EINBAU- UND BEDIENUNGSANLEITUNG

KH 8384-4

Originalanleitung

Elektropneumatischer Stellungsregler Typ 3730-4

Konfiguration und Bedienung über PROFIBUS-PA

Firmwareversion K 2.02/R 1.53

Zu diesen Konfigurationshinweisen

Neben der Bedienung und Konfiguration des Stellungsreglers Typ 3730-4 über den Dreh-/ Druckknopf (Vor-Ort-Bedienung) können Einstellungen auch über den PROFIBUS-PA oder über die SAMSON SSP-Schnittstelle vorgenommen werden.

Inhalt der vorliegeden Konfigurationshinweise KH 8384-4 sind die Grundlagen und Parameter zur Bedienung und Konfiguration über den PROFIBUS-PA.

- → Die Montage, Inbetriebnahme sowie die Vor-Ort-Bedienung beschreibt die Einbau- und Bedienungsanleitung ► EB 8384-4.
- → Informationen zur Erweiterten Ventildiagnose EXPERTplus enthält die Bedienungsanleitung ► EB 8389.

Gerätebezogene Dokumente, wie beispielsweise die Einbau- und Bedienungsanleitungen, stehen im Internet unter www.samsongroup.com > Service & Support > Dokumentation zur Verfügung.

i Info

Einbau, Inbetriebnahme und Vor-Ort-Bedienung des Stellungsreglers sind in der Einbau- und Bedienungsanleitung ► EB 8384-5 beschrieben.

Hinweise und ihre Bedeutung

▲ GEFAHR

Gefährliche Situationen, die zum Tod oder zu schweren Verletzungen führen

▲ WARNUNG

Situationen, die zum Tod oder zu schweren Verletzungen führen können

• HINWEIS

Sachschäden und Fehlfunktionen

Informative Erläuterungen

Praktische Empfehlungen

1	PROFIBUS-PA	5
2	Profil	5
3	Zyklische Datenübertragung	5
3.1	General Station Description (GSD) und automatische Ident-Nummer-Adaption	
3.2	Datenaustausch DATA EXCHANGE	8
3.3	Einbindungshinweis für PCS7	12
3.4	Allgemeine Hinweise zur Inbetriebnahme des Stellungsreglers	12
4	CHECKBACK - Gerätstatus	13
5	Messwertstatus und Gerätediagnose	15
5.1	Erweiterte Diagnose EXPERTplus	15
5.2	Klassifikation der Statusmeldungen und Sammelstatus	16
5.3	Statusmeldungen nach Profil 3.01	19
5.4	Statusmeldungen nach Profil 3.01 Condensed Status	23
5.5	Standarddiagnose nach PROFIBUS-DP	28
6	Azyklische Datenübertragung	34
7	Nutzung des Teilhubtests (PST) über DP-V0	35
8	Parameterlisten	36
8.1	Physical Block, Slot O · Profilspezifische Parameter	37
8.2	Physical Block, Slot O · Herstellerspezifische Parameter	44
8.3	AO Funktionsblock, Slot 1 Profilspezifische Parameter	60
8.4	AO Transducer Block, Slot 1 · Profilspezifische Parameter	65
8.5	AO Transducer Block, Slot 1 · Herstellerspezifische Parameter	73
8.6	DI1/2 Function Block, Slot 2/3 Profilspezifische Parameter	
8.7	DI1/2 Transducer Block, Slot 2/3 · Profilspezifische Parameter	92

Änderungen der Stellungsregler-Firmware gegenüber Vorgängerversion – Kommunikation K

K 1.01

Interne Änderungen

K 1.10

Mit dem Parameter FEATURE_SELECT kann eingestellt werden, ob eine aktive Diagnosefunktion durch ein GOOD_FUNCTION_CHECK oder ein BAD_FUNCTION_CHECK kommuniziert wird, vgl. Seite 51.

K 1.11

- Erweiterung der Triggerbedingungen beim Datenlogger, vgl. Seite 50.
- Erweiterung der Zusatzfunktionen (FEATURE_SELECT), vgl. Seite 51.
- Die Grenzen der diskreten Ventilstellung (POS_D_LIMIT_LOW, POS_D_LIMIT_UP) sind jetzt frei definierbar, vgl. Seite 5.

K 1.12

Das Rücksetzen der Identifikationsparameter setzt alle im Regelungscontroller gespeicherten Parameter zurück. Die im Regelungscontroller gespeicherten Parameter werden nicht zurückgesetzt, wenn nur die Inbetriebnahmeparameter zurückgesetzt werden, vgl. Seite 40.

K 1.13

Interne Anderungen

K 1.15

Erweiterung um die Funktion der Ident-Nummern-Adaption nach PROFIBUS PA Profil 3.02. Durch diese kann ein Stellungsregler vom Typ 3785 (Profil 2.0 und Profil 3.0) im Kompatibilitätsmodus direkt gegen den Typ 3730-4 getauscht werden, vgl. Seite 7.

K 1.16

Mit der Funktion "Unterdrückung der erweiterten Diagnosemeldungen" können Meldungen für das PROFIBUS-Diagnose-Protokoll unterdrückt werden. Die Meldungen gehen, bei entsprechender Klassifizierung, weiterhin in den Sammelstatus ein. Der Parameter zur Unterdrückung der Diagnosemeldungen ist in den folgenden Integrationen vorhanden:

DD: 2.2.007

TROVIS-VIEW: >3.60.005 (Geräte-Modul)

DTM: 1301

K 1.17

Die Versionen K 1.12 bis einschließlich K 1.16 speicherten einen azyklisch vorgegebenen Sollwert nicht als gültigen Wert für das Ausfallverhalten "Regeln auf letzten Sollwert" ab. In den betroffenen Modulen zum Datenaustausch wurde daraufhin die Abfrage auf einen gültigen Sollwert auf GOOD_NON_SPECIFIC geändert.

K 2.00

Erweiterung um die Funktionen Teilhubtest (PST) und Vollhubtest (FST)

K 2.01

Interne Anderungen

K 2.02

Korrektur der zyklischen Kommunikation von negativen Ventilstellungen

1 PROFIBUS-PA

Der PROFIBUS-PA stellt eine Variante des in der Fertigungstechnik weit verbreiteten PROFIBUS-DP dar. Die Übertragungstechnik entspricht dem Standard IEC 61158-2 und erfüllt somit die Anforderungen der Zündschutzart Eigensicherheit.

Nach PROFIBUS-DP sind zwei Arten von Master definiert:

- Der Klasse-1-Master tauscht die Nutzdaten mit den konfigurierten Slaves aus.
- Mit einem Klasse-2-Master wird die azyklische Kommunikation realisiert, die vornehmlich der Inbetriebnahme und zu Diagnosezwecke dient.

2 Profil

Grundlegende Gerätefunktionalitäten wurden von der PNO (PROFIBUS Nutzer Organisation) ergänzend zur EN 50170 in Profilen beschrieben.

Die Funktionalität des Stellungsreglers Typ 3730-4 entspricht dem Profil 3.01 für Aktoren, erfüllt jedoch alle verpflichtenden Funktionalitäten des Profils 3.02, z. B. die automatische Vorgehensweise beim Ersetzen älterer Gerätetypen und -versionen oder den Sammelstatus nach NAMUR-Empfehlung NE 107.

3 Zyklische Datenübertragung

Zyklisch übertragene Parameter

Die im folgenden aufgelisteten Parameter werden zyklisch übertragen. In den Parameterlisten ab Seite 36 sind sie mit * gekennzeichnet.

POS_D

Aktuelle Position des Ventiles (diskret)

0: nicht initialisiert

1: geschlossen (x < 0,5 %)

2: geöffnet (x > 99,5 %)

3: Zwischenstellung

Zyklische Datenübertragung

- RCAS IN

Sollwert mit Status: Sollwert w in Betriebsart RCAS

Wird von einem überlagerten Regelkreis zur Vefügung gestellt, z. B. PID Block oder Masterklasse 1. Abhängig vom Modus des Funktionsblocks.

Wertebereich definiert in PV_SCALE

- RCAS OUT

Sollwert mit Status: Sollwert w in Betriebsart RCAS

Wird für einen überlagerten Regelkreis, z. B. PID Block oder Masterklasse 1 zur Verfügung gestellt. Abhängig vom Modus des Funktionsblocks.

Wertebereich definiert in PV SCALE

READBACK

Aktuelle Position des Ventils und Status

Regelgröße x bezogen auf Hub-/Drehwinkelbereich (OUT_SCALE)

Wertebereich definiert in PV SCALE

- SP

Der Sollwert SP wird dem Stellungsregler übermittelt. Vorgabe der Stellung des Ventils zwischen offen und geschlossen.

Wertebereich definiert in PV_SCALE

- DI OUT

Ausgang des DI Function Blocks

Geräte- und Messwertstatus

Checkback

Gerätstatus, vgl. Kap. 4

Status

entsprechend dem PROFIBUS-PA-Profil ist jeder Prozesswert mit einem Status versehen Status Sollwert (hex):

0-3f Bad

40-7f Uncertain

80-bf Good

Messwertstatus, vgl. Kap. 5

General Station Description (GSD) und automatische Ident-Nummer-Adaption

Die GSD gehört zum Lieferumfang eines jeden PROFIBUS-Geräts und liefert alle Informationen, die für den zyklischen Datenaustausch von Prozessdaten (Sollwert, Status, ...) mit dem Host System und zur Konfiguration des PROFIBUS-Netzwerkes benötigt werden. Jedem Gerät und seiner GSD ist dabei eine feste und einmalige Ident-Nummer zugeordnet. Dies ermöglicht dem Host, die Kompatibilität zwischen der Konfiguration im System und dem tatsächlich verwendeten Gerät zu prüfen.

Für eine erfolgreiche Integration muss die Ident-Nummer der GSD mit der Ident-Nummer des Geräts übereinstimmen.

Die Funktion "Automatic Ident Number Adaption" ermöglicht den Austausch der Stellungsregler vom Typ 3785 gegen den Typ 3730-4 ohne die GSD im Host System tauschen zu müssen: Das Gerät wird vom Host beim Übergang in den zyklischen Datenaustausch auf die konfigurierte GSD/Ident-Nummer geprüft (Kompatibilitätsprüfung). Befindet sich der Regler im Kompatibilitätsmodus, wird vom Regler auch die GSD/Ident-Nummer des Typ 3785 (Profil 2.0 und Profil 3.0) akzeptiert und der Stellungsregler geht in den zyklischen Datenaustausch über

Für die Kommunikation mit dem Automatisierungssystem werden nur die Funktionalitäten der aktivierten Gerätevariante (aktive Ident-Nummer) unterstützt.

Zyklische Datenübertragung

Beispiel: Wird der Typ 3730-4 im Kompatibilitätsmodus zum Typ 3785 Profil 3.0 betrieben, so wird das Diagnosetelegramm entsprechend dem Typ 3785 kommuniziert. Diagnosebits, die erst mit dem Profil 3.01 eingeführt wurden, werden nicht gesetzt. Weiterhin sind DI-Blöcke des Typ 3730-4 nicht verwendbar, da diese im Typ 3785 nicht zur Verfügung stehen.

Beim Austausch des Typ 3785 gegen den Typ 3730-4 sind folgende Schritte erforderlich:

Die Konfiguration via PROFIBUS muss mit der zugehörigen EDD bzw. DTM des Typ 3730-4 erfolgen, da nur so der Zugriff auf die Geräteparameter erfolgen kann.

- Stellungsreglers Typ 3730-4 fachgerecht montieren und anschließen sein, vgl.
 FB 8384-4
- Busadresse des Typ 3730-4 auf die Busadresse des Typ 3785 ändern, entweder via PRO-FIBUS (Parameter DEVICE_ADDRESS), über die Konfigurations- und Bedienoberfläche TROVIS-VIEW oder über Code 46 am Gerät.
- 3. Stellungsregler in Betrieb nehmen, vgl. ▶ EB 8384-4.

i Info

Nach der in Schritt 2 erfolgten Initialisierung befindet sich der Regler im Kompatibilitätsmodus (Parameter IDENT_NUMBER_SELECTOR im Physical Block); diese Einstellung sollte nicht geändert werden.

3.2 Datenaustausch DATA EXCHANGE

Die Beziehungen Ausgangswert (Output) und Eingangswert (Input) beziehen sich auf das Leitsystem/Master Klasse 1.

Slot 1

Variante 1: Modul = "SP"
 0x4A bzw. 0x82, 0x84, 0x08, 0x05

Ausgangswerte (Output)

Byte 0	1	2	3	4
Octet 1 Sign	Octet 2 Exponent	Octet 3	Octet 4	Octet 5
Exponent	Fraction	Fraction	Fraction	Fraction
SP,	EE)	Status		

 Variante 2: Modul = "RCAS_IN, RCAS_OUT" 0xC4, 0x84, 0x84, 0x08, 0x05, 0x08, 0x05

Ausgangswerte (Output)

Byte 0	1	2	3	4
Octet 1	Octet 2	Octet 3	Octet 4	Octet 5
Sign	Exponent	Fraction		l
Exponent	Exponent Fraction		Fraction	Fraction
RCAS_	Status			

Eingangswerte (Input)

Byte 0	Byte 0 1 2		3	4		
Octet 1 Sign	Octet 2 Exponent	Octet 3	Octet 4	Octet 5		
Exponent	0 1		ponent Fraction Fraction Fraction		Fraction	Fraction
RCAS_C	Status					

Variante 3: Modul = "SP, READBACK + POS_D"
 0xC6, 0x84, 0x86, 0x08, 0x05, 0x08, 0x05, 0x05, 0x05

Ausgangswerte (Output)

Byte 0	Byte 0 1		Byte 0 1 2		3	4	
Octet 1 Sign	Octet 2 Exponent	Octet 3	Octet 4	Octet 5			
Exponent	Fraction	Fraction	Fraction	Fraction			
SP,	SP, Wert (Floating Point, IEEE)						

Eingangswerte (Input)

Byte 0	1	2	3	4	5	6
Octet 1 Sign Expo- nent	Octet 2 Expo- nent Fraction	Octet 3 Fraction	Octet 4 Fraction	Octet 5 Fraction	Octet 1	Octet 2
READBA	ACK, Wert (Floating Poi	Status	POS_D Wert	POS_D Status	

Zyklische Datenübertragung

 Variante 4: Modul = "SP, CHECKBACK" 0xC3, 0x84, 0x82, 0x08, 0x05, 0x0A

Ausgangswerte (Output)

Byte 0 1		Byte 0 1 2		4			
Octet 1	Octet 2	Octet 3	Octet 4	Octet 5			
Sign	Exponent						
Exponent	Fraction	Fraction	Fraction	Fraction			
SP,	Status						

Eingangswerte (Input)

Byte 0	1	2	
Octet 1	Octet 2	Octet 3	
BACK[0]	BACK[1]	BACK[2]	

Variante 5: Modul = "SP, READBACK + POS_D + CHECKBACK"
 0xC7, 0x84, 0x89, 0x08, 0x05, 0x08, 0x05, 0x05, 0x05, 0x0A

Ausgangswerte (Input)

Byte 0	1	2	3	4	
Octet 1 Sign	Octet 2 Exponent	Octet 3	Octet 4	Octet 5	
Exponent	Exponent Fraction		ent Fraction Fraction Fraction		Fraction
SP,	Status				

Eingangswerte (Output)

Byte 0	1	2	3	4	5	6	7	8	9
Octet 1 Sign Exponent	Octet 2 Exponent Fraction	Octet 3	Octet 4 Fraction	Octet 5	Octet 1	Octet 2	Octet 1	Octet 2	Octet 3
READBACK, Wert (Floating Point, IEEE)			Status	POS_D Wert	POS_D Status	CHECK_ BACK[0]	CHECK_ BACK[1]	CHECK_ BACK[2]	

 Variante 6: Modul = "RCAS_IN, RCAS_OUT + CHECKBACK" 0xC5, 0x84, 0x87, 0x08, 0x05, 0x08, 0x05, 0x0A

Ausgangswerte (Output)

Byte 0 1		Syte 0 1 2 3		4			
Octet 1	Octet 2	Octet 3	Octet 4	Octet 5			
Sign	Exponent						
Exponent	Fraction	Fraction	Fraction	Fraction			
RCAS_	Status						

Eingangswerte (Input)

		<u> </u>					
Byte 0	1	2	3	4	5	6	7
Octet 1 Sign Exponent	Octet 2 Exponent Fraction	Octet 3 Fraction	Octet 4 Fraction	Octet 5 Fraction	Octet 1	Octet 2	Octet 1
RCAS_OUT, Wert (Floating Point, IEEE)				Status	CHECK_ BACK[0]	CHECK_ BACK[1]	CHECK_ BACK[2]

- Variante 7:

Modul = "SP + RCAS_IN, READBACK + RCAS_OUT + POS_D + CHECKBACK" 0xCB, 0x89, 0x8E, 0x08, 0x05, 0x08, 0x05, 0x08, 0x05, 0x08, 0x05, 0x05, 0x05, 0x05, 0x04

Ausgangswerte (Output)

Byte 0	1	2	3	4	5	6	7	8	9
Octet 1	Octet 2	Octet 3	Octet 4	Octet 5	Octet 1	Octet 2	Octet 3	Octet 4	Octet 5
Sign	Exponent				Sign	Exponent			
Exponent	Fraction	Fraction	Fraction	Fraction	Exponent	Fraction	Fraction	Fraction	Fraction
SP,	SP, Wert (Floating Point, IEEE) Status RCAS_IN, Wert (Floating Point, IEEE)			Status					

Eingangswerte (Input)

Byte 0	1	2	3	4	5	6	7	8	9
Octet 1 Sign	Octet 2 Exponent	Octet 3	Octet 4	Octet 5	Octet 1 Sign	Octet 2 Exponent	Octet 3	Octet 4	Octet 5
Exponent	Fraction	Fraction	Fraction	Fraction	Exponent	Fraction	Fraction	Fraction	Fraction
READBACK, Wert (Floating Point, IEEE)			Status	RCAS_OUT, Wert (Floating Point, IEEE)			Status		
Byte 10	11	12	13	14					
Octet 1	Octet 2	Octet 3	Octet 4	Octet 5					
POS_D Wert	POS_D Status	CHECK_ BACK[0]	CHECK_ BACK[1]	CHECK_ BACK[2]					

Zyklische Datenübertragung

Slot 2, 3

 Variante 1: Modul = "Discrete Input (DI)" 0x91

Eingangswerte (Input)

Byte 0	1
Octet 1	Octet 2
Value	State
DI_OUT	DI_OUT
Wert	Status

3.3 Einbindungshinweis für PCS7

Um die korrekte Funktion des Stellungsreglers an einer Siemens SIMATIC S7 sicherzustellen, sollten folgende Schritte bei der Einbindung befolgt werden:

- 1. Das Modul in Slot 1 kann über SFC 14 "DPRD_DAT" ausgelesen und z. B. einem Datenbaustein zugeordnet werden.
- 2. Vorhandene Module in Slot 2 und/oder Slot 3 sind über den MOVE-Befehl zuzuweisen, da eine Verwendung von SFC 14 hier nicht zulässig ist.

i Info

- Daten sind erst ab einer Länge von 3 bzw. 5 Byte als konsistent deklariert.
- Für Daten vom Typ BYTE, WORD und DWORD ist der MOVE-Befehl zu nutzen.
- Wenn der SFC 14 über mehrere Slots angewendet werden soll, ist die Datenlänge immer pro Slot zu betrachten!

3.4 Allgemeine Hinweise zur Inbetriebnahme des Stellungsreglers

Solange der Stellungsregler keinen gültigen Sollwert vom Leitsystem erhält (Status <0x80) bleibt er in der Sicherheitsstellung, erkennbar durch das blinkende S im Gerätedisplay (vgl. ► EB 8384-4). Erst wenn ein gültiger Sollwert (Status ≥0x80) parametriert wird, verlässt der Stellungsregler die Sicherheitsstellung und folgt dem Sollwert.

4 CHECKBACK - Gerätstatus

Für die zyklische Kommunikation kann jedes Bit einzeln per Klasse-2-Master ausgeblendet werden. Damit lässt sich aus den anstehenden Meldungen eine gezielte Auswahl treffen.

