Non And Semi Parametric Survival Analysis

Kamarul Imran Musa 18 April 2016

Contents

Prepare folder and file	1
Read data	1
Load library survival	2
Declare file as a survival data format	2
Estimate crude (unadjusted) survival functions for all	3
Estimate crude (unadjusted) survival functions for strata	6
Plots	9
Check for survival difference	11
Cox PH model	11
Checking PH assumption Using graphical methods	12 12 22
Running stratified Cox model	23
Running stratified Cox model with interaction	24

Prepare folder and file

setwd("E:/Epi_Stat_Matters/LectureNotes2015/Survival-Analysis/survival-analysis-DrPH-epid-2015/Practical
list.files()

```
## [1] "addicts.dta"
## [2] "NonAndSemipara.pdf"
## [3] "NonAndSemipara.Rmd"
## [4] "NonAndSemiParametricSurvivalAnalysis.Rproj"
```

Read data

```
library(foreign)
data1<-read.dta('addicts.dta',convert.factors = T)</pre>
```

Load library survival

```
library(survival)
```

Declare file as a survival data format

```
datas<-Surv(time=data1$survt,event=data1$status==1)</pre>
summary(datas)
##
         time
                           status
##
                               :0.0000
    Min.
           :
                2.0
                       Min.
    1st Qu.: 171.2
                       1st Qu.:0.0000
##
   Median : 367.5
                       Median :1.0000
##
    Mean
           : 402.6
                       Mean
                               :0.6303
##
    3rd Qu.: 585.5
                       3rd Qu.:1.0000
   Max.
            :1076.0
                       Max.
                               :1.0000
head(datas,50)
                                                                           523
   [1] 428
                   262
                         183
                              259
                                    714
                                          438
                                                          393
              275
                                               796+ 892
                                                                161+ 836
                                                                                612
## [15] 212
              399
                   771
                         514
                              512
                                    624
                                          209
                                               341
                                                     299
                                                          826+ 262
                                                                     566+ 368
                                                                                302
## [29] 602+ 652
                   293
                         564+ 394
                                    755
                                          591
                                               787+ 739
                                                          550
                                                               837
                                                                     612
                                                                           581+ 523
## [43] 504
              785
                   774
                         560
                              160
                                    482
                                          518
                                               683
head(data1,50)
##
      id clinic status survt prison dose
## 1
       1
               1
                       1
                           428
                                          55
## 2
       2
               1
                           275
                                     1
                       1
## 3
       3
                           262
                                     0
                                          55
               1
                       1
## 4
               1
                           183
                                     0
                                         30
       4
                       1
                           259
## 5
       5
               1
                                     1
                                          65
                       1
## 6
                           714
                                     0
                                          55
       6
               1
                       1
## 7
       7
                           438
                                     1
                                          65
               1
                       1
                           796
## 8
                       0
                                     1
                                          60
       8
               1
## 9
                           892
                                     0
       9
               1
                       1
                                         50
## 10 10
                           393
                                     1
                                         65
## 11 11
                       0
                           161
                                     1
                                         80
               1
## 12 12
               1
                       1
                           836
                                     1
                                         60
## 13 13
                           523
                                     0
                                         55
               1
                       1
## 14 14
                       1
                           612
                                     0
                                         70
## 15 15
                           212
                                         60
               1
                       1
                                     1
## 16 16
                       1
                           399
                                     1
                                          60
                                         75
## 17 17
               1
                       1
                           771
                                     1
## 18 18
                           514
                                     1
                                         80
               1
                       1
## 19 19
                           512
                                     0
                                         80
               1
                       1
## 20 21
               1
                       1
                           624
                                     1
                                          80
## 21 22
                       1
                           209
                                     1
                                          60
               1
## 22 23
                       1
                           341
                                     1
                                          60
               1
## 23 24
               1
                       1
                           299
                                     0
                                         55
## 24 25
                       0
                           826
                                     0
                                         80
               1
                                     1
                                         65
## 25 26
               1
                       1
                           262
## 26 27
               1
                       0
                           566
                                     1
                                          45
```

```
## 27 28
                         1
                              368
                                        1
                                             55
## 28 30
                              302
                                             50
                1
                         1
                                        1
## 29 31
                         0
                              602
                                        0
                                             60
## 30 32
                              652
                                        0
                                             80
                1
                         1
## 31 33
                1
                         1
                              293
                                        0
                                             65
## 32 34
                                        0
                1
                         0
                              564
                                             60
## 33 36
                1
                         1
                              394
                                        1
                                             55
## 34
      37
                1
                         1
                              755
                                        1
                                             65
## 35
      38
                1
                         1
                              591
                                        0
                                             55
                         0
                                        0
## 36 39
                1
                              787
                                             80
## 37 40
                1
                         1
                              739
                                        0
                                             60
## 38
                              550
                                             60
      41
                1
                         1
                                        1
## 39 42
                1
                              837
                                        0
                                             60
                         1
## 40 43
                                        0
                         1
                              612
                                             65
## 41 44
                         0
                                        0
                                             70
                1
                              581
## 42
      45
                         1
                              523
                                        0
                                             60
## 43 46
                              504
                                        1
                                             60
                1
                         1
## 44 48
                1
                         1
                              785
                                        1
                                             80
## 45 49
                              774
                1
                                        1
                                             65
                         1
## 46 50
                1
                         1
                              560
                                        0
                                             65
## 47 51
                1
                         1
                              160
                                        0
                                             35
## 48 52
                         1
                              482
                                        0
                                             30
                1
## 49 53
                                        0
                1
                         1
                              518
                                             65
## 50 54
                              683
                                             50
```

• sign is for censored observation

Estimate crude (unadjusted) survival functions for all

Using intercept-only model to obtain Kaplan-Meier survival estimates for all event times. And also for a specific time.

```
surv.fit<-survfit(datas~1)</pre>
summary(surv.fit)
## Call: survfit(formula = datas ~ 1)
##
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
       7
             236
                              0.996 0.00423
                                                    0.9875
                                                                    1.000
                        1
##
      13
             235
                              0.992 0.00597
                                                    0.9799
                                                                    1.000
                        1
##
      17
             234
                        1
                              0.987 0.00729
                                                    0.9731
                                                                    1.000
##
      19
             233
                        1
                              0.983 0.00840
                                                    0.9667
                                                                    1.000
##
      26
             232
                        1
                              0.979 0.00937
                                                    0.9606
                                                                    0.997
      29
##
             229
                        1
                              0.975 0.01026
                                                    0.9546
                                                                    0.995
##
                              0.970 0.01107
                                                    0.9488
      30
             228
                        1
                                                                    0.992
##
      33
             227
                        1
                              0.966 0.01182
                                                    0.9431
                                                                    0.989
##
      35
             226
                        2
                              0.957 0.01317
                                                    0.9320
                                                                    0.984
##
      37
             224
                        1
                              0.953 0.01379
                                                    0.9265
                                                                    0.981
##
      41
             223
                        2
                              0.945 0.01493
                                                    0.9158
                                                                    0.974
##
      47
             221
                        1
                              0.940 0.01546
                                                    0.9105
                                                                    0.971
##
      49
             220
                        1
                              0.936 0.01597
                                                    0.9053
                                                                    0.968
##
      50
             219
                        1
                              0.932 0.01646
                                                    0.9001
                                                                    0.965
##
      59
             216
                        1
                              0.927 0.01694
                                                    0.8949
                                                                    0.961
##
      62
             215
                              0.923 0.01740
                                                    0.8897
                                                                    0.958
                        1
```

