基礎力養成トレーニング集―熱力学

野口 駿

2025

テキストの内容と表記上の注意

このテキストは,受験における古典物理学の基礎力を養成する立式トレーニング集です.物理法則を正しく使えるようになることを目的に編成しています.ベクトル表示は, \overrightarrow{a} ではなく,aとボールドイタリック体で表記しています.

目次

1.1	熱量保存則	
	熱量保存則の立式	1
2	理想気体の記述	3
2.1	気体の状態	
2.2	理想気体の変化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
3	気体分子運動論	7
3.1	気体分子のミクロな運動	7
4	熱力学第 1 法則	9
4.1	$P-V$ サイクル \ldots	9
4.2	応用的な熱力学の系	11

1 熱量保存則

1.1 熱量保存則の立式

 ${\bf \underline{Ex.}}$ 以下の図において、熱量保存則を立式せよ. (1)

容器熱容量 C

(2)

容器熱容量 C

- (1) 熱量保存則より,
- $0 = C(T T_0) + cm(T T_0) + c'M(T T_1).$
- (2) 熱量保存則より,

$$0 = C(T - T_0) + cm(T - T_0) + c'M(t - T_1)$$

+qM + cM(T-t).

2 理想気体の記述

2.1 気体の状態

Ex. 以下の図において,力の釣り合いの式と気体の状態方程式を立式せよ.気体は理想気体であるとする.気体の物質量は全てnで,気体定数はR,重力加速度の大きさをgとする.

(1)

(2)

(3)

(4)

以下鉛直上向を正とする.

- (1) ピストンの力の釣り合いの式より,
- $0 = pS mg p_0S.$

状態方程式より,

pSL = nRT.

- (2) ピストンの力の釣り合いの式より,
- $0 = p_0 S mg pS.$

状態方程式より,

pSL = nRT.

- (3) ピストンの力の釣り合いの式より,
- $0 = pS + k\Delta x mg p_0S.$

状態方程式より,

pSL = nRT.

- (4) 容器の水面の力の釣り合いの式より,
- $0 = (p_0 + \rho g h)S pS.$

状態方程式より,

pSL = nRT.

2.2 理想気体の変化

Ex. 以下の図において,気体の変化に関する方程式を立式せよ.気体は理想気体であるとする.

(1)

(2)

(3) A と B のそれぞれの気体について立式せよ. その結果から p' と T' を p と T を用いて表せ.

なめらかに動くピストン

2.2 の解答

- (1) ボイル・シャルルの法則より, $rac{pSL}{T} = rac{pSH}{T'}.$
- (2) ポアソンの法則より, $p(SL)^{\frac{5}{3}} = p'(SH)^{\frac{5}{3}}$.
- (3) A について、ボイル・シャルルの法則より、 $\frac{pV}{T} = \frac{3p'V}{2T'}.$ B について、ボイル・シャルルの法則より、 $\frac{pV}{T} = \frac{p'V}{2T}.$ 以上の結果から、 $\underline{p'=2p}$ 、 $\underline{T'=3T}$.

3 気体分子運動論

3.1 気体分子のミクロな運動

Ex. 以下の問いに答えよ、ただし、気体分子の質量はmで、単原子分子理想気体であるとする。気体定数をR、アボガドロ定数を N_A 、容器内の温度をTとする。気体分子と容器の衝突は全て弾性衝突であるとせよ。

(1) (a) から(g) に適する数式を入れよ.

気体分子 1 つが,半径 r の球形容器に角度 θ で衝突したとき,1 回の衝突で容器が受ける力積の大きさは (a). 時間 Δt で気体分子が球形容器に衝突する回数は (b). したがって,時間 Δt の間で,1 つの気体分子から球形容器が受けた力の平均値は (c).

気体分子の総数を N として,分子の速さの 2 乗 平均を $\overline{v^2}$ とする.これらの結果から気体分子の圧力は (d). 理想気体の状態方程式は (e). この結果から,総分子数 N の気体分子が有する平均運動エネルギーは (f). 気体分子の物質量 n は (g) なので,これを (f) に代入すると,(h) が得られる.これを理想気体の内部エネルギーと呼ぶ.

(2) (a) から(g) に適する数式を入れよ.