Byte	Bit	Name	Beschreibung			
0	0	CB_FAIL_SAFE	Sicherheitsstellung: Die Sicherheitsstellung wurde ausgelöst. Mögliche Ursachen: Vor-Ort-Bedienung, Aktivierung der Option SET_ FAIL_SAFE_POS oder Kommunikationsausfall	R		
	1	CB_REQ_LOC_OP	Betriebsart lokale Bedienung angefordert: Wird gesetzt, wenn die Initialisierungstaste der Vor-Ort-Bedienung betätigt wurde.			
	2	CB_LOCAL_OP	 Lokale Bedienung: Gerät wurde mit der Vor-Ort-Bedienung in den Mode MAN oder SAFE gesetzt. Gerät befindet sich im Selbsttest-Modus (Initialisierung, Nullpunktabgleich oder Diagnosefunktion aktiv). In diesem Fall wird zusätzlich das Bit CB_SELF-TEST gesetzt. 			
	3	CB_OVERRIDE	Ausfall der Betriebsspannung für das optional integrierte Magnetventil: Der Stellungsregler kann nicht arbeiten und geht, unabhängig vom Sollwert, in die vom Antrieb vorgegebene Sicherheitsstellung.			
	46	nicht benutzt				
	7	CB_TRAVE_TIME	Regelkreis gestört: Das Stellventil folgt nicht mehr in den tolerierbaren Zeiten der Regelgröße (vgl. Fehler- code 57 in ► EB 8384-4). Diese Meldung wird nach 10 Sekunden automatisch zurückgesetzt. Die Meldung CHECKBACK Byte 1 Bit 5 bleibt dagegen bis zur Quit- tierung anstehen.			
1	01	nicht benutzt				
	2	CB_UPDATE_EVENT	Änderung statischer Daten: Wird gesetzt, wenn Gerätedaten geändert wurden und bietet so die Kontrolle über (unbeabsichtigte/unautorisierte) Veränderungen der ursprünglich eingestellten Werte.	A		

CHECKBACK - Gerätstatus

Byte	Bit	Name	Beschreibung	
1	3	CB_SIMULATE	Simulationsmodus aktiv: Wird gesetzt, wenn der Simulationsmodus mindestens eines Funktionsblocks aktiv ist. Der Simulationsmodus des AO Function Block ermöglicht die Vorgabe der Regelgröße x. Der Simulationsmodus des DI Function Block ermöglicht die Vorgabe des diskreten Ausgangs.	R
	4	nicht benutzt		
	5	CB_CONTR_ERR	Regelkreis gestört: Das Stellventil folgt nicht mehr in den tolerierbaren Zeiten der Regelgröße (vgl. Fehler- code 57 in ► EB 8384-4). Der Fehler muss manuell zu- rückgesetzt werden.	R
	6	CB_CONTR_INACT	Stellungsregler inaktiv: Wird gesetzt, wenn sich das Gerät in der Betriebsart OUT OF SERVICE befindet oder der Ausgang des AO Function Block den Status "bad" aufweist.	R
	7	CB_SELFTEST	Gerät ist im Selbsttest-Modus: Wird gesetzt, wenn die Initialisierungsroutine, der Nullpunktabgleich oder ei- ne Diagnosefunktion der erweiterten Ventildiagnose EXPERTplus aktiv ist.	R
2	0	CB_TOT_VALVE_ TRAV	Grenzwert für absolutes Wegintegral überschritten: Der aktuelle Wert für das Wegintegral liegt über dem eingegebenen bzw. voreingestellten Grenzwert. Das Rücksetzen erfolgt über SELF_CALIB_CMD = 10 (Reset Total valve travel limit exceeded).	R
	1	CB_ADD_INPUT	Status des zweiten optional integrierten Binäreingangs: Die Verwendung des zweiten Binäreingangs muss mit CONFIG_BINARY_ INPUT2 entsprechend konfiguriert werden.	R
	26	nicht benutzt		
	7	CB_ZERO_POINT_ ERROR	Nullpunktlage fehlerhaft (vgl. Fehlercode 58 in EB 8384-4)	R

R Statische Meldung, bleibt bestehen, solange das Ereignis vorliegt

A Dynamische Meldung, wird nach 10 Sekunden automatisch zurückgesetzt

5.1 Erweiterte Diagnose EXPERTplus

Der Stellungsregler Typ 3730-4 enthält ein integriertes Diagnosekonzept. Nach dem Profibus Profil 3.01 und der Erweiterung "Condensed Status and diagnostic messages" können die generierten Meldungen klassifiziert und verdichtet werden (vgl. Kap. 5.5).

Die erweiterte Diagnose EXPERTplus bietet nachfolgende Online- und Offline-Testfunktionen, die weitergehende Aussagen über den Zustand des kompletten Stellventiles ermöglichen.

Online-Testfunktionen (Beobachterfunktionen)

- Datenlogger
- Histogramme
- Zyklenzähler
- Endlagentrend
- y = f(x)-Diagramm (Stellsignal)
- Hysteresetest

Offline-Testfunktionen (Handfunktionen)

- -y = f(x)-Diagramm über den kompletten Ventilstellbereich
- Hysteresetest über den kompletten Ventilstellbereich
- Statische Kennlinie
- Teilhubtest (PST)

Die Diagnosetests sind komplett im Stellungsregler integriert, eine Parametrierung und ein Auslesen der Testergebnisse ist über PROFIBUS-PA gegeben. Die grafische Darstellung ist vom jeweiligen Leitsystem abhängig.

Aus den umfangreichen Informationen der Diagnosetests von EXPERTplus werden weitere Statusmeldungen generiert, welche dem Anwender Informationen über das komplette Stellventil liefern.

Die benötigten Referenzkurven werden automatisch nach der Initialisierung aufgezeichnet und im Stellungsregler gespeichert, wenn die automatische Aufzeichnung mit Code 48 - h0 aktiviert ist.

5.2 Klassifikation der Statusmeldungen und Sammelstatus

i Info

Die nachfolgende Beschreibung gilt nur für Stellungsregler, die entsprechend dem Profil 3.01 mit der Erweiterung "Condensed status and diagnostic messages" konfiguriert sind (einstellbar im Parameter COND_STATUS_ DIAG des Physical Blocks).

Die Meldungen werden im Stellungsregler mit einem Status klassifiziert, d. h., wenn eine Meldung auftritt wird ihr ein entsprechender Status zugeordnet. Die Klassifizierung der Stati ist modifizierbar.

Um eine bessere Übersicht zu gewährleisten, ist der Zustand des Stellungsreglers zu einem Sammelstatus (condensed state) zusammengefasst. Dieser Sammelstatus ergibt sich aus der Verdichtung aller Statusmeldungen.

Ist einem Ereignis die Klassifizierung "Keine Meldung" zugeordnet, dann hat dieses Ereignis keinen Einfluss auf den Sammelstatus des Geräts. Ist für eine anstehende Diagnosemeldung die Klassifizierung "Keine Meldung" getroffen worden, wird diese Meldung nicht im dem Diagnoseparameter kommuniziert. Um alle Diagnosemeldungen unabhängig von der getroffenen Klassifizierung auslesen zu können, werden diese im Parameter DIAGNOSIS_EXT_1_RAW und DIAGNOSIS_EXT_2_RAW eingetragen.

Es wird zwischen nachfolgenden Zuständen unterschieden (vgl. Bild 2):

- Ausfall: Gerät kann auf Grund einer Funktionsstörung im Gerät oder an seiner Peripherie seiner Aufgabenstellung nicht folgen oder hat noch keine erfolgreiche Initialisierung durchlaufen.
- Wartungsbedarf: Gerät kann seiner Aufgabenstellung noch (eingeschränkt) folgen, ein Wartungsbedarf bzw. überdurchschnittlicher Verschleiß wurde festgestellt. Der Abnutzungsvorrat ist bald erschöpft bzw. nimmt schneller ab als vorgesehen. Ein Wartungseingriff ist mittelfristig notwendig.
- Wartungsanforderung: Gerät kann seiner Aufgabenstellung noch (eingeschränkt) folgen, ein Wartungsbedarf bzw. überdurchschnittlicher Verschleiß wurde festgestellt. Der Abnutzungsvorrat ist bald erschöpft bzw. nimmt schneller ab als vorgesehen. Ein Wartungseingriff ist kurzfristig notwendig.
- Prozessbedingte Störung/Außerhalb der Spezifikation: Die aktuellen Prozessbedingungen erlauben keine gültigen Werteberechnungen.

 Funktionskontrolle: Am Gerät werden Test- und Abgleichprozeduren durchgeführt, das Gerät kann für die Dauer der Prozedur seiner Aufgabenstellung vorübergehend nicht folgen.

Der Sammelstatus wird im Engineering Tool und im Display des Stellungsreglers angezeigt (vgl. Tabelle unten).

Sammelstatus

Statusmeldung	Engineering Tool/ TROVIS-VIEW (ab Version 3.40)	Anzeige Gerät
Keine Meldung, ok	grün	
Funktionskontrolle	orange	tEsting, tunE oder tEst
Wartungsbedarf Wartungsanforderung	♦ blau	ß
Prozessbedingte Störung Außerhalb der Spezifikation	gelb	
Ausfall	⊗ rot	1

Statusmodifikation

Die Klassifizierung der Statusmeldungen kann mit Hilfe von TROVIS-VIEW über die lokale SSP-Schnittstelle oder über die PA-Parameter frei zugeordnet werden.

Alle erweiterten Meldungen von EXPERTplus haben als Defaulteinstellung den Status "Keine Meldung"

Protokollierung und Anzeige der Diagnosefunktionen/Meldungen

Die letzten 30 Meldungen werden im Stellungsregler protokolliert. Gleiche Meldungen werden nur bei ihrem ersten Auftreten in die Protokollierung aufgenommen.

Entsprechend der Codeliste (vgl. ► EB 8384-4) werden die Meldungen und der Sammelstatus im Display abgebildet. Zusätzlich stehen die Diagnoseparameter über die Kommunikationsschnittstelle des Stellungsreglers zur Verfügung. Eine komfortable Visualisierung und Parametrierung der Diagnosefunktionen ist mit TROVIS-VIEW über die lokale SSP-Schnittstelle oder über den PROFIBUS gegeben.

Mit Hilfe des Parameters COND_STATUS_DIAG im Physical Block kann ausgewählt werden, ob der Messwertstatus nach Profil 3.01 oder nach der Erweiterung Condensed Status kommuniziert wird.

5.3 Statusmeldungen nach Profil 3.01

Fehler-/Diagnosemeldung	Wert (hex)	Statusmeldung nach Profil 3.01
Betriebsfehler	·	
Gerät nicht initialisiert	0x1C	BAD_OUT_OF_SERVICE
Magnetventil aktiv	0x80	GOOD_NON_SPECIFIC
Wegintegral >	0xA4	GOOD_MAINT_REQ
Regelkreis Fehler	0x4A	GOOD_MAINT_REQ
Nullpunktfehler	0xA4	GOOD_MAINT_REQ
Autokorrektur	0x80	GOOD_NON_SPECIFIC
Fataler Fehler	0x0C	BAD_DEVICE_FAILURE
Notlaufeigenschaften	0xA4	GOOD_MAINT_REQ
Referenztest abgebrochen	0x80	GOOD_NON_SPECIFIC
Temperatur < -40 °C	0x80	GOOD_NON_SPECIFIC
Temperatur > 80 °C	0x80	GOOD_NON_SPECIFIC
Initialisierungsfehler		
x > Bereich	0x80	GOOD_NON_SPECIFIC
Delta x < Bereich	0x80	GOOD_NON_SPECIFIC
Mechanik Pneumatik – falscher Anbau	0x80	GOOD_NON_SPECIFIC
Init-Zeit >	0x80	GOOD_NON_SPECIFIC
MGV	0x80	GOOD_NON_SPECIFIC
Laufzeit <	0x80	GOOD_NON_SPECIFIC
Stift-Position	0x80	GOOD_NON_SPECIFIC
Initialisierung läuft	0x80	GOOD_NON_SPECIFIC
Hardwarefehler		
x-Signal	0x0C	BAD_DEVICE_FAILURE
i/p-Wandler	0x0C	BAD_DEVICE_FAILURE
Hardware	0x0C	BAD_DEVICE_FAILURE
Datenspeicher	0xA4	GOOD_MAINT_REQ
Kontrollrechnung	0x0C	BAD_DEVICE_FAILURE
Softwareinfarkt – Progr. Ladefehler	0x0C	BAD_DEVICE_FAILURE
Datenfehler		
Regelparameter	0xA4	GOOD_MAINT_REQ

Fehler-/Diagnosemeldung	Wert (hex)	Statusmeldung nach Profil 3.01
Poti Parameter	0xA4	GOOD_MAINT_REQ
Abgleichsfehler	0xA4	GOOD_MAINT_REQ
Interner Gerätefehler	0x0C	BAD_DEVICE_FAILURE
Allgemeine Parameter	0xA4	GOOD_MAINT_REQ
Parameter Optionen	0xA4	GOOD_MAINT_REQ
Info Parameter	0xA4	GOOD_MAINT_REQ
PA Parameter	0xA4	GOOD_MAINT_REQ
Diagnose Parameter	0xA4	GOOD_MAINT_REQ
Erweiterte Diagnose – EXPERTplus		
Air Supply – Zuluftdruck		
Perhaps modified TEST – evtl. verändert TEST	0x80	GOOD_NON_SPECIFIC
Perhaps not enough TEST – evtl. nicht ausreichend TEST	0x80	GOOD_NON_SPECIFIC
Perhaps not enough – evtl. nicht ausreichend	0x80	GOOD_NON_SPECIFIC
Working at full capacity – stark ausgelastet	0x80	GOOD_NON_SPECIFIC
Working at full capacity TEST – stark ausgelastet TEST	0x80	GOOD_NON_SPECIFIC
Perhaps modified – evtl. verändert	0x80	GOOD_NON_SPECIFIC
Actuator spring – Antriebsfedern		
Perhaps spring stiffness reduced TEST – evtl. Federsteifig- keit reduziert TEST	0x80	GOOD_NON_SPECIFIC
Perhaps bias reduced TEST – evtl. Vorspannung reduziert TEST	0x80	GOOD_NON_SPECIFIC
Perhaps bias increased TEST – evtl. Vorspannung erhöht TEST	0x80	GOOD_NON_SPECIFIC
Working at full capacity – stark ausgelastet	0x80	GOOD_NON_SPECIFIC
Working at full capacity TEST – stark ausgelastet TEST	0x80	GOOD_NON_SPECIFIC
Shifting working range – Trend Stellbereich	,	,
Shifting working range close – Arbeitsbereichsverschiebung Schließstellung	0x80	GOOD_NON_SPECIFIC
Shifting working range open – Arbeitsbereichsverschiebung max. Öffnung	0x80	GOOD_NON_SPECIFIC
Friction – Reibung		
Much higher over whole range – über ganzen Stellbereich deutlich niedriger	0x80	GOOD_NON_SPECIFIC

Fehler-/Diagnosemeldung	Wert (hex)	Statusmeldung nach Profil 3.01
Much lower over whole range – über ganzen Stellbereich deutlich niedriger	0x80	GOOD_NON_SPECIFIC
Much higher over partition – über Teilbereich deutlich höher	0x80	GOOD_NON_SPECIFIC
Much lower over partition – über Teilbereich deutlich niedriger	0x80	GOOD_NON_SPECIFIC
Much higher over whole range TEST – über ganzen Stellbereich deutlich höher TEST	0x80	GOOD_NON_SPECIFIC
Much lower over whole range TEST – über ganzen Stellbereich deutlich niedriger TEST	0x80	GOOD_NON_SPECIFIC
Much higher over partition TEST – über Teilbereich deutlich höher TEST	0x80	GOOD_NON_SPECIFIC
Much lower over partition TEST – über Teilbereich deutlich niedriger TEST	0x80	GOOD_NON_SPECIFIC
Leakage pneumatic – Leckage Pneumatik		
Perhaps existing TEST – evtl. vorhanden TEST	0x80	GOOD_NON_SPECIFIC
Perhaps existing – evtl. vorhanden	0x80	GOOD_NON_SPECIFIC
Perhaps too large TEST – evtl. zu groß TEST	0x80	GOOD_NON_SPECIFIC
Perhaps too large – evtl. zu groß	0x80	GOOD_NON_SPECIFIC
Limit range – Beschränkung Stellbereich		
Down - nach unten	0x80	GOOD_NON_SPECIFIC
Up – nach oben	0x80	GOOD_NON_SPECIFIC
Modification impossible – keine Änderung möglich	0x80	GOOD_NON_SPECIFIC
Dynamic stress factor – Begrenzungsfaktor		
Belastungsfaktor > 90 %	0x80	GOOD_NON_SPECIFIC
Inner leakage – innere Leckage		
Perhaps existing – evtl. vorhanden	0x80	GOOD_NON_SPECIFIC
Perhaps larger than origin TEST – größer als im Neuzustand TEST	0x80	GOOD_NON_SPECIFIC
Perhaps larger than origin – größer als im Neuzustand	0x80	GOOD_NON_SPECIFIC
External leakage – externe Leckage		
Perhaps soon expected – evtl. bald zu erwarten	0x80	GOOD_NON_SPECIFIC
Perhaps existing – evtl. vorhanden	0x80	GOOD_NON_SPECIFIC
existing – vorhanden	0x80	GOOD_NON_SPECIFIC

Fehler-/Diagnosemeldung	Wert (hex)	Statusmeldung nach Profil 3.01		
Observing end position – Trend Endlage				
ZP-shift monotone down aver. over ref – Nullpunktverschiebung monoton unten, Mittelwert oberhalb der Referenzgeraden	0x80	GOOD_NON_SPECIFIC		
ZP-shift monotone up aver. over ref. – Nullpunktverschiebung monoton oben, Mittelwert oberhalb der Referenzgeraden				
ZP-shift alternate aver. over ref. – Nullpunkt alternierend, Mittelwert oberhalb der Referenzgeraden	0x80	GOOD_NON_SPECIFIC		
ZP-shift monotone down aver. under ref. – Nullpunktver- schiebung monoton unten, Mittelwert unterhalb der Refe- renzgeraden	0x80	GOOD_NON_SPECIFIC		
ZP-shift monotone up aver. under ref. – Nullpunktverschiebung monoton oben, Mittelwert unterhalb der Referenzgeraden	0x80	GOOD_NON_SPECIFIC		
ZP-alternate aver. under ref. – Nullpunkt alternierend, Mit- telwert unterhalb der Referenzgeraden	0x80	GOOD_NON_SPECIFIC		
Connection positioner valve - Verbindung Stellungsregler/	Stellventil			
No opt. travel transm. TEST – keine optimale Hubübertragung TEST	0x80	GOOD_NON_SPECIFIC		
Perhaps loose – evtl. lose	0x80	GOOD_NON_SPECIFIC		
Perhaps limit. range – evtl. Einschränkung Stellbereich	0x80	GOOD_NON_SPECIFIC		
Perhaps loose TEST – evtl. lose TEST	0x80	GOOD_NON_SPECIFIC		
Range – Stellbereich				
Mostly near closing pos. – vorwiegend nahe Schließstellung	0x80	GOOD_NON_SPECIFIC		
Mostly near max. opening – vorwiegend nahe max. Öffnung	0x80	GOOD_NON_SPECIFIC		
Mostly closing pos. – vorwiegend Schließstellung	0x80	GOOD_NON_SPECIFIC		
Mostly max. opening – vorwiegend max. Öffnung	0x80	GOOD_NON_SPECIFIC		
Temperature error – Fehler Temperaturüberwachung		<u> </u>		
Lower limit exceeded – untere Grenze erreicht	0x80	GOOD_NON_SPECIFIC		
Higher limit exceeded – obere Grenze erreicht	0x80	GOOD_NON_SPECIFIC		
Referenzlauf				
Referenztest abgebrochen	0x80	GOOD_NON_SPECIFIC		

Fehler-/Diagnosemeldung	Wert (hex)	Statusmeldung nach Profil 3.01
ESD		
Movement actuator possible – Antriebsbewegung möglich –> Maskierung überflüssig	0x80	GOOD_NON_SPECIFIC
Movement actuator impossible – Antriebsbewegung nicht möglich	0x80	GOOD_NON_SPECIFIC
Error solenoid valve – Fehler Magnetventil	0x80	GOOD_NON_SPECIFIC
Funktion aktiv		
Initialisierung aktiv	0x80	GOOD_NON_SPECIFIC
Diagnosefunktion aktiv	0x80	GOOD_NON_SPECIFIC

5.4 Statusmeldungen nach Profil 3.01 Condensed Status

		Defaulteinstellung nach Pro-	klassiti	zierbar	
Fehler-/Diagnosemeldung		fil 3.01 Condensed Status		nein	Diagnosis
Betriebsfehler					
Gerät nicht initialisiert	0x24	BAD_MAINT_ALARM		•	DIA_INIT_ERR
Magnetventil aktiv	0x80	GOOD_NON_SPECIFIC	•		_
Wegintegral >	0xA4	GOOD_MAINT_REQ	•		DIA_MAINTENANCE
Regelkreis Fehler	0xA4	GOOD_MAINT_REQ	•		DIA_MAINTENANCE
Nullpunktfehler	0xA4	GOOD_MAINT_REQ	•		DIA_ZERO_ERR
Autokorrektur	0x80	GOOD_NON_SPECIFIC	•		DIA_MAINTENANCE DIA_MEM_CHECKSUM
Fataler Fehler	0x24	BAD_MAINT_ALARM		•	DIA_HW_ELECTR
Erweiterte Diagnose verfügbar	0x80	GOOD_NON_SPECIFIC		•	DIA_MAINTENANCE EXTENSION_AVAILABLE
Notlaufeigenschaften	0xA4	GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM
Temperatur < -40 °C	0x80	GOOD_NON_SPECIFIC	•		_
Temperatur > 80 °C	0x80	GOOD_NON_SPECIFIC	•		_
Initialisierungsfehler					
x > Bereich	0xA4	GOOD_MAINT_REQ	•		DIA_INIT_ERR
Delta x < Bereich	0xA4	GOOD_MAINT_REQ	•		DIA_INIT_ERR
Mechanik Pneumatik – falscher Anbau	0xA4	GOOD_MAINT_REQ	•		DIA_INIT_ERR
Init-Zeit >	0xA4	GOOD_MAINT_REQ	•		DIA_INIT_ERR

