TR-277

AD-A277 729

TECHNICAL REPORT

An Evaluation of the Airborne Expendable Bathythermograph (AXBT, SSQ-36 BTS)

A. Edward Gent

JANUARY 1982

94-06528

DIIC QUALITY IL. C. C. C. C.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

PREPARED BY
COMMANDING OFFICER,
NAVAL OCEANOGRAPHIC OFFICE
NSTL STATION, BAY ST. LOUIS, MS 39522

PREPARED FOR COMMANDER,
NAVAL OCEANOGRAPHY COMMAND
NSTL STATION, BAY ST. LOUIS, MS 39529

FOREWORD

The effort described in this report was performed by engineers and technicians in the Maintenance Engineering Division of the Engineering Department, Naval Oceanographic Office. This work was done in support of the Ocean Measurements Project to provide instrument characteristics data for use by scientists engaged in project related oceanographic measurement. If further information or discussion on this topic is desired contact Commanding Officer, Naval Oceanographic Office, Attention Mr. Adolph H. Klein, Code 6300, NSTL Station, Bay St. Louis, MS 39522, 601-688-4465 (FTS 494-4465, AV 485-4465).

C. H. BASSETT Captain, USN Commanding Officer

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
TR-277		
4. TITLE (and Subtitle)		S. TYPE OF REPORT & PERIOD COVERED
AN EVALUATION OF THE AIRBORNE EXP		
BATHYTHERMOGRAPH (AXBT, SSQ-36 BT		Final 4/80 - 6/81
Temperature Accuracy and Time Res	ponse	TR 6300-1-81
7. AUTHOR(*)		8. CONTRACT OR GRANT NUMBER(a)
	1	1
A. EDWARD GENT	1	N/A
9. PERFORMING ORGANIZATION NAME AND ADDRESS		TA ABOGRAM EL EMENT PROJECT, TASK
Maintenance Engineering Division	1	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Oceanographic Office	1	1
	39522	OMP
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Naval Oceanography Command	20520	6/81
NSTL Station, Bay St. Louis, MS	39529	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II differen	it from Controlling Office)	18. SECURITY CLASS. (of this report)
	!	
	1	Unclassified
See #11	!	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		1
Approved for public release; dist		
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different true	m Report)
1		
18. SUPPLEMENTARY NOTES		
N/A		
19. KEY WORDS (Continue on reverse side if necessary an	id identify by block number))
'AXBT, SSQ-36 BTS, AXBT Temperat	ture Error	
AXBT Time Response		
20. ABSTRACT (Continue on reverse side if necessary and	d identify by block number)	
Random samples from lots of AXBTs manufactured by the Hermes, Sippican and Magnavox Corporations were tested for temperature accuracy and time response using precision laboratory facilities. Results, conclusions and correction algorithms are presented.		

TABLE OF CONTENTS

	PAGE
INTRODUCTION	1
TEST PROCEDURE	5
Hermes - Preliminary	5
Sippican - Preliminary	5
Magnavox - Preliminary	5
General Measurement Technique	6
TEMPERATURE CALIBRATION	9
Hermes	9
Sippican	9
Magnavox	9
CALIBRATION TEST RESULTS	12
Hermes	12
Sippican	12
Magnavox	12
THERMAL TIME CONSTANT	15
Hermes	15
Sippican	15
Magnavox	15
TIME RESPONSE RESULTS	17
Hermes	17
Sippican	17 Accesion For
Magnavox	18 DTIC TAB
CONCLUSIONS	DTIC TAB Unannounced 19 Ustification
ERRATA	20 _{By}
	Distribution /
	Availability Codes
	Oest Avail and/or Special

FIGURES

		PAGE
١.	Hermes AXBT	2
2.	Sippican AXBT	3
3.	Magnavox AXBT	4
4.	Hermes Test Configuration	7
5.	Sippican and Magnavox Test Configuration	8
6.	Sippican Flow Calibration Apparatus	11
7.	Sippican "Drop Test" Apparatus	16
	APPENDIXES	
Α.	Graphs	21
В.	Tables *	78
С.	Curve Fits *	136

^{*} Tables and curve fits 3 - 137 deleted from this copy. Copies will be made available upon request.

