Випадкові величини

Величину називають *випадковою*, якщо внаслідок проведення експерименту під впливом випадкових факторів вона набуває того чи іншого можливого числового значення з певною ймовірністю.

Якщо множина можливих значень випадкової величини ϵ скінченною або зліченною, то таку величину називають *дискретною*. В іншому разі її називають *неперервною*.

Приклад 1. Задано множину цілих чисел $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Навмання беруть одне число. Елементарними подіями будуть такі: поява одного з чисел - 1, 2, 3,...,10 з певною ймовірністю. Множина можливих значень ϵ дискретною, а тому й випадкова величина – поява одного з чисел множини Ω – буде дискретною.

Приклад 2. Вимірюють силу струму за допомогою амперметра. Результати вимірювання, зазвичай, округлюють до найближчої поділки на шкалі для вимірювання сили струму. Похибка вимірювання, що виникає внаслідок округлення, є неперервною випадковою величиною.

Випадкові величини позначатимемо літерами грецького алфавіту $\xi, \eta, \zeta...$, а їх можливі значення — x, y, z,

Для опису випадкової величини потрібно навести не лише множину можливих її значень, а й зазначити, з якими ймовірностями ця величина набуває того чи іншого можливого значення.

З цією метою вводять поняття закону розподілу ймовірностей.

Законом розподілу випадкової величини називають таке співвідношення, яке визначає зв'язок між можливими її значеннями та відповідними їм імовірностями.

Закон розподілу ймовірностей можна подати ще в одній формі, яка придатна і для дискретних, і для неперервних випадкових величин, а саме: як функцію розподілу ймовірностей випадкової величини F(x), так звану інтегральну функцію.

Інтегральною функцією розподілу (функцією розподілу) ймовірностей F(x) випадкової величини ξ називають імовірність того, що ξ набуде значення, не більшого за число x, тобто

$$F(x) = P(\xi \le x) . \tag{2.1}$$

Тобто, функцією розподілу випадкової величини ξ є ймовірність події $\xi \le x$, де x – довільне дійсне число.

Функція розподілу випадкової величини ξ має такі загальні *властивості*:

- a) $0 \le F(x) \le 1$;
- б) функція розподілу ϵ неспадною, тобто $F(x_2) \ge F(x_1)$, якщо $x_2 \ge x_1$;
- в) якщо всі можливі значення випадкової величини ξ належать інтервалу (a,b), то F(x)=0 при $x\leq a$ і F(x)=1 при $x\geq b$;
 - г) якщо $x \to +\infty$, то $F(x) \to 1$, і якщо $x \to -\infty$, то $F(x) \to 0$.
 - д) функція розподілу неперервна справа, тобто $\lim_{\varepsilon \to 0} F(x+\varepsilon) = F(x)$ де $\varepsilon > 0$.
 - e) $P(a < \xi \le b) = F(b) F(a)$

Дві випадкові величини називають **взаємно незалежними**, якщо закон розподілу однієї з них не залежить від того, якого з можливих своїх значень набуває друга величина.

Дискретна випадкова величина

Основні поняття, означення та відношення

1. Випадкову величину називають **дискретною**, якщо вона може набувати окремих, ізольованих одне від одного, числових значень з певними ймовірностями.

Множина значень дискретної випадкової величини може бути скінченною або зліченною.

2. Законом розподілу дискретної випадкової величини називають відповідність між всіма можливими її значеннями та їхніми ймовірностями. Його записують у вигляді таблиці:

$\xi = x_i$	\mathcal{X}_1	\mathcal{X}_2	•••	\mathcal{X}_n
$p = p_{i}$	$p_{_1}$	$p_{_2}$	•••	$p_{_n}$

де $p_i = P(\xi = x_i)$. Очевидно, що

$$p_1 + p_2 + ... + p_n = 1$$
, for $(\xi = x_1) \cup (\xi = x_2) \cup ... \cup (\xi = x_n) = \Omega$.

