UKA TARSADIA UNIVERSITY

B.Tech (CE)/B.Tech (IT) (Semester: 5) 030090503(2013-14)/030080503(2013-14) Design and Analysis of Algorithms

Date :18/11/2016 Time :10:00AM-1:00PM Max. Marks:60

Instructions:

- 1. Attempt all questions.
- 2. Write each section in a separate answer book.
- 3. Make suitable assumptions wherever necessary.
- 4. Draw diagrams/figures whenever necessary.
- 5. Figures to the right indicate full marks allocated to that question.
- 6. Follow usual meaning of notations/abbreviations.

SECTION - 1

Q 1 A) Answer the following in brief. (Any 2)

I) Define following asymptotic notations:

i. big-theta

ii. big-omega

II) Find time complexity of following recurrence relation using substitution method:

T(1) = c1

T(n)=2T(n-1) + c

III) Is $2^{2n} = O(2^n)$? Justify your answer.

Q 1 B) Answer the following . (Any 1)

[5]

[4]

- I) What is an algorithm? Explain approaches for selecting efficient algorithms.
- II) Write an insertion sort algorithm and find its best case time complexity.

Q 2 A) Answer the following in brief. (Any 2)

[4]

- What is the recurrence relation for matrix multiplication using divide and conquer approach? Also find the time complexity.
- II) State three phases of divide and conquer approach.
- III) What are the differences between quick sort and merge sort algorithm?
- Q 2 B) Write binary search algorithm with divide and conquer approach and perform best case and worst case [5] analysis.

OR

Q 2 B) Write an algorithm for quick sort and derive its execution time for best case.

Q 3 Answer the following in detail. (Any 2)

[12]

'napsak

I) Solve the following fractional knapsack problem using greedy approach. There are five items whose weights and values are given in following arrays:

Weight w[] = $\{1,2,5,6,7\}$

Value $v[] = \{ 1,6,18,22,28 \}$

Find the optimal knapsack items for weight capacity of 11 units.

- II) Derive the algorithm for making change using greedy approach with an example.
- III) Generate minimum spanning tree for the following graph using Prim's algorithm. Here, A is starting

Prims

10 Col

[4]

[5]

SECTION - 2

Q 4 A) Answer the following in brief. (Any 2)

- I) Draw finite automata for pattern "abba" and input alphabet $\Sigma = \{a,b\}$.
- II) Write an algorithm for Naïve String Matching.
- III) Explain branch and bound technique.

Q 4 B) Answer the following . (Any 1)

I) Solve the following instance of the assignment problem using branch and bound algorithm.

	J1	J2	J3	J4
a	9	2	7	8
b	6	4	3	7
С	5	8	1	8
d	7	6	9	4

II) Solve 0-1 knapsack problem using branch and bound algorithm for given weights and profits. Find maximum profit for capacity 15.

Job	Weight	Profit
A	2	10
В	4	10
С	6	12
D	9	16

Krapacki Using Jel

Q 5 A) Answer the following in brief. (Any 2)

- I) Define: biconnected graph, sparse graph
- II) Explain backtracking method.
- III) Explain preorder traversal with an example.

Q 5 B) What is N-queens problem? Give solution of 4-queens problem using backtracking Method.

[5]

[4]

<u>OR</u>

Q 5 B) Explain breadth-first search in detail.

Queen

I) Consider the chain of matrices A1,A2,..,A5 with the dimensions given below. Give the optimal parenthesization to get the product.

Matrix	Dimension
A1	10 X 5
A2	5 X 20
A3	20 X 10
A4	10 X 9
kA5	9 X 15

II) Explain how 0-1 knapsack problem can be solved using dynamic programming.

III) Find out longest common subsequence of following two strings using dynamic programming method: S1 = abcbaf and S2 = acbcf.

nming method: