CITS4403 – April 24, 2013

Modelling Complex Systems

Cellular Automata (Part I)

Pascal Buenzli

pascal.buenzli@uwa.edu.au

Lab G17, CSSE

The University of Western Australia

Overview

- CA: History & Introduction
 - von Neumann, self-replication
 - Conway's Game of Life
 - Modelling physical systems. Some examples
- CA: Formal definition

Brownian motion, temperature, random walk, diffusion

CA: History & Introduction

John von Neumann (1903-1957)

- Late 40s: involved in design of first digital computers
- Self-reproducing systems
- Seminal work for CA:

Theory of self-reproducing Automata, John von Neumann,

http://en.wikipedia.org/wiki/John_von_Neumann

edited and completed by Arthur W. Burks
University of Illinois Press, Urbana and London, 1966

 Idea: Human brain → Machine to solve complex problems

- Such a machine should contain
 - self-control mechanisms
 - self-repair mechanisms
 - no difference between processors and data
- Machine capable of building itself
 - What properties does a system need to be self-replicating?
 - Logical abstraction of self-replicating mechanisms

Self-replicating examples

Cell division

http://bio.research.ucsc.edu/people/sullivan

RepRap: free desktop 3D printer

http://RepRap.org: `Self-replicating' 3D printer

RepRap is about making self-replicating machines, and making them freely available for the benefit of everyone.

RepRap is a free desktop 3D printer capable of printing plastic objects. Since many parts of RepRap are made from plastic and RepRap can print those parts, RepRap is a self-replicating machine - one that anyone can build given time and materials. It also means that - if you've got a RepRap - you can print lots of useful stuff, and you can print another RepRap for a friend...

(Back to von Neumann)

- Following suggestions of S. Ulam (1952):
 - Fully discrete universe of identical `cells'
 - Each cell has an internal `state' : e.g. finite number of bits
 - Discrete time step evolution
 - Automata, who only know a simple recipe to compute their new internal state.
 - The evolution rule is the same for all cells and a function of the states of the neighbouring cells.
- Fully discrete dynamics systems: Cellular Automata

von Neumann's first self-replicating CA:

- 2D square lattice
- 29 states/cell
- self-replicating structure = several thousands cells!

Proof of principle

- usually: a machine builds objects of lesser complexity than itself
- Self-replicating CA: identical complexity and capabilities

Property of `Universal computation'

 there is an initial config. of the CA which leads to the solution of any computer algorithm.

Example: Conway's 'Game of Life'

- John Conway (1970)
- Motivation: simplify Neumann's idea
- Each cell is either alive (state 1) or dead (state 0)
- Lattice 2D, 8 nearest neighbours (Moore)

- Evolution rule (B3/S23)
 - A dead cell comes back to life if surrounded by (exactly) 3
 live cells
 - A live cell dies if surrounded by less than 2 (isolation) or more than 3 (overcrowdness) live cells.

Some Properties:

- Capable of computational universality (Turing complete)
- Emergence and self-organisation: complex pattern emerge from very simple (microscopic) rules
- Simulation example:
 - Java Applet: http://www.ibiblio.org/lifepatterns/
- Patterns:

Philosophical implications:

Chaos, design and organisation can spontaneously emerge from simple deterministic physical laws

Modelling physical systems with CA

The physical world could be a very large CA…?

- CA can provide a modeling environment for physical systems
- CA = synthetic model of a system in which physical laws (microscopic interaction) are expressed as simple local rules on a discrete space-time structure

Some examples (overview)

- Lattice gas (HPP, FHP):
 - Hardy, Pomeau, de Pazzis (1970)
 - Frisch, Hasslacher, Pomeau (1986)
- Discrete dynamics of particles moving and colliding
- Conservation of momentum and particle numbers
- FHP shown to be equivalent to Navier-Stokes equation (in some appropriate limits)

Forest fires

Annealing

Snow flakes

• Traffic flow

CA: Formal Definition

A Cellular Automaton requires in general

- 1. A regular lattice *L* of ordered cells
- 2. A finite state space *S* for each cell;
- 3. A neighbourhood N that each cell interacts with
- 4. An evolution rule *R* which specifies the time evolution of the states