##	67	213	1		0.01785	0.8845	0.954
##	75	211	1		0.01829	0.8793	0.951
##	79	210	1		0.01871	0.8742	0.948
##	84	209	1		0.01913	0.8691	0.944
##	90	207	1	0.901	0.01953	0.8639	0.940
##	95	206	1	0.897	0.01992	0.8588	0.937
##	96	205	1	0.893	0.02029	0.8537	0.933
##	109	202	1	0.888	0.02067	0.8486	0.930
##	117	200	1	0.884	0.02104	0.8435	0.926
##	122	199	1	0.879	0.02140	0.8384	0.922
##	126	198	1	0.875	0.02174	0.8333	0.919
##	127	197	1		0.02208	0.8282	0.915
##	129	196	1	0.866	0.02241	0.8232	0.911
##	136	194	1	0.862	0.02274	0.8181	0.907
##	143	193	1	0.857	0.02305	0.8131	0.903
##	145	192	1	0.853	0.02336	0.8080	0.900
##	147	190	1	0.848	0.02366	0.8030	0.896
##	149	188	1	0.844	0.02396	0.7979	0.892
##	150	187	1	0.839	0.02426	0.7929	0.888
##	157	185	1	0.835	0.02455	0.7878	0.884
##	160	184	1	0.830	0.02483	0.7828	0.880
##	161	183	1	0.826	0.02510	0.7777	0.876
##	167	181	1	0.821	0.02538	0.7727	0.872
##	168	180	1	0.816	0.02564	0.7676	0.868
##	170	179	1	0.812	0.02590	0.7626	0.864
##	175	178	1	0.807	0.02615	0.7576	0.860
##	176	176	1	0.803	0.02640	0.7526	0.856
##	180	175	2	0.794	0.02689	0.7425	0.848
##	181	173	1	0.789	0.02712	0.7375	0.844
##	183	172	1	0.784	0.02735	0.7325	0.840
##	190	171	1	0.780	0.02757	0.7275	0.836
##	192	170	1	0.775	0.02779	0.7226	0.832
##	193	169	1	0.771	0.02800	0.7176	0.827
##	204	168	1	0.766	0.02821	0.7127	0.823
##	205	166	1	0.761	0.02841	0.7077	0.819
##	207	165	1	0.757	0.02861	0.7027	0.815
##	209	164	1	0.752	0.02881	0.6978	0.811
##	212	162	2	0.743	0.02919	0.6878	0.802
##	216	160	2	0.734	0.02955	0.6779	0.794
##	223	157	1	0.729	0.02973	0.6729	0.790
##	231	156	1	0.724	0.02991	0.6679	0.785
##	232	155	1	0.720	0.03008	0.6630	0.781
##	237	154	1	0.715	0.03024	0.6580	0.777
##	244	153	1	0.710	0.03040	0.6531	0.772
##	247	152	1	0.706	0.03056	0.6481	0.768
##	257	151	1	0.701	0.03071	0.6432	0.764
##	258	150	1	0.696	0.03086	0.6383	0.759
##	259	149	1	0.692	0.03101	0.6333	0.755
##	262	148	2	0.682	0.03128	0.6235	0.746
##	268	146	2	0.673	0.03154	0.6138	0.738
##	275	144	1		0.03167	0.6089	0.733
##	280	143	1	0.663	0.03179	0.6040	0.729
##	286	141	1	0.659	0.03191	0.5991	0.724
##	293	140	1	0.654	0.03203	0.5942	0.720

##	294	139	1		0.03214	0.5893	0.716
##	299	138	1	0.645	0.03225	0.5844	0.711
##	302	137	1	0.640	0.03236	0.5796	0.707
##	314	136	1	0.635	0.03246	0.5747	0.702
##	322	134	1	0.631	0.03256	0.5698	0.698
##	337	131	1	0.626	0.03267	0.5648	0.693
##	341	129	1	0.621	0.03277	0.5598	0.689
##	348	126	1	0.616	0.03288	0.5547	0.684
##	350	125	1	0.611	0.03298	0.5496	0.679
##	358	124	1		0.03308	0.5446	0.675
##	366	122	1		0.03318	0.5395	0.670
##	367	121	1		0.03328	0.5343	0.665
##	368	119	1		0.03338	0.5292	0.660
##	376	118	1		0.03347	0.5241	0.656
##	386	117	1		0.03355	0.5189	0.651
##			1				
	389	116			0.03364	0.5138	0.646
##	393	115	1		0.03371	0.5087	0.641
##	394	114	1		0.03379	0.5036	0.636
##	399	112	1		0.03386	0.4984	0.631
##	428	109	1		0.03394	0.4932	0.627
##	434	108	1		0.03401	0.4879	0.622
##	438	107	1		0.03408	0.4827	0.617
##	450	105	1		0.03415	0.4774	0.612
##	452	104	1		0.03422	0.4722	0.607
##	457	102	1		0.03428	0.4668	0.602
##	460	101	1		0.03434	0.4615	0.597
##	465	99	1		0.03440	0.4562	0.591
##	482	96	1	0.514	0.03447	0.4507	0.586
##	489	95	1	0.509	0.03453	0.4452	0.581
##	496	94	1	0.503	0.03458	0.4398	0.576
##	504	92	1	0.498	0.03463	0.4342	0.570
##	512	91	1	0.492	0.03468	0.4287	0.565
##	514	90	1	0.487	0.03473	0.4232	0.560
##	517	89	1	0.481	0.03476	0.4178	0.554
##	518	87	1	0.476	0.03480	0.4122	0.549
##	522	86	1	0.470	0.03483	0.4067	0.544
##	523	85	2	0.459	0.03488	0.3956	0.533
##	532	80	1	0.453	0.03491	0.3899	0.527
##	533	78	1	0.448	0.03495	0.3841	0.522
##	540	77	1	0.442	0.03497	0.3783	0.516
##	546	74	1	0.436	0.03501	0.3723	0.510
##	550	73	1	0.430	0.03503	0.3664	0.504
##	560	70	1	0.424	0.03507	0.3603	0.498
##	563	69	1	0.418	0.03509	0.3542	0.492
##	581	62	1	0.411	0.03517	0.3474	0.486
##	591	59	1	0.404	0.03525	0.3404	0.479
##	612	54	2	0.389	0.03550	0.3252	0.465
##	624	51	1		0.03561	0.3175	0.458
##	646	48	1		0.03574	0.3095	0.450
##	652	47	1		0.03586	0.3015	0.443
##	661	46	1		0.03595	0.2935	0.435
##	667	45	1		0.03601	0.2856	0.428
##	679	44	1		0.03606	0.2777	0.420
##	683	43	1		0.03609	0.2699	0.412
	500	10	_	J.00-I	5.55505	0.2000	0.412

```
##
     708
                             0.325 0.03616
                                                  0.2614
                                                                 0.404
##
     714
             37
                             0.316 0.03623
                                                  0.2527
                                                                 0.396
                       1
                             0.307 0.03631
##
     739
             35
                                                  0.2437
                                                                 0.387
     749
                                                  0.2348
##
             34
                             0.298 0.03635
                                                                 0.379
                       1
##
     755
             33
                       1
                             0.289 0.03635
                                                  0.2260
                                                                 0.370
##
     760
             32
                             0.280 0.03632
                       1
                                                  0.2173
                                                                 0.361
##
             28
                             0.270 0.03638
                                                                 0.352
     771
                       1
                                                  0.2075
##
             27
                             0.260 0.03638
     774
                       1
                                                  0.1978
                                                                 0.342
                             0.250 0.03633
##
     785
             26
                       1
                                                  0.1882
                                                                 0.332
##
                       2
     821
             20
                             0.225 0.03675
                                                  0.1635
                                                                 0.310
##
     836
             17
                       1
                             0.212 0.03690
                                                  0.1506
                                                                 0.298
##
     837
             16
                             0.199 0.03689
                                                  0.1380
                                                                 0.286
                       1
##
     857
             14
                       1
                             0.184 0.03688
                                                  0.1246
                                                                 0.273
                             0.170 0.03667
##
     878
              13
                       1
                                                  0.1116
                                                                 0.260
##
     892
              10
                             0.153 0.03675
                                                  0.0958
                                                                 0.245
                       1
##
     899
               9
                       1
                             0.136 0.03639
                                                  0.0807
                                                                 0.230
summary(surv.fit,times = 100)
## Call: survfit(formula = datas ~ 1)
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
     100
            203
                             0.893 0.0203
                                                   0.854
```