		Defaulteinstellung nach Pro-	klassifi	izierbar		
Fehler-/Diagnosemeldung		fil 3.01 Condensed Status	ja	nein	Diagnosis	
MGV	0xA4	GOOD_MAINT_REQ	•		DIA_INIT_ERR	
Laufzeit <	0xA4	GOOD_MAINT_REQ	•		DIA_INIT_ERR	
Stift-Position	0xA4	GOOD_MAINT_REQ	•		DIA_INIT_ERR	
Initialisierung läuft	0xA4	GOOD_MAINT_REQ	•		-	
Hardwarefehler						
x-Signal	0xA8	GOOD_MAIN_DEMANDED	•		DIA_MEASUREMENT	
i/p-Wandler	0x24	BAD_MAINT_ALARM		•	DIA_HW_ELECTR	
Hardware	0x24	BAD_MAINT_ALARM		•	DIA_HW_ELECTR	
Datenspeicher	0xA4	GOOD_MAINT_REQ		•	DIA_MEM_CHECKSUM	
Kontrollrechnung	0x24	BAD_MAINT_ALARM		•	DIA_MEM_CHECKSUM	
Softwareinfarkt – Progr. Ladefehler	0x24	BAD_MAINT_ALARM		•	DIA_MEM_CHECKSUM	
Datenfehler				·		
Regelparameter	0xA4	GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM	
Poti Parameter	0xA4	GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM	
Abgleichsfehler	0xA4	GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM	
Interner Gerätefehler	0xA4	GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM	
Allgemeine Parameter	0xA4	GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM	
Parameter Optionen	0xA4	GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM	
Info Parameter	0xA4	GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM	
PA Parameter	0xA4	GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM	
Diagnose Parameter	0xA4	GOOD_MAINT_REQ	•		DIA_MEM_CHECKSUM	
Erweiterte Diagnose EXPERTplus						
Air supply – Zuluftdruck						
Perhaps modified TEST – evtl. ver- ändert TEST	0x80	GOOD_NON_SPECIFIC	•		-	
Perhaps not enough TEST – evtl. nicht ausreichend TEST	0×80	GOOD_NON_SPECIFIC	•		-	
Perhaps not enough – evtl. nicht ausreichend	0x80	GOOD_NON_SPECIFIC	•		-	
Working at full capacity – stark ausgelastet	0x80	GOOD_NON_SPECIFIC	•		-	

		Defaulteinstellung nach Pro-	klassifi	zierbar	
Fehler-/Diagnosemeldung		fil 3.01 Condensed Status	ja	nein	Diagnosis
Working at full capacity TEST – stark ausgelastet TEST	0x80	GOOD_NON_SPECIFIC	•		_
Perhaps modified – evtl. verändert	0x80	GOOD_NON_SPECIFIC	•		-
Actuator spring – Antriebsfedern					
Perhaps spring stiffness reduced TEST – evtl. Federsteifigkeit redu- ziert TEST		GOOD_NON_SPECIFIC	•		_
Perhaps bias reduced TEST – evtl. Vorspannung reduziert TEST	0x80	GOOD_NON_SPECIFIC	•		-
Perhaps bias increased TEST – evtl. Vorspannung erhöht TEST	0x80	GOOD_NON_SPECIFIC	•		-
Working at full capacity – stark ausgelastet	0x80	GOOD_NON_SPECIFIC	•		_
Working at full capacity TEST – stark ausgelastet TEST	0x80	GOOD_NON_SPECIFIC	•		-
Shifting working range – Trend St	ellbereic	h			
Shifting working range close – Arbeitsbereichsverschiebung Schließstellung	0x80	GOOD_NON_SPECIFIC	•		_
Shifting working range open – Arbeitsbereichsverschiebung max. Öffnung	0x80	GOOD_NON_SPECIFIC	•		_
Friction - Reibung					
Much higher over whole range – über ganzen Stellbereich deutlich höher	0x80	GOOD_NON_SPECIFIC	•		_
Much lower over whole range – über ganzen Stellbereich deutlich niedriger	0x80	GOOD_NON_SPECIFIC	•		-
Much higher over partition – über Teilbereich deutlich höher	0x80	GOOD_NON_SPECIFIC	•		_
Much lower over partition – über Teilbereich deutlich niedriger	0×80	GOOD_NON_SPECIFIC	•		-
Much higher over whole range TEST – über ganzen Stellbereich deutlich höher TEST	0x80	GOOD_NON_SPECIFIC	•		_

		Defaulteinstellung nach Pro-	klassifi	zierbar	
Fehler-/Diagnosemeldung		fil 3.01 Condensed Status	ja	nein	Diagnosis
Much lower over whole range TEST – über ganzen Stellbereich deutlich niedriger TEST	0×80	GOOD_NON_SPECIFIC	•		-
Much higher over partition TEST – über Teilbereich deutlich höher TEST	0x80	GOOD_NON_SPECIFIC	•		-
Much lower over partition TEST – über Teilbereich deutlich niedri- ger TEST	0x80	GOOD_NON_SPECIFIC	•		_
Leakage pneuatic – Leckage Pneu	matik				
Perhaps existing TEST – evtl. vor- handen TEST	0x80	GOOD_NON_SPECIFIC	•		_
Perhaps existing – evtl. vorhanden	0x80	GOOD_NON_SPECIFIC	•		-
Perhaps too large TEST – evtl. zu groß TEST	0x80	GOOD_NON_SPECIFIC	•		-
Perhaps too large – evtl. zu groß	0x80	GOOD_NON_SPECIFIC	•		-
Limit range – Beschränkung Stellb	ereich				
Down – nach unten	0x80	GOOD_NON_SPECIFIC	•		-
Up – nach oben	0x80	GOOD_NON_SPECIFIC	•		-
Modification impossible – keine Änderung möglich	0x80	GOOD_NON_SPECIFIC			_
Dynamic stress factor- Belastungs	faktor				
Belastungsfaktor > 90 %	0x80	GOOD_NON_SPECIFIC	•		-
Inner leakage – innere Leckage					_
Perhaps existing – evtl. vorhan- den	0x80	GOOD_NON_SPECIFIC	•		_
Perhaps larger than origin TEST – größer als im Neuzustand TEST	0x80	GOOD_NON_SPECIFIC	•		_
Perhaps larger than origin – größer als im Neuzustand	0x80	GOOD_NON_SPECIFIC	•		-
External leakage – externe Leckaç	је				
Perhaps soon expected – evtl. bald zu erwarten	0x80	GOOD_NON_SPECIFIC	•		-
Perhaps existing – evtl. vorhanden	0x80	GOOD_NON_SPECIFIC	•		_

			klassifi	zierbar	
Fehler-/Diagnosemeldung		Defaulteinstellung nach Pro- fil 3.01 Condensed Status	ja	nein	Diagnosis
existing – vorhanden	0x80	GOOD_NON_SPECIFIC	•		-
Observing end position - Trend En	ndlage				
ZP-shift monotone down aver. over ref – Nullpunktverschiebung monoton unten, Mittelwert ober- halb der Referenzgeraden	0x80	GOOD_NON_SPECIFC	•		_
ZP-shift monotone up aver. over ref – Nullpunktverschiebung mo- noton oben, Mittelwert oberhalb der Referenzgeraden	0x80	GOOD_NON_SPECIFIC	•		-
ZP-shift alternate aver. over ref. – Nullpunkt alternierend, Mittelwert oberhalb der Referenzgeraden	0x80	GOOD_NON_SPECIFIC	•		_
ZP-shift monotone down aver. under ref. – Nullpunktverschiebung monoton unten, Mittelwert unterhalb der Referenzgeraden	0x80	GOOD_NON_SPECIFIC	•		-
ZP-shift monotone up aver. under ref. – Nullpunktverschiebung mo- noton oben, Mittelwert unterhalb der Referenzgeraden	0x80	GOOD_NON_SPECIFIC	•		-
ZP-alternate aver. under ref. –			•		-
Nullpunkt alternierend, Mittelwert unterhalb der Referenzgeraden	0x80	GOOD_NON_SPECIFIC	•		_
Connection positioner valve – Ver	bindung	Stellungsregler/Stellventil			
No opt. travel transm. TEST – kei- ne optimale Hubübertragung TEST	0x80	GOOD_NON_SPECIFIC	•		_
Perhaps loose – evtl. lose	0x80	GOOD_NON_SPECIFIC	•		_
Perhaps limit. range – evtl. Ein- schränkung Stellbereich	0x80	GOOD_NON_SPECIFIC			_
Perhaps loose TEST – evtl. lose TEST	0x80	GOOD_NON_SPECIFIC	•		-
Range – Stellbereich					
Mostly near closing pos. – vor- wiegend nahe Schließstellung	0x80	GOOD_NON_SPECIFIC	•		-
Mostly near max. opening – vorwiegend nahe max. Öffnung	0x80	GOOD_NON_SPECIFIC	•		_

		Defaulteinstellung nach Pro-	klassifi	zierbar	
Fehler-/Diagnosemeldung		fil 3.01 Condensed Status	jα	nein	Diagnosis
Mostly closing pos. – vorwiegend Schließstellung	0x80	GOOD_NON_SPECIFIC	•		_
Mostly max. opening – vorwiegend max. Öffnung	0x80	GOOD_NON_SPECIFIC	•		_
Temperature error – Fehler Tempe	raturübe	rwachung			
Lower limit exceeded – untere Grenze erreicht	0x80	GOOD_NON_SPECIFIC	•		_
Higher limit exceeded – obere Grenze erreicht			•		-
Referenzlauf					
Referenztest abgebrochen	0x80	GOOD_NON_SPECIFIC	•		-
ESD					
Movement actuator possible – Antriebsbewegung möglich –> Maskierung überflüssig	0x80	GOOD_NON_SPECIFIC	•		_
Movement actuator impossible – Antriebsbewegung nicht möglich	0x80	GOOD_NON_SPECIFIC	•		-
Error solenoid valve – Fehler Magnetventil	0x80	GOOD_NON_SPECIFIC	•		-
Funktion aktiv					
Initialisierung aktiv	0xBC	GOOD_NON_SPECIFIC	• 1)		-
Diagnosefunktion aktiv	0xBC	GOOD_NON_SPECIFIC	• 1)		_

¹⁾ Kann ab Firmware K 1.10 zwischen GOOD_FUNCTION_CHECK und BAD_FUNCTION_CHECK klassifiziert werden, vgl. Parameter FEATURE_SELECT, Seite 51.

5.5 Standarddiagnose nach PROFIBUS-DP

Nach dem Profibus Profil 3.01 und der Erweiterung "Condensed Status and diagnostic messages" können die generierten Meldungen klassifiziert und verdichtet werden.

Das Diagnose-Konzept nach PROFIBUS-DP sieht folgende Fälle der Diagnose-Übermittlung vor:

- Während des Aufbaus des zyklischen Datenaustausches liest der DP-Master Klasse 1 die Diagnose des DP-Slave.
- Im Fall einer aktiven Diagnosemeldung antwortet der Slave im aktuellen Datenaustausch mit einem hochprioren Antwort-Telegramm.

Der Master fordert daraufhin eine Diagnose an, um anschließend den normalen Datenaustausch fortzusetzen.

Die Diagnosemeldung setzt sich aus der Standard-Diagnose nach Profibus DP und der anwenderspezifischen Diagnose zusammen. Die ersten sechs Octet s der Diagnosemeldung stellen die Standard-Diagnose dar und geben im Wesentlichen eine Aussage über den Zustand der zyklischen Verbindung. Besondere Aufmerksamkeit gilt dabei dem Bit DIAG.ext (Octet 1). Durch dieses Bit signalisiert das Slave dem Master, dass die Ausgangsdaten nicht gültig sind. Der Master unterbricht daraufhin den zyklischen Datenverkehr, um die anstehenden Diagnosedaten auszulesen. Der Master geht erst in den zyklischen Datenverkehr über, wenn das Bit DIAG.ext vom Slave zurückgesetzt wird.

Ist das Bit DIAG.ext dagegen auf 0 gesetzt, werden die anstehenden Daten aus Systemsicht als Statusinformation behandelt. Im Fall des Stellungsreglers Typ 3730-4 kann dieses Verhalten durch den Parameter FEATURE_SELECT bestimmt werden. Durch Auswahl der Option

"DIA_MAINTENANCE_ALARM sets DIAG_EXT Bit" wird das Bit DIAG_EXT gesetzt, wenn das Bit DIA_MAINTENANCE_ALARM der Diagnose ermittelt wurde. Sollen dagegen alle Daten des Stellungsreglers als Statusinformationen verwendet werden, ist diese Option zu deaktivieren

Unter Verwendung des Profils 3.01 kann das Bit DIAG_EXT gesetzt werden, wenn der Messwertstatus mit BAD_DEVICE_FAILURE ermittelt wurde. Dies ist nur bei den nachfolgend aufgeführten Fehlern der Fall, die zum Ausfall des Geräts führen:

- Kontrollrechnung
- Fataler Fehler
- Programm Ladefehler
- Kein Produktionsabgleich
- Hardware
- i/p-Wandler

Unter Verwendung der Erweiterung "Condensed Status and diagnostic messages" kann die Zuordnung frei getroffen werden.

Bei den ersten vier Bytes der herstellerspezifischen Diagnose handelt es sich um die Diagnosemeldungen nach Profil 3.01. Unter Verwendung der Erweiterung "Condensed Status and diagnostic messages" werden in diesen Bytes auch die verdichteten Diagnosemeldungen kommuniziert. Die unten im Detail angegebenen herstellerspezifische Diagnose wird ab dem elften Byte übertragen. Dazu werden die Inhalte der beiden Parameter des Physical Block DIAGNOSIS und DIAGNOSIS EXT übermittelt.

Standard-Diagnose nach PROFIBUS-DP

Unabhängig davon, ob das Gerät nach Profil 3.01 oder herstellerspezifisch eingebunden wurde, kann die Diagnose auf 6 Byte beschränkt werden. Dazu bietet der Parameter FEA-TURE_SELECT die Option "DP Standard Diagnose (6 Byte) verwenden" (vgl. Seite 54). In der Defaulteinstellung liefert der Regler unter Verwendung der herstellerspezifischen Diagnose 26 Byte und nach Profil 3.01 14 Byte Diagnose.

Octet	Bit	Bedeutung	Anm.					
1	07							
2	07	andard Slave Diagnose						
3	07							
4	07	Standard Slave Diagnose						
5	07							
6	07							
7	07							
8	07	Definition der herstellersnezifischen Diggnosemeldungen						
9	07	Definition der herstellerspezifischen Diagnosemeldungen						
10	07							
11	0	DIA_HW_ELECTR (Hardwarefehler Elektronik)						
1 DIA_HW_MECH (Hardwarefehler Mechanik)		DIA_HW_MECH (Hardwarefehler Mechanik)						
	2	nicht verwendet						
	3	nicht verwendet						
	4	DIA_MEM_CHCKSUM (Datenspeicher Prüfsummenfehler)						
	5	DIA_MEASUREMENT (Fehler in Messwerterfassung)						
	6	DIA_NOT_INIT (Gerät nicht initialisiert/Selbstabgleich nicht durchgeführt)						
	7	DIA_INIT_ERR (Selbstabgleich fehlerhaft)						
12	0	DIA_ZERO_ERR (Nullpunktfehler, Endlage)						
	1	nicht verwendet						
	2	DIA_CONF_INVAL (Konfiguration nicht plausibel/ungültige Adresse)						
	3	DIA_WARMSTART (Wiederanlauf/Warmstart durchgeführt)						
	4	DIA_COLDSTART (Neustart/Kaltstart durchgeführt)						
	5	DIA_MAINTENANCE (Wartung erforderlich)	1					
	6	DIA_CHARACT (Kennlinie ungültig)						
	7	IDENT_NUMBER_VIOLATION (Gewählte IdentNr. wurde vom Gerät noch nicht umgesetzt)						

Octet	Bit	Bedeutung	Anm.				
13	0	DIA_MAINTENANCE_ALARM (Gerätefehler liegt vor)	1				
	1	DIA_MAINTENANCE_DEMANDED (Wartungsbedarf)	1				
	2	DIA_FUNCTION_CHECK (Gerät in Funktionsprüfung, in Simulation oder in MODE_LO)	1				
	3	DIA_INV_PRO_COND (Prozessbedingte Störung/Außerhalb der Spezifikation)	1				
	47	Nach Profil 3.01 reserviert					
14	06	Nach Profil 3.01 reserviert					
	7	EXTENSION_AVAILABLE (Weitere Diagnose-Informationen verfügbar)					
15³)	0	Device not initialized (Gerät nicht initialisiert)					
	1	Solenoid valve active (Magnetventil aktiv)					
	2	Tot. valve travel limit exceeded (GW Wegintegral, vgl. Code 24)					
	3	Control loop (Regelkreis Fehler, vgl. Code 57)					
	4	Zero point (Nullpunktfehler, vgl. Code 58)					
	5	Autocorrection (Autokorrektur, vgl. Code 59)					
	6	Fatal error (Fataler Fehler, vgl. Code 60)					
	7	Extended diagnosis (Erweiterte Diagnose verfügbar, nur mit EXPERT+)	2				
16 ³⁾	0	x > range (x > zulässiger Bereich, vgl. Code 50)					
	1	Delta x < range (Δx < zulässiger Bereich, vgl. Code 51)					
	2	Attachment (Anbau, vgl. Code 52)					
	3	Initialization time exceeded (Init-Zeit >, vgl. Code 53)					
	4	Initialization/solenoid valve (Init - MGV, vgl. Code 54)					
	5	Travel time too short (Laufzeit <, vgl. Code 55)					
	6	Pin position (Stiftposition, vgl. Code 56)					
	7	Test or calibration running (Test oder Abgleich läuft)					
173)	0	x-signal (x-Signal, vgl. Code 62)					
	1	i/p-converter (i/p-Wandler, vgl. Code 64)					
	2	Hardware (vgl. Code 65)					
	3	Control parameter (Regelparameter, vgl. Code 68)					
	4	Poti parameter (Potiparameter, vgl. Code 69)					
	5	Adjustment parameter (Abgleich, vgl. Code 70)					
	6	Internal device error 1 (Interner Gerätefehler 1, vgl. Code 73)					
	7	General parameter (Allgemeine Parameter, vgl. Code 71)					

Octet	Bit	Bedeutung	Anm.
18 ³⁾	0	No emergency mode (Keine Notlaufeigenschaft, vgl. Code 76)	
	1	Program load error (Programmladefehler, vgl. Code 77)	
	2	Options parameter (Optionsparameter, vgl. Code 78)	
	3	Info parameter (Info-Parameter, vgl. Code 75)	
	4	Data memory (Datenspeicher, vgl. Code 66)	
	5	Control calculation (Kontrollrechnung, vgl. Code 67)	
	6	PA parameter (PA Parameter, vgl. Code 74)	
	7	DIAG parameter (Diagnoseparameter, vgl. Code 80)	
19³)	0	Reset communication controller (Rücksetzung: Kommunikationscontroller)	
	1	Reset comm HW interface (Rücksetzung: Fehlermeldung Busanschaltung)	
	2	Bin Input 2 deactivated (Bin 2 deaktiviert)	
	3	Reset application controller (Rücksetzung: Regelungscontroller)	
	47	Nicht verwendet	
20 3)	0	Air supply: modified TEST (Zuluft: verändert TEST)	2
	1	Air supply: not enough TEST (Zuluft: nicht ausreichend TEST)	2
	2	Air supply: not enough (Zuluft: nicht ausreichend)	2
	3	Air supply: at full capacity (Zuluft: stark ausgelastet)	2
	4	Air supply: at full cap. TEST (Zuluft: stark ausgelastet TEST)	2
	5	Air supply: modified (Zuluft: verändert)	2
	6	Act. Spring: stiffness red. TEST (Antriebsfedern: Federsteifigkeit reduziert TEST)	2
	7	Act. Spring: bias reduced TEST (Antriebsfedern: Vorspannung reduziert TEST)	2
21 3)	0	Act. Spring: bias increased TEST (Antriebsfedern: Vorspannung erhöht TEST)	2
	1	Act. Spring: at full cap. (Antriebsfedern: stark ausgelastet)	2
	2	Act Spring: at full cap. TEST (Antriebsfedern: stark ausgelastet TEST)	2
	3	Shifting working range: close (Arbeitsbereichsverschiebung: Schließstellung)	2
	4	Shifting working range: open (Arbeitsbereichsverschiebung: max. Öffnung)	2
	5	Fric.: higher over whole range (Reibung: über ganzen Stellbereich höher)	2
	6	Fric.: lower over whole range (Reibung: über ganzen Stellbereich niedriger)	2
	7	Fric.: higher over part. (Reibung: über Teilbereich höher)	2
22 3)	0	Fric.: lower over part. (Reibung: über Teilbereich niedriger)	2
	1	Fric.: higher whole range TEST (Reibung: über ganzen Stellbereich höher TEST)	2
	2	Fric.: lower whole range TEST (Reibung: über ganzen Stellbereich niedriger TEST)	2

