Kolokwium 1 Grupa A

Zadanie 1. Kiedy $X_n = \sum_{i=0}^{n-1} \alpha_{i+1}(\xi_{i+1} - \xi_i)$ jest martyngałem?

Zadanie 2. Udowodnij, że przyrosty martyngału są parami nieskorelowane.

Zadanie 3. Niech (X_i) będzie ciągiem całkowalnych zmiennych losowych i niech $\mathcal{F}_n = \sigma(X_0, X_1, \dots, X_n)$. Załóżmy, że dla dowolnego $n \geq 1$ zachodzi $\mathbb{E}(X_{n+1}|\mathcal{F}_n) = aX_n + b_n X_{n-1}$, gdzie $a \in (0,1)$ i a+b=1. Dla jakich wartości parametru α $S_n = \alpha X_n + X_{n-1}$ jest martyngałem względem filtracji $\{\mathcal{F}_n\}$?

Zadanie 4 (Trzecia tożsamość Wald'a). Niech T będzie ograniczonym przez N momentem stopu względem pewnej filtracji i niech X_i będą niezależnymi zmiennymi losowymi przyjmującymi wartości w przedziale $[0,\infty)$ takimi, że $\mathbb{E}X_i=1$ dla dowolnego i i niech $\mathbf{1}_{\{T=k\}}\prod_{i=1}^k X_i\perp\prod_{i=k+1}^N X_i$ dla dowolnego $k\leq N$. Oznaczmy $M=\prod_{i=1}^T X_i$ i niech zawsze $\prod_{i=1}^0 (\ldots)=1$. Udowodnij, że $\mathbb{E}M=1$.