CURSO BÁSICO DE FÍSICA TEÓRICA

Volumen 4: Física Teórica 3 [Mecánica Estadística]

E.F. Lavia

versión 0.1

18 de enero de 2018

Contenidos

1	Basicos de termodinamica	1
	1.1 Energía y entropía	1
	1.2 Transformadas de Legendre de las funciones termodinámicas	3
	1.3 Gas de Van der Waals	4
2	Conjuntos estadísticos	7
3	Gases clásicos ideales	8
4	Gases imperfectos	9
5	Gas de Fermi	10
6	Gas de Bose	11
7	Elementos de la teoría de fenómenos críticos	12
8	Evolución temporal de sistemas macroscópicos	13
9	Gases diluidos en las proximidades del equilibrio	14
10	Introducción al estudio de procesos de relajación	15

Básicos de termodinámica

1.1 Energía y entropía

Una de las formulaciones de la 2da ley es definir la entropía. Surge de:

$$\frac{Q_1}{Q_2} = -\frac{T_1}{T_2} \qquad \Rightarrow \frac{Q_1}{Q_2} + \frac{T_1}{T_2} = 0 \text{ reversible}$$

$$\int \frac{dQ}{T} \leq 0 \qquad \text{desigualdad de Clausius}$$

Proceso reversible en un sistema aislado

$$S_{A\to B} = \int_{A}^{B} dS = 0$$

pues

$$dS = \frac{dU}{T} - \frac{p}{V}dV + \frac{\mu}{T}dN = 0$$

pero en procesos irreversibles la variación de S es cota superior:

$$\int_A^B \frac{dQ}{T} < \int_A^B dS = S_{A \to B}.$$

Luego, para un sistema aislado, en un proceso irreversible

$$dS_I = 0$$
 \Rightarrow $\frac{dQ_I}{T} = 0$

La existencia de S es independiente de su cálculo

y entonces

$$0 < \int_A^B dS = S_{A \to B}$$

La entropía solo aumenta. Podría calcular $S_{A \to B}$ con un proceso reversible de $A \to B$ pero ahí ya tengo que intervenir sobre el sistema (no hay procesos espontáneos –en un sistema aislado– reversibles).

En reversibles

$$dU = TdS - pdV + \mu dN$$

mientras que en irreversibles

$$dU = ddQ_I - pdV + \mu dN$$
, pero $dQ_I < TdS$

y entonces

$$dU < TdS - pdV + \mu dN$$

Si S es homogénea, se tiene

$$S = S(\lambda U, \lambda X, \{\lambda N_i\}) = \lambda S(U, X, \{N_i\})$$

En un sistema PVT Y = -p.

y además si

$$\begin{split} TdS &= dU - YdX - \mu_i dN_i \\ \frac{dS}{d\lambda} &= S = \frac{\partial S}{\partial \lambda U} \frac{d\lambda U}{d\lambda} + \frac{\partial S}{\partial \lambda X} \frac{d\lambda X}{d\lambda} + \frac{\partial S}{\partial \lambda N_i} \frac{d\lambda N_i}{d\lambda} \\ S &= \frac{\partial S}{\partial \lambda U} U + \frac{\partial S}{\partial \lambda X} X + \frac{\partial S}{\partial \lambda N_i} N_i \\ \frac{\partial}{\partial \lambda U} \left[S(\lambda U) \right] &= \frac{\partial}{\partial \lambda U} \left[\lambda S(U) \right] = \frac{\partial S}{\partial U} = \frac{1}{T} \end{split}$$

y procediendo del mismo modo con Y, μ

$$S = \frac{1}{T}U + \frac{-Y}{T}X + \frac{-\mu_i}{T}N_i$$

y arribamos a la ecuación fundamental

$$TS = U - YX - \mu_i N_i$$

o bien

$$U = TS + YX + \sum_{i} \mu_{i} N_{i}$$

La primera ley (en sistemas reversibles) era

$$dU = TdS + YdX + \sum_i \mu_i dN_i$$

y a S, V, N constantes

$$dU^R=0 \qquad dU^I < 0$$

la mínima U es equilibrio. Si existe trabajo que no es de volumen resulta

$$dU < -dW_{\text{libre}}$$

$$\frac{dQ}{dT} = \frac{dU}{T} + \frac{p}{T}dV - \frac{\mu}{T}dN = \frac{dQ}{dT} \le dS$$

Si el sistema está aislado será

$$0 \le dS$$
 condición de equilibrio

alcanzando el máximo ya no puede disminuir la entropía.

1.2 Transformadas de Legendre de las funciones termodinámicas

$$f(x,y,z) \qquad \text{con pendientes} \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

entonces

$$\varphi(f_x, y, z) = f(x, y, z) - x \frac{\partial f(x, y, z)}{\partial x} \Big|_{y, z}$$

es la transformada de Legendre respecto de x, mientras que

$$\varphi(f_x,f_y,z) = f(x,y,z) - x\frac{\partial f}{\partial x} - y\frac{\partial f}{\partial y}$$

es la transformada de Legendre respecto de y.

