Image Classification of Letters

- A Model Comparison Approach -

•••

General Assembly Final Project 2018 by Mundy Otto Reimer

notMNIST Dataset

- 10 classes for letters A J
- Different Glyphs of Fonts
- Size 28x28 pixels
- 19k hand-cleaned instances
- 500k uncleaned instances

Objective:

Classification Problem

.png Image -> Unicode Value

200			J. S.			<u> </u>	100	- 20		1-1		lo.						F.).		0.000		10000	
	0020	0	0030	@	0040	Р	0050	े	0060	p	0070		00A0	۰	0080	À	0000	Đ	0000	à	00E0	ð	00F0
ļ	0021	1	0031	Α	0041	Q	0051	a	0061	q	0071	i	00A1	±	00B1	Á	0001	Ñ	00D1	á	00E1	ñ	00F1
11	0022	2	0032	В	0042	R	0052	b	0062	r	0072	¢	00 A2	2	00B2	Â	00C2	Ò	00D2	â	00E2	ò	00F2
#	0023	3	0033	С	0043	S	0053	C	0063	5	0073	£	00 A3	3	00B3	Ã	0003	Ó	0003	ã	00E3	ó	00F3
\$	0024	4	0034	D	0044	Т	0054	d	0064	t	0074	ц	00 A4	1	00B4	Ä	00C4	Ô	00D4	ä	00E4	ô	00F4
%	0025	5	0035	Ε	0045	U	0055	e	0065	u	0075	¥	00 A5	μ	00B5	Å	0005	Õ	0005	å	00E5	õ	00F5
&	0026	6	0036	F	0046	٧	0056	f	0066	ν	0076	1	00A6	1	00B6	Æ	0006	Ö	0006	æ	00E6	Ö	00F6
r	0027	7	0037	G	0047	W	0057	g	0067	w	0077	§	00 A 7		00B7	Ç	0007	×	00D7	Ç	00E7	- <u></u>	00F7
(0028	8	0038	Н	0048	Х	0058	h	0068	x	0078		00 A8		00B8	È	0008	Ø	0008	è	00E8	ø	00F8
)	0029	9	0039	Ĺ	0049	Y	0059	i	0069	у	0079	0	00 A 9	1	00B9	É	0009	Ù	00D9	é	00E9	ù	00F9
*	002A	į	003A	J	004A	Z	005A	j	006 A	z	007A	а	00AA	٥	OOBA	Ê	00CA	Ú	OODA	ê	00EA	ú	OOFA
+	002B	,	003B	K	004B	[005B	k	006B	{	007B	«	00 AB	»	00BB	Ë	OOCB	Û	OODB	ë	OOEB	û	OOFB
,	002C	<	003C	L	004C	1	005C	1	006C	1	007C	–	00 AC	1/4	OOBC	Ì	0000	Ü	OODC	ì	OOEC	ü	OOFC
_ :	002D	=	003D	М	004D	1	005D	m	006D	}	007D		00 AD	1/2	OOBD	ĺ	OOCD	Ý	OODD	í	OOED	ý	OOFD
	002E	>	003E	N	004E	Λ	005E	n	006E	7	007E	®	00 AE	3/4	OOBE	î	OOCE	Þ	OODE	î	OOEE	þ	OOFE
1	002F	?	003F	0	004F	(80)	005F	0	006F		007F	-	00 AF	ż	OOBF	Ϊ	OOCF	ß	OODF	ï	OOEF	ÿ	OOFF

Cleaning the Data

Loading

- Un-Pickling
- Each class loaded into separate dataset (memory issues)
- Merged at end in 1 big data set

Normalizing

Convert Dataset into3D array

(image index, x, y)
Floating Point #s

Normalized to ~zero mean & std ~0.5(easier training)

Sampling Labeled Data

Verify data & labels still ok

Partition & Process Data: Training > Validation > Test

Class Distribution

Check data if
 balanced across letter
 classes (Accuracy
 Paradox)

52k per Large Letter

2k per Small Letter

Randomization

- Shuffle labels so training and test distributions match
- Plot each histogram

Measure Overlap

- After split of 90/5/5, check for Training, Validation,
 Test sample overlap
- # Duplicates in training set ~12k
- # Duplicates in train+val ~900
- # Duplicates in train+test ~1k
 - Expect to use in environment w/ no overlap?

Model Comparisons

Training / Val / Test Scores

Logistic Regression

.76 / .80

- Cheap & Simple
- Scores high (90s) for classic MNIST dataset

LR w/ Gradient Descent

.78 / .75/ .82

Used softmax at end $(R \rightarrow [0,1])$ for multiple classes

LR w/ Stochastic Gradient Descent

.77 / .78 / .85

- 4.76 sec (as opposed to 15+ sec)
- Little improvement in accuracy

1-Layer Feedforward .83 / .82/ .88 Neural Network

- Small accuracy improvement over faster & simpler LR w/ Stochastic GD
- Computationally Expensive AND opaque

Model Comparisons

Training / Val / Test Scores

Neural Network w/ L2 Regularization .86/.85/.91 • L2 Ridge (Used b/c large weights indicate possible overfitting?), so multiply them by small fraction (adds penalty on norm of the weights to loss)

Neural Dropout

.84 / .85 / .91

- Since improvement from overfitting, try another overfitting technique (didn't improve much)
- Also used on fully-connected networks

Multiple Layers & Learning Rate Decay

.86 / .85 / .91

- Multiple layers too computationally expensive (+hours)
- Instead implemented LRD to reduce training time back to ~10 sec

2+1-Layer Convolutional Neural .69? / .86 / .93 Network

- Computation time went back up (40 min)
- Stride 2 to reduce dimensionality (13 min)

Convolutional Neural Networks

Visualization of a curve detector filter

Visualization of the	
receptive field	

0	0	0	0	0	0	30
0	0	0	0	50	50	50
0	0	0	20	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0

Pixel representation of the receptive field

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0
_	_	_		_	_	_

Pixel representation of filter

 $\label{eq:Multiplication} \text{Multiplication and Summation} = (50*30) + (50*30) + (50*30) + (20*30) + (50*30) = 6600 \text{ (A large number!)}$

CNN cont: Stride & Padding

Problems (from CNN output)

Categorized Correctly

Incorrect Categorizations & Confidence Level for each Letter

Sources

My Git Repo & Jupyter Notebook:
https://github.com/mundyreimer/not
MNIST_project/blob/4f2e7b3918f58
5933995d6c3d227a66e6711fbb1/proje
cts/final-project/04-notebook-roughdraft/notMNIST.ipynb

Dataset: by Yaroslav Bulatov

http://yaroslavvb.blogspot.com/2011/09/notmnist-d ataset.html

Tensorflow Tutorials:

http://nbviewer.jupyter.org/github/jdwittenauer/ipython-notebooks/tree/master/notebooks/tensorflow/

Theoretical Explanation of Handwritten Digit Recognition:

https://faisalorakzai.wordpress.com/2016/06/01/han dwritten-digits-recognition-using-deep-learning/

Beginner's Guide to Understanding Convolutional Neural Networks:

https://adeshpande3.github.io/adeshpande3.github.i o/A-Beginner's-Guide-To-Understanding-Convolut ional-Neural-Networks/

Thanks!