Assignment-Regression Algorithm

Problem Statement or Requirement:

A client's requirement is, he wants to predict the insurance charges based on the several parameters. The Client has provided the dataset of the same.

Question & Answer:

- 1.) Identify your problem statement
- ➤ Client wants to predict the insurance charges based on the several parameters.
- 2.) Tell basic info about the dataset (Total number of rows, columns)
- ➤ Client has given the data about the age and sex of the insurer.
- Also provides the BMI value and their family details and the charges collected from the insurer.
- > Total No. of Rows: 1338
- > Total No. of Columns: 6
- 3.) Mention the pre-processing method if you're doing any (like converting string to number nominal data)
- ➤ Yes, we are doing the pre-processing method for sex and smoker column.
- ➤ We are going to convert the both columns from string to numbers Nominal data.
- 4.) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.
- ➤ R2_score value is developed for all the Regression Model.
- Final results for all the Models are as below.

- 5.) All the research values (r2_score of the models) should be documented. (You can make tabulation or screenshot of the results.)
- ➤ Multiple Linear Regression R2 value = 0.789134
- > Support Vector Machine (R2 value) :

	Hyper		RBF(Non-		
S.No	Parameter	Linear	Linear	Poly	Sigmoid
	C=0	-0.01	-0.083	-0.075	-0.075
1	C=10	0.462	-0.032	0.038	0.039
2	C=100	0.628	0.319	0.616	0.526
3	C=500	0.763	0.661	0.828	0.442
4	C=1000	0.764	0.81	0.854	0.212
5	C=2000	0.743	0.854	0.8583	-0.621
6	C=3000	0.741	0.864	0.858	-2.143
7	C=4000	0.741	0.87	0.8587	-5.466

• The SVM Regression using R2 value (Linear, C=4000) = **0.87**

Decision Tree:

		Max		
S.No	Criterion	Features	Splitter	R value
1	squared error	auto	best	0.686
2	squared error	auto	random	0.756
3	squared error	sqrt	best	0.726
4	squared error	sqrt	random	0.718
5	squared error	log2	best	0.745
6	squared error	log2	random	0.68
7	friedman_mse	auto	best	0.694
8	friedman_mse	auto	random	0.683
9	friedman_mse	sqrt	best	0.671
10	friedman_mse	sqrt	random	0.668
11	friedman_mse	log2	best	0.709
12	friedman_mse	log2	random	0.68
13	absolute_error	auto	best	0.735
14	absolute_error	auto	random	0.688
15	absolute_error	sqrt	best	0.754
16	absolute_error	sqrt	random	0.712
17	absolute_error	log2	best	0.764
18	absolute_error	log2	random	0.757
19	poisson	auto	best	0.67
20	poisson	auto	random	0.75
21	poisson	sqrt	best	0.72
22	poisson	sqrt	random	0.682
23	poisson	log2	best	0.753
24	poisson	log2	random	0.642

• The Decision Tree Regression use R2 value (absolute_error, log2, best) = 0.764

> Random Forest:

		Max		
S.No	Criterion	Features	R value	n_estimators
1	squared error	none	0.855	
2	squared error	sqrt	0.864	
3	squared error	log2	0.863	
4	friedman_mse	none	0.851	
5	friedman_mse	sqrt	0.864	
6	friedman_mse	log2	0.865	100
7	absolute_error	none	0.857	100
8	absolute_error	sqrt	0.869	
9	absolute_error	log2	0.866	
10	poisson	none	0.851	
11	poisson	sqrt	0.86	
12	poisson	log2	0.862	

The Random Forest Regression use R2 value (absolute_error, sqrt) = **0.869**

6.) Mention your final model, justify why u have chosen the same.

Final Model:

➤ R-Squared Value:

R-squared (R²) is defined as a number that tells you how well the independent variable(s) in a statistical model explains the variation in the dependent variable.

It ranges from 0 to 1, where 1 indicates a perfect fit of the model to the data.

- ➤ From the definition, R-Squared value lies between 0 to 1 suits the best model
- ➤ Hence 1 indicates the perfect model.
- ➤ So, here I have chosen the <u>Support Vector Machine</u> as a Best model. Because the <u>R2 value</u> for the model is <u>0.87</u> which is comparatively higher than the other model.
 - > SVM supports the best than the other models.