Large Number theorey of MLE

Asymptotic Normality of MLE

In essense, we approximate sampling distribution of MLE estimator by using limiting argument as sample size increases.

Definition. Asymptotically Normal Let $X_1, \dots, X_n \sim f_\theta$ We say that $\hat{\theta}_n = \hat{\theta}_n(X_1, \dots, X_n)$ is asymptotically normal with mean θ and variance $\frac{\sigma^2}{n}$ if for all $z \in \mathbb{R}$

$$F_{Z_n}(z) \stackrel{n \to \infty}{\to} \Phi(z)$$

where F_{Z_n} is the cdf of $Z_n = \frac{\hat{\theta}_n - \theta}{\sigma/\sqrt{n}}$. Equivalent to convergence in distribution

$$\sqrt{n}(\hat{\theta} - \theta) \stackrel{D}{\to} \mathcal{N}(0, \sigma^2)$$

Definition. Let $X_1, \dots, X_n \sim f_\theta$ with $l(\theta) = \log f(x_1, \dots, c_n | \theta)$

1. the **Score** with respect to θ is

$$u(\theta) := l'(\theta)$$

Under regularity conditions, the first moment $\mathbb{E}[u(\theta)] = \int \frac{\partial \log f(x|\theta)}{\partial \theta} f(x|\theta) dx = 0;$ the second moment is the Fisher information $\mathbb{E}[u^2(\theta)] = \mathcal{I}(\theta)$

2. the **Fisher Information** for θ is

$$\mathcal{I}(\theta) := -\mathbb{E}[l''(\theta)]$$

where
$$l(\theta) = \sum_{i=1}^{n} \log f(x_i|\theta)$$

3. Fisher information of θ based on a single observation

$$\mathcal{I}^* := -\mathbb{E}\left[\frac{\partial^2 \log f(x|\theta)}{\partial \theta^2}\right]$$

We notice that $\mathcal{I}(\theta) = n\mathcal{I}^*(\theta)$

Proposition. Under some regularity conditions

1.
$$\mathcal{I}(\theta) = \mathbb{E}[u^2(\theta)]$$

2.
$$\frac{u(\theta)}{\sqrt{n}} \xrightarrow{D} \mathcal{N}(0, \mathcal{I}^*(\theta))$$
 (asymptotically normal)

3.
$$-\frac{1}{n}\frac{\partial^2 l(\theta)}{\partial \theta^2} \stackrel{p}{\to} \mathcal{I}^*(\theta)$$

Theorem. Slutsky's Theorem Let $\{X_n\}$ and $\{Y_n\}$ be two sequences of RV such that $X_n \stackrel{D}{\to} X$ and $Y_n \stackrel{P}{\to} c$ for some $c \in \mathbb{R}$ then for any continuous function g we have

$$g(X_n, Y_n) \stackrel{D}{\to} g(X, c)$$

1.
$$X_n + Y_n \stackrel{D}{\to} X + c$$

2.
$$X_n Y_n \stackrel{D}{\to} cX$$

3.
$$X_n/Y_n \stackrel{D}{\to} X/c$$

In particular if $X_n \stackrel{D}{\to} \mathcal{N}(0, \sigma^2)$ and $Y_n \stackrel{P}{\to} c$ we have

$$X_n Y_n \stackrel{D}{\to} \mathcal{N}(0, c^2 \sigma^2)$$

Theorem. Asymptotic Normality of MLEs Let X_1, \dots, X_n be random sample from f_{θ} and let $\hat{\theta}_n$ denote the maximum likelihood estimator of θ . Under some regularity conditions, $\hat{\theta}_n$ is asymptotically normal with mean θ and variance $\mathcal{I}^{-1}(\theta)$. in other words,

$$\sqrt{n}(\hat{\theta}_{MLE} - \theta) \stackrel{D}{\rightarrow} \mathcal{N}(0, \frac{1}{\mathcal{I}^*(\theta)})$$

$$\hat{\theta}_{MLE} \sim AN(\theta, \mathcal{I}^{-1}(\theta))$$

Theorem. Invariance of MLE and transformation Let X_1, \dots, X_n be a sample from f_{θ} and let $\eta = g(\theta)$ for some transform g. Then