INTRODUCTION

In support of the Ocean Measurement Project (OMP) the Technical Services Branch of the Naval Oceanographic Office (NAVOCEANO) conducted temperature tests on a number of Airborne Expendable Bathythermographs, Transmitting Model AN/SSQ-36BTS (AXBT). The units, tested by the Maintenance Engineering Division, were from lots manufactured by the Hermes, Sippican and Magnavox Corporations.

Background

When deployed from an aircraft into the sea the AXBT upon impact jettisons its stabilizer parachute assembly, erects a transmitting antenna, and after a short delay for battery activation by salt water, releases a temperature probe. The probe descends at a nominal rate of 1.52m/sec (5 ft/sec). During its descent, an audio modulated VHF signal proportional to the sea temperature is transmitted to the aircraft. The AXBTs have a specified accuracy of \pm .5°C. After the probe has descended to its maximum depth the units self-scuttle.

While all the AXBTs are deployed in a similar manner their design aspects and operational parameters differ according to the manufacturer (figures 1 - 3). The Sippican unit (figure 2) employs a flotation bag inflated by a CO2 cartridge fired upon battery activation and release of their outer casing. The Hermes and Magnavox units (figures 1 and 3, respectively) on the other hand, maintain buoyancy with an air-tight electronics compartment which includes the outer casing. All units deploy a monopole antenna for data transmission. The Sippican AXBT is designed to operate to a depth of 762m (2500 ft) while the Magnavox and Hermes models operate to a depth of 305m (1000 ft). Automatic scuttling is accomplished in the Hermes unit by means of a salt water soluble plug in the water tight electronics housing. The Sippican AXBT employs a resistive heater wire that burns a hole in the unit's floatation bag. The Magnavox unit uses a technique similar to Sippican's to burn a hole in a scuttle plug located in the side of the bouyant electronics compartment.

Figure 1 Hermes AXBT

Figure 2 Sippican AXBT

4

Figure 3 Magnavox AXBT

TEST PROCEDURE

Hermes - Preliminary

Between March 10 and 26, 1980, 56 AXBTs (Model AN/SSQ-36BTS) manufactured by Hermes Electronics Limited were tested. Thirty-one units were from Lot 45 and 25 units from Lot 47. An additional 64 AXBTs were tested between June 5 and 16, 1980. Twenty-eight units were from Lot 39, 27 units from Lot 43 and 9 units from Lot 45.

When the AXBTs were unpacked, it was discovered that there were no unique serial numbers for each unit. To provide test reference numbers, each unit was arbitrarily assigned a "serial number". The units tested in March were numbered 1 through 56. Numbers 101-164 were used to designate the units tested in June.

To facilitate testing and preserve the integrity of the units for future deployment, the parachute assembly was removed to gain access to the electrical test plug located on top of the AXBT housing. The test plug supplied an audio frequency signal proportional to the temperature (f = 1440 + 36T) and provided the input for applying an external power source to the probe, by-passing the sea water activated battery. The bottom plate was also removed, with care taken not to deploy the probe assembly. When the bottom plate was removed, about 3" of the probe was exposed below the AXBT's external housing.

<u>Sippican - Preliminary</u>

Between December 5 and 15, 1980, 48 Sippican AXBTs were tested. These units bore no lot designation and were identified by the manufacturers serial number.

During the test, the parachute assemblies and outer casings were removed exposing the operational portion of the units, including the flotation bag with antenna and scuttle patch, the transmitter and electronics package, the salt water activated battery, the jack for applying an external power source, and the temperature probe (figure 2).

<u> Magnavox - Preliminary</u>

Fifty-four Magnavox AXBTs were tested between January 19 and 27, 1981. Of these, 29 units were from Lot 5, 7 from Lot 1, 1 from Lot 7 and 3 from Lot 11, 10 from Lot 19 and 3 from Lot 21. Each AXBT was identified by the manufacturers serial number.

The parachute assembly and bottom impact plate were removed to aid in testing. This allowed access to the test plug for applying an external power source, exposed the temperature probe, and enabled deployment of the antenna.

General Measurement Technique

Proceeding on the premise that the AXBTs should be tested in a non-destructive manner so that they could later be used in actual field deployment, the measurement system shown in figure 4 was developed for the Hermes units and that of figure 5 for the Sippican and Magnavox units.