Estimate crude (unadjusted) survival functions for strata

```
surv.clin<-survfit(datas~clinic, data = data1)</pre>
summary(surv.clin)
## Call: survfit(formula = datas ~ clinic, data = data1)
##
##
                    clinic=1
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
       7
             162
                       1
                            0.9938 0.00615
                                                 0.98184
                                                                  1.000
##
      17
             161
                            0.9877 0.00868
                                                 0.97080
                                                                  1.000
##
             160
                            0.9815 0.01059
                                                 0.96094
                                                                  1.000
      19
                       1
##
      29
             157
                            0.9752 0.01223
                                                 0.95155
                                                                 0.999
##
      30
             156
                            0.9690 0.01366
                       1
                                                 0.94258
                                                                 0.996
##
      33
             155
                            0.9627 0.01493
                                                 0.93390
                                                                  0.992
##
      35
             154
                            0.9565 0.01609
                                                 0.92545
                       1
                                                                 0.989
##
      37
             153
                       1
                            0.9502 0.01716
                                                 0.91719
                                                                  0.984
##
             152
      41
                       1
                            0.9440 0.01815
                                                 0.90907
                                                                 0.980
##
      47
             151
                            0.9377 0.01907
                       1
                                                 0.90107
                                                                 0.976
##
      49
             150
                            0.9315 0.01994
                       1
                                                 0.89319
                                                                 0.971
##
      50
             149
                       1
                            0.9252 0.02077
                                                 0.88540
                                                                 0.967
##
      59
             147
                       1
                            0.9189 0.02156
                                                 0.87763
                                                                 0.962
##
      62
             146
                       1
                            0.9126 0.02231
                                                 0.86993
                                                                 0.957
##
      67
             144
                            0.9063 0.02304
                                                 0.86224
                                                                 0.953
                       1
##
      75
             143
                       1
                            0.9000 0.02373
                                                 0.85462
                                                                 0.948
##
      84
             142
                            0.8936 0.02440
                                                 0.84706
                                                                 0.943
##
      90
             141
                            0.8873 0.02503
                                                 0.83955
                       1
                                                                 0.938
##
      95
             140
                            0.8809 0.02564
                                                 0.83209
                                                                 0.933
##
      96
             139
                       1
                           0.8746 0.02623
                                                 0.82467
                                                                 0.928
```

##	117	135	1		0.02683	0.81711	
##	126	134	1		0.02740	0.80959	
##	127	133	1		0.02795	0.80211	0.912
##	129	132	1		0.02848	0.79467	
##	136	130	1		0.02899	0.78721	
##	145	129	1		0.02950	0.77978	
##	147	128	1		0.02998	0.77238	
##	150	126	1		0.03045	0.76495	
##	157	124	1		0.03092	0.75748	
##	160	123	1		0.03138	0.75004	
##	167	121	1		0.03182	0.74256	
##	168	120	1		0.03225	0.73512	
##	175	119	1		0.03267	0.72770	
##	176	117	1		0.03308	0.72023	
##	180	116	2		0.03385	0.70539	0.838
##	181	114	1		0.03422	0.69801	0.832
##	183	113	1		0.03458	0.69065	
##	192	112	1		0.03492	0.68331	0.820
##	193	111	1		0.03525	0.67601	0.814
##	204	110	1		0.03557	0.66872	
##	205	108	1		0.03589	0.66138 0.65406	
##	207	107	1		0.03619		
##	209	106	1 2		0.03648	0.64676 0.63207	
## ##	212 216	104 102	1		0.03705	0.63207	
##	223	102	1		0.03758	0.62476	
##	223	101	1		0.03783	0.61747	
##	244	99	1		0.03763	0.60295	
##	247	98	1		0.03829	0.59571	
##	257	97	1		0.03851	0.58850	
##	258	96	1		0.03872	0.58131	
##	259	95	1		0.03892	0.57413	
##	262	94	2		0.03928	0.55984	
##	275	92	1		0.03945	0.55272	
##	293	90	1		0.03962	0.54553	
##	294	89	1		0.03978	0.53836	
##	299	88	1		0.03993	0.53120	
##	302	87	1		0.04007	0.52406	
##	314	86	1	0.5907	0.04020	0.51694	0.675
##	337	83	1	0.5836	0.04035	0.50964	0.668
##	341	81	1	0.5764	0.04049	0.50226	0.661
##	348	78	1	0.5690	0.04063	0.49468	0.654
##	350	77	1	0.5616	0.04077	0.48712	0.647
##	358	76	1	0.5542	0.04090	0.47958	0.640
##	367	75	1	0.5468	0.04102	0.47207	0.633
##	368	74	1	0.5394	0.04112	0.46457	0.626
##	376	73	1		0.04122	0.45710	
##	386	72	1		0.04130	0.44964	
##	393	71	1		0.04138	0.44221	
##	394	70	1		0.04144	0.43480	
##	399	69	1		0.04149	0.42741	
##	428	66	1		0.04156	0.41978	
##	434	65	1		0.04161	0.41217	
##	438	64	1	0.4797	0.04165	0.40459	0.569

