Uma proposta para valores k Locais para a regra de k-Nearest Neighbor

Nicolás García-Pedrajas, Juan A. Romero del Castillo, and Gonzalo Cerruela-García

2ª Apresentação

Aluno: Lucas de Souza Albuquerque (Isa2)

Outline

- Introdução
 - Contexto
 - > Proposta
- Trabalhos Relacionados
- K Local Ótimo para regra KNN
- Configuração dos Experimentos
- Resultados
- Conclusões e Trabalhos Futuros

Introdução - Contexto

 \bullet Um classificador é uma função $f: X \to Y$ que mapeia uma instância x à uma classe y.

- KNN (k-nearest neighbor) é um método conhecido de classificação:
 - Conjunto de Protótipos (xi, yi) representam nosso conhecimento sobre um problema.
 - Classificação de uma instância baseada na dos k vizinhos mais próximos.

- Porém, o KNN tem um problema.
 - \triangleright Como escolher o valor ideal para k?

Introdução - Proposta

❖ Valores diferentes de *k* apresentam diferentes taxas de acerto para um problema.

- É possível se achar um bom valor para k por meio de Cross-Validation (CV)
 - Mas é improvável que esse mesmo valor seja o melhor para todo o espaço do problema.

- Neste trabalho se é apresentado um método para usar e treinar valores de *k* locais.
 - Este método é rápido e preciso, melhorando a capacidade de generalização do KNN sem piorar a complexidade.

Introdução - Proposta

- Cada protótipo recebe um valor k, que representa o valor ótimo de vizinhos à serem usados naquela vizinhança no kNN
 - Então, em vez do formato (xi, yi), onde xi é o protótipo e yi sua classe, é se usado protótipo melhorados com formato (xi, yi, ki), onde ki é o valor k associado ao protótipo xi

- O método permite escolher um valor k local facilmente e rapidamente.
 - Em tempo de treino, o método possui complexidade linear
 - > Em tempo de teste, o método tem a mesma carga de trabalho que o KNN padrão.

Trabalhos Relacionados

- Existem métodos que falam sobre valores de k não globais
 - \succ Mas nenhum deles mostrou significante melhoria sobre a abordagem de um valor k global escolhido por CV.
- Ferrer-Troyano et al. propôs o k-freguent-NN.
 - > 0 método tenta remover o uso de um k global, mas não se existe um valor local de k para cada instância.
- Wettschereck e Dietterich desenvolveram um modelo que guarda, para cada instância, uma lista de todos os valores de k que o classificaram corretamente.
 - Não apresentou melhorias sobre o KNN padrão.

...entre outros

K-Local ótimo para a regra KNN

- ❖ A abordagem é baseada em fornecer um valor local *k* para a vizinhança de cada protótipo.
 - Para uma instância nova de classe desconhecida, o vizinho mais próximo do banco de treinamento é obtido, e o valor *k* associado à este vizinho é usado para se classificar aquela instância.

- \diamond O processo de treinamento deve então, obter o melhor valor k para cada protótipo.
 - \succ É proposto um algoritmo guloso: para cada protótipo, testa todos os valores de k em um intervalo [kmin, kmax]

K-Local ótimo para a regra KNN

- Para obter o valor local de *k* associado à um protótipo *xi*, só precisamos considerar as instâncias quem tem *xi* como vizinho mais próximo.
 - A avaliação dos valores no intervalo [kmin, kmax], então, é rápida.
- Porém, para alguns protótipos, o número de vizinhos mais próximos pode ser baixo ou até zero.
 - Para se evitar este problema, são considerados partes da 'vizinhança' todas as instâncias que tenham o protótipo como um dos seus n-vizinhos mais próximos. (n = 3)
- Para analisar cada valor k, nosso primeiro objetivo é a performance de classificação.
 - Medida como a taxa de acerto para problemas padrões.

K-Local ótimo para a regra KNN

- \diamond Podem se existir vários valores de k com a mesma performance.
- Neste caso, não se sabe necessariamente qual o melhor valor:
 - \succ Então, se é adicionada a performance global de um valor de k à sua performance local.
 - > Esta performance global é obtida por CV 10-fold.