Octet	Bit	Bedeutung	Anm.
22 ³⁾	3	Fric.: higher over part. TEST (Reibung: über Teilbereich höher TEST)	2
	4	Fric.: lower over part. TEST (Reibung: über Teilbereich niedriger TEST)	2
	5	Leak pneum: existing TEST (Leckage Pneumatik: vorhanden TEST)	2
	6	Leak pneum: existing (Leckage Pneumatik: vorhanden)	2
	7	Leak pneum: too large TEST (Leckage Pneumatik: zu groß TEST)	2
23 3)	0	Leak pneum: too large (Leckage Pneumatik: zu groß)	2
	1	Limit range: Down (Beschränkung Stellbereich: nach unten)	2
	2	Limit range: Up (Beschränkung Stellbereich: nach oben)	2
	3	Limit range: Mod. imposs. (Beschränkung Stellbereich: keine Änderung möglich)	2
	4	Dyn. stress factor > than 90% (Dynamischer Bealstungsfaktor > 90 %)	2
	5	Inner leak.: > origin (Innere Leckage: größer als im Neuzustand)	2
	6	Inner leak.: > origin TEST (Innere Leckage: größer als im Neuzustand TEST)	2
	7	Inner leak.: Perhaps present (Innere Leckage: evtl. vorhanden)	2
24 ³⁾	0	Ext. leakage: Perhaps soon expected (Externe Leckage: evtl. bald zu erwarten)	2
	1	Ext. leakage: Perhaps existing (Externe Leckage: evtl. vorhanden)	2
	2	Ext. leakage: existing (Externe Leckage: vorhanden)	2
	3	Zp monotone down, aver. over ref (Nullpunktverschiebung monoton unten, Mittelwert oberhalb der Referenzgeraden)	2
	4	Zp monotone up, aver. over ref (Nullpunktverschiebung monoton oben, Mittelwert oberhalb der Referenzgeraden)	2
	5	Zp alternating, aver. over ref (Nullpunkt alternierend, Mittelwert oberhalb der Referenzgeraden)	2
	6	Zp monotone down, aver under ref (Nullpunktverschiebung monoton unten, Mittelwert unterhalb der Referenzgeraden)	2
	7	Zp monotone up, aver. under ref (Null punktverschiebung monoton oben, Mittelwert unterhalb der Referenzgeraden)	2
25 ³⁾	0	Zp alternating, aver under ref (Nullpunkt alternierend, Mittelwert unterhalb der Referenzgeraden)	2
	1	Attachment no opt. travel transm (Mechanische Verbindung Regler/Ventil: keine optimale Hubübertragung)	2
	2	Attachment perhaps loose (Mechanische Verbindung Regler/Ventil: evtl. lose)	2
	3	Attachment perhaps limit. range (Mechanische Verbindung Regler/Ventil: evtl. Einschränkung Stellbereich)	2
	4	Attachment perhaps loose TEST (Mechanische Verbindung Regler/Ventil: evtl. lose TEST)	2

Azyklische Datenübertragung

Octet	Bit	Bedeutung	Anm.
25 ³⁾	5	Range: mostly near closing pos. (Stellbereich: vorwiegend nahe Schließstellung)	2
	6	Range: mostly near max. opening (Stellbereich: vorwiegend nahe max. Öffnung)	2
	7	Range: mostly closing position (Stellbereich: vorwiegend Schließstellung)	2
26 3)	0	Range: mostly max. opening (Stellbereich: vorwiegend max. Öffnung)	2
	1	Temperature exceeding (Temperatur überschritten)	2
	2	Temperature above +80°C (Temperatur über 80°C)	2
	3	Reference test aborted (Referenztest abgebrochen)	2
	4	PST: Movement actuator poss. (Teilhubtest (PST): Antriebsbewegung möglich)	2
	5	PST: Movement actuator imposs. (Teilhubtest (PST): Antriebsbewegung nicht möglich)	2
	6	PST: Error solenoid valve (Teilhubtest (PST): Fehler Magnetventil)	2
	7	nicht verwendet	2

Nur unter Verwendung der Profil-Erweiterung "Condensed Status und diagnostic messages". Die folgenden Diagnosemeldungen geben den Sammelstatus (vgl. Kap. 5.2) wieder:

DIA_MAINTENANCE_ALARM: Ausfall

DIA_MAINTENANCE_DEMAND: Wartungsanforderung DIA_MAINTENANCE: Wartungsbedarf DIA_FUNCTION_CHECK: Funktionskontrolle

DIA_INV_PRO_COND: Prozessbedingte Störung/Außerhalb der Spezifikation

Diagnosemeldung der erweiterten Diagnose EXPERTplus

3 In der Defaulteinstellung liefert der Regler unter Verwendung der herstellerspezifischen Diagnose 26 Byte und nach Profil 3.01 14 Byte Diagnose

6 Azyklische Datenübertragung

i Info

Alle Parameter in der Parameterliste ab Seite 36, die nicht gekennzeichnet sind, werden azyklisch übertragen.

Der azyklische Datenaustausch nach DP-V1 mit einem Master Klasse 2 (MS2) dient vorwiegend der Inbetriebnahme, Parametrierung und zu Diagnosezwecken.

Zur Parametrierung des Stellungsreglers Typ 3730-4 mittels Siemens PDM (Process Device Manager) kann die Device Description von der SAMSON-Website (www.samsongroup.com) heruntergeladen werden. Je nach Firmwareversion ist für den Zugriff auf die Geräteparameter entsprechend nachfolgender Tabelle die jeweilige DD-Revision zu verwenden:

Kommunikationsfirmware	DD-Revision
K 1.00 bis K 1.10	1
K 1.11 bis K 1.17	2
ab K 2.00	3

7 Nutzung des Teilhubtests (PST) über DP-V0

Folgende Startmöglichkeiten des Teilhubtests (PST) stehen zur Verfügung:

Betriebsart	Testmodus PST	Start über Binäreingang	Start über Autotestzeit	Start über Sollwert
AUTO	PST MAN	•	_	• 1)
	PST AUTO	•	•	• 1)
MAN	PST MAN	•	_	_
	PST AUTO	•	•	_

Das Starten des Teilhubtests (PST) wird durch Vorgabe des SP mit Statuswert (9C hexadezimal) realisiert. Diese Funktion muss mittels Parameter FEATURE_SELECT freigeschaltet werden.

Die Auswertung des Teilhubtests (PST) kann per DI Funktionsblocks (Discrete Input) des Stellungsreglers erfolgen. Hierbei wird der diskreten Information eine der folgenden Meldungen zugeordnet:

- 0: Test fehlerhaft
- 1: Test OK
- 2: PST wurde nicht durchgeführt
- 3: Testauswertung fehlerhaft

Zur weiteren Auswertung kann der Sammelstatus mit dem zweiten DI Funktionsblock ausgewertet werden (vgl. Kap. 5.2).

Der Teilhubtest (PST) ist ausführlich in der Bedienungsanleitung "Ventildiagnose EXPERTplus"

EB 8389 beschrieben.

8 Parameterlisten

Legende

In den nachfolgenden Tabellen steht der Parameterindex in Klammern nach dem Parameternamen.

Speicherklasse:	S	Statischer Parameter (static)
	D	Dynamischer Parameter (Dynamic)
	N	Nicht flüchtiger Parameter (Non volatile)
Zugriff:	r	Lesezugriff
	w	Schreibzugriff
Zugang:	0	Betriebsart "Außer Betrieb" O/S
	М	Betriebsart "Manueller Eingriff" MAN
	Α	Betriebsart "Automatik" AUTO
	CAS	Betriebsart "Kaskade"
	RCAS	Betriebsart "Externe Kaskade"
	ALL	O/M/A/CAS/RCAS

i Info

- Mit * gekennzeichnete Parameter werden zyklisch übertragen; alle anderen Parameter werden azyklisch übertragen.
- Werte/Einstellungen in eckigen Klammern [] sind Defaultwerte (Werkseinstellung)
- Weiterführende Informationen zu Parametern, die ab dem Diagnoselevel EXPERTplus verfügbar sind, enthält die Bedienungsanleitung ► EB 8389.

8.1 Physical Block, Slot 0 · Profilspezifische Parameter

ALERT KEY (20)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Identifikationsnummer (ID-Nr.) Anlagenteil

ALM SUM (23)

Speicherklasse: -; Lesezugriff (r)

Aktueller Status der Prozessalarme im Physical Block

BLOCK OBJ (16)

Speicherklasse -; Lesezugriff (r)

COND STATUS DIAG (43)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Verwendung des Stellungsregler

- nach Profil 3.01 oder
- mit Condensed State

Eine Änderung ist im Zustand DATA_EXCHANGE (zykl. Verbindung) nicht zugelassen.

DESCRIPTOR (36)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Frei verfügbares Textfeld zur Beschreibung der Applikation, gespeichert im Feldgerät

max. 32 Zeichen, [ohne Text]

DEVICE CERTIFICATION (33)

Speicherklasse -; Lesezugriff (r)

Zertifizierung · Gibt an, ob für den Typ 3730-4 Ex-Zulassungen vorhanden sind.

DEVICE ID (27)

Speicherklasse -; Lesezugriff (r)

Typ-Nummer des Stellungsreglers

DEVICE INSTAL DATE (38)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang ALL

Datum der Installation des Stellungsreglers

DEVICE MAN ID (26)

Speicherklasse -; Lesezugriff (r)

Hersteller des Stellungsreglers

Parameterlisten · Physical Block, Slot 0 · Profilspezifische Parameter

DEVICE MESSAGE (37)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Frei verfügbarer Text (Nachricht), gespeichert im Feldgerät

• max. 32 Zeichen, [ohne Text]

DEVICE SER NUM (28)

Speicherklasse -; Lesezugriff (r)

Seriennummer des Stellungsreglers: Ermöglicht in Kombination mit DEVICE_MAN_ID und DEVICE_ID die eindeutige Identifizierung des Feldgeräts

DIAG_EVENT_SWITCH (44)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Klassifizierung der Diagnose- und Statusmeldungen

DIAGNOSIS (29)

Speicherklasse -; Lesezugriff (r)

Detaillierte Geräteinformationen, Bitweise codiert, daher mehrere Meldungen gleichzeitig möglich. Meldungen bleiben stehen, solange das Ereignis vorliegt (statische Meldungen) Bitwert: 0 = false · 1 = true

D. da	D:A	nach PA V3.01	Danaharihaan
Byte	Bit		Beschreibung Hardwarefehler Elektronik
0	0	DIA_HW_ELECTR	Hardwarefehler Mechanik
0	1	DIA_HW_MECH	Harawarerenier Mechanik
0	2	- DIA TEMP FLECTS	T . 1 Ell. 1 1 1
0		DIA_TEMP_ELECTR	Temperatur der Elektronik zu hoch
0	4	DIA_MEM_CHKSUM	Datenspeicher Prüfsummenfehler
0	5	DIA_MEASUREMENT	Fehler in Messwerterfassung
0	6	DIA_NOT_INIT	Gerät nicht initialisiert
0	7	DIA_INIT_ERR	Initialisierung fehlerhaft
1	0	DIA_ZERO_ERR	Nullpunktfehler (Endlage)
1	1	_	
1	2	DIA_CONF_INVAL	Konfiguration nicht plausibel/ungültige Ad-
			resse
1	3	DIA_WARMSTART	Wiederanlauf (Warmstart) durchgeführt
i	4	DIA COLDSTART	Neuanlauf (Kaltstart) durchgeführt
1	5	DIA MAINTENANCE	Wartung erforderlich
i	6	DIA_CHARACT	Kennlinie ungültig
i	7	IDENT_NUMBER_VIOLATION	Gewählte IdentNr. wurde vom Gerät noch
	,	IDEI11_110MDER_VIOLATIO11	nicht umgesetzt
2	0	DIA AAAINITENIANICE ALADAA	Gerätefehler
2	0	DIA_MAINTENANCE_ALARM	
2	1	DIA_MAINTENANCE_DEMANDED	Wartungsbedarf
2	2	DIA_FUNCTION_CHECK	Gerät in Funktionsprüfung/Simulation oder in
			MODE_LO
2	3	DIA_INV_PRO_COND	Aktuelle Prozesskonditionen erlauben keine
			gültige Werteberechnung
2	47	_	
3	07	_	

DIAGNOSIS (29) - Fortsetzung

Speicherklasse –; Lesezugriff (r)

Byte	Bit	nach PA V3.01	Beschreibung
4	06	_	
4	7	EXTENSION_AVAILABLE	Weitere Diagnose-Informationen verfügbar, vgl.
			DIAGNOSIS EXT/DIAGNOSIS EXTENSION 2

DIAGNOSIS_EXT (30)

Speicherklasse –; Lesezugriff (r)

Byte	Bit	Beschreibung	
0	0	Gerät nicht initialisiert	
0	1	Magnetventil aktiv	
0	2	GW Wegintegral	(Code 24)
0	3	Regelkreisfehler	(Code 57)
0	4	Nullpunktfehler	(Code 58)
0	5	Autokorrektur	(Code 59)
0	6	Fataler Fehler	(Code 60)
0	7	Erweiterte Diagnose verfügbar · nu	r mit EXPERTplus
1	0	x > zulässiger Bereich	(Code 50)
1	1	Delta x < zulässiger Bereich	(Code 51)
1	2	Anbau	(Code 52)
1	3	Init-Zeit >	(Code 53)
1	4	Init - MGV	(Code 54)
1	5	Laufzeit <	(Code 55)
1	6	Stiftposition	(Code 56)
1	7	Test oder Abgleich läuft	
2	0	x-Signal	(Code 62)
2	1	i/p-Wandler	(Code 64)
2	2	Hardware	(Code 65)
2	3	Regelparameter	(Code 68)
2	4	Potiparameter	(Code 69)
2	5	Abgleich	(Code 70)
2	6	Kein Prod. Abgleich	,
2	7	Allgemeine Parameter	(Code 71)
3	0	Notlaufeigenschaften · kein Fehler	(Code 76)
3	1	Programmladefehler	(Code 77)
2 3 3 3 3 3 3 3 3 3	2	Optionsparameter	(Code 78)
3	3	Info-Parameter	(Code 75)
3	4	Datenspeicher	(Code 66)
3	5	Kontrollrechnung	(Code 67)
3	6	PA Parameter	(Code 74)
3	7	Diagnoseparameter	(Code 80)
4	0	Rücksetzung: Kommunikationscontro	
4	ĩ	Rücksetzung: Fehlermeldung Busans	schaltuna
4	2	Bin2 deaktiviert	
4	3	Rücksetzung: Regelungscontroller	

Parameterlisten · Physical Block, Slot 0 · Profilspezifische Parameter

DIAGNOSIS_EXT (30) - Fortsetzung

Speicherklasse -; Lesezugriff (r)

Byte	Bit	Beschreibung
4	47	_
5	0	Zuluft: evtl. verändert TEST
5	1	Zuluft: evtl. nicht ausreichend TEST
5	2	Zuluft: evtl. nicht ausreichend
5	3	Zuluft: stark ausgelastet
5	4	Zuluft: stark ausgelastet TEST
5	5	Zuluft: evtl. verändert
5	6	Antriebsfedern: Federsteifigkeit reduziert TEST
5	7	Antriebsfedern: Vorspannung reduziert TEST

DIAGNOSIS MASK (31)

Speicherklasse -; Lesezugriff (r)

Verfügbarkeit der Statusbits in DIAGNOSIS

- Bit-Wert = 0: Status nicht verfügbar
- Bit-Wert = 1: Status verfügbar

DIAGNOSIS MASK EXT (32)

Speicherklasse -; Lesezugriff (r)

Verfügbarkeit der Statusbits in DIAGNOSIS_EXT

- Bit-Wert = 0: Status nicht verfügbar
- Bit-Wert = 1: Status verfügbar

FACTORY_RESET (35)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Kommando zum Zurücksetzen auf Defaultwerte

- 1 (0x0001) · Rücksetzen der Inbetriebnahme-, Identifikations- und Funktionsblockparameter sowie der Klassifizierung. Nach dem Rücksetzen muss das Gerät neu initialisiert werden!
- 2506 (0x09CA) · Warmstart
- 2712 (0x0A98) · Busadresse wird auf Defaultwert 126 zurückgesetzt. Gerät läuft nach dem Rücksetzen neu an. Die Busadresse wird nicht durch Rücksetzen der Identifikationsparameter zurückgesetzt. Das Rücksetzen der Busadresse erfolgt ab der Firmwareversion K 1.11 nur mit diesem Befehl.
- 32768 (0x8000) · Rücksetzen der Identifikationsparameter
- 32769 (0x8001) · Rücksetzen der Inbetriebnahme- und Funktionsblockparameter sowie der Klassifizierung. Nach dem Rücksetzen muss das Gerät neu initialisiert werden!
- 32770 (0x8002) · Rücksetzen der Inbetriebnahmeparameter. Nach dem Rücksetzen muss das Gerät neu initialisiert werden!

Identifikationsparameter (ohne Busadresse, Ventil- und Antriebsdaten) sind:

- Physical Block: CONFIG_BINARY_INPUT_2 1), DEVICE_INSTAL_DATE, DEVICE_MESSAGE, DE-SCRIPTOR, IDENT_LIMIT_SWITCHES 1), IDENT_NUMBER_SELECTOR, TAG_DESC, TEXT_INPUT 1...5 1)
- AO Function Block: TAG DESC

FACTORY_RESET (35) - Fortsetzung

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

- AO Transducer Block: ACTUATOR_MAN, ACTUATOR_SER_NUM, ADD_GEAR_ID, ADD_GEAR_ INST_DATE, ADD_ GEAR_MAN, ADD_GEAR_SER_NUM, DEVICE_CALIB_DATE, DEVICE_ CHA-RACT 1), DEVICE_ CONFIG_DATE, TAG_DESC VALVE_MAINT_DATE, VALVE_MAN, VALVE_SER_ NUM, VALVE_TYPE
- DI1/2 Function Block: TAG DESC
- DI1/2 Transducer Block: SENSOR_ID, SENSOR_MAN, SENSOR_SER_NUM, TAG_DESC

Inbetriebnahmeparameter (Klassifizierung, Auswertung des Condensed State (Code 36) sind:

Physical Block: COND_STATUS_DIAG, DIAG_EVENT_SWITCH, DIAG_EVENT_SWITCH_2 1), FEATURE

Funktionsblockparameter sind:

- Physical Block: ALERT_KEY, FACTORY_RESET, FEATURE_SELECT, LOCAL_OP_ENA, ST_REV, STRATE-GY, TARGET_MODE, WRITE_LOCKING
- AO Function Block: ALERT_KEY, BATCH, CHECK_BACK_OPT, FSAFE_TIME, FSAFE_TYPE, FSAFE_ VALUE, IN_CHANNEL, INCREASE_CLOSE, OUT_CHANNEL, OUT_SCALE, PV_SCALE, SIMULATE, ST_REV, STRATEGY, TARGET_MODE
- AO Transducer Block: ACTUATOR_ACTION, ALERT_KEY, CHARACT_TYPE1), SELF_CALIB_CMD, SELF_CALIB_STATUS, ST_REV, STRATEGY, TARGET_MODE
- D11/2 Function Block: ALERT_KEY, BATCH, CHANNEL, FSAFE_TYPE, FSAFE_VAL_D, INVERT, SIMULATE, ST_REV, STRATEGY, TARGET_MODE
- DI1/2 Transducer Block: ALERT_KEY, SENSOR_WIRE_CHECK, ST_REV, STRATEGY, TARGET_MODE

1) Herstellerspezifische Parameter

FEATURE (42)

Speicherklasse -; Lesezugriff (r)

Vorhandensein und Status optionaler im Gerät installierter Features

Supported / Enabled (ACHTUNG! Die Struktur von Supported und Enabled ist identisch!)

- 0 = nicht unterstützt/nicht aktiv
- 1 = unterstützt/aktiv

Byte	Bit	Element	[Default]	Beschreibung
0	0	CONDENSED_STATUS	[1]	Status und Diagnose nach Profil er- weiterung "condensed status"
0	1	EXPANDED_STATUS/ DIAGNOSIS	[1]	Status und Diagnose nach Profil 3.01
0	27	reserviert	[0]	
1	07	reserviert	[0]	
2	07	reserviert	[0]	
3	07	reserviert	[0]	

Parameterlisten · Physical Block, Slot 0 · Profilspezifische Parameter

HARDWARE REVISION (25)

Speicherklasse -; Lesezugriff (r)

Hardware-Ausgabestand Elektronik/Mechanik

HW WRITE PROTECTION (41)

Speicherklasse -; Lesezugriff (r)

Schaltzustand des Schreibschutzschalters im Stellungsregler

- 0 · nicht schreibgeschützt
- 1 · schreibgeschützt

IDENT NUMBER SELECTOR (40)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Ident-Nummer

- 0 · profilspezifische ID (0x9710), PA139710.GSD
- 1 · herstellerspezifische ID (0x07ID), SAMS071D.GSD
- 2 · Kompatibilitätsmodus

LOCAL OP ENA (39)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Lokale Bedienung zulassen

Bei Kommunikationsausfall länger 30 Sekunden ist Vor-Ort-Bedienung möglich.

- 0 · nein
- 1 · ja

MODE BLK (22)

Speicherklasse -; Lesezugriff (r)

Betriebsart Physical Block

SOFTWARE REVISION (24)

Speicherklasse -; Lesezugriff (r)

Firmwareversion (Kommunikation · Code 48 FO / Regelung · Code 43)

ST REV (17)

Speicherklasse -; Lesezugriff (r)

Revisionsstand der statischen Daten

STRATEGY (19)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Gruppierung von Blöcken

Durch eine Gruppierung können Blöcke schneller ausgewertet werden.

Eine Gruppierung erfolgt durch die Eingabe des gleichen Zahlenwertes in den Parameter STRATEGY jeden einzelnen Blocks.