- 1. $\hat{\eta}_{MLE} = g(\hat{\theta}_{MLE})$
- 2. If g is differentiable then $\hat{\eta}_{MLE} \sim AN(\eta, [g'(\theta)]^2 \mathcal{I}^{-1}(\theta))$

Remark. We can derive MLE for function of θ_{MLE} with this theorem. For example, we can find MLE for log-odds

$$\psi = \log \frac{p}{1 - p}$$

where $X_1, \cdots, X_n \overset{i.i.d}{\sim} Binom(1, p)$ by first computing MLE for Bernoulli distribution, i.e. $\hat{p}_{MLE} = \overline{X}$ with Fisher information $\mathcal{I}(p) = \frac{n}{p(1-p)}$ then,

$$\hat{\psi}_{MLE} = \log \frac{\overline{X}}{1 - \overline{X}}$$

To compute asymptotic sampling distribution, let $g(p) = \log \frac{p}{1-p}$. we calculate the asymptotic variance given by

$$[g'(p)]^{2}\mathcal{I}^{-1}(p) = \left(\frac{1-p}{p}\frac{1-p+p}{(1-p)^{2}}\right)^{2}\frac{p(1-p)}{n} = \frac{1}{np(1-p)}$$

Since g is differentiable

$$\log \frac{\overline{X}}{1 - \overline{X}} \sim AN(\log \frac{p}{1 - p}, \frac{1}{np(1 - p)})$$

Theorem. Consistency in MLE If the regularity condition for asymptotic normality is satisfied, the MLE is consistent (in probability)

Proof. Given MLE is asymptotically normal $(\hat{\theta}_{MLE} - \theta) \sim AN(0, \mathcal{I}^{-1}(\theta))$, then

$$F_{Z_n}(z) \sim \Phi(z)$$
 for $Z_n = \sqrt{n\mathcal{I}^*(\theta)}(\hat{\theta}_{MLE} - \theta)$

Let $\epsilon > 0$ be given, then

$$P(|\hat{\theta}_{MLE} - \theta| \le \epsilon) = P(|\sqrt{n\mathcal{I}^*(\theta)}(\hat{\theta}_{MLE} - \theta)| \le \epsilon \sqrt{n\mathcal{I}(\theta)}) = 2\Phi(\sqrt{n\mathcal{I}^*(\theta)}\epsilon) - 1 + \delta_n$$

where deviation from normality $\delta_n \stackrel{n \to \infty}{\to} 0$. Hence

$$P(|\hat{\theta}_{MLE} - \theta| \le \epsilon) = 2 - 1 + 0 = 1$$

 $\hat{\theta}_{MLE} \stackrel{p}{\to} \theta$ so then MLE is a consistent estimator

Remark. The proof is basically proving convergence in probability given convergence in distribution (although this is not true in all cases)

Definition. Standard Error The standard deviation of an estimator $\hat{\theta}$ of a parameter θ is called the standard error of $\hat{\theta}$; In other word, it is the standard deviation of the sampling distribution of a statistic.

Theorem. The Plug-in Principle Let $\hat{\theta}$ be the MLE of θ satisfying the regularity condition for asymptotic normality, then by Slutsky's Theorem,

$$\hat{\theta} \sim AN(\theta, \mathcal{I}^{-1}(\theta))$$

Then for any consistent estimator $\hat{\theta}$ of θ

$$\hat{\theta} \sim AN(\theta, \mathcal{I}^{-1}(\hat{\theta}))$$

In particular,

$$\hat{\theta} \sim AN(\theta, \mathcal{I}^{-1}(\hat{\theta}_{MLE}))$$

Then the estimated standard error is

$$\hat{\sigma}_{\hat{\theta}_{MLE}} = \mathcal{I}^{-1/2}(\hat{\theta}_{MLE})$$

Remark. We are motivated to do this because $\mathcal{I}^{-1}(\theta)$ is a function of population parameter which we do not know. Instead we approximate it with $\hat{\theta}_{MLE}$ instead. And this theorem ensures that if we do so, asymptotic normality of MLE is preserved

Definition. MLE estimate of multinomial cell probability