IN THE CLAIMS

The status of each claim in the application is provided below.

Claims 1-124: Canceled.

125. (New) A compound represented by formula (I):

wherein

X is hydrogen, halogen, trifluoromethyl, lower alkyl, unsubstituted or substituted phenyl, lower alkyl-thio, phenyl-lower alkyl-thio, lower alkyl-sulfonyl, or phenyl-lower alkyl-sulfonyl;

Y is hydrogen, hydroxyl, mercapto, lower alkoxy, lower alkyl-thio, halogen, lower alkyl, unsubstituted or substituted mononuclear aryl, or $-N(R^2)_2$;

R¹ is hydrogen or lower alkyl;

each R^2 is, independently, $-R^7$, $-(CH_2)_m$ -OR⁸, $-(CH_2)_m$ -NR⁷R¹⁰, $-(CH_2)_n(CHOR^8)(CHOR^8)_n-CH_2OR^8$, $-(CH_2CH_2O)_m$ -R⁸, $-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$, $-(CH_2)_n-C(=O)NR^7R^{10}$, $-(CH_2)_n-Z_g-R^7$, $-(CH_2)_m-NR^{10}$ -CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, $-(CH_2)_n-CO_2R^7$, or

$$-(CH_2)_{\overline{n}}$$
 Q
 R^7
 R^7
 R^7

R³ and R⁴ are each, independently, hydrogen, a group represented by formula (A), lower alkyl, hydroxy lower alkyl, phenyl, phenyl-lower alkyl, (halophenyl)-lower alkyl, lower-(alkylphenylalkyl), lower (alkoxyphenyl)-lower alkyl, naphthyl-lower alkyl, or pyridyl- lower alkyl, with the proviso that at least one of R³ and R⁴ is a group represented by formula (A):

$$- (C(R^{L})_{2})_{0} - x - (C(R^{L})_{2})_{p}$$

$$Q = Q R^{5}$$

$$Q = Q R^{$$

wherein

$$-O+CH_2$$
 R^7
 R^7
 CCH_2
 R^7
 R^7
 R^7
 R^7
 R^7

each o is, independently, an integer from 0 to 10;

each p is an integer from 0 to 10;

with the proviso that the sum of o and p in each contiguous chain is from 1 to 10;

each x is, independently, O, NR¹⁰, C(=O), CHOH, C(=N-R¹⁰),

CHNR⁷R¹⁰, or represents a single bond;

each R⁵ is, independently, -(CH₂)_m-OR⁸, -O-(CH₂)_m-OR⁸,

 $-(CH_2)_n-NR^7R^{10}$, $-O-(CH_2)_m-NR^7R^{10}$, $-(CH_2)_n(CHOR^8)(CHOR^8)_n-CH_2OR^8$,

-O-(CH₂)_m(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, -(CH₂CH₂O)_m-R⁸,

-O-(CH₂CH₂O)_m-R⁸, -(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰,

 $-O-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}, -(CH_2)_n-C(=O)NR^7R^{10},\\$

 $-O-(CH_2)_m-C(=O)NR^7R^{10}$, $-(CH_2)_n-(Z)_g-R^7$, $-O-(CH_2)_m-(Z)_g-R^7$,

 $\hbox{-(CH$_2$)}_n\hbox{-NR10-CH$_2$(CHOR8)(CHOR8)}_n\hbox{-CH$_2$OR8},$

 $-O-(CH_2)_m-NR^{10}-CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8$,

-(CH₂)_n-CO₂R⁷, -O-(CH₂)_m-CO₂R⁷, -OSO₃H, -O-glucuronide, -O-glucose,

$$-O + CH_2 + O + R^7$$

$$O + O + CH_2 + O + R^7$$

$$O + O + O + CH_2 + O + CH_2$$

each R⁶ is, independently, -R⁷, -OR¹¹, -N(R⁷)₂, -(CH₂)_m-OR⁸,

 $-O-(CH_2)_m-OR^8$, $-(CH_2)_n-NR^7R^{10}$, $-O-(CH_2)_m-NR^7R^{10}$,

 $-(CH_2)_n (CHOR^8) (CHOR^8) n - CH_2 OR^8, -O - (CH_2)_m (CHOR^8) (CHOR^8)_n - CH_2 OR^8,$

 $\hbox{-(CH$_2CH_2$O)$_m-R8, -O-(CH$_2$CH$_2$O)$_m-R8, -(CH$_2CH_2$O)$_m-CH$_2$CH$_2$NR7R^{10}$,}\\$

 $-O-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}, -(CH_2)_n-C(=O)NR^7R^{10},\\$