La transformada de Legendre transforma una función homogénea en otra función homogénea, mantiene el carácter de función de estado.

$$d\varphi(f_x,y,z) = df - dx \frac{\partial f}{\partial x} - xd \left(\frac{\partial f}{\partial y}\right)$$

Para el caso de la energía

$$U = U(S, V, N) \qquad \qquad dU = TdS - pdV + \mu dN$$

y entonces

$$A = U - S \frac{\partial U}{\partial S} \Big|_{V,N} = U - ST$$
 \Rightarrow $A = A(T,V,N)$

$$\begin{split} H &= U - V \frac{\partial U}{\partial V} \bigg|_{S,N} = U + pV & \Rightarrow & H = H(S,p,N) \\ G &= U - S \frac{\partial U}{\partial S} \bigg|_{V,N} - V \frac{\partial U}{\partial V} \bigg|_{S,N} = U - ST + pV & \Rightarrow & G = G(T,p,N) \\ dA &= dU - SdT - TdS = -SdT - pdV + \mu dN \\ dA &\leq -SdT - pdV + \mu dN \end{split}$$

entonces A mínimo es equilibrio a T, V, N constantes.

La idea de las transformadasd de Legendre es pasar la dependencia de cierto juego de variables a otro que podría ser más apropiado par el sistema en cuestión.

Sistema aislado en equilibrio, entonces se tendrá S máxima y como S(U,V,N) y considero fluctuación energética

$$\begin{split} \frac{\partial S}{\partial U} \Big|_{\rm eq} &= 0 \qquad \frac{\partial 2}{\partial S} U \Big|_{\rm eq} < 0 \\ \delta S_{\rm orden2} &= \frac{1}{2} \left. \frac{\partial 2}{\partial S} U \right|_{\rm so} \delta U^2 \end{split}$$

1.3 Gas de Van der Waals

Van der Waals incorpora la interacción molecular.

$$\left(p+\frac{an^2}{V^2}\right)(V-nb)=nRT$$

donde a,b(T) caracterizan al gas en cuestión.

La función p = p(V) tiene tres extremos para $T < T_c$,

$$\frac{\partial p}{\partial V} = 0$$

En $T=T_c$ es

$$\left. \frac{\partial p}{\partial V} \right|_{T_c} = 0 \qquad \left. \frac{\partial^2 p}{\partial V^2} \right|_{T_c} = 0$$

punto de inflexión

$$v_c = 3b \qquad p_c = \frac{a}{27b^2} \qquad T_c = \frac{8a}{27Rb}$$

Esta subsección tiene cinco gráficos

y eso lleva a la ley de estados correspondientes

$$\left(\bar{p} + \frac{3}{\bar{v}^2}\right)(3\bar{v} - 1) = 8\bar{T}$$

De Van der Waals al virial

$$p = \frac{nRT}{(V - nb)} - a\left(\frac{n}{V}\right)^2 = \frac{nRT}{V(1 - b/v)} - \frac{a}{v^2}$$

$$p = \frac{RT}{v} \left[1 + \frac{b}{v} - \frac{a}{vRT}\right] = p = \frac{RT}{v} \left[1 + \frac{1}{v}\left(b - \frac{a}{RT}\right)\right]$$

y el último paréntesis es el primer coeficiente del virial.

Un potencial intermolecular está compuesto de una zona repulsiva (carozo duro) y una atractiva (cola)

$$V_{eff}=V-b \qquad \text{(menorvolumenporelcarozo)}$$

$$p=\frac{RT}{V-b}-\left(\frac{a}{V}\right)^2 \qquad \text{(menorpresi\'on porla atractividad)}$$

y entonces, por mol de sustancia,

$$\left(p + \frac{a^2}{V^2}\right)(V - b) = RT$$

b corrige el volumen que es ahora menor porque las partículas ocupan espacio. a corrige la presión dado que la atracción tiende a formar pares bajando la presión sobre las paredes.

Las funciones respuesta tienen signo errado dentro de la zona del rulo

$$\frac{\partial p}{\partial V} > 0 \to \frac{\partial v}{\partial p} > 0 \Rightarrow \kappa_T < 0 \qquad \text{(MAL)}$$

$$dT = -SdT + VdP + udN$$

dada la isoterma y que N es constante

$$dG = Vdp \rightarrow dg = vdP \pmod{molar}$$

G es cóncava en p entonces

$$v = \left. \frac{\partial g}{\partial p} \right|_{T,N}, \qquad \left. \frac{\partial v}{\partial p} = \left. \frac{\partial^2 g}{\partial p^2} \right|_{T,N} < 0$$

Recordemos que

$$-\frac{1}{v}\frac{\partial v}{\partial p} = \kappa_T > 0$$

y luego

$$\Delta g = \int_{p_{-}}^{p_{G}} v dp = 0$$

entonces

$$\int_C^D + \int_D^E + \int_E^F + \int_F^G = 0$$

y si se invierten puntos para tener un recorrido según las flechas se llega a

$$\int_{C}^{D} - \int_{E}^{D} = \int_{F}^{E} - \int_{F}^{G}$$

Áreas inguales determinan entonces los puntos C y G de forma que se corrige Van Der Waals para dar curvaturas correctas. En la región de coexistencia hemos trocado

$$\frac{\partial p}{\partial V} > 0$$
 por $\frac{\partial p}{\partial V} = 0$

lo cual da $\kappa_T \to \infty$ en lugar del $\kappa_T < 0$ (que es incorrecto).

Conjuntos estadísticos

Gases clásicos ideales

Gases imperfectos

Gas de Fermi

Gas de Bose

Elementos de la teoría de fenómenos críticos

Evolución temporal de sistemas macroscópicos

Gases diluidos en las proximidades del equilibrio

Introducción al estudio de procesos de relajación