Conceitos

Conceitos Fundamentais

Nesta seção, o objetivo é compreender o que são modelos de linguagem e como eles representam o texto de forma numérica e probabilística.

📚 Modelos de Linguagem

- Definição: Um modelo de linguagem é uma função que atribui uma probabilidade a uma sequência de palavras.
- Exemplo:

$$(P(w_1,w_2,\ldots,w_n)=P(w_1) imes P(w_2|w_1) imes \ldots imes P(w_n|w_1,\ldots,w_{n-1}))$$

- \(P \) → probabilidade de ocorrência de uma palavra ou sequência de palavras.
- \(w_i \) → palavra na posição *i* da sequência (exemplo: \(w 1 \) é a primeira palavra, \(w_2 \) a segunda, etc.).
- ($P(w_n|w_1, ..., w_{n-1})$ \) → probabilidade da *n*-ésima palavra dado o contexto anterior.
- Essa decomposição usa a **regra da cadeia de probabilidade**, permitindo calcular a chance de uma frase ocorrer com base nas dependências entre palavras.
- Tipos principais:
 - Modelos N-grama: baseiam-se em janelas de contexto fixas (ex: bigramas, trigramas).
 - Modelos probabilísticos: usam estimativas de frequência para prever a próxima palavra.
 - Modelos neurais: usam embeddings e redes neurais (ex: RNNs, Transformers).

Modelos Estatísticos vs. Modelos Baseados em Regras

Tipo	Descrição	Exemplo
Baseados em regras(HMM)	Usam gramáticas e dicionários definidos manualmente.	Análise sintática, POS tagging com expressões regulares

Tipo	Descrição	Exemplo
Estatísticos(Naive Bayes)	Aprendem padrões a partir de dados.	Modelos de linguagem, classificação de texto

Hoje, os modelos neurais superam os baseados em regras em tarefas complexas, mas os dois podem se complementar.

Dicionários e Vocabulário

- Vocabulário: conjunto de todas as palavras conhecidas pelo modelo.
- Out-of-Vocabulary (OOV): palavras não vistas durante o treinamento.
- Técnicas de redução do vocabulário:
 - Remoção de stopwords
 - Subword tokenization (WordPiece, BPE)

Dica prática: use o nltk.FreqDist ou Counter do Python para analisar as palavras mais comuns de um corpus.