Physical Block, Slot 0 · Profilspezifische Parameter · Parameterlisten

TAG DESC (18)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Anwenderspezifischer Text zur eindeutigen Identifizierung und Zuordnung des Blocks

• max. 32 Zeichen, [ohne Text]

TARGET MODE (21)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Gewünschte Betriebsart

WRITE LOCKING (34)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Software-Schreibschutz

- 0 · Schreibzugriffe gesperrt
- 2457 · Schreibzugriffe zugelassen

Zuordnung Index – Parameter: Physical Block, Slot 0 · Profilspezifische Parameter

Index	Parameter
16	BLOCK_OBJ
17	ST_REV
18	TAG_DESC
19	STRATEGY
20	ALERT_KEY
21	TARGET_MODE
22	MODE_BLK
23	ALM_SUM
24	SOFTWARE_REVISION
25	HARDWARE_REVISION
26	DEVICE_MAN_ID
27	DEVICE_ID
28	DEVICE_SER_NUM
29	DIAGNOSIS
30	DIAGNOSIS_EXT

Index	Parameter
31	DIAGNOSIS_MASK
32	DIAGNOSIS_MASK_EXT
33	DEVICE_CERTIFICATION
34	WRITE_LOCKING
35	FACTORY_RESET
36	DESCRIPTOR
37	DEVICE_MESSAGE
38	DEVICE_INSTAL_DATE
39	LOCAL_OP_ENA
40	IDENT_NUMBER_SELECTOR
41	HW_WRITE_PROTECTION
42	FEATURE
43	COND_STATUS_DIAG
44	DIAG_EVENT_SWITCH

8.2 Physical Block, Slot 0 · Herstellerspezifische Parameter

ACTIVE IDENT NUMBER (137)

Speicherklasse -; Lesezugriff (r)

Anzeige der GSD, mit der das Gerät betrieben wird

Wenn das Gerät im Kompatibilitätsmodus ist kann es mit den folgenden GSD-Dateien arbeiten

3785: 3785 Profil 2
071D: 3785 Profil 3
0688: 3730-4 Profil 3.01

CONDENSED_STATUS (133)

Speicherklasse -; Lesezugriff (r)

Sammelstatus nach NAMUR

CONFIG_BINARY_INPUT_2 (59)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Konfiguration des zweiten Binäreingangs

- 0 · Floating contact DI2 · Der Eingang wird mit dem zweiten DI Function Block ausgewertet.
- 1 · Actively open Diagnosis Leakage Sensor DI2 · Am Eingang wird ein Leckagesensor mit der Logik aktiv offen betrieben. Diese Information wird durch die erweiterte Diagnose als "externe Leckage evtl. vorhanden" kommuniziert und kann mit dem Function Block DI2 ausgewertet werden.
- 2 · Actively closed Diagnosis Leakage Sensor DI2 · Am Eingang wird ein Leckagesensor mit der Logik aktiv geschlossen betrieben. Diese Information wird durch die erweiterte Diagnose als "externe Leckage evtl. vorhanden" kommuniziert und kann mit dem Function Block DI2 ausgewertet werden.
- 3 · Solenoid valve CB_FAIL_SAFE/DI2 · Das interne Magnetventil wird verwendet und die Information (MGV beschaltet entspricht 1) mit dem Function Block DI2 ausgewertet. Diese Information wird zusätzlich mit dem CHECKBACK (CB_FAIL_SAFE) zyklisch kommuniziert. Der Eingang wird dabei nicht beschaltet.
- 4 · Actively open Diagnosis Leakage Sensor / CB_ADD_INPUT / Solenoid valve DI2 · Am Eingang wird ein Leckagesensor mit der Logik aktiv offen betrieben. Diese Information wird mit dem CHECKBACK (CB_ADD_INPUT) zyklisch kommuniziert. Zusätzlich wird der Zustand des internen Magnetventils auf den Function Block DI2 geschaltet.
- 5 · Actively closed Diagnosis Leakage Sensor / CB_ADD_INPUT / Solenoid valve DI2 · Am Eingang wird ein Leckagesensor mit der Logik aktiv geschlossen betrieben. Diese Information wird mit dem CHECKBACK (CB_ADD_INPUT) zyklisch kommuniziert. Zusätzlich wird der Zustand des internen Magnetventils auf den Function Block DI2 geschaltet.
- 6 · Actively open Diagnosis Leakage Sensor / CB_ADD_INPUT / Solenoid valve DI2 · Am Eingang wird ein Leckagesensor mit der Logik aktiv offen betrieben. Diese Information kann mit dem Function Block DI2 ausgewertet werden. Zusätzlich wird der Zustand des internen Magnetventils mit dem CHECKBACK (CB_ADD_INPUT) zyklisch kommuniziert.
- 7 · Actively closed Diagnosis Leakage Sensor /CB_ADD_INPUT / Solenoid valve DI2 · Am Eingang wird ein Leckagesensor mit der Logik aktiv geschlossen betrieben. Diese Information kann mit dem Function Block DI2 ausgewertet werden. Zusätzlich wird der Zustand des internen Magnetventils mit dem CHECKBACK (CB_ADD_INPUT) zyklisch kommuniziert.

CONFIG_DI_1 (157)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Informationen, die über den diskreten Eingang DI1 zyklisch kommuniziert werden

- Status disk Eingang 1:
 - 1 = Spannungssignal liegt an
 - 0 = spannungslos

Status letzter PST:

- 0 = Fehler
- 1 = OK
- 2 = nicht ausgeführt

CONFIG_DI_2 (158)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Informationen, die über den diskreten Eingang DI2 zyklisch kommuniziert werden

- Status disk Eingang 2:
 - 1 = Spannungssignal liegt an
 - 0 = spannungslos
- Status letzter PST:
 - 0 = Fehler
 - 1 = OK
 - 2 = nicht ausgeführt

DATALOGGER_DS_1 (111) bis DATALOGGER_DS_14 (124)

Speicherklasse -; Lesezugriff (r)

Beobachterfunktion: Datenlogger Datensatz 1 bis 14

Element	Parametername
0	SOLLWERT_W_1
1	ISTWERT_X_1
2	STELLSIGNAL_Y_1
3	REGELABWEICH_E_1
4	ZEIT_T_1
30	SOLLWERT_W_14
31	ISTWERT_X_14
32	STELLSIGNAL_Y_14
33	REGELABWEICH_E_14
34	ZEIT_T_14

Parameterlisten · Physical Block, Slot O · Herstellerspezifische Parameter

DATALOGGER DS 15 (125)

Speicherklasse -; Leserzugriff (r)

Beobachterfunktion: Datenlogger Datensatz 1 bis 14

Element	Parametername
0	SOLLWERT_W_1
1	ISTWERT_X_1
2	STELLSIGNAL_Y_1
3	REGELABWEICH_E_1
4	ZEIT_T_1
5	SOLLWERT_W_2
6	ISTWERT_X_2
7	STELLSIGNAL_Y_2
8	REGELABWEICH_E_2
9	ZEIT_T_2

DEV_REVISION (135)

Speicherklasse -; Lesezugriff (r)

Geräterevision

DEV REVISION COMP (134)

Speicherklasse -; Lesezugriff (r)

Niedrigste Geräterevision, mit der die Geräterevision (DEV_REVISION) kompatibel ist

DEVICE DP STATUS (126)

Speicherklasse -; Lesezugriff (r)

Aktueller Zustand der PROFIBUS-DP-State-Machine

Für den Übergang in den zyklischen Datenaustausch durchläuft die State Machine die folgenden Zustände:

- Wait prm: Parametriertelegramm noch nicht erhalten
- Wait cfg: Konfigurationstelegramm noch nicht erhalten
- Data exchg: Gerät im zyklischen Datenaustausch

Die Information dient der Fehlersuche

DEVICE_PRODUCT_NUM (51)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Erzeugnisnummer des Stellungsreglers

DIAG EVENT SWITCH 2 (61)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

DIAGNOSIS_DATA_1 (131)

Speicherklasse -; Lesezugriff (r)

Diagnosemeldungen

- 0x01 Inkonsistenter Datenspeicher
- 0x02 Potiparameter
- 0x04 Abgleichparameter
- 0x08 Allgemeine Parameter
- 0x10 Interner Gerätefehler
- 0x20 PA Parameter
- 0x40 Info-Parameter
- 0x80 Optionsparameter

DIAGNOSIS_DATA_2 (132)

Speicherklasse -; Lesezugriff (r)

Diagnosemeldungen

• 0x01 Diagnoseparameter

DIAGNOSIS EXT (60)

Speicherklasse -; Lesezugriff (r)

Weitere detaillierte Geräteinformationen, Bitweise codiert, daher mehrere Meldungen gleichzeitig möglich

Bitwert: $0 = \text{false} \cdot 1 = \text{true}$

Byte	Bit	Beschreibung
0	0	Antriebsfedern: evtl. Vorspannung erhöht TEST
0	1	Antriebsfedern: stark ausgelastet
0	2	Antriebsfedern: stark ausgelastet TEST
0	3	Arbeitsbereichsverschiebung: Schließstellung
0	4	Arbeitsbereichsverschiebung: max. Öffnung
0	5	Reibung: über Stellbereich deutlich höher
0	6	Reibung: über Stellbereich deutlich niedriger
0	7	Reibung: über Teilbereich deutlich höher
1	0	Reibung: über Teilbereich deutlich niedriger
1	1	Reibung: über Stellbereich deutlich höher TEST
1	2	Reibung: über Stellbereich deutlich niedriger TEST
1	3	Reibung: über Teilbereich deutlich höher TEST
1	4	Reibung: über Teilbereich deutlich niedriger TEST
1	5	Leckage Pneumatik: evtl. vorhanden TEST
1	6	Leckage Pneumatik: evtl. vorhanden
1	7	Leckage Pneumatik: zu groß TEST

Parameterlisten \cdot Physical Block, Slot 0 \cdot Herstellerspezifische Parameter

DIAGNOSIS_EXT (60) – Fortsetzung Speicherklasse –; Lesezugriff (r)

Byte	Bit	Beschreibung
2	0	Leckage Pneumatik: evtl. zu groß
2	1	Beschränkung Stellbereich: nach unten
2	2	Beschränkung Stellbereich: nach oben
2	3	Beschränkung Stellbereich: keine Änderung möglich
2	4	Dynamischer Belastungsfaktor > 90 %
2	5	Innere Leckage: evtl. vorhanden
2	6	Innere Leckage: größer als im Neuzustand TEST
2	7	Innere Leckage: größer als im Neuzustand
3	0	Externe Leckage: evtl. bald zu erwarten
3	1	Externe Leckage: evtl. vorhanden
3	2	Externe Leckage: vorhanden
3	3	Nullpunkt: Verschiebung monoton unten, Mittelwert oberhalb der Referenzgeraden
3	4	Nullpunkt: Verschiebung monoton oben, Mittelwert oberhalb der Referenzgeraden
3	5	Nullpunkt: alternierend, Mittelwert oberhalb der Referenzgeraden
3	6	Nullpunkt: Verschiebung monoton unten, Mittelwert unterhalb der Referenzgeraden
3	7	Nullpunkt: Verschiebung monoton oben, Mittelwert unterhalb der Referenzgeraden
4	0	Nullpunkt: alternierend, Mittelwert unterhalb der Referenzgeraden
4	1	Mechanische Verbindung Regler/Ventil: keine optimale Hubübertragung TEST
4	2	Mechanische Verbindung Regler/Ventil: evtl. lose
4	3	Mechanische Verbindung Regler/Ventil: evtl. Einschränkung Stellbereich
4	4	Mechanische Verbindung Regler/Ventil: evtl. lose TEST
4	5	Stellbereich: vorwiegend nahe Schließstellung
4	6	Stellbereich: vorwiegend nahe max. Öffnung
4	7	Stellbereich: vorwiegend Schließstellung
5	0	Stellbereich: vorwiegend max. Öffnung
5	1	Stellbereich: Temperatur unter –40 °C
5	2	Stellbereich: Temperatur über 80 °C
5	3	Stellbereich: Referenztest abgebrochen
5	4	Stellbereich: Antriebsbewegung möglich
5	5	Stellbereich: Antriebsbewegung nicht möglich
5	6	Stellbereich: Fehler Magnetventil
5	7	-

DIAGNOSIS_EXT_1_RAW (62) und DIAGNOSIS_EXT_2_RAW (63)

Speicherklasse -; Lesezugriff (r)

Diagnosemeldungen unabhängig von der getroffenen Klassifizierung

DIAGNOSIS HW (130)

Speicherklasse -; Lesezugriff (r)

Diagnosemeldungen

- 0x01 x-Signal
- 0x02 i/p-Wandler
- 0x04 Hardware
- 0x08 Datenspeicher
- 0x10 Kontrollrechnung
- 0x20 Programmladefehler

DIAGNOSIS INIT 1 (128)

Speicherklasse -; Lesezugriff (r)

Diagnosemeldungen

- 0x01 x > Bereich
- 0x02 Delta x < Bereich
- 0x04 Anbau
- 0x08 Initialisierungszeit überschritten
- 0x10 Initialisierung/int. Magnetventil/Zwangsentlüftung
- 0x20 Laufzeit unterschritten
- 0x40 Stiftposition
- 0x80 Test oder Kalibrierung läuft

DIAGNOSIS INIT 2 (129)

Speicherklasse -; Lesezugriff (r)

Diagnosemeldungen

0x01 Keine Notlaufeigenschaft

DIAGNOSIS_OPERATION (127)

Speicherklasse -; Lesezugriff (r)

Diagnosemeldungen

0x01 Gerät nicht initialisiert

0x02 Internes Magnetventil nicht aktiv

0x04 Wegintegral überschritten

0x08 Regelkreis

0x10 Nullpunkt

0x20 Autokorrektur

0x40 Fataler Fehler

0x80 Erweiterte Diagnose

Parameterlisten · Physical Block, Slot O · Herstellerspezifische Parameter

DL_TRIGGER_SELECT_BIN (136)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Binäreingang für die Triggerung im Datenlogger (ab Firmwareversion K 1.11 anwählbar)

- 0 · Binäreingang 1
- 1 · Binäreingang 2

ET_BSZ (78)

Speicherklasse -; Lesezugriff (r)

Beobachterfunktion: Struktur für Endlagentrend – Betriebsstundenzähler BSZ

Element	Parametername
0	Messwert 0
29	Messwert 29
30	Refernzwert

ET ENDLAGE (79)

Speicherklasse -; Lesezugriff (r)

Beobachterfunktion: Struktur für Endlagentrend – Stellsignal

Element	Parametername
0	Messwert 0
29	Messwert 29
30	Referenzwert

ET VENTILSTELLUNG (77)

Speicherklasse -; Lesezugriff (r)

Beobachterfunktion: Struktur für Endlagentrend – Ventilstellung x

Element	Parametername
0	Messwert 0
29	Messwert 29
30	Refernzwert

FEATURE SELECT (64)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Speicherklasse ALL

Bitweise codiert, daher mehrere Meldungen gleichzeitig möglich

Bitwert: $0 = \text{false} \cdot 1 = \text{true}$		
Byte	Bit	Beschreibung
0	0	BAD_DEVICE_FAILURE setzt DIAG_EXT-Bit · Unter Verwendung der Profilerweiterung "Condensed status and diagnostic messages" wird das Bit DIAG.ext (Octet 1) gesetzt, wenn ein Ausfall bzw. die entsprechende Diagnosemeldung DIA_MAINTE-NANCE_ ALARM vom Regler ermittelt wurde. Nach Profil 3.01 wird das Bit DIAG. ext gesetzt, wenn einer der folgenden Fehler vom Stellungsregler ermittelt wurde: Kontrollrechnung, Fataler Fehler, Programm-Ladefehler, Kein Produktionsabgleich, Hardware, i/p-Wandler
0	1	Testfunktion freischalten · Mit der Aktivierung dieser Funktion besteht unter TROVIS- VIEW (Ordner [Stellungsregler (AO, TRD) > Simulation]) die Möglichkeit, Fehler zu simulieren (ab Firmwareversion K 1.11).
0	2	LO und aktive Diagnosefunktion setzen GOOD_FUNCTION_CHECK · Während eines Diagnosetests würde laut Profil ein BAD_FUNCTION_CHECK gesetzt werden. Dies lässt sich mit der Aktivierung dieser Zusatzfunktion verhindern, es wird dann ein GOOD_FUNCTION_CHECK gesetzt (ab Firmwareversion K 1.11)
0	3	DP Standard Diagnose (6 Byte) verwenden · Wahl, ob der Regler auf ein GET_DIAG-Telegramm mit der vollen Diagnose (14 Verwendung als Profil Gerät oder 26 als herst. Spez.) oder nur mit 6 Byte DP-Standard-Diagnose antwortet (ab Firmwareversion K 1.11)
0	4	Ausschließlich PST-Meldungen zulassen · Diagnose-Meldungen der Ventildiagnose werden mit Ausnahme der PST-Diagnose unterdrückt.
0	5	Ausführen PST mit SP-Status · Aktivierung der Möglichkeit, einen Teilhubtests (PST) durch Vorgabe des Sollwerts SP mit Statuswert 0x9C (hexadezimal) zu starten.
0	6	Start PST mit Binäreingang 1 · Aktivierung der Möglichkeit, einen Teilhubtests (PST)

FST_E_1 (148) bis FST_E_4 (151)

Speicherklasse –; Lesezugriff (r

Testfunktion: Vollhubtest - Regelabweichung Datensatz 1 bis 4

mittels Binäreingang zu starten.

- FST_E_1: Datensatz 1 (Messpunkte 1 bis 25)
- FST_E_2: Datensatz 2 (Messpunkte 26 bis 50)
- FST_E_3: Datensatz 3 (Messpunkte 51 bis 75)
- FST_E_4: Datensatz 4 (Messpunkte 76 bis 100)

Parameterlisten · Physical Block, Slot O · Herstellerspezifische Parameter

FST_SS_1 (146) und FST_SS_2 (147)

Speicherklasse -; Lesezugriff (r)

Testfunktion: Vollhubtest – Stellsignal Datensatz 1 und 2

- FST_SS_1: Datensatz 1 (Messpunkte 1 bis 50)
- FST_SS_2: Datensatz 2 (Messpunkte 51 bis 100)

FST_SW_1 (142) bis FST_SW_4 (145)

Speicherklasse -; Lesezugriff (r)

Testfunktion: Vollhubtest - Sollwert Datensatz 1 bis 4

- FST_SW_1: Datensatz 1 (Messpunkte 1 bis 25)
- FST SW 2: Datensatz 2 (Messpunkte 26 bis 50)
- FST_SW_3: Datensatz 3 (Messpunkte 51 bis 75)
- FST_SW_4: Datensatz 4 (Messpunkte 76 bis 100)

FST VS 1 (138) bis FST VS 4 (141)

Speicherklasse -; Lesezugriff (r)

Testfunktion: Vollhubtest - Ventilstellung Datensatz 1 bis 4

- FST_VS_1: Datensatz 1 (Messpunkte 1 bis 25)
- FST_VS_2: Datensatz 2 (Messpunkte 26 bis 50)
- FST VS 3: Datensatz 3 (Messpunkte 51 bis 75)
- FST_VS_4: Datensatz 4 (Messpunkte 76 bis 100)

FST_ZEIT_1 (152) bis FST_ZEIT_4 (155)

Speicherklasse -; Lesezugriff (r)

Testfunktion: Vollhubtest - Zeit Datensatz 1 bis 4

- FST_ZEIT_1: Datensatz 1 (Messpunkte 1 bis 25)
- FST ZEIT 2: Datensatz 2 (Messpunkte 26 bis 50)
- FST_ZEIT_3: Datensatz 3 (Messpunkte 51 bis 75)
- FST_ZEIT_4: Datensatz 4 (Messpunkte 76 bis 100)

HISTOGRAMM_E_KURZ (70)

Speicherklasse -; Lesezugriff (r)

Beobachterfunktion: Struktur für Kurzzeitdiaaramm e

Element	Parametername
0	E_INTERVAL_VALUE_0 (Regelabweichung Intervall 0)
11	E_INTERVAL_VALUE_11 (Regelabweichung Intervall 11)
12	E_AVERAGE (Mittelwert e Kurz)

HISTOGRAMM_E_LANG (67)

Speicherklasse –; Lesezugriff (r)

Beobachterfunktion: Struktur für Langzeitdiagramm e

Element	Parametername
0	E_INTERVAL_VALUE_0 (Regelabweichung Intervall 0)
11	E_INTERVAL_VALUE_11 (Regelabweichung Intervall 11)
12	E_AVERAGE (Mittelwert e Lang)
13	NUMBER_MESS_POINTS (Anzahl Messpunkte)
14	DEVIATION_MIN (Minimale Regelabweichung)
15	DEVIATION_MAX (Maximale Regelabweichung)

HISTOGRAMM_X_KURZ (69)

Speicherklasse -; Lesezugriff (r)

Beobachterfunktion: Struktur für Kurzzeitdiagramm x

Element	Parametername
0	X_INTERVAL_VALUE_0 (Ventilstellung Intervall 0)
21	X_INTERVAL_VALUE_21 (Ventilstellung Intervall 21)
22	X AVERAGE (Mittelwert x Kurz)

HISTOGRAMM_X_LANG (66)

Speicherklasse -; Lesezugriff (r)

Beobachterfunktion: Struktur für Langzeitdiagramm x

Element	Parametername
0	X_INTERVAL_VALUE_0 (Ventilstellung Intervall 0)
21	X_INTERVAL_VALUE_21 (Ventilstellung Intervall 21)
22	X_AVERAGE (Mittelwert x Lang)
23	NUMBER_MESS_POINTS (Anzahl Messpunkte)

HISTOGRAMM_X_LANG2 (156)

Speicherklasse -; Lesezugriff (r)

Parameterlisten · Physical Block, Slot O · Herstellerspezifische Parameter

HISTOGRAMM_Z_KURZ (71)

Speicherklasse -; Lesezugriff (r)

Beobachterfunktion: Struktur für Kurzzeitdiagramm z

Element	Parametername
0	Z_INTERVAL_VALUE_0 (Zyklenzähler Intervall 0)
12	Z_INTERVAL_VALUE_12 (Zyklenzähler Intervall 12)
13	Z_AVERAGE (Mittelwert Z Kurz)

HISTOGRAMM_Z_LANG (68)

Speicherklasse -; Lesezugriff (r)

Beobachterfunktion: Struktur für Langzeitdiagramm z

Element	Parametername
0	Z_INTERVAL_VALUE_0 (Zyklenzähler Intervall 0)
12	Z_INTERVAL_VALUE_11 (Zyklenzähler Intervall 12)
13	Z_AVERAGE (Mittelwert z Lang)
14	TOTAL_NUMBER (Anzahl Messpunkte)
15	DYNAMIC_FACTOR (Dynamischer Belastungsfaktor)

