + n$$

- ➤ Goal: estimating **x** from received signal **y** and channel matrix **H**
- Conventional Detectors:
 - □ Optimal detector: ML detector, high complexity
 - ☐ Linear detectors: ZF, LMMSE, low complexity but poor performance
 - Iterative detectors: AMP-based detector, EP-based detector, excellent performance, moderate complexity, performance degradation with ill-conditioned channel matrix
- ➤ **Motivation**: deep learning to perform iterative detection

H.-T. He, C.-K. Wen, S. Jin, and G. Y. Li, "Model-driven deep learning for MIMO detection," *IEEE Trans. Signal Process.*, vol. 68, pp. 1702-1715, March 2020.

Example: OAMP for MIMO Detection

(Orthogonal Approximate Message Passing)

➤ OAMP algorithm for MIMO detection:

 $\hat{\mathbf{x}} = \int \mathbf{x} \mathcal{P}(\mathbf{x}|\mathbf{y}, \mathbf{H}) d\mathbf{x}$

Algorithm 1: OAMP algorithm for MIMO detection

Input: Received signal y, channel matrix H, noise level σ^2 .

Output: Recovered signal x_t .

Initialize: $\tau_t \leftarrow 1, \ \mathbf{x}_t \leftarrow \mathbf{0}$

$$\mathbf{r}_t = \hat{\mathbf{x}}_t + \mathbf{W}_t(\mathbf{y} - \mathbf{H}\hat{\mathbf{x}}_t), \tag{8}$$

$$\hat{\mathbf{x}}_{t+1} = \mathbb{E}\left\{\mathbf{x}|\mathbf{r}_t, \tau_t\right\},\tag{9}$$

$$v_t^2 = \frac{\|\mathbf{y} - \mathbf{H}\hat{\mathbf{x}}_t\|_2^2 - M\sigma^2}{\operatorname{tr}(\mathbf{H}^T\mathbf{H})}$$
 (10)

$$\tau_t^2 = \frac{1}{N} \operatorname{tr}(\mathbf{B}_t \mathbf{B}_t^T) v_t^2 + \frac{1}{N} \operatorname{tr}(\mathbf{W}_t \mathbf{W}_t^T) \sigma^2.$$
 (11)

> Obtained a Network by Unfolding OAMP Algorithm

J. Ma and L. Ping, "Orthogonal OAMP," IEEE Access, vol. 5, no. 14, pp. 2020 - 2033, Jan. 2017

Example: Modified OAMP-Net

> Architecture:

➤ Iterative Algorithm:

$$v_t^2 = \frac{\|\mathbf{y} - \mathbf{H}\hat{\mathbf{x}}_t\|_2^2 - M\sigma^2}{\operatorname{tr}(\mathbf{H}^T\mathbf{H})}$$

$$\mathbf{W}_t = \frac{2N}{\operatorname{tr}(\hat{\mathbf{W}}_t\mathbf{H})} \hat{\mathbf{W}}_t \quad \hat{\mathbf{W}}_t = v_t^2 \mathbf{H}^T (v_t^2 \mathbf{H} \mathbf{H}^T + \frac{\sigma^2}{2} \mathbf{I})^{-1}$$

$$\mathbf{r}_t = \hat{\mathbf{x}}_t + \gamma_t \mathbf{W}_t (\mathbf{y} - \mathbf{H}\hat{\mathbf{x}}_t)$$

$$\tau_t^2 = \frac{1}{2N} \operatorname{tr}(\mathbf{C}_t \mathbf{C}_t^T) v_t^2 + \frac{\theta_t^2 \sigma^2}{4N} \operatorname{tr}(\mathbf{W}_t \mathbf{W}_t^T) \quad \mathbf{C}_t = \mathbf{I} - \theta_t \mathbf{W}_t \mathbf{H}$$

$$\hat{\mathbf{x}}_{t+1} = \mathbb{E} \left\{ \mathbf{x} | \mathbf{r}_t, \tau_t \right\}$$

Tainable Parameters: Only two parameters (γ_t, θ_t) for each iteration!

Performance of Modified OAMP-Net

- ➤ 16x16 MIMO
- Outperforming original OAMP
- No. trainable variables: twice iteration no. Independ. of antenna no.

DL in for Conventional Communications

Why End-to-End Learning?

