

# Кластеризация клеток периферической крови от здорового донора после single-cell RNA sequencing

Чувакова Любовь Николаевна



## Общая схема эксперимента scRNA-Seq



## Droplet-based (капельные) методы

Капельные методы основаны на том, что клетки изолируются друг от друга, поступая по капиллярам в масляную фракцию и образуя там отдельные компартменты, содержащие необходимые реагенты и одну клетку



### 10x v3 3' Gel Beads



К каждому шарику прикреплён уникальный праймер, который состоит из

- 1. Праймера Illumina TruSeq Read 1,
- 2. Баркода (последовательности, которая одинакова у всех праймеров данного шарика, однако различается между всеми шариками),
- 3. UMI (последовательности, которая уникальна для всех праймеров данного шарика, но может повторяться между
- 4. Poly(dT)-последовательности.

## Баркоды и UMI





# Обработка данных







Исходно: число клеток  $\times$  число генов  $3069478 \times 36601$ .

# Препроцессинг данных



Стало: 22019 × 36601

Отбор high variable genes: 22019x3000

# tSNE ЦЕНТР ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ мгту им. н.э. Баумана **UMAP**

# Leiden



|      |            |           | • |          | •             |               |
|------|------------|-----------|---|----------|---------------|---------------|
| 62   | IL7R       | 73.588806 |   | 2.593273 | 0.000000e+00  | 0.000000e+00  |
| 79   | CCR7       | 59.787647 |   | 2.685055 | 0.000000e+00  | 0.000000e+00  |
| 95   | LEF1       | 50.137753 |   | 2.549269 | 0.000000e+00  | 0.000000e+00  |
| 115  | FHIT       | 36.958820 |   | 3.028283 | 2.112866e-245 | 7.851065e-244 |
| 123  | CHRM3-AS2  | 33.802128 |   | 2.736526 | 5.483530e-212 | 1.813033e-210 |
|      |            |           |   |          |               |               |
| 5090 | AC008581.1 | 0.817699  |   | 2.514848 | 4.135972e-01  | 6.747524e-01  |
| 5091 | TEX101     | 0.817415  |   | 2.550114 | 4.137581e-01  | 6.749547e-01  |
| 5092 | AC073525.1 | 0.817241  |   | 2.548816 | 4.138575e-01  | 6.750869e-01  |
| 5094 | AC019257.2 | 0.816243  |   | 2.541338 | 4.144279e-01  | 6.758825e-01  |
| 5095 | HPN-AS1    | 0.816241  |   | 2.541331 | 4.144286e-01  | 6.758825e-01  |
|      |            |           |   |          |               |               |

scores logfoldchanges

pvals\_adj

pvals

614 rows × 5 columns



### **KMeans**



## Random forest

# оцениваем качество модели на тестовой выборке
accuracy = clf.score(X\_test, y\_test)
print(f'Accuracy: {accuracy:.2f}')

Accuracy: 0.82

# Нейронная сеть

model.summary() # архитектура модели

Model: "sequential\_3"

| Layer (type)    | Output Shape | Param # |
|-----------------|--------------|---------|
| dense_6 (Dense) | (None, 32)   | 96032   |
| dense_7 (Dense) | (None, 17)   | 561     |

Total params: 96,593 Trainable params: 96,593 Non-trainable params: 0





# Выводы:

- 1) В данной работе было определено 17 кластеров популяций клеток, которые в последующем предстоит проанализировать.
- 2) Для данного анализа подходят только те методы, которые не требуют «у» (т.е. данные, которые мы и должны определить и распределить между клетками) на вход, а сами кластеризуют данные.





do.bmstu.ru