 $-O-(CH_2)_m-C(=O)NR^7R^{10}, -(CH_2)_n-(Z)_g-R^7, -O-(CH_2)_m-(Z)_g-R^7,$

 $-(CH_2)_n-NR^{10}-CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8$,

 $-O-(CH_2)_m-NR^{10}-CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8,\\$

 $\hbox{-(CH$_2$)}_n\hbox{-CO$_2$R7, -O-(CH$_2$)}_m\hbox{-CO$_2$R7, -OSO$_3H, -O-glucuronide, -O-glucose,}\\$

$$-O\left(CH_2\right)_m$$
 O
 R^7
 R^7
 CCH_2
 R^7
 R^7
 R^7
 R^7
 R^7

wherein when two R^6 are $-OR^{11}$ and are located adjacent to each other on a phenyl ring, the alkyl moieties of the two R^6 may be bonded together to form a methylenedioxy group;

each R^7 is, independently, hydrogen or lower alkyl; each R^8 is, independently, hydrogen, lower alkyl, -C(=O)- R^{11} , glucuronide, 2-tetrahydropyranyl, or

$$O \longrightarrow OR^{11}$$

$$OCOR^{11}$$

$$OCOR^{11}$$

$$OCOR^{11}$$

each R^9 is, independently, $-CO_2R^7$, $-CON(R^7)_2$, $-SO_2CH_3$, or $-C(=O)R^7$; each R^{10} is, independently, -H, $-SO_2CH_3$, $-CO_2R^7$, $-C(=O)NR^7R^9$,

 $-C(=O)R^7$, or $-CH_2-(CHOH)_n-CH_2OH$;

each Z is, independently, CHOH, C(=O), CHNR⁷R¹⁰, C=NR¹⁰, or NR¹⁰; each R^{11} is, independently, lower alkyl;

each g is, independently, an integer from 1 to 6;

each m is, independently, an integer from 1 to 7;

each n is, independently, an integer from 0 to 7;

each Q is, independently, C-R⁵, C-R⁶, or a nitrogen atom, wherein two Q in a ring are nitrogen atoms;

or a pharmaceutically acceptable salt thereof, and inclusive of all enantiomers, diastereomers, and racemic mixtures thereof.

126. (New) The compound of Claim 125, wherein Y is -NH₂.

- 127. (New) The compound of Claim 126, wherein R² is hydrogen.
- 128. (New) The compound of Claim 127, wherein R¹ is hydrogen.
- 129. (New) The compound of Claim 128, wherein X is chlorine.
- 130. (New) The compound of Claim 129, wherein R³ is hydrogen.
- 131. (New) The compound of Claim 130, wherein each R^L is hydrogen.
- 132. (New) The compound of Claim 131, wherein o is 4.
- 133. (New) The compound of Claim 132, wherein p is 0.
- 134. (New) The compound of Claim 133, wherein x represents a single bond.
- 135. (New) The compound of Claim 134, wherein each R⁶ is hydrogen.
- 136. (New) The compound of Claim 135, wherein R⁵ is -(CH₂)_m-OR⁸.
- 137. (New) The compound of Claim 135, wherein R⁵ is -O-(CH₂)_m-OR⁸.
- 138. (New) The compound of Claim 135, wherein R⁵ is -(CH₂)_n-NR⁷R¹⁰.
- 139. (New) The compound of Claim 135, wherein R⁵ is -O-(CH₂)_m-NR⁷R¹⁰.

- 140. (New) The compound of Claim 135, wherein R^5 is -(CH₂)_n(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸.
- 141. (New) The compound of Claim 135, wherein R⁵ is -O-(CH₂)_m(CHOR⁸)_n-CH₂OR⁸.
 - 142. (New) The compound of Claim 135, wherein R⁵ is -(CH₂CH₂O)_m-R⁸.
 - 143. (New) The compound of Claim 135, wherein R⁵ is -O-(CH₂CH₂O)_m-R⁸.
- 144. (New) The compound of Claim 135, wherein R⁵ is -(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰.
- 145. (New) The compound of Claim 135, wherein R^5 is -O-(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰.
 - 146. (New) The compound of Claim 135, wherein R⁵ is -(CH₂)_n-C(=O)NR⁷R¹⁰.
 - 147. (New) The compound of Claim 135, wherein R⁵ is -O-(CH₂)_m-C(=O)NR⁷R¹⁰.
 - 148. (New) The compound of Claim 135, wherein R^5 is $-(CH_2)_n-(Z)_g-R^7$.
 - 149. (New) The compound of Claim 135, wherein R^5 is $-O-(CH_2)_m-(Z)_g-R^7$.

