### M1970 – Machine Learning II Redes Probabilísticas Discretas (Inferencia)





Sixto Herrera (sixto.herrera@unican.es) José M. Gutiérrez, Mikel Legasa Grupo de Meteorología Univ. de Cantabria – CSIC MACC / IFCA







M1970 - Machine Learning (L 16:00-18:00; X 16:00-18:00) Mar L Introducción - Redes Probabilísticas Discretas (2h-T) X Redes Bayesianas: Creación e Inferencia (2h-L) L Clasificacidores Bavesianos, Naive Baves (2h-L) 11 X Redes Bayesianas: Aprendizaje Estructural (2h-T) L Redes Bayesianas: Aprendizaje Paramétrico – R. Gaussianas/Mixtas (2h-TL) 16 X Redes Bayesianas: Aprendizaje (2h-L) 23 L Evaluación (2h)

NOTA: Las líneas de código de R en esta presentación se muestran sobre un fondo gris.







Directed graphs lead to a probabilistic model directly obtained from the graph, defining the factorization of the joint probability function as product of conditional probabilities of each node  $x_i$  given his parents  $\pi_i$ .

$$P(X) = \prod_{i=1}^{n} P(X_i | \pi_i)$$



$$P(A,B,C,D,E,F,G,H) = P(A)P(B|A)P(C|A)P(D|B,C)x...$$
  
 $xP(E|C)P(F|D)P(G|D)P(H|E)$ 

Bayesian Networks obtain a compact representation of the joint probability function through the conditional independences.



Once the Bayesian Network (**DAG+CPT**) is defined, some questions grow. In particular, given a **new evidence** 

- Which is the probability of an event? ← CPT-Inference
- There are new (in)dependences between variables? 

  DAG-Inference

. . .

Bayesian Networks obtain a compact representation of the joint probability function through the conditional independences.



Once the Bayesian Network (**DAG+CPT**) is defined, some questions grow. In particular, given a **new evidence** 

- Which is the probability of an event? ← CPT-Inference
- There are new (in)dependences between variables? ← DAG-Inference → 11/03

. . .





Links of the graph reflect dependences between the linked variables.

Non directed graphs define the conditional dependence through the **d-separation** concept.





Links of the graph reflect dependences between the linked variables.

Non directed graphs define the conditional dependence through the **d-separation** concept.

There is not a path linking A and I not passing for E.
Thus A and I are dependent but conditional independent given E.





Links of the graph reflect dependences between the linked variables.

Non directed graphs define the conditional dependence through the **d-separation** concept.

There is a path linking A and I not passing for B (A->C->E->I). Thus A and I are dependent given B and B doesn't d-separate A and I.





(a)  $I(A, I \mid E)$ 

(b) D(A, I | B)





Links of the graph reflect dependences between the linked variables.

Non directed graphs define the conditional dependence through the **d-separation** concept.

**D-separation** is extended to set of variables.

Non-directed graphs define a graphical probabilistic model family based on the cliques of the graph and the factorization of the joint probability function given by them.





$$C_1 = \{A, B, C\}, C_2 = \{B, C, E\},\$$
  
 $C_3 = \{B, D\}, C_4 = \{C, F\}.$ 

$$p(a, b, c, d, e, f) = \psi_1(c_1)\psi_2(c_2)\psi_3(c_3)\psi_4(c_4)$$
  
=  $\psi_1(a, b, c)\psi_2(b, c, e)\psi_3(b, d)\psi_4(c, f)$ .

| i | Clique $C_i$ | Separator $S_i$ | Residual $R_i$ |
|---|--------------|-----------------|----------------|
| 1 | A, B, C      | $\phi$          | A, B, C        |
| 2 | B, C, E      | B, C            | E              |
| 3 | B, D         | B               | D              |
| 4 | C, F         | C               | F              |

$$p(a,b,c,d,e,f) = \prod_{i=1}^{4} p(r_i|s_i) = p(a,b,c)p(e|b,c)p(d|b)p(f|c).$$





$$P_Z(Y|X) = P(Y|X,Z) = P(Y|Z) = P_Z(Y) \Rightarrow I(X,Y|Z)$$

|            | An   | ual  | Invi | erno | Prim | avera | Ver | ano | Ote | oño |
|------------|------|------|------|------|------|-------|-----|-----|-----|-----|
|            | S    | Ll   | S    | Ll   | S    | Ll    | S   | Ll  | S   | Ll  |
| NE         | 1014 | 516  | 190  | 99   | 287  | 166   | 360 | 162 | 177 | 89  |
| SE         | 64   | 57   | 24   | 18   | 6    | 4     | 1   | 9   | 33  | 26  |
| $_{ m SW}$ | 225  | 661  | 98   | 223  | 18   | 119   | 15  | 71  | 94  | 248 |
| NW         | 288  | 825  | 49   | 150  | 95   | 277   | 108 | 251 | 36  | 147 |
| Total      | 1591 | 2059 | 361  | 490  | 406  | 566   | 484 | 493 | 340 | 510 |

P ( LI / Primavera) = 0.576 P ( LI / Invierno) = 0.582

### **Direct independence variables** → **Involve only two variables**

$$P(LI) = 0.564$$



Non-directed graphs are not able to represent this kind of dependence!!!

# Conditional dependence between rainfall and season, given the wind







Links between variables imply probabilistic dependence NOT CAUSALITY !!!!!!





**Causal Networks (not seen)** 

(c)  $I(C, P | \{E, W\})$ 

(d)  $D(C, \{H, P\} \mid E)$ 







```
## Load bnlearn:
library(bnlearn)
## Defining an empty graph:
dag<-empty.graph(nodes=c("E","V","W","H","C","P"))
class(dag)
print(dag)
plot(dag)
## Adding link between nodes:
dag<-set.arc(dag,from="E",to="W")
dag<-set.arc(dag,from="V",to="W")
## Complete and plot the graph:
## Evaluate the separation included in the previous slide (See ? dsep and ?path):</pre>
```







Two directed graph are **equivalents** when they lead to the same probabilistic model:

$$P(X_1, X_2, X_3) = P(X_1)P(X_2|X_1)P(X_3|X_1) = P(X_1, X_2)P(X_3|X_1)$$





$$P(X_1, X_2, X_3) = P(X_2)P(X_1|X_2)P(X_3|X_1) = P(X_1, X_2)P(X_3|X_1)$$



Two directed graph are equivalents when they lead to the same probabilistic model.

This occurs when the **subyacent non-directed graph** is the same and include the same **V-structures**.

$$P(X_1, X_2, X_3) = P(X_1, X_2) P(X_3 | X_1)$$

#### **Common effect**







**Common cause** 

Indirect evidential/causal effect

Two directed graph are equivalents when they lead to the same probabilistic model.

This occurs when the **subyacent non-directed graph** is the same and include the same **V-structures**.

The **Skeleton** of the graph is the undirected graph underlying. The **Markov Blanket** of a node **A** is the set of nodes that completely separates **A** from the rest of the graph. In particular, it includes the parents and childrens of the node **A**, and those children's other parents.



**Source:** Image from https://en.wikipedia.org/wiki/Markov\_blanket

Two directed graph are equivalents when they lead to the same probabilistic model.

This occurs when the **subyacent non-directed graph** is the same and include the same **V-structures**.

The **Skeleton** of the graph is the undirected graph underlying. The **Markov Blanket** of a node  $\boldsymbol{A}$  is the set of nodes that completely separates  $\boldsymbol{A}$  from the rest of the graph. In particular, it includes the parents and childrens of the node  $\boldsymbol{A}$ , and those children's other parents.



The Markov Blanket of is the set of nodes that includes all the knowledge needed to do inference on the node **A**, from estimation to hypothesis testing to prediction.

**Source:** Image from https://en.wikipedia.org/wiki/Markov\_blanket

Bayesian Networks obtain a compact representation of the joint probability function through the conditional independences.