A variable power supply was used to provide the operating voltage through an external test jack installed by each manufacturer to bypass the salt water activated battery. The supply voltage, monitored with a digital voltmeter, was varied on randomly selected units to determine output dependency on supply voltage. Test data for the Hermes AXBTs were obtained by directly measuring the audio signal proportional to the temperature since this signal was readily available at the test plug. In subsequent testing of the Sippican and Magnavox units a VHF receiver was used to receive the actual AXBT transmission and strip off the audio modulation proportional to the bath temperature. The audio signals were measured by a Hewlett Packard (HP) 5323A counter under the control of a HP9830 desktop calculator.* The counter readings and temperature computed from the standard equation T = (f - 1440)/36 (where f is frequency in Hz, and T is temperature in OC) were listed on a HP9866B thermal printer. The reference (bath) temperature was provided by a HP 2801A quartz thermometer with .001°C resolution.*

- * The HP5323A counter has an eight digit BCD output and a time base stability of 3 parts in 10⁷/month. It was calibrated against a HP5016A Cesium Beam Frequency standard with time base reproducibility at National Bureau of Standards (NBS) of [±]5 parts in 10¹².
- * The quartz thermometer was calibrated against an NBS certified platinum thermometer and an L & N voltage ratio bridge prior to and after each test. The platinum thermometer and ER bridge have a measurement uncertainty of $^{\pm}.002^{\circ}\text{C}$.

Figure 4 Hermes Test Configuration

Figure 5 Sippican and Magnavox Test Configuration

Temperature Calibration

Preliminary testing was performed on the AXBTs to determine any supply voltage dependency or thermistor self-heating. A twelve-point temperature calibration was performed on several sensors randomly selected from each lot. Testing was conducted at $2,4,6,8,10,12,14,16,18,20,22,25^{\circ}C$. The remaining AXBTs were tested at 3 temperatures $(5,15,25^{\circ}C)$ or 4 temperatures $(2,6,14,25^{\circ}C)$. Initially tests were conducted with the 3 temperature settings, the change to 4 temperature settings was made to agree with the 12-point calibration data.

<u>Hermes</u>

The preliminary testing conducted on the Hermes units in March showed that no self heating was evident nor was there any noticeable supply voltage dependency. The calibration measurements were conducted with a supply voltage of +13VAC.

The twelve-point temperature calibration was performed on 4 units from Lot 45, 5 units from Lot 47, 9 units from Lot 39, and 9 units from Lot 43. Three measurements were made for each sensor at each of the 23 temperature points. The remaining AXBT tests in March (27 from Lot 45 and 20 from Lot 47) were conducted at temperatures of 5, 15 and 25° C while those tested in June (19 from Lot 39, 18 from Lot 43, and 9 from Lot 45) were conducted at 2.6, 14 and 25° C.

Sippican

During the preliminary testing, it was discovered that due to the thermistor placement (figure 2C) there was insufficient bath stirring to prevent thermistor self heating. In order to overcome this problem a submersible pump was placed in the bath. Attached to the pump was a manifold which allowed 8 AXBTs to be attached for calibration. This flow calibration apparatus is shown in figure 6. Heating effects on the flow were considered negligible as both the manifold and pump were submerged in the bath. Graphs 1-4 indicate this test fixture significantly eliminated the self heating effects. Consequently this technique was used throughout the calibration tests.

Pre-calibration testing also revealed output variation with changing supply voltage. This is shown in table 1. To maintain consistancy and comparability between the sensors, all subsequent testing was conducted with a reference supply voltage of +12VDC.

Eight units were selected at random from the 48 sensors on hand. A 12-point temperature was performed on these particular AXBTs. The remaining 40 units were calibrated at four temperature points $(2,6,14,25^{\circ}C)$. Twenty readings from each sensor were obtained at each temperature setting. The data was taken at a rate of 148 msec per sample.

Magnavox

Pre-calibration tests indicated no thermistor self heating when the AXBTs were placed in the bath. However, there was output variation with changes in supply voltage as shown in table 2. All subsequent testing was conducted with the external supply voltage set to ± 12 VDC.