##	452	62	1		0.04169	0.39688	0.561
##	457	61	1		0.04172	0.38921	0.554
##	465	59	1		0.04175	0.38140	0.546
##	482	56	1		0.04179	0.37331	0.538
##	489	55	1		0.04182	0.36524	0.530
##	496	54	1		0.04183	0.35719	0.522
##	504	53	1	0.4237	0.04183	0.34918	0.514
##	512	52	1	0.4156	0.04181	0.34120	0.506
##	514	51	1		0.04177	0.33325	0.498
##	517	50	1		0.04173	0.32532	0.490
##	518	48	1	0.3910	0.04168	0.31724	0.482
##	522	47	1	0.3826	0.04161	0.30918	0.474
##	523	46	2	0.3660	0.04143	0.29317	0.457
##	532	44	1	0.3577	0.04132	0.28521	0.449
##	533	43	1	0.3494	0.04119	0.27729	0.440
##	546	40	1	0.3406	0.04107	0.26894	0.431
##	550	39	1	0.3319	0.04094	0.26062	0.423
##	560	38	1	0.3232	0.04078	0.25235	0.414
##	563	37	1	0.3144	0.04060	0.24412	0.405
##	581	33	1	0.3049	0.04048	0.23505	0.396
##	591	31	1	0.2951	0.04035	0.22570	0.386
##	612	29	2	0.2747	0.04005	0.20644	0.366
##	624	26	1	0.2641	0.03988	0.19649	0.355
##	646	25	1	0.2536	0.03966	0.18664	0.345
##	652	24	1	0.2430	0.03939	0.17688	0.334
##	667	23	1	0.2325	0.03907	0.16722	0.323
##	679	22	1	0.2219	0.03869	0.15765	0.312
##	683	21	1	0.2113	0.03827	0.14818	0.301
##	714	20	1	0.2008	0.03778	0.13882	0.290
##	739	19	1	0.1902	0.03724	0.12957	0.279
##	749	18	1	0.1796	0.03664	0.12042	0.268
##	755	17	1	0.1691	0.03598	0.11140	0.257
##	760	16	1	0.1585	0.03525	0.10249	0.245
##	771	15	1	0.1479	0.03444	0.09372	0.233
##	774	14	1	0.1374	0.03357	0.08508	0.222
##	785	13	1	0.1268	0.03260	0.07660	0.210
##	821	10	2	0.1014	0.03062	0.05613	0.183
##	836	7	1	0.0869	0.02948	0.04474	0.169
##	837	6	1	0.0725	0.02790	0.03406	0.154
##	857	4	1	0.0543	0.02615	0.02116	0.140
##	892	3	1	0.0362	0.02286	0.01052	0.125
##	899	2	1	0.0181	0.01717	0.00283	0.116
##							
##			clin	ic=2			
##	time	n.risk	n.event	survival	std.err	lower 95% CI	upper 95% CI
##	13	74	1	0.986	0.0134	0.961	1.000
##	26	73	1	0.973	0.0189	0.937	1.000
##	35	72	1	0.959	0.0229	0.916	1.000
##	41	71	1	0.946	0.0263	0.896	0.999
##	79	68	1	0.932	0.0294	0.876	0.991
##	109	66	1	0.918	0.0321	0.857	0.983
##	122	65	1	0.904	0.0346	0.838	0.974
##	143	64	1	0.890	0.0368	0.820	0.965
##	149	62	1	0.875	0.0389	0.802	0.955

```
0.861 0.0408
                                                  0.785
                                                                0.945
##
     161
             61
                       1
##
     170
             60
                       1
                            0.847 0.0426
                                                  0.767
                                                                0.934
##
     190
             59
                            0.832 0.0442
                                                  0.750
                                                                0.924
##
     216
             58
                            0.818 0.0457
                                                  0.733
                                                                0.913
                       1
##
     231
             56
                       1
                            0.803 0.0472
                                                  0.716
                                                                0.901
##
     232
             55
                       1
                            0.789 0.0486
                                                  0.699
                                                                0.890
##
     268
             54
                       2
                            0.759 0.0510
                                                  0.666
                                                                0.866
##
     280
             52
                            0.745 0.0520
                                                  0.650
                                                                0.854
                       1
##
     286
             51
                       1
                            0.730 0.0530
                                                  0.633
                                                                0.842
##
     322
             50
                            0.716 0.0539
                                                                0.830
                       1
                                                  0.617
##
     366
             47
                       1
                            0.700 0.0549
                                                  0.601
                                                                0.817
##
     389
                            0.685 0.0558
             45
                       1
                                                  0.584
                                                                0.804
##
     450
             43
                            0.669 0.0568
                                                                0.790
                       1
                                                  0.566
##
     460
             41
                            0.653 0.0577
                                                  0.549
                                                                0.776
                       1
##
     540
             35
                       1
                            0.634 0.0590
                                                  0.528
                                                                0.761
##
     661
             23
                       1
                            0.606 0.0625
                                                  0.495
                                                                0.742
##
     708
             19
                            0.575 0.0669
                                                  0.457
                                                                0.722
                       1
##
     878
             10
                            0.517 0.0812
                                                  0.380
                                                                0.703
```

summary(surv.clin,times = 100)

```
## Call: survfit(formula = datas ~ clinic, data = data1)
##
##
                   clinic=1
##
                                                survival
                                                              std.err
           time
                      n.risk
                                   n.event
       100.0000
                                                               0.0262
##
                    137.0000
                                   20.0000
                                                  0.8746
## lower 95% CI upper 95% CI
##
         0.8247
                      0.9276
##
##
                   clinic=2
##
                      n.risk
                                   n.event
                                                survival
                                                              std.err
           time
##
       100.0000
                      66.0000
                                    5.0000
                                                  0.9320
                                                               0.0294
## lower 95% CI upper 95% CI
##
         0.8762
                      0.9914
```

Plots

```
plot(surv.fit, xlab='survival times (days)', ylab='survival prob')
```



```
plot(surv.clin, lty=c('solid','dashed'), col=c('black','red'))
  legend('topright',c('clinic 1','clinic 2'),lty=c('solid','dashed'), col=c('black','red'))
```


Check for survival difference

```
Default is log-rank test
```

```
survdiff(datas~clinic, data = data1)
## Call:
## survdiff(formula = datas ~ clinic, data = data1)
##
##
              N Observed Expected (0-E)^2/E (0-E)^2/V
                     122
                             90.9
## clinic=1 163
                                       10.6
                                                  27.9
## clinic=2 75
                      28
                             59.1
                                       16.4
                                                  27.9
##
   Chisq= 27.9 on 1 degrees of freedom, p= 1.28e-07
```

Cox PH model

```
Efron is default method
```

```
data1.cox<-coxph(datas~prison+dose+clinic,data=data1)
summary(data1.cox)</pre>
```

```
## Call:
## coxph(formula = datas ~ prison + dose + clinic, data = data1)
```

```
##
##
    n= 238, number of events= 150
##
##
              coef exp(coef)
                              se(coef)
                                            z Pr(>|z|)
## prison 0.326555 1.386184
                              0.167225 1.953
         -0.035369  0.965249  0.006379  -5.545  2.94e-08 ***
## clinic -1.009896 0.364257 0.214889 -4.700 2.61e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
          exp(coef) exp(-coef) lower .95 upper .95
                                  0.9988
## prison
            1.3862
                       0.7214
                                            1.9238
            0.9652
                       1.0360
                                  0.9533
                                            0.9774
## dose
## clinic
            0.3643
                       2.7453
                                  0.2391
                                            0.5550
##
## Concordance= 0.665 (se = 0.026)
## Rsquare= 0.238
                   (max possible= 0.997 )
## Likelihood ratio test= 64.56 on 3 df,
                                           p=6.228e-14
## Wald test
                       = 54.12 on 3 df,
                                           p=1.056e-11
## Score (logrank) test = 56.32 on 3 df,
                                           p=3.598e-12
Other alternatives = Breslow , Exact
```