Once the Bayesian Network (**DAG+CPT**) is defined, some questions grow. In particular, given a **new evidence** 

- Which is the probability of an event? ← CPT-Inference
- There are new (in)dependences between variables? 

  DAG-Inference

. . .

$$p(x_i|e) \quad E \subset X \quad X_i = e_i \quad X_i \in E$$
$$p(x) = p(a)p(b)p(c|a)p(d|a,b)p(e)p(f|d)p(g|d,e),$$



$$p(x_i|e) \quad E \subset X \quad X_i = e_i \quad X_i \in E$$
$$p(x) = p(a)p(b)p(c|a)p(d|a,b)p(e)p(f|d)p(g|d,e),$$



$$p(d) = \sum_{x \setminus d} p(x) = \sum_{a,b,c,e,f,g} p(a,b,c,d,e,f,g).$$

$$p(d) = \sum_{a,b,c,e,f,g} p(a)p(b)p(c|a)p(d|a,b)p(e)p(f|d)p(g|d,e)$$

$$= \left(\sum_{a,b,c} p(a)p(b)p(c|a)p(d|a,b)\right) \left(\sum_{e,f,g} p(e)p(g|d,e)p(f|d)\right),$$

$$\sum_{a} \left[p(a)\sum_{e} \left[p(e|a)\sum_{b} p(b)p(d|a,b)\right] \sum_{e} \left[p(e)\sum_{f} \left[p(f|d)\sum_{g} p(g|d,e)\right]\right]$$

CSIC

$$p(x_i|e) \quad E \subset X \quad X_i = e_i \quad X_i \in E$$
$$p(x) = p(a)p(b)p(c|a)p(d|a,b)p(e)p(f|d)p(g|d,e),$$



$$\begin{aligned} p(d) &= \sum_{a,b,c,e,f,g} p(a)p(b)p(c|a)p(d|a,b)p(e)p(f|d)p(g|d,e) \\ &= \left(\sum_{a,b,c} p(a)p(b)p(c|a)p(d|a,b)\right) \left(\sum_{e,f,g} p(e)p(g|d,e)p(f|d)\right), \\ \sum_{a} \left[p(a)\sum_{e} \left[p(c|a)\sum_{b} p(b)p(d|a,b)\right]\right] \sum_{e} \left[p(e)\sum_{f} \left[p(f|d)\sum_{g} p(g|d,e)\right]\right] \end{aligned}$$

Moralized non-directed graph is obtained and efficient graphs algorithms are applied to obtain the new probabilities. → Exact Inference





Exact inference suffers when the graph is dense (hyper-conected) or there are many variables in the model, losing most of their efficiency and making more adequate the use of aproximated algorithms based on simulation.

Herer we include a brief description of the general approach used by this algorithms:

Input: Real probability function P(X) and distribution considered for the simulation h(X) (e.g. uniform), sample size N and a subset  $Y \subset X$ .

**Output: Approximated value for P(y) for y in Y.** 

- 1. For j=1 .. N
  - Generate  $x^j = (x^j_1, ..., x^j_n)$  from h(x).
  - Estimate  $s(x^j) = p(x^j)/h(x^j)$ .
- 2. For each  $\mathbf{y}$ , estimate  $P(y) \approx \Sigma_{v} s(x^{j}) / \Sigma_{i} s(x^{j})$

- 1. For j=1 .. N
  - Generate  $x^j = (x^j_1, ..., x^j_n)$  from h(x).
  - Estimate  $s(x^j) = p(x^j)/h(x^j)$ .





| X <sub>1</sub> | p(x <sub>1</sub> ) |
|----------------|--------------------|
| 0              | 0.3                |
| 1              | 0.7                |

 $\boldsymbol{P}$ 

| ) ( | $X_1$ ,. | $, X_6$ | =P | $(X_1)$ | )P( | $(X_2)$ | $X_1$ | )P | $(X_3)$ | $ X_1 $ | )P( | $(X_4 $ | $ X_2 $ | )P ( | $(X_5)$ | $X_2$ | $X_3$ | )P ( | $(X_6)$ | $ X_3 $ | ) |
|-----|----------|---------|----|---------|-----|---------|-------|----|---------|---------|-----|---------|---------|------|---------|-------|-------|------|---------|---------|---|
|-----|----------|---------|----|---------|-----|---------|-------|----|---------|---------|-----|---------|---------|------|---------|-------|-------|------|---------|---------|---|

| $X_1$ | X <sub>2</sub> | $p(x_2 x_1)$ | X <sub>1</sub> | X <sub>3</sub> | p(x <sub>3</sub>  x <sub>1</sub> ) | X <sub>2</sub> | X <sub>4</sub> | p(x <sub>4</sub>  x <sub>2</sub> ) | <b>X</b> <sub>3</sub> | X <sub>6</sub> | p(x <sub>6</sub>  x <sub>3</sub> ) |
|-------|----------------|--------------|----------------|----------------|------------------------------------|----------------|----------------|------------------------------------|-----------------------|----------------|------------------------------------|
|       |                |              |                |                |                                    |                |                |                                    |                       |                |                                    |
| 0     | 0              | 0.4          | 0              | 0              | 0.2                                | 0              | 0              | 0.3                                | 0                     | 0              | 0.1                                |
| 0     | 1              | 0.6          | 0              | 1              | 8.0                                | 0              | 1              | 0.7                                | 0                     | 1              | 0.9                                |
| 1     | 0              | 0.1          | 1              | 0              | 0.5                                | 1              | 0              | 0.2                                | 1                     | 0              | 0.4                                |
| 1     | 1              | 0.9          | 1              | 1              | 0.5                                | 1              | 1              | 0.8                                | 1                     | 1              | 0.6                                |

| X <sub>2</sub> | <b>X</b> <sub>3</sub> | <b>X</b> <sub>5</sub> | p(x <sub>5</sub>  x <sub>2</sub> ,x <sub>3</sub> ) |
|----------------|-----------------------|-----------------------|----------------------------------------------------|
| 0              | 0                     | 0                     | 0.4                                                |
| 0              | 0                     | 1                     | 0.6                                                |
| 0              | 1                     | 0                     | 0.5                                                |
| 0              | 1                     | 1                     | 0.5                                                |
| 1              | 0                     | 0                     | 0.7                                                |
| 1              | 0                     | 1                     | 0.3                                                |
| 1              | 1                     | 0                     | 0.2                                                |
| 1              | 1                     | 1                     | 0.8                                                |
|                |                       |                       |                                                    |

For example, for the event (0,1,1,1,0,0) this is the probability:  $p(0,1,1,1,0,0) = p(x_1=0)p(x_2=1|x_1=0)p(x_3=1|x_1=0)p(x_4=1|x_2=1)$   $p(x_5=0|x_2=1,x_3=1)p(x_6=0|x_3=1) = 0.3 \times 0.6 \times 0.8 \times 0.8 \times 0.2 \times 0.4 = 0.009216$ 



1. For j=1 .. N

- Generate  $x^j = (x^j_1, ..., x^j_n)$  from h(x).
- Estimate  $s(x^j) = p(x^j)/h(x^j)$ .





| \              | 1,                 |
|----------------|--------------------|
| X <sub>1</sub> | p(x <sub>1</sub> ) |
| 0              | 0.3                |

