ME EN 2550

Ryan Dalby u0848407

Homework 8- Part A

8.2: a) Predicted birth weight = 120.07 - 1.93(parity)

b) If a child is not the first born then there is a predicted 1.93 decrease in predicted birth weight.

Predicted birth weight of firstborns = 120.07 oz.

Predicted birth weight of non-firstborns = 118.14 oz.

c) No, we fail to reject the null hypothesis that is, holding all other variables constant, parity is unpredictive of birth weight. This is because the P-value = 0.1052 which is greater than alpha = 0.05.

8.3: Predicted birth weight = -80.41 + 0.44(gestation) - 3.33(parity) - 0.01(age) + 1.15(height) + 0.05(weight) - 8.40(smoke)

b) For a unit increase in gestation length, there is a predicted 0.44 oz. increase in birth weight all else held constant. For a unit increase in the age of the mother, there is a predicted 0.01oz.

Decrease in birth weight all else held constant.

c) There is a difference because we are dealing with a completely different model that has many more predictors. There is also the chance that parity might be correlated with another variable in the model.

d) Actual: 120 Predicted: 120.58 Residual: -0.58

e) R² = 0.2504 Adjusted R² = 0.2468

8.5: a) 95% CI (-.3212 < coefficient of gender < 0.1612) There is a 95 % chance that the calculated interval contains the true coefficient of gender which predicts GPA when all other predictors are held constant.

b) Yes because for all other predictors the P-values are greater than alpha = 0.05.

- 8.7 Age would be the predictor to be removed first because without it the model has the highest R^2 adjusted of any other model that had one predictor removed.
- 8.13: Nearly Normal Residuals: The probability plot appears linear and thus overall normally distributed.

Constant Variability: The scatterplots show no major patterns other than from the discrete domains of some of the predictors.

Independent: The residuals all appear randomly distributed.

Linearly Related: It appears that there are no major patterns in the residual plots thus a linear model appears to work decently well for this data.

Overall it appears that the assumptions for regression are met.

8.14: Nearly Normal Residuals: The probability plot appears approximately linear and it is reasonable to conclude the data is overall normally distributed, although possibly with some skewness.

Constant Variability: The scatterplots show no major patterns other than from the discrete domains of some of the predictors.

Independent: The residuals all appear randomly distributed.

Linearly Related: It appears that there are no major patterns in the residual plots thus a linear model appears to work decently well for this data.

Overall it appears that the assumptions for regression are met.

Python 3.6.5 | Anaconda, Inc. | (default, Mar 29 2018, 13:32:41) [MSC v.1900 64 bit (AMD64)] Type "copyright", "credits" or "license" for more information.

IPython 6.4.0 -- An enhanced Interactive Python.

In [1]: runfile('C:/Users/hoops/OneDrive/Documents/School/ME EN 2550 Statistics and
Probability/HW8/HW8.py', wdir='C:/Users/hoops/OneDrive/Documents/School/ME EN 2550
Statistics and Probability/HW8')

B1 b)

OLS Regression Result	ะร
-----------------------	----

		==========
viscosity	R-squared:	0.269
OLS	Adj. R-squared:	0.147
Least Squares	F-statistic:	2.210
Tue, 16 Apr 2019	<pre>Prob (F-statistic):</pre>	0.188
15:39:10	Log-Likelihood:	5.2642
8	AIC:	-6.528
6	BIC:	-6.370
1		
nonrobust		
	OLS Least Squares Tue, 16 Apr 2019 15:39:10 8 6	OLS Adj. R-squared: Least Squares F-statistic: Tue, 16 Apr 2019 Prob (F-statistic): 15:39:10 Log-Likelihood: 8 AIC: 6 BIC: 1

=======================================		=======	=========			
	coef	std er	r t	P> t	[0.025	0.975]
Intercept	0.5986	0.09		0.001	0.365	0.832
np.power(ratio, 2)	-0.2523	0.17	0 -1.487	0.188	-0.668	0.163
=======================================	=======	=======	=========	========		===
Omnibus:		0.731	Durbin-Watso	n:	1.	510
Prob(Omnibus):		0.694	Jarque-Bera	(JB):	0.	528
Skew:		-0.085	Prob(JB):		0.	768
Kurtosis:		1.753	Cond. No.		4	.13
=======================================	=======	=======	==========			===

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

=======================================	=======================================		=======================================
Dep. Variable:	satisfaction	R-squared:	0.904
Model:	OLS	Adj. R-squared:	0.884
Method:	Least Squares	F-statistic:	46.87
Date:	Tue, 16 Apr 2019	<pre>Prob (F-statistic):</pre>	6.95e-10
Time:	15:39:10	Log-Likelihood:	-82.062
No. Observations:	25	AIC:	174.1
Df Residuals:	20	BIC:	180.2
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept age severity surgmed anxiety	143.8672 -1.1172 -0.5862 0.4149 1.3064	6.044 0.138 0.136 3.008 1.084	23.804 -8.075 -4.324 0.138 1.205	0.000 0.000 0.000 0.892 0.242	131.260 -1.406 -0.869 -5.859 -0.955	156.474 -0.829 -0.303 6.689 3.568
Omnibus: Prob(Omnibus Skew: Kurtosis:	====== s):	0. -0.		• •):	2.102 2.355 0.308 297.

