Deriving the Approximate Algorithm

Key Result

- The resulting cells c of fixed dimension d are all well-separated geometrically with a collar¹ of enough margin.
 - Due to the expanded regions of dimension $d' \neq d$, rule (reaction) instances R, and R' commute to high accuracy if assigned to different cells c, c' of same dimensionality.
 - Assignment is by some rule (reaction) instance allocation function φ .

Figure 15: Initialized simulation space, with expanded cell complex, expanded cells are larger enough to hold

Mapping Rules to Geometric Cells (geocells)

The φ function

- ϕ assigns a geocell to every match.
- φ partitions the set of matches.
- Example choices for φ are mapping the rule using a single point or the minimum dimension of all points.
- Example search patterns:

$$\blacksquare_1 \longrightarrow \bigcirc_2 \longrightarrow \blacksquare_3$$

2.
$$(\bigcirc_1 - - \bullet_2, \bigcirc_3 - - \bullet_4)$$

 Rules that map to one geocell, may have nodes/edges that map to another!

Node Type

Negative

Positive

Dimension

2D

0D