0.7

| $P(X_1,\ldots,X_6)$ | $=P(X_1)$ | $)P(X_{2} X_{1})$ | $P(X_3 X_1)$ | $P(X_4 X_2)$ | $P(X_5 X_2,$ | $X_3$ ) $P(X_6 X_3)$ |
|---------------------|-----------|-------------------|--------------|--------------|--------------|----------------------|
|                     |           |                   |              |              |              |                      |

| X <sub>1</sub> | X <sub>2</sub> | p(x <sub>2</sub>  x <sub>1</sub> ) | X <sub>1</sub> | X <sub>3</sub> | p(x <sub>3</sub>  x <sub>1</sub> ) | X <sub>2</sub> | X <sub>4</sub> | p(x <sub>4</sub>  x <sub>2</sub> ) | <b>X</b> <sub>3</sub> | X <sub>6</sub> | p(x <sub>6</sub>  x <sub>3</sub> ) |   |
|----------------|----------------|------------------------------------|----------------|----------------|------------------------------------|----------------|----------------|------------------------------------|-----------------------|----------------|------------------------------------|---|
| 0              | 0              | 0.4                                | 0              | 0              | 0.2                                | 0              | 0              | 0.3                                | 0                     | 0              | 0.1                                |   |
| 0              | 1              | 0.6                                | 0              | 1              | 0.8                                | 0              | 1              | 0.7                                | 0                     | 1              | 0.9                                | l |
| 1              | 0              | 0.1                                | 1              | 0              | 0.5                                | 1              | 0              | 0.2                                | 1                     | 0              | 0.4                                | l |
| 1              | 1              | 0.9                                | 1              | 1              | 0.5                                | 1              | 1              | 0.8                                | 1                     | 1              | 0.6                                |   |

| X <sub>2</sub> | X <sub>3</sub> | X <sub>5</sub> | p(x <sub>5</sub>  x <sub>2</sub> ,x <sub>3</sub> ) |
|----------------|----------------|----------------|----------------------------------------------------|
| _              | -              |                |                                                    |
|                |                |                | 0.4                                                |
| 0              | 0              | 0              | 0.4                                                |
| 0              | 0              | 1              | 0.6                                                |
| 0              | 1              | 0              | 0.5                                                |
| 0              | 1              | 1              | 0.5                                                |
| 1              | 0              | 0              | 0.7                                                |
| 1              | 0              | 1              | 0.3                                                |
| 1              | 1              | 0              | 0.2                                                |
| 1              | 1              | 1              | 0.8                                                |
|                |                |                |                                                    |

Six binary variables  $\rightarrow$  26=64 posibilities  $\rightarrow$  Suppose  $\boldsymbol{h}$  uniform  $\rightarrow$  h(x)=1/64

#### Step 1

| Realization x <sup>j</sup>                                                                                                                                        | p(x <sup>i</sup> )                             | h(x <sup>j</sup> )                   | $s(x^{j})=p(x^{j})/h(x^{j})$                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------|------------------------------------------------|
| x <sup>1</sup> =(0,1,1,1,0,0)<br>x <sup>2</sup> =(1,1,0,1,1,0)<br>x <sup>3</sup> =(0,0,1,0,0,1)<br>x <sup>4</sup> =(1,0,0,1,1,0)<br>x <sup>5</sup> =(1,0,0,0,1,1) | 0.0092<br>0.0076<br>0.0086<br>0.0015<br>0.0057 | 1/64<br>1/64<br>1/64<br>1/64<br>1/64 | 0.5898<br>0.4838<br>0.5529<br>0.0941<br>0.3629 |
|                                                                                                                                                                   |                                                |                                      |                                                |



- 1. For j=1 .. N
  - Generate  $x^j = (x^j_1, ..., x^j_n)$  from h(x).
  - Estimate  $s(x^j) = p(x^j)/h(x^j)$ .
- 2. For each y, estimate  $P(y) \approx \Sigma_y s(x^j) / \Sigma_j s(x^j)$ **Joint Probability Function**



### $P(X_{1},...,X_{6}) = P(X_{1})P(X_{2}|X_{1})P(X_{3}|X_{1})P(X_{4}|X_{2})P(X_{5}|X_{2},X_{3})P(X_{6}|X_{3})$

| <b>X</b> <sub>1</sub> | p(x <sub>1</sub> ) | X <sub>1</sub> | X <sub>2</sub> | p(x <sub>2</sub>  x <sub>1</sub> ) | X <sub>1</sub> | X <sub>3</sub> | p(x <sub>3</sub>  x <sub>1</sub> ) | X <sub>2</sub> | <b>X</b> <sub>4</sub> | p(x <sub>4</sub>  x <sub>2</sub> ) | <b>X</b> <sub>3</sub> | <b>X</b> <sub>6</sub> | p(x <sub>6</sub>  x <sub>3</sub> ) |
|-----------------------|--------------------|----------------|----------------|------------------------------------|----------------|----------------|------------------------------------|----------------|-----------------------|------------------------------------|-----------------------|-----------------------|------------------------------------|
| 0                     | 0.3<br>0.7         | 0              | 0              | 0.4                                | 0              | 0              | 0.2                                | 0              | 0                     | 0.3                                | 0                     | 0                     | 0.1                                |
|                       | 0.7                | 0              | 1              | 0.6                                | 0              | 1              | 0.8                                | 0              | 1                     | 0.7                                | 0                     | 1                     | 0.9                                |
|                       |                    | 1              | 0              | 0.1                                | 1              | 0              | 0.5                                | 1              | 0                     | 0.2                                | 1                     | 0                     | 0.4                                |
|                       |                    | 1              | 1              | 0.9                                | 1              | 1              | 0.5                                | 1              | 1                     | 8.0                                | 1                     | 1                     | 0.6                                |
|                       |                    |                |                |                                    |                |                |                                    |                |                       |                                    | -                     |                       |                                    |

Step 2

Poor estimation due to the number of simulations (5)

| Realization x <sup>j</sup>    | p(x <sup>i</sup> ) | h(x <sup>j</sup> ) | $s(x^{j})=p(x^{j})/h(x^{j})$ |
|-------------------------------|--------------------|--------------------|------------------------------|
| x <sup>1</sup> =(0,1,1,1,0,0) | 0.0092             | 1/64               | 0.5898                       |
| x <sup>2</sup> =(1,1,0,1,1,0) | 0.0076             | 1/64               | 0.4838                       |
| x <sup>3</sup> =(0,0,1,0,0,1) | 0.0086             | 1/64               | 0.5529                       |
| x <sup>4</sup> =(1,0,0,1,1,0) | 0.0015             | 1/64               | 0.0941                       |
| x <sup>5</sup> =(1,0,0,0,1,1) | 0.0057             | 1/64               | 0.3629                       |

 $p(X_1=0) \approx [s(x^1)+s(x^3)]/\Sigma_j s(x^j)=[0.5898+0.5529]/$ 

Master Universitario Oficial Data Science

con el apoyo del

Universidad Internacional
Menérdedez Pelayo

CSIC

2.0835=<mark>0.5485</mark> Bayesian Networks

**Inference: Simulation-Example** 

### **M1970 – Machine Learning II** Redes Probabilísticas Discretas (Clasificadores Bayesianos)





Sixto Herrera (sixto.herrera@unican.es) José M. Gutiérrez, Mikel Legasa

Grupo de Meteorología Univ. de Cantabria - CSIC MACC / IFCA











| x | y | z | p(x, y, z) |
|---|---|---|------------|
| 0 | 0 | 0 | 0.12       |
| 0 | 0 | 1 | 0.18       |
| 0 | 1 | 0 | 0.04       |
| 0 | 1 | 1 | 0.16       |
| 1 | 0 | 0 | 0.09       |
| 1 | 0 | 1 | 0.21       |
| 1 | 1 | 0 | 0.02       |
| 1 | 1 | 1 | 0.18       |

To explicitly define the joint probability function is not possible in most of the real cases due to the large amount of parameters (e.g. 10<sup>25</sup> parameters for 100 variables).

| x | y | z | p(x, y, z) |
|---|---|---|------------|
| 0 | 0 | 0 | 0.12       |
| 0 | 0 | 1 | 0.18       |
| 0 | 1 | 0 | 0.04       |
| 0 | 1 | 1 | 0.16       |
| 1 | 0 | 0 | 0.09       |
| 1 | 0 | 1 | 0.21       |
| 1 | 1 | 0 | 0.02       |
| 1 | 1 | 1 | 0.18       |

To explicitly define the joint probability function is not possible in most of the real cases due to the large amount of parameters (e.g.  $10^{25}$  parameters for 100 variables).