A total of 53 AXBTs were tested. Units were selected at random from each lot for the twelve temperature calibrations. These included: 3 each from Lots 1 and 11; 21 each from Lots 5 and 19 and 1 from Lot 7. The remaining units were checked at 2,6,14 and 25° C. Twenty readings were taken at each temperature setting at a rate of 148 msec per sample.

FLOW CALIBRATION APPARATUS

Figure 6 Sippican Calibration Apparatus

Calibration Test Results

Hermes

Using the sensor frequency obtained from the $2^{\circ}C$ incremental 12-point tests in comparison with the reference temperature (T_{ref}) provided by the quartz thermometer (tables 3-60), the temperature error using the standard AXBT equation T_{std} ($^{\circ}C$) = (f-1440)/36 was examined for each lot where Estd ($^{\circ}C$)= T_{std} - T_{ref} . Lots 45, 47 and 43 indicated an average Estd (\overline{E}_{std}) greater than +.5°C for frequencies above 2250 Hz and for lot 39 above 2150 Hz.

Since the Standard equation yield \overline{E}_{Std} between -.1°C and +.7°C over the frequency range 1500 to 2350 Hz (2°C - 25°C), a third order polynomial relating output frequency to the reference temperature (T_{ref}) was fitted to the averaged 12-point data using the least squares method. The resultant temperature equation (NAVOCEANO Equation) yields $T_{NAV}(^{\circ}C) = C_0 + C_1f + C_2f^2 + C_3f^3$. The coefficients for each lot are as follows:

Lot	c _o	c_1	c ₂	c ₃	Standard Error of Estimate
45	-60.6684	.060118	16417×10^{-4}	.26787 x 10 ⁻⁸	.003
47	-62.2449	.062670	17769 x 10 ⁻⁴	.29173 x 10 ⁻⁸	.004
43	-64.9371	.067131	20142×10^{-4}	.33236 x 10 ⁻⁸	.009
39	-66.0341	.068776	21027×10^{-4}	.34775 x 10 ⁻⁸	.010

The average error using the NAVOCEANO equation (E_{NAV}) for the 12-point data is significantly less than E_{Std} as summarized below:

	Ē _{NAV}	E _{NAV} Max	\overline{E}_{std}	\overline{E}_{std}^{Max}
Lot	Range (^O C)	STD Dev.	Range (^O C)	STD Dev.
45	009 to .005	.091	032 to .574	.091
47	003 to .011	.072	059 to .524	.072
43	013 to .017	.116	102 to .569	.112
39	021 to .017	.164	.011 to .687	.164

Graphs 5 - 8 show the average error comparison between the standard and NAVOCEANO equations. Also indicated on these graphs is the average error from the remaining AXBTs in each lot from the 3-temperature and 4-temperature data points.

^{*} Tables 3-60 are not in this report but are available upon request.

A summary of the temperature error for this data is shown below. Max Max ENAV Estd Range (^OC) STD Dev. Range (OC) Lot STD Dev. 45 -.001 to .024 .086 -.021 to .562 .113 -.104 to .004 .232 -.046 to .416 .230 47

-.081 to .501

.053 to .633

.114

.152

Actual data plots of the information summarized above are presented in graphs 16-33. During the testing, sensors 15(lot 43) and 19(lot 45) failed after several measurements. Sensor 30(lot 47) did not operate at all. Fifty three AXBTs were reassembled and forwarded for field deployment.

.113

.152

Sippican

43

39

-.057 to .024

-.047 to .042

The calibration data obtained for the Sippican AXBTs is presented in tables 61-74. Of the 9 sensors used in performing the 12-temperature point tests only one produced a temperature error in excess of +.5°C when the standard AXBT equation was used. The average error \overline{E}_{Std} for the standard equation ranged from -.165 to .319°C with a maximum standard deviation of 0.145. A third order least squares curve fit was performed on the averaged 12-point data. This produced the equation T_{NAV} = -66.8857 + .070273f - .21807 x 10⁻⁴ f² + .36311 x 10⁻⁸ f³ with a standard error of estimate equal 0.012.