Checking PH assumption

Using graphical methods

Check PH assumption for clinic

method 1

```
plot(surv.clin,fun='cloglog',
    xlab='time(days) using log scale', ylab='log-log survival prob',
    main='log-log curves by clinics')
```

log-log curves by clinics

method 2

```
surv.clin2<-summary(surv.clin)
surv.clin2</pre>
```

```
## Call: survfit(formula = datas ~ clinic, data = data1)
##
##
                     clinic=1
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
       7
             162
                             0.9938 0.00615
                                                   0.98184
                                                                   1.000
                        1
                             0.9877 0.00868
                                                                   1.000
##
      17
             161
                        1
                                                   0.97080
##
      19
             160
                        1
                             0.9815 0.01059
                                                   0.96094
                                                                   1.000
##
      29
             157
                             0.9752 0.01223
                                                   0.95155
                                                                   0.999
##
      30
             156
                        1
                             0.9690 0.01366
                                                   0.94258
                                                                   0.996
             155
##
      33
                             0.9627 0.01493
                                                   0.93390
                                                                   0.992
##
      35
             154
                             0.9565 0.01609
                                                   0.92545
                                                                   0.989
                        1
##
      37
             153
                        1
                             0.9502 0.01716
                                                   0.91719
                                                                   0.984
##
      41
             152
                        1
                             0.9440 0.01815
                                                   0.90907
                                                                   0.980
##
      47
             151
                             0.9377 0.01907
                                                   0.90107
                                                                   0.976
##
             150
                             0.9315 0.01994
      49
                        1
                                                   0.89319
                                                                   0.971
##
      50
             149
                        1
                             0.9252 0.02077
                                                   0.88540
                                                                   0.967
##
      59
             147
                        1
                             0.9189 0.02156
                                                                   0.962
                                                   0.87763
##
      62
             146
                        1
                             0.9126 0.02231
                                                   0.86993
                                                                   0.957
##
      67
             144
                        1
                             0.9063 0.02304
                                                   0.86224
                                                                   0.953
      75
             143
                             0.9000 0.02373
                                                   0.85462
                                                                   0.948
##
                        1
##
      84
             142
                        1
                             0.8936 0.02440
                                                   0.84706
                                                                   0.943
##
      90
             141
                             0.8873 0.02503
                                                   0.83955
                                                                   0.938
```

##	95	140	1	0.8809	0.02564	0.83209	0.933
##	96	139	1		0.02623	0.82467	0.928
##	117	135	1	0.8681	0.02683	0.81711	0.922
##	126	134	1	0.8616	0.02740	0.80959	0.917
##	127	133	1	0.8552	0.02795	0.80211	0.912
##	129	132	1	0.8487	0.02848	0.79467	0.906
##	136	130	1	0.8422	0.02899	0.78721	0.901
##	145	129	1	0.8356	0.02950	0.77978	0.895
##	147	128	1	0.8291	0.02998	0.77238	0.890
##	150	126	1	0.8225	0.03045	0.76495	0.884
##	157	124	1	0.8159	0.03092	0.75748	0.879
##	160	123	1	0.8093	0.03138	0.75004	0.873
##	167	121	1		0.03182	0.74256	0.867
##	168	120	1		0.03225	0.73512	0.862
##	175	119	1		0.03267	0.72770	0.856
##	176	117	1		0.03308	0.72023	0.850
##	180	116	2		0.03385	0.70539	0.838
##	181	114	1		0.03422	0.69801	0.832
##	183	113	1		0.03458	0.69065	0.826
##	192	112	1		0.03492	0.68331	0.820
##	193	111	1		0.03525	0.67601	0.814
##	204	110	1		0.03557	0.66872	0.808
##	205	108	1		0.03589	0.66138	0.802
##	207	107	1		0.03619	0.65406	0.796
##	209	106	1		0.03648	0.64676	0.790
##	212	104	2		0.03705	0.63207	0.778
##	216	102	1		0.03732	0.62476	0.771
##	223	101	1		0.03758	0.61747	0.765
##	237	100	1		0.03783	0.61020	0.759
##	244	99	1		0.03807	0.60295	0.752
##	247	98	1		0.03829	0.59571	0.746
##	257	97 06	1		0.03851	0.58850	0.740
## ##	258 259	96 95	1 1		0.03872 0.03892	0.58131 0.57413	0.733 0.727
##	262	93 94	2		0.03928	0.55984	0.714
##	275	94 92	1		0.03928	0.55272	0.708
##	293	90	1		0.03962	0.54553	0.701
##	294	89	1		0.03978	0.53836	0.695
##	299	88	1		0.03993	0.53120	0.688
##	302	87	1		0.04007	0.52406	0.682
##	314	86	1		0.04020	0.51694	0.675
##	337	83	1		0.04035	0.50964	0.668
##	341	81	1		0.04049	0.50226	0.661
##	348	78	1		0.04063	0.49468	0.654
##	350	77	1		0.04077	0.48712	0.647
##	358	76	1		0.04090	0.47958	0.640
##	367	75	1		0.04102	0.47207	0.633
##	368	74	1		0.04112	0.46457	0.626
##	376	73	1		0.04122	0.45710	0.619
##	386	72	1		0.04130	0.44964	0.612
##	393	71	1		0.04138	0.44221	0.605
##	394	70	1		0.04144	0.43480	0.598
##	399	69	1		0.04149	0.42741	0.591
##	428	66	1	0.4949	0.04156	0.41978	0.583

	404	25		0 4070	0 04404	0 44047	0 570
##	434	65	1		0.04161	0.41217	0.576
##	438	64	1		0.04165	0.40459	0.569
##	452	62	1		0.04169	0.39688	0.561
##	457	61	1		0.04172	0.38921	0.554
##	465	59	1	0.4563	0.04175	0.38140	0.546
##	482	56	1	0.4482	0.04179	0.37331	0.538
##	489	55	1	0.4400	0.04182	0.36524	0.530
##	496	54	1	0.4319	0.04183	0.35719	0.522
##	504	53	1	0.4237	0.04183	0.34918	0.514
##	512	52	1	0.4156	0.04181	0.34120	0.506
##	514	51	1	0.4074	0.04177	0.33325	0.498
##	517	50	1	0.3993	0.04173	0.32532	0.490
##	518	48	1	0.3910	0.04168	0.31724	0.482
##	522	47	1	0.3826	0.04161	0.30918	0.474
##	523	46	2	0.3660	0.04143	0.29317	0.457
##	532	44	1	0.3577	0.04132	0.28521	0.449
##	533	43	1	0.3494	0.04119	0.27729	0.440
##	546	40	1	0.3406	0.04107	0.26894	0.431
##	550	39	1	0.3319	0.04094	0.26062	0.423
##	560	38	1	0.3232	0.04078	0.25235	0.414
##	563	37	1	0.3144	0.04060	0.24412	0.405
##	581	33	1		0.04048	0.23505	0.396
##	591	31	1		0.04035	0.22570	0.386
##	612	29	2		0.04005	0.20644	0.366
##	624	26	1		0.03988	0.19649	0.355
##	646	25	1		0.03966	0.18664	0.345
##	652	24	1		0.03939	0.17688	0.334
##	667	23	1		0.03907	0.16722	0.323
##	679	22	1		0.03869	0.15765	0.312
##	683	21	1		0.03827	0.14818	0.301
##	714	20	1		0.03778	0.13882	0.290
##	739	19	1		0.03724	0.12957	0.279
##	749	18	1		0.03664	0.12042	0.268
##	755	17	1		0.03598	0.11140	0.257
##	760	16	1		0.03525	0.10249	0.245
##	771	15	1		0.03444	0.09372	0.233
##	774	14	1		0.03357	0.08508	0.222
##	785	13	1		0.03260	0.07660	0.210
##	821	10	2		0.03062	0.05613	0.183
##	836	7	1		0.02948	0.03013	0.169
##	837	6	1		0.02790	0.03406	0.154
##	857	4	1		0.02730	0.02116	0.140
##	892	3	1		0.02013	0.02110	0.140
##	899	2	1		0.01717	0.00283	0.125
##	033	2	1	0.0101	0.01/1/	0.00203	0.110
##			clin	i c=2			
##	+ i mo	n riek			std orr	lower 95% CI	upper 95% CT
##	13	11.11sk 74	n.event	0.986	0.0134	0.961	
##	26	73	1	0.966	0.0134	0.981	1.000 1.000
##		73 72	1				
##	35 41	72	1	0.959	0.0229	0.916	1.000
##	41 79	68	1	0.946 0.932	0.0263 0.0294	0.896 0.876	0.999
			1				0.991
##	109	66 65		0.918	0.0321	0.857	0.983
##	122	65	1	0.904	0.0346	0.838	0.974

