TRABATO 3: Simular una Tablea Hash

1. Elige al azal una secuencia de 12 daves seleccionadas con muertreo uniforme sin repetición del rango entero [0,1000)

(654, 114, 25, 759, 281, 250, 228, 142, 754, 104, 692, 758)

- 2. Para codo uno de los nétodas de resolución de colisiones
 - Encademaniento (h1)
 - Linear pooling (h1)
 - Quadratic probing (h1)
 - Randon probing (h1 y un valor 1c1 apropiade)
 - Rehoshing (h1, h2 y h3) y linear probing (a partir del hash de h3 si continua la colisión).

no (1) (1) ha - = = 1

- 1. Inserto es 10 primeros cloves ignorando mecanismos de rehashing. Pinto el resultado final como una cuadrícula numerada de 0 a 15 con las cloves insertadas. En caso de encade maniento, si en una entrada tiene más de una clove, porer las todas en esa entrada de la cuadrícula en rentida vertical.
- 2. Le oditar y borrar das de las diez prineras claves elegidas al azar. Dibuja ma sola madrímen final tras las borradas. Utiliza da marca "X" para indicar que ma entrada esta borrada.
- 3. Insertor es dos últimos cloves. hvestos solo es cuadrícules find. Con direccionamiento seiesto, debe explicar los soltos y justificar los soltos y justificas el resultada de la túgueda para cada inserción

Usace mas h=16, a=2, b=30 y p=101 on h1 y a=3 y b=15 on h2 ABg

instart (654): h1(654)= ((654.2+30)% 101)% 16=10 → Entrado vacío: Pables [10] = 654. → corde no {654}

insert (114): h1(114)=8 > Entrodo vocio: Toblo [8]=114 > code no [114]

inser+(25): h1(25)=0 → EMMOS vacio: Tobos (0]=25 → codem {25}

instit (759): h1 (759) = 9 + EMEDED vocio: Tobbs [1] = 759 - codem { 759}

insert (281): h1 (281) = 5 > Entrodo eióne: Tables C5] = 281 > cade na £ 2813

inser+ (250): h1(250)=8 + Colisión: Tobbo [8] = 250 + code no £114, 2503

insert (218): ha (228)=1 > Colisión: Pales [1]=228 > odens (159, 2228)

insert (142): h1 (142) = 11 > Entrolo vocio: Toolo [11] = 142 > codem { 142}

insert (754): h1(754)=3 > Entland libre: Tobles [3.] = 754 > code no [754]

insert (104): h1(104)= 4 > Entrodo libre: Toblo [4]= 104 > code no {104}

0		22		,						1	1	1	1	1	1
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
25	759		754	104	281			114		654	142			ATT.	n
	128							250							100

remove (114): h1 (114) = 8 -> Tales [8] -> codena { 250}

remove (250): 41 (250) = 8 > Talls [8] > cade m {}

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
25	759		754	104	281			χ		654	142				
	218							χ							

invert (692): h1(692)=2 > Entrodo libre: Tables [2]=692 > osdemo (6927

insert (758): 41(758)=14 > ENMOS PILIC: Pales [14]=158 - adem {758}

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
25	759	692	754	104	281			X		1 3	142			758	
	218							1						750	

Linear probing

Solo combian les insercians en colisian:

insert (250) = 8 + Colisión: Tables [9] - caden { 250}

intert (228): 1 2 Colisión: Tables [2] 2 codens [228]

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
					281						142				

remove (759): 41 (759) = 1 > Tables [1] > asde m { }

renote (104): h1(104): 4 + 73865 [4] + csæm {}

0	1	2	3	4	1	6	7	8	9	10	11	12	13	14	15
		1			281			114							

instrt (692): 41(692) = 2 > 60 cisión: Tabes [47 = 692 > code mo {692}

insert (758): 41 (758) = 14 > Entrada libre: Tabla [14] = 758 > code no {758}

0	1	2	3	4	5	6	7	8	9	10	11	12	13	19	15
25	692	228	754	X	281			119						758	

Quadratic probing

De nuevo solo combon es invercioner en colisión

insert (250) = 8 -> Colisión: Tables [18+12) % 16=9] - code m { 250}

invert(228) = 1 > Colisian: Tables [(8+12)%16=2] > cadem {228}

Obtenenas el nismo resultado y al elininar igual que en el linear probling

insert (692): L1 (692) = 2 > Gelsian: tobbs ((2+22)% 16=6] > code no {612}

insert (758): h1 (758)=14 + Entosos elbre: Pables [14] + osdem 57583

						1	T				**	•			
0	1	2	3	4	5	6	7	8	9	10	10	12	13	14	15
25	X	278	7.54	X	281	692		114						718	-

Random probing (C=11)

De nuevo hasta la collsión se mantiene igual

insert (250)=8 - Colisión: Tables [18+11.1)%16=3]:> code no £2503

insert (228)=1-> Colisión: Tables [(1+11.1)%16=12] > code no £2283

insert 1	(754)	-30	Ce l'i	sión:	Tal	lo [(3+11	. 1) %	6 16 = 1	1477	code	b { }	543		
	0	1	1	3	4	5	6	7	8	9	10	11	12	13	

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
25	759		250	104	181			114		654	142	228		754	

se elimin al igual que las anteriores (759 y 104)

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
25	X		250	X	281			114		654	142	228		754	

Insert (692): h1(692)=2 > Entropo libre: Pollo [2] > codem {692}

: Nert(188): h1 (758)=14 > Colisión: Tallo [114+11.1) % 16=9] > code m { 758}

0	1	2	3	4	5	(7	8	9	10	11	12	13	14	15
15	Χ	691	250	χ	281			114	758	654	142	128		754	

Rehashig y linear probling (a partir at h3)

de mens hosts colisia no hoy problemo

insert (250): h1(250)=8 > Colisión: h2(250)=((250.3+15)%101)%16=11: Palla [11] > coden 52007

intert (228): h1 (228): 12 Colisia: h2 (228): 2: Tables [2] 2 oodens {228}

insert (142): h1 (142): 11 > Colisión: h2 (142) = 6: Tober [6] > codeno {142}

0	1	2	3	4	5	6	1	8	9	10	11	12	13	14	15
15	759	218	714	104	281	142		114		654	250				

Agj

IC elimino ignore que est anteriores (759 y 104)

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
15	X	128	754	χ	281	142		114		65 9	150				

insert (692): 41(692): 2 > Geisián: 42(692): 7 : 1865[7] > code no {692}

insert (758): 41(458): 14 > ENMOS eine: Tables [14] - codens £758}

0	1	2	3	4	1	6	7	18	9	10	11	12	13	14	15
25	X	118	754	χ	281	142	692	114		654	250		TIRE.	758	

Aly