HYS_STELLSIGNAL (83)

Speicherklasse -; Lesezugriff (r)

Testfunktion: Stellsignal Y Hysterese

	7
Element	Parametername
0	REFERENZZEITSTEMPEL
1	TESTINFO
2	FORTSCHRITT
3	REFERENZWERT_VS_0
4	REFERENZWERT_HYST_0
5	WIEDERHOLUNGSWERT_HYST_0
36	REFERENZWERT_VS_11
37	REFERENZWERT_HYST_11
38	WIEDERHOLUNGSWERT_HYST_11

HYSTERESE KURZ (76)

Speicherklasse -; Lesezugriff (r)

Beobachterfunktion: Struktur für Diagramm Stellsignal Y – Hysterese Kurzzeitbetrachtung

Element	Parametername
0	STELLSIGNAL_0
0	VENTILSTELLUNG_0
9	STELLSIGNAL_9
9	VENTILSTELLUNG_9

HYSTERESE LANG (75)

Speicherklasse -; Lesezugriff (r)

Beobachterfunktion: Struktur für Diagramm Stellsignal Y – Hysterese Langzeitbetrachtung

Element	Parametername
0	MITTELWERT_0
18	MITTELWERT 18

IDENT LIMIT SWITCHES (50)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Option Induktive Grenzkontakte (wird nicht automatisch erkannt)

- 0 · nicht eingebaut
- 1 · eingebaut

IDENT OPTIONS (49)

Speicherklasse -; Lesezugriff (r)

Option Magnetventil und Binäreingang 2

- 0 · nicht eingebaut
- 1 · Binäreingang 2
- 2 · Magnetventil
- 3 · Induktiver Grenzkontakt

PRODUCTION_ID (57)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Kennung für die Produktion

PST_E_1 (103) bis PST_E_4 (106)

Speicherklasse -; Lesezugriff (r)

Testfunktion: Teilhubtest - Regelabweichung Datensatz 1 bis 4

Parameterlisten · Physical Block, Slot O · Herstellerspezifische Parameter

PST_SS_1 (101) und PST_SS_2 (102)

Speicherklasse -; Lesezugriff (r)

Testfunktion: Teilhubtest - Stellsignal Datensatz 1 und 2

PST SW 1 (97) bis PST SW 4 (100)

Speicherklasse -; Lesezugriff (r)

Testfunktion: Teilhubtest - Sollwert Datensatz 1 bis 4

PST VS 1 (93) bis PST VS 4 (96)

Speicherklasse -; Lesezugriff (r)

Testfunktion: Teilhubtest - Ventilstellung Datensatz 1 bis 4

PST ZEIT 1 (107) bis PST ZEIT 4 (110)

Speicherklasse -; Lesezugriff (r)

Testfunktion: Teilhubtest – Zeit Datensatz 1 bis 4

READING DIRECTION (58)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Leserichtung der Anzeige um 180° drehen

STAT_AGAIN_VS (81)

Speicherklasse -; Lesezugriff (r)

Testfunktion: Stellsignal y Stationär – Wiederholungswert Ventilstellung

STAT KENNLINIE R (84)

Speicherklasse -; Lesezugriff (r)

Testfunktion: Statische Kennlinie

Element	Parameter
0	Testinfo
1	SPRUNGHOEHE
2	MIN_TOTE_ZONE
3	DURCHSCHNITT_TOTE_ZONE
4	MAX_TOTE_ZONE
5	FORTSCHRITTSANZEIGE

STAT KENNLINIE SW 1 (89) bis STAT KENNLINIE SW 4 (92)

Speicherklasse -; Lesezugriff (r)

Testfunktion: Statische Kennlinie – Sollwert Datensatz 1 bis 4

STAT_KENNLINIE_VS_1 (85) bis STAT_KENNLINIE_VS_4 (88)

Speicherklasse -; Lesezugriff (r)

Testfunktion: Statische Kennlinie – Ventilstellung Datensatz 1 bis 4

- STAT_KENNLINIE_VS_1: Datensatz 1 (Messpunkte 1 bis 25)
- STAT_KENNLINIE_VS_2: Datensatz 2 (Messpunkte 26 bis 50)
- STAT_KENNLINIE_VS_3: Datensatz 3 (Messpunkte 51 bis 75)
- STAT_KENNLINIE_VS_4: Datensatz 3 (Messpunkte 76 bis 100)

STAT_REV_VS (80)

Speicherklasse -; Lesezugriff (r)

Testfunktion: Stellsignal y Stationär – Referenzwert Ventilstellung

STAT STELLSIGNAL (82)

Speicherklasse -; Leserzugriff (r)

Testfunktion: Stellsignal y Stationär – Referenzwert und Wiederholungswert Stellsignal

Element	Parameter
0	REFERENZZEITSTEMPEL
1	TESTINFO
2	FORTSCHRITT
3	REFERENZWERT_0
4	WIEDERHOLUNGSWERT_0
51	REFERENZWERT_24
52	WIEDERHOLUNGSWERT_24

STATIONAER_KURZ (73)

Speicherklasse -; Lesezugriff (r)

Beobachterfunktion: Struktur für Diagramm Stellsignal y – Stationär Kurzzeitbetrachtung

Element	Parameter
0	MITTELWERT_0
21	MITTELWERT_21

Parameterlisten · Physical Block, Slot O · Herstellerspezifische Parameter

STATIONAER_KURZ_RP (74)

Speicherklasse -; Lesezugriff (r)

Beobachterfunktion: Struktur für Diagramm Stellsignal y – Stationär Kurzzeitbetrachtung Ringpufferwerte, beinhaltet Stellsignal und Ventilstellung

Element	Parameter
0	STELLSIGNAL_0
0	VENTILSTELLUNG_0
9	STELLSIGNAL_9
9	VENTILSTELLUNG 9

STATIONAER_LANG (72)

Speicherklasse -; Lesezugriff (r)

Beobachterfunktion: Struktur für Diagramm y – Stationär Langzeitbetrachtung

Zuordnung Index - Parameter: Physical Block

Index	Parameter
49	IDENT_OPTIONS
50	IDENT_LIMIT_SWITCHES
51	DEVICE_PRODUCT_NUM
52	TEXT_INPUT_1
53	TEXT_INPUT_2
54	TEXT_INPUT_3
55	TEXT_INPUT_4
56	TEXT_INPUT_5
57	PRODUCTION_ID
58	READING_DIRECTION
59	CONFIG_BINARY_INPUT_2
60	DIAGNOSIS_EXT_2
61	DIAG_EVENT_SWITCH_2
62	DIAGNOSIS_EXT_1_RAW
63	DIAGNOSIS_EXT_2_RAW
64	FEATURE_SELECT
65	TEST_FUNCTION
66	HISTOGRAMM_X_LANG
67	HISTOGRAMM_E_LANG

Index	Parameter
68	HISTOGRAMM_Z_LANG
69	HISTOGRAMM_X_KURZ
70	HISTOGRAMM_E_KURZ
71	HISTOGRAMM_Z_KURZ
72	STATIONAER_LANG
73	STATIONAER_KURZ
74	STATIONAER_KURZ_RP
75	HYSTERESE_LANG
76	HYSTERESE_KURZ
77	et_ventilstellung
78	ET_BSZ
79	ET_ENDLAGE
80	STAT_REF_VS
81	STAT_AGAIN_VS
82	STAT_STELLSIGNAL
83	HYS_STELLSIGNAL
84	STAT_KENNLINIE_R
85	STAT_KENNLINIE_VS_1
86	STAT_KENNLINIE_VS_2

Index	Parameter
87	STAT_KENNLINIE_VS_3
88	STAT_KENNLINIE_VS_4
89	STAT_KENNLINIE_SW_1
90	STAT_KENNLINIE_SW_2
91	STAT_KENNLINIE_SW_3
92	STAT_KENNLINIE_SW_4
93	PST_VS_1
94	PST_VS_2
95	PST_VS_3
96	PST_VS_4
97	PST_SW_1
98	PST_SW_2
99	PST_SW_3
100	PST_SW_4
101	PST_SS_1
102	PST_SS_2
103	PST_E_1
104	PST_E_2
105	PST_E_3
106	PST_E_4
107	PST_ZEIT_1
108	PST_ZEIT_2
109	PST_ZEIT_3
110	PST_ZEIT_4
111	DATALOGGER_DS_1
112	DATALOGGER_DS_2
113	DATALOGGER_DS_3
114	DATALOGGER_DS_4
115	DATALOGGER_DS_5
116	DATALOGGER_DS_6
117	DATALOGGER_DS_7
118	DATALOGGER_DS_8
119	DATALOGGER_DS_9
120	DATALOGGER_DS_10
121	DATALOGGER_DS_11
122	DATALOGGER_DS_12

Index	Parameter
123	DATALOGGER_DS_13
124	DATALOGGER_DS_14
125	DATALOGGER_DS_15
126	DEVICE_DP_STATUS
127	DIAGNOSIS_OPERATION
128	DIAGNOSIS_INIT_1
129	DIAGNOSIS_INIT_2
130	DIAGNOSIS_HW
131	DIAGNOSIS_DATA_1
132	DIAGNOSIS_DATA_2
133	CONDENSED_STATUS
134	DEV_REVISION_COMP
135	DEV_REVISION
136	DL_TRIGGER_SELECT_BIN
137	ACTIVE_IDENT_NUMBER
138	FST_VS_1
139	FST_VS_2
140	FST_VS_3
141	FST_VS_4
142	FST_SW_1
143	FST_SW_2
144	FST_SW_3
145	FST_SW_4
146	FST_SS_1
147	FST_SS_2
148	FST_E_1
149	FST_E_2
150	FST_E_3
151	FST_E_4
152	FST_ZEIT_1
153	FST_ZEIT_2
154	FST_ZEIT_3
155	FST_ZEIT_4
156	HISTOGRAMM_X_LANG2
157	CONFIG_DI_1
158	CONFIG_DI_2

8.3 AO Funktionsblock, Slot 1 · Profilspezifische Parameter

ALERT KEY (20)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Identifikationsnummer (ID-Nr.) Anlagenteil

ALM SUM (23)

Speicherklasse -; Lesezugriff (r)

Status der Prozessalarme im AO Funktionsblock

BATCH (24)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Identifikationsnummer Batch-Prozess

BLOCK_OBJ (16)

Speicherklasse -; Lesezugriff (r)

CHECK BACK* (49)

Speicherklasse -; Lesezugriff (r)

Detaillierte Geräteinformationen, Bitweise codiert, vgl. Kap. 4

CHECK_BACK_MASK (50)

Speicherklasse -; Lesezugriff (r)

Verfügbarkeit der Statusbits in CHECK_BACK

- Bit-Wert = 0: Status nicht verfügbar
- Bit-Wert = 1: Status verfügbar

CHECK BACK OPT (65)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Bei einem azyklischen Zugriff ist die Meldung nicht wirksam.

Verfügbarkeit der Statusbits in CHECK_BACK für die zyklische Übertragung

- [0x8F, 0xEC, 0x83]
- Bit-Wert = 0 · Status nicht verfügbar
- Bit-Wert = 1: Status verfügbar

FSAFE TIME (39)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Sicherheitszeit [s]

Zeit von der Erkennung eines Fehlers des für den AO Funktionsblock in der aktuellen Betriebsart gültigen Sollwertes bis zum Auslösen des Sicherheitsverhalten

• [0]

Wenn nach Ablauf dieses Zeitintervalls der Fehler weiterhin vorliegt, wird das Sicherheitsverhalten ausgelöst. Das Sicherheitsverhalten des AO Funktionsblocks wird im Parameter FSAFE_TYPE dieses Blocks festgelegt.

FSAFE TYPE (40)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Sicherheitsaktion

Reaktion bei erkanntem Kommunikationsausfall oder Anlauf

- 0 · Regeln auf Defaultwert FSAFE VALUE
- 1 · Regeln auf den letzten gültigen Sollwert/Speichern des letzten gültigen Sollwertes
- 2 · Einnehmen der durch die Federwirkung vorgegebenen Sicherheitsstellung

FSAFE VALUE (41)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Sicherheitswert

Defaultwert für Sollwert w bei erkanntem Kommunikationsausfall oder Anlauf

IN CHANNEL (37)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Zuordnung von Transducer Block zum Function Block

- 0 · nicht aktiv
- 0x013A · aktiv (FEEDBACK_VALUE wird auf READBACK geschrieben)

INCREASE CLOSE (52)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Bewegungsrichtung (Zuordnung von Sollwert zu Regelgröße)

- steigend/steigend
- steigend/fallend

MODE BLK (22)

Speicherklasse -; Lesezugriff (r)

Aktuelle Betriebsart

OUT (53)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Stellwert

Vom Function Block aus dem SETPOINT berechneter Stellwert für den Transducer Block in [mm], [grad] oder [%]

OUT CHANNEL (38)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Zuordnung von Transducer Block zum Function Block

- 0 · nicht aktiv
- 0x0139 · aktiv (OUT wird auf POSITIONING_VALUE geschrieben)

Parameterlisten · AO Funktionsblock, Slot 1 · Profilspezifische Parameter

OUT SCALE (54)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Hub-/Drehwinkelbereich

Unterer und oberer Einstellwert des tatsächlichen Arbeitsbereiches in [mm] bzw. [grad], bei nichtlinearer Kennlinie erfolgt Anpassung der Kennlinie auf den reduzierten Hub.

Maximaler Wert für oberen Wert = Nennhub

POS D* (47)

Speicherklasse -; Lesezugriff (r)

Position des Ventilkegels (diskret)

- 0 · nicht initialisiert
- 1 · geschlossen (x < 0,5 %)
- 2 · geöffnet (x > 99,5 %)
- 3 · Zwischenstellung

PV SCALE (27)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Sollwertbereich

RCAS IN* (30)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Sollwert mit Status: Sollwert w in Betriebsart RCAS

Wird von einem überlagerten Regelkreis zur Verfügung gestellt, z. B. PID Block oder MasterKlasse 1. Abhängig vom Modus des Funktionsblocks.

Bereich definiert in PV SCALE

RCAS_OUT* (43)

Speicherklasse -; Lesezugriff (r)

Sollwert mit Status: Sollwert w in Betriebsart RCAS

Wird für einen überlagerten Regelkreis, z. B. PID Block oder MasterKlasse 1 zur Verfügung gestellt.

Abhängig vom Modus des Funktionsblocks.

Bereich definiert in PV SCALE

READBACK (28)

Speicherklasse -; Lesezugriff (r)

Regelgröße x bezogen auf den Hub-/Drehwinkelbereich (PV_SCALE) und Status der Regelgröße Bereich definiert in PV_SCALE

SETP DEVIATION (48)

Speicherklasse -; Lesezugriff (r)

Regeldifferenz [%]

SIMULATE (51)

Speicherklasse -; Lese- und Schreibzugriff (r/w); Zugang: ALL

Simulation

Vorgabe eines Wertes/des Status von READBACK

SP (25)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Sollwertbegrenzung oben

• Wert und Bereich von PV_SCALE ±10 %, [100 %]

Wird die Einstellung des Skalenendes im Parameter PV_SCALE verändert, sollte dieser Wert entsprechend angepasst werden.

ST REV (17)

Speicherklasse -; Lesezugriff (r)

Revisionsstand der statischen Daten

STRATEGY (19)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Gruppierung zur schnelleren Auswertung der Blöcke

• [0]

Eine Gruppierung erfolgt durch die Eingabe des gleichen Zahlenwertes in den Parameter STRATEGY jedes einzelnen Blocks.

Diese Daten werden vom AO Funktionsblock weder geprüft noch verarbeitet.

TAG DESC (18)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Anwenderspezifischer Text zur eindeutigen Identifizierung und Zuordnung des Blocks max. 32 Zeichen, [ohne Text]

TARGET MODE (21)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Gewünschte Betriebsart des Stellungsreglers

- 8 · AUTO (Automatikbetrieb)
- 16 · MAN (Handbetrieb)
- 128 · O/S (außer Betrieb)

Parameterlisten \cdot AO Funktionsblock, Slot 1 \cdot Profilspezifische Parameter

Zuordnung Index – Parameter: AO Transducer Block

Index	Parameter
16	BLOCK_OBJ
17	ST_REV
18	TAG_DESC
19	STRATEGY
20	ALERT_KEY
21	TARGET_MODE
22	MODE_BLK
23	ALM_SUM
24	BATCH
25	SP
27	PV_SCALE
28	READBACK
30	RCAS_IN
37	IN_CHANNEL
38	OUT_CHANNEL

Index	Parameter
39	FSAFE_TIME
40	FSAFE_TYPE
41	FSAFE_VALUE
43	RCAS_OUT
47	POS_D
48	SETP_DEVIATION
49	CHECK_BACK
50	CHECK_BACK_MASK
51	SIMULATE
52	INCREASE_CLOSE
53	OUT
54	OUT_SCALE
65	CHECK_BACK_OPT
66	POS_D_LIMITS

8.4 AO Transducer Block, Slot 1 · Profilspezifische Parameter

ACT_STROKE_TIME_DEC (89)

Speicherklasse -; Lesezugriff (r)

Minimale Laufzeit ZU [s] (Code 41)

Die minimale Laufzeit ZU (in Richtung 0 %-Position) ist die tatsächliche Zeit, die das System Stellungsregler, Antrieb und Ventil benötigt, um den Nennhub/Nennwinkel in Richtung des zu schließenden Ventils zu durchfahren (gemessen während der Initialisierung).

• [1,0 s]

ACT STROKE_TIME_INC (90)

Speicherklasse -; Lesezugriff (r)

Minimale Laufzeit AUF [s] (Code 40)

Die minimale Laufzeit AUF (in Richtung 100 %-Position) ist die tatsächliche Zeit, die das System Stellungsregler, Antrieb und Ventil benötigt, um den Nennhub/Nennwinkel in Richtung des zu öffnenden Ventils zu durchfahren (gemessen während der Initialisierung).

• [1,0 s]

ACTUATOR ACTION (143)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Sicherheitsstellung des Antriebs bei Hilfsenergieausfall (wird automatisch ermittelt)

- 0 · nicht initialisiert
- 1 · öffnend (in Richtung 100 %-Position)
- 2 schließend (in Richtung 0 % -Position)
- 3 · keine/speichernd (Position bleibt erhalten)

ACTUATOR MAN (140)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Hersteller des Antrieb am Stellventil mit Stellungsregler

ACTUATOR SER NUM (145)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Seriennummer des Antrieb am Stellventil mit Stellungsregler

ACTUATOR_TYPE (142)

Speicherklasse -; Lesezugriff (r)

Art des Antriebs am Stellventil mit Stellungsregler

- 0 · elektropneumatisch
- 1 elektrisch
- 2 · elektrohydraulisch
- 3 · andere

ADD GEAR ID (148)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Hersteller-ID Zusatzkomponente

Parameterlisten · AO Transducer Block, Slot 1 · Profilspezifische Parameter

ADD GEAR SER NUM (146)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Seriennummer Zusatzkomponente

ALARM SUM (87)

Speicherklasse -; Lesezugriff (r)

Aktueller Status der Prozessalarme im AO Transducer Block

• [0]

ALARM KEY (84)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Identifikationsnummer des Anlagenteils

• [0]

BLOCK OBJ (80)

Speicherklasse -; Lesezugriff (r)

DEVICE CALIB DATE (103)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Datum der letzten Kalibrierung des Stellungsreglers [XX.XX.20XX]

DEVICE CONFIG DATE (104)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Datum der letzten Konfigurierung des Stellungsreglers [XX.XX.20XX]

FEADBACK VALUE (138)

Speicherklasse -; Lesezugriff (r)

Aktuelle Ventilposition

Einheit von OUT SCALE

LIN TYPE (105)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Art der Kennlinie (Code 20)

- 0 · linear
- 1 · gleichprozentig
- 2 · gleichprozentig invers
- 3 · benutzerdefiniert (z. Z. nicht unterstützt)
- 4 · SAMSON Regelklappe linear
- 5 · SAMSON Reaelklappe aleichprozentia
- 6 · Vetec Drehkegelventil linear
- 7 · Vetec Drehkegelventil gleichprozentig

MODE BLK (86)

Speicherklasse -; Lesezugriff (r)

Betriebsart des Stellungsreglers

POSITIONING VALUE (137)

Speicherklasse -; Lesezugriff (r)

Aktuelle Stellgröße

Einheit von OUT_SCALE

RATED TRAVEL (112)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Nennhub [mm] bzw. Nennwinkel [grad] des Ventils

• [15 mm]

SELF CALIB CMD (113)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Starten von herstellerspezifischen Kalibriersequenzen im Stellungsregler

- 0 · kein Test, normaler Betriebszustand
- 1 · -
- 2 · Start Initialisierung
- 3 · Abbruch Initialisierung
- 4 · Start Nullpunktabgleich
- 5 · Abbruch Nullpunktabgleich
- 6 · Gerät suchen, Display: "HERE I AM"
- 7 · Rücksetzen "GW Wegintegral überschritten"
- 8 bis 22 · -
- 23 · Rücksetzen "Regelkreisfehler"
- 24 · Rücksetzen "Nullpunktfehler"
- 25 · Rücksetzen "Autokorrektur"
- 26 · Rücksetzen "Fataler Fehler"
- 27 · keine Funktion
- 28 · Rücksetzen "x > zulässiger Bereich"
- 29 · Rücksetzen "Delta x < zulässiger Bereich"
- 30 · Rücksetzen "Anbau"
- 31 · Rücksetzen "Init-Zeit >"
- 32 · Rücksetzen "Init MGV"
- 33 · Rücksetzen "Laufzeit <"
- 34 · Rücksetzen "Stiftposition"
- 35 bis 39 · -
- 40 · Rücksetzen "x-Signal"
- 41 · Rücksetzen "i/p-Wandler"
- 42 · Rücksetzen "Hardware"
- 43 · Rücksetzen "Regelparameter"
- 44 · Rücksetzen "Potiparameter"

Parameterlisten · AO Transducer Block, Slot 1 · Profilspezifische Parameter

SELF_CALIB_CMD (113) - Fortsetzung

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

- 45 · Rücksetzen "Abgleich"
- 46 · Rücksetzen "Allgemeine Parameter"
- 47 · Rücksetzen "Interner Gerätefehler 1"
- 48 · Rücksetzen "Keine Notlaufeigenschaften"
- 49 · Rücksetzen "Programmladefehler"
- 50 · Rücksetzen "Optionsparameter"
- 51 · Rücksetzen "Info-Parameter"
- 52 · Rücksetzen "Datenspeicher"
- 53 · Rücksetzen "Kontrollrechnung"
- 54 · keine Funktion
- 55 · Rücksetzen "Diagnose-Parameter"
- 56 bis 59 = -
- 60 · Rücksetzen "Zähler Reset Geräteanlauf"
- 61 · Rücksetzen "Kommunikationscontroller"
- 62 · Rücksetzen "Zähler Reset Kommunikationscontroller" -> SW_W_DOG ausgelöst
- 63 · Rücksetzen "Regelungsparameter"
- 64 · Rücksetzen "Zähler Reset Regelungscontroller"
- 65 · Rücksetzen "Fehlermeldung Busanschaltung"
- 66 · Rücksetzen "Zähler Reset Busanschaltung"

SELF CALIB STATUS (114)

Speicherklasse -; Lesezugriff (r)

Herstellerspezifischer Status der mit SELF_CALIB_CMD gestarteten Sequenz

Während des Nullpunkttastentests erhält dieser Parameter den Status der Nullpunkttaste.