3. Функція розподілу $F(x) = P(\xi \le x)$ дискретної випадкової величини ξ ϵ розривною у точках $x = x_i$ $\left(i = \overline{1,n}\right)$, i її аналітичний вираз описують функцією

$$F(x) = \begin{cases} 0, & x < x_1; \\ p_1, & x_1 \le x < x_2; \\ p_1 + p_2, & x_2 \le x < x_3; \\ \dots & \dots & \dots \\ p_1 + \dots + p_{n-1}, & x_{n-1} \le x < x_n; \\ 1, & x \ge x_n. \end{cases}$$

$$(2.2)$$

Графік функції розподілу дискретної випадкової величини ξ є східчастою фігурою. Він зображений на рис. 2.1.

Рис. 2.1. Графік функції розподілу дискретної випадкової величини

Залежно від того за якими формулами обчислюють імовірності набуття дискретною випадковою величиною ξ своїх значень, одержуємо різні закони розподілу. Розглянемо основні з них:

Біномний закон розподілу описує випадкову величину ξ — число появ події A у серії випробувань за схемою Бернуллі, де p = P(A) — ймовірність появи події A в кожному окремому випробуванні.

Якщо число випробувань дорівнює n, тоді випадкова величина ξ може набути значень 0, 1, 2,..., n, а ймовірність подій $\xi = i$ обчислюють за формулою Бернуллі (1.16):

$$p_{i} = P(\xi = i) = P_{n}(i) = C_{n}^{i} p^{i} q^{n-i}.$$
(2.3)

Записують біномний закон розподілу у вигляді таблиці:

$\xi = i$	0	1	2	 n
$P = p_i$	q^{n}	$C_n^1 pq^{n-1}$	$C_n^2 p^2 q^{n-2}$	 p^{n}

Закон розподілу Пуассона також описує випадкову величину ξ — число появ події A в серії з n випробувань, якщо ймовірність p = P(A) близька до нуля або до одиниці. У цьому випадку ймовірності $p_i = P(\xi = i)$ обчислюють за формулою Пуассона (1.22):

$$p_i = P(\xi = i) = \frac{\lambda^i}{i!} e^{-\lambda}, \text{ де } \lambda = n \cdot p.$$
 (2.4)

Закон розподілу Пуассона записують у вигляді таблиці:

$\xi = i$	0	1	2	•••	n	•••
p_{i}	$e^{-\lambda}$	$\frac{\lambda}{1!}e^{-\lambda}$	$\frac{\lambda^2}{2!}e^{-\lambda}$	•••	$\frac{\lambda^n}{n!}e^{-\lambda}$	

Цей закон використовують у задачах статистичного контролю якості, в теорії масового обслуговування, теорії надійності і т.п.

Зауважимо, що в законі розподілу Пуассона наведена таблиця ϵ нескінченною, бо

$$e^{-\lambda} + \frac{\lambda}{1!}e^{-\lambda} + \frac{\lambda^2}{2!}e^{-\lambda} + \dots + \frac{\lambda^n}{n!}e^{-\lambda} + \dots = e^{-\lambda}\sum_{i=0}^{+\infty}\frac{\lambda^i}{i!} = e^{-\lambda}e^{\lambda} = 1.$$

Якщо число випробувань n ϵ скінченне, то ймовірність p_n обчислюємо за рівністю $\frac{n-1}{2}$

$$p_n = 1 - \sum_{i=1}^{n-1} p_i$$
.

Геометричний розподіл описує випадкову величину ξ — число випробувань за схемою Бернуллі до першої появи події A, якщо p = P(A) — ймовірність появи події A в кожному окремому випробуванні. Випадкова величина ξ може набувати значень 1, 2, 3, ..., n, ..., а відповідні їм імовірності обчислюємо за формулою:

$$p_i = P(\xi = i) = pq^{i-1}, \ q = 1 - p,$$
 (2.5)

бо перша поява події A в i — му випробуванні означає, що в попередніх i-1 випробуваннях вона не з'явилася, а в i — му випробуванні з'явилася.

