Equations

Fourier

Periodic $x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} \qquad x[n] = \sum_{k=< N>} a_k e^{jk\left(\frac{2\pi}{N}\right)n} \\ a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt \qquad a_k = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jk\left(\frac{2\pi}{N}\right)n}$ $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega \qquad x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$ Aperiodic $x(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt \qquad X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}$

Table 1: Properties of Continuous Time Fourier Series

Property	Periodic signal	Fourier series coefficients
	$x(t)$ periodic with period $y(t)$ T and fundamental frequency $\omega_0 = 2\pi/T$	$egin{aligned} a_k \ b_k \end{aligned}$
Linearity	Ax(t) + By(t)	$Aa_k + Bb_k$
Time shifting	$x(t-t_0)$	$a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$
Frequency shifting	$e^{jM\omega_0t}x(t)=e^{jM(2\pi/T)t}x(t)$	a_{k-M}
Conjugation	$x^*(t)$	a_{-k}^*
Time reversal	x(-t)	a_{-k}
Time scaling	$x(\alpha t), \alpha > 0$ (periodic with period) $\int_{T} x(\tau) y(t-\tau) d\tau$	a_k
Periodic convolution	$\int_T x(\tau) y(t-\tau) d\tau$	Ta_kb_k
Multiplication	x(t)y(t)	$\sum_{l=-\infty}^{\infty} a_l b_{k-l}$
Differentiation	$\frac{d}{dt}x(t)$	$jk\omega_0 a_k$
Integration	$\int_{-\infty}^{t} x(\tau)d\tau$ finite valued and periodic only if $a_0 = 0$	$\frac{1}{jk\omega_0}a_k$
Conjugate symmetry for real signals	x(t) real	$\frac{1}{jk\omega_0} a_k$ $\begin{cases} a_k = a_{-k}^* \\ \mathfrak{Re}\{a_k\} = \mathfrak{Re}\{a_{-k}\} \\ \mathfrak{Im}\{a_k\} = -\mathfrak{Im}\{a_{-k}\} \\ a_k = a_{-k} \\ \forall a_k = - \forall a_{-k} \end{cases}$
Real and even signals	x(t) real and even	a_k real and even
Real and odd signals	x(t) real and odd	a_k purely imaginary and odd
Even-odd decomposition for real signals	$x_e(t) = \mathfrak{Ev}\{x(t)\}, [x(t) \text{ real}]$ $x_o(t) = \mathfrak{Dd}\{x(t)\}, [x(t) \text{ real}]$	$\mathfrak{Re}\{a_k\}$ $j\mathfrak{Im}\{a_k\}$

Parseval's relation for aperiodic signals

$$\frac{1}{T} \int_T |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2$$

Table 2: Properties of the Fourier Transform

Property	Aperiodic signal	Fourier transform
	x(t)	$X(j\omega)$
	y(t)	$Y(j\omega)$
Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
Time shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
Frequency shifting	$e^{j\omega_0t}x(t)$	$X(j(\omega-\omega_0)$
Conjugation	$x^*(t)$	$X^*(-j\omega)$
Time reversal	x(-t)	$X(-j\omega)$
Time and frequency scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
Multiplication	x(t)y(t)	$\frac{1}{2\pi}X(j\omega)*Y(j\omega)$
Differentiation in time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
Integration	$\int_{-\infty}^t x(\tau)d\tau$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
Differentiation in frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$ $\begin{cases} X(j\omega) = X^*(-j\omega) \end{cases}$
Conjugate symmetry for real signals	x(t) real	$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re{\{X(j\omega)\}} = \Re{\{X(-j\omega)\}} \\ \Im{\{X(j\omega)\}} = -\Im{\{X(-j\omega)\}} \\ X(j\omega) = X(-j\omega) \\ X(j\omega) = -A X(-j\omega) \end{cases}$
Symmetry for real and even signals	x(t) real and even	$X(j\omega)$ real and even
Symmetry for real and odd signals	x(t) real and odd	$X(j\omega)$ purely imaginary and odd
Even-odd decomposition for real signals	$x_e(t) = \mathfrak{Ev}\{x(t)\}, [x(t) \text{ real}]$ $x_o(t) = \mathfrak{Dd}\{x(t)\}, [x(t) \text{ real}]$	$\mathfrak{Re}\{X(j\omega)\}$ $j\mathfrak{Im}\{X(j\omega)\}$

Parseval's relation for aperiodic signals

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$$

Table 3: Basic Fourier Transform Pairs

Signal	Fourier transform	Fourier series coefficients
$\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$	a_k
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0$, otherwise
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{ otherwise}$
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1, a_k = 0, k \neq 0$ (This is the Fourier series representation for any choice of $T > 0$
Periodic square wave		
$x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$	$\sum_{k=-\infty}^{\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$
and $x(t+T) = x(t)$		
$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) = \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	_
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	
$\delta(t)$	1	-
<i>u(t)</i>	$\frac{1}{j\omega} + \pi\delta(\omega)$	_
$\delta(t-t_0)$	$e^{-j\omega t_0}$	-
$e^{-at}u(t), \Re \mathfrak{e}\{a\} > 0$	$\frac{1}{a+j\omega}$	_
$te^{-at}u(t)$, $\Re \mathfrak{e}\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	_
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t), \Re \mathfrak{e}\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	_
	·	