The average error \overline{E}_{NAY} for the NAVOCEANO equation ranged from -.020°C to .022°C with a maximum standard deviation of .154 for the 12-point data. A comparison of the average error obtained from using the standard and NAVOCEANO equations is shown in graph 9. Also on this graph is a plot of the average error from the 4-point temperature checks on 37 sensors. There is very good agreement between the 12-point and 4-point error averages with errors ranging from .009°C to .050°C for \overline{E}_{NAY} with a maximum standard deviation of .075. Graphs 34-37 depict the actual temperature error measured for each sensor for both equations at the 12-point and 4-point temperature calibrations.

Three of the 43 units tested suffered electronic failures (#1, 2 and 288), and sensor 356 produced spurious outputs at 2°C. In all, 39 sensors were reassembled and shipped for deployment.

<u>Magnavox</u>

The test data from the Magnavox units are presented in tables 75-135. There is considerable lot-to-lot variation in the average error $\overline{\mathsf{E}}_{\text{Std}}$ derived from the standard AXBT equation. There is, however, a general trend in that all lots, with exception of lot 1, exhibit average temperature errors greater than -.5°C for frequencies below 1850Hz (11°C). This large negative error is also different from the general trends exhibited by the Hermes and Sippican units.

Using a least squares curve fit routine to model the data, a third order polynomial $T_{NAV} = C_0 + C_1 f + C_2 f^2 + C_3 f^3$ was derived for each lot. These coefficients are listed as follows:

Lot	c ₀	c_1	c ₂	c ₃	Standard error of estimate
1	-47.1819	.040980	72939×10^{-4}	.12362 x 10 ⁻⁸	.032
5	-65.9632	.070036	21912×10^{-4}	$.36505 \times 10^{-8}$.019
7	-64.7019	.068215	20901 x 10 ⁻⁴	$.34628 \times 10^{-8}$.048
11	-60.9306	.061516	17116 x 10 ⁻⁴	$.27827 \times 10^{-8}$.030
19	-54.3513	.051613	11965 x 10 ⁻⁴	$.18687 \times 10^{-8}$.034
21	-51.5242	.046827	94730×10^{-4}	.14478 x 10 ⁻⁸	.040

As seen from the standard error of estimate column in the coefficient table above, the curve fits for the Magnavox AXBT lots are not as precise as those of the Sippican and Hermes previously noted. This is due to the large data scatter measured at the lower test temperatures and the small number of sensors tested from each lot. A comparison of the standard and NAVOCEANO equation using the averaged data is shown in graphs 10-15 for each lot and is summarized below for the 12-point data:

Lot	T _{NAV} (OC) range	Maximum std. dev.	T _{std} (°C) range	Maximum std. dev.
1	053 to .055	.187	401 to .404	.194
5	028 to .026	.258	524 to .295	.268
7	070 to .100	-	736 to .200	-
11	070 to .059	.263	672 to .046	.270
19	.005 to .095	.157	814 to092	.167
21	034 to .058	.147	651 to .263	.153

The 4-point temperature data are also depicted in graphs 10-15 for each lot. While these error averages deviate from those from the 12-point temperature data at the lower frequencies, the errors do, however, fall within the standard deviations computed for the 12-point error averages. Graphs 38-53 show the temperature errors for each sensor at each test temperature. Again note the large error scatter. While most of the AXBTs tested produced temperature errors exceeding the $-.5^{\circ}\text{C}$ specification, there were no sensor failures noted.

Thermal Time Constant

The thermal time constant tests were conducted using the automatic test systems shown earlier in figures 4 and 5. Data were read from an HP532A counter by an HP9830 calculator at a rate of 58 msec/sample. Prior to testing, the response of the probe circuitry was determined to be instantaneous using a decade resistance to simulate the thermistor. A thermal time constant is defined as the time required for the sensor to respond to 63.2% of step change in temperature. The thermal time constant test procedures used here are not considered optimal. It is felt that useful information regarding relative response times have been generated and that approximations of the real time constraints of the sensors have been measured. The use of these data for filter design is not recommended.

Hermes

The Hermes AXBTs were tested using a rope-pulley arrangement to drop the units from air at room temperature into a stable bath. In order to determine the thermistor response, the protective plate covering the thermistor (figure 1C) was removed. While this was not the normal operating configuration of the probe, it did provide data about the unrestricted response of the thermistor when encountering a step change in temperature. Because of the decrease in flow restriction caused by plate removal and because of the air/water test procedure, data collected is thought to be "best case" or show a shorter time constant that would be encountered in-situ.