A nova avaliação do valor k se dá agora pela soma das taxas acertos globais e locais.

Esta combinação quebra empates e adiciona uma visão global ao sistema, evitando variações grandes de *k* locais.

K-Local ótimo para a regra KNN

Configuração Experimental

Foco no kNN padrão, mas pode se expandir facilmente para outras versões do kNN e outros cálculos de distância.

Nos experimentos:

- > Todo *k* deve estar dentro do intervalo [1, 10]
- ➤ Valores de *k* global encontrados por CV 10-Fold
- Protótipos gerados por CNN à partir de uma divisão no banco de dados.

Serão comparados os seguintes algoritmos:

- > KNN padrão, representado por standard KNN, ou KNN
- > KNN com protótipos, representado por **standard PROT**, ou **KNN Prot**
- Local k com protótipos, representado por proposed PROT, ou Local k Prot
- Local k usando o banco de treinamento inteiro, representado por **proposed KNN**, ou **Local k Full**

Configuração Experimental

Datasets:

Retirados do repositório da University of California at Irvine (UCI)

Dataset	# Instâncias	# Atributos	Ano de Publicação
iris	150	4	1988
wine	178	13	1991
parkinsons	197	23	2008
sonar	208	60	N/A
seeds	210	7	2012
glass	214	10	1987
haberman	306	3	1999
ecoli	336	8	1996
leaf	340	16	2014
ionosphere	351	34	1989

Configuração Experimental

Medidas de Avaliação:

- Accuracy: Porcentagem de instâncias corretamentes classificadas
- **k** de Cohen: Usada para compensar sucessos aleatórios.

$$\kappa = \frac{n \sum_{i=1}^{C} x_{ii} - \sum_{i=1}^{C} x_{i}.x_{i}}{n^2 - \sum_{i=1}^{C} x_{i}.x_{i}}$$

Resultados (Datasets Padrões)

- Experimentos feitos para comparar o algoritmo proposto com o kNN padrão.
- Duas colunas para os algoritmos locais: experimento devido à simplicidade da prototipagem
 - Usa o banco de treinamento inteiro como protótipo.
 - Geração de protótipos mais avançado evita isso e deixa o algoritmo ainda mais rápido.
- Ainda assim, algoritmos mostram melhoria significativa sobre kNN padrão.

		Accuracy		
	K-NN	K-NN Prot	Local k Prot	Local k Full
Average	0.829	0.769	0.883	0.897
$1^{\text{st}/2^{\text{nd}}/3^{\text{rd}}/4^{\text{th}}}$	1/1/7/1	0/0/1/9	5/5/0/0	7/3/0/0
	**************************************	Cohen's ĸ		70
	K-NN	K-NN Prot	Local k Prot	Local k Full
Average	0.701	0.591	0.788	0.809
1 st/2 nd/3 rd/4 th	1/0/8/1	0/0/1/9	6/4/0/0	6/4/0/0

Resultados (Datasets Padrões - Taxa de Acerto)

Resultados (Datasets Padrões - K de Cohen)

Cohen's Kappa

Resultados (Datasets Padrões - k ótimo médio)

Average K

Valores do k local tendem à ser o oposto do CV 10-Fold

- Quando o CV consegue valores altos para k, o algoritmo proposto consegue valores médios mais altos, e vice versa.
- Uma versão mais extrema do que o visto no artigo original, talvez devido à quantidade de k possíveis ser menor.

Average K

Conclusão

- Neste trabalho foi-se apresentado um método rápido para introduzir um valor local de *k* para o classificador KNN
 - > Se associa um valor local de *k* à cada protótipo durante o treinamento baseado na vizinhança do protótipo...
 - > ...e instâncias de teste usam o *k* do vizinho mais próximo.

- O método foi comparado com a abordagem de achar o k ótimo por CV 10-fold, pelo KNN padrão, e pelo KNN com uso de protótipos, mostrando-se geralmente melhor que estes para todos os bancos de dados avaliados.
 - > Em pior dos casos, empata com um dos outros métodos.

Perguntas?

Aluno: Lucas de Souza Albuquerque (Isa2)