7

1

2

1

2

CLAIMS

- 1. A metallization stack in an integrated MEMS device, the metallization stack comprising:

 a titanium-tungsten layer that operatively contacts an electrically conductive structure in the integrated MEMS device, and

 a platinum layer formed over the titanium-tungsten layer.
- 2. The metallization stack of claim 1, wherein the electrically conductive structure is an active silicon element in a semiconductor substrate of the integrated MEMS device.
- 3. The metallization stack of claim 2 wherein the titanium tungsten layer contacts the active silicon element via a platinum

silicide layer formed on the semiconductor substrate; and

the semiconductor substrate has an insulating film formed thereon, the insulating film has a contact hole formed therein, the contact hole exposes a portion of the surface of the semiconductor substrate at a bottom of the contact hole and the platinum silicide is formed only on the exposed portion of the surface of the semiconductor substrate.

- 4. The metallization stack of claim 3 wherein the platinum layer is a portion of platinum wiring formed on the insulating film.
- The metallization stack of claim 1 wherein the integrated MEMS device is an optical MEMS.

depositing an insulating film on the substrate surface;

The method of claim 10 wherein the forming a platinum silicide step further comprises:

1

2

11.

3		etching a contact hole in the insulating film;
4		depositing platinum in the contact hole such that the platinum contacts an
5		exposed portion of the surface of the semiconductor substrate at a bottom of the contact hole,
6		and
7		forming the platinum silicide only on the exposed portion of the surface of the
8		semiconductor substrate utilizing the deposited platinum.
1		12. The method of claim 10 wherein the forming a titanium-tungsten layer step further
2		comprises:
3		depositing titanium-tungsten on the semiconductor substrate including the
4		platinum silicide;
5		depositing a hardmask material over the titanium-tungsten;
6	J	removing the hardmask material except for a portion of the hardmask material
7		above the platinum silicide;
8	H	removing the titatium-tungsten except for a portion of the titanium-tungsten
9	q	under the hardmask material above the platinum silicide, and
10		removing the hardmask material above the platinum silicide.
1		13. The method of claim 12, wherein the hardmask material is AlCu.
1		14. The method of claim 9, wherein the forming a platinum layer step further comprises:
2		depositing platinum on the semiconductor substrate including the titanium-
3		tungsten laver:

above the platinum silicide;

4	depositing an oxide hardmask over the platinum;
5	removing the oxide hardmask except for a portion of the oxide hardmask above
6	the titanium tungsten layer;
7	removing the platinum except for a portion of the platinum under the oxide
8	hardmask above the titanium-tungsten via a combination of dry etching and wet etching, and
9	removing the portion of the oxide hardmask above the titanium-tungsten layer.
1	15. The method of claim 14, wherein platinum is removed in the removing the platinum step
2	by sputter etching the platinum in argon followed by wet etching in aqua regia.
1	16. The method of claim 9, wherein the steps further comprise:
	depositing an insulating film on the substrate surface;
	etching a contact hole in the insulating film;
4 D 5 H 6 D	depositing platinum in the contact hole such that the platinum contacts an
5 4	exposed portion of the surface of the semiconductor substrate at a bottom of the contact hole;
6 D	forming a platinum silicide only on the exposed portion of the surface of the
7	semiconductor substrate utilizing the deposited platinum;
8	depositing titanium-tungsten on the semiconductor substrate including the
9	platinum silicide;
10	depositing a hardmask material over the titanium-tungsten;
11	removing the hardmask material except for a portion of the hardmask material

13

2

platinum and an adhesion layer of TiW.

the platinum wire is to be formed;

5

- removed while leaving portions of the oxide hardmask in areas where patterned platinum is to be
- 7 formed, and removing the photoresist.

MALS