Capítulo 1

ÁLGEBRA EXTERIOR SOBRE UN ESPACIO VECTORIAL DE DIMENSIÓN FINITA

Ejercicio 1.1.1 (Ejercicio 19)

Sea E un espacio vectorial de dimensión finita sobre un campo \mathbb{K} provisto de una base $\{\vec{e_1}, \dots \vec{e_n}\}$. Para todo entero no negativo $p \in \mathbb{Z}_{\geq 0}$ se considera un espacio vectorial E^p provisto de una base $\{\vec{e_{\alpha_1,\dots\alpha_p}}\}_{\alpha_1\dots\alpha_p}$ en correspondencia biyectiva con el conjunto de todas las n^p sucesiones finitas $(\alpha_1,\dots,\alpha_p)$ de elementos en [|1,n|].

Es claro que $E^0 \cong \mathbb{K}$ y que $E^1 \cong E$. Se define el espacio vectorial de dimensión finita:

$$\otimes E = \bigoplus_{p \ge 0} E^p$$

(a) Muestre que $\otimes E$ es un álgebra asociativa con uno, mediante la tabla de multiplicación:

$$\vec{e}_{\alpha_1,\dots,\alpha_p} \otimes \vec{e}_{\beta_1,\dots,\beta_q} = \vec{e}_{\alpha_1,\dots,\alpha_p,\beta_1,\dots,\beta_q}$$

En particular, $\vec{e}_{\alpha_1,\dots,\alpha_p} = \vec{e}_{\alpha_1} \otimes \dots \otimes \vec{e}_{\alpha_p}$.

(b) De aquí en adelante, álgebra querrá decir álgera asociativa con uno y los homomorismos ϕ de álgebras deberán satisfacer que $\phi(1) = 1$.

Sea E un espacio vectorial, \mathcal{A} un álgebra, i una aplicación lineal de E en \mathcal{A} . La tripleta (E, \mathcal{A}, i) se llama álgebra tensorial sobre E si satisface la siguiente propiedad universal:

Definición 1.1.1 (Propiedad Universal)

Para toda aplicación lineal $\lambda: E \to \mathcal{B}$ de E en un álgebra \mathcal{B} existe un único homomorfismo de álgebras $\lambda^*: \mathcal{A} \to \mathcal{B}$ tal que:

$$\lambda = \lambda^* \circ i$$

es decir, que el diagrama:

$$E \xrightarrow{i} \mathcal{A}$$

$$\downarrow^{\lambda^*}$$

$$\mathcal{B}$$

es conmutativo.

Muestre que el álgebra tensorial, si existe, es única en el sentido siguiente:

- Si (E, A, i) son álgebras tensoriales sobre E, existe un único homomorfismo p de A sobre A' tal que $i' = p \circ i$.
- (c) Muestre que si E es de dimensión finita, entonces el álgebra $\otimes E$, construída en (a) es un álgebra tensorial sobre E.
 - (d) Si $\otimes E$ es un álgebra tensorial sobre E, constrído de un modo cualquiera, se tiene que $\otimes E = \bigoplus_{p\geq 0} E^p$, donde E^p es el subespacio vectorial de $\otimes E$ engendrado por los tensores descomponibles de orden p.
 - Si $\{\vec{e}_1,\ldots,\vec{e}_n\}$ es una base de E, los n^p productos tensoriales $\vec{e}_{\alpha_1}\otimes\cdots\otimes\vec{e}_{\alpha_p}$ constituyen una base de E^p .