気体分子が x 方向に速さ v で運動しているとする. ピストンを x 負方向に速さ v_0 の一定の速度で動かした時,ピストンと衝突したあとの気体分子 1 つの x 方向の速度は (a) となる. v_0 は v に比べて十分小さいとして, v_0^2 の項を無視すると,x 方向の速さの 2 乗は 1 回の衝突で (b) だけ増加する.

ピストンの移動距離を Δl とする. Δl は l に比べて十分小さいため,気体分子がピストンと衝突するために必要な移動距離は 2l と考えて良く, v_0 は v に比べて十分小さいため,気体分子の速さは衝突による変化を考えなくても良いとする.ピストンが Δl 移動する間にこの分子がピストンと衝突する回数は,近似的に (c) である.この衝突回数によって気体分子の運動エネルギーの増加分は (d) である.

分子が得た (d) の運動エネルギーは,他の分子との衝突によりエネルギーを各軸方向の運動に受け渡すと考えられる.ここで,全分子に対して各軸方向の速さの 2 乗の平均を取り,それらの増加分を $\overline{\Delta v_x^2}$, $\overline{\Delta v_y^2}$, $\overline{\Delta v_z^2}$ とする.エネルギー等分配則より $\overline{\Delta v_x^2} = \overline{\Delta v_y^2} = \overline{\Delta v_z^2}$.したがって,各軸方向の運動エネルギーの増加量は (e) である.ボルツマン定数を k とすると,衝突前の気体分子の運動エネルギー $\frac{1}{2}m\overline{v^2}$ は,温度 T を用いると (f) であるため,上昇温度は (g) である.

(1)

(a) 右方向を正とする. 気体分子が受ける力積をiとする. 撃力作用線の方向において,気体分子の運動量と力積の関係より,

 $mv\cos\theta+i=-mv\cos\theta$, より, $i=-2mv\cos\theta$. 容器が受ける力積 I は, 作用・反作用の法則より, $I=2mv\cos\theta$.

- (b) 次の衝突までに気体分子が移動する距離は, $2r\cos\theta$. Δt の間における衝突回数は, $\frac{v\Delta t}{2r\cos\theta}$.
- (c) 容器が時間 Δt で受けた力積の総和は, $2mv\cos\theta\cdot\frac{v\Delta t}{2r\cos\theta}=\frac{mv\Delta t}{r}.$ 力の平均値は,時間 Δt で割ればいいので, $\frac{mv^2}{r}$.
- $({
 m d})$ N 個の気体分子が容器に及ぼす力の平均値は, $\frac{Nm\overline{v^2}}{r}$. 内壁の面積は, $4\pi r^2$ より,圧力は, $\frac{1}{4\pi r^2}\cdot\frac{Nm\overline{v^2}}{r}=\frac{Nm\overline{v^2}}{\underline{4\pi r^3}}.$
- $\frac{4\pi r^2}{r}$ $\frac{4\pi r^3}{3}$ (e) 体積が $\frac{4}{3}\pi r^3$ より、状態方程式は、 $\frac{Nm\overline{v^2}}{4\pi r^3} \cdot \frac{4}{3}\pi r^3 = \frac{N}{N_{\rm A}}RT$. (f) N 個の気体分子の平均運動エネルギーは、 $N\frac{1}{2}m\overline{v^2} = \frac{3}{2}\frac{N}{N_{\rm A}}RT$.
- $\begin{array}{ll} ({\rm g}) & n=\frac{N}{N_{\rm A}}. \\ ({\rm h}) & N\frac{1}{2}m\overline{v^2}=\frac{3}{2}nRT. \end{array}$

(2)

- (a) 衝突後の速度を v_x とする. ピストンは常に一定速度で動いているため,衝突で運動量は保存しない. 弾性衝突より,反発係数の式を立式すると, $1=-\frac{v_x-(-v_0)}{v-(-v_0)},\ \underline{v_x=-v-2v_0}.$
- (b) 増加速度を Δv とする.