### **Bayes's Theorem** → **Factorization**

$$P(X_{i}|B) = \frac{P(B|X_{i})P(X_{i})}{\sum_{j=1}^{n} P(B|X_{j})P(X_{j})}$$

$$B \wedge X_i \text{ independent} \Rightarrow P(X_i|B) = P(X_i) \wedge P(B|X_i) = P(B)$$



**Reduction of parameters** 

| x | y | z | p(x, y, z) |
|---|---|---|------------|
| 0 | 0 | 0 | 0.12       |
| 0 | 0 | 1 | 0.18       |
| 0 | 1 | 0 | 0.04       |
| 0 | 1 | 1 | 0.16       |
| 1 | 0 | 0 | 0.09       |
| 1 | 0 | 1 | 0.21       |
| 1 | 1 | 0 | 0.02       |
| 1 | 1 | 1 | 0.18       |

To explicitly define the joint probability function is not possible in most of the real cases due to the large amount of parameters (e.g. 10<sup>25</sup> parameters for 100 variables).

### **Bayes's Theorem** → **Factorization**

$$P(X_{i}|B) = \frac{P(B|X_{i})P(X_{i})}{\sum_{j=1}^{n} P(B|X_{j})P(X_{j})}$$

$$B \wedge X_i \text{ independent} \Rightarrow P(X_i|B) = P(X_i) \wedge P(B|X_i) = P(B)$$



### Can we build a model including some pre-defined independences?

### Firstly, unrealistic models "ad-hoc" were proposed.

$$P(s_1, ..., s_n, d_1, ..., d_m) = P(s_1, ..., s_n | d_1, ..., d_m) P(d_1, ..., d_m)$$



$$p(s_1,\ldots,s_n|d_i) = \prod_{i=1}^n p(s_i|d_i).$$



Independent symptoms model → Independent symptoms given a disease

**Syndrome model** → for each disease there are a relevant subset of dependent symptoms.

Firstly, unrealistic models "ad-hoc" were proposed.

$$P(s_1, ..., s_n, d_1, ..., d_m) = P(s_1, ..., s_n | d_1, ..., d_m) P(d_1, ..., d_m)$$



$$p(s_1, \ldots, s_n | d_i) = \prod_{i=1}^n p(s_i | d_i).$$



Is there any method to objectively define dependences between the variables and reduce the number of parameters?



Subjective/ad-hoc approach Large amount of parameters

|        | Número de parámetros |             |  |
|--------|----------------------|-------------|--|
| Modelo | Fórmula              | Valor       |  |
| DSM    | $m2^{n}-1$           | $> 10^{62}$ |  |
| ISM    | m(n+1) - 1           | 20,099      |  |
| IRSM   | m(r+1) + n - 1       | 1,299       |  |
| DRSM   | $m2^r + n - 1$       | 102,599     |  |

$$C \in \{c_1, \dots, c_m\}$$

$$X = \{X_1, \dots, X_n\}$$

Target variable with *m* states/classes Predictors in a *n-dimensional* space

**Bayes' Theorem (Predictands vs. Predictors)** 

$$P(C|\{X_{1},...,X_{n}\}) = \frac{P(\{X_{1},...,X_{n}\}|C)P(C)}{P(\{X_{1},...,X_{n}\})}$$



**Bayesian Classifier** 

$$Arg_{C}[Max(P(C|\{X_{1},...,X_{n}\}))]$$



$$C \in \{c_1, \dots, c_m\}$$
 Target variable with  $m$  states/classes  $X = \{X_1, \dots, X_n\}$  Predictors in a  $n$ -dimensional space

Predictors in a *n-dimensional* space

**Bayes' Theorem (Predictands vs. Predictors)** 

$$P(C|\{X_{1},...,X_{n}\}) = \frac{P(\{X_{1},...,X_{n}\}|C)P(C)}{P(\{X_{1},...,X_{n}\})}$$



#### **Bayesian Classifier**

$$Arg_{C}[Max(P(C|\{X_{1},...,X_{n}\}))]$$



$$Arg_{C}[Max(P(\lbrace X_{1},...,X_{n}\rbrace | C)P(C))]$$





$$C \in \{c_1, \dots, c_m\}$$
 Target variable with  $m$  states/classes  $X = \{X_1, \dots, X_n\}$  Predictors in a  $n$ -dimensional space

Predictors in a *n-dimensional* space

**Bayes' Theorem (Predictands vs. Predictors)** 

$$P(C|\{X_{1},...,X_{n}\}) = \frac{P(\{X_{1},...,X_{n}\}|C)P(C)}{P(\{X_{1},...,X_{n}\})}$$



Bayesian Classifier

$$Arg_{C}[Max(P(C|\{X_{1},...,X_{n}\}))]$$



$$Arg_{C}[Max(P(\lbrace X_{1},...,X_{n}\rbrace | C)P(C))]$$

$$C \in \{c_1, \dots, c_m\}$$
 Target variable with  $m$  states/classes  $X = \{X_1, \dots, X_n\}$  Predictors in a  $n$ -dimensional space

Predictors in a *n-dimensional* space

**Bayes' Theorem (Predictands vs. Predictors)** 

$$P(C|\{X_{1},...,X_{n}\}) = \frac{P(\{X_{1},...,X_{n}\}|C)P(C)}{P(\{X_{1},...,X_{n}\})}$$



**Bayesian Classifier** 

$$Arg_{C}[Max(P(C|\{X_{1},...,X_{n}\}))]$$



Verisimilitude

$$C \in \{c_1, \dots, c_m\}$$

$$X = \{X_1, \dots, X_n\}$$

**Bayes' Theorem (Predictands vs. Predictors)** 

$$P(C|\{X_{1},...,X_{n}\}) = \frac{P(\{X_{1},...,X_{n}\}|C)P(C)}{P(\{X_{1},...,X_{n}\})}$$



## **Bayesian Classifier**

$$Arg_{C}[Max(P(C|\{X_{1},...,X_{n}\}))]$$

| m  | n  |          | parámetros         |
|----|----|----------|--------------------|
| 3  | 10 | $\simeq$ | $8 \cdot 10^3$     |
| 5  | 20 | $\simeq$ | $33 \cdot 10^{6}$  |
| 10 | 50 | $\simeq$ | $11 \cdot 10^{17}$ |



Probability "a priori"

$$Arg_{C}[Max(P(\lbrace X_{1},...,X_{n}\rbrace | C)P(C))]$$

Verisimilitude







$$C \in \{c_1, ..., c_m\}$$
 $X = \{X_1, ..., X_n\}$ 

#### **Bayes' Theorem (Predictands vs. Predictors)**

$$P(C|\{X_{1},...,X_{n}\}) = \frac{P(\{X_{1},...,X_{n}\}|C)P(C)}{P(\{X_{1},...,X_{n}\})}$$

$$+ P(X_i | \{X_j, C\}) = P(X_i | C) \forall j \neq i$$

# **Naive Bayesian Classifier**

Exclusive states/classes Predictors conditionally independent given the state.







$$C \in \{c_1, \dots, c_m\}$$

$$X = \{X_1, \dots, X_n\}$$

#### **Bayes' Theorem (Predictands vs. Predictors)**

$$P(C|\{X_{1},...,X_{n}\}) = \frac{P(\{X_{1},...,X_{n}\}|C)P(C)}{P(\{X_{1},...,X_{n}\})}$$

$$+ P(X_i | \{X_i, C\}) = P(X_i | C) \forall j \neq i$$

# **Naive Bayesian Classifier**

Exclusive states/classes Predictors conditionally independent given the state.

$$Arg_{C}[Max(P(X_{1},...,X_{n})|C)P(C))] = Arg_{C}[Max(P(X_{1}|C)...P(X_{n}|C)P(C))]$$





$$C \in \{c_1, \dots, c_m\}$$

$$X = \{X_1, \dots, X_n\}$$

#### **Bayes' Theorem (Predictands vs. Predictors)**

$$P(C|\{X_{1},...,X_{n}\}) = \frac{P(\{X_{1},...,X_{n}\}|C)P(C)}{P(\{X_{1},...,X_{n}\})}$$

$$+ P(X_i | \{X_i, C\}) = P(X_i | C) \forall j \neq i$$

# **Naive Bayesian Classifier**

Exclusive states/classes Predictors conditionally independent given the state.

