EXERCICE N°1 **VOIR LE CORRIGÉ**

1) Dire si les propositions suivantes sont vraies au fausses.

1.a)
$$\sqrt{2} \in]-\infty;1]$$

1.b)
$$-3.2 \in [-3.1; 6]$$

1.c)
$$10^{-20} \in]0; 0,1[$$

1.d)
$$10^{-20} \in [0; +\infty]$$

1.e)
$$4,82 \in]4,819 ; 4,821[$$

1.f)
$$6.8 \in [6.7; 6.8]$$

2) Représenter les intervalles suivants sur une droite graduée.

2.a)
$$]-2;3,5]$$

2.b)
$$]-\infty ; 3$$

]-2; 3,5] 2.b)]-
$$\infty$$
; 3[2.c) $\left[-\frac{7}{5}; +\infty\right[$

EXERCICE N°2 **VOIR LE CORRIGÉ**

Recopier en complétant les pointillés par le symbole \in ou \notin .

1)
$$-2\pi$$
 ... $[-7; -4]$

2) 0,33 ...
$$\left[\frac{1}{3}; 2\right[$$

EXERCICE N°3 VOIR LE CORRIGÉ

Représenter sur une droite graduée les intervalles suivants :

3)
$$]-\infty;-4]$$

4)
$$[-2;+\infty[$$

EXERCICE Nº4 VOIR LE CORRIGÉ

Parmi les intervalles suivants, lequel a la plus grande amplitude?

1)
$$I_1 =]-2;1]$$

2)
$$I_2 = \left] -\frac{1}{4} ; \frac{5}{2} \right[$$

$$I_3 = \left[-\frac{1}{2} ; 9 \right[$$

4)
$$I_4 = [-2.54; 0.54]$$

EXERCICE N°5 **VOIR LE CORRIGÉ**

On donne l'intervalle I = [-10; 2].

Citer tous les nombres entiers relatifs qui appartiennent à l'intervalle I.

EXERCICE N°6 **VOIR LE CORRIGÉ**

(se lit « est inclus dans » ou « n'est pas inclus dans »). Compléter par le symbole ⊂ ou ⊄

6) [5,4; 7,7] ...
$$\mathbb{D}$$

EXERCICE N°1

(Le corrigé)

RETOUR À L'EXERCICE 1

1) Dire si les propositions suivantes sont vraies au fausses.

1.a) $\sqrt{2} \in [-\infty; 1]$

Faux

 $]-\infty$; 1] est l'ensemble des nombres inférieurs ou égaux à 1.

Or: $\sqrt{2}$ est strictement supérieur à 1.

1.c) $10^{-20} \in]0; 0,1[$

Vrai $0 < 10^{-20} < 1$

1.e) $4,82 \in [4,819; 4,821]$

Vrai 4,819 < 4,820 < 4,821

1.b) $-3.2 \in [-3.1; 6]$

Faux

[-3,1;6] est l'ensemble des nombres compris entre -3,1 et 6 inclus.

Or: -3.2 est strictement inférieur à -3.1.

1.d) $10^{-20} \in [0 ; +\infty]$

Vrai

 $0 < 10^{-20}$

1.f) $6.8 \in [6.7; 6.8]$

Vrai

 $6.8 < 6.7 \le 6.8$

2) Représenter les intervalles suivants sur une droite graduée.

2.a)]-2;3,5]

2.b) $]-\infty$; 3[

 $2.c) \qquad \left[-\frac{7}{5} ; +\infty \right]$

 $-\infty$ 3

EXERCICE N°2

(Le corrigé)

RETOUR À L'EXERCICE 2

Recopier en complétant les pointillés par le symbole ∈ ou ∉ .

1)
$$-2\pi \in [-7; -4]$$

2)
$$0.33 \notin \left[\frac{1}{3}; 2\right]$$

4)
$$10 \in [-1; 10]$$

EXERCICE N°3

(Le corrigé)

RETOUR À L'EXERCICE 3

Représenter sur une droite graduée les intervalles suivants :

1)]-5;2]

2)]6; 9,5[

3) $]-\infty;-4]$

4) $[-2; +\infty[$

EXERCICE N°4

(Le corrigé)

RETOUR À L'EXERCICE 4

Parmi les intervalles suivants, lequel a la plus grande amplitude?

1) $I_1 =]-2;1]$

2) $I_2 = \left] -\frac{1}{4} ; \frac{5}{2} \right[$

 I_1 a pour amplitude : 1-(-2)=3

 I_2 a pour amplitude : 2,5-(-0,25)=2,75

3) $I_3 = \left[-\frac{1}{2} ; 9 \right]$

4) $I_4 = [-2,54; 0,54]$

 I_3 a pour amplitude : 9-(-0.5)=9.5

 I_4 a pour amplitude : 0.54 - (-2.54) = 3.08

On en déduit que I_3 a la plus grande amplitude .

EXERCICE N°5 (Le corrigé)

RETOUR À L'EXERCICE 5

On donne l'intervalle I =]-10; 2].

Citer tous les nombres entiers relatifs qui appartiennent à l'intervalle $\ I$.

EXERCICE N°6

Compléter par le symbole ⊂ ou ⊄ (se lit « est inclus dans » ou « n'est pas inclus dans »).

1)
$$|3;4| \subset [3;4]$$

3)
$$[-3; 6] \subset [-3,1; 6]$$

Car, par exemple $5.5 \in [4 ; 12]$ mais 5.5 n'est pas un nombre entier.

On retient que l'intervalle fermé 4; 12 contient tous les nombres réels compris entre 4 et 12 inclus.

2)
$$[6; 7,3] \subset [5,9; 7,4]$$

$$\mathbf{4)} \quad [-8 ; 12] \subset \mathbb{R}$$

6)
$$[5,4;7,7] \not\subset \mathbb{D}$$

Car, par exemple $6 + \frac{1}{3} = \frac{19}{3} \in [5,4;7,7]$

mais $\frac{19}{3}$ n'est pas un nombre décimal.

En effet, il possède une infinité de chiffres (tous des « 3 ») après la virgule.