Геометричний закон розподілу записують у вигляді таблиці:

$\xi = i$	1	2	3	 n	
p_{i}	p	pq	pq^2	 pq^{n-1}	•••

Коли випробування закінчуються на n- му кроці, то ймовірність $p_n=P(\xi=n)$ не обчислюють за формулою (2.5), а для її знаходження користуються рівністю:

$$p_n = 1 - (p + pq + pq^2 + ... + pq^{n-2}).$$

4. Поряд із законом розподілу дискретну випадкову величину характеризують ще так званими інтегральними ознаками, які називають **числовими характеристиками**. До основних з них належать математичне сподівання, дисперсія і середнє квадратичне відхилення.

Математичним сподіванням $E(\xi)$ дискретної випадкової величини ξ називають число, яке дорівнює сумі добутків можливих значень величини ξ на відповідні їм імовірності, тобто

$$E(\xi) = \sum_{i=1}^{n} x_i p_i . \tag{2.6}$$

Якщо ξ може набувати нескінченної зліченної кількості значень, то

$$E(\xi) = \sum_{i=1}^{\infty} x_i p_i , \qquad (2.6')$$

при цьому ряд повинен бути збіжним.

Математичне сподівання дискретної випадкової величини ξ характеризує середнє арифметичне значення випадкової величини ξ із врахуванням їхніх імовірностей і є центром розподілу цих значень.

Математичне сподівання дискретної випадкової величини має такі властивості:

- математичне сподівання сталої величини дорівнює цій сталій величині, тобто E(C) = C, якщо C = const;
- математичне сподівання суми випадкових величин дорівнює алгебраїчній сумі їхніх математичних сподівань, тобто

$$E(\sum_{i=1}^{n} \xi_i) = \sum_{i=1}^{n} E(\xi_i);$$
(2.7)

• математичне сподівання добутку декількох взаємно незалежних випадкових величин дорівнює добутку їхніх математичних сподівань, тобто

$$E(\xi_1 \cdot \xi_2 \cdot ... \cdot \xi_n) = E(\xi_1)E(\xi_2)...E(\xi_n);$$
(2.8)

• сталий множник можна виносити за знак математичного сподівання, тобто $E(C\xi) = CE(\xi)$, C=const. (2.9)

Якщо випадкова величина ξ ϵ число появ події A у серії випробувань за схемою Бернуллі, то

$$E(\xi) = np. \tag{2.10}$$

Для розподілу Пуассона $E(\xi) = \lambda = np$.

Дисперсією $D(\xi)$ дискретної випадкової величини ξ називають число, яке дорівнює математичному сподіванню квадрата відхилення величини ξ від її математичного сподівання, тобто

$$D(\xi) = E(\xi - E(\xi))^{2} = \sum_{i=1}^{n} [x_{i} - E(\xi)]^{2} \cdot p_{i}.$$
(2.11)

Формула (2.11) елементарними перетвореннями набуває вигляду:

$$D(\xi) = E(\xi^2) - E^2(\xi) = \sum_{i=1}^n x_i^2 \cdot p_i - E^2(\xi).$$
 (2.11')

Дисперсія дискретної випадкової величини ξ характеризує розсіювання можливих значень величини ξ відносно її центру розподілу — математичного сподівання.

Дисперсія дискретної випадкової величини ξ має такі властивості:

- дисперсія будь-якої дискретної випадкової величини ξ невід 'ємна, тобто $D(\xi) \ge 0$
- дисперсія сталої величини дорівнює нулю, тобто D(C) = 0, коли C = const;
- дисперсія алгебричної суми дискретних незалежних випадкових величин дорівнює сумі дисперсій цих величин, тобто

$$D(\xi_1 \pm \xi_2 \pm \dots \pm \xi_n) = D(\xi_1) + D(\xi_2) + \dots + D(\xi_n);$$
(2.12)

• сталий множник можна винести за знак дисперсії, при цьому його треба піднести у квадрат, тобто $D(C\xi) = C^2 D(\xi)$, якщо C=const.