1. A regular lattice L of ordered cells

2D, **3D**:
$$L = \mathbb{Z}^2$$
, \mathbb{Z}^3

Hexagonal: L = H

Other: $L = T_2$

2. A finite state space S for each cell

• The state space of the cells is a finite list of possible states:

$$S = \{S_1, S_2, ...S_m\}$$
 in $\{0, 1, 2, 3\}$

- Boolean representation of the state of a cell at position r (discrete) on the lattice at time t = 0,1,2,... (discrete): $s(r, t) = S_i = [b_1(r, t), b_2(r, t), ..., b_m(r, t)], b_i(r, t)$ in $\{0,1\}$
- Notation: often r=(i,j) is used (in 2D) and the notation: $s(r, t) = s_t(r) = s_t(i,j)$; sometimes also $s_r(t)$, $s_{i,j}(t)$ (don't be confused...!)
- A (global) configuration or microscopic state of the system is given by the set of each cell's state:

$$\{s_r\}_{r \text{ in } L}$$

3. A neighbourhood N that each cell interacts with

- A cell interacts only with cells in a certain neighbourhood
- This neighbourhood is specified as a set of relative coordinates:

$$N = \{\boldsymbol{n}_1, ..., \boldsymbol{n}_q\}$$

- I.e., the neighbour i of the cell at r is located at r + n
- A local configuration at r is given by the set of each cell's state in the neighbourhood of r: $\{s_{r+n}\}_{n \text{ in } N}$

Examples:

•
$$L = \mathbf{Z}, N = \{-1, 0, 1\}$$
:

•
$$L = \mathbf{Z}$$
, $N = \{-10, -3, 15, 32\}$

•
$$L = \mathbb{Z}^2$$
, $N = \{(0,1), (-1,0), (0,0), (1,0), (0,-1)\}$ (von Neumann)

•
$$L = \mathbf{Z}^2$$
, $N = \{(-1,-1), (-1,0), (-1,1), (0,-1), (0,0), ..., (1, 1)\}$ (Moore)

von Neumann neighboorhoods

- range R, in d dimensions
- $-N_R = \{ r = (i_1, ..., i_d) : \Sigma_j | i_j | \leq R \}$

Moore neighbourhoods

- range R, in d dimensions
- $-M_R = \{ r = (i_1, ..., i_d) : \max_i |i_i| \le R \}$

- 4. An evolution rule *R* which specifies the time evolution of the states
- The evolution rule assigns a new state to the cell depending on the states of its neighbouring cells:

R: maps
$$S^{|N|} = S \times S \times ... \times S \longrightarrow S$$
 during a time step: $s(\mathbf{r}, t+1) = R(s(\mathbf{r}, t), s(\mathbf{r}+\mathbf{n}_1, t), s(\mathbf{r}+\mathbf{n}_2, t), ..., s(\mathbf{r}+\mathbf{n}_q, t))$

- The evolution rule is often given as a table;
- •The local neighbourhood determines the new state:

		_			
N:	-1	0	1	R	
	0	0	0	0	Rule 110, Wolfram (1984)
	0	0	1	1	,
	0	1	0	1	
	0	1	1	1	
	1	0	0	0	
	1	0	1	1	
	1	1	0	1	
	1	1	1	0	

- The rule is applied simultaneously for all cell: synchronous dynamics
- The rule is identical for all sites: it is homogeneous (independent of r)
- Spatial and temporal inhomogeneities can be introduced:
 - Define additional bits of the state s(r,t) set to e.g. 1 for given r and t to mark particular locations and times where different rules may apply; E.g. Boundary cells
- New state at t+1: only a function of previous state at t
 - Longer memories can be introduced: dependence on states at t-1, t-2, ...
 - keep a copy of the previous states in the current state by using extra bits: E.g: $s_{t+1} = R(s_t, s_{t-1})$. Define $u_t = \{s_t, s_{t-1}\}$. Then $u_{t+1} = R(u_t)$.

Boundary conditions

- Computer: finite lattice -> boundaries.
- a boundary site does not have the same neighbourhood -> different evolution rule
- Being or not at the boundary: code at the site and choose rule appropriately!
- Another possibility: extend the neighbourhood for the sites at the boundary (virtual cells):

