A Study in Fourier Analysis

From circle, through the line, to the complex

Joel Sleeba

IISER Thiruvananthapuram

May 14, 2023

Fourier Series

» Structure and Topology of $\mathbb T$

Fourier Series

- * Defining $\mathbb T$ as the set of equivalence class of the relation $x \sim y \iff x-y \in \mathbb Z$ and identifying classes in $\mathbb T$ with their representative element in [0,1) as $[x] \to \{x\}$, where $\{x\}$ is the fractional part of x.
- * Endow $\mathbb T$ with quotient topology by the map $f\colon \mathbb R o \mathbb T := x o [x]$
- * Lebesgue measure on $\mathbb T$ is defined by the Lebesgue measure of its identification in [0,1).

Fourier Series

Functions in

- * Functions in $\mathbb T$ are identified with periodic functions in $\mathbb R$ with period 1 this again can be completely characterized by their values in [0,1).
- * By the quotient topology in \mathbb{T} , we see that continuous functions in \mathbb{T} can identified with continuous functions in \mathbb{R} with period 1.
- * Also by the Lebesgue measure defined on \mathbb{T} , we say $f \in L^p(\mathbb{T})$ if the corresponding function in [0,1) is in $L^p[0,1)$.
- * For any two function $f,g\in L^1(\mathbb{T})$, their convolution, (f*g)(x) as

$$(f*g)(x) = \int_0^1 f(x-y)g(y) dy$$

is again in $L^1(\mathbb{T})$

Fourier Series

Fourier Coefficients

* For $f \in L^1(\mathbb{T})$, and $n \in \mathbb{Z}$ we define the n^{th} Fourier coefficient of f as

$$\hat{f}(n) = \int_0^1 f(x)e^{-2\pi i n x} dx$$

* Also the Fourier series of $f \in L^1(\mathbb{T})$ is defined as

$$\sum_{n=-\infty}^{\infty} \hat{f}(n)e^{2\pi i n x}$$

* Since we are interested in the convergence of the Fourier series, we will define the symmetric and Cesaro partial sums of the Fourier seres respectively as

$$S_N(x) = \sum_{n=-N}^{N} \hat{f}(n)e^{2\pi inx}$$
 and $\sigma_N(x) = \frac{1}{N}\sum_{n=0}^{N-1} S_n(x)$

» Summability Kernel

- * A collection of functions $K_N \in L^1(\mathbb{T})$ are called a summability kernel if it satisfies the following properites
 - 1. $\int_{0}^{1} K_{N}(x) dx = 1$
 - 2. $\int_0^1 |K_N(x)| dx \le C$ for some constant C > 0
 - 3. $\lim_{N\to\infty} \int_{\delta}^{1-\delta} |K_N(x)| dx = 0$
- * We prove that if K_N is a summability kernel in $L^1(T)$, then $(f*K_N)(x)$ converge to f(x) in $L^1(\mathbb{T})$. That is

$$\int_0^1 |f(x) - (f * K_N)(x)| dx$$

» Fejér Kernel and Cesàro Convergence

* Fejér kernel defined as

Fourier Series

$$\Delta_{N}(x) = \sum_{n=-N}^{N} \left(1 - \frac{|n|}{N}\right) e^{2\pi i n x}$$

is a summability kernel we get that $(f*\Delta_{\it N})$ converge to f in $L^1(\mathbb{T})$

* Moreover we see that $(f*\Delta_N)(x) = \sigma_N(x)$ and therefore the Cesàro partial sums of the Fourier series of f converge to f in $L^1(\mathbb{T})$.

- * Since \mathbb{T} is identified with the finite measure space [0,1), we get that $L^2(\mathbb{T}) \subset L^1(\mathbb{T})$. Theorefore the Fourier coefficients and series can be defined the same way as in $L^1(\mathbb{T})$.
- * Moreover we see that if $f \in L^2(\mathbb{R})$, since the Fejér kernel, $\Delta_N \in L^\infty(\mathbb{T})$, its Cesàro partial sum, $\sigma_N = (f * \Delta_N) \in L^2(\mathbb{T})$
- * As in $L^1(\mathbb{T})$, we get that the Cesàro partial sums σ_N converge to f in $L^2(\mathbb{T})$. That is

$$\lim_{N\to\infty} \int_0^1 |f(x) - \sigma_N(x)| \ dx = 0$$

* The same results follow for functions in $L^p(\mathbb{T})$

» Fejér Theorem and Pointwise Convergence

Write if needed

Fourier Transforms in $\mathbb R$

Fourier transforms in $L^1(\mathbb{R})$

For any $f \in L^1(\mathbb{R})$, the Fourier transform of f is defined as

$$\hat{f}(t) = \int_{-\infty}^{\infty} f(x)e^{-2\pi itx} dx$$

* \hat{f} is uniformly continuous and

$$\lim_{|t|\to\infty}\hat{f}(t)=0$$

» Riemann Lebesgue Lemma

* Let $f \in L^1(\mathbb{R})$, then the inverse Fourier transform is defined as

$$\check{f}(t) = \int_{-\infty}^{\infty} f(x)e^{2\pi itx} dx$$

* We see that if $f \in L^1(\mathbb{R})$, continuous at $x \in \mathbb{R}$ and its Fourier transform $\hat{f} \in L^1(\mathbb{R})$, then