У випадку, коли випадкова величина ξ — число появ події у серії випробувань за схемою Бернуллі, то дисперсію величини ξ обчислюють за простішою формулою:

$$D(\xi) = npq \,, \tag{2.13}$$

де p = P(A) – ймовірність появи події A в кожному окремому випробуванні і $q = 1 - p = P(\bar{A})$. Для розподілу Пуассона дисперсія дорівнює параметру Пуассона $D(\xi) = \lambda$.

Середнім квадратичним відхиленням $\sigma(\xi)$ дискретної випадкової величини ξ називають число, яке дорівнює квадратному кореню з дисперсії $D(\xi)$, тобто

$$\sigma(\xi) = \sqrt{D(\xi)} \ . \tag{2.14}$$

Середнє квадратичне відхилення $\sigma(\xi)$ також характеризує розсіювання можливих значень величини ξ відносно центру, але на відміну від $D(\xi)$ вимірюється в тих самих одиницях, що й величина ξ .

5. Якщо дискретні випадкові величини $\xi_1, \xi_2, ... \xi_n$ взаємно незалежні й однаково розподілені ($E(\xi_i) = E = const, \ D(\xi_i) = D = const, \ \sigma(\xi_i) = \sigma = const$), а випадкова величина

$$\overline{\xi} = \frac{\xi_1 + \xi_2 + \dots + \xi_n}{n},$$
 (2.15)

то:

$$E(\overline{\xi}) = E, \quad D(\overline{\xi}) = \frac{D}{n}, \quad \sigma(\overline{\xi}) = \frac{\sigma}{\sqrt{n}}.$$
 (2.16)

Наголосимо, що випадкові величини $\xi_1, \xi_2, ... \xi_n$ взаємно незалежні, якщо закон розподілу кожної з них не залежить від того, якого значення набула інша величина.

Наведені формули для чисельних характеристик середнього арифметичного значення $\overline{\xi}$ випадкових величин $\xi_1, \xi_2, ... \xi_n$ мають важливе практичне застосування: якщо вибрати за значення вимірюваної величини середнє арифметичне результатів проведених вимірювань $\xi_1, \xi_2, ... \xi_n$, то воно буде ближчим до істинного значення цієї величини, ніж результат кожного вимірювання, тобто надійнішим. Це випливає з того, що розсіювання випадкової величини — середнього арифметичного результатів вимірювання — є меншим, ніж розсіювання кожної випадкової величини — результату кожного вимірювання. При цьому зі збільшенням числа n вимірювань розсіювання їхнього середнього арифметичного зменшується.

Приклад 1. На іспиті з математики, який складали 25 студентів, бал "5" отримали п'ять студентів, бал "4" — десять студентів, бал "3" — вісім студентів, бал "2" — два студенти. Написати закон розподілу випадкової величини ξ — число балів навмання вибраного з групи студента. Виконати такі дії:

- а) знайти ймовірність того, що вибраний навмання студент має не менше ніж чотири бали (подія A);
 - б) обчислити числові характеристики $E(\xi)$, $D(\xi)$, $\sigma(\xi)$.

- **Приклад 2.** Написати закон розподілу ймовірностей випадкової величини ξ числа сімей з чотирьох навмання вибраних, які мають заборгованості в оплаті комунальних послуг, якщо 70% сімей регіону своєчасно їх сплачують. Виконати такі дії:
- а) знайти найімовірніше число сімей серед чотирьох вибраних, які мають заборгованість в оплаті комунальних послуг;
- б) написати аналітичний вираз функції розподілу F(x) випадкової величини ξ та накреслити її графік.