- 0 · unbestimmt
- 1 läuft
- 2 · abgebrochen
- 3 · Bereich fehlerhaft
- 4 · Fehler in Mechanik/Pneumatik
- 5 · Verstärkungsfehler
- 6 · Offsetfehler
- 7 · Reihenfolge Abgleich vertauscht
- 8 bis 10 · –
- 11 · Timeout
- 12 · Proportionalbereich zu stark eingeschränkt
- 13 Nennhub oder Übersetzung falsch gewählt
- 14 · mech. System klemmt (bei Initialisierung)
- 15 · pneum. System undicht (bei Initialisierung)
- 16 · Aktion abgebrochen, weil noch kein erfolgreicher Fertigungstest durchgeführt
- 17 Initialisierungsstatus: Ermittlung der mechanischen Anschläge
- 18 · Initialisierungsstatus: Ermittlung der minimalen Stellimpulse
- 19 · Initialisierungsstatus: Ermittlung der minimalen Laufzeiten

SELF_CALIB_STATUS (114) - Fortsetzung

Speicherklasse -; Lesezugriff (r)

- 20 Initialisierung abgebrochen durch Aktivierung des Magnetventils
- 21 bis 29 · -
- 30 = Nullpunktfehler
- 31 bis 253 · -
- 254 = erfolgreich
- 255 = keine gültigen Daten von der Applikation

SERVO GAIN 1 (115)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

K_P-Stufe (Code 17)

• [7]

SERVO RATE 1 (116)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

T_v-Stufe (Code 18)

• [2]

SETP CUTOFF DEC (118)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Endlage bei kleiner (Code 14)

Unterschreitet der Sollwert den eingegebenen Wert, wird das Ventil in Richtung der Endlage, die 0 % des Sollwerts entspricht, gefahren.

Dies geschieht bei elektropneumatischen Antrieben durch vollständiges Be- bzw. Entlüften des Antriebs (entsprechend der Sicherheitsstellung).

• [0.0 %]

SETP_CUTOFF_INC (119)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Endlage bei größer (Code 15)

Überschreitet der Sollwert den eingegebenen Wert, wird das Ventil in Richtung der Endlage, die 100 % des Sollwerts entspricht, gefahren.

Dies geschieht bei elektropneumatischen Antrieben durch vollständiges Be- bzw. Entlüften des Antriebs (entsprechend der Sicherheitsstellung).

[125]

ST REV (81)

Speicherklasse -; Lesezugriff (r)

Revisionsstand der statischen Daten

Parameterlisten · AO Transducer Block, Slot 1 · Profilspezifische Parameter

STRATEGY (83)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Gruppierung zur schnelleren Auswertung der Blöcke

• [0]

Eine Gruppierung erfolgt durch die Eingabe des gleichen Zahlenwertes in den Parameter STRATEGY jedes einzelnen Blocks.

TAG DESC (82)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Anwenderspezifischer Text zur eindeutigen Identifizierung und Zuordnung des Blocks

• max. 32 Zeichen, [ohne Text]

TARGET MODE (85)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Gewünschte Bertriebsart

- [8] · AUTO (Automatikbetrieb)
- 16 · MAN (Handbetrieb)
- 128 · O/S (außer Betrieb)

TOT VALVE TRAV LIM (126)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Grenzwert absolutes Wegintegral (Code 24)

[1000000.0]

TOTAL VALVE TRAVEL (125)

Speicherklasse -; Lesezugriff (r)

Absolutes Wegintegral: Summe der Nennlastspiele (Doppelhübe) (Code 23)

TRAVEL LIMIT LOW (127)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Untere Hub- bzw. Drehwinkelbegrenzung [% des Stellbereiches PV_SCALE] (Code 10)
Begrenzung des Hubes bzw. Drehwinkels nach unten auf den eingegebenen Wert, die Kennlinie wird nicht angepasst.

• [0.0 %]

TRAVEL LIMIT UP (128)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Oberer Hub- bzw. Drehwinkelbegrenzung [% des Stellbereiches PV_SCALE] (Code 11) Begrenzung des Hubes bzw. Drehwinkels nach oben, die Kennlinie wird nicht angepasst.

• [100.0 %]

TRAVEL RATE DEC (129)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Gewünschte Laufzeit ZU [s]

Minimale Zeit zum Durchfahren des Stellbereichs in Richtung 0 %-Position

• [0.0 s]

TRAVEL RATE INC (130)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Gewünschte Laufzeit AUF [s]

Minimale Laufzeit zum Durchfahren des Stellbereichs in Richtung 100 %-Position

• [0.0 s]

VALVE MAINT DATE (131)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Datum der letzten Wartung des Stellungsreglers [XX.XX.20XX]

VALVE MAN (139)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Hersteller des Ventil am Stellventil mit Stellungsregler

VALVE SER NUM (144)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Seriennummer des Ventils am Stellventil mit Stellungsregler

VALVE TYPE (141)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Art des Ventils am Stellventil mit Stellungsregler

- 0 · Stellventil mit geradlinig bewegtem Abschlusskörper
- 1 Stellventil mit drehend bewegtem Abschlusskörper, Part-Turn, Schwenkbewegung
- 2 · Stellventil mit drehend bewegtem Abschlusskörper, Multi-Turn, durchdrehend

Parameterlisten \cdot AO Transducer Block, Slot 1 \cdot Profilspezifische Parameter

Zuordnung Index – Parameter: AO Transducer Block, Slot 1 · Profilspezifische Parameter

Index	Parameter
80	BLOCK_OBJ
81	ST_REV
82	TAG_DESC
83	STRATEGY
84	ALERT_KEY
85	TARGET_MODE
86	MODE_BLK
87	ALARM_SUM
89	ACT_STROKE_TIME_DEC
90	ACT_STROKE_TIME_INC
103	DEVICE_CALIB_DATE
104	DEVICE_CONFIG_DATE
105	LIN_TYPE
112	RATED_TRAVEL
113	SELF_CALIB_CMD
114	SELF_CALIB_STATUS
115	SERVO_GAIN_1
116	SERVO_RATE_1
118	SETP_CUTOFF_DEC
119	SETP_CUTOFF_INC

Index	Parameter
125	TOTAL_VALVE_TRAVEL
126	TOT_VALVE_TRAV_LIM
127	TRAVEL_LIMIT_LOW
128	TRAVEL_LIMIT_UP
129	TRAVEL_RATE_DEC
130	TRAVEL_RATE_INC
131	VALVE_MAINT_DATE
137	POSITIONING_VALUE
138	FEEDBACK_VALUE
139	VALVE_MAN
140	ACTUATOR_MAN
141	VALVE_TYPE
142	ACTUATOR_TYPE
143	ACTUATOR_ACTION
144	VALVE_SER_NUM
145	ACTUATOR_SER_NUM
146	ADD_GEAR_SER_NUM
147	ADD_GEAR_MAN
148	ADD_GEAR_ID
149	ADD_GEAR_INST_DATE

8.5 AO Transducer Block, Slot 1 · Herstellerspezifische Parameter

ACTIVE IDENT NUMBER (205)

Speicherklasse -; Lesezugriff (r)

Anzeige der GSD, mit der das Gerät betrieben wird

Wenn das Gerät im Kompatibilitätsmodus ist, kann es mit den folgenden GSD-Dateien arbeiten:

3785: 3785 Profil 2
071D: 3785 Profil 3
0688: 3730-4 Profil 3.01

AUTOSTART HYS (194)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Zeitlicher Mindestabstand, in dem der Hysteresetest durchgeführt wird (EXPERTplus)

BLOCKING POSITION (166)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Blockierstellung

CHARACT TYPE (173)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Kennlinientyp

• max. 32 Zeichen, [ohne Text]

CLOSING DIRECTION (165)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Schließrichtung

COUNTER INIT START (198)

Speicherklasse -; Lesezugriff (r)

Anzahl der durchgeführten Initialisierungen seit dem letzten Reset

CYCLE COUNTER LIMIT (210)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Max. Zyklenzählergrenze

DATALOGGER (185)

Speicherklasse -; Lesezugriff (r)

Struktur von Lese- und Schreibparametern des Datenloggers (EXPERTplus)

Element	Parameter
0	DATALOGGER_SELECT (Auswahl Datenlogger)
1	TRIGGER_SELECT (Triggerauswahl)
2	SAMPLE_RATE (Abtastrate)
3	START_VALUE (Startwertvorgabe)
4	LOGGING_LIMIT (Protokollierungsgrenze)
5	PRETRIGGER_TIME (Pretriggerzeit)

DATALOGGER 2 (211)

Speicherklasse -; Lesezugriff (r)

DATALOGGER READ (186)

Speicherklasse -; Lesezugriff (r)

Struktur von Leseparametern des Datenloggers (EXPERTplus)

Element	Parameter
0	TESTINFO
1	MAX_PRETRIGGERZEIT
2	FORTSCHRITT
3	Zähler_tage
4	zähler_stunden
5	ZÄHLER_MINUTEN
6	ZÄHLER_SEKUNDEN
7	ZÄHLER_100MS_TAKT

DATA READ 2 (212)

Speicherklasse -; Lesezugriff (r)

DELAY_TIME (181)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Nachlaufzeit

Rücksetzkriterium für laufende Regelkreisüberwachung. Wenn die eingegebene Nachlaufzeit DELAY_ TIME überschritten ist und die Regelabweichung nicht innerhalb des eingegebenen Tolernzbandes TO-LERANCE_BAND liegt, wird Regelkreisstörung gemeldet. Wird während der Initialisierung aus der minimalen Laufzeit ermittelt.

• [30]

DEVICE_CHARACT (202) und DEVICE_CHARACT_2 (231)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Struktur für die Geräteeigenschaften

Element	Parameter
0	Antriebswirkfläche
1	Bauart
2	Anbau
3	Stelldruckbereich Anfang
4	Stelldruckbereich Ende
5	Versorgungsdruck
6	Booster
7	Stangenabdichtung
8	Dichtkante (Leckageklasse)
9	Druckentlastung
10	Kennlinie Kegel
11	Fließrichtung
12	Nennweiten-Norm
13	Nennweite DN
14	K _{VS} -Einheit
15	K _{VS} -Wert
16	Sitzdurchmesser Ventil

DEVICE_INIT_STATE (163)

Speicherklasse -; Lesezugriff (r)

Status Initialisierung

DIAG_MONITORING (187)

Speicherklasse -; Lesezugriff (r)

Temperaturspezifische Parameter

Element	Parameter
0	CURRENT_TEMP (aktuelle Temperatur)
1	MAX_TEMP (maximale Temperatur)
2	TIME_MAX_TEMP (maximale Temperatur Zeitpunkt)
3	MIN_TEMP (minimale Temperatur)
4	TIME_MIN_TEMP (minimale Temperatur Zeitpunkt)
5	PERIOD_TIME_HIGH (Verweildauer bei maximaler Temperatur)
6	PERIOD_TIME_LOW (Verweildauer bei minimaler Temperatur)

DIAG TESTINFO (201)

Speicherklasse -; Lesezugriff (r)

Infoparameter Diagnoselauf (EXPERTplus)

- 0 · d1 Stellsignal y Stationär
- 2 · d2 Stellsignal y Hysterese
- 4 · d3 Statische Kennlinie
- 8 · d4 Teilhubtest (PST)
- 16 · d5 Diagramm Stellsignal y Hysterese aktiviert
- 32 · d5 Diagramm Stellsignal y Hysterese läuft
- 64 · Datenlogger permanent
- 128 · Datenlogger getriggert 256 · Referenzlauf
- 516 · Testlauf der Reihe nach

DIAGNOSE LEVEL (195)

Speicherklasse -; Lesezugriff (r)

Stand der Diagnose

- EXPERT
- EXPERTplus
- Emergency shutdown

ELAPSED HOURS METERS (193)

Speicherklasse -; Lesezugriff (r)

Betriebsstundenzähler

Element	Parameter
0	ELAPSED_HOURS_METER (Gerät eingeschaltet)
1	DEVICE_IN_CLOSED_LOOP (Gerät in Regelung)
2	POWER_ON_SINCE_INIT (Gerät eingeschaltet seit letzter Initialisierung)
3	DEVICE_IN_CLOSED_LOOP_SINCE_LAST_INIT (Gerät in Regelung seit letzter Initialisie-
	rung)

ENHANCED DIAG CMD (192)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Erweiterte Diagnosetests

- 0 · Keine Funktion
- 1 · Datenlogger starten
- 2 · Datenlogger abbrechen
- 3 · Hysterese-Onlinetest starten
- 4 · Hysterese-Onlinetest abbrechen
- 5 · Teilhubtest (PST) starten
- 6 · Teilhubtest (PST) abbrechen
- 7 · Tests der Reihe nach starten
- 8 · Tests abbrechen
- 9 · Testlauf Stellsignal y Stationär starten

ENHANCED DIAG CMD (192) - Fortsetzung

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

- 10 · Testlauf Stellsignal y Stationär abbrechen
- 11 · Testlauf Stellsianal y Hysterese starten
- 12 · Testlauf Stellsignal y Hysterese abbrechen
- 13 · Testlauf Statische Kennlinie starten
- 14 · Testlauf Statische Kennlinie abbrechen
- 15 · Referenzlauf starten
- 16 · Referenzlauf abbrechen
- 17 · Rücksetzen "Protokollierung"
- 18 · Rücksetzen aller Diagnoseinformationen
- 19 · Rücksetzen "Betriebsstundenzähler"
- 20 · Rücksetzen der Temperaturinformationen
- 21 · Rücksetzen "Histogramm Ventilstellung X Langzeitbetrachtung"
- 22 · Rücksetzen "Histogramm Zyklenzähler Langzeitbetrachtung"
- 23 · Rücksetzen "Histogramm Regelabweichung e Langzeitbetrachtung"
- 24 · Rücksetzen "Y X Langzeitbetrachtung"
- 25 · Rücksetzen "Y X Kurzzeitbetrachtung"
- 26 · Rücksetzen "Diagramm Stellsignal y Hysterese Langzeitbetrachtung
- 27 · Rücksetzen "Unterer Endlagentrend"
- 28 · Rücksetzen "Untere Endlage Referenzwerte"
- 29 · Rücksetzen "Histogramm Ventilstellung x Kurzzeitbetrachtung"
- 30 · Rücksetzen "Histogramm Regelabweichung e Kurzzeitbetrachtung"
- 31 · Rücksetzen "Histogramm Zyklenzähler Kurzzeitbetrachtung"
- 32 · Rücksetzen "Diagramm Stellsignal y Hysterese Kurzzeitbetrachtung"
- 33 · Rücksetzen "Y X Referenzwerte"
- 34 · Rücksetzen "Referenzmessung Hysterese"
- 35 · Rücksetzen "Datenlogger"
- 36 · Rücksetzen "Statische Kennlinie"
- 37 · Rücksetzen "Teilhubtest (PST)"
- 38 · Rücksetzen "Y X Messwerte"
- 39 · Rücksetzen "Diagramm Stellsignal y Hysterese Messwerte"

EVENT_LOGGING_1 (190) und EVENT_LOGGING_2 (191)

Speicherklasse -; Lesezugriff (r)

Datensatz 1/2 der Protokollierung (EXPERTplus)

Element	Parameter
0	MESSAGES_015 (Meldungen 015)
1	ELAPSED_HOURS_METER_015 (Zeitpunkt der Meldungen 015)
29	MESSAGE_1429 (Meldungen 1429)
30	ELAPSED_HOURS_METER_1429 (Zeitpunkt der Meldungen 1429)

FINAL POSITION VALUE (183)

Speicherklasse -; Lesezugriff (r)

Ventilposition [%] bezogen auf den Arbeitsbereich FINAL_VALUE_RANGE

FINAL VALUE (184)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Stellwert des vorgeschalteten Analog Output Function Blocks

FINAL VALUE RANGE (179)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Hub-/Drehwinkelbereich

- [0.0 bis 100.0]
- EU 100 (Code 9)
- EU_0 (Code 8)
- UNIT INDEX
- DECIMAL

FST_ANALYSIS_1 (222) bis FST_ANALYSIS_3 (224)

Speicherklasse -; Lesezugriff (r)

Einstellungen zum Vollhubtest (FST)

FST_MEAS_DATA1...3_TIME_STAMP: Zeitstempel für diesen Test
 FST_MEAS_DATA1...3_BREAK_AWAY_TIME: Ermittelte Losbrechzeit

• FST_MEAS_DATA1...3_OVERSHOOT_RISING: Überschwinger (steigend)

FST_MEAS_DATA1...3_DEAD_TIME_RISING: Totzeit (steigend)
 FST_MEAS_DATA1...3_T63_RISING: T63 (steigend)

• FST_MEAS_DATA1...3_T98_RISING: T98 (steigend)

FST_MEAS_DATA1...3_RISE_TI_RISING: Anregelzeit (steigend)
 FST_MEAS_DATA1...3_SETTL_TI_RISING: Ausregelzeit (steigend)

• FST_MEAS_DATA1...3_OVERSHOOT_FALL: Überschwinger (fallend)

• FST_MEAS_DATA1...3_DEAD_TI_FALL: Totzeit (fallend)

FST_MEAS_DATA1...3_T63_FALLING: T63 (fallend)
 FST_MEAS_DATA1...3_T98_FALLING: T98 (fallend)

• FST_MEAS_DATA1...3_RISE_TI_FALLING: Anregelzeit (fallend)

FST_MEAS_DATA1...3_SETTL_TI_FALLING: Ausregelzeit (fallend)

FST CANCEL CONDITIONS (226)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Abbruchbedingungen Vollhubtest (FST)

FST_CANCEL_COND_MAX_TEST_DURA: Max. Testdauer Anwendervorgabe
 FST_CANCEL_COND_ACTIV_MAX_TIME: Aktivierung 'Max. Losbrechzeit'

• FST_CANCEL_COND_MAX_BREAK_TIME: Max. Losbrechzeit

• FST_CANCEL_COND_ACTIV_TIME_REACH: Aktivierung 'Erlaubte Zeit bis Schließstellung'

FST_CANCEL_COND_TIME_REACH: Erlaubte Zeit bis Schließstellung

FST DISPLAY (227)

Speicherklasse –; Lesezugriff (r)

Informationen zum Vollhubtest (FST)

PROGRESS_FLAG: Fortschritt
 STATUS_FST: Status Vollhubtest
 NUMBER_OF_TESTS: Testanzahl

RECOMMEND_SCAN_RATE: Empfohlene Mindest-Abtastzeit
 DURATION_OF_TEST: Vorraussichtliche Testdauer

• TEST_INFO Testinformation

FST SETTTINGS (225)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Einstellungen zum Vollhubtest

FST_SETTINGS_TOL_LIMIT_RESPONSE:
 FST_SETTINGS_ACTIV_RAMP_FUNC:
 FST_SETTINGS_RAMP_TIME_RISING:
 FST_SETTINGS_RAMP_TIME_FALLING:
 Rampenzeit steigend
 Rampenzeit fallend

FST_SETTINGS_SETTL_BEFORE_START: Beruhigungszeit vor Testbeginn
 FST_SETTINGS_DELAY_AFTER_STEP: Wartezeit nach Sprung

FST SETTINGS SCAN RATE:
 Abtastzeit

FST TEST STATUS 1 (228) bis FST TEST STATUS 3 (230)

Speicherklasse -; Lesezugriff (r)

Status der durchgeführten Vollhubtests (FST)

HISTOGRAMM E ABTASTRATE (200)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Abtastrate des Kurzzeit E-Histogramm (EXPERTplus)

HISTOGRAMM X ABTASTRATE (199)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Abtastrate des Kurzzeit X-Histogramms (EXPERTplus)

INIT METHOD (161)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Initialisierungsart

- 0 · Maximum range (Maximalbereich)
- 1 · Nominal range (Nennbereich)
- 2 · Manual adjustment (Manuell gew. Bereich)
- 3 · Substitute (Ersatzabaleich)
- 4 · Zero Point (Nullpunkt)

MANUFAC_ACTUATOR_SIZE (209)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

MOVING DIRECTION (164)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Bewegungsrichtung des Sollwerts w zur Regelgröße x

NO_OF_ZERO_POINT_ADJ (196)

Speicherklasse -; Lesezugriff (r)

Anzahl der Nullpunktabgleiche seit der letzten Initialisierung

PIN POSITION (160)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Stiftposition

Der Abtaststift muss je nach Ventilhub/-winkel in die richtige Stiftposition eingesetzt werden. Die Angabe der Stiftposition wird für die NOM- und SUb-Initialisierung benötigt, vgl. ► EB 8384-4.