##	143	64	1	0.890	0.0368	0.820	0.965
##	149	62	1	0.875	0.0389	0.802	0.955
##	161	61	1	0.861	0.0408	0.785	0.945
##	170	60	1	0.847	0.0426	0.767	0.934
##	190	59	1	0.832	0.0442	0.750	0.924
##	216	58	1	0.818	0.0457	0.733	0.913
##	231	56	1	0.803	0.0472	0.716	0.901
##	232	55	1	0.789	0.0486	0.699	0.890
##	268	54	2	0.759	0.0510	0.666	0.866
##	280	52	1	0.745	0.0520	0.650	0.854
##	286	51	1	0.730	0.0530	0.633	0.842
##	322	50	1	0.716	0.0539	0.617	0.830
##	366	47	1	0.700	0.0549	0.601	0.817
##	389	45	1	0.685	0.0558	0.584	0.804
##	450	43	1	0.669	0.0568	0.566	0.790
##	460	41	1	0.653	0.0577	0.549	0.776
##	540	35	1	0.634	0.0590	0.528	0.761
##	661	23	1	0.606	0.0625	0.495	0.742
##	708	19	1	0.575	0.0669	0.457	0.722
##	878	10	1	0.517	0.0812	0.380	0.703

surv.clin3<-data.frame(surv.clin2\$strata,surv.clin2\$time,surv.clin2\$surv)
surv.clin3</pre>

##		<pre>surv.clin2.strata</pre>	${\tt surv.clin2.time}$	<pre>surv.clin2.surv</pre>
##	1	clinic=1	7	0.99382716
##	2	clinic=1	17	0.98765432
##	3	clinic=1	19	0.98148148
##	4	clinic=1	29	0.97523001
##	5	clinic=1	30	0.96897853
##	6	clinic=1	33	0.96272706
##	7	clinic=1	35	0.95647558
##	8	clinic=1	37	0.95022411
##	9	clinic=1	41	0.94397264
##	10	clinic=1	47	0.93772116
##	11	clinic=1	49	0.93146969
##	12	clinic=1	50	0.92521821
##	13	clinic=1	59	0.91892421
##	14	clinic=1	62	0.91263021
##	15	clinic=1	67	0.90629250
##	16	clinic=1	75	0.89995479
##	17	clinic=1	84	0.89361708
##	18	clinic=1	90	0.88727937
##	19	clinic=1	95	0.88094166
##	20	clinic=1	96	0.87460395
##	21	clinic=1	117	0.86812540
##	22	clinic=1	126	0.86164685
##	23	clinic=1	127	0.85516831
##	24	clinic=1	129	0.84868976
##	25	clinic=1	136	0.84216138
##	26	clinic=1	145	0.83563299
##	27	clinic=1	147	0.82910461
##	28	clinic=1	150	0.82252442
	29	clinic=1	157	0.81589115
##	30	clinic=1	160	0.80925789

## 31	clinic=1	167	0.80256981
## 32	clinic=1	168	0.79588173
## 33	clinic=1	175	0.78919365
## 34	clinic=1	176	0.78244840
## 35	clinic=1	180	0.76895791
## 36	clinic=1	181	0.76221267
## 37	clinic=1	183	0.75546742
## 38	clinic=1	192	0.74872218
## 39	clinic=1	193	0.74197693
## 40	clinic=1	204	0.73523169
## 41	clinic=1	205	0.72842399
## 42	clinic=1	207	0.72161629
## 43	clinic=1	209	0.71480859
## 44	clinic=1	212	0.70106227
## 45	clinic=1	216	0.69418911
## 46	clinic=1	223	0.68731595
## 47	clinic=1	237	0.68044279
## 48	clinic=1	244	0.67356963
## 49	clinic=1	247	0.66669647
## 50	clinic=1	257	0.65982331
## 51	clinic=1	258	0.65295015
## 52	clinic=1	259	0.64607699
## 53	clinic=1	262	0.63233067
## 54	clinic=1	275	0.62545751
## 55	clinic=1	293	0.61850798
## 56	clinic=1	294	0.61155846
## 57	clinic=1	299	0.60460893
## 58	clinic=1	302	0.59765940
## 59	clinic=1	314	0.59070987
## 60	clinic=1	337	0.58359289
## 61	clinic=1	341	0.57638804
## 62	clinic=1	348	0.56899845
## 63	clinic=1	350	0.56160886
## 64	clinic=1	358	0.55421927
## 65	clinic=1	367	0.54682968
## 66	clinic=1	368	0.53944009
## 67	clinic=1	376	0.53205050
## 68	clinic=1	386	0.52466090
## 69	clinic=1	393	0.51727131
## 70	clinic=1	394	0.50988172
## 71	clinic=1	399	0.50249213
## 72	clinic=1	428	0.49487862
## 73	clinic=1	434	0.48726510
## 74	clinic=1	438	0.47965158
## 75	clinic=1	452	0.47191527
## 76	clinic=1	457	0.46417895
## 77	clinic=1	465	0.45631151
## 78	clinic=1	482	0.44816309
## 79	clinic=1	489	0.44001467
## 80	clinic=1	496	0.43186625
## 81	clinic=1	504	0.42371783
## 82	clinic=1	512	0.41556941
## 83	clinic=1	514	0.40742099
## 84	clinic=1	517	0.39927257