Sippican

Because of thermistor self heating, as noted earlier, an air-water drop to determine time response was considered to be impractical. After consideration, the test apparatus shown in figure 7 was developed as the simplest alternative. This "drop test" apparatus operated by pumping water to a three port valve from two baths at different temperatures. A bypass line was included at the input ports of the valve to continually recycle water to maintain a stable temperature at the unused port. An HP9830 calculator read the AXBT output from a frequency counter at a rate of 58 msec/sample. After several readings were taken with one flow temperature the valve was switched to the other flow. This provided the step change in temperature in determining the thermistor time response. While this test gives a good indication as to the sensor's time response, it does not provide the precision that elaborate laboratory apparatus or actual field deployment would provide.

Magnavox

Time response testing on the Magnavox units was conducted in a similar manner to the Hermes AXBTs. An air-water drop was made using a rope pulley arrangement. The Magnavox AXBTs do not have a protective cover shielding their thermistors.

"DROP TEST" APPARATUS

Figure 7

Time Response Results

Hermes

Time response tests were performed upon randomly selected units from each lot on hand. Of the units tested 4 were from lot 45, 5 from lot 47, 3 each from lots 39 and 43. The time constant tests performed on lots 45 and 47 in March included drops from air to water at 15° C and 5° C. As shown in table 136 there is no significant difference in response for either step change. Based on the March tests, the units from lots 43 and 39 were dropped into a bath at 12° C. These results are listed in table 135. Three drops were performed on each sensor. The lag value in meters was computed as follows:

Lag (m) = Time Response (sec) x Drop Rate (m/sec) where Time response = 5 x Time Constant

Drop rate = 1.52 m/sec.

The average time response and lag for each lot are listed below:

Lot	Time Response (sec)	Lag (m)
45	1.263	1.92
47	1.385	2.11
43	.946	1.44
39	. 846	1.29

As stated earlier, these measurements were obtained with the thermistor's protective cover removed which would be close to the ideal case for fastest possible response time even when considering an air water interface. Since the plate is present as the probe descends in-situ, a greater thermal lag should be present during actual deployment.

<u>Sippican</u>

Time response testing was conducted on 8 Sippican AXBTs selected at random from the test group. Three tests were conducted on each sensor with one bath at 25° C and the other at 10° C. The results are listed in table 137 which summarized shows an average time response of .917 sec corresponding to a thermal lag of 1.39m.

Magnavox

Due to time constraints only 6 Magnavox AXBTs were tested for time response with one unit coming from each lot. The results are listed below:

Lot	S.N.	Time Response (sec) @14 ^o C	Lag (m) @14 ⁰ C	Time Response (sec) @4°C	Lag (m) @4°C
1	75	3.258	4.94	4.132	6.28
5	4962	2.465	3.75	2.725	4.14
7	7356	2.610	3.97	3.000	4.56
11	11654	3.100	4.71	3.130	4.76
19	20176	3.045	4.63	4.843	7.36
21	23011	3.132	4.76	2.725	4.14

The measured time response is significantly greater than that for either the Hermes or Sippican AXBTs. Except in the case of sensor 23011 from Lot 21, the time response was greater for drops in the 4° C bath than for the 14° C bath. Precision resistors were substituted in place of the thermistors in one unit to determine if the increased response was due to temperature sensitivity in the probe electronics. No such dependency was evident. The large time response may be due to a rather thick coating on the thermistors used in the Magnavox AXBTs.

Conclusions

Temperature Accuracy

The calibration of the AXBTs demonstrates the variability of temperature characteristics between the various manufacturers, Hermes, Sppican and Magnavox and between lots produced by each manufacturer. The Sippican units exhibited the best temperature calibration using the standard AXBT equation with average temperature errors below the $\pm .5^{\circ}$ C specifications. Both the Hermes and Magnavox groups showed average errors exceeding the specifications with the Hermes exhibiting average errors greater than $\pm .5^{\circ}$ C at high temperature and the Magnavox greater than $\pm .5^{\circ}$ C at low temperature. By applying the NAVOCEANO curve fit equations for each manufacturer's lot the temperature error should readily meet the $\pm .5^{\circ}$ C specification. In most cases the error will fall within $\pm .3^{\circ}$ C.