Приклад 3. Дискретна випадкова величина ξ характеризується функцією розподілу

$$F(x) = \begin{cases} 0, & x < -4; \\ 0, 2, & -4 \le x < 5; \\ 0, 3, & 5 \le x < 8; \\ 0, 6, & 8 \le x < 9; \\ 0, 8, & 9 \le x < 10; \\ 1, & x \ge 10. \end{cases}$$

Обчислити числові характеристики $E(\xi)$, $D(\xi)$, $\sigma(\xi)$

Приклад 4. Імовірність дефекту електролампочки (подія A) дорівнює 0,2. Виконати такі дії:

- а) написати закон розподілу випадкової величини ξ кількості перевірених електролампочок до виявлення дефектної, якщо перевіряють п'ять електролампочок;
- б) знайти ймовірність того, що до виявлення електролампочки з дефектом їх буде перевірено більше ніж три (подія B).

Приклад 5. Визначити математичне сподівання, дисперсію та середнє квадратичне відхилення випадкової величини ξ , можливі значення якої та їхні частоти задані таблицею:

$\xi = x_i$	-2	-1	1	5	10	15
n_i	4	35	34	20	4	3

Приклад 6. Імовірність того, що член туристичної групи правильно заповнив митну декларацію (подія A), дорівнює 0,9. Знайти середнє число туристів у групі з 50 осіб, які правильно заповнили митні декларації, а також межі, між якими може коливатися це число туристів.

Приклад 7. Однаково розподілені випадкові величини $\xi_1, \xi_2, ... \xi_{10}$ задані математичним сподіванням $E(\xi_i) = 4,8$ і дисперсіями $D(\xi_i) = 2,5$. Обчислити $E(\overline{\xi}), \ D(\overline{\xi}), \ \sigma(\overline{\xi}), \ degree \overline{\xi}$ середнє арифметичне величин $\xi_1, \xi_2, ... \xi_{10}$.

Завдання для самостійної роботи

- 1. У грошовій лотереї розігрують: два квитки по 500 грн, 10 квитків по 50 грн, 20 квитків по 1 грн. Всього ϵ 200 лотерейних квитків. Покупець навмання придбав один з них. Побудувати закон розподілу ймовірностей випадкової величини ξ величини виграшу. Знайти:
 - а) функцію розподілу ймовірностей та побудувати її графік;
 - б) обчислити $E(\xi)$, $D(\xi)$, $\sigma(\xi)$.
- 2. Виконують постріли з двох гармат. Імовірності влучення в мішень, відповідно, дорівнюють 0,55 і 0,6. Знайти закон розподілу випадкової величини ξ загальної кількості влучень у мішень, якщо з кожної гармати здійснено по 1 пострілу. Знайти функцію розподілу випадкової величини ξ та побудувати її графік.