PRESSURE LIMIT (177)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Druckgrenze (Code 16)

- 1 · Off
- 2 · 3.7 bar
- 3 · 2.4 bar
- 4 · 1.4 bar

PST_ANALYSIS_1 (213) bis PST_ANALYSIS_3 (215)

Speicherklasse -; Lesezugriff (r)

Einstellungen zum Teilhubtest (PST)

PST_MEAS_DATA1...3_TIME_STAMP: Zeitstempel für diesen Test
 PST_MEAS_DATA1...3_BREAK_AWAY_TIME: Ermittelte Losbrechzeit
 PST_MEAS_DATA1...3_OVERSHOOT_RISING: Überschwinger (steigend)

PST_MEAS_DATA1...3_DEAD_TIME_RISING: Totzeit (steigend)
 PST_MEAS_DATA1...3_T63_RISING: T63 (steigend)

PST_MEAS_DATA1...3_T98_RISING: T98 (steigend)
 PST_MEAS_DATA1...3_RISE_TI_RISING: Anregelzeit (steigend)

PST_MEAS_DATA1...3_SETTL_TI_RISING: Ausregelzeit (steigend)
 PST_MEAS_DATA1...3_OVERSHOOT_FALL: Überschwinger (fallend)

PST_MEAS_DATA1...3_DEAD_TI_FALL: Totzeit (fallend)
 PST_MEAS_DATA1...3_T63_FALLING: T63 (fallend)
 PST_MEAS_DATA1...3_T98_FALLING: T98 (fallend)
 PST_MEAS_DATA1...3_RISE_TI_FALLING: Anregelzeit (fallend)

PST_MEAS_DATA1...3_SETTL_TI_FALLING: Ausregelzeit (fallend)
 DST_AAFAS_DATA1...3_DELTA_X

PST_ MEAS_DATA1...3_DELTA_Y: Delta-y-Überwachungswert

PST CANCEL CONDITIONS (217)

Speicherklasse -; Lese- und Schreibzugriff (r/w); Zugang ALL

Abbruchbedingungen Teilhubtest (PST)

• PST_CANCEL_COND_ACT_X_CONTROL: Aktivierung x-Überwachungswert

• PST_CANCEL_COND_X_CONTROL_VALUE: x-Überwachungswert

PST_CANCEL_COND_ACT_DELTA_Y_MON: Aktivierung Delta-y-Überwachung

• PST_CANCEL_COND_DELTA_Y_MON_VAL: Delta-y-Überwachungswert

PST_CANCEL_COND_TOL_BAND_CONTR: Aktivierung PST-Toleranzband-Überwachung

• PST_CANCEL_COND_TOL_BAND: PST-Toleranzband

PST_CANCEL_COND_MAX_TEST_DURA: Max. Testdauer Anwendervorgabe
 PST_CANCEL_COND_ACTIV_MAX_TIME: Aktivierung 'Max. Losbrechzeit'

PST_CANCEL_COND_MAX_BREAK_TIME: Max. Losbrechzeit

PST_CANCEL_COND_ACTIVE_TIME_REACH: Aktivierung 'Erlaubte Zeit bis Sprungendwert'

PST DISPLAY (218)

Speicherklasse -; Lesezugriff (r)

Informationen zum Teilhubtest (PST)

AUTOSTART_READ:
 Zeit bis zum nächsten PST Autotest

PROGRESS_FLAG: Fortschritt

• DELTA_Y_MON_REF_VAL: Delta-y-Überwachung Referenzwert

DELTA_Y_MON_REP_VAL:
 Delta-y-Überwachung Wiederholungswert

• STATUS_PST: Status Teilhubtest

NUMBER_OF_TESTS:
 Testanzahl

RECOMMEND_SCAN_RATE: Empfohlene Mindest-Abtastzeit
 DURATION_OF_TEST: Vorraussichtliche Testdauer
 TESTMODE ACTUAL: Aktueller Testmodus PST

• TEST INFO: Testinformation

PST SETTINGS (216)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Einstellungen zum Teilhubtest (PST)

PST_SETTINGS_AUTOSTART: Autotestzeit
 PST_SETTINGS_STEP_START: Sprungstart
 PST_SETTINGS_STEP_END: Sprungende

PST_SETTINGS_LIMIT_STEP_RESPONSE:
 PST_SETTINGS_ACTIVATION_RAMP_FUN:
 PST_SETTINGS_RAMP_TIME_RISING:
 PST_SETTINGS_RAMP_FALLING:
 Rampenzeit (steigend)
 Rampenzeit (fallend)

PST_SETTINGS_SETTLING_TIME:
 Beruhigungszeit vor Testbeginn

PST_SETTINGS_DELAY_TI_AFTER_STEP: Wartezeit nach Sprung

PST_SETTINGS_SCAN_RATE: Abtastzeit
 PST_SETTINGS_STEP_RESPONSE: Anzahl Sprünge

PST_TEST_STATUS_1 (219) bis PST_TEST_STATUS_3 (221)

Speicherklasse -; Lesezugriff (r)

Status des Teilhubtests (PST)

PST_TEST_STAT1...3_TEST_START:
 Teststart

• PST_TEST_STAT1...3_no_test_avail: Kein Test vorhanden

PST_TEST_STAT1...3_X_CANCEL: x-Abbruch
 PST_TEST_STAT1...3_Y_CANCEL: y-Abbruch

PST_TEST_STAT1...3_TOL_BAND_EXCEED:
 PST_TEST_STAT1...3_MAX_TIME_EXCEED:
 PST_TEST_STAT1...3_TEST_MAN_CANCEL:
 PST_TEST_STAT1...3_OUT_OF_MEMORY:
 Max. Testzeit überschritten
 Test manuell abgebrochen
 Messdatenspeicher voll

PST_TEST_STAT1...3_ABO_INT_SOL_VAL:
 Int. Magnetventil/Zwangsentlüftung Abbruch

PST_TEST_STAT1...3_PRESSURE_FRIC: Reibung

PST_TEST_STAT1...3_W_STEP_TOO_HIGH: Differenz w – Sprungstart zu hoch

• PST_TEST_STAT1...3_ABORT_REF_CHANG: Test abgebrochen – Sollwert wurde verändert

PST_TEST_STAT1...3_MAX_BREAKTIME_EX: Max. Losbrechzeit überschritten

• PST_TEST_STAT1...3_TIME_EXCEEDED: Erlaubte Zeit bis Sprungendwert überschritten

RESET DIAG FKT (206)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Rücksetzfunktionen

- 0 Keine Funktion
- 1 Rücksetzen Diagnose
- 17 Rücksetzen 'Protokollierung'
- 21 Rücksetzen 'Histogramm Ventilstellung x'
- 23 Rücksetzen 'Histogramm Regeldifferenz e'
- 22 Rücksetzen 'Histogramm Zyklenzähler'
- 24 Rücksetzen 'Diagramm Stellsignal y Stationär'
- 25 Rücksetzen 'Diagramm Stellsignal y Stationär Kurzzeitbetrachtung'
- 26 Rücksetzen 'Diagramm Stellsignal y Hysterese'
- 27 Rücksetzen 'Unterer Endlagentrend'
- 28 Rücksetzen 'Untere Endlage Referenzwerte'
- 29 Rücksetzen 'Histogramm Ventilstellung x Kurzzeitbetrachtung'
- 30 Rücksetzen 'Histogramm Regeldifferenz e Kurzzeitbetrachtung'
- 31 Rücksetzen 'Histogramm Zyklenzähler Kurzzeitbetrachtung'
- 32 Rücksetzen 'Diagramm Stellsignal y Hysterese Kurzzeitbetrachtung'
- 38 Rücksetzen 'Diagramm Stellsignal y Stationär Messwerte'
- 39 Rücksetzen 'Diagramm Stellsignal y Hysterese Messwerte'
- 60 Rücksetzen Teilhubtest (PST)
- 61 Rücksetzen Vollhubtest (FST)

SELF CALIB STATUS 2 (233)

Speicherklasse -; Lesezugriff (r)

SELF CALIB WARNING (167)

Speicherklasse -; Lesezugriff (r)

Initialisierungsfehler

SET FAIL SAFE POS (178)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Sicherheitsstellung Ventil

Der Regler bleibt in der Betriebsart AUTO. Die Sicherheitsstellung wird durch ein blinkendes "S" im Display angezeigt.

- 0 · nicht aktiv
- 1 · Setzen der Sicherheitsstellung
- 2 · Rücksetzen der Sicherheitsstellung

SETP CUTOFF DEC ON (171)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Endlage unten bei Endlage w < aktivieren/deaktivieren

SETP CUTOFF INC ON (170)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Endlage unten bei Endlage w > aktivieren/deaktivieren

SIGNAL PRESSURE ACTION (176)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Stellung des Schiebeschalters AIR TO OPEN/CLOSE (bei der Initialisierung) Eine Änderung ist nur durch eine erneute Initialisierung möglich.

STARTUP PARA (207)

Speicherklasse -; Lese- und Schreibzugriff (r/w); Zugang ALL

Inbetriebnahmeparameter

TRANS1_INIT_METHOD:
 Initialisierungsart (MAX, NOM, MAN, SUB)

TRANS1_MOVING_DIRECTION: Bewegungsrichtung
 TRANS1_LIN_TYPE: Kennlinienauswahl

• TRANS1_INIT_WITH_REF_TEST: Initialisierung mit Referenzlauf (Ja/Nein)

TRANS1 BLOCKING POSITION: Blockierstellung

STAT KENNLINIE RW (204)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang ALL

Struktur der statischen Kennlinie

Element	Parameter
0	START
1	ENDE
2	WARTEZEIT_NACH_SPRUNG
3	ANZAHL BIS UMKEHR

STAT_KENNLINIE_RW_2 (232)

Speicherklasse -; Lese- und Schreibzugriff (r/w); Zugang ALL

- START
- ENDE
- WARTEZEIT NACH SPRUNG
- ANZAHL BIS UMKEHR

STATUS_SOLENOID_VALVE (182)

Speicherklasse -; Lesezugriff (r)

Status Magnetventil (Code 45)

STEP_RESPONSE_R (188)

Speicherklasse -; Lesezugriff (r)

Informationsparameter Sprungantwort (EXPERTplus)

Element	Parameter
0	OVERSHOOT_RISING (Überschwinger steigend)
1	OVERSHOOT_FALLING (Überschwinger fallend)
2	DEAD_TIME_RISING (Totzeit steigend)
3	DEAD_TIME_FALLING (Totzeit fallend)
4	TIME_63_RISING (T63 steigend)
5	TIME_63_FALLING (T63 fallend)
6	TIME_98_RISING (T98 steigend)
7	TIME_98_FALLING (T98 fallend)
8	STEP_PROGRESS (Fortschritt)
9	RISE_TIME_FALLING (Anregelzeit fallend)
10	SETTLING_TIME_FALLING (Ausregelzeit fallend)
11	RISE_TIME_RISING (Anregelzeit steigend)
12	SETTLING_TIME_RISING (Ausregelzeit steigend)
13	DURATION_OF_TEST (Testdauer)
14	TESTINFO (Testinfo)

STEP RESPONSE RW (189)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Parameter Sprungantwort (EXPERTplus)

Element	Parameter
0	STEPSTART (Sprungstart)
1	STEPEND (Sprungende)
2	STEP_SAMPLE_RATE (Abtastzeit)
3	RAMPE_UP (Rampenzeit steigend)
5	RAMPE_DOWN (Rampenzeit fallend)
6	LATENCY_AFTER_STEP (Wartezeit nach Sprung)
7	STEP_SELECTION (Sprungauswahl)

SUB_MODE_INIT (162)

Speicherklasse -; Lesezugriff (r)

Status Ersatzabgleich (Initialisierung SUb)

TOLERANCE BAND (180)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Toleranzband (Code 19)

TRANSDUCER STATE (172)

Speicherklasse -; Lesezugriff (r)

Zustand des Transducer Blocks

- [0] · vgl. Betriebsart
- 1 · Magnetventil aktiv
- 2 · Untere Hubbegrenzung erreicht (x-Grenze unten, Code 10)
- 3 · Obere Hubbegrenzung erreicht (x-Grenze oben, Code 11)
- 4 · Dichtschließen des Ventils (Endlage w <, Code 14)
- 5 · Maximales Auffahren des Ventils (Endlage w >, Code 15)
- 7 · Sicherheitsstellung aktiv
- 255 · Normalbetrieb

TRAVEL LIMIT LOW ON (168)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Freigabe von x-Grenze unten

TRAVEL LIMIT UP ON (169)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Freigabe von x-Grenze oben

USER CHARACT (203)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Benutzerdefinierte Kennlinie

Element Parameter

0 X_0 1 Y_0

20 X_10 21 Y_10

ZERO POINT LIMIT (197)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Nullpunktgrenze

Zuordnung Index – Parameter: AO Transducer Block, Slot 1 · Herstellerspezifische Parameter

Index	Parameter
160	PIN_POSITION
161	INIT_METHOD
162	SUB_MODE_INIT
163	DEVICE_INIT_STATE
164	MOVING_DIRECTION
165	CLOSING_DIRECTION
166	BLOCKING_POSITION
167	SELF_CALIB_WARNING
168	TRAVEL_LIMIT_LOW_ON
169	TRAVEL_LIMIT_UP_ON
170	SETP_CUTOFF_INC_ON
171	SETP_CUTOFF_DEC_ON
172	TRANSDUCER_STATE
173	CHARACT_TYPE
176	SIGNAL_PRESSURE_ACTION
1 <i>77</i>	PRESSURE_LIMIT
178	SET_FAIL_SAFE_POS
179	FINAL_VALUE_RANGE
180	TOLERANCE_BAND
181	DELAY_TIME
182	STATUS_SOLENOID_VALVE

Index	Parameter
183	FINAL_POSITION_VALUE
184	FINAL_VALUE
185	DATALOGGER
186	DATALOGGER_READ
187	DIAG_MONITORING
188	STEP_RESPONSE_R
189	STEP_RESPONSE_RW
190	EVENT_LOGGING_1
191	EVENT_LOGGING_2
192	ENHANCED_DIAG_CMD
193	ELAPSED_HOURS_METERS
194	AUTOSTART_HYS
195	DIAGNOSE_LEVEL
196	NO_OF_ZERO_POINT_ADJ
197	ZERO_POINT_LIMIT
198	COUNTER_INIT_START
199	HISTOGRAMM_X_ABTASTRATE
200	HISTOGRAM_E_ABTASTRATRE
201	DIAG_TESTINFO
202	DEVICE_CHARACT
203	USER_CHARACT

Index	Parameter
204	STAT_KENNLINIE_RW
205	ACTIVE_IDENT_NUMBER
206	RESET_DIAG_FKT
207	STARTUP_PARA
208	SETP_X_LIMIT_PARA
209	MANUFAC_ACTUATOR_SIZE
210	CYCLE_COUNTER_LIMIT
211	DATALOGGER_2
212	DATALOGGER_READ_2
213	PST_ANALYSIS_1
214	PST_ANALYSIS_2
215	PST_ANALYSIS_3
216	PST_SETTINGS
217	PST_CANCEL_CONDITIONS
218	PST_DISPLAY

Index	Parameter
219	PST_TEST_STATUS_1
220	PST_TEST_STATUS_2
221	PST_TEST_STATUS_3
222	FST_ANALYSIS_1
223	FST_ANALYSIS_2
224	FST_ANALYSIS_3
225	FST_SETTINGS
226	FST_CANCEL_CONDITIONS
227	FST_DISPLAY
228	FST_TEST_STATUS_1
229	FST_TEST_STATUS_2
230	FST_TEST_STATUS_3
231	DEVICE_CHARACT_2
232	STAT_KENNLINIE_RW_2
233	SELF_CALIB_STATUS_2

8.6 DI1/2 Function Block, Slot 2/3 · Profilspezifische Parameter

ALERT KEY (20)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Identifikationsnummer des Anlagenteils

• [0]

ALM SUM (23)

Speicherklasse -; Lesezugriff (r)

Aktueller Status der Prozessalarme im DI Function Block

• [0]

BATCH (24)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Identifikation Batchprozess

BLOCK OBJECT (16)

Speicherklasse -; Lesezugriff (r)

CHANNEL (30)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Verbindung des Funktionsblocks mit dem Transducer Block

DI1: 0 · nicht aktiv

780 · aktiv

DI2: 0 · nicht aktiv

524 · aktiv

FSAFE TYPE (36)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Reaktion beim Auftreten eines Fehlers

- 0 · FSAFE_VALUE wird als OUT_D genutzt
- [1] · Verwendung des letzten gültigen OUT_D-Wertes
- 2 · OUT D hat keinen gültigen Wert

FSAFE_VAL_D (37)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Default-Wert für OUT_D, wenn der Sensor/die Sensorelektronik einen Fehler meldet

• [0]

Parameterlisten · DI1/2 Function Block, Slot 2/3 · Profilspezifische Parameter

INVERT (31)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Inversion des Input-Wertes PV_D (vom DI-TB) bevor er im Parameter OUT_D gespeichert wird

- [0] · nicht invertiert
- 1 · invertiert

MODE BLK (22)

Speicherklasse -; Lesezugriff (r)

Aktueller Betriebsmodus

OUT_D* (26)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Ausgang des Funktionsblocks (Vorgabe nur in der Betriebsart MAN)

SIMULATE (40)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Simulation des Inputwertes PV_D, DI-TB und DI-FB werden getrennt (Testzwecke)

ST REV (17)

Speicherklasse -; Lesezugriff (r)

Revisionsstand der statischen Daten

STRATEGY (19)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Gruppierung zur schnelleren Auswertung der Blöcke

• |0

Eine Gruppierung erfolgt durch die Eingabe des gleichen Zahlenwertes in den Parameter STRATEGY iedes einzelnen Blocks.

Diese Daten werden vom DI Funktionsblock weder geprüft noch verarbeitet.

TAG_DESC (18)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Anwenderspezifischer Text zur eindeutigen Identifizierung des Blocks

max. 32 Zeichen

TARGET MODE (21)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Gewünschte Betriebsart

8 · AUTO

16 · MAN

128 · O/S

VIEW1 (240)

Speicherklasse -; Lesezugriff (r)

Sammelbefehl zum Lesen einer Gruppe von Parametern mit einem Lesebefehl

Zuordnung Index – Parameter: DI1/2 Funktionsblock, Slot $2/3 \cdot \text{Profilspezifische}$ Parameter

Index	Parameter
16	BLOCK_OBJECT
17	ST_REV
18	TAG_DESC
19	STRATEGY
20	ALERT_KEY
21	TARGET_MODE
22	MODE_BLK
23	ALM_SUM

Index	Parameter
24	BATCH
26	OUT_D
30	CHANNEL
31	INVERT
36	FSAFE_TYPE
37	FSAFE_VAL_D
40	SIMULATE

8.7 DI1/2 Transducer Block, Slot 2/3 · Profilspezifische Parameter

ALERT KEY (64)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Identifikationsnummer des Anlagenteils

• [0]

ALM SUM (67)

Speicherklasse -; Lesezugriff (r)

Aktueller Status der Prozessalarme im DI Transducer Block

• [0]

BLOCK OBJ (60)

Speicherklasse -; Lesezugriff (r)

MODE BLK (66)

Speicherklasse -; Lesezugriff (r)

Aktueller Betriebsmodus

PV D (72)

Speicherklasse -; Lesezugriff (r)

Prozessvariable (wird inklusive Status an den FB weitergegeben)

SENSOR_ID (69)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Identifikation des genutzten Sensors (Typ)

SENSOR MAN (71)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Hersteller des Sensors

SENSOR SER NUM (70)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Seriennummer des benutzten Sensors

SENSOR WIRE CHECK (68)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

ST_REV (61)

Speicherklasse S; Lesezugriff (r)

Revisionsstand der statischen Daten

STRATEGY (63)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Gruppierung zur schnelleren Auswertung der Blöcke

• [0]

Eine Gruppierung erfolgt durch die Eingabe des gleichen Zahlenwertes in den Parameter STRATEGY jedes einzelnen Blocks.

TAG DESC (62)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Anwenderspezifischer Text zur eindeutigen Identifizierung des Blocks

• max. 32 Zeichen

TARGET MODE (65)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

- 8 · AUTO
- 16 · MAN
- 128 · O/S

Zuordnung Index – Parameter: DI1/2 Transducer Block, Slot 2/3 · Profilspezifische Parameter

Index	Parameter
60	BLOCK_OBJ
61	ST_REV
62	TAG_DESC
63	STRATEGY
64	ALERT_KEY
65	TARGET_MODE

Index	Parameter
66	MODE_BLK
67	ALM_SUM
68	SENSOR_WIRE_CHECK
69	SENSOR_ID
70	SENSOR_MAN
71	PV_D