##	85	clinic=1	518	0.39095439
	86	clinic=1	522	0.38263622
##	87	clinic=1	523	0.36599986
	88	clinic=1	532	0.35768168
	89	clinic=1	533	0.34936350
##	90	clinic=1	546	0.34062941
##	91	clinic=1	550	0.33189533
##	92	clinic=1	560	0.32316124
##	93	clinic=1	563	0.31442715
##	94	clinic=1	581	0.30489906
	95	clinic=1	591	0.29506360
	96	clinic=1	612	0.27471439
##	97	clinic=1	624	0.26414845
##	98	clinic=1	646	0.25358251
##	99	clinic=1	652	0.24301657
##	100	clinic=1	667	0.23245064
##	101	clinic=1	679	0.22188470
##	102	clinic=1	683	0.21131876
##	103	clinic=1	714	0.20075282
##	104	clinic=1	739	0.19018688
##	105	clinic=1	749	0.17962095
##	106	clinic=1	755	0.16905501
##	107	clinic=1	760	0.15848907
##	108	clinic=1	771	0.14792313
##	109	clinic=1	774	0.13735719
##	110	clinic=1	785	0.12679126
##	111	clinic=1	821	0.10143300
##	112	clinic=1	836	0.08694258
##	113	clinic=1	837	0.07245215
##	114	clinic=1	857	0.05433911
##	115	clinic=1	892	0.03622607
##	116	clinic=1	899	0.01811304
##	117	clinic=2	13	0.98648649
##	118	clinic=2	26	0.97297297
##	119	clinic=2	35	0.95945946
##	120	clinic=2	41	0.94594595
##	121	clinic=2	79	0.93203498
##	122	clinic=2	109	0.91791323
##	123	clinic=2	122	0.90379149
##	124	clinic=2	143	0.88966975
##	125	clinic=2	149	0.87532024
##	126	clinic=2	161	0.86097073
##	127	clinic=2	170	0.84662121
##	128	clinic=2	190	0.83227170
##	129	clinic=2	216	0.81792219
##	130	clinic=2	231	0.80331644
##	131	clinic=2	232	0.78871068
##	132	clinic=2	268	0.75949918
##	133	clinic=2	280	0.74489342
##	134	clinic=2	286	0.73028767
##	135	clinic=2	322	0.71568192
##	136	clinic=2	366	0.70045464
##	137	clinic=2	389	0.68488898
##	138	clinic=2	450	0.66896133

```
## 139
               clinic=2
                                    460
                                             0.65264520
## 140
               clinic=2
                                    540
                                             0.63399820
                                             0.60643306
## 141
               clinic=2
                                    661
## 142
                                    708
               clinic=2
                                             0.57451553
## 143
               clinic=2
                                    878
                                             0.51706397
#qive column names
colnames(surv.clin3)<-c('clinic','time','survival')</pre>
surv.clin3[1:5,]
      clinic time survival
              7 0.9938272
## 1 clinic=1
## 2 clinic=1
              17 0.9876543
## 3 clinic=1
              19 0.9814815
## 4 clinic=1
              29 0.9752300
## 5 clinic=1
               30 0.9689785
#stratify
clinic1<-surv.clin3[surv.clin3$clinic=='clinic=1',]</pre>
clinic1
##
        clinic time
                      survival
## 1
      clinic=1 7 0.99382716
## 2
      clinic=1 17 0.98765432
## 3
      clinic=1
                19 0.98148148
      clinic=1
## 4
                 29 0.97523001
## 5
      clinic=1
                 30 0.96897853
## 6
                 33 0.96272706
      clinic=1
## 7
                 35 0.95647558
      clinic=1
## 8
      clinic=1
                 37 0.95022411
## 9
      clinic=1 41 0.94397264
## 10 clinic=1
                 47 0.93772116
## 11 clinic=1
                 49 0.93146969
## 12 clinic=1
                 50 0.92521821
## 13 clinic=1
                59 0.91892421
## 14 clinic=1
                 62 0.91263021
## 15 clinic=1 67 0.90629250
## 16 clinic=1 75 0.89995479
## 17 clinic=1
                 84 0.89361708
## 18 clinic=1
                 90 0.88727937
## 19 clinic=1
                 95 0.88094166
## 20 clinic=1
                 96 0.87460395
## 21 clinic=1 117 0.86812540
## 22 clinic=1 126 0.86164685
## 23
     clinic=1 127 0.85516831
## 24 clinic=1 129 0.84868976
     clinic=1 136 0.84216138
## 25
## 26 clinic=1 145 0.83563299
## 27 clinic=1 147 0.82910461
## 28 clinic=1 150 0.82252442
## 29 clinic=1 157 0.81589115
## 30 clinic=1 160 0.80925789
## 31 clinic=1 167 0.80256981
## 32 clinic=1 168 0.79588173
## 33 clinic=1 175 0.78919365
## 34 clinic=1 176 0.78244840
```

```
clinic=1 180 0.76895791
       clinic=1
## 36
                 181 0.76221267
## 37
       clinic=1
                 183 0.75546742
## 38
       clinic=1
                 192 0.74872218
##
   39
       clinic=1
                 193 0.74197693
##
                 204 0.73523169
  40
       clinic=1
                 205 0.72842399
## 41
       clinic=1
## 42
       clinic=1
                 207 0.72161629
## 43
       clinic=1
                 209 0.71480859
## 44
       clinic=1
                 212 0.70106227
## 45
       clinic=1
                 216 0.69418911
## 46
                 223 0.68731595
       clinic=1
##
  47
       clinic=1
                 237 0.68044279
## 48
                 244 0.67356963
       clinic=1
## 49
                 247 0.66669647
       clinic=1
## 50
       clinic=1
                 257 0.65982331
## 51
                 258 0.65295015
       clinic=1
## 52
       clinic=1
                 259 0.64607699
## 53
                 262 0.63233067
       clinic=1
## 54
       clinic=1
                 275 0.62545751
##
  55
       clinic=1
                 293 0.61850798
  56
       clinic=1
                 294 0.61155846
                 299 0.60460893
## 57
       clinic=1
       clinic=1
                 302 0.59765940
## 58
## 59
       clinic=1
                 314 0.59070987
## 60
       clinic=1
                 337 0.58359289
## 61
       clinic=1
                 341 0.57638804
##
   62
       clinic=1
                 348 0.56899845
## 63
       clinic=1
                 350 0.56160886
## 64
       clinic=1
                 358 0.55421927
## 65
       clinic=1
                 367 0.54682968
## 66
       clinic=1
                 368 0.53944009
## 67
       clinic=1
                 376 0.53205050
## 68
       clinic=1
                 386 0.52466090
##
  69
       clinic=1
                 393 0.51727131
                 394 0.50988172
##
  70
       clinic=1
## 71
       clinic=1
                 399 0.50249213
## 72
       clinic=1
                 428 0.49487862
## 73
       clinic=1
                 434 0.48726510
## 74
                 438 0.47965158
       clinic=1
                 452 0.47191527
  75
       clinic=1
## 76
       clinic=1
                 457 0.46417895
##
  77
       clinic=1
                 465 0.45631151
##
  78
       clinic=1
                 482 0.44816309
## 79
       clinic=1
                 489 0.44001467
## 80
                 496 0.43186625
       clinic=1
## 81
       clinic=1
                 504 0.42371783
## 82
       clinic=1
                 512 0.41556941
## 83
       clinic=1
                 514 0.40742099
## 84
       clinic=1
                 517 0.39927257
##
  85
                 518 0.39095439
       clinic=1
## 86
       clinic=1
                 522 0.38263622
## 87
       clinic=1 523 0.36599986
## 88 clinic=1 532 0.35768168
```

```
## 89 clinic=1 533 0.34936350
## 90 clinic=1 546 0.34062941
## 91 clinic=1 550 0.33189533
## 92 clinic=1 560 0.32316124
## 93
      clinic=1 563 0.31442715
## 94 clinic=1 581 0.30489906
## 95 clinic=1 591 0.29506360
## 96 clinic=1 612 0.27471439
## 97
      clinic=1 624 0.26414845
## 98 clinic=1 646 0.25358251
## 99 clinic=1 652 0.24301657
## 100 clinic=1 667 0.23245064
## 101 clinic=1 679 0.22188470
## 102 clinic=1 683 0.21131876
## 103 clinic=1 714 0.20075282
## 104 clinic=1
                739 0.19018688
## 105 clinic=1 749 0.17962095
## 106 clinic=1 755 0.16905501
## 107 clinic=1 760 0.15848907
## 108 clinic=1
                771 0.14792313
## 109 clinic=1 774 0.13735719
## 110 clinic=1 785 0.12679126
## 111 clinic=1 821 0.10143300
## 112 clinic=1 836 0.08694258
## 113 clinic=1 837 0.07245215
## 114 clinic=1 857 0.05433911
## 115 clinic=1 892 0.03622607
## 116 clinic=1 899 0.01811304
clinic2<-surv.clin3[surv.clin3$clinic=='clinic=2',]</pre>
clinic2
##
        clinic time survival
## 117 clinic=2
                13 0.9864865
## 118 clinic=2
                 26 0.9729730
## 119 clinic=2
                 35 0.9594595
                 41 0.9459459
## 120 clinic=2
## 121 clinic=2
                 79 0.9320350
## 122 clinic=2 109 0.9179132
## 123 clinic=2 122 0.9037915
## 124 clinic=2 143 0.8896697
## 125 clinic=2 149 0.8753202
## 126 clinic=2 161 0.8609707
```