- 3. Імовірність того, що футболіст реалізує пенальті, дорівнює 0,85. Футболіст виконав три таких удари. Побудувати закон розподілу ймовірностей дискретної випадкової величини ξ числа реалізованих пенальті. Знайти:
 - а) ймовірність того, що реалізованих пенальті буде не більше двох;
 - б) найімовірніше число реалізованих пенальті.
- 4. Для виконання вправи гімнасту надають можливість зробити до трьох спроб. Імовірність виконати вправу в кожній спробі дорівнює 0,6. Знайти закон розподілу, математичне сподівання, дисперсію і середнє квадратичне відхилення випадкової величини ξ кількості спроб, використаних спортсменом для виконання вправи.
- 5. Є три ящики. У першому містяться шість стандартних і чотири браковані однотипні деталі, у другому вісім стандартних і дві браковані деталі, а в третьому п'ять стандартних і п'ять бракованих. Із кожного ящика навмання беруть по одній деталі. Побудувати закон розподілу ймовірностей дискретної випадкової величини ξ появи кількості стандартних деталей серед трьох навмання взятих; визначити F(x) та побудувати графік цієї функції.
- 6. Троє студентів складають іспит із теорії ймовірностей. Імовірність того, що перший студент складе екзамен, становить 0,9, для другого та третього студентів ця ймовірність дорівнює, відповідно, 0,85; 0,8. Побудувати закон розподілу ймовірностей дискретної випадкової величини ξ числа студентів, які складуть іспит з теорії ймовірностей, побудувати F(x) і накреслити її графік.
- 7. У першому ящику міститься сім стандартних і три браковані деталі, у другому шість стандартних і чотири браковані. Навмання з першого ящика беруть чотири деталі, а з другого одну. Побудувати закон розподілу ймовірностей дискретної випадкової величини ξ появи кількості стандартних деталей серед п'яти навмання взятих і побудувати F(x).
- 8. Випадкова величина ξ набуває двох можливих значень x_1 та x_2 з ймовірностями, відповідно, p_1 та p_2 . Знайти x_1 та x_2 і записати її закон розподілу, якщо: $x_1 > x_2$, $p_1 = 2/3$, $E(\xi) = -1/3$, $D(\xi) = 8/9$.
- 9. За заданим законом розподілу дискретної випадкової величини ξ :

$\xi = x_i$	-3	-2	1	3	5	7
p_i	а	1,5 <i>a</i>	0,5 <i>a</i>	3,5 <i>a</i>	2,5 <i>a</i>	а

знайти:

- a) параметр a;
- 6) $P(\xi < 2)$, $P(-4 < \xi \le 6)$;
- в) функцію розподілу ймовірностей та побудувати її графік.
- 10. Обчислити $E(\xi)$, $D(\xi)$, $\sigma(\xi)$, якщо закон розподілу ймовірностей дискретної випадкової величини ξ задано функцією розподілу

$$F(x) = \begin{cases} 0, & x < -5; \\ 0,1, & -5 \le x < -4; \\ 0,3, & -4 \le x < 1; \\ 0,4, & 1 \le x < 2; \\ 0,65, & 2 \le x < 4; \\ 1, & x \ge 4. \end{cases}$$

- 11. В озері було 15 000 риб, з яких $1\,000$ мічені. Було відловлено 150 риб. Знайти математичне сподівання мічених риб серед відловлених. У яких межах може змінюватися кількість мічених риб?
- 12. Визначити математичне сподівання, дисперсію та середнє квадратичне відхилення випадкової величини ξ , частоти можливих значень якої задано таблицею:

x_i	-3	1	7	15	100
n_i	5	34	35	25	1

- 13. Відомо, що однаково розподілені випадкові величини $\xi_1, \xi_2, ... \xi_{25}$ мають математичне сподівання $E(\xi_i) = 12,1$ і дисперсії $D(\xi_i) = 4,11$ $(i = \overline{1,25})$. Обчислити $E(\overline{\xi})$, $D(\overline{\xi})$, $\sigma(\overline{\xi})$, де $\overline{\xi}$ середнє арифметичне величин $\xi_1, \xi_2, ... \xi_{25}$.
- 14. Закон розподілу дискретної випадкової величини ξ задано таблицею:

$\xi = x_i$	-4	- 1	2	6	9	13
p_i	0,1	0,2	0,1	0,3	0,1	0,2

Побудувати функцію розподілу F(x) та її графік.

- 15. Відділ технічного контролю перевіряє вироби на стандартність. Імовірність того, що виріб стандартний, становить 0.9. У кожній партії є п'ять виробів. Знайти математичне сподівання кількості партій, у кожній з яких буде чотири стандартні вироби, якщо всього перевіряють 50 партій.
- 16. Знайти дисперсію дискретної випадкової величини ξ кількості появ події A в 10 незалежних випробуваннях, якщо ймовірності появи події в цих випробуваннях однакові й відоме математичне сподівання $E(\xi) = 6$.