> Architecture:

- Representing both transmitter and receiver by DNNs
- ☐ Leaning to encode transmit symbols at transmitter
- ☐ Learning to recover transmit symbols at receiver

> Merits:

- ☐ Achieving global optimum
- Universal solution to different channels
- Beating current state-of-arts

Channel Agnostic End-to-End Learning

Related Works:

- End-to-end communication for AWGN
- End-to-end communication in OFDM
- End-to-end communication with hardware impairment

Challenges:

- Back-propagation of the gradients is blocked by the unknown channel
- ☐ Channel is time-varying

> Approaches:

- Reinforcement Learning (following references)
- ☐ Conditional *Generative Adversarial Net* (GAN) (our approach)
- T. O'Shea and J. Hoydis, "An introduction to deep learning for the physical layer," *IEEE Trans. on Cogn. Commun. Netw.*, vol. 3, no. 4, pp. 563-575, Dec. 2017.
- S. Dorner, S. Cammerer, J. Hoydis, S. ten Brink, "Deep learning-based communication over the air", *IEEE J. Select. Topics Signal Process.*, vol.12, no. 1, pp. 132-143, Feb. 2018.
- A. Felix, S. Cammerer, S. Dorner, J. Hoydis, and S. ten Brink, "OFDM autoencoder for end-to-end learning of communications systems," in *Proc. IEEE Int. Workshop Signal Proc. Adv. Wireless Commun.(SPAWC)*, Jun. 2018.
- F. Aoudia, and J. Hoydis. "End-to-end learning of communications systems without a channel model," arXiv preprint arXiv: 1804.02276

E2E based on Reinforcement Learning

Reinforcement Learning Formation:

- Agent: transmitter
- Environment: channel + receiver
- ☐ States: source data
- ☐ Actions: transmit signals

➤ Advantage and Disadvantage:

- Unnecessary for channel modeling
- ☐ Hard for continuous action in reinforcement learning

F. Aoudia, and J. Hoydis. "End-to-end learning of communications systems without a channel model," arXiv preprint arXiv: 1804.02276

E2E based on Conditional GAN

- Using CNN to address curse of dimentionity
- Conditional GAN: modelling the channel output distribution
- > Surrogate of real channel when training the transmitter
- Received pilots as a part of conditioning for unknown channel

H. Ye, L. Liang, G. Y. Li, and B.-H. F. Juang, "Deep learning based end-to-end wireless communication systems with GAN as unknown channel," *IEEE Trans. Wireless Commun.*, vol. 19, no. 5, pp. 3133-3143, May 2020.

Performance for WINNER II Channels

- ➤ Similar BER at low SNR
- > Better at high SNR

E2E without Explicit Pilot

H. Ye, L. Liang, G. Y. Li, and B.-H. F. Juang, "Deep learning based end-to-end wireless communication systems without pilots," *IEEE Trans. Cognitive Commun. and Netw.*, vol. 7, no. 3, pp. 702 – 714, September 2021.

Outline

- Overview
- DL-based Conventional Communications
 - * Block-Wise
 - * End-to-End
- DL-based Semantic Communications
- Conclusions

Example on Semantic Communications

Shannon Channel Channel Encode Noise Source

W. Tong and G. Y. Li "Nine critical issues in AI and wireless communications to ensure successful 6G," in *IEEE Wireless Commun.*, also at https://arxiv.org/abs/2109.11320, Aug. 2021.

Semantic Transceiver

Transceiver

> Transmitter

$$\mathbf{X}=C_{\boldsymbol{\alpha}}\left(S_{\boldsymbol{\beta}}\left(\mathbf{s}\right)\right),$$

Receiver

$$Y = HX + N,$$

$$\hat{\mathbf{s}} = S_{\mathbf{\chi}}^{-1} \left(C_{\boldsymbol{\delta}}^{-1} \left(\mathbf{Y} \right) \right)$$

Channels

- Physical channel noise is caused by the physical channel impairment
 - AWGN, fading channels...
- Semantic channel noise refers to misunderstanding
 - Caused by interpretation error and disturbance in estimated information.

H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, "Deep learning enabled semantic communication systems," *IEEE Trans. Signal Process.* vol. 69, pp. 2663-2675, 2021, Apr. 2021.