- 150. (New) The compound of Claim 135, wherein R⁵ is-(CH₂)_n-NR¹⁰-CH₂(CHOR⁸)_n-CH₂OR⁸.
- 151. (New) The compound of Claim 135, wherein R⁵ is -O-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)_n-CH₂OR⁸.
 - 152. (New) The compound of Claim 135, wherein R⁵ is -O-(CH₂)_m-CO₂R⁷.
 - 153. (New) The compound of Claim 135, wherein R⁵ is -OSO₃H.
 - 154. (New) The compound of Claim 135, wherein R⁵ is -O-glucuronide.
 - 155. (New) The compound of Claim 135, wherein R⁵ is -O-glucose.
 - 156. (New) The compound of Claim 135, wherein R⁵ is

$$-O + CH_2$$
 M
 O
 R^7
 R^7

157. (New) The compound of Claim 135, wherein R⁵ is

$$-(CH_2)_n$$
 R^7

158. (New) The compound of Claim 135, wherein R⁵ is

- 159. (New) The compound of Claim 135, wherein R⁵ is -(CH₂)_n-CO₂R⁷.
- 160. (New) The compound of Claim 125, wherein

X is halogen;

Y is $-N(R^7)_2$;

 R^1 is hydrogen or C_1 - C_3 alkyl;

 R^2 is $-R^7$, $-(CH_2)_m$ -OR⁸, or $-(CH_2)_n$ -CO₂R⁷;

R³ is a group represented by formula (A); and

R⁴ is hydrogen, a group represented by formula (A), or lower alkyl.

161. (New) The compound of Claim 160, wherein

X is chloro or bromo;

Y is $-N(R^7)_2$;

R² is hydrogen or C₁-C₃ alkyl;

at most three R^6 are other than hydrogen as defined above; and at most three R^L are other than hydrogen as defined above.

- 162. (New) The compound of Claim 161, wherein Y is -NH₂.
- 163. (New) The compound of Claim 162, wherein R^4 is hydrogen; at most one R^L is other than hydrogen as defined above; and at most two R^6 are other than hydrogen as defined above.
- 164. (New) The compound of Claim 125, wherein R⁵ is -(CH₂)_m-OR⁸.
- 165. (New) The compound of Claim 125, wherein R⁵ is -O-(CH₂)_m-OR⁸.
- 166. (New) The compound of Claim 125, wherein R⁵ is -(CH₂)_n-NR⁷R¹⁰.
- 167. (New) The compound of Claim 125, wherein R⁵ is -O-(CH₂)_m-NR⁷R¹⁰.
- 168. (New) The compound of Claim 125, wherein R⁵ is -(CH₂)_n(CHOR⁸)_n-CH₂OR⁸.
- 169. (New) The compound of Claim 125, wherein R⁵ is -O-(CH₂)_m(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸.
 - 170. (New) The compound of Claim 125, wherein R⁵ is -(CH₂CH₂O)_m-R⁸.
 - 171. (New) The compound of Claim 125, wherein R⁵ is -O-(CH₂CH₂O)_m-R⁸.

- 172. (New) The compound of Claim 125, wherein R^5 is -(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰.
- 173. (New) The compound of Claim 125, wherein R^5 is -O-(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰.
 - 174. (New) The compound of Claim 125, wherein R⁵ is -(CH₂)_n-C(=O)NR⁷R¹⁰.
 - 175. (New) The compound of Claim 125, wherein R⁵ is -O-(CH₂)_m-C(=O)NR⁷R¹⁰.
 - 176. (New) The compound of Claim 125, wherein R^5 is $-(CH_2)_n-(Z)_g-R^7$.
 - 177. (New) The compound of Claim 125, wherein R⁵ is -O-(CH₂)_m-(Z)_g-R⁷.
- 178. (New) The compound of Claim 125, wherein R^5 is $-(CH_2)_n-NR^{10}-CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8$.
- 179. (New) The compound of Claim 125, wherein R⁵ is -O-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)_n-CH₂OR⁸.
 - 180. (New) The compound of Claim 125, wherein R⁵ is -O-(CH₂)_m-CO₂R⁷.
 - 181. (New) The compound of Claim 125, wherein R⁵ is -OSO₃H.
 - 182. (New) The compound of Claim 125, wherein R⁵ is -O-glucuronide.

183. (New) The compound of Claim 125, wherein R⁵ is -O-glucose.

184. (New) The compound of Claim 125, wherein R⁵ is

$$-O \leftarrow CH_2$$
 R^7
 R^7

185. (New) The compound of Claim 125, wherein R⁵ is

$$-(CH_2)_n - \begin{pmatrix} C & R^7 \\ & R^7 \end{pmatrix}$$

186. (New) The compound of Claim 125, wherein R⁵ is

187. (New) The compound of Claim 125, wherein R⁵ is -(CH₂)_n-CO₂R⁷.