$$Arg_{C}[Max(P(X_{1},...,X_{n})|C)P(C))] = Arg_{C}[Max(P(X_{1}|C)...P(X_{n}|C)P(C))]$$

## **Bayesian Classifier**

| m $n$ |    |          | parámetros         |
|-------|----|----------|--------------------|
| 3     | 10 | $\simeq$ | $8 \cdot 10^3$     |
| 5     | 20 | $\simeq$ | $33 \cdot 10^{6}$  |
| 10    | 50 | $\simeq$ | $11 \cdot 10^{17}$ |

# **Naive Bayesian Classifier**

| $\underline{}$ | n  | parámetros |
|----------------|----|------------|
| 3              | 10 | 32         |
| 5              | 20 | 104        |
| 10             | 50 | 509        |







$$C \in \{c_1, \dots, c_m\}$$

$$X = \{X_1, \dots, X_n\}$$

#### **Bayes' Theorem (Predictands vs. Predictors)**

$$P(C|\{X_{1},...,X_{n}\}) = \frac{P(\{X_{1},...,X_{n}\}|C)P(C)}{P(\{X_{1},...,X_{n}\})}$$

$$+ P(X_i | \{X_i, C\}) = P(X_i | C) \forall j \neq i$$

## **Naive Bayesian Classifier**

$$Arg_{C}[Max(P(\{X_{1},...,X_{n}\}|C)P(C))] = Arg_{C}[Max(P(X_{1}|C)...P(X_{n}|C)P(C))]$$



How should be the graph for a Naive Bayesian Classifier?





| Outlook  | Temperature | Humidity | Windy | <b>Play Golf</b> |
|----------|-------------|----------|-------|------------------|
| Rainy    | Hot         | High     | False | No               |
| Rainy    | Hot         | High     | True  | No               |
| Overcast | Hot         | High     | False | Yes              |
| Sunny    | Mild        | High     | False | Yes              |
| Sunny    | Cool        | Normal   | False | Yes              |
| Sunny    | Cool        | Normal   | True  | No               |
| Overcast | Cool        | Normal   | True  | Yes              |
| Rainy    | Mild        | High     | False | No               |
| Rainy    | Cool        | Normal   | False | Yes              |
| Sunny    | Mild        | Normal   | False | Yes              |
| Rainy    | Mild        | Normal   | True  | Yes              |
| Overcast | Mild        | High     | True  | Yes              |
| Overcast | Hot         | Normal   | False | Yes              |
| Sunny    | Mild        | High     | True  | No               |

```
## Defining the states of the variables:
```

```
variables. Names <- c("Outlook", "Temperature", "Humidity", "Windy", "Play Golf")
sample. Number <- c(1:14)
estados.O <- c("Rainy", "Overcast", "Sunny")</pre>
estados.T <- c("Hot", "Mild", "Cool")
estados.H <- c("Normal", "High")
estados.W <- c("True", "False")
estados.G <- c("Yes", "No")
Nclass <- c(3, 3, 2, 2, 2)
```







| <b>Outlook</b><br>Rainy | <b>Temperature</b><br>Hot | <b>Humidity</b><br>High | <b>Windy</b><br>False | <b>Play Golf</b><br>No |
|-------------------------|---------------------------|-------------------------|-----------------------|------------------------|
| Rainy                   | Hot                       | High                    | True                  | No                     |
| Overcast                | Hot                       | High                    | False                 | Yes                    |
| Sunny                   | Mild                      | High                    | False                 | Yes                    |
| Sunny                   | Cool                      | Normal                  | False                 | Yes                    |
| Sunny                   | Cool                      | Normal                  | True                  | No                     |
| Overcast                | Cool                      | Normal                  | True                  | Yes                    |
| Rainy                   | Mild                      | High                    | False                 | No                     |
| Rainy                   | Cool                      | Normal                  | False                 | Yes                    |
| Sunny                   | Mild                      | Normal                  | False                 | Yes                    |
| Rainy                   | Mild                      | Normal                  | True                  | Yes                    |
| Overcast                | Mild                      | High                    | True                  | Yes                    |
| Overcast                | Hot                       | Normal                  | False                 | Yes                    |
| Sunny                   | Mild                      | High                    | True                  | No                     |

#### ## Defining the table:

```
variables.Names <- c("Outlook","Temperature","Humidity","Windy","Play Golf") sample.Number <- c(1:14)
```

data.table <- array(c("Rainy", "Rainy", "Overcast", "Sunny", "Sunny", "Sunny", "Overcast", "Rainy", "Rainy", "Sunny", "Rainy", "Overcast", "Overcast", "Sunny", "Sunny", "Sunny", "Overcast", "Overcast", "Sunny", "Sunny", "Sunny", "Overcast", "Sunny", "Sunny", "Sunny", "Overcast", "Sunny", "Sunny", "Sunny", "Sunny", "Overcast", "Sunny", "Sunny",

"Hot", "Hot", "Hot", "Mild", "Cool", "Cool", "Cool", "Mild", "Cool", "Mild", "

"High", "High", "High", "High", "Normal", "Normal", "Normal", "High", "Normal", "Normal", "High", "Normal", "N

"False", "True", "False", "False", "True", "True", "False", "False", "False", "True", "True", "True", "No", "No", "Yes", "Yes", "Yes", "No", "Yes", "

| Outlook  | Temperature | Humidity | Windy | <b>Play Golf</b> |
|----------|-------------|----------|-------|------------------|
| Rainy    | Hot         | High     | False | No               |
| Rainy    | Hot         | High     | True  | No               |
| Overcast | Hot         | High     | False | Yes              |
| Sunny    | Mild        | High     | False | Yes              |
| Sunny    | Cool        | Normal   | False | Yes              |
| Sunny    | Cool        | Normal   | True  | No               |
| Overcast | Cool        | Normal   | True  | Yes              |
| Rainy    | Mild        | High     | False | No               |
| Rainy    | Cool        | Normal   | False | Yes              |
| Sunny    | Mild        | Normal   | False | Yes              |
| Rainy    | Mild        | Normal   | True  | Yes              |
| Overcast | Mild        | High     | True  | Yes              |
| Overcast | Hot         | Normal   | False | Yes              |
| Sunny    | Mild        | High     | True  | No               |

# - Define the corresponding graph

| Outlook  | Temperature | Humidity | Windy | <b>Play Golf</b> |
|----------|-------------|----------|-------|------------------|
| Rainy    | Hot         | High     | False | No               |
| Rainy    | Hot         | High     | True  | No               |
| Overcast | Hot         | High     | False | Yes              |
| Sunny    | Mild        | High     | False | Yes              |
| Sunny    | Cool        | Normal   | False | Yes              |
| Sunny    | Cool        | Normal   | True  | No               |
| Overcast | Cool        | Normal   | True  | Yes              |
| Rainy    | Mild        | High     | False | No               |
| Rainy    | Cool        | Normal   | False | Yes              |
| Sunny    | Mild        | Normal   | False | Yes              |
| Rainy    | Mild        | Normal   | True  | Yes              |
| Overcast | Mild        | High     | True  | Yes              |
| Overcast | Hot         | Normal   | False | Yes              |
| Sunny    | Mild        | High     | True  | No               |