Warnings:

 $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

b)

Standard error of regression coefficents:

Intercept 6.043698 age 0.138342 severity 0.135556 surgmed 3.007787 anxiety 1.084055 dtype: float64

c) Not all the model parameters are estimated with the same precision. This is because all parameters are fit to a single model and thus the predictors will have varying standard error values/precision

B3 a)

OLS Regression Results

ors well ession westers					
============	=======================================				
Dep. Variable:	у	R-squared:	0.852		
Model:	OLS	Adj. R-squared:	0.768		
Method:	Least Squares	F-statistic:	10.08		
Date:	Tue, 16 Apr 2019	<pre>Prob (F-statistic):</pre>	0.00496		
Time:	15:39:10	Log-Likelihood:	-43.397		
No. Observations:	12	AIC:	96.79		
Df Residuals:	7	BIC:	99.22		
Df Model:	4				
Covariance Type:	nonrobust				

========						
	coef	std err	t	P> t	[0.025	0.975]
Intercept x1 x2 x3 x4	-123.1312 0.7573 7.5188 2.4831 -0.4811	157.256 0.279 4.010 1.809 0.555	-0.783 2.713 1.875 1.372 -0.867	0.459 0.030 0.103 0.212 0.415	-494.983 0.097 -1.964 -1.795 -1.794	248.720 1.417 17.001 6.762 0.832
Omnibus: Prob(Omnibus Skew: Kurtosis:	us):	0	.296 Jarq .288 Prob	in-Watson: ue-Bera (JE (JB): . No.	3):	1.808 1.069 0.586 6.82e+03

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.82e+03. This might indicate that there are strong multicollinearity or other numerical problems.

b)

Standard error of regression coefficents:

Intercept 157.256058 x1 0.279090 x2 4.010121 x3 1.809386 x4 0.555174

dtype: float64

Not all the model parameters are estimated with the same precision. This is because all parameters are fit to a single model and thus the predictors will have varying standard error values/precision

c)

The predicted power consumption for a month with the given values is : 290.442068 dtype: float6

```
C:\Users\hoops\Anaconda3\lib\site-packages\scipy\stats\py:1394: UserWarning:
kurtosistest only valid for n>=20 ... continuing anyway, n=8
  "anyway, n=%i" % int(n))
C:\Users\hoops\Anaconda3\lib\site-packages\scipy\stats\py:1394: UserWarning:
kurtosistest only valid for n>=20 ... continuing anyway, n=12
  "anyway, n=%i" % int(n))
```

In [2]:

```
Created on Mon Apr 15 19:49:07 2019
ME EN 2550
Homework 8
@author: Ryan Dalby
import numpy as np
import pandas <mark>as</mark> pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
print("B1")
b1data = pd.DataFrame({"viscosity": [0.45, 0.20, 0.34, 0.58, 0.70, 0.57, 0.55, 0.44], "ratio'
plt.scatter(b1data['ratio'], b1data['viscosity'])
print("b)")
b1model = sm.OLS.from_formula(formula="viscosity ~ np.power(ratio,2)", data=b1data).fit()
b1predictions = b1model.predict(b1data['ratio'])
plt.plot(b1data['ratio'], b1predictions)
plt.show()
print("a)")
print(b1model.summary())
print()
print("\n\nB2")
age = [55,46,30,35,59,61,74,38,27,51,53,41,37,24,42,50,58,60,62,68,70,79,63,39,49]
severity = [50,24,46,48,58,60,65,42,42,50,38,30,31,34,30,48,61,71,62,38,41,66,31,42,40]
surg = [0,1,1,1,0,0,1,1,0,1,1,0,0,0,0,1,1,1,0,0,1,1,1,0,0,1]
anx = [2.1,2.8,3.3,4.5,2.0,5.1,5.5,3.2,3.1,2.4,2.2,2.1,1.9,3.1,3.0,4.2,4.6,5.3,7.2,7.8,7.0,6.2
sat = [68,77,96,80,43,44,26,88,75,57,56,88,88,102,88,70,52,43,46,56,59,26,52,83,75]
b2data = pd.DataFrame({"age": age, "severity":severity, "surgmed":surg, "anxiety":anx, "satisf
b2model = sm.OLS.from formula(formula="satisfaction ~ age + severity + surgmed + anxiety", dat
print("a)")
print(b2model.summary())
print("b)")
print("Standard error of regression coefficents: \n{}".format(b2model.bse))
print("c) Not all the model parameters are estimated with the same precision. This is because
print("\n\nB3")
y = [240,236,270,274,301,316,300,296,267,276,288,261]
x1 = [25,31,45,60,65,72,80,84,75,60,50,38]
x2 = [24,21,24,25,25,26,25,25,24,25,25,23]
x3 = [91,90,88,87,91,94,87,86,88,91,90,89]
x4 = [100,95,110,88,94,99,97,96,110,105,100,98]
b3data = pd.DataFrame({"y":y,"x1":x1,"x2":x2,"x3":x3,"x4":x4})
b3model = sm.OLS.from_formula(formula="y ~ x1 + x2 + x3 + x4", data=b3data).fit()
print("a)")
print(b3model.summary())
print("b)")
print("Standard error of regression coefficents: \n{}".format(b3model.bse))
print("Not all the model parameters are estimated with the same precision. This is because al
```

print("c)") b3predict = b3model.predict(exog = dict(x1 = 75, x2 = 24, x3 = 90, x4 = 98)) print("The predicted power consumption for a month with the given values is : ${}\n\n\n\n\n\.$