$$\Delta v^2 = v_x^2 = v^2 + 4vv_0 + 4v_0^2,$$

$$v_x^2 - v^2 = 4vv_0 + 4v_0^2 \sim 4vv_0.$$

- (c) Δl だけ動くのにかかる時間 を Δt とする. $\Delta t = \frac{\Delta l}{v_0}.$ 気体分子の移動距離は近似的に $v\Delta t = \frac{v\Delta l}{v_0}.$ 従って衝突回数は, $\frac{v\Delta l}{v_0} = \frac{v_x\Delta l}{2lv_0}$
- (d) Δt の間に増加した気体分子の運動エネルギーは, $\frac{1}{2}m\Delta v^2 = \frac{1}{2}m\frac{v_x\Delta l}{2lv_0}4vv_0 = m\frac{\Delta l}{l}v^2.$
- (e) エネルギー等分配則より, $\frac{1}{2}m\Delta v^2 = \frac{1}{2}m\overline{\Delta v_x^2} + \frac{1}{2}m\overline{\Delta v_y^2} + \frac{1}{2}m\overline{\Delta v_z^2}.$ x 軸方向の運動エネルギーに注目すると, $\frac{1}{2}m\Delta v^2 = \frac{3}{2}m\overline{\Delta v_x^2},$ $\frac{1}{2}m\overline{\Delta v_x^2} = \frac{1}{3}\frac{1}{2}m\Delta v^2 = m\frac{\Delta l}{3l}v^2.$
- (f) 衝突前の気体分子の運動エネルギーと温度の関係は, $\frac{1}{2}m\overline{v^2} = \frac{3}{2}kT.$

$$2 \frac{2}{m} \frac{2}{\Delta v_x^2} = \frac{3}{2} k \Delta T, \quad \text{\sharp \mathfrak{h}},$$

$$\Delta T = \frac{2\Delta l}{3l} T.$$

4 熱力学第1法則

4.1 P-V サイクル

Ex. 以下の P-V サイクルの過程について、次の問いに答えよ。ただし、気体は単原子分子理想気体であるとする。気体定数を R とせよ。

(1) 気体がする仕事 w, 外部からされた仕事 W, 内部エネルギー変化 ΔU , 加えられた熱量 Q を求めよ.

(2) 気体がする仕事 w, 外部からされた仕事 W, 内部エネルギー変化 ΔU .

(3) 各過程で加えられた熱量 $Q_{\rm AB}$, $Q_{\rm BC}$, $Q_{\rm CD}$. 熱効率 e.

以下封入された気体の物質量をn, 気体定数をRと

(1) 気体がする仕事とは、ピストンが封入された気 体の圧力で押されるときの仕事である.

$$w = +P_0(V_1 - V_0).$$

外力がする仕事とは、ピストンが外部から押される ときの仕事である.

温度変化を ΔT とすると,

$$\Delta U = \frac{3}{2} nR \Delta T.$$

定圧変化における状態方程式は、

$$P_0(V_1 - V_0) = nR\Delta T.$$

$$\Delta U = \frac{3}{2} P_0 (V_1 - V_0).$$

熱力学第1法則より,

$$\Delta U = Q + W,$$

$$Q = \Delta U - W = \frac{5}{2} P_0 (V_1 - V_0).$$

(2) 始状態と終状態の温度をそれぞれ T_1 と T_0 と すると、状態方程式より、

$$P_1V_1 = nRT_1$$

$$P_0V_0 = nRT_0$$

$$P_0V_0 = nRT_0.$$

$$\Delta U = \frac{3}{2}nT(T_0 - T_1) = \frac{3}{2}(P_0V_0 - P_1V_1).$$

断熱過程より、加えられた熱量はゼロ.熱力学第1 法則より,

$$\Delta U = W, \ W = \frac{3}{2}(P_0V_0 - P_1V_1).$$

$$w = -W \ \sharp \ \mathfrak{h} \, , \ w = -\frac{3}{2} (P_0 V_0 - P_1 V_1).$$

(3) 以下仕事は『外部からされる仕事』 W で考え

る
$$A \rightarrow B$$
 について

る.
$$A \rightarrow B$$
 について, $W_{\rm AB} = 0, \ \Delta U_{\rm AB} = \frac{3}{2}(2P_0 - P_0)V_0.$