Time Response

The Hermes and Sippican AXBTs exhibited the best temperature response in the presence of a step change in temperature with time constants on the order of 200 msec. The Magnavox units showed time constants approximately 3 times those of the Sippican and Hermes AXBTs. This, it is believed, is due to the thickness of the thermistor coating.

Errata

The Sippican Corporation in its technical newsletter "Horizon" Volume 5, No. 1 1980 presented a temperature equation for the Sippican AXBT probe.* The expression is as follows:

$$T(^{\circ}C) = C_{0} + C_{1}f + C_{2}f^{2} + C_{3}f^{3} + C_{4}f^{4} + C_{5}f^{5}$$
 where
$$C_{0} = -126.662$$

$$C_{1} = .219954$$

$$C_{2} = -1.705096 \times 10^{-4}$$

$$C_{3} = 7.70534 \times 10^{-8}$$

$$C_{4} = -1.7958 \times 10^{-11}$$

$$C_{5} = 1.73823 \times 10^{-15}$$

Substituting the test data for the Sippican AXBT measurements, showed the temperature error plotted in graph 54. For the test data this equation produced temperature errors exceeding +.5 $^{\circ}$ C. Adjusting the C₀ parameter to equal -127.0505 this equation can be adjusted with average temperature errors between $^{\pm}$.2 $^{\circ}$ C.

^(*) Alan T. Hudson, "Aircraft Launched XBT Development", <u>Horizon</u>, Vol. 5 (Marion, Massachusetts; The Sippican Corporation, 1980) p.2.

APPENDIX A
GRAPHS

GRAPHS

		Page
1.	Sippican AXBT Self Heat Test SN 72	24
2.	Sippican AXBT Self Heat Test SN 95	25
3.	Sippican AXBT Self Heat Test SN 29	26
4.	Sippican AXBT Self Heat Test SN 299	27
5.	Hermes Lot 45 Equation Comparison of Temp. Error	28
6.	Hermes Lot 47 Equation Comparison of Temp. Error	29
7.	Hermes Lot 43 Equation Comparison of Temp. Error	30
8.	Hermes Lot 39 Equation Comparison of Temp. Error	31
9.	Sippican AXBT Equation Comparison of Temp. Error	32
10.	Magnavox Lot 1 Equation Comparison of Temp. Error	33
11.	Magnavox Lot 5 Equation Comparison of Temp. Error	34
12.	Magnavox Lot 7 Equation Comparison of Temp. Error	35
13.	Magnavox Lot 11 Equation Comparison of Temp. Error	36
14.	Magnavox Lot 19 Equation Comparison of Temp. Error	37
15.	Magnavox Lot 21 Equation Comparison of Temp. Error	38
16.	Hermes Lot 45, 12-Point Temp. Error Standard Equation	39
17.	Hermes Lot 45, 12-Point Temp. Error NAVOCEANO Equation	40
18.	Hermes Lot 45, 3-Point Temp. Error Standard Equation	41
19.	Hermes Lot 45, 3-Point Temp. Error NAVOCEANO Equation	42
20.	Hermes Lot 45, 4-Point Temp. Error Standard Equation	43
21.	Hermes Lot 45, 4-Point Temp. Error NAVOCEANO Equation	44
22.	Hermes Lot 47, 12-Point Temp. Error Standard Equation	45
23.	Hermes Lot 47, 12-Point Temp. Error NAVOCEANO Equation	46
24.	Hermes Lot 47, 3-Point Temp. Error Standard Equation	47
25.	Hermes Lot 47, 3-Point Temp. Error NAVOCEANO Equation	48
26.	Hermes Lot 43, 12-Point Temp. Error Standard Equation	49
27.	Hermes Lot 43, 12-Point Temp. Error NAVOCEANO Equation	50

GRAPHS (CON.)