127 clinic=2 170 0.8466212 ## 128 clinic=2 190 0.8322717 ## 129 clinic=2 216 0.8179222 ## 130 clinic=2 231 0.8033164 ## 131 clinic=2 232 0.7887107 ## 132 clinic=2 268 0.7594992 ## 133 clinic=2 280 0.7448934 ## 134 clinic=2 286 0.7302877 ## 135 clinic=2 322 0.7156819 ## 136 clinic=2 366 0.7004546 ## 137 clinic=2 389 0.6848890 ## 138 clinic=2 450 0.6689613

```
## 139 clinic=2 460 0.6526452
## 140 clinic=2 540 0.6339982
## 141 clinic=2 661 0.6064331
## 142 clinic=2 708 0.5745155
## 143 clinic=2 878 0.5170640

plot(clinic1$time,log(-log(clinic1$survival)),xlab='survival time in days',ylab='log-log survival',col=
#overlay plots
par(new=T)
plot(clinic2$time,log(-log(clinic2$survival)),xlab='survival time in days',ylab='log-log survival',col=
#back to default
par(new=F)
legend('bottomright', c('Clinic1', 'Clinic2'), lty = c('solid', 'dashed'),col=c
('blue','red'))
```


Looks the curves cross each other. This indicate model violate PH assumption

Using statistical test

```
## clinic -0.2498 10.495 0.00120
## GLOBAL NA 12.425 0.00606

# var = clinic means residuals should pertain to the variable clinic
plot(test.ph2,se=FALSE,var='clinic')
```


Running stratified Cox model

When models violate PH assumption. in our case, 'clinic' does violate PH assumption but others are not. So we do stratified Cox model

```
surv.strata<-coxph(datas~prison+dose+strata(clinic),data=data1)</pre>
summary(surv.strata)
## coxph(formula = datas ~ prison + dose + strata(clinic), data = data1)
##
##
    n= 238, number of events= 150
##
##
             coef exp(coef)
                           se(coef)
                                        z Pr(>|z|)
  prison 0.389605 1.476397
                           0.168930 2.306
                                           0.0211 *
        ##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
         exp(coef) exp(-coef) lower .95 upper .95
##
```

```
## prison
            1.4764
                       0.6773
                                 1.0603
                                           2.0559
## dose
            0.9655
                       1.0357
                                 0.9533
                                           0.9778
##
## Concordance= 0.651 (se = 0.034)
## Rsquare= 0.133
                   (max possible= 0.994 )
## Likelihood ratio test= 33.91 on 2 df,
                                           p=4.322e-08
                                           p=8.076e-08
                       = 32.66 on 2 df.
## Score (logrank) test = 33.33 on 2 df,
                                           p=5.774e-08
```

Running stratified Cox model with interaction

```
surv.strata.ia<-coxph(datas~prison+dose+clinic:dose+clinic:prison+strata(clinic),data=data1)</pre>
summary(surv.strata.ia)
## Call:
## coxph(formula = datas ~ prison + dose + clinic:dose + clinic:prison +
##
      strata(clinic), data = data1)
##
##
    n= 238, number of events= 150
##
##
                     coef exp(coef) se(coef)
                                                  z Pr(>|z|)
## prison
                 1.085836 2.961914 0.538636 2.016
                                                      0.0438 *
## dose
                0.0802 .
                -0.001164 0.998837 0.014570 -0.080
                                                      0.9363
## dose:clinic
## prison:clinic -0.582989 0.558227 0.428135 -1.362
                                                      0.1733
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
                exp(coef) exp(-coef) lower .95 upper .95
## prison
                   2.9619
                              0.3376
                                        1.0306
                                                  8.513
                   0.9660
                              1.0352
                                       0.9292
## dose
                                                  1.004
## dose:clinic
                   0.9988
                              1.0012
                                       0.9707
                                                  1.028
                   0.5582
## prison:clinic
                              1.7914
                                       0.2412
                                                  1.292
##
## Concordance= 0.649 (se = 0.034)
                  (max possible= 0.994 )
## Rsquare= 0.14
## Likelihood ratio test= 35.77 on 4 df,
                                          p=3.222e-07
## Wald test
                       = 34.09 on 4 df,
                                          p=7.138e-07
## Score (logrank) test = 34.97 on 4 df,
                                         p=4.706e-07
Calculating the HR
If we want to calculate the HR between PRISON=1 vs PRISON=0 for CLINIC=2, then one way is by
```

making CLINIC equals 0. So when CLINIC==2, then CLINIC2==0.

```
data1$clinic2<-data1$clinic-1
head(data1$clinic2)
## [1] 0 0 0 0 0 0
head(data1$clinic)
```

```
## [1] 1 1 1 1 1 1
```

```
## Call:
## coxph(formula = datas ~ prison + dose + clinic2:prison + clinic2:dose +
##
      strata(clinic2), data = data1)
##
   n= 238, number of events= 150
##
##
##
                      coef exp(coef) se(coef)
                                                  z Pr(>|z|)
## prison
                 0.502846 1.653421 0.188706 2.665 0.00771 **
## dose
                 -0.035799  0.964834  0.007738  -4.626  3.72e-06 ***
## prison:clinic2 -0.582989 0.558227 0.428135 -1.362 0.17329
## dose:clinic2 -0.001164 0.998837 0.014570 -0.080 0.93632
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
                 exp(coef) exp(-coef) lower .95 upper .95
                   1.6534
                              0.6048
                                        1.1422
## prison
## dose
                    0.9648
                              1.0364
                                        0.9503
                                                 0.9796
## prison:clinic2
                    0.5582
                              1.7914
                                        0.2412
                                                 1.2919
## dose:clinic2
                    0.9988
                              1.0012
                                        0.9707
                                                 1.0278
## Concordance= 0.649 (se = 0.034)
## Rsquare= 0.14 (max possible= 0.994)
## Likelihood ratio test= 35.77 on 4 df, p=3.222e-07
## Wald test
                      = 34.09 on 4 df, p=7.138e-07
## Score (logrank) test = 34.97 on 4 df,
                                        p=4.706e-07
```