188. (New) The compound of Claim 125, wherein x is a single bond.

- 189. (New) The compound of Claim 125, which is in the form of a pharmaceutically acceptable salt.
- 190. (New) The compound of Claim 125, which is in the form of a hydrochloride salt.
 - 191. (New) The compound of Claim 125, which is in the form of a mesylate salt.
- 192. (New) The compound of Claim 125, wherein R⁵ is selected from the group consisting of

-O-(CH₂)₃-OH, -NH₂, -O-CH₂-(CHOH)₂-CH₂OH, -O-CH₂-CHOH-CH₂OH,

-O-CH₂CH₂-O-tetrahydropyran-2-yl, -O-CH₂CHOH-CH₂-O-glucuronide,

-O-CH₂CH₂OH, -O-(CH₂CH₂O)₄-CH₃, -O-CH₂CH₂OCH₃,

-O-CH₂-(CHOC(=O)CH₃)-CH₂-OC(=O)CH₃, -O-(CH₂CH₂O)₂-CH₃,

-OCH₂-CHOH-CHOH-CH₂OH, -CH₂OH, -CO₂CH₃,

$$-O \leftarrow CH_2$$
 R^7
 R^7

and

$$O$$
 OR^{11}
 $OCOR^{11}$
 $OCOR^{11}$

193. (New) The compound of Claim 125, wherein R⁵ is selected from the group consisting of para -O-(CH₂)₃-OH, para -NH₂, para -O-CH₂-(CHOH)₂-CH₂OH, ortho -O-CH₂-CHOH-CH₂OH, meta -O-CH₂-CHOH-CH₂OH, para -O-CH₂CH₂-O-tetrahydropyran-2-yl, para -O-CH₂CHOH-CH₂-O-glucuronide, para -O-CH₂CH₂OH, para -O-(CH₂CH₂O)₄-CH₃, para -O-CH₂CH₂OCH₃, para -O-CH₂-(CHOC(=O)CH₃)-CH₂-OC(=O)CH₃, para -O-(CH₂CH₂O)₂-CH₃, -OCH₂-CHOH-CHOH-CH₂OH, para -CH₂OH, para -CO₂CH₃, para -SO₃H, para -O-glucuronide, para

$$-O \leftarrow CH_2$$
 R^7
 R^7

and

para

194. (New) The compound of Claim 193, wherein

X is chloro or bromo;

Y is $-N(R^7)_2$;

R¹ is hydrogen or C₁-C₃ alkyl;

R² is hydrogen or C₁-C₃ alkyl;

R³ is a group represented by formula (A);

 R^4 is hydrogen, a group represented by formula (A), or lower alkyl; at most three R^6 are other than hydrogen as defined above; and at most three R^L are other than hydrogen as defined above.

195. (New) The compound of Claim 194, wherein

R⁴ is hydrogen;

at most one R^L is other than hydrogen as defined above; and at most two R^6 are other than hydrogen as defined above.

196. (New) The compound of Claim 195, wherein

X is chloro or bromo;

Y is $-N(R^7)_2$;

 R^1 is hydrogen or C_1 - C_3 alkyl;

 R^2 is hydrogen or C_1 - C_3 alkyl;

R³ is a group represented by formula (A);

 R^4 is hydrogen, a group represented by formula (A), or lower alkyl; at most three R^6 are other than hydrogen as defined above; and at most three R^L are other than hydrogen as defined above.

197. (New) The compound of Claim 196, wherein R^4 is hydrogen; at most one R^L is other than hydrogen as defined above; and at most two R^6 are other than hydrogen as defined above.

198. (New) A pharmaceutical composition, comprising the compound of Claim 125 and a pharmaceutically acceptable carrier.

199. (New) A composition, comprising: the compound of Claim 125; and a P2Y2 inhibitor.

200. (New) A composition, comprising: the compound of Claim 125; and a bronchodilator.

201. (New) A method of blocking sodium channels, comprising contacting sodium channels with an effective amount of the compound of Claim 125.

SUPPORT FOR THE AMENDMENTS

Continuing application data has been added to page 1.

The amendment at page 39 corrects an obvious error in chemical the structure of the compound over the first arrow. There should be an oxygen atom adjacent to the CIC(=O) group.

A substitute Abstract has been submitted.

Newly-added Claims 125-201 are supported by the specification at pages 4-72 and original Claims 1-124.

No new matter is believed to have been added to this application by the amendments submitted above.