## - Define the corresponding graph

```
## Defining the Graph:
dag \leftarrow empty.graph(nodes = c("O", "T", "H", "W", "G"))
dag <- set.arc(dag, from = "G", to = "O")
dag <- set.arc(dag, from = "G", to = "T")
dag <- set.arc(dag, from = "G", to = "H")
dag <- set.arc(dag, from = "G", to = "W")
modelstring(dag)
```







| Outlook  | Temperature | Humidity | Windy | <b>Play Golf</b> |
|----------|-------------|----------|-------|------------------|
| Rainy    | Hot         | High     | False | No               |
| Rainy    | Hot         | High     | True  | No               |
| Overcast | Hot         | High     | False | Yes              |
| Sunny    | Mild        | High     | False | Yes              |
| Sunny    | Cool        | Normal   | False | Yes              |
| Sunny    | Cool        | Normal   | True  | No               |
| Overcast | Cool        | Normal   | True  | Yes              |
| Rainy    | Mild        | High     | False | No               |
| Rainy    | Cool        | Normal   | False | Yes              |
| Sunny    | Mild        | Normal   | False | Yes              |
| Rainy    | Mild        | Normal   | True  | Yes              |
| Overcast | Mild        | High     | True  | Yes              |
| Overcast | Hot         | Normal   | False | Yes              |
| Sunny    | Mild        | High     | True  | No               |

# - Define the corresponding graph

```
## Defining the Graph:
dag \leftarrow empty.graph(nodes = c("O","T","H","W","G"))
dag <- set.arc(dag, from = "G", to = "O")
dag <- set.arc(dag, from = "G", to = "T")
dag \leftarrow set.arc(dag, from = "G", to = "H")
dag <- set.arc(dag, from = "G", to = "W")
plot(dag)
```







**Bayesian Networks** 



| Outlook  | Temperature | Humidity | Windy | <b>Play Golf</b> |
|----------|-------------|----------|-------|------------------|
| Rainy    | Hot         | High     | False | No               |
| Rainy    | Hot         | High     | True  | No               |
| Overcast | Hot         | High     | False | Yes              |
| Sunny    | Mild        | High     | False | Yes              |
| Sunny    | Cool        | Normal   | False | Yes              |
| Sunny    | Cool        | Normal   | True  | No               |
| Overcast | Cool        | Normal   | True  | Yes              |
| Rainy    | Mild        | High     | False | No               |
| Rainy    | Cool        | Normal   | False | Yes              |
| Sunny    | Mild        | Normal   | False | Yes              |
| Rainy    | Mild        | Normal   | True  | Yes              |
| Overcast | Mild        | High     | True  | Yes              |
| Overcast | Hot         | Normal   | False | Yes              |
| Sunny    | Mild        | High     | True  | No               |









 $P(G,O,T,H,W) \leftarrow 2*3*2*3*2 = 72 parameters$ 





Normalization

 $P(G,O,T,H,W) \leftarrow 71$  parameters



## [1] "[G][O|G][T|G][H|G][W|G]"

```
## Defining the probabilities:
G.prob <- array(c(length(which(data.table[,"Play Golf"] == "Yes")), length(which(data.table[,"Play Golf"] ==
"No")))/length(data.table[,"Play Golf"]), dim = 2, dimnames = list(G = estados.G))
O.prob <- array(data = 0, dim = c(Nclass[1],Nclass[5]), dimnames = list(O = estados.O, G = estados.G))
T.prob <- array(data = 0, dim = c(Nclass[2],Nclass[5]), dimnames = list(T = estados.T, G = estados.G))
H.prob <- array(data = 0, dim = c(Nclass[3],Nclass[5]), dimnames = list(H = estados.H, G = estados.G))
W.prob <- array(data = 0, dim = c(Nclass[4],Nclass[5]), dimnames = list(W = estados.W, G = estados.G))
for (g in 1:Nclass[5]){
 for (o in 1:Nclass[1]) {
  O.prob[o,g] <- length(which(data.table[,"Play Golf"] == estados.G[g] & data.table[,"Outlook"] ==
estados.O[o]))/length(which(data.table[,"Play Golf"] == estados.G[q]))
   0.prob
```

```
G
               Yes
                    No
Rainy
      0.2222222 0.6
Overcast 0.4444444 0.0
         0.3333333 0.4
Sunny
```



```
## [1] "[G][O|G][T|G][H|G][W|G]"
```

```
## Defining the probabilities:
G.prob <- array(c(length(which(data.table[,"Play Golf"] == "Yes")), length(which(data.table[,"Play Golf"] ==
"No")))/length(data.table[,"Play Golf"]), dim = 2, dimnames = list(G = estados.G))
O.prob <- array(data = 0, dim = c(Nclass[1],Nclass[5]), dimnames = list(T = estados.T, G = estados.G))
T.prob <- array(data = 0, dim = c(Nclass[3],Nclass[5]), dimnames = list(T = estados.T, G = estados.G))
H.prob <- array(data = 0, dim = c(Nclass[3],Nclass[5]), dimnames = list(H = estados.H, G = estados.G))
W.prob <- array(data = 0, dim = c(Nclass[4],Nclass[5]), dimnames = list(W = estados.W, G = estados.G))
for (g in 1:Nclass[5]){
    for (o in 1:Nclass[1]){
        O.prob[o,g] <- length(which(data.table[,"Play Golf"] == estados.G[g] & data.table[,"Outlook"] ==
        estados.O[o]))/length(which(data.table[,"Play Golf"] == estados.G[g]))
    }
}</pre>
```

### > O.prob

## Obtain the probabilities for the rest of variables

G



```
## [1] "[G][O|G][T|G][H|G][W|G]"
```

```
## Defining the probabilities:
G.prob <- array(c(length(which(data.table[,"Play Golf"] == "Yes")), length(which(data.table[,"Play Golf"] ==
"No")))/length(data.table[,"Play Golf"]), dim = 2, dimnames = list(G = estados.G))
O.prob <- array(data = 0, dim = c(Nclass[1],Nclass[5]), dimnames = list(O = estados.O, G = estados.G))
T.prob <- array(data = 0, dim = c(Nclass[2],Nclass[5]), dimnames = list(T = estados.T, G = estados.G))
H.prob <- array(data = 0, dim = c(Nclass[3],Nclass[5]), dimnames = list(H = estados.H, G = estados.G))
W.prob <- array(data = 0, dim = c(Nclass[4],Nclass[5]), dimnames = list(W = estados.W, G = estados.G))
for (g in 1:Nclass[5]){
 for (o in 1:Nclass[1]) {
  O.prob[o,q] <- length(which(data.table[,"Play Golf"] == estados.G[q] & data.table[,"Outlook"] ==
estados.O[o]))/length(which(data.table[,"Play Golf"] == estados.G[q]))
```

# Obtain the probabilities for the rest of variables

```
> 0.prob
                            > T.prob
                                                     > H.prob
                                                                                > W.prob
          G
                                  G
                                                             G
                                                                                      G
0
                 Yes No.
                                          Yes No.
                                                                    Yes No
                                                                                             Yes No
                                                       Normal 0.6666667 0.2
  Rainv
           0.2222222 0.6
                                                                                 True 0.3333333 0.6
                              Hot 0.2222222 0.4
                                                       High
                                                              0.3333333 0.8
                                                                                  False 0.6666667 0.4
  Overcast 0.4444444 0.0
                              Mild 0.4444444 0.4
  Sunny
           0.3333333 0.4
                              Cool 0.3333333 0.2
```





```
## [1] "[G][O|G][T|G][H|G][W|G]"
```

```
## Defining the probabilities:
G.prob <- array(c(length(which(data.table[,"Play Golf"] == "Yes")), length(which(data.table[,"Play Golf"] ==
"No")))/length(data.table[,"Play Golf"]), dim = 2, dimnames = list(G = estados.G))
O.prob <- array(data = 0, dim = c(Nclass[1],Nclass[5]), dimnames = list(O = estados.O, G = estados.G))
T.prob <- array(data = 0, dim = c(Nclass[2],Nclass[5]), dimnames = list(T = estados.T, G = estados.G))
H.prob <- array(data = 0, dim = c(Nclass[3],Nclass[5]), dimnames = list(H = estados.H, G = estados.G))
W.prob <- array(data = 0, dim = c(Nclass[4],Nclass[5]), dimnames = list(W = estados.W, G = estados.G))
for (g in 1:Nclass[5]){
 for (o in 1:Nclass[1]) {
  O.prob[o,q] <- length(which(data.table[,"Play Golf"] == estados.G[q] & data.table[,"Outlook"] ==
estados.O[o]))/length(which(data.table[,"Play Golf"] == estados.G[q]))
```

