Grades	Grader/s				
Pre-lab (100 pts)					

PRE-LAB EXERCISE (E5)

Please finish the following exercises before conducting the experiment and submit the electronic copy to canvas. These exercises consist of 5 questions and are worth a total of 100 points, counted as 3 points of the final grade. These pre-lab exercises cover contents of Experiment E5. Please study the corresponding lab manual and relevant references (e.g., your VC210 textbook) carefully before doing these exercises.

Question 1 (30 points)

When a solution of silver fluoride, 0.1M AgF, is mixed with a solution of barium acetate, 0.1M Ba $(C_2H_3O_2)_2$, a precipitate forms:

$$AgF + Ba(C_2H_3O_2)_2 \rightarrow precipitate 0$$

In order to identify the precipitating ions, you conduct some experimental tests.

1) You substitute a solution of 0.1M sodium acetate, NaC₂H₃O₂, for the Ba(C₂H₃O₂)₂ solution and mix it with 0.1M AgF.

$$AgF + NaC_2H_3O_2 \rightarrow ?$$

What is the purpose of this test?

To testify whether the Ag + or Ba2+ is the precipitating ion. The precipitate of reaction 0 can be AgCd+302 or Bafz. Since Na+ is highly soluble, if reaction @ has a precipitate, then it will be Agad+302 and Ag+ will be the precipitating ion. It reaction @ doesn't have a precipitate, then the precipitating ion will be Ba2+. but whether Ba2+ can form precipitate is unknown.

2) What do the test results below tell you about the AgF + Ba(C2H3O2)2 reaction?

$$AgF + Ba(NO_3)_2 \rightarrow precipitate*$$

* The precipitate that forms is identical in properties to that formed in the AgF + Ba(C₂H₃O₂)₂ reaction.

3) Which reference blank test (indicated below) did you use to directly test the hypothesis that silver ions are critical to precipitate formation?

Circle the reference blank lest reagent combination that could be used to directly verify if precipitate formation involves silver ions.

$$AgF + Ba(NO_3)_2$$
 $NaF + Ba(C_2H_3O_2)_2$

Question 2 (20 points)

Prepare a data table for Part 2.A (of the experimental) below.

CATION GROUP I	CATION GROUP	REF 2drops	Cl ⁻ 2drops	CrO ₄ ² - 2drops	I ⁻ 2drops	C ₂ O ₄ ²⁻ 2drops	S ²⁻ 2dro	SO ₄ ² - 2drops	SPCTR GROUP	SPCTR GROUP
2drops	II	Zarops	_	•	_		ps		I	II
1	2drops									
Na ⁺	\mathbf{K}^{+}	clear								
Ba ²⁺	Mn ²⁺	clear								
$\frac{\mathrm{Mg}^{2+}}{\mathrm{Co}^{2+}}$	Ca ²⁺	clear								
Co ²⁺	Sr ²⁺	clear								
Ni ²⁺	Cr ³⁺	clear								
Cu ²⁺	Fe ³⁺	clear								
Al ³⁺	Zn ²⁺	clear								
Pb ²⁺	$\mathbf{A}\mathbf{g}^{+}$	clear	White ppt↓	Brown ppt↓	Yellow ppt↓	White ppt↓	Black ppt↓	White ppt↓		

^{*}precipitation reagents are 0.10 M sodium salts of the anion.

Question 3 (50 points)

Record a precise hypothesis and expected observations for Part 2a. Select one cation group, and record your hypothesis in the table you just prepared above.

On the next page

CATION	CATION	REF	Cl-	CrO ₄ ² -	I.	$C_2O_4^{2-}$	S ²⁻	SO ₄ ²⁻	SPCTR	SPCTR
GROUP I	GROUP	2drops	2drops	2drops	2drops	2drops	2dro	2drops	GROUP	GROUP
2drops	II						ps		1	II
_	2drops									
Na ⁺	\mathbf{K}^{+}	clear	clear	dear yellow	dear	cleour	clear	dear	>	
Ba ²⁺	Mn ²⁺	clear	olear	yellow ppth	clear	whiteppth	clear	nhiteppu	✓	
Mg^{2+}	Ca ²⁺	clear	dear	dear orange	cleour	white ppt i	dear	clear	V	
Co ²⁺	Sr ²⁺	clear	olear	yellow ppit	red clear	red pptv	red ppti	red clear	V	
Ni ²⁺	Cr ³⁺	clear	clear	yellow ppel	green Clear	gresen pptiv	yellow potl	green clear	✓	
Cu ²⁺	Fe ³⁺	clear	deovr	clear brown	white pptl	blue pptd	blackpptv	blue clear	>	
Al^{3+}	Zn ²⁺	clear	dear	yellow pptv	olear	white pptv	uniteppu	deour	V	
Pb ²⁺	$\mathbf{A}\mathbf{g}^{+}$	clear	White	Brown	Yellow	White	Black	White		
0007 0000	8		ppt↓	ppt↓	ppt↓	ppt↓	ppt↓	ppt↓	V	

^{*}precipitation reagents are 0.10 M sodium salts of the anion.