		Page
28.	Hermes Lot 43, 4-Point Temp. Error Standard Equation	51
29.	Hermes Lot 43, 4-Point Temp. Error NAVOCEANO Equation	52
30.	Hermes Lot 39, 12-Point Temp. Error Standard Equation	53
31.	Hermes Lot 39, 12-Point Temp. Error NAVOCEANO Equation	54
32.	Hermes Lot 39, 4-Point Temp. Error Standard Equation	55
33.	Hermes Lot 39, 4-Point Temp. Error NAVOCEANO Equation	56
34.	Sippican 12-Point Temp. Error Standard Equation	57
35.	Sippican 12-Point Temp. Error NAVOCEANO Equation	58
36.	Sippican 4-Point Temp. Error Standard Equation	59
37.	Sippican 4-Point Temp. Error NAVOCEANO Equation	60
38.	Magnavox Lot 1, 12-Point Temp. Error Standard Equation	61
39.	Magnavox Lot 1, 12-Point Temp. Error NAVOCEANO Equation	62
40.	Magnavox Lot 1, 4-Point Temp. Error Standard Equation	63
41.	Magnavox Lot 1, 4-Point Temp. Error NAVOCEANO Equation	64
42.	Magnavox Lot 5, 12-Point Temp. Error Standard Equation	65
43.	Magnavox Lot 5, 12-Point Temp. Error NAVOCEANO Equation	66
44.	Magnavox Lot 5, 4-Point Temp. Error Standard Equation	67
45.	Magnavox Lot 5, 4-Point Temp. Error NAVOCEANO Equation	68
46.	Magnavox Lot 11, 12-Point Temp. Error Standard Equation	69
47.	Magnavox Lot 11, 12-Point Temp. Error NAVOCEANO Equation	70
48.	Magnavox Lot 19, 12-Point Temp. Error Standard Equation	71
49.	Magnavox Lot 19, 12-Point Temp. Error NAVOCEANO Equation	72
50.	Magnavox Lot 19, 4-Point Temp. Error Standard Equation	13
51.	Magnavox Lot 19, 4-Point Temp. Error NAVOCEANO Equation	74
52.	Magnavox Lot 21, 12-Point Temp. Error Standard Equation	75
53.	Magnavox Lot 21, 12-Point Temp. Error NAVOCEANO Equation	76
54.	Sippican Equation	77

GRAPH 1

26

GRAPH 3

28

GRAPH 5

GRAPH 8

GRAPH 9

34

GRAPH 11

35

GRAPH 19

GRAPH 21

GRAPH 27

GRAPH 32

GRAPH 33

RAPH 39

GRAPH 41

GRAPH 42

GRAPH 43

GRAPH 45

GRAPH 47

GRAPH 49

GRAPH 50

73

GRAPH 53

GRAPH 54

APPENDIX B

TABLES

Tables 3 - 137 were deleted from report to reduce the size. Copies of this data are available upon request.

TABLE 1

TEMP. OUTPUT (°C) VS POWER IN							
SIPPICAN	SENSOR VOLTAGE (DC)						
SENSOR	13 V	12 V	11 V	10 V	9 V		
	26.476	26.346	26.194	25.974	25.691		
181	24.936	24.843	24,711	24.550	FAIL		
110	24.875	24.789	24,668	24,456	FAIL		
170	24.828	24.739	24.607	FAIL	FAIL		
150	25.218	25.123	24.982	24,779	FAIL		
103	24.914	24.818	24.723	24.575	FAIL		
101	25.001	24,904	24.808	24.662	FAIL		

TABLE 2

MAGNAVOX - TSTD OUTPUT (C) VS POWER INPUT							
	SENSOR VOLTAGE (DC)						
SENSOR	12 V	IIV	100	9V	8٧	7 V	
22713	13.651	13.684	13.754	13.784	13.961	FAIL	
7356	13.592	13.640	13.710	13.761	13 820	FAIL	
75	14.017	14.071	14.127	14.189	14.253	14.505	

APPENDIX C

CURVE FITS

* Deleted from this report. Copies available upon request.

DISTRIBUTION LIST

COMNAVOCEANCOM	1
NRL	1
NORDA	1
NAVOCEANSYSCEN	1
COMOCEANSYSLANT	1
COMOCEANSYSPAC	1
COMNAVAIRSYSCOM	1
UC /CTO	1
UC/SIO	1
UW/D0	1
0SU/S0	1
JHU	i .
WHOI	i i
MAGNAVOX	l 1
HERMES	1
SIPPICAN	ļ
DMAODS	1
DTIC	12

TR-277

JANUARY 1982

An Evaluation of the Airborne Expendable Bathythermograph (AXBT, SSQ-36 BTS)