## Obtain the Naive Bayesian Network





```
\#\# [1] \#[G][O|G][T|G][H|G][W|G]
```

```
## Defining the probabilities:
G.prob <- array(c(length(which(data.table[,"Play Golf"] == "Yes")), length(which(data.table[,"Play Golf"] ==
"No")))/length(data.table[,"Play Golf"]), dim = 2, dimnames = list(G = estados.G))
O.prob <- array(data = 0, dim = c(Nclass[1],Nclass[5]), dimnames = list(T = estados.G, G = estados.G))
T.prob <- array(data = 0, dim = c(Nclass[2],Nclass[5]), dimnames = list(H = estados.H, G = estados.G))
H.prob <- array(data = 0, dim = c(Nclass[3],Nclass[5]), dimnames = list(H = estados.H, G = estados.G))
W.prob <- array(data = 0, dim = c(Nclass[4],Nclass[5]), dimnames = list(W = estados.W, G = estados.G))
for (g in 1:Nclass[5]){
    for (o in 1:Nclass[1]){
        O.prob[o,g] <- length(which(data.table[,"Play Golf"] == estados.G[g] & data.table[,"Outlook"] ==
        estados.O[o]))/length(which(data.table[,"Play Golf"] == estados.G[g]))
}</pre>
```

## **Obtain the Naive Bayesian Network**

```
## Defining the Bayesian Network:
 cpt <- list(G = G.prob, O = O.prob, T = T.prob, H = H.prob, W = W.prob) > dag
 bn <- custom.fit(dag, cpt)
                                                                                      Random/Generated Bayesian network
 str(bn)
> str(bn)
                                                                                       model:
                                                                                       [G][O|G][T|G][H|G][W|G]
List of 5
$ 0:List of 4
                                                                                       nodes:
                                                                                                                            5
  ..$ node
           : chr "0"
                                                                                       arcs:
                                                                                        undirected arcs:
  .. $ parents : chr "G"
                                                                                        directed arcs:
  ..$ children: chr(0)
                                                                                       average markov blanket size:
                                                                                                                            1.60
  ..$ prob : 'table' num [1:3, 1:2] 0.222 0.444 0.333 0.6 0 ...
                                                                                       average neighbourhood size:
                                                                                                                            1.60
  .. ..- attr(*, "dimnames")=List of 2
                                                                                       average branching factor:
                                                                                                                            0.80
  .. .. ..$ 0: chr [1:3] "Rainy" "Overcast" "Sunny"
                                                                    Naive Bayes
  .. .. ..$ G: chr [1:2] "Yes" "No"
                                                                                      generation algorithm:
                                                                                                                            Empty
  ... attr(*, "class")= chr "bn.fit.dnode"
```

| Outlook  | Temperature | Humidity | Windy | <b>Play Golf</b> |
|----------|-------------|----------|-------|------------------|
| Rainy    | Hot         | High     | False | No               |
| Rainy    | Hot         | High     | True  | No               |
| Overcast | Hot         | High     | False | Yes              |
| Sunny    | Mild        | High     | False | Yes              |
| Sunny    | Cool        | Normal   | False | Yes              |
| Sunny    | Cool        | Normal   | True  | No               |
| Overcast | Cool        | Normal   | True  | Yes              |
| Rainy    | Mild        | High     | False | No               |
| Rainy    | Cool        | Normal   | False | Yes              |
| Sunny    | Mild        | Normal   | False | Yes              |
| Rainy    | Mild        | Normal   | True  | Yes              |
| Overcast | Mild        | High     | True  | Yes              |
| Overcast | Hot         | Normal   | False | Yes              |
| Sunny    | Mild        | High     | True  | No               |

- According to the weather, could we play golf today?

| Outlook  | Temperature | Humidity | Windy | <b>Play Golf</b> |
|----------|-------------|----------|-------|------------------|
| Rainy    | Hot         | High     | False | No               |
| Rainy    | Hot         | High     | True  | No               |
| Overcast | Hot         | High     | False | Yes              |
| Sunny    | Mild        | High     | False | Yes              |
| Sunny    | Cool        | Normal   | False | Yes              |
| Sunny    | Cool        | Normal   | True  | No               |
| Overcast | Cool        | Normal   | True  | Yes              |
| Rainy    | Mild        | High     | False | No               |
| Rainy    | Cool        | Normal   | False | Yes              |
| Sunny    | Mild        | Normal   | False | Yes              |
| Rainy    | Mild        | Normal   | True  | Yes              |
| Overcast | Mild        | High     | True  | Yes              |
| Overcast | Hot         | Normal   | False | Yes              |
| Sunny    | Mild        | High     | True  | No               |

## - According to the weather, could we play golf today?

```
## Exact inference:
jsex <- setEvidence(junction, nodes = c("O", "T", "H", "W"), states = c("Overcast", "Cool", "Normal", "True"))
querygrain(jsex, nodes = "G")$G
```







| Outlook  | Temperature | Humidity | Windy | <b>Play Golf</b> |
|----------|-------------|----------|-------|------------------|
| Rainy    | Hot         | High     | False | No               |
| Rainy    | Hot         | High     | True  | No               |
| Overcast | Hot         | High     | False | Yes              |
| Sunny    | Mild        | High     | False | Yes              |
| Sunny    | Cool        | Normal   | False | Yes              |
| Sunny    | Cool        | Normal   | True  | No               |
| Overcast | Cool        | Normal   | True  | Yes              |
| Rainy    | Mild        | High     | False | No               |
| Rainy    | Cool        | Normal   | False | Yes              |
| Sunny    | Mild        | Normal   | False | Yes              |
| Rainy    | Mild        | Normal   | True  | Yes              |
| Overcast | Mild        | High     | True  | Yes              |
| Overcast | Hot         | Normal   | False | Yes              |
| Sunny    | Mild        | High     | True  | No               |

## - According to the weather, could we play golf today?

```
## Exact inference:
jsex <- setEvidence(junction, nodes = c("O", "T", "H", "W"), states = c("Overcast", "Cool", "Normal", "True"))
querygrain(jsex, nodes = "G")$G
## Simulated inference:
set.seed(1)
cpquery(bn,event=(G=="Yes"),
        evidence=((O=="Overcast") \& (T=="Cool") \& (H=="Normal") \& (W=="True")))
```







| Outlook  | Temperature | Humidity | Windy | <b>Play Golf</b> |
|----------|-------------|----------|-------|------------------|
| Rainy    | Hot         | High     | False | No               |
| Rainy    | Hot         | High     | True  | No               |
| Overcast | Hot         | High     | False | Yes              |
| Sunny    | Mild        | High     | False | Yes              |
| Sunny    | Cool        | Normal   | False | Yes              |
| Sunny    | Cool        | Normal   | True  | No               |
| Overcast | Cool        | Normal   | True  | Yes              |
| Rainy    | Mild        | High     | False | No               |
| Rainy    | Cool        | Normal   | False | Yes              |
| Sunny    | Mild        | Normal   | False | Yes              |
| Rainy    | Mild        | Normal   | True  | Yes              |
| Overcast | Mild        | High     | True  | Yes              |
| Overcast | Hot         | Normal   | False | Yes              |
| Sunny    | Mild        | High     | True  | No               |

- Considering the whole sample, which is the accuracy of the classifier?