Transceiver Structure

Transformer based semantic communication

- Merge the traditional communication and semantic into DNNs
- > Transformer can learn the semantic in text
 - e.g., "it" completes pronoun reference "the animal"

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, "Attention is all you need," in *Advances Neural Info. Process. Systems (NIPS'17)*, Long Beach, CA, USA. Dec. 2017, pp. 5998–6008.

Loss Function

Loss function used to train the transceiver

$$\mathcal{L}_{ ext{total}} = \mathcal{L}_{ ext{CE}}(\mathbf{s}, \hat{\mathbf{s}}; oldsymbol{lpha}, oldsymbol{eta}, oldsymbol{\chi}, oldsymbol{\delta}) - \lambda \mathcal{L}_{ ext{MI}}(\mathbf{x}, \mathbf{y}; T, oldsymbol{lpha}, oldsymbol{eta})$$

> Cross-Entropy: Through reducing the loss value of channel encoder, the network can learn the syntax, phrase, the meaning of words

$$\mathcal{L}_{\text{CE}}(\mathbf{s}, \hat{\mathbf{s}}; \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\chi}, \boldsymbol{\delta}) = -\sum_{i=1}^{n} q(w_i) \log(p(w_i)) + (1 - q(w_i)) \log(1 - p(w_i))$$

> Mutual Information: maximizing achieved data rate

$$\mathcal{L}_{\mathrm{MI}}(\mathbf{X}, \mathbf{Y}; T) = \mathbb{E}_{p(x,y)} [f_T] - \log (\mathbb{E}_{p(x)p(y)} [e^{f_T}])$$

Two-Step Training

- ➤ Maximizing mutual information
- > Train the whole model

Performance Metrics

BLEU score

➤ Compare the difference between words in two sentences

$$\log BLEU = \min \left(1 - \frac{l_{\hat{\mathbf{s}}}}{l_{\mathbf{s}}}, 0\right) + \sum_{n=1}^{N} u_n \log p_n$$

- l_s is the length of sentence s, $l_{\hat{s}}$ is the length of sentence \hat{s}
- p_n is the n-grams score, u_n is the weights of n-grams

Sentence Similarity

Use siamese network to compute the semantic similarity

$$\mathrm{match}\left(\mathbf{\hat{s}},\mathbf{s}\right) = \frac{\boldsymbol{B_{\Phi}}\left(\mathbf{s}\right) \cdot \boldsymbol{B_{\Phi}}\left(\mathbf{\hat{s}}\right)^{T}}{\left\|\boldsymbol{B_{\Phi}}\left(\mathbf{s}\right)\right\| \left\|\boldsymbol{B_{\Phi}}\left(\mathbf{\hat{s}}\right)\right\|}$$

- $\mathbf{B}_{\Phi}(g)$ is the BERT model
- ightharpoonup Mapping sentence, s, into semantic vector space, $B_{\Phi}(s)$, by BERT model
- ightharpoonup Computing similarity by measuring distance between $\mathbf{B}_{\Phi}(\mathbf{s})$ and $\mathbf{B}_{\Phi}(\hat{\mathbf{s}})$

Simulation Setting

Dataset

The proceedings of the European Parliament

Proposed network architecture

- > Transmitter:
 - 3 layers of Transformer encoder and 2 dense layers
- Receiver:
 - 2 dense layers and 3 layers of Transformer decoder

Benchmark

- Deep Learning based joint source-channel coding (DL based JSC coding)
- Traditional methods
 - Source coding: Huffman coding
 - Channel coding: Turbo code
 - Modulation: 64-QAM

Simulation Results

- ➤ All deep learning approaches are more competitive in the low SNR regime.
- ➤ The tendency in sentence similarity is much closer to human judgment.
 - In SNR = 12 dB, 20% BLEU score = approximate 0 sentence similarity
 - People are usually unable to understand the meaning of texts full of errors

Outline

- Overview
- DL-based Conventional Communications
 - * Block-Wise
 - * End-to-End
- DL-based Semantic Communications
- Conclusions

Conclusions

- ☐ For Conventional Communications
 - *Robust to nonlinear distortion, interference, & frequency selectivity
 - *Improving performance of iterative detectors and adapt to complicated channels
- ☐ End-to-end Communication Architecture
 - * Enabling global optimization of transceiver
 - * Potentially reducing the complexity
- ☐ Semantic Communications
 - *Significantly improving transmission efficiency
 - *Future of wireless communications