熱力学第1法則より,

$$\Delta U_{AB} = W_{AB} + Q_{AB}$$

$$\Delta U_{\rm AB} = W_{\rm AB} + Q_{\rm AB},$$

$$Q_{\rm AB} = \Delta U_{\rm AB} = \frac{3}{2} P_0 V_0.$$

 $B \rightarrow C$ について,

$$W_{\rm BC} = -2P_0(2V_0 - V_0),$$

$$\Delta U_{\rm AB} = \frac{3}{2} 2P_0 (2V_0 - V_0).$$

熱力学第1法則より,

$$\Delta U_{\rm BC} = W_{\rm BC} + Q_{\rm BC},$$

$$Q_{\rm BC} = \Delta U_{\rm BC} - W_{\rm BC} = 5P_0V_0.$$

$$C \rightarrow A$$
 $k \supset V \subset T$,

仕事の大きさは
$$P-V$$
 グラフの面積なので, $W_{\mathrm{BC}}=+rac{1}{2}(P_0+2P_0)(2V_0-V_0).$

C, A の温度を T_A , T_B とする. それぞれの状態方 程式は,

$$2P_02V_0 = nRT_{\rm C}$$
,

$$P_0V_0 = nRT_A.$$

$$\Delta U_{\rm AB} = \frac{3}{2} nR(T_{\rm A} - T_{\rm C}) = \frac{3}{2} (P_0 V_0 - 2P_0 2V_0).$$

熱力学第1法則より,

$$\Delta U_{\rm CA} = W_{\rm CA} + Q_{\rm CA},$$

$$Q_{\mathrm{CA}} = \Delta U_{\mathrm{CA}} - W_{\mathrm{CA}} = \underline{-6P_0V_0}.$$

放熱過程は C→A. 正味の仕事
$$w_n$$
 は、 $w_n = 0 + 2P_0V_0 - \frac{3}{2}P_0V_0 = \frac{1}{2}P_0V_0$.

$$e = \frac{w_n}{Q_{AB} + Q_{BC}} = \frac{\frac{1}{2}}{\frac{3}{2} + 5} = \frac{1}{\underline{13}}.$$

4.2 応用的な熱力学の系

 $\underline{\mathbf{Ex.}}$ 以下の図において,系全体のエネルギーのやりとりを立式せよ.封入された気体は理想気体とし,定積モル比熱を C_{V} とする.

(1) ピストンは滑らかであるとし、封入された気体の物質量をnとせよ.

(2) ピストンは滑らかであるととする. 重力加速 度の大きさを g とする.

(3) 容器は全て断熱材でできているとする.

4.2 の解答

ピストンと気体の2体系で分けて考える.

(1) 中の気体の圧力がピストンにする仕事をwとする. ピストンと気体の、それぞれのエネルギーと仕事の関係は、

ピストン:
$$w-P_0S\Delta x=\frac{1}{2}k\Delta x^2,$$
 気体: $nC_{\rm V}T_0-w+Q=nC_{\rm V}T_1.$ 和を取ると, $nC_{\rm V}T_0+Q-P_0S\Delta x=nC_{\rm V}T_1+\frac{1}{2}k\Delta x^2.$

(2) 中の気体の圧力がピストンにする仕事をwとする. ピストンと気体の、それぞれのエネルギーと仕事の関係は、

ピストン:

$$\begin{split} mgL + w - P_0 S \Delta x &= \frac{1}{2} k \Delta x^2 + mg(\Delta x + L), \\ 気体: nC_{\mathrm{V}}T - w + Q &= nC_{\mathrm{V}}T'. \\ 和を取ると、\\ \underline{nC_{\mathrm{V}}T + mgL + Q - P_0 S \Delta x} \\ &= nC_{\mathrm{V}}T' + \frac{1}{2} k \Delta x^2 + mg(L + \Delta x). \end{split}$$

(3) 容器が断熱材なので、断熱過程. コックの開栓 では仕事はない. A, B のそれぞれの熱力学第 1 法則は、

 $A: n_A C_V T_A = n_A C_V T$,

 $B: n_B C_V T_B = n_B C_V T.$

和を取ると,

 $n_{\rm A}C_{\rm V}T_{\rm A} + n_{\rm B}C_{\rm V}T_{\rm B} = n_{\rm A}C_{\rm V}T + n_{\rm B}C_{\rm V}T.$