| Outlook  | Temperature | Humidity | Windy | <b>Play Golf</b> | Prediction       |
|----------|-------------|----------|-------|------------------|------------------|
| Rainy    | Hot         | High     | False | No               | No (0.17, 0.72)  |
| Rainy    | Hot         | High     | True  | No               | No (0.10, 0.93)  |
| Overcast | Hot         | High     | False | Yes              | Yes (1.00, 0.00) |
| Sunny    | Mild        | High     | False | Yes              | Yes (0.52, 0.50) |
| Sunny    | Cool        | Normal   | False | Yes              | Yes (0.95, 0.07) |
| Sunny    | Cool        | Normal   | True  | No               | Yes (0.80, 0.19) |
| Overcast | Cool        | Normal   | True  | Yes              | Yes (1.00, 0.00) |
| Rainy    | Mild        | High     | False | No               | No (0.31, 0.71)  |
| Rainy    | Cool        | Normal   | False | Yes              | Yes (0.79, 0.09) |
| Sunny    | Mild        | Normal   | False | Yes              | Yes (0.91, 0.12) |
| Rainy    | Mild        | Normal   | True  | Yes              | Yes (0.48, 0.47) |
| Overcast | Mild        | High     | True  | Yes              | Yes (1.00, 0.00) |
| Overcast | Hot         | Normal   | False | Yes              | Yes (1.00, 0.00) |
| Sunny    | Mild        | High     | True  | No               | No (0.25, 0.66)  |

# - Considering the whole sample, which is the accuracy of the classifier?

> confusionMatrix(as.factor(golf.predicted), as.factor(data.table[,5]))

Confusion Matrix and Statistics

ston hatrix and statestics

Reference

Accuracy: 0.9286

95% CI: (0.6613, 0.9982)

No Information Rate : 0.6429 P-Value [Acc > NIR] : 0.01807

Kappa: 0.8372

Sensitivity: 0.8000

Specificity: 1.0000 Pos Pred Value: 1.0000

Neg Pred Value : 0.9000 Prevalence : 0.3571 Detection Rate : 0.2857

Detection Prevalence : 0.2857 Balanced Accuracy : 0.9000

Master Universitario Oficial Data Science



Yes 1

Prediction No Yes

con el apoyo del



The Naive Bayesian Classifier is included in the R-package **e1071** (see function **naiveBayes**). Reproduce the results obtained with bnlearn considering the function **naiveBayes**. Are there any significant difference?

#### **Pros:**

It is easy and fast to predict class of test data set. It also perform well in multi class prediction

When assumption of independence holds, a Naive Bayes classifier performs better compare to other models like logistic regression and you need less training data.

It perform well in case of categorical input variables compared to numerical variable(s). For numerical variable, normal distribution is assumed (bell curve, which is a strong assumption).

#### Cons:

If categorical variable has a category (in test data set), which was not observed in training data set, then model will assign a 0 (zero) probability and will be unable to make a prediction.

Another limitation of Naive Bayes is the assumption of independent predictors. In real life, it is almost impossible that we get a set of predictors which are completely independent.

$$C \in \{c_1, \dots, c_m\}$$

$$X = \{X_1, \dots, X_n\}$$

#### **Bayes' Theorem (Predictands vs. Predictors)**

$$P(C|\{X_1,...,X_n\}) = \frac{P(\{X_1,...,X_n\}|C)P(C)}{P(\{X_1,...,X_n\})}$$

$$+ P(X_i|\{X_i,C\}) = P(X_i|C) \forall j \neq i$$

# **Naive Bayesian Classifier**

Exclusive states/classes
Predictors conditionally independent given the state.

**Very restrictive hypothesis** 

## **Semi-Naive Bayesian Classifier**











$$C \in \{c_1, \dots, c_m\}$$

$$X = \{X_1, \dots, X_n\}$$

#### **Bayes' Theorem (Predictands vs. Predictors)**

$$P(C|\{X_{1},...,X_{n}\}) = \frac{P(\{X_{1},...,X_{n}\}|C)P(C)}{P(\{X_{1},...,X_{n}\})}$$

$$P(X_i|\{X_j,C\}) = P(X_i|C) \forall j \neq i$$

# **Naive Bayesian Classifier**

Exclusive states/classes
Predictors conditionally independent given the state.

**Very restrictive hypothesis** 

## **Semi-Naive Bayesian Classifier**









## **Tree Augmented-Naive (TAN)**







Bayesian Networks

$$C \in \{c_1, ..., c_m\}$$
 $X = \{X_1, ..., X_n\}$ 

#### **Bayes' Theorem (Predictands vs. Predictors)**

$$P(C|\{X_1,...,X_n\}) = \frac{P(\{X_1,...,X_n\}|C)P(C)}{P(\{X_1,...,X_n\})}$$

$$+ P(X_i | \{X_j, C\}) = P(X_i | C) \forall j \neq i$$

# **Naive Bayesian Classifier**

Exclusive states/classes
Predictors conditionally independent given the state.

**Very restrictive hypothesis** 

**Tree Augmented-Naive (TAN)** 

## **Semi-Naive Bayesian Classifier**









## Structural Improvement

**Extensions** 



Master Universitario Oficial Data Science







Bayesian Networks

Clasificador Bayesiano "Naive"

$$C \in \{c_1, \dots, c_m\}$$

$$X = \{X_1, \dots, X_n\}$$

**Bayes' Theorem (Predictands vs. Predictors)** 

$$P(C|\{X_1,...,X_n\}) = \frac{P(\{X_1,...,X_n\}|C)P(C)}{P(\{X_1,...,X_n\})}$$

$$+ P(X_i | \{X_j, C\}) = P(X_i | C) \forall j \neq i$$

**Naive Bayesian Classifier** 

Exclusive states/classes
Predictors conditionally independent given the state.

**Very restrictive hypothesis** 

**Tree Augmented-Naive (TAN)** 





**Extensions** 



http://archive.ics.uci.edu/ml/datasets/Mushroom

| Data Set Characteristics:  | Multivariate   | Number of Instances:  | 8124 | Area:               | Life       |
|----------------------------|----------------|-----------------------|------|---------------------|------------|
| Attribute Characteristics: | Categorical    | Number of Attributes: | 22   | Date Donated        | 1987-04-27 |
| Associated Tasks:          | Classification | Missing Values?       | Yes  | Number of Web Hits: | 298439     |

#### Attribute Information: (classes: edible=e, poisonous=p)

cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s

**cap-surface:** fibrous=f,grooves=g,scaly=y,smooth=s

**cap-color:** brown=n,buff=b,cinnamon=c,gray=g,green=r,pink=p,purple=u,...

bruises: bruises=t,no=f

**odor:** almond=a,anise=l,creosote=c,fishy=y,foul=f,musty=m,none=n,...

### mush <- read.csv("Data\_mining/datasets/mushrooms.csv")</pre> str(mush)

```
'data.frame':
                8124 obs. of
                             23 variables:
$ class
                            : Factor w/ 2 levels "e", "p": 2 1 1 2 1 1 1 1 2 1 ...
                           : Factor w/ 6 levels "b", "c", "f", "k", ...: 6 6 1 6 6 6 1 1 6 1 ...
$ cap.shape
                           : Factor w/ 4 levels "f", "g", "s", "y": 3 3 3 4 3 4 3 4 3 ...
$ cap.surface
                           : Factor w/ 10 levels "b", "c", "e", "g", ...: 5 10 9 9 4 10 9 9 9 10 ...
$ cap.color
$ bruises
                            : Factor w/ 2 levels "f", "t": 2 2 2 2 1 2 2 2 2 2 ...
                           : Factor w/ 9 levels "a", "c", "f", "l", ...: 7 1 4 7 6 1 1 4 7 1 ...
$ odor
```

Master Universitario Oficial Data Science





con el apoyo del CSIC

Bayesian **Networks** 

MUSHROOM DATASET

Exercise (~1h)



#### Attribute Information: (classes: edible=e, poisonous=p)

cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s

**cap-surface:** fibrous=f,grooves=g,scaly=y,smooth=s

**cap-color:** brown=n,buff=b,cinnamon=c,gray=g,green=r,pink=p,purple=u,...

bruises: bruises=t.no=f

**odor:** almond=a,anise=l,creosote=c,fishy=y,foul=f,musty=m,none=n,...

#### **Consider the Mushroom dataset**

- How much parameters would be needed?
- How much parameters are obtained for the Naive Bayes?
- Train the model and evaluate the Bayesian Classifier obtained