$$\dot{\hat{f}}(x) = f(x)$$

Generalizing further we get that that if $f, \hat{f} \in L^1(\mathbb{R})$ then

$$\dot{\hat{f}} \stackrel{a.e}{=} f$$

» Fourier transforms in $L^2(\mathbb{R})$

- * We consider the space $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$. Since it is a subspace of $L^1(\mathbb{R})$, the definition of Fourier transform and inverse transform holds good in the smaller space.
- * (Plancherel's Theorem) If $f\in L^1(\mathbb{R})\cap L^2(\mathbb{R})$, then

$$\int_{\mathbb{R}} |f(x)|^2 dx = \int_{\mathbb{R}} |\hat{f}(t)|^2 dt$$

- * Now since the collection of compactly supported functions in \mathbb{R} , $C_c(\mathbb{R})$ is dense in $L^p(\mathbb{R})$ for all $1 \leq p < \infty$, we get that $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ is dense in $L^2(\mathbb{R})$.
- * Plancherel's theorem asserts that Fourier transform in $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ is an isometry therefore we can extend Fourier transform to an isometry in $L^2(\mathbb{R})$.

Homolorphic Fourier Transforms

* Fourier transform of certain functions can be extended into a holomorphic functions in certain regions. That is for $z \in \mathbb{C}$,

$$\hat{f}(z) = \int_{\mathbb{R}} f(x) e^{-2\pi i z x} dx$$

will be holomorphic in certain regions in \mathbb{C} .

- * For example if $f(x)=e^{-|x|}$, then its Fourier transform, $\hat{f}(t)=\frac{1}{1+(2\pi t)^2}$ can be extended into holomorphic function in regions in the complex plane without the points $\pm\frac{i}{2\pi}$.
- * We will focus on two types of functions in $L^2(\mathbb{R})$
 - 1. f(x) = 0, (x < 0)
 - 2. $f(x) = 0, (x \notin (-A, A))$

Paley Wiener Theorem 1

The following statements are equivalent

1. $f \in H(\Pi_+)$ such that

$$\sup_{0 < y < \infty} \frac{1}{2\pi} \int_{\mathbb{R}} f(x + iy) \ dx = C < \infty$$

2. There exist an $F\in L^2(\mathbb{R})$ such that F is supported in $(0,\infty)$ and for all $z\in\Pi^+$

$$f(z) = \int_0^\infty F(t)e^{2\pi itz} dt$$

and

$$\int_0^\infty |F(t)|^2 dt = C$$

» Paley Wiener Theorem 2

The following statements are equivalent:

1. $f: \mathbb{C} \to \mathbb{C}$ is an entire function satisfying $|f(z)| \le Ce^{2\pi A|z|}$ and

$$\int_{-\infty}^{\infty} |f(x+iy)|^2 dx < \infty$$

2. There exist an $F \in L^2(\mathbb{R})$ is supported in (-A, A) such that

$$f(z) = \int_{-A}^{A} F(x)e^{2\pi i z x} dx$$

» Consequence of Paley Wiener Theorems

Future Directions

» Schwartz Class

* A smooth function $f: \mathbb{R}^n \to \mathbb{C}$, f is called a Schwartz function if for any given multi index α, β , there exists a positive constant $C_{\alpha,\beta}$ such that

$$ho_{lpha,eta} = \sup_{\mathbf{x}\in\mathbb{R}^n} \left| \mathbf{x}^{lpha}(D^{eta}f)\mathbf{x} \right| = C_{lpha,eta} < \infty$$

- * Here $\rho_{\alpha,\beta}(f)$ is called Schwartz seminorm of f. The collection of all such functions is called the *Schwartz space* of \mathbb{R}^n and is denoted by $\mathscr{S}(\mathbb{R}^n)$.
- * Schwartz class is dense in $L^p(\mathbb{R}^n)$ for all $1 \leq p < \infty$.

Fourier transforms in Rⁿ

* Fourier transform of $f \in \mathscr{S}(\mathbb{R}^n)$, $\hat{f} : \mathbb{R}^n \to \mathbb{C}^n$ is defined as

$$\hat{f}(\mathbf{t}) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i \mathbf{t} \cdot \mathbf{x}} dx$$

* Parseval's identity holds in Schwartz class

$$\|\hat{f}\|_2 = \|f\|_2$$

- Fourier transform is a homeomorphism in $\mathscr{S}(\mathbb{R}^n)$.
- By Parseval's identity Fourier transform can be extended into whole of \mathbb{R}